Indian Institute of echnology Guwahati Statistical Inference and Multivariate Analysis (MA 324) Problem Set 05

1. Suppose that $X_1, X_2, X_3, X_4 \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$, where $\sigma > 0$ is unknown parameter. Consider the following estimators:

$$T_1 = X_1^2 - X_2 + X_4$$
, $T_2 = \frac{1}{3} (X_1^2 + X_2^2 + X_4^2)$, $T_3 = \frac{1}{4} \sum_{i=1}^4 X_i^2$, and $T_4 = \frac{1}{3} \sum_{i=1}^4 (X_i - \overline{X})^2$.

- (a) Is T_i UE for σ^2 for i = 1, 2, 3, 4?
- (b) Among estimators T_1 , T_2 , T_3 and T_4 for σ^2 , which one has the smallest MSE?
- 2. Suppose that $X_1, X_2, X_3, X_4 \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$, where $\sigma > 0$ is unknown parameter. Consider the following estimators:

$$T_5 = \frac{1}{2} |X_1 - X_2|.$$

Is T_5 UE for σ ? If not, propose an UE for σ based on T_5 . Calculate the MSE of T_5 as an estimator of σ .

3. Let X_1, X_2, \ldots, X_n be a RS with a common PDF

$$f(x) = \frac{1}{\sigma} \exp \left[-\frac{x-\mu}{\sigma} \right] I_{(\mu,\infty)}(x).$$

Denote $U = \sum_{i=1}^{n} (X_i - X_{(1)})$ and let V = cU be an estimator of σ , where c > 0 is a constant.

- (a) Find the MSE of V. Then, minimize the MSE with respect to c. Call this latter estimator W, which has smallest MSE.
- (b) How do estimators W and $\frac{U}{n-1}$ compare relative to their respective bias and the MSE?
- 4. Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} Bernoulli(p)$, where $p \in (0, 1)$ is unknown parameter. Show that there is no UE for the parametric functions (a) $\tau(p) = \frac{1}{p(1-p)}$, (b) $\tau(p) = \frac{1}{p(1-p)^2}$.
- 5. Let $X_1, X_2, ..., X_n \stackrel{i.i.d.}{\sim} Bernoulli(p)$, where $p \in (0, 1)$ and $n \geq 3$. Derive UMVUE of (a) $\tau(p) = p^2(1-p)$, (b) $\tau(p) = (p+qe^3)^2$, where q = 1-p.
- 6. Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ is unknown, but $\sigma > 0$ is known. Derive UMVUE of (a) $\tau(\mu) = P_{\mu}(|X_1| \leq a)$, where a is a known positive real number. (b) $\tau(\mu) = \mu^3$.
- 7. Let $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} U(-\theta, \theta)$, where $\theta \in \mathbb{R}$ is an unknown parameter. Derive the UMVUE of $\tau(\theta) = \theta^k$, where k is a known fixed positive real number.

8. Let X_1, X_2, \ldots, X_n be a RS from a common PDF

$$f(x, \theta) = \frac{2}{\theta} x \exp\left[-\frac{x^2}{\theta}\right] I_{(0,\infty)}(x),$$

where $\theta > 0$ is a unknown parameter. Find the UMVUE of (a) $\tau(\theta) = \theta$, (b) $\tau(\theta) = \theta^2$, (c) $\tau(\theta) = \theta^{-1}$. Find CRLBs and check if these UMVUEs attain CRLBs.

9. Let X_1, X_2, \ldots, X_n be a RS from a common PDF

$$f(x, \theta) = \frac{2}{\theta} x \exp\left[-\frac{x^2}{\theta}\right] I_{(0,\infty)}(x),$$

where $\theta > 0$ is a unknown parameter. Show that MLEs and UMVUEs of (a) $\tau(\theta) = \theta$, (b) $\tau(\theta) = \theta^2$, (c) $\tau(\theta) = \theta^{-1}$ are all consistent.

10. Suppose $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$ and $\sigma > 0$ are unknown parameters. Denote, for $n \geq 1$,

$$T_n = \frac{2X_1 + 4X_2 + 6X_3 + \ldots + 2nX_n}{n(n+1)}.$$

- (a) Evaluate $E(T_n)$ and $Var(T_n)$ for all $n \ge 1$.
- (b) Show that $\{T_n : n \ge 1\}$ is consistent for μ .
- (c) Is $\max \{0, T_n\}$ consistent for μ ?