Algoritmusok és adatszerkeztek II.

9. gyakorlat

Tartalom:

Minimális összköltségű feszítőfa II.

- Minimális összköltségű feszítőfa általános algoritmus
- Prim algoritmus
- Az algoritmus lejátszása
- Prim algoritmus implementációk, műveletigény
- Kruskal algoritmus
- Az algoritmus lejátszása
- Az unió-holvan adatszerkezet
- Kruskal algoritmus műveletigénye
- Szorgalmi házi feladat

Élsúlyozott gráfok ábrázolása

♦ Irányítatlan gráf: G=(V,E), w:E→R

A	1	2	3	4
1	0	2	1	∞
2	2	0	0	-1
3	1	0	0	∞
4	∞	-1	∞	0

Mátrix főátlója mindig csupa nulla!

$$1-2, 2; 3, 1.$$

 $2-3, 0; 4, -1.$

$A[i,j] = w(v_i, v_j) \iff (v_i, v_j) \in E$
A[i,i] = 0
$A[i,j] = \infty \iff (v_i, v_j) \notin E \land i \neq j$

Élsúlyozott gráfok ábrázolása

♦ Irányított gráf, G=(V,E), w:E→R

(a)-	2	b
1	0/	-1
c		$\overline{\mathbf{d}}$

$a \rightarrow b, 2.$	
$b \rightarrow c$, 0; d,	-1.
$c \rightarrow a, 1.$	

Α	a	b	С	d
а	0	2	8	∞
b	8	0	0	-1
С	1	8	0	8
d	8	8	8	0

Mátrix főátlója mindig csupa nulla!

$$A[i,j] = w(v_i, v_j) \iff (v_i, v_j) \in E$$

$$A[i,i] = 0$$

$$A[i,j] = \infty \iff (v_i, v_j) \notin E \land i \neq j$$

Minimális összköltségű feszítőfa meghatározása

- ♦ Adott egy élsúlyozott, összefüggő, irányítatlan G gráf. G=(V,E), w:E→R
- Feladat: határozzuk meg az (egyik) minimális összköltségű feszítő fáját.
- Villamos hálózat építése, O. Borúvka, 1926
- Nevezetes megoldó algoritmusok:
- ♦ J. B. Kruskal, 1956
- R. C. **Prim**, 1957
- Érdekesség: piros/kék algoritmus: R. E. Tarjan

Piros/kék algoritmus

- Általános leírása a feladatnak, de végrehajtható algoritmus is
- Két szabály szerint kiszínezi a gráf valamennyi élét.
- Kékre színezi a minimális költségű feszítőfába bekerülő éleket.
- Pirosra színezi azokat az éleket, amelyek már biztosan nem kerülnek be a fába.
- A két szabályt tetszőleges sorrendben és tetszőleges helyen alkalmazhatjuk, akár véletlenített módon.
- Bizonyíthatók a következő állítások:
 - Az eljárás során a színezés mindig megfelelő: azaz létezik olyan minimális feszítőfa, amelynek részfáját alkotják a kék élek.
 - A színezés nem akad el (a gráf minden éle kiszínezhető).
 - Ha kiszíneztük a gráf valamennyi élét, a kék élek egy minimális feszítőfát fognak adni.
 (Valójában elegendő n-1 kék élt választani.)

A szabályok

* Kék szabály:

Válasszuk a csúcsoknak egy olyan nem üres X részhalmazát, amelyből nem vezet ki kék él. Az -egyik- legkisebb költségű kivezető *színtelen* élt fessük kékre.

Piros szabály:

Tekintsünk egy olyan kört a gráfban, amely nem tartalmaz még piros élt. A kör-egyik-legnagyobb költségű *színtelen* élét fessük pirosra.

 A definíciók fontos eleme a "színtelen" jelző. Mindig egy szintelen élt kell beszínezni, így nem akadhat el az algoritmus.

Példa

- Próbáljuk ki a piros/kék algoritmust. A mellékelt gráf valamennyi élét színezzük ki a szabályok szerint.
- Ameddig lehet, felváltva használjuk a szabályokat, kezdjük kék szabállyal.
- Piros_kek.xlsx

Egy általános algoritmus

- **2.7. Definíció.** Ha G=(V,E) gráf és $\{\} \subsetneq S \subsetneq V$, akkor a G gráfon $(S,V\backslash S)$ egy vágás.
- **2.8. Definíció.** G = (V, E) gráfon az $(u, v) \in E$ él keresztezi az $(S, V \setminus S)$ vágást, ha $(u \in S \land v \in V \setminus S) \lor (u \in V \setminus S \land v \in S)$.
- **2.9.** Definíció. G = (V, E) élsúlyozott gráfon az $(u, v) \in E$ könnyű él az $(S, V \setminus S)$ vágásban, ha (u, v) keresztezi a vágást, és $\forall (p, q)$, a vágást keresztező élre $w(u, v) \leq w(p, q)$.

- ☐ Vágás szemléltetése: S={A,B,C,E}
- Keresztező élek: zöld színűek
- □ Könnyű él: (D,E)

Egy általános algoritmus

- **2.10.** Definíció. A G = (V, E) gráfban az $A \subseteq E$ élhalmazt elkerüli az $(S, V \setminus S)$ vágás, ha az A egyetlen éle sem keresztezi a vágást.
- **2.11. Tétel.** Ha a G = (V, E) irányítatlan, összefüggő, élsúlyozott gráfon
- (1) A részhalmaza a G valamelyik minimális feszítőfája élhalmazának,
- (2) $az(S, V \setminus S)$ vágás elkerüli az A élhalmazt, és
- (3) $az(u,v) \in E$ könnyű él $az(S,V \setminus S)$ vágásban,
- \implies az (u, v) él biztonságosan hozzávehető az A élhalmazhoz.

- \square Az A élhalmaz: A={(A,B),(B,C),(C,E)}
- A vágás elkerüli az A élhalmazt,
- A vágás könnyű éle: (D,E),
 biztonságosan hozzávehető az A halmazhoz.

A tételből kapott algoritmus

GenMST
$$(G : \mathcal{G}_w ; A : \mathcal{E}\{\})$$

$$A := \{\} ; k := |G.V| - 1$$

$$// k \text{ edges must be added to } A$$

$$k > 0$$
find an edge (u, v) that is safe for A

$$A := A \cup \{(u, v)\} ; k - -$$

- Vessük össze a tanult piros-kék algoritmussal:
- Amikor a kék szabályt használjuk, egy vágást hozunk létre a gráfban.
- Ha a választott halmazban vannak már kék élek, akkor azok tartoznak az A halmazba, ha nincsenek, akkor A={}
- Kék él lesz a vágás könnyű éle.
- Ezt biztonságosan hozzávehetjük A-hoz.

Prim algoritmus

```
\left(\operatorname{Prim}(G:\mathcal{G}_w\;;\;r:\mathcal{V})\right)
                                    \forall v \in G.V
          c(v) := \infty; p(v) := \emptyset // costs and parents still undefined
          edge (p(v), v) will be in the MST where c(v) = G.w(p(v), v)
 c(r) := 0 // r is the root of the MST where p(r) remaines undefined
  let Q be a minimum priority queue of G.V \setminus \{r\} by label values c(v):
Q: \min \Pr Q(G.V \setminus \{r\}, c) // c(v) = \text{cost of light edge to (partial) MST}
u := r / / \text{ vertex } u = r \text{ has become the first node of the (partial) MST}
                                  \neg Q.isEmpty()
            neighbors of u may have come closer to the partial MST
                  \forall v : (u, v) \in G.E \land v \in Q \land c(v) > G.w(u, v)
                     p(v) := u; c(v) := G.w(u, v); Q.adjust(v)
           u := Q.\text{remMin}() // (p(u), u) is a new edge of the MST
```


Mutassuk be az algoritmus működését az alábbi gráfon

- * Kezdőcsúcs: A
- Lejátszás: Prim.xlsx

A lejátszás végeredménye

- Kék élek jelzik a kapott feszítőfát
- A csúcsok c() értékeit összeadva kapjuk meg a feszítőfa összköltségét.
- A p() értékek határozzák meg a feszítőfa éleit: (v,p(v))

	c értékek a Q-ban				E4h-114	p értékek változásai											
1	4	В	С	D	Е	F	G	Н	Fába kerülő csúcs	Α	В	С	D	Е	F	G	Н
()	8	8	8	oS.	8	8	8		0	0	0	0	0	0	0	0
		1	4	8	8	8	8	8	Α		Α	Α					
			2	3	4	8	8	8	В			В	В	В			
				3	1	00	8	8	С					С			
				1	1	8	5	5	E				Е			Е	Е
						6	5	5	D						D		
						4		5	G						G		
								5	F								
									Н								
		- 10							9								
()	1	2	1	1	4	5	5		0	Α	В	Ε	С	G	Ε	Е
		- 7								7							

minPrQueue kupacának és a gráfnak a kapcsolata

- * Kétirányú kapcsolat kell:
- remMin() művelet után meg kell tudni, melyik csúcsot vettük ki: kupac elemei a c() érték mellett a csúcs azonosítóját is tartalmazzák.
- A közelítő ciklusban egy (u,v) él mentén v csúcs vizsgálatakor szükségünk van c(v) értékre. Ez a kupacból olvasható ki! Ezért a csúcsnak "tudnia" kell, hogy hol van a kupacban a helye.

remMin() művelet

Mit takar a Q.adjust(v) művelet?

Kupaccal ábrázolt prioritásos sor esetén:
 ha csökken egy adott kulcs -> felfelé kell a kupacban mozgatni az elemet.

Implementáció, műveletigény

Kruskal algoritmus

- Csúcsokból halmazokat készítünk.
- A halmazok mindig részei az –egyik lehetséges- minimális feszítő fának.
- Ha a következő él két halmazt összekötő él, akkor hozzávesszük a megoldáshoz, és összevonjuk a halmazokat. Ilyenkor két feszítőfa részletet vonunk egybe.
- Ha a következő él két végpontja ugyanabban a halmazban van, akkor kört hoz létre, nem vesszük be a megoldásba.
- Ha n-1 kék élt találtunk (|A|=n-1), kész vagyunk, az algoritmus leállhat.

Kruskal algoritmus lejátszása

- Mutassuk be az algoritmus működését a mellékelt gráfon.
- Lejátszás:Kruskal.xlsx

Megoldás

Hogyan ábrázoljuk a halmazokat?

- Milyen műveletnek kell hatékonynak lennie:
 - □ holvan(u) melyik halmazban van az u csúcs
 - □ unió(x,y) két halmaz uniójának létrehozása
- Naiv ábrázolás H egész típusú tömbbel: holvan: Θ(1) unió: O(n) – költséges! n-1 szer fog végrehajtódni!
- Hatékony adatszerkezet: "unió_holvan fa"

	{A}	{B}	{C}	{D}	{E}	{F}	{G}	{H}	{I}	
	Α	В	С	D	E	F	G	Н	1	
Н	1	2	3	4	5	6	7	8	9	
	{A,B}		{C}		{E}	{F}	{G}	{H}	{I}	
	Α	В	С	D	E	F	G	Н	1	
Н	1	1	3	4	5	6	7	8	9	
	{A,B}		{C,E}		{D}	{F}	{G}	{H}	{I}	
	Α	В	С	D	E	F	G	Н	1	
Н	1	1	3	4	3	6	7	8	9	

Az unió-holvan adatszerkezet

- A halmazokat fával ábrázoljuk.
- Csak a szülő irányába mutató pointerre van szükség.
- A gyökér reprezentálja a halmazt, azt is tárolja, hogy hány eleme van a halmaznak.
- Holvan művelet: fellépegetünk a fa gyökerébe: ez a fa magasságával arányos lépésszámot jelent.
- Unió: a nagyobbik fa gyökere alá befűzzük a kisebbik fát, az elemszámot módosítjuk: ez konstans lépésszámú művelet.

Rajzoljuk le unió-holvan fával a példában kapott halmazokat

Rajzoljuk le unió-holvan fával a palában kapott halmazokat

Rajzoljuk le unió-holvan fával a palában kapott halmazokat

{A,B,C,D,E,F,G} {H} {I}

	50	5.0	455
H	1	1	1 1

Rajzoljuk le unió-holvan fával a palában kapott halmazokat

Milyen magas lehet a fa?

- Láttuk, hogy inkább terebélyes, mint magas a halmazokat ábrázoló fa.
- Minél szélesebb, annál előnyösebb, mert a holvan műveletnél gyorsabban felérünk a gyökérhez. Legideálisabb azaz alak, amikor közvetlenül a gyökér alá van bekötve valamennyi csúcs.
- Vizsgáljuk meg milyen magasságú lehet a fa.
- Unió műveletnél nő a magasság, mindig eggyel. A kisebbik fa bekötődik a nagyobb alá, így legrosszabb esetben is megduplázódik a kisebb elemszámú fa. Ez legfeljebb log2 n-szer történhet meg => a fa magassága legfeljebb log2n lehet.
- Hogyan érhető el, hogy minél szélesebb fákat kapjunk?
- A holvan művelet részeként végrehajtunk egy úgynevezett "Útösszenyomás" lépést is.

Útösszenyomás

- Holvan művelet közben az úton érintett csúcsokat megjegyezzük (például egy sorban)
- A gyökérhez felérve az úton érintett csúcsokat a sorból kivéve, bekötjük közvetlenül a gyökér alá.

Útösszenyomást használva, igen nagy méretű gráfok esetén is a fák magassága 4 körül tartható! (Forrás: Rónyai-Ivanyos-Szabó: Algoritmusok)

75 TO 10		THE REAL										
			{A}	{B}	{C}	{D}	{E}	{F}	{G}	{H}	{I}	
(A,B)	1	k	{A,B}	}	{C}	{D}	{E}	{F}	{G}	{H}	{I}	
(C,E)	1	k	{A,B} {C,E}				{D}	{F}	{G}	{H}	{I}	
(D,E)	1	k	{A,B} {C,D,E}					{F}	{G}	{H}	{I}	
(B,C)	2	k	{A,B			{F}	{G}	{H}	{I}			
(B,D)	3	р	B-csúcsra									
(A,C)	4	р										
(B,E)	4	p										
(F,G)	4	k	{A,B	,C,D,	E}			{F,G	}	{H}	{I}	
(E,G)	5	k	{A,B	,C,D,	E,F,G	i}				{H}	{I}	
(D,F)	6	р										
(D,H)	8	k	{A,B	,C,D,	E,F,G	,H}					{I}	
(G,H)	10	р	G-cs	úcsr	a							
(F,I)	12	k	{A,B	,C,D,	E,F,G	,H,I}						
(G,I)	15	p										

Történne-e útösszenyomás a példában, ha igen hol?

 {A,B,C,D,E} halmaznál a (B,D) él feldolgozásakor: holvan(B) után B közvetlenül a gyökér alá fűződik át

			{A}	{B}	{C}	{D}	{E}	{F}	{G}	{H}	{I}	
(A,B)	1	k	{A,B}		{C}	{D}	{E}	{F}	{G}	{H}	{I}	
(C,E)	1	k	{A,B}		{C,E}		{D}	{F}	{G}	{H}	{I}	
(D,E)	1	k	{A,B}	{	C,D,E	}		{F}	{G}	{H}	{I}	
(B,C)	2	k	{A,B	,C,D,	E}			{F}	{G}	{H}	{I}	
(B,D)	3	р	B-csúcsra									
(A,C)	4	p										
(B,E)	4	p										
(F,G)	4	k	{A,B	,C,D,	E}			{F,G	}	{H}	{I}	
(E,G)	5	k	{A,B	,C,D,	E,F,G	i}				{H}	{I}	
(D,F)	6	p										
(D,H)	8	k	{A,B	,C,D,	E,F,G	,H}					{I}	
(G,H)	10	р	G-cs	úcsr	a							
(F,I)	12	k	{A,B	,C,D,	E,F,G	,H,I}						
(G,I)	15	р										

Történne-e útösszenyomás a példában, ha igen hol?

 {A,B,C,D,E,F,G,H} halmaznál a (G,H) él feldolgozásakor: holvan(G) után G közvetlenül a gyökér alá fűződik át

Kruskal műveletigény

Kruskal(G: Gw): A: E{} G.E rendezése w szerint növekvő sorrendbe Rendezés: O(m*log m), de lehet lineáris (radix): Θ(m) $\forall v \in G.V$ halmazKészít(v) $\Theta(n)$ $A:=\{\}$ $\Theta(1)$ ∀ (u,v) ∈ G.E súly szerint növekvő sorrendben legfeljebb "m-szer" x:=holvan(u) O(m*log n útösszenyomással: O(m) y:=holvan(v) $x \neq y$ // (u,v) kék él unió: n-1 szer hajtódik végre: $A:=A \cup \{(u,v)\}$ // (u,v) piros él Θ(n) unió(x,y) Összesítve: $mT(n,m)=\Theta(n+m)$, ez ritka gráfon: $\Theta(n)$ return A

Szorgalmi házi feladat

- Készítsük el a Prim algoritmust szomszédossági mátrixszal ábrázolt gráfra. Felhasznált adatszerkezetek:
 - □ A gráfot az A/1:R[n,n] mátrix ábrázolja.
 - c/1:R[n] tömb a csúcsokhoz tartozó értékeket tárolja.
 - p/1:N[n] tömb a szülő értékeket tárolja.
 - □ in/1:L[n] logikai tömb
 - a prioritásos sort nem ábrázoljuk külön minPrQueue-val, hanem a c tömbben lévő értékek, és az in logikai tömb együttesen ábrázolják,
 - in[i]=true, akkor az i csúcs a sorban van, ha in[i]=false, akkor már nincs,
 - a remMin() műveletet egy feltételes minimum kereséssel valósítjuk meg: a sorban lévő csúcsok c értékeinek minimumát választjuk ki. Használjuk ehhez a tanult feltételes minimum keresés programozási tételét.
 - Számítsuk ki az elkészült algoritmus műveletigényét.

