Чаплыгин Андрей Викторович

ВМК МГУ, группа 603.

2018 Ноябрь

1 Постановка задачи

Найти $\varphi(t,x)$, $u_c(t)$:

$$\begin{cases}
\frac{\partial \varphi}{\partial t} - \mu \frac{\partial^2 \varphi}{\partial x^2} + b\varphi = f(x, t) + \omega_c(x) u_c(t), & x \in (0, A), t \in (0, \tau) \\
\varphi(t, 0) = \varphi(t, A) = 0, & \varphi(0, x) = \varphi_0(x) \\
\int_0^A g_{obs}(x) \varphi(t, x) dx = \varphi_{obs}(t) \int_0^A g_{obs}(x) dx
\end{cases} \tag{1}$$

где $\varphi_{obs}(t)$ - задана, $g_{obs}(x)$ - характеристическая функция подмножества $\Omega_0 \subset (0,A)$, $\omega_c(x)$ - характеристическая функция подмножества $\Omega_c \subset (0,A)$, $\mu=const,b=const$, $\varphi_0(x)$ - задается явно.

Без ограничения общности можно положить $\varphi_0(x)=0$, т.к. к этому можно прийти обычной заменой переменной в 1.

2 Операторная постановка задачи

Пусть $Q_{\tau}=(0,A)\times(0,\tau)$ Введем операторы:

1. Оператор L:

$$L\varphi = \frac{\partial \varphi}{\partial t} - \mu \frac{\partial^2 \varphi}{\partial x^2} + b\varphi$$

где $L:L_2(Q_\tau)\mapsto L_2(Q_\tau)$, с областью определения: $D(L)=\{C^2(0,A)\bigcap \overline{C(0,A)}\bigcap \overline{C^1(0,\tau)},\ u(0)=u(A)=0\}\ ($ классическая постановка).

2. Оператор B:

$$Bu_c = \omega_c(x)u_c(t)$$

где $B: L_2(0,\tau) \mapsto L_2(Q_\tau)$, с областью определения: $D(B) = L_2(0,\tau)$.

3. Оператор C:

$$C\varphi = \int_0^A g_{obs}(x)\varphi(t,x)dx$$

где $C: L_2(Q_\tau) \mapsto L_2(0,\tau)$, с областью определения: D(C) = D(L)

Введем обозначение $\overline{\varphi_{obs}(t)} = \varphi_{obs}(t) \int_0^A g_{obs}(x) dx$. Таким образом для задачи 1 получаем операторную постановку задачи:

$$\begin{cases}
L\varphi = f + Bu_c \\
C\varphi = \overline{\varphi_{obs}(t)}
\end{cases}$$
(2)

Также введем сопряженные операторы для рассмотренных выше:

1. Оператор L^* :

$$L^*v = -\frac{\partial v}{\partial t} - \mu \frac{\partial^2 v}{\partial x^2} + bv$$

где $L^*: L_2(Q_\tau) \mapsto L_2(Q_\tau)$.

2. Оператор B^* :

$$B^*v = \int_0^A w_C(x)v(x,t)dx$$

где $B^*: L_2(Q_\tau) \mapsto L_2(0,\tau).$

3. Оператор C^* :

$$C^*v = q_{obs}(x)v(t)$$

где $C^*: L_2(0,\tau) \mapsto L_2(Q_\tau)$.

Форму и свойства приведенных сопряженных операторов можно найти в [1] и [2].

3 Обобщенная постановка задачи

Рассмотрим обобщенную постановку задачи. Для этого расширим область определения операторов L и C:

$$D(C) = D(L) = \{L_2(0, \tau; \mathring{W}_2^1(0, A))\}\$$

И поставим обобщенную формулировку задачи (2):

$$\begin{cases}
L\varphi = f + Bu_c \\
J(\varphi(u_C)) = \inf_{v \in D(B)} J(\varphi(v))
\end{cases}$$
(3)

где

$$J(\varphi) = ||C\varphi - \overline{\varphi_{obs}}||_{L_2(0,\tau)}^2$$

Далее, задачу (3) включаем в семейство задач с параметром $a \ge 0$:

$$\begin{cases}
L\varphi = f + Bu_c \\
J_a(u_C, \varphi(u_C)) = \inf_{v \in D(B)} J_a(v, \varphi(v))
\end{cases} \tag{4}$$

где

$$J_a(v,\varphi) = a||v||_{L_2(0,\tau)}^2 + ||C\varphi - \overline{\varphi_{obs}}||_{L_2(0,\tau)}^2$$

В свою очередь система (4) эквивалента системе вариационных уравнений (см. [1]):

$$\begin{cases}
L\varphi = f + Bu_c \\
L^*q = C^*(C\varphi - \overline{\varphi_{obs}}) \\
au_C + B^*q = 0
\end{cases}$$
(5)

или подставив полную форму операторов:

$$\begin{cases}
\frac{\partial \varphi}{\partial t} - \mu \frac{\partial^2 \varphi}{\partial x^2} + b\varphi = f(x, t) + \omega_c(x) u_c(t) \\
-\frac{\partial q}{\partial t} - \mu \frac{\partial^2 q}{\partial x^2} + bq = g_{obs}(x) \left(\int_0^A g_{obs}(x) \varphi(t, x) dx - \overline{\varphi_{obs}} \right) \\
au_C + \int_0^A w_C(x) q(x, t) dx = 0
\end{cases}$$
(6)

4 Единственность

Исследуем задачу (5) на единственность. Рассмотрим для этого задачу:

$$\begin{cases}
L\varphi = \frac{\partial \varphi}{\partial t} - \mu \frac{\partial^2 \varphi}{\partial x^2} + b\varphi = \omega_c(x)u_C(t) = Bu_C \\
C\varphi = \int_0^A g_{obs}(x)\varphi(x,t)dx = \int_0^A \varphi(x,t)dx = 0
\end{cases}$$
(7)

Тогда умножив первое уравнение в (7) на характеристическую функцию $g_{obs}(x)$ и взяв интеграл от 0 до A, также беря в расчет второе уравнение, получим:

$$u_C(t)mes(\Omega_0 \bigcap \Omega_C) = \mu(\frac{\partial \varphi}{\partial x}|_{\Omega_0})$$

Будем исследовать на единственность в некоторых предположениях.

1. Пусть $\mu = 0$ и $\Omega_0 \cap \Omega_C \neq \emptyset$. Тогда получаем:

$$mes(\Omega_0 \bigcap \Omega_C)u_C(t) = 0 \Longrightarrow u_C(t) = 0$$

Значит $Ker(A) = \{0\}$ откуда и получаем единственность.

2. Пусть $\mu \neq 0$ и $\Omega_0 = (0, A)$. Тогда получаем:

$$u_C(t)mes(\Omega_0 \bigcap \Omega_C) = \mu(\frac{\partial \varphi}{\partial x}|_{x=A} - \frac{\partial \varphi}{\partial x}|_{x=0})$$

Отсюда, вообще говоря, следует, что $Ker(A) \neq \{0\}$ откуда получаем, что единственности нет.

3. Опять пусть $\mu \neq 0$ и $\Omega_0 = (0, A)$. Рассмотрим задачу (5) и соответственно (7) положив характеристическую функцию $g_{obs}(x) = g_k(x) = cos(k\pi x)$. Тогда из второго уравнения системы (7) следует, что $\phi(x,t) = 0$ в области Ω_0 . Проинтегрировав первое уравнение, получим, что

$$mes(\Omega_0 \bigcap \Omega_C)u_C(t) = 0 \Longrightarrow u_C(t) = 0$$

Значит $Ker(A) = \{0\}$ откуда и получаем единственность. Стоит отметить, что функции $\{g_k(x)\}, k=1,...,S$ образуют базис в $L_2(\Omega_0)$ при $S \to \infty$. Поэтому локальные источники можно приблизить конечной системой $\{g_k(x)\}_{k=1}^S$ и рассматривать задачу (5) с приближенными 'локальными источниками'. И в этом случае единственность будет. Более подробно про это можно посмотреть в работе [2].

5 Плотная разрешимость

Исследуем задачу (5) на плотную разрешимость. Рассмотрим для этого задачу:

$$\begin{cases}
L^*q = -\frac{\partial q}{\partial t} - \mu \frac{\partial^2 q}{\partial x^2} + bq = g_{obs}(x)w(t) = C^*w \\
B^*q = \int_0^A w_C(x)q(x,t)dx = 0
\end{cases} \tag{8}$$

Видно, что плотная разрешимость исследуется аналогично единственности. Следовательно при тех же предположениях для единственности, у задачи будет и плотная разрешимость:

- 1. Пусть $\mu = 0$ и $\Omega_0 \cap \Omega_C \neq \emptyset$. Тогда у задачи будет плотная разрешимость, т.к. $Ker(A^*) = \{0\}.$
- 2. Пусть $\mu \neq 0$ и $\Omega_0 = (0,A)$. Тогда у задачи не будет плотной разрешимости, т.к. $Ker(A^*) \neq \{0\}$
- 3. Пусть $\mu \neq 0$, $\Omega_0 = (0,A)$ и будет рассматривать приближенную задачу с 'ло-кальными источниками', приблизив $g_{obs}(x)$ конечной системой функций $\{g_k(x)\}_{k=1}^S = \{cos(k\pi x)\}_{k=1}^S$. Тогда плотная разрешимость будет по аналогии с исследованием на единственность.

Интересен также случай, когда управление ищется в виде v(t,x) и область определения оператора B задается как $D(B) = L_2(Q_\tau), B : L_2(Q_\tau) \mapsto L_2(Q_\tau)$. Тогда сопряженный оператор для B выглядит следующим образом:

$$B^*v = w_C(x)v(x,t)$$

где $B^*: L_2(Q_\tau) \mapsto L_2(Q_\tau)$. Именно с таким предположением на область определения оператора B исследуется семейство задач в работе [2] и показывается, что при некоторых условиях на характеристические функции и множества Ω_0, Ω_C у задачи (5) будет плотная разрешимость (работа [2] пункт 1.3, теорема 3). Покажем это и в нашем частном случае. Перепишем задачу (8) в новых предположениях на область определения оператора B и пусть $\Omega_C = (0,A)$:

$$\begin{cases}
L^*q = -\frac{\partial q}{\partial t} - \mu \frac{\partial^2 q}{\partial x^2} + bq = g_{obs}(x)w(t) = C^*w \\
B^*q = w_C(x)q(x,t) = 0
\end{cases} \tag{9}$$

из второго уравнения следует, что q(x,t)=0 во всей области $\Omega_C=(0,A)$. Умножим первое уравнение на $w_C(x)$ и проинтегрируем по области (0,A). Получим следующее:

$$mes(\Omega_0 \bigcap \Omega_C)w(t) = 0 \Longrightarrow w(t) = 0$$

Получаем, что $Ker(A^*) = \{0\}$ и, следовательно, у задачи (5) будет плотная разрешимость. Подытожим этот результат:

4. Пусть $D(B) = L_2(Q_\tau)$, $B: L_2(Q_\tau) \mapsto L_2(Q_\tau)$ и $\Omega_C = (0, A)$. Тогда в задаче (5) будет плотная разрешимость, как и следует также из теоремы 3, представленной в работе [2].

6 Итерационный метод

Запишем итерационный метод для задачи (5) [1]:

$$\begin{cases}
L\varphi^k = f + Bu_c^k \\
L^*q^k = C^*(C\varphi^k - \overline{\varphi_{obs}}) \\
u_C^{k+1} = u_C^k - \tau_k(au_C^k + B^*q^k)
\end{cases}$$
(10)

Или в полной форме:

$$\begin{cases}
\frac{\partial \varphi^k}{\partial t} - \mu \frac{\partial^2 \varphi^k}{\partial x^2} + b\varphi^k = f(x,t) + \omega_c(x)u_c^k(t) \\
\varphi^k(t,0) = \varphi^k(t,A) = 0, \quad \varphi^k(0,x) = 0 \\
-\frac{\partial q^k}{\partial t} - \mu \frac{\partial^2 q^k}{\partial x^2} + bq^k = g_{obs}(x)\left(\int_0^A g_{obs}(x)\varphi^k(t,x)dx - \overline{\varphi_{obs}}\right) \\
q^k(t,0) = q^k(t,A) = 0, \quad q^k(tau,x) = 0 \\
u_C^{k+1} = u_C^k - \tau_k(au_C^k + \int_0^A w_C(x)q^k(x,t)dx)
\end{cases} (11)$$

При дискретизации уравнений будем использовать разностную схему первого порядка по времени и второго порядка по пространству. В качестве критерия останова будем использовать условие $||u_C^{k+1}-u_C^k||<\varepsilon$, где ε - фиксированные параметр (толерантность).

7 Эксперименты

Будем численно решать задачу (5). Пусть $\Omega_0 = \Omega_c = (0,A) = (0,1)$. По времени будем рассматривать интервал $(0,\tau) = (0,0.1)$. Возьмем сетки по пространству N = 100, h = 0.01 и по времени $TN = 100, \Delta t = 0.001$. В качестве тестового решения возьмем $\phi(x,t) = \gamma t sin(\pi x), \ u_C(t) = \gamma t,$ где γ - некоторый параметр. Подставив эти решения в уравнения (5) получим правую часть $f(x,t) = sin(\pi x)(\gamma + \mu \gamma t \pi^2 + b \gamma t) - \gamma t,$ начальное условие $\phi(0,x) = 0$ и $\overline{\varphi_{obs}} = \frac{2\gamma t}{\pi}$. Далее, 'забываем' тестовые решения и решаем систему (5) с полученными условиями.

Положим $\gamma = 100$, $\mu = 0.001$, b = 0.5.

Исследуем сходимость по a. Зафиксируем $\tau_k=10$, $\varepsilon=10^{-6}$. В качестве начального условия для u_C^0 возьмем нулевое приближение. В таблице 1. приведены полученные ошибки и количество итераций в зависимости от параметра a. Ошибки для ϕ и u_C считались как:

$$\phi_{err} = \sqrt{\int_0^{\tau} \int_0^A (\phi^k - \phi_{test})^2 dx dt}$$

$$\phi(t = \tau)_{err} = \sqrt{\int_0^A (\phi^k(\tau, x) - \phi(\tau, x)_{test})^2 dx}$$

$$u_{C,err} = \sqrt{\int_0^{\tau} (u_C^k - u_{C,test})^2 dt}$$

Таблица 1.

a	ϕ_{err}	$\phi(t=\tau)_{err}$	$u_{C,err}$	Iterations
0.1	0.0660487	0.47126	1.80094	5
0.01	0.0518173	0.398831	1.64344	80
0.001	0.0221064	0.218467	1.22864	621
0.0001	0.00593254	0.0851074	0.715421	3909
0.00001	0.00106244	0.0259676	0.411515	19120
0.000001	0.000204197	0.00675396	0.279284	55163
0.0000001	0.00013089	0.00253913	0.250555	78842
0.0	0.000127775	0.00193048	0.246915	83605

На рисунке 1 показано, как ведет себя управление $u_C(t)$ в зависимости от a, по оси x - время. Видно, что с уменьшением a численное решение приближается к аналитическому.

Рис. 1: $u_c(t)$ в зависимости от a

На рисунке 2 показано, как ведет себя решение в момент времени $t=\tau$, т.е. $\phi(\tau,x)$, по оси x - узлы пространственной сетки. Тут также видно, что с уменьшением a численное решение приближается к аналитическому.

Рис. 2: $\phi(t=\tau,x)$ в зависимости от a

На рисунке 3 показано решение ϕ при a=0.0001 и разница между численным решением и аналитическим $\phi_{test}.$

На рисунке 4 показаны графики ошибок u_C и ϕ в зависимости от a.

Рис. 3: а) Решение $\phi(x,t)$ при a=0.0001 b) Разница между численным решением $\phi(x,t)$ и аналитическим $\phi(x,t)_{test}$

Рис. 4: Графики ошибок ϕ_{err} и $u_{C,err}$ в зависимости от a

8 Литература

- [1] Агошков В.И. Методы оптимального управления и сопряженных уравнения в задачах математической физики. Москва, 2016.
- [2] Агошков В.И., Асеев Н.А., Новиков И.С. Методы исследования и решения задач о локальных источниках при локальных или интегральных наблюдениях. Москва, 2015.