Fix a finite group G and a prime number p dividing its order |G|. Denote by $\mathcal{A}_p(G)$ the poset of nontrivial elementary abelian p-subgroups of G and by $\mathcal{S}_p(G)$ the poset of all nontrivial p-subgroups of G. Let $\Omega_1(G)$ denotes the subgroup generated by all the elements of order p in G. We prove the following theorem by using the results of Aschbacher and Smith [AS93].

Theorem 0.1. If G has p-rank at most 3 and $O_p(G) = 1$, then $\tilde{H}_*(\mathcal{A}_p(G)) \neq 0$.

We perform a serie of reductions first by using the results of Aschbacher and Smith. Recall that a component of G is a subnormal quasisimple subgroup of G. A group H is termed quasisimple if it is perfect and H/Z(H) is simple. Equivalently, H is a central extension of a simple group. The subgroup E(G) of G is the subgroup generated by all the components of G. It is known that different components of G commute, and so E(G) is the central product of the components of G. Denote by C(G) the set of components of G. Let F(G) denotes the Fitting subgroup of G and $F^*(G) = F(G)E(G)$ the generalized Fitting subgroup of G. Recall that $C_G(F^*(G)) \leq F^*(G)$. Denote by C(G) the C(G) the C(G) the group C(C) the gro

- (1) By [Qui78] we may assume that $r_p(G) = 3$.
- (2) $\Omega_1(G) = G$: since $\mathcal{A}_p(G) = \mathcal{A}_p(\Omega_1(G))$.
- (3) $O_{p'}(G) = 1$: by [AS93, Proposition 1.6].
- (4) By 3 and the hypothesis $O_p(G) = 1$, F(G) = 1, so $F^*(G) = E(G) = L_1 \times ... \times L_n$ is the direct product of the components of G, which are simple. See also [AS93, Proposition 1.5].
- (5) G does not have a strongly p-embedded subgroup. That is, $\mathcal{A}_p(G)$ is a connected poset (see [Qui78]).
- (6) By [AK90] we may assume that G is not almost simple, so $n \geq 2$.
- (7) Note that $p \mid |L_i|$ for all i since $O_{p'}(G) = 1$. In particular, $F^*(G) = L_1 \times \ldots \times L_n$ contains an elementary abelian p-subgroup of rank n. Therefore, $n \leq 3$.
- (8) Since n=2 or 3, some L_i has p-rank equal 1. The only simple group of 2-rank 1 is C_2 (see [Gor83]). Since $\langle L_i : L_i \simeq C_2 \rangle \leq O_2(G) = 1$, we deduce $p \neq 2$.
- (9) By the above reasoning, p is an odd prime, so the Sylow p-subgroups of those components of p-rank 1, are cyclic.
- (10) If G can be decomposed as a direct product $G_1 \times G_2$ with $p \mid |G_i|$ for i = 1, 2, then $\mathcal{A}_p(G) \simeq \mathcal{A}_p(G_1) * \mathcal{A}_p(G_2)$ (see [Qui78]), and we can apply inductive hypothesis. Therefore, we may assume G is an indecomposable group.
- (11) $\Omega_1(F^*(G)) = F^*(G) < G = \Omega_1(G)$, so we can always get an element x of order p such that $x \in G F^*(G)$.

At this point we divide the proof in two cases: n = 2 and n = 3.

Assume $F^*(G) = L_1 \times L_2 \times L_3$.

Therefore, $r_p(L_i) = 1$ for all i. If $x \in G - F^*(G)$ is an element of order p, then x acts in the set $\mathcal{C}(G)$ of components of G. Since x has primer order p, the action is either regular and p = 3 or x normalizes each component L_i .

If x normalizes each component L_i , then x acts on the set of Sylow p-subgroups $\operatorname{Syl}_p(L_i)$ for each i. Since the number of Sylow p-subgroups is coprime with p, there exists a Sylow $S_i \in \operatorname{Syl}_p(L_i)$ normalized by x, for each i = 1, 2, 3. Therefore, there is an element $y_i \in S_i$ of order p, such that $[x, y_i] = 1$. Hence, $\langle x, y_1, y_2, y_3 \rangle$ is an elementary abelian p-subgroup of G of rank 4, a contradiction.

Thus, none $x \in G - F^*(G)$ of order p can normalize the components of G. In particular, p = 3 and the action of x in $F^*(G)$ is regular on the components. That is, $F^*(G) \simeq L_1 \wr \langle x \rangle$. We may assume $L_i^x = L_{i+1}$ for all i, with i + 1 = 1 if i = 3.

Recall the following result of [Asc86].

Proposition 0.2. [Asc86, 31.18.1]. Let $O_{p'}(G) = 1$, x of order p in G, $L \in \mathcal{C}(G)$, and $Y = O_{p'}(C_G(x))$. If $L \neq [L, x]$ then [L, Y] = 1 and one of the following holds:

- (1) $L \in \mathcal{C}(C_G(x))$, or
- (2) $L \neq L^x$ and $C_{[L,x]}(x)' = K \in \mathcal{C}(C_G(x))$ with K a homomorphic image of L.

We apply this result to our situation with $L = L_1$. If $l \in L_1$, then $[l, x] = lxl^{-1}x^{-1}$. Note that $u = xl^{-1}x^{-1} \in L_2$ since ${}^xL_1 = L_1^{x^2} = L_2$. Thus, [l, x] = lu. If $[L, x] \leq L_1$ then $u \in L_1 \cap L_2 = 1$. That is, $u = {}^xl = 1$, which means l = 1, a contradiction since $l \in L_1$ is any element. Therefore $L_1 \neq [L_1, x]$ and we are in the hypotheses of the above proposition. Since $L_1 \not\leq C_G(x)$ because of the action of x, the second case of the proposition holds and $C_{[L_1,x]}(x)' = K \in \mathcal{C}(C_G(x))$ and K is a homomorphic image of L_1 . Given that L_1 is a simple group and that the components are nontrivial groups, we deduce $K = L_1$ and $L_1 \leq C_{[L_1,x]}(x)' \leq C_G(x)$, a contradiction.

Assume $F^*(G) = L_1 \times L_2$

In this case, $p \geq 3$, so any order p element $x \in G - F^*(G)$ normalizes L_1 and L_2 the components of G. Thus, $L_i \subseteq G$ for i = 1, 2. Note that if $r_p(L_i) \geq 2$, then we may construct an elementary abelian p-subgroup of p-rank 4 just as the previous case. Therefore, $r_p(L_i) = 1$ and each L_i has a strongly p-embedded subgroup.

Assume that $H_1(\mathcal{A}_p(G)) = 0$. By the proof of [Asc93, 10.3], $G = (L_1 \times L_2)X$ for some subgroup $X \leq G$ of order p inducing outer automorphisms on L_1 and L_2 . Moreover, L_i is of Lie type and Lie rank 1 in characteristic p and X induces field automorphisms. That is, $L_i \simeq L_2(q)$, $U_3(q^p)$ or ${}^2G_2(q)$ with q a power of p. Since each L_i has p-rank 1, their Sylow p-subgroups must by cyclic. Therefore, $L_i \simeq L_2(p)$ and p > 3 or $L_i \simeq {}^2G_2(3)'$ and p = 3. Since $\operatorname{Out}(L_2(p)) = C_2$, $L_2(p)$ does not have outer automorphisms of primer order p > 3. Therefore $L_i \simeq {}^2G_2(3)'$ and p = 3. Note that ${}^2G_2(3)' \simeq \operatorname{PSL}_2(8)$. However, in this case $\mathcal{A}_p(F^*(G)) \simeq \mathcal{A}_p(G)$ are homotopy equivalent, and $H_1(\mathcal{A}_p(F^*(G))) \neq 0$, contradicting our assumption (see the proof of [Asc93, 10.3]).

References

[AK90] M. Aschbacher, P. B. Kleidman. On a conjecture of Quillen and a lemma of Robinson. Arch. Math. (Basel) 55 (1990), no. 3, 209-217.

[AS93] M. Aschbacher, S. D. Smith. On Quillen's conjecture for the p-groups complex. Ann. of Math. (2) 137 (1993), no. 3, 473-529.

[Asc86] M. Aschbacher. Finite group theory, Cambridge University Press, Cambridge, 2000, xii+304.

[Asc93] M. Aschbacher. Simple connectivity of p-group complexes. Israel J. Math. 82 (1993), no. 1-3, 1-43.

[Gor83] D. Gorenstein. The Classification of Finite Simple Groups, Volume 1: Groups of Noncharacteristics 2 Type-Springer US (1983).

[Qui78] D. Quillen. Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. Math. 28 (1978), 101–128.