Cheatsheet: Quadratic Equations and Roots (Exercise 4.6)

Class 11 Mathematics (Chapter 4)

Prepared by ExpertGuy

Overview

Exercise 4.6 focuses on manipulating the roots of quadratic equations, forming new equations with transformed roots, proving identities involving roots, and finding conditions for specific root relationships.

Note

Use the sum and product of roots to simplify expressions and form new equations efficiently.

Roots of a Quadratic Equation

Concept For a quadratic equation $ax^2 + bx + c = 0$ with roots α, β :

$$\alpha + \beta = -\frac{b}{a}, \quad \alpha\beta = \frac{c}{a}$$

Key Identities

•
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

•
$$\alpha^3 + \beta^3 = (\alpha + \beta)[(\alpha + \beta)^2 - 3\alpha\beta]$$

•
$$\alpha^4 + \beta^4 = [(\alpha + \beta)^2 - 2\alpha\beta]^2 - 2(\alpha\beta)^2$$

•
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$$

•
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha+\beta)^2 - 2\alpha\beta}{\alpha\beta}$$

Example For $3x^2 - 2x + 4 = 0$, find $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$:

$$\alpha + \beta = \frac{2}{3}, \quad \alpha\beta = \frac{4}{3}$$

$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2}, \quad \alpha^2 + \beta^2 = \left(\frac{2}{3}\right)^2 - 2 \cdot \frac{4}{3} = \frac{4}{9} - \frac{8}{3} = \frac{-20}{9}$$

$$\frac{\frac{-20}{9}}{\left(\frac{4}{3}\right)^2} = \frac{-20}{9} \cdot \frac{9}{16} = -\frac{5}{4}$$

Forming Equations with Transformed Roots

Concept To form a quadratic equation with roots $f(\alpha)$, $f(\beta)$, compute:

$$Sum = f(\alpha) + f(\beta), \quad Product = f(\alpha)f(\beta)$$

The equation is:

$$x^2 - (\operatorname{sum})x + \operatorname{product} = 0$$

Steps

- 1. Use $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$.
- 2. Express the new sum and product in terms of $\alpha + \beta$, $\alpha\beta$.
- 3. Substitute and simplify to form the equation.

Example For $5x^2 - x - 2 = 0$, form the equation with roots $\frac{3}{\alpha}, \frac{3}{\beta}$:

$$\alpha + \beta = \frac{1}{5}, \quad \alpha\beta = -\frac{2}{5}$$

$$\operatorname{Sum} = \frac{3}{\alpha} + \frac{3}{\beta} = \frac{3(\alpha + \beta)}{\alpha\beta} = \frac{3 \cdot \frac{1}{5}}{-\frac{2}{5}} = -\frac{3}{2}$$

$$\operatorname{Product} = \frac{3}{\alpha} \cdot \frac{3}{\beta} = \frac{9}{\alpha\beta} = \frac{9}{-\frac{2}{5}} = -\frac{45}{2}$$

$$x^2 - \left(-\frac{3}{2}\right)x - \frac{45}{2} = 0 \implies 2x^2 + 3x - 45 = 0$$

Proving Identities Involving Roots

Concept Use the sum and product of roots to prove identities or relationships.

Example For $x^2 - px - p - c = 0$, prove $(1 + \alpha)(1 + \beta) = 1 - c$:

$$\alpha + \beta = p, \quad \alpha\beta = -p - c$$

$$(1+\alpha)(1+\beta) = 1 + \alpha + \beta + \alpha\beta = 1 + p + (-p-c) = 1 - c$$

Conditions for Specific Root Relationships

Concept Determine coefficients p, q in $x^2 + px + q = 0$ such that roots satisfy given conditions (e.g., one root is double, square, or inverse of the other).

Examples

• One root double the other: Roots $\alpha, 2\alpha$:

$$\alpha + 2\alpha = -p \implies 3\alpha = -p, \quad \alpha \cdot 2\alpha = q \implies 2\alpha^2 = q$$

$$\alpha = -\frac{p}{3}, \quad 2\left(-\frac{p}{3}\right)^2 = q \implies 2p^2 = 9q$$

• Roots differ by 1: Roots $\alpha, \alpha - 1$:

$$2\alpha - 1 = p$$
, $\alpha(\alpha - 1) = q \implies p^2 = 4q + 1$

• Additive inverse: Roots α , $-\alpha$:

$$\alpha - \alpha = -p \implies p = 0, \quad \alpha \cdot (-\alpha) = q \implies q = -\alpha^2$$

Tip

Simplify fractions and verify calculations to avoid errors in root transformations.

Key Reminders

- Always express higher powers or reciprocals of roots using $\alpha + \beta$, $\alpha\beta$.
- For complex transformations (e.g., $\frac{1-\alpha}{1+\alpha}$), compute sum and product carefully.
- Check conditions for real or complex roots when dealing with differences like $\alpha^2-\beta^2$.
- Use algebraic identities to simplify expressions (e.g., $\alpha^3 + \beta^3$).