Expanding and Providing Additional Worked-Out Examples for Key Concepts

Below, I'll expand on the sections from earlier, adding more detailed examples and step-by-step walkthroughs to ensure a clear understanding of the topics.

4. Systems of Linear Equations

Revisiting the Concept

Systems of linear equations involve multiple equations that are solved simultaneously. These systems can be written in standard form:

$$Ax = b$$

where:

- A is the coefficient matrix,
- x is the column vector of variables,
- *b* is the column vector of constants.

Additional Example

Solve the system:

$$x + 2y + z = 6$$
$$2x + 3y + 3z = 14$$
$$y + 2z = 8$$

Step 1: Represent as an Augmented Matrix

$$\begin{bmatrix} 1 & 2 & 1 & | & 6 \\ 2 & 3 & 3 & | & 14 \\ 0 & 1 & 2 & | & 8 \end{bmatrix}$$

Step 2: Apply Gaussian Elimination Eliminate the first column in row 2 (R_2) by performing:

$$R_2 \rightarrow R_2 - 2R_1$$

$$\begin{bmatrix} 1 & 2 & 1 & | & 6 \\ 0 & -1 & 1 & | & 2 \\ 0 & 1 & 2 & | & 8 \end{bmatrix}$$

Next, eliminate the second column in row 3:

$$R_3 \rightarrow R_3 + R_2$$

$$\begin{bmatrix} 1 & 2 & 1 & | & 6 \\ 0 & -1 & 1 & | & 2 \\ 0 & 0 & 3 & | & 10 \end{bmatrix}$$

Step 3: Back-Substitution Start from the last row:

$$3z = 10 \implies z = \frac{10}{3}$$

Substitute $z = \frac{10}{3}$ into row 2:

$$-y + \frac{10}{3} = 2 \quad \Rightarrow \quad y = \frac{4}{3}$$

Finally, substitute $y = \frac{4}{3}, z = \frac{10}{3}$ into row 1:

$$x + 2\left(\frac{4}{3}\right) + \frac{10}{3} = 6 \implies x = \frac{2}{3}$$

Final Solution:

$$x = \frac{2}{3}, y = \frac{4}{3}, z = \frac{10}{3}$$

5. Gaussian Elimination

Revisiting the Concept

Gaussian elimination transforms a system into row-echelon form, making it easier to solve via back-substitution.

Additional Worked-Out Example

Solve the system:

$$x+y+z=6$$
, $2x+3y+5z=4$, $4x+5y+6z=7$

Step 1: Write the Augmented Matrix

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 2 & 3 & 5 & | & 4 \\ 4 & 5 & 6 & | & 7 \end{bmatrix}$$

Step 2: Eliminate Below the Pivot First, eliminate the first column in rows 2 and 3:

$$R_2 \rightarrow R_2 - 2R_1, \quad R_3 \rightarrow R_3 - 4R_1$$

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 3 & | & -8 \\ 0 & 1 & 2 & | & -17 \end{bmatrix}$$

Next, eliminate the second column in row 3:

$$R_3 \rightarrow R_3 - R_2$$

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 3 & | & -8 \\ 0 & 0 & -1 & | & -9 \end{bmatrix}$$

Step 3: Back-Substitution Start from the last row:

$$-z = -9 \implies z = 9$$

Substitute z = 9 into row 2:

$$y + 3(9) = -8 \Rightarrow y = -35$$

Finally, substitute y = -35, z = 9 into row 1:

$$x - 35 + 9 = 6$$
 \Rightarrow $x = 32$

Final Solution:

$$x = 32, y = -35, z = 9$$

6. Inverse of a Matrix

Revisiting the Concept

The inverse of a matrix A exists only if $\det(A) = 0$. It satisfies $A \cdot A^{-1} = I$, where I is the identity matrix.

Additional Worked-Out Example

Find the inverse of:

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$

Step 1: Compute the Determinant

$$det(A) = (2)(4) - (3)(1) = 8 - 3 = 5$$

Step 2: Write the Adjoint

$$Adj(A) = \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$$

Step 3: Compute the Inverse

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{Adj}(A)$$

$$A^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0.8 & -0.6 \\ -0.2 & 0.4 \end{bmatrix}$$

8. Singular Value Decomposition (SVD)

Revisiting the Concept

SVD decomposes a matrix A into three components:

$$A = U\Sigma V^T$$

where:

• U: Left singular vectors,

- Σ : Diagonal matrix of singular values,
- V^T : Right singular vectors.

Additional Example

Let:

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Step 1: Compute A^TA

$$A^{T}A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 6 \\ 6 & 10 \end{bmatrix}$$

Step 2: Solve for Eigenvalues Solve $det(A^TA - \lambda I) = 0$:

$$\det\begin{bmatrix} 10 - \lambda & 6 \\ 6 & 10 - \lambda \end{bmatrix} = 0$$

$$(10 - \lambda)^2 - 36 = 0 \quad \Rightarrow \quad \lambda = 16, 4$$

Step 3: Compute Singular Values Singular values are $\sigma_i = \sqrt{\lambda_i}$:

$$\sigma_1 = \sqrt{16} = 4$$
, $\sigma_2 = \sqrt{4} = 2$

Step 4: Compute U and V The eigenvectors of A^TA give V, and U is computed as:

$$u_i = \frac{1}{\sigma_i} A v_i$$

Application: SVD is used in Principal Component Analysis (PCA) for dimensionality reduction.