

학습 목표

Big-O 표기법이 무엇인지 알고 직접 계산할 수 있다

Data Structures in Python Chapter 2 - 2

- Performance Analysis
- Big-O Notation
- Big-O Properties
- Growth Rates
- Growth Rates Examples

그러므로 나의 사랑하는 자들아 너희가 나 있을 때 뿐 아니라 더욱 지금 나 없을 때에도 항상 복종하여 두렵고 떨림으로 너희 구원을 이루라 (Continue to work out your salvation with fear and trembling.) 빌2:12

나는 인애를 원하고 제사를 원하지 아니하며 번제보다 하나님을 아는 것을 원하노라 (호6:6) 하나님은 모든 사람이 구원을 받으며 진리를 아는데에 이르기를 원하시느니라 (딤전2:4)

그런즉 너희가 먹든지 마시든지 무엇을 하든지 다 하나님의 영광을 위하여 하라 (고전10:31)

Agenda & Reading

- Big-O Notation
 - Asymptotic Analysis
- Big-O Properties
 - Calculating Big-O

- References:
 - Textbook: Problem Solving with Algorithms and Data Structures
 - Chapter 3. <u>Analysis</u>
 - Textbook: <u>www.github.idebtor/DSpy</u>
 - Chapter 2.1 ~ 3

Review: Counting Operations - Growth Rate Function - A or B?

- Consider the following two algorithms:
 - Algorithm A: $\frac{n^2}{5}$
 - Algorithm B: 5 * n

n	5	10	15	20	24	25	26	30
Α	5	20	45	80	115	125	135	180
В	25	50	75	100	120	125	130	150

- If n is 10⁶,
 - Algorithm A's time requirement is

$$\frac{n^2}{5} = \frac{10^{12}}{5} = 2 \times 10^{11}$$

Algorithm B's time requirement is

$$5 * n = 5 * 10^6$$

• What does the growth rate tell us about the running time of the program?

3 Big-O Definition

Let f(n) and g(n) be functions that map non-negative integers to real numbers. We say that f(n) is O(g(n)) if there is a real constant c, where c > 0 and an integer constant n, where $n \ge n_0$ such that $f(n) \le c * g(n)$ for every integer $n \ge n_0$.

$$f(n) \leq c g(n), \quad for n \geq n_0$$

Then it is pronounced as "f(n) is big Oh of g(n) or f(n) = O(g(n))"

- f(n) describe the actual time of the program
- g(n) is a much simpler function than f(n)
- With assumptions and approximations, we can use g(n) to describe the complexity i.e., O(g(n))

Big-O Notation is a mathematical formula that best describes an algorithm's performance.

3 Big-O Notation

- We use Big-O notation (capital letter O) to specify the order of complexity of an algorithm.
 - e.g., $O(n^2)$, $O(n^3)$, O(n)
 - If a problem of size n requires time that is directly proportional to n, the problem is O(n) that is, order n.
 - If the time requirement is directly proportional to n^2 , the problem is $O(n^2)$, etc.

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants, c, and n_0 such that $f(n) \le c * g(n)$ for every integer $n \ge n_0$.

- Example: T(n) = 2n + 10 T(n) is O(n)
- Question:

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants, c, and n_0 such that $f(n) \le c * g(n)$ for every integer $n \ge n_0$.

- Example: T(n) = 2n + 10 T(n) is O(n)
- Question:
 - n_0
 - C
 - g(n)
 - $f(n) \leq c * g(n)$
 - f(n) is O(g(n))

• Find c and n_0 to justify that the function 7n + 5 is O(n).

```
We must find c and n_0 such that 7n + 5 \le c n for <math>n \ge n_0
```


• Find c and n_0 to justify that the function 7n + 5 is O(n).

```
We must find c and n_0 such that 7n + 5 \le c n \qquad for n \ge n_07n + 5 \le 7n + n7n + 5 \le 8n \qquad for n \ge n_0 = 5Therefore, 7n + 5 \le c n for c = 8 and n_0 = 5, g(n) = n and O(n)
```


• Find c and n_0 to justify that the function 7n + 5 is O(n).

```
We must find c and n_0 such that 7n + 5 \le c n \qquad for n \ge n_07n + 5 \le 7n + n7n + 5 \le 8n \qquad for n \ge n_0 = 5Therefore, 7n + 5 \le c n for c = 8 and n_0 = 5, f(n) is f(n)
```



```
7n + 5 \le c n for n \ge n_0

7n + 5 \le 12 n for n \ge n_0 = 1

Therefore, 7n + 5 \le c n for c = 12 and n_0 = 1

g(n) = n, f(n) is O(n)
```

• Find c and n_0 to justify that the function $f(n) = 27n^2 + 16n$ is $O(n^2)$.

```
We must find c and n_0 such that For 16n \le n^2 27n^2 + 16n \le 27n^2 + n^2 27n^2 + 16n \le 28n^2 \qquad for \ n \ge n_0 = 16 Hence, c = 28 and n_0 = 16, Therefore, g(n) = n^2, f(n) is O(n^2).
```



```
27n^2+16n is \textbf{0}(n^2), we must find \textbf{c} and \textbf{n}_0 such that 27n^2+16n \leq 43n^2 27n^2+16n \leq 43n^2 for n \geq \textbf{n}_0=1 Hence, c=43 and \textbf{n}_0=1, Therefore, \textbf{g}(\textbf{n})=\textbf{n}^2, \textbf{f}(\textbf{n}) is \textbf{0}(\textbf{n}^2).
```

- Suppose an algorithm requires
 - T(n) = 7n-2 operations to solve a problem of size n

$$7n-2 \le 7 * n \text{ for all } n_0 \ge 1$$

i.e., $c = 7$, $n_0 = 1$

 $f(n) \le c * g(n)$ for every integer $n \ge n_0$

• $T(n) = n^2 - 3 * n + 10$ operations to solve a problem of size n

$$n^2 - 3 * n + 10 < 3 * n^2$$
 for all $n_0 \ge 2$
i.e., $c = 3$, $n_0 = 2$

• $T(n) = 3n^3 + 20n^2 + 5$ operations to solve a problem of size n

$$3n^3 + 20n^2 + 5 < 4 * n^3$$
 for all $n_0 \ge 21$ i.e., $c = 4$, $n_0 = 21$ $O(n^3)$

1)
$$3n + 2 =$$

- 2) 3n + 3 =
- 3) 100n + 6 =
- 4) $10n^2 + 4n + 2 =$
- 5) $6 * 2^n + n^2 =$
- 6) 3n + 3 =
- 7) $10n^2 + 4n + 2 =$
- (8) $3n + 2 \neq 0$ (1) as 3n + 2 is **not** $\leq c$ for any c and all $n, n \geq n_0$.
- (3) 9) $10n^2 + 4n + 2 \neq O(n)$

Summary

- Big-O Notation is a mathematical formula that best describes an algorithm's performance.
- Big-O notation is often called the asymptotic notation (점근적 표기법) since it uses so-called the asymptotic analysis (점근적 분석) approach.
- Normally we assume worst-case analysis, unless told otherwise.
- In some cases, it may need to consider the best, worst and/or average performance of an algorithm

학습 정리

1) Big-O(빅 오)은 알고리즘의 수행능력을 잘 나타내는 수학적인 표기법이다

2) Big-O를 계산할 때 주어진 함수들에서 가장 근접한 함수를 찾는 것이 좋다

