Real Analysis

Samuel Lindskog

February 6, 2025

Contents

1	$Th\epsilon$	e natural numbers	1
	1.1	Peano axioms	1
		Multiplication	1

1 The natural numbers

1.1 Peano axioms

Definition 1.1 (Peano axioms). Using ++ as the successor operation, the natural numbers are defined as follows:

- (a) 0 is a natural number.
- (b) If n is a natural number, then n + + is also a natural number.
- (c) For all natural numbers $n, n + + \neq 0$.

Definition 1.2 (Addition of natural numbers). Let m be a natural number. 0 + m := m and (n + +) + m := (n + m) + +.

Proposition 1.3. m + 0 = m.

Proof: Let $n \in \mathbb{N}$. $0+0 \coloneqq 0$, so by inductive hypothesis n+0=n. $(n++)+0 \coloneqq (n+0)++$, and from the inductive hypothesis equals n++.

Lemma 1.4. For any natural numbers n and m, n + (m + +) = (n + m) + +.

Proof: Suppose $n, m \in \mathbb{N}$. 0+(m++) := m++=(0+m)++. By inductive hypothesis n+(m++)=(n+m)++. From the definition of addition (n++)+(m++)=(n+(m++))++ and from the inductive hypothesis n+(m++)=(n+m)++ so we have

$$(n++) + (m++) = (n+(m++)) + +$$
$$= ((n+m)++) + +$$
$$= ((n++)+m) + +$$

П

Proposition 1.5 (Commutativity of addition). For $n, m \in \mathbb{N}$, n + m = m + n.

Proof: Let $n, m \in \mathbb{N}$. From proposition 1.3, 0+m=m+0, so by inductive hypothesis n+m=m+n. (n++)+m=(n+m)++ and from inductive hypothesis this equals (m+n)++. From lemma 1.4, this equals m+(n++).

Proposition 1.6 (Associativity of addition). Let $a, b, c \in \mathbb{N}$. Then (a+b)+c=a+(b+c). Proof: exercise

Proposition 1.7 (Cancellation law). Let $a, b, c \in \mathbb{N}$. Iff a + b = a + c, then b = c.

Proof: If 0+b=0+c then from the definition of addition b=c. By inductive hypothesis for any $n \in \mathbb{N}$, n+b=n+c. (n++)+b=(n+b)++ and (n++)+c=(n+c)++, so from the inductive hypothesis and the axioms of natural numbers, (n++)+b=(n++)+c.

Definition 1.8 (Positive natural number). A natural number n is said to be positive iff it is not 0.

Definition 1.9 (Ordering of natural numbers). Let $n, m \in \mathbb{N}$. We write $n \geq m$ or $m \geq n$ iff n = m + a for some $a \in \mathbb{N}$.

Proposition 1.10. Let $m_0, m, m' \in \mathbb{N}$, and let P(x) be a property of arbitrary $x \in \mathbb{N}$. Suppose that for each $m \geq m_0$ the following implication holds:

$$(\forall m' \in [m_0, m), P(m')) \Rightarrow P(m).$$

Then we can conclude P(m) is true for all natural numbers $m \geq m_0$.

1.2 Multiplication

Definition 1.11 (Multiplication of natural numbers). Let m be a natural number. $0 \times m := 0$ and $(n++) \times m := (n \times m) + m$.

Lemma 1.12 (Commutivity of multiplication). Let $n, m \in \mathbb{N}$. Then $n \times m = m \times n$. *Proof:* exercise

Lemma 1.13. Let $n, m \in \mathbb{N}$. Then $n \times m = 0$ iff n or m is zero. *Proof:* exercise

Proposition 1.14 (Distributive law). For any natural numbers a, b, c, we have a(b+c) = ab + ac.

Proposition 1.15 (Associativity of multiplication). If $a, b, c \in \mathbb{N}$ then $(a \times b) \times c = a \times (b \times c)$.

Proposition 1.16. If a, b are natural numbers such that a < b, and c is positive, then ac < bc.

Corollary 1.17. Let $a, b, c \in \mathbb{N}$ such that ac = bc and c is non-zero. Then a = b.

Proposition 1.18 (Euclid's division lemma). Let n be a natural number, and let q be a positive number. Then there exist natural numbers m, r such that $0 \le r < q$ and n = mq + r.

Definition 1.19 (Exponentiation for natural numbers). Let $m \in \mathbb{N}$. $m^0 := 1$, and $m^{n++} = m^n \times m$.