#### План лекции

- Поиск остовных деревьев в графе. Алгоритмы Прима и Краскала. Алгоритм
- Дейкстры и его связь с жадными алгоритмами.
- Алгоритм Флойда-Уоршалла и его связь с динамическим программированием.
- \_ Потоки на графах. Максимальный поток.

# Остовные деревья

### Остовное дерево: ещё немного терминов

- С точки зрения теории графов дерево есть ациклический связный граф.
- Множество деревьев называется лесом (forest) или бором.
- Остовное дерево связного графа подграф, который содержит все вершины графа и представляет собой полное дерево.
- Остовный лес графа лес, содержащий все вершины графа.

### Минимальное остовное дерево

- Построение остовных деревьев одна из основных задач в компьютерных сетях.
- Решение задачи как спланировать маршрут от одного узла сети до других.
- Для некоторого типа узлов в передаче сообщений недопустимо иметь несколько возможных маршрутов. Например, если компьютер соединён с маршрутизатором по Wi-Fi и Ethernet одновременно, то в некоторых операционных системах сообщения от компьютера до маршрутизатора не будут доходить из-за наличия цикла.
- Построение остовного дерева избавление от циклов в графе.

### Остовные деревья

Каждый из узлов имеет информацию о связях с соседями (рёбрах). Каждое ребро имеет вес.



#### Остовное дерево

- Множество достижимых узлов из некоторого *корневого* узла  $P_r$  должно совпадать с полным множеством.
- Для каждого узла должен быть ровно один маршрут до любого из достижимых узлов.

Это — остовное дерево для корневого узла  $P_r$ .



### Минимальное остовное дерево

Задача: определение кратчайшего пути из корневого узла.

Минимальное остовное дерево:



#### Минимальное остовное дерево

- MST Minimal Spanning Tree.
- Минимальное остовное дерево взвешенного графа есть остовное дерево, вес которого (сумма его всех рёбер) не превосходит вес любого другого остовного дерева.
- Именно минимальные остовные деревья больше всего интересуют проектировщиков сетей.
- Сечение графа разбиение множества вершин графа на два непересекающихся подмножества.
- Перекрёстное ребро ребро, соединяющее вершину одного множества с вершиной другого множества.

• Лемма. Если T — произвольное остовное дерево, то добавление любого ребра e между двумя вершинами u и v создаёт цикл, содержащий вершины u,v и ребро e.

- Лемма. При любом сечении графа каждое минимальное перекрёстное ребро принадлежит некоторому MST-дереву и каждое MST-дерево содержит перекрёстное ребро.
- Доказательство от противного. Пусть e минимальное перекрёстное ребро, не принадлежащее ни одному МЅТ и пусть T МЅТ дерево, не содержащее e. Добавим e в T. В этом графе есть цикл, содержащий e и он содержит ребро e', с весом, не меньшим e. Если удалить e', то получится остовное дерево не большего веса, что противоречит условию минимальности T или предположению, что e не содержится в T.

• Следствие. Каждое ребро дерева MST есть минимальное перекрёстное ребро, определяемое вершинами поддеревьев, соединённых этим ребром.

- Лемма (без доказательства). Пусть имеется граф G и ребро e. Пусть граф G' есть граф, полученный добавлением ребра e к графу G. Результатом добавления ребра e в MST графа G и последующего удаления максимального ребра из полученного цикла будет MST графа G'.
- Эта лемма выявляет рёбра, которые не должны входить в MST.

### Алгоритмы поиска MST

#### Алгоритм Прима

- Используется сечение графа на два подграфа древесных вершин и недревесных вершин.
- Выбираем произвольную вершину. Это MST дерево, состоящее из одной древесной вершины.
- Выбираем минимальное перекрёстное ребро между MST множеством и недревесным множеством.
- Повторяем операцию до тех пор, пока все вершины не окажутся в дереве.

Исходный граф.



Вершина 0 — корневая. Переводим её в MST. Проверяем все веса из MST в не MST.



(0-2) самое лёгкое ребро. Переводим вершину 2 и ребро (0-2) в MST.



Отмечаем все рёбра из MST в не MST.



Переносим вершину 7 и ребро (0-7) в MST.



Отмечаем все рёбра из MST в не MST.



Переносим вершину 1 и ребро (1-7) в MST.



Отмечаем все рёбра из MST в не MST.



Переносим вершину 6 и ребро (7-6) в MST.



Отмечаем все рёбра из MST в не MST.



Переносим вершину 4 и ребро (7-4) в MST.



Отмечаем все рёбра из MST в не MST.



Переносим вершину 3 и ребро (3-4) в MST.



Все вершины в MST.



- В данном виде алгоритм не очень эффективен.
- На каждом шаге мы забываем про те рёбра, который уже проверяли.
- Введём понятие накопителя.
- Накопитель содержит множество рёбер-кандидатов.
- Каждый раз в MST включается самое лёгкое ребро.

#### Более эффективная реализация алгоритма Прима

- Выбираем произвольную вершину. Это MST дерево, состоящее из одной вершины. Делаем вершину текущей.
- Помещаем в накопитель все рёбра, которые ведут из этой вершины в не MST узлы. Если в какой-либо из узлов уже ведёт ребро с большей длиной, заменяем его ребром с меньшей длиной.
- Выбираем ребро с минимальным весом из накопителя.
- Повторяем операцию до тех пор, пока все вершины не окажутся в дереве.

- Алгоритм Прима обобщение поиска на графе.
- Накопитель представляется очередью с приоритетами.
- Используется операция «извлечь минимальное».
- Используется операция «увеличить приоритет».
- Такой поиск на графе называется PFS поиск по приоритету.
- ullet Сложность алгоритма  $O(|E|\log |V|)$ .

## Алгоритм Краскала

#### Алгоритм Краскала (Kruscal).

- Один из самых старых алгоритмов на графах (1956).
- Предварительное условие: связность графа.
  - Создаётся число непересекающихся множеств по количеству вершин и каждая вершина составляет своё множество.
  - 2 Множество MST вначале пусто.
  - Из всех рёбер, не принадлежащих MST выбирается самое короткое из всех рёбер, не образующих цикл. Вершины ребра должны принадлежать различным множествам.
  - Выбранное ребро добавляется к множеству МST
  - Множества, которым принадлежат вершины выбранного ребра, сливаются в единое.
  - **6** Если размер множества MST стал равен |V|-1, то алгоритм завершён, иначе отправляемся к пункту 3.

# Алгоритм Краскала



#### Список рёбер упорядочен по возрастанию:

| еписок реоер упорядочен по возрастанию. |   |   |   |   |    |    |    |    |    |    |    |
|-----------------------------------------|---|---|---|---|----|----|----|----|----|----|----|
| i                                       | 3 | 0 | 1 | 0 | 0  | 6  | 3  | 4  | 0  | 0  | 4  |
| j                                       | 5 | 2 | 7 | 7 | 1  | 7  | 4  | 5  | 6  | 5  | 6  |
| $W_{ij}$                                | 4 | 7 | 7 | 9 | 10 | 10 | 11 | 15 | 22 | 26 | 30 |

## Алгоритм Краскала

Таблица принадлежности вершин множествам:

| U | 0 |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|
| p | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

# Алгоритм Краскала:первая итерация

Вершины 3 и 5 самого короткого ребра в разных множествах  $\to$  отправляем ребро в множество MST и объединяем множества.



| Ī | $V_i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|-------|---|---|---|---|---|---|---|---|
|   | p     | 0 | 1 | 2 | 3 | 4 | 3 | 6 | 7 |

### Алгоритм Краскала:вторая итерация

Два подходящих ребра с одинаковым весом:

| i        | 0 | 1 | 0 | 0  | 6  | 3  | 4  | 0  | 0  | 4  |
|----------|---|---|---|----|----|----|----|----|----|----|
| j        | 2 | 7 | 7 | 1  | 7  | 4  | 5  | 6  | 5  | 6  |
| $W_{ij}$ | 7 | 7 | 9 | 10 | 10 | 11 | 15 | 22 | 26 | 30 |

Лемма. При равных подходящих рёбрах можно выбирать произвольное.

**Доказательство.** Если добавление первого ребра не помешает добавлению второго, то, всё ОК.

Если помешает (добавление второго создаст цикл), то можно удалить любое из них, общий вес дерева останется неизменным.

# Алгоритм Краскала:вторая итерация

Выберем ребро (0,2) и поместим вершину 2 в множество номер 0.



| Ī | $V_i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|-------|---|---|---|---|---|---|---|---|
|   | p     | 0 | 1 | 0 | 3 | 4 | 3 | 6 | 7 |

# Алгоритм Краскала: третья итерация

Ребро (1,7) привело к слиянию множеств 1 и 7.



| $V_i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|---|
| p     | 0 | 1 | 0 | 3 | 4 | 3 | 6 | 1 |

89

# Алгоритм Краскала: четвёртая итерация

Самым коротким ребром из оставшихся оказалось ребро (0,7).



Нам нужно слить два множества — одно, содержащее  $\{0,2\}$  и другое — содержащее  $\{1,7\}.$ 

90

# Алгоритм Краскала: четвёртая итерация

| $V_i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|---|
| p     | 0 | 1 | 0 | 3 | 4 | 3 | 6 | 1 |

- Пусть новое множество получит номер 0.
- Нужно ли найти в массиве p все единицы (номер второго множества) и заменить их на нули (номер того множества, куда переходят элементы первого)?
- Можно быстрее, используя *систему непересекающихся множеств* Union-Find или Disjoint Set Union, DSU.

### Система непересекающихся множеств, DSU

#### Абстракция DSU реализует три операции:

- $\bullet$  create(n) создать набор множеств из n элементов.
- $\bullet$  find\_root(x) найти представителя множества.
- $\bullet$  merge(1,r) сливает два множества 1 и r.

# Система непересекающихся множеств: $find\_root(x)$

| $V_i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|---|
| p     | 0 | 1 | 0 | 3 | 4 | 3 | 6 | 1 |

- p[7] == 1 номер множества, он же и представитель.
- Если для слияния множеств {0,2} и {1,7} поместим в р[7] число 0, то для вершины 1 представителем останется 1, что неверно (после слияния вершина 1 должна принадлежать множеству 0).
- Так как p[7] ==1, то и у седьмой, и у первой вершины представители одинаковые.
- ullet Если номер вершины совпадает с номером представителя, то, в массив р при исполнении ничего не было записано  $o ext{ эта вершина есть корень дерева.}$

### Система непересекающихся множеств

• После слияния нужно заменить всех родителей вершины на нового представителя. Это делается изящным рекурсивным алгоритмом:

```
int find_root(int r) {
   if (p[r] == r) return r; // A trivial case
   return p[r] = find_root(p[r]); A recursive case
}
```

### Система непересекающихся множеств

- merge(1,r). Для сохранения корректности алгоритма вполне достаточно любого из присвоений: p[1] = r или p[r] = 1. Всю дальнейшую корректировку родителей в дальнейшем сделает метод find\_root.
- Приёмы балансировки деревьев:
  - Использование ещё одного массива, хранящего длины деревьев: слияние производится к более короткому дереву.
  - Случайный выбор дерева-приёмника.

```
void merge(int 1, int r) {
    l = find_root(l); r = find_root(r);
    if (rand() % 2) p[l] = r;
    else p[r] = l;
}
```

• Важно: операция слияния начинается с операции поиска, которая заменяет аргументы значениями корней их деревьев!

| $V_i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|---|
| p     | 0 | 1 | 0 | 3 | 4 | 3 | 6 | 1 |

- Определяем, каким деревьям принадлежат концы ребра (0,7).
- find\_root(0) вернёт 0 как номер множества.
- find\_root(7) сначала убедится, что в p[7] лежит 1 и вызовет find\_root(1), после чего, возможно, заменит p[7] на 1 и вернёт 1.

- Концы ребра 0 принадлежат разным множествам  $\to$  сливаем множества, вызвав merge (0,7).
- Операция merge заменит свои аргументы, 0 и 7, корнями деревьев, которым принадлежат 0 и 7, то есть, 0 и 1 соответственно.
- B p[1] помещается 0 и деревья слиты.
- Обратите внимание на то, что в р[7] всё ещё находится 1!.

| $V_i$ | 0 | 1 | 2 | თ | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|---|
| p     | 0 | 0 | 0 | თ | 4 | თ | 6 | 1 |



Следующее peбpo — (6,7). find\_root(7) установит p[7]=0. Это же значение будет присвоено и p[6].

| 711   |   |   |   |   | <u> </u> |   |   |   |
|-------|---|---|---|---|----------|---|---|---|
| $V_i$ | 0 | 1 | 2 | 3 | 4        | 5 | 6 | 7 |
| p     | 0 | 0 | 0 | 3 | 4        | 3 | 0 | 0 |

98

На следующем этапе ребро (3,4) окажется самым коротким.



| $V_i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-------|---|---|---|---|---|---|---|---|
| p     | 0 | 0 | 0 | 3 | 3 | 3 | 0 | 0 |

Концы рёбер (4,5) и (0,6) принадлежат одним множествам. Ребро (4,7) подходит. Количество рёбер в множестве МЅТ достигло 7=N-1. Конец.



| ſ | $V_i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|-------|---|---|---|---|---|---|---|---|
| ľ | p     | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 0 |

# Алгоритм Краскала: сложность

- Первая часть алгоритма сортировка рёбер. Сложность этой операции  $O(|E|\log |E|)$ .
- В 1984 году Tarjan доказал, используя функцию Аккермана, что операция поиска в DSU имеет сложность амортизированную O(1).
- ullet Сложность всего алгоритма Краскала и есть  $O(|E|\log|E|).$
- Для достаточно разреженных графов он обычно быстрее алгоритма Прима, для заполненных наоборот.

# Дерево кратчайших путей — SPT

• Пусть задан граф G и вершина s. Дерево кратчайших путей для s — подграф, содержащий s и все вершины, достижимые из s, образующий направленное поддерево с корнем в s, где каждый путь от вершины s до вершины s является кратчайшим из всех возможных путей.

- Строит SPT (Shortest Path Tree).
- Определяет длины кратчайших путей от заданной вершины до остальных.
- Обязательное условие: граф не должен содержать рёбер с отрицательным весом.

- В SPT заносится корневой узел (исток).
- На каждом шаге в SPT добавляется одно ребро, которое формирует кратчайший путь из истока в не-SPT.
- Вершины заносятся в SPT в порядке их расстояния по SPT от начальной вершины.

#### Жадная стратегия.

- ullet Пусть найдено оптимальное множество U.
- ullet Изначально оно состоит из вершины s
- ullet Длины кратчайших путей до вершин множества обозначим, как  $d(s,v),v\in U.$
- ullet Среди вершин, смежных с U находим вершину  $u,u \notin U$  такую, что достигается минимум

$$\min_{v \in U, u \notin U} d(s, v) + w(v, u).$$

ullet Обновляем множество  $U:U\leftarrow U\cup\{u\}$  и повторяем операцию.

#### Используются переменные:

- ullet d[u] длина кратчайшего пути из вершины s до вершины u.
- ullet  $\pi[u]$  предшественник u в кратчайшем пути от s.
- $\bullet \ w(u,v)$  вес пути из u в v (длина ребра, вес ребра, метрика пути).
- ullet Q приоритетная по значению d очередь узлов на обработку.
- ullet U множество вершин с уже известным финальным расстоянием.

```
1: procedure DIJKSTRA(G: Graph; w: weights; s: Vertex)
        for all v \in V do
 2:
            d[v] \leftarrow \infty
3:
            \pi[v] \leftarrow nil
 4:
      end for
 5:
     d[s] \leftarrow 0
6:
    U \leftarrow \emptyset
7:
    Q \leftarrow V
8:
        while Q \neq \emptyset do
9:
10:
             u \leftarrow Q.extractMin()
            U \leftarrow U \cup \{u\}
11:
             for all v \in Adj[u], v \notin U do
12:
                 Relax(u,v)
13:
             end for
14:
        end while
15:
16: end procedure
```

```
1: procedure RELAX(u,v:Vertex)
2: if d[v] > d[u] + w(u,v) then
3: d[v] = d[u] + w(u,v)
4: \pi[v] \leftarrow u
5: end if
6: end procedure
```

- ullet Операция Relax релаксация
- Два вида релаксации:
  - Релаксация ребра. Даёт ли продвижение по данному ребру новый кратчайший путь?
  - ► Релаксация пути. Даёт ли прохождение через данную вершину новый кратчайший путь, соединяющий две другие заданные вершины.

Исходный граф



v1 в SPT, v2, v3 и v4 — в накопителе.



Выбран узел v2. Корректируются расстояния от него. Релаксация:  $(1 \to 4)$ 



заменён на  $(1 \rightarrow 2 \rightarrow 4)$ .

Выбран узел v3.



В накопитель отправляется v5. Релаксация:  $(1 \to 2 \to 6)$  заменено на  $(1 \to 2 \to 4 \to 6), (1 \to 3) \text{ на } (1 \to 2 \to 4 \to 3)$ 







# Алгоритм Дейкстры: сложность

- ullet Имеется |V|-1 шаг.
- На каждом шаге корректировка расстояние до соседей (просмотреть все рёбра) и выбор минимального из накопителя.
- ullet Для насыщенных деревьев сложность алгоритма  $O(V^2 \log V)$

# Множественный алгоритм Дейкстры

- Если мы хотим построить таблицу минимальных расстояний от каждого до каждого, то вычисление таблиц для каждого узла в отдельности имеет сложность  $O(N^2 \log N)$ .
- Вычисление таблиц для всех узлов имеет сложность  $N \cdot O(N^2 \log N) = O(N^3 \log N)$
- ullet Существует более быстрый алгоритм, имеющий сложность  $O(N^3)$ .

Алгоритм Флойда-Уоршалла.

# Алгоритм Флойда-Уоршалла

Построение таблиц маршрутизации.

- Известен с 1962 года.
- Определяет кратчайшие пути во взвешенном графе, описанном матрицей смежности.
- В матрице смежности число, находящееся в i-й строке и j-м столбце есть вес связи между ними.
- Изменим представление и будем полагать, что в матрице смежности  $C_{ij} = \infty$ , если узлы i и j не являются соседями.
- На входе алгоритм принимает модифицированную матрицу смежности, а на выходе эта матрица будет содержать в элементе  $C_{ij}$  вес кратчайшего пути из  $P_i$  в  $P_j$ .
- Допускается наличие путей с отрицательным весом.
- Не должно быть циклов с отрицательной длиной.

# Алгоритм Флойда-Уоршалла

Сам алгоритм может быть описан в рекурсивной форме как

$$D_{ij}^{(k)} = egin{cases} C_{ij}, & ext{если } k = 0, \\ \min\left(D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}
ight), & ext{если } k \geqslant 1 \end{cases}$$

Это — задача динамического программирования.

#### Этапы прохождения алгоритма для графа



# Алгоритм Флойда-Уоршалла

Исходная матрица смежности:

$$D^{(0)} = \begin{bmatrix} P_0 & P_1 & P_2 & P_3 & P_4 & P_5 \\ P_0 & 0 & \infty & \infty & \infty & 3 & 2 \\ P_1 & \infty & 0 & \infty & \infty & \infty & 4 \\ P_2 & \infty & 7 & 0 & 3 & 12 & \infty \\ P_3 & \infty & \infty & \infty & 0 & \infty & \infty \\ P_4 & \infty & \infty & 2 & \infty & 0 & \infty \\ P_5 & \infty & \infty & 4 & 2 & 5 & 0 \end{bmatrix}$$

Начальная матрица  $D^{(0)}$  содержит метрики всех наилучших маршрутов единичной длины. Каждая следующая итерация алгоритма добавляет в матрицу  $D^{(i+1)}$  элементы, связанные с маршрутами длины i, на единицу большей.

# Алгоритм Флойда-Уоршалла

После первой итерации матрицы не изменяются.

После второй итерации получается следующее (красным цветом помечены изменившиеся элементы таблиц):

|             |       | $P_0$    | $P_1$    | $P_2$    | $P_3$    | $P_4$    | $P_5$                                     |
|-------------|-------|----------|----------|----------|----------|----------|-------------------------------------------|
|             | $P_0$ | 0        | $\infty$ | $\infty$ | $\infty$ | 3        | 2                                         |
|             | $P_1$ | $\infty$ | 0        | $\infty$ | $\infty$ | $\infty$ | 4                                         |
| $D^{(2)} =$ | $P_2$ | $\infty$ | 7        | 0        | 3        | 12       | 11                                        |
|             | $P_3$ | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | $\infty$                                  |
|             | $P_4$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$                                  |
|             | $P_5$ | $\infty$ | $\infty$ | 4        | 2        | 5        | 2<br>4<br>11<br>$\infty$<br>$\infty$<br>0 |

# Алгоритм Флойда-Уоршалла

|             |       | $P_0$    | $P_1$    | $P_2$    | $P_3$    | $P_4$    | $P_5$                                     |
|-------------|-------|----------|----------|----------|----------|----------|-------------------------------------------|
|             | $P_0$ | 0        | $\infty$ | $\infty$ | $\infty$ | 3        | 2                                         |
|             | $P_1$ | $\infty$ | 0        | $\infty$ | $\infty$ | $\infty$ | 4                                         |
| $D^{(3)} =$ | $P_2$ | $\infty$ | 7        | 0        | 3        | 12       | 11                                        |
|             | $P_3$ | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$ | $\infty$                                  |
|             | $P_4$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 0        | $\infty$                                  |
|             | $P_5$ | $\infty$ | 11       | 4        | 2        | 5        | 2<br>4<br>11<br>$\infty$<br>$\infty$<br>0 |

# Алгоритм Флойда-Уоршалла

Результат четвёртой и пятой итерации совпадает с результатом третьей. Шестая, последняя итерация:

$$D^{(6)} = \begin{bmatrix} P_0 & P_1 & P_2 & P_3 & P_4 & P_5 \\ P_0 & 0 & \mathbf{13} & \mathbf{6} & \mathbf{4} & 3 & 2 \\ P_1 & \infty & 0 & \mathbf{8} & \mathbf{6} & \mathbf{9} & \mathbf{4} \\ P_2 & \infty & 7 & 0 & 3 & 12 & 11 \\ P_3 & \infty & \infty & \infty & 0 & \infty & \infty \\ P_4 & \infty & \infty & \infty & \infty & 0 & \infty \\ P_5 & \infty & 11 & \mathbf{4} & 2 & 5 & 0 \end{bmatrix}$$

- Предположим, что мы сидим за рулём автомобиля.
- Дорожная сеть граф.
- Алгоритм Дейкстры определит, за какое время мы доберёмся до любого пункта назначения.
- Как определить все ли автомобили могут проехать по данному маршруту, или пропускная способность транспортной сети ограничена?
- Москва 9 мая: все хотят попасть в центр на парад, но часть дорог вообще перекрыта, а часть имеет ограниченную ширину.
- Как узнать максимальное число автомобилей, которые могут проехать в центр за, скажем, один час?
- Требуется найти **максимальный поток** между стартом и финишем, источником и стоком.

- Толчок: вторая мировая война, Д. Б. Данциг, отдел статистического управления ВВС США.
- Нужна математическая модель, каким образом можно быстро сконцентрировать войска и войсковую инфраструктуру вблизи критических точек на театре военных действий.
- Более общая задача: определения пропускной способности рёбер транспортного графа поставлена им в 1951 году.
- 1955 год: Лестер Форд и Делберт Фалкерсон разработали алгоритм, решающий именно эту задачу.
- Хорошее решение данной задачи критически важно для современных транспортных графов (Москва: более 100000 узлов).

## Поиск максимального потока: термины

- **Ёмкость ребра** максимальная интенсивность потока, проходящего через ребро.
- Насыщенное ребро ребро, по которому проходит максимальный поток.

# Поиск максимального потока: алгоритм

Алгоритм ищет максимальный поток в сети из источника (source) в сток (destination).

- ullet Каждому ребру ставится в соответствие пара чисел (c,l).
- $\bullet$  c достигнутый до сих пор поток по ребру, вначале он равен нулю, затем это число будет только увеличиваться, пока не достигнет l, ёмкости ребра.
- ullet Если по ребру (u,v) мы пустили прямой поток, пустим такой же в обратном направлении (v,u), добавив, если надо, отсутствующее ребро.
- Алгоритм продолжается, когда на хотя бы одном маршруте из s все рёбра ненасыщенные, то есть на всех рёбрах c < l.

- Ищем любой маршрут, содержащий только ненасыщенные рёбра из s в d. Если такого нет, то алгоритм закончен, искомый поток есть сумма потоков всех рёбер, приходящих в d.
- <sup>2</sup> Мы нашли дополняющий маршрут. Определяем значение максимального потока m, который мы можем пропустить по данному маршруту. Он определяется как минимальная из всех возможных разностей ёмкости l и существующего потока c по всем рёбрам маршрута.
- f 3 K каждому из c на маршруте прибавляем m. Хотя бы одно ребро станет насыщенным.
- Возвращаемся к (1).

# Поиск максимального потока: подопытный граф.

Ищем максимальный поток из  $V_1$  в  $V_6$ .



- ullet Найдём произвольный маршрут из s в d. Пусть v1 o v3 o v6.
- ullet Наименьшая разница между l и c равна 8, пропускаем поток с интенсивностью 8 по этому маршруту.



- ullet Ребро  $V_3 o V_6$  стало насыщенным.
- ullet Добавим обратное ребро  $V_6 o V_3$ .



ullet Находим новый путь из  $V_1$  в  $V_6$ .



- ullet Он сделал насыщенными рёбра  $V_1 
  ightarrow V_3$  и  $V_3 
  ightarrow V_4$ .
- Добавим обратные рёбра.



ullet Новый поиск дал нам новый путь  $V_1 o V_2 o V_6$ .



• Насыщаем рёбра этого пути и добавляем обратные.



• Следующий поиск дал нам поток интенсивностью 2.



• Он насытил ребро  $V_4 o V_5$ .



• Потоки искать всё сложнее, но мы нашли один с интенсивностью 4.



• Мы всё насытили и вот результат:



Максимальный ли это поток? Сейчас он равен 26.

• Мы всё насытили и вот результат:



Максимальный ли это поток? Сейчас он равен 26. Вспомним про обратные рёбра.

144

• Пропустим единицу потока по маршруту  $V_1 \to V_4 \to V_3 \to V_2 \to V_6$ .



- ullet Но ведь у нас уже есть две единицы потока из  $V_3$  в  $V_4$ .
- Объединим потоки из  $V_3$  в  $V_4$  (пять единиц) и из  $V_4$  в  $V_3$  (две единицы).



• Больше ничего никуда не добавить — алгоритм завершён.



Из  $V_1$  выходит 27 единиц из 35 возможных, в  $V_6$  приходит 27 из 29 возможных. Что можно расширить, чтобы увеличить пропускную способность?