Universidad Nacional de Río Negro Física III B - 2018

Unidad 02

Clase U02 C06 - 11

Cont Máquinas térmicas

Cátedra Asorey

Web github.com/asoreyh/unrn-f3b

YouTube https://goo.gl/nNhGCZ

Contenidos: Termodinámica, alias F3B, alias F4A

Un ciclo que funciona El inicio de la revolución industrial

Admisión

el vapor de alta presión ingresa (ingreso de energía desde la fuente caliente)

Expansión:

comienza la expansión del vapor desplazando al pistón y produciendo trabajo mecánico

• Escape:

Rápida salida de vapor de baja presión hacia la fuente fría

Compresión:

La admisión de vapor del otro lado del cilindro comprime el remanente y ecualiza las presiones para la nueva admisión

El ciclo Otto - realista

May 17, 2018

H. Asorey - F3B+F4A 2018

Ciclo Diésel o ciclo de combustión isóbara

May 17, 2018

H. Asorey - F3B+F4A 2018

Macquinas térmicas

 Máquina térmica: obtengo trabajo mecánico a partir de la transferencia de calor de la fuente caliente a la fuente fría...

Ciclo combinado

Mejora de la eficiencia global

Ciclo inverso → Máquina frigorífica

- Si entrego trabajo, es posible transferir calor de la fuente fría a la caliente
- Heladera

Macquinas térmicas

- Máquina térmica: dispositivo cíclico que absorbe calor de una fuente caliente, realiza un trabajo mecánico y entrega la energía remanente en forma de calor a una fuente fría
 - Este calor no es aprovechable por la misma máquina térmica

¿Por qué no puede ser 1?

Hemos dicho

$$\eta = 1 - \frac{Q_{ENT}}{Q_{ABS}} \le \eta_C = 1 - \frac{T_{Fria}}{T_{Caliente}}$$

- Para que el rendimiento sea 1 debería pasar que Q_{ENT}=0
- Esto implicaría una conversión total del calor entregado por la fuente caliente en trabajo ← Esto no es posible

Segundo principio de la termodinámica

- Enunciado de Clausius
 No es posible un proceso que tenga como único
 resultado la transferencia de calor de un cuerpo hacia
 otro más caliente.
- Expresa un hecho empírico, y va por la negativa: nos dice lo que no es posible hacer

• Establece un sentido para el flujo espontáneo de calor de los focos calientes a los focos fríos y no al reves

Segundo principio de la termodinámica

- Enunciado de Kelvin-Planck (K-P)
 No es posible construir una máquina térmica que,
 operando en forma cíclica, produzca como único efecto
 la absorción de calor procedente de un foco y la
 realización de una cantidad equivalente de trabajo.
- Al igual que Clausius, también xpresa un hecho empírico, y va por la negativa
- El rendimiento de una máquina térmica siempre será menor que 1

η<1

Equivalencia

Ambos enunciados son equivalentes:

Supongamos existe una máquina que no cumple K-P:

- Dado que, por el 1er ppio, $W_1=Q_1 \rightarrow Q_3=Q_1+Q_2$.
- y puesto que la fuente caliente entrega Q₁ y recibe Q₃, hay una transferencia neta y espóntanea Q₂ de T₅ a Tc

Equivalencia

- Ambos enunciados son equivalentes:
- Tengo una máquina términa normal operando, y supongamos existe una máquina que no cumple Clausius:

- Por el 1^{er} ppio, W₁=Q₁-Q₂
- puesto que Q₂ vuelve a la fuente caliente, esta entrega una cantidad de calor (Q₁-Q₂) en forma de trabajo W₁.

Equivalencia

 Hemos visto que el no cumplimiento de un enunciado implica el no cumplimiento del otro enunciado → Ambos enunciados del 2º principio son equivalentes

Reversibilidad, otra vez

- Podemos transformar integramente el trabajo en calor (estufa), pero no integramente el calor en trabajo (K-P)
- Proceso reversible →
 - La transformación puede ocurrir en los dos sentidos de forma que el estado final del sistema y del entorno sea exactamente igual al incial (sin huellas); ó
 - Aquel cuyo sentido puede invertirse por un cambio en las condiciones de fondo
- Proceso irreversible → no hay camino inverso.
- Todos los procesos reales son irreversibles:
 - ijsi hay ΔT, entonces hay irreversibilidad!!

Proceso irreversible

El proceso es irreversible porque el entorno cambió: realizó un trabajo sobre el medio

Irreversibilidad

- Interna: procesos internos fuera de equilibrio → el sistema no está en un estado termodinámico definido
 - Mecánica: conversión de trabajo en calor (p. ej., viscosidad)
 - Térmica: transferencias de calor en el sistema
 - Químico-físicas: reacciones, mezclas, disoluciones, ...
 - •
- Externa: la interacción con el medio es irreversible
 - Mecánica: el rozamiento es irreversible (si no, viola K-P)
 - Térmica: transferencias de calor con el medio
 - •

Máquina reversible e irreversible

Si la máquina térmica no es reversible, Q_c < Q

Teorema de Carnot

Carnot y el segundo principio

• En la fuente caliente:

• Sale:

$$\Delta Q_c = Q \left(\frac{\eta}{\eta_c} - 1 \right)$$

• Entra:

$$Q_c = \frac{\eta}{\eta_c} Q$$

En la fuente fría

• Sale:

$$Q_f = \eta Q \left(\frac{1}{\eta_c} - 1 \right)$$

• Entra:

$$Q(1-\eta)$$

$$\Delta Q_f = -Q \left(\frac{\eta}{\eta_c} - 1 \right)$$

Si $\eta > \eta_c \rightarrow$ No se cumple Clausius

• Si $\eta = \eta_c \rightarrow$ El motor combina funciona sin ningún efecto, pero la máquina térmica tiene disipación

Violación del Primer Principio

• Si $\eta > \eta_c \rightarrow$ Transferencia neta de calor de la fuente fría a la fuente caliente, sin trabajo externo

Violación del Segundo Principio

• $\rightarrow \eta < \eta_c$: Una máquina térmica tendrá menor rendimiento que una máquina de Carnot funcionando entre las mismas temperaturas