21162101012_CBA_Yash_Lakhtariya **ML Practical 5** Aim - Financial threats are displaying a trend about the credit risk of commercial banks as the incredible improvement in the financial industry has arisen. In this way, one of the biggest threats faces by commercial banks is the risk prediction of credit clients. The goal is to predict the probability of credit default based on credit card owner's characteristics and payment history. Approach: The classical machine learning tasks like Data Exploration, Data Cleaning, Feature Engineering, Model Building and Model Testing. Try out different machine learning algorithms that's best fit for the above case. Results: You have to build a solution that should able to predict the probability of credit default based on credit card owner's characteristics and payment history. Dataset: https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset Try different classification models and justify which one is best using any accuracy measures. [] import pandas as pd df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/ML_7/p5_creditcard.csv') print(df.head()) ID LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 \

 0
 1
 20000.0
 2
 2
 1
 24
 2
 2
 -1
 -1

 1
 2
 120000.0
 2
 2
 2
 26
 -1
 2
 0
 0

 2
 3
 90000.0
 2
 2
 2
 34
 0
 0
 0
 0

 3
 4
 50000.0
 2
 2
 1
 37
 0
 0
 0
 0

 4
 5
 50000.0
 1
 2
 1
 57
 -1
 0
 -1
 0

... BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2 PAY_AMT3 \ 0.0 0.0 0.0 0.0 689.0 3272.0 3455.0 3261.0 0.0 1000.0 1000.0 14331.0 14948.0 15549.0 1518.0 1500.0 1000.0 28959.0 29547.0 2000.0 2019.0 28314.0 1200.0 20940.0 19146.0 19131.0 2000.0 36681.0 10000.0 PAY_AMT4 PAY_AMT5 PAY_AMT6 default.payment.next.month 0.0 0.0 0.0 1000.0 0.0 2000.0 1000.0 1000.0 5000.0 1100.0 1069.0 1000.0 1000.0 0 0 9000.0 689.0 679.0 [5 rows x 25 columns] # Check for missing values print(df.isnull().sum()) # Drop rows with missing values if any (if necessary) df.dropna(inplace=True) # Convert categorical variables to numeric using one-hot encoding if needed df = pd.get_dummies(df, columns=['SEX', 'EDUCATION', 'MARRIAGE'], drop_first=True) # Verify changes print(df.head()) ₹ ID LIMIT_BAL 0 SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 BILL_AMT1 BILL_AMT2 BILL_AMT3 BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2 PAY_AMT3 PAY_AMT4 PAY_AMT5 PAY_AMT6 default.payment.next.month dtype: int64 ID LIMIT_BAL AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 BILL_AMT1 \ 20000.0 24 2 2 -1 -1 -2 3913.0 -2 120000.0 26 -1 0 2682.0 29239.0 90000.0 34 0 0 0 0 0 0 3 46990.0 4 50000.0 37 0 0 0 0 0 0 57 50000.0 -1 -1 8617.0 SEX_2 EDUCATION_1 EDUCATION_2 EDUCATION_3 EDUCATION_4 \ True False True False False False False True False True True False True False False 4 ... False False True False False EDUCATION_5 EDUCATION_6 MARRIAGE_1 MARRIAGE_2 MARRIAGE_3 0 False False True False False False False False False True 1 False False False True False False False True False False 3 False False True False False [5 rows x 32 columns] from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report # Define features and target variable X = df.drop(columns=['ID', 'default.payment.next.month']) y = df['default.payment.next.month'] # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Initialize and fit the logistic regression model logreg = LogisticRegression(max_iter=1000) logreg.fit(X_train, y_train) # Predict and evaluate the model y_pred = logreg.predict(X_test) print("Logistic Regression Classification Report:") print(classification_report(y_test, y_pred)) → Logistic Regression Classification Report: precision recall f1-score support 0 0.78 1.00 0.88 7040 1 0.00 0.00 0.00 1960 accuracy 0.78 9000 0.50 macro avg 0.39 0.44 9000 weighted avg 0.78 0.69 /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and P-score are ill-defined and being set to 0.0 in labels with no predicted samples. _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and P-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and P-score are ill-defined and P-score a

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` page 1.0 in labels with no predicted samples. Use `zero_division` page 2.0 in labels with no predicted samples. Use `zero_division` page 3.0 in labels with no predicted samples. Use `zero_division` page 3.0 in labels with no predicted samples. Use `zero_division` page 3.0 in labels with no predicted samples. Use `zero_division` page 3.0 in labels with no predicted samples. Use `zero_division` page 3.0 in labels with no predicted samples. Use `zero_division` page 3.0 in labels with no predicted samples. Use `zero_division` page 3.0 in labels with no predicted samples. Use `zero_division` page 3.0 in labels with no predicted samples.

_warn_prf(average, modifier, msg_start, len(result))

_warn_prf(average, modifier, msg_start, len(result))

from sklearn.neighbors import KNeighborsClassifier

print("K-Nearest Neighbors Classification Report:") print(classification_report(y_test, y_pred_knn))

7040

1960

9000

9000

9000

7040

9000

9000

9000

Initialize and fit the KNN model

Predict and evaluate the model y_pred_knn = knn.predict(X_test)

knn.fit(X_train, y_train)

weighted avg

accuracy

macro avg

weighted avg

knn = KNeighborsClassifier(n_neighbors=5)

K-Nearest Neighbors Classification Report: precision recall f1-score support 0 0.80 0.91 0.85 1 0.36 0.17 0.23 accuracy 0.75 0.58 0.54 0.54 macro avg

0.70

0.75

0.81

0.60 0.61 0.61

0.73 0.72 0.73

print("Log Loss:", log_loss(y_test, logreg.predict_proba(X_test)))

0.41

0.72

0.82

0.72

print("Classification Report:\n", classification_report(y_test, y_pred, zero_division=0))

7040

1960

9000

9000

9000

7040

1960

9000 9000

9000

7040

1960

9000

9000

9000

Initialize and fit the decision tree model dt = DecisionTreeClassifier() dt.fit(X_train, y_train) # Predict and evaluate the model y_pred_dt = dt.predict(X_test) print("Decision Tree Classification Report:") print(classification_report(y_test, y_pred_dt)) → Decision Tree Classification Report: precision recall f1=score support

0.83

0.38

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import jaccard_score, confusion_matrix, precision_recall_fscore_support, log_loss, classification_report # Compute evaluation metrics for Logistic Regression print("Logistic Regression Evaluation Metrics:") print("Jaccard Score:", jaccard_score(y_test, y_pred)) print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred)) precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred, average='binary', zero_division=0) print("Precision:", precision) print("Recall:", recall) print("F1 Score:", f1)

Compute evaluation metrics for K-Nearest Neighbors print("\nK-Nearest Neighbors Evaluation Metrics:")

print("Jaccard Score:", jaccard_score(y_test, y_pred_knn)) print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_knn)) precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred_knn, average='binary', zero_division=0) print("Precision:", precision) print("Recall:", recall) print("F1 Score:", f1) print("Log Loss:", log_loss(y_test, knn.predict_proba(X_test))) print("Classification Report:\n", classification_report(y_test, y_pred_knn, zero_division=0)) # Compute evaluation metrics for Decision Tree print("\nDecision Tree Evaluation Metrics:") print("Jaccard Score:", jaccard_score(y_test, y_pred_dt)) print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_dt)) precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred_dt, average='binary', zero_division=0) print("Precision:", precision) print("Recall:", recall) print("F1 Score:", f1) print("Log Loss:", log_loss(y_test, dt.predict_proba(X_test))) print("Classification Report:\n", classification_report(y_test, y_pred_dt, zero_division=0)) → Logistic Regression Evaluation Metrics: Jaccard Score: 0.0

Confusion Matrix: [[7040 0] [1960 0]] Precision: 0.0 Recall: 0.0

accuracy

macro avq

accuracy macro avg

weighted avg

F1 Score: 0.0 Log Loss: 0.5056901385128343 Classification Report: precision recall f1-score support 0 0.78 1.00 0.88 1 0.00 0.00 0.00 0.78 accuracy macro avq 0.39 0.50 0.44 0.78 weighted avg 0.61 0.69 K-Nearest Neighbors Evaluation Metrics: Jaccard Score: 0.13237016790316283 Confusion Matrix: [[6439 601] [1621 339]] Precision: 0.3606382978723404 Recall: 0.17295918367346938 F1 Score: 0.23379310344827586 Log Loss: 2.3165278164776297 Classification Report: recall f1-score precision 0.80 0.91 0 0.85 1 0.36 0.17 0.23

support 0.75 0.58 0.54 0.54weighted avg 0.70 0.75 0.72 Decision Tree Evaluation Metrics: Jaccard Score: 0.244242424242423 Confusion Matrix: [[5700 1340] [1154 806]] Precision: 0.37558247903075487 Recall: 0.41122448979591836 F1 Score: 0.39259620068192885 Log Loss: 9.972693568482908 Classification Report: precision recall f1-score support 0 0.83 0.81 0.82 0.38 0.41 0.39 0.72 0.60 0.61 0.61 0.73 0.72 0.73

Colab paid products - Cancel contracts here