Bases de données

L2 sciences et technologies, mention informatique

les requêtes conjonctives

ou : comment extraire de l'information de ceci?

films	titre	réalisateur	année	réalisateurs	nom	nationalité
	starwars	lucas	1977		lucas	américaine
	nikita	besson	1990		lynch	américaine
	locataires	ki-duk	2005		besson	française
	dune	lynch	1984		ki-duk	coréenne

 $patrick.marcel @univ-tours.fr\\ http://celene.univ-tours.fr/course/view.php?id=3131$

requête

exemple de requêtes:

- 1. qui est le réalisateur de "dune"?
- 2. en quelle année est sorti "nikita"?
- 3. quelle est la nationalité du réalisateur de "locataires" ?
- 4. lister les films réalisés par des américains

la requête 4

"lister les films réalisés par des américains"

avec des variables portant sur les tuples:

si il y a des tuples t_1 , t_2 dans films et réalisateurs tels que nationalité de t_2 est "américaine" et réalisateur de $t_1 = nom$ de t_2 alors le résultat contient titre de t_1

la requête 4

"lister les films réalisés par des américains"

avec des variables portant sur les constantes du domaine :

si il y a des tuples (r,"américaine"),(t,r,a) dans *réalisateurs* et *films* alors le tuple (t) fait partie du résultat

la requête 4

sous forme de règle:

```
film_américain(t) \leftarrow réalisateurs(r,"américaine"), films(t,r,a).
```

si

- il existe une valeur de r associée à "américaine" dans l'instance de réalisateurs, et
- ▶ on retrouve cette valeur dans l'instance de films alors la valeur de *t* associée à la valeur de *r* dans l'instance de films fait partie du résultat

requête conjonctive exprimée sous forme de règle

requête conjonctive exprimée sous forme de règle

requête conjonctive exprimée sous forme de règle

langage à base de règles

une requête conjonctive sur un schéma de base de données D est une expression de la forme :

$$ans(u) \leftarrow R_1(u_1), \dots, R_n(u_n)$$

- ▶ ans(u) est appelé la tête de la règle
- $ightharpoonup R_1(u_1), \ldots, R_n(u_n)$ est appelé le *corps* de la règle
- les $R(u_i)$ sont appelés des *atomes*

dans cette règle

 R_i est un nom de relation de D

ans \notin D est un nom de relation

 u_i est une expression de la forme e_1, \ldots, e_{m_i}

les e_j sont des variables de **var** ou constantes de **dom**

les variables de cette règle

condition de *champs restreint*:

chaque variable apparaissant dans u doit apparaitre au moins une fois dans u_1,\ldots,u_n

on note var(q) l'ensemble des variables de la requête q

"qui est le réalisateur de dune?"

$$ans(r) \leftarrow films("dune", r, a).$$

"en quelle année est sorti nikita?"

$$ans(a) \leftarrow films("nikita", r, a).$$

Base de données

requête conjonctive exprimée sous forme de règle

valuation

soit $V \subset \mathbf{var}$

une $valuation \ v \ sur \ V$ est une fonction de V dans \mathbf{dom}

une valuation v associe une valeur à chaque variable

tuple libre

soit $\it U$ un ensemble d'attributs, dans l'approche nommée

un *tuple libre* sur U est une fonction de U dans $\mathbf{var} \cup \mathbf{dom}$

soit t un tuple libre et v une valuation

v(t) est le tuple t où les variables sont remplacées par leur valuation

requête conjonctive exprimée sous forme de règle

exemple

soit
$$V = \{t,r,a\} \subset \mathbf{var}$$

 v_1, v_2, v_3 sont trois valuations:

- $v_1(t) = \text{starwars}, \ v_1(r) = \text{lucas}, \ v_1(a) = 1977$
- $v_2(t) = \text{dune}, \ v_2(r) = \text{lynch}, \ v_2(a) = 1984$
- $v_3(t) = 1977, \ v_3(r) = 1984, \ v_3(a) = 1977$

$$v_1(films(t,r,a)) = films(starwars, lucas, 1977)$$

 $v_2(films(t,r,a)) = films(dune, lynch, 1984)$

$$v_3(films(t,r,a)) = films(1977, 1984, 1977)$$

l'image d'une requête q

```
q une requête ans(u) \leftarrow R_1(u_1), \dots, R_n(u_n)
```

I une instance de base de données de schéma D

l'*image* de (la réponse à) q sur l est :

$$q(I) = \{v(u)|v \text{ est une valuation sur } var(q) \text{ et}$$

 $v(u_i) \in I(R_i) \text{ pour tout } i \in [1,n] \}$

```
la \ \ requête \ \ 4: \ \ film\_am\'ericain(t) \ \leftarrow r\'ealisateurs(r,"am\'ericaine"), films(t,r,a).
```

l : l'instance de base de données suivante :

```
I = \{ \text{films(starwars,lucas,1977),films(nikita,besson,1990),} \\ \text{films(locataires,ki-duk,2005),films(dune,lynch,1984)} \\ \text{réalisateurs(lucas,américaine),réalisateurs(lynch,américaine),} \\ \text{réalisateurs(ki-duk,coréenne),réalisateurs(besson,française)} \}
```

requête conjonctive exprimée sous forme de règle

exemple

les valuations v_1 et v_2 telles que :

- $v_1(t) = \text{starwars}, \ v_1(r) = \text{lucas}, \ v_1(a) = 1977$
- $ightharpoonup v_2(t) = dune, v_2(r) = lynch, v_2(a) = 1984$

$$q(I) = \{film_américain("starwars"), film_américain("dune")\}$$

constitue la réponse à la requête

Base de données

requête conjonctive exprimée sous forme de règle

exemple

$$ans(w) \leftarrow films(x,y,z)$$

n'est pas à champs restreint

la réponse à cette requête est infinie...

domaine actif

pour I une instance de base de données, q une requête

on note:

adom(I) l'ensemble des constantes
apparaissant dans I
domaine actif de l'instance

adom(q) l'ensemble des constantesapparaissant dans qdomaine actif de la requête

```
dans l'exemple précédent :
```

$$adom(I) = \{starwars, lucas, américaine, 1984, dune, ...\}$$

 $adom(q) = \{américaine\}$

qu'est-ce que q(I)?

```
on note adom(q,I) = adom(q) \cup adom(I)

q est une requête à champs restreint sur I

donc adom(q(I)) \subseteq adom(q,I)

donc q(I) est un ensemble fini

donc c'est une instance
```

extension et intention

$$ans(u) \leftarrow R_1(u_1), \dots, R_n(u_n)$$

si les relations R_i sont stockées

on dit qu'elles sont définies en extension

si *ans* n'est pas stockée

c'est une relation définie en intention

requête booléenne

exemple: connaît-on un film sorti en 1990?

$$ans() \leftarrow film(t,r,1990)$$

```
réponse \{(\tt)\} \ \mathsf{si} \ \mathsf{oui} \emptyset \ \mathsf{sinon}
```

le calcul conjonctif

calcul conjonctif

$$ans(e_1,\ldots,e_m) \leftarrow R_1(u_1),\ldots,R_n(u_n)$$

variante syntaxique:

$$\{e_1,\ldots,e_m|\exists x_1,\ldots,x_k(R_1(u_1)\wedge\ldots\wedge R_n(u_n))\}$$

- x_1, \dots, x_k sont les variables apparaissant dans le corps et pas dans la tête
- → ∃ est la quantification existentielle ("il existe")

la requête 4 exprimée dans le calcul conjonctif:

 $\{t|\exists r,a, \text{ r\'ealisateurs}(r,"\text{am\'ericaine"}) \land \text{films}(t,r,a)\}$

la syntaxe du calcul conjonctif

soit D un schéma de base de données

une formule sur D est une expression de la forme :

- 1. un atome $R(e_1, \ldots, e_n)$ sur D
- 2. $(\varphi \wedge \psi)$ où φ et ψ sont des formules sur D, ou
- 3. $\exists x \varphi$ où x est une liste de variables et φ une formule sur D

variable libre/liée

une (occurrence de) variable x dans une formule φ est *libre* si

- 1. φ est un atome, ou
- 2. $\varphi = (\psi \land \xi)$ où x est libre dans ψ ou ξ
- 3. $\varphi = \exists y \psi$ où y est distincte de x et x est libre dans ψ

une variable qui n'est pas libre est liée

 $free(\varphi)$: ensemble des variables libres de φ

requête du calcul conjonctif

un requête est une expression de la forme

$$\{e_1,\ldots,e_n|\varphi\}$$

où φ est une formule du calcul, et les variables de (e_1,\ldots,e_n) sont exactement $free(\varphi)$

dans

$$\{t|\exists r, a \text{ (r\'ealisateurs}(r, "am\'ericaine")} \land \text{ films}(t, r, a))\}$$

t est libre

r et a sont liées

valuation

définie comme précédemment, pouvant s'écrire $\{x_1/a_1,\ldots,x_n/a_n\}$

on note $v|_V$ la restriction de v à l'ensemble V

v une valuation sur V, $x \notin V$, $c \in \mathbf{dom}$, $v \cup \{x/c\}$ est une valuation sur $V \cup \{x\}$

- ▶ identique à v sur V
- associant x avec c

satisfaction d'une formule

I une instance de base de données *satisfait* une formule φ sous une valuation v (noté $I \models \varphi[v]$) si

- 1. $\varphi = R(u)$ est un atome et $v(u) \in I(R)$, ou
- 2. $\varphi = (\psi \land \xi)$ et $I \models \psi[v|_{free(\psi)}]$ et $I \models \xi[v|_{free(\xi)}]$, ou
- 3. $\varphi = \exists x \psi$ et il existe $c \in dom$, $I \models \psi[v \cup \{x/c\}]$

soit l'instance de base de donnée I de la diapo 1

soit la formule $\varphi = \exists r, a \text{ (r\'ealisateurs}(r, "am\'ericaine")} \land \text{ films}(t, r, a))$

I satisfait φ sous v si v est telle que v(t) = starwars

I ne satisfait pas φ sous v' telle que v'(t) = nikita

image

soit $q=\{e_1,\ldots,e_m|\varphi\}$ une requête conjonctive sur D et I une instance de D

l'image de I par q, notée q(I), est :

$$q(I) = \{v((e_1, \dots, e_m)) | I \models \varphi[v] \text{ et } v \text{ est une valuation sur } free(\varphi)\}$$

```
soit la requête q = \{t | \exists r, a \text{ (r\'ealisateurs}(r, \text{"am\'ericaine"}) \land \text{ films}(t, r, a))\}
soit l'instance I de la diapo 1
q(I) = \{(\text{"starwars"}), (\text{"dune"})\}
```

propriétés des requêtes conjonctives

pourquoi étudie-t-on les requêtes conjonctives?

- elles sont simples
- elles représentent une part importante des requêtes usuelles
- elles ont de bonnes propriétés

monotonie

une requête q sur D est *monotone* si pour toute instance I,J de D:

$$I \subseteq J$$
 implique $q(I) \subseteq q(J)$

```
la requête q=film_américain(t) \leftarrowréalisateurs(r,"américaine"),films(t,r,a).
```

I et J: deux instances de base de données avec

```
I = \{ \text{films(starwars,lucas,1977),films(nikita,besson,1990),} \\ \text{films(locataires,ki-duk,2005),films(dune,lynch,1984),} \\ \text{réalisateurs(lucas,américaine),réalisateurs(lynch,américaine),} \\ \text{réalisateurs(ki-duk,coréenne),réalisateurs(besson,française)} \}
```

```
 \begin{split} J = & \{ \text{films(nikita,besson,1990),films(locataires,ki-duk,2005),} \\ & \quad \text{films(dune,lynch,1984), réalisateurs(lynch,américaine),} \\ & \quad \text{réalisateurs(ki-duk,coréenne),réalisateurs(besson,française)} \\ \end{split}
```

 $J \subset I$

```
q(I)=\{	ext{film\_am\'ericain("starwars"),film\_am\'ericain("dune")}\} q(J)=\{	ext{film\_am\'ericain("dune")}\} q(J)\subset q(I)
```

requête non monotone

```
exemple de requête non monotone: soit la relation acteur de schéma acteur[nom,a_tourné_avec] quels sont les acteurs qui n'ont tourné que avec lucas? I(\text{acteur}) = \{(\text{ford,lucas}), (\text{ford,spielberg})\}, \ q(I) = \emptyset J(\text{acteur}) = \{(\text{ford,lucas})\}, \ q(J) = \{\text{ford}\}
```

satisfiabilité

une requête q est satisfiable si il existe une instance I telle que q(I) est non vide

exemple de requête non satisfiable :

est-ce qu'il existe un film qui s'appelle "starwars" et "dune"?

propriétés des requêtes conjonctives

théorème:

les requêtes conjonctives sont monotones et satisfiables

à démontrer en TD...

propriétés des requêtes conjonctives

toute requête conjonctive q peut être écrite sous la forme

$$\{e_1,\ldots,e_m|\exists x_1,\ldots,x_p(R_1(u_1)\wedge\ldots\wedge R_n(u_n))\}$$

évaluer q sur une instance I demande juste à regarder dans adom(q,I)

propriétés (suite)

soient
$$q=\{u|\varphi\}$$
 et $q'=\{w|\psi\}$ une autre requête conjonctive avec $free(q)=free(q')$
$$q \text{ est } \acute{e}quivalente \text{ à } q'(q\equiv q') \text{ si}$$

quelles que soient I et v, $I \models \varphi[v] \iff I \models \psi[v]$

```
\{x|\exists y,z \; \mathrm{films}(y,x,z) \land \mathrm{r\'ealisateur}(x,\mathrm{cor\'eenne}) \} et \{a|\exists b,c \; \mathrm{r\'ealisateur}(a,\mathrm{cor\'eenne}) \land \mathrm{films}(b,a,c) \} sont 2 requêtes équivalentes
```

propriétés (suite)

le langage à base de règles pour décrire des requêtes conjonctives Q_1 et le calcul conjonctif Q_2 sont équivalents

ils permettent d'exprimer exactement les même requêtes

formellement:

$$\forall q_1 \in Q_1, \exists q_2 \in Q_2, q_1 \equiv q_2$$

$$\forall q_1 \in Q_2, \exists q_2 \in Q_1, q_1 \equiv q_2$$

ajout de l'égalité

l'égalité entre variables ou entre variables et constantes peut être utilisée

exemples:

film_américain(t) \leftarrow réalisateurs(r_1, n),n=" américaine",films(t, r_2, a), $r_1 = r_2$.

ajout de l'égalité

problème : quelle est la réponse à

$$ans(x,y) \leftarrow R(x), y = z \text{ où } x,y,z \in \mathbf{var}$$

on considère seulement les règles à champs restreint:

toute variable du corps doit être égale à

- une constante, ou
- une variable apparaissant dans un atome

ajout de l'égalité

problème : quelle est la réponse à

$$ans(x) \leftarrow R(x), a = b \text{ où } x \in \mathbf{var}, a, b \in \mathbf{dom}$$

on considère seulement les règles satisfiables

toute requête satisfiable avec égalité peut s'écrire sous une forme sans égalité

composition de requêtes

un programme conjonctif P sur une base de données D est une séquence de requêtes conjonctives

$$S_1(u_1) \leftarrow body_1$$

 $S_2(u_2) \leftarrow body_2$
...
 $S_n(u_n) \leftarrow body_n$

tous les S_i sont distincts, n'appartiennent pas à D

composition de requêtes

les relations pouvant apparaître dans body; sont

- les relations de *D* et
- \triangleright S_1,\ldots,S_{i-1}

tout programme conjonctif peut être réécrit sous la forme d'une seule règle

le programme

$$S(x,y) \leftarrow R(x,y), Q(y).$$

$$T(y) \leftarrow Q(x), S(x,y).$$

$$U(x,y) \leftarrow T(x), R(x,y).$$

peut être réécrit en

$$U(x,y) \leftarrow R(x,y), Q(z), R(z,x), Q(x).$$

clôture par composition

théorème:

la composition de requêtes conjonctives est une requête conjonctive