LS1201

Introduction to Biology II

Assignment - 03

Mutation

By: Priyanshu Mahato (pm21ms002@iiserkol.ac.in)

Roll No.: pm21ms002 May 19, 2022

Contents

1	Question 1	1
2	Question 2	1
	2.1 a. Transitions vs. Transversions	1
	2.2 b. Synonymous vs. Neutral	1
	2.3 c. Missense vs. Nonsense	2
	2.4 d. Frameshift vs. Nonsense	2
3	Question 3	2
	3.1 Selfing of AaBb	2
	3.2 Testcrossing AaBb \times aabb	3
4	Question 4	3

1 Question 1

This is a typical frameshift mutation. Here, the deletion of a single nucleotide has caused the normal reading frame to disrupt. Since these are read in a group of three, the grouping now will be done incorrectly causing the following entire gene sequence to be read incorrectly.

2 Question 2

2.1 a. Transitions vs. Transversions

Transitions	Transversions
When in a point mutation a purine	When in a point mutation a purine
or pyrimidine base is replaced by its	or pyrimidine base is replaced by its
own kind, that is, by a purine or	opposite kind, that is, by a pyrimidine
pyrimidine respectively.	or purine respectively.

2.2 b. Synonymous vs. Neutral

effect on the polypeptide chain forming evolutionary domain. Natural selection cannot remove this as it doesn't affect	Synonymous	Neutral
through translation. survival.	When in a point mutation even though a base is substituted there is no change in the resultant amino acid and has no	The synonymous mutation is actually a subcategory of Neutral mutation. This operates at a population level and has an evolutionary domain. Natural selection cannot remove this as it doesn't affect

2.3 c. Missense vs. Nonsense

Missense	Nonsense
	When in a point mutation a base
When in a point mutation a nucleotide base is indeed substituted by another base such	is substituted in such a way that
	when reading and translating it
that the resultant polypeptide chain formed	causes the nucleotides around it
is also altered for the amino acid.	to form a stop codon and terminate
is also aftered for the affilito acid.	the formation of the polypeptide
	chain prematurely.

2.4 d. Frameshift vs. Nonsense

Frameshift	Nonsense
In a frameshift mutation, a nucleotide is deleted, added, or substituted in such a way that the reading of the DNA sequence is changed and thus changes the whole resulting polypeptide chain.	In nonsense mutation, in the DNA sequence, a nucleotide is substituted in such a way that the codon in the sequence that it was a part of becomes a stop codon causing the formation of the polypeptide chain to stop prematurely.

3 Question 3

3.1 Selfing of AaBb

	AB	Ab	aB	ab
AB	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	Aabb
aB	AaBB	AaBb	aaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb

Table 1: Selfing of AaBb

Phenotypic ratio: 9:3:3:1

Genotypic ratio: 1:2:1:2:4:2:1:2:1

3.2 Testcrossing AaBb \times aabb

	ab	ab	ab	ab
\mathbf{AB}	AaBb	AaBb	AaBb	AaBb
Ab	Aabb	Aabb	Aabb	Aabb
aB	aaBb	aaBb	aaBb	aaBb
ab	aabb	aabb	aabb	aabb

Table 2: Testcrossing AaBb \times aabb

Phenotypic ratio: 1:1:1:1 Genotypic ratio: 1:1:1:1

4 Question 4

The three laws provided by Gregor Mendel are as follows:-

- 1. Law of segregation: During gamete formation, the alleles of every gene received from the parent split up and give only one each of them to the gamete so that the new gamete has only one of each for each gene.
- 2. Law of Dominance: When the gene is being expressed there are some alleles that are able to repress the property of the other allele present for the same trait and express itself giving the appearance of a dominant trait. Such a trait / allele is called a dominant allele while the other one which failed to express itself is called the recessive one.
- 3. Law of Independent Assortment: It states that different genes assort independently that is genes for different traits do not affect each other.