Enhancement of existing ML pipeline via DL approaches for the detection of patterns in wafermaps

- 1. Machine Learning pipeline
- 2. Scope of the Master Thesis
- 3. Motivation for using Deep Learning

Wafer Health Factor – Machine Learning pipeline

Concept:

The wafer health factor informs you about the presence of pre-defined (critical) process patterns, based on analog wafer test data (before the yield is affected).

Scope of the Master Thesis

Already existing: **Machine-Learning** pipeline already *verified...*

- ... due to few **labelled** data available in real-world applications
- ... and **high variety** of pattern types
- ... with good performance for few training data

Aim of master thesis: Implementation of a Deep Learning pipeline under certain restrictions, e.g.

- few training data (~20 wafermaps per pattern type)
- as low computation time as possible
- better classification performance compared to Machine Learning pipeline

"Circle pattern detected"

Classification Task

- 1. Data Aquisition
- 2. Description of Data Set
- 3. Classification Task
- 4. Desired Outcome

Data Aquisition

The data set is publicly available: https://zenodo.org/record/2542504#.X3rgiO2xXqY

Information on WHF methodology: https://ieeexplore.ieee.org/abstract/document/8914309

Paper Title: A Health Factor for Process Patterns Enhancing Semiconductor Manufacturing by Pattern Recognition in Analog Wafermaps

Detailed information of the following points can be found on next slides

- Data set generation description
- Brief description of occurring pattern types
- All necessary files
 - Data Set: Wafer.zip
 - Data set description as text file
 - 4 files with training data sets (training_x.csv)
 - 1 file with test data set (test.csv)

Download data set

Description of Data Set (1)

Available in file: Data Set Decription.txt

Bullet points 1-5: General description

Bullet points 6-8: Data set structure description

14 attributes (columns)

1000 wafermaps (~17500 rows per wafermap)

• Each wafer has 10 wafermaps

Test values with noise

NOTE_1: Labels (ground truth) are available in column headers !!

NOTE_2: Pattern Types xxx_pure not relevant for analysis (as they contain the same wafermaps without noise)!

Original test values

													1	
	Lot	Wafer	X	Υ	Ring	Spot	Trend	Twospots	Crescent	Ring_pure	Spot_pure	Trend_pure	Twospots_pure	Crescent_pure
٢	Lot_1	1	1	67	0,033	6,48e-05	0,312	0,039	15,58	0,032	6,54e-10	0,285	0,039	-4,843e-17
ı	Lot_1	1	1	68	0,032	-4,66e-06	0,288	0,040	15,64	0,032	8,76e-10	0,281	0,040	-5,07e-17
1									•••					
L	Lot_1	1	115	104	0,032	-4,09e-05	0,131	0,044	16,57	0,032	1,50e-10	0,130	0,044	0,420
Γ	Lot_1	2	1	67	0,016	0,000	0,8332	0,016	15,12	0,016	0,000	0,826	0,015	-4,33e-17
ı	Lot_1	2	1	68	0,032	-4,09e-05	0,131	0,044	15,22	0,032	1,50e-10	0,130	0,044	0,420
1									•••					
L	Lot_1	2	115	104	0,016	3,67e-05	1,340	0,019	16,11	0,016	3,29e-09	1,399	0,019	0,393
									•••					

Data of all Data of all
wafermaps for wafer 1
wafer 2
wafer 1

Description of Data Set (2)

- How to get data of a specific wafermap, e.g. Crescent pattern of wafer 1
 - 1. get all rows where *Wafer*==1

Lot	Wafer	Х	Υ	Ring	Spot	Trend	Twospots	Crescent
Lot_1	1	20	84	0,033	6,48e-05	0,312	0,039	15,58
Lot_1	1	20	85	0,032	-4,66e-06	0,288	0,040	15,64
							•••	
Lot_1	1	134	121	0,032	-4,09e-05	0,131	0,044	16,57

2. get test values for each device by checking X/Y coordinates

Lot	Wafer	Х	Υ	Ring	Spot	Trend	Twospots	Crescent
Lot_1	1	20	84	0,033	6,48e-05	0,312	0,039	15,58
Lot_1	1	20	85	0,032	-4,66e-06	0,288	0,040	15,64
							•••	
Lot_1	1	134	121	0,032	-4,09e-05	0,131	0,044	16,57

Interpretation: Wafer 1, value of 5^{th} test of device with position (20,18) – the value 15,58 gets printed as a blue-ish color.

Classification Task

Pattern Types

	Ring	Spot	Trend	Twospots	Crescent
Example Wafermap					
Characteristics	Ring around wafermap • Size can differ but not position	Single spot on wafermap • Size, position and orientation can differ	Trend over whole wafermap	Two spots on opposite sides of wafermap • Size can differ	Single spot on one side of wafermap with crescent Size can differ

Desired Outcome

- Tasks:
- 1. Implementation of a **Neural Network model** which can reasonably distinguish between the pattern types *Ring, Spot, Trend, Twospots* and *Crescent* by using a *maximum of* **20 wafermaps** per pattern type from training_x.csv in the training phase
- 2. Incorporation of **Data Augmentation Techniques** in order to increase the number of **relevant** data samples. These techniques include, but are not limited to:
 - Fliping, Rotating, Translating the images
 - more sophisticated methods like SMOTE
- 3. Prediction of all pattern types on **all provided wafermaps** in file *test.csv* and compare these predicted labels to the provided labeling (respective column headers)
 - Evaluation measure(s): F1 score¹ (mandatory) and others (optional)

Enhancement of existing ML pipeline via DL approaches for the detection of patterns in wafermaps

