

Inspire...Educate...Transform.

Statistics and Probability in Decision Modeling

Linear Regression

Dr. Sridhar Pappu Executive VP – Academics, INSOFE

January 06, 2018

Multiple Linear Regression THE OUTPUT

Multiple Linear Regression

- Simple Linear Regression models the effect of one independent variable, x, on one dependent variable, y
- Multiple Regression models the effect of several independent variables, x_1 , x_2 etc., on one dependent variable, y
- The different x variables are combined in a linear way and each has its own regression coefficient:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

• The β parameters reflect the **independent contribution** of each independent variable, x, to the value of the dependent variable, y.

Interpreting Regression Coefficients

atistics
0.89666084
0.804000661
0.750546296
2.90902388
15

A coefficient is the slope of the linear relationship between the dependent variable (DV) and the **independent contribution** of the independent variable (IV), i.e., that part of the IV that is independent of (or uncorrelated with) all other IVs.

		other IV	other IVs.					
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	381.8467141	127.282238	15.04087945	0.00033002			
Residual	11	93.08661926	8.462419933					
Total	14	474.9333333						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%		
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077		
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393		
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286		

Assumptions of Multiple Linear Regression

- Same as simple linear regression
 - Linearity
 - Independence of errors
 - Homoscedasticity (constant variance)
 - Normality of errors

Methods of checking assumptions are also the same

Determining the Multiple Regression Equation

- *k*+1 equations to solve for *k* independent variables and the intercept.
- In solving for intercept and slope in a simple linear regression model, we needed $\sum x$, $\sum y$, $\sum xy$, and $\sum x^2$.
- For multiple regression model with 2 independent variables, we need $\sum x_1, \sum x_2, \sum y, \sum x_1^2, \sum x_2^2, \sum x_1x_2, \sum x_1y$, and $\sum x_2y$.

Determining the Multiple Regression Equation - Excel

In a real estate study, multiple variables were explored to determine the price of a house.

- # of bedrooms
- # of bathrooms
- Age of the house
- # of square feet of living space
- Total # of square feet of space
- # of garages

Find the equation if you want to predict the price of the house by total square feet and age of the house.

Determining the multiple regression equation – Interpreting the output

SUMMARY OUTPUT		What is the equation?					
Regression Statis	stics	$\hat{v} = 0$	57.35 ± 0.0	177 <i>Area</i> -	- 0.666 <i>Aae</i>		
Multiple R	0.860872681	$\hat{y} = 57.35 + 0.0177 Area - 0.666 Age$					
R Square	0.741101773	Are the coefficients and the model					
Adjusted R Square	0.715211951						
Standard Error	11.96038667	significant?					
Observations	23	Yes					
		163					
ANOVA							
	df	SS	MS	F	Significance F		
Regression	2	8189.723012	4094.861506	28.62521631	1.35298E-06		
Residual	20	2861.016988	143.0508494				
Total	22	11050.74					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	<i>Upper 95%</i>	
Intercept	57.35074586	10.00715186	5.73097587	1.31298E-05	36.47619286	78.22529885	
Area (sq ft) (x1)	0.017718036	0.00314562	5.632605205	1.63535E-05	0.011156388	0.024279685	
Age of House (years) (x2)	-0.666347946	0.227996703	-2.922620973	0.008417613	-1.141940734	-0.190755157	

Residuals – Practice Assignment

Residuals are determined the same way as in simple linear regression. The predicted value is calculated by substituting the predictor values of interest. The residual is again the difference between the observed and the predicted values, $y - \hat{y}$.

SSE and Standard Error of the Estimate, *SE* – Practice Assignment

$$SSE = \sum (y - \hat{y})^2$$

$$SE = \sqrt{\frac{SSE}{n - k - 1}}$$

Coefficient of Multiple Determination, R² – Practice Assignment

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Adjusted R² - Excel

As additional independent variables are added to the regression model, the value of R² increases.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

However, sometimes these variables are insignificant and add no real value, yet inflating the R² value.

Adjusted R² takes into consideration both the additional information and the changed degrees of freedom.

Adjusted
$$R^2 = 1 - \frac{\frac{SSE}{(n-k-1)}}{\frac{SST}{n-1}} = R^2 - (1-R^2) \frac{k}{n-k-1} = 1 - \frac{MSE}{MST}$$

Sample R Output

```
Call:
lm(formula = ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp +
   ToxinConc$Sunshine + ToxinConc$WindSpeed, data = ToxinConc)
Residuals:
             2
-1.8818 2.0498 -0.6314 0.4787 -0.5805 1.2508 -0.1921 -0.1813
            10
-1.1552 0.8429
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   31.6084 7.1051 4.449 0.00671 **
ToxinConc$Rain
              7.0676 1.0031 7.046 0.00089 ***
ToxinConc$NoonTemp -0.4201 0.2413 -1.741 0.14215
ToxinConc$Sunshine -0.2375 0.5086 -0.467 0.66018
ToxinConc$WindSpeed -0.7936 0.2977 -2.666 0.04458 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.574 on 5 degrees of freedom
Multiple R-squared: 0.9186, Adjusted R-squared: 0.8535
F-statistic: 14.11 on 4 and 5 DF, p-value: 0.006232
```


Multiple Linear Regression HANDLING SPECIAL SITUATIONS

Nonlinear Models – Polynomial Regression

For example, $y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \epsilon$

How is this a special case of the general linear model?

Replace x_1^2 with x_2 , so that $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

Multiple linear regression assumes a linear fit of the regression coefficients and regression constant, but not necessarily a linear relationship of the independent variable values.

Nonlinear Models - Polynomial Regression - Excel

Sales volume versus # of sales reps and # of sales reps squared

Tukey's Ladder of Transformations

Ladder for x							
Up ladder	Neutral	Down ladder					
\dots, x^4, x^3, x^2, x	\sqrt{x} , x , $logx$	$-\frac{1}{\sqrt{x}}, -\frac{1}{x}, -\frac{1}{x^2}, -\frac{1}{x^3}, \dots$					
Ladder for y							
Up ladder	Neutral	Down ladder					
\dots, y^4, y^3, y^2, y	\sqrt{y} , y , $logy$	$-\frac{1}{\sqrt{y}}, -\frac{1}{y}, -\frac{1}{y^2}, -\frac{1}{y^3}, \dots$					

Tukey's Four-Quadrant Approach

Move toward log X, $-1/\sqrt{X}$,..., or toward log Y, $-1/\sqrt{Y}$,...

Move toward $X^2, X^3, ... or$ toward log Y, $-1/\sqrt{Y}, ...$

Based on Tukey's 4-Quadrant Approach, what transformation do you recommend?

SQRT Transformation on X

LOG Transformation on X

Data	Equation	_	Ahead of % People (Prediction for Day 78)
Original	0.8201x + 35.373	88.7%	99.34
Square Root on X	9.7558x + 9.1202	96.6%	95.28
Log on X	57.858x - 19.512	99.8%	89.96

http://www.insofe.edu.in

More thoughts on Transformations

DATA TRANSFORMATION

As suggested by Tabachnick and Fidell (2007) and Howell (2007), the following guidelines (including SPSS compute commands) should be used when transforming data.

If your data distribution is...

Moderately positive skewness

Substantially positive skewness

Substantially positive skewness (with zero values)

Moderately negative skewness

Substantially negative skewness

Use this transformation method.

Square-Root

NEWX = SQRT(X)

Logarithmic (Log 10)

NEWX = LG10(X)

Logarithmic (Log 10)

NEWX = LG10(X + C)

Square-Root

NEWX = SQRT(K - X)

Logarithmic (Log 10)

NEWX = LG10(K - X)

C = a constant added to each score so that the smallest score is 1.

 \mathbf{K} = a constant from which each score is subtracted so that the smallest score is 1; usually equal to the largest score + 1.

Source: http://oak.ucc.nau.edu/rh232/courses/eps625/handouts/data%20transformation%20handout.pdf

Last accessed: May 12, 2016

More thoughts on Transformations

- Square-root transformation: $X \to \sqrt{X}$
 - Use where variance is proportional to mean $(\sigma^2 \propto \mu)$. Occurs when data consists of counts, such as in urine or blood analyses or microbiological data.
 - If some values are zero or very small, use instead $\sqrt{X} + \sqrt{X+1}$.
 - Poisson variables, where mean = variance, square-root transformation will lead to homoscedasticity.
- Reciprocal transformation: $X \to \frac{1}{X}$
 - Use where standard deviation is proportional to the square of the mean

 $(\sigma \propto \mu^2)$.

- boxcox() in MASS package of R
- PROC TRANSREG in SAS

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations, *Journal of the Royal Statistical Society*, Series B, *26*, 211-252.

24

Approach to determine whether to transform X or Y to achieve linearity, homoscedasticity and normality:

- 1. Often, a transformation that fixes one, fixes all.
- 2. In general, transforming both is not required, although sometimes it is.
- 3. A general rule of thumb:
 - 1. Transform Y first to remove heteroscedasticity.
 - 2. Then transform X to remove non-linearity.

Nonlinear Models – With Interaction

Interaction can be examined as a separate independent variable in regression.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

For example,

- Individually each of two drugs might improve symptoms, but when taken together, they may interact and cause a decline in health.
- Fire increases a balloon's levity (hot air balloon). Hydrogen also increases levity as in the Zeppelins. But fire and hydrogen dramatically reduce the levity.

Nonlinear Models – Without Interaction - Excel

SUMMARY OUTPUT							
Regression St	atistics						
Multiple R	0.687213365						
R Square	0.47226221	Mod	Model is significant but neither		of the		
Adjusted R Square	0.384305911		•	ilcalit bu	at Heitilei	of the	
Standard Error	4.570195728	varia	ıbles is.				
Observations	15						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	2	224.2930654	112.1465327	5.369282452	0.021602756		
Residual	12	250.6402679	20.88668899				
Total	14	474.9333333					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
Intercept	50.85548009	3.790993168	13.41481713	1.38402E-08	42.59561554	59.11534464	
Stock 2 (\$)	-0.118999968	0.19308237	-0.616317112	0.54919854	-0.539690313	0.301690376	
Stock 3 (\$)	-0.07076195	0.198984841	-0.35561478	0.728301903	-0.504312675	0.362788775	

Nonlinear Models – With Interaction - Excel

SUMMARY OUTPUT		One of the earlier insignificant variables along with the interaction term are now significant.							
Regression St	tatistics	with t	with the interaction term are now significant						
Multiple R	0.89666084		• Model remains significant						
R Square	0.804000661	 Model remains significant. 							
Adjusted R Square	0.750546296	Adiust	 Adjusted R-sq doubled. 						
Standard Error	2.90902388	Aujus	teu n-sq	doubled.					
Observations	15								
ANOVA									
	df	SS	MS	F	Significance F				
Regression	3	381.8467141	127.282238	15.04087945	0.00033002				
Residual	11	93.08661926	8.462419933						
Total	14	474.9333333							
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%			
Intercept	12.04617703	9.312399791			-8.450276718	· ·			
Stock 2 (\$)	0.878777607	0.26187309		0.006412092	0.302398821	1.455156393			
Stock 3 (\$)	0.320403737	0.142521004	1 526200296	0.152714572	-0.095396832	0.536382286			
() /	0.220492727	0.143521894	0.143521894						

Indicator (Dummy) Variables

Categorical variables such as gender, geographic region, occupation, marital status, level of education, economic class, religion, buying/renting a home, etc. can also be used in multiple regression analysis.

If there are *n* levels in a category, *n-1* dummy variables need to be inserted into the regression analysis replacing that category.

Indicator (Dummy) Variables

If a survey question asks about the region of country your office is located in, with North, South, East and West as the options, the **recoding** can be done as follows:

Region	
North	
East	
North	
South	
West	
West	
East	

North	West	South
1	0	0
0	0	0
1	0	0
0	0	1
0	1	0
0	1	0
0	0	0

Indicator (Dummy) Variables - Excel

Consider the issue of gender discrimination in the salary earnings of workers in some industries. If there is discrimination, how much is one gender earning more than

the other

Indicator (Dummy) Variables - Excel

SUMMARY OUTPUT						
Regression Statis	tics					
Multiple R	0.943391358					
R Square	0.889987254					
Adjusted R Square	0.871651797					
Standard Error	0.096791578					
Observations	15					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	0.909488418	0.454744	48.53914	1.77279E-06	
Residual	12	0.112423316	0.009369			
Total	14	1.021911733				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	1.732060612	0.235584356	7.352189	8.83E-06	1.218766395	2.245354829
Age (10 years)	0.111220164	0.072083424	1.542937	0.148796	-0.045836124	0.268276453
Gender (1=Male, 0=Female)	0.458684065	0.053458498	8.58019	1.82E-06	0.342208003	0.575160126

Separate equation for each gender

Multiple Linear Regression MODEL BUILDING METHODS

Model Building: Search Procedures

Suppose a model to predict the world crude oil production (barrels per day) is to be developed and the predictors used are:

- US energy consumption (BTUs)
- Gross US nuclear electricity generation (kWh)
- US coal production (short-tons)
- Total US dry gas (natural gas) production (cubic feet)
- Fuel rate of US-owned automobiles (miles per gallon)

What does your intuition say about how each of these variables would affect the oil production?

Model Building: Search Procedures

Two considerations in model building:

- Explaining most variation in dependent variable
- Keeping the model simple AND economical

Quite often, the above two considerations are in conflict of each other.

If 3 variables can explain the variation nearly as well as 5 variables, the simpler model is better. Search procedures help choose the more attractive model.

Search Procedures: All Possible Regressions

All variables used in all combinations. For a dataset containing k independent variables, 2^k -1 models are examined. In the example of the oil production, 31 models are examined.

Tedious, Time-Consuming, Inefficient, Overwhelming.

Search Procedures: Stepwise Regression

Starts a model with a single predictor and then adds or deletes predictors one step at a time.

Step 1

- Simple regression model for each of the independent variables one at a time.
- Model with largest absolute value of t selected and the corresponding independent variable considered the best single predictor, denoted x₁.
- If no variable produces a significant t,
 the search stops with no model.

Why LARGEST absolute *t* value and not the SMALLEST?

Visualize the normal (or **t**) distribution, recall hypothesis testing, think of what the null hypothesis is and then understand what the largest and smallest absolute **t** values mean in terms of the distance from the null value.

Search Procedures: Stepwise Regression

Step 2

- All possible two-predictor regression models with x_1 as one variable.
- Model with largest absolute t value in conjunction with x_1 and one of the other k-1 variables denoted x_2 .
- Occasionally, if x_1 becomes insignificant, it is dropped and search continued with x_2 .
- If no other variables are significant, procedure stops.
- The above process continues with the 3rd variable added to the above 2 selected and so on.

Search Procedures: Stepwise Regression - Excel

Step 1

Dependent Variable	Independent Variable	t Ratio	<i>p</i> -value	R ²
Oil production	Energy consumption	11.77	1.86e-11	85.2%
Oil production	Nuclear	4.43	0.000176	45.0
Oil production	Coal	3.91	0.000662	38.9
Oil production	Dry gas	1.08	0.292870	4.6
Oil production	Fuel rate	3.54	0.00169	34.2

$$y = 13.075 + 0.580x_1$$

Search Procedures: Stepwise Regression - Excel

Step 2

Dependent Variable, <i>y</i>	Independent Variable, x ₁	Independent Variable, x ₂	t Ratio of x ₂	<i>p</i> -value	R ²
Oil production	Energy consumption	Nuclear	-3.60	0.00152	90.6%
Oil production	Energy consumption	Coal	-2.44	0.0227	88.3
Oil production	Energy consumption	Dry gas	2.23	0.0357	87.9
Oil production	Energy consumption	Fuel rate	-3.75	0.00106	90.8

$$y = 7.14 + 0.772x_1 - 0.517x_2$$

t value for Energy Consumption is now at 11.91 and still significant (2.55e-11).

Search Procedures: Stepwise Regression - R

Step 3

Dependent Variable, <i>y</i>	Independent Variable, x ₁	Independent Variable, x ₂	•	t Ratio of x ₃	<i>p</i> - value	
Oil production	Energy consumption	Fuel rate	Nuclear	-0.43	0.672	
Oil production	Energy consumption	Fuel rate	Coal	1.71	0.102	
Oil production	Energy consumption	Fuel rate	Dry gas	-0.46	0.650	

No t ratio is significant at $\alpha = 0.05$. No new variables are added to the model.

Search Procedures: Stepwise Regression - R

AIC (Akaike's Information Criterion)

AIC = $2k + n \ln(RSS/n)$ where RSS is Residual Sum of Squares or SSE.

k is the number of parameters including intercept.

Sum of Sq is the additional reduction in SSE due to the addition of a variable or additional increase in SSE due to the removal of a variable.

> stepAICOil <- stepAIC(CrudeOilOutputlm, direction = "both")</pre> CrudeOilOutput\$WorldOil ~ CrudeOilOutput\$USEnergy + CrudeOilOutput\$USAutoFuelRate + CrudeOilOutput\$USNuclear + CrudeOilOutput\$USCoal + CrudeOilOutput\$USDryGas Df Sum of Sq RSS AIC 0.151 29.661 13.425 CrudeOilOutput\$USDryGas - CrudeOilOutput\$USNuclear 0.651 30.161 13.860 29.510 15.293 - CrudeOilOutput\$USAutoFuelRate 1 2.640 32.150 15.521 - CrudeOilOutput\$USCoal 2.683 32.193 15.555 CrudeOilOutput\$USEnergy 31.720 61.231 32.270 Step: AIC=13.42 CrudeOilOutput\$WorldOil ~ CrudeOilOutput\$USEnergy + CrudeOilOutput\$USAutoFuelRate + CrudeOilOutput\$USNuclear + CrudeOilOutput\$USCoal Df Sum of Sq - CrudeOilOutput\$USNuclear 0.583 30.243 11.931 29.661 13.425 4.296 33.956 14.941 CrudeOilOutput\$USCoal - CrudeOilOutput\$USAutoFuelRate 1 4.575 34.236 15.154 + CrudeOilOutput\$USDryGas 0.151 29.510 15.293 CrudeOilOutput\$USEnergy 137.158 166.818 56.329 Step: AIC=11.93 CrudeOilOutput\$WorldOil ~ CrudeOilOutput\$USEnergy + CrudeOilOutput\$USAutoFuelRate + CrudeOilOutput\$USCoal Df Sum of Sa **RSS** 30.243 11.931 <none> - CrudeOilOutput\$USCoal 3.997 34.240 13.158 + CrudeOilOutput\$USNuclear 0.583 29.661 13.425

+ CrudeOilOutput\$USDryGas

CrudeOilOutput\$USEnergy

CrudeOilOutput\$USAutoFuelRate

0.082 30.161 13.860

13.531 43.774 19.545

195.845 226.088 62.234

Multiple Linear Regression LIANDLING NALLITICOLLING AD

HANDLING MULTICOLLINEARITY

Multicollinearity - R

Two or more independent variables are highly correlated.

	Energy consumption	Nuclear	Coal	Dry gas	Fuel rate
Energy consumption	1				
Nuclear	0.856	1			
Coal	0.791	0.952	1		
Dry gas	0.057	-0.404	-0.448	1	
Fuel rate	0.791	0.972	0.968	-0.423	1

Multicollinearity - R

Multicollinearity

Sign of estimated regression coefficient when interacting may be opposite of the signs when used as individual predictors.

For example, fuel rate and coal production are highly correlated (0.968).

$$\hat{y} = 44.869 + 0.7838(fuel rate)$$

$$\hat{y} = 45.072 + 0.0157(coal)$$

$$\hat{y} = 45.806 + 0.0277(coal) - 0.3934(fuel rate)$$

Multicollinearity

Multicollinearity can lead to a model where the model (F value) is significant but all individual predictors (t values) are insignificant.

(Recall the with- and without-interaction example)

SUMMARY OUTPUT			Correlation between stock 2							
Regression St	tatistics		and stock 3 is 0.96							
Multiple R	0.687213365									
R Square	0.47226221									
Adjusted R Square	0.384305911									
Standard Error	4.570195728									
Observations	15									
ANOVA										
	df	SS	MS	F Significance F						
Regression	2	224.2930654	112.1465327	5.369282452	0.021602756					
Residual	12	250.6402679	20.88668899							
Total	14	474.9333333								
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%				
Intercept	50.85548009	3.790993168	13.41481713	1.38402E-08	42.59561554	59.11534464				
Stock 2 (\$)	-0.118999968	0.19308237	-0.616317112	0.54919854	-0.539690313	0.301690376				
Stock 3 (\$)	-0.07076195	0.198984841	-0.35561478	0.728301903	-0.504312675	0.362788775				

Multicollinearity

- Stepwise regression prevents this problem to a great extent.
- Variance Inflation Factor (VIF): A regression analysis is conducted to predict an independent variable by the other independent variables.
 The independent variable being predicted becomes the dependent variable in this analysis.

$$VIF = \frac{1}{1 - R_i^2}$$

VIF > 10 or R_i^2 > 0.90 for the largest VIFs indicates a severe multicollinearity.

Model Building - R

A drug precursor molecule is extracted from a type of nut, which is commonly contaminated by a fungal toxin that is difficult to remove during the purification process. The suspected predictors of the amount of fungus are:

- Rainfall (cm/week)
- Noon temperature (°C)
- Sunshine (h/day)
- Wind speed (km/h)

The fungal toxin concentration is measured in $\mu g/100$ g.

Model Building - R

```
Call:
lm(formula = ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp +
   ToxinConc$Sunshine + ToxinConc$WindSpeed, data = ToxinConc)
Residuals:
     1
-1.8818 2.0498 -0.6314 0.4787 -0.5805 1.2508 -0.1921 -0.1813
            10
     9
-1.1552 0.8429
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   31.6084
                               7.1051
                                       4,449
                                              0.00671 **
ToxinConc$Rain
                   7.0676
                               1.0031 7.046 0.00089 ***
ToxinConc$NoonTemp
                   -0.4201 0.2413 -1.741 0.14215
ToxinConc$Sunshine
                   -0.2375 0.5086 -0.467 0.66018
ToxinConc$WindSpeed
                   -0.7936
                               0.2977 -2.666 0.04458 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.574 on 5 degrees of freedom
Multiple R-squared: 0.9186, Adjusted R-squared: 0.8535
```

Multiple regression tends to remove correlated pairs of IVs, as in the case of Noon Temperature and Sunshine here.

F-statistic: 14.11 on 4 and 5 DF, p-value: 0.006232

Model Building – R

Multiple regression tends to remove correlated pairs of IVs, as in the case of Noon Temperature and Sunshine here.

```
> correlation
                Toxin
                              Rain
                                     NoonTemp
                                                  Sunshine
                                                             WindSpeed
Toxin
           1.00000000
                       0.868734134 -0.07319548 -0.05169949 -0.270555628
Rain
                                   0.11691043 0.16841144 -0.002180167
           0.86873413
                       1.0000000000
NoonTemp -0.07319548 0.116910426
                                   1.00000000 0.50082303 -0.368972511
Sunshine
         -0.05169949
                      0.168411437
                                    0.50082303
                                               1.00000000 -0.018439486
WindSpeed -0.27055563 -0.002180167 -0.36897251 -0.01843949
                                                           1.0000000000
```

It may be worthwhile to build another model keeping one of the correlated variables in the model. The more significant can be preferred but business intuition may be cautiously used to include other statistically insignificant variable(s).

Model Building - R

```
> ToxinConclm1 <- stepAIC(ToxinConclm, direction = "both")</pre>
Start: AIC=12.14
ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp + ToxinConc$Sunshine +
   ToxinConc$WindSpeed
                     Df Sum of Sq
                                     RSS
                                            AIC

    ToxinConc$Sunshine

                            0.540 12.927 10.567
                                   12.387 12.141
<none>

    ToxinConc$NoonTemp

                      1 7.510 19.897 14.880
- ToxinConc$WindSpeed 1 17.603 29.990 18.983

    ToxinConc$Rain

                      1 122.991 135.378 34.055
Step: AIC=10.57
ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp + ToxinConc$WindSpeed
                     Df Sum of Sq
                                      RSS
                                            AIC
                                   12.927 10.567
<none>
+ ToxinConc$Sunshine
                      1 0.540 12.387 12.141
ToxinConc$NoonTemp 1 13.417 26.344 15.686

    ToxinConc$WindSpeed 1 19.688 32.615 17.822

- ToxinConc$Rain
                      1 122.830 135.757 32.083
```


Model Building - R

```
Call:
lm(formula = ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp +
    ToxinConc$WindSpeed, data = ToxinConc)
Residuals:
   Min
            1Q Median
                            3Q
                                   Max
-1.6394 -0.9308 0.1394 0.6545 2.0909
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    31.5651
                                6.6253
                                        4.764 0.00311 **
ToxinConc$Rain
                               0.9285 7.551
                     7.0108
                                               0.00028 ***
                    -0.4790 0.1919 -2.495 0.04682 *
ToxinConc$NoonTemp
                   -0.8218
                               0.2718 -3.023 0.02331 *
ToxinConc$WindSpeed
                 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 1.468 on 6 degrees of freedom
Multiple R-squared: 0.915, Adjusted R-squared: 0.8726
F-statistic: 21.54 on 3 and 6 DF, p-value: 0.001298
```

Toxin concentrations increase with increasing rainfall and decrease in drier climates characterized by higher temperatures and wind speeds.

The business can take a decision to rent farms in drier climates if the cost benefits of saved nuts versus higher rents are high.

- 1. If **interaction** terms are used in regression, standardizing the variables first reduces collinearity.
- 2. If **power** terms (polynomial regression) are included, standardization again reduces collinearity.
- 3. Standardization does not improve model performance or R-squared, etc.
- 4. If interpreting the magnitude of coefficients in terms of the **weightage of the corresponding variable** is desired, then standardizing is required. The raw coefficients do not carry any such interpretation.

Also read: http://www.listendata.com/2017/04/how-to-standardize-variable-in-regression.html

Last accessed: January 05, 2018

Multiple Linear Regression

RECAP - OUTPUT ANALYSIS

What is the total variation and its explainable and unexplainable components?

SUMMARY OUTPUT			_					
					SST	S = SSR + S	SSE	
Regression St	atistics							
Multiple R	0.89666084		$SST = \sum_{i=1}^{n} (y_i)^{i}$	$(\bar{y}_i - \bar{y})^2$	SSR	$2 = \sum_{i=1}^{n} (\hat{y}_i - \hat{y}_i)$	\bar{y}) ² $SSE =$	$\sum (y_i - \hat{y}_i)^2$
R Square	0.804000661							
Adjusted R Square	0.750546296				!			
Standard Error	2.90902388							
Observations	15							
ANOVA								
	df		SS	MS		F	Significance F	
Regression	3		381.8467141	127.2	32238	15.04087945	0.00033002	
Residual	11		93.08661926	8.4624	19933			
Total	14	1	474.9333333	8				
	Coefficients	S	tandard Error	t Sta	ıt	P-value	Lower 95%	Upper 95%
Intercept	12.04617703		9.312399791	1.293	56313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607		0.26187309	3.3557	38482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727		0.143521894	1.53630	00286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949		0.002314083	-4.31480	62356	0.00122514	-0.015078211	-0.00489169

How much of total variation can be explained by variation in independent variables?

SUMMARY OUTPUT							
Regression St	tatistics						
Multiple R	0.89666084	SSR	38	31.85			
R Square	0.804000661	${SST} =$	15	7 <mark>4.93</mark>			
Adjusted R Square	0.750546296	331	<i>ዣ /</i>	4.93			
Standard Error	2.90902388						
Observations	15						
ANOVA							
	df	SS		MS	F	Significance F	
Regression	3	381.84671	41	127.282238	15.04087945	0.00033002	
Residual	11	93.086619	26	8.462419933			
Total	14	474.93333	33				
	Coefficients	Standard Erro	or	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.3123997		1.29356313	0.222319528		32.54263077
Stock 2 (\$)	0.878777607	0.261873	09	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.1435218	94	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.0023140	83	-4.314862356	0.00122514	-0.015078211	-0.00489169

What is the correlation between actual and expected values?

SUMMARY OUTPUT						
Regression St	tatistics					
Multiple R	0.89666084	$\sqrt{R^2}$: Corre	<mark>lation betwe</mark>	een y and \hat{y}	}	
R Square	0.804000661	-				
Adjusted R Square	0.750546296					
Standard Error	2.90902388					
Observations	15					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15.04087945	0.00033002	
Residual	11	93.08661926	8.462419933			
Total	14	474.9333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

How much of total variation can be explained by variation in independent variables (IVs) that *actually affect* the DV?

SUMMARY OUTPUT						
Regression St	atistics					
Multiple R	0.89666084					
R Square	0.804000661		1	7	MSE	
Adjusted R Square	0.750546296	$R^2 - (1)$	$(-R^2)\frac{R^2}{n-R^2}$	1		
Standard Error	2.90902388		n-1	k-1	MST	
Observations	15					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15,04087945	0.00033002	
Residual	11	93.08661926	8.462419933			
Total	14	474.9333333	33.923809521			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

What is the "average" deviation of the actual values from the expected values?

SUMMARY OUTPUT						
Regression St	atistics					
Multiple R	0.89666084					
R Square	0.804000661					
Adjusted R Square	0.750546296					
Standard Error	2.90902388	\sqrt{MSE}				
Observations	15					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15.04087945	0.00033002	
Residual	11	93.08661926	8.462419933			
Total	14	474.9333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

What is the average of the squared errors?

SUMMARY OUTPUT						
Regression St	atistics					
Multiple R	0.89666084					
R Square	0.804000661					
Adjusted R Square	0.750546296					
Standard Error	2.90902388	S.	<mark>SE </mark>			
Observations	15	$MSE = \frac{df_{o}}{df_{o}}$	rror			
			TTOI			
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15.04087945	0.00033002	
Residual	11	93.08661926	8.462419933			
Total	14	474.9333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

F Table for $\alpha = 0.05$

241.8817

19.3959

8.7855

5.9644 4.7351

4.0600 3.6365

3.3472

3.1373

2.9782

2.8536

243.9060

19.4125

8.7446 5.9117

4.6777

3.5747

3.2839

3.0729 2.9130

2.7876

Is the model significant?

SUMMARY OUTPUT			1	df ₁ =1	2	3	4	5	6	7	8	9
JOIVIIVIANT OUTFOI			df ₂ =1	161.4476	199.5000	215.7073	224.5832	230.1619	233.9860	236.7684	238.8827	240.5433
			2	18.5128	19.0000	19.1643	19.2468	19.2964	19.3295	19.3532	19.3710	19.3848
Regression St	atistics		3	7.7086	9.5521 6.9443	9.2766 6.5914	9.1172 6.3882	9.0135 6.2561	8.9406 6.1631	8.8867 6.0942	8.8452 6.0410	8.8123 5.9988
Multiple R	0.89666084		5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
R Square	0.804000661											
Adjusted R Square	0.750546296	MSR	6	5.9874	5.1433 4.7374	4.7571 4.3468	4.5337	4.3874 3.9715	4.2839 3.8660	4.2067 3.7870	4.1468 3.7257	4.0990 3.6767
Standard Error	2.90902388	$F = \frac{1}{MSE}$	8	5.3177	4.7574	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
Observations	15	NUL	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
O D D D C T V C C T T T T T T T T T T T T T T T	13	\	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204
ANOVA			11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962
	df	ss	MS		F Significance		ce F					
Regression	3	381.8467141	127.282238	15.04087945		945	0.00033002		3002			
Residual	11	93.08661926	8.462419933									
Total	14	474.9333333										
	Coefficients	Standard Error	t Stat	P-	value	?	Low	er 95	%	Upp	er 95	%
Intercept	12.04617703	9.312399791	1.29356313	0.22	2319	528	-8.4	50276	5718	32.5	42630)77
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.00	6412	092	0.30	02398	3821	1.45	51563	393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573		573	-0.095396832		5832	0.536382286		286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.0	0122	514	-0.0	15078	3211	-0.0	04891	L69

What do regression coefficients mean?

SUMMARY OUTPUT	
Regression St	atistics
Multiple R	0.89666084
R Square	0.804000661
Adjusted R Square	0.750546296
Standard Error	2.90902388
Observations	15
Λ NOV Λ	

A coefficient is the slope of the linear relationship between the dependent variable (DV) and the **independent contribution** of the independent variable (IV), i.e., that part of the IV that is independent of (or uncorrelated with) all other IVs.

ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15.04087945	0.00033002	
Residual	11	93 08661926	8.462419933			
Total	14	474.9333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

How much will the variation be between the estimated coefficient and the corresponding true population parameter?

SUMMARY OUTPUT										
Regression St	atistics									
Multiple R	0.89666084									
R Square	0.804000661									
Adjusted R Square	0.750546296	6 -	$SE_{b_1} = \frac{SE}{\sqrt{\sum \left(x_{1i} - \bar{x}_1\right)^2}} \sqrt{1 - R^2_{(x_1, x_2 x_3)}}$ $R^2 \text{ with } x_1 \text{ as dependent and at her Ys as independent}$							
Standard Error	2.90902388	SE_{l}	$p_1 = \overline{}$		$1 - R^2_{(x_1, x_2)}$	(x_3)				
Observations	15	a provide	$\sum (x_1)$	$(1 - \bar{x}_1)^2$	R^2 with x_1 as dep	endent and				
		A Park	72 (1	(1)	other Xs as indep	endent				
ANOVA		John Committee of the C								
	df	SS	MS	F	Significance F					
Regression	3,	381.8467141	127.282238	15.04087945	0.00033002					
Residual	.11	93.08661926	8.462419933							
Total	14	474.9333333								
	pro									
	C oefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%				
Intercept b_0	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077				
Stock 2 (\$) b_1	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393				
Stock 3 (\$) b ₂	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286				
Stock 2*Stock 3 b ₃	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169				

Are the coefficients significant?

Table entry for pand C is the point t^* with probability p lying above it and probability Clying between $-t^*$ and t^* .

SUMMARY OUTPUT					, and			t*
					Table	B t	distribution critical values	
Dograssian St	atistics				df	.25 .20 .15	Tail probability p .10	.005 .0025 .001 .0005
Regression St					1 2	1.000 1.376 1.963 3.	.078 6.314 12.71 15.89 31.82 .886 2.920 4.303 4.849 6.965	63.66 127.3 318.3 636.6 9.925 14.09 22.33 31.60
Multiple R	0.89666084				3 4 5	.765 .978 1.250 1. .741 .941 1.190 1.	.638 2.353 3.182 3.482 4.541 .533 2.132 2.776 2.999 3.747	5.841 7.453 10.21 12.92 4.604 5.598 7.173 8.610 4.032 4.773 5.893 6.869
R Square	0.804000661				6 7 8	.718 .906 1.134 1. .711 .896 1.119 1.	.440 1.943 2.447 2.612 3.143 .415 1.895 2.365 2.517 2.998 .397 1.860 2.306 2.449 2.896	3.707 4.317 5.208 5.959 3.499 4.029 4.785 5.408 3.355 3.833 4.501 5.041
Adjusted R Square	0.750546296	$t = \frac{b_i - \beta_{ij}}{a_i}$	านไไ		9 10 11		.383	3.250 3.690 4.297 4.781 3.169 3.581 4.144 4.587 3.106 3.497 4.025 4.437
Standard Error	2.90902388	$t = \frac{1}{SE_{t}}$	$\beta_{i_{null}} = 0$		12 13 14	.694 .870 1.079 1. .692 .868 1.076 1.	.356 1.782 2.179 2.303 2.681 .350 1.771 2.160 2.282 2.650 .345 1.761 2.145 2.264 2.624 .341 1.753 2.131 2.249 2.602	3.055 3.428 3.930 4.318 3.012 3.372 3.852 4.221 2.977 3.326 3.787 4.140 2.947 3.286 3.733 4.073
Observations	15		$\rho_{i_{null}} - \sigma$		16 17 18	.690 .865 1.071 1. .689 .863 1.069 1.	.341 1.753 2.131 2.249 2.602 .337 1.746 2.120 2.235 2.583 .333 1.740 2.110 2.224 2.567 .330 1.734 2.101 2.214 2.552	2.947 3.286 3.733 4.073 2.921 3.252 3.686 4.015 2.898 3.222 3.646 3.965 2.878 3.197 3.611 3.922
					19 20	.688 .861 1.066 1. .687 .860 1.064 1. .686 .859 1.063 1.	.328 1.729 2.093 2.205 2.539 .325 1.725 2.086 2.197 2.528 .323 1.721 2.080 2.189 2.518	2.861 3.174 3.579 3.883 2.845 3.153 3.552 3.850 2.831 3.135 3.527 3.819
ANOVA					21 22 23 24 25	.685 .858 1.060 1. .685 .857 1.059 1.	.321 1.717 2.074 2.183 2.508 .319 1.714 2.069 2.177 2.500 .318 1.711 2.064 2.172 2.492 .316 1.708 2.060 2.167 2.485	2.819 3.119 3.505 3.792 2.807 3.104 3.485 3.768 2.797 3.091 3.467 3.745 2.787 3.078 3.450 3.725
	df	59	MS	F	26 27 28 29 30	.684 .856 1.058 1. .684 .855 1.057 1.	.315 1.706 2.056 2.162 2.479 .314 1.703 2.052 2.158 2.473	2.761 3.078 3.430 3.723 2.779 3.067 3.435 3.707 2.771 3.057 3.421 3.690 2.763 3.047 3.408 3.674
Regression	3	381/8467141	127.282238	15.0408794	40	.683 .854 1.055 1. .681 .851 1.050 1.	.311 1.699 2.045 2.150 2.462 .310 1.697 2.042 2.147 2.457 .303 1.684 2.021 2.123 2.423	2.756 3.038 3.396 3.659 2.750 3.030 3.385 3.646 2.704 2.971 3.307 3.551
Residual	11	93/08661926	8.462419933		50 60 80 100	.679 .848 1.045 1. .678 .846 1.043 1.	.299 1.676 2.009 2.109 2.403 .296 1.671 2.000 2.099 2.390 .292 1.664 1.990 2.088 2.374 .290 1.660 1.984 2.081 2.364	2.678 2.937 3.261 3.496 2.660 2.915 3.232 3.460 2.639 2.887 3.195 3.416 2.626 2.871 3.174 3.390
Total	14	4,9333333			1000	.675 .842 1.037 1. .674 .841 1.036 1.	.282	2.581 2.813 3.098 3.300 2.576 2.807 3.091 3.291
						50% 60% 70%	80% 90% 95% 96% 98% Confidence level <i>C</i>	99% 99.5% 99.8% 99.9%
	Coefficients	Standard Error	t Stat	P-value	Lo	wer 95%	Upper 95%	
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.	450276718	32.54263077	
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.	302398821	1.455156393	(
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.	095396832	0.536382286	

0.002314083

-0.009984949

Stock 2*Stock 3

0.00122514

-4.314862356

-0.00489169

-0.015078211

What are the confidence intervals for the coefficients?

SUMMARY OUTPUT $b_i - t_{\left(\frac{\alpha}{2},\nu\right)} * SE_{b_i} \le \beta_i \le b_i + t_{\left(\frac{\alpha}{2},\nu\right)} * SE_{b_i}$

	(2')		(Z')	
Regression S	tatistics			
Multiple R	0.89666084			
R Square	0.804000661			
Adjusted R Square	0.750546296			
Standard Error	2.90902388			
Observations	15			
ANOVA				
	df	SS	MS	F
Regression	3	381.8467141	127.282238	15.0408794
Residual	11	93.08661926	8.462419933	
Total	14	474.9333333		

and C is the point
t^* with probability
p lying above it
and probability C
lying between
$-t^*$ and t^* .

Table entry for p

Table B t distribution critical values Tail probability p													
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005	
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6	
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60	
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92	
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610	
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869	
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959	
	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408	
8	.700	889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041	
9	.703	.883	1.100	1,383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781	
10	.700	.879	1.093	1.372	1 912	2.228	2.359	2.764	3.169	3.581	4.144	4.587	
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437	
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318	
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221	
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140	
15 16	.691	.866 .865	1.074	1.341	1.753	2.131 2.120	2.249 2.235	2.602 2.583	2.947 2.921	3.286 3.252	3.733 3.686	4.073 4.015	
17		.863	1.071	1.333	1.740	2.120	2.224	2.567	2.898	3.222	3.646	3.965	
18	.689 .688	.862	1.069	1.330	1.734	2.110	2.224	2.552	2.878	3.197	3.611	3.922	
19	.688	.861	1.066	1.328	1.729	2.101	2.214	2.539	2.861	3.174	3,579	3.883	
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850	
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819	
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792	
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768	
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745	
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725	
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707	
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690	
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674	
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659	
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646	
40	.681	.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551	
50	.679	.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496	
60	.679	.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460	
80	.678	.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416	
100	.677	.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390	
1000	.675	.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300	
00	.674	.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291	
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%	
					Confid	lence le	wol C						

						•	
	Coefficients	Si	andard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703		9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607		0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	¥	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949		0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

Multiple Linear Regression CASE - MONEYBALL

Case - Oakland A's 2002 Success (Moneyball)

Case Study – Data (baseball-reference.com and MITx)

- 1232 rows, 15 variables
- Statistics for 40 teams from 1962 to 2012
- Oakland A was trying to make playoffs in 2002 and so, 902 rows of data from pre-2002 dates used.

Team	League	Year	RS	RA	W	OBP	SLG	ВА	Playoffs	RankSeason	RankPlayoffs	G	ООВР	OSLG
ANA	AL	2001	691	730	75	0.327	0.405	0.261	0			162	0.331	0.412
ARI	NL	2001	818	677	92	0.341	0.442	0.267	1	5	1	162	0.311	0.404
ATL	NL	2001	729	643	88	0.324	0.412	0.26	1	7	3	162	0.314	0.384
BAL	AL	2001	687	829	63	0.319	0.38	0.248	0			162	0.337	0.439
BOS	AL	2001	772	745	82	0.334	0.439	0.266	0			161	0.329	0.393
CHC	NL	2001	777	701	88	0.336	0.43	0.261	0			162	0.321	0.398
CHW	AL	2001	798	795	83	0.334	0.451	0.268	0			162	0.334	0.427
CIN	NL	2001	735	850	66	0.324	0.419	0.262	0			162	0.341	0.455
CLE	AL	2001	897	821	91	0.35	0.458	0.278	1	6	4	162	0.341	0.417
COL	NL	2001	923	906	73	0.354	0.483	0.292	0			162	0.35	0.48
DET	AL	2001	724	876	66	0.32	0.409	0.26	0			162	0.357	0.461

Case Study – Scatter plot

- No. of wins for each team
- Red Case when team went to playoffs
- Black Case when team did not go to playoffs
- Vertical blue line –
 DePodesta's estimate for # of wins required (99)

Case Study – Scatter plot

- DePodesta also estimated that a team on an average needed to score 169 runs more (814-645) per game than their opponent to make the 99 wins
- Strong correlation = 0.94
- Model also predicted 99 wins for a 169-run difference

$$W = 80.881375 + 0.105766 * RD$$

 $W = 80.881375 + 0.105766 * 169 = 98.8$

Case Study – Regression for RS

- Run difference = Runs Scored (RS)
 Runs Allowed (RA)
- RS is a function of OBP (On Base Percentage), SLG (Slugging Percentage) and BA (Batting Average)
- Adj. $R^2 = 0.93$
- However, coefficient of BA is negative, which is non-intuitive (higher batting average leading to lower chance of winning!). This indicates multi-collinearity.
- Removing BA gives a model with Adj. R² = 0.9294

```
call:
lm(formula = RS ~ OBP + SLG + BA, data = moneyball)
Residuals:
   Min
            10 Median
-70.941 -17.247 -0.621 16.754 90.998
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -788.46
                         19.70 -40.029 < 2e-16 ***
            2917.42
                        110.47 26.410 < 2e-16 ***
OBP
            1637.93
                       45.99 35.612 < 2e-16 ***
SLG
                        130.58 -2.826 0.00482 **
            -368.97
BA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 24.69 on 898 degrees of freedom
Multiple R-squared: 0.9302, Adjusted R-squared:
F-statistic: 3989 on 3 and 898 DF, p-value: < 2.2e-16
call:
lm(formula = R5 ~ OBP + SLG, data = moneyball)
Residuals:
    Min
            10 Median
-70.838 -17.174 -1.108 16.770 90.036
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
            -804.63
                         18.92 -42.53
             2737.77
                         90.68
                                 30.19
OBP
SLG
            1584.91
                         42.16
                                 37.60
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 24.79 on 899 degrees of freedom
Multiple R-squared: 0.9296, Adjusted R-squared: 0.9294
```

F-statistic: 5934 on 2 and 899 DF, p-value: < 2.2e-16

Case Study – Regression for RA

- RA is a function of OOBP (Opponent On Base Percentage) and OSLG (Opponent Slugging Percentage)
- Missing values removed. 902 values got dropped to 90.

```
• Adj. R^2 = 0.9052
```

```
call:
lm(formula = RA \sim OOBP + OSLG, data = moneyball)
Residuals:
   Min
            1Q Median
                            30
                                  Max
-82.397 -15.178 -0.129 17.679 60.955
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -837.38 60.26 -13.897 < 2e-16
            2913.60 291.97 9.979 4.46e-16
OOBP
           1514.29 175.43 8.632 2.55e-13 ***
OSLG
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 25.67 on 87 degrees of freedom
  (812 observations deleted due to missingness)
Multiple R-squared: 0.9073, Adjusted R-squared: 0.9052
F-statistic: 425.8 on 2 and 87 DF, p-value: < 2.2e-16
```


Case Study – Prediction

- Predict how many runs A's will score and allow in 2002 indicating whether they will make the playoffs or not.
- Inputs to RS and RA models are average team OBP, SLG, OOBP and OSLG values in 2001, assuming team quality remains the same in 2002.
- Values in 2001 (data file has for the entire season including playoffs; the values below are for the regular season as predictions are for that part only)

- OBP: 0.339

- SLG: 0.430

OOBP: 0.307

– OSLG: 0.373

Case Study – Prediction

Equations

$$RS = -804.96 + 2737.77 * OBP + 1584.91 * SLG$$

 $RA = -837.38 + 2913.60 * OOBP + 1514.29 * OSLG$
 $W = 80.881375 + 0.105766 * RD$

Calculations

$$RS = -804.96 + 2737.77 * 0.339 + 1584.91 * 0.430 = 804.66 \sim 805$$

 $RA = -837.38 + 2913.60 * 0.307 + 1514.29 * 0.373 = 621.93 \sim 622$
 $W = 80.881375 + 0.105766 * 183 = 100.2 \sim 100$

Results

Metric	Model Prediction	DePodesta's Estimate	Actual
RS	805	800-820	800
RA	622	650-670	654
Wins	100	93-97	103

Classification

LOGISTIC REGRESSION

Classification Tasks: Regression

It could fail

In addition, linear regression
 hypothesis can be much larger than 1
 or much smaller than zero and hence
 thresholding becomes difficult.

Avoids Assumptions of OLS

Ordinary Least Squares (OLS) is inappropriate. Maximum Likelihood Estimation (MLE) is used instead.

Hence avoids assumptions regarding normality and homoscedasticity of errors, and linearity between dependent and independent variables. Errors need to be independent, though.

Probability vs Likelihood - Excel

- Likelihood is also known as reverse probability.
- In Probability, we **predict data** based on **known parameters**. (Recall B(n,p), Geo(p), $Po(\lambda)$, $N(\mu, \sigma^2)$, etc.)
- In Likelihood, we **predict parameters** based on **known data**.

MLE

- Goal is to maximize likelihood.
- In most Data Science optimizations, the goal is to find minima using calculus (minimize sum of squared errors in linear regression, and so on) or numerical techniques like Gradient Descent (minimize deviance in logistic regression, and so on).
- Maximum Likelihood => Minimum of Negative Log-Likelihood.

Transaction value

Example

An auto club mails a flier to its members offering to send more information regarding a supplemental health insurance plan if the member returns a brief enclosed form.

Can a model be built to predict if a member will return the form or not?

Example

$$f(x) = p = \frac{1}{1 + e^{-\mu}} = \frac{e^{\mu}}{1 + e^{\mu}}$$

where $\mu = \beta_0 + \beta_1 x_1$ (also known as the systematic or the structural component or linear predictor).

This is a logistic model. The function is also known as the inverse link function, which links the response with the systematic component.

p is the probability that a club member fits into group 1 (returns the form; success; P(Y=1|X)).

73020

Logistic model

$$f(x) = p = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

Odds Ratio is obtained by the probability of an event occurring divided by the probability that it will not occur.

Logistic model can be transformed into an odds ratio:

$$S = Odds \ ratio = \frac{p}{1 - p}$$

Attention Check – Probability and Odds

If the probability of winning is 6/12, what

1:1 (Note, the probability of

are the odds of winning?

losing also is 6/12)

If the odds of winning are 13:2, what is

13/15

8/11

the probability of winning?

If the odds of winning are 3:8, what is the

probability of losing?

If the probability of losing is 6/8, what

are the odds of winning?

2:6 or 1:3

Logistic model

$$S = Odds \ ratio = \frac{p}{1 - p}$$

$$S = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

$$S = \frac{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 - \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}}$$

$$\therefore S = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$\ln(S) = \ln\left(e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Logistic model

The log of the odds ratio is called logit, and the transformed model is linear in β s.

and Interpreting the output

```
call:
glm(formula = Response ~ Age, family = "binomial", data = flierresponse)
Deviance Residuals:
               1Q Median
    Min
                                   3Q
                                           Max
-1.95015 -0.32016 -0.05335 0.26538 1.72940
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -20.40782 4.52332 -4.512 6.43e-06 ***
                       0.09482 4.492 7.05e-06 ***
             0.42592
Age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 123.156 on 91 degrees of freedom
Residual deviance: 49.937 on 90 degrees of freedom
AIC: 53.937
Number of Fisher Scoring iterations: 7
```

What is the logit equation?

$$\ln(S) = -20.40782 + 0.42592Age$$

Determining Logistic Regression Model

Suppose we want a probability that a 50-year old club member will return the form.

$$\ln(S) = -20.40782 + 0.42592 * 50 = 0.89$$
$$S = e^{0.89} = 2.435$$

The odds that a 50-year old returns the form are 2.435 to 1.

Determining Logistic Regression Model

$$\hat{p} = \frac{S}{S+1} = \frac{2.435}{2.435+1} = 0.709$$

Using a probability of 0.50 as a cutoff between predicting a 0 or a 1, this member would be classified as a 1.

Interpreting Output - Deviances

Deviance or **Residual Deviance** is *similar to SSE* in the sense it measures how much remains unexplained by the model built with predictors included.

```
D=-2LL,
```

where LL is the log-likelihood.

Null Deviance shows how well the model predicts the response with only the intercept as a parameter. The intercept is the logarithm of the ratio of cases with y=1 to the number of cases with y=0. This is *similar to SST*, which gives total variation when all coefficients are zero (null hypothesis).

Interpreting Output – Testing the Overall Model

The z-values and the associated p-values provide significance of individual predictor variables.

R outputs AIC (Akaike's Information Criterion) and you need to pick the model with the lowest AIC.

```
glm(formula = Response ~ Age, family = "binomial", data = flierresponse)
Deviance Residuals:
    Min
                     Median
-1.95015 -0.32016 -0.05335
                              0.26538
                                        1.72940
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -20.40782
                        4.52332 -4.512 6.43e-06 ***
              0.42592
                        0.09482
                                4.492 7.05e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 123.156 on 91 degrees of freedom
Residual deviance: 49.937 on 90 degrees of freedom
AIC: 53.937
Number of Fisher Scoring iterations: 7
```


Interpreting Output – Testing the Overall Model

- AIC provides a means for model selection.
- AIC = D + 2k, where k is the # of parameters in the model including the intercept. Recall in Linear Regression, it is calculated as AIC = nIn(RSS/n) + 2k.
- AIC is *similar to Adjusted* R^2 in the sense it penalizes for adding more parameters to the model.
- It offers a relative estimate of the information lost when a model is used to represent the process that generated the data.
- It does not test a model in the sense of null hypothesis and hence doesn't tell anything about the quality of the model. It is only a relative measure between multiple models.

730

Applications

- Predicting stock price movement (up/down)
- Predict whether a patient has diabetes or not
- Predict whether a customer will buy or not
- Predict the likelihood of loan default

Diagnostic Hints

 Coefficients that tend to infinity could be a sign that an input is perfectly correlated with a subset of your responses. Or put another way, it could be a sign that this input is only really useful on a subset of your data, so perhaps it is time to segment the data.

Diagnostic Hints

- Overly large coefficient magnitudes, overly large error bars on the coefficient estimates, and the wrong sign on a coefficient could be indications of correlated inputs.
- VIF can be used to check for multicollinearity. "car" package in R outputs a Generalized Variance Inflation Factor, which is obtained by correcting VIF to the degrees of freedom for categorical predictors. $GVIF = VIF^{\left(\frac{1}{2*df}\right)}$

HYDERABAD

2nd Floor, Jyothi Imperial, Vamsiram Builders, Old Mumbai Highway, Gachibowli, Hyderabad - 500 032 +91-9701685511 (Individuals) +91-9618483483 (Corporates)

BENGALURU

Floors 1-3, L77, 15th Cross Road, 3A Main Road, Sector 6, HSR Layout, Bengaluru – 560 102 +91-9502334561 (Individuals) +91-9502799088 (Corporates)

Social Media

Web: http://www.insofe.edu.in

Facebook: https://www.facebook.com/insofe

Twitter: https://twitter.com/Insofeedu

YouTube: http://www.youtube.com/InsofeVideos

SlideShare: http://www.slideshare.net/INSOFE

LinkedIn: http://www.linkedin.com/company/international-school-of-engineering

This presentation may contain references to findings of various reports available in the public domain. INSOFE makes no representation as to their accuracy or that the organization subscribes to those findings.