## Corso di Laurea in Ingegneria Biomedica - Canale 1 (Prof. G. Naletto) Seconda Prova in Itinere di Fisica Generale 1 - Padova, 10 giugno 2025

| Cognome | Nome | Matricola |
|---------|------|-----------|
|         |      |           |

### Problema 1



Un blocchetto B e un disco omogeneo D di raggio R, entrambi di massa m, sono appoggiati su un piano scabro inclinato rispetto all'orizzontale. I centri dei due corpi sono collegati da un filo inestensibile e di massa trascurabile teso parallelo al piano inclinato; il piano del disco è verticale e il suo asse è perpendicolare al filo teso (nota che il filo non impedisce il moto di rotazione del disco attorno al suo asse, vedi figura). Inizialmente il sistema è fermo. Determinare:

a) il modulo  $f_{as,D}$  della forza di attrito statico tra piano e disco.

Siano dati il coefficiente di attrito dinamico tra piano e blocchetto,  $\mu_{d,B} = 0.65$ , e l'angolo di inclinazione del piano inclinato rispetto all'orizzontale,  $\theta = 23^{\circ}$ . Il sistema si mette in movimento partendo da fermo con il disco che rotola senza strisciare. Determinare:

- il modulo a dell'accelerazione con cui scende il centro di massa del sistema;
- il minimo valore  $\mu_{s,D,min}$  del coefficiente di attrito statico tra piano e D per avere moto di puro rotolamento. c)
- (facoltativo) posto m = 2.5 kg e R = 0.1 m, l'energia cinetica del sistema dopo che il disco ha compiuto un giro.

### Problema 2



Un cilindro adiabatico di sezione  $S = 0.14 \text{ m}^2$  e altezza H = 0.3 m con asse verticale ha la base inferiore chiusa da un pistone adiabatico a tenuta di massa trascurabile libero di muoversi senza attrito. Il cilindro è immerso nell'aria alla pressione  $p_{amb} = 10^5$  Pa; al suo interno c'è un gas ideale biatomico nello stato di equilibrio A, alla temperatura  $T_A = 295$  K, uguale alla temperatura ambiente  $(T_{amb} = T_A)$  e il pistone è al margine inferiore del cilindro (vedi figura). Il cilindro viene lentamente immerso fino alla profondità h=3 m in una vasca piena di acqua ( $\rho_{H2O}=10^3$ kg/m³) in equilibrio con l'ambiente ( $T_{amb}$  e  $p_{amb}$  alla superficie) finché il gas si trova nello stato

B. A questo punto si rimuove la copertura adiabatica del cilindro e il gas si porta nello stato di equilibrio C. A questo punto la vasca viene lentamente svuotata e il gas ritorna nello stato iniziale A. Determinare:

- a) il volume  $V_B$  del gas nello stato B;
- b) il lavoro  $W_{gas}$  fatto dal gas nel ciclo;
- la variazione di entropia  $\Delta S_{U,ciclo}$  dell'universo nel ciclo.

## Problema 3

Una macchina termica di Carnot a gas, di rendimento  $\eta_C = 0.19$  funziona tra una massa di acqua e vapor acqueo alla temperatura  $T_2 = 373.15 \,\mathrm{K}$  e un serbatoio alla temperatura  $T_1 < T_2$ . Nell'espansione isoterma, la macchina porta n=5 moli di gas dal volume iniziale  $V_A=0.15~\mathrm{m}^3$  al volume finale  $V_B=0.3~\mathrm{m}^3$ . Determinare:

a) il calore  $Q_1$  scambiato dalla macchina con il serbatoio alla temperatura  $T_1$ .

Tra gli stessi serbatoi opera anche una seconda macchina termica, sincrona alla macchina di Carnot, il cui rendimento è  $\eta_M = 0.11$  e che cede un calore  $Q'_1 = -1.3 \cdot 10^4$  J al serbatoio freddo. Determinare:

- b) la massa  $m_v$  di vapore che condensa ad ogni ciclo delle due macchine sincrone;
- c) la variazione  $\Delta S_{II}$  di entropia dell'universo in un ciclo delle due macchine.

Quando tutto il vapore nel serbatoio caldo è condensato, si ferma la macchina irreversibile. Sapendo che la massa d'acqua rimasta nel serbatoio alla temperatura  $T_2$  è pari a  $m_{H20} = 0.3$  kg, determinare:

d) il calore  $Q_1^*$  ceduto dalla macchina di Carnot al serbatoio freddo da quando si è fermata la macchina

irreversibile a quando la temperatura dell'acqua nel serbatoio è diventata  $T_2^*=360~\mathrm{K}$  [NB calore latente di evaporazione dell'acqua:  $\lambda_{\nu}=2.26\cdot 10^6~\mathrm{J/kg}$ ; calore specifico dell'acqua:  $c_{H20}=4187$ J/kgK]

# Soluzioni

### Problema 1

Sul disco e sul blocchetto agiscono 4 forze: forza peso  $m\vec{g}$ , tensione del filo  $\vec{T}$ , forze di attrito statico, rispettivamente  $\vec{f}_{as,D}$  e  $\vec{f}_{as,B}$ , e reazione normale  $\vec{N}$ . Quando il sistema si mette in movimento le tensioni cambiano così come le forze di attrito, che diventano rispettivamente  $\overrightarrow{T'}$ ,  $\overrightarrow{f'}_{as,D}$ , e  $\overrightarrow{f}_{ad,B}$ . Le equazioni da usare per i primi tre punti sono quelle del moto del centro di massa e l'equazione dei momenti; per quest'ultima si può usare indifferentemente come polo il centro O del disco o il punto C di contatto del disco con il piano. Nel seguito sono mostrate le soluzioni più rapide; nella pagina seguente quelle usando l'altro polo.

- Posto come polo il centro O del disco, si ha:  $M_0 = R f_{as,D} = 0 \implies f_{as,D} = 0$
- Posto come polo il punto di contatto C del disco con il piano, si ha:

$$\begin{cases} m\vec{g} + \overrightarrow{T'}_{BD} + \vec{f}_{ad,B} + \vec{N}_B = m\vec{a} \\ \vec{R} \times m\vec{g} + \vec{R} \times \overrightarrow{T'} = I_{z,C}\vec{\alpha} \end{cases} \Rightarrow \begin{cases} mg\sin\theta + T' - \mu_{d,B}mg\cos\theta = ma \\ Rmg\sin\theta - RT' = \left(\frac{1}{2}mR^2 + mR^2\right)\frac{a}{R} \end{cases} \Rightarrow \\ \Rightarrow \begin{cases} mg\sin\theta + T' - \mu_{d,B}mg\cos\theta = ma \\ mg\sin\theta - T' = \frac{3}{2}ma \end{cases} \Rightarrow a = \frac{2}{5}g(2\sin\theta - \mu_{d,B}\cos\theta) = 0.72 \text{ m/s}^2 \end{cases}$$

$$Rf'_{as,D} = I_{z,O}\alpha = \frac{1}{2}mR^2\frac{a}{R} \implies f'_{as,D} = \frac{1}{2}ma \le \mu_{s,D}N_D = \mu_{s,D}mg\cos\theta \implies \mu_{s,D} \ge \frac{a}{2g\cos\theta} = 0.04$$

d) 
$$v^2 = 2a\ell = 2a \cdot 2\pi R$$
;  $E_k = E_{k,B} + E_{k,D} = \frac{1}{2}mv^2 + \frac{1}{2}mv^2 + \frac{1}{2}I_{z,O}\omega^2 = mv^2 + \frac{1}{4}mv^2 = \frac{5}{4}mv^2 = 5m\alpha\pi R = 2.82 \text{ J}$ 

oppure 
$$W_{nc} = \Delta E_k + \Delta E_p \implies E_k = W_{nc} - \Delta E_p = -\mu_{d,B} mg \cos \theta \cdot 2\pi R + 2mg \cdot 2\pi R \sin \theta$$

### Problema 2

AB è adiabatica reversibile; BC è isobara irreversibile; CA è isoterma reversibile.



a) 
$$V_A = SH = 0.042 \text{ m}^3$$
;  $n = \frac{p_A V_A}{R T_A} = 1.71$ ;  $p_B = p_A + \rho_{H2O} g h = 1.29 \cdot 10^5 \text{ Pa}$ ;  $p_A V_A^{\gamma} = p_B V_B^{\gamma} \implies V_B = V_A \left(\frac{p_A}{p_B}\right)^{1/\gamma} = 0.0349 \text{ m}^3$ ;  $T_B = \frac{p_B V_B}{nR} = 317.6 \text{ K}$ 

$$\overline{V}$$
 b)  $W_{gas} = Q_{gas} = Q_{BC} + Q_{CA} = nc_P(T_C - T_B) + nRT_C \ln \frac{p_C}{p_A} = -40.9 \text{ J}$ 

c) 
$$\Delta S_{U,ciclo} = \Delta S_{amb,ciclo} = \Delta S_{amb,BC} + \Delta S_{amb,CA} = -\frac{nc_p(T_C - T_B)}{T_{amb}} - nR \ln\left(\frac{p_C}{p_A}\right) = 0.14 \text{ J/K}$$

oppure 
$$\Delta S_{U,ciclo} = \Delta S_{U,BC} = \Delta S_{gas,BC} + \Delta S_{amb,BC} = nc_p \ln \left(\frac{T_C}{T_B}\right) - \frac{nc_p(T_C - T_B)}{T_{amb}}$$

### Problema 3

a) 
$$Q_2 = nRT_2 \ln \left(\frac{V_B}{V_A}\right) = 10752 \text{ J}; \quad \eta_C = 1 + \frac{Q_1}{Q_2} \quad \Rightarrow \quad Q_1 = Q_2(\eta_C - 1) = -8709 \text{ J}$$

b) 
$$Q'_1 + Q'_2 = W' = \eta_M Q'_2 \implies Q'_2 = \frac{Q'_1}{\eta_M - 1} = 14607 \text{ J}; \quad m_v \lambda_v = \left| -Q_2 - Q'_2 \right| \implies m_v = \frac{Q_2 + Q'_2}{\lambda_v} = 0.011 \text{ kg}$$

c) 
$$\eta_C = 1 - \frac{T_1}{T_2} \Rightarrow T_1 = T_2(1 - \eta_C) = 302.3 \text{ K}; \quad \Delta S_U = \Delta S_{amb,M} = \Delta S_{U,M} = \frac{-Q'_1}{T_1} + \frac{-Q'_2}{T_2} = 3.87 \text{ J/K}$$

d) 
$$\Delta S_U^* = \Delta S_{amb}^* = \frac{-Q_1^*}{T_1} + m_{H2O}c_{H2O} \ln \frac{T_2^*}{T_2} = 0 \implies Q_1^* = T_1 m_{H2O}c_{H2O} \ln \frac{T_2^*}{T_2} = -13621 \text{ J}$$

## Problema 1 (soluzioni alternative)

Considerando come polo il punto di contatto C del disco con il piano, si ha:

$$\begin{cases} \vec{R} \times m\vec{g} + \vec{R} \times \vec{T} = 0 \\ m\vec{g} + \vec{T} + \vec{f}_{as,D} + \vec{N} = 0 \end{cases} \Rightarrow \begin{cases} mg \sin\theta \, R - RT = 0 \\ mg \sin\theta - T - f_{as,D} = ma \end{cases} \Rightarrow \begin{cases} T = mg \sin\theta \\ f_{as,D} = 0 \end{cases}$$

b) Posto come polo il centro O del disco, si ha:

Posto come polo il centro O del disco, si ha: 
$$\begin{cases} m\vec{g} + \overrightarrow{T'}_{BD} + \vec{f}_{ad,B} + \vec{N}_B = m\vec{a} \\ m\vec{g} + \overrightarrow{T'}_{DB} + \vec{f'}_{as,D} + \vec{N}_B = m\vec{a} \end{cases} \Rightarrow \begin{cases} mg\sin\theta + T' - \mu_{d,B}mg\cos\theta = ma \\ mg\sin\theta - T' - f'_{as,D} = ma \end{cases} \Rightarrow \\ Rf'_{as,D} = \frac{1}{2}mR^2\frac{a}{R} \end{cases} \Rightarrow \begin{cases} 2mg\sin\theta - \mu_{d,B}mg\cos\theta - f'_{as,D} = 2ma \\ f'_{as,D} = \frac{1}{2}ma \end{cases} \Rightarrow a = \frac{2}{5}g(2\sin\theta - \mu_{d,B}\cos\theta)$$

Posto come polo il il punto di contatto C del disco con il piano, si ha:

$$\begin{cases} m\vec{g} + \overrightarrow{T'}_{DB} + \overrightarrow{f'}_{as,D} + \vec{N}_B = m\vec{a} \\ \vec{R} \times m\vec{g} + \vec{R} \times \vec{T} = I_{z,C}\vec{\alpha} \end{cases} \Rightarrow \begin{cases} mg\sin\theta - T' - f'_{as,D} = ma \\ Rmg\sin\theta - RT' = \left(\frac{1}{2}mR^2 + mR^2\right)\frac{a}{R} \end{cases}$$

$$\Rightarrow \begin{cases} mg\sin\theta - T' - f'_{as,D} = ma \\ mg\sin\theta - T' - f'_{as,D} = ma \end{cases} \Rightarrow f'_{as,D} = \frac{1}{2}ma \le \mu_{s,D}N_D = \mu_{s,D}mg\cos\theta \Rightarrow \mu_{s,D} \ge \frac{a}{2g\cos\theta} \end{cases}$$