Ciência da Computação GBC043 Sistemas de Banco de Dados

Extensões do Modelo Entidade-Relacionamento

Profa. Maria Camila Nardini Barioni camila.barioni@ufu.br
Bloco B - sala 1B137

Modelo Entidade Relacionamento Estendido

- Características
 - introduz semântica adicional ao modelo ER
 - utilizado na modelagem de aplicações mais complexas, tais como CAD/CAM, BD gráficos, BD geográficos
- Conceitos
 - subclasse, superclasse, hierarquia de herança
 - generalização, especialização, e restrições
 - agregação

Subclasse/Superclasse

- Subclasse
 - agrupamento das entidades de um subgrupo do tipo-entidade
- ◆Exemplo
 - superclasse: tipo-entidade empregado
 - subclasses: secretário, engenheiro, técnico

cada entidade que é membro de qualquer uma das subclasses também <u>é um</u> empregado

Herança

- de atributos
 - atributos da superclasse s\u00e3o herdados pelas subclasses
- de relacionamentos
 - instâncias de relacionamento da superclasse são herdados pelas entidades das subclasses
- Observação
 - qualquer entidade membro de uma subclasse deve ser também membro da superclasse
 - qualquer entidade membro da superclasse pode ser opcionalmente incluída como membro de qualquer número de subclasses

Generalização/Especialização

Especialização

- resultado da separação de um tipo-entidade de nível mais alto (superclasse), formando vários tipos-entidade de nível mais baixo (subclasse)
- passos:
 - define-se um conjunto de subclasses de um tipoentidade
 - associa-se atributos adicionais específicos às subclasses
 - estabelece-se tipos-relacionamento adicionais específicos às subclasses, caso necessário

Generalização/Especialização

Generalização

- resultado da união de dois ou mais tipos-entidade de nível mais baixo (subclasse), produzindo um tipo-entidade de nível mais alto (superclasse)
- é uma abstração de um conjunto de entidades
- passos:
 - suprime-se as diferenças entre os tipos-entidade
 - identifica-se os atributos em comum
 - generaliza-os em uma superclasse

Chaves dos Tipos-Entidade

- Restrição de chave do ME-R: todos os tipos-entidade devem ter uma chave única
 - Restrição relaxada para o MER-X
 - subclasses n\u00e3o precisam ter chave explicitamente definida

Restrições

- Especialização definida pelo atributo
 - as subclasses que participam da hierarquia são determinadas por uma condição baseada em algum atributo da superclasse
 - exemplo: atributo tipo_empregado
 - denominação:
 - subclasses definidas por predicado (ou definidas por condição)

Restrições

- Especialização definida pelo usuário
 - o membro da subclasse é determinado pelos usuários na operação que adicionar uma entidade à subclasse
 - um membro é especificado individualmente para cada entidade pelo usuário

Restrição de Disjunção

- Subclasses mutuamente exclusivas
 - uma entidade de uma superclasse deve ser membro, quando muito, de apenas uma subclasse
 - representação: d ← "d" (disjoint)
- Subclasses que se sobrepõem
 - uma entidade de uma superclasse pode ser membro de mais do que uma subclasse
 - representação: o (overlap)

Restrição de Completude

♦Total

 cada entidade de uma superclasse deve ser membro de alguma subclasse na especialização
 superclasse

representação:

◆Parcial

- uma entidade de uma superclasse pode não pertencer a qualquer uma das subclasses
- representação:

Observações

- Restrições de disjunção e de completude são independentes
 - possibilidades de hierarquias
 - total disjunta
 - parcial disjunta
 - total com sobreposição
 - parcial com sobreposição

Exercício

Modele uma hierarquia de generalização/especialização para os tipos-entidade carro e caminhão. Defina as restrições de disjunção e de completude.

Generalização/Especialização

- Uma subclasse pode possuir outras subclasses especificadas a partir dela
- Herança simples
 - cada subclasse participa como subclasse em apenas um relacionamento superclasse/subclasse
- Herança múltipla
 - cada subclasse pode participar como uma subclasse em mais do que um relacionamento superclasse/subclasse

Herança Múltipla

◆Regra

 se um mesmo atributo ou relacionamento for herdado mais do que uma vez por diferentes relacionamentos superclasse/subclasse
 então o atributo ou o relacionamento deve ser incluído apenas uma vez na subclasse

- É um conceito para a construção de objetos compostos a partir de seus objetos componentes
 - Idéia: elementos de modelagem podem associar-se, formando outros elementos que representam essa associação
- Pode assumir diversas formas:
 - Agregando atributos em Tipos-Entidade e Tipos-Relacionamento
 - os valores dos atributos compõem a entidade
 - Agregando Tipos-Entidade e Tipos-Relacionamentos
 - combinar entidades que estão relacionadas por uma instância de relacionamento em uma entidade agregada de alto nível

- Tipos-entidades agregados são representados como tipos-entidades comuns
- Engloba
 - dois tipos-entidades e um tipo-relacionamento

ALUNO

- Situações que indicam a necessidade de agregação:
 - 1) Quando é necessário identificar cada relacionamento (o relacionamento tem chave)
 - 2) Quando é necessário mais de um relacionamento envolvendo as mesmas entidades
 - 3) Quando existe a necessidade de associar dois relacionamentos

- 1o. Caso: O tipo relacionamento tem um identificador próprio:
 - Nesse caso, embora seja possível identificar a entidade agregação por um identificador próprio, ela também pode ser identificada pelo relacionamento entre as entidades que participam do relacionamento:

Título único em todo o sistema

- 1o. Caso: O tipo relacionamento tem um identificador próprio:
 - Nesse caso, embora seja possível identificar a entidade agregação por um identificador próprio, ela também pode ser identificada pelo relacionamento entre as entidades que participam do relacionamento:

O Tipo Relacionamento não tem identificador!!

Chave:

NroProfessor + NroAluno

OU

> Título

- 2o. Caso: Pode haver mais de um relacionamento envolvendo as mesmas entidades
 - Como identificar cada locação?

- 2o. Caso: Pode haver mais de um relacionamento envolvendo as mesmas entidades
 - Como identificar cada locação?

Chave:

- ≻nro +
- >código +
- **>**data

◆3o. Caso: Pode haver a necessidade de associar dois tipos relacionamentos

 Suponha que seja necessário alterar esse modelo do seguinte modo: é necessário saber que medicamentos existem e que medicamentos foram prescritos em cada consulta.

◆3o. Caso: Pode haver a necessidade de associar dois tipos relacionamentos

◆3o. Caso: Pode haver a necessidade de associar dois tipos relacionamentos

◆3o. Caso: Pode haver a necessidade de associar dois tipos relacionamentos

Consulta

Exercício

 Como modelar a situação em que algumas entrevistas resultam em uma oferta de emprego (com cargo e salário inicial) e outras não?

Exercício

Existe uma outra maneira de modelar essa mesma situação? Fica para pensar em casa...

Projeto Lógico de BD

- Classificar tipos-entidades e atributos
 - tipos-entidade possuem informações descritivas, atributos não
 - atributos devem ser mantidos de forma atômica
 - atributos devem ser relacionados às entidades que eles descrevem
- Identificar chaves primárias

Projeto Lógico de BD

- Identificar tipos-relacionamentos e seus atributos
 - determinar o grau dos tipos-relacionamentos
 - definir tipos-relacionamento ternários cuidadosamente
 - identificar as restrições que se aplicam sobre cada tipo-relacionamento
 - cardinalidade
 - participação
 - Caso necessário, definir os papéis
- Identificar tipo-entidade forte e tipo-entidade fraca

Projeto Lógico de BD

- Verificar os requisitos de operações
 - se eles se referirem a dados que não estão modelados, repetir os passos anteriores.
- Modelar hierarquias de generalização
 - identificar atributos e relacionamentos comuns
 - determinar as restrições de disjunção e de completude
- Modelar agregações
 - "Podemos notar que um projetista de BD necessita de um bom conhecimento do minimundo que está sendo modelado para que possa tomar essas decisões!"

Bibliografia

Elmasri, Ramez; Navathe, Shamkant B. **Sistemas de banco de dados.** 4 ed. São Paulo: Addison Wesley, 2005, 724 p. Bibliografia: p. [690]-714.

Material indicado para estudo complementar para casa

- Capítulo 8 do livro: Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 6^a edição.
 - Lista de exercícios "Modelo Entidade Relacionamento Estendido"