Assignment 4

1. Prove that the following language is not regular: $\{a^ib^ja^jb^i:i\leq j\}$.

solution:

Prove using the pumping lemma and the adversary argument. Given n, choose $z = b^n a^n$. This is in the language where i = 0 and j = n.

Given an arbitrary decomposition z = uvw with $|uv| \le n$ and |v| > 0, we see that $u = b^i$ and $v = b^j$ with $i \ge 0$ and j > 0. This means that $w = b^{n-i-j}a^n$.

We choose i=0 to get $uw=b^ib^{n-i-j}a^n$. Because j>0 we have $n-i-j\neq n$ so uw is not in L.

2. Prove that the following language is not regular: $\{w \in \Sigma^*: w \neq w^r\}$.

solutions:

We prove using closure properties. Assume this language is regular. Then its complement is also regular. The complement of $\{w \in \Sigma^* : w \neq w^r\}$ is all words $w \in \Sigma^*$ such that $\neg w \neq w^r$, which is the same as $w \in \Sigma^*$ such that $w \neq w^r$. This is the language of palindromes, a language that we know is not regular. This is a contradiction, so our assumption that $\{w \in \Sigma^* : w \neq w^r\}$ is regular is false. Therefore $\{w \in \Sigma^* : w \neq w^r\}$ is not regular.

3. Consider the following "addition checker" language $\{a^ib^jc^{i+j}: i, j \geq 0\}$ where the number of c's is equal to the sum of the number of a's and b's. Provide a grammar for that language and formally prove that the grammar accepts the language. You may use without proof the fact that the grammar $S \to 0S1|\epsilon$ generates the language $\{0^i1^i: i > 0\}$.

solution:

The grammar is $S \to aSc|B$ and $B \to bBc|\epsilon$.

We note that there are two rules for S and only one of them removes S from the right hand side of the production. Therefore in any derivation that results in a word there must be the use of the production $S \to B$. Thus, if $S \Rightarrow^* w$ then $S \Rightarrow^* \alpha S \beta \Rightarrow \alpha B \beta \Rightarrow^* w$.

First Prove a lemma that $L(S) = \{a^i w c^i : w \in L(B) \land i \ge 0\}.$

- (i) prove $L(S) \subseteq \{a^i w c^i : w \in L(B) \land i \geq 0\}$ by induction on length of derivation that if $S \Rightarrow^i \alpha S\beta \Rightarrow \alpha B\beta$ then $\alpha = a^i$ and $\beta = c^i$. Base case i = 0 and $S \Rightarrow^0 S = a^0 S c^0 \Rightarrow a^0 B c^0$ as needed. Assume it is true for some particular value i. Prove for i+1: $S \to aSc \Rightarrow^i a(a^i S c^i)c \Rightarrow aa^i B c^i c$ as needed. Since $L(B) = \{w : B \Rightarrow^\star w\}$ we have our result.
- (ii) prove that $\{a^iwc^i: w\in L(B) \land i\geq 0\}\subseteq L(S)$. Prove by induction on i. Base case i=0: $a^0wc^0=w$ where $w\in L(B)$. Then $S\Rightarrow B\Rightarrow^\star w$ is our result. Assume true for some particular i. Prove for i+1: $S\Rightarrow$

 $aSc \Rightarrow^{\star} a(a^iSc^i)c$ (by inductive hypothesis) $\Rightarrow aa^iBc^ic \Rightarrow^{\star} aa^iwc^ic$ where $w \in L(B)$ and we have our result.

Therefore $L(S) = \{a^i w c^i : w \in L(B) \land i \geq 0\}$. Now we apply the assumption the question allowed us make that $L(B) = \{b^j c^j : j \geq 0\}$ and get that $L(S) = \{a^i b^j c^j c^i : i, j \geq 0\} = \{a^i b^j c^{i+j}\}$ as needed.

- 4. (Note: this question has two parts that are each worth one fifth of the assignment's marks.) In class we showed that the language $\mathtt{prefix}(L)$ is closed for context-free languages, meaning that if L is context-free then $\mathtt{prefix}(L)$ is also context free. This does not imply, however, that if L is not regular then $\mathtt{prefix}(L)$ is not regular.
 - (a) Give an example non-regular context-free language L_1 and prove that prefix (L_1) is regular.
 - (b) Give an example non-regular context-free language L_2 and prove that $prefix(L_2)$ is not regular.

Note that you may specify L_1 or L_2 using math notation and give a grammar without doing a proof that the grammar generates the language. If you use a language that we have not shown was non-regular for L_1 or L_2 , however, you must prove that the language you use is non-regular (i.e., with pumping lemma, etc.).

solution for L_1 choose $L_1 = \{xx^r : x \in \Sigma^*\}$. Then prefix of L_1 is Σ^* , which is a known regular language. Proof: if $x \in \Sigma^*$ then $xx^r \in L_1$ and so x is a prefix of a word in L_1 .

solution for L_2 choose $L_2 = \{a^i b^i : i \geq 0\}$. Then prefix of L_2 is $\{a^i b^j : j \leq i\}$, which is a context free language generated by $S \to aSb|aS|\epsilon$.

Proof that $\{a^ib^j: j \leq i\} \subseteq \mathtt{prefix}(L_2)$: let a^ib^j be an arbitrary element. Then it is a prefix of $a^ib^jb^{i-j}$ since $j \leq i$, but this is a^ib^i , an element of L_2 .

Proof that $\operatorname{prefix}(L_2) \subseteq \{a^ib^j : j \leq i\}$: let $w = a^ib^i$ be an arbitrary element of L_2 and let x be an arbitrary prefix. Then w = xy and there are two cases: $x = a^j, y = a^{i-j}b^i$ and $x = a^ib^j, y = b^{i-j}$. Case (i) $x = a^j = a^jb^0$ and $j \geq 0$ therefore it is an element of $\operatorname{prefix}(L_2)$. Case (ii) $x = a^ib^j$ where $j \leq i$ therefore it is an element of $\operatorname{prefix}(L_2)$.

Proof that the prefix language is context free by adversary argument. Adversary chooses n. We choose a^nb^n . Adversary chooses uvw where $|uv| \le n$ and |v| > 0. Then $u = a^i, v = a^j, w = a^{n-i-j}b^n$. We choose to pump with 0 to get $uw = a^ia^{n-i-j}b^n = a^{n-j}b^n$. Since j > 0 we have that n-j < n and so the word is not in L. Therefore L_2 is not regular.