

5. Übungsblatt

Upload: 23.05.2023.

Deadline: 06.06.2023, 10:00 Uhr (im Abgabeordner bei stud.ip).

Aufgabe 5.1 (4 + 2)

(a) Untersuchen Sie die folgenden Funktionen auf Monotonie:

(i) $f_1: \mathbb{R} \to \mathbb{R}$, $x \mapsto \sinh(-3x)$.

(ii) $f_2: \mathbb{R} \to \mathbb{R}, x \mapsto \sin(x) - x$.

(iii) $f_3: \mathbb{R}_0^+ \to \mathbb{R}, x \mapsto \frac{x}{x+1}$.

(iv) $f_4: \mathbb{R} \to \mathbb{R}, x \mapsto \sqrt{1+x^2}$.

(b) Sie fahren um 10:00 Uhr mit dem Auto aus Salzgitter los und kommen um 11:00 Uhr in Peine West an, was 70 km entfernt liegt. Beweisen Sie, dass es zwischen 10:00 Uhr und 11:00 Uhr einen Zeitpunkt gegeben haben muss, an dem Sie exakt 70 km/h gefahren sind.

Aufgabe 5.2 (3 + 1.5 + 1.5)

(a) Berechnen Sie die Taylorpolynome 3. Grades um den Entwicklungspunkt $x_0 = 1$ der folgenden Funktionen:

(i) $f_1: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^3 - 5x + 2.$

(ii) $f_2: \mathbb{R} \to \mathbb{R}, x \mapsto \exp[(x-1)^2].$

(b) Berechnen Sie für alle $k \in \mathbb{N}$ das Taylorpolynom k. Grades der Funktion $g:(-1,\infty) \to \mathbb{R}$, $x \mapsto \ln(x+1)$ an dem Entwicklungspunkt $x_0=0$. Beweisen Sie, dass für $0 \le x \le 1$ das Taylorpolynom $T_k[g,0;x] \to g(x)$ gegen die Funktion g konvergiert und berechnen Sie

$$\lim_{k\to\infty}\sum_{n=1}^k(-1)^{n+1}\frac{1}{n}.$$

(c) Es sei $n \in \mathbb{N}$ $x_0 \in \mathbb{R}$ und $p : \mathbb{R} \to \mathbb{R}$ ein reelles Polynom vom Grad n. Beweisen Sie, dass p mit seinem Taylorpolynom n. Ordnung um den Entwicklungspunkt x_0 übereinstimmt

$$\forall x \in \mathbb{R} : T_n[p, x_0, x] = p(x).$$

Aufgabe 5.3 (3 + 3)

Bestimmen Sie alle lokalen sowie (sofern vorhanden) die globalen Minima und Maxima der folgenden Funktionen:

(a) $f: [-3,3] \to \mathbb{R}, x \mapsto x^3 - \frac{3}{2}x^2 - 6x + 3.$

(b) $g: \mathbb{R} \to \mathbb{R}$, $x \mapsto x \cdot \exp(-x^2)$.

Aufgabe 5.4 (3 + 3)

- (a) Berechnen Sie mit Hilfe des Satzes von Taylor die Eulersche Zahlebis auf 10^{-10} genau.
- (b) Berechnen Sie mit Hilfe des Satzes von Taylor mit $x_0 = 0$ und n = 2 und der Gleichung $\cos(\frac{\pi}{2}) = 0$ eine Näherung für π und geben Sie den maximalen Fehler an.