Lecture 23: Higher derivatives

Math 660—Jim Fowler

Thursday, July 21, 2011

tomorrow!

Midterm

Partial fractions

Partial fractions

Ahlfors' technique:

subtract off the poles

$$f(z) = rac{1}{2\pi i \eta(\gamma, z)} \int_{\gamma} rac{f(w)}{w - z} dw.$$

 $f(z) = \frac{1}{2\pi i \eta(\gamma, z)} \int_{\gamma} \frac{f(w)}{w - z} dw.$

Consequently,

analytic functions are determined

by their values on a circle.

 $f(z) = \frac{1}{2\pi i n(\gamma, z)} \int_{\gamma} \frac{f(w)}{w - z} dw.$

 $2\pi i \eta(\gamma,z) \ J_{\gamma} \ w-z$ Consequently,

by their values on a circle.

By a fractional linear transformation, analytic functions are determined by their value on the real line.

analytic functions are determined

 $f^{(n)}(z) = \frac{n!}{2\pi i \eta(\gamma, z)} \int_{\gamma} \frac{f(w)}{(w-z)^{n+1}} dw.$

Theorem (Liouville)

If $f: \mathbb{C} \to \mathbb{C}$ analytic and bounded, then $f \equiv constant$.

If $f: \Omega \to \mathbb{C}$ is continuous, and $\int_{\gamma} f(z) dz = 0$ for all closed γ , then f(z) is analytic.

If $f: \Omega \to \mathbb{C}$ is continuous, and $\int_{\gamma} f(z) dz = 0$ for all closed γ , then f(z) is analytic.

Proof.

So there exists $F: \Omega \to \mathbb{C}$ with F' = f.

If $f: \Omega \to \mathbb{C}$ is continuous, and $\int_{\gamma} f(z) dz = 0$ for all closed γ , then f(z) is analytic.

Proof.

So there exists $F: \Omega \to \mathbb{C}$ with F' = f. But then F is twice differentiable, so f is analytic.

If $f: \Omega \to \mathbb{C}$ is continuous, and $\int_{\gamma} f(z) dz = 0$ for all closed γ , then f(z) is analytic.

Proof.

So there exists $F: \Omega \to \mathbb{C}$ with F' = f. But then F is twice differentiable, so f is analytic.

Cauchy's estimate

$$f^{(n)}(z) = \frac{n!}{2\pi i \eta(\gamma, z)} \int_{\gamma} \frac{f(w)}{(w-z)^{n+1}} dw.$$

Cauchy's estimate

$$f^{(n)}(z) = \frac{n!}{2\pi i \eta(\gamma, z)} \int_{\gamma} \frac{f(w)}{(w-z)^{n+1}} dw.$$

Considering a circle of radius R around z, if |f(z)| is bounded by C on the circle,

$$|f^{(n)}(z)| \leq C \cdot n! \cdot R^{-n}$$
.

Consequences

Consequences

If $|f(Re^{i\theta})| \sim R^n$, what can you say about the derivatives of f?

Removable singularities

 $f: \Omega - \{a\} \to \mathbb{C}$ analytic can be extended to $\Omega \to \mathbb{C}$ iff $\lim_{z \to a} f(z)(z-a) = 0$.

Removable singularities

 $f:\Omega-\{a\}\to\mathbb{C}$ analytic can be extended to $\Omega\to\mathbb{C}$ iff $\lim_{z\to a}f(z)(z-a)=0$. Why? Cauchy's formula is valid.

Apply this trick to

$$F(z) = \frac{f(z) - f(a)}{z - a}$$

and get f(z) = f(a) + (z - a)F(z).

Apply this trick to

Rinse, repeat.

$$f(z) - f$$

 $F(z) = \frac{f(z) - f(a)}{z - a}$

and get f(z) = f(a) + (z - a)F(z).

Consequently...

If $f: \Omega \to \mathbb{C}$ is analytic, for any $a \in \Omega$, we can write

$$f(z) = f(a) + \sum_{n=1}^{k} \frac{f^{(n)}(a)}{n!} (z-a)^n + F(z)(z-a)^{k+1}$$

for some analytic $F: \Omega \to \mathbb{C}$.