

Problem R-13E ($C_{18}H_{25}O_2PSi$). In this problem you are given the structure of a phosphorus compound and asked to interpret parts of the NMR spectrum. For each multiplet or set of multiplets report the pattern in the standard format: δ 0.00, triplet of pentets, $^nJ_{XY}=~0.0$ Hz. You may use first order analysis.

(a) Assign and interpret the three signals centered at δ -0.05.

(b) Assign and interpret the multiplet at δ 0.75. Draw and label a coupling tree.

(c) Assign and interpret the multiplets at δ 3.7 - 4.2. Draw and label a coupling tree.

3.85 3.80 3.75 3.70

(d) Assign and interpret the multiplet at δ 8.2.

4

Problem R-13E ($C_{18}H_{25}O_2PSi$). In this problem you are given the structure of a phosphorus compound and asked to interpret parts of the NMR spectrum. For each multiplet or set of multiplets report the pattern in the standard format: δ 0.00, triplet of pentets, $^nJ_{XY} = 0.0$ Hz. You may use first order analysis.

(a) Assign and interpret the three signals centered at δ -0.05.

O SiMe₃
O-CH₂-CH₃

Me₃Si signal

The two small peaks are ²⁹Si satellites. There is no dtetectable coupling to ³¹P

$$^2J_{H-Si} = 7Hz$$

(b) Assign and interpret the multiplet at δ 0.75. Draw and label a coupling tree.

This is the P- $\underline{CH_2}$ -SiMe₃ group - the protons are diastereotopic (P is an asymmetric center), so this is an $\underline{AB}X$ pattern $X = {}^{31}P$

(this is "AMX" treatment which always corresponds to Solution1, not a proper ABX analysis, so if this happens to be a Solution 2 situation, then the J's would be very wrong - they do look OK though, and so Solution 1 is probably fine)

(c) Assign and interpret the multiplets at δ 3.7 - 4.2. Draw and label a coupling tree.

ABM₃X

Each pattern is a doublet of pentets, J = 10, 7 Hz for the diastereotopic O- $\frac{CH_2}{3}$ -CH₃ group. The pentet arises because $^3J_{HH}$ to the CH₃ group and $^3J_{HP}$ are nearly the same

$$^{3}J_{HH} = 7 \text{ Hz}$$

 $^{3}J_{HP} = 7 \text{ Hz}$
 $^{2}J_{HH} = 10 \text{ Hz}$

We know the 10 Hz coupling is the gem J_{HH} because of the size, and leaning effects.

(d) Assign and interpret the multiplet at δ 8.2.

This must be the proton ortho to the phosphonate group - approximately a ddd, J = 12, 6, 2 Hz. There are some second-order effects, so couplings are suspect

6

