デジタル信号処理の基礎-例題と Python による図で説く-

共立出版

正誤情報

最終更新: 2019 年 11 月 8 日

ページ	行数, 図・表・式番号	誤	正
14	図 1.15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15	下から1行目	また,離散信号時間は	また,離散時間信号は
17	1 行目	時刻 0 のときだけ値 1 をとり, そのほかのすべて時刻	時刻 0 のときだけ値 1 をとり, そのほかのすべての時刻
23	下から4行目	$\cdots = x \left(k \frac{T}{N} \right) = x[n]$	$\cdots = x \left(k \frac{T}{N} \right) = x[k]$
43	11 行目	再帰方程式 (3.3) はつぎのよ うに	再帰方程式 (3.4) はつぎのよ うに
		$x[n] \xrightarrow{b} b \xrightarrow{\oplus} y[n]$	$x[n] \xrightarrow{b} b \xrightarrow{q^1} y[n]$ $a \xrightarrow{q^1} q^1$
44	図 3.19 (c)	(c)	(c)
45	下から7行目	入力を x[n] とし出力を y[n] と する	入力を x[n] とし出力を p[n] と する
47	17 行目	2) 時刻 <i>n</i> = <i>m</i> まで	2) 時刻 $n = m - 1 (m > 1)$ まで
47	下から 17 行目	$\cdots = b_0 x_0[m] + \cdots + b_M x_0[m - M]$	$\cdots = b_0 x[m] + \cdots + b_M x[m - M]$

ページ	行数, 図・表・式番号	誤	正
		$y[m] = \alpha \left(\sum_{i=1}^{M} a_{i-1} x_1 [m-i] \right)$	$y[m] = \alpha \left(\sum_{i=0}^{M} b_i x_1 [m-i] \right)$
		$-\sum_{j=1}^{N}y_{1}[m-j]\bigg)$	$-\sum_{j=1}^{N}a_{j}y_{1}[m-j]\bigg)$
		$+\beta \left(\sum_{i=1}^{M} a_{i-1} x_2 [m-i]\right)$	$+\beta \left(\sum_{i=0}^{M} b_i x_2 [m-i]\right)$
47	下から 12 行目	$-\sum_{j=1}^{N} y_2[m-j]\bigg)$	$-\sum_{j=1}^{N} a_j y_2 [m-j] \bigg)$
47	下から7行目	$y_1[n] + a_0y_1[n-1] + \cdots$	$y_1[n] + a_1y_1[n-1] + \cdots$
67	⊠ 5.2	$f(x_k) \Delta x$ $x_0 = a \qquad x_k = k\Delta x \qquad x_n = b$	$f(x_k) \Delta x$ $x_0 = a \qquad \lambda x$ $x_k = a + k\Delta x$
71	下から9行目	信号処理では、(5.5) とともに その補足条件も成り立つとして 話をすすめるのがふつうである. そのときには、フーリエ変換の 反転公式により、連続時間非周 期信号 x(t) とその逆フーリエ変 換が 1 対 1 に対応する.	ところが、信号処理でよく出てくるディリクレ関数 $\frac{\sin x}{x}$ は (5.5) を満たさない. しかし、 $\frac{\sin x}{x}$ のような 2 乗可積分 * とよばれる関数に対しても、適切な距離を導入し、区間が有限な積分の極限を考えることによりフーリエ変換を定義できることが知られている. できることが知られている. ぞれらの関数とフーリエ変換には $1:1$ の対応がある.
71	脚注追加		$\int_{-\infty}^{\infty} f(x) ^2 dx < \infty \text{ のとき } f(x) \text{ は}$ 2 乗可積分とよばれる.
77	3 行目	$\cdots = \sum_{n=-\infty}^{\infty} (ae^{-j\omega})^n = \cdots$	$\cdots = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \cdots$

ページ	行数, 図・表・式番号	誤	正
88	下から 5 行目	$= x[0] + x[1] + x[2]$ $\cdots + x[N-1],$	$= x[0] + x[1] + x[2] + \dots + x[N-1],$
89	下から5行目	$f(u) = a_0 + a_2 u^2 + a_4 u^4$ $\cdots + a_{N-2} u^{N-2} + \cdots$	$f(u) = a_0 + a_2 u^2 + a_4 u^4 + \dots + a_{N-2} u^{N-2} + \dots$
100	9 行目	$\sum_{n=-\infty}^{-1} \frac{a_n}{x^n} + \sum_{n=0}^{\infty} a_n x^n$	$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=1}^{\infty} \frac{b_n}{x^n}$
115	下から3行目	システムは因果であることから, z変換の収束領域の特徴3より,	システムが因果であることの 定義から,
		$H(z) = \frac{Y(z)}{X(z)}$	$H(z) = \frac{Y(z)}{X(z)}$
116	5 行目	$=\frac{30-2z^{-1}}{6-5z^{-1}+z^{-2}}=\cdots$	$=\frac{30-12z^{-1}}{6-5z^{-1}+z^{-2}}=\cdots$
116	6 行目	インパルス応答は右側系列で なければない.	インパルス応答は右側系列で なければならない.

ページ	行数, 図・表・式番号	誤	正
		第5章で述べたように、絶対積分可能でない関数 $x(t)$ はフーリエ変換は、そのような $x(t)$ に、指数関数的対積分可能にして、指数関数をかけて変換のようにしている。すなわち、 $x(t)$ のラプラス変換(s は複素が $\sigma+j\omega$ であることに注意)は、 $X(s)=\int_{-\infty}^{\infty}x(\tau)e^{-\sigma\tau}e^{-j\omega\tau}d\tau$ = $\int_{-\infty}^{\infty}(x(\tau)e^{-\sigma\tau})e^{-j\omega\tau}d\tau$ であり、 $x(t)e^{\sigma t}$ のフーリエ変換!であることがわかる。その意換はフーリエ変換はカーリエ変換はから表述が表述が表述が表述が表述が表述が表述が表述が表述が表述が表述が表述が表述が表	第5章で述いない関数 $x(t)$, 神なわち(5.5)を満たさない関数とない、関数とない、関数とない、関数とない、関数とない。 $x(t)$ を一のような $x(t)$ を一のような $x(t)$ を一のような $x(t)$ を一のような $x(t)$ を一のような $x(t)$ を一のまであれば、 $x(t)$ を一のが、 $x(t)$ を一ので、 $x(t)$ を一の意味で、 $x(t)$ のの意味で、 $x(t)$ を一ので、 $x(t)$ を
136	8 行目	が発散するので、フーリエ変	用範囲が広い. が発散するので(5.5) が満
142	下から 10 行目	換の存在条件 (5.5) が満た されず, 本来の意味での	たされず、また、本来の意味 での
151	下から4行目	$\Omega_s = rac{2\pi}{T_s} = rac{2\pi f_s}{f_s}$ であるので,	$\Omega_s = \frac{2\pi}{T_s} = 2\pi f_s$ であるので,
186	3 行目	また, ω_0 は	また, ω_c は
190	図 Ex.1 (3)	$ \begin{array}{c c} 1 & x[2n] \\ \hline 0 & n \end{array} $	$ \begin{array}{ccc} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

ページ	行数, 図・表・式番号	誤	正
191	図 Ex.7	0.250 0.125 0.000 -5 0 5 10 15	h[n] 1.00 0.50 0.25 0.00 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
193	図 Ex.12	$x[n] \xrightarrow{a_1} p[n-2] \xrightarrow{b_2} p[n]$ $b_3 \xrightarrow{b_4} y[n]$	$x[n] \xrightarrow{a_1} p[n-2] \xrightarrow{a_1} q^1 \xrightarrow{a_1} p[n]$ $b_1 \xrightarrow{b_2} y[n]$
193	図 Ex.13	$x[n] \xrightarrow{b_0} b \xrightarrow{p} y[n]$ $q^{-1} \xrightarrow{b_0} a \xrightarrow{q^{-1}}$ $\vdots \vdots $	$x[n] \xrightarrow{b} b y[n]$ $q^{-1} \xrightarrow{b} b q^{-1}$ $\vdots \vdots $
		$(1) \ a_0 = \frac{1}{2} \cdot \frac{2}{2\pi} \int_0^{2\pi} t dt$	$(1) \ a_0 = \frac{2}{2\pi} \int_0^{2\pi} t dt$
193	下から1行目	$= \frac{1}{2\pi} \left[\frac{t^2}{2} \right]_0^{2\pi} = \pi.$	$=\frac{1}{\pi}\left[\frac{t^2}{2}\right]_0^{2\pi}=2\pi.$
194	7 行目	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{1}{k} \sin(kt)$.	よって $x(t) = \pi - \sum_{k=1}^{\infty} \frac{2}{k} \sin(kt)$.
194	8 行目	$a_0 = \frac{1}{2} \cdot \frac{2}{T} \int_0^T t dt = \frac{1}{T} \left[\frac{t^2}{2} \right]_0^T = \frac{T}{2}.$	$a_0 = \frac{2}{T} \int_0^T t dt = \frac{2}{T} \left[\frac{t^2}{2} \right]_0^T = T.$
		$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$	$a_k = \frac{2}{T} \int_0^T t \cos\left(\frac{2\pi k}{T}t\right) dt$
		$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$	$= \frac{2}{T} \left[\frac{t \cdot T}{2\pi k} \sin\left(\frac{2\pi k}{T}t\right) \right]_0^T$
194	10 行目	$-\frac{2\pi}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$	$-\frac{2T}{2\pi kT} \int_0^T \sin\left(\frac{2\pi k}{T}t\right) dt$
194	11 行目	$= \frac{2T}{2\pi kT} \int_0^T \cos\left(\frac{2\pi k}{T}t\right) dt = 0.$	$= \frac{2T}{2\pi kT} \left[\cos \left(\frac{2\pi k}{T} t \right) \right]_0^T = 0.$

ページ	行数, 図・表・式番号	誤	正
197	下から 14 行目	$\cdots = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(e^{j\omega(n+1)} + e^{-j\omega(n-1)} \right) d\omega$	$\cdots = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(e^{j\omega(n+1)} + e^{j\omega(n-1)} \right) d\omega$