

Max-Margin Learning with A Random Sample of Spanning Trees

Hongyu Su

Helsinki Institute for Information Technology HIIT Department of Computer Science Aalto University

February 12, 2015

Multilabel classification

- Multilabel classification is an important research field in machine learning.
 - ► For example, a document can be classified as "science", "genomics", and "drug discovery".
 - ▶ Each input variable $\mathbf{x} \in \mathcal{X}$ is associated with multiple output variables $\mathbf{y} \in \mathcal{Y}, \mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_l, \mathcal{Y}_i = \{+1, -1\}.$
 - ▶ The goal is to find a mapping function that predicts the best values of an output given an input $f \in \mathcal{H} : \mathcal{X} \to \mathcal{Y}$.
- ▶ The central problems of multilabel classification:
 - The size of the output space y is exponential in the number of microlabels.
 - The dependency of microlabels needs to be exploited to improve the prediction performance.

Structured output learning

- There is an output graph connecting multiple labels.
 - ► A set of nodes represents multiple labels.
 - ▶ A set of edges represents the correlation between labels.
- Hierarchical classification:
 - ► The output graph is a rooted tree or a directed graph defining different levels of granularities.
 - ► For example, SSVM, ...
- Graph labeling:
 - ► The output graph often takes a general form (e.g., a tree, a chain).
 - ► For example, M³N, CRF, MMCRF, ...
- The output graph is assumed to be known apriori.

Research question

- ▶ The output graph is hidden in many applications.
 - ► For example, a surveillance photo can be tagged with "building", "road", "pedestrian", and "vehicle".
- We study the problem in structured output learning when the output graph is not observed.
- In particular:
 - Assume the dependency can be expressed by a complete set of pairwise correlations.
 - Build a structured output learning model with a complete graph as the output graph.
 - Solve the optimization problem and the inference problem $(\mathcal{NP}\text{-hard}).$

In this presentation

- ► A structured prediction model which performs max-margin learning on a random sample of spanning tree.
- ► Two ways to combine the set of random spanning trees.
 - conical combination
 - convex combination
- ▶ The corresponding optimization problem.

Model

- ▶ Training examples comes in pair $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m \in \mathcal{X} \times \mathcal{Y}$.
- ▶ A complete graph G = (E, V) is used as the output graph.
- $ightharpoonup \Gamma_G(\mathbf{y}_i)$ is the output feature map of \mathbf{y}_i on G

$$\begin{split} & \Gamma_G(\textbf{y}_i) = \{\Gamma_e(\textbf{y}_{i,e})\}_{e \in G}, \\ & \Gamma_e(\textbf{y}_{i,e}) = [\textbf{1}_{\textbf{y}_{i,e} = = 00}, \textbf{1}_{\textbf{y}_{i,e} = = 01}, \textbf{1}_{\textbf{y}_{i,e} = = 10}, \textbf{1}_{\textbf{y}_{i,e} = = 11}] \end{split}$$

▶ A joint feature map of $(\mathbf{x}_i, \mathbf{y}_i)$

$$\phi_G(\mathbf{x}_i, \mathbf{y}_i) = \varphi(\mathbf{x}_i) \otimes \Gamma_G(\mathbf{y}_i) = \{\phi_e(x_i, \mathbf{y}_{i,e})\}_{e \in G}.$$

A compatibility score is defined as

$$F(\mathbf{x}, \mathbf{y}; \mathbf{w}_G) = \langle \mathbf{w}_G, \phi_G(\mathbf{x}, \mathbf{y}) \rangle = \sum_{e \in G} \langle \mathbf{w}_{G,e}, \phi_e(\mathbf{x}, \mathbf{y}_e) \rangle$$

Model (cont.)

- ▶ **w** ensures an input \mathbf{x}_i with a correct multilabel \mathbf{y}_i achieves a higher score than with any incorrect multilabel $\mathbf{y} \in \mathcal{Y}$.
- ▶ The predicted output y(x) for a given input x is computed by

$$\mathbf{y}(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, F(\mathbf{x}, \mathbf{y}; \mathbf{w}_G) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, \langle \mathbf{w}_G, \phi_G(\mathbf{x}, \mathbf{y}) \rangle,$$

which is called *inference problem*.

▶ The inference problem is \mathcal{NP} -hard for most joint feature maps on the complete graph.

How to learn w on a complete graph?

The margin of an example x; is

$$\gamma_{G}(\mathbf{x}_{i}; \mathbf{w}_{G}) = F(\mathbf{x}_{i}, \mathbf{y}_{i}; \mathbf{w}_{G}) - \max_{\mathbf{y} \in \mathcal{Y}/\mathbf{y}_{i}} F(\mathbf{x}_{i}, \mathbf{y}; \mathbf{w}_{G}).$$

- ▶ **w** is solved by *maximum-margin principle* which aims to maximize $\gamma(\mathbf{x}_i; \mathbf{w}_G)$ over all training example.
- ► The problems are:
 - ▶ The \mathcal{NP} -hardness of the inference problem on a complete graph.
 - ▶ A large parameter space: $\Theta(k^2)$
- We aim to use a joint feature map that allows the inference problem be solved in polynomial time.

Superposition of random trees

- \triangleright S(G) is a complete set of spanning tree generate from G.
- $\mathbf{w}_T = {\{\mathbf{w}_{G,e}\}_{e \in T}}$ is the projection of \mathbf{w}_G on T.
- $\phi_T(\mathbf{x}, \mathbf{y}) = {\phi_e(\mathbf{x}, \mathbf{y})}_{e \in T}$ is the projection of $\phi_G(\mathbf{x}, \mathbf{y})$ on T.
- Rewrite

$$\begin{split} F(\mathbf{x}, \mathbf{y}, \mathbf{w}_G) &= \sum_{e \in G} \langle \mathbf{w}_{G,e}, \phi_{G,e}(\mathbf{x}, \mathbf{y}_e) \rangle \\ &= \frac{1}{\ell^{\ell-2}} \sum_{T \in S(G)} \sqrt{\frac{\ell}{2}} \langle \mathbf{w}_T, \phi_T(\mathbf{x}, \mathbf{y}_e) \rangle \\ &= \frac{1}{n} \sum_{i=1}^n a_{T_i} \langle \hat{\mathbf{w}}_{T_i}, \hat{\phi}_{T_i}(\mathbf{x}, \mathbf{y}_e) \rangle, \\ &\frac{1}{n} \sum_{i=1}^n a_{T_i}^2 = 1, \quad \frac{1}{n} \sum_{i=1}^n a_{T_i} \leq 1, \quad n = \ell^{\ell-2}. \end{split}$$

How many trees?

- ▶ If there is a predictor \mathbf{w}_G on complete graph achieves a margin on some training data, with high probability we need n spanning tree predictors $\{\mathbf{w}_{T_i}\}_{i=1}^n$ to achieve a close margin. n is quadratic in terms of ℓ .
- Recall

$$F(\mathbf{x}, \mathbf{y}, \mathbf{w}_{\mathcal{T}}) = \frac{1}{n} \sum_{i=1}^{n} a_{T_i} \langle \hat{\mathbf{w}}_{T_i}, \hat{\phi}_{T_i}(\mathbf{x}, \mathbf{y}_e) \rangle,$$

$$\frac{1}{n} \sum_{i=1}^{n} a_{T_i}^2 = 1, \quad \frac{1}{n} \sum_{i=1}^{n} a_{T_i} \leq 1, \quad n = \ell^{\ell-2}.$$

Conical combination

- ▶ A sample \mathcal{T} of n spanning trees drawn from G.
- ▶ Normalized feature weights $\hat{\mathbf{w}}_{T_i} = \frac{\mathbf{w}_{T_i}}{||\mathbf{w}_{T_i}||}, T_i \in \mathcal{T}.$
- ▶ Normalized feature vectors $\hat{\phi}_{T_i}(\mathbf{x}, \mathbf{y}) = \frac{\phi_{T_i}(\mathbf{x}, \mathbf{y})}{||\phi_{T_i}(\mathbf{x}, \mathbf{y})||}, T_i \in \mathcal{T}.$
- Conical combination

$$egin{aligned} F(\mathbf{x},\mathbf{y},\mathbf{w}_{\mathcal{T}}) &= rac{1}{\sqrt{n}} \sum_{i=1}^n q_i \langle \hat{\mathbf{w}}_{\mathcal{T}_i}, \hat{\phi}_{\mathcal{T}_i}(\mathbf{x},\mathbf{y})
angle \ \sum_{i=1}^n q_i^2 &= 1, \sum_{i=1}^n q_i \geq 1. \end{aligned}$$

Convex combination

Random Spanning Tree Approximation

- ▶ We proved if a large margin structured output predictor exists, then combining a small sample of random trees will, with a high probability, generate a predictor with good generalization.
- ▶ $T = \{T_1, \dots, T_n\}$ is a set of spanning trees randomly sampled from the complete graph G.
- lacktriangle The compatibility score can be re-defined based on ${\mathcal T}$ as

$$F_{\mathcal{T}}(\mathbf{x}_i, \mathbf{y}_i; \mathbf{w}_{\mathcal{T}}) = \sum_{t=1}^n \langle \mathbf{w}_{\mathcal{T}_t}, \phi_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}_i) \rangle.$$

▶ The inference problem of predicting the output $\mathbf{y}_{\mathcal{T}}(\mathbf{x})$ for a given input \mathbf{x} is

$$\mathbf{y}_{\mathcal{T}}(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, F_{\mathcal{T}}(\mathbf{x}, \mathbf{y}; \mathbf{w}_{\mathcal{T}}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, \sum_{t=1}^{n} \langle \mathbf{w}_{\mathcal{T}_t}, \phi_{\mathcal{T}_t}(\mathbf{x}, \mathbf{y}) \rangle.$$

Optimization Problem

▶ The margin of an example \mathbf{x}_i achieved by \mathcal{T} is

$$\gamma_{\mathcal{T}}(\mathbf{x}_i; \mathbf{w}_{\mathcal{T}}) = \min_{\mathbf{y} \in \mathcal{Y}/\mathbf{y}_i} \left[\sum_{t=1}^n \langle \mathbf{w}_{\mathcal{T}_t}, \phi_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}_i) \rangle - \sum_{t=1}^n \langle \mathbf{w}_{\mathcal{T}_t}, \phi_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}) \rangle \right].$$

▶ To learn $\{\mathbf{w}_{T_t}\}_{T_t \in \mathcal{T}}$ we solve the optimization problem

$$\begin{aligned} & \min_{\mathbf{w}_{\mathcal{T}_t}, \xi_i} & & \frac{1}{2} \sum_{t=1}^n ||\mathbf{w}_{\mathcal{T}_t}||^2 + C \sum_{i=1}^m \xi_i \\ & \text{s.t.} & & \sum_{t=1}^n \langle \mathbf{w}_{\mathcal{T}_t}, \boldsymbol{\phi}_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}_i) \rangle - \max_{\mathbf{y} \neq \mathbf{y}_i} \sum_{t=1}^n \langle \mathbf{w}_{\mathcal{T}_t}, \boldsymbol{\phi}_{\mathcal{T}_t}(\mathbf{x}_i, \mathbf{y}) \rangle \geq 1 - \xi_i, \\ & & \xi_i > 0 \,, \forall \ i \in \{1, \dots, m\}, \end{aligned}$$

Inference Problem

▶ The inference problem of RTA is defined as finding the multilabel $\mathbf{y}_{\mathcal{T}}(\mathbf{x})$ that maximizes the sum of scores over a collection of trees

$$\mathbf{y}_{\mathcal{T}}(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, F_{\mathcal{T}}(\mathbf{x}, \mathbf{y}; \mathbf{w}_{\mathcal{T}}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, \sum_{t=1}^{n} \langle \mathbf{w}_{\mathcal{T}_t}, \phi_{\mathcal{T}_t}(\mathbf{x}, \mathbf{y}) \rangle.$$

▶ The inference problem on each individual spanning tree can be solve efficiently in $\Theta(I)$ by *dynamic programming*

$$\mathbf{y}_{\mathcal{T}_t}(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, \mathbf{F}_{\mathcal{T}_t}(\mathbf{x}, \mathbf{y}; \mathbf{w}_{\mathcal{T}_t}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \, \langle \mathbf{w}_{\mathcal{T}_t}, \phi_{\mathcal{T}_t}(\mathbf{x}, \mathbf{y}) \rangle.$$

▶ There is no guarantee that there exists a tree $T_t \in \mathcal{T}$ in which the maximizer of $F_{\mathcal{T}_t}$ is the maximizer of $F_{\mathcal{T}_t}$.

Fast Inference Over a Collection of Trees

▶ For each tree T_t , instead of computing the best multilabel \mathbf{y}_{T_t} , we compute K-best multilabels in $\Theta(KI)$ time

$$\mathcal{Y}_{T_t,K} = \{\mathbf{y}_{T_t,1},\cdots,\mathbf{y}_{T_t,K}\}.$$

▶ Performing the same computation on all trees gives a candidate list of $n \times K$ multilabels in $\Theta(nKI)$ time

$$\mathcal{Y}_{\mathcal{T},K} = \mathcal{Y}_{\mathcal{T}_1,K} \cup \cdots \mathcal{Y}_{\mathcal{T}_n,K}.$$

▶ For now, we assume the best scoring multilabel of a collection of trees exists in the list $\mathcal{Y}_{\mathcal{T},K}$.

Fast Inference Over a Collection of Trees (cont.)

Assume

$$\mathbf{y}_{K}^{*} = \underset{\mathbf{y} \in \mathcal{Y}_{\mathcal{T},K}}{\operatorname{argmax}} F_{\mathcal{T}}(\mathbf{x}, \mathbf{y}; \mathbf{w}_{\mathcal{T}}).$$

lf

$$F_{\mathcal{T}}(\mathbf{x}, \mathbf{y}_{K}^{*}; \mathbf{w}_{\mathcal{T}}) \geq \frac{1}{n} \sum_{t=1}^{n} F_{\mathcal{T}_{t}}(\mathbf{x}, \mathbf{y}_{\mathcal{T}_{t},K}, \mathbf{w}_{\mathcal{T}_{t}}) = \theta_{\mathbf{x}}(K),$$

then

$$F_{\mathcal{T}}(\mathbf{x}, \mathbf{y}_{K}^{*}; \mathbf{w}_{\mathcal{T}}) = \max_{\mathbf{y} \in \mathcal{Y}} F_{\mathcal{T}}(\mathbf{x}, \mathbf{y}; \mathbf{w}_{\mathcal{T}}).$$

Fast Inference Over a Collection of Trees (cont.)

▶ For example, $\mathcal{T} = \{T_1, T_2\}, \mathbf{y} = \mathcal{Y}_1 \times \mathcal{Y}_2, \mathcal{Y}_i = \{+, -\}$

		T_1		$\theta_{x}(K)$	
	$\mathbf{y}_{T_1,K}$	$F_{T_1}(\mathbf{x}, \mathbf{y}_{T_1,K})$	y T ₁ ,K	$F_{T_1}(\mathbf{x}, \mathbf{y}_{T_1,K})$	
K=1	+-	5		4	9
K = 2	++	4	-+	3	7
K=3	-+	3	++	3	6
K = 4		3	+-	2	5

• We proved that with a high probability $\mathbf{y}_{\mathcal{T}}$ will appear in $\mathcal{Y}_{\mathcal{T},\mathcal{K}}$.

Performance of the Inference Algorithm

- ▶ 10 datasets, $|\mathcal{T}| = \{5, 10, 40\}, K = \{2, 4, 8, 16, 32, 40, 60\}$
- X-axis is the percentage of examples with exact inference.
- Y-axis is the value of K as the percentage of the number of microlabels.
- K = 100%|Y| corresponds to a complexity of $\Theta(nl^2)$.

Prediction Performance

DATASET	MICROLABEL LOSS (%)				0/1 Loss (%)					
	SVM	MTL	MMCRF	MAM	RTA	SVM	MTL	MMCRF	MAM	RTA
EMOTIONS	22.4	20.2	20.1	19.5	18.8	77.8	74.5	71.3	69.6	66.3
YEAST	20.0	20.7	21.7	20.1	19.8	85.9	88.7	93.0	86.0	77.7
SCENE	9.8	11.6	18.4	17.0	8.8	47.2	55.2	72.2	94.6	30.2
ENRON	6.4	6.5	6.2	5.0	5.3	99.6	99.6	92.7	87.9	87.7
CAL500	13.7	13.8	13.7	13.7	13.8	100.0	100.0	100.0	100.0	100.0
FINGERPRINT	10.3	17.3	10.5	10.5	10.7	99.0	100.0	99.6	99.6	96.7
NCI60	15.3	16.0	14.6	14.3	14.9	56.9	53.0	63.1	60.0	52.9
MEDICAL	2.6	2.6	2.1	2.1	2.1	91.8	91.8	63.8	63.1	58.8
CIRCLE10	4.7	6.3	2.6	2.5	0.6	28.9	33.2	20.3	17.7	4.0
CIRCLE50	5.7	6.2	1.5	2.1	3.8	69.8	72.3	38.8	46.2	52.8

Figure : Prediction performance of each algorithm in terms of microlabel loss and 0/1 loss. The best performing algorithm is highlighted with boldface, the second best is in italic

Conclusions

- Theoretical study shows if a large margin structured output learner exists, then the combination of a random sample of spanning trees will achieve a similar margin with a high probability.
- ► The *K*-best inference algorithm is tractable which is proved theoretically and empirically.
- RTA is not constrained by the availability of the output graph, it can therefore be applied to a wider range of multilabel classification problem where the output graph is believed to play an important role during learning.