000000 데이터 시각화 분석

2조 홍길동 홍순동 이영자 이순자

- 1 개요
- 2 데이터 수집 및 추출
- 3 데이터분석
 - 3-1 행정구역별 1인당소비 전력량
 - 3-2 신재생에너지 현황
- 4 결론 및 토의

Part 1 기업

Part 1 주제 선정 배경

호치 -	하구전력공사	「하고저런토계.	에너지견제연구원	「에너지수급통계」
흐시.	안독진국공사,	: 안국인극동세」,	에디지성제친구원,	'에니시ㅜ답공세」

* 자료: 에너지경제연구원, 「2020 에너지통계연보」 2021

	2014	2015	2016	2017	2018
영국	5,131	5,082	5,033	4,951	4,906
이탈리아	5,002	5,099	5,081	5,202	5,220
독일	7,035	7,015	6,956	6,947	6,848
프랑스	6,955	7,043	7,148	7,209	7,141
일본	7,829	7,865	7,974	8,111	8,010
OECD평균	8,028	8,016	8,048	7,992	8,165
호주	10,002	9,892	9,911	9,922	9,906
한국	10,564	10,558	10,618	10,654	11,082
미국	12,962	12,833	12,825	12,573	13,098
아이슬란드	53,896	55,054	53,913	54,366	54,605

단위: kWh/인

출처 : IEA,「Key World Energy Statistics」

• '주요 세계 에너지 통계 2020' 보고서에 따르면 대한민국의 1인당 소비 전력량은 1990년도부터 꾸준히 늘고 있는 추세이며 영국, 이탈리아, 독일, 프랑스, 일본, 호주 등 주요 선진국들의 1인당 소비전력량 보다 많아 인구대비 소비전력량이 많다는 문제가 존재.

주제 선정 배경

세계적으로 신재생 에너지 발전에 대한 관심 증가. 이에 따른 국내의 발전 추이와 에너지 분석을 통해 국내 발전 동향 및 문제점 파악

데이터 수집

V

데이터 추출

분석 및 결론 도달

Part 2 데이터 수집 및 추출

해당 시트의 형식에서 병합 칸과 같이 코딩화 하여 분석 하는데 어려움을 유발하는 요소를 제거하여 엑셀 데이 터 정리

여러 시트 중 분석에 필요한

- -전체 발전량
- -행정 구역별 판매 전력량
- -신재생 에너지 추이

만을 추려서 사용

Part 3-1

데이터분석

행정구역별 1인당 소비전력량

Part 3-1 행정구역별 1인당소비전력량

연도별 지역별 1인당 소비전력량 및 전국 1인당 소비전력량

	지역	연도	1인당 소비량	1인당 소비량 (전국)
0	서울	2014	4455.887	9304.716
1	부산	2014	5677.358	9304.716
2	대구	2014	5959.572	9304.716
3	인천	2014	7778.538	9304.716
4	광주	2014	5554.147	9304.716
114	전북	2020	11384.550	9825.956
115	전남	2020	16728.682	9825.956
116	경북	2020	15534.320	9825.956
117	경남	2020	10199.931	9825.956
118	제주	2020	7964.734	9825.956

119 rows × 4 columns

Part 3-1 행정구역별 1인당소비 전력량

연도별 지역별 1인당 소비 전력량 및 전국 1인당 소비 전력량

1인당 전력소비량이 비교적 큰 행정구역: 경북, 울산, 전남, 충남, 충북

Part 3-1 가정용소비전력량

연도별 각 행정구역별 가정용 소비 전력량 및 인구

- 인구수와 가정용 소비 전력량이 거의 비례
 → 가정용 소비 전력량은 1인당 소비 전력
 량 에 미치는 영향이 매우 적음
- 경기, 서울을 제외한 나머지 지역의 인구 : 500만 이하

Part 3-1 산업용소비전력량

2020 전국 산업용 소비 전력량

 대한민국 산업용 소비 전력량 중 제조업이 가장 큰 비율(57.11%)을 차지

Part 3-1 산업용소비전력량

2020 행정구역별 산업용 소비 전력량 및 제조업 소비 전력량

	연도	산업용 소비량	제조업 소비량
서울	2020	31805220	1.496106e+06
부산	2020	15666482	6.874835e+06
대구	2020	11346791	5.048120e+06
인천	2020	19343703	1.088398e+07
광주	2020	6377074	2.612757e+06
대전	2020	7385582	2.295602e+06
울산	2020	31546131	2.737965e+07
세종	2020	2834233	1.606813e+06
경기	2020	105301413	6.056212e+07
강원	2020	13922961	5.217195e+06
충북	2020	24610004	1.716960e+07
충남	2020	47384185	3.661170e+07
전북	2020	18019860	1.029188e+07
전남	2020	28473293	1.832342e+07
경북	2020	37370592	2.516885e+07
경남	2020	29351438	1.672053e+07
제주	2020	4455374	2.773257e+05

• 제조업소비 전력량이 산업용 소비 전력량의 50% 이상인 행정 구역: 경기, 경북, 울산, 전남, 충 남, 충북

Part 3-1 산업용소비전력량

2020 각 행정구역 제조분야별 소비 전력량

- 소비 전력량이 높은 제조분야: 화학, 연탄●석유, 1차 금속, 전자●통신
- 각 행정구역의 소비 전력량이 높은 제조분야: 경기(전자 통신), 경북(1차 금속), 울산(연탄 석유, 화학), 전남(화학), 충남(전자 통신)
 신, 1차 금속), 충북(전자 통신)

Part 3-1 산업용소비전력량

각 행정구역의 지역별 대표적 기업 및 산업단지

- 경북: 1차 금속 (포항 포스코)
- 경기: 전자 (이천 SK하이닉스 / 화성, 평택, 용인 삼성전자 / 파주 LG디스플레이)
- •울산: 석유•화학 (울산 석유화학산업단지 정유, 석유화학 중심)
- 충남: 전자 (천안 삼성디스플레이), 1차 금속 (당진 현대제철)
- 충북: 전자 (청주 SK하이닉스)
- 전남: 화학 (여수 석유화학산업단지 석유화학 중심)

Part 3-2

데이터분석

신재생 에너지 현황

Part 3 데이터분석

신재생 에너지 발전설비와 생산량 분석

태양열 에너지의 높은 증가세 ← 재생에너지 3020 이행정책의 일환

Part 3, 데이터분석

신재생 에너지 생산량 분석

연도별 신재생 에너지 생산량

	태양열	태양광	풍력	수력	바이오	폐기물	해양	지열	수열	연료전지
2011	27.400	197.200	185.500	965.400	963.400	5121.500	11.200	47.800	0.000	63.300
2012	26.300	237.500	192.700	814.900	1334.700	5998.500	98.300	65.300	0.000	82.500
2013	27.800	344.500	242.400	892.200	1558.500	6502.400	102.100	87.000	0.000	122.400
2014	28.500	547.400	241.800	581.200	2822.000	6904.700	103.800	108.500	0.000	199.400
2015	28.500	849.400	283.500	453.800	2765.700	8436.200	104.700	135.000	4.800	230.200
2016	28.500	1092.800	355.300	603.200	2765.500	8742.700	104.600	162.000	6.000	241.600
2017	28.100	1516.300	462.200	600.700	3598.800	9359.000	104.300	183.900	7.900	313.300
2018	27.400	1977.100	525.200	718.800	4442.400	9084.200	103.400	205.500	14.700	376.300
2019	27	2788	571	595	4162	0	101	225	21	487

- 한국 전력 통계와 한국 에너지 공단에서 중복적으로 제공되는 에너지 원에 대한 시각화 진행 (태양광, 풍력, 수력, 바이오)
- 그 이외의 에너지원은 기타 에너지에 제외 혹은 추가되므로 시각화 분석에서 제외
- ・ 바이오 에너지는 일정하진 않지만 상승 곡선을 보이며, 태양광 및 풍력은 지속적으로 증가, 수력 에너지는 점진적으로 감소하는 추세
- 수력에너지는 2013년을 기점으로 평균적으로 하락하는데, 이는 해당 년도를 기준으로 사업용 발전을 대폭 감소했기 때문

Part 3, 데이터분석

신재생 에너지 발전량 및 발전설비

국내 발전량/발전설비

- *발전 설비(용량): 발전 설비를 최대한 많은 양의 전기를 생산하도록 가동하였을 때 나오는 발전량(이론적으로 가능 최대 전기량)
- *발전량: 해당 에너지원으로 특정 기간동안 실제 만들어낸 전기량

분석 데이터 분리

```
energy_MWh=pd.read_excel('./files/분석용.xlsx',
sheet_name='행정구역별 신재생발전량',
header=1, usecols='A:G',skipfooter=3)
energy_MWh #발전량
```


데이터 프레임 형성

```
df_02 = pd.DataFrame(energy_MWh)
df_02
```


그래프 시각화

```
energy_MWh=pd.read_excel('./files/분석용.xlsx',sheet_name='행정구역별 신재생발전량', header=1, usecols='A:G',skipfooter=3)

new_df_02 = df_02.iloc[0:17,1:5]

new_df_02.index = ['서울','부산','대구','인천','광주','대전','울산','세종','경기', '강원','충북','충남','전남','전남','경북','경남', '제주']

new_df_02.plot(kind='bar',figsize=(12,6),title='시도별 신재생 에너지 발전량')
```

	구분	수력	태양광	풍력	바이오	기타	계
0	서울	1112.25300	49316.12233	0.00000	27749.31360	335040.05594	413217.74487
1	부산	93.27900	138133.64717	8690.81621	9827.30688	183222.20691	339967.25617
2	대구	12951.47828	103316.38497	0.00000	14688.25090	5501.99753	136458.11167
3	인천	39545.91307	101759.45783	52638.65417	228842.49900	951856.96178	1374643.48585
4	광주	7795.29240	229719.68906	0.00000	4778.50440	0.00000	242293.48586
5	대전	0.00000	37648.27613	0.00000	0.00000	7799.16096	45447.43709
6	울산	1456.61893	70328.19457	1500.48720	0.00000	11746.93912	85032.23982
7	세종	0.00000	57695.57952	0.00000	25878.49440	39664.25669	123238.33061
8	경기	648369.97398	1000208.86171	5573.32606	294246.81941	1681212.96897	3629611.95012
9	강원	1062270.97637	1251786.11766	780223.18113	1321303.93540	44022.21900	4459606.42956
10	충북	1010025.86340	889012.03505	0.00000	6786.88166	0.00000	1905824.78011
11	충남	61498.59396	2273345.75935	2941.50060	1224278.49134	2834018.67105	6396083.01629
12	전북	285783.67247	3035420.84594	131169.37316	420867.27451	8007.75300	3881248.91909
13	전남	114120.08273	3712154.27191	564564.33065	7678.60961	166746.18264	4565263.47754
14	경북	319014.44088	2104121.68986	943247.19524	5399.18781	27846.33107	3399628.84486
15	경남	310046.16731	1143150.51483	72536.67197	22986.50149	18237.78873	1566957.64433
16	제주	3145.38653	413801.48857	576396.13426	1375866.37900	5.59656	2369214.98491

Part 3, 데이터분석

국내 신재생 발전 설비 발전량 비교

국내 발전량/발전설비

Part 3, 데이터분석

국내 신재생 발전 설비 발전량 비교

각 에너지원 별 국내 발전량/발전설비 차이

- *각 에너지원에 대한 통계와 시각화 그래프를 통해 발전량과 발전 설비의 차이를 확인
- * 수력과 풍력 제외 그래프는 별도 첨부

plt.figure(figsize=(10, 5)) sns.barplot(data=df_01, x="구분", y="수력")

수력(발전량, 발전설비)

풍력(발전량, 발전설비)

Part 3, 데이터분석

국내 신재생 발전 설비 발전량 비교

각 에너지원 별 국내 발전량/발전설비 차이

```
diff_energy = pd.DataFrame(index=range(0,17), columns=['시도명','수력E 차이', '태양광E 차이', '풍력E 차이', '바이오E 차이','기타E 차이', '전체E값 차이'],)
diff_energy['시도명']=df_02_new['구분']
diff_energy
plt.figure(figsize = (16, 16))
sns.heatmap(diff_energy, annot = True, fmt = '.Of', cmap = 'GnBu')
plt.title('신재생 에너지 발전량/발전설비 차이')
plt.ylabel('시도명')
plt.show()
```

비교 데이터 = 발전용량설비-발전량

해당 값이 클수록 에너지 미발전에 대한 손실이 증가(해당 용량만큼 발전이 가능하지만, 실제 발전량이 도달하지 못했기 때문)

충남의 경우 신재생 에너지 발전율이 가장 높지만, 전체 E 손실 값도 높음. 수력은 발전 감소 추세, 풍 력의 지리적 제약을 고려해 에너지 손실율이 가장 적은 태양광 에너지에 집중할 것이라 예측 가능

Part 3, 데이터분석

국내 신재생 지역별 발전량


```
plt.figure(figsize = (16, 10))
sns.heatmap(new_energy, annot = True, fmt = '.Of', cmap = 'rocket_r')
plt.title('신재생 에너지 생산분포')
plt.ylabel('지역')
plt.show()
```

- 지역별 각 신재생 종류마다 지역별 생산량을 히트 맵으로 표현했다.
- 종류별로 분석해 보았을 때 전남의 태양광 에 너지 생산과 충남 지역에 기타 신재생 에너지 가 집중적으로 많이 생산된다는 것을 볼 수 있다.

Part 3, 지역별신재생에너지생산

국내 신재생 지역별 발전량


```
for i in range(0, 17, 1):
    new_energy_area_condition = (new_energy_area['지역'] == areal[i])
    new_energy_area_filter = new_energy_area[new_energy_area_condition]
    new_energy_area_filter

plt.figure(figsize = (4, 2))

x = new_energy_area_filter['신재생 에너지']
y = new_energy_area_filter['발전량']

plt.bar(x, y, color = ['#81F7BE', '#FE642E', '#FFFF00', '#81DAF5'], width = 0.5)

plt.title('{}지역 신재생 에너지벌 발전량 (*10^6)'.format(areal[i]), fontsize = 10)

plt.ylabel('[MWh]', fontsize = 15)

plt.xticks(fontsize = 15)
plt.yticks([0, 500000, 1000000, 1500000, 2000000, 2500000, 3000000, 3500000, 4000000],fontsize = 15)

plt.grid(True)

plt.savefig('{}지역 신재생 에너지별 발전량.jpeg'.format(areal[i]))

plt.show()
```

 지역별 각 신재생 종류마다 지역별 생산량을 막대 그래프로 표현

Part 3, 기타 에너지 생산

국내 기타 신재생 에너지 발전량

▲ 옛 군포변전소 자리가 '연료전지 설비'로 새롭게 탄생했다. 서부발전은 국가철도공단의 부지에 연료 발전 설비를 건설했다. (사진 =이형근 기자) © 국토매일

[국토매일=이형근 기자] 옛 군포변전소 부지가 '열공급형 연료전지 (SOFC)설비'로 재탄생하고 전기와 가스를 공급하게 된다. 이름하여 '철도시설공단 의왕연료전지 발전설비'건설은 서부발전이 발주하고 SK에코 플랜트가 시공사로 참여해 현재공사는 99.96%공정률을 보이고 있는 가운데 상업운전 중에 있다.

이 현장은 친환경 발전소로 종래 석탄이나 LNG연료가 아닌 3.3kW연료전지 33개를 연결해 발전용량 9.9kW 를 생산하는 시설이다. 이 발전설비가 8월11일 준공하게 되면 연간 발전량은 8만 95kWh로 이용률 95%를 자랑하게 된다.

```
plt.figure(figsize=(10,5))
x1=new_energy[conditions]['구분']
y1=new_energy[conditions]['신재생']
sns.barplot(x1,y1)
plt.title('신재생에너지 비율',fontsize=17)
plt.ylabel('발전량(MWH)')
plt.yticks([0,500000,1000000,1000000,2000000,3000000,4000000],fontsize = 15)
plt.savefig('기타 신재생 에너지 분포.jpeg')
plt.show()
```

- 기타 신재생 에너지 생산량 비율을 막대 그래프로 표현했다.
- 3가지 중에서 가장 최신 신재생 에너지 인 연료전지가 가장 비율이 높다.

- 단, 가장 큰 문제는 수소의 수급은 자체 생산해야 하기에 석유발전에 크게 밀린 다.
- 아직 기술적으로 아직 많이 부족한 단계 이기도 하다.

Part 4 결론 및 토의

Part 4 결론 및 토의

행정구역별 1인당 전력 소비량 분석에 따른 행정구역별 특징

	화학	연탄•석유	1차 금속	전자●통신
경기				SK하이닉스, 삼성전자, LG디스플레이
경북			포스코	
울산	울산 석유화학산업단지	울산 석유화학산업단지		
전남	여수 석유화학산업단지			
충남			현대제철	삼성디스플레이
충북				ѕк하이닉스

- 1인당 전력소비량이 큰 지역은 경북, 울산, 전남, 충남, 충북으로 해당 지역들은 인구가 500만 이하이며 정유, 석유화학, 1차 금속, 반도체, 디스플레이 제조업을 중심으로 발전했다는 특징이 있다.
- 제조업을 중심으로 발전한 대한민국의 특성상 전력소비량이 큰 산업용 소비전 력량의 비중이 크며, 전체 및 지역별 인구 가 적어 1인당 소비전력량이 국제적으 로 상위권에 속할 수 밖에 없다.

Part 4 결론 및 토의

태양광 에너지

태양광발전은 일사량이 많고 먼지가 적은 지역일수록 잘 된다. 일정한 세기의 바람도 불어줘야 한다. 모듈의 핵심부품인 반도체가 열에 약해 바람으로 식혀 주지 않으면 효율이 떨어지기 때문이다. 전남은 전국에서 일사량이 가장 풍부한 동네다. 더욱이 신안은 바닷가에 인접해 일년 중 평균이들을 빼고는 바람 잘 날이 없다. 태양광발전에 최적지인 셈이다.

발전소가 들어서기 전 이 일대는 거의 버려진 갯벌이었다. 해안가에 방치된 불모의 땅이 신재생에 너지 산업을 선도하는 태양광발전소로 변모한 것이다.

- 위치적으로 관리도 쉽고 경제적으로도 효율적이다.
- 에너지 손실률도 적다.

- 태양 에너지는 바람이 적고 먼지가 적은 지역일수록 관리와 효율이 좋다.
- 커다란 불모지도 이 조건만 맞는다면 전 력생산의 효율이 좋아 각광받는다.
- 현재 가장 발전 설비가 많고 투자를 많이 받는 신재생 에너지 사업이다.

Part 4 결론 및 토의

제주지역의 신재생 에너지 생산

바이오에너지는 지역에너지 자립도를 높일 수 있는 대표적인 지역에너지 자원이다.

또한 안정적인 에너지공급을 하지 못하는 풍력과 태양력을 보완하기 위해 바이오매스는 최적이라 제주도의 관심과 시설 보급 확산이 필요하다는 지적이다.

제주도에서 관리하는 바이오매스관련 보급현황은 바이오가스발전 관련 봉개동 쓰레기 매립장, 도두 하수종말처리장, 한림상대 양돈분뇨 바이오 가스발전소 등 3개소 1,475KW이다.

바이오에너지 기술은 농산바이오매스, 임산바이오매스, 유기성폐기물(음식쓰레기, 축산분뇨, 농업부산물, 슬러지 등), 산업체부산바이오메스 등이다.

국내 바이오매스 자원 지도 (자료: 한국에너지기술연구원, 2010)

2011년 한국에너지기술연구원 자료에 나타난 제주 가용 바이오매스 자원현황을 보면, 농산바이오매스 5.075 toe/년, 축산바이오매스 44,539 toe/년, 도시유기성폐기물 1,977 toe/년, 임산바이오매스 205,111 toe/년 이란 분석이다.

바이오 에너지는 주로 온갖 유기성 폐기물를 처리하고 에너지를 생산할 수 있기에 몇몇 지역에서 각광받는다.

특히 공간과 날씨의 제약이 없고 독립적인 환경에서 사용 가능하고 친환경이라는 점이 매우 큰 장점으로 오기 때문에 제주도에서 크게 각광받는다.

단, 한국 에너지 공단에서 제공하는 자료에서는 국내 에너지 관련법 수정에 따라 포함/불포함 되 는 데이터에 따른 차이가 존재

Part 4 결론 및 논의

정리

Bio - Analysis &	수력	2013년을 기점으로, 평균 발전량이 감소하기 시작 → 사업용 발전량을 대폭 감소	수력 발전 대신 바이오 및 연료전지에 대한 에너지 발전으로 이동.
National policy	태양광	2011~2019년까지 생산량 증가. 연도별 신재생 에너지 생 산량 그래프에서 우 상향 그래프를 통해 지속적으로 일정 량 이상의 에너지를 생산했음을 유추 가능	전남/전북/충남을 기점으로 집적화 단지를 개발하며 생산량 증대
	풍력	2011~2019년까지 생산량 증가. 국내 지리적 한계로 인한 발 전소 위치 제한으로 연간 에너지 생산량은 최하위.	해상 단지에 풍력 발전소를 설립을 추 진하며 지리적 한계를 최소화
	바이오	국내 신재생 에너지 생산량 1위로 2011 이후 증가하는 추세. 한국 에너지 공단에서 제공하는 자료에서는 국내 에너지 관 련법 수정에 따라 포함/불포함 되는 데이터에 따른 차이가 존재	기존 축산 분뇨 및 음식물 폐수 중심 처리에서 하수 슬러지 등 새로운 처리 항목을 추가
	연료전지	지리적인 제약을 받지 않고 2020년도 기타 신재생 에너지에 서는 1위. 단, 기술적인 한계와 석탄, 석유를 비교하면 따로 전력원을 생산해야 함으로 비효율적	시간에 따른 지속적인 기술의 발전이 필요

Reference

- 1) https://kosis.kr/index/index.do
- 2) http://www.index.go.kr/unify/idx-info.do?idxCd=4291
- 3) https://www.etrans.or.kr/policy/04.php
- 4) http://www.pmnews.co.kr/104620
- 5) https://www.korea.kr/special/policyFocusView.do?newsId=148659866&pkgId=49500384
- 6) newsje.com/news/articleView.html?idxno=16731

감사합니다