EXAMEN:

METHODE DES ELEMENTS FINIS

(01 FEVRIER 2018)

Directives:

- Tout document est interdit.
- Les calculatrices programmables, les correcteurs et les téléphones portables, même à titre d'horloge, sont interdits.
- Il sera tenu compte de la clarté des raisonnements et de la qualité de la rédaction lors

Problème 1. (56%)

On considère le problème aux limites suivants :

$$(PL_1) \begin{cases} \left(\alpha(x)u'(x)\right)' = f(x), & x \in (0,3), \\ u(0) = 0, \ u'(3) = 1. \end{cases}$$

Où f et α sont deux fonctions.

- 1) Etablir la formulation faible de (PL1).
- On désire calculer une approximation de u en utilisant la méthode des éléments finis. On note cette approximation u_h . Pour cela, on considère le maillage suivant :

$$X = \begin{bmatrix} 1\\2\\1/2\\0\\2 \end{bmatrix} \text{ et } T = \begin{bmatrix} 0&1\\2&3\\1&2 \end{bmatrix}.$$

Tracer ce maillage. On utilise quel type des éléments finis ? justifier la réponse.

- 3) Etablir la formulation faible discrète de (PL_1) dans l'espace des éléments finis V_h à préciser.
- Donner toutes les matrices élémentaires elmK_i et tous les vecteur second membre elmF_i. (Ne pas les calculer numériquement).
- 5) Présenter la matrice globale K1 et le vecteur second membre F1 après assemblage des $elmK_i$ et $elmF_i$. (Ne pas calculer numériquement K_1 et F_1).
- 6) Présenter le système linéaire résultant ; la matrice globale K et le vecteur second membre F en imposant les conditions aux limites aux K_1 et F_1 . (Ne pas calculer numériquement K et F).
- Calculer la fonction de forme φ₃.

$$K_{l} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}, \qquad F_{l} = \frac{fh^{2}\sqrt{3}}{12} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$K_i = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}, \qquad F_i = \frac{fh^2}{6} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$F_l = \frac{fh^2}{6} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

On donne:

$$\begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix}^{-1} = \begin{pmatrix} -\frac{yz}{(z-x)(x-y)} & -\frac{xz}{(x-y)(y-z)} & -\frac{xy}{(y-z)(z-x)} \\ \frac{y+z}{(z-x)(x-y)} & \frac{x+z}{(x-y)(y-z)} & \frac{x+y}{(y-z)(z-x)} \\ -\frac{1}{(z-x)(x-y)} & -\frac{1}{(x-y)(y-z)} & -\frac{1}{(y-z)(z-x)} \end{pmatrix}$$

n	Points d'intégration	Poids d'intégration	Degré de précision
1	0	2	1
2	-0.577 350 269 +0.577 350 269	1	3
3	-0.774 596 669 0.0 +0.774 596 669	0.555 555 556 0.888 888 889 0.555 555 556	5
4	-0.861 136 312 -0.339 981 044 +0.339 981 044 +0.861 136 312	0.347 854 845 0.652 145 155 0.652 145 155 0.347 854 845	7
	-0.906 179 846 -0.538 469 310 0.0 +0.538 469 310 +0.906 179 846	0.236 926 885 0.478 628 670 0.568 888 889 0.478 628 670 0.236 926 885	9

Dans cette question, on prend $\alpha(x) = x$. Calculer numériquement, le coefficient $K_{3,1}$ de la matrice K.

Problème 2. (44%)

Dans un domaine $\Omega \subset \mathbb{R}^2$ et on considère le problème suivant :

$$\begin{cases}
-\Delta u(x,y) = f(x,y), & (x,y) \in \Omega, \\
u(x,y) = 0, & (x,y) \in \partial \Omega_1, \\
\frac{\partial u(x,y)}{\partial \mathbf{n}} = g(x,y) & (x,y) \in \partial \Omega_2.
\end{cases}$$

Où f est une constante et $\partial\Omega=\partial\Omega_1\cup\partial\Omega_2$.

- A. Etablir la formulation variationnelle de ce problème
- B. Dans cette partie, on discrétise le problème en utilisant les éléments finis linéaires. Le domaine Ω et le maillage sont présentés comme suit :

Figure 1 : Le domaine $\mathcal Q$ et la partie du bord $\partial \mathcal Q_1$

Figure 2 : Triangulation P_1 du domaine Ω

Où les éléments T_1 , T_3 et T_5 sont des triangles rectangles et les éléments T_2 , T_4 et T_6 sont des triangles équilatéraux.

- 1) Déterminer le nombre des inconnues de ce problème. Justifier la réponse.
- 2) Etablir la matrice de rigidité globale *K* et le vecteur second membre F, sans les conditions aux limites.
- 3) Etablir la matrice de rigidité globale *K* et le vecteur second membre F, en imposant les conditions aux limites.

A noter que pour un élément linéaire, la matrice locale K_i et le second membre local F_i sont donnés par :