Introducción a la Lógica y la Computación - Estructuras de orden Práctico 3: Posets reticulados. Isomorfismos de posets.

- 1. La siguiente tabla contiene algunos de los valores de $x \vee y = \sup\{x,y\}$ para x e y en cierto poset (S, \leq) . Por ejemplo $b \vee c = d$.
 - a) Llene el resto de la tabla.
 - \overrightarrow{b}); Cuál es el mínimo y el máximo de S?
 - c) Muestre que $f \leq c \leq d \leq e$.
 - d) Dibuje el diagrama de Hasse asociado a $(S,\leq).$

\vee	a	b	c	d	e	f
a		e	a	e	e	a
b			d	d	e	b
c				d	e	c
d					e	d
e						e
f						

- 2. Sea P un poset reticulado y $a, b, c \in P$. Demuestre que $\sup\{a, b, c\}$ existe y es igual a $(a \lor b) \lor c$ (y también a $a \lor (b \lor c)$). Generalice para más elementos.
- 3. Supongamos que un poset tiene la siguiente propiedad: para todo $a,b \in P$, $a \lor b$ existe. Pruebe que $\sup(S)$ existe para cualquier $S \subseteq P$ finito y no vacío.

En los siguientes ejercicios, suponga que a, b y c son distintos dos a dos.

- 4. a) Dibuje los diagramas de Hasse de $A = (\{1, 2, 3, 4, 6, 12\}, |)$ y $B = (\{1, 2, 3, 4, 6\}, |)$.
 - b) ¿Cuáles de esos posets son reticulados?
 - c) Calcular $4 \wedge (2 \vee 3)$ en ambos posets.
 - d) Determinar un subconjunto de $(\mathcal{P}(\{a,b,c\}),\subseteq)$ cuyo diagrama de Hasse sea B.
- 5. Demuestre que en todo poset reticulado se cumple $x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z)$.
- 6. Determine cuáles de los siguientes mapeos f de P a Q son isomorfismos. En caso de no serlo determine qué es lo que falla.
 - a) $P = Q = (\mathbb{Z}, \leq) \text{ y } f(x) = x + 1.$
 - b) $P = Q = (\mathbb{Z}, \leqslant)$ y f(x) = 2x.
 - c) $P = Q = (\mathcal{P}(\{a, b, c\}, \subseteq) \text{ y } f(A) = A^c.$
- 7. Determine si se dan los isomorfismos indicados.
 - $a) (D_6, |) \cong (\mathcal{P}(\{a, b\}), \subseteq).$
 - b) $(D_{30}, |) \cong (\mathscr{P}(\{a, b, c\}), \subseteq).$
- 8. Demuestre que si $f:(P,\leq)\to(Q,\leq')$ es isomorfismo entonces $f^{-1}:(Q,\leq')\to(P,\leq)$ también lo es.
- 9. Suponga que $f: P \to Q$ es un isomorfismo de posets.
 - a) Si $m \in P$ es minimal, entonces f(m) es minimal.
 - b) Si $m \in P$ es maximal, entonces f(m) es maximal.
 - c) Probar que si Q tiene algún minimal, entonces P tiene un minimal (Ayuda: usar f^{-1}).
- 10. (*) Determine cuántos isomorfismos hay de $(\mathcal{P}(\{a,b,c\}),\subseteq)$ en sí mismo.