TABLE OF CONTENTS

1.8 (Optional) Making Infinite Limits a Little More Formal

Was there a time after which your error always less than 250 g?

Was there a time after which your error always less than 250 g?

Was there a time after which your error always less than 250 g?

Was there a time after which your error always less than 125 g?

Was there a time after which your error always less than 125 g?

Was there a time after which your error always less than 125 g?

Was there a time after which your error always less than 100 g?

Was there a time after which your error always less than 100 g?

Was there a time after which your error always less than 100 g?

You need to reassure your boss that, after some time, your error is never more than 3 g. Find such a time.

When x > then |f(x) - 500| < 3.

You need to reassure your boss that, after some time, your error is never more than 3 g. Find such a time.

When x > 2 then |f(x) - 500| < 3.

You need to reassure your boss that, after some time, your error is never more than 2 g. Find such a time.

When x > then |f(x) - 500| < 2.

You need to reassure your boss that, after some time, your error is never more than 2 g. Find such a time.

When
$$x > 3$$
 then $|f(x) - 500| < 2$.

You need to reassure your boss that, after some time, your error is never more than 1 g. Find such a time.

When x > then |f(x) - 500| < 1.

You need to reassure your boss that, after some time, your error is never more than 1 g. Find such a time.

When
$$x > 6$$
 then $|f(x) - 500| < 1$.

You need to reassure your boss that, after some time, your error is never more than $\frac{1}{1000}$ g. Find such a time.

When
$$x >$$
 then $|f(x) - 500| < \frac{1}{1000}$.

You need to reassure your boss that, after some time, your error is never more than $\frac{1}{1000}$ g. Find such a time.

When
$$x > 6000$$
 then $|f(x) - 500| < \frac{1}{1000}$.

You need to reassure your boss that, after some time, your error is never more than ϵ **g**. Find such a time.

When x > then $|f(x) - 500| < \epsilon$.

You need to reassure your boss that, after some time, your error is never more than ϵ g. Find such a time.

When $x > \frac{6}{\epsilon}$ then $|f(x) - 500| < \epsilon$. No matter how exacting your boss is, if they give you a non-zero error allowance, you can *always* schedule a time after which you will meet their standards.

Let f be a function defined on the whole real line. We say that the limit as x approaches ∞ of f(x) is L

and write

$$\lim_{x \to \infty} f(x) = L$$

if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Similarly we write

$$\lim_{x \to -\infty} f(x) = K$$

if and only if for every $\epsilon > 0$ there exists $N \in \mathbb{R}$ so that $|f(x) - K| < \epsilon$ whenever x < N.

Let f be a function defined on the f(x): actual can weights whole real line.

Let f be a function defined on the f(x): actual can weights whole real line

We say that "the limit as *x* approaches ∞ of f(x) is L'' and write

$$\lim_{x \to \infty} f(x) = L$$

L: weight on the label that you want to match

Let f be a function defined on the f(x): actual can weights whole real line.

We say that "the limit as xapproaches ∞ of f(x) is L'' and write

$$\lim_{x \to \infty} f(x) = L$$

if and only if for every $\epsilon > 0$

L: weight on the label that you want to match

 ϵ : amount of allowable error

Let f be a function defined on the f(x): actual can weights whole real line.

We say that "the limit as *x* approaches ∞ of f(x) is L'' and write

$$\lim_{x \to \infty} f(x) = L$$

if and only if for every $\epsilon > 0$

there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

L: weight on the label that you want to match

 ϵ : amount of allowable error

M: time after which your weights are always off by less than ϵ

|f(x)-L|: error (difference between actual amount and label)

Let f be a function defined on the f(x): actual can weights whole real line.

We say that "the limit as xapproaches ∞ of f(x) is L'' and write

$$\lim_{x \to \infty} f(x) = L$$

if and only if for every $\epsilon > 0$

there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

L: weight on the label that you want to match

 ϵ : amount of allowable error

M: time after which your weights are always off by less than ϵ

|f(x)-L|: error (difference between actual amount and label)

Let *f* be a function defined on the whole real line.

Let f be a function defined on the whole real line. We say that "the limit as x approaches ∞ of f(x) is L" and write

$$\lim_{x \to \infty} f(x) = L$$

Let f be a function defined on the whole real line. We say that "the limit as x approaches ∞ of f(x) is L" and write

$$\lim_{x \to \infty} f(x) = L$$

if and only if for every $\epsilon > 0$

Let f be a function defined on the whole real line. We say that "the limit as x approaches ∞ of f(x) is L" and write

$$\lim_{x \to \infty} f(x) = L$$

if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that
$$\lim_{x\to\infty} \left[\frac{2}{x}+1\right]=1$$
.

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} \left[\frac{2}{x}+1\right]=1$.

Let ϵ be any positive constant. We need to find M such that, for x > M:

It suffices to find a positive *M*. Then *x* is positive too.

$$|f(x) - L| < \epsilon$$

$$\left| \left(\frac{2}{x} + 1 \right) - 1 \right| < \epsilon$$

$$\left| \frac{2}{x} \right| < \epsilon$$

$$\frac{2}{x} < \epsilon$$
$$x > \frac{2}{\epsilon}$$

So, we choose $M = \frac{2}{\epsilon}$. Now we can go through the definition.

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} \left[\frac{2}{x}+1\right]=1$.

Proof: Let $f(x) = \frac{2}{x} + 1$. For any $\epsilon > 0$, let $M = \frac{2}{\epsilon}$. Then for any x > M:

$$|f(x) - 1| = \left| \left(\frac{2}{x} + 1 \right) - 1 \right| = \left| \frac{2}{x} \right| = \frac{2}{x}$$
$$< \frac{2}{M} = \frac{2}{\frac{2}{x}} = \epsilon$$

Therefore
$$\lim_{x \to \infty} \left[\frac{2}{x} + 1 \right] = 1$$
.

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} [5e^{-x}] = 0$

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} \left[5e^{-x}\right] = 0$ First, we need to find which M goes with ϵ .

$$|f(x) - L| = |5e^{-x} - 0| = 5e^{-x} = \frac{5}{e^x} < \epsilon$$
$$e^x > \frac{5}{\epsilon}$$
$$x > \log_e\left(\frac{5}{\epsilon}\right)$$

So, in our proof, we should use $M = \log_e \left(\frac{5}{\epsilon}\right)$

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} [5e^{-x}] = 0$

Proof: Set $f(x) = 5e^{-x}$. For any $\epsilon > 0$, let $M = \log_e(\frac{5}{\epsilon})$. Then for all x that are greater than M:

$$|f(x) - 0| = |5e^{-x}| = \frac{5}{e^x}$$

$$< \frac{5}{e^M} = \frac{5}{e^{\log_e(\frac{5}{e})}} = \frac{5}{\frac{5}{e}} = \epsilon$$

Therefore,
$$\lim_{x\to\infty} [5e^{-x}] = 0$$
.

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} \left[\frac{\sin x}{x} \right] = 0$

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} \left[\frac{\sin x}{x} \right] = 0$

First, we find M for an arbitrary ϵ . We want

$$|f(x) - 0| = \left| \frac{\sin x}{x} \right| < \epsilon$$

We need to find values of *x* that are large enough for this to be true, but we don't have to find the values of *x* that make equality hold. (Think about the first canning example where we

didn't even have numbers.) So, we simplify things by noting $|\sin x| < 1$ for all x. For x > 0,

$$\left| \frac{\sin x}{x} \right| < \left| \frac{1}{x} \right| = \frac{1}{x} < \epsilon$$

$$x > \frac{1}{x}$$

So, we use
$$M = \frac{1}{\epsilon}$$
.

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that
$$\lim_{x \to \infty} \left[\frac{\sin x}{x} \right] = 0$$

Proof: Let $f(x) = \frac{\sin x}{x}$. For any $\epsilon > 0$, let $M = \frac{1}{\epsilon}$. Whenever x > M:

$$|f(x) - 0| = \left| \frac{\sin x}{x} \right| \le \left| \frac{1}{x} \right| = \frac{1}{x}$$

$$< \frac{1}{M} = \epsilon$$

So
$$\lim_{x\to\infty} \frac{\sin x}{x} = 0.$$

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} \left[\frac{2x^2}{x^2+1} \right] = 2$

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} \left[\frac{2x^2}{x^2+1} \right] = 2$ First, we find M based on ϵ .

$$\epsilon > |f(x) - 2| = \left| \frac{2x^2}{x^2 + 1} - 2 \right| = \left| \frac{2x^2 - 2(x^2 + 1)}{x^2 + 1} \right| = \left| \frac{-2}{x^2 + 1} \right| = \frac{2}{x^2 + 1}$$
$$x^2 + 1 > \frac{2}{\epsilon} \implies x^2 > \frac{2}{\epsilon} - 1 \implies x > \sqrt{\frac{2}{\epsilon} - 1} = M$$

(If $\epsilon > 2$, we can take M = 0.) Note that the values of x that make $x^2 > \frac{2}{\epsilon} - 1$ true are $(-\infty, -a) \cup (a, \infty)$ for $a = \sqrt{\frac{2}{\epsilon} - 1}$. Since we only care about large x, we use the second interval. (See graph on next slide.)

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} \left[\frac{2x^2}{x^2+1} \right] = 2$

It **is true** that for all $x > \sqrt{\frac{2}{\epsilon}} - 1$, $x^2 > \frac{2}{\epsilon} - 1$.

It is not true that for all $x > -\sqrt{\frac{2}{\epsilon}} - 1$, $x^2 > \frac{2}{\epsilon} - 1$.

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that
$$\lim_{x\to\infty} \left[\frac{2x^2}{x^2+1} \right] = 2$$

Proof: : Let $f(x) = \frac{2x^2}{x^2+1}$. For any $2 \ge \epsilon > 0$, set $M = \sqrt{\frac{2}{\epsilon}} - 1$. (For $\epsilon > 2$, set M = 0.) Then for any x > M:

$$|f(x) - 2| = \left| \frac{2x^2}{x^2 + 1} - 2 \right| = \left| \frac{-2}{x^2 + 1} \right| = \frac{2}{x^2 + 1}$$

$$< \frac{2}{M^2 + 1} = \frac{2}{\left(\sqrt{\frac{2}{\epsilon} - 1}\right)^2 + 1} = \frac{2}{\frac{2}{\epsilon} - 1 + 1} = \epsilon$$

So
$$\lim_{x \to \infty} \left[\frac{2x^2}{x^2 + 1} \right] = 2.$$

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{x\to\infty} 5 = 5$

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

Prove, using Definition 1.8.1, that $\lim_{r\to\infty} 5=5$

Proof: : Let f(x) = 5, and let M = 1. For any $\epsilon > 0$, and for any x > M:

$$|f(x) - 5| = 5 - 5 = 0 < \epsilon$$

So,
$$\lim_{x\to\infty} 5=5$$
.

Note: you actually could have chosen *any* value for *M*.

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

True or False?
$$\lim_{x\to\infty} \sin x = 0$$

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

True or False? $\lim_{x\to\infty} \sin x = 0$

False.

Let $f(x) = \sin x$ and consider $\epsilon = \frac{1}{2}$. Note that when $x = \frac{\pi}{2} + n\pi$ for any integer n, then $\sin x = \pm 1$, so

$$|f(x) - 0| = |\pm 1| = 1 > \frac{1}{2}$$

So there is *no* point after which f(x) is always within $\frac{1}{2}$ of 0. Therefore $\lim_{x\to\infty} \sin x \neq 0$.

Let f be a function defined on the whole real line. We say that $\lim_{x\to\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ whenever x > M.

True or False? $\lim_{x\to\infty} \sin x = 0$

USEFUL GENERAL PRINCIPLES

When we showed
$$\lim_{x\to\infty} \left[\frac{\sin x}{x} \right] = 0$$
, we chose *M* using:

$$\left|\frac{\sin x}{x}\right| \le \left|\frac{1}{x}\right| = \frac{1}{x} < \epsilon$$

USEFUL GENERAL PRINCIPLES

When we showed
$$\lim_{x\to\infty} \left[\frac{\sin x}{x} \right] = 0$$
, we chose *M* using:

$$\left|\frac{\sin x}{x}\right| \le \left|\frac{1}{x}\right| = \frac{1}{x} < \epsilon$$

▶ $\left|\frac{1}{x}\right| = \frac{1}{x}$ only when x is positive. We want to show that an inequality holds for *large enough* values of x, so if it helps our cause, we can say "make sure x is larger than *blah*." Then we just choose M to be at least that number *blah*.

USEFUL GENERAL PRINCIPLES

When we showed
$$\lim_{x\to\infty} \left[\frac{\sin x}{x} \right] = 0$$
, we chose *M* using:

$$\left|\frac{\sin x}{x}\right| \le \left|\frac{1}{x}\right| = \frac{1}{x} < \epsilon$$

- ▶ $\left|\frac{1}{x}\right| = \frac{1}{x}$ only when x is positive. We want to show that an inequality holds for *large enough* values of x, so if it helps our cause, we can say "make sure x is larger than *blah*." Then we just choose M to be at least that number *blah*.
- ▶ If a < b < c, then a < c. So if you want to solve a < c, but it's too hard to find *exactly* when that's true, see whether you can replace a with a larger, easier expression b.

That's what we did when we said $\left|\frac{\sin x}{x}\right| \le \left|\frac{1}{x}\right|$.

LIMIT AS *x* GOES TO NEGATIVE INFINITY

Definition 1.8.1 (a)

We write

$$\lim_{x \to -\infty} f(x) = K$$

if and only if for every $\epsilon > 0$ there exists $N \in \mathbb{R}$ so that $|f(x) - K| < \epsilon$ whenever x < N.

LIMIT AS x GOES TO NEGATIVE INFINITY

Definition 1.8.1 (a)

We write

$$\lim_{x \to -\infty} f(x) = K$$

if and only if for every $\epsilon > 0$ there exists $N \in \mathbb{R}$ so that $|f(x) - K| < \epsilon$ whenever x < N.

Use Definition 1.8.1 to prove
$$\lim_{x \to -\infty} \frac{x^3}{x^3 + 1} = 1$$

Use Definition 1.8.1 to prove $\lim_{x \to -\infty} \frac{x^3}{x^3 + 1} = 1$

Use Definition 1.8.1 to prove
$$\lim_{x \to -\infty} \frac{x^3}{x^3 + 1} = 1$$

Let $f(x) = \frac{x^3}{x^3 + 1}$ and $\epsilon > 0$.

Since we are now concerned with highly *negative* values of x, we can assume that x is a large negative number. To find N, we solve the inequality:

$$\epsilon > |f(x) - 1| = \left| \frac{x^3}{x^3 + 1} - 1 \right|$$
$$= \left| \frac{x^3}{x^3 + 1} - \frac{x^3 + 1}{x^3 + 1} \right|$$
$$= \left| \frac{-1}{x^3 + 1} \right|$$

Since we will be choosing highly negative values of x, the denominator $x^3 + 1$ is a negative number. Then $\frac{-1}{x^3+1}$ is a positive number.

$$=\frac{-1}{x^3+1}$$

So we have

$$\epsilon > \frac{-1}{r^3 + 1}$$

Use Definition 1.8.1 to prove $\lim_{x \to -\infty} \frac{x^3}{x^3 + 1} = 1$

$$\epsilon > \frac{-1}{x^3 + 1}$$

The denominator is negative, so when we multiply both sides by it, we flip the inequality

$$\begin{split} \epsilon(x^3+1) &< -1 \\ \epsilon x^3 + \epsilon &< -1 \\ \epsilon x^3 &< -1 - \epsilon \\ x^3 &< \frac{-1 - \epsilon}{\epsilon} = -\left(1 + \frac{1}{\epsilon}\right) \\ x &< -\left(1 + \frac{1}{\epsilon}\right)^{1/3} \end{split}$$

Choose
$$N = -\left(1 + \frac{1}{\epsilon}\right)^{1/3}$$
.

Use Definition 1.8.1 to prove $\lim_{x \to -\infty} \frac{x^3}{x^3 + 1} = 1$

Proof: : Set $f(x) = \frac{x^3}{x^3+1}$. For any $\epsilon > 0$, let $N = -\left(1 + \frac{1}{\epsilon}\right)^{1/3}$. Then for any x < N:

$$|f(x) - 1| = \left| \frac{x^3}{x^3 + 1} - 1 \right| = \left| \frac{-1}{x^3 + 1} \right| = \frac{-1}{x^3 + 1}$$

$$< \frac{-1}{N^3 + 1} = \frac{-1}{\left(-\left(1 + \frac{1}{\epsilon}\right)^{1/3}\right)^3 + 1} = \frac{-1}{-(1 + \frac{1}{\epsilon}) + 1}$$

$$= \frac{-1}{-\frac{1}{\epsilon}} = \epsilon$$

So,
$$\lim_{x \to -\infty} \frac{x^3}{x^3 + 1} = 1$$
.

LIMIT AS x GOES TO NEGATIVE INFINITY

Definition 1.8.1 (a)

We write

$$\lim_{x \to -\infty} f(x) = K$$

if and only if for every $\epsilon > 0$ there exists $N \in \mathbb{R}$ so that $|f(x) - K| < \epsilon$ whenever x < N.

Use Definition 1.8.1 to prove
$$\lim_{x \to -\infty} \frac{\cos x}{\sqrt{x^4 + x^2 + 1}} = 0$$

Let's start by getting a handle on the inequality we know we'll be solving:

$$|\epsilon| |f(x) - 0| = \left| \frac{\cos x}{\sqrt{x^4 + x^2 + 1}} \right| = \frac{|\cos x|}{\sqrt{x^4 + x^2 + 1}}$$

We've seen something similar with sine. Since $|\cos x| \le 1$, we can solve instead the right-most inequality below:

$$\frac{|\cos x|}{\sqrt{x^4 + x^2 + 1}} \le \frac{1}{\sqrt{x^4 + x^2 + 1}} < \epsilon$$

But why stop there? Let's solve the right-most inequality below:

$$\frac{|\cos x|}{\sqrt{x^4 + x^2 + 1}} \le \frac{1}{\sqrt{x^4 + x^2 + 1}} < \frac{1}{\sqrt{x^4}} = \frac{1}{x^2} < \epsilon$$

So, we set $N = -\frac{1}{\sqrt{\epsilon}}$. (Note $\frac{1}{x^2}$ is *not* always less than ϵ if x only has to be less than $\frac{1}{\sqrt{\epsilon}}$. A graph can help explain this – see next slide.)

It **is true** that for all $x < -\frac{1}{\sqrt{\epsilon}}, \frac{1}{x^2} < \epsilon$.

It **is not true** that for all $x < \frac{1}{\sqrt{\epsilon}}, \frac{1}{x^2} < \epsilon$.

We want to find N that guarantees that $\frac{1}{x^2} < \epsilon$ whenever x < N. That's why we choose $N = -\frac{1}{\sqrt{\epsilon}}$. Now we're ready to start our proof.

Proof: Let $f(x) = \frac{\cos x}{\sqrt{x^4 + x^2 + 1}}$. For any $\epsilon > 0$, set $N = -\frac{1}{\sqrt{\epsilon}}$. Then for any x < N:

$$|f(x) - 0| = \frac{|\cos x|}{\sqrt{x^4 + x^2 + 1}} < \frac{1}{x^2}$$

Note that x < N < 0, so |x| > |N| and $x^2 > N^2$. Then:

$$|f(x) - 0| < \frac{1}{x^2} < \frac{1}{N^2} = \frac{1}{\left(-\frac{1}{\sqrt{\epsilon}}\right)^2} = \epsilon$$

So,
$$\lim_{x \to -\infty} \frac{\cos x}{\sqrt{x^4 + x^2 + 1}} = 0.$$

Definition 1.8.1 (c)

Let f be a function defined on the whole real line. We write

$$\lim_{x \to \infty} f(x) = \infty$$

Definition 1.8.1 (c)

Let f be a function defined on the whole real line. We write

$$\lim_{x \to \infty} f(x) = \infty$$

Definition 1.8.1 (c)

Let f be a function defined on the whole real line. We write

$$\lim_{x \to \infty} f(x) = \infty$$

Definition 1.8.1 (c)

Let f be a function defined on the whole real line. We write

$$\lim_{x \to \infty} f(x) = \infty$$

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let P = 1. Find M > 0 so that f(x) > P whenever x > M.

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let P = 1. Find M > 0 so that f(x) > P whenever x > M.

$$1 < \frac{x^2}{4}$$

$$4 < x^2$$

$$2 < x$$

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let P = 2. Find M > 0 so that f(x) > P whenever x > M.

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let P = 2. Find M > 0 so that f(x) > P whenever x > M.

$$2 < \frac{x^2}{4}$$
$$8 < x^2$$
$$\sqrt{8} < x$$

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let $P = 1\,000\,000$. Find M > 0 so that f(x) > P whenever x > M.

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let $P = 1\,000\,000$. Find M > 0 so that f(x) > P whenever x > M.

$$10^6 < \frac{x^2}{4}$$
 $4 \times 10^6 < x^2$
 $2 \times 10^3 < x$

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let P > 0. Find M > 0 so that f(x) > P whenever x > M.

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let P > 0. Find M > 0 so that f(x) > P whenever x > M.

$$P < \frac{x^2}{4}$$

$$4P < x^2$$

$$2\sqrt{P} < x$$

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Using definition 1.8.1, prove or disprove the following:

$$\lim_{x \to \infty} \sqrt[3]{x} = \infty$$

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Using definition 1.8.1, prove or disprove the following:

$$\lim_{x \to \infty} \sqrt[3]{x} = \infty$$

Let P > 0 and $f(x) = \sqrt[3]{x}$. We should find a value of M so that f(x) > P whenever x > M.

$$P < f(x) = x^{1/3}$$
$$P^3 < x$$

So, we choose $M = P^3$.

Proof: For any P > 0, let $M = P^3$. Then whenever x > M, $\sqrt[3]{x} > \sqrt[3]{M} = \sqrt[3]{P^3} = P$. So, $\lim_{x \to \infty} \sqrt[3]{x} = \infty$.

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Using definition 1.8.1, prove or disprove the following:

$$\lim_{x \to \infty} x(\sin x + 1) = \infty$$

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Using definition 1.8.1, prove or disprove the following:

$$\lim_{x \to \infty} x(\sin x + 1) = \infty$$

Let $f(x) = x(\sin x + 1)$. Note that when $x = (2n + 1.5)\pi$ for any integer n (e.g. $x = \frac{3}{2}\pi$, $x = \frac{7}{2}\pi$, $x = \frac{11}{2}\pi$), then f(x) = x(-1+1) = 0. So even if we narrow our focus to very large values of x, there will always be a value of x where f(x) = 0. That tells us that the statement is not true, and gives us the examples we need to disprove it.

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Using definition 1.8.1, prove or disprove the following:

$$\lim_{x \to \infty} x(\sin x + 1) = \infty$$

The statement is false.

Proof: Let P = 1, and let M be any positive number. There exists an integer n such that $(2n + 1.5)\pi > M$. For $x = (2n + 1.5)\pi$, we have both x > M and $x(\sin x + 1) = 0 \not< P$.

That is: there exists some P > 0 such that there is no M > 0 with the property that $x(\sin x + 1) > P$ whenever x > M. So,

$$\lim_{x \to \infty} x(\sin x + 1) \neq \infty.$$

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Using definition 1.8.1, prove or disprove the following:

$$\lim_{x \to \infty} x(\sin x + 2) = \infty$$

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Using definition 1.8.1, prove or disprove the following:

$$\lim_{x \to \infty} x(\sin x + 2) = \infty$$

Note $x(\sin x + 2) \ge x(-1 + 2) = x$ for all values of x > 0. So if x > P, then $x(\sin x + 1) \ge x > P$.

Proof: For any P > 0, let M = P. Whenever x > M, then

$$x(\sin x + 2) \ge x(-1+2) = x > M = P$$

So
$$\lim_{x \to \infty} x(\sin x + 2) = \infty$$
.

Let f be a function defined on the whole real line. We write $\lim_{x\to\infty} f(x) = \infty$ if and only if for every P>0 there exists M>0 so that f(x)>P whenever x>M.

Included Work

'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 54, 59