Rappels

Voici une description pratique de ce que nous avons à faire pour savoir si une matrice est diagonalisable et la diagonaliser le cas échéant.

- 1. On calcule le polynôme caractéristique P_A sous la forme la plus factorisée possible. On détermine ainsi l'ensemble des valeurs propres de A, et la multiplicité algébrique de chacune d'elles.
- 2. Si P_A n'est pas scindé alors la matrice A n'est pas diagonalisable.
- 3. Si P_A est scindé alors on passe à l'étape suivante. Rappelons que si on travaille dans \mathbb{C} alors le polynôme caractéristique P_A est scindé.
- 4. Calcul de la dimension des espaces propres. Pour toute valeur propre λ de A de multiplicité $m_a(\lambda) > 1$, on calcule

$$m_g(\lambda) = \dim E_{\lambda}(A).$$

- (a) Si pour toute valeur propre λ de A on a $m_g(\lambda) = m_a(\lambda)$, alors la matrice A est diagonalisable. Dans ce cas,
 - i. On calcule une base B_{λ} de chaque espace propre $E_{\lambda}(A)$ en résolvant le système $(A \lambda I_n)X = 0$.
 - ii. On forme une base B de E en juxtaposant toutes ces bases B_{λ} . On appelle P la matrice de passage de la base canonique à cette nouvelle base (obtenue, en rangeant en colonne les coordonnées des vecteurs de la base B).
 - iii. On a alors $A = PDP^{-1}$ où D est la matrice diagonale obtenue en rangeant sur la diagonale les valeurs propres de A dans l'ordre de la base B.
 - iv. On ne calcule l'inverse P^{-1} de la matrice P que si on en a besoin.
- (b) Si $m_g(\lambda) \neq m_a(\lambda)$ alors A n'est pas diagonalisable et on verra ce qu'on peut faire au chapitre suivant.

Réduction des endomorphismes II: trigonalisation

Soit E un espace vectoriel sur \mathbb{K} de dimension n et $u \in \mathcal{L}(E)$. On rappelle que l'endomorphime u est trigonalisable s'il existe une base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ de E telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ est triangulaire :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} u(\varepsilon_{1}) & u(\varepsilon_{2}) & \cdots & \cdots & u(\varepsilon_{n-1}) & u(\varepsilon_{n}) \\ \varepsilon_{1} & \lambda_{1} & t_{12} & \cdots & \cdots & t_{1n} \\ \varepsilon_{2} & 0 & \lambda_{2} & \ddots & \ddots & \ddots & t_{2n} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \varepsilon_{n-1} & 0 & \ddots & \ddots & 0 & \lambda_{n-1} & t_{n-1n} \\ \varepsilon_{n} & 0 & 0 & \cdots & \cdots & 0 & \lambda_{n} \end{pmatrix}$$

Voici quelques observations sur cette définition :

1. Posons

$$\forall k = 1, \dots, n, \quad E_k := \text{Vect}(\varepsilon_1, \dots, \varepsilon_k)$$

On voit que les $(E_k)_{1 \le k \le n}$ est une famille de sous espaces vectoriels de E stable par u tels que

$$\dim E_k = k \quad et \quad E_1 \subset E_2 \subset \cdots \subset E_n.$$

On dit que $(E_k)_{1 \leq k \leq n}$ est un drapeau de E stable par u. La base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ de E est dite adaptée à ce drapeau.

2. Le polynôme caractéristique de u est scindé dans \mathbb{K} :

$$P_u(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_2 - \lambda).$$

3. En particulier, les coefficients diagonaux de la matrice T sont exactement les valeurs propres de u.

De même, on dit qu'une matrice $A \in M_n(\mathbb{K})$ est trigonalisable dans \mathbb{K} si A est semblable à une matrice triangulaire, i.e. s'il existe une matrice inversible $P \in M_n(\mathbb{K})$ telle que $P^{-1}AP$ est triangulaire.

Théorème:

Un endomorphisme de E est trigonalisable si, et seulement si, son polynôme caractéristique est scindé dans \mathbb{K} .

Démonstration : \Longrightarrow) c'est la point 2) de l'observation précédente.

 \iff) On montre la réciproque par récurrence sur la dimension n de l'espace.

- Si n = 1, il n'y a rien à démontrer.
- Supposons que n=2 et que P_u est scindé. Alors u admet au moins une valeur propre λ_1 . Notons ε_1 un vecteur propre associé à λ_1 . Soit ε_2 un vecteur qui est linéairement indépendant de ε_1 . Il vient que la matrice de u dans la base $(\varepsilon_1, \varepsilon_2)$ est de la forme

$$\begin{pmatrix} \lambda_1 & b \\ 0 & d \end{pmatrix}$$

et u est bien trigonalisable. Notons que le coefficient d est une valeur propre de u.

• Supposons la propriété démontrée jusqu'au rang n. On considère un endomorphisme u d'un espace vectoriel de dimension n+1 dont le polynôme caractéristique est scindé dans \mathbb{K} . Alors u admet au moins une valeur propre λ et notons ε un vecteur propre associé à λ . Posons

$$F = \operatorname{Vect}(\varepsilon) = \mathbb{K} \cdot \varepsilon$$

et soit G un supplémentaire de F. Notons p la projection de E sur G parallèlement à F de sorte que

$$\forall x \in E, \ \exists a \in \mathbb{K}, \ x = a\varepsilon + p(x).$$

En prenant x = u(v) on obtient :

$$\forall v \in E, \ \exists a \in \mathbb{K}, \ u(v) = a\varepsilon + p(u(v)) = a\varepsilon + (p \circ u)(v).$$

Notons u' la restriction de $p \circ u$ à G qui est un endomorphisme de G. Soit $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ une base de G et $A = (a_{ij})_{1 \leq i,j \leq n}$ la matrice de u' dans cette base. Donc

$$\forall j = 1, \dots, n, \quad (p \circ u)(\varepsilon_j) = u'(\varepsilon_j) = \sum_{i=1}^n a_{ij}\varepsilon_i.$$

Maintenant, $B = (\varepsilon, \varepsilon_1, \dots, \varepsilon_n)$ est une base de E. De plus, la matrice de u dans B est triangulaire par blocs:

$$\begin{pmatrix} \lambda & a_1 & \cdots & a_n \\ 0 & & & \\ 0 & & A & \\ \vdots & & & \\ 0 & & & \end{pmatrix}.$$

En particulier, $P_u(x) = (\lambda - x)P_A(x)$. Donc $P_A(x)$ est scindé dans \mathbb{K} . Donc le polynôme caractéristique de u' est scindé dans \mathbb{K} .

On en déduit, par hypothèse de récurrence, qu'il existe une base $B' = (\varepsilon'_1, \varepsilon'_2, \cdots \varepsilon'_n)$ de G dans laquelle la matrice $T = (t_{ij})_{1 \leq i,j \leq n}$ de u' est triangulaire supérieure. La famille $\tilde{B} = (\varepsilon, \varepsilon'_1, \cdots, \varepsilon'_n)$ est une base de E. De plus,

$$u(\varepsilon) = \lambda \varepsilon$$

$$u(\varepsilon'_1) = b_1 \varepsilon + (p \circ u)(\varepsilon'_1) = b_1 \varepsilon + g(\varepsilon'_1) = b_1 \varepsilon + \sum_{i=1}^n t_{i1} \varepsilon'_i$$

$$\vdots \qquad \vdots$$

$$u(\varepsilon'_n) = b_n \varepsilon + (p \circ u)(\varepsilon'_n) = b_n \varepsilon + g(\varepsilon'_n) = b_n \varepsilon + \sum_{i=1}^n t_{in} \varepsilon'_i$$

Autrement dit, la matrice de u dans la base $\tilde{B} = (\varepsilon, \varepsilon'_1, \varepsilon'_2, \cdots, \varepsilon'_n)$ est

$$\begin{pmatrix} \lambda & b_1 & \cdots & b_n \\ 0 & & & \\ \vdots & & T & \\ 0 & & & \end{pmatrix}$$

qui est visiblement triangulaire supérieure car T l'est.

Exemple

Soit

$$A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}.$$

La matrice A est-elle trigonalisable dans \mathbb{R} ? Et si oui trouver une matrice inversible P et une matrice triangulaire supérieure T telles que $P^{-1}AP = T$.

D'abord on calcule le polynôme caractéristique de A:

$$P_A(x) = (x-2)^2.$$

Donc A admet une valeur propre $\lambda=2$ qui est double : $m_a(2)=2$. Un calcul facile montre que le sous espace propre E_2 est la droite vectorielle engendrée par $u_1=\begin{pmatrix}1\\-1\end{pmatrix}$ et $m_g(2)=1$.

En particulier, A n'est pas diagonalisable car

$$m_g(2) < m_a(2).$$

Cependant, A est trigonalisable dans \mathbb{R} car P_A est scindé dans \mathbb{R} .

On complète u_1 par $u_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ pour obtenir une base de \mathbb{R}^2 . On a

$$Au_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 2u_2 + u_1.$$

Ainsi, en posant

$$P = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \quad P^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

Finalement,

$$P^{-1}AP = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}.$$

Le calcule de P^{-1} n'est pas nécessaire pour trouver le résultat.

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est la matrice

$$A = \begin{pmatrix} 6 & 2 & 0 \\ 2 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$

- 1. Montrer que u est trigonalisable dans \mathbb{R} . Est-il diagonalisable?
- 2. Trouver une matrice inversible P et une matrice triangulaire T telles que $P^{-1}AP = T$.
- 3. Peut-on choisir $T = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$?
- (1) D'abord le polynôme caractéristique de A est donné par

$$P_u(x) = (x-2)^2(x-7).$$

La matrice A est donc trigonalisable dans \mathbb{R} car P_u est scindé dans \mathbb{R} . De plus, u admet deux valeurs propres $\lambda = 7$ (simple) et $\lambda = 2$ double.

Cherchons maintenant le sous espace propre E_2 qui est défini par le système d'équations

$$\begin{cases} 2x + y = 0 \\ x + y = 0 \end{cases}$$

et donc x = y = 0. Ainsi le sous espace propre E_2 est la droite vectorielle engendrée par $e_1 = (0, 0, 1)$. En particulier, u n'est pas diagonalisable.

2) Cherchons le sous espace propre E_7 . Un calcul simple montre qu'il s'agit de la droite vectorielle engendrée par $v_1 = (10, 5, 3)$.

Posons $v_2 = (0, 0, 1)$ qui est un vecteur propre associé à la valeur propre $\lambda = 2$. On peut compléter par n'importe quel vecteur u_3 linéairement indépendant avec (v_1, v_2) et on obtiendra la matrice P et T. En effet, $Av_3 = av_1 + bv_2 + cv_3$ et donc

$$M_{(v_1,v_2,v_3)}(u) = \begin{pmatrix} 7 & 0 & a \\ 0 & 2 & b \\ 0 & 0 & c \end{pmatrix}.$$

qui est triangulaire. En fait, c = 2 car

$$P_u(x) = \begin{vmatrix} 7 - x & 0 & a \\ 0 & 2 - x & b \\ 0 & 0 & c - x \end{vmatrix} = (x - 7)(x - 2)(x - c).$$

Par exemple, si $v_3 = (1, 0, 0)$ alors

$$u(v_3) = (6, 2, 1) = 2v_3 + (4, 2, 1)$$

Cherchons les scalaires a, b tels que

$$(4,2,1) = a(10,5,3) + b(0,0,1) = (10a,5a,3a+b).$$

On voit que a = 2/5 et b = -1/5. Finalement, si $v_3 = (1, 0, 0)$ on a

$$M_{(v_1,v_2,v_3)}(u) = \begin{pmatrix} 7 & 0 & 2/5 \\ 0 & 2 & -1/5 \\ 0 & 0 & 2 \end{pmatrix}.$$

(3) Cherchons maintenant si on peut choisir le vecteur $v_3 = (x, y, z)$ solution de l'équation

$$(u-2\mathrm{id})v_3=v_2.$$

Ceci équivaut au système d'équations

$$\begin{cases} 2x + y = 0 \\ x + y = 1 \end{cases}$$

Le vecteur $v_3 = (-1, 2, 0)$ répond à la question. Ainsi, si P est la matrice de passage de la base canonique à (v_1, v_2, v_3) on a

$$P^{-1}AP = M_{(v_1, v_2, v_3)}(u) = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Corollaire

Toute matrice à coefficients réels ou complexes est trigonalisable dans \mathbb{C} .

Exemple

Soit $\theta \in]0, \pi[$. La matrice $A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ n'est pas diagonalisable, ni trigonalisable dans $M_2(\mathbb{R})$ car son polynôme caractéristique n'est pas scindé. Par contre elle est trigonalisable (et même diagonalisable) dans $\mathcal{M}_2(\mathbb{C})$.

Polynômes d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice et $P(X) = a_0 + \cdots + a_m x^m \in \mathbb{K}[X]$. On définit

$$P(A) = a_0 I_n + a_1 A + \dots + a_m A^m.$$

Ainsi on peut définir une application de $\mathbb{K}[X]$ dans $\mathcal{M}_n(\mathbb{K})$ par

$$P = \sum_{k=0}^{d} a_k X^k \longmapsto P(A) = \sum_{k=0}^{d} a_k A^k.$$

Cette application est clairement linéaire. De plus,

1. L'ensemble $\mathbb{K}[A]$ formé des polynômes de A est un sous espace vectoriel de $\mathcal{M}_n(\mathbb{K})$;

2.

$$\forall P, Q \in \mathbb{K}[X], \quad P(A)Q(A) = Q(A)P(A) = (PQ)(A).$$

Polynômes d'un endomorphisme

Soit E un espace vectoriel sur K et $u \in \mathcal{L}(E)$. On définit les puissances successives de u par récurrence :

$$u^{0} = id_{E}, \quad u^{1} = u, \quad u^{2} = u \circ u, \quad u^{n+1} = u \circ u^{n} = u^{n} \circ u, \cdots$$

Ainsi on peut définir une application de $\mathbb{K}[X]$ dans $\mathcal{L}(E)$ par

$$P = \sum_{k=0}^{n} a_k X^k \longmapsto P(u) = \sum_{k=0}^{n} a_k u^k.$$

Cette application est clairement linéaire. De plus,

1. L'ensemble $\mathbb{K}[u]$ formé des polynômes de u est un sous espace vectoriel de $\mathcal{L}(E)$;

2.

$$\forall P, Q \in \mathbb{K}[X], \quad P(u)Q(u) = Q(u)P(u) = (PQ)(u).$$

Proposition

Si $P \in \mathbb{K}[X]$ est un polynôme et $u \in \mathcal{L}(E)$ un endomorphisme, alors $F = \ker P(u)$ est un sous-espace vectoriel de E stable par u, c-à-d $u(F) \subset F$.

Démonstration : Soit $x \in \ker P(u)$. Alors

$$P(u)[u(x)] = (P(u) \circ u)(x) = (u \circ P(u))(x) = u[P(u)(x)] = u(0_E) = 0_E.$$

Ainsi $u(x) \in \ker P(u)$. Par suite $\ker P(u)$ est un sous-espace stable par u.

Théorème

Soit $P \in \mathbb{C}[X]$ et u un endomorphisme d'un espace vectoriel E sur \mathbb{C} . Alors λ est une valeur propre de u si, et seulement si, $P(\lambda)$ est une valeur propre de P(u). Autrement dit,

$$\sigma(P(u)) = P(\sigma(u)) = \{P(\lambda) / \lambda \in \sigma(u)\}\$$

Démonstration : Soit $\lambda \in \sigma(u)$. Donc il existe un vecteur x non nul tel que $u(x) = \lambda x$. Par conséquent, pour tout entier $k \in \mathbb{N}$ on a

$$u^{k}(x) = u^{k-1}(u(x)) = \lambda u^{k-1}(x) = \dots = \lambda^{k} x.$$

En particulier,

$$P(u)(x) = P(\lambda)x$$

et donc $P(\lambda) \in \sigma(P(u))$.

Réciproquement, soit $z \in \sigma(P(u))$. Si P est constant c'est trivial. On peut supposer que P est non constant et quitte à diviser par son coefficients dominant on peut supposer aussi qu'il est unitaire. Le polynôme P(X) - z est lui aussi non constant. D'après le théorème de d'Alembert, P(X) - z est scindé dans $\mathbb{C}[X]$.

Donc il existe des nombres complexes a_1, \dots, a_n tels que,

$$P(X) - z = (X - a_1) \cdots (X - a_n).$$

Il vient que

$$P(u) - z \cdot id_E = \alpha(u - a_1 \cdot id_E) \cdot \cdot \cdot (u - a_n \cdot id_E).$$

Comme $P(u) - z \cdot id_E$ est non bijective,

$$0 = \det(P(u) - z \cdot \mathrm{id}_E) = \prod_{i=1}^n \det(u - a_i \cdot \mathrm{id}_E).$$

Ainsi il existe au moins $j=1,\dots,n$, tel que $\det(u-a_j\cdot\mathrm{id}_E)=0$, ou encore $a_j\in\sigma(u)$. Mais $P(a_i)=z$ et $z\in P(\sigma(u))$.

Remarque

Le résultat précédent est faux dans le cas $r\acute{e}el$. Par exemple, si u est la rotation

$$u(x,y) = u(-y,x)$$

alors u n'a aucune valeur propre. Par contre,

$$u^{2}(x,y) = (-x, -y) = -(x,y).$$

Donc -1 est une valeur propre de u^2 .

Polynômes annulateurs d'un endomorphisme

Soit E un espace vectoriel sur \mathbb{K} de dimension n et soit $u \in \mathcal{L}(E)$. Comme $\mathcal{L}(E)$ est de dimension n^2 , $\{\mathrm{id}_E, u, u^2, \dots, u^{n^2}\}$ est liée. Donc il existe a_0, \dots, a_{n^2} des scalaires tels que

$$a_0 \mathrm{id}_E + a_1 u + \dots + a_{n^2 + 1} u^{n^2} = 0.$$

Autrement dit, le polynôme $P(X) = a_0 + a_1 X + \dots + a_{n^2+1} X^{n^2}$ a la propriété P(u) = 0.

Définition

Soit $P \in \mathbb{K}[X]$. On dit que P est un polynôme annulateur pour u si P(u) = 0 l'endomorphisme nul de E.

Ainsi l'application linéaire

$$\Psi: \mathbb{K}[X] \to \mathcal{L}(E)$$

$$P \mapsto P(u)$$

n'est pas injective et son noyau \mathcal{I} est formé de tous polynômes annulateurs pour u.

Notons que tout multiple d'un polynôme annulateur pour u est aussi un polynôme annulateur pour u. On dit que, \mathcal{I} est un idéal de l'anneau principal $\mathbb{K}[X]$. Posons

$$d := \min\{ \deg r\acute{e}(P) / P \neq 0, P(u) = 0 \}.$$

Un tel nombre existe et

$$1 \le d \le n^2.$$

Polynôme minimal d'un endomorphisme (hors programme)

Soit ω un polynôme annulateur pour u de degré d. Alors si P est un polynôme annulateur pour u alors ω divise P. En effet, par la division euclidienne de P par ω :

$$P = \omega Q + R$$
 avec $\operatorname{degr\'e}(R) < \operatorname{degr\'e}(\omega)$.

Ainsi si R est non nul et R(u) = 0 alors on a une contradiction avec la minimalité du degré de ω . On dit que ω engendre l'idéal \mathcal{I} des polynômes annulateurs pour u.

Définition

On appelle polynôme minimal de u l'unique polynôme unitaire ω_u qui engendre l'idéal formé par les polynômes annulateurs pour u. Autrement dit, les polynômes annulateurs sont les multiples du polynôme minimal.

Exemples

Soit F, G deux sous espaces vectoriels de E tels que $E = F \oplus G$.

- 1. Notons que P(X) = X 1 est un un polynôme annulateur de id_E .
- 2. On a vu que la projection p_F sur F parallèlement à G vérifie $p_F^2 = p_F$. Donc le polynôme $P(X) = X^2 X$ est un polynôme annulateur de p_F .
- 3. De même la symétrie s_F par rapport à F parallèlement à G vérifie $s_F^2 = \mathrm{id}_E$ et $P(X) = X^2 1$ est un polynôme annulateur de s_F .
- 4. Soit u est l'endomorphisme de \mathbb{R}^2 défini par

$$\forall (x,y) \in \mathbb{R}^2, \quad u(x,y) = u(-y,x).$$

On a $u^2 + id = 0$ de sorte que $P(X) = X^2 + 1$ est un polynôme annulateur de u.

Proposition

Soit P un polynôme annulateur d'un endomorphisme $u \in \mathcal{L}(E)$. Alors toute valeur propre de u est racine de P. Autrement dit, le spectre de u est inclus dans l'ensemble des racines de tout polynôme annulateur de u.

Démonstration : Soit λ une valeur propre de u et x un vecteur propre associé. Donc $x \neq 0$ et $u(x) = \lambda x$. Alors pour tout $k \in \mathbb{N}$,

$$u^k(x) = \lambda^k x.$$

Ainsi x est un vecteur propre de u^k associé à la valeur propre λ^k . Ainsi

$$P(u)x = P(\lambda)x.$$

Comme P(u) = 0, on déduit que

$$0 = P(u)x = P(\lambda)x.$$

Comme x est non nul, on déduit que $P(\lambda) = 0$.

Théorème(Lemme des noyaux)

Soient P_1 et P_2 deux polynômes non nuls premiers entre eux et posons $P = P_1P_2$. Soit $u \in \mathcal{L}(E)$ un endomorphisme de l'espace vectoriel E. Posons

$$F := \ker(P_1 P_2)(u)$$
, $E_1 := \ker(P_1(u))$ et $E_2 := \ker(P_2(u))$.

Alors

- 1. $F = E_1 \oplus E_2$.
- 2. La projection π_1 de F sur E_1 parallèlement à E_2 et la projection π_2 de F sur E_2 parallèlement à E_1 sont des polynômes en u. De plus,

$$\pi_1 + \pi_2 = id_F$$
.

Démonstration (hors programme): D'abord, si $x \in E_1$ alors

$$(P_1P_2)(u)(x) = (P_2(u)P_1(u))(x) = P_2(u)(P_1(u)(x)) = P_2(u)(0_E) = 0_E,$$

et $E_1 \subset F$. On montre de la même façon que $E_2 \subset F$.

Comme P_1, P_2 sont premiers entre, grâce au théorème de Bezout, il existe $A_1, A_2 \in \mathbb{K}[X]$ tels que

$$A_1P_1 + A_2P_2 = 1.$$

Ainsi,

$$A_1(u)P_1(u) + A_2(u)P_2(u) = id_E.$$

Autrement dit, pour tout $x \in E$,

$$(A_1(u)P_1(u))(x) + (A_2(u)P_2(u))(x) = x.$$

Ainsi, si $x \in E_1 \cap E_2$, alors, par cette égalité, $x = 0_E$, et donc E_1 et E_2 sont en somme directe.

Soit $x \in F$ et posons

$$x_1 := (A_2(u)P_2(u))(x)$$
 et $x_2 := (A_1(u)P_1(u))(x)$.

Il vient que $x = x_1 + x_2$. De plus,

$$P_1(u)[(A_2(u)P_2(u))(x)] = A_2(u)[(P_1(u)P_2(u))(x)] = A_1(0_E) = 0_E.$$

Autrement dit, $x_1 \in E_1$. De même, on montre que $x_2 \in E_2$.

Ainsi tout vecteur $x \in F$ s'écrit de manière unique $x = x_1 + x_2$ avec

$$\pi_1(x) = x_1 = (A_2 P_2)(u)(x) \in E_1$$
 et $\pi_2(x) = x_2 = (A_1 P_1)(u)(x) \in E_2$.

On a donc, $F = E_1 \oplus E_2$ et par définition de π_1 et π_2 ,

$$\pi_1 = (A_2 P_2)(u)$$
 et $\pi_2 = (A_1 P_1)(u)$.

Lemme des noyaux

Soient P_1, P_2, \dots, P_m des polynômes non nuls deux à deux premiers entre eux et posons $P = P_1 P_2 \dots P_m$. Alors pour tout endomorphisme $u \in \mathcal{L}(E)$ on a

$$\ker (P(u)) = \bigoplus_{i=1}^m \ker(P_i(u)).$$

En particulier, si P est un polynôme annulateur pour u alors

$$E = \bigoplus_{i=1}^{m} \ker(P_i(u)).$$

De plus, pour tout $i=1,\cdots,m$, la projection π_i de E sur $E_i=\ker(P_i(u))$ parallèlement à $\bigoplus_{j\neq i}\ker(P_j(u))$ s'exprime comme un polynôme en u et

$$\sum_{i=1}^{m} \pi_i = id_E$$

Démonstration : Comme dans la preuve précédente on montre que les $E_i = \ker(P_i(u))$ sont inclus dans $\ker(P)(u)$.

Maintenant on fait une récurrence sur m. Si m=1 alors il n'y a rien à démontrer et si m=2 c'est le théorème précédent.

Supposons le résultat vrai jusqu'à l'ordre m-1. Posons $Q_1 = P_1$ et $Q_2 = P_2 \cdots P_m$. Il est clair que Q_1 et Q_2 sont premiers entre eux. Donc le théorème précédent montre que $\ker(P)(u) = \ker(P_1(u)) \oplus \ker(Q(u))$. Maintenant l'hypothèse de récurrence permet de conclure.

Théorème (Critère de diagonalisabilité par un polynôme annulateur)

Un endomorphisme u est diagonalisable si, et seulement si, u admet un polynôme annulateur scindé à racines simples.

Démonstration: (i) Supposons que u est diagonalisable et notons $\lambda_1, \dots, \lambda_r$ ses valeurs propres distinctes. Alors $E = \bigoplus_{i=1}^r E_{\lambda_i}$. Prenons $\omega(X) = \prod_{i=1}^r (\lambda_i - X)$. On a, pour tout $x \in E_{\lambda_j}$,

$$\omega(u)(x) = \prod_{i=1}^{r} (\lambda_i \cdot \mathrm{id}_E - u)(x) = \left(\prod_{i=1, i \neq j}^{r} (\lambda_i \cdot \mathrm{id}_E - u)\right) (\lambda_j \cdot \mathrm{id}_E - u)(x) = 0.$$

(ii) Réciproquement, supposons que $\omega(X) = c \prod_{i=1}^r (\lambda_i - X), c, \lambda_i \in \mathbb{K}$ est un polynôme annulateur de u. Les facteurs $\lambda_i - X$ sont premiers entre eux et le lemme des noyaux implique que

$$E = \bigoplus_{i=1}^r \ker(\lambda_i \cdot \mathrm{id}_E - u).$$

Ainsi on peut construire une base de E formé de vecteurs propres de u est ce dernier est diagonalisable.

Remarque

Dans (ii) de la preuve précédente certains des $\ker(\lambda_i \cdot \mathrm{id}_E - u)$ peuvent être réduit au vecteur nul. Dans ce cas, les λ_i correspondants ne sont pas des valeurs propres de u. Pour s'en convaincre, il suffit de voir que pour tout scalaire λ le polynôme $(\lambda - X)w(X)$ est aussi un polynôme annulateur de u.

Exemple

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$$

- 1. Calculer $(A + I_3)A(A I_3)$.
- 2. En déduire que u est diagonalisable.
- 3. Trouver une base dans laquelle la matrice de u est diagonale.
- 4. Calculer u^{-1} en fonction de u.

- 1. Un calcul direct montre que $(A + I_3)(A 2I_3)(A I_3) = 0$.
- 2. Le théorème précédent montre que u est diagonalisable.
- 3. Les valeurs propres de u sont des racines du polynôme P = (X 2)(X 1)(X + 1), donc $\sigma(u) \subset \{-1, 1, 2\}$. On cherche donc E_{-1} , E_1 et E_2 . On montre que $E_2 = \{0\}$ et 2 n'est pas une valeur propre de u. En revanche 1 et -1 sont bien des valeurs propres de u. En effet, E_1 est la droite vectorielle engendrée par $v_1 = (1, 1, 1)$ et E_{-1} est le plan vectoriel engendré par $v_2 = (1, -1, 0)$ et (0, 1, 1). Ainsi $V = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 dans laquelle la matrice de u est

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

4. D'après ce qui précède on déduit que $A^2 - I = 0$, ce que l'on peut vérifier par le calcul. Donc A est inversible et $A^{-1} = A$. En particulier, u est bijectif et $u^{-1} = u$. En fait, u est la symétrie par rapport à la droite E_1 parallèlement au plan E_{-1} .

Exercice

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 9 & 8 & -8 \\ 8 & 9 & -8 \\ 8 & 8 & -7 \end{pmatrix}$$

- 1. Calculer (A-I)(A-9I).
- 2. En déduire que u est diagonalisable.
- 3. Trouver une base dans laquelle la matrice de u est diagonale.
- 4. Calculer u^{-1} en fonction de u.

Exercice

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 5 & 2 & 2 \\ 2 & 5 & 2 \\ -2 & -2 & 1 \end{pmatrix}$$

- 1. Calculer (A 3I)(A 5I).
- $\it 2. \ En \ d\'eduire \ que \ u \ est \ diagonalisable.$
- 3. Trouver une base dans laquelle la matrice de u est diagonale.
- 4. Calculer u^{-1} en fonction de u.