

éduscol

ssources pour le lycée technologia

Enseignement de mathématiques

Classe de première STMG

Suites numériques

Contexte pédagogique

Objectifs

- Visualiser les situations exprimées à l'aide de suites non numériques pour réaliser un travail sur les variables, inconnues, utilisation de symboles, égalités. Introduire le couple $(n; u_n)$
- Mettre en évidence, à partir de différentes situations, différents modèles possibles (suite arithmétique puis géométrique) pour la description d'une même série de données.
- Utiliser le tableur (construction de nuages de points) ou la calculatrice (programmation d'algorithmes de calculs des termes successifs de suites arithmétiques et géométriques) pour comparer l'évolution de suites arithmétiques et géométriques.
- Émettre des conjectures sur le modèle le plus adapté à la description d'un phénomène observé pour des prévisions à plus ou moins long terme par à partir de différents outils.

Extrait du programme de l'enseignement de mathématiques du cycle terminal STMG

Bulletin officiel n° 6 du 9 février 2012

Contenus	Capacités attendues	Commentaires
Suites Modes de génération d'une suite numérique. Sens de variation. Définition par récurrence des suites arithmétiques et des suites géométriques.	 • Modéliser et étudier une situation simple à l'aide de suites. ◊ Mettre en œuvre un algorithme ou utiliser un tableur pour obtenir une liste de termes d'une suite, calculer un terme de rang donné. • Réaliser et exploiter une représentation graphique des termes d'une suite. • Déterminer le sens de variation des suites arithmétiques et des suites géométriques, à l'aide de la raison. 	Il est important de varier les outils et les approches.

MEN/DGESCO-IGEN Juin 2013

Les intentions

- Introduction par des suites non numériques à motifs croissants Analyse de la relation entre le numéro d'une figure donnée dans une suite et une quantité qui lui est associée; représentation par un ensemble de couples, un tableau de valeurs, un nuage de points.
- Modélisation et étude de situations issues de la vie courante à l'aide de suites Recherche d'un modèle correspondant à une situation donnée dans le but de faire des prévisions, en variant les approches, graphique et numérique.

Exemples d'activités

Activité 1 – Suites non numériques à motifs croissants

Introduction

Les situations exprimées à l'aide de suites non numériques possèdent une dimension visuelle qui rend les relations qu'elles représentent moins abstraites.

Les élèves sont amenés à analyser la relation entre le numéro d'une figure dans une suite et une quantité qui lui est associée et à la représenter par un ensemble de couples, un tableau de valeurs, un nuage de points.

Ils formulent alors la généralisation du procédé à l'aide de symboles rendus nécessaires pour désigner les figures et les quantités qui y sont associées.

Le couple $(n; u_n)$ apparaît alors naturellement : à chaque figure numérotée, on associe la quantité correspondante.

Quelques exemples pour mettre en évidence l'apport de l'étude de telles suites

Exemple1

Il s'agit d'étudier différentes relations possibles entre quatre figures données Considérons, la suite non numérique suivante construite à partir d'allumettes

1. Étudier la relation entre le numéro de la figure et le nombre d'allumettes qui la composent. Compléter la table de valeurs qui correspond à cette relation.

Numéro de la figure	1	2	3	4
Nombre d'allumettes qui la composent	4			

2. Étudier la relation entre le numéro de la figure et son périmètre (chaque allumette a une longueur de 1 unité). Compléter la table de valeur correspondant à cette nouvelle relation.

Numéro de la figure	1	2	3	4
Périmètre	4			

3. Étudier la relation entre le numéro de la figure et son aire (chaque allumette représente 1 unité d'aire). Compléter la table de valeurs correspondant à cette nouvelle relation

Numéro de la figure	1	2	3	4
Aire	1			

Exemple 2

Il s'agit d'émettre une conjecture sur l'expression du terme général d'une suite pour anticiper le nombre de carrés qui composeront une figure de rang donné.

1. Combien y aura-t-il de carrés dans la figure 8 ?

2. Compléter la table de valeurs suivant pour les 5 premières figures

Numéro de la figure	Nombre de carrés qui la composent
1	
2	
3	
4	
5	
8	
n	u_n

Le prolongement de la table à partir de la relation observée permet de prédire 22 carrés pour la figure 8. Cette conjecture est validée par la construction de la figure 8.

Modifier la suite de figure précédente pour qu'elle corresponde à la relation décrite par ce tableau de valeurs.

Numéro de la figure	Nombre de carrés qui la composent
1	1
2	3
3	5
4	7
5	9

Activité 2 – Modéliser et étudier une situation simple à l'aide de suites

Exemple 1

Le tableau suivant donne le nombre d'utilisateurs d'Internet en France (en millions) pour les années 2004 à 2011.On souhaite étudier la croissance du nombre d'utilisateurs d'Internet en France.

Année	2004	2005	2006	2007	2008	2009	2010	2011
Nombre d'utilisateurs en millions	22	24	27	28	31	33	35	38

On utilise un tableur pour analyser les données.

- 1. Représenter le nuage de points correspondant à la série de données précédente.
- 2. Au vu du graphique, quel type de modèle pourrait-on proposer ?

3. En observant le contenu de la colonne C, justifier le choix de modéliser l'évolution du nombre d'internautes par une suite arithmétique (u_n) de raison 2,3 et de premier terme $u_0 = 22$.

4. Représenter dans le même graphique le nuage de points de la suite u_n .

5. Observer la feuille de calcul suivante. Peut-on proposer un autre modèle pour l'évolution du nombre d'internautes en France ?

	1			
4	A	В	c	D
	Année	Nombre d'utilisateurs		
1				
2	2004	22		
3	2005	24	=B3/B2	
4	2006	27	1,125	
5	2007	28	1,037	
6	2008	31	1,107	
7	2009	33	1,065	
8	2010	35	1,061	
9	2011	38	1,086	
10				

À la lecture des résultats de la colonne C, on choisit d'introduire la suite géométrique (v_n) de premier terme $v_0 = 22$ et de raison 1,08.

6. Compléter la colonne E de la feuille de calcul suivante puis représenter dans un même graphique, le nuage de points de la série de données et celui de la suite (v_n) .

d	A	В	C	D	E
i	Année	Nombre d'utilisateurs		n	Vn
2	2004	22		0	22
3	2005	24		1	
4	2006	27		2	
5	2007	28		3	
6	2008	31		4	
7	2009	33		5	
8	2010	35		6	
9	2011	38		7	
10					

À l'aide du tableur, on obtient :

ź	A	8	C	D	E F	122	A	8	C	D	E	F.	
	Année	Nombre d'utilisateurs		n	Vn	1 2 3	40						
	2004	22		0	22	5	38				•		
	2005	24		1	=E2*1,08	6	36						
	2006	27		2	25,66	8	32					+ Nombre	
	2007	28		3	27,71	10	28					d'utilisateurs ■Suite géométric	oue.
	2008	31		4	29,93	11	26		+				
	2009	33		5	32,33	13 14	24	_ '			-1		
	2010	35		6	34,91	15	22 20		-,-				
	2011	38		7	37,7	17 18	2002	2004	2006 20	008 2010	2012		

7. Pour chacun des modèles, donner le nombre d'Internautes prévu pour l'année 2015 puis pour l'année 2021.

Quel modèle semble être le plus adapté à la description du phénomène ?

d	A	8	C D	E	F	G	,al	A	В	C	D	E	F.	G
	Année	Nombre	n	Un	Vn		1	Année	Nombre d'utilisateurs		n	Un	Vn	
1		d'utilisateurs					2	2004	22		0	22	22	
2	2004	22	0	22	22		3	2005	24		1	24,3	23,76	
2	2005	24	1	24,3	23,76		4	2006	27		2	26,6	25,6608	
-							5	2007	28		3	28,9	27,7137	
4	2006	27	2	26,6	25,66		6	2008	31		4	31,2	29,9308	
5	2007	28	3	28,9	27,71		7	2009	33		5	33,5	32,3252	
							8	2010	35		6	35,8	34,9112	
6	2008	31	4	31,2	29,93		9	2011	38		7	38,1	37,7041	
7	2009	33	5	33,5	32,33		10	2012			8	40,4	40,7205	
	2010	35	6	35,8	34,91		11	2013			9	42,7	43,9781	
				-	100000000000000000000000000000000000000		12	2014			10	45	47,4963	
9	2011	38	7	38,1	37,7		13	2015			11	47,3	51,2961	
10	2012		8	40,4	40,72		14	2016				49,6	55,3997	
					100		15	2017				51,9	59,8317	
11	2013		9	42,7	43,98		16	2018				54,2	64,6183	
12	2014		10	45	47,5		17	2019				56,5	69,7877	
	2015		11	47,3	51,3		18	2020				58,8	75,3707	
2.3	2015			17,5	52,5		19	2021				61,1	81,4004	

Exemple 2 – Des suites en mathématiques financières

Emprunt à annuité constante

Un peu de théorie

Un emprunt est une somme mise à la disposition de l'emprunteur par une banque ou un organisme financier. Le capital emprunté peut être remboursé par une suite d'annuités constantes.

Chaque annuité est constituée par le remboursement d'une partie du capital (amortissement) et des intérêts calculés sur le capital restant dû.

Notons C_n le capital restant dû le mois n; m l'annuité payée le mois n, I_n la part des intérêts dans cette annuité et A_n la part correspondant à l'amortissement du capital.

On admettra que le taux mensuel correspondant à un taux annuel t pour des petites valeurs de t, s'approxime par $\frac{t}{12}$.

1. Compléter le tableau suivant appelé tableau d'amortissement du crédit

Mois n	Capital restant dû C_n	Intérêts I _n	Amortissement A _n	Mensualité <i>m</i>
0	C_0	$I_0 = \frac{t}{12} \times C_0$	$A_0 = m - I_0$	m
1	$C_1 = C_0 - A_0$			
k-1				
k	$C_k =$	$I_k =$	$A_k =$	m
k + 1				

2. Comment obtient-on le coût total du crédit ?

Application

Pour acheter une voiture, un particulier sollicite un prêt auprès de sa banque d'un montant de $10~000~\rm fc$. Le conseillé financier lui propose un crédit au taux annuel de $7~\rm fc$.

Il est prêt à rembourser 500 € par mois.

Quelle sera la durée de son crédit ?

1. Construire un tableau d'amortissement sur le tableur, pour répondre à la question posée.

	A		c	D		 6	H
1							
2							
3	n	Cn	In	An	Mensualité		
4	0	10000	50	450	500		
3	1		55,39				
6	2	9105	45,53	454,5	500		
7	3	8651	43,25	456,7	500		
8	4	8194	40,97	459	500		
3	5	7735	38,68	461,3	500		
10	6	7274	36,37	463,6	500		
11	7	6810	34,05	465,9	500		
12	8	6344	31,72	468,3	500		
13	9	5876	29,38	470,6	500		
14	10	5405	27,03	473	500		
15	11	4932	24,66	475,3	500		
16	12	4457	22,29	477,7	500		
17	13	3979	19,9	480,1	500		
18	14	3499	17,5	482,5	500		
19	15	3017	15,08	484,9	500		
20	16	2532	12,66	487,3	500		
21	17	2044	10,22	489,8	500		
22	18	1555	7,773	492,2	500		
23	19	1062	5,312	494,7	500		
24	20	567,8	2,839	497,2	500		
25	21	70,59	0,353	499,6	500		
26							

Acheter ou louer son appartement?

Quand on paye un loyer, on a souvent le sentiment de gaspiller son argent et on se dit qu'il vaudrait mieux avec cette somme acquérir un patrimoine.

D'un autre coté, on est bien conscient que l'achat d'un appartement ou d'une maison, coûte en remboursement d'emprunt souvent plus cher qu'un loyer, sans compter les intérêts et l'on se demande si finalement c'est vraiment financièrement rentable.

• Évaluation financière du projet en cas d'achat

Une personne dispose d'un capital de 50 000 €

Elle se pose la question de savoir s'il vaut mieux l'investir dans l'achat d'un appartement ou le placer à la banque et louer un logement.

Prenons le cas d'un appartement dont le loyer mensuel est de $800 \, €$, dont la valeur à l'achat est $200\,000\, €$

La banque lui propose un prêt sur une durée de 20 ans au taux annuel de 4 %. Le remboursement se fait à mensualité constante.

On admettra que la mensualité se calcule par la formule suivante : $m = \frac{C_0 \times t}{1 - (1 + t)^{-n}}$

 C_0 est la somme empruntée,

m le montant de la mensualité,

t le taux d'intérêt mensuel,

n le nombre total de mensualités correspondant à la durée du crédit.

1. À l'aide du tableur, construire un tableau d'amortissement avec des adressages absolus sur les paramètres t, C_0 et n.

Z	A	В	C	D	E	F	G	Н	1
			-	-	_				
2									
3	Capital emprunté	150 000		Apport initial	50000				
4	Taux du prêt	0,055		Mensualité	=(\$B\$3*\$B\$4	/12)/(1-	-(1+\$B\$	4/12)^(-1	(2*\$B\$6))
5	Taux mensuel	0,004583333							
6	Durée Ans	15							
7	Duree Mois	180							
8									
		Capital restant							
9	Rang	dû	Amortissement	Interêt	Mensualité				
10	0	150000	538,1251819	687,5	1225,62518				
11	1	149461,8748	540,591589	685,033593	1225,62518				
12	2	148921,2832	543,0693005	682,555881	1225,62518				
13	3	148378,2139	545,5583681	680,066814	1225,62518				
14	4	147832,6556	548,0588439	677,566338	1225,62518				
15	5	147284,5967	550,5707803	675,054402	1225,62518				
16	6	146734,0259	553,0942297	672,530952	1225,62518				
17	7	146180,9317	555,6292449	669,995937	1225,62518				
18	8	145625,3025	558,175879	667,449303	1225,62518				
9	9	145067,1266	560,7341851	664,890997	1225,62518				
20	10	144506,3924	563,3042168	662,320965	1225,62518				
21	11	143943,0882	565,8860278	659,739154	1225,62518				
22	12	143377,2022	568,4796721	657,14551	1225,62518				
23	13	142808,7225	571,0852039	654,539978	1225,62518				
24	14	142237,6373	573,7026777	651,922504	1225,62518				

2. Évaluer le coût du crédit : en faisant la somme des intérêts (colonne D)

On obtient un coût de crédit de 70 612 €.

Au bout des 15 années, l'appartement aura coûté 270 612 €.

On aura acquis un appartement dont le prix de revente, s'il se valorise de 3% par an sera de 311 593 €.

• Évaluation financière en cas de location

1. Combien aura rapporté le capital de 50 000, qui n'a pas été investi dans un achat, s'il est placé au taux de 4 %, pendant 15 ans ?

Il aura rapporté 40 047 € d'intérêts, le capital au bout de quinze ans devient donc de 90 047 €.

On estime que sur une durée de 15 ans le loyer aura augmenté de 200 €, si bien qu'on peut considérer que sur 15 ans, le loyer moyen est de 900 €. Le loyer total sur 15 ans est donc de 180 x 900=162 000 €.

• Conclusion

Dans ce cas de figure, il est plus rentable d'acquérir son logement.

Remarque : en modifiant le taux d'intérêt et la durée de l'emprunt, à l'aide de la feuille de calcul précédemment réalisée, on peut montrer qu'au taux de 7 %, sur une durée de 20 ans, les intérêts cumulés sur la durée s'élèvent à près de 80 % du capital emprunté.

Dans les années 1990, les taux d'intérêts pour les prêts immobiliers dépassaient 12 %!

Activité 3 – Des suites en dynamique des populations

La théorie très controversée de Malthus

En 1798, Malthus publie un essai dans lequel il émet l'hypothèse que l'accroissement de la population, beaucoup plus rapide que celui des ressources alimentaire, conduira le monde à la famine. Il prône une politique de restriction démographique.

Il prédit mathématiquement que sans frein, la population augmente de façon géométrique, tandis que les ressources ne croissent que de façon arithmétique.

1. En 1800, la population de l'Angleterre était estimée à 8 millions d'habitants et l'agriculture anglaise pouvait nourrir 10 millions de personnes.

Malthus fait l'hypothèse que la population augmentait de 2% chaque année et que les progrès de l'agriculture permettraient de nourrir 500 000 personnes de plus chaque année.

On note S_n le nombre de personnes pouvant être nourries l'année 1800 + n et P_n la population de l'Angleterre l'année la même année.

Écrire un algorithme qui donne le nombre d'années au bout duquel la population aura dépassé le niveau de subsistance puis le programmer sur la calculatrice.

Entrées : Un entier naturel N, un nombre P, un nombre S

Sorties : Le nombre d'années N au bout du quelle le nombre P d'habitants dépasse le nombre S de personnes pouvant être nourries.

Demander P

Demander S

 $0 \rightarrow N$ On initialise le compteur à 0

Tant que P < S

P prend la valeur 1,02 x P

S prend la valeur 0.5 + S

N prend la valeur N+1

Fin de Tant que

Afficher N

Exploration du modèle exponentiel

Dans le modèle exponentiel de dynamique des populations (l'un des plus simples), l'hypothèse qui est faite est la suivante : « Le taux de variation de la population est proportionnel, en tout temps n, à la population P_n au temps n ».

Le modèle de Malthus est un modèle exponentiel

Il s'agit de mettre en évidence le fait qu'une suite géométrique traduit un accroissement relatif constant.

1. On vérifie, à l'aide du tableur que le modèle de Malthus est un modèle exponentiel ; on pourra reprendre les données de l'exemple précédent.

	A		- 2	D	18
1					
2	n	Pn	(Pn+1 - Pn)/Pn		
3	0	8			
£	1	=B3*1,02	2		
5	2	8,3232	0,02		
8	3	8,4897	0,02		
7	4	8,6595	0,02		
1	5	8,8326	0,02		
9	6	9,0093	0,02		
10	7	9,1895	0,02		
ti	8	9,3733	0,02		
1.2	9	9,5607	0,02		
13	10	9,752	0,02		
14	11	9,947	0,02		
13	12	10,146	0,02		

Dans ce modèle, le temps de doublement d'une population associé à un accroissement donné est indépendant de la taille de la population

1. Expérimentation à l'aide du tableur : Vérifier sur quelques exemples, qu'au taux d'accroissement de 5 % une population donnée double au bout de quinze ans.

2. Retrouver les résultats contenus dans le tableau suivant à l'aide du tableur

Taux d'accroissement par an : k	Temps de doublement en années
1	70
1,5	47
2	36
2,5	29
3	24
3,5	21
4	18

Ż	A	1	0	D.
1		Taux d'évolution k	1,04	
2				
3	n	Pn		
4	0	8		
	1	=B4*C\$1		
	2	8,6528		
7	3	8,998912		
ı	4	9,35886848		
9	5	9,733223219		
10	6	10,12255215		
11	7	10,52745423		
12	8	10,9485524		
13	9	11,3864945		
14	10	11,84195428		
15	11	12,31563245		
16	12	12,80825775		
17	13	13,32058806		
18	14	13,85341158		
19	15	14,40754804		
20	16	14,98384997		
21	17	15,58320396		
22	18	16,20653212		

Validité du modèle pour des prévisions à long terme

En supposant que la population mondiale suive un modèle de Malthus et en observant que celle-ci a doublé entre 1928 et 1970, on a obtenu un taux d'évolution k = 0.0166.

En 1970 celle-ci était de 3,7 milliards d'individus.

1. En gardant la même évolution, quelle population pouvait-on prévoir pour la fin d'année 1980 ? 1990 ? 2000 ?

2. Comparer avec les statistiques a posteriori : Est-ce satisfaisant ?

année	1980	1990	2000
Population mondiale (en milliards)	4,4	5,3	6

Analyse d'une animation de l'INED (Institut national d'études démographiques)

L'INED propose sur son site une animation sur l'évolution de la population mondiale. www.ined.fr/fr/tout_savoir_population/animations/population_mondiale

Extrait:

« La population mondiale compte 7 milliards d'habitants, contre un milliard il y a deux siècles. Combien serons-nous demain ?

Chaque seconde, notre planète compte en moyenne deux personnes de plus, ce qui représente 200 000 par jour, 75 millions par an. Rapportés aux 6 milliards et demi de 2005, c'est 1,2% en plus par an. À ce rythme de 1,2% par an, la population double en près de 60 ans. S'il se maintenait, les 6 milliards et demi de 2005 deviendraient 13 milliards en 2065 »

1. Construire une feuille automatisée de calcul qui illustre le texte précédent.