- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

(Cognome)									_			(No	ome)			_	(N	٧un	nero	di	ma	trice	ola)						

CODICE = 841186

1	
2	
3	
4	
5	00000
6	
7	
8	
9	0000

10

A B C D E

1. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: N.A. B: 0 C: 2 - 2/e D: 2/e E: 2 + 2/e

2. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} (n^{e} + e^{n})(x - \pi)^{n}$$

A: N.A. B: π C: 0 D: 1/e E: e

3. Il massimo della funzione $f(x) = |\sqrt[3]{|x-1|}|$ per $x \in \mathbb{R}$ vale

A: N.E B: N.A. C: $\sqrt{2}$ D: 1 E: 0

4. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\sin(x)$ vale

A: $x - \pi/2$ B: $1 - \frac{\pi^2}{8} + \frac{\pi x}{2} - \frac{x^2}{2}$ C: $x - x^3/3!$ D: N.A. E: x

5. Il limite

$$\lim_{x \to +\infty} \frac{\sqrt[x]{x} + x}{|x| + 1}$$

vale

A: N.A. B: 0 C: 1/2 D: $+\infty$ E: N.E.

6. Il limite

$$\lim_{x \to 0^+} \log_{x^2} x$$

vale

A: N.E. B: e C: N.A. D: 1/2 E: $+\infty$

7. L'integrale

$$\int_0^2 \frac{x^3 - 1}{x - 1} \, dx$$

vale

A: 1 B: 20/3 C: 0 D: N.A. E: N.E.

8. Sia y la soluzione di $y''(x) = e^{-x^3}$ con y(0) = 0, y'(0) = 0. Allora y''(0) vale A: $1 + \pi$ B: $-\pi$ C: -1 D: N.A. E: $\sin(0)$

9. Sia z = -i allora la parte reale di $(z^2 \overline{z})^4$ vale

A: -1 B: 0 C: N.A. D: 1 E: 2

10. Data $f(x) = \log(\sqrt{x+1})$, allora f'(3/2) vale

A: 1/2 B: 0 C: -1 D: 1/5 E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

(Cognome)									_			(No	ome)			_	(N	٧un	nero	di	ma	trice	ola)						

A B C D E	
-----------	--

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

1. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: 0 B: 2 + 2/e C: 2 - 2/e D: 2/e E: N.A.

2. Il limite

$$\lim_{x \to +\infty} \frac{\sqrt[x]{x} + x}{|x| + 1}$$

vale

A: 0 B: N.A. C: 1/2 D: $+\infty$ E: N.E.

3. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\sin(x)$ vale

A:
$$1 - \frac{\pi^2}{8} + \frac{\pi x}{2} - \frac{x^2}{2}$$
 B: $x - \pi/2$ C: N.A. D: $x - x^3/3!$ E: x

4. Sia z=-i allora la parte reale di $(z^2\overline{z})^4$ vale

A: N.A. B:
$$-1$$
 C: 2 D: 0 E: 1

5. Il massimo della funzione $f(x) = |\sqrt[3]{|x-1|}$ per $x \in \mathbb{R}$ vale

A:
$$\sqrt{2}$$
 B: N.E C: 0 D: N.A. E: 1

6. L'integrale

$$\int_0^2 \frac{x^3 - 1}{x - 1} \, dx$$

vale

A: 0 B: 20/3 C: N.E. D: N.A. E: 1

7. Sia yla soluzione di $y''(x)=\mathrm{e}^{-x^3}$ con $y(0)=0,\,y'(0)=0.$ Allora y''(0) vale

A:
$$-\pi$$
 B: $1 + \pi$ C: $\sin(0)$ D: -1 E: N.A.

8. Il limite

$$\lim_{x\to 0^+}\log_{x^2}x$$

vale

A: 1/2 B: $+\infty$ C: e D: N.A. E: N.E.

9. Data $f(x) = \log(\sqrt{x+1})$, allora f'(3/2) vale

A: 0 B:
$$-1$$
 C: $1/2$ D: N.A. E: $1/5$

10. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} (n^{e} + e^{n})(x - \pi)^{n}$$

A: 1/e B: 0 C: N.A. D: e E: π

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

			(Co	ogno	me)				-			(No	me)			=	(N	ume	ero d	i ma	atric	

A B C D E	
-----------	--

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	00000

- 1. Data $f(x) = \log(\sqrt{x+1})$, allora f'(3/2) vale A: 1/2 B: 0 C: N.A. D: 1/5 E: -1
- 2. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: 0 B: 2 - 2/e C: 2/e D: N.A. E: 2 + 2/e

- 3. Il massimo della funzione $f(x)=|\sqrt[3]{|x-1|}|$ per $x\in\mathbb{R}$ vale A: 1 B: N.A. C: $\sqrt{2}$ D: N.E E: 0
- 4. Sia z=-i allora la parte reale di $(z^2\overline{z})^4$ vale A: -1 B: 1 C: 0 D: 2 E: N.A.
- 5. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} (n^{e} + e^{n})(x - \pi)^{n}$$

A: N.A. B: 1/e C: e D: 0 E: π

6. L'integrale

$$\int_0^2 \frac{x^3 - 1}{x - 1} \, dx$$

vale

A: N.E. B: 0 C: N.A. D: 20/3 E: 1

7. Il limite

$$\lim_{x\to +\infty}\frac{\sqrt[x]{x}+x}{|x|+1}$$

vale

A: 0 B: $+\infty$ C: N.A. D: 1/2 E: N.E

8. Il limite

$$\lim_{x\to 0^+}\log_{x^2}x$$

vale

A: e B: $+\infty$ C: 1/2 D: N.A. E: N.E.

- 9. Il polinomio di Taylor di grado 2 in $x_0=\frac{\pi}{2}$ della funzione $\sin(x)$ vale A: $x-\pi/2$ B: x C: $x-x^3/3!$ D: $1-\frac{\pi^2}{8}+\frac{\pi x}{2}-\frac{x^2}{2}$ E: N.A.
- 10. Sia y la soluzione di $y''(x) = e^{-x^3}$ con y(0) = 0, y'(0) = 0. Allora y''(0) vale A: $-\pi$ B: $\sin(0)$ C: $1 + \pi$ D: N.A. E: -1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

			(Co	gno	me)				_			(No	me)			-	ume	i ma	trice	la)

CODICE = 723885

1	00000
2	00000
3	
4	
5	
6	
7	
8	
0	

10

A B C D E

- 1. Sia z=-i allora la parte reale di $(z^2\overline{z})^4$ vale A: -1 B: 1 C: 0 D: 2 E: N.A.
- 2. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: 2 - 2/e B: N.A. C: 0 D: 2/e E: 2 + 2/e

3. Il limite

$$\lim_{x \to +\infty} \frac{\sqrt[x]{x} + x}{|x| + 1}$$

vale

A: N.A. B: N.E. C: $+\infty$ D: 1/2 E: 0

4. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\sin(x)$ vale A: $x - x^3/3!$ B: $1 - \frac{\pi^2}{8} + \frac{\pi x}{2} - \frac{x^2}{2}$ C: $x - \pi/2$ D: x E: N.A.

- 5. Sia y la soluzione di $y''(x) = e^{-x^3}$ con y(0) = 0, y'(0) = 0. Allora y''(0) vale A: -1 B: $1 + \pi$ C: $-\pi$ D: $\sin(0)$ E: N.A.
- 6. Data $f(x) = \log(\sqrt{x+1})$, allora f'(3/2) vale A: 0 B: 1/5 C: -1 D: N.A. E: 1/2
- 7. L'integrale

$$\int_0^2 \frac{x^3 - 1}{x - 1} \, dx$$

vale

A: 1 B: N.E. C: N.A. D: 0 E: 20/3

8. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} (n^{e} + e^{n})(x - \pi)^{n}$$

A: π B: N.A. C: 0 D: e E: 1/e

- 9. Il massimo della funzione $f(x) = |\sqrt[3]{|x-1|}|$ per $x \in \mathbb{R}$ vale A: $\sqrt{2}$ B: N.E C: 0 D: 1 E: N.A.
- 10. Il limite

$$\lim_{x \to 0^+} \log_{x^2} x$$

vale

A: N.A. B: 1/2 C: e D: N.E. E: $+\infty$

30gennaio 2012

			(Co	gno	me)				_			(No	me)			=	ume		trico	

A B	С	D	\mathbf{E}	
-----	---	---	--------------	--

1	
2	
3	
4	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
5	
6	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
7	
8	
9	
10	

30 gennaio 2012

(Cognome)									_			(No	ome)			_	(N	٧un	nero	di	ma	trice	ola)					

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

(Cognome)									_			(No	ome)			_	(N	٧un	nero	di	ma	trice	ola)					

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

			(Co	gnoi	me)						(No	me)			(11)	ume	iou.	i ma	trico	la)

	A	В	\mathbf{C}	D	\mathbf{E}	
--	---	---	--------------	---	--------------	--

1	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

(Cognome)									_			(No	ome)			_	(N	٧un	nero	di	ma	trice	ola)					

CODICE = 949600

1	00000
2	00000
3	00000
4	
5	
6	
7	00000
8	00000

9

10

A B C D E

1. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\sin(x)$ vale

A:
$$x$$
 B: $1 - \frac{\pi^2}{8} + \frac{\pi x}{2} - \frac{x^2}{2}$ C: N.A. D: $x - x^3/3!$ E: $x - \pi/2$

2. L'integrale

$$\int_0^2 \frac{x^3 - 1}{x - 1} dx$$

vale

A: 20/3 B: N.A. C: 1 D: 0 E: N.E.

3. Il massimo della funzione $f(x) = |\sqrt[3]{|x-1|}$ per $x \in \mathbb{R}$ vale

A:
$$-1$$
 B: $\sqrt{2}$ C: 1 D: 0 E: N.A.

4. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} (n^{e} + e^{n})(x - \pi)^{n}$$

A: N.A. B: 1/e C: π D: 0 E: e

5. Sia z=-i allora la parte reale di $(z^2\overline{z})^4$ vale

6. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: N.A. B:
$$2/e$$
 C: 0 D: $2 - 2/e$ E: $2 + 2/e$

7. Il limite

$$\lim_{x\to +\infty}\frac{\sqrt[x]{x}+x}{|x|+1}$$

vale

A: N.E. B: 1/2 C: 1 D: $+\infty$ E: N.A

8. Sia yla soluzione di $y^{\prime\prime}(x)=\mathrm{e}^{-x^3}$ con $y(0)=0,\,y^\prime(0)=0.$ Allora $y^{\prime\prime}(0)$ vale

A:
$$-\pi$$
 B: N.A. C: $1 + \pi$ D: $\sin(0)$ E: 1

9. Data $f(x) = \log(\sqrt{x+1})$, allora f'(3/2) vale

A: N.A. B:
$$1/2$$
 C: 5 D: -1 E: 0

10. Il limite

$$\lim_{x \to 0^+} \log_{x^2} x$$

vale

A: e B: $+\infty$ C: 1/2 D: N.E. E: N.A

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

·			(Co	ogno	me)				_			(N	om	e)				ume	i ma	atrico	ola)

А	В	C	D	E	

1	
2	0000
3	
4	
5	00000
6	00000
7	00000
8	
9	
10	00000

1. Sia y la soluzione di $y''(x) = e^{-x^3}$ con y(0) = 0, y'(0) = 0. Allora y''(0) vale A: $-\pi$ B: 1 C: N.A. D: $1 + \pi$ E: $\sin(0)$

2. L'integrale

$$\int_0^2 \frac{x^3 - 1}{x - 1} \, dx$$

vale

A: 0 B: 1 C: N.A. D: N.E. E: 20/3

3. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\sin(x)$ vale A: N.A. B: $x - x^3/3!$ C: $x - \pi/2$ D: x E: $1 - \frac{\pi^2}{8} + \frac{\pi x}{2} - \frac{x^2}{2}$

4. Sia z=-i allora la parte reale di $(z^2\overline{z})^4$ vale A: N.A. B: 0 C: 1 D: 2 E: -1

5. Il massimo della funzione $f(x)=|\sqrt[3]{|x-1|}|$ per $x\in\mathbb{R}$ vale A: 1 B: N.A. C: -1 D: 0 E: $\sqrt{2}$

6. Il limite

$$\lim_{x \to 0^+} \log_{x^2} x$$

vale

A: e B: 1/2 C: N.A. D: N.E. E: $+\infty$

7. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} (n^{e} + e^{n})(x - \pi)^{n}$$

A: 0 B: N.A. C: e D: π E: 1/e

8. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: 0 B: N.A. C: 2/e D: 2 + 2/e E: 2 - 2/e

9. Il limite

$$\lim_{x \to +\infty} \frac{\sqrt[x]{x} + x}{|x| + 1}$$

vale

A: N.E. B: 1/2 C: $+\infty$ D: N.A. E: 1

10. Data $f(x) = \log(\sqrt{x+1})$, allora f'(3/2) vale A: 0 B: 1/2 C: -1 D: 5 E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

			(Co	gno	me)						(No	me)			=	(N	ume	ro di	i ma	trico	ola)

A	В	С	D	E
$\overline{\bigcap}$	$\overline{\bigcap}$	$\overline{\bigcap}$	$\overline{\bigcap}$	\bigcap

1	
2	00000
3	
4	
5	
6	
7	
8	00000
9	
10	

1. Il limite

$$\lim_{x \to +\infty} \frac{\sqrt[x]{x} + x}{|x| + 1}$$

vale

A: 1/2 B: N.E. C: 1 D: $+\infty$ E: N.A.

2. Il limite

$$\lim_{x\to 0^+}\log_{x^2}x$$

vale

A: N.A. B: e C: N.E. D: 1/2 E: $+\infty$

3. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: 2/e B: 2 - 2/e C: 0 D: N.A. E: 2 + 2/e

4. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} (n^{e} + e^{n})(x - \pi)^{n}$$

A: e B: 1/e C: 0 D: π E: N.A.

5. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\sin(x)$ vale

A:
$$x - \pi/2$$
 B: N.A. C: x D: $1 - \frac{\pi^2}{8} + \frac{\pi x}{2} - \frac{x^2}{2}$ E: $x - x^3/3!$

6. Il massimo della funzione $f(x) = |\sqrt[3]{|x-1|}$ per $x \in \mathbb{R}$ vale

A:
$$-1$$
 B: 1 C: 0 D: $\sqrt{2}$ E: N.A.

7. Sia y la soluzione di $y''(x) = e^{-x^3}$ con y(0) = 0, y'(0) = 0. Allora y''(0) vale

A:
$$-\pi$$
 B: $\sin(0)$ C: 1 D: $1 + \pi$ E: N.A.

8. Sia z = -i allora la parte reale di $(z^2 \overline{z})^4$ vale

9. Data $f(x) = \log(\sqrt{x+1})$, allora f'(3/2) vale

A: N.A. B: 5 C: 1/2 D: -1 E: 0

10. L'integrale

$$\int_0^2 \frac{x^3 - 1}{x - 1} \, dx$$

vale

A: 0 B: N.E. C: N.A. D: 1 E: 20/3

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

																	L					
			(Co	gno	me)				_			(No	me)			_		ume	ro di	i ma	trice	ola)

CODICE = 724028

1	00000
2	
3	00000
4	00000
5	00000
6	00000
7	00000
8	
9	00000
10	00000

 $A \quad B \quad C \quad D \quad E$

1. Calcolare il raggio di convergenza della serie

$$\sum_{n=1}^{+\infty} (n^{e} + e^{n})(x - \pi)^{n}$$

A: e B: 1/e C: N.A. D: π E: 0

2. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\sin(x)$ vale A: $x - \pi/2$ B: N.A. C: $x - x^3/3!$ D: $1 - \frac{\pi^2}{8} + \frac{\pi x}{2} - \frac{x^2}{2}$ E: x

3. Il massimo della funzione $f(x)=|\sqrt[3]{|x-1|}|$ per $x\in\mathbb{R}$ vale A: 0 B: -1 C: $\sqrt{2}$ D: 1 E: N.A.

4. Data $f(x) = \log(\sqrt{x+1})$, allora f'(3/2) vale A: 0 B: 5 C: -1 D: N.A. E: 1/2

5. Sia z=-i allora la parte reale di $(z^2\overline{z})^4$ vale A: -1 B: 0 C: 1 D: 2 E: N.A.

6. Il limite

$$\lim_{x \to +\infty} \frac{\sqrt[x]{x} + x}{|x| + 1}$$

vale

A: 1 B: 1/2 C: N.A. D: $+\infty$ E: N.E.

7. L'integrale

$$\int_0^2 \frac{x^3 - 1}{x - 1} \, dx$$

vale

A: N.E. B: N.A. C: 1 D: 0 E: 20/3

- 8. Sia y la soluzione di $y''(x)=\mathrm{e}^{-x^3}$ con $y(0)=0,\ y'(0)=0.$ Allora y''(0) vale A: $\sin(0)$ B: N.A. C: $-\pi$ D: 1 E: $1+\pi$
- 9. Il limite

$$\lim_{x \to 0^+} \log_{x^2} x$$

vale

A: N.A. B: N.E. C: e D: 1/2 E: $+\infty$

10. L'integrale

$$\int_{1/e}^{e} |\log(x)| \, dx$$

vale

A: 2 - 2/e B: 2 + 2/e C: 2/e D: 0 E: N.A.

30 gennaio 2012

 (Cognome)											_			(No	me)			-	ume	i ma	trice	la)			

A B	C D E
-----	-------

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

 (Cognome)											_			(No	me)			-	ume	i ma	trice	la)			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

(Cognome)											•			(No	me)		•	-	ume.	i ma	trice	ola)				

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

 (Cognome)											_			(No	me)			=	ume	i ma	trico				

прсрг	A	В	\mathbf{C}	D	\mathbf{E}	
-------	---	---	--------------	---	--------------	--

1	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

(Cognome)												(No	me)			=	(N	ume	ro di	i ma	trico	ola)					

A	В	С	D	Ε

1	
2	00000
3	00000
4	
5	
6	00000
7	00000
8	00000
9	00000
10	00000

1. Data $f(x) = \arcsin(\sqrt{x-1})$, allora f'(3/2) vale

A:
$$1/2$$
 B: 0 C: N.A. D: -1 E: 2

2. Sia z = i allora la parte reale di $(z^4\overline{z})^2$ vale

3. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\cos(x)$ vale

A:
$$1 - x^2/2!$$
 B: N.A. C: $-1 + \frac{1}{2}(x - \pi/2)^2$ D: $1 - x + x^2/2$ E: $x - \pi/2$

4. L'integrale

$$\int_{1/2}^{1} \frac{x^2}{x^2 + 1} \, dx$$

vale

A: N.A. B: 0 C:
$$\frac{1}{2} - \frac{\pi}{4} + \arctan(\frac{1}{2})$$
 D: 1 E: $\frac{1}{2} + \frac{\pi}{4} - \arctan(1)$

5. L'insieme degli $\alpha, \beta > 0$ tali che

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} + n^{\beta}} < +\infty$$

e costituito da

A: $\alpha+\beta>1$ B: N.A. C: $\alpha+\beta>2$ D: α o β maggiori di uno E: α e β maggiori di uno

6. L'integrale

$$\int_{-1}^{1} |x^3| \, dx$$

vale

7. Sia y la soluzione di y''(x) + y(x) = 0 con $y(0) = \pi$, y'(0) = 1. Allora y''(0) vale

A: 1 B:
$$1 + \pi$$
 C: $\sin(0)$ D: $-\pi$ E: N.A.

8. Il limite

$$\lim_{x \to 0^+} \log_x x^2$$

vale

A: N.A. B: e C:
$$1/2$$
 D: $+\infty$ E: 2

9. Il limite

$$\lim_{x\to +\infty} \frac{x\log|x|}{\log|\log|x||}$$

vale

A: 0 B: N.E. C:
$$+\infty$$
 D: N.A. E: $1/2$

10. Il minimo della funzione $f(x) = |x^4 - 2x^2 + 1|$, per $x \in \mathbb{R}$ vale

A: 0 B: 1 C: N.A. D: N.E E:
$$\sqrt{2}$$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

(Cognome)											_			(No	ome)			_	(N	٧un	nero	di	ma	trice	ola)				

CODICE = 347919

1	
2	
3	00000
4	00000
5	0000
6	
7	
8	
9	00000

10

A B C D E

1. Data $f(x) = \arcsin(\sqrt{x-1})$, allora f'(3/2) vale

A: 1/2 B: 0 C: 2 D: -1 E: N.A.

2. Sia y la soluzione di y''(x)+y(x)=0 con $y(0)=\pi,$ y'(0)=1. Allora y''(0) vale A: 1 B: $-\pi$ C: N.A. D: $\sin(0)$ E: $1+\pi$

3. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\cos(x)$ vale

A: N.A. B: $-1 + \frac{1}{2}(x - \pi/2)^2$ C: $1 - x^2/2!$ D: $x - \pi/2$ E: $1 - x + x^2/2$

4. Sia z = i allora la parte reale di $(z^4\overline{z})^2$ vale

A: -1 B: 1 C: N.A. D: 2 E: 0

5. Il minimo della funzione $f(x) = |x^4 - 2x^2 + 1|$, per $x \in \mathbb{R}$ vale

A: N.E B: N.A. C: 0 D: $\sqrt{2}$ E: 1

6. Il limite

 $\lim_{x \to 0^+} \log_x x^2$

vale

A: 1/2 B: $+\infty$ C: 2 D: N.A. E: e

7. L'insieme degli $\alpha, \beta > 0$ tali che

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} + n^{\beta}} < +\infty$$

e costituito da

A: $\alpha+\beta>2$ B: N.A. C: $\alpha+\beta>1$ D: α o β maggiori di uno E: α e β maggiori di uno

8. L'integrale

$$\int_{-1}^{1} |x^3| \, dx$$

vale

A: 2/3 B: 1/2 C: 1/4 D: 0 E: N.A.

9. L'integrale

$$\int_{1/2}^{1} \frac{x^2}{x^2 + 1} \, dx$$

vale

A: $\frac{1}{2} - \frac{\pi}{4} + \arctan(\frac{1}{2})$ B: 1 C: N.A. D: 0 E: $\frac{1}{2} + \frac{\pi}{4} - \arctan(1)$

10. Il limite

$$\lim_{x\to +\infty} \frac{x\log|x|}{\log|\log|x||}$$

vale

A: 0 B: N.A. C: 1/2 D: N.E. E: $+\infty$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

(Cognome)											_			(No	ome)			_	(N	٧un	nero	di	ma	trice	ola)				

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	00000

1. L'insieme degli $\alpha, \beta > 0$ tali che

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} + n^{\beta}} < +\infty$$

e costituito da

A: $\alpha+\beta>1$ B: $\alpha+\beta>2$ C: α o β maggiori di uno D: N.A. E: α e β maggiori di uno

2. Il limite

$$\lim_{x \to 0^+} \log_x x^2$$

vale

A: N.A. B: e C: $+\infty$ D: 2 E: 1/2

3. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\cos(x)$ vale

A: N.A. B:
$$-1 + \frac{1}{2}(x - \pi/2)^2$$
 C: $1 - x + x^2/2$ D: $1 - x^2/2!$ E: $x - \pi/2$

4. Sia y la soluzione di y''(x) + y(x) = 0 con $y(0) = \pi$, y'(0) = 1. Allora y''(0) vale A: N.A. B: $\sin(0)$ C: $1 + \pi$ D: $-\pi$ E: 1

5. Il limite

$$\lim_{x \to +\infty} \frac{x \log |x|}{\log |\log |x||}$$

vale

A: N.E. B: 1/2 C: 0 D: $+\infty$ E: N.A.

6. L'integrale

$$\int_{1/2}^{1} \frac{x^2}{x^2 + 1} \, dx$$

vale

A:
$$\frac{1}{2} + \frac{\pi}{4} - \arctan(1)$$
 B: N.A. C: 1 D: $\frac{1}{2} - \frac{\pi}{4} + \arctan(\frac{1}{2})$ E: 0

7. L'integrale

$$\int_{-1}^{1} |x^3| \, dx$$

vale

A: N.A. B: 0 C: 1/2 D: 2/3 E: 1/4

8. Sia z = i allora la parte reale di $(z^4\overline{z})^2$ vale

A: -1 B: 2 C: 1 D: 0 E: N.A.

9. Il minimo della funzione $f(x) = |x^4 - 2x^2 + 1|$, per $x \in \mathbb{R}$ vale

A: N.A. B: 0 C: 1 D: $\sqrt{2}$ E: N.E

10. Data $f(x) = \arcsin(\sqrt{x-1})$, allora f'(3/2) vale

A: 0 B: N.A. C: 2 D: 1/2 E: -1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

(Cognome)											_			(No	ome)			_	(N	٧un	nero	di	ma	trice	ola)				

A	В	\mathbf{C}	D	E
---	---	--------------	---	---

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

1. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\cos(x)$ vale A: $1-x^2/2!$ B: $-1+\frac{1}{2}(x-\pi/2)^2$ C: $1-x+x^2/2$ D: $x-\pi/2$ E: N.A.

2. L'insieme degli $\alpha, \beta > 0$ tali che

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} + n^{\beta}} < +\infty$$

e costituito da

A: α o β maggiori di uno B: $\alpha+\beta>1$ C: $\alpha+\beta>2$ D: N.A. E: α e β maggiori di uno

3. Sia z=i allora la parte reale di $(z^4\overline{z})^2$ vale

A: N.A. B: 0 C: 2 D: -1 E: 1

4. Il minimo della funzione $f(x) = |x^4 - 2x^2 + 1|$, per $x \in \mathbb{R}$ vale

A: N.E B: 1 C: 0 D: $\sqrt{2}$ E: N.A.

5. L'integrale

$$\int_{1/2}^{1} \frac{x^2}{x^2 + 1} \, dx$$

vale

A: 0 B: 1 C: $\frac{1}{2} + \frac{\pi}{4} - \arctan(1)$ D: N.A. E: $\frac{1}{2} - \frac{\pi}{4} + \arctan(\frac{1}{2})$

6. Sia y la soluzione di y''(x) + y(x) = 0 con $y(0) = \pi$, y'(0) = 1. Allora y''(0) vale

A: $\sin(0)$ B: 1 C: $1 + \pi$ D: N.A. E: $-\pi$

7. Data $f(x) = \arcsin(\sqrt{x-1})$, allora f'(3/2) vale

A: -1 B: 2 C: N.A. D: 1/2 E: 0

8. Il limite

$$\lim_{x\to +\infty} \frac{x\log|x|}{\log|\log|x||}$$

vale

A: $+\infty$ B: N.E. C: 0 D: N.A. E: 1/2

9. Il limite

$$\lim_{x \to 0^+} \log_x x^2$$

vale

A: N.A. B: $+\infty$ C: 1/2 D: e E: 2

10. L'integrale

$$\int_{-1}^{1} |x^3| \, dx$$

vale

A: 0 B: 2/3 C: 1/4 D: 1/2 E: N.A.

30 gennaio 2012

(Cognome)											_			(No	me)			-	ume	i ma	trice	la)			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	$\bullet \overline{\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc}$

30 gennaio 2012

(Cognome)											_			(No	me)			=	ume	i ma	trico				

1	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

(Cognome)												•			(No	me)		•	-	ume.	i ma	trice	ola)				

|--|

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

(Cognome)										_			(No	me)			=	ume	i ma	atric	ola)					

A	В	С	D	\mathbf{E}	

1	
2	
3	
4	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

(Cognome)														(No	me)			=	(N	ume	ro di	i ma	trico	ola)			

CODICE = 712416

0000
0000

A B C D E

5 (

1 2 3

7

8 0 0 0 0

10

1. Data $f(x) = \arcsin(\sqrt{x-1})$, allora f'(3/2) vale A: 0 B: 1/2 C: -1 D: 1 E: N.A.

2. L'integrale

$$\int_{1/2}^{1} \frac{x^2}{x^2 + 1} \, dx$$

vale

A: $\frac{1}{2} - \frac{\pi}{4} + \arctan(\frac{1}{2})$ B: N.A. C: 0 D: 1 E: $\frac{1}{2} + \frac{\pi}{4} - \arctan(1)$

3. Sia y la soluzione di y''(x) + y(x) = 0 con $y(0) = \pi$, y'(0) = 1. Allora y''(0) vale A: N.A. B: 1 C: $\sin(0)$ D: $-\pi$ E: $1 + \pi$

4. L'insieme degli $\alpha, \beta > 0$ tali che

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} + n^{\beta}} < +\infty$$

e costituito da

A: $\alpha+\beta>2$ B: $\alpha+\beta>1$ C: N.A. D: α e β maggiori di uno E: α o β maggiori di uno

5. Sia z=i allora la parte reale di $(z^4\overline{z})^2$ vale

A: -1 B: N.A. C: 0 D: 2 E: 1

6. Il minimo della funzione $f(x) = |x^4 - 2x^2 + 1|$, per $x \in \mathbb{R}$ vale

A: 1/2 B: $\sqrt{2}$ C: N.E D: N.A. E: 1

7. L'integrale

$$\int_{-1}^{1} |x^3| \, dx$$

vale

A: 1/4 B: 2/3 C: 2 D: 0 E: N.A.

8. Il polinomio di Taylor di grado 2 in $x_0=\frac{\pi}{2}$ della funzione $\cos(x)$ vale

A:
$$\pi/2 - x$$
 B: $-1 + \frac{1}{2}(x - \pi/2)^2$ C: N.A. D: $1 - x^2/2!$ E: $1 - x + x^2/2$

9. Il limite

$$\lim_{x \to 0^+} \log_x x^2$$

vale

A: N.A. B: $+\infty$ C: 1/2 D: e E: 2

10. Il limite

$$\lim_{x\to +\infty} \frac{x\log|x|}{\log|\log|x||}$$

vale

A: $+\infty$ B: 0 C: N.A. D: N.E. E: 1/2

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

			(C	ogn	ome)				_			(No	ome)			_	(N	٧un	nero	di	ma	trice	ola)

A	В	С	D	Е	

1	
2	
3	
4	
5	
6	00000
7	
8	
9	
10	00000

1. Il minimo della funzione $f(x)=|x^4-2x^2+1|$, per $x\in\mathbb{R}$ vale A: 1 B: N.A. C: $\sqrt{2}$ D: N.E E: 1/2

2. Il limite

$$\lim_{x \to 0^+} \log_x x^2$$

vale

A: 1/2 B: N.A. C: 2 D: e E: $+\infty$

3. L'insieme degli $\alpha, \beta > 0$ tali che

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} + n^{\beta}} < +\infty$$

e costituito da

A: $\alpha+\beta>1$ B: $\alpha+\beta>2$ C: α e β maggiori di uno D: N.A. E: α o β maggiori di uno D

4. Data $f(x) = \arcsin(\sqrt{x-1})$, allora f'(3/2) vale

A: 1/2 B: N.A. C: -1 D: 0 E: 1

5. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\cos(x)$ vale

A: $\pi/2 - x$ B: $1 - x^2/2!$ C: $1 - x + x^2/2$ D: $-1 + \frac{1}{2}(x - \pi/2)^2$ E: N.A.

6. Sia yla soluzione di y''(x)+y(x)=0 con $y(0)=\pi,$ y'(0)=1. Allora y''(0) vale

A: $1 + \pi$ B: $-\pi$ C: 1 D: N.A. E: $\sin(0)$

7. L'integrale

$$\int_{-1}^{1} |x^3| dx$$

vale

A: 2 B: 1/4 C: N.A. D: 0 E: 2/3

8. Sia z = i allora la parte reale di $(z^4\overline{z})^2$ vale

A: N.A. B: 0 C: 1 D: 2 E: -1

9. Il limite

$$\lim_{x \to +\infty} \frac{x \log|x|}{\log|\log|x||}$$

vale

A: N.A. B: 0 C: N.E. D: $+\infty$ E: 1/2

10. L'integrale

$$\int_{1/2}^{1} \frac{x^2}{x^2 + 1} \, dx$$

vale

A: $\frac{1}{2}-\frac{\pi}{4}+\arctan(\frac{1}{2})$ B: 0 C: N.A. D: $\frac{1}{2}+\frac{\pi}{4}-\arctan(1)$ E: 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

			(Co	gno	me)				_			(No	me)			=	$um\epsilon$	ero d	i ma	ola)

CODICE = 160829

1	00000
2	
3	
4	
5	00000
6	00000
7	00000
8	
9	0000
10	00000

 $A \quad B \quad C \quad D \quad E$

1. L'integrale

$$\int_{1/2}^{1} \frac{x^2}{x^2 + 1} \, dx$$

vale

A: 0 B: $\frac{1}{2} - \frac{\pi}{4} + \arctan(\frac{1}{2})$ C: N.A. D: 1 E: $\frac{1}{2} + \frac{\pi}{4} - \arctan(1)$

2. L'insieme degli $\alpha, \beta > 0$ tali che

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} + n^{\beta}} < +\infty$$

e costituito da

3. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\cos(x)$ vale A: $\pi/2 - x$ B: $1 - x + x^2/2$ C: N.A. D: $-1 + \frac{1}{2}(x - \pi/2)^2$ E: $1 - x^2/2!$

4. Il minimo della funzione $f(x)=|x^4-2x^2+1|,$ per $x\in\mathbb{R}$ vale A: $\sqrt{2}$ B: N.E C: N.A. D: 1 E: 1/2

5. Il limite

$$\lim_{x \to +\infty} \frac{x \log|x|}{\log|\log|x||}$$

vale

A: $+\infty$ B: 0 C: N.A. D: 1/2 E: N.E.

6. Sia y la soluzione di y''(x) + y(x) = 0 con $y(0) = \pi$, y'(0) = 1. Allora y''(0) vale A: N.A. B: $-\pi$ C: $\sin(0)$ D: $1 + \pi$ E: 1

7. Il limite

$$\lim_{x \to 0^+} \log_x x^2$$

vale

A: N.A. B: $+\infty$ C: e D: 1/2 E: 2

8. L'integrale

$$\int_{-1}^{1} |x^3| \, dx$$

vale

A: 0 B: 2 C: N.A. D: 2/3 E: 1/4

9. Data $f(x) = \arcsin(\sqrt{x-1})$, allora f'(3/2) vale A: 0 B: 1/2 C: -1 D: N.A. E: 1

10. Sia z=i allora la parte reale di $(z^4\overline{z})^2$ vale

A: N.A. B: 1 C: 0 D: -1 E: 2

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 gennaio 2012

			(Co	gno	me)				_			(No	me)			-	ume	i ma	trice	la)

CODICE = 246079

1	00000
2	0000
3	
4	
5	
6	
7	
8	
9	00000
10	

 $A \quad B \quad C \quad D \quad E$

1. Il polinomio di Taylor di grado 2 in $x_0 = \frac{\pi}{2}$ della funzione $\cos(x)$ vale

A:
$$1 - x + x^2/2$$
 B: $\pi/2 - x$ C: N.A. D: $-1 + \frac{1}{2}(x - \pi/2)^2$ E: $1 - x^2/2!$

2. Data $f(x) = \arcsin(\sqrt{x-1})$, allora f'(3/2) vale

A: 0 B:
$$1/2$$
 C: -1 D: 1 E: N.A.

3. Sia z=i allora la parte reale di $(z^4\overline{z})^2$ vale

4. Il minimo della funzione $f(x) = |x^4 - 2x^2 + 1|$, per $x \in \mathbb{R}$ vale

A:
$$\sqrt{2}$$
 B: N.A. C: 1 D: N.E E: 1/2

5. L'integrale

$$\int_{1/2}^{1} \frac{x^2}{x^2 + 1} \, dx$$

vale

A: N.A. B:
$$\frac{1}{2} + \frac{\pi}{4} - \arctan(1)$$
 C: 1 D: $\frac{1}{2} - \frac{\pi}{4} + \arctan(\frac{1}{2})$ E: 0

6. L'insieme degli $\alpha, \beta > 0$ tali che

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha} + n^{\beta}} < +\infty$$

e costituito da

A: $\alpha+\beta>2$ B: α o β maggiori di uno C: $\alpha+\beta>1$ D: α e β maggiori di uno E: N.A.

7. Il limite

$$\lim_{x\to +\infty} \frac{x\log|x|}{\log|\log|x||}$$

vale

A: N.E. B:
$$+\infty$$
 C: 0 D: N.A. E: $1/2$

8. Il limite

$$\lim_{x\to 0^+} \log_x x^2$$

vale

A:
$$+\infty$$
 B: e C: N.A. D: $1/2$ E: 2

9. Sia y la soluzione di y''(x) + y(x) = 0 con $y(0) = \pi$, y'(0) = 1. Allora y''(0) vale A: 1 B: $1 + \pi$ C: $-\pi$ D: N.A. E: $\sin(0)$

10. L'integrale

$$\int_{-1}^{1} |x^3| \, dx$$

vale

30 gennaio 2012

																				ĺ
			(Co	gno	me)				_			(No	me)			=	ume		trico	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

			(Co	ogno	me)				_			(No	me)			=	ume	i ma	atric	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

			(Co	gno	me)				_			(No	me)			-	ume	i ma	trice	la)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 gennaio 2012

			(Co	ogno	me)				_			(No	me)			=	ume	i ma	atric	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Elettronica, Informatica &

Telecomunicazioni Prova di Analisi Matematica 1

30 gennaio 2012

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.

- Indicare la risposta nell'apposita maschera con una "X".
- Predeffettus refeorde zionizionerare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta, corretta a destra della linea stessa.

$$f(x) = \int_0^{x-4x+t} e^{-t^3} dt$$

individuando eventuali massimi e minimi (locali e assoluti) e gli intervalli di convessità

Soluzione: La funzione f(x) è una funzione derivabile, grazie al teorema fondamentale del calcolo integrale e si ha

$$f'(x) = \frac{-4 + 2x}{e^{(7-4x+x^2)^3}}$$

Da questo si ricava che f'<0 per x<2, e f'>0 per x>2. Pertanto in x=0 si ha l'unico punto di minimo assoluto e il minimo assoluto vale $m=\int_{\rm e}^3 {\rm e}^{-t^3}\,dt>0$. Inoltre si ha

$$\lim_{x \to \pm \infty} f(x) = \int_{e}^{+\infty} e^{-t^3} dt = M < +\infty,$$

dato che l'integrale è convergente. Quindi $M = \sup_{x \in \mathbb{R}} f(x)$. La derivata seconda risulta positiva per x in un intorno di 2 e negativa per $x \to \pm \infty$. (In realtà si può dimostrare che esistono esattamente due punti di flesso).

2. Studiare il problema

$$\begin{cases} y''(t) + y(t) = 0 \\ y(0) = 0 \\ y(\pi) = 0 \end{cases}$$

e stabilire se esistono altre soluzioni oltre a $y(t) \equiv 0$. Facoltativo studiare la stessa equazione con $y(0) = y(\lambda) = 0$, con $\lambda \in \mathbb{R}$

Soluzione: L'integrale generale dell'equazione omogenea è $y(x) = A\sin(x) + B\sin(x)$. Andando a imporre le condizioni a x = 0 e $x = \pi$ si ha

$$y(0) = B\cos(0) = B$$
 $y(\pi) = B\cos(\pi) = -B$,

e quindi si ottiene in entrambi i casi B=0. Pertanto per ogni $A \in \mathbb{R}$ si ha una soluzione e quindi esistono infinite soluzioni.

In generale si ha

$$y(0) = B\cos(0) = B$$
 $y(\lambda) = A\sin(\lambda) + B\cos(\lambda).$

Quindi la prima condizione è B=0, mentre la seconda diventa $A\sin(\lambda)=0$. Questa implica A=0 se λ $k\pi$, $k\in\mathbb{Z}$, mentre se $x=k\pi$, $k\in\mathbb{Z}$, è verificata per ogni $A\in\mathbb{R}$.

3. Studiare la convergenza dell'integrale e eventualmente calcolarlo

$$\int_{2}^{+\infty} \frac{x-2}{x^3(x-1)} \, dx$$

Soluzione: L'integrale converge, dato che $f(x) = \frac{x-2}{x^3(x-1)} > 0$ e inoltre $f(x) = \mathcal{O}(x^{-3})$. Svolgendo i calcoli si ottiene che una

$$\int_{2}^{+\infty} \frac{x-2}{x^{3}(x-1)} dx = \lim_{b \to +\infty} -x^{-2} - \frac{1}{x} - \log(-1+x) + \log(x) \Big|_{2}^{b} = \frac{3}{4} - \log(2).$$

4. Dimostrare che per ogni $\alpha > 0$ esiste $\beta > 0$ tale che

$$\int_0^\beta \frac{1}{\alpha^2 + x^2} dx = \int_\beta^{+\infty} \frac{1}{\alpha^2 + x^2} dx$$

Soluzione: Dato che $\frac{1}{\alpha^2+x^2}>0$ la funzione integrale $\int_0^x \frac{1}{\alpha^2+t^2}\,dt$ é monotona crescente e quindi assume tutti i valori tra inf e sup. In particolare $\inf_{x\geq 0}\int_0^x \frac{1}{\alpha^2+t^2}\,dt=0$ e $\sup_{x\geq 0}\int_0^x \frac{1}{\alpha^2+t^2}\,dt=\Lambda<+\infty$ e quindi esiste necessariamente $\beta>0$ tale che $0<\int_0^\beta \frac{1}{\alpha^2+t^2}\,dt=M/2< M$. Con calcoli espliciti, dato che

$$\int \frac{1}{\alpha^2 + x^2} \, dx = \frac{\arctan(\frac{x}{\alpha})}{\alpha},$$

si può verificare che

$$\frac{\pi}{4\alpha} = \int_0^\alpha \frac{1}{\alpha^2 + x^2} \, dx = \int_\alpha^{+\infty} \frac{1}{\alpha^2 + x^2} \, dx.$$