11. přednáška

27. listopadu 2008 14:24

Úrovně oprávnění (Privilege Levels)

- Úroveň 0 jádro operačního systému (řízení procesoru, I/O operací)
- Úroveň 1 služby poskytované operačním systémem (plánování procesů, organizace I/O, přidělování prostředků)
- **Úroveň 2** systémové programy a podprogramy z knihoven (systémy obsluhy souborů, správa knihoven)
- Úroveň 3 uživatelské aplikace

DPL (Descriptor Privilege Level) - uložen ve dvou bitech slabiky přístupová práva popisovače segmentu, obsahuje úroveň oprávnění přidělenou obsahu segmentu.

CPL (Current Privilege Level) - zapsán ve dvou nejnižších bitech selektoru CS (RPL), představuje momentální úroveň oprávnění přidělenou právě prováděnému procesu

RPL (Request Privilege Level) - uložen v bitech 0 a 1 selektoru segmentového registru, obsahuje úroveň oprávnění, kterou proces nabízí při přístupu k určitému segmentu

EPL (Effective Privilege Level) - numerické maximum CPL a RPL (hodnota nižší úrovně zabezpečení)

Zpřístupnění datového registru

- MOV DS, AX naplnění a kontrola přístupových práv
- MOV DL, DS: adresa čtení datového segmentu
- MOV DS: adresa, DL zápis datového segmentu (pokud W = 1)

CPL ≤ DPL RPL ≤ DPL

 $Max(CPL,RPL) \leq DPL$

EPL ≤ DPL

Zpřístupnění datového registru

• Proces přistupuje k datům pouze na stejné nebo nižší úrovni oprávnění.

Předání instrukcí do instrukčního segmentu

- JMP FAR PTR Navesti Skok do jiného instrukčního segmentu
 CALL FAR PTR Navesti Volání jiného instrukčního segmentu
- RET Návrat do jiného instrukčního segmentu
- MOV IDL, CS: Adresa Čtení instrukčního segmentu (je-li R = 1)

Brána pro předávání řízení (Call Gate)

- Brána je popisovač uložený v tabulce popisovačů segmentů
- CPL ≤ DPL brány
- CPL ≥ DPL podprogramu
- Brána je na nižší úrovni oprávnění
- Podprogram je na vyšší úrovni oprávnění

Použití brány pro předávání řízení

- Do segmentu se **nedá skočit přímo** (ochrana před zneužitím funkce podprogramu, definujeme přístupové body)
- Globální adresový prostor viditelný pro všechny
- Lokální adresové prostory viditelné pouze pro jednotlivý proces

Předávání parametrů pomocí brány

- PUSH Parametr 1
- PUSH Parametr_2
- CALL Podprogram
- Každý proces má vlastní zásobník
- Každá úroveň oprávnění uvnitř procesu má vlastní zásobník
- Parametry se do podprogramu předávají přes zásobník

Privilegované instrukce

- instrukce, které mohou použít pouze procesy s CPL 0 (např. UNIX rozlišuje mezi uživatelské úrovně 0 [systém] a 1 [uživatel])
- LGDT naplnění registru GDTR
- LIDT naplnění registru IDTR
- LLDT naplnění registru LDTR
- LTR naplnění registru TR
- LMSW naplnění registru MSW
- CLTS nulování bitu TS v registru MSW
- HLT zastavení procesoru (procesor čeká na přerušení, nižší energetické nároky)
- POPF a IRET smějí měnit pouze IOPL s CPL 0

Podmíněné privilegované instrukce (CPL ≤ IOPL)

- IN, INS, INSB, INSW čtení z I/O brány
- OUT, OUTS, OUTSB, OUTSW zápis na I/IO bránu
- STI, CLI změna příznaku IF
- prefix **LOCK** blokování směrnice
- POPF smí měnit pouze IF s CPL ≤ IOPL (jinak se změna IF ignoruje), porušení ➤ INT 13

Task State Segment (TSS)

Task State Segment

- datová struktura, ve které je od offsetu nula definováno tolik segmentů, kolik je registrů
- firmware **automaticky** posbírá **všechny registry** a uloží je do **TSS** (neukládá se tedy pouze návratová adresa přerušení, ale uloží se všechny registry do datové struktury TSS)
- Na segment s TSS ukazuje popisovač systémového segmentu (smí být umístěn pouze v GDT)
- Typ 3 TSS právě aktivního procesu
- Typ 1 TSS neaktivního procesu
- EPL <= DPL

15	TSS	0	
Sel	ektor LDT		42
Sel	ektor DS		40
Sel	ektor SS		38
Sel	ektor CS		36
Sel	ektor ES		34
DI			32
SI			30
BP			28
SP	ı		26
BX			24
DX			22
CX			20
AX			18
F			16
IP			14
SS	pro úroveň 2		12
SP	pro úroveň 2		10
SS	pro úroveň 1		8
SP	pro úroveň 1		6
SS	pro úroveň 0		4
SP	pro úroveň 0		2
Zpl	ětný ukazatel		0

Tak State Segment 2

- TR registr patřící pravě jednomu aktivnímu procesu
- TSS může mít velikost až do velikosti segmentu, předpokládá se, že operační systém si přeje ukládat dodatečné informace o každém procesu (limit procesu si může nastavit programátor dle sebe u 80286 od 64. bitu)

Brána zpřístupňující TSS

Přepnutí procesu může být vyvoláno

- Vzdáleným JMP nebo CALL, jehož selektor ukazuje na popisovač TSS nového procesu v GDT
- Vzdáleným JMP nebo CALL, jehož selektor ukazuje na bránu zpřístupňující TSS
- IRET s nastavením NT 1
- Přerušením, jehož přerušovací vektor ukazuje na bránu zpřístupňující TSS

V reálném režimu

- IDT (Interrupt Descriptor Table) obsahuje až 256 popisovačů rutin obsluhujících přerušení
- IDTR obsahuje adresu IDT (stejný jako GDTR)
- Popisovače v IDT
 - O Typ 1 Brána zpřístupňující TSS
 - Typ 2 Brána pro maskující přerušení (Interrupt Gate) po přerušení se zakáže další přerušení vynulováním IF
 - Typ 3 Brána pro nemaskující přerušení (Trap Gate) po přerušení se nezakazuje přerušení (nenuluje se IF)

- T=1 ... Brána pro nemaskující přerušení (nenuluje IF).
- T=0 ... Brána pro maskující přerušení (nuluje IF).

Brána pro přerušení

CPL přerušovaného procesu ≤DPL brány a zároveň

CPL≥**DPL** rutiny

Brána pro přerušení 2

Informace ukládaná do zásobníku

• některá přerušení navíc ukládájí chybové slovo

- 1 Žádné chybové hlášení.
- 2 Přerušení předává chybové slovo.
- Přerušení předává chybové slovo a obsluha přerušení pracuje na jiné (vyšší) úrovni oprávnění – je uloženo původní SS:SP.

Informace ukládané do zásobníku

Formát chybového slova předávaného přerušeními 10 až 13

15	2	1	0
Index do tabulky popisovačů segmentů	TI	П	EX

Chybové slovo

- I index ukazující do IDT (nikoli do GDT nebo IDT podle TI)
- EX (External) přerušení bylo způsobeno vnější události bez zavinění procesu

Přerušení generovaní procesorem 80286

- Fault do zásobníku uloží CS:IP ukazující na instrukci, která způsobila přerušení
- Trap do zásobníku uloží CS:IP ukazující za instrukci (na následující instrukci), která způsobila přerušení
- Abort v procesu nelze pokračovat a musí být náročně ukončen

Číslo		Тур	Chybové
vektoru	Určení vektoru	přerušení	slovo?
0	Dělení nulou	Fault	ne
1	Krokovací režim	Trap	ne
2	Nemaskovatelná přerušení	_	ne
3	Ladící bod	Trap	ne
4	Přeplnění	Trap	ne
5	Kontrola mezí	Fault	ne
6	Chybný operační kód	Fault	ne
7	Nedostupnost koprocesoru	Fault	ne
8	Dvojnásobný výpadek segmentu	Abort	ano (=0)
9	Překročení segmentu koprocesorem	Abort	ne
10	Chybný TSS	Fault	ano
11	Výpadek segmentu	Fault	ano
12	Výpadek segmentu se zásobníkem	Fault	ano
13	Obecná chyba ochrany	Fault	ano
16	Chyba koprocesoru	Fault	ne

Rezervovaná přerušení 80286

Počáteční nastavení procesoru

• nastává po signálu **RESET** (reálný režim)

Registr	Obsah
F	0002h
MSW	FFF0h
IP	FFF0h
Selektor CS	F000h
Selektor DS	0000h
Selektor SS	0000h
Selektor ES	0000h
Báze CS	FF0000h
Báze DS	000000h
Báze SS	000000h
Báze ES	000000h
Limit CS	FFFFh
Limit DS	FFFFh
Limit SS	FFFFh
Limit ES	FFFFh
Báze IDT	000000h
Limit IDT	FFFFh

Počáteční nastavení procesoru

Zapnutí chráněného režimu

- 1. Do paměti zavést programy a odpovídající tabulky popisovačů
- 2. Nastavit GDTR a IDTR
- 3. Zapnout chráněný režim nastavením bitu PE registru MSW na 1
- 4. Provést blízký skok JMP proto, aby se zrušil obsah interních front procesoru, ve kterých jsou uloženy

předvybrané instrukce (výběr instrukcí totiž závisí na zvoleném režimu procesoru)

- 5. Vytvořit TSS inicializačního procesu a nastavit obsah TR
- 6. Naplnit LDTR
- 7. Inicializovat ukazatel vrcholu zásobníku SS:SP

Procesor Intel 80386

- 1986-1994
- 16-40 MHz
- první procesor s kontakty zespodu
- 32-bitový procesor, datová a adresová (až 4GB RAM)
- zakladatel architektury IA-32
- Varianty
 - o i386DX plnohodnotný procesor
 - o i386SX 16-bitovou datová a 24-bitovou adresová sběrnicí
 - o i386SL pro laptop počítače (nižší spotřeba)
- matematický koprocesor (i387) separátně
- bez chlazení

GND: A2 A6 A9 B1 B5 B11 B14 C11 F2 F3 F14 J2 J3 J12 J13 M4 M8 M10 N3 P6 P14 U_{cc}: A1 A5 A7 A10 A14 C5 C12 D12 G2 G3 G12 G14 L12 M3 M7 M13 N4 N7 P2 P8

- z paměti lze vytáhnout minimálně 4B a to jen z adres dělitelných 4
- při přesahu nutno vytáhnout 8B
- snaha o optimalizaci ukládání proměnných (např. do adres dělitelných 4)

Registry procesoru 80386

Registry procesoru Intel 80386 (i386DX)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	VM	RF
0	NT	10	PL	OF	DF	IF	TF	SF	ZF	0	AF	0	PF	1	CF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

- VM (Virtual 8086 Mode) zapíná režim virtuální 8086 pro proces, jemuž obsah příznakového registru náleží, příznak VM smí programátor nastavovat pouze v chráněném režimu, a to instrukcí IRET, a jenom na úrovni oprávnění 0, příznak je také modifikován mechanismem přepnutí procesu, libovolný počet virtuálních 8086
- **RF** (Resume Flag) maskuje opakování ladícího přerušení