Statictics

In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

File directory

In [2]: data=pd.read_csv(r"C:\Users\user\Desktop\Vicky\7_uber.csv")

All Mathematical function

In [3]: data.describe()

Out[3]:

	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropofl
count	2.000000e+05	200000.000000	200000.000000	200000.000000	199999.000000	19999
mean	2.771250e+07	11.359955	-72.527638	39.935885	-72.525292	3
std	1.601382e+07	9.901776	11.437787	7.720539	13.117408	
min	1.000000e+00	- 52.000000	-1340.648410	-74.015515	-3356.666300	-88
25%	1.382535e+07	6.000000	-73.992065	40.734796	-73.991407	4
50%	2.774550e+07	8.500000	-73.981823	40.752592	-73.980093	4
75%	4.155530e+07	12.500000	-73.967154	40.767158	-73.963658	4
max	5.542357e+07	499.000000	57.418457	1644.421482	1153.572603	87
4						•

To display the top portion of the dataset

```
In [4]: data.head()
```

Out[4]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitud
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.73835
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.72822
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.74077
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.79084
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.74408
4						>

To display the mean median mode of the dataset for only numerical value

```
In [6]: data1=data[["fare_amount","passenger_count"]]
    print(data1.mean())
    print(data1.mode())
    print(data.median())
    print()
fare amount 11.359955
```

```
passenger_count
                    1.684535
dtype: float64
   fare_amount passenger_count
           6.5
Unnamed: 0
                     2.774550e+07
fare amount
                     8.500000e+00
pickup_longitude
                    -7.398182e+01
pickup_latitude
                     4.075259e+01
dropoff_longitude
                    -7.398009e+01
dropoff_latitude
                     4.075304e+01
passenger_count
                     1.000000e+00
dtype: float64
```

To display the total of each columns

```
In [7]: print(data1.sum())
```

```
fare_amount 2271991.05
passenger_count 336907.00
dtype: float64
```

To displayn the minimum value

```
In [8]: print(data.min())
```

```
Unnamed: 0
                                                 1
                     2009-01-01 01:15:22.0000006
key
fare_amount
                                            -52.0
pickup_datetime
                          2009-01-01 01:15:22 UTC
pickup_longitude
                                      -1340.64841
pickup_latitude
                                       -74.015515
dropoff_longitude
                                       -3356.6663
dropoff_latitude
                                      -881.985513
passenger_count
dtype: object
```

To displayn the Cummulative sum

In [9]: print(data1.cumsum())

	fare_amount	passenger_count
0	7.50	1
1	15.20	2
2	28.10	3
3	33.40	6
4	49.40	11
• • •	• • •	• • •
199995	2271924.05	336902
199996	2271931.55	336903
199997	2271962.45	336905
199998	2271976.95	336906
199999	2271991.05	336907

[200000 rows x 2 columns]

To count the total number of values in columns

In [10]: print(data.count())

```
Unnamed: 0
                      200000
                      200000
key
fare_amount
                      200000
pickup_datetime
                      200000
pickup_longitude
                      200000
pickup_latitude
                      200000
dropoff_longitude
                      199999
dropoff_latitude
                      199999
passenger_count
                      200000
dtype: int64
```

In [11]: print(data1.cov())

	fare_amount	passenger_count
fare_amount	98.045172	0.139296
passenger count	0.139296	1.920986

```
Statisticsworkout - Jupyter Notebook
In [14]: from scipy.stats import spearmanr
          from scipy.stats import pearsonr
In [15]: | data2=data[["pickup_longitude","pickup_latitude"]]
Out[15]:
                  pickup_longitude pickup_latitude
               0
                       -73.999817
                                     40.738354
               1
                       -73.994355
                                     40.728225
               2
                       -74.005043
                                     40.740770
               3
                       -73.976124
                                     40.790844
                       -73.925023
                                     40.744085
           199995
                       -73.987042
                                     40.739367
           199996
                       -73.984722
                                     40.736837
           199997
                       -73.986017
                                     40.756487
           199998
                       -73.997124
                                     40.725452
          199999
                       -73.984395
                                     40.720077
          200000 rows × 2 columns
In [16]: print(spearmanr(data1,data2))
          SpearmanrResult(correlation=array([[ 1.
                                                            , 0.02329567, 0.0427319 , -
          0.0735512 ],
                 [ 0.02329567, 1.
                                            , -0.01615785, -0.01575884],
                 [ 0.0427319 , -0.01615785, 1. , 0.51336533],
                 [-0.0735512 , -0.01575884, 0.51336533, 1.
                                                                       ]]), pvalue=array
          ([[0.00000000e+000, 2.02039886e-025, 1.75772620e-081,
                  6.38669717e-238],
                 [2.02039886e-025, 0.00000000e+000, 4.95831337e-013,
                  1.81556398e-012],
                 [1.75772620e-081, 4.95831337e-013, 0.00000000e+000,
                  0.00000000e+000],
                 [6.38669717e-238, 1.81556398e-012, 0.00000000e+000,
                  0.0000000e+000]]))
```

```
localhost:8888/notebooks/Statisticsworkout.ipynb
```

In []:

In []: