Probabilistic Programming Languages

M2 MPRI 2021-2022

Guillaume BAUDART (guillaume.baudart@ens.fr) Christine TASSON (christine.tasson@lip6.fr)

Semantics of Probabilistic Programming

Discrete probability (Part II)

Probabilistic PCF - Denotational Semantics

A sound model

Pcoh is a cartesian closed category, CPO-enriched, hence a model of PCF, which is also a model of probabilistic PCF.

Interpretation of terms

$$\boxed{ \boxed{ \textit{$G \vdash $\mathsf{bernoulli}(p) : \mathsf{bool \ dist}$} } : \begin{cases} (\gamma, \mathsf{true}) \mapsto p \\ (\gamma, \mathsf{false}) \mapsto 1-p \end{cases}$$

$$\begin{bmatrix} G \vdash d : t_1 \operatorname{dist} & G, x : t_1 \vdash e : t_2 \\ \hline G \vdash \operatorname{let} x = d \operatorname{in} e : t_2 \end{bmatrix} : (\gamma, a_2) \mapsto \\ \sum_{a} \llbracket d \rrbracket (\gamma, a) \llbracket e \rrbracket (\gamma, a, a_2)$$

$$\llbracket \overline{\mathsf{G} \vdash \mathsf{true} : \mathsf{bool}}
\rrbracket : egin{cases} (\gamma, \mathsf{true}) \mapsto 1 \\ (\gamma, \mathsf{false}) \mapsto 0 \end{cases}$$

$$\llbracket \texttt{if } \textit{M} \texttt{ then } \textit{N} \texttt{ else } \textit{P} \rrbracket (\gamma, \textit{a}) = \llbracket \textit{M} \rrbracket (\gamma, \texttt{true}) \llbracket \textit{N} \rrbracket (\gamma, \textit{a}) + \llbracket \textit{M} \rrbracket (\gamma, \texttt{false}) \llbracket \textit{P} \rrbracket (\gamma, \textit{a})$$

anuta the denotational comantics

Compute the denotational semantics				a b	106	441	R
	Lbern 0,5: book dust	ben as t 1/2 & 1/2	a,b,c.bal + a+b+c:nat	נו נו נו נו נו	10 10 10 10 10 10 10 10 10 10 10 10 10 1	3 2 2	110
	+ let a - sample been in let b= in let c= in a+b+c: most						

π

M: mat

Bernoulli:

```
let a = sample(bernoulli 0.5) in
let b = sample(bernoulli 0.5) in
let c = sample(bernoulli 0.5) in
a+b+c
```


Examples - Compute the semantics

```
6 \frac{1}{5} \frac{1}{1} \frac{1}{4} \frac{1}{5} \frac{
```

Funny Bernoulli by rejection sampling:

```
fix lambda f:bool
let a = sample(bernoulli 0.5) in
let b = sample(bernoulli 0.5) in
let c = sample(bernoulli 0.5) in
if (a==0 or b==0) then a+b+c
else f
```

```
(P) F°: does not use f: 0 + 1/8

F<sup>A</sup>: use fat not 1: 0 + 1/8 + \frac{1}{4} \cdot F°: 1/8 (A+1/4)

Fine use fat mot not 2: 0 + 1/8 (A+1/4) F= VFm: 0 + \frac{1}{8} \frac{1}{54} - \frac{1}{6}
```

PCF - Denotational semantics

CPO-enriched:

CPO, REL, MREL

 $\mathcal{C}(A,B)$ is a complete partial order and \circ is continuous.

$$\left[\frac{G \vdash e : t \to t}{G \vdash \text{fixe} : t} \right] = \sup F^n \text{ with } \begin{cases} F^0 = \bot \in \mathcal{C}(G, t) \\ F^{n+1} = \text{ev} \circ \langle \llbracket G \vdash e : t \to t \rrbracket, F^n \rangle \end{cases}$$

5

Probabilistic Language - Type and Semantics

$$\llbracket \textit{G} \vdash \textit{e} \; : \; t \rrbracket : \llbracket \textit{G} \rrbracket imes \llbracket \textit{t} \rrbracket o \mathbb{R}^+ \; \mathsf{and} \; \llbracket \textit{G} \vdash \textit{e} \; : \; \textit{t} \; \mathsf{dist} \rrbracket (\gamma, \mathtt{a}) \in \mathrm{P} \left(\mathtt{G} \to \mathtt{t} \right)$$

$$\boxed{ \boxed{ \textit{$G \vdash $\mathsf{bernoulli}(p) : \mathsf{bool \ dist}$} } : \begin{cases} (\gamma, \mathsf{true}) \mapsto p \\ (\gamma, \mathsf{false}) \mapsto 1 - p \end{cases}$$

$$\left[\!\!\left[\begin{array}{ccc} G \vdash d \ : \ t_1 \ \text{dist} & G, x : t_1 \vdash e : t_2 \\ \hline G \vdash \text{let} \ x = d \ \text{in} \ e \ : \ t_2 \end{array} \right] : (\gamma, a_2) \mapsto \sum_a \llbracket e \rrbracket (\gamma, a, a_2)$$

$$\left[\!\!\left[\frac{\textit{G}\vdash\textit{e}\;:\;\textit{t}}{\textit{G}\vdash\mathsf{infer(e)}\;:\;\textit{t}\;\mathsf{dist}}\right]\!\!\right](\gamma,\textit{a}) = \frac{\left[\!\!\left[\textit{G}\vdash\textit{e}\;:\;\textit{t}\right]\!\!\right](\gamma,\textit{a})}{\sum_{\textit{a}\in[\textit{t}]}\!\!\left[\!\!\left[\textit{G}\vdash\textit{e}\;:\;\textit{t}\right]\!\!\right](\gamma,\textit{a})}$$

```
let a = sample(unif(1,6)) in
2
3
```

let a = sample(unif(1,6)) in
let b = sample(unif(1,6)) in
assume(
$$a - b = 1$$
);
 $a+b$

Cannabis:

5

```
let Cannabis =
      let b = sample(bernoulli 0.5) in
       if b then let c = sample(bernoulli 0.6) in
                 assume c; c
            else true
5
```

Examples - Compute the semantics

Funny Bernoulli:

```
let FB =
let a = sample(bernoulli 0.5) in
let b = sample(bernoulli 0.5) in
let c = sample(bernoulli 0.5) in
sassume(a==0 or b==0);
a+b+c
```

Semantics of Probabilistic Programming

Graphical Models

Bayesian Network - Example

Compute $\mathbb{P}(G)$ using :

Joint dist.
$$\mathbb{P}(G, R, S, W) = \mathbb{P}(G|S, R) \mathbb{P}(S|W) \mathbb{P}(R|W) \mathbb{P}(W)$$

Marginal $\mathbb{P}(G) = \sum_{(r,s,w)\in |R|\times |S|\times |W|} \mathbb{P}(G, R, S, W)$

Bayesian Network

Definition

Directed Acyclic Graph with Conditional Probability Tables Factors are functions from states to \mathbb{R}^{+}

Computing

Exact inference by variable elimination Implemented by message passing

Message Passing - Example

Message Passing - Example

Odstance from noot X

Factors 🗷

(3) Messayes from variable
$$P(c)$$
 (3) Messayes from variable

Message Passing - Example

Message Passing - Algorithm

Initalisation of leaf nodes:

Messages from leaf node variable are set to 1 Messages from leaf node factors are set to the factor

Propagation

Starting from the further nodes $\text{Variable to factor message} : \nu_{\mathbf{x} \to f} = \prod_{g \in \mathtt{ne}(\mathbf{x}) \backslash f} \mu_{g \to \mathbf{x}}$ $\text{Factor to variable message} : \mu_{f \to \mathbf{x}} = \sum_{X_f \backslash \mathbf{x}} \prod_{y \in \mathtt{ne}(f) \backslash \mathbf{x}} \nu_{y \to f}$

Implementation

Dag as anadjacent matrix Message passing by memoisation Numerical stability needs logs

Semantics of Probabilistic Programming

Verification of probabilistic Programs

Mc Iver, Morgan, Katoen

Hoare Logic - Principles

Language

$$e$$
 ::= true | false | n | x | e op e states Σ : $e \rightarrow val$ op ::= $+$ | $-$ | $*$ | $=$ | \leq | and | not s ::= skip | x := e | s ; s | if e then s else s | while e do s

Operational semantics

$$\overline{\Sigma, x} := e \leadsto \Sigma\{x \leftarrow \operatorname{ev}_{\Sigma}(e)\}, \operatorname{skip}$$

$$\overline{\Sigma, (\operatorname{skip}; s) \leadsto \Sigma, s} \qquad \overline{\Sigma, (s_1; s_2) \leadsto \Sigma', (s_1'; s_2)}$$

$$\overline{\Sigma, (\operatorname{skip}; s) \leadsto \Sigma, s} \qquad \overline{\Sigma, (s_1; s_2) \leadsto \Sigma', (s_1'; s_2)}$$

$$\overline{\operatorname{ev}_{\Sigma}(e) = \operatorname{false}} \qquad \overline{\Sigma, \operatorname{if} \ e \ \operatorname{then} \ s \ \operatorname{else} \ s \leadsto \Sigma, s_2}$$

$$\overline{\Sigma, \operatorname{if} \ e \ \operatorname{then} \ s \ \operatorname{else} \ s \leadsto \Sigma, s_2}$$

$$\overline{\Sigma, \operatorname{while} \ e \ \operatorname{do} \ s \leadsto \Sigma, (s; \operatorname{while} \ e \ \operatorname{do} \ s)} \qquad \overline{\Sigma, \operatorname{while} \ e \ \operatorname{do} \ s \leadsto \Sigma, \operatorname{skip}}$$

Hoare Logic - Rules

Hoare triple $\{P\}s\{Q\}$ is valid if for any state Σ and Σ' such that $\Sigma, s \leadsto \Sigma'$, skip, $[P]_{\Sigma}$ valid implies $[Q]_{\Sigma'}$ valid.

Rules

$$\frac{\{P[x := E]\} \times := E \{P\}}{\{P[x := E]\} \times := E \{P\}} \qquad \frac{\{P\} \ C \{Q\} \quad \{Q\} \ D \{R\}}{\{P\} \ C; D \{R\}}$$

$$\frac{\{E = \text{true} \land P\} \ C \{Q\} \quad \{E = \text{false} \land P\} \ D \{Q\}}{\{P\} \text{ if } E \text{ then } C \text{ else } D \{Q\}}$$

$$\frac{\{E = \text{true} \land I\} \ C \{I\}}{\{I\} \text{ while } E \text{ do } C \text{ done } \{E = \text{false} \land I\}}$$

$$\frac{P' \Rightarrow P \quad \{P\} \ C \{Q\} \quad Q \Rightarrow Q'}{\{P'\} \ C \{Q'\}}$$

Soundness

If there is a proof tree with a hoare triple as root, then the program is correct with respect to pre and post conditions.

Weakest Precondition

Definition

Let Q be a predicate on the memory state and C be a program $\mathrm{WP}(C,\cdot)$ is a predicate transformer, that is $\mathrm{WP}(C,Q)$ is the weakset precondition P such that $\langle P \rangle \ \mathbb{C} \ \langle Q \rangle$

Inductive definition

$$\begin{split} \operatorname{WP}(\mathbf{x}:=&\mathbf{E},\,Q(\mathbf{x})) = Q(\mathbf{E}) \\ \operatorname{WP}(\mathbf{S}_1;\,\mathbf{S}_2,\,Q) &= \operatorname{WP}(\mathbf{S}_1,\,\operatorname{WP}(\mathbf{S}_2,\,Q)) \\ \operatorname{WP}(\text{if E then C else D},\,Q) &= (\mathbf{E} \wedge \operatorname{WP}(\mathbf{C},\,Q)) \vee (\neg E \wedge \operatorname{WP}(\mathbf{D},\,Q)) \\ \operatorname{WP}(\text{while E do C done}\{\operatorname{inv}I,\operatorname{var}V\},\,Q) &= I \\ &\text{with} \left\{ \begin{array}{l} \operatorname{E=true} \wedge I \wedge V = z \Rightarrow \operatorname{WP}(\mathbf{C},I \wedge V < z) \\ I \Rightarrow V \geq 0 \\ (\operatorname{E=false} \wedge I) \Rightarrow Q \end{array} \right. \end{split}$$

Examples

```
WP(x:=y+3,x > 3) = x>3 [x:=y+3] = y+3>3 = y>0.

WP(n:=n+1, n > 4)

WP(y:=x+2;y:=y-2,y > 5)

WP(if x>2 then y:=1 else y:=-1,y > 0)

WP(while n<>0 do n:=n-1 done \{I = n \ge 0, V = n\}, n = 0)
```

Verifying Probabilistic Programs

Language

```
e ::= true | false | n | x | e op e states \Sigma : e \rightarrow val op ::= + | - | * | = | \leq | and | not s ::= skip | x := e | s; s | if e then s else s | while e do s | bernoull
```

Quantitative predicates: factors associate weights to states

$$\{f|f:|X|\to\mathbb{R}^+\cup\{\infty\}\}$$

Weakest weighted precondition : WP[P] transform factors to factors.

Weakest Pre-expectation

Weakest weighted precondition

if f associates scores to states, then $g = \operatorname{WP}[P](f)$ maps a state s to the expected value of f after executing P on s. transform factors to factors.

Inductive definition

```
\begin{split} \operatorname{WP}[\mathbf{x}:=&\mathbf{E}](f) = f(\mathbf{x}:=&\mathbf{E})) \\ \operatorname{WP}[\mathbf{S}_1;\mathbf{S}_2] &= \operatorname{WP}[\mathbf{S}_1](\operatorname{WP}[\mathbf{S}_2](f)) \\ \operatorname{WP}[\text{if E then C else D}](f) &= [\mathbf{E}] \cdot \operatorname{WP}[\mathbf{C}](f)) + [\neg E] \cdot \operatorname{WP}[\mathbf{D}](f) \\ \operatorname{WP}(\text{let x = sample bernoulli p in C})(f) &= p \cdot \operatorname{WP}[\mathbf{C}](f[x:=true])) + (1-p) \cdot \operatorname{WP}[\mathbf{C}](f[x:=false]) \\ \operatorname{WP}[\text{while E do C done}](f) &= \operatorname{lfp} X \cdot [\mathbf{E}] \cdot \operatorname{WP}[\mathbf{C}](X)) + [\neg E] \cdot f \end{split}
```

Weakest Pre-expectation - Example

WP [while (a=1 and b=1) do let a=ben 95 in let b= ben 0,5 in . a+b+c] (re=0)

While (y=1) { let a= sample bein 0,3 in if a than y:=0 else c:=c+1 f=1)

WP[let a=ben 4/5 in if a then x:=5 else x:=6] (x)

WP[let a = ben 4/5 in if a then x:=x+5 else x:= w) (x)

WP[let a = ben 4/5 in if a then x:=x+5 else x:= 10)

Take home

Semantics for (discrete) probabilistic programs

Probabilistic coherent spaces
Bayesian Networks and message passing
Weakest Predicate Tranformer for probabilistic programs

References

Semantics of probabilistic programs by Dexter Kozen
An Introduction to Probabilistic Programming. Jan-Willem van de
Meent, Brooks Paige, Hongseok Yang and Frank Wood
Probabilistic Coherent Spaces by Vincent Danos and Thomas
Ehrhard
Bayesian Reasoning and Machine Learning by David Barber

Deriving probabilistic semantics via the 'weakest completion' by Mc

lver and Morgan

Probabilistic Weakest Precondition by Katoen & al.