In [1]: import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt %matplotlib inline import warnings warnings.filterwarnings('ignore')

```
In [2]: raw_data_train = pd.read_csv("SalaryData_Train.csv")
    raw_data_test = pd.read_csv("SalaryData_Test.csv")
    raw_data_train.head()
```

Out[2]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black

In [3]: df_train = raw_data_train.copy() #Changes we make in training data
 df_test = raw_data_test.copy()
 df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30161 entries, 0 to 30160
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	30161 non-null	int64
1	workclass	30161 non-null	object
2	education	30161 non-null	object
3	educationno	30161 non-null	int64
4	maritalstatus	30161 non-null	object
5	occupation	30161 non-null	object
6	relationship	30161 non-null	object
7	race	30161 non-null	object
8	sex	30161 non-null	object
9	capitalgain	30161 non-null	int64
10	capitalloss	30161 non-null	int64
11	hoursperweek	30161 non-null	int64
12	native	30161 non-null	object
13	Salary	30161 non-null	object
مريال		hios+(0)	-

dtypes: int64(5), object(9)

memory usage: 3.2+ MB

In [4]: df_train.describe()

Out [4]:

	age	educationno	capitalgain	capitalloss	hoursperweek
count	30161.000000	30161.000000	30161.000000	30161.000000	30161.000000
mean	38.438115	10.121316	1092.044064	88.302311	40.931269
std	13.134830	2.550037	7406.466611	404.121321	11.980182
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	47.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	4356.000000	99.000000

Feature Analysis

```
In [5]: | for x in range(1,len(df_train.columns)):
             print(df_train.iloc[:,x].value_counts())
            print('\n')
          LCUUUUT
         Ireland
                                             24
                                             19
         Hong
         Cambodia
                                             18
         Trinadad&Tobago
                                             18
         Laos
                                             17
                                             17
         Thailand
         Yugoslavia
                                             16
         Outlying-US(Guam-USVI-etc)
                                             14
                                             13
         Hungary
         Honduras
                                             12
         Scotland
                                             11
        Name: native, dtype: int64
         <=50K
                   22653
         >50K
                    7508
        Name: Salary, dtype: int64
In [6]: | for x in range(1,len(df_train.columns)):
            print(df_train.iloc[:,x].value_counts())
            print('\n')
         Private
                               22285
         Self-emp-not-inc
                                2499
         Local-gov
                                2067
         State-gov
                                1279
         Self-emp-inc
                                1074
         Federal-gov
                                 943
         Without-pay
                                  14
        Name: workclass, dtype: int64
         HS-grad
                          9840
         Some-college
                          6677
         Bachelors
                          5044
         Masters
                          1627
         Assoc-voc
                          1307
         11th
                          1048
         Assoc-acdm
                          1008
         10th
                           820
          7th-8th
                           557
```

Label Encoding

```
In [7]: df_train.columns.values
```

In [8]: from sklearn import preprocessing #Label Encoding
label_encoder = preprocessing.LabelEncoder()
df_train.education= label_encoder.fit_transform(df_train.education)
df_train.maritalstatus= label_encoder.fit_transform(df_train.workclass)
df_train.workclass= label_encoder.fit_transform(df_train.occupatio)
df_train.relationship= label_encoder.fit_transform(df_train.relatio)
df_train.race= label_encoder.fit_transform(df_train.race)
df_train.sex= label_encoder.fit_transform(df_train.sex)
df_train.native= label_encoder.fit_transform(df_train.native)
df_train.Salary= label_encoder.fit_transform(df_train.Salary)
df_train.head()

Out[8]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	s
0	39	5	9	13	4	0	1	4	
1	50	4	9	13	2	3	0	4	
2	38	2	11	9	0	5	1	4	
3	53	2	1	7	2	5	0	2	
4	28	2	9	13	2	9	5	2	

```
In [9]: label_encoder = preprocessing.LabelEncoder()
    df_test.education= label_encoder.fit_transform(df_test.education)
    df_test.maritalstatus= label_encoder.fit_transform(df_test.maritals
    df_test.workclass= label_encoder.fit_transform(df_test.workclass)
    df_test.occupation= label_encoder.fit_transform(df_test.occupation)
    df_test.relationship= label_encoder.fit_transform(df_test.relations
    df_test.race= label_encoder.fit_transform(df_test.race)
    df_test.sex= label_encoder.fit_transform(df_test.sex)
    df_test.native= label_encoder.fit_transform(df_test.salary)
```

In [10]: df_train.Salary.value_counts()

Out[10]: 0 22653 1 7508

Name: Salary, dtype: int64

```
In [11]: sns.set(rc={'figure.figsize':(20,5)})
sns.boxplot(data=df_train, orient="v", palette="Set2")
```

Out[11]: <AxesSubplot:>


```
In [12]: from imblearn.combine import SMOTETomek
from collections import Counter

resamp = df_train.copy()

a = resamp.iloc[:,:-1]
b = resamp.iloc[:,-1]

print(Counter(b))

smt = SMOTETomek(sampling_strategy = 'auto')
m, n = smt.fit_resample(a, b)

print(Counter(n))
```

Counter({0: 22653, 1: 7508}) Counter({0: 22238, 1: 22238})

Train | Split dataset

```
In [14]: X_train =m
    X_test = df_test.iloc[:,:-1]
    y_train = n
    y_test = df_test.iloc[:,-1]
```

```
In [15]: from sklearn.ensemble import BaggingClassifier
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
```

```
In [16]:
    _samples=1.0 / n_estimators, n_estimators=n_estimators), n_jobs=-1)
```

In [17]: |model.fit(X_train, y_train)

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

/opt/anaconda3/lib/python3.9/site-packages/sklearn/svm/_base.py:12 44: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.

warnings.warn(

Out [17]:

Model Evaluation Function

```
In [19]: from sklearn.metrics import confusion_matrix,classification_report
         def report_model(model):
             model_preds = model.predict(X_test)
             print(confusion_matrix(y_test, model_preds))
             print(classification_report(y_test,model_preds))
In [20]:
         report_model(model)
          [[8809 2551]
           [1592 2108]]
                        precision
                                      recall
                                              f1-score
                                                          support
                     0
                             0.85
                                        0.78
                                                  0.81
                                                            11360
                     1
                             0.45
                                        0.57
                                                  0.50
                                                             3700
                                                  0.72
                                                            15060
             accuracy
                                                            15060
            macro avg
                             0.65
                                        0.67
                                                  0.66
                             0.75
                                        0.72
                                                  0.73
                                                            15060
         weighted avg
```

In []: