L'OPTIMISATION

UNE REVUE

Edward Laurence & Guillaume St-Onge

11 avril 2016

Département de physique, de génie physique, et d'optique Université Laval, Québec, Canada

Schématisation d'un problème numérique

Modélisation

Schématisation d'un problème numérique

Simulation

Schématisation d'un problème numérique

Optimisation

Optimisation

Type d'algorithmes

Heuristique

Spécialisé à un problème et ne garantit pas la solution obtenue.

Métaheuristique

Algorithme général qu'on doit adapter au problème considéré.

RECHERCHE TABOU

Recherche tabou

Recherche Tabou

Type: Métaheuristique

Stochastique: Non

Caractéristique : Recherche local

Principes

- 1. On recherche le mouvement qui minimise notre fonction.
- 2. On ne revient pas sur nos pas (d'où tabou).

ALGORITHME DES LUCIOLES

Algorithme des lucioles

Recherche par lucioles

Type : Métaheuristique

Stochastique: Oui

Caractéristique: Recherche globale

Principes

- 1. Chaque luciole a une luminosité I et une position.
- 2. Les lucioles sont attirées par les lucioles plus lumineuses.
- 3. L'attirance décroît lorsque la distance augmente.

Algorithme des lucioles

N lucioles à des positions x_i On optimise la fonction f(x) $I_i \propto f(x_i)$

Si
$$I_j > I_i$$

$$x_i \to x_i + \beta_0 e^{-\gamma r_{ij}^2} (x_j - x_i) + \alpha \epsilon_i$$

 $\beta_0 = 0$: Marche aléatoire ($\gamma = 0$: Optimisation par essaims particulaires)

Trouver un minimum en 2D

Algorithmes évolutionniste

Algorithmes évolutionnistes (AE)

Type: Métaheuristique

Stochastique: Oui

Caractéristique: Évolution d'une population de solutions

Principes

- 1. Chaque solution possède un niveau d'adaptation
- 2. Opérateurs de variation pour générer de nouvelles solutions
- 3. Opérateurs de *sélection* pour améliorer l'adaptation des solutions

Schéma d'un AE

Caractéristiques des AE

Knapsack problem

Un revendeur de chocolat doit distribuer sa précieuse cargaison et récolter ses gains. Malheureusement, il n'a le temps de faire qu'une seule tournée avant que son fournisseur n'arrive et son sac à dos peut transporter au plus une masse M.

Quel est le sous-ensemble d'objets lui permettant de garder ses deux jambes ?

Implémentation de l'AE

- O Représentation du génome : 1 1 0 1 0 1
- O Niveau d'adaptation : Prix total des objets sélectionnés
- **Sélection des parents :** Tournoi
- Croisement des parents :

O Mutation :

Vidéo

Résumé des algorithmes

Tabou	Lucioles	Évolutif
Local	Global	Global
Déterministe -	Stochastique β_0, γ, α	Stochastique

Problème du vendeur

Travelling salesman problem

Un vendeur veut visiter N habitations et marcher le moins possible.

Dans quel ordre doit-il visiter les N maisons?

Problème du vendeur

$$N = 20$$

Tabou: 35.7656236297 (moyen 40.1709380389) **Lucioles**: 37.2932715277 (moyen 42.413128312)