Alexander Chatron-Michaed
Fall 2015 260611509
I worked alone on this assignment

- 2) a) $\frac{n+1}{2}$, $\frac{n+1}{4}$, $\frac{3(n+1)}{4}$, $\frac{n+1}{8}$, $\frac{3(n+1)}{8}$, $\frac{5(n+1)}{8}$, $\frac{7(n+1)}{8}$,
 - b) For all three operations the worst case is $O(h) = O(\log n)$
 - gives max height h=n

 (could be written as 1,2,3,-,n-1,n but I wanted to indicate nearly insert at the right child)
 - d) For all three, O(h) = O(n)
- 3) a) if (start == stop)

 return A[start]

 else
 pivot == partition (A, start, stop)

 if (pivot = k)

 return A[k]

 else if (pivot > k)

 return findkth (A, start, pivot -1, K)

 else if (pivot × k)

 return findkth (A, pivot + 1, stop, K)
 - b) T(n): T(n/2) + a(n) + b when n>1 T(n): c at n=1

 half size 1

 constant for
 return statements,
 time time a:
 (recursive call) where a:
 (recursive call) *(stop-start+1)

$$T(n) = T(n/2) + an + b$$

$$= T(n/2) + \frac{1}{2}an + b + an + b$$

$$= T(n/2) + \frac{1}{2}an + b + \frac{1}{2}an + b + an + b$$

$$= T(\frac{n}{2^{k}}) + (\sum_{k=1}^{k} (\frac{1}{2})^{k-1})an + \sum_{k=1}^{k} b$$

$$= 1 + an + (\log n)b$$

$$= 1 + an + (\log n)b$$

$$= 1 + an + (\log n)b$$
hence the algorithm is $\Theta(n)$

ete if (is Isomorphic (A. getleftChild(), B. getleftChild()) and (is Isomorphic (A. getkightChild(), b. getkightChild()) return true

else if (is I somerphic (A. get Left child!), B. get Right child!) and (is Isomerphic (A. get Right Child!))
return type

else

return false