1 Measures continued

Example 1.1. $S = \mathbb{N}$, $S = 2^{\mathbb{N}}$.

- Given $p_0, p_2, \dots \geq 0, \sum_i p_i = 1$, define $\mu(A) := \sum_{i \in A} p_i$ for $A \subset S$. μ is a prob measure.
- Given p.m. μ on S, define $p_i := \mu(\{i\})$ and $\sum_i p_i = 1$ holds.

Definition 1.2. A class of subsets of S, A, is a π -class (or π -system) if $A_1, A_2 \in A \implies A_1 \cap A_2 \in A$.

Definition 1.3. A class of subsets of *S*, C, is a λ -class if:

- (a) $S \in \mathcal{C}$
- (b) $A, B \in \mathcal{S}, A \subset B \implies B \setminus A \in \mathcal{C}$
- (c) $A_n \in \mathcal{C}, A_n \uparrow A \implies A \in \mathcal{C}$

Lemma 1.4 (Dynkin). *If* C *is a* λ -class, A *is a* π -class, $C \supset A$, then $C \supset \sigma(A)$.

Proof. See Durrett. □

Lemma 1.5 (Identification of PMs). μ_1 , μ_2 prob. meaures on (S, S). If $\mu_1(A) = \mu_2(A)$ for all $A \in \mathcal{A}$, \mathcal{A} is a π -class such that $S = \sigma(\mathcal{A})$, then $\mu_1 = \mu_2$ (i.e. $\mu_1(B) = \mu_2(B)$ for all $B \in \mathcal{S}$).

Proof. Consider $C = \{A \in \sigma(A) : \mu_1(A) = \mu_2(A)\}$, so $C \supset A$. To apply Dynkin's, it suffices to check C is a λ -class (clear from definition of PM).

Theorem 1.6 (Existance of Lebesgue measure). $\exists \sigma$ -finite measure λ on $(\mathbb{R}^1, \mathcal{B}^1)$ such that $\lambda([a,b]) = b - a$ for all $a,b \in \mathbb{R}$.

 \exists *PM* λ_1 *on* [0,1], *called the* uniform distribution *on* [0,1], *such that* $\lambda_1([a,b]) = b - a$.

Proof. See Durrett

Proposition 1.7. Given $f^{meas}: S_1 \to S_2$, PM μ on (S_1, S_1) , can define PM $\hat{\mu}$ on S_2 by

$$\hat{\mu}(B) = \mu(f^{-1}(B)) \tag{1.1}$$

for all $B \in \S_2$

Proof. $\hat{\mu}$ is PM because f^{-1} commutes with Boolean operations.

2 Probability measures on \mathbb{R}

Given PM μ on \mathbb{R} , define $F(x) = \mu((-\infty, x])$. F is

- (Increasing) $x_1 < x_2 \implies F(x_1) < F(x_2)$
- (Right-Continuous) $x_n \downarrow x \implies F(x_n) \downarrow F(x)$
- $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x\to-\infty} F(x) = 0$

Definition 2.1. A function satisfying the above is called a *distribution function*.

Theorem 2.2. Given a distribution function F, exists unique probability measure $\mu : F(x) = \mu((-\infty, x])$ for all x.

2.1 Pullback of random variables

(Undergrad) $U \sim \text{Unif}[0,1]$. Then $F^{-1}(U)$ is a RV with distribution function F.

Define *G* (version of F^{-1}) on 0 < y < 1 as

$$G(y) := \sup\{x : F(x) < y\} \tag{2.1}$$

$$=\inf\{x:F(x)\geq y\}\tag{2.2}$$

G is increasing $\implies G$ is measurable.

For each x, $\{y : G(y) \le x\} = \{y : y \le F(x)\}$

Lemma 2.3 (Push-forward). $\exists PM \hat{\mu} \text{ on } \mathbb{R} \text{ such that }$

$$\lambda_1(\underbrace{[0,F(x)]}_{=G^{-1}(-\infty,x]}) = \hat{\mu}((-\infty,x])$$
(2.3)

Proof. Needs right-cts

Coin-tossing space 3

2-element set $B = \{H, T\}$.

Sequence space $B^{\mathbb{N}} = \{\vec{b} = (b_1, b_2, \cdots) : b_i \in B\}.$

Given finite sequence $\pi = (\pi_i)_{i=1}^n$, $\pi_i \in B$, let $A_{\pi} = \{\vec{b} : b_i = \pi_i \mid 1 \le 1 \le n\} \subset B^{\mathbb{N}}$ be all sequences starting out as π . Define σ -field $\mathcal{B}^{\mathbb{N}}$ on $\mathcal{B}^{\mathbb{N}}$ as $\sigma(\text{all } A_{\pi} \text{ such that } \pi \text{ is finite string}).$

Theorem 3.1. $\exists PM \ \mu \ on \ (B^{\mathbb{N}}, \mathcal{B}^{\mathbb{N}}) \ such that \ \mu(A_{\pi}) = \frac{1}{2^{|\pi|}} \quad \forall \pi$

Proof idea. Existance is ensured by theorem 1.6.

Consider the binary expansion of real $x \in (0,1)$, e.g.

$$x = 0.1101101 \cdots {(3.1)}$$

$$= 0.b_1(x)b_2(x)b_3(x)\cdots (3.2)$$

In general, $b_i = 1_{2^i x \text{ is odd}}$. b_i is measurable. Define $g: [0,1] \to B^{\mathbb{N}}$ by $x \mapsto (b_1(x), b_2(x), \cdots)$. g is measurable. Use lemma 2.3 to get PM $\mu: \mathcal{B}^{\infty} \to \mathbb{R}^+$ mapping

$$A_{\pi} \mapsto \lambda \{ x : g(X) \in A_{\pi} \} \tag{3.3}$$

$$= \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \text{ for some } k \text{ if } |\pi| = n$$
 (3.4)

$$=\frac{1}{2^n}\tag{3.5}$$

