BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models

Elad Ben-Zaken¹ Shauli Ravfogel^{1,2} Yoav Goldberg^{1,2}

¹Computer Science Department, Bar Ilan University ²Allen Institute for Artificial Intelligence

張信富 洪慶弦

Outline

- Abstract
- Background
- Existing Approaches
- Method Overview (BitFit)
- Experiments and Result
- Conclusions

Abstract

Abstract

- BitFit: Fine-tuning method focusing only on model's bias terms.
- Key Hypothesis:
 - Fine-tuning exposes pre-trained knowledge rather than learning new linguistic knowledge.
- Key Benefits:
 - Competitive performance on small-to-medium datasets.
 - Efficient deployment with reduced parameter updates.

Transformer Models:

- Dominate NLP tasks
 (e.g., BERT, RoBERTa).
- However, expensive to fine-tune and deploy.

Challenges:

- Fine-tuning changes all model parameters.
- 2. Large memory demand for multi-task applications.

Key Question:

How much of fine-tuning modifies pre-trained knowledge vs. exposes it?

Key Question:

 How much of fine-tuning modifies pre-trained knowledge vs. exposes it?

Existing Approaches

Existing Approaches

- **Existing Methods:**
 - **Adapters**: Task-specific modules between layers.
 - **Diff-Pruning**: Sparse difference vectors for tasks.
- Comparison:

Both methods limit parameter changes but vary in

efficiency and accuracy.
$$\theta_{\tau}=\theta+\delta_{\tau}$$

Diff-Pruning

Adapter

翻譯

專長

語言

Method Overview (BitFit)

$\mathbf{Q}^{m,\ell}(\mathbf{x}) = \mathbf{W}_q^{m,\ell} \mathbf{x} + \mathbf{b}_q^{m,\ell}$ Method Overview (BitFit) $\mathbf{K}^{m,\ell}(\mathbf{x}) = \mathbf{W}_k^{m,\ell} \mathbf{x} + \mathbf{b}_k^{m,\ell}$ Output $\mathbf{V}^{m,\ell}(\mathbf{x}) = \mathbf{W}_{u}^{m,\ell}\mathbf{x} + \mathbf{b}_{u}^{m,\ell}$ **Probabilities** $\mathbf{h}_1^{\ell} = att(\mathbf{Q}^{1,\ell}, \mathbf{K}^{1,\ell}, \mathbf{V}^{1,\ell}, .., \mathbf{Q}^{m,\ell}, \mathbf{K}^{m,\ell}, \mathbf{V}^{m,l})$ Add & Norm Feed Forward Add & Norm $\mathbf{h}_2^{\ell} = \operatorname{Dropout}(\mathbf{W}_{m_1}^{\ell} \cdot \mathbf{h}_1^{\ell} + \mathbf{b}_{m_1}^{\ell})$ Forward $\mathbf{h}_3^\ell = \mathbf{g}_{LN_1}^\ell \odot rac{(\mathbf{h}_2^\ell + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_1}^\ell$ $\mathbf{h}_4^{\ell} = \text{GELU}(\mathbf{W}_{m_2}^{\ell} \cdot \mathbf{h}_3^{\ell} + \mathbf{b}_{m_2}^{\ell})$ MLP classifier Positional Positional $\mathbf{h}_{5}^{\ell} = \text{Dropout}(\mathbf{W}_{m_3}^{\ell} \cdot \mathbf{h}_{4}^{\ell} + \mathbf{b}_{m_3}^{\ell})$ Encodina Encoding Output Embeddina Embeddina $\operatorname{\mathsf{out}}^\ell = \mathbf{g}_{LN_2}^\ell \odot rac{(\mathbf{h}_5^\ell + \mathbf{h}_3^\ell) - \mu}{2} + \mathbf{b}_{LN_2}^\ell$ Inputs Outputs

Method Overview (BitFit)

Key Idea:

Fine-tune only bias terms (b) in transformers.

Key Properties:

- 1. Matches performance of full fine-tuning.
- 2. Minimal parameter updates (< 0.1%).
- Task-invariant and hardware-friendly.

 $\mathbf{Q}^{m,\ell}(\mathbf{x}) = \mathbf{W}_q^{m,\ell}\mathbf{x} + \mathbf{b}_q^{m,\ell} \ \mathbf{K}^{m,\ell}(\mathbf{x}) = \mathbf{W}_k^{m,\ell}\mathbf{x} + \mathbf{b}_k^{m,\ell} \ \mathbf{V}^{m,\ell}(\mathbf{x}) = \mathbf{W}_q^{m,\ell}\mathbf{x} + \mathbf{b}_q^{m,\ell}$

 $\mathbf{h}_1^{\ell} = att(\mathbf{Q}^{1,\ell}, \mathbf{K}^{1,\ell}, \mathbf{V}^{1,\ell}, .., \mathbf{Q}^{m,\ell}, \mathbf{K}^{m,\ell}, \mathbf{V}^{m,l})$

$$egin{aligned} \mathbf{h}_2^\ell &= \operatorname{Dropout}ig(\mathbf{W}_{m_1}^\ell \cdot \mathbf{h}_1^\ell \ + \ \mathbf{b}_{m_1}^\ellig) \ \mathbf{h}_3^\ell &= \mathbf{g}_{LN_1}^\ell \odot rac{(\mathbf{h}_2^\ell + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_1}^\ell \ \mathbf{h}_4^\ell &= \operatorname{GELU}ig(\mathbf{W}_{m_2}^\ell \cdot \mathbf{h}_3^\ell \ + \ \mathbf{b}_{m_2}^\ellig) \ \mathbf{h}_5^\ell &= \operatorname{Dropout}ig(\mathbf{W}_{m_3}^\ell \cdot \mathbf{h}_4^\ell \ + \ \mathbf{b}_{m_3}^\ellig) \ \mathrm{out}^\ell &= \mathbf{g}_{LN_2}^\ell \odot rac{(\mathbf{h}_5^\ell + \mathbf{h}_3^\ell) - \mu}{\sigma} + \mathbf{b}_{LN_2}^\ell \end{aligned}$$

Experiments and Result

Experiments and Result

GLUE Benchmark (8 tasks) evaluate with Accuracy, F1, Spearman correlation.

		%Param	Avg.
	Train size		
(V)	Full-FT†	100%	84.8
(V)	Full-FT	100%	84.1
(V)	Diff-Prune†	0.5%	84.6
(V)	BitFit	0.08%	84.2
(T)	Full-FT‡	100%	81.2
(T)	Full-FT†	100%	81.8
(T)	Adapters‡	3.6%	81.1
(T)	Diff-Prune†	0.5%	81.5
(T)	BitFit	0.08%	80.9

 $\mathsf{BERT}_{\mathsf{Large}} \ \mathsf{Comparison}$

	Method	%Param	Avg.
BB	Full-FT	100%	82.3
BB	BitFit	0.09%	82.4
BL	Full-FT	100%	84.1
BL	BitFit	0.08%	84.2
Ro	Full-FT	100%	85.3
Ro	BitFit	0.09%	84.6

BERT _{Base} ,
BERT arge,
BERT _{Large} , RoBERTa _{Base}
compare with others

	% Param	Avg.
Full-FT	100%	82.3
BitFit	0.09%	82.4
$\mathbf{b}_{m2},\mathbf{b}_q$	0.04%	81.1
\mathbf{b}_{m2}	0.03%	80.0
\mathbf{b}_q	0.01%	76.6
Frozen	0.0%	62.1
rand uniform	0.09%	78.5
rand row/col	0.09%	79.5

BERT_{Base} with different modify rate on RTE

(Recognizing Textual Entailment)

Experiments and Result

BERT_{Base} change per bias term and layer on RTE task

BERT_{Base} SQuAD score on various size of datasets

Conclusions

Conclusions

BitFit achieves:

- Parameter efficiency.
- Competitive task performance.
- Scalability across tasks and hardware constraints.

Future Work:

- Investigate bias terms' role in transfer learning.
- Extend to non-language domains.

Q & A