Central Limit Theorem

Chad Worley

October 27, 2019

Let W be a random variable with mean μ_W and standard deviation σ_W .

- Let W be a random variable with mean μ_w and standard deviation σ_w .
- ▶ Let random variable *X* represent the sum of *n* instances of *W*.

$$X = W_1 + W_2 + W_3 + \cdots + W_n$$

- Let W be a random variable with mean μ_w and standard deviation σ_w .
- Let random variable X represent the sum of n instances of W.

$$X = W_1 + W_2 + W_3 + \cdots + W_n$$

▶ X has mean $\mu_X = \mathbf{n} \cdot \mu_W$ and standard deviation $\sigma_X = \sigma_W \sqrt{\mathbf{n}}$.

- Let W be a random variable with mean μ_w and standard deviation σ_w .
- ▶ Let random variable *X* represent the sum of *n* instances of *W*.

$$X = W_1 + W_2 + W_3 + \cdots + W_n$$

- X has mean $\mu_X = n \cdot \mu_W$ and standard deviation $\sigma_X = \sigma_W \sqrt{n}$.
- \triangleright X is approximately normal, especially if n is "large".

$$X \sim \mathcal{N}(n\mu_w, \sigma_w\sqrt{n})$$

Let W be a random variable with mean μ_w and standard deviation σ_w .

- Let W be a random variable with mean μ_w and standard deviation σ_w .
- ► Let random variable *Y* represent the average of *n* instances of *W*.

$$Y = \frac{W_1 + W_2 + W_3 + \dots + W_n}{n}$$

- Let W be a random variable with mean μ_w and standard deviation σ_w .
- ► Let random variable *Y* represent the average of *n* instances of *W*.

$$Y = \frac{W_1 + W_2 + W_3 + \dots + W_n}{n}$$

• Y has mean $\mu_y = \mu_w$ and standard deviation $\sigma_y = \frac{\sigma_w}{\sqrt{n}}$.

- Let W be a random variable with mean μ_w and standard deviation σ_w .
- ► Let random variable *Y* represent the average of *n* instances of *W*.

$$Y = \frac{W_1 + W_2 + W_3 + \dots + W_n}{n}$$

- Y has mean $\mu_y = \mu_w$ and standard deviation $\sigma_y = \frac{\sigma_w}{\sqrt{n}}$.
- ightharpoonup Y is approximately normal, especially if n is "large".

$$Y \sim \mathcal{N}\left(\mu_{w}, \frac{\sigma_{w}}{\sqrt{n}}\right)$$

► Let *W* be a random variable with the following probability distribution.

a	
W	P(w)
26	0.52
27	0.43
29	0.05

► Let *W* be a random variable with the following probability distribution.

W	P(w)
26	0.52
27	0.43
29	0.05

Notice W has mean $\mu_w = 26.58$ and standard deviation $\sigma_w = 0.737$.

► Let *W* be a random variable with the following probability distribution.

W	P(w)
26	0.52
27	0.43
29	0.05

- Notice W has mean $\mu_w = 26.58$ and standard deviation $\sigma_w = 0.737$.
- ▶ Let *X* be the sum of 12 instances of *W*.

► Let *W* be a random variable with the following probability distribution.

W	P(w)
26	0.52
27	0.43
29	0.05

- Notice W has mean $\mu_w = 26.58$ and standard deviation $\sigma_w = 0.737$.
- ▶ Let X be the sum of 12 instances of W.
- ▶ We predict X is approximately normal, with mean and standard deviation from formulas.

$$\mu_{x} = n\mu_{w} = (12)(26.58) = 318.96$$

$$\sigma_{w} = \sigma_{w}\sqrt{n} = (0.737)(\sqrt{12}) = 2.55$$

$$X \sim \mathcal{N}(318.96, 2.55)$$

Example 1 continued...

Example 1 continued...

Example 1 continued...

▶ Let random variable *W* represent a 6-sided die.

W	P(w)
1	0.1667
2	0.1667
3	0.1667
4	0.1667
5	0.1667
6	0.1667

▶ Let random variable W represent a 6-sided die.

w	P(w)
1	0.1667
2	0.1667
3	0.1667
4	0.1667
5	0.1667
6	0.1667

Notice W has mean $\mu_w=3.5$ and standard deviation $\sigma_w=1.708$.

▶ Let random variable W represent a 6-sided die.

w	P(w)
1	0.1667
2	0.1667
3	0.1667
4	0.1667
5	0.1667
6	0.1667

- Notice W has mean $\mu_{w}=3.5$ and standard deviation $\sigma_{w}=1.708$.
- ▶ Let *X* be the sum of 100 instances of *W*.

Let random variable W represent a 6-sided die.

W	P(w)
1	0.1667
2	0.1667
3	0.1667
4	0.1667
5	0.1667
6	0.1667

- Notice W has mean $\mu_{w}=3.5$ and standard deviation $\sigma_{w}=1.708$.
- ▶ Let X be the sum of 100 instances of W.
- ► We predict *X* is approximately normal, with mean and standard deviation from formulas.

$$\mu_{x} = n\mu_{w} = (100)(3.5) = 350$$

$$\sigma_{w} = \sigma_{w}\sqrt{n} = (1.708)(\sqrt{100}) = 17.08$$

$$X \sim \mathcal{N}(350, 17.08)$$

Probability distribution of standard 6-sided die

Probability distribution of sum of 100 6-sided dice

How to roll 1000 dice: spin this once

