COMPOSITION DE CALCUL NUMERIQUE (1 h 30)

Les multiplications et les divisions qui ne se font pas de tête doivent être effectuées à la règle à calcul. Il est conseillé aux candidats de choisir soigneusement une disposition claire des calculs pour les produits de matrices.

1. Soit, dans un espace vectoriel de dimension 3 sur \mathbb{R} , l'endomorphisme Ω représenté, dans une certaine base (ξ) , par la matrice A:

$$A = \begin{bmatrix} -1,397 & 0,900 & 1,330 \\ 1,900 & -0,141 & -1,425 \\ -1,319 & -0,021 & 1,453 \end{bmatrix}$$
et le vecteur V_1

dont les coordonnées, dans cette base, sont $\begin{cases} 1 \\ -0.876 \\ 0.423 \end{cases} .$

Vérifier, à partir des coordonnées dans ξ du transformé du vecteur V_1 par Ω , que la précision du calcul permet d'accepter V_1 comme vecteur propre de Ω , et donner une valeur approchée de la valeur propre associée λ_1 .

2. Soit la matrice $P = \begin{bmatrix} 1 & 0 & 0 \\ -0.876 & 1 & 0 \\ 0.423 & 0 & 1 \end{bmatrix}$.

Calculer son inverse P^{-1} puis le produit $A \cdot P$ puis le produit $A' = P^{-1}AP$ qui est la matrice de Ω dans une nouvelle base ξ' . Deux des éléments de A' étant nuls, les valeurs propres de Ω sont, outre λ_1 , celles d'une matrice d'ordre 2 qu'on notera B. Ecrire le polynôme caractéristique de B et déterminer ses racines ; soit λ_2 la plus grande des deux (λ_2 est légèrement supérieure à 1).

- 3. Déterminer, en calculant ses deux premières coordonnées α et β dans la base ξ , celui, noté V_2 , des vecteurs propres de Ω associés à λ_2 , dont la troisième coordonnée dans ξ est 1. Pour cela on commencera par déterminer un vecteur colinéaire à V_2 , d'abord par ses coordonées dans ξ' puis par ses coordonnées dans ξ .
- 4. Vérifier le résultat trouvé en calculant

$$A \cdot \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix}$$
 et $\lambda_2 \begin{bmatrix} \alpha \\ \beta \\ 1 \end{bmatrix}$.