Solution-1:

$$I_D = I_S \left(e^{\frac{V_D}{nV_T}} - 1 \right)$$
 with $V_T = \frac{kT}{q}$

 $k = (1.38 \times 10^{-23})$ J/K (Boltzmann's constant), $q = 1.6 \times 10^{-19}$ C (electronic charge) At 25°C, T = 273 + 25 = 298 K and $V_T = 25.70$ mV

$$\frac{I_D}{I_c} = \frac{10 \times 10^{-3}}{0.01 \times 10^{-6}} = 10^6$$

Therefore,
$$V_D = nV_T \ln \left(\frac{I_D}{I_S} + 1\right) = 0.71 \text{ V}$$

For Temperature $=30^{\circ}$ C

We know,
$$I_{S2} = I_{S1} \times 2^{\left(\frac{T_2 - T_1}{10}\right)}$$

Here,
$$T_1 = 298 \text{K}$$
 and $T_2 = 273 + 30 = 303 \text{K}$ for $I_{S1} = I_S \big|_{T=298 \text{K}}$ and $I_{S2} = I_S \big|_{T=303 \text{K}}$
At 30° C (303 K), $I_{S2} = \left(0.01 \times 10^{-6}\right) \times \sqrt{2} = 1.414 \times 10^{-8} \ A = I_S \big|_{T=303 \text{K}}$ and $V_T = 26.134 \ \text{mV}$
Using the new values for I_S and V_T , the required V_D for $I_D = 10 \ \text{mA}$ is - $V_D = 0.704 \text{V}$
Therefore, Percentage decrease in V_D required is $\frac{0.710 - 0.704}{0.710} \times 100 = 0.85 \%$.

Solution-2 (a): Voltage across R₄ is 0.5 V.

Solution-2 (b): Currents are indicated in RED colour.

Solution-3:

$$V1=10\text{-}0.7=9.3\ V,\ V2=9.3\text{-}0.7=8.6\ V,\ I_{R2}=\frac{8.6}{5}=1.72\ mA$$

$$I3=\frac{0.7}{4}=0.175\ mA,\ I2=1.72-0.175=1.545\ mA$$

$$I1=I2+I3=I_{R2}=1.72\ mA$$

Solution-4 (a):

Fig 2

Since $P_Z = V_Z I_Z$ where I_Z is the current through the Zener diode, we have $I_{Z,\;MAX} = 100/5.6 = 17.86\;mA$

Since I_{RL} = 5.6/0.250= 22.4 mA, we have $I_{RI\,MAX}$ = $I_{Z\,MAX}$ + I_{RL} = 17.86+22.4 = 40.26 mA

Therefore, $V_{S\,MAX} = I_{RI\,MAX} R_I + V_Z = 40.26*0.1 + 5.6 = 9.63~V$

Solution-4 (b):

If the Zener diode is such that a minimum current of 1 mA is required for the Zener action to take place, what is the minimum source voltage V_S that can be used?

When the Zener diode is drawing minimum current, we have I_{RI MIN}=1+I_{RL}=23.4 mA

Therefore, $V_{S \text{ MIN}}=I_{RI \text{ MIN}}R_I + V_Z = 23.4*0.1+5.6=7.94 \text{ V}$

Solution-5:

The circuit has 4 nodes namely V_1 , V_2 , V_3 and V_4 apart from the reference node connected to negative terminal of the independent voltage sources.

Using Kirchoff's current law (KCL) at the node V_2 :

$$\frac{V_2 - 240}{3} + \frac{V_2 - V_3}{6} + 10 = 0$$
 or $2(V_2 - 240) + V_2 - V_3 + 60 = 0$ giving

$$3v_2 - v_3 - 420 = 0$$
(1)

Using KCL at the node V_3 :

$$\frac{V_3 - V_2}{6} + \frac{V_3}{30} + \frac{V_3 - 60}{12} = 0$$
 or $10(V_3 - V_2) + 2V_3 + 5(V_3 - 60) = 0$ giving

$$17V_3 - 10V_2 - 300 = 0 ...(2)$$

Now, (1) x10 becomes

$$30V_2 - 10V_3 - 4200 = 0$$
(3)

and, (2) x3 gives

$$-30V_2 + 51V_3 - 900 = 0$$
(4)

$$(3)+(4)$$
 becomes $41V_3-5100=0 \Rightarrow V_3=124.39 \text{ V}$

Substitution of V_3 in (2) gives $V_2=181.46$ V

Voltage across the 6Ω resistor is V_2 - V_3 = 181.46-124.39 = 57.07 V (Ans)

Solution-6:

 V_1 , V_2 , V_3 are the three nodes apart from the reference node. As a source is connected in between V_1 and V_2 , it forms **a super node.**

Due to the super node V_1 - V_2 : V_1 =3+ V_2 (1)

Applying KCL due to super node V_1 - V_2 :

$$\frac{V_2-7}{4} + \frac{V_2}{3} + \frac{V_1}{2} + \frac{V_1}{6} = 0$$

OR

 $3(V_2 - 7) + 4V_2 + 6V_1 + 2V_1 = 0$ resulting in

$$8V_1 + 7V_2 = 21$$
(2)

Substitution of (1) in (2) gives

$$24 + 8V_2 + 7V_2 = 21$$

$$=> V_2 = -0.2$$

Now, (1) gives $V_1 = 2.8$

Therefore,
$$i_x = V_1/2 = (3+V_2)/2 = 1.4 \text{ A}$$
 (Ans)

Lastly, $V_x = V_2 = -0.2 \text{ V}$ (Ans)