Tutorial 8

Formal Language and Automata Theory (PDA and PDA-CFG Equivalence)

March 9, 2023

Design a NPDA that accepts the language:

$$L_1 = \{ww^R | w \in \{a, b\}^*\}$$

Design a NPDA that accepts the language:

$$L_1 = \{ww^R | w \in \{a, b\}^*\}$$

Hint 1: The transition function can be visualized as having several parts:

(i) a set to push w on the stack

Design a NPDA that accepts the language:

$$L_1 = \{ww^R | w \in \{a, b\}^*\}$$

Hint 1: The transition function can be visualized as having several parts:

(i) a set to push w on the stack

$$Q = \{q_0, q_1, q_2\}$$
, $\Sigma = \{a, b\}$, $\Gamma = \{a, b, z\}$, $F = \{q_2\}$
 $\delta(q_0, a, a) = \{(q_0, aa)\}$
 $\delta(q_0, b, a) = \{(q_0, ba)\}$
 $\delta(q_0, a, b) = \{(q_0, ab)\}$
 $\delta(q_0, b, b) = \{(q_0, bb)\}$
 $\delta(q_0, a, z) = \{(q_0, az)\}$
 $\delta(q_0, b, z) = \{(q_0, bz)\}$

Design a NPDA that accepts the language:

$$L_1 = \{ww^R | w \in \{a, b\}^*\}$$

Hint 2: (ii) A set to guess the middle of the string, where the NPDA switches from state q_0 to q_1

Design a NPDA that accepts the language:

$$L_1 = \{ww^R | w \in \{a, b\}^*\}$$

Hint 2: (ii) A set to guess the middle of the string, where the NPDA switches from state q_0 to q_1

$$\delta(q_0, \epsilon, a) = \{(q_1, a)\}\$$

 $\delta(q_0, \epsilon, b) = \{(q_1, b)\}\$

Design a NPDA that accepts the language:

$$L_1 = \{ww^R | w \in \{a, b\}^*\}$$

Hint 3: (iii) A set to match w^R against the contents of the stack

Design a NPDA that accepts the language:

$$L_1 = \{ww^R | w \in \{a, b\}^*\}$$

Hint 3: (iii) A set to match w^R against the contents of the stack $\delta(q_1, a, a) = \{(q_1, \epsilon)\}$
 $\delta(q_1, b, b) = \{(q_1, \epsilon)\}$
and finally $\delta(q_1, \epsilon, z) = \{(q_2, z)\}$

Construct a NPDA that accepts the language $L_2 = \{a^n b^m | n \neq m\}$

Construct a NPDA that accepts the language $L_2 = \{a^n b^m | n \neq m\}$ **Hint 1:** The transition function can be visualized as having several parts: (i) a set to push a on the stack

Construct a NPDA that accepts the language $L_2 = \{a^n b^m | n \neq m\}$ **Hint 1:** The transition function can be visualized as having several parts: (i) a set to push a on the stack

$$Q=\{q_0,q_1,q_2\}$$
 , $\Sigma=\{a,b\}$, $\Gamma=\{a,z\}$, $F=\{q_2\}$ $\delta(q_0,a,z)=\{(q_0,az)\}$ $\delta(q_0,a,a)=\{(q_0,aa)\}$

Construct a NPDA that accepts the language $L_2=\{a^nb^m|n\neq m\}$ **Hint 2:** (ii) set to pop a on reading b, where the NPDA switches from state q_0 to q_1

Construct a NPDA that accepts the language $L_2 = \{a^n b^m | n \neq m\}$ **Hint 2:** (ii) set to pop a on reading b, where the NPDA switches from state q_0 to q_1 $\delta(q_0, b, a) = \{(q_1, \epsilon)\}$ $\delta(q_1, b, a) = \{(q_1, \epsilon)\}$

Construct a NPDA that accepts the language $L_2 = \{a^n b^m | n \neq m\}$ **Hint 3:** A set to ensure $m \neq n$, where NPDA switches from state q_1 to q_2

Construct a NPDA that accepts the language $L_2 = \{a^n b^m | n \neq m\}$ **Hint 3:** A set to ensure $m \neq n$, where NPDA switches from state q_1 to q_2 $\delta(q_1, b, z) = \{(q_2, z)\}$ $\delta(q_1, \epsilon, a) = \{(q_2, \epsilon)\}$ and finally $\delta(q_2, \epsilon, z) = \{(q_2, \epsilon)\}$

Construct an NPDA that accepts the language generated by a grammar with productions:

Construct an NPDA that accepts the language generated by a grammar with productions:

$$S \rightarrow aSbb|a$$

Hint: The language generated by the grammar is $\{a^nb^{2n-2}: n \geq 1\}$.

Construct an NPDA that accepts the language generated by a grammar with productions:

$$S \rightarrow aSbb|a$$

Solution: The corresponding automaton will have

$$Q = \{q_0, q_1, q_2\}$$
 , $\Sigma = \{a, b\}$, $\Gamma = \{S, A, B, z\}$, $F = \{q_2\}$

The transitions are:

$$\delta(q_0,\epsilon,z)=\{(q_1,Sz)\}$$
 [First, the start symbol S is put on the stack by]

$$\delta(q_1, \mathsf{a}, \mathsf{S}) = \{(q_1, \mathsf{S}\mathsf{A}), (q_1, \epsilon)\}$$

$$\delta(q_1,b,A)=\{(q_1,B)\}$$

$$\delta(q_1,b,B)=\{(q_1,\epsilon)\}$$

$$\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$$

Let C be a context-free language and R be a regular language. Prove that the language $C \cap R$ is context-free.

Let C be a context-free language and R be a regular language. Prove that the language $C \cap R$ is context-free.

Hint: Let $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ be a DFA that recognizes R and $M = (Q_M, \Sigma, \Gamma, \delta_M, p_0, F_M)$ be a PDA that recognizes C. How do we combine both machines?

Let C be a context-free language and R be a regular language. Prove that the language $C \cap R$ is context-free.

Hint: The machines N and M are combined to construct a PDA M' that recognizes $C \cap R$. This will show that $C \cap R$ is context-free. How do we show that ?

Let C be a context-free language and R be a regular language. Prove that the language $C \cap R$ is context-free.

Solution: A state of M' will be a pair of states (p,q) with p a state of M and q a state of N. M' will simultaneously keep track of a state that M could be in after reading the symbols seen so far and a state that N could be in after reading these symbols. The formal definition is:

$$M' = (Q_M \times Q_N, \Sigma, \Gamma, \delta_{M'}, (p_0, q_0), F_M \times F_N)$$

The transition function $\delta_{M'}$ is defined by $\delta_{M'}((p,q),a,x) = \{((p',q'),v) \mid (p',v) \in \delta_{M}(p,a,x) \text{ and } \delta_{M'}(p',q') \in \delta_{M}(p,a,x) \}$

$$\delta_{\mathcal{M}'}((p,q),a,x) = \{((p',q'),y) \mid (p',y) \in \delta_{\mathcal{M}}(p,a,x) \text{ and } \delta_{\mathcal{N}}(q,a) = q'\}$$
 for all $p \in Q_{\mathcal{M}}, q \in Q_{\mathcal{N}}, a \in \Sigma$ and $x \in \Gamma_{\varepsilon}$ and

$$\delta_{M'}((p,q),\varepsilon,x) = \{((p',q),y) \mid (p',y) \in \delta_{M}(p,\varepsilon,x)\}$$

for all $p \in Q_M, q \in Q_N$ and $x \in \Gamma_{\varepsilon}$.

→ロト→部ト→ミト→ミトーミーのQで