ARM 기초

유튜브 주소 : https://youtu.be/3PiW4HeLSG8

HANSUNG UNIVERSITY CryptoCraft LAB

ARM 레지스터

Cortex-M3

- ARM: Advanced RISC Machine
 - 임베디드 기기에 많이 사용되는 RISC 프로세서
 - RISC : Reduced Instruction Set Computer(축소 명령어 집합 컴퓨터)
 - CPU 명령어의 개수를 줄여 명령어 해석시간을 줄임으로써 개별 명령어의 실행속도를 빠르게 한 컴퓨터
 - 사물인터넷,안드로이드, 랩탑, 인터넷 모뎀, 닌텐도 등에 사용되는 CPU 체계
 - 일반적인 데스크탑 PC amd, intel cpu 명령체계로 이루어짐(CISC)
 - e.g. x86(32비트), x64(64비트), AMD64(64비트)
 - ARM용 기기 RISC 명령체계로 이루어짐

- RISC 특징
- 고정 길이의 명령어(16 or 32 bit)를 사용하여 더욱 빠르게 해석할 수 있다
- 간단하고 적은 종류의 명령어와 주소 지정 모드를 사용한다.
- 명령어가 하드웨어적이므로 호환성이 낮다.
- 모든 연산은 하나의 클럭으로 실행되므로 파이프라인을 기다리게 하지 않는다.
- 많은 수의 범용 레지스터(GPR)를 사용하여 메모리 접근을 줄인다.
- CISC, RISC 비교

	CISC	RISC
명령어의 수	많다	적다
레지스터	적다	많다
처리속도	느리다	빠르다
설계(내부구조)	복잡하다	간단하다
전력소모	많다	적다

- ARM 프로세서 종류 크게 3가지로 분류
- ARM Cortex-A (Application)
 - 복잡한 OS 및 사용자 응용 프로그램에 사용하는 응용 프로그램 프로세서 계열
- ARM Cortex-R (Real-Time)
 - 실시간 시스템을 위한 임베디드 프로세서 계열
- ARM Cortex-M (Microcontroller)
 - 저가형 응용프로그램에 최적화된 임베디드 프로세서 계열

- ARM 구조(ARM7TDMI Processor Block Diagram)
- 1) 메모리에서 명령어 fetch 후 pipeline에 집어 넣음
- 2) pipeline의 명령어를 control unit에서 해독
- 3) 해독된 명령어를 ALU에서 실행
- 4) 메모리 접근 명령어일 경우 메모리 접근할 주소 계산
- 5) 결과를 다시 레지스터에 write

ARM 레지스터

• ARM 동작 모드 : 어떤 권한을 지니고 어떤 동작을 수행하는지 나타냄

모드	권한	설명
User	Un-Privileged	일반적인 사용자 프로그램이 실행되는 모드
FIQ	Previleged	빠른 인터럽트 처리 모드 User 모드와 SVC 모드보다 높은 우선순위로 인터럽트 처리
IRQ		일반적인 인터럽트 처리 모드
Supervisor (SVC)		OS의 커널모드에서 사용되는 모드 시스템 리소스(I/O, memory, register) 관리 권한을 지님
Abort		인터럽트나 예외 처리 중 메모리와 관련된 오류 발생 시 해당 오류를 해결하거나 처리 하기 위한 모드
Undefined		일반적으로 정의되지 않은 명령어를 처리하기 위한 모드
System		User 모드와 동일한 용도이나 프로세서가 모든 코드에 대해 접근 권한을 지니기 때문에 보안성이 낮음

ARM 레지스터

- 전통적인 ARM(ARM7, ARM9) 레지스터 구조
- 37개의 32 bit 레지스터 구성
- 동작모드 별 사용가능한 레지스터가 다름
- R0 ~ R15 : 범용 레지스터
- R13, R14, R15 : 특별한 용도로 사용
- R13: Stack Pointer
- R14: Link Register
- R15 : Program Counter
- CPSR: 현재 status를 저장하는 레지스터
- Banked register : 각 모드 별 따로 존재(20개)

ARM State Program Status Registers

ARM 레지스터

- CPSR 레지스터 구조
- N : 음수 플래그
- Z : 제로 플래그
- C : 캐리 플래그
- V : 오버플로우 플래그
- Q : 포화 플래그
- J: 자바 실행 가능 여부 표시

- 31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 3 2 1 0 N Z C V Q J Reserved, RAZ/SBZP GE[3:0] IT[7:2] E A I F T M[4:0] Condition flags IT[1:0] E : 엔디언값제어 Mask bits
 - A : Asynchronous abort 비활성
 - I : IRQ 비활성
 - F : FIQ 비활성
 - T: Thumb or ARM 상태 표시
- GE : general-purpose register Extend 필드
- M4~M0 : 현재 프로세서 모드 표시
- Res : 확장을 위해 예약된 비트
- IT : If-Then 문의 조건 코드를 저장하는 데 사용

Cortex-M3

• 32 bit ARM 프로세서

• ARMv7-M 아키텍처 기반

- Harvard architecture
 - 프로그램 코드와 데이터를 별도의 메모리에 저장하는 구조
- Thumb-2 명령어만 사용 가능
 - Thumb-2 : ARM과 기존의 Thumb을 섞어서 쓸 수 있는 명령 체계
- Pipeline Branch Speculation
 - Fetch Decode Execute + 분기 예측(Branch Speculation)을 수행

Cortex-M3 아키텍처

- ETM (Embedded Trace Macrocell)
 - Trace 정보를 수집하는 디버깅 방식
- FPB (Flash Patch and Breakpoint)
 - Flash Patch 바이너리 코드를 수정하는 것
- DWT (Data Watchpoint and Trace)
 - 프로세서가 접근할때 선택적 데이터 트레이스를 가능하게 해주는 컴포넌트
 - 프로파일링 트레이스: 다양한 동작에서 CPU가 사용하는 클럭 수 포착
 - 이벤트 트레이스 : 처리한 예외의 이력 및 기간 제공
- DAP (Debug Access Port)
 - 외부의 JTAG 디버거와의 인터페이스를 담당하는 컴포넌트

Cortex-M3 레지스터

- R0~R12 : 범용 레지스터
 - R0~R7 : 모든 명령어에서 접근 가능
 - R8~R12 : 32bit 명령어만 접근 가능
- R13: Stack Pointer
- R14: Link Register
- R15 : Program Counter
- PSR: Program Status Register
 - APSR, IPSR, EPSR로 구성됨
 - IEPSR(EPSR & IPSR) : read only
 - IAPSR(APSR & IPSR) : read-write
 - EAPSR(APSR & EPSR) : read-write

Cortex-M3 레지스터

- APSR : 프로그램 상태 레지스터
- IPSR : 인터럽트 상태 레지스터
- EPSR : 확장 프로그램 상태 레지스터
- PRIMASK : 프로그램 예외 마스크
- FAULTMASK : 예외 마스크
- BASEPRI : 베이스 우선 순위
- CONTROL : 컨트롤 레지스터
 - 스레드 모드에서 MSP와 PSP 선택에 사용
- MSP : 메인 스택 포인터
- PSP : 프로세스 스택 포인터

Q&A