Notes for the week 12/4 - 12/10

Alden Green

December 11, 2018

1 Setup

Data model. We are given two distributions, P and Q, with the ability to sample from either one. Our goal is to test the hypothesis $H_0: P = Q$ vs. the alternative $H_a: P \neq Q$.

Under the **binomial data model**, our sampling procedure is to draw i.i.d Rademacher labels $L_i \in \{1, -1\}$ for $i \in \{1, ..., N\}$, and then sample $Z_i \sim P$ if $L_i = 1$ and $Z_i \sim Q$ otherwise. Define 1_X to be the length-N indicator vector for $L_i = 1$

$$1_X[i] = \begin{cases} 1, L_i = 1\\ 0 \text{ otherwise} \end{cases}$$

and similarly for 1_Y

$$1_Y[j] = \begin{cases} 1, L_i = -1\\ 0 \text{ otherwise} \end{cases}$$

and define $a = \frac{1_X}{N/2} - \frac{1_Y}{N/2}$.

Under the **fixed label data model** we use the same data generating process as above, except fix $\mathcal{L}_X = \{1, \dots, N/2\}$ and $\mathcal{L}_Y = \{N/2, \dots, N\}$. Say that $L_i = 1$ for $i \in \mathcal{L}_X$ and $L_i = -1$ for $i \in \mathcal{L}_Y$, and call $\{X_1, \dots, X_{|\mathcal{L}_X|}\} = \{Z_i : i \in \mathcal{L}_X\}$ and likewise for Y.

Graph. Form an $N \times N$ Gram matrix A, where $A_{ij} = K(Z_i, Z_j)$ for **kernel function** $K: \mathcal{X} \times \mathcal{X} \to [0, \infty)$. Let G = (V, E) with $V = \{Z_1, \ldots, Z_n\}$ and $E = \{A_{ij}: 1 \leq i < j \leq n\}$. Take L = D - A to be the (unnormalized) **Laplacian matrix** of A (where D is the diagonal degree matrix with $D_{ii} = \sum_{j \in [n+m]} A_{ij}$). Denote by B the $N \times N^2$ incidence matrix of A, where the ith column of $B = B_i$ has entry A_{ij} in position i, $-A_{ij}$ in position j, and 0 everywhere else.

Resistance distances. There are many distances one can define over nodes in a graph. The resistance distance between nodes u and v, R_{uv} , is defined as

$$R_{uv} = (e_u - e_v)^T L^{\dagger} (e_u - e_v).$$

Holder condition We say a function $f: \mathbb{R}^d \to \mathbb{R}$ is α -Holder continuous when

$$|f(x) - f(y)| \le ||x - y||^{\alpha}.$$

We will require this condition so that degrees in geometric graphs are well-behaved in the limit.

2 Desiderata

• Let K be a uniform kernel of radius ϵ , meaning

$$K(x,y) = I(||x - y|| \le \epsilon).$$

Assume P and Q have densities p and q with respect to Lebesgue measure. Say that for some $\alpha>0$, p and q are α -holder continuous. For the graph G corresponding to the matrix A, with accompanying resistance distances, we wish to upper bound

$$\left| N \epsilon^d \mathbb{E} \left[R_{XY} \right] - \mathbb{E} \left[\frac{2}{p(X) + q(X)} + \frac{2}{p(Y) + q(Y)} \right] \right|$$

3 Supplemental Results

Lemma 1 follows from an application of a discrete version of Poincare's inequality. See (von Luxburg 12) for proof and details.

Lemma 1. For some $\widetilde{N}_{\max}, \widetilde{N}_{\min}, d_{\max}, d_{\min}$, for all $i \neq j$

$$\left| R_{ij} - \left(\frac{1}{d_i} + \frac{1}{d_j} \right) \right| \le 2a_1 \frac{1}{N\epsilon^{d+2}} \left(\frac{d_{\max}^2}{d_{\min}^3} \cdot \left(1 + 2 \frac{\widetilde{N}_{\max}^2}{\widetilde{N}_{\min}^2} \right) \right)$$

where $a_1 = \left(\frac{d\sqrt{d+3}}{L_{\min}}\right)^{d+1}$.

Lemmas ??

Lemma 2. Denote

$$\mu_{\text{max}} := N\epsilon^d \nu_d (p_{\text{max}} + q_{\text{max}})/2, \quad \mu_{\text{min}} := N\epsilon^d \nu_d (p_{\text{min}} + q_{\text{min}})/2\beta$$

and let
$$a_2=\left(\frac{L_{\min}}{L_{\max}}\right)^d\frac{\nu_d}{2^d(d+3)^{d/2}},\,a_3=\frac{\sqrt{d+1}}{L_{\min}^d}.$$

For \widetilde{N}_{\max} , \widetilde{N}_{\min} , d_{\max} , d_{\min} as in Lemma 1, the following bounds hold

$$\mathbb{P}\left(\widetilde{N}_{\max} \ge (1+z)\mu_{\max}\right) \le \frac{a_3}{\epsilon^d} \cdot \exp(-z^2\mu_{\max}/3)$$

$$\mathbb{P}\left(\widetilde{N}_{\min} \le a_2(1-z)\mu_{\min}\right) \le \frac{a_3}{\epsilon^d} \cdot \exp(-z^2a_2\mu_{\min}/3)$$

$$\mathbb{P}\left(d_{\max} \ge (1+z)\mu_{\max}\right) \le n \cdot \exp(-z^2\mu_{\max}/3)$$

$$\mathbb{P}\left(d_{\min} \le (1-z)\mu_{\min}\right) \le n \cdot \exp(-z^2\mu_{\min}/3)$$

Lemma 3. For random variable X satisfying

$$\mathbb{P}\left(X \le (1-z)\mu_n\right) \le \exp(-z^2\mu_n/3 + \log n)$$

the inverse moment $\mathbb{E}\left[\frac{1}{(1+X)^k}\right]$, k>0, satisfies for any z<1

$$\mathbb{E}\left[\frac{1}{(1+X)^k}\right] \le \exp(-z^2 \mu_n/3 + \log n) + \frac{1}{(1+\mu_n(1-z))^k}$$

Similarly, for random variable Y satisfying

$$\mathbb{P}\left(Y \ge (1+z)\mu_n\right) \le \exp(-z^2\mu_n/3 + c_n)$$

the moment $\mathbb{E}\left[(1+Y)^k\right]$, k>0, satisfies for any z>0

$$\mathbb{E}\left[(1+Y)^k\right] \le \frac{2n}{n}$$

4 Proofs

Begin by expanding

$$\left| N\epsilon^{d} \mathbb{E} \left[R_{XY} \right] - \mathbb{E} \left[\frac{2}{p(X) + q(X)} + \frac{2}{p(Y) + q(Y)} \right] \right| \\
= N\epsilon^{d} \left| \mathbb{E} \left[R_{XY} \right] - \mathbb{E} \left[\frac{1}{d(X)} + \frac{1}{d(Y)} \right] \right| \\
+ N\epsilon^{d} \left| \mathbb{E} \left[\frac{1}{d(X)} - \frac{1}{N\mathbb{P} \left(B(X, \epsilon) \right)} + \frac{1}{d(Y)} - \frac{1}{N\mathbb{P} \left(B(Y, \epsilon) \right)} \right] \right| \\
+ \left| \mathbb{E} \left[\frac{\epsilon^{d}}{\mathbb{P} \left(B(X, \epsilon) \right)} - \frac{2}{p(X) + q(X)} \right] + \mathbb{E} \left[\frac{\epsilon^{d}}{\mathbb{P} \left(B(Y, \epsilon) \right)} - \frac{2}{p(Y) + q(Y)} \right] \right| \tag{1}$$

We will bound the summands on the right side of (1) from last to first.

Third term. For the last term, we begin by rewriting

$$\left|\frac{\epsilon^d}{\mathbb{P}\left(B(X,\epsilon)\right)} - \frac{2}{p(X) + q(X)}\right| \leq \left|\frac{\epsilon^d(p(X) + q(X)) - 2\mathbb{P}\left(B(X,\epsilon)\right)}{\mathbb{P}\left(B(X,\epsilon)\right)\left[p(X) + q(X)\right]}\right|$$

Then, we can bound the numerator using the fact we have required the densities p and q be Holder continuous, so

$$[p(X) + q(X)]\epsilon^{d} - 2\mathbb{P}(B(X, \epsilon)) = \int_{B(X, \epsilon)} [p(\mathbf{x}) - p(\mathbf{z})]d\mathbf{z} + \int_{B(X, \epsilon)} [q(\mathbf{x}) - q(\mathbf{z})]d\mathbf{z}$$

$$\leq \int_{B(X, \epsilon)} 2\|x - y\|^{\alpha} d\mathbf{z}$$

$$\leq 2\epsilon^{\alpha + d}.$$

We can lower bound the denominator using the lower bound on our densities

$$\mathbb{P}(B(X,\epsilon))[p(X) + q(X)] \ge \epsilon^d (p_{\min} + q_{\min})^2 / 2$$

and therefore

$$\frac{\epsilon^d}{\mathbb{P}\left(B(X,\epsilon)\right)} - \frac{2}{p(X) + q(X)} \le \frac{4\epsilon^{\alpha}}{(p_{\min} + q_{\min})^2}.$$

The same bound holds for the corresponding term with Y instead of X.

Second term. To bound the second term, we will upper and lower bound $\mathbb{E}\left[\frac{1}{d(X)}\right]$ by something close to $\mathbb{E}\left[\frac{1}{N\mathbb{P}(B(X,\epsilon))}\right]$.

The lower bound

$$\mathbb{E}\left[\frac{1}{d(X)}\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{1}{d(X)}|X\right]\right]$$
$$\geq \mathbb{E}\left[\frac{1}{1 + (N-1)\mathbb{P}\left(B(X,\epsilon)\right)}\right]$$

follows from Jensen's inequality.

For the upper bound, note that the distribution of d(X), conditional on X, is

 $1 + \operatorname{Binomial}(N - 1, \mathbb{P}(B(X, \epsilon))).$ Then, letting $q = \mathbb{P}(B(X, \epsilon))$

$$\mathbb{E}\left[\frac{1}{d(X)}\middle|X\right] = \sum_{k=0}^{N-1} \frac{1}{k+1} \binom{N-1}{k} q^k (1-q)^{N-1-k}$$

$$= \frac{1}{Nq} \sum_{k=0}^{N-1} \binom{N-1}{k+1} q^{k+1} (1-q)^{N-1-k}$$

$$\leq \frac{1}{Nq} \sum_{k=0}^{N} \binom{N}{k} q^k (1-q)^{N-k}$$

$$= \frac{1}{Nq} \left(q + (1-q)\right)^N = \frac{1}{Nq}.$$

Combining this with the above, we have

$$N\epsilon^{d} \left| \mathbb{E} \left[\frac{1}{d(X)} - \frac{1}{N\mathbb{P}(B(X,\epsilon))} \right] \right| \leq N\epsilon^{d} \left| \mathbb{E} \left[\frac{1}{1 + (N-1)\mathbb{P}(B(X,\epsilon))} \right] - \mathbb{E} \left[\frac{1}{N\mathbb{P}(()B(X,\epsilon))} \right] \right| \\ \leq N\epsilon^{d} \left| \mathbb{E} \left[\frac{1}{N^{2}\mathbb{P}(B(X,\epsilon))^{2}} \right] \right|.$$

with a corresponding bound holding for Y.

First term. We begin by reducing the first term to a product of moments and inverse moments of maxima and minima of binomials.

$$\begin{split} N\epsilon^{d} \left| \mathbb{E}\left[R_{XY} \right] - \mathbb{E}\left[\frac{1}{d(X)} + \frac{1}{d(Y)} \right] \right| & \stackrel{(i)}{\leq} \frac{2a_{1}}{\epsilon^{2}} \mathbb{E}\left[\frac{d_{\max}^{2}}{d_{\min}^{3}} \cdot \left(1 + 2 \frac{\widetilde{N}_{\max}}{\widetilde{N}_{\min}} \right) \right] \\ & \stackrel{(ii)}{\leq} \frac{2a_{1}}{\epsilon^{2}} \left(2\mathbb{E}\left[d_{\max}^{8} \right] \cdot \mathbb{E}\left[d_{\min}^{12} \right] \cdot \mathbb{E}\left[\widetilde{N}_{\max}^{8} \right] \cdot \mathbb{E}\left[\frac{1}{\widetilde{N}_{\min}^{8}} \right] \right)^{1/4} \\ & + \frac{2a_{1}}{\epsilon^{2}} \left(\mathbb{E}\left[d_{\max}^{4} \right] \cdot \mathbb{E}\left[d_{\min}^{6} \right] \right)^{1/4} \end{split}$$

where (i) follows from Lemma 1 and (ii) from repeated applications of Holder's inequality.