Course Code	Course	Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
	Name					Practical		
ITL503	OLAP Lab		2			1		01

		Examination Scheme							
Course	Course Name	Theory Marks							
Code		Internal assessment			End	Term Work	Oral & Practical	Oral	Total
		Test	Test2	Avg. of two Tests	Sem. Exam	WOIK	Tractical		
ITL503	OLAP Lab	-1				25		25	50

Lab Objectives: Students will try:

- 1. To introduce advanced concepts of transaction management and recovery techniques.
- 2. To impart knowledge related to query processing and query optimizer phases of a database management system
- 3. To initiate awareness about the potential security threats that exists in database systems and how to tackle them.
- 4. To introduce advanced database models like distributed databases.
- 5. To impart an overview of emerging data models like temporal, mobile and spatial databases.
- 6. To create awareness of how enterprise can organize and analyze large amounts of data by creating a Data Warehouse.

Lab Outcomes: Student should be able:

- 1. Implement simple query optimizers and design alternate efficient paths for query execution.
- 2. Simulate the working of concurrency protocols, recovery mechanisms in a database
- 3. Design applications using advanced models like mobile, spatial databases.
- 4. Implement a distributed database and understand its query processing and transaction processing mechanisms
- 5. Build a data warehouse
- 6. Analyze data using OLAP operations so as to take strategic decisions.

Hardware and Software requirements:

Hardware Requirements	Software Requirements			
PC With following	1. ETL tools			
Configuration 1. Intel Core i3/i5/i7	2. Warehouse tools3. Java/Python compiler			

Processor	
2. 4 GB RAM	
3. 500 GB Harddisk	

Prerequisite: DBMS.

Detailed syllabus:

Module	Detailed Content	Hours	CO Mapping
No.			
I	a) Implementation of any Query	4	LO 2
	optimizer (Java/Python)		
	b) Assignments for query evaluation		
	path expressions.		
II	c) Simulation of Concurrency Control	4	LO1
	Algorithm, Recovery Algorithm		
	(Java/Python)		
III	a) Design of a distributed database for a	4	LO 4
	real life application - Fragmentation,		
	Query Processing		
	b) Simulation of Recovery methods.		
IV	Advanced Database Models	4	LO 3
	Case study based assignments for		
	Temporal, Mobile or Spatial databases		
V	Data Warehouse Construction	6	LO 4
	a) Real life Problem to be defined for		
	Warehouse Design		
	b) Construction of star schema		
	c) ETL Operations.		
VI	OLAP Exercise	4	LO 6
	a) Construction of Cubes		
	b) OLAP Operations, OLAP Queries		

Text Books:

- 1. Elmasri and Navathe, "Fundamentals of Database Systems", 6th Edition, PEARSON Education.
- 2. Theraja Reema, "Data Warehousing", Oxford University Press, 2009.
- 3. Data Warehousing, Data Mining, & OLAP by Alex Berson McGraw Hill.

References:

- 1. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom "Database System Implementation", Pearson Ltd. 1/e
- 2. Thomas M. Connolly Carolyn Begg, Database Systems: A Practical Approach to Design, Implementation and Management, 4/e Pearson Ltd

3. Ralph Kimball, Margy Ross, "The Data Warehouse Toolkit: The Definitive Guide To Dimensional Modeling", 3rd Edition. Wiley India.

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.