

Introduction to Machine Learning

WSS ML Workshop

WSS 2024

Outline

- Introduction and Motivation
- ML Problems
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Loss Function and Optimization
- Generalization and Overfitting

Machine Learning: Motivation

Extensive influence of Machine Learning across multitude of applications and everyday life:

- Computer Vision
- Signal Processing
- Audio and Speech Recognition
- Natural Language Processing
- Computational Social Science
- Control

Machine Learning: Motivation

Extensive influence of Machine Learning across multitude of applications and everyday life:

- Computational Biology and Bioinformatics
- Medicine, Diagnosis and Health Care
- Computational Neuroscience
- Brain-Computer Interface
- Financial Forecasting
- Recommender Systems

Machine Learning: Motivation

Why ML applications are growing?

- Improved machine learning algorithms
- Availability of data
 (Increased data capture, networking, ...)
- Algorithms too complex to write by hand
 - Demand for complex systems
 (high-dimensional, multi-modal, ...)
 - Demand for self-customization to user or environment

Machine Learning: Concept

- Making machines learn!
- Using statistical models and algorithms to perform a specific task by learning data patterns, without being explicitly programmed
- Generalization to new unseen examples.

Machine Learning: Main Recipe

A pattern exist ...

We do not know it mathematically!

We have data on it :)

Machine Learning: Role of Data

What's the scope?

WSS 202

Machine Learning: Main Steps

Typical steps:

Main ML Problems

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Density Estimation
 - Generative Modeling
 - Clustering
 - Dimensionality Reduction
- Reinforcement Learning
 - Multi-armed Bandit

Supervised Learning vs. Unsupervised Learning

Supervised learning

Given: Training set

Labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$

Goal: Learning a mapping from x to y

Supervised Learning vs. Unsupervised Learning

Supervised learning

Given: Training set

Labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$

Goal: Learning a mapping from x to y

Unsupervised learning

Given: Training set

$$D = \{(x^{(i)})\}_{i=1}^{N}$$

Goal: Revealing structure in the observed data and finding groups or intrinsic structures in the data

Supervised Learning: Classification vs. Regression

• Classification: predict a discrete target variable e.g. $y \in \{1, 2, ..., C\}$

Supervised Learning: Classification vs. Regression

• Classification: predict a discrete target variable e.g. $y \in \{1, 2, ..., C\}$

• Regression: predict a continuous target variable e.g. $y \in [0, 1]$

Supervised Learning: Classification vs. Regression

• Classification: predict a discrete target variable e.g. $y \in \{1, 2, ..., C\}$

• Regression: predict a continuous target variable e.g. $y \in [0, 1]$

Classification

• A function $f: \mathbb{R}^n \to \{1, ..., k\}$ specifies which of k categories an input vector x belongs to.

Classification

- A function $f: \mathbb{R}^n \to \{1, ..., k\}$ specifies which of k categories an input vector x belongs to.
- Case Study: KNN (K Nearest Neighbors)
 - Stores all training cases and classify new cases based on similarity measure (like Euclidean distance)

Classification: KNN

- Given
 - Training data $\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$ are simply stored.
 - Test sample: x
- To classify x:
 - Find k nearest training samples to x
 - Identify the number of samples k_j belonging to class \mathcal{C}_j
 - Assign \boldsymbol{x} to the class \mathcal{C}_{j^*} where $j^* = \operatorname*{argmax} k_j$ j=1,...,c

Classification: KNN

Effect of K on decision boundaries

Classification

More advanced applications:

Regression

• A function $f: \mathbb{R}^n \to \mathbb{R}$ that maps an input vector x to a continues value y.

Regression

• A function $f: \mathbb{R}^n \to \mathbb{R}$ that maps an input vector x to a continues value y.

Case study: Linear Regression

$$f(x; w) = w_0 + w_1 x$$

 $w = [w_0, w_1]$: Parameters that be estimated during optimization

Regression

More advanced applications:

Object Detection

Hypothesis Class and Inductive Bias

• The aim of supervised learning is to find f^* (best solution) from **hypothesis space** (e. g. the set of all possible functions)

Hypothesis Class and Inductive Bias

- The aim of supervised learning is to find f^* (best solution) from **hypothesis space** (e. g. the set of all possible functions)
- Example:

In linear regression the hypothesis space include all possible functions with the form of

$$f(x; w_0, w_1) = w_0 + w_1 x$$

set of all possible functions H

Hypothesis Class and Inductive Bias

- Inductive bias is the set of assumptions that a learner uses to predict outputs of given inputs.
- Some times we use our knowledge about the nature of data to restrict the hypothesis space.

Supervised Learning (Recap)

• Classification: predict a discrete target variable e.g. $y \in \{1, 2, ..., C\}$

• Regression: predict a continuous target variable e.g. $y \in [0, 1]$

Unsupervised Learning

Unsupervised learning

Given: Training set

$$D = \{(x^{(i)})\}_{i=1}^{N}$$

Goal: Revealing structure in the observed data and finding groups or intrinsic structures in the data

Main Approaches:

- Density Estimation
- Generative Modelling
- Clustering
- Dimensionality Reduction

• Estimating the probability density function p(x), given a set of data points $\left\{x^{(i)}\right\}_{i=1}^{N}$ drawn from it.

Example: Normal distribution

$$p_{\mu}(x) = N(x; \mu, 1)$$

$$p_{\mu}(x^{(1)}, x^{(2)}, \dots, x^{(N)}) = \prod_{i=1}^{N} p_{\mu}(x^{(i)})$$

Density Estimation: Normal distribution

Density Estimation: Normal distribution

 $\hat{\theta}$ best agrees with the observed samples

Density Estimation: Normal distribution

 $\hat{\theta}$ best agrees with the observed samples

More sophisticated applications:

More sophisticated applications:

More sophisticated applications:

Smile (discrete value) Smile (probability distribution) -1 0 1 Vs.

latent variable value

Variational Autoencoder (VAE)

Generative Modeling

 Sampling new data points based on observed data distribution.

• This can be achieved with / without explicitly learning density function p(x).

Generative Modeling:

More sophisticated applications (explicit density estimation)

Sampling from Multivariate Gaussian Distribution

Variational Autoencoder (VAE)

Generative Modeling:

More sophisticated applications

- Generative Adversarial Networks (implicit density estimation)
- Diffusion Models

Generative Modeling:

More sophisticated applications

- Large Language Models (LLMs)
- Generative pre-trained transformers (GPT)

Clustering

• A technique to assign each point into a specific group.

Clustering

• A technique to assign each point into a specific group.

Clustering: K-means Algorithm

K-means Algorithm:

- 1. Choose number of clusters K.
- 2. Pick K random points as cluster centers (centroid)
- 3. Compute the distance between data points and all centroids
- 4. Assign each data point to the closest centroid
- Compute the centroids for the clusters (by averaging)
- 6. Iterate steps 3-5 until convergence (no centroid change)

Clustering: K-means Algorithm

K-means Algorithm:

- 1. Choose number of clusters K.
- Pick K random points as cluster centers (centroid)
- 3. Compute the distance between data points and all centroids
- 4. Assign each data point to the closest centroid
- 5. Compute the centroids for the clusters (by averaging)
- 6. Iterate steps 3-5 until convergence (no centroid change)

Clustering: K-means Algorithm

 A technique to find a lower-dimensional representation of data features that preserves some of its properties.

- A technique to find a lower-dimensional representation of data features that preserves some of its properties.
- Motivations:
 - Computation
 - Visualization
 - Feature extraction

- A technique to find a lower-dimensional representation of data features that preserves some of its properties.
- Case Study:
 Principal Component Analysis (PCA)

More sophisticated methods:

Variational Autoencoder (VAE)

Unsupervised Learning (Recap)

Unsupervised learning

Given: Training set

$$D = \{(x^{(i)})\}_{i=1}^{N}$$

Goal: Revealing structure in the observed data and finding groups or intrinsic structures in the data

- Main Approaches:
 - Density Estimation
 - Generative Modelling
 - Clustering
 - Dimensionality Reduction

Supervised Learning vs. Unsupervised Learning

Outline

- Introduction and Motivation
- ML Problems
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Loss Function and Optimization
- Generalization and Overfitting

- Most natural way of learning
- Examples:
 - Baby movement
 - Investment

- Sequential decision making with (possibly delayed) rewards
- An agent learns appropriate actions (policy) based on environment feedbacks to maximize reward.

- Sequential decision making with (possibly delayed) rewards
- Data in supervised learning:

(input, label)

Data in reinforcement learning:

(input, some output, a grade of reward for this output)

- State: Agent's observation from the world
- Environment model:
 - Transition probability $p(s_{t+1}|s_t, a_t)$
 - Reward function $R(s_t, a_t, s_{t+1})$
- Policy: Mapping from states to actions

$$\pi_{\theta}: S \to A$$

 Goal: Learning an optimal policy in order to maximize its long-term reward

Multi-Armed Bandit

Multiple bandits with unknown average rewards

Multi-Armed Bandit

- Finding the **best arm** (in the sense of expected reward)
 with minimum trial and error.
- Minimizing cumulative regret.
- Exploration-exploitation trade-off!

Multi-Armed Bandit

Applications:

- Online advertisement
- Recommender systems
- Clinical trials
- Mining
- Network (packet routing)

Primary ML Problems (Review)

Hypothesis Class (Recap)

- The aim of supervised learning is to find f^* (best solution) from **hypothesis space** (e. g. the set of all possible functions)
- Example:

In linear regression the hypothesis space include all possible functions with the form of

$$f(x; w_0, w_1) = w_0 + w_1 x$$

set of all possible functions H $\bullet f$

Loss Function and Optimization

• Loss Function:

Quantifies how much undesirable is each parameter vector across the training data.

Optimization:

Apply an **optimization** algorithm that finds the parameters that minimize the loss function.

Steps of Learning Procedure

Typical steps of solving (supervised) learning problems:

- Select the hypothesis space:
- Define a loss function that quantifies how much undesirable is each parameter vector across the training data.
- Apply an optimization algorithm that efficiently finds the parameters that minimize the loss function.
- Evaluate the obtained model.

Loss Function

- Error: The **difference** between the actual outputs (e.g. **ground truth**) and the predicted outputs.
- The function that is used to compute this error is known as Loss Function L(.) or J(.).
- Generally, consists of empirical risk term and regularization term.

Loss Function: Loss Landscape

WSS 2024

Loss Function: Loss Landscape

Loss Functions: Negation Problem

 Consider a threshold logic unit with a single input and training examples for the negation:

$$x \xrightarrow{w} \theta \qquad y \qquad \begin{bmatrix} x & y \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

• Error of computing the negation w.r.t. the θ and w:

$$L = \sum_{i} L_{i}$$

Loss Functions in Supervised Learning

- Regression Losses
 - Mean Square Error (L2 Loss)

- Classification Losses
 - Hinge Loss (Multi class SVM)
 - Cross Entropy Loss

Mean Squared Error (MSE) loss function is widely used in regression problems.

$$J(w) = \sum_{i=1}^{N} (y^{(i)} - w^{T} x^{(i)})^{2}$$

$$\widehat{y^{(i)}}$$

Mean Squared Error (MSE) loss function is widely used in regression problems.

$$J(w) = \sum_{i=1}^{N} (y^{(i)} - w^{T} x^{(i)})^{2}$$

$$\widehat{v^{(i)}}$$

Mean Squared Error (MSE) loss function is widely used in regression problems.

$$J(w) = \sum_{i=1}^{N} (y^{(i)} - w^{T} x^{(i)})^{2}$$

$$\widehat{y^{(i)}}$$

Goal: Find w^* which minimizes J(w):

$$w^* = argmin_w J(w)$$

Mean Squared Error (MSE) loss function is widely used in regression problems.

$$J(w) = \sum_{i=1}^{N} (y^{(i)} - w^{T} x^{(i)})^{2}$$

$$\widehat{y^{(i)}}$$

Goal: Find w^* which minimizes J(w):

$$w^* = argmin_w J(w)$$

Optimization

Loss Functions in Supervised Learning

- Regression Losses
 - Mean Square Error (L2 Loss)

- Classification Losses
 - Hinge Loss (Multi class SVM)
 - Cross Entropy Loss

Support Vector Machine (SVM)

Support Vector Machine (SVM)

Misclassification Error: $-sign(y^{(i)}[w.x^{(i)}+b])$

Support Vector Machine (SVM)

Misclassification Error: $-sign(y^{(i)}[w.x^{(i)}+b])$

Support Vector Machine (SVM)

Misclassification Error: $-sign(y^{(i)}[w.x^{(i)}+b])$

Cross Entropy Loss

Cross-entropy:

$$H(q,p) = -\sum_{x} q(x) \log p(x)$$

Cross Entropy Loss

Cross-entropy:

$$H(q,p) = -\sum_{x} q(x) \log p(x)$$

Multi-class cross-entropy Loss:

$$L(\hat{y}, y) = -\sum_{j} y_{j} \log \hat{y}_{j}$$

Cross Entropy Loss

Multi-class cross-entropy Loss:

$$L(\hat{y}, y) = -\sum_{j} y_{j} \log \widehat{y_{j}}$$
predicted probability of each class!

Cross Entropy Loss: Softmax Classifier

Multi-class cross-entropy Loss:

$$L(\hat{y}, y) = -\sum_{j} y_{j} \log \widehat{y_{j}}$$
predicted probability of each class!

Sotmax classifier:

$$s = f(x)$$

$$\widehat{y}_j = \frac{e^{s_j}}{\sum_{k=1}^{C} e^{s_c}}$$

Cross Entropy Loss: Softmax Classifier

Multi-class cross-entropy Loss:

$$L(\hat{y}, y) = -\sum_{i} y_{i} \log \widehat{y}_{i}$$

predicted probability of each class!

The true distribution (one-hot vector: q = [0,0,0,...,1,...,0])

Sotmax classifier:

$$S = f(x)$$

$$\widehat{y}_j = \frac{e^{S_j}}{\sum_{k=1}^C e^{S_c}}$$

Loss Functions in Supervised Learning

- Regression Losses
 - Mean Square Error (L2 Loss)

- Classification Losses
 - Hinge Loss (Multi class SVM)
 - Cross Entropy Loss

