Esame 15/06/2021

Quesito 1. La funzione di ripartizione F (cumulative distribution function - CDF) di una variabile aleatoria X è definita, per ogni numero reale x, tramite:

- $F(x) := P(X \le x)$
- $\Box F(x) := \int_B f(x) dx$
- $\square F(x) := P(X = x)$

Quesito 2. Per assemblare un sistema, si prendono a caso 6 componenti da una cassa contenete 20 componenti usati. Il sistema montato funziona solo se tra i 6 componenti impiegati, quelli guasti non sono più di 2. Se nella cassa vi erano 15 componenti efficienti e 5 guasti, qual è la probabilità che il sistema funzioni? (Suggerimento: porre X = numero di componenti funzionanti tra i 6 estratti, con X variabile aleatoria ipergeometrica).

- $P(X \ge 4) = \frac{\binom{15}{4}\binom{5}{2} + \binom{15}{5}\binom{5}{1} + \binom{15}{6}\binom{5}{0}}{\binom{20}{6}}$
- $\square P(X \le 4) = \frac{\binom{15}{4}\binom{5}{2} + \binom{15}{3}\binom{5}{3} + \binom{15}{2}\binom{5}{4} + \binom{15}{1}\binom{5}{5}}{\binom{20}{6}}}{\binom{20}{6}}$
- $\square P(X=4) = \binom{15}{4}$

Quesito 3. Data una variabile aleatoria normale X con media 70 e deviazione standard 12, il valore della variabile aleatoria normale standardizzata Z corrispondente a X=82 è

- maggiore di zero
- \square minore di zero
- □ pari a zero

$$2 = \frac{x - n}{\sigma} = \frac{82 - 70}{92} = 1$$

Quesito 4. L'errore di stima è:

- la differenza tra il valore di una statistica determinata su un campione ed il corrispondente valore del parametro determinato nella popolazione
- □ l'intervallo di confidenza per il valore del parametro della popolazione
- \Box una variabile aleatoria calcolata su un campione casuale che fornisce la stima puntuale per il parametro della popolazione

Quesito 5. Supponiamo di lanciare due dadi non truccati. Si consideri la loro somma: sia A l'evento si osserva un numero pari e B l'evento si osserva un numero maggiore di 7. Quale delle seguenti affermazioni è vera?

- Nessuna delle altre risposte
- □ Gli eventi A e B sono mutuamente esclusivi
- □ L'intersezione tra A e B è l'insieme [6, 8, 10, 12]

Quesito 6. Si supponga che il punteggio medio ad un esame sia 73 con una deviazione standard di 2. In accordo con il teorema di Chebychev,

- □ almeno il 55.5% circa dei punteggi sono compresi nell'intervallo tra 70 e 76
- □ almeno il 45% dei punteggi sono compresi nell'intervallo tra 70 e 76
- □ al più il 60% dei punteggi sono compresi nell'intervallo tra 70 e 76

NON ABIAMO CATO

Quesito 7. Cos'è un box plot?

- una forma di rappresentazione grafica
- \square un metodo di stima
- □ una misura di variabilità

Quesito 8. Sia X una variabile aleatoria discreta che può assumere i valori $x_1, x_2, ...$; il valore atteso (expectation) di X è (se esiste) il numero

- $\square \ Var(X) = E[(X \mu)^2]$
- $\square E[X] = \sum_{i} x_i P(X \le x_i)$

Quesito 9. Quando si seleziona un campione casuale $(X_1, X_2, ..., X_n)$ di dimensione n da una popolazione normale di media μ e varianza σ^2 , la distribuzione della media campionaria \bar{X}

- sarà a sua volta normale indipendentemente dall'ampiezza del campione
- \square sarà a sua volta normale solo per n>30
- \square non sarà mai normale

Quesito 10. Il livello di significatività di un test statistico:

- 🔲 corrisponde al livello massimo ammesso della probabilità dell'errore di tipo I
- \square è una quantità che si fissa solitamente a un valore vicino a 1
- \square corrisponde al livello massimo ammesso della probabilità dell'errore di tipo II

Esercizio 1 [5 punti]

Si stima che il 30% degli adulti negli Stati Uniti siano obesi, che il 3% siano diabetici e che il 2% siano sia obesi che diabetici. Determina la probabilità che un individuo scelto casualmente

- $1.\ {\rm sia}$ diabetico se è obeso (usare tre cifre decimali dopo la virgola).
- 2. sia obeso se è diabetico (usare tre cifre decimali dopo la virgola).

Indichiamo con O l'evento "un individuo scelto casualmente sia obeso", con D l'evento "un individuo scelto casualmente sia diabetico".

$$P(0) = 0.3$$
 $P(0) = 0.03$

$$P(D|O) = \frac{P(DO)}{P(O)} = \frac{002}{0.3} = 0.067$$

$$P(O|D) = \frac{P(D0)}{P(D)} = \frac{0.02}{0.03} = 0.667$$