Section 5.3 : Diagonalization

Chapter 5 : Eigenvalues and Eigenvectors

Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example A^k , for large k.

But: multiplying two $n \times n$ matrices requires roughly n^3 computations. Is there a more efficient way to compute A^k ?

Topics and Objectives

Topics

- 1. Diagonal, similar, and diagonalizable matrices
- 2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Determine whether a matrix can be diagonalized, and if possible diagonalize a square matrix.
- 2. Apply diagonalization to compute matrix powers.

Diagonal Matrices

A matrix is **diagonal** if the only non-zero elements, if any, are on the main diagonal.

The following are all diagonal matrices.

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad \begin{bmatrix} 2 \end{bmatrix}, \quad I_n, \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

We'll only be working with diagonal square matrices in this course.

Powers of Diagonal Matrices

If A is diagonal, then A^k is easy to compute. For example,

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 0.5 \end{pmatrix}$$

$$A^{2} = \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 0.5 \end{bmatrix}$$

$$A^{k} = \begin{bmatrix} 3^{k} & 0 \\ 0 & 0.5 \end{bmatrix}$$

But what if A is not diagonal?

Section 5.3 Slide 4
$$A = P \cdot D \cdot P^{-1}$$

$$= P \cdot \left[\begin{array}{c} d_1 \\ d_2 \\ \end{array}\right] \quad P^{-1}$$

$$A^2 = P \cdot D \cdot P^{-1} \cdot P \cdot D \cdot P^{-1} = P \cdot D^2 \cdot P^{-1}$$

$$A^4 = P \cdot D^4 \cdot P^{-1}$$

Diagonalization

Suppose $A \in \mathbb{R}^{n \times n}$. We say that A is **diagonalizable** if it is similar to a diagonal matrix, D. That is, we can write

$$A = PDP^{-1}$$

$$AP = PD.$$

$$A \left(V_1 \quad V_2 \quad \cdots \quad V_n \right) = \left(V_1 \quad \cdots \quad V_n \right) \left(\begin{array}{c} d_1 & d_2 & O \\ O & \cdots & d_n \end{array} \right)$$

$$= \left(\begin{array}{c} AV_1 & AV_2 & \cdots & AV_n \end{array} \right) = \left(\begin{array}{c} d_1 & V_1 \\ AV_2 & \cdots & d_n \end{array} \right)$$

$$AV_1 = \left(\begin{array}{c} d_1 & V_1 \\ AV_2 & \cdots & d_n \end{array} \right)$$
Section 5.3 Slide 5
$$AV_n = \left(\begin{array}{c} d_1 & V_1 \\ AV_n & \cdots & d_n \end{array} \right)$$

Always $P = [y_1, \dots, y_n]$ $D = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$

Diagonalization

Theorem

 $\overline{\text{If }A}$ is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors.

Note: the symbol \Leftrightarrow means " if and only if ".

Also note that $A = PDP^{-1}$ if and only if

$$A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \cdots \vec{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 \\ & \lambda_2 \\ & & \ddots \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \cdots \vec{v}_n \end{bmatrix}^{-1}$$

where $\vec{v}_1, \dots, \vec{v}_n$ are linearly independent eigenvectors, and $\lambda_1, \dots, \lambda_n$ are the corresponding eigenvalues (in order).

Section 5.3 Slide 6

Diagonalize if possible.

$$A = \begin{pmatrix} 2 & 6 \\ 0 & -1 \end{pmatrix} = P - D P^{-1}$$

$$\lambda_{1} = 2 \qquad \qquad \lambda_{2} = -1 \qquad \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

$$V_{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad V_{2} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$

$$Null (A - 2L) = Null \begin{bmatrix} 0 & 6 \\ 0 & -3 \end{bmatrix} = Null \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$Null (A + L) = Null \begin{bmatrix} 3 & 6 \\ 0 & 0 \end{bmatrix} = Null \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

Section 5.3 Slide 7

Diagonalize if possible.

$$\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

Distinct Eigenvalues

Theorem

If A is $n \times n$ and has n distinct eigenvalues, then A is diagonalizable.

Why does this theorem hold?

Is it necessary for an $n\times n$ matrix to have n distinct eigenvalues for it to be diagonalizable?

Non-Distinct Eigenvalues

Theorem. Suppose

- A is $n \times n$
- A has distinct eigenvalues $\lambda_1, \ldots, \lambda_k$, $k \leq n$
- $a_i = \text{algebraic multiplicity of } \lambda_i$
- $d_i = \text{dimension of } \lambda_i \text{ eigenspace ("geometric multiplicity")}$

Then

- 1. $d_i \leq a_i$ for all i
- 2. A is diagonalizable $\Leftrightarrow \Sigma d_i = n \Leftrightarrow d_i = a_i$ for all i
- 3. A is diagonalizable \Leftrightarrow the eigenvectors, for all eigenvalues, together form a basis for \mathbb{R}^n .

The eigenvalues of A are $\lambda=3,1.$ If possible, construct P and D such that AP=PD.

$$A = \begin{pmatrix} 7 & 4 & 16 \\ 2 & 5 & 8 \\ -2 & -2 & -5 \end{pmatrix}$$

Additional Example (if time permits)

Note that

$$\vec{x}_k = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \vec{x}_{k-1}, \quad \vec{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad k = 1, 2, 3, \dots$$

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the n^{th} number in this sequence.

Basis of Eigenvectors

Express the vector $\vec{x}_0 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ as a linear combination of the vectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and find the coordinates of \vec{x}_0 in the basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_0\}$.

$$[\vec{x}_0]_{\mathcal{B}} =$$

Let $P=[\vec{v}_1\ \vec{v}_2]$ and $D=\begin{bmatrix}1&0\\0&-1\end{bmatrix}$, and find $[A^k\vec{x}_0]_{\mathcal{B}}$ where $A=PDP^{-1}$, for $k=1,2,\ldots$

$$[A^k \vec{x}_0]_{\mathcal{B}} =$$

Section 5.3 Slide 13

Basis of Eigenvectors - part 2

Let
$$\vec{x}_0 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
, $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as before.

Again define $P=[\vec{v}_1\ \vec{v}_2]$ but this time let $D=\begin{bmatrix}1&0\\0&-1/2\end{bmatrix}$, and now find $[A^k\vec{x}_0]_{\mathcal{B}}$ where $A=PDP^{-1}$, for $k=1,2,\ldots$

$$[A^k \vec{x}_0]_{\mathcal{B}} =$$

Basis of Eigenvectors - part 3

Let
$$\vec{x}_0 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
, $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as before.

Again define $P=[\vec{v}_1\ \vec{v}_2]$ but this time let $D=\begin{bmatrix} 2 & 0 \\ 0 & 3/2 \end{bmatrix}$, and now find $[A^k\vec{x}_0]_{\mathcal{B}}$ where $A=PDP^{-1}$, for $k=1,2,\ldots$

$$[A^k \vec{x}_0]_{\mathcal{B}} =$$

Chapter 5: Eigenvalues and Eigenvectors

5.5 : Complex Eigenvalues

Topics and Objectives

Topics

- 1. Complex numbers: addition, multiplication, complex conjugate
- 2. Complex eigenvalues and eigenvectors.
- 3. Eigenvalue theorems

Learning Objectives

- 1. Use eigenvalues to determine identify the rotation and dilation of a linear transform.
- 2. Rotation dilation matrices.
- 3. Find complex eigenvalues and eigenvectors of a real matrix.
- 4. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question

What are the eigenvalues of a rotation matrix?

Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square roots of negative numbers. For example:

$$x^2 + 1 = 0$$

The roots of this equation are:

We usually write $\sqrt{-1}$ as i (for "imaginary").

Addition and Multiplication

The imaginary (or complex) numbers are denoted by \mathbb{C} , where

$$\mathbb{C} = \{ a + bi \mid a, b \text{ in } \mathbb{R} \}$$

We can identify $\mathbb C$ with $\mathbb R^2$: $a+bi \leftrightarrow (a,b)$

We can add and multiply complex numbers as follows:

$$(2 - 3i) + (-1 + i) =$$

$$(2-3i)(-1+i) =$$

Complex Conjugate, Absolute Value, Polar Form

We can **conjugate** complex numbers: $\overline{a+bi} = \underline{\hspace{1cm}}$

The **absolute value** of a complex number: |a + bi| =

We can write complex numbers in **polar form**: $a+ib=r(\cos\phi+i\,\sin\phi)$

Complex Conjugate Properties

If x and y are complex numbers, $\vec{v} \in \mathbb{C}^n$, it can be shown that:

- $\bullet \ \overline{(x+y)} = \overline{x} + \overline{y}$
- $\bullet \ \overline{A}\overline{\vec{v}} = A\overline{\vec{v}}$
- $\operatorname{Im}(x\overline{x}) = 0$.

Example True or false: if x and y are complex numbers, then

$$\overline{(xy)} = \overline{x} \ \overline{y}$$

Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis.

Euler's Formula

Suppose z_1 has angle ϕ_1 , and z_2 has angle ϕ_2 .

The product z_1z_2 has angle $\phi_1+\phi_2$ and modulus $|z|\,|w|$. Easy to remember using Euler's formula.

$$z = |z| e^{i\phi}$$

The product z_1z_2 is:

$$z_3 = z_1 z_2 = (|z_1| e^{i\phi_1})(|z_2| e^{i\phi_2}) = |z_1| |z_2| e^{i(\phi_1 + \phi_2)}$$

Section 5.5 Slide 23

Complex Numbers and Polynomials

Theorem: Fundamental Theorem of Algebra

Every polynomial of degree n has exactly n complex roots, counting multiplicity.

Theorem

- 1. If $\lambda \in \mathbb{C}$ is a root of a real polynomial p(x), then the conjugate $\overline{\lambda}$ is also a root of p(x).
- 2. If λ is an eigenvalue of real matrix A with eigenvector \vec{v} , then $\overline{\lambda}$ is an eigenvalue of A with eigenvector \vec{v} .

Four of the eigenvalues of a 7×7 matrix are -2,4+i,-4-i, and i. What are the other eigenvalues?

Section 5.5 Slide 25

The matrix that rotates vectors by $\phi=\pi/4$ radians about the origin, and then scales (or dilates) vectors by $r=\sqrt{2}$, is

$$A = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

What are the eigenvalues of A? Find an eigenvector for each eigenvalue.

The matrix in the previous example is a special case of this matrix:

$$C = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Calculate the eigenvalues of ${\cal C}$ and express them in polar form.

The matrix in the previous example is a special case of this matrix:

$$C = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

Calculate the eigenvalues of ${\cal C}$ and express them in polar form.

Find the complex eigenvalues and an associated complex eigenvector for each eigenvalue for the matrix.

$$A = \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix}$$