Marwadi University Marwadi Chandarana Group	Marwadi University Faculty of Engineering and Technology Department of Information and Communication Technology	
Subject: Gen AI	Write a code for CYCLE GAN. USE DATASET MNIST FROM KERAS.	
Experiment	Date:	Enrolment No:92200133020

```
CODE:
    import numpy as np
    import tensorflow as tf
    from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, LeakyReLU, Activation, Concat
    from tensorflow.keras.models import Model
    from tensorflow.keras.optimizers import Adam
    import matplotlib.pyplot as plt
                                                                                               Python
    def build_generator():
        input_img = Input(shape=(28, 28, 1))
        x = Conv2D(64, kernel_size=3, strides=2, padding='same')(input_img)
        x = LeakyReLU(0.2)(x)
        x = Conv2D(128, kernel\_size=3, strides=2, padding='same')(x)
        x = LeakyReLU(0.2)(x)
        x = Conv2DTranspose(64, kernel_size=3, strides=2, padding='same')(x)
        x = LeakyReLU(0.2)(x)
        x = Conv2DTranspose(1, kernel_size=3, strides=2, padding='same', activation='tanh')(x)
                                                                    Activate Windows
        return Model(input_img, x)
```

```
\vee def build_discriminator():
     input_img = Input(shape=(28, 28, 1))
     x = Conv2D(64, kernel_size=3, strides=2, padding='same')(input_img)
    x = LeakyReLU(0.2)(x)
     x = Conv2D(128, kernel_size=3, strides=2, padding='same')(x)
     x = LeakyReLU(0.2)(x)
     x = Conv2D(1, kernel_size=3, strides=1, padding='same')(x)
     x = Activation('sigmoid')(x)
    return Model(input_img, x)
                                                                                             Python
 optimizer = Adam(0.0002, 0.5)
 G_AB = build_generator() # MNIST → Inverted
 G_BA = build_generator() # Inverted → MNIST
 # Discriminators
 D_A = build_discriminator() # Real MNIST?
                                                                 Activate Windows
 D_B = build_discriminator() # Real Inverted?
                                                                 Go to Settings to activate Windows.
 D A.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
```

```
D_A.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
D_B.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
img_A = Input(shape=(28, 28, 1))  # MNIST
img_B = Input(shape=(28, 28, 1)) # Inverted MNIST
fake_B = G_AB(img_A)
fake_A = G_BA(img_B)
reconstr_A = G_BA(fake_B)
reconstr_B = G_AB(fake_A)
img_A_id = G_BA(img_A)
img_B_id = G_AB(img_B)
D_A.trainable = False
D_B.trainable = False
valid_A = D_A(fake_A)
valid_B = D_B(fake_B)
                                                                Activate Windows
                                                                Go to Settings to activate Windows.
cycle_gan = Model(inputs=[img_A, img_B],
                outputs=[valid_A, valid_B, reconstr_A, reconstr_B, img_A_id, img_B_id])
```

```
(x\_train, \_), (\_, \_) = tf.keras.datasets.mnist.load_data()
   x_{train} = (x_{train.astype}(np.float32) - 127.5) / 127.5
   x_train = np.expand_dims(x_train, axis=-1)
   imgs_A = x_train
   imgs_B = 1.0 - imgs_A
                                                                                                              Python
Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz</a>
11490434/11490434 -
                                           - 0s Ous/step
   epochs = 1000
   batch_size = 64
   patch = D_A.output_shape[1:]
   valid = np.ones((batch_size,) + patch)
   fake = np.zeros((batch_size,) + patch)
    for epoch in range(1, epochs + 1):
        idx = np.random.randint(0, imgs_A.shape[0], batch_size)
        real_A = imgs_A[idx]
                                                                              Activate Windows
        real_B = imgs_B[idx]
                                                                              Go to Settings to activate Windows.
```

```
     LeaT_R = Twd2_R[IdX]
fake_B = G_AB.predict(real_A)
fake_A = G_BA.predict(real_B)
dA_loss_real = D_A.train_on_batch(real_A, valid)
dA_loss_fake = D_A.train_on_batch(fake_A, fake)
dA_loss = 0.5 * np.add(dA_loss_real, dA_loss_fake)
dB_loss_real = D_B.train_on_batch(real_B, valid)
dB_loss_fake = D_B.train_on_batch(fake_B, fake)
dB_loss = 0.5 * np.add(dB_loss_real, dB_loss_fake)
d_loss = 0.5 * np.add(dA_loss, dB_loss)
# Train generators (cycle + identity loss)
g_loss = cycle_gan.train_on_batch([real_A, real_B],
                       [valid, valid, real_A, real_B, real_A, real_B])
if epoch % 1000 == 0:
    print(f"{epoch} [D loss: {d_loss[0]:.4f}] [G loss: {g_loss[0]:.4f}]")
                                                                                       Python
```

	2/2	A- 34 (-t	
•••	2/2	0s 31ms/step	
		1/dist-packages/keras/src/backend/tensorfl	ow/trainer.py:83: UserWarning: The
		el does not have any trainable weights.")	
	2/2 —————		
	2/2		
	2/2		
	2/2		
	2/2		
	2/2		
	2/2		
	2/2		
	2/2 —	0s 28ms/step	
	2/2 —	0s 28ms/step	
	2/2	0s 36ms/step	
	2/2		
	2/2	0s 27ms/step	
	2/2	0s 27ms/step	
	2/2	0s 29ms/step	
	2/2	0s 27ms/step	
	2/2	0s 27ms/step	
		0s 27ms/step	
	2/2	0s 27ms/step	
	2/2 ————		
		0s 28ms/step	
		0s 28ms/step	
		0s 28ms/step	
		0s 29ms/step	
		0s 30ms/step	Activate Windows
			Go to Settings to activate Windows.
		0s 38ms/step	oo to bottings to detirate 11111dows.
	2/2	Os 43ms/step	
	L/ L	03 401113/30EP	