Κεφάλαιο 21

Χαρακτηριστικά, Δομή και Λειτουργία Συστημάτων Γνώσης

Τεχνητή Νοημοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

9
A

Συστήματα Γνώσης

- * Επιδεικνύουν **νοήμονα συμπεριφορά** σε συγκεκριμένους τομείς και διαδικασίες, ανάλογη ενός ανθρώπου με ειδικότητα στον τομέα
 - 🗖 π.χ. επιστήμονα, τεχνικού, εμπειρογνώμονα
- * Κωδικοποιούν και χειρίζονται τη γνώση και συλλογιστική ενός ανθρώπου σε έναν εξειδικευμένο τομέα, με σκοπό την επίλυση προβλημάτων ή την παροχή συμβουλών.
- **Α**παιτούν γνώση
 - Αποκτάται μέσω εμπειρίας ή μελέτης.
 - 🗖 Πληροφορίες, εμπειρίες, ικανότητες, δεξιότητες
- * Έμπειρα συστήματα (expert systems)
 - Στηριζόταν κυρίως στην εμπειρική γνώση
- **Χρησιμοποιούνται**:
 - 🗖 Από μη-ειδικούς για επίλυση προβλημάτων
 - Συμβουλευτικά από ειδικούς
- ❖ Κατηγορίες εφαρμογών:
 - Ερμηνεία δεδομένων (π.χ. ηχητικών ή ηλεκτρομαγνητικών σημάτων)
 - Διάγνωση δυσλειτουργιών (π.χ. βλαβών σε μηχανήματα ή ασθενειών σε ανθρώπους)
 - Διαμόρφωση σύνθετων αντικειμένων (π.χ. πολύπλοκων υπολογιστικών συστημάτων)

Ανάπτυξη Συστημάτων Γνώσης

- Συνεργασία:
 - □ Ειδικός του τομέα (domain expert)
 - Εξειδικευμένος σε έναν τομέα δραστηριότητας
 - Βοηθάει στη μεταφορά γνώσης στο σύστημα
 - α) δική του εμπειρία
 - β) κοινή επιστημονική ή τεχνολογική γνώση
 - γ) γνώση καταγεγραμμένη σε βάσεις δεδομένων ή έγγραφα
 - □ Μηχανικός γνώσης (knowledge engineer)
 - Πληροφορικός, ειδικευμένος σε ΤΝ και συστήματα γνώσης
 - Συνεργάζεται με τον ειδικό για τη μεταφορά γνώσης στο σύστημα
 - Σχεδιάζει τη δομή γνώσης, σχεδιάζει και αναπτύσσει το σύστημα
- * Τεχνολογία Της Γνώσης (Knowledge Engineering): τομέας της ΤΝ που ασχολείται με την ανάπτυξη συστημάτων γνώσης

Ανάπτυξη και Λειτουργία Συστήματος Γνώσης

Χαρακτηριστικά Συστημάτων Γνώσης

ΣΥΣΤΗΜΑΤΑ ΓΝΩΣΗΣ	ΣΥΜΒΑΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ
Παράσταση και χειρισμός γνώσης σε επίπεδο συμβόλων	Παράσταση και χειρισμός δεδομένων σε επίπεδο αριθμητικών υπολογισμών
Χρήση γλωσσών που πλησιάζουν την ανθρώπινη	Χρήση γλωσσών που βρίσκονται πλησιέστερα στον τρόπο λειτουργίας του Η/Υ
Βάση γνώσης (δεδομένα και εξαγωγή συμπερασμάτων)	Βάση δεδομένων - η γνώση ενσωματώνεται στο πρόγραμμα
Ευχέρεια στην επέκταση και αναθεώρηση της γνώσης	Η αναθεώρηση της υπάρχουσας γνώσης επιβάλλει ευρείας κλίμακας μεταβολές στο πρόγραμμα
Δυνατότητα χειρισμού ασαφούς, αβέβαιης και μη-πλήρους γνώσης	Δυσχέρεια στο χειρισμό ασαφούς, αβέβαιης και μη-πλήρους γνώσης
Δυνατότητα μη μονότονης συλλογιστικής	Δυσχέρεια στη χρήση μη μονότονης συλλογιστικής
Επεξήγηση του δρόμου συλλογισμού	Ανυπαρξία επεξήγησης

Χαρακτηριστικά Εμπείρων Συστημάτων

Φ Επιπλέον χαρακτηριστικά:

ΕΜΠΕΙΡΑ ΣΥΣΤΗΜΑΤΑ	ΣΥΜΒΑΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ
Προσομοιώνουν τον τρόπο επίλυσης ενός προβλήματος	Προσομοιώνουν το ίδιο το πρόβλημα
Χρήση ευριστικών μεθόδων για περιορισμό του χώρου αναζήτησης	Χρήση αλγορίθμων

Ισχύει και για τα συστήματα συλλογιστικής των περιπτώσεων

Πλεονεκτήματα/ Μειονεκτήματα Συστήματος Γνώσης

Σε Σχέση Με Άνθρωπο-Ειδικό

ΑΝΘΡΩΠΟΣ ΕΙΔΙΚΟΣ		ΣΥΣΤΗΜΑ ΓΝΩΣΗΣ	
	Γνώση διαθέσιμη όταν ο ίδιος είναι παρών		Γνώση πάντα διαθέσιμη.
πατα	Δυσκολία μεταφοράς-αποτύπωσης γνώσης	ματα	Ευκολία μεταφοράς-αποτύπωσης γνώσης
	Συναισθηματικές παρορμήσεις		Εργάζεται με συνέπεια
Μειονεκτήματα	Η απόδοσή του επηρεάζεται από εξωγενείς παράγοντες	Πλεονεκτήματα	Εργάζεται οπουδήποτε
013]	Υψηλό κόστος	[780	Χαμηλό κόστος λειτουργίας / Υψηλό κόστος ανάπτυξης
	Υποκειμενικότητα		Αντικειμενικότητα αν η γνώση προέρχεται από πολλούς ειδικούς
ματα	Δημιουργικότητα, Ευρύννοια		Απουσία έμπνευσης, Περιορισμένο πεδίο σκέψης
	Κοινή λογική		Δυσχέρεια στη μεταφύτευση της κοινής λογικής
	Γνώση των ορίων και δυνατοτήτων τους (μετα-γνώση)	ματα	Έλλειψη μετα-γνώσης
Πλεονεκτήματα	Εκφραστική και λειτουργική επεξήγηση του τρόπου σκέψης τους	νεκτή	Μηχανική επεξήγηση του τρόπου λήψης απόφασης
Πλεο	Ο έλεγχος της γνώσης γίνεται υποσυνείδητα	ME10	Πρέπει η γνώση να ελέγχεται για ορθότητα, πληρότητα και συνέπεια
	Αυτονομία στη μάθηση		Πρέπει να προγραμματιστούν για να μαθαίνουν αυτόματα
	Απόκριση σε πραγματικό χρόνο		Δυσκολία απόκρισης σε πραγματικό χρόνο

- Εφαρμογές των Συστημάτων Γνώσης
 ❖ Διάγνωση (diagnosis).
 □ Διάγνωση βλαβών ενός συστήματος βάσει παρατηρήσεων και μετρήσεων.
- * Πρόγνωση (prognosis-prediction).

 Πρόβλεψη πιθανών μελλοντικών επιπτώσεων με βάση δεδομένες καταστάσεις.
- ❖ Εκπαίδευση (instruction).
 - Κατανόηση, αξιολόγηση και διόρθωση απάντησης μαθητών σε εκπαιδευτικά προβλήματα.
- * Παρακολούθηση καταστάσεων (monitoring).
 - Σύγκριση παρατηρούμενων παραμέτρων με αναμενόμενες καταστάσεις.
- * Επιδιόρθωση λαθών (repair-remedy).
 - Ανάπτυξη και εκτέλεση σχεδίων (πλάνων) για τη διαχείριση βλαβών.
- ❖ Ερμηνεία (interpretation).
 - □ Περιγραφή αντικειμένων και καταστάσεων βάσει δεδομένων από παρατηρήσεις.
- ❖ Διαμόρφωση (configuration).
 - □ Ικανοποίηση απαιτήσεων και περιορισμών για τη συναρμολόγηση εξαρτημάτων.
- * Έλεγχος (control).
 - Έλεγχος της συμπεριφοράς ενός συστήματος. Περιλαμβάνει πολλά από τα παραπάνω.

9	
4	

Γνωστά Συστήματα Γνώσης

DENDRAL

- Ταυτοποίηση χημικών ενώσεων μέσω φασματικής ανάλυσης.
- Χρήση ευριστικών κανόνων για περιορισμό του χώρου αναζήτησης.

MYCIN

- Διάγνωση και θεραπεία της μηνιγγίτιδας και της βακτηριαιμίας.
- Χρήση συντελεστή βεβαιότητας για τις λύσεις, λόγω αβεβαιότητας απαντήσεων χρήστη.

PROSPECTOR

- Πρόβλεψη της ακριβούς θέσης ορυκτών κοιτασμάτων αξιοποιώντας γεωλογικά δεδομένα.
- Σρήση σημασιολογικών δικτύων και δικτύων πιθανοτήτων.

***** Internist

- Διάγνωση παθολογικών περιπτώσεων με πολύ μεγάλο αριθμό εναλλακτικών διαγνώσεων.
- Σρήση ευριστικής συλλογιστικής (απαγωγική) για την πιθανότερη διάγνωση.

* XCON

- Διαμόρφωση υπολογιστών DEC, για να ανταποκρίνονται στις προδιαγραφές του πελάτη.
- Αναζήτηση κατάλληλου συνδυασμού και χωρικής διάταξη των εξαρτημάτων, με αποφυγή των ασυμβατοτήτων λειτουργίας και διασύνδεσης μεταξύ τους.

Αρχιτεκτονική Συστημάτων Γνώσης (1/2)

9	
4	

Αρχιτεκτονική Συστημάτων Γνώσης (2/2)

- ❖ Πυρήνας: 🗖 Βάση γνώσης Μηχανισμό εξαγωγής συμπερασμάτων Ο διαχωρισμός της γνώσης από το μηχανισμό χειρισμού προσφέρει διαφάνεια Με αλλαγή της γνώσης, το σύστημα μπορεί να εκτελεί διαφορετικές λειτουργίες Διασύνδεση Βοηθητικά προγράμματα π.χ. γραφικά-στατιστικά πακέτα, βάσεις δεδομένων, κτλ. * Κέλυφος (shell) Συνδυασμός της διασύνδεσης με το μηχανισμό εξαγωγής συμπερασμάτων
 - Προέρχεται από την αφαίρεση της βάσης γνώσης από ένα σύστημα γνώσης
 - Αποτελεί εργαλείο ανάπτυξης συστημάτων γνώσης
 - Κέλυφος εμπείρων συστημάτων (expert system shell)

Βάση Γνώσης

Knowledge Base

- ❖ Περιέχει τη γνώση του συστήματος
- Υπάρχουν διάφορες μορφές αναπαράστασης γνώσης
 - 🗖 π.χ. κανόνες, πλαίσια
- ***** Στατική:
 - Δε μεταβάλλεται κατά τη διάρκεια εκτέλεσης του προγράμματος.
 - 🗖 Αρχικά δεδομένα, διαδικασίες, κανόνες, πλαίσια
 - Περιγραφή του προβλήματος και των γνωσιολογικών διαδικασιών επίλυσής του
- ***** Δυναμική:
 - 🗖 Χώρος εργασίας (working memory).
 - Μερικά συμπεράσματα που δημιουργούνται κατά την εκτέλεση του προγράμματος
 - Τελική λύση του προβλήματος

Μηχανισμός Εξαγωγής Συμπερασμάτων

Inference Engine

- ❖ Χειρισμός της βάσης γνώσης και εξαγωγή συμπερασμάτων
- ❖ Διερμηνέας (interpreter):
 - Χειρισμός υπάρχουσας γνώσης και παραγωγή νέας
 - □ Εφαρμογή της συλλογιστικής (reasoning) και εκτέλεση των κανόνων
- **❖** Χρονοπρογραμματιστής (scheduler):
 - Αποφασίζει πότε και με ποια σειρά θα χρησιμοποιηθούν οι κανόνες
 - □ Επιλύει το πρόβλημα της συγκρούσεως (conflict)
 - Στρατηγικές επίλυσης συγκρούσεων:
 - Ποιοι κανόνες είναι υποψήφιοι για να λύσουν το πρόβλημα
 - Με ποιον τρόπο θα γίνει η επιλογή
 - Ποιος από τους κανόνες αυτούς τελικά θα επιλεγεί
 - Τι θα γίνει με τους υπόλοιπους κανόνες
 - 🗖 Μετα-κανόνες.

Διασύνδεση

- Δημιουργεί φιλικό περιβάλλον για την επικοινωνία του χρήστη με το σύστημα
- ❖ Τελικός χρήστης (end user)
 - Χρησιμοποιεί το σύστημα γνώσης
 - Εύκολη διατύπωση ερωτήσεων με τη βοήθεια γραφικών ευκολιών (π.χ. μενού)
 - Ανάγνωση απαντήσεων με τη βοήθεια γραφικών απεικονίσεων
- Ειδικός (expert) ή/και μηχανικός γνώσης (knowledge engineer)
 - Προσθήκη ή αλλαγή γνώσης
 - □ Έλεγχος συμφωνίας της νέας γνώσης με την παλιά (consistency check)

	9
I	Å

Μηχανισμός Επεξήγησης

- ❖ Ερωτήσεις του χρήστη σχετικά με:
 - Τους σκοπούς των ερωτήσεων
 - Την πορεία του συλλογισμού
- Ο μηχανισμός επεξήγησης αλληλεπιδρά με το μηχανισμό εξαγωγής συμπερασμάτων
 - Η πορεία της συλλογιστικής συνδέεται άμεσα με τον τρόπο εκτέλεσης των κανόνων.
- **Φ** Ερωτήσεις:
 - □ Πώς (how) κατέληξε σε ένα συμπέρασμα
 - Κρατάει πληροφορίες σχετικά με την αποδεικτική διαδικασία
 - Παραθέτει τους κανόνες που ενεργοποιήθηκαν σε κάθε κύκλο λειτουργίας και οδήγησαν στην απόδειξη της τρέχουσας απάντησης
 - □ Γιατί (why) ζητά κάποια πληροφορία από το χρήστη
 - Ποιοι κανόνες έχουν στην υπόθεσή τους την τρέχουσα πληροφορία
 - Επιστρέφει την κατοπινή αλυσίδα συλλογισμών που θα προκαλέσει η ενεργοποίηση αυτών των κανόνων

Αρχιτεκτονική Μαυροπίνακα

Blackboard Architecture

- * Η επίλυση δύσκολων προβλημάτων απαιτεί κατακερματισμό του προβλήματος σε μικρότερα και απλούστερα υποπροβλήματα, τα οποία επιλύονται ανεξάρτητα.
 - Η λύση του συνολικού προβλήματος συνδυάζει τις λύσεις των επιμέρους προβλημάτων.
 - Κάθε επιμέρους πρόβλημα ανατίθεται σε μια πηγή γνώσης.
- * Πηγή γνώσης (knowledge source): ημιαυτόνομο σύστημα γνώσης
 - Ιδιωτική βάση γνώσης
 - 🗖 Διαφορετική αναπαράσταση γνώση και συλλογιστική από τις υπόλοιπες πηγές
- Ο χώρος αναζήτησης διαιρείται (ιεραρχικά) σε σύνολα μερικών λύσεων
 - Κάθε σύνολο αναφέρεται σε διαφορετικό επίπεδο αφαίρεσης
 - ΗΕΑRSAY: ήχοι, φθόγγοι, συλλαβές, λέξεις, ομάδες λέξεων, πραγματικές προτάσεις
- **Μαυροπίνακας**: Κοινόχρηστη περιοχή μνήμης
 - □ Περιέχει τις μερικές λύσεις των επιπέδων αφαίρεσης
- ❖ Κάθε πηγή γνώσης παρατηρεί και τροποποιεί το περιεχόμενο του μαυροπίνακα.
- ❖ Οι πηγές γνώσης δεν μπορούν να επικοινωνούν απευθείας μεταξύ τους.

Μοντέλο Αρχιτεκτονικής Μαυροπίνακα

Ανεξάρτητες πηγές γνώσης

Αρχιτεκτονική Μαυροπίνακα

Λειτουργία Συστήματος

- ❖ Οι πηγές γνώσης λειτουργούν ταυτόχρονα.
 - Παρατηρούν τις μερικές λύσεις που υπάρχουν στο μαυροπίνακα.
 - Δημιουργούν νέες μερικές λύσεις, σε μεγαλύτερο επίπεδο λεπτομέρειας.
 - □ Τροποποιούν ή διαγράφουν μια υπάρχουσα μερική λύση.
 - Νέα δεδομένα αναιρούν τα ήδη υπάρχοντα

❖ Ο χρονοπρογραμματιστής:

- Ελέγχει τα δεδομένα που υπάρχουν στο μαυροπίνακα
- Κρίνει σε ποια πηγή γνώσης πρέπει να επιτραπεί η πρόσβαση
- Διατηρεί ατζέντα με αιτήσεις πηγών γνώσης για πρόσβαση στο μαυροπίνακα
- Σε κάθε κύκλο εκτέλεσης επιτρέπει πρόσβαση σε μία μόνο πηγή γνώσης
- Εάν δεν υπάρχει καμία αίτηση η λειτουργία του συστήματος τερματίζεται

Παράδειγμα Επιπέδων Αφαίρεσης σε ένα Σύστημα Αναγνώρισης Ομιλίας

Παράδειγμα Αναγνώρισης Λέξης

