Testes de Aderência

Pedro Menezes de Araújo, Pedro Pires Costa 13 de julho de 2017

Introdução

Os testes de aderência (ou bondade de ajuste) são muito utilizados na rotina estatítica clássica. Eles servem para testar se uma determinada amostra aleatória é gerada por uma distribuição específica. São muito úteis, pois em boa parte dos casos não se sabe a distribuição de probabilidade da população no qual a amostra é proveniente. Tal informação é necessária, por exemplo, para decidir quais testes de hipóteses podem ser usados em análises posteriores. O presente trabalho tem por objetivo apresentar e comparar os teste de aderência Quiquadrado, Kolomogorov-Smirnov e o teste de Cramér-von Mises através de simulações no ambiente R.

Serão geradas 1000 amostras aleatórias com distribuição Normal(0,1), exp(1) e U[0,1] de tamanhos, 10, 100, 1000, 10000, sendo aplicadas em cada teste com nível de significância $\alpha = 0.1$, tendo em vista que nesse tipo deste H_0 é a hipótese do interesse (seguir a distribuição pré-especificada pelo pesquisador), com finalidade de comparar a taxa de acerto de cada teste.

Teste Qui-quadrado

O teste qui-quadrado é bastante utilizado para testar a independência entre variáveis categóricas, mas pode ser adaptado para testar a aderência de amostra aleatória em relação a uma distribuição. O teste tenta captar a diferença entre valor observado e o valor esperado em intervalos *****. Uma restrição para o teste é que os valores esperados $e_{i,j}$ sejam maiores ou iguais a 5.

Seja $X_1,...,X_n$ amostra aleatória de uma variável X e Y ****. As hipóetes para o teste são:

 $H_0: X$ seque a distribuição Y

 $H_1: X$ não segue a distribuição Y

Com estatística de teste:

$$\frac{(o_i - e_i)^2}{e_i} \sim \chi_{n-1}^2$$

Não há uma implementação exata da adaptação do teste qui-quadrado no R para a sua versão de aderência. No entanto, é possível implementa-la de forma autônoma. Para o caso

contínuo, visando respeitar a condição da frequência esperada ser maior ou igual a 5, tempos:

$$e_i = p \cdot n \Rightarrow p \cdot n \ge 5 \Rightarrow p \ge \frac{5}{n}$$

Optamos por manter a frequência observada igual a 5. Logo, iremos buscar por intervalos na função densidade que compreendam o valor de probabilidade

$$p = \frac{5}{n}$$

Teste Kolmogorov-Smirnov

O teste de Kolomogorov-Smirnov () é um teste que tem por finalidade comparar se duas amostras aleatórias seguem a mesma distribuição de probabilidade. Ele é formulado através da função de distribuição acumulada empírica, analisando a distância estre as duas funções. Uma das aplicações do teste é como teste de aderência.

Sejam $X_1, ..., X_n$ amostra aleatória com função distribuição acumulada F e $Y_1, ... Y_m$ amostra aleatória com função distribuição acumulada G. As hipóteses utilizadas para a construção são:

$$H_0: F = G$$

 $H_1: F \neq G$

E a estatística de teste é:

$$D_{n,m} = max\{ | F_n(x) - G_m(y) | \}$$

No R o teste pode ser feito usando a função **ks.test**. Um exemplo simples, onde queremos testar se a amostra segue uma distribuição Normal(40, 2):

```
ks.test(rnorm(400, mean=40, sd=2), 'pnorm', 40, 2)
```

```
##
## One-sample Kolmogorov-Smirnov test
##
## data: rnorm(400, mean = 40, sd = 2)
## D = 0.040434, p-value = 0.5301
## alternative hypothesis: two-sided
```

No teste acima a estatística D_{400} obteve valor 0.047, e o p-valor 0.3234, logo, como o esperado, não rejeita-se a hipótese de normalidade.

Teste Cramér-von Mises

O teste de Cramér-von Mises ou cretério de Cramér-von Mises é uma alternativa ao teste de Kolmogorov-Smirnov. O teste também compara a igualdade de distribuições de probabilidae

usando a função de distribuição empírica. Para a versão de teste de aderência (também é possível comparar amostras) segue-se que: Seja $x_1, ..., x_n$ amostra aleatória em ordem crescente com função de distribuição empírica F_n , a estatística do teste será:

$$T = n\omega^2 = \frac{1}{12n} + \sum_{i=1}^{n} \left[\frac{2i-1}{2n} - F(x_i) \right]^2$$

Sendo ω^2 igual a:

$$\int_{-\infty}^{\infty} [F_n(x) - F^*(x)]^2 dF^*(x)$$

, a
onde F^* é a função de distribuição teórica. O p-valor pode é computado usando uma distribuição exata para essa estatística. Exemplo no R
 usando o pacote 'goftest':

```
library(goftest)
cvm.test(rnorm(400), 'pnorm')

##

## Cramer-von Mises test of goodness-of-fit
## Null hypothesis: Normal distribution
##

## data: rnorm(400)
## omega2 = 0.064317, p-value = 0.7871
```

O teste retorna o valor de ω^2 e o p-valor.

Comparação entre os testes

Tamanho da amostra

Ajuste exponencial com amostra uniforme

Ajuste uniforme com amostra exponencial

Ajuste uniforme com amostra normal

Conclusão