Find MST mingoKrushed Algo. OPrim's Algo.

7 > .	0	
Node From	Node To	well. MST
C	A	1/ WEST
د	B	5
د	D	5-
د	E	6
C	F	5e /
A	B	6
A	D	5× (Loop)
F	E	6
F	D	20
ര	E	3/

Q2. Use an algorithm for greedy strategies for the knapsack to find an optimal solution to the knapsack instance n=7, m=15, (p1, p2..., p7)=(10,5,15,7,6,18,3),and (w1,w2,...w7) = (2,3,5,7,1,4,1).

ar Carle	Welght	Profit	W= 15.A
Object_	2	10.	Knopsach capacity
2	3	5	
3	5	15	
4	7	7	
5	1	6	
6	4	18	
7	1	3	Knapsachs

1) Profit/weight Ratio for all objects. (I kg of Price).

2) Sort all objects in descending order based on their Profit Ratio.

1) Profit Ratio.

1) Max Ratio - First will go to inside the bag.

3) Max Ratio - First will go to inside the bag.

Capacity is not overflower.

W= 15

1/2 15

object	Welght	Profit	Profit/wight (1 mg Price)	
1	2	10	5 🗸	
2	3	5	J'67->	\
3	5	15	3/	
4	7	7	1	
5	1	6	62	
4	4	18	4.5	\
7	1	3	3,	/

object	WF	Profit (Sum	Remaining capacity of knapsack (bog)
5	1	6	15-1=14
١	2	10	14-2=12.
6	4	18	12-4=8
7	ٔ ل	3	8-1=7.
3	5	15	7-5=2
2	2	2× 1.67	2-2-0
_		T	1

Q2. Formulate Fractional Knapsack Problem. Write Greedy Algorithm for fractional Knapsack Problem. Find the optimal solution for the following fractional Knapsack

problem. n=4, $m=60$, V	V={40, 10), 20, 24}	and P={280, 10	0, 120, 120}
Object	wed	the l	frof'z	Profit/wight.
	40		280	7.
Ø	10		100	10

шарзаск		_ 1	Remaining apricity of
objet	Mt	Profit	Remaining capacity of the buy/knapsach
2	10	100	60-10=50.
٦	40	280	60-10=50. 50-40=10.
			10 -10 = 0.
	17	440	

3 20 100 100 3 10 6×10 10-10=0.

4 24 120 5