

## Spring cleaning

Le pulizie di primavera sono probabilmente l'avvenimento più noioso delle nostre vite, tranne quest'anno, quando Flóra e sua madre hanno trovato un vecchio e polveroso albero sotto il tappeto.

Quest'albero ha N nodi (numerati da 1 a N), connessi da N-1 archi. Gli archi hanno accumulato molta polvere, quindi la mamma di Flóra ha deciso di pulirli.

Pulire gli archi di un certo albero viene fatto ripetendo il seguente processo: ella sceglie 2 foglie distinte (un nodo è una foglia se è connessa ad esattamente un altro nodo tramite un arco), e pulisce ogni arco nel percorso minimo tra di esse. Se questo percorso ha d archi, allora questo procedimento richiede d minuti per essere completato.

La mamma di Flóra non vuole far del male alle foglie dell'albero, quindi sceglie ogni foglia **al più una volta**. Un albero è considerato pulito quando lo sono tutti i suoi archi. Il tempo totale di questo processo è la somma dei tempi necessari a pulire tutti i percorsi scelti.

Flóra pensa che l'albero che hanno trovato sia troppo piccolo e semplice, quindi immagina Q varianti di esso. Nell'i-esima variazione aggiunge un totale di  $D_i$  foglie extra all'albero **originale**: per ogni nuova foglia, viene scelto un nodo dall'albero **originale** e si connette quel nodo con la nuova foglia tramite un arco. Nota bene che alcuni nodi potrebbero smettere di essere foglie dopo questo processo.

Per tutte queste Q varianti siamo interessati a quale sia il minimo tempo necessario per pulire l'intero albero.

### Input

La prima riga contiene due interi separati da spazio,  $N \in Q$ .

Ognuna delle successive N-1 righe contiene due interi separati da spazio, u e v, i quali indicano che i nodi u e v sono collegati da un arco.

Le successive Q righe descrivono le varianti: il primo intero nella i-esima riga è  $D_i$ . Successivamente ci sono  $D_i$  interi separati da spazi: se il j-esimo numero è  $a_j$ , allora vuol dire che Flóra aggiunge una nuova foglia al nodo  $a_j$ . Più di una foglia potrebbe essere aggiunta allo stesso nodo.

Dopo ogni variante, Flóra riparte da capo e aggiunge le prossime foglie extra all'albero originale.

### Output

Devi stampare Q righe. Nella i-esima riga devi stampare un singolo intero: il numero di minuti necessari per pulire la i-esima variante dell'albero. Se l'albero non può essere pulito, stampa -1.

1

v5



#### Esempi

| Input | Output |
|-------|--------|
| 7 3   | -1     |
| 1 2   | 10     |
| 2 4   | 8      |
| 4 5   |        |
| 5 6   |        |
| 5 7   |        |
| 3 4   |        |
| 1 4   |        |
| 2 2 4 |        |
| 1 1   |        |

## Spiegazione

La seguente illustrazione mostra la seconda variante.

Una possibile soluzione è pulire i percorsi tra le coppie di foglie 1-6, A-7 e B-3.



#### Assunzioni

$$\begin{split} &3 \leq N \leq 10^5 \\ &1 \leq Q \leq 10^5 \\ &1 \leq u,v \leq N \\ &1 \leq D_i \leq 10^5 \text{ per ogni } i \\ &\sum_{i=1}^Q D_i \leq 10^5 \\ &1 \leq a_j \leq N \text{ per ogni } j \text{ in ogni variante} \end{split}$$

Limite di tempo:  $0.3 \mathrm{s}$ 

Limite di memoria: 128 MiB

2 v5



# Punteggi

| Subtask | Punti | Assunzioni                                                                                                                                                                                       |
|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | 0     | Casi d'esempio                                                                                                                                                                                   |
| 2       | 9     | $Q=1,$ c'è un arco tra i nodi 1 e $i$ per ogni $i$ $(2 \le i \le N)$ Flóra non aggiunge alcuna foglia extra al nodo 1                                                                            |
| 3       | 9     | $Q=1,$ c'è un arco tra i nodi $i$ e $i+1$ per ogni $i$ $(1 \le i < N)$<br>Flóra non aggiunge alcuna foglia extra al nodo 1, e neanche al nodo $N$                                                |
| 4       | 16    | $N \le 20000 \text{ e } Q \le 300$                                                                                                                                                               |
| 5       | 19    | L'albero originale è un albero binario perfettamente bilanciato avente come radice il nodo 1 (ovvero ogni nodo interno ha esattamente 2 figli, e ogni foglia ha la stessa distanza dalla radice) |
| 6       | 17    | $D_i = 1$ per ogni $i$                                                                                                                                                                           |
| 7       | 30    | Nessuna limitazione aggiuntiva                                                                                                                                                                   |

3

v5