

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/899,895	07/05/2001	Illah Nourbakhsh	20191.707	3588
24504	7590	08/25/2006	EXAMINER	
THOMAS, KAYDEN, HORSTEMEYER & RISLEY, LLP 100 GALLERIA PARKWAY, NW STE 1750 ATLANTA, GA 30339-5948				DESHPANDE, KALYAN K
ART UNIT		PAPER NUMBER		
		3623		

DATE MAILED: 08/25/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	09/899,895	NOURBAKSH ET AL.
	Examiner	Art Unit
	Kalyan K. Deshpande	3623

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 05 June 2006.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-3, 7-10, 13-17, 19-31, and 33-49 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-3,7-10,13-17,19-31 and 33-49 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ . |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| Paper No(s)/Mail Date _____ . | 6) <input type="checkbox"/> Other: _____ . |

DETAILED ACTION

Introduction

1. The following is a non-final office action in response to the communications received on June 5, 2006. Applicant lists claims 1-3, 7-10, 13-17, 19-23, 25-27, 29-31, and 33-49 as pending, however, are silent as towards claims 24 and 28; thus it is unclear as to whether applicant intended to cancel these claims or whether they still pending. Since these claims were not explicitly cancelled in the most recent claims, Examiner is assuming these claims are still pending. Therefore, claims 1-3, 7-10, 13-17, 19-31, and 33-49 are pending in this action.

Continued Examination Under 37 CFR 1.114

2. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on June 5, 2006 has been entered.

Response to Amendments

3. Applicants' amendments to claims 1, 16, and 30 are acknowledged. Applicants' cancellation of claims 4-6, 11-12, 18, and 32 is acknowledged. Examiner asserts new grounds of rejection for all of the pending claims.

Response to Arguments

4. Applicants' arguments filed on June 5, 2006 have been fully considered but are moot in view of the new ground(s) of rejection.

Claim Objections

5. Claim 9 is objected to because of the following informalities: the term "range" is misspelled as "rang". Appropriate correction is required.

Claim 43 is objected to because of the following informalities: the term "redistributing" is misspelled as "restributing". Appropriate correction is required.

Claim 44 is objected to because of the following informalities: the term "the" appears to be accidentally repeated. Appropriate correction is required.

Claim Rejections - 35 USC § 112

6. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

7. Claim 45 is rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. Claim 45 recites a "queue bunch factor". The specification is silent as to this feature and therefore one of ordinary skill in the art would not be conveyed that the inventors had possession of this feature.

Claim Rejections - 35 USC § 102

8. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

9. Claims 1-3, 7, 9-10, 16-17, 19-20, 22-23, 24-25, 27-31, 33-34, 36-39 are rejected under 35 U.S.C. 102(e) as being Anticipated by Stuart et al. (U.S. Patent No. 6639982).

As per claim 1, Stuart et al. teach:

A computer-implemented method for long-range planning for a complex system, comprising:

Defining a plurality of agent profiles, wherein each agent profile comprises a group of agents that have similar characteristics, and wherein defining comprises specifying the characteristics, including at least one capability, at least one performance measure, and at least one attribute specifying a change in the number of agents in the group during a specified time period (see column 7 lines 53-67, column 11 lines 36-54, and column 12 lines 21-41; where agent profiles are defined. Agent profiles contain agent cost profiles, agent education, and agent training records. These variables are the same as the agent's capabilities. Furthermore, a variable defining the composition of the group for a specified period of time can be defined.);

Defining at least one work load (column 15 lines 24-43; where a work load is defined.); and

Specifying at least one criteria to be satisfied by a long-range staffing plan (see column 6 lines 59-67 and column 7 lines 1-19; where management specified criteria are used in the operation of the invention.); and

Calculating an effect of applying the plurality of agent profiles to the at least one work load while satisfying the at least one criteria, wherein the calculated effect includes at least one performance measure for the at least one work load (see column 15 lines 44-67 and column 16 lines 1-19; where an optimization algorithm is used to with inputs of the number of agents, the type of agents, and the call volume load based to determine the optimal number of agents, teams, tours, and costs to handle the load.),

Wherein the calculating comprises:

Adding a first agent from one of the agent profiles to a propose schedule, wherein there is an available work associated with each agent in the one agent profile, and wherein the proposed schedule is for servicing at least one workload over a predefined time period (see column 15 lines 44-67, column 16 lines 1-19, and column 17 lines 14-30; where the user has the ability to adjust the number of agents and teams. The agent costs are determined for each period of time based on expected uncertain loads.);

Calculating an effect of adding the first agent, wherein adding an agent includes distributing the available work associated with the agent among the at least one

workload (see column 15 lines 44-67, column 16 lines 1-19, and column 17 lines 14-30; where the user has the ability to adjust the number of agents and teams. The agent costs are determined for each period of time based on expected uncertain loads.);

Adding a next agent from one of the agent profiles to the proposed schedule (see column 15 lines 44-67, column 16 lines 1-19, and column 17 lines 14-30; where the user has the ability to adjust the number of agents and teams. The agent costs are determined for each period of time based on expected uncertain loads.);

Calculating an effect of adding the next agent taking into account the effect of having added the first agent (see column 15 lines 44-67, column 16 lines 1-19, and column 17 lines 14-30; where the user has the ability to adjust the number of agents and teams. The agent costs are determined for each period of time based on expected uncertain loads.); and

Iteratively adding additional agents from the agent profiles to the proposed schedule and iteratively calculating effects of adding the additional agents taking into account each agent already added until the available work for every agent in the plurality of agent profiles has been distributed (see column 15 lines 44-67, column 16 lines 1-19, column 17 lines 14-30, and column 19 lines 40-67; where the user has the ability to adjust the number of agents and teams. The agent costs are determined for each period of time based on expected uncertain loads. Linear programming optimization is the same as iterative summation.).

As per claim 2, Stuart et al. teach:

The method of claim 1, wherein the complex system is a contact center, the at least one work load includes at least one queue, and wherein the at least one capability includes a skill set (column 7 lines 53-67, column 8 lines 36-62, column 11 lines 36-54, column 12 lines 21-41, and column 15 lines 24-43; where a work load is defined. The work load is the call volume where the volume is associated with a call queue. Agent profiles are defined. Agent profiles contain agent cost profiles, agent education, and agent training records. These variables are the same as the agent's capabilities. The complex system is a call center which is the same as a contact center.).

As per claim 3, Stuart et al. teach:

The method of claim 2, wherein the at least one performance measure includes an efficiency percentage, and wherein applying the plurality of agent profiles to the at least one work load includes staffing the at least one queue with the at least one agent profile (see column 15 lines 24-43; where the system optimizes the efficiency of handling incoming calls and optimizes staffing to handle the call volumes and minimize the queue.).

As per claim 7, Stuart et al. teach:

The method of claim 3, wherein the characteristics further include:

Shrinkage, wherein shrinkage comprises various categories of time for which an employee is paid, but during which the agent does not work (see column 5 lines 10-14 and column 18 lines 1-45; where productivity is measured and agent wages are

considered. Productivity is the measure of the amount of work an agent does over a period of time.);

Burden, wherein burden comprises various categories of expenses associated with the agent including benefit expenses (see column 18 lines 1-45; where various categories of expenses includes an agent cost.); and

Wage (see column 18 lines 1-45; where wage is a characteristic measured.).

As per claim 9, Stuart et al. teach:

The method of claim 3, further comprising displaying the calculated effect of the long-range staffing plan, comprising displaying for each queue of the at least one queue for each of a plurality of predefined time periods (see column 19 lines 61-67 and column 20 lines 1-25; where the long-range plan can be simulated and monitored for specific time periods.):

A contact volume (see column 15 lines 55-67 and column 16 lines 1-5; where contact volume is a constraint in the optimization algorithm.);

A predefined average handling time goal (see column 15 lines 55-67 and column 16 lines 1-19; where call handling goals are determined by adjusting costs or maximizing utility.);

An actual service level (see column 11 lines 9-18 and column 21 lines 43-67; where actually service level is monitored to see if it reaches a critical level); and

A required service level (see column 12 lines 42-65; where service levels are predetermined.).

As per claim 10, Stuart et al. teach:

The method of claim 9, wherein displaying further comprises displaying calculated effects of more than one staffing plan on a single display for comparison (see column 19 lines 40-67 and column 21 lines 43-67; where simulations of the staffing plan are done to determine optimal and feasible plans.).

Claims 16-17, 19-20, 22-23, 24-25, and 27 recite a "system for long-range staffing planning in a contact center, wherein the multi-contact center processes a plurality of contact queues comprising a plurality of contact media taught by Stuart et al. (see column 1 lines 10-15). Claims 16-17, 19-20, 22-23, 24-25, and 27 further recite limitations already addressed by the rejections of claims 1-3, 7, and 9-10; therefore the same rejections apply to these claims as well.

As per claim 28, Stuart et al. teach:

The system of claim 16, wherein the storage device that stores the instructions is accessed by the at least one processor through the network (see column 6 lines 10-45; where the storage device stores instructions accessed by a processor).

As per claim 29, Stuart et al. teach:

The system of claim 16, wherein the storage device that stores the instructions is the at least one storage device of the server (see column 6 lines 10-45; where the storage device that stores the instructions is a database).

Claims 30-31, 33-34, and 36-39 recite "an electromagnetic medium containing executable instructions which, when executed in a processing system, cause the system to generate effects of a proposed long-range staffing plan for a contact center" taught by Stuart et al. (see column 6 lines 10-45). Claims 30-31, 33-34, and 36-39

further recite limitations already addressed by 1-3, 7, 9-10, 16-17, 19-20, 22-23, 24-25, 27-29; therefore the same rejections apply to these claims.

Claim Rejections - 35 USC § 103

10. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

11. Claims 8, 14, 15, 21, 27, 41, and 42 are rejected under 35 U.S.C. 103(a) as being unpatentable over Stuart et al. (U.S. Patent No. 6639982).

As per claim 8, Stuart et al. teach "specifying characteristics further comprises a time period required to bring an agent hired into the profile to a predefined level of efficiency" (see column 10 lines 5-23 and column 11 lines 55-67; where increasing the skill level of agents is done.). Stuart et al. fail to explicitly teach "hiring into a profile". It is old and well-known in the art to hire agents into a profile. The advantage of hiring into a profile is that the personnel needed to achieve an optimal level of staffing can be accomplished. It would have been obvious, at the time of the invention, to one of ordinary skill in the art to incorporate the feature of "hiring into a profile" to the Stuart et al. system in order to meet the required number of agents needed for optimally handling a work load, which is a goal of Stuart et al. (see column 4 lines 55-57).

As per claim 14, Stuart et al. teach "the contact center comprises multiple queues and multiple types of contact media, wherein the skill set includes skills across multiple queues and multiple contact media" (see column 9 lines 23-67 and column 10 lines 1-

23; where the call center has multiple queues and multiple teams to handle specific queues.). Stuart et al. fail to explicitly teach “skills across multiple media”. It is old and well-known in the art to use multiple types of media and have agents with skills in multiple media. The advantage using multiple media and agents with skills in multiple media is that it enhances the call center’s ability to handle more load by optimally distributing load. It would have been obvious, at the time of the invention, to one of ordinary skill in the art to incorporate the feature of using multiple media and having agents with skills in multiple media in order to enable the call center to handle load by optimally distributing load, which is a goal of Stuart et al. (see column 5 lines 7-10).

As per claim 15, Stuart et al. teach:

The method of claim 14, wherein iteratively calculating effects of adding the additional agents taking into account each agent already added includes assigning additional agents across multiple queues and multiple contact media (see column 15 lines 44-67, column 16 lines 1-19, column 17 lines 14-30, and column 19 lines 40-67; where the user has the ability to adjust the number of agents and teams. The agent costs are determined for each period of time based on expected uncertain loads. Linear programming optimization is the same as iterative summation.).

Claim 15 further recites limitations already addressed by the rejection of claim 14; therefore the same rejection applies to this claim.

Claims 21, 27, 41, and 42 recite the same limitations already addressed by the rejections of claims 8, 14, and 15; therefore the same rejections apply to these claims.

Art Unit: 3623

12. Claim 13, 26, 35, and 40 are rejected under 35 U.S.C. 103(a) as being unpatentable over Stuart et al. (U.S. Patent No. 6639982) in view of Kintner et al. (U.S. Patent No. 6732079).

As per claim 13, Stuart et al. fail to explicitly teach “calculating estimated training costs of increasing an employees level of performance”. Kintner et al. teaches “calculating estimated costs of increasing an employees level of performance” (see Kintner column 2 lines 56-67 and abstract; where the cost of training employees is considered and incorporated in an algorithm for a staffing plan.). The advantage of this feature is that it enables an agent to efficiently utilize idle time in a manner that is beneficial to the company. It would have been obvious, to one of ordinary skill in the art, to combine the feature of “calculating estimated costs of increasing an employees level of performance” in order to enable an agent to efficiently utilize idle time in a manner that is beneficial to the company, which is a goal of Stuart et al. (see column 5 lines 10-14).

Claims 26, 35, and 40 recite limitations already addressed by the rejection of claim 13; therefore the same rejections apply to these claims.

13. Claims 43-49 are rejected under 35 U.S.C. 103(a) as being unpatentable over Stuart et al. (U.S. Patent No. 6639982) in view of Castonguay et al. (U.S. Patent No. 5911134).

As per claim 43, Stuart et al. teach “wherein the at least one workload comprises a plurality of queues” (see column 9 lines 23-67 and column 10 lines 1-23; where the call center has multiple queues and multiple teams to handle specific queues.), “wherein

each queue is associated with a remaining load and a net staffing" (see column 9 lines 24-55; where each queue is associated with a remaining load and each queue is handled by a specific team), "wherein each agent profile is associated with a plurality of Erlang-by-queue factors" (see column 1 lines 24-49; where each agent is associated with Erlang factors). Stuart et al. fail to explicitly teach "wherein the calculating further comprises: redistributing work among agent profiles by computing the plurality of Erlang-by-queue factors for each agent profile; recalculating load remaining for each of the plurality of queues by computing the net staffing and remaining load associated with each queue; and repeating the redistributing work and recalculating load steps until the available work of agents in all agent profiles has been distributed". Castonguay et al. teach "redistributing work among agent profiles by computing the plurality of Erlang-by-queue factors for each agent profile" (see Castonguay column 11 lines 12-67 and column 12 lines 1-61; where work is redistributed by computing Erlangs numbers. The Erlangs factors include call rates, average call handling time, and service level from call rates.); recalculating load remaining for each of the plurality of queues by computing the net staffing and remaining load associated with each queue" (see Castonguay column 11 lines 12-67 and column 12 lines 1-61; where load is recalculated based on a predetermined service level and an adjusted number of available agents.); "and repeating the redistributing work and recalculating load steps until the available work of agents in all agent profiles has been distributed" (see Castonguay column 12 lines 45-67; where all of the computations are redone until a winner is selected.). The advantage of performing these steps is that it enables the call center's ability to handle

more load by optimially distributing load. It would have been obvious, at the time of the invention, to one of ordinary skill in the art to combine the steps of "wherein the calculating further comprises: redistributing work among agent profiles by computing the plurality of Erlang-by-queue factors for each agent profile; recalculating load remaining for each of the plurality of queues by computing the net staffing and remaining load associated with each queue; and repeating the redistributing work and recalculating load steps until the available work of agents in all agent profiles has been distributed" taught by Castonguay et al. to Stuart et al. in order to enable the call center to handle load by optimally distributing load, which is a goal of Stuart et al. (see column 5 lines 7-10).

As per claim 44, Stuart et al. teach "wherein each agent profile further is associated with a headcount" (see column 8 lines 7-62; where an agent profile is associated with a team size and the number of agents in a team, which are the same as a headcount.), "an hours-per-month" (see column 12 lines 58-67 and column 13 lines 1-20; where the average standard time worked by an agent over a period of time is determined.), "a number of queues worked by the profile" (see column 9 lines 24-55; where the number of queues worked by a specific team is determined), "a total effective Erlangs performed by one agent in the agent profile" (see column 1 lines 24-49; where the load per agent is determined), "and wherein the redistributing work step further comprises: Redistributing work among the agent profiles for each agent profile based on the associated headcount" (see column 8 lines 7-62; where an agent profile is associated with a team size and the number of agents in a team, which are the same as

a headcount.), “the hours-per-month” (see column 12 lines 58-67 and column 13 lines 1-20; where the average standard time worked by an agent over a period of time is determined.), “the number of queues worked by the profile” (see column 9 lines 24-55; where the number of queues worked by a specific team is determined), “and the total effective Erlangs” (see column 1 lines 24-49; where the load per agent is determined). Stuart et al. fail to teach “by computing the plurality of the plurality of Erlang-by-queue factors”. This limitation is addressed by the rejection of claim 43; therefore the same rejection applies to this claim as well.

As per claim 45, Stuart et al. teach:

The method of claim 44, wherein each queue is further associated with a bunch factor (see column 9 lines 24-55; where overflowing calls are not sent to a secondary group at random, but are grouped as overflowing calls designated for the secondary team by the system), wherein each profile is further associated with a plurality of queue scaling factors (see column 9 lines 23-67 and column 10 lines 1-23; where the call center has multiple queues and multiple teams to handle specific queues. The normalized distribution of the load is based on several factors including the size of the team, skill level of the team, and service level assigned to the team.), and computing the plurality of Erlang-by-queue factors for each agent profile further comprises:

Computing each queue scaling factor based on the corresponding queue bunch factor, the corresponding queue remaining load, and a previous scaling factor (see column 9 lines 24-55; where overflowing calls are not sent to a secondary group at

random, but are grouped as overflowing calls designated for the secondary team by the system. The primary team is assigned a threshold and each remaining load beyond the threshold is designated by the system to the secondary team.);

Claim 45 further recites limitations already addressed by the rejections of claims 43 and 44; therefore the same rejections apply to this claim as well.

As per claim 46, Stuart et al. teach:

The method of claim 43, wherein each queue is further associated with an expected service level (see column 12 lines 42-65; where service levels are predetermined.), a call volume (see column 15 lines 55-67 and column 16 lines 1-5; where contact volume is a constraint in the optimization algorithm.), an average handle time (see column 15 lines 55-67 and column 16 lines 1-19; where call handling goals are determined by adjusting costs or maximizing utility.), a remaining load and a net staffing (see column 9 lines 24-55; where each queue is associated with a remaining load and each queue is handled by a specific team), wherein the recalculating load step further comprises:

Recalculating load remaining for each of the plurality of queues by computing the net staffing and remaining load associated with each queue (see column 9 lines 24-55; where each queue is associated with a remaining load and each queue is handled by a specific team), wherein the remaining load is based on the queue call volume (see column 15 lines 55-67 and column 16 lines 1-5; where contact volume is a constraint in the optimization algorithm.), the queue average handle time (see column 15 lines 55-67 and column 16 lines 1-19; where call handling goals are

determined by adjusting costs or maximizing utility.), and the queue expected service level (see column 12 lines 42-65; where service levels are predetermined.).

Claim 46 further recites limitations already addressed by the rejection of claim 43; therefore the same rejection applies to this claim.

As per claim 47, Stuart et al. teaches:

The method of claim 46, wherein the recalculating load step further comprises:

Calculating the queue expected service level based on the queue net staffing, the queue average handle time, a queue call rate, and a queue goal-seconds (see column 9 lines 24-55, column 15 lines 55-67, and column 16 lines 1-60; where the expected service level is determined using several factors, including queue average call time, queue call rate, queue call abandon rate, queue second, and calls per second. Net staffing for each team to handle an expected queue is also determined.).

As per claim 48, Stuart et al. teach:

The method of claim 43, wherein each queue is associated with an occupancy (see column 9 lines 24-55; where the number of agents to handle the queue is determined. Occupancy is defined as the number of agents servicing a queue as per Specification page 17.), wherein agent profile is further associated with a load and an hours-per-month (see column 9 lines 24-55, column 12 lines 58-67, and column 13 lines 1-20; where the number of agents to handle the queue is determined. The average standard time worked by an agent over a period of time is determined.), and further comprising the step of:

For each agent profile, iterating through each queue for which the profile is set to answer and adding the agent profile load the remaining load associated with the iterated queue, multiplied by a percentage of the net staffing associated with the iterated queue to which the agent profile contributes (see column 15 lines 44-67, column 16 lines 1-19, column 17 lines 14-30, and column 19 lines 40-67; where the user has the ability to adjust the number of agents and teams. The agent costs are determined for each period of time based on expected uncertain loads. Linear programming optimization is the same as iterative summation. The constraints are used to determine the optimal distribution. Simulation of the optimal distribution is done to determine the best long-range plan.); and

For each agent profile, computing the agent profile occupancy by dividing the agent profile load by the agent profile headcount multiplied by the agent profile hours-per-month (see column 12 lines 58-67 and column 13 lines 1-43; where an agent cost is determined. The agent cost is determined by computing the agent standard work time and wages. The agent standard work time is also used to determine the agent occupancy.).

Stuart et al. fail to explicitly teach "initializing each agent profile load to zero". It is old and well-known in the art to initialize an agent profile load to zero. When determining the optimal distribution of load amongst a plurality of agents, the stochastic programming is known to begin at zero. The advantage of "initializing each agent profile load to zero" is that it enables a user to more accurately distribute the load amongst agents. It would have been obvious, at the time of the invention, to one of

ordinary skill in the art to incorporate “initializing each agent profile load to zero” to the Stuart et al. system in order to more accurately distribute load amongst agent profiles, which is a goal of Stuart et al. (see column 5 lines 7-10).

As per claim 49, Stuart et al. teach:

The method of claim 48, further comprising the step of:

Computing an occupancy for each queue by dividing queue remaining load by queue net staffing (see column 9 lines 24-67; where a threshold for each team is determined. The remaining load beyond the threshold is the queue that is assigned to a second team. This remaining load is the queue for the second team and therefore is the same as the occupancy.); and

For each agent profile, bounding the agent profile occupancy by the highest value of queue occupancy in the plurality of queues (see column 9 lines 24-67; where a threshold load for each team is determined. The threshold is the highest value of queue that the team can handle.).

Conclusion

14. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Kalyan K. Deshpande whose telephone number is (571) 272-5880. The examiner can normally be reached on M-F 8am-5pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tariq Hafiz can be reached on (571) 272-6729. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Karen Myan
kkd

Romain Jeanty
Primary Examiner
Art Unit 3623