Introduction to Machine Learning

Lab 2 Block 2

Rasmus Holm

2016-12-07

Contents

ssignment 1a	2
ssignment 1b	3
ssignment 2a	6
1	6
2	6
3	6
ssignment 2b	7
ssignment 3a	8
1	8
2	8
ssignment 4a	g
	11
Code for Assignment 1a	11
Code for Assignment 1b	
Code for Assignment 2a	13
Code for Assignment 2b	15
Code for Assignment 3a	15
Code for Assignment 4a	15

Assignment 1a

Assumptions:

$$\mathbf{E}\left[\epsilon^{b}(x)\right] = 0,$$

$$\forall_{i,j}, i \neq j : \mathbf{E}\left[\epsilon^{i}(x)\epsilon^{j}(x)\right] = 0$$

Prove:

$$E_X [(f_{bag}(x) - h(x))^2] = \frac{1}{B} [\frac{1}{B} E_X [(f^b(x) - h(x))^2]]$$

We know:

$$f^b(x) = h(x) + \epsilon^b(x)$$

Proof:

$$\begin{split} \mathbf{E}_{X} \left[(f_{bag}(x) - h(x))^{2} \right] &= \\ \mathbf{E}_{X} \left[(\frac{1}{B} \sum_{b} f^{b}(x) - h(x))^{2} \right] &= \\ \mathbf{E}_{X} \left[(\frac{1}{B} \sum_{b} \epsilon^{b}(x))^{2} \right] &= \\ \frac{1}{B^{2}} \mathbf{E}_{X} \left[(\epsilon^{1}(x))^{2} + 2\epsilon^{1}(x)\epsilon^{2}(x) + \dots + 2\epsilon^{b-1}(x)\epsilon^{b}(x) + (\epsilon^{b}(x))^{2} \right] &= \\ \frac{1}{B^{2}} \left(\mathbf{E}_{X} \left[(\epsilon^{1}(x))^{2} \right] + 2\mathbf{E}_{X} \left[\epsilon^{1}(x)\epsilon^{2}(x) \right] + \dots + 2\mathbf{E}_{X} \left[\epsilon^{b-1}(x)\epsilon^{b}(x) \right] + \mathbf{E}_{X} \left[(\epsilon^{b}(x))^{2} \right] \right) &= \\ \frac{1}{B^{2}} \sum_{b} \mathbf{E}_{X} \left[(\epsilon^{b}(x) - h(x))^{2} \right] &= \\ \frac{1}{B} \left[\frac{1}{B} \mathbf{E}_{X} \left[(f^{b}(x) - h(x))^{2} \right] \right] \end{split}$$

Assignment 1b

 $Figure\ 1:\ The\ true\ probabilities\ of\ the\ multinomal\ distributions.$

 $Figure\ 2:\ The\ estimated\ probabilities\ of\ the\ multinomal\ distributions.$

 $Figure \ 3: \ The \ log-likelihood \ versus \ the \ number \ of \ iterations.$

Assignment 2a

1

#> [1] 37.10301

2

#> [1] 40.19377

3

Assignment 2b

Assignment 3a

1

10-fold kfold

Number of boosting iterations

 $\mathbf{2}$

#> [1] 1037.719

#> [1] 1295.767

Assignment 4a

- #> [1] 0.11277705 0.09452412 0.07822686 0.07366362 0.07431551 0.07431551
- **#>** [7] 0.07235984 0.07105606 0.07105606 0.07105606
- **#>** [1] 0.11737855 0.09618520 0.08086078 0.07629605 0.07792631 0.07433975
- **#>** [7] 0.07336159 0.07238344 0.07303554 0.07075318

Appendix

Code for Assignment 1a

Code for Assignment 1b

```
set.seed(1234567890)
max_it <- 100 # max number of EM iterations</pre>
min_change <- 0.1 # min change in log likelihood between two consecutive EM iterations
N <- 1000 # number of training points
D <- 10 # number of dimensions
## true mixing coefficients
true_pi <- vector(length=3)</pre>
true_pi <- c(1/3, 1/3, 1/3)
## true conditional distributions
true_mu <- matrix(nrow=3, ncol=D)</pre>
true_mu[1,] \leftarrow c(0.5, 0.6, 0.4, 0.7, 0.3, 0.8, 0.2, 0.9, 0.1, 1)
true_mu[2,] \leftarrow c(0.5, 0.4, 0.6, 0.3, 0.7, 0.2, 0.8, 0.1, 0.9, 0)
## Producing the training data
x <- matrix(nrow=N, ncol=D)
for(n in 1:N) {
    k <- sample(1:3, 1, prob=true_pi)</pre>
    for(d in 1:D) {
        x[n, d] <- rbinom(1, 1, true_mu[k, d])
}
K <- 3 # number of guessed components
z <- matrix(nrow=N, ncol=K) # fractional component assignments
pi <- vector(length=K) # mixing coefficients</pre>
mu <- matrix(nrow=K, ncol=D) # conditional distributions</pre>
llik <- vector(length=max_it) # log likelihood of the EM iterations</pre>
## Random initialization of the paramters
pi <- runif(K, 0.49, 0.51)
pi <- pi / sum(pi)
for(k in 1:K) {
    mu[k,] \leftarrow runif(D, 0.49, 0.51)
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1),
     xlab="Class", ylab="Probability")
axis(side=1, at=c(1:D))
points(true_mu[2,], type="o", col="red")
points(true_mu[3,], type="o", col="green")
expectation.step <- function(x, mu, pi) {</pre>
    x_given_mu <- matrix(1, nrow=N, ncol=length(pi))</pre>
```

```
for (n in 1:N) {
        for (k in 1:K) {
             for (i in 1:D) {
                 prob <- mu[k, i]^x[n, i] * (1 - mu[k, i])^(1 - x[n, i])
                 x_given_mu[n, k] <- x_given_mu[n, k] * prob</pre>
             }
        }
    }
    z <- matrix(nrow=nrow(x), ncol=length(pi))</pre>
    for (n in 1:N) {
         denominator <- sum(pi * x_given_mu[n,])</pre>
        for (k in 1:K) {
             nominator <- pi[k] * x_given_mu[n, k]</pre>
             z[n, k] <- nominator / denominator</pre>
        }
    }
    z
}
loglikelihood <- function(x, mu, pi, z) {</pre>
    llik <- 0
    for (n in 1:N) {
        for (k in 1:K) {
             summation <- 0
             ## conditional <- 1
             for (i in 1:D) {
                 summation <- summation + x[n, i] * log(mu[k, i]) + (1 - x[n, i]) * log(1 - mu[k, i])
                 ## conditional <- conditional * mu[k, i]^x[n, i] * (1 - mu[k, i])^(1 - x[n, i])
             llik \leftarrow llik + z[n, k] * (log(pi[k]) + summation)
             ## llik[it] <- llik[it] + pi[k] * conditional</pre>
        }
    }
    llik
}
maximization.step <- function(x, z) {</pre>
    pi <- vector(length=ncol(z))</pre>
    mu <- matrix(nrow=ncol(z), ncol=ncol(x))</pre>
    for (k in 1:K) {
        pi[k] \leftarrow sum(z[, k]) / nrow(x)
    }
    for (k in 1:K) {
        denominator <- sum(z[, k])</pre>
        for (i in 1:D) {
```

```
nominator \leftarrow sum(x[, i] * z[, k])
            mu[k, i] <- nominator / denominator</pre>
        }
    }
    list(pi=pi, mu=mu)
}
for(it in 1:max it) {
    ## plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    ## points(mu[2,], type="o", col="red")
    ## points(mu[3,], type="o", col="green")
    ## points(mu[4,], type="o", col="yellow")
    ## Sys.sleep(0.5)
    ## E-step: Computation of the fractional component assignments
    z <- expectation.step(x, mu, pi)</pre>
    ## Log likelihood computation.
    llik[it] <- loglikelihood(x, mu, pi, z)</pre>
    ## cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
    ## flush.console()
    ## Stop if the lok likelihood has not changed significantly
    if (it > 1 && abs(llik[it] - llik[it-1]) < min_change) break</pre>
    ## M-step: ML parameter estimation from the data and fractional component assignments
    result <- maximization.step(x, z)
    pi <- result$pi
    mu <- result$mu
}
plot(mu[1,], type="o", col="blue", ylim=c(0,1),
     xlab="Class", ylab="Probability")
axis(side=1, at=c(1:D))
points(mu[2,], type="o", col="red")
points(mu[3,], type="o", col="green")
plot(llik[1:it], type="o", xlab="Iterations",
    ylab="Log-Likelihood")
```

Code for Assignment 2a

```
library(tree)

data <- read.csv2("../data/bodyfatregression.csv")
names(data) <- c("Waist", "Weight", "Bodyfat")
set.seed(1234567890)
train_idx <- sample(nrow(data), floor(nrow(data) * (2 / 3)))
train <- data[train_idx,]
test <- data[-train_idx,]
set.seed(1234567890)</pre>
```

```
tree_count <- 100
test_errors <- rep(0, tree_count)</pre>
for (i in 1:tree count) {
    newdata <- train[sample(nrow(train), replace=TRUE),]</pre>
    fit <- tree(Bodyfat ~ ., data=newdata, split="deviance")</pre>
    test_error <- mean((predict(fit, test) - test$Bodyfat)^2)</pre>
    test_errors[i] <- test_error</pre>
}
mean(test_errors)
tree_count <- 100
fold_count <- 3</pre>
test_errors <- matrix(0, nrow=tree_count, ncol=fold_count)</pre>
set.seed(1234567890)
folds <- suppressWarnings(split(1:nrow(data), f=1:fold_count))</pre>
for (j in 1:fold_count) {
    train <- data[-folds[[j]],]</pre>
    test <- data[folds[[j]],]</pre>
    for (i in 1:tree_count) {
        newdata <- train[sample(nrow(train), replace=TRUE),]</pre>
        fit <- tree(Bodyfat ~ ., data=newdata, split="deviance")</pre>
        test_error <- mean((predict(fit, test) - test$Bodyfat)^2)</pre>
        test_errors[i, j] <- test_error</pre>
    }
}
mean(test_errors)
bagging.regtrees <- function(formula, data, newdata, b) {</pre>
    predictions <- matrix(0, nrow=nrow(newdata), ncol=b)</pre>
    trees <- list()</pre>
    for (i in 1:b) {
         bootstrap_sample <- data[sample(nrow(data), replace=TRUE),]</pre>
        fit <- tree(formula, data=bootstrap_sample, split="deviance")</pre>
        trees[[i]] <- fit</pre>
        predictions[, i] <- predict(fit, newdata)</pre>
    }
    list(trees=trees, predictions=rowMeans(predictions))
cv.regtrees <- function(formula, data, newdata, b, k) {</pre>
```

Code for Assignment 2b

Code for Assignment 3a

```
library(mboost)
data <- read.csv2("../data/bodyfatregression.csv")</pre>
fit <- blackboost(Bodyfat_percent ~ Waist_cm + Weight_kg, data=data)</pre>
cvf <- cv(model.weights(fit), type="kfold")</pre>
cvm <- cvrisk(fit, folds=cvf, grid=1:100)</pre>
plot(cvm)
set.seed(1234567890)
train_idx <- sample(nrow(data), floor(nrow(data) * (2 / 3)))</pre>
train <- data[train_idx,]</pre>
test <- data[-train_idx,]</pre>
fit <- blackboost(Bodyfat_percent ~ Waist_cm + Weight_kg, data=train,</pre>
                    control=boost_control(mstop=mstop(cvm)))
test_error <- sum((predict(fit, test) - test$Bodyfat_percent)^2)</pre>
train_error <- sum((predict(fit, train) - train$Bodyfat_percent)^2)</pre>
test error
train_error
```

Code for Assignment 4a

```
library(mboost)
library(randomForest)
library(ggplot2)
library(reshape2)
data <- read.csv2("../data/spambase.csv")</pre>
data$Spam <- as.factor(data$Spam)</pre>
set.seed(1234567890)
train_idx <- sample(nrow(data), floor(nrow(data) * (2 / 3)))</pre>
train <- data[train_idx,]</pre>
test <- data[-train_idx,]</pre>
tree_counts <- seq(10, 100, by=10)</pre>
test_errors <- rep(0, length(tree_counts))</pre>
train_errors <- rep(0, length(tree_counts))</pre>
for (i in 1:length(tree_counts)) {
    fit <- blackboost(Spam ~ ., data=train, family=AdaExp(),</pre>
                        control=boost_control(mstop=tree_counts[i]))
    test_error <- 1 - (sum(predict(fit, test, type="class") == test$Spam) / nrow(test))</pre>
    train error <- 1 - (sum(predict(fit, train, type="class") == train$Spam) / nrow(train))
    test_errors[i] <- test_error</pre>
    train_errors[i] <- train_error</pre>
}
```

```
test_errors
train_errors
plot_data <- data.frame(Trees=tree_counts, test=test_errors, train=train_errors)</pre>
plot_data <- melt(plot_data, id="Trees", value.name="Error", variable.name="Data")</pre>
ggplot(plot_data) +
    xlab("Number of Regression Trees") +
    ylab("Misclassification Rate") +
    geom_line(aes(x=Trees, y=Error, color=Data)) +
    scale_x_discrete(limits=tree_counts)
test_errors <- rep(0, length(tree_counts))</pre>
train_errors <- rep(0, length(tree_counts))</pre>
for (i in 1:length(tree_counts)) {
    fit <- randomForest(Spam ~ ., data=train, ntree=tree_counts[i])</pre>
    test_error <- 1 - (sum(predict(fit, test, type="class") == test$Spam) / nrow(test))</pre>
    train_error <- 1 - (sum(predict(fit, train, type="class") == train$Spam) / nrow(train))</pre>
    test_errors[i] <- test_error</pre>
    train_errors[i] <- train_error</pre>
plot_data <- data.frame(Trees=tree_counts, test=test_errors, train=train_errors)</pre>
plot_data <- melt(plot_data, id="Trees", value.name="Error", variable.name="Data")</pre>
ggplot(plot_data) +
    xlab("Number of Regression Trees") +
    ylab("Misclassification Rate") +
    geom_line(aes(x=Trees, y=Error, color=Data)) +
    scale_x_discrete(limits=tree_counts)
```