PeACE

Polynômes et Applications via Calculs Efficaces

Matías R. Bender

Since 2019 - Postdoctoral researcher

Inst. für Mathematik - Technische Univ. Berlin Mentored by P. Bürgisser

2016 - 2019 - Ph.D. in Informatics

LIP6 - Sorbonne Université

Algorithms for sparse polynomial systems:

Gröbner basis and resultants

Supervised by J.-C. Faugère & E. Tsigaridas

(Qualified in sections 25, 26, and 27 for MCF)

2015 - M.Sc. in Computer Science

DC - FCEN - Universidad de Buenos Aires

2014 - Exchange - Univ. Autónoma de Madrid

Linear algebra

$$\left\{
\begin{array}{c}
3 \cdot x + 2 \cdot y = 5 \\
4 \cdot x - 3 \cdot y = 2
\end{array}
\right\}$$

Linear algebra

$$\left\{
\begin{array}{c}
3 \cdot x + 2 \cdot y = 5 \\
4 \cdot x - 3 \cdot y = 2
\end{array}
\right\}$$

Non-linear algebra

$$\left\{ \begin{array}{c} 3 \cdot x^2 + 4 \cdot x \cdot y + 2 \cdot y^2 + x + 2 \cdot y = 5 \\ 6 \cdot x^2 + 2 \cdot x \cdot y + 3 \cdot y^2 - x + 3 \cdot y = 9 \end{array} \right\}$$

Linear algebra

$$\left\{
\begin{array}{c}
3 \cdot x + 2 \cdot y = 5 \\
4 \cdot x - 3 \cdot y = 2
\end{array}
\right\}$$

Non-linear algebra

$$\left\{ \begin{array}{c} 3 \cdot x^2 + 4 \cdot x \cdot y + 2 \cdot y^2 + x + 2 \cdot y = 5 \\ 6 \cdot x^2 + 2 \cdot x \cdot y + 3 \cdot y^2 - x + 3 \cdot y = 9 \end{array} \right\}$$

Pragmatic approach: Use non-linear model, if we can compute with it

My objective: Study trade-off for non-linear systems in practice

Numerical paradigm (Since PhD) (Since Postdoc) Symbolic paradigm

Symbolic paradigm

Exact computations

- Finite fields
- Algebraic extensions
- Degenerate situations

(Since PhD)

$$\sqrt{5+2\sqrt{6}}-\sqrt{3}=\sqrt{2}$$

Numerical paradigm

(Since Postdoc)

Symbolic paradigm

(Since PhD)

 $\sqrt{5+2\sqrt{6}-\sqrt{3}}=\sqrt{2}$

Numerical paradigm

(Since Postdoc)

Exact computations

- Finite fields
- Algebraic extensions
- Degenerate situations

Cryptography

Topological data analysis

Gröbner bases

Symbolic paradigm

Exact computations

- Finite fields
- Algebraic extensions
- Degenerate situations

Cryptography

(Since PhD)

$$\sqrt{5+2\sqrt{6}}-\sqrt{3}=\sqrt{2}$$

Topological data analysis

Gröbner bases

Numerical paradigm

Numerical manipulations

- Inexact input
- Finite- and multi-precision
- Approximate solutions

(Since Postdoc)

$$\sqrt{5 + 2\sqrt{6}} - \sqrt{3} \approx 1.414214$$

Symbolic paradigm

Exact computations

- Finite fields
- Algebraic extensions
- Degenerate situations

Cryptography

(Since PhD)

$$\sqrt{5+2\sqrt{6}}-\sqrt{3}=\sqrt{2}$$

Topological data analysis

Gröbner bases

Numerical paradigm

Numerical manipulations

- Inexact input
- Finite- and multi-precision
- Approximate solutions

Geometric modeling

(Since Postdoc)

$$\sqrt{5+2\sqrt{6}} - \sqrt{3} \approx 1.414214$$

Computer vision

Symbolic-numeric algorithms, homotopy continuation

Computing with polynomials → My research

Symbolic paradigm

(Since PhD)

Publications

Journals 1 PhD

4 PhD + 1 Postdoc Proceedings of International Conferences

🙀 Distinguished student author award, ISSAC 2016

1 Postdoc **Preprints**

Software

Muphasa (C++), Classifier-construction (Python)

Numerical paradigm

(Since Postdoc)

Publications

Journals 2 Postdoc

New! Accepted paper in Mathematics of Computations - AMS

Preprints 1 Postdoc

Software

EigenvalueSolver.jl (Julia), sylvesterMEP (Matlab)

Invited tutorial in ISSAC 2022 (flagship conference on symbolic and algebraic computations)

Co-authors

J.-C. Faugère, E. Tsigaridas (INRIA Paris, advisors) A. Mantzaflaris (INRIA Sophia-Antipolis) L. Perret (LIP6. Sorbonne Université)

C. Haase, R. Schwieger, H. Siebert (FU Berlin) S. Telen (Max Planck Inst. for Math. in the Sciences)

O. Gäfvert (Oxford)

M. Lesnick (SUNY Albany)

Simplified dictionary of algebraic tools

Simplified dictionary of algebraic tools

Gröbner bases (arbitrary systems)

- Main algorithmic tool to manipulate polynomials exactly.
- Non-linear analog of row echelon form.

Simplified dictionary of algebraic tools

Gröbner bases (arbitrary systems)

- Main algorithmic tool to manipulate polynomials exactly.
- Non-linear analog of row echelon form.
- They can solve polynomials or certify if no solutions.

Multiplication map (only finite solutions)

- Solve system by computing eigenvalues.
- Non-linear analog of companion matrix of univariate polynomial.
- Compatible with numerical computations!

Polynomial Linearization (structured matrix) system
$$(g_1,...,g_n) \to \Sigma \, g_i \, f_i$$
 $(f_1,...,f_n)$ degree($g_i \, f_i$) < d Multiplication map

Matías BENDER

(Important: speed up - exploit matrix structure)

Exact computation Gröbner bases

(e.g., Buchberger, Faugère, Lazard, Mora, Stillman...)

Multiplication map

Analogy for linear systems

Matrix ---- (c1,...,cπ) →Σ ci fi scalar ci Exact computation

Exact solution

Approximated solution

Polynomial System System $(g_1,...,g_n) \rightarrow \Sigma g_i f_i$ $(f_1,...,f_n)$ degree $(g_i f_i) < d$ (Degree d determines size, depends on system

For almost all dense systems: degree known)

Analogy for linear systems

Linear system (f_{1,...,f_n)} Matrix → (c1,...,cn) →Σ ci fi scalar ci Exact computation

Numerical linear algebra

Exact solution

Approximated solution

Polynomial system $(g_1,...,g_n) \rightarrow \Sigma g_i$ f_i $(g_1,...,g_n) \rightarrow \Sigma g_i$ $(g_1,...,g_n) \rightarrow$

Analogy for linear systems

Exact computation

Numerical linear algebra

(Important: speed up - exploit matrix structure)

Exact solution

Approximated solution

In practice, polynomials have structure

Generic system

Generalized eigenvalue problem

Sparsity: Polynomial with a few monomials

In practice, polynomials have structure

Generic system

$$\begin{cases} x^2 + x \cdot y - y^2 - x - 2 \cdot y - 1 = 0 \\ -x^2 - x \cdot y + 3 \cdot y^2 + x + y - 7 = 0 \end{cases}$$

Generalized eigenvalue problem

$$\left\{ \begin{array}{l} 0 \cdot x^2 - 4 \cdot x \cdot y - 0 \cdot y^2 + 6 \cdot x - y + 20 = 0 \\ 0 \cdot x^2 + 2 \cdot x \cdot y - 0 \cdot y^2 + 3 \cdot x + 4 \cdot y - 12 = 0 \end{array} \right\}$$

Sparsity: Polynomial with a few monomials

- Study special systems, e.g., bi- or weighted homogeneous.
- Discover the structure of the matrix "on the fly".

Sparse

Polynomial

system

 $(f_1,...,f_n)$

- Study special systems, e.g., bi- or weighted homogeneous.
- Discover the structure of the matrix "on the fly".

Sparse

Polynomial

system

 $(f_1,...,f_n)$

- during PhD
- during Postdoc

Sparse

Polynomial system (f1,...,fn)

Sparse linearization $(g_1,...,g_n) \longrightarrow \Sigma g_i f_i$ sparse g_i

(e.g., Canny, Cox, D'Andrea, Dickenstein, Emiris, Sturmfels...'

Gröbner bases

Approximation [BT21+] [BT22]

 $\mathbb{C}[x,y]$

Contributions

- during PhD
- during Postdoc

Matías BENDER

PeACE: Polynomials & applications

March 15, 2022

7/15

Sparse

Polynomial system (f1,...,fn)

Sparse linearization (g₁,...,g_n) →Σ g_i f_i sparse g_i

(e.g., Canny, Cox, D'Andrea, <u>D</u>ickenstein, Emiris, Sturmfels...'

Gröbner bases

Approximation [BT21+] [BT22]

Mathematical foundation \rightarrow Toric geometry

• during PhD

• during Postdoc

 $1+x\,y\,+\,x^2\,y\,+\,x\,y^2\in\mathbb{C}\big[x\,y,x^2\,y,x\,y^2\big]\subseteq\mathbb{C}\big[x,y\big]$

Matías BENDER

PeACE: Polynomials & applications

March 15, 2022

7/15

- during PhD
- during Postdoc

- during PhD
- during Postdoc

- during PhD
- during Postdoc

- during PhD
- during Postdoc

- during PhD
- during Postdoc

- during PhD
- during Postdoc

- during PhD
- during Postdoc

Matías BENDER

PeACE: Polynomials & applications

March 15, 2022

9/15

Non-finite solutions

Compute Gröbner bases

Compute Gröbner bases

Efficient implementations

C/C++ implementation, incorporate other linear algebra speed-ups (F4)

Non-finite solutions

Compute Gröbner bases

Efficient implementations

C/C++ implementation, incorporate other linear algebra speed-ups (F4)

Precision analysis

Relate the condition number of matrices to the conditioning of systems (missing in dense case also!)

Non-finite solutions

Compute Gröbner bases

Efficient implementations

C/C++ implementation, incorporate other linear algebra speed-ups (F4)

Relate the condition number of matrices to the conditioning of systems (missing in dense case also!)

Structured systems

Use toric degenerations to treat them as sparse

Non-finite solutions

Compute Gröbner bases

Efficient implementations

C/C++ implementation, incorporate other linear algebra speed-ups (F4)

Future work

(missing in dense case also!)

Integration

- LAAS Toulouse
 Laboratoire d'Analyse et d'Architecture des Systèmes
- XLIM Limoges Institut de Recherche XLIM
- LORIA Nancy
 Laboratoire Lorrain de recherche en Informatique et ses Applications

Integration

- LAAS (Toulouse)
- XLIM (Limoges)
- LORIA (Nancy)

Integration

LAAS (Toulouse)XLIM (Limoges)LORIA (Nancy)

Integration

LAAS (Toulouse)

XLIM (Limoges) LORIA (Nancy)

Integration

- LAAS (Toulouse)
- XLIM (Limoges)
- LORIA (Nancy)

Matías BENDER

PeACE: Polynomials & applications

March 15, 2022

15/15

Publications

Journals

- Toric Eigenvalue Methods for Solving Sparse Polynomial Systems. Matías R. Bender and Simon Telen. Mathematics of Computation AMS, 2022. In press. (Recently accepted)
- [BFMT21] Koszul-type determinantal formulas for families of mixed multilinear systems. Matías R. Bender, Jean-Charles Faugère, Angelos Mantzaflaris, and Elias Tsigaridas. SIAM Journal on Applied Algebra and Geometry, 2021.
- [BFPT21] A nearly optimal algorithm to decompose binary forms. Matías R. Bender, Jean-Charles Faugère, Ludovic Perret, and Elias Tsigaridas. Journal of Symbolic Computation, 2021.

International conferences

- [SBSH20] Classifier Construction in Boolean Networks Using Algebraic Methods. Robert Schwieger, Matías R. Bender, Heike Siebert, and Christian Haase. Computational Methods in Systems Biology, Lecture Notes in Computer Science, 2020.
- Gröbner Basis over Semigroup Algebras: Algorithms and Applications for Sparse Polynomial Systems. Matías R. Bender, Jean-Charles Faugère, and Elias Tsigaridas. Proceedings of the 44th International Symposium on Symbolic and Algebraic Computation, 2019.
- [BFMT18] Towards Mixed Gröbner Basis algorithms: the Multihomogeneous and Sparse case. Matías R. Bender, Jean-Charles Faugère, and Elias Tsigaridas. Proceedings of the 43th International Symposium on Symbolic and Algebraic Computation, 2018.
- Bilinear systems with two supports: Koszul resultant matrices, eigenvalues, and eigenvectors. Matías R. Bender, Jean-Charles Faugère, Angelos Mantzaflaris, and Elias Tsigaridas. Proceedings of the 43th International Symposium on Symbolic and Algebraic Computation, 2018.
- [BFPT16] A Superfast Algorithm to Decompose Binary Forms. Matías R. Bender, Jean-Charles Faugère, Ludovic Perret, and Elias Tsigaridas. Proceedings of the 41th International Symposium on Symbolic and Algebraic Computation, 2016 (Distinguished student author award)

Preprints

- [BGL22+] Efficient computation of multiparameter persistence. Matías R. Bender, Oliver Gäfvert, and Michael Lesnick. [kth:diva-294302], to be submitted
- Yet another eigenvalue algorithm for solving polynomial systems. Matías R. Bender and Simon Telen. [arXiv: 2105.08472], submitted.