D - Dynamic Tree

Description

You are given a **complete** binary tree consisting of n nodes whose number is from 1 to n.

The root is node 1. For node i(i>1), its father is node $\lfloor \frac{i}{2} \rfloor$.

Initially, the weight of node i is a_i where $\{a_i\}_{i=1}^n$ is a permutation of number 1 to n.

We define an operation as follows:

We set out from the root. When we are at node x, we will move to node y when x is the father of y and the weight of y is bigger than the weight of another son of y. (if y has only one son y, then move to y). The process will end at a leaf.

Let the path be $p_1,p_2,\cdots,p_k(p_1=1)$, and then we will rotate the weight on the path towards the root, which will make the weight on the path from $a_{p_1},a_{p_2},\ldots a_{p_k}$ to $a_{p_2},a_{p_3},\ldots a_{p_1}$. In other word, the new value of a_{p_i} equals to the previous value of $a_{p_{i+1}}$ for $i=1,\cdots,k-1$ and the new value of a_{p_k} equals to the previous value of a_{p_1} .

You should process q queries.

Each query contains two integers m and i. For each query, you should output a_i after m operations.

Input

The first line of Input contains two integers n and $q~(1 \leq n, q \leq 10^5)$

The second line of Input contains n integers, representing a_i $(1 \le i, a_i \le n)$

Each of the next q lines contains two integers m and i $(0 \le m \le 10^{18}, 1 \le i \le n)$

It's guaranteed that the permutation is generated randomly.

Output

You should output the required answers for the queries in one line, and they should be seperated by one space.

Sample Input

```
5 4
2 5 3 4 1
3 5
4 1
5 1
2 5
```

Sample Output

NOTE

After 1 operation, $\{a_i\}_{i=1}^n=[5,4,3,2,1]$;

After 2 operations, $\{a_i\}_{i=1}^n = [4,2,3,5,1].$