ᆫ	Ħ	$\mathbf{\Delta}$	_
<u> </u>	基	7	

实验名称 空气中声速的测量

一. 实验预习

相位比较法测量声速实验中,示波器上调出李萨如图形后,改变换能器的间距,连续记录出现正斜率和负斜率直线时接收器的位置(如下图所示),记录了 10 个位置数据 x_i (i=1, 2, 3, ……, 9, 10),所用声波频率为 f,如下表所示,请用逐差法处理数据,推导出声速 v 的表达式。

相位比较法测空气中声速,频率 $f=___$

次数	1	2	3	4	5	6	7	8	9	10
x_i										

維号:
$$\Delta X = \frac{\sum_{i=1}^{\infty} (X_i + 5 - X_i)}{25}$$
 、 $\lambda = 2\Delta X$ いった 从所 いっ f · $\sum_{i=1}^{\infty} (X_i + 5 - X_i)$

二. 实验现象及原始数据记录

极值法(驻波法)测空气中声速,温度 t=11_°C,频率 $f=\frac{35.619}{kHz}$

l_i (mm)	(4)	69.2	74.0	79.0	84:0	88.7	93.5	98)	103.2	(0) 0
次数	1	2	3	4	5	6	7	8	9	10

相位比较法测空气中声速,温度 t=21 °C,频率 $f=35.62^9_{kHz}$

次致	1	2	3	4	5	6	7	8	9	10
l_i (mm)	118.0	122.5	127.2	(32.1	137.0	142 2	147.0	151.9	1569	161.7

(选做) 波形移动法测空气中声速,温度 $t = ___ \circ C$,频率 $f = ___ kHz$

次数	1	2	3	4	5	6	7	8	9	10
l_i (mm)										

时差法测空气中声速,温度 t=2 ℃

次数	1	2	3	4	5	6	7	8	9	10
l_i (mm)	18370	170.0	180.0	0.091	200,0	210.0	120.0	230.0	240.0	220.0
t_i (µs)	780	496	520	550	576	600	628	656	684	712
	470									

(选做) 时差法测固体中声速,温度 t=___。℃

次数	1	2	3	4	5	6
材质						
l_i (mm)						
t_i (µs)						

三、数据处理

【计算以上几种方法测得的声速,计算室温下空气中声速的理论值,分别计算四种方法得到的声速测量值与理论值的相对误差,根据时差法测量数据计算固体介质中的声速(选做),要有详细的计算过程,格式工整】

$$V_0 = 331.45 \int 1 + \frac{21.0}{213.05} = 343.96 \text{ m/s}$$

极抱法:

$$\frac{\sum_{c_1}^{5} (li+5-li)}{5 \times 2.5} = 9.696 mm$$

$$V = \sum_{c_1}^{6} = 9.696 mm \times 35.629 kHz$$

$$= 345.46 m/s$$

相位比较法

$$\bar{\lambda} = \frac{\sum_{i \neq i}^{5} (l_{i+5} - l_{i})}{5 \times 2.5} = 9.831 \text{ mm}$$

$$V = \bar{\lambda} f = 350.30 \text{ m/s}$$

$$6 = \frac{1V - V_{0}l}{V_{0}} = 1.85\%$$

时差法

$$\overline{V} = \frac{1}{5} \sum_{i=1}^{5} \frac{Lit5-Li}{tit7-ti} = 317.39 \text{ m/s}$$

$$G = \frac{1V-Vol}{Vo} = 7.72\%$$

四. 实验结论及现象分析

(分析讨论以上几种方法测出的空气中的声速结果为何存在差异,从原理和操作上说明 各自的优缺点)

前两种方法基于波形测出声速,误差较小,精度高,但受回波于涉,不适合固体测量,原理简单,适合规学,持条作性3至,且由于需观察波形,人为误差存在,

时差法抗干扰能力强、避免了人为与环境中回波的影响、操作上更简单、但对计时仪器要求高

五. 讨论题

- 1. 使用驻波法测声速时,为什么示波器上观察到的是正弦波而不是驻波?
- 2. 用相位比较法测量波长时,为什么用直线而不用椭圆作为 S2 移动距离的判断数据?
- 3. 分析一下本实验中哪些因素可以引起测量误差。列出3条主要因素并说明原因。
- 1. 在使用驻波法测声速时,某一定点的波形随时间变化的7-七曲线仍是正弦形。
- 2. 直线因形态统一而容易判断
- 3. ①仪器自身的误差,如测量仪器的误差
 - ②发射域与接收域不是严格的波服
 - ③判断出的波形具有一定主观性。