Cursul 5

(plan de curs)

§3. Problema Cauchy pentru ecuații de ordin superior

Fie I un interval deschis din \mathbb{R} , Ω o mulțime deschisă din \mathbb{R}^n , $g: I \times \Omega \to \mathbb{R}$ o funcție continuă, $a \in I$ și $\xi = (\xi_1, \xi_2, \dots, \xi_n) \in \Omega$.

Problema Cauchy

$$\begin{cases} y^{(n)} = g(t, y, y', \dots, y^{(n-1)}) \\ y(a) = \xi_1, \ y'(a) = \xi_2, \dots, y^{(n-1)}(a) = \xi_n. \end{cases}$$
 (1)

constă în determinarea unei funcții de clasă C^n , $y: J \to \mathbb{R}$, unde $J \subset I$ este un interval cu $a \in J$, funcție pentru care $(y(t), y'(t), \dots, y^{n-1}(t)) \in \Omega$ și

$$y^{(n)}(t) = g(t, y(t), y'(t), \dots, y^{(n-1)}(t)),$$

pentru orice $t \in J$, și care verifică și condițiile inițiale $y(a) = \xi_1, y'(a) = \xi_2, \dots, y^{(n-1)}(a) = \xi_n$.

Fie y = y(t) o soluție a problemei (1). Notăm funcția y și primele n-1 derivatele ale sale cu x_1, x_2, \ldots, x_n , mai precis

$$\begin{cases} x_1 = y \\ x_2 = y' \\ \vdots \\ x_n = y^{(n-1)}. \end{cases}$$
 (2)

Este uşor de văzut că funcțiile x_1, x_2, \ldots, x_n sunt cel puțin de clasă C^1 și verifică următorul sistem diferențial de ordin întâi

$$\begin{cases} x'_1 = x_2 \\ x'_2 = x_3 \\ \vdots \\ x'_{n-1} = x_n \\ x'_n = g(t, x_1, x_2, \dots x_n) \end{cases}$$
(3)

și, mai mult, respectă condiția inițială

$$\begin{cases} x_1(a) = \xi_1, \\ x_2(a) = \xi_2, \\ \vdots \\ x_n(a) = \xi_n. \end{cases}$$

$$(4)$$

Reciproc, dacă $x = (x_1, x_2, ..., x_n)$ este o soluție a problemei Cauchy (3) şi (4), atunci, notând prima componentă x_1 cu y, observăm uşor că au loc relațiile (2) şi că y = y(t) verifică problema Cauchy (1).

Am arătat astfel că, prin intermediul transformării

$$(x_1, x_2, \dots, x_n) = (y, y', \dots, y^{(n-1)})$$

problema Cauchy (1), asociată unei ecuații diferențiale de ordin n, este echivalentă cu următoarea problemă Cauchy atașată unui sistem de n ecuații diferențiale de ordinul întâi

$$\begin{cases} x' = f(t, x) \\ x(a) = \xi, \end{cases}$$
 (5)

unde

$$f(t,x) = (x_2, x_3, \dots, x_n, g(t, x_1, x_2, \dots, x_n))$$
(6)

Aplicând Teorema lui Picard problemei (5) obținem imediat următorul rezultat:

Teorema 1 Fie $a \in \mathbb{R}$, h > 0, $\xi = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$. Dacă funcția $g : \Delta = [a-h, a+h] \times B(\xi, r) \to \mathbb{R}^n$ este continuă pe Δ și lipschitziană pe $B(\xi, r)$ atunci există $\delta > 0$ astfel încât pe intervalul $[a - \delta, a + \delta]$ problema Cauchy (1) admite soluție unică.

Justificare. Este suficient să observăm că, dacă g este continuă şi lipschitziană pe $B(\xi, r)$, atunci şi funcția f dată de (6) are aceleași proprietăți.

Existență și unicitate globală

§1. Unicitatea globală

Fie $I \subset \mathbb{R}$ un interval deschis, $\Omega \subset \mathbb{R}^n$ o deschisă, fie $f: I \times \Omega \to \mathbb{R}^n$ o funcție continuă pe $I \times \Omega$ și local lipschitziană pe Ω , fie $a \in I$ și $\xi \in \Omega$. Considerăm problema Cauchy

$$\Re(I, \Omega, f, a, \xi) \begin{cases} x' = f(t, x) \\ x(a) = \xi. \end{cases}$$

Definiția 1 O funcție $f: I \times \Omega \to \mathbb{R}^n$ se numește local lipschitziană pe Ω dacă pentru orice submulțime compactă \mathcal{K} din $I \times \Omega$, există $L = L(\mathcal{K}) > 0$ astfel încât, pentru orice $(t, u), (t, v) \in \mathcal{K}$ să avem

$$||f(t,u) - f(t,v)|| \le L||u - v||.$$
 (1)

Observația 1 Dacă funcția $f: I \times \Omega \to \mathbb{R}^n$ are derivate parțiale în raport cu ultimele n variabile și, pentru orice $i, j \in \{1, 2, ..., n\}, (\partial f_i)/(\partial x_j)$ este continuă pe $I \times \Omega$, atunci f este local lipschitziană pe Ω .

Vom considera numai cazul soluțiilor la dreapta, pentru cazul la stânga fiind aplicabil Principiul soluțiilor retograde.

Lema 1 Pentru orice $a \in I$ şi $\xi \in \Omega$ problema $\mathcal{PC}(I, \Omega, f, a, \xi)$ admite local o soluție unică.

Demonstrație. Deoarece atât I cât și Ω sunt mulțimi deschise, există h>0 și r>0 astfel încât $\Delta=[a,a+h]\times B(\xi,r)\subset I\times\Omega$. Deoarece f=f(t,x) este local lipschitziană, iar $\Delta\subset I\times\Omega$ este compactă, rezultă că este lipschitziană pe $B(\xi,r)$ și se poate aplica Teorema existență și unicitate locală a lui Picard.

Teorema 1 În ipotezele precizate, pentru orice $(a, \xi) \in I \times \Omega$, oricare două soluții x și y ale $\mathcal{PC}(I, \Omega, f, a, \xi)$ coincid pe intervalul comun de definiție.

Demonstrație. Fie $(a, \xi) \in I \times \Omega$ și fie $x : [a, b_1) \to \Omega$ și $y : [a, b_2) \to \Omega$ două soluții ale $\mathcal{PC}(I, \Omega, f, a, \xi)$ cu, de exemplu, $b_1 \leq b_2$. Mulțimea

$$\mathcal{C} = \{t \in [a, b_1); \ x(s) = y(s) \text{ pentru orice } s \in [a, t]\}$$

este nevidă, din Lema 1. Pentru a încheia demonstrația este suficient să arătăm că

$$\sup \mathcal{C} = b_1. \tag{2}$$

În acest scop să presupunem pentru reducere la absurd că (2) nu are loc. Întrucât sup $\mathbb{C} \leq b_1$, urmează că sup $\mathbb{C} < b_1$. Notăm $b = \sup \mathbb{C}$ și $\eta = x(b) \in \Omega$ și observăm că, din continuitatea funcțiilor x și y, rezultă $y(b) = x(b) = \eta$. Din Lema 1 rezultă că există $\delta > 0$ astfel încât $[b, b + \delta] \subset [a, b_1)$ și pe $[b, b + \delta]$ problema $\mathfrak{PC}(I, \Omega, f, b, \eta)$, are soluție unică, deci x(t) = y(t) pentru orice $t \in [b, b + \delta]$ și este contrazisă astfel definiția lui $b = \sup \mathbb{C}$.

Pentru a elimina contradicția este necesar ca (2) să aibă loc. Demonstrația este încheiată.

§2. Soluții saturate

Fie $I \subset \mathbb{R}$ un interval deschis, $\Omega \subset \mathbb{R}^n$ o deschisă, fie $f: I \times \Omega \to \mathbb{R}^n$ o funcție continuă pe $I \times \Omega$ și local lipschitziană pe Ω , fie $a \in I$ și $\xi \in \Omega$.

$$\mathcal{PC}(I, \Omega, f, a, \xi)$$

$$\begin{cases} x' = f(t, x) \\ x(a) = \xi. \end{cases}$$

Considerăm numai soluții la dreapta.

Lema 2 O soluție $x:[a,b)\to\Omega$ a $\mathfrak{PC}(I,\Omega,f,a,\xi)$ este continuabilă dacă şi numai dacă

- (i) $b < \sup I$ si
- (ii) $\exists \lim_{t \nearrow b} x(t) = x^* \in \Omega$.

Demonstrație. Necesitatea este evidentă, în timp ce suficiența este o consecință a Lemei 1 combinată cu Principiul de concatenare.

Observația 2 Din Lema 2 rezultă cu uşurință că orice soluție saturată a $\mathcal{PC}(\mathcal{D})$ este în mod necesar definită pe un interval deschis la dreapta.

Lema 3 Fie $x:[a,b)\to\Omega$ o soluție a $\mathcal{PC}(I,\Omega,f,a,\xi)$. Dacă $b<+\infty$ și există M>0 astfel încât

$$||f(\tau, x(\tau))|| \le M$$

pentru orice $\tau \in [a,b)$ atunci există $\lim_{t \nearrow b} x(t) = x^*$.

Demonstrație. Știm că soluția x = x(t) verifică ecuația

$$x(t) = \xi + \int_{a}^{t} f(\tau, x(\tau)) d\tau$$

pentru orice $t \in [a, b)$. Obţinem imediat că

$$||x(t) - x(s)|| \le \left| \int_{s}^{t} ||f(\tau, x(\tau))|| d\tau \right| \le M|t - s|$$

pentru orice $t, s \in [a, b)$. Ca atare x satisface condiția lui Cauchy de existență a limitei finite la stânga în b, care în acest caz are forma:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{a. i. dacă} \ t, s \in (b - \delta, b) \ \text{atunci} \ \|x(t) - x(s)\| < \varepsilon.$$

Într-adevăr, este suficient să alegem $\delta = \frac{\varepsilon}{2M}$.

Teorema 2 Soluția $x:[a,b) \to \Omega$ a problemei $\mathcal{PC}(I,\Omega,f,a,\xi)$ este continuabilă dacă și numai dacă graficul său

$$\operatorname{graf}(x) = \{(t, x(t)) \in \mathbb{R} \times \mathbb{R}^n; \ t \in [a, b)\}\$$

este inclus într-o submulțime compactă din $I \times \Omega$.

Demonstrație. Necesitatea. Dacă x este continuabilă atunci $b \in I$ şi x poate fi extinsă prin continuitate la o funcție $y : [a,b] \to \Omega$. Cum funcția $t \mapsto (t,y(t))$ este continuă pe mulțimea compactă [a,b], rezultă că imaginea ei $\{(t,y(t)); t \in [a,b]\}$ este compactă. Pe de altă parte, această imagine include $\operatorname{graf}(x)$ şi este evident inclusă în $I \times \Omega$.

Suficiența. Dacă graf (x) este inclus într-o submulțime compactă $\mathcal K$ din $I \times \Omega$, cum I este un interval deschis, urmează că b este punct interior lui I și ca atare $b < \sup I$. În plus, f fiind continuă pe $I \times \Omega$, este mărginită pe compactul $\mathcal K$, deci există deci M > 0 astfel încât

$$||f(\tau, x(\tau))|| \le M$$

pentru orice $\tau \in [a,b)$. Concluzia teoremei rezultă din Lemele 2 și 3.

Consecința 1 Fie $\Omega = \mathbb{R}^n$. O soluție neglobală $x : [a,b) \to \Omega$ a problemei $\mathfrak{PC}(I,\mathbb{R}^n,f,a,\xi)$ este saturată dacă și numai dacă este nemărginită.

Teorema 3 $Dacă x: J \to \Omega$ $cu J = [a, a+h_x]$ $sau J = [a, a+h_x)$ este o soluție a $\mathfrak{PC}(I, \Omega, f, a, \xi)$, atunci, fie x este saturată, fie x poate fi prelungită până la o soluție saturată unic determinată de datele inițiale.

Demonstrație. Dacă x este saturată nu avem ce demonstra. Să presupunem atunci că x nu este saturată, adică $a + h_x < \sup I$.

Definim S ca fiind mulţimea tuturor soluţiilor problemei $\mathcal{PC}(I, \Omega, f, a, \xi)$ care extind x, mai precis

$$\mathbb{S} = \{ y : [a, a + h_y) \to \Omega, \ y \text{ prelungire a lui } x \text{ cu } h_x < h_y \},$$

și considerăm

$$H = \sup_{y \in \mathbb{S}} h_y.$$

Definim $\tilde{x}: [a, a+H) \to \Omega$ prin

$$\tilde{x}(t) = y(t)$$
 dacă $y \in S$ și $t \in [a, a + h_y)$.

Din proprietatea de unicitate globală dată de Teorema 1 rezultă că funcția de mai sus este bine definită, din Principiul de concatenare rezultă că este o soluție a problemei $\mathcal{PC}(I,\Omega,f,a,\xi)$ care, în mod evident, nu mai este prelungibilă.

Consecința 2 În ipotezele date, pentru orice $(a, \xi) \in I \times \Omega$, $\mathcal{PC}(I, \Omega, f, a, \xi)$ are o soluție saturată unică.

Ştim că dacă o soluție neglobală $x:[a,b)\to\Omega$ are limită la stânga lui b și această limită aparține lui Ω atunci este continuabilă. Următoarea teoremă spune în esență că, pentru a fi continuabilă, este suficient să aibă un punct limită la stânga lui b aparținând lui Ω .

Teorema 4 O soluție $x:[a,b)\to\Omega$ a $\mathcal{PC}(I,\Omega,f,a,\xi)$ este continuabilă dacă și numai dacă

- (i) $b < \sup I$ si
- (ii) $\exists t_k \nearrow b \text{ astfel } \hat{i}nc\hat{a}t \ \exists \lim_{k \to \infty} x(t_k) = x^* \in \Omega.$

Demonstrație. Necesitatea fiind evidentă, vom demonstra suficiența. Presupunem deci că $b < \sup I$ și că în intervalul [a, b) există un șir $(t_k)_n$ convergent la b pentru care există $x^* = \lim_{k \to \infty} x(t_k)$ și aparține lui Ω .

Deoarece Ω este deschisă și $x^* \in \Omega$, există r > 0 astfel încât

$$B(x^*, r) = \{x \in \mathbb{R}^n \; ; \; ||x - x^*|| \le r\} \subset \Omega.$$

Funcția f fiind continuă pe mulțimea compactă $[a,b] \times B(x^*,r) \subset I \times \Omega$, există M>0 astfel încât

$$||f(t,x)|| \le M,$$

pentru orice $(t, x) \in [a, b] \times B(x^*, r)$.

Ideea este să arătăm că după ce trece de un t_k suficient de apropiat de b soluția are viteza mărginită de $||x'(t)|| = ||f(t, x(t))|| \le M$ și nu mai are timp să părăsească bila $B(x^*, r)$, rămânând astfel într-un compact, de unde va urma că este continuabilă.

Mai precis, ținând cont că $t_k\nearrow b$ și $x(t_k)\to x^*$, putem fixa un $k\in\mathbb{N}$ astfel încât

$$\begin{cases} b - t_k < \frac{r}{4M} \\ \|x(t_k) - x^*\| < \frac{r}{4}. \end{cases}$$

Dorim să arătăm că $x(t) \in B(x^*, r)$ pentru orice $t \in [t_k, b)$. Presupunem că are loc contrariul, deci că există un $\tilde{t} \in [t_k, b)$ pentru care $x(\tilde{t}) \notin B(x^*, r)$.

Deoarece $x(t_k) \in B(x^*, r)$ rezultă că $t_k < \tilde{t} < b$ şi definim "primul moment" când soluția x = x(t) părăsește interiorul bilei $B(x^*, r)$ prin

$$t^* = \sup\{t \in [t_k, b]; x(s) \in B(x^*, r) \text{ pentru orice } s \in [t_k, t]\}.$$

Din continuitatea funcției $t \to ||x(t) - x^*||$ rezultă imediat că mulțimea a cărui supremum este t^* este nevidă, că $t^* \in (t_k, \tilde{t})$ și că $||x(t^*) - x^*|| = r$.

Din

$$x(t^*) = x(t_k) + \int_{t_k}^{t^*} f(s, x(x)) ds,$$

ținând cont că $x(s) \in B(x^*, r)$ pentru orice $s \in [t_k, t^*]$, avem estimarea

$$||x(t^*) - x(t_k)|| \le \int_{t_k}^{t^*} ||f(s, x(s))|| ds \le (t^* - t_k)M \le (b - t_k)M \le \frac{r}{4}$$

și, prin urmare, ajungem la următoarea contradicție:

$$0 < r = ||x(t^*) - x^*|| \le ||x(t^*) - x(t_k)|| + ||x(t_k) - x^*|| \le \frac{r}{4} + \frac{r}{4} = \frac{r}{2}.$$

Această contradicție arată că presupunerea făcută este falsă, deci $x(t) \in B(x^*, r)$ pentru orice $t \in [t_k, b)$.

In sfârşit, am arătat că graficul soluției la dreapta lui t_k este inclus în mulțimea compactă $[t_k, b] \times B(x^*, r)$, de unde urmează că soluția este continuabilă.

Observația 3 Din teorema de mai sus rezultă că dacă $x:[a,b) \to \Omega$ este o soluție saturată neglobală, atunci toate punctele limită finite la stânga lui b se află pe frontiera lui Ω .

Într-adevăr, dacă $x^* \in \mathbb{R}^n$ este un astfel de punct limită, atunci x^* nu poate fi în Ω , dar el este punct de acumulare pentru Ω , deci $x^* \in \overline{\Omega} \setminus \Omega = \partial \Omega$.

Exemplul 1. Pentru problema Cauchy

$$\begin{cases} x' = -\frac{t}{x}, & (t, x) \in \mathbb{R} \times (0, +\infty) = I \times \Omega, \\ x(0) = 1, & \end{cases}$$

unica soluție saturată la dreapta este funcția

$$x(t) = \sqrt{1 - t^2},$$

definită pe intervalul maximal [0,1), cu $\lim_{t \nearrow 1} x(t) = 0 \in \partial \Omega$, în conformitate cu observația de mai sus.

Consecința 3 Fie $\Omega = \mathbb{R}^n$. O soluție neglobală $x : [a,b) \to \Omega$ a problemei $\mathfrak{PC}(I,\mathbb{R}^n, f, a, \xi)$ este saturată dacă și numai dacă

$$\lim_{t \nearrow b} \|x(t)\| = +\infty.$$

Demonstrație. Fie $x:[a,b) \to \Omega$ o soluție saturată neglobală a problemei $\mathcal{PC}(I,\mathbb{R}^n,f,a,\xi)$. Din Consecința 1 știm că x este în mod necesar nemărginită pe [a,b), de unde deducem că măcar pe un șir $t_k \nearrow b$ avem $\lim_{k\to\infty} \|x(t_k)\| = +\infty$.

Vrem să arătăm acum că, în acest caz, avem chiar $\lim_{t \nearrow b} \|x(t)\| = +\infty$. Presupunem contrariul și negăm propoziția: $\forall M > 0 \,\exists \, \delta > 0$ astfel încât pentru toți $t \in (b - \delta, b)$ avem $\|x(t)\| \geq M$.

Obţinem: $\exists M_0 > 0$ astfel încât pentru $\forall \delta > 0 \exists t_\delta \in (b - \delta, b)$ pentru care $\|x(t_\delta)\| < M_0$. Alegând pe rând $\delta = \frac{1}{k}$, pentru $k = 1, 2, \ldots$, obţinem existenţa unui şir $(t_k)_k$ convergent la b pentru care $\|x(t_k)\| < M_0$, $\forall k$. Evident că acest şir admite un subşir $(t_{k_h})_h$ pentru care $x(t_{k_h})$ este convergent la un $x^* \in \mathbb{R}^n = \Omega$, de unde urmează că soluţia este continuabilă, şi astfel am ajuns la contradicţia căutată.

Exemplul 2. Pentru problema Cauchy

$$\begin{cases} x' = x^2, & (t, x) \in \mathbb{R} \times \mathbb{R} = I \times \Omega, \\ x(0) = 1, \end{cases}$$

unica soluție saturată la dreapta este funcția

$$x(t) = \frac{1}{1-t},$$

definită pe intervalul maximal [0,1), cu $\lim_{t \nearrow 1} x(t) = +\infty$, în conformitate cu Consecința 3.

Exemplul 3. Problema Cauchy

$$\begin{cases} x' = -\frac{1}{t}x - \frac{1}{t^3}\cos\frac{1}{t}, \ (t, x) \in (-\infty, 0) \times \mathbb{R} = I \times \Omega, \\ x(-\frac{1}{\pi}) = 0, \end{cases}$$

admite soluția saturată la dreapta

$$x(t) = \frac{1}{t} \sin \frac{1}{t},$$

definită pe intervalul maximal $[-\frac{1}{\pi},0)$. Pentru această soluție nu există $\lim_{t \nearrow 0} |x(t)|$ și mai mult, orice $x^* \in \Omega = \mathbb{R}$ este punct limită la stânga lui b = 0, dar nu sunt contrazise nici Teorema 4 nici Consecința 3, deoarece nu sunt aplicabile: ele se referă la soluții neglobale iar această soluție saturată este globală.