DIP Project Report

DIPro

TEAM

- Dheeraj Reddy Pailla (20161053)
- Kshitij Gupta (20161234)

PROJECT

- ID 23
- Title Build a system to distinguish between drones and birds
- Github repo https://github.com/dheerajpreddy/Bird-v-Drone

PURPOSE

The goal of the project is to build an image classifier that can successfully distinguish between a drone and a bird with sufficient accuracy using only image processing and machine learning techniques, without involving deep learning concepts.

METHOD

- Build an SVM with RBF kernel
- Use features such as Histogram of Gradients (HOG), image filters and others

RESULTS

Given an image, the classifier built must be able to determine whether the input image is a drone or a bird.

<u>Input Image</u>	Sample Classifier Percentage	<u>Classifier</u> <u>Output</u>
	80% Drone 20% Bird	Drone
© Indiegogo / Bionic Bird	60% Drone 40% Bird	Drone
	20% Drone 80% Bird	Bird

TASK DIVISION

- 1. Dheeraj
 - a. Collect drone dataset
 - b. Collect and analyze various image processing features
 - c. Build naive SVM
 - d. Compare and contrast with other methods
- 2. Kshitij
 - a. Collect bird dataset
 - b. Collect and analyze various image processing features
 - c. Modify SVM to add new features
 - d. Compare and contrast with other methods

MILESTONES

<u>Milestone</u>	Date of Completion	
Analyze different methods	12/10/2018	
Build naive SVM	20/10/2018	
Find & analyze features	5/11/2018	
Modify SVM to include features	11/11/2018	
Compare & contrast SVM to current state of the art classifiers	15/11/2018	
Prepare final presentation	18/11/2018	
Final Submission	29/11/2018	