Classification of Entanglement using Knots

PH3203 Term Project

Sagnik Seth Jessica Das Sayan Karmakar 22MS026 22MS157 22MS163

Contents

1	Introduction	2
2	Classification of Links: A Polynomial Approach	2
3	Entanglement Classification 3.1 Obtaining a link from quantum state	2
4	Physical Significance: Use in Quantum Networks	2
5	Discussion and Conclusion	2
Αį	ppendix A: Quantum Information Basics 5.1 Density Matrix	
Αį	opendix B: Knot Theory Basics	4

- 1 Introduction
- 2 Classification of Links: A Polynomial Approach
- 3 Entanglement Classification
- 3.1 Obtaining a link from quantum state
- 3.2 Obtaining a state from a link
- 3.3 Applying to Three Qubit Systems
- 3.4 Applying to Four Qubit Systems
- 4 Physical Significance: Use in Quantum Networks
- 5 Discussion and Conclusion

Appendix A: Quantum Information Basics

- 5.1 Density Matrix
- 5.2 Peres-Horodecki Criterion

Appendix B: Knot Theory Basics