第五章 函数

函数也叫映射,交换,是数学中的一个基本概念, 在高数中,函数的概念是从变量的角度提出来的, 这种函数一般是连续或间断连续的函数,这里将 连续函数的概念推广到离散量的讨论,即将函数 看作一种特殊的二元关系。

5.1 函数的基本概念

- 定义5.1: 设f是集合A到B的关系,如果对每个x ∈ A, 都存在唯一y ∈ B, 使得 $\langle x, y \rangle$ ∈ f, 则称关系f 为A到B的函数(Function),记为f:A→B。当 $\langle x, y \rangle$ ∈ f时,正常记为y=f(x),x称为自变量,y为x 在f下的函数值。
- (1)dom f=A, 称为函数的定义域;
- (2) ran f⊆B, 称为函数的值域, ran f也可记为 f(A), 为A在f下的像;
- (3) $\langle x, y \rangle \in f \land \langle x, z \rangle \in f \Rightarrow y = z$;
- (4) |f| = |A|;
- (5) f(x) 仅表示一个变值,f表示一个集合, ∴ $f \neq f(x)$

5.1 函数的基本概念

• 例5-1: 判断下图的关系是否是函数:

$$A \xrightarrow{f_3} B$$

5.1 函数的基本概念

例5-2: 设A={a, b}, B={1, 2}, 则A×B={⟨a, 1⟩, ⟨a, 2⟩, ⟨b, 1⟩, ⟨b, 2⟩}, 此时A到B的不同关系有16个; A到B的不同的函数有4个;

$$f_1 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle \}, f_2 = \{ \langle a, 1 \rangle, \langle b, 2 \rangle \},$$

 $f_3 = \{ \langle a, 2 \rangle, \langle b, 1 \rangle \}, f_4 = \{ \langle a, 2 \rangle, \langle b, 2 \rangle \}.$

- (1) $A \times B$ 的任何一个子集,都是A到B的关系,因此,从A到B的不同的关系有 $2^{|A|\times|B|}$ 个,但从A到B的不同的函数却只有 $|B|^{|A|}$ 个;
- (2)每个函数的基数为|A|,但关系的基数可以为0 一直到|A|×|B|;
- (3) 每个函数的第一个元素一定互不相同;
- (4) 将A到B的一切函数构成的集合记为 $B^A = \{f \mid f : A \to B\}$

- 定义5. 2: 设f是从集合A到B的函数:
- (1) 对 $\forall x_1, x_2 \in A$, 若 $x_1 \neq x_2$, 则 $f(x_1) \neq f(x_2)$, 则称f为从A 到B的单射(Injection);
- (2) 若ran f=B,则称f为A到B的满射(Surjection);
- (3) 若f既是单射,又是满射,则称f为从A到B的双射 (Bijection)或一一映射;
- (4) 若A=B,则称f为A上的函数,当A上的函数f是双射,称f为变换(Transform)。
- (1) f是单射的必要条件为 | A | ≤ | B | , (2) f 为满射的必要条件为 | B | ≤ | A | , (3) f 为双射的必要条件为 | A | = | B | 。

- <mark>例5-3:</mark> 确定下列关系哪些是函数,若是函数,是 否是单射,满射,双射。
- (1) iga=B=R, $f_1 = \{ \langle x, x^2 \rangle | x \in R \}, f_2 = \{ \langle x, x+1 \rangle | x \in R \},$ $f_3 = \{ \langle x, 1/x \rangle | x \in R \}, f_4 = \{ \langle x, e^x \rangle | x \in R \}, f_5 = \{ \langle x, \sqrt{x} \rangle | x \in R \}.$
- (2) $A = R^+, B = R, f = \{ \langle x, \ln x \rangle | x \in R \}.$
- 解: (1) f_1 : R到R的函数, f_2 : R到R的双射函数, f_3 : 不是R到R的函数, f_4 : R到R的单射函数, f_5 : 不是R到R的函数;
- (2)f为 R^+ 到R的双射函数。

• 例5-4: 设〈A, <〉是偏序集,对 $\forall a \in A, \diamondsuit f(a) = \{x \mid x \in A \land x \leq a\}$,证(1) f是A到 ρ (A) 的单射函数,且(2) $\forall a,b \in A, a \leq b \cup f(a) \subseteq f(b)$ 。

证明: (1) $\forall a \in A, f(a) = \{x \mid x \in A \land x \le a\} \subseteq A, \therefore f(a) \in \rho(A)$

∴f是A到ρ(A)的映射;

 $\forall a,b \in A, a \neq b$

①: 若a, b存在偏序关系,不妨设a \leq b, 由于 " \leq " 是反对称的, $: b \nleq a$,从而 $b \notin f(a) = \{x \mid x \in A \land x \leq a\}$,而" \leq " 自反, :b \leq b,即 $b \in f(b) : f(a) \neq f(b)$

- ②若a, b不存在偏序关系,则 $a \not\leq b$,从而 $a \not\in f(b) = \{x \mid x \in A \land x \leq b\}$,而" \leq "自反,即 $a \in f(a)$ \therefore $f(a) \neq f(b)$
- ∴f是A到ρ(A)的单射;
- (2) $\forall a,b \in A$, 若 $a \le b$, 任取 $y \in f(a)$, 则 $y \le a$, 而 $a \le b$ **由传递性,有y** \leq **b**, $\therefore y \in f(b)$, $\therefore f(a) \subseteq f(b)$
- 定理5.1:设A,B是有限集合,且|A|=|B|,f是A 到B的函数,则f是单射当且仅当f是满射。

证明:必要性:设f是单射,f是A到f(A)的满射,

- 二f是A到f(A)的双射,因此|A|=|f(A)|,由于|f(A)|=|B|,且 $f(A)\subseteq B$,得f(A)=B,
- 二f是A到B的满射;

充分性: 设f是满射, $\forall x_1, x_2 \in A, x_1 \neq x_2, \exists f(x_1) = f(x_2)$

由于f是A到B的满射,二f也是 $A-\{x_1\}$ 到B的满射,故

 $|A-\{x_1\}| \ge |B|$,即 $|A|-1 \ge |B|$,矛盾: $f(x_1) \ne f(x_2)$

即f是A到B的单射。

5.3 函数的复合运算

- 定义5. 3: 常函数,恒等函数,单调函数,特征函数,自然映射。
- 定理5. 2: 设F, G是函数, 则F o G也是函数, 且满足: (1) $dom(F \circ G) = \{x \mid x \in domF \land F(x) \in domG\}$
- (2) $\forall x \in dom(F \circ G)$ 有 $F \circ G = G(F(x))$

证明:(1)
$$\forall x, x \in dom(F \circ G) \Rightarrow \exists t \exists y (\langle x, t \rangle \in F \land \langle t, y \rangle \in G)$$

- $\Rightarrow \exists t(x \in domF \land t = F(x) \land t \in domG)$
- $\Rightarrow x \in \{x \mid x \in domF \land F(x) \in domG\}$
- $(2) \forall x, x \in domF \land F(x) \in domG$

$$\Rightarrow \in F \land < F(x), G(F(x))>\in G \Rightarrow \in F \circ G$$

$$\Rightarrow x \in domF \circ G \land F \circ G(x) = G(F(x))$$

5.3 函数的复合运算

• 例5-5: 设f:R→R, g:R→R, h:R→R, 满足

$$f(x) = x+3, g(x) = (x+1)^2, h(x) = \frac{x}{2}, f \circ g, g \circ f, (f \circ g) \circ h$$

$$\text{##: } f \circ g(x) = g(f(x)) = g(x+3) = (x+3+1)^2 = (x+4)^2;$$

$$g \circ f(x) = f(g(x)) = f((x+1)^2) = (x+1)^2 + 3 = x^2 + 2x + 4;$$

$$(f \circ g) \circ h(x) = h(f \circ g(x)) = h((x+4)^2) = \frac{(x+4)^2}{2}.$$

- 一有关关系运算的一切定理都可推广到函数中来。
- 定理5.3: 设f:A→B, g:B→C, (1)如果f, g满射, 则fog:A→C满射; (2)若f, g单射, 则fog:A→C双射; (3)若f, g双射, 则fog:A→C双射。

5.3 函数的复合运算

• 定理5. 4: 设f:A→B, g:B→C, 则fog:A→C, (1) 若fog:A→C满射, 则g满射; (2)若fog:A→C单射, 则f单射; (3)若fog:A→C双射, 则g满射, f单射。

证明:(1) $\forall c \in C, f \circ g$ 满射,则存在 $a \in A$,使得 $f \circ g(a) = g(f(a)) = c$ 而f为函数∴存在b = f(a),即 $\exists b \in B$,使得g(b) = c,∴g满射;
(2)任取 $a_1 \neq a_2 \in A$,则由 $f \circ g$ 单射知: $f \circ g(a_1) \neq f \circ g(a_2)$ 若 $f(a_1) = f(a_2)$,则 $f \circ g(a_1) = g(f(a_1)) = g(f(a_2)) = f \circ g(a_2)$ 矛盾,∴f单射;
(3)由(1),(2)知(3)成立。

5.4 函数的逆运算

• 定理5.5: 若f:A→B是双射的,则f的逆关系 f^{-1} 是 B到A的双射。

证明:(1)先证明 f^{-1} 是B到A的函数 f是函数,:: f^{-1} 是关系,且 $dom f^{-1} = ran f = B, ran f^{-1} = dom f = A$ 对 $\forall b \in B = dom f^{-1}$, 若 $\exists a_1, a_2 \in A$, 使得 $\langle b, a_1 \rangle \in f^{-1}$, $< b, a_2 > \in f^{-1}$,则由逆关系知: $< a_1, b > \in f, < a_2, b > \in f$,而f单射 :. 由 $b = f(a_1) = f(a_2)$ 得 $a_1 = a_2$,:. f^{-1} 是函数; (2) $ranf^{-1} = dom f = A$, 由 f 的 定 义 知 , f^{-1} 为 满 射 ; (3)对 $\forall b_1, b_2 \in B$, 若 $b_1 \neq b_2$, 若 $f^{-1}(b_1) = f^{-1}(b_2) = a$,即 $< b_1, a > \in f^{-1} \land < b_2, a > \in f^{-1} \implies < a, b_1 > \in f \land < a, b_2 > \in f$ 与f是函数矛盾,:. $f^{-1}(b_1) \neq f^{-1}(b_2)$,:. f^{-1} 是单射; :: f⁻¹是双射。

5.4 函数的逆运算

f的逆函数不存在;

- ▶只有双射函数的逆关系才是函数,其它函数的逆 关系都不是函数。
- 定理5. 6: 设f: A \rightarrow B, 双射,则 $f^{-1} \circ f = I_B, f \circ f^{-1} = I_A, f = f \circ I_B = I_A \circ f$
- 定义5.5: 设f:A \rightarrow B, 双射,则 f^{-1} 为f的逆函数或反函数(Inverse Function)。
- **例**5-6: **设**f:R→R满足(1) $f = \{ \langle x, x^2 \rangle | x \in R \}, (2) \{ \langle x, x+1 \rangle | x \in R \}.$ 解:(1)对 $\forall x \in R$,有(-x)² = x^2 ,即f(x) = f(-x),∴ f不是单射,
 - (2) f双射,f的逆函数存在,且有 $f^{-1} = \{ \langle x, x-1 \rangle | x \in R \}$.

• 定义5. 6: 设A是有限集合, $A=\{a_1,a_2,\cdots,a_n\}$,从A到A的双射函数称为A上的置换或排列,记为 $P:A\rightarrow A$,n称为置换的阶(Order)。n阶置换 $P:A\rightarrow A$ 常表示为:

$$P = \begin{pmatrix} a_1, a_2, \dots, a_n \\ a'_1, a'_2, \dots, a'_n \end{pmatrix} = \begin{pmatrix} a_1, & a_2, \dots, a_n \\ P(a_1), P(a_2), \dots, P(a_n) \end{pmatrix}$$

其中, $a'_i = P(a_i), i = 1, 2, \dots, n$

- \triangleright (1) $P(a_1), \cdots P(a_n)$ 是 $a_1, \cdots a_n$ 的一个排列,排列的总数位n!个;
- \triangleright (2) P的逆函数 P^{-1} 称为逆置换;
- ▶ (3) 两个置换的复合就是将它们作为函数求复合函数。

• 假设P: A → A 为n阶置换, $A = \{a_1, a_2, \dots, a_n\}$, 对 $a_i \in A$ 考虑序列 $a_i, P(a_i), P^2(a_i), \dots$,由于 $\{a_1, a_2, \dots, a_n\}$ 是 有限集,则存在最小正整数 r_i , 使得 $P^{r_i}(a_i) = a_i$ 其中 $a_i, P(a_i), P^2(a_i), \dots, P^{r_i-1}(a_i)$ 互不相同。 $(a_i, P(a_i), P^2(a_i), \dots, P^{r_i-1}(a_i))$ 称为阶 r_i 的一个循 环。 当 $r_i < n$ 时,至少有一个 $a_i \in A$,不包含在 $(a_i, P(a_i), P^2(a_i), \dots, P^{r_i-1}(a_i))$ 中; 对 a_i 重复 a_i 相同的过程,可得 $(a_i, P(a_i), P^2(a_i), \dots, P^{r_i-1}(a_i))$

若 a_i 的循环与 a_i 的循环没有相同的元素时,称它们不相交;

继续这个过程, $A=\{a_1,a_2,\cdots,a_n\}$ 可以被分成若干子集,这些子集组成不同的循环

$$(a_i, P(a_i), P^2(a_i), \dots, P^{r_i-1}(a_i)), (a_j, P(a_j), P^2(a_j), \dots, P^{r_j-1}(a_j)),$$

 $\dots, (a_m, P(a_m), P^2(a_m), \dots, P^{r_m-1}(a_m))$

把它们写在一起, 称为置换的积(Product)。

• 15-7:
$$P = \begin{pmatrix} a & b & c & d & e & f & g & h \\ h & g & b & f & e & d & a & c \end{pmatrix}$$

```
解: a的循环为 (a, P(a), P<sup>2</sup>(a), P<sup>3</sup>(a), P<sup>4</sup>(a)), 即 (a, h, c, b, g);
d的循环为 (d, P(d)), 即 (d, f);
e的循环为 (e)。
置换P被分成不相交的循环的积为 (a, h, c, b, g) (d, f) (e)。
```