LICENCE 1, SEMESTRE 1 Mose 1003, Mathématiques Analyse - Algèbre

Feuille d'exercices 3

Exercice 1.

1. Trouver la formule de Taylor d'ordre 2 en 0 des fonction suivante :

$$\ln(1+x), \qquad \frac{1}{1+x}, \qquad \tan(x),$$

2. Trouver la formule de Taylor d'ordre 2 en $x_0 = 1$ de la fonction $x \mapsto \cos(\pi x)$, puis en déduire la limite suivante :

$$\lim_{x \to 1} \frac{\cos(\pi x) + 1}{(x - 1)^2}.$$

Exercice 2.

1. Calculer la derivée partielle par rapport à x des fonctions suivantes :

$$\ln(1 - xy), \qquad \frac{1}{\sqrt{x^2 + y^2 + 1}}, \qquad ye^x \sin(x + y)$$

2. Pouvez-vous préciser le domaine maximal de définition des fonctions précédentes?

Exercice 3. On considère la fonction

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- 1. Calculer $\frac{\partial f}{\partial x}$, et $\frac{\partial f}{\partial y}$.
- 2. Calculer $\frac{\partial^2 f}{\partial x \partial y}(0,0)$, et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.

Exercice 4. Trouver la formule de Taylor d'ordre 2 de la fonction $f(x,y) = \sqrt{1+x+y}$ en (0,0).

Exercice 5. Calculer les intégrales suivantes :

$$\int_{[0,1]\times[0,1]} e^{x+y} d(x,y), \qquad \int_{\{x^2+y^2\leq 1\}} e^{x^2+y^2} d(x,y), \qquad \int_{[0,1]^3} \sqrt{1+x+y} \cdot d(x,y,z)$$

Exercice 6. Soit C un corps de \mathbb{R}^2 (resp. de \mathbb{R}^3 . On appelle le *volume* de C la valeur $\int_C 1 \cdot d(x, y)$ (resp. la valeur $\int_C 1 \cdot d(x, y, z)$), et pour C un corps de \mathbb{R}^2 (resp. de \mathbb{R}^3) de volume fini, on appelle le barycentre de C le point $(x_0, y_0) \in \mathbb{R}^2$ (resp. $(x_0, y_0, z_0) \in \mathbb{R}^3$) donné par

$$x_0 = \frac{\int_C x d(x,y)}{\int_C 1 \cdot d(x,y)}, \ y_0 = \frac{\int_C y d(x,y)}{\int_C 1 \cdot d(x,y)} \ \left(\text{resp. } x_0 = \frac{\int_C x d(x,y,z)}{\int_C 1 \cdot d(x,y,z)}, \ y_0 = \frac{\int_C y d(x,y,z)}{\int_C 1 \cdot d(x,y,z)} \ z_0 = \frac{\int_C z d(x,y,z)}{\int_C 1 \cdot d(x,y,z)} \right)$$

Calculer le volume et le barycentre des corps suivants :

- 1. $C = [0,1] \times [2,4] \times [1,3] \subset \mathbb{R}^3$
- 2. $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \subset \mathbb{R}^2$