

WT901BLE5.0C 姿态角度传感器说明书

产品规格书:SPECIFICATION

型 号: WT901BLE5.0C

描述: 9 轴蓝牙 5.0 姿态角度传感器带电池

生产执行标准参考

企业质量体系标准: ISO9001:2016 标准

倾角开关生产标准: GB/T191SJ 20873-2016

产品试验检测标准: GB/T191SJ 20873-2016

修 订 日期: 2019.11.27

www.wit-motion.com

版本号	版本更新内容	更改人	日期
V1.0	发布	李钟焕	20190523
V1.1	更新上位机,app	胡名林	20191127

目录

1	1 产品概述	4 -
2	2 产品尺寸图	4 -
3	3 性能参数	5 -
4	4 轴向说明	5 -
5	5 使用方法	5 -
	5.1 连接 APP 方法	5 -
	5.1.1 APP 多个连接	7 -
	5.2 串口查看数据	8 -
	5.3 校准方法	9 -
	5.3.1 加计校准	10 -
	5.3.2 磁场校准	11 -
	5.3.3 指令校准方法	12 -
	5.4 恢复出厂设置	12 -
	5.5 休眠与唤醒	12 -
6	6 上位机使用方法	12 -
7	7 通信协议	13 -
	7.1 模块至 APP	13 -
	7.1.1 加速度 角速度 角度 数据	包(默认)14 -
	7.1.2 单次回传寄存器的数据包	15 -
	7.2 APP 至模块	16 -
	7.2.1 读取寄存器值:	16 -
	7.2.2 加速度校准与磁场校准:	17 -
	7.2.3 保存配置	17 -
	7.2.4 设置回传速率	17 -
	7.3 寄存器地址表	17 -
8	8 应用领域	20 -

1 产品概述

- ◆ 模块集成高精度的陀螺仪、加速度计、地磁场传感器,采用高性能的微处理器和先进的动力学解算与卡尔曼动态滤波算法,能够快速求解出模块当前的实时运动姿态。
- ◆ 采用先进的数字滤波技术,能有效降低测量噪声,提高测量精度。
- ◆ 模块内部集成了姿态解算器,配合动态卡尔曼滤波算法,能够在动态环境下准确输出模块的当前姿态,姿态测量精度 0.05 度,稳定性极高,性能甚至优于某些专业的倾角仪!
- ◆ 模块内部自带电压稳定电路,工作电压 3. 3v²5v,引脚电平兼容 3. 3V/5V 的嵌入式系统,连接方便。
- ◆ 高性能 cortex-M4 内核处理器运行主频高达 168MHZ, 兼顾低功耗与高性能。
- ◆ 蓝牙 BLE5.0 无线传输, 传输稳定, 距离可达 50 米。
- ◆ 采用邮票孔镀金工艺,可嵌入用户的 PCB 板中。
- ◆ 4层 PCB 板工艺,更薄、更小、更可靠。

2 产品尺寸图

- 4 -

电话: 0755-33185882 邮箱: wit@wit-motion.com 网站: www.wit-motion.com

3 性能参数

- 1、 电压: 3.3V~5V
- 2、 工作电流: ≈15mA, 广播电流: ≈150uA, 待机电流: 10uA~50uA
- 3、体积: 51.3mm X36mm X 15mm
- 4、 测量维度: 加速度: 3 维, 角速度: 3 维, 磁场: 3 维, 角度: 3 维
- 5、 量程: 加速度: ±16g, 角速度: ±2000°/s, X/Z 角度±180°, Y±90°。
- 6、 稳定性: 加速度: 0.01g, 角速度 0.05°/s。
- 7、 姿态测量稳定度: 0.05°。
- 8、数据输出内容:加速度、角速度、角度、磁场。
- 9、数据输出频率: 0.1Hz~50Hz, 默认 10HZ。
- 10、数据接口: 波特率 115200
- 11、蓝牙传输距离:可达50m(空旷地区)
- 12、蓝牙 5.0: 支持 Android /IOS 操作系统(具体实际使用, 需以最终设备为准)

4 轴向说明

如上图产品尺寸图所示,模块的轴向在上图的右上角标示出来,向左为 Y 轴,向上位 X 轴,垂直与纸面向外为 Z 轴。旋转的方向按右手法则定义,即右手大拇指指向轴向,四指弯曲的方向即为绕该轴旋转的方向。

5 使用方法

5.1 连接 APP 方法

1. 模块自带电池,可直接打开 APP 搜索,若发现不了模块,可能是电池没有电了,这时插上数据线,再试试,推荐安装 WT901BLE.apk,若资料包里没有,可咨询淘宝客服。

2. 打开手机 APP

2.点"扫描",开始搜索蓝牙,蓝牙名称为"WT901BLE50"。

3.点击蓝牙名称,APP切入数据显示窗口,就可以看到模块回传的数据了。

5.1.1 APP 多个连接

1. 安装 "Multiple-connection.apk", 打开 APP 点击右上方 "BLE", 再点击"搜索"搜索设备,注意这里这能查看到设备的 MAC 地址,最多可以同时连接 7 个设备。APP 必须要获取位置权限才能搜索到模块。

2. 搜索到模块后,点击所要选择的设备名称,在点击下方"连接设备",就可以同时 查看多个设备的数据了。

5.2 串口查看数据

1. 使用数据线(注意不是单纯的充电线)。连接电脑后,安装 CH34x 串口驱动。在 设备管理器里面查看 COM 口号。

- 8 -电话: 0755-33185882

2. 打开串口调试助手,选择对应的 COM 号,设置波特率: 115200,停止位: 1,数据位: 8,奇偶校验位: 无,16进制显示。然后打开串口。

3. 随意给模块发送一组数据,如图示: "FF FF",模块启动串口,输出数据。输出的数据位 16 进制,如果需要转换成 ASCLL 码,可以参考后文通信协议解算。

5.3 校准方法

模块使用前,需要对模块进行校准。模块的校准包括加计校准、磁场校准。

5.3.1 加计校准

加计校准用于去除加速度计的零偏。传感器在出厂时都会有不同程度的零偏误差,需要手动进行校准后,测量才会准确。

1. 加计校准,方法如下: 首先使模块保持水平静止,点击加计校准, $1\sim2$ 秒后模块加速度三个轴向的值会在 0 0 1 左右,X 和 Y 轴角度在 0° 左右。校准后 X Y 轴角度就跟精确了。

2. 加计校准 L 和加计校准 R

在安装面不是很平,加计校准后数据还是有误差的情况下,可以用加计校准 L 和 R 进行再次校准。

方法如下:模块静止左放,点击加计校准 L,2S 后再把模块静止右放,点击加计校准 R,这样进行两次校准后使用时 X Y 轴角度就跟精确了。

5.3.2 磁场校准

磁场校准用于去除磁场传感器的零偏。通常磁场传感器在制造时会有较大的零点误差,如果不进行校准,将会带来很大的测量误差,影响航向角 Z 轴角度测量的准确性。

1.校准时,将模块放置于远离干扰磁场的地方(**即远离磁和铁等物质 20CM 以上**),再打开 APP 软件。

2.点击"磁场校准"按钮,先绕模块的 X 轴转动 360° (与转动顺序无关,先绕 Y 轴或者 Z 轴转动都可以),可以来回转几圈,再绕 Y 轴转 360° ,再绕 Z 轴转 360° ,再随 意转动几圈,再点击"完成"按钮,完成校准。

注意:校准的时候 APP 上面显示的数据是不会有变化的,校准完成后,才会有数据继

续回传。加计校准的时候模块要静止,磁场校准及使用时还需要使用时都要远离磁场干扰。

5.3.3 指令校准方法

1.指令加计校准方法:

首先使模块保持水平静止,发送加计校准指令 FF AA 01 01 00, $1\sim2S$ 后模块加速度三个轴向的值会在 0 0 1 左右,X 和 Y 轴角度在 0° 左右。校准后 X Y 轴角度就跟精确了。

2.指令加计校准 L/R 方法如下:

模块静止左放,发送加计校准L指令FF AA 01 05 00

2S 后再把模块静止右放,发送加计校准 R 指令 FF AA 01 06 00,这样进行两次校准后使用时 X Y 轴角度就跟精确了。

3.磁场指令校准校准方法:

校准时,将模块放置于远离干扰磁场的地方(即远离磁和铁等物质 20CM 以上)。

发送磁场校准指令 FF AA 01 07 00,之后绕模块的 X 轴转动 360°(与转动顺序 无关,先绕 Y 轴或者 Z 轴转动都可以),可以来回转几圈,再绕 Y 轴转 360°,再绕 Z 轴 360°转几圈。

发送完成指令FF AA 01 00 00,完成校准。

发送保存配置指令 FF AA 00 00,保存校准之后的配置。

5.4 恢复出厂设置

操作方法:将 WT901BLE5.0 模块和 APP 通过蓝牙连接好后,点击"恢复"按钮即可。恢复后需要重新连接模块。

5.5 休眠与唤醒

进入休眠模式右两种方法。一种是直接断开蓝牙连接,模块会直接进入休眠模式。另一种是发送串口指令,指令内容为 5 个 16 进制数据: 0xff 0xaa 0x67 0x01 0x00。

模块唤醒有两种方式,一种是直接搜索并连接蓝牙,模块会自动唤醒并开始工作,另一种是串口唤醒,发送任意串口指令即可唤醒模块。

6 上位机使用方法

1. 安装驱动 CH340, 链接如下:

https://pan.baidu.com/s/1LWxOTc6XmGvoxi7f9ltfhA#list/path=%2F

2. 安装驱动后, 电脑接上 USB 数据线, 在设备管理器上显示如下

- 3. 使用 USB 数据线连接电脑和 WT901BLE5.0 模块,此时模块显示红灯,打开开关至'开'。
- 4. 选择串口号和波特率,波特率默认 115200,点击打开按钮,模式为透传模式。此时就可以看到数据了。

上位机操作参考 JY901 说明书。

7 通信协议

7.1 模块至 APP

模块默认上传 Flag=0x61(加速度 角速度 角度)的数据。

Flag=0x71(磁场) 需要发送读取对应寄存器指令才能回传。 蓝牙上传数据格式: 蓝牙每次上传数据最大 20Byte。

7.1.1 加速度 角速度 角度 数据包(默认)

数据包头	标志位	axL	axH	 YawL	YawH
1Byte	1Byte				
0x55	Flag	0xNN	0xNN	 0xNN	0xNN

注: 0xNN 是收到的具体数值,数据回传顺序为加速度 XYZ, 角速度 XYZ, 角度 XYZ, 低字节在前, 高字节在后。

Flag = 0x61 数据内容 18Byte 为加速度, 角速度, 角度

Tiag = ONOT	, /11.C/X, /11/X
0x55	数据包头
0x61	标志位
axL	X 轴加速度低 8 位
axH	X 轴加速度高 8 位
ayL	Y 轴加速度低 8 位
ayH	Y 轴加速度高 8 位
azL	Z 轴加速度低 8 位
azH	Z 轴加速度高 8 位
wxL	X 轴角速度低 8 位
wxH	X 轴角速度高 8 位
wyL	Y 轴角速度低 8 位
wyH	Y 轴角速度高 8 位
wzL	Z 轴角速度低 8 位
wzH	Z 轴角速度高 8 位
RollL	X 轴角度低 8 位
RollH	X 轴角度高 8 位
PitchL	Y 轴角度低 8 位
PitchH	Y 轴角度高 8 位
YawL	Z 轴角度低 8 位
YawH	Z 轴角度高 8 位

加速度计算方法:单位 g

a_x=((axH<<8)|axL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_y=((ayH<<8)|ayL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_z=((azH<<8)|azL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

计算方法:单位 °/s

 $w_x = ((wxH << 8)|wxL)/32768*2000(^{\circ}/s)$

 $w_y\!\!=\!\!((wyH\!\!<\!\!<\!\!8)|wyL)/32768*2000(^\circ\!/s)$

 $w_z = ((wzH << 8)|wzL)/32768*2000(^{\circ}/s)$

计算方法:单位。

滚转角(x轴)Roll=((RollH<<8)|RollL)/32768*180(°)

俯仰角(y 轴)Pitch=((PitchH<<8)|PitchL)/32768*180(°)

偏航角(z轴)Yaw=((YawH<<8)|YawL)/32768*180(°)

注:

- 1. 姿态角结算时所使用的坐标系为东北天坐标系,正方向放置模块,如"4引脚说明" 所示向左为 X 轴,向前为 Y 轴,向上为 Z 轴。欧拉角表示姿态时的坐标系旋转顺序 定义为为 Z-Y-X,即先绕 Z 轴转,再绕 Y 轴转,再绕 X 轴转。
- 2. 滚转角的范围虽然是±180度,但实际上由于坐标旋转顺序是 Z-Y-X,在表示姿态的时候,俯仰角(Y轴)的范围只有±90度,超过90度后会变换到小于90度,同时让 X轴的角度大于180度。详细原理请大家自行百度欧拉角及姿态表示的相关信息。
- 3. 由于三轴是耦合的,只有在小角度的时候会表现出独立变化,在大角度的时候姿态 角度会耦合变化,比如当 Y 轴接近 90 度时,即使姿态只绕 Y 轴转动, X 轴的角度 也会跟着发生较大变化,这是欧拉角表示姿态的固有特性。

说明:

- 1、 数据是按照 16 进制方式发送的,不是 ASCII 码。
- 2、 每个数据分低字节和高字节依次传送,二者组合成一个有符号的 short 类型的数据。例如 X 轴加速度数据 Ax, 其中 AxL 为低字节, AxH 为高字节。转换方法如下:

假设 Data 为实际的数据, DataH 为其高字节部分, DataL 为其低字节部分, 那么:

Data=((short)DataH<<8)|DataL。这里一定要注意 DataH 需要先强制转换为一个有符号的 short 类型的数据以后再移位,并且 Data 的数据类型也是有符号的 short 类型,这样才能表示出负数。

7.1.2 单次回传寄存器的数据包

单次回传的数据包需要先发送读取寄存器指令,指令格式如下:

FF AA 27 XX 00

--XX 指的是对应寄存器编号,寄存器的编号数值参考 7.3 节内容,发送指令示例如下:

功能	指令
读取磁场	FF AA 27 3A 00
读取四元素	FF AA 27 51 00
读取温度	FF AA 27 40 00

发送此指令后,模块会回传一次 0x55 0x71 开头的数据包,内有对应开始寄存器地址数据、开始寄存器地址开始以及后面 7 个寄存器数据(固定上传 8 个寄存器),回传数据格式如下:

开始寄存器(2Byte)+寄存器数据(16Byte,8个寄存器)

包头	标志	开始寄 存器地	开始寄 存器地	开始(第 1 个)寄存器	开始 (第 1 个)寄存器	 第8个寄 存器数据	第8个寄存器数据
		址低位	址高位	数据低位	数据高位	低位	高位
0x55	0x71	RegL	RegH	0xNN	0xNN	 0xNN	0xNN

注: 0xNN 是收到的具体数值,低字节在前,高字节在后。

1. 磁场输出:

	0x55	0x71	0x3A	0x00	HxL	HxH	HyL	HyH	HzL	HzH	
--	------	------	------	------	-----	-----	-----	-----	-----	-----	--

计算方法: 单位 mG

磁场 (x 轴) Hx=((HxH<<8)| HxL)

磁场 (y 轴) Hy=((HyH <<8)| HyL)

磁场(z轴)Hz=((HzH<<8)|HzL)

对第5至第10个字节按上述解算,磁场 x=360, y=105,z=122。

2. 四元素输出:

0x55 0x71 0x51 0x00 Q0L Q0H Q1L Q1H Q2L Q2H Q3L Q3H

计算方法:

Q0=((Q0H<<8)|Q0L)/32768

Q1=((Q1H<<8)|Q1L)/32768

Q2=((Q2H<<8)|Q2L)/32768

Q3=((Q3H<<8)|Q3L)/32768

校验和:

Sum = 0x55 + 0x59 + Q0L + Q0H + Q1L + Q1H + Q2L + Q2H + Q3L + Q3H

3. 温度输出

- 1							
	0.55	0×71	0v40	0x00	TI	TU	
	UXSS	0x/1	UX4U	UXUU	1L	IП	

温度计算公式:

T=((TH<<8)|TL)/100 °C

7.2 APP 至模块

发送指令:

7.2.1 读取寄存器值:

FF AA 27 XX 00	读取寄存器值
----------------	--------

--XX 指的是对应寄存器。

例:读取磁场:FF AA 27 3A 00

读取四元素: FF AA 27 51 00

读 取 温 度: FF AA 27 40 00

发送此指令后,模块会回传一次 0x55 0x71 开头的数据包,内有对应开始寄存器地址数据、开始寄存器地址开始以及后面 7 个寄存器数据(固定上传 8 个寄存器),回传数据格

式参考 7.1.2。

7.2.2 加速度校准与磁场校准:

FF AA 01 01 00	加速度计校准
FF AA 01 05 00	加计校准L
FF AA 01 06 00	加计校准 R
FF AA 01 07 00	磁场校准
FF AA 01 00 00	完成磁场校准

7.2.3 保存配置

FF AA 00 SAVE 00 保存配置

SAVE: 设置

0: 保存当前配置

1: 恢复默认配置并保存

7.2.4 设置回传速率

FF AA 03 RATE 00 设置回传速率		FF AA 03 RATE	00	设置回传速率	
---------------------------	--	---------------	----	--------	--

RATE: 回传速率

0x01: 0.1Hz

0x02: 0.5Hz

0x03: 1Hz

0x04: 2Hz

0x05: 5Hz

0x06: 10Hz (默认)

0x07: 20Hz 0x08: 50Hz

7.3 寄存器地址表

地址	符号	含义
0x00	SAVE	保存当前配置
0x01	CALSW	校准
0x02	保留	
0x03	RATE	回传数据速率
0x04	BAUD	串口波特率
0x05	AXOFFSET	X轴加速度零偏
0x06	AYOFFSET	Y轴加速度零偏
0x07	AZOFFSET	Z轴加速度零偏
0x08	GXOFFSET	X轴角速度零偏
0x09	GYOFFSET	Y轴角速度零偏
0x0a	GZOFFSET	Z轴角速度零偏

- 17

		www.wit-mot
0x0b	HXOFFSET	X轴磁场零偏
0x0c	HYOFFSET	Y轴磁场零偏
0x0d	HZOFFSET	Z轴磁场零偏
0x0e	D0MODE	D0 模式
0x0f	D1MODE	D1 模式
0x10	D2MODE	D2 模式
0x11	D3MODE	D3 模式
0x12	保留	
0x13	保留	
0x14	保留	
0x15	保留	
0x16	保留	
0x17	保留	
0x18	保留	
0x19	保留	
0x1a	保留	
0x1b	保留	
0x30	YYMM	年、月
0x31	DDHH	日、时
0x32	MMSS	分、秒
0x33	MS	毫秒
0x34	AX	X轴加速度
0x35	AY	Y轴加速度
0x36	AZ	Z轴加速度
0x37	GX	X轴角速度
0x38	GY	Y轴角速度
0x39	GZ	Z轴角速度
0x3a	HX	X轴磁场
0x3b	HY	Y轴磁场
0x3c	HZ	Z轴磁场
0x3d	Roll	X轴角度
0x3e	Pitch	Y轴角度
0x3f	Yaw	Z轴角度
0x40	TEMP	模块温度
0x49	保留	
0x4a	保留	
0x4b	保留	
0x4c	保留	
0x4d	保留	
0x4e	保留	
0x4f	保留	

0x50	保留	
0x51	Q0	四元素 Q0
0x52	Q1	四元素 Q1
0x53	Q2	四元素 Q2
0x54	Q3	四元素 Q3

8 应用领域

农业机械

太阳能

医疗器械

地质监测

物联网

电力监控

工程机械

深圳维特智能科技有限公司

WitMotion ShenZhen Co., Ltd

WT901BLE5.0C 姿态角度传感器

电话: 0755-33185882

邮箱: wit@wit-motion.com 网站: www.wit-motion.com

店铺: https://robotcontrol.taobao.com

地址: 广东省深圳市宝安区松岗镇星际家园宏海大厦