

outros.

Modelagem de dados Modelagem Física

O modelo físico é a representação mais detalhada e específica do banco de dados, levando em conta os detalhes de implementação, como tipos de dados, chaves primárias e estrangeiras, espaços de armazenamento, entre

idCliente INT(11)

nome VARCHAR(100) pedido vendedor Logradouro VARCHAR(100) id Vendedor INT(11) id Pedido INT(11) numero VARCHAR(6) nome VARCHAR(100) idCliente INT(11) complemento VARCHAR(45) id Vendedor INT(11) salarioFixo DOUBLE bairro VARCHAR(50) faixaComissao CHAR(1) prazoEntrega INT(1 1) cep VARCHAR(15) cidade VARCHAR(60) uf VARCHAR(2) IE VARCHAR(20) produto itemPedido id Produto INT(11) id Pedido INT(11) descricao VARCHAR(100) id Produto INT(11) unidade VARCHAR(4) quantidade INT(11) valorUnitario DOUBLE

Int:

• Inteiro. O tipo INT é usado para armazenar valores numéricos inteiros.

Varchar:

 Abreviação de "variable character", é um tipo de dados usado para armazenar strings de comprimento variável. Isso significa que você pode armazenar cadeias de caracteres de comprimento variável até um limite especificado. Por exemplo, VARCHAR(255) permite armazenar uma string de até 255 caracteres.

SENAI

Decimal:

• O tipo DECIMAL é usado para valores numéricos com precisão fixa. Ele é usado para armazenar números decimais exatos, onde o número total de dígitos (precisão) e o número de dígitos após o ponto decimal (escala) podem ser especificados. Por exemplo, DECIMAL(10,2) pode armazenar um número com até 10 dígitos no total, dos quais 2 estão após o ponto decimal.

Datetime:

• O tipo DATETIME é usado para armazenar valores de data e hora em um formato específico (YYYY-MM-DD HH:MM:SS). Ele pode armazenar datas e horas no intervalo de '1000-01-01 00:00:00' a '9999-12-31 23:59:59'. Este tipo é útil para armazenar informações de data e hora com precisão.

Date:

• Armazena datas no formato "YYYY-MM-DD", sem considerar informações sobre horas específicas.

Tipos Primitivos

	Inteiro	TINYINT	Inteiro de 1 byte com sinal, variação de -128 a 127 Inteiro de 2 bytes com sinal, variação de -32,768 a 32,767		
Numéricos		SMALLINT			
		MEDIUMINT	Inteiro de 3 bytes com sinal, variação de -8,388,608 a 8,388,607		
		INT	Inteiro de 4 bytes com sinal, variação de -2,147,483,648 a 2,147,483,647		
		BIGINT	Inteiro de 8 bytes com sinal, variação de -9,223,372,036,854,775,808 a 9,223,372,036,854,775,807		
	Real	DECIMAL	Número de ponto flutuante de precisão simples		
		FLOAT	Número de ponto flutuante de precisão simples		
		DOUBLE	Número de ponto flutuante de precisão dupla		
		REAL	Número decimal de precisão fixa		
	Lógico	Bit	Tipo de dados que pode conter um número de bits, variação de 1 a 64		
		Boolean	Sinônimo de TINYINT(1), aceita valores TRUE, FALSE e NULL		

Tipos Primitivos

Data e Hora	DATE	Data no formato 'YYYY-MM-DD'
	TIME	Tempo no formato 'HH:MM:SS'
	DATETIME	Data e hora no formato 'YYYY-MM-DD HH:MM:SS'
	TIMESTAMP	Timestamp entre '1970-01-01 00:00:01' UTC e '2038-01-19 03:14:07' UTC
	YEAR	Ano com quatro dígitos no formato 'YYYY'

	GEOMETRY	Tipo de dado geométrico			
Espacial	POINT	Ponto no espaço euclidiano de duas dimensões			
	LINESTRING	Conjunto de pontos conectados por linhas			
	POLYGON	Polígono em um plano bidimensional			
	GEOMETRYCOLLECTION	Coleção de objetos geométricos			
	MULTIPOINT	Conjunto de pontos			
	MULTILINESTRING	Conjunto de linhas conectadas			
	MULTIPOLYGON	Conjunto de polígonos			

Modelagem de dados Notações Gráficas

- Notação Min-Max
- Notação James Martin (Pé de Galinha)

Notação Min-Max

Representa a quantidade mínima e máxima de ocorrências de uma entidade em um relacionamento.

É representada por um par de números, onde o primeiro indica o mínimo e o segundo o máximo. Por exemplo:

SENAI

Notação James Martin (Pé de Galinha)

Uma representação visual simplificada da notação minimamáxima, utilizando símbolos gráficos que se assemelham a pés de galinha.

Notação James Martin (Pé de Galinha)

Exemplos:

Associações de "Um para Um"

Associações de "Um para Muitos"

Associações de "Muitos para Muitos"

Notação James Martin (Pé de Galinha)

Exemplos:

Restrições	Representação		
1:1			
1 : N			
0 : 1			
0 : N			

Deises and Kare

Constraints (restrições)

Constraints (restrições) são utilizadas para definir as características e comportamentos de colunas em uma tabela. Cada uma delas impõe uma regra específica sobre os dados que podem ser armazenados em uma coluna, garantindo a integridade e consistência dos dados.

U Prin	nary K	.ey	\cup	NOTIN	Ш	U un	ilque	
☐ Bina) Binary			Unsign	ned	Zero Fill		
Aut	to Incr	ement		Genera	ated			
PK	NN	UQ	В	UN	ZF	ΑI	G	

Constraints (restrições)

PK - Primary Key:

É a chave primária de uma tabela. Uma chave primária identifica de forma única cada registro (linha) em uma tabela.

- Características:
 - Deve ser única para cada registro.
 - Não pode conter valores nulos (NULL).
 - Geralmente é um índice para melhorar o desempenho de consultas.

Constraints (restrições)

SENAI

NN - Not Null:

Indica que a coluna não pode conter valores nulos. Um valor nulo representa a ausência de um valor.

 Objetivo: Garantir que a coluna sempre tenha um valor válido.

UQ - Unique:

Indica que todos os valores da coluna devem ser únicos. Ou seja, não pode haver dois registros com o mesmo valor nessa coluna.

• Objetivo: Garantir a unicidade de um determinado atributo dentro da tabela.

Constraints (restrições)

B - Binary:

Indica que a coluna armazena dados binários, como imagens, arquivos ou dados compactados.

 Objetivo: Permite armazenar dados em formato bruto, sem interpretações específicas.

UN - Unsigned:

Indica que a coluna armazena apenas valores não negativos (zero ou positivos).

 Objetivo: Utilizado principalmente para colunas numéricas que representam quantidades ou contagens.

Constraints (restrições)

Al - Auto Increment:

Gera automaticamente um valor numérico único e crescente para cada novo registro inserido na tabela.

 Objetivo: É comumente utilizado para criar chaves primárias numéricas sequenciais.

G - Generated:

Permite definir uma expressão para calcular o valor de uma coluna com base em outras colunas ou valores constantes.

 Objetivo: É útil para criar colunas calculadas ou valores derivados.

