TIPE

Cryptographie sur les courbes elliptiques

Paul Chaudagne

Jeudi 25 septembre 2025

TIPE – Sommaire Paul Chaudagne

Sommaire

 Les courbes e 	elliptiques	3
1.1. Définitio	ion des courbes elliptiques	3

1 - Les courbes elliptiques

1) Définition des courbes elliptiques

Lemme 1:

La relation \mathcal{R} , définie sur $\mathbb{K}^3 \setminus \{(0,0,0)\}$ par :

$$\forall ((a,b,c),(a',b',c')) \in \left(\mathbb{K}^3 \setminus \{(0,0,0)\}\right)^2,$$

$$(a,b,c)\mathcal{R}(a',b',c') \iff (\exists \lambda \in \mathbb{K} \setminus \{0\},(a,b,c) = \lambda(a',b',c'))$$

$$(1.1)$$

est une relation d'équivalence.

Preuve:

Par définition d'un corps, on a :

- $\mathcal R$ est réflexive car $1\in\mathbb K$
- $\mathcal R$ est symétrique car pour tout λ dans $\mathbb K \smallsetminus \{0\},\, \lambda^{-1} \in \mathbb K$
- \mathcal{R} est transitive car pour tous $\lambda, \mu \in \mathbb{K}, \lambda \mu \in \mathbb{K}$

Donc $\mathcal R$ est une relation d'équivalence.

Définition 1 (Plan projectif):

Soit $\mathbb K$ un corps, on appelle plan projectif l'ensemble des classes d'équivalence :

$$\mathbb{P}^2(\mathbb{K}) = (\mathbb{K}^3 \setminus \{(0,0,0)\})/\mathcal{R} \tag{1.2}$$

Cela revient à projeter l'espace sur une demi-sphère centrée en (0,0,0), où chaque classe d'équivalence correspond à une droite passant par l'origine et un unique point de la demi-sphère, soit en dimension deux :

Schéma

Définition 2 (Courbe elliptique) :

Proposition 1: