כללי

מספרים מרוכבים:

הקבוצה £ לא כוללת מספרים אינסופיים.

הקבוצה $\overline{\mathfrak{L}}$ כוללת מספרים אינסופיים (מיוצגת ע"י ספירת רימן).

$$\overline{\mathbf{t}} = \mathbf{t} \cup \{\infty\}$$

שורש יחידה:

.n כל ביקיים ביחידה מדרגה $z^n=1$ - מקרים כל Z

חוקי מספרים מרוכבים:

$$\begin{split} &z = \frac{z}{z}, \quad z \cdot \overline{z} = \left| z \right|^2, \quad \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \\ &\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \quad |z_1 + z_2| \le |z_1| + |z_2| \\ &|z_1|^2 + |z_2|^2 + 2 \operatorname{Re} \left(z_1 \cdot \overline{z_2} \right) \le |z_1|^2 + |z_2|^2 + 2 \left| z_1 \cdot \overline{z_2} \right| \\ &z^{-1} = \frac{x - iy}{x^2 + y^2} = \frac{\overline{z}}{|z|^2} \\ &z = r \cdot e^{iq} \Rightarrow r = |z| \end{split}$$

$$\overline{z} = r \cdot e^{-rq}$$

$$\cos q = \frac{\operatorname{Re}(z)}{|z|} \quad \tan q = \frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}$$

ארגומנט של מספר מרוכב:

$$z=re^{ia}$$

$$\arg\left(z\right)=a$$

$$\left|z\right|=r$$

$$\arg\left(z_{1}\cdot z_{2}\right)=\arg\left(z_{1}\right)+\arg\left(z_{2}\right)+2pk$$

$$\text{...}$$
 ערך עיקרי של ארגומנט:
$$Arg(z)=a+bpk\quad k=0,1,2,...$$

 $e^{i\cdot a} = \cos a + i \cdot \sin a$

נוסחת דה מואבר:

$$(\cos a + i \cdot \sin a)^n = (\cos(na) + i \cdot \sin(na))$$
$$(e^{ia})^n = e^{ia \cdot n}$$

פונקציה מרוכבת:

$$\begin{split} f(z) &= u(x,y) + i \cdot v(x,y) \ , \ u,v \in \ ; \\ u &= \mathrm{Re}(f(z)) \ , \ v = \mathrm{Im}(f(z)) \end{split}$$

תחומים מישוריים

מעגל פתוח:

אוסף כל הנקודות המקיימות:

:מעגל סגור

$$-z_0 \le r$$

:טבעת

אוסף כל הנקודות המקיים:

$$R < |z - z_0| < r$$

קבוצה פתוחה:

קבוצה נקראת פתוחה אם לכל נקודה קיימת לפחות סביבה אחת שכולה מוכלת בקבוצה (ללא שפה).

קבוצה סגורה:

קבוצה נקראת סגורה אם המשלים שלה הוא פתוח.

קבוצה חסומה:

קבוצה נקראת חסומה אם ניתן לכלוא אותה בתוך מעגל

קבוצה קשירה:

קבוצה נקראת קשירה אם ניתן לחבר כל 2 נקודות בתחום בעזרת עקום שיעבור כולו בתוך התחום.

תחום:

קבוצה פתוחה וקשירה (קו בין 2 נקודות מהתחום יעבור כולו בתוך התחום).

תחום פשוט קשר (ללא חורים)

ניתן לכווץ כל עקומה סגורה לנקודה בודדת ולהשאר

:ספירת רימן

נגדיר אינסוף בקודקוד הספירה העליון ואפס בקודקוד הספירה התחתון (שמשיק למישור האינסופי).

כל נקודה על הספירה מועתקת לנקודה על המישור בצורה חד-חד ערכית.

ההעתקה מתבצעת כך: מחברים את הנקודה שרוצים להעתיק למישור עם נקודת האינסוף בקו ישר, הנקודה שבה הישר חותך את המישור היא הנקודה אליה תועתק הנקודה מהספירה.

הגדרת הגבול: אם לכל $|z-z_0| < d$ כך שקיום $|z-z_0| < d$ גורר גורר

 $\lim_{z \to z_0} f_{(z)} = w$ אז: $\left| f_{(z)} - w \right| < e$ קיום

כתיב מתמטי לגבולות מסוגים שונים:

$$\lim_{z \to z_0} f_{(z)} = w$$

$$\forall e > 0 \exists d > 0 : \forall z |z - z_0| < d \Rightarrow |f_{(z)} - w| < e$$

$$\lim_{z \to \infty} f_{(z)} = w$$

$$\forall e > 0 \exists R > 0 : \forall z |z| > R \Rightarrow |f_{(z)} - w| < e$$

$$\forall M > 0 \exists d > 0 : \forall z |z - z_0| < d \Rightarrow |f_{(z)}| > M$$

ניתן לשלול קיום של גבול לפונקציה מרוכבת ע"י:

- אז הוא k -אז הגבול תלוי ב $y=k\cdot x$ אז הוא 1.
- פעם , $\Delta y=0$ פעם שי מניחים מניחים, ופעם , בהקשר לנגזרות) .2 ש- $\Delta x = 0$, ואם לא מקבלים את אותו הגבול אז

- ג לכל $|z-z_0| < d$ פר שאם לכל f קיים ל $\left| f(z) - f(z_{0)} \right| < e$
- 2. פונקציה f רציפה בנקודה אמ"מ u ו- v רציפות

פונקציה z_0 אם: $f:U o \mathbf{\pounds}$ פונקציה

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$$

או אם קיים הגבול:

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

:דוגמא

$$\begin{split} f_{(z)} &= \overline{z} \\ &\lim_{\Delta z \to 0} \frac{f_{(z_0 + \Delta z)} - f_{(z_0)}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{z_0 + \Delta z} - \overline{z_0}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z} \\ &\frac{\overline{\Delta z}}{\overline{z}} = \frac{re^{-if}}{re^{if}} = re^{-2if} \end{split}$$

הגענו לתוצאה שאין ביכולתנו לפתור ישירות.

ידוע ש- z היא פונק' של 2 נעלמים. ע"מ לראות אם לפונק' 2 נעלמים יש גבול ניתן לבחור אחד מהנעלמים כקבוע ולבצע אינטגרל ולחזור על התהליך עבור המשתנה השני.

אם נקבל תוצאות שונות ז"א שאין גבול.

אם נקבל תוצאות זהות זה לא אומר דבר.

בדוגמא פעם נבחר את הזווית אפס ופעם 90 מעלות ונקבל תוצאות שונות לכן אין גבול.

$$f = 0 \Rightarrow re^{-2i0} = r$$
 , $f = 45 \Rightarrow re^{-2.45 \cdot i} = -r$

הערה: כל נוסחאות הגזירה שמוכרות לנו לא השתנו.

משפט קושי - רימן:

אם פונקציה $f:U o {\mathfrak L}$ אז הפונקציות ע, ומתקיימת y -לו x -ל סרים חלקיות ביחס ל- v, u משוואת קושי רימן.

משוואת קושי – רימן (CR):

$$f'(z_0) = u_x^{'} + i \cdot v_x^{'} = v_y^{'} + \frac{1}{i}u_y^{'} \Rightarrow \begin{cases} u_y^{'} = -v_x^{'} \\ u_x^{'} = v_y^{'} \end{cases}$$

:เวจพท

אם מתקיימת משוואת CR אז פונקציה f גזירה.

פונקציות אנליטיות (הולומורפית)

אם בכל נקודה (באופן מרוכב) גזירה $f:U \to \mathfrak{X}$.U -אז אנליטית ב f אז $z_0 \in U$

אם 2 פונקציות אנליטיות אז גם חיבור, חיסור, כפל, חילוק והרכבה של שתיהן ביחד יתנו פונקציות אנליטיות.

פונקציות לא אנליטיות

. פונקציה הכוללת |z| או \overline{z} אינה אנליטית

פונקציות שלמות:

אם f אם (בכל התחום) אז $f: \mathbf{\mathfrak{L}} \to \mathbf{\mathfrak{L}}$ אם פונקציה שלמה:

- פונקציית אקספוננטה היא פונקציה שלמה:

 $\exp(z) = e^z = e^x (\cos x + i \cdot \sin x)$

- פולינום הוא פונקציה שלמה.

משפט לאוביל: $f:U o {f \mathfrak E}$ אם פונקציה $\cdot f = const$

פונקציה חסומה - כל התמונות יהיו בתוך עיגול עם רדיוס |f(z)| < M:M

המשפט יסודי של אלגברה:

לפולינום מסדר n, כאשר $n \ge 1$ יש לפחות שורש אחד.

פולינום מתחלק ב- z-a אמ"מ הוא שורש של

משפטים:

- חום בתחום לשירה U ואנליטית, ואנליטית $f:U o {\mathfrak L}$ אם 1. ו- פונקציה קבועה. לכל f'(z) = 0 אז פונקציה קבועה.
- אנליטית אז יש לה אינסוף נגזרות $f:U o \mathbf{\pounds}$ אם .2
- ולכל עקום סגור ,U רציפה בתחום $f:U o {\mathfrak L}$ ב- U, מתקיים: $\int f(z)dz=0$ אז אנליטית בתחום.

פונקציות הרמוניות

הגדרת פונקציה הרמונית: פונקציה ממשית $f:U
ightarrow \mathbf{i}$ מקראת הרמונית אם נגזרות חלקיות עד וכולל סדר שני קיימות ורציפות ומקיימות את משוואת לפלס.

משוואת לפלס (לפלסיאן):

$$u_{xx}^{'} + u_{yy}^{'} = 0 \Rightarrow \Delta u = 0$$

משפטים:

1. בפונקציה אנליטית u, v הן פונקציות הרמוניות. עחום פשוט קשר אז U אם -

לפונקציה u קיימת פונקציה קדומה. 3. בפונקציה אנליטית - החלק הממשי הוא פונקציה הרמונית, וגם החלק המדומה הוא פונקציה הרמונית.

פונקציות צמודות:

פונקציות המקיימות את משוואות קושי רימן (CR).

- אם U תחום פשוט אז לכל פונקציה הרמונית קיימת פונקציה הרמונית צמודה.
- אם התחום לא פשוט קשר לא ידוע אם יש פונקציה צמודה או לא.

סד"פ מציאת פונקציה צמודה:

- 1. בדיקה אם הפונקציה הנתונה היא הרמונית ע"י
 - 2. בדיקה אם התחום הוא פשוט קשר.
- 3. ע"פ אחת ממשואות CR נמצא את הנגזרת של הפונקציה הצמודה.
 - 4. נמצא את הפונקציה הקדומה של הנגזרת.

פונקציית אקספוננטה

$$\begin{split} e^z : & \mathbf{\pounds} \to \mathbf{\pounds} \quad , \quad z \in \mathbf{\pounds} - 0 \\ z &= x + i \cdot y \Rightarrow e^z = e^{z + 2pk \cdot i} = e^x \left(\cos y + i \cdot \sin y\right) \\ u &= e^x \cos y \\ v &= e^x \sin y \\ A \operatorname{rg}(e^z) &= y \\ a \operatorname{rg}(e^z) &= y + 2pk \quad k = 0, 1, 2, \dots \end{split}$$

העתקת אקספוננטה:

- הנקודות הירוקות עוברות לנקודה במרכז הצירים.
 - .1 עובר למעגל סביב 0 ברדיוס 1.
 - ציר x נשאר כמו שהוא לאחר ההעתקה.

פונקציית לוגריתם

$$\log : \mathbf{\pounds} - 0$$
$$\log z = w \iff e^w = z$$

 $\left|e^{z}\right| \leq e^{\left|z\right|}$

פונק' לוג קטן - רב ערכית:

$$\log(z)=\ln(R)+i\cdot \left(q+2pk\right)=\ln\left|z\right|+i\cdot \arg(z)$$
פונק' לוג קטן מוגדרת לכל x.

פונק' לוג גדול - חד ערכית:

$$z = x + i \cdot y \Rightarrow x > 0$$

$$Log(z) = \ln|z| + i \cdot Arg(z)$$

$$g(z) = \ln|z| + i \cdot Arg(z)$$

פונק' לוג גדול לא מוגדרת לערכים שליליים. $log(z) = Log(z) + 2pk \cdot i$

הערה: הפכנו את לוג לחד ערכית ואנליטית ע"י צמצום תחום ההגדרה שלה – הצאנו את הציר השלילי של x. $log(z) = Log(z) + 2pk \cdot i$

תכונות לוגריתם מרוכב:

$$log(z_{1} \cdot z_{2}) = log(z_{1}) + log(z_{2})$$

$$log(z_{1} / z_{2}) = log(z_{1}) - log(z_{2})$$

$$\frac{d}{dz}(log(z)) = \frac{1}{z}$$

הערה: לפונקציה, שהפונקציה הקדומה שלה רב ערכית לא ניתן לעשות אינטגרל.

$$z^{^C}=e^{^{Clog(z)}}=e^{^{CLog(z)}}\cdot e^{2p\,ikc}$$
 , $c\in \mathbf{\pounds}$ כאשר c מספר ממשי שלם:

$$e^{2p \cdot i \cdot k \cdot c} =$$

:סאשר c שורש יחידה

$$\left(e^{2p\cdot i\cdot k\cdot C}\right)^n=1$$

.n אז מספר ערכים של z^c הוא

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
, $\cos z = \frac{e^{iz} + e^{-iz}}{2}$

$$\sin z = \sin(z + 2p)$$

$$\cos(z) = \cos(z + 2p)$$

$$\cos(z) = \sin(\frac{p}{2} - z)$$

$$\cos z$$
)' = $-\sin z$

$$(\sin z)' = \cos z$$

$$(\sin z)' = \cos z$$

$$\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \sin z_2 \cos z_1$$
$$\cos(z_1 + z_2) = \cos z_1 \cos z_2 + \sin z_2 \sin z_1$$

. (לא פונקציה שלמה) ככ
s $z\neq 0$ ב- שלמה) פונקציה אנליטית ב-

.(לא פונקציה שלמה) $\sin z \neq 0$ -פונקציה אנליטית ב-

$$\begin{split} & \text{sinh}(z) = \frac{e^z - e^{-z}}{2} = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!} = z + \frac{1}{3!} z^3 + \frac{1}{5!} z^5 + \dots \\ & \text{cosh}(z) = \frac{e^z + e^{-z}}{2} = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} = z + \frac{1}{2!} z^2 + \frac{1}{4!} z^4 + \dots \end{split}$$

$$\sinh^2(z) - \cosh^2(z) = 1$$

tanh(z) = sinh(z) / cosh(z)

coth(z) = cosh(z) / sinh(z)

$.2p \cdot i$ - מחזור סינוס וקוסינוס היפרבולי

כפל ה- i מסובב צירים ב- 90 מעלות:

 $sinh(i \cdot z) = i \cdot sin(z)$ סיבוב משתנה z ואח"כ סיבוב סינוס:

 $\sinh(iz) = i \sin z$, $\cosh(iz) = \cos z$, $\sinh(z) = -i \sin(iz)$

 $(\sinh(z))' = \cosh(z)$, $(\cosh(z))' = \sinh(z)$

$$w_{(t)} = u_{(t)} + iv_{(t)} \Rightarrow \int_{a}^{b} w_{(t)} dt = \int_{a}^{b} u_{(t)} dt + i \int_{a}^{b} v_{(t)} dt$$

עקומות:

נקודה כפולה: $W_{(t)} = W_{(t)}$

עקום פשוט:

עקום סגור:

 $W_{(a)} = W_{(b)}$

והתחלה.

עקום סגור ופשוט:

 $w_{(t)} = z_0 + r \cdot e^{it}$

דוגמא: $w_{(t)} = 0 + r \cdot \mathrm{e}^{-2it}$

 $0 \le t \le 2p$

 $0 \le t \le 2p$

עקום ללא נקודות כפולות.

יכול לכלול נקודות כפולות.

יש כפל נקודה רק בנקודות סיום

פרמטריזיציה פולרית של מעגל:

כיוון העקומה הוא חיובי – נגד כיוון

כיוון העקומה הוא שלילי – עם כיוון השעון, ומרכז המעגל ב- 0.

פי 2 יותר מהר מבדוגמא הקודמת.

ה- 2 באקספ' גורם לסיים סיבוב

 $\left| \int_{a}^{b} w_{(t)} dt \right| \leq \int_{a}^{b} \left| w_{(t)} \right| dt$

אנליטית $f:U o {\mathfrak L}$ אנליטית פונקציה עחום מישורי c אז אינטגרל על השפה החיצונית של עקומה, U שווה לסכום האינטגרלים על השפות הפינימיות.

 $f(z) = \frac{z}{(9-z^2)} \Rightarrow I = \int_{c} \frac{f(z)}{(z+i)} dz = 2\mathbf{p} \cdot i \cdot f(-i)$

 $L = \int_{a}^{b} \left| w'_{(t)} \right| dt = \int_{a}^{b} \sqrt{u'_{(t)}^{2} + v'_{(t)}^{2}} dt$

 $\int_C f_{(z)} dz = \int_C f(w_{(t)}) \cdot w'_{(t)} dt$

נתון עקום c ופונקציה $\mathbf{t} \cdot f: U o \mathbf{t}$ נתון עקום

 $I = \int_{|z|=2} \overline{z} \, dz \quad , \quad z = 2 \cdot e^{iq} \quad , \quad -p/2 \le q \le p/2$

 $dz = 2i \cdot e^{iq} dq \Rightarrow I = \int_{-p/2}^{p/2} 2 \cdot e^{-iq} \cdot 2i \cdot e^{iq} dq = \dots$

אם נתונה פונקציה רציפה ${\mathfrak L} o {\mathfrak L}$ ו- U הוא

2. אינטגרל לאורך עקומה תלוי רק בנקודות הקצה.

אינטגרל על עקומה סגורה עם נקודת אי-רציפות, ייתן

תמיד את אותה התוצאה, **גם אם נשנה את צורת**

אם $f:U o {\mathfrak L}$ אם אם ליטית, אז עבור כל עקום

סגור ופשוט, אשר כל הנקודות בתוכו ועל השפה מוכלות

עחום פשוט U - פונקציה אנליטית פשוט $f:U o \mathfrak{X}$ קשר, אז עבור כל עקום סגור אשר כל הנקודות בתוכו

אם $f:U \to {\mathfrak L}$ אם העליטית (או בעלת נקודה

,c סינגולרית מבודדת סליקה) על עקום פשוט וסגור

ואנליטית גם בנקודות הפנים שלו, $z \in \mathbf{\pounds}$ נקודת פנים

ועל השפה מוכלות בתוך U, מתקיים:

 $\int f(z)dz = 0$

 $\int f(z)dz = 0$

(כלומר, קיימת פונקציה קדומה)

(כלומר, קיימת פונקציה קדומה)

 $f(z_0) = \frac{1}{2\boldsymbol{p} \cdot i} \int_C \frac{f(z)}{z - z_0} dz$

 $f^{(n)}(z_0) = \frac{n!}{2p \cdot i} \int_{C} \frac{f(z)}{(z - z_0)^{n+1}} dz$

 $I = \int_C \frac{z}{(9-z^2)\cdot(z+i)} dz = ?$

 $2p \cdot i \cdot f(-i) = 2p \cdot i \cdot \frac{-i}{(9+1)} = \frac{p}{5} = I$

3. אינטגרל של f עבור כל עקום סגור הוא 0.

תחום, אז 3 הטענות הבאות שקולות:

1. קיימת פונקציה קדומה ל- f.

העקומה.

משפט קושי:

בתוך U, מתקיים:

נוסחת קושי

:הערות

. לא יכול להיות על השפה z_0

- co נקודה סינגולרית מבודדת.

כיוון חיובי – נגד כיוון השעון על כל העקומות. $\int\limits_{C}f(z)dz-\int\limits_{C}f(z)dz-\int\limits_{C}f(z)dz-\int\limits_{C}f(z)dz=0$

הערה: המשפט לא נכון במקרה שהעקומות הפנימיות

אינטגרל ממשי לא אמיתי

! ∞ עד עד האינטגרל הוא על פונקציה ממשית מ-ניתן להעזר בנוסחאות פונקציה זוגית ע"מ להפוך את האינטגרל לתחום המבוקש.

מוסיפים לאינטגרל הקווי, קשת (בעל רדיוס אינסופי) ע"מ שנוכל לעשות אינטגרל על עקומה סגורה – ואז פותרים בעזרת משפט השארית:

$$\int_{-\infty}^{\infty} f(x) dx \Rightarrow \int_{-R}^{R} f(x) dx + \int_{a}^{R} f(z) dz = 2 \cdot p \cdot i \cdot \sum_{n} \operatorname{Re} s f(z)$$

תנאים לבדיקה + הערות חשובות:

- 1. יש לבדוק שהמכנה של הפונקציה המקורית לא מתאפס לאף x ממשי.
- 2. ע"מ שהגבול יהיה בטוח אפס, על הפולינום במונה בפונקציה המקורית צריך להיות קטן ב- 2 סדרים מהפולינום במכנה.
- 3. חובה להוכיח: האינטגרל על הקשת האינסופית

$$\left| \int_{CR} f(z) dz \right| = \left| \int_{CR} \frac{z^2}{z^6 + 3z^3 + 1} dz \right| \le \frac{R^2}{z^6 - 3z^3 - 1} \cdot \int_{CR} dz$$
$$\le \frac{R^2}{z^6 - 3z^3 - 1} \cdot p \cdot R \xrightarrow{R \to \infty} 0$$

שימו לב: האיברים במכנה מקבלים מינוס חוץ

פונקציה זוגית ואי-זוגית:

f(-x) = f(x) פונקציה זוגית: f(-x) = -f(x) :פונקציה אי-זוגית

פונקציה זוגית מקיימת:

$$\int_{-L}^{L} f_{(x)} dx = 2 \cdot \int_{0}^{L} f_{(x)} dx$$

טורים התכנסות:

טור מתכנס אם קיים הגבול:

$$\lim_{N\to\infty}\sum_{n=1}^N Z_n$$

 $\lim_{N \to \infty} \sum_{n=1}^N Z_n$ אם טור מתכנס אז האיבר הכללי Z_n שואף ל- 0 (אך לא בהכרח להיפר) בהכרח להיפך).

הערה: בתוך מעגל ההתכנסות ניתן לפתח טור חזקות עבור פונקציה קדומה, ולגזור את הטור איבר איבר ע"מ שנקבל את הטור של הפונקציה המקורית. דוגמא:

$$\sum_{n=0}^{\infty} n \cdot z^{n} = ? , z < 1$$

$$\sum_{n=0}^{\infty} z^{n} = \frac{1}{1-z} \Rightarrow \frac{d}{dz} \sum_{n=0}^{\infty} z^{n} = \sum_{n=0}^{\infty} n \cdot z^{n-1} = -\frac{1}{(1-z)^{2}}$$

$$z \cdot \sum_{n=0}^{\infty} n \cdot z^{n-1} = \sum_{n=0}^{\infty} n \cdot z^{n} = -\frac{z}{(1-z)^{2}}$$

 $\sum |Z_n|$ מתכנס בהחלט אם $\sum Z_n$

אם טור מתכנס בהחלט אז הוא מתכנס.

תנאי הכרחי ומספיק להתכנסות הכרחי שלכל $\sum_{n=1}^{\infty} Z_n$

k>0 אכל $m\geq N$ טבעי כך שעבור N קיים e>0 $|Z_m + Z_{m+1} + ... + Z_{m+k}| < e$ מתקיים

טור טיילור: נתונה פונקציה אנליטית בתחום אז כל , $\left|z-z_{0}\right| < R$ נקודה z בתוך התחום מתקיים:

$$f(z) = f(z_0) + f'(z_0) \cdot (z - z_0) + \dots + \frac{1}{n!} f^{(n)}(z_0) \cdot (z - z_0)^n$$

(טבעת) $R_{_{\! 1}} < \left|z-z_{_{\! 0}}\right| < R_{_{\! 2}}$ פונקציה f אנליטית בתחום

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^{-n} \quad n = 0, 1, 2, \dots$$

$$a_n = \frac{1}{2pi} \int_c \frac{f(z)}{(z - z_0)^{n+1}} dz , b_n = \frac{1}{2pi} \int_c f(z) \cdot (z - z_0)^{n-1} dz$$

ב שליליות של z האיברים בעלי חזקות שליליות של בטור לורן נקראות החלק העיקרי.

מספר האיברים בחלק העיקרי של טור לורן נקבע לפי סדר הסינגולריות של (rac) (ראה נקודות סינגולריות).

נוסחאות פיתוח טורי חזקות:

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \dots$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \dots$$

$$\frac{x}{1-x} = \sum_{n=1}^{\infty} x^n = x + x^2 + x^3 + x^4 + \dots$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \dots$$

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot x^{2n+1}}{(2 \cdot n + 1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(2 \cdot n + 1)!}{(2 \cdot n + 1)!} = x - \frac{x}{3!} + \frac{x}{5!} - \frac{x}{7!} + \dots$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot x^{2n}}{(2 \cdot n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots$$

$$\cot x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} + \dots$$

$$4x = \frac{1}{x} = \frac{1}{3} = \frac{1}{45} = \frac{1}{945} + \dots$$

$$\left(\sum_{n=0}^{\infty} a_n \cdot x^n\right) \cdot \left(\sum_{n=0}^{\infty} a_n \cdot x^n\right) = \sum_{n=0}^{\infty} (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0) \cdot x^n$$

סכום של סדרה הנדסית - כפי שנשתמש לפיתוח

$$S = \frac{1}{1 - q} = 1 + q + q^2 + \dots + q^n + \dots$$

סכום של סדרה הנדסית – נוסחה כללית:

$$a_n = a_1 \cdot q^{n-1} \Rightarrow S_n = \frac{a_1(q^n - 1)}{q - 1}$$

.q<1 הסדרה תמיד מתכנסת כאשר

$$\frac{1}{z-2} = \frac{1}{z} \cdot \frac{1}{1-\frac{2}{z}} = \frac{1}{z} \left[1 + \frac{2}{z} + \left(\frac{2}{z}\right)^2 + \dots \right] \quad |z| > 2$$

$$\frac{1}{z-2} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} = -\frac{1}{2} \left[1 + \frac{z}{2} + \left(\frac{z}{2}\right)^2 + \dots \right] \quad |z| < 2$$

התכנסות בהחלט של טורי חזקות:

הגדרת מעגל התכנסות של טור חזקות:

- בכל נקודה z בתוך המעגל הטור מתכנס בהחלט. בכל נקודה z מחוץ למעגל - הטור מתבדר.

 - בכל נקודה z על שפת המעגל לא ניתן לדעת.

טור חזקות מתכנס הוא פונקציה. פונקציה זו אנליטית רק במעגל ההתכנסות של הטור.

אם טור החזקות $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ מתכנס בנקודה

z הוא מתכנס בהחלט בכל נקודה , $z = z_1$ $|z-z_0| < |z_1-z_0|$ המקיימת:

:גזירות איבר איבר

אם פונקציה s(z) אנליטית במעגל ההתכנסות אז

$$s(z) = \sum_{n=0}^{\infty} a_n \cdot (z - z_0)^n \Rightarrow s'(z) = \sum_{n=0}^{\infty} a_n \cdot n \cdot (z - z_0)^{n-1}$$
$$a_n = \frac{s^{(n)}(z_0)}{z_0}$$

הערה: אם יש נקודה ב- כל הנגזרות הן אפס, אז כל .0 המקדמים אפס, ואז הפונקציה היא תמיד

<u>נקודות סינגולריות</u>

- · נקודה סינגולרית: נקודה שבה הפונקציה מתבדרת.
- נקודה סינגולרית מבודדת: נקודת סינגולרית שניתן $\cdot e$ לסגור מסביבה מעגל ברדיוס
 - אפס (Zero): נקודה הגורמת למונה להתאפס.
 - **קוטב:** נקודה הגורמת למכנה להתאפס.
- סדר האפס / הקוטב: גוזרים את הביטוי, ומציבים את הנקודה הסינגולרית. סדר הנגזרת שבה הביטוי לא מתאפס הוא סדר האפס / הקוטב.
- סדר סינגולריות של פונקציה: אם למונה יש אפס · מסדר n ולמכנה קוטב מסדר m אז לפונקציה (המנה ביניהם) יש אפס מסדר m פחות n.

מיון נקודות סינגולריות:

.1 . $\frac{\mathbf{m}}{\mathbf{c}_{\mathsf{plue}}}$ מסדר שהיא קוטב אמ"מ: $\mathbf{c}_{\mathsf{m}} = \mathbf{c}_{\mathsf{m}}$ נקודה ב-a היא קוטב אמ"מ

$$: n > m$$
 עבור כל $b_n = 0$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{m} b_n (z - z_0)^{-n} \quad n = 0, 1, 2, \dots$$

$$f(z) = \frac{j(z)}{(z - z_0)^m} , j(z)|_{z=0} \neq 0$$

$$\text{Res } f(z) = \frac{j(z_0)^{(m-1)}}{(m-1)!} = b_1$$

. אנליטית j(z)

קוטב פשוט: אם m שווה 1.

2. נקודה סינגולית עיקרית

אינסוף מקדמים $b_{_{n}} \neq 0$ שונים מ- 0. במקרה זה נקראת **נקודה סינגולית עיקרית** של הפונקציה. z_{α}

.n לכל $b_{n} = 0$

אם קיים הגבול: $\lim_{t \to 0} f(z)$, אז סינגולית

$$F(z) = \begin{cases} f(z) \ , \ z \neq z_0 \\ C_0 \ , \ z = z_0 \end{cases}$$

- הערה: אם לפונקציה יש נקודה סינגולרית סליקה אז סדר הסינגולריות של הפונקציה הוא 0.

פיתוח לורן סביב נקודה סינגולרית z_0 הוא:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} b_n (z - z_0)^{-n} \quad n = 0, 1, 2, \dots$$

$$b_1 = \text{Re } s_{z=z_0} f(z) = \frac{1}{2p \cdot i} \int_C f(z) dz$$

(נקודה סינגולרית מבודדת z_0

c עקום פשוט וסגור, ו- f(z) - פונקציה אנליטית על - cובתוך c פרט למספר סופי של נקודות מבודדות, אז:

$$\int_{C} f(z) dz = 2pi \cdot \sum_{C} \operatorname{Re} s f(z)$$

שיטות למציאת השארית:

1. ע"פ נוסחה (פירוק לגורמים) - במצב של מספר סופי

$$f(z) = \frac{j(z)}{(z - z_0)^m} \Rightarrow \text{Res}_{z = z_0} f(z) = \frac{j(z)^{(m-1)}}{(m-1)!} \bigg|_{z = z_0} = b_0$$

2. ע"י **פיתוח לטור** וחילוץ .2

שונות

ידוגמא פשוטה אך חשובה:
$$e^z=\sqrt{2}\cdot 1=\sqrt{2}\cdot e^{2p+ik}=e^{\ln\sqrt{2}}\cdot e^{2p+ik}=e^{\ln\sqrt{2}+2p+ik}$$
 $z=\ln\sqrt{2}+2p\cdot i\cdot k$

נוסחת טיילור:

$$f(z-z_0) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} \cdot (z-z_0)^n$$

נוסחאות שונות:

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$(a-b)^{4} = a^{4} - 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$(a+b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}$$

$$(a+b)^{5} = a^{5} - 5a^{4}b + 10a^{3}b^{2} - 10a^{2}b^{3} + 5ab^{4} - b^{5}$$

הבינום של ניוטון:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}ab^n + b^n$$

$$a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + b^{n-1}$$

יהויות טריגונומטריות:
$$\sin(-a) = -\sin a$$
 $\cos(-a) = \cos a$
 $\tan(-a) = -\tan a$
 $\tan a \cdot \cot a = 1$
 $\sin^2 a + \cos^2 a = 1$
 $1 + \tan^2 a = 1/\cos^2 a$
 $1 + \cot^2 a = 1/\sin^2 a$
 $\sin(2a) = 2\sin a \cos a$
 $\cos(2a) = \cos^2 a - \sin^2 a$
 $\cos(2a) = 2\cos^2 a - 1$
 $\cos(2a) = 1 - 2\sin^2 a$
 $\tan(2a) = 2\tan a/(1 - \tan^2 a)$
 $\sin(3a) = 3\sin a - 4\sin^3 a$
 $\cos(3a) = 4\cos^3 a - 3\cos a$
 $\sin a + \sin b = 2\sin(a/2 + b/2)\cos(a/2 - b/2)$
 $\sin a - \sin b = 2\sin(a/2 + b/2)\cos(a/2 + b/2)$
 $\cos a + \cos b = 2\sin(a/2 + b/2)\cos(a/2 + b/2)$
 $\sin a \cos b = 1/2(\sin(a + b) + \sin(a - b))$
 $\sin a \sin b = 1/2(\cos(a - b) - \cos(a + b))$
 $\cos a \cos b = 1/2(\cos(a + b) + \cos(a - b))$
 $\sin(a + b) = \sin a \cos b + \cos a \sin b$
 $\sin(a - b) = \sin a \cos b - \cos a \sin b$
 $\cos(a + b) = \cos a \cos b - \sin a \sin b$
 $\cos(a + b) = \cos a \cos b - \sin a \sin b$
 $\tan(a + b) = (\tan a + \tan b)/(1 + \tan a \tan b)$
 $\tan(a + b) = \tan a - \tan b = \tan(a + b)\tan a \tan b$
 $\arcsin a + \arccos a = p/2$

$$(f(x) \cdot g(x))^{(n)} = \sum_{k=0}^{n} {n \choose k} F^{(k)} \cdot g^{(n-k)}$$
$${n \choose k} = \frac{n!}{n!(n-k)!}$$

נגזרות מיידיות:

$$|a+b| \le |a| + |b| .1$$

$$|a \cdot b| \le |a| + |b| .1$$

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} .2$$

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} .2$$

$$\sin' x = \cos x$$

$$\cos' x = -\sin x$$

$$\sinh' x = \cosh x$$

$$\cosh' x = \sinh x$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\cosh' x = \sinh x$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\arcsin' x = \cosh x$$

$$\cosh' x = \sinh x$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\arcsin' x = \cosh x$$

$$\cosh' x = \sinh x$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\arccos' x = -\frac{1}{\sqrt{1 - x^2}}$$

$$\arccos' x = -\frac{1}{\sqrt{1 - x^2}}$$

$$\arctan'(x) = \frac{1}{1 + x^2}$$

$$\arctan'(x) = \frac{1}{1 + x^2}$$

$$\arctan'(x) = \frac{1}{1 + x^2}$$

$$\tan'(x) = \frac{1}{\sin^2 x}$$

$$\cot'(x) = \frac{-1}{\sin^2 x}$$

$$\cot'(x) = \frac{-1}{\sin^2 x}$$

$$\cot'(x) = \frac{-1}{\sin^2 x}$$

$$\cot'(x) = \frac{-1}{\sin^2 x}$$

$$(e^x)' = e^x$$

$$(\ln x)' = \frac{1}{x}$$

$$(a^x)' = a^x \ln a$$

:אינטגרלים מיידים

$$cos(90-a) < a \quad cos(a) < a - 90.11$$

 $ln x < x.12$
 $\sqrt[n]{a^n + b^n} \rightarrow a \quad a > b.13$

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} : \frac{0}{0}, \frac{\pm \infty}{\pm \infty}, 0 \cdot \pm \infty$$
במצב של

שבאמת אין גבול, אלא צריך לנסות אחרת. שבאמת של
$$^{\circ}_{\infty}$$
 או $^{\circ}_{0}$ בלבד:

$$\lim_{x \to 0} x^X \Rightarrow y = x^x \Rightarrow \ln y = x \ln x \Rightarrow \lim_{x \to 0} x \ln x = 0 \Rightarrow$$

$$\lim_{x \to 0} \ln y = 0 \Rightarrow \ln(\lim_{x \to 0} y) = \ln 1 \Rightarrow \lim_{x \to 0} y = 1 \Rightarrow \lim_{x \to 0} x^X = 1$$

$$\lim_{x \to \infty} x^{\frac{1}{x}} = \lim_{x \to \infty} e^{\ln x^{\frac{1}{x}}} = \lim_{x \to \infty} e^{\frac{\ln x}{x}} = 1$$

$$\int \cot x dx = -\ln(\cos x) + \int \cot x dx = \ln(\sin x) + c$$

$$\lim_{x\to 0} a^b = e^{\lim_{x\to 0} (a-1)\cdot b}$$
 איי בפונקציה של א: - b ,a - 1° .16

$$(a^{x^{n}})' = a \cdot x^{a-1} \cdot a^{x^{n}} \cdot \ln a \cdot 17$$

$$a = \lim a_{n} \Rightarrow \sum_{n=1}^{\infty} a_{n} \cdot b_{n} = \sum_{n=1}^{\infty} (a_{n} - a) \cdot b_{n} + a \cdot \sum_{n=1}^{\infty} b_{n} \cdot 18$$

$$\frac{1}{\ln a + \ln b} = \ln(a \cdot b) \cdot 19$$

$$ln(x) < x$$
, $ln(x+1) < x.20$

$$x \ge 3 \Rightarrow \ln(x) > 1.21$$

$$n! < n^n.22$$

מקרים ותגובות

סד"פ מציאת שארית:

- 1. מציאת סדר הקוטב.
- 2. בודקים אלו מהקטבים (שורשי המכנה) מאפסים גם את המונה.
 - 3. לגבי הקטבים שמאפסים את המונה:
- מחשבים את סדר הסינגולריות m של כל **הפונקציה** (סדר הקוטב פחות סדר האפס).
 - מוצאים את השארית ע"י הנוסחה:

וצאים את השארית ע"י הנוסחה:
$$\operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} \frac{\frac{d^{m-1}}{dz^{m-1}} \left(f(z) \cdot (z - z_0)^m \right)}{(m-1)!}$$

4. לגבי קטבים שלא מאפסים את המונה, סדר הקוטב הוא סדר הסינגולריות של הפונקציה, ולכן פשוט . מוצאים את השארית ע"י הנוסחה הנ"ל.

:דוגמא

$$f(z) = \frac{1}{z \cdot (e^z - 1)}$$

$$(z \cdot (e^z - 1))' \Big|_{z=0} = 0$$

$$(z \cdot (e^z - 1))'' \Big|_{z=0} \neq 0 \Rightarrow 2 \text{ and a soft}$$

$$\operatorname{Res}_0 f(z) = \frac{\frac{d}{dz} \left(\frac{1}{z \cdot (e^z - 1)} \cdot (z - 0)^2\right)}{1!} \Big|_{z=0} = -\frac{1}{2}$$

:אינטגרלים

1. <u>אינטגרל קווי</u>

$$\int f(z) dz$$

- לנקודה סינגולרית אחת – נוסחת קושי.

$$f(z) = \frac{g(z)}{(z - z)}$$

4. הבעת כל איבר ע"י z-a.

eיתוח לטור סביב הנקודה a:

1. פירוק הפונקציה לגורמים.

5. פיתוח כל איבר (בפירוק לגורמים) לטור לורן או טיילור ע"פ התחום האנליטי.

אז: z_0 - אז: אם אחד האיברים לא מוגדר ב-

- . פיתוח עבור _{z<R0} יהיה פיתוח טיילור.
- . פיתוח עבור $z>R_0$ יהיה פיתוח לורן

ע"מ לפתח לטור טיילור יש להביא את האיבר לצורה:

$$k_1 \cdot \frac{1}{1 - k_2(z - a)} = 1 + (k_2(z - a)) + (k_2(z - a))^2 + \dots$$

ע"מ לפתח לטור טיילור יש להביא את האיבר לצורה:

$$k_1 \cdot \frac{1}{1 - k_2 \frac{1}{z - a}} = 1 + \left(k_2 \frac{1}{z - a}\right) + \left(k_2 \frac{1}{z - a}\right)^2 + \dots$$

- אסור שהביטוי שאותו פותחים לטור לפי נוסחת סדרה הנדסית יהיה עם z מסדר יותר גבוה מ- 1.
 - k קבוע כלשהו.

2. סימון הנקודות הסינגולריות על מערכת צירים. חלוקה לתחומים אנליטיים.

$$\int_{C} f(z) dz$$

שיטות לפתרון:

$$f(z) = \frac{g(z)}{(z - z_0)^n}$$

$$\int_C \frac{g(z)}{(z - z_0)^n} dz = 2p \cdot i \cdot g^{(n-1)}(z_0)$$

f(z) חלק אנליטי של הפונקציה – g(z)

- למספר נק' מבודדות - משפט השארית.

$$\int_C f(z) dz = 2pi \cdot \sum_C \operatorname{Re} s f(z)$$

- פרמטיזציה / פרמטיזציה הפוכה.

2. אינטגרל ממשי לא אמיתי

$$\int_{-\infty}^{\infty} f(x) dx \Rightarrow \int_{-R}^{R} f(x) dx + \int_{\mathbf{e}}^{\mathbf{f}} f(z) dz = 2 \cdot p \cdot i \cdot \sum_{z \in \mathbb{R}} \operatorname{Re} s f(z)$$

תנאים לבדיקה + הערות חשובות:

- א. יש לבדוק שהמכנה של הפונקציה המקורית . ממשי x לא מתאפס לאף
- ב. ע"מ שהגבול יהיה בטוח אפס, על הפולינום במונה בפונקציה המקורית צריך להיות קטן ב- 2 סדרים מהפולינום במכנה.
- ג. חובה להוכיח: האינטגרל על הקשת

$$\left| \int_{CR} f(z) dz \right| = \left| \int_{CR} \frac{z^2}{z^6 + 3z^3 + 1} dz \right| \le \frac{R^2}{z^6 - 3z^3 - 1} \cdot \int_{CR} dz$$

$$\le \frac{R^2}{z^6 - 3z^3 - 1} \cdot p \cdot R \xrightarrow{R \to \infty} 0$$

שימו לב: האיברים במכנה מקבלים מינוס חוץ

- אם הפונקציה זוגית:

$$\int_{0}^{\infty} f(x) dx = \frac{1}{2} \int_{-\infty}^{\infty} f(x) dx$$

- אם הפונקציה לא זוגית:

$$\int_{0}^{\infty} f(x) dx = \int_{C1} + \int_{C2} + \int_{CR} = 2pi \sum \operatorname{Re} s f(z)$$

$$\int_{C2} = k_{1} + k_{2} \int_{C1} \implies k_{1} + (k_{2} + 1) \int_{C1} = 2pi \sum \operatorname{Re} s f(z)$$

:*q* אינטגרל על 3

$$z = e^{iq} \Rightarrow dq = \frac{1}{i \cdot z} dz$$

$$\int_{0}^{2p} f(q) dq = \int_{|z|=1} f(z) \frac{1}{i \cdot z} dz$$

- אם הפונקציה זוגית:

$$\int_{0}^{\infty} f(q) \, dq = \frac{1}{2} \int_{0}^{2p} f(q) \, dq$$