NASA Technical Memorandum 80166

AVRADCOM Technical Report 80-B-2

NASA-TM-80166 19800010756

A FLIGHT INVESTIGATION OF BLADE-SECTION AERODYNAMICS FOR A HELICOPTER MAIN ROTOR HAVING NLR-1T AIRFOIL SECTIONS

LOW MARKETON CO.

CHARLES E. K. MORRIS, JR., DARIENE D. STEVENS AND ROBERT L. TOMAINE

JANUARY 1980

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

	·		
			•
			•
			•
			•

an evaluation of the supercritical wing in many configurations. The primary emphasis was placed on the transonic Mach number region. Which is considered to be the principal air combat arena for fighter aircraft. An agility study was undertaken to assess the maneuverability of the F-111A ENTER: 35 1 1 RN/NASA-TM-80166 DISPLAY 35/2/1 20N49033** - ISSUE 10 PAGE 1230: CATEGORY 2 RPT#: NASA-TM-80166 AVRADCOM-TR-80-B-2 ONT*: DA PROJ. 1L2-62209-AH-76 80/01/00 194 PAGES TIMEL ASSIFTED DOCUMENT UTIL: A flight investigation of blade section aerodynamics for a helicopter main rotor having NLR-1T airfoil sections AUTH: A/MORRIS, C. E. K., UR.: R/STFVENS, D. D.: C/TOMAINE, R. L. National Aeronautics and Space Administration. Langley Research Center: Hampton. Va. AVAIL NTIS SAP: HC A09/MF A01 UNITED STATES Sponsored in part by AVRADCOM, St. Louis, Mo. COI: MAJS: /*AERODYNAMIC CHARACTERISTICS/*AH-1G HELICOPTER/*AIRFOILS/*ROTARY WINGS / FLIGHT CHARACTERISTICS/ FLIGHT TESTS/ PRESSURE DISTRIBUTION/ ROTOR BLAGES (TURBOMACHINERY) / TEFTERING ABA: R.E.S. ABS: A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good ENTER:

•

A FLIGHT INVESTIGATION OF BLADE-SECTION AERODYNAMICS FOR A HELICOPTER MAIN ROTOR HAVING NLR-1T AIRFOIL SECTIONS

Charles E. K. Morris, Jr. Dariene D. Stevens, and Robert L. Tomaine

NASA Langley Research Center Hampton, Virginia 23665

SUMMARY

A flight investigation has been conducted using a teetering-rotor helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-IT blade section. The data system recorded blade-section aerodynamic pressures at 90-percent rotor radius, vehicle flight state, performance, and loads. The test envelope included hover, forward-flight speed sweeps from 35 to 85 m/sec (68 to 165 knots), and collective-fixed maneuvers at about 56 m/sec (109 knots).

Flight-test data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed level flight, wake interactions in hover, and other phenomena. In many cases, good agreement was achieved between chordwise pressure distributions measured in flight and those predicted by airfoil theory. Most comparisons were made for a high-speed, level-flight condition with no apparent indications of blade-vortex interactions.

INTRODUCTION

The continued development of airfoil technology offers the potential for improvements in the performance and loads characteristics of helicopter rotors (refs. 1 and 2). As indicated in references 3 to 11, methods of rotorcraft-airfoil design are still being improved. These methods are constrained by the assumption of two-dimensional, steady flow. In many parts of the typical helicopter operating envelope, blade sections are subjected to highly three-dimensional, unsteady flow (refs. 12 and 13). The degree of success with which rotorcraft-airfoil design technology can be applied depends on how well the airfoil design variables can be related to the complex flow environment of the rotor. Experimental studies on this topic are reported in references 8, 14, 15, and 16.

A flight investigation of rotor-airfoil characteristics has been conducted with a high-speed, teetering-rotor, AH-1G attack helicopter that used main-rotor blades with the NLR-1T airfoil. This airfoil was designed specifically to meet the rotorcraft-airfoil design criteria described in reference 4. The instrumented vehicle was flown in level flight up to 85 m/sec (165 knots) and in collective-fixed maneuvers at about .56 m/sec (109 knots). Data were obtained on performance, flight-state and control parameters, rotor loads and motions, and airfoil pressure distributions at 90-percent radius on one blade. Initial results of this investigation are presented in references 16 and 17. Detailed

N80-19033 F

data on performance, loads, and blade motions for the NLR-1T blades are presented in reference 18. Baseline data for the same test vehicle with a standard, uninstrumented set of main-rotor blades are given in reference 19.

The NLR-1T flight-test program is complemented by other rotorcraft airfoil research. Wind-tunnel test data and analyses of the NLR-1 airfoil are given in references 6, 20, and 21. Flight-test data from other relevant rotorcraft research are presented in references 15 and 22 to 26. References 15 and 22 report on flight tests with new airfoil shapes gloved on blade tips; references 23, 24, and 25 contain results from AH-1G helicopter tests with instrumented standard blades. Relevant wind-tunnel tests of instrumented rotors are reported in references 27 and 28.

The purpose of this report is to present blade-section aerodynamic data for, and limited analysis of, significant flight-test conditions with the NLR-1T airfoil. That significance is determined in large part by the review of performance and loads data (ref. 18) obtained concurrently with the blade pressure data. The records of blade-section data in this report provide the basis for future analyses with other complementary data from references 18 and 24 or with results from computer programs for helicopter simulation. The data presented herein are intended to guide efforts to utilize the complete results.

SYMBOLS

Positive senses of some axes, angles and accelerations are presented in figure 1.

- A₀f main-rotor collective pitch angle at 0.75R, commanded at swashplate, deg
- AOs main-rotor collective pitch angle at 0.75R, measured at blade grips, deg
- A_{0.tr} tail-rotor collective pitch angle, deg
- Alf main-rotor lateral pitch angle, commanded at swashplate, deg
- Als first harmonic of main-rotor lateral pitch angle, measured at blade grip, deg
- a speed of sound, m/sec
- als first harmonic of main-rotor longitudinal flapping with respect to the mast, deg
- Blf main-rotor longitudinal pitch angle, commanded at swashplate, deg
- Bls first harmonic of main-rotor longitudinal pitch angle, measured at blade grip, deg

- $_{\mathrm{ls}}$ first harmonic of main-rotor lateral flapping with respect to the mast, deg
- Vehicle load coefficient, $\frac{W n_z}{\rho \pi R^2 (\Omega R)^2}$
- c_p airfoil pressure coefficient, $\frac{p p_{\infty}}{q_{\infty}}$
- c_{p}^{\star} airfoil pressure coefficient corresponding to a local Mach number of 1.0
- c_Q main-rotor mast torque coefficient, $\frac{Q}{\rho \pi R^3 (\Omega R)^2}$
- c airfoil chord, m
- cc airfoil chord-force coefficient, pressure only, $\frac{1}{c} \int_{\text{thickness}} \left(c_{p,f} c_{p,r} \right) \, dz$
- c_{ϱ} airfoil lift coefficient, section lift/(qc)
- airfoil pitching-moment coefficient about quarter chord, pressure $\frac{1}{c} \int_{chord} \left(c_{p,\ell} c_{p,u} \right) \left(0.25 \frac{x}{c} \right) dx + \frac{1}{c} \int_{thickness} \left(c_{p,f} c_{p,r} \right) \frac{z}{c} dz$
- c_n airfoil normal-force coefficient $\frac{1}{c} \int_{chord} \left(c_{p,\ell} c_{p,u} \right) dx$
- F function (See eq. (C-2),)
- F_{C} corrected function (See eq. (C-2).)
- f frequency, Hz
- f_{3db} frequency for 3 db amplitude attenuation, Hz
- g acceleration due to gravity, 9.81 m/sec2
- h climb rate, m/sec

```
K
          ratio of effective to actual cutoff frequency
          constants for z-transform equation, n = 1, 2, 3 (See eq. (C-2).)
Kn
          incremental angle for incremental airfoil pressure, deg/Pa (See eq.
km
          (B-2).)
          local Mach number perpendicular to blade leading edge
М
          reference blade-tip Mach number, \frac{\Omega R}{a}
Mh
m_1
          data channel sensitivity, measured units/mV
          slope representing PCM electronic response, mV/digital increment
m_2
            orthogonal set of load factors for aircraft center of gravity, g
n_X, n_V, n_Z
          local static pressure at a point on airfoil, Pa
р
Pf, qf, rf orthogonal set of fuselage angular rate, rad/sec
          free-stream static pressure, Pa
p_{\infty}
Q
          main-rotor mast torque, N-m
          free-stream dynamic pressure of blade section, Pa
q_
          blade radius, m (ft)
R
          radial distance to blade element
r
          Laplace operator
S
Ţ
          period between samples of same channel of multiplexed data system, sec
T_h
          blade temperature on upper surface at x/c = 0.6 and r/R = 0.9, C
t
          time, sec; also, airfoil thickness, m
td
          delay time due to electronic-induced lag, sec
٧
          aircraft true airspeed or velocity, m/sec (knots)
W
          aircraft gross weight, N
          orthogonal set of aircraft body axes (See fig. 1.)
X,Y,Z
         airfoil abscissa, positive rearward from leading edge, m
X
```

4

```
y airfoil ordinate, positive upward, m
```

z transformation variable (See eq. (C-2).)

 α_{C} rotor control-axis angle of attack, deg

 α_e effective airfoil angle of attack (See eq. (B-2).), deg

αf fuselage angle of attack, deg

βf fuselage angle of side-slip, deg

 β_S main-rotor, shaft-axis teeter angle, (where β_S - a_0 - a_{1s} $cos\psi$ - b_{1s} $sin\psi$...) positive updard, deg

ΔD digital increment above value for zero pressure, counts

Δh hub height above ground

 Δm_1 change in m_1 per change in pressure-sensor temperature, $P_a/counts - C$

 ΔP_{o} change in indicated pressure per change in pressure-sensor temperature, P_{a}/C

 ΔP_t change in p due to temperature effect, P_a

 $\Delta \Psi_{d}$ azimuthal lag due to electronic lag

 θ_{f} fuselage pitch attitude, deg

 θ_s main-rotor, shaft-axis blade pitch at 0.75R, (where $\theta_s = A_0 - A_{1_S}$ cos ψ B_{1_S} sin ψ - ...), measured at blade grip, deg

μ tip-speed ratio, V/(ΩR)

 ρ mass density of air, kg/m³

Of fuselage roll attitude, deg

 ψ main-rotor blade azimuth angle measured from downwind position in direction of rotor rotation, deg

 Ω main-rotor rotational speed, rad/sec

 $\omega_{\rm C}$ cutoff frequency (See eq. (C-1).), Hz

Subscripts

5h

a above reference temperature
b below reference temperature
c mean line
f forward surface
lower surface
te trailing edge
u upper surface

fifth harmonic value

EQUIPMENT AND PROCEDURES

Test Vehicle

The test vehicle was the instrumented AH-1G attack helicopter shown in figures 2 and 3. Physical characteristics of the vehicle are given in Table I. The teetering-hub main rotor was similar to the standard production configuration except for blade construction, airfoil section, and some structural-dynamic blade properties. Compared to standard blades, the NLR-1T blades did have identical planform, twist, and root-end fittings. However, the new blades were built with the NLR-1T airfoil contour from about 31-percent blade radius to the tip. One of these blades was instrumented to measure bending loads, internal temperatures, and aerodynamic pressures at one spanwise station. Details of blade design and other vehicle features may be found in reference 18.

Airfoil

The NLR-1 airfoil was developed to satisfy multiple design points derived for a helicopter rotor in hover, maneuvers, and high-speed flight. This work is described in references 4 and 6. Using hodograph-plane variables, a computer program produced a shock-free profile for the transonic design point (ref. 29). A program for analyzing airfoil aerodynamics in subcritical flow was then used to assess the effects of modifications to the initial contours. These modifications were aimed at satisfying the lower-speed design criteria of reference 4. The final shape was designated as the NLF7223-62 or, more simply, the NLR-1. The NLR-1T was obtained by truncating the NLR-1 at 99-percent chord to produce a finite-thickness trailing edge. NLR-1T coordinates are listed in Table II and presented graphically in figure 4. Noteworthy features are the far-forward location of the positive camber and the reflex camber at the trailing edge. Figure 5 presents a comparison of the nominal contour and the profile achieved at the spanwise location where pressure measurements were made.

Wind-tunnel data indicated that most of the aerodynamic objectives of the design were not met (refs. 6, 20, and 21). Maximum lift at a Mach number of 0.4 was limited to about $c_{\parallel}=1.1$ by trailing-edge separation. The drag-divergence Mach number at zero lift was determined to be approximately 0.84, about 0.01 below the design criterion. In contrast, the low-lift, low Mach number values of pitching-moment coefficient ranged from -0.01 to -0.02 which are within the design constraints.

Data System

Data from fuselage-mounted sensors were acquired with the Piloted Aircraft Data System (PADS) described in reference 19. These sensors measured flight-state parameters, control positions, and some rotor and engine parameters. Detail of the PADS sensor system are given in Table III. PADS electronics used a 10-bit data word, a sampling rate of 80 samples per second per channel, and pulse-code modulation (PCM) for digitization. PADS-PCM data channels were multiplexed and recorded on a single tape track.

Data from rotor-mounted sensors were processed by the digital Special Rotor Blade Instrumentation (SRBI) system of reference 30. This provided 30 channels with 8-bit data words (without parity) and a sampling rate of 1000 samples per second per channel. Data signals for rotor loads, teeter angle, blade pitch angle, blade azimuth angle, and canister temperature were processed in the mast-mounted canister shown in figure 6. This set of channels is described further in reference 18. Airfoil pressures were sensed by 13 pressure transducers located at 90 percent of rotor radius. Electronics mounted in the blade tip digitized and multiplexed signals for both the blade-section pressures and blade temperature. This data and the canister-processed data were merged and recorded on a single tape track. Photographs and a schematic of elements of the SRBI system are presented in figures 6 to 10. Some of the equipment used to perform a preflight blade-pressure calibration are shown in figure 11. Appendix A and Tables IV and V provide a more detailed description of the pressure data system.

Data Reduction

The pressure-transducer records were processed to produce local pressure and blade-section coefficients for every two degrees of azimuth within each selected rotor revolution. Corrected, dimensional values of local blade-section pressures were nondimensionalized with other data from the PADS and SRBI systems. These results were integrated (using the methods of ref. 31) to yield normal-force, chordwise-force, and pitching-moment coefficients. (Details of the data reduction are given in Appendices B and C). The standard data-reduction process also yielded loads data for the same rotor revolution (ref. 18).

Flight-Test Procedures

Flight tests were conducted to obtain data in straight and level flight and in maneuvers. Steady, level-flight speed sweeps were accomplished, usually in 5 m/s (10 knot) increments, from about 35 to 85 m/s (68 to 165 knots). This range

of speeds corresponds to tip-speed ratios from about 0.15 to 0.37. Maneuvers were flown with a nominal tip-speed ratio of 0.25 and with the collective pitch set for trim at that speed. The corresponding airspeed is 56 m/sec (109 knots). The symmetrical pull-ups and constant-airspeed descending turns were flown with normal-load factors up to 2.3. The tests also include representative periods of hover and of linear climb and descent.

Emphasis was placed on achieving well-controlled, standardized test-point conditions to allow direct comparison between data sets for the different experimental rotors. Operating rotor speed and longitudinal center of gravity were maintained very close to nominal values and the external configuration of the aircraft was kept the same for the tests of all three experimental blade sets (ref. 16). Data were acquired only when air turbulence levels were acceptably low.

DISCUSSION OF RESULTS

Aerodynamic blade-section data are presented in figures 12 through 49 and in Appendices D and E. Table VI provides a guide to test-point conditions for the data in the appendices. Analysis of the data presented is limited to providing a suitable background for detailed analyses and comparative studies. The topics for the following discussion include: data interpretation; results for level flight, hover, and maneuvers; and a comparison of flight data with calculated results from airfoil theory.

The interpretation of the blade-section data should be guided by several considerations. First, test conditions were limited; the disk loading was low, and the maneuvers were flown at one target airspeed. Second, pressure coefficients are the most accurate form of blade-section data for any test point. Normal-force and pitching-moment coefficients required additional data reduction and are most useful on a comparative basis to guide detailed analysis of the pressure distributions. Third, the accuracy of each type of blade-section coefficient data is a complex function of azimuth position, tip-speed ratio and other test-condition parameters (Appendices B and C).

Another important consideration is the steadiness of a test-point condition and its effect on the data. Steadiness is significant because each set of data is unique for a single rotor revolution. There was no averaging of results for a series of revolutions. Figure 12 shows that pressure histories appear to be highly repetitive for level flight. Figure 13 confirms this with a comparison of airfoil coefficient data for several rotor revolutions. The data of figures 14 and 15 show that descending turns produce repetitive, periodic records, whereas the wave forms change as a function of time for symmetrical pull-ups.

The loads and performance data acquired concurrently in the same flight investigation (ref. 18) can be used to guide the study of the test results on blade-section aerodynamics. At each selected test point, all types of rotor data (rotor loads and aerodynamics included) were fully reduced, and listings were generated. Many of the data points of reference 18 have complementary sets of blade-section data listed in Appendices D and E.

Level Flight

Typical conditions. - Level flight data are reviewed first by concentrating on results for three values of tip-speed ratio achieved in one speed-sweep flight. Figure 16 presents a comparison of the behavior of both normal force and pitching moment through the full range of rotor azimuth. (The product of an airfoil coefficient and Mach number squared is directly proportional to the dimensional load acting on the blade section.) The significantly different patterns of loads at the three flight conditions are produced by different phenomena. The abrupt changes in C_nM^2 at $\psi = 70^0$ and 270^0 for $\mu = 0.15$ indicate blade-vortex interactions similar to those of references 24 and 32. The major changes in both C_nM^2 and C_mM^2 near $\psi = 90^0$ or $\mu = 0.37$ indicate the significant effect of compressibility on the advancing blade.

More details of blade-section behavior are evident in the pressure-coefficient data of figure 17. Results for μ = 0.15 show the strong influence of apparent blade-vortex interactions by the fluctuations of pressure coefficients near the leading edge (refs. 25, 33, and 34). The magnitude of these fluctuations in the first quadrant appear relatively small because the local pressure is nondimensionalized by a larger value of local dynamic pressure. Data for the intermediate-speed case also show that most of the variation in pressure coefficient occurs in the front of the blade section (fig. 17(b)). The high-speed data of figure 17(c) give clear examples of compressibility effects in the records for both upper and lower surfaces. The most prominent compressibility feature is the upper-surface pressure peak for 2-percent chord at an azimuth angle of about 230°.

The relationship between the compressibility features and supercritical flow is illustrated in figure 18. This figure presents some details of data for the high-speed case of figure 17(c). Chordwise pressure distributions for two azimuth positions are given in figures 18(a) and (b); pressure-coefficient records for two transducers are given in figure 18(c). The points labeled A and B in figure 18(c) are cited as being effected by supercritical flow. The corresponding points in the pressure distributions substantiate this. (The local pressure coefficients are more negative than that for sonic flow.)

The relative significance of the local supercritical flow is suggested in the calculated supersonic-flow boundaries of figure 19. Figure 19(a) corresponds to the flow conditions of figure 18(a) and shows substantial regions of supercritical flow. Figure 19(b) corresponds to the flow conditions of figure 18(b); it indicates that the small supercritical-flow region for the high-lift coefficient case is probably insignificant, even though it produces a prominent peak in figure 18(c).

Speed-sweep results. - The change in character of blade-section aerodynamic characteristics during a speed sweep is illustrated by the data of figure 20. (As noted before, the nondimensionalizing factors for the coefficient data are themselves functions of azimuth, and variation of blade-section Mach number with blade azimuth also changes with tip-speed ratio.). The data show the following trends:

- 1. Typical results of apparent blade-vortex interaction are clearly observable at the lowest tip-speed ratios. These are apparent in the data for both normal-force and pressure coefficients.
- 2. Negative normal-force and, consequently, negative lift are generated in the second quadrant at 90-percent rotor radius for tip-speed ratios above approximately 0.3. This means that two significant vortices should trail from the outer part of the blade: the one from the down-loaded tip could be ingested into the top of the first quadrant of the rotor disk.
- 3. Supercritical pressure peaks appear at high tip-speed ratios at the leading edge: in the third quadrant on the upper surface (fig. 20(c)) and the second quadrant on the lower surface (fig. 20(d)).

Variations of blade-section airfoil coefficients with local Mach number are presented for several tip-speed ratios in figures 21 and 22. The local Mach number due solely to blade rotation at 90-percent rotor radius is about 0.63 for this data. Apparent blade-vortex interactions are evident at about M = 0.5 for the lowest tip-speed ratios. At moderate-to-high values of tip-speed ratio, the traces of normal-force coefficient and Mach number form a characteristic, double-looped shape. The pitching-moment coefficients also produce a characteristic shape: retreating-blade flow produces a small loop or series of loops at about $c_{\rm m}=0.0$ at the lowest Mach numbers and a second large loop shows a wide range of moment-coefficient values at the highest Mach numbers. Figure 22 indicates the envelope of the measured operating conditions for the instrumented blade section during one speed sweep.

Rotor disk loading. - Representative data in figure 23 show the expected effect of variations in rotor disk loading. Decreased levels of vehicle load coefficient result in decreased levels of normal-force coefficient at 90-percent rotor radius. The largest decreases appear at the low-speed, retreating-blade side of the disk. The high-speed data show some significant changes in pitching-moment coefficient for the advancing-blade side of the disk.

Hover, Descents, Turns, and Pull-ups

Flight data for test conditions other than level flight are reviewed briefly. The data are intended to illustrate trends and identify regions of interest.

Hover. - Representative hover data are presented in figures 24 through 27. Figure 25 shows the typical fourth-quadrant disturbances that can be attributed to tail-rotor effects. Test-point steadiness can be considered with the data of figure 26; some effects of rotor thrust and trim are shown in figure 27. All of the figures demonstrate that very slight winds, typical trim variations, and tail-rotor effects can produce significant variations from the perfectly steady conditions assumed in most hovering-rotor analyses.

<u>Descent.</u> - Some data for descent conditions are shown in figure 28. These data indicate that the change from level flight to descent affects not only the

level of blade-section normal-force required, but also the severity of blade-vortex interactions.

Maneuvers. - Most of the data on blade-section aerodynamics for maneuvering flight were obtained near μ = 0.25 and are presented with reference data for level flight. Figures 29 and 30 have typical level-flight data in the figure formats which will be used for subsequent data presentation. Those level flight conditions are chosen as reference conditions because the maneuver data were obtained at approximately the same tip-speed ratios and have the same variation of Mach number with blade azimuth position.

Data for descending turns are given in figures 14 and 31 to 34. Figure 32 shows that more normal force (at 90-percent radius and most azimuth angles) is required in the turn than level flight. The numerous inflection points in the first-quadrant left-turn data indicate apparent blade-vortex interactions. Another point of interest in figures 32 and 34 is the reduction in the second-quadrant amplitude of pitching moments at conditions for higher values of vehicle load coefficient. This agrees with observations (ref. 18) that vibration levels could actually decrease with increased load factor during some maneuvers.

Data on symmetrical pull-ups are presented in figures 15 and 35 through 39. The data of figure 39 show that achievement of the test point requires a significant increase in blade-section normal forces over those for level flight; the data also show that blade-section operating conditions have changed noticeably from the pull-up test point to a point occurring later in the maneuver.

Figure 40 presents maneuver data for test points that did not meet the standard criteria for test-point condition. These data illustrate the extent to which the coefficients for left and right turns can differ at lower tip-speed ratios. Substantial amounts of supercritical flow are indicated.

Comparison of Flight Data With Theory and Wind-Tunnel Data

The effect of the rotor environment on blade-section aerodynamics can be studied by comparing flight data with both wind-tunnel data and theory for airfoils in two-dimensional, steady flow. The wind-tunnel data used herein was obtained from reference 20. Additional unpublished data are also used. The Reynolds numbers for both wind-tunnel tests were close to those for flight. The theoretical results were obtained with the transonic airfoil-analysis program described in reference 35. Appendix F provides details of this application of the computer program. The comparisons are developed using both airfoil coefficients and pressure distributions.

Comparisons of airfoil pitching moment based on three level-flight conditions are presented in figures 41 and 42. Values of pitching-moment coefficient for flight, wind-tunnel test, or theory are based on common conditions of Mach number and normal-force coefficient. The scale of the moment data has sufficiently fine increments to show clearly the small, but potentially signif-

icant differences in the curves. These differences can be attributed to several causes: rotor-flow effects in the flight data; accuracy of the two-dimensional, steady-flow tunnel data; limitations of the airfoil theory; and the combined effects of accuracy and precision in the comparisons. These figures demonstrate that both force and moment characteristics for blade sections in a real rotor environment cannot be predicted to a high degree of accuracy using airfoil data obtained under simplified flow conditions.

Data for the high-speed case of figure 42 were selected for further consideration. Details of the data for that flight data are given in the listings for run 11 of flight 63 in Appendices D and E. This flight point was selected as having both a wide range of flow conditions and minimal indications of bladevortex interactions.

Comparisons of chordwise pressure distributions for flight, wind-tunnel, and theory are given in figure 43. The wind-tunnel data for this figure consist of unpublished, absolute-pressure measurements (which allow a more meaningful comparison). The agreement between the flight and the wind-tunnel results appears good for the three cases considered. The agreement between flight data and theory is generally good except for figure 43(b); in that comparison, the strength prominent difference is the and location upper-surface shock. In addition, figure 43 shows that small differences in the pressure distributions, primarily in the leading-edge and trailing-edge region, may contribute much to the differences in pitching-moment coefficient between flight data and theory.

The comparison of flight measured pressure distributions with theory may be extended over a wider range than with wind-tunnel data since theoretical methods allow a better matching of the flight Mach number and lift. Figure 44 presents comparisons between flight data and airfoil theory (ref. 35) at numerous blade azimuth angles for run 11 of flight 63. In most cases, the agreement is very good. Poorer agreement occurs between $\psi=50^{\circ}$ and 80° and between $\psi=130^{\circ}$ and 140° . At the lower azimuth angles, theory overpredicts the strength of lower surface suction peak and predicts a strong upper-surface shock evident in the flight data. At $\psi=140^{\circ}$, the lower-surface agreement of theory with flight data is comparatively poor at 20-and 50-percent chord.

Figures 45 through 49 present the results of several brief studies of factors that could influence agreement between flight data and the theoretical predictions. Figure 45 indicates that prediction of the upper-surface shock location is not a problem at ψ = $70^{\rm O}$ until the aircraft reaches μ = 0.33. Studies of the μ = 0.37 case examined the effects of airfoil contour definition on the theoretical pressure distributions. Typical results (fig. 46) indicate only that the program is very sensitive to the smoothness of input airfoil coordinates. Even with evaluations at other test conditions, no further conclusions could be drawn about the effect of contour tolerences. Next, the computer program was modified to account for yawed flow by the appropriate thinning of the airfoil section and an increase of the free-stream Mach number. As indicated in figure 47, this simplified method produced a negligible change at ψ = $70^{\rm O}$. Results of similar computer-program studies for ψ = $140^{\rm O}$ are presented in figures 48 and 49. Other, unillustrated results showed no significant improve-

ment in pressure-distribution agreement at $\psi=70^{0}$ and 140^{0} when the computer-program inputs were altered to account for accuracy limitations in the Mach numbers, normal-force coefficients, and other relevant parameters of the flight data.

Pressure distributions may also be affected by phenomena that are beyond the scope of this report. Blade boundary-layer complexities, such as separation and rotor-wake effects could be important. Another relevant phenomenon is the unsteady Mach number effect cited in reference 36. The more complex treatment of three-dimensional transonic flow in reference 37 suggests another potentially significant effect.

In general, the present study indicates that viscous two-dimensional transonic airfoil theory for steady flow yields a good approximation of blade-section pressure distributions provided that the operating conditions (Mach number and either lift, normal force, or angle of attack) are well defined, and that local blade-vortex interactions are minimal.

CONCLUDING REMARKS

A flight investigation has been conducted with a teetering-rotor helicopter to obtain data on the aerodynamic behavior of main-rotor blades having the section contour of the NLR-1T airfoil. Chordwise pressure distributions at 90-percent rotor radius and the flight state of the rotor were measured.

Results show a wide variety of aerodynamic operating conditions for the instrumented blade section. Data are presented on apparent blade-vortex interactions, blade-section negative lift at high Mach numbers, and a variety of compressibility effects. Good agreement was achieved between most pressure distributions from flight and those from theory that assumes steady, two-dimensional, viscous, transonic flow. The primary comparisons were limited to a flight condition with no obvious effects of blade-vortex interaction or unsteady effects. Apparent blade-vortex interactions affected the measured chordwise pressure distributions by introducing disturbances that were significant over the forward portion of the blade section.

APPENDIX A. - SRBI PRESSURE DATA SYSTEM

Sensors and Installation

Each of the 13 pressure transducers was mounted to give accurate readings of aerodynamic pressure at a point on the surface of the instrumented blade. The sensing element of each absolute-pressure transducer consisted of a very short, strain-gauged, sealed can with a 0.64-cm diameter; the can was bonded to a plate. As indicated in figure 7, two posts that projected from the inner surface of the cover plate located and secured both the transducer plate and rubber mounting pad. Mounting pads and spacers for the posts were adjusted to hold the transducer assembly without transmitting structural loads. (This was verified in the blade loads calibration). The cover plates were secured and the cavities sealed so that the transducer responded only to external pressure applied through a 0.8-mm orifice in each cover plate. The surface at 90-percent rotor radius was then faired and smoothed before the contour was measured. Tests on sample blade segments indicated that local pressures, in the range measured in flight, produced no measurable local deformation. Typical transducer installations are shown in figures 8 and 9.

The frequency response of the typical installed transducer was flat within 0.6 percent of the excitation pressure level up to 200-Hz frequency. The uninstalled transducer had a resonant frequency of about 23,000 Hz. Each transducer was tested as installed because the shape and volume of the cavities were not identical. Results showed that the value of resonant frequency for the installed units ranged between 800 and 900 Hz.

Temperature and acceleration effects were also evaluated. Transducer installation, which oriented diaphragm approximately parallel to the rotor disk, reduced centrifugal and Coriolis effects to negligible levels. Laboratory tests showed that steady-state acceleration perpendicular to the diaphragm produced less than 10 Pa response per g unit. Flight tests with transducers in competely sealed cavities indicated that all acceleration and vibration components produced negligible effects on the pressure data. Laboratory calibrations determined values for temperature sensitivity and zero shifts for each Blade temperature was measured in the pressure-transducer cavity at 60-percent chord on the upper surface. An exploratory flight was made with a second thermistor temporarily located on the upper surface at 10-percent chord; the resulting data indicated that the standard, rearward sensor gave reasonable values. The temperature sensed at 60-percent chord was utilized subsequently in applying corrections for all blade sensors. Although sources of viscous heating, convective cooling and structural heating could not be uniformly distributed, blade temperature gradients appeared to be mild; possibly this was due to the conductivity of the aluminum substructure and the insulating properties of the covering honeycomb and fiberglass.

Pressure-Data Electronics

SRBI signal conditioning for the pressure and blade temperature sensors was located on an electronics board mounted in a cavity on the lower surface at

the blade tip (fig. 11.) Short leads carried the analog pressure-data signals from each sensor to the pressure-data electronics. The electronics produced multiplexed PCM signals that were sent to a terminal at the blade root and from there to the mast-mounted canister. The proper airfoil coordinates were maintained by fairing in the electronics-board cover plate and routing all leads beneath the honeycomb.

Preflight Calibration

Both pressure and temperature sensors were laboratory calibrated, and the entire pressure system was calibrated before each flight. The fixture shown in figure 11 was clamped over the 90-percent blade radius prior to each flight. Three levels of pressure were applied: ambient, 96.53 kPa (14.00 psi) and 62.05 kPa (9.00 psi). Pressure was measured by a gauge located in series with the vacuum pump; suction was applied simultaneously to all cavities through manifolds in each block of the fixture. Flexible sealing material on each block assured an adequately tight fit. Static check-calibrations gave highly linear, repeatable results. Each preflight calibration determined the sensitivites and zeros for the pressure system for that flight.

APPENDIX B. - PRESSURE DATA REDUCTION

The data-reduction process operated on all of the data obtained for each designated test-point time. A computer program processed all the flight data. First it reduced flight-state and other data from the PADS records for one point in time; it then reduced data for blade-section aerodynamics and blade loads for the rotor revolution containing that time. Many of the data sets of reference 18 provide results for test points listed in this report.

Values of corrected, dimensional pressure were computed for each pressure transducer for every two degrees of rotor azimuth. Temperature effects were corrected by the method of reference 30 and using the constants given in Table V. The time for each channel was incremented to account for multiplexing. Time was also adjusted for the lag introduced by the response dynamics of the pressure system (Appendix C and Table V). Simultaneous sets of pressure data for all 13 transducers were computed by using linear interpolation between the measured, corrected data points.

These data were converted to nondimensional pressure coefficients. Rotor azimuth and rotational speed were required from SRBI data; true airspeed, air density, and static pressure were obtained from PADS data. The nondimensionalizing values of blade-section dynamic pressure were calculated for the flow component normal to the blade leading edge; yawed flow was not considered. The accuracy of the resulting pressure coefficients varies with rotor azimuth and tip-speed ratio, both of which affect local dynamic pressure.

Airfoil force and moment coefficients were obtained using the integration methods of reference 31. The set of required inputs for those methods consists of the pressure-coefficient values, locations of the pressure orifices, Mach number, trailing-edge pressure coefficient, and leading-edge stagnation point. Empirical relationships for the latter two items were developed with wind-tunnel data, such as from reference 20, and with results from airfoil-analysis computer programs of references 35 and 38. The required value of trailing-edge pressure coefficient was computed from the following empirical equation:

$$C_{p,te} = 0.1 + 0.25M$$
 (B-1)

As in reference 31, stagnation point was determined as a function of effective angle of attack. That angle was calculated as a function of Mach number and differential-pressure coefficient for 10-percent chord as follows:

$$\alpha_{e} \approx -1.84^{\circ} + 1.26 \text{ M} + k_{m} (C_{p,l} - C_{p,u}) \left| \frac{x}{c} = 0.10 \right|$$
 (B-2)

where k_{m} , a function of Mach number, is simply related to lift-curve slope. (This empirical expression reflects the utilization of available data.).

Tables were used to compute values of x/c and y/c associated with the effective angle of attack. Figure 50 presents plots of these tabulated values.

Some effects of the curve-fit and integration method of reference 31 can be observed in figure 51. The automated curve-fit method operated with values of $C_{\rm D} \sqrt{\rm x/c}$ given as function of $\sqrt{\rm x/c}$. Figure 51 presents sample cases of flight data with the computer-generated curve fits for both the new and a conventional coordinate system. The area between the upper- and lower-surface curves for either plot is equivalent to normal-force coefficient. The method of reference 31 has the advantage of achieving a good fit for steep suction peaks at the airfoil leading-edge (fig. 51(d)). In some cases, such as shown in figure 51(a), the low number of pressure transducers may have degraded the potential for accurate pressure-field representation with the curve-fit routine.

APPENDIX C. - CORRECTIONS FOR THE DYNAMIC-RESPONSE CHARACTERISTICS OF THE PRESSURE-DATA SYSTEM

Dynamic-response characteristics of the SRBI pressure-data system produced some distortions in the data records. As in most systems, the primary criterion for judging these characteristics is the 3db or cutoff frequency (the frequency of a sinusoidal input signal which produces 3db attenuation). Although reference 30 indicated that the cutoff frequency was 200 Hz for pressure data, the actual values were determined to be less (Table V). Various correction techniques were evaluated, and the frequency content of the data records was reviewed. As a result, a simple time-lag correction was determined to be appropriate.

Initially, the z-transform method was evaluated because it was the most promising means of correcting both phase and amplitude effects on the digital records (ref. 39). A first-order interpolator, representing the digital sampling of a continuous system, was combined with a compensating network to yield the following Laplace equation:

$$\frac{\text{Output}}{\text{input}} = \frac{e^{sT}}{T} \left(\frac{1 - e^{sT}}{s} \right)^2 \qquad \left(\frac{s + \omega_c}{\omega_c} \right) \left(\frac{K\omega_c}{s + K\omega_c} \right)$$
 (C-1)

where T is the sampling increment in seconds, ω_c is the cutoff frequency, and K is the ratio of effective to actual cutoff frequency. When the substitution of $z = e^{sT}$ is made, the time-domain result is given as:

$$F_c(t) = \frac{K_1}{TK\omega_c} F(t) + \frac{K_2}{TK\omega_c} F(t-1) + K_3 F_c(t-1)$$
 (C-2)

where t is time, F and F_C are uncorrected and corrected responses, respectively, and the other constants are:

$$K_1 = K (1 - K_3 + T\omega_c) - 1 + K_3$$
 $K_2 = K (K_3 - 1 - T\omega_c K_3) + 1 - K_3$
 $K_3 = e$

This approach was evaluated with an input function of a unit-amplitude cosine wave with frequencies between 10 and 200 Hz. The output functions were harmonically analyzed, and the resulting coefficients are shown in figure 52. The solid line is the adjustment required if the system was purely analog. The zero-order hold method over-compensated, but the first-order hold version of the Markel method (ref. 39) appeared to give good results.

Processing of data for selected time segments led to the selection of a simple lag correction. Figure 53 presents fairly active data records with and without processing by a z-transform compensating network; that figure also permits a comparison between the compensated data and a 12-harmonic reconstitution of that curve. The results of this and other studies show that the frequency content of the data is not sufficiently high to warrant more than a lag correction. Such a correction is consistent with the constant-delay analog filters used in the SRBI pressure system.

The delay time for each channel was calculated with the following equation:

$$t_{d} = -(2\pi f)^{-1} tan^{-1} (f/f_{3db})$$
 (C-3)

where f is the input frequency, f_{3db} is the cutoff frequency and the arc tangent is expressed in radians. The resulting values are given Table V. The phase angle shift may also be expressed as a function of harmonic frequency for the test-vehicle rotor. Figure 54 presents a comparison between results for the constant-delay approximation used in data reduction and the delay of equation (C-2).

APPENDIX D. - AIRFOIL PRESSURE COEFFICIENT DATA

Computer-generated listings of airfoil pressure coefficient data are identified in terms of flight number, run number, and time. Also given are tip-speed ratio (MU), vehicle load coefficient (CLP), and blade temperature (TEMP(U60)). One column of pressure coefficient data is given for each pressure orifice location, as designated by a value of x/c (X/C). No value is given for the 35-percent-chord, upper-surface location due to instrumentation lead problems.

The data of Table VI serves as a guide for the contents of this appendix.

AIRFOIL PRESSURE DATA .9 BLADE RADIUS NASA-LANGLEY AH-1G 78/10/12.

FL1	f 61 R	UN 268	TIME 555	56 • 200		MU= 0.	000 CL	P= .00339	TEM	P(U60)= 12	.7 C =	54.82 F		
		UPPER SU	RFACE CP	VALUES							INWER	SURFACE	CP VALUES	:
X/C=	•02	•10	• 20	• 35	•50	• 70	.80	• 90	.02	•10	•20	•50	•70	• 90
AZIMUTH														
0.	331	772	490		292	258	125	.060	.214	.018	056	079	038	036
2.	328	761	488		292	258	125	.065	.211	.018	063	086	038	040
4.	313	761	489		291	259	131	.067	.194	•016	072	089	038	048
6.	301	761	488		291	259	138	.062	.180	•002	077	096	045	048
8.	297	761	488		290	268	138	•062	.176	000	083	098	048	048
10.	282	761	488		290	273	138	.063	.163	013	085	098	049	049
12.	272	761	490		300	273	138	.063	.163	013	085	098	049	049
14.	266	762	490		304	272	138	.058	.162	014	088	099	048	048
16.	257	~. 761	488		304	272	139	.070	.163	013	088	099	048	047
18.	257	769	490		302	273	138	.073	.156	013	085	108	048	048
20.	257	776	490		292	272	138	.071	.145	014	088	099	048	048
22.	257	776	491		304	272	138	.070	.145	014	088	099	048	047
24.	257	776	502		304	272	138	.070	.145	014	088	108	048	047
26.	249	776	502		304	272	138	.070	.145	014	088	108	048	047
28.	242	776	501		304	285	138	.070	.145	014	088	108	048	047
30.	251	786	500		304	272	138	.070	.146	013	088	108	048	047
32•	257	790	501		303	273	138	.073	.145	013	085	108	048	048
34.	257	789	499		304	272	138	.071	.146	013	087	108	048	048
36.	257	789	500		302	275	138	.074	.157	013	085	108	049	048
38.	257	790	501		303	286	138	.074	.151	013	086	108	048	049
40.	257	789	500		303	286	138	.070	.146	013	087	108	048	047
42.	257	803	506		303	286	138	.074	.145	013	086	108	048	049
44.	257	804	513		308	286	138	.070	.159	014	088	108	048	047
46.	257	804	513		312	286	138	.070	.162	014	088	108	048	047
48.	257	804	512		308	286	138	.070	.162	014	088	108	048	047
50∙	271	818	512		311	286	138	.071	.178	013	087	106	048	047
52.	272	819	520		308	286	138	.073	.180	.000	081	108	048	048
54.	287	832	525		316	286	138	.070	.180	.002	077	108	048	047
56.	287	832	525		316	286	138	.070	.180	.002	077	108	048	050
58.	288	834	525		316	286	138	.070	.197	•002	077	108	048	059

AIF	RFOIL PR	ESSURE DA	TA .9	BLADE RAD	SUI		NA SA -L AN	GLEY AH-	1 G		78/10/1	2•		
FL	T 61 R	UN 25B	TIME 55	556.200		MU= 0.	000 CLF=	•00339	TEM	P(U60)=	12.7 C -	54.82 F		
		UPPER SU	REACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X/C=	•02	.10	.20	• 35	.50	.70	•80	•90	.02	.10	• 20	•50	•70	•90
AZIMUTH														
60•	301	846	525		316	286	138	.070	.197	.002		108	048	059
62.	301	846	525		316	286	138	•079	.197	.002	077	108	048	059
64.	304	846	525		316	286	138	.070	.197	.002	077	108	048	059
66.	316	850	534		316	286	138	.070	.199	.004	077	108	048	059
68.	316	860	536		316	286	138	•070	.214	•018		108	048	059
70.	320	660	536		316	286	138	•070	.214	.018	077	108	048	059
72.	331	865	536		316	286	138	•070	.218	.018		108	048	059
74.	336	874	536		316	286	138	•070	.231	•018		108	048	059
76.	346	880	547		316	286	138	.070	.236	.022		108	048	059
78.	351	888	548		316	286	145	•979	.248	•033		108	048	059
80.	361	883	548		316	286	142	.070	.248	.033		108	048	059
82.	367	888	548		316	286	138	.070	.255	•033	3 067	108	048	059
84.	382	883	548		328	286	139	.970	.272	.039	067	108	048	059
86.	397	888	548		317	286	138	.070	.282	.049	056	099	048	059
88.	412	888	546		316	286	138	.070	.291	•056	056	099	048	059
90.	428	907	548		327	286	138	.073	.308	•065	053	098	049	068
92•	443	916	548		328	286	138	.071	.335	•073	056	099	048	071
94.	467	926	560		327	286	138	.073	.351	.080	052	098	049	071
96.	498	930	560		327	286	138	.071	.361	.080	045	099	048	071
98•	518	942	560		316	286	139	.070	.379	•089	043	099	048	070
100.	534	944	563		316	286	~•138	•070	.397	.105	035	099	048	060
102.	560	956	571		316	286	138	.070	.414	.113	032	096	048	069
104.	579	971	571		319	286	138	•070	.432	.122	024	089	046	060
106.	606	985	570		329	286	138	.070	• 450	.126	024	089	038	070
108.	636	-1.000	570		328	286	138	.071	.468	•139	019	089	038	059
110.	654	-1.001	577		327	286	138	.073	.471	.142	011	089	038	072
112.	683	-1.001	583		329	286	138	.070	.485	.155	009	089	038	070
114.	699	-1.015	583		329	286	138	.070	.488	.157		089	038	070
116.	700	-1.016	583		329	286	13ª	.070	.504	.157		089	038	070
118.	715	-1.029	583		-,329	286	138	.070	.505	•157		089	038	070

FLT 61 RUN26B

AIRFO	IL	PRESSURE	DATA	.9 BLADE RADIUS		NA?	A-LANG	LFY AH-10	;	78/10	/12.
FLT	61	RUN 268	TIME	55556.200	MU =	0.000	CLP=	.00339	TEMP (U60) =	12.7 C	= 54

FL	T 61 R	UN 268	TIME 55	556.200		MU= 0.	000 CL	• • • • • • • • • • • • • • • • • • • •	9 TEMP	(U60)= 12	.7 C =	54.82 F		
		UPPER SU	REACE CP	VALUES							LOWER	SURFACE (P VALUES	5
X/C=	• 02	•10	•20	• 35	•50	• 70	.80	•90	•02	•10	.20	•50	.70	•90
AZIMUTH														
120.	730	-1.031	583		329	286	139	•070	.505	•172	.008	084	038	070
122.	745	-1.043	590		329	286	138	•070	• 505	•173	•008	079	038	070
124.	746	-1.043	595		329	286	138	•070	• 506	•173	.008	079	038	070
126.	761	-1.046	595		329	286	138	.070	•522	•173	•008	079	038	070
128.	~. 774	-1.057	595		329	286	138	.070	•522	.173	.008	079	038	070
130.	774	-1.057	595		329	286	138	.070	•522	•173	•008	079	038	070
132.	774	-1.057	595		329	286	138	•070	•522	•175	.016	079	038	070
134.	~.77 8	-1.062	595		329	286	139	.070	•522	•189	.019	072	038	070
136.	 793	-1.071	595		329	286	138	•070	• 526	•189	.019	070	038	070
138.	804	-1.071	595		329	286	138	• 070	•540	•189	.019	070	038	070
140.	804	-1.071	595		329	286	138	.070	•540	•189	.019	070	038	065
142.	809	-1.071	595		329	286	138	.070	•534	•189	.019	070	038	059
144.	818	-1.071	595		318	286	138	.070	•522	.189	.019	070	038	065
146.	818	-1.071	595		316	274	138	•070	• 522	•189	•019	070	038	064
148.	618	-1.071	595		316	272	138	.070	•522	•189	.019	070	038	066
150.	819	-1.071	595		316	272	138	.070	•522	•189	.019	070	038	063
152.	818	-1.062	595		328	272	128	.070	•522	.189	.019	070	038	059
154.	818	-1.057	593		328	272	125	.070	• 522	•189	.019	070	038	059
156.	818	-1.057	583		316	272	125	.070	•522	.189	.019	070	038	059
158.	818	-1.057	583		317	272	125	.070	•522	.189	.019	070	038	059
160.	818	-1.057	583		329	272	125	.070	•522	.189	.021	070	038	059
162.	818	-1.046	583		327	272	125	•070	•522	•189	.030	070	038	059
164.	818	-1.043	583		316	272	125	.070	•522	•189	•030	070	038	059
166.	829	-1.043	583		316	272	125	.070	.522	.189	.030	070	038	059
168.	~.833	-1.043	583		316	272	125	•070	•522	•189	.030	070	038	059
170.	833	-1.043	583		316	272	125	.370	.522	.189	.030	070	038	059
172.	846	-1.043	583		316	272	125	.070	•536	•189	.030	070	038	059
174.	848	-1.043	583		316	272	125	.070	.540	•201	.030	070	038	059
176.	848	-1.043	583		316	272	125	.070	• 540	•204	•030	066	034	059
178.	848	-1.043	583		316	272	125	.070	.540	•204	•030	060	027	059
		_,							•					

	AIRFOIL	PRESSURE	ATAG	BLADE RA	DIUS		1.45A-	LANGLEY AH	1-1G		78/10/12	2•		
	FLT 61	RUN 26B	TIME !	55556.200		MU= 0.	000 C	LP= .0033	9 TEM	P(U60)= 12	.7 C =	54.82 F		
		UPPER	SURFACE (P VALUES							LOWER	SURFACE	CP VALUE	S
X/	C= .02			• 35	.50	• 70	•80	• 90	.02	.10	.20	• 50	•70	• 90
AZIMU	TH													
180.	84	8 -1.0	43583	3	316	272	125	• 070	.540	.204	•035	060	027	059
182.	86	3 -1.0	43588	3	316	266	125	.070	•540	.204	•040	060	027	059
184.	86	3 -1.0	43594	;	315	265	125	.071	•540	• 205	•042	055	028	059
186.	86	3 -1.0	4559	5	315	272	125	.073	.540	.204	.042	050	028	060
188.	86	4 -1.0	5759	5	316	272	125	•070	• 540	.204	•040	050	027	059
190.	87	8 -1.0	57593	3	316	272	125	.079	•540	.219	.047	050	027	059
192.	87	7 -1.0	57594	+	315	272	125	.072	.540	•206	.047	050	028	059
194.	87	8 -1.0	57595	5	316	272	125	• 07?	•540	.220	•049	050	028	060
196.	87	8 -1.C	5759:	,	316	272	125	.070	•542	• 220	.051	050	027	059
198.	88	1 -1.0	57593	3	316	272	125	.070	• 557	.220	•051	050	027	059
200.	89	2 -1.0	62592	2	324	272	125	.072	•557	.220	•054	035	021	059
202.	89	7 -1.0	71592	2	327	273	125	.074	.557	.220	•055	031	018	060
204.	90	7 -1.0	65594	•	317	273	125	.074	.557	.220	.064	031	018	060
206.	90	7 -1.0	5759	5	316	272	125	•072	•557	.220	•053	031	018	060
208.	91	3 -1.0	57592	?	316	272	125	.070	.557	•225	.051	031	017	059
210.	92	2 -1.0	5759	ō	315	273	125	•073	.557	.236	•064	031	018	060
212.	92	9 -1.0	57592	2	316	272	125	•971	•557	.236	.062	031	018	059
214.	93	7 -1.0	57594	,	315	273	125	.073	•565	.236	.065	031	018	060
216.	93	7 -1.0	57593	3	316	259	125	• 371	.574	.236	•062	031	017	059
218.	93	7 -1.0	57594	,	303	259	125	.073	• 574	.236	.065	031	018	060
220.	93	7 -1.0	47590)	316	258	125	.071	.574	.236	•062	031	017	059
222.			43583	1	302	259	125	.073	•565	.228	.064	031	018	060
224.			4358	ĺ	302	259	125	.065	.557	.220	.055	031	018	060
226.				Į	302	259	125	.073	.557	.220	.055	031	019	060
228.			31581		302	259	125	.074	.557	• 220	.055	031	028	060
230.		_	2958	Ī	302	259	125	.064	.557	.220	.055	031	028	060
232.					302	259	125		. 557	•220	.055	031	028	060
234.					302	259	125		.557	• 220	.055	031	028	060
236.					302	259	125		.544	.220	•055	031	028	060
238.			-		302	259	125	.063	.540	•208	.051	031	028	060
	• • •	_									,	,,,,		

NASA-LANGLEY AH-1G

78/10/12.

F	LT 61	RUN 268	TIME	55556.200		MU=	0.000	CF b=	.00339	TEM	P (U60)=	12.7 C	=	54.82 F		
		UPPER S	URFACE	CP VALUES								LO	WER	SURFACE	CP VALUES	
X/C=	• 02	.10	.20	•35	•50	•7	0 .	80	.90	.02	•10		20	•50	•70	•90
AZIMUTH	ŀ															
240.	87	9 -1.000	56	5	302	2	59	125	.063	.540	•205	5 .	044	031	028	060
242.	86		-		303	2		125	.063	.525	•204		042	039	028	059
244.	83	4971	55	2	303	2	59	125	.061	.508	.19		03 7	050	028	047
246.	81	9957	54	8	303	2	59	125	.063	•505	•189	•	032	050	024	048
248.	78	9944	54	8	304	2	58 	125	•060	.489	•189	•	030	050	017	047
250.	77	4942	54	8	304	2	58 	125	.060	.488	.189	•	030	050	017	047
252.	77	3928	54	Q	304	2	58	125	.060	.488	.173	•	030	050	017	047
254.	~.7 5	6910	53	6	304	2	58 	125	.060	. 487	.17	3.	030	050	017	047
256.	72	8888	52	16	296	2	58	125	.060	.470	.177	2	023	050	017	047
258.	71	0888	52	2	291	2	59 	125	.052	•452	.158	•	021	050	018	048
260.	68	2883	52	:4	290	2	59	125	.063	.437	.156	•	015	050	025	049
262.	67	1874	52	:5	291	2	59	125	.057	.437	.142	2 .	009	050	028	048
264.	66	3874	52	.5	292	2	58	125	.050	.433	.142	2 •	008	050	027	047
266.	63	7868	52	5	292	2	58 	125	.050	.420	.139		800	050	027	047
268.	62	2860	51	4	292	2	58	125	.050	.415	.126		000	050	027	047
270.	61	2860	51	3	292	2	58	125	.056	.402	.126		002	059	027	047
272.	60	6853	51	. 3	292	2	58	125	.054	.397	.126		002	060	027	047
274.	59	1846	51	.3	292	2	58	125	•057	.385	.12	i	002	060	027	047
276.	57	5838	51	.3	292	2	58	125	.060	.378	.113	i	002	060	027	047
278.	56	0832	51	.3	292	2	58	125	.060	.368	.111	l	013	060	027	047
280.	54	5823	51	.3	292	2	58 	125	.060	.360	•112	l 	013	060	027	047
282.	53	8818	51	.3	292	2	58	125	.052	.351	.111		013	060	027	047
284.	53	8818	51	.1	292	2	58	125	•050	.351	.11	L	012	060	027	047
286.	52	9818	50	2	292	2	58	125	.050	.351	.10		004	060	027	047
288.	51	4818	50	3	292	2	58 ~.	125	.050	.341	.09	;	013	060	027	047
290.	49	8817	50	8	291	2	57	125	• 05 0	.335	.096	·	012	062	028	047
292.	49	3817	51	.0	289	2	48	126	•066	.335	• 091	7	006	069	029	049
294.	49	3818	51	. 2	289	2	60	126	.057	.334	.09		008	069	029	050
296.	49	3817	51	.0	291	2	59	125	.050	.322	.08¢		011	067	028	048
298.	49	3818	51	3	289	2	59	126	.066	.317	.080) - .	008	060	029	050

AIRFOIL PRESSURE DATA	O DIADE DADTIE	NASA-LANGLEY AH-1G	78/10/12.
MIKLUIF LKE22AKE DATA	44 BEAUE KAUIUS	NASA-LANGLET AN-IG	10/10/12.

	FLT 6	RU	N 268	TIME	55	556.200		MU=	0.000	CLP=	•00339	TEM	P(U60)= 1	2.7 C	■.	54.82 F		
		i	UPPER	SURFAC	Е СР	VALUES								LOW	ΕR	SURFACE	CP VALUES	
X/0	:= .(•10		20	• 35	•50	. 70	0.	80	•90	• 02	•10	• 2		•50	.70	• 90
AZIMUT		_												_				
300 •	4	93	81	8!	513		292	2	58	125	.050	.317	.080	0	13	060	027	047
302.	4	93	81	8	50 გ		292	25	58	125	.051	.317	.080	0	13	063	027	036
304.	4	08	81	8	499		292	25	58	125	•060	.317	.080	0	17	070	027	036
306.	4	78	81	74	499		290	25	59	125	.061	.318	.081	0	21	065	028	037
308.	4	79	81	8	502		290	25	59	128	.065	.317	.080	0	20	060	029	050
310.	4	79	81	8	502		292	25	58	138	.060	.317	.080	0	24	060	027	047
312.	4	79	81	8!	508		292	25	58	134	.060	.317	.080	0	24	060	027	047
314.	4	78	81	8	504		292	25	58	125	.060	.300	.080	0	24	065	027	047
316.	4	ó2	61	a!	501		291	2!	59	125	.061	.300	.081	0	22	069	028	048
318.	4	49	81	5	502		291	25	59	125	.062	.299	.064	0	29	069	028	048
320.	4	47	80	4	502		292	2	58	125	•969	.282	.064	0	35	076	027	044
322.	4	34	80	4 :	502		292	25	58	125	.060	.282	.064	0	35	073	027	036
324.	4	31	79	9	492		292	25	58	125	.060	.282	.064	0	35	070	027	036
326 •	4	20	79	0	490		292	25	58	125	.060	.282	.064	0	35	070	027	036
328 •	4	20	79	0	490		292	2!	58	125	.060	.279	.064	0	35	070	027	036
330.	4	15	79	0	490		292	2	58	125	.060	.265	.061	0	35	070	027	036
332•	4	05	79	04	490		292	25	58	125	.060	.265	.049	0	35	070	027	036
334.	4	05	79	04	488		292	25	58	125	•060	.260	.049	0	44	070	035	036
336.	3	99	78	9	490		290	25	59	133	.052	.248	.049	0	42	069	038	043
335.	3	90	79	04	490		291	25	58	138	.061	.248	• 049	0	45	070	038	048
340.	3	90	79	04	490		292	25	58	138	.060	.248	.049	0	45	079	038	055
342 •	3	90	79	0	490		292	25	58	128	.060	.248	.049	0	45	079	038	051
344.	3	90	79	0	490		292	29	58	125	•060	.248	.049	0	45	079	038	039
346.	3	82	79	04	490		292	25	58	125	.060	.240	.041	0	45	079	038	036
348.	3	75	78	0	488		291	25	58	125	.069	.231	•033	0	46	080	038	036
350.	3	66	77	5	487		290	25	59	125	.064	.232	.034	0	53	089	038	037
352.	3	50	76	4	483		290	25	59 	125	.073	.222	.034	0	52	089	039	037
354 •	3	35	76	14	473		287	26	50	138	.077	.215	• 025	0	49	087	039	038
356.	3	30	76	1	473		276	26	60 	127	.067	.204	.019	0	51	079	039	038
358.	3	19	74	9	473		276	26	50	139	.067	.186	.009	0	63	081	039	038

FLT 61 RUN26B

	AIRFOIL PE	ESSURE DA	Q. AT	BLADE RAC	oius		NASA-LAN	IGLEY AF	1-1G		78/11/14	•		
Į	FLT 63 F	PUN 1	TIME 53	718.300		MU=	.151 CLP=	.0047	23 TEM	P(U60)=	9.2 C =	48.63 F		
X/C:		UPPEP SU •10	JRFACE CP •20	VALUFS .35	•50	• 70	•80	•90	•02	•10	LOWER •20	SURFACE .50	CP VALUES	•90
0.	284	809	505		390	323	178	.073	.197	067	069	096	055	055
2.	259	800	505		399	318	175	.069	.173	080	074	094	056	052
4.	238	791	508		394	~.315	173	.080	.150	097	082	108	064	052
6.	203	782	502		389	311	171	.079	.127	100	086	112	067	065
8.	181	773	496		390	313	169	.078	.104	113	097	122	075	064
10.	146	764	491		~.395	322	167	.077	.082	115	103	132	074	063
12.	126	 755	485		391	319	165	.076	.079	128	108	137	073	063
14.	108	749	477		386	315	163	.076	.059	129	118	135	072	062
16.	089	753	472		387	320	162	.076	• 039	142	127	134	072	062
18.	072	731	469		389	327	161	.083	.018	142	130	133	077	063
20.	039	726	473		387	323	163	.083	002	157	137	131	081	061
22.	023	731	472		384	328	171	.076	040	172	149	142	080	059
24.	006	724	466		388	333	164	.083	~.059	186	152	149	079	062
26.	.010	717	461		388	330	159	.083	077	185	156	148	079	071
28.	.025	710	45R		384	327	167	.084	096	~.197	158	153	085	071
30.	.041	-,703	454		381	323	165	.087	113	198	165	162	088	070
32.	.056	697	450		387	330	163	.085	131	209	168	163	086	064
34.	.071	690	443		388	333	161	.084	148	210	174	162	086	061
36.	.085	684	447		381	331	161	.091	165	220	180	161	087	069
38.	.099	679	449		380	328	159	.090	182	222	192	167	092	063
40.	.109	673	446		388	336	165	.087	198	232	193	167	093	060
42.	.113	668	443		387	338	169	.086	215	~.234	200	174	093	060
44.	.127	663	439		384	335	168	.086	225	243	200	174	092	060
46.	.140	658	436		381	333	167	.085	229	246	199	173	091	065
48.	.154	653	433		389	343	165	.084	245	259	207	172	091	064
50.	.180	641	430		377	343	164	.084	274	272	216	179	090	064

-.163

-.162

-.161

-.171

-.341

-.339

-.337

-.350

-.374

-.383

-.381

-.377

-.324

-.358

-.341

-.280

-.290

-.305

-.290

-.253

-.225

-.233

-.231

-.198 -.174

-.178

-.168

-.176

.083

.083

.082

.084

-.089 -.052

-.080 -.052

-.098

-.098

-.063

-.056

52.

54.

56.

58.

.222

.249

.237

.189

-.623

-.614

-.619

-.637

-.427

-.425

-.433

-.443

	AJRENIL PE	RESSURE DA	. TA . 9 B	LADE RAD	IUS		NASA-	LANGLE	Y AH-1	16		78/1	1/14	•		,
	FLT 63 F	PUN 1	TIME 537	18.300		*tj*	•151 C	LP* •	00423	TEN	1P (U60)=	9.2 C	=	48.63 F		
		UPPER SU	REACE CP	VALUES								LO	WER	SURFACE	CP VALUES	;
X/(c= .02	.10	•20	•35	.50	.70	.80	.9	0	.02	.10		20	•50	.70	•90
A7TMU	тн															
60.	.154	661	461		387	348	172	• 0	92 -	220	224	:	179	158	079	061
62.	•134	684	459		387	346	161	• 0	91 -	196	216	:	180	165	078	070
64.	•128	698	454		396	344	158	• 0	98 -	196	222	:	180	164	087	072
66.	•136	708	446		394	343	~.157	• 0	90 -	205	228	:	188	163	086	072
68.	.140	698	450		392	342	157	.0	89 -	220	235	:	186	163	085	062
70.	.149	682	454		388	342	157	• 0	94 -	236	231	:	182	162	078	063
72.	.152	678	463		390	339	156	.0	7 9 -	230	216	:	174	159	076	061
74.	•132	676	469		389	335	167	• 0	79 -	201	202		161	150	076	060
76.	.094	697	468		388	326	167	.0	79 -	145	178		144	143	076	060
78.	.054	721	467		390	-,336	166	• 0	79 -	079	150	-,	134	143	074	060
80.	.026	746	475		397	332	165	.0	79 -	027	143		128	142	066	060
82.	003	770	486		397	321	154	.0	79	.009	132	:	127	142	066	060
84.	019	795	476		392	321		•0	87	.015	129	:	127	142	069	060
86.	020	807	464		389	320		• 0	87	.015	129		127	142	075	069
88.	032	820	464		391	320	142	.0	87	.015	129		127	142	075	060
90.	033	833	464		389	320	142	.0	87	.000	141		131	142	075	060
92.	033	844	464		396	320				001	142		136	142	071	060
94.	007	845	464		390	320		.0		016	142		136	142	066	060
96.	006	845	465		385	321	142	.0	87 -	033	155		137	142	066	060
98.	•006	846	465		386	321				049	156		142	142	066	057
100.	.008	845	459		386	322				065	156		146	142	066	049
102.	.019	834	456		387	322				082	170		147	143	067	050
104.	.022	825	455		381	323				096	170		147	143	067	050
106.	.033	824	455		375	316				099	171		145	144	063	047
108.	•036	805	451		375	321				113	~.184		144	138	060	046
110.	.046	779	451		379	317				116	185		147	136	059	052
112.	.047	763	450		381	322				130	186		149	136	065	050
114.	.047	739	445		380	319				134	186		146	130	069	 052
116.	.047	721	436		384	316				147	187		149	128		052
	4()4/	- 4 (/ 1	-410			 _3!⊓		() م	0/	[4/	10/		144		069	ー・ロコノ

FLT 63 RUN1

78/11/14.

	FLT 63	PUN 1	TIME	53	718.300		MU=	.151	CFb=	•00423	TEM	P(U60)=	9.2 C	= 48.63 F		
		UPPF	R SURFAC	F CP	VALUES								LOWE	R SURFACE	CP VALUES	;
x /	r= .02	•	10 .	20	•35	•50	.70	.8	0	•90	.02	.10	•20	•50	•70	•90
AZTMU	ITH															
120.	•05	·	702	426		377	31	51	47	.081	153	193	15	2129	062	051
127.	• 06	2	685	418		366	30	91	49	•085	166	204	14	9131	069	053
124.	• 06	2	676	419		367	30	81	41	.086	167	205	15	131	063	054
126.	•06	2	665	424		368	31	01	46	.087	174	206	15	0132	071	048
128.	• C6	2	650	414		373	31	11	51	.078	185	208	15	55132	062	042
130.	•06	3	648	419		374	31	41	52	.076	187	209	15	4134	062	043
132.	•06	3	644	419		379	31	51	53	.075	196	210	15	7134	062	042
134.	. 06	4	635	410		379	31	81	44	.077	206	212	15	6135	063	043
136.	•06	5	625	413		368	30	61	43	.081	208	213	15	55127	065	045
138.	•06	5	616	417		359	30	81	44	.082	209	215	14	7127	065	046
140.	•06	5	617	408		365	30	91	44	.077	211	209	15	119	064	044
142.	•06	6	611	410		365	31	31	46	.083	202	203	14	9121	066	046
144.	• 05	7	602	403		369	31	51	47	.081	197	205	15	0121	065	046
146.	. 05	2	604	407		369	31	71	49	.084	199	207	14	0123	057	047
148.	05	3	610	413		362	30	51	50	.075	188	199	14	2124	058	048
150.	•04	1	603	413		367	30	71	51	.073	184	196	14	3122	057	047
152.	. 03	8	593	406		371	30	71	52	.070	186	197	13		057	046
154.	•03	9	598	406		369	29	81	54	.077	188	199	13		059	049
156.			604	403		367	30	01	42	.078	175	189	13			049
158.	•02	4	595	408		377	30	31	43	.075	157	187	12	8126	057	048
160.	•01	0	601	414		373	30	61	46	.076	155	190	13	31120	049	049
162.	•00	8	592	412		373	30	31	60	.074	157	178	13		048	048
164.	00	7	597	410		368	29	41	59	.075	141	177	13		049	048
166.	00	9	589	413		366	29	71	49	•076	140	179	12		049	049
168.	00	R	595	409		368	30	11	50	.077	123	181	12		051	050
170.		5	600	408		372	30		52		123	167	11		052	052
172.		6	59?	411		368	30			.070	124	167	11		052	050
174.		3	599	415		371	31		56	.071	105	169	11		054	040
176.		4	603	404		366	31	71	58		106	171	10		049	041
178.	04	6	596	398		367	30	91	60	.073	086	156	10		042	041

	AIRFOIL PRESSURE DATA .9 BLADE RADIUS					NASA-LANGLEY AH-1G						78/11				
	FLT 63	RUN 1	TIME 53	718.300		MU =	.151	CLP=	•00423	. TEM	P(U60)=	9.2 C	3 (48.63 F		•
		UPPEP S	URFACE CP	VALUES								LOW	JER 1	SURFACE	CP VALUES	s
Y Z I M ()		.10	•30	. 35	• 5 0	• 70	•80		90	•02	•10	• 2		•50	•70	•90
180.	06	5603	405		370	304	15	55	072	085	~.156	1	106	099	043	040
182.	08	2611	407		376	307	14			067	141	1		100	043	042
184.	086	6618	411		379	311	_			064	142	0		093	044	041
186.	10	6625	420		382	316	15	51	.066	042	141	0		091	046	044
188.	12	6626	421		378	318	16	0 .	063	020	127	0	186	092	036	043
190.	14	2622	430		376	309	16	3 .	064	001	124	0)85	093	033	043
192.	150	630	431		395	305	15	56	.064	.004	111	0	78	084	032	044
194.	17	1637	441		388	310	15	8 .	.066	.028	111	0	172	082	034	044
196.	19	4645	444		392	312	16	0 .	066	.046	108	0)65	072	033	045
198.	21	6652	452		396	317	16	1 .	.066	.054	094	0	162	071	034	044
200.	23	1660	454		402	320	16	3 .	.065	.079	089	0	165	072	033	045
202.	24	3669	460		405	324	16	5 .	058	.096	076	0)50	073	034	045
204.	26		468		393	328	16	57	055	.107	077	0	149	060	035	047
206.	29	L695	473	•	416	311	16	9 .	.053	.134	070	0	38	060	034	046
208.	316				404	312	17	71 .	.052	.150	048	0)39	061	021	046
510.	341	1719	479		403	318	17	74	059	.164	035	0)17	062	023	049
212.	367	7727	489		408	321	17	76	062	.192	026	0	117	063	024	051
214.	406	5735	495		417	322	17	77 .	.056	.221	015	0	209	063	021	048
216.	447	?743	499		422	326	17	78	.055°	.251	004	0	109	064	020	048
218.	470	 767	503		426	329	16	3 .	.055	.265	•008	0	800	065	006	048
220•	49				428	334	16	2	.060	.284	.021	0	01	065	007	051
222•	526				434	334	16	3 .	.057	•315	.031	•0	25	066	006	050
224.	570	7.796	531		434	317	16	6 .	066	• 329	.031	• 0	33	064	011	054
226.	606	5822	562		439	318	16	66	.058	.350	•046	•0	040	048	019	051
228.	63		567		427	321	16	8 .	058	•382	• 055	• 0	041	033	006	051
230.	684	4840	572		436	323	16	9	05°	.415	•072	• 0	146	026	006	051
232.	719				449	326	17	' 1 .	059	.426	.080	•0	059	038	006	052
234.	750	 878	589		445	329	17	'2	060	. 452	•099	•0)59	038	006	052
236.	801	L907	604		461	332	17	74 .	061	.462	.106	•0	067	032	007	053
738.	835	914	610		457	335	17	'6	.065	•490	.107	•0	080	023	008	055

FLT 63 RUN1

	AIPFOIL	PRESSURE D	ATA .9	BLADE RAD	IUS		NAS	A-LAN	GLEY AH-	1 G		78/	11/1	4.		
	FLT 63	PUN 1	TIME 52	3718.300		MU=	•151	CLP=	.00423	TEM	P(U60)=	9.2	c =	48.63 F		•
		UPPER S	URFACE CP	VALUES								L	OWER	SURFACE	CP VALUES	3
)\K AZIMUT		•10	•20	•35	.50	.70	• 8)	•90	•02	.10		•20	•50	•70	•90
240.	86	6944	615		456	336	51	76	.061	.498	.128	,	.085	023	006	053
242.	92	0952	629		464	338	81	77	.061	.528	.133		.096	015	006	054
244.	 95	3982	642		463	341	11	78	.062	.534	.134		.097	006	006	054
246.	-1.00	9 -1.010	646		478	343	31	79	.062	.566	.158		.106	006	.001	054
248.	-1.06	6 -1.016	646		470	344	41	30	.062	.600	.161		.116	007	.011	055
250.	-1.12	3 -1.024	663		469	34	71	12	.066	.605	.188		.130	007	.009	056
252.	-1.18	0 -1.054	676		482	349	91	76	.075	.637	.188		.139	•003	• 009	059
254.	-1.23	7 -1.083	688		475	349	91	50	.075	.670	.215		.146	.010	.011	055
256.	-1.29	4 -1.112	697		476	352	21	51	.067	.675	.218		.159	.010	•009	057
258.	-1.35	8 -1.141	703		486	354			.072	.709	.245		.172		.018	060
260.	-1.45	8 -1.162	721		491	35	31	52	.074	.742	.271		.175	•027	.028	058
262.	-1.52	4 -1.173	728		493	353			.082	.771	.296		.187		.029	056
264.	-1.62	1 -1.192	724		479	336			.082	.777	.300		.193		.029	056
266.	-1.65				468	329			.087	805	.324		.213		.026	058
268.	-1.60				471	328			.087	.770	.318		.213		.015	059
270.	-1.44				451	329			.088	.620	.275		.189		004	059
272.	-1.21				447	308			.089	.509	.174		119		009	060
274.	98				445	30			.079	.445	.100		.077		024	060
276.	82				428	300			.071	.391	.054		052		041	060
278.	73	8831	541		424	322	21	53	.069	.369	.035		.033	075	044	058
280.	69				443	326			.057	.368	.026		.014	075	044	058
282.	67				424	326			.038	.367	•009		005		044	046
284.	67				421	32			.033	.366	.019		.006		044	038
286.	67				440	349			.046	.379	•035		.006		027	038
288.	68				439	324			.050	394	.035		.006		026	051
290.	69				437	321			.064	392	.035		.004		026	057
292	68				435	346			.067	.406	.034		030		026	072
294	68				433	317		_	.067	.435	.034		.028	073	025	076
296	68		541		430	317			.067	.445	•034		.012	072	025	076
200	- 47				- 429	- 32			064	443	034		012	072	025	0.50

.443

.034

.066

-.428 -.338 -.178

FLT 63 RUN1

.012 -.072 -.025 -.059

298.

-.677

-.833 -.542

ATPECIL PRESSURE DATA	•9 BLADE RADIUS	NASA-LANGLEY AH-1G	78/11/14.
FLT 63 RUN 1 TI	IMF 53718.300	MU= .151 CLP= .00423	TEMP(U60)= 9.2 C = 48.63 F

+ (.1 63 8	ו אני	11MF 23	718.300		MU=	•151	CFL=	•00423	TEM	P(U60)=	9.2 C =	48.63 F		
		HPPER S	URFACE CP	VALUES								INVER	SHREACE	CP VALUES	
×/C= HTUMIZA	•02	.10	•20	• 35	•50	•70	.80)	•90	•02	.10	• 20	•50	.70	•90
300.	673	846	553		425	311	l 17	7	.066	.440	.034	•012	071	025	072
302.	668	845	549		422	313	317	76	.065	.437	.033	•012	071	025	058
304.	663	839	545		419	333	317	74	065	.433	.033	.012	070	025	072
306.	658	852		•	415	330	17	'3	.064	•430	.033	.011	070	027	073
308.	653	848			412	328	3 1 7	'2	.064	.426	•033	.011	069	041	073
310.	647	862	547		414	325	5 17	'0	.080	.423	.032	-011	069	037	072
312.	661	856	- .564		425	322	216	9 .	.079	.419	.032	•011	068	024	072
314.	659	870	- .559		421	319	16	7	.078	•415	•032	.011	067	028	071
316.	653	862	563		424	316	16	6	.077	.411	.050	.011	067	039	070
318.	667	876	- .576		425	321	L16	4 .	077	.431	.054	-017	066	039	070
320.	662	889	579		417	334	16	2 .	.076	.430	.054	.027	066	038	067
322.	656	901	573		424	331	L16	5	.075	.426	•053	•027	065	032	051
324.	671	693	567		419	327	717	79 .	.074	.422	.053	•026	064	022	050
326.	664	903	572		424	324	17	7 .	074	.417	.052	•026	063	029	053
328.	657	896	572		429	331	L17	'5	.073	.413	.051	.017	063	037	066
330.	649	907	566		424	→. 340	17	73	.072	.409	.051	.010	062	036	065
332.	642	914	571		419	336	17	1	.071	.429	.050	.010	061	036	065
334.	635	908	 570		425	332	216	9 .	.076	.423	.050	.010	061	036	064
336.	628	913	- ∙575		427	328	16	7 .	084	• 395	.049	•000	060	035	063
338.	617	908	573		422	324	16	6 .	.083	•390	•049	005	059	043	062
340.	593	911	567		417	321	1 6	4	.082	.386	.048	005	059	048	062
342.	582	901	562		413	317	716	2	.081	.381	.045	•005	058	048	061
344.	550	890	554		409	313	16	0 .	.078	.372	.026	.007	057	046	059
346.	509	880	549		404	309	15	8	.077	.349	•023	002	067	046	058
348.	484	869	556		400	305	15	6	.076	.344	•006	018	068	054	058
350.	458	867	549		408	316	15	4	.074	.334	.002	021	078	047	056
352.	427	867	529		392	319	16	2	075	.307	012	018	090	044	057
354.	384	848	519		397	315	 16	7	.076	.281	018	029	091	044	057
356.	349	829	515		393	328	17	'6	.077	. 255	036	040	090	055	057
358.	319	819	509		404	327	716	9	.075	.222	055	055	100	056	056

FLT 63 RUN1

AIPFOIL PRESSURE DATA .9 BLADE RADIUS NASA-LANGLEY AH-1G 78/11/14.

		UPPER SU		157.800			257 CLI	°* •004		'(U60)= 10		SURFACE	CD VALUE	•
X/C=	.02	•10	•20	•35	•50	.70	.80	• 90	• 02	.10	•20	.50	•70	.90
AZIMUTH	•02	• 10		• 3 7	• 30	• 10	• 60	• 99	• 0 2	•10	• 20	• 70	• 70	• 40
0.	523	867	524		378	307	157	.071	.352	.041	010	077	048	054
2.	488	864	519		386	302	154	•070	.331	.021	010	075	04R	053
4.	461	850	519		393	312	151	.066	.303	.014	015	076	056	051
6.	422	848	518		386	309	163	•064	•590	•002	027	086	055	059
9.	 379	849	526		378	319	160	.053	.270	004	039	096	054	071
10.	 351	849	516		371	313	157	•062	.245	016	051	106	053	070
12.	315	P35	512		369	311	154	.072	.235	020	058	111	055	059
14.	290	835	510		371	318	152	.071	.216	033	061	109	065	058
16.	255	850	507		369	313	151	.071	•193	048	067	107	072	066
18.	219	850	505		371	313	160	.079	.186	064	075	110	071	055
20.	184	851	502		370	318	157	•078	.167	065	091	118	073	064
22.	165	851	500		371	319	- •155	.076	•146	077	101	126	078	065
24.	118	853	491		371	323	155	.075	.125	091	110	134	077	074
26.	101	866	482		372	325	163	.077	.088	105	119	136	080	072
28.	070	864	474		371	329	160	.083	.069	118	126	140	085	072
30.	040	854	482		377	324	158	.084	.051	130	128	147	084	071
32.	012	851	487		377	327	160	•086	.033	129	132	154	088	070
34.	.014	839	484		378	338	166	•091	•016	141	140	155	091	069
36.	.030	827	481		378	339	163	.089	001	152	149	153	089	058
. 38.	.054	816	474		374	343	161	.086	017	152	158	151	093	056
40.	.067	806	476		377	343	159	.080	033	164	165	149	095	065
42.	.082	 795	472		383	339	157	•093	048	172	165	147	094	065
44.	.104	~. 786	466		390	345	161	.092	063	173	171	159	093	068
46.	.115	777	479		387	354	164	.091	078	181	178	167	098	073
48.	.127	762	512		392	354	163	.095	088	182	177	174	090	072
50.	.143	748	556		398	350	161	.097	092	190	183	173	105	066
52.	.161	740	610		396	357	159	•102	106	192	190	171	105	067
54.	.172	727	653		392	356	158	.104	120	202	197	185	104	064
56.	.183	715	685		398	364	156	•103	127	208	204	184	096	060
58.	.187	709	70B		395	362	155	-108	133	206	203	182	102	066

	AIREDII	L PR	RESSURE DA	ATA .	9 BLADE RA	SUIC		NAS	A-LAN	GLEY AH	-1G		78/11/1	4.		
	FLT 5	3 1	RUN 5	TIME	54157.800		MU=	.257	CLP=	.0042	7 TFM	P(U60) = 1	0.6 C =	50.99 F		
			UPPER SI	URFACE	CP VALUES								LOWER	SURFACE	CP VALUES	
		02	.10	.20		•50	.70	• 8	0	• 90	•02	.10	•20	•50	.70	.90
AZIMU	114															
60.	•	192	703	73	10	392	359	91	54	.109	146	210	210	181	102	068
62.	• 2	202	697	74	4	398	356	51	44	.108	159	221	208	187	101	05B
64.	• 5	213	685	75	6	396	366	51	41	.107	172	225	215	193	100	060
66.	• 2	216	677	76	0	394	364	41	40	.114	178	224	213	192	100	058
58.	• 3	222	673	76	5	401	361	11	39	.114	185	222	211	191	099	057
70.	• 3	225	660	77	0	405	361	11	38	.113	189	221	203	189	098	057
72.	• 2	223	655	77	2	386	368	81	3.8	.113	188	220	202	187	098	057
74.	• 3	231	642	76	9	383	358	81	37	•112	187	219	203	182	097	056
76.	• 2	241	648	76	2	376	364	41	36	.104	196	226	212	187	097	056
78.	• :	?52	627	75	4	379	353	31	36	.104	219	245	225	186	097	056
80.	• 2	263	624	74	8	371	352	21	36	.103	236	259	236	188	096	056
82.	• 2	273	622	73	7	367	355	51	36	.103	260	278	251	198	096	047
84.	• 2	284	610	72	7	360	366	61	45	.103	297	292	264	207	096	046
86.	• 2	295	599	71	7	360	374	41	45	.103	326	312	275	206	096	038
88.	• 3	306	598	70	7	359	373	31	45	.104	353	325	288	206	096	038
90.	• 3	317	587	69	3	359	373	31	45	.108	381	347	296	206	096	038
92.	• 3	329	576	68	0	359	373	31	45	.103	408	360	300	206	096	038
94.	• 3	340	567	67	3	359	374	1	45	.103	449	382	304	207	096	038
96.	• 3	341	568	66	5	366	374	·1	45	.103	476	395	309	207	096	038
98.	• 3	353	567	65	6	377	374	41	45	.100	505	407	324	207	095	037
100.	• 5	364	~. 557	64	9	380	376	51	46	.103	533	420	334	208	096	038
102.	• 3	367	551	62	8	388	377	71	46	.104	549	432	335	208	097	038
104.	• 3	377	546	56	9	392	378	81	42	.101	577	444	325	209	092	035
105.		381	530	49	8	387	380	1	42	-100	596	448	327	210	090	030
108.	• 1	392	517	43	4	386	374	41	48	.101	623	460	337	211	090	030
110.	• 3	394	502	38	7	388	363	31	49	.098	641	462	341	206	091	030
112.		396	494	37	4	390	361	1	44	.09B	662	467	343	199	085	C30
114.	• 3	99	485	35	9	385	354	41	40	.000	694	476	345	199	084	030
116.	• 4	01	477	36	0	386	364	1	41	.094	727	471	347	194	084	031
118.	• 4	04	469	36	3	389	359	 1	47	.092	761	474	327	194	085	031

FLT 63 RUNA

F	LT 53 RU	N 6	TIME 54	157.800		MU= •	257 CL	P= .00	427 TF	MP(U60)=	10.6 C -	50.99 F		
		UPPER SU	REACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X/C=		.10	•20	• 35	•50	.70	. 80	• 90	• 0 ?	•10	•20	• 50	.70	•99
AZIMUTH														
120.	.407	461	365		383	359	143	• 093	796	547	8319	196	079	-•031
122.	.411	454	357		375	351	144	.093	826	47	7321	197		031
124.	.408	453	343		378	352	145	.094	842	?474	324	199	079	032
126.	.406	450	345		382	356	147	• 089	843	473	3318	193	072	032
128.	•403	450	340		375	347	148	.088	822	471	312	187	072	032
130.	.402	446	344		378	350	150	-089	777	7469	307	187	~.073	033
132.	.399	448	346		373	340	151	.089	724	46	 301	175	074	033
134.	.390	444	346		-,376	344	143	.091	678	45	4297	177	066	025
135.	.390	446	349		375	345	142	•076	658	8446		175		029
138.	•386	441	351		-,377	337	144	.076	651	l438	B 285	163		022
140.	.377	445	358		370	341	147	.085	643			164		024
142.	.369	451	359		378	329	148	.C78						021
144.	.350	457	360		376	324	151	.078	616					035
146.	.338	463	358		369	328	152	-079	604	439	1 256	155		025
148.	•329	457	363		367	329	143	.080			3246			037
150.	•320	464	364		-,372	323	145	• 08 1	573	337	4242			037
152.	.297	471	363		373	328	147	.081	L −. 562	? ~. 35	3229	153	~. 055	038
154.	.286	478	369		367	328	150	.074	537	734	1222	151	 053	038
156.	.261	486	375		365	323	152	.075	510					039
158.	.250	494	381		371	329	155	.074					048	040
160.	.224	503	388		378	327	157	•067						040
162.	•211	511	395		-,377	324	156	•068						041
164.	.184	520	402		378	329	149	• 069						038
166.	.169	530	409		377	326	152	.071						034
168.	•139	540	416		378	324	154	• 067	73?	324	9155			039
170.	.110	550	424		385	330	157	• 062						031
172.	.088	560	432		383	325	160	• 063						032
174.	.041	571	441		386	325	156	.064						032
176.	.011	589	449		393	331	159	.065						033
178.	013	611	458		401	324	161	•060	11	516	3094	087	021	033

	VISEUIT DE	RESSURE D	4TA .9	BLADE RAD	SUIC		NASAM	-LANG	LFY AH-	·16		78/11/14	• •		,
	FLT 53	RUN 6	TIME 54	157.800		MU=	.257	CLP=	.00427	7 TEM	IP (U60) =]	10.6 C =	50.99 F		
		110050 5	UPFACE CE	VALUES								LOWER	SURFACE	CP VALUE	5
x/0	.02	.10	•20	•35	•50	.70	.80)	.90	.02	.10	•20	•50	.70	•00
AZIMUT		•10	• 2 0	•37	• > 0	•	•		•						
								_	015	073	142	080	078	012	034
180.	057	623			409	32	-		.055	073 021	112	068	067	009	035
182.	109	644			417	33	_		.057	.041	094	055	056	009	035
184.	150	676			412	33			.058			042	044	009	036
186.	201	699			418	32			.059	.081	076	042	044	010	037
188.	257	713			427	33			.060	.117	057		031	•003	038
190.	304	740			419	33			.061	.169	037	014		•003	038
192.	364	763			427	34			•063	.212	016	•001	032	-	039
194.	424	~. 793			436	35			.064	• 242	•005	.015	033	•004	
196.	490	816	568		445	33			•065	-288	.028	.017	034	• 004	040
198.	554	849	580		453	34			.067	• 333	.039	.032	034	.005	041
200.	612	872	592		446	34			•068	• 368	•053	•037	030	•020	042
202.	688	891	604		455	33			.070	.471	.078	•066	006	.020	043
204.	757	929	617		461	34			•055	•450	•089	.071	006	.021	044
206.	822	951	630		454	34	816	52	.056	.480	.107	•090	006	.021	045
208.	889	~.971	643		463	35	010	5.5	• 057	•520	.117	•105	001	.022	045
210.	958	990	555		473	33	616	59	.058	•538	•138	.113	.010	•022	046
212.	-1.029	-1.034	669		476	34	31	72	.059	•573	.148	•127	.011	.022	047
214.	-1.103	-1.055			470	35	01	76	.061	.591	•172	•130	.011	•023	048
216.	-1.179	-1.076			479	35	71	76	.062	.603	.181	.140	.018	.023	049
218.	-1.257	-1.072			489	35	31	5.8	.063	.443	.208	•154	• 029	• 024	- ∙050
220.	-1.311	-1.092			488	34	21	51	.054	.659	.215	.157	•029	.024	051
222.	-1.391	-1.113			484	34	81	54	.065	.671	.219	•160	•030	•025	052
224.	-1.421	-1.133			496	35		57	.063	.683	.221	.169	. 031	.027	052
226.	-1.557				492	35	-		.060	.696	.227	.182	.031	.028	050
228.	-1.584				485	36			.069	.742	.261	.190	.032	.026	055
230.	-1.615				491	35			.072	.720	.266	.196	.032	.025	057
232.	-1.673				498	34			.077	.732	.271	•201	.046	.025	050
	-1.725				488	35			.078	.744	.275	.204	.053	.025	061
234.					490	35			.077	.754	.278		•054	.027	060
236.	-1.758				498	36			.075	765	.282	•205	.055	.028	059
238.	-1.807	-1.237	764		470	30	5 -• L	, ,	•017	• 1.75	. • 202	•203	•0,7	• 67	• ,

FLT A3 DUNK

F	LT 53 R	UN 6	TIME 54	157.800		MU≖ •	257 C	LP#	.00427	Y FMP	(1160)= 10.	6 C =	50.99 F		
		UPPER SU	RFACE CP	VALUES								LOWER	SURFACE	CP VALUES	;
X / C =	.02	•10	•20	• 35	•50	•70	.80		90	•02	.10	•20	•50	.70	.91
AZIMUTH															
240.	-1.532	-1.242	774		505	368	161		076	.776	•286	•208	•056	•028	060
242.	-1.856	-1.240	784		511	347	163		077	·786	•290	•211	•057	• 029	049
244.	-1.879	-1.255	770		517	342	165	_	077	.795	•293	•213	•057	• 029	036
246.	-1.900	-1.269	777		523	345	167	' .	078	.805	•297	•216	•058	•030	036
248.	-1.921	-1.266	785		529	349	169	•	079	.813	.300	.218	.038	.030	052
250.	-1.939	-1.263	766		508	353	170	٠,	080	.821	•303	.220	•037	.030	054
252.	-1.957	-1.274	772		537	356	172		0.81	.811	•305	.198	•037	• 030	064
254.	-1.973	-1.284	779		515	359	173	3 .	081	.794	•308	•199	•037	•031	065
256.	-1.968	-1.272	784		517	361	174		082	.799	.310	•201	•038	.031	065
258.	-1.964	-1.245	785		492	363	176	•	082	.804	•312	.202	.038	.031	056
260.	-1.975	-1.241	760		522	365	177	'.	062	.809	.314	.203	•038	.031	066
262.	-1.961	-1.246	740		499	367	177	, .	059	.812	•315	•204	•038	•031	056
264.	-1.955	-1.251	743		524	368	178	•	059	.815	•316	•205	•038	•03?	067
266.	-1.959	-1.254	745		504	369	178		059	.817	•317	•205	•038	•032	067
268.	-1.936	-1.256	747		524	370	179	•	059	.818	.317	•205	.038	•032	067
270.	-1.928	-1.257	751		501	370	179	•	059	.818	.292	.204	.039	•032	067
272.	-1.870	-1.256	751		504	368	177	,	052	.818	.280	•199	•039	•029	064
274.	-1.911	-1.254	750		503	367	177	•	052	.816	.280	•199	•039	•010	063
276.	-1.858	-1.251	746		502	366	177	, .	052	.814	•279	•199	•030	.010	063
278.	-1.905	-1.213	745		499	366	176		053	.P12	•279	•200	.015	.016	063
280.	-1.872	-1.208	744		497	364	176	•	056	.808	•276	.198	•015	.025	045
282.	-1.793	-1.202	738		498	360	173	•	046	.804	•275	.193	.015	.011	060
284.	-1.778	-1.194	736		493	359	173		051	.799	•274	•195	•015	.010	062
286.	-1.766	-1.186	733		491	356	172		049	.793	•271	•191	•015	•001	061
288.	-1.750	-1.177	727		504	352	170		043	.786	•268	•186	•015	011	05B
290.	-1.702	-1.166	715		498	349	168	· •	043	.780	•266	•171	.015	011	057
292.	-1.686	-1.154	705		476	348	167	,	047	.773	.266	.165	.014	014	059
294.	-1.663	-1.142	697		467	346	167	,	055	.765	.263	.168	.014	016	052
296.	-1.611	-1.129	690		462	342	165		055	.751	.257	.166	001	016	062
298.	-1.558	-1.106	691	•	456	338	163		054	.708	•223	.164	008	016	061

356.

358.

-.605

-.570

-.872 -.530

-.873 -.521

4.1	TREDIL PR	ESSURE DA	.74 .9	BLADE RA	2UIG		NASA-L	ANGLEY AH-	1 G		78/11/14	• •		
FL	T 63 R	UN 6	TIME 54	157.800		MU= .	257 CL	P= .00427	TEMP	(U60)= 10	.6 C =	50.99 F		
		UPPER SU	IRFACE CP	VALUES							LOWER	SURFACE	CP VALUE	5
X/C=	•02	.10	•20	.35	•50	.70	.80	•90	.02	•10	.20	•50	.70	•00
AZIMUTH														
300.	-1.496	-1.071	675		459	330	159	.055	.698	.218	.134	007	011	057
302.	-1.411	-1.056	642		447	327	157	.054	.481	.212	.133	007	013	054
304.	-1.327	-1.028	629		438	324	157	.064	.547	.183	•135	008	015	059
305.	-1.254	996	624		432	319	154	•072	.432	.172	•115	025	015	058
309.	-1.192	981	622		450	313	168	.055	.622	•145	•105	045	029	055
310.	-1.123	966	613		431	331	174	-050	.599	•141	.075	046	029	050
312.	-1.075	950	602		444	331	170	.038	. 566	.129	.071	045	027	047
314.	-1.027	934	592		439	325	168	.031	•557	.107	.069	044	044	046
316.	994	917	583		431	320	165	•030	.547	•106	•048	043	046	045
318.	961	901	593		424	314	162	•030	.537	.104	.047	042	045	044
320.	931	902	582		439	308	159	•020	.527	.102	•045	042	044	044
322.	897	894	572		431	331	156	.045	.517	.100	.026	041	043	043
324.	870	895	561		423	325	153	.047	•507	•098	.026	040	043	042
326.	P53	884	560		415	318	171	•046	.498	•096	•025	039	04?	041
328.	836	885	579		410	312	170	•045	.48P	•094	•025	042	041	040
330.	819	893	568		419	306	166	.044	.478	•092	.024	054	040	~. 039
332.	803	879	560		415	304	163	.043	489	•090	.024	053	039	039
334.	787	881	558		421	320	160	.043	.488	•090	.026	052	040	056
336.	790	887	560		408	316	160	•055	.478	•087	.030	052	042	052
338.	778	891	559		406	313	174	•056	•468	•085	.022	050	041	~. €55
340.	76 <i>2</i>	895	556		404	324	170	•055	.458	.083	.022	049	047	071
342.	746	898	563		415	317	167	•054	.449	•082	.021	048	036	070
344.	731	901	569		418	311	163	.053	.463	.080	.021	047	035	058
346.	716	903	560		409	313	160	•052	. 456	.078	.013	046	034	067
348.	701	905	555		397	322	157	.054	.447	•079	.010	053	035	056
350.	687	903	550		394	317	161	•061	.414	•077	.015	058	037	070
352.	671	888	549		394	321	170	•065	.406	•075	.014	057	037	068
354.	637	885	543		386	325	167	•072	.396	.073	.014	064	036	057
/		070												

-.163

.071

.071

.366

.359

.053

.051

.005

.002 -.066

-.388

-.318

-.385 -.313 -.160

FLT 63 PHME

-.043 -.045

-.055

-.067 -.035

78/11/14.

. FLT	63	RUN 9	TIME 5	4467.200		MU≖	•330	CLP=	•00436	TEM	P(U60)= 1	10•6 C ≃	50.99 F		-
		UPPER SU	REACE C	P VALUES								LOWER	SURFACE	CP VALUES	
X/C= AZTMUTH	•02	.10	•50	.35	•50	•70	. PC)	•90	•02	•10	•20	.50	• 70	•90
າ•	750	992	588		394	303	315	0	.058	.484	.114	•045	037	023	055
2.	681	984	573		389	308	14	6	•063	.450	.108	•021	048	031	053
4.	623	977	559		380	306	515	0	.061	.422	.087	.014	059	034	052
6.	556	963	545		370	299	915	4	.054	.407	•067	.014	060	033	051
я.	492	954	532		373	309	15	9	•059	.377	•052	•003	068	032	050
10.	436	956	543		378	302	216	2	•056	.348	•042	009	077	048	061
12.	388	950	533		371	295	15	8	.057	.314	.013	030	086	052	065
14.	338	943	533		374	302	215	4	.067	.275	003	042	094	051	058
16.	299	937	533		379	312	215	1	•069	.257	014	042	093	050	057
18.	262	931	522		384	321	l15	7	• 058	.245	013	051	101	058	063
20.	227	925	522		388	316	15	8	.074	.229	019	051	099	067	066
72.	193	920	522		381	324	15	4	•075	.216	027	070	115	066	072
24.	161	906	513		385	318	315	1	•073	.203	033	078	114	074	074
26.	130	897	514		388	326	519	8	.079	.191	047	078	129	082	081
28.	100	884	518		382	320	15	7	.080	.170	060	095	126	081	092
30.	071	867	547		386	329	15	4	.086	.167	065	102	125	080	080
32.	035	 851	602		390	336	515	52	•086	.148	071	100	130	086	079
34.	005	827	661		394	331	L15	9	•092	.130	075	102	128	086	078
36.	.021	810	711		398	339	915	7	.100	.122	082	116	131	092	076
38.	.045	787	752		400	345	515	5	890.	.100	093	124	150	090	075
40.	.069	772	780		398	342	219	2	.105	.079	104	128	153	092	074
42.	.092	750	803		407	350		0	•103	.063	106	131	156	104	073
44.	.115	738	819		404	354	14	8	•102	.048	114	146	169	104	071
46.	.137	717	832		408	356	14	6	.108	.033	124	158	177	109	070
48.	.158	696	835		413	368	314	4	.107	.019	134	164	174	109	070
50.	.169	687	833		413	368	314	2 -	.107 -	007	144	171	178	113	059
52.	.188	667	827		416	37	514	0	•112	011	154	180	188	115	068
54.	.208	649	817		426	378	13	88	.112	022	163	190	196	118	067
56.	.217	641	808		430	379	913	35	.119	035	163	196	205	117	066
58.	•226	625	800		435	381	112	6	.125	048	171	202	210	119	056

Δ.	IRFOIL PRE	SSURE DA	TA .9 BLADE RA	AD IUS		NASA-LA	NGLEY AH	I-1G		78/11/14	•		-
F	LT 53 PU	N 9	TIME 54467.200		MU= .:	330 CLP	0043	6 TEMP	((160)= 10	.6 C =	50.99 F		
		UPPER SU	RFACE CP VALUES									CP VALUE	
× /C = A Z I MUTH	• 02	•10	•20 •35	•50	•70	• 80	•90	•02	. 10	•20	•50	•70	.91
60.	.245	617	792	445	378	122	.129	061	170	204	215	122	063
52.	.254	601	779	-,459	374	114	.130	073	179	210	212	117	056
64.	.262	586	763	478	365	110	.134	085	188	219	212	112	056
66.	.270	573	 755	501	351	103	•136	097	197	220	213	111	055
68.	.281	566	737	523	337	098	.139	112	207	224	211	115	055
70.	.301	553	716	546	310	088	•141	147	217	234	209	117	054
72.	.328	539	701	575	289	083	.141	173	237	248	218	120	051
74.	.347	526	682	588	276	082	•136	209	256	256	230	127	046
76.	.366	510	656	601	257	082	•136	245	276	279	243	128	042
78.	.385	493	636	602	241	081	.135	281	298	301	255	128	034
80.	.403	481	617	600	230	081	.135	314	327	328	262	132	026
82.	.419	470	600	612	226	081	.134	352	354	350	274	123	018
84.	.428	459	582	614	217	081	•134	397	374	- .377	286	120	014
86.	.437	444	573	613	215	080	.129	419	394	399	293	114	014
88.	.451	429	556	612	215	086	.127	443	421	427	300	113	009
90.	. 462	425	540	612	215	089	.132	472	462	449	306	107	006
92.	.472	419	533	596	224	089	.134	519	503	464	306	100	006
94.	. 482	410	525	595	225	089	.128	574	545	478	300	100	006
96.	.488	401	518	597	236	097	.127	624	582	486	286	093	006
98.	. 494	386	511	598	247	099	.128	667	609	494	260	087	000
100.	.501	374	506	599	259	106	•128	706	626	496	238	073	•002
102.	.507	359	506	594	272	108	•128	738	650	502	203	074	.002
104.	.509	348	500	595	294	117	.122	773	678	533	189	074	.002
105.	.512	340	494	588	307	118	.123	806	696	564	171	073	• 002
108.	• 514	332	489	570	331	119	.123	827	717	588	160	068	•002
110.	.518	333	484	538	354	120	.117	854	742	606	154	067	.002
112.	.521	335	476	507	370	120	.118	876	761	625	150	059	• 005
114.	.525	328	466	477	392	121	.119	904	~.77 8	645	145	04R	•005
116.	.521	330	454	451	410	113	.120	927	795	666	132	049	006
118.	.524	333	425	419	430	114	.121	959	813	681	131	049	•002

78/11/14.

F	LT 53 RU	JN 9	TIME 544	67.200		MU= •	330 CL	P= .004	36 TEM	P(U60)= 10	0.6 C =	50.99 F		
		UPPER SU	RFACE CP	VALUES							LOWER	SURFACE	CP VALUE	5
X/C=		.10	.20	•35	•50	•70	• BO	•90	•02	•10	•20	•50	.70	.90
AZIMUTH														
120.	.519	336	386		389	430	115	.121	972	831	694	128	049	.001
122.	.513	340	350		373	419	116	.116	993	842	713	129	050	007
124.	•508	343	323		368	400	117	.115	-1.017	860	725	134	050	007
126.	.513	347	310		371	385	119	•111	-1.030	871	7 37	139	051	007
128.	•50 ⁸	351	305		380	377	120	.110	-1.068	882	750	141	052	007
130.	•503	- ∙356	311		390	370	122	.105	-1.082	893	760	142	052	007
132.	.498	360	312		394	362	123	.104	-1.110	905	737	144	053	007
134.	.493	363	307		395	355	125	.100	-1.139	917	614	146	054	007
136.	.488	350	309		401	347	127	•102	-1.157	930	428	148	050	010
138.	.484	362	313		395	339	129	.100	-1.187	942	285	151	047	017
140.	.481	356	326		387	331	131	•093	-1.206	912	237	153	048	017
142.	•484	353	325		382	332	133	.090	-1.225	727	248	156	049	013
144.	.469	359	329		378	329	135	.087	-1.243	574	270	158	050	008
146.	.461	366	335		366	320	137	•084	-1.228	505	293	161	050	008
148.	.443	372	341		367	322	140	.081	-1.135	487	295	150	045	008
150.	.424	379	347		365	328	142	.078	-1.032	469	291	135	043	008
152.	•405	393	354		360	323	145	.080	936	450	279	135	037	008
154.	.380	407	350		365	326	148	.075	837	426	264	138	036	014
156.	.351	415	368		373	320	151	.073	747	396	240	132	029	020
158.	.329	432	376		380	325	145	•075	675	375	223	125	028	020
160.	•300	455	395		377	318	144	.076	600	347	207	108	028	020
162.	.268	479	404		384	323	148	•070	522	315	189	101	019	021
164.	.235	505	414		380	330	151	.069	450	290	172	102	019	030
166.	.193	522	434		389	338	154	•062	384	264	163	085	020	025
168.	.149	545	445		397	329	158	.051	315	238	144	087	009	022
170.	•102	 573	458		395	336	162	•063	242	210	123	086	• 002	033
172.	.054	604	479		415	326	152	•064	178	180	102	067	.003	026
174.	.003	635	491		413	317	154	•066	107	149	082	058	.013	024
176.	050	668	507		421	325	158	.068	037	116	068	047	.014	025
178.	120	703	530		419 .	333	162	•069	.043	082	047	036	.014	025

FLT 43 RUN9

Δ	IREDIL PR	ESSURE DA	TA .9	BLADE RA	SUIC		NA SA-LA	NGLEY AH	-1 G		78/11/14	•		
F	LT 63 R	UN 9	TIME 54	467.200		MU= .:	330 CLP	0043	6 TEMP	(U60)= 10	.6 C =	50.99 F		
X/C=	0.2	UPPER SU		VALUES	5.0	70	0.0	00	0.2	10		SURFACE CP	VALUES .70	s •90
AZIMUTH		.10	•20	.35	•50	•70	• 80	• 90	• 02	•10	•20	• 50	• 70	• 41)
180.	198	739	544		430	338	150	•071	.118	059	031	025	.017	026
182.	265	776	558		437	331	154	•060	-174	027	008	013	.02B	026
184.	348	816	579		436	334	158	.061	.226	002	.011	004	.03?	027
186.	421	857	604		443	327	162	.063	.281	.034	•035	005	.043	02R
199.	513	900	620		443	336	164	• 065	.339	.060	•051	•001	.044	029
190.	593	925	637		455	337	152	.056	.309	•084	•061	•015	.045	028
192.	696	971	654		467	332	-•156	•068	.440	.109	•077	•023	•046	013
194.	784	-1.018	672		472	341	161	.070	.479	.134	.104	.031	.053	014
195.	898	-1.045	691		474	350	165	•068	•520	.162	•124	•047	.064	014
198.	-1.017	-1.078	710		488	348	170	• 058	.564	.191	-144	•056	.066	014
200.	-1.119	-1.128	730		501	357	174	•060	.609	.197	.156	•058	.068	015
202.	-1.226	-1.159	750		503	366	172	• 061	•656	.227	•171	•069	.078	015
204.	-1.338	-1.191	771		508	349	170	•063	.703	.235	•194	.077	.089	016
206.	-1.455	-1.224	777		508	346	180	•065	.723	.266	.207	.080	.091	016
208.	-1.577	-1.258	793		514	356	160	• 066	.747	.277	.213	.094	.094	017
210.	-1.705	-1.293	815		512	347	151	•068	.796	•309	•232	.102	.096	017
212.	-1.831	-1.328	837		519	345	155	•070	.818	•317	•245	•105	• 099	017
214.	-1.932	-1.364	840		515	333	159	•072	.R40	•332	•251	·108	.102	018
215.	-2.005	-1.389	859		522	332	149	.074	.853	.365	•275	•111	.104	018
218.	-2.048	-1.409	860		536	341	140	.076	.849	.375	.287	.114	• 092	019
220.	-2.081	-1.446	880		550	350	144	.078	.871	.384	•294	•117	• 086	019
222.	-2.135	-1.467	878		541	359	147	• 080	.93	• 394	•302	•120	.091	020
224.	-2.188	-1.472	903		551	368	151	• 082	.901	• 404	•309	•123	• 093	020
226.	-2.242	-1.493	895		542	376	154	.079	. 202	.413	•312	•126	.078	019
228.	-2.280	-1.509	916		549	353	158	.067	.920	.410	•324	•129	.075	020
230.	-2.297	-1.531	935		532	358	162	• 082	.922	.398	•307	.131	.076	022
232.	-2.312	-1.543	927		544	366	166	•090	.919	.407	•314	•111	.078	022
234.	-2.325	-1.541	922		554	374	170	•092	•916	.416	•319	•113	.079	023
236.	-2.335	-1.536	936		536	342	145	.094	.914	• 425	•300	•116	.081	023
238.	-2.368	-1.557	930		547	348	142	•096	.933	•434	•307	.118	.083	024

FLT 63 RUNG

78/11/14.

£,	LT 53 R	UN 9	TIME 54	467.200		MU= .	330 CL	P= .00436	5 TEMP	(060)= 10	.6 C =	50.99 F		-
		UPPER SU	RFACE CP	VALUES							LOWER	SURFACE	CP VALUE	5
X / C =	.02	.10	•20	. 35	•50	•70	.80	• 90	.02	.10	•20	•50	•70	.90
AZIMUTH														
240.	-2.414	-1.558	940		557	355	145	.073	.922	.419	•312	•120	.084	024
242.	-2.430	-1.547	933		562	362	147	•072	.920	•410	.318	.122	• 083	025
244.	-2.460	-1.567	940		543	368	150	.073	•936	.417	•317	•125	• 060	025
246.	-2.500	-1.558	932		552	374	152	.074	.917	. 424	.299	.127	• 061	026
248.	-2.538	-1.541	934		560	380	155	.076	.916	.430	.304	.129	.062	026
250.	-2.539	-1.558	926		558	385	157	.104	.929	. 404	.308	.121	• 062	026
252.	-2.564	-1.539	923		539	390	159	•077	.941	•398	•312	.104	• 053	027
254.	-2.594	-1.555	914		545	395	161	•078	.952	•403	•316	•105	• 064	027
256.	-2.581	-1.528	923		551	399	162	.074	.916	.407	•306	.106	.065	027
258.	-2.559	-1.500	932		556	385	164	.049	.917	.411	.290	.107	.065	027
260.	-2.575	-1.508	900		560	357	165	.056	.924	.414	•292	.108	. 066	028
262.	-2.502	-1.478	873		546	360	166	.081	.930	•416	.294	.108	.066	028
254.	-2.514	-1.485	878		528	361	167	•073	.934	•418	•296	•093	• 066	028
265.	-2.523	-1.490	881		530	363	168	•050	.938	•420	.297	•079	•067	028
268.	-2.525	-1.485	883		531	364	168	•050	.940	•375	.297	.080	• 067	028
270.	-2.485	-1.451	883		531	364	168	.050	.940	•375	•298	.080	•050	028
272.	-2.477	-1.450	883		531	364	168	.050	.940	• 375	•276	.080	.036	028
274.	-2.433	-1.447	881		530	363	168	.050	.938	• 374	•264	•079	•036	028
276•	-2.424	-1.428	878		528	362	167	•050	.934	•373	.263	•079	•035	028
278.	-2.402	-1.392	844		526	360	166	•049	•930	•371	.262	•079	•035	028
280.	-2.353	-1.384	833		550	358	165	.049	.924	.368	•260	•055	.035	028
282.	-2.335	-1.373	826		527	355	164	.049	.917	• 366	.258	.048	• 035	027
284.	-2.300	-1.361	819		514	352	162	•066	•909	.362	•256	.048	•035	027
286.	-2.248	-1.347	811		539	348	161	•060	•300	•359	•253	•047	.034	027
288.	-2.722	-1.332	801		508	344	159	.047	.890	•355	.251	.047	•034	027
290•	-2.194	-1.315	797		528	340	157	.047	.878	•350	.247	.046	.033	026
292•	-2.145	-1.320	819		530	372	154	.040	.866	.344	.238	.046	•036	024
294.	-2.090	-1.317	807		522	372	151	•037	.853	•339	.234	.045	.036	043
296.	-2.057	-1.296	794		514	366	149	.037	.841	•333	•230	•045	•009	053
298.	-2.022	-1.274	775		505	360	146	•036	.873	.328	•226	•069	.033	053

	AIRFOIL PR	ESSURE D	ATA .9 (BLADE RAD	IUS		NASA	-LAN	SLEY AH-	I G		78/	11/1	4.		
1	FLT 63 R	8UN 9	TIME 54	467.200		MU=	.330	CLP=	.00436	TEM	P(U60)=	10.6	C =	50.99 F		•
		UPPER SI	JRFACE CP	VALUES								L	OWER	SURFACE	CP VALUE	S
X/C AZIMUTI		•10	•20	.35	•50	.70	• 80	1	•90	•02	•10)	•20	•50	• 70	• 90
300•	-1.986	-1.251	762		491	356	517	'3	•042	.858	• 323	}	.228	.043	.031	054
302.	-1.948	-1.254	752		484	349	17	7	.042	.841	•316)	.223	.042	•930	031
304.	-1.909	-1.239	737		509	340	17	'2	.058	. 824	• 309)	.213	.042	.032	021
306.	-1.869	-1.214	722		498	336	516	8	•036	. 834	• 303	3	.209	•045	•032	019
308.	-1.829	-1.215	722		488	364	16	5	•033	.833	• 297	,	.205	.064	.031	019
310.	-1.789	-1.195	747		482	~.356	16	1	•056	.815	•290)	.200	•057	•030	019
312.	-1.748	-1.196	728		495	~.348	18	8	.031	.796	.283	1	.195	.038	.030	018
314.	-1.707	-1.172	718		482	340	15	4	.031	.778	• 277	,	.192	.030	•029	018
316.	-1.666	-1.173	717		468	334			.059	.759	• 271		.192		.026	020
318.	-1.625	-1.147	710		456	325	17	76	.05R	.771	.264	•	.187	007	.025	020
320.	-1.584	-1.118	707		445	~.327	717	'2	.056	.759	- 258	3	.182	007	.025	044
322.	-1.544	-1.119	689		443	342	216	8	.055	.740	• 251		.178	007	.024	043
324.	-1.504	-1.118	685		448	~.333	16	3	.053	.721	. 245	;	.173	007	•023	042
326.	-1.465	-1.091	681		448	324	15	9	•051	.733	.237	,	.157	007	.024	040
328.	-1.426	-1.090	675		441	327	715	4	•045	.717	•231	Į.	.139	006	.024	037
330.	-1.388	-1.085	665		428	335	15	6	.044	.698	• 225	5	.136		.024	036
332.	-1.351	-1.060	661		426	327	717	0	.044	.712	• 220)	.134	006	.013	036
334.	-1.314	-1.057	664		427	318	16	6	•051	.592	.213	3	.130	006	.004	036
336.	-1.279	-1.053	651		437	309	16	9	.053	.674	.208	3	.127	006	•003	040
338.	-1.244	-1.049	634		433	317	717	9	.051	•658	• 203	3	.125	006	• 002	054
340.	-1.211	-1.044	631		421	319	17	'5	.060	.667	•197	7	.122	006	007	053
342.	-1.178	-1.039	633		410	311	17	70	•058	.649	•192	2	.119	005	014	051
344.	-1.146	-1.033	634		412	318	16	5	.056	.631	•187	7	.116	017	013	050
346.	-1.115	-1.035	635		406	318			.055	.620	. 186		.112		013	056
348.	-1.092	-1.041	638		410	326			•053	.523	•198		.109		013	054
350.	-1.077	-1.034	636		419	322			.058	•607	•193		.104		011	061
352.	-1.042	-1.036	621		410	314			.063	.591	-186		•103	_	012	050
354.	994	-1.039	620		413	306			•063	.575	•183		.101		012	059
356.	940	-1.031	619		404	316			.061	.552	.172		.086		011	058
358.	869	-1.023	604		394	311			•069	•523	.148		.070		011	056

FLT 63 RUN9

ΛĮs	RENIL PRO	ESSURE DA	P. AT	BLADE RAD	SUI		143-4241	NGLFY AH-	1G		78/11/14	•		•
FL	T 63 RI	UN 10	TIME 54	541.600		MU= .	356 CLP	00421	TEMP	(060)= 10	0.6 C =	50.99 F		
		UPPER SU		VALUES								SURFACE		
X/C= AZIMUTH	•02	•10	•20	• 35	•50	•70	.80	•90	•02	.10	•20	•50	•70	• 90
0.	875	988	593		391	291	142	.051	•523	•152	.071	024	010	049
2.	815	992	577		379	285	152	.052	.497	.129	•058	026	020	048
4.	746	987	561		371	295	150	.051	.475	.118	.044	037	020	047
6.	674	990	545		373	288	146	.061	.450	•105	•029	047	030	058
8.	 595	984	540		365	283	143	.063	.418	.085	.010	057	032	059
10.	526	975	543		368	290	139	.058	.387	•066	•009	064	040	057
12.	477	966	534		360	287	150	.060	.372	•059	.007	066	040	056
14.	422	944	533		361	293	146	•069	.349	•047	004	074	-•039	055
16.	37º	949	528		356	294	144	.067	.322	.041	015	083	040	054
18.	339	92ª	521		360	310	153	.064	.297	.029	022	087	053	076
20.	303	920	521		365	303	149	.056	.287	.025	029	093	068	084
22.	255	913	521		369	301	148	.064	.280	.012	046	109	073	071
24.	220	906	520		373	309	154	.071	.245	014	059	117	068	060
26.	188	888.	514		371	318	152	.079	.222	029	072	115	061	071
28.	158	881	522		374	320	151	•077	•216	030	076	112	064	078
30.	128	863	563		384	319	157	.077	.197	030	075	114	071	078
32.	100	846	619		388	320	153	.083	.193	042	080	116	078	084
34.	072	828	678		391	321	151	.087	.189	041	082	124	081	082
36.	033	804	720		388	328	148	.089	.184	041	086	127	084	078
38.	.002	786	763		387	328	145	•093	.167	052	092	125	091	070
40.	.025	765	794		391	330	143	•096	.149	062	094	134	093	072
42.	.049	749	811		395	337	140	.097	.133	063	093	147	091	075
44.	.071	730	826		392	336	138	.100	.117	074	115	160	100	075
46.	.093	714	833		393	339	136	.102	.101	084	128	161	103	074
48.	.114	693	839		404	346	134	.105	.086	094	140	171	107	073
						1 1 1	7.2.2							

-.132

-.130

-.129

-.127

-.119

.111

.113

.111

.115

.119

.072

.058

.044

.031

.01R

-.104

-.114

-.120

-.122

-.132

-.148

-.147

-.159

-.165

-.172

-.171

-.181

-.187

-.198

-.209

FLT 63 RUN10

-.072

-.071

-.070

-.065

-.060

-.113

-.113

-.118

-.124

-.123

50.

52.

54.

55.

58.

.134

.154

.174

.193

.207

-.673

-.659

-.645

-.627

-.610

-.829

-.826

-.816

-.816

-.798

-.409

-.413

-.425

-.438

-.444

-.353

-.360

-.358

-.363

-.370

	AIREUIL	PRESSURE	DATA	.9 BLADE R	ADIUS		NASA	1-LANGE	EY AH	-1 G		78/11/1	4•		
	FLT 53	RUN 10	TIME	54541.600		MU=	•356	CLP=	.0042	1 TEM	P(U60)=	10.6 C =	50.99 F		
		UPPER	SUPFACE	CP VALUES								LOWER	SURFACE	CP VALUES	5
X / A Z I M L	/C≠ •02 UTH	. 10	• 2	0 .35	•50	•70	. 80	•	90	•02	•10	•20	• 50	•70	• 90
60.	22	2059	47	89	456	368	B11	15 .	125	.005	141	178	214	128	059
62.	23	3357	87	74	478	364	10	7 .	125	007	146	191	212	127	058
64.	24	756	37	65	508	350	09	77 .	130	020	149	196	211	126	052
65.	26	055	57	49	528	337	708	37 .	137	038	158	194	223	126	050
68•	• 2	7354	47	29	557	303	307	78 .	144	062	172	207	233	125	050
70	• • 20	9753	07	12	577	289	06	68	150	092	191	221	233	124	050
72 •	32	2551	76	86	582	266	05	59 .	149	127	210	240	246	129	043
74.	34	650	56	64	569	244	404	49 .	149	162	229	254	260	123	035
76.	31	7148	56	38	608	224	04	8	148	204	254	274	260	135	034
78.	39	7247	26	18	611	224	04	0 .	149	242	282	294	269	135	034
80.	4	LO 45	35	95	608	226	04	0.	148	277	311	321	285	134	034
82.	47	2844	15	75	606	247	703	39 .	148	311	332	346	295	134	027
84.	44	642	25	55	606	266	03	31 .	147	353	359	369	305	133	019
86.	46	41	25	35	607	291	L03	30 .	144	381	388	397	326	130	010
88.	41	7540	25	19	603	329	903	30	143	413	424	419	351	125	003
90.	48	3438	45	07	598	357	703	30 .	143	458	471	433	373	119	002
92.	50	337	54	96	595	381	L03	30 .	143	514	512	447	393	104	.005
94.	53	L336	64	88	584	405	03	30 .	144	573	543	458	409	097	.006
96	51	535	74	76	575	412	203	31 .	144	622	574	462	426	086	.012
98.	53	3534	74	57	576	404	03	33	146	659	596	474	443	072	.011
100.	5	3733	14	60	573	380	03	39	144	696	627	504	461	066	.013
102.	54	832	24	55	567	345	04	+2	140	722	649	533	478	059	.019
104.	• • 5!	50 30	44	50	562	309	905	51 .	140	750	672	557	493	049	.019
106.	55	5328	94	43	562	279	906	50 .	137	787	686	577	509	039	.020
108.	55	728	44	37	559	262	207	70 .	136	815	710	594	530	033	.020
110.	56	5028	34	27	553	260	08	30 .	139	834	734	612	539	027	.019
112.		6427	54	19	545	261	108	35 .	135	864	- .751	631	528	024	.019
114.			14	14	531	278	809	90 .	132	893	774	645	487		.020
116.				04	517	295	509		135	913	785		406		.019
118.					512	308			135	934	808				•050

FLT 63 PUNTO

78/11/14.

FL	T 53 R	UN 10	TIME 5	4541.600		MU=	•356	CLP=	00421	L TFM	P(U60)= 10	.6 C =	50.99 F		·
		UPPER SU	RFACE C	P VALUES								LOWER	SURFACE	CP VALUES	
X / C =	.02	.10	.20	• 35	•50	•70	.80	• •	90	.02	•10	•20	•50	• 70	.90
AZIMUTH															
120•	•561	279	354	•	501	323	09	97 .1	133	956	816	700	240	012	.016
122.	.557	282	326)	488	338	09	98 .1	32	975	831	715	170	012	.007
124.	•552	291	304	•	492	343	09	99 • 1	127	994	855	731	114	017	.009
126.	.548	299	282	<u>.</u>	490	347	10		121 -	-1.027	869	748	098	019	.013
129.	.544	303	277	7	487	~.352	11	.1	20 -	-1.054	891	765	078	013	.013
130.	.540	313	281		484	356	11	13 • 1	116 -	-1.075	910	783	064	005	.007
132.	.537	321	293	3	454	361	11	14 •1	116 -	-1.097	923	- .795	058	005	.005
134.	.527	326	306	S	440	367	711	16 .:	119 -	-1.127	936	806	059	013	.004
136.	.526	331	320)	418	349	11	10 .1	15 -	-1.151	951	818	061	021	.004
138.	.520	328	333	3	415	342	11	19 • 1	109 -	-1.169	966	830	070	021	003
140.	.512	331	336)	413	335	12	22 •1	109 -	-1.197	982	834	087	022	013
142.	•509	337	333	}	417	341	12	24 • 1	104 -	-1.224	999	804	103	030	015
144.	.497	343	331		404	344	12	26 •0	97 -	-1.246	-1.017	621	113	032	015
146.	.490	349	338	3	390	328	12	29 •0	98 -	-1.279	-1.020	404	124	040	015
148.	.496	345	344	•	378	331	13	31 .	100 -	-1.308	918	266	133	040	016
150.	.476	362	351		372	327	13	34 .0	93 -	-1.323	717	233	135	041	016
152•	.467	370	354	•	363	330	13	37 •0	85 -	-1.298	575	253	138	040	016
154.	.441	390	351		367	326	14	•0 •0	79 -	-1.209	514	278	141	034	017
156.	.420	399	354	•	368	329	14	43 .(080 -	-1.060	469	277	140	032	017
158.	.389	421	362	?	377	325	14	45 .0	78	938	445	264	130	025	016
160.	.367	418	370)	386	333	14	49 •0	71	834	413	245	118	022	016
162.	.346	442	391		395	335		52 •0	73	728	377	223	111	016	017
164.	•309	467	411	•	398	333	15	56 •0	75	634	340	201	098	012	019
166.	.254	496	428		401	334			74	536	315	178	091	006	030
168.	.213	537	443	3	404	333	16	50 .0	168	434	275	159	087	002	028
170.	.168	566	463	}	407	333	15	53 ~• (70	346	248	138	072	.004	019
172•	.105	597	489		418	333			173	254	204	118	059	.010	024
174.	•055	633	507		421	331			986	158	174	097	049	.016	 033
176.	015	680	~• 530)	427	332	16	56 •0	163	077	142	074	038	.016	029
178.	085	716	549	,	439	341	16	53 .(165	-006	109	059	027	-024	021

FLT 63 RUNIO

	AIRFOIL P	RESSURE DA	.TΔ .9	BLADE RAD	SUIC		NASA-	LANGLEY 4	4H-1G		78/11/1	4.		
	FLT 53	RUN 10	TIME 54	541.600		MU=	•356 CI	LP* .004	421 TE	MP(U60)=	10.6 C =	50.99 F		•
		UPPER SU	REACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X/		.10	.20	• 35	• 50	•70	.80	• 90	.02	.10	.20	•50	.70	.90
AZIMU	IH													
180.	152	760	564		440	338	159	.066	.074	074	037	016	.030	021
182.	248	~.812	592		448	340	163	.068	.146	03	7011	013	•039	022
184.	334	854	610		461	336	159	.070	.222	•003	.007	013	.045	022
186.	425	890	627		472	340	155	•067	.296	.040	•036	.008	•055	024
188.	522	934	645		471	333	160	.064	.362	.062	.055	.024	.060	026
190.	624	~.993	680		467	338	165	.066	.435	•09	.086	•039	.062	026
192.	732	-1.044	704		478	348	169	.068	.474	•133	.106	.042	•063	027
194.	845	-1.086	725		477	357	174	•067	•516	•160	•123	•058	•067	027
196.	965	-1.131	744		508	346	165	•068	•571	189	•143	•075	.069	027
198.	-1.092	-1.175	772		503	355	164	.073	.622	.210	.152	.077	•069	029
200.	-1.213	-1.226	788		523	363	168	.069	.655	•22	7 .167	• 096	.091	027
202.	-1.341	-1.272	794		512	351	174	.063	.706	.261	.216	•099	.091	030
204.	-1.474	-1.311	818		526	361	160	•063	.744	•283	.224	•103	.094	032
206.	-1.618	-1.351	843		521	343	161	•065	•766	.306	.249	.122	•096	033
208.	-1.780	-1.392	864		534	353	166	•067	.809	.328	.256	.126	.099	034
210.	-1.932	-1.434	873		529	362	+.171	.069	.848	.33	8 .264	.130	.102	036
212.	-2.101	-1.477	899		541	344	176	.071	.873	•36	7 .272	.134	.103	037
214.	-2.287	-1.497	919		536	354	155	.073	.899	•390	.285	•138	.091	038
216.	-2.483	-1.537	929		552	365	158	•075	•900	•401	.311	.142	•112	039
218.	-2.712	-1.555	947		568	369	163	•078	.915	.413	•320	•146	•111	040
220.	-2.933	-1.597	958		577	351	167	.080	.941	.42	.329	.150	.096	041
222.	-3.155	-1.611	974		564	361	142	.082	.936	•43	7 .338	•155	• 099	042
224.	-3.387	-1.622	972		550	371	146	.084	.954	440	•339	.159	•102	043
226.	-3.562	-1.666	983		545	369	150	.087	.980	•46	•332	•164	.104	045
228.	-3.665	-1.674	995		559	353	154	•089	•968	.47	4 •341	•168	.107	046
230.	-3.725	-1.681	-1.009		574	362	158	.091	.987	7 .45	3 .350	.172	.110	047
232.	-3.741	-1.686	-1.017		576	353	162	.092	.969	.459	355	.164	.114	048
234.	-3.672	-1.689	-1.010		572	337	165	.083	.944	. 47	L •364	.141	.117	041
236.	-3.589	-1.695	-1.023		586	345	160	•068	. 964	•48	.372	•132	•120	018
238.	-3.419	-1.726	-1.025		583	352	135	•073	.985	.49	2 •378	.135	.174	023

FLT 63 RUN10

ı	AIRFOIL PR	RESSURE DA	ATA .9	BLADE RAD	SUIC		MASA-LAN	GLEY AH	-1G	7	78/11/14			
4	FLT 53 F	RUN 10	TIME 54	541.600		MU= .	356 CLP=	.0042	1 TEMP	(U60)= 10.	6 C =	50.99 F		
		UPPER SU	JRFACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X/C:	02	.10	•20	•35	.50	.70	• 80	•90	•02	•10	•20	•50	.70	.90
AZIMUT	4													
240.	-3.280	-1.722	-1.036		579	359	138	.084	.957	.460	.368	.138	.112	040
242.	-3.177	-1.715	-1.033		569	367	141	.078	.977	•469	.363	.141	.100	016
244.	-3.103	-1.706	-1.017		565	374	144	•086	.990	.478	•349	.144	.084	016
246.	-3.031	-1.693	-1.026		576	381	147	.069	.960	•482	.345	.147	•092	017
248.	-3.000	-1.692	-1.015		586	387	149	.070	.977	.449	•351	.149	.105	017
250.	-3.000	-1.702	-1.024		595	360	151	.071	.081	•456	•356	.151	•086	017
252.	-3.008	-1.681	-1.006		574	384	154	.072	.950	.463	.361	.154	.077	017
254.	-3.033	-1.675	-1.014		571	367	156	.073	.963	• 469	•366	.156	.078	018
256.	-3.019	-1.673	950		578	358	157	.054	.974	.462	.341	.157	•078	018
258.	-3.000	-1.665	953		579	363	160	.047	.984	.432	•346	•159	•076	020
260.	-2.976	-1.655	961		583	367	162	•051	.993	.435	•350	.160	.076	023
262.	-2.968	-1.618	968		550	370	163	.051	1.000	.439	•353	.130	•977	023
264.	-2.961	-1.633	972		548	372	164	.051	1.006	.441	• 355	•129	.077	023
266.	-2.922	-1.631	938		551	373	165	.052	1.010	.443	•321	.130	•078	023
268.	-2.904	-1.586	940		594	374	165	•052	1.012	.444	•321	.130	.078	023
270.	-2.851	-1.569	941		552	374	165	•080	.983	.444	•321	.128	.078	023
272.	-2.804	-1.568	940		552	374	165	• 05 B	.952	.444	.321	.097	.078	023
274.	-2.797	-1.564	930		551	373	165	.052	.950	.416	.320	.097	•078	023
276.	-2.786	-1.523	894		549	~.372	164	.051	.946	•391	.319	•096	•077	023
278.	-2.738	-1.502	889		546	370	163	.051	.941	.388	•317	.096	•077	023
280.	-2.703	-1.492	883		542	367	162	.051	.934	•386	.315	•095	•073	056
282.	-2.645	-1.479	878		537	364	161	•050	•926	.382	•312	.094	•042	061
284.	-2.604	-1.465	873		533	360	159	.050	.957	.377	.307	.094	.042	050
286.	-2.574	-1.448	863		541	354	156	.040	.963	.373	.288	.093	•045	055
200	2 5 2 2		0.50			3.40			053					

-.154

-.152

-.149

-.147

-.150

-.180

.951

.937

.923

.907

.891

.874

.368

.363

.357

.351

.345

.338

.260

.257

.253

.248

.244

.239

.082

.060

.059

.058

.057

.056

.040

.039

.039

.038

.037

.036

.044

.036

.012

.012

•012

.011

-.018

-.054

-.053

-.052

-.051

-.050

288.

290.

292.

294.

296.

298.

-2.503

-2.459

-2.421

-2.380

-2.296

-2.249

-1.429

-1.409

-1.387

-1.364

-1.341

-1.355

-.852

-.840

-.827

-.813

-.816

-.818

-.553

-.517

-.509

-.514

-.529

-.519

-.349

-.344

-.339

-.333

-.343

-.367

	ΔŢ	COLOIF DE	RESSURE DA	ATA .9	BLADE RAD	IUS		NAS	A-LAN	GLEY AH-	1 G	78	/11/14	•		
	FL	.T 63 F	RUN 10	TIME 5	4541.600		MU=	•356	CLP=	.00421	TEM	P(U60) = 10.6	c =	50.99 F		
			IIDDED SI	URFACE CI	2 THI IAV								LOWER	SURFACE	CP VALUES	3
	X/C=	•02	.10	.20	.35	•50	.70	. 8	0	• 90	.02	.10	.20	•50	•70	•00
A	ZIMUTH				• • •											
	300.	-2.204	-1.328	801		508	360	1	77	•036	.856	•331	.234	•055	.011	049
	302.	-2.157	-1.299	784		497	352	21	73	•035	.838	• 324	.229	•068	•023	048
	304.	-2.109	-1.271	767		486	344	1	69	.034	.868	.317	.224	.064	.038	040
•	306.	-2.060	-1.248	769		475	336	1	65	.033	.848	•310	.219	•051	.037	015
	308.	-2.011	-1.248	762		482	-:328	31	61	.033	• B2 B	•302	.214	•050	•037	014
	310.	-1.961	-1.226	743		484	342	21	57	.032	.811	•295	.209	•049	•036	014
	312.	-1.911	-1.222	724		472	351	11	53	.031	.831	•290	.203	.047	•035	014
	314.	-1.861	-1.200	705		459	342	21	63 .	.030	.809	.312	.198	.030	•034	023
	316.	-1.811	-1.202	686		467	333	31	77	.029	.787	•277	.193	•022	•033	040
	318.	-1.762	-1.191	712		463	324	41	72	.029	.774	•293	•187	•021	•032	039
	320.	-1.713	-1.158	701		471	339	91	67	.040	.784	•257	.182	.021	•031	038
	322.	-1.665	-1.138	704		465	315	51	62	• 049	.762	.258	.177	•020	•030	037
	324.	-1.617	-1.123	709		452	322	21	58	•035	.740	• 275	.172		•029	036
	326.	-1.571	-1.105	691	•	439	321	11	53	.038	.730	•267	.167	.037	•029	035
	328.	-1.525	-1.101	667		426	31	11	49	.045	•733	• 259	.162	•020		034
	330.	-1.492	-1.097	674		410	329	91	45	.047	.725	•252	.162	000	•025	035
	332.	-1.464	-1.077	655		401	323	31	57	.044	.724	•244	.153	001	•009	033
	334.	-1.421	-1.060	656		411	313	31	60	.041	.703	.237	.148	018	.007	031
	336.	-1.379	-1.055	642		421	304	41	55	.040	.682	.229	.144	018	•007	030
	338.	-1.338	-1.048	641		412	294	41	50	.049	.676	•222	.135	017	.00R	02R
	340.	-1.298	-1.041	624		401	311	11	63	.050	.671	.215	.114	017	.008	040
	342.	-1.246	-1.034	623		408	302	21	63	•049	.651	•210	.111	016	008	044
	344.	-1.200	-1.026	623		395	296	51	58	.037	•632	•204	.111	016	010	044
	346.	-1.165	-1.018	619		401	310) 1	54	.049	.614	.198	.108	015	009	044
	348.	-1.131	-1.010	603		392	30	11	49	.049	.613	•192	.105	015	009	042
	350.	-1.098	-1.002			393	296	61	64	.051	.604	.187	.105	015	011	058
	352.	-1.067	-1.010			386	30	71	60	.050	.604	•182	.102	014	010	058
	354.	-1.037	-1.004	604		389	30	21	56	•062	.594	•190	.098	014	010	056
	356.	-1.007	-1.011	602		388	30	91	50	.057	.577	•191	.093	013	008	053
	358.	964	-1.003	601		400	30			.056	•562	.171	.087	013	008	052

FLT 63 RUN10

FL	T 63 R	UN 11	TIME 540	548.800		MU= •	370 CL	P= .00433	TEM	P(U60)= 10	•6 C *	50.99 F		
		UPPER SU	PEACE CP	VALUES							LOWER	SURFACE	CP VALUES	5
X / C =	•02	.10	.20	.35	•50	.70	.80	•90	•02	.10	.20	.50	• 70	.90
AZIMUTH														
0.	813	-1.027	582		391	313	154	.043	.510	.133	.050	043	026	045
2.	724	-1.028	590		392	306	153	•056	.486	.111	.038	042	026	045
4.	656	-1.021	576		383	298	149	•056	.460	.100	.024	043	026	055
6.	592	-1.010	572		385	307	159	• 054	• 476	•087	.011	053	025	056
8.	- .525	999	562		378	299	156	• 053	. 394	•067	•000	062	026	055
10.	474	989	556		381	293	151	•060	.377	•059	004	069	- •035	052
12.	418	978	544		374	302	147	.047	.354	.047	018	073	047	073
14.	373	969	541		377	312	157	•047	.327	.020	036	089	061	062
16.	321	959	539		378	322	155	.062	.287	.011	040	094	054	062
18.	281	937	538		377	326	164	•070	.272	001	039	095	052	061
20.	233	928	532		372	322	160	•069	.266	004	041	102	054	C60
22.	210	920	532		380	325	156	•076	. 245	004	051	105	-•062	070
24.	179	900	543		392	323	152	•075	.237	005	057	107	066	078
26.	148	892	574		396	329	151	.077	.232	016	061	113	067	074
28.	131	874	631		398	331	157	• 0 8 0	.227	017	069	120	072	075
30.	102	867	690		395	330	154	.087	.222	017	077	121	074	084
32.	063	850	741		398	337	151	• 092	.203	029	079	119	082	088
34.	037	833	779		406	338	148	.093	.100	029	083	117	084	079
36.	011	815	813		408	338	145	.097	.195	040	084	129	083	078
38.	.014	791	839		416	345	143	.100	.191	040	082	141	091	080
40.	•048	778	849		422	345	140	.107	.173	050	080	141	101	085
42.	.070	761	853		425	354	138	.109	.158	050	101	149	107	083
44.	•089	738	857		434	357	136	•111	.153	061	115	162	109	082
46.	•102	719	855		440	359	134	.114	.138	072	122	163	112	081
49.	.125	705	852		450	357	132	.115	.122	080	129	177	122	079
50.	.153	680	840		463	360	124	•120	.107	081	135	185	130	073
52.	.172	654	828		473	359	118	.123	•093	091	146	195	125	073
54.	.188	636	818		478	355	112	.126	.079	100	153	201	133	072
56.	.200	618	808		503	350	106	•132	.065	110	159	205	135	067
58.	.218	601	798		532	346	099	•133	.048	119	171	204	139	062

AIRFOIL PRESSURE DATA .9 BLADE RADIUS

NASA-LANGLEY AH-1G 78/11/14.

FLT	63 RU	JN 11	TIME 54	648.800		MU≖ •	370 CL	P= •00433	S TEM	P(U60)= 10	0.6 C =	50.99 F		
		UPPER SU	RFACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X / C =	.02	.10	.20	• 35	•50	.70	.80	• 90	.02	•10	•20	•50	.70	.90
AZIMUTH														
60.	. 236	584	781		561	333	089	.136	.027	128	177	227	139	058
62•	.254	569	765		582	319	079	•142	.010	137	183	226	137	052
54.	. 272	554	743		586	~.295	069	.148	020	151	195	243	136	049
66.	.294	533	721		616	280	052	• 150	050	170	210	247	127	042
68.	.321	516	699		628	277	048	.150	085	188	223	251	125	039
70.	.348	503	677		631	276	040	•154	126	212	243	251	131	038
72.	.375	484	649		627	305	031	•149	166	235	269	268	137	038
74.	• 396	462	619		623	~.336	030	.149	212	258	288	278	143	033
76.	.420	448	589		632	377	038	.144	250	292	312	286	144	032
78.	.440	430	570		622	425	046	.143	284	318	333	305	149	026
80.	.457	410	548		623	464	046	.134	317	342	360	327	146	017
82.	• 475	398	527		624	501	054	.131	350	377	385	346	139	015
84.	.485	380	506		608	528	055	.127	392	414	402	369	133	009
86.	.502	369	490		596	550	063	.126	437	452	415	385	126	009
88.	.512	351	477		584	575	063	.121	491	490	428	400	116	002
90.	.522	342	466		581	585	062	•115	539	529	439	418	098	002
92•	.531	333	454		573	596	053	•128	585	552	445	432	088	002
94.	.541	324	447		562	603	045	•129	631	572	461	442	077	002
96.	.552	307	440		554	604	036	•136	668	600	489	455	063	.CO5
98.	.553	297	434		551	605	030	.142	693	622	515	472	056	.006
100.	.564	281	428		550	607	030	.142	729	644	534	486	047	•012
102.	.567	273	423		544	609	030	•141	744	656	~ •550	501	037	.013
104.	.569	265	422		539	607	030	• 142	770	669	570	526	027	.015
106.	.571	257	418		542	605	030	•142	787	692	586	539	017	.021
108.	.566	252	413		539	604	031	.145	815	716	601	550	011	.018
110.	.569	253	408		534	597	034	• 146	843	731	614	563	005	.015
112.	• 565	255	409		525	591	043	.144	861	745	631	569	002	•020
114.	.567	257	406		519	579	049	•141	880	753	~.645	578	006	.017
116.	•562	260	401		508	555	053	•143	898	770	658	570	004	.016
118.	.557	266	398		502	521	058	.144	909	785	672	535	002	.024

FLT 63 PUN11

NASA-LANGLEY AH-16

78/11/14.

			_	_											
	FLT 63	RUN 11	TIME	5 4	648.800		MU=	.370 CL	.P= .004	33 TFM	P(U60)= 10	0.6 C =	50.99 F		
			CUDE 4.0		VALUES							LOWER	SURFACE	CP VALUES	
			SURFA(•20	• 35	•50	.70	.80	• 90	.02	.10	•20	.50	.70	.90
AZIMU	/C≠ •02 JTH	.1	0 (• 2.0	• 3 7	• 50	•10	•00	• /0						
120.	55	32	74 -	.387		499	474	064	.140	930	793	686	471	.009	.026
122		_		.375		503	423	068	.138	949	802	702	384	.013	.022
124				.347		509	389	075	•135	961	817	717	291	.013	.055
126				.318		493	369	079	.134	981	842	727	215	.007	.023
128				.286		488	341	080	.131	-1.015	853	737	146	000	.053
130				.283		484	321	082	.127	-1.037	865	746	103	.004	.018
132				.288		483	312	090	.120	-1.058	882	765	082	001	•009
134				.310		481	316	101	•113	-1.081	902	777	062	001	.007
136				.324		469	332	105	.113	-1.098	911	781	- .062	009	.007
138		-		.336		438	338	107	.109	-1.124	920	794	058	009	.000
140				.349		414	333	110	.113	-1.150	936	794	074	019	004
142				.353		410	326	112	.108	-1.171	953	745	091	010	004
144.	-	_		.351		400	319		•102	-1.201	956	544	100	020	004
146				.352		404	313		.103	-1.229	919	338	110	028	004
148				.357		393	316		.084	-1.744	763	228	119	027	002
150				.364		377	312	132	.090	-1.233	593	225	122	029	004
152	-			.373		365	316	135	.091	-1.155	498	237	124	028	005
154				.383		365	311		.084	-1.025	446	243	121	021	005
156				.383		376	317	140	•072	994	411	244	112	020	002
158				.379		385	324	143	.073	762	377	230	111	018	003
160	-			.393		394	327	147	.074	651	342	210	100	008	014
162	_			.414		403	325	150	.067	557	305	183	083	002	015
164				.437		408	327	151	.068	451	266	160	074	• 002	026
166	-			.458		411	325	144	•070	360	239	136		•009	027
168	-			.474		413	327	148	.071	272	197	109	057	.00B	028
170				.494		415	327	153	•069	161		086		.012	028
172				.512		426	327	7157	.071	084		063	037	.01 ^p	019
174	•			.526		430	327	7156	.073	003	089	040		.024	023
176				.541		427	336	150	.075	•083		023		.031	029
178	-		02 -	.560		433	335	148	.077	•171	020	002	.001	•039	020

	AIRFOIL P	RESSURE DA	ATA .9	BLADE RAD	IUS		NAS	A-LAN	GLEY AH-	ıs		7 8.	/11/1	4.			
	FLT 63	RUN 11	TIME 54	648.800		MU=	.370	CLP=	.00433	TFM	P(U60)=	10.6	c =	50.99 F			
		UPPER SI	JRFACE CP	VALUES								1	LOWER			ALUES	
X/(.10	•20	•35	•50	•70	. 8	0	• 90	•02	•10	כ	•20	• 50	•	70	.90
AZIMU	1 H																
180.	329	849	596		449	335	1	42	.070	.241	.01	5	.021	.005	•	047	020
182.	416	905	619		449	332	1	46	.064	.295	•039	9	.042	• 005		048	019
184.	513	951	638		456	335	1	51	.070	.357	.07	7	•070	•025		057	022
186.	626	992	657		457	330	1	55	•072	.431	•10	5	•079	•032		063	023
188.	730	-1.030	677		466	334	1	50	•075	.470	.146		.106	•044		065	024
190.	839	-1.074	705		481	344	1	46	.077	•517	•177		.128	.060		078	024
192.	964	-1.117	720		487	333	1	49	.062	.579	.200		.139	.077		088	013
194.	-1.092	-1.163	742		477	341	1	54	.061	•626	• 22		.168	.081		088	015
196.	-1.209	-1.200	765		488	352	1	60	.068	.664	•239		•192	.083		090	016
198.	-1.335	-1.238	788		484	341	-•1	65	•070	.697	•26		•200			092	009
200.	-1.466	-1.292	775		498	349	1	54	•072	.737	• 28		•224	•105		095	009
202.	-1.618	-1.327	800		514	334	1	53	.075	.760	.30		.231	.125		098	009
204.	-1.779	-1.360	826		509	343	1	57	.077	.785	. 32	8	.257	.113		101	009
206.	-1.948	-1.404	852		546	354	1	63	•080	.810	•35		.267	•134		105	010
208.	-2.143	-1.429	879		517	364			•065	• P36	• 36		•294	.138		108	010
210.	-2.361	-1.446	902		531	346	1	47	.082	.867	• 37		• 304	.145		111	010
212.	-2.590	-1.485	912		526	354	1	52	.068	.889	- 40		.313			115	011
214.	-2.852	-1.532	934		538	335	1	56	•069	.917	.43		•323			119	011
216.	-3.115	-1.554	945		532	345	1	61	.071	•920	.44		.333			122	011
218.	-3.356	-1.597	965		549	356	1	37	•073	•936	• 45		• 344			126	012
220.	-3.597	7 -1.616	967		565	359	1	41	•075	•935	•47		• 354			130	012
222.	-3.792	-1.631	978		574	341	- . 1	45	•077	•952	•46		• 365			128	012
224.	-3.979	-1.643	995		560	351	l 1	49	.080	.945	• 46		•376			113	013
226.	-4.073	-1.690	994		555	361	1	54	.082	.964	• 47		• 377			117	013
228.	-4.150	-1.701	-1.005		558	371	1	53	.084	•952	. 49	2	•370	.161		112	014
230.	-4.151	-1.709	-1.017		553	367	71	27	•087	.930	• 47		•380			096	014
232.	-4.139	-1.715	-1.029		553	349	1	31	•089	.949	.47		•377			099	014
234.	-4.079	-1.719	-1.037		548	358	1	34	•091	.974	- 49		.371			102	015
236.	-4.008	-1.721	-1.029		562	367	71	37	.094	. 949	.50		.381			104	015
238.	-3.927	7 -1.727	-1.047		575	376	1	41	•096	.971	• 47	3	•390	-155	•	107	015

FLT 63 RUN11

t t

78/11/14.

۴	LT 53 R	UN 11	TIME 54	548.800		MU= •	370 CL	P = •004	33 TEMP	(U60)= 10	•6 C =	50.99 F		
		HPPER SI	JRFACE CP	VALUES							INVER	SURFACE C	P VALUES	5
X/C=	•02	•10	•20	•35	•50	.70	.80	• 90	• 02	.10	•20	•50	• 70	•00
AZIMUTH	***	•••	•	• • • • • • • • • • • • • • • • • • • •	• > 0	***	•00	• / 5	• • • •		•2•			
240.	-3.830	-1.759	-1.052		595	382	143	.082	•939	.480	•390	•159	•113	014
242.	-3.687	-1.753	-1.063		590	388	144	•063	.959	•490	•373	.163	.118	008
244.	-3.574	-1.744	-1.032		586	396	147	•072	.979	•501	.368	•166	.121	008
246.	-3.450	-1.745	-1.031		598	404	150	• 054	.998	•506	•375	.169	•123	008
248.	-3.336	-1.762	-1.050		609	379	153	•054	1.017	•471	•382	.173	•105	-•008
250.	-3.292	-1.744	-1.068		590	366	155	•055	1.012	• 479	•362	•151	.094	008
252.	-3.254	-1.740	-1.057		587	371	157	•056	•931	•486	•358	.145	•096	008
254.	-3.248	-1.745	-1.066		600	375	159	052	.943	•491	.357	.148	-100	006
256.	-3.236	-1.737	-1.031		608	378	160	.048	.955	.49 8	.360	.178	•102	004
258.	-3.238	-1.733	-1.037		605	387	164	.060	.967	. 492	.378	•155	.097	009
260.	-3.248	-1.698	-1.046		608	392	167	•069	.976	.459	.384	•152	•096	014
262.	-3.241	-1.686	971		613	395	168	•069	•960	•462	.387	•153	•097	014
264.	-3.236	-1.696	977		576	397	169	•070	.925	• 465	•353	.154	.098	014
266.	-3.196	-1.703	982		575	399	170	.070	.930	.467	•353	.154	.098	014
268.	-3.176	-1.676	997		576	400	170	.070	•932	• 466	.354	•121	•098	014
270.	-3.151	-1.659	985		589	395	167	.054	.932	•466	•337	•154	.072	007
272.	-3.124	-1.657	986		576	400	169	.067	•932	.468	•354	•120	• 062	011
274.	-3.084	-1.653	993		576	399	170	.070	.929	•465	•351	.120	.098	014
276.	-3.051	-1.646	977		584	392	166	.020	.926	•463	.336	.120	.069	006
278.	-3.033	-1.597	971		569	395	168	.031	.921	.462	.349	.118	.061	012
280.	-2.975	-1.574	964		565	392	167	.067	.914	.459	.347	.118	.061	014
282.	-2.932	-1.560	955		560	388	165	•068	•905	• 455	•344	•125	•060	013
284.	-2.901	-1.543	945		554	384	164	•068	.939	• 450	.340	.131	•060	013
286.	-2.826	-1.524	934		547	380	162	•067	.945	. 444	•336	.081	.059	013
288.	-2.736	-1.548	921		539	374	159	.066	.932	.438	.331	.080	.058	013
290.	-2.686	-1.527	907		531	369	157	• 065	.918	• 432	•326	.078	.057	013
292.	-2.641	-1.502	892		522	363	154	.064	.903	.424	•321	•077	•056	013
294.	-2.594	-1.475	876		528	356	152	•063	•935	.417	•315	•076	.055	012
296.	-2.545	-1.449	859		542	367	149	•055	.974	•409	.309	.074	.054	012
298.	-2.493	-1.461	842		531	391	154	•035	.961	.401	.303	.073	.053	012

AIRFOIL PRESSURE DATA	.9 BLADE RADIUS	NASA-LANGLEY AH-1G	78/11/14.

FL	T 53 R	UN 11	TIME 54	48.800		MU=	.370 CL	P= .0043	3 TEMP	(U60)= 10	.6 C =	50.99 F		
		HPPER SH	RFACE CP	VALUES							LOWER	SURFACE (P VALUES	;
X/C= AZIMUTH	•02	•10	•20	• 35	•50	•70	.80	•90	•02	•10	•20	.50	•70	•90
300.	-2.439	-1.430	824		520	382	182	• 059	.940	• 392	•296	.071	.052	012
302.	-2.385	-1.404	805		508	374	178	•049	.010	•383	•290	•070	.051	011
304.	-2.328	-1.405	829		496	365	174	•027	.898	•374	•283	•068	.050	011
306.	-2.279	-1.379	833		503	356	170	•026	.877	• 365	•276	•066	.048	011
308.	-2.294	-1.375	812		506	370	166	•036	• 905	.397	•269	•065	.047	011
310.	-2.234	-1.348	813		513	380	161	• 052	• 6 7 8	•386	•262	•063	.046	010
312.	-2.174	-1.350	799		511	369	157	•051	•860	•376	•255	•061	.045	010
314.	-2.114	-1.338	804		497	359	153	•049	.875	•365	•248	•060	.044	010
316.	-2.063	-1.312	789		486	348	163	• 044	. R50	•354	•236	•058	.044	008
318.	-2.030	-1.309	790		474	337	174	• 040	.835	.344	•228	•057	.044	006
320.	-1.970	-1.291	795		460	354	169	•039	.842	.334	•221	.037	.042	018
322.	-1.912	-1.267	774		469	353	164	.037	.829	•324	•215	•032	.041	019
324.	-1.855	-1.260	771		460	342	159	•050	.831	•314	•208	•012	.040	019
326.	-1.799	-1.237	749		443	333	155	•061	.819	•306	•207	•009	.037	031
328.	-1.757	-1.215	750		451	323	151	•061	.818	• 296	.201	•009	.035	032
330.	-1.719	-1.207	728		440	314	146	•059	.793	.298	•195	.008	.034	031
332.	-1.666	-1.197	727		426	331	160	• 05 7	• 783	.307	.189	•00B	.033	030
334.	-1.615	-1.187	706		436	324	162	•055	.778	-297	.183	•025	•032	029
336.	-1.565	-1.177	704		423	314	157	•054	.753	•28 <u>8</u>	.177	•008	.014	028
338.	-1.516	~1.165	685		431	304	152	•052	.746	.279	•170	.007	.013	042
340.	-1.469	-1.154	684		420	321	166	• 050	.737	.271	.148	.007	.012	046
342.	-1.424	-1.142	679		426	313	164	•049	.715	.262	.144	.007	005	044
344.	-1.365	-1.130	663		415	327	159	.047	•693	.254	•139	.004	005	059
346.	-1.316	-1.118	661		419	320	155	•046	.672	•232	•132	008	004	060
348.	-1.259	-1.106	659		406	331	150	• 060	•651	.217	.115	008	007	058
350.	-1.183	-1.093	651		403	321	145	•058	•632	.210	•112	008	019	056
352.	-1.138	-1.081	639		417	311	142	.056	.631	.204	.108	012	018	054
354.	-1.088	-1.087	633		406	307	155	.054	.599	.197	•099	021	017	053
356.	-1.036	-1.076	613		403	312	149	.047	.577	.191	.078	025	015	048
358.	953	-1.082	609		400	310	145	•061	•560	•170	•069	032	015	048

FLT 63 RUN11

AIRFUIL PRESSURE DATA .9 BLADE RADIUS NASA-LANGLEY AH-1G

FLT 65 RUN 15 TIME 54494.400 MU= .243 CLP= .00372 TFMP(U60)= 19.8 C = 67.56 F

FL.	1 65 R	UN 15	11ME 544	14.400		MU= •	243 CLP	= .003	72 IEMP	(060)= 19	. B C =	67.58 F		
		UPPER SU	REACE CP	VALUES								SURFACE	CP VALJES	
X/C=	•02	.10	.20	.35	• 50	.76	• 80	•90	•02	.10	•20	•50	. 70	•90
AZIMUTH														
0.	296	801	450		300	294	153	.083	•215	001	046	096	- •∪57	073
2.	263	786	448		294	294	150	.082	•195	017	056	103	063	671
4.	236	772	451		299	289	148	.080	.187	029	066	103	065	070
6.	208	758	444		296	296	152	•079	•165	032	076	101	072	07s
8.	1 83	744	436		301	294	155	.077	.143	051	0 96	099	073	079
10.	150	731	439		298	289	152	.076	• 122	070	097	098	071	071
12.	125	718	432		303	284	158	.081	.102	074	105	123	070	065
14.	102	729	436		299	279	160	•090	.083	081	114	122	077	071
16.	078	741	440		305	274	157	•091	.064	085	112	129	086	074
18.	063	734	443		312	310	154	•090	• 046	098	121	127	085	073
20.	041	7 39	437		307	308	161	.0 88	.029	110	129	134	084	071
22•	021	745	439		303	303	161	•087	.003	115	137	141	082	070
24.	.008	746	434		308	312	158	.085	020	120	144	148	090	077
26.	.023	7 38	438		305	308	156	• 084	036	131	152	152	089	078
28.	.039	736	442		311	316	154	.083	051	141	159	144	096	077
30.	•055	737	443		315	313	161	•082	066	152	166	148	094	076
32.	.067	739	440		313	322	160	•039	080	154	171	148	093	075
34.	.078	751	443		317	329	158	• 088	094	160	171	156	093	074
30.	•099	754	447		313	325	 156	.095	108	162	178	166	099	073
38.	.103	756	447		314	323	154	•094	121	168	182	164	097	072
40.	.120	- .757	446		324	3 29	162	•093	134	169	182	164	096	071
42.	.133	770	450		323	320	160	•092	147	176	189	167	097	070
44.	.143	~. 773	454		329	333	158	•098	148	176	192	168	102	070
46.	.152	 775	453		331	334	156	.097	158	184	193	171	100	077
48.	.162	767	453		332	338	155	•096	158	183	196	172	099	068
50.	.172	769	453		334	339	153	•097	169	191	198	178	098	067
52.	.170	763	453		335	343	152	•102	181	200	204	160	097	066
54.	.179	764	453		341	339	150	•101	180	199	206	175	097	074
56.	.179	760	454		342	342	149	.102	178	197	204	181	099	074
58.	.186	761	459		339	345	148	•107	177	196	203	182	102	073

FLT 65 RUN15

78/11/15.

ATREATI PRESSURE DATA	O BLADE PARTIES	MASALLANGLEY AH-16	78/11/15.

FLT	65 R	UN 15	TIME 5	4494.400		M∪=	•243	CLP=	.00372	TEM	IP(U60) = 19.	8 C =	67.58 F		
		UPPER SU	JRFACE C	P VALUES								LOWER	SURFACE	CP VALUES	
X/C=	.02	.10	•20	.35	.50	• 70	.80		•90	• 02	.10	.20	• 50	. 70	.90
AZIMUTH															
60.	.196	755	464		342	348	14	6	.106 -	188	204	206	181	101	072
62.	.196	750	48	7	343	351	L14	5	.105 -	188	203	207	175	100	072
64.	.203	745	518	3	341	348	314	4	.107 -	198	201	200	172	100	071
66.	.202	 743	554	•	338	346	14	3	.111 -	197	199	199	170	099	071
66.	.201	745	586	;	336	344	14	3	.110 -	193	189	196	169	399	076
70.	•197	741	616)	341	342	14	2	.109 -	180	108	195	174	098	070
72.	.192	738	639	7	341	341	14	1	.109 -	169	187	194	174	095	070
74.	.204	735	654	+	340	339	14	1	.108 -	175	189	199	179	102	069
75.	. 224	~. 727	660)	339	338	14	0	.104 -	199	204	212	180	104	065
78.	.240	720	659	7	330	337	713	9	.101 -	228	230	226	185	103	061
80.	. 249	713	633	3	328	33ó	~•13°	9	.100 -	260	245	234	185	103	061
82.	.263	701	591	L	327	344	13	9	.100 -	289	259	248	191	103	061
84.	.279	690	53	3	327	345	14	5	·100 -	326	275	256	197	103	050
86.	.288	674	468	3	326	345	514	7	.100 -	357	289	270	197	102	053
88.	. 298	654	413	3	326	354				388	304	277	197	102	053
90.	.308	647	383	3	334	344	14	7	.100 -	419	319	285	203	102	053
92•	.324	634	367	7	334	344	14	7	.100 -	450	334	292	203	102	053
94.	.333	622	354	\	335	345	514	7	.100	481	344	293	204	096	053
96.	.339	599	353	3	334	349	· -•14	0	.100 -	513	360	301	204	096	047
98.	.350	571	347	7	327	346	13	9	.100 -	544	375	308	-,204	096	345
100.	.361	551	348	3	328	345	~. 13	9	.100 -	570	385	308	205	096	045
102.	.365	533	347	7	327	337	713	9	.101 -	5 80	397	311	205	096	045
104.	.374	507	34	2	322	338	14	0	.101 -	582	401	318	206	096	046
106.	.378	505	34	l	323	339	914	0	.094 -	575	410	319	205	090	040
106.	.388	499	334	4	322	341	l 14	1	•095	565	415	320	201	091	046
110.	.391	482	32	7	318	~.339	14	2	.095	555	424	322	199	091	046
112.	.393	474	324	' +	319	333	14	3	.096	535	429	323	196	092	039
114.	.396	467	322	2	318	332	14	3	.095	523	431	322	195	090	039
116.	.398	460	316	5	315	333	314	4	.090 -	514	434	320	192	086	039
118.	.401	453	31	4	317	329	714	5	.090	-,528	437	318	190	084	039
			•												

FLT 65 RUN15

78/11/15.

FLT	65 RU	N 15 1	TIME 544	94.400		MU= .	243 CLI	.0037	'2 TEMP	(UbG)= 19	.8 C =	67.58 F		
		UPPER SUF	REACE CP	VALUES							LOWER	SURFACE	CP VALUE	S
X/C=	.02	.10	•20	•35	•50	.70	.80	•90	•02	.10	.20	•50	.70	•90
AZIMUTH														
120.	.404	446	312		315	326	144	.091	533	431	313	188	080	040
122.	.407	440	30o		313	322	136	.092	524	434	311	185	081	041
124.	.4±0	442	305		311	325	140	.093	515	427	310	184	081	047
126.	.404	438	307		309	322	141	•093	507	430	304	185	082	041
128.	.406	440	304		296	319	142	.091	527	424	304	187	079	041
130.	.400	435	305		268	316	143	.088	559	417	302	184	070	041
132.	.403	437	301		291	314	145	.088	593	421	290	184	077	042
134.	.396	435	302		294	317	142	•089	625	414	291	180	078	042
136.	.368	439	298		297	313	138	.087	646	407	286	175	074	043
136.	.384	440	300		294	313	140	.083	662	398	280	169	072	043
140.	.386	439	304		295	30d	142	.085	659	382	275	169	073	044
142.	.376	445	−.30 ხ		291	300	143	.086	660	375	270	165	373	044
144.	.367	445	303		293	302	145	.087	643	368	264	166	068	045
146.	.352	445	306		288	303	141	.093	631	361	259	154	067	045
148.	.344	451	316		291	297	139	.081	010	354	253	154	068	046
150.	.337	458	305		285	299	141	.082	587	346	247	149	062	047
152.	.329	457	310		209	303	143	.083	564	343	241	151	062	047
154.	.320	459	314		293	295	145	.084	541	338	235	 1⇒3	J63	048
156.	.305	466	319		287	298	147	.085	517	317	229	146	055	049
158.	.291	474	323		291	289	140	.087	492	302	223	132	056	042
160.	. 282	481	319		285	265	7.140	.086	466	280	216	141	057	040
162.	.264	489	324		288	270	142	.090	449	265	208	127	048	041
164.	.246	487	329		283	274	145	.074	430	269	192	128	348	041
166.	.225	493	335		288	279	147	.073	413	257	185	120	040	042
168.	.204	501	341		293	284	138	.074	390	242	177	111	041	043
170.	•17e	510	347		295	289	140	.076	361	232	169	098	042	044
172.	.162	532	353		291	294	142	.077	330	221	161	099	041	044
174.	.138	543	360		296	296	145	.079	298	210	153	101	033	045
176.	.109	553	366		298	292	148	.079	265	187	140	103	034	046
178.	.079	-,563	373		294	311	150	.971	231	171	123	097	031	047

AIRFOIL PRESSURE DATA	.9 BLADE RADIUS		NA S	A -L ANGI	LEY AH-1G		78/11	/15.
FLT 55 KUN 15 TIME	54494.400	MU=	.243	CLP=	.00372	TEMP (U60) =	19.8 C	= 67.58 F

	. 1 35 "	0.1 25	1111- 244	74.400		1,0-	C45 CEF	005		10007- 17	•0 0	01420 1		
		UPPER SI	JRFACE CP	VALUES							LOWER	SURFACE	CP VALUES	5
X / C =	• 02	.10	•20	•35	- 50	.70	.80	.90	.02	.10	.20	•50	•70	.90
AZIMUTH	· · · ·					• • •	•••	• . •	***		,•••			• • •
180.	•048	574	386		300	311	152	.072	196	158	113	086	024	048
182.	.030	600	400		305	305	142	.073	142	131	103	083	025	049
184.	017	613	408		311	305	145	.075	100	114	093	078	025	050
186.	053	640	416		311	299	147	.076	060	099	002	080	021	050
188.	089	654	424		309	305	150	.078	018	084	070	070	014	051
190.	127	682	432		315	311	153	.076	.026	051	052	060	015	052
192.	184	695	441		321	308	156	.068	.071	034	033	061	015	054
194.	225	712	459		328	304	159	.070	•119	016	020	048	009	055
196.	269	745	473		334	310	157	.071	.166	.003	006	039	003	056
198.	330	773	483		331	316	149	.072	.195	.020	001	040	003	057
200.	380	794	492		331	322	152	.074	.245	.023	.009	041	003	053
202.	443	823	502		327	315	155	.075	.278	.043	.024	041	.005	044
204.	493	845	512		340	313	158	.077	• 329	.064	.040	032	.010	044
206.	545	882	522		339	319	152	.078	.367	.082	.045	029	.011	045
208.	598	911	546		341	310	146	.080	.414	.088	.058	030	.011	046
210.	653	929	559		347	309	149	.081	. 429	.112	. 075	019	.311	047
212.	710	946	569		339	315	152	.083	- 464	.130	.079	017	.011	048
214.	768	964	580		342	321	154	.084	• 491	•139	.109	004	.011	049
216.	829	982	591		348	307	144	.086	•510	.157	.115	003	.012	050
218.	890	-1.012	583		355	303	140	.037	•548	.168	.117	003	.012	051
220.	943	-1.039	593		361	314	143	.089	• 5 7 5	.185	.119	003	.012	052
222.	996	-1.057	004		367	319	145	.091	.585	.188	.121	003	. 012	052
224.	-1.049	-1.075	614		353	300	148	.092	•610	.202	.124	002	.012	053
226.	-1.092	-1.077	624		339	304	150	•094	•635	.219	.144	.013	.013	054
228.	-1.150	-1 .0 E7	631		344	309	134	.095	. 645	.222	. 146	.014	.013	055
230.	-1.203	-1.104	624		350	313	133	.097	•655	.226	.148	.014	.013	056
232.	-1.248	-1.121	633		355	310	155	.098	.684	.244	.151	.014	.013	057
234 .	-1.293	-1.137	643		360	323	139	.100	.707	•258	.153	.014	.013	358
236.	-1.319	-1.153	652		361	327	139	.101	.717	• 26 2	.155	.014	.014	058
238.	-1.357	-1.168	653		343	327	140	.102	•726	.265	.157	.019	.014	059

FLT 55 RUN15

Fi	.T 65 K	UN 15	TIME 544	94.400		MU= .	243 CLP	• •00372	2 TEMP	(U60)= 19	.8 C =	67.58 F		
		UPPER SU	REACE CP	VALUES							LÜWER	SUR FACE	CP VALUES	s
λ/C=	.02	•16	.20	•35	•50	•7ū	.80	• 90	•02	.10	•20	.50	•70	•90
AZIMUTH							•							
240.	-1.402	-1.183	647		335	307	142	.104	.735	.268	.159	.027	.014	060
242.	-1.425	-1.198	655		350	311	144	.105	.744	.272	•161	•015	.014	061
244.	-1.441	-1.211	662		337	314	146	.104	.753	.275	.163	.015	•014	061
246.	-1.456	-1.198	660		341	317	147	.088	•761	.278	.164	.015	.009	062
248.	-1.470	-1.209	654		344	321	149	.088	.739	.280	•166	•015	005	063
250.	-1.484	-1.193	659		338	323	150	.089	.740	.263	.167	.016	005	063
252.	-1.496	-1.203	665		336	326	151	.090	.746	.285	.169	.016	000	504
254.	-1.507	-1.212	657		342	329	152	.091	•752	.287	.170	•006	005	064
256.	-1.517	-1.216	651		331	317	153	•091	.757	•289	.171	.007	005	065
258.	-1.524	-1.199	655		333	301	154	•092	.761	.291	.172	.016	005	065
260.	-1.504	-1.205	658		334	303	155	•092	.765	.292	.173	.016	005	065
262.	-1.510	-1.210	661		336	304	156	•093	.766	.294	.174	.004	005	066
264.	-1.511	-1.206	646		337	305	156	.093	.771	•295	.174	003	005	066
266.	-1.489	-1.19 6	641		337	366	156	•093	•772	.295	•175	.010	005	066
268.	-1.491	-1.218	641		338	306	157	•093	.773	• 292	.175	.002	005	066
270.	-1.491	-1.209	642		321	306	157	•093	.774	.266	.175	.011	005	066
272.	-1.463	-1.179	641		331	305	157	•093	•773	.266	•175	.016	005	066
274.	-1.459	-1.171	641		319	306	156	•093	.772	.266	.175	•000	305	066
276.	-1.446	-1.173	639		312	305	15 6	.093	.771	.265	.174	•013	005	066
278.	-1.422	-1.166	637		311	304	156	•093	.76₿	.265	•155	001	005	066
280.	-1.405	-1.177	635		310	303	155	•092	.765	.264	.151	003	005	065
282.	-1.380	-1.157	632		330	301	154	.092	.749	.262	•151	.014	005	065
284.	-1.372	-1.137	626		309	300	153	•091	.721	.261	•150	016	335	065
286.	-1.350	-1.129	624		327	298	152	.091	.717	.259	•149	003	005	064
288.	-1.310	-1.121	619		303	296	151	•090	.711	.257	.148	004	005	064
290.	-1.270	-1.112	614		300	293	150	.089	.706	.242	.146	022	005	063
292.	-1.214	-1.102	606		297	320	149	• 08៩	.682	.225	.145	022	005	063
294.	-1.161	-1.073	581		295	−.2 £8	147	880.	.658	.223	.144	022	024	062
296 •	-1.087	-1.053	574		312	313	145	.087	.632	.206	.138	024	024	061
298.	-1.025	-1.022	563		288	283	144	•036	.611	.176	•097	034	041	051

AIRFOIL PRESSURE DATA .9 BLADE RADIUS

NASA-LANGLEY AH-16

78/11/15.

	FLT 65	RUN 15	TIME 5	4494.400		MU=	.243	CLP=	.00372	TEM	P(U60)= 19	9.8 C =	67.58 F		
		UPPER SU	JRFACE CI	VALUES								LOWER	SURFACE	CP VALUES	
X/C		.10	•20	•35	•50	.73	• 83)	.90	•02	•10	•20	•50	.70	•90
AZIMUT	н														
300.	907	-1.004	540		268	307	714	42	.085	.583	•162	• U 79	042	024	060
302.	900	570	533		299	300)1 ⁴	1	.084	. 563	.144	.074	056	041	07t
304.	834	953	526		277	275	13	39	.083	.534	•132	•058	055	040	079
306.	809	940	519		278	300	13	37	.081	.517	•130	057	055	040	078
308.	777	926	511		291	318	315	7	.080	.509	.110	.050	054	039	077
310.	740	913	504		266	367	715	55	.080	.502	.102	•036	053	038	076
312.	724	899	496		282	282	21:	53	.095	.494	.100	•029	052	038	094
314.	713	908	497		278	266	15	50	.094	.486	•099	.017	051	037	093
316.	679	893	499		281	299	14	48	.092	.478	.077	.017	051	037	091
318.	666	879	491		288	294	14	45	.091	•470	.072	.017	050	036	090
320.	654	885	493		292	289	714	+3	.089	.462	.071	.016	049	035	880
322.	643	872	492		288	264	14	40	.088	.454	.070	.016	056	041	087
324.	631	679	484		263	279	14	43	.086	. 446	.068	.016	070	049	085
326.	620	881	486		297	26	19	55	.084	.438	.067	.016	076	049	084
328.	609	869	483		30ú	292	219	52	.083	.430	.087	.C15	074	048	082
330.	597	874	486		294	287	714	49	.061	.422	.085	.615	073	047	086
332.	586	872	482		289	281	l14	46	.080	.414	• 063.	.015	071	054	079
334.	575	862	486		295	289	71:	51	.078	. 406	.064	.014	070	059	077
336.	564	865	493		295	292	219	58	.077	.398	.081	.014	078	058	076
338.	553	868	487		301	303	1	55	.075	.391	•079	.014	080	057	075
340.	543	870	490		300	287	71	52	.081	.383	.078	.014	089	056	073
342.	532	672	496		294	305	514	49	•086	.376	•076	.002	090	055	079
344.	522	673	489		301	310	1	46	.084	.369	.070	001	088	054	085
346.	512	866	493		298	289	919	53	.082	.361	.055	001	086	053	083
346.	495	858	484		305	29	5 1:	56	.081	.354	.054	001	074	051	082
350.	467	7849	489		314	292	219	53	.079	.348	•953	013	082	050	080
352•	44	842	479		310	287	71	50	.078	.324	.046	013	081	050	076
354.	407	833	471		304	298	314	48	.076	.293	.035	025	091	059	077
356.	373	827	474		298	310	01	45	.084	. 278	.027	025	090	059	C76
358.	341	817	465		306	30	51	53	.085	.243	.010	038	099	058	074

FLT 65 RUN15

AIRFOIL PRESSURE DATA .9 BLADE RADIUS NASA-LANGLEY AH-1G 78/11/15.

	FLT 65	RUN I	18	TIME	54782	.700		MU=	.241	CLP≖	.00619	TEM	P(U60)=	19.8 C	= 67.58 F		
		1101	3EP 911	RFACE	CD VA	1150								. nue	R SURFACE	CP VALUES	
X/C	02		.10	•20		• 35	•50	.70	• 8	0	• 90	.02	.10	•		.70	.90
AZIMUT			•10	• 2 0	,	• 32	• 70	• 10	• 0	U	• 90	• 02	•10	• 20	• 50	• 10	• 70
٥.	58	4 -:	1.021	55	8		328	30	91	63	•089	.444	•111	.02	7055	020	059
2.	51		1.002	55			328	31	_		.087	.400	.094			029	058
4.	44		987	55			334	30			•086	.373	.078			035	059
6.	40	_	- 996	54	-		346	30			.087	.348	.062				067
8.	34		992	53			347	29			•0 93	. 325	.047				066
10.	29	2 .	986	53	3		335	30			.091	.301	•032			052	067
12.	23	2 .	973	52	26		335	31	51	60	.087	. 262	.004	05	3092	055	074
14.	18	9 -	983	52	26		341	31	71	69	.079	.258	010			064	073
15.	18	7 .	992	53	15		340	32	61	74	.080	. 254	.003			063	072
18.	19	7 -:	1.003	54	0		341	33	j ~. 1	71	.091	.265	.016	05	4099	057	076
20.	20	6 -	.022	54	19		346	33	61	59	.105	.261	.016	04	9097	061	092
22.	20	1 -:	1.027	54	7		345	33	81	.62	.109	.256	.015	05	4096	064	096
24.	18	2 -:	1.024	54	-5		352	33	91	53	.104	.238	.003	06	3100	068	087
26.	14	4 -:	1.020	54	0		343	33	4]	.54	• 097	.231	010	07	1112	075	083
28.	11	6 -:	1.013	53	39		330	32	91	59	.096	.198	022	08	5121	078	075
30.	07	8 -	999	53	34		325	33	21	56	•098	.166	034	10	1133	082	077
32.	04	3 -	982	51	.9		333	34	01	58	.101	.134	056	11	2136	084	079
34.	01	7 .	960	51	. 1		348	34	01	62	.100	.100	067	11	.9145	083	075
36.	.01	3 .	948	49	96		351	34	31	60	.101	.088	079	12	7147	086	079
38.	.02	7 -	932	48	80		353	35	11	58	.104	.059	099	13	3145	088	07s
40.	.04	4 -	913	46	5		357	35	11	.61	.108	.033	167	13	9144	087	078
42.	.03	8 .	903	46	7		363	35	51	64	.107	.027	102	14	0142	086	077
44.	.01	8 .	896	48	34		368	35	51	62	.096	•056	080	12	8140	080	072
40.	.01	3 -	893	54	1		373	35	91	.60	.092	.090	061	10	3133	066	070
48.	.02	7.	883	61	.9		378	35	11	54	.096	• 099	060	09	0125	061	078
50.	•04	٤ -	874	60	14		390	34	41	.43	.106	.095	060	09	3122	061	086
52.	.06	2 -	861	73	30		384	34	01	37	.115	.084	359	10	2121	070	089
54.	.06	2 .	648	77	73		385	33	71	36	.117	•090	054	09	5125	079	084
56.	.06	1 -	640	80	9		383	33	4 -•1	35	.117	.108	040	09	2131	085	080
58.	•06	1 -	833	83	35		366	34	01	.33	.116	.103	050	09	8131	086	079

. A	ARFOIL PRE	SSURE DA	TA .9 E	LADE RAD	2010		NASA-LAN	IGLEY AH-	-1G		78/11/1	5.		
F	LT 65 RU	N 18	TIME 547	782.700		Mu≈	.241 CLP	.00619	TEM!	P(U60)*	19.8 2 =	67.58 F		
	•	UPPER SU	KFACE CP	VALUES							LOWER	SURFACE	CP VALUES	.
X/C=		.10	.20	•35	•50	.70	.80	• 90	• 02	.10	•20	•50	•70	• 90
AZIMUTH	ļ													
60.	.119	827	854		360	340	132	•115	.098	054	098	130	080	078
62.	.152	826	872		343	337	131	.114	.109	044	104	129	078	078
64.	•036	825	883		338	335	131	.109	.125	034	098	134	078	073
66.	. U25	824	901		336	333	130	.106	.144	027	096	134	077	069
68.	.015	829	912		334	331	129	.105	.156	023	089	127	077	073
70.	.009	834	924		332	329	128	.109	.172	017	068	126	076	076
72.	.014	839	934		332	327	127	•110	.185	017	089	132	081	075
74.	•024	845	937		329	326	127	•115	.185	020	094	137	032	075
76.	.033	846	934		313	325	127	•122	.174	030	101	143	088	075
78.	.046	638	438		295	315	120	.123	155	039	108	143	088	070
.08	.067	831	928		286	313	117	.123	.137	049	115	149	082	067
82.	.061	818	925		261	312	117	.118	.113	062	122	149	087	062
84.	•091	804	916		261	311	123	.116	.089	077	129	155	088	059
86.	.100	794	907		252	311	125	•116	.065	091	143	161	081	059
88.	.110	790	698		244	311	125	•115	.042	105	150	161	081	059
90.	•119	784	890		236	321	125	.115	.018	119	157	161	081	059
92.	•129	775	683		236	321	~. 125	.115	012	134	164	161	081	053
94.	.139	772	876		236	321	125	•116	041	143	171	161	081	052
96•	•143 ·	767	869		237	322	125	.110	058	153	178	161	075	052
98.	.149	766	863		246	332	126	•115	077	158	178	161	075	052
100.	.153	760	859		254	333	126	•116	101	163	180	162	075	052
102.	.154	760	859		262	334	126	.111	118	174	186	162	075	052
104.	•160	763	655		263	336	127	.110	130	178	187	162	375	052
106.	.171	759	850		268	345	127	.104	143	185	186	157	075	046
108.	.175	760	847		291	338	136	.111	156	189	189	158	069	051
110.	•176	764	842		302	339		.110	168	190			069	052
112.	.176	768	842		311	341		.105	182	191	189	151	069	053
114.	.170	772	844		322	343	138	.104	187	192	186	147	063	053
116.	.161	769	841		330	346	131	.107	196	194	164	148	064	054
118.	.160	773	833		335	346	131	.105	201	195	181	145	063	053

FLT 65 RUN18

AIRFUIL PRESSURE DATA .9 BLADE RADIUS NASA-LANGLEY AH-IG

ſ	О	,	٠	1	•	Ŧ	-	•	

F	LT 65	RUN 18	TIME 54	782.700		MU=	•241 C	LP=	•00619	TEM	P(U60)= 1	19.8 C =	67.58 F		
		UPPER SU	JRFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
X/C=	.02	.10	. 20	•35	•50	•76	.83	•	90	.02	.10	•20	• 50	.70	.90
AZIMUTH	l														
120.	.161	779	603		343	340	132		108	203	189	179	137	058	055
122.	. 154	785	743		346	340	133	•	109	204	188	174	136	059	055
124.	.153		663		349	334	135		103	197	189	174	132	059	055
126.	.146		583		352	 335	136	•	104	195	184	170	133	060	056
128.	.137		520		352	329	137	•	104	197	183	169	134	060	056
130.	.128	814	487		350	329	−.13៩	•	98	189	177	166	136	059	057
132.	.116		479		351	324	138		097	188	176	166	137	053	057
134.	.118		470		346	324	131	. •	098	190	178	162	136	054	057
136.	.110		462		339	320	133	•	101	181	171	160	130	- .355	050
138.	.100		454		337	320	135		102	181	171	156	127	054	051
140.	.090	649	455		341	316	135	•	096	171	164	155	126	049	052
142.	.080		457		331	319	128	•	097	172	164	148	120	050	052
144.	• C69		453		312	319	130	•	098	162	157	146	117	050	053
146.	.069		449		317	311	131	. •	098	162	157	145	118	050	053
148.	.059	792	446		320	307	133	•	099	151	149	137	116	049	053
150.	.048	780	443		325	307	133	•	094	138	150	134	110	044	046
152.	•036		439		325	303	127	•	0 96	139	141	131	099	045	046
154.	. 024	756	436		319	302	129	•	095	127	142	129	093	046	047
156.	.012		438		319	299	131	. •	090	114	133	126	094	046	048
158.	.012		439		324	298	133		091	115	134	118	096	043	049
160.	.011		436		324	295	135	•	090	101	124	116	097	039	049
162.	014	729	432		318	300	137	•	0.85	103	125	112	094	040	050
164.	028	716	436		318	291	139	•	087	088	114	104	097	036	051
166.	042	 715	436		317	281	138		085	072	103	096	091	032	052
168.	057	706	432		311	286	132	•	080	057	091	093	092	032	053
170.	072	7 15	436		311	291	134		081	040	092	069	091	033	054
172.	088	714	436		310	296	137	•	083	022	081	079	083	028	051
174.	104	713	441		310	293	139	•	0 84	.012	081	077	081	024	044
175.	121	716	440		~.316	291	142		086	.031	068	071	082	025	045
178.	141	725	445		314	296	139	-	087	.050	054	061	077	019	046

AIREDIL PRESSURE DATA	- 9 BLADE RADIUS	NASA-LANGLEY AH-1 G	78/11/15.

F	FLT 65	RUN 18	TIME 54	782.700		MU=	.241	CL P=	.00619	TEM	P(U60)=	19.8 C =	67.58 F		
		UPPER SI	URFACE CE	VALUES								LOWER	SURFACE	CP VALUES	
X/C=	• 02	.10	.20	• 35	•50	.70	.80	•	9 Ü	•02	.10	.20	• 50	. 70	.90
AZIMUTH	+														
180.	172		444		315	292			089	.070	041			J15	047
182.	19		450		321	291			091	.090	040			015	048
184.	·21		458		318	297			092	.112	025			016	048
186.	23		457		320	302			094	.134	012			009	049
188.	25		463		316	296			096	.157	009			005	050
190.	290		472		318	296			098	.181	.007			005	051
192.	33		481		314	302			087	• 206	.021			005	052
194.	35		479		316	294	13	8 .	077	.232	•025			005	053
195.	386	6808	486		323	29:	140	0 .	0 79	. 259	.044	.008	043	005	048
198.	42	5814	490		317	300	14	3 .	080	.286	•058	.022	041	.004	041
200.	45	8830	505		320	306	14	6 .	082	.309	.064	.025	032	.037	042
202.	49	9846	515		326	312	214	9 .	084	.328	.079	.038	020		043
204.	53	5862	525		332	302	215	2 .	085	.368	•086	.053	018	.007	044
206.	58	5888	535		339	303	314	4 .	087	.383	.102	.081	019	•007	044
208.	62	9915	546		331	309	14	0 .	080	.415	.110	.087	007	.019	045
210.	67	0932	556		335	315	14	2 .	076	.449	•132	.088	006	.022	046
212.	72	5950	566		341	321	L14	5 .	077	.474	.149	•090	.007	•022	047
214.	78	2978	577		331	30	14	8 .	C 79	.492	•159	.106	.008	•022	048
216.	830	-1.006	587		336	310	15	1 .	091	.528	.183	.124	•022	• 023	049
218.	88	7 -1.024	598		342	31	514	0 .	097	.554	.203	.128	•023	.023	039
220.	95	0 -1.042	609		348	299	13	6 .	099	.575	.204	.130	.038	.024	033
222.	-1.000	0 -1.060	619		354	302	213	9.	089	.613	.226	.149	•039	.024	033
224.	-1.07	6 -1.091	629		341	307	714	1 .	086	.640	.257			.025	034
226.	-1.14	1 -1.118	640		346	312	214	3 .	087	.650	.261		.041	.025	047
228.	-1.19	6 -1.136	650		351	31			089	.675	.265			.025	054
230.	-1.26	4 -1.154	660		357	322			09ŭ	.701	.269			.026	055
232.	-1.33		670		362	32			091	.726	.285			•042	056
234.	-1.38		680		367	332			093	.752	.302			.044	056
236 •	-1.44		689		373	309			094	.762	.306			.044	057
238.	-1.51		698		377	313			111	.773	.323			.044	058
2001			,0					•		¥ , , ,	- 323		•001		.000

FLT 65 RUN18

	FLT 65 F	RUN 18	TIME 54	782.700		MU =	.241	CLP=	.0061	9 TEMP	(U6C)= 19	.8 C =	67.58 F		
		UPPER SU	RFACE CP	VALUES								LOKER	SURFACE CP	VALUES	
X /		.10	.20	.35	•50	.70	• 80) ,	.90	•02	•10	.20	•50	.70	• 67
AZIMU	ТН														
240.	-1.575	-1.260	707		380	317	13	39	.115	.800	.340	.211	•062	.028	059
242.	-1.637	-1.275	716		367	321	13	37 .	.116	.824	.344	.231	•062	.029	059
244.	-1.692	-1.309	719		386	324	15	9,	.117	.833	.347	.233	•063	.045	060
246.	-1.720	-1.329	710		350	326	12	22	119	.842	.351	•236	•064	.028	061
248.	-1.736	-1.342	718		354	302	11	. 8 .	.120	.850	.355	.238	•064	.029	061
250.	-1.771	-1.355	726		357	305	14	.1 .	.121	.857	.373	.239	•065	.029	062
252.	-1.794	-1.365	729		362	306	12	0 .	.116	.864	.387	.237	.065	.031	060
254.	-1.607	-1.375	734		362	309	14	4 .	.104	.871	.391	.244	•066	.032	063
256.	-1.819	-1.384	739		305	311	14	6	.104	.877	.393	•250	•066	.049	063
258.	−1. 830	-1.392	745		367	313	14	7 .	.105	.882	•396	.268	•067	.049	064
260.	-1. ⊌39	-1.400	752		369	315	12	23 .	.105	.910	•396	•267	.067	.050	064
262.	-1.846	-1.405	756		373	315	14	.7	.099	.923	.398	.264	•067	.051	041
264.	-1.852	-1.435	770		375	315	14	.7	.099	.925	.418	•263	.067	.052	051
266.	-1.902	-1.441	782		378	~.315	14	6 .	.094	.927	.426	.259	•067	.053	060
268.	-1.939	-1.442	778		377	316	14	6 .	.095	.930	.429	•263	∙068	.053	060
270.	-1.969	-1.468	778		373	318	14	. 8	.106	.931	•430	.279	.068	.050	042
272.	-1.997	-1.469	 790		373	318	12	24	.100	.959	.452	• 293	•068	.050	065
274.		-1.467	802		373	317	12	24	.105	•964	• 456	.290	•068	.050	064
276.	-2.048	-1.464	800		373	316	12	22	.103	.962	•456	•288	.068	.051	062
278.		-1.514	809		371	- •325	12		.124	.988	.454	•297	•067	.044	064
280.		-1.535	815		369	344	12	25	.117	•990	•476	•307	•067	.031	062
282.		- 1.555	823		396	344		÷7 .	.108	1.016	•479	.318	•067	. 030	064
284.		-1.573	841		384	331			.124	1.045	.500	.337	.083	.030	063
286.	-2.356	-1.592	858		409	310	17	70	.123	1.073	•525	•347	.103	.029	063
288.		-1.634	874		406	319	16	8 .	.122	1.099	•548	• 354	.102	.037	065
290•	-2.952	-1.674	877		403	334	16	7 .	.121	1.155	.571	•362	.101	.048	083
292.	-3.066	-1.703	856		399	319	16	0 0	.120	1.150	.544	• 359	.100	.047	083
294.	-2.844	-1.654	814		395	299	13	34 .	.129	1.075	.487	•325	•090	.039	082
296.	-2.51b	-1.555	775		391	309	11	15	.155	.966	.404	.261	.071	.020	081
298.	-2.196	-1.436	732		387	334	12	21 .	.1ö3	.889	.346	.210	.053	.002	000

AIRFUIL PRESSURE DATA .9 BLADE KADIUS						NASA-LANGLEY AH-1G						78/11/15.				
	FLT 65	RUN 18	TIME 54	782.700		MU=	·24i	CLP=	.00519	TEM	P(U60)=	19.8	C =	67.58 F		
		UPPER S	URFACE CP	VALUES								L	OWER	SURFACE	CP VALUES	.
X/C: AZIMUTI		.10	• 20	÷35	•50	.70	•53	,	•90	•02	•10)	. 20	• 5 3	.70	•90
300.	-1.885	-1.331	708		382	345	1	+2	•151	.846	.31	5	.189	.035	008	070
302.	-1.661	-1.295	699		376	341	10	53	.138	.804	.310)	.176	.017	.001	038
304.	-1.541	-1.278	690		373	336	1	77	.106	.794	.306	5	.166	.010	.010	037
306.	-1.472	-1.260	680		368	332	17	74	.093	.785	.302	2	.164	.020	•009	037
308.	-1.429	-1.248	671		362	327	710	54	.091	.802	.29	8	.161	.015	.009	042
310.	-1.408	-1.247	675		357	322	1	6	•090	.790	.29	3	.159	.009	.000	061
312.	-1.387	-1.228	670		352	317	710	57	• 095	.778	.28	7	.156	.009	007	079
. 314.	-1.365	-1.221	673		359	312	19	54	.104	.769	.28	4	.154	.009	007	084
316.	-1.343	-1.240	667		347	307	716	51	.102	.782	•283)	.152	.039	307	071
318.	-1.320	-1.235	656		340	317	15	9	.100	.769	.27	5	.149	.009	007	069
320.	-1.298	-1.221	659		348	321	1	56	.099	.760	.27	0	.146	.009	007	062
322.	-1.276	-1.221	665		355	316	1	53	•097	.770	.26	9	.144	002	007	050
324.	-1.253	-1.220	657		341	310	1	51	.095	.756	.28	2	.141	006	007	049
326.	-1.231	-1.219	659		343	304	1	57	.094	.743	.27	7	.139	006	006	048
328.	-1.208	-1.217	650		341	314	10	54.	.092	.735	.27	2	.136	006	006	054
330.	-1.186	-1.214	652		348	315	10	51	.098	.741	.26	7	.134	ون0.	006	0ó2
332.	-1.164	-1.211	656		346	309	1	38	.110	.727	•26	2	.131	014	006	061
334.	-1.142	-1.208	646		339	319	1	55	.114	.713	.25	7	.129	008	006	060
336.	-1.127	-1.212	648		346	319	1	52	.112	.700	.25	2	.120	016	016	059
338.	-1.124	-1.217	651		342	313	14	+ 9	.110	.700	.25	3	.124	018	019	058
340.	-1.135	-1.220	653		349	322	21:	56	.108	.740	.27	1	.145	018	018	064
342.	-1.155	-1.232	656		357	320	1	59	.106	.779	•29	7	.170	017	008	070
344.	-1.144	-1.226	644		353	314	1	56	.104	.772	.29	9	.158	006	005	069
346.	-1.129	-1.211	645		359	308	1	53	.102	.735	.28	1	.142	016	005	075
348.	-1.110	-1.204	633		354	302	1	40	.108	.707	.27)	.150	336	305	079
350.	-1.057				360	295	14	+2	.110	.694	.24	8	.136	015	015	078
352.	979	-1.164	596		342	291	1	44	.100	.664	.22	5	.110	026	016	056
354.	074	-1.119	584		334	301	1	42	•0 94	.603	.206)	.083	026	026	054
355.	766	-1.073	561		328	297	714	49	• 093	.532	.16	4	.069	036	027	057
358.	649	-1.023	551		321	307	71	50	.091	• 464	.13	0	.045	046	036	058

FLT 65 RUN1s

1	FLT 65	RUN 25	TIME 5:	5583.000		Mu =	.241 (CLP=	.0051	2 TEMP	(U50)=]	19.8 C =	67.61 F		
		UDOTO C	UDC 1 C . C	D VALUE 6								4 ::: CD	CUBEACE	CO 2441 153	
አ / C:	- .C2	•10	URFACE C • 20	•35	5.0	.70	. გე		90	• 02	•10	•20	SURFACE •50	CP VALJES	• 90
AZ IMUTi		•10	• 20	•39	٥٤.	. 70	•03	•	93	• 02	•10	•20	• 50	• 75	• 90
AZ INOTA	п														
ο.	439	874	484		300	271	13	з.	094	. 355	.068	.006	070	044	059
2.	375		476		300	270			093	.313	.049	014	072	049	067
4.	337		467		294	278			091	.285	.020	029	085	053	056
5.	301		459		297	283			389	. 246	.007	039	089	052	065
8.	266		460		305	294	14	9.	880	. 224	.004	050	095	057	064
10.	232	8ú4	464		303	294	15	3.	086	.206	010	060	095	060	003
12.	199	798	457		297	289	15	6.	0 85	.198	024	069	101	059	062
14.	172	790	459		301	284	15	4 .	083	.177	034	070	101	065	066
16.	-,151	790	453		308	301	15	1 .	082	.157	037	077	100	066	070
18.	126	784	455		305	303	14	9.	0 86	.138	050	086	098	072	069
20.	105	778	459		30C	275	15	3.	880	.119	062	095	096	073	068
22.	082	77 8	452		305	300	15	٠.	097	.096	074	112	119	072	067
24.	057	779	455		311	314	15	з .	086	.068	086	120	127	078	000
26.	029	786	458		307	311	15	1 .	084	.052	097	128	133	078	571
28.	004	792	452		313	307	15	6.	089	.035	104	127	140	084	074
30.	.015	792	456		319	314	1o	7.	091	.013	107	134	138	084	073
32.	.027	793	458		315	323	15	.	089	010	118	141	152	083	072
34.	.044	801	453		320	332	15	з.	880	025	128	148	149	182	071
36.	•062		457		316	328			094	039	133	155	141	081	070
38.	.076		460		312	324			094	053	137	161	146	087	078
4ú.	• 096		464		310	332			093	067	146	-,160	145	087	077
42•	.125		466		334	329			099	088	156	167	151	093	076
44.	• 15 ₺		462		338	337			098	123	172	174	157	- • 0 9 2	075
46.	.175		408		336	344			104	136	172	186	161	091	067
48 •	.161		481		342	342			104	110	160	180	158	088	065
50.	.145		497		347	350			103	078	147	157	149	073	064
52.	.141		529		353	357			109	059	135	149	140	068	071
54.	•139		565		357	354			116	055	130	148	134	074	079
56.	.138		639		356	350			115	054	129	149	137	081	079
5ძ∙	.137	799	687		357	348	13	4 .	114	054	123	153	145	088	078

AIR	AIRFUIL PRESSURE DATA .9 BLADE RADIU						NASA-L	ANGLEY AF	1-16		78/11/15	•		
FLT	65 RU	N 25 1	TIME 55	583.000		MU= .	241 CL	P= .0051	.2 TEM	(U60)= 1°	9.8 C =	67.61 F		
		UPPER SUF	REACE CP	VALUES							LOWER	SURFACE (P VALUES	;
X/C= AZIMUTH	•02	.10	•20	÷35	.50	•70	. 83	•90	•02	.10	•20	•50	•7ù	•90
60.	.145	793	724		351	348	134	•119	053	135	152	147	092	078
62.	. 154	767	757		354	353	141	.112	063	136	153	152	040	069
64.	.163	792	781		349	351	140	.111	076	143	160	156	084	059
66.	.164	787	797		341	349	139	.111	088	135	01	155	084	068
68.	.153	773	805		339	347	138	.110	067	134	152	154	083	008
70.	.133	778	813		341	349	136	.109	042	116	144	150	C80	068
72.	.112	775	825		344	350	137	.109	017	104	135	146	075	067
74.	.101	781	838		346	342	136	.108	.019	094	127	142	075	06 ŝ
76.	.081	788	851		349	340	134	.108	.045	083	127	141	078	074
78.	•09i	794	864		348	339	127	•110	.057	062	130	144	081	074
8 0.	.101	791	873		347	338	126	.114	.045	092	134	147	084	072
82.	.110	769	673		337	332	126	.114	.032	101	141	150	088	066
84.	.120	786	872		329	332	126	.114	.006	111	148	153	087	066
86.	.130	778	871		324	336	126	.113	017	130	155	100	087	064
88.	.140	777	654		321	330	125	.113	041	140	162	166	087	058
90.	.150	774	856		321	336	126	.113	065	150	175	168	087	0o8
92.	.166	768	854		321	 3≥6	129	•113	090	160	184	168	083	058
94.	.170	765	849		321	336	134	.110	114	170	192	169	081	055
96.	.177	760	842		321	337	134	.107	139	180	194	169	081	051
98.	.180	7 58	829		322	337	135	.107	161	190	194	169	081	051
100.	.185	754	822		329	338	135	.107	177	198	201	169	081	051
102.	192	752	816		332	339	135	.108	195	199	203	170	070	051
104.	.199	749	810		333	340	135	.108	203	204	203	165	075	051
106.	.200	747	798		334	342	136	.108	228	222	204	165	375	051
iu8.	.204	746	778		336	343	132	.109	250	230	205	165	075	052
110.	.212	744	710		337	345	129	.109	264	231	206	166	076	052
112.	.213	744	632		339	347	130	.105	276	236	207	161	076	052
114.	.214	743	545		341	339	130	.103	292	244	208	161	571	052
116.	.215	743	484		343	340	131	.104	302	246	210	162	070	053
118.	.217	742	455		346	342	132	.105	309	247	211	157	071	053

FLT 65 RUN25

AIF	RACIL PRO	SSURE DA	TA . 9	BLADE RAI	SUID		NASA-LA	NGLEY A	H=16		78/11/15	•		
FL1	T 65 RU	IN 25	TIME 55	593.000		MU= .	241 CLP	• •005	12 TEMP	(U6C)= 19	0.8 C =	67.61 F		
		UPPER SU	RFACE CP	VALUES							LOWER	SURFACE	CP VALUES	5
X/C= AZIMUTH	•02	.1C	•20	•35	• 50	.70	. 8 3	•90	•02	•10	•20	.50	•70	•90
120.	.218	738	442		340	334	133	.106	319	249	213	151	071	048
122.	.220	733	437		342	336	134	.101	327	251	207	152	065	046
124.	.216	722	431		345	328	135	.100	337	248	208	153	072	046
125.	.213	708	420		347	319	135	.101	340	245	210	154	066	046
128.	.209	694	423		342	322	138	.102	343	247	204	148	066	047
130.	• 207	687	418		337	314	139	•133	−. 33ს	244	205	142	060	047
132.	• 202	6 64	413		339	317	132	.097	336	229	199	138	060	048
134.	.200	680	409		334	319	132	.097	340	222	194	139	061	048
136.	187	685	407		332	312	134	.098	335	225	195	141	361	049
138.	.182	675	409		320	314	135	•099	334	227	190	142	055	049
140.	.176	671	404		308	307	137	•093	338	230	191	142	055	050
142.	.175	668	400		312	311	138	•094	332	225	187	136	056	051
144.	.168	655	399		316	310	130	•095	311	225	186	132	057	051
146.	.158	651	401		317	294	132	• 096	308	219	180	134	057	052
148.	.148	659	396		314	298	134	•097	30ù	219	173	133	056	043
150.	.148	623	396		315	299	136	.091	301	212	170	127	051	044
152.	.139	631	397		309	294	136	•092	280	203	169	123	052	045
154.	.129	640	393		307	284	129	. 092	253	204	162	125	052	045
156.	.118	638	389		308	202	131	.086	253	196	159	123	050	046
150.	.106	635	390		306	266	133	.087	257	186	157	117	045	047
160.	•0 95	632	390		306	270	135	•088	246	188	149	105	042	047
162.	•096	630	392		300	274	137	.087	233	179	142	098	037	048
164.	• 070	627	392		299	279	139	.062	220	168	134	100	038	049
166.	.057	624	394		304	284	142	.083	207	157	131	101	039	050
168.	.044	624	401		303	289	140	•085	192	145	128	103	335	051
170.	.030	635	400		309	29+	134	•086	161	148	119	099	030	048
172.	.014	646	404		313	290	136	.088	144	130	110	097	031	541
1 ***	221				201	5.00	1.00	010		100				010

-.139

-.141 -.144

-.111

-.092 -.058

-.123

-.110 -.097

-.101

-.091 -.081

-.086

-.088 -.085

.089

.091

.093

-.28à

-.294

-.289

-.306

-.307

-.304

-.042

-.047

-.055

-.031

-.026

-.022

-.654

-.411

-.655 -.410 -.668 -.414

-.014

-.030 -.049

174.

176.

178.

	AIRFUIL PR	ESSURE DA	TA .9	BLADE RA	oius		NASA-LA	NGLEY AF	1-1 G		78/11/15	•		
	FLI 65 R	UN 25	T1ME 55	583.000		MU=	241 (L P	= .0051	.2 TEMP	(060)= 19	= 0 6.	67.61 F		
		UPPER SU		VALUES								SURFACE (
X / (A Z I MUT		.10	• 2ü	• 35	•50	.70	• 80	•90	•02	.10	.20	• 50	• 70	•90
AZZ 110	• • • •													
180.	084	675	422		305	268	140	.094	040	085	079	084	023	052
182.	112	678	430		311	293	135	•091	016	061	072	077	023	045
184.	135	691	438		307	299	138	.037	.020	056	061	068	016	046
186.	167	704	435		309	292	141	.082	.046	054	050	067	013	047
188.	193	718	442		315	292	143	.073	.083	038	038	058	013	048
190.	226	731	450		321	298	145	•Ü80	.106	021	026	050	013	049
192.	255	746	459		315	289	140	.081	.137	009	024	047	013	049
194.	296	760	468		306	291	136	•0 ö3	.177	004	013	048	004	050
196.	339	775	477		310	290	139	• 0 85	.204	.015	012	049	001	051
198.	376	790	486		316	302	142	.085	.231	.027	.001	039	001	052
200.	411	805	481		322	308	144	.088	.259	.035	.015	039	302	053
202.	449	821	490		313	295	147	.080	.288	.047	•030	027	302	045
204.	488	837	500		318	299	150	.077	•319	.057	.031	027	002	040
206.	539	866	509		324	305	153	.079	.362	.078	.047	027	.011	041
208.	579	889	519		330	311	142	.080	• 3 95	.090	.063	015	.012	042
210.	624	906	529		337	294	141	.082	.416	.102	.066	015	.013	042
212.	679	923	542		343	300	143	.084	•436	.115	• 0 9 7	014	.013	043
214.	722	955	562		347	305	146	.085	. 459	•129	•098	001	.013	044
216.	772	97 8	559		337	311	149	.087	. 495	.153	.100	001	.013	045
218.	−. ხ 32	996	573		343	314	151	.088	• 515	.165	.105	001	.013	046
220.	893	-1.013	592		346	297	154	• 090	.542	.182	.121	.002	.014	046
222.	956	-1.031	589		336	303	156	.071	.580	.194	.126	.014	.014	047
224 •	-1.003	-1.048	598		341	3 0d	139	•093	•599	.197	.142	.014	.014	065
226.	-1.062	-1.066	608		347	313	141	• 0 94	•630	. 217	.144	.019	.014	068
228.	-1.129	-1.105	618		353	318	143	• 096	• 649	.228	.152	.031	.015	032
230.	-1.197	-1.123	628		358	316	145	•097	•659	. 249	.167	.031	.015	0ċ0
232.	-1.245	-1.139	637		363	300	147	•099	.693	.278	.170	•032	.315	051
234.	-1.311	-1.156	646		361	305	149	.100	•710	.288	.172	.039	خ01÷	072
236.	-1.359	-1.172	655		 3₀0	309	149	.102	.719	.292	•175	•050	.016	073
238.	-1.420	-1.167	664		362	313	134	.103	•729	•296	.177	.051	.022	072

F	LT 65 m	RUN 25	TIME 55	583.000		Mu≃ .	241 C	LP= .0	00512	TEMP	P(U60)= 19.	೮ C =	67.61 F		
		UPPER SU	RFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
X/C=	•02	.10	.20	•35	• 50	• 70	. 80	• 90)	.02	.10	.20	•50	•70	.93
AZIMUTH															
240.	-1.475	-1.204	672		339	317	155	.10	04 .	736	.300	.188	.051	.028	054
242.	-1.520	-1.242	680		343	315	157	7 .10	05 •	747	.303	.201	.052	.016	054
244.	-1.564	-1.256	688		347	295	159	• 10	٠ 7	786	.307	.203	•052	.016	055
246.	-1.609	-1.269	695		351	298	155	.10	. 80	797	.310	.206	.053	.016	066
248.	- i.652	-1.281	702		342	301	138	• 10)9 .	804	.313	.208	• 054	.017	374
250.	−1. 668	-1.288	694		334	304	139			311	•316	. 209	.054	.017	057
252.	-1.706	-1.277	691		336	3Có	140	•1:	11 .	818	.318	.211	• 054	.017	053
254.	-1.721	-1.286	696		339	309	141	. 1	12 .	824	.321	.213	•055	.017	008
256.	-1.736	-1.294	701		341	311	142	.10)5 .	830	.324	.214	•055	.017	036
258.	-1.766	-1.302	705		343	313	143	3 •09	93 .	834	•353	.215	• 043	.017	050
260.	-1.750	−1.30 s	70 8		345	314	144	4 .00	93 .	838	.354	.216	•050	.017	065
262•	-1.757	-1.313	711		346	315	144	• • • • • •	94 .	842	•356	.217	•056	.017	053
264.	-1.763	-1.317	713		347	316	145	• 00	94 .	844	•357	.218	•056	.017	C82
266.	-1.767	-1.320	715		348	317	145	• • • •	94 .	846	.358	.218	.056	.018	082
268.	-1.769	-1.322	716		330	317	145	• 00	94 .	847	.358	.219	.056	•018	C82
270.	-1.770	-1.323	716		324	318	145	• • • • •	94 .	848	.358	.219	•05o	.018	071
272.	-1.769	-1.322	716		324	317	145	• 00	94 .	847	.358	.219	•05ó	.013	071
274.	-1.767	-1.334	715		344	317	145	5 •09	94 .	846	.358	.218	.056	.018	082
276.	-1.763	-1.345	713		327	316	145	• • • •	94 .	856	.357	.218	.056	.017	082
278.	-1.770	-1.341	711		322	315	144	• • • • •	34 .	877	•356	.217	.038	•017	056
280.	-1.780	-1.336	709		342	314	144	• • • • •	93 .	874	•355	.236	.037	.017	049
282.	-1.784	-1.345	728		343	313	143	3 • 0	93 .	870	.364	.237	.037	.017	072
284.	-1.803	-1.349	724		341	311	142	2 .10)7.	865	.379	.235	.055	.017	006
286.	-1.806	-1.357	719		339	307	141	L •0	97 .	875	•377	.234	•055	001	058
288.	-1.808	-1.358	714		337	307	146	.00	91 .	887	•386	.253	.054	002	073
290.	-1.838	-1.365	711		334	304	139	• • •	90 .	880	.398	.252	• 054	002	079
292.	-1.878	-1.361	724		331	301	158	•10	06 .	872	.408	.269	• 054	002	078
294 •	-1.083	-1.348	713		328	299	141	.10	J8 .	864	.404	.267	.055	002	077
296.	-1.812	-1.315	684		324	295	135	.10	07 .	817	.372	.261	.070	.016	093
298.	-1.692	-1.235	649		321	292	134	.10	Oó .	760	.326	.232	.067	002	097

	AIRFOIL E	PRESSURE I	. ATA	9 BLADE RA	2010		NAS	A-LAN	GLEY AH-	1G		78/11/1	.5•		
	FLT 55	RUN 25	TIME	55583.000		Ku=	.241	CLP=	.00512	TEM	IP(U60)= 1	9.8 C =	67.61 F		
		UPPER :	SURFACE	CP VALUES								LOWER	SURFACE	CP VALUE	S
X / A ZI MU		.10	• 2 0	.35	• > 0	.70	. 8	0	•90	•02	•10	.20	•50	• 70	•90
300.					314	28	51	11	.104	.698	. 284	•173	•044	004	076
302.				5	291	26.	L1	9.0	.103	.665	•238	.13	.008	022	094
304.				2	287	28	11	06	.102	. 635	•199	• 11	7023	037	075
306.					284	27	31	27	.082	•595	.188	.116	035	034	072
308.				7	279	27	91	47	.081	.577	-185	.114	030	019	052
310.					281	298	51	45	.054	• 56a	.163	.113	016	019	050
312.	896	596	754	1	298	29	81	64	.079	.583	.180	.111	017	019	050
314.	90	2974	454	0	301	31	31	62	.078	.580	.177	•100	023	023	049
316.	89	1 983	155	1	289	308	81	59	.078	.571	.174	.107	033	034	067
318.	69	-1.010	055	2	297	30	31	57	.091	.586	.171	•106	032	034	067
320.	88	-1.014	454	3	292	29	81	51	.090	.580	•168	.104	031	033	002
322.	86	99	754	3	287	29	31	35	.088	.570	.165	.087	038	032	081
324.	854	98	154	2	290	−. 28	71	49	.087	•560	.163	.068	052	032	079
326.	860	965	554	2	304	282	21	46	.085	.550	.160	.066		031	076
328.	64	988	853	9	308	27	71	43	.084	.540	.157	•065		031	077
330.	829	990	054	0	302	2 ô	31	41	.082	.556	.154	.064		030	075
332.	814	988	854	7	296	289	91	44	.031	.545	.151	.063		030	074
334.	799	973	354	2	300	284	41	53	-9 84	.535	.148	.053		036	072
330.	784	974	54	3	302	27	81	50	•0 91	.525	.145	.046		042	076
338.	769	97	553	7	306	28	51	47	.090	.517	.144	.04		041	085
340.	754	4969	953	દ	306	2 8	61	45	.088	.528	.159	.054		040	ú83
342.					311	29	_		.086	.518	.156	.057		040	082
344.	74	e 97			310	29			.085	.512	.153	.056		039	080
346.	752	2972	254	0	304	29			.083	.525	•153	•059		038	079
348.					309	2b			.088	•537	.164	.054		037	077
350.					307	29			.099	.543	.161	.073		037	076
352.					312	29			.102	521	.154	.07		037	074
354.					309	28			.100	.470	.129	.054		035	073
356.					303	28			.098	.420	•099	•029		035 035	071
356.					298	27			.096	.372	• 076	.004		043	071
220.	- 10.			•	• = 70	• - '	. •1	J U	•070	• 312	•010	.00.	005	043	070

-.125

-.128

-.132

-.130

-.129

.092

.091

.090

.090

.092

.250

.257

.254

.252

.250

.039

.031

.030

.030

.030

-.056

-.064

-.065

-.065

-.064

-.106

-.112

-.112

-.116

-.117

FLT 66 PUN22

-.063

-.069

-.071

-.066

-.063

-.068

-.060

-.051

-.057

-.065

50.

52.

54.

56.

59.

-.082

-.054

-.056

-.053

-.043

-.932 -1.028

-.909 -1.017

-.917

-.901

-.889

-1.020

-1.016

-1.009

-.378

-.368

-.363

-.360

-.363

-.314

-.322

-.322

-.319

-.331

AIRENTL PRESSURE DATA .9 BLADE RADIUS

NASA-LANGLEY A4-16

78/11/27.

Ł	LT 46	PUN 22	TIME	55789.850 .		MU=	.245	CLP=	.00754	TFM	P(1160)=	14.5 C	*	58.13 F		
		UPPER SU	URFACE	CP VALUES								LOW	E٩	SURFACE	CP VALHES	
X / C =	•02	.10	.20	• 35	•50	.70	.8	0	.90	.02	.10	.2	0	.50	•70	.90
AZIMUTH							-									
50.	03	5377	-1.00	7	362	335	51	28	.095	. 248	.030	0	64	116	062	065
62.	035	870	-1.00	7	359	332			.098	. 240	.031	0	63	115	062	054
64.	03	5868	-1.00	2	363	330	01	27	.100	.258	•039	0	63	114	062	054
66.	035	868	-1.00	2	357	321	11	??	.103	. 268	.040	0	57	113	065	067
68.	03		99	7	352	309			.109	.278	.048	0	55	113	057	071
70.	023	3858	99	8	351	304	41	90	.112	. 286	.048	0	55	117	071	070
72.	014	4854	99	4	343	296	51	03	.114	.282	.046	0	59	122	073	070
74.	004	847	98	4	339	285	50	9.6	.117	.272	.036	0	66	123	073	067
76.	•00	7838	97	9	343	274	40	94	.120	.267	.027	70	72	127	076	056
78.	.02	5 832	96	9	361	263	30	89	.123	.246	.018	0	79	133	079	047
80.	.043	3821	95	4	378	253	30	86	.127	.234	.007	70	85	139	078	047
82.	• 06	1810	93	7	398	242	20	81	.122	.219	010	0	96	144	078	047
84.	.078	797	92	0	421	232	20	81	.122	·1º7	020	1	05	146	078	047
86.	• 0 8 8	782	91	0	449	228	80	81	.122	•165	037	71	16	150	074	047
88.	.10	757	90	2	480	222	20	77	•121	.143	048	1	24	156	072	047
90.	.116	5743	88	9	511	218	ao	72	.121	.120	065	1	31	158	071	047
92.	.137	2729	68	O	537	218	bC	76	.121	.088	074	1	38	158	072	044
94.	•14	1720	87	4	556	224	40	P1	.122	.066	084	1	44	158	06ª	040
95.	.149	 715	86	8	562	728	B0	P1	•119	.044	102	1	51	158	065	040
98.	•149	7 714	85	?	553	229	90	81	•116	.024	110	1	54	154	065	040
100.	.15	1709	86	2	529	229	90	81	•116	.011	111	1	58	152	062	040
102.	•159	7711	85	9	489	236	50	84	.114	010	121	l1	61	149	059	038
104.	.160	0714	85	5	444	241	10	90	.110	021	130	1	62	147	056	033
106.	•15	9717	85	5	403	24	70	93	•111	032	130	1	62	148	054	033
109.	158	2720	96	0	360	258	B0	99	·111	043	131	1	59	145	050	035
110.	• 15	1723	86	4	318	264	40	99 .		054	132	21	57	139	048	041
112.	•14	3727	86	9	289	271	11	00	.110	054	132	1	58	130	048	039
114.	•134	734	87	4	267	277	71	00	.106	054	133	1	50	126	045	034
116.	•126	745	87	9	244	279	91	01	•107 ·	043	124	1	42	123	042	036
118.	•11	7750	R9	1	236	286	61	05	·105	031	116	1	36	117	039	042

FL	T 46 R	UN 22	TIME 55	789.850		MU= .	245 CL	P= .0075	54 TFMF	(U60)= 1	4.5 C =	58.13 F		
		UPPER SU	REACE CP	VALUES							LOWER	SURFACE	CP VALUES	\$
X/C= AZIMUTH	.02	•10	•20	.35	•50	.70	. 80	•90	•02	•10	•20	•50	• 70	•90
120.	.108	75ª	900		237	293	111	•102	020	116	130	116	736	042
122.	.098	773	907		244	295	112	.102	008	098	124	117	036	042
124.	.081	787	920		259	303	113	.101	.003	098	118	114	036	043
126.	.071	796	931		274	311	114	•097	.015	089	111	104	033	043
128.	.061	811	945		285	314	115	.098	.028	080	110	100	030	043
130•	.042	821	957		301	312	116	•099	.040	071	106	101	030	044
132.	.022	840	967		317	310	117	900.	•055	061	100	098	031	044
134.	.002	859	983		324	313	119	.094	•078	052	094	092	031	045
136.	008	878	997		333	311	120	•095	.091	052	087	091	028	045
138.	019	897	-1.009		346	309	119	•096	.105	042	081	088	025	046
140.	041	910	-1.021		359	313	113	•095	.119	032	078	082	025	046
142.	073	931	-1.012		368	311	115	.091	.134	032	075	076	025	047
144.	085	954	958		363	309	116	•092	.149	022	068	073	026	048
146.	109	976	894		368	308	118	.094	.154	011	065	074	026	048
148.	132	991	808		374	306	120	•095	.180	011	062	075	023	049
150.	157	-1.015	725		379	304	121	.094	.196	000	054	077	019	048
152.	171	-1.031	654		380	302	120	•090	.200	.001	051	078	019	041
154.	197	-1.057	606		375	301	114	.091	.216	.012	047	075	019	042
156.	212	-1.073	579		376	299	116	.090	.220	.013	044	068	020	042
158.	227	-1.090	565		382	303	118	•085	.238	.013	040	065	016	043
160.	255	-1.108	560		383	303	120	.085	.247	.024	032	062	012	044
162.	272	-1.126	559		379	300	122	•079	.261	.037	028	055	012	043
164.	289	-1.144	559		379	299	124	.081	.266	.039	024	052	009	035
166.	320	-1.148	564		381	296	124	.080 .	.285	• 052	019	048	003	036
169.	339	-1.116	568		376	302	117	.074	.291	.054	015	045	003	036
170.	~.358	-1.072	567		376	301	119	.076	.296	.067	006	041	.000	037
172.	392	-1.027	567		383	298	121	.077	•317	• 070	•004	037	.006	038
174.	413	995	572		385	298	123	.077	. 339	.083	.010	029	.006	038
176.	435	986	577		385	294	125	.070	.347	.087	.015	020	.010	039
178.	471	~.977	576		387	299	128	.071	.354	.101	.021	020	.016	040

FLT 66 PUN22

	AIREDIL	PRESSURE D	ο. ΔΤΔ	BLADE RAE	2010		NAS.	A-L AN	GLFY AH-	16		78	/11/2	7.		
	FLT 55	RUN 22	TIME 55	789.850		MU≖	.245	CLP=	•00754	TEM	IP(U60)=	14.5	C =	58.13 F		
		UPPER S	URFACE OP	VALUES									LOWER	SURFACE	CP VALUES	
X / (.10	.20	•35	•50	.70	. 8	0	• იე	•02	•1	0	.20	•50	.70	• 99
AZIMUI	ТН															
180.	49	5959	581		377	299	91	2.8	.073	.377	•10	5	.026	021	.016	041
182.	53	4973	586		369	295	51	19	.074	·386	.10	7	•032	021	.017	041
184.	 56	1977	585		376	300	01	22	.074	.409	.12	2	.038	022	•017	042
186.	60	2 981	591		384	301	11	24	.066	.420	•12	7	• 045	017	.017	043
198.	63	O 985	596		391	295	1	26	.057	.445	.14	3	.051	012	.01 R	043
190.	68	9990	601		394	295	5 1	27	.040	.456	•14	8	•059	007	.018	032
192.	72	2 -1.009	607		393	289	91	17	.070	.482	•15	1	•065	001	.019	032
194.	 75		612		395	295	51	19	•072	.495	•16	8	.073	001	.023	033
196.	80		617		388	289	91	21	.073	.505	.17	4	•075	•003	.031	034
198.	83		616		386	269	91	24	.074	•532	.17	8	.076	.010	.032	034
200.	87		620		394	275	51.	26	.074	•546	.18	1	.083	•006	.032	035
202.	90	5 -1.044	626		396	280	1	29	• 065	.557	•20	0	•093	002	.033	036
204.	94		630		394	286	 1	31	•066	•568	.20	7	.094	.003	.034	036
206.	97		636		401	291	11	32	.067	.579	.21	2	.101	.011	.034	037
208.	-1.01		439		404	297	71	19	.069	.591	.21	6	.112	.011	•035	038
210.	-1.05		645		400	297	71	22	.070	•602	. 22	0	.114	.011	•036	039
212.	-1.09	7 -1.091	648		408	287	71	24	•071	.614	.24	0	•117	.016	•035	039
214.	-1.13		653		410	292	21	26	•073	.525	.24	9	.119	.020	.037	024
216.	-1.16		656		405	298	81	29	.074	•637	• 25	3	.131	.012	.038	024
218.	-1.20	1 -1.112	668		413	303	31	31	.074	.669	•25	8	.154	.012	•03P	025
220.	-1.24		673		414	303	31	33	.061	.444	•26	3	.157	.017	.039	025
222.	-1.26	9 -1.13?	674		408	290	 1	35	•063	.692	•26	7	.160	•027	.040	026
224.	-1.31	-1.151	696		415	295	5 1	19	.064	.710	.27	2	.162	•033	.040	026
226.	-1.33	5 -1.150	697		422	300	1	39	•065	.722	•29	3	.165	.043	.045	027
229.	-1.37	5 -1.167	701		429	305	1	22	.066	.734	•30	4	.168	.044	.058	009
230.	-1.42	1 -1.185	701		431	310	1	24	.067	.745	• 30	9	.171	.045	.059	027
232.	-1.44	7 -1.203	704		422	315	 1	26	•068	.757	.31		.173	.045		028
234.	-1.48	-1.200	703	•	434	314	41	2.8	•069	.768	•31		.176	.046		010
236.	-1.53	3 -1.214	713		450	298	31	29	.070	.779	• 32		•178	.047		009
239.	-1.55	-1.231	722		435	302	21	31	.071	.789	• 32		.181	.047		009

FLT 66 RUN22

78/11/27.

	FLT - 56	RUN 2	2	TIME	55789.	850		MU=	.245	CLP#	.00754	TEM	P(!!60)= 1	4.5 C	* 5	8.13 F		
		(JPP)	ER SU	REACE	CP VAL	UES								Lowe	R SI	URFACE	CP VALUE	•
X /0	c= .02		.10	.20		35	•50	.70	. 8	ი	.00	.02	•10	•20)	•50	•70	.90
ATIMU	тн																	
240.	-1.59	9 -1	. 247	73	1		424	305	51	33	.072	.799	.349	.18	33	•053	.045	009
242.	-1.62	4 -1	. 262	74	0		429	309	91	35	.073	• 600	•361	.19	0	.065	.043	028
244.	-1.66	2 -1	. 276	74	2		434	313	31	36	.073	.818	• 365	.20)6	•066	• 061	011
246.	-1.68	6 -1	. 290	73	6		439	316	51	37	.074	.827	• 369	.20	8 (.067	.047	010
248.	-1.70	3 -1	. 303	74	3		443	319	91	39	.075	.835	•373	.21	0	.067	• 0 4 B	010
250.	-1.73	8 -1	.315	75	0		447	322	21	40	•076	· P43	•376	.21	12	.068	.048	010
252.	-1.76	0 -1	. 304	75	6		451	325	·1	41	.076	.850	.380	.21	4	.069	.048	010
254.	-1.77	3 -1	. 331	76	2		455	327	71	42	•077	.856	•382	.21	6	•069	.049	029
256.	-1.78	5 -1	.344	76	7		458	329	91	43	.077	.862	-385	.21	. 7	.070	.049	032
258.	-1.79	5 -1	. 352	77	2		460	331	11	44	.078	.889	• 405	.21	8	.070	.052	032
260.	-1.80	4 -1	359	77	5 .		463	333	31	45	.078	.005	•417	.22	3	.070	• 059	032
262.	-1.83	1 -1.	365	78	5		464	334	41	45	.078	• 0 0 8	•419	•24	0	.075	.069	032
264.	-1.86	4 -1	. 390	80	3		466	335	5 1	46	•050	.011	•420	.24	1	.089	•069	032
266.	-1.39	6 -1	399	80	5		467	336	51	46	.078	.913	•421	.24	2	•089	• 069	032
269.	-1.92	6 -1	422	81	2		468	337	71	46	.079	.015	.438	.24	+2	.089	. 069	032
270.	-1.95	5 -1	428	82	9		468	337	71	47	.061	.934	•450	.24	2	•090	.069	032
272.	-1.98	1 -1	. 448	83	4		468	337	71	46	.060	.948	. 449	.24	• 5	.089	.069	032
274.	-2.02	5 - 1.	473	85	0		467	336	51	46	•077	.967	• 465	•26	5	•089	•069	032
276.	-2.05	7 -1	496	85	3		466	335	51	46	•079	.978	• 476	.26	1	.089	• 068	032
278.	-2.09	6 -1	. 497	86	7		467	334	1	45	.078	.995	• 490	•26	3	•089	.050	032
280.	-2.12	4 -1.	511	869	9		486	333	31	45	•078	1.005	•500	.27	9	.089	.050	032
282.	-2.14	1 -1	.550	88	6		484	331	1	44	.078	1.019	• 498	.27	78	.088	.049	032
284.	-2.15	6 -1	.573	89	8		481	331	L1	43	.077	1.027	•495	.27	' 6	.088	.049	032
286.	-2.15	2 -1	538	89	6		480	356	51	42	.077	1.039	•491	.27	77	.087	.049	048
288.	-2.15	? -1	602	91	1		497	354	41	41	.092	1.045	• 502	.29	2	•086	.049	053
290•	-2.16	1 -1	.633	92	5		493	351	L1	40	.094	1.054	•511	.29	0	.086	.066	052
292.	-2.15	1 -1	650	93	4		491	348	31	39	.093	1.059	•506	• 2 8	7	.085	• 066	052
294.	-2.14	5 -1	659	92	4		506	344	41	38	•092	1.048	•501	.28	3 4	.084	.065	051
296.	-?.13	4 -1	666	91	5		501	341	11	36	.091	1.037	•482	.28	30	.083	• 064	051
298.	-2.11	0 -1	637	90	ä		496	364	1	53	•090	1.025	• 464	.25	9	.082	.064	050

Δ	IRFOIL PR	ESSURE DA	P. AT	RLADE KAD	ius		NASA-LA	NGLEY AH	1-1 G	7	78/11/27	·		
F	LT 56 R	UN 22	TIME 55	789.850		MU= .	245 CLP	0075	4 TEMP	(U60)= 14.	5 C =	58.13 F		
		Neage 20	REACE CP	VALUES							LOWER	SURFACE C	P VALUE	۲
X/C= AZIMUTH	• 02	•10	•20	.35	•50	•70	• 80	• 90	•02	•10	•20	• 50	•70	• 20
300.	-2.070	-1.611	897		493	358	154	.099	1.012	.458	.250	.081	.065	048
302.	-2.033	-1.590	886		508	354	152	.100	.999	.452	.230	•080	.064	047
304.	-1.992	-1.569	R74		501	349	168	•085	.986	.446	.227	•079	.063	046
306.	-1.954	-1.547	858		494	344	170	•081	.973	.440	•224	•077	•062	731
309.	-1.913	-1.525	846		484	365	168	.084	.950	.434	.225	•061	.044	041
310.	-1.874	-1.502	836		477	361	166	•083	.945	• 428	.222	•059	.043	046
312.	-1.844	-1.493	842		489	355	163	• 082	•930	.421	.218	.044	.047	045
314.	-1.815	-1.491	829		464	348	160	•077	.928	.413	.210	.044	.043	043
316.	-1.785	-1.474	817		476	342	157	.075	.927	.407	.207	•057	.042	017
318.	-1.766	-1.463	R19		487	337	154	.073	•923	.400	.203	• 056	.041	018
320.	-1.746	-1.458	807		479	331	152	.072	•921	.393	•200	•055	.054	023
322.	-1.716	-1.466	809		470	325	149	.071	.917	•395	.196	.054	.055	012
324.	-1.695	-1.467	612		462	319	146	.080	.926	.400	.208	•053	.054	006
326.	-1.675	-1.472	813		453	313	144	•072	• 922	.393	•204	•052	.053	027
328.	-1.653	-1.471	814		461	327	154	•057	.916	.394	.229	.051	•052	038
330.	-1.633	-1.474	813		470	342	156	.076	.922	•398	.211	•050	.038	037
332.	-1.611	-1.472	796		462	338	153	.078	.910	.391	.221	.050	.036	046
334.	-1.581	-1.494	796		451	332	151	.079	•075	.384	.208	.049	.035	05?
335.	-1.541	-1.546	796		457	343	148	.079	. 994	. 384	•203	•036	.034	051
338.	-1.511	-1.613	795		449	339	145	.078	• B 9 B	.388	•199	•035	.033	050
340.	-1.490	-1.685	794		441	333	142	.085	•902	.387	.208	•034	.022	049
342.	-1.478	-1.752	807		432	342	140	.087	.914	.404	.216	.033	.030	057
344.	-1.467	-1.808	833		450	338	137	.085	.938	.424	.225	•033	.031	041
346.	-1.455	-1.653	897		457	332	134	.083	.960	.439	.232	.043	.031	050
348.	-1.443	-1.887	999		463	325	141	•090	•981	.458	.251	.042	.030	066
350.	-1.418	-1.896	-1.031		455	333	134	•099	.973	.449	.248	.042	.029	070
352.	-1.348	-1.882	-1.012		446	330	127	.108	.902	.403	•222	.031	.020	069
354.	-1.239	-1.845	945		438	323	124	.124	.809	.348	.185	.011	.009	058
356.	-1.130	-1.802	841		420	317	121	.120	.733	.300	.136	000	001	966
354.	-1.045	-1.768	741		408	324	127	.102	.689	.274	.111	019	012	051

FLT 66 RIIN22

APPENDIX E. - AIRFOIL COEFFICIENT DATA

The listings of airfoil coefficent data are presented as reduced copies of two-page computer listings. The top of each page segment contains identification as to flight number, run number, and time. The ratio of Reynolds number per unit Mach number is identified as RN/M; blade azimuth is listed in degrees. CN, CC, and CM identify columns of normal-force, chordwise-force, and pitching-moment coefficients, respectively.

The data of Table VI serves as a guide to this set of listings.

AIRFOIL	COEFFI	CIENT D	ATA .	.9 BLADE	RADIUS		NASA-L	ANGLEY	AH-1G	78	3/10/12.	•		
FLT 61	RUN 2	6B TI	ME 55	556.200	RN/M	= 16.3	7 MILLI	אח	ROTOR	R SPEED= 34	0205 F	RAD/SEC		
AZIMUTH	CN	СС	CM	м	AZIMUTH	CN	cc	CM	М	AZIMUTH	1 CN	cc	СМ	м
0.0	.251	003	003	.623	60.0	.251	003	000	.623	120.0	• 355	012	.011	•623
2.0	.245	003	002	•623	62.0	.251	003	000	.623	122.0	.359	013	.011	.623
4.0	.239	002	001	•623	64.0	.252	003	000	.623	124.0	•360	013	.011	•623
6.0	.234	002	001	•623	66.0	.254	004	000	•623	126.0	.362	013	.012	.623
8.0	.231	002	002	.623	68.0	.258	004	.001	.623	128.0	•364	014	.012	•623
10.0	.228	002	002	.623	70.0	.258	004	.001	•623	130.0	•364	014	.012	.623
12.0	•232	002	003	•623	72.0	.259	004	.001	.623	132.0	•365	014	.012	•623
14.0	•232	002	003	.623	74.0	.261	004	.001	.623	134.0	•370	014	.012	.623
16.0	.231	001	003	•623	76.0	.264	004	.001	•623	136.0	•372	015	.012	.623
18.0	.228	002	002	•623	78.0	.268	004	.002	.623	138.0	•373	015	.012	.623
20.0	.227	002	002	.623	80.0	.268	005	•002	.623	140.0	•375	015	.012	.623
22.0	.231	002	003	•623	82.0	.270	005	•002	•623	142.0	•376	015	.011	•623
24.0	.230	002	002	•623	84.0	.276	005	.002	.623	144.0	.371	015	.012	.623
26.0	.230	002	002	•623	86.0	.280	005	•002	•623	146.0	•370	015	.013	.623
28.0	.231	001	003	•623	88.0	.281	005	.003	.623	148.0	• 369	015	.013	.623
30.0	.231	002	002	.623	90.0	.287	006	.004	.623	150.0	•370	015	.013	•623
32.0	.231	002	002	•623	92.0	.290	005	.005	•623	152.0	.373	015	.012	•623
34.0	.231	002	002	•623	94.0	.296	006	.006	.623	154.0	.372	015	.012	.623
36.0	.232	002	002	.623	96.0	.299	007	.006	.623	156.0	•366	015	.013	•623
38.0	.232	002	003	•623	98.0	.300	007	.007	.623	158.0	•366	015	.013	.623
40.0	.232	002	003	•623	100.0	•307	008	.007	.623	160.0	.370	015	.012	.623
42.0	.234	002	002	•623	102.0	.312	008	•009	•623	162.0	•370	015	.012	.623
44.0	.238	002	003	•623	104.0	•323	009	.007	•623	164.0	•367	015	.013	.623
46.0	.240	002	003	•623	106.0	.328	009	.008	.623	166.0	.367	015	.013	.623
48.0	.238	002	003	•623	108.0	•336	010	•008	•623	168.0	•367	015	.013	.623
50.0	.242	002	002	•623	110.0	.337	011	.010	.623	170.0	.367	015	.013	.623
52.0	.244	002	002	•623	112.0	.343	011	.010	•623	172.0	•369	016	.013	.623
54.0	.251	003	002	•623	114.0	.346	012	.010	•623	174.0	•370	016	.013	.623
56.0	.251	003	002	•623	116.0	.347	012	.011	•623	176.0	•372	016	.013	.623
58.0	.250	003	001	•623	118.0	.350	012	.011	.623	178.0	•375	016	.012	•623

AIRFOIL	COEFFI	CIENT DA	TA .	9 BLADE	RADIUS		NASA-L	ANGLEY	AH-1G	78	3/10/12.			
FLT 61	RUN 2	6B TIM	E 555	56.200	RN/M	= 16.3	7 MILLI	אם	ROTOR	R SPEED= 3	4.0205 R	AD/SEC		
AZIMUTH	CN	СС	CM	M	AZIMUTH	CN	cc	СМ	м	AZIMUTI	H CN	cc	CM	м
180.0	.376	016	.012	•623	240.0	.377	015	.011	.623	300.0	•2 92	006	•000	•623
182.0	.378	016	.012	•623	242.0	.370	015	.011	.623	302.0	.292	006	001	.623
184.0	.381	016	.012	•623	244.0	.363	014	.009	.623	304.0	.286	006	000	•623
186.0	.383	016	.012	•623	246.0	•359	014	.009	•623	306.0	.286	006	•000	•623
188.0	.384	016	.012	•623	248.0	•356	013	.007	.623	308.0	.286	005	.001	.623
190.0	.387	016	.012	•623	250.0	.355	012	.207	.623	310.0	.288	005	.000	.623
192.0	.385	017	.012	.623	252.0	•352	012	.006	.623	312.0	.289	005	•000	.623
194.0	.387	016	.012	.623	254.0	.349	011	.006	.623	314.0	.284	006	.001	•623
196.0	.388	016	•012	.623	256.0	.339	010	.006	.623	316.0	.281	005	.001	.623
198.0	.389	016	.012	•623	258.0	.333	010	•006	•523	318.0	.278	005	.001	•623
200.0	.398	017	.011	•623	260.0	•328	010	.006	.623	320.0	.274	005	.000	.623
202.0	.402	017	.011	•623	262.0	.325	009	.005	.623	322.0	.276	005	001	.623
204.0	.401	317	.011	•623	264.0	•325	009	.004	.623	324.0	.275	005	001	•623
206.0	.398	017	.011	•623	266.0	.323	008	•004	.623	326.0	.273	004	002	.623
208.0	.398	017	.011	.623	268.0	.316	008	.003	.623	328.0	.273	004	002	.623
210.0	.402	017	.011	•623	270.0	.311	-•008	.004	.623	330.0	.271	004	002	•623
212.0	.402	018	.011	•623	272.0	.310	008	.004	.623	332.0	.270	004	002	•623
214.0	.403	018	.012	.623	274.0	.307	008	.003	.623	334.0	.266	004	002	.623
216.0	.402	018	.012	.623	276.0	.304	007	.093	•623	336.0	.265	004	001	•623
218.0	•398	018	.013	•623	278.0	.301	007	.003	.623	338.0	.264	004	001	.623
220.0	.401	017	.012	•623	280.0	•299	005	.002	.623	340.0	.260	003	•000	.623
222.0	•393	018	•013	•623	282.0	.298	006	.002	•623	342.0	.259	004	•000	.623
224.0	.391	018	.012	•623	284.0	.298	006	.001	•623	344.0	.261	004	001	•623
226.0	• 390	018	.013	•623	286.0	•297	006	.001	.623	346.0	•260	004	002	.623
228.0	.387	017	.013	•623	288.0	.294	006	.001	.623	348.0	.256	004	001	.623
230.0	.388	017	.013	.623	290.0	•293	005	.001	.623	350.0	.251	003	001	.623
232.0	.387	016	.012	•623	292.0	.288	006	.003	.623	352.0	.247	003	001	.623
234.0	.384	016	.012	•623	294.0	.290	005	.002	.623	354.0	.245	003	001	.623
236.0	.383	016	.012	•623	296.0	•289	006	.001	.623	356.0	.242	003	002	.623
238.0	.380	016	.011	•623	298.0	•291	006	•002	.623	358.0	.237	002	003	.623

AIRFOIL	COEFFI	CIFNT D	ΑΤΑ	.9 BLADE	RADIUS		NASA-L	ANGLEY	AH-1G	78	3/11/14.			
FLT 63	PUN 1	TI	ME 53	718.300	RN/M=	16.81	MILLI	אפ	ROTOR	SPEED= 34	.1966 R	AD/SEC		
AZZMUTH	CN	СС	СМ	M	AZIMUTH	CN	cc	CM	M	AZIMUTH	i CN	cc	CM	М
0.0	.276	001	011	.633	60.0	.153	.004	018	.725	120.0	.171	.002	016	.725
2.0	.274	001	013	•637	62.0	.151	.004	015	•727	122.0	.161	•002	015	.724
4.0	.260	001	011	•641	64.0	•152	.003	014	•729	124.0	•159	•002	015	• 722
6.0	. 248	000	009	.644	66.0	.149	.003	014	.731	126.0	.160	•002	016	.719
6.0	.237	•000	009	•648	68.0	.149	.003	016	.732	128.0	.161	.002	019	.717
10.0	230	•001	010			.148	.003	016	•733	130.0	.162	•002	019	.715
12.0	.222	.001	010	•655	72.0	.155	.004	018	.735	132.0	.162	.002	020	.712
14.0	.215	.001	010			.166	.004	018	•736	134.0	.158	•002	019	.710
16.0	.210	•001	011	•663		.179	.004	016	.737	136.0	•155	•002	018	.707
18.0	.205	.002	011			•191	.004	015	.737	138.0	.153	•002	018	• 705
20.0	.200	.002	012	•670	80.0	.204	.003	014	.738	140.0	.157	•003	019	•702
22.0	.193	•002	013	•673	82.0	.210	.002	012	.739	142.0	.157	•003	018	•699
24.0	.185	•002	013	•677	84.0	.208	.001	010	•739	144.0	.157	•003	019	•696
26.0	.179	•002	012	•680	86.0	.202	.001	007	•739	146.0	•160	•003	019	• 693
28.0	171	.003	012	•683	98.0	.206	.000	900	.740	148.0	.160	.003	019	.690
30.0	.162	.003	011	•686	90.0	.204	000	008	.740	150.0	.163	.003	019	.687
32.0	.161	•003	013	.690	92.0	.206	001	009	.740	152.0	•165	•003	020	.683
34.0	•158	.003	014		94.0	.203	000	009	.739	154.0	.160	.003	018	.680
36.0	.149	•003	013	•696	96.0	.200	000	009	•739	156.0	•160	.003	017	•677
38.0	.144	.003	013	•699	98.0	•198	000	010	.739	158.0	.167	.003	018	.673
40.0	•145	.003	015	.702	100.0	.197	001	011	.73 8	160.0	.171	•003	019	.670
42.0	.140	•103	015	.704	102.0	.193	001	012	•737	162.0	•172	.003	020	•666
44.0	.136	.003	015	•707	104.0	.190	000	012	.737	164.0	.173	.003	018	.663
46.0	.132	.004	015	•710	106.0	.189	000	013	•736	166.0	•173	•003	018	•659
48.0	.131	.004	017	•712	108.0	.188	000	014	.735	168.0	.176	•003	018	.655
50.0	.118	.004	017	.715	110.0	.184	.000	014	.733	170.0	.181	.003	018	.652
52.0	.106	.004	017	•717	112.0	.181	.001	014	•732	172.0	.183	.003	019	.648
54.0	.107	.004	020	•719	114.0	.179	.001	014	.731	174.0	.188	.003	020	.644
56.0	.110	.004	020	•722	116.0	.177	.001	015	.729	176.0	.186	•003	020	.641
58.0	.131	.004	020	.724	118.0	.174	.001	015	•727	178.0	.190	•003	021	-637

FLT 63 RUN1

.615

.618

.622

.626

.629

-.007

-.007

-.008

-.010

-.011

230.0

232.0

234.0

236.0

238.0

.402

.411

.417

.435

-.008

-.009

-.009

-.011

.443 -.011

-.015

-.014

-.013

-.013

-.013

.552

.549

.547

.545

.543

290.0

292.0

294.0

296.0

298.0

.365

.370

.367

.362

.366

-.008

-.007

-.007

-.007

-.007

-.011

-.010

-.007

-.007

-.011

.533

.534

.536

.537

.539

350.0

352.0

354.0

356.0

358.0

.328

.313

.305

.296

.286

-.005

-.004

-.003

-.002

-.002

AIRFOIL	COEFFI	CIENT D	ΑΤΔ .	9 BLADE	RADIUS		NASA-L	ANGLEY	∆H-1G	78	3/11/14	•		
FLT 43	RUN 6	TI	ME 54	157.800	RN/M	= 16.81	MILLI	ON	BULUd	SPEED= 3	.0290	RAD/SEC		
A71MUTH	CN	cc	CM	M	AZIMUTH	CN	СС	CM	м	AZIMUTH	i CN	CC	См	м
0.0	.321	006	003	.630	60.0	.191	.005	012	.786	120.0	.020	.001	034	· 786
2.0	.319	005	004	•636	62.0	.191	.005	012	.789	122.0	.014	•001	033	.783
4.0	.315	005	006	.643	64.0	.189	•005	013	.792	124.0	•009	•001	033	•780
6.0	.305	004	006	.649	66.0	.188	.005	013	.795	126.0	•016	•001	035	•776
8.0	.293	003	005	•655	68.0	.191	.005	014	.797	128.0	.016	.001	034	•77?
10.0	.280	003	005	•661	70.0	.194	•006	014	.799	130.0	.022	•002	034	• 768
12.0	.269	002	004	•668	72.0	.190	.006	014	.801	132.0	•028	•003	033	.764
14.0	.255	002	005	•674	74.0	.188	•006	014	.803	134.0	•034	•003	034	760
16.0	•260 ·	002	004	.680	76.0	.181	•006	014	•805 ·	136.0	•037	•004	035	.755
18.0	.255	001	005	•686	78.0	•173	•006	015	·806	138.0	• 047	•004	036	.751
20.0	.246	001	005	•692	80.0	.164	•006	015	.808	140.0	.049	•004	034	.746
22.0	•23H	001	005	• 598	82.0	.153	.006	016	.809	142.0	.057	• 004	035	.741
24.0	.226	.000	005	.703	84.0	.141	.006	017	.809	144.0	•060	•004	033	•736
26.0	.220	000	005	•709	86.0	•134	•005	020	.810	146.0	.064	•004	033	•731
28.0	.211	.000	005	•715	88.0	.127	•005	020	.810	148.0	•062	•004	031	.726
30.0	.207	.000	005	•720	90.0	.118	.005	021	.810	150.0	•068	•004	030	.720
32.0	.201	.001	005	•726	92.0	.111	.005	022	.810	152.0	.077	• 004	031	.715
34.0	.197	.002	007	.731	94.0	.104	.004	023	.810	154.0	. 083	•004	031	.709
36.0	.192	.002	008	.736	96.0	.101	.004	024	.809	156.0	• 092	•004	030	.703
38.0	.186	.002	008	•741	98.0	•098	.004	025	.809	158.0	.101	•004	031	•698
40.0	.183	.002	009	•746	100.0	.091	.004	026	.808	160.0	•114	•004	031	.692
42.0	.181	.003	010	.751	102.0	.087	.003	027	-806	162.0	.123	•004	030	.686
44.0	.175	.003	010	.755	104.0	.077	.003	028	·805	164.0	.134	• 004	030	•680
46.0	• 169	.004	010	.760	106.0	.059	.003	029	.803	166.0	.145	•004	030	.674
48.0	.172	.004	010	• 764	108.0	•041	•003	030	.801	168.0	•155	•004	030	.668
50.0	•179	.004	011	.768	110.0	•030	.003	030	.799	170.0	.169	•004	031	•662
52.0	.185	.005	011	•772	112.0	.028	.002	031	.797	172.0	.180	•004	030	.655
54.0	.183	.005	011	.776	114.0	.019	.002	031	.795	174.0	.196	• 004	030	.549
55.0	.191	.005	014	•779	116.0	.020	.002	032	.792	176.0	•211	•003	030	.443
58.0	.192	•005	01?	.783	118.0	.022	•002	033	.789	178.0	• 225	•003	029	•637

FET 63 RIINS

AIRFAIL	COEFFI	CIENT D	ΔΤΔ	.9 BLADE	KADIUS		NASA-L	ANGLFY	ΔH-16		78/11/14	•		
FLT 63	8 UN 6	ΤI	ME 54	157.800	RN/M	= 16.8	1 MILLI	ŪИ	RUTUP	SPEED=	34.0290	RAD/SEC		
AZIMUTH	CN	cc	CM	м	AZIMUTH	CN	СС	CM	м	AZIMU	TH CN	СС	C M	W
180.0	.243	•003	030	•630	240.0	.648	039	003	.474	300•	0 .534	028	000	.474
182.0	.264	.002	030	•624	242.0	.656	040	003	.471	302•	0 .517	026	001	.477
184.0	.280	.002	029	.618	244.0	.661	041	004	·468	304.	0 •499	024	001	.481
186.0	.297	.001	027	.611	246.0	.669	042	004	.466	306.	0 .477	022	•000	.484
188.0	.315	.000	027	•005	248.0	.665	042	001	.463	308.	0 .469	020	002	• 4 P P
190.0	.333	001	027	•599	250.0	.653	042	.001	•461	310.	0 •453	018	004	.492
192.0	.350	002	026	•593	252.0	•662	043	000	.459	312.	0 •450	017	007	.496
194.0	.367	003	025	•587	254.0	.657	044	•001	.457	314.	0 •439	015	007	•500
196.0	.380	004	023	•581	256 • C	.659	043	.001	·455	316.	0 .426	014	007	.505
193.0	• 396	006	021	.575	258.0	.649	042	.002	.454	318.	0 .421	013	007	•509
200.0	.408	007	021	•569	260.0	.657	042	002	.453	320.	0 .422	013	008	•514
202.0	.435	009	020	•563	262.0	.647	042	001	•452	322•	0 .411	012	008	•519
204.0	•452	010	020	•557	264.0	•656	042	002	.451	324.	0 •403	012	007	•524
206.0	•462	012	018	•551	266.0	.651	042	001	.450	326.	0 .400	011	008	.529
209.0	.480	014	017	•546	268.0	.657	041	002	.450	328.	0 .400	011	008	.524
210.0	.497	016	016	•540	270.0	•648	041	002	. 450	330.	0 .395	011	007	•540
212.0	•514	018	015	•535	272.0	.645	040	003	.450	332.	0 •391	010	007	.545
214.0	•524	020	013	•529	274.0	•643	041	001	•450	334.	0 •390	010	007	•551
216.0	•541	022	013	•524	276.0	•636	039	001	•451	336.	0 .384	010	004	.557
218.0	• 556	023	012	•519	278.0	.630	040	001	. 452	338.	0 .384	010	005	.562
220.0	•562	025	010	•514	280.0	.627	039	001	.453	340.	0 .378	010	004	•568
222.0	• 5 7 2	027	009	•510	282.0	•620	037	002	.454	342.	0 .383	010	005	•574
224.0	•585	028	010	•505	284.0	.615	036	001	• 455	344.	0 •385	009	005	•580
225.0	.579	032	009	•501	286.0	.611	036	000	•457	346.	0 .378	009	005	•586
228.0	•604	032	006	•496	238.0	•610	035	001	.459	348.	0 .369	009	005	.59?
230.0	•610	033	005	•492	290.0	•598	034	001	.461	350.	0 •362	009	003	.509
232.0	.623	035	004	.488	292.0	•584	033	.001	.463	352.	0 .361	008	005	.605
234.0	•628	036	003	•484	294.0	•576	033	•002	.465	354.	0 •352	008	004	.611
236.0	•630	038	002	.481	296.0	•562	031	• 002	.468	356.	0 • 341	007	005	.617
238.0	.640	039	003	•477	298.0	•549	030	•001	.471	358.	0 •334	007	004	•624

VISEUIF	AIRFOIL COEFFICIENT DATA .9 BLADE FLT 63 RUN 9 TIME 54467.200			RADIUS		NASA-L	ANGLEY	∆H-1G	78	/11/14	•			
FLT 53	RUN 9	TI	MF 544	67.200	RN/	M= 16.8	1 MILLI	ON	RUTUR	R SPEED= 34	.0810	RAD/SEC		,
AZIMUTH	CN	CC	CM	М	AZIMUTH	CN	СС	C۳	м	AZIMUTH	CN	сc	C M	м
0.0	.401	012	003	.631	60.0	.202	•009	011	.831	120.0	067	004	056	.931
2.0	.381	011	002	•639	62.0	.202	.009	013	.835	122.0	086	005	054	.827
4.0	.364	010	003	•647	64.0	.200	•009	014	.839	124.0	101	006	052	.823
6.0	•352	008	004	•655	66.0	.201	•009	014	.947	126.0	108	007	052	.818
8.0	•340	007	005	•663	68.0	.200	•009	015	.845	128.0	112	007	052	.817
10.0	.330	006	003	.671	70.0	.193	•009	015	.848	130.0	111	008	053	.808
12.0	•309	005	002	•679	72.0	.187	•009	015	.851	132.0	107	009	053	.803
14.0	.300	005	004	•687	74.0	.177	•009	016	.853	134.0	086	008	054	.797
16.0	.298	004	005	•695	76.0	•161	.008	016	•855 ·	136.0	051	008	054	.792
18.0	.289	003	005	•702	78.0	.144	•008	016	.857	138.0	028	007	054	.786
20.0	•285	002	005	.710	0.08	.127	.007	017	.859	140.0	019	007	053	.780
22.0	.269	001	003	.718	82.0	•116	.007	019	.860	142.0	009	005	050	•773
24.0	.261	001	003	•725	84.0	.100	•006	020	.861	144.0	001	004	048	•767
26.0	•252	•000	002	•732	86.0	.088	•006	021	•862	146.0	003	003	045	.760
28.0	.244	.001	002	•740	0.86	.074	•006	023	.862	148.0	.011	002	045	.754
30.0	.246	.001	004	•747	90.0	.060	•005	024	.862	150.0	.027	001	045	.747
33.0	.252	.002	005	.754	92.0	.045	.004	025	.852	152.0	.038	•000	043	.740
34.0	.251	.003	006	.760	94.0	.037	•003	028	.862	154.0	•050	.001	042	.732
36.0	.263	.004	006	.767	96.0	•035	•002	032	·861	156.0	.071	•002	041	.725
38.0	.260	.005	007	•773	98.0	.038	•002	037	.860	158.0	•088	•003	040	.71 B
40.0	.258	.005	007	.780	100.0	.044	.001	041	. 959	160.0	.107	.003	038	.710
42.0	.259	.006	800	•786	102.0	.049	.001	045	•85 7	162.0	.130	•004	039	.703
44.0	.251	.006	008	•792	104.0	•045	•000	040	.855	164.0	.142	•004	036	.695
46.0	.245	.007	008	•797	106.0	•039	000	051	.853	166.0	.167	•005	038	.687
48.0	• 243	.008	010	.803	108.0	•030	001	054	.851	168.0	.186	.004	037	.679
50.0	• 236	.008	010	.808	110.0	.016	001	055	.848	170.0	.203	•004	035	.671
52.0	.228	.008	010	.813	112.0	.001	002	056	.845	172.0	.234	•004	035	.663
54.0	.220	.009	011	.818	114.0	013	002	057	.842	174.0	.254	.003	034	.655
56.0	.213	.009	011	.823	116.0	028	003	057	.939	176.0	.278	•002	033	.647
58.0	•206	.009	011	.827	118.0	046	004	057	.835	178.0	• 303	•002	032	.639

FLT 63 RUN9

.623

-.002

.811

-.060

-.000

.435

298.0

•680

-.044

-.003

.427

358.0

.430

-.015

238.0

AIRFOIL	COEFFI	CIENT D	ATA .	.9 BLADE	RADIUS		NASA-L	ANGLEY	AH-16	78	/11/14	•		
FLT 63	RUN 1	0 TI	ME 54!	541.600	RN/	M= 16.7	8 MILLI	ОN	RUTUR	SPEED# 34	.0841	RAD/SEC		
AZIMUTH	CN	СС	CM	м	AZIMUTH	CN	cc	CM	M	HTUMISA	CN	СС	CM	M
0.0	.422	015	002	.631	60.0	•215	.010	010	.847	120.0	082	004	053	.847
2.0	.407	014	002	•639	62.0	.213	.010	011	•85 1	122.0	074	005	057	.842
4.0	.390	012	003	•648	64.0	.217	•010	013	855	124.0	063	006	061	.938
5.0	.370	011	.000	•657	66.0	•211	•010	012	·859	126.0	065	006	064	•833
8.0	•350	010	.001	• 665	68.0	•203	.010	011	•862	128.0	064	007	066	.927
10.0	.342	008	001	•674	70.0	•196	•010	011	- 865	130.0	064	008	068	.822
12.0	.333	007	001	•682	72.0	.177	•009	010	•868	132.0	073	009	067	.816
14.0	.321	006	002	.691	74.0	• 162	• 009	010	•870	134.0	081	009	066	.810
16.0	.310	005	002	•699	76.0	.150	•009	011	• 873	136.0	093	010	063	• P/)4
18.0	.298	004	001	•70E	78.0	•133	•008	011	·875	138.0	099	011	062	•798
20.0	.289	002	.001	•716	80.0	.111	•008	012	• 876	140.0	110	011	060	-791
22.0	.278	002	•000	.724	82.0	• 096	•008	014	.878	142.0	111	011	060	.784
24.0	.272	002	003	.732	84.0	.080	•008	017	.879	144.0	083	011	060	.777
26.0	.261	001	003	.740	86.0	• 064	• 008	020	.880	146.0	051	010	057	•770
28.0	.250	000	003	.748	88.0	•046	•008	023	•880	148.0	023	009	055	•763
30.0	.266	.001	004	.755	90.0	•027	•007	026	.880	150.0	001	007	051	.755
32.0	.270	•002	003	.763	92.0	•013	•006	030	.880	152.0	.007	005	049	.748
34.0	.276	.003	003	.770	94.0	004	•006	032	•BB0	154.0	.016	004	047	.740
36.0	.278	•004	004	•777	96.0	017	.004	034	•8 79	156.0	.030	002	045	•732
38.0	.280	•005	005	.784	98.0	031	.004	034	•878	158.0	• 053	000	044	.724
40.0	.278	•005	006	•791	100.0	050	•003	034	.876	160.0	• 076	.001	045	.716
42.0	.275	• 006	006	•798	102.0	068	•002	032	• 875	162.0	.101	•003	045	.708
44.0	.263	•006	005	.804	104.0	086	.001	031	.873	164.0	.126	•003	043	.700
45.0	.257	.007	005	.810	106.0	099	000	031	.871	166.0	. 149	•003	041	•691
48.0	.252	• 008	006	.816	108.0	115	001	030	•85B	168.0	•172	•004	040	•683
50.0	.245	.008	007	.822	110.0	127	002	-•030	·865	170.0	.199	•004	040	.674
52.0	•240	•009	007	.827	112.0	133	002	032	.862	172.0	.229	•003	038	•665
54.0°	•234	•009	008	.832	114.0	129	003	036	.859	174.0	• 253	•003	037	.657
56.0	.230	.010	009	.837	116.0	112	003	042	.855	176.0	.283	.003	036	.64R
58.0	.220	.010	010	.842	118.0	096	004	048	•851	178.0	•313	•002	037	•639

FLT 53	RUN 1	0 TI	ME 54	541.600	RN/M	= 16.7	'8 MILLI	ไม้ท	RUTUR	SPEED= 34	0841	RAD/SEC		•
AZIMUTH	CN	СС	СМ	M	AZIMUTH	CN	СС	CM	м	AZIMUTH	CN	СС	См	м
180.0	.337	•000	035	•631	240.0	924	087	•006	•415	300.0	•698		•000	.414
182.0	• 368	002	033		242.0	921	084	•003	•410	302.0	•689		001	419
184.0	. 393	003	031	.613	244.0	910	081	•004	406	304.0	•678		003	.424
186.0	428	005	031	•605	246.0	.913	079	000	•403	306.0	•669	045	005	429
189.0	455	007	029	•596	248.0	.915	078	003	399	308.0	•663	044	005	.434
190.0	. 487	010	027	.587	250.0	.919	078	000	396	310.0	•653	042	007	.439
192.0	.516	013	026	•579	252.0	909	078	000	.393	312.0	.642		007	445
194.0	.543	016	025	.570	254.0	.912	079	•001	391	314.0	•622		005	•451
195.0	• 580	019	024	•562	256.0	898	078	000	389	316.0	.609		004	.457
198.0	.599	022	021	•554	258.0	898	077	002	.387	318.0	.608		003	463
200.0	.636	026	024	•545	260.0	.900	076	002	•385	320.0	.599		005	.470
202.0	.658	029	020	.537	262.0	.879	075	.001	.384	322.0	.588	034	004	.477
204.0	.683	033	019	.529	264.0	.881	075	.001	.382	324.0	.582	032	005	484
206.0	•709	037	016	•521	266.0	.867	074	.001	.382	326.0	.573	031	005	491
208.0	.737	042	015	•514	268.0	.878	072	003	•381	328.0	• 553	–	003	498
210.0	.754	046	013	•506	270.0	.856	071	.001	.381	. 330.0	.540		002	.506
212.0	.780	051	010	•499	272.0	.843	070	.000	.381	332.0	.527		001	.513
214.0	. 796	056	005	.491	274.0	.839	070	001	.382	334.0	.519	027	001	.521
215.0	.827	062	006	•484	276.0	.824	068	002	.382	336.0	•513		002	.529
218.0	. 854	068	005	•477	278.0	.817	067	002	•383	338.0	.504		001	•537
220.0	.875	074	.001	•470	280.0	.803	065	•002	.385	340.0	.490		001	.545
222.0	.887	081	.004	.464	282.0	.790	063	.005	.385	342.0	.483		000	.553
224.0	. 899	087	.007	•457	284.0	.784	062	.005	.388	344.0	. 475	021	000	.562
226.0	.914	092	.010	•451	286.0	.780	061	.003	.391	346.0	.471	021	002	•570
228.0	•930	095	.011	•445	288.0	•773	059	002	.393	348.0	.461	020	001	.578
230.0	. 944	097	•009	• 4 4 0	290.0	•737	057	•005	• 396	350.0	.456	019	.000	-587
232.0	• 946	098	.010	•434	292.0	.723	056	.007	.399	352.0	.452	018	000	.596
234.0	• 936	096	.010	•429	294.0	•715	054	.006	•403	354.0		018	.000	.604
235.0	•947	094	• 005	.424	296.0	.713	052	.003	•406	356.0	.447	017	001	.613
238.0	•941	-•090	•006	•419	298.0	.712	050	•000	•410	358.0	.444	016	002	.622

AIRFOIL	COEFFI	CIENT D	ATA	.9 BLADE	RADIUS		NASA-L	ANGLEY	AH-16	7 8	/11/14	•		
FLT 63	RUN 1	1 TI	ME 54	648.800	RN/	M= 16.81	MILLI	010	የባቸባጽ	SPEED= 34	.0717	RAD/SEC		•
AZIMUTH	CN	СС	СМ	м	AZIMUTH	CN	СС	C M	м	AZIMUTH	I CN	сс	См	M
0.0	.412	014	003	.631	60.0	.236	.011	010	.856	120.0	134	003	050	• 856
2.0	•402	012	004	•640	62.0	.234	.011	011	.860	122.0	113	004	053	.851
4.0	• 384	011	002	•649	64.0	•216	.010	009	.854	124.0	092	005	057	.846
5.0	.373	009	004	•658	66.0	.211	.010	011	.858	126.0	084	006	059	.841
8.0	.356	008	004	.667	68.0	.201	.010	013	.871	128.0	075	007	061	.835
10.0	.345	007	003	.676	70.0	•186	.010	013	.875	130.0	068	008	062	.830
12.0	•327	006	002	•685	72.0	.162	.010	015	.878	132.0	066	009	062	.824
14.0	.314	005	003	•694	74.0	.144	.011	017	.880	134.0	058	009	064	.818
16.0	• 306	004	004	•702	76.0	.132	.011	022	.883	136.0	060	010	065	.811
18.0	.301	~.003	006	.711	78.0	.114	.012	026	.885	138.0	071	010	063	.805
20.0	.290	002	005	•720	80.0	•097	.012	030	.886	140.0	086	011	~. 059	.798
22.0	.283	001	004	•728	82.0	•082	.012	034	.888	142.0	084	011	059	•791
24.0	.281	000	004	•736	84.0	•060	.012	037	.889	144.0	051	011	058	.784
26.0	.283	•000	005	•745	86.0	•042	.012	039	.890	146.0	012	010	057	•776
28.0	.288	.001	005	•753	88.0	•026	.011	043	.890	148.0	.021	007	056	• 769
30.0	.291	.002	003	.761	90.0	.011	.010	046	.R90	150.0	.030	005	050	.761
32.0	• 295	.003	004	•768	92.0	005	.009	046	•890	152.0	.038	004	047	.753
34.0	•303	•004	006	•776	94.0	020	.008	046	•890	154.0	.055	002	045	•745
36.0	.302	•004	006	.783	96.0	038	.007	048	.889	156.0	•076	000	046	.737
38.0	• 302	•005	005	•791	98.0	055	.006	047	.888	158.0	.095	.001	044	.728
40.0	• 298	.006	005	.798	100.0	067	.006	049	•886	160.0	.119	• 002	043	.720
42.0	.289	.007	005	.804	102.0	079	.005	050	.885	162.0	.149	•003	044	.711
44.0	.282	•008	005	.811	104.0	094	•004	049	.883	164.0	•172	•004	041	.703
46.0	•278	•008	006	.818	106.0	102	.004	051	.880	166.0	•195	.004	039	.694
48.0	.269	•008	006	.824	108.0	115	.003	051	.878	168.0	.223	.004	037	.685
50.0	.262	•009	006	.830	110.0	126	.002	050	.875	170.0	.249	.003	036	.675
52.0	.253	.010	007	.835	112.0	134	.001	050	.872	172.0	.282	•002	036	.667
54.0	.243	.010	006	.841	114.0	145	.001	049	•B68	174.0	.308	•002	034	•658
56.0	• 243	.010	008	·846	116.0	152	000	047	.864	176.0	.330	.000	032	.649
58.0	• 244	.010	010	.851	118.0	147	001	048	. 860	178.0	• 362	002	031	.640

FLT 63 RUN11

AIRFOIL	COEFFI	CIENT D	ATA .	9 BLADE	RADIUS		NASA-1	ANGLEY	AH-1G	78	/11/14	•		
FLT 63	RUN 1	1 TI	ME 546	48.800	RN/M	= 16.8	1 MILLI	DN	RUTUR	SPEED= 34	.0717	RAD/SEC		
AZIMUTH	CN	СС	CM	М	AZIMUTH	CN	СС	CM	M	AZIMUTH	CN	cc	См	м
180.0	.395	003	030	•631	240.0	.982	102	.006	• 406	300.0	.765	057	003	.406
182.0	.419	005	028	•622	242.0	.980	098	.001	.402	302.0	.749	055	004	.411
184.0	.452	008	027	.613	244.0	.968	095	.000	.39R	304.0	.744	054	005	.416
185.0	• 475	010	025	.604	246.0	.973	091	004	.394	306.0	.738	052	005	.421
188.0	• 504	013	024	•595	248.0	.972	088	003	•390	308.0	.736	052	005	.426
190.0	•538	016	024	•586	250.0	.954	087	.001	.387	310.0	.729	051	005	.432
192.0	.571	019	025	•577	252.0	.943	086	000	.384	312.0	.718	050	005	.438
194.0	.594	023	023	•568	254.0	.953	086	002	• 382	314.0	.707	048	004	.444
196.0	.620	026	022	•560	256.0	.961	085	005	.379	316.0	.692	046	005	•451
198.0	.645	029	020	•551	258.0	.954	085	003	.377	318.0	.684	046	005	.457
200.0	.666	033	019	•542	260.0	.952	084	003	• 375	320.0	•666	043	004	.464
202.0	.696	038	017	•534	262.0	.939	084	004	.374	322.0	.655	042	005	.471
204.0	.715	042	014	•526	264.0	.921	085	00?	.373	324.0	.637	040	002	. 478
205.0	.758	047	016	•517	266.0	.920	034	002	.372	326.0	.614	039	.001	.4R6
208.0	.775	052	013	•509	258.0	.910	082	001	.372	328.0	.610	037	.001	.493
210.0	.800	058	009	•501	270.0	.916	081	004	•371	330.0	.596	037	•002	•501
212.0	.829	064	009	•494	272.0	.900	080	.001	•372	332.0	.590	035	.000	.509
214.0	.855	072	004	.486	274.0	.902	079	002	.372	334.0	.589	034	002	.517
216.0	.876	079	002	.479	276.0	.898	078	005	.373	336.0	•569	032	.001	• 525
218.0	.902	086	.001	.471	278.0	.886	076	003	.374	338.0	.558	031	.002	•533
220.0	.922	093	.003	•464	280.0	.873	074	001	.375	340.0	.547	030	.001	.542
222.0	.940	098	.006	•457	282.0	.866	073	001	•377	342.0	.540	028	.001	•550
224.0	•951	103	.009	.451	284.0	.862	072	001	.379	344.0	.523	027	.002	.550
226.0	.962	107	.010	.444	286.0	.834	069	.002	.381	346.0	.511		.002	.568
228.0	.971	109	.011	.438	288.0	.823	058	.002	.384	348.0	.496		•002	.577
	~ -												4 1-	

.811 -.066

·797 -.065

.790 -.063

.788 -.060

.781 -.059

-002

.002

•002

-.001

-.004

.387

•390

.394

.398

.402

350.0

352.0

354.0

356.0

358.0

FLT 63 PUN11

•586

• 595

.604

.613

.002

.001

.001

.000

-.001

.484 -.022

.481 -.021

.469 -.020

·455 -.019

.441 -.018

230.0

232.0

234.0

236.0

238.3

.967 -.110

.971 -.110

.971 -.108 .970 -.106

.973 -.104

.013 .432

.014 .427

.421

.416

.411

.014

.012

.010

290.0

292.0

294.0

296.0

298.0

AIRFOIL	COEFFI	CIENT D	ATA .	9 BLADE	RADIUS	•	NASA-L	ANGLĒY	AH-1G	78	/11/15	•		
FLT 65	RUN 1	5 TI	ME 544	94.400	RN/M:	= 15.14	MILLI	אם	KOTOR	SPEED= 34	.0711	RAD/SEC		
AZIMUTH	CN	CC	CM	M	A ZI MUTH	CN	CC • 003	CM 006	M • 760	AZIMUTH 120.0	CN .003	CC • 00 5	CM 024	м •766
0.0	.236	002	.301	.621	60.0	.124	.004	007	.769	122.0	000	.005	023	.763
2.0 4.0	.223	001 000	.002 .001	.627 .632	62.0 64.0	.130 .136	.004	007	.771	124.0	.000	.000	023	.760
6.0	.211	.001	•000	•638	66.0	.143	.004	~.007	.774	126.0	.002	.006	023	.756
8.0	.202	•001	000	•644	68.0	.151	.004	007	.776	128.0	004	.006	022	753
10.0	.198	.001	002	•650	70.0	.158	.004	007	.778	130.0	005	.005	022	.749
12.0	.186	.002	002	•656	72.0	.163	.004	007	.760	132.0	006	.005	023	745
14.0	.179	.002	.000	.661	74.0	.161	.004	006	.782	134.0	004	.004	023	.741
16.0	.176	.002	.002	.667	76.0	.156	- 604	007	.783	136.0	001	•004	024	.737
18.0	.177	.002	002	.672	78.0	.144	.004	008	.784	138.0	.002	.004	024	.733
20.0	169	.002	002	.678	80.0	.133	.004	009	.786	140.0	.005	•004	023	.728
22.0	.162	•002	002	.683	82.0	.117	.004	010	.787	142.0	.008	.004	023	.724
24.0	.155	.003	002	.689	84.0	.099	.004	011	.787	144.0	.011	.004	023	.719
26.0	.148	.003	002	.694	86.0	.080	.003	012	.788	146.0	.017	.004	323	.714
28.0	.149	.003	003	•699	88.0	.064	.004	014	.788	148.0	.021	.004	022	.710
30.0	.147	.003	004	.704	90.0	.053	.003	014	.788	150.0	.025	.004	022	.705
32.0	.144	•003	004	.709	92.0	.044	.003	015	. 788	152.0	.030		022	.699
34.0	.143	.003	005	.714	94.0	.039	.003	016	.788	154.0	.034	.004	021	.694
36.0	.134	.003	003	.719	96.0	.032	.003	018	.787	156.0	.041	.005	021	.689
38.0	.134	.003	004	.724	98.0	.022	.333	013	.787	158.0	.053	•004	021	.684
40.0	.137	.003	005	.728	100.0	.018	.003	019	. 786	160.0	.051	.004	018	.678
42.0	.134	.003	005	•733	102.0	.013	.003	019	.785	162.0	.064	.004	019	.673
44.0	.134	.003	005	.737	104.0	.006	•003	020	.783	164.0	.070	.004	020	.667
45.0	.131	.003	005	.741	106.0	.007	.004	021	.782	166.0	.061	.004	021	.661
48.0	.131	.003	006	.745	108.0	.006	.004	021	.780	168.0	.091	•004	021	.656
50.0	.128	.003	006	.749	110.0	.001	.004	021	•778	170.0	.104	.004	021	.65ū
52.0	.125	.003	007	•753	112.0	.003	.005	022	•776	172.0	.110	.004	020	•644
54.0	.125	.003	006	•756	114.0	.003	.005	022	. 774	174.0	.119	.004	020	.638
56.0	.125	.003	006	.760	116.0	.003	.005	023	.771	176.0	.129	•004	019	.633
58.0	. 124	.003	005	.763	118.0	.002	.005	024	•769	178.0	.142	.004	020	•627

AIRFUIL	CuEFFI	CIENT D	ATA .	9 BLADE	RADIUS		NASA-L	ANGLEY	AH-1G	78/	11/15.			
FLT 65	RUN 1	5 11	ME 544	94.400	rn/m	= 16.1	4 MILLI	DИ	ROTOR	R SPEED= 34.	071 1 R	AD/SEC		
AZIMUTH	CN	CC	CM	M	AZIMUTH	CN	СС	CM	М	HTUMISA	CN	cc	CM	М
180.0	.158	.304	021	.621	240.0	.507	030	.012	.476	300.0	.378	017	.010	.475
102.0	.171	.004	019	•615	242.0	.513	030	.012	•473	332.0	.361	014	.013	.479
184.0	.185	.003	016	•609	244.0	.514	031	.013	•470	304.0	.340	013	.014	.482
186.0	.195	د ٥٥٠	016	•603	246.0	.517	031	.012	.468	306.0	.338	012	.012	.485
188.0	.209	.002	016	•598	248.Ú	.516	031	.013	.466	308.0	.339	011	.008	.489
190.0	.229	.002	016	•592	250.0	.515	031	.013	•463	310.0	.329	010	.008	.492
192.0	.244	.001	015	•586	252.0	.516	031	.013	.462	312.0	.315	010	.)12	.496
194.0	.264	.001	015	•580	254.0	117ء	032	.014	•460	314.0	.312	010	.012	.500
196.0	.284	000	015	•575	256.0	.513	032	.015	•458	316.0	.310	009	010	.504
198.0	.293	002	013	•569	258.0	.516	032	.016	•457	318.Û	.306	008	.009	•509
200.0	.305	003	012	•564	260.0	.517	032	.016	•456	320.0	.309	008	.009	•513
202.0	.319	004	011	•558	262.0	.515	032	.016	.455	322.0	.303	008	.009	.518
204.0	.341	005	01i	•553	264.0	.511	032	.017	• 4 54	324.0	. 293	008	.011	•522
205.0	.352	007	009	.547	266.0	.513	031	•015	.454	326.0	.298	007	.009	.527
208.0	.366	008	007	•542	268.0	• 512	032	•016	• 453	328.0	.299	007	.008	•532
210.0	.384	009	007	•537	270.0	.507	032	.016	.453	330.0	. 297	007	.008	.537
212.0	.393	011	005	•532	272.0	.509	031	.015	.453	332.0	.291	007	.009	.542
214.0	. 413	012	005	•527	274.0	.498	030	.016	.454	334.0	. 293	006	• ၁၁ 8	•547
216.0	.423	014	003	•522	276.0	•498	030	•015	•454	336.0	.294	006	.007	• 552
218.0	• 431	016	001	•518	278.0	•488	029	.016	.455	338.0	.295	006	.006	•558
220.0	.443	017	000	•513	280.0	•485	029	.016	•456	340.0	.290	006	.008	•563
222.0	• 453	018	.000	•509	282.0	.493	028	.013	.457	342.0	. 285	006	.008	•569
224.0	• 456	020	.004	•505	284.0	.482	028	.014	.45B	344.0	.283	006	.037	.574
226.0	.467	021	.004	.500	280.0	.479	027	.014	.460	346.0	.281	006	•00 š	•580
228.0	•473	023	.005	•496	288.0	.466	026	•015	.461	348.0	.285	005	. 305	• 586
230.0	• 479	024	.006	•493	290.0	.454	025	.015	.463	350.0	.282	004	.005	.591
232.0	• 492	025	•006	· 489	292.0	.447	024	.012	.465	352.0	.275	004	.304	.597
234.0	.500	026	.007	•485	294.0	.430	022	.015	.468	354.0	.261	003	.004	.603
230.0	•50a	027	.008	.482	296.0	.427	020	.011	.470	356.0	.256	003	.003	.609
238.0	.506	028	.009	•479	298.0	.390	018	.015	.473	358.0	.247	002	.002	•615

FLT 65 RUN15

AIRFOIL	COEFFI	CIENT D	ATA	.9 BLADE	RADIUS		NASA-L	.ANGLEY	AH-1G	7	78/11/15	•		
FLT 65	RUN 1	в ті	ML 54	782.700	RNZ	M= 16.1	5 MILLI	ON	ROTO	R SPEED= 3	14.5916	PAD/SEC		
AZIMUTH	CN	СС	СМ	M	AZIMUTH	CN	СС	CM	м	AZIMUI	TH CN	СС	СМ	м
0.0	.354	010	.003	•630	60.0	·276	•005	003	•777	120.0	.221	.001	014	•777
2.0	.342	008	.001	636	62.0	.273	.006	003	.700	122.0	.212	.001	013	.774
4 • C	.333	006	000	•642	64.0	.282	.034	001	.782	124.0			013	.770
5.0	•324	006	.001	. •648	66.0	• 288	.004	001	.785	126.0	.187	.001	013	•767
8.0	.308	005	.002	•654	68.0	. 294	.004	001	.787	128.0			012	• 764
10.0	•295	004	.001	660	70.0	.297	.003	.000	• 789	130.0	.171	001	012	•760
12.0	•277	003	.001	. •665	72.0	.297	.004	.001	.791	132 • 0	.17	.000	012	.756
14.0	.271	002	000	•671	74.0	.293	.004	.002	•793	134.0	.168	000	011	. 752
16.0	•277	002	001	•6 7 7	76.0	.280	.003	.005	•794	136.0	.170	001	011	.748
18.0	.282	002	.000	.683	78.0	.270	.003	.005	• 796	138.0	.170	001	011	• 743
20.0	.283	003	•003	.688	80.0	.260	.003	.005	• 797	140.0	.175	001	011	.739
22.0	.280	003	.004	•694	82.0	.246	.003	.005	•798	142.0	.174	001	011	.734
24.0	•277	003	•003	•699	84.0	.238	.004	.004	•798	144.0	.168	001	010	.730
26.0	•264	002	.003	.734	86.0	.227	.004	.004	•799	146.0	.167	000	010	.725
28.0	.251	002	•003	.710	88.0	.218	.003	.004	• 799	148.0	.171	000	010	.720
30.0	.234	001	.004	.715	90.0	.210	.003	.003	• 799	150 •0	.177	7000	012	.715
32.0	.224	001	.002		92.0	. 204	.003	.001	• 799	152.0		000	012	.710
34.0	.220	.000	000	.725	94.0	.199	.003	.001	• 799	154.0	.180	000	012	.704
36.0	.209	.001	000	•730	96.0	·196	•003	001	.798	156 • 0	.181	. •000	312	.699
38.0	.201	.001	002		98.0	•196	.003	002	.798	158.0	.184	.000	012	•694
40.0	.145	.001	JC3	•739	100.0	.196	.003	003	•797	160.0	.185	.001	012	•688
42.0	•198	.001	004	• •743	102.0	.196	.003	004	• 796	162.0	.186	.000	012	•683
44.0	.213	.002	006		104.0	.194	.002	005	.794	164.0	.188	.001	012	•677
46.0	.239	•002	008	•752	106.0	.197	•003	008	.793	166 •0	.193	.000	311	.671
48.0	•257	.003	007	.756	108.0	.202	•333	008	.791	168.0	.192	.001	011	•606
50.0	.267	.003	006	•760	110.0	.204	.002	009	•789	170.0	.197	.001	011	•600
52.0	·267	.003	004	• 763	112.0	.209	.002	010	.787	172.0	.205	.001	012	.654
54.0	.274	.004	003	•767	114.0	.217	.002	012	.785	174.0	.212	.000	012	.648
56.0	∙2₺0	.004	002	.770	116.0	.218	.002	012	.782	176.0	.217	.000	012	.642
58.0	.278	.004	002	.774	118.0	.220	.002	013	.780	178.0	.225	.000	011	.636

AIRFOIL COEFFICIENT DATA .9 BLADE			RADIUS	DIUS NASA-LANGLEY AH-1G						78/11/15.				
FLT 65	RUN 1	.8 TI	ME 54	782.700	RN/M	= 16.1	5 MILLI	ממ	ROTOR	SPEED# 34	.5916	RAD/SEC		
AZIMUTH	CN	СС	CM	М	AZIMUTH	CN	СС	СМ	М	AZIMUTH	CN	cc	CM	м
160.0	.233	000	011	.630	240.0	.580	035	.011	.484	300.0	.580	044	.022	.484
182.0	.24C	001	011	624	242.0	.587	036	.012	.481	302.0	.564	036	.314	.487
184.0	.248	001	010	.619	244.0	.605	038	.010	.478	304.0	. 554	034	.009	.490
186.0	.259	001	011		246.0	.569	040	.016	.476	306.0	.549	032	.007	.493
188.0	.266	001	010	.607	248.0	.593	041	.018	. 474	308.0	.538	030	.008	.497
190.0	.273	002	009	.601	250.0	.603	041	.018	.472	310.0	. 526	030	.012	.501
192.0	.284	003	009	•595	252.0	.607	042	.018	.470	312.0	.515	029	.015	.505
194.0	.286	003	008	.590	254.0	.616	042	.017	.468	314.0	.512	028	.016	.509
196.0	.300	003	008	.584	256.0	.623	043	.015	.466	316.0	.510	028	.015	.513
198.0	.311	004	009	•578	258.0	.630	043	.015	.465	318.0	.506	028	.014	.517
200.0	.323	005	009	.573	260.0	.632	043	.016	.404	320.0	. 504	027	.012	.522
202.0	.340	006	010	.567	262.0	.644	043	.012	.463	322.0	.505	027	.011	•526
204.0	.352	006	008	.562	264.0	.647	044	.015	.462	324.0	.496	026	.012	.531
206.0	.367	008	007	•556	266.0	.654	045	.015	.462	326.0	.495	026	.012	.536
208.0	.380	009	007	.551	268.0	.656	046	.016	.461	328.0	.491	025	.011	.541
210.0	.392	010	~.007	.546	270.0	.664	048	.016	.461	330.0	. 492	024	.011	.546
212.0	.408	011	007	.541	272.0	.666	048	.020	.461	332.0	.481	024	.013	.551
214.0	. 416	013	005	•536	274.0	.670	049	.020	.462	334.0	. 476	024	.213	•556
216.0	.435	014	003	.531	276.0	.570	049	.020	.462	336.0	.473	024	.013	.501
218.0	. 447	016	003	•526	278.0	.077	052	.024	.463	336.0	.471	024	.014	.567
220.0	.462	018	002	.522	280.0	.692	052	.022	.464	340.0	. 482	023	.014	.572
222.0	. 479	019	002	.517	282.0	.705	052	.022	.465	342.0	. 497	023	.014	.578
224.0	.488	021	000	.513	284.0	.718	054	.025	.466	344.0	.493	023	.014	.584
226.0	.500	023	.002	.509	286.0	.752	358	.025	.468	346.0	.482	023	.014	.589
228.0	•514	024	.002	.505	288.0	.776	065	.028	.470	348.0	.476	023	.015	.595
230.0	.526	026	.003	.501	290.0	.799	074	.033	.471	350.0	.463	022	.015	.601
232.0	.540	027	.002	. 497	292.0	.797	078	.036	.474	352.0	.436		.013	.607
234.0	.556	029	.003		294.0	.748	073	.036	.476	354.0	. 415		.009	.612
236.0	.565	031	.005		296.0	.679	064	.034	.478	356.0	.387		.007	.618
238.0	.574	033	.007		298.0	.620	054	.028	.481	358.0	.357		.006	•624

FLT 65 RUN18

AIRFOIL	IRFOIL COEFFICIENT DATA .9 BLADE				RADIUS		NASA-L	ANGLEY	AH-1G	7				
FLT 65	RUN 2	11 ق	ME 555	383.000	RN/M	= lò.l	4 MILLI	ON	RUTOR	SPEED= 3	4.2684	RAD/SEC		
HTUMISA	CN	CC	CM	М	AZIMUTH	CN	СС	CM	M	AZIMUTI	H CN	cc	CM	m
0.0	.203	005	.007	•624	60.C	.214	.004	005	.769	120.0	.121	.001	015	•769
2.0	.269	004	•005	.630	62.0	.222	.004	007	.772	122.0	.123	.001	016	•766
4.0	.253	003	•004	.636	64.0	.222	.004	007	.774	124.0	.120	.001	015	• 763
6.0	. 245	002	.002	•642	66.0	.222	•004	007	•777	125.0	.117	.051	015	.759
8.0	.239	001	.001	·047	0.63	.225	.004	007	.779	128.0	•118	•002	016	•756
10.0	.233	001	000	•653	70.0	. 235	.004	007	.731	130.0	.117	•002	016	• 752
12.0	• 224	000	000	•659	72.0	.245	.004	007	.783	132.0		•002	016	•748
14.0	.219	.000	.000	.665	74.0	. 254	.004	006	.785	134.0	.119	•002	016	•744
16.0	.217	.001	001	.670	76.0	.259	.004	ذ00∙−	.786	136.0	.119	.001	015	.740
16.0	.211	.001	001	.676	78∙0	.259	•004	004	.787	138.0	.115	.001	015	.∙73 6
20.0	.203	.001	000	.681	80.0	.256	.004	003	.789	140.0			014	.732
22.0	•192	.001	002	.687	82.0	• 249	.004	003	.789	142.0	.114	.002	015	•727
24.0	.168	.002	003	•692	84.0	.241	.004	003	.790	144.0		•002	015	• 722
26.0	•179	.002	002	•697	86.0	.232	.004	004	.791	146.0	_	•002	013	.718
28.0	.174	.002	001	.703	೮8•0	.225	•004	004	.791	148.0	.120	.001	014	.713
30.0	.175	.002	003	.708	90.0	.218	.003	004	•791	150.0		.002	016	•708
32.0	.166	.002	003	•713	92.0	.213	•003	006	.791	152.0		•002	015	•703
34.0	.166	•002	004	•718	94.0	.210	•C03	007	.791	154.0			013	•697
36.0	.164	.002	004	•722	96.0	.207	.003	009	•790	150.0		.002	012	• 692
38.0	.157	.002	003	•727	98.0	.202	•003	009	.789	158.0	•129	.002	013	.587
40.0	.156	•0ü3	004	.731	100.0	.200	•003	010	.789	160.0	•135	•002	014	•661
42.0	.156	.003	004	• 736	102.0	.198	.003	011	.787	162.0	.140	.002	015	•676
44.0	•150	.003	006	•740	104.0	.198	.003	011	.786	164.0	.144	.002	015	•670
46.0	.145	.003	007	.744	106.0	.193	•005	012	.785	166.0	.148		015	• 665
48.0	.156	.003	008	. 748	108.0	.187	.002	012	.783	158.0	.152	.002	014	•659
50.0	.175	.004	010	•752	110.0	.172	•075	012	.781	170.0	•160	•032	 ე1∂	•653
52.0	.189	.004	010	•756	112.0	.159	.002	013	.779	172.0		.002	015	.648
54.0	.199	.004	008	•755	114.0	·141	•005	014	•777	174.0	.178	.002	014	•642
56.0	.207	.004	007	•763	116.0	• 129	.001	014	.774	176.0		_	014	•636
58.0	.211	.004	005	•766	118.0	.125	.001	014	.772	178.0	.188	•002	012	•630

AIRFOIL	FOIL COEFFICIENT DATA .9 bLADE			RADIUS		NASA-L	ANGLEY	AH-16	7¢/					
FLT 05	RUN 2	5 TI	ME 55!	583.000	PN /M	= 15.l	4 MILLI	אכ	A 01 OF	SPEED= 34.	2684	RAD/SEC		
A ZI MUTH	CN	cc	CM	М	AZIMUTH	CN	cc	CM	М	AZIMUTH	CN	.çc	CM	M
180.0	.195	.001	011	•624	240.0	•540	032	•339	.480	300.0	• 489	033	.021	• 480
182.0	.207	.001	013	.619	242.0	•550	033	.011	•477	302.0	•432	028	.024	• 403
184.0	. 220	.001	013	.613	244.0	•557	035	.013	. 474	304.0	•398	022	.020	•4 £6
186.0	.228	.000	013	.607	246.0	.503	335	.014	.472	305.0	• 386	318	.016	. 489
188.0	.239	.000	012	.601	248.0	•561	037	.017	•470	308.0	•388	017	.010	•493
190.0	•257	000	013	•595	250.0	• 563	038	.016	•467	310.0	•391	015	• 006	•496
192.0	.261	001	010	• 590	252.0	• 565	038	.017	•466	312.0	• 39 7	014	.005	•500
194.0	•267	002	009	.584	254.0	• 56 წ	039	.017	•464	314.0	• 396	014	•004	.504
196.0	.277	003	009	.578	256.0	.580	040	.013	.402	316.0	.385	014	•009	.508
198.0	.293	003	009	.573	258.0	•580	040	•016	•461	318.0	•388	015	.010	•512
200.0	.302	004	009	•567	260.0	.581	039	.017	•460	320.0	.380	015	.013	•517
202.0	•315	005	008	•562	262.0	•588	040	.015	• 459	322.0	• 368	014	.014	•521
204.0	.326	005	009	•556	264.0	.584	040	•01 s	•458	324.0	•359	014	.013	• 526
206.0	. 344	007	009	•551	266.0	.585	040	•01 ង	• 458	326.0	•361	014	.313	•>31
208.0	•360	008	 008	.546	268.0	.580	040	.019	•457	328.0	• 361	014	.012	• 536
210.0	.369	009	006	.541	270.0	•580	040	.018	•457	330.0	.360	013	•312	.541
212.0	•386	010	006	•536	272.0	• 580	040	•31 b	. 457	332.0	•359		.011	•546
214.0	.403	011	006	.531	274.0	•585	040	.019	• 458	334.0	.355		.011	•551
216.0	. 408	013	004	•526	276.0	.580	040	.020	•458	336 · 0	.350		.013	•556
218.0	• 42 C	014	003	•522	278.0	• 578	040	.019	•459	333.0	• 348	012	.313	•562
220.0	•435	016	001	.517	280.0	-588	040	.017	•460	340.0	.351		•312	•567
222.0	. 444	017	.000	•513	282.0	• 589	041	.020	•461	342.0	• 354		.011	•572
224.0	•450	018	.003	.508	284.0	•595	041	.020	• 462	344.0	. 355		.011	∙578
226.0	• 464	020	•005	.504	286.0	.594	041	.020	•464	346.0	• 353		.011	•584
228.0	.488	022	.001	•500	288.0	.595	041	.022	.465	348.0	• 357		.311	•589
230.0	•498	024	.004	•496	290.0	•594	042	.024	• 467	350.0	•358	011	.011	• 595
232.0	. 509	025	.006	• 49 3	292.0	.601	043	• 325	• 469	352.0	• 355	011	.010	.601
234.0	•515	027	.009	•489	294.0	•594	043	.026	•472	354.0	.338	010	.009	•607
236.0	• 524	026	.009	. 485	296.0	• 579	041	.023	•474	356.0	.317	008	.007	.612
238.0	.532	030	.010	. 483	298.0	•542	037	.022	• 477	358.0	.288	006	•007	.610

FLT 65 RUN25

AIREDIL COEFFICIENT DATA .9 BLADE				RADIUS	DIUS NASA-LANGLEY AH-1G 78/11/27.									
FLT 56	RUN 2	i ii	ME 557	189.850	RN 🖊	1= 16.3	7 MILLI	110	50145	SPEED= 35	.2791	RAD/SEC		
AZIMUTH	CM	cc	СM	M	A Z1 MUTH	CN	cc	CM	M	AZIMUTH	i CN	СС	См	M
ວ.າ	.471	024	.007	.646	60.C	.350	•003	003	.798	120.0	.236	•002	005	.798
2.0	• 452	019	• 202	•652	62.0	.349	.003	003	• 801	122.0	.245	•002	005	.795
4.0	•430	016	002	.659	64.0	• 350	•003	003	• ⁹ 04	124.0	. 258	•002	006	.792
5.0	•400	012	003	•665	66.0	•347	.003	001	·807	126.0	.273		008	•78 <u>8</u>
8.0	•381	010	002	•671	68.0	• 342	.003	.002	.809	128.0	.285		009	785
10.0	•371	008	003	•677	70.0	• 33E	.003	•003	•°11	130.0	.295		009	.7R1
12.0	•360	008	003	•683	72.C	.330	•003	•005	· 813	132.0	.309		-•000	.777
14.0	•367	007	004	•689	74.0	•322	•003	• 006	.815	134.0	• 322		010	.773
16.0	•378	007	004	•695	76.0	.317	.003	•005	.817	136.0	•333		010	•7 <u>68</u>
18.0	• 378	007	003	.701	78.0	•315	•003	•004	•818	138.0	. 345		010	.764
20.0	• 370	007	002	.706	0.06	.310	.003	.004	.819	140.0	.357	_	010	.759
22.0	• 359	006	•000	.712	b2.0	•304	•004	•003	• R Z O	142.0	. 366		011	.755
24.0	• 352	005	.002	.718	84.0	•302	•004	•002	• 821	144.0	• 363	_	010	•750
25.0	• 352	004	.001	•723	86.0	.302	•004	001	•921	146.0	• 353		008	.745
28.0	•347	003	•002	•729	38.0	•302	.004	003	.822	148.0	• 342	003	008	.739
30.0	• 346	002	000	•734	90.0	.302	.004	005	•822	150.0	. 334		007	.774
32.0	.347	002	002	•739	92.0	•305	.005	008	•822 ·	152.0	325	005	007	.729
34.0	•356	001	005	•745	94.0	• 308	•005	011	•921	154.0	• 320		006	.723
36.0	• 365	001	006	.750	96.0	.305	.005	013	.921	156.0	• 320	006	005	•71ª
38.0	.376	001	006	• 754	98.0	.300	.004	013	.820	158.0	• 325	007	006	.712
40.0	•381	001	005	• 759	100.0	.291	.004	012	• 8 J G	160.0	• 332	007	006	.705
42.0	•390	000	005	.764	102.0	.278	.034	012	. • 918	162.0	.338		006	.701
44.0	• 392	000	005	•768	104.0	•264	.004	011	·817	164.0	.345		007	.695
45.0	• 392	• ၁၀၀	004	•773	106.0	•251	•003	010	.815	166.0	• 353		006	•68Q
48.0	• 380	.001	002	•777	108.0	.241	•003	00P	•613	168.0	• 353	009	007	.683
50.0	•370	.001	002	.781	110.0	• 230	•003	006	•811	170.0	355	008	008	.677
52.0	•361	•002	002	·785	112.0	.226	.003	006	.809	172.0	.360	008	7.009	.671
54.0	.359	.002	003	.788	114.0	.225	.002	006	.807	174.0	. 367	007	009	.465
56.0	• 355	.002	003	• 792	116.0	.224	.002	004	.804	175.0	• 374	007	010	.659
59.3	.352	•003	003	•795	118.0	• 229	•002	004	.901	178.0	.379	008	011	• 553

AZIMUTH	CN	CC	См	м	AZIMUTH	CN	СС	CM	м	AZIMUTH	CN	СС	Ç M	M
180.0	.379	008	010	.546	240.0	.607	035	001	.494	300.0	•753	052	.008	.494
182.0	·380	009	008	.640	242.0	.617	036	.001	.491	302.0	.746	051	.007	.497
184.0	.388	009	008	.634	244.0	.631	037	002	.480	304.0	.739	049	.005	.501
186.0	• 394	010	009	.628	246.0	.634	038	001	.486	306.0	.731	048	.003	.504
168.0	.409	010	008	.522	248.0	.641	038	001	. 484	308.0	.712	046	.005	.50R
190.0	. 420	012	009	.616	250.0	.647	039	001	.4R1	310.0	.700	044	•006	.512
192.0	.427	013	007	.610	252.0	.652	040	001	.479	312.0	.696	044	•005	.516
194.0	. 435	013	007	•604	254.0	. 654	040	•901	.478	314.0	.688	043	.005	.520
195.0	. 440	015	007	.598	256.0	.658	041	.001	.476	316.0	.688	042	.002	.524
198.0	. 444	016	005	•592	258.0	.665	041	.002	.475	318.0	.687	042	.001	.529
200.0	. 452	016	005	•586	- 260.0	.673	041	.001	.473	320.0	.679	041	.001	.533
202.0	. 459	017	005	.581	262.0	•682	042	•000	.473	322.0	•677	041	.001	•53B
204.0	465	018	005	.575	264.0	.697	043	001	.472	324.0	.675	041	.002	.543
206.0	. 476	018	005	•570	266.0	•698	044	.001	.471	326.0	.666	040	.005	.548
208.0	. 482	020	004	.564	268.0	.705	045	•002	.471	328.0	•672	039	•003	.553
210.0	. 485	021	004	•559	270.0	.714	045	.001	.471	330.0	.670	038	.004	.559
212.0	.495	022	003	.553	272.0	.719	046	.001	.471	332.0	•660	038	.006	.564
214.0	• 507	023	004	•548	274.0	.729	048	.004	.471	334.0	.650	038	.007	.569
216.0	• 508	023	304	.543	276.0	• 734	049	•006	.472	336.0	.650	038	.008	.575
218.0	• 523	024	004	.538	278.0	.739	050	.008	.472	338.0	.650	039	.009	.580
220.0	•533	025	004	.534	280.0	• 752	051	• 0.08	.473	340.0	.650	040	.013	.586
222.0	•537	026	003	•529	282.0	•758	052	•009	.475	347.0	•657	041	.015	.592
224.0	• 547	027	002	•524	284.0	•762	053	.010	.476	344.0	.675	041	•016	•598
226.0	•56?	027	004	•520	286.0	.760	053	.010	.47P	346.0	.699	041	.016	.604
228.9	.574	029	006	.516	288.0	.771	053	.011	.479	348.0	.727	041	.018	.610
230.0	.577	030	004	.512	290.0	.778	054	.011	.481	350.0	.726	041	.019	. 616
232.0	• 579	031	003	•508	292.0	•778	054	.012	.484	352.0	.696	040	.020	.622
234.0	•590	032	005	.504	294.0	.780	054	.011	·486	354.0	.646	038	.021	. 628
236.0	.601	033	004	.501	296.0	•773	054	.011	.488	356.0	•589	036	.020	.634
238.0	•601	034	002	.498	. 298.0	•764	053	•00¤	•491	358.0	•548	033	•017	•640

APPENDIX F. - THEORETICAL AIRFOIL PRESSURE DISTRIBUTIONS

Theoretical distributions of airfoil pressure coefficients were generated by utilizing the transonic-flow analysis of reference 35. This computer program uses a relaxation scheme around a conformally mapped representation of a "fluid" airfoil. That airfoil consists of a specified geometric shape and turbulent boundary layer that grows from a specified chordwise location on each airfoil surface. The program can predict transonic flow patterns and effects but cannot handle either separation or laminar flow. More details about the program are available in references 40 and 41.

Four primary input parameters were required for each flow condition. The Mach number was the value for the flow component normal to the blade leading edge. The normal-force coefficient of the flight data was input as a close approximation of lift coefficient. The two transition points (specifying the start of the boundary layer) were determined based on the estimates plotted in figure 55. Unless otherwise specified, the input airfoil coordinates were the set of reference 4 modified for the trailing-edge truncation.

REFERENCES

- Dadone, Leo V.; and Fukushima, Toshiyuki: A Review of Design Objectives for Advanced Helicopter Rotor Airfoils. Paper presented at Am. Helicopter Soc. Symp. on Helicopter Aero. Efficiency (Hartford, CT), March 1975.
- Paglino, Vincent M.; and Clark, David R.: A Study of the Potential Benefits of Advanced Airfoils for Helicopter Applications. Paper presented at Am. Helicopter Soc. Symp. on Helicopter Aero. Efficiency (Hartford, CT), March 1975.
- 3. Reichert, G; and Wagner, S. N.: Some Aspects of the Design of Rotor-Airfoil Shapes. Paper No. 14, AGARD CP-111, September 1972.
- 4. Kemp, Larry D.: An Analytical Study for the Design of Advanced Rotor Airfoils. NASA CR-112297, 1973.
- 5. Bingham, Gene J.: An Analytical Evaluation of Airfoil Sections for Helicopter Rotor Applications. NASA D-7796, 1975.
- 6. Sloof, J. W.; Wortmann, F. X. and Duhon, J. M.: The Development of Transonic Airfoils for Helicopters. Preprint 901, 31st Annual Nat. Forum of the Am. Helicopter Soc., May 1975.
- 7. Renand, J.; and Nibelle, F.: Effects of the Airfoil Choice on Rotor Aerodynamic Behavior in Forward Flight. Paper No. 23; Second European Rotorcraft and Powered Lift Aircraft Conference. (Buckeberg, F. R. G.), September 1976.
- 8. Thibert, J. J.; and Gallot, J.: A New Airfoil Family for Rotor Blades. Paper No. 41, Third European Rotorcraft and Powered Lift Aircraft Forum (Axi-en-Provence, France), September 1977.
- 9. Blackwell, James A., Jr.; and Hinson, Bobby L.: The Aerodynamic Design of an Advanced Rotor Airfoil. NASA CR-2961, 1978.
- 10. Dadone, L. V.: Design and Analytical Study of a Rotor Airfoil. NASA CR-2988, 1978.
- 11. Dadone, Leo: Rotor Airfoil Optimization: An Understanding of the Physical Limits. Preprint 78-04, 34th Annual Nat. Forum of the Am. Helicopter Soc., May 1978.
- 12. Ward, John F.; and Young, Warren H., Jr.: A Summary of Current Research in Rotor Unsteady Aerodynamics With Emphasis on Work at Langley Research Center. Paper No. 10, AGARD CP-111, September 1972.
- 13. Landgrebe, Anton J.; Moffitt, Robert C.; and Clark, David R.: Aerodynamic Technology for Advanced Rotorcraft Part II. J. Am. Helicopter Soc., vol. 22, no. 3, July 1977, pp. 2-9

- 14. Pearcey, H. H.; Wilby, P. G.; Riley, M. J.; and Brotherhood, P.: The Derivation and Verification of a New Rotor Profile on the Basis of Flow Phenomena; Aerofoil Research and Flight Tests. Paper No. 16, AGARD CP-111, September 1972.
- 15. Riley, M. J.; and Brotherhood, P.: Comparative Performance Measurements of Two Helicopter Blade Profiles in Hovering Flight. R.&M. No. 3792, British A.R.C., 1977.
- 16. Morris, Charles E. K., Jr.: Rotor-Airfoil Flight Investigation: Preliminary Results. Preprint 78-05, 34th Annual Nat. Forum of the Am. Helicopter Society, May 1978.
- 17. Morris, Charles E. K., Jr.: A Flight Investigation of Rotor Airfoils. Paper No. 10, Advanced Technology Airfoil Research, Vol. II. NASA CP 2046, March 1978, pp. 141-154.
- 18. Morris, Charles E. K., Jr.; Tomaine, Robert L.; and Stevens, Dariene D.: A Flight Investigation of Performance and Loads for a Helicopter With NLR-1T Main-Rotor Blade Sections. NASA TM 80165, 1979.
- 19. Morris, Charles E. K., Jr.: A Flight Investigation of Basic Performance Characteristics of a Teetering-Rotor Attack Helicopter. NASA TM 80112, 1979.
- 20. Dadone, Leo: Two-Dimensional Wind-Tunnel Test of an Oscillating Rotor Airfoil, Vols. I and II. NASA CR-2914 and NASA CR-2915, 1977.
- 21. Noonan, Kevin W.; and Bingham, Gene J.: Two-Dimensional Aerodynamic Characteristics of Several Rotorcraft Airfoils at Mach Numbers From 0.35 to 0.90. NASA TM X-73990, 1977.
- 22. Brotherhood, P.; and Riley, M. J.: Flight Experiments on Aerodynamic Features Affecting Helicopter Blade Design. Paper No. 17, Third European Rotorcraft and Powered Lift Aircraft Forum (Aix-en-Provence, France), September 1977.
- 23. Shockey, Gerald A.; Williamson, Joe W.; and Cox, Charles R.: AH-1G Helicopter Aerodynamic and Structural Loads Survey. USAAMRDL TR-76-39, Feb. 1977.
- 24. Shockey, G. A.; Williamson, J. W. and Cox, C. R.: Helicopter Aerodynamics and Structural Loads Survey. Preprint 1060. 32nd Annual Nat. Forum of the Am. Helicopter Soc., May 1976.
- 25. Cox, C. R.: Helicopter Rotor Aerodynamic and Aeroacoustic Environments. Preprint 77-1338. 4th Aeroacoustic Conference of the AIAA. October 1977.
- 26. Scheiman, James; and Kelley, Henry L.: Comparison of Flight-Measured Helicopter Rotor-Blade Chordwise Pressure Distributions With Static Two-Dimensional Airfoil Distributions. NASA TN D-3936, 1967.

- 27. Bowden, T. H.; and Shockey, G. A.: A Wind Tunnel Investigation of the Aerodynamic Environment of a Full-Scale Helicopter Rotor in Forward Flight. USAAVLABS TR 70-35, July 1970.
- 28. Dadone, L. V.; and Fukushima, T.: Investigation of Rotor Blade Element Airloads for a Teetering Rotor in the Blade Stall Regime. NASA CR-137534, 1974.
- 29. Boerstoel, J. W.; and Huizing, G. H.: Transonic Shock-Free Airfoil Design by an Analytical Hodograph Method. AIAA Paper 74-539, 1974.
- 30. Knight, Vernie H., Jr.; Haywood, William S., Jr.; and Williams, Milton L.: A Rotor-Mounted Digital Instrumentation System for Helicopter Blade Flight Research Measurements. NASA TP 1146, 1978.
- 31. James, C. A.: A Suite of Computer Programs for the Automatic Analysis of Helicopter Rotor Blade Pressure Measurements. Tech. Memo. FS 47, British R.A.E., October 1975.
- 32. Scheiman, James; and Ludi, LeRoy, H.: Qualitative Evaluation of Effects of Helicopter Rotor-Blade Tip Vortex on Blade Airloads. NASA TN D-1637, 1963.
- 33. Ward, John F.: Helicopter Rotor Periodic Differential Pressures and Structural Response Measured in Transient and Steady-State Maneuvers. J. Am. Helicopter Soc., volume 16, number 1, January 1971. pp. 16-25.
- 34. Brotherhood, P.: Some Aerodynamic Measurements in Helicopter Flight Research. Aeronautical Journal, October 1975, pp. 450-465.
- 35. Bauer, Frances; Garabedian, Paul; and Korn, David: Supercritical Wing Sections III. Lecture Notes in Economics and Mathematical Systems, vol. 150, Springer-Verlag (New York), 1977.
- 36. Monnerie, Bernard; and Philippe, Jean-Jacques: Aerodynamic Problems of Helicopter Blade Tips. Paper No. 40, Third European Rotorcraft and Powered Lift Aircraft Forum (Aix-en-Provence, France), September 1977.
- 37. Arieli, Rimon; and Tauber, Michael E.: Computation of Subsonic and Transonic Flow About Lifting Rotor Blades. AIAA Paper No. 79-1667, August 1979.
- 38. Smetana, Frederick O.; Summey, Delbert C.; Smith, Neill S.; and Carden, Ronald K.: Light Aircraft Lift, Drag and Moment Prediction. A Review and Analysis. NASA CR-2523, 1975.
- 39. Markel, John D.: Z-Transform Applications Using Digital Computers. Electro-Technology, vol. 82, no. 6, December 1968, pp. 21-36.
- 40. Garabedian, P. R. Transonic Flow Theory of Airfoils and Wings. Advances in Engineering Science. Vol. 4. NASA CP-2001, 1976, pp. 1349-1358.

41. Bauer, Frances; Garabedian, Paul; Korn, David; and Jameson, Antony: Supercritical Wing Sections II. Lecture Notes in Economics and Mathematical Systems, Vol. 108, Springer-Verlag (New York), 1975.

TABLE I.- BASIC AIRCRAFT CHARACTERISTICS

Empty weight, N (lb.)
Wing: Airfoil Root
Root, m (ft)
Horizontal tail: Airfoil inverted Clark Y Semispan (panel only), m (ft) 0.78 (2.54) Area (panels only), m ² (ft ²) 0.95 (10.2) Chord:
Root, m (ft)
Vertical tail: Airfoil Root Tip cambered 15% thick Span (above tail boom) m (ft) Area m² (ft²) Chord:
Root, m (ft)

TABLE I.- Concluded

Main rotor:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Width, m (ft)
Tail rotor:
Number of blades
.25 tail-rotor radius NACA 0018
tip cambered, 8% thick
Radius
Chord, m (ft) 0.292 (0.96)
Taper
Solidity
Twist, deq
Equivalent root cut-out
Nominal tip speed, m/sec (ft/sec)
Blade pitch range, deg^3 14.7, +15.3
Hub precone angle, deg
Pitch-flap coupling (δ_3) , deg

TABLE II.- COORDINATES OF NLR-1T AIRFOIL

TABLE III.- PADS-PCM DATA SYSTEM CHARACTERISTICS

Parameter	System Accuracy (a)	Digital Channel Precision	Filter (b) Frequency
Aerodynamic Flight State:			
dynamic pressure - regular - sensitive static pressure - regular - sensitive angle of attack angle of sideslip total temperature	70 Pa 14 Pa 500 Pa 70 Pa .10 .10	14 Pa 3 Pa 200 Pa 40 Pa .180 .180	1 Hz —— 10 Hz 10 Hz ——
Inertial Flight State:			
roll attitude pitch attitude heading angular rates longitudinal acceleration lateral acceleration normal acceleration	.50 .50 3.00 .01 rad/sec .001 g .001 g .005 g	.36 ⁰ .18 ⁰ .72 ⁰ .044 rad/sec .004 g .003 g .009 g	10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz
Control Positions:			
lateral servo longitudinal servo collective servo horizontal fin pedal position tail-rotor collective	.1° .1° .1° .1° .1° .1° .1°	.04 ⁰ .07 ⁰ .05 ⁰ .02 ⁰ .07 ⁰ .07 ⁰	10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz
Rotor/Engine Parameters:			·
main-rotor speed - regular -sensitive main-rotor azimuth engine torque pressure fuel quantity	.5% .1% 10 3 kPa 60	.23% .05% 22.5 ⁰ 1.3 kPa 40	

Notes: a - accuracy of analog signal before digitization

b - frequency at 3 db roll-off for constant delay, 4-pole Bessel Filters

TABLE IV. CHARACTERISTICS OF SELECTED ROTOR-DATA PARAMETERS

Parameter	Analog System Accuracy	Digital Channel Precision	Maximum Final-Data Error	
Q	122 N-m	158 N-m	.60 kN-m	
Тb	-	.40° C	1.0° C	
β _S	.10	.11 ⁰	.3 ⁰	
θ _S	.10	.23 ⁰	.80	
ψ	-	1.410	.3 ⁰	

TABLE V. - CHARACTERISTICS OF BLADE PRESSURE-DATA SYSTEM

Surface		fice	a	Maximum	Data reduction parameters ^C					
	<u> </u>	ation	Precision kPa	Final- Data	f _{3db}	Δm 1,a Pa	∆m 1,b Pa	Δp _{o,a}	^{Δp} o,b	$^{\Delta\psi}$ d
	<u>x</u>	y c		Error kPa	Hz	counts-C	counts-C	Pa/C	Pa/C	deg
Upper	.02	.0215	.408	2.04	130	.21	.21	75	22	-2.35
	.10	.0449	.392	1.73	112	.43	.49	90	26	-2.71
	.20	.0525	.330	1.43	80	.32	.34	106	140	-3.73
	.50	.0536	.339	1.48	173	19	21	52	46	-1.77
	.70	.0438	.367	1.20	164	01	.05	-27	-26	-1.87
	.80	.0319	.360	1.07	188	21	19	61	-42	-1.63
	.90	.0157	.288	1.11	178	.23	.25	103	112	-1.73
Lower	.02	0114	.488	1.79	132	.32	.36	67	19	-2.31
	.10	0212	.396	1.59	128	.22	.55	85	31	-2.38
	.20	0272	.303	1.63	182	.05	.60	78	91	-1.69
	.50	0309	.272	1.17	160	.19	.18	35	3	-1.92
	.70	0247	.280	1.13	159	.10	.10	11	-34	-1.93
	.90	0142	.320	1.19	188	.03	.08	20	-44	-1.63

Notes: a - increment per unit digital input

b - highly conservative value for absolute value of single data point

c - $\Delta_{p_t} = (\Delta_{1}\Delta_{0} + \Delta_{p_0})(T_b - 23.9)$

TABLE VI.- CATALOG OF FLIGHT TEST-POINT CONDITIONS

Flight condition	Level flight -reference	Hover	Left turn	Right turn	Pull-up
Flight no Run no.	65-15	61-26B	65-18	65-25	66-22
μ	0.243	0.0	0.241	0.241	0.245
V, knots	107.9	0.0	108.9	107.5	112.5
M _h	0.69	0.69	0.70	0.69	0.71
C _L '	0.0037	0.0034	0.0062	0.0051	0.0075
n _Z , g units	0.99	1.00	1.70	1.40	2.05
α _f , degrees	-2.8		3.9	-0.7	8.6
Φ _f , degrees	-0.4	-0.8	-48.0	44.9	-0.5
θ _f , degrees	-3.8	0.0	-5.4	-4.0	-2.5
P _f , rad/sec	0.00	0.00	-0.03	0.03	0.02
4 _f , rad/sec	0.00	0.00	0.18	0.12	0.28
r _f ,rad/sec	0.00	-0.01	-0.14	0.13	0.00
P _f , rad/sec ²	0.00	-0.01	0.02	0.02	-0.09
q _f , rad/sec ²	-0.01	-0.01	-0.03	0.03	-0.10
r _f , rad/sec ²	0.00	0.02	-0.04	-0.03	-0.04
c _Q	0.00022	0.00022	0.0014	0.00017	0.00009
A _{Os} , deyrees	8.5	8.1	7.9	8.1	7.1
A _{1s} , degrees	-0.1	-1.5	-0.3	-0.2	-0.2
B _{ls} , degrees	5.0	-0.2	2.5	3.0	2.1
^a ls, degrees	-1.4	0.1	0.1	-0.1	-0.2
b _{ls} , deyrees	0.1	-0.6	1.1	0.6	1.0
Ω, rad/sec	34.07	34.02	34.59	34.27	35.28
a, m/sec	331.7	329.9	331.7	331.8	329.9

TABLE VI.- Concluded

Flight condition	Level flight - speed sweep							
Flight no Run no.	63-1	63-6	63-9	63-10	63-11			
μ	0.151	0.257	0.330	0.356	0.370			
V, knots	67.5	114.2	146.4	158.3	164.5			
Мh	0.70	0.70	0.70	0.70	0.70			
c _L '	0.0042	0.0043	0.0044	0.0042	0.0043			
n _Z , g units	0.98	0.98	1.00	0.97	1.00			
α _f , degrees	0.4	-2•9	-4.7	-6.1	-6.5			
φ _f , degrees	0.0	-0.7	-0.4	-1.3	0.1			
θ _f , degrees	-1.5	-3.1	-6.1	-7.4	7.6			
P _f , rad/sec	0.00	0.00	0.00	-0.01	0.01			
q _f rad/sec	0.00	0.00	0.01	0.00	0.00			
r _f ,rad/sec	0.00	0.00	0.00	0.00	0.00			
ρ _f , rad/sec ²	0.01	0.00	0.04	-0.05	-0.11			
4 _f , rad/sec ²	0.00	-0.01	0.00	0.01	0.02			
r _f , rad/sec ²	0.02	0.01	-0.02	0.02	0.01			
c _Q	0.00015	0.00024	0.00035	0.00042	0.00047			
A _{Os} , degrees	7.5	10.1	13.0	14.7	15.4			
A _{1s} , degrees	-1.0	-0.3	-0.3	-1.1	-0.7			
B _{1s} , degrees	2.0	5.9	8.9	10.6	11.2			
a _{ls} , degrees	0.0	-1.2	-1.8	-2.4	-2.4			
b _{ls} , degrees	0.4	0.0	-0.6	-1.4	-1.3			
Ω, rad/sec	34.20	34.03	34.08	34.08	34.07			
ā, m/sec	326.4	326.4	326.4	326.6	326.4			

Figure 1.- Aircraft schematic and conventions used to define senses of axes, angles, and accelerations.

Figure 2.- Three-view scale drawing of aircraft. All dimensions are given in meters.

Figure 3.- Flight test vehicle.

Figure 4.- Geometric characteristics of NLR-1T airfoil.

Figure 4.- Concluded.

Figure 5.- Comparison of design and measured blade-section coordinates of 0.9R.

Figure 6.- Data canister and hub instrumentation.

Figure 7.- Exploded-view drawing of typical pressure-transducer installation.

Figure 8.- Typical components for pressure-transducer assembly with transducers removed.

(a) Typical mid-chord cover plate.

(b) Blade upper surface.

Figure 9.- Blade surface with pressure transducers installed.

Figure 10.- Lower surface of blade tip prior to installation of pressure data system.

(a) Read-out gauge and fixture interior surfaces.

(b) Fixture installed on model blade section.

Figure 11.- Blade-section pressure fixture for preflight calibration.

(a) μ = 0.151 Figure 12.- Histories of uncorrected, local blade pressures and rotor azimuth for level flight (Flight 63 of Appendices D and E). r/R = 0.9

Figure 12.- Continued.

Time, sec

(c) $\mu = 0.370$

Figure 12.- Concluded.

Figure 13.- Comparison of blade section data for several rotor revolutions at one test point. C $_{L}$ ' = 0.0043; μ = 0.37; r/R = 0.9.

Figure 14.- Histories of uncorrected, local blade pressures and rotor azimuth for a descending left turn. μ = 0.224; C_L ' = 0.0086; r/R = 0.9.

Figure 15.- Histories of uncorrected, local blade pressures and rotor azimuth for a symmetrical pull-up (Flight 66, run 22 of Appendices D and E). μ = 0.24; C_L ' = 0.0075; r/R = 0.9.

Figure 16.- Azimuthwise distribution of blade-section aerodynamic loads for three tip-speed ratios.

Figure 17.- Pressure coefficient records for several values of tip-speed ratio in level flight. M_h = 0.70; C_L ' = 0.0043; r/R = 0.9.

Figure 17.- Continued.

Figure 17.- Concluded.

(a) Pressure distribution, $\psi = 70^{\circ}$

(b) Pressure distribution, $\psi = 230^{\circ}$ $C_{p,u}$ $C_{$

(c) Pressure as a function of azimuth

Figure 18.- Pressure-data characteristics for local supercritical flow. μ = 0.37; CL' = 0.0043; r/R = 0.9.

Figure 19.- Sample patterns of supersonic flow regions for blade section. μ = 0.37; C_L^{\prime} = 0.0043; r/R = 0.9.

(a) Normal-force coefficient.

Figure 20.- Azimuthal distribution of blade-section aerodynamic characteristics at a series of tip-speed ratios (Flight 63 of Appendices D and E). \overline{C}_L ' = 0.0043; \overline{M}_h = 0.70; r/R = 0.9.

(b) Pitching-moment coefficient

Figure 20.- Continued.

(c) Upper-surface pressure coefficient; x/c = 0.02. Figure 20.- Continued.

(d) Lower-surface pressure coefficient; x/c = 0.02.

Figure 20.- Concluded.

Figure 21.- Blade-section operating conditions at a series of tip-speed ratios. \overline{C}_L ' = 0.0043; \overline{M}_h = 0.70; r/R = 0.9.

Figure 21.- Continued.

Figure 21.- Concluded.

Figure 22.- Envelope of blade-section aerodynamic operating conditions (Flight 63, Appendix E). $\overline{C}_L' = 0.0043$; $\overline{M}_h = 0.70$; r/R = 0.9.

(a) Low-speed flight

Figure 23.- Comparison of blade-section operating conditions for two values of vehicle load coefficient. M_h = 0.69; r/R = 0.9.

(b) High-speed flight

Figure 23.- Concluded.

Figure 24.- History of uncorrected, local blade pressures and rotor azimuth for hover. C_L ' = 0.0039; $\Delta h/R$ = 1.9; r/R = 0.9.

Figure 25.- Pressure coefficient records for one revolution in hover. C_L ' = 0.0039; M_h = 0.68; $\Delta h/R \approx$ 1.9; r/R = 0.9.

Figure 26.- Blade-section characteristics for two revolutions at the same hover test condition. M_h = 0.68; $\Delta h/R$ = 1.9; r/R = 0.9.

Figure 27.- Blade-section aerodynamics for one revolution at each of three hover test conditions.

(a) Moderate tip-speed ratio; C_L ' = 0.0037

Figure 28.- Blade-section pressure data for one rotor revolution in descending flight.

Figure 29.- Measured and representative blade-section operating conditions for level flight. $\mu \approx$ 0.24; r/R = 0.9.

Figure 30.- Azimuthwise distribution of normal-force and pitching-moment coefficients for level flight. μ = 0.24; r/R = 0.9.

Figure 31.- Effect of rotor load on azimuthwise distribution of bladesection normal-force coefficient for descending left turn. $\overline{\mu}$ = 0.242; \overline{M}_h = 0.70; r/R = 0.9.

Figure 32.- Comparison of azimuthwise distributions of blade-section aerodynamic characteristics for descending left turns and level flight. $\bar{\mu}$ = 0.242; \bar{M}_h = 0.70; r/R = 0.9.

Figure 33.- Comparison of blade-section operating conditions for left turn and reference level-flight condition. μ = 0.24; M_h = 0.7; r/R = 0.9.

Figure 34.- Comparison of azimuthwise distributions of blade-section aerodynamic characteristics for descending right turns and level flight. $\bar{\mu}$ = 0.24; r/R = 0.9.

Figure 35.- Effect of rotor load on azimuthwise distribution of bladesection normal-force coefficient for symmetrical pull-ups. $\overline{\mu}$ = 0.242; \overline{M}_h = 0.70; r/R = 0.9.

Figure 36.- Comparison of azimuthwise distributions of blade-section aerodynamic characteristics for symmetrical pull-ups and level flight. $\overline{\mu}$ = 0.245; $\overline{\text{M}}_{h}$ = 0.70; r/R = 0.9.

Figure 37.- Azimuthwise distributions of local pressure coefficient for two symmetrical pull-ups and level flight. $\overline{\mu}$ = 0.245; \overline{M}_h = 0.70; r/R = 0.9.

Figure 38.- Comparison of blade-section operating conditions for a symmetrical pull-up, a descending left turn, and level flight. $\overline{\mu}$ = 0.24; \overline{M}_h = 0.70; r/R = 0.9.

Figure 39.- Comparison of blade-section operating conditions for two rotor revolutions in the same pull-up maneuver and in level flight. r/R = 0.9.

Figure 40.- Comparison of blade-section pressure data for level flight and two maneuvers. μ = 0.22; r/R = 0.9.

Figure 41.- Comparison of pitching-moment coefficients measured in flight with values computed with measured c and M as inputs to method of reference 35. r/R = 0.9.

Figure 42.- Comparison of pitching-moment coefficient variation with Mach number for flight, wind-tunnel, and theoretical results for the same set of normal-force and Mach number values. r/R=0.9.

Figure 43.- Comparison of flight data, wind-tunnel data, and theoretical pressure distributions (ref. 35). (Flight 63, run 11 of Appendices D and E.)

(b)
$$M \approx 0.89$$
; $C_n \approx 0.1$

Figure 43.- Continued.

Figure 43.- Concluded.

Figure 44.- Comparison of blade-section pressure distributions from theory and flight tests (Flight 63, run 11 of Appendices D and E); r/R = 0.9.

Figure 44.- Continued.

Figure 44.- Continued.

Figure 44.- Continued.

Figure 44.- Continued.

Figure 44.- Concluded.

Figure 45.- Comparison of flight data and theoretical blade-section pressure distribution for ψ = 70° ; r/R = 0.9.

Figure 46.- Comparison of flight data and theoretical blade-section pressure distributions for several sets of airfoil coordinates. Flight 63, run 11 of Appendices D and E; ψ = 70°, M = 0.88; c_n = 0.19; r/R = 0.9.

Figure 47.- Comparison of flight data and blade-section pressure distribution computed with and without Mach number and airfoil coordinate adjustment for yawed flow (ref. 35). ψ = 70°; μ = 0.37; r/R = 0.9.

Figure 48.- Comparison of flight data and theoretical pressure distribution for ψ = 140°; r/R = 0.9.

Figure 49.- Comparison of flight data and theoretical blade-section pressure distributions for several sets of airfoil coordinates. Flight 63, run 11 of Appendices D and E; $\psi = 140^{\circ}; \; \text{M} = 0.80; \; c_{n} = -0.09; \; \text{r/R} = 0.9.$

Figure 50.- Parameters for determination of stagnation-point locus as a function of effective angle of attack for the NLR-IT airfoil.

Figure 51.- Results of curve-fit methods for flight pressure data. (Flight 63, run 11 of Appendices D and E.)

C_p $\sqrt{x/c}$ O Flight data

 $\sqrt{x/c}$

(b)
$$\psi = 130^{\circ}$$
; M = 0.83

1.0

Figure 51.- Continued.

(c) ψ 180°; M = 0.63

Figure 51.- Continued.

Flight data Computed values -1.0 -.5 $c_p \sqrt{x/c}$ 0 ___ 1.0 $\sqrt{x/c}$

(d) $\psi = 270^{\circ}$; M = 0.37

Figure 51.- Concluded.

Figure 52.- Amplitude correction factors for electronics lag. Cutoff frequency, 80 H_z; gain factor, 2.0; 1000 sample/sec rate.

Figure 53.- Comparison of measured, corrected, and approximated pressure for a highly active pressure transducer.

Figure 53.- Concluded.

Figure 54.- Real and approximated dynamic-response characteristics for several pressure-transducer systems.

Figure 55.- Predicted blade-section boundary-layer transition for NLR-1T blades.

				and the second s
1. Report No. NASA TM-80166 2. Government Accession No. AVRADCOM Technical Report 80-8-2				ipient's Catalog No.
4. Title and Subtitle A FLIGHT INVESTIGATION OF BLADE-SECTION AERO FOR A HELICOPTER MAIN ROTOR HAVING NLR-1T AI SECTIONS			1 .1	xort Date anuary 1980
			1105	forming Organization Code
7. Author(s)		8. Per	forming Organization Report No.	
Charles E. K. Morris, Jr., Dariene D. Sto Robert L. Tomaine		vens and	·	rk Unit No.
9. Performing Organization Name and Address	255			
NASA Langley Research Center and Structures Laboraton AVRADCOM Research and Technology Laboratories Hampton, VA 23665			atory 11. Con	ntract or Grant No.
			13. Ty	e of Report and Period Covered
12. Sponsoring Agency Name and Address			T.	echnical Memorandum
National Aeronautics and Space Administration Washington, DC 20546				14. Army Project No.
U.S. Army Aviation Research and Development Command St. Louis, MO 63166			nd TL26	2209A76
15. Supplementary Notes	A CONTRACTOR OF THE PARTY OF TH			ng manganak da nasayatayan sarif sili di di dini di
a. Charles E. K. Morris, Robert L. Tomaine: S La				
b. Major contributors to M. T. Baxter, P. L. Do FLTMD and Messrs. J. FED.	eal, J. A. Fernande	z, P. R.	Pfeffer, an	d L. B. McHenry of
16. ABSTRACT				
A flight investigation had data on the aerodynamic be The data system recorded las well as vehicle flight hover, forward flight, and	ehavior of main-rot blade-section aerod state, performance	or blade lynamic p , and lo	es with the Noressures at ads. The te	LR-1T blade section. 90-percent rotor radius
Data were obtained on appaadvancing blade in high-sp good agreement was achieve airfoil theory and flight actions.	peed flight and wak ed between chordwis	e intera e pressu	ctions in ho re distribut	ver. In many cases, ions predicted by
This report presents detaidata may be used for evalu				
17. Key Words (Suggested by Author(s)) Airfoil		18. Distributi	on Statement	
Helicopter Teetering rotor		Unclassified - Unlimited STAR CATEGORY 02		
Unclassified	Unclassified		192	\$9.00

.

.