$\begin{array}{l} \textbf{Homework} \; \# 3 \; Chapter \; 4 \\ \text{Exercises: 5, 8, 9, 12, 15, 16, 18, 19, 21, 22, 24, 25, 30} \end{array}$

Brett Whitson

November 13, 2019

- 5. a) 23 bits. 21 to select the line and 2 more to select the addressable byte.
 - b) 21 bits.
- 8. TODO

a)

Module 0	Module 1	Module 2	Module 3
0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

b)

Module 0	Module 1	Module 2	Module 3
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

- 9. 16 RAM chips are needed to provide a memory capacity of 4096 bytes.
 - a) 8 bits
 - b) 256 lines
 - c) I'm not sure what this question is asking. I don't remember talking about decoders for memory.
- a) $\frac{32\cancel{6} \times 64}{1\cancel{6} \times 16} = 32 \times \frac{64}{16} = 32 \times 4 = 128 \text{ chips.}$
 - b) $\frac{128}{4} = 32$ banks.
 - c) 30 lines.
 - d) $2^5 \times 2^{30} = 2^{35}$, 35 bits.

	Chip Select	Address Select
e)	00101	001001101001000001001101001000
	5 bits	30 bits

	Chip Select	Address Select
f)	001001101001000001001101001000	00101
	30 bits	5 bits

- 15. a) L: 0 H: $2^{20} - 1$
 - b) L: 0 H: $2^{19} - 1$
 - c) L: 0 H: 2¹⁸ – 1
- 16. a) $256M = 2^8 \times 2^{20} = 2^{28}$ words. Each word is 2 bytes. $2^{28} \times 2 = 2^{29}$ bytes = 512M bytes.
 - b) If this RAM is byte addressable, you would need 29 bits for an address.
 - c) If this RAM is word addressable you would need 28 bits for an address.
- 18. e.

There are $32 (2^5)$ chips and $64 (2^6)$ locations on each chip.

19.

Fetch: Load the PC into the MAR; fetch the instruction and place it into the IR; increment PC by 1;

Decode: Store the right 12 bits into the MAR; decode the left 4 bits for the opcode.

Execute: Execute instruction

- 21. MARIE can 16 bits data but MARIE's memory is limited to 4096 address locations, so the MAR only needs to be 12 bits
- 22. 1108
 - 3109
 - 9106
 - 3109
 - 2108
 - 7000
 - 3108
 - 9103
 - 0023
 - 0001
- 24. a) 1108
 - 3109
 - 210B
 - A000
 - 6000
 - 2109
 - 7000
 - 00FC
 - 000E
 - 0108
 - 0000

	symbol	location
	A	108
b)	В	109
D)	С	10A
	D	10B
	Start	100

c) 0108

a) 1209 25.

320A

420B 220C

8800

9208

C20C

A000

7000

0200

0009

0001

0000

symbol	location
Addr	20C
Base	209
Begin	200
Done	208
Loop	202
Offs	20A
One	20B
	Addr Base Begin Done Loop Offs

c) 208

30.

	ORG	100
If,	Load	X
	Subt	Y
	Skipcond	800
	$_{ m Jump}$	LessEq
Else,	Load	X
	Subt	Z
	Skipcond	400
	$_{ m Jump}$	Elif
	Load	Z
	Add	One
	Store	Z
	$_{ m Jump}$	Fin
LessEq,	Load	Y
	Add	One
	Store	Y
	$_{ m Jump}$	Fin
Elif,	Load	Y
	Subt	One
	Store	Y
Fin,	Halt	
Χ,	Dec	VAL
Υ,	Dec	VAL
Z,	Dec	VAL
10ne,	Dec	1