『微分積分とその応用 ベクトル解析・微分方程式まで』 宮本 雲平 (著), 共立出版, ISBN: 9784320114807

正誤表

更新日:2025年1月25日

p.7 式 (1.24) の下

誤)
$$\sin(-\pi) = -\sin\theta$$

$$\mathbb{E}$$
) $\sin(-\theta) = -\sin\theta$

p.16【問題 2.3】[1] の問題文

- 誤) パラメータ (媒介変数)
- 正) パラメータ (助変数)

誤)
$$\frac{d}{d\lambda}(e^{\lambda x}) = \lambda e^{\lambda x}$$

E) $\frac{d}{d\lambda}e^{\lambda x} = \lambda e^{\lambda x}$

$$\mathbb{E}) \frac{d}{d\lambda} e^{\lambda x} = \lambda e^{\lambda x}$$

p.38

誤)
$$[F(x)]_a^b := F(b) - F(a)$$
 という記号を用いると

正)
$$[F(x)]_a^b := F(b) - F(a)$$
 という記法を用いると

p.42【問題 7.3】

誤)次の積分方程式を満たす
$$f(x)$$
 を求めよ. [1] $\int_0^x (x-t)f(t)dt = (2x-1)e^{2x}$

正)次の積分方程式を満たす関数
$$f(x)$$
 と定数 C を求めよ. [1] $\int_0^x (x-t)f(t)dt = (2x-1)e^{2x} + C$

p.51【問題 9.5】[2] の問題文

誤)
$$\int \boldsymbol{F} \cdot \boldsymbol{v} dt$$
, $\int_{t_1}^{t_2} \boldsymbol{F} \cdot \boldsymbol{v} dt$

$$\mathbb{E}) \int \boldsymbol{F} \cdot \boldsymbol{v} dt, \int_{t_1}^{t_2} \boldsymbol{F} \cdot \boldsymbol{v} dt$$

p.58

誤) を繰り返すと、未定係数が
$$c_k = \frac{1}{k!} f^{(k)}(a)$$

正) を繰り返すと、未定係数を
$$c_k = \frac{1}{k!} f^{(k)}(a)$$

p.74【例題 13.2】の補足

p.75【例題 13.4】[1] の問題文

p.75【例題 13.4】[3] の問題文

$$H(t) = Q'(t) \quad Q(0) = 0.$$

$$\mathbf{E}$$
) $I(t) = Q'(t), \quad Q(0) = 0.$

p.76 式 (13.12)

誤)
$$m\frac{d^2 \boldsymbol{r}(t)}{dt^2} = \boldsymbol{F}(\boldsymbol{r}(t),t)$$

$$\mathbb{E}) \ m \frac{d^2 \boldsymbol{r}(t)}{dt^2} = \boldsymbol{F}$$

p.83, 1 行目

正)関数 y(x) に関する次の非斉次線形微分方程式を考える.

p.84【例題 15.2】の問題文

$$y'' - y - 2y = 4x$$

$$\mathbb{E}$$
) $y'' - y' - 2y = 4x$

p.86【例題 15.3】[2] の問題文

誤) $X(\omega)$ の最大値を求めよ

正) $X(\omega)$ が、ある ω (> 0) で最大値をとる条件を求めよ

p.109【例題 19.3】[3] の問題文

$$H(x,y) = x^3 - 3xy + y^3$$

$$\mathbb{E}$$
) $h(x,y) = x^3 - 6xy + y^3$

p.109【例題 19.3】[3] の【解】

誤)
$$h(0,0) = -8$$
 は極小値である

正)
$$h(2,2) = -8$$
 は極小値である

p.110【例題 19.4】[2] の【解】

誤)極小値である.

正)極小値である.

p.113【例題 20.1】の問題文

誤)
$$\phi(x,y) = x^2 + y^2 - 1$$
 で与えられる関数 $y(x)$

正)
$$\phi(x,y) = x^2 + y^2 - 1 = 0$$
 で与えられる関数 $y(x)$

p.113【例題 20.2】の問題文

誤)
$$\phi(x,y) = x^2 + y^2 - 1$$
 で与えられる関数 $y(x)$

正)
$$\phi(x,y) = x^2 + y^2 - 1 = 0$$
 で与えられる関数 $y(x)$

p.114

誤)解けなくても極値の候補を見つける方法

正)解けなくても極値の候補を見つけられるような方法

p.116【問題 20.4】の問題文

$$:= \frac{\phi_{xx}(a,b,c)\phi_{yy}(a,b,c) - [\phi_{xy}(a,b,c)]^2}{[\phi_{z}(a,b,c)]^2} \quad A := \cdots$$

p.121【問題 21.3】の問題文

誤) 2 次元空間において $\varphi(r) = -$ 定 で与えられる

正) 2 次元空間において $\varphi(\mathbf{r}) = (-定)$ で与えられる

p.133

誤) $\cdots = T[\sin \theta(t, x + \Delta x) - \sin \theta(t, x)]$

 \mathbb{E}) $\cdots = T[\sin \theta(x + \Delta x, t) - \sin \theta(x, t)]$

p.152 例題 27.2 の問題

 \mathbb{H}) $V_2 = \{x^2 + y^2 + z^2 \le a^2, \ x \ge 0, \ y \ge 0, \ z \ge 0\}$

 \mathbb{E}) $V_2 = \{(x, y, z) : x^2 + y^2 + z^2 \le a^2, x \ge 0, y \ge 0, z \ge 0\}$

p.155 図 27.3(b) のキャプション

 $_{\rm H}$) z 軸を含み $_{xy}$ 平面とのなす角が

正) z 軸を含み zx 平面とのなす角が

p.173【問題 30.4】[2] の問題文

正)ただし、磁束密度 $\boldsymbol{B}(\boldsymbol{r})$ は導線断面の

p.189【問題 7.3】[1] の解答

正)(解答の二行目に挿入)与式に x=0 を代入すると,C=1 を得る.

p.200【例題 13.2】[1] の解答

$$(\frac{1}{y-2} - \frac{1}{y-1})dx = \cdots$$

$$\stackrel{\square}{\text{IE}}) \int (\frac{1}{y-2} - \frac{1}{y-1}) dy = \cdots$$

p.206【例題 15.3】[2] の解答

誤) $X'(\omega) = 0$ となる ω は存在せず

正) $X'(\omega) = 0$ となる正の ω は存在せず

p.206【例題 15.3】[2] の解答

誤) とき
$$\omega = \sqrt{\omega_0^2 - 2\gamma^2}$$
 で $X'(\omega) = 0$ となり

正)とき
$$\omega = \sqrt{\omega_0^2 - 2\gamma^2}$$
 (> 0) で $X'(\omega) = 0$ となり

p.251 表 32.9

追加) 記号 $[F(x)]_a^b$, 呼称・意味 F(b) - F(a), 参照 🔊 p.38