```
In [ ]: import pandas as pd
         import matplotlib.pyplot as pt
         import numpy as np
         import requests as r
         Load Data Set
         df = pd.read_csv("iris.data")
In [ ]:
Out[ ]:
              5.1 3.5 1.4 0.2
                                Iris-setosa
           0 4.9 3.0 1.4 0.2
                                 Iris-setosa
           1 4.7 3.2 1.3 0.2
                                 Iris-setosa
           2 4.6 3.1 1.5 0.2
                                 Iris-setosa
           3 5.0 3.6 1.4 0.2
                                 Iris-setosa
           4 5.4 3.9 1.7 0.4
                                 Iris-setosa
           ••• ... ... ... ...
         144 6.7 3.0 5.2 2.3 Iris-virginica
         145 6.3 2.5 5.0 1.9
                               Iris-virginica
         146 6.5 3.0 5.2 2.0 Iris-virginica
         147 6.2 3.4 5.4 2.3 Iris-virginica
         148 5.9 3.0 5.1 1.8 Iris-virginica
        149 rows × 5 columns
         df.columns =["SepalLengthCm","SepalWidthCm","PetalLengthCm","PetalWidthCm","Species"]
In [ ]:
         df
```

Out[

]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	4.9	3.0	1.4	0.2	Iris-setosa
	1	4.7	3.2	1.3	0.2	Iris-setosa
	2	4.6	3.1	1.5	0.2	Iris-setosa
	3	5.0	3.6	1.4	0.2	Iris-setosa
	4	5.4	3.9	1.7	0.4	Iris-setosa
	•••					
	144	6.7	3.0	5.2	2.3	Iris-virginica
	145	6.3	2.5	5.0	1.9	Iris-virginica
	146	6.5	3.0	5.2	2.0	Iris-virginica
	147	6.2	3.4	5.4	2.3	Iris-virginica
	148	5.9	3.0	5.1	1.8	Iris-virginica

149 rows × 5 columns

```
In [ ]:
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 149 entries, 0 to 148
        Data columns (total 5 columns):
                            Non-Null Count Dtype
             Column
                                            ____
         0
             SepalLengthCm 149 non-null
                                            float64
                                            float64
         1
             SepalWidthCm
                            149 non-null
         2
             PetalLengthCm 149 non-null
                                            float64
         3
             PetalWidthCm
                            149 non-null
                                            float64
             Species
                            149 non-null
                                            object
        dtypes: float64(4), object(1)
        memory usage: 5.9+ KB
In [ ]:
        df.isnull().sum()
        SepalLengthCm
                         0
Out[ ]:
        SepalWidthCm
                         0
        PetalLengthCm
                         0
        PetalWidthCm
                         0
        Species
                         0
        dtype: int64
        df.describe()
In [ ]:
```

Out[]:

Out[]

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	149.000000	149.000000	149.000000	149.000000
mean	5.848322	3.051007	3.774497	1.205369
std	0.828594	0.433499	1.759651	0.761292
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.400000	1.300000
75 %	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [ ]: df.drop_duplicates()
```

:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	4.9	3.0	1.4	0.2	Iris-setosa
	1	4.7	3.2	1.3	0.2	Iris-setosa
	2	4.6	3.1	1.5	0.2	Iris-setosa
	3	5.0	3.6	1.4	0.2	Iris-setosa
	4	5.4	3.9	1.7	0.4	Iris-setosa
	•••					
14	14	6.7	3.0	5.2	2.3	Iris-virginica
14	45	6.3	2.5	5.0	1.9	Iris-virginica
14	16	6.5	3.0	5.2	2.0	Iris-virginica
14	17	6.2	3.4	5.4	2.3	Iris-virginica
14	18	5.9	3.0	5.1	1.8	Iris-virginica

146 rows × 5 columns

Creating Histogram For Each Feature in dataset

1. Sepal Lenght In Centimeter

1. Sepal Width In Centimeter

Frequency distribution Of Sepal Width CM

1. Petal Lenght In Centimeter

1. Petal Witdh In Centimenter

5.Species

```
In [ ]: df["Species"].hist(color ="olive")
Out[ ]: <AxesSubplot:>
```


Creating a Box Plot For Each Feature In The Dataset

1.Sepal Lenght

2.Sepal Width

3.Petal Lenght in Centimeter

4.Petal Width

Comparing All Boxplots

```
In []: df[{"SepalLengthCm","SepalWidthCm","PetalLengthCm","PetalWidthCm"}].boxplot()
    pt.title("Comparing all boxplots")

C:\Users\student\AppData\Local\Temp\ipykernel_5380\2625316568.py:1: FutureWarning: Pa
    ssing a set as an indexer is deprecated and will raise in a future version. Use a lis
    t instead.
        df[{"SepalLengthCm","SepalWidthCm","PetalLengthCm","PetalWidthCm"}].boxplot()

Out[]:
Out[]:
```


