

Vasumathi Raman

California Institute of Technology (vasu@caltech.edu)

Motivation

Automatically generate provably correct control from high-level specifications for teams of interchangeable robots

Example:

Robot 1 starts in r1, robot 2 starts r6. If the door is closed, the robots cannot move through it.

Regions r2 and r5 are `intrusion-sensitive" -- when an intruder is detected in them, one of the robots must go to that region to investigate.

Overview

model robot team as a switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t)),$$

$$\uparrow$$

$$\mathsf{mode} = \mathsf{task} \, \mathsf{assignment}$$

- construct motion controllers for each mode
- synthesize switching protocol to realize φ

Contributions

Novelty: concurrent task reassignment and planning via reactive synthesis

Computation: switched system representation yields exponential improvement during synthesis

Virtualization: explicit separation between motion controllers and robots allows solution of otherwise infeasible tasks

Vasumathi Raman

Automatically generating provably correct control from high-level specifications for teams of interchangeable robots

Reactive Synthesis

- Formulas in Linear Temporal Logic (LTL)*
 - » Propositional logic +

 \mathcal{U} (until) \bigcirc (next) \square (always) \diamondsuit (eventually)

- Propositions partitioned into controlled (\mathcal{Y}) and uncontrolled (\mathcal{X}) sets
- If the operating environment obeys φ_e , the system satisfies φ_s .
- Generalized Reactivity (1) (GR(1))

$$\varphi_e^i \wedge \varphi_e^t \wedge \varphi_e^g \Rightarrow \varphi_s^i \wedge \varphi_s^t \wedge \varphi_s^g$$

Related Work

Temporal Logic Synthesis for Multi-Robot Systems

Kloetzer and Belta, T-Ro 2007, 2010

not reactive

Chen & Belta, T-Ro 2010

smaller class of specifications

Loizou and Kyriakopoulo, CDC 2004

restrict non-motion actions to be

continuous

Raman and Kress-Gazit, ICRA 2014

expensive encoding of individual robot motion in LTL

Concurrent task assignment and planning

Turpin and Kumar, ICRA 2013

does not consider nondeterminism in the environment

Ayanian, Rus and Kumar, NecSys 2013 task is just a goal configuration for the team

Synthesis of switching protocols

Liu, Ozay, Topcu and Murray, TAC 2013 for general switched systems

Motion Control

- Need a controller for driving the team of robots from any current configuration to the goal configuration for each permutation of the goals
- Can use approach in [2] -- decompose the configuration space into obstacle-free polytopes, generate local smooth feedback laws that drive the team of robots from one cell to an adjoining one, sequence these local controllers using A* or incremental D* to reach the goal.

^[1] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, Yaniv Sa'ar. Synthesis of Reactive(1) designs. J. Comput. Syst. Sci. 78(3): 911-938 (2012)

^[2] Nora Ayanian, Daniela Rus, and Vijay Kumar. Decentralized multirobot control in partially known environments with dynamic task reassignment. In NecSys, pages 311–316, Santa Barbara, CA, 2012.

Vasumathi Raman

Automatically generating provably correct control from high-level specifications for teams of interchangeable robots

Example:

O robot 1		
r1	r3	r5
		door
r2	r4	r6
		robot 2

Robot 1 starts in r1, robot 2 starts r6.

If the door is closed, the robots cannot move through it.
Regions r2 and r5 are `intrusion-sensitive'' -- when an intruder is detected in them, one of the robots must go to that region to

investigate.

Discrete Abstraction

Synthesized Automaton (Excerpt)

 $(\varphi_{1_{r_1}} \wedge \varphi_{2_{r_6}})$ Specification #Initial (Environment) (Robot 1 starts in r1, Robot 2 in r6) (Excerpt) $(\neg \pi_{intruder_2} \land \neg \pi_{intruder_5} \land \neg \pi_{door})$ #Initial (Environment) (Initially no intruders, open door) (π_{12}) #Initial (System) (Robot 1 is initially assigned goal r_2 , Robot 2 is initially assigned goal r_5) (If door closed, Robot 1 can't move from r_1 to r_2) $\wedge \quad \Box(\varphi_{1_{r_2}} \land \bigcirc \pi_{door} \Rightarrow \bigcirc \neg \varphi_{1_{r_1}})$ #Safety (Environment) (If door closed, Robot 1 can't move from r_2 to r_1) $\Box(\varphi_{2_{r_{5}}} \land \bigcirc \pi_{door} \Rightarrow \bigcirc \neg \varphi_{2_{r_{6}}})$ #Safety (Environment) (If door closed, Robot 2 can't move from r_5 to r_6) $\wedge \quad \Box(\varphi_{2_{r_6}} \land \bigcirc \pi_{door} \Rightarrow \bigcirc \neg \varphi_{2_{r_5}})$ #Safety (Environment) (If door closed, Robot 2 can't move from r_6 to r_5) $1 \wedge \Box \diamondsuit (\pi_{intruder2} \Rightarrow \bigcirc (\varphi_{1_{r_2}} \lor \varphi_{2_{r_2}}))$ #Liveness (System) (If an intruder is detected in r_2 , either Robot 1 or 2 should go to r_2) #Liveness (System) (If an intruder is detected in r_5 ,

either Robot 1 or 2 should go to r_5)

Vasumathi Raman

Automatically generating provably correct control from high-level specifications for teams of interchangeable robots

