UTFPR

Disciplina: EL66J Prof. Gustavo B. Borba

Notas de aula #5 ÁLGEBRA BOOLEANA e SIMPLIFICAÇÃO ALGÉBRICA

Em uma publicação científica de 1854, denominada *An investigation of the laws of thought, on which are founded the mathematical theories of logic and probability*, o matemático inglês George Boole (por isso o nome **álgebra Booleana**, com maiúscula) estabeleceu os princípios de um sistema algébrico para variáveis binárias (variáveis que assumem apenas dois valores).

Em 1938, o matemático e engenheiro eletricista norte americano Claude E. Shannon utilizou a álgebra Booleana para analisar e descrever circuitos elétricos baseados em relés. Faz todo sentido, já que os contatos dos relés são variáveis binárias: só interessam as situações nas quais está aberto ou fechado. O título do artigo científico publicado por ele é *Symbolic analysis of relay and switching circuits*.

Nos tópicos a seguir, observe que os **axiomas** (afirmações que não exigem provas para serem consideradas verdadeiras [1]) da álgebra Booleana estabelecem aquilo que utilizamos como ponto de partida: as operações *não*, *e*, *ou* e que os estados das variáveis são *mutuamente exclusivos*. Os **teoremas** podem ser considerados como o conjunto de regras para a manipulação das variáveis.

Em eletrônica digital, os teoremas podem ser utilizados em uma técnica de simplificação de equações lógicas (que agora podemos chamar também de equações Booleanas) denominada **simplificação algébrica**. O objetivo de um processo de simplificação de uma equação lógica é obter uma equação equivalente à original, porém mais simples [claro!].

Duas equações lógicas são *equivalentes* quando apresentam a mesma tabela verdade. *Mais simples* pode ser entendido como menor. Por isso, este processo também é chamado de *minimização* de uma equação lógica. A simplificação é importante porque pode permitir (não necessariamente) a implementação de um circuito digital mais compacto, portanto mais vantajoso que suas versões não minimizadas.

- **Axiomas** (há autores que chamam de *postulados*)

a1)	$A = 0$ se $A \neq 1$		a1') $A = 1 \text{ se } A \neq 0$			
a2) se A = 0, então \overline{A} = 1			a2') se A = 1, então A = 0			
a3)	0.0 = 0	a3')	1+1 = 1			
a4)	1.1 = 1	a4')	0+0 = 0			
a5)	0.1 = 1.0 = 0	a5')	1+0 = 0+1 = 1			

EL66J 1/4

- Teoremas (há autores que chamam de leis, propriedades, identidades, regras)

t1) $\overline{A} = A$

Involução

- $t2) A \cdot 0 = 0$
- t2') A+1 = 1
- Elementos nulos

- t3) $A \cdot 1 = A$
- t3') A+0 = A
- Identidades

- t4) $A \cdot A = A$
- t4') A+A=A
- Idempotência

- t5) $A \cdot \overline{A} = 0$
- t5') $A+\overline{A}=1$
- Complementos

- t6) $A \cdot B = B \cdot A$
- t6') A+B = B+A
- Comutativa

- $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- (A+B)+C = A+(B+C)
- Associativa

- t8) $A \cdot (B+C) = A \cdot B + A \cdot C$
- t8') $A+(B\cdot C) = (A+B)\cdot (A+C)$
- Distributiva

t9) $A \cdot (A+B) = A$

t9') $A + A \cdot B = A$

Absorção

- t10) $A \cdot (\overline{A} + B) = A \cdot B$
- t10') $A + \overline{A} \cdot B = A + B$

Absorção

- t11) $(A+B)\cdot(A+\overline{B}) = A$
- t11') $A \cdot B + A \cdot \overline{B} = A$

Adjacência lógica

- t12) $A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$
- t12') $(A+B)\cdot(\overline{A}+C)\cdot(B+C) = (A+B)\cdot(\overline{A}+C)$
- Consenso

- t13) $\overline{A \cdot B \cdot ... \cdot Z} = \overline{A} + \overline{B} + ... + \overline{Z}$
- t13') $\overline{A+B+...+Z} = \overline{A} \cdot \overline{B} \cdot ... \cdot \overline{Z}$
- DeMorgan

Absorção

- Algumas provas

t9) $A \cdot (A+B) = A$

(A+0)·(A+B) A+(0·B) A+0

t9') $A + A \cdot B = A$

A·1 + A·B A·(1+B) A-1

t10) $A \cdot (\overline{A} + B) = A \cdot B$

 $A \cdot \overline{A} + A \cdot B$ 0 + A·B A·B

t10') $A + \overline{A} \cdot B = A + B$

(A+A)·(A+B) 1 · (A+B) A+B

Absorção

Adjacência lógica

Consenso

t11) $(A+B)\cdot(A+\overline{B}) = A$

 $A + (B \cdot \overline{B})$ A + 0

t11') $A \cdot B + A \cdot \overline{B} = A$

A·(B+B̄) A·1 Α

t12) $A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$

 $A \cdot B + \overline{A} \cdot C + B \cdot C \cdot (A + \overline{A})$ $A \cdot B + \overline{A} \cdot C + B \cdot C \cdot A + B \cdot C \cdot \overline{A}$ $A \cdot B + A \cdot B \cdot C + \overline{A} \cdot C + \overline{A} \cdot C \cdot B$ $A \cdot B \cdot (1+C) + \overline{A} \cdot C \cdot (1+B)$ $A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$ A·B + Ā·C

t12') $(A+B)\cdot(\overline{A}+C)\cdot(B+C) = (A+B)\cdot(\overline{A}+C)$

 $(A+B)\cdot(\overline{A}+C)\cdot((B+C)+A\cdot\overline{A})$ $(A+B)\cdot(\overline{A}+C)\cdot(B+C+A)\cdot(B+C+\overline{A})$ $(A+B)\cdot(A+B+C)\cdot(\overline{A}+C)\cdot(\overline{A}+C+B)$ $((A+B)+(0\cdot C))\cdot((\overline{A}+C)+(0\cdot B))$ (A+B+0)·(A+C+0) (A+B)·(Ā+C)

2/4

- Símbolos equivalentes para as portas NE e NOU

Conforme os teoremas de DeMorgan:

Assim, às vezes são utilizados os símbolos a seguir para representar as portas NE e NOU:

- Exemplos

1. DeMorgan

a)
$$Y = \overline{A + B + C} + \overline{\overline{D} \cdot E}$$
 b) $Y = \overline{A \cdot B \cdot C} + \overline{D \cdot E \cdot F}$ c) $Y = \overline{(A \cdot B + C) \cdot (D + E \cdot F)}$ d) $Y = \overline{A + B \cdot \overline{C} + D \cdot (\overline{E + F})}$ $\overline{A \cdot B \cdot C} + \overline{D} \cdot \overline{E}$ $\overline{A \cdot B \cdot C} \cdot \overline{D \cdot E \cdot F}$ $\overline{(A \cdot B + C) \cdot (D + E \cdot F)}$ $\overline{(A \cdot B + C) \cdot (D + E \cdot F)}$ $\overline{(A \cdot B \cdot \overline{C}) \cdot (\overline{D} + \overline{E} + \overline{F})}$ $\overline{(A \cdot B \cdot \overline{C}) \cdot (\overline{D} + \overline{E} + \overline{F})}$ $\overline{(A + B \cdot \overline{C}) \cdot (\overline{D} + \overline{E} + \overline{F})}$ $\overline{(A + B \cdot \overline{C}) \cdot (\overline{D} + \overline{E} + \overline{F})}$ $\overline{(A + B \cdot \overline{C}) \cdot (\overline{D} + \overline{E} + \overline{F})}$ Resolver 'de fora para dentro' seria mais fácil.

2. Prove que os circuitos são equivalentes utilizando manipulação algébrica. *Obs*: outra forma de provar a equvalência lógica seria através das tabelas verdade. As tabelas verdade de Y1 e Y2 devem ser iguais.

EL66J 3/4

3. Simplifique o circuito. Para observar que os circuitos original e simplificado são realmente equivalentes, obtenha as tabelas verdade de cada um. As tabelas verdades devem ser iguais.

			Simplif.		olif.	Original
Α	В	С	ĀB	B+	C	ABB+C
0	0	0	1	1		1
0	0	1	1	0		0
0	1	0	1	0		0
0	1	1	1	0		0
1	0	0	1	1		1
1	0	1	1	0		0
1	1	0	0	0		0
1	1	1	0	0		0

4. Simplifique as equações lógicas.

a)
$$Y = AB + A(B+C) + B(B+C)$$

 $AB + AB + AC + BB + BC$

AB + AC + B + BC B(1+A+C) + AC B1 + AC B + AC

b)
$$Y = (A\overline{B}(C + BD) + \overline{A}\overline{B})C$$

 $(A\overline{B}C + A\overline{B}BD + \overline{A}\overline{B})C$

c)
$$Y = (A+\overline{B})(A+C)$$

$$AA + AC + A\overline{B} + \overline{B}C$$

$$A + AC + A\overline{B} + \overline{B}C$$

$$A(1+C+\overline{B}) + \overline{B}C$$

$$A1 + \overline{B}C$$

$$A + \overline{B}C$$

d)
$$Y = AB + \overline{AB}C + A$$

$$(AB + \overline{AB})(AB + C) + A$$

 $1(AB + C) + A$
 $AB + C + A$
 $A(1+B) + C$
 $A1 + C$
 $A + C$

e)
$$Y = \overline{ABC} + \overline{A+B+\overline{C}} + \overline{ABCD}$$

$$\overline{ABC} + \overline{ABC} + \overline{ABCD}$$
 $\overline{ABC} + \overline{ABC} + \overline{ABCD}$
 $\overline{ABC} + \overline{ABCD}$
 $\overline{ABC} + \overline{ABCD}$
 $\overline{AB(C + \overline{CD})}$
 $\overline{AB((C + \overline{C})(C + \overline{D}))}$
 $\overline{AB((C + \overline{C})(C + \overline{D}))}$
 $\overline{AB((C + \overline{D}))}$
 $\overline{AB(C + \overline{D})}$

f)
$$Y = ABC(AB + \overline{C}(BC + AC))$$

g)
$$Y = \overline{AB} + \overline{A+C}$$

 $\overline{A} + \overline{B} + \overline{AC}$

$$A + B + AC$$
 $\overline{A}(1+\overline{C}) + \overline{B}$
 $\overline{A}1 + \overline{B}$
 $\overline{A} + \overline{B}$

h)
$$Y = \overline{\overline{AB} + CD} + \overline{AC\overline{D}}$$

 $\overline{\overline{AB}CD} + \overline{AC} + \overline{\overline{D}}$

$$\begin{split} AB(\overline{C}+\overline{D}) + \overline{A} + \overline{C} + D \\ AB\overline{C} + AB\overline{D} + \overline{A} + \overline{C} + D \\ \overline{C}(AB+1) + \overline{A} + AB\overline{D} + D \\ \overline{C}1 + (\overline{A}+A)(\overline{A}+B\overline{D}) + D \\ \overline{C} + 1(\overline{A}+B\overline{D}) + D \\ \overline{C} + \overline{A} + D + \overline{D}B \\ \overline{C} + \overline{A} + (D+\overline{D})(D+B) \\ \overline{C} + \overline{A} + 1(D+B) \\ \overline{C} + \overline{A} + D + B \end{split}$$

Referências

[1] iDicinário Aulete, disponível em http://aulete.uol.com.br/axioma, acessado em jan/2013.

EL66J 4/4