Wave and Electromagnetic

Exercise 1. We have a point change that moving in electromagnetic field where in initial case the point Q is t = 0s, $v_o = 0m/s$, $x_o = 0$, $y_o = 0$, $z_o = 0$. Find the differential equation of this particle is cycloid.

Solution 1. Differential Equation of Partical.

By Principle of Fundemental of Dynamic(PFD):

$$\sum \vec{f} = m\vec{a}$$

$$\Rightarrow m\vec{a} = q(\vec{E} + \vec{v} \wedge \vec{B})$$

In coordinate Cartesien $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$:

$$\Rightarrow m \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = q \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ E_z \end{pmatrix} + \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} \land \begin{pmatrix} B_x \\ 0 \\ 0 \end{pmatrix} \end{bmatrix}$$
$$\Rightarrow \begin{cases} ma_x = 0, & (1) \\ ma_y = qv_z B_x, & (2) \\ ma_z = q(E_z - v_y B_x). & (3) \end{cases}$$

 $\Rightarrow m\ddot{z} = q(E_z - B_x \frac{qB_x}{m}z)$

where $a_x = \ddot{x}, a_y = \ddot{y}, a_z = \ddot{z}$ and the motion in the plan $(o, \vec{u}_y, \vec{u}_z)$: for equation(2):

for equation(2):
$$m\ddot{y} = q\dot{z}B_x$$

$$\Rightarrow d\dot{y} = \frac{qB_x}{m}\dot{z}dt = \frac{qB_x}{m}dz$$

$$\dot{y} = \frac{qB_x}{m}z + c^{te}$$
 at $t = 0s \Rightarrow \dot{y}(0) = 0$ then $c^{te} = 0 \Rightarrow \dot{y} = \frac{qB_x}{m}z$ (i) for equation(3)
$$m\ddot{z} = q(E_z - \dot{y}B_x)$$

By: LEANG Tharith

$$\ddot{z} + \left(\frac{qB_x}{m}\right)^2 z = \frac{qE_z}{m}$$

, where this equation is the oscillation harmonic in form: $\ddot{z} + \omega^2 z = \frac{qE_z}{m}$ with $\omega = \frac{qB_x}{m}$ the solution of this equation is: $z(t) = c_1 \cos \omega t + c_2 \sin \omega t + \frac{qE_z}{m\omega^2}$ at $t = 0s \Rightarrow z(0) = 0 \Rightarrow c_1 = -\frac{qE_z}{m\omega^2}$ and we take derivative on the both side on z(t) respect to t, so $\dot{z} = -c_1\omega \sin \omega t + c_2\omega \cos \omega t$ at t = 0s, $\dot{z}(0) = 0 \Rightarrow \dot{z} = 0$ Thus $z(t) = -\frac{qE_z}{m\omega^2}\cos \omega t + \frac{qE_z}{m\omega^2}\cos \omega t + \frac{qE_z}{m\omega^2}\cos \omega t$