DATA ANALYSIS AND VISUALIZATION PROJECT

CAR SALE ANALYSIS

Submitted by:

- Komal Chamyal 13515
- Pulkit Vashisht 13560
- Yuvraj Singh 13508
- Abhishek Jeph 13565

Dataset Description

The Car Sales Information is a dataset with data on car sales ads in Russia by region. The data is taken from a popular website in Russia with ads for the sale of cars. Data is collected hourly from the first hundred pages. The only filter is the region to search for. The date and time of selection is indicated in the "parse_date" column.

It includes various brands of cars like Toyota, Honda, Ford, Porsche and so on. The dataset has numerous information about the engine type, transmission type, mileage and configuration.

The Columns precisely include:

- Brand **Brand of Vehicle**
- Name Model Name of Car
- BodyType Car Body type
- Color Car Color
- FuelType Fuel Type used in car
- Year Year of manufacture of car
- Mileage Car mileage
- Transmission Type of transmission of the machine
- Power Horsepower
- Price Price in Russian Rubies
- VehicleConfiguration, EngineName, EngineDisplacement Technical Details about the car
- date, parse date Date of scrapping of data
- location Location of sale of car in Russia

Download link

https://www.kaggle.com/datasets/ekibee/car-sales-information

1. Importing Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Reading dataset CSV file

```
In [2]:
```

```
df1 = pd.read_csv("region41_en.csv")
```

Copy data to manipulate

```
In [3]:
```

```
cars = df1.copy()
cars
```

Out[3]:

	brand	name	bodyType	color	fuelType	year	mileage	transmission	power	price	vehicleConfigu
0	Toyota	Land Cruiser Prado	jeep 5 doors	blue	Diesel	1995.0	168000.0	АТ	130.0	1860000	3.0 SX Wide I diesel
1	Toyota	Land Cruiser	jeep 5 doors	black	Diesel	NaN	260000.0	Automatic	286.0	2300000	
2	Toyota	Vitz	hatchback 5 doors	blue	Gasoline	2019.0	100000.0	сут	95.0	1075000	1.3 F Safety E
3	Toyota	Mark II	sedan	grey	Gasoline	2002.0	239000.0	АТ	160.0	480000	2.0 Grand
4	Toyota	RAV4	jeep 5 doors	golden	Gasoline	2010.0	101000.0	АТ	170.0	1450000	2.4 АТ Престиж
1498735	Toyota	Caldina	station wagon	white	Gasoline	NaN	250000.0	АТ	260.0	390000	
1498736	Honda	HR-V	jeep 3 doors	silver	Gasoline	1998.0	250000.0	сут	105.0	370000	
1498737	Mazda	CX-7	jeep 5 doors	black	Gasoline	2006.0	108000.0	АТ	244.0	500000	2.3 AT T
1498738	Mitsubishi	RVR	jeep 5 doors	burgundy	Gasoline	2012.0	112000.0	сут	139.0	1100000	1.8 Roadest (
1498739	Nissan	Elgrand	minivan	grey	Gasoline	2002.0	111000.0	АТ	240.0	1599999	3.5 VIP specifi

1498740 rows × 17 columns

4	D
	-

2. Exploring the dataset

Checking the rows and columns of the data

In [4]:

```
cars.head()
```

Out[4]:

	brand	name	bodyType	color	fuelType	year	mileage	transmission	power	price	vehicleConfiguration	engin
0	Toyota	Land Cruiser Prado	jeep 5 doors	blue	Diesel	1995.0	168000.0	АТ	130.0	1860000	3.0 SX Wide limited diesel turbo	1
1	Toyota	Land Cruiser	jeep 5 doors	black	Diesel	NaN	260000.0	Automatic	286.0	2300000	NaN	
2	Toyota	Vitz	hatchback 5 doors	blue	Gasoline	2019.0	100000.0	сут	95.0	1075000	1.3 F Safety Edition III 4WD	1
3	Toyota	Mark II	sedan	grey	Gasoline	2002.0	239000.0	АТ	160.0	480000	2.0 Grande Four	
4	Toyota	RAV4	jeep 5 doors	golden	Gasoline	2010.0	101000.0	AT	170.0	1450000	2.4 AT Long Престиж Плюс	:
4												· Þ

In [5]:

cars.shape

Out[5]:

(1498740, 17)

In [6]:

```
cars.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1498740 entries, 0 to 1498739
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype						
0	brand	1498740 non-null	object						
1	name	1498740 non-null	object						
2	bodyType	1498740 non-null	object						
3	color	1448934 non-null	object						
4	fuelType	1492145 non-null	object						
5	year	915699 non-null	float64						
6	mileage	1491876 non-null	float64						
7	transmission	1491339 non-null	object						
8	power	1484500 non-null	float64						
9	price	1498740 non-null	int64						
10	vehicleConfiguration	915699 non-null	object						
11	engineName	915506 non-null	object						
12	engineDisplacement	914866 non-null	object						
13	date	1498740 non-null	object						
14	location	1498740 non-null	object						
15	link	1498740 non-null	object						
16	parse_date	1498740 non-null	object						
dtyp	es: float64(3), int64(1), object(13)							
memo	memory usage: 194.4+ MB								

In [7]:

cars.columns

```
Out[7]:
Index(['brand', 'name', 'bodyType', 'color', 'fuelType', 'year', 'mileage',
        'transmission', 'power', 'price', 'vehicleConfiguration', 'engineName',
        'engineDisplacement', 'date', 'location', 'link', 'parse_date'],
      dtype='object')
In [8]:
cars.describe()
Out[8]:
              year
                       mileage
                                     power
                                                  price
count 915699.000000 1.491876e+06 1.484500e+06 1.498740e+06
        2005.327732 1.823240e+05 1.588104e+02 1.147137e+06
 mean
  std
           8.206993 1.013326e+05 7.169883e+01 1.370128e+06
        1953.000000 1.000000e+03 4.500000e+01 6.000000e+03
  min
 25%
        1999.000000 1.100000e+05 1.070000e+02 3.800000e+05
 50%
        2006.000000 1.770000e+05 1.400000e+02 7.500000e+05
 75%
        2012.000000 2.500000e+05 1.850000e+02 1.400000e+06
        2021.000000 1.000000e+06 6.500000e+02 3.300000e+07
 max
Unique values in the color and fuelType columns
In [9]:
list(cars.color.unique())
Out[9]:
['blue',
 'black',
 'grey',
 'golden',
 'silver',
 'white',
 'beige',
 'red',
 'burgundy',
 nan,
 'green',
 'brown',
 'yellow',
 'pink',
 'violet',
 'orange']
In [10]:
list(cars.fuelType.unique())
Out[10]:
['Diesel', 'Gasoline', nan, 'Electro']
```

3. Data Cleaning

3.1 Dropping irrelevant columns

In [11]:

cars.head(1)

Out[11]:

_	bra	nd	name	bodyType	color	fuelType	year	mileage	transmission	power	price	vehicleConfiguration	engineN
	0 Toyo	ota	Land Cruiser Prado	jeep 5 doors	blue	Diesel	1995.0	168000.0	АТ	130.0	1860000	3.0 SX Wide limited diesel turbo	1K2
	ı İ)

The dataset also has two similar columns date and parse_date which refer to the date and date+hours of the running sale ad in website respectively. Scraping date column as parse_date also provides same information.

In [12]:

```
cars=cars.drop(columns=['link', 'date'])
cars
```

Out[12]:

	brand	name	bodyType	color	fuelType	year	mileage	transmission	power	price	vehicleConfigu
0	Toyota	Land Cruiser Prado	jeep 5 doors	blue	Diesel	1995.0	168000.0	АТ	130.0	1860000	3.0 SX Wide I diesel
1	Toyota	Land Cruiser	jeep 5 doors	black	Diesel	NaN	260000.0	Automatic	286.0	2300000	
2	Toyota	Vitz	hatchback 5 doors	blue	Gasoline	2019.0	100000.0	СУТ	95.0	1075000	1.3 F Safety E II
3	Toyota	Mark II	sedan	grey	Gasoline	2002.0	239000.0	АТ	160.0	480000	2.0 Grand
4	Toyota	RAV4	jeep 5 doors	golden	Gasoline	2010.0	101000.0	АТ	170.0	1450000	2.4 А1 Престиж
1498735	Toyota	Caldina	station wagon	white	Gasoline	NaN	250000.0	АТ	260.0	390000	
1498736	Honda	HR-V	jeep 3 doors	silver	Gasoline	1998.0	250000.0	СVТ	105.0	370000	
1498737	Mazda	CX-7	jeep 5 doors	black	Gasoline	2006.0	108000.0	АТ	244.0	500000	2.3 AT T
1498738	Mitsubishi	RVR	jeep 5 doors	burgundy	Gasoline	2012.0	112000.0	СУТ	139.0	1100000	1.8 Roadest (
1498739	Nissan	Elgrand	minivan	grey	Gasoline	2002.0	111000.0	АТ	240.0	1599999	3.5 VIP specifi

1498740 rows × 15 columns

<u>,</u>

Renaming parse_date as date

In [13]:

```
cars.rename(columns = {'parse_date':'date'}, inplace = True)
```

3.2 Handling Missing Values

Checking for the null values in each column

```
In [14]:
cars.isnull().sum()
Out[14]:
                              0
brand
                              0
name
                              0
bodyType
                          49806
color
fuelType
                           6595
                         583041
vear
                           6864
mileage
transmission
                           7401
                          14240
power
                              \cap
price
                         583041
vehicleConfiguration
                         583234
engineName
                         583874
engineDisplacement
location
                              0
date
                              0
dtype: int64
In [15]:
#Percentage of Null values
for col in cars.columns:
    null = cars[col].isnull().sum()
    percentage = (null/len(cars))*100
    print(col,":", round(percentage),"%")
brand: 0 %
name : 0 %
bodyType : 0 %
color : 3 %
fuelType : 0 %
year : 39 %
mileage : 0 %
transmission : 0 %
power: 1 %
price : 0 %
vehicleConfiguration: 39 %
engineName : 39 %
engineDisplacement: 39 %
location : 0 %
```

Filling missing values

To fill the nan values we find the which entity have maximum frequecy in each column to find frequency we calculate the mode

```
In [16]:
```

date : 0 %

```
a = cars.color.mode()
cars.color.fillna(a[0],inplace = True)
ftm = cars.fuelType.mode()
cars.fuelType.fillna(ftm[0],inplace = True)
cym = cars.year.mode()
cars.year.fillna(cym[0],inplace = True)
cmm = cars.mileage.mean()
cars.mileage.fillna(cmm,inplace = True)
ctm = cars.transmission.mode()
cars.transmission.fillna(ctm[0],inplace = True)
```

```
cpm = cars.power.mean()
cars.power.fillna(cpm,inplace = True)
cvcm = cars.vehicleConfiguration.mode()
cars.vehicleConfiguration.fillna(cvcm[0],inplace = True)
cen = cars.engineName.mode()
cars.engineName.fillna(cen[0],inplace = True)
ced = cars.engineDisplacement.mode()
cars.engineDisplacement.fillna(ced[0],inplace = True)
```

Checking Null Values Now

```
In [17]:
```

```
cars.isnull().sum()
Out[17]:
                           0
brand
                           0
name
                           0
bodyType
                           0
color
fuelType
                           0
year
                           0
mileage
                           0
transmission
                           0
power
                           0
                           Ω
price
                           \cap
vehicleConfiguration
                           \cap
engineName
                           0
engineDisplacement
location
                           0
date
                           0
dtype: int64
```

Changing the datatype of date from OBJECT TO DATETIME64 TYPE

```
In [18]:
```

```
#Before parsing
cars.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1498740 entries, 0 to 1498739
Data columns (total 15 columns):

```
Column
                         Non-Null Count
                                         Dtype
   _____
___
                         _____
0
   brand
                         1498740 non-null object
1
                         1498740 non-null object
    name
   bodyType
                         1498740 non-null object
                         1498740 non-null object
   color
 3
                         1498740 non-null object
 4
   fuelType
 5
                         1498740 non-null float64
   year
 6
  mileage
                        1498740 non-null float64
 7
   transmission
                        1498740 non-null object
8 power
                         1498740 non-null float64
 9 price
                        1498740 non-null int64
10 vehicleConfiguration 1498740 non-null object
11 engineName
                        1498740 non-null object
12 engineDisplacement
                        1498740 non-null object
13 location
                        1498740 non-null object
14 date
                         1498740 non-null object
dtypes: float64(3), int64(1), object(11)
memory usage: 171.5+ MB
```

In [19]:

```
cars['date'] = pd.to_datetime(cars.date)
```

In [20]:

#After naraina

```
cars.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1498740 entries, 0 to 1498739
Data columns (total 15 columns):
    Column
                         Non-Null Count Dtype
    ----
                         -----
   brand
0
                         1498740 non-null object
                        1498740 non-null object
1 name
                        1498740 non-null object
2 bodyType
3 color
                        1498740 non-null object
 4 fuelType
                        1498740 non-null object
 5 year
                        1498740 non-null float64
 6 mileage
                        1498740 non-null float64
7 transmission
                        1498740 non-null object
8 power
                        1498740 non-null float64
9 price
                        1498740 non-null int64
10 vehicleConfiguration 1498740 non-null object
11 engineName
                        1498740 non-null object
12 engineDisplacement 1498740 non-null object 13 location 1498740 non-null object
14 date
                         1498740 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(3), int64(1), object(10)
memory usage: 171.5+ MB
```

3.3 Handling Duplicate Values

Checking for duplicate values

```
In [21]:
```

#ALLEL PALSING

```
cars.duplicated().sum()
```

Out[21]:

8048

In [22]:

cars[cars.duplicated()]

Out[22]:

	brand	name	bodyType	color	fuelType	year	mileage	transmission	power	price	vehicleConfiguration e	E
656	Nissan	Bluebird Sylphy	sedan	grey	Gasoline	2005.0	247000.0	АТ	109.0	650000	1.5 15M FOUR 4WD	
2658	Nissan	Bluebird Sylphy	sedan	grey	Gasoline	2005.0	247000.0	АТ	109.0	650000	1.5 15M FOUR 4WD	
4659	Nissan	Bluebird Sylphy	sedan	grey	Gasoline	2005.0	247000.0	АТ	109.0	650000	1.5 15M FOUR 4WD	
6659	Nissan	Bluebird Sylphy	sedan	grey	Gasoline	2005.0	247000.0	АТ	109.0	650000	1.5 15M FOUR 4WD	
8659	Nissan	Bluebird Sylphy	sedan	grey	Gasoline	2005.0	247000.0	АТ	109.0	650000	1.5 15M FOUR 4WD	
1491234	Suzuki	Jimny Wide	jeep 3 doors	silver	Gasoline	1998.0	229000.0	АТ	85.0	350000	1.5 G 4WD	
1492843	Suzuki	Jimny Wide	jeep 3 doors	silver	Gasoline	1998.0	229000.0	АТ	85.0	350000	1.5 G 4WD	

	brand	name	bodyType	color	fuelType	year	mileage	transmission	power	price	vehicleConfiguration	€
1494449	Suzuki	Jimny Wide	jeep 3 doors	silver	Gasoline	1998.0	229000.0	АТ	85.0	350000	1.5 G 4WD	
1496052	Suzuki	Jimny Wide	jeep 3 doors	silver	Gasoline	1998.0	229000.0	АТ	85.0	350000	1.5 G 4WD	
1497637	Suzuki	Jimny Wide	jeep 3 doors	silver	Gasoline	1998.0	229000.0	АТ	85.0	350000	1.5 G 4WD	

8048 rows × 15 columns

1

Dropping the Duplicates

```
In [23]:
```

```
cars.drop_duplicates(inplace=True)
```

In [24]:

```
#After dropping
cars.duplicated().sum()
```

Out[24]:

0

3.4 Handling Outliers

Checking outliers through Boxplot

```
In [25]:
```

```
cars.boxplot(column=['mileage','power','price'])
```

Out[25]:

<AxesSubplot:>

We can clearly see here that there are many outlier values in 'price' column but we can't manipulate or remove these outlier values because these values are helpful in our analysis. Hence we will not operate on these outlier value.

Minimum, Maximum, Count and Mean Mileage of each bodyType of car

```
In [26]:
```

Out[26]:

	min	max	count	mean
bodyType				
coupe	1000.0	384000.0	6038	154054.82
hatchback 3 door	1000.0	500000.0	8249	177895.38
hatchback 5 doors	1000.0	1000000.0	131713	142062.65
jeep 3 doors	1000.0	556000.0	113256	197989.40
jeep 5 doors	1000.0	1000000.0	657612	165320.42
liftback	91000.0	300000.0	4059	174588.81
minivan	1000.0	1000000.0	119929	209302.62
open	120000.0	160000.0	832	141875.00
pickup	1000.0	1000000.0	35655	172418.50
sedan	1000.0	1000000.0	283360	218663.81
station wagon	1000.0	900000.0	129989	195847.76

QUERY 2

The scatter plot shows a slight positive correlation between <code>price</code> and <code>power</code>.

In [27]:

```
df = cars.sort_values(by=['brand'], ascending=False).head(15000)
plt.rcParams['figure.figsize']=(15,8)
sns.scatterplot(x=df.power,y=df.price,hue=df.bodyType,s=200)
plt.legend(loc='upper left',fontsize='12')
plt.xlabel('power')
plt.ylabel('price')
```

Out[27]:

```
Text(0, 0.5, 'price')
```


QUERY 3

mileages with each fueltype on the basis of Transmisson

```
In [28]:
```

```
top10data = cars.query("mileage>= 10000")
for i,j in top10data.groupby('fuelType'):
    sns.barplot(x=j['transmission'],y=j['mileage'],label=f"{i}",palette='hsv_r')
    plt.title(f"Efficiency with {i} ",fontsize=20)
    plt.ylabel('mileage',fontsize=20)
    plt.xlabel("Transmission",fontsize=20)
    plt.xticks(fontsize = 10)
    plt.yticks(fontsize = 10)
    plt.show()
```


Transmission

QUERY 4

query for revenue generated by different car brands

```
In [29]:
```

```
df= cars['price'].groupby(cars['brand']).value_counts().unstack('brand').sum(axis=0)
plt.figure(figsize = (15,5))
plt.plot(df, marker='*',color='purple')
plt.xlabel('Brands',fontsize=15)
plt.ylabel('Revenue (INR)',fontsize=15)
plt.xticks(size = 10, rotation=40, ha="right")
plt.yticks(size = 10)
plt.title('Revenue generated by car brands', fontsize=20, fontweight="bold")
plt.grid()
```


QUERY 5

query for car body type distribution

```
In [30]:
```

Out[30]:

<function matplotlib.pyplot.show(close=None, block=None)>

Car Body Type Distribution

It can be seen that jeep 5 doors dominates the car body type

query for car color wise distribution

Out[31]:

count

color white 453154.0 grey 283428.0 black 265179.0 silver 163156.0 blue 118403.0 green 62443.0 42679.0 red 25099.0 brown 24042.0 burgundy 16583.0 beige

In [32]:

```
df = pd.DataFrame(cars['name'].groupby(cars['color'])
                  .value counts()
                  .unstack('color')
                  .sum(axis=0,skipna=True)
                  .sort values(ascending=False)).rename(columns={0:'count'})
df=df.head(10)
mycolors= ["white", "gray", "black", "silver", "blue", "green", "red", "brown", "violet"
, "beige"]
plt.figure(figsize = (9,9))
plt.pie(df['count'], labels=df.index, colors=mycolors, autopct='%.1f%%',
        wedgeprops= {"edgecolor":"black",
                     'linewidth': 0.2,
                      'antialiased': True}, textprops={'fontsize': 11})
plt.title("Color wise distribution", fontsize=20, fontweight="bold")
# plt.xlabel(df, fontsize=15)
plt.show
```

Out[32]:

<function matplotlib.pyplot.show(close=None, block=None)>

Color wise distribution

This bar chart shows the sale of cars having white color is more than any other

QUERY 7

query for fueltype categorisation according to brand

```
In [33]:
```

```
cdf = cars['brand'].groupby(cars['fuelType']).value_counts().unstack('fuelType')
cdf=cdf.fillna(0)
axis = np.arange(len(cdf))
plt.figure(figsize = (15,10))
plt.bar(axis-0.1, cdf['Diesel'], 0.3, label = 'Diesel', color='black')
plt.bar(axis+0.1, cdf['Gasoline'], 0.3, label = 'Gasoline', color='red')

plt.title("Fueltype Categorisation according to brand", fontsize = 20, fontweight = 'bold')
plt.xlabel("Brand", fontsize = 20)
plt.ylabel("number of Cars", fontsize=20)
plt.xticks(axis, cdf.index, rotation=90, size = 10)
plt.yticks(size = 14)
plt.legend()
```

Out[33]:

<matplotlib.legend.Legend at 0x2bd355ac670>

it is evident that companies manufacture gasoline fueltype cars more than diesel

QUERY 8

This pie chart shows the transmission of the cars

```
In [34]:
```

```
b = cars.transmission.value_counts()
b
```

Out[34]:

AT 931439 CVT 298975 Manual 178319 Automatic 54145 Robot 27814

Name: transmission, dtype: int64

In [35]:

AT transmission has the greatest share in transmissioin types followed by CVT and manual

QUERY 9

```
c = cars.color.value_counts()
c
```

Out[36]:

453154 white 283428 grey 265179 black 163156 silver blue 118403 green 62443 red 42679 brown 25099 burgundy 24042 beige 16583 golden 14204 violet 7748 6535 yellow 6232 orange 1807 pink Name: color, dtype: int64

In [37]:

```
plt.figure(figsize = (15,8))
sns.countplot(x = 'color', data = cars)
```

Out[37]:

<AxesSubplot:xlabel='color', ylabel='count'>

QUERY 10

query for car sales location

```
In [38]:
```

```
plt.figure(figsize=(15,8))
sns.countplot(x = 'location', data = cars)
```

Out[38]:

<AxesSubplot:xlabel='location', ylabel='count'>

it can be noticed that most cars are sold in 'Petropavlovsk-Kamchatskij' and 'Elizovo'

QUERY 11

query for car sold with respect to Engune Name

```
In [39]:
```

```
cars.engineName.value_counts().sort_values(ascending = False).head().plot(kind = 'bar',f
igsize = (15,5), color=['violet','purple'])
```

Out[39]:

<AxesSubplot:>

This bar plot shows the car having engine name 1NZ-FE have highest sale

QUERY 12

query for various engineDisplacement cars sold

In [40]:

cars.engineDisplacement.value_counts().sort_values(ascending = False).head(10).plot(kind = 'bar', figsize = (15,8), color=['orange', 'yellow'])

Out[40]:

<AxesSubplot:>

Cars having 2.0LTR engine Displacement have more sale

QUERY 13

query for max cars sold and their years

In [41]:

```
cars.groupby('year')['bodyType'].value_counts().sort_values(ascending = False).head(10).
plot(kind = 'bar', figsize = (15,5), color=['green', 'olive'])
```

Out[41]:

<AxesSubplot:xlabel='year,bodyType'>

(199)

year,bodyType

Cars of jeep 5 doors bodytype have more sales

QUERY 14

query for car sales

```
In [42]:
```

```
cars.name.value_counts().sort_values(ascending = False).head(10).plot(kind = 'barh', figs
ize = (15,8),color=sns.color_palette('flare'))
```

Out[42]:

<AxesSubplot:>

Land Cruiser Prado car have maximum Sale

QUERY 15

This pie chart shows the type of cars based on ${\tt fuelType}$

In [43]:

```
a = cars.fuelType.value_counts()
plt.figure(figsize=(12,5))
plt.pie(a, labels = a.index, shadow = True, autopct='%.0f%%', colors= ['pink', 'purple'])
plt.show()
```


most cars have fueltype as Gasoline followed by diesel

QUERY 16

query for max cars sold with respect to brand

```
In [44]:
```

```
cars.brand.value_counts().sort_values(ascending = False).head(10).plot(kind = 'barh', co
lor=['red', 'orange'] ,figsize = (15,8))
```

Out[44]:

<AxesSubplot:>

Toyota Company Has highest sales

QUERY 17

query for powers of car

```
In [45]:
```

```
sns.kdeplot(x = 'power', data = cars)
```

Out[45]:

```
<AxesSubplot:xlabel='power', ylabel='Density'>
```


Average powers of all cars are between 100 to 200

QUERY 18

Query for displaying no of cars manufactured per year(after 2010) of each brand

```
In [46]:
```

```
cdf = cars[cars['year']>2010]
cdf=cdf['brand'].groupby(cars['year']).value_counts().unstack('year').fillna(0)

cdf
plt.figure(figsize=(18,10))
ax = sns.heatmap(cdf, annot=True, fmt="f", cmap='Reds')
plt.ylabel('brand', fontsize = 15)
plt.xlabel('Year', fontsize = 15)
plt.title('cars manufactured of each brand Per year ', fontsize = 18)
plt.show
```

Out[46]:

<function matplotlib.pyplot.show(close=None, block=None)>

cars manufactured of each brand Per year												
BMW -	0.000000	316.000000	0.000000	0.000000	0.000000	0.000000	307.000000	0.000000	0.000000	0.000000	0.000000	١
Daihatsu -	175.000000	0.000000	0.000000	48.000000	0.000000	506.000000	466.000000	527.000000	0.000000	0.000000	0.000000	
Ford -	0.000000	0.000000	372.000000	0.000000	217.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
Honda -	2928.000000	2371.000000	6936.000000	2847.000000	11955.000000	5589.000000	1975.000000	3638.000000	295.000000	0.000000	0.000000	
Hyundai -	0.000000	287.000000	0.000000	0.000000	0.000000	0.000000	0.000000	605.000000	0.000000	658.000000	0.000000	
Infiniti -	574.000000	0.000000	77.000000	289.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
Jeep -	0.000000	328.000000	266.000000	0.000000	0.000000	0.000000	0.000000	1435.000000	0.000000	0.000000	0.000000	
Kia -	492.000000	318.000000	0.000000	33.000000	289.000000	187.000000	865.000000	167.000000	0.000000	0.000000	0.000000	
Lada -	1296.000000	475.000000	0.000000	0.000000	0.000000	292.000000	1115.000000	0.000000	2056.000000	0.000000	0.000000	
Lamborghini -	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	193.000000	0.000000	0.000000	0.000000	
Land Rover -	0.000000	0.000000	349.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
Lexus -	0.000000	5146.000000	5345.000000	5964.000000	2881.000000	5532.000000	2134.000000	1059.000000	2064.000000	0.000000	2478.000000	
Mazda -	636.000000	0.000000	683.000000	286.000000	0.000000	637.000000	417.000000	383.000000	0.000000	0.000000	0.000000	
Mercedes-Benz -	418.000000	415.000000	0.000000	417.000000	1565.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
Mitsubishi -	695.000000	2678.000000	1425.000000	319.000000	887.000000	1118.000000	4457.000000	3573.000000	1428.000000	763.000000	2841.000000	
Nissan -	4660.000000	1070.000000	1736.000000	1880.000000	3835.000000	1977.000000	1851.000000	731.000000	0.000000	315.000000	0.000000	
Peugeot -	0.000000	456.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
Porsche -	0.000000	0.000000	582.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
SsangYong -	0.000000	331.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
Subaru -	1228.000000	1185.000000	974.000000	2288.000000	7478.000000	1055.000000	2034.000000	3693.000000	0.000000	0.000000	0.000000	
Suzuki -	1724.000000	1263.000000	2422.000000	5089.000000	1959.000000	298.000000	2328.000000	1962.000000	0.000000	0.000000	0.000000	
Toyota -	3397.000000	15634.000000	13663.000000	4379.000000	20125.000000	12496.000000	21860.000000	2192.000000	4879.000000	1944.000000	308.000000	
UAZ -	0.000000	462.000000	386.000000	409.000000	0.000000	194.000000	0.000000	298.000000	0.000000	447.000000	0.000000	
Volkswagen -	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	55.000000	0.000000	0.000000	0.000000	0.000000	
	2011.0	2012.0	2013.0	2014.0	2015.0	2016.0	2017.0	2018.0	2019.0	2020.0	2021.0	

Year

QUERY 19

Heatmap of Various Parameters for each loaction

```
In [47]:
```

```
plt.rcParams['figure.figsize'] = [8,8]
k=['mileage','price','power','color','fuelType','bodyType']
for i,j in cars.groupby('bodyType'):
    plt.title(f"Heatmap of Various Parameters for {i}")
    sns.heatmap(j[k].corr(),annot=True,square=True,linewidth=0.2)
    plt.show()
```


- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

QUERY 20

Correlation Matrix

```
In [48]:
```

```
corr = cars.loc[:,[ 'price','power', 'year']].corr()
corr
```

Out[48]:

	price	power	year
price	1.000000	0.559953	0.498009
power	0.559953	1.000000	0.176061
year	0.498009	0.176061	1.000000

In [49]:

```
fig = plt.figure(figsize=(14, 5))
ax1 = plt.subplot()
ax1 = sns.heatmap(corr, annot=True, cmap='Greens', vmax=1, center=0.5, square=True, lin
ewidths=2)
ax1.set_title('Correlation matrix', fontsize=20)
plt.yticks(rotation=0)
```

Out[49]:

```
(array([0.5, 1.5, 2.5]),

[Text(0, 0.5, 'price'), Text(0, 1.5, 'power'), Text(0, 2.5, 'year')])
```

Correlation matrix

price and power increase with increase in year of manufacture

Conclusion

In the Given dataset we explored and learnt many things.

- Average powers of all cars are between 100 to 200
- Land Cruiser Prado car have maximum Sale
- Toyota Company has highest sales and revenue
- Cars of 2.0LTR engine type have more sales
- · White color cars are most common
- Most cars have fueltype as Gasoline followed by diesel
- price and power increase with increase in year of manufacture
- AT transmission has the greatest share in transmissioin types followed by CVT and manual
- Cars of jeep 5 doors bodytype have more sales
- Cars having 2.0LTR engine Displacement have more sale
- car having engine name 1NZ-FE have highest sale