SET - 1

III B. Tech II Semester Regular Examinations, June-2022 **SOCIAL NETWORK ANALYSIS**

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions ONE Question from Each unit
All Questions Carry Equal Marks

		All Questions Carry Equal Marks	

1.	a)	Come up with an example of a directed connected graph in which eigenvector centrality becomes zero for some nodes. Describe when this happens.	[8M]
	b)	How is homophily measured in a network?	[7M]
	,	(OR)	
2.	a)	Explain how to characterize the structure of balanced networks.	[8M]
	b)	Describe Erdos Number Project.	[7M]
		<u>UNIT-II</u>	
3.	a)	Give an overview of positional and role analysis.	[8M]
	b)	Describe the properties of random graphs.	[7M]
		(OR)	
4.	a)	Explain how navigation is done in social networks.	[8M]
	b)	Explain how cohesive subgroups are made based on reachability and diameter.	[7M]
		<u>UNIT-III</u>	
5.	a)	Give a brief note of applications of percolation.	[8M]
	b)	Explain modeling diffusion through a network.	[7M]
		(OR)	
6.	a)	Explain social contagion with an example?	[8M]
	b)	Explain navigation model in social networks.	[7M]
_	,	<u>UNIT-IV</u>	[0] []
7.	a)	Explain how to model a real-world networks with the small-world model.	[8M]
	b)	How do you determine if a distribution is heavy tailed in social networks?	[7M]
(OR)			
8.	a)	Show that in a regular lattice the number of connections between neighbors is given by (3/8) * c * (c - 2), where c is the average degree.	[8M]
	b)	Explain how to determine the diameter of small-world networks.	[7M]
	,	•	. 1

R19

SET - 1

UNIT-V

		<u> </u>	
9.	a)	Describe the process of voting for group decision making.	[8M]
	b)	Explain coloring and consensus, biased voting in networked games with an example.	[7M]
		(OR)	
10.	a)	Explain the page rank algorithm with an example.	[8M]
	b)	Describe the objectives of network formation games.	[7M]

[7M]

III B. Tech II Semester Regular Examinations, June-2022 SOCIAL NETWORK ANALYSIS

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I Does β have any effect on the order of centralities? In other words, 1. a) [8M] if for one value of β the centrality value of node v_i is greater than that of v_i , is it possible to change β in a way such that v_i 's centrality becomes larger than that of vi's? Give a brief note on applications of structural balance. b) [7M]2. Describe various notations used for social network data. [8M] a) Describe an example of a graph where the diameter is more than b) [7M] three times as large as the average distance. UNIT-II 3. Describe how correlation can be a measure of structural a) [8M] equivalence. Explain how to model real-world networks with random graphs. b) [7M] Describe various levels of role analysis in social networks. 4. a) [8M]Explain how cohesive subgroups are made based on nodal degree. b) [7M]UNIT-III 5. a) Explain different models of percolation theory. [8M] Discuss how different information diffusion modeling techniques [7M] b) differ. Name applications on social media that can make use of methods in each area. (OR) How can you safely navigate the world of social networking? 6. a) [8M]What is network topology and types of topology? b) [7M] **UNIT-IV** Write small-world generation algorithm. 7. [8M] a) Describe the heavy tailed degree distribution of social networks. b) [7M] (OR) 8. What are the differences between random graphs, regular lattices, [8M]a) and small-world models?

1 of 2

Explain a clustering model in social networks.

b)

R19

SET - 2

UNIT-V

		<u>01411-4</u>	
9.	a)	Explain in detail Voting Systems: Majority Rule.	[8M]
	b)	Describe the equilibrium properties in social networks.	[7M]
		(OR)	
10.	a)	Explain the process of creating a network structure with an example.	[8M]
	b)	Describe how modelling of dynamic networks is done.	[7M]

SET - 3

III B. Tech II Semester Regular Examinations, June-2022 **SOCIAL NETWORK ANALYSIS**

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks

		<u>UNIT-I</u>	
1.	a)	Consider a full n-tree. This is a tree in which every node other than the leaves has n children. Calculate the betweenness	[8M]
		centrality for the root node, internal nodes, and leaves.	
	b)	Explain Erdos Number Project in detail.	[7M]
0	,	(OR)	[0] [
2.	a)	Describe principles behind Social Network Analysis.	[8M]
	b)	Give an example of a graph in which every node is pivotal for at least one pair of nodes.	[7M]
		<u>UNIT-II</u>	
3.	a)	When does phase transition happen in the evolution of random graphs? What happens in terms of changes in network properties at that time?	[8M]
	b)	Explain how to measure structural equivalence.	[7M]
	~,	(OR)	[]
4.	a)	Describe a random graph model.	[8M]
	b)	Explain how multidimensional scaling techniques can be used to represent proximities among actors.	[7M]
		UNIT-III	
5.	a)	Why network analysis is important for diffusion of innovations?	[8M]
	b)	Describe different types of percolation.	[7M]
		(OR)	
6.	a)	Explain the characteristics of network topology?	[8M]
	b)	Describe properties of complex contagion in social networks. UNIT-IV	[7M]
7.	a)	Show how the clustering coefficient can be computed in a regular	[8M]
•	ω,	lattice of degree k.	[01,1]
	b)	Describe the properties of small world networks.	[7M]

R19

SET - 3

(OR)

8. a) Explain ErdosRenyiModel for random graphs. [8M]

b) Describe the characteristics of clustering of connectivity.

[7M]

[7M]

UNIT-V

9. a) Explain a spatial model in social networks. [8M]

b) Consider the "commenting under a blog post" behavior in social media. Follow the four steps of behavior analysis to analyze this behavior.

(OR)

10. a) Explain various sociological factors that affect voting behavior. [8M]

b) Describe the relationship between Evolutionary and Nash [7M] equilibria in game theory.

SET - 4

III B. Tech II Semester Regular Examinations, June-2022 SOCIAL NETWORK ANALYSIS

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

		UNIT-I	
1.	a)	Show an example where the eigenvector centrality of all nodes in	[8M]
		the graph is the same while betweenness centrality gives different values for different nodes.	
	b)	Design a measure for homophily that takes into account	[7M]
		assortativity changes due to influence. (OR)	
2.	a)	Explain how to characterize weakly balanced networks.	[8M]
	b)	Give an example of a graph having at least four nodes in which there exists a single node X that is pivotal for every pair of nodes (not counting pairs that include X).	[7M]
•	,	<u>UNIT-II</u>	[0] []
3.	a)	Assuming that we are interested in a sparse random graph, what should we choose as our p value?	[8M]
	b)	Explain how local role dissimilarity is measured.	[7M]
(OR)			
		(OR)	
4.	a)	(OR) Describe how cohesive subgroups are formed based on complete mutuality.	[8M]
4.	a) b)	Describe how cohesive subgroups are formed based on complete	[8M]
4.	,	Describe how cohesive subgroups are formed based on complete mutuality.	
 4. 5. 	,	Describe how cohesive subgroups are formed based on complete mutuality. Describe a model of network growth in social networks.	
	b)	Describe how cohesive subgroups are formed based on complete mutuality. Describe a model of network growth in social networks. <u>UNIT-III</u> Provide a simple example of diffusion of innovations and suggest	[7M]
	b) a)	Describe how cohesive subgroups are formed based on complete mutuality. Describe a model of network growth in social networks. <u>UNIT-III</u> Provide a simple example of diffusion of innovations and suggest a specific way of intervention to expedite the diffusion.	[7M]
	b) a)	Describe how cohesive subgroups are formed based on complete mutuality. Describe a model of network growth in social networks. <u>UNIT-III</u> Provide a simple example of diffusion of innovations and suggest a specific way of intervention to expedite the diffusion. Give a brief note on percolation problems.	[7M]
5.	b) a) b)	Describe how cohesive subgroups are formed based on complete mutuality. Describe a model of network growth in social networks. <u>UNIT-III</u> Provide a simple example of diffusion of innovations and suggest a specific way of intervention to expedite the diffusion. Give a brief note on percolation problems. (OR) Describe Watts threshold model for social contagion. Explain how navigation happens in social networks.	[7M] [8M] [7M]
 5. 6. 	b) a) b) a) b) b)	Describe how cohesive subgroups are formed based on complete mutuality. Describe a model of network growth in social networks. <u>UNIT-III</u> Provide a simple example of diffusion of innovations and suggest a specific way of intervention to expedite the diffusion. Give a brief note on percolation problems. (OR) Describe Watts threshold model for social contagion. Explain how navigation happens in social networks. <u>UNIT-IV</u>	[7M] [8M] [7M] [8M] [7M]
5.	b) a) b) a)	Describe how cohesive subgroups are formed based on complete mutuality. Describe a model of network growth in social networks. <u>UNIT-III</u> Provide a simple example of diffusion of innovations and suggest a specific way of intervention to expedite the diffusion. Give a brief note on percolation problems. (OR) Describe Watts threshold model for social contagion. Explain how navigation happens in social networks.	[7M] [8M] [7M]

R19

SET - 4

		(OR)	
8.	a)	Describe the characteristics of heavy tailed out-degree and in-	[8M]
		degree distribution.	
	b)	Write a brief description of ErdosRenyiModel.	[7M]
		<u>UNIT-V</u>	
9.	a)	Explain an agent-based model in social networks.	[8M]
	b)	Discuss the problem of coloring and consensus in networked	[7M]
		games.	
		(OR)	
10.	a)	Discuss a methodology to verify if the selected features carry	[8M]
		enough information with respect to the behavior being analyzed.	
	b)	Explain behavior experiment on a Network Formation Game.	[7M]
	D)	Explain behavior experiment on a Network Pormation Game.	[/ 1/1]
