

Óscar Anuar Alvarado Morán Introducción al Aprendizaje Profundo IIMAS, UNAM

Tabla de contenido

- Breve resumen de la primera exposición
 - Descripción del problema
 - Descripción de la tarea
 - Análisis exploratorio
- Presentación a detalle del trabajo realizado
 - Limpieza y preprocesamiento de datos
 - Modelado de la tarea
 - Arquitectura
 - Descripción de experimentación
 - Presentación y análisis de resultados
 - Comparación con resultados públicos
- Conclusiones
 - Conclusiones del proyecto
 - Limitaciones y dificultades encontradas
 - Formas de mejorar o expandir el trabajo

Ecuaciones de Navier-Stokes

$$rac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot
abla) \mathbf{u} = -rac{1}{
ho}
abla P + rac{\mu}{
ho}
abla^2 \mathbf{u}$$

Ecuación de continuidad

$$\nabla \cdot \mathbf{u} = 0$$

Método del Volumen Finito

Método del Volumen Finito

$$a_Cu_1 + a_Eu_2 + a_Wu_3 + a_Nu_4 + a_Su_5 = f_1$$

Metodología antigua

Metodología de Aprendizaje Profundo

$$G^\dagger(a)=u$$

Datos https://cutt.ly/Ov0hc61

- Ecuación de Burger

$$\partial_t u(x,t) + \partial_x (u^2(x,t)/2) =
u \partial_{xx} u(x,t)$$

- Ecuaciones de Navier-Stokes

Datos

- Ecuación de Burger 1-D

Datos

- Ecuación de Navier Stokes

Arquitectura

Operador Neuronal de Fourier

Experimentación

 Entre 2 y 8 capas de Fourier 	Bien
--	------

- Entre 5 y 15 pasos de tiempo para entrenamiento No tan bien
- Learning rate entre 0.01 y 0.0005 No tan bien
- weights entre 10 y 40 Bien

Resultados y análisis

Resultados y análisis

Resultados y análisis

Burger

Navier-Stokes

Conclusiones

- Normalización por lotes
- Aumentado de datos o generación de más datos
- Pruebas con diferentes resoluciones
- Experimentación tardada
- Pruebas con los mismos resultados
- Pruebas con condiciones iniciales distintas

Referencias

- Artículo FNO: https://arxiv.org/pdf/2010.08895.pdf
- Datos: https://github.com/zongyi-li/fourier_neural_operator
- CFD Deep Learning histórico: https://sci-hub.do/10.1017/jfm.2016.803
- Otras formas de hacer esto:
 https://arxiv.org/pdf/2008.10509.pdf
 https://www.jmlr.org/papers/volume19/18-046/18-046.pdf
 https://arxiv.org/pdf/1904.07200.pdf
- Datos del último artículo: https://github.com/timudk/SPDENN
- Visualizaciones tremendas (Deep Fluids): https://arxiv.org/pdf/1806.02071.pdf