

Knowledge Representation and Reasoning

Simon Dixon

Queen Mary University of London

Outline

- Knowledge Representation in Logic
 - ▶ The Propositional Calculus
 - ▶ The First Order Predicate Calculus
- Reasoning
 - Inference Rules to Compute with Calculus Expressions
- Application

Knowledge engineering

- The role of the Knowledge Engineer is to
 - elicit or otherwise ascertain knowledge
 - represent it in the most appropriate way
 - use it to derive previously unknown facts
 - follow a chain of reasoning from new data to a conclusion (e.g. medical diagnosis)
 - make explicit things that were previously implicit in a system that was too complex for a human to understand all at once
- One way to represent knowledge is using *logic*
- Examples of simple (atomic) logic statements
 - Socrates-is-a-man
 - Man(Socrates)
 - Philosopher (Socrates)
 - Occupation(Socrates, Philosopher)

Forms of atomic sentences

- Most atomic sentences have one of the following forms:
 - Statement
 - e.g. Socrates-is-a-man
 - Property(Object)
 - e.g. Man(Socrates), Dead(Socrates),
 - Perhaps clearer if written IsMan(Socrates), IsDead(Socrates)
 - Relation(Object I, Object 2, ...)
 - e.g. Occupation(Socrates, Philosopher), Mother(Elizabeth, Charles), LessThan(2, 5)
 - The convention is that Object I would be the subject of the sentence if expressed in English (Socrates has occupation philosopher; Elizabeth is the mother of Charles; 2 is less than 5)
- In each case, they are sentences, i.e. they say something
 - What the sentence says might be true or false

Knowledge engineering

 Often, in one formalism or another, this will involve maintaining a database of facts that are known to be true and rules that can apply to them

Knowledge engineering

- Quite often, problem formulation in real-world situations is very difficult
 - different experts have different opinions
 - the world is continuous and unpredictable
 - clients don't really know what they want from you
- A common approach to understanding the issues involved in KE is to use a highly simplified world, and then to generalise with experience
 - a common simplification is the "blocks" world

Example: the Blocks World

- There is/are
 - a table
 - some distinguishable blocks
 - a robot hand/arm
- Problems are specified by the initial and desired states
- Solutions are expressed as a sequence of actions by the arm
- Predicates
 - ightharpoonup On(x,y), On-table(x)
 - Clear(x)
 - Empty-table

Knowledge representation and inference

- KR should allow us, for a given world, to:
 - Express facts or beliefs using a formal language
 - expressively and unambiguously
- The inference procedure should allow us to:
 - Determine automatically what follows from these facts
 - correctly (soundly) and completely (and tractably)

Example:

- Be able to express formally that:
 - "The red block is above the blue block"
 - "The green block is above the red block"
- ▶ Be able to infer:
 - "The green block is above the blue block"
 - "The blocks form a tower"

Example

Given

- If it rains in the morning, then I wear my black coat
- If I wear my black coat, then I wear my black shoes
- I am not wearing black shoes

• Find out

- Was it raining this morning?
- Human reasoning:
 - Brown shoes, so no black coat, so it was not raining this morning
 - We want a computer to do that, reliably and in general

Components of a logical calculus

- A formal language
 - words and syntactic rules that tell us how to build up sentences
 - so we can build up more complex statements from simple ones
 - semantic mappings that tell us what the words mean
- An inference procedure which allows us to compute which sentences are valid inferences from other sentences
- There are many different logical calculi; here we study
 - ▶ The Propositional Calculus
 - ▶ The First Order Predicate Calculus

The Propositional Calculus (PC)

- Each symbol in the Propositional Calculus is either:
 - a proposition: a basic, smallest unit of meaning in the calculus
 - e.g. "It-is-raining"
 - ▶ a connective: for combining propositions into more complex sentences
- Two reserved, special propositions
 - True and False
 - with the obvious meanings!
- Convention: propositions begin with upper case letters
 - P, Q, Sunny, etc.
- Connectives use special symbols
 - ▶ \land (and), \lor (or), \neg (not), \rightarrow (implies), \equiv (is equivalent to)

Sentences (syntax) in PC

- The Sentence is the syntactic unit to which truth values can be attached
 - Sentences are also called Well-Formed Formulae
 - Every propositional symbol is a sentence. E.g.: True, False, P
 - ▶ The negation of a sentence is a sentence. E.g.: ¬P, ¬False.
 - The conjunction (and) of two sentences is a sentence. E.g.: $P \land Q$
 - \blacktriangleright The disjunction (or) of two sentences is a sentence. E.g.: P \lor Q
 - The implication of one sentence by another is a sentence. E.g.: $P \rightarrow Q$
 - ullet Note that implication can also be expressed as $\neg P \lor Q$
 - The equivalence of two sentences is a sentence. E.g.: P = Q
 - Note that equivalence can also be expressed as $(P \rightarrow Q) \land (Q \rightarrow P)$
 - is therefore sometimes omitted from the propositional calculus

Semantics (meaning) in PC

- An interpretation of a set of sentences is the assignment of a truth value, either T or F, to each propositional symbol (and so to each sentence)
 - The proposition True is always assigned truth value T
 - The proposition False is always assigned truth value F
 - \blacktriangleright The assignment of negation, $\neg P$, is F iff (if and only if) the assignment of P is T
 - ▶ The assignment of conjunction, $P \land Q$, is T iff both P and Q are assigned T
 - \blacktriangleright The assignment of disjunction, P \lor Q, is F iff both P and Q are assigned F
 - ▶ The assignment of implication, $P \rightarrow Q$, is F iff the assignment of P is T and the assignment of Q is F
 - The assignment of equivalence, P = Q, is T iff the assignments of P and Q are the same

Properties of logical connectives

commutativity

$$P \lor Q \equiv Q \lor P$$

$$P \wedge Q \equiv Q \wedge P$$

associativity

$$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$$

$$\bullet (P \land Q) \land R \equiv P \land (Q \land R)$$

distributivity

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

Some useful laws and equivalences

- excluded middle: P ∨ ¬ P
- double negation: $\neg \neg P \equiv P$
- contrapositive: $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$
- de Morgan's laws

- Note order of operator precedence
 - ▶ ¬ precedes ∧ precedes ∨
 - \rightarrow are = are complicated: use parentheses
 - ▶ Compare with arithmetic operators: -, x, +

Truth tables

- A truth table has all sentences along its top, usually in increasing order of syntactic complexity
 - its rows are all the possible interpretations, one row each
 - how many rows are needed in general?

Р	Q	¬P	P ∧ Q	P ∨ Q	$P \rightarrow Q$
Т	Т	F	Т	Т	Т
Т	F	F	F	Т	F
F	Т	Т	F	Т	Т
F	F	Т	F	F	Т

Truth tables

• We can prove things using truth tables

Р	Q	¬P	¬P ∨ Q	P→Q	$\neg P \lor Q \equiv P \rightarrow Q$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т

Problem Description

- If it rains in the morning, then I wear my black coat
- If I wear my black coat, then I wear my black shoes
- I am not wearing black shoes
- Did it rain this morning?

Problem Description

- If it rains in the morning, then I wear my black coat
- If I wear my black coat, then I wear my black shoes
- I am not wearing black shoes
- Did it rain this morning?

Propositions

- P: It rained this morning.
- Q: I am wearing my black coat.
- R: I am wearing black shoes.

Problem Description

- If it rains in the morning, then I wear my black coat
- If I wear my black coat, then I wear my black shoes
- I am not wearing black shoes
- Did it rain this morning?

Propositions

- P: It rained this morning.
- Q: I am wearing my black coat.
- R: I am wearing black shoes.

Premises

- P→O
- \bullet Q \rightarrow R
- ¬R

Problem Description

- If it rains in the morning, then I wear my black coat
- If I wear my black coat, then I wear my black shoes
- I am not wearing black shoes
- Did it rain this morning?

Propositions

- P: It rained this morning.
- Q: I am wearing my black coat.
- R: I am wearing black shoes.

Premises

- P→O
- \bullet Q \rightarrow R
- ¬R
- Question: P? (Given that the Premises are true, is P true?)

Proof using a truth table

Propositions			Premises			Trial conclusions	
Р	Q	R	P→Q	Q→R	¬R	Р	¬P
Т	Т	Т	Т	Т	F	Т	F
Т	Т	F	Т	F	Т	Т	F
Т	F	Т	F	Т	F	Т	F
Т	F	F	F	Т	Т	Т	F
F	Т	Т	Т	Т	F	F	Т
F	Т	F	Т	F	Т	F	Т
F	F	Т	Т	Т	F	F	Т
F	F	F	Т	Т	Т	F	Т

Proof using a truth table

Propositions			Premises			Trial conclusions	
Р	Q	R	P→Q	Q→R	¬R	Р	¬P
Т	Т	Т	Т	Т	F	Т	F
Т	Т	F	Т	F	Т	Т	F
Т	F	Т	F	Т	F	Т	F
Т	F	F	F	Т	Т	Т	F
F	Т	Т	Т	Т	F	F	Т
F	Т	F	Т	F	Т	F	Т
F	F	Т	Т	Т	F	F	Т
F	F	F	T	T	T	F	Т

• When all the premises are true, P is false, so it did not rain this morning

First Order Predicate Calculus

- The Propositional Calculus is not very expressive
 - e.g. can't make statements about all of a certain thing
 - or about things that don't exist
 - or about whether things exist
- In the "rains/coat/shoes" example, we had to omit the day on which we checked the premises
- How could we make statements to capture the idea that we'd do this procedure each day?
 - If it rains on Monday morning ...
 - If it rains on Tuesday morning ... etc.

First Order Predicate Calculus

- The First Order Predicate Calculus (FOPC) is a conservative extension of the Propositional Calculus (PC)
 - this means that it has all the properties and features of PC
 - and some extra ones
 - constant symbols: stand for objects, the things which sentences are about; written like propositions, but occur in different syntactic positions
 - variables: usually written as lower case single letters, ranging over objects
 - predicate symbols: propositions are now predicates which describe relationships between (and properties of) objects; written like propositions with arguments
 - function symbols: represent mappings between objects and objects; written like predicates
 - existential quantifier 3: "there exists"; always followed by a variable and a sentence
 - universal quantifier ∀: "for all"; always followed by a variable and a sentence
- In PC, propositions were predicates that had no arguments

Problem description

- If it rains in the morning [on a particular day], then I wear my black coat [on that day].
- If I wear my black coat [on a particular day], then I wear black shoes [on that day].
- I am not wearing black shoes [today].
- Did it rain in the morning [today]?

Problem description

- If it rains in the morning [on a particular day], then I wear my black coat [on that day].
- If I wear my black coat [on a particular day], then I wear black shoes [on that day].
- I am not wearing black shoes [today].
- Did it rain in the morning [today]?

• Premises:

- $ightharpoonup \forall d \ Rains(d) \rightarrow BlackCoat(d)$
- $ightharpoonup \forall d \ BlackCoat(d) \rightarrow BlackShoes(d)$
- ▶ ¬BlackShoes(Tuesday)

Problem description

- If it rains in the morning [on a particular day], then I wear my black coat [on that day].
- If I wear my black coat [on a particular day], then I wear black shoes [on that day].
- I am not wearing black shoes [today].
- Did it rain in the morning [today]?

• Premises:

- \rightarrow ∀d Rains(d) \rightarrow BlackCoat(d)
- ▶ ∀d BlackCoat(d) → BlackShoes(d)
- ▶ ¬BlackShoes(Tuesday)
- Question: Rains(Tuesday)?

Problem description

- If it rains in the morning [on a particular day], then I wear my black coat [on that day].
- If I wear my black coat [on a particular day], then I wear black shoes [on that day].
- I am not wearing black shoes [today].
- Did it rain in the morning [today]?

• Premises:

- ∀d Rains(d) → BlackCoat(d)
- ▶ ∀d BlackCoat(d) → BlackShoes(d)
- ▶ ¬BlackShoes(Tuesday)
- Question: Rains(Tuesday)?
- Note that quantifiers have the lowest precedence, so $\forall x \ P \rightarrow Q$ means $\forall x \ (P \rightarrow Q)$ and not $(\forall x \ P) \rightarrow Q$ (if in doubt, use parentheses)

- A function maps its arguments to a fixed single value
 - note that functions do not have truth values: they map between objects
 - functions are denoted in the same way as predicates
 - you can tell which is which from where they appear: predicates are outermost
 - functions have an arity: the number of arguments they take

- A function maps its arguments to a fixed single value
 - note that functions do not have truth values: they map between objects
 - functions are denoted in the same way as predicates
 - you can tell which is which from where they appear: predicates are outermost
 - functions have an arity: the number of arguments they take
- "A person's mother is that person's parent"
 - \blacktriangleright $\forall x \ Person(x) \rightarrow Parent(Mother-of(x), x)$
 - Note that a person can only have one mother, so using a function like this is OK

- A function maps its arguments to a fixed single value
 - note that functions do not have truth values: they map between objects
 - functions are denoted in the same way as predicates
 - you can tell which is which from where they appear: predicates are outermost
 - functions have an arity: the number of arguments they take
- "A person's mother is that person's parent"
 - \blacktriangleright $\forall x \ Person(x) \rightarrow Parent(Mother-of(x), x)$
 - Note that a person can only have one mother, so using a function like this is OK
- "All computers have a mouse connected by USB"
 - ▶ $\forall x \text{ Computer}(x) \rightarrow \exists y \text{ Mouse}(y) \land \text{USB-Connection}(x,y)$

- A function maps its arguments to a fixed single value
 - note that functions do not have truth values: they map between objects
 - functions are denoted in the same way as predicates
 - you can tell which is which from where they appear: predicates are outermost
 - functions have an *arity*: the number of arguments they take
- "A person's mother is that person's parent"
 - \blacktriangleright $\forall x \ Person(x) \rightarrow Parent(Mother-of(x), x)$
 - Note that a person can only have one mother, so using a function like this is OK
- "All computers have a mouse connected by USB"
 - ▶ $\forall x \ Computer(x) \rightarrow \exists y \ Mouse(y) \land USB-Connection(x,y)$
- "There is at least one person in this class who thinks"
 - → ∃x Person(x) ∧ Registered(x, AlClass) ∧ Thinks(x)

Order and range of quantifiers matters

- "Every person likes some food"
 - \blacktriangleright $\forall x \ Person(x) \rightarrow \exists f \ Food(f) \land Likes(x, f)$

Order and range of quantifiers matters

- "Every person likes some food"
 - \blacktriangleright $\forall x \ Person(x) \rightarrow \exists f \ Food(f) \land Likes(x, f)$
- "There is a food that every person likes"
 - ▶ $\exists f \forall x \text{ Food}(f) \land \text{Person}(x) \rightarrow \text{Likes}(x, f)$

Order and range of quantifiers matters

- "Every person likes some food"
 - \blacktriangleright $\forall x \ Person(x) \rightarrow \exists f \ Food(f) \land Likes(x, f)$
- "There is a food that every person likes"
 - ▶ $\exists f \forall x \text{ Food}(f) \land \text{Person}(x) \rightarrow \text{Likes}(x, f)$
- "Whenever anyone eats some spicy food, they are happy"
 - - allowable substitutions for x are people, for f is food (like types in programming languages)
 - ▶ $\forall x \ \forall f \ Person(x) \land Food(f) \land Spicy(f) \land Eats(x, f) \rightarrow Happy(x)$
 - no need to worry about allowable substitutions

Order and range of quantifiers matters

- "Every person likes some food"
 - \blacktriangleright $\forall x \ Person(x) \rightarrow \exists f \ Food(f) \land Likes(x, f)$
- "There is a food that every person likes"
 - ▶ $\exists f \forall x \text{ Food}(f) \land \text{Person}(x) \rightarrow \text{Likes}(x, f)$
- "Whenever anyone eats some spicy food, they are happy"
 - - \bullet allowable substitutions for x are people, for f is food (like types in programming languages)
 - ▶ $\forall x \ \forall f \ Person(x) \land Food(f) \land Spicy(f) \land Eats(x, f) \rightarrow Happy(x)$
 - no need to worry about allowable substitutions
- Compare the following statements about integers. Which is true?

 - ∃y ∀x x > y

Equality

- A very useful extra operator that isn't strictly in FOPC is =
 - i.e., the TEST for equality, like == in Java, not the assignment statement
- The rule for = is that
 - \blacktriangleright A = A is true for all constants A in the interpretation
 - otherwise, it is false
- We'll use equality in some tutorial questions

Syntax of FOPC

- Terms: correspond with things in the world (like nouns in grammar)
 - Constants
 - e.g., Thursday, Socrates, 25
 - Variables
 - e.g., x
 - Function expressions
 - A function symbol of arity n followed by n terms, enclosed in () and separated by ,
 - e.g., Function(var, AnotherFunction(Thing))

Syntax of FOPC

- Terms: correspond with things in the world (like nouns in grammar)
 - Constants
 - e.g., Thursday, Socrates, 25
 - Variables
 - e.g., x
 - Function expressions
 - A function symbol of arity n followed by n terms, enclosed in () and separated by ,
 - e.g., Function(var, AnotherFunction(Thing))
- Sentences: statements that can be true or false
 - Atomic Sentence
 - A predicate symbol of arity n followed by n terms, enclosed in () and separated by ,
 - Note that n can be 0, so True and False are atomic sentences
 - ▶ The result of applying a connective (as in PC) to one or more sentences
 - ▶ The result of applying a quantifier (\forall, \exists) with its variable to a sentence

Semantics of FOPC: Interpretation

- Let the domain D be a nonempty set of objects, which may related in various ways:
 - An n-ary relation is a set of n-tuples of elements of D (i.e. those n-tuples for which the relation holds)
 - unary relations represent properties of objects
 - An n-ary function is a relation between n-tuples and objects in D, which maps each n-tuple to exactly one object

Semantics of FOPC: Interpretation

- Let the domain D be a nonempty set of objects, which may related in various ways:
 - An n-ary relation is a set of n-tuples of elements of D (i.e. those n-tuples for which the relation holds)
 - unary relations represent properties of objects
 - An n-ary function is a relation between n-tuples and objects in D, which maps each n-tuple to exactly one object
- An interpretation over D is an assignment of the entities in D to each of the constant, variable, predicate, and function symbols of a predicate calculus expression
 - Each constant is assigned an element of D
 - Each variable is assigned to a nonempty subset of D (allowable substitutions)
 - Each function of arity m is defined ($D^m \mapsto D$)
 - Each predicate of arity n is defined ($D^n \mapsto \{T,F\}$).

Syntax	Semantic Domain	World
	Interpretation	

Syntax

Semantic Domain

World

Interpretation

Syntax

Semantic Domain

Objects:

Predicates:

Interpretation

World

Syntax

Semantic Domain

Objects: Edna

World

Predicates:

Interpretation

Syntax World Semantic Domain Objects: Edna Fido -Predicates: Interpretation

Syntax

Semantic Domain

Objects: Edna

Fido -

World

Predicates:

DogWalk/3

Interpretation

World Semantic Domain Syntax Objects: Edna Fido -Park ⁴ Predicates: DogWalk/3 Interpretation

Syntax

Constant names:

DogWalk/3

Edna Fido Park

Predicate names:

Semantic Domain

Objects: Edna

Fido -

Park

Predicates:

DogWalk/3

Interpretation

World

Syntax

Constant names:

Edna Fido Park

DogWalk/3

Predicate names:

DogWalk(Edna, Fido, Park)

Lifts(Mehwesh, Weights) \(\cdot \) In(Mehwesh, Gym)

names:

Lifts (Mehwesh, Weights) ^

In(Mehwesh, Gym)

Constant names: Predicate

names:

Edna Fido Park

DogWalk/3

DogWalk(Edna, Fido, Park)

Constant Mehwesh Gym

names: Weights

Predicate In/2 Lifts/2

names:

Lifts(Mehwesh, Weights) \\
In(Mehwesh, Gym)

Semantic Domain

Objects: Edna

Dave Fido -

Gym Mehwesh

Weights

Park

Predicates: Boat/I DogWalk/3

In/2 Lifts/2

Interpretation

World

Syntax

Constant names:

names:

Edna Fido Park

Predicate DogWalk/3

DogWalk(Edna, Fido, Park)

Constant Mehwesh Gym

names: Weights

Predicate In/2 Lifts/2

names:

Lifts(Mehwesh, Weights) \\
In(Mehwesh, Gym)

Semantic Domain

Objects: Edna

Dave Fido ·

Park

Gym

Mehwesh

Sea

Weights

Predicates: Boat/I DogWalk/3

In/2 Lifts/2

Interpretation

World

DogWalk(Edna, Fido, Park)

Constant Mehwesh Gym

names: Weights

Predicate In/2 Lifts/2

names:

names:

Lifts(Mehwesh, Weights) \\
In(Mehwesh, Gym)

Syntax Constant Edna Fido Park

Predicate names:

DogWalk(Edna, Fido, Park)

DogWalk/3

Constant Mehwesh Gym

names: Weights

Predicate In/2 Lifts/2

names:

Lifts(Mehwesh, Weights) \\
In(Mehwesh, Gym)

Semantic Domain

Objects: Edna

Boat Dave Fido -

Park

Gym Mehwesh

Sea

Weights

Predicates: Boat/ DogWalk/3

In/2 Lifts/2 On/2

Interpretation

World

Syntax

Constant Edna Fido Park names:
Predicate DogWalk/3 names:

DogWalk(Edna, Fido, Park)

Constant Mehwesh Gym

names: Weights

Predicate In/2 Lifts/2

names:

Lifts(Mehwesh, Weights) \(\cdot \) In(Mehwesh, Gym)

Constant Dave Sea names:

Predicate On/2 Boat/I

names:

Semantic Domain Objects: Edna Dave → Fido – Boat Gym Mehwesh Park Sea Weights . Boat/I DogWalk/3 Predicates: ln/2Lifts/2 On/2 Interpretation

World

Syntax Edna Fido Park Constant names: DogWalk/3 **Predicate** names: DogWalk(Edna, Fido, Park) Constant Mehwesh Gym names: Weights **Predicate** Lifts/2 In/2names: Lifts (Mehwesh, Weights) ^ In(Mehwesh, Gym) Sea Constant Dave names: **Predicate** On/2Boat/I names:

∃b Boat(b) ∧

On(Dave, b) ^

On(b, Sea)

Semantic Domain Syntax Edna Fido Park Objects: Edna Constant names: Dave → Fido – Boat DogWalk/3 **Predicate** names: Gym DogWalk(Edna, Fido, Park) Mehwesh Constant Mehwesh Gym Park Sea names: Weights Weights . **Predicate** Lifts/2 In/2names: Boat/I DogWalk/3 Predicates: Lifts (Mehwesh, Weights) ^ On/2ln/2Lifts/2 In(Mehwesh, Gym) Sea Interpretation Constant Dave names: Т **Predicate** DogWalk(Edna, Fido, Park) On/2Boat/I names: DogWalk(Dave, Fido, Park) F ∃b Boat(b) ∧ On(Dave, b) ^ On(b, Sea)

World

Properties of sentences

- For a predicate calculus sentence, S, and an interpretation, I,
 - I satisfies S, if S has a truth value of T under I and at least one variable assignment
 - ▶ I is a model of S, if I satisfies S for all possible variable assignments in I

Properties of sentences

- For a predicate calculus sentence, S, and an interpretation, I,
 - I satisfies S, if S has a truth value of T under I and at least one variable assignment
 - ▶ I is a model of S, if I satisfies S for all possible variable assignments in I
- A sentence is satisfiable iff there is at least one interpretation and variable assignment that satisfy it; otherwise it is unsatisfiable

Properties of sentences

- For a predicate calculus sentence, S, and an interpretation, I,
 - I satisfies S, if S has a truth value of T under I and at least one variable assignment
 - ▶ I is a model of S, if I satisfies S for all possible variable assignments in I
- A sentence is satisfiable iff there is at least one interpretation and variable assignment that satisfy it; otherwise it is unsatisfiable
- A set of sentences, E, is *satisfiable* iff there is at least one interpretation and variable assignment that satisfies every $S \in E$
 - ▶ NB quantification! The same interpretation/variable assignment pair satisfies all S

Properties of sentences

- For a predicate calculus sentence, S, and an interpretation, I,
 - I satisfies S, if S has a truth value of T under I and at least one variable assignment
 - ▶ I is a model of S, if I satisfies S for all possible variable assignments in I
- A sentence is satisfiable iff there is at least one interpretation and variable assignment that satisfy it; otherwise it is unsatisfiable
- A set of sentences, E, is *satisfiable* iff there is at least one interpretation and variable assignment that satisfies every $S \in E$
 - ▶ NB quantification! The same interpretation/variable assignment pair satisfies all S
- A set of sentences is inconsistent iff it is not satisfiable

Properties of sentences

- For a predicate calculus sentence, S, and an interpretation, I,
 - I satisfies S, if S has a truth value of T under I and at least one variable assignment
 - ▶ I is a model of S, if I satisfies S for all possible variable assignments in I
- A sentence is satisfiable iff there is at least one interpretation and variable assignment that satisfy it; otherwise it is unsatisfiable
- A set of sentences, E, is *satisfiable* iff there is at least one interpretation and variable assignment that satisfies every $S \in E$
 - ▶ NB quantification! The same interpretation/variable assignment pair satisfies all S
- A set of sentences is inconsistent iff it is not satisfiable
- A sentence is *valid* iff it is satisfiable for all possible interpretations

Proof procedures

- A proof procedure consists of
 - a set of inference rules
 - an algorithm for applying the inference rules
 - usually, we start from the thing we want to prove
 - then work "backwards" towards things we already know, such as axioms and theorems

Proof procedures

- A proof procedure consists of
 - a set of inference rules
 - an algorithm for applying the inference rules
 - usually, we start from the thing we want to prove
 - then work "backwards" towards things we already know, such as axioms and theorems
- Semantics of logical entailment
 - A sentence, S, logically follows from, or is entailed by, a set, E, of sentences iff every interpretation and variable assignment that satisfies E also satisfies S

Properties of inference rules

Soundness

An set of inference rules is sound iff every sentence it infers from a set, E, of sentences logically follows from E

Completeness

An set of inference rules is *complete* iff it can infer every expression that logically follows from a set of sentences

- Modus Ponens (implication elimination)
 - if we know that P implies Q, and that P is true, then infer Q

$$\blacktriangleright \ (P \land (P \rightarrow Q)) \rightarrow Q$$

$$\frac{P, \quad P \to Q}{O}$$

- Modus Ponens (implication elimination)
 - if we know that P implies Q, and that P is true, then infer Q

$$\bullet (P \land (P \rightarrow Q)) \rightarrow Q$$

$$\frac{P, \quad P \to Q}{O}$$

- Modus Tollens
 - given that P implies Q, and that Q is false, infer $\neg P$

$$\bullet (\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$$

$$\neg Q, P \rightarrow Q$$
 $\neg P$

- Modus Ponens (implication elimination)
 - if we know that P implies Q, and that P is true, then infer Q

$$(P \land (P \rightarrow Q)) \rightarrow Q$$

- Modus Tollens
 - given that P implies Q, and that Q is false, infer $\neg P$

$$(\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$$

$$\frac{\neg Q, P \to Q}{\neg P}$$

- We also need rules to deal with the other connectives
 - Introduction (adding a connective into a proof sequence)
 - Elimination (removing a connective from a proof sequence)

- Conjunction (And) elimination
 - ightharpoonup P is true and Q is true if P \wedge Q is true

$$\frac{P \wedge Q}{P, Q}$$

- Conjunction (And) elimination
 - ightharpoonup P is true and Q is true if P \wedge Q is true
- Conjunction (And) introduction
 - $ightharpoonup P \wedge Q$ is true if P is true and Q is true

$$\frac{P \wedge Q}{P, Q}$$

$$\frac{\mathsf{P}, \quad \mathsf{Q}}{\mathsf{P} \wedge \mathsf{Q}}$$

- Conjunction (And) elimination
 - ightharpoonup P is true and Q is true if P \wedge Q is true
- Conjunction (And) introduction
 - $ightharpoonup P \wedge Q$ is true if P is true and Q is true
- Universal (For-all) elimination
 - ▶ P(A) is true for all constants, A, if $\forall x.P(x)$ is true

$$\frac{\mathsf{P} \wedge \mathsf{Q}}{\mathsf{P}, \mathsf{Q}}$$

$$\frac{P, Q}{P \wedge Q}$$

$$\frac{\forall x.P(x)}{P(A)}$$

- Conjunction (And) elimination
 - ightharpoonup P is true and Q is true if P \wedge Q is true
- Conjunction (And) introduction
 - $ightharpoonup P \wedge Q$ is true if P is true and Q is true
- Universal (For-all) elimination
 - ▶ P(A) is true for all constants, A, if $\forall x.P(x)$ is true
- Universal (For-all) introduction
 - \blacktriangleright $\forall x.P(x)$ is true, if $P(A_i)$ is true for all constants, A_i

$$\frac{\mathsf{P} \wedge \mathsf{Q}}{\mathsf{P}}, \quad \mathsf{Q}$$

$$\frac{P, Q}{P \wedge Q}$$

$$\frac{P(A_1), ..., P(A_n)}{\forall x. P(x)}$$

Rain example in FOPC revisited

Problem description

- If it rains in the morning [on a particular day], then I wear my black coat [on that day]
- If I wear my black coat [on a particular day], then I wear my black shoes [on that day]
- I am not wearing my black shoes [today].
- Did it rain in the morning [today]?

• Premises:

- \blacktriangleright \forall d Rains-in-morning(d) \rightarrow Black-coat(d)
- → d Black-coat(d) → Black-shoes(d)
- ▶ ¬Black-shoes(Tuesday)
- Question: Rains-in-morning(Tuesday)?

Rain example in FOPC revisited

	Universal instantiation	∀d Black-coat(d)→Black-shoes(d) Black-coat(Tue)→Black-shoes(Tue)	
Modus Tollen	¬ Black-shoes(Tue)		
∀d Rains(d)→Black-coat(d)	Universal instantiation	Diagle cont/Tea)	Modus Tollens
Rains(Tue)→Black-coat(Tue)		¬ Black-coat(Tue)	
	¬Rains(Tue)		_

• Premises:

- \blacktriangleright \forall d Rains(d) \rightarrow Black-coat(d)
- \blacktriangleright \forall d Black-coat(d) \rightarrow Black-shoes(d)
- ▶ ¬Black-shoes(Tue)

Rain example in FOPC revisited

	Universal instantiation	∀d Black-coat(d)→Black-shoes(d)	
Modus Tollen	_s ¬ Black-shoes(Tue)	Black-coat(Tue)→Black-shoes(Tue	
∀d Rains(d)→Black-coat(d)	Universal instantiation	Diagle cost(Tes)	Modus Tollens
Rains(Tue)→Black-coat(Tue)		¬ Black-coat(Tue)	
	¬Rains(Tue)		_

- Premises:
 - \blacktriangleright \forall d Rains(d) \rightarrow Black-coat(d)
 - ▶ ∀d Black-coat(d) → Black-shoes(d)
 - ▶ ¬Black-shoes(Tue)

- Proof is complicated: which inference rule to use next?
- A simpler approach is better:
 - Resolution Theorem Proving

Past **Exam**ple Question

3(a) Use a truth table to verify that $((A \land B) \rightarrow C) \equiv (\neg A \lor \neg B \lor C)$

[4 marks]

Past **Exam**ple Question

3(a) Use a truth table to verify that $((A \land B) \rightarrow C) \equiv (\neg A \lor \neg B \lor C)$

[4 marks]

Α	В	U	A ∧ B	$(A \land B) \rightarrow C$	¬А	¬В	¬А∨¬В∨С	LHS ≡ RHS
Т	Т	H	Т	Τ	F	F	Т	Т
Т	Т	Щ	Т	F	F	F	F	Т
Т	F	H	F	Т	F	Т	Т	Т
Т	F	F	F	Т	F	Т	Т	Т
F	Т	H	F	Т	Т	F	Т	Т
F	Т	Щ	F	Т	Т	F	Т	Т
F	F	T	F	Т	Т	Т	Т	Т
F	F	F	F	T	Т	T	T	Т

Past **Exam**ple Question

3(b) Using the following predicates and their natural language meanings:

cat(x): x is a cat

dog(x): x is a dog

owns(x, y): x owns y

grey(x): x is grey

express the following sentences in first order logic:

- (i) John has a cat.
- (ii) Dogs are never grey.
- (iii) All of John's cats are grey.
- (iv) No dog owner owns any cats.

[8 marks]