

Jean-Samuel Leboeuf

avec LeBlanc et Marchand

Les arbres de décisions en tant que machines à partitionner

Apprentissage automatique

Données → Modèle → Prédictions

Apprentissage automatique

Données → Modèle → Prédictions

Régression

Classification

Apprentissage automatique

Les séparateurs linéaires en 2D pulvérisent cet échantillon.

Les séparateurs linéaires en 2D pulvérisent cet échantillon.

Les séparateurs linéaires ne pulvérisent pas ces échantillons.

Dimension VC

Vapnik et Chervonenkis (1971)

Soit \mathcal{H} une classe d'hypothèses et S un échantillon :

$$\operatorname{VCdim} \mathcal{H} \equiv \max_{S} \{|S| : \mathcal{H} \text{ pulv\'erise } S\}$$

 $\operatorname{VCdim}\left(\operatorname{s\'epateurs\ lin\'eaires\ en\ 2D}\right)=3$

Extension multiclasse: Dimension de Natarajan (1989)

Fonction de croissance

$$\tau_{\mathcal{H}}(m) = \max_{S:|S|=m} \{|h(S)| : h \in \mathcal{H}\}$$

Fonction de croissance $\tau_{\mathcal{H}}$

Taille d'échantillon m

$$\operatorname{VCdim} \mathcal{H} = \max_{m} \left\{ m : \tau_{\mathcal{H}}(m) = 2^{m} \right\}$$

Arbre de décision

ightharpoonup Simon (1991) - VCdim des arbres de rang r sur attributs binaires

- Simon (1991) VCdim des arbres de rang r sur attributs binaires
- Mansour (1997) VCdim d'un arbre à N noeuds sur ℓ attributs binaires est en $\Omega(N)$ et $O(N\log\ell)$

- Simon (1991) VCdim des arbres de rang r sur attributs binaires
- Mansour (1997) VCdim d'un arbre à N noeuds sur ℓ attributs binaires est en $\Omega(N)$ et $O(N\log\ell)$
- Maimon et Rokach (2002) VCdim des arbres oblivious sur des attributs binaires

- Simon (1991) VCdim des arbres de rang r sur attributs binaires
- Mansour (1997) VCdim d'un arbre à N noeuds sur ℓ attributs binaires est en $\Omega(N)$ et $O(N\log\ell)$
- Maimon et Rokach (2002) VCdim des arbres oblivious sur des attributs binaires
- ► Yildiz (2015) :
 - ▶ VCdim exacte des souches de décision sur ℓ attributs binaires ($\lfloor \log_2(\ell+1) \rfloor + 1$)
 - Borne inférieure sur la VCdim de tout arbre pour tout type d'attributs

Peu de résultats sur les attributs à valeur réelle

Peu de résultats sur une borne supérieure

Machines à partitionner

11

Partitions

c-partition $\bar{\gamma}(S)$ d'un ensemble S:

- ightharpoonup Ensemble de c sous-ensembles de S appelées parts
- Parts non-vides
- ightharpoonup Union des parts égale S

Partitions

c-partition $\bar{\gamma}(S)$ d'un ensemble S:

- ightharpoonup Ensemble de c sous-ensembles de S appelées parts
- Parts non-vides
- \blacktriangleright Union des parts égale S

Exemple de 3-partition :

$$S = \{1, 2, 3, 4, 5\}$$
 $\bar{\gamma}(S) = \{\{2, 5\}, \{3\}, \{1, 4\}\}$

 $ightharpoonup \mathscr{P}^c_T(S)$: Fonction qui compte le nombre de c-partitions réalisables par T sur un échantillon S.

- $\mathcal{P}_T^c(S)$: Fonction qui compte le nombre de c-partitions réalisables par T sur un échantillon S.
- lacksquare $\pi^c_T(m) = \max_{S:|S|=m} |\mathcal{P}^c_T(S)|$: Fonctions de partionnement.

- $\mathcal{P}_T^c(S)$: Fonction qui compte le nombre de c-partitions réalisables par T sur un échantillon S.
- $\blacktriangleright \ \pi^c_T(m) = \max_{S:|S|=m} |\mathcal{P}^c_T(S)|$: Fonctions de partionnement.
- VCdim $T = \max_{m} \{ m : \pi_T^2(m) = 2^{m-1} 1 \}$

- $\mathcal{P}^c_T(S)$: Fonction qui compte le nombre de c-partitions réalisables par T sur un échantillon S.
- $\blacktriangleright \ \pi^c_T(m) = \max_{S:|S|=m} |\mathcal{P}^c_T(S)|$: Fonctions de partionnement.
- $VC\dim T = \max_{m} \left\{ m : \pi_{T}^{2}(m) = 2^{m-1} 1 \right\}$

But : **Évaluer** $\pi_T^2(m)$.

Approche récursive

Arbre T

Approche récursive

Souche T

Souche de décision

Rappel : Évaluer le nombre de partitions réalisables

$$S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5\}$$

Rappel : Évaluer le nombre de partitions réalisables

Un attribut \Leftrightarrow une permutation de $\{1, \dots, m\}$ Une règle \Leftrightarrow une partition

$$P(S) = \underbrace{ \begin{bmatrix} \text{sindices des } m \text{ exemples} \\ \text{sindices} \end{bmatrix} }_{\text{indices des } m \text{ exemples} \\ \begin{bmatrix} 2 & 5 & 3 & 1 & 4 \\ 3 & 1 & 5 & 2 & 4 \\ & & \vdots & & \end{bmatrix}}$$

$$P(S) = \underbrace{ \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \vdots & \vdots & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{\text{indices des } m \text{ exemples}} \longleftrightarrow \{\{2,3,5\}, \{1,4\}\}$$

$$P(S) = \underbrace{\begin{array}{c|cccc} & \text{indices des } m \text{ exemples} \\ \hline 2 & 5 & 3 & 1 & 4 \\ \hline 3 & 1 & 5 & 2 & 4 \\ \hline & & \vdots & & \\ \end{array}}_{\text{indices des } m \text{ exemples} \\ \hline + \left\{ \{1, 2, 3, 5\}, \{4\} \right\}$$

$$P(S) = \underbrace{\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{5}{2} & \frac{2}{4} \end{bmatrix}}_{\text{indices des } \xrightarrow{m \text{ exemples}}} \longleftrightarrow \{\{1, 2, 3, 5\}, \{4\}\}$$

Naïvement,

$$\pi_T^2(m) \le \ell(m-1).$$

$$P(S) = \underbrace{ \begin{bmatrix} \frac{2}{2} & 5 & 3 & 1 & 4 \\ 3 & 1 & 5 & 2 & 4 \\ & & \vdots & & \end{bmatrix}}_{\text{indices des } m \text{ exemples}} \longleftrightarrow \left\{ \{1, 2, 3, 5\}, \{4\} \right\} \longleftrightarrow \left\{ \{1, 2, 3, 5\}, \{4\} \right\}$$

Naïvement,

$$\pi_T^2(m) \le \ell(m-1).$$

$$P(S) = \underbrace{ \begin{bmatrix} \frac{1}{2} & \frac{1}{5} & \frac{3}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{5} & \frac{5}{2} & \frac{4}{4} \end{bmatrix}}_{\text{indices des } m \text{ exemples}} \longleftrightarrow \{\{1, 2, 3, 5\}, \{4\}\}$$

Naïvement,

$$\pi_T^2(m) \le \ell(m-1).$$

Par simplicité, choisissons m impair.

k = 1:

k = 2:

$$k = 1$$
: $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$ & $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$

k = 2:

$$k = 1$$
: $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$ & $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$

$$k = 2$$
: $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$ & $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$

$$k = 1:$$
 $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$ & $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$

$$k = 2$$
: $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$ & $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$

Idem pour $k \leftrightarrow m - k$.

$$k=1:$$
 $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$ & $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$

$$k = 2$$
: $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$ & $\begin{bmatrix} 2 & 5 & 3 & 1 & 4 \end{bmatrix}$

Idem pour $k \leftrightarrow m - k$.

Donc,

$$\pi_T^2(m) \leq \sum_{k=1}^{\lfloor \frac{m}{2} \rfloor} \min \left\{ 2\ell, \text{nombres de partitions avec une part de taille } k \right\}$$

```
{{1}, {2,3,4,5}}
{{2}, {1,3,4,5}}
{{3}, {1,2,4,5}}
{{4}, {1,2,3,5}}
{{5}, {1,2,3,4}}
```

(identiques aux partitions avec une part de taille m-1.)

Partitions avec une part de taille $2:\binom{m}{2}=\frac{m(m-1)}{2}$.

Partitions avec une part de taille $2:\binom{m}{2}=\frac{m(m-1)}{2}$.

(identiques aux partitions avec une part de taille m-2.)

Partitions avec une part de taille $2: {m \choose 2} = \frac{m(m-1)}{2}$.

Partitions avec une part de taille $k<\frac{m}{2}:{m\choose k}.$ (identiques aux partitions avec une part de taille m-k.)

Partitions avec une part de taille $2: {m \choose 2} = \frac{m(m-1)}{2}$.

Partitions avec une part de taille $k < \frac{m}{2} : {m \choose k}$.

Donc,

$$\pi_T^2(m) \le \sum_{k=1}^{\left\lfloor \frac{m}{2} \right\rfloor} \min \left\{ 2\ell, \binom{m}{k} \right\}$$

Partitions avec une part de taille $2: \binom{m}{2} = \frac{m(m-1)}{2}$.

Partitions avec une part de taille $k < \frac{m}{2} : {m \choose k}$.

Donc,

$$\pi_T^2(m) \le \frac{1}{2} \sum_{k=1}^{m-1} \min \left\{ 2\ell, \binom{m}{k} \right\}$$

Théoreme. Soit T la classe des souches de décision sur ℓ attributs à valeur réelle. Alors,

$$\pi_T^2(m) \le \frac{1}{2} \sum_{k=1}^{m-1} \min \left\{ 2\ell, \binom{m}{k} \right\},$$

et nous avons l'égalité pour $2\ell \leq m$, pour $2\ell \geq {m \choose \lfloor \frac{m}{2} \rfloor}$, et pour $1 \leq m \leq 7$.

Pour $2\ell \geq {m \choose {\lfloor \frac{m}{2} \rfloor}}$, on a

$$\pi_T^2(m) = \frac{1}{2} \sum_{k=1}^{m-1} {m \choose k} = 2^{m-1} - 1$$

Pour $2\ell \geq {m \choose \left\lfloor \frac{m}{2} \right\rfloor}$, on a

$$\pi_T^2(m) = \frac{1}{2} \sum_{k=1}^{m-1} {m \choose k} = 2^{m-1} - 1$$

Pour $2\ell < {m \choose \left\lfloor \frac{m}{2} \right\rfloor}$, on a

$$\pi_T^2(m) < 2^{m-1} - 1$$

Pour $2\ell \geq {m \choose {\lfloor \frac{m}{2} \rfloor}}$, on a

$$\pi_T^2(m) = \frac{1}{2} \sum_{k=1}^{m-1} {m \choose k} = 2^{m-1} - 1$$

Pour $2\ell < {m \choose \left\lfloor \frac{m}{2} \right\rfloor}$, on a

$$\pi_T^2(m) < 2^{m-1} - 1$$

Donc,

$$\operatorname{VCdim}(T) = \max_{m} \left\{ m : 2\ell \ge {m \choose \left\lfloor \frac{m}{2} \right\rfloor} \right\} \in \Theta(\log \ell)$$

Arbre quelconque

Arbre T

Arbre quelconque

Arbre T

Supposons $|\overline{\gamma}| = 3$ et,

$\bar{\alpha}$	\overline{eta}
α_1	eta_1
α_2	eta_2

Supposons $|\bar{\gamma}|=3$ et,

$$egin{array}{ccc} \overline{lpha} & \overline{eta} \ \hline lpha_1 & eta_1 \ \hline lpha_2 & eta_2 \ \hline \end{array}$$

Supposons $|\bar{\gamma}| = 3$ et,

Supposons $|\bar{\gamma}| = 3$ et,

Supposons $|\bar{\gamma}|=3$ et,

- $\overline{\gamma}_1 = \{ \alpha_1 \cup \beta_1, \alpha_2, \beta_2 \}$

Proposition. Soit $\mathfrak{Q}^c(\overline{\alpha},\overline{\beta})$ l'ensemble des $\overline{\gamma}$ avec c parts réalisables à partir de $\overline{\alpha}$ et $\overline{\beta}$. Alors,

$$\mathcal{P}_{T}^{c}(S) = \bigcup_{\{\lambda, S \setminus \lambda\}} \bigcup_{a,b} \mathcal{Q}^{c} \left(\mathcal{P}_{T_{l}}^{a}(\lambda), \mathcal{P}_{T_{r}}^{b}(S \setminus \lambda) \right) \cup \mathcal{Q}^{c} \left(\mathcal{P}_{T_{l}}^{a}(S \setminus \lambda), \mathcal{P}_{T_{r}}^{b}(\lambda) \right)$$

Proposition. Soit $\mathfrak{Q}^c(\overline{\alpha}, \overline{\beta})$ l'ensemble des $\overline{\gamma}$ avec c parts réalisables à partir de $\overline{\alpha}$ et $\overline{\beta}$. Alors,

$$\mathcal{P}^{c}_{T}(S) = \bigcup_{\{\lambda, S \backslash \lambda\}} \ \bigcup_{a,b} \mathcal{Q}^{c} \left(\mathcal{P}^{a}_{T_{l}}(\lambda), \mathcal{P}^{b}_{T_{r}}(S \backslash \lambda) \right) \cup \mathcal{Q}^{c} \left(\mathcal{P}^{a}_{T_{l}}(S \backslash \lambda), \mathcal{P}^{b}_{T_{r}}(\lambda) \right)$$

Borne supérieure.

$$\pi_T^c(m) \le \frac{1 + \mathbb{1} \left[T_l \ne T_r \right]}{2} \sum_{k=L_{T_l}}^{m-L_{T_r}} \min \left\{ 2\ell, \binom{m}{k} \right\} \sum_{\substack{1 \le a,b \le c \\ a+b \ge c}} \binom{a}{c-b} \binom{b}{c-a} (a+b-c)!$$

Proposition. Soit $\mathfrak{Q}^c(\overline{\alpha}, \overline{\beta})$ l'ensemble des $\overline{\gamma}$ avec c parts réalisables à partir de $\overline{\alpha}$ et $\overline{\beta}$. Alors,

$$\mathcal{P}^{c}_{T}(S) = \bigcup_{\{\lambda, S \backslash \lambda\}} \ \bigcup_{a,b} \mathcal{Q}^{c} \left(\mathcal{P}^{a}_{T_{l}}(\lambda), \mathcal{P}^{b}_{T_{r}}(S \backslash \lambda) \right) \cup \mathcal{Q}^{c} \left(\mathcal{P}^{a}_{T_{l}}(S \backslash \lambda), \mathcal{P}^{b}_{T_{r}}(\lambda) \right)$$

Borne supérieure.

$$\pi_T^c(m) \le \frac{1 + \mathbb{1} \left[T_l \ne T_r \right]}{2} \sum_{k=L_{T_l}}^{m-L_{T_r}} \min \left\{ 2\ell, \binom{m}{k} \right\} \sum_{\substack{1 \le a,b \le c \\ a+b \ge c}} \binom{a}{c-b} \binom{b}{c-a} (a+b-c)!$$

Borne inférieure.

$$\operatorname{VCdim} T \geq \operatorname{VCdim} T_l + \operatorname{VCdim} T_r$$

Bornes sur la dimension VC des 9 premiers arbres non équivalents pour $\ell=10$ attributs à valeur réelle.

Contributions

► Approche par partitions :

$$\overline{\gamma}(S), \qquad \mathcal{P}^c_T(S), \qquad \pi^c_T(m),$$

$$\operatorname{VCdim} T = \max_m \left\{m: \pi^2_T(m) = 2^{m-1} - 1\right\}$$

Contributions

► Approche par partitions :

$$\overline{\gamma}(S)$$
, $\mathcal{P}^c_T(S)$, $\pi^c_T(m)$,
$$\mathrm{VCdim}\, T = \max_m \left\{m: \pi^2_T(m) = 2^{m-1} - 1\right\}$$

Dimension VC exacte des souches de décision sur l attributs à valeur réelle :

$$\operatorname{VCdim} T = \max_{m} \left\{ m : 2\ell \ge \binom{m}{\left\lfloor \frac{m}{2} \right\rfloor} \right\}$$

Contributions

Approche par partitions :

$$\overline{\gamma}(S)$$
, $\mathcal{P}^c_T(S)$, $\pi^c_T(m)$,
$$\mathrm{VCdim}\, T = \max_m \left\{m: \pi^2_T(m) = 2^{m-1} - 1\right\}$$

Dimension VC exacte des souches de décision sur l attributs à valeur réelle :

$$\operatorname{VCdim} T = \max_{m} \left\{ m : 2\ell \ge \binom{m}{\left|\frac{m}{2}\right|} \right\}$$

Bornes sur la dimension VC des arbres en général.