第一章 二维随机变量

1.1 联合分布函数的计算

Remark. (联合分布函数的性质)

(1) $0 \le F(x,y) \le 1, -\infty < x < +\infty, F(-\infty,y) = F(x,-\infty) = F(-\infty,-\infty) = 0, F(+\infty,+\infty) = 1$

- (2) F(x,y) 关于 x 和 y 均单调不减
- (2) F(x,y) 关于 x 和 y 均右连续
- (4) $P{a < X \le b, c < Y \le b} = F(b, d) F(b, c) F(a, d) + F(a, c)$
 - 1. 设随机变量 X 与 Y 相互独立, $X \sim B(1,p),Y \sim E(\lambda)$, 则 (X,Y) 的联合分布函数 $F(x,y) = _____$.

Solution. 由 X 和 Y 相互独立,则有 $F_{XY}(x,y) = F_X(x)F_Y(y), f(x,y) = f_X(x)F_Y(x), X$ 的概率分布如下:

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

则 X 的分布函数为

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

1.2 二维离散型随机变量分布的计算

2

而 $Y \sim E(\lambda)$, 故

$$F_{XY}(x,y) = F_X(x)F_Y(y) = \begin{cases} (1-p)(1-e^{-\lambda y}), & 0 \le x < 1, y > 0 \\ 1-e^{-\lambda y}, & x \ge 1, y > 0 \\ 0, & \sharp \text{ } \end{cases}$$

1.2 二维离散型随机变量分布的计算

- 2. 设随机变量 X 与 Y 相互独立, 均服从参数为 p 的几何分布。
 - (a) 求在 $X + Y = n(n \ge 2)$ 的条件下,X 的条件概率分布;
 - (b) $\Re P\{X + Y \ge n\} (n \ge 2)$.

Solution.

(1)

$$P\{X+Y=n\} \xrightarrow{\Pi \cap \mathcal{P} \cap \mathcal{M} \setminus 1 \text{ 开始}} \sum_{k=1}^{n-1} P\{X=k, Y=n-k\}$$

$$\xrightarrow{\underline{\text{独立性}}} \sum_{k=1}^{n-1} P\{X=k\} P\{Y=n-k\}$$

$$= \sum_{k=1}^{n-1} (1-p)^{k-1} p \cdot (1-p)^{n-k-1} p$$

$$= \sum_{k=1}^{n-1} (1-p)^{n-2} p^2$$

$$= (n-1)(1-p)^{n-2} p^2$$

在 X + Y = n 的条件下,X 的条件概率为

$$P\{X = k \mid X + Y = n\} = \frac{P\{X = k, Y = n - k\}}{P\{X + Y = n\}}$$
$$= \frac{p^2(1 - p)^{n-2}}{(n-1)p^2(1-p)^{n-2}}$$
$$= \frac{1}{n-2}$$

 $k = 1, 2 \dots n - 1$ 这个范围千万别忘喽!

(2)

$$P\{X+Y \ge n\} = P\{X+Y=n\} + P\{X+Y=n+1\} + \dots$$
$$= \sum_{k=n}^{+\infty} P\{X+Y=k\}$$
$$= \sum_{k=n}^{+\infty} (k-1)p^2(1-p)^{k-2}$$

不妨先计算级数 $\sum_{k=n}^{\infty} (k-1)x^{k-2}$

$$\sum_{k=n}^{\infty} (k-1)x^{k-2} = \sum_{k=n}^{\infty} (x^{k-1})'$$

$$= \left(\frac{\sum_{n=k}^{\infty}}{x}\right)'$$

$$= \frac{(n-1)x^{n-2}(1-x) + x^{n-1}}{(1-x)^2}$$

故当 x = 1 - p 的时有

$$P\{X+Y \ge n\} = p^2 \frac{(n-1)(1-p)^{n-2}p + (1-p)^{n-1}}{p^2}$$
$$= (1-p)^{n-2}(np-2p+1)$$

1.3 二维连续型随机变量分布的计算

Remark. 主要内容

联合概率密度的性质

- (1) $f(x,y) \ge 0, -\infty < x < +\infty, -\infty < y < +\infty$;
- (2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx dy = 1 \; ;$
- (3) $P\{(X,Y) \in D\} = \iint_D f(x,y) \, dx \, dy$;
- (4) 在 f(x,y) 的连续点处有 $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$. 边缘概率密度

- (1) (X,Y) 关于 X 的边缘概率密度 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, dy$
- (2) (X,Y) 关于 Y 的边缘概率密度 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$ 条件概率密度
- (1) 在 Y = y 的条件下, X 的条件概率密度 $f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}$
- (2) 在 X = x 的条件下, Y 的条件概率密度 $f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$
- 3. (2010, 数一、三) 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = Ae^{-2x^2 + 2xy - y^2}, \quad -\infty < x < +\infty, -\infty < y < +\infty$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

Solution.

(方法一正常求) 首先通过规范性求出参数 A

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A e^{-2x^2 + 2xy - y^2} dx dy$$
$$= A \int_{-\infty}^{+\infty} e^{-x^2} dx \int_{-\infty}^{+\infty} e^{-(y-x)^2} dy$$
$$\xrightarrow{\text{Possion } \mathbb{A} / \mathbb{C}} A \pi = 1 \implies A = \frac{1}{\pi}$$

X 的边缘分布函数为

$$\int_{-\infty}^{+\infty} f(x,y)dy = \int_{-\infty}^{+\infty} \frac{1}{\pi} e^{-2x^2 + 2xy - y^2} dy$$
$$= \frac{1}{\pi} e^{-x^2} \int_{-\infty}^{+\infty} e^{-(y-x)^2}$$
$$= \frac{1}{\sqrt{\pi}} e^{-x^2}, x \in \mathbf{R}$$

则在 X = x 的条件下,Y 的条件概率为

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$$
$$= \frac{1}{\sqrt{\pi}}e^{-(y-x)^2}$$

(方法二, 通过二维正态分布) 形如 $f(x,y) = Ae^{ax^2+bxy+cy^2}$ 的函数如果是概率密度, 则其一定是某个二维正态的概率密度函数, 故

$$(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$$

1.3 二维连续型随机变量分布的计算

5

通过下一节讲的确定系数的办法,可以很快的确定

- 4. 设随机变量 $X \sim U(0,1)$, 在 X = x(0 < x < 1) 的条件下, 随机变量 $Y \sim U(x,1)$ 。
 - (a) 求 (X,Y) 的联合概率密度;
 - (b) 求 (X,Y) 关于 Y 的边缘概率密度 $f_Y(y)$;

Solution.

(1) EX = x 的条件下,Y 的条件概率密度为

$$f_Y(y) = \begin{cases} \frac{1}{1-x}, & x \le y \le 1\\ 0, & \sharp \text{ th} \end{cases}$$

故
$$f(x,y) = f_{Y|X}(y \mid x) f_X(x) = \begin{cases} \frac{1}{1-x}, & 0 < x < 1, x < y < 1 \\ 0, & 其他 \end{cases}$$

(2) 通过概率密度求边缘密度的时候,需要画出 x-y 图, 并且确定要求的那个参数的范围,比如说这里是 $y \in (0,1)$, 让后再从 [0,1] 上面去做偏积分, 具体如图所示

$$f_Y(y) = \int_{+\infty}^{-\infty} f(x, y) dx = \begin{cases} -\ln(1 - y), & 0 < y < 1 \\ 0, & \sharp \text{ th} \end{cases}$$

(3) 根据性质 (3) 有 $P\{X + Y > 1\} = \iint_{x+y<1} f(x,y) dxdy$ 此时 x-y 的可行范围为

原式 =
$$\int_{1/2}^{1} dy \int_{1-y}^{y} \frac{1}{1-x} dx$$

= $\int_{1/2}^{1} [\ln y - \ln(1-y)] dy$
= $[y \ln y - (1-y) \ln(1-y)] \Big|_{1/2}^{1}$
= $\ln 2$

1.4 关于二维正态分布

Remark. 二维正态分布的性质 设 $(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$, 则

(1) $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, 反之不成立 (独立的时候反之成立);

(2) X 与 Y 相互独立 \Leftrightarrow X 与 Y 不相关 $(\rho = 0)$;

(3) $aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2 + 2ab\rho\sigma_1\sigma_2)$; 特别地, 若 X 与 Y 相互独立, $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, 则 $aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$;

从二维正态分布 $\Leftrightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$.

5. 设二维随机变量 $(X,Y) \sim N(1,2;1,4;-\frac{1}{2})$, 且 $P\{aX+bY\leq 1\}=\frac{1}{2}$, 则 (a,b) 可以为

$$(A) \ \left(\frac{1}{2}, -\frac{1}{4}\right) \quad (B) \ \left(\frac{1}{4}, -\frac{1}{2}\right) \ (C) \ \left(-\frac{1}{4}, \frac{1}{2}\right) \quad (D) \ \left(\frac{1}{2}, \frac{1}{4}\right)$$

Solution. 由性质 (3) 可知 $aX + bY \sim N$, 而由正态分布的对称性可知, $\mu = 1 \implies a + 2b = 1$ 故选择 (D)

6. (2020, 数三) 设二维随机变量 $(X,Y) \sim N(0,0;1,4;-\frac{1}{2})$, 则下列随机变量服从标准正态分布且与 X 相互独立的是

$$(A) \ \frac{\sqrt{5}}{5}(X+Y) \quad (B) \ \frac{\sqrt{5}}{5}(X-Y) \ (C) \ \frac{\sqrt{3}}{3}(X+Y) \quad (D) \ \frac{\sqrt{3}}{3}(X-Y)$$

Solution. 这道题选择出来并不困难, 但要证明其与 X 相互独立还是有点说法的.

第一步, 先求 X + Y 和 X - Y 的标准化

由性质三可知 $X+Y \sim N(0,3), X-Y \sim N(0,7),$ 故 $\frac{\sqrt{3}}{3}(X+Y)\sin N(0,1); \frac{\sqrt{7}}{7} \sim N(0,1);$ 这里其时就已经可以选出答案喽

第二步证明独立性

考虑
$$(X+Y,X)=\begin{pmatrix}1&1\\1&0\end{pmatrix}\begin{pmatrix}X\\Y\end{pmatrix},$$
且 $\begin{vmatrix}1&1\\1&0\end{vmatrix}=-1\neq 0$

由性质 (4) 可知,(X + Y, X) 服从二维正态分布, 由性质 (2) 可知,只需要证明二者的相关系数为 (2) 即可,证明二者独立.

7. (2022, 数一) 设随机变量 $X \sim N(0,1)$, 在 X = x 的条件下, 随机变量 $Y \sim N(x,1)$, 则 X 与 Y 的相关系数为

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) $\frac{\sqrt{3}}{3}$ (D) $\frac{\sqrt{2}}{2}$

Solution.

(方法一传统方法计算)

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{EXY - EXEY}{\sqrt{DX}\sqrt{DY}}$$

问题转换为求 EXY, DY, 由题设可知, 在 X = x 的条件下, Y 的概率密度函数为

$$f_{Y|X}(y \mid x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-x)^2}{2}}$$

故 (X,Y) 的概率密度函数为

$$f(x,y) = \frac{1}{2\pi} e^{-x^2 + xy - \frac{y^2}{2}}$$

故y的边缘分布函数为

$$\int_{+\infty}^{-\infty} f(x,y)dx = \frac{1}{2\sqrt{\pi}}e^{-\frac{y^2}{4}}$$

即 $Y \sim N(0,2)$, 故 EY = 0, DY = 2 而 EXY 根据方差的定义可以计算

TODO: 计算 EXY

$$EXY = \int_{+\infty}^{-\infty} \int_{+\infty}^{-\infty} xy f(x, y) dx dy = 1$$

故
$$\rho = \frac{\sqrt{2}}{2}$$

(2) 通过二维正态参数的结论直接求出 ρ , 由上述可知 $f(x,y) = \frac{1}{2\pi} e^{-x^2 + xy - \frac{y^2}{2}}$, 对比二维正态概率密度的公式

$$f(x,y) = \frac{1}{2\sigma_1\sigma_2\sqrt{1-\rho^2}}exp\left\{\frac{-1}{2(1-\rho^2)}\left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} - \frac{2(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)}{\sigma_2^2}\right]\right\}$$

容易得出
$$(X,Y) \sim N(0,0;1,2;\frac{\sqrt{2}}{2})$$
, 具体如总结所示.

总结

对于形如 $Ae^{-ax^2+bxy+cy^2}$ 的式子, 若其是概率密度, 则必然是某个二维正态的概率密度 (由规范性) 且满足

(1)
$$b^2 = 4\rho^2 a^2 c^2 \implies \rho^2 = \frac{b^2}{4a^2 c^2}$$

(2) rho 的符号与 xy 系数的符号一致

1.5 求二维离散型随机变量函数的分布

8. 设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1),Y \sim P(\lambda_2)$, 求 Z = X + Y 的概率分布.

Solution. 这道题是参数可加性的直接考察, 可以先证明一下

$$P\{Z = n\} = P\{X + Y = n\}$$

$$= \sum_{k=0}^{n} P\{X = k, Y = n - k\}$$

$$= \frac{\text{独立性}}{\sum_{k=0}^{n} P\{X = k\}} P\{Y = n - k\}$$

$$= \sum_{k=0}^{n} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{1}} \frac{\lambda_{2}^{n-k}}{(n-k)!} e^{-\lambda_{2}}$$

$$= e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k!(n-k)!}$$

$$= \frac{\text{上下同乘}k!}{e} e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{n(n-1)\dots(n-k+1)}{k!} \lambda_{1}^{k} \lambda_{2}^{n-k}$$

$$= e^{-(\lambda_{1}+\lambda_{2})} \frac{1}{n!} \sum_{k=0}^{n} C_{n}^{k} \lambda_{1}^{k} \lambda_{2}^{n-k}$$

$$= \frac{\text{□ \text{\subset}}}{n!} \frac{(\lambda_{1}+\lambda_{2})^{n}}{n!} e^{-(\lambda_{1}+\lambda_{2})}$$

参数可加性

当 X,Y 独立的时候

(1)
$$X \sim B(m, p), Y \sim B(n, p) \implies X + Y \sim B(n + m, p)$$

(2)
$$X \sim P(\lambda_1), Y \sim P(\lambda_2) \implies X + Y \sim P(\lambda_1 + \lambda_2)$$

(3)
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2) \implies X + Y \sim (\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

(4)
$$X \sim \chi^2(m), Y \sim \chi^2(n), \Longrightarrow X + Y \sim \chi^2(n+m)$$

(5)
$$X \sim E(\lambda_1), Y \sim E(\lambda_2) \implies \min(X, Y) \sim E(\lambda_1 + \lambda_2)$$

1.6 求二维连续型随机变量函数的分布

Remark. 问题描述

设二维随机变量 (X,Y) 的联合概率密度为 f(x,y), 求 Z = g(X,Y) 的概率密度 $f_Z(z)$.

分布函数法

- (1) 设 Z 的分布函数为 $F_Z(z)$, 则 $F_Z(z) = P\{Z \le z\} = P\{g(X,Y) \le z\}$.
- (2) 求 Z = g(X,Y) 在 (X,Y) 的正概率密度区域的值域 (α,β) , 讨论 z.

$$z < \alpha$$
 时, $F_Z(z) = 0$;

 $\stackrel{\ }{\underline{}}$ $\alpha \leq z < \beta$ 时, $F_Z(z) = \iint_{q(x,y) \leq z} f(x,y) dxdy$;

当 $z \geq \beta$ 时, $F_Z(z) = 1$.

(3) Z 的概率密度为 $f_Z(z) = F'_Z(z)$.

卷积公式

- (1) 设 Z = aX + bY,则 $f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|b|} f\left(x, \frac{z ax}{b}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|a|} f\left(\frac{z by}{a}, y\right) dy$;
- (2) 读 Z = XY,则 $f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|y|} f\left(\frac{z}{y}, y\right) dy$;
- (3) 设 $Z = \frac{Y}{X}$, 则 $f_Z(z) = \int_{-\infty}^{+\infty} |x| f(x, xz) dx$;
- (4) 设 $Z = \frac{X}{Y}$, 则 $f_Z(z) = \int_{-\infty}^{+\infty} |y| f(yz, y) dy$
- 9. 设二维随机变量 (X,Y) 的联合概率密度为 $f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x \\ 0, & 其他 \end{cases}$
 - (a) (X,Y) 的联合分布函数 F(x,y);
 - (b) (X,Y) 的边缘概率密度 $f_X(x), f_Y(y)$;
 - (c) 条件概率密度 $f_{X|Y}(x|y), f_{Y|X}(y|x)$;
 - (d) $P\left\{Y \le \frac{1}{2} | X \le \frac{1}{2}\right\}, P\left\{Y \le \frac{1}{2} | X = \frac{1}{2}\right\};$
 - (e) Z = 2X Y 的概率密度 $f_Z(z)$.

Solution.

(1) 由定义可知 $F(x,y)=\int_{-\infty}x\int_{-\infty}yf(u,v)\mathrm{d}u\mathrm{d}v$, 其中 x,y 的可行域如下图所示, 分为五个部分故

$$F(x,y) = \begin{cases} \int_0^y \mathrm{d}v \int_{\frac{v}{2}}^x \mathrm{d}u, & 0 < x < 1, 0 < y < 2x \\ \int_0^x \mathrm{d}u \int_0^{2u} \mathrm{d}v, & 0 < x < 1, y \ge 2x \\ \int_0^y \mathrm{d}v \int_{\frac{v}{2}}^1 \mathrm{d}u, & x > 1, 0 < y < 2 \end{cases} = \begin{cases} \frac{y^2}{4} - xy, & 0 < x < 1, 0 < y < 2x \\ x^2, & 0 < x < 1, y \ge 2x \\ y - \frac{y^2}{4}, & x > 1, 0 < y < 2 \\ 1, & x \ge 1, y \ge 2x \\ 0, & \not\equiv \emptyset. \end{cases}$$

(2) 由定义可知

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 2x, & 0 < x < 1; \\ 0, & \text{ i.t.} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} 1 - \frac{y}{2}, & 0 < y < 2 \\ 0, & \text{ i.t.} \end{cases}$$

(3) 当0 < x < 1在 X = x 的条件下,Y 的条件概率密度为

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{2x}, & 0 < y < 2x \\ 0, & \text{ 其他} \end{cases}$$

当0 < y < 2在 Y = y 的条件下,X 的条件概率密度为

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{2}{2-y}, & \frac{y}{2} < x < 1\\ 0, & \text{其他} \end{cases}$$

(4) 对于 $P\left\{Y \leq \frac{1}{2} \mid X \leq \frac{1}{2}\right\}$ 可以采用条件概率公式,

$$P\left\{Y \le \frac{1}{2}|X \le \frac{1}{2}\right\} = \frac{\iint\limits_{y \le \frac{1}{2}, x \le \frac{1}{2}} f(x, y) dx dy}{\int_{0}^{\frac{1}{2}} f_{X}(x) dx} = \frac{3}{4}$$

而对于 $P\left\{Y \leq \frac{1}{2} | X = \frac{1}{2}\right\}$ 则不能采用条件概率公式,因为 $P\{X = \frac{1}{2}\} = 0$ 不能做分母,此时就体现出来条件概率的用处

$$P\left\{Y \le \frac{1}{2}|X = \frac{1}{2}\right\} = \int_0^{\frac{1}{2}} f_{Y|X}(y \mid x) dy$$

将 $X = \frac{1}{2}$ 带入, 求出该条件概率为 $\frac{1}{2}$

(5) 方法一: 分布函数法

 $F_Z(z) = P\{2X - Y \ge Z\} = \iint\limits_{2x - y \le z} f(x,y) \mathrm{d}x \mathrm{d}y$,绘制 $y \ge 2x - z$,讨论截距,如图所示,其结果如下

$$F_Z(z) = \begin{cases} 0, & z < 0 \\ z - \frac{z^2}{4}, & 0 \le z < 2 \\ 1, & z \ge 2 \end{cases}$$

方法二: 卷积公式

由卷积公式有 $f_Z(z)=-\int_{-\infty}^{+\infty}f(x,2x-z)dx$, 此时把 f(x,y) 中的 y 全部转换为 z 并确定 z 的取值范围即

$$f(x, 2x - z) = \begin{cases} 1, & 0 < x < 1, 0 < 2x - z < 2x \implies 0, 0 < x < 1, 0 < z < 2x \\ 0, & \not\equiv \emptyset \end{cases}$$

此时再对 x 进行偏积分即可, 绘制 x-z 图像, 首先确认 z 的范围, 再从 z 上对 x 进行积分

如图,最终

$$f_Z(z) = \begin{cases} 1 - \frac{z}{2}, & 0 \le z < 2; \\ 0, & \end{cases}$$

1.7 求一离散一连续随机变量函数的分布

- 10. (2020, 数一) 设随机变量 X_1, X_2, X_3 相互独立, X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2},Y=X_3X_1+(1-X_3)X_2$ 。
 - (1) 求 (X_1,Y) 的联合分布函数 (结果用标准正态分布函数 $\Phi(x)$ 表示);
 - (2) 证明 Y 服从标准正态分布.

Solution. 一离散加一连续的基本方法就是"全概率公式+独立性"

(1)

(2) 方法一, 通过 Y 的分布函数确定

$$F_Y(y) = P\{Y \le y\} = P\{X_3X_1 + (1 - X_3)X_2 \le y\}$$

= (和 (1) 完全一致省去)...
= $\Phi(y)$

1.7 求一离散一连续随机变量函数的分布

方法二,直接求边缘分布函数

$$F_X(x) = P\{X \le x\} = F(X, +\infty)$$

$$F_Y(y) = P\{Y \le y\} = F(+\infty, Y)$$

$$F_Y(y) = F(\infty, y) = \frac{1}{2}\Phi(y) + \frac{1}{2}\Phi(y) = \Phi(y)$$

故 $Y \sim N(0,1)$