FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

TIN Teoretická informatika

1. domáca úloha

Obsah

1	Príklad číslo 1 1.1 (a) 1.2 (b) 1.3 (c)	
2	Príklad číslo 2	,
3	Príklad číslo 3	4
4	Príklad číslo 4	4
5	Príklad číslo 5	4
6	Literatúra	8

1 Príklad číslo 1

1.1 (a)

Vyjadríme si rozdiel množín ekvivalentným vzťahom pomocou prieniku a doplnku (komplementu), aby sme mohli využiť vetu zo študijného textu.

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Podľa Vety~3.23~[1](str.~č.~50) platí, že trieda regulárnych jazykov \mathcal{L}_3 je uzavretá voči prieniku a doplnku (komplementu).

Využitím hore uvedenej Vety 3.23 a vzťahu možeme stanoviť, že nasledujúci vzťah je platný.

$$L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_3$$

1.2 (b)

Vyjadríme si rozdiel množín ekvivalentným vzťahom pomocou prieniku a doplnku (komplementu), aby sme mohli využiť vetu zo študijného textu.

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Podľa Vety 4.27 [1](str. č. 96) platí, že trieda deterministických bezkontextových jazykov \mathcal{L}_2^D je uzavretá voči prieniku a doplnku (komplementu).

Využitím hore uvedenej Vety 4.27 a vzťahu možeme stanoviť, že nasledujúci vzťah je platný.

$$L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2^D$$

1.3 (c)

Predpokladajme že $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2$ je pravdivý vzťah.

Ak berieme v úvahu, že $L_1 = \Sigma^*$, tak musí platiť $\Sigma^* \setminus L_2 \in \mathcal{L}_2 \Rightarrow \overline{L_2} \in \mathcal{L}_2 \Rightarrow \underline{\mathbf{SPOR}}$

Vznikol nám spor pri $\overline{L_2} \in \mathcal{L}_2$ z toho dôvodu, že podľa Vety 4.24 [1](str. č. 95) platí, že bezkontextové jazyky nie sú uzavreté voči doplnku.

2 Príklad číslo 2

$$\begin{split} M_L &= (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \\ Q &= \{q_0, q_1, q_2, q_3\} \\ \Sigma &= \{\#, 0, 1, 2\} \\ \Gamma &= \{Z_0, 1\} \\ F &= \{q_3\} \\ \delta \colon \quad \delta(q_0, 0, Z_0) &= \{(q_0, Z_0)\} \\ \delta(q_0, 1, Z_0) &= \{(q_0, 1Z_0)\} \\ \delta(q_0, 2, Z_0) &= \{(q_0, 11Z_0)\} \\ \delta(q_0, 0, 1) &= \{(q_0, 11)\} \\ \delta(q_0, 1, 1) &= \{(q_0, 11)\} \\ \delta(q_0, 2, 1) &= \{(q_0, 11)\} \\ \delta(q_0, \#, 1) &= \{(q_1, 1)\} \\ \delta(q_0, \#, Z_0) &= \{(q_1, Z_0)\} \\ \delta(q_1, 2, 1) &= \{(q_2, \epsilon)\} \\ \delta(q_2, \epsilon, 1) &= \{(q_1, \epsilon)\} \\ \delta(q_1, 1, 1) &= \{(q_1, \epsilon)\} \\ \delta(q_1, 0, 1) &= \{(q_1, Z_0)\} \\ \delta(q_1, \epsilon, Z_0) &= \{(q_3, \epsilon)\} \end{split}$$

3 Príklad číslo 3

$$L = \{ w_1 \# w_2 \mid w_1, w_2 \in \Sigma^*, \#_1(w_1) + (2 * \#_2(w_1)) = \#_1(w_2) + (2 * \#_2(w_2)) \}$$

 $Veta \ 3.18 \ [1]$ (str. č. 46): Nechť L je nekonečný regulární jazyk. Pak existuje celočíselná konstanta p>0 taková, že platí: $w\in L \land |w|\geq p \Rightarrow w=xyz\land y\neq \epsilon \land |xy|\leq p \land xy^iz\in L$ pro $i\geq 0$

Predpokladáme že jazyk L je regulárny jazyk a tak tento jazyk musí spĺňať hore uvedenú Vetu 3.18.

Pre $w \in L : w = 1^p \# 1^p$ pre ktoré platí podmienka $|w| \ge p$ pretože platí 2p + 1 > p, pričom z dôvodu podmienky $|xy| \le p$ nastane jediný prípad a to:

$$x=1^l \wedge y=1^m \wedge z=1^{p-l-m}\#1^p$$
kde $l \geq 0$ a $m>0 \wedge l+m \leq p$ pre $l,m \in N$

$$xy^iz = 1^l(1^m)^i1^{p-l-m}\#1^p = 1^{l+(i*m)+p-l-m}\#1^p = 1^{(i*m)+p-m}\#1^p \notin L \text{ pre všetky } i \geq 0 \land i \neq 1 \land i \in N$$

4 Príklad číslo 4

ALGORITMUS

Vstup: Pravá lineárna gramatika $G_P = (N, \Sigma, P, S)$

Výstup: Ľavá lineárna gramatika $G_L = (N', \Sigma', P', S')$ taká, že $L(G_P) = L(G_L)$

Metóda:

1.)
$$G_P = (N \cup \{S_0\}, \Sigma, P \cup \{S_0 \to S\}, S_0)$$

- 2.) $N' = N \cup \{S'\}$
- 3.) $\Sigma' = \Sigma$
- 4.) P': $\forall A, B \in N, \ p \in \Sigma^*$: $(B \to Ap) \in P' \iff (A \to pB) \in P \cup \{S_0 \to S\}$ $(A \to p) \in P' \iff (S_0 \to pA) \in P \cup \{S_0 \to S\}$ $(S' \to Ap) \in P' \iff (A \to p) \in P \cup \{S_0 \to S\}$

DEMONŠTRÁCIA

Vstup: Pravá lineárna gramatika $G = (\{S, A, B\}, \{a, b\}, P, S)$

P:
$$S \rightarrow abA \mid bS$$

 $A \rightarrow bB \mid S \mid ab$
 $B \rightarrow \epsilon \mid aA$

Výstup: Ľavá lineárna gramatika $G_L = (N', \Sigma', P', S')$ taká, že $L(G) = L(G_L)$

TODO

5 Príklad číslo 5

Definícia \sim_L pre jazyk L:

$$u \sim_L v \Leftrightarrow (\#_a(u) \mod 3 = \#_a(v) \mod 3 \land ((\#_b(u) > 0 \land \#_b(v) > 0) \lor (\#_b(u) = 0 \land \#_b(v) = 0)))$$

	\equiv^0	a	b
	X	A(I)	B(I)
	A	AA(I)	AB(II)
Ī	AA	AAA(I)	AAB(II)
1	AAA	A(I)	AAAB(I)
	В	AB(II)	B(I)
	AAAB	AB(II)	AAAB(I)
TT	AB	AAB(II)	AB(II)
II	AAB	AAAB(I)	AAB(II)

	\equiv^1	a	b
т	X	A(II)	B(III)
Ι	AAA	A(II)	AAAB(III)
II	A	AA(II)	AB(IV)
11	AA	AAA(I)	AAB(V)
III	В	AB(IV)	B(III)
111	AAAB	AB(IV)	AAAB(III)
IV	AB	AAB(V)	AB(IV)
V	AAB	AAAB(I)	AAB(V)

	\equiv^2	a	b
ī	X	A(II)	B(IV)
1	AAA	A(II)	AAAB(IV)
II	A	AA(III)	AB(V)
III	AA	AAA(I)	AAB(VI)
IV	В	AB(V)	B(IV)
1 V	AAAB	AB(V)	AAAB(IV)
V	AB	AAB(VI)	AB(V)
VI	AAB	AAAB(IV)	AAB(VI)

$$\equiv^2 = \equiv^3 = \equiv$$

Premenujeme si jednotlivé stavy automatu:

$$\begin{split} & \text{I} \rightarrow q_0 \\ & \text{II} \rightarrow q_1 \\ & \text{III} \rightarrow q_2 \\ & \text{IV} \rightarrow q_3 \\ & \text{V} \rightarrow q_4 \\ & \text{VI} \rightarrow q_5 \end{split}$$

Rozklad Σ^*/\sim_L je tvorený nasledujúcimi šiestimi triedami:

$$L^{-1}(q_0) = \{ w \mid \#_a(w) \mod 3 = 0 \land \#_b(w) = 0 \}$$

$$L^{-1}(q_1) = \{ w \mid \#_a(w) \mod 3 = 1 \land \#_b(w) = 0 \}$$

$$L^{-1}(q_2) = \{ w \mid \#_a(w) \mod 3 = 2 \land \#_b(w) = 0 \}$$

$$L^{-1}(q_3) = \{ w \mid \#_a(w) \mod 3 = 0 \land \#_b(w) > 0 \}$$

$$L^{-1}(q_4) = \{ w \mid \#_a(w) \mod 3 = 1 \land \#_b(w) > 0 \}$$

$$L^{-1}(q_5) = \{ w \mid \#_a(w) \mod 3 = 2 \land \#_b(w) > 0 \}$$

Jazyk L je tvorený zjednotením dvoch predošlých tried:

$$L = L^{-1}(q_4) \cup L^{-1}(q_5)$$

Dôkaz, že jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) mod \ 3 \neq 0 \land \#_b(w) > 0 \}$ je regulárny:

TODO

6 Literatúra

[1] M. Češka, T. Vojnar, A. Smrčka, A. Rogalewicz: Teoretická informatika - Studijní text.
 2018-08-23, [Online; Accessed: 2018-10-15].
 URL: http://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf