Análise Matemática Aula Introdutória

Erivelton Geraldo Nepomuceno

Departamento de Engenharia Elétrica Universidade Federal de São João del-Rei

Agosto de 2016

Figura 1: Representação de um quipu: Dispositivo para guardar um número usado desde 3000 a.C. na América do Sul. Fonte: Wikipedia.

Figura 2: Representação do número 6302715408 em um ábaco. Fonte: Wikipédia.

Figura 3: Representação de numéros em base 60 na Babilônia por volta de 900 a.C. Fonte: British Museum.

- Números Romanos: I, II, III, IV, V, . . .
- Números fracionários: base 12.

Tabela 1: Números fracionários romanos.

Número	Símbolo
1/12	•
1/6	••
1/4	•••
1/2	S
7/12	S•

Figura 4: A evolução dos números arábicos na Europa medieval. Fonte: Montucla, J. E. (1757). *Histoire de la Mathematique*. France.

Figura 5: Processador Intel 8086 de 1978. Fonte: Wikipedia.

• Atitude elementar de contar.

Tabela 2: Conjuntos de números.

Números naturais	N	(0), 1, 2,
Números inteiros	\mathbb{Z}	, -2, -1, 0, 1, 2, 3
Números racionais	Q	$-\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \dots$
Números irracionais	I	$\sqrt{2},\pi,\dots$
Números complexos	\mathbb{C}	$2+3i, -i, -2+i, 1/2+\sqrt{2}i$
Números no computador	\mathbb{D}	Conforme IEEE 754-2008.

Figura 6: A linha que representa os números reais.

Considere o seguinte sistema binário:

$$\pm (b_0 b_1 b_2)_2 \times 2^E$$
). (1)

O número E pode ser −1, 0 ou 1.

Figura 7: Números representados por (1). Fonte: (Overton, 2001, p. 15).

Figura 8: Representação do número 0,3 no computador com 64 bits. O "número" b representa um intervalo dos números reais, que inclui o valor 0,3. Os traços vermelhos representam pontos isolados.

- \bullet Seja $\mathbb D$ o conjunto de todos os "números" representados no computador.
- Tem-se que $\mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.
- D não é completo e não é um corpo, o que implica que não há propriedades elementares da matemática, tais como associativa e distributiva.

Exemplo 1

A operação 0.3-0.2 realizada em $\mathbb D$ é imprecisa, e assim:

$$0.1 \neq 0.3 - 0.2.$$
 (2)

Exemplo 2

Não há propriedade distributiva:

$$0.1 \times (0.3 - 0.2) > 0.1 \times 0.3 - 0.1 \times 0.2.$$
 (3)

Uma função recursiva pode ser definida como

$$x_{n+1}=f(x_n), (4)$$

que reescrita como o resultado de funções compostas fica

$$X_{n+1} = f_1(X_n) = f_2(X_{n-1}) = \dots = f_{n+1}(X_0).$$
 (5)

Uma série de dados é gerada pela simples iteração de (4).

Exemplo 3

Conjectura de Collatz: Para qualquer $x_0 \in \mathbb{N}$, x_{n+1} tende ao ciclo $4 \to 2 \to 1$ quando $n \ge N \in \mathbb{N}$.

$$x_{n+1} = \begin{cases} x_n/2 & \text{se } x_n \text{ for par} \\ 3x_n+1 & \text{se } x_n \text{ for impar} \end{cases}$$

Por exemplo: $5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow 1 \dots$

Ninguém até hoje soube explicar a razão desta convergência!

Exemplo 4

Na otimização, tem-se o Método do Gradiente:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \, n \geq 0.$$

em que γ deve ser suficientemente pequeno.

Exemplo 5

Os modelos polinomiais NAR são definidos da seguinte forma:

$$y(k) = F^{I}[y(k-1),...,y(k-n_{y})],$$

sendo que n_y é o maior atraso de saída e F é uma função polinomial de grau I que relaciona os termos de saída $y(k-1), \ldots, y(k-n_y)$.

Teorema 1

A sequência de funções $\{f_n\}$, definida em E, converge uniformemente em E se e somente se para qualquer $\varepsilon > 0$ existe um inteiro N tal que $m \ge N, \, n \ge N, \, x \in E$ implica

$$d(f_n(x),f_m(x)) \le \varepsilon.$$
(6)

Exemplo 6

Método de Newton para encontrar a raiz quadrada de um número positivo a. Inicia-se com algum valor, $x_0 > 0$ e em seguida realiza-se a seguinte função recursivamente:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right), \tag{7}$$

tal que $x_n \to \sqrt{a}$ a medida que $n \to \infty$.

Realização númerica para a = 2 e x₀ = 3 do Exemplo 6.

 $Em \mathbb{D}!$

O mapa logístico investigado por May¹ é definido como

$$x_{n+1} = rx_n(1-x_n).$$
 (8)

- Algums exemplos
 - Sensibilidade a propriedade matemática.
 - Período 2, mas converge para ponto fixo.
 - Região de caos, mas converge para ponto fixo de período 2.
- Matlab é um dos software mais utilizados no mundo. Há pelo menos 1 milhão de licenças vendidas. Escrito em C, C++ e Java.²

¹May, R. M. (1976). Simple mathematical models with very complicated dynamics. *Nature*, 261,459–467.

²Fonte: http://www.mathworks.com/company/aboutus/

Figura 9: Diagrama de Bifurcação de (8). O eixo horizontal é o parâmetro r e o eixo vertical é o x. O valor inicial é $x_0 = 0.25$. Fonte: Domínio Público.

• Seja $x(t_1) = 4 \pm 2$, $x(t_2) = 7 \pm 2$, $x(t_3) = 3 \pm 1$ e $x(t_4) = 7 \pm 1$ Não podemos afirmar que $x(t_1) \neq x(t_2)$. Mas, $x(t_3) \neq x(t_4)$.

Figura 10: Ilustração da idéia elementar: computador como instrumento!

Seja $I \subseteq \mathbb{R}$ um intervalo, seja $x \in I$ e $f: I \to \mathbb{R}$ uma função. Seja $J \subseteq \mathbb{D}$ um intervalo, $\hat{x} \in J$ a representação de x e \hat{f} uma aproximação de f. Seja $\delta \geq 0$, tem-se

$$d(f(x),\hat{f}(\hat{x})) \le \delta. \tag{9}$$

Funções compostas são definidas como:

$$d(f_n(x),\hat{f}_n(\hat{x})) \le \delta_n. \tag{10}$$

De (10), pode-se afirmar que $f_m(x) \neq f_n(x)$ apenas se

$$d(\hat{f}_m(\hat{x}),\hat{f}_n(\hat{x})) > \delta_n + \delta_m. \tag{11}$$

Definição 1

Ponto fixo em \mathbb{D} : Se $d(\hat{f}_n(\hat{x}^*),\hat{f}_{n-1}(\hat{x}^*)) \leq \delta_n + \delta_{n-1}$ então \hat{x}^* é um ponto fixo.

Para qualquer f_n há um erro associado δ_n . Seja $\hat{\varepsilon}$ tal que

$$\hat{\varepsilon} > \kappa = \sup(\delta_n) + \sup(\delta_m). \tag{12}$$

Teorema 2

Se a sequência de funções $\{f_n\}$ definidas em E, converge em E **então** para cada $\hat{\varepsilon} > \kappa$ há um inteiro N tal que $m \geq N, \, n \geq N, \, x \in I$ e $\hat{x} \in J$ que implica

$$\kappa < d(\hat{f}_n(\hat{x}), \hat{f}_m(\hat{x}) \le \hat{\varepsilon}. \tag{13}$$

Figura 11: Simulação de x_n em (8) com r = 327/100 e $x_0 = 100/327$ (representado por um \circ em volta do ponto.).

Valor correto:

$$x_2 = \frac{327100}{100327} \left(1 - \frac{100}{327} \right) = \frac{327 - 100}{327} = \frac{227}{327}$$
 (14)

е

$$x_3 = \frac{327}{100} \frac{227}{327} \left(1 - \frac{227}{327} \right) = \frac{227}{100} \frac{100}{327} = \frac{227}{327}$$
 (15)

e então $x_2 = x_3, \dots, x_n = 227/327$. Isso ilustra uma situação em que a computação do ponto fixo foi errada.

A partir de (13) para todo m e n deve-se atender a $d(\hat{f}_n(\hat{x}),\hat{f}_m(\hat{x})) > \kappa$, o que tem uma implicação prática em limitar o número de iterações. Isso está expresso no Colorário 1.

Colorário 1

O número máximo de iterações $k = \max(m,n)$ está sujeito a $d(\hat{f}_n(\hat{x}),\hat{f}_m(\hat{x})) \leq (\delta_n + \delta_m)$ para todo $n \in m$.

Tabela 3: Simulação de (8) para as 3 primeiras iterações.

n	λ̂n	$d(\hat{x}_n,\hat{x}_{n-1})$	δ_n
0	0.305810397553517	0	2.77555756156289e-17
1	0.694189602446483	0.388379204892966	3.25197734863617e-16
2	0.694189602446483	2.22044604925031e-16	1.52284898079424e-15
3	0.694189602446483	3.33066907387547e-16	5.43916855498739e-15

Artigo no Systems Science & Control Engineering

Resultado principal

Nepomuceno e Martins (2016)^a apresentam o conceito *lower bound error* ou limite inferior do erro, no qual por meio da análise intervalar e conhecimento da norma IEEE 754 elaboram uma metodologia para calcular um valor mínimo do erro para simulação de funções recursivas.

^aNepomuceno, E. G., & Martins, S. A. M. (2016). A lower bound error for free-run simulation of the polynomial NARMAX. *Systems Science & Control Engineering*, 4(1), 50–58.

Exemplo 7

$$G(X_n) = 2.6868X_n - 0.2462X_n^3 (16)$$

$$H(X_n) = 2.6868X_n - (0.2462X_n)X_n^2,$$
 (17)

Artigo no Systems Science & Control Engineering

(a) Simulação da Eq. (16) e (17), com resultados para $G(X_n)$ ($-\times$ -) e $H(X_n)$ (-o-) and e mesma condição inicial $X_0 = 0,1$. n é o número de iterações.

(b) Evolução do erro relativo (em logaritmo) $\varepsilon_{\alpha,n}$ da Eq. (16). Quando $n \geq 44$ o $\varepsilon_{\alpha,n} > \varepsilon = \log_{10}(0,001) = -3$.

Figura 12: Mapa senoidal: (a) Simulação livre (b) Evolução do erro.

Artigo no Congresso NSC 2016 (INPE)

Resultado Principal

Simulação do circuito de Chua apresenta dois resultados diferentes. Ainda não sabemos qual resultado é o correto. Trabalho da aluna de mestrado Melanie Rodrigues a .

^aRodrigues, M. S. et al. (2016). *Simulation of Chua'a Circuit by means of Interval Analysis*. In Anals of 6th International Conference on Nonlinear Science and Complexity (pp. 1–4). São José dos Campos - Brazil.

Figura 13: Circuito de Chua

Artigo no Congresso NSC 2016 (INPE)

Figura 14: Tensão no diodo de Chua. (a) Tensão usando simulação padrão RK-4. (b) Tensão trabalhando análise intervalar e modo de arredondamento para IEEE 754 m.

Obrigado pela atenção!

www.ufsj.edu.br/nepomuceno