Deep Learning

Lecture 1: Introduction

Chris G. Willcocks Durham University

Lecture Overview

- Introduction
- definitions
- examples
- 2 Learning in Nature
- what is learning?
- how does the brain work?
- synaptic plasticity
- Hebbian theory
- A Brief History
- 4 Key Concepts
- recap *T,P* and *E*
- how DL differs to ML

Submodule Aims learning outcomes

The aims of the course are:

- 1. To be able to solve complex ill-defined problems that require deep layers of learning
- 2. To understand learning in nature, and the relevant theory in statistics and geometry
- 3. To ask the right scientific questions given a new task, and use modern deep learning libraries to effectively design, train & test

Introduction deep learning definition

Definition: Deep Learning

"Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm."

> Yann LeCun, Yoshua Bengio & Geoffrey Hinton Deep Learning, 2015, Nature - **Read Online**

Introduction examples

Examples: Images and Vision

Non-photorealistic interpolation:

- Photos video
- Paintings <u>video</u>
- DeepFakes video

End-to-end self-driving:

Wayve - <u>video</u>

Examples: Text and Audio

Examples from text:

- GPT-3 video
- **Input**: The internet
- Output: Any language task

Examples with audio:

- OpenAl Jukebox <u>video</u>
- **Input**: Artist, Genre, Lyrics
- Output: New music

Learning in Nature what is learning?

Environment

Experiences	Actions	Changed Actions
Delicious Cold Warm Burning	Put in mouth Get closer Touch	Eat it again! Don't touch.
	Time	

Learning in Nature definition of learning

Definition: Learning

"We define learning as the transformative process of taking in information that—when internalized and mixed with what we have experienced—changes what we know and builds on what we do. It's based on input, process, and reflection. It is what changes us."

Tony Bingham and Marcia Conner

Learning in Nature how does the brain work?

Architecture of the brain

Right side/left side (hemispheres)

- Frontal lobe
 - executive functions, memory and planning
- Parietal lobe
 - sensation and spatial awareness
- Temporal lobe (banana shape)
 - hearing and language
- Occipital lobe at back
 - Vision from front along optic nerves

Learning in Nature how does the brain work?

Threshold

1,000's of inputs (other neurons, sensory neurons e.g. taste buds from a salt or sugar molecule...)

Restina Potential

- Neurons send out branches called dendrites, and a large output called an axon
- The axon is coated in myelin that helps it conduct electrical impulses
- The places where the nerve cells make their connections with each other is called a synapse

Synapse:

- "Synapse" (from the greek meaning "to clasp together")
- Signals get summed up, and travel to the hillock (Axon neck)
 - If large enough, triggers an action potential travels down axon

1,000's of output targets (e.g. other neurons, muscle cells, gland cells, blood vessels to release hormones...)

Learning in Nature synaptic plasticity

Presynaptic neuron

Postsynaptic neuron

- What's <u>very cool</u> is that with frequent repeated stimulation, the same level of presynaptic stimulation converts into greater postsynaptic potential
 - In other words, as a neuron gets a lot of practice sending signals to a specific target neuron, it gets better at sending those signals (the synapse strength increases)
 - Increased strength that lasts for a long time (from minutes to many months) is called **Long Term** Potentiation (weakening is **Long Term Depression**)
 - As synapses are strengthened and retain strength, we're able to more easily recall previous experiences

Learning in Nature Hebbian theory

- Hebbian theory
 - o If two neurons fire at the same time, the connections between them are strengthened, and thus are more likely to fire again together in the future
 - If two neurons fire in an uncoordinated manner, their connections are weakened and their more likely to act independently in the future
- Updated hebbian hypothesis based on recent findings
 - o If the presynaptic neuron fires within a window of 20ms before the postsynaptic neuron, the synapse will be strengthened
 - However if within a window of 20ms after, the synapse will be weakened

A Brief History artificial neurons

Pitts and McCulloch, 1943

The Artificial Neuron

Synaptic weights

A Brief History backpropagation

Backpropagation, 1970

The backpropagation algorithm (also called the reverse mode of automatic differentiation) was independently discovered by different researchers

Seppo Linnainmaa, 1970 Werbos, 1974 (with neural networks)

Reverse-mode differentiation

Reverse-Mode Differentiation $(\frac{\partial Z}{\partial})$

A Brief History recurrent neural networks and the second Al winter

Rumelhart and Hinton, 1986

Learning representations by back-propagating errors

Nature, 1986. David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

- Backpropagation
- Multiple hidden layers
- Recurrent networks

The second AI winter 1987–1993

A Brief History convolutional neural networks

History of CNNs

Convolutional neural networks were first introduced by Kunihiko Fukushima in 1980

- 1989 Yann Lecun et al., trained a CNN with "Backpropagation Applied to Handwritten Zip Code Recognition"
- 1998 Yann Lecun et al., released LeNet5 "Gradient-based learning applied to document recognition"

Example: LeNet5

```
class LeNet(nn.Module):
 def init (self):
    super(LeNet, self). init ()
   self.conv1 = nn.Conv2d(1, 6, 5, padding=2)
   self.conv2 = nn.Conv2d(6, 16, 5)
   self.fc1 = nn.Linear(16*5*5, 120)
   self.fc2 = nn.Linear(120, 84)
   self.fc3 = nn.Linear(84, 10)
def forward(self, x):
   x = F.max pool2d(F.relu(self.conv1(x)), (2, 2))
   x = F.max pool2d(F.relu(self.conv2(x)), (2, 2))
   x = flatten(x)
   x = F.relu(self.fc1(x))
   x = F.relu(self.fc2(x))
   x = self.fc3(x)
   return x
```

A Brief History the current Al spring - GPUs and large benchmarks

The current AI spring

History of NNs on GPUs

- **2004** first GPU implementation of a neural network
- **2006** first GPU implementation of a CNN (just 4 times faster)
- 2012 AlexNet won state-of-the-art by significant margin with 60 million parameters
- 2015 ImageNet state-of-the-art by a residual network with over 100 layers

A Brief History cloud computing - GANs, transformers, and beyond

Cloud Computing - GANs & GPT-3

Fake faces generated by StyleGAN2

Unsupervised Generative Models

Progressively larger models are being trained on GPU cloud services

- **2014** Ian Goodfellow releases "Generative Adversarial Nets"
- **2017** GoogleBrain releases "Attention is all you need"
- 2019 OpenAl GPT-2 "Language Models are Unsupervised Multitask Learners"
- 2020 OpenAl GPT-3 "Language Models are Few-Shot Learners"

Key Concepts overlap with other areas of machine learning

Machine Learning

Shallow Learning often hand-engineered

Reinforcement Learning

bad gradients dynamic not IID optimising future reward

Deep Learning

multiple layers gradients mostly IID

Unsupervised Learning

Generative Models learning the data distribution

Meta Learning

learning the task distribution

Supervised Learning learning one task

Discriminative Models classifying data regression

Key Concepts components required in deep learning

Shared components with ML

Deep learning shares the main components in machine learning

- experiencing *E* the data distribution p_{data}
- specifying the task T
- optimising a specified performance measure P

NEW priority

Deep learning puts additional emphasis on the following

- tensors and backpropagation
- modeling joint distributions
- statistical manifolds
- designing architectures
- regularising high-capacity networks
- GPU computing
- learning a distribution of tasks
- a deeper theory of generalisation

Take Away Points

Summary

Im summary, deep learning:

- has overlap with many areas of Al
- achieves state-of-the-art in many ill-defined tasks
 - high-dimensional datasets
 - huge datasets (the internet)
 - very parallelizable
- has a lot to do with statistics
- has a bit to do with geometry
- is rapidly growing and evolving