

Signal and Systems: discretetime signals

_

Traitement numérique du signal

Xidian University – March 2021

<u>rl@xidian.edu.cn</u>

sylvain.toru@univ-grenoble-alpes.fr

Plan du cours

- I. Rappels de traitement du signal (Cours 1)
- II. Signaux échantillonnés (Cours 2 et 3)
- III. Signaux numériques et transformée de Fourier Discrète (Cours 4 et 5)
- IV. Conversion analogique numérique et bruit de quantification (Cours 6)

Plan du cours

- Rappels de traitement du signal
 - 1. Classification des signaux
 - 2. Signaux utiles en traitement du signal
 - 3. Transformée de Fourier et propriétés de la TF
 - 4. Définitions et opérations élémentaires
- II. Signaux échantillonnés
- III. Signaux numériques et transformée de Fourier Discrète
- IV. Conversion analogique numérique et bruit de quantification

1. Classification des signaux

2. Signaux utiles en traitement du signal

La fonction rectangle ou porte

$$\begin{cases} \forall t \epsilon \left[-\frac{1}{2}, \frac{1}{2} \right] & rect(t) = 1 \\ sinon & rect(t) = 0 \end{cases}$$

•
$$rect\left(\frac{t-\tau}{T_0}\right)$$
?

t[s]

Signaux utiles en traitement du signal

• La fonction triangle

$$\begin{cases} \forall t \in [-1,1] & tri(t) = 1 - |t| \\ sinon & tri(t) = 0 \end{cases}$$

• L'échelon (de Heaviside)

$$\begin{cases} \forall t > 0 & \epsilon(t) = 1 \\ \forall t < 0 & \epsilon(t) = 0 \end{cases}$$

Signaux utiles en traitement du signal

• La distribution de Dirac δ

$$\begin{cases} \int_{-\infty}^{+\infty} x(t)\delta(t)dt = x(0) \\ \int_{-\infty}^{+\infty} x(t)\delta(t - t_0)dt = x(t_0) \\ \Rightarrow x(t)\delta(t - t_0) = x(t_0)\delta(t - t_0) \\ x(t) * \delta(t - t_0) = x(t - t_0) \end{cases}$$

• Peigne de Dirac δ_{T_e} $\delta_{T_e} = \sum_{t=0}^{+\infty} \delta(t - kT_e)$

$$\delta_{T_e} = \sum_{k=-\infty}^{+\infty} \delta(t - kT_e)$$

Signaux utiles en traitement du signal

La fonction sinus cardinal

1.
$$\forall t \in \mathbb{R}, sinc(t) = \frac{\sin(\pi t)}{\pi t}$$

- $2. \quad sinc(0) = 1$
- $3. \quad \forall k \in \mathbb{Z}^*, sinc(k) = 0$

• Définition: la transformée de Fourier d'un signal d'énergie finie x est définie comme:

$$\forall f \in \mathbb{R}, \qquad X(f) = \int_{t=-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$

• La transformée inverse est donnée par:
$$\forall t \in \mathbb{R}, \qquad x(t) = \int_{f=-\infty}^{+\infty} X(f) e^{j2\pi ft} df$$

	Fonction (représentation temporelle)	Transformée de Fourier (représentation fréquentielle)
Linéarité	ax(t) + by(t)	aX(f) + bY(f)
Conjugué	$x^*(t)$	$X^*(-f)$
Changement d'échelle	x(at)	$\frac{1}{ a }X\left(\frac{f}{a}\right)$
Inversion axe t	x(-t)	X(-f)
Translation sur t	x(t- au)	$X(f)\exp(-j2\pi f\tau)$
Translation sur f	$x(t)e^{j2\pi f_0t}$	$X(f-f_0)$
Dérivation	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Intégration	$\int_{-\infty}^t x(u)du$	$\frac{1}{j2\pi f}X(f)$, si $\int_{-\infty}^{+\infty}x(u)du=0$

	Fonction (représentation temporelle)	Transformée de Fourier (représentation fréquentielle)
Convolution	x(t)y(t)	X(f) * Y(f)
Convolution	x(t) * y(t)	X(f)Y(f)
Théorème de Parseval	$E_X = \int_{-\infty}^{+\infty} x(t) ^2 dt = \int_{-\infty}^{+\infty} X(f) ^2 df = E_X$	
Parité	Réelle paire Réelle impaire Imaginaire paire Imaginaire impaire	Réelle paire Imaginaire impaire Imaginaire paire Réelle impaire

• Application : Soit un système linéaire et invariant en temps (SLIT). Ce système est un système de convolution de réponse impulsionnelle h(t).

• Que vaut *Y*?

$$h(t) \overset{TF}{\leftrightarrow} H(f)$$

$$y(t) = x(t) * h(t) \overset{TF}{\leftrightarrow} Y(f) = X(f)H(f)$$

 h est appelée réponse impulsionnelle du SLIT et H est sa réponse fréquentielle.

• TF utiles (en étendant la définition précédente aux signaux périodiques ou constants → TF au sens des distributions)

Signal	Transformée de Fourier
$rect\left(\frac{t}{T}\right)$	$\frac{\sin(\pi fT)}{\pi f} = T \operatorname{sinc}(fT)$
$tri\left(\frac{t}{T}\right)$	$T sinc^2(fT)$
$\delta(t-\tau)$	$e^{-j2\pi f\tau}$
$\delta_T(t)$	$\frac{1}{T}\delta_{\frac{1}{T}}(f)$

Remarque: on pourra retenir : « Une fonction large en temps (représentation temporelle) est étroite en fréquence (représentation fréquentielle) et inversement »

• **TF utiles** (en étendant la définition précédentes aux signaux périodiques ou constants → TF au sens des distributions)

Signal	Transformée de Fourier
$\cos(2\pi f_0 t)$	$\frac{\delta(f+f_0)+\delta(f-f_0)}{2}$
$\sin(2\pi f_0 t)$	$\frac{\delta(f-f_0)-\delta(f+f_0)}{2j}$

<u>Remarque:</u> on pourra retenir : « *Une fonction large en temps (représentation temporelle) est étroite en fréquence (représentation fréquentielle) et inversement »*

• Cas général des fonctions périodiques de période T (et donc admettant une décomposition en série de Fourier)

$$\forall t \in \mathbb{R}, \qquad x(t) = \sum_{n = -\infty}^{+\infty} c_n e^{j2\pi k \frac{t}{T}} \ avec \ c_n = \frac{1}{T} \int_{t_0}^{t_0 + T} x(t) e^{-j2\pi n \frac{t}{T}} dt$$

• Sa TF est:

$$\forall f \in \mathbb{R}, \qquad X(f) = \mathcal{F} \left(\sum_{n = -\infty}^{+\infty} c_n e^{j2\pi n \frac{t}{T}} \right) = \sum_{n = -\infty}^{+\infty} c_n \mathcal{F}(e^{j2\pi n \frac{t}{T}}) = \sum_{n = -\infty}^{+\infty} c_n \delta\left(f - \frac{n}{T}\right)$$

<u>Remarque</u>: on pourra retenir : « La transformée de Fourier d'une fonction périodique est un spectre de raies *et inversement* »

4. Définitions et opérations élémentaires

	Signaux à énergie finie	Signaux à puissance finie
Définition	$E_{x} = \int_{-\infty}^{+\infty} x(t) ^{2} dt < \infty$	$P_{x} = \lim_{T \to +\infty} \left(\frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} x(t) ^{2} dt \right) < \infty$
Echange	$E_{xy} = \int_{-\infty}^{+\infty} x(t)y(t)dt$	$P_{xy} = \lim_{T \to +\infty} \left(\frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} x(t) y(t) dt \right)$
Densité spectrale $S_x(f)$	D'énergie : $ X(f) ^2$	De puissance : $\lim_{T \to +\infty} \frac{1}{T} X(f,T) ^2$ $X(f,T) = \mathcal{F} \left[x(t).rect \left(\frac{t}{T} \right) \right]$
Densité spectrale interspectre $S_{xy}(f)$	D'énergie: $X(f)Y^*(f)$	De puissance $\lim_{T\to +\infty} \frac{1}{T} X(f,T) Y^*(f,T)$

Définitions et opérations élémentaires

	Signaux à énergie finie	Signaux à puissance finie
Intercorrélation	$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t+\tau)y^*(t)dt$	$R_{xy} = \lim_{T \to +\infty} \left(\frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} x(t+\tau)y(t)dt \right)$
	$\mathcal{F}\big[R_{xy}\big] = S_{xy}$	$\mathcal{F}\big[R_{xy}\big] = S_{xy}$
Autocorrélation	$R_{x}(\tau) = \int_{-\infty}^{+\infty} x(t+\tau)x(t)dt$	$R_{x} = \lim_{T \to +\infty} \left(\frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} x(t+\tau)x(t)dt \right)$
	$R_{x}(0)=E_{x}$	$R_{x}(0)=P_{x}$
	$\mathcal{F}[R_{x}] = S_{x}$	$\mathcal{F}[R_{x}] = S_{x}$