Reinforcement Learning

AAYUSH BORKAR

July 28, 2024

Contents

1.1 1.2 1.3 1.4	Definitions	3 3 3 4 5 5 6 6 6 6 6 7 8
1.3 1.4	$\begin{array}{llll} \epsilon-\text{Greedy Algorithms} & & & \\ 1.3.1 & \epsilon \text{G1} & & \\ 1.3.2 & \epsilon \text{G2} & & \\ 1.3.3 & \epsilon \text{G3} & & \\ \text{Regret} & & & \\ 1.4.1 & \text{Regret Analysis for } \epsilon \text{G1 and } \epsilon \text{G2} & & \\ 1.4.2 & \text{Regret Analaysis for } \epsilon \text{G3} & & \\ 1.4.3 & \text{Conditions for Sub-linear Regret} & & \\ 1.4.4 & \text{Some modified } \epsilon\text{-Greedy algorithms with sub-linear regret} & \\ \text{Upper Confidence Bound (UCB) Algorithms} & & \\ 1.5.1 & \text{KL-UCB Algorithm} & & \\ \end{array}$	$ \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 6 \\ 7 \end{array} $
1.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4 5 5 6 6 6 6 6 7
1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 5 6 6 6 6 6 7
1.5	1.3.3 ϵ G3 Regret 1.4.1 Regret Analysis for ϵ G1 and ϵ G2 1.4.2 Regret Analysis for ϵ G3 1.4.3 Conditions for Sub-linear Regret 1.4.4 Some modified ϵ -Greedy algorithms with sub-linear regret Upper Confidence Bound (UCB) Algorithms 1.5.1 KL-UCB Algorithm	5 5 6 6 6 6 6 7
1.5	Regret	5 6 6 6 6 7
1.5	1.4.1 Regret Analysis for ϵ G1 and ϵ G2 1.4.2 Regret Analysis for ϵ G3 1.4.3 Conditions for Sub-linear Regret 1.4.4 Some modified ϵ -Greedy algorithms with sub-linear regret Upper Confidence Bound (UCB) Algorithms 1.5.1 KL-UCB Algorithm	6 6 6 6 7
	1.4.2 Regret Analaysis for ϵ G3	6 6 6 7
	1.4.3 Conditions for Sub-linear Regret	6 6 6 7
	1.4.4 Some modified ϵ -Greedy algorithms with sub-linear regret Upper Confidence Bound (UCB) Algorithms	6 6 7
	Upper Confidence Bound (UCB) Algorithms	6 7
	1.5.1 KL-UCB Algorithm	7
1.0		-
1.0	FI	8
1.6	Thompson Sampling	_
1.7	Hoeffding's Inequality	8
	1.7.1 Hoeffding's Inequality for arbitrary bounded random variable	9
	1.7.2 KL inequality	9
	1.7.3 Chernoff Bounds	9
Mar	kov Decision Processes (MDPs)	9
2.1		9
2.2	MDP Planning	10
2.3		10
2.4		10
2.5	Bellman Optimality Equations	10
2.6		11
2.7		11
2.8		11
	2.8.1 Action Value Function	11
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	2.2 MDP Planning 2.3 Bellman Equations 2.4 Banach's Fixed Point Theorem 2.5 Bellman Optimality Equations 2.6 Value Iteration 2.7 Linear Programming for Bellman Optimality Equations 2.8 Policy Iteration

		2.8.2	Policy Improvement	12			
		2.8.3	Policy Iteration Algorithm	12			
	2.9	Howar	d's Policy Iteration for 2-action MDPs	12			
	2.10	Batch	Switching Policy Iteration	12			
3	Reinforcement Learning						
_	3.1		on Problems	13 13			
	3.2		Carlo Methods	13			
		3.2.1	First-Visit Monte Carlo	13			
		3.2.2	Every-Visit Monte Carlo	13			
		3.2.3	Second-Visit Monte Carlo	13			
		3.2.4	Last-Visit Monte Carlo	14			
		3.2.5	Online Implementation of Monte Carlo	14			
	3.3	Comm	on Estimates	14			
		3.3.1	The Problem	14			
		3.3.2	Least Squares Estimate	14			
		3.3.3	Maximum Likelihood Estimate	15			
	3.4	Tempo	oral Difference Learning: TD(0)	15			
	3.5	Multi-	step Returns	15			
		3.5.1	λ -return	15			
	3.6		ard View TD Learning: $TD(\lambda)$	16			
	3.7	Q-Lear	rning	16			
		3.7.1	State Action Reward State Action (SARSA)	16			
		3.7.2	Off-policy vs On-policy	17			
		3.7.3	Model-based vs Model-free	17			
	3.8	Deep (Q-Learning	17			
		3.8.1	Experience Replay	17			
	3.9	Predic	tion with Linear Approximation	18			
	3.10	Tile C	oding	19			
	3.11	Expect	tiMax Algorithm	20			
	3.12	Monte	Carlo Tree Search (MCTS)	20			
		3.12.1	Selection	20			
		3.12.2	Expansion	21			
		3.12.3	Simulation	21			
		3.12.4	Backpropagation	22			
4	Polic	y Grad	lient Methods	22			
	4.1	-	astic Policy	22			
	4.2		tive Function	22			
	4.3		Gradient	23			
	4.4		Gradient Theorem	23			
	4.5		FORCE Algorithm	23			
	4.6		Critic Methods	23			

1 Muti-armed Bandit Problem

1.1 Definitions

- Arm a: associated with a Bernoulli distribution with mean p_a .
- A: set of arms. The bandit instance.
- p^* : highest mean of the arms in A.
- Reward r^t : Reward obtained from the distribution of arm a.
- **History** h^t : $(a^0, r^0, a^1, r^1, \dots, a^{t-1}, r^{t-1})$
- **Horizon** T: Total sampling budget.
- **Deterministic algorithm**: a mapping from the set of all histories to the set of all arms.
- Randomised algorithm: a mapping from the set of all histories to the set of all probability distributions over arms.

1.2 Bandits and Algorithms

An algorithm, bandit instance pair can generate many possible T-length histories. Observe that,

$$\mathbb{P}\{h^T\} = \prod_{t=0}^{T-1} \mathbb{P}\{a^t|h^t\} \mathbb{P}\{r^t|a^t\}, \text{ where }$$

 $\mathbb{P}\{a^t|h^t\}$ is decided by the algorithm

 $\mathbb{P}\{r^t|a^t\}$ comes from the bandit instance

The number of possible histories if the algorithm is deterministic and the reward distribution is bernoulli is $|A|^T$.

1.3 ϵ -Greedy Algorithms

1.3.1 *ϵ***G1**

- If $t < \epsilon T$, sample an arm uniformly at random.
- At $|\epsilon T|$, identify a^{best} , an arm with the highest empirical mean.
- If $t > \epsilon T$, play a^{best} .

```
Algorithm \epsilon G1
   t \leftarrow 0
   N_a \leftarrow 0 for all a \in A
   S_a \leftarrow 0 for all a \in A
   a^{\text{best}} \leftarrow 0
   while t < T do
         if t < \epsilon T then
               a^t \sim \text{Uniform}(A)
         else if t = |\epsilon T| then
               a^{\text{best}} \leftarrow \arg\max_{a \in A} \frac{S_a}{N_a}
         else
               a^t \leftarrow a^{\text{best}}
         end if
         Observe r^t
         N_{a^t} \leftarrow N_{a^t} + 1
         S_{a^t} \leftarrow S_{a^t} + r^t
         t \leftarrow t+1
   end while
```

$1.3.2 \epsilon G2$

- If $t \leq \epsilon T$, sample an arm uniformly at random.
- If $t > \epsilon T$, play an arm with the highest empirical mean (upto t).

```
Algorithm \ \epsilon G2
t \leftarrow 0
N_a \leftarrow 0 \text{ for all } a \in A
S_a \leftarrow 0 \text{ for all } a \in A
\text{while } t < T \text{ do}
\text{if } t \leq \epsilon T \text{ then}
a^t \sim \text{Uniform}(A)
\text{else}
a^t \leftarrow \arg \max_{a \in A} \frac{S_a}{N_a}
\text{end if}
Observe \ r^t
N_{a^t} \leftarrow N_{a^t} + 1
S_{a^t} \leftarrow S_{a^t} + r^t
t \leftarrow t + 1
\text{end while}
```

1.3.3 *ϵ***G**3

- With probability ϵ , sample an arm uniformly at random.
- With probability 1ϵ , play an arm with the highest empirical mean (upto t).

```
Algorithm \epsilon G3
   t \leftarrow 0
   N_a \leftarrow 0 for all a \in A
   S_a \leftarrow 0 for all a \in A
   while t < T do
         p \sim \text{Uniform}(0,1)
         if p < \epsilon then
              a^t \sim \text{Uniform}(A)
         else
              a^t \leftarrow \arg\max_{a \in A} \frac{S_a}{N_a}
         end if
         Observe r^t
         N_{a^t} \leftarrow N_{a^t} + 1
         S_{a^t} \leftarrow S_{a^t} + r^t
         t \leftarrow t + 1
   end while
```

1.4 Regret

- The maximum achievable expected reward in T steps is Tp^* .
- The actual expected **reward** for an algorithm is $\sum_{t=0}^{T-1} \mathbb{E}[r^t]$.
- The (expected cumulative) regret of the algorithm for horizon T is the difference

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t]$$

- An algorithm with a sub-linear regret (i.e. $R_T = o(T)$) is desirable.
- Let **exploit(T)** denote the number of pulls of the best arm till time T.

1.4.1 Regret Analysis for ϵ G1 and ϵ G2

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t] = Tp^* - \sum_{t=0}^{\epsilon T-1} \mathbb{E}[r^t] - \sum_{t=\epsilon T}^{T-1} \mathbb{E}[r^t]$$
$$= Tp^* - \epsilon T p_{\text{avg}} - \sum_{t=\epsilon T}^{T-1} \mathbb{E}[r^t] \ge Tp^* - \epsilon T p_{\text{avg}} - (T - \epsilon T)p^*$$
$$= \epsilon T (p^* - p_{\text{avg}}) = \Omega(T)$$

1.4.2 Regret Analoysis for ϵ G3

$$R_T = Tp^* - \sum_{t=0}^{T-1} \mathbb{E}[r^t] \ge Tp^* - \sum_{t=0}^{T-1} (\epsilon p_{\text{avg}} + (1 - \epsilon)p^*)$$
$$= \epsilon T(p^* - p_{\text{avg}}) = \Omega(T)$$

1.4.3 Conditions for Sub-linear Regret

There are two conditions for sub-linear regret:

- 1. **Infinite exploration**: In the limit as $T \to \infty$, the algorithm must explore all arms infinitely often.
- 2. **Greed in the Limit**: We need

$$\lim_{T \to \infty} \frac{\mathbb{E}[\operatorname{exploit}(T)]}{T} = 1$$

1.4.4 Some modified ϵ -Greedy algorithms with sub-linear regret

- ϵ_T -first with $\epsilon_T = \frac{1}{\sqrt{T}}$. Explote for $\epsilon_T \cdot T = \sqrt{T}$ pulls, thereafter exploit.
- ϵ_t -greedy with $\epsilon_t = \frac{1}{t+1}$. On the t^{th} pull, explore with probability ϵ_t , exploit with probability $1 \epsilon_t$.

Both the above algorithms satisy the conditions for sub-linear regret.

1.5 Upper Confidence Bound (UCB) Algorithms

At time t, for every arm a, we have an upper confidence bound ucb_a^t , which we define as:

$$ucb_a^t = \hat{p}_a^t + \sqrt{\frac{2\log t}{u_a^t}}$$

 \hat{p}_t^a is the empirical mean of rewards from arm a upto time t, and u_a^t is the number of times arm a has been played upto time t. Pull an arm a for which ucb_a^t is maximised.

```
\begin{array}{l} t \leftarrow 0 \\ \hat{p}_a \leftarrow 0 \text{ for all } a \in A \\ u_a \leftarrow 0 \text{ for all } a \in A \\ \textbf{while } t < T \textbf{ do} \\ a^t \leftarrow \arg\max_{a \in A} \left(\hat{p}_a^t + \sqrt{\frac{2\log t}{u_a^t}}\right) \\ \text{Observe } r^t \\ \hat{p}_{a^t} \leftarrow \frac{u_{a^t}\hat{p}_{a^t} + r^t}{u_{a^t} + 1} \\ u_{a^t} \leftarrow u_{a^t} + 1 \\ t \leftarrow t + 1 \\ \textbf{end while} \end{array}
```

1.5.1 KL-UCB Algorithm

The KL(x, y) divergence is given by:

$$KL(x,y) = x \log \frac{x}{y} + (1-x) \log \frac{1-x}{1-y}$$

We define $ucb - kl_a^t$ as the solution $q \in [\hat{p}_a^t, 1]$ to the equation:

$$KL(\hat{p}_a^t, q) = \frac{\log t + c \log (\log t)}{u_a^t}$$

Since $KL(\hat{p}_a^t, q)$ is a monotonically increasing function in q, we can find the solution using binary search.

```
\begin{split} &l \leftarrow 0 \\ &r \leftarrow 1 \\ &\text{while } r - l > \epsilon \text{ do} \\ &q \leftarrow \frac{l + r}{2} \\ &\text{if } KL(\hat{p}_a^t, q) > \frac{\log t + c \log(\log t)}{u_a^t} \text{ then} \\ &r \leftarrow q \\ &\text{else} \\ &l \leftarrow q \\ &\text{end if} \\ &\text{end while} \end{split}
```

1.6 Thompson Sampling

At time t, arm a has s_a^t successes and f_a^t failures. We can model the probability of success of arm a as a beta distribution Beta (s_a^t+1,f_a^t+1) . For this distribution:

$$\begin{aligned} \text{Mean} &= \frac{s_a^t + 1}{s_a^t + f_a^t + 2} \\ \text{Variance} &= \frac{(s_a^t + 1)(f_a^t + 1)}{(s_a^t + f_a^t + 2)^2(s_a^t + f_a^t + 3)} \end{aligned}$$

```
\begin{array}{l} t \leftarrow 0 \\ s_a \leftarrow 0 \text{ for all } a \in A \\ f_a \leftarrow 0 \text{ for all } a \in A \\ \textbf{while } t < T \textbf{ do} \\ \text{Sample } \theta^t_a \sim \text{Beta}(s^t_a + 1, f^t_a + 1) \text{ for all } a \in A \\ a^t \leftarrow \arg\max_{a \in A} \theta^t_a \\ \text{Observe } r^t \\ \textbf{if } r^t = 1 \textbf{ then} \\ s_{a^t} \leftarrow s_{a^t} + 1 \\ \textbf{else} \\ f_{a^t} \leftarrow f_{a^t} + 1 \\ \textbf{end if} \\ \textbf{end while} \end{array}
```

Thompson Sampling achieves optimal regret and is excellent in practice.

1.7 Hoeffding's Inequality

Let X be a random variable bounded in [0,1]. And, let x_1, x_2, \ldots, x_u be samples of X. Then, for any fixed $\epsilon > 0$, we have

$$\mathbb{P}\{\bar{x} \ge \mu + \epsilon\} \le e^{-2u\epsilon^2}$$
$$\mathbb{P}\{\bar{x} \le \mu - \epsilon\} \le e^{-2u\epsilon^2}$$

1.7.1 Hoeffding's Inequality for arbitrary bounded random variable

Suppose X is a random variable bounded in [a, b]. We consider $Y = \frac{X-a}{b-a}$

$$\begin{split} \bar{y} &= \frac{\bar{x}}{b-a} - \frac{a}{b-a} \\ \bar{x} &= (b-a)\bar{y} + a \\ \mathbb{P}\{\bar{x} \geq \mu + \epsilon\} &= \mathbb{P}\{\bar{y} \geq \frac{\mu-a}{b-a} + \frac{\epsilon}{b-a}\} \leq e^{-\frac{2u\epsilon^2}{(b-a)^2}} \\ \mathbb{P}\{\bar{x} \leq \mu - \epsilon\} &= \mathbb{P}\{\bar{y} \leq \frac{\mu-a}{b-a} - \frac{\epsilon}{b-a}\} \leq e^{-\frac{2u\epsilon^2}{(b-a)^2}} \end{split}$$

1.7.2 KL inequality

$$\mathbb{P}\{\bar{x} \ge \mu + \epsilon\} \le e^{-uKL(\mu + \epsilon, \mu)} \,\forall \epsilon \in [0, 1 - \mu]$$

$$\mathbb{P}\{\bar{x} \le \mu - \epsilon\} \le e^{-uKL(\mu - \epsilon, \mu)} \,\forall \epsilon \in [0, \mu]$$

1.7.3 Chernoff Bounds

The KL inequality can be used to derive Chernoff bounds. For $p, q \in [0, 1]$:

$$KL(p,q) \ge 2(p-q)^2$$

$$\implies e^{-uKL(p,q)} \le e^{-2u(p-q)^2}$$

2 Markov Decision Processes (MDPs)

2.1 Definitions

A Markov Decision Process (MDP) is a tuple (S, A, T, R, γ) where:

- S: a finite set of states. |S| = n.
- A: a finite set of actions. |A| = k.
- T: a transition function $T: S \times A \times S \rightarrow [0,1]$. T(s,a,s') is the probability of transitioning to state s' on taking action a in state s. $\sum_{s'} T(s,a,s') = 1$.
- R: a reward function $R: S \times A \times S \to \mathbb{R}$. R(s, a, s') is the reward on transitioning to state s' on taking action a in state s. The reward is immediate.
- γ : a discount factor $\gamma \in [0, 1)$.

A **Policy** $\pi: S \to A$ is a mapping from states to actions. Π denotes the set of all policies. $|\Pi| = k^n$. The **value function** $V^{\pi}: S \to \mathbb{R}$ is the expected discounted cumulative reward on following policy π from state s.

$$V^{\pi}(s) = \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \gamma^{3} r^{3} + \dots | s^{0} = s]$$

2.2 MDP Planning

Given an MDP, the goal is to find the optimal policy π^* that maximises the value function. Every MDP is guranteed to have a deterministic, markovian, stationary optimal policy. An MDP can have more than one optimal policy, but all optimal policies have the same value function.

2.3 Bellman Equations

For $\pi \in \Pi$, $s \in S$, the **Bellman Equation** is given by:

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \left\{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right\}$$

These are n linear equations in n variables. They are guranteed to have a unique solution if $\gamma < 1$, and can be solved using linear algebra.

2.4 Banach's Fixed Point Theorem

A Contraction Mapping is a function $Z: X \to X$ such that:

$$||Zv - Zu|| \le l||v - u|| \ \forall u \in X, \forall v \in X$$

A point $x^* \in X$ is called a **Fixed Point** if $Zx^* = x^*$.

Bananach's Fixed Point Theorem states that if Z is a contraction mapping on a complete metric space X, with contraction factor $l \in [0,1)$, then:

- 1. Z has a unique fixed point $x^* \in X$.
- 2. For any $x \in X$, the sequence $x_{n+1} = Zx_n$ converges to x^* . Or equivalently, $||Z^m x x^*|| \le l^m |x x^*||$ for $m \ge 0$.

2.5 Bellman Optimality Equations

The **Bellman Optimality Operator** $B^*: \mathbb{R}^n \to \mathbb{R}^n$ for an MDP is given by:

$$(B^*(F))(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma F(s') \right\}$$

Note that B^* is a contraction mapping. Banach's Fixed Point Theorem implies that B^* has a unique fixed point V^* . This fixed point is the optimal value function, and is given by the **Bellman Optimality Equation**:

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^*(s') \right\}$$

These are n equations in n variables, but are non-linear.

2.6 Value Iteration

Iteratively apply the Bellman Optimality Operator to find the optimal value function.

```
Value Iteration V(s) \leftarrow 0 \text{ for all } s \in S while not converged do \text{for } s \in S \text{ do} V'(s) \leftarrow \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V(s') \right\} end for V(s) \leftarrow V'(s) \text{ for all } s \in S end while
```

2.7 Linear Programming for Bellman Optimality Equations

Although the Bellman Optimality Equations are non-linear, they can be converted to a linear program. For $s \in S, a \in A$:

$$V(s) \ge \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V(s') \right\}$$

We get nk linear constraints in n variables, and V^* is in the feasible region of this LP. So, we need more constraints to get the optimal value function. Since, B^* operator preserves the order, and since $V \succeq B^*(V)$ for all V in the feasible set, we can observe that:

$$V \succeq B^*(V)$$

$$\Longrightarrow B^*(V) \succeq (B^*)^2(V)$$

$$\Longrightarrow (B^*)^2(V) \succeq (B^*)^3(V)$$

$$\vdots$$

$$V \succeq \lim_{l \to \infty} (B^*)^l(V) = V^*$$

We get an additional constraint, i.e., to **minimise** V(s) for all $s \in S$. These can be solved using any LP solver.

2.8 Policy Iteration

2.8.1 Action Value Function

We define $Q^{\pi}: S \times A \to \mathbb{R}$ as the **Action Value Function** for policy π as the expected discounted cumulative reward on taking action a in state s and then following policy π . It is given by:

$$Q^{\pi}(s, a) = \mathbb{E}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s; a^{0} = a; a^{t} = \pi(s^{t}) \text{ for } t \ge 1]$$
$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^{\pi}(s') \right\}$$

2.8.2 Policy Improvement

For $\pi \in \Pi$, $s \in S$, we define two quantities, namely **IA** and **IS** as below.

$$IA(\pi, s) = \{a \in A : Q^{\pi}(s, a) > V^{\pi}(s)\} \text{ and } IS(\pi) = \{s \in S : |IA(\pi, s) \ge 1|\}$$

Policy Improvement Theorem states that for any $\pi \in \Pi$, if $IS(\pi) = S$, then π is an optimal policy. Else, if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.

2.8.3 Policy Iteration Algorithm

```
Policy Iteration \pi \leftarrow \text{random policy}
\mathbf{while} \ \pi \ \text{has improvable states } \mathbf{do}
\pi' \leftarrow \text{policy improvement on } \pi
\pi \leftarrow \pi'
\mathbf{end while}
```

2.9 Howard's Policy Iteration for 2-action MDPs

Switch actions in every improvable state. If π has m improvable states and π' is obtained from pi by Howard's PI, then there exist m policies π'' such that $\pi' \succeq \pi'' \succ \pi$. If we take $m^* = \frac{n}{3}$, then the number of policies with m^* or more improvable states visited is at most $\frac{2^n}{m} = 3\frac{2^n}{n}$. The number of policies with fewer than m^* improvable states visited is at most $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{m^*-1} \le 3\frac{2^n}{n}$. Therefore, the number of iterations taken by Howaed's PI is at most $O(\frac{2^n}{n})$.

2.10 Batch Switching Policy Iteration

Howard's PI takes at most 3 iterations for 2-action MDPs. For MDPs with more than 2 actions, we can use **Batch Switching Policy Iteration**. In this, we partition the set of actions into batches of size k (k = 2 here), and switch actions within a batch. This reduces the number of policies visited in each iteration. In each iteration, we improve the left-most batch. An illustration is given below.

The complexity of this algorithm can be calculated by the recurrence $T(n) \leq 3 \times T(n-2)$. Hence, the complexity is $O(3^{n/2})$.

3 Reinforcement Learning

3.1 Common Problems

A **learning algorithm** L is a mapping from the set of all histories to the set of all probability distributions over arms. Let h^t denote the history of the first t rounds, and s^t denote the state at time t. The **Control Problem** is to find a learning algorithm L that gives the optimal cumulative reward for all states. In other words, can we construct an algorithm L such that,

$$\lim_{H \to \infty} \frac{1}{H} \left(\sum_{t=0}^{H-1} \mathbb{P} \{ a^t \sim L(h^t) \text{ is an optimal action for } s^t \} \right) = 1$$

The **Prediction Problem** asks whether we construct an algorithm L such that,

$$\lim_{t \to \infty} \hat{V}^t = V^{\pi}$$

3.2 Monte Carlo Methods

We define two functions before proceeding. Let $\mathbf{1}(s,i,j)$ be 1 if s is visited at least j times, and 0 otherwise. Let G(s,i,j) be the discounted long-term reward obtained, starting from jth visit of state s on episode i. Let $\mathbf{times}(s,i)$ be the number of times state s is visited in episode i.

3.2.1 First-Visit Monte Carlo

Average the G-values obtained from the first visit to each state.

$$\hat{V}_{\text{First-visit}}^{N}(s) = \frac{\sum_{i=1}^{N} G(s, i, 1)}{\sum_{i=1}^{N} \mathbf{1}(s, i, 1)}$$

3.2.2 Every-Visit Monte Carlo

Average the G-values obtained from every visit to each state.

$$\hat{V}_{\text{Every-visit}}^{N}(s) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{\infty} G(s, i, j)}{\sum_{i=1}^{N} \sum_{j=1}^{\infty} \mathbf{1}(s, i, j)}$$

3.2.3 Second-Visit Monte Carlo

Average the G-values obtained from the second visit to each state.

$$\hat{V}_{\text{Second-visit}}^{N}(s) = \frac{\sum_{i=1}^{N} G(s, i, 2)}{\sum_{i=1}^{N} \mathbf{1}(s, i, 2)}$$

3.2.4 Last-Visit Monte Carlo

Average the G-values obtained from the last visit to each state.

$$\hat{V}_{\text{Last-visit}}^{N}(s) = \frac{\sum_{i=1}^{N} G(s, i, \text{times}(s, i))}{\sum_{i=1}^{N} \mathbf{1}(s, i, \text{times}(s, i))}$$

Observe that $\lim_{N\to\infty} \hat{V}^N_{\text{nth-visit}} = V^{\pi}$ for n=1,2, every but not for last.

3.2.5 Online Implementation of Monte Carlo

Assume that every episode starts at the same state s_0 . Then, first visit monte carlo simply becomes $\frac{1}{t}\sum_{i=1}^{t} G(s,i,1)$. We can implement online Monte Carlo as follows.

$$\hat{V}^{t}(s) = \frac{1}{t} \sum_{i=1}^{t} G(s, i, 1)$$

$$= \frac{1}{t} \left(\sum_{i=1}^{t-1} G(s, i, 1) + G(s, t, 1) \right)$$

$$= \frac{1}{t} \left((t-1)\hat{V}^{t-1}(s) + G(s, t, 1) \right)$$

$$= (1 - \alpha_t)\hat{V}^{t-1}(s) + \alpha_t G(s, t, 1) \text{ for } \alpha_t = \frac{1}{t}$$

3.3 Common Estimates

3.3.1 The Problem

Let $\beta = p_1, p_2, p_3, \ldots$ be the vector of actual probabilities of getting a 1-reward on the arms. Let kth arm be played n_k times and m_k times a 1-reward is obtained. Our goal is to find an estimate of β .

3.3.2 Least Squares Estimate

We can calculate p'_1, p'_2, p'_3, \ldots as the observed probabilites of getting a 1-reward for each arm (i.e., $p'_k = \frac{m_k}{n_k}$). The **Squares Estimate** function is given by,

$$SE(\beta) = \sum_{i} (p_i - p_i')^2$$

We obtain β by minimising the function $SE(\beta)$.

3.3.3 Maximum Likelihood Estimate

The **Likelihood** function is given by,

$$L(\beta) = \prod_{i} p_i^{m_i} (1 - p_i)^{n_i - m_i}$$

We obtain β by maximising the function $L(\beta)$.

3.4 Temporal Difference Learning: TD(0)

```
\begin{aligned} &\pi \leftarrow \text{arbitrary policy} \\ &\hat{V}_0 \leftarrow \text{arbitrary initialisation} \\ &\text{for } t = 0, 1, 2, \dots \text{ do} \\ &\text{Take action } a^t \sim \pi(s^t) \\ &\text{Obtain } r^t \\ &\hat{V}^{t+1}(s^t) \leftarrow \hat{V}^t(s^t) + \alpha_t \left(r^t + \gamma \hat{V}^t(s^{t+1}) - \hat{V}^t(s^t)\right) \\ &\text{for all } s \in S \setminus \{s^t\} \text{ do} \\ &\hat{V}^{t+1}(s) \leftarrow \hat{V}^t(s) \\ &\text{end for} \end{aligned}
```

First-visit MC, Every-visit MC, and Batch TD(0), all converge to V^{π} . But, for small N, they are very different. Generally, a middle path works the best.

3.5 Multi-step Returns

For $t \geq 0, n \geq 1$, the **n-step return** $G_{t:t+n}$ is defined as,

$$G_{t:t+n} = r^t + \gamma r^{t+1} + \gamma^2 r^{t+2} + \dots + \gamma^{n-1} r^{t+n-1} + \gamma^n V^{t+n-1}(s^{t+n})$$

n-step TD makes update of the form:

$$V^{t+n}(s^t) \leftarrow V^{t+n-1}(s^t) + \alpha_t \left(G_{t:t+n} - V^{t+n-1}(s^t) \right)$$

Observe that this is somewhat between first-visit MC and TD(0). Any convex combination of $G_{i:j}$ can be used in place of $G_{t:t+n}$ (called the **Target**).

3.5.1 λ -return

A particular convex combination of n-step returns is called the λ -return ($\lambda \in [0,1]$).

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_{t:T}$$

Observe that, $G_t^0 = G_{t:t+1}$, corresponds to full bootstrapping and $G_t^1 = G_{t:\infty}$, corresponds to MC estimate. The transition from s^t to s^{t+1} contributes to the λ -returns of $s^0, s^1, ..., s^t$, with a weight of λ .

3.6 Backward View TD Learning: TD(λ)

In the below pseudocode, $z:S\to\mathbb{R}$ is a vector of eligibility traces.

```
\begin{array}{l} \hat{V}_0 \leftarrow \text{arbitrary initialisation} \\ \text{for each episode do} \\ z \leftarrow 0 \\ \text{for each step do} \\ \delta \leftarrow r + \gamma V(s') - V(s) \\ z \leftarrow z + 1 \\ \text{for all } s \in S \text{ do} \\ V(s) \leftarrow V(s) + \alpha \delta z \\ z \leftarrow \gamma \lambda z \\ \text{end for} \\ \text{end for} \\ \text{end for} \end{array}
```

 $\lambda = 0$ corresponds to full bootstrapping, and $\lambda = 1$ corresponds to MC estimate.

3.7 Q-Learning

It is an **off-policy model-free value-based** method, which uses a TD approach. The goal is to get the optimal Q-function. We follow ϵ -greedy policy to sample an action at every step.

```
Q-Learning Algorithm

for i \leftarrow 1 to num_episodes do
\epsilon \leftarrow \epsilon_i
Observe S_0
t \leftarrow 0
while s^t is not terminal do
Sample a^t using \epsilon-greedy policy
Observe r^{t+1}, s^{t+1}
Q^{t+1}(s^t, a^t) \leftarrow Q^t(s^t, a^t) + \alpha \left\{ r^t + \gamma \max_a Q^t(s^{t+1}, a) - Q^t(s^t, a^t) \right\}
t \leftarrow t + 1
end while
end for
```

3.7.1 State Action Reward State Action (SARSA)

A general update rule for TD methods is,

$$Q^{t+1}\left(s^{t}, a^{t}\right) \leftarrow Q^{t}\left(s^{t}, a^{t}\right) + \alpha_{t+1}\left\{\mathsf{Target} - Q^{t}\left(s^{t}, a^{t}\right)\right\}$$

SARSA and Expected SARSA are two **on-policy** methods.

For SARSA, **Target** = $r^t + \gamma Q^t (s^{t+1}, a^{t+1})$.

For Expected SARSA, **Target** = $r^t + \gamma \sum_{a} \pi^t (s^{t+1}, a) Q^t (s^{t+1}, a)$.

When policy is time-varying, all the three methods QL, SARSA, and Expected SARSA converge to the optimal Q-function. But when the policy is time-invariant, then only QL converges to the optimal Q-function.

3.7.2 Off-policy vs On-policy

- Off-policy methods use a different policy for acting (inference) and updating (training).
- On-policy methods use the same policy for acting and updating.

3.7.3 Model-based vs Model-free

- Model-based methods (like value iteration) need to know a model of the environment (the transition and reward functions etc.).
- Model-free methods (like QL, SARSA) do not need to know a model of the environment.

3.8 Deep Q-Learning

In DQN, we use a neural network to obtain the optimal Q-function. The loss function on which the network is trained (using Stochastic Gradient Descent or Adam) is,

$$r^{t} + \gamma \max_{a \in A} Q^{t} \left(s^{t+1}, a^{t} \right) - Q^{t} \left(s^{t}, a^{t} \right)$$

3.8.1 Experience Replay

We create a **replay memory** to make more efficient use of the experiences during the training.

```
Replay buffer D \leftarrow arbitrary initialisation Q \leftarrow arbitrary initialisation for episode\leftarrow 1 to M do

Sequence s_1 \leftarrow \{x_1\}
for t \leftarrow 1 to T do

Sample a^t using \epsilon-greedy policy
Observe r^{t+1}, s^{t+1}
Store \left(s^t, a^t, r^t, s^{t+1}\right) in D
Sample random minibatch of transitions \left(s^t, a^t, r^t, s^{t+1}\right) from D
Perform gradient-descent on \left(r^t + \gamma \max_a Q^t \left(s^{t+1}, a\right) - Q^t \left(s^t, a^t\right)\right)
Update Q using the loss end for
```

3.9 Prediction with Linear Approximation

We can choose to approximate our value function by dot product of two vectors, $x: S \to \mathbb{R}^d$ (d-dimensional feature vector) and $w \in \mathbb{R}^d$ (weight vector).

$$\hat{V}(w,s) = x(s) \cdot w$$

Our goal is that $V^{\pi}(s)$ and $\hat{V}(w,s)$ be as close as possible. So, we define a loss function,

$$MSVE(w) = \frac{1}{2} \sum_{s \in S} \mu^{\pi}(s) \left\{ V^{\pi}(s) - (\hat{V})(w, s) \right\}^{2}$$

Here, $\mu^{\pi}: S \to [0,1]$ is the stationary distribution of π . And the optimal w is obtained by minimising the loss function.

$$w^* = \operatorname*{argmin}_{w \in \mathbb{R}^d} MSVE(w)$$

We can use stochastic gradient descent to find the optimal w. But we don't know $V^{\pi}(s^t)$, so we can use n-step returns instead by performing the following update.

$$w^{t+1} \leftarrow w^{t} + \alpha_{t+1} \left\{ G_{t}^{\lambda} - \hat{V}\left(w^{t}, s^{t}\right) \right\} \nabla_{w} \hat{V}\left(w^{t}, s^{t}\right)$$

```
Linear TD(\lambda) Algorithm

\hat{V}_0 \leftarrow \text{arbitrary initialisation} \\
\text{for each episode do} \\
z \leftarrow 0 \\
\text{for each step do} \\
\text{Take action } a, \text{ obtain } r, s' \\
\delta \leftarrow r + \gamma \hat{V}(w, s') - \hat{V}(w, s) \\
z \leftarrow \gamma \lambda z + \nabla_w \hat{V}(w, s) \\
w \leftarrow w + \alpha \delta z \\
s \leftarrow s' \\
\text{end for} \\
\text{end for}
```

3.10 Tile Coding

Tile coding is a way to discretise a continuous action space. The idea is to create several overlapping grids (tilings) and assign a unique tile to each state. Each tile has an associated weight, and the value of a state is the sum of the weights of the tiles associated with that state. Below is an example of the same.

Samples: [(0.03, 3.56), (0.1, -2.58), (0.49, 3.61), (-0.2, 1.09), (-0.05, 1.12), (-0.14, 3.24),

(0.78, -1.64), (-0.06, -0.22)] **Encoded samples**: [[(5, 8), (5, 8), (4, 8)], [(5, 2), (5, 2), (5, 2)], [(7, 8), (7, 8), (7, 8)], [(4, 6), (3, 6), (3, 5)], [(5, 6), (4, 6), (4, 5)], [(4, 8), (4, 8), (3, 7)], [(9, 3), (8, 3), (8, 3)], [(5, 5), (4, 4), (4, 4)]]

3.11 ExpectiMax Algorithm

MDPs can be represented as trees where the nodes represent states and the edges represent actions. These are called **ExpectiMax trees**. V and Q values are computed using a bottom-up approach.

$$V^{d}(s) \leftarrow \max_{a \in A} Q^{d+1}(s, a)$$
$$Q^{d}(s, a) \leftarrow \sum_{s' \in S} T(s, a, s') \left\{ R(s, a, s') + \gamma V^{d}(s') \right\}$$

For sufficient accuracy, episode length must be $h = \Theta\left(\frac{1}{1-\gamma}\right)$ And the number of nodes in the tree is $\Theta\left(b^h\right)$ where b is branching factor. This becomes computationally very expensive.

3.12 Monte Carlo Tree Search (MCTS)

In this, a search tree is built node-by-node. The algorithm has four steps.

3.12.1 Selection

Starting at root node R, recursively select child nodes until a leaf node L is reached. Analogous to the MAB problem, we can use Upper Confidence Bounds (UCB) to select the child nodes.

$$ucb(s, a) = Q(s, a) + C_p \sqrt{\frac{\ln t}{visits(s, a)}}$$

This is done in order to balance exploration with exploitation. This variant of MCTS is also called **UCT** (Upper Confidence Bounds for Trees). C_p in the UCB formula needs to be large to deal with non-stationarity.

3.12.2 Expansion

If the lead node L is not terminal, then create one or more child nodes and select one, called C.

3.12.3 Simulation

Run a random simulation of the MDP from C until a result (terminating state, t) is reached.

3.12.4 Backpropagation

Obtain the reward r from the simulation till t and backpropagate it to update the statistics of the nodes in the path till C

4 Policy Gradient Methods

4.1 Stochastic Policy

A policy that, given a state, outputs a probability distribution over actions at that state.

$$\pi_{\theta}(s) = \mathbb{P}\left[A|s;\theta\right]$$

4.2 Objective Function

The expected value of a policy π_{θ} with parameters θ is given by the objective function.

$$J(\theta) = V^{\pi_{\theta}}(s_0)$$

The objective function is computationally infeasible to compute, so we search for $J(\theta)$ by ascending the gradient.

4.3 Policy Gradient

Given a policy objective $J(\theta)$, the **policy gradient** of J with respect to θ is given by:

$$\nabla_{\theta} J(\theta) = \begin{pmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{pmatrix}$$

We follow the gradient to maximize the objective function $J(\theta)$, and update the weights as:

$$\theta \leftarrow \theta + \alpha J(\theta)$$

Here, α is the learning rate.

4.4 Policy Gradient Theorem

The **policy gradient theorem** says that for any differentiable policy π_{θ} , state s, and action a, the objective function is given by:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[Q(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \right]$$

4.5 REINFORCE Algorithm

```
REINFORCE algorithm
\theta \leftarrow \text{arbitrary initialization}
\text{while True do}
\theta_{\text{new}} \leftarrow \theta
\text{Generate episode } s^0, a^0, r^0, \dots, s^T = s_T, \text{ following } \pi_\theta
\text{for } t = 0 \text{ to } T - 1 \text{ do}
G \leftarrow \sum_{k=t}^{T-1} r^k
\theta_{\text{new}} \leftarrow \theta_{\text{new}} + \alpha \gamma^t G \nabla_\theta \log \pi_\theta(s^t, a^t)
\text{end for}
\theta \leftarrow \theta_{\text{new}}
\text{end while}
```

4.6 Actor-Critic Methods

In REINFORCE algorithm, the high variance in the cumulative rewards of G can lead to slow convergence. Actor-Critic methods reduce this variance by introducing a **critic** that estimates the value function. The policy is called the **actor**. The main idea here is to **bootstrap**, i.e., to use $r^t + \hat{V}(s^{t+1})$ instead of $G_{t:T}$. So the updation step becomes:

$$\theta_{\text{new}} \leftarrow \theta_{\text{new}} + \alpha \sum_{t=0}^{T-1} \left(r^t + \hat{V}\left(s^{t+1}\right) - \hat{V}\left(s^t\right) \right) \nabla_{\theta} \log \pi_{\theta}(s^t, a^t)$$

This reduces the variance in the policy gradient estimate. It is not always convergent, but widely used.

References

- [1] Shivaram Kalyanakrishnan. CS 747: Foundations of Intelligent and Learning Agents. URL: https://www.cse.iitb.ac.in/~shivaram/teaching/old/cs747-a2022/index.html.
- [2] Emma Brunskill. CS234: Reinforcement Learning Spring 2024. URL: https://web.stanford.edu/class/cs234/index.html.
- [3] Sutton and Barto. Reinforcement Learning: An Introduction. URL: http://incompleteideas.net/book/the-book-2nd.html.
- [4] David Silver. Reinforcement Learning Course. URL: https://www.davidsilver.uk/teaching/.
- [5] Stuart Mitchell. PuLP Documentation. URL: https://coin-or.github.io/pulp/.
- [6] NumPy Community. NumPy Documentation. URL: https://numpy.org/doc/stable/.
- [7] Hugging Face. Deep RL Course. URL: https://huggingface.co/learn/deep-rl-course/.
- [8] MCTS Research Hub. Monte Carlo Tree Search. URL: https://mcts.ai/about/index.html.
- [9] Surag Nair. A Simple Alpha(Go) Zero Tutorial. URL: https://suragnair.github.io/posts/alphazero.html.
- [10] David Silver, Demis Hassabis. AlphaGo Zero: Starting from scratch. URL: https://deepmind.google/discover/blog/alphago-zero-starting-from-scratch/.
- [11] Udacity. Deep Reinforcement Learning Nanodegree. URL: https://github.com/udacity/deep-reinforcement-learning.
- [12] Tim Miller. Mastering Reinforcement Learning. URL: https://gibberblot.github.io/rl-notes/intro.html.