

MANAGEMENT ACADEMY

MACHINE LEARNING WITH PHYTON

Mauricio Soto

The program

- ► Day 1
 - ► Pre-processing
 - ► Classification
- ► Day 2
 - ► Regression
 - ► Clustering

The objective

The problem: Bank telemarketing¹

Attribute			Description/Values					
Personal	age	num	Age of the potential client					
	job	cat	admin., blue- collar, entrepreneur, housemaid, ,unknown					
	marital_status	cat	divorced, married, single, unknown					
	education	cat	basic.4y, basic.6y, basic.9y, high.school, unknown					
Bank	default	cat	The client has credit in default: no,yes,unknown					
	housing	cat	The client has a housing loan contract: no,yes,unknown					
	loan	cat	The client has a personal loan: no,yes,unknown					
Campain	contact	cat	Communication type: cellular,telephone					
	month	cat	Last month contacted: jan, feb ,, dec					
	day_of_week	cat	Last contact day : mon, tue,, fri					
	duration	num	Last contact duration (in seconds)					
	campain	num	Number of contacts performed during this campaign					
	pdays	num	Number of days that passed by after last contact					
	previous	num	Number of contacts performed before this campaign					
	poutcome	cat	Outcome of the previous marketing campaign: fail-					
			ure,nonexistent,success					
Economical	emp.var.rate	num	Employment variation rate in the last quarter					
	cons.price.idx	num	Consumer price index in the last month					
	cons.conf.idx	num	Monthly consumer confidence index					
	euribor3m	num	Dayly Euro Interbank Offered Rate					
	nr.employed	num	Number of employees in the last quarter					
Target	success	target	0: no, 1: yes					

 $[\]overline{1}$ A data-driven approach to predict the success of bank telemarketing. S. Moroa, P. Cortez, P. Rita.Decision Support Systems, 62:22-31, 2014.

Workflow

Programming Tools

1. Orange https://orange.biolab.si/

- ▶ Intuitive interface
- ► Fast development

2. Jupyter-Notebook (Anaconda)

https://www.anaconda.com/

- Advanced functions
- Customization

A library featuring various ML algorithms designed to inter-operate with the Python numerical and scientific libraries e.g. NumPy, Pandas.

https://scikit-learn.org/stable/

Data preparation

- 1. Data validation
 - ► Incomplete data (drop, replace)
 - ► Noisy data (Outliers)
- 2. Data transformation
 - Standardization
 - ▶ Discretization
 - ► Dummy variables
 - ► Feature construction
- 3. Data reduction
 - ► Sampling
 - ► Discretization
 - ► PCA: Principal Component Analysis

Data Exploration

- 1. Uni-variate
 - ► Histogram
 - ► Box-plot
- 2. Bi-variate
 - ► Scatter
 - ► Box-plot (by class)
- 3. Categorical
 - ► Contingency matrix

KNN K-nearest Neighbours

- ► *k* : number of neighbours
- ► neighbour weights
- ▶ distances

Decision tree

- ▶ impurity measure: "gini", "entropy"
- max_depth
- min_samples_split: minimum number of samples to split an internal node
- min_sample_leaf: minimum number of samples required to be at a leaf node

Quality measures

- ► Precision = $\frac{TP}{TP+FP}$ "proportion of true positives among positive predictions"
- ► False Positive rate= FP/FP+TN "proportion of false positives among actual negatives"
- ► Recall (True Positive rate)=\frac{TP}{FN+TP}
 "proportion of true positives among
 actual positive"

► F-score=
$$\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}$$

ROC curve & AUC

- ► If we accepting even with small probability then TPR = FPR = 1
- ► If we accepting just with high probability then TPR = FPR = 0
- ► The perfect classificator is the the point (0,1)
- ▶ $AUC \in [0.5, 1]$ area under the curve is a quality measure of our algorithm.

Logistic regression

$$\log \frac{P(y=1|x)}{P(y=0|x)} = w_0 + w_1 x_1 + \dots + w_n x_n$$

$$P(y = 0|x) = \frac{1}{1 + e^{w^{T}x}}$$

$$\min_{w} \underbrace{\frac{1}{2}||w||^{2}}_{\text{regularization}} + C \sum_{i=1}^{n} \log(1 + \exp(-y_{i}(w^{T}X_{i})))$$

- ► C: Inverse of regularization strength
- ► Resolution algorithm parameters:
 - solver: lbfgs, newton-cg, liblinear, sag, saga.
 - ► tol: Tolerance for stopping criteria.
 - max_iter: max. number of iterations int
 - n_jobs: Number of CPU cores

Support Vector Machine - SVM

$$\begin{split} \min_{w,b,d} & \quad \frac{1}{2}||w||^2 + C\sum_{i=1}^m d_i \\ \text{subject to } y_i(w^T\underbrace{\phi(x_i)}_{\text{kernel}} - b) \geq 1 - d_i, \\ d_i \geq 0 \end{split}$$

- C: Inverse of regularization strength
 - kernel: linear: x'x
 - poly: $(\gamma x'x + r)^d$
 - rbf: $exp(-\gamma||x-x'||^2)$
 - sigmoid: $tanh(\gamma x'x + r)$
- ightharpoonup degree(d), gamma(γ), coef0(r)
- MANAGEMENT ACADEMY SOlution algorithm parameters

Multi-Layer Perceptron - small example

Temp. [C]	20	31	15	18	21
Humidity [%]	40	36	23	45	30
Prob. Rain	0.70	0.52	0.55	0.73	0.60

For a classification problem we can use the Likelihood as cost function.

Multi-Layer Perceptron - small example

$$\min_{w_1, w_2} \sum_{i=1}^{3} [P_i(\mathsf{rain}) - f(T_i, H_i, w_1, w_2)]^2
= \min \left[0.7 - 1/(1 + e^{-(w_1 \cdot 20 + w_2 \cdot 0.4)}) \right]^2 + \left[0.52 - 1/(1 + e^{-(31 \cdot w_1 + w_2 \cdot 0.36)}) \right]^2 + \cdots$$

$$(\mathbf{w}_1^*, \mathbf{w}_2^*) = (-0.044, 4.147)$$

Temp. [C] Humidity [%]	20 40	31 36	15 23	18 45	21 30
Prob. Rain	0.70	0.52	0.55	0.73	0.60
Predicted	0.70	0.56	0.58	0.75	0.60
Error	0.0	-0.04	-0.03	-0.02	0.0

Multi-Layer Perceptron

- ► hidden_layer_sizes: $(n_1, n_2, ..., n_L)$
- activation: identity, logistic, tanh, relu
- alpha regularization term parameter
- Resolution algorithm parameters: solver, tol, batch_size, learning_rate, max_iter.

Ensemble: Random Tree

