

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/ WISKUNDE VI

MARKING GUIDELINES/NASIENRIGLYNE

2021

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 13 pages. *Hierdie nasienriglyne bestaan uit 13 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

P		1
1.1.1	$x^2 - x - 20 = 0$	✓ factors
	(x-5)(x+4)=0	$\checkmark x = 5$
	x = 5 or $x = -4$	$\checkmark x = 3$ $\checkmark x = -4$ (3)
1.1.2	$3x^2 - 2x - 6 = 0$	
	$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(3)(-6)}}{2(3)}$	✓substitution
	$x = \frac{1 \pm \sqrt{19}}{3}$ $x = -1,12 \text{or} x = 1,79$	✓ simplification ✓ $x = -1,12$ ✓ $x = 1,79$ (4)
1.1.3	$(x-1)^2 > 9$	
	$x^2 - 2x - 8 > 0$	✓ standard form
	(x-4)(x+2) > 0	
	Critical values: $x = 4$ or $x = -2$	✓ critical values
	-2 4	
	x < -2 or $x > 4$	$\checkmark \checkmark x < -2 \text{ or } x > 4$
	OD/OF	(4)
	OR/OF	OR/OF
	$(-\infty; -2)$ or $(4; \infty)$	\checkmark \checkmark $(-\infty;-2)$ or $(4;\infty)$
	OR/OF	
	x-1>3 or x-1<-3	OR/OF
	x > 4 or $x < -2$	$\sqrt{x-1} > 3$
		$\sqrt{x-1}$
		$\checkmark \checkmark x > 4 \text{ or } x < -2$
		(4)

1.2	$A_{r}=2$ γ (1)	(4)
1.2	$4x = 2 - y \dots (1)$	$\checkmark 4x = 2 - y$
	$4x + y^2 = 8$ (2)	
	$\therefore 2 - y + y^2 = 8$	✓substitution
	$y^2 - y - 6 = 0$	✓ standard form
	(y-3)(y+2) = 0	
	y = 3 or y = -2	✓y-values
		$\checkmark x$ -values
	$x = -\frac{1}{4} \text{or} x = 1$	(5
	OR/OF	OR/OF
	y = -4x + 2 (1)	$\checkmark y = -4x + 2$
	$4x + y^2 = 8$ (2)	
	$4x + (-4x + 2)^2 = 8$	Contration
	$4x + 16x^2 - 16x + 4 - 8 = 0$	✓substitution
	$16x^2 - 12x - 4 = 0$	
	$4x^2 - 3x - 1 = 0$	
	(4x+1)(x-1)=0	✓standard form
	$x = -\frac{1}{4}$ or $x = 1$	✓x-values
	y=3 or $y=-2$	✓y-values
		(5
1.3	$2^x \times 3^y = \left(2^3 \times 3\right)^6$	$\checkmark 2^3 \times 3$
	$2^x \times 3^y = 2^{18} \times 3^6$	10 6
	$2^x = 2^{18}$ and $3^y = 3^6$	$\checkmark 2^{18} \text{ or } 3^6$
	x = 18 and $y = 6$	$\checkmark x = 18 \text{ or } y = 6$
	$\therefore x - y = 18 - 6$	
	$\therefore x - y = 12$	✓ answer (A)
		V allswel (A)

2.1.1		
2.1.1	72 ; 100 ; 120 ; 132 ;	
	20 20 12	
	28 20 12	
	-8 -8	✓ second differences = -8
		second differences = - 8
	2a = -8	$\checkmark a = -4$
	a = -4	\ \ u = -4
	3a + b = 28	$\checkmark b = 40$
	b = 40	V D = 40
	a+b+c=72	
	c = 36	✓ c = 36
	$T_n = -4n^2 + 40n + 36$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		(4)
2.1.2	$T_{12} = 36 - 8n = 36 - 8(12) = -60$	✓ 36 – 8n
	$\begin{vmatrix} 1_{12} & 30 & 30 & 30 & 3(12) \\ -4n^2 + 40n + 36 & = -60 \end{vmatrix}$	✓ - 60
		✓ standard form
	$\therefore n = 12$	✓ factors $\checkmark n = 12$
	12	
2.1.3	$T_n^{\ \ } = -8n + 40 = 0$	$\checkmark -8n+40$
		$\checkmark n = 5$
	$n = 5$ $T = A(5)^{2} + A0(5) + 36 - 136$	
	$T_n = -4(5)^2 + 40(5) + 36 = 136$	√ 136 (3)
	OR/OF	OR/OF
	$\frac{-b}{-b} = \frac{40}{5} = 5$	✓ substitution
	$\frac{1}{2a} = \frac{1}{8} = 5$	$\sqrt{n} = 5$
	$T_n = -4(5)^2 + 40(5) + 36$	
	=136	√ 136
		(3)
2.1.4	Maximum value = 41	✓value
		(1)
2.2	$2\sin 3x - (-11) = 15 - 2\sin 3x$	√equating
	$4\sin 3x = 4$	$\checkmark 4\sin 3x = 4$
	$\sin 3x = 1$	$\checkmark \sin 3x = 1$
	$3x = 90^{\circ}$	✓answer
	$\therefore x = 30^{\circ}$	(4)
		[17]

QUESTION/VRAAG 3			
3.1.1	$T_n = ar^{n-1} = 2000 \left(\frac{1}{5}\right)^{n-1}$	$\checkmark 2000 \left(\frac{1}{5}\right)^{n-1} $	(1)
3.1.2	$T_7 = 2000 \left(\frac{1}{5}\right)^{7-1} = \frac{16}{125}$	$\checkmark \frac{16}{125} $	(1)
3.1.3	$\frac{16}{15625} = 2000 \left(\frac{1}{5}\right)^{n-1}$	✓ equating	
	$\frac{1}{1953125} = \left(\frac{1}{5}\right)^{n-1}$		
	$\left(\frac{1}{5}\right)^9 = \left(\frac{1}{5}\right)^{n-1} \qquad \mathbf{OR} \qquad n-1 = \log_{\frac{1}{5}} \frac{1}{1953125}$	✓ same base / use of log	
		✓ answer ((3)
3.2	$S_{\infty} = 27 = \frac{a}{1 - r}$	$\checkmark S_{\infty} = 27 = \frac{a}{1 - r}$	
	$S_3 = \frac{a(1-r^3)}{1-r} = 26$	$\checkmark S_3 = \frac{a(1-r^3)}{1-r} = 26$	
	$27(1-r^3) = 26$	✓substitution	
	$1 - r^3 = \frac{26}{27}$		
	$r^3 = \frac{1}{27}$		
	$\therefore r = \frac{1}{3}$	$\checkmark r = \frac{1}{3}$	
	OR/OF	OR/OF	(4)
	$S_{\infty} = 27 = \frac{a}{1 - r}$		
	a = 27(1-r)	$\checkmark a = 27(1-r)$	
	But $a + ar + ar^2 = 26$	$\checkmark a + ar + ar^2 = 26$	
	$a(1+r+r^{2}) = 26$ $27(1-r)(1+r+r^{2}) = 26$	✓substitution	
	$(1-r)(1+r+r^2) = \frac{26}{27}$		
	$r^2 + r + 1 - r^3 - r^2 - r = \frac{26}{27}$		
	$-r^3 + 1 = \frac{26}{27}$		
	$r^3 = \frac{1}{27}$	1	
	$\therefore r = \frac{1}{3}$	$\checkmark r = \frac{1}{3}$	(4)
			9]

4.1	x+1 = -x-7	$\checkmark x+1=-x-7$
	2x = -8	
	x = -4	$\checkmark x = -4$
	$\therefore y = -3$	$\checkmark 2x = -8$ $\checkmark x = -4$ $\checkmark y = -3$
	$\therefore f(x) = \frac{-2}{x+4} - 3$ $\therefore p = 4 \text{ and } q = -3$	
	$\therefore p = 4 \text{ and } q = -3$	(4)
		OR/OF
	OR/OF	OR/OF
	$p+q=1 \dots (1)$	$\checkmark p + q = 1$ $\checkmark q = p - 7$
	-p+q=-7	$\sqrt{a-n}$ 7
	$q = p - 7 \dots (2)$	$\cdot q - p - r$
	subs. (2) into (1)	✓ substitution
	$\begin{vmatrix} p+p-7=1\\ 2p=8 \end{vmatrix}$	✓ simplification
	p = 8 $p = 4$	1
	1	(4)
4.2	$q = -3$ $y = \frac{-2}{x+4} - 3$	
	$y = \frac{1}{x+4} - 3$	
	$0 = \frac{-2}{x+4} - 3$	
	$\left \begin{array}{c} 0 - \frac{1}{x+4} - 3 \end{array} \right $	$\checkmark y = 0$
	-2-3(x+4)=0	
	$\begin{vmatrix} -2 - 3(x + 4) = 0 \\ -3x - 14 = 0 \end{vmatrix}$	
		1.4
	$\therefore x = -\frac{14}{3}$	$\checkmark x = -\frac{14}{3} \tag{2}$
12	- 	J
4.3		
		✓ horizontal asymptote
	-4,67	✓ vertical asymptote
	-4,07 -4 O	✓ y intercept ✓ shape
	-3	Shape
	-3,5	
		(4)
		(4)
		F4.03
		[10]

5.1	2 2 . 4 . 16 0		
3.1	$-2x^2 + 4x + 16 = 0$		
	$x^2 - 2x - 8 = 0$	✓ factors	
	(x-4)(x+2) = 0		
	x = 4 or $x = -2$	$\checkmark x = -2 \checkmark x = 4$	
	$\therefore A(-2;0) \text{and} B(4;0)$		(3)
5.2	$f(x) = -2x^2 + 4x + 16$		
	$-\frac{b}{2a} = -\frac{-4}{-2(2)} = 1$	✓ 1	
	$2a^{-} - 2(2)^{-1}$, 1	
	$f(1) = -2(1)^2 + 4(1) + 16 = 18$		
	∴ C(1;18)	√ 18	(2)
		OD/OE	
	OR/OF	OR/OF	
	$f(x) = -2x^2 + 4x + 16$		
	f'(x) = -4x + 4		
	-4x + 4 = 0		
	x = 1	√ 1 ✓ 10	
	$f(1) = -2(1)^2 + 4(1) + 16 = 18$	✓ 18	(C)
	∴ C(1;18)		(2)
5.3	<i>y</i> ≤ 18	✓ y ≤ 18	
			(1)
	OR/OF	OR/OF	
	$y \in (-\infty; 18]$	$\checkmark y \in (-\infty;18]$	/41
5 1	TD (1 · 18) for f		(1)
5.4	TP (1; 18) for f TP (2; 15) for h	\checkmark TP for h at (2; 15)	
		$\checkmark p = -1$	
	$\therefore p = -1 \qquad q = -3$	$\checkmark q = -3$	
			(3)
5.5	y = 2x + 4		
	x = 2y + 4	\checkmark swop x and y	
	$x = 2y + 4$ $\therefore y = \frac{1}{2}x - 2$	$\checkmark y = \frac{1}{2}x - 2$	
	2 2	2	(2)
5.6	$g(x) = 0$ or $g^{-1}(x) = 0$		(2)
2.0	$g(x) = 0$ or $g^{-1}(x) = 0$ x = 4 or $x = -2$ (product 0 at x-intercepts)	$\checkmark x = 4$	
	λ = 1 or λ = 2 (product o at λ-intercepts)	$\checkmark x = -2$	
			(2)

		[18]
	$\therefore k < -12,5$	✓ answer (5)
	$g\left(\frac{1}{2}\right) = 5$	$\checkmark g\left(\frac{1}{2}\right) = 5$
	$f\left(\frac{1}{2}\right) = 17,5$	$\checkmark f\left(\frac{1}{2}\right) = 17,5$
	$x = \frac{1}{2}$	
		* ` '
	g'(x) = 2 f'(x) = -4x + 4 = 2	$\checkmark g'(x) = 2$ $\checkmark f'(x) = -4x + 4$
	g'(x) = 2	$\checkmark g'(x) = 2$
	OR/OF	OR/OF
	OD/OF	(5)
	<i>k</i> < −12,5	✓ answer
	100 + 8k < 0	
	4 + 8(12 + k) < 0	
	$(2)^2 - 4(-2)(12+k) < 0$	✓ substitution
	$b^2 - 4ac < 0$	$\checkmark b^2 - 4ac < 0$
	$-2x^2 + 2x + 12 + k = 0$	✓ standard form
5.7	$-2x^2 + 4x + 16 + k = 2x + 4$	✓equating

6.1.1	$y = 3^x$	
0.1.1		\checkmark swop x and y
	$x=3^{y}$	swop wana y
	$y = \log_3 x$	✓ equation
		(2)
6.1.2	$h(x) = 3^{x-4} + 2$	
	Transformation: 4 units left, 2 units down	
	P'(2;9)	$\checkmark x = 2 \text{ (A)}$
	(=,>)	$\checkmark y = 9 (A)$
_		(2)
6.2	$f(x) = 2^{x+p} + q$	
	q = -16	$\checkmark q = -16$
	$16 = 2^{p+3} - 16$	
	$2^{p+3} = 32$	✓ substitute (3; 16)
	$2^{p+3} = 2^5$	
		$\checkmark 2^{p+3} = 2^5 \text{ or } p+3 = \log_2 32$
	p=2	✓ p = 2
		(4)
		[8]

7.1	$13\ 080 = 10\ 000 \left(1 + \frac{i}{4}\right)^{16}$ $\left(1 + \frac{i}{4}\right)^{16} = \frac{13080}{10000}$ $1 + \frac{i}{4} = \sqrt[16]{\frac{13080}{10000}}$	✓ substitution into correct formula ✓ n = 16 ✓ simplification
7.2.1	$\frac{i}{4} = 0,0169227$ $i = 0,06769$ $i = 6,77\%$ $F = \frac{x[(1+i)^n - 1]}{i}$	✓answer (A) (4)
	$F = \frac{16^{10} \cdot 7}{i}$ $F = \frac{9000 \left[\left(1 + \frac{0,075}{12} \right)^{60} - 1 \right]}{\frac{0,075}{12}}$ $F = R 652 743,95$	✓ $\frac{0,075}{12}$ ✓ substitution into correct Formula ✓ answer
7.2.2	$60 \times 9000 = R540\ 000$ $A = P(1+i)^{n}$ $652743,95 \left(1 + \frac{0,075}{12}\right)^{n} = 190\ 214,14 + 540000$	(3) $\checkmark 60 \times 9000 = R540000$
	$730\ 214,14 = 652\ 743,95 \left(1 + \frac{0,075}{12}\right)^{n}$ $1,1186 = (1,00625)^{n}$ $n = \log_{1,00625}(1,1186)$ $\therefore n = 18 \text{ months}$	✓ simplification ✓ use of logs ✓ 18 months (6)

OR/OF	OR/OF
Interest over 5 years = $652743,95 - 9000 \times 60$ = $112743,95$	✓ 60 × 9 000
\therefore interest on <i>n</i> years = 190 214,14 – 112 743, 95 = 77 470,19	✓ answer
$652743,95 + 77470,19 = 652743,95 \left(1 + \frac{0,075}{12}\right)^n$	✓equating
$1,1186 = (1,00625)^n$	✓simplification
$n = \log_{1,00625} (1,1186)$	✓use of logs
$\therefore n = 18 \text{ months}$	✓ 18 months
	(6)
	[13]

8.1	$f(x) = 3x^2$	
	$\int_{h\to 0}^{h} \frac{f(x+h) - f(x)}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h}$	✓ substitution
	$f'(x) = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 3x^2}{h}$	✓ expansion
	$=\lim_{h\to 0}\frac{6xh+3h^2}{h}$	✓ simplification
	$= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$	$\checkmark \lim_{h \to 0} \frac{h(6x+3h)}{h}$
	=6x	√6x
		(5)
8.2.1	$f(x) = x^2 - 3 + 9x^{-2}$	$\checkmark 9x^{-2}$
	$f(x) = x^{2} - 3 + 9x^{-2}$ $f'(x) = 2x - 18x^{-3}$	$\checkmark 2x$ $\checkmark -18x^{-3}$
		$\checkmark -18x^{-3}$
		(3)

8.2.2	$g(x) = (\sqrt{x} + 3)(\sqrt{x} - 1)$	
	$g(x) = x + 2x^{\frac{1}{2}} - 3$	$\checkmark x \checkmark 2x^{\frac{1}{2}}$
	$g'(x) = 1 + x^{-\frac{1}{2}}$	$\checkmark_1 \checkmark x^{-\frac{1}{2}}$
		(4)
		[12]

9.1	$f'(x) = 6x^2 + 6x - 12$	$\checkmark 6x^2 + 6x - 12$
	$6x^2 + 6x - 12 = 0$	✓ = 0
	$x^2 + x - 2 = 0$	
	(x+2)(x-1) = 0	√factors
	x = -2 or $x = 1$	
	y = 20 or $y = -7$	$\checkmark x$ -values
	\therefore A(-2; 20) and B(1; -7)	✓ y -values
		(5)
9.2	f''(x) = 12x + 6	$\checkmark 12x+6$
	12x+6>0	$\int f^{\prime\prime}(x) > 0$
	12x + 6 > 6 $12x > -6$	(x) > 0
		1
	$x > -\frac{1}{2}$	$\sqrt{x} > -\frac{1}{2}$
		(3)
	OR/OF	OR/OF
	$x = \frac{-2+1}{2} = -\frac{1}{2}$	
		$\checkmark x = -\frac{1}{2}$
	$\therefore x > -\frac{1}{2}$	1
	2	$\checkmark \checkmark x > -\frac{1}{2}$
		(3)
9.3	f'(2) = 24	✓ f /(2)
	Equation of the tangent: $y-4=24(x-2)$	✓ 24
	y = 24x - 44	✓ equation
		(3)
		[11]

10.1

 $\checkmark x = -1 \text{ and } x = 2$

 \checkmark TP at x = -1

✓ TP at x = 1

✓ shape

(4)

10.2.1

Area of segment = $\frac{1}{4}$ Area of big circle

$$= \frac{1}{4}\pi (x - x^2)^2$$

 $\checkmark\checkmark\frac{1}{4}\pi(x-x^2)^2$

Area triangle ABO counted

$$= \text{Area } \Delta = \frac{1}{2} \left(x - x^2 \right)^2$$

 $\checkmark \text{ Area } \Delta = \frac{1}{2} \left(x - x^2 \right)^2$

Area of shaded region

$$= \frac{1}{4}\pi(x-x^2)^2 - \frac{1}{2}(x-x^2)^2$$
$$= \frac{\pi-2}{4}(x-x^2)^2$$
$$= \left(\frac{\pi-2}{4}\right)(x^2-2x^3+x^4)$$

✓ subtract areas

✓ common factor

(5)

10.2.2	Area of shaded region	
	$= \frac{(\pi - 2)}{4} \left(x^4 - 2x^3 + x^2 \right)$	
	$\frac{dA}{dx} = \left(\frac{\pi - 2}{4}\right)\left(4x^3 - 6x^2 + 2x\right)$	$\checkmark \left(\frac{\pi-2}{4}\right) \left(4x^3 - 6x^2 + 2x\right)$
	$4x^{3} - 6x^{2} + 2x = 0$ $x(2x^{2} - 3x + 1) = 0$	
	x(2x-1)(x-1) = 0	✓ factors
	$x \neq 0$ or $x = \frac{1}{2}$ or $x \neq 1$	$\checkmark x = 0; x = 1; x = \frac{1}{2}$
		$\checkmark x = \frac{1}{2} \tag{4}$
		[13]

11.1	P(A) = 1 - P(not A) = 0.6	√ 0,6
	$P(A \text{ and } B) = P(A) \times P(B)$ $= 0.6 \times 0.3$ 9	\checkmark P(A and B) = P(A) × P(B)
	$= \frac{9}{50} \\ = 0.18$	✓ answer (A) (3)
11.2.1	$a = \frac{15}{150} = 0,1$	$\checkmark \frac{15}{150} \text{ (A)}$
11.2.2	m = 1 - 0.7 = 0.3	✓ 0,3 (A)
		(1)
11.2.3	0.24 + 0.14 + 0.02 + 0.12 + 0.1 + 2b = 0.7	✓ addition
	2b = 0.08	✓ simplification
	b = 0.04	$\checkmark b = 0.04$
	$0.04 \times 150 = 6$	√ 6
		(4)
11.3.1	$9 \times 9 \times 8 = 648$	√9 √9 × 8
11.2.2	2 0 4 64	$\checkmark \checkmark 2 \times 8 \times 4 \tag{2}$
11.3.2	$2 \times 8 \times 4 = 64$ $2 \times 8 \times 5 = 80$	$\checkmark 2 \times 8 \times 4$ $\checkmark 2 \times 8 \times 5$
	$2 \times 3 \times 3 = 60$ Total number = $64 + 80 = 144$	$\checkmark 2 \times 8 \times 5$ $\checkmark 144 (A)$
		` '
		(4)
		[15]

TOTAL/TOTAAL: 150