

人工智能技术及应用

Artificial Intelligence and Application

Model Selection

A more complex model does not always lead to better performance on **testing data**.

This is **Overfitting**.

Select suitable model

误差的来源

Review

A more complex model does not always lead to better performance on **testing data**.

Estimator

Only Niantic knows \hat{f}

From training data, we find f^*

Bias + Variance 3" 4" 5" 6" 7"

 f^* is an estimator of \hat{f}

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

中心极限定理

$$E[m] = E\left[\frac{1}{N}\sum_{n} x^{n}\right] = \frac{1}{N}\sum_{n} E[x^{n}] = \mu$$

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

$$Var[m] = \frac{\sigma^2}{N}$$

Variance depends on the number of samples

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of variance σ^2
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^n \quad s = \frac{1}{N} \sum_{n} (x^n - m)^2$$

Biased estimator

$$E[s] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

Parallel Universes

In all the universes, we are collecting (catching) 10
Pokémons as training data to find f*

Parallel Universes

 In different universes, we use the same model, but obtain different f*

Simpler model is less influenced by the sampled data

Consider the extreme case f(x) = 5

Bias

$$E[f^*] = \bar{f}$$

• Bias: If we average all the f^* , is it close to \hat{f} ?

Black curve: the true function \hat{f}

Red curves: $5000 f^*$

Blue curve: the average of 5000 f^*

 $= \bar{f}$

Bias v.s. Variance

What to do with large bias?

- Diagnosis:
 - If your model cannot even fit the training examples, then you have large bias Underfitting
 - If you can fit the training data, but large error on testing data, then you probably have large

variance 📉

Overfitting

- For bias, redesign your model:
 - Add more features as input
 - A more complex model

 Small loss on training data, large loss on testing data. Why?

An extreme example

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

$$f(x) = \begin{cases} \hat{y}^i & \exists x^i = x \\ random & otherwise \end{cases}$$
 Less than useless ...

This function obtains zero training loss, but large testing loss.

- Real data distribution (not observable)
 - Training data
 - Testing data

What to do with large variance?

More data
Very effective,
but not always
practical

Add constraints

Data augmentation (you can do that in HWs)

 \boldsymbol{x}

 \boldsymbol{x}

- Real data distribution (not observable)
 - Training data
 - Testing data

- Training data
- Testing data

Less parameters, sharing parameters

x

- Less features
- Early stopping
- Regularization
- Dropout

- Training data
- Testing data

Bias-Complexity Trade-off

Model becomes complex (e.g. more features, more parameters)

Back to step 2: Regularization

$$y = b + \sum w_i x_i$$

$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i} \right) \right)^{2} + \lambda \sum_{i} (w_{i})^{2}$$

The functions with smaller w_i are better

$$+\lambda \sum (w_i)^2$$

 \triangleright Smaller w_i means ...

smoother

$$y = b + \sum_{i} w_i x_i$$

$$y + \sum w_i \Delta x_i = b + \sum w_i (x_i + \Delta x_i)$$

> We believe smoother function is more likely to be correct Do you have to apply regularization on bias?

- \triangleright Training error: larger λ , considering the training error less
- > We prefer smooth function, but don't be too smooth.

What to do with large variance?

More data
Very effective,
but not always
practical

Regularization I

May increase bias

Model Selection

- There is usually a trade-off between bias and variance.
- Select a model that balances two kinds of error to minimize total error
- What you should NOT do:

Homework

public

private

Training Set

Testing Set

Testing Set

Model 2
$$\longrightarrow$$
 Err = 0.7

Model 3
$$\longrightarrow$$
 Err = 0.5 \longrightarrow Err > 0.5

I beat baseline!

No, you don't

What will happen?

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/

Cross Validation

N-fold Cross Validation

More about Validation Set

I used a validation set, but my model still overfitted?

Validation Set

Training Set \mathcal{D}_{train}

Model
$$\mathcal{H}_1$$
 $h_1^* = arg \min_{h \in \mathcal{H}_1} L(h, \mathcal{D}_{train})$

Model
$$\mathcal{H}_2$$
 $h_2^* = arg \min_{h \in \mathcal{H}_2} L(h, \mathcal{D}_{train})$

Model
$$\mathcal{H}_3$$
 $h_3^* = arg \min_{h \in \mathcal{H}_3} L(h, \mathcal{D}_{train})$

Validation Set \mathcal{D}_{val}

$$L(h_1^*, \mathcal{D}_{val}) = 0.9$$

$$L(h_2^*, \mathcal{D}_{val}) = 0.7$$

$$L(h_3^*, \mathcal{D}_{val}) = 0.5$$

Testing Set \mathcal{D}_{test}

Approximation of \mathcal{D}_{all}

Training Set \mathcal{D}_{train}

Model
$$\mathcal{H}_1$$
 $h_1^* = arg \min_{h \in \mathcal{H}_1} L(h, \mathcal{D}_{train})$

Model
$$\mathcal{H}_2$$
 $h_2^* = arg \min_{h \in \mathcal{H}_2} L(h, \mathcal{D}_{train})$

Model
$$\mathcal{H}_3$$
 $h_3^* = arg \min_{h \in \mathcal{H}_3} L(h, \mathcal{D}_{train})$

Validation Set \mathcal{D}_{val}

$$L(h_1^*, \mathcal{D}_{val}) = 0.9$$

$$L(h_2^*, \mathcal{D}_{val}) = 0.7$$

$$L(h_3^*, \mathcal{D}_{val}) = 0.5$$

$$\mathcal{H}_{val} = \{h_1^*, h_2^*, h_3^*\} \qquad h^* = \arg\min_{h \in \mathcal{H}_{val}} L(h, \mathcal{D}_{val})$$

Using validation set to select model =

considered as "training" by \mathcal{D}_{val}

Your model is $\mathcal{H}_{val} = \{h_1^*, h_2^*, h_3^*\}$

Using validation set to select model = $\text{considered as } \text{``training''} \text{ by } \mathcal{D}_{val}$ Your model is $\mathcal{H}_{val} = \{h_1^*, h_2^*, h_3^*\}$

$$\begin{split} L\big(h^{train}, \mathcal{D}_{all}\big) - L\big(h^{all}, \mathcal{D}_{all}\big) &\leq \delta \\ P\big(\mathcal{D}_{train} \ is \ \pmb{bad}\big) &\leq |\mathcal{H}| \cdot 2exp\big(-2N\varepsilon^2\big) \\ L\big(h^{val}, \mathcal{D}_{all}\big) - L\big(h^{all}, \mathcal{D}_{all}\big) &\leq \delta \\ P\big(\mathcal{D}_{val} \ is \ \pmb{bad}\big) &\leq |\mathcal{H}_{val}| \cdot 2exp\big(-2N_{val}\varepsilon^2\big) \\ &\uparrow \\ \text{It is small.} \end{split}$$

Hopefully ©