

What is a hierarchical model?

Global Model

$$P(y = 1) = \beta x + \epsilon$$

Seperate model

$$P(y = 1) = \beta_1 x + \epsilon_1$$

 $P(y = 1) = \beta_2 x + \epsilon_2$

$$P(y = 1) = \beta_3 x + \epsilon_3$$

Hierarchical model

$$P(y = 1) = \beta_i x + \varepsilon$$

where

$$\beta_i \sim \mathcal{D}(\mu_\beta, \sigma_\beta)$$

y is the distribution of sugar maple x is elevation

Sugar maple

Why are hierarchical model worth studying?

To learn about the effect of a treatment that vary

Because it makes it possible to perform inferences using all the data for groups with small sample size

To make prediction of a new unsampled group

Allows to inherently analyse structured data

It is more efficient in making inferences for regression parameters than classical regressions

Makes it possible to include predictors at multiple levels

It accurately acounts for uncertainty in prediction and estimation

It is a bridge for multivariate modelling

Problem

Jonathan Brass Brassard (our team research professional) had two helpers (Steve Overflow Vissault and Amaël Lemalin LeSquin) working with him and he wants to know if their effort is affected by the climb of Mont Sutton.

Data

```
sutton <- read.csv("sutton.csv", sep=";")</pre>
tree <- rowSums(sutton[, 3:9])
field <- sutton[,10]
```


Direct Acyclic Graph

Direct Acyclic Graph

Model definition

Poisson(
$$\mathbf{y}_i$$
) = $\beta \mathbf{X}_i$
 $log(E(\mathbf{y}_i)) = \beta \mathbf{X}_i$
 $E(\mathbf{y}_i) = e^{\beta \mathbf{X}_i}$
 $\beta \sim \mathcal{N}(\mu, \sigma^2)$

Prior definition

$$\frac{\mu \sim \mathcal{N}(\mu_0, \sigma_0^2)}{\frac{1}{\sigma^2} \sim \mathcal{G}(\tau_0, \phi_0)}$$

Defining the pieces properly

Data

- v_i The number of trees at site i
- X_i Elevation at site i

Parameters

- The importance of elevation for species
- μ Average response of the species to elevation
- σ^2 How a species varies in its response to elevation

Priors

- μ_0 Mean prior about how μ is distributed
- σ_0^2 Variance prior about how μ is distributed
- τ_0 Scale prior about how σ is distributed
- ϕ_0 rate prior about how σ is distributed

Write a Gibbs sampler to estimate all parameters of the hierarchical model described previously

Recall that

$$\underbrace{P(\mathsf{Model}|\mathsf{Data})}_{\substack{\mathsf{Posterior}}} \propto \underbrace{P(\mathsf{Data}|\mathsf{Model})}_{\substack{\mathsf{Likelihood}}} \underbrace{P(\mathsf{Model})}_{\substack{\mathsf{Prior}}}$$

$$P(\mathbf{\theta}|\mathbf{Y}) \propto P(\mathbf{Y}|\mathbf{\theta})P(\mathbf{\theta})$$

Define the different parts... Mathematically Likelihood

$$P(\mathbf{y}_i|\boldsymbol{\beta}, \mathbf{X}) = \prod_{i=1}^{n} \frac{e^{\mathbf{y}_i \boldsymbol{\beta} \mathbf{X}_i} e^{-e^{\boldsymbol{\beta} \mathbf{X}_i}}}{y_i!}$$

$$P(\beta|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(\beta-\mu)^2}{2\sigma^2}}$$

Define the different parts... Mathematically **Prior**

$$\begin{split} P(\mu,\sigma^2) &= (\mu|\mu_0,\sigma_0)(\sigma^2|\tau_0,\phi_0) \\ &= \frac{1}{\sigma_0\sqrt{2\pi}} e^{-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}} \times \frac{\phi_0^{\tau_0}}{\Gamma(\tau_0)} \left(\frac{1}{\sigma^2}\right)^{\tau_0-1} e^{-\phi_0\frac{1}{\sigma^2}} \end{split}$$

How to sample each parameter independently

$$P(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{X},\boldsymbol{\mu},\sigma^2) \propto \prod_{i=1}^n \frac{e^{\boldsymbol{y}_i \boldsymbol{\beta} \boldsymbol{X}_i} e^{-e^{\boldsymbol{\beta} \boldsymbol{X}_i}}}{y_i!} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(\boldsymbol{\beta}-\boldsymbol{\mu})^2}{2\sigma^2}}$$

$$P(\boldsymbol{\mu}|\boldsymbol{y},\boldsymbol{X},\boldsymbol{\sigma},\boldsymbol{\beta}) \propto \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\boldsymbol{\beta}-\boldsymbol{\mu})^2}{2\sigma^2}} \times e^{-\frac{(\boldsymbol{\mu}-\boldsymbol{\mu}_0)^2}{2\sigma_0^2}}$$

$$P(\sigma|\boldsymbol{y},\boldsymbol{X},\boldsymbol{\mu},\boldsymbol{\beta}) \propto \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\beta-\mu)^2}{2\sigma^2}} \times \frac{1}{\sigma^2}^{\tau_0-1} e^{-\phi_0\frac{1}{\sigma^2}}$$

How are the sugar maple and the american beech influenced by elevation?

Direct Acyclic Graph

Model definition

$$\begin{split} \text{logit}(P(\boldsymbol{Y}_{ij} = 1)) &= \beta_{j}\boldsymbol{X} \\ P(\boldsymbol{Y}_{ij} = 1) &= \frac{e^{\beta_{j}\boldsymbol{X}}}{1 + e^{\beta_{j}\boldsymbol{X}}} \\ \beta_{j} &\sim \mathcal{N}(\mu, \sigma^{2}) \end{split}$$

Prior definition

$$\begin{split} & \frac{\mu}{\sigma^2} \sim \mathcal{N}(\mu_0, \sigma_0^2) \\ & \frac{1}{\sigma^2} \sim \mathcal{G}(\tau_0, \phi_0) \end{split}$$

Defining the pieces properly

Data

- **Y**_{ii} The presence (or absence) of species j at location i
- X Flevation

Parameters

- β_i The importance of elevation for species i
- μ Average response of the species to elevation
- σ^2 How a species varies in its response to elevation

Priors

- μ_0 Mean prior about how μ is distributed
- σ_0^2 Variance prior about how μ is distributed
- τ_0 Scale prior about how σ is distributed
- ϕ_0 rate prior about how σ is distributed

Write a Gibbs sampler to estimate all parameters of the hierarchical model described previously

Recall that

$$\underbrace{P(\mathsf{Model}|\mathsf{Data})}_{\substack{\mathsf{Posterior}}} \propto \underbrace{P(\mathsf{Data}|\mathsf{Model})}_{\substack{\mathsf{Likelihood}}} \underbrace{P(\mathsf{Model})}_{\substack{\mathsf{Prior}}}$$

$$P(\boldsymbol{\theta}|\mathbf{Y}) \propto P(\mathbf{Y}|\boldsymbol{\theta})P(\boldsymbol{\theta})$$

Define the different parts... Mathematically Likelihood

$$\begin{split} P(\boldsymbol{Y_j}|\boldsymbol{\beta},\boldsymbol{X}) &= \prod_{i=1}^{n} \left(\frac{e^{\beta_j \boldsymbol{X_i}}}{1+e^{\beta_j \boldsymbol{X_i}}}\right)^{\boldsymbol{Y_{ij}}} \left(\frac{1}{1+e^{\beta_j \boldsymbol{X_i}}}\right)^{1-\boldsymbol{Y_{ij}}} \\ P(\beta_j|\boldsymbol{\mu},\sigma^2) &= \prod_{i=1}^{m} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\beta_j-\boldsymbol{\mu})^2}{2\sigma^2}} \end{split}$$

Define the different parts... Mathematically **Prior**

$$\begin{split} P(\mu,\sigma^2) &= (\mu|\mu_0,\sigma_0)(\sigma^2|\tau_0,\phi_0) \\ &= \frac{1}{\sigma_0\sqrt{2\pi}} e^{-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}} \times \frac{\phi_0^{\tau_0}}{\Gamma(\tau_0)} \left(\frac{1}{\sigma^2}\right)^{\tau_0-1} e^{-\phi_0\frac{1}{\sigma^2}} \end{split}$$

How to sample each parameter independently

$$\beta_{j}$$

$$P(\beta_j|\boldsymbol{Y}_j,\boldsymbol{X},\boldsymbol{\mu},\sigma^2) \propto \prod_{i=1}^n \left(\frac{e^{\beta_j\boldsymbol{X}_i}}{1+e^{\beta_j\boldsymbol{X}_i}}\right)^{\boldsymbol{Y}_{ij}} \left(\frac{1}{1+e^{\beta_j\boldsymbol{X}_i}}\right)^{1-\boldsymbol{Y}_{ij}} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\beta_j-\boldsymbol{\mu})^2}{2\sigma^2}}$$

μ

$$P(\boldsymbol{\mu}|\boldsymbol{Y_j},\boldsymbol{X},\boldsymbol{\sigma},\boldsymbol{\beta_j}) \propto \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\beta_j-\boldsymbol{\mu})^2}{2\sigma^2}} \times e^{-\frac{(\boldsymbol{\mu}-\boldsymbol{\mu}_0)^2}{2\sigma_0^2}}$$

σ

$$P(\sigma|\boldsymbol{Y_j},\boldsymbol{X},\boldsymbol{\mu},\boldsymbol{\beta_j}) \propto \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\beta_j-\mu)^2}{2\sigma^2}} \times \frac{1}{\sigma^2}^{\tau_0-1} e^{-\phi_0\frac{1}{\sigma^2}}$$