2回路 DCモータ バイポーラ・ステッピングモータ **ドライバ**

DRV8835

DUAL LOW VOLTAGE H-BRIDGE IC

■特徴■

- 2mmX3mmWSONパッケージを、使いやすい300mil幅2.54mmピッチ12ピン(6x2)の DIP基板に変換し、電源ライン(VM、VCC)に必要なコンデンサを実装しました。
- ・2個(並列接続時は1個)のDCモータ、あるいは1個の2相バイポーラステッピングモータを駆動できます。
- Low MOSFET 使用で低オン抵抗を実現: ハイサイド+ローサイド 305 $m\Omega$
- 1回路(Hブリッジ)ごとに1. 5Aのドライブ能力。並列接続で3Amax。
- モータ電源とロジック電源ピンが分離されています:モータ電源2~11V、ロジック電源2V~7V
- ・モード設定により2種類の信号付与方式が選択できます。(IN/IN · PHASE/ENABLE)
- 極低消費電力スリープモード (VCC=OV 時): 95 n Amax

外形図(ピン穴O. 9mm)

■動作モード■

	• —				
IN/IN モード(MODE = 0)					
MODE	x IN1	x I N2	x0UT1	x0UT2	動作
0	0	0	HiZ	HiZ	空転
0	0	1	L	Н	逆転
0	1	0	Н	L	正転
0	1	1	L	L	ブレーキ
PASE/ENABLE					
MODE	xENABLE	xPAHSE	x0UT1	x0UT2	動作
1	0	Χ	L	L	ブレーキ
1	1	1	L	Н	逆転
1	1	0	Н	L	正転

■動作条件■

Vcc	ロジック電源電圧範囲	2~7	٧
VM	モーター電源電圧範囲	0~11	٧
Iout	H ブリッジ出力電流	0~1.5	Α
fPWM	外部入力 PWM 周波数	0~250	kHz
VIN	ロジックレベル入力電圧	0~Vcc	٧

■ピンの名称と機能■(ピン番号は基板左上を起点に反時計回りです)

ピン	名称	機能	ピン	名称	機能
1	VM	モータ電源	12	VCC	ロジック電源
2	AOUT1	A出力1	11	MODE	モード設定
3	AOUT2	A出力2	10	AIN1	A入力1/APHASE
4	BOUT1	B出力1	9	AIN2	A入力2/AENBL
5	BOUT2	B出力2	8	BIN1	B入力 1/BPHASE
6	GND	グランド	7	BIN2	B入力2/BENBL

■絶対最大定格■

VM	モーター電源電圧範囲	-0. 3 ~ 12	٧
Vcc	ロジック電源電圧範囲	-0. 7 ~ 7	٧
	デジタル入力ピン電圧範囲	-0. 5∼Vcc+0. 5	٧
	モーター駆動ピーク電流	内部限界	Α
	モーター駆動定常電流(各駆動回路)	1. 5	Α
Tj	動作時接合部温度範囲	-40 ~ 150	°C
Tstg	保管温度範囲	-50 ~ 150	°C

注意:ご使用時、基板は熱くなります。十分な放熱をお願いいたします。

■接続例(ステッピングモータとArduino UNO)■PHASE/ENABLEモード


```
//STEPPER MOTOR SPEED CONTROL
int APHASE = 4;
int AENBL = 5;
int BPHASE = 6;
int BENBL
            = 7;
int VR_PIN = A0;
unsigned long VR_VALUE = 0;
void setup() {
  pinMode(APHASE,OUTPUT);
  pinMode(AENBL,OUTPUT);
 pinMode(BPHASE,OUTPUT);
  pinMode(BENBL,OUTPUT);
  digitalWrite(AENBL,HIGH);
  digitalWrite(BENBL,HIGH);
void READ_VR(void){
 VR_VALUE = analogRead(VR_PIN);
void DELAY_WAIT(void){
 for (int i = 0; i < (VR_VALUE / 10 + 7); i++)
 delay Microseconds (100);\\
void loop() {
 READ_VR();
  digitalWrite(APHASE,HIGH);
  DELAY_WAIT();
  digitalWrite(BPHASE,HIGH);
  DELAY_WAIT();
  digitalWrite(APHASE,LOW);
 DELAY_WAIT();
  digitalWrite(BPHASE,LOW);
 DELAY_WAIT();
```

■接続例(DCモータとArduinoUNO)■ IN/INモード 並列接続 max3A

```
//DC MOTOR \, CW/CCW and \, SPEED CONTROL \, (PWM =490Hz)
int IN1 = 5;
int IN2 = 6;
int VR_PIN = A0;
int VR_VALUE;
int PWM_VALUE;
int STATUS = 0;
void setup() {
void READ_VR(void){
  VR_VALUE = analogRead(VR_PIN);
  if ((VR_VALUE >= 500) && (VR_VALUE <= 523))
STATUS = 0; //BREAK
  if(VR_VALUE <=499){
                                                                      //CCW
     STATUS = 1;
    \label{eq:pwm_value} \begin{aligned} \text{PWM\_VALUE} &= (500 \text{ - VR\_VALUE})/2; //1 \text{to} 500 \end{aligned}
  if(VR\_VALUE>=524)\{
                                                                      //CW
     STATUS = 2;//
    \label{eq:pwm_value} \begin{aligned} \text{PWM\_VALUE} &= (\text{VR\_VALUE} - 523)/2; \end{aligned}
void PWM_SYORIO{
                                  //BREAK
    if (STATUS == 0){
       analogWrite(IN1,255);
       analogWrite(IN2,255);
     if (STATUS == 1){
                                  //CCW
       analogWrite(IN1,PWM_VALUE);
       analogWrite(IN2,0);
     if (STATUS == 2){
                                  //CW
       analogWrite(IN1,0);
       analogWrite(IN2,PWM_VALUE);
void loop(){
READ_VR();
  PWM_SYORI();
  delay(50);
```

詳細はメーカーマニュアルをご覧ください。