Análisis de Sistemas Lineales

Función de transferencia y transformaciones de sistemas en variables de estado

Contenido

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

- Función de transferencia del modelo en variables de estado
- Transformaciones de similitud: caso general
- Transformación a la forma canónica diagonal (modal)
- Solución del sistema de ecuaciones transformado
- Ejemplos y Ejercicios

Función de transferencia

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Al sistema dado por

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$

$$\mathbf{x}_0 = \mathbf{x}(0)$$

Le aplicamos la transformada de Laplace

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s)$$
$$\mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s)$$

Agrupando y despejando X(s), con x(0) = 0(sI - A)X(s) = BU(s)

$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s)$$

Función de transferencia (2)

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Sustituyendo X(s) en la expresión para Y(s)

$$\mathbf{Y}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s) + \mathbf{D}\mathbf{U}(s)$$

Factorizando **U**(s) y despejando

$$\mathbf{Y}(s) = \left[\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right]\mathbf{U}(s)$$

$$\mathbf{G}(s) = \frac{\mathbf{Y}(s)}{\mathbf{U}(s)} = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

- Para un sistema SISO G(s) es un escalar; pero, para un MIMO, **G**(s) es una matriz.
- Con $\Phi(s) = (s\mathbf{I} \mathbf{A})^{-1}$ $\mathbf{G}(s) = \mathbf{C}\Phi(s)\mathbf{B} + \mathbf{D}$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$$
$$\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$$

Ejemplo 1: Cálculo de G(s)

 $\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

$$\dot{\mathbf{x}} = \begin{bmatrix} \frac{-R}{L} & \frac{-1}{L} \\ \frac{1}{C} & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}$$

Paso 1: Calcular $\Phi(s) = (s\mathbf{I} - \mathbf{A})^{-1}$

$$\mathbf{\Phi}(s) = \frac{adj(s\mathbf{I} - \mathbf{A})}{\det(s\mathbf{I} - \mathbf{A})} = \frac{cof(s\mathbf{I} - \mathbf{A})^T}{\det(s\mathbf{I} - \mathbf{A})}$$

$$\mathbf{\Phi}(s) = \frac{adj}{\begin{bmatrix} s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} \frac{-R}{L} & \frac{-1}{L} \\ \frac{1}{C} & 0 \end{bmatrix} \end{bmatrix}}{\begin{bmatrix} s + \frac{R}{L} \end{pmatrix} \frac{1}{L} \\ -\frac{1}{C} & s \end{bmatrix}}$$

Ejemplo 1: Cálculo de G(s)

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

$$cof_{(1,1)} = (-1)^{(1+1)}s = s$$

$$cof_{(1,2)} = (-1)^{(1+2)} \left(-\frac{1}{C}\right) = \frac{1}{C}$$

$$cof_{(2,1)} = (-1)^{(2+1)} \left(\frac{1}{L}\right) = -\frac{1}{L}$$

$$cof_{(2,2)} = (-1)^{(2+2)} \left(s + \frac{R}{L}\right) = \left(s + \frac{R}{L}\right)$$

$$cof(s\mathbf{I} - \mathbf{A}) = \begin{bmatrix} s & \frac{1}{C} \\ -\frac{1}{L} & \left(s + \frac{R}{L}\right) \end{bmatrix}$$

Transponiendo filas y columnas de la matriz de cofactores

$$adj(s\mathbf{I} - \mathbf{A}) = cof(s\mathbf{I} - \mathbf{A})^{T} = \begin{bmatrix} s & -\frac{1}{L} \\ \frac{1}{C} & \left(s + \frac{R}{L}\right) \end{bmatrix}$$

Ejemplo 1: Cálculo de G(s)

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Dividiendo la adjunta de (sl-A) entre el determinante de (sl-A)

$$\Phi(s) = \frac{\left[\frac{1}{C} \left(s + \frac{R}{L} \right) \right]}{\left(s \left(s + \frac{R}{L} \right) + \frac{1}{LC} \right)}$$

Paso 2: Completamos el cálculo de G(s)

$$G(s) = \mathbf{C}\mathbf{\Phi}(s)\mathbf{B} + \mathbf{D} = \begin{bmatrix} 0 & 1 \end{bmatrix} \frac{\begin{bmatrix} s & -\frac{1}{L} \\ \frac{1}{C} & \left(s + \frac{R}{L}\right) \end{bmatrix}}{\left(s\left(s + \frac{R}{L}\right) + \frac{1}{LC}\right)} \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} = \frac{\frac{1}{LC}}{s\left(s + \frac{R}{L}\right) + \frac{1}{LC}}$$

Ejemplo 2: Cálculo de G(s)

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Encuentre la función de transferencia de

$$\dot{\mathbf{x}} = \begin{bmatrix} -2 & 2 \\ 0 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0.5 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & 2 \end{bmatrix} \mathbf{x}$$

$$G(s) = \mathbf{C}\mathbf{\Phi}(s)\mathbf{B} + \mathbf{D} = \begin{bmatrix} -1 & 2 \end{bmatrix} \frac{adj}{s} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -2 & 2 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}$$
$$0 \quad (s+3)$$

$$G(s) = \frac{(s+1)}{s^2 + 5s + 6}$$

Transformaciones de similitud

 $\mathbf{\tilde{G}}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Caso general

Definimos la transformación $\mathbf{x}(t) = \mathbf{P} \cdot \mathbf{x}^*(t)$

Donde:

 $\mathbf{x}(t)$: Vector de estado

 $\mathbf{x}^*(t)$: Vector de estado transformado

P: matriz constante y no singular (**P**⁻¹ existe)

Derivando obtenemos además

$$\dot{\mathbf{x}} = \mathbf{P} \cdot \dot{\mathbf{x}}^*$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$$
$$\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$$

Transformaciones de similitud

 $\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Caso general

Sea el sistema A:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

$$\mathbf{u} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$

Sustituyendo el vector de estado y su derivada en el sistema A

$$\mathbf{P}\dot{\mathbf{x}}^* = \mathbf{A}\mathbf{P}\mathbf{x}^* + \mathbf{B}\mathbf{u}$$

$$y = CPx^* + Du$$

Premultiplicando la ecuación de estado por la inversa de P

$$\mathbf{P}^{-1}\mathbf{P}\dot{\mathbf{x}}^* = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}\mathbf{x}^* + \mathbf{P}^{-1}\mathbf{B}\mathbf{u}$$

$$y = CPx^* + Du$$

Obtenemos el sistema equivalente B, que tiene la misma forma que el sistema A; con las matrices transformadas.

$$\dot{\mathbf{x}}^* = \mathbf{A}^* \mathbf{x}^* + \mathbf{B}^* \mathbf{u}$$

$$\mathbf{y} = \mathbf{C}^* \mathbf{x}^* + \mathbf{D} \mathbf{u}$$

$$\mathbf{A}^* = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$$

$$\mathbf{B}^* = \mathbf{P}^{-1}\mathbf{B}$$

$$\mathbf{C}^* = \mathbf{CP}$$

Ejemplo 3: Transformación

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Transforme el sistema usando la matriz P dada.

$$\dot{\mathbf{x}} = \begin{bmatrix} -2 & 2 \\ 0 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0.5 \end{bmatrix} u \qquad \mathbf{P} = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$

$$y = \begin{bmatrix} -1 & 2 \end{bmatrix} \mathbf{x}$$

$$\mathbf{A}^* = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}^{-1} \begin{bmatrix} -2 & 2 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ -3 & -3 \end{bmatrix}$$

$$\mathbf{B}^* = \mathbf{P}^{-1} \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.5 \end{bmatrix}$$

$$\mathbf{C}^* = \mathbf{C} \mathbf{P} = \begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 1.4 & 0.8 \end{bmatrix}$$

$$\dot{\mathbf{x}}^* = \begin{bmatrix} -2 & 0 \\ -3 & -3 \end{bmatrix} \mathbf{x}^* + \begin{bmatrix} 1 \\ -0.5 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1.4 & 0.8 \end{bmatrix} \mathbf{x}^*$$

Transformaciones de similitud $_{G(s) = C(sI-A)^{-1}B+D}^{I-GA+D}$

A forma canónica diagonal

Definimos la transformación $\mathbf{x}(t) = \mathbf{V} \cdot \hat{\mathbf{x}}(t)$

$$\mathbf{x}(t) = \mathbf{V} \cdot \mathbf{x}(t)$$
$$\mathbf{x}(0) = \mathbf{V} \cdot \hat{\mathbf{x}}(0)$$

$$\hat{\mathbf{A}} = diag(\lambda_i) = \begin{bmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & 0 & \vdots \\ \vdots & \vdots & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \lambda_n \end{bmatrix} \quad \det(\lambda \mathbf{I} - \mathbf{A}) = 0$$

Donde:

 $\mathbf{x}(t)$: Vector de estado

 $\hat{\mathbf{x}}(t)$: Vector de estado transformado

V : matriz constante y no singular, que transforma el sistema a forma canónica diagonal

 λ_i : Valores propios de la matriz **A**

 $\hat{\mathbf{A}}$: matriz diagonal

Transformaciones de similitud

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$$
$$\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$$

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

A forma canónica diagonal

Sea el sistema original: $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$

$$y = Cx + Du$$

Sustituyendo el vector de estado y su derivada en el sistema A

$$\mathbf{V}\dot{\hat{\mathbf{x}}} = \mathbf{A}\mathbf{V}\hat{\mathbf{x}} + \mathbf{B}\mathbf{u}$$

$$y = CV\hat{x} + Du$$

Premultiplicando la ecuación de estado por V⁻¹

$$\dot{\hat{\mathbf{x}}} = \mathbf{V}^{-1}\mathbf{A}\mathbf{V}\hat{\mathbf{x}} + \mathbf{V}^{-1}\mathbf{B}\mathbf{u}$$

$$\mathbf{y} = \mathbf{C}\mathbf{V}\hat{\mathbf{x}} + \mathbf{D}\mathbf{u}$$

Obtenemos el sistema equivalente B, que tiene la misma forma que el sistema A; con las matrices transformadas.

$$\dot{\hat{\mathbf{x}}} = diag(\lambda_i)\hat{\mathbf{x}} + \hat{\mathbf{B}}\mathbf{u}$$

$$\mathbf{y} = \hat{\mathbf{C}}\hat{\mathbf{x}} + \mathbf{D}\mathbf{u}$$

$$\hat{\mathbf{A}} = \mathbf{V}^{-1}\mathbf{A}\mathbf{V} = diag(\lambda_i)$$

$$\hat{\mathbf{B}} = \mathbf{V}^{-1}\mathbf{B}$$

$$\hat{\mathbf{C}} = \mathbf{C}\mathbf{V}$$

Cálculo de la matriz V o matriz de vectores propios

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

 $\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Caso 1: Todos los valores propios λ_i son diferentes

$$\hat{\mathbf{A}} = \mathbf{V}^{-1}\mathbf{A}\mathbf{V} = diag(\lambda_i)$$

$$\mathbf{A}\mathbf{V} = \mathbf{V}diag(\lambda_i) \quad \text{con} \quad \mathbf{V} = (\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3, \dots, \mathbf{V}_n)$$

$$\mathbf{A}\mathbf{V} = \mathbf{V} \begin{bmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & \vdots & 0 & \ddots & 0 \\ \vdots & \vdots & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$

$$(\mathbf{A}\mathbf{V}_1, \mathbf{A}\mathbf{V}_2, \mathbf{A}\mathbf{V}_3, \cdots, \mathbf{A}\mathbf{V}_n) = (\lambda_1\mathbf{V}_1, \lambda_2\mathbf{V}_2, \lambda_1\mathbf{V}_3, \cdots, \lambda_n\mathbf{V}_n)$$

Cada valor de λ_i , llamado valor propio es un escalar cumple que

$$\mathbf{A}\mathbf{V}_{i}=\lambda_{i}\mathbf{V}_{i}$$

Interpretación de la transformación diagonal

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

 $\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Diagrama de bloques de la estructura del sistema en forma modal

Aparentemente no hay cambio de la estructura respecto al diagrama general de un sistema en variables de estado.

Interpretación de la transformación diagonal

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

 $\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Diagrama de flujo de señales de la estructura de un sistema SISO de 2° orden en forma canónica diagonal

No hay dependencia cruzada; las variables de estado son ahora dependientes únicamente de sí mismas. La solución es más fácil.

Solución del sistema transformado

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ Y = Cx + DU

 $\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Ecuación homogénea de estado $\hat{\mathbf{x}} = diag(\lambda_i)\hat{\mathbf{x}}$

$$\begin{bmatrix} \dot{\hat{x}}_1 \\ \dot{\hat{x}}_2 \\ \vdots \\ \dot{\hat{x}}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \vdots \\ \hat{x}_n \end{bmatrix}$$

$$\mathbf{x}(0) = \mathbf{V} \cdot \hat{\mathbf{x}}(0)$$

$$\dot{\hat{x}}_1 = \lambda_1 \hat{x}_1
\dot{\hat{x}}_2 = \lambda_2 \hat{x}_2
\vdots$$

 $\begin{vmatrix} \dot{\hat{x}}_1 = \lambda_1 \hat{x}_1 \\ \dot{\hat{x}}_2 = \lambda_2 \hat{x}_2 \\ \vdots \\ \dot{\hat{x}}_n = \lambda_n \hat{x}_n \end{vmatrix}$ Sistema de ecuaciones diferenciales escalares independientes $\hat{x}_i = e^{\lambda_i t} \hat{x}_i(0)$ Respuesta natural

$$\hat{x}_i = \lambda_n \hat{x}_i \qquad \hat{x}_i = e^{\lambda_i t} \hat{x}_i (0)$$

$$\hat{x}_i = \int_0^t e^{\lambda_i(t-\tau)} \hat{b}_i u(\tau) d\tau$$
 Respuesta forzada

$$\hat{x}_i = e^{\lambda_i t} \hat{x}_i(0) + \int_0^t e^{\lambda_i (t-\tau)} \hat{b}_i u(\tau)$$
 Respuesta total

$$\mathbf{x}(t) = \mathbf{V} \cdot \hat{\mathbf{x}}(t)$$

$$\mathbf{y}(t) = \mathbf{C} \cdot \mathbf{x}(t) + \mathbf{D} \cdot \mathbf{u}$$

Cálculo de la matriz V

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Caso 1: Todos los valores propios λ_i son diferentes

$$(\lambda_i \mathbf{V}_i - \mathbf{A} \mathbf{V}_i) = \mathbf{0}$$

$$(\lambda_i \mathbf{I} - \mathbf{A}) \mathbf{V}_i = \mathbf{0}$$

$$\lambda_i \neq \lambda_j \forall \lambda_i, \lambda_j$$

Aplicando repetidamente la ecuación anterior para cada valor de λ podemos calcular el calor de las componentes v_{ii} del vector columna \mathbf{V}_{i} .

$$\begin{bmatrix}
\lambda_{i} & 0 & \cdots & 0 \\
0 & \lambda_{i} & 0 & \vdots \\
\vdots & 0 & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{i}
\end{bmatrix} - \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix} \begin{bmatrix}
v_{1i} \\
v_{2i} \\
\vdots \\
v_{ni}
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}$$

Existen típicamente más soluciones que incógnitas; por lo que se asume un valor para una de las componentes v_{ii} , (típicamente el valor 1), se calculan las otras componentes \mathbf{v}_{i} resultante puede normalizarse. $\mathbf{V}_{i} \text{ normalizado} = \frac{\mathbf{V}_{i}}{\sqrt{\sum_{i=1}^{n}(v_{ji})^{2}}}$ calculan las otras componentes de v_{ji} , y eventualmente cada vector

normalizado =
$$\frac{\mathbf{v}_i}{\sqrt{\sum_{j=1}^{n} (v_{ji})^2}}$$

Ejemplo 4: Transformación a diagonal con la matriz **V**

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

$$\dot{\mathbf{x}} = \begin{bmatrix} -3.5 & -0.5 \\ 1.5 & -1.5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.25 \\ 0.25 \end{bmatrix} u$$
$$y = \begin{bmatrix} 4 & 0 \end{bmatrix} \mathbf{x}$$

$$\det\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} -3.5 & -0.5 \\ 1.5 & -1.5 \end{bmatrix} = \det\begin{bmatrix} (\lambda + 3.5) & 0.5 \\ -3.5 & (\lambda + 1.5) \end{bmatrix} = \lambda^2 + 5\lambda + 6 = 0$$

$$\lambda_1 = -2$$

$$\lambda_2 = -3$$

Ejemplo 4: Transformación a diagonal con la matriz **V**

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

$$(\lambda_1 \mathbf{I} - \mathbf{A}) \mathbf{V}_1 = \begin{pmatrix} \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} - \begin{bmatrix} -3.5 & -0.5 \\ 1.5 & -1.5 \end{bmatrix} \begin{pmatrix} v_{11} \\ v_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1.5 & 0.5 \\ -1.5 & -0.5 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$1.5v_{11} + 0.5v_{21} = 0$$

$$\begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

$$(\lambda_2 \mathbf{I} - \mathbf{A}) \mathbf{V}_2 = \begin{pmatrix} \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix} - \begin{bmatrix} -3.5 & -0.5 \\ 1.5 & -1.5 \end{bmatrix} \begin{pmatrix} v_{12} \\ v_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0.5 \\ -1.5 & -1.5 \end{bmatrix} \begin{bmatrix} v_{12} \\ v_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$0.5v_{12} + 0.5v_{22} = 0$$

$$\begin{bmatrix} v_{12} \\ v_{22} \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Ejemplo 4: Transformación a diagonal con la matriz **V**

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

$$\mathbf{V} = \begin{bmatrix} 1 & 1 \\ -3 & -1 \end{bmatrix}$$

$$\hat{\mathbf{A}} = diag(\lambda_i) = \begin{bmatrix} -2 & 0\\ 0 & -3 \end{bmatrix}$$

$$\hat{\mathbf{B}} = \mathbf{T}^{-1}\mathbf{B} = \begin{bmatrix} 1 & 1 \\ -3 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 0.25 \\ 0.25 \end{bmatrix} = \begin{bmatrix} -0.25 \\ 0.5 \end{bmatrix}$$

$$\hat{\mathbf{C}} = \mathbf{C}\mathbf{T} = \begin{bmatrix} 4 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -3 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \end{bmatrix}$$

$$\dot{\hat{\mathbf{x}}} = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix} \hat{\mathbf{x}} + \begin{bmatrix} -0.25 \\ 0.5 \end{bmatrix} u$$
$$y = \begin{bmatrix} 4 & 4 \end{bmatrix} \hat{\mathbf{x}}$$

Cálculo de la matriz T

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Caso 2: Todos los valores propios λ_i son diferentes y el sistema además está en forma canónica controlable o FCC.

Se puede calcular la matriz de transformación **T**, creando la matriz de **Vandermonde**. La matriz **T** tiene las mismas propiedades de la matriz de vectores propios **V**; aunque no resultan iguales al compararlas. En cualquier caso, las matrices **V** y **T** resultan dependientes del orden en el que se coloquen los valores propios; y la matriz **T** solamente funciona para el caso FCC.

$$T = egin{bmatrix} 1 & 1 & \cdots & 1 \ \lambda_1 & \lambda_2 & \cdots & \lambda_n \ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2 \ dots & dots & \ddots & dots \ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{bmatrix}$$

Ejemplo 5: Transformación a diagonal usando la matriz **T**

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -24 & -26 & -9 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 72 & 55 & 10 \end{bmatrix} \mathbf{x}$$

$$\det \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -24 & -26 & -9 \end{bmatrix} = 0$$

$$\det\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ 24 & 26 & (\lambda+9) \end{bmatrix} = \lambda^3 + 9\lambda^2 + 26\lambda + 24 = 0$$

$$\lambda_1 = -2$$

$$\lambda_2 = -3$$

$$\lambda_3 = -4$$

Ejemplo 5: Transformación a diagonal usando la matriz **T**

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

$$\mathbf{T} = \begin{bmatrix} 1 & 1 & 1 \\ -2 & -3 & -4 \\ 4 & 9 & 16 \end{bmatrix}$$

$$\hat{\mathbf{A}} = diag(\lambda_i) = \begin{bmatrix} -2 & 0 & 0\\ 0 & -3 & 0\\ 0 & 0 & -4 \end{bmatrix}$$

$$\hat{\mathbf{B}} = \mathbf{T}^{-1}\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ -2 & -3 & -4 \\ 4 & 9 & 16 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -1 \\ 0.5 \end{bmatrix}$$

$$\hat{\mathbf{C}} = \mathbf{CT} = \begin{bmatrix} 72 & 55 & 10 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -2 & -3 & -4 \\ 4 & 9 & 16 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 12 \end{bmatrix}$$

$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

Cálculo de la matriz V

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Caso 3: Cuando hay valores propios repetidos. En este caso la transformación es a la forma casi diagonal o forma de Jordan.

n: total de valores propios (orden del sistema)

q: valores propios diferentes

(*n-q*): valores propios repetidos

 λ_i : valor propio repetido

*m*_i: repeticiones del *j-ésimo* valor propio

Para calcular los vectores para los primeros n valores propios diferentes es lo mismo que para el caso 1: $(\lambda_i \mathbf{I} - \mathbf{A}) \mathbf{V}_i = \mathbf{0}$ $i \in \{1...q\}$

Para el primero de los valores propios repetidos λ_j : $(\lambda_j \mathbf{I} - \mathbf{A})\mathbf{V}_j = \mathbf{0}$

Para los siguientes valores repetidos de λ_i :

$$(\lambda_{j} \mathbf{I} - \mathbf{A}) \mathbf{V}_{j+1} = -\mathbf{V}_{j}$$

$$\vdots$$

$$(\lambda_{j} \mathbf{I} - \mathbf{A}) \mathbf{V}_{j+m_{j}-1} = -\mathbf{V}_{j+m_{j}-2}$$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$$
$$\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$$

Cálculo de la matriz V

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Si se tuviese por ejemplo

$$n = 4$$
 valores propios

$$q = 2$$
 valores propios diferentes

$$(n-q) = 3$$
 valores propios repetidos

$$\lambda_i = -1$$
 valor repetido 3 veces

$$\lambda_{1} = -2$$

$$\lambda_{2} = -3$$

$$\lambda_{3} = -1$$

$$\lambda_{4} = -1$$

$$n-q$$

 $\lambda_5 = -1$

es
$$ig(\lambda_1 \mathbf{I} - \mathbf{A}ig) \mathbf{V}_1 = \mathbf{0} \ ig(\lambda_2 \mathbf{I} - \mathbf{A}ig) \mathbf{V}_2 = \mathbf{0}$$

Para calcular los primeros dos valores propios diferentes

Para el primero de los valores propios repetidos de
$$\lambda_i = -1$$

Para los siguientes valores repetidos de
$$\lambda_i = -1$$

$$(\lambda_j \mathbf{I} - \mathbf{A}) \mathbf{V}_3 = \mathbf{0}$$

$$(\lambda_j \mathbf{I} - \mathbf{A}) \mathbf{V}_4 = -\mathbf{V}_3$$
$$(\lambda_j \mathbf{I} - \mathbf{A}) \mathbf{V}_5 = -\mathbf{V}_4$$

Ejemplo 6: Transformación a

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ Y = Cx + DU

 $\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

forma de Jordan

El sistema mostrado tiene cuatro valores propios y dos de ellos son repetidos:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -18 & -39 & -29 & -9 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u \qquad \qquad \begin{aligned} \lambda_1 &= -1 \\ \lambda_2 &= -2 \end{aligned} \} q \\ \lambda_3 &= -3 \\ \lambda_3 &= -3 \\ \lambda_3 &= -3 \end{aligned}$$

$$\mathbf{y} = \begin{bmatrix} 4 & 1 & 0 & 0 \end{bmatrix} \mathbf{x}$$

Usando la variante del método de cálculo para las raíces repetidas descrito en [1], p975, encontramos la matriz de vectores propios V y el sistema transformado a la forma casi diagonal o de Jordan.

$$\mathbf{V} = \begin{bmatrix} 1 & 1 & 3 & 1 \\ -1 & -2 & -9 & 0 \\ 1 & 4 & 27 & -9 \\ -1 & -8 & -81 & 54 \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} 1 & 1 & 3 & 1 \\ -1 & -2 & -9 & 0 \\ 1 & 4 & 27 & -9 \\ -1 & -8 & -81 & 54 \end{bmatrix} \qquad \dot{\mathbf{x}} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.25 \\ -1 \\ 0.1944 \\ 0.1667 \end{bmatrix} u$$

$$y = \begin{bmatrix} 3 & 2 & 3 & 4 \end{bmatrix} \mathbf{x}$$

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{U}$ $\mathbf{Y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{U}$

Referencias

 $\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

[1] Kuo, Benjamin C., "Sistemas de Control Automático", Ed. 7, Prentice Hall, 1996, México.

[2] Ogata, Katsuhiko. "Ingeniería de Control Moderna", Pearson, Prentice Hall, 2003, 4ª Ed., Madrid.