Quick Fungal DNA Extraction

Adam Taranto

Abstract

Citation: Adam Taranto Quick Fungal DNA Extraction . protocols.io

dx.doi.org/10.17504/protocols.io.fvebn3e

Published: 17 Oct 2016

Protocol

Grow Fungal Cultures

Step 1.

Inoculate fungal material into 300 µL rich growth medium in a 2 mL micro-centrifuge tube.

Grow at RT for 3-4 days.

O DURATION

36:00:00

Freeze Dry Samples

Step 2.

Freeze culture tubes in LN2

Freeze dry over night

O DURATION

24:00:00

NOTES

Adam Taranto 22 Sep 2016

Open the tubes. Obviously.

Adam Taranto 22 Sep 2016

Optional: Place frozen tube in tube rack inside a paper bag to prevent samples flying away when vacuum is released.

Tissue Lysis

Step 3.

Add 50 μ L 0.6mm glass beads to freeze-dried sample in 2 mL tube and grind using Tissue-Lyser LT for 5 mins at 50 Hz

Tissue Lysis

Step 4.

Add 500 µL lysis buffer to pulverised sample. Vortex to mix

. Fungal DNA Lysis Buffer

CONTACT: Adam Taranto

Prepare Stock Solutions

Step 4.1.

10% SDS solution

Dissolve 10 g SDS in 80 mL ddH₂O

Adjust volume to 100 mL

■ AMOUNT

10 g Additional info:

REAGENTS

✓ Sodium Dodecyl Sulfate <u>PubChem CID: 3423265</u> by Contributed by users

Prepare Stock Solutions

Step 4.2.

1M Tris Base, pH 8.0

Dissolve 12.114g Tris-Base in 80 mL ddH₂O

pH to 8.0 with 10 M HCl Adjust volume to 100mL

12 g Additional info:

REAGENTS

✓ Tris Hydroxymethylaminomethane PubChem CID: 6503 by Contributed by users

Prepare Stock Solutions

Step 4.3.

0.5 M EDTA, pH 8.0

Add 18.61 g of disodium EDTA • 2H₂O to 80 mL of ddH₂O

Adjust the pH to 8.0 with NaOH (20 NaOH pellets)

Adjust volume to 100 mL

■ AMOUNT

19 g Additional info:

REAGENTS

✓ EDTA Disodium Salt <u>PubChem CID</u>: 8759 by Contributed by users

Prepare Stock Solutions

Step 4.4.

3 M NaCl

Dissolve 17.532 g NaCl in 80 mL ddH₂O Adjust volume to 100 mL

■ AMOUNT

18 g Additional info:

✓ Sodium Chloride PubChem CID: 5234 by Contributed by users

Prepare Lysis Solution - 100 mL

Step 4.5.

Add 500µL IGEPAL-CA630 to 82.3 mL ddH₂O

Stir until dissolved

■ AMOUNT

500 µl Additional info:

REAGENTS

IGEPAL-CA630 I3021 SIGMA-ALDRICH by Sigma Aldrich

NOTES

Adam Taranto 22 Sep 2016

Final concentration: 0.5%

Prepare Lysis Solution - 100 mL

Step 4.6.

Add 0.5g Sodium deoxycholate

Stir until dissolved

REAGENTS

✓ Sodium Deoxycholate <u>PubChem CID: 23668196</u> by Contributed by users

NOTES

Adam Taranto 22 Sep 2016

Final concentration: 0.5%

Prepare Lysis Solution - 100 mL

Step 4.7.

Add 10 mL of 10% SDS stock solution

Stir until dissolved

■ AMOUNT

10 ml Additional info:

REAGENTS

✓ Sodium Dodecyl Sulfate <u>PubChem CID: 3423265</u> by Contributed by users

₽ NOTES

Adam Taranto 22 Sep 2016

Final concentration: 1%

Adam Taranto 17 Oct 2016

1% SDS = 34.67 mM

Prepare Lysis Solution - 100 mL

Step 4.8.

Add 5 mL of 3M NaCl stock solution

■ AMOUNT

5 ml Additional info:

REAGENTS

✓ Sodium Chloride PubChem CID: 5234 by Contributed by users

NOTES

Adam Taranto 22 Sep 2016

Final concentration: 150 mM

Prepare Lysis Solution - 100 mL

Step 4.9.

Add 200 µL of 0.5 M EDTA (pH 8.0) stock solution

■ AMOUNT

200 µl Additional info:

REAGENTS

✓ EDTA Disodium Salt <u>PubChem CID</u>: 8759 by Contributed by users

NOTES

Adam Taranto 22 Sep 2016

Final concentration: 1 mM

Prepare Lysis Solution - 100 mL

Step 4.10.

Add 1 mL Tris-Base (pH 8.0)

Stir until dissolved

■ AMOUNT

1 ml Additional info:

REAGENTS

✓ Tris Hydroxymethylaminomethane PubChem CID: 6503 by Contributed by users

NOTES

Adam Taranto 22 Sep 2016

Final concentration: 10 mM

Prepare Lysis Solution - 100 mL

Step 4.11.

Add 1mL of RNase A (10 mg/mL) stock solution

■ AMOUNT

1 ml Additional info:

REAGENTS

RNase A (10 mg/mL) EN0531 by Thermo Fisher Scientific

NOTES

Adam Taranto 22 Sep 2016

Final concentration: 100 µg/mL

Prepare Lysis Solution - 100 mL

Step 4.12.

Store lysis solution at 4°C

Prepare Lysis Solution - 100 mL

Step 4.13.

Add PVPP

Add 2g Polyvinylpolypyrrolidone, stir until dissolved.

■ AMOUNT

2 g Additional info:

REAGENTS

✓ Polyvinylpolypyrrolidone <u>CID 6917</u> by Contributed by users

NOTES

Adam Taranto 17 Oct 2016

Final concentration 2%

Adam Taranto 17 Oct 2016

PVPP precipitates phenols, tannins, alkaloids which may inhibit enzymes or damage DNA

Tissue Lysis

Step 5.

Heat to 45 °C for 5 mins, shaking at 1200 rpm.

O DURATION

00:10:00

NOTES

Adam Taranto 22 Sep 2016

Alternatively: Shaking rack on max for 10 mins @ RT

Tissue Lysis

Step 6.

Add 0.5 vol (250 μ L) **3 M Potassium Acetate** to lysis mix.

Vortex to mix.

NOTES

Adam Taranto 22 Sep 2016

Potassium salt of SDS is highly insoluble. Will precipitate SDS and protein in the absence of ethanol.

Adam Taranto 17 Oct 2016

3 M Potassium Acetate, pH 5.5

Dissolve 29.445 g Potassium Acetate in 80 mL ddH₂O,

pH to 5.5 with 10 M HCl

Mass: 98.15 g/mol

Target working concentration: 0.3 M

Tissue Lysis

Step 7.

Centrifuge at 12 K rpm for a minimum of 15 minutes @ 4°C.

© DURATION

00:15:00

NOTES

Adam Taranto 22 Sep 2016

Proteins should be precipitated.

Tissue Lysis

Step 8.

Transfer supernatant (650 µL) to fresh 1.5 mL microcentrifuge tube.

DNA Precipitation

Step 9.

Add 50 µL 3M Sodium Acetate pH 5.5

NOTES

Adam Taranto 17 Oct 2016

3 M Sodium Acetate, pH 5.5

Dissolve 24.6103 g **Sodium acetate** in 80 mL ddH₂O

pH to 5.5 with 10 M HCl

Vol to 100 mL

Mass: 82.0343 g/mol

Target working concentration: 0.3 M

Adam Taranto 17 Oct 2016

Sodium ions re-solubilise SDS to prevent excessive precipitation in DNA pellet

DNA Precipitation

Step 10.

Add 1 vol chilled **Isopropanol (700 \muL)** to the supernatant, mix well, incubate -20 $^{\circ}$ C for 1hr.

© DURATION

01:00:00

DNA Precipitation

Step 11.

Centrifuge at 12 K rpm for a minimum of 15 minutes at 4°C. Decant gently or aspirate supernatant.

O DURATION

00:15:00

NOTES

Adam Taranto 22 Sep 2016

Take care not to dislodge DNA pellet

Wash DNA Pellet

Step 12.

To the pellet add 500 µL **70% ethanol** stored at -20°C.

Wash DNA Pellet

Step 13.

Centrifuge at 12 K rpm for a minimum of 3 minutes at 4°C. Discard supernatant.

Wash DNA Pellet

Step 14.

Repeat wash step with 500 µL of cold **70% ethanol.** Spin and discard supernatant.

O DURATION

00:05:00

Wash DNA Pellet

Step 15.

Dry pellet in speed-vac at 45°C for 5-10 minutes.

O DURATION

00:10:00

NOTES

Adam Taranto 22 Sep 2016

Or until all ethanol is evaporated.

Re-suspend DNA

Step 16.

Re-suspend pellet in nuclease free water or **TE buffer** (10 mM Tris pH 8.0, 1 mM EDTA pH 8.0).

NOTES

Adam Taranto 17 Oct 2016

Some samples may require heated shaking (45°C @ 1200rpm for 10 mins) followed by manual pipetting to fully suspend pellet. Especially in polysaccharide-rich samples.