Critical Points of Discrete Periodic Operators

Matthew Faust

Joint work with Frank Sottile

Periodic graphs

Definition

A \mathbb{Z}^n **periodic graph** is a locally finite simple infinite graph Γ with finite orbits on both vertices and edges.

Graphene with a highlighted fundamental domain.

Discrete Laplace-Beltrami operator

 a_e : weight of edge e.

g: function on vertices of Γ .

Laplace-Beltrami operator:

$$L_ag(v) = \sum_{w \sim v} a_{(w,v)}(g(v) - g(w))$$

Consider quasi-periodic solutions to $L_a f = \lambda f$.

$$f:V(\Gamma)\to \mathbb{C}[z_1^\pm,\ldots,z_n^\pm]$$
, such that $f(u+a)=z^af(u)$ for $a\in\mathbb{Z}^n$.

$$z^a = z_1^{a_1} \cdots z_n^{a_n}$$

f are determined by values vertices of the fundamental domain.

Example: Graphene

$$Lf(u) = (\alpha + \beta + \gamma)f(u)$$
$$-(\alpha + \beta x^{-1} + \gamma y^{-1})f(v)$$

$$Lf(v) = -(\alpha + \beta x + \gamma y)f(u) + (\alpha + \beta + \gamma)f(v)$$

$$L \begin{pmatrix} f(u) \\ f(v) \end{pmatrix} = \begin{pmatrix} Lf(u) \\ Lf(v) \end{pmatrix}$$
$$L = \begin{pmatrix} \alpha + \beta + \gamma & -\alpha - \beta x^{-1} - \gamma y^{-1} \\ -\alpha - \beta x - \gamma y & \alpha + \beta + \gamma \end{pmatrix}$$

Bloch Variety and Spectral Gaps

Characteristic poly. : $\psi = \det(L - I_2 \lambda)$

Bloch variety : $\psi = 0$

Spectral edge conjecture:

- An extremal value occurs in a single band.
- Extrema are isolated
- Extrema are non-degenerate.

Goal

We wish to work towards this conjecture by counting the critical points of the Bloch variety.

Critical Points of the Bloch Variety

For a general Γ and L_a

BV:
$$\phi = \det(L_a - I_d \lambda) = 0$$

d = # vertices in fundamental domain.

Critical point equations:
$$\Phi := \phi = z_1 \frac{\partial \phi}{\partial z_1} = \cdots = z_n \frac{\partial \phi}{\partial z_n} = 0$$

We can count solutions to Φ with Bernstein's theorem.

Newton Polytope Example

Definition

N(f) is the convex hull of the exponent vectors of f.

$$f = 3x^2 + 5xy^2 + 1 + 2y$$

 f_F : restriction of f to a face.

Let F be the red face

$$f_F = 3x^2 + 5xy^2$$

Running Example

$$\Psi :=
\psi = (\alpha + \beta + \gamma - \lambda)^{2} -
(\alpha + \beta x + \gamma y)(\alpha + \beta x^{-1} + \gamma y^{-1})
(x \frac{\partial \phi}{\partial x}) = \alpha \beta (x - x^{-1})
+ \beta \gamma (xy^{-1} - x^{-1}y)
(y \frac{\partial \phi}{\partial y}) = \alpha \gamma (y - y^{-1})
+ \beta \gamma (x^{-1}y - xy^{-1})$$
The second state of the second secon

$$\Psi_{F} := \psi_{F} = \lambda^{2} + \alpha \beta x + \alpha \gamma y (x \frac{\partial \phi}{\partial x})_{F} = \alpha \beta x (y \frac{\partial \phi}{\partial y})_{F} = \alpha \gamma y$$

Counting Critical Points

$$\phi = \det(L_a - I_d \lambda) \in \mathbb{C}[z_1^{\pm}, \dots, z_n^{\pm}, \lambda]$$

$$\Phi := \phi = z_1 \frac{\partial \phi}{\partial z_1} = \dots = z_n \frac{\partial \phi}{\partial z_n} = 0$$

 $Vol(\cdot) = Euclidean volume.$

Theorem F. S.

 Φ has at most $(n+1)! \cdot \text{Vol}(\mathsf{N}(\phi))$ isolated solutions in $(\mathbb{C}^*)^n \times \mathbb{C}$.

Bound is exact if and only if Φ_F has no solutions for any face F.

Remark: Solutions of Φ_F : singular points of BV at infinity.

Laplace-Beltrami operator over Graphene

Newton polytopes of
$$\psi$$
, $x\frac{\partial \phi}{\partial x}$ and $y\frac{\partial \phi}{\partial y}$

 $3! \cdot Vol(N(\psi)) = 12$ critical points in $(\mathbb{C}^*)^2 \times \mathbb{C}$ (counted with multiplicity)

Laplace-Beltrami operator over Graphene

Newton polytopes of ψ , $x\frac{\partial\phi}{\partial x}$ and $y\frac{\partial\phi}{\partial y}$

$$\Psi_F := \lambda^2 + \alpha \beta x + \alpha \gamma y = \alpha \beta x = \alpha \gamma y = 0$$

 $3! \cdot Vol(N(\psi)) = 12$ critical points in $(\mathbb{C}^*)^2 \times \mathbb{C}$ (counted with multiplicity)

Dense Periodic Graphs

Definition

A \mathbb{Z}^n dense periodic graph Γ has as many edges as possible:

- **1** Fundamental domain, W, of Γ is a complete graph.
- 2 Edge W to $W + g \implies$ all edges possible W to W + g.

Every periodic graph is contained in a dense graph.

Dense periodic graph example

a dense periodic graph with polytope.

Do, Kuchment, and Sottile showed the corresponding Bloch variety has 32 critical points.

General Dense Periodic Graphs

Theorem F. S.

The Bloch variety of a dense periodic graph with generic edge weights has $(n+1)! Vol(N(\phi))$ critical points.

Idea behind proof:

Study the Discriminant of Φ_{F} .

Discriminant = $0 \implies \phi_F$ is singular.

Structure of $N(\phi) \implies$ discriminant is a hypersurface.

Only vanishes for edge weights in a proper algebraic variety.

Thank you for listening.

