jméno a příjmení	login	cvičící
		Fuchs / Hliněná / Tůma

IDM,	30.	1.	2024	1
I DIVI,	JU.		202	

•	Т	1	9	3	1	5	6	Σ
		1	_ _	9	4	9	U	

Zkouška se skládá ze dvou částí, testu za **20 bodů** a písemky za **60 bodů**. Z testu musíte získat **aspoň 15 bodů**, v opačném případě písemka nebude hodnocena a celá zkouška bude hodnocena 0 body.

TEST

Každá otázka je za 2 body. Odpovědi napište na tento list do vymezeného prostoru pod otázkou.

- 1. Znegujte: $\forall a, b \in \mathbb{R} : a = b \Rightarrow (a \le b \land a \ge b)$. odstranit nebo rovno ofc $Odpov\check{e}d$:
- **2.** Na množině $M = \{a, b, c\}$ udejte příklad neprázdné relace, která není symetrická ani antisymetrická. Odpověď: $\{(a,b), (b,a), (a,c)\}$
- 3. $A=\{[1,2]\}, B=\{1\}, C=\{\{2\}\}.$ Určete $A\setminus (B\times C).$ Odpověď:
- 4. $A=\langle 0,3\rangle, B=\langle 1,4\rangle.$ Určete $A\setminus B.$ Odpověď:
- 5. Funkce $f: \mathbb{R} \to \mathbb{R}$ je dána předpisem f(x) = |2 + x|. Určete $f^{-1}(\{0\})$. Odpověď:
- 6. $R = \{[1, 2], [1, 3]\}$. Je relace R zobrazení? Odpověď: JEDNO X MUSÍ MÍT VŽDY JEDNO Y
- 7. $R = \{[1, 2], [2, 3], [3, 3]\}$. Určete $R \circ R$. Odpověď:
- 8. Existuje na množině $\{a,b,c,d,e\}$ Booleův svaz? TODO: Odpověď:
- 10. Existuje graf s posloupností stupňů 1,1,1,1,2? Odpověď stručně zdůvodněte. Odpověď:

PÍSEMKA

Každý příklad je za 10 bodů. Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek.

1. Nechť $M = \{1, 3, 6, 9, 12\}$. Najděte všechny dvojice množin X, Y, pro které platí:

$$X \cup Y = M \ \land \ X \setminus Y = X \ \land \ \forall x \in X \ \exists y \in Y \colon x \,|\, y.$$

alespoň jeden prvek z množiny y děleno alespoň jeden prvek z množiny x musí vyjít bez zbytku

2. Dokažte, že pro všechna přirozená čísla n platí:

$$3+5+7+9+\cdots+(4n+3)=(2n+1)(2n+3)$$
.

3. Je zadána relace $R = \{[m, n] \in \mathbb{Z}^2 : 3 | (mn) \}$. Zjistěte, zda relace R na množině \mathbb{Z} je a) reflexivní, b) ireflexivní, c) symetrická, d) antisymetrická, e) tranzitivní. Svoje tvrzení zdůvodněte.

- **4.** Na množině $M = \{0, 1, 2, 3, 4\}$ je dána operace $a \circ b = \max\{a, b\}$.
 - a) Vypište všechny podgrupoidy grupoidu (M, \circ) .
 - **b)** Je (M, \circ) pologrupa?

c) Je (M, \circ) monoid?

asociativita: každý prvek nemá více než jeden inverzní prvek

uzavřenost: Ano, všechny prvky jsou v množině M

5. Na množině $M = \{1, 2, 3, \dots, 2024\}$ je dána relace \sim následovně:

 $a \sim b \iff$ čísla a, b mají v dekadickém zápisu stejný počet jedniček.

Dokažte, že relace \sim je ekvivalence na množině M. Určete $M/_{\sim}$.

- **6.** Na množině $A = \{1, 2, 4, 6, 10, 12, 30, 60\}$ je dána relace \sim následovně: $a \sim b \Leftrightarrow a \mid b$.
 - a) Dokažte, že relace \sim je uspořádání na množině A. Nakreslete hasseovský diagram.
 - b) Dokažte, že (A, \sim) je svazově uspořádaná množina. Určete operace infima a suprema.
 - c) Zjistěte, zda je tento svaz distributivní, modulární a komplementární.