INDEXING AND SEARCHING FOR HOT TOPICS

Rajat Narang [rnarang]

Shreya More [ssmore]

Udit Misra [umisra]

Kafka And Tweepy

Tweepy:
An easy-to-use Python library for accessing the twitter API

Kakfa:
Distributed queuing service to buffer the tweets before processing

logstash elasticsearch kibana

ELK Stack

ElasticSearch:

Elasticsearch is a distributed, RESTful search and analytics engine capable of solving a growing number of use cases

Logstash:

Logstash is an open source, server-side data processing pipeline that ingests data from a multitude of sources simultaneously, transforms it, and then sends it to your favorite "stash."

Kibana:

Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack

Project Architecture

Connection between Kafka & ES

■ Pipeline:

- Extract data using tweepy and push to kafka
- Using Logstash transfer data from kafka to elasticsearch
- Using Kibana run DRPC queries and visualize data

Count Min Sketches & Bloom Filters

- Sub linear space data structures
- Summarize data streams
- Probabilistic nature
- CMS are a refinement of BF

Bloom Filters Design

- Allows False Positives but not False Negatives
- The output a Bloom Filter gives is whether an input object has already been registered in it.
- BF supports insert and query operations
- It works by using k independent hash functions <h1, h2, ..., hk> that map to indices in the range of 1 to m.

Bloom Filters Insert

- We initialise an array of n bits to zero and use k independent hash functions.
- Assume we are working with a bloom filter of size 16 with 4 hash functions.
- O(k) complexity

Bloom Filters Query

- Perform AND operation on all indices found through hash functions.
- "pear" was not contained in the Bloom Filter in which we had inserted "apple".
 - **1** and **1** and **0** and **1** = 0
- O(k) complexity

Bloom Filter Equations

$$m = -rac{n \ln p}{(\ln 2)^2}$$

$$k = \frac{m}{n} \ln 2.$$

Where,

- \blacksquare n = number of items in set
- \mathbf{m} = number of bits in filter
- k = number of hash functions
- p = probability of a false positive

We generally fix values of n and p to determine the values of m and k

Count Min Sketches

- An extension to Bloom Filters
- Acts as a frequency table of objects in a data stream
- Instead of an array of length m, CMS maintains a 2-dimensional data structure (mxk)
- The hash functions can deliver any value less than m. So every hash function and a value under m, map to a cell in the CMS

k hash functions

	h1	h2	h3	h4
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0
7	0	0	0	0
8	0	0	0	0
9	0	0	0	0
10	0	0	0	0
11	0	0	0	0
12	0	0	0	0
13	0	0	0	0
14	0	0	0	0
15	0	0	0	0

m rows

CMS Example

	h1	h2	h3	h4
0	0	0	0	0
1	1	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	2	0	0
6	0	0	0	0
7	0	0	0	0
8	0	0	2	0
9	0	0	0	0
10	1	0	0	0
11	0	0	0	0
12	0	0	0	0
13	0	0	0	2
14	0	0	0	0
15	0	0	0	0

$$min(2,2,1,2) = 1$$

Top K Heavy Hitters

- Heavy hitters problem:
 - Given a stream of length T and a parameter k, in a single pass over the stream we want to find any elements that appear at least T/k times.
- Top k:
 - Find the top k frequently occurring items in the data stream

Game of Thrones Leaderboard

- Built a Bloom Filter based on 31 popular characters from Game of Thrones.
- We use k=7 hash functions and m=300 bit vectors for n=31 characters and an error rate of 1%
- Tweets checked for these names
- If present in the Bloom Filter, the name is added to a CMS that backs up the leaderboard

Leaderboard: [(27, 'samwell'), (41, 'bran'), (60, 'got\xe2\x80\xa6'), (86, 'cersei'), (176, 'jon')]

Conclusion

- We successfully built a pipeline to stream tweets from Twitter's API through Kafka, Logstash and index it in Elasticsearch.
- Results were obtained using CMS and BF by performing top k Heavy Hitters on their result.
- All top characters stayed at relatively same positions, even though their frequencies changed over time. The change was not found to be very drastic.
- We did not expect the leaderboard to change constantly. However, fluctuations were noticed after the release of a new episode.