Assignment -3

Build CNN Model for Classification Of Flowers

Assignment Date	30 September 2022
Student Name	Dhuneesha E
Student Roll Number	211419104066
Maximum Marks	2 Marks

Question-1:

Download the dataset

Question-2:

Image Augmentation

Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

2)Image Augmentation
[] from tensorflow.keras.preprocessing.image import ImageDataGenerator
[] train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)
[] test_datagen=ImageDataGenerator(rescale=1./255)
Load Data
[] x_train=train_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Training",target_size=(64,64),class_mode='categorical',batch_size=24)
Found 3293 images belonging to 5 classes.
[] x_test=test_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing",target_size=(64,64),class_mode='categorical',batch_size=24)
Found 1317 images belonging to 5 classes.
[] x_train.class_indices
{'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}
[] x_test.class_indices
{'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}

Question-3:

Create model

Solution

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

```
3)Create Model
  [ ] from tensorflow.keras.models import Sequential
  [ ] from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten
  [ ] model=Sequential()
Question-4:
Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output)
Solution
a)Convolution Layer
model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1
,1),input_shape=(64,64,3)))
b)MaxPooling Layer
model.add(MaxPooling2D(pool_size=(2,2)))
c)Flatten Layer
model.add(Flatten())
d)Dense(Hidden layer)
model.add(Dense(300,activation="relu"))
model.add(Dense(300,activation="relu"))
e)Output layer
model.add(Dense(5,activation="softmax"))
  4)Add Layers
  a)Convolution Layer
  model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_shape=(64,64,3)))
  b)MaxPooling Layer
  [ ] model.add(MaxPooling2D(pool_size=(2,2)))
  c)Flatten
  [ ] model.add(Flatten())
  d)Dense(Hidden layer)
 [ ] model.add(Dense(300,activation="relu"))
 [ ] model.add(Dense(300,activation="relu"))
  e)Output layer
```

[] model.add(Dense(5,activation="softmax"))

Question-5:

Compile The Model

Solution

model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')

5)Compile the model

```
[ ] model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')
```

Question-6:

Fit The Model

Solution

model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))

6)Fit the model

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

7)Save the model

```
[ ] model.save("Flowers.h5")
```

Question-8:

Test The Model

Solution

```
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
model=load_model("Flowers.h5")
img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-
Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64))
x=image.img_to_array(img)
x=np.expand_dims(x,axis=0)
pred=model.predict(x)
pred
index=['daisy','dandelion','rose','sunflower','tulip']
index[np.argmax(pred)]
```

est the model	
<pre>import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image</pre>	
model=load_model("Flowers.h5")	
img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64))	
img	
x=image.img_to_array(img)	
x=np.expand_dims(x,axis=θ)	
<pre>pred=model.predict(x)</pre>	
pred	
array([[1., 0., 0., 0., 0.]], dtype=float32)	