MATH 22A: Vector Calculus and Linear Algebra

Lecture 5: Proof Methods — 15 September 2023

Pset Due: September 20, 2023 Denny Cao

§1 Proof Methods

Definition 1.1 (Theorem). Statement true and verified if the statement $P \to Q$ is true, where P is the assumption and Q is the conclusion.

Notation 1.2 (Divides) For two integers a, b a is said to divide b if $\exists c \mid ac = b$. We write this as $a \mid b$.

Definition 1.3 (Direct Proof). Proof by case by case consideration or by explicit demonstration why, with the assumption P, Q holds.

Definition 1.4 (Binomial Coefficient/Choose). $\binom{n}{k} = \frac{n!}{(n-k)!k!}, 0 \le k \le n.$

Example 1.5

If
$$n \ge 2, n \in \mathbb{Z}$$
, then $n^2 = 2\binom{n}{2} + \binom{n}{1}$.

Proof.

$$2\binom{n}{2} + \binom{n}{1} = 2\left(\frac{n!}{(n-2)!2!}\right) + \frac{n!}{(n-1)!1!}$$

$$= \frac{n!}{(n-2)!} + \frac{n!}{n-1}!$$

$$= n(n-1) + n$$

$$= n^2 - n + n$$

$$= n^2$$

Thus, we have shown that the statement is true directly.

Example 1.6

If
$$x^2 \in \mathbb{Z} \wedge x^2 \mid x \to x \in \{-1, 0, 1\}.$$

Proof. $x^2 \mid x \to \exists c \in \mathbb{Z} \mid cx^2 = x$. We consider two cases:

Case 1: x = 0. If x = 0, then the statement that $x^2 \mid x$ is true. Case 2: $x \neq 0$. Then, $c = \frac{x}{x^2} = \frac{1}{x} = c$. For c to be an integer, $x = -1 \lor x = 1$.

Thus, we have shown by direct proof that the statement is true.

Definition 1.7 (Contrapositive Proof). We are trying to prove $P \to Q$. We can also show that $\neg Q \rightarrow \neg P$, as they have the same truth value.

Definition 1.8 (Congruence Modulo n). $a \equiv b \mod (n) \to (a-b) \mid n$

Theorem 1.9

 $a \equiv b \mod(n) \to a \mod(n) = b \mod(n)$

Example 1.10

Definition 1.11 (Proof by Contradiction). We are trying to prove that $P \to Q$. By contradiction, we assume $P \to \neg Q$ and reach a contradiction. Thus, the opposite must be true: $P \to Q$.

Example 1.12

Prove that $\sqrt[3]{2}$ is not a rational number.

Proof. Assume for purposes of contradiction that $\sqrt[3]{2}$ is a rational number, or that $\sqrt[3]{2} = p/q, p, q \in \mathbb{Z}$ such that p/q is in reduced form. $2 = \frac{p^3}{q^3} \to p^3 = 2q^3 \to p$ is an even number $\to p = 2k, k \in \mathbb{Z} \to p^3 = 8k^3 \to 8k^3 = 2q^3 \to q^3 = 4k^3 \to q$ is even $\to q = 4l$. Thus $p/q = \frac{2k}{q} = \frac{k}{q}$ Thus, $p/q = \frac{2k}{4l} = \frac{k}{2l}$. \times . We reach a contradiction, as p/q is not in reduced form. Thus, we have shown by

contradiction that $\sqrt[3]{2}$ is not a rational number.

§2 Set Theory