Reminders about Inverse Functions and $f(x) = log_b x$.

Inverse functions: f(x), $f'(x) \leftarrow inverse Not <math>\frac{1}{f(x)} = f(x)$

Switch output

Switch output

Switch town

$$a \rightarrow f \rightarrow b \rightarrow f' \rightarrow a$$

f" "un does" f

If f(x) = x + 10, then f'(x) = x - 10

What is the inverse of f(x)=ex? f-'(x)=lnx

 $y = e^{x}$ $y = \ln x$ OR $x = e^{y}$ Switch x and y

Numerical Example: $log_{10} = \frac{1}{1000} =$

Algebraic Example: Solve ex = 20.

 $lne^{X} = ln20$ X = ln20

Graphical Exampl: $y = e^{x}$ D: $(-a_{0}a_{0}) \leftarrow R$ R: $(a_{0}a_{0}) \leftarrow D$ y = ln x

LECTURE NOTES: §1.5

1. Without doing a bunch of algebra, find $f^{-1}(x)$ for each function below:

(a)
$$f(x) = 2x$$

(b)
$$f(x) = x^3$$

2. Without explicitly finding a formula for $f^{-1}(x)$, find $f^{-1}(1)$ for each function below:

(a)
$$f(x) = x - 20$$

Since
$$f(z1) = 21 - 20 = 1$$
,
 $f^{-1}(1) = 21$

$$5$$
 Since $f(1.75)=1$, $f^{-1}(1)=1.75$

3. Evaluate $\sin^{-1}(1)$.

Since $\sin\left(\frac{\pi}{2}\right) = 1$ $\sin^{-1}(1) = \frac{\pi}{2}$.

4. Find the exact value of each expression.

(a)
$$\log_2 16$$

(b)
$$e^{\ln 5} = 5$$

5. Solve each equation below for x.

(a)
$$10 = 2e^{x+1}$$

 $5 = e^{x+1}$
In $5 = x+1$
 $x = (\ln 5)-1$

(b)
$$\ln(x^2 - 1) = 1$$

 $x^2 - 1 = e^1$
 $x^2 = e + 1$
 $x = \pm \sqrt{e + 1}$

6. Sketch each function. Include domain, range, intercepts and asymptotes.

