

Areas of Parallelograms and Triangles Ex 15.3 Q11 **Answer:**

Given: Here from the question we get

(1) ABCD is a parallelogram

(2) P is any point in the interior of parallelogram ABCD

To prove: Area of $\triangle APB < \frac{1}{2}$ Area of parallelogram ABCD

Construction: Draw DN perpendicular to AB and PM perpendicular AB

Proof: Area of triangle = $\frac{1}{2}$ × base× height

Area of $\triangle APB = \frac{1}{2} \cdot AB \cdot PM \dots (1)$

Also we know that: Area of parallelogram = base× height

Area of parallelogram ABCD = AB · DN (2)

Now PM < DN (Since P is a point inside the parallelogram ABCD)

$$\Rightarrow$$
 AB×PM < AB×DN

$$\Rightarrow \frac{1}{2}AB \times PM < \frac{1}{2}AB \times DN$$

 \Rightarrow Area of $\triangle APB < \frac{1}{2}$ Area of parallelogram ABCD

Hence it is proved that

Area of
$$\triangle APB < \frac{1}{2}$$
 Area of parellelogram ABCD

Areas of Parallelograms and Triangles Ex 15.3 Q12

Answer:

Given:

- (1) ABC is a triangle
- (2) AD is the median of ΔABC
- (3) G is the midpoint of the median AD

To prove:

- (a) Area of \triangle ADB = Area of \triangle ADC
- (b) Area of \triangle BGC = 2 Area of \triangle AGC

Construction: Draw a line AM perpendicular to AC

Proof: Since AD is the median of \triangle ABC.

Therefore BD = DC

So multiplying by AM on both sides we get

$$BD \times AM = DC \times AM$$

$$\Rightarrow \frac{1}{2}BD \times AM = \frac{1}{2}DC \times AM$$

 \Rightarrow Area of $\triangle ADB = Area of <math>\triangle ADC$

In ABGC, GD is the median

Since the median divides a triangle in to two triangles of equal area. So

Area of $\triangle BDG = Area of \triangle GCD$

 \Rightarrow Area of \triangle BGC = 2(Area of \triangle BGD)

Similarly In AACD, CG is the median

 \Rightarrow Area of \triangle AGC = Area of \triangle GCD

From the above calculation we have

Area of $\triangle BGD = Area of \triangle AGC$

But Area of \triangle BGC = 2(Area of \triangle BGD)

So we have

Area of $\triangle BGC = 2(Area of \triangle AGC)$

Hence it is proved that

- (1) Area of $\triangle ADB = Area of \triangle ADC$
- (2) Area of $\triangle BGC = 2$ (Area of $\triangle AGC$)

********* END *******