```
In [1]: # Standard imports
        import pandas as pd
        # For web scraping
        import requests
        import urllib.request
        from bs4 import BeautifulSoup
        # For performing regex operations
        import re
        # Data visualization
        import seaborn as sns
        import matplotlib.pyplot as plt
In [2]: # Save the URL of the webpage we want to scrape to a variable
        url = 'https://docs.python.org/3/library/random.html#module-random'
In [3]:
        # Send a get request and assign the response to variable
        response= requests.get(url)
        response
In [4]:
        <Response [200]>
Out[4]:
        response.content
In [5]:
```

b'\n<!DOCTYPE html>\n\n<html>\n <head>\n <meta charset="utf-8" />\n Out[5]: ="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />\n<meta property="og:ti</pre> tle" content="random \xe2\x80\x94 Generate pseudo-random numbers" />\n<meta property ="og:type" content="website" />\n<meta property="og:url" content="https://docs.pytho n.org/3/library/random.html" />\n<meta property="og:site_name" content="Python docume</pre> ntation" />\n<meta property="og:description" content="Source code: Lib/random.py This</pre> module implements pseudo-random number generators for various distributions. For inte gers, there is uniform selection from a range. For sequences, there is uniform s..." />\n<meta property="og:image" content="https://docs.python.org/3/ static/og-image.pn</pre> g" />\n<meta property="og:image:alt" content="Python documentation" />\n<meta name="d escription" content="Source code: Lib/random.py This module implements pseudo-random number generators for various distributions. For integers, there is uniform selection from a range. For sequences, there is uniform s..." />\n<meta property="og:image:widt h" content="200" />\n<meta property="og:image:height" content="200" />\n<meta name="t heme-color" content="#3776ab" />\n\n <title>random \xe2\x80\x94 Generate pseudo-ra ndom numbers — Python 3.12.0 documentation</title><meta name="viewport" content ="width=device-width, initial-scale=1.0">\n <link rel="stylesheet" type="tex</pre> \n t/css" href="../ static/pygments.css" />\n <link rel="stylesheet" type="text/css"</pre> href="../ static/pydoctheme.css?digest=b37c26da2f7529d09fe70b41c4b2133fe4931a90" />\n <link id="pygments_dark_css" media="(prefers-color-scheme: dark)" rel="stylesheet" ty</pre> pe="text/css" href="../_static/pygments_dark.css" />\n \n <script data-url root</pre> ="../" id="documentation options" src="../ static/documentation options.js"></script> <script src="../ static/jquery.js"></script>\n <script src="../ static/under</pre> <script src="../_static/doctools.js"></script>\n score.js"></script>\n cript src="../_static/sidebar.js"></script>\n \n <link rel="search" type="appli</pre> cation/opensearchdescription+xml"\n title="Search within Python 3.12.0 docum href="../ static/opensearch.xml"/>\n <link rel="author" title</pre> entation"\n ="About these documents" href="../about.html" />\n <link rel="index" title="Index"</pre> href="../genindex.html" />\n <link rel="search" title="Search" href="../search.htm</pre> <link rel="copyright" title="Copyright" href="../copyright.html" />\n link rel="next" title="statistics \xe2\x80\x94 Mathematical statistics functions" hre <link rel="prev" title="fractions \xe2\x80\x94 Rational n</pre> f="statistics.html" />\n umbers" href="fractions.html" />\n <link rel="canonical" href="https://docs.pytho</pre> n.org/3/library/random.html" />\n \n \n $n\n$ \n <style>\n @medi table.full-width-table {\n a only screen {\n width: 100%;\n </style>\n<link rel="stylesheet" href="../_static/pydoctheme_dark.cs</pre> }\n }\n s" media="(prefers-color-scheme: dark)" id="pydoctheme_dark_css">\n <link rel="sho</pre> rtcut icon" type="image/png" href="../ static/py.svg" />\n <script type="t</pre> ext/javascript" src="../_static/copybutton.js"></script>\n <script type="t</pre> ext/javascript" src="../_static/menu.js"></script>\n <script type="text/ja</pre> vascript" src="../_static/search-focus.js"></script>\n <script type="text/</pre> javascript" src="../_static/themetoggle.js"></script> \n\n </head>\n<body>\n<div cla</pre> <input type="checkbox" id="menuToggler" class="toggler__input"</pre> ss="mobile-nav">\n aria-controls="navigation"\n aria-pressed="false" aria-expanded="false" rol <nav class="nav-content" role="navigation">\n e="button" aria-label="Menu" />\n <label for="menuToggler" class="toggler__label">\n \n \n </label>\n \n <img src="../ static/py.svg" alt="Log</pre> o"/>\n </span</pre> \n <form role="search" class="search" action="../search.html" method="ge</pre> >\n <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" v</pre> t">\n iewBox="0 0 24 24" class="search-icon">\n <path fill-rule="nonzer</pre> o" fill="currentColor" d="M15.5 14h-.79l-.28-.27a6.5 6.5 0 001.48-5.34c-.47-2.78-2.79 -5-5.59-5.34a6.505 6.505 0 00-7.27 7.27c.34 2.8 2.56 5.12 5.34 5.59a6.5 6.5 0 005.34-1.481.27.28v.7914.25 4.25c.41.41 1.08.41 1.49 0 .41-.41.41-1.08 0-1.49L15.5 14zm-6 0C 7.01 14 5 11.99 5 9.557.01 5 9.5 5 14 7.01 14 9.5 11.99 14 9.5 14z"></path>\n <input placeholder="Quick search" aria-label="Quick search" t</pre> </svg>\n ype="search" name="q" />\n <input type="submit" value="Go"/>\n

</form>\n

\n

</nav>\n

<div class="menu-wrapper">\n

<nav cl

```
rs</a>
<a class="reference internal" href="#bookkeeping-functions">Bookkeeping functions</a>
<a class="reference internal" href="#functions-for-bytes">Functions for bytes</a>
<a class="reference internal" href="#functions-for-integers">Functions for intege
rs</a>
<a class="reference internal" href="#functions-for-sequences">Functions for seque
nces</a>
<a class="reference internal" href="#discrete-distributions">Discrete distributio
ns</a>
<a class="reference internal" href="#real-valued-distributions">Real-valued distr</a>
ibutions</a>
<a class="reference internal" href="#alternative-generator">Alternative Generator
</a>
<a class="reference internal" href="#notes-on-reproducibility">Notes on Reproduci
bilitv</a>
<a class="reference internal" href="#examples">Examples</a>
<a class="reference internal" href="#recipes">Recipes</a>
</div>
<div>
<h4>Previous topic</h4>
<a href="fractions.html" title="previous chapter"><code class="xre</pre>
f py py-mod docutils literal notranslate"><span class="pre">fractions</span></code> -
Rational numbers</a>
</div>
<div>
<h4>Next topic</h4>
<a href="statistics.html" title="next chapter"><code class="xref p</pre>
y py-mod docutils literal notranslate"><span class="pre">statistics</span></code> - M
athematical statistics functions</a>
</div>
<div aria-label="source link" role="note">
<h3>This Page</h3>
<a href="../bugs.html">Report a Bug</a>
<
<a href="https://github.com/python/cpython/blob/main/Doc/library/random.rst" rel="nof</pre>
ollow">Show Source
       </a>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div aria-label="related navigation" class="related" role="navigation">
<h3>Navigation</h3>
<u1>
<a href="../genindex.html" title="General Index">index</a>
<a href="../py-modindex.html" title="Python Module Index">modules</a> |
<a href="statistics.html" title="statistics - Mathematical statistics functions">next
</a> |
```

```
<a href="fractions.html" title="fractions - Rational numbers">previous</a> |
<img alt="python logo" src="../_static/py.svg" style="vertical-align: middle; mar</pre>
gin-top: -1px"/>
<a href="https://www.python.org/">Python</a> »
<div class="language switcher placeholder"></div>
<div class="version_switcher_placeholder"></div>
<
<a href="../index.html">3.12.0 Documentation</a> »
<a href="index.html">The Python Standard Library</a>
»
class="nav-item nav-item-2"><a href="numeric.html">Numeric and Mathematical Modul
es</a> »
class="nav-item nav-item-this"><a href=""><code class="xref py py-mod docutils li</pre>
teral notranslate"><span class="pre">random</span></code> - Generate pseudo-random nu
mbers</a>
<div class="inline-search" role="search">
<form action="../search.html" class="inline-search" method="get">
<input aria-label="Quick search" id="search-box" name="q" placeholder="Quick search"</pre>
type="search"/>
<input type="submit" value="Go"/>
</form>
</div>
              <label class="theme-selector-label">
   Theme
   <select class="theme-selector" oninput="activateTheme(this.value)">
<option selected="" value="auto">Auto</option>
<option value="light">Light</option>
<option value="dark">Dark</option>
</select>
</label> |
</div>
<div class="footer">
   © <a href="../copyright.html">Copyright</a> 2001-2023, Python Software Foundatio
n.
   <br/>
   This page is licensed under the Python Software Foundation License Version 2.
   Examples, recipes, and other code in the documentation are additionally licensed
under the Zero Clause BSD License.
   <br/>
   See <a href="/license.html">History and License</a> for more information.<br/>
<br/>
   The Python Software Foundation is a non-profit corporation.
<a href="https://www.python.org/psf/donations/">Please donate.</a>
<br/>
<br/>
```

Last updated on Oct 12, 2023.

[<dt class="sig sig-object py" id="random.seed"> random.</span</pre> class="sig-name descname">seed(<em class="sig-param">a<sp an class="o">=None, <em class="sig-param">version=2)</spa n>9</dt>, <dt class="sig sig-object py" id="random.getstate"> random. class="sig-name descname">getstate()¶</dt>, <dt class="sig sig-object py" id="random.setstate"> random.</span</pre> class="sig-name descname">setstate(<em class="sig-param">state</sp an>)9</dt>, <dt class="sig sig-object py" id="ra ndom.randbytes"> random.<span</pre> class="sig-name descname">randbytes(<em class="sig-param">n)¶</dt>, <dt class="sig sig-object py" id="ran dom.randrange"> random.</span</pre> class="sig-name descname">randrange(<em class="sig-param">stop</sp an>)¶</dt>, <dt class="sig sig-object py"> random.<span</pre> class="sig-name descname">randrange(<em class="sig-param">start</s pan>, <em class="sig-param">stop [, <em class="sig-param">step])</dt>, <dt class="sig sig-object py" id="random.randint"> random.<span</pre> class="sig-name descname">randint(<em class="sig-param">a</ em>, <em class="sig-param">b<spa n class="sig-paren">) \P </dt>, <dt class="sig sig-object py" id="random.getrand"

random.</span</pre> class="sig-name descname">getrandbits(<em class="sig-param">k</spa n>)<a class="headerlink" href="#random.getrandbit</pre> s" title="Permalink to this definition">9</dt>, <dt class="sig sig-object py" id ="random.choice">

random. class="sig-name descname">choice(<em class="sig-param">seq) $\P</dt>, <dt class="sig sig-object py" id="rando"$ m.choices">

random. class="sig-name descname">choices(<em class="sig-param">population
, <em class="sig-param">weights
=<
span class="pre">None, <em class="sig-param">=|
e">=<

random.shuffle<span class="sig-par
en">(<em class="sig-param">x)<a class="headerlink" href="#random.shuffle" title
="Permalink to this definition">¶</dt>, <dt class="sig sig-object py" id="random.sample">

random.binomialvariate<span class
="sig-paren">(<em class="sig-param">n<
span class="pre">1</

random.random<span class="sig-pare
n">()<a class="headerlink" href="#random.rando
m" title="Permalink to this definition">¶</dt>, <dt class="sig sig-object py" id
="random.uniform">

random.uniform(<em class="sig-param">ab))¶</dt>, <dt class="sig-object py" id="random.triangu lar">

random.triangular(<em class="sig-param">high, <em class="sig-param">high, <em class="sig-param">mode class="sig-param">mode class="sig-paren">)¶</dt>, <dt class="sig sig-object py" id="random.betavariate">

random.betavariate(<em class="sig-param">alpha</pan>

, <em class="sig-param">beta)¶</dt>, <dt class="sig sig-object py" id ="random.expovariate">

random.expovariate<span class="sig
-paren">(<em class="sig-param">lambd
lass="pre">lambd
<
span class="pre">1.0)¶</dt>, <
dt class="sig sig-object py" id="random.gammavariate">

random.<gammavariate<span class="si
g-paren">(<em class="sig-param">alpha
, <em class="sig-param">beta</sp
an>)<a class="headerlink" href="#random.gammavari
ate" title="Permalink to this definition">¶</dt>, <dt class="sig sig-object py" i
d="random.gauss">

random.gauss<span class="sig-pare
n">(<em class="sig-param">mu0.0<

random.
class="sig-name descname">lognormvariate(<em class="sig-param">mu, <em class="sig-param">sigma)¶</dt>, <dt class="sig sig-object p y" id="random.normalvariate">

random. class="sig-name descname">normalvariate(<em class="sig-param">mu</ span>=<sp an class="pre">0.0, <em class="sig-param">sigma=1.0)¶</dt>, <dt class="sig sig-object py" id="random.vonmisesvariate"> random.</span</pre> class="sig-name descname">vonmisesvariate<span class</pre> ="sig-paren">(<em class="sig-param">mu, <em class="sig-param">kappa</</pre> span>)¶</dt>, <dt class="sig sig-object py" id="random.paretovariate">

random.paretovariate)¶</dt>, <dt class="sig-object py" id="random.weibullvariate">

random.weibullvariate</span class
="sig-paren">(<em class="sig-param">alpha, <em class="sig-param">beta

)<a class="headerlink" href="#random.weibu
llvariate" title="Permalink to this definition">¶</dt>, <dt class="sig sig-object
py" id="random.Random">
<em class="property">class random.<span class
="sig-name descname">Random
([<em class="sig-param">seed]<span class="sig-pare
n">)<a class="headerlink" href="#random.Random" title="Permalink to this defin
ition">¶</dt>, <dt class="sig-object py" id="random.SystemRandom">
<em class="property">classrandom.<span class="sig-pare
en">(<span class="sig-p

n class="pre">seed])<a class="headerlink" href="#random.SystemRandom" title="Permalink to</pre>

In [11]: # Find all the information we're looking for with regex
In this case, it would be every string at starts with id='random.'

function_names = re.findall('id="random.\w+' , str(names)) # '\w+' which means the str

Let print the results
print(function_names)

['id="random.seed', 'id="random.getstate', 'id="random.setstate', 'id="random.randbyt es', 'id="random.randrange', 'id="random.randint', 'id="random.getrandbits', 'id="random.choice', 'id="random.choices', 'id="random.shuffle', 'id="random.sample', 'id="random.binomialvariate', 'id="random.random', 'id="random.uniform', 'id="random.triangu lar', 'id="random.betavariate', 'id="random.expovariate', 'id="random.gammavariate', 'id="random.gamss', 'id="random.lognormvariate', 'id="random.normalvariate', 'id="random.vonmisesvariate', 'id="random.paretovariate', 'id="random.weibullvariate', 'id="random.Random', 'id="random.SystemRandom']

```
In [12]: # remove id from the extracted data
lst=[]
for i in function_names:
    lst.append(i[4 : ])
```

In [13]: #print the list
lst

this definition">¶</dt>]

```
['random.seed',
Out[13]:
           'random.getstate',
           'random.setstate',
           'random.randbytes',
           'random.randrange',
           'random.randint',
           'random.getrandbits',
           'random.choice',
           'random.choices',
           'random.shuffle',
           'random.sample',
           'random.binomialvariate',
           'random.random',
           'random.uniform',
           'random.triangular',
           'random.betavariate',
           'random.expovariate',
           'random.gammavariate',
           'random.gauss',
           'random.lognormvariate',
           'random.normalvariate',
           'random.vonmisesvariate',
           'random.paretovariate',
           'random.weibullvariate',
           'random.Random',
           'random.SystemRandom']
          # assign funtion name to list
In [14]:
          function_names=lst
In [15]:
          function_names
          ['random.seed',
Out[15]:
           'random.getstate',
           'random.setstate',
           'random.randbytes',
           'random.randrange',
           'random.randint',
           'random.getrandbits',
           'random.choice',
           'random.choices',
           'random.shuffle',
           'random.sample',
           'random.binomialvariate',
           'random.random',
           'random.uniform',
           'random.triangular',
           'random.betavariate',
           'random.expovariate',
           'random.gammavariate',
           'random.gauss',
           'random.lognormvariate',
           'random.normalvariate',
           'random.vonmisesvariate',
           'random.paretovariate',
           'random.weibullvariate',
           'random.Random',
           'random.SystemRandom']
```

```
In [22]: # Find all the function description
         description = soup.body.findAll('dd')
In [17]: # create list
         function_usage = []
         # Create a Loop
         for item in description:
             item = item.text
                                  # Save the extracted text to a variable
             item = item.replace('\n', '')  # to get rid of the next line operator which is
             function usage.append(item)
In [18]: item
         'Class that uses the os.urandom() function for generating random numbers from sources
Out[18]:
         provided by the operating system. Not available on all systems. Does not rely on soft
         ware state, and sequences are not reproducible. Accordingly, the seed() method has no
         effect and is ignored. The getstate() and setstate() methods raise NotImplementedErro
         r if called. '
In [19]: # Let's check the length of the function_names and function_usage
         print(f' Length of function_names: {len(function_names)}')
         print(f' Length of function_usage: {len(function_usage)}')
          Length of function_names: 26
          Length of function_usage: 26
In [20]: # Create a dataframe since the length of both variables are equal!
         data = pd.DataFrame( { 'function name':function names, 'function usage':function usage'
         data
```

0	random.seed	Initialize the random number generator. If a i
1	random.getstate	Return an object capturing the current interna
2	random.setstate	state should have been obtained from a previou
3	random.randbytes	Generate n random bytes. This method should no
4	random.randrange	Return a randomly selected element from range(
5	random.randint	Return a random integer N such that a \leftarrow N \leftarrow
6	random.getrandbits	Returns a non-negative Python integer with k r
7	random.choice	Return a random element from the non-empty seq
8	random.choices	Return a k sized list of elements chosen from
9	random.shuffle	Shuffle the sequence x in place. To shuffle an
10	random.sample	Return a k length list of unique elements chos
11	random.binomialvariate	Binomial distribution. Return the number of su
12	random.random	Return the next random floating point number i
13	random.uniform	Return a random floating point number N such t
14	random.triangular	Return a random floating point number N such t
15	random.betavariate	Beta distribution. Conditions on the paramete
16	random.expovariate	Exponential distribution. lambd is 1.0 divide
17	random.gammavariate	Gamma distribution. (Not the gamma function!)
18	random.gauss	Normal distribution, also called the Gaussian
19	random.lognormvariate	Log normal distribution. If you take the natu
20	random.normalvariate	Normal distribution. mu is the mean, and sigm
21	random.vonmisesvariate	mu is the mean angle, expressed in radians bet
22	random.paretovariate	Pareto distribution. alpha is the shape param
23	random.weibullvariate	Weibull distribution. alpha is the scale para
24	random.Random	Class that implements the default pseudo-rando
25	random.SystemRandom	Class that uses the os.urandom() function for

```
In [21]: #save to system in excel format
    data.to_excel('E:/scrap/function.xlsx')
```

```
In [ ]:
```