03_modulescore

Pooja Paresh Savla

Overall purpose

This pipeline evaluates **pathway activation signatures** (STAT, MAPK, and PI3K/mTOR) from single-cell RNA-seq data after oIL-9R stimulation.

It summarizes **module scores** — averaged expression of key genes representing each signaling pathway — and visualizes them as heatmaps to reveal:

- which pathways are preferentially activated across cytokine conditions or cell populations,
- how pathway activation varies between samples, and
- whether certain **cell types** are especially responsive to IL-9R signaling.

```
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(purrr))
suppressPackageStartupMessages(library(tibble))
suppressPackageStartupMessages(library(SeuratObject))
suppressPackageStartupMessages(library(Seurat))
suppressPackageStartupMessages(library(patchwork))
suppressPackageStartupMessages(library(ggplot2))
suppressPackageStartupMessages(library(pheatmap))
suppressPackageStartupMessages(library(tidyr))

# Function to save plot as PNG
save_plot_as_png <- function(plot, filename) {
   png(filename, res = 250, width = 4000, height = 2000)
   print(plot)
   dev.off()
}</pre>
```

```
load("../data/demo_data_annotated_biomart.RData")
# Define gene sets
stat_genes <- c("Stat1", "Stat3", "Stat4", "Stat5a", "Stat5b", "Stat6")</pre>
mapk_genes <- c("Mapk1", "Mapk3", "Map2k1", "Map2k2", "Fos", "Jun")</pre>
pi3k_mtor_genes <- c("Pik3ca", "Akt1", "Akt2", "Mtor", "Rps6", "Rheb", "Tsc1", "Tsc2")
# Add module scores for each pathway
demo_data <- AddModuleScore(demo_data, features = list(stat_genes), name = "STAT_Module")</pre>
Warning: The `slot` argument of `GetAssayData()` is deprecated as of SeuratObject 5.0.0.
i Please use the 'layer' argument instead.
i The deprecated feature was likely used in the Seurat package.
  Please report the issue at <a href="https://github.com/satijalab/seurat/issues">https://github.com/satijalab/seurat/issues</a>.
demo_data <- AddModuleScore(demo_data, features = list(mapk_genes), name = "MAPK_Module")
demo_data <- AddModuleScore(demo_data, features = list(pi3k_mtor_genes), name = "PI3K_Module</pre>
# Summarize module scores
module_scores <- demo_data@meta.data %>%
  dplyr::group_by(samples) %>%
  dplyr::summarise(
    STAT = mean(STAT_Module1, na.rm = TRUE),
    MAPK = mean(MAPK_Module1, na.rm = TRUE),
    PI3K = mean(PI3K_Module1, na.rm = TRUE)
  ) %>%
  column_to_rownames("samples") %>%
  as.matrix()
```

File 1: modulescore_pathway.png

"Pathway Module Scores Across Samples"

What it contains

This heatmap displays average pathway scores (STAT, MAPK, PI3K/mTOR) across samples (columns).

Each pathway is represented as one row.

The color gradient (blue \rightarrow white \rightarrow red) corresponds to low \rightarrow intermediate \rightarrow high mean pathway activity.

How it's generated

Then pheatmap(t(module_scores)) transposes the data so pathways are rows and samples are columns.

What it's asking biologically

This heatmap helps you see:

- Which cytokine conditions (samples) **strongly activate** each signaling axis.
- Whether IL-9R stimulation predominantly engages the **STAT** pathway (as expected for many interleukin receptors), or if it co-activates **MAPK** or **PI3K/mTOR** signaling.
- How different experimental conditions (e.g., wild type vs knockout, treated vs control) differ in their downstream transcriptional activation.

Example interpretation:

If the "STAT" row is deep red for oIL-9R samples but white or blue for controls, this supports that IL-9R signaling drives a JAK/STAT transcriptional program.

If MAPK or PI3K are also activated, it indicates **cross-talk** or **multi-pathway engagement**, relevant for immune-cell differentiation or survival.

```
heatmap_1 <- pheatmap(
   t(module_scores), # Transpose: pathways as rows, samples as columns
   cluster_rows = TRUE,
   cluster_cols = TRUE,
   color = colorRampPalette(c("blue", "white", "red"))(100),
   main = "Pathway Module Scores Across Samples",
   fontsize_row = 12,
   fontsize_col = 10
)</pre>
```


save_plot_as_png(heatmap_1, "modulescore_pathway.png")

pdf 2

File 2: heatmap_STAT_Module1.png

"STAT module by Sample and Cell Type"

What it contains

A heatmap of **STAT pathway module scores** (y-axis = cell types, x-axis = samples). Each cell type's mean STAT activity is plotted across all samples.

Biological reasoning

The **STAT** family (Stat1, Stat3, Stat4, Stat5a/b, Stat6) are core transcription factors downstream of cytokine receptors, including IL-9R. This heatmap shows:

- Which **cell populations** (e.g., T cells, NK cells, epithelial cells) have strong STAT activation in response to IL-9R signaling.
- Whether **only select subsets** (e.g., IL-9-responsive T cells) show upregulation, reflecting **cell-type-specific responsiveness**.

Biological question addressed:

Does oIL-9R activate STAT signaling uniformly across the immune landscape, or are certain populations (e.g., Th9-like or memory T cells) more responsive?

File 3: heatmap_MAPK_Module1.png

"MAPK module by Sample and Cell Type"

What it contains

A heatmap of **MAPK pathway activity** (genes: Mapk1/3, Map2k1/2, Fos, Jun) across cell types and samples.

The color scale (white \rightarrow yellow \rightarrow red) indicates increasing activation intensity.

Biological reasoning

The MAPK/ERK pathway mediates cytokine-driven proliferation and stress responses. In the IL-9R context, this module tells you:

- Whether oIL-9R signaling also triggers MAPK/ERK activation in addition to STAT, implying parallel signaling branches.
- Which cell types rely on **ERK-dependent programs** (e.g., proliferation, differentiation).

Possible biological insights:

- High MAPK activity in proliferative clusters (e.g., dividing T cells) suggests **IL-9R-induced proliferation**.
- Weak MAPK activity but strong STAT activity indicates **transcriptional rather than** proliferative signaling dominance.

File 4: heatmap_PI3K_Module1.png

"PI3K/mTOR module by Sample and Cell Type"

What it contains

A heatmap of **PI3K/mTOR pathway scores** (genes: Pik3ca, Akt1/2, Mtor, Rps6, Rheb, Tsc1/2) across samples and annotated cell types.

Biological reasoning

The PI3K-Akt-mTOR axis controls metabolic reprogramming, cell survival, and protein synthesis.

For IL-9R, this pathway may reflect:

- Survival signaling downstream of receptor engagement.
- Metabolic adaptation (e.g., glycolytic shift or biosynthetic activation) in IL-9-responsive immune subsets.

Biological question addressed:

Does IL-9R signaling promote metabolic activation via the PI3K/mTOR axis, and in which cell populations is this strongest?

Interpretation:

High PI3K/mTOR scores in effector or activated cell types suggest enhanced anabolic metabolism and cell growth responses to IL-9R.

```
# Define the module scores to visualize
module_scores <- c("STAT_Module1", "MAPK_Module1", "PI3K_Module1")

# Function to create a heatmap for each module
generate_module_heatmap <- function(seurat_object, module_col) {
    # 1. Summarize score by sample and cell annotation
    summary_df <- seurat_object@meta.data %>%
        group_by(samples, cell_annotation) %>%
        summarise(score = mean(.data[[module_col]], na.rm = TRUE), .groups = 'drop')

# 2. Pivot to wide matrix
    score_matrix <- summary_df %>%
        tidyr::pivot_wider(names_from = samples, values_from = score) %>%
        column_to_rownames("cell_annotation") %>%
```

```
as.matrix()

# 3. Plot heatmap
heatmap <- pheatmap(
    score_matrix,
    cluster_rows = TRUE,
    cluster_cols = TRUE,
    color = colorRampPalette(c("white", "yellow", "red"))(100),
    main = paste(module_col, "by Sample and Cell Type"),
    fontsize_row = 10,
    fontsize_col = 10
    )
    save_plot_as_png(heatmap,paste0("heatmap_",module_col,".png"))
}

# Loop through each module score and plot
for (module in module_scores) {
    generate_module_heatmap(demo_data, module)
}</pre>
```


Conceptual summary

Module	Key genes	Biological role	What the heatmap reveals
STAT	Stat1-6	Canonical transcriptional effectors of cytokine signaling	Transcriptional responsiveness to IL-9R
MAPK	Mapk1/3, Fos, Jun	Mitogenic and stress pathway, proliferation	Whether IL-9R drives ERK activation
PI3K/mTOR	Pik3ca, Akt1/2, Mtor, Rps6, Tsc1/2	Growth/metabolism pathway	Metabolic activation and survival signals

Why this analysis matters

- Mechanistic validation: Confirms which intracellular cascades IL-9R primarily uses (STAT-biased vs multi-pathway).
- Cell-type specificity: Identifies which immune subsets are functionally responsive to IL-9.
- Cross-talk mapping: Reveals overlap between pathways, hinting at coordinated transcriptional and metabolic rewiring.
- Therapeutic insight: If certain cell types rely on specific pathways (e.g., STAT5 or mTOR), inhibitors could modulate IL-9-driven immune responses or inflammation.

File 5: scaled_heatmap_pSTAT.png

Title in plot: "Scaled (0–100) — pSTAT Signature across Cytokine Receptors"

What's inside

Rows: pSTAT1, pSTAT3, pSTAT4, pSTAT5a, pSTAT5b, pSTAT6

Columns: your *samples* (cytokines/conditions)

Each row is min–max scaled to [0, 100] across columns, so you see where each STAT gene is *relatively* highest within its own row.

What it's asking biologically

Which conditions maximally engage each STAT axis?

Typical cues: IFNs \to STAT1; IL-6 family/IL-21 \to STAT3; IL-12 \to STAT4; c cytokines (IL-2/7/9/15/21) \to STAT5; IL-4/13 \to STAT6. Peaks suggest ligand–receptor biasing along these axes.

When to trust vs. be cautious

- **Useful for:** pattern recognition per gene; ranking which *condition* best activates a given STAT transcript program.
- **Be cautious:** not for comparing *magnitudes between genes* (scaling removes gene-to-gene baseline differences).

Why keep both views?

Scaled view highlights which condition is the top hit per gene, independent of absolute expression.

File 6: unscaled_avgexp_heatmap_pSTAT.png

Title in plot: "pSTAT Signature across Cytokine Receptors"

What's inside

• Same rows/columns as above, but values are the **raw average expression** from **AverageExpression()** (no scaled).

What it's asking biologically

• How strongly expressed are STAT transcripts per condition, in absolute terms?

If STAT5a/b are both high in IL-9R samples relative to control, that's consistent with a STAT5-driven program at the transcriptional level.

When to trust vs. be cautious

- **Useful for:** magnitude comparisons *between* genes and conditions; showing real effect size.
- Be cautious: gene-length/GC/UMI depth and cell-type composition can affect raw averages; interpret alongside QC and cell-state proportions.

Why keep both views?

Unscaled preserves absolute differences; paired with the scaled view, you get both magnitude and pattern. **Unscaled** = preserves absolute differences (gene A really is higher than gene B).

• Scaled = highlights which condition is "best" for each gene, irrespective of gene-to-gene baseline.

```
# --- Settings ---
Idents(demo_data) <- "samples" # set your grouping</pre>
pal <- colorRampPalette(c("white", "purple"))(100)</pre>
# --- Helpers ---
avg_mat_for <- function(obj, genes, rename_map, assay = "RNA") {</pre>
  genes_present <- intersect(genes, rownames(obj[[assay]]))</pre>
  if (length(genes_present) == 0) stop("None of the requested genes are in the assay.")
  mat <- AverageExpression(</pre>
    obj, assays = assay, features = genes_present, return.seurat = FALSE
  )[[assay]]
  # rename rows if a mapping is provided
  rn <- rownames(mat)</pre>
  rn2 <- ifelse(rn %in% names(rename_map), rename_map[rn], rn)</pre>
 rownames(mat) <- rn2
  as.matrix(mat)
}
scale_rows_0_100 <- function(mat) {</pre>
  s <- t(apply(mat, 1, function(x) {</pre>
    rng <- range(x, na.rm = TRUE)</pre>
    if (diff(rng) == 0) rep(0, length(x)) else 100 * (x - rng[1]) / diff(rng)
  }))
  # keep dimnames
  rownames(s) <- rownames(mat); colnames(s) <- colnames(mat)</pre>
  S
}
pheatmap_create <- function(mat, title, palette = pal) {</pre>
  p1 <- pheatmap(</pre>
    mat,
    color = palette,
    cluster_rows = FALSE, cluster_cols = FALSE,
    fontsize_row = 12, fontsize_col = 12,
    angle_col = 45,
    display_numbers = round(mat, 2),
    number_color = "black",
    border_color = "grey80",
    legend = TRUE,
    main = title,
    treeheight_row = 0, treeheight_col = 0
```

As of Seurat v5, we recommend using AggregateExpression to perform pseudo-bulk analysis. First group.by variable `ident` starts with a number, appending `g` to ensure valid variable This message is displayed once per session.

```
pstat_scaled <- scale_rows_0_100(pstat_avg)

# Unscaled
p1 <- pheatmap_create(pstat_avg,
    "pSTAT Signature across Cytokine Receptors")
print(p1)</pre>
```

pSTAT Signature across Cytokine Receptors

2.81	7.64	8.86	5.63	2.21	2.48	pSTAT1	8
1.58	3.28	3.4	3.76	1.66	2.23	pSTAT3	6
5.69	5.45	4.72	4.16	3.93	3.39	pSTAT4	4
0.25	1.14	0.6	0.69	0.23	0.25	pSTAT5a	2
3.24	3.36	2.97	2.46	1.73	1.51	pSTAT5b	2
0.78	0.61	0.66	0.61	0.71	0.66	pSTAT6	
POT	327R	gor	12×12	3r	RXIR	_	
		Q		Q			

```
save_plot_as_png(p1, "unscaled_avgexp_heatmap_pSTAT.png")

pdf
2

# Scaled 0-100
p2 <- pheatmap_create(pstat_scaled,
    "Scaled (0-100) - pSTAT Signature across Cytokine Receptors")

save_plot_as_png(p2, "scaled_heatmap_pSTAT.png")

pdf
2

print(p2)</pre>
```


File 7: scaled_heatmap_nonSTAT.png

Title in plot: "Scaled (0–100) — Non-STAT Signature across Cytokine Receptors"

What's inside

• Rows: pErk1 (Mapk3), pErk2 (Mapk1), pAkt1 (Akt1), pAkt2 (Akt2), pAkt3 (Akt3), pS6 (Rps6)

Columns: your *samples* (cytokines/conditions)

Row-wise min-max scaling to [0, 100] emphasizes relative peaks per pathway component.

What it's asking biologically

• Which conditions preferentially engage the MAPK (ERK1/2), PI3K-Akt (Akt1/2/3), and mTOR (S6) axes? Cytokine receptors can co-activate these pathways via JAK-dependent adapters or parallel signaling; peaks can reveal biased engagement (e.g., strong pS6 suggests mTOR output; strong pErk suggests MAPK bias).

When to trust vs. be cautious

- **Useful for:** identifying *which condition* most up-regulates each pathway readout relative to that gene's own baseline.
- Be cautious: scaling obscures whether pS6 is globally higher than pErk, etc.—use the unscaled plot to judge magnitude.

Why keep both views?

Scaled view is for pattern discovery (who peaks where), complementary to the unscaled magnitude view.

File 8: unscaled_avgexp_heatmap_nonSTAT.png

Title in plot: "Non-STAT Signature across Cytokine Receptors"

What's inside

• Same rows/columns, but raw average expression (no scaling).

What it's asking biologically

• What is the *absolute* expression level of ERK/Akt/S6 transcripts per condition? This helps judge whether a pathway is broadly higher across conditions (e.g., uniformly elevated Rps6 → ribosomal/mTOR program) versus condition-specific spikes.

When to trust vs. be cautious

- Useful for: real effect sizes across both genes and conditions; comparing MAPK vs PI3K–Akt vs mTOR axes directly.
- Be cautious: transcript abundance is an *indirect* proxy of pathway activity—post-translational phosphorylation drives signaling. Interpret with phosphorylation/protein data if available.

Why keep both views?

Unscaled shows magnitude; together with the scaled plot you get both "how much" and "where it peaks."

Non-STAT Signature across Cytokine Receptors

4	pErk1	0.12	0.14	0.1	0.07	0.06	0.07
3	pErk2	3.11	3.53	2.57	2.96	3	3.43
2	pAkt1	0.45	0.56	0.42	0.37	0.33	0.33
1	pAkt2	0.76	0.7	1.45	1.03	1.11	0.47
ľ	pAkt3	1.96	2.76	1.02	2.07	1.58	4.76
	pS6	0.67	0.64	0.48	0.65	0.54	0.47
		JE×22E	3st	J. P. X. P.	gg.	378	404
		jr.	ģ	32,	ó	,	

save_plot_as_png(p3, "unscaled_avgexp_heatmap_nonSTAT.png")

pdf 2

```
# Scaled 0-100
p4 <- pheatmap_create(nonp_scaled,
    "Scaled (0-100) - Non-STAT Signature across Cytokine Receptors")</pre>
```

I (0–100) – Non–STAT Signature across Cytokine Receptors

save plot as png(p4, "scaled heatmap nonSTAT.png")

pdf 2

Biological context & caveats

- These are **STAT** gene transcripts, not phospho-STAT proteins. True pathway activation is phosphorylation and nuclear translocation; RNA captures **downstream transcriptional consequences** and/or **feedback expression** of STATs.
- If you want to directly reflect signaling activity, consider:
 - A curated target-gene signature for STAT pathways (e.g., known STAT5 targets) rather than STAT transcripts themselves.
 - If you have CITE-seq or phospho-flow/Ab-seq: include protein/phospho features (e.g., pSTAT5, pERK, pAKT, pS6) and compute module scores from those assays.