Selecting the optimal location for air taxis to relieve urban traffic congestion

Team4

: 18102095 - Jihwan Hwang

: 19102077 - Seokjun Kang

: 19102099 - Junseok Jeon

: 19102127 - Suho Lee

Business Analytics – Project Proposal 31st Oct.

Table of contents

Purpose of the Analysis

Proposal of the project

Specific Plan for Data Acquisition
Plan for source and

utilization of data

Formulation & Expected Result

Expected methods to be used and result of analysis

Background & Necessity

Introduction to the real-world problem

Background of This Project Proposal

<u>Traffic congestion problems</u> are frequent throughout the metropolitan area, including **Seoul.**

Necessity of This Project

Increased traffic congestion

- Limitations of existing transportation methods
- Large population in the metropolitan area

Alternative Solution

If both underground and above ground are blocked,

why not try using the sky?

Purpose of the Analysis

Proposal of the project

Purpose of the Analysis

Seoul Air Taxi, which can avoid congestion on the ground and has high speeds, will alleviate traffic problems.

Accordingly, if **Seoul Air Taxi** is introduced with sufficient consideration, it is expected to establish itself as a new transportation method that can realize both convenience of use and reduction of travel time.

Specific Plan for Data Acquisition

Plan for source and utilization of data

Data Acquisition Plan

- Select the best location for air taxi station for convenience of use and reduction of travel time, considering **expected users and traffic information**
- Transportation Data based on user characteristics
 - departure point, arrival point, user, purpose, time, etc.
- Regional Data with its characteristics
 - location, population, land price, etc.
- Constraint Data based on legal, noise problem
 - noise, flight restriction zone in Seoul, etc.

Data Acquisition Plan

1. Location Selection for Air-Taxi Station

- The number of commuting time by various transportation usage according to user characteristics and region - Korea Transport Database (www.ktdb.go.kr/)
- Mileage by public transportation Ministry of Land, Infrastructure and Transport.: Transportation Card Big Data Integrated Information System (stcis.go.kr/)
- Population Density Seoul Population Density (by district) Statistics - Seoul Open Data Plaza (data.seoul.go.kr/)
- Income Level Household Characteristics Information
 Ministry of Environment (bigdata-environment.kr)

Data Acquisition Plan

2. Flight Route Selection

Noise Problem

- Considering population density, noise complaint data:

Seoul Open Data Plaza, National Statistical Office (data.seoul.go.kr/, kostat.go.kr)

Flight Restriction Zone

- Ministry of Land, Infrastructure and Transport Flight Restriction Zone (data.go.kr/)

Formulation & Expected Results

Expected methods to be used and result of analysis

Analysis Steps

Step1) Location Selection for Air-Taxi Station

- 1-1) Analysis of traffic volume in Seoul
- 1-2) Select top N candidates group based on traffic congestion
- 1-3) Spatial Clustering: Cluster regions with similar characteristics using K-means or DBSCAN.
- 1-4) Find more specific location considering salary_level, population density
- 1-5) Select optimal candidate area from each clustered region
- * Visualize candidate regions by creating a various kinds of map reflecting traffic and regional characteristics

Analysis Steps

STEP 2) Flight Route Selection

- 2-1) Considering zone where air-taxi cannot fly (ex. Air prohibition zone)
- 2-2) Using Dijkstra or BFS algorithm to select the optimal shortest path

STEP 3) Calculate route efficiency

3-1) Compare time required for distance to each station with existing transportation

1. Expected Result

- Optimized air taxi station location
- Efficient route planning

2. Expected Impact

- Traffic congestion reduction
- Time-saving
- Economic benefits

- 1) 성유진, 김새벽, 최윤수, 조성길. (2023). 도심항공교통(UAM) 버티포트(Vertiport) 최적입지 선정 및 경로선정을 통한 이동시간 효용성 분석. 대한공간정보학회●
- 2) [쏠림 사회 한국, 강남 리포트] '교통의 요지'라는 강남의 역설...더 많이 모이고 더막힌다. 경향신문. (2023, October 5). https://m.khan.co.kr/economy/economy-general/article/202310051500011
- 3) [취재수첩] 대중교통 혼잡문제, 국토부가 나서야. 한국경제. (2023, May 5). https://www.hankyung.com/article/2023050556961
- 4) 소방차 출동도 어려운 "테헤란로" 교통혼잡 이대로 괜찮은가? 서울시 내 손안에 서울. (2023, May 2). https://mediahub.seoul.go.kr/archives/2007809

Thank you

