1 Algebra Relationala

1.1 Scrierea unor expresii in algebra relationale

Problema~1: Sa se gaseasca numele si prenumele studentilor care au o nota de 10.

Problema 2: Sa se gaseasca obiectele la care nu s-a pus nici o nota.

 ${\it Problema~3:}$ Sa se gaseasca numele tuturor persoanelor ce trec pragul facultatii.

 ${\it Problema~4:}$ Sa se gaseasca numele tuturor persoanelor ce trec pragul facultatii.

Alte probleme:

- Aflati numele studentilor care au bursa.
- Aflati numele studentilor care au luat nota 10 la materia BD.
- Aflati numele profesorilor care au acelasi prenume cu macar un student.
- Aflati cuplurile de studenti care ar putea fi colegi de banca (sunt in acelasi an si in aceeasi grupa).

Problema 5: Fie relatiile urmatoare:

	Λ	В	С	D		\mathbf{C}	D	\mathbf{E}
r:					r' :	1	1	0
	U		1	Ţ		1	1	1
	0	1	1	0		0	0	
	1	0	0	1		0		_
	1		1	1		0	1	I
					-	0	1	0

Calculati:

- $\pi_{(B,C)}[r]$,
- $\pi_{(C,D)}[r'] \pi_{(C,D)}[r]$
- $\pi_{(A,C)}[r] \times \pi_{(C,D)}[r']$
- $r \bowtie r'$ (join natural),
- $\pi_{(A,C)}[r] \bowtie r'$
- $r \underset{\theta}{\bowtie} r'$, unde $\theta = (A = C) \land (B < D)$.

Problema~6: Fie r peste multimea de atribute U si r' construita peste multimea de atribute U' doua relatii. Scrieti o expresie care sa aiba ca valoare o relatie ce contine acele linii din r ce nu sunt utilizate pentru crearea relatiei $r\bowtie r'$.

2 Dependente functionale

Problema 1: Fie relatia:

	A	В	\mathbf{C}	D	\mathbf{E}
	0	0	1	1	1
r:	0	1	1	0	1
	1	0	0	1	0
	1	0	1	1	0

Sa se gaseasca macar doua dependente functionale netriviale satisfacute de relatia r (prin netrivial intelegem ca in partea stanga a relatiei sunt macar doua elemente egale si ca nici una din multimile de atribute din stanga sau dreapta nu sunt multimea vida).

Problema 2: Fie $\Sigma = \{AB \to C, AB \to D, CD \to E\}$. Gasiti cel putin doua dependente functionale ce pot fi obtinute din Σ utilizand sistemul de demonstratie \mathcal{R}_1 .

Problema 3: Demonstrati ca regula de inferenta FD2f din \mathcal{R}_1 poate fi obtinuta din regulile existente in R_A .

Problema 4: Demonstrati ca in cadrul \mathcal{R}_1 regula FD4f poate fi obtinuta din regulile FD1f - FD3f (ideile de demonstratie se gasesc in slidul 43 de le curs).

3 Dependente multivaluate

Problema 1: Fie relatia:

	A	В	\mathbf{C}	D	\mathbf{E}
	1	0	1	7	2
r:	1	0	4	3	5
	1	0	1	7	5
	1	0	4	3	2

Descoperiti cel putin doua dependente multivaluate in relatia r. Aplicand regulile de inferenta pentru dependente multivaluate, descoperiti inca doua dependente (multivaluate).

 $Problema\ 2:$ Demonstrati ca, la nivel semantic, are loc proprietatea MVD0 (facut la curs).

Problema 3: Fie multimea de dependente multivaluate $\Sigma = \{X \twoheadrightarrow Y, Y \twoheadrightarrow Z, Z \twoheadrightarrow V\}$. Aratati ca $\Sigma \vdash_{\mathcal{R}_{FM}} X \twoheadrightarrow ((V - Z) - Y)$.

Problema 4: Stiind ca $Y \subseteq X$ si ca $Z \subseteq W$ aratati ca $XW \twoheadrightarrow YZ$.