

INTRODUCTION

Model Details: Bilingual Translation System (Arabic-English / English-Arabic)

This project uses MarianMT, a state-of-the-art neural machine translation (NMT) framework based on the Transformer architecture. The models are pretrained on large multilingual datasets and fine-tuned on the Tatoeba parallel corpus for Arabic-English translation.

1. MODEL ARCHIECTURE

The MarianMT models follow a sequence-to-sequence (Seq2Seq) Transformer architecture, consisting of:

- Encoder: Processes the input sequence (source language).
- Decoder: Generates the translated sequence (target language).
- Attention Mechanism: Helps the model focus on relevant parts of the input when generating each word in the output.

Key Components

Encoder Layers: 6 layers of self-attention and feed-forward networks

<u>Decoder Layers:</u> 6 layers with self-attention, encoder-decoder attention, and feed-forward networks

Attention Heads: 8 parallel attention heads per layer

<u>Hidden Dimension</u>: 512 units

Feed-Forward Dimension: 2048 units (expands before projecting back to 512)

Positional Encoding: Learned embeddings to represent word order

<u>Layer Normalization</u>: Applied after each sub-layer for stable training

Pretrained Models Used

Helsinki-NLP/opus-mt-ar-en:

*Arabic (ar) to English (en)

*parameters: ~85M

*Size: ~298MB

Helsinki-NLP/opus-mt-en-ar:

*English (en) to Arabic (ar)

*parameters: ~85M

*Size: ~298MB

Key Hyperparameters

Batch Size:

value: 32 (GPU) / 16 (CPU) What is it: Number of samples processed per batch

Learning Rate:

value: 3e-5 What is it: Optimizer step size

Warmup Steps

value: 500 What is it: Gradually increases learning rate early in training

Weight Decay

value: 0.01 What is it: L2 regularization to prevent overfitting

Label Smoothing

value: 0.1 What is it: Helps generalization by softening target labels

<u>Max Sequence Length</u>

value: 128 tokens. What is it: Truncates longer sentences

Gradient Accumulation

value: 2 (GPU) / 8 (CPU) What is it: Accumulates gradients over multiple steps for a

larger effective batch size

3. TOKENIZATION

- Uses SentencePiece subword tokenization.
- Vocabulary size: ~65,000 tokens (shared between source and target languages for MarianMT).
- Handles out-of-vocabulary (OOV) words by breaking them into subword units.

4. TRAINING PROCESS

Fine-Tuning on Tatoeba Dataset

Data Preprocessing

Normalizes Arabic text (removes diacritics, unifies characters). Cleans special characters, emojis, and extra spaces. Filters sentences (1–128 words).

Training Loop

Uses AdamW optimizer with weight decay.

Cross-entropy loss with label smoothing.

Mixed-precision training (FP16) if GPU is available.

Early Stopping (if enabled):

Monitors validation loss to avoid overfitting.

S. EVALUATION METRICS:

- BLEU (Bilingual Evaluation Understudy): Measures n-gram overlap.
- ROUGE (Recall-Oriented Understudy for Gisting Evaluation):
 - ROUGE-1 (unigram overlap)
 - ROUGE-2 (bigram overlap)
 - ROUGE-L (longest common subsequence)

G. LIMITATIONS

- Sentence Length: Works best on short-to-medium sentences (<25 words).
- Dialects: Trained on Modern Standard Arabic (MSA), struggles with regional dialects.
- Rare Words: May produce suboptimal translations for uncommon terms.
- Idioms/Cultural References: Literal translations may not capture intended meaning.
- Domain Adaptation: General-purpose model; may need fine-tuning for specialized domains (e.g., medical, legal).

