## <u>Chemical Engineering Thermodynamics</u> <u>COURSE PROJECT</u>

# ISENTROPIC HEAT AND EXCESS FREE ENERGY CALCULATIONS FOR N2 INDUCED EOR (ENHANCED OIL RECOVERY)

## Group 4:-

Srivats J (B21CH032)
Umashankar Prajapati (B21CH033)
Utkarsh Gupta (B21CH034)
Vivek Sharma (B21CH036)
Yejjala Venkata Surya Prasad (B21CH037)
Yogesh Kumar (B21CH038)
Amitesh Rana (B21CH039)

## Aim:

To study the properties of Enhanced Oil Recovery via Fracking using Liquid Nitrogen(N2)

## **Objective:**

- **1)** To explain how the excess free energy varies with temperature and pressure in each range.
- 2) To show how the isentropic heat change ( $\Delta T$ ) varies with temperature and pressure within each range during the fracking process.
- **3)** To discuss how these thermodynamic properties impact the efficiency and effectiveness of the fracking process.

## **Theory:**

## **Enhanced Oil Recovery Using Liquid Nitrogen:**

- Gas Mobility Control: Nitrogen is an inert gas, which means it doesn't react with the oil or reservoir rock. Injecting nitrogen into an oil reservoir helps to displace oil by reducing its viscosity and improving its mobility. This can be especially useful in reservoirs where the oil is heavy or highly viscous. Nitrogen gas is much cheaper and more easily to obtain as it is abundant in air(78%).
- Pressure Maintenance: As oil is extracted from a reservoir over time, the
  reservoir pressure decreases. This pressure decline can make it increasingly
  challenging to extract more oil. Nitrogen injection can help maintain or even
  increase the reservoir pressure, which, in turn, can improve oil recovery rates. The
  elevated pressure can push oil towards the production wells.
- As a fracturing fluid, LN<sub>2</sub> greatly reduces the expansion of reservoir clay and the water lock effect. Unlike traditional hydraulic fracturing(basically means extraction from wells), LN<sub>2</sub> fracturing produces no wastewater or water pollution.

- The injection of ultralow temperature (-196 °C) LN<sub>2</sub> into coal rock effectively changes the coal rock mechanical properties, reduces fracture pressure, and increases the width of primary fractures in the reservoir.
- Low-temperature LN2 enters the coal rock, induces the formation and expansion
  of secondary fractures in the coal rock, enhances pore connectivity, improves the
  pore structure of the coal rock, and provides channels for unconventional oil and
  gas migration.

As the share of unconventional oil and gas in global oil and gas production gradually increased, the amount of research on LN<sub>2</sub> fracturing has also increased. Figure shows the number of research articles on LN<sub>2</sub> fracturing published between 2011 and 2021.



https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.2c00084

## **Calculations and Observations:**

## 1) To find the excess free energy

#### **Using Redlich Kwong Equation**

```
P = RT/(V-b) - a/(sqrt(T)*V*(V+b))
```

#### where:

- *p* is the gas pressure(Mpa)
- R is the gas constant(J/k-mol),
- T is temperature(K),
- V is the molar volume (V/n),
- $a = 0.42748R^2*Tc^2(2.5)/Pc$
- b = 0.08664\*R\*Tc/Pc
- Tc= 126.21K
- Pc= 3.4 Mpa

#### **Using Maxwell Equation**

$$dU = dQ-PdV$$

$$dG = -SdT + VdP$$
, where  $(G = H - TS)$ 

At constant Temperature.

$$dG = VdP$$

$$dG = RT*dP/P = RT*dln(P)$$

$$dG^{ig} = RTd(ln(P)) - (1)$$

$$dG = RTd(ln(f))$$
 - (2) , where f = fugacity

Therefore for ideal gas f = P

On subtracting (1) from (2)

$$d(G - G^{ig}) = RTd(In(f/P)) = RTdIn\phi$$
, where  $\phi = fugacity coefficient$ 

$$dG^{R} = d(G-Gig)$$

$$d(G^{R}/RT) = d(In(\phi))$$

$$d(In(\phi)) = (dG - dGig)/RT = (VdP - Vig*dP)/RT$$

$$d(In(\phi)) = (V - Vig)dP/RT$$

$$d(In(\phi)) = [Vdp - Vigdp]/RT$$

$$= [d(PV) - Pdv - Vig*dP]/RT$$

$$= [d(PV/RT) - P/RTdv - (Vig/RT)dP]$$

Now from RKE Equation,

= 
$$d(z) - (dv/V-b) + a/RTsqrt(T)*b[dv/V - dv/V+b] - (Vig/RT)dP$$

$$A = aP/(sqrt(T)*(RT)^2), B = bP/RT$$

$$d(ln(\phi)) = dz - dv/(V-b) + (A/B)*(dv/V - dV/(V+b)) - d(ln(P))$$

Initially gas is ideal hence  $\phi = 1$  as  $\phi = f/P$  and for ideal gas f=P

On integrating the above equation we get

$$ln(\phi) = (z-1) - ln((V-b)/(Vig - b)) + (A/B)*{ln(V/Vig) - ln[(V+b)/Vig]}$$

Now to put V=ZRT/P

$$ln(\phi) = (Z-1) - ln((ZRT/P - b)/RT/p) + (A/B)ln(V/V+b)$$

After simplifying,

$$ln(\phi) = (Z-1) - ln(Z - B) + (A/B)ln(Z/Z+B)$$
 - eq(3)

Now to find value Z at particular pressure and temperature , change the RKE in terms of Z and simplify it,

Put V = ZRT/P in RKE,

P = RT/(ZRT/P - b) - a/(sqrt(T)ZRT/P)\*(ZRT/P + b)

 $P = PRT/(ZRT - Pb) - aP^2/(sqrt(T)ZRT(ZRT+Pb)$ 

After simplifying, we get

 $A = aP/(sqrt(T)*(RT)^2)$ , B = bP/RT

 $A = 0.42748*(Tc)^{(2.5)} * P/(T^{(2.5)}*Pc)$ , as  $a = 0.42748*R^{2}Tc^{(2.5)}/Pc$ 

B = 0.08664 \*Tc\*P/(Pc\*T) , as b = 0.08664 \*R\*Tc/Pc

1 = 1/(z-B) - A/(z\*(z+B))

After solving the above equation we get

$$z^3 - z^2 + z(A-B-B^2) - AB = 0$$
 - eq(4)

## **Calculation Table:**

| Temp   | P(MPa) | A        | В        | Z        | Z1       | LNPhi    | Gr       |
|--------|--------|----------|----------|----------|----------|----------|----------|
| 312.61 | 52     | 0.677123 | 0.534975 | 1.317876 | 1.317876 | 0.131393 | 341.4957 |
| 312.61 | 55     | 0.716188 | 0.565839 | 1.348703 | 1.348703 | 0.150077 | 390.0572 |
| 312.61 | 60     | 0.781296 | 0.617279 | 1.400733 | 1.400733 | 0.182644 | 474.6993 |
| 312.61 | 65     | 0.846404 | 0.668719 | 1.453383 | 1.453383 | 0.216795 | 563.46   |
| 312.61 | 70     | 0.911512 | 0.720159 | 1.506486 | 1.506486 | 0.252336 | 655.8308 |
| 322.19 | 62     | 0.748657 | 0.618889 | 1.411831 | 1.411831 | 0.204115 | 546.7595 |
| 322.19 | 65     | 0.784882 | 0.648835 | 1.442347 | 1.442347 | 0.224289 | 600.8014 |
| 322.19 | 68     | 0.821108 | 0.678782 | 1.473028 | 1.473028 | 0.244935 | 656.1039 |
| 322.19 | 70     | 0.845258 | 0.698746 | 1.493568 | 1.493568 | 0.258943 | 693.6271 |
| 322.19 | 75     | 0.905633 | 0.748656 | 1.545134 | 1.545134 | 0.294752 | 789.5494 |
| 331.77 | 72     | 0.807999 | 0.697957 | 1.501362 | 1.501362 | 0.278291 | 767.6208 |
| 331.77 | 75     | 0.841666 | 0.727039 | 1.531295 | 1.531295 | 0.299364 | 825.7473 |
| 331.77 | 78     | 0.875333 | 0.75612  | 1.561325 | 1.561325 | 0.320787 | 884.8379 |
| 331.77 | 80     | 0.897777 | 0.775508 | 1.581392 | 1.581392 | 0.335251 | 924.7356 |
| 331.77 | 82     | 0.920221 | 0.794895 | 1.60149  | 1.60149  | 0.349854 | 965.016  |
| 341.35 | 82     | 0.857009 | 0.772587 | 1.586224 | 1.586224 | 0.352304 | 999.8332 |
| 341.35 | 84     | 0.877912 | 0.79143  | 1.605708 | 1.605708 | 0.366664 | 1040.588 |
| 341.35 | 85     | 0.888363 | 0.800852 | 1.615461 | 1.615461 | 0.37389  | 1061.094 |
| 341.35 | 86     | 0.898814 | 0.810274 | 1.625219 | 1.625219 | 0.381146 | 1081.685 |
| 341.35 | 88     | 0.919717 | 0.829117 | 1.644755 | 1.644755 | 0.395743 | 1123.111 |
| 350.93 | 91     | 0.887486 | 0.833977 | 1.657014 | 1.657014 | 0.417949 | 1219.421 |
| 350.93 | 91.5   | 0.892362 | 0.83856  | 1.661758 | 1.661758 | 0.421562 | 1229.963 |
| 350.93 | 92     | 0.897238 | 0.843142 | 1.666504 | 1.666504 | 0.425181 | 1240.522 |
| 350.93 | 92.5   | 0.902115 | 0.847724 | 1.671252 | 1.671252 | 0.428807 | 1251.1   |
| 350.93 | 93     | 0.906991 | 0.852306 | 1.676    | 1.676    | 0.432438 | 1261.695 |

## **Graph**



Graph is between Excess Free Energy(G<sup>E</sup>) vs Pressure(MPa)

### **Conclusions:**

- As we can see from the graph, the G<sup>E</sup> is increasing with increasing pressure at constant temperature. And we can see from the calculation table also as Z is increasing there is an increase in excess free energy. It suggests that the system is becoming less stable at higher pressures.
- This increase in excess free energy implies that the system is deviating further from its equilibrium state, which can have various implications depending on the specific conditions and components involved. It might indicate a tendency for phase transitions or other changes in the system's behavior.

#### 2) To find the Isentropic heat change ( $\Delta T$ ):

The process is given to be isentropic. Therefore,  $\Delta S = 0$ .

Since the Nitrogen used is in its liquid state, the following equation is used for it's entropy:-

$$dS = Cp.(dT/T) - \beta VdP$$

β = Volume expansivity, Cp= Specific Heat and V= Volume of Liquid

This equation incorporating  $\beta$ , although general, is usually applied only to liquids Here, it is also considered to be a real fluid and thus, cannot be considered to be incompressible which can eliminate the beta and volume terms. They have to be taken into consideration as well.

As we can see from our calculations and even in general,  $\beta$  and V are weak functions of pressure for liquids, they are usually assumed constant at appropriate average values for integration of the final terms. Therefore, entropy can be written as

$$\Delta S = \langle Cp \rangle . ln(T2/T1) - \langle \beta \rangle \langle V \rangle (P2-P1) = 0$$

Since  $\beta = (dV/dT)/Vo$ , in order to find dV, an approximation for the final volume and temperature is needed if  $\beta$  is to be found for varying ranges of pressure in our case.

Therefore, to get an approximate value of final temperature , an ideal condition can be assumed to get the value of  $\beta$  to then calculate the real/actual values afterwards.

$$(T2/T1)=(P2/P1)^{(1-1/k)}$$

The above equation can be used to calculate an approximate value of T2 in order to find  $\beta$  for our final calculations

After getting the approximate values of final temperature, The Redlich-Kwong equation of state(which is given above) can be used to calculate both the initial and final molar volumes of Nitrogen.

The values obtained are then used to find the values of  $\beta$  for all the given temperature and pressure ranges using:

$$\beta = -(dV/dT)/Vo$$

Now, using the above obtained entropy formula and equating it to zero, we get

## T2 = T1 \* $exp[\langle \beta \rangle \langle V \rangle (P2-P1) / \langle Cp \rangle]$

... 
$$\Delta T = T1 - T2 = T1 * (1 - exp[\langle \beta \rangle \langle V \rangle (P2-P1) / \langle Cp \rangle])$$

## **Calculation Table:**

| T1     | P1   | P2   | T2(ideal) | ΔT(ideal) | v1(cm3/m) | v2      | vg Cp(liquio | β        | Avg V(cm3) | T2(act | ual) | ΔT(actual) |
|--------|------|------|-----------|-----------|-----------|---------|--------------|----------|------------|--------|------|------------|
| 312.61 | 70   | 65   | 306.0605  | 6.549529  | 55.9365   | 57.2113 | 1950         | 0.00348  | 56.5739    | 307.00 | 56   | 5.584442   |
| 312.61 | 65   | 60   | 305.5419  | 7.068057  | 58.1161   | 59.6091 |              | 0.003635 | 58.8626    | 306.54 | 56   | 6.064444   |
| 312.61 | 60   | 55   | 304.9342  | 7.6758    | 60.6785   | 62.4544 |              | 0.003813 | 61.56645   | 305.90 | 22   | 6.647833   |
| 312.61 | 55   | 52   | 307.6402  | 4.969822  | 63.7361   | 64.9877 |              | 0.003951 | 64.3619    | 308.2  | 27   | 4.337346   |
| 312.61 | 70   | 52   | 287.1565  | 25.45349  | 55.9365   | 61.349  |              | 0.003802 | 58.64275   | 290.46 | 13   | 22.14868   |
| 322.19 | 75   | 70   | 315.9011  | 6.288902  | 55.1877   | 56.3551 |              | 0.003364 | 55.7714    | 316.7  | 03   | 5.486987   |
| 322.19 | 70   | 68   | 319.5326  | 2.657407  | 57.1563   | 57.6782 |              | 0.003436 | 57.41725   | 319.8  | 02   | 2.319763   |
| 322.19 | 68   | 65   | 318.0631  | 4.126871  | 58.0285   | 58.8701 |              | 0.003514 | 58.4493    | 318.5  | 45   | 3.615515   |
| 322.19 | 65   | 62   | 317.8694  | 4.320599  | 59.4422   | 60.3675 |              | 0.003603 | 59.90485   | 318.39 | 22   | 3.797774   |
| 322.19 | 75   | 62   | 305.1351  | 17.05489  | 55.1877   | 58.5113 |              | 0.003531 | 56.8495    | 307.1  | 42   | 15.03576   |
| 331.77 | 82   | 80   | 329.4376  | 2.332411  | 53.873    | 54.2694 |              | 0.003155 | 54.0712    | 329.70 | 37   | 2.066317   |
| 331.77 | 80   | 78   | 329.3787  | 2.391252  | 54.5269   | 54.9437 |              | 0.003197 | 54.7353    | 329.6  | 07   | 2.119326   |
| 331.77 | 78   | 75   | 328.073   | 3.697034  | 55.2154   | 55.8738 |              | 0.003225 | 55.5446    | 328.5  | 06   | 3.2494     |
| 331.77 | 75   | 72   | 327.9229  | 3.847096  | 56.3196   | 57.0431 |              | 0.003339 | 56.68135   | 328.3  | 38   | 3.432027   |
| 331.77 | 82   | 72   | 319.6683  | 12.10169  | 53.873    | 56.0223 |              | 0.003297 | 54.94765   | 320.94 | 46   | 10.82542   |
| 341.35 | 88   | 86   | 339.1152  | 2.234787  | 53.0446   | 53.4055 |              | 0.003044 | 53.22505   | 339.3  | 01   | 2.019899   |
| 341.35 | 86   | 85   | 340.2112  | 1.138794  | 53.6336   | 53.8211 |              | 0.00307  | 53.72735   | 340.33 | 05   | 1.029487   |
| 341.35 | 85   | 84   | 340.1978  | 1.152249  | 53.9387   | 54.1301 |              | 0.00308  | 54.0344    | 340.3  | 14   | 1.038643   |
| 341.35 | 84   | 82   | 339.0079  | 2.342128  | 54.2514   | 54.6481 |              | 0.003122 | 54.44975   | 339.2  | 13   | 2.118739   |
| 341.35 | 88   | 82   | 334.5318  | 6.818215  | 53.0446   | 54.1687 |              | 0.003108 | 53.60665   | 335.1  | 76   | 6.192356   |
| 350.93 | 93   | 92.5 | 350.3899  | 0.540101  | 52.5817   | 52.6643 |              | 0.002909 | 52.623     | 350.43 | 85   | 0.491467   |
| 350.93 | 92.5 | 92   | 350.387   | 0.543026  | 52.7161   | 52.8    |              | 0.002931 | 52.75805   | 350.43 | 35   | 0.496514   |
| 350.93 | 92   | 91.5 | 350.384   | 0.545983  | 52.8521   | 52.9371 |              | 0.002946 | 52.8946    | 350.42 | 97   | 0.500301   |
| 350.93 | 91.5 | 91   | 350.381   | 0.548973  | 52.9895   | 53.0758 |              | 0.002967 | 53.03265   | 350.42 | 48   | 0.505189   |
| 350.93 | 93   | 91   | 348.757   | 2.173019  | 52.5817   | 52.9196 |              | 0.002957 | 52.75065   | 348.93 | 06   | 1.999358   |

(Here, the rows highlighted in blue represent the values for the largest change in pressure possible for the selected initial temperature)

## **Graph:**



#### **Conclusions:**

Front the above calculations, table and graph it can be observed that:

- i) w.r.t Pressure, For similar  $\Delta P$  at the constant initial temperature (T1),  $\Delta T$  increases as P1 (i.e. initial pressure) decreases.  $\Delta V$  also seems to increase for the same.
- ii) w.r.t Temperature, As seen in the graph above, for the maximum range of pressure difference possible at a select initial temperature, ΔT decreases as T1 increases. (Highlighted in blue). ΔV sees a noticeable decline in this case.

Thus, simply increasing the temperature for the given ranges of operating pressures for each of them doesn't guarantee a greater expansion of liquid Nitrogen under isentropic conditions and is actually the opposite in the given case study. For the same range of  $\Delta P$  at the same temperature though, a decrease in the initial pressure seems to result in greater expansion of liquid Nitrogen(LN2).

## 3) Significance of the above calculated values:

- In fracturing operations, stability and predictability are typically desirable. An
  increase in excess free energy might indicate that the conditions are approaching
  a point where the nitrogen fracturing process may become less efficient or less
  controllable. Therefore, from an operational perspective, an increase in excess
  free energy with increasing pressure is often not considered beneficial and might
  require adjustments to maintain process integrity and efficiency.
- Increasing the temperature can also increase the thermal stress around the hole causing damage and can even lower the viscosity of the liquid which can further affect the process of fracking itself. In some cases, gaseous N2 may also be formed, which is also not desirable.