

Lecture 15 Topic 4 Power & Refrigeration Cycles

Topic

4.1 Refrigeration cycles

Reading:

Ch 9: 9.1 & 9.8-9.11 Borgnakke & Sonntag Ed. 8

Ch 11: 11-1 – 11-7 Cengel and Boles Ed. 7

4.0 Power and Refrigeration Cycles

Refrigeration Cycle

Rankine Cycle (power plant)

Otto/Diesel Cycle (IC engine)

Brayton Cycle (gas turbine)

Vapor compression refrigeration cycle – transfer heat from a low temperature to a high temperature reservoir

Refrigerator Heat removal (cooling load) from a low-temperature medium.

Heat pump (heating mode) Heat addition (heating load) to a highertemperature medium.

Vapor compression refrigeration cycle – transfer heat from a low temperature to a high temperature reservoir

Refrigerator Heat removal (cooling load) from a low-temperature medium.

Heat pump (cooling mode) Heat removal (cooling load) from a lower-temperature medium.

Vapor compression refrigeration cycle – transfer heat from a low temperature to a high temperature reservoir

Vapor compression cycle

Main Components of refrigeration cycle

- Compressor
 - Compresses vapor to high temp./press.
 - Recirculates refrigerant through cycle

Condenser

- High temp. vapour looses heat and condenses to a liquid.
- Heat rejected to the room.

Throttle / expansion valve

 Throttle to low P / T (very cold liquidvapour mixture).

Evaporator

- Refrigerant absorbs heat from refrigerator.
- Refrigerant evaporates to a vapour
- Refrigerant re-enters compressor

Piston/cyl compressor

Main Components of refrigeration cycle

- Compressor
 - Compresses vapor to high temp./press.
 - Recirculates refrigerant through cycle
- Condenser
 - High temp. vapour looses heat and condenses to a liquid.
 - Heat rejected to the room.
- Throttle / expansion valve
 - Throttle to low P / T (very cold liquidvapour mixture).
- Evaporator
 - Refrigerant absorbs heat from refrigerator.
 - Refrigerant evaporates to a vapour
 - Refrigerant re-enters compressor

Compressor

- Compresses refrigerant from low to high working pressure
- Steady State device
- Ideal: adiabatic, reversible, begins as saturated vapor

1st law:
$$\dot{W}_{21.IN} = \dot{m}(h_2 - h_1)$$

2nd law:

- Ideal: $s_2 s_1 = 0$
- Reality: $s_2 s_1 = \int \delta q / T + s_{gen}$
 - not reversible & possible heat loss

Condenser

- Heat rejection
- Refrigerant condenses to liquid
- Steady state device
- Ideal: exits as saturated liquid, constant pressure

1st law:
$$\dot{Q}_{32,out} = \dot{m}(h_2 - h_3)$$

$$\underline{2^{\text{nd}} \text{ law}}: s_3 - s_2 = -\int \delta q / T + s_{gen}$$

Throttle

- Throttled to low pressure, low temperature vapour-liquid mixture
- Throttle to lower working pressure
- Steady state device
- Ideal: adiabatic, begins as saturated liquid

1st law:
$$h_3 = h_4$$

$$2^{\text{nd}} \text{ law}$$
: $s_4 - s_3 = s_{gen}$

Evaporator

- Heat addition
- Refrigerant evaporates to saturated vapour
- Steady state device
- Ideal: constant pressure, exits as a saturated vapor

1st law:
$$\dot{Q}_{14,IN} = \dot{m}(h_1 - h_4)$$

$$2^{\text{nd}} \text{ law}$$
: $s_1 - s_4 = \int \delta q / T + s_{gen}$

- Process 1-2: Adiabatic, reversible compression
- Process 2-3: Constant pressure heat rejection
- Process 3-4: Adiabatic throttling
- Process 4-1: Constant pressure heat addition
- Operating pressures

$$- P_2 = P_3 > P_1 = P_4$$

$$COP_{R,HP\ cool} = \frac{\dot{Q}_L}{\dot{W}_{net,in}} = \frac{h_1 - h_4}{h_2 - h_1}$$

$$COP_{HP\ heat} = \frac{\dot{Q}_{H}}{\dot{W}_{net,in}} = \frac{h_{2} - h_{3}}{h_{2} - h_{1}}$$

Deviations from the ideal Vapour Compression Refrigerant Cycle

- Process 1-2: non-adiabatic, irreversible compression
 - $s_2 = s_1 + \int_1^2 \delta q_{in} / T + s_{gen}$
 - Irreversibilities will increase s₂
 - Heat loss will decrease s₂
- Process 2-3: Condensation

 Q_{loss}

WORK

Refrigerant Vapor

P₃ < P₂; pressure loss in pipes (T reduces)

condenser

evaporator

Compressor

System boundary

 \dot{W}_{in}

Deviations from the ideal Vapor Compression Refrigerant Cycle

- Process 3-4: Throttling
 - Device that behaves most like the ideal device

Process 4-1: Evaporation

- $P_1 < P_{4'}$; pressure loss in pipes (T reduces)

Throttle

Example 4-1: A refrigerator operating with 0.2 kg/s R-134a removes heat from a 20°C room. Consider an <u>ideal</u> refrigeration cycle, where saturated vapour at -20°C enters the compressor. The R-134a exits the condenser as a saturated liquid at 1000 kPa.

- a) Determine the maximum working temperature in the cycle.
- b) Determine the required power input into the compressor
- c) Determine the refrigerator COP

Example 4-1: A refrigerator operating with 0.2 kg/s R-134a removes heat from a 20°C room. Consider an <u>ideal</u> refrigeration cycle, where saturated vapour at -20°C enters the compressor. The R-134a exits the condenser as a saturated liquid at 1000 kPa.

- a) Determine the maximum working temperature in the cycle.
- b) Determine the required power input into the compressor
- c) Determine the refrigerator COP

TABLE B.5.1 (continued)
Saturated R-134a

		Enthalpy, kJ/kg		Entropy, kJ/k-K			
Temp. (°C)	Press. (kPa)	Sat. Liquid h_f	Evap. h _{fg}	Sat. Vapor h_g	Sat. Liquid s_f	Evap. s_{fg}	Sat. Vapor
-25	107.2	167.38	215.57	382.95	0.8754	0.8687	1.7441
-20	133.7	173.74	212.34	386.08	0.9007	0.8388	1.7395
35	887.6	249.10	168.42	417.52	1.1673	0.5465	1.7139
40	1017.0	256.54	163.28	419.82	1.1909	0.5214	1.7123

Superl	heated R	2-134a
Superi	icuicu I	-1574

Temp.	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)		
	1000 kPa (39.37°C)					
Sat.	0.02038	399.16	419.54	1.7125		
40	0.02047	399.78	420.25	1.7148		
50	0.02185	409.39	431.24	1.7494		

Example 4-2: Take Example 4-1. Now the compressor adiabatic, but not reversible. The compressor operates with an isentropic efficiency of 80%.

- a) Determine the required input power to overcome the irreversibilities.
- b) Determine the entropy generation (in kW/K) during the compressor process.
- c) Determine the refrigerator COP_{actual}

Example 4-2: Take Example 4-1. Now the compressor adiabatic, but not reversible. The compressor operates with an isentropic efficiency of 80%.

- a) Determine the required input power to overcome the irreversibilities.
- b) Determine the entropy generation (in kW/K) during the compressor process.
- c) Determine the refrigerator COP_{actual}

TABLE B.5.1 (continued)
Saturated R-134a

		Enthalpy, kJ/kg		Entropy, kJ/k-K			
Temp.	Press. (kPa)	Sat. Liquid h_f	Evap. h _{fg}	Sat. Vapor h_g	Sat. Liquid	Evap. s_{fg}	Sat. Vapor
-25	107.2	167.38	215.57	382.95	0.8754	0.8687	1.7441
-20	133.7	173.74	212.34	386.08	0.9007	0.8388	1.7395
35 40	887.6 1017.0	249.10 256.54	168.42 163.28	417.52 419.82	1.1673 1.1909	0.5465 0.5214	1.7139 1.7123

Superheated R-134a

Temp.	v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)		
	1000 kPa (39.37°C)					
Sat.	0.02038	399.16	419.54	1.7125		
40	0.02047	399.78	420.25	1.7148		
50	0.02185	409.39	431.24	1.7494		
60	0.02311	418.78	441.89	1.7818		

WARM medium at T_H

 Q_H

REMINDER – The Reversible Carnot Cycle

Recall that the Carnot cycle is a totally reversible cycle that consists of two reversible isothermal and two isentropic processes. It has maximum efficiency for given temperature limits and it serves as a standard against which actual power cycles can be compared. Since it is a reversible cycle, all four processes that comprise the Carnot cycle can be reversed. Reversing the cycle also reverses the directions of any heat and work interactions.

REMINDER – Coefficient of performance

The performance of refrigerators and heat pumps is expressed in terms of coefficient of performance (COP), defined as

$$COP_{R} = \frac{\text{Desired output}}{\text{Required input}} = \frac{\text{Cooling effect}}{\text{Work input}} = \frac{Q_{L}}{W_{net,in}}$$

$$COP_{HP} = \frac{\text{Desired output}}{\text{Required input}} = \frac{\text{Heating effect}}{\text{Work input}} = \frac{Q_{H}}{W_{net,in}}$$

Both COP_R and COP_{HP} can be larger than 1. Under the same operating conditions, the COPs are related by

$$COP_{HP} = COP_R + 1$$

Refrigerators, air conditioners, and heat pumps are rated with an SEER number or seasonal adjusted energy efficiency ratio. The SEER is defined as the Btu/hr of heat transferred per watt of work energy input. The Btu is the British thermal unit and is equivalent to 778 ft-lbf of work (1 W = 3.4122 Btu/hr).

Refrigeration systems are also rated in terms of tons of refrigeration. The capacity of a refrigeration system that can freeze 1 ton of liquid water at 0°C into ice at 0°C in 24 hours is said to be 1 ton.

A refrigerator or a heat pump that operates on the reversed Carnot cycle is called a Carnot refrigerator or a Carnot heat pump, and their Coefficients of Performance are shown below

$$COP_{R,Carnot} = \frac{1}{T_H / T_L - 1} = \frac{T_L}{T_H - T_L}$$

$$COP_{HP,Carnot} = \frac{1}{1 - T_L / T_H} = \frac{T_H}{T_H - T_L}$$

Note: both COPs increase as the difference between the two temperatures decreases, that is as T_L rises or T_H falls.

Also since a turbine is used for the expansion process between the high and low-temperatures, some of the work produced by the turbine can be used to supply work to the compressor.

Challenges for using a reversed Carnot cycle in reality

- Processes 1-2 and 3-4 can be approached closely in evaporators and condensers.
- Processes 2-3 and 4-1 cannot, however, be approximated closely in practice. Process 2-3 involves the compression of a liquid-vapour mixture which would require compression of two phases. Process 4-1 would involve the expansion of high-moisture refrigerant in a turbine. It is also cheaper to have irreversible expansion through an expansion valve rather than in a turbine

- The reversed Carnot cycle can be executed outside the saturated region to avoid these problems. But this would then make it difficult to maintain isothermal conditions during the heat-rejection (and possibly also heat-absorption) processes.
- Therefore we conclude that the reversed Carnot cycle cannot be approximated in real devices and is not a realistic model for refrigeration cycles. We can, however, compare real refrigeration cycles to it.