# Načrtovanje podatkovnih baz

# Kako načrtujemo podatkovne baze?

- Pogovorimo se s končnimi uporabniki in zberemo zahteve.
- ▶ Narišemo konceptualni E-R Model (ali UML model).
- Pretvorimo E-R model v množico relacij.
- Izvedemo normalizacijo relacij (način eliminiranja podvajanja podatkov).
- Implementiramo podatkovno bazo v sistemu RDBMS.

# Grafični prikaz modelov

- Podatkovno bazo, tabele in sklice lahko načrtujemo s pomočjo grafično podprtih orodij.
- Vizualizacija nam omogoča preglednejši pogled na tabele v podatkovni bazi.
- Na voljo je več orodij.
- Odprtokodno orodje Dia
- Googlov draw.io
- OPOZORILO: sklice med tabelami v angleščini imenujemo tudi "relationship". V slovenščino to po tradiciji malce nerodno prevedemo v "relacija" (v relacijski algebri pa velja relacija = tabela)
- Pazimo na kontekst uporabe pojma "relacija".

#### E-R model

#### Definitions:

entity something about which data is collected, stored, and maintained

attribute a characteristic of an entity relationship an association between entities

entity type a class of entities that have the same set of attributes

record an ordered set of attribute values that describe an instance of an entity type

#### Symbols:



#### Examples:

One A is associated with one B:



One A is associated with one or more B's:



One A is associated with zero or one B



One A is associated with one B and one C:



One A is associated with one Borone C (but not both):



Vir: Oracle

### E-R model in Dia



## UML model in Dia



# Normalizacija

- Normalizacija je proces, pri katerem sistematično pregledamo relacije (tabele) in anomalije. Ko identificiramo anomalijo, relacijo razbijemo na dve novi.
- Med procesom normalizacije ponavadi dobimo še globlji vpogled, kakšna bo interakcija med podatki v podatkovni bazi.
- Bolje je najti probleme v podatkovni bazi v času načrtovanja kot v času operacij.
- Normalizacija nam pomaga odstraniti redundantnost zapisa podatkov.
- Ampak zato moramo morda delati več JOIN-ov.
- Včasih se zaradi učinkovitosti namerno odločimo, da ne izvedemo nekega koraka normalizacije (npr. v podatkovnih skladiščih).

# Predpostavke za relacije (tabele)

- Vsaka vrstica ima za določen stolpec samo eno vrednost.
- Podatki v stolpcu so istega tipa.
- ▶ Isto ime stolpca se lahko v relaciji pojavi le enkrat.
- Vrstni red stolpcev ni pomemben.
- Nobeni dve vrstici ne smeta biti enaki.
- Vrstni red vrstic ni pomemben.

# Funkcijska odvisnost

- Funkcijska odvisnost opisuje odnos med stolpci znotraj iste relacije (tabele).
- Stolpec B je funkcijsko odvisen od (enega ali več) stolpcev A1, ..., An, če lahko s pomočjo vrednosti teh stolpcev v neki vrstici impliciramo vrednost stolpca B v tej vrstici.
- Primer: Številka študenta implicira študij študenta.
- Za nakazovanje funkcijske odvisnosti uporabimo simbol ->.
- Stolpec je lahko funkcijsko odvisen od kombinacije večih stolpcev.
- Primer: Solsko\_leto, Predmet -> Predavatelj.
- Funkcijske odvisnosti so pogojene tako s strukturo tabel kot z naravo podatkov.

# Ključ

- Ključ: eden ali več stolpcev, ki enolično določajo vrstico.
- ► Izbor ključev temelji na konkretni aplikaciji baze. Kaj je ključ, izvemo velikokrat iz konteksta in od uporabnikov.
- Za ključ vedno velja: Ključ -> vsi ostali stolpci.
- Obstajajo lahko funkcijske odvisnosti, ki na levi strani nimajo (samo) ključev.
- ► Kaj z njimi?

# Vrste normalizacij

- Prva normalna oblika (1NF)
- Druga normalna oblika (2NF)
- Tretja normalna oblika (3NF)
- ► Boyce-Codd normalna oblika (BCNF)
- Četrta normalna oblika (4NF)
- Peta normalna oblika (5NF)
- Vsaka naslednja oblika vsebuje prejšnjo.

## Normalizacija

- Normalizacija v ustrezno obliko poteka na naslednji način:
  - Določimo ključe vsake tabele.
  - Določimo funkcijske odvisnosti.
  - Preverimo, ali so kršene zahteve ustrezne definicije.
  - Če pride do kršitve v neki tabeli, potem to tabelo razdelimo na dve tabeli.
  - Ponovno preverimo pogoje za izbrano obliko.
  - ▶ Če za nobeno tabelo ni kršena nobena zahteva, zaključimo.

## 1NF = predpostavke za relacijo

- Vsaka vrstica ima za določen stolpec samo eno vrednost.
- Podatki v stolpcu so istega tipa.
- Isto ime stolpca se lahko pojavi v tabeli le enkrat.
- Vrstni red stolpcev ni pomemben.
- Nobeni dve vrstici ne smeta biti enaki.
- Vrstni red vrstic ni pomemben.
- Primer: če se identični vrstici ponovita v neki tabeli, potem tabela že ni v 1NF.

- Nadključ (ang. superkey): katera koli skupina stolpcev, za katere ne obstajata dve vrstici z istima vrednostma v teh stolpcih. Vsi drugi stolpci so funkcijsko odvisni od stolpcev, ki določajo ključ.
- 1NF vsi stolpci skupaj določajo nek ključ.
- ► (Minimalni) ključ (ang. candidate key): ključ, za katerega nobena stroga podmnožica ne predstavlja ključa.
- Primarni ključ: izbrani minimalni ključ.
- Neključni stolpec: stolpec, ki ni v nobenem minimalnem ključu.

► 1NF + nobena stroga podmnožica kakega minimalnega ključa funkcijsko ne določa kakega neključnega stolpca.

| Employees' Skills |                |                              |   |          | Employees                    | Employees' Skills |                |
|-------------------|----------------|------------------------------|---|----------|------------------------------|-------------------|----------------|
| Employee          | Skill          | <b>Current Work Location</b> |   | Employee | <b>Current Work Location</b> | Employee          | Skill          |
| Brown             | Light Cleaning | 73 Industrial Way            |   | Brown    | 73 Industrial Way            | Brown             | Light Cleaning |
| Brown             | Typing         | 73 Industrial Way            |   | Harrison | 73 Industrial Way            | Brown             | Typing         |
| Harrison          | Light Cleaning | 73 Industrial Way            | × | Jones    | 114 Main Street              | Harrison          | Light Cleaning |
| Jones             | Shorthand      | 114 Main Street              |   |          |                              | Jones             | Shorthand      |
| Jones             | Typing         | 114 Main Street              | × |          |                              | Jones             | Typing         |
| Jones             | Whittling      | 114 Main Street              |   |          |                              | Jones             | Whittling      |

- Pogoj: relacija je v 2NF in nimamo tranzitivnih funkcijskih odvisnosti.
- ► Tranzitivne funkcijske odvisnosti:
  - ▶ iz A -> B, B -> C sledi A -> C.

| Tournament Winners   |      |                |                      |  | Tourname             | ent Wir | Winner Dates of Birth |                |                   |
|----------------------|------|----------------|----------------------|--|----------------------|---------|-----------------------|----------------|-------------------|
| Tournament           | Year | Winner         | Winner Date of Birth |  | Tournament           | Year    | Winner                | Winner         | Date of Birth     |
| Indiana Invitational | 1998 | Al Fredrickson | 21 July 1975         |  | Indiana Invitational | 1998    | Al Fredrickson        | Chip Masterson | 14 March 1977     |
| Cleveland Open       | 1999 | Bob Albertson  | 28 September 1968    |  | Cleveland Open       | 1999    | Bob Albertson         | Al Fredrickson | 21 July 1975      |
| Des Moines Masters   | 1999 | Al Fredrickson | 21 July 1975         |  | Des Moines Masters   | 1999    | Al Fredrickson        | Bob Albertson  | 28 September 1968 |
| Indiana Invitational | 1999 | Chip Masterson | 14 March 1977        |  | Indiana Invitational | 1999    | Chip Masterson        |                |                   |

#### **BCNF**

- Boyce-Codd-ova normalna oblika.
- Pogoj: relacija je v 3NF in za vsako funkcijsko odvisnost oblike A1, ..., An -> B velja, da stolpci A1, ..., An predstavljajo ključ.
- Torej: ne obstajajo nobene druge funkcijske odvisnosti razen od ključev.
- Običajno normaliziramo vsaj do te oblike.

# Multifunkcijska odvisnost

- ► Multifunkcijsko odvisnost zapišemo kot A ->> B.
- Naj C predstavlja vse stolpce, razen stolpcev, določenih v A in B. Zapis (x, y, z) predstavlja "bločno" zapisano vrstico po skupinah stolpcev A, B, C.
- Če se pojavita vrstici (a, b, c) in (a, d, e), potem morata obstajati vrstici (a, b, e) in (a, d, c).

- ▶ Pogoj: relacija je v BCNF in nima *multifunkcijskih odvisnosti*.
- Primer: vsak predmet (Course) ima predpisan nabor knjig (Book) in nabor predavateljev (Lecturer)

| University courses |              |             |  |  |  |
|--------------------|--------------|-------------|--|--|--|
| Course             | Book         | Lecturer    |  |  |  |
| AHA                | Silberschatz | John D      |  |  |  |
| AHA                | Nederpelt    | John D      |  |  |  |
| AHA                | Silberschatz | William M   |  |  |  |
| AHA                | Nederpelt    | William M   |  |  |  |
| AHA                | Silberschatz | Christian G |  |  |  |
| AHA                | Nederpelt    | Christian G |  |  |  |
| oso                | Silberschatz | John D      |  |  |  |
| oso                | Silberschatz | William M   |  |  |  |

- ► Izbira knjig za predmet je neodvisna od izbir predavatelja, zato dodajanje knjige (ali predavatelja) zahteva dodajanje ustreznih kombinacij.
- Course ->> Book, Course ->> Lecturer

#### Ostale oblike

- Ostalih višjih normaliziranih oblik si ne bomo ogledali.
- Slike tabel v angleščini so pridobljene iz Wikipedie (licenca Creative Commons).