Lewis & Clark Math 215

Problem Set 13

Due: Thursday, March 2nd

Instructions: Answer each of the following questions and provide a justification for your answer. In addition to the points assigned below, you will receive 0-2 writing points for the entire problem set.

- 1. Let A and B be sets. Let \sim_A be an equivalence relation on A. Let \sim_B be an equivalence relation on B. Let \sim be a relation on $A \times B$ such that $(a_1, b_1) \sim (a_2, b_2)$ if and only if $a_1 \sim_A a_2$ or $b_1 \sim_B b_2$.
 - (a) Is \sim always reflexive? If so prove it, and if not give counter example.
 - (b) Is \sim always symmetric? If so prove it, and if not give counter example.
 - (c) Is \sim always transitive? If so prove it, and if not give counter example.
- 2. Let A be a non-empty set. Let \sim^+ be a arbitrary relation on A. Let \sim^- be a relation on A such that $a_1 \sim^- a_2$ if and only if $a_1 \not\sim^+ a_2$. Define a relation \sim on A such that $a_1 \sim a_2$ if and only if $a_1 \not\sim^+ a_2$ or $a_1 \not\sim^- a_2$.
 - (a) Prove that \sim is an equivalence relation. (hint: it might help to do part b) first).
 - (b) State how many equivalence classes \sim has.
- 3. Prove or disprove that each of the following functions is 1-1 and/or onto. (So two carefully written proofs must be given for each part.)
 - a) $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 4x 1
 - b) $f: \mathbb{N} \to \mathbb{N}$ given by f(n) = 4n 1
 - c) $f: \mathcal{P}(\{a, b, c, d\}) \to \mathcal{P}(\{a, b, c, d\})$ given by $f(S) = S \cap \{a, b\}$
 - d) $f: \mathcal{P}(\{a, b, c, d\}) \to \mathcal{P}(\{a, b, c, d\})$ given by $f(S) = S \cup \{a\}$
 - e) $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) = x^2 + y^2$
 - f) $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(x,y) = xy