## Analog electronics

Fengchun Zhang

fz@es.aau.dk

#### Agenda

- Diode
  - Recap diode circuit analysis principle, practical diode circuits, solutions to assignments
  - Practical diode circuits:
    - Clipper or limiter
    - Voltage doubler/multiplier
  - Small signal model

#### Recap: application example: OR logic gate



| Α | В | LED     |
|---|---|---------|
| 0 | 0 | 0 (off) |
| 0 | 1 | 1 (on)  |
| 1 | 0 | 1 (on)  |
| 1 | 1 | 1 (on)  |

The LED forward voltage drop is 2 V.

PN junction diode application example: charger/adapter



 $V_{out}$ :

- 5 V for cellphone
- 20 V for laptop



Alternating Current (AC)

Direct Current (DC)

Rectifier: convert AC to DC

# Recap: Half-wave rectifier Vs. Full-wave rectifier with capacitor and load



Ripple amplitude =  $\frac{V_O - V_{D,on}}{fRC}$ 

Max reverse voltage =  $\frac{2}{V_o} - V_{D,on}$ 



Ripple amplitude =  $\frac{V_O - 2V_{D,on}}{2fRC}$ 

Max reverse voltage =  $V_o - V_{D,on}$ 

#### Agenda

#### • Diode

- Recap diode circuit analysis principle, practical diode circuits, solutions to assignments
- Practical diode circuits:
  - Clipper or limiter
  - Voltage doubler/multiplier
- Small signal model

#### Clipper/limiting circuits





#### Zener diode



- Designed to work in the reverse breakdown region.
- Stable and predicable voltage drop.
- Often used for clipper and limiter circuits.

| Device    | Zener Voltage |      |  |  |
|-----------|---------------|------|--|--|
| Device    | Min.          | Max. |  |  |
| BZX79C2V4 | 2.2           | 2.6  |  |  |
| BZX79C2V7 | 2.5           | 2.9  |  |  |
| BZX79C3V0 | 2.8           | 3.2  |  |  |
| BZX79C3V3 | 3.1           | 3.5  |  |  |
| BZX79C3V6 | 3.4           | 3.8  |  |  |
| BZX79C3V9 | 3.7           | 4.1  |  |  |
| BZX79C4V3 | 4             | 4.6  |  |  |
| BZX79C4V7 | 4.4           | 5    |  |  |
| BZX79C5V1 | 4.8           | 5.4  |  |  |
| BZX79C5V6 | 5.2           | 6    |  |  |
| BZX79C6V2 | 5.8           | 6.6  |  |  |
| BZX79C6V8 | 6.4           | 7.2  |  |  |
| BZX79C7V5 | 7             | 7.9  |  |  |
| BZX79C8V2 | 7.7           | 8.7  |  |  |
| BZX79C9V1 | 8.5           | 9.6  |  |  |
| BZX79C10  | 9.4           | 10.6 |  |  |
| BZX79C11  | 10.4          | 11.6 |  |  |
| BZX79C12  | 11.4          | 12.7 |  |  |
| BZX79C13  | 12.4          | 14.1 |  |  |
| BZX79C15  | 13.8          | 15.6 |  |  |
| BZX79C16  | 15.3          | 17.1 |  |  |
| BZX79C18  | 16.8          | 19.1 |  |  |
| BZX79C20  | 18.8          | 21.2 |  |  |
| BZX79C22  | 20.8          | 23.3 |  |  |
| BZX79C24  | 22.8          | 25.6 |  |  |

#### Zener diode—constant voltage drop model



#### Quiz: Clipper/limiting circuits



### Clipper/limiting circuits



#### Agenda

- Diode
  - Recap diode circuit analysis principle, practical diode circuits, solutions to assignments
  - Practical diode circuits:
    - Clipper or limiter
    - Voltage doubler/multiplier
  - Small signal model

#### Voltage doubler circuits



The reader emits radio waves that power the passive RFID chip in the passport.

#### Voltage doubler circuits



Assume ideal diode model

#### Quiz



Assume constant voltage drop model

#### Actual voltage doubler circuits



$$V_{in}(t) = V_p \sin(2\pi f t)$$

Assume ideal diode model



 $V_{\mathrm{out}}$ 

#### LTspice simulation: voltage doubler

- V =  $3 \sin(2\pi 50t + \pi)$
- C1 = C2 = 0.0001 F
- Diodes: 1N4007

#### Agenda

#### • Diode

- Recap diode circuit analysis principle, practical diode circuits, solutions to assignments
- Practical diode circuits:
  - Clipper or limitter
  - Voltage doubler/multiplier
- Small signal model

#### PN diode models

Exponential model (usage rate =10-20%)  $I_D$ 

0.7 V

 $V_D$ 

$$I_D \approx I_S e^{\frac{V_D}{V_T}}$$

Simplify calculation Approximate results Constant voltage model (usage rate = 70-80%)





The diode has two states:



$$V_D \ge V_{D,on} \rightarrow \text{diode is on } \rightarrow \text{a voltage drop}$$



## Small-signal model



#### Procedure

- DC analysis to get  $I_{DQ}$ .
- Calculate the diode small-signal resistance  $r_d = \frac{V_T}{I_{DQ}}|_{V_{DQ}}$  .



#### Quiz: Small-signal model

The DC current of a diode is 1 mA.

- (a) Determine the current change if  $V_D$  changes by 1 mV.
- (b) Determine the voltage change if  $I_D$  changes by 10%.

#### example: small signal model



The voltage drop across the diode  $V_{DQ}$ = 0.7 V when only the DC voltage is applied.

#### excercise: small signal model



The voltage drop across each diode is  $V_{DQ}$ = 0.7 V when only the DC voltage is applied.

#### excercise: small signal model



The voltage drop across each diode is  $V_{DQ}$ = 0.7 V when only the DC voltage is applied.

#### Small-signal model approximation error

$$I_D(t) = I_S e^{[V_{DQ} + v_d(t)]/nV_T} = I_S e^{V_{DQ}/nV_T} e^{v_d(t)/nV_T} = I_{DQ} e^{v_d(t)/nV_T}$$

$$I_D(t) = I_{DQ} + i_d(t)$$

$$\rightarrow i_{\rm d}(t) = I_D(t) - I_{\rm DQ} = I_{DQ}(e^{v_d(t)/nV_T}-1)$$
 actual  $i_{\rm d}(t)$ 

Small-signal approximated  $i_d(t)$ :  $\hat{i_d}(t) = I_{DQ} v_d(t)/nV_T$ 

$$\frac{i_{d}(t)}{\widehat{i_{d}}(t)} = \frac{e^{v_{d}(t)/nV_{T}-1}}{v_{d}(t)/nV_{T}}$$

| $v_d(t)/{nV_T}$                               | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  |
|-----------------------------------------------|------|------|------|------|------|------|------|
| $\frac{i_{\rm d}(t)}{\widehat{i_{\rm d}}(t)}$ | 1.05 | 1.11 | 1.17 | 1.23 | 1.30 | 1.37 | 1.45 |