

CSE211 - Formal Languages and Automata Theory

U4L11_Computational Complexity

Dr. P. Saravanan
School of Computing
SASTRA Deemed to be University

Complexity

- A problem is decidable if there is an algorithm
- How to measure the complexity of program
- The set P is the set of problems or languages that can be decided by a Turing machine or some model of computation in polynomial time

Question?

- Assume that a problem (language) is decidable.
 Does that mean we can realistically solve it?
- NO, not always. It can require to much of time or memory resources.

Time Complexity:

The number of steps during a computation

Space Complexity:

Space used during a computation

What we use

- Henceforth, we only consider decidable languages and deciders.
- Our computational model is a Turing Machine.
- Time: the number of computation steps a TM machine makes to decide on an input of size n.
- Space: the maximum number of tape cells a TM machine takes to decide on a input of size n.

Complexity functions

some common functions, ordered by how fast they grow

constant	O(1)
logarithmic	$O(\log n)$
linear	O(n)
n-log-n	$O(n \times \log n)$
quadratic	$O(n^2)$
cubic	$O(n^3)$
exponential	$O(k^n)$, e.g. $O(2^n)$
factorial	O(n!)
super-exponential	e.g. $O(n^n)$

Time Complexity

· We use a multitape Turing machine

 We count the number of steps until a string is accepted

· We use the O(k) notation

Some notations

- The number of steps in measured as a function of \mathbf{n} the size of the string representing the input.
- In worst-case analysis, we consider the longest running time of all inputs of length n.
- In average-case analysis, we consider the average of the running times of all inputs of length n.

TIME COMPLEXITY

Let M be a deterministic TM that halts on all inputs. The time complexity of M if the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of steps that M uses on any input of length n. If f(n) is the running time of M we say

- M runs in time f(n)
- M is an f(n)-time TM.

ASYMPTOTIC ANALYSIS

- We seek to understand the running time when the input is "large".
- Hence we use an asymptotic notation or big-O notation to characterize the behaviour of f (n) when n is large.
- The exact value running time function is not terribly important.
- What is important is how f (n) grows as a function of n, for large n.
- Differences of a constant factor are not important.

ASYMPTOTIC UPPER BOUND

DEFINITION – ASYMPTOTIC UPPER BOUND

Let \mathcal{R}^+ be the set of nonnegative real numbers. Let f and g be functions $f, g : \mathcal{N} \longrightarrow \mathcal{R}^+$. We say f(n) = O(g(n)), if there are positive integers c and n_0 , such that for every $n \ge n_0$

$$f(n) \leq c g(n)$$
.

g(n) is an asymptotic upper bound.

REALITY CHECK

Assume that your computer/TM can perform 10⁹ steps per second.

n/f(n)	n	$n\log(n)$	n ²	n ³	2 ⁿ
10	0.01 μsec	$0.03~\mu sec$	0.1 <i>μsec</i>	1 µsec	1 μ sec
20	$0.02~\mu sec$	$0.09~\mu sec$	$0.4~\mu sec$	8 µsec	1 msec
50	$0.05~\mu sec$	0.28 <i>μsec</i>	$2.5 \mu sec$	125 <i>μsec</i>	13 days
100	$0.10~\mu sec$	$0.66~\mu sec$	10 μ sec	1 msec	\approx 4 $ imes$ 10 ¹³ years
1000	1 μsec	$3~\mu sec$	1 msec	1 sec	$\approx 3.4x10^{281}$ centuries

Clearly, if the running time of your TM is an exponential function of *n*, it does not matter how fast the TM is!

Example: $L = \{a^n b^n : n \ge 0\}$

Algorithm to accept a string w:

· Use a two-tape Turing machine

 \cdot Copy the a on the second tape

 \cdot Compare the a and b

$$L = \{a^n b^n : n \ge 0\}$$

Time needed:

 \cdot Copy the a on the second tape

O(|w|)

 \cdot Compare the a and b

O(|w|)

Total time: O(|w|)

$$L = \{a^n b^n : n \ge 0\}$$

For string of length n

time needed for acceptance: O(n)

COMPLEXITY CLASSES

DEFINITION – TIME COMPLEXITY CLASS TIME(t(n))

Let $t : \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. TIME $(t(n)) = \{L(M) \mid M \text{ is a decider running in time } O(t(n))\}$

- TIME(t(n)) is the class (collection) of languages that are decidable by TMs, running in time O(t(n)).
- $\mathsf{TIME}(n) \subset \mathsf{TIME}(n^2) \subset \mathsf{TIME}(n^3) \subset \ldots \subset \mathsf{TIME}(2^n) \subset \ldots$
- Examples:
 - $\{0^k 1^k \mid k \ge 0\} \in TIME(n^2)$
 - $\{0^k 1^k \mid k \ge 0\} \in \mathsf{TIME}(n \log n)$ (next slide)
 - $\{w \# w \mid w \in \{0, 1\}^*\} \in \mathsf{TIME}(n^2)$

Language class: DTIME(n)

A Deterministic Turing Machine accepts each string of length n in time O(n)

DTIME(n) $\{a^nb^n: n \ge 0\}$ $\{ww\}$

In a similar way we define the class

for any time function:
$$T(n)$$

Examples:
$$DTIME(n^2), DTIME(n^3),...$$

Example: The membership problem for context free languages

 $L = \{w : w \text{ is generated by grammar } G\}$

$$L \in DTIME(n^3)$$
 (CYK - algorithm)

Polynomial time

Theorem:
$$DTIME(n^k) \subset DTIME(n^{k+1})$$

$$DTIME(n^{k+1})$$
 $DTIME(n^k)$

Polynomial time algorithms: $DTIME(n^k)$

Represent tractable algorithms:

For small k we can compute the result fast