CHỦ ĐỀ 2. PHƯƠNG TRÌNH MẶT CẦU

A. KIẾN THỰC CƠ BẢN

1/ Định nghĩa:

Cho điểm I cố đinh và một số thực dương R. Tập hợp tất cả những điểm M trong không gian cách I một khoảng R được gọi là mặt cầu tâm *I*, bán kính *R*.

Kí hiệu: $S(I;R) \Rightarrow S(I;R) = \{M \mid IM = R\}$

Dang 1: Phương trình chính tắc

Mặt cầu (S) có tâm I(a;b;c), bán kính R > 0.

(S):
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$

Dạng 2 : Phương trình tổng quát

(S): $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$

⇒ Điều kiện để phương trình (2) là phương trình

 $m \check{a} t \ c \hat{a} u$: $a^2 + b^2 + c^2 - d > 0$

• (S) có tâm I(a;b;c).

• (S) có bán kính: $R = \sqrt{a^2 + b^2 + c^2 - d}$.

3/ Vị trí tương đối giữa mặt cầu và mặt phẳng:

Cho mặt cầu S(I;R) và mặt phẳng (P). Gọi H là hình chiếu vuông góc của I lên $(P) \implies d = IH$ là khoảng cách từ I đến mặt phẳng (P). Khi đó:

+ Nếu d > R : Mặt cầu và mặt phẳng không có điểm chung.

+ Nếu d = R : Mặt phẳng tiếp xúc mặt cầu. Lúc đó: (P) là mặt phẳng tiếp diện của mặt cầu và H là tiếp điểm.

+ Nếu d < R: Mặt phẳng (P)cắt mặt cầu theo thiết diên là đường tròn có tâm I' và bán kính $r = \sqrt{R^2 - IH^2}$

Lưu ý: Khi mặt phẳng (P) đi qua tâm I thì mặt phẳng (P) được gọi là *mặt phẳng kính* và thiết diện lúc đó được gọi là đường tròn lớn.

4/ Vị trí tương đối giữa mặt cầu và đường thẳng:

Cho mặt cầu S(I;R) và đường thẳng Δ . Gọi H là hình chiếu của I lên Δ . Khi đó:

cầu.

IH > R: Δ không cắt mặt | + IH = R: Δ tiếp xúc với mặt cầu. | + IH < R: Δ cắt mặt cầu tại Δ là tiếp tuyến của (S) và H là tiếp điểm.

hai điểm phân biệt.

* Lưu ý: Trong trường hợp Δ cắt (S) tại 2 điểm A, B thì bán kính R của (S) được tính như sau:

+ Xác định:
$$d(I; \Delta) = IH$$
.

+ Lúc đó:
$$R = \sqrt{IH^2 + AH^2} = \sqrt{IH^2 + \left(\frac{AB}{2}\right)^2}$$

ĐƯỜNG TRÒN TRONG KHÔNG GIAN OXYZ

* Đường tròn (C) trong không gian Oxyz, được xem là giao tuyến của (S) và mặt phẳng (α) .

(S):
$$x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$$

$$(\alpha)$$
: $Ax + By + Cz + D = 0$

* Xác định tâm I' và bán kính R' của (C).

+ Tâm
$$I' = d \cap (\alpha)$$
.

Trong đó d là đường thẳng đi qua I và vuông góc với $mp(\alpha)$

+ Bán kính
$$R' = \sqrt{R^2 - (II')^2} = \sqrt{R^2 - [d(I;(\alpha))]^2}$$

+ Mặt phẳng
$$(\alpha)$$
 là tiếp diện của (S) \Leftrightarrow $d(I;(\alpha)) = R$.

* Lưu ý: Tìm $\underline{ti\acute{e}p}$ điểm $M_0(x_0; y_0; z_0)$.

Sử dụng tính chất :
$$\begin{bmatrix} IM_0 \perp d \\ IM_0 \perp (\alpha) \\ \\ \\ \end{bmatrix} \Leftrightarrow \begin{bmatrix} \overline{IM_0} \perp \vec{a}_d \\ \overline{IM_0} \perp \vec{n}_\alpha \\ \end{bmatrix}$$

B. KỸ NĂNG CƠ BẢN

Dang 1:

VIẾT PHƯƠNG TRÌNH MẶT CẦU

Phương pháp:

* Thuật toán 1: Bước 1: Xác định tâm I(a;b;c).

Bước 2: Xác định bán kính R của (S).

Bước 3: Mặt cầu (S) có tâm I(a;b;c) và bán kính R.

(S):
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$

* Thuật toán 2: Gọi phương trình (S): $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$

Phương trình (S) hoàn toàn xác định nếu biết được a, b, c, d. $(a^2 + b^2 + c^2 - d > 0)$

Bài tập 1 : Viết phương trình mặt cầu (S), trong các trường hợp sau:

- a) (S) có tâm I(2;2;-3) và bán kính R=3.
- b) (S) có tâm I(1;2;0) và (S) qua P(2;-2;1).
- c) (S) có đường kính AB với A(1;3;1), B(-2;0;1).

Bài giải:

a) Mặt cầu tâm I(2;2;-3) và bán kính R=3, có phương trình:

(S):
$$(x-2)^2 + (y-2)^2 + (z+3)^2 = 9$$

b) Ta có: $\overrightarrow{IP} = (1; -4; 1) \Rightarrow IP = 3\sqrt{2}$.

Mặt cầu tâm I(1;2;0) và bán kính $R = IP = 3\sqrt{2}$, có phương trình:

(S):
$$(x-1)^2 + (y-2)^2 + z^2 = 18$$

c) Ta có: $\overrightarrow{AB} = (-3, -3, 0) \Rightarrow AB = 3\sqrt{2}$.

Gọi I là trung điểm $AB \Rightarrow I\left(-\frac{1}{2}; \frac{3}{2}; 1\right)$.

Mặt cầu tâm $I\left(-\frac{1}{2};\frac{3}{2};1\right)$ và bán kính $R = \frac{AB}{2} = \frac{3\sqrt{2}}{2}$, có phương trình:

(S):
$$\left(x+\frac{1}{2}\right)^2 + \left(y-\frac{3}{2}\right)^2 + \left(z-1\right)^2 = \frac{9}{2}$$
.

Bài tập 2 : Viết phương trình mặt cầu (S), trong các trường hợp sau:

- a) (S) qua A(3;1;0), B(5;5;0) và tâm I thuộc trục Ox.
- b) (S) có tâm O và tiếp xúc mặt phẳng (α) : 16x-15y-12z+75=0.
- c) (S) có tâm I(-1;2;0) và có một tiếp tuyến là đường thẳng $\Delta : \frac{x+1}{-1} = \frac{y-1}{1} = \frac{z}{-3}$.

Bài giải:

a) Gọi $I(a;0;0) \in Ox$. Ta có : $\overrightarrow{IA} = (3-a;1;0)$, $\overrightarrow{IB} = (5-a;5;0)$

Do (S) đi qua A,
$$B \Leftrightarrow IA = IB \Leftrightarrow \sqrt{(3-a)^2 + 1} = \sqrt{(5-a)^2 + 25} \Leftrightarrow 4a = 40 \Leftrightarrow a = 10$$

$$\Rightarrow I(10;0;0)$$
 và $IA = 5\sqrt{2}$.

Mặt cầu tâm I(10;0;0) và bán kính $R=5\sqrt{2}$, có phương trình $(S): (x-10)^2+y^2+z^2=50$

b) Do (S) tiếp xúc với
$$(\alpha) \Leftrightarrow d(O,(\alpha)) = R \Leftrightarrow R = \frac{75}{25} = 3$$
.

Mặt cầu tâm O(0,0,0) và bán kính R=3, có phương trình (S): $x^2+y^2+z^2=9$

c) Chọn
$$A(-1;1;0) \in \Delta \Rightarrow \overrightarrow{IA} = (0;-1;0)$$
.

Đường thẳng Δ có một vecto chỉ phương là $\vec{u}_{\Delta} = (-1;1;-3)$. Ta có: $\left[\overrightarrow{IA}, \vec{u}_{\Delta}\right] = (3;0;-1)$.

Do (S) tiếp xúc với
$$\Delta \Leftrightarrow d(I, \Delta) = R \Leftrightarrow R = \frac{\left| \left[\overrightarrow{IA}, \overrightarrow{u}_{\Delta} \right] \right|}{\left| \overrightarrow{u}_{\Delta} \right|} = \frac{\sqrt{10}}{11}$$
.

Mặt cầu tâm I(-1;2;0) và bán kính $R = \frac{\sqrt{10}}{11}$, có phương trình (S): $(x+1)^2 + (y-2)^2 + z^2 = \frac{10}{121}$.

Bài tập 3: Viết phương trình mặt cầu (S) biết:

- a) (S) qua bốn điểm A(1;2;-4), B(1;-3;1), C(2;2;3), D(1;0;4).
- b) (S) qua A(0;8;0), B(4;6;2), C(0;12;4) và có tâm I thuộc mặt phẳng (Oyz).

Bài giải:

a) Cách 1: Gọi I(x; y; z) là tâm mặt cầu (S) cần tìm.

Theo giả thiết:
$$\begin{cases} IA = IB \\ IA = IC \Leftrightarrow \begin{cases} IA^2 = IB^2 \\ IA^2 = IC^2 \Leftrightarrow \begin{cases} -y + z = -1 \\ x + 7z = -2 \Leftrightarrow \end{cases} \begin{cases} x = -2 \\ y = 1 \end{cases}.$$

$$z = 0$$

Do đó:
$$I(-2;1;0)$$
 và $R = IA = \sqrt{26}$. Vậy (S) : $(x+2)^2 + (y-1)^2 + z^2 = 26$.

Cách 2: Gọi phương trình mặt cầu (S): $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$, $(a^2 + b^2 + c^2 - d > 0)$.

Do
$$A(1;2;-4) \in (S) \Leftrightarrow -2a-4b+8c+d=-21$$
 (1)

Turong tur:
$$B(1; -3; 1) \in (S) \Leftrightarrow -2a + 6b - 2c + d = -11$$
 (2)

$$C(2,2,3) \in (S) \Leftrightarrow -4a-4b-6c+d = -17$$
 (3)

$$D(1;0;4) \in (S) \Leftrightarrow -2a-8c+d=-17$$
 (4)

Giải hệ (1), (2), (3), (4) ta có a, b, c, d, suy ra phương trình mặt cầu (S):

$$(x+2)^2 + (y-1)^2 + z^2 = 26$$
.

b) Do tâm I của mặt cầu nằm trên mặt phẳng $(Oyz) \Rightarrow I(0;b;c)$.

Ta có:
$$IA = IB = IC \Leftrightarrow \begin{cases} IA^2 = IB^2 \\ IA^2 = IC^2 \end{cases} \Leftrightarrow \begin{cases} b = 7 \\ c = 5 \end{cases}$$

Vậy
$$I(0;7;5)$$
 và $R = \sqrt{26}$. Vậy (S): $x^2 + (y-7)^2 + (z-5)^2 = 26$.

Bài tập 4: Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng Δ : $\begin{cases} x = t \\ y = -1 \text{ và (S) tiếp xúc với hai} \\ z = -t \end{cases}$

mặt phẳng
$$(\alpha)$$
: $x+2y+2z+3=0$ và (β) : $x+2y+2z+7=0$.

Bài giải:

Gọi $I(t;-1;-t) \in \Delta$ là tâm mặt cầu (S) cần tìm.

Theo giả thiết:
$$d(I,(\alpha)) = d(I,(\beta)) \Leftrightarrow \frac{|I-t|}{3} = \frac{|5-t|}{3} \Leftrightarrow \begin{bmatrix} 1-t=5-t \\ 1-t=t-5 \end{bmatrix} \Rightarrow t=3$$
.

Suy ra:
$$I(3;-1;-3)$$
 và $R = d(I,(\alpha)) = \frac{2}{3}$. Vậy (S) : $(x-3)^2 + (y+1)^2 + (z+3)^2 = \frac{4}{9}$.

Bài tập 5: Lập phương trình mặt cầu (S) qua 2 điểm A(2;6;0), B(4;0;8) và có tâm thuộc d: $\frac{x-1}{-1} = \frac{y}{2} = \frac{z+5}{1}.$

Bài giải:

Ta có
$$d:$$
 $\begin{cases} x=1-t \\ y=2t \end{cases}$. Gọi $I(1-t;2t;-5+t) \in d$ là tâm của mặt cầu (S) cần tìm. $z=-5+t$

Ta có:
$$\overrightarrow{IA} = (1+t; 6-2t; 5-t), \overrightarrow{IB} = (3+t; -2t; 13-t).$$

Theo giả thiết, do (S) đi qua A, $B \Leftrightarrow AI = BI$

$$\Leftrightarrow \sqrt{(1+t)^2 + (6-2t)^2 + (5-t)^2} = \sqrt{(3+t)^2 + 4t^2 + (13-t)^2}$$

$$\Leftrightarrow$$
 62 - 32t = 178 - 20t \Leftrightarrow 12t = -116 \Leftrightarrow t = $-\frac{29}{3}$

$$\Rightarrow I\left(\frac{32}{3}; -\frac{58}{3}; -\frac{44}{3}\right) \text{ và } R = IA = 2\sqrt{233} \text{ . Vậy (S): } \left(x - \frac{32}{3}\right)^2 + \left(y + \frac{58}{3}\right)^2 + \left(z + \frac{44}{3}\right)^2 = 932 \text{ .}$$

Bài tập 6: Viết phương trình mặt cầu (S) có tâm I(2;3;-1) và cắt đường thẳng $\Delta: \frac{x+1}{1} = \frac{y-1}{-4} = \frac{z}{1}$ tại hai điểm A, B với AB = 16.

Bài giải:

Chọn $M(-1;1;0) \in \Delta \Rightarrow \overrightarrow{IM} = (-3;-2;1)$. Đường thẳng Δ có một vecto chỉ phương là $\vec{u}_{\Delta} = (1;-4;1)$.

Ta có:
$$\left[\overrightarrow{IM}, \overrightarrow{u}_{\Delta}\right] = (2; 4; 14) \Rightarrow d(I, \Delta) = \frac{\left[\left[\overrightarrow{IM}, \overrightarrow{u}_{\Delta}\right]\right]}{\left|\overrightarrow{u}_{\Delta}\right|} = 2\sqrt{3}$$
.

Gọi R là bán kính mặt cầu (S). Theo giả thiết : $R = \sqrt{\left[d(I, \Delta)\right]^2 + \frac{AB^2}{4}} = 2\sqrt{19}$.

Vậy (S):
$$(x-2)^2 + (y-3)^2 + (z+1)^2 = 76$$
.

Bài tập 7: Cho hai mặt phẳng (P): 5x-4y+z-6=0, (Q): 2x-y+z+7=0 và đường thẳng $\Delta: \frac{x-1}{7} = \frac{y}{3} = \frac{z-1}{-2}$. Viết phương trình mặt cầu (S) có tâm I là giao điểm của (P) và Δ sao cho (Q) cắt (S) theo một hình tròn có diện tích là 20π .

Bài giải:

Ta có
$$\Delta$$
:
$$\begin{cases} x = 1 + 7t \\ y = 3t \\ z = 1 - 2t \end{cases}$$
. Tọa độ I là nghiệm của hệ phương trình:
$$\begin{cases} x = 1 + 7t \\ y = 3t \\ z = 1 - 2t \end{cases}$$
 (1)
$$z = 1 - 2t \\ (3)$$

Thay (1), (2), (3) vào (4) ta có:
$$5(1+7t)-4(3t)+(1-2t)-6=0 \Leftrightarrow t=0 \Rightarrow I(1;0;1)$$
.

Ta có :
$$d(I,(Q)) = \frac{5\sqrt{6}}{3}$$
.

Gọi r là bán kính đường tròn giao tuyến của (S) và mặt phẳng (Q). Ta có: $20\pi = \pi r^2 \Leftrightarrow r = 2\sqrt{5}$. R là bán kính mặt cầu (S) cần tìm.

Theo giả thiết:
$$R = \sqrt{\left[d(I,(Q))\right]^2 + r^2} = \frac{\sqrt{330}}{3}$$
. Vậy $(S) : (x-1)^2 + y^2 + (z-1)^2 = \frac{110}{3}$.

Bài tập 8: Cho mặt phẳng
$$(P): 2x-y-2z-2=0$$
 và đường thẳng $d: \begin{cases} x=-t \\ y=2t-1 \\ z=t+2 \end{cases}$

Viết phương trình mặt cầu (S) có tâm I thuộc d và I cách (P) một khoảng bằng 2 và (S) cắt (P) theo giao tuyến là đường tròn có bán kính bằng 3.

Bài giải:

Gọi $I(-t; 2t-1; t+2) \in d$: là tâm của mặt cầu (S) và R là bán kính của (S).

Theo giả thiết :
$$R = \sqrt{\left[d(I;(P))\right]^2 + r^2} = \sqrt{4+9} = \sqrt{13}$$
.

Mặt khác:
$$d(I;(P)) = 2 \Leftrightarrow \frac{|-2t - 2t + 1 - 2t - 4 - 2|}{\sqrt{4 + 1 + 4}} = 2 \Leftrightarrow |6t + 5| = 6 \Leftrightarrow \begin{bmatrix} t = \frac{1}{6} \\ t = -\frac{11}{6} \end{bmatrix}$$

$$* Với \ t = \frac{1}{6}: Tâm I_1 \left(-\frac{1}{6}; -\frac{2}{3}; \frac{13}{6} \right), \text{ suy ra } (S_1): \left(x + \frac{1}{6} \right)^2 + \left(y + \frac{2}{3} \right)^2 + \left(z - \frac{13}{6} \right)^2 = 13.$$

$$* Với \ t = -\frac{11}{6}: Tâm I_2 \left(\frac{11}{6}; -\frac{2}{3}; \frac{1}{6} \right), \text{ suy ra } (S_2): \left(x - \frac{11}{6} \right)^2 + \left(y + \frac{2}{3} \right)^2 + \left(z - \frac{1}{6} \right)^2 = 13.$$

Bài tập 9: Cho điểm I(1;0;3) và đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-1}{2}$. Viết phương trình mặt cầu (S) tâm I và cắt d tại hai điểm A, B sao cho ΔIAB vuông tại I.

Bài giải :

Đường thẳng d có một vecto chỉ phương $\vec{u} = (2,1,2)$ và $P(1,-1,1) \in d$.

Ta có:
$$\overrightarrow{IP} = (0; -1; -2) \Rightarrow \left[\overrightarrow{u}, \overrightarrow{IP}\right] = (0; -4; -2)$$
. Suy ra: $d(I; d) = \frac{\left[\overrightarrow{u}, \overrightarrow{IP}\right]}{|\overrightarrow{u}|} = \frac{\sqrt{20}}{3}$.

Gọi R là bán kính của (S). Theo giả thiết, ΔIAB vuông tại I

$$\Rightarrow \frac{1}{IH^2} = \frac{1}{IA^2} + \frac{1}{IB^2} = \frac{2}{R^2} \Leftrightarrow R = \sqrt{2}IH = \sqrt{2}d(I,d) = \frac{\sqrt{40}}{3}$$

Vậy (S):
$$(x-1)^2 + y^2 + (z-3)^2 = \frac{40}{9}$$
.

Bài tập 10: (**Khối A- 2011**) Cho mặt cầu (S): $x^2 + y^2 + z^2 - 4x - 4y - 4z = 0$ và điểm A(4;4;0). Viết phương trình mặt phẳng (OAB), biết điểm B thuộc (S) và tam giác OAB đều.

Bài giải :

(S) có tâm I(2;2;2), bán kính $R=2\sqrt{3}$. Nhận xét: điểm O và A cùng thuộc (S).

Tam giác OAB đều, có bán kính đường tròn ngoại tiếp $R' = \frac{OA}{\sqrt{3}} = \frac{4\sqrt{2}}{\sqrt{3}}$.

Khoảng cách :
$$d(I;(P)) = \sqrt{R^2 - (R')^2} = \frac{2}{\sqrt{3}}$$
.

Mặt phẳng (P) đi qua O có phương trình dạng : ax + by + cz = 0 $\left(a^2 + b^2 + c^2 > 0\right)$ (*)

Do (P) di qua A, suy ra: $4a + 4b = 0 \Leftrightarrow b = -a$.

Lúc đó:
$$d(I;(P)) = \frac{|2(a+b+c)|}{\sqrt{a^2+b^2+c^2}} = \frac{|2c|}{\sqrt{2a^2+c^2}} \Rightarrow \frac{|2c|}{\sqrt{2a^2+c^2}} = \frac{2}{\sqrt{3}}$$

$$\Rightarrow 2a^2 + c^2 = 3c^2 \Rightarrow \begin{bmatrix} c = a \\ c = -1 \end{bmatrix}$$
. Theo (*), suy ra $(P): x - y + z = 0$ hoặc $x - y - z = 0$.

Chú ý: Kỹ năng xác định tâm và bán kính của đường tròn trong không gian.

Cho mặt cầu (S) tâm I bán kính R. Mặt phẳng (P) cắt (S) theo một đường tròn (C).

<u>Bước 1:</u> Lập phương trình đường thẳng d qua I và vuông góc với mặt phẳng (P).

Bước 2: Tâm I' của đường tròn (C) là giao điểm của d và mặt phẳng (P).

Burớc 3: Gọi
$$r$$
 là bán kính của (C) :
$$r = \sqrt{R^2 - \left[d\left(I;\left(P\right)\right)\right]^2}$$

Bài tập 11: Chứng minh rằng: Mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 3 = 0$ cắt mặt phẳng (P): x - 2 = 0 theo giao tuyến là một đường tròn (C). Xác định tâm và bán kính của (C).

Bài giải:

* Mặt cầu (S) có tâm I(1;0;0) và bán kính R=2.

Ta có : $d(I,(P)) = 1 < 2 = R \Leftrightarrow mặt phẳng (P) cắt (S) theo giao tuyến là 1 đường tròn. (đ.p.c.m)$

* Đường thẳng d qua I(1;0;0) và vuông góc với (P) nên nhận $\vec{n}_P = (1;0;0)$ làm 1 vecto chỉ phương, có

phương trình
$$d:\begin{cases} x=1+t\\ y=0\\ z=0 \end{cases}$$
.

+ Tọa độ tâm
$$I'$$
 đường tròn là nghiệm của hệ :
$$\begin{cases} x = 1 + t \\ y = 0 \\ z = 0 \\ x - 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 0 \Rightarrow I'(2;0;0). \end{cases}$$

+ Ta có:
$$d(I,(P)) = 1$$
. Gọi r là bán kính của (C) , ta có : $r = \sqrt{R^2 - [d(I,(P))]^2} = \sqrt{3}$.

<u>Dang 2 :</u> SỰ TƯƠNG GIAO VÀ SỰ TIẾP XÚC

Phương pháp: * Các điều kiện tiếp xúc:

- + Đường thẳng Δ là <u>tiếp tuyến</u> của $(S) \Leftrightarrow d(I; \Delta) = R$.
- + Mặt phẳng (α) là <u>tiếp diện</u> của (S) \Leftrightarrow $d(I;(\alpha)) = R$.
 - * Lưu ý các dạng toán liên quan như tìm tiếp điểm, tương giao.

Bài tập 1: Cho đường thẳng
$$(\Delta)$$
: $\frac{x}{2} = \frac{y-1}{1} = \frac{z-2}{-1}$ và và mặt cầu (S) : $x^2 + y^2 + z^2 - 2x + 4z + 1 = 0$. Số điểm chung của (Δ) và (S) là:

A. 0.B.1.C.2.D.3.

Bài giải:

Đường thẳng (Δ) đi qua M(0;1;2) và có một vecto chỉ phương là $\vec{u} = (2;1;-1)$

Mặt cầu (S) có tâm I(1;0;-2) và bán kính R=2.

Ta có
$$\overrightarrow{MI} = (1; -1; -4) \text{ và } \left[\overrightarrow{u}, \overrightarrow{MI}\right] = (-5; 7; -3) \Rightarrow d(I, \Delta) = \frac{\left|\left[\overrightarrow{u}, \overrightarrow{MI}\right]\right|}{\left|\overrightarrow{u}\right|} = \frac{\sqrt{498}}{6}$$

Vì $d(I, \Delta) > R$ nên (Δ) không cắt mặt cầu (S).

Lựa chọn đáp án A.

Bài tập 2: Cho điểm I(1,-2,3). Phương trình mặt cầu tâm I và tiếp xúc với trục Oy là:

A.
$$(x-1)^2 + (y+2)^2 (z-3)^2 = \sqrt{10}$$
.
B. $(x-1)^2 + (y+2)^2 (z-3)^2 = 10$.

B.
$$(x-1)^2 + (y+2)^2 (z-3)^2 = 10$$

A.
$$(x-1) + (y+2) (z-3) = \sqrt{10}$$
.

B. $(x-1) + (y+2) (z-3) = 10$.

C. $(x+1)^2 + (y-2)^2 (z+3)^2 = 10$.

D. $(x-1)^2 + (y+2)^2 (z-3)^2 = 9$.

$$D_{\bullet}(x-1)^{2} + (y+2)^{2}(z-3)^{2} = 9.$$

Bài giải:

Gọi M là hình chiếu của I(1,-2,3) lên Oy, ta có : M(0,-2,0).

$$\overrightarrow{IM} = (-1,0,-3) \Rightarrow R = d(I,Oy) = IM = \sqrt{10}$$
 là bán kính mặt cầu cần tìm.

Phương trình mặt cầu là : $(x-1)^2 + (y+2)^2 (z-3)^2 = 10$.

Lựa chọn đáp án B.

Bài tập 3: Cho điểm I(1;-2;3) và đường thẳng d có phương trình $\frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{-1}$. Phương trình mặt cầu tâm I, tiếp xúc với d là:

A.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 50$$

A.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 50$$
. B. $(x-1)^2 + (y+2)^2 + (z-3)^2 = 5\sqrt{2}$.

C.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 5\sqrt{2}$$
. D. $(x-1)^2 + (y+2)^2 + (z-3)^2 = 50$.

$$\mathbf{D}_{\bullet}(x-1)^{2} + (y+2)^{2} + (z-3)^{2} = 50.$$

Bài giải:

Đường thẳng
$$(d)$$
 đi qua $I(-1;2;-3)$ và có VTCP $\vec{u} = (2;1;-1) \Rightarrow d(A,d) = \frac{\left| \vec{u}, \overrightarrow{AM} \right|}{\left| \vec{u} \right|} = 5\sqrt{2}$

Phương trình mặt cầu là : $(x-1)^2 + (y+2)^2 (z-3)^2 = 50$.

Lựa chọn đáp án **D**.

Bài tập 4: Mặt cầu (S) tâm I(2;3;-1) cắt đường thẳng $d:\frac{x-11}{2}=\frac{y}{1}=\frac{z+25}{-2}$ tại 2 điểm A, B sao cho

AB = 16 có phương trình là:

A.
$$(x-2)^2 + (y-3)^2 + (z+1)^2 = 17$$

A.
$$(x-2)^2 + (y-3)^2 + (z+1)^2 = 17$$
. B. $(x+2)^2 + (y+3)^2 + (z-1)^2 = 289$.

C.
$$(x-2)^2 + (y-3)^2 + (z+1)^2 = 289$$

C.
$$(x-2)^2 + (y-3)^2 + (z+1)^2 = 289$$
. D. $(x-2)^2 + (y-3)^2 + (z+1)^2 = 280$.

Bài giải:

Đường thẳng (d) đi qua M(11; 0; -25) và có vecto chỉ phương $\vec{u} = (2; 1; -2)$.

Gọi H là hình chiếu của I trên (d). Ta có:

$$IH = d(I, AB) = \frac{\left| \left[\overrightarrow{u}, \overrightarrow{MI} \right] \right|}{\left| \overrightarrow{u} \right|} = 15 \implies R = \sqrt{IH^2 + \left(\frac{AB}{2} \right)^2} = 17.$$

Lựa chọn đáp án C.

Bài tập 5: Cho đường thẳng $d: \frac{x+5}{2} = \frac{y-7}{-2} = \frac{z}{1}$ và điểm I(4;1;6). Đường thẳng d cắt mặt cầu (S) có

tâm I, tại hai điểm A, B sao cho AB = 6. Phương trình của mặt cầu (S) là:

A.
$$(x-4)^2 + (y-1)^2 + (z-6)^2 = 18$$
.
B. $(x+4)^2 + (y+1)^2 + (z+6)^2 = 18$.
C. $(x-4)^2 + (y-1)^2 + (z-6)^2 = 9$.
D. $(x-4)^2 + (y-1)^2 + (z-6)^2 = 16$.

B.
$$(x+4)^2 + (y+1)^2 + (z+6)^2 = 18$$
.

C.
$$(x-4)^2 + (y-1)^2 + (z-6)^2 = 9$$

$$D_{\bullet}(x-4)^{2} + (y-1)^{2} + (z-6)^{2} = 16$$

Bài giải :

Đường thẳng d đi qua M(-5,7,0) và có vecto chỉ phương $\vec{u} = (2, -2, 1)$. Gọi H là hình chiếu của I trên (d). Ta có:

$$IH = d(I, AB) = \frac{\left[\overrightarrow{u}, \overrightarrow{MI}\right]}{\left|\overrightarrow{u}\right|} = 3 \Rightarrow R = \sqrt{IH^2 + \left(\frac{AB}{2}\right)^2} = 18$$

Vậy
$$(S)$$
: $(x-4)^2 + (y-1)^2 + (z-6)^2 = 18$.

Lựa chọn đáp án **A**.

Bài tập 8: Cho điểm I(1;0;0) và đường thẳng $d: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{1}$. Phương trình mặt cầu (S) có tâm Ivà cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

A.
$$(x+1)^2 + y^2 + z^2 = \frac{20}{3}$$
.

B.
$$(x-1)^2 + y^2 + z^2 = \frac{20}{3}$$
.

C.
$$(x-1)^2 + y^2 + z^2 = \frac{16}{4}$$
.

D.
$$(x-1)^2 + y^2 + z^2 = \frac{5}{3}$$

Bài giải:

Đường thẳng (Δ) đi qua M = (1,1,-2) và có vecto chỉ

phương
$$\vec{u} = (1; 2; 1)$$

Ta có
$$\overrightarrow{MI} = (0; -1; 2)$$
 và $\left[\overrightarrow{u}, \overrightarrow{MI}\right] = (5; -2; -1)$

Gọi H là hình chiếu của I trên (d). Ta có:

$$IH = d(I, AB) = \frac{\left| \vec{u}, \overrightarrow{MI} \right|}{\left| \vec{u} \right|} = \sqrt{5}.$$

Xét tam giác *IAB*, có
$$IH = R \cdot \frac{\sqrt{3}}{2} \Rightarrow R = \frac{2IH}{\sqrt{3}} = \frac{2\sqrt{15}}{3}$$

Vậy phương trình mặt cầu là: $(x+1)^2 + y^2 + z^2 = \frac{20}{3}$.

Lựa chọn đáp án A.

Bài tập 9: Cho mặt cầu (S): $x^2 + y^2 + z^2 - 4x - 2y - 6z + 5 = 0$. Viết phương trình tiếp tuyến của mặt cầu (S) qua A(0;0;5) biết:

- a) Tiếp tuyến có một vecto chỉ phương $\vec{u} = (1, 2, 2)$.
- b) Vuông góc với mặt phẳng (P): 3x-2y+2z+3=0.

Bài giải:

- a) Đường thẳng d qua A(0;0;5) và có một vecto chỉ phương $\vec{u} = (1;2;2)$, có phương trình d: $\begin{cases} x = t \\ y = 2t \end{cases}$
- b) Mặt phẳng (P) có một vectơ pháp tuyến là $\vec{n}_P = (3; -2; 2)$.

Đường thẳng d qua A(0;0;5) và vuông góc với mặt phẳng (P) nên có một vecto chỉ phương

$$\vec{n}_P = (3; -2; 2)$$
, có phương trình d :
$$\begin{cases} x = 3t \\ y = -2t \\ z = 2t + 5 \end{cases}$$

Bài tập 10: Cho (S):
$$x^2 + y^2 + z^2 - 6x - 6y + 2z + 3 = 0$$
 và hai đường thẳng Δ_1 : $\frac{x+1}{3} = \frac{y+1}{2} = \frac{z-1}{2}$;

 $\Delta_2: \frac{x}{2} = \frac{y-1}{2} = \frac{z-2}{1}$. Viết phương trình mặt phẳng (P) song song với Δ_1 và Δ_2 đồng thời tiếp xúc với (S).

Bài giải:

Mặt cầu (S) có tâm I(3;3;-1), R = 4.

Ta có: Δ_1 có một vecto chỉ phương là $\vec{u}_1 = (3, 2, 2)$.

 Δ_2 có một vectơ chỉ phương là $\vec{u}_2 = (2;2;1)$.

Gọi \vec{n} là một vectơ pháp của mặt phẳng (P).

Do:
$$\begin{cases} (P)//\Delta_1 \\ (P)//\Delta_2 \end{cases} \Leftrightarrow \begin{cases} \vec{n} \perp \vec{u}_1 \\ \vec{n} \perp \vec{u}_2 \end{cases} \Rightarrow \text{chọn } \vec{n} = [\vec{u}_1, \vec{u}_2] = (-2; -1; 2)$$

Lúc đó, mặt phẳng (P) có dạng : -2x - y + 2z + m = 0

Để mặt phẳng (P) tiếp xúc với $(S) \Leftrightarrow d(I;(P)) = R \Leftrightarrow \frac{|5+m|}{3} = 4$

$$\Leftrightarrow$$
 $|5+m|=12 \Leftrightarrow \begin{bmatrix} m=7\\ m=-17 \end{bmatrix}$.

<u>Kết luận:</u> Vậy tồn tại 2 mặt phẳng là : -2x-y+2z+7=0, -2x-y+2z-17=0.

Bài tập 11: Viết phương trình tiếp diện của mặt cầu (S): $x^2 + y^2 + z^2 + 2x - 4y - 6z + 5 = 0$, biết tiếp diện:

- a) qua M(1;1;1).
- b) song song với mặt phẳng (P): x+2y-2z-1=0.
- b) vuông góc với đường thẳng $d: \frac{x-3}{2} = \frac{y+1}{1} = \frac{z-2}{-2}$.

Bài giải:

Mặt cầu (S) có tâm I(-1;2;3), bán kính R=3.

a) Để ý rằng, $M \in (S)$. Tiếp diện tại M có một vecto pháp tuyến là $\overrightarrow{IM} = (2; -1; -2)$, có phương trình :

$$(\alpha)$$
: $2(x-1)-(y-1)-2(z-1)=0 \Leftrightarrow 2x-y-2z+1=0$.

b) Do mặt phẳng $(\alpha)//(P)$ nên (α) có dạng : x+2y-2z+m=0.

Do
$$(\alpha)$$
 tiếp xúc với $(S) \Leftrightarrow d(I,(\alpha)) = R \Leftrightarrow \frac{|m-3|}{3} = 3 \Leftrightarrow |m-3| = 9 \Leftrightarrow \begin{bmatrix} m = -6 \\ m = 12 \end{bmatrix}$

- * Với m = -6 suy ra mặt phẳng có phương trình : x + 2y 2z 6 = 0.
- * Với m = 12 suy ra mặt phẳng có phương trình : x + 2y 2z + 12 = 0.
- c) Đường thẳng d có một vecto chỉ phương là $\vec{u}_d = (2;1;-2)$.

Do mặt phẳng $(\alpha) \perp d$ nên (α) nhận $\vec{u}_d = (2;1;-2)$ làm một vecto pháp tuyến.

Suy ra mặt phẳng (α) có dạng : 2x + y - 2z + m = 0.

- Do (α) tiếp xúc với $(S) \Leftrightarrow d(I,(\alpha)) = R \Leftrightarrow \frac{|m-6|}{3} = 3 \Leftrightarrow |m-6| = 9 \Leftrightarrow \begin{bmatrix} m=-3 \\ m=15 \end{bmatrix}$.
 - * Với m = -3 suy ra mặt phẳng có phương trình : x + 2y 2z 3 = 0.
 - * Với m = 15 suy ra mặt phẳng có phương trình : x + 2y 2z + 15 = 0.

C. BÀI TÂP TRẮC NGHIỆM

Phương trình nào sau đây là phương trình mặt cầu?

A.
$$x^2 + y^2 + z^2 - 2x = 0$$
.

B.
$$x^2 + y^2 - z^2 + 2x - y + 1 = 0$$
.

C.
$$2x^2 + 2y^2 = (x+y)^2 - z^2 + 2x - 1$$
.

D.
$$(x+y)^2 = 2xy - z^2 - 1$$
.

Phương trình nào sau đây **không phải** là phương trình mặt cầu? Câu 2.

A.
$$x^2 + v^2 + z^2 - 2x = 0$$
.

B.
$$2x^2 + 2y^2 = (x+y)^2 - z^2 + 2x - 1$$
.

C.
$$x^2 + y^2 + z^2 + 2x - 2y + 1 = 0$$
.

D.
$$(x+y)^2 = 2xy - z^2 + 1 - 4x$$
.

Câu 3. Phương trình nào sau đây **không phải** là phương trình mặt cầu?

A.
$$(x-1)^2 + (2y-1)^2 + (z-1)^2 = 6$$
.

B.
$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 6$$
.

C.
$$(2x-1)^2 + (2y-1)^2 + (2z+1)^2 = 6$$
. D. $(x+y)^2 = 2xy - z^2 + 3 - 6x$.

D.
$$(x+y)^2 = 2xy - z^2 + 3 - 6x$$

Cho các phương trình sau: $(x-1)^2 + y^2 + z^2 = 1$; $x^2 + (2y-1)^2 + z^2 = 4$; Câu 4.

$$x^{2} + y^{2} + z^{2} + 1 = 0$$
; $(2x+1)^{2} + (2y-1)^{2} + 4z^{2} = 16$.

Số phương trình là phương trình mặt cầu là:

Mặt cầu $(S): (x-1)^2 + (y+2)^2 + z^2 = 9$ có tâm là: Câu 5.

A.
$$I(1;-2;0)$$
. **B.** $I(-1;2;0)$. **C.** $I(1;2;0)$.

B.
$$I(-1;2;0)$$

C.
$$I(1;2;0)$$
.

D.
$$I(-1;-2;0)$$
.

Mặt cầu (S): $x^2 + y^2 + z^2 - 8x + 2y + 1 = 0$ có tâm là: Câu 6.

A.
$$I(8;-2;0)$$

B.
$$I(-4;1;0)$$

C.
$$I(-8;2;0)$$
.

A.
$$I(8;-2;0)$$
. **B.** $I(-4;1;0)$. **C.** $I(-8;2;0)$. **D.** $I(4;-1;0)$.

Mặt cầu (S): $x^2 + y^2 + z^2 - 4x + 1 = 0$ có tọa độ tâm và bán kính R là: Câu 7.

A.
$$I(2;0;0), R = \sqrt{3}.$$

B.
$$I(2;0;0), R=3.$$

C.
$$I(0;2;0), R = \sqrt{3}.$$

D.
$$I(-2;0;0), R = \sqrt{3}$$
.

Phương trình mặt cầu có tâm I(-1;2;-3), bán kính R=3 là: Câu 8.

A.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 9$$

A.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 9$$
. **B.** $(x+1)^2 + (y-2)^2 + (z+3)^2 = 3$.

C.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 9$$
.

D.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 9$$
.

Mặt cầu $(S): (x+y)^2 = 2xy - z^2 + 1 - 4x$ có tâm là: Câu 9.

A.
$$I(-2;0;0)$$
.

B.
$$I(4;0;0)$$
.

C.
$$I(-4;0;0)$$
.

D.
$$I(2;0;0)$$
.

- **Câu 10.** Đường kính của mặt cầu (S): $x^2 + y^2 + (z-1)^2 = 4$ bằng:
 - **A.** 4.

B. 2.

- **C.** 8.
- **D.** 16.
- **Câu 11.** Mặt cầu có phương trình nào sau đây có tâm là I(-1;1;0) ?

A.
$$x^2 + y^2 + z^2 - 2x + 2y = 0$$
.

B.
$$x^2 + y^2 + z^2 + 2x - 2y + 1 = 0$$
.

C.
$$2x^2 + 2y^2 = (x+y)^2 - z^2 + 2x - 1 - 2xy$$
. D. $(x+y)^2 = 2xy - z^2 + 1 - 4x$.

D.
$$(x+y)^2 = 2xy - z^2 + 1 - 4x$$

Câu 12. Mặt cầu (S): $3x^2 + 3y^2 + 3z^2 - 6x + 12y + 2 = 0$ có bán kính bằng:

	A. $\frac{\sqrt{7}}{3}$.	B. $\frac{2\sqrt{7}}{3}$.	C. $\frac{\sqrt{21}}{3}$.	D. $\sqrt{\frac{13}{3}}$.									
Câu 13.	Gọi I là tâm mặt c	$\hat{a}u(S): x^2 + y^2 + (z-2)$	$\Big ^2 = 4$. Độ dài $\Big \overrightarrow{OI} \Big $ (O	là gốc tọa độ) bằng:									
Câu 14.		B. 4. cầu có bán kính bằng 3											
	A. $x^2 + y^2 + z^2 - 6$ C. $x^2 + y^2 + z^2 = 9$		ř	B. $x^2 + y^2 + z^2 - 6y = 0$. D. $x^2 + y^2 + z^2 - 6x = 0$.									
Câu 15.	~	$y^2 + z^2 - 2x + 10y + 3z = 0$	•										
		B. (3;-2;-4).											
Câu 16.	,	;2;-3) và đi qua điểm	,	,									
	•	,	,										
	, , ,	, , ,	, , ,	, , ,									
Câu 17.	C. $(x-1) + (y+2) + (z-3) = 22$. Cho hai điểm $A(1;0;-3)$ và $B(3;2;1)$. Phương trình mặt cầu đường kính AB là:												
		, , , ,	B. $x^2 + y^2 + z^2$										
	C. $x^2 + y^2 + z^2 - 2$	x - y + z - 6 = 0.	D. $x^2 + y^2 + z^2$	-4x - 2y + 2z + 6 = 0.									
Câu 18.	Nếu mặt cầu (S) đi qua bốn điểm $M(2;2;2)$, $N(4;0;2)$, $P(4;2;0)$ và $Q(4;2;2)$ thì tâm I của (S) có toạ độ là:												
	A. $(-1;-1;0)$.	$(x+1)^2 + (y-2)^2 + (z+3)^2 = 22$. B. $(x+1)^2$ $(x-1)^2 + (y+2)^2 + (z-3)^2 = 22$. D. $(x-1)^2$ no hai điểm $A(1;0;-3)$ và $B(3;2;1)$. Phương trình mặt cả $x^2 + y^2 + z^2 - 4x - 2y + 2z = 0$. B. $x^2 + y^2$ $x^2 + y^2 + z^2 - 2x - y + z - 6 = 0$. D. $x^2 + y^2$ Sốu mặt cầu (S) đi qua bốn điểm $M(2;2;2)$, $N(4;0;2)$ a (S) có toạ độ là: $(-1;-1;0)$. B. $(3;1;1)$. C. $(1;1;1)$. Ta chọn đáp án A . In kính mặt cầu đi qua bốn điểm $M(1;0;1)$, $N(1;0;0)$, $P(1;0;0)$, $P(1;0;0)$. B. $\sqrt{3}$. C. 1. In mặt cầu (S) : $x^2 + y^2 + z^2 - 4 = 0$ và 4 điểm $M(1;2;0)$ 0 ng bốn điểm đó, có bao nhiêu điểm không nằm trên mặt	C. (1;1;1).	D. (1;2;1).									
Câu 19.	Lựa chọn đáp án $\bf A$. Bán kính mặt cầu đi qua bốn điểm $M(1;0;1)$, $N(1;0;0)$, $P(2;1;0)$ và $Q(1;1;1)$ bằng:												
	A. $\frac{\sqrt{3}}{2}$.	B. $\sqrt{3}$.	C. 1.	D. $\frac{3}{2}$.									
Câu 20.	Cho mặt cầu (S) : $x^2 + y^2 + z^2 - 4 = 0$ và 4 điểm $M(1;2;0)$, $N(0;1;0)$, $P(1;1;1)$, $Q(1;-1;2)$												
	Trong bốn điểm đó, có bao nhiều điểm không nằm trên mặt cầu (S) ?												
C/A 21	A. 2 điểm.	_	C. 1 điểm.	D. 3 điểm.									
Cau 21.	mat cau (S) tam trình:	I(-1;2;-3) va tiep xt	ic voi mật phang (P)										
	A. $(x-1)^2 + (y+2)^2$	$(z-3)^2 + (z-3)^2 = \frac{4}{9}$.	B. $(x+1)^2 + (y+1)^2 +$	$(-2)^2 + (z+3)^2 = \frac{4}{9}.$									
	C. $(x+1)^2 + (y-2)^2$	$(z+3)^2+(z+3)^2=\frac{4}{3}.$	D. $(x+1)^2 + (y+1)^2 +$	$(-2)^2 + (z+3)^2 = \frac{16}{3}.$									
Câu 22.	Phương trình mặt cầu nào dưới đây có tâm $I(2;1;3)$ và tiếp xúc với mặt phẳn												
	(P): x+2y+2z+2=0?												
	A. $(x-2)^2 + (y-1)^2$	$)^2 + (z-3)^2 = 16.$	B. $(x-2)^2 + (y)^2$	$-1)^2 + (z-1)^2 = 4.$									
	C. $(x-2)^2 + (y-1)^2$	$(z-1)^2 + (z-1)^2 = 25.$	D. $(x+2)^2 + (y)^2$	$+1)^{2} + (z+1)^{2} = 9.$									

Câu 23. Mặt cầu (S) tâm I(3,-3,1) và đi qua A(5,-2,1) có phương trình:

A. $(x-3)^2 + (y+3)^2 + (z-1)^2 = 5$.

B. $(x-5)^2 + (y+2)^2 + (z-1)^2 = 5$.

$$\mathbf{C} \cdot (x-3)^2 + (y+3)^2 + (z-1)^2 = \sqrt{5}.$$

$$\mathbf{D}.(x-5)^2 + (y+2)^2 + (z-1)^2 = \sqrt{5}.$$

Câu 24. Phương trình mặt trình mặt cầu có đường kính AB với A(1;3;2), B(3;5;0) là:

A.
$$(x-2)^2 + (y-4)^2 + (z-1)^2 = 3$$
.

B.
$$(x-2)^2 + (y-4)^2 + (z-1)^2 = 2$$
.

C.
$$(x+2)^2 + (y+4)^2 + (z+1)^2 = 2$$
.

D.
$$(x+2)^2 + (y+4)^2 + (z+1)^2 = 3$$
.

Câu 25. Cho I(1;2;4) và mặt phẳng (P): 2x+2y+z-1=0. Mặt cầu tâm I và tiếp xúc với mặt phẳng (P), có phương trình là:

A.
$$(x-1)^2 + (y+2)^2 + (z-4)^2 = 4$$
.

B.
$$(x+1)^2 + (y+2)^2 + (z+4)^2 = 1$$
.

$$\mathbf{C} \cdot (x-1)^2 + (y-2)^2 + (z-4)^2 = 4.$$

D.
$$(x-1)^2 + (y-2)^2 + (z-4)^2 = 3$$
.

Câu 26. Cho đường thẳng $d: \frac{x}{1} = \frac{y-1}{2} = \frac{z+1}{-1}$ và điểm A(5;4;-2). Phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy) là:

A.(S):
$$(x-1)^2 + (y+2)^2 + z^2 = 64$$
.

B.(S):
$$(x+1)^2 + (y-1)^2 + z^2 = 9$$
.

C.(S):
$$(x+1)^2 + (y+1)^2 + z^2 = 65$$
.

D.(S):
$$(x+1)^2 + (y-1)^2 + (z+2)^2 = 65$$
.

Câu 27. Cho ba điểm A(6;-2;3), B(0;1;6), C(2;0;-1), D(4;1;0). Khi đó mặt cầu ngoại tiếp tứ diện ABCD có phương trình là:

A.
$$x^2 + y^2 + z^2 - 4x + 2y - 6z - 3 = 0$$
. **B.** $x^2 + y^2 + z^2 + 4x - 2y + 6z - 3 = 0$.

B.
$$x^2 + y^2 + z^2 + 4x - 2y + 6z - 3 = 0$$
.

$$\mathbf{C.} x^2 + y^2 + z^2 - 2x + y - 3z - 3 = 0.$$

$$\mathbf{D.} x^2 + y^2 + z^2 + 2x - y + 3z - 3 = 0.$$

Câu 28. Cho ba điểm A(2;0;1), B(1;0;0), C(1;1;1) và mặt phẳng (P): x+y+z-2=0. Phương trình mặt cầu đi qua ba điểm A, B, C và có tâm thuộc mặt phẳng (P) là:

A.
$$x^2 + y^2 + z^2 - x + 2z + 1 = 0$$
.

B.
$$x^2 + y^2 + z^2 - x - 2y + 1 = 0$$
.

C.
$$x^2 + y^2 + z^2 - 2x + 2y + 1 = 0$$
.

D.
$$x^2 + y^2 + z^2 - 2x - 2z + 1 = 0$$
.

Câu 29. Phương trình mặt cầu tâm I(1,-2,3) và tiếp xúc với trục Oy là:

A.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 9$$
.

B.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 16$$
.

C.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 8$$
.

D.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 10$$
.

Câu 30. Cho các điểm A(-2;4;1), B(2;0;3) và đường thẳng $d: \begin{cases} y = 1 + 2t \text{ . Gọi } (S) \text{ là mặt cầu đi qua} \\ z = -2 + t \end{cases}$

A, B và có tâm thuộc đường thẳng d. Bán kính mặt cầu (S) bằng:

A.
$$3\sqrt{3}$$
.

B.
$$\sqrt{6}$$
.

D.
$$2\sqrt{3}$$
.

Câu 31. Cho điểm A(1;-2;3) và đường thẳng d có phương trình $\frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{-1}$. Phương trình mặt cầu tâm A, tiếp xúc với d là:

A.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = \sqrt{50}$$
.

B.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 5$$
.

C.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 50$$
.

D.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 50$$
.

Câu 32. Cho đường thẳng d: $\frac{x-1}{3} = \frac{y+1}{1} = \frac{z}{1}$ và mặt phẳng (P): 2x + y - 2z + 2 = 0. Phương trình mặt cầu (S) có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với (P) và đi qua điểm A(1;-1;1) là:

A.
$$(x+2)^2 + (y+2)^2 + (z+1)^2 = 1$$
.

B.
$$(x-4)^2 + y^2 + (z-1)^2 = 1$$
.

C.
$$(x-1)^2 + (y+1)^2 + z^2 = 1$$
.

$$\mathbf{D.}(x-3)^2 + (y-1)^2 + (z-1)^2 = 1.$$

Câu 33. Phương trình mặt cầu có tâm I(1;2;3) và tiếp xúc với mặt phẳng (Oxz) là:

A.
$$x^2 + y^2 + z^2 + 2x + 4y + 6z - 10 = 0$$
.

B.
$$x^2 + y^2 + z^2 - 2x - 4y - 6z + 10 = 0$$
.

C.
$$x^2 + y^2 + z^2 - 2x - 4y + 6z + 10 = 0$$
.

$$\mathbf{D.} x^2 + y^2 + z^2 + 2x + 4y + 6z - 10 = 0.$$

Câu 34. Mặt phẳng (P) tiếp xúc với mặt cầu tâm I(1;-3;2) tại điểm M(7;-1;5) có phương trình là:

A.
$$6x + 2y + 3z + 55 = 0$$
.

B.
$$3x + y + z - 22 = 0$$
.

C.
$$6x + 2y + 3z - 55 = 0$$
.

D.
$$3x + y + z + 22 = 0$$
.

Câu 35. Cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x - 4y - 6z - 2 = 0$ và mặt phẳng $(\alpha): 4x + 3y - 12z + 10 = 0$. Mặt phẳng tiếp xúc với (S) và song song với (α) có phương trình là:

A.
$$4x + 3y - 12z + 78 = 0$$
.

B.
$$4x + 3y - 12z - 78 = 0$$
 hoặc $4x + 3y - 12z + 26 = 0$.

$$\mathbf{C.}4x + 3y - 12z - 26 = 0$$

D.
$$4x + 3y - 12z + 78 = 0$$
 hoặc $4x + 3y - 12z - 26 = 0$.

Câu 36. Cho mặt cầu $(S): (x-2)^2 + (y+1)^2 + z^2 = 14$. Mặt cầu (S) cắt trục Oz tại A và B $(z_A < 0)$. Phương trình nào sau đây là phương trình tiếp diện của (S) tại B:

A.
$$2x - y - 3z + 9 = 0$$
.

B.
$$2x - y - 3z - 9 = 0$$
.

C.
$$x-2y-z-3=0$$
.

D.
$$x-2y+z+3=0$$
.

Câu 37. Cho 4 điềm A(3;-2;-2), B(3;2;0), C(0;2;1) và D(-1;1;2). Mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD) có phương trình là:

A.
$$(x-3)^2 + (y+2)^2 + (z+2)^2 = \sqrt{14}$$
. **B.** $(x+3)^2 + (y-2)^2 + (z-2)^2 = 14$.

B.
$$(x+3)^2 + (y-2)^2 + (z-2)^2 = 14$$

C.
$$(x+3)^2 + (y-2)^2 + (z-2)^2 = \sqrt{14}$$
.
D. $(x-3)^2 + (y+2)^2 + (z+2)^2 = 14$.

D.
$$(x-3)^2 + (y+2)^2 + (z+2)^2 = 14$$
.

Câu 38. Cho mặt phẳng (P): 2x + 3y + z - 2 = 0. Mặt cầu (S) có tâm I thuộc trục Oz, bán kính bằng $\frac{2}{\sqrt{14}}$ và tiếp xúc mặt phẳng (P) có phương trình:

A.
$$x^2 + y^2 + (z-3)^2 = \frac{2}{7}$$
 hoặc $x^2 + y^2 + (z-4)^2 = \frac{2}{7}$.

B.
$$x^2 + y^2 + (z-1)^2 = \frac{2}{7}$$
 hoặc $x^2 + y^2 + (z+2)^2 = \frac{2}{7}$.

C.
$$x^2 + y^2 + z^2 = \frac{2}{7}$$
 hoặc $x^2 + y^2 + (z - 4)^2 = \frac{2}{7}$.

D.
$$x^2 + y^2 + z^2 = \frac{2}{7}$$
 hoặc $x^2 + y^2 + (z - 1)^2 = \frac{2}{7}$.

Câu 39. Cho đường thẳng $d: \frac{x+5}{2} = \frac{y-7}{-2} = \frac{z}{1}$ và điểm I(4;1;6). Đường thẳng d cắt mặt cầu (S) tâm I tại hai điểm A, B sao cho AB = 6. Phương trình của mặt cầu (S) là:

A. $(x-4)^2 + (y-1)^2 + (z-6)^2 = 18$.

B. $(x-4)^2 + (y-1)^2 + (z-6)^2 = 12$

C. $(x-4)^2 + (y-1)^2 + (z-6)^2 = 16$.

D. $(x-4)^2 + (y-1)^2 + (z-6)^2 = 9$.

Câu 40. Cho hai mặt phẳng (P), (Q) có phương trình (P): x-2y+z-1=0 và (Q): 2x+y-z+3=0. Mặt cầu có tâm nằm trên mặt phẳng (P) và tiếp xúc với mặt phẳng (Q) tại điểm M, biết rằng M thuộc mặt phẳng $\left(Oxy\right)$ và có hoành độ $x_{M}=1$, có phương trình là:

A. $(x-21)^2 + (y-5)^2 + (z+10)^2 = 600$. **B.** $(x+19)^2 + (y+15)^2 + (z-10)^2 = 600$.

C. $(x-21)^2 + (y-5)^2 + (z+10)^2 = 100$. D. $(x+21)^2 + (y+5)^2 + (z-10)^2 = 600$.

Câu 41. Cho hai điểm M(1;0;4), N(1;1;2) và mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 2y - 2 = 0$. Mặt phẳng (P) qua M, N và tiếp xúc với mặt cầu (S) có phương trình:

A. 4x + 2y + z - 8 = 0 hoặc 4x - 2y - z + 8 = 0.

B. 2x + 2y + z - 6 = 0 hoặc 2x - 2y - z + 2 = 0.

C. 2x + 2y + z - 6 = 0.

D. 2x - 2y - z + 2 = 0.

Câu 42. Cho hai điểm A(1;-2;3), B(-1;0;1) và mặt phẳng (P): x+y+z+4=0. Phương trình mặt cầu (S) có bán kính bằng $\frac{AB}{\epsilon}$ có tâm thuộc đường thẳng AB và (S) tiếp xúc với mặt phẳng (P) là:

A. $(x-4)^2 + (y+3)^2 + (z-2)^2 = \frac{1}{2}$.

B. $(x-4)^2 + (y+3)^2 + (z-2)^2 = \frac{1}{2}$ hoặc $(x-6)^2 + (y+5)^2 + (z-4)^2 = \frac{1}{2}$.

C. $(x+4)^2 + (y-3)^2 + (z+2)^2 = \frac{1}{2}$.

D. $(x+4)^2 + (y-3)^2 + (z+2)^2 = \frac{1}{2}$ hoặc $(x+6)^2 + (y-5)^2 + (z+4)^2 = \frac{1}{2}$.

Câu 43. Cho đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ và hai mặt phẳng $(P_1): x+2y+2z-2=0;$ (P_2) : 2x+y+2z-1=0. Mặt cầu có tâm I nằm trên d và tiếp xúc với 2 mặt phẳng (P_1) , (P_2) , có phương trình:

A.(S): $(x+1)^2 + (v+2)^2 + (z+3)^2 = 9$.

B.(S): $(x+1)^2 + (y+2)^2 + (z+3)^2 = 9$ hoặc (S): $\left(x + \frac{19}{17}\right)^2 + \left(y + \frac{16}{17}\right)^2 + \left(z + \frac{15}{17}\right)^2 = \frac{9}{200}$.

C.(S): $(x-1)^2 + (y-2)^2 + (z-3)^2 = 9$.

D.(S): $(x-1)^2 + (y-2)^2 + (z-3)^2 = 9$ hoặc (S): $\left(x + \frac{19}{17}\right)^2 + \left(y - \frac{16}{17}\right)^2 + \left(z - \frac{15}{17}\right)^2 = \frac{9}{280}$.

Câu 44. Cho điểm A(1;3;2), đường thẳng $d: \frac{x+1}{2} = \frac{y-4}{-1} = \frac{z}{-2}$ và mặt phẳng (P): 2x-2y+z-6=0. Phương trình mặt cầu (S) đi qua A, có tâm thuộc d đồng thời tiếp xúc với (P) là:

A.(S): $(x-1)^2 + (y-3)^2 + (z+2)^2 = 4$.

B.
$$(S): (x+1)^2 + (y+3)^2 + (z-2)^2 = 16$$
 hoặc $(S): \left(x - \frac{83}{13}\right)^2 + \left(y + \frac{87}{13}\right)^2 + \left(z + \frac{70}{13}\right)^2 = \frac{13456}{169}$.
C. $(S): (x-1)^2 + (y-3)^2 + (z+2)^2 = 16$ hoặc $(S): \left(x + \frac{83}{13}\right)^2 + \left(y - \frac{87}{13}\right)^2 + \left(z - \frac{70}{13}\right)^2 = \frac{13456}{169}$.
D. $(S): (x-1)^2 + (y-3)^2 + (z+2)^2 = 16$.

Câu 45. Cho mặt phẳng (P): x-2y-2z+10=0 và hai đường thẳng $\Delta_1: \frac{x-2}{1} = \frac{y}{1} = \frac{z-1}{1}$, $\Delta_2: \frac{x-2}{1} = \frac{y}{1} = \frac{z+3}{4}$. Mặt cầu (S) có tâm thuộc Δ_1 , tiếp xúc với Δ_2 và mặt phẳng (P), có phương trình:

A.
$$(x-1)^2 + (y+1)^2 + (z-2)^2 = 9$$
 hoặc $\left(x - \frac{11}{2}\right)^2 + \left(y - \frac{7}{2}\right)^2 + \left(z + \frac{5}{2}\right)^2 = \frac{81}{4}$.
B. $(x+1)^2 + (y-1)^2 + (z+2)^2 = 9$ hoặc $\left(x + \frac{11}{2}\right)^2 + \left(y + \frac{7}{2}\right)^2 + \left(z - \frac{5}{2}\right)^2 = \frac{81}{4}$.

$$\mathbf{C} \cdot (x-1)^2 + (y+1)^2 + (z-2)^2 = 9.$$

$$\mathbf{D}_{\bullet}(x-1)^2 + (y+1)^2 + (z-2)^2 = 3.$$

Cho mặt phẳng (P) và mặt cầu (S) có phương **Câu 46.** là $(P): 2x + 2y + z - m^2 + 4m - 5 = 0; (S): x^2 + y^2 + z^2 - 2x + 2y - 2z - 6 = 0$. Giá trị của m để (P) tiếp xúc (S) là:

A.
$$m = -1$$
 hoặc $m = 5$.

B.
$$m = 1$$
 hoặc $m = -5$.

C.
$$m = -1$$
.

D.
$$m = 5$$

Câu 47. Cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 4y + 2z - 3 = 0$ và mặt phẳng (P): x + y - 2z + 4 = 0. Phương trình đường thẳng d tiếp xúc với mặt cầu (S) tại A(3;-1;1) và song song với mặt phẳng (P) là:

A.
$$\begin{cases} x = 3 - 4t \\ y = -1 + 6t \\ z = 1 + t \end{cases}$$
B.
$$\begin{cases} x = 1 + 4t \\ y = -2 - 6t \\ z = -1 - t \end{cases}$$
C.
$$\begin{cases} x = 3 + 4t \\ y = -1 - 6t \\ z = 1 - t \end{cases}$$
D.
$$\begin{cases} x = 3 + 2t \\ y = -1 + t \\ z = 1 + 2t \end{cases}$$

B.
$$\begin{cases} x = 1 + 4t \\ y = -2 - 6t. \end{cases}$$

C.
$$\begin{cases} x = 3 + 4t \\ y = -1 - 6t \end{cases}$$
$$z = 1 - t$$

D.
$$\begin{cases} x = 3 + 2t \\ y = -1 + t \\ z = 1 + 2t \end{cases}$$

Câu 48. Cho điểm A(2,5,1) và mặt phẳng (P): 6x+3y-2z+24=0, H là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu (S) có diện tích 784π và tiếp xúc với mặt phẳng (P) tại H, sao cho điểm A nằm trong mặt cầu là:

A.
$$(x-8)^2 + (y-8)^2 + (z+1)^2 = 196.$$

B.
$$(x+8)^2 + (y+8)^2 + (z-1)^2 = 196.$$

$$\mathbf{C} \cdot (x+16)^2 + (y+4)^2 + (z-7)^2 = 196$$

$$\mathbf{C.}(x+16)^2 + (y+4)^2 + (z-7)^2 = 196.$$

$$\mathbf{D.}(x-16)^2 + (y-4)^2 + (z+7)^2 = 196.$$

Câu 49. Cho mặt phẳng (P): 2x + y - z + 5 = 0 và các điểm A(0;0;4), B(2;0;0). Phương trình mặt cầu đi qua O, A, B và tiếp xúc với mặt phẳng (P) là:

A.
$$(x-1)^2 + (y-1)^2 + (z-2)^2 = 6$$
.

B.
$$(x+1)^2 + (y+1)^2 + (z+2)^2 = 6$$
.

$$\mathbf{C} \cdot (x-1)^2 + (y+1)^2 + (z-2)^2 = 6.$$

$$\mathbf{D.}(x-1)^2 + (y-1)^2 + (z+2)^2 = 6.$$

Câu 50. Cho mặt phẳng (P): x+2y-2z+2=0 và điểm A(2;-3;0). Gọi B là điểm thuộc tia Oy sao cho mặt cầu tâm B, tiếp xúc với mặt phẳng (P) có bán kính bằng (P) có bán kính bàng (P) có bán kính bàng

A.(0;1;0).

- **B.**(0;-4;0).
- C.(0;2;0) hoặc (0;-4;0).
- **Câu 51.** Cho hai mặt phẳng (P): 2x+3y-z+2=0, (Q): 2x-y-z+2=0. Phương trình mặt cầu (S)tiếp xúc với mặt phẳng (P) tại điểm A(1,-1,1) và có tâm thuộc mặt phẳng (Q) là:

A. $(S): (x+3)^2 + (y+7)^2 + (z-3)^2 = 56.$ **B.** $(S): (x-3)^2 + (y-7)^2 + (z+3)^2 = 56.$

C. (S): $(x+3)^2 + (y+7)^2 + (z-3)^2 = 14$. **D.** (S): $(x-3)^2 + (y-7)^2 + (z+3)^2 = 14$.

- Câu 52. Cho điểm I(0;0;3) và đường thẳng $d:\begin{cases} x=-1+t\\ y=2t \end{cases}$. Phương trình mặt cầu (S) có tâm I và cắt

đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

A.
$$x^2 + y^2 + (z-3)^2 = \frac{3}{2}$$
.

B.
$$x^2 + y^2 + (z-3)^2 = \frac{8}{3}$$
.

C.
$$x^2 + y^2 + (z-3)^2 = \frac{2}{3}$$
.

D.
$$x^2 + y^2 + (z-3)^2 = \frac{4}{3}$$
.

Câu 53. Cho đường thẳng $\Delta : \frac{x+2}{-1} = \frac{y}{1} = \frac{z-3}{-1}$ và và mặt cầu (S): $x^2 + y^2 + z^2 + 4x - 2y - 21 = 0$. Số giao điểm của (Δ) và (S) là:

A. 2.

C.0.

- **D.**3.
- **Câu 54.** Cho đường thẳng $d: \frac{x+2}{2} = \frac{y-2}{3} = \frac{z+3}{2}$ và mặt cầu (S): $x^2 + y^2 + (z+2)^2 = 9$. Tọa độ giao điểm của (Δ) và (S) là:

A. A(0;0;2), B(-2;2;-3).

B. A(2;3;2).

C. A(-2;2;-3).

- $\mathbf{D}.(\Delta)$ và (S) không cắt nhau.
- **Câu 55.** Cho đường thẳng (Δ) : $\begin{cases} x = 1 + t \\ y = 2 \end{cases}$ và mặt cầu (S): $x^2 + y^2 + z^2 2x 4y + 6z 67 = 0$. Giao

điểm của (Δ) và (S) là các điểm có tọa độ:

 $\mathbf{A}.(\Delta)$ và (S) không cắt nhau.

B. A(1;2;5), B(-2;0;4).

C. A(2;-2;5), B(4;0;3).

- **D.** A(1;2;-4), B(2;2;3).
- **Câu 56.** Cho điểm I(1;0;0) và đường thẳng $d:\frac{x-1}{1}=\frac{y-1}{2}=\frac{z+2}{1}$. Phương trình mặt cầu (S) có tâm Ivà cắt đường thẳng d tại hai điểm A, B sao cho AB = 4 là:

A. $(x-1)^2 + y^2 + z^2 = 9$.

B.
$$(x-1)^2 + y^2 + z^2 = 3$$
.

C. $(x+1)^2 + v^2 + z^2 = 3$.

- **D.** $(x+1)^2 + v^2 + z^2 = 9$.
- **Câu 57.** Cho điểm I(1;1;-2) đường thẳng $d:\frac{x+1}{1}=\frac{y-3}{2}=\frac{z-2}{1}$. Phương trình mặt cầu (S) có tâm Ivà cắt đường thẳng d tại hai điểm A, B sao cho AB = 6 là:

A.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 27.$$

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 27$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 24$$
.

$$\mathbf{D.}(x-1)^2 + (y-1)^2 + (z+2)^2 = 54.$$

Câu 58. Cho điểm I(1;0;0) và đường thẳng $d:\frac{x-1}{1}=\frac{y-1}{2}=\frac{z+2}{1}$. Phương trình mặt cầu (S) có tâm Ivà cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

$$\mathbf{A.}(x-1)^2 + y^2 + z^2 = 12.$$

B.
$$(x-1)^2 + y^2 + z^2 = 10$$
.

C.
$$(x+1)^2 + y^2 + z^2 = 8$$
.

$$\mathbf{D.}(x-1)^2 + y^2 + z^2 = 16.$$

Câu 59. Cho điểm I(1;0;0) và đường thẳng $d: \begin{cases} y = 1 + 2t \end{cases}$. Phương trình mặt cầu (S) có tâm I và cắt z = -2 + t

đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

$$\mathbf{A.}(x+1)^2 + y^2 + z^2 = \frac{20}{3}.$$

B.
$$(x-1)^2 + y^2 + z^2 = \frac{20}{3}$$
.

C.
$$(x-1)^2 + y^2 + z^2 = \frac{16}{4}$$
.

$$\mathbf{D.}(x-1)^2 + y^2 + z^2 = \frac{5}{3}.$$

Câu 60. Cho các điểm I(1;1;-2) và đường thẳng $d: \{ y = 3 + 2t \text{ . Phương trình mặt cầu } (S) có tâm <math>I$ và

cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

A.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 3$$
. **B.** $(x+1)^2 + (y+1)^2 + (z-2)^2 = 9$.

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 9$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 9$$
.

D.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 36$$
.

Câu 61. Cho điểm I(1;1;-2) đường thẳng $d:\frac{x+1}{1}=\frac{y-3}{2}=\frac{z-2}{1}$. Phương trình mặt cầu (S) có tâm Ivà cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

A.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 24$$
.

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 24$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 18$$

D.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 18$$
.

Câu 62. Cho điểm I(1;1;-2) đường thẳng $d:\frac{x+1}{1}=\frac{y-3}{2}=\frac{z-2}{1}$. Phương trình mặt cầu (S) có tâm I

và cắt đường thẳng d tại hai điểm A, B sao cho $\widehat{IAB} = 30^{\circ}$ là:

A.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 72.$$

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 36$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 66$$
. D. $(x+1)^2 + (y+1)^2 + (z-2)^2 = 46$.

$$\mathbf{D} \cdot (x+1)^2 + (y+1)^2 + (z-2)^2 = 46.$$

Câu 63. Phương trình mặt cầu có tâm $I(3; \sqrt{3}; -7)$ và tiếp xúc trục tung là:

A.
$$(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 61$$
. **B.** $(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 58$.

B.
$$(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 58.$$

C.
$$(x+3)^2 + (y+\sqrt{3})^2 + (z-7)^2 = 58$$

C.
$$(x+3)^2 + (y+\sqrt{3})^2 + (z-7)^2 = 58$$
. **D.** $(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 12$.

Câu 64. Phương trình mặt cầu có tâm $I(\sqrt{5};3;9)$ và tiếp xúc trục hoành là:

A.
$$(x+\sqrt{5})^2 + (y+3)^2 + (z+9)^2 = 86$$
. **B.** $(x-\sqrt{5})^2 + (y-3)^2 + (z-9)^2 = 14$.

B.
$$(x-\sqrt{5})^2 + (y-3)^2 + (z-9)^2 = 14$$
.

C.
$$(x-\sqrt{5})^2 + (y-3)^2 + (z-9)^2 = 90$$
.

D.
$$(x+\sqrt{5})^2 + (y+3)^2 + (z+9)^2 = 90.$$

Câu 65. Phương trình mặt cầu có tâm $I(-\sqrt{6}; -\sqrt{3}; \sqrt{2} - 1)$ và tiếp xúc trục Oz là:

A.
$$(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}+1)^2 = 9.$$
 B. $(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}-1)^2 = 9.$

B.
$$(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}-1)^2 = 9$$

C.
$$(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}-1)^2 = 3$$

C.
$$(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}-1)^2 = 3$$
. D. $(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}+1)^2 = 3$.

Câu 66. Phương trình mặt cầu có tâm I(4;6;-1) và cắt trục Ox tại hai điểm A, B sao cho tam giác IABvuông là:

$$\mathbf{A.}(x-4)^2 + (y-6)^2 + (z+1)^2 = 26.$$

B.
$$(x-4)^2 + (y-6)^2 + (z+1)^2 = 74$$
.

C.
$$(x-4)^2 + (y-6)^2 + (z+1)^2 = 34$$
.

$$\mathbf{D} \cdot (x-4)^2 + (y-6)^2 + (z+1)^2 = 104.$$

Câu 67. Phương trình mặt cầu có tâm $I(\sqrt{3}; -\sqrt{3}; 0)$ và cắt trục Oz tại hai điểm A, B sao cho tam giác IAB đều là:

$$\mathbf{A.}(x+\sqrt{3})^{2}+(y-\sqrt{3})^{2}+z^{2}=8.$$

B.
$$(x-\sqrt{3})^2 + (y+\sqrt{3})^2 + z^2 = 9.$$

C.
$$(x+\sqrt{3})^2 + (y-\sqrt{3})^2 + z^2 = 9$$
.

D.
$$(x-\sqrt{3})^2 + (y+\sqrt{3})^2 + z^2 = 8$$
.

Câu 68. Phương trình mặt cầu có tâm I(3;6;-4) và cắt trục Oz tại hai điểm A, B sao cho diện tích tam giác *IAB* bằng $6\sqrt{5}$ là:

A.
$$(x-3)^2 + (y-6)^2 + (z+4)^2 = 49$$
.

B.
$$(x-3)^2 + (y-6)^2 + (z+4)^2 = 45$$
.

C.
$$(x-3)^2 + (y-6)^2 + (z+4)^2 = 36$$
.

$$\mathbf{D.}(x-3)^2 + (y-6)^2 + (z+4)^2 = 54.$$

Câu 69. Mặt cầu (S) có tâm I(2;1;-1) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB vuông. Điểm nào sau đây thuộc mặt cầu (S):

Câu 70. Gọi (S) là mặt cầu có tâm I(1,-3,0) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB đều. Điểm nào sau đây không thuộc mặt cầu (S):

A.
$$(-1; -3; 2\sqrt{3}).$$

B.
$$(3; -3; 2\sqrt{2})$$
.

C.
$$(3;-3;-2\sqrt{2})$$
. **D.** $(2;-1;1)$.

Câu 71. Cho các điểm I(-1;0;0) và đường thẳng $d: \frac{x-2}{1} = \frac{y-1}{2} = \frac{z-1}{1}$. Phương trình mặt cầu (S)có tâm I và tiếp xúc d là:

A.
$$(x+1)^2 + y^2 + z^2 = 5$$
.

B.
$$(x-1)^2 + y^2 + z^2 = 5$$
.

C.
$$(x+1)^2 + y^2 + z^2 = 10$$
.

$$\mathbf{D.}(x-1)^2 + y^2 + z^2 = 10.$$

Câu 72. Cho điểm I(1;7;5) và đường thẳng $d:\frac{x-1}{2}=\frac{y-6}{-1}=\frac{z}{3}$. Phương trình mặt cầu có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác diện tích tam giác IAB bằng $2\sqrt{6015}$ là:

$$\mathbf{A.}(x-1)^2 + (y-7)^2 + (z-5)^2 = 2018.$$

A.
$$(x-1)^2 + (y-7)^2 + (z-5)^2 = 2018$$
. **B.** $(x-1)^2 + (y-7)^2 + (z-5)^2 = 2017$.

C.
$$(x-1)^2 + (y-7)^2 + (z-5)^2 = 2016$$
. D. $(x-1)^2 + (y-7)^2 + (z-5)^2 = 2019$.

D.
$$(x-1)^2 + (y-7)^2 + (z-5)^2 = 2019.$$

Câu 73. Cho các điểm A(1;3;1) và B(3;2;2). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz có đường kính là:

A.
$$\sqrt{14}$$
.

B.
$$2\sqrt{14}$$
.

C.
$$2\sqrt{10}$$
.

D.
$$2\sqrt{6}$$
.

Câu 74.	Trong không gian với hệ tọa độ $Oxyz$, cho các điểm $A(1;2;1)$ và $B(0;1;1)$. Mặt cầu đi qua											
	điểm A , B và tâm thuộc trục hoành có đường kính là: A. $2\sqrt{6}$. B. $\sqrt{6}$. C. $2\sqrt{5}$. D. 12.											
	A. $2\sqrt{6}$.											
Câu 75.	. Cho các điểm $A(2;1;-1)$ và $B(1;0;1)$. Mặt cầu đi qua hai điểm A , B và tâm thuộc trục											
	đường kính là:	_	_	_								
		B. $2\sqrt{6}$.	C. $4\sqrt{2}$.	D. $\sqrt{6}$.								
Câu 76.	Cho các điểm $A(0;1;3)$	và $B(2;2;1)$ và đường	g thẳng $d: \frac{x-1}{1} = \frac{y-2}{-1}$	$\frac{2}{z-2} = \frac{z-3}{-2}$. Mặt cầu đi qua								
	hai điểm A, B và tâm th	uộc đường thẳng d thì to	ọa độ tâm là:									
	A. $\left(\frac{13}{10}; \frac{17}{10}; \frac{12}{5}\right)$.	B. $\left(\frac{3}{2}; \frac{3}{2}; 2\right)$.	C. $\left(\frac{4}{3}; \frac{2}{3}; \frac{7}{3}\right)$.	D. $\left(\frac{6}{5}; \frac{9}{5}; \frac{13}{5}\right)$.								
Câu 77.	Cho các điểm $A(1;3;0)$ và $B(2;1;1)$ và đường thẳng $d:\frac{x}{2}=\frac{y-3}{1}=\frac{z}{1}$. Mặt cầu (S) đi qua h											
	điểm A, B và tâm thuộc	đường thẳng d thì tọa đ	\hat{s} ộ tâm của (S) là:									
	A. (4;5;2).			D. (-4;1;-2).								
Câu 78.	Cho các điểm $A(1;1;3)$	và $B(2;2;0)$ và đườ	$\text{ng th} \mathring{\text{ang}} d: \frac{x}{1} = \frac{y-2}{-1}$	$=\frac{z-3}{1}$. Mặt cầu (S) đi								
	qua hai điểm A, B và târ	n thuộc đường thẳng d	thì tọa độ tâm (S) là:									
	A. $\left(\frac{-11}{6}; \frac{23}{6}; \frac{7}{6}\right)$.	B. $\left(\frac{5}{6}; \frac{7}{6}; \frac{23}{6}\right)$.	C. $\left(\frac{5}{6}; \frac{7}{6}; \frac{25}{6}\right)$.	D. $\left(\frac{1}{6}; \frac{9}{6}; \frac{19}{6}\right)$.								
		x = t										
Câu 79.	ính là đoạn thẳng vuông											
	góc chung của đường th	z = 1góc chung của đường thẳng d và trục Ox là:										
	$\mathbf{A}.(x-1)^2 + y^2 + (z-2)^2$	$x^2 = \frac{1}{2}.$	B. $(x+1)^2 + y^2 + (z+2)^2 = \frac{1}{4}$.									
	C. $(x-1)^2 + y^2 + z^2 = \frac{1}{2}$		D. $\left(x - \frac{1}{3}\right)^2 + y^2 + \left(z - \frac{1}{3}\right)^2 + y^2 + y^2$	$-\frac{1}{2}\bigg)^2 = \frac{1}{4}.$								
Câu 80.	Cho hai đường thẳng d	$\begin{cases} x = 2t \\ y = t \text{ và } d' : \begin{cases} x = t' \\ y = 3 - t' \\ z = 4 \end{cases} \end{cases}$	-t'. Phương trình mặt cá	ầu có đường kính là đoạn								
	thẳng vuông góc chung		<i>l'</i> là:									
	A. $(x-2)^2 + (y-1)^2 +$		B. $(x-2)^2 + y^2 + z^2 = 4$.									
	() () (/	, , ,									

C.
$$(x-2)^2 + (y-1)^2 + (z-2)^2 = 2$$

D.
$$(x+2)^2 + (y+1)^2 + z^2 = 4$$
.

C. $(x-2)^2 + (y-1)^2 + (z-2)^2 = 2$. D. $(x+2)^2 + (y+1)^2 + z^2 = 4$.

Câu 81. Cho các điểm A(-2;4;1) và B(2;0;3) và đường thẳng $d: \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z-3}{-2}$. Gọi (S) là mặt cầu đi qua A, B và có tâm thuộc đường thẳng ${\bf D}$. Bán kính mặt cầu (S) bằng:

A.
$$\frac{\sqrt{1169}}{4}$$
. **B.** $\frac{\sqrt{873}}{4}$. **C.** $\frac{1169}{16}$. **D.** $\frac{\sqrt{967}}{2}$.

B.
$$\frac{\sqrt{873}}{4}$$

C.
$$\frac{1169}{16}$$

D.
$$\frac{\sqrt{967}}{2}$$
.

Câu 82. Cho các điểm A(2;4;-1) và B(0;-2;1) và đường thẳng $d:\begin{cases} x=1+2t\\ y=2-t \end{cases}$. Gọi (S) là mặt cầu đi

qua A, B và có tâm thuộc đường thẳng D. Đường kính mặt cầu (S) bằng:

A.
$$2\sqrt{19}$$
.

B.
$$2\sqrt{17}$$
.

C.
$$\sqrt{19}$$
.

D.
$$\sqrt{17}$$
.

Câu 83. Mặt cầu tâm I(2;4;6) và tiếp xúc với mặt phẳng (Oxy) có phương trình:

A.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 16$$
.

B.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 36$$
.

C.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 4$$
.

D.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$$
.

Câu 84. Mặt cầu tâm I(2;4;6) và tiếp xúc với mặt phẳng (Oxz) có phương trình:

A.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 16$$
.

B.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 4$$
.

C.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 36$$
.

D.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$$
.

Câu 85. Phương trình mặt cầu tâm I(2;4;6) nào sau đây tiếp xúc với trục Ox:

A.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 20$$
.

B.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 40$$
.

C.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 52$$
.

D.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$$
.

Câu 86. Mặt cầu tâm I(2;4;6) tiếp xúc với trục Oz có phương trình:

A.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 20$$
.

B.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 40$$
.

C.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 52$$
.

D.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$$
.

Câu 87. Cho mặt cầu (S): $(x-1)^2 + (y-2)^2 + (z-3)^2 = 9$. Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):

A.
$$(x+1)^2 + (y+2)^2 + (z+3)^2 = 9$$
.

B.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 9$$
.

C.
$$(x-1)^2 + (y+2)^2 + (z+3)^2 = 9$$
.

D.
$$(x-1)^2 + (y-2)^2 + (z+3)^2 = 9$$
.

Câu 88. Cho mặt cầu (S): $(x+1)^2 + (y-1)^2 + (z-2)^2 = 4$. Phương trình mặt cầu nào sau đây là phương trình mặt cầu đối xứng với mặt cầu (S) qua trục Oz:

A.
$$(x-1)^2 + (y+1)^2 + (z-2)^2 = 4$$
.

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 4$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z-2)^2 = 4$$

C.
$$(x-1)^2 + (y-1)^2 + (z-2)^2 = 4$$
.
D. $(x+1)^2 + (y-1)^2 + (z+2)^2 = 4$.

Câu 89. Đường tròn giao tuyến của $(S):(x-1)^2+(y-2)^2+(z-3)^2=16$ khi cắt bởi mặt phẳng (Oxy)có chu vi bằng:

A.
$$\sqrt{7}\pi$$
.

B.
$$2\sqrt{7}\pi$$
.

C.
$$7\pi$$
.

D.
$$14\pi$$
.

D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM

I – ĐÁP ÁN 8.2

2 2 11 11 0 0																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	В	A	С	Α	D	Α	С	Α	Α	В	D	Α	С	С	A	A	D	A	В
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
В	A	A	В	D	С	A	D	D	A	С	С	В	С	D	A	D	С	A	A
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
В	D	D	С	Α	A	С	Α	Α	D	Α	В	Α	С	D	A	A	В	В	D
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
A	A	В	С	A	В	D	A	Α	D	A	В	В	A	В	A	С	A	D	A
81	82	83	84	85	86	87	88	89											
Α	Δ	R	Δ	С	Δ	D	Α	R											

Phương trình nào sau đây là phương trình mặt cầu? Câu 1.

$$\mathbf{A.} \, x^2 + y^2 + z^2 - 2x = 0.$$

B.
$$x^2 + y^2 - z^2 + 2x - y + 1 = 0$$
.

C.
$$2x^2 + 2y^2 = (x+y)^2 - z^2 + 2x - 1$$
. D. $(x+y)^2 = 2xy - z^2 - 1$.

D.
$$(x+y)^2 = 2xy - z^2 - 1$$
.

Hướng dẫn giải:

Phương trình mặt cầu (S) có hai dạng là:

(1)
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$
;

(2)
$$x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$$
 với $a^2 + b^2 + c^2 - d > 0$.

Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dang trên.

Lựa chọn đáp án A.

Phương trình nào sau đây **không phải** là phương trình mặt cầu? Câu 2.

A.
$$x^2 + y^2 + z^2 - 2x = 0$$
.

B.
$$2x^2 + 2y^2 = (x+y)^2 - z^2 + 2x - 1$$
.

C.
$$x^2 + y^2 + z^2 + 2x - 2y + 1 = 0$$
.

D.
$$(x+y)^2 = 2xy - z^2 + 1 - 4x$$
.

Hướng dẫn giải:

Phương trình mặt cầu (S) có hai dạng là :

(1)
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$
;

(2)
$$x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$$
 với $a^2 + b^2 + c^2 - d > 0$.

Từ đây ta có dấu hiệu nhân biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

Ở các đáp án B, C, D đều thỏa mãn điều kiện phương trình mặt cầu. Tuy nhiên ở đáp án A thì phương trình: $2x^2 + 2y^2 = (x + y)^2 - z^2 + 2x - 1 \Leftrightarrow x^2 + y^2 + z^2 - 2xy - 2x + 1 = 0$ không đúng dạng phương trình mặt cầu.

Lựa chọn đáp án A.

Phương trình nào sau đây **không phải** là phương trình mặt cầu? Câu 3.

A.
$$(x-1)^2 + (2y-1)^2 + (z-1)^2 = 6$$
.

B.
$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 6$$
.

C.
$$(2x-1)^2 + (2y-1)^2 + (2z+1)^2 = 6$$
.

D.
$$(x+y)^2 = 2xy - z^2 + 3 - 6x$$
.

Hướng dẫn giải:

Phương trình mặt cầu (S) có hai dang là:

(1)
$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$
;

(2)
$$x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$$
 với $a^2 + b^2 + c^2 - d > 0$.

Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dang trên.

Phương trình ở các đáp án B, C, D đều thỏa mãn điều kiện phương trình mặt cầu. Ví dụ:

C.
$$(2x-1)^2 + (2y-1)^2 + (2z+1)^2 = 6 \Leftrightarrow \left(x-\frac{1}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 + \left(z+\frac{1}{2}\right)^2 = \frac{3}{2}$$
.

D.
$$(x+y)^2 = 2xy - z^2 + 3 - 6x \Leftrightarrow x^2 + y^2 + z^2 + 6x - 3 = 0$$
.

Lưa chon đáp án A.

Cho các phương trình sau: $(x-1)^2 + y^2 + z^2 = 1$; $x^2 + (2y-1)^2 + z^2 = 4$; Câu 4.

$$x^{2} + y^{2} + z^{2} + 1 = 0$$
; $(2x+1)^{2} + (2y-1)^{2} + 4z^{2} = 16$.

Số phương trình là phương trình mặt cầu là:

Hướng dẫn giải:

Ta có:
$$(2x+1)^2 + (2y-1)^2 + 4z^2 = 16 \Leftrightarrow \left(x+\frac{1}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 + z^2 = 4$$

$$(x-1)^2 + y^2 + z^2 = 1$$
 là phương trình của một mặt cầu.

Lua chon đáp án A.

Mặt cầu $(S): (x-1)^2 + (y+2)^2 + z^2 = 9$ có tâm là: Câu 5.

A.
$$I(1;-2;0)$$
.

B.
$$I(-1;2;0)$$
.

C.
$$I(1;2;0)$$
.

C.
$$I(1;2;0)$$
. **D.** $I(-1;-2;0)$.

Hướng dẫn giải:

Phương trình mặt cầu (S) có dạng $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$ có tâm I(a;b;c), bán kính R.

Lựa chọn đáp án A.

Mặt cầu (S): $x^2 + y^2 + z^2 - 8x + 2y + 1 = 0$ có tâm là: Câu 6.

A.
$$I(8;-2;0)$$
.

B.
$$I(-4;1;0)$$
.

B.
$$I(-4;1;0)$$
. **C.** $I(-8;2;0)$. **D.** $I(4;-1;0)$.

D.
$$I(4;-1;0)$$

Hướng dẫn giải:

Phương trình mặt cầu (S) có dạng $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$ với $a^2 + b^2 + c^2 - d > 0$, có tâm I(a;b;c), bán kính $R = \sqrt{a^2 + b^2 + c^2 - d}$.

Lựa chọn đáp án A.

Mặt cầu (S): $x^2 + y^2 + z^2 - 4x + 1 = 0$ có tọa độ tâm và bán kính R là: Câu 7.

A.
$$I(2;0;0), R = \sqrt{3}.$$

B.
$$I(2;0;0), R=3.$$

C.
$$I(0;2;0)$$
, $R = \sqrt{3}$.

D.
$$I(-2;0;0)$$
, $R = \sqrt{3}$.

Hướng dẫn giải:

Phương trình mặt cầu (S) có dạng $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$ với $a^2 + b^2 + c^2 - d > 0$, có tâm I(a;b;c), bán kính $R = \sqrt{a^2 + b^2 + c^2 - d}$.

Lựa chọn đáp án A.

Phương trình mặt cầu có tâm I(-1;2;-3), bán kính R=3 là: Câu 8.

A.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 9$$
.

B.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 3$$
.

C.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 9$$
.

D.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 9$$
.

Hướng dẫn giải:

Mặt cầu có tâm I(-1;2;-3), bán kính R=3 có hương trình : $(x+1)^2 + (y-2)^2 + (z+3)^2 = 9$. Lựa chọn đáp án A.

Mặt cầu $(S):(x+y)^2 = 2xy - z^2 + 1 - 4x$ có tâm là: Câu 9.

A.
$$I(-2;0;0)$$
.

B.
$$I(4;0;0)$$
.

C.
$$I(-4;0;0)$$
. **D.** $I(2;0;0)$.

D.
$$I(2;0;0)$$

Hướng dẫn giải:

Biến đổi
$$(x+y)^2 = 2xy - z^2 + 1 - 4x \Leftrightarrow x^2 + y^2 + z^2 + 4x - 1 = 0$$
.

Vậy mặt cầu có tâm I(-2;0;0).

Lựa chọn đáp án A.

Câu 10. Đường kính của mặt cầu (S): $x^2 + y^2 + (z-1)^2 = 4$ bằng:

Hướng dẫn giải:

Mặt cầu (S) có bán kính R = 2 suy ra đường kính có độ dài: 2R = 4.

Lựa chọn đáp án A.

Câu 11. Mặt cầu có phương trình nào sau đây có tâm là I(-1;1;0)?

A.
$$x^2 + y^2 + z^2 - 2x + 2y = 0$$
.

B.
$$x^2 + y^2 + z^2 + 2x - 2y + 1 = 0$$
.

C.
$$2x^2 + 2y^2 = (x+y)^2 - z^2 + 2x - 1 - 2xy$$
.
D. $(x+y)^2 = 2xy - z^2 + 1 - 4x$.

D.
$$(x+y)^2 = 2xy - z^2 + 1 - 4x$$
.

Hướng dẫn giải:

Phương trình mặt cầu (S) có dang $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$ với $a^2 + b^2 + c^2 - d > 0$, có tâm I(a;b;c), bán kính $R = \sqrt{a^2 + b^2 + c^2 - d}$.

Lưa chon đáp án A.

Câu 12. Mặt cầu (S): $3x^2 + 3y^2 + 3z^2 - 6x + 12y + 2 = 0$ có bán kính bằng:

A.
$$\frac{\sqrt{7}}{3}$$
.

B.
$$\frac{2\sqrt{7}}{3}$$
.

B.
$$\frac{2\sqrt{7}}{3}$$
. C. $\frac{\sqrt{21}}{3}$.

D.
$$\sqrt{\frac{13}{3}}$$
.

Hướng dẫn giải:

Biến đổi $3x^2 + 3y^2 + 3z^2 - 6x + 12y + 2 = 0 \Leftrightarrow x^2 + y^2 + z^2 - 2x + 4y + \frac{2}{3} = 0$ có tâm I(1; -2; 0),

bán kính $R = \sqrt{\frac{13}{2}}$.

Lua chon đáp án A.

Câu 13. Gọi *I* là tâm mặt cầu (S): $x^2 + y^2 + (z-2)^2 = 4$. Độ dài $|\overrightarrow{OI}|$ (*O* là gốc tọa độ) bằng:

A. 2.

B. 4.

C. 1.

D. $\sqrt{2}$.

Hướng dẫn giải:

Mặt cầu (S) có tâm $I(0;0;2) \Rightarrow \overrightarrow{OI} = (0;0;2) \Rightarrow |\overrightarrow{OI}| = 2$.

Lựa chọn đáp án A.

Câu 14. Phương trình mặt cầu có bán kính bằng 3 và tâm là giao điểm của ba trục toạ độ?

A.
$$x^2 + y^2 + z^2 - 6z = 0$$
.

B.
$$x^2 + y^2 + z^2 - 6y = 0$$
.

$$C. x^2 + y^2 + z^2 = 9.$$

D.
$$x^2 + y^2 + z^2 - 6x = 0$$
.

Hướng dẫn giải:

Mặt cầu tâm O(0;0;0) và bán kính R=3 có phương trình: $(S): x^2 + y^2 + z^2 = 9$.

Lựa chọn đáp án A.

Câu 15. Mặt cầu (S): $x^2 + y^2 + z^2 - 2x + 10y + 3z + 1 = 0$ đi qua điểm có tọa độ nào sau đây?

B.
$$(3;-2;-4)$$
.

$$\mathbf{C}$$
. $(4;-1;0)$.

D.
$$(-1;3;-1)$$
.

Hướng dẫn giải:

Lần lượt thay tọa độ các điểm vào phương trình mặt cầu. Tọa độ điểm nào thỏa mãn phương trình thì điểm đó thuộc mặt cầu.

Lựa chọn đáp án A.

Câu 16. Mặt cầu tâm I(-1;2;-3) và đi qua điểm A(2;0;0) có phương trình:

A.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 22$$
.

B.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 11$$
.

C.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 22$$
.

D.
$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 22$$
.

Hướng dẫn giải:

Ta có:
$$\overrightarrow{IA} = (3, -2, 3) \Rightarrow IA = \sqrt{22}$$
.

Vậy
$$(S): (x+1)^2 + (y-2)^2 + (z+3)^2 = 22$$
.

Lựa chọn đáp án A.

Câu 17. Cho hai điểm A(1;0;-3) và B(3;2;1). Phương trình mặt cầu đường kính AB là:

A.
$$x^2 + y^2 + z^2 - 4x - 2y + 2z = 0$$
.

B.
$$x^2 + y^2 + z^2 + 4x - 2y + 2z = 0$$
.

C.
$$x^2 + y^2 + z^2 - 2x - y + z - 6 = 0$$
.

D.
$$x^2 + y^2 + z^2 - 4x - 2y + 2z + 6 = 0$$
.

Hướng dẫn giải:

Ta có $\overrightarrow{AB} = (2;2;4) \Rightarrow AB = 2\sqrt{6}$. Mặt cầu đường kính AB có tâm I là trung điểm AB nên I(2;1;-1), bán kính $R = \frac{AB}{2} = \sqrt{6}$.

Lựa chọn đáp án ${\bf A}$.

Câu 18. Nếu mặt cầu (S) đi qua bốn điểm M(2;2;2), N(4;0;2), P(4;2;0) và Q(4;2;2) thì tâm I của (S) có toạ độ là:

A.
$$(-1,-1,0)$$
.

(1)

Hướng dẫn giải:

Gọi phương trình mặt cầu (S) : $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$, $\left(a^2 + b^2 + c^2 - d > 0\right)$.

Do
$$M(2;2;2) \in (S) \Leftrightarrow -4a-4b-4c+d=-12$$

$$N(4;0;2) \in (S) \Leftrightarrow -8a - 4c + d = -20 \tag{2}$$

$$P(4;2;0) \in (S) \Leftrightarrow -8a - 4b + d = -20$$
 (3)

$$Q(4;2;2) \in (S) \Leftrightarrow -8a - 4b - 4c + d = -24$$
 (4)

Giải hệ (1), (2), (3), (4) ta có a = 1, b = 2, c = 1, d = -8, suy ra mặt cầu (S) có tâm I(1;2;1)Lựa chọn đáp án A.

Bán kính mặt cầu đi qua bốn điểm M(1;0;1), N(1;0;0), P(2;1;0) và Q(1;1;1) bằng: **Câu 19.**

A.
$$\frac{\sqrt{3}}{2}$$
.

B.
$$\sqrt{3}$$
.

D.
$$\frac{3}{2}$$
.

Hướng dẫn giải:

Gọi phương trình mặt cầu (S) có dạng $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$ $a^2 + b^2 + c^2 - d > 0$. Do (S) đi qua bốn điểm M, N, P, Q nên ta có hệ phương trình:

$$\begin{cases}
-2a - 2c + d = -2 \\
-2a + d = -1 \\
-4a - 2b + d = -5 \\
-2a - 2b - 2c + d = -3
\end{cases} \Leftrightarrow \begin{cases}
a = \frac{3}{2} \\
b = \frac{1}{2} \text{ Vậy } R = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 - 2} = \frac{\sqrt{3}}{2}.\\
c = \frac{1}{2} \\
d = 2
\end{cases}$$

Lựa chọn đáp án A.

Cho mặt cầu (S): $x^2 + y^2 + z^2 - 4 = 0$ và 4 điểm M(1;2;0), N(0;1;0), P(1;1;1), Q(1;-1;2). **Câu 20.** Trong bốn điểm đó, có bao nhiều điểm **không** nằm trên mặt cầu (S)?

A. 2 điểm.

B. 4 điểm.

C. 1 điểm.

D. 3 điểm.

Hướng dẫn giải:

Lần lượt thay tọa độ các điểm M, N, P, Q vào phương trình mặt cầu (S), ta thấy chỉ có tọa độ điểm Q thỏa mãn.

Lựa chọn đáp án A.

Mặt cầu (S) tâm I(-1;2;-3) và tiếp xúc với mặt phẳng (P): x+2y+2z+1=0 có phương **Câu 21.**

A.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = \frac{4}{9}$$
. **B.** $(x+1)^2 + (y-2)^2 + (z+3)^2 = \frac{4}{9}$.

B.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = \frac{4}{9}$$
.

C.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = \frac{4}{3}$$
.

D.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = \frac{16}{3}$$
.

Hướng dẫn giải:

Mặt cầu (S) tâm I, tiếp xúc với mặt phẳng $(P) \Leftrightarrow d(I;(P)) = R \Leftrightarrow R = \frac{2}{3}$.

$$\Rightarrow$$
 $(S): (x+1)^2 + (y-2)^2 + (z+3)^2 = \frac{4}{9}$.

Lựa chọn đáp án A.

Phương trình mặt cầu nào dưới đây có tâm I(2;1;3) và tiếp xúc với mặt phẳng **Câu 22.** (P): x+2y+2z+2=0?

A.
$$(x-2)^2 + (y-1)^2 + (z-3)^2 = 16$$
.

B.
$$(x-2)^2 + (y-1)^2 + (z-1)^2 = 4$$
.

C.
$$(x-2)^2 + (y-1)^2 + (z-1)^2 = 25$$
.

D.
$$(x+2)^2 + (y+1)^2 + (z+1)^2 = 9$$
.

Hướng dẫn giải:

Do mặt cầu S(I;R) tiếp xúc với mặt phẳng $(P) \Leftrightarrow d(I;(P)) = R \Leftrightarrow R = 4$.

$$\Rightarrow$$
 (S): $(x-2)^2 + (y-1)^2 + (z-3)^2 = 16$.

Lựa chọn đáp án A.

Mặt cầu (S) tâm I(3;-3;1) và đi qua A(5;-2;1) có phương trình: Câu 23.

A.
$$(x-3)^2 + (y+3)^2 + (z-1)^2 = 5$$
. **B.** $(x-5)^2 + (y+2)^2 + (z-1)^2 = 5$.

B.
$$(x-5)^2 + (y+2)^2 + (z-1)^2 = 5$$
.

$$\mathbf{C.}(x-3)^2 + (y+3)^2 + (z-1)^2 = \sqrt{5}.$$

$$\mathbf{D.}(x-5)^2 + (y+2)^2 + (z-1)^2 = \sqrt{5}.$$

D.
$$(x-5)^2 + (y+2)^2 + (z-1)^2 = \sqrt{5}$$
.

Hướng dẫn giải:

• Bán kính mặt cầu là:
$$R = IA = \sqrt{2^2 + 1^2 + 0^2} = \sqrt{5}$$

• Vậy phương trình của mặt cầu là:
$$(S):(x-3)^2+(y+3)^2+(z-1)^2=5$$
.

Lua chon đáp án A.

Câu 24. Phương trình mặt trình mặt cầu có đường kính AB với A(1;3;2), B(3;5;0) là:

A.
$$(x-2)^2 + (y-4)^2 + (z-1)^2 = 3$$
.

B.
$$(x-2)^2 + (y-4)^2 + (z-1)^2 = 2$$
.

C.
$$(x+2)^2 + (y+4)^2 + (z+1)^2 = 2$$
.

D.
$$(x+2)^2 + (y+4)^2 + (z+1)^2 = 3$$
.

Hướng dẫn giải:

• Trung điểm của đoạn thẳng
$$AB$$
 là $I(2;4;1)$, $AB = \sqrt{2^2 + 2^2 + (-2)^2} = 2\sqrt{3}$

• Mặt cầu đường kính
$$AB$$
 có tâm $I(2;4;1)$, bán kính $R = \frac{AB}{2} = \sqrt{3}$

• Vậy phương trình của mặt cầu là:
$$(x-2)^2 + (y-4)^2 + (z-1)^2 = 3$$
.

[Phương pháp trắc nghiệm]

• Ta có:
$$2R = AB = \sqrt{2^2 + 2^2 + (-2)^2} = 2\sqrt{3} \iff R = \sqrt{3}$$
.

⇒ Các đáp án B và C bi loai.

• Với đáp án D thì:
$$(1+2)^2 + (3+4)^2 + (2+1)^2 = 3 \Leftrightarrow 67 = 3 \Rightarrow A \notin (S)$$

⇒ Đáp án D bi loai.

Lựa chọn đáp án A.

Cho I(1,2,4) và mặt phẳng (P): 2x+2y+z-1=0. Mặt cầu tâm I và tiếp xúc với mặt phẳng Câu 25. (P), có phương trình là:

A.
$$(x-1)^2 + (y+2)^2 + (z-4)^2 = 4$$

A.
$$(x-1)^2 + (y+2)^2 + (z-4)^2 = 4$$
. **B.** $(x+1)^2 + (y+2)^2 + (z+4)^2 = 1$.

$$C.(x-1)^2 + (y-2)^2 + (z-4)^2 = 4.$$

D.
$$(x-1)^2 + (y-2)^2 + (z-4)^2 = 3$$
.

Hướng dẫn giải:

• Bán kính mặt cầu là :
$$R = d(I,(\alpha)) = \frac{|2.1 + 2.2 + 4 - 1|}{\sqrt{2^2 + 2^2 + 1^2}} = 3$$
.

• Phương trình mặt cầu là: $(x-1)^2 + (y-2)^2 + (z-4)^2 = 3$.

Lua chon đáp án A.

Câu 26. Cho đường thẳng $d: \frac{x}{1} = \frac{y-1}{2} = \frac{z+1}{-1}$ và điểm A(5;4;-2). Phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy) là:

A.
$$(S): (x-1)^2 + (y+2)^2 + z^2 = 64.$$

B.(S):
$$(x+1)^2 + (y-1)^2 + z^2 = 9$$
.

C.(S):
$$(x+1)^2 + (y+1)^2 + z^2 = 65$$
.

D.(S):
$$(x+1)^2 + (y-1)^2 + (z+2)^2 = 65$$
.

Hướng dẫn giải:

- •Mặt phẳng (Oxy) có phương trình z = 0
- Tâm I là giao điểm của d với mặt phẳng $(Oxy) \Rightarrow I \in d \Rightarrow I(t;1+2t;-1-t)$
- $I \in (Oxy) \Rightarrow -1 t = 0 \Rightarrow t = -1 \Rightarrow I(-1, -1, 0) \Rightarrow \overrightarrow{IA} = (6, 5, -2)$
- Bán kính mặt cầu là: $R = IA = \sqrt{6^2 + 5^2 + (-2)^2} = \sqrt{65}$
- Vậy phương trình của mặt cầu là $(S):(x+1)^2+(y+1)^2+z^2=65$.

Lựa chọn đáp án A.

Lưu ý: Để làm được bài này học sinh phải nhớ được phương trình tổng quát của mặt phẳng (Oxy) và loại ngay được đáp án **D**

Câu 27. Cho ba điểm A(6,-2,3), B(0,1,6), C(2,0,-1), D(4,1,0). Khi đó mặt cầu ngoại tiếp tứ diện ABCD có phương trình là:

A.
$$x^2 + y^2 + z^2 - 4x + 2y - 6z - 3 = 0$$
.

A.
$$x^2 + y^2 + z^2 - 4x + 2y - 6z - 3 = 0$$
. **B.** $x^2 + y^2 + z^2 + 4x - 2y + 6z - 3 = 0$.

C.
$$x^2 + y^2 + z^2 - 2x + y - 3z - 3 = 0$$
. **D.** $x^2 + y^2 + z^2 + 2x - y + 3z - 3 = 0$.

D.
$$x^2 + y^2 + z^2 + 2x - y + 3z - 3 = 0$$

Hướng dẫn giải:

• Phương trình mặt cầu (S) có dạng: $x^2 + y^2 + z^2 - 2Ax - 2By - 2Cz + D = 0$, ta có :

$$\begin{cases} A(6;-2;3) \in (S) \\ B(0;1;6) \in (S) \\ C(2;0;-1) \in (S) \\ D(4;1;0) \in (S) \end{cases} \Leftrightarrow \begin{cases} 49-12A+4B-6C+D=0 \ (1) \\ 37 \qquad -2B-12C+D=0 \ (2) \\ 5-4A \qquad +2C+D=0 \ (3) \\ 17-8A-2B \qquad +D=0 \ (4) \end{cases}$$

• Lấy (1)-(2); (2)-(3); (3)-(4) ta được hệ:

$$\begin{cases} -12A + 6B + 6C = -12 \\ 4A - 2B - 14C = -32 \\ 4A + 2B + 2C = 12 \end{cases} \Leftrightarrow \begin{cases} A = 2 \\ B = -1 \\ C = 3 \end{cases} \Rightarrow D = -3$$

• Vậy phương trình mặt cầu là: $x^2 + y^2 + z^2 - 4x + 2y - 6z - 3 = 0$.

Lựa chọn đáp án A.

Lưu ý: Ở bài này máy tính Casio giúp chúng ta giải nhanh chóng hệ phương trình bậc nhất ba ấn được tạo ra để tìm các hệ số của phương trình mặt cầu tổng quát. (Ta cũng có thể dùng máy tính cầm tay thay trực tiếp tọa độ các điểm vào từng đáp án và tìm ra đáp án đúng)

Câu 28. Cho ba điểm A(2;0;1), B(1;0;0), C(1;1;1) và mặt phẳng (P): x+y+z-2=0. Phương trình mặt cầu đi qua ba điểm A, B, C và có tâm thuộc mặt phẳng (P) là:

A.
$$x^2 + y^2 + z^2 - x + 2z + 1 = 0$$
.

B.
$$x^2 + y^2 + z^2 - x - 2y + 1 = 0$$
.

C.
$$x^2 + y^2 + z^2 - 2x + 2y + 1 = 0$$
.

D.
$$x^2 + y^2 + z^2 - 2x - 2z + 1 = 0$$
.

Hướng dẫn giải:

• Phương mặt cầu (S) có dạng: $x^2 + y^2 + z^2 - 2Ax - 2By - 2Cz + D = 0$, ta có :

$$\begin{cases} A(2;0;1) \in (S) \\ B(1;0;0) \in (S) \\ C(1;1;1) \in (S) \\ I \in (P) \end{cases} \Leftrightarrow \begin{cases} -4A & -2C+D=-5 & (1) \\ -2A & +D=-1 & (2) \\ -2A-2B-2C+D=-3 & (3) \\ A+B+C=2 & (4) \end{cases}$$

• Lấy (1)-(2); (2)-(3); kết hợp (4) ta được hệ:

$$\begin{cases}
-2A - 2C = -4 \\
2B + 2C = 2 \\
A + B + C = 2
\end{cases} \Leftrightarrow \begin{cases}
A = 1 \\
B = 0 \Rightarrow D = 1.
\end{cases}$$

• Vậy phương trình mặt cầu là : $x^2 + y^2 + z^2 - 2x - 2z + 1 =$

Lựa chọn đáp án A.

Lưu ý: Ở câu này nếu nhanh trí chúng ta có thể sử dụng máy tính cầm tay thay ngay tọa độ tâm của các mặt cầu ở 4 đáp án trên vào **phương** trình mặt phẳng (P) để loại ngay được các đáp án có tọa độ tâm không thuộc mặt phẳng (P)

Phương trình mặt cầu tâm I(1;-2;3) và tiếp xúc với trục Oy là: **Câu 29.**

A.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 9$$
.

B.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 16$$
.

C.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 8$$
.

D.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 10$$
.

Hướng dẫn giải:

- Gọi M là hình chiếu của I(1,-2,3) lên O_{Y} , ta có M(0,-2,0).
- $\overrightarrow{IM} = (-1, 0, -3) \Rightarrow R = IM = \sqrt{10}$ là bán kính mặt cầu cần tìm.
- Vậy phương trình mặt cầu là : $(x-1)^2 + (y+2)^2 + (z-3)^2 = 10$.

Lựa chọn đáp án A.

Câu 30. Cho các điểm A(-2;4;1), B(2;0;3) và đường thẳng $d:\begin{cases} x=1+t\\ y=1+2t \end{cases}$. Gọi (S) là mặt cầu đi qua z=-2+t

A, B và có tâm thuộc đường thẳng d. Bán kính mặt cầu (S) bằng:

A.
$$3\sqrt{3}$$
.

B.
$$\sqrt{6}$$
.

D.
$$2\sqrt{3}$$
.

Hướng dẫn giải:

- Tâm $I \in d \Rightarrow I(1+t;1+2t;-2+t)$.
- $\overrightarrow{AI} = (3+t; -3+2t; -3+t); \overrightarrow{BI} = (-1+t; 1+2t; -5+t)$
- Vì (S) đi qua A, B nên ta có

$$IA = IB \Leftrightarrow IA^2 = IB^2 \Leftrightarrow (3+t)^2 + (-3+2t)^2 + (-3+t)^2 = (-1+t)^2 + (1+2t)^2 + (-5+t)^2$$

 $\Leftrightarrow 4t = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow{IA} = (3; -3; -3)$

• Vậy bán kính mặt cầu (S): $R = IA = \sqrt{3^2 + (-3)^2 + (-3)^2} = 3\sqrt{3}$.

Lựa chọn đáp án A.

Câu 31. Cho điểm A(1;-2;3) và đường thẳng d có phương trình $\frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{-1}$. Phương trình mặt cầu tâm A, tiếp xúc với d là:

A.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = \sqrt{50}$$
. **B.** $(x-1)^2 + (y+2)^2 + (z-3)^2 = 5$.

B.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 5$$
.

C.
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 50$$
.
D. $(x+1)^2 + (y-2)^2 + (z+3)^2 = 50$.

D.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 50.$$

Hướng dẫn giải:

•
$$d(A,d) = \frac{\left| \left[\overrightarrow{BA}, \overrightarrow{a} \right] \right|}{\left| \overrightarrow{a} \right|} = \frac{\sqrt{4 + 196 + 100}}{\sqrt{4 + 1 + 1}} = 5\sqrt{2}$$
. Trong đó $B(-1;2;-3) \in d$

• Phương trình mặt cầu tâm A(1,-2,3), bán kính $R=5\sqrt{2}$ là

$$(S):(x-1)^2+(y+2)^2+(z-3)^2=50.$$

Lựa chọn đáp án C.

Câu 32. Cho đường thẳng d: $\frac{x-1}{3} = \frac{y+1}{1} = \frac{z}{1}$ và mặt phẳng (P): 2x + y - 2z + 2 = 0. Phương trình mặt cầu (S) có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với (P) và đi qua điểm A(1;-1;1) là:

A.
$$(x+2)^2 + (y+2)^2 + (z+1)^2 = 1$$
.

B.
$$(x-4)^2 + y^2 + (z-1)^2 = 1$$
.

$$\mathbf{C} \cdot (x-1)^2 + (y+1)^2 + z^2 = 1.$$

D.
$$(x-3)^2 + (y-1)^2 + (z-1)^2 = 1$$
.

Hướng dẫn giải:

• Gọi I là tâm của (S).

 $I \in d \Rightarrow I(1+3t;-1+t;t)$. Bán kính $R = IA = \sqrt{11t^2 - 2t + 1}$.

• Mặt phẳng (P) tiếp xúc với (S) nên $d(I,(P)) = \frac{|5t+3|}{3} = R$.

$$\Leftrightarrow 37t^2 - 24t = 0 \Leftrightarrow \begin{bmatrix} t = 0 & \Rightarrow R = 1 \\ t = \frac{24}{37} & \Rightarrow R = \frac{77}{37} \end{bmatrix}.$$

Vì (S) có bán kính nhỏ nhất nên chọn t = 0, R = 1. Suy ra I(1, -1, 0).

• Vậy phương trình mặt cầu (S): $(x-1)^2 + (y+1)^2 + z^2 = 1$.

Lựa chọn đáp án C.

Câu 33. Phương trình mặt cầu có tâm I(1,2,3) và tiếp xúc với mặt phẳng (Oxz) là:

$$\mathbf{A.} \, x^2 + y^2 + z^2 + 2x + 4y + 6z - 10 = 0$$

A.
$$x^2 + y^2 + z^2 + 2x + 4y + 6z - 10 = 0$$
. **B.** $x^2 + y^2 + z^2 - 2x - 4y - 6z + 10 = 0$.

C.
$$x^2 + y^2 + z^2 - 2x - 4y + 6z + 10 = 0$$
.

D.
$$x^2 + y^2 + z^2 + 2x + 4y + 6z - 10 = 0$$
.

Hướng dẫn giải:

• Gọi M là hình chiếu của I(1;2;3) lên mặt phẳng (Oxz), ta có: M(1;0;3).

• $\overrightarrow{IM} = (0, -2, 0) \Rightarrow R = IM = 2$ là bán kính mặt cầu cần tìm.

• Vậy phương trình mặt cầu là $(x-1)^2 + (y-2)^2 + (z-3)^2 = 4$

Hay
$$x^2 + y^2 + z^2 - 2x - 4y - 6z + 10 = 0$$
.

Lua chon đáp án B.

Mặt phẳng (P) tiếp xúc với mặt cầu tâm I(1;-3;2) tại điểm M(7;-1;5) có phương trình là: **Câu 34.**

A.
$$6x + 2y + 3z + 55 = 0$$
.

B.
$$3x + y + z - 22 = 0$$
.

C.
$$6x + 2y + 3z - 55 = 0$$
.

D.
$$3x + y + z + 22 = 0$$
.

Hướng dẫn giải:

• Mặt cầu (S) có tâm I(1,-3,2)

• Vì mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm M nên mặt phẳng (P) qua M(7;-1;5)và có vecto pháp tuyến $\vec{n} = \vec{IM} = (6,2,3)$

• Vậy phương trình mặt phẳng (P): 6x + 2y + 3z - 55 = 0.

Lựa chọn đáp án C.

Lưu ý: Vì mặt phẳng tiếp xúc với mặt cầu tại điểm M(7;-1;5) nên điểm M thuộc mặt phẳng cần tìm hơn nữa khoảng cách từ tâm I(1;-3;2) đến mặt phẳng cần tìm bằng IM cũng chính là bán kính mặt cầu. Từ các nhận xét đó để tìm ra đáp án của bài này ta có thể làm như sau: B1: Thay tọa độ M vào các đáp án để **loại** ra mặt phẳng không chứa M B2: Tính IM và d(I;(P)) và kết luận

Câu 35. Cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x - 4y - 6z - 2 = 0$ và mặt phẳng $(\alpha): 4x + 3y - 12z + 10 = 0$. Mặt phẳng tiếp xúc với (S) và song song với (α) có phương trình là:

A. 4x + 3y - 12z + 78 = 0.

B.
$$4x + 3y - 12z - 78 = 0$$
 hoặc $4x + 3y - 12z + 26 = 0$.

 $\mathbf{C.}4x + 3y - 12z - 26 = 0.$

D.
$$4x + 3y - 12z + 78 = 0$$
 hoặc $4x + 3y - 12z - 26 = 0$.

Hướng dẫn giải:

- Mặt cầu (S) có tâm I(1;2;3) và bán kính $R = \sqrt{1^2 + 2^2 + 3^2 + 2} = 4$
- Gọi (β) là mặt phẳng tiếp xúc với (S) và song song với (α) .
- Vì $(\beta)//(\alpha) \Rightarrow (\beta): 4x+3y-12z+D=0 \ (D \neq 10)$
- Mặt phẳng (β) tiếp xúc với mặt cầu $(S) \Leftrightarrow d(I,(\beta)) = R \Leftrightarrow \frac{|4.1+3.2-12.3+D|}{\sqrt{4^2+3^2+\left(-12\right)^2}} = 4$

$$\Leftrightarrow \left|D-26\right| = 52 \Leftrightarrow \begin{bmatrix} D=78 \\ D=-26 \end{bmatrix} \text{ (thỏa điều kiện)}$$

• Vậy phương trình mặt phẳng (β) : 4x+3y-12z+78=0 hoặc (β) : 4x+3y-12z-26=0. Lựa chọn đáp án **D.**

Lưu ý: Nếu hình dung phác họa hình học bài toán được thì ta có thể dự đoán được có 2 mặt phẳng thỏa mãn yêu cầu đề bài.

Câu 36. Cho mặt cầu $(S):(x-2)^2+(y+1)^2+z^2=14$. Mặt cầu (S) cắt trục Oz tại A và B $(z_A<0)$. Phương trình nào sau đây là phương trình tiếp diện của (S) tại B:

A.
$$2x - y - 3z + 9 = 0$$
.

B.
$$2x - y - 3z - 9 = 0$$
.

C.
$$x-2y-z-3=0$$
.

D.
$$x-2v+z+3=0$$
.

Hướng dẫn giải:

- Mặt cầu (S) có tâm I(2;-1;0)
- Vì $A \in Oz \Rightarrow A(0;0;z_A)$ $(z_A < 0)$

•
$$A \in (S) \Rightarrow (0-2)^2 + (0+1)^2 + z_A^2 = 14 \Rightarrow z_A^2 = 9 \Rightarrow z_A = -3$$

Nên mặt cầu (S) cắt trục Oz tại A(0;0;-3) và B(0;0;3)

Gọi (α) là tiếp diện của mặt cầu (S) tại B.

- Mặt phẳng (α) qua B(0;0;3) và có vecto pháp tuyến $\vec{n} = \vec{lB} = (-2;1;3)$
- Vậy phương trình mặt phẳng (α) : 2x y 3z + 9 = 0.

Lựa chọn đáp án A.

Câu 37. Cho 4 điềm A(3;-2;-2), B(3;2;0), C(0;2;1) và D(-1;1;2). Mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD) có phương trình là:

A.
$$(x-3)^2 + (y+2)^2 + (z+2)^2 = \sqrt{14}$$
.

B.
$$(x+3)^2 + (y-2)^2 + (z-2)^2 = 14$$
.

C.
$$(x+3)^2 + (y-2)^2 + (z-2)^2 = \sqrt{14}$$
.

D.
$$(x-3)^2 + (y+2)^2 + (z+2)^2 = 14$$
.

Hướng dẫn giải:

• Mặt phẳng (BCD) đi qua B(3;2;0) và có vecto pháp tuyến $\vec{n} = \lceil \overrightarrow{BC}, \overrightarrow{BD} \rceil = (1;2;3)$ \Rightarrow (BCD): x + 2y + 3z - 7 = 0

• Vì mặt cầu (S) có tâm A tiếp xúc với mặt phẳng (BCD) nên bán kính

$$R = d\left(A, (BCD)\right) = \frac{\left|3 + 2 \cdot (-2) + 3 \cdot (-2) - 7\right|}{\sqrt{1^2 + 2^2 + 3^2}} = \sqrt{14}.$$

• Vậy phương trình mặt cầu $(S):(x-3)^2+(y+2)^2+(z+2)^2=14$.

Lựa chọn đáp án D.

Cho mặt phẳng (P): 2x+3y+z-2=0. Mặt cầu (S) có tâm I thuộc trục Oz, bán kính Câu 38. bằng $\frac{2}{\sqrt{14}}$ và tiếp xúc mặt phẳng (P) có phương trình:

A.
$$x^2 + y^2 + (z-3)^2 = \frac{2}{7}$$
 hoặc $x^2 + y^2 + (z-4)^2 = \frac{2}{7}$.

B.
$$x^2 + y^2 + (z-1)^2 = \frac{2}{7}$$
 hoặc $x^2 + y^2 + (z+2)^2 = \frac{2}{7}$.

C.
$$x^2 + y^2 + z^2 = \frac{2}{7}$$
 hoặc $x^2 + y^2 + (z - 4)^2 = \frac{2}{7}$.

D.
$$x^2 + y^2 + z^2 = \frac{2}{7}$$
 hoặc $x^2 + y^2 + (z - 1)^2 = \frac{2}{7}$.

Hướng dẫn giải:

• Vì tâm $I \in Oz \Rightarrow I(0;0;z)$

• Mặt cầu (S) có tâm I tiếp xúc với mặt phẳng

$$(P) \Leftrightarrow d(I,(\beta)) = R \Leftrightarrow \frac{|2.0+3.0+1.z-2|}{\sqrt{2^2+3^2+1^2}} = \frac{2}{\sqrt{14}}$$

$$\Leftrightarrow |z-2| = 2 \Leftrightarrow \begin{bmatrix} z = 0 \Rightarrow I(0;0;0) \\ z = 4 \Rightarrow I(0;0;4) \end{bmatrix}$$

• Vậy phương trình mặt cầu $.(S): x^2 + y^2 + z^2 = \frac{2}{7}$ hoặc $(S): x^2 + y^2 + (z - 4)^2 = \frac{2}{7}$.

Lựa chọn đáp án C.

Câu 39. Cho đường thẳng $d: \frac{x+5}{2} = \frac{y-7}{-2} = \frac{z}{1}$ và điểm I(4;1;6). Đường thẳng d cắt mặt cầu (S) tâm I tại hai điểm A, B sao cho AB = 6. Phương trình của mặt cầu (S) là:

A.
$$(x-4)^2 + (y-1)^2 + (z-6)^2 = 18$$
.

B.
$$(x-4)^2 + (y-1)^2 + (z-6)^2 = 12$$
.
D. $(x-4)^2 + (y-1)^2 + (z-6)^2 = 9$.

C.
$$(x-4)^2 + (y-1)^2 + (z-6)^2 = 16$$
.

D.
$$(x-4)^2 + (y-1)^2 + (z-6)^2 = 9$$

Hướng dẫn giải:

• $\vec{a} = (2; -2; 1)$ là vecto chỉ phương của d.

• Gọi H là hình chiếu vuông góc của I trên d là trung điểm của $AB \Rightarrow HA = 3$

• Ta có :
$$\begin{cases} H \in d \\ \overrightarrow{IH} \cdot \overrightarrow{a} = 0 \end{cases}$$

$$H \in d \Rightarrow H(-5+2t;7-2t;t)$$

$$\Rightarrow \overrightarrow{IH} = (2t - 9; 6 - 2t; t - 6)$$

•
$$\overrightarrow{IH} \cdot \overrightarrow{a} = 0 \Leftrightarrow t = 4 \Rightarrow \overrightarrow{IH} = (-1, -2, -2) \Rightarrow IH = 3$$
.

Trong $\triangle IAH$ vuông tại H có: $IA^2 = IH^2 + HA^2 = 9 + 9 = 18$

• Vây
$$(S):(x-4)^2+(y-1)^2+(z-6)^2=18$$
.

Lưa chon đáp án A.

Câu 40. Cho hai mặt phẳng (P), (Q) có phương trình (P): x-2y+z-1=0 và (Q): 2x+y-z+3=0. Mặt cầu có tâm nằm trên mặt phẳng (P) và tiếp xúc với mặt phẳng (Q) tại điểm M, biết rằng M thuộc mặt phẳng (Oxy) và có hoành độ $x_M = 1$, có phương trình là:

A.
$$(x-21)^2 + (y-5)^2 + (z+10)^2 = 600.$$

B.
$$(x+19)^2 + (y+15)^2 + (z-10)^2 = 600.$$

C.
$$(x-21)^2 + (y-5)^2 + (z+10)^2 = 100$$
.

C.
$$(x-21)^2 + (y-5)^2 + (z+10)^2 = 100$$
. D. $(x+21)^2 + (y+5)^2 + (z-10)^2 = 600$.

Hướng dẫn giải:

- Vì $M \in (Oxy)$ và có hoành độ bằng 1 nên M(1; y; 0).
- Lại có, mặt cầu tiếp xúc với mặt phẳng (Q) nên $M \in (Q) \Rightarrow M(1,-5,0)$.
- Gọi I(a;b;c) là tâm của mặt cầu (S) cần tìm.

Ta có (S) tiếp xúc với mp (Q) tại M nên $IM \perp (Q)$.

Mặt phẳng (Q) có vecto pháp tuyến n = (2,1,-1).

• Ta có:
$$IM \perp (Q) \Leftrightarrow \overrightarrow{MI} = \overrightarrow{tn}, \ (t \in \mathbb{R}) \Leftrightarrow \begin{cases} a = 1 + 2t \\ b = -5 + t \\ c = -t \end{cases}$$

$$I \in (P) \Leftrightarrow 1 + 2t - 2(-5 + t) - t - 1 = 0 \Leftrightarrow t = 10 \Rightarrow I(21;5;-10).$$

Bán kính mặt cầu $R = d(I;(Q)) = 10\sqrt{6}$.

• Vậy phương trình mặt cầu $(S):(x-21)^2+(y-5)^2+(z+10)^2=600$.

Lựa chọn đáp án A.

Câu 41. Cho hai điểm M(1;0;4), N(1;1;2) và mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 2y - 2 = 0$. Mặt phẳng (P) qua M, N và tiếp xúc với mặt cầu (S) có phương trình:

A.
$$4x + 2y + z - 8 = 0$$
 hoặc $4x - 2y - z + 8 = 0$.

B.
$$2x + 2y + z - 6 = 0$$
 hoặc $2x - 2y - z + 2 = 0$.

C.
$$2x + 2y + z - 6 = 0$$
.

D.
$$2x - 2y - z + 2 = 0$$
.

Hướng dẫn giải:

- Ta có mặt cầu (S) có tâm I(1;-1;0) và bán kính R=2, $\overrightarrow{MN}=(0;1;-2)$
- Gọi $\vec{n} = (A, B, C)$ với $A^2 + B^2 + C^2 > 0$ là một vecto pháp tuyến của mặt phẳng (P).
- Vì (P) qua M, N nên $\vec{n} \perp \overrightarrow{MN} \Leftrightarrow \vec{n}.\overrightarrow{MN} = 0 \Leftrightarrow B 2C = 0$ (1)
- Mặt phẳng (P) qua M(1,0,4) và nhận n = (A,B,C) là vecto pháp tuyến nên có phương trình

$$A(x-1)+B(y-0)+C(z-4)=0 \Leftrightarrow Ax+By+Cz-A-4C=0$$
.

• Mặt phẳng
$$(P)$$
 tiếp xúc với (S) $\Leftrightarrow d(I;(P)) = R \Leftrightarrow \frac{|1.A - 1.B + 0.C - A - 4C|}{\sqrt{A^2 + B^2 + C^2}} = 2$

$$\Leftrightarrow |B+4C| = 2\sqrt{A^2 + B^2 + C^2} (2)$$

 $T\dot{u}(1) v\dot{a}(2) \Rightarrow A^2 - 4C^2 = 0$ (*)

• Trong (*), nếu C = 0 thì A = 0, và từ (1) suy ra B = 0 (vô lí). Do vậy $C \neq 0$.

Chọn $C = 1 \Rightarrow A = \pm 2$.

Với
$$A = 2$$
, $C = 1$, ta có $B = 2$. Khi đó $(P): 2x + 2y + z - 6 = 0$.

Với
$$A = -2$$
, $C = 1$, ta có $B = 2$. Khi đó $(P): 2x - 2y - z + 2 = 0$.

• Vậy phương trình mặt phẳng (P): 2x+2y+z-6=0 hoặc (P): 2x-2y-z+2=0. Lưa chon đáp án **B.**

Câu 42. Cho hai điểm A(1;-2;3), B(-1;0;1) và mặt phẳng (P):x+y+z+4=0. Phương trình mặt cầu (S) có bán kính bằng $\frac{AB}{6}$ có tâm thuộc đường thẳng AB và (S) tiếp xúc với mặt phẳng (P) là:

A.
$$(x-4)^2 + (y+3)^2 + (z-2)^2 = \frac{1}{3}$$
.

B.
$$(x-4)^2 + (y+3)^2 + (z-2)^2 = \frac{1}{3} \text{ hoặc } (x-6)^2 + (y+5)^2 + (z-4)^2 = \frac{1}{3}$$
.

C.
$$(x+4)^2 + (y-3)^2 + (z+2)^2 = \frac{1}{3}$$
.

D.
$$(x+4)^2 + (y-3)^2 + (z+2)^2 = \frac{1}{3} \text{ hoặc } (x+6)^2 + (y-5)^2 + (z+4)^2 = \frac{1}{3}.$$

Hướng dẫn giải:

- Ta có $\overrightarrow{AB} = (-2, 2, -2) = -2(1, -1, 1)$. Bán kính mặt cầu là $R = \frac{AB}{6} = \frac{\sqrt{3}}{3}$.
- ullet Tâm I của mặt cầu thuộc đường thẳng AB nên tọa độ I có dạng $I\left(1+t;-2-t;3+t\right)$

• Ta có: (S) tiếp xúc với mặt phẳng
$$(P) \Leftrightarrow d(I;(P)) = \frac{AB}{6} \Leftrightarrow \frac{|t+6|}{\sqrt{3}} = \frac{\sqrt{3}}{3} \Leftrightarrow \begin{bmatrix} t=-5\\ t=-7 \end{bmatrix}$$

•
$$t = -5 \Rightarrow I(-4;3;-2)$$
. Mặt cầu (S) có phương trình là $(x+4)^2 + (y-3)^2 + (z+2)^2 = \frac{1}{3}$.

•
$$t = -7 \Rightarrow I(-6;5;-4)$$
. Mặt cầu (S) có phương trình là $(x+6)^2 + (y-5)^2 + (z+4)^2 = \frac{1}{3}$.

Lựa chọn đáp án **D**.

Câu 43. Cho đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ và hai mặt phẳng $(P_1): x+2y+2z-2=0;$ $(P_2): 2x+y+2z-1=0$. Mặt cầu có tâm I nằm trên d và tiếp xúc với 2 mặt phẳng $(P_1), (P_2),$ có phương trình:

A.(S):
$$(x+1)^2 + (y+2)^2 + (z+3)^2 = 9$$
.

B.(S):
$$(x+1)^2 + (y+2)^2 + (z+3)^2 = 9$$
 hoặc (S): $\left(x + \frac{19}{17}\right)^2 + \left(y + \frac{16}{17}\right)^2 + \left(z + \frac{15}{17}\right)^2 = \frac{9}{289}$.
C.(S): $(x-1)^2 + (y-2)^2 + (z-3)^2 = 9$.

D.(S):
$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 9$$
 hoặc (S): $\left(x + \frac{19}{17}\right)^2 + \left(y - \frac{16}{17}\right)^2 + \left(z - \frac{15}{17}\right)^2 = \frac{9}{289}$.

Hướng dẫn giải:

- $I \in d \Rightarrow I(2t+1;t+2;2t+3)$
- Mặt cầu tiếp xúc với 2 mặt phẳng $\Leftrightarrow d(I;(P_1)) = d(I;(P_2))$

$$\Leftrightarrow |8t+9| = |9t+9| \Leftrightarrow \begin{bmatrix} 8t+9=9t+9 \\ 8t-9=-9t-9 \end{bmatrix} \Leftrightarrow \begin{bmatrix} t=0 \\ t=\frac{-18}{17} \end{bmatrix}$$

- $t = 0 \Rightarrow I(1;2;3); R = 3 \Rightarrow (S): (x-1)^2 + (y-2)^2 + (z-3)^2 = 9.$
- $t = -\frac{18}{17} \Rightarrow I\left(-\frac{19}{17}; \frac{16}{17}; \frac{15}{17}\right); R = \frac{3}{17} \Rightarrow (S): \left(x + \frac{19}{17}\right)^2 + \left(y \frac{16}{17}\right)^2 + \left(z \frac{15}{17}\right)^2 = \frac{9}{289}.$

Lựa chọn đáp án D.

Câu 44. Cho điểm A(1;3;2), đường thẳng $d: \frac{x+1}{2} = \frac{y-4}{-1} = \frac{z}{-2}$ và mặt phẳng (P): 2x-2y+z-6=0.

Phương trình mặt cầu (S) đi qua A, có tâm thuộc d đồng thời tiếp xúc với (P) là:

A. (S):
$$(x-1)^2 + (y-3)^2 + (z+2)^2 = 4$$
.

B. (S):
$$(x+1)^2 + (y+3)^2 + (z-2)^2 = 16$$
 hoặc (S): $\left(x - \frac{83}{13}\right)^2 + \left(y + \frac{87}{13}\right)^2 + \left(z + \frac{70}{13}\right)^2 = \frac{13456}{169}$.

C.(S):
$$(x-1)^2 + (y-3)^2 + (z+2)^2 = 16$$
 hoặc (S): $\left(x + \frac{83}{13}\right)^2 + \left(y - \frac{87}{13}\right)^2 + \left(z - \frac{70}{13}\right)^2 = \frac{13456}{169}$.

D. (S):
$$(x-1)^2 + (y-3)^2 + (z+2)^2 = 16$$
.

Hướng dẫn giải:

- *d* có phương trình tham số $\begin{cases} x = -1 + 2t \\ y = 4 t \\ z = -2t \end{cases}$
- Gọi I là tâm mặt cầu (S), do I thuộc d nên I(-1+2t;4-t;-2t)

Theo đề bài, (S) có bán kính R = IA = d(I;(P)).

$$\Rightarrow \sqrt{(2-2t)^2 + (t-1)^2 + (2+2t)^2} = \frac{\left|2(-1+2t) - 2(4-t) - 2t - 6\right|}{\sqrt{2^2 + 2^2 + 1^2}}$$

$$\Leftrightarrow \sqrt{9t^2 - 2t + 9} = \frac{|4t - 16|}{3} \Leftrightarrow 9(9t^2 - 2t + 9) = (4t - 16)^2 \Leftrightarrow 65t^2 + 110t - 175 = 0 \Leftrightarrow \begin{bmatrix} t = 1 \\ t = -\frac{35}{13} \end{bmatrix}$$

• Với
$$t = 1 \Rightarrow I(1;3;-2), R = 4 \Rightarrow (S): (x-1)^2 + (y-3)^2 + (z+2)^2 = 16.$$

• Với
$$t = -\frac{35}{13} \Rightarrow I\left(-\frac{83}{13}; \frac{87}{13}; \frac{70}{13}\right); R = \frac{116}{13}$$

$$\Rightarrow (S): \left(x + \frac{83}{13}\right)^2 + \left(y - \frac{87}{13}\right)^2 + \left(z - \frac{70}{13}\right)^2 = \frac{13456}{169}.$$

Lựa chọn đáp án C.

Câu 45. Cho mặt phẳng (P): x-2y-2z+10=0 và hai đường thẳng $\Delta_1: \frac{x-2}{1} = \frac{y}{1} = \frac{z-1}{-1}$, $\Delta_2: \frac{x-2}{1} = \frac{y}{1} = \frac{z+3}{4}$. Mặt cầu (S) có tâm thuộc Δ_1 , tiếp xúc với Δ_2 và mặt phẳng (P), có phương trình:

A.
$$(x-1)^2 + (y+1)^2 + (z-2)^2 = 9$$
 hoặc $\left(x - \frac{11}{2}\right)^2 + \left(y - \frac{7}{2}\right)^2 + \left(z + \frac{5}{2}\right)^2 = \frac{81}{4}$.

B.
$$(x+1)^2 + (y-1)^2 + (z+2)^2 = 9$$
 hoặc $\left(x + \frac{11}{2}\right)^2 + \left(y + \frac{7}{2}\right)^2 + \left(z - \frac{5}{2}\right)^2 = \frac{81}{4}$.

C.
$$(x-1)^2 + (y+1)^2 + (z-2)^2 = 9$$
.

D.
$$(x-1)^2 + (y+1)^2 + (z-2)^2 = 3$$
.

Hướng dẫn giải:

•
$$\Delta_1$$
:
$$\begin{cases} x = 2 + t \\ y = t \\ z = 1 - t \end{cases}$$
; Δ_2 đi qua điểm $A(2;0;-3)$ và có vecto chỉ phương $\overrightarrow{a_2} = (1;1;4)$.

• Giả sử $I(2+t;t;1-t) \in \Delta_1$ là tâm và R là bán kính của mặt cầu (S).

• Ta có:
$$\overrightarrow{AI} = (t;t;4-t) \Rightarrow \left[\overrightarrow{AI},\overrightarrow{a_2}\right] = (5t-4;4-5t;0) \Rightarrow d\left(I;\Delta_2\right) = \frac{\left\|\overrightarrow{AI},\overrightarrow{a_2}\right\|}{\left|\overrightarrow{a_2}\right|} = \frac{|5t-4|}{3}$$
$$d(I,(P)) = \frac{|2+t-2t-2(1-t)+10|}{\sqrt{1+4+4}} = \frac{|t+10|}{3}.$$

• (S) tiếp xúc với
$$\Delta_2$$
 và $(P) \Leftrightarrow d(I, \Delta_2) = d(I, (P)) \Leftrightarrow |5t - 4| = |t + 10| \Leftrightarrow \begin{vmatrix} t = \frac{7}{2} \\ t = -1 \end{vmatrix}$

• Với
$$t = \frac{7}{2} \Rightarrow I\left(\frac{11}{2}; \frac{7}{2}; -\frac{5}{2}\right), R = \frac{9}{2} \Rightarrow (S): \left(x - \frac{11}{2}\right)^2 + \left(y - \frac{7}{2}\right)^2 + \left(z + \frac{5}{2}\right)^2 = \frac{81}{4}.$$

• Với
$$t = -1 \implies I(1; -1; 2), R = 3 \implies (S): (x-1)^2 + (y+1)^2 + (z-2)^2 = 9$$
.

Lựa chọn đáp án A.

Câu 46. Cho mặt phẳng (P) và mặt cầu (S) có phương trình lần lượt là $(P): 2x + 2y + z - m^2 + 4m - 5 = 0; (S): x^2 + y^2 + z^2 - 2x + 2y - 2z - 6 = 0$. Giá trị của m để (P) tiếp xúc (S) là:

A.
$$m = -1$$
 hoặc $m = 5$.

B.
$$m = 1$$
 hoặc $m = -5$.

C.
$$m = -1$$
.

D.
$$m = 5$$
.

Hướng dẫn giải:

• (S):
$$x^2 + y^2 + z^2 - 2x + 2y - 2z - 6 = 0$$
 có tâm $I(1;-1;1)$ và bán kính $R = 3$.

•
$$(P)$$
 tiếp xúc $(S) \Leftrightarrow d(I;(P)) = R$

$$\Leftrightarrow \frac{\left|2.1+2.(-1)+1.1-m^2+4m-5\right|}{\sqrt{2^2+2^2+1^2}} = 3 \Leftrightarrow \left|m^2-4m+4\right| = 9$$

$$\Leftrightarrow \begin{bmatrix} m^2 - 4m + 4 = 9 \\ m^2 - 4m + 4 = -9 \end{bmatrix} \Leftrightarrow m^2 - 4m - 5 = 0 \Leftrightarrow \begin{bmatrix} m = -1 \\ m = 5 \end{bmatrix}.$$

Lựa chọn đáp án A.

Câu 47. Cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 4y + 2z - 3 = 0$ và mặt phẳng (P): x + y - 2z + 4 = 0. Phương trình đường thẳng d tiếp xúc với mặt cầu (S) tại A(3;-1;1) và song song với mặt

A.
$$\begin{cases} x = 3 - 4t \\ y = -1 + 6t \\ z = 1 + t \end{cases}$$
B.
$$\begin{cases} x = 1 + 4t \\ y = -2 - 6t \\ z = -1 - t \end{cases}$$
C.
$$\begin{cases} x = 3 + 4t \\ y = -1 - 6t \\ z = 1 - t \end{cases}$$
D.
$$\begin{cases} x = 3 + 2t \\ y = -1 + t \\ z = 1 + 2t \end{cases}$$

B.
$$\begin{cases} x = 1 + 4t \\ y = -2 - 6t \\ z = -1 - t \end{cases}$$

C.
$$\begin{cases} x = 3 + 4t \\ y = -1 - 6t \\ z = 1 - t \end{cases}$$

D.
$$\begin{cases} x = 3 + 2t \\ y = -1 + t \\ z = 1 + 2t \end{cases}$$

Hướng dẫn giải:

- Mặt cầu (S) có tâm $I(1;-2;-1) \Rightarrow \overrightarrow{IA} = (2;1;2)$
- Đường thẳng d tiếp xúc với mặt cầu S tại $t=\frac{7}{2}$ và song song với mặt phẳng P nên t=-1

đường thẳng d có vettơ chỉ phương $\overrightarrow{a_d} = \left[\overrightarrow{n_{(P)}}, \overrightarrow{IA}\right] = \left(4; -6; -1\right)$

• Vậy phương trình đường thẳng
$$d$$
:
$$\begin{cases} x = 3 + 4t \\ y = -1 - 6t. \\ z = 1 - t \end{cases}$$

Lua chon đáp án A.

Cho điểm A(2;5;1) và mặt phẳng (P):6x+3y-2z+24=0, H là hình chiếu vuông góc của ACâu 48. trên mặt phẳng (P). Phương trình mặt cầu (S) có diện tích 784π và tiếp xúc với mặt phẳng (P) tại H, sao cho điểm A nằm trong mặt cầu là:

A.
$$(x-8)^2 + (y-8)^2 + (z+1)^2 = 196.$$

B.
$$(x+8)^2 + (y+8)^2 + (z-1)^2 = 196$$
.

A.
$$(x-8)^2 + (y-8)^2 + (z+1)^2 = 196$$
.
B. $(x+8)^2 + (y+8)^2 + (z-1)^2 = 196$.
C. $(x+16)^2 + (y+4)^2 + (z-7)^2 = 196$.
D. $(x-16)^2 + (y-4)^2 + (z+7)^2 = 196$.

$$\mathbf{D.}(x-16)^2 + (y-4)^2 + (z+7)^2 = 196.$$

Hướng dẫn giải:

- Gọi d là đường thẳng đi qua A và vuông góc với (P). Suy ra d: $\begin{cases} x = 2 + 6t \\ y = 5 + 3t \end{cases}$
- Vì H là hình chiếu vuông góc của A trên (P) nên $H = d \cap (P)$.

Vì $H \in d$ nên H(2+6t;5+3t;1-2t).

- Mặt khác, $H \in (P)$ nên ta có: $6(2+6t)+3(5+3t)-2(1-2t)+24=0 \Leftrightarrow t=-1$ Do đó, H(-4;2;3).
- Gọi *I*, *R* lần lượt là tâm và bán kính mặt cầu.

Theo giả thiết diện tích mặt cầu bằng 784π , suy ra $4\pi R^2 = 784\pi \Rightarrow R = 14$.

Vì mặt cầu tiếp xúc với mặt phẳng (P) tại H nên $IH \perp (P) \Rightarrow I \in d$.

Do đó tọa độ điểm I có dạng I(2+6t;5+3t;1-2t), với $t \neq -1$.

• Theo giả thiết, tọa độ điểm *I* thỏa mãn:

$$\begin{cases} d(I,(P)) = 14 \\ AI < 14 \end{cases} \Leftrightarrow \begin{cases} \frac{\left| 6(2+6t) + 3(5+3t) - 2(1-2t) + 24 \right|}{\sqrt{6^2 + 3^2 + (-2)^2}} = 14 \\ \sqrt{\left(6t\right)^2 + \left(3t\right)^2 + \left(-2t\right)^2} < 14 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} t = 1 \\ t = -3 \\ -2 < t < 2 \end{bmatrix} \end{cases}$$

Do đó: I(8;8;-1).

• Vậy phương trình mặt cầu $(S): (x-8)^2 + (y-8)^2 + (z+1)^2 = 196$.

Lua chon đáp án A.

Câu 49. Cho mặt phẳng (P): 2x + y - z + 5 = 0 và các điểm A(0;0;4), B(2;0;0). Phương trình mặt cầu đi qua O, A, B và tiếp xúc với mặt phẳng (P) là:

A.
$$(x-1)^2 + (y-1)^2 + (z-2)^2 = 6$$
.

B.
$$(x+1)^2 + (y+1)^2 + (z+2)^2 = 6$$
.

$$\mathbf{C} \cdot (x-1)^2 + (y+1)^2 + (z-2)^2 = 6.$$

$$\mathbf{D.}(x-1)^2 + (y-1)^2 + (z+2)^2 = 6.$$

Hướng dẫn giải:

- Gọi (S) có tâm I(a;b;c) và bán kính R.
- Phương mặt cầu (S) có dang: $x^2 + y^2 + z^2 2ax 2by 2cz + d = 0$
- \bullet (S) qua 3 điểm O, A, B, ta có hệ phương trình :

$$\begin{cases} d = 0 \\ -8c + d = -16 \\ -4a + d = -4 \end{cases} \Leftrightarrow \begin{cases} d = 0 \\ c = 2 \\ a = 1 \\ (2 + b - 2 + 5)^2 = 6(1^2 + b^2 + 2^2 - 0) \end{cases} \Leftrightarrow \begin{cases} d = 0 \\ c = 2 \\ a = 1 \\ 5b^2 - 10b + 5 = 0 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = 1 \\ c = 2 \end{cases}$$

- Vây (S): $(x-1)^2 + (y-1)^2 + (z-2)^2 = 6$.
- **Câu 50.** Cho mặt phẳng (P): x+2y-2z+2=0 và điểm A(2;-3;0). Gọi B là điểm thuộc tia Oy sao cho mặt cầu tâm B, tiếp xúc với mặt phẳng (P) có bán kính bằng (P) có bán kính bàng (P) có bán kính bàng

$$B.(0;-4;0).$$

B.
$$(0;-4;0)$$
. **C.** $(0;2;0)$ hoặc $(0;-4;0)$.

$$\mathbf{D}.(0;2;0).$$

Hướng dẫn giải

- Vì B thuộc tia Oy nên B(0;b;0) (với b>0)
- Bán kính của mặt cầu tâm B, tiếp xúc với (P) là $R = d(B, (P)) = \frac{|2b+2|}{3}$.
- Theo giả thiết $R = 2 \Leftrightarrow \frac{|2b+2|}{3} = 2 \Leftrightarrow |2b+2| = 6 \Leftrightarrow \begin{bmatrix} 2b+2=6 \\ 2b+2=-6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} b=2 \\ b=-4 \end{bmatrix}$.

Do $b > 0 \Rightarrow b = 2$

• Vây B(0;2;0).

Lưa chon đáp án **D**.

Cho hai mặt phẳng (P): 2x+3y-z+2=0, (Q): 2x-y-z+2=0. Phương trình mặt cầu (S)Câu 51. tiếp xúc với mặt phẳng (P) tại điểm A(1,-1,1) và có tâm thuộc mặt phẳng (Q) là:

A. (S):
$$(x+3)^2 + (y+7)^2 + (z-3)^2 = 56$$
. **B.** (S): $(x-3)^2 + (y-7)^2 + (z+3)^2 = 56$.

B. (S):
$$(x-3)^2 + (y-7)^2 + (z+3)^2 = 56$$
.

C.(S):
$$(x+3)^2 + (y+7)^2 + (z-3)^2 = 14$$
. D.(S): $(x-3)^2 + (y-7)^2 + (z+3)^2 = 14$.

D.(S):
$$(x-3)^2 + (y-7)^2 + (z+3)^2 = 14$$
.

Hướng dẫn giải:

- Gọi d đường thẳng đi qua A và vuông góc với (P), ta có : d: $\begin{cases} y = -1 + 3t \\ z = 1 t \end{cases}$
- Tâm $I \in d \Rightarrow I(1+2t;-1+3t;1-t)$.

$$I \in (Q) \Rightarrow 2(1+2t)-(-1+3t)-(1-t)+2=0 \Leftrightarrow t=-2 \Rightarrow I(-3,-7,3)$$

- Bán kính mặt cầu là $R = IA = 2\sqrt{14}$.
- Phương trình mặt cầu $(S): (x+3)^2 + (y+7)^2 + (z-3)^2 = 56$.

Lựa chọn đáp án A.

Câu 52. Cho điểm I(0;0;3) và đường thẳng $d:\begin{cases} x=-1+t \\ y=2t \end{cases}$. Phương trình mặt cầu (S) có tâm I và cắt z=2+t

đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

A.
$$x^2 + y^2 + (z-3)^2 = \frac{3}{2}$$
.

B.
$$x^2 + y^2 + (z-3)^2 = \frac{8}{3}$$
.

$$\mathbf{C} \cdot x^2 + y^2 + (z-3)^2 = \frac{2}{3}$$

$$\mathbf{D.} x^2 + y^2 + (z - 3)^2 = \frac{4}{3}.$$

Hướng dẫn giải:

• Gọi $H(-1+t;2t;2+t) \in d$ là hình chiếu vuông góc của I lên đường thẳng d

$$\Rightarrow \overrightarrow{IH} = (-1+t; 2t; -1+t)$$

• Ta có vecto chỉ phương của $d: \overrightarrow{a_d} = (1,2,1)$ và $IH \perp d$

$$\Rightarrow \overrightarrow{IH}.\overrightarrow{a_d} = 0 \Leftrightarrow -1 + t + 4t - 1 + t = 0 \Leftrightarrow -2 + 6t = 0 \Leftrightarrow t = \frac{1}{3} \Rightarrow H\left(-\frac{2}{3}; \frac{2}{3}; \frac{7}{3}\right)$$

$$\Rightarrow IH = \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2} = \frac{2\sqrt{3}}{3}$$

• Vì tam giác IAB vuông tại I và IA = IB = R. Suy ra tam giác IAB vuông cân tại I, do đó bán kính:

$$R = IA = AB\cos 45^{\circ} = 2IH \cdot \frac{\sqrt{2}}{2} = \sqrt{2}IH = \sqrt{2} \cdot \frac{2\sqrt{3}}{3} = \frac{2\sqrt{6}}{3}$$

• Vậy phương trình mặt cầu (S): $x^2 + y^2 + (z-3)^2 = \frac{8}{3}$.

Lựa chọn đáp án **B.**

Câu 53. Cho đường thẳng $\Delta: \frac{x+2}{-1} = \frac{y}{1} = \frac{z-3}{-1}$ và và mặt cầu (S): $x^2 + y^2 + z^2 + 4x - 2y - 21 = 0$. Số giao điểm của (Δ) và (S) là:

D.3.

Hướng dẫn giải:

Đường thẳng (Δ) đi qua M = (-2,0,3) và có VTCP $\vec{u} = (-1,1,-1)$

Mặt cầu (S) có tâm I = (1, 2, -3) và bán kính R = 9

Ta có
$$\overrightarrow{MI} = (3; 2; -6) \text{ và } [\overrightarrow{u}, \overrightarrow{MI}] = (-4; -9; -5)$$

$$\Rightarrow d(I;\Delta) = \frac{\left| \vec{u}, \overrightarrow{MI} \right|}{\left| \vec{u} \right|} = \frac{\sqrt{366}}{3}$$

Vì $d(I, \Delta) < R$ nên (Δ) cắt mặt cầu (S) tại hai điểm phân biệt.

Câu 54. Cho đường thẳng $d: \frac{x+2}{2} = \frac{y-2}{3} = \frac{z+3}{2}$ và mặt cầu $(S): x^2 + y^2 + (z+2)^2 = 9$. Tọa độ giao điểm của (Δ) và (S) là:

A.
$$A(0;0;2)$$
, $B(-2;2;-3)$.

B.
$$A(2;3;2)$$
.

C.
$$A(-2;2;-3)$$
.

$$\mathbf{D}_{\bullet}(\Delta)$$
 và (S) không cắt nhau.

Hướng dẫn giải:

Tọa độ giao điểm là nghiệm hệ phương trình:

$$\begin{cases} x = -2 + 2t \\ y = 2 + 3t \\ z = -3 + 2t \end{cases} \Rightarrow t = 0 \Rightarrow A(-2; 2; -3).$$

$$\begin{cases} x = -2 + 2t \\ z = -3 + 2t \\ x^2 + y^2 + (z + 2)^2 = 9 \end{cases}$$

Lựa chọn đáp án C.

Câu 55. Cho đường thẳng (Δ) : $\begin{cases} x = 1 + t \\ y = 2 \\ z = -4 + 7t \end{cases}$ và mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y + 6z - 67 = 0$. Giao

điểm của (Δ) và (S) là các điểm có tọa độ:

$$\mathbf{A.}(\Delta)$$
 và (S) không cắt nhau.

B.
$$A(1;2;5), B(-2;0;4).$$

C.
$$A(2;-2;5)$$
, $B(4;0;3)$.

D.
$$A(1;2;-4)$$
, $B(2;2;3)$.

Hướng dẫn giải:

Tọa độ giao điểm là nghiệm hệ phương trình:

$$\begin{cases} x = 1 + t \\ y = 2 \\ z = -4 + 7t \\ x^2 + y^2 + z^2 - 2x - 4y + 6z - 67 = 0 \end{cases} \Rightarrow \begin{bmatrix} t = 0 \Rightarrow A(1; 2; -4) \\ t = 1 \Rightarrow B(2; 2; 3) \end{cases}$$

Lựa chọn đáp án **D.**

Câu 56. Cho điểm I(1;0;0) và đường thẳng $d: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{1}$. Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho AB = 4 là:

A.
$$(x-1)^2 + y^2 + z^2 = 9$$
.

B.
$$(x-1)^2 + y^2 + z^2 = 3$$
.

C.
$$(x+1)^2 + y^2 + z^2 = 3$$
.

D.
$$(x+1)^2 + y^2 + z^2 = 9$$
.

Hướng dẫn giải:

Đường thẳng (d) đi qua M(1; 1; -2) và có vecto chỉ phương $\vec{u} = (1; 2; 1)$.

Gọi H là hình chiếu của I trên (d). Ta có: $IH = d(I; AB) = \frac{\left| \vec{u}, \overrightarrow{MI} \right|}{\left| \vec{u} \right|} = \sqrt{5}$

$$\Rightarrow R^2 = IH^2 + \left(\frac{AB}{2}\right)^2 = 9.$$

Vậy phương trình mặt cầu: $(x-1)^2 + y^2 + z^2 = 9$.

Câu 57. Cho điểm I(1;1;-2) đường thẳng $d: \frac{x+1}{1} = \frac{y-3}{2} = \frac{z-2}{1}$. Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho AB = 6 là:

A.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 27$$
.

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 27$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 24$$
.

$$\mathbf{D}_{\bullet}(x-1)^{2} + (y-1)^{2} + (z+2)^{2} = 54.$$

Hướng dẫn giải:

Đường thẳng (d) đi qua M(-1; 3; 2) và có vecto chỉ phương $\vec{u} = (1; 2; 1)$.

Gọi H là hình chiếu của I trên (d). Ta có : $IH = d(I; AB) = \frac{\vec{u}, \vec{MI}}{|\vec{u}|} = \sqrt{18}$

$$\Rightarrow R^2 = IH^2 + \left(\frac{AB}{2}\right)^2 = 27.$$

Vậy phương trình mặt cầu: $(x-1)^2 + (y-1)^2 + (z+2)^2 = 27$.

Lựa chọn đáp án A.

Câu 58. Cho điểm I(1;0;0) và đường thẳng $d: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{1}$. Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

$$\mathbf{A.}(x-1)^2 + y^2 + z^2 = 12.$$

B.
$$(x-1)^2 + y^2 + z^2 = 10$$
.

C.
$$(x+1)^2 + y^2 + z^2 = 8$$
.

$$\mathbf{D.}(x-1)^2 + y^2 + z^2 = 16.$$

Hướng dẫn giải:

Đường thẳng d đi qua M(1; 1; -2) và có vecto chỉ phương $\vec{u} = (1; 2; 1)$.

Gọi H là hình chiếu của I trên D. Ta có : $IH = d(I; AB) = \frac{|\vec{u}, \overrightarrow{MI}|}{|\vec{u}|} = \sqrt{5}$

$$\Rightarrow R^2 = IH^2 + \left(\frac{AB}{2}\right)^2 = 10.$$

Vậy phương trình mặt cầu là : $(x-1)^2 + y^2 + z^2 = 10$.

Lựa chọn đáp án **B.**

Câu 59. Cho điểm I(1;0;0) và đường thẳng $d:\begin{cases} x=1+t\\ y=1+2t \end{cases}$. Phương trình mặt cầu (S) có tâm I và cắt z=-2+t

đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

A.
$$(x+1)^2 + y^2 + z^2 = \frac{20}{3}$$
.

B.
$$(x-1)^2 + y^2 + z^2 = \frac{20}{3}$$
.

C.
$$(x-1)^2 + y^2 + z^2 = \frac{16}{4}$$

$$\mathbf{D.}(x-1)^2 + y^2 + z^2 = \frac{5}{3}.$$

Hướng dẫn giải:

Đường thẳng Δ đi qua M = (1,1,-2) và có vecto chỉ phương $\vec{u} = (1,2,1)$

Ta có
$$\overrightarrow{MI} = (0;-1;2)$$
 và $[\overrightarrow{u},\overrightarrow{MI}] = (5;-2;-1)$

Gọi H là hình chiếu của I trên \mathbf{D} . Ta có : $IH = d(I; AB) = \frac{\left| \vec{u}, \overrightarrow{MI} \right|}{\left| \vec{u} \right|} = \sqrt{5}$.

Xét tam giác *IAB*, có
$$IH = R \cdot \frac{\sqrt{3}}{2} \Rightarrow R = \frac{2IH}{\sqrt{3}} = \frac{2\sqrt{15}}{3}$$

Vậy phương trình mặt cầu là: $(x-1)^2 + y^2 + z^2 = \frac{20}{3}$.

Lựa chọn đáp án B.

Câu 60. Cho các điểm I(1;1;-2) và đường thẳng $d:\begin{cases} x=-1+t\\ y=3+2t \end{cases}$. Phương trình mặt cầu (S) có tâm I và z=2+t

cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

A.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 3$$
.

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 9$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 9$$
.

D.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 36$$
.

Hướng dẫn giải:

Đường thẳng d đi qua M(-1; 3; 2) và có vecto chỉ phương $\vec{u} = (1; 2; 1)$.

Gọi H là hình chiếu của I trên \mathbf{D} . Ta có : $IH = d(I; AB) = \frac{\vec{u}, \overrightarrow{MI}}{|\vec{u}|} = \sqrt{18}$

$$\Rightarrow R^2 = IH^2 + \left(\frac{AB}{2}\right)^2 = 36.$$

Vậy phương trình mặt cầu là: $(x-1)^2 + (y-1)^2 + (z+2)^2 = 36$.

Lựa chọn đáp án **D.**

Câu 61. Cho điểm I(1;1;-2) đường thẳng $d: \frac{x+1}{1} = \frac{y-3}{2} = \frac{z-2}{1}$. Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

A.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 24$$
.

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 24$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 18$$

$$\mathbf{D.}(x+1)^2 + (y+1)^2 + (z-2)^2 = 18.$$

Hướng dẫn giải:

Đường thẳng d đi qua M(-1; 3; 2) và có vecto chỉ phương $\vec{u} = (1; 2; 1)$.

Gọi H là hình chiếu của I trên \mathbf{D} . Ta có : $IH = d(I; AB) = \frac{\left| \overrightarrow{u}, \overrightarrow{MI} \right|}{\left| \overrightarrow{u} \right|} = \sqrt{18}$.

$$\Rightarrow IH = R. \frac{\sqrt{3}}{2} \Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{6}.$$

Vậy phương trình mặt cầu là : $(x-1)^2 + (y-1)^2 + (z+2)^2 = 24$.

Lựa chọn đáp án A.

Câu 62. Cho điểm I(1;1;-2) đường thẳng $d: \frac{x+1}{1} = \frac{y-3}{2} = \frac{z-2}{1}$. Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho $\widehat{IAB} = 30^{\circ}$ là:

A.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 72$$
.

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 36$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z+2)^2 = 66$$
.

$$\mathbf{D}_{\bullet}(x+1)^{2} + (y+1)^{2} + (z-2)^{2} = 46.$$

Đường thẳng d đi qua M(-1; 3; 2) và có vecto chỉ phương $\vec{u} = (1; 2; 1)$.

Gọi H là hình chiếu của I trên D. Ta có: $IH = d(I; AB) = \frac{\|u, MI\|}{\|v\|} = \sqrt{18}$.

$$\Rightarrow R = IA = 2\sqrt{18}$$
.

Vậy phương trình mặt cầu là: $(x-1)^2 + (y-1)^2 + (z+2)^2 = 72$.

Lựa chọn đáp án A.

Phương trình mặt cầu có tâm $I(3, \sqrt{3}, -7)$ và tiếp xúc trục tung là: Câu 63.

A.
$$(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 61$$
. **B.** $(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 58$.

B.
$$(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 58.$$

C.
$$(x+3)^2 + (y+\sqrt{3})^2 + (z-7)^2 = 58$$
. D. $(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 12$.

D.
$$(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 12$$

Hướng dẫn giải:

Gọi H là hình chiếu của $I(3;\sqrt{3};-7)$ trên $Oy \Rightarrow H(0;\sqrt{3};0) \Rightarrow R = IH = \sqrt{58}$

Vậy phương trình mặt cầu là: $(x-3)^2 + (y-\sqrt{3})^2 + (z+7)^2 = 58$.

Lựa chọn đáp án B.

Phương trình mặt cầu có tâm $I(\sqrt{5};3;9)$ và tiếp xúc trục hoành là:

A.
$$(x+\sqrt{5})^2 + (y+3)^2 + (z+9)^2 = 86$$
. **B.** $(x-\sqrt{5})^2 + (y-3)^2 + (z-9)^2 = 14$.

B.
$$(x-\sqrt{5})^2 + (y-3)^2 + (z-9)^2 = 14$$
.

C.
$$(x-\sqrt{5})^2 + (y-3)^2 + (z-9)^2 = 90.$$

C.
$$(x-\sqrt{5})^2 + (y-3)^2 + (z-9)^2 = 90$$
. D. $(x+\sqrt{5})^2 + (y+3)^2 + (z+9)^2 = 90$.

Hướng dẫn giải:

Gọi H là hình chiếu của $I(\sqrt{5};3;9)$ trên $Ox \Rightarrow H(\sqrt{5};0;0) \Rightarrow R = IH = \sqrt{90}$

Vậy phương trình mặt cầu là: $(x-\sqrt{5})^2 + (y-3)^2 + (z-9)^2 = 90$.

Lựa chọn đáp án C.

Phương trình mặt cầu có tâm $I(-\sqrt{6}; -\sqrt{3}; \sqrt{2} - 1)$ và tiếp xúc trục Oz là:

A.
$$\left(x + \sqrt{6}\right)^2 + \left(y + \sqrt{3}\right)^2 + \left(z - \sqrt{2} + 1\right)^2 = 9$$

A.
$$(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}+1)^2 = 9.$$
 B. $(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}-1)^2 = 9.$

C.
$$(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}-1)^2 = 3$$
. **D.** $(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}+1)^2 = 3$.

D.
$$(x+\sqrt{6})^2 + (y+\sqrt{3})^2 + (z-\sqrt{2}+1)^2 = 3$$
.

Hướng dẫn giải:

Gọi H là hình chiếu của $I(-\sqrt{6}; -\sqrt{3}; \sqrt{2} - 1)$ trên $Oz \Rightarrow H(0; 0; \sqrt{2} - 1) \Rightarrow R = IH = 3$.

Vậy phương trình mặt cầu là: $(x + \sqrt{6})^2 + (y + \sqrt{3})^2 + (z - \sqrt{2} + 1)^2 = 9$.

Lựa chọn đáp án A.

Phương trình mặt cầu có tâm I(4;6;-1) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB**Câu 66.** vuông là:

A.
$$(x-4)^2 + (y-6)^2 + (z+1)^2 = 26$$
.

B.
$$(x-4)^2 + (y-6)^2 + (z+1)^2 = 74$$
.

C.
$$(x-4)^2 + (y-6)^2 + (z+1)^2 = 34$$
.

$$\mathbf{D}.(x-4)^2 + (y-6)^2 + (z+1)^2 = 104.$$

Gọi H là hình chiếu của I(4;6;-1) trên $Ox \Rightarrow H(4;0;0) \Rightarrow IH = d(I;Ox) = \sqrt{37}$

$$\Rightarrow R^2 = IH^2 + \left(\frac{AB}{2}\right)^2 = 37 + 37 = 74$$

Vậy phương trình mặt cầu là : $(x-4)^2 + (y-6)^2 + (z+1)^2 = 74$.

Lựa chọn đáp án B.

Phương trình mặt cầu có tâm $I(\sqrt{3}; -\sqrt{3}; 0)$ và cắt trục Oz tại hai điểm A, B sao cho tam giác IAB đều là:

A.
$$\left(x + \sqrt{3}\right)^2 + \left(y - \sqrt{3}\right)^2 + z^2 = 8.$$

B.
$$(x-\sqrt{3})^2 + (y+\sqrt{3})^2 + z^2 = 9.$$

C.
$$(x+\sqrt{3})^2 + (y-\sqrt{3})^2 + z^2 = 9$$
.

D.
$$(x-\sqrt{3})^2 + (y+\sqrt{3})^2 + z^2 = 8$$
.

Hướng dẫn giải:

Gọi H là hình chiếu của $I(\sqrt{3}; -\sqrt{3}; 0)$ trên $Oz \Rightarrow H(0; 0; 0) \Rightarrow IH = d(I; Ox) = \sqrt{6}$

$$\Rightarrow IH = R. \frac{\sqrt{3}}{2} \Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{2}$$

Vậy phương trình mặt cầu là : $\left(x - \sqrt{3}\right)^2 + \left(y + \sqrt{3}\right)^2 + z^2 = 8$.

Lựa chọn đáp án D.

Câu 68. Phương trình mặt cầu có tâm I(3;6;-4) và cắt trục Oz tại hai điểm A, B sao cho diện tích tam giác *IAB* bằng $6\sqrt{5}$ là:

A.
$$(x-3)^2 + (y-6)^2 + (z+4)^2 = 49$$
.

B.
$$(x-3)^2 + (y-6)^2 + (z+4)^2 = 45$$
.

C.
$$(x-3)^2 + (y-6)^2 + (z+4)^2 = 36$$
. D. $(x-3)^2 + (y-6)^2 + (z+4)^2 = 54$.

$$\mathbf{D} \cdot (x-3)^2 + (y-6)^2 + (z+4)^2 = 54.$$

Hướng dẫn giải:

Gọi H là hình chiếu của I(3;6;-4) trên $Oz \Rightarrow H(0;0;-4) \Rightarrow IH = d(I;Ox) = \sqrt{45}$

$$S_{\triangle AIB} = \frac{IH.AB}{2} \Rightarrow AB = \frac{2S_{\triangle AIB}}{IH} = 4 \Rightarrow R^2 = IH^2 + \left(\frac{AB}{2}\right)^2 = 49$$

Vậy phương trình mặt cầu là : $(x-3)^2 + (y-6)^2 + (z+4)^2 = 49$.

Lựa chọn đáp án A.

Mặt cầu (S) có tâm I(2;1;-1) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB vuông. **Câu 69.** Điểm nào sau đây thuộc mặt cầu (S):

Hướng dẫn giải:

Gọi H là hình chiếu của I(2;1;-1) trên $Ox \Rightarrow H(2;0;0) \Rightarrow IH = d(I,Ox) = \sqrt{2}$

$$\Rightarrow R^2 = IH^2 + \left(\frac{AB}{2}\right)^2 = 4$$

Vậy phương trình mặt cầu là : $(x-2)^2 + (y-1)^2 + (z+1)^2 = 4$

$$\Rightarrow$$
 $(2;1;1) \in (S)$.

Câu 70. Gọi (S) là mặt cầu có tâm I(1, -3, 0) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB đều. Điểm nào sau đây không thuộc mặt cầu (S):

A.
$$(-1; -3; 2\sqrt{3})$$
.

B.
$$(3; -3; 2\sqrt{2})$$
.

C.
$$(3;-3;-2\sqrt{2})$$
. D. $(2;-1;1)$.

Hướng dẫn giải:

Gọi H là hình chiếu của I(1,-3,0) trên $Ox \Rightarrow H(1,0,0) \Rightarrow IH = d(I,Ox) = 3$

$$\Rightarrow IH = R. \frac{\sqrt{3}}{2} \Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{3}$$

Vậy phương trình mặt cầu là: $(x-1)^2 + (y+3)^2 + z^2 = 12 \implies (2;-1;1) \notin (S)$.

Lựa chọn đáp án D.

Cho các điểm I(-1;0;0) và đường thẳng $d: \frac{x-2}{1} = \frac{y-1}{2} = \frac{z-1}{1}$. Phương trình mặt cầu (S)có tâm I và tiếp xúc d là:

A.
$$(x+1)^2 + y^2 + z^2 = 5$$
.

B.
$$(x-1)^2 + y^2 + z^2 = 5$$
.

C.
$$(x+1)^2 + y^2 + z^2 = 10$$
.

$$\mathbf{D.}(x-1)^2 + y^2 + z^2 = 10.$$

Hướng dẫn giải:

Đường thẳng d đi qua I(2;1;1) và có một vecto chỉ phương:

$$\vec{u} = (1;2;1) \Rightarrow d(I;d) = \frac{\left[\vec{u}, \overrightarrow{MI}\right]}{\left|\vec{u}\right|} = \sqrt{5}$$

Phương trình mặt cầu là: $(x+1)^2 + y^2 + z^2 = 5$.

Lựa chọn đáp án A.

Cho điểm I(1;7;5) và đường thẳng $d:\frac{x-1}{2}=\frac{y-6}{-1}=\frac{z}{3}$. Phương trình mặt cầu có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác diện tích tam giác IAB bằng $2\sqrt{6015}$ là:

A.
$$(x-1)^2 + (y-7)^2 + (z-5)^2 = 2018.$$

B.
$$(x-1)^2 + (y-7)^2 + (z-5)^2 = 2017$$
.

C.
$$(x-1)^2 + (y-7)^2 + (z-5)^2 = 2016$$
. D. $(x-1)^2 + (y-7)^2 + (z-5)^2 = 2019$.

$$\mathbf{D.}(x-1)^2 + (y-7)^2 + (z-5)^2 = 2019$$

Hướng dẫn giải:

Gọi H là hình chiếu của I(1,7,5) trên $d \Rightarrow H(0,0,-4) \Rightarrow IH = d(I,d) = 2\sqrt{3}$

$$S_{\triangle AIB} = \frac{IH.AB}{2} \Rightarrow AB = \frac{2S_{\triangle AIB}}{IH} = \sqrt{8020} \Rightarrow R^2 = IH^2 + \left(\frac{AB}{2}\right)^2 = 2017$$

Vậy phương trình mặt cầu là: $(x-1)^2 + (y-7)^2 + (z-5)^2 = 2017$.

Lựa chọn đáp án B.

Cho các điểm A(1;3;1) và B(3;2;2). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz có **Câu 73.** đường kính là:

A.
$$\sqrt{14}$$
.

- **B.** $2\sqrt{14}$.
- C. $2\sqrt{10}$.
- **D.** $2\sqrt{6}$.

Hướng dẫn giải:

Gọi I(0;0;t) trên Oz vì $IA = IB \Rightarrow t = 3 \Rightarrow I(0;0;3)$

 $\Rightarrow R = IA = \sqrt{14} \Rightarrow$ đường kính là: $2\sqrt{14}$.

Câu 74.	Trong không gian với hệ tọa độ $Oxyz$, cho các điểm $A(1;2;1)$ và $B(0;1;1)$. Mặt cầu đi qua hai			
	điểm A , B và tâm thuộc trục hoành có đường kính là:			
	A. $2\sqrt{6}$.	B. $\sqrt{6}$.	C. $2\sqrt{5}$.	D. 12.
	Hướng dẫn giải:			
	Gọi $I(t;0;0)$ trên Ox . Vì $IA = IB \Rightarrow t = 2 \Rightarrow I(2;0;0)$			
	$\Rightarrow R = IA = \sqrt{6} \Rightarrow$ đường kính bằng $2\sqrt{6}$.			
	Lựa chọn đáp án A.			
Câu 75.	Cho các điểm $A(2;1;-1)$ và $B(1;0;1)$. Mặt cầu đi qua hai điểm A , B và tâm thuộc trục Oy có			
	đường kính là:			
	A. $2\sqrt{2}$.	B. $2\sqrt{6}$.	C. $4\sqrt{2}$.	D. $\sqrt{6}$.
	Hướng dẫn giải:			
	Gọi $I(0;t;0)$ trên Oy vì $IA = IB \Rightarrow t = 2 \Rightarrow I(0;2;0)$			
	$\Rightarrow R = IA = \sqrt{6} \Rightarrow$ đường kính bằng $2\sqrt{6}$.			
	Lựa chọn đáp án A.			
Câu 76.	Cho các điểm $A(0;1;3)$ và $B(2;2;1)$ và đường thẳng $d:\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-3}{-2}$. Mặt cầu đi qua			
	hai điểm A , B và tâm thuộc đường thẳng d thì tọa độ tâm là:			
	A. $\left(\frac{13}{10}; \frac{17}{10}; \frac{12}{5}\right)$.	B. $\left(\frac{3}{2}; \frac{3}{2}; 2\right)$.	$\mathbf{C.}\left(\frac{4}{3};\frac{2}{3};\frac{7}{3}\right).$	D. $\left(\frac{6}{5}; \frac{9}{5}; \frac{13}{5}\right)$.
	Hướng dẫn giải:			
	Gọi $I(1+t; 2-t; 3-2t)$ trên d vì $IA = IB \Rightarrow t = \frac{3}{10} \Rightarrow I(\frac{13}{10}; \frac{17}{10}; \frac{12}{5})$.			
	Lựa chọn đáp án A.			
Câu 77.	Cho các điểm $A(1;3;0)$ và $B(2;1;1)$ và đường thẳng $d:\frac{x}{2}=\frac{y-3}{1}=\frac{z}{1}$. Mặt cầu (S) đi qua hai			
	điểm A , B và tâm thuộc đường thẳng d thì tọa độ tâm của S là:			
	A. (4;5;2).	B. (6;6;3).	C. (8; 7; 4).	D. (-4;1;-2).
	Hướng dẫn giải:			
	Gọi $I(2t;3+t;t)$ trên d vì $IA = IB \Rightarrow t = 4 \Rightarrow I(8;7;4)$.			
	Lựa chọn đáp án C.			
Câu 78.	Cho các điểm $A(1;1;3)$ và $B(2;2;0)$ và đường thẳng $d: \frac{x}{1} = \frac{y-2}{-1} = \frac{z-3}{1}$. Mặt cầu (S) đi			
	qua hai điểm A , B và tâm thuộc đường thẳng d thì tọa độ tâm S là:			
	A. $\left(\frac{-11}{6}; \frac{23}{6}; \frac{7}{6}\right)$.	B. $\left(\frac{5}{6}; \frac{7}{6}; \frac{23}{6}\right)$.	$\mathbf{C.}\left(\frac{5}{6}; \frac{7}{6}; \frac{25}{6}\right).$	D. $\left(\frac{1}{6}; \frac{9}{6}; \frac{19}{6}\right)$.

A.
$$\left(\frac{-11}{6}; \frac{23}{6}; \frac{7}{6}\right)$$
. **B.** $\left(\frac{5}{6}; \frac{7}{6}; \frac{23}{6}\right)$. **C.** $\left(\frac{5}{6}; \frac{7}{6}; \frac{25}{6}\right)$. **D.** $\left(\frac{1}{6}; \frac{9}{6}; \frac{19}{6}\right)$

Gọi
$$I(t; 2-t; 3+t)$$
 trên d vì $IA = IB \Rightarrow t = -\frac{11}{6} \Rightarrow I\left(\frac{-11}{6}; \frac{23}{6}; \frac{7}{6}\right)$.

Câu 79. Cho đường thẳng $d:\begin{cases} x=t\\ y=-1+3t \end{cases}$. Phương trình mặt cầu có đường kính là đoạn thẳng vuông z=1

góc chung của đường thẳng d và trục Ox là:

A.
$$(x-1)^2 + y^2 + (z-2)^2 = \frac{1}{2}$$
.

B.
$$(x+1)^2 + y^2 + (z+2)^2 = \frac{1}{4}$$
.

C.
$$(x-1)^2 + y^2 + z^2 = \frac{1}{2}$$
.

D.
$$\left(x - \frac{1}{3}\right)^2 + y^2 + \left(z - \frac{1}{2}\right)^2 = \frac{1}{4}$$
.

Hướng dẫn giải:

Gọi
$$A(t;-1+3t;1) \in d; B(t';0;0) \in Ox \Rightarrow \overrightarrow{AB} = (t'-t;1-3t;-1), \overrightarrow{u_d} = (1;3;0), \overrightarrow{i} = (1;0;0).$$

Ta có:
$$\begin{cases} \overrightarrow{AB.u_d} = 0 \\ \overrightarrow{AB.i} = 0 \end{cases} \Rightarrow t = t' = \frac{1}{3} \text{ và } R = \frac{1}{2} \Rightarrow \left(x - \frac{1}{3}\right)^2 + y^2 + \left(z - \frac{1}{2}\right)^2 = \frac{1}{4}.$$

Lựa chọn đáp án C.

Câu 80. Cho hai đường thẳng d: $\begin{cases} x = 2t \\ y = t \text{ và } d' : \begin{cases} x = t' \\ y = 3 - t' \end{cases}$. Phương trình mặt cầu có đường kính là đoạn z = 0

thẳng vuông góc chung của đường thẳng d và d' là:

A.
$$(x-2)^2 + (y-1)^2 + (z-2)^2 = 4$$
.

B.
$$(x-2)^2 + y^2 + z^2 = 4$$
.

C.
$$(x-2)^2 + (y-1)^2 + (z-2)^2 = 2$$
.

D.
$$(x+2)^2 + (y+1)^2 + z^2 = 4$$
.

Hướng dẫn giải:

Gọi
$$A(2t;t;4) \in d; B(t';3-t';0) \in d' \Rightarrow \overrightarrow{AB} = (t'-2t;3-t'-t;-4), \overrightarrow{u_d} = (2;1;0), \overrightarrow{u_{d'}} = (1;-1;0)$$

Ta có:
$$\begin{cases} \overrightarrow{AB}.\overrightarrow{u_d} = 0 \\ \overrightarrow{AB}.\overrightarrow{u_{d'}} = 0 \end{cases} \Rightarrow \begin{cases} t = 1 \Rightarrow A(2;1;4) \\ t' = 2 \Rightarrow B(2;1;0) \end{cases}$$

$$\Rightarrow I(2,1,2) \text{ và } R = 2 \Rightarrow (x-2)^2 + (y-1)^2 + (z-2)^2 = 4.$$

Lựa chọn đáp án A.

Câu 81. Cho các điểm A(-2;4;1) và B(2;0;3) và đường thẳng $d:\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z-3}{-2}$. Gọi (S) là mặt cầu đi qua A, B và có tâm thuộc đường thẳng D. Bán kính mặt cầu (S) bằng:

A.
$$\frac{\sqrt{1169}}{4}$$
.

B.
$$\frac{\sqrt{873}}{4}$$
.

C.
$$\frac{1169}{16}$$
.

D.
$$\frac{\sqrt{967}}{2}$$
.

Hướng dẫn giải:

Gọi
$$I(1+2t; -2-t; 3-2t)$$
 trên d vì $IA = IB \Rightarrow t = \frac{-11}{4} \Rightarrow IA = \frac{\sqrt{1169}}{4}$.

Lựa chọn đáp án A.

Câu 82. Cho các điểm A(2;4;-1) và B(0;-2;1) và đường thẳng $d:\begin{cases} x=1+2t\\ y=2-t \end{cases}$. Gọi (S) là mặt cầu đi z=1+t

qua A, B và có tâm thuộc đường thẳng ${\bf D}$. Đường kính mặt cầu (S) bằng:

A.
$$2\sqrt{19}$$
.

B.
$$2\sqrt{17}$$
.

C.
$$\sqrt{19}$$
.

D.
$$\sqrt{17}$$
.

Hướng dẫn giải:

Gọi I(1+2t;2-t;1+t) trên d vì $IA = IB \Rightarrow t = 1 \Rightarrow R = IA = \sqrt{19}$ đường kính là $2\sqrt{19}$.

Lưa chon đáp án A.

Mặt cầu tâm I(2,4,6) và tiếp xúc với mặt phẳng (Oxy) có phương trình: **Câu 83.**

A.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 16$$
.

B.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 36$$
.

C.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 4$$
.

D.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$$
.

Hướng dẫn giải:

Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc với mặt phẳng (Oxy): $z = 0 \Leftrightarrow R = d(I;(Oxy))$

$$\Leftrightarrow R = \frac{|6|}{1} = 6$$
. Vậy $(S): (x-2)^2 + (y-4)^2 + (z-6)^2 = 36$.

Lua chon đáp án B.

Câu 84. Mặt cầu tâm I(2;4;6) và tiếp xúc với mặt phẳng (Oxz) có phương trình:

A.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 16$$
. **B.** $(x-2)^2 + (y-4)^2 + (z-6)^2 = 4$.

B.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 4$$
.

C.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 36$$
.
D. $(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$.

D.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$$

Hướng dẫn giải:

Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc với mặt phẳng (Oxz): $y = 0 \Leftrightarrow R = d(I;(Oxz))$

$$\Leftrightarrow R = \frac{|4|}{1} = 4 \cdot \text{Vây } (S) : (x-2)^2 + (y-4)^2 + (z-6)^2 = 16.$$

Lưa chon đáp án A.

Câu 85. Phương trình mặt cầu tâm I(2;4;6) nào sau đây tiếp xúc với trục Ox:

A.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 20$$
. **B.** $(x-2)^2 + (y-4)^2 + (z-6)^2 = 40$.

B.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 40$$
.

C.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 52$$
. D. $(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$.

D.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$$

Hướng dẫn giải:

Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc trục $Ox \Leftrightarrow R = d(I;Ox)$

$$\Leftrightarrow R = \sqrt{y_I^2 + z_I^2} = \sqrt{52}$$
. Vậy $(S): (x-2)^2 + (y-4)^2 + (z-6)^2 = 52$.

Lưa chọn đáp án C.

Lưu ý: Học sinh hoàn toàn có thể sử dụng công thức khoảng cách từ một điểm đến một đường thẳng để giải quyết.

Câu 86. Mặt cầu tâm I(2;4;6) tiếp xúc với trục Oz có phương trình:

A.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 20$$
. **B.** $(x-2)^2 + (y-4)^2 + (z-6)^2 = 40$.

B.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 40$$
.

C.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 52$$
.
D. $(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$.

D.
$$(x-2)^2 + (y-4)^2 + (z-6)^2 = 56$$

Hướng dẫn giải:

Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc trục $Ox \Leftrightarrow R = d(I;Oz)$

$$\Leftrightarrow R = \sqrt{x_I^2 + y_I^2} = \sqrt{20}$$
. Vậy $(S): (x-2)^2 + (y-4)^2 + (z-6)^2 = 20$.

Lưa chon đáp án A.

Lưu ý: Học sinh hoàn toàn có thể sử dụng công thức khoảng cách từ một điểm đến một đường thẳng để giải quyết.

Cho mặt cầu (S): $(x-1)^2 + (y-2)^2 + (z-3)^2 = 9$. Phương trình mặt cầu nào sau đây **Câu 87.**

là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):

A.
$$(x+1)^2 + (y+2)^2 + (z+3)^2 = 9$$
.

B.
$$(x+1)^2 + (y-2)^2 + (z+3)^2 = 9$$
.

C.
$$(x-1)^2 + (y+2)^2 + (z+3)^2 = 9$$
.

D.
$$(x-1)^2 + (y-2)^2 + (z+3)^2 = 9$$
.

Mặt cầu (S) tâm I(1;2;3), bán kính R=3. Do mặt cầu (S') đối xứng với (S) qua mặt phẳng (Oxy) nên tâm I' của (S') đối xứng với I qua (Oxy), bán kính R'=R=3.

Ta có:
$$I'(1;2;-3)$$
. Vậy $(S):(x-1)^2+(y+2)^2+(z-3)^2=9$.

Lựa chọn đáp án D.

Lưu ý: Dể ý thấy rằng trung điểm II' thuộc mặt phẳng (Oxy) và $\overrightarrow{II'} \perp (Oxy)$. Cả 4 đáp án trên đều có thể dễ dàng tìm được tọa độ I' nên nếu tinh ý ta sẽ tiết kiệm được thời gian hơn trong việc tìm đáp án.

Câu 88. Cho mặt cầu (S): $(x+1)^2 + (y-1)^2 + (z-2)^2 = 4$. Phương trình mặt cầu nào sau đây là phương trình mặt cầu đối xứng với mặt cầu (S) qua trục Oz:

A.
$$(x-1)^2 + (y+1)^2 + (z-2)^2 = 4$$
.

B.
$$(x+1)^2 + (y+1)^2 + (z-2)^2 = 4$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z-2)^2 = 4$$
.

D.
$$(x+1)^2 + (y-1)^2 + (z+2)^2 = 4$$
.

Hướng dẫn giải:

Mặt cầu (S) tâm I(-1;1;2), bán kính R=2. Do mặt cầu (S') đối xứng với (S) qua trục Oz nên tâm I' của (S') đối xứng với I qua trục Oz, bán kính R'=R=2.

Ta có:
$$I'(1;-1;2)$$
. Vậy $(S):(x-1)^2+(y+1)^2+(z-2)^2=4$.

Lựa chọn đáp án A.

Lưu ý: Sẽ vất vả hơn rất nhiều nếu học sinh không nhớ được tính chất đối xứng, tọa độ của một điểm đối xứng qua các trục tọa độ.

Câu 89. Đường tròn giao tuyến của $(S):(x-1)^2+(y-2)^2+(z-3)^2=16$ khi cắt bởi mặt phẳng (Oxy) có chu vi bằng :

A.
$$\sqrt{7}\pi$$
.

B.
$$2\sqrt{7}\pi$$
.

C.
$$7\pi$$
.

D.
$$14\pi$$
.

Hướng dẫn giải:

Mặt cầu (S) tâm I(1,2,3), bán kính R=4. Ta có : $d(I,(Oxy))=|z_I|=3$.

Gọi r là bán kính đường tròn (C) giao tuyến của mặt cầu (S) và mặt phẳng (Oxy), ta suy ra :

$$r = \sqrt{R^2 - \left[d\left(I; \left(Oxy\right)\right)\right]^2} = \sqrt{7}$$
. Vậy chu vi (C) bằng : $2\sqrt{7}\pi$.

Lựa chọn đáp án **B.**

Lưu ý: Để hiểu và làm nhanh bài này học sinh nên vẽ minh họa hình học và từ đó rút ra công thức tổng quát xác định bán kính đường tròn giao tuyến như hướng dẫn giải ở trên.