Chapitre 25 : Déterminants

1 Groupe symétrique

1.1 Généralités

Définition 1.1. On appelle groupe symétrique sur $n \ge 1$ "lettres" le groupe $\gamma(n)$ des bijections $[1, n] \to [1, n]$

Définition 1.2. Soit $\sigma \in \gamma(n)$

- * Un élément $i \in [1, n]$ est un point fixe de σ si $\sigma(i) = i$
- * Le support de σ est Supp $(\sigma) = \{i \in [1, n] \mid \sigma(i) \neq i\}$

Définition 1.3.

- * Une transposition est une permutation $\tau \in \gamma(n)$ dont le support est une paire $\{i,j\}$ (et qui échange i et j). On la note $\tau = (ij)$ On a (ij) = (ji)
- * Plus généralement, si $i_1, \dots, i_r \in [\![1,n]\!]$ sont tous différents, on note $(i_1\,i_2\,i_3\,\dots i_r)$ la permutation σ telle que

$$\begin{cases} \forall k \in [1, r-1], \, \sigma(i_k) = i_{k+1} \\ \sigma(i_r) = i_1, \text{ et } \forall j \notin \{i_1, \dots, i_r\}, \, \sigma(j) \neq j \end{cases}$$

Une telle permutation est appelée un *r*-cycle.

Théorème 1.4. Le groupe $\gamma(n)$ est engendré par les transpositions.

1.2 Décomposition en cycles disjoints

Théorème 1.5. Soit $\sigma \in \gamma(n)$

Il existe un entier $r \geq 0$ et des cycles $\gamma_1, ..., \gamma_r$ à supports disjoints tels que $\sigma = \gamma_r \circ ... \circ \gamma_1$ En outre, cette décomposition est unique à l'ordre des facteurs près.

1.3 Signature d'une permutation

Théorème 1.6. Il existe un unique morphisme de groupes $\varepsilon: (\gamma(n), \circ) \to (\{\pm 1\}, \times)$ tel que, pour toute <u>transposition</u> $\tau \in \gamma(n), \varepsilon(\tau) = -1$ (ce morphisme s'appelle la signature)

Lemme 1.7.

$$\varepsilon(\sigma) = \prod_{\{i,j\} \in \mathcal{P}_2(\llbracket 1,n \rrbracket)} \frac{\sigma(j) - \sigma(i)}{j - i}$$

1

Proposition 1.8. Soit $r \in [2, n]$ et $\sigma \in \gamma(n)$ un r-cycle. Alors $\varepsilon(\sigma) = (-1)^{r+1}$

Définition 1.9. On appelle groupe alterné a(n) le noyau de la signature $a(n) = \{ \sigma \in \gamma(n) \mid \varepsilon(\sigma) = 1 \}$

2 Déterminant

Soit *K* un corps.

2.1 Déterminant d'une matrice carrée

Définition 2.1. Soit $A \in M_n(K)$

On définit son déterminant :

$$\det(A) = \sum_{\sigma \in \gamma(n)} \varepsilon(\sigma) \prod_{j=1}^{n} [A]_{\sigma(j)j}$$

On note aussi

$$\det A = \begin{vmatrix} [A]_{1,1} & \cdots & [A]_{1,n} \\ \vdots & & \vdots \\ [A]_{n,1} & \cdots & [A]_{n,n} \end{vmatrix}$$

2.2 Formes *n*-linéaires alternés

Définition 2.2. Une <u>forme n-linéaire</u> sur un espace vectoriel E est une application $f: E^n \to K$ linéaire en chacune de ses variables, càd telle que pour tous $x_1, \dots, x_n \in E$ et $i \in [1, n]$ l'application

$$\begin{cases} E \to K \\ y \mapsto f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n) \end{cases}$$

soit linéaire.

Définition 2.3. Une forme $\underline{n\text{-lin\'eaire}}\ f: E^n \to K$ est dite alternée si $f(x_1, \dots, x_n) = 0$ dès que deux (au moins) des vecteurs x_1, \dots, x_n sont $\underline{\text{égaux}}$.

Proposition 2.4. Une forme *n*-linéaire alternée est antisymétrique :

Si (y_1, \dots, y_n) est obtenu à partir de (x_1, \dots, x_n) et échangeant x_i et x_j pour $i \neq j$, alors $f(y_1, \dots, y_n) = f(x_1, \dots, x_n)$

Changement de point de vue : On peut considérer le déterminant comme un application

$$\begin{cases} K^n \times ... \times K^n \to K & (n \text{ fois}) \\ (c_1, ..., c_n) \mapsto \det(c_1, ..., c_n) = \det(c_1 \mid ... \mid c_n) \end{cases}$$

Théorème 2.5. Le déterminant est une forme n-linéaire alternée sur K^n

Corollaire 2.6. Si $A \in M_n(K)$ n'est pas inversible, alors det(A) = 0

Théorème 2.7. Toute forme n-linéaire alternée sur K^n est proportionnelle au déterminant.