$\int_{0}^{1} \int_{0}^{1} xy e^{-x^{2}} dxdy = \int_{0}^{1} y \left[\frac{e^{-y^{2}}}{-2} - \frac{1}{2} \right] dy.$ $\int_{0}^{1} xy e^{-x^{2}} dxdy = \int_{0}^{1} y \left[\frac{e^{-y^{2}}}{-2} - \frac{1}{2} \right] dy.$ $\int_{0}^{1} xe^{-x^{2}} dxdy = \int_{0}^{1} y \left[\frac{e^{-y^{2}}}{-2} - \frac{1}{2} \right] dy.$ $\int_{0}^{1} \frac{1}{2} e^{-t} dt$ $= -\frac{1}{2} \int (ye^{-y^2} - y) dy = -\frac{1}{2} \left[\frac{e^{-y^2}}{2} - \frac{y^2}{2} \right]_0^1 = \frac{1}{4} \left[e^{-1} - 1 + 1 \right]$ $02 \int_{0}^{1} \int_{0}^{x^{2}} e^{\frac{1}{2}/x} dy dx = \int_{0}^{1} \frac{e^{\frac{1}{2}/x}}{\frac{1}{2}/x} \int_{0}^{x^{2}} dx = \int_{0}^{1} \frac{e^{\frac{1}{2}/x}}{1} e^{\frac{1}{2}/x} dx$ Q3 slog 8 slog y exty dudy = slog 8 ex (slog y ex dx) ds. $= \int_{0}^{\log 8} e^{3} \left[y - i \right] dy = y e^{3} - e^{3} - e^{3} \left[\log 8 \right]$ = (log 8) 8 - 8 - 8 - 8 + C + C + C $= 8 \log 8 - 16 + e$ $Qy \int_{0}^{1} \int_{0}^{1} \frac{dx dy}{(1-x^{2})(1-y^{2})} = \int_{0}^{1} \frac{1}{1-x^{2}} \int_{0}^{1} \frac{1}{1-x^{2}} dx dy$ = $\int_{-\sqrt{1-y^2}}^{1} \left[8in^{-1}x \right]_0^1 dy = \int_{0}^{1} \frac{1}{\sqrt{1-y^2}} \left[\frac{\pi}{2} - 0 \right] dy$ $=\frac{\pi}{2}\left[\sin^{-1}y\right]_{0}^{1}=\frac{\pi}{2}\left[\frac{\pi}{2}-0\right]=\frac{\pi^{2}}{4}$ Q5 $\int_{-\sqrt{2-y}}^{2} \int_{-\sqrt{2-y}}^{\sqrt{2-y}} 2x^2y^2 dxdy$ Ans $\frac{856}{945}$