

University of engineering & technology Peshawar

Digital Logic & computer Design-theory Assignment no#02

Spring 2020

Submitted by: Ashfaq Ahmad

Section: B

Reg No: 19PWCSE1795

Semester: 3rd

"On my honor, as a student of University of Engineering and Technology Peshawar, I have neither given nor received unauthorized assistance on this academic work"

Stud	lent signature:	

Submitted to: **Eng: rehmat sab**

Department Of Computer System Engineering

Name ASHFARD AHMAD Reg NOI LAPWCRE 1795

Page [

^	4	-
14	2	٠,
-	10	-

manual life impression and a residence	INOT	n to	cible.		
x 1	7	~~	F	Symbole	mintern
0	0	0	0	mo	XYZ
٥	0	1	0	/ m,	2472
٥	1	0	1	M2	TYZ
0		1	1-15	m ₃	nyz
ı	0	0		my	XYZ_
1	0	11	0	ms	ny2
	1	0		m _e	247
	1	1	0	l wt	xyz

Table 101

For Fig

F((n,y,2) = \(\int m(m2, m3, m4, m6)

= [x(2,3,4,6) =(x(yz+xyz+xyz+xyz)

F1(N, y, z) = N/y(z/+z) + Nz/(y/+y)

According to boodean law

 $F_1(n_1y_1z) = n_1y_1 + n_2y_1$

Table	Per	Mar		fine	hou	λ,			
	-						-		
x & 2	Fa	F3	Fy	FS	FG	Fa	Fp	Fa	Fie
0 0 0	0		ò	1	0	O	0	0	0
0 0 1	1		0	1	0		O		6
0 10	0	0	1	0	1			0	0
0 11	1	0	0	\circ	1	0	1	1	0
1 0 0	1	0	1	0	0	1	0	0	1
1 0 1	0	1	0	0	O	0	*	1	1
1 10	0		1	0	•	-(-	6	0
1 1 1	1	0	0	1	4	0	0	1	
		Tab	le	102					
			_						

the mintern for F3 from talk 1.3 $F_{3}(n_{1}y_{1}z) = \sum_{m} (0, 1, 5, 6)$ $= (\bar{x}\bar{y}\bar{z} + \bar{n}\bar{y}z + \bar{n}\bar{y}z + \bar{n}\bar{y}\bar{z})$ $= \bar{n}\bar{y}(\bar{z} + z) + \bar{n}\bar{y}z + \bar{n}\bar{y}\bar{z}$ $F_{3}(n_{2}y_{1}z) = \bar{n}\bar{y}(1) + \bar{n}(\bar{y}z + \bar{y}\bar{z})$

page (4) For Fa: F2(N,y,2) = In(1) 3, 4,7) = (NYZ + XYZ + NYZ + NYZ) = x 2 x + x 2 x + x 2 x + x 2 z) = x x z + yz + x y z F2 (114,2)

Fy: Fy(x,y,z) = \(\sigma\) (2,4,6) 1 \(\sigma\) + \(\sigma\) = = (145 + 495 + 445 PO LEXT XX

Ty (N17,2) = 7 (Ny + Ny + Ny)

 $F_{4}(x_{1}x_{1}x_{2}) = \overline{z}(x_{1}x_{2} + x_{1}x_{2})$

Circuit Diagrams

F3:

Fs (x,y,z) = Zm (0,1,7)

 $= \left(\overline{n}\overline{y}\overline{z} + \overline{n}\overline{y}z + \overline{n}yz \right)$ $= \left(\overline{n}\overline{y}\overline{z} + z(\overline{n}y + \overline{n}y) \right)$ $= \overline{n}\overline{y}\overline{z} + z$

 $F_{9}!$ $F_{9}(n_{1}y,z) = \sum_{m(1,3,5,7)} = (\bar{n}\bar{y}z + \bar{n}\bar{y}z + \bar{n}\bar{y}z + \bar{n}\bar{y}z)$ $= (\bar{n}\bar{y}z + \bar{n}\bar{y}z + \bar{n}\bar{y}z + \bar{n}\bar{y}z)$ $= z(\bar{n}\bar{y} + \bar{n}\bar{y}) + \bar{n}\bar{y}z + \bar{n}\bar{y}z$ $= z(\bar{n}\bar{y} + \bar{n}\bar{y}) + \bar{n}\bar{y}z + \bar{n}\bar{y}z$ $= z(1 + \bar{n}\bar{y} + \bar{n}\bar{y})$ $= z(1 + \bar{n}\bar{y} + \bar{n}\bar{y})$ $= z(1 + \bar{n}\bar{y})$ $= z(1 + \bar{n}\bar{y})$ $= z(1 + \bar{n}\bar{y})$

$$F_{q}(n,y,z) = Z(1+ny)$$

$$\frac{aqain}{F_{q}(n,y,z)} = Z \qquad (0)$$

Circoit

XYZ

F 10:

 $E_{10}(n, y, z) = \sum_{m} (y, z, y)$ = (nyz + nyz + nyz) = nyz + nyz + nyz = n(yz + yz) + nyz = n(1) + nyz = x(1 + yz)As 1 + anyThing = 1

F10(11)7,2) = X

7 140	o a	/	7	· FI	F2	maxterms.
N		<u>y</u> _	0	0	0	W+X+Y+2
	0	0	1	0	0	W1+1+4+2
. 0	0_			0	1	W+x+y+2
0	0		0	1	1 .	W+x+4+2
0	7		0		i	W+x+ Y+2
0	!	0		. 0	0	W+X+Y+2
0	_!_	6	_		. 0	W+x+y+2
_0			0	0	U	W+x + y+ 2
٥		l			1	W+x+y+2
!	0	0	U			W+x +4+2
	6	0	1	!	б	W+x + y+2.
1	0		0	0	0	W+x+y+z
_1	U		/	0		
1			0		!	W+x+y+2
1	1	0 /				W+XX /+ 2
1	1	1 0	1.0		0	W+X+Y+7
1	1	/ /		1		W+x+Y+2
	5					
	1 1					
			, , ,			
						:

FI(W.X, Y, 2) = TI (Me, M, Ms, Me,) F,(1N, x, y, 2) - (1N+ x+y+7) 0 (N+ x+y+2) · (N+ x+y+7). (N+x+y+7) Drow a circuite cliegram: MOW (W+X+Y+2) (M+x+y+2') Function Fi Fx (w.x.y,2)=(A-B+C+P)(W+X+Y+2)(w+X+Y+2) (W+X+X+2)

F5 (W=X, Y, Z)= (W+x+y+2) (W+x+y+2) (W+x+y+2) (W+x+y+2) Crouste diagram F5 Draw goil W+X+++++