SEQUENCE LISTING

<110>	Kinch, Michael S.	
<120>	EphA2 VACCINES	
<130>	10271-148	
<150> <151>	US 60/532,696 2003-12-24	
	US 60/602,588 2004-08-18	
<150> <151>	2004-10-01	
<150> <151>	2004-10-07	
<160>	72	
<170>	PatentIn version 3.2	
<210>		
<211> <212>		
	Homo sapiens	
<220>		
<221> <222>		
<400> attaa	1 ggact cggggcagga ggggcagaag ttgcgcgcag gccggcgggc gggagcggac 60	
accga	ggccg gcgtgcaggc gtgcgggtgt gcgggagccg ggctcggggg gatcggaccg 120	
agage	gagaa gegegge atg gag ete eag gea gee ege gee tge tte gee 170	
	Met Glu Leu Gln Ala Ala Arg Ala Cys Phe Ala 1 5 10	
	- · · · · · · · · · · · · · · · · · · ·	
ctg c	tg tgg ggc tgt gcg ctg gcc gcg gcg gcg g	
rea r	15 20 25	
gaa g	tg gta ctg ctg gac ttt gct gca gct gga ggg gag ctc ggc tgg 266	
Glu V	al Val Leu Leu Asp Phe Ala Ala Gly Gly Glu Leu Gly Trp	
	30 35 40	
ctc a	ca cac ccg tat ggc aaa ggg tgg gac ctg atg cag aac atc atg 314 hr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met	
	5 50 55	
aat o	ac atg ccg atc tac atg tac tcc gtg tgc aac gtg atg tct ggc 362	
Asn A	sp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly	
60	65 70 75	
gac c	ag gac aac tgg ctc cgc acc aac tgg gtg tac cga gga gag gct 410	
Asp G	In Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala	

-1-

80 85 90

				•													
gag Glu	cgt Arg	atc Ile	ttc Phe 95	att Ile	gag Glu	ctc Leu	aag Lys	ttt Phe 100	act Thr	gta Val	cgt Arg	gac Asp	tgc Cys 105	aac Asn	agc Ser	45	8
ttc Phe	cct Pro	ggt Gly 110	ggc Gly	gcc Ala	agc Ser	tcc Ser	tgc Cys 115	aag Lys	gag Glu	act Thr	ttc Phe	aac Asn 120	ctc Leu	tac Tyr	tat Tyr	50)6
gcc Ala	gag Glu 125	tcg Ser	gac Asp	ctg Leu	gac Asp	tac Tyr 130	ggc Gly	acc Thr	aac Asn	ttc Phe	cag Gln 135	aag Lys	cgc Arg	ctg Leu	ttc Phe	55	54
			gac Asp													60)2
			cgc Arg													65	50
			cgc Arg 175													69	8 8
			ctg Leu													74	16
ctg Leu	ctg Leu 205	cag Gln	ggc Gly	ctg Leu	gcc Ala	cac His 210	ttc Phe	cct Pro	gag Glu	acc Thr	atc Ile 215	gcc Ala	ggc Gly	tct Ser	gat Asp	79	94
gca Ala 220	cct Pro	tcc Ser	ctg Leu	gcc Ala	act Thr 225	gtg Val	gcc Ala	ggc Gly	acc Thr	tgt Cys 230	gtg Val	gac Asp	cat His	gcc Ala	gtg Val 235	84	42
gtg Val	cca Pro	ccg Pro	ggg Gly	ggt Gly 240	gaa Glu	gag Glu	ccc Pro	cgt Arg	atg Met 245	cac His	tgt Cys	gca Ala	gtg Val	gat Asp 250	ggc Gly	89	90
gag Glu	tgg Trp	ctg Leu	gtg Val 255	ccc Pro	att Ile	ggg	cag Gln	tgc Cys 260	ctg Leu	tgc Cys	cag Gln	gca Ala	ggc Gly 265	tac Tyr	gag Glu	93	38
aag Lys	gtg Val	gag Glu 270	gat Asp	gcc Ala	tgc Cys	cag Gln	gcc Ala 275	tgc Cys	tcg Ser	cct Pro	gga Gly	ttt Phe 280	ttt Phe	aag Lys	ttt Phe	98	86
gag Glu	gca Ala 285	tct Ser	gag Glu	agc Ser	ccc Pro	tgc Cys 290	ttg Leu	gag Glu	tgc Cys	cct Pro	gag Glu 295	cac His	acg Thr	ctg Leu	cca Pro	103	34
tcc Ser 300	cct Pro	gag Glu	ggt Gly	gcc Ala	acc Thr 305	tcc Ser	tgc Cys	gag Glu	tgt Cys	gag Glu 310	gaa Glu	ggc Gly	ttc Phe	ttc Phe	cgg Arg 315	10	82
			gac Asp		Ala											113	30

-2-

cca Pro																1	.178
tgg Trp																1	.226
gtc Val																1	.274
gag Glu 380																1	.322
agt Ser																1	.370
gtg Val																1	.418
cgt Arg		_	_	_	_			_								1	.466
ctg Leu																1	514
					cga Arg 465											1	562
aag Lys																1	1610
gtg Val	acc Thr	ctg Leu	gac Asp 495	gac Asp	ctg Leu	gcc Ala	cca Pro	gac Asp 500	acc Thr	acc Thr	tac Tyr	ctg Leu	gtc Val 505	cag Gln	gtg Val	1	L 65 8
					gag Glu											1	1706
					ccg Pro											1	L754
					gtg Val 545											1	L802
					agg Arg											1	L850

	_	-	tac Tyr 575					-		_						1898
			ccc Pro													1946
			gag Glu					_	-							1994
			gag Glu													2042
			aag Lys													2090
			aag Lys 655													2138
	_		agc Ser								-		_			2186
		_	ccc Pro	_	_				-		_					2234
			ttc Phe													2282
_			atg Met													2330
			tat Tyr 735													2378
			ctg Leu													2426
_		_	gac Asp			-								_		2474
		_	tgg Trp		_	_		_								2522
			gac Asp													2570
acc	tat	ggc	gag	cgg	ccc	tac	tgg	gag	ttg	tcc	aac	cac	gag	gtg	atg	2618

-4-

Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met 815 820 825	
aaa gcc atc aat gat ggc ttc cgg ctc ccc aca ccc atg gac tgc ccc Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro 830 835 840	2666
tcc gcc atc tac cag ctc atg atg cag tgc tgg cag cag gag cgt gcc Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu Arg Ala 845 850 855	2714
cgc cgc ccc aag ttc gct gac atc gtc agc atc ctg gac aag ctc att Arg Arg Pro Lys Phe Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile 860 865 870 875	2762
cgt gcc cct gac tcc ctc aag acc ctg gct gac ttt gac ccc cgc gtg Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val 880 885 890	2810
tct atc cgg ctc ccc agc acg agc ggc tcg gag ggg gtg ccc ttc cgc Ser Ile Arg Leu Pro Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg 895 900 905	2858
acg gtg tcc gag tgg ctg gag tcc atc aag atg cag cag tat acg gag Thr Val Ser Glu Trp Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu 910 915 920	2906
cac ttc atg gcg gcc ggc tac act gcc atc gag aag gtg gtg cag atg His Phe Met Ala Ala Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met 925 930 935	2954
acc aac gac gac atc aag agg att ggg gtg cgg ctg ccc ggc cac cag Thr Asn Asp Asp Ile Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln 940 945 950 955	3002
aag cgc atc gcc tac agc ctg ctg gga ctc aag gac cag gtg aac act Lys Arg Ile Ala Tyr Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr 960 965 970	3050
gtg ggg atc ccc atc tga gcctcgacag ggcctggagc cccatcggcc Val Gly Ile Pro Ile 975	3098
aagaatactt gaagaaacag agtggcctcc ctgctgtgcc atgctgggcc actggggact	3158
ttatttattt ctagttettt ceteceetg caactteege tgaggggtet eggatgaeae	3218
cctggcctga actgaggaga tgaccaggga tgctgggctg ggccctcttt ccctgcgaga	3278
cgcacacage tgagcactta gcaggcaccg ccacgtccca gcatccctgg agcaggagcc	3338
ccgccacage cttcggacag acatatagga tattcccaag ccgaccttcc ctccgccttc	3398
tcccacatga ggccatctca ggagatggag ggcttggccc agcgccaagt aaacagggta	3458
cctcaagccc catttcctca cactaagagg gcagactgtg aacttgactg ggtgagaccc	3518
aaagcggtcc ctgtccctct agtgccttct ttagaccctc gggccccatc ctcatccctg	3578
actggccaaa cccttgcttt cctgggcctt tgcaagatgc ttggttgtgt tgaggttttt	3638

-5-

aaatatatat tttgtacttt gtggagagaa tgtgtgtgt tggcaggggg ccccgccagg 3698 gctggggaca gagggtgtca aacattcgtg agctggggac tcagggaccg gtgctgcagg 3758 agtgtcctgc ccatgcccca gtcggcccca tctctcatcc ttttggataa gtttctattc 3818 tgtcagtgtt aaagattttg ttttgttgga cattttttc gaatcttaat ttattatttt 3878 ttttatattt attgttagaa aatgacttat ttctgctctg gaataaagtt gcagatgatt 3938 caaaccgaaa aaaaaaaaaa aaaaa

<210> 2

<211> 976

<212> PRT

<213> Homo sapiens

<400> 2

Met Glu Leu Gln Ala Ala Arg Ala Cys Phe Ala Leu Leu Trp Gly Cys

1 10 15

Ala Leu Ala Ala Ala Ala Ala Gln Gly Lys Glu Val Val Leu Leu 20 25 30

Asp Phe Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr 35 40 45

Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile 50 55 60

Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp 65 70 75 80

Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile 85 90 95

Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala 100 105 110

Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu 115 120 125

Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr 130 135 140

Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His 145 150 155 160

Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys

-6-

165 170 175

Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu 180 185 190

Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu 195 200 205

Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala 210 215 220

Thr Val Ala Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly 225 230 235 240

Glu Glu Pro Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro 245 250 255

Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala 260 265 270

Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser 275 280 285

Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala 290 295 300

Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro 305 310 315 320

Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr 325 330 335

Ala Val Gly Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln 340 345 350

Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln 355 360 365

Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg 370 375 380

Tyr Ser Glu Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser 385 390 395 400

Asp Leu Glu Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn 405 410 415

Gly Val Ser Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Lys Val His Glu Phe Gln Thr Leu Ser Pro Glu Gly Ser Gly Asn Leu Ala Val Ile Gly Gly Val Ala Val Gly Val Val Leu Leu Val Leu Ala Gly Val Gly Phe Phe Ile His Arg Arg Arg Lys Asn Gln Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln

Arg Val Asp Phe Leu Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu Arg Ala Arg Arg Pro Lys Phe Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro

Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp 900 905 Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala 915 920 Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile 935 930 Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr 945 950 Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile 970 965 <210> 3 <211> 12 <212> PRT <213> Homo sapiens <400> 3 Thr Leu Ala Asp Phe Asp Pro Arg Val Pro Arg Thr 5 <210> 4 <211> 9 <212> PRT <213> Homo sapiens <400> 4 Val Leu Leu Val Leu Ala Gly Val 5 <210> 5 <211> 9 <212> PRT <213> Homo sapiens <400> 5 Val Leu Ala Gly Val Gly Phe Phe Ile 5 <210> 6 <211> 9 <212> PRT <213> Homo sapiens <400> 6

```
Ile Met Asn Asp Met Pro Ile Tyr Met
              5
<210> 7
<211> 9
<212> PRT
<213> Homo sapiens
<400> 7
Ser Leu Leu Gly Leu Lys Asp Gln Val
<210> 8
<211> 9
<212> PRT
<213> Homo sapiens
<400> 8
Trp Leu Val Pro Ile Gly Gln Cys Leu
1 5
<210> 9
<211> 9
<212> PRT
<213> Homo sapiens
<400> 9
Leu Leu Trp Gly Cys Ala Leu Ala Ala
<210> 10
<211> 9
<212> PRT
<213> Homo sapiens
<400> 10
Gly Leu Thr Arg Thr Ser Val Thr Val
1 5
<210> 11
<211> 9
<212> PRT
<213> Homo sapiens
<400> 11
Asn Leu Tyr Tyr Ala Glu Ser Asp Leu
<210> 12
```

```
<211> 9
<212> PRT
<213> Homo sapiens
<400> 12
Lys Leu Asn Val Glu Glu Arg Ser Val
<210> 13
<211> 9
<212> PRT
<213> Homo sapiens
<400> 13
Ile Met Gly Gln Phe Ser His His Asn
                 5
<210> 14
<211> 9
<212> PRT
<213> Homo sapiens
<400> 14
Tyr Ser Val Cys Asn Val Met Ser Gly
<210> 15
<211> 9
<212> PRT
<213> Homo sapiens
<400> 15
Met Gln Asn Ile Met Asn Asp Met Pro
                 5
<210> 16
<211> 15
<211> 15
<212> PRT
<213> Homo sapiens
<400> 16
Glu Ala Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg
                                       10
                                                             15
<210> 17
<211> 13
<212> PRT
<213> Homo sapiens
<400> 17
```

Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly 5

<210> 18

<211> 16

<212> PRT

<213> Homo sapiens

<400> 18

Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser 5 15

<210> 19

<211> 3105

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion construct

<400> 19 atgaaaaaaa taatgctagt ttttattaca cttatattag ttagtctacc aattgcgcaa 60 120 caaactgaag caaaggatgc atctgcattc aataaagaaa attcaatttc atccatggca 180 ccaccagcat ctccgcctgc aagtcctaag acgccaatcg aaaagaaaca cgcggatctc gagetecagg cageeegege etgettegee etgetgtggg getgtgeget ggeegeggee 240 gcggcggcgc agggcaagga agtggtactg ctggactttg ctgcagctgg aggggagctc 300 ggctggctca cacacccgta tggcaaaggg tgggacctga tgcagaacat catgaatgac 360 atgccgatct acatgtactc cgtgtgcaac gtgatgtctg gcgaccagga caactggctc 420 480 cqcaccaact gggtgtaccg aggagaggct gagcgtatct tcattgagct caagtttact 540 gtacgtgact gcaacagctt ccctggtggc gccagctcct gcaaggagac tttcaacctc 600 tactatgccg agtcggacct ggactacggc accaacttcc agaagcgcct gttcaccaag 660 attgacacca ttgcgcccga tgagatcacc gtcagcagcg acttcgaggc acgccacgtg aagctgaacg tggaggagcg ctccgtgggg ccgctcaccc gcaaaggctt ctacctggcc 720 780 ttccaggata tcggtgcctg tgtggcgctg ctctccgtcc gtgtctacta caagaagtgc 840 cccgagctgc tgcagggcct ggcccacttc cctgagacca tcgccggctc tgatgcacct tecetggeea etgtggeegg cacetgtgtg gaccatgeeg tggtgeeace ggggggtgaa 900 gagccccgta tgcactgtgc agtggatggc gagtggctgg tgcccattgg gcagtgcctg 960 1020 tgccaggcag gctacgagaa ggtggaggat gcctgccagg cctgctcgcc tggatttttt 1080 aagtttgagg catctgagag cccctgcttg gagtgccctg agcacacgct gccatcccct

gagggtgcca	cctcctgcga	gtgtgaggaa	ggcttcttcc	gggcacctca	ggacccagcg	1140
tcgatgcctt	gcacacgacc	ccctccgcc	ccacactacc	tcacagccgt	gggcatgggt	1200
gccaaggtgg	agctgcgctg	gacgccccct	caggacagcg	ggggccgcga	ggacattgtc	1260
tacagcgtca	cctgcgaaca	gtgctggccc	gagtctgggg	aatgcgggcc	gtgtgaggcc	1320
agtgtgcgct	actcggagcc	tcctcacgga	ctgacccgca	ccagtgtgac	agtgagcgac	1380
ctggagcccc	acatgaacta	caccttcacc	gtggaggccc	gcaatggcgt	ctcaggcctg	1440
gtaaccagcc	gcagcttccg	tactgccagt	gtcagcatca	accagacaga	gcccccaag	1500
gtgaggctgg	agggccgcag	caccacctcg	cttagcgtct	cctggagcat	cccccgccg	1560
cagcagagcc	gagtgtggaa	gtacgaggtc	acttaccgca	agaagggaga	ctccaacagc	1620
tacaatgtgc	gccgcaccga	gggtttctcc	gtgaccctgg	acgacctggc	cccagacacc	1680
acctacctgg	tccaggtgca	ggcactgacg	caggagggcc	agggggccgg	cagcagggtg	1740
cacgaattcc	agacgctgtc	cccggaggga	tctggcaact	tggcggtgat	tggcggcgtg	1800
gctgtcggtg	tggtcctgct	tctggtgctg	gcaggagttg	gcttctttat	ccaccgcagg	1860
aggaagaacc	agcgtgcccg	ccagtccccg	gaggacgttt	acttctccaa	gtcagaacaa	1920
ctgaagcccc	tgaagacata	cgtggacccc	cacacatatg	aggaccccaa	ccaggctgtg	1980
ttgaagttca	ctaccgagat	ccatccatcc	tgtgtcactc	ggcagaaggt	gatcggagca	2040
ggagagtttg	gggaggtgta	caagggcatg	ctgaagacat	cctcggggaa	gaaggaggtg	2100
ccggtggcca	tcaagacgct	gaaagccggc	tacacagaga	agcagcgagt	ggacttcctc	2160
ggcgaggccg	gcatcatggg	ccagttcagc	caccacaaca	tcatccgcct	agagggcgtc	2220
atctccaaat	acaagcccat	gatgatcatc	actgagtaca	tggagaatgg	ggccctggac	2280
aagttccttc	gggagaagga	tggcgagttc	agcgtgctgc	agctggtggg	catgctgcgg	2340
ggcatcgcag	ctggcatgaa	gtacctggcc	aacatgaact	atgtgcaccg	tgacctggct	2400
gcccgcaaca	tcctcgtcaa	cagcaacctg	gtctgcaagg	tgtctgactt	tggcctgtcc	2460
cgcgtgctgg	aggacgaccc	cgaggccacc	tacaccacca	gtggcggcaa	gatccccatc	2520
cgctggaccg	ccccggaggc	catttcctac	cggaagttca	cctctgccag	cgacgtgtgg	2580
agctttggca	ttgtcatgtg	ggaggtgatg	acctatggcg	agcggcccta	ctgggagttg	2640
tccaaccacg	aggtgatgaa	agccatcaat	gatggcttcc	ggctccccac	acccatggac	2700
tgcccctccg	ccatctacca	gctcatgatg	cagtgctggc	agcaggagcg	tgcccgccgc	2760
cccaagttcg	ctgacatcgt	cagcatcctg	gacaagctca	ttcgtgcccc	tgactccctc	2820
aagaccctgg	ctgactttga	ccccgcgtg	tctatccggc	tccccagcac	gagcggctcg	2880
gagggggtgc	ccttccgcac	ggtgtccgag	tggctggagt	ccatcaagat	gcagcagtat	2940

acggagcact tcatggcggc cggctacact gccatcgaga aggtggtgca gatgaccaac 3000 gacgacatca agaggattgg ggtgcggctg cccggccacc agaagcgcat cgcctacagc 3060 ctgctgggac tcaaggacca ggtgaacact gtggggatcc ccatc 3105

<210> 20

<211> 1035

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 20

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Leu Glu Leu Gln Ala 50 55 60

Ala Arg Ala Cys Phe Ala Leu Leu Trp Gly Cys Ala Leu Ala Ala 65 70 75 80

Ala Ala Ala Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala Ala 85 90 95

Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp 100 105 110

Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val 115 120 125

Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp 130 135 140

Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr 145 150 155 160

Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu 165 170 175

Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Glu Glu Pro Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly Met Gly

Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg

Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser 420 425 430

- Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro 435 440 445
- His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu Pro His 450 455 460
- Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu 465 470 475 480
- Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr 485 490 495
- Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser 500 505 510
- Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr 515 520 525
- Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg 530 535 540
- Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr 545 550 555 560
- Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala 565 570 575
- Gly Ser Arg Val His Glu Phe Gln Thr Leu Ser Pro Glu Gly Ser Gly 580 585 590
- Asn Leu Ala Val Ile Gly Gly Val Ala Val Gly Val Val Leu Leu Leu 595 600 605
- Val Leu Ala Gly Val Gly Phe Phe Ile His Arg Arg Arg Lys Asn Gln 610 615 620
- Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln 625 630 635 640
- Leu Lys Pro Leu Lys Thr Tŷr Val Asp Pro His Thr Tyr Glu Asp Pro 645 650 655

Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val 660 665 670

- Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys 675 680 685
- Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile 690 695 700
- Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu 705 710 715 720
- Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg 725 730 735
- Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu 740 745 750
- Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly 755 760 765
- Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala 770 780
- Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala 785 790 795 800
- Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp 805 810 815
- Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr 820 825 830
- Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile 835 840 845
- Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile 850 855 860
- Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu 865 870 875 880
- Ser Asn His Glu Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro 885 890 895
- Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys

900 905 910

Trp Gln Gln Glu Arg Ala Arg Arg Pro Lys Phe Ala Asp Ile Val Ser 915 920 925

Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala 930 935 940

Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro Ser Thr Ser Gly Ser 945 950 955 960

Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp Leu Glu Ser Ile Lys 965 970 975

Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala Gly Tyr Thr Ala Ile 980 985 990

Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile Lys Arg Ile Gly Val 995 1000 1005

Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr Ser Leu Leu Gly 1010 1015 1020

Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile 1025 1030 1035

<210> 21

<211> 1506

<212> DNA

<213> Homo sapiens

<400> 21

60 cagggcaagg aagtggtact gctggacttt gctgcagctg gaggggagct cggctggctc 120 acacacccgt atggcaaagg gtgggacctg atgcagaaca tcatgaatga catgccgatc tacatgtact ccgtgtgcaa cgtgatgtct ggcgaccagg acaactggct ccgcaccaac 180 tgggtgtacc gaggagaggc tgagcgtatc ttcattgagc tcaagtttac tgtacgtgac 240 tgcaacagct tccctggtgg cgccagctcc tgcaaggaga ctttcaacct ctactatgcc 300 qaqtcggacc tggactacgg caccaacttc cagaagcgcc tgttcaccaa gattgacacc 360 attgcgcccg atgagatcac cgtcagcagc gacttcgagg cacgccacgt gaagctgaac 420 gtggaggagc gctccgtggg gccgctcacc cgcaaaggct tctacctggc cttccaggat 480 540 atcggtgcct gtgtggcgct gctctccgtc cgtgtctact acaagaagtg ccccgagctg 600 ctgcagggcc tggcccactt ccctgagacc atcgccggct ctgatgcacc ttccctggcc

actgtggccg	gcacctgtgt	ggaccatgcc	gtggtgccac	cggggggtga	agagccccgt	660
atgcactgtg	cagtggatgg	cgagtggctg	gtgcccattg	ggcagtgcct	gtgccaggca	720
ggctacgaga	aggtggagga	tgcctgccag	gcctgctcgc	ctggattttt	taagtttgag	780
gcatctgaga	gcccctgctt	ggagtgccct	gagcacacgc	tgccatcccc	tgagggtgcc	840
acctcctgcg	agtgtgagga	aggcttcttc	cgggcacctc	aggacccagc	gtcgatgcct	900
tgcacacgac	cccctccgc	cccacactac	ctcacagccg	tgggcatggg	tgccaaggtg	960
gagctgcgct	ggacgccccc	tcaggacagc	gggggccgcg	aggacattgt	ctacagcgtc	1020
acctgcgaac	agtgctggcc	cgagtctggg	gaatgcgggc	cgtgtgaggc	cagtgtgcgc	1080
tactcggagc	ctcctcacgg	actgacccgc	accagtgtga	cagtgagcga	cctggagccc	1140
cacatgaact	acaccttcac	cgtggaggcc	cgcaatggcg	tctcaggcct	ggtaaccagc	1200
cgcagcttcc	gtactgccag	tgtcagcatc	aaccagacag	agccccccaa	ggtgaggctg	1260
gagggccgca	gcaccacctc	gcttagcgtc	tcctggagca	tececegee	gcagcagagc	1320
cgagtgtgga	agtacgaggt	cacttaccgc	aagaagggag	actccaacag	ctacaatgtg	1380
cgccgcaccg	agggtttctc	cgtgaccctg	gacgacctgg	ccccagacac	cacctacctg	1440
gtccaggtgc	aggcactgac	gcaggagggc	cagggggccg	gcagcagggt	gcacgaattc	1500
cagacg						1506

<210> 22 <211> 1506

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Human sequence optimized for codon usage in Listeria

400> 22

caaggtaaag aagttgtttt attagatttt gcagcagcag gtggtgaatt aggttggtta 60 acacatccat atggtaaagg ttgggattta atgcaaaata ttatgaatga tatgccaatt 120 tatatgtata gtgtttgtaa tgttatgagt ggtgatcaag ataattggtt acgtacaaat 180 tgggtttatc gtggtgaagc agaacgtatt tttattgaat taaaatttac agttcgtgat 240 300 tgtaatagtt ttccaggtgg tgcaagtagt tgtaaagaaa catttaattt atattatgca gaaagtgatt tagattatgg tacaaatttt caaaaacgtt tatttacaaa aattgataca 360 420 480 gttgaagaac gtagtgttgg tccattaaca cgtaaaggtt tttatttagc atttcaagat attggtgcat gtgttgcatt attaagtgtt cgtgtttatt ataaaaaatg tccagaatta 540

ttacaaggtt	tagcacattt	tccagaaaca	attgcaggta	gtgatgcacc	aagtttagca	600
acagttgcag	gtacatgtgt	tgatcatgca	gttgttccac	caggtggtga	agaaccacgt	660
atgcattgtg	cagttgatgg	tgaatggtta	gttccaattg	gtcaatgttt	atgtcaagca	720
ggttatgaaa	aagttgaaga	tgcatgtcaa	gcatgtagtc	caggtttttt	taaatttgaa	780
gcaagtgaaa	gtccatgttt	agaatgtcca	gaacatacat	taccaagtcc	agaaggtgca	840
acaagttgtg	aatgtgaaga	aggtttttt	cgtgcaccac	aagatccagc	aagtatgcca	900
tgtacacgtc	caccaagtgc	accacattat	ttaacagcag	ttggtatggg	tgcaaaagtt	960
gaattacgtt	ggacaccacc	acaagatagt	ggtggtcgtg	aagatattgt	ttatagtgtt	1020
acatgtgaac	aatgttggcc	agaaagtggt	gaatgtggtc	catgtgaagc	aagtgttcgt	1080
tatagtgaac	caccacatgg	tttaacacgt	acaagtgtta	cagttagtga	tttagaacca	1140
catatgaatt	atacatttac	agttgaagca	cgtaatggtg	ttagtggttt	agttacaagt	1200
cgtagttttc	gtacagcaag	tgttagtatt	aatcaaacag	aaccaccaaa	agttcgttta	1260
gaaggtcgta	gtacaacaag	tttaagtgtt	agttggagta	ttccaccacc	acaacaaagt	1320
cgtgtttgga	aatatgaagt	tacatatcgt	aaaaaaggtg	atagtaatag	ttataatgtt	1380
cgtcgtacag	aaggttttag	tgttacatta	gatgatttag	caccagatac	aacatattta	1440
gttcaagttc	aagcattaac	acaagaaggt	caaggtgcag	gtagtcgtgt	tcatgaattt	1500
caaaca						1506

Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala Ala Ala Gly Gly Glu 10

Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln 20

Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val 35

Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg 50 55

Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp

<210> 23 <211> 502 <212> PRT <213> Homo sapeins

<400> 23

65	70	75	80

Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn 85 90 95

Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys
100 105 110

Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val 115 120 125

Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg 130 135 140

Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp 145 150 155 160

Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys
165 170 175

Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala 180 185 190

Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp 195 200 205

His Ala Val Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys Ala 210 215 220

Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala 225 230 235 240

Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly Phe 245 250 255

Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His 260 265 270

Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu Gly 275 280 285

Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg Pro 290 295 300

Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly Met Gly Ala Lys Val 305 310 315 320

Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp Ile 330 Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys 345 Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly Leu 360 Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr 375 Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser 395 385 390 Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro 410 405 Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp 425 430 420 Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr 440 445 435 Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu 450 455 460 Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu 465 470 475 Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Arg 485 490 495 Val His Glu Phe Gln Thr 500 <210> 24 <211> 1689 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Fusion protein construct

60

atgaaaaaaa taatgctagt ttttattaca cttatattag ttagtctacc aattgcgcaa

<400> 24

caaactgaag	caaaggatgc	atctgcattc	aataaagaaa	attcaatttc	atccatggca	120
ccaccagcat	ctccgcctgc	aagtcctaag	acgccaatcg	aaaagaaaca	cgcggatctc	180
gagcagggca	aggaagtggt	actgctggac	tttgctgcag	ctggagggga	gctcggctgg	240
ctcacacacc	cgtatggcaa	agggtgggac	ctgatgcaga	acatcatgaa	tgacatgccg	300
atctacatgt	actccgtgtg	caacgtgatg	tctggcgacc	aggacaactg	gctccgcacc	360
aactgggtgt	accgaggaga	ggctgagcgt	atcttcattg	agctcaagtt	tactgtacgt	420
gactgcaaca	gcttccctgg	tggcgccagc	tcctgcaagg	agactttcaa	cctctactat	480
gccgagtcgg	acctggacta	cggcaccaac	ttccagaagc	gcctgttcac	caagattgac	540
accattgcgc	ccgatgagat	caccgtcagc	agcgacttcg	aggcacgcca	cgtgaagctg	600
aacgtggagg	agcgctccgt	ggggccgctc	acccgcaaag	gcttctacct	ggccttccag	660
gatatcggtg	cctgtgtggc	gctgctctcc	gtccgtgtct	actacaagaa	gtgccccgag	720
ctgctgcagg	gcctggccca	cttccctgag	accatcgccg	gctctgatgc	accttccctg	780
gccactgtgg	ccggcacctg	tgtggaccat	gccgtggtgc	caccgggggg	tgaagagccc	840
cgtatgcact	gtgcagtgga	tggcgagtgg	ctggtgccca	ttgggcagtg	cctgtgccag	900
gcaggctacg	agaaggtgga	ggatgcctgc	caggcctgct	cgcctggatt	ttttaagttt	960
gaggcatctg	agagcccctg	cttggagtgc	cctgagcaca	cgctgccatc	ccctgagggt	1020
gccacctcct	gcgagtgtga	ggaaggcttc	ttccgggcac	ctcaggaccc	agcgtcgatg	1080
ccttgcacac	gacccccctc	cgccccacac	tacctcacag	ccgtgggcat	gggtgccaag	1140
gtggagctgc	gctggacgcc	ccctcaggac	agcgggggcc	gcgaggacat	tgtctacagc	1200
gtcacctgcg	aacagtgctg	gcccgagtct	ggggaatgcg	ggccgtgtga	ggccagtgtg	1260
cgctactcgg	agcctcctca	cggactgacc	cgcaccagtg	tgacagtgag	cgacctggag	1320
ccccacatga	actacacctt	caccgtggag	gcccgcaatg	gcgtctcagg	cctggtaacc	1380
agccgcagct	tccgtactgc	cagtgtcagc	atcaaccaga	cagageeece	caaggtgagg	1440
ctggagggcc	gcagcaccac	ctcgcttagc	gtctcctgga	gcatccccc	gccgcagcag	1500
agccgagtgt	ggaagtacga	ggtcacttac	cgcaagaagg	gagactccaa	cagctacaat	1560
gtgcgccgca	ccgagggttt	ctccgtgacc	ctggacgacc	tggccccaga	caccacctac	1620
ctggtccagg	tgcaggcact	gacgcaggag	ggccaggggg	ccggcagcag	ggtgcacgaa	1680
ttccagacg						1689

<210> 25

<211> 563 <212> PRT <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 25

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys
20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Leu Glu Gln Gly Lys 50 55 60

Glu Val Val Leu Leu Asp Phe Ala Ala Ala Gly Gly Glu Leu Gly Trp 70 75 80

Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met 85 90 95

Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly 100 105 110

Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala 115 120 125

Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser 130 135 140

Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr 145 150 155 160

Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe 165 170 175

Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp 180 185 190

Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly
195 200 205

Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala 210 215 220

Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser Arg Ser Phe

_	Thr	Ala	Ser	Val		Ile	Asn	Gln	Glu 475	Pro	Pro	ьуs	vai	Arg 480
465					470				4/5					400

Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp Ser Ile Pro 495 490 485

Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg Lys 505 510 500

Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe Ser 525 520 515

Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln Val 535 540 530

Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Arg Val His Glu 545

Phe Gln Thr

<210> 26 <211> 1989 <212> DNA

Artificial Sequence <213>

<220>

Description of Artificial Sequence: Fusion protein construct <223>

<400> 26 60 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 120 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg 180 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 240 aaaaaaataa tgctagtttt tattacactt atattagtta gtctaccaat tgcgcaacaa 300 actgaagcaa aggatgcatc tgcattcaat aaagaaaatt caatttcatc catggcacca 360 ccagcatctc cgcctgcaag tcctaagacg ccaatcgaaa agaaacacgc ggatggatcc 420 gattataaag atgatgatga taaacaaggt aaagaagttg ttttattaga ttttgcagca 480 gcaggtggtg aattaggttg gttaacacat ccatatggta aaggttggga tttaatgcaa 540 600 aatattatga atgatatgcc aatttatatg tatagtgttt gtaatgttat gagtggtgat 660 caagataatt ggttacgtac aaattgggtt tatcgtggtg aagcagaacg tatttttatt

gaattaaaat	ttacagttcg	tgattgtaat	agttttccag	gtggtgcaag	tagttgtaaa	720
gaaacattta	atttatatta	tgcagaaagt	gatttagatt	atggtacaaa	ttttcaaaaa	780
cgtttattta	caaaaattga	tacaattgca	ccagatgaaa	ttacagttag	tagtgatttt	840
gaagcacgtc	atgttaaatt	aaatgttgaa	gaacgtagtg	ttggtccatt	aacacgtaaa	900
ggtttttatt	tagcatttca	agatattggt	gcatgtgttg	cattattaag	tgttcgtgtt	960
tattataaaa	aatgtccaga	attattacaa	ggtttagcac	attttccaga	aacaattgca	1020
ggtagtgatg	caccaagttt	agcaacagtt	gcaggtacat	gtgttgatca	tgcagttgtt	1080
ccaccaggtg	gtgaagaacc	acgtatgcat	tgtgcagttg	atggtgaatg	gttagttcca	1140
attggtcaat	gtttatgtca	agcaggttat	gaaaaagttg	aagatgcatg	tcaagcatgt	1200
agtccaggtt	tttttaaatt	tgaagcaagt	gaaagtccat	gtttagaatg	tccagaacat	1260
acattaccaa	gtccagaagg	tgcaacaagt	tgtgaatgtg	aagaaggttt	ttttcgtgca	1320
ccacaagatc	cagcaagtat	gccatgtaca	cgtccaccaa	gtgcaccaca	ttatttaaca	1380
gcagttggta	tgggtgcaaa	agttgaatta	cgttggacac	caccacaaga	tagtggtggt	1440
cgtgaagata	ttgtttatag	tgttacatgt	gaacaatgtt	ggccagaaag	tggtgaatgt	1500
ggtccatgtg	aagcaagtgt	tcgttatagt	gaaccaccac	atggtttaac	acgtacaagt	1560
gttacagtta	gtgatttaga	accacatatg	aattatacat	ttacagttga	agcacgtaat	1620
ggtgttagtg	gtttagttac	aagtcgtagt	tttcgtacag	caagtgttag	tattaatcaa	1680
acagaaccac	caaaagttcg	tttagaaggt	cgtagtacaa	caagtttaag	tgttagttgg	1740
agtattccac	caccacaaca	aagtcgtgtt	tggaaatatg	aagttacata	tcgtaaaaaa	1800
ggtgatagta	atagttataa	tgttcgtcgt	acagaaggtt	ttagtgttac	attagatgat	1860
ttagcaccag	atacaacata	tttagttcaa	gttcaagcat	taacacaaga	aggtcaaggt	1920
gcaggtagtc	gtgttcatga	atttcaaaca	gaacaaaaat	taattagtga	agaagattta	1980
tgagagctc						1989

<210> 27 <211> 581 <212> PRT <213> Artificial Sequence

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 27

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

- Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45
- Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 55 60
- Asp Asp Asp Lys Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala 65 70 75 80
- Ala Ala Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly 85 90 95
- Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr 100 105 110
- Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr 115 120 125
- Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys 130 135 140
- Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys 145 150 155 160
- Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly
 165 170 175
- Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro 180 185 190
- Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu 195 200 205
- Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr 210 215 220
- Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg 225 230 235 240
- Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe 245 250 255

Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala 260 265 270

- Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro 275 280 285
- Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln 290 295 300
- Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala 305 310 315 320
- Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu 325 330 335
- Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys 340 345 350
- Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met 355 360 365
- Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly 370 375 380
- Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly 385 390 395 400
- Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro 405 410 415
- Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu 420 425 430
- Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu 435 440 445
- Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser 450 455 460
- Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn 465 470 475 480
- Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser 485 490 495
- Leu Ser Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp

500 505 510

Lys Tyr Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn 515 520 525

Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro 530 535 540

Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln 545 550 555 560

Gly Ala Gly Ser Arg Val His Glu Phe Gln Thr Glu Gln Lys Leu Ile 565 570 575

Ser Glu Glu Asp Leu 580

<210> 28

<211> 1989

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Construct for fusion protein

<400> ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60 120 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 180 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 240 300 aaaaaaatta tgttagtttt tattacatta attttagtta gtttaccaat tgcacaacaa 360 acagaagcaa aagatgcaag tgcatttaat aaagaaaata gtattagtag tatggcacca ccagcaagtc caccagcaag tccaaaaaca ccaattgaaa aaaaacatgc agatggatcc 420 gattataaag atgatgatga taaacaaggt aaagaagttg ttttattaga ttttgcagca 480 540 gcaggtggtg aattaggttg gttaacacat ccatatggta aaggttggga tttaatgcaa 600 aatattatga atgatatgcc aatttatatg tatagtgttt gtaatgttat gagtggtgat caaqataatt qqttacqtac aaattqqqtt tatcqtqqtq aaqcaqaacq tatttttatt 660 gaattaaaat ttacagttcg tgattgtaat agttttccag gtggtgcaag tagttgtaaa 720 gaaacattta atttatatta tgcagaaagt gatttagatt atggtacaaa ttttcaaaaa 780 840 cgtttattta caaaaattga tacaattgca ccagatgaaa ttacagttag tagtgatttt gaagcacgtc atgttaaatt aaatgttgaa gaacgtagtg ttggtccatt aacacgtaaa 900

ggtttttatt	tagcatttca	agatattggt	gcatgtgttg	cattattaag	tgttcgtgtt	960
tattataaaa	aatgtccaga	attattacaa	ggtttagcac	attttccaga	aacaattgca	1020
ggtagtgatg	caccaagttt	agcaacagtt	gcaggtacat	gtgttgatca	tgcagttgtt	1080
ccaccaggtg	gtgaagaacc	acgtatgcat	tgtgcagttg	atggtgaatg	gttagttcca	1140
attggtcaat	gtttatgtca	agcaggttat	gaaaaagttg	aagatgcatg	tcaagcatgt	1200
agtccaggtt	tttttaaatt	tgaagcaagt	gaaagtccat	gtttagaatg	tccagaacat	1260
acattaccaa	gtccagaagg	tgcaacaagt	tgtgaatgtg	aagaaggttt	ttttcgtgca	1320
ccacaagatc	cagcaagtat	gccatgtaca	cgtccaccaa	gtgcaccaca	ttatttaaca	1380
gcagttggta	tgggtgcaaa	agttgaatta	cgttggacac	caccacaaga	tagtggtggt	1440
cgtgaagata	ttgtttatag	tgttacatgt	gaacaatgtt	ggccagaaag	tggtgaatgt	1500
ggtccatgtg	aagcaagtgt	tcgttatagt	gaaccaccac	atggtttaac	acgtacaagt	1560
gttacagtta	gtgatttaga	accacatatg	aattatacat	ttacagttga	agcacgtaat	1620
ggtgttagtg	gtttagttac	aagtcgtagt	tttcgtacag	caagtgttag	tattaatcaa	1680
acagaaccac	caaaagttcg	tttagaaggt	cgtagtacaa	caagtttaag	tgttagttgg	1740
agtattccac	caccacaaca	aagtcgtgtt	tggaaatatg	aagttacata	tcgtaaaaaa	1800
ggtgatagta	atagttataa	tgttcgtcgt	acagaaggtt	ttagtgttac	attagatgat	1860
ttagcaccag	atacaacata	tttagttcaa	gttcaagcat	taacacaaga	aggtcaaggt	1920
gcaggtagtc	gtgttcatga	atttcaaaca	gaacaaaaat	taattagtga	agaagattta	1980
tgagagctc						1989

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

<210> 29 <211> 581 <212> PRT <213> Artificial Sequence

<223> Description of Artificial Sequence: Predicted Fusion protein

<400> 29

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 55 60

- Asp Asp Asp Asp Lys Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala 65 70 75 80
- Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly 85 90 95
- Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr 100 105 110
- Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr 115 120 125
- Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys 130 135 140
- Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys 145 150 155 160
- Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly 165 170 175
- Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro 180 185 190
- Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu 195 200 205
- Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr 210 215 220
- Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg 225 230 235 240
- Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe 245 250 255
- Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala 260 265 270
- Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro 275 280 285

Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln 290 295 300

Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala 305 310 315 320

Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu 325 330 335

Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys 340 345 350

Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met 355 360 365

Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly 370 375 380

Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly
385 390 395 400

Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro 405 410 415

Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu
420 425 430

Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu 435 440 445

Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser 450 455 460

Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn 465 470 475 480

Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser 485 490 495

Leu Ser Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp 500 505 510

Lys Tyr Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn 515 520 525

-34-

Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro 530 535 540

Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln 545 550 555 560

Gly Ala Gly Ser Arg Val His Glu Phe Gln Thr Glu Gln Lys Leu Ile 565 570 575

Ser Glu Glu Asp Leu 580

<210> 30 <211> 1968 <212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: Fusion protein construct

<400> 30 60 qqtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 120 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 180 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg 240 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg gcatacgaca gtcgttttga tgaatgggta cagaaactga aagaggaaag ctttcaaaac 300 aatacgtttg accgccgcaa atttattcaa ggagcgggga agattgcagg actttctctt 360 ggattaacga ttgcccagtc ggttggggcc tttggatccg attataaaga tgatgat 420 480 aaacaaqqta aagaagttgt tttattagat tttgcagcag caggtggtga attaggttgg 540 ttaacacatc catatggtaa aggttgggat ttaatgcaaa atattatgaa tgatatgcca atttatatgt atagtgtttg taatgttatg agtggtgatc aagataattg gttacgtaca 600 aattgggttt atcgtggtga agcagaacgt atttttattg aattaaaatt tacagttcgt 660 gattgtaata gttttccagg tggtgcaagt agttgtaaag aaacatttaa tttatattat 720 gcagaaagtg atttagatta tggtacaaat tttcaaaaac gtttatttac aaaaattgat 780 acaattgcac cagatgaaat tacagttagt agtgattttg aagcacgtca tgttaaatta 840 900 aatgttgaag aacgtagtgt tggtccatta acacgtaaag gtttttattt agcatttcaa 960 gatattgqtq catgtgttgc attattaagt gttcgtgttt attataaaaa atgtccagaa ttattacaag gtttagcaca ttttccagaa acaattgcag gtagtgatgc accaagttta 1020 1080 qcaacaqttq caggtacatg tgttgatcat gcagttgttc caccaggtgg tgaagaacca

cgtatgcatt gtgcagttga tggtgaatgg ttagttccaa ttggtcaatg tttatgtcaa 1140 gcaggttatg aaaaagttga agatgcatgt caagcatgta gtccaggttt ttttaaattt 1200 gaagcaagtg aaagtccatg tttagaatgt ccagaacata cattaccaag tccagaaggt 1260 gcaacaagtt gtgaatgtga agaaggtttt tttcgtgcac cacaagatcc agcaagtatg 1320 ccatgtacac gtccaccaag tgcaccacat tatttaacag cagttggtat gggtgcaaaa 1380 gttgaattac gttggacacc accacaagat agtggtggtc gtgaagatat tgtttatagt 1440 gttacatgtg aacaatgttg gccagaaagt ggtgaatgtg gtccatgtga agcaagtgtt 1500 1560 cgttatagtg aaccaccaca tggtttaaca cgtacaagtg ttacagttag tgatttagaa ccacatatga attatacatt tacagttgaa gcacgtaatg gtgttagtgg tttagttaca 1620 1680 agtcgtagtt ttcgtacagc aagtgttagt attaatcaaa cagaaccacc aaaagttcgt ttagaaggtc gtagtacaac aagtttaagt gttagttgga gtattccacc accacaacaa 1740 agtcgtgttt ggaaatatga agttacatat cgtaaaaaag gtgatagtaa tagttataat 1800 1860 gttcgtcgta cagaaggttt tagtgttaca ttagatgatt tagcaccaga tacaacatat 1920 ttaqttcaag ttcaagcatt aacacaagaa ggtcaaggtg caggtagtcg tgttcatgaa 1968 tttcaaacag aacaaaatt aattagtgaa gaagatttat gagagctc

<220>

<223> Description of Artificial Sequence: Predicted Fusion Protein

<400> 31

Met Ala Tyr Asp Ser Arg Phe Asp Glu Trp Val Gln Lys Leu Lys Glu 1 10 15

Glu Ser Phe Gln Asn Asn Thr Phe Asp Arg Arg Lys Phe Ile Gln Gly 20 25 30

Ala Gly Lys Ile Ala Gly Leu Ser Leu Gly Leu Thr Ile Ala Gln Ser 35 40 45

Val Gly Ala Phe Gly Ser Asp Tyr Lys Asp Asp Asp Asp Lys Gln Gly 50 55 60

Lys Glu Val Val Leu Leu Asp Phe Ala Ala Gly Gly Glu Leu Gly 65 70 75 80

<210> 31

<211> 574

<212> PRT

<213> Artificial Sequence

Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala

Val Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys Ala Val Asp 275 280 285

Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr 290 295 300

Glu Lys Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys 305 310 315 320

Phe Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu 325 330 335

Pro Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe 340 345 350

Arg Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg Pro Pro Ser 355 360 365

Ala Pro His Tyr Leu Thr Ala Val Gly Met Gly Ala Lys Val Glu Leu 370 375 380

Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr 385 390 395 400

Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro 405 410 415

Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly Leu Thr Arg
420 425 430

Thr Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr Thr Phe 435 440 445

Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser Arg Ser 450 455 460

Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro Lys Val 465 470 475 480

Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp Ser Ile 485 490 495

Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg 500 505 510

Lys Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe 515 520 525

Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln 530 540

Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Arg Val His 545 550 555 560

-38-

Glu Phe Gln Thr Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu

565 570

<210> 32 <211> 1254 <212> DNA <213> Homo sapiens

<400> 32

caccqcaqqa qqaaqaacca gcgtgcccgc cagtccccgg aggacgttta cttctccaag 60 120 tcagaacaac tgaagcccct gaagacatac gtggaccccc acacatatga ggaccccaac 180 caggetgtgt tgaagtteac tacegagate catecatect gtgteacteg geagaaggtg atcggagcag gagagtttgg ggaggtgtac aagggcatgc tgaagacatc ctcggggaag 240 300 aaggaggtgc cggtggccat caagacgctg aaagccggct acacagagaa gcagcgagtg 360 gacttcctcg gcgaggccgg catcatgggc cagttcagcc accacaacat catccgccta 420 gagggcgtca tctccaaata caagcccatg atgatcatca ctgagtacat ggagaatggg 480 gccctggaca agttccttcg ggagaaggat ggcgagttca gcgtgctgca gctggtgggc 540 atgctgcggg gcatcgcagc tggcatgaag tacctggcca acatgaacta tgtgcaccgt 600 gacctggctg cccgcaacat cctcgtcaac agcaacctgg tctgcaaggt gtctgacttt 660 ggcctgtccc gcgtgctgga ggacgacccc gaggccacct acaccaccag tggcggcaag 720 atccccatcc gctggaccgc cccggaggcc atttcctacc ggaagttcac ctctgccagc 780 gacgtgtgga getttggcat tgtcatgtgg gaggtgatga cetatggcga geggcectae 840 tgggagttgt ccaaccacga ggtgatgaaa gccatcaatg atggcttccg gctccccaca 900 cccatggact gcccctccgc catctaccag ctcatgatgc agtgctggca gcaggagcgt 960 qcccqccqcc ccaaqttcgc tgacatcgtc agcatcctgg acaagctcat tcgtgcccct 1020 gactecetea agaccetgge tgactttgae eccegegtgt etateegget ecceageaeg ageggetegg agggggtgee etteegeaeg gtgteegagt ggetggagte cateaagatg 1080 cagcagtata cggagcactt catggcggcc ggctacactg ccatcgagaa ggtggtgcag 1140 1200 atgaccaacg acgacatcaa gaggattggg gtgcggctgc ccggccacca gaagcgcatc 1254 gcctacagcc tgctgggact caaggaccag gtgaacactg tggggatccc catc

<220>

<210> 33 <211> 1254

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: Sequence Optimized for codon
usage in Listeria

.400. 22						
<400> 33 cacagacgta	gaaaaaatca	acgtgctcga	caatccccag	aagatgtgta	tttttcgaaa	60
agtgaacaat	taaaaccatt	aaaaacttat	gttgatccgc	atacgtacga	agacccaaat	120
caagcagtat	taaaatttac	aacagaaata	cacccaagtt	gtgttacaag	acaaaaagtt	180
attggagcag	gtgaattcgg	agaggtatat	aaaggtatgt	taaaaacatc	atcaggtaaa	240
aaagaagttc	cggttgcaat	taaaacctta	aaggcaggat	atacagaaaa	acagcgagtt	300
gattttttag	gtgaagcagg	aattatgggt	caatttagcc	atcataatat	tattcgtttg	360
gaaggagtaa	taagtaaata	taaaccaatg	atgattatta	cagaatacat	ggaaaacggt	420
gctttagata	aatttttacg	tgaaaaggat	ggtgaattta	gtgttttaca	attggttggt	480
atgttaagag	gaattgctgc	aggtatgaaa	tatttagcta	atatgaatta	tgttcaccgt	540
gatttggcag	caagaaatat	cctagtcaat	tccaatttag	tatgtaaagt	tagtgatttt	600
ggtttaagca	gagtattaga	agacgatcca	gaggcaacct	atacaacatc	gggaggtaaa	660
attcctattc	gttggacagc	accagaagct	atcagttacc	gtaaatttac	aagtgcatca	720
gacgtgtgga	gttttgggat	tgtaatgtgg	gaagttatga	catatggaga	aagaccatat	780
tgggaattaa	gtaatcatga	agttatgaaa	gcaattaacg	atggatttag	attaccaact	840
ccgatggatt	gtccatctgc	catttatcaa	ctaatgatgc	aatgttggca	acaagaaaga	900
gcacgacgtc	caaaatttgc	agatattgtt	agtattttag	acaaattaat	tcgtgcacca	960
gatagtttaa	aaactttagc	agactttgat	cctcgtgtta	gtattcgatt	accaagtacg	1020
tcaggttccg	aaggagttcc	atttcgcaca	gtctccgaat	ggttggaatc	aattaaaatg	1080
caacaataca	ccgaacactt	tatggcagca	ggttacacag	caatcgaaaa	agttgttcaa	1140
atgacaaatg	atgatattaa	acgtattgga	gttagattac	caggccacca	gaaacgtatt	1200
gcatattctt	tattaggttt	aaaagatcaa	gttaataccg	tgggaattcc	aatt	1254

Val His Glu Phe Gln Thr Leu Ser Pro Glu Gly Ser Gly Asn Leu Ala 1 5 10

Val Ile Gly Gly Val Ala Val Gly Val Val Leu Leu Leu Val Leu Ala 25

Gly Val Gly Phe Phe Ile His Arg Arg Arg Lys Asn Gln Arg Ala Arg 40

<210> 34 <211> 456 <212> PRT <213> Homo sapiens

<400> 34

Gln Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro 50 55 60

Leu Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala 65 70 75 80

Val Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arg Gln 85 90 95

Lys Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu 100 105 110

Lys Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu 115 120 125

Lys Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu Gly Glu Ala 130 135 140

Gly Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly 145 150 155 160

Val Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu 165 170 175

Asn Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser 180 185 190

Val Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys 195 200 205

Tyr Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn 210 215 220

Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu 225 230 235 240

Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly 245 250 255

Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg 260 265 270

Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp 275 280 285

Glu	Val 290	Met	Thr	Tyr	Gly	Glu 295	Arg	Pro	Tyr	Trp	Glu 300	Leu	Ser	Asn	His	
Glu 305	Val	Met	Lys	Ala	Ile 310	Asn	Asp	Gly	Phe	Arg 315	Leu	Pro	Thr	Pro	Met 320	
Asp	Cys	Pro	Ser	Ala 325	Ile	Tyr	Gln	Leu	Met 330	Met	Gln	Cys	Trp	Gln 335	Gln	
Glu	Arg	Ala	Arg 340	Arg	Pro	Lys	Phe	Ala 345	Asp	Ile	Val	Ser	Ile 350	Leu	Asp	
Lys	Leu	Ile 355	Arg	Ala	Pro	Asp	Ser 360	Leu	Lys	Thr	Leu	Ala 365	Asp	Phe	Asp	
Pro	Arg 370	Val	Ser	Ile	Arg	Leu 375	Pro	Ser	Thr	Ser	Gly 380	Ser	Glu	Gly	Val	
Pro 385	Phe	Arg	Thr	Val	Ser 390	Glu	Trp	Leu	Glu	Ser 395	Ile	Lys	Met	Gln	Gln 400	
Tyr	Thr	Glu	His	Phe 405	Met	Ala	Ala	Gly	Tyr 410	Thr	Ala	Ile	Glu	Lys 415	Val	
Val	Gln	Met	Thr 420		Asp	Asp	Ile	Lys 425	Arg	Ile	Gly	Val	Arg 430	Leu	Pro	
Gly	His	G1n 435	Lys	Arg	Ile	Ala	Tyr 440		Leu	Leu	Gly	Leu 445	Lys	Asp	Gln	
Val	Asn 450	Thr	Val	Gly	Ile	Pro 455	Ile									
	1> 2>	35 1437 DNA Arti	fici	al S	eque	nce										
<22 <22		Desc	ript	ion	of A	rtif	icia	l Se	quen	ce:	Fus	ion	Prot	ein		
<40 atg		35 aaa	taat	gcta	gt t	ttta	ttac	a ct	tata	ttag	tta	gtct	acc	aatt	gcgcaa	60
caa	actg	aag	caaa	ggat	gc a	tctg	catt	c aa	taaa	gaaa	att	caat	ttc	atcc	atggca	120
cca	ccag	cat	ctcc	gcct	gc a	agtc	ctaa	g ac	gcca	atcg	aaa	agaa	aca	cgcg	gatctc	180

gagcaccgca	ggaggaagaa	ccagcgtgcc	cgccagtccc	cggaggacgt	ttacttctcc	240
aagtcagaac	aactgaagcc	cctgaagaca	tacgtggacc	cccacacata	tgaggacccc	300
aaccaggctg	tgttgaagtt	cactaccgag	atccatccat	cctgtgtcac	tcggcagaag	360
gtgatcggag	caggagagtt	tggggaggtg	tacaagggca	tgctgaagac	atcctcgggg	420
aagaaggagg	tgccggtggc	catcaagacg	ctgaaagccg	gctacacaga	gaagcagcga	480
gtggacttcc	tcggcgaggc	cggcatcatg	ggccagttca	gccaccacaa	catcatccgc	540
ctagagggcg	tcatctccaa	atacaagccc	atgatgatca	tcactgagta	catggagaat	600
ggggccctgg	acaagttcct	tcgggagaag	gatggcgagt	tcagcgtgct	gcagctggtg	660
ggcatgctgc	ggggcatcgc	agctggcatg	aagtacctgg	ccaacatgaa	ctatgtgcac	720
cgtgacctgg	ctgcccgcaa	catcctcgtc	aacagcaacc	tggtctgcaa	ggtgtctgac	780
tttggcctgt	cccgcgtgct	ggaggacgac	cccgaggcca	cctacaccac	cagtggcggc	840
aagatcccca	tccgctggac	cgccccggag	gccatttcct	accggaagtt	cacctctgcc	900
agcgacgtgt	ggagctttgg	cattgtcatg	tgggaggtga	tgacctatgg	cgagcggccc	960
tactgggagt	tgtccaacca	cgaggtgatg	aaagccatca	atgatggctt	ccggctcccc	1020
acacccatgg	actgcccctc	cgccatctac	cagctcatga	tgcagtgctg	gcagcaggag	1080
cgtgcccgcc	gccccaagtt	cgctgacatc	gtcagcatcc	tggacaagct	cattcgtgcc	1140
cctgactccc	tcaagaccct	ggctgacttt	gacccccgcg	tgtctatccg	gctccccagc	1200
acgagcggct	cggagggggt	gcccttccgc	acggtgtccg	agtggctgga	gtccatcaag	1260
atgcagcagt	atacggagca	cttcatggcg	gccggctaca	ctgccatcga	gaaggtggtg	1320
cagatgacca	acgacgacat	caagaggatt	ggggtgcggc	tgcccggcca	ccagaagcgc	1380
atcgcctaca	gcctgctggg	actcaaggac	caggtgaaca	ctgtggggat	ccccatc	1437

<210> 36 <211> 479 <212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted Protein Sequence

<400> 36

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 5

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 25 20

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

- Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Leu Glu His Arg Arg 50 55 60
- Arg Lys Asn Gln Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe Ser 65 70 75 80
- Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro His Thr 85 90 95
- Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile His 100 105 110
- Pro Ser Cys Val Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe Gly 115 120 125
- Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu Val 130 135 140
- Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln Arg 145 150 155 160
- Val Asp Phe Leu Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His His 165 170 175
- Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met Met 180 185 190
- Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu Arg 195 200 205
- Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu Arg 210 215 220
- Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val His 225 230 235 240
- Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys 245 250 255
- Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro Glu 260 265 270

Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala 275 280 285

Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp 290 295 300

Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg Pro 305 310 315 320

Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp Gly 325 330 335

Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln Leu 340 345 350

Met Met Gln Cys Trp Gln Gln Glu Arg Ala Arg Arg Pro Lys Phe Ala 355 360 365

Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser Leu 370 375 380

Lys Thr Leu Ala Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro Ser 385 390 395 400

Thr Ser Gly Ser Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp Leu 405 410 415

Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala Gly 420 425 430

Tyr Thr Ala Ile Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile Lys 435 440 445

Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr Ser 450 455 460

Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile 465 470 475

<210> 37

<211> 1737

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion protein sequence

<400> 37

ggtacctcct ttgat	tagta tattcctatc	ttaaagttac	ttttatgtgg	aggcattaac	60
atttgttaat gacgt	caaaa ggatagcaag	actagaataa	agctataaag	caagcatata	120
atattgcgtt tcatc	tttag aagcgaattt	cgccaatatt	ataattatca	aaagagaggg	180
gtggcaaacg gtatt	tggca ttattaggtt	aaaaaatgta	gaaggagagt	gaaacccatg	240
aaaaaaataa tgcta	gtttt tattacactt	atattagtta	gtctaccaat	tgcgcaacaa	300
actgaagcaa aggat	gcatc tgcattcaat	aaagaaaatt	caatttcatc	catggcacca	360
ccagcatete egeet	gcaag teetaagaeg	ccaatcgaaa	agaaacacgc	ggatggatcc	420
gattataaag atgat	gatga taaacacaga	cgtagaaaaa	atcaacgtgc	tcgacaatcc	480
ccagaagatg tgtat	ttttc gaaaagtgaa	caattaaaac	cattaaaaac	ttatgttgat	540
ccgcatacgt acgaa	gaccc aaatcaagca	gtattaaaat	ttacaacaga	aatacaccca	600
agttgtgtta caaga	caaaa agttattgga	gcaggtgaat	tcggagaggt	atataaaggt	660
atgttaaaaa catca	tcagg taaaaaagaa	gttccggttg	caattaaaac	cttaaaggca	720
ggatatacag aaaaa	cagcg agttgatttt	ttaggtgaag	caggaattat	gggtcaattt	780
agccatcata atatt	attcg tttggaagga	gtaataagta	aatataaacc	aatgatgatt	840
attacagaat acatg	gaaaa cggtgcttta	gataaatttt	tacgtgaaaa	ggatggtgaa	900
tttagtgttt tacaa	ttggt tggtatgtta	agaggaattg	ctgcaggtat	gaaatattta	960
gctaatatga attat	gttca ccgtgatttg	gcagcaagaa	atatcctagt	caattccaat	1020
ttagtatgta aagtt	agtga ttttggttta	agcagagtat	tagaagacga	tccagaggca	1080
acctatacaa catcg	ggagg taaaattcct	attcgttgga	cagcaccaga	agctatcagt	1140
taccgtaaat ttaca	agtgc atcagacgtg	tggagttttg	ggattgtaat	gtgggaagtt	1200
atgacatatg gagaa	agacc atattgggaa	ttaagtaatc	atgaagttat	gaaagcaatt	1260
aacgatggat ttaga	ittacc aactccgatg	gattgtccat	ctgccattta	tcaactaatg	1320
atgcaatgtt ggcaa	icaaga aagagcacga	cgtccaaaat	ttgcagatat	tgttagtatt	1380
ttagacaaat taatt	cgtgc accagatagt	ttaaaaactt	tagcagactt	tgatcctcgt	1440
gttagtattc gatta	ccaag tacgtcaggt	tccgaaggag	ttccatttcg	cacagtetee	1500
gaatggttgg aatca	attaa aatgcaacaa	tacaccgaac	actttatggc	agcaggttac	1560
acagcaatcg aaaaa	gttgt tcaaatgaca	aatgatgata	ttaaacgtat	tggagttaga	1620
ttaccaggcc accag	gaaacg tattgcatat	tctttattag	gtttaaaaga	tcaagttaat	1680
accgtgggaa ttcca	attga acaaaaatta	atttccgaag	aagacttata	agagete	1737

-46-

<210> 38

<211> 497

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 38

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 1 5 10 15

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 20 25 30

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser 35 40 45

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50 55 60

Asp Asp Asp Lys His Arg Arg Lys Asn Gln Arg Ala Arg Gln 65 70 75 80

Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro Leu 85 90 95

Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val 100 105 110

Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arg Gln Lys
115 120 125

Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu Lys 130 135 140

Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu Lys 145 150 155 160

Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu Gly Glu Ala Gly
165 170 175

Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly Val 180 185 190

Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu Asn 195 200 205

Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser Val 210 215 220

Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr 225 230 235 240

Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile 245 250 255

Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser 260 265 270

Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly Gly 275 280 285

Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg Lys 290 295 300

Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp Glu 305 310 315 320

Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu 325 330 335

Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp 340 345 350

Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Glu 355 360 365

Arg Ala Arg Arg Pro Lys Phe Ala Asp Ile Val Ser Ile Leu Asp Lys 370 375 380

Leu Ile Arg Ala Pro Asp Ser Leu Lys Thr Leu Ala Asp Phe Asp Pro 385 390 395 400

Arg Val Ser Ile Arg Leu Pro Ser Thr Ser Gly Ser Glu Gly Val Pro 405 410 415

Phe Arg Thr Val Ser Glu Trp Leu Glu Ser Ile Lys Met Gln Gln Tyr 420 425 430

Thr Glu His Phe Met Ala Ala Gly Tyr Thr Ala Ile Glu Lys Val Val 435 440 445

Gln Met Thr Asn Asp Asp Ile Lys Arg Ile Gly Val Arg Leu Pro Gly

450 455 460

His Gln Lys Arg Ile Ala Tyr Ser Leu Leu Gly Leu Lys Asp Gln Val 465 470 475 480

Asn Thr Val Gly Ile Pro Ile Glu Gln Lys Leu Ile Ser Glu Glu Asp 485 490 495

Leu

<210> 39 <211> 1737 <212> DNA Artificial Sequence <213> <220> <223> Description of Artificial Sequence: Fusion protein construct <400> 39 ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac 60 atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata 120 atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg 180 gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 240 300 aaaaaaatta tgttagtttt tattacatta attttagtta gtttaccaat tgcacaacaa 360 acagaagcaa aagatgcaag tgcatttaat aaagaaaata gtattagtag tatggcacca ccagcaagtc caccagcaag tccaaaaaca ccaattgaaa aaaaacatgc agatggatcc 420 gattataaag acgatgatga taaacacaga cgtagaaaaa atcaacgtgc tcgacaatcc 480 ccagaagatg tgtatttttc gaaaagtgaa caattaaaac cattaaaaac ttatgttgat 540 ccgcatacgt acgaagaccc aaatcaagca gtattaaaat ttacaacaga aatacaccca 600 660 agttgtgtta caagacaaaa agttattgga gcaggtgaat tcggagaggt atataaaggt atgttaaaaa catcatcagg taaaaaagaa gttccggttg caattaaaac cttaaaggca 720 ggatatacag aaaaacagcg agttgatttt ttaggtgaag caggaattat gggtcaattt 780 agccatcata atattattcg tttggaagga gtaataagta aatataaacc aatgatgatt 840 900 attacaqaat acatggaaaa cggtgcttta gataaatttt tacgtgaaaa ggatggtgaa

tttagtgttt tacaattggt tggtatgtta agaggaattg ctgcaggtat gaaatattta

qctaatatga attatgttca ccgtgatttg gcagcaagaa atatcctagt caattccaat

ttagtatgta aagttagtga ttttggttta agcagagtat tagaagacga tccagaggca

acctatacaa catcgggagg taaaattcct attcgttgga cagcaccaga agctatcagt

960

1020

1080

1140

taccgtaaat	ttacaagtgc	atcagacgtg	tggagttttg	ggattgtaat	gtgggaagtt	1200
atgacatatg	gagaaagacc	atattgggaa	ttaagtaatc	atgaagttat	gaaagcaatt	1260
aacgatggat	ttagattacc	aactccgatg	gattgtccat	ctgccattta	tcaactaatg	1320
atgcaatgtt	ggcaacaaga	aagagcacga	cgtccaaaat	ttgcagatat	tgttagtatt	1380
ttagacaaat	taattcgtgc	accagatagt	ttaaaaactt	tagcagactt	tgatcctcgt	1440
gttagtattc	gattaccaag	tacgtcaggt	tccgaaggag	ttccatttcg	cacagtetee	1500
gaatggttgg	aatcaattaa	aatgcaacaa	tacaccgaac	actttatggc	agcaggttac	1560
acagcaatcg	aaaaagttgt	tcaaatgaca	aatgatgata	ttaaacgtat	tggagttaga	1620
ttaccaggcc	accagaaacg	tattgcatat	tctttattag	gtttaaaaga	tcaagttaat	1680
accgtgggaa	ttccaattga	acaaaaatta	atttccgaag	aagacttata	agagete	1737

<223> Description of Artificial Sequence: Predicted Fusion Protein

<400> 40

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 10

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp Ala Ser Ala Phe Asn Lys 25

Glu Asn Ser Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser

Pro Lys Thr Pro Ile Glu Lys Lys His Ala Asp Gly Ser Asp Tyr Lys 50

Asp Asp Asp Asp Lys His Arg Arg Arg Lys Asn Gln Arg Ala Arg Gln 65

Ser Pro Glu Asp Val Tyr Phe Ser Lys Ser Glu Gln Leu Lys Pro Leu 90 85

Lys Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val 105 100

Leu Lys Phe Thr Thr Glu Ile His Pro Ser Cys Val Thr Arg Gln Lys

<210> 40 <211> 497 <212> PRT <213> Artificial Sequence

115 120 125

Val Ile Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Met Leu Lys 130 135 140

Thr Ser Ser Gly Lys Lys Glu Val Pro Val Ala Ile Lys Thr Leu Lys 145 150 155 160

Ala Gly Tyr Thr Glu Lys Gln Arg Val Asp Phe Leu Gly Glu Ala Gly
165 170 175

Ile Met Gly Gln Phe Ser His His Asn Ile Ile Arg Leu Glu Gly Val 180 185 190

Ile Ser Lys Tyr Lys Pro Met Met Ile Ile Thr Glu Tyr Met Glu Asn 195 200 205

Gly Ala Leu Asp Lys Phe Leu Arg Glu Lys Asp Gly Glu Phe Ser Val 210 215 220

Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr 225 230 235 240

Leu Ala Asn Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile 245 250 255

Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser 260 265 270

Arg Val Leu Glu Asp Asp Pro Glu Ala Thr Tyr Thr Thr Ser Gly Gly 275 280 285

Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ser Tyr Arg Lys 290 295 300

Phe Thr Ser Ala Ser Asp Val Trp Ser Phe Gly Ile Val Met Trp Glu 305 310 315 320

Val Met Thr Tyr Gly Glu Arg Pro Tyr Trp Glu Leu Ser Asn His Glu 325 330 335

Val Met Lys Ala Ile Asn Asp Gly Phe Arg Leu Pro Thr Pro Met Asp 340 345 350

Cys Pro Ser Ala Ile Tyr Gln Leu Met Met Gln Cys Trp Gln Gln Glu 355 360 365

Arg	Ala 370	Arg	Arg	Pro	Lys	Phe 375	Ala	Asp	Ile	Val	Ser 380	Ile	Leu	Asp	Lys	
Leu 385	Ile	Arg	Ala	Pro	Asp 390	Ser	Leu	Lys	Thr	Leu 395	Ala	Asp	Phe	Asp	Pro 400	
Arg	Val	Ser	Ile	Arg 405	Leu	Pro	Ser	Thr	Ser 410	Gly	Ser	Glu	Gly	Val 415	Pro	
Phe	Arg	Thr	Val 420	Ser	Glu	Trp	Leu	Glu 425	Ser	Ile	Lys	Met	Gln 430	Gln	Tyr	
Thr	Glu	His 435	Phe	Met	Ala	Ala	Gly 440	Tyr	Thr	Ala	Ile	Glu 445	Lys	Val	Val	
Gln	Met 450	Thr	Asn	Asp	Asp	Ile 455	Lys	Arg	Ile	Gly	Val 460	Arg	Leu	Pro	Gly	
His 465	Gln	Lys	Arg	Ile	Ala 470	Tyr	Ser	Leu	Leu	Gly 475	Leu	Lys	Asp	Gln	Val 480	
Asn	Thr	Val	Gly	Ile 485	Pro	Ile	Glu	Gln	Lys 490	Leu	Ile	Ser	Glu	Glu 495	Asp	
Leu																
<210 <210 <210 <210	1> 2> :	41 1716 DNA Arti	ficia	al S	equei	nce										
<22 <22		Desc	ript	ion (of A:	rtif	icia	l Se	quen	ce:	Fus	ion :	prot	ein	construct	
<40 ggt		41 cct	ttga	ttag	ta ta	attc	ctat	c tt	aaag	ttac	ttt	tatg	tgg	aggc	attaac	60
att	tgtt	aat	gacg	tcaa	aa g	gata	gcaa	g ac	taga	ataa	agc	tata	aag	caag	catata	120
ata	ttgc	gtt	tcat	cttt	ag a	agcg	aatt	t cg	ccaa	tatt	ata	atta	tca	aaag	agaggg	180
gtg	gcaa	acg	gtat	ttgg	ca t	tatt	aggt	t aa	aaaa	tgta	gaa	ggag	agt	gaaa	cccatg	240
gca	tacg	aca	gtcg	tttt	ga t	gaat	gggt	a ca	gaaa	ctga	aag	agga	aag	cttt	caaaac	300
aat	acgt	ttg	accg	ccgc	aa a	ttta	ttca	a gg	agcg	ggga	aga	ttgc	agg	actt	tctctt	360

ggattaacga ttgcccagtc ggttggggcc tttggatccg attataaaga tgatgatgat

420

aaacacagac gtagaa	aaaaa tcaacgtgc	cgacaatccc	cagaagatgt	gtatttttcg	480
aaaagtgaac aattaa	aaacc attaaaaact	tatgttgatc	cgcatacgta	cgaagaccca	540
aatcaagcag tattaa	aaatt tacaacagaa	a atacacccaa	gttgtgttac	aagacaaaaa	600
gttattggag caggto	gaatt cggagaggta	a tataaaggta	tgttaaaaac	atcatcaggt	660
aaaaaagaag ttccg	gttgc aattaaaac	ttaaaggcag	gatatacaga	aaaacagcga	720
gttgattttt taggtg	gaagc aggaattat	g ggtcaattta	gccatcataa	tattattcgt	780
ttggaaggag taataa	agtaa atataaacca	a atgatgatta	ttacagaata	catggaaaac	840
ggtgctttag ataaat	ttttt acgtgaaaa	g gatggtgaat	ttagtgtttt	acaattggtt	900
ggtatgttaa gaggaa	attgc tgcaggtate	g aaatatttag	ctaatatgaa	ttatgttcac	960
cgtgatttgg cagcaa	agaaa tatcctagt	c aattccaatt	tagtatgtaa	agttagtgat	1020
tttggtttaa gcagag	gtatt agaagacga	ccagaggcaa	cctatacaac	atcgggaggt	1080
aaaattccta ttcgt	tggac agcaccaga	a gctatcagtt	accgtaaatt	tacaagtgca	1140
tcagacgtgt ggagt	tttgg gattgtaat	g tgggaagtta	tgacatatgg	agaaagacca	1200
tattgggaat taagta	aatca tgaagttate	g aaagcaatta	acgatggatt	tagattacca	1260
actccgatgg attgt	ccatc tgccattta	t caactaatga	tgcaatgttg	gcaacaagaa	1320
agagcacgac gtccaa	aaatt tgcagatat	t gttagtattt	tagacaaatt	aattcgtgca	1380
ccagatagtt taaaaa	acttt agcagactt	t gatcctcgtg	ttagtattcg	attaccaagt	1440
acgtcaggtt ccgaaq	ggagt tccatttcg	c acagtctccg	aatggttgga	atcaattaaa	1500
atgcaacaat acacc	gaaca ctttatggc	a gcaggttaca	cagcaatcga	aaaagttgtt	1560
caaatgacaa atgat	gatat taaacgtat	t ggagttagat	taccaggcca	ccagaaacgt	1620
attgcatatt cttta	ttagg tttaaaaga	t caagttaata	ccgtgggaat	tccaattgaa	1680
caaaaattaa tttcc	gaaga agacttata	a gagctc			1716

Met Ala Tyr Asp Ser Arg Phe Asp Glu Trp Val Gln Lys Leu Lys Glu

Glu Ser Phe Gln Asn Asn Thr Phe Asp Arg Arg Lys Phe Ile Gln Gly

<210> 42 <211> 490 <212> PRT <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Predicted fusion protein

<400> 42

20 25 30

Ala Gly Lys Ile Ala Gly Leu Ser Leu Gly Leu Thr Ile Ala Gln Ser 35 40 45

Val Gly Ala Phe Gly Ser Asp Tyr Lys Asp Asp Asp Lys His Arg 50 55 60

Arg Arg Lys Asn Gln Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe 65 70 75 80

Ser Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro His 85 90 95

Thr Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile 100 105 110

His Pro Ser Cys Val Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe 115 120 125

Gly Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu 130 135 140

Val Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln 145 150 155 160

Arg Val Asp Phe Leu Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His
165 170 175

His Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met 180 185 190

Met Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu 195 200 205

Arg Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu 210 215 220

Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val 225 230 235 240

His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val 245 250 255

Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro
260 265 270

Glu	Ala	Thr	Tyr	Thr	Thr	Ser	Gly	Gly	Lys	Ile	Pro	Ile	Arg	Trp	Thr
		275					280					285			

- Ala Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val 290 295 300
- Trp Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg 305 310 315 320
- Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp 325 330 335
- Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln 340 345 350
- Leu Met Met Gln Cys Trp Gln Glu Arg Ala Arg Arg Pro Lys Phe 355 360 365
- Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser 370 375 380
- Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro 385 390 395 400
- Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp 405 410 415
- Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala 420 425 430
- Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile 435 440 445
- Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr 450 455 460
- Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile 465 470 475 480
- Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu 485 490

<210> 43

<211> 9808

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Fusion Protein Construct

<400> 43 ctttaaacgt ggatcatttt ctttaaattt atgctgacga cctttgaatt tgccttttt 60 cttagcaatt tcgattcctt gtgcctgacg ttccttaatt ttttttcgtt ctgattctgc 120 ttgatacttg tacaattcaa tgacaaggct attaatcaaa cgccttaaat tttcatcttc 180 aataccattc attgagggta aatttaagac ttccagggtt gcccccttaa tttgaatttg 240 300 attcatcaat totgttaatt otttattatt togtoctaat ogatotaatt cagtaacaat aacaatatcc ccttcacgaa tatagttaag catagcttgt aattgtgggc gttcgaccga 360 ttgaccgctt aatttgtctg aaaagacctt agaaacgccc tgtaacgctt gtaattgccg 420 atctaagttc tgttctttgc tactgacacg tgcataacca attttagcca ttttcaacca 480 acctctaaaa ttctctcggt tgcaataacc aatcagcaat atctactttt tcaatttcaa 540 attgcttatc agaaattgtc ttttcgtaag cgataaaatc ttgcgcatat tgttgctcat 600 660 taaaaatagc caccacttcg tcattttcta aaactcgata aataaatttt ttcattttac 720 tcctcctatt atgcccaact taaatgacct attcaccaag tcaattatac tgctaaaatc 780 atattaggac aaataggtat actctattga cctataaatg atagcaactt aaaagatcaa gtgttcgctt cgctctcact gcccctcgac gttttagtag cctttccctc acttcgttca 840 gtccaagcca actaaaagtt ttcgggctac tctctccttc tccccctaat aattaattaa 900 960 aatcttactc tgtatatttc tgctaatcat tcactaaaca gcaaagaaaa acaaacacgt atcatagata taaatgtaat ggcatagtgc gggttttatt ttcagcctgt atcgtagcta 1020 aacaaatcqa gttgtgggtc cgttttgggg cgttctgcca atttgtttag agtttcttga 1080 ataaatgtac gttctaaatt aaacgaagct gtcagcgcct ttatatagct ttctcgttct 1140 1200 tcttttttta atttaatgat cgatagcaac aatgatttaa cactagcaag ttgaatgcca ccatttcttc ctggtttaat cttaaagaaa atttcctgat tcgccttcag taccttcagc 1260 aatttatcta atgtccgttc aggaatgcct agcacttctc taatctcttt tttggtcgtc 1320 gctaaataag gcttgtatac atcgcttttt tcgctaatat aagccattaa atcttctttc 1380 cattctgaca aatgaacacg ttgacgttcg cttcttttt tcttgaattt aaaccaccct 1440 1500 tgacggacaa ataaatcttt actggttaaa tcacttgata cccaagcttt gcaaagaatg gtaatgtatt ccctattagc cccttgatag ttttctgaat aggcacttct aacaattttg 1560 1620 attacttett tttettetaa gggttgatet aategattat taaaeteaaa eatattatat 1680 tcgcacgttt cgattgaata gcctgaacta aagtaggcta aagagagggt aaacataacg

ctattgcgcc	ctactaaacc	cttttctcct	gaaaatttcg	tttcgtgcaa	taagagatta	1740
aaccagggtt	catctacttg	ttttttgcct	tctgtaccgc	ttaaaaccgt	tagacttgaa	1800
cgagtaaagc	ccttattatc	tgtttgtttg	aaagaccaat	cttgccattc	tttgaaagaa	1860
taacggtaat	tgggatcaaa	aaattctaca	ttgtccgttc	ttggtatacg	agcaatccca	1920
aaatgattgc	acgttagatc	aactggcaaa	gactttccaa	aatattctcg	gatattttgc	1980
gagattattt	tggctgcttt	gacagattta	aattctgatt	ttgaagtcac	atagactggc	2040
gtttctaaaa	caaaatatgc	ttgataacct	ttatcagatt	tgataattaa	cgtaggcata	2100
aaacctaaat	caatagctgt	tgttaaaata	tcgcttgctg	aaatagtttc	tttttccgtg	2160
tgaatatcaa	aatcaataaa	gaaggtattg	atttgtctta	aattgttttc	agaatgtcct	2220
ttagtgtatg	aacggttttc	gtctgcatac	gtaccataac	gataaacgtt	tggtgtccaa	2280
tgcgtaaatg	tatcttgatt	ttcgtgaatc	gcttcttcgg	aagtcagaac	aacgccacgt	2340
ccgccaatca	tgctttttt	tgagcgatac	gcaaaaatag	cccctttact	tttacctggc	2400
ttggtagtga	ttgagcgaat	tttactattt	ttaaatttgt	actttaacaa	gccgtcatga	2460
agcacagttt	ctacaacaaa	agggatattc	attcagctgt	teteetttet	tacgaaaatt	2520
aattagttag	aagctacgat	caaagttgaa	tcacaacaaa	aaaggcaatc	aactaagttt	2580
ttcttaattg	attgcctggt	atcttcttaa	agacttgaaa	tcccctcaaa	aacccgatat	2640
aatgggttta	cagatattta	agtatctgat	taataaagta	attaaatact	ttaccaaatt	2700
ttgggtctcg	acttctttaa	ttgattggtg	gtaatcaatt	aaggctcgca	gttaaaattt	2760
ctcaggcttt	aactggtcgt	ggctcttttt	ttgtattctt	tattcagttc	gttgtttcgt	2820
tatatctagt	atatcgcttt	ttaaaaaaat	aagcaatgat	ttcgtgcatt	attcacacga	2880
aatcattgct	tttttcttct	tccatttcta	actccaatgt	tacttgttct	gtttctggtt	2940
ctggttctgt	tggctcattt	gggattaaat	ccactactag	cgttgagtta	gttccgtctc	3000
taatagccgg	ttaagtaata	gccggttaag	tggtcaaact	ttgggaaaat	ctcaacccgc	3060
attaagtttt	gatgccatga	caatcgttgg	aaatttgaac	aaaactaatg	ctaaaaagct	3120
atctgacttt	atgagtgtag	agccacaaat	acgactttgg	gatatacttc	aaacaaagtt	3180
taaagctaag	gcacttcaag	aaaaagttta	tatcgaatat	gacaaagtaa	aagcagatac	3240
ttgggataga	cgtaatatgc	gtgttgaatt	taatcccaat	aaactcacac	atgaagaaat	3300
gatttggtta	aaacaaaata	ttatcgacta	catggaagat	gacggtttta	caagattaga	3360
cttagctttt	gattttgaag	atgatttgag	cgattactat	gcaatgactg	ataaagcagt	3420
taagaaaact	gttttttatg	gtcgtaatgg	caagccagaa	acaaaatatt	ttggtgtccg	3480

tgatagtgat agatttatta	gaatttataa	taaaaaacaa	gaacgtaaag	ataacgcaga	3540
tgttgaagtt gtgtttgaac	atttatggcg	tgtagaagtt	gaattaaaaa	gagatatggt	3600
tgattactgg aatgattgtt	ttaatgattt	acacatcttt	gaaacctgcg	tgggctactt	3660
tagaaaaaat taatgagcaa	gctatggttt	atactttgtt	gcatgaagaa	agtatgtggg	3720
gaaagctaag taagaatact	aagactaaat	ttaaaaaatt	gattagagaa	atatctccaa	3780
ttgatttaac ggaattaatg	aaatcgactt	taaaagcgaa	cgaaaaacaa	ttgcaaaagc	3840
agattgattt ttggcaacgt	gaatttaggt	tttggaagta	aaataagttt	tatttgataa	3900
aaattgctaa ttcagtataa	ttaatattta	cgaggtgaca	taacgtatga	aaaaatcaga	3960
ggattattcc tcctaaatat	aaaaatttaa	aatttaggag	gaagttatat	atgactttta	4020
atattattga attagaaaat	tgggatagaa	aagaatattt	tgaacactat	tttaatcagc	4080
aaactactta tagcattact	aaagaaattg	atattacttt	gtttaaagat	atgataaaaa	4140
agaaaggata tgaaattta	ccctctttaa	tttatgcaat	tatggaagtt	gtaaataaaa	4200
ataaagtgtt tagaacagga	attaatagtg	agaataaatt	aggttattgg	gataagttaa	4260
atcctttgta tacagtttt	aataagcaaa	ctgaaaaatt	tactaacatt	tggactgaat	4320
ctgataaaaa cttcatttc	ttttataata	attataaaaa	tgacttgctt	gaatataaag	4380
ataaagaaga aatgtttcc	aaaaaaccga	tacctgaaaa	caccataccg	atttcaatga	4440
ttccttggat tgattttag	tcatttaatt	taaatattgg	taacaatagc	agctttttat	4500
tgcctattat tacgatagg	aaattttata	gtgagaataa	taaaatttat	ataccagttg	4560
ctctgcaact tcatcattc	gtatgtgatg	gttaccatgc	ttcactattt	atgaatgaat	4620
ttcaagatat aattcatag	g gtagatgatt	ggatttagtt	tttagatttt	gaaagtgaat	4680
ttaattttat acacgtaag	gatcataaaa	tttatgaacg	tataacaacc	acattttttg	4740
gttgcttgtg gttttgatt	tgaatttggt	tttgaactta	tggactgatt	tattcagtcc	4800
attttttgtg cttgcacaa	a aactagcctc	gcagagcaca	cgcattaatg	acttatgaaa	4860
cgtagtaaat aagtctagt	g tgttatactt	tacttggaag	atgcaccgaa	taaaaaatat	4920
tgaagaacaa ctagcaaaa	g attttaaaga	gttattttat	tttaagtctt	tataacatga	4980
gtgaagcgaa tttttaaat	t tcgatagaaa	tttttacatc	aaaaagcccc	ctgtcaaaat	5040
tgacgaaggg ggttttttg	g cgcacgcttt	tcgttagaaa	tatacaagat	tgaaaatcgt	5100
gtataagtgc gccctttgt	t ttgaacttag	cacgttacat	caattttta	aaatgatgta	5160
taagtgcgcc cttttaaat	t ttgagtgatt	atatttttg	agttagaaaa	agggattggg	5220
aaaatttccc aaaataatt	t aaaaaataag	caaaaatttt	cgatagagaa	tgtgctattt	5280
tttgtcaaag gtgtatacc	t tgactgtgct	tgctgttaca	ttaagtttat	ttttaagtta	5340

ttaaaaaaga	aatagctttt	aaagtttggc	tcgctgtcgc	tttataaagc	tgattgactt	5400
ttgattgcaa	actacttaaa	gaaaacaaac	tcggactatt	cgttttcttc	tctttggttt	5460
gaacatcagc	aattatcccc	tcttgattgc	ctattttagc	ttgtttagaa	gaaacaaaag	5520
ctaaaagctc	ctcttgggtt	ttaaaacgct	gtgtggggct	tagaacgccc	ttaaacgacc	5580
cttggtttac	ttttatacta	gcttccacct	cgaaaaaagg	ttctttttta	aaattctcta	5640
tggcttcctg	gcgctgaaaa	aataaggtat	aaggtgggcg	tttgaacacg	tcctagtgaa	5700
aatgtacctt	gtacgcccct	tctgttgtaa	atttaacgta	tacaaagggc	ttgcgttcat	5760
gccgatcaac	caatcggcaa	tttggcgtgt	ttgcgcttct	tgataaaagg	gatagtaatt	5820
cattccaggt	tgcaaatttt	gaaaaccgct	tcggattaca	tctttttcta	agctattgat	5880
ccatagtctt	ttaaatgttt	tatcttttga	aaaggcattt	gctttatgga	taatcgacca	5940
ggcgatattt	tcaccttctc	tgtcgctatc	tgttgcaaca	ataattgtat	ttgccttttt	6000
gagaagttct	gcaacaattt	taaactgctt	tcccttatct	tttgcaactt	caaaatcgta	6060
tcgatcagga	aaaatcggca	aagattcaag	tttccaattt	tgccactttt	cgtcataatg	6120
acctggttct	gctaattcca	ctaaatgccc	aaaaccaaag	gtgataaacg	tttcatctgt	6180
aaatagtggg	tctttgatct	caaaataacc	gtcttttttg	gtgctttgtt	ttaaagcact	6240
tgcgtaggct	aatgcctggc	ttggtttttc	agctaaaata	accgtactca	ttaactatcc	6300
ctcttttcat	tgttttttct	ttgatcgact	gtcacgttat	atcttgctcg	ataccttcta	6360
aacgttcggc	gattgattcc	agtttgttct	tcaacttctt	tatcggataa	accattcaaa	6420
aacaaatcga	aagcatggat	gcgccgcgtg	cggctgctgg	agatggcgga	cgcgatggat	6480
atgttctgcc	aagggttggt	ttgcgcattc	acagttctcc	gcaagaattg	attggctcca	6540
attcttggag	tggtgaatcc	gttagcgagg	tgccgccggc	ttccattcag	gtcgaggtgg	6600
cccggctcca	tgcaccgcga	cgcaacgcgg	ggaggcagac	aaggtatagg	geggegeeta	6660
caatccatgc	caacccgttc	catgtgctcg	ccgaggcggc	ataaatcgcc	gtgacgatca	6720
gcggtccagt	gatcgaagtt	aggctggtaa	gagccgcgag	cgatccttga	agctgtccct	6780
gatggtcgtc	atctacctgc	ctggacagca	tggcctgcaa	cgcgggcatc	ccgatgccgc	6840
cggaagcgag	aagaatcata	atggggaagg	ccatccagcc	tcgcgtcgca	atacgactca	6900
ctatagggcg	aattgggtac	cgggcccccc	ctcgaggtcg	acggtatcga	taagcttgat	6960
atcgaattcc	tgcagcccgg	gggatccact	agttctagag	cggccgccac	cgcggtggag	7020
ctccagcttt	tgttcccttt	agtgagggtt	aatgctagaa	atattttatc	tgattaataa	7080
gatgatcttc	ttgagatcgt	tttggtctgc	gcgtaatctc	ttgctctgaa	aacgaaaaaa	7140

ccgccttgca	gggcggtttt	tcgaaggttc	tctgagctac	caactctttg	aaccgaggta	7200
actggcttgg	aggagcgcag	tcaccaaaac	ttgtcctttc	agtttagcct	taaccggcgc	7260
atgacttcaa	gactaactcc	tctaaatcaa	ttaccagtgg	ctgctgccag	tggtgctttt	7320
gcatgtcttt	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcggac	7380
tgaacggggg	gttcgtgcat	acagtccagc	ttggagcgaa	ctgcctaccc	ggaactgagt	7440
gtcaggcgtg	gaatgagaca	aacgcggcca	taacagcgga	atgacaccgg	taaaccgaaa	7500
ggcaggaaca	ggagagcgca	cgagggagcc	gccaggggga	aacgcctggt	atctttatag	7560
tcctgtcggg	tttcgccacc	actgatttga	gcgtcagatt	tcgtgatgct	tgtcaggggg	7620
gcggagccta	tggaaaaacg	gctttgccgc	ggccctctca	cttccctgtt	aagtatcttc	7680
ctggcatctt	ccaggaaatc	tccgccccgt	tcgtaagcca	tttccgctcg	ccgcagtcga	7740
acgaccgagc	gtagcgagtc	agtgagcgag	gaagcggaat	atatcctgta	tcacatattc	7800
tgctgacgca	ccggtgcagc	cttttttctc	ctgccacatg	aagcacttca	ctgacaccct	7860
catcagtgcc	aacatagtaa	gccagtatac	actccgctag	cgctgatgtc	cggcggtgct	7920
tttgccgtta	cgcaccaccc	cgtcagtagc	tgaacaggag	ggacagctga	tagaaacaga	7980
agccactgga	gcacctcaaa	aacaccatca	tacactaaat	cagtaagttg	gcagcatcac	8040
ccgacgcact	ttgcgccgaa	taaatacctg	tgacggaaga	tcacttcgca	gaataaataa	8100
atcctggtgt	ccctgttgat	accgggaagc	cctgggccaa	cttttggcga	aaatgagacg	8160
ttgatcggca	cgtaagaggt	tccaactttc	accataatga	aataagatca	ctaccgggcg	8220
tattttttga	gttatcgaga	ttttcaggag	ctaaggaagc	taaaatggag	aaaaaaatca	8280
ctggatatac	caccgttgat	atatcccaat	ggcatcgtaa	agaacatttt	gaggcatttc	8340
agtcagttgc	tcaatgtacc	tataaccaga	ccgttcagct	ggatattacg	gcctttttaa	8400
agaccgtaaa	gaaaaataag	cacaagtttt	atccggcctt	tattcacatt	cttgcccgcc	8460
tgatgaatgc	tcatccggaa	ttccgtatgg	caatgaaaga	cggtgagctg	gtgatatggg	8520
atagtgttca	cccttgttac	accgttttcc	atgagcaaac	tgaaacgttt	tcatcgctct	8580
ggagtgaata	ccacgacgat	ttccggcagt	ttctacacat	atattcgcaa	gatgtggcgt	8640
gttacggtga	aaacctggcc	tatttcccta	aagggtttat	tgagaatatg	tttttcgtct	8700
cagccaatcc	ctgggtgagt	ttcaccagtt	ttgatttaaa	cgtggccaat	atggacaact	8760
tettegeece	cgttttcacc	atgggcaaat	attatacgca	aggcgacaag	gtgctgatgc	8820
cgctggcgat	tcaggttcat	catgccgtct	gtgatggctt	ccatgtcggc	agaatgctta	8880
atgaattaca	acagtactgc	gatgagtggc	agggcggggc	gtaattttt	taaggcagtt	8940
attggtgccc	ttaaacgcct	ggtgctacgc	ctgaataagt	gataataagc	ggatgaatgg	9000

cagaaattcg	aaagcaaatt	cgacccggtc	gtcggttcag	ggcagggtcg	ttaaatagcc	9060
gcttatgtct	attgctggtt	taccggttta	ttgactaccg	gaagcagtgt	gaccgtgtgc	9120
ttctcaaatg	cctgaggcca	gtttgctcag	gctctccccg	tggaggtaat	aattgacgat	9180
atgatcattt	attctgcctc	ccagagcctg	ataaaaacgg	ttagcgcttc	gttaatacag	9240
atgtaggtgt	tccacagggt	agccagcagc	atcctgcgat	gcagatccgg	aacataatgg	9300
tgcagggcgc	ttgtttcggc	gtgggtatgg	tggcaggccc	cgtggccggg	ggactgttgg	9360
gcgctgccgg	cacctgtcct	acgagttgca	tgataaagaa	gacagtcata	agtgcggcga	9420
cgatagtcat	gccccgcgcc	caccggaagg	agctaccgga	cagcggtgcg	gactgttgta	9480
actcagaata	agaaatgagg	ccgctcatgg	cgttgactct	cagtcatagt	atcgtggtat	9540
caccggttgg	ttccactctc	tgttgcgggc	aacttcagca	gcacgtaggg	gacttccgcg	9600
tttccagact	ttacgaaaca	cggaaaccga	agaccattca	tgttgttgct	caggtcgcag	9660
acgttttgca	gcagcagtcg	cttcacgttc	gctcgcgtat	cggtgattca	ttctgctaac	9720
cagtaaggca	accccgccag	cctagccggg	tcctcaacga	caggagcacg	atcatgcgca	9780
cccgtggcca	ggacccaacg	ctgcccga				9808

<210> 44

<400> 44

Met Lys Lys Ile Met Leu Val Phe Ile Thr Leu Ile Leu Val Ser Leu 15 5 10

Pro Ile Ala Gln Gln Thr Glu Ala Lys Asp 25 20

<210> 45

<211> 59

<212> PRT <213> Listeria monocytogenes

<400> 45

Met Thr Asp Lys Lys Ser Glu Asn Gln Thr Glu Lys Thr Glu Thr Lys

Glu Asn Lys Gly Met Thr Arg Glu Met Leu Lys Leu Ser Ala Val 20 25

Ala Gly Thr Gly Ile Ala Val Gly Ala Thr Gly Leu Gly Thr Ile Leu

<211> 26

<212> PRT

<213> Listeria monocytogenes

45 40 35

Asn Val Val Asp Gln Val Asp Lys Ala Leu Thr 50 55

<210> 46

<211> 53

<212> PRT

<213> Bacillus subtillus

<400> 46

Met Ala Tyr Asp Ser Arg Phe Asp Glu Trp Val Gln Lys Leu Lys Glu

Glu Ser Phe Gln Asn Asn Thr Phe Asp Arg Arg Lys Phe Ile Gln Gly 25 20

Ala Gly Lys Ile Ala Gly Leu Ser Leu Gly Leu Thr Ile Ala Gln Ser 35 40

Val Gly Ala Phe Gly 50

<210> 47

<211> 21

<212> DNA <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 47

21 gtcaaaacat acgctcttat c

<210> 48

<211> 24 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 48

24 acataatcag tccaaagtag atgc

<210> 49

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

	49 tacc tcctttgatt agtatattc	2	9
<210> <211> <212> <213>	50 29 DNA Artificial Sequence		
<220> <223>	Description of Artificial Sequence: Print	mer	
<400> ctctgga	50 atcc atccgcgtgt ttcttttcg	2	9
<210><211><211><212><213>			
<220> <223>	Description of Artificial Sequence: Epi	tope insert	
<400> gattata	51 aaag atgatgatga taaa	2	24
<220> <223>	Artificial Sequence Description of Artificial Sequence: Epi	tope	
<400> Asp Ty:	r Lys Asp Asp Asp Lys 5		
<210><211><211><212><213><223><400>			30
<210> <211>	54 10		
<212> <213>			

```
<223> Description of Artificial Sequence: Epitope
<400> 54
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
<210> 55
<211> 9
<212> PRT
<213> Mus sp.
<400> 55
Ser Pro Ser Tyr Val Tyr His Gln Phe
               5
<210> 56
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Epitope
<400> 56
Ser Pro Ser Tyr Ala Tyr His Gln Phe
<210> 57
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 57
                                                                     29
ctctggtacc tcctttgatt agtatattc
<210> 58
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 58
                                                                     36
caatggatcc ctcgagatca taatttactt catccc
<210> 59
<211> 32
<212> DNA
```

<213>	Artificial Sequence		
<220>			
	Description of Artificial Se	equence:	Primer
<400>	59		
	cgag tecatggggg gtteteatea to	С	32
.010-	60		
<210> <211>			
<212>			
	Artificial Sequence		
	-		
<220>			P. C. C.
<223>	Description of Artificial S	equence:	Primer
<400>	60		
	cgag tgcggccgca agctt		25
33-3			
<210>	61		
<210>			
<212>			
	Artificial Sequence		
<220>			
<223>	Description of Artificial S	equence:	Primer
<400>	61		
	ccct agttatgttt accaccaatt t	gctgca	37
· J			
-010-	63		
<210> <211>			
<212>			
	Artificial Sequence		
	-		
<220>			
<223>	Description of Artificial S	sequence:	Primer
<400>	62		
	tggt ggtaaacata actaggggaa t	:	31
_			
040			
<210> <211>	63		
<211> <212>	27 DNA		
<213>			
-22	morrough bodgeres		
<220>			
<223>	Description of Artificial S	Sequence:	Epitope insert
<400>	63		
~4UU>	0.5		
agtcca	agtt atgcatatca tcaattt		27
<210>	64		
<210> <211>			
<212>			

<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	64	
cgatagt	cca agttatgcat atcatcaatt tgc	33
<210>	65	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	65	
	aatt gatgatatgc ataacttgga ctat	34
J J		
<210>	66	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Consensus Sequence	
<220>		
	misc_feature	
	(1) (1)	
<223>	n is a, c, g, or u	
<400>	66	
naggag		8
<210>	67	
<211>	19	
<212>	DNA	
<213>	Listeria monocytogenes	
<400>	67	
aaggag	agtg aaacccatg	19
<210>	68	
<211>	240	
<212>		
<213>	Listeria monocytogenes	
<400>		
ggtacc	teet ttgattagta tatteetate ttaaagtgae ttttatgttg aggeattaae	60
atttot	taac gacgataaag ggacagcagg actagaataa agctataaag caagcatata	120
	cade gaogacadag ggacagoagg actignistic (grantum)	
atattg	cgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg	180
ataaca	aacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg	240

```
<210> 69
<211> 240
<212> DNA
<213> Listeria monocytogenes
<400> 69
ggtacctcct ttgattagta tattcctatc ttaaagttac ttttatgtgg aggcattaac
                                                                   60
                                                                   120
atttgttaat gacgtcaaaa ggatagcaag actagaataa agctataaag caagcatata
atattgcgtt tcatctttag aagcgaattt cgccaatatt ataattatca aaagagaggg
                                                                    180
gtggcaaacg gtatttggca ttattaggtt aaaaaatgta gaaggagagt gaaacccatg 240
<210> 70
<211> 5
<212> PRT
<213> Listeria monocytogenes
<400> 70
Thr Glu Ala Lys Asp
<210> 71
<211> 5
<212> PRT
<213> Listeria monocytogenes
<400> 71
Asp Lys Ala Leu Thr
                5
<210> 72
<211> 5
<212> PRT
<213> Bacillus subtillus
<400> 72
Val Gly Ala Phe Gly
```