Бинарные отношения

Правила. Задачи, *тебующие* записи, отмечены значком (≡). Если задача с неколькими пунктами отмечена этим значком, то все пункты требуют записи. Остальные задачи тоже можно записывать. Записывать нужно самодостаточный текст, а не набросок или поток мыслей! Удачи!

Разбор

Определение. *Бинарным отношением* на множестве X называется отношение, определённое на парах элементов из X. Более формально, бинарным отношением называется любое подмножество $R \subseteq X \times X$ множества пар элементов из X. Утверждение «x и y состоят в отношении R» (формально: $(x,y) \in R$) записывают как xRy. Для конечного множества, отношение можно записать в виде ориентированного графа, вершины которого — элементы множества.

Пример 1. (a) Отношение > на множестве $\{1, 2, 3\}$.

- (b) Отношение «быть тёзкой» на множестве учеников 8-4.
- (c) Отношение = на множестве $\{1, 2, 3\}$.
- (d) Отношение подобия на множестве треугольников на плоскости.
- (е) Отношение соседства на множестве граней куба.
- (f) Отношение делимости на множестве $\mathbb{Z}.$

Задача 1. Сколько всего есть бинарных отношений на множестве (a) из двух; (b) из трёх элементов?

Определение. Бинарное отношение R на множестве X называется

- **рефлексивным**, если для любого $x \in X$ выполнено xRx;
- антирефлексивным, если для любого $x \in X$ не выполнено xRx;
- симметричным, если для любых $x, y \in X$ из xRy следует yRx;
- антисимметричным, если для любых $x,y\in X$ из xRy и yRx следует x=y;
- транзитивным, если для любых $x, y, z \in X$ из xRy и yRz следует xRz.

Задача 2. Какие из отношений из примера 1 являются (а) рефлексивными; (b) антирефлексивными; (c) симметричными; (d) антисимметричными; (e) транзитивными? **Задача 3.** Приведите пример отношения на множестве $\{1,2,3,4\}$, которое является только рефлексивным (не антирефлексивным, не симметричным, не антисимметричным, не транзитивным).

Определение. *Отношением эквивалентности* называется рефлексивное, симметричное и транзитивное бинарное отношение.

Определение. Отношением нестрогого частичного порядка называется рефлексивное, антисимметричное и транзитивное бинарное отношение. **Отношением строгого частичного порядка** называется антирефлексивное, антисимметричное и транзитивное бинарное отношение.

Задачи для самостоятельного решения

Задача 1 (\equiv)**.** Выпишите все пары, входящие

- (a) в отношение = на множестве $\{1, 2, 3, 4\}$;
- (b) в отношение \leq на множестве $\{1, 2, 3, 4\}$;
- (c) в отношение делимости на множестве $\{1, 2, 3, 4, 5, 6\}$;
- (d) в отношение соседства на множестве граней куба (обозначьте их удобным вам способом).
- **Задача 2** (\equiv). Сколько всего есть бинарных отношений на множестве (a) из четырёх; (b, 2 балла) из n элементов?
- **Задача 3.** Приведите пример отношения на множестве $\{1, 2, 3, 4\}$, которое является (a) только антирефлексивным; (b) только симметричным; (c) только антисимметричным; (d) только транзитивным.
- **Задача 4.** Какие из отношений из примера 1 являются (a) отношениями эквивалентности; (b) нестрогими порядками; (c) строгими порядками?
- **Задача** $5 \equiv$. Сколько всего есть отношений эквивалентности на множестве (a) из двух; (b) из трёх; (c, 2 балла) из четырёх элементов?
- **Задача 6.** Пусть множество X разбито на несколько подмножеств $X_i \subseteq X$, то есть X_i не пересекаются, но в объединении дают весь X. Определим бинарное отношение \sim на множестве X следующим образом: $x \sim y$ если и только если x и y лежат в одном куске, то есть $\exists i$, такое что $x, y \in X_i$. Покажите, что \sim является отношением эквивалентности.