Advanced Computer Graphics

1 - Course Intro

Yoonsang Lee Fall 2018

Course Information

- Instructor: Yoonsang Lee (이윤상)
 - yoonsanglee@hanyang.ac.kr
- Course Hompage
 - The lecture home at portal.hanyang.ac.kr
 - Lecture slides will be uploaded to PDS(학습자료) Course Data(강의자료)

What is Computer Graphics?

• The study of creating, manipulating, and using visual images in the computer.

Computer vision inverts the process Image processing deals with images

Movies & Games

Science and Engineering

Simulated deformation of citrate synthase during substrate binding

Weather Visualization

LLNL

Medical Applications

Computer-Aided Design

Fine Arts

Course Overview

- Computer Graphics: Mathematics made visible
- In this course, you will
 - Explore fundamental computer graphics concepts
 - Write several simple programs (using Python and OpenGL)
- You will not
 - Learn sophisticated computer graphics techniques
 - Learn about modern OpenGL APIs
 - Write big programs

Prerequisites

- Basic knowledge of mathematics
 - E.g., vector geometry, linear algebra
- Basic knowledge of programming skill
 - We'll use Python in this class.
- You don't need artistic sense!

Textbook & References

- Textbook : Lecture slides
- References
 - Fundamentals of Computer Graphics
 - 1,2 or 3rd edition
 - Peter Shirley et al.
 - AK Peters
 - OpenGL Programming Guide
 - Version 1.1 is available at internet
 - http://www.glprogramming.com/red/
 - Reference book is also available
 - http://www.glprogramming.com/blue
 - (I don't think you need to buy these books)

Grading

Assignments	30%
Final exam	50%
Attendance	10%
Class attitude	10%

• Late three times -> count as one absence

Schedule

1	주제	Course Intro Introduction to OpenGL	9월 5일
2	주제	2D Affine Transformations, Frame Buffer Homogeneous Coordinates, 3D Affine Transformations	9월 12일
3	주제	Reference Frame, OpenGL Transformation Functions Affine Matrix, Hierarchical Modeling	9월 19일
4	주제	No Class	9월 26일
5	주제	No Class	10월 3일
6	주제	Rendering Pipeline, Viewing Transformation Projection Transformation, Viewport Transformation	10월 10일
7	주제	Vertex Processing Review, Triangle Mesh Triangle Mesh	10월 17일
8	주제	No Class	10월 24일
9	주제	Light, Phong Illumination Model Shading, Lighting & Shading in OpenGL	10월 31일
10	주제	Orientation & Rotation Rotation Matrix	11월 7일
11	주제	Animation: Intro Animation: Interpolation, Kinematics, BVH	11월 14일
12	주제	Curve: Basic Bezier Curve & Splines	11월 21일
12	ᆽᆀ		4491 2001

Assignments

- About 10 simple programming assignments
- Check the assignment menu of our lecture home
- Submit your assignment only through the assignment menu of the lecture home
- NO SCORE for late submissions
 - Submit before the deadline!