# Decision Tree 결정 나무

Dr. Saerom Park Statistical Learning and Computational Finance Lab.

Department of Industrial Engineering

*psr6275@snu.ac.kr* http://slcf.snu.ac.kr

This document is confidential and is intended solely for the use



#### 목차

- 1. 의사결정 나무(Decision tree) IG(Information gain) 최대화
- 2. KNN(k nearest neighbors)



# Reference

Reading: [Raschka. (2017), chapter 3], [Müller. (2016), chapter 2], [GÉRON. (2017), chapter 3 & 5 & 6]



# 분류 결정 나무





#### ■ 의사결정 나무

- 의사결정 나무는 데이터들을 한 개에 노드에 할당하고 특정 변수들을 기준으로 나누면서 각 노드의 데이터들이 충분히 homogeneous 지거나 나무가 최대 깊이에 도달했을 때 종료한다.
  - IG(Information gain = impurity의 감소량)을 최대화하는 방향으로 node를 만든다.
    - $IG(D_p, f) = I(D_p) \sum_j \frac{N_j}{N_p} I(D_j)$ where  $D_p, D_j$ : parent, jth dataset; f: feature to perform the split
  - Impurity
    - Gini impurity:  $I_G(t) = \sum_i p(i|t)(1 p(i|t))$
    - Misclassification error:  $I_E(t) = 1 \max_i \{p(i|t)\}$
    - Entropy:  $I_H(t) = -\sum_i p(i|t) \log_2 p(i|t)$
- 장점:
  - 이해하고 해석하고 학습하기 쉬움
  - 모델이 유동적이고 강력함
- 단점:
  - 수직인 결정 경계만 학습 가능 (한번에 한 개의 변수 고려)
  - 데이터에 민감 (데이터 회전, 일반화)
  - Random forest로 극복





Example





- scikit-learn 이용 의사결정 나무
  - from sklearn.tree import DecisionTreeClassifier
  - DecisionTreeClassifier(criterion='gini', splitter='best',
     max\_depth=None, min\_samples\_split=2, min\_samples\_leaf=1,
     min\_weight\_fraction\_leaf=0.0, max\_features=None, random\_state=None,
     max\_leaf\_nodes=None, min\_impurity\_decrease=0.0,
     min\_impurity\_split=None, class\_weight=None, presort=False)

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

| Parameters   |                                        |
|--------------|----------------------------------------|
| criterion    | 알고리즘에 사용하는 impurity('gini', 'entropy') |
| max_depth    | Tree의 최대깊이                             |
| max_features | Split을 얻기 위해 사용하는 features 수           |

| Attributes |             |
|------------|-------------|
| classes_   | 분류 라벨 array |
| tree_      | 최종 tree     |





- scikit-learn 이용 의사결정 나무
  - from sklearn.tree import DecisionTreeClassifier
  - DecisionTreeClassifier(criterion='gini', splitter='best',
     max\_depth=None, min\_samples\_split=2, min\_samples\_leaf=1,
     min\_weight\_fraction\_leaf=0.0, max\_features=None, random\_state=None,
     max\_leaf\_nodes=None, min\_impurity\_decrease=0.0,
     min\_impurity\_split=None, class\_weight=None, presort=False)







# 앙상블 방법





## 랜덤 포레스트(Random Forest)

#### ■ 랜덤 포레스트

• Bootstrapping: n개의 samples을 복원추출

•  $d = \sqrt{m}$  features (m : 총 features 수)를 임의로 선택하여 DT와 같은 방법으

로 가지를 나눔

• 반복(또는 병렬) 학습 가능

다수결(또는 평균)



- 여러 DT를 이용해서 정확도를 높이고 오버피팅 문제를 해결할 수 있다.
- 변수 선택에도 활용





### 랜덤 포레스트(Random Forest)

- scikit-learn 이용 랜덤 포레스트
  - from sklearn.ensemble import RandomForestClassifier
  - RandomForestClassifier(n\_estimators=10, criterion='gini',
     max\_depth=None, min\_samples\_split=2, min\_samples\_leaf=1,
     min\_weight\_fraction\_leaf=0.0, max\_features='auto', max\_leaf\_nodes=None,
     min\_impurity\_decrease=0.0, min\_impurity\_split=None, bootstrap=True,
     oob\_score=False, n\_jobs=1, random\_state=None, verbose=0,
     warm\_start=False, class\_weight=None)

#### http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

| Parameters   |                                        |
|--------------|----------------------------------------|
| n_estimators | forest를 이루는 tree 수                     |
| criterion    | 알고리즘에 사용하는 impurity('gini', 'entropy') |
| max_depth    | Tree의 최대깊이                             |
| max_features | Split을 얻기 위해 사용하는 features 수           |
| bootstrap    | bootstrap 여부                           |
| n_jobs       | 병렬처리 방법                                |





## 랜덤 포레스트(Random Forest)

- scikit-learn 이용 랜덤 포레스트
  - from sklearn.ensemble import RandomForestClassifier
  - RandomForestClassifier(n\_estimators=10, criterion='gini',
     max\_depth=None, min\_samples\_split=2, min\_samples\_leaf=1,
     min\_weight\_fraction\_leaf=0.0, max\_features='auto', max\_leaf\_nodes=None,
     min\_impurity\_decrease=0.0, min\_impurity\_split=None, bootstrap=True,
     oob\_score=False, n\_jobs=1, random\_state=None, verbose=0,
     warm\_start=False, class\_weight=None)

http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html





- 모델 기반 특성 선택
  - Random forest란 여러 개의 decision tree들을 임의적으로 학습하는 앙상블 방법 (ensemble method)이다.
  - Random forest를 이용해 분류 또는 회귀 문제에서 각 feature의 중요성에 순위를 매길 수 있다.
  - Scikit-learn에서는 random forest classifier, regressor를 제공할 뿐만 아니라 feature\_importances\_ 어트리뷰트를 통해서 feature 중요성 값을 제공한다.

```
class sklearn.ensemble. RandomForestClassifier (n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None) [source]
```

feature importances : array of shape = [n\_features]

The feature importances (the higher, the more important the feature).

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html





- Assessing feature importance with random forests
  - 실행 결과

| <ol> <li>Proline</li> <li>Flavanoids</li> <li>Color intensity</li> <li>OD280/OD315 of diluted</li> <li>Alcohol</li> <li>Hue</li> <li>Total phenols</li> </ol>   | 0.18545<br>0.1747<br>0.1439<br>ted wines<br>0.11857<br>0.05873 | 751<br>920<br>0.136162<br>29 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|
| <ul><li>8) Magnesium</li><li>9) Malic acid</li><li>10) Proanthocyanins</li><li>11) Alcalinity of ash</li><li>12) Nonflavanoid phenols</li><li>13) Ash</li></ul> | 0.0256<br>0.02<br>0.022                                        | 25570<br>366<br>013354       |



- Assessing feature importance with random forests
  - 실행 결과







- SelectFromModel
  - sklearn.feature\_selection.SelectFromModel
  - 중요도가 지정한 임계치보다 큰 모든 특성을 선택한다.
  - http://scikitlearn.org/stable/modules/generated/sklearn.feature\_selection.SelectFromModel.html



### **Boosting**

- Hypothesis boosting
  - Ensemble이 성능이 낮은 학습기(weak learners)들로 구성되어 있을 때, boosting 을 통해 ensemble의 성능을 향상시킨다.
  - 모델들을 순차적으로 학습시킴
  - Boosting은 bagging에 비해 낮은 bias와 variance를 만들어낼 수 있다.
- AdaBoost(Adaptive Boosting)
  - 분류가 힘든 트레이닝 샘플에 집중하여 weak learner들이 잘못 분류된 샘플로부터 학습하도록 한다.
  - 학습된 weak learner들의 예측 결과들을 aggregation함
- Gradient Boosting
  - 새로운 예측기가 이전의 예측기의 residual errors을 학습 하도록 함
  - 회귀 문제에 적합
  - 순차적으로 학습된 예측기들의 예측 결과들을 합함으로써 최종 결과를 예측





#### ■ Adaboost 분류기

- 트레이닝 셋 D가 주어짐 (sampling without replacement):
  - random subset d1을 추출하여 weak learner C1을 학습
  - random subset d2와 이전에 잘못 분류된 샘플 중 50%를 더하여 weak learner C2를 학습
  - C1, C2가 서로 다른 결과를 반환한 데이터들로 d3를 구성하여 weak learner C3를 학습
- Majority voting을 통해 C1, C2, C3를 ensemble한다.

#### ■ Adaboost 알고리즘

- Weight 벡터 w를 모두 같게 설정한다.  $(\sum_i w_i = 1)$
- 총 m번의 boosting rounds 중 j번째에서, 다음을 실행한다.
  - Weighted된 weak learner  $C_i = train(X, y, w)$ 를 학습시킨다.
  - 클래스 label을 예측한다 :  $\hat{y} = predict(C_i, X)$
  - Weighted 된 에러 비율을 계산한다 :  $\epsilon = w \cdot \mathbb{I}_{\hat{y} \neq y}$
  - 계수를 계산한다 :  $\alpha_j = 0.5 \log \frac{1-\epsilon}{\epsilon}$
  - Weight들을 업데이트한다 :  $w := w \times \exp(-\alpha_i \times \hat{y} \times y)$
  - 합이 1이 되도록 weight 를 표준화한다 :  $w \coloneqq w/\sum_i w_i$





- Adaboost 분류기 학습 예제
  - 이 때, 앞 단계의 오분류로부터 학습하여 성능을 높이기 위해 각 샘플들의 weight가 단계마다 달라짐
    - 그림 1에서 모든 샘플의 weight가 같으므로 점선과 같이 학습
    - 그림 2에서 오분류된 두 샘플의 weight를 높여서 학습
    - 그림 3에서 새롭게 오분류된 세 샘플의 weight를 높이고, 앞에서 오분류되었던 샘플의 weight를 낮추어 학습
  - 3개의 분류기를 ensemble하면 그림 4와 같이 정확한 분류기 학습이 가능







- Sklearn에서 Adaboost 사용 방법
  - sklearn.ensemble.AdaBoostClassifier

| Parameters     |                                                                  |
|----------------|------------------------------------------------------------------|
| base_estimator | The base estimator from which the boosted ensemble is built      |
| n_estimators   | The maximum number of estimators at which boosting is terminated |
| learning_rate  | Learning rate shrinks the contribution of each classifier        |

• 자세한 사용법은 <u>http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html</u> 참조



■ 예제 코드



• AdaBoost 모델의 decision boundary가 더 복잡하며, 앞에서의 bagging과 유사한 형태이다.



# 회귀 결정 나무



### **Non-Linear regression**

- Decision tree regression
  - Decision tree regression은 비선형 데이터를 다루기 위해 앞과 같은 어떤 transformation도 필요 없다. 앞서 나온 바와 같이 Node와 Leave를 통해 분류하 기 때문이다.
  - 이 때 Information Gain(IG)를 정의하여, IG를 최대화하도록 Decision tree를 구현한다.

$$IG(D_p, x_i) = I(D_p) - \frac{N_{left}}{N_p}I(D_{left}) - \frac{N_{right}}{N_p}I(D_{right})$$

x: spilt를 진행할 변수

I: impurity 함수

 $N_p$ : parent node의 sample 개수

 $D_P$ : parent node의 training sample의 부분집합

**D**<sub>left</sub>: left child node의 training sample의 부분집합

 $D_{right}$ : right child node의 training sample의 부분집합





### **Non-Linear regression**

- Decision tree regression(Cont')
  - 회귀 문제에서는 I(t)으로 MSE를 사용하기도 한다.

$$I(t) = MSE(t) = \frac{1}{N_t} \sum_{i \in D_t} (y^{(i)} - \hat{y}^{(i)})^2$$

$$\widehat{\mathbf{y}}^{(i)} = \frac{1}{N_t} \sum_{i \in D_t} \mathbf{y}^{(i)}$$

 $D_t$ : node t의 training sample 부분집합

- Random forest regression
  - 앞서 배운 Forest Regression과 Random forest 알고리즘을 활용하여, Random forest regression을 실행할 수 있다.



# **Non-Linear regression**

- Scikit-learn의 Random forest regression
  - sklearn.ensemble.RandomForestRegressor(n\_estimators=10, criterion='mse', max\_depth=None, ..., warm\_start=False)

| Parameters   |                                                                  |
|--------------|------------------------------------------------------------------|
| n_estimators | 포레스트에 사용될 트리의 개수                                                 |
| criterion    | 분류의 질을 계산할 방법. Mse는 mean squared error. Mae는 mean absolute error |
| max_depth    | 트리의 최대 깊이                                                        |
| warm_start   | 여러 CPU를 병행하여 사용할 것인가에 대한 여부 (-1이면 모두 사용)                         |

| Attributes  |                                |
|-------------|--------------------------------|
| estimators_ | DecisionTreeRegressor의 리스트를 반환 |
| n_features_ | 사용된 특성의 개수를 반환                 |

<a href="http://scikit-">http://scikit-</a>

 <a href="learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.">html</a>



# **Early Stopping**

Early Stopping



 경우에 따라 학습을 오래하면 할수록 오히려 MSE가 증가할 수도 있다. 이 때에는 증가하기 전, 최소점이 Best Model이므로 Early Stopping이 요구된다.



### **Practice**

- Non-linear Regression
  - Turning a linear regression model into a curve polynomial regression
  - Modeling nonlinear relationships in the Housing Dataset
  - Decision tree regression
  - Random forest regression
  - Code 03 참고



#### Reference

- [Raschka. (2017)] Raschka, Sebastian, and Vahid Mirjalili. *Python machine learning*. Packt Publishing Ltd, 2017.
- [Müller. (2016)] Müller, Andreas C., and Sarah Guido. Introduction to machine learning with Python: a guide for data scientists. 2016.
- [GÉRON. (2017)] GÉRON, Aurélien. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. Sebastopol, CA: O, 2017.