Отчет по научно-исследовательской работе

Измерение ионизационного выхода для ядер отдачи в жидком аргоне методом двойного рассеяния нейтронов

Научный руководитель Бузулуцков Алексей Федорович доктор физико-математических наук, профессор

Олейников Владислав Петрович, аспирант 3-го года

Схема детектора

Цели работы

- Изучение работы комбинированного умножителя THGEM / GAPD
 - Амплитудные характеристики (N_pe / e, N_gamma / e)
 - Координатные характеристики
- Определение ионизационного выхода ядер отдачи по краю спектра
- S1 / S2 критерий разделения нейтронов и гамма-квантов
- Двойное рассеяние нейтронов

Определение ионизационного выхода ядер отдачи по краю спектра

- 1) Расчет для нужного поля $n_e = \frac{N_i}{1 + k/\mathcal{E}}$
- 2) Расчет для нужной энергии $\frac{n_e}{N_i} = \frac{a}{1+b/E}$
- 3) Находим n_e для Am $n_e=rac{n_e}{N_s}*rac{E}{N_s}$

- 4) Переводим шкалу nVs в n_e
- 5) Учитываем разрешение детектора
- 6) Считаем ионизационный выход

$$Q_y = n_e/E_0.$$

S1 / S2 критерий разделения нейтронов и гамма-квантов

Сигнал от источника Na (511 кэВ)

Что еще было сделано:

- Разработана программа с графическим интерфейсом на Qt для чтения данных с блоков CAEN (теперь скорость сбора ограничена лишь передачей по оптоволокну)
- Описана геометрия установки в GEANT4 и выполнено моделирование координатного разрешения матрицы (около 2 мм)
- Была командировка в Неаполь на 2 месяца. Реализовано S1 разделение нейтронов и гамма квантов. Найдены неисправности триггера и использован алгоритм обратной свертки