Álgebra Lineal Computacional - Simulacro de Primer Parcial

Primer cuatrimestre de 2021

Nombre y Apellido	1	2	3	Nota

Justificar todas las respuestas y escribir prolijo. Duración 4 horas.

- 1. Sean $S = \{2x_1 + x_2 = 0, x_3 x_4 = 0\}$ y $f : \mathbb{R}^4 \to \mathbb{R}^4$ la transformación lineal $f(x_1, x_2, x_3, x_4) = (-x_2 x_4, x_1 x_2 + x_3, x_2 + x_4, x_2 + x_4)$.
 - (a) Hallar, si es posible, una transformación lineal $g: \mathbb{R}^4 \to \mathbb{R}^4$ tal que g(Im(f)) = S y g(Nú(f)) = Im(f).
 - (b) Decidir si g es epi, mono o isomorfismo. Justificar.
- 2. Sea $a \in \mathbb{R}$, consideramos la matriz:

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ -1 & 1 & 2 & -4 \\ 0 & 2 & -1 & 3 \\ 1 & 1 & 1 & a \end{pmatrix}.$$

- (a) Mostrar que \boldsymbol{A} no admite descomposción $\boldsymbol{A} = \boldsymbol{L}\boldsymbol{U}$.
- (b) Hallar una matriz de permutación adecuada \boldsymbol{P} y calcular la descomposición $\boldsymbol{P}\boldsymbol{A}=\boldsymbol{L}\boldsymbol{U}.$
- (c) Probar que $Cond_{\infty}(\mathbf{A}) \to \infty$ cuando $a \to 1$.
- (d) ¿Qué ocurre con $Cond_2(\mathbf{A})$ cuando $a \to 1$?
- 3. Considerar las matrices

(a)
$$\mathbf{A} = \begin{pmatrix} -2 & -3 & 3 \\ 2 & 2 & -2 \\ 2 & 1 & -1 \end{pmatrix}$$
, (b) $\mathbf{A} = \begin{pmatrix} -2 & 0 & 0 \\ -1 & 5 & -6 \\ -1 & 3 & -4 \end{pmatrix}$,

(a) Determinar en cada caso si la iteración:

$$\begin{cases} \boldsymbol{v}^{(k)} = \frac{\boldsymbol{A}\boldsymbol{v}^{(k-1)}}{\|\boldsymbol{A}\boldsymbol{v}^{(k-1)}\|} \\ r_k = \frac{(\boldsymbol{v}^{(k)})^t \boldsymbol{A}\boldsymbol{v}^{(k)}}{(\boldsymbol{v}^{(k)})^t \boldsymbol{v}^{(k)}} \end{cases}$$

da como resultado una sucesión r_k convergente para algún vector inicial $\boldsymbol{v}^{(0)}$.

- (b) Para la matriz en (a), dar un subespacio S tal que r_k converja para todo $\mathbf{v}^{(0)} \in \mathbb{R}^3 \setminus S$. ¿Converge también $\mathbf{v}^{(k)}$ para los vectores en dicho subespacio?
- (c) Para la matriz en (b) y el vector inicial $v^{(0)}=(1,4,3)$, ¿existe $\lim_{k\to\infty}v^{(k)}$? ¿Y $\lim_{k\to\infty}v^{(2k)}$?

1