Countering Harmful Online Communication in Brazil: Predicting Fine-Grained Factuality of News and Offensive Context of Social Media Comments

Francielle Vargas

University of São Paulo

November 17, 2023

Harmful Communication in Brazil: Contextualization

During the election period in 2018, denunciations against xenophobia had an increase of 2,369.5%; public incitement to violence and crimes against life, 630.52%; neo-nazism, 548.4%; homophobia, 350.2%; racism, 218.2%; and religious intolerance, 145.13% (Safetnet, 2018).

Figure: Hate crimes occurrence in São Paulo from 2016 to the beginning of 2020.

Harmful Communication in Brazil: Contextualization

- From 1990 to 2019 there was a **543%** increase in number of protestant churches (BBC Brazil, 2023).
- The Bolsonaro government (2019-2022) was marked by **conservative narratives** (e.g., "family values" and "religious beliefs" against "immorality").

Figure: "God, country and family" was the main slogan used by former Brazilian President Bolsonaro during his electoral campaign and mandate.

Harmful Communication in Brazil: Cycle

Figure: Harmful communication cycle in Brazil¹.

¹Social identity is a theory of social psychology that offers a motivational explanation for in-group bias. Social identity is a theory of social psychology that offers a motivational explanation for in-group bias.

Harmful Communication in Brazil: Challenges

- Data resources and methods mostly available for the English language.
- Towards addressing the challenges of the automated fact-checking and hate speech detection.
 - Hate Speech Detection:
 - Inaccurate definition for offensiveness and hate speech (Davidson et al., 2017).
 - Missing contextual (cultural) information (Davidson et al., 2019).
 - Scarce consideration of their social bias (Davani et al., 2023)
 - Automated Fact-Checking and News Credibility Verification:
 - Fact-checking organizations (e.g. PolitiFact) have provided lists of unreliable news articles and media sources (Baly et al., 2018), and most of them address document-level analysis of media outlet. Nevertheless, each news article comprises multiple sentences that may contain factual information, bias, and fake content.
 - Automated fact-checking and news credibility verification at scale require accurate prediction.

Hate Speech Detection: Methods and Resources

Figure: Data resources and methods for hate speech detection.

Hate Speech Detection: Results

Tasks	Features set	Class	Precision			Recall			F1-Score					
			NB	SVM	MLP	LSTM	NB	SVM	MLP	LSTM	NB	SVM	MLP	LSTN
	POS+S	0	0.50	0.51	0.47	0.49	0.41	0.39	0.51	0.37	0.45	0.44	0.49	0.42
		1	0.50	0.51	0.54	0.49	0.50	0.64	0.51	0.62	0.59	0.57	0.52	0.55
Task 1:		Avg	0.50	0.51	0.51	0.49	0.50	0.51	0.51	0.49	0.50	0.50	0.51	0.49
Offensive		0	0.85	0.82	0.92	0.83	0.86	0.96	0.81	0.89	0.86	0.88	0.81	0.86
Language Detection	BOW	1	0.86	0.95	0.79	0.88	0.85	0.79	0.90	0.81	0.85	0.86	0.90	0.85
Detection		Avg	0.85	0.88	0.86	0.85	0.85	0.87	0.86	0.85	0.85	0.87	0.84	0.85 0.86 0.83 0.84 0.85 0.85
		0	0.74	0.78	0.94	0.79	0.97	0.96	0.77	0.94	0.84	0.86	0.85	0.86
	MOL	1	0.95	0.94	0.72	0.93	0.66	0.73	0.93	0.75	0.78	0.82	0.81	0.83
1		Avg	0.85	0.86	0.83	0.86	0.81	0.84	0.85	0.84	0.81	0.84	0.81	0.84
		0	0.84	0.84	0.91	0.86	0.93	0.94	0.83	0.85	0.88	0.88	0.87	0.85
	B+M	1	0.93	0.93	0.81	0.85	0.83	0.81	0.90	0.86	0.88	9.87	0.86	0.85
		Avg	0.89	0.88	0.86	0.85	0.88	0.88	0.87	0.85	0.88	0.86	0.86	5 0.85
		0	0.52	0.49	0.42	0.52	0.48	0.78	0.53	0.47	0.50	0.60	0.47	0.50
	POS+S	1	0.52	0.47	0.63	0.52	0.56	0.20	0.52	0.57	0.54	0.28	0.57	0.54
		Avg	0.52	0.48	0.53	0.52	0.52	0.49	0.53	0.52	0.52	0.44	0.52	0.52
Task 2: Hate Speech	l	0	0.62	0.84	0.43	0.85	0.82	0.42	0.82	0.37	0.70	0.55	0.57	0.54
Detection	BOW	1	0.73	0.61	0.91	0.61	0.49	0.92	0.61	0.93	0.59	0.73	0.73	0.73
		Avg	0.68	0.72	0.67	0.73	0.66	0.67	0.72	0.66	0.65	0.64	0.65	0.64
	MOL	0	0.61	0.62	0.58	0.60	0.74	0.80	0.68	0.93	0.67	0.69	0.63	0.73
		1	0.67	0.71	0.73	0.84	0.53	0.50	0.63	0.38	0.59	0.59	0.68	0.52
		Avg	0.64	0.66	0.66	0.72	0.64	0.65	0.66	0.65	0.63	0.64	0.66	0.63
		0	0.79	0.77	0.93	0.71	0.78	0.93	0.79	0.89	0.78	0.84	0.86	0.79
	B+M	1	0.78	0.92	0.76	0.85	0.79	0.72	0.92	0.64	0.79	0.80	0.83	0.73
		Avg	0.78	0.84	0.85	0.78	0.78	0.83	0.86	0.77	0.78	0.82	0.85	0.76

Hate Speech Detection: Results

Figure: SSA in different datasets.

Figure: SSA in ML learning methods.

Automated Fact-Checking: Methods and Resources

Figure: A data resource and method for fact-checking.

Francielle Vargas (USP) USP November 17, 2023 9 /

Automated Fact-Checking: **Methods and Resources**

Media Bias Examples

12 Types of Media Bias by AllSides

- 1. Spin
- 2. Unsubstantiated Claims
- 3. Opinion Statements Presented as Fact
- 4. Sensationalism/Emotionalism .
- 5. Mudslinging/Ad
- 6. Mind Reading
- 7. Flawed logic
- 8. Omission of Source Attribution
- Subjective Qualifying Adjectives
- 10. Word Choice
- 11. Negativity Bias
- 12. Elite v. Populist Bias

SFGATE

Twitter banned or suspended several high-profile journalists Thursday evening, a move that further reveals the seemingly arbitrary decisionmaking of Elon Musk, a self-avowed "free speech absolutist."

The skinny version: There are more than a hundred Republican-held congressional districts across the country that have a narrower margin than 17. If seats that look like this one in Pennsylvania are toss-ups in November, it's going to be a bloodbath.

Figure: Types of Media Bias Defined by AllSides².

2https://www.allsides.com/media-bias/how-to-spot-types-of-media-bias

Automated Fact-Checking: **Results**

Descrip		Folh	a de São Pa	nulo	Estadão			O Globo			All
Description		factual	quotes	biased	factual	quotes	biased	factual	quotes	biased	All
#Articles			100			100			100		300
#Sente		1,494	450	231	1,428	483	182	1,320	458	145	6191
#Wo		30,374	7,946	5,177	30,589	8,504	4,002	25,505	7,740	3,195	123,032
Avg Sentences/Article		14.94	7.03	3.78	14.28	7.00	3.19	13.20	7.15	2.84	8.15
Avg Words/	Sentences	20.33	17.65	22,41	21,45	17,60	21,98	19,32	16,89	22,03	19,96
Body/Title	Body	1,337	440	207	1,218	473	162	1,089	441	131	5,498
body/ Little	Title	157	10	24	210	10	20	231	17	14	693
	Political	912	340	130	870	352	106	748	351	64	3,873
	World	224	48	31	224	49	27	216	32	29	880
Domains	Sports	100	23	34	124	25	29	98	18	39	490
Domains	Daily	132	11	2	98	7	4	148	7	4	413
	Culture	98	26	32	72	42	15	77	45	5	412
	Science	28	2	2	40	8	1	33	5	4	123
	Noun	4.85	4.09	5.72	5.21	4.12	5.60	4.59	3.82	5.19	4.79
	Verb	2.20	2.55	2.60	2.28	2.51	2.53	2.00	2.44	2.57	4.18
Part-of-speech	Adjective	1.03	1.03	1.32	1.11	1.08	1.32	0.94	0.97	1.48	1.14
(Avg)	Adverb	0.67	0.82	0.93	0.67	0.94	0.90	0.59	0.90	0.94	0.81
	Pronoun	0.52	1.02	0.73	0.51	0.97	0.56	0.47	0.90	0.59	0.69
	Conjunction	0.51	0.55	0.61	0.54	0.57	0.73	0.51	0.88	0.70	0.62
	Happiness	0.12	0.22	0.20	0.16	0.28	0.26	0.13	0.28	0.22	0.20
Emotions (Avg)	Disgust	0.03	0.06	0.05	0.04	0.06	0.03	0.04	0.04	0.04	0.04
	Fear	4.18	3.80	4.63	4.41	3.77	4.56	4.05	3.60	4.50	4.16
	Anger	0.05	0.06	0.13	0.07	0.07	0.12	0.06	0.08	0.20	0.09
	Surprise	0.01	0.03	0.03	0.01	0.03	0.05	0.01	0.02	0.01	0.02
	Sadness	5.86	5.71	6.52	6.17	5.55	6.48	5.56	5.40	6.19	5.93
Polarity	Positive	2.41	3.25	2.93	2.55	3.22	2.95	2.26	3.26	2.96	2.86
(Avg)	Negative	0.05	0.06	0.05	0.07	0.10	0.09	0.06	0.07	0.06	0.06
(Avg)	Neutral	9.55	9.77	10.93	9.92	9.52	11.03	8.91	9.28	10.56	9.94

Table: FactNews dataset statistics.

Automated Fact-Checking: Results

- The distribution of factuality is constant across different domains.
- The distribution of bias varies according to the domain and media outlet.

Figure: The cross-domain distribution of factual and biased sentences.

Automated Fact-Checking: **Results**

Sentence-Level Factuality	Precision	Recall	F1-Score	
BERT fine-tuning	0.89	0.89	0.88	
Part-of-speech	0.77	0.77	0.76	
TF-IDF	0.81	0.69	0.66	
Polarity-lexicon	0.63	0.62	0.62	
Emotion-lexicon	0.61	0.61	0.61	
Sentence-Level Media Bias	Precision	Recall	F1-Score	
BERT fine-tuning	0.70	0.68	0.67	
Part-of-speech	0.67	0.66	0.66	
Polarity-lexicon	0.50	0.50	0.50	
Emotion-lexicon	0.53	0.52	0.50	
TF-IDF	0.78	0.58	0.48	

Senter	ce-Level	Media Bias Pred	iction		
Datasets	Lang	Docum.	Sent.	F1-Score	
BASIL (baseline)	En	300 news	7,984	0.47	
Biased-sents	En	46 news	966	-	
BABE	En	100 news	3,700	0.80	
FactNews	Pt	300 news	6,191	0.67	
Senter	nce-Level	Factuality Predi	iction		
FactNews (baseline)	Pt	300 news	6,191	0.88	
Artic	le-Level l	Factuality Predic	tion		
MBFC (baseline)	En	1,066 medias	-	0.58	
MBFC corpus	En	489 medias	-	0.76*	

Figure: Result analysis.

Figure: Factually Prediction: Evaluation.

Fact-checking and Hate Speech Detection Systems

Figure: Automated Fact-Checking.

Figure: Automated Offensiveness Analysis.

Ongoing Research

• Hate Speech:

Automated Fact-Checking:

Thank you!

francielleavargas@usp.br

Take a picture to access the papers, datasets, models, and systems

References

- Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov, James Glass, and Preslav Nakov. 2018. Predicting factuality of reporting and bias of news media sources. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 3528–3539, Brussels, Belgium.
- Aida Mostafazadeh Davani, Mohammad Atari, Brendan Kennedy, and Morteza Dehghani. 2023. Hate speech classifiers learn normative social stereotypes. Transactions of the Association for Computational Linguistics, 11:300–319.
- Thomas Davidson, Debasmita Bhattacharya, and Ingmar Weber. 2019. Racial bias in hate speech and abusive language detection datasets. In *Proceedings of the 3rd Workshop on Abusive Language Online*, pages 25–35, Florence, Italy.
- Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated hate speech detection and the problem of offensive language. *Proceedings of the International AAAI Conference on Web and Social Media*, 11(1):512–515.