

SEQ ID 2 1 ATG TTG CAG ATG GCT GGG CAG TGC TCC GAA AAT GAA TAT TTT GAC AGT TTG TTG CAT GCT
 SEQ ID 1 1 M L Q M A G Q C S Q N E Y F D S L L H A
 61 TGC ATA CCT TGT CAA CTT CGA TGT TCT CCT CCT ATT ACT CCT CCT CTA ACA TGT CAG CGT TAT
 21 C I P C Q L R C S N T P P L T C Q R Y
 121 TGT ATT GCA AGT GTG ACC AAT TCA GTG AAA GGA AGG AAT GCG ATT CTC TGG ACC TGT TTG
 41 C N A S V T N S V K G T N A I L W T C L
 181 GGA CTC AGC TTA ATA ATT TCT TTG GCA GTT TTC GTG CTA ATG TTT TTG CTA AGG AGG AGA
 61 G L S L I S L A V F V L M F L L R K I
 241 AGC TCT GAA CCA TTA AAG GAC GAG TTT AAA AAC ACA GGA TCA CGT CTC CTG GGC ATG GCT
 81 S S E P L K D E F K N T G S G L L G M A
 301 AAC ATT GAC CTG GAA AAG AGC AGG ACT GGT GAT GAA ATT ATT CTT CGG AGA GCC CTC GAG
 101 N I D L E K S R T G D E I I L P R G L E
 361 TAC ACG GTG GAA GAA TGC ACC TGT GAA GAC TGC ATC AAG AGC AAA CGG AAG GTC GAC TCT
 121 Y T V E E C T C E D C I K S K P K V D S
 421 GAC CAT TGC TTT CCA CTC CGA GCT GAG GAA GCA ACC ATT CTT GTC ACC AGC AGG AAA
 141 D H C F P L P A M E E G A T I L V T T K
 481 ACG AAT GAC TAT TGC CCA GCT GCT TTG AGT GCT ACG GAG ATA GAG AAA TCA
 161 T N D Y C K S L P A A L S A T E I E K S
 541 ATT TCT GCT AGG TAA
 181 I S A R *

1/19

FIG. 2A	FIG. 2B
------------	------------

FIG. 1

FIG. 2

1 ATG GAG ACA GAC ACA CTC CTG TTA TGG GTG CTG CTG CTC TGG GTP CCA GGT TCC ACT GGT
 SEQID 4 1 M E T D T L L W V L L W V P G S T G
 SEQID 3 61 GAC GTC ACG ATG TGG CAG ATG GCT GGG CAG TGC TCC CAA AAT GAA TAT TTT GAC AGT TTG
 1 M L Q M A G Q C S Q N E Y F D S L
 21 D V T M L Q M A G Q C S Q N E Y F D S L
 121 TTG CAT CCT TGC ATA CCT TGT CAA CCT CGA TGT TCT AAT ACT CCT CCT CTA ACA AGA TGT
 181 L H A C I P C Q L R C S S N T P P L T C
 411 L H A C I P C Q L R C S S N T P P L T C
 181 CAG CGT TAT TGT ATT GCA AGT GTG ACC ATT TCA GIG AAA GGA GTC GAC AAA ACT CAC ACA
 381 Q R Y C N A S V T N S V K G V D K T H T
 611 Q R Y C N A S V T N S V K G V D K T H T
 241 TGC OCA CGG TGC OCA GCA CCT GAA CTC CTG CGG GGA CGG TGA GTC TTC CTC TTC CCC CCA
 811 C P P C P A P E L L G G P S V F L F P P
 301 AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC
 1011 K P K D T L M I S R T P E V T C V V V D
 361 GTG AGC CAC GAA GAC CCT GAG GTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT
 1211 V S H E D P E V K F N W Y V D G V E V H
 421 ATT GCC AAG ACA AAG CGG CGG GAG CAG TAC AAC AGC ACG TAC AGC AGC AGC AGC GTC AGC GTC
 1411 N A K T K P R E E Q Y N S T Y R V V S V
 481 CTC ACC GTC CTG CAC CAG GAC TGG CTG ATT GGC AAG GAG TAC AAG TGC AAG GTC TCC AAC

FIG. 2A

161[▶] L T V L H Q D W L N G K E Y K C K V S N
 541 AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GAA GGG CAG CCC CGA GAA
 181[▶] K A L P A P I E K T I S K A K G Q P R E
 601 CCA CGG GTG TAC ACC CTC CCC COA TCC CGG GAT GAG CTG ACC AGG AAC CAG GTC AGC CTG
 201[▶] P Q V Y T L P P S R D E L T K N Q V S L
 661 ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC ATC GOC GTG GAG TGG GAG AGC AAT GGG
 221[▶] T C L V K G F Y P S D I A V E W E S N G
 721 CAG CGG GAG AAC AAC TAC AAG ACC ACG CCTT CCC GTC TTG GAC TCC GAC GGC TCC TTC TTC
 241[▶] Q P E N N Y K T T P P V L D S D G S F F
 781 CTC TAC AGC AAG CTC ACC GTG GAC AGC AGG TCC CAG CAG GGG AAC GTC TTC TCA TGC
 261[▶] L Y S K L T V D K S R W Q Q G N V F S C
 841 TCC GTG ATG CAT GAG GCT CTG CTC AAC CAC TAC AGC CAG AAG AGC CTC TCC CAG TCT CCC
 281[▶] S V M H E A L H N H Y T Q K S L S L S P
 901 GGG AAA TGA
 301[▶] G K *

FIG. 2B

BsaAI BbsI

1 AAGACTCAAA CTTAGAACT TGAATTAGAT GTGGTATTCA AATCCTTACG TGCGCGAAG
 61 ACACAGACAG CCCCGTAAG AACCCACGAA GCAGGCAGG TTCATGTTC TCAACATTCT
 EcoRI

121 AGCTGCTCTT GCTGCATTTG CTCTGGAATT CTTGTAGAGA TATTACTTGT CCTTCCAGGC
 Scl BclI

181 TGTCTCTCT GTAGCTCCCT TGTCTCTCTT TTGTGATCAT GTTGCAGATG GCTGGCAGT
 1 M L Q M A G Q

SspI SphI HinclI

241 GCTCCAAAAA TGAATATTTT GACAGTTTGT TGCTGCTTG CATACTTGT CAACCTCGAT
 8►C S Q N E Y F D S L L H A C I P C Q L R
 PciI
 AIIII

301 GTTCTCTAA TACTCCTCTT CTAACATGTC AGCGTTATTG TAATGCAAGT GTGACCAATT
 28►C S S N T P P L T C Q R Y C N A S V T N
 BsmFI

361 CAGTGAAGG AACGAATGG ATTCCTGGA CCTGTTTGGG ACTGACCTTA ATAATTTCCTT
 48►S V K G T N A I L W T C L G L S L I I S
 421 TGGCAGTTT CGTGTAAATG TTTTGCTAA GGAAGATAAG CTCTGACCA TAAAGGACG
 68►L A V F V L M F L L R K I S S E P L K D

DraI AlwI BsaI

481 AGTTAAAAAA CACAGGATCA GGTCCTCTGG GCATGGCTAA CATTGACCTG GAAAAGAGCA
 88►E F K N T G S G L L G M A N I D L E K S

XmnI StuI Xhol

541 GGACTGGTGA TGAAATTATT CTTCCGAGAG GCCTCGAGTA CACGGTGGAA GAATGCACCT
 108►R T G D E I I L P R G L E Y T V E E C T

SalI HinclI

BbsI

601 GTGAAGACTG CATCAAGAGC AAACCGAAGG TCGACTCTGA CCATTGCTTT CCACCTCCAG
 128►C E D C I K S K P K V D S D H C F P L P
 661 CTATGGAGGA AGGGCAACC ATTCTGTCA CCACGAAAAC GAATGACTAT TGCAAGAGCC
 148►A M E E G A T I L V T T K T N D Y C K S

PvuII

721 TGCCAGCTGC TTGAGTGCT ACGGAGATAG AGAAATCAAT TTCTGCTAGG TAATTAACCA
 168►L P A A L S A T E I E K S I S A R

XbaI DraI BglII

781 TTTCGACTCG AGCACTGCCA CTITAAAAAT CTITGTCAAG AATAGATGAT GTGTCAGATC
 841 TCTTTAGGAT GACTGTATTT TTCAGTTGCC GATACAGCTT TTTGTCTCT AACTGTGGAA

StyI

901 ACTCTTTATG TTAGATATAT TTCTCTAGGT TACTGTGGG AGCTTAATGG TAGAAACTTC
 961 CTTGGTITCA TGATTAAGT CTTTTTTTTT CCTGA

STRUCTURE COMPARISON BETWEEN TNF-R55 AND BAFF-R

FIG. 4

FIG. 5A

FIG. 5B

FIG. 6A

FIG. 6B-4

FIG. 6B-5

FIG. 6B-6

FIG. 6B-7

FIG. 6B-8

FIG. 7

FIG. 8

FIG. 9

FIG. 10A

FIG. 10B

**BCMA-Ig Treatment Reduces Total Mature B
and T2 B Cell Populations in Spleens of Baff Tg Mice**

FIG. 10C

**BCMA-Ig Treatment Reduces Total Marginal Zone
and T1 B Cell Populations in Spleens of Baff Tg Mice**

hBCMA-hlg Treatment Reduces Spleen Weight in BAFF Tg Mice

FIG. 11

FIG. 12

Average Mean Arterial Pressure in BAFF transgenic
(BAFF +) and wild-type controls (BAFF -)

FIG. 13

Individual Mean Arterial Pressure in BAFF transgenic
(BAFF +) and wild-type controls (BAFF -)

FIG. 14

**BCMA-Ig Treatment of Moderately Nephritic SNF1 Mice
Slows Progression to Severe Nephritis**

FIG. 15

FIG. 16