```
In [1]: #importing necessary packages
import pandas as pd
from IPython.display import display #to display tables beautiful
```

Direct data import from the web

```
In [2]: df = pd.read_csv("http://s.anilz.net/wb_energy")
    display(df.head())

dx = pd.read_csv("https://data.ny.gov/api/views/d6yy-54nr/rows.csv")
    display(dx.head())
```

	year	country	ccode	ele_rural	ele_total	ele_urban	en_int	ren_ele	ren_con	tot_ele	tfec
0	1990	Afghanistan	AFG	NaN	0.010000	52.036976	1.884113	764.0	6312.3920	1128.0	39639.42002
1	1990	Albania	ALB	100.000000	100.000000	100.000000	7.912243	2848.0	20429.1800	3296.0	80057.64499
2	1990	Algeria	DZA	96.392315	98.271378	100.000000	3.500935	135.0	811.7773	16104.0	458040.44170
3	1990	American Samoa	ASM	NaN	NaN	NaN	NaN	0.0	0.0000	100.0	306.00000
4	1990	Andorra	AND	100.000000	100.000000	100.000000	NaN	120.0	952.1450	120.0	6670.69500

	Draw Date	Winning Numbers	Multiplier
0	09/26/2020	11 21 27 36 62 24	3.0
1	09/30/2020	14 18 36 49 67 18	2.0
2	10/03/2020	18 31 36 43 47 20	2.0
3	10/07/2020	06 24 30 53 56 19	2.0
4	10/10/2020	05 18 23 40 50 18	3.0

Using pandas package for static website scraping

Example 1. share price scraping

```
In [3]: tables = pd.read_html('https://www.sharesansar.com/today-share-price')
print(len(tables))

1
In [4]: #storing the table in a pandas dataframe
df1 = tables[0]
df1.head()
```

Out[4]:

٠		S.No	Symbol	Conf.	Open	High	Low	Close	VWAP	Vol	Prev. Close	•••	Trans.	Diff	Range	Diff %	Range %	VWAP %	12 Day
	0	1	ACLBSL	39.42	983.1	998.0	970.0	986.0	979.31	5844.0	1000.0		97	-14.0	28.0	-1.40	2.89	0.68	723.1
	1	2	ADBL	49.67	267.9	267.9	261.5	261.5	263.74	19809.0	268.0		152	-6.5	6.4	-2.43	2.45	-0.86	242.3
	2	3	ADBLD83	61.57	1061.0	1101.5	1061.0	1101.5	1070.29	350.0	1080.0		8	21.5	40.5	1.99	3.82	2.83	1027.3
	3	4	AHL	43.71	505.0	508.9	492.0	500.0	499.00	16996.0	497.0		139	3.0	16.9	0.60	3.43	0.20	438.1
	4	5	AHPC	44.72	161.0	161.0	156.0	156.0	157.69	118322.0	157.9		375	-1.9	5.0	-1.20	3.21	-1.09	194.9

5 rows × 21 columns

```
In [5]: #filtering upper and lower circuit stock

df1 = df1[(df1['Diff %'] > 9) | (df1['Diff %'] < -9)]</pre>
```

```
df1 = df1.sort_values(by="Diff %", ascending=False)
display(df1)
df1.to_csv("example1-python.csv", index=False)
```

		S.No	Symbol	Conf.	Open	High	Low	Close	VWAP	Vol	Prev. Close	•••	Trans.	Diff	Range	Diff %	Range %		120 Days
-	241	242	SAMAJ	65.63	2151.0	2409.0	2151.0	2409.0	2301.38	10537.0	2190.0		160	219.0	258.0	10.0	11.99	4.47	1434.82
	101	102	KBSH	51.72	1695.4	1695.4	1557.0	1557.0	1562.78	12879.0	1730.0		203	-173.0	138.4	-10.0	8.89	-0.37	1015.12
	139	140	MKLB	51.89	1836.0	1836.0	1620.0	1620.0	1627.02	1405.0	1800.0		36	-180.0	216.0	-10.0	13.33	-0.43	868.11

3 rows × 21 columns

Example 2. Forex from NRB

```
In [6]: tables = pd.read_html("https://www.nrb.org.np")
    print(len(tables))

2
In [7]: df1 = tables[0]
    df2 = tables[1]
    display(df1)
    display(df2)
```

	Currency	Buy	Sell
0	USD	133.40	134.00
1	EUR	142.95	143.59
2	GBP	169.03	169.79
3	AUD	88.08	88.47
4	SGD	98.61	99.06
5	JPY	8.46	8.50

	Last Updated	13/06/2024	12/06/2024
0	Total Deposits (in NPR Billion)	6242.00	6235.00
1	Commercial Banks Total Deposits (in NPR Billion)	5525.00	5519.00
2	Other BFIs Total Deposits (in NPR Billion)	717.00	716.00
3	Total Lending (in NPR Billion)	5133.00	5131.00
4	Commercial Banks Total Lending (in NPR Billion)	4542.00	4541.00
5	Other BFIs Total Lending (in NPR Billion)	591.00	591.00
6	CD Ratio (in %)	80.08	80.14
7	Interbank Interest Rate LCY - Weighted Avg. (2.95	2.97

```
In [8]: #keeping USD and JPY only
filtered_df1 = df1[(df1['Currency']=='USD') | (df1['Currency']=='JPY')]
display(filtered_df1)
filtered_df1.to_csv('example2-python.csv', index=False)
```

	Currency	Buy	Sell
0	USD	133.40	134.0
5	JPY	8.46	8.5

Practice 1. Web-scrape the Historical ranking table from https://en.wikipedia.org/wiki/ICC_Men%27s_T20I_Team_Rankings and save it as practice1.csv

Contents hide

(Top)

Current rankings

→ Points calculations

Time period

Find the points earned from a match

Example

Find the new ratings

Historical rankings

See also

References

External links

Historical rankings [edit]

This table lists the teams that have historically held the highest rating since the T20I rankings was introduced. [citation needed] In April 2018, the ICC decided to grant full T20I status to all its members. As a result, ratings of leading teams since 2018 have been considerably higher, and cannot be directly compared to those before that date.

Country +	Start +	End +	Duration +	Cumulative +	Highest Rating
→ England	24 October 2011 ^[4]	7 August 2012 ^[5]	289 days	289 days	140
South Africa	8 August 2012	11 September 2012	35 days	35 days	137
England	12 September 2012	21 September 2012	10 days	299 days	130
South Africa	22 September 2012	28 September 2012	7 days	42 days	134
	29 September				