

Concurrency and Parallelism — 2018-19

Master in Computer Science

(Mestrado Integrado em Eng. Informática)

Outline

- Performance scalability
 - Work-span model
 - Brent's lemma

- Bibliography:
 - Chapter 2 of book McCool M., Arch M., Reinders J.; Structured Parallel Programming: Patterns for Efficient Computation; Morgan Kaufmann (2012); ISBN: 978-0-12-415993-8

Amdhal's Law

If 50% of your application is parallel and 50% is serial, you can't get more than a factor of 2 speedup, no matter how many processors it runs on!

But...

 Can all the applications be decomposed into just a serial part and a parallel part? For my application, what speedup should I expect?

 Most applications have a dependencies between code blocks and have a complex organization

Cilk+ fib() implementation

```
int fib(int n) {
  if (n < 2) return n;
  else {
    int x, y;
    x = \text{cilk spawn fib (n-1)};
    y = fib(n-2);
    cilk sync;
    return x+y;
```

Execution model

Computation DAG

- A parallel instruction stream is a dag G = (V, E).
- Each vertex v ∈ V is a strand : a sequence of instructions not containing a call, spawn, sync, or return (or thrown exception).
- An edge e ∈ E is a spawn, call, return, or continue edge.
- Loop parallelism (cilk_for) is converted to spawns and syncs using recursive divide-and-conquer.

Serial Composition

Work:
$$T_1(A \cup B) = T_1(A) + T_1(B)$$

Span:
$$T_{\infty}(A \cup B) = T_{\infty}(A) + T_{\infty}(B)$$

Parallel Composition

Work:
$$T_1(A \cup B) = T_1(A) + T_1(B)$$

Span:
$$T_{\infty}(A \cup B) = \max\{T_{\infty}(A), T_{\infty}(B)\}$$

Speedup

Def. $T_1/T_P = speedup$ on P processors.

If $T_1/T_P = P$, we have *(perfect) linear speedup*. If $T_1/T_P > P$, we have *superlinear speedup*, which is not possible in this performance model, because of the Work Law $T_P \ge T_1/P$.

Parallelism

Because the Span Law dictates that $T_P \ge T_\infty$, the maximum possible speedup given T_1 and T_∞ is

 $T_1/T_{\infty} = parallelism$

the average amount of work per step along the span.

= 18/9

= 2

Example: fib(4)

Assume for simplicity that each strand in fib(4) takes unit time to execute.

Work: $T_1 = 17$

Span: $T_{\infty} = 8$

Parallelism: $T_1/T_{\infty} = 2.125$

Using many more than 2 processors can yield only marginal performance gains.

Quicksort Analysis

Note: the pointer arithmetic is invalid in this example, but I hope you get the idea!

Let's analyze the sorting of 100,000,000 numbers!

Quicksort Analysis

Note: the pointer arithmetic is invalid in this example, but I hope you get the idea!

```
void qsort(void *base, size t nel, size t width,
           int (*compar)(const void *, const void *))
  int p = partition(base, nel, width, compar);
  cilk spawn qsort(&base[0], p, width, compar);
  qsort (\&base[p+1], nel-(p+1), width, compar);
  cilk sync;
```

Expected Work = O(n lg n)
Expected Span = O(n) => Parallelism = O(lg n)

Interesting Practical Algorithms

Algorithm	Work	Span	Parallelism
Quick sort	Θ(n lg n)	Θ(n)	Θ(lg n)
Merge sort	Θ(n lg n)	$\Theta(\lg^3 n)$	$\Theta(n/\lg^2 n)$
Matrix multiplication	$\Theta(n^3)$	Θ(lg n)	$\Theta(n^3/\lg n)$
Strassen	$\Theta(n^{lg7})$	$\Theta(\lg^2 n)$	$\Theta(n^{lg7}/lg^2n)$
LU-decomposition	$\Theta(n^3)$	Θ(n lg n)	$\Theta(n^2/\lg n)$
Tableau construction	$\Theta(n^2)$	$\Theta(n^{lg3})$	$\Theta(n^{2-lg3})$
FFT	Θ(n lg n)	$\Theta(\lg^2 n)$	Θ(n/lg n)

DAG Model of Computation

• Think of a program as a directed acyclic graph

(DAG) of tasks

 A task can not execute until all the inputs to the tasks are available

- These come from outputs of earlier executing tasks
- DAG shows explicitly the task dependencies
- Think of the hardware as consisting of workers (processors)
- Consider a greedy scheduler of the DAG tasks to workers
 - No worker is idle while there are tasks still to execute

Work-Span Model

- T_P = time to run with P workers
- $T_1 = work$
 - Time for serial execution
 - execution of all tasks by 1 worker
 - Sum of all work
- T_{∞} = span
 - Time along the critical path
- Critical path
 - Sequence of task execution (path) through DAG that takes the longest time to execute
 - Assumes an infinite # workers available

Work-Span Example

- DAG at the right has 7 tasks
- Let each task take 1 unit of time

•
$$T_1 = 7$$

- All tasks have to be executed
- Tasks are executed in a serial order
- Can them execute in any order?

Work-Span Example

- DAG at the right has 7 tasks
- Let each task take 1 unit of time

•
$$T_1 = 7$$

- All tasks have to be executed
- Tasks are executed in a serial order
- Can them execute in any order?

- Time along the critical path
- In this case, it is the longest pathlength of any task order that maintains necessary dependencies

Lower/Upper Bound on Greedy Scheduling

- Suppose we only have P workers
- We can write a work-span formula to derive a lower bound on T_P
 - $-Max(T_1 / P, T_{\infty}) \leq T_P$
- T_{∞} is the best possible execution time
- Brent's Lemma derives an upper bound
 - Capture the additional cost executing the other tasks not on the critical path
 - Assume can do so without overhead
 - $-T_P \le (T_1 T_\infty) / P + T_\infty$

Consider Brent's Lemma for 2 Processors

•
$$T_1 = 7$$

•
$$T_{\infty} = 5$$

•
$$T_2 \le (T_1 - T_\infty) / P + T_\infty$$

 $\le (7 - 5) / 2 + 5$
 ≤ 6

Consider Brent's Lemma for 2 Processors

•
$$T_1 = 7$$

• $T_{\infty} = 5$
• $T_2 \leq (T_1 - T_{\infty}) / P + T_{\infty}$
 $\leq (7 - 5) / 2 + 5$
 ≤ 6

Consider Brent's Lemma for 2 Processors

•
$$T_1 = 7$$

• $T_{\infty} = 5$
• $T_2 \leq (T_1 - T_{\infty}) / P + T_{\infty}$
 $\leq (7 - 5) / 2 + 5$
 ≤ 6

Amdahl was an optimist!

Estimating Running Time

• Scalability requires that T_{∞} be dominated by T_1 $T_P \leq (T_1 - T_{\infty}) / P + T_{\infty}$ $T_P \approx T_1 / P + T_{\infty} \quad \text{if} \quad T_{\infty} << T_1$

The span impacts scalability, even for finite P

Parallel Slack

Sufficient parallelism implies linear speedup

$$T_P \approx T_1/P$$
 if $T_1/T_\infty >> P$

Linear speedup Parallel stack

The END

Sources:

- Parallel Computing, CIS 410/510, Department of Computer and Information Science
- https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-172-performance-engineering-of-software-systems-fall-2010/video-lectures/lecture-13-parallelism-and-performance/MIT6_172F10_lec13.pdf