# Deep Learning MLP – Backprop

Edgar Roman-Rangel. edgar.roman@itam.mx

Department of Computer Science. Instituto Tecnológico Autónomo de México, ITAM.

### Outline

Stochastic Gradient Descent

### Gradient Descent, GD



- Random initialization.
- Forward pass.
- Error estimation.
- Gradient computation.
- Backward pass.

Q: remember the notion of "taking a step in the direction of steepest descent"?

A: The direction of the step is computed considering all of the parameters at once, i.e., we compute first the gradient (all partial derivatives), and then update all the weights.

### GD, pseudocode

#### Algorithm 1 Gradient Descent

- 1: Initialize  $\Omega$  randomly.
- 2: for each epoch do
- 3: for each sample do
- $\hat{y}_i = f(x_i; \Omega)$
- 5:  $E_i = l(y_i, \hat{y}_i)$
- 6:  $\Omega = \Omega \eta \nabla_{\Omega} E_i$
- 7: end for
- 8: end for

where,  $\Omega = \{\omega_i\}$ ,  $l(\cdot)$  is a loss function, and  $\nabla_{\Omega} E_i$  is the gradient of the error with respect to the set  $\Omega$  of parameters.

**Q:** can you imagine a drawback of this approach?

A: The model will end up being biased towards the last seen

#### Stochastic GD

Stochastic Gradient Descent

000000

Stochastic GD (SGD) tries to compensate for the bias of the last seen training samples.

Each epoch, randomly shuffle the order of samples.

#### **Algorithm 2** Stochastic Gradient Descent

- 1: Initialize  $\Omega$  randomly.
- 2: for each epoch do
- $\{X,y\} = shuffle(\{X,y\})$ 3:
- 4: for each sample do
- $\hat{y}_i = f(x_i; \Omega)$ 5:
- $E_i = l(y_i, \hat{y}_i)$ 6:
- $\Omega = \Omega n\nabla_{\Omega}E_{i}$ 7:
- end for 8:
- 9: end for

Deep Learning MLP - Backprop

#### Batch GD

#### Algorithm 3 Batch Gradient Descent

- 1: Initialize  $\Omega$  randomly.
- 2: Define a number of batches.
- 3: for each epoch do

4: 
$$\{X,y\} = shuffle(\{X,y\})$$

- for each batch do 5.
- $\{X_B, y_B\} = \text{next } N \text{ training pairs}$ 6.
- $\hat{y}_B = f(X_B; \Omega)$ 7:
- $E_B = \frac{1}{N} \sum_{n=1}^{N} l(y_{B_n}, \hat{y}_{B_n})$
- $\Omega = \Omega n\nabla_{\Omega}E_{R}$ 9.
- end for 10:
- 11: end for

**Q:** What advantage would it have to use BGD instead of SGD?



MLP - Backprop Deep Learning

#### **BGD**

- a.k.a., mini-batch gradient descent.
  - Approximates E with the average error of a batch of samples.
  - Fewer updates, i.e., faster optimization process.
  - ▶ Batch size bs = 1 boils down to regular GD.
  - ► Common batch sizes: 16, 32, 64, 128, 256.

### Outline

Multi-layer Perceptron

Multi-layer Perceptron

### Linearity





### Non-linear Separability

Most real-world problems are non-linearly separable.



**Q:** How do we do in these cases in machine learning?

Deep Learning MLP - Backprop

#### Non-linear transformations

#### Feature engineering.

#### Examples:

- New feature,  $x_2 = (x_1)^2$ .
- New feature,  $x_3 = x_2 * x_1$ .
- Feature selection: use only a subset of features.







◆ロト ◆部ト ◆意ト ◆意ト ・ 意 ・ 夕 ○ ○

Deep Learning MLP - Backprop

#### Logical AND: can be solved with a single perceptron.

| $x_0$ | $x_1$ | $x_2$ | y |
|-------|-------|-------|---|
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 0 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 1 |

#### Solved using.

| ſ | $\omega_0$ | $\omega_1$ | $\omega_2$ |  |  |
|---|------------|------------|------------|--|--|
| ſ | -1.5       | 1          | 1          |  |  |



Deep Learning

### Example II

Logical XOR: not solved with a single perceptron. Let's cascade non-linear activation functions: multi-layer perceptron (MLP).

| $x_0$ | $x_1$ | $x_2$ | y |
|-------|-------|-------|---|
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 1 |
| 1     | 1     | 0     | 1 |
| 1     | 1     | 1     | 0 |



Solved using:

| $b_1$ | $b_2$ | $b_3$ | $\omega_1$ | $\omega_2$ | $\omega_3$ | $\omega_4$ | $\omega_5$ | $\omega_6$ |
|-------|-------|-------|------------|------------|------------|------------|------------|------------|
| -10   | 30    | -30   | 20         | -20        | 20         | 20         | -20        | 20         |

**Q:** What if we omit the non-linearity activation functions?

Deep Learning MLP - Backprop

#### **MLP**

Consecutive linear operations are equivalent to a single linear operations, i.e., DL is enable by the use of non-linear activation functions.

- We end up with: input, hidden, and output layers.
- Intermediate representations correspond feature engineering.
- However, features are learned rather than engineered.
- End-to-end process.
- Information abstraction increases with depth.
- Inspired on human brain?

#### **Nonlinearities**

In general, the more difficult the problem looks, the more chances are it is non-linearly separable. Therefore, the deeper the model must be.



Q: But how do we do it?



**Q:** How do we perform GD on deep networks?



A: Use backpropagation (backprop): gradient descent + chain rule.

MLP - Backprop Deep Learning



Simplified notation



#### Notation II

#### Let's also use:

- $ightharpoonup s = \sum_i \omega_i x_i + b$ , linear combination.
- $ightharpoonup a = \sigma(s)$ , non-linear activation.

#### Chain rule:





1 training example  $\{ \mathbf{x} = [0.05, 0.1], y = 1 \}.$ 

Initialize with:

|            | LC VVILI   |            |            |            |            |       |       |       |
|------------|------------|------------|------------|------------|------------|-------|-------|-------|
| $\omega_1$ | $\omega_2$ | $\omega_3$ | $\omega_4$ | $\omega_5$ | $\omega_6$ | $b_1$ | $b_2$ | $b_3$ |
| 0.15       | 0.20       | 0.25       | 0.30       | 0.50       | 0.55       | 0.35  | 0.35  | 0.60  |

And let's use  $\eta = 0.1$ 

and

$$E = \frac{1}{2}(y - \hat{y})^2.$$

### Example cont.

#### Remember the process:

- 1. Forward pass.
- Error calculation.
- 3. Gradient computation.
- 4. Backward pass (weights update).

### Example cont. (Forward pass)

$$s_1 = \omega_1 x_1 + \omega_3 x_2 + b_1,$$
  $s_2 = \omega_1$   
 $= (0.15)(0.05) + (0.25)(0.1) + 0.35,$   $= (0.3825)$   
 $a_1 = \sigma(s_1),$   $a_2 = \sigma(s_1)$   
 $a_1 = 0.5945,$   $a_2 = 0.5945,$   $a_3 = 0.5945,$   $a_4 = 0.5945,$   $a_5 = 0.5945,$   $a_6 = 0.5945,$   $a_7 = 0.5945,$   $a_{11} = 0.5945,$   $a_{12} = 0.5945,$   $a_{13} = 0.5945,$   $a_{14} = 0.5945,$   $a_{15} = 0.5945$ 

$$s_3 = \omega_5 a_1 + \omega_6 a_2 + b_3,$$
  
= (0.5)(0.5945) + (0.55)(0.5964) + 0.6,  
= 1.2252.

$$a_3 = \sigma(s_3),$$
  
$$= 0.773.$$

$$s_2 = \omega_2 x_1 + \omega_4 x_2 + b_2,$$
  
=  $(0.2)(0.05) + (0.3)(0.1) + 0.35,$   
=  $0.39.$   
$$a_2 = \sigma(s_2),$$
  
=  $0.5964.$ 

$$\hat{y} = a_3,$$
  
= 0.773.

$$E = \frac{1}{2}(y - \hat{y})^2,$$
  
= (0.5)(1 - 0.773)<sup>2</sup>,  
= 0.0258.

## Example cont. (Gradients $\frac{\partial E}{\partial \omega}$ )

$$\begin{split} \frac{\partial E}{\partial \omega_6} &= \frac{\partial E}{\partial a_3} \cdot \frac{\partial a_3}{\partial s_3} \cdot \frac{\partial s_3}{\partial \omega_6}, \\ &= \frac{\partial}{\partial a_3} \frac{1}{2} (y - \hat{y})^2 \cdot \frac{\partial}{\partial s_3} \sigma(s_3) \cdot \frac{\partial}{\partial \omega_6} \left( \omega_5 a_1 + \omega_6 a_2 + b_3 \right), \\ &= \frac{2}{2} (y - a_3) \frac{\partial}{a_3} (y - a_3) \cdot \sigma(s_3) \left( 1 - \sigma(s_3) \right) \cdot a_3, \\ &= (y - a_3) (-1) \sigma(s_3) \left( 1 - \sigma(s_3) \right) a_3, \\ &= -(1 - 0.773) (0.773) (1 - 0.773) (0.5963), \\ &= -0.0238. \end{split}$$

Now, let's define:

$$\delta_3 = (y - a_3)(-1)\sigma(s_3)(1 - \sigma(s_3))$$

Backpropagation

MLP - Backprop Deep Learning

$$\frac{\partial E}{\partial \omega_5} = \frac{\partial E}{\partial a_3} \cdot \frac{\partial a_3}{\partial s_3} \cdot \frac{\partial s_3}{\partial \omega_5},$$
$$= \delta_3 a_1,$$
$$= -0.0237.$$

$$\frac{\partial E}{\partial b_3} = \frac{\partial E}{\partial a_3} \cdot \frac{\partial a_3}{\partial s_3} \cdot \frac{\partial s_3}{\partial b_3},$$

$$= \delta_3,$$

$$= -0.0398.$$

$$\frac{\partial E}{\partial \omega_{1}} = \frac{\partial E}{\partial a_{3}} \cdot \frac{\partial a_{3}}{\partial s_{3}} \cdot \frac{\partial s_{3}}{\partial a_{1}} \cdot \frac{\partial s_{1}}{\partial s_{1}} \cdot \frac{\partial s_{1}}{\partial \omega_{1}},$$

$$= \delta_{3} \cdot \frac{\partial}{\partial a_{1}} (\omega_{5}a_{1} + \omega_{6}a_{2} + b_{3}) \cdot \frac{\partial}{\partial s_{1}} \sigma(s_{1}) \cdot \frac{\partial}{\partial \omega_{1}} (\omega_{1}x_{1} + \omega_{3}x_{2} + b_{1})$$

$$= \delta_{3} \cdot \omega_{5} \cdot \sigma(s_{1}) (1 - \sigma(s_{1})) \cdot x_{1},$$

$$= (-0.0398)(0.5)(0.5945)(1 - 0.5945)(0.05),$$

$$= -0.0002.$$

And. let's use:

$$\delta_2 = \delta_3 \omega_5 \sigma(s_1) \left( 1 - \sigma(s_1) \right).$$

### Example cont. (Gradients $\frac{\partial E}{\partial \omega}$ )

$$\frac{\partial E}{\partial \omega_3} = \delta_2 x_2,$$
$$= -0.0005.$$

$$\frac{\partial E}{\partial b_1} = \delta_2,$$
$$= -0.0048.$$

Backpropagation 

$$\begin{split} \frac{\partial E}{\partial \omega_2} &= \delta_3 \cdot \frac{\partial s_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial s_2} \cdot \frac{\partial s_2}{\partial \omega_2}, & \frac{\partial E}{\partial \omega_4} &= \delta_1 x_2, & \frac{\partial E}{\partial b_2} &= \delta_1, \\ &= \delta_1 x_1, &= -0.0005. &= -0.0053. \\ &= -0.0003. &= -0.0005. &= -0.0005. \end{split}$$

With:

$$\delta_1 = \delta_3 \cdot \frac{\partial s_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial s_2}.$$

### Example cont. (Backward pass)

$$\omega_n = \omega_n - \eta \frac{\partial E}{\partial \omega_n}.$$

$$\omega_1 = 0.15$$
  $-(0.1)(-0.0002) = 0.15002,$   $b_1 = 0.3505,$   $\omega_2 = 0.2$   $-(0.1)(-0.0003) = 0.20003,$   $b_2 = 0.3505,$   $\omega_3 = 0.25$   $-(0.1)(-0.0005) = 0.25005,$   $b_3 = 0.604,$   $\omega_4 = 0.3$   $-(0.1)(-0.0005) = 0.30005,$   $\omega_5 = 0.5$   $-(0.1)(-0.0237) = 0.50237,$   $\omega_6 = 0.55$   $-(0.1)(-0.0238) = 0.55238,$ 

### Example cont. (New forward pass)

$$\hat{y}(0) = 0.773.$$

#### After one update:

| $\omega_1$ | $\omega_2$ | $\omega_3$ | $\omega_4$ | $\omega_5$ | $\omega_6$ |
|------------|------------|------------|------------|------------|------------|
| 0.15002    | 0.20003    | 0.25005    | 0.30005    | 0.50237    | 0.55238    |

| $b_1$   | $b_2$   | $b_3$   |
|---------|---------|---------|
| 0.35048 | 0.35053 | 0.60398 |

$$\hat{y}(1) = 0.7742.$$

Notice: The impact of backprop is proportional to the depth of the layer: weights in shallow layers are update more softly with respect to those in deeper layers.

### Multiple connections



$$\frac{\partial E}{\partial \omega_5} = \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_3} \frac{\partial a_3}{\partial s_3} \frac{\partial s_3}{\partial \omega_5}.$$

$$\frac{\partial E}{\partial \omega_1} = \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_3} \frac{\partial a_3}{\partial s_3} \frac{\partial s_3}{\partial a_1} \frac{\partial a_1}{\partial s_1} \frac{\partial s_1}{\partial \omega_1} + \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_4} \frac{\partial a_4}{\partial s_4} \frac{\partial s_4}{\partial a_1} \frac{\partial s_1}{\partial s_1} \frac{\partial s_1}{\partial \omega_1}.$$

MLP - Backprop Deep Learning

### Outline

Multiple outputs

### Multi-variate regression

- One output perceptron works well for uni-variate regression, i.e.,  $\hat{y}$  is a scalar.
- More perceptrons can be used for a multi-variate problem, i.e.,  $\hat{\mathbf{y}}$  is a vector.



#### Multi-class classification

- One output perceptron works well for binary classification problems, i.e.,  $\hat{y}$  is a scalar indicating the probability of the input belonging to the positive class.
- More perceptrons can be used for a multi-class classification problem, i.e.,  $\hat{y}$  is a vector indicating the probability of belonging to each possible class.
- In this case, the ground-truth is a one-hot encoding vector. E.g.,  $\mathbf{y} = [0, 0, 1, 0, 0].$



Thank you!

edgar.roman@itam.mx