МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине 'Администрирование систем и сетей'

Выполнили: Студенты группы Р34312 Соболев Иван Верещагин Егор

Желаемая оценка: 4

Преподаватель: Максимов Андрей Николаевич

Санкт-Петербург, 2024

Оглавление

Основы Ethernet и конфигурирование VLAN	3
Топология сети	3
Конфигурация	3
Отключение ненужных портов GE0/0/11 и GE0/0/12 на S1 и на S2	3
Настройка ІР-адресов устройств	3
Создание VLAN	4
Настройка сети VLAN на основе портов	4
Сконфигурируйте сети VLAN на основе МАС-адресов	5
Вывод информации о конфигурации	6
Проверка	7
Протокол связующего дерева (STP)	8
Топология сети	8
Конфигурация	8
Отключение ненужных портов	8
Включение STP	9
Изменение параметров устройства, чтобы сделать S1 корневым мостом, а S2 — резерв корневым мостом	
Изменение параметров устройства, чтобы назначить порт GigabitEthernet0/0/2 коммут S4 корневым портом	•
Изменение режима связующего дерева на RSTP	
Настройка граничных портов	
Проверка	
Агрегирование каналов Ethernet	
Топология	
Конфигурация	
Вывод на экран статуса Eth-Trunk	
Настройка агрегирования каналов в режиме LCAP	
Установка в состоянии передачи int gi 0/0/11 и int gi 0/0/12, а int 0/0/10 используется в качестве резервного	
Изменение режима балансировки нагрузки	
Связь между VLAN	
Топология	
Настройка основных параметров устройств	
Настройка подинтерфейсов терминирования dot1q для реализации связи между VLAN	
Настройка интерфейсов VLANIF для реализации связи между VLAN	
Вывод	23

Основы Ethernet и конфигурирование VLAN

Топология сети

Конфигурация

Отключение ненужных портов GE0/0/11 и GE0/0/12 на S1 и на S2

[S1]interface g0/0/11 [S1-GigabitEthernet0/0/11]shutdown [S1]interface g0/0/12 [S1-GigabitEthernet0/0/12]shutdown [S2]interface g0/0/11 [S2-GigabitEthernet0/0/11]shutdown [S2]interface g0/0/12 [S2-GigabitEthernet0/0/12]shutdown

Настройка ІР-адресов устройств

Установка IP-адресов для R1 и R3.

[R1]interface g0/0/1
[R1-GigabitEthernet0/0/1]ip address 10.1.2.1 24

[R3]interface g0/0/2
[R3-GigabitEthernet0/0/2]ip address 10.1.10.1 24

Установка IP-адресов для VLANIF3 на S3 и S4. Создание VLAN 3.

```
[S3]vlan 3
[S4]vlan 3
```

Настройка портов на S3 и S4 в качестве портов доступа и назначение их в соответствующие VLAN.

```
[S3]interface g0/0/1
[S3-GigabitEthernet0/0/1]port link-type access
[S3-GigabitEthernet0/0/1]port default vlan 3

[S4]interface g0/0/2
[S4-GigabitEthernet0/0/2]port link-type access
[S4-GigabitEthernet0/0/2]port default vlan 3
```

Создание интерфейсов VLANIF и настройка IP-адреса.

```
[S3]interface Vlanif 3
[S3-Vlanif3]ip address 10.1.3.1 24

[S4]interface Vlanif 3
[S4-Vlanif3]ip address 10.1.3.2 24
```

Создание VLAN

Создание VLAN 2, 3 и 10 на S1 и S2.

```
[S1]vlan batch 2 to 3 10
[S2]vlan batch 2 to 3 10
```

Настройка сети VLAN на основе портов

Настройка пользовательских портов на S1 и S2 в качестве портов доступа и назначение их в соответствующие VLAN.

```
[S1]interface g0/0/1
[S1-GigabitEthernet0/0/1]port link-type access
[S1-GigabitEthernet0/0/1]port default vlan 2

[S1]interface g0/0/13
[S1-GigabitEthernet0/0/13]port link-type access
[S1-GigabitEthernet0/0/13]port default vlan 3

[S2]interface g0/0/14
[S2-GigabitEthernet0/0/14]port link-type access
[S2-GigabitEthernet0/0/14]port default vlan 3
```

Настройка портов, соединяющих S1 и S2, в качестве магистральных портов и разрешение прохождения только пакетов из VLAN 2 и VLAN 3.

```
[S1]interface g0/0/10

[S1-GigabitEthernet0/0/10]port link-type trunk

[S1-GigabitEthernet0/0/10]port trunk allow-pass vlan 2 3

[S1-GigabitEthernet0/0/10]undo port trunk allow-pass vlan 1

[S2]interface g0/0/10

[S2-GigabitEthernet0/0/10]port link-type trunk

[S2-GigabitEthernet0/0/10]port trunk allow-pass vlan 2 3

[S2-GigabitEthernet0/0/10]undo port trunk allow-pass vlan 1
```

Сконфигурируйте сети VLAN на основе MAC-адресов Настройка на S2 привязки MAC-адреса ПК к VLAN 10.

```
[S2]vlan 10
[S2-vlan10]mac-vlan mac-address 00e0-fcd8-593a
```

Hacтройка GigabitEthernet0/0/1, GigabitEthernet0/0/2 и GigabitEthernet0/0/3 на S2 в качестве гибридных портов и разрешение прохождения пакетов из VLAN на основе MAC-адресов.

```
[S2-vlan10]interface g0/0/1
[S2-GigabitEthernet0/0/1]port link-type hybrid
[S2-GigabitEthernet0/0/1]port hybrid untagged vlan 10

[S2]interface g0/0/2
[S2-GigabitEthernet0/0/2]port link-type hybrid
[S2-GigabitEthernet0/0/2]port hybrid untagged vlan 10

[S2]interface g0/0/3
[S2-GigabitEthernet0/0/3]port link-type hybrid
[S2-GigabitEthernet0/0/3]port hybrid untagged vlan 10
```

Настройка на портах, соединяющих S1 и S2, разрешения на прохождение пакетов из VLAN 10.

```
[S1]interface g0/0/10
[S1-GigabitEthernet0/0/10]port trunk allow-pass vlan 10
[S2]interface g0/0/10
[S2-GigabitEthernet0/0/10]port trunk allow-pass vlan 10
```

Настройка S2 и включение назначения VLAN на основе MAC-адресов на GE0/0/1, GE0/0/2 и GE0/0/3.

```
[S2]interface g0/0/1
[S2-GigabitEthernet0/0/1]mac-vlan enable
[S2]interface g0/0/2
[S2-GigabitEthernet0/0/2]mac-vlan enable
[S2]interface g0/0/3
[S2-GigabitEthernet0/0/3]mac-vlan enable
```

Вывод информации о конфигурации

```
[S1]dis vlan
The total number of vlans is: 4
_____
U: Up; D: Down; TG: Tagged; UT: Untagged; MP: Vlan-mapping; ST: Vlan-stacking; #: ProtocolTransparent-vlan; *: Management-vlan;
VID Type Ports
1 common UT:GE0/0/2(D) GE0/0/3(D) GE0/0/4(D) GE0/0/5(D) GE0/0/6(D) GE0/0/7(D) GE0/0/8(D) GE0/0/9(D) GE0/0/11(D) GE0/0/12(D) GE0/0/14(D) GE0/0/15(D)
    GE0/0/16(D) GE0/0/17(D) GE0/0/18(D) GE0/0/19(D) GE0/0/20(D) GE0/0/21(D) GE0/0/22(D) GE0/0/23(D)
GE0/0/24(D)
      common UT:GE0/0/1(U)
TG:GE0/0/10(U)
3 common UT:GE0/0/13(U)
TG:GE0/0/10(U)
10 common TG:GE0/0/10(U)
VID Status Property MAC-LRN Statistics Description
______
enable default enable disable VLAN 0001
enable default enable disable VLAN 0002
enable default enable disable VLAN 0003
10 enable default enable disable VLAN 0010
[S2]dis vlan
The total number of vlans is: 4
______
U: Up; D: Down; TG: Tagged; UT: Untagged;
MP: Vlan-mapping; ST: Vlan-stacking;
#: ProtocolTransparent-vlan; *: Management-vlan;
 -----
VID Type Ports
 ______
  1 common UT:GE0/0/1(U) GE0/0/2(D) GE0/0/3(D) GE0/0/4(D) GE0/0/5(D)
GE0/0/6(D) GE0/0/12(D) GE0/0/13(D) GE0/0/15(D) GE0/0/16(D) GE0/0/17(D) GE0/0/18(D)
GE0/0/19(D) GE0/0/20(D) GE0/0/21(D) GE0/0/22(D) GE0/0/23(D) GE0/0/24(D)
common TG:GE0/0/10(U)
common UT:GE0/0/14(U)
         TG:GE0/0/10(U) 10 common UT:GE0/0/1(U)
GE0/0/2(D)
              GE0/0/3(D)
TG:GE0/0/10(U)
VID Status Property MAC-LRN Statistics Description
-----
enable default enable disable VLAN 0001 enable default enable disable VLAN 0002 enable default enable disable VLAN 0003 10 enable default enable disable VLAN 0010
```

[S2]]dis	mac-vlan	vlan	10		
MAC	Addı	ress 1	MASK		VLAN	Priority

```
---00e0-fcd8-593a ffff-ffff-ffff 10
                                           0
Total MAC VLAN address count: 1
```

Проверка

Ping на S4 для проверки связи с S3. Операция успешно выполняется:

```
[S4]ping 10.1.3.2
PING 10.1.3.2: 56 data bytes, press CTRL C to break
Reply from 10.1.3.2: bytes=56 Sequence=1 ttl=255 time=30 ms
Reply from 10.1.3.2: bytes=56 Sequence=2 ttl=255 time=30 ms
Reply from 10.1.3.2: bytes=56 Sequence=3 ttl=255 time=30 ms
Reply from 10.1.3.2: bytes=56 Sequence=4 ttl=255 time=1 ms
Reply from 10.1.3.2: bytes=56 Sequence=5 ttl=255 time=20 ms
--- 10.1.3.2 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 1/22/30 ms
```

Ping на R1 для проверки связи с другими устройствами. Операция не выполняется:

```
R1]ping 10.1.3.1
ING 10.1.3.1: 56 data bytes, press CTRL_C to break
Request time out
--- 10.1.3.1 ping statistics ---
5 packet(s) transmitted
0 packet(s) received
100.00% packet loss
R1]ping 10.1.3.2
ING 10.1.3.2: 56 data bytes, press CTRL_C to break
Request time out
--- 10.1.3.2 ping statistics ---
5 packet(s) transmitted
0 packet(s) received
100.00% packet loss
R1]ping 10.1.10.1 PING 10.1.10.1: 56 data bytes, press
CTRL C to break
Request time out
--- 10.1.10.1 ping statistics ---
5 packet(s) transmitted
0 packet(s) received
100.00% packet loss
```

Таблицы МАС-адресов на коммутаторах

Протокол связующего дерева (STP)

Топология сети

Конфигурация

Отключение ненужных портов

Отключение портов GigabitEthernet0/0/12 между S1 и S2.

```
[S1]interface g0/0/12
[S1-GigabitEthernet0/0/12]shutdown
[S2]interface g0/0/12
[S2-GigabitEthernet0/0/12]shutdown
```

Включение STP

```
#Включение STP глобально.

[S1]stp enable

#Изменение режима связующего дерева на STP.

[S1]stp mode stp

[S2]stp mode stp

[S3]stp mode stp

[S4]stp mode stp
```

Краткая информация о связующем дереве на каждом коммутаторе.

[S1]dis	stp brief				
MSTID	Port	Role	STP State	Protection	
0	GigabitEthernet0/0/10	ALTE	DISCARDING	NONE	
0	GigabitEthernet0/0/11	ALTE	DISCARDING	NONE	
0	GigabitEthernet0/0/13	ROOT	FORWARDING	NONE	
0	GigabitEthernet0/0/14	ALTE	DISCARDING	NONE	
	stp brief				
MSTID	Port	Role	STP State	Protection	
0	GigabitEthernet0/0/10	DESI	FORWARDING	NONE	
0	GigabitEthernet0/0/11	DESI	FORWARDING	NONE	
0	GigabitEthernet0/0/13	ROOT	FORWARDING	NONE	
0	GigabitEthernet0/0/14	DESI	FORWARDING	NONE	
[63]4;6	stp brief				
MSTID	Port	Role	STP State	Protection	
0	GigabitEthernet0/0/1	DESI		NONE	
0	GigabitEthernet0/0/2	_	FORWARDING	NONE	
0	GigabitEthernet0/0/3	DESI	-	NONE	
O	GigableEchelheco, 0, 5	DESI	TORWARDING	NONE	
[S4]dis	stp brief				
MSTID	Port	Role	STP State	Protection	
0	GigabitEthernet0/0/1	DESI	FORWARDING	NONE	
0	GigabitEthernet0/0/2	ALTE	DISCARDING	NONE	
•					

На основании идентификатора корневого моста и информации о порте каждого коммутатора текущая топология выглядит следующим образом:

DP - назначенный порт

АР - альтернативный порт

RP - корневой порт

Изменение параметров устройства, чтобы сделать S1 корневым мостом, а S2 — резервным корневым мостом

Изменение приоритетов мостов S1 и S2.

```
[S1]stp root primary
[S2]stp root secondary
```

Вывод статуса STP на S1.

```
[S1]dis stp
-----[CIST Global Info][Mode STP]-----
CIST Bridge
              :0 .4c1f-ccc4-7b4b//Идентификатор моста
устройства.
                  :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
Config Times
Active Times
Active Times :Hello 2s MaxAge 20s FwDly 15s MaxHop 20 CIST Root/ERPC :0 .4clf-ccc4-7b4b / 0 //Идентификатор и
стоимость маршрута текущего корневого моста.
CIST RegRoot/IRPC : 0 .4clf-ccc4-7b4b / 0
CIST RootPortId
                   :0.0
BPDU-Protection
                   :Disabled
CIST Root Type :Primary root
```

Вывод краткой информации о статусе STP на всех устройствах.

MSTID	stp brief Port			
-	Dort			
_	FOLC	Role	STP State	Protection
0	GigabitEthernet0/0/10	DESI	FORWARDING	NONE
0	GigabitEthernet0/0/11	DESI	FORWARDING	NONE
0	GigabitEthernet0/0/13	DESI	FORWARDING	NONE
0	GigabitEthernet0/0/14	DESI	FORWARDING	NONE
[S2]dis	stp brief			
MSTID	Port	Role	STP State	Protection
0	GigabitEthernet0/0/10	ROOT	FORWARDING	NONE
0	GigabitEthernet0/0/11	ALTE	DISCARDING	NONE
0	GigabitEthernet0/0/13	DESI	FORWARDING	NONE
0	GigabitEthernet0/0/14	DESI	FORWARDING	NONE
	stp brief			
	Port		STP State	Protection
	GigabitEthernet0/0/1		FORWARDING	NONE
	GigabitEthernet0/0/2	ALTE	DISCARDING	NONE
0	GigabitEthernet0/0/3	DESI	FORWARDING	NONE
[S4]dis	stp brief			
	Port	Role	STP State	Protection
_	GigabitEthernet0/0/1		FORWARDING	NONE
	GigabitEthernet0/0/2		DISCARDING	NONE
	GigabitEthernet0/0/3		DISCARDING	NONE

На основании идентификатора корневого моста и информации о порте каждого коммутатора текущая топология выглядит следующим образом:

Изменение параметров устройства, чтобы назначить порт GigabitEthernet0/0/2 коммутатора S4 корневым портом Вывод информации STP на S4.

```
[S4]dis stp
-----[CIST Global Info][Mode STP]-----
CIST Bridge :32768.4c1f-cc8a-50e2
```

```
Config Times :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
Active Times :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
CIST Root/ERPC :0 .4clf-ccc4-7b4b / 20000
CIST RegRoot/IRPC :32768.4clf-cc8a-50e2 / 0
```

Стоимость корневого маршрута от S4 до S1 имеет значение 20000.

Изменение стоимости STP порта GigabitEthernet 0/0/1 коммутатора S4 на 50000.

```
[S4]interface g0/0/1
[S4-GigabitEthernet0/0/1]stp cost 50000
```

Вывод краткой информации о статусе STP.

```
[S4]dis stp brief

MSTID Port

O GigabitEthernet0/0/1

O GigabitEthernet0/0/2

O GigabitEthernet0/0/3

ROOT DISCARDING

NONE

O GigabitEthernet0/0/3

ALTE DISCARDING

NONE
```

Порт GigabitEthernet0/0/2 на S4 стал корневым портом.

Вывод информации о текущем статусе STP.

```
[S4]dis stp
-----[CIST Global Info][Mode STP]-----
CIST Bridge :32768.4c1f-cc8a-50e2
Config Times :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
Active Times :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
CIST Root/ERPC :0 .4c1f-ccc4-7b4b / 40000
CIST RegRoot/IRPC :32768.4c1f-cc8a-50e2 / 0
```

Текущая топология выглядит следующим образом:

Корневой мост

Корневой мост

Изменение режима связующего дерева на RSTP

Изменение режима связующего дерева на всех устройствах.

```
[S1]stp mode rstp
[S2]stp mode rstp
[S3]stp mode rstp
[S4]stp mode rstp
```

Вывод статуса связующего дерева.

```
[S1]dis stp
-----[CIST Global Info][Mode RSTP]-----
CIST Bridge :0 .4c1f-ccc4-7b4b

Config Times :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
Active Times :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
CIST Root/ERPC :0 .4c1f-ccc4-7b4b / 0
CIST RegRoot/IRPC :0 .4c1f-ccc4-7b4b / 0
```

После изменения режима топология связующего дерева не изменилась.

Настройка граничных портов

```
#[S3]interface range GigabitEthernet 0/0/10 to GigabitEthernet 0/0/24

#[S3-port-group]stp edged-port enable
```

Проверка

[S4]interface g0/0/2
[S4-GigabitEthernet0/0/2]shutdown
[S4]dis stp brief

MSTID Port Role STP State Protection
0 GigabitEthernet0/0/1 ALTE DISCARDING NONE
0 GigabitEthernet0/0/3 ROOT FORWARDING NONE

Интерфейс 0/0/3 стал RP вместо 0/0/2.

Агрегирование каналов Ethernet

Топология

Конфигурация

```
# Создайте Eth-Trunk.
[S1] int Eth-Trunk 1
[S2] int Eth-Trunk 1
# Конфигурирование режима агрегирования каналов для Eth-Trunk (manual
load-balance по умолчанию, поэтому не обязательно её писать)
[S1-Eth-Trunk1] mode manual load-balance
# Добавляем порт в Eth-Trunk (способ 1)
[S1]interface gi 0/0/10
[S1-GigabitEthernet0/0/10]eth-trunk 1
[S1]interface gi 0/0/11
[S1-GigabitEthernet0/0/11]eth-trunk 1
[S1]interface gi 0/0/12
[S1-GigabitEthernet0/0/12]eth-trunk 1
# Добавление нескольких портов в Eth-Trunk (способ 2)
[S2] int eth-trunk 1
[S2-Eth-Trunk1]trunkport gi 0/0/10 to 0/0/12
```

Вывод на экран статуса Eth-Trunk

Настройка агрегирования каналов в режиме LCAP

```
# Удаление портов-участников из Eth-trunk
[S1]int Eth-Trunk 1
[S1-Eth-Trunk1]undo trunkport gi 0/0/10 to 0/0/12
[S2]int Eth-Trunk 1
[S2-Eth-Trunk1]undo trunkport gi 0/0/10 to 0/0/12
```

Изменение режима агрегирования

[S1-Eth-Trunk1] mode lacp [S2-Eth-Trunk1]mode lacp

Добавление портов в Eth-Trunk

[S1-Eth-Trunk1]trunkport gi 0/0/10 to 0/0/12

[S2-Eth-Trunk1]trunkport gi 0/0/10 to 0/0/12

[S1-Eth-Trunk1]dis eth-trunk 1

Eth-Trunkl's state information is:

Local:

LAG ID: 1 WorkingMode: STATIC

Preempt Delay: Disabled Hash arithmetic: According to SIP-XOR-DIP
System Priority: 32768 System ID: 4c1f-cc22-2fc7 Least Active-linknumber: 1 Max Active-linknumber: 8 Operate status: up Number Of Up Port In Trunk: 3

ActorPortName Status PortType PortPri PortNo PortKey

PortState Weight Selected

GigabitEthernet0/0/101GE<mark>Selected</mark> 32768 11 305 10111100 1 GigabitEthernet0/0/11 Selected 1GE 32768 12 305 10111100 1

GigabitEthernet0/0/12 1GE 32768 13 305 10111100 1

Partner:

SysPri SystemID PortPri PortNo PortKey PortState ActorPortName GigabitEthernet0/0/10 32768 4c1f-cc3f-685e 32768 11 305 10111100 GigabitEthernet0/0/11 32768 4c1f-cc3f-685e 32768 12 305 10111100 GigabitEthernet0/0/12 32768 4c1f-cc3f-685e 32768 13 305 10111100

Установка в состоянии передачи int gi 0/0/11 и int gi 0/0/12, a int 0/0/10 используется в качестве резервного

Установка приоритета LCAP, чтобы сделать S1 активным устройством

[S1]lacp priority 100

Настройка самого высокого приоритета портам gi0/0/11 и gi0/0/12

[S1]int q 0/0/10

[S1-GigabitEthernet0/0/10]lacp priority 40000

Задание верхнего и нижнего порогов активных портов

[S1]int eth-trunk 1

[S1-Eth-Trunk1]max active-linknumber 2

[S1-Eth-Trunk1]least active-linknumber 2

Включение функции внеочередного занятия линии

[S1-Eth-Trunk1]lacp preempt enable

[S1-Eth-Trunk1]dis eth-trunk 1

Eth-Trunk1's state information is:

Local:

LAG ID: 1 WorkingMode: STATIC

Preempt Delay Time: 30 Hash arithmetic: According to SIP-XOR-DIP System Priority: 100 System ID: 4c1f-cc22-2fc7

Least Active-linknumber: 2 Max Active-linknumber: 2

Operate status: up Number Of Up Port In Trunk: 2

Status PortType PortPri PortNo PortKey PortState Weight <u>Unselect</u>

GigabitEthernet0/0/101GESelected 40000 11 305 10100000 1 GigabitEthernet0/0/11 Selected 1GE 32768 12 305 10111100 1

GigabitEthernet0/0/12 1GE 32768 13 305 10111100 1

Partner:

ActorPortName

 ActorPortName
 SysPri
 SystemID
 PortPri
 PortNo
 PortKey
 PortState

 GigabitEthernet0/0/10
 32768
 4c1f-cc3f-685e
 32768
 11
 305
 10110000

 GigabitEthernet0/0/11
 32768
 4c1f-cc3f-685e
 32768
 12
 305
 10111100

 GigabitEthernet0/0/12
 32768
 4c1f-cc3f-685e
 32768
 13
 305
 10111100

Отключение gi0/0/12, чтобы смоделировать неисправность канала

[S1]int qi 0/0/12

[S1-GigabitEthernet0/0/12] shutdown

[S1-GigabitEthernet0/0/12]dis eth-trunk 1

Eth-Trunkl's state information is:

Local:

LAG ID: 1 WorkingMode: STATIC

Preempt Delay Time: 30 Hash arithmetic: According to SIP-XOR-DIP System Priority: 100 System ID: 4c1f-cc22-2fc7

System Priority: 100 System ID: 4c1f-cc22-2fc7
Least Active-linknumber: 2 Max Active-linknumber: 2
Operate status: up Number Of Up Port In Trunk: 2

ActorPortName Status PortType PortPri PortNo PortKey PortState

Weight Selected

GigabitEthernet0/0/12 1GE 32768 13 305 10100010 1

Partner:

 ActorPortName
 SysPri
 SystemID
 PortPri
 PortNo
 PortKey
 PortState

 GigabitEthernet0/0/10
 32768
 4c1f-cc3f-685e
 32768
 11
 305
 10111100

 GigabitEthernet0/0/12
 32768
 4c1f-cc3f-685e
 32768
 12
 305
 10111100

 GigabitEthernet0/0/12
 0
 0000-0000-0000
 0
 0
 0
 10100011

Отключение gi0/0/11, чтобы смоделировать неисправность канала

[S1] int gi 0/0/11

[S1-GigabitEthernet0/0/11] shutdown

[S1-GigabitEthernet0/0/11]dis eth-trunk 1

Eth-Trunk1's state information is:

Local:

LAG ID: 1 WorkingMode: STATIC

Preempt Delay Time: 30 Hash arithmetic: According to SIP-XOR-DIP

System Priority: 100 System ID: 4c1f-cc22-2fc7
Least Active-linknumber: 2 Max Active-linknumber: 2

Operate status: down Number Of Up Port In Trunk: 0

ActorPortName Status PortType PortPri PortNo PortKey

PortState Weight

<pre>GigabitEthernet0/0/11 GigabitEthernet0/0/12 Partner:</pre>	Unselec Unselec			12 305 13 305	10100010 1 10100010 1
ActorPortName GigabitEthernet0/0/10 GigabitEthernet0/0/11	SysPri 32768 0	SystemID 4c1f-cc3f-685e 0000-0000-0000	32768	PortNo 11 0	PortKey PortState 305 10110000 0
10100011 GigabitEthernet0/0/12	0	0000-0000-0000	0	0	0 10100011

Изменение режима балансировки нагрузки

10111100

Включение портов, отключенных на предыдущем шаге [S1]int q 0/0/11[S1-GigabitEthernet0/0/11]undo shutdown [S1]int g 0/0/12[S1-GigabitEthernet0/0/12]undo shutdown [S1]dis eth-trunk 1 Eth-Trunkl's state information is: Local: LAG ID: 1 WorkingMode: STATIC Preempt Delay Time: 30 Preempt Delay Time: 30 Hash arithmetic: According to SIP-XOR-DIP System Priority: 100 System ID: 4c1f-cc22-2fc7 Least Active-linknumber: 2 Max Active-linknumber: 2 Operate status: up Number Of Up Port In Trunk: 2 _____ ActorPortName Status PortType PortPri PortNo PortKey PortState Weight GigabitEthernet0/0/10 Unselect 1GE 40000 11 305 10100000 1 GigabitEthernet0/0/11 Selected 1GE 32768 12 305 Selected GigabitEthernet0/0/12 1GE 10111100 1 32768 13 305 10111100 1 Partner: SysPri SystemID PortPri PortNo ActorPortName PortKey PortState 11 GigabitEthernet0/0/10 32768 4c1f-cc3f-685e 32768 305 10110000 GigabitEthernet0/0/11 32768 4c1f-cc3f-685e 32768 12 305 10111100 GigabitEthernet0/0/12 32768 4c1f-cc3f-685e 32768 13 305

Измените режим балансировки нагрузки Eth-Trunk на балансировку нагрузки на основе IP-адреса назначения.

[S1]int Eth-Trunk 1
[S1-Eth-Trunk1]load-balance dst-ip

Связь между VLAN

Топология

Конфигурация

Настройка основных параметров устройств

```
# Настройка IP-адресов и маршрутов по умолчанию
[R2]int g 0/0/1

[R2-GigabitEthernet0/0/1]ip ad 192.168.2.1 24
[R2]ip route-static 0.0.0.0 0 192.168.2.254

[R3]int g 0/0/1
[R3-GigabitEthernet0/0/1]ip ad 192.168.3.1 24

[R3]ip route-static 0.0.0.0 0 192.168.3.254

# Назначение на S1 - R2 и R3 в разные VLAN
[S1] vlan batch 2 3

[S1] int g 0/0/2
[S1-GigabitEthernet0/0/2]port link-type access
[S1-GigabitEthernet0/0/2]port default vlan 2
```

```
[S1] int g 0/0/3
[S1-GigabitEthernet0/0/3]port link-type access
[S1-GigabitEthernet0/0/3]port default vlan 3
```

Настройка подинтерфейсов терминирования dot1q для реализации связи между VLAN

Настройка магистрального порта на S1

[S1]int g 0/0/1

```
[S1-GigabitEthernet0/0/1]port link-type trunk
[S1-GigabitEthernet0/0/1]port trunk allow-pass vlan 2 3
# Настройка подинтерфейса терминирования dot1q на маршрутизаторе
R1
[R1] int g 0/0/1.2
[R1-GigabitEthernet0/0/1.2]dot1q termination vid 2
# Включение функции широковещательной передачи ARP
[R1-GigabitEthernet0/0/1.2]arp broadcast enable
[R1-GigabitEthernet0/0/1.2]ip ad 192.168.2.254 24
[R1]int q 0/0/1.3
[R1-GigabitEthernet0/0/1.3]dot1q termination vid 3
[R1-GigabitEthernet0/0/1.3]arp broadcast enable
[R1-GigabitEthernet0/0/1.3]ip ad 192.168.3.254 24
# Проверка связи между VLAN
[R2]ping 192.168.3.1
  PING 192.168.3.1: 56 data bytes, press CTRL_C to break
    Reply from 192.168.3.1: bytes=56 Sequence=1 ttl=254 time=80 ms
    Reply from 192.168.3.1: bytes=56 Sequence=2 ttl=254 time=100 ms
    Reply from 192.168.3.1: bytes=56 Sequence=3 ttl=254 time=100 ms
    Reply from 192.168.3.1: bytes=56 Sequence=4 ttl=254 time=90 ms
    Reply from 192.168.3.1: bytes=56 Sequence=5 ttl=254 time=90 ms
  --- 192.168.3.1 ping statistics ---
    5 packet(s) transmitted
    5 packet(s) received 0.00%
    packet loss
    round-trip min/avg/max = 80/92/100 ms
[R2]tracert 192.168.3.1
traceroute to 192.168.3.1(192.168.3.1), max hops: 30 ,packet
length: 40, press
CTRL_C to break
 1 192.168.2.254 60 ms 40 ms
                               50 ms
 2 192.168.3.1 80 ms 80 ms 100 ms
```

```
# Удаление конфигурации, сделанной на предыдущем шаге
[S1]int q 0/0/1
[S1-GigabitEthernet0/0/1]undo port trunk allow-pass vlan 2 3
[S1-GigabitEthernet0/0/1]undo port link-type
[R1] undo int g 0/0/1.2
[R1] undo int q 0/0/1.3
# Создание интерфейса VLANIF на коммутаторе S1
[S1]int vlanif 2
[S1-Vlanif2]ip ad 192.168.2.254 24
[S1]int vlanif 3
[S1-Vlanif3]ip ad 192.168.3.254 24
# Проверка связи между VLAN
[R2]ping 192.168.3.1
 PING 192.168.3.1: 56 data bytes, press CTRL C to break
   Reply from 192.168.3.1: bytes=56 Sequence=1 ttl=254 time=120 ms
   Reply from 192.168.3.1: bytes=56 Sequence=2 ttl=254 time=40 ms
   Reply from 192.168.3.1: bytes=56 Sequence=3 ttl=254 time=50 ms
   Reply from 192.168.3.1: bytes=56 Sequence=4 ttl=254 time=60 ms
   Reply from 192.168.3.1: bytes=56 Sequence=5 ttl=254 time=60 ms
  --- 192.168.3.1 ping statistics ---
    5 packet(s) transmitted
    5 packet(s) received 0.00%
   packet loss
    round-trip min/avg/max = 40/66/120 ms
[R2] tracert 192.168.3.1 traceroute to 192.168.3.1(192.168.3.1), max
hops: 30 ,packet
length: 40, press
CTRL C to break
1 192.168.2.254 30 ms 20 ms 20 ms
 2 192.168.3.1 60 ms 40 ms 40 ms
```

Вывод

Мы научились настраивать VLAN.