IDEATION PHASE

LITERATURE SURVEY

DATE	03 September 2022		
TEAM ID	PNT2022TMID13687		
PROJECT NAME	Predicting the energy output of wind turbine based on weather condition		

Litera	ture Survey:			
s.no	TITLE	AUTHOR	YEAR	PROPOSED SYSTEM
1			_	wind power prediction Prediction luo,
	Xun method was p	_	xploiting	
	Method for Wind	dou, Rong		improved TCN to correct the
	Power Based on	sun		cumulative error. First, multi-scale
	_			selfto Correct attentiveness (SA) were problem that a single-
				scale convolution kernel of TCN is
				difficult to extract temporal and spatial features at different scales of the input
				sequence.
2	Remotely Mark A	. 2019 Remot	ely sensed	surface winds Sensed Winds Bourassa,
	(scalar winds and	vector winds)	and Wind	Thomas with related material on surface
	Stresses for	Meissner,		stress, air-sea heat fluxes, currents,
	Marine	Ivana Cerovecki		sea state, and precipitation.
	Forecasting and	CCIOVCCKI		sea state, and precipitation.
	Ocean Modeling			
3	Wind Muhammad	2020 Wind	forecasting	methods and Generation Shahzad the
	artificial neural ne	twork, The		
	Forecasting	Nazir,		instrument used to measure wind
	Methods and	Fahad		assimilation is analyzed and
		Alturise,		
	Proliferation of	Sami		discussed, accurately. The high

Artificial Neural Alshmrany

forecasting accuracy could be

Network

achieved through proper handling and calibration of the wind-

				forecasting instrument and method.
4	Long term wind power forecast using adaptive wavelet neural network	Bhaskar- Kanna, Sn- Singh	2016	Mapping the NWP's wind speed and wind direction forecasts to wind power forecasts. Wind direction inheritantly being a circular variable, for better training and function approximation, a transformed version of wind direction variables are used as inputs.
5	Data mining for wind power forecasting	Lionel- Fugon, George- Kariniotakis , Jeremie- Juban	2008	Data Mining type of models for wind power forecasting. Models that are examined include neural networks, support vector machines, the recently proposed regression trees approach, and others. Evaluation results are presented for several real wind farms.

REFERENCES:

- Luo H, Dou X, Sun R and Wu S (2021) A Multi-Step Prediction Method for Wind Power Based on Improved TCN to Correct Cumulative Error. Front. Energy Res. 9:723319. doi: 10.3389/fenrg.2021.723319.
- 2. Bourassa MA, Meissner T, Cerovecki I, Chang PS, Dong X, De Chiara G, Donlon C, Dukhovskoy DS, Elya J, Fore A, Fewings MR, Foster RC, Gille ST, Haus BK, Hristova-Veleva S, Holbach HM, Jelenak Z, Knaff JA, Kranz SA, Manaster A, Mazloff M, Mears C, Mouche A, Portabella M, Reul N, Ricciardulli L, Rodriguez E, Sampson C, Solis D, Stoffelen A, Stukel MR, Stiles B, Weissman D and Wentz F (2019) Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling. *Front. Mar. Sci.* 6:443. doi: 10.3389/fmars.2019.00443.
- Nazir, Muhammad Shahzad, Fahad Alturise, Sami Alshmrany, Hafiz. M. J Nazir, Muhammad Bilal, Ahmad N. Abdalla, P. Sanjeevikumar, and Ziad M. Ali. 2020.
 "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend" *Sustainability* 12, no. 9: 3778. https://doi.org/10.3390/su12093778.
- 4. Bhaskar-Kanna, Sn-Singh, Long term wind power forecast using adaptive wavelet neural network(2016), doi.org/10.1109/UPCON.2016.7894735.
- 5. Lionel-Fugon, George-Kariniotakis, Jeremie-Juban, Data mining and wind power prediction(2008), Accepted 1 February 2012, Available online 29 March 2012. https://doi.org/10.1016/j.renene.2012.02.015.