What are we doing here?

Paul Blasi Jaysen Spurlock

April 27, 2015

Table of Contents

roject erver

1 Project

2 Server

3 Client

Project

Server

Conway's game of life...

Project Server

Conway's game of life... ON STEROIDS!!!

Project Server

Project Server

We wanted to make a semi-realistic guided evolutionary algorithm that interacted with other organisms (guided by other players)

Cellular Automata

Project Server

- Cellular Automata
- Rules based on organism traits

Project Server

- Cellular Automata
- Rules based on organism traits
- Traits evolved with focus from user

Project Server

- Cellular Automata
- Rules based on organism traits
- Traits evolved with focus from user
- Victory condition: 80% biomass on the island

Project Server

Project Server

There are four pairs of traits that are mutually exclusive,

 ${\sf Reproduction} \;\; \Longleftrightarrow \;\; {\sf Lifespan}$

Project Server

```
\begin{array}{ccc} \mathsf{Reproduction} & \Longleftrightarrow & \mathsf{Lifespan} \\ \mathsf{Strength} & \Longleftrightarrow & \mathsf{Mobility} \end{array}
```

Project Server

```
\begin{array}{ccc} \mathsf{Reproduction} & \Longleftrightarrow & \mathsf{Lifespan} \\ \mathsf{Strength} & \Longleftrightarrow & \mathsf{Mobility} \\ \mathsf{Prey} & \Longleftrightarrow & \mathsf{Predator} \end{array}
```

Project Server

```
\begin{array}{cccc} \mathsf{Reproduction} & \Longleftrightarrow & \mathsf{Lifespan} \\ \mathsf{Strength} & \Longleftrightarrow & \mathsf{Mobility} \\ \mathsf{Prey} & \Longleftrightarrow & \mathsf{Predator} \\ \mathsf{Herd} & \Longleftrightarrow & \mathsf{Solitary} \end{array}
```

Project
Server

There are four pairs of traits that are mutually exclusive,

```
\begin{array}{cccc} \text{Reproduction} & \Longleftrightarrow & \text{Lifespan} \\ \text{Strength} & \Longleftrightarrow & \text{Mobility} \\ \text{Prey} & \Longleftrightarrow & \text{Predator} \\ \text{Herd} & \Longleftrightarrow & \text{Solitary} \end{array}
```

and one simple trait, Senses, which determines the chances of one organism detecting another.

Project Server

There are four pairs of traits that are mutually exclusive,

```
\begin{array}{cccc} \mathsf{Reproduction} & \Longleftrightarrow & \mathsf{Lifespan} \\ \mathsf{Strength} & \Longleftrightarrow & \mathsf{Mobility} \\ \mathsf{Prey} & \Longleftrightarrow & \mathsf{Predator} \\ \mathsf{Herd} & \Longleftrightarrow & \mathsf{Solitary} \end{array}
```

and one simple trait, Senses, which determines the chances of one organism detecting another.

These traits are evolved on the client and used in the CA rules on the server.

Server

- Representation
- Movement
- Sensing
- Competition

Project Server

List of players

- List of players
- Array for valid map positions
 - Borrowing some ideas from fractal landscapes...

Server Climate

- List of players
- Array for valid map positions
 - Borrowing some ideas from fractal landscapes...
- Array for pheromone values
 - Commandeering some ideas from ACO...

- List of players
- Array for valid map positions
 - Borrowing some ideas from fractal landscapes...
- Array for pheromone values
 - Commandeering some ideas from ACO...
- Array for critter positions
 - Stealing a concept from CA...
 - For speed's sake, we also keep a list of positions with each player.

Movement

- Pick Square
 - Odds based on Herd/Solitary v. species pheromones, as well as $Prey/Predator\ v.$ other pheromones

Movement

- Pick Square
 - Odds based on Herd/Solitary v. species pheromones, as well as Prey/Predator v. other pheromones
- Move Critter
 - Update various positions

Movement

- Pick Square
 - Odds based on Herd/Solitary v. species pheromones, as well as Prey/Predator v. other pheromones
- Move Critter
 - Update various positions
- Update Pheromones
 - Shift value right 1, OR with 128

Sensing

- Determine Predator
 - Higher Predatory rating wins this one; if they're matched, we pick at random.

Sensing

- Determine Predator
 - Higher Predatory rating wins this one; if they're matched, we pick at random.
- Determine sensitivity
 - Perform a "luck check" against the predator's senses to determine whether an encounter happens.

- Determine Predator
 - Higher Predatory rating wins this one; if they're matched, we pick at random.
- Determine sensitivity
 - Perform a "luck check" against the predator's senses to determine whether an encounter happens.
- Determine wariness
 - Another luck check, to see whether the prey reacts first.

Competition

- Combat style (Speed or Strength)
 - Determined by winner of second luck check

Competition

- Combat style (Speed or Strength)
 - Determined by winner of second luck check
- TO THE DEATH!
 - The loser of the final luck check dies.

Competition

- Combat style (Speed or Strength)
 - Determined by winner of second luck check
- TO THE DEATH!
 - The loser of the final luck check dies.
 - We assume the prey are REALLY good at counter-attacks.

Client

roject

Client

- Evolution
- GUI

Projec Server Client

Variable population

- Variable population
- Organism traits evolved

- Variable population
- Organism traits evolved
- Lifespan and reproduction rate defined by traits

- Variable population
- Organism traits evolved
- Lifespan and reproduction rate defined by traits
- Fitness function defined by player via "Focus Points"

rojec

Client

Tkinter basics

Project Server Client

Tkinter basics

Comes with most vanilla Python distributions

Project Server Client

Tkinter basics

- Comes with most vanilla Python distributions
- Very basic GUI construction

Project Server Client

Tkinter basics

- Comes with most vanilla Python distributions
- Very basic GUI construction
- Allows for creation of images

