Status meeting October 30, 2020 Msc Thesis - Dynamics of adaptive neuronal networks. Simon Aertssen (s181603), October 30, 2020

# 1 Writing out the whole system

The network dynamics are described as follows:

$$\frac{d\theta_i}{dt} = (1 - \cos \theta_i) + (1 + \cos \theta_i) \cdot (\eta_i + I_i)$$

$$I_i = \frac{\kappa}{\langle k \rangle} \sum_{j=1}^N A_{ij} P_n(\theta_j)$$

$$P_n(\theta_j) = (1 - \cos \theta_j)$$
(1)

We observe synchronization through the order parameter

$$Z(t) = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta(t)_j}$$
(2)

For a fixed degree network it has been proven that the order parameter follows:

$$\dot{Z}(t) = -i\frac{(Z-1)^2}{2} + \frac{(Z+1)^2}{2} \cdot \left( -\Delta + i\eta_0 + i\kappa \cdot \left( 1 + \frac{Z^2 + \overline{Z}^2}{6} - \frac{4}{3} \text{Re}(Z) \right) \right)$$
(3)

For an arbitrary network the order parameter follows a trajectory per degree. When we assemble the whole expression for the Ott-Antonsen manifold as found in [1] with  $H_2(\mathbf{k},t)$  as in [2], we obtain the following:

$$\frac{\partial z(\boldsymbol{k},t)}{\partial t} = -i\frac{(z(\boldsymbol{k},t)-1)^2}{2} + \frac{(z(\boldsymbol{k},t)+1)^2}{2} \cdot I(\boldsymbol{k})$$

$$I(\boldsymbol{k}) = -\Delta(\boldsymbol{k}) + i\eta_0(\boldsymbol{k}) + id_n\kappa \cdot H_n(\boldsymbol{k},t)$$

$$H_2(\boldsymbol{k},t) = \frac{1}{\langle k \rangle} \sum_{\boldsymbol{k'}} P(\boldsymbol{k'}) a(\boldsymbol{k'} \to \boldsymbol{k}) \cdot \left(1 + \frac{z(\boldsymbol{k'},t)^2 + \overline{z}(\boldsymbol{k'},t)^2}{6} - \frac{4}{3} \operatorname{Re}(z(\boldsymbol{k'},t))\right)$$
(4)

We can then find the mean field dynamics through

$$\overline{Z}(t) = \frac{1}{N} \sum_{\mathbf{k}} P(\mathbf{k}) z(\mathbf{k}, t)$$
 (5)

It is important to notice that in (4) and (5) we actually compute an inner vector product, which is non-commutative for complex numbers:

$$a \cdot b = \overline{b \cdot a} \quad a, b \in \mathbb{C}^r$$
 (6)

This is the result of the *Conjugate* or *Hermitian* symmetry of the inner product.

#### 2 Initial conditions

As the systems eqs. (1) to (5)

## 3 Fixpoint iteration

In [1] a fixpoint iteration is suggested to find attractive fixpoints of the system (4). If we set  $\frac{\partial z(\mathbf{k},t)}{\partial t}=0$  we can solve the following system:

$$i\frac{(z(\boldsymbol{k},t)-1)^2}{2} = \frac{(z(\boldsymbol{k},t)+1)^2}{2} \cdot I(\boldsymbol{k})$$

$$i\left(\frac{z(\boldsymbol{k},t)-1}{z(\boldsymbol{k},t)+1}\right)^2 = I(\boldsymbol{k})$$

$$\frac{z(\boldsymbol{k},t)-1}{z(\boldsymbol{k},t)+1} \equiv b(\boldsymbol{k},t)$$

$$z(\boldsymbol{k},t)-1 = b(\boldsymbol{k},t)z(\boldsymbol{k},t)+b(\boldsymbol{k},t)$$

$$z(\boldsymbol{k},t)\cdot(1-b(\boldsymbol{k},t)) = b(\boldsymbol{k},t)+1$$

We can then obtain the stable equilibria from:

$$ib(\mathbf{k},t)^2 = I(\mathbf{k}) \qquad z(\mathbf{k},t)_{\pm} = \frac{1 \pm b(\mathbf{k},t)}{1 \mp b(\mathbf{k},t)}$$
(7)

where the signs are chosen so that  $|z(\mathbf{k},t)| \leq 1$ .

## 4 A Newton-Raphson iteration for all fixpoints

## 4.1 Theory behind the method

The fixpoint iteration only gives us the stable equilibria of the system (4). We can obtain all equilibria and the Jacobian from a Newton-Raphson iteration. We define the equilibria  $x^* \in \mathbb{R}^n$  of a multivariate function  $f(x) : \mathbb{R}^n \to \mathbb{R}^n$  with f(x) = 0. Expanding f as a Taylor series, we obtain:

$$f_{i}(\boldsymbol{x} + \delta \boldsymbol{x}) = f_{i}(\boldsymbol{x}) + \sum_{j=1}^{n} \frac{\partial f_{i}(\boldsymbol{x})}{\partial x_{j}} \delta x_{j} + O\left(\delta \boldsymbol{x}^{2}\right) \approx f_{i}(\boldsymbol{x}) + \sum_{j=1}^{n} \frac{\partial f_{i}(\boldsymbol{x})}{\partial x_{j}} \delta x_{j}, \quad (i = 1, \dots, n)$$
(8)

We can also write this in vector notation, by setting  $m{J}(m{x}) = 
abla m{f}(m{x}) = rac{d}{dm{x}}m{f}(m{x}) \in {
m I\!R}^{n imes n}$ 

$$f(\boldsymbol{x} + \delta \boldsymbol{x}) \approx \begin{bmatrix} f_1(\boldsymbol{x}) \\ \vdots \\ f_N(\boldsymbol{x}) \end{bmatrix} + \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \cdots & \frac{\partial f_N}{\partial x_N} \end{bmatrix} \begin{bmatrix} \delta x_1 \\ \vdots \\ \delta x_N \end{bmatrix} = f(\boldsymbol{x}) + J(\boldsymbol{x})\delta \boldsymbol{x}$$
(9)

By assuming  $f(x + \delta x) = 0$  we can find that  $\delta x = -J^{-1}(x)f(x)$  so that  $x + \delta x = x - J^{-1}(x)f(x)$ . This expression converges to  $x^*$ . When the equations are nonlinear, the equations converge to the real root as  $x_k = x_k - J^{-1}(x_k)f(x_k)$ .

For (4), we can compute the Jacobian for the diagonal and off-diagonal elements separately. But as  $z(\boldsymbol{k},t)$  is a complex function, first we need to understand what the derivative of a complex function is.

### 4.2 Derivatives of complex functions

For  $z=x+\mathrm{i}y\in\mathbb{C}$  and  $x,y\in R$  the conjugate is defined as  $\overline{z}=x-\mathrm{i}y$ . That means that we can write the real and imaginary parts as:

$$x = \frac{z + \overline{z}}{2}$$
 and  $y = -i\frac{z - \overline{z}}{2}$ 

Using the chain rule, we can write the partial derivative with respect to z in function of x and y as x and y are functionally independent and find the first Wirtinger operator:

$$\frac{\partial}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial}{\partial x} + \frac{\partial \bar{y}}{\partial z} \frac{\partial}{\partial \bar{y}} \longrightarrow \frac{\partial x}{\partial z} = \frac{1}{2} \text{ and } \frac{\partial y}{\partial z} = -\frac{\mathrm{i}}{2} \longrightarrow \frac{\partial}{\partial z} = \frac{1}{2} \left( \frac{\partial}{\partial x} - \mathrm{i} \frac{\partial}{\partial y} \right)$$

We note the following properties:

$$\frac{\partial}{\partial z}z = 1$$
  $\frac{\partial}{\partial z}\overline{z} = \frac{1}{2}(1 - i^2) = 0$ 

Interesting for is the result of the following:

$$\overline{z}^{2} = (x - iy)^{2} = x^{2} - y^{2} - i2xy$$

$$\frac{\partial}{\partial z} \overline{z}^{2} = \frac{1}{2} \cdot (2x - i2y - i \cdot (-2y - i2x)) = x - iy + iy - ix = 0$$

### 4.3 Derivatives of the complex mean field equations

We can now compute derivatives of the complex functions  $z(\mathbf{k},t)$ . When setting  $z(\mathbf{k},t)=z_k$  the diagonal elements are found as

$$\frac{\partial}{\partial z_k} \left( \frac{\partial z_k}{\partial t} \right) = -i(z_k - 1) + (z_k + 1) \cdot I(z_k) + \frac{(z_k + 1)^2}{2} \cdot \frac{\partial I(z_k)}{\partial z_k} 
\frac{\partial I(z_k)}{\partial z_k} = i\kappa \cdot \frac{\partial H_{2,k}}{\partial z_k} 
\frac{\partial H_{2,k}}{\partial z_k} = \frac{1}{\langle k \rangle} P_k a_{kk} \cdot \left( \frac{2z_k}{6} - \frac{4}{3} \cdot \frac{1}{2} \right) = \frac{1}{\langle k \rangle} P_k a_{kk} \cdot \frac{z_k - 2}{3}$$
(10)

When setting  $z(\mathbf{k'},t)=z_{k'}$  the off-diagonal elements are found as

$$\frac{\partial}{\partial z_{k'}} \left( \frac{\partial z_k}{\partial t} \right) = \frac{(z_k + 1)^2}{2} \cdot \frac{\partial I(z_k)}{\partial z_{k'}}$$

$$\frac{\partial I(z_k)}{\partial z_{k'}} = i\kappa \cdot \frac{\partial H_{2,k}}{\partial z_{k'}}$$

$$\frac{\partial H_{2,k}}{\partial z_{k'}} = \frac{1}{\langle k \rangle} P_{k'} a_{k'k} \cdot \frac{z_{k'} - 2}{3}$$
(11)

### 4.4 Results

I cannot seem to converge close enough.



## References

- [1] S. Chandra, D. Hathcock, K. Crain, T. Antonsen, M. Girvan, and E. Ott, *Modeling the Network Dynamics of Pulse-Coupled Neurons. Chaos (Woodbury, N.Y.)* **27** (03, 2017) 10.
- [2] C. Bick, M. Goodfellow, C. Laing, and E. Martens, *Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. Journal of Mathematical Neuroscience* 10 no. 1, (Dec., 2020) .