## Лекция 4. Электромагнитная индукция и магнетики

## Электромагнитная индукция

Закон Фарадея связывает ЭДС индукции с изменением магнитного потока через контур:

$$arepsilon_{ ext{ iny IHJ}} = \oint \, ec{E} \cdot d ec{l} = - rac{\partial \Phi}{\partial t},$$

где магнитный поток  $\Phi = \int_{\mathcal{S}} \vec{B} \cdot d\vec{S}$ . Переменное магнитное поле создаёт вихревое электрическое поле: силовые линии такого поля замкнуты, а само поле действует на заряды даже в отсутствие проводника. Это явление лежит в основе работы трансформаторов и генераторов. Например, если быстро вращать магнит рядом с катушкой, возникающая ЭДС заставляет ток течь в цепи.

Для произвольного контура изменение потока связано с локальным изменением  $\vec{B}$ :

$$\frac{\partial \Phi}{\partial t} = \int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}.$$

ЭДС можно выразить через интеграл от производной магнитного поля:

$$\varepsilon_S = -\int_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}.$$

Это означает, что чем быстрее меняется магнитное поле или чем больше площадь контура, тем сильнее индуцированный ток.

## Магнитное поле в веществе

В материальной среде полное поле  $\vec{B}$  складывается из внешнего  $\vec{B}_0$  и поля  $\vec{B}'$ , создаваемого намагниченностью вещества. Магнитные свойства описываются вектором намагниченности  $\vec{J}$  - магнитным моментом единицы объема:

$$\vec{J} = n\vec{p}_m$$
,  $[\vec{J}] = A/M$ ,

где n — концентрация атомов,  $\vec{p}_m$  — магнитный момент одного атома. Намагниченность связана с молекулярными токами: каждый атом ведёт себя как микроскопический виток с током  $I' = \vec{J} \cdot \vec{l}$  (рис. 1). Суммарный молекулярный ток через поверхность S равен циркуляции  $\vec{J}$  по контуру:

$$I' = \oint \vec{J} \cdot d\vec{l}.$$

**Основные уравнения.** Полный ток (внешний I и молекулярный I') создаёт магнитное поле:

$$\oint \vec{B} \cdot d\vec{l} = \mu_0(I + I').$$

Чтобы исключить молекулярные токи, вводят **напряжённость магнитного поля**  $\vec{H}$ :

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{J}, \quad \oint \vec{H} \cdot d\vec{l} = I.$$

В дифференциальной форме:  $\nabla \times \vec{H} = \vec{j}$ , где  $\vec{j}$  — плотность внешних токов. Для большинства веществ  $\vec{B}$  и  $\vec{H}$  связаны линейно:

$$\vec{B} = \mu_0 \mu \vec{H}, \quad \vec{J} = \chi \vec{H},$$

где  $\mu = 1 + \chi$  — относительная магнитная проницаемость,  $\chi$  — магнитная восприимчивость.

**Граничные условия.** По аналогии с электрическим полем при переходе между средами с разными коэффициентами магнитной проницаемости:

- Нормальная компонента B непрерывна:  $B_{1n} = B_{2n}$  (магнитные заряды не существуют).
- Касательная компонента H скачкообразно меняется при наличии поверхностных токов:  $H_{2\tau}-H_{1\tau}=I_{\text{пов}}.$  Если токов нет,  $H_{1\tau}=H_{2\tau},$  а B-поле меняется пропорционально  $\mu$ :  $B_{2\tau}=\frac{\mu_2}{\mu_1}B_{1\tau}.$

## Типы магнетиков и энергия поля

**Диамагнетики** (медь, вода) слабо выталкиваются из поля ( $\chi < 0$ ,  $|\chi| \sim 10^{-5}$ ). Их атомы не имеют собственного момента; наведённые токи ослабляют внешнее поле.

**Парамагнетики** (алюминий) слабо втягиваются ( $\chi > 0$ ,  $\chi \sim 10^{-3}$ ): тепловое движение мешает ориентации атомных моментов.

**Ферромагнетики** (железо) сильно усиливают поле ( $\mu \gg 1$ ) за счёт доменов - областей спонтанной намагниченности. При циклическом перемагничивании наблюдается гистерезис: зависимость B(H) образует петлю, что приводит к потерям энергии.

**Энергия магнитного поля.** При изменении тока в катушке совершается работа против ЭДС индукции:

$$dW = I \cdot d\Phi = LI \, dI \quad \Rightarrow \quad W = \frac{LI^2}{2}.$$

Эта энергия «запасена» в поле: плотность энергии  $w = \frac{B^2}{2\mu_0\mu}$ . В ферромагнетиках часть энергии тратится на переориентацию доменов (гистерезисные потери).