Departamento de Matemática Aplicada

Facultade de Matemáticas Campus Vida Rúa Lope Gómez de Marzoa s/n 15782 Santiago de Compostela

Análise Numérica Matricial— Curso 2018-19 Práctica 3: Métodos de factorización: *LU*, Crout, Cholesky

1 Método de factorización A = LU para resolver un sistema lineal Au = b

1.1 Caso xeral

- 1. Escribe un subprograma $\mathtt{lu(a,deter)}$ que calcule, se existen, a matriz triangular inferior con 1 na diagonal L e a matriz triangular superior U tales que A=LU. Utiliza as fórmulas de cálculo de L por filas e U por columnas estudiadas na teoría. Os elementos non nulos da matriz L (agás a diagonal principal de 1's), ($l_{ij}, i=1,\ldots,n$ e $j=1,\ldots,i-1$) e os elementos non nulos da matriz $U, (u_{ij}, i=1,\ldots,n$ e $j=i,\ldots,n$), deben almacenarse nas correspondentes posicións de memoria da matriz A.
- 2. Escribe un programa principal lu_ppal que lea os datos da matriz A e do segundo membro b me_dian_te a subrutina datsis(a,b), factorice a matriz A chamando a subrutina lu(a,deter) e resolva os sistemas lineas triangulares Lz = b e Uu = z, chamando respectivamente as subrutinas sistl(a,b,u) e sistu(a,b,u) xa programadas anteriormente. Non esquecerse dos bloques interface para cada unha das subrutinas.
- 3. Crea ficheiros de datos adecuados para validar a tarefa proposta con sistemas lineais de solución conocida. Comproba os resultados calculando a norma $nr = ||r||_2$ do residuo r = Au b.

1.2 Caso con A matriz tridiagonal

Supón agora que a matriz A é tridiagonal con diagonal principal \mathbf{a} , diagonal superior \mathbf{b} e diagonal inferior \mathbf{c} . Tendo en conta que a factorización LU conserva o perfil da matriz A, a matriz L ten 1 na diagonal e unha subdiagonal –pódese almacenar en \mathbf{c} —e a matriz U ten elementos non nulos só na diagonal principal e a diagonal superior que se poden almacenar respectivamente en \mathbf{a} e \mathbf{b} . Utilizando as fórmulas dadas para o cáculo de L e U neste caso, escribir un programa principal $\mathbf{lutrid_ppal}$ que lea as tres diagonais \mathbf{a} , \mathbf{b} , \mathbf{c} mais o termo independente \mathbf{w} , calcule as matrices L e resolva o sistema Au = w polo método LU. É recomendable facer todas as etapas (lectura, factorización, descenso e remonte) no propio programa principal. Crea ficheiros de datos adecuados para validar a tarefa proposta con sistemas lineais de solución conocida ou comproba os resultados calculando a norma $nr = \|r\|_2$ do residuo r = Au - w.

2 Método de factorización de Crout $A = LDL^T$ para sistemas con matriz simétrica

- 1. Escribe un subprograma croutsim(a,deter) que calcule, se existen, a matriz triangular inferior con 1 na diagonal L e a matriz diagonal D tales que $A = LDL^T$. Utiliza as fórmulas de cálculo de L por columnas estudiadas na teoría.
- 2. Escribe un programa principal croutsim_ppal que lea os datos da matriz A —e suficiente introducir a parte superior ou inferior da matriz—e do segundo membro b mediante a subrutina datsissim(a,b), factorice a matriz A chamando a subrutina croutsim(a,deter) e resolva os

sistemas lineais triangulares Lw = b, Dz = w e $L^Tu = z$, chamando respectivamente as subrutinas sistl(a,b,u) e sistu(a,b,u). Non esquecerse dos bloques interface para cada unha das subrutinas.

3. Crea ficheiros de datos adecuados para validar a tarefa proposta con sistemas lineais de solución conocida, calculando a norma euclídea do residuo.

3 Método de factorización de Cholesky $(A = BB^T)$ para sistemas Au = b con matriz simétrica e definida positiva

3.1 Caso xeral

- 1. Escribe un subprograma cholesky(a,deter) que calcule, se existe, a matriz triangular inferior B con elementos diagonais positivos tal que que $A = BB^T$. Utiliza as fórmulas de cálculo de B por filas, estudiadas na teoría.
- 2. Escribe un programa principal cholesky_ppal que lea os datos da matriz A —e suficiente introducir a parte superior da matriz—e do segundo membro b mediante a subrutina datsissim(a,b), factorice a matriz A chamando a subrutina cholesky(a,deter) e resolva os sistemas lineais triangulares Bw = b e $B^Tu = w$, chamando respectivamente as subrutinas sistl(a,b,u) e sistu(a,b,u). Non esquecer os bloques interface para cada unha das subrutinas.
- 3. Crea ficheiros de datos adecuados para validar a tarefa proposta con sistemas lineais de solución conocida ou ben calculando a norma euclídea do residuo.

3.2 Caso con A matriz tridiagonal simétrica e definida positiva

Supón agora que a matriz A é tridiagonal simétrica e definida positiva con diagonal principal ad, diagonal superior as (igual á diagonal inferior). Tendo en conta que a factorización de Cholesky conserva o perfil da matriz A, a matriz B ten unha subdiagonal que se pode almacenar en as e unha diagonal principal que se pode almacenar en ad.

- 1. Deduce as fórmulas para o cáculo de B, isto é, da súas dúas diagonais non nulas.
- 2. Escribe un programa principal choltrid_ppal que lea as dúas diagonais ad, as mais o termo independente b e calcule a matriz B coas fórmulas deducidas e resolva o sistema Au = b. É recomendable facer todos os cálculos (lectura, factorización, descenso e remonte) no mesmo programa principal.
- 3. Crea ficheiros de datos adecuados para validar a tarefa proposta con sistemas lineais de solución conocida ou ben calculando a norma euclídea do residuo r = Au b