ЛАБОРАТОРНАЯ РАБОТА 1

«Численное решение одномерной краевой задачи (глобальные базисные функции)»

На интервале числовой оси $x \in [0, l]$ найти приближенное решение краевой задачи

$$\frac{\mathrm{d}^2 u}{\mathrm{d} x^2} = f(x) \,, \tag{1}$$

$$\begin{cases}
\left(\alpha_{1} \frac{\partial u}{\partial x} + \beta_{1} u\right)_{x=0} = \psi_{1}, \\
\left(\alpha_{2} \frac{\partial u}{\partial x} + \beta_{2} u\right)_{x=1} = \psi_{2}.
\end{cases} \tag{2}$$

Функцию правой части f(x) и величины ψ_1, ψ_2 определить путем подстановки известного точного решения в левые части дифференциального уравнения (1) и краевых условий (2).

Поиск решения осуществлять после предварительного сведения исходной краевой задачи к задаче с однородными краевыми условиями (2) путем замены

$$y(x) = u(x) - U(x),$$

где

$$U(x) = A + Bx,$$

A и B – неопределенные коэффициенты.

Приближенное решение следует искать в виде разложения по системе глобальных базисных функций φ_k , априори удовлетворяющих краевым условиям (2):

$$\tilde{y}(x) = \sum_{k=0}^{N} c_k \varphi_k(x) ,$$

с последующим сведением к системе линейных алгебраических уравнений (СЛАУ) относительно коэффициентов c_k одним из проекционных методов (в методе Петрова использовать два типа базисов: аппроксимирующий / поверочный). Расчет коэффициентов СЛАУ производить по одной из квадратурных формул (прямоугольников, трапеций, Симпсона, Гаусса).

Сравнить полученное решение с точным и оценить погрешность аппроксимации по норме в пространствах $L_2(0,l)$ и C(0,l) в зависимости от числа базисных функций N.

Варианты заданий

№ пп	Точное решение <i>u</i> (<i>x</i>)	Краевые условия				Базисные полиномы	Метод
		$\alpha_{_1}$	α_2	β_1	eta_2	$\varphi_k(x)$	решения
1	$e^x \sin^2 x$	0	0	1	1	алгебраические	Бубнова- Галеркина
2	$x^2 \ln(x+l)$	1	0	0	1	тригонометрические	Бубнова- Галеркина
3	$\sqrt{x} \cdot \cos x$	0	1	1	0	алгебраические	наименьших квадратов
4	$x^2 \sin x$	1	0	1	1	тригонометрические	наименьших квадратов

5	$\sin x + x \cos x$	0	1	1	1	алгебраические	Петрова (алгебр./триг.)
6	$x^2 + \cos x$	1	1	1	0	тригонометрические	Петрова (триг./алгебр.)
7	$\ln(x+l) - x e^x$	1	1	0	1	алгебраические	Бубнова- Галеркина
8	$e^x - x$	0	0	1	1	тригонометрические	Бубнова- Галеркина
9	$\sqrt[3]{x+l} + x^2$	1	0	0	1	алгебраические	наименьших квадратов
10	$x^2 e^{-x}$	0	1	1	0	тригонометрические	наименьших квадратов

Отчет должен содержать:

- постановка исходной задачи (вариант);
- задача с однородными краевыми условиями;
- выражения для расчета коэффициентов СЛАУ;
- графики результатов расчетов (приближенное решение);
- графики зависимости погрешности от числа базисных функций;
- исходный код программы.