<u>Série d'exercices</u>: les grandeurs physiques liées aux quantités de matière

1Bac

Exercice 1:

- 1. Calculez le volume occupé par 4,4g de dioxyde de carbone (CO2) aux conditions normales de temperature et de pression.
- 2. Combien y a-t-il de moles de gaz carbonique dans 4,2 litres de ce gaz pris aux CNTP ? Quelle masse ce volume représente-t-il ?
- 3. Un litre de gaz pris aux CNTP pèse 3,17 g. Quelle est la masse molaire de ce gaz.
- 4. Lors de la réaction entre une solution d'acide chlorhydrique et le zinc, on recueille un volume V=55mL de dihydrogène sous une pression P=1,010bar et une température θ =22,0°C. Déterminer la quantité de dihydrogène ainsi obtenue.
- 5. L'alcool utilisé comme antiseptique local peut être considéré comme de l'éthanol C_2H_6O pur de masse molaire M=46g/mol et de masse volumique $\rho=0,780g/ml$. Quelle quantité d'éthanol contient un flacon d'alcool pharmaceutique de volume V=250ml.
- 6. La densité du fer est d = 7.8 :
 - a) calculer la masse d'un cube de fer d'arrête a = 20 cm.
 - b) Calculer la quantité de matière d'atomes de fer contenus dans ce cube.

Exercice 2:

Une boîte de sucre contient 1 kg de saccharose de formule $C_{12}H_{22}O_{11}$. La quantité de matière correspondante vaut : n = 2,92 mol.

- 1. Calculer la masse molaire du saccharose de deux façons.
- 2. Quel est le nombre N de molécules de saccharose dans cette boîte
- 3. En déduire la masse d'une molécule de saccharose.

Exercice3:

Une bouteille de gaz butane C_4H_{10} renferme une masse m=15 kg de gaz comprimé.

- 1. A quelle quantité de matière de butane cette masse correspond-elle
- 2. Calculer le volume qu'occuperait cette masse de gaz dans des conditions où la pression est P=1020 hPa et la température 25°C.
- 3. Si cette quantité de gaz est contenu dans un récipient de 20 L, à la même température que précédemment, quelle est la pression du gaz à l'intérieur de ce récipient ?

Eexercice4:

Completer le tableau suivant :

Complete le tableau survant.				
Le corps (liquide)	Cyclohexane	Ethanole	Acide éthanoique	Alcool benzylique
Formule chimique	C ₆ H ₆	C ₂ H ₆ O	$C_2H_4O_2$	C ₂ H ₈ O
Masse molaire				
Masse volumique μ (g/mL)	0.78		1.05	1.04
densité		0.79		
Volume V (mL)		25		
Masse m (g)	12.6			15
Quantité de matière n (mol)			0.1	

Exercice 5:

Une bouteille cylindrique de volume $V=1.dm^3$ contient du dioxygène gazeux sous une pression de 150 bar à la température de 25°C.

- 1. Déterminer le volume molaire dans ces conditions.
- 2. Calculer la masse de dioxygène contenue dans la bouteille.
- 3. De quel volume de dioxygène peut-on disposer dans les conditions usuelles (P=1atm, θ =20°C)

Exercice 6:

On dispose d'un volume V = 25mL d'une solution de diiode I_2 obtenue par dissolution de diiode dans le cyclohexane, de concentration molaire $C = I_2 = 0.2 \text{mol/L}$ (Données : M(I) = 127g/mol)

- 1. Dans cette solution, quel est le soluté ?
- 2. Dans cette solution, quel est le solvant?
- 3. Déterminer la quantité de diiode présente dans cette solution ?
- 4. Déterminer la concentration massique Cm en diiode dans la solution.

Exercice 7:

Á température t = 20°C et sous une pression P = 1, 013 10⁵a un hydrocarbure gazeux de formule C_nH_{2n+2} a une densité par rapport à l'air d = 2, 00

- 1. Calculer le volume molaire des gaz dans les conditions étudiées.
- 2. Déterminer la masse molaire de l'hydrocarbure.
- 3. En déduire sa formule brute.

Exercice 8:

A 20°C, l'hexane de formule chimique C6H14 est un liquide de masse volumique égale à μ = 0,66 g.cm-3, On a besoin d'un échantillon de n = 0.19 mol d'hexane à 20°C.

- 1. Calculer la masse molaire M de l'hexane.
- 2. Exprimer puis calculer la masse m de l'échantillon d'hexane.
- 3. Exprimer puis calculer le volume d'hexane à prélever pour obtenir la quantité voulue.

Exercice 9:

Un flacon de déboucheur pour évier porte les indications suivantes :

- Produit corrosif.
- Contient de l'hydroxyde de sodium (soude caustique).
- Solution à 20%.(Le pourcentage indiqué représente le pourcentage massique d'hydroxyde de sodium (NaOH) contenu dans le produit).
- La densité du produit est d=1,2.
 - 1. Calculer la masse d'hydroxyde de sodium contenu dans 500 mL de produit.
 - 2. En déduire la concentration Co en soluté hydroxyde de sodium de la solution commerciale.
 - 3. On désire préparer un volume V1 de solution S1 de déboucheur 20 fois moins concentré que la solution commerciale.
 - a) Quelle est la valeur de la concentration C1 de la solution ?
 - b) Quelle est la quantité de matière d'hydroxyde de sodium contenu dans 250 mL de solution S1 ?
 - **4.** Quel volume de solution commerciale a-t-il fallu prélever pour avoir cette quantité de matière d'hydroxyde de sodium ?

Données:

- **■** Masses molaires atomiques en g/mol : M(H)=1,0 ; M(C)=12,0 ; M(O)=16,0 ; M(I)=127,0 ;
- **4** Tous les gaz sont supposés parfaits.
- **↓** La constante des gaz parfait : R = 8, 314Pa. m^3 /K.mol
- **♣** Le volume molaire d'un gaz parfait dans CNTP : Vm = 22, 4l/mol
- 4 1atm = 1, 013 × 10⁵Pa, 1bar=10⁵Pa
- **♣** Masse volumique de l'eau : μ=1 (g/mL)