

ADAM: A method for stochastic optimization

Kingma & Ba, 2014 (158k citations)

Mattea Busato, Stefano Mauloni, Daniyar Zakarin

16th November, 2023

Brief Recap on Neural Networks:

The **loss function** is a function of the input data, the network weights and the expected output.

The loss function therefore **defines the task** for which the model is intended and the weights **need to be trained** to fit the task.

Gradient descent variants:

$$\theta_t = \theta_{t-1} - \eta * \frac{\partial L}{\partial \theta_{t-1}}$$
 N data points — Classic Gradient Descent

(N total datapoints)

1 data point

Stochastic Gradient Descent

k data points Mini Batch SGD

Depending on the amount of data, we make a trade-off between the accuracy of the weights' update and the computational time it takes to perform an update.

SGD with Momentum:

Update rule:
$$\begin{cases} \theta_{t} = \theta_{t-1} + v_{t} \\ v_{t} = \rho v_{t-1} - \eta g(\theta_{t-1}) \end{cases} \Rightarrow \theta_{t} = \theta_{t-1} + \rho v_{t-1} - \eta g(\theta_{t-1})$$

We introduce **momentum** ρ :

- 1. It helps accelerate SDG in the relevant direction
- It smooths out the trajectory by mitigating the stochasticity of the motion of θ in parameter space

The choice of learning rate η is made a bit **less crucial** by the fact that the training procedure is adaptive to the particular loss landscape.

AdaGrad (Adaptive Gradient):

Update rule:
$$\theta_{i,t} = \theta_{i,t-1} - \frac{\eta}{\varepsilon + \sqrt{\sum_{j=1}^{t-1} g(\theta_{i,j})^2}} * g(\theta_{i,t-1})$$

To simplify the notation:
$$\begin{cases} \theta_{i,t} = \theta_{i,t-1} - \frac{\eta}{\varepsilon + \sqrt{v_{i,t}}} * g(\theta_{i,t-1}) \\ v_{i,t} = v_{i,t-1} + g(\theta_{i,t-1})^2 \end{cases}$$

AdaGrad adapts the learning rate of each parameter differently as training progresses.

AdaGrad (Adaptive Gradient):

The **idea** is that if a parameter has changed significantly, it must have made a lot of progress towards the target and if it has not changed much, it should keep getting updated with greater emphasis.

RMSProp (Root Mean Square Propagation) Als Neuroscience Student Association

Update rule:
$$\begin{cases} \theta_t = \theta_{t-1} - \frac{\eta}{\varepsilon + \sqrt{v_t}} * g(\theta_{t-1}) \\ v_t = \beta v_{t-1} + (1 - \beta)g(\theta_{t-1})^2 \end{cases}$$

We introduce a **discount parameter** $\beta \in [0, 1]$:

- It controls how much of the previous term v_{t-1} is remembered
- It allows the scaling down and scaling up of the learning rate

We retain the benefits of the **decaying learning** rate without the risk of suffering a permanently decayed rate

What is ADAM?

- ADAM is a stochastic gradient-descent optimization method.
- It consists, as we have seen with other methods, in updating weights based on the value of the gradient computed at each time step.

Characteristics:

- 1. Straightforward to implement
- 2. Computationally efficient
- 3. Uses little memory
- 4. Adapts to the parameters landscape

What is ADAM?

- ADAM is a stochastic gradient-descent optimization method.
- It consists, as we have seen with other methods, in updating weights based on the value of the gradient computed at each time step.

Requirements:

- Stochastic objective function
- Function must be differentiable wrt its parameters θ

Notation

- θ = weights
- v = velocity
- ρ , η = fixed parameters
- $g(\theta) = \nabla_{\theta} f(\theta) = \text{gradient of } f \text{ wrt } \theta$

Update rule of "Classic" SGD with momentum:

$$\begin{cases} \theta_{t} = \theta_{t-1} + v_{t} \\ v_{t} = \rho v_{t-1} - \eta g(\theta_{t-1}) \end{cases} \implies \theta_{t} = \theta_{t-1} + \rho v_{t-1} - \eta g(\theta_{t-1})$$

Additional Notation

- β_1 , β_2 = discount parameters (how much of the previous is remembered)
- *m* = first moment estimate
- v = second moment estimate
- ϵ = numerical stabilizer (avoids divisions by zero)

Update rule of ADAM:

• 1st moment vector:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g(\theta_{t-1})$$

$$2^{\text{nd}} \text{ moment vector:} \qquad \Rightarrow \qquad \theta_t = \theta_{t-1} - \frac{\alpha}{\epsilon + \sqrt{\hat{v}_t}} \widehat{m}_t$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g(\theta_{t-1})^2$$

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g(\theta_{t-1})^2$$

Why \hat{v}_t and \hat{m}_t ?

The algorithm computes **exponential moving** (not just decaying) averages of the gradient (m_t) and the squared gradient (v_t) .

We need to inizialize θ_0 , usually as a vector of zeros. Hence, m_t and v_t will be **biased** towards $0 \in \mathbb{R}^n$ (initialization bias).

 m_t and v_t are biased moment estimates. Bias is stronger:

- At initial timesteps (small t)
- When decay rates are small (β_1 , β_2 close to 1)

To solve this, ADAM introduces **bias-corrected** 1st and 2nd moment estimates:

$$\widehat{m_t} = \frac{m_t}{1 - \beta_1^t} \qquad \widehat{v_t} = \frac{v_t}{1 - \beta_2^t}$$

NB: They are magnification of the standard estimates for small t, while they tend to be equal to the biased as t becomes larger and larger

Algorithm

Good default settings: $\alpha = 0.1$, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$

Require: α , β_1 , β_2 , $f(\theta)$, θ_0

Require: $m_0 \leftarrow 0$, $v_0 \leftarrow 0$, $t \leftarrow 0$

While θ_t not converged do:

$$t \leftarrow t + 1$$

$$g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t = \beta_2 v_t + (1 - \beta_2) g_t^2$$

$$\widehat{m}_t = m_t / (1 - \beta_1^t)$$

$$\widehat{v}_t = v_t / (1 - \beta_2^t)$$

$$\theta_t = \theta_{t-1} - \frac{\alpha \, \widehat{m}_t}{\epsilon + \sqrt{\widehat{v}_t}}$$

Return θ_t

Update Rule: 3 Properties

1: Boundedness

Assuming $\epsilon = 0$, the effective stepsize in parameter space is:

$$|\Delta_t| = \alpha \frac{\widehat{m_t}}{\sqrt{\widehat{v_t}}}$$

It is **bounded** by two upper bounds:
$$\begin{cases} |\Delta_t| \leq \alpha \frac{(1-\beta_1)}{\sqrt{(1-\beta_2)}} & \text{if } (1-\beta_1) > \sqrt{(1-\beta_2)} \\ |\Delta_t| \leq \alpha & \text{if } (1-\beta_1) \leq \sqrt{(1-\beta_2)} \end{cases}$$

Since the first happens only in very peculiar cases (sparse gradients), in general we can assume $|\Delta_t| \lesssim \alpha$

NB: It establishes a <u>trust region</u> outside of which the current gradient does not provide sufficient information. Hence, we never move outside of it:

2: Invariance to rescaling of the gradients

Multiplying g by a factor c will make no difference in the magnitude of the effective stepsize.

Rescaling the gradients g by a factor c:

$$m'_{t} = \beta_{1}m'_{t-1} + (1 - \beta_{1})cg_{t-1} = \beta_{1}cm_{t-1} + (1 - \beta_{1})cg_{t-1} = cm_{t}$$

$$v'_{t} = \beta_{2}v'_{t-1} + (1 - \beta_{2})(cg_{t-1})^{2} = \beta_{2}c^{2}v_{t-1} + (1 - \beta_{2})c^{2}(g_{t-1})^{2} = c^{2}v_{t}$$

$$|\Delta_{t}|' = \alpha \frac{\widehat{m_{t}}'}{\sqrt{\widehat{v_{t}}'}} = \alpha \frac{m_{t}'}{\sqrt{v_{t}'}} \frac{\sqrt{1 - \beta_{2}^{t}}}{1 - \beta_{1}^{t}} = \alpha \frac{cm_{t}}{\sqrt{c^{2}v_{t}}} \frac{\sqrt{1 - \beta_{2}^{t}}}{1 - \beta_{1}^{t}} = \alpha \frac{m_{t}}{\sqrt{v_{t}}} \frac{\sqrt{1 - \beta_{2}^{t}}}{1 - \beta_{1}^{t}} = |\Delta_{t}|$$

3: "Cautiousness"

We define signal-to-noise ratio (SNR) :=
$$\frac{\widehat{m_t}}{\sqrt{\widehat{v_t}}}$$

SNR $\approx 0 \implies \Delta_t \approx 0$

It is desirable, since this means that there is uncertainty whether the true direction of the gradient corresponds to the one of $\widehat{m_t}$.

This usually happens near a point of minimum, so this prevents jumping around it.

Initialization Bias Correction

Derivation of v_t (analogous for m_t)

1: rewrite
$$v_t$$
 as $v_t = (1 - \beta_2) \sum_{i=1}^t \beta_2^{t-i} \cdot g_i^2$

2: algebra:

$$\mathbb{E}(v_t) = \mathbb{E}\left((1 - \beta_2) \sum_{i=1}^t \beta_2^{t-i} \cdot g_i^2\right) = \mathbb{E}(g_t^2)(1 - \beta_2) \sum_{i=1}^t \beta_2^{t-i} + \zeta$$

$$= \mathbb{E}(g_t^2)(1 - \beta_2^t) + \zeta \quad \underline{\text{bias}}$$

 $\zeta = 0$ if the gradient is stationary (namely, constant), otherwise it is still very close to zero since gradients far in the past have small values. **We ignore it**.

Initialization Bias Correction

Example: (with m_t)

$$t = 1$$
:

$$m_1 = \beta_1 m_0 + (1 - \beta_1) g_1$$

We take out $\beta_1 m_0$ and divide by $(1 - \beta_1)$ to get the same expectation as g_1 , This yields:

$$\widehat{m}_1 = \frac{m_1 - \beta_1 m_0}{(1 - \beta_1)} , \qquad \mathbb{E}(\widehat{m}_1) = \mathbb{E}(g_1)$$

But $\beta_1 m_0 = 0$, thus:

$$\widehat{m}_1 = \frac{m_1}{(1 - \beta_1)}$$

Note that in this trivial case $\zeta = 0$.

Does it actually converge?

Yes (proved in the paper), assuming bounded gradients.

Not always in practice. It depends at a great extent to the choice of β_2 .

In general, we take β_2 large enough (very close to 1) to ensure convergence.

Power of Momentum: Acceleration

Power of Momentum: Noise Cancelling

Second moment helps with sparsity

Second moment helps with sparsity

Logistic Regression: MNIST

- Authors use L2-Regularized
 Multi Class Logistic regression
 on MNIST image dataset
- 1 / sqrt(t) learning rate decay was used in agreement with theoretical convergence result

Logistic Regression: IMDB reviews

- IMDB movie reviews were preprocessed to bag-of-words (BoW) feature vectors including 10000 most frequent words
- Adagrad performs well compared to SGD on sparse data and sparse gradients
- Notice blue & pink lines are smoother

Feed-forward Neural Networks

- The Sum of Functions (SFO) method quasi-Newton method that works with minibatches of data (Sohl-Dickstein et al., 2014)

Convolutional Neural Networks

- Second momentum vanishes
- Adam does not require handpicked layer learning rates

ADAM after 2014

- Attention is All you Need, 2017
- U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2020

"ADAM does well where others fail, although not without drawbacks..." © Alex from Stack Exchange

People behind ADAM

Thanks

Mattea Busato, Stefano Mauloni, Daniyar Zakarin