Fiche documents

Document 1: Carte simplifiée des faciès métamorphiques de la région étudiée:

Document 2: Un gabbro de la croûte océanique

Échantillon

Le magma basique émis à la ride océanique, en refroidissant lentement, cristallise sous la forme d'un gabbro. Celui-ci est essentiellement bi-minéral : le pyroxène est sombre et le plagioclase est blanc. On remarque la forme rectangulaire de ces derniers, bien visible sur la photo.

LPA

En LPA, le pyroxène est jaune et le plagioclase, blanc et noir, montre des macles polysynthétiques (=bandes). Remarquons l'absence d'orientation priviligiée des cristaux, caractéristique d'un roche magmatique.

Document 3: Deux métagabbros de l'ophiolite du Chenaillet

Métagabbro 1:

Échantillon

La hornblende (Hb) est une amphibole brune au microscope ; elle entoure complètement le pyroxène (Px ou Cpx) et l'isole du plagioclase (Pl).

Les relations géométriques entre minéraux sont compatibles avec la réaction: plagioclase + pyroxène + H2O => Hornblende (amphibole)

LPNA

Métagabbro 2:

Métagabbro à pyroxène, hornblende, chlorite et actinote. Les plages verdâtres correspondent à de la chlorite (chl) et de l'actinote (act).

Échantillon

Document 4: Un métagabbro de l'ophiolite du Mont Queyras

Échantillon LPNA

Le pyroxène (brun) est entouré d'une auréole de glaucophane (bleu) dans ce qui reste de la matrice de plagioclase (blanche)