

Complementos de Cálculo Diferencial e Integral

11ª Ficha de trabalho - 2º Semestre 2014/2015

- 1. Verifique as seguintes igualdades, onde \mathbf{f} e \mathbf{g} são campos vectoriais de classe C^1 e φ um campo escalar, também de classe C^1 definidos num aberto de \mathbb{R}^3 :
 - (a) $\operatorname{div}(\varphi \mathbf{f}) = \operatorname{grad} \varphi \cdot \mathbf{f} + \varphi \operatorname{div} \mathbf{f}$.
 - (b) $\operatorname{div}(\mathbf{f} \times \mathbf{g}) = \mathbf{g} \cdot \operatorname{rot} \mathbf{f} \mathbf{f} \cdot \operatorname{rot} \mathbf{g}$.
 - (c) $\operatorname{rot}(\varphi \mathbf{f}) = \operatorname{grad} \varphi \times \mathbf{f} + \varphi \operatorname{rot} \mathbf{f}$.
- 2. Mostre a fórmula do gradiente: Se $D \subset \mathbb{R}^n$ é um domínio regular e $\varphi : \mathbb{R}^n \to \mathbb{R}$ é um campo escalar de classe C^1 definido em \overline{D} , então

$$\int_{D} \operatorname{grad} \varphi = \int_{\partial D} \varphi \boldsymbol{\nu} \, dV_{n-1},$$

onde ν designa a normal unitária exterior à fronteira do domínio regular D.

Sugestão: Considere o a igualdade 1.(a) - generalizada para \mathbb{R}^n - com $\mathbf{f} \equiv \mathbf{u} \in \mathbb{R}^n$ um campo constante.

3. Mostre a fórmula do rotacional: Se $D \subset \mathbb{R}^3$ é um domínio regular e $\mathbf{f} : \mathbb{R}^3 \to \mathbb{R}^3$ é um campo vectorial de classe C^1 definido em \overline{D} , então

$$\int_D \operatorname{rot} \mathbf{f} = \int_{\partial D} \boldsymbol{\nu} \times \mathbf{f} \, dV_2,$$

onde ν designa a normal unitária exterior à fronteira do domínio regular D.

Sugestão: Considere o a igualdade 1.(b) com $\mathbf{g} \equiv \mathbf{u} \in \mathbb{R}^3$ um campo constante; note também que $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$ para quais vectores $\mathbf{a}, \mathbf{b}, \mathbf{c}$ de \mathbb{R}^3 .

4. Mostre a fórmula de Kelvin: Se $M \subset \mathbb{R}^3$ é uma variedade -2 de classe C^2 com orientação definida pelo campo de normais unitárias $\mathbf{n}, S \subset M$ um domínio domínio regular e $\varphi : \mathbb{R}^n \to \mathbb{R}$ é um campo escalar de classe C^1 definido em \overline{S} , então

$$\int_{S} \mathbf{n} \times \operatorname{grad} \varphi \, dV_2 = \oint_{\partial S} \varphi \, d\mathbf{g},$$

onde \mathbf{g} é um caminho regular simples que representa a curva fechada ∂S com orientação consistente com a orientação de M.

Sugestão: Considere o a igualdade 1.(c) com $\mathbf{f} \equiv \mathbf{u} \in \mathbb{R}^3$ um campo constante.

5. Seja $D \subset \mathbb{R}^3$ um domínio regular, $\varphi : \mathbb{R}^n \to \mathbb{R}$ um campo escalar de classe C^1 e \mathbf{f} : $\mathbb{R}^n \to \mathbb{R}^n$ é um campo vectorial de classe C^2 tal que $\mathbf{f} = 0$ em ∂D . Prove que nestas condições temos

$$\int_{D} \operatorname{grad} \varphi \cdot \operatorname{rot} \mathbf{f} = 0.$$

Sugestão: Considere o a igualdade 1.(a) notando que div $(rot \mathbf{f}) = 0$.