Imperial College London

Variational AutoEncoders (VAEs)

Introduction to the theory of VAEs

Jiashun Yao

Outline

- Generative Model
- Autoencoders
- VAEs
- Mathematics of VAEs

Given real (training set) data, we want to use a generator G to generate such data.

- \rightarrow find the distribution $p_{data}(x)$ that describes where the real data are likely to locate in the high dimensional space
- \rightarrow Sample from $p_{data}(x)$ to generate realistic samples.

true data distribution

x – image or other data high dimensional vector

Each MNIST image can be seen as a 28x28 length vector, it is a sample in a 784-dimensional space.

28 pixels

28 pixels

true data distribution

Imagine $p_{MNIST}(x)$ is associated with a region on this 784-dimensional space.

Cannot explicitly write the probability function that describes it (too complex, we only have limited number of samples).

Use a model G to learn/approximate $p_{MNIST}(x)$.

To use a model G to generate the data in $p_{data}(x)$, there are different types of methods, two straightforward ones are:

- Assume the p_{data} to be in a certain form, construct it, then sample from it
 - GMM for example
- Use a neural network G_{θ} to estimate a mapping from a low-dimensional space simple distribution p(z) to the high-dimensional data space real data distribution $p_{data}(x)$: $G_{\theta}(z) \rightarrow x$
 - In VAE:
 - The low dimensional space -> latent space
 - The simple distribution $p(z) \rightarrow$ normal distribution
 - $z \sim p(z)$ -> latent space sample
 - $x \sim p_{\theta}(x|z)$

- $z \rightarrow x$
- $z \sim p(z)$
- $x \sim p_{\theta}(x|z)$
- The joint distribution expressed by the generative model is: $p_{\theta}(x,z) = p_{\theta}(x|z)p(z)$

true data distribution

Practically, to generate a data sample, instead of sampling from complex p(x), we sample from a much lower dimensional simple distribution p(z), then use the network G_{θ} to map it to a high-dimensional data sample.

Auto-encoder

Auto-encoder

Can be used as a unsupervised learning tool for dimension reduction.

Using the latent space representations, we can do image classification, regression, property analyses, etc.

Auto-encoder - Training

Before training – with random ϕ and θ :

- \hat{x} is random
- Latent space representations are randomly distributed

Auto-encoder - Training

To train, minimise the mismatch (usually pixel-wise differences) between each x_i and \hat{x}_i through back-propagation.

Auto-encoder - Training

Well trained auto-encoder:

- \hat{x} matches to x
- Latent space representations are in certain patterned clusters

Why not this decoder as a data generator?

- Hard to get a valid sample from the latent space:
 - When we visualise our latent space, we see that the range of the latent vector is not well bounded
 - It may seem to follow a certain distribution, but we cannot know it easily

40

Why not this decoder as a data generator?

Randomly sampled latent space representations are usually invalid.

How to solve this problem?

 Force the valid latent representations to follow a specific distribution – VAEs

Variational Auto-encoder (VAE)

Now the latent space representations are from a distribution of our choice (e.g. multivariate normal distribution).

Variational Auto-encoder (VAE)

 Intuitively, by doing this, now our valid latent space representations are following a distribution.

• As long as we sample z_i from this distribution, we no longer generate invalid samples.

Architecture of VAEs

Generative model G_{θ}

 $diff(x_i, \hat{x}_i)$

Latent space loss

KL (latent variable || unit Gaussian)

- Decoder (generator) network with parameter θ :
 - $z \sim p(z) = N(0, I) z$ is from normal distribution
 - $x|z \sim p_{\theta}(x|z)$
 - $z \rightarrow$ Decoder network with parameters $\theta \rightarrow x$
- Encoder network with parameter ϕ :
 - $q_{\phi}(z|x)$
 - $x \rightarrow$ Encoder network with parameters $\phi \rightarrow (\mu(x), \sigma(x)) \rightarrow z$
- We want to find θ maximizes the likelihood of the training set samples (i.e., given the generator distribution, maximize the probability values of training set samples):

$$L = \log p_{\theta}(x)$$

$$x \to NN_{\phi} \to (\mu(x), \sigma(x)) \xrightarrow{\longrightarrow} z$$

 $z \to NN_{\theta} \to x$

- $L = \log p_{\theta}(x)$
- $p_{\theta}(x) = \int_{Z} p_{\theta}(x|z)p(z)dz$ -- intractable $\int_{Z} f(z|x)dz = \int_{Z} \frac{f(z,x)}{f(x)}dz = \frac{1}{f(x)}\int_{Z} f(z,x)dz = \frac{1}{f(x)} \cdot f(x) = 1$
- Inserting $q_{\phi}(z|x)$, and do rearrangements:
 - $\log p_{\theta}(x) = \int_{z} q_{\phi}(z|x) \log p_{\theta}(x) dz$ $= \int_{z} q_{\phi}(z|x) \log \left(\frac{p_{\theta}(z,x)}{p_{\theta}(z|x)}\right) dz = \int_{z} q_{\phi}(z|x) \log \left(\frac{p_{\theta}(z,x)}{q_{\phi}(z|x)} \cdot \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right) dz$ $= \int_{z} q_{\phi}(z|x) \log \left(\frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)}\right) dz + \int_{z} q_{\phi}(z|x) \log \left(\frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right) dz$

 $KL(q_{\phi}(z|x) || p_{\theta}(z|x))$ – KL divergence

- = 0 if $q_{\phi}(z|x)$ and $p_{\theta}(z|x)$ are identical
- > 0 if $q_{\phi}(z|x)$ and $p_{\theta}(z|x)$ are not identical
- $L \ge \int_{z} q_{\phi}(z|x) \log \left(\frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)}\right) dz$ Evidence Lower bound (ELBO) L_{b}

- To maximizes the likelihood $L = \log p_{\theta}(x)$
- ightharpoonup to find $p_{\theta}(x|z)$ and $q_{\phi}(z|x)$ that maximizes the ELBO $L_b = \int_z q_{\phi}(z|x) \log\left(\frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)}\right) dz$

Intuition:

- 1. Maximize L_b by updating $q_{\phi}(z|x) \rightarrow L_b$ approaches $\log p_{\theta}(x)$
- 2. Maximize L_b by updating both $q_{\phi}(z|x)$ and $p_{\theta}(x|z) \rightarrow$ maximizes $\log p_{\theta}(x)$

•
$$L_b = \int_z q_{\phi}(z|x) \log \left(\frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)}\right) dz$$

$$= \int_z q_{\phi}(z|x) \log \left(\frac{p(z)}{q_{\phi}(z|x)}\right) dz + \int_z q_{\phi}(z|x) \log p_{\theta}(x|z) dz$$

$$-KL(q_{\phi}(z|x) || p(z)) \qquad \mathbb{E}_{q_{\phi}(z|x)} \log p_{\theta}(x|z)$$

- Maximize $L_b \to \text{Minimize } KL(q_{\phi}(z|x) \mid\mid p(z))$ and maximize $\mathbb{E}_{q_{\phi}(z|x)} \log p_{\theta}(x|z)$
- Recall:
 - p(z) = N(0, I), so this is essentially pushing $q_{\phi}(z|x) \sim N(0, I)$
 - $x \rightarrow$ Encoder network with parameters $\phi \rightarrow \mu(x), \sigma(x) \rightarrow z$
- As a result: mimimize $KL(q_{\phi}(z|x) || p(z)) \rightarrow \text{minimize } KL(N(u(x), \sigma(x)^2 * I) || N(0, I))$
 - Which is the **VAE latent space loss**: *KL* (*latent variable* || *unit Gaussian*)
- Maximize $\mathbb{E}_{q_{\phi}(z|x)} \log p_{\theta}(x|z) \rightarrow$ given x_i , encode into z_i , then decode into $\hat{x}_i \rightarrow \hat{x}_i$ to be close to x_i
 - Which is the **VAE generative loss**: $diff(x_i, \hat{x}_i)$

Architecture of VAEs

KL (latent variable || unit Gaussian)

Variational Auto-encoder (VAE)

Conclusions

- What are generative models? Understand the role of observed variables and latent variables (Terms are not always rigorous)
- Understand Autoencoder architecture and how to train one
- Discover Variational Autoencoders, which constrain the latent space of Autoencoders (to be Unit Gaussian)
- Understand (the intuitions of) the mathematics of Variational Autoencoders
 - Likelihood
 - ELBO
 - The two loss terms of VAEs