Aprendizaje de máquina

Introducción

Ciencia de Datos - Ingeniería

Grand Images [1] Sept in

Problemas complejos

About Store

Problemas cotidianos

¿De donde nos podemos inspirar?

 Unos de los proyectos de ingeniería inversa más retadores es entender como funciona el cerebro

Clasificación de imágenes

Algoritmo

 "Es un procedimiento correctamente definido que toma algún valor, o conjunto de valores, como entrada y produce algún valor, o conjunto de valores, como salida" Cormen et al.

Algoritmo para jugar gato (no es aprendizaje de máquina)

- Si tu oponente tiene dos fichas en una fila, tira en la casilla vacía de esa fila
- De otra forma, si hay una tirada que genere dos filas con dos fichas tuyas en ellas, tira ahí
- De otra forma, si el centro está libre, tira ahí
- De otra forma, si tu contrincante tiró en una esquina, tú tira en la esquina opuesta
- De otra forma, si hay una esquina libre, tira ahí
- De otra forma, tira en cualquier casilla vacía

Aprendizaje de máquina (Machine Learning)

- Es una rama de la **inteligencia artificial** cuyo objetivo es desarrollar técnicas que permitan a las computadoras aprender algoritmos capaces de generalizar comportamientos a partir de información no estructurada suministrada en forma de ejemplos.
- El aprendizaje se cataloga como supervisado, por refuerzo o no supervisado dependiendo de si el algoritmo debe contar o no con información específica de datos satisfactorios para el objetivo del aprendizaje

Cambio de paradigma

Traditional Programming

Machine Learning

Aprendizaje de máquina

• Es la ciencia que estudia como aprender a partir de datos.

• ¿Qué eso no es lo que hace la estadística?

Aprendizaje de máquina

- Empata en muchos aspectos con la estadística, pero el enfoque es distinto:
 - La estadística busca modelos simples que expliquen el por qué de los fenómenos
 - El aprendizaje de máquina busca que las predicciones sean lo más certeras posible
 - El aprendizaje de máquina se enfoca más en el aspecto computacional dada la complejidad de los algoritmos

Ejemplos de programas que utilizan aprendizaje de máquina

• Predecir:

- si un paciente hospitalizado debido a un ataque al corazón, tendrá un segundo ataque al corazón utilizando información demográfica, la dieta y mediciones clínicas para ese paciente.
- el precio de una acción en 6 meses con base en las medidas de rendimiento de la empresa y datos económicos.

• Identificar:

- los números de un código postal escrito a mano, a partir de una imagen digitalizada.
- los factores de riesgo para el cáncer de próstata, basado en variables clínicas y demográficas.

Ejemplos de programas que utilizan aprendizaje de máquina

Qué significa "aprender" para una máquina? Extraer patrones ocultos de un conjunto de datos

Supervisado:

aprender a partir de datos **etiquetados** a lo largo del tiempo

ejemplo: spam

ejemplo: clusters

Las curvas de aprendizaje

Modelo simple

Modelo complejo

Aprendizaje no supervisado

Ejemplo: clasificación de correos electrónicos

Deep reinforcement learning

Ejemplo de deep learning

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Aprendizaje supervisado: Redes neuronales

6 capas

Redes neuronales artificiales

(e.g., a linear classifier)

Redes neuronales

https://playground.tensorflow.org/

Red convolucional

Red convolucional

Aprendizaje profundo (redes neuronales)

Redes profundas

- El aprendizaje profundo ha tomado varias disciplinas académicas en solo unos años.
 - visión por computadora (por ejemplo, imagen, análisis de escena)
 - procesamiento del lenguaje natural (por ejemplo, traducción automática)
 - reconocimiento de voz
 - biología computacional, etc.
- Papel clave en éxitos recientes
 - vehículos autónomos
 - reconocimiento de voz
 - agentes conversacionales
 - Juego sobrehumano
- Muchos más en camino
 - medicina personalizada / automatizada
 - química, robótica, ciencia de materiales, etc.

Redes profundas ... ¿por qué ahora?

- Razón # 1: muchos datos
 - muchos problemas importantes solo se pueden resolver a escala
- Razón # 2: recursos computacionales (especialmente GPU)
 - plataformas / sistemas que admiten la ejecución de algoritmos de aprendizaje profundo (máquina) a escala
- Razón # 3: los modelos grandes son más fáciles de entrenar
 - los modelos grandes se pueden estimar con éxito con algoritmos de aprendizaje basados en gradientes simples
- Razón # 4: "piezas de lego" neuronales flexibles
 - representaciones comunes, diversidad de opciones arquitectónicas

1,000 clases de objetos, 1,431,167 imágenes

Arquitectura GoogLeNet

5 clasificaciones más altas GoogLeNet

¿Qué es Python?

- Python es un lenguaje de programación orientado a objetos interpretado e interactivo.
- Incorpora módulos, excepciones, tipos de datos dinámicos de muy alto nivel, y clases.
- Objetivos de diseño incluyen:
 - Una sintaxis convencional sencilla
 - Un conjunto poderoso de tipos de datos y de bibliotecas
 - Fácil de usar por los principiantes

¿Qué es Python?

- Python es un lenguaje de código abierto y es gratuito
- Es fácilmente extensible
 - Hay una comunidad muy grande que crea y actualiza constantemente bibliotecas para diversos fines, incluida ciencia de datos
- Nosotros nos enfocaremos en la versión 3.8

https://www.python.org/

Historia

- Guido van Rossum desarrolló un traductor y la máquina virtual en 1986
- Uno de sus objetivos era permitirle actuar como un puente entre lenguajes de sistemas, como C, y lenguajes de guiones de shell, como Perl

Interactividad

- Python fue diseñado para usuarios que no suelen escriben grandes sistemas, sino que escriben programas cortos
- Ciclo de desarrollo proporciona retroalimentación inmediata
- Python se puede ejecutar en dos modos:
 - Expresiones o enunciados pueden ejecutarse en una terminal de Python para máxima interactividad
 - Puede ser integrado en guiones largos guardados en archivos para ser ejecutados desde un shell de terminal

jupyter Notebook

- Aplicación web de código abierto que le permite crear y compartir documentos que contienen código en vivo, ecuaciones, visualizaciones y texto narrativo.
- CoLab https://colab.research.google.com

API REST

• API: es una interfaz de programación de aplicaciones. (Del inglés Application Programming Interface). Es código que permite comunicarse con otra aplicación.

• REST: REpresentational State Transfer

- Funciona muy similar a una consulta a un sitio web (protocolo http)
 - http://dummy.restapiexample.com/

API REST (operación get)

• Servidor: dummy.restapiexample.com

```
Servicio: /api
/v1
/employees
/{id}
```

- Resultados: Javascript Object Notation (JSON)
 - https://jsonformatter.org/json-pretty-print

API REST (operación post)

```
    Servidor: dummy.restapiexample.com

Servicio: /api
              /v1
              /create
Entrada: {"name": "Alguien",
               "salary":"123456",
               "age":"48"}

    Comando: curl -X POST -H 'Content-Type: application/json' -d 
'{"name": "Alguien", "salary": "123456", "age": "48"}'
```

Resultados: Javascript Object Notation (JSON)

http://dummy.restapiexample.com/api/v1/create