1

SEQUENCE LISTING

<110>	I	NTRO	•													
<120>	A	nov	el H	MGCc	A re	duct	ase	inhi	bito	or						
<130>	F	P226	2													
<160>	1	8														
<170>	P	aten	tIn	vers	sion	3.2										
<210><211><212><213>	3 D	35 NA														
<220> <221> <222>	. (22).	. (30	3)												
<400> ggtac			.aaaa	aaag	jt t	atg Met 1	gtg Val	aaa Lys	Met	caa Gln 5	gtt Val	att Ile	ttc Phe	att Ile	gct Ala 10	51
ttc a Phe I	tc le	gct Ala	gta [·] Val	ata Ile 15	gca Ala	tgt Cys	agc Ser	atg Met	gta Val 20	tat Tyr	gga Gly	gat Asp	agt Ser	ctt Leu 25	tcc Ser	99
cct t Pro T	t. Ga	aat Asn	gaa Glu 30	gly ggc	gat Asp	acg Thr	tat Tyr	tac Tyr 35	ggt Gly	tgc Cys	cag Gln	aga Arg	caa Gln 40	acg Thr	gat Asp	147
gaa t Glu P	tc he	tgt Cys 45	aat Asn	aaa Lys	att Ile	tgt Cys	aag Lys 50	ctg Leu	cac His	tta Leu	gca Ala	agc Ser 55	ggt Gly	gga Gly	agc Ser	195
tgt c Cys G	ag In	caa Gln	ccc Pro	gct Ala _.	cct Pro	ttt Phe 65	gtg Val	aaa Lys	tta Leu	tgc Cys	aca Thr 70	tgc Cys	caa Gln	ggt Gly	att Ile	243
gat t Asp T 75	ac	gac Asp	aac Asn	agt Ser	ttc Phe 80	ttt Phe	ttt Phe	gga Gly	gca Ala	ttg Leu 85	gaa Glu	aaa Lys	caa Gln	tgt Cys	cct Pro 90	291
aaa t Lys L				tago	cgaa	aag a	atttg	gcati	ct at	caat	gcta	a tt				335

<210> 2 <211> 94 <212> PRT <213> JCH2

2

<400> 2

Met Val Lys Met Gln Val Ile Phe Ile Ala Phe Ile Ala Val Ile Ala 1 5 10 15

Cys Ser Met Val Tyr Gly Asp Ser Leu Ser Pro Trp Asn Glu Gly Asp
20 25 30

Thr Tyr Tyr Gly Cys Gln Arg Gln Thr Asp Glu Phe Cys Asn Lys Ile 35 40 45

Cys Lys Leu His Leu Ala Ser Gly Gly Ser Cys Gln Gln Pro Ala Pro 50 55 60

Phe Val Lys Leu Cys Thr Cys Gln Gly Ile Asp Tyr Asp Asn Ser Phe 65 70 75 80

Phe Phe Gly Ala Leu Glu Lys Gln Cys Pro Lys Leu Arg Glu 85 90

<210> 3

<211> 72

<212> PRT

<213> Deduced amino acid sequence of JCH2

<400> 3

Asp Ser Leu Ser Pro Trp Asn Glu Gly Asp Thr Tyr Tyr Gly Cys Gln 1 5 10 15

Arg Gln Thr Asp Glu Phe Cys Asn Lys Ile Cys Lys Leu His Leu Ala 20 25 30

Ser Gly Gly Ser Cys Gln Gln Pro Ala Pro Phe Val Lys Leu Cys Thr 35 40 45

Cys Gln Gly Ile Asp Tyr Asp Asn Ser Phe Phe Phe Gly Ala Leu Glu 50 55 60

Lys Gln Cys Pro Lys Leu Arg Glu 65 70

<210> 4

<211> 30

<212> PRT

<213> N-terminal sequence obtained from amino acid sequence of JCH2

3

<400> 4

Asp Ser Leu Ser Pro Trp Asn Glu Gly Asp Thr Tyr Tyr Gly Cys Gln 5

Arg Gln Thr Asp Glu Phe Cys Asn Lys Ile Cys Lys Leu His 25

<210> 5

<211> 14

<212> PRT

<213> Peptide 1 from RP-HPLC of JCH2 deduced amino acid sequence

<400> 5

Gln Pro Ala Pro Phe Val Lys Leu Cys Thr Cys Gln Gly Ile

<210> 6

<211> 19

<212> PRT

<213> Peptide 2 from RP-HPLC of JCH2 deduced amino acid sequence

<400> 6

Lys Leu His Leu Ala Ser Gly Gly Ser Cys Gln Gln Pro Ala Pro Phe 10

Val Lys Leu

<210> 7

<211> 22 <212> PRT

<213> Peptide 3 from RP-HPLC of JCH2 deduced amino acid sequence

<400> 7

Pro Ala Pro Phe Val Lys Leu Cys Thr Cys Gln Gly Ile Asp Tyr Asp 10

Asn Ser Phe Phe Phe Gly 20

<210> 8

<211> 20

<212> PRT

<213> Peptide 4 from RP-HPLC of JCH2 deduced amino acid sequence

PCT/SG2004/000168 WO 2004/108928

```
4.
 <400> 8
Gln Gly Ile Asp Tyr Asp Asn Ser Phe Phe Phe Gly Ala Leu Glu Lys
Gln Cys Pro Lys
            20
<210> 9
<211> 21
<212> PRT
<213> Peptide 5 from RP-HPLC of JCH2 deduced amino acid sequence
<400> 9
Gly Cys Gln Arg Gln Thr Asp Glu Phe Cys Asn Lys Ile Cys Lys Leu
                                    10
His Leu Ala Ser Gly
            20
<210> 10
<211> 14
<212> PRT
<213> Peptide 6 from RP-HPLC of JCH2 deduced amino acid sequence
<400> 10
Asp Ser Leu Ser Pro Trp Asn Glu Gly Asp Thr Tyr Tyr Gly
      5
<210> 11
<211> 15
<212> PRT
<213> Peptide 7 from RP-HPLC of JCH2 deduced amino acid sequence
<400> 11
Leu Ser Pro Trp Asn Glu Gly Asp Thr Tyr Tyr Gly Cys Gln Arg
                                   10
<210> 12
<211> 7
<212> PRT
<213> Peptide 8 from RP-HPLC of JCH2 deduced amino acid sequence
```

Ser Pro Trp Asn Glu Gly Asp

<400> 12

WO 2004/108928 PCT/SG2004/000168

5

```
<210> 13
 <211> 6
 <212> PRT
 <213> Peptide 9 from RP-HPLC of JCH2 deduced amino acid sequence
 <400> 13
 Gly Asp Thr Tyr Tyr Gly
 <210> 14
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Gene specific primer forward 1
 <220>
 <221> misc_feature
<222> (3)..(3)
<223> y is t or c
 <220>
 <221> misc_feature <222> (6)..(6)
 <223> y is t or c
 <220>
 <221> misc_feature <222> (9)..(9)
 <223> n is a, c, g, or t
 <220>
 <221> misc_feature
 <222> (12)..(12)
 <223> n is a, c, g, or t
 <220>
 <221> misc_feature
 <222> (15) ... (15)
 <223> y is t or c
<220>
 <221> misc_feature
 <222> (21)..(21)
 <223> y is t or c
 <400> 14
 gayagyctnt cnccytggaa yga
```

23

<210> 15 <211> 22

WO 2004/108928 PCT/SG2004/000168

6 .

<212> <213>	DNA Artificial Sequence						
<220> <223>	Universal adaptor primer as reverse primer, AP1						
<400>	15						
gtaata	cgac tcactatagg gc	22					
	·						
<210>	16						
<211>							
<212>	DNA						
<213>	Artificial Sequence						
<220>							
	Gene specific reverse primer						
400	16						
<400>							
attcca	aggg gaaagactat c	21					
	•						
<210>							
<211>	24						
<212>	DNA						
<213>	Artificial Sequence						
<220>	·						
<223>	Gene specific forward primer						
400	4.0						
<400>	17	24					
ggtacatttc taaaaaaagt tatg 24							
<210>	18						
<211>							
<212>							
<213>	Artificial Sequence						
· <220>							
<223>	Gene specific reverse primer						
•	•						
<400>	18						
aatagc	aatagcattg attaaatgca aatc 24						