Quick explanation of pros/cons slice timing of correction

Slice Timing Correction

- All slices aren't imaged simultaneously
 - Can collect from top to bottom
 - Interleaved (even and then odd slices)

Slice Timing

- Data are not acquired at the same time
- Our model assumes the data are collected at the same time

Think about it

- If something happens in the brain at 3s, when will we see it in
 - slice 1?

Think about it

- If something happens in the brain at 3s, when will we see it in
 - slice 1?
 - slice 2?

Slice timing problems

Worse with ER design or blocked design?

Slice timing problems

- Worse with ER design or blocked design?
 - ER design (isolated trials)

Slice Timing Correction

- Tries to fix timing issue so the assumption that data were collected at the same time is more closely met
- Uses interpolation
- Must know exact timing of acquisition

Example: slice 2

• Step 1: Shift response

Example: slice 2

Step 2: Interpolate @ TR

Example: slice 2

Step 2: Interpolate @ TR

Slice timing issues

One bad scan gets spread to other time points

Slice timing issues

One bad scan gets spread to other time points

Slice Timing Correction

- Not used much
- TR<2 + interleaved acquisition+spatial smoothing
 - Reduces slice timing effects
- Adding temporal derivatives to model helps