Graphs

Bing Xu 11/29/2016

```
require(tidyverse)
require(stringr)
require(forcats)
require(ggplot2)
require(choroplethr)
require(choroplethrMaps)
require(dplyr)
library(tidyverse)
dat<-read.csv("CC-EST2015-ALLDATA.csv",header = TRUE)</pre>
##FOR ALL AGE GROUPS AND FOR YEAR 2015
dat2015<-dat %>%
  filter(AGEGRP==0 & YEAR==8)
##DO NOT COUNT HISPANIC
##SIMPLY USING TWO 6 TYPES OF RACES AND THIS COULD BE REVISED
##H=H_MALE+H_FEMALE,
dat2015<-dat2015 %>%
  transmute(STATE=STATE,
            COUNTY=COUNTY,
            TOT=TOT POP,
            WA=WA_MALE+WA_FEMALE,
            BA=BA MALE+BA FEMALE,
            IA=IA_MALE+IA_FEMALE,
            AA=AA_MALE+AA_FEMALE,
            NHA=NA_MALE+NA_FEMALE,
            TOM=TOM_MALE+TOM_FEMALE,
            WAP=WA/TOT,
            BAP=BA/TOT,
            IAP=IA/TOT,
            AAP=AA/TOT,
            NHAP=NHA/TOT,
            TOMP=TOM/TOT,
            INDEX=1-WAP^2-BAP^2-IAP^2-AAP^2-NHAP^2-TOMP^2)
dat2015<-dat2015 %>%
  mutate(STATE_char = as.character(STATE), COUNTY_char = as.character(COUNTY))
dat2015$STATE_char = str_pad(dat2015$STATE_char, 2, pad = "0")
dat2015$COUNTY_char = str_pad(dat2015$COUNTY_char, 3, pad = "0")
dat2015<-dat2015 %>%
  mutate(FIPS = paste(STATE_char, COUNTY_char, sep = ""))
##FOR YEAR 2010
dat2010<-dat %>%
 filter(AGEGRP==0 & YEAR==1)
```

```
dat2010<-dat2010 %>%
  transmute(STATE=STATE,
            COUNTY=COUNTY,
            TOT=TOT POP,
            WA=WA_MALE+WA_FEMALE,
            BA=BA MALE+BA FEMALE,
            IA=IA_MALE+IA_FEMALE,
            AA=AA MALE+AA FEMALE,
            NHA=NA MALE+NA FEMALE,
            TOM=TOM MALE+TOM FEMALE,
            WAP=WA/TOT,
            BAP=BA/TOT,
            IAP=IA/TOT,
            AAP=AA/TOT,
            NHAP=NHA/TOT,
            TOMP=TOM/TOT,
            INDEX=1-WAP^2-BAP^2-IAP^2-AAP^2-NHAP^2-TOMP^2)
dat2010<-dat2010 %>%
 mutate(STATE_char = as.character(STATE), COUNTY_char = as.character(COUNTY))
dat2010$STATE char = str pad(dat2010$STATE char, 2, pad = "0")
dat2010$COUNTY_char = str_pad(dat2010$COUNTY_char, 3, pad = "0")
dat2010<-dat2010 %>%
  mutate(FIPS = paste(STATE_char, COUNTY_char, sep = ""))
dat2010$FIPS<-as.numeric(dat2010$FIPS)
##FOR YEAR 2011
dat2011<-dat %>%
 filter(AGEGRP==0 & YEAR==4)
dat2011<-dat2011 %>%
  transmute(STATE=STATE,
            COUNTY=COUNTY,
            TOT=TOT_POP,
            WA=WA_MALE+WA_FEMALE,
            BA=BA_MALE+BA_FEMALE,
            IA=IA MALE+IA FEMALE,
            AA=AA MALE+AA FEMALE,
            NHA=NA_MALE+NA_FEMALE,
            TOM=TOM MALE+TOM FEMALE,
            WAP=WA/TOT,
            BAP=BA/TOT,
            IAP=IA/TOT,
            AAP=AA/TOT,
            NHAP=NHA/TOT,
            TOMP=TOM/TOT,
            INDEX=1-WAP^2-BAP^2-IAP^2-AAP^2-NHAP^2-TOMP^2)
dat2011<-dat2011 %>%
 mutate(STATE_char = as.character(STATE), COUNTY_char = as.character(COUNTY))
dat2011$STATE_char = str_pad(dat2011$STATE_char, 2, pad = "0")
dat2011$COUNTY_char = str_pad(dat2011$COUNTY_char, 3, pad = "0")
dat2011<-dat2011 %>%
```

```
mutate(FIPS = paste(STATE_char, COUNTY_char, sep = ""))
dat2011$FIPS<-as.numeric(dat2011$FIPS)</pre>
##For Year 2012
dat2012<-dat %>%
  filter(AGEGRP==0 & YEAR==5)
dat2012<-dat2012 %>%
  transmute(STATE=STATE,
            COUNTY=COUNTY.
            TOT=TOT POP,
            WA=WA MALE+WA FEMALE,
            BA=BA_MALE+BA_FEMALE,
            IA=IA_MALE+IA_FEMALE,
            AA=AA_MALE+AA_FEMALE,
            NHA=NA_MALE+NA_FEMALE,
            TOM=TOM_MALE+TOM_FEMALE,
            WAP=WA/TOT,
            BAP=BA/TOT,
            IAP=IA/TOT,
            AAP=AA/TOT,
            NHAP=NHA/TOT,
            TOMP=TOM/TOT,
            INDEX=1-WAP^2-BAP^2-IAP^2-AAP^2-NHAP^2-TOMP^2)
dat2012<-dat2012 %>%
  mutate(STATE char = as.character(STATE), COUNTY char = as.character(COUNTY))
dat2012$STATE_char = str_pad(dat2012$STATE_char, 2, pad = "0")
dat2012$COUNTY_char = str_pad(dat2012$COUNTY_char, 3, pad = "0")
dat2012<-dat2012 %>%
  mutate(FIPS = paste(STATE_char, COUNTY_char, sep = ""))
dat2012$FIPS<-as.numeric(dat2012$FIPS)</pre>
##For Year 2013
dat2013<-dat %>%
  filter(AGEGRP==0 & YEAR==6)
dat2013<-dat2013 %>%
  transmute(STATE=STATE,
            COUNTY=COUNTY,
            TOT=TOT_POP,
            WA=WA MALE+WA FEMALE,
            BA=BA MALE+BA FEMALE,
            IA=IA MALE+IA FEMALE,
            AA=AA_MALE+AA_FEMALE,
            NHA=NA_MALE+NA_FEMALE,
            TOM=TOM_MALE+TOM_FEMALE,
            WAP=WA/TOT,
            BAP=BA/TOT,
            IAP=IA/TOT,
            AAP=AA/TOT,
            NHAP=NHA/TOT,
            TOMP=TOM/TOT,
```

```
dat2013<-dat2013 %>%
  mutate(STATE_char = as.character(STATE), COUNTY_char = as.character(COUNTY))
dat2013$STATE_char = str_pad(dat2013$STATE_char, 2, pad = "0")
dat2013$COUNTY_char = str_pad(dat2013$COUNTY_char, 3, pad = "0")
dat2013<-dat2013 %>%
 mutate(FIPS = paste(STATE char, COUNTY char, sep = ""))
dat2013$FIPS<-as.numeric(dat2013$FIPS)</pre>
##For Year 2014
dat2014<-dat %>%
  filter(AGEGRP==0 & YEAR==7)
dat2014<-dat2014 %>%
  transmute(STATE=STATE,
           COUNTY=COUNTY,
            TOT=TOT_POP,
            WA=WA_MALE+WA_FEMALE,
            BA=BA_MALE+BA_FEMALE,
            IA=IA_MALE+IA_FEMALE,
            AA=AA MALE+AA FEMALE,
            NHA=NA_MALE+NA_FEMALE,
            TOM=TOM MALE+TOM FEMALE,
            WAP=WA/TOT,
            BAP=BA/TOT,
            IAP=IA/TOT,
            AAP=AA/TOT.
            NHAP=NHA/TOT,
            TOMP=TOM/TOT.
            INDEX=1-WAP^2-BAP^2-IAP^2-AAP^2-NHAP^2-TOMP^2)
dat2014<-dat2014 %>%
  mutate(STATE_char = as.character(STATE), COUNTY_char = as.character(COUNTY))
dat2014$STATE_char = str_pad(dat2014$STATE_char, 2, pad = "0")
dat2014$COUNTY_char = str_pad(dat2014$COUNTY_char, 3, pad = "0")
head(dat2014)
     STATE COUNTY
                     TOT
                                             AA NHA TOM
##
                             WA
                                   BA
                                        ΙA
                                                               WAP
                                                                          BAP
## 1
               1 55290 43034 10317 270 628 55 986 0.7783324 0.18659794
        1
## 2
                3 199713 173960 19143 1479 1767 120 3244 0.8710500 0.09585255
               5 26815 13461 12781 154 125 49 245 0.5019952 0.47663621
## 3
        1
               7 22549 17206 4972
                                        92
                                            45 29 205 0.7630494 0.22049758
## 4
        1
## 5
                9 57658 55307 1032 365 166 64 724 0.9592251 0.01789864
        1
                         2919 7603
                                       86
                                            27 74 120 0.2695540 0.70209622
## 6
             11 10829
##
             IAP
                         AAP
                                     NHAP
                                                 TOMP
                                                          INDEX STATE_char
## 1 0.004883342 0.011358293 0.0009947549 0.017833243 0.3589080
## 2 0.007405627 0.008847696 0.0006008622 0.016243309 0.2316869
                                                                        01
## 3 0.005743054 0.004661570 0.0018273354 0.009136677 0.5206773
                                                                        01
## 4 0.004080004 0.001995654 0.0012860881 0.009091312 0.3690316
                                                                        01
## 5 0.006330431 0.002879045 0.0011099934 0.012556800 0.0793596
                                                                        01
## 6 0.007941638 0.002493305 0.0068335026 0.011081356 0.4341628
                                                                        01
##
    COUNTY char
## 1
             001
```

INDEX=1-WAP^2-BAP^2-IAP^2-AAP^2-NHAP^2-TOMP^2)

```
003
## 2
## 3
             005
## 4
             007
## 5
             009
## 6
             011
dat2014<-dat2014 %>%
  mutate(FIPS = paste(STATE_char, COUNTY_char, sep = ""))
head(dat2014)
     STATE COUNTY
##
                     TOT
                             WA
                                   BA
                                        ΙA
                                             AA NHA
                                                    TOM
                                                               WAP
                                                                          BAP
## 1
              1 55290 43034 10317
                                       270 628
                                                55
                                                    986 0.7783324 0.18659794
        1
## 2
                3 199713 173960 19143 1479 1767 120 3244 0.8710500 0.09585255
## 3
                                            125
                                                 49
                                                     245 0.5019952 0.47663621
        1
               5 26815 13461 12781
                                       154
## 4
        1
                7 22549 17206 4972
                                        92
                                             45
                                                 29 205 0.7630494 0.22049758
                                                 64 724 0.9592251 0.01789864
## 5
        1
               9 57658 55307 1032
                                       365
                                            166
## 6
               11 10829
                           2919
                                 7603
                                        86
                                             27
                                                 74 120 0.2695540 0.70209622
##
             IAP
                         AAP
                                     NHAP
                                                 TOMP
                                                          INDEX STATE_char
## 1 0.004883342 0.011358293 0.0009947549 0.017833243 0.3589080
## 2 0.007405627 0.008847696 0.0006008622 0.016243309 0.2316869
                                                                        01
## 3 0.005743054 0.004661570 0.0018273354 0.009136677 0.5206773
                                                                        01
## 4 0.004080004 0.001995654 0.0012860881 0.009091312 0.3690316
                                                                        01
## 5 0.006330431 0.002879045 0.0011099934 0.012556800 0.0793596
                                                                        01
## 6 0.007941638 0.002493305 0.0068335026 0.011081356 0.4341628
                                                                        01
    COUNTY_char FIPS
##
## 1
            001 01001
             003 01003
## 2
## 3
            005 01005
## 4
            007 01007
## 5
            009 01009
## 6
            011 01011
dat2014$FIPS<-as.numeric(dat2014$FIPS)
##Distribution of Diversity Index
dat2010 %>%
 ggplot(aes(x=INDEX))+geom_histogram()
```


dat2011 %>%
 ggplot(aes(x=INDEX))+geom_histogram()

dat2012 %>%
 ggplot(aes(x=INDEX))+geom_histogram()

dat2013 %>%
 ggplot(aes(x=INDEX))+geom_histogram()

dat2014 %>%
 ggplot(aes(x=INDEX))+geom_histogram()

dat2015 %>%
 ggplot(aes(x=INDEX))+geom_histogram()


```
##Diversity Index Map
mapping <- select(dat2015, FIPS, INDEX)
mapping <- dplyr::rename(mapping, region=FIPS, value=INDEX)
mapping$region <- as.numeric(mapping$region)

county_choropleth(mapping, title = "Diversity Index in Counties Across the US")</pre>
```

Diversity Index in Counties Across the US

Diversity vs No High School Diploma Percentage

Diversity vs High School Diploma Only Percentage

Diversity vs Completing College or Associate Percentage

Diversity vs Bachelor Degree or Higher Percentage


```
##Linear Regression Analysis
11<-lm(Percent.of.adults.with.less.than.a.high.school.diploma..2010.2014~INDEX, data = edu_comb)
##summary(11)
12<-lm(Percent.of.adults.with.a.high.school.diploma.only..2010.2014~INDEX, data = edu_comb)
##summary(12)
13<-lm(Percent.of.adults.completing.some.college.or.associate.s.degree..2010.2014~INDEX, data = edu_com
##summary(13)
14<-lm(Percent.of.adults.with.a.bachelor.s.degree.or.higher..2010.2014~INDEX, data = edu_comb)
##summary(14)
##Health
life<-read.csv("IHME_county_data_LifeExpectancy.csv", header = TRUE, stringsAsFactors = FALSE)</pre>
##Economic for year 2014
eco<-read.csv("Unemployment_and_Income1.csv",header = TRUE, stringsAsFactors = FALSE)
eco$Median_Household_Income_2014<-as.numeric(eco$Median_Household_Income_2014)
eco_comb2014<-left_join(dat2014, eco, by=c("FIPS"="FIPS_Code"))
##Income
eco_comb2014 %>%
  ggplot(aes(x=INDEX,
             y=Median_Household_Income_2014))+
  geom_point()+geom_smooth()+
  ylab("Median Income")+
  xlab("Diversity Index")+
  ggtitle("The Relationship between Diversity and Income in 2014")
```


The Relationship between Diversity and Poverty in 2014


```
##Boxplots
##Generate Diversity Levels
dat2010b<-dat2010 %>%
  mutate(group=0)
for (i in 1:nrow(dat2010b)) {
  if(dat2010b$INDEX[i]>0 & dat2010b$INDEX[i]<0.2)</pre>
    dat2010b$group[i]="Level 1"
  else if (dat2010b$INDEX[i]>=0.2 & dat2010b$INDEX[i]<0.4)
    dat2010b$group[i]="Level 2"
  else if (dat2010b$INDEX[i]>=0.4 & dat2010b$INDEX[i]<0.6)</pre>
    dat2010b$group[i]="Level 3"
  else
    dat2010b$group[i]="Level 4"
}
dat2011b<-dat2011 %>%
  mutate(group=0)
for (i in 1:nrow(dat2011b)) {
  if(dat2011b$INDEX[i]>0 & dat2011b$INDEX[i]<0.2)</pre>
    dat2011b$group[i]="Level 1"
  else if (dat2011b$INDEX[i]>=0.2 & dat2011b$INDEX[i]<0.4)</pre>
    dat2011b$group[i]="Level 2"
  else if (dat2011b$INDEX[i]>=0.4 & dat2011b$INDEX[i]<0.6)</pre>
```

```
dat2011b$group[i]="Level 3"
  else
    dat2011b$group[i]="Level 4"
dat2012b<-dat2012 %>%
  mutate(group=0)
for (i in 1:nrow(dat2012b)) {
  if(dat2012b$INDEX[i]>0 & dat2012b$INDEX[i]<0.2)</pre>
    dat2012b$group[i]="Level 1"
  else if (dat2012b$INDEX[i]>=0.2 & dat2012b$INDEX[i]<0.4)</pre>
    dat2012b$group[i]="Level 2"
  else if (dat2012b$INDEX[i]>=0.4 & dat2012b$INDEX[i]<0.6)</pre>
    dat2012b$group[i]="Level 3"
  else
    dat2012b$group[i]="Level 4"
}
dat2013b<-dat2013 %>%
  mutate(group=0)
for (i in 1:nrow(dat2013b)) {
  if(dat2013b$INDEX[i]>0 & dat2013b$INDEX[i]<0.2)</pre>
    dat2013b$group[i]="Level 1"
  else if (dat2013b$INDEX[i]>=0.2 & dat2013b$INDEX[i]<0.4)</pre>
    dat2013b$group[i]="Level 2"
  else if (dat2013b$INDEX[i]>=0.4 & dat2013b$INDEX[i]<0.6)</pre>
    dat2013b$group[i]="Level 3"
  else
    dat2013b$group[i]="Level 4"
dat2014b<-dat2014 %>%
  mutate(group=0)
  for (i in 1:nrow(dat2014b)) {
    if(dat2014b$INDEX[i]>0 & dat2014b$INDEX[i]<0.2)</pre>
      dat2014b$group[i]="Level 1"
    else if (dat2014b$INDEX[i]>=0.2 & dat2014b$INDEX[i]<0.4)</pre>
      dat2014b$group[i]="Level 2"
    else if (dat2014b$INDEX[i]>=0.4 & dat2014b$INDEX[i]<0.6)</pre>
      dat2014b$group[i]="Level 3"
    else
      dat2014b$group[i]="Level 4"
dat2015b<-dat2015 %>%
  mutate(group=0)
for (i in 1:nrow(dat2015b)) {
  if(dat2015b$INDEX[i]>0 & dat2015b$INDEX[i]<0.2)</pre>
    dat2015b$group[i]="Level 1"
```

No High School Diploma Percentage in Different Diversity Levels

Bachelor Degree or Higher Percentage in Different Diversity Levels

