MA2003 Complex Analysis Exercise Sheet 3

- 1. Find antiderivatives for the following functions:
 - (a) $f(z) = \alpha + \beta(z z_0),$
 - (b) $f(z) = (z z_0)^n$,

where α, β and $z_0 \in \mathbb{C}$ are constants and $n \neq -1$. Does $g(z) = (z - z_0)^{-1}$ have an antiderivative on $\mathbb{C} \setminus \{z_0\}$?

2. Evaluate the following contour integrals:

$$\int_{\mathcal{C}} z^3$$
 and $\int_{\mathcal{C}} \frac{1}{z^2}$

along \mathcal{C} where \mathcal{C} is

- (a) any contour from i to -2, and
- (b) any closed contour.

For the second integral, you may assume that C does not contain 0.

- 3. Let U be a region in \mathbb{C} and let $f: U \to \mathbb{C}$ be holomorphic on U with f(z) real-valued for all $z \in U$. Prove that f is constant.
- 4. Find an upper estimate for

$$\int_{\mathcal{C}} \frac{1}{1+z^4},$$

where \mathcal{C} is the upper semicircular contour from R to -R given by $\gamma:[0,\pi]\to\mathbb{C},\,\gamma(t)=R\cos(t)+iR\sin(t).$

5. Show that for all points z on the circle $\{z : |z| = 5\}$ we have

$$|z-7| \le 12$$
 and $|\overline{z}+8| \ge 3$,

and use this to find an upper estimate for the integral

$$\int_{S} \frac{z-7}{(\overline{z}+8)^2} \ dz$$

where S is the same circle oriented anticlockwise.

6. Let S_a be the anticlockwise square contour with corners at $\pm a(1+i)$, $\pm a(1-i)$ where a>0. Show that if $z\in S_a$ then

$$\frac{1}{|z|} \le \frac{1}{a}$$

and hence

$$\left| \int_{S_a} \frac{1}{z} dz \right| \le 8,$$

for all a > 0.

- 7. Prove each of the following:
 - (a) For z_0 and h in \mathbb{C} we have $\int_{[z_0,z_0+h]} 1 \ dz = h$.
 - (b) For $f: U \to \mathbb{C}$ and $z_0 \in U$, $f(z_0) = \frac{1}{h} \int_{[z_0, z_0 + h]} f(z_0) \ dz$.
 - (c) If α is a complex number and M a fixed real number with $|\alpha| \leq \epsilon M$ for all $\epsilon > 0$ then $\alpha = 0$.

1