EXHIBIT B

U.S. Patent No. 7,295,518 ("the '518 Patent") Exemplary Infringement Chart

The Accused MoCA Instrumentalities are instrumentalities that DirecTV deploys to provide a whole-premises DVR network over an on-premises coaxial cable network, with devices operating with data connections compliant with MoCA 1.0, 1.1, and/or 2.0. The Accused MoCA Instrumentalities include the DirecTV HR24, DirecTV HR34, DirecTV HR44, DirecTV HR54, DirecTV HR517, DirecTV C31, DirecTV C41, DirecTV C51, DirecTV C61, DirecTV C61K and substantially similar instrumentalities. DirecTV literally and/or under the doctrine of equivalents infringes the claims of the '518 Patent under 35 U.S.C. § 271(a) by making, using, selling, offering for sale, and/or importing the Accused MoCA Instrumentalities.

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
1. A data communication network comprising:	The Accused Services are provided using at least the Accused MoCA Instrumentalities including gateway devices (including, but not limited to, the DirecTV HR24, DirecTV HR34, DirecTV HR44, DirecTV HR54, DirecTV HS17, and devices that operate in a similar matter) and client devices (including, but not limited to, the DirecTV C31, DirecTV C41, DirecTV C51, DirecTV C61, DirecTV C61K, and devices that operate in a similar manner), and substantially similar instrumentalities. The Accused MoCA Instrumentalities operate to form a data communication network over an on-premises coaxial cable network as described below.
	The DirecTV full-premises DVR network constitutes a data communication network as claimed. The DirecTV full-premises DVR network is a MoCA network created between gateway devices and client devices using the on-premises coaxial cable network. This MoCA network is compliant with MoCA 1.0, 1.1, and/or 2.0. "The MoCA system network model creates a coax network which supports communications between a convergence layer in one MoCA node to the corresponding convergence layer in another MoCA node."

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
	(MoCA 1.0, Section 1. See also MoCA 1.1, Section 1.1; MoCA 2.0, Section 1.2.2)
	"The MoCA Network transmits high speed multimedia data over the in-home coaxial cable infrastructure." (MoCA 1.0, Section 2. See also MoCA 1.1, Section 2; MoCA 2.0, Section 5)
	DirecTV utilizes the MoCA standard to provide an on-premises DVR network over an on-premises coaxial cable network as shown below:
	DIRECTV SWM13-LNB Your installation may vary depending on the number of splitters needed Always use the smallest number of splitters.
	Replace external SWM with 1x2 splitter if needed. If not replacing external SWM, run straight to 1x8 splitter. Line from power inserter to red port on all splitters.
at least two network devices, each network	Total number of tuners cannot exceed 13. Genie = 5 tuners (each Genie Client = 0 tuners) DVR = 2 tuners, receiver = 1 tuner The Accused MoCA Instrumentalities operate to form a data communication

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
modulating data, an up converter for translating the modulated data to an RF carrier frequency, a down converter for translating an RF signal, and a multi-carrier demodulator for demodulating the	signal, and a multi-carrier demodulator for demodulating the translated RF signal
translated RF signal to produce data; and	For example, by virtue of their compliance with MoCA, the Accused MoCA Instrumentalities include circuitry and/or associated software modules constituting a multi-carrier modulator for modulating data, an up converter for translating the modulated data to an RF carrier frequency, a down converter for translating an RF signal, and a multi-carrier demodulator for demodulating the translated RF signal to produce data.

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
	DIRECTV SWM13-LNB Your installation may vary depending on the number of splitters needed Always use the smallest number of splitters.
	Replace external SWM with 1/2 splitter if needed. If not replacing external SWM, run straight to 1x8 splitter.
	Line from power inserter to red port on all splitters. ORECTY Total number of tuners cannot exceed 13. Gente = 5 tuners (each Genie Client = 0 tuners) DVR = 2 tuners, receiver = 1 tuner
	"The MoCA system network model creates a coax network which supports communications between a convergence layer in one MoCA node to the corresponding convergence layer in another MoCA node."
	(MoCA 1.0, Section 1. See also MoCA 1.1, Section 1.1; MoCA 2.0, Section 1.2.2)

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 1 of the '518 Patent
	Root Node N:1 Splitter Set Top or TV N:1 Splitter Set Top or TV
	(MoCA 1.0, Figure 2-1. <i>See also</i> MoCA 1.1, Figure 2-1; MoCA 2.0, Figure 1-1)
	"For frequency-domain probes, the probe payload is inserted before the subcarrier mapper and undergoes ACMT modulation. For time-domain probes, the probe payload is inserted after the ACMT modulator. This is illustrated in the next figure. As in the case of PHY data packets, the time-domain and frequency-domain

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
	portions of the PHY preamble enter the transmission processing chain at different points."
	(MoCA 1.0, Section 4.2.2.1. See also MoCA 1.1, Section 4.2.2.1; MoCA 2.0,
	Sections 14.3.8, 14.3.10)
	MAC Frame FEC Padding Encryption FEC Encoder ACMT Symbol Padding Byte Scrambler Time Domain
	Preamble Generator Frequency Domain Preamble Generator Frequency Domain Preamble Generator Frequency Domain Preamble Generator Subcarrier Modulator Sorambler Subcarrier Mapper
	Figure 4-2. PHY Data Packet Transmission Processing
	(MoCA 1.0, Figure 4-2. <i>See also</i> MoCA 1.1, Figure 4-2, MoCA 2.0, Figure 14-2)

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
	Frequency Domain Probe Payload Subcarrier Mapper Subcarrier Mapper ACMT Modulator Filter and RF Upconvert Time Domain
	Figure 4-4. PHY Probe Transmission Processing
	(MoCA 1.0, Figure 4-4. See also MoCA 1.1, Figure 4-4, MoCA 2.0, Figure 14-4)
	"Adaptive Constellation Multi-tone (ACMT) – A multi-tone modulation scheme where constellation density is automatically adapted to the channel characteristic." (MoCA 1.0, Section 1.2. <i>See also</i> MoCA 1.1, Section 1.2, MoCA 2.0, Section 3)
	"ACMT uses multicarrier transmission, much like OFDM."
	(MoCA 1.0, Section 4.3.6. <i>See also</i> MoCA 1.1, Section 4.3.6; MoCA 2.0, Section 5.2)
	"The PHY packet consists of a PHY preamble immediately followed by a PHY payload field as shown in Figure 4-1. The PHY preamble provides the receiver a reference signal that the receiver may use to acquire the packet, calibrate its algorithms and eventually, to decode the PHY payload." (MoCA 1.1, Section 4.2. <i>See also</i> MoCA 1.1, Section 4.2; MoCA 2.0, Section 14.1).

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
cable wiring comprising a splitter with a	On informed belief, the receiver has a down converter for translating an RF signal and a multi-carrier demodulator for demodulating the translated RF signal to produce data. The Acquised MoCA Instrumentalities form a data communication network using
common port and a plurality of tap ports, and a plurality of segments of coaxial cable connecting	
devices;	For example, a DirecTV full-premises DVR network is shown in the image below. As shown in the example image and on informed belief, the DirecTV full-premises DVR network includes cable wiring comprising a splitter with a common port and a plurality of tap ports, and a plurality of segments of coaxial cable connecting between the splitter tap ports and the network devices.

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 1 of the '518 Patent
	DIRECTV SWM13-LNB Your installation may vary depending on the number of splitters needed Always use the smallest number of splitters.
	Replace external SWM with 1x2 splitter if needed. If not replacing external SWM, run straight to 1x8 splitter.
	Difference of the port of the
	"Typical in-home coaxial networks are configured as a branching tree topology with the point of demarcation being at the point of entry, typically on the side of the house, and outlets distributed throughout the house. The point of entry is typically connected to the first splitter in the home through a coax cable. In order to get MSO services, the point of entry must be connected to a multi-tap in the MSO's coax distribution plant. In this document, the point of connection to the first splitter is called the root node. The MoCA devices inside the home communicate with each other by having their signals traverse across one or more splitters. When the signal traverses between two outputs of a single splitter, this is referred to as 'splitter jumping'. Splitter jumping is always necessary when the

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
	signal must traverse between outlets in the home."
	(MoCA 1.0, Section 2.1.1. <i>See also</i> MoCA 1.1, Section 2.2.1; MoCA 2.0, Section 1.2.2)
	Node Node Node Modem
	Figure 2-1. A Typical In-home Cable Network
	(MoCA 1.0, Figure 2-1. See also MoCA 1.1, Figure 2-1; MoCA 2.0, Figure 1-1)
whereby network devices communicate with	
each other through the cable wiring using multi-	cable wiring using multi-carrier signaling as described below.

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
carrier signaling;	For example, by virtue of their compliance with MoCA, the Accused MoCA Instrumentalities communicate with each other through the cable wiring using multi-carrier signaling.
	"The MoCA physical layer (PHY) utilizes a modulation technique named Adaptive Constellation Multi-tone (ACMT). ACMT is a variation of orthogonal frequency division multiplexing (OFDM) where knowledge of the channel is used to preequalize all signals using variable bitloading on all subcarriers." (MoCA 1.0, Section 2.2. <i>See also</i> MoCA 1.1, Section 2.2; MoCA 2.0, Section 5)
	"ACMT uses multicarrier transmission, much like OFDM." (MoCA 1.0, Section 4.3.6. <i>See also</i> MoCA 1.1, Section 4.3.6; MoCA 2.0, Section 5.2)
	"All communication over the medium between two or more MoCA devices shall be performed via scheduled exchanges of Physical Layer (PHY) packets." (MoCA 1.0, Section 4.2. <i>See also</i> MoCA 1.1, Section 4.2; MoCA 2.0, Section 14.1).
	"In order to achieve target packet error rates of less than 10 ⁻⁵ for large packets (>1500 bytes) with no retransmissions, the MoCA physical layer uses channel preequalization (using bit loading) and multi-tone modulation on all links." (MoCA 1.0, Section 2.2. <i>See also</i> MoCA 1.1, Section 2.2; MoCA 2.0, Section 5)
	"PHY data packets carry MAC data and control frames as PHY payload. Figure 4-3 shows an example of how a PHY data packet is constructed from a MAC frame.

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 1 of the '518 Patent
	In this example, the FEC-padded MAC frame is encrypted and encoded into two
	Reed-Solomon code words, the last code word being shortened to minimize FEC
	padding. The encoded data is ACMT padded, scrambled and modulated onto the
	sub-carriers of three ACMT symbols. The ACMT symbols are bin-scrambled and
	then transformed to the time-domain where a cyclic prefix is added to each ACMT
	symbol to obtain the PHY data payload. Finally, a preamble is prepended to the
	PHY data payload and is filtered and upconverted to RF for transmission onto the
	media. In practice, the number of Reed-Solomon code words and number of ACMT
	symbols per PHY data packet will vary as a function of the MAC frame size and
	modulation profile. The processing steps referred to here are specified in Section
	4.3."
	(MoCA 1.0, Section 4.2.1.2. See also MoCA 1.1, Section 4.2.1.2, MoCA 2.0,
	Section 14.2)
	"The MoCA system network model creates a coax network which supports
	communications between a convergence layer in one MoCA node to the
	corresponding convergence layer in another MoCA node."
	(MoCA 1.0, Section 1. See also MoCA 1.1, Section 1.1; MoCA 2.0, Section 1.2.2)
wherein network devices transmit probe	
messages through the cable wiring and analyze	received probe message signals to determine channel characteristics and bit loading
received probe message signals to determine	is selected based on the determined channel characteristics as described below.
channel characteristics and bit loading is selected	
based on the determined channel characteristics.	For example, by virtue of their compliance with MoCA, the Accused MoCA
	Instrumentalities transmit probe messages through the cable wiring and analyze
	received probe message signals to determine channel characteristics and bit loading
	is selected based on the determined channel characteristics.

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That Practices at Least Claim 1 of the '518 Patent
	"While it is physically a shared medium, the logical network model is a fully meshed collection of point-to-point links, each with its own unique channel characteristics and channel capacity. MoCA devices use optimized PHY parameters between every point to point link. Each set of optimized PHY parameters is called a PHY Profile. Because each link is unique, it is critical that all nodes know the source and the destination for every transmission." (MoCA 1.0, Section 2.1.2. <i>See also</i> MoCA 1.1, Section 2.1.2; MoCA 2.0, Section 1.2.2)
	"The topology of the in-home coax typically results in a multi-path delay profile. Because the echoes can be stronger and/or weaker than the original signal, depending on the output port-to-output port isolation of the jumped splitter, the channel is said to have either pre- or post-echoes, respectively. A zero decibel echo, i.e., equal power to the main path, leads to deep nulls in the frequency domain spectrum. In order to achieve target packet error rates of less than 10-5 for large packets (>1500 bytes) with no retransmissions, the MoCA physical layer uses channel pre-equalization (using bit loading) and multi-tone modulation on all links." (MoCA 1.0, Section 2.2. <i>See also</i> MoCA 1.1, Section 2.2; MoCA 2.0, Section 5.2)
	"Probe – A signal transmitted by a MoCA node and received by the same or another node for improving or maintaining PHY performance of inter-node links." (MoCA 1.0, Section 1.2. <i>See also</i> MoCA 1.1, Section 1.2, MoCA 2.0, Section 3).
	"The MoCA system network model creates a coax network which supports communications between a convergence layer in one MoCA node to the corresponding convergence layer in another MoCA node."

U.S. Patent No. 7,295,518	The Accused MoCA Instrumentalities Form a Network That
	Practices at Least Claim 1 of the '518 Patent
	(MoCA 1.0, Section 1. See also MoCA 1.1, Section 1.1; MoCA 2.0, Section 1.2.2)
	"ACMT is a variation of orthogonal frequency division multiplexing (OFDM)
	where knowledge of the channel is used to pre-equalize all signals using variable
	bitloading on all subcarriers. The term used to describe the bitloading of the ACMT
	subcarriers is "modulation profile" and the process of creating a modulation profile
	between a node pair is called "modulation profiling". During periodic modulation
	profiling, probes are sent between all nodes and analyzed. After probe analysis,
	modulation profiles are chosen to optimize individual link throughput while
	maintaining a low packet error rate."
	(MoCA 1.0, Section 2.2. See also MoCA 1.1, Section 2.2; MoCA 2.0, Section 5)
	"A
	"A variety of physical layer frequency-domain and time-domain probes are used to
	create modulation profiles, optimize performance, and allow for various calibration
	mechanisms. Type I Modulation Profile Probes are frequency domain probes used to determine modulation profiles of the channel between any two nodes. Type II
	Probes are frequency domain probes consisting of two tones that may be used to
	fine tune performance. A Type III Echo Profile Probe may be used to determine the
	impulse response of the channel. This information can be used to optimize various
	physical layer parameters. In addition to the above probes, this specification
	provides opportunities for various unique Loopback Transmissions which may be
	useful for RF calibration, among other things."
	(MoCA 1.0, Section 2.2. <i>See also</i> MoCA 1.1, Section 2.2; MoCA 2.0, Section 5.2)