PAT-NO:

JP405344688A

DOCUMENT-IDENTIFIER: JP 05344688 A

TITLE:

MICROMOTOR

PUBN-DATE:

December 24, 1993

INVENTOR-INFORMATION:

NAME

KIYOTA, MASAHIRO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SONY CORP

N/A

APPL-NO:

JP04145888

APPL-DATE:

June 5, 1992

INT-CL (IPC): H02K013/00, H02K023/00, H02K023/66

US-CL-CURRENT: 310/233

ABSTRACT:

PURPOSE: To realize flatness and avoid breakdown of a ring varistor due to the heat generated during soldering.

CONSTITUTION: A flat commutator 2 is structured by sector-shaped flat commutators 4, 4, 4 which are divided into three sections and arranged on a ringlike substrate 4a formed by resin and a ring varistor 6 integrated to the flat commutator body 4. When three flat commutators 4, 4, 4 are arranged in the shape of a circle, the ring varistor 6 is concentric with the circle. Each flat commutator body 4 is provided with a projected leg portion 4A to which motor rotor wiring is connected and fixed and a projected leg portion 4B which is provided to fix and integrate the ring varistor 6 to the flat commutator body 4.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-344688

(43)公開日 平成5年(1993)12月24日

(51)Int.Cl. ⁵		識別記号	· 庁内整理番号	FΙ	技術表示箇所
H 0 2 K	13/00	Х	7346-5H		
	23/00	Α	6821-5H		•
		В	6821-5H		
	23/66	Z	6821-5H		

審査請求 未請求 請求項の数1(全 3 頁)

(21)出願番号	特顯平4-145888	(71)出願人	000002185
(22)出願日	平成4年(1992)6月5日		ソニー株式会社 東京都品川区北品川 6 丁目 7 番35号
		(72)発明者	清田 雅弘 東京都品川区北品川 6 丁目 7番35号 ソニ
		(74)代理人	一株式会社内 弁理士 松隈 秀盛

(54)【発明の名称】 マイクロモータ

(57)【要約】

【目的】 偏平化が行えるとともに、半田付け時の熱に よるリングバリスタの破壊が回避きるマイクロモータを 提供する。

【構成】 平形整流子2は、3つに分割されて樹脂製リ ング状基板4 a上に配設された扇状の平形整流子本体 4、4、4と、それら平形整流子本体4に一体化された リング状のリングバリスタ6とから構成され、3つの平 形整流子本体4、4、4が円状に配設されたときに、リ ングバリスタ6がその円と同芯となるように設定されて いる。そして、各々の平形整流子本体4には、モータ・ ロータ巻線が接続・固定される脚部4Aと、リングバリ スタ6を平形整流子本体4に固定・一体化させるための 脚部4Bとが突設されている。

平形整流子の構成

(2)

特開平5-344688

【特許請求の範囲】

【請求項1】 偏平形状とされ、リングバリスタ用接点 およびモータ・ロータ巻線用接点が設けられた平形整流 子と、

上記平形整流子に対して同芯円位置となる姿勢とされ て、該平形整流子と一体化されたリングバリスタと、 を有することを特徴とするマイクロモータ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、整流子が偏平形状とさ 10 れたマイクロモータに関する。

[0002]

【従来の技術】従来のマイクロモータでは、整流子が筒 状とされており、マイクロモータの高さ方向を考えた場 合、リングバリスタの内側に整流子を配置することでき ない。また、一般に、リングバリスタとモータ・ロータ 巻線とは、整流子に対して半田付けされている。

[0003]

【発明が解決しようとする課題】しかしながら、整流子 が筒状とされていると、その全長が長くなり、マイクロ 20 モータの薄型化(偏平化)は困難であり、また、リング バリスタの内側に整流子を配置することができない点も 薄型化の妨げとなる。加えて、モータ・ロータ巻線が整 流子に対して半田付けされる際には、その半田付け温度 が高いため、その熱でリングバリスタが破壊されるおそ れがある。

【0004】本発明の目的は、偏平化が行えるととも に、半田付け時の熱によるリングバリスタの破壊が回避 きるマイクロモータを提供することにある。

[0005]

【課題を解決するための手段】本発明に係るマイクロモ ータは、例えば、図2に示されるように、偏平形状とさ れ、リングバリスタ用接点4Bおよびモータ・ロータ巻 線用接点4Aが設けられた平形整流子4と、この平形整 流子4に対して同芯円位置となる姿勢とされて、その平 形整流子4と一体化されたリングバリスタ6とを有する ことを特徴とするものである。

[0006]

【作用】本発明に係るマイクロモータでは、偏平形状と された平形整流子と、この平形整流子に対して同芯円位 40 置となる姿勢とされて、その平形整流子と一体化された リングバリスタとを有しているので、偏平のマイクロモ ータを作成することができる。また、平形整流子にモー タ・ロータ巻線用接点が設けられているので、モータ・ ロータ巻線の半田付けの際にリングバリスタに伝わる熱 が従来に比べて小さくなる。

[0007]

【実施例】以下、本発明に係るマイクロモータの好適な 実施例を、図面に基いて説明する。図1には本発明が適

イクロモータは、盤状の上ケーシング1と凹状の下ケー シング3とを有し、回転軸5が、それら上ケーシング1 と下ケーシング3とに各々設けられた軸受け1A、3A とによって2箇所軸支されている。そして、下ケーシン グ3内の回転軸5には、盤状のロータ7が固定され、こ のロータ7の厚さ方向位置に、分割された複数のモータ ・ロータ巻線9・・・が回転軸5の回りを周回させて配 設されており、それらモータ・ロータ巻線9と対向する 姿勢で、上ケーシング 1 の内側面には分割された複数の 永久磁石11・・・が固定されている。また、回転軸5

の下ケーシング3内には、ロータ7にマウントさせて偏 平状の平形整流子2が固定され、上ケーシング1には、 その平形整流子2に当接される通電用ブラシ13が設け られている。なお、これらマイクロモータの基本的構成 は従来と略同様であるので、詳細な説明は省略する。

【0008】ここで、図2に示されるように、平形整流

子2は、3つに分割されて(すなわち、3極とされて) 樹脂製リング状基板4 a上に配設された扇状の平形整流 子本体4、4、4と、それら平形整流子本体4に一体化 されたリング状のリングバリスタ6とから構成され、3 つの平形整流子本体4、4、4が円状に配設されたとき に、リングバリスタ6がその円(樹脂製リング状基板4 a)と同芯となるように設定されている(すなわち、樹 脂製リング状基板4aの中心軸しと、リングバリスタ6 の中心軸が一致している)。

【0009】そして、各々の平形整流子本体4には、モ ータ·ロータ巻線9が接続·固定される脚部4A(モー タ・ロータ巻線用接点)と、リングバリスタ6を平形整 流子本体4に固定・一体化させるための脚部4B(リン 30 グバリスタ用接点)とが突設され、その脚部4Aには従 来と同様にしてモータ・ロータ巻線9の一方端部が半田 付けされて固定される一方、図3から理解されるよう に、脚部4Bの突出端部はリングバリスタ6の裏面側に 設けられた銀製電極10と当接するように折り込まれ、 その折り込み部分が半田Gで固定されている。

【0010】なお、平形整流子本体4は、従来の筒形整 流子と同様に、成形により形成される場合と、組み立て により形成される場合とがある。また、平形整流子本体 4とリングバリスタ6とは、中心軸しの方向であれば、 マイクロモータの偏平度に対応させて適宜間隔をずらし て一体化させることができる。加えて、平形整流子本体 4の個数を増加させてさらに多極とすることにより、マ イクロモータの回転ムラや回転時の摩擦を減少させる構 成も好適である。

【0011】以上説明したように、この実施例では、平 形整流子2が、3つの平形整流子本体4、4、4と、そ れら3つの平形整流子本体4に一体化されたリングバリ スタ6とから構成され、平形整流子本体4、4、4が円 状に配設されたときに、リングバリスタ6がその円と同 用されたマイクロモータが示されており、この例でのマ 50 芯となるように設定されているので、マイクロモータの

10/4/06, EAST Version: 2.1.0.14

2

(3)

特開平5-344688

偏平化が可能である。

【0012】また、脚部4Aにモータ・ロータ巻線9の 一方端部が半田付けされて固定されるので、半田付けの 際にリングバリスタ6が熱で破壊されるのを回避するこ とができるので、品質管理が容易になることに加え、信 頼性に優れたマイクロモータを提供することができる。 【0013】なお、本発明は、上記実施例に限定される ことなく、本発明の要旨を逸脱しない範囲において、そ の他種々の構成を採ることができる。

[0014]

【発明の効果】本発明に係るマイクロモータでは、偏平 形状とされた平形整流子と、この平形整流子に対して同 芯円位置となる姿勢とされて、平形整流子と一体化され たリングバリスタとを有するので、偏平のマイクロモー 夕を製作することができる。

【0015】また、平形整流子にモータ・ロータ巻線用 接点が設けられているので、モータ・ロータ巻線の半田 付けの際にリングバリスタに伝わる熱が従来に比べて小 さくなる結果、リングバリスタが熱破壊されることがな く、品質管理が容易になることに加え、信頼性に優れた 20 11 永久磁石 マイクロモータを提供することができる。

【図面の簡単な説明】

【図1】本発明に係るマイクロモータの好適な実施例に おける全体概略構成図である。

【図2】上記マイクロモータの平形整流子の構成を示す 斜視図である。

【図3】リングバリスタの固定構造を示す説明図であ

【符号の説明】

- 1 上ケーシング
- 2 平形整流子
- 10 3 下ケーシング
 - 4 平形整流子本体
 - 4A モータ・ロータ巻線用脚部
 - 4 B リングバリスタ固定用脚部
 - 4 a 平形整流子基板
 - 5 回転軸
 - 6 リングバリスタ
 - 7 ロータ
 - 9 モータ・ロータ巻線
 - 10 電極

 - G 半田

