11.2 Arbitrary Period. Even and Odd Functions. Half-Range Expansions

This section covers three topics:

- 1. Transition from period 2π to any period 2L
- 2. Simplifications using odd/even property of a function
- 3. Half-range Expansion:

Expansion of f for 0≤x≤L in two Fourier series, one having only cosine terms and the other only sine terms.

1. Transition from period 2π to any period p=2L

Let f(x) have period p=2L.

Change of scale: (1) (a)
$$x=rac{p}{2\pi}v$$
 (b) $v=rac{2\pi}{p}x$

$$(b) v = \frac{2\pi}{p}x$$

f(x) has period of 2π with respect to the variable v.

(2)
$$f(x) = f\left(\frac{L}{\pi}v\right) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nv + b_n \sin nv)$$

$$\left[a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi}v\right) dv,\right]$$

(3)
$$\begin{cases} a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi}v\right) dv, \\ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi}v\right) \cos nv \, dv \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi}v\right) \sin nv \, dv \end{cases}$$

(2)
$$f(x) = f\left(\frac{L}{\pi}v\right) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nv + b_n \sin nv)$$

$$a_0=rac{1}{2\pi}\int_{-\pi}^{\pi}\!f\!iggl(rac{L}{\pi}viggr)\!dv$$

(3)
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi}v\right) \cos nv \, dv, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi}v\right) \sin nv \, dv$$

$$(4) \qquad rac{L}{\pi}v = x, \quad v = rac{\pi}{L}x, \quad dv = rac{\pi}{L}dx$$

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

(6)
$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx \quad (a) \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$(b) \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

(b)
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

EX 1 Periodic Rectangular Wave

Find the Fourier series of the function with period of 4. (Fig. 263)

$$f(x) = \begin{cases} 0, & if -2 < x < -1 \\ k, & if -1 < x < 1 \\ 0, & if 1 < x < 2 \end{cases} p = 2L = 4$$

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

(0)
$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

(6)
$$(a) a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

(b)
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

(6-0)
$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx = \frac{1}{4} \int_{-1}^{1} k dx = \frac{k}{2}$$

$$(6-a) \quad a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{2} \int_{-1}^{1} k \cos \frac{n\pi x}{2} dx$$

$$= \frac{1}{2} \cdot 2k \int_{0}^{1} \cos \frac{n\pi x}{2} dx = k \frac{\sin(n\pi x/2)}{n\pi/2} \Big|_{0}^{1} = \frac{2k}{n\pi} \sin \frac{n\pi}{2}$$

$$= \begin{cases} \frac{2k}{n\pi} & \text{for } n = 4k+1, \\ -\frac{2k}{n\pi} & \text{for } n = 4k+3, \\ 0 & \text{for } n = 4k, 4k+2 \end{cases}$$

$$(6-b) \quad b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx = 0 \ (\because odd \ function)$$

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

$$(6-0) \ a_0 = \frac{k}{2}$$

$$(6-a) \ a_n = \begin{cases} \frac{2k}{n\pi} & for \ n = 4k+1, \\ -\frac{2k}{n\pi} & for \ n = 4k+3, \\ 0 & for \ n = 4k, 4k+2 \end{cases}$$

$$(6-b) \ b_n = 0$$

$$= \frac{k}{2} + \frac{2k}{\pi} \left(\cos \frac{\pi}{2} x - \frac{1}{2} \cos \frac{3\pi}{2} x + \frac{1}{5} \cos \frac{5\pi}{2} x - + \cdots \right)$$

f(x)

EX 2 Periodic Rectangular Wave. Change of Scale

Find the Fourier series of the function (Fig. 264)

Find the Fourier series of the function (Fig. 264)
$$f(x) = \begin{cases} -k, & \text{if } -2 < x < 0 \\ k, & \text{if } 0 < x < 2 \end{cases} \quad p = 2L = 4$$

$$(6-0) \ a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) \, dx = \frac{1}{4} \left[\int_{-2}^{0} -k dx + \int_{0}^{2} k dx \right] = 0$$

$$(6-a) \ a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} \, dx = \frac{1}{2} \int_{-2}^{2} f(x) \cos \frac{n\pi x}{2} \, dx = 0$$

$$(6-b) \ b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} \, dx = \frac{1}{2} \int_{-2}^{2} f(x) \sin \frac{n\pi x}{2} \, dx$$

$$= \frac{1}{2} \cdot 2 \int_{0}^{2} k \sin \frac{n\pi x}{2} \, dx = k \left[\frac{-\cos(n\pi x/2)}{n\pi/2} \right]_{0}^{2}$$

$$= \frac{2k}{n\pi} (1 - \cos n\pi) = \begin{cases} \frac{4k}{n\pi} & odd \ n \\ 0, & even \ n \end{cases}$$

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

$$(6-0) \ a_0 = 0$$

$$(6-a) \ a_n = 0$$

$$(6-b) \ b_n = \begin{cases} \frac{4k}{n\pi} & odd \ n \\ 0, & even \ n \end{cases}$$

$$= \frac{4k}{\pi} \left(\sin \frac{\pi}{2} x + \frac{1}{3} \sin \frac{3\pi}{2} x + \frac{1}{5} \sin \frac{5\pi}{2} x + \cdots \right)$$

EX 3 Half-Wave Rectifier

Find the Fourier series of the output of a half-wave rectifier.

$$f(x) = egin{cases} 0, & if & -L < x < 0 \ E \sin \omega t, & if & 0 < x < L \end{cases} \qquad p = 2L = rac{2\pi}{\omega}, \ L = rac{\pi}{\omega}$$

$$p=2L=rac{2\pi}{\omega},~~L=rac{\pi}{\omega}$$

$$(6-0) \ a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) \, dx = \frac{1}{2\pi/\omega} \int_{0}^{\pi/\omega} E \sin\omega t \, dt \qquad \frac{-L}{-L}$$

$$= \frac{E\omega}{2\pi} [-\cos\omega t/\omega]_{0}^{\pi/\omega} = \frac{E}{\pi}$$

$$(6-a) \ a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{\pi/\omega} \int_{0}^{\pi/\omega} E \sin \omega t \cos \frac{n\pi t}{\pi/\omega} dt$$

$$= \frac{\omega E}{\pi} \int_{0}^{\pi/\omega} \sin \omega t \cos n\omega t dt$$

$$= \frac{\omega E}{2\pi} \int_{0}^{\pi/\omega} [\sin (1+n)\omega t + \sin (1-n)\omega t] dt$$

$$a_n = \frac{\omega E}{2\pi} \int_0^{\pi/\omega} [\sin{(1+n)\omega t} + \sin{(1-n)\omega t}] dt$$

If
$$n=1$$
, $a_1 = \frac{\omega E}{2\pi} \int_0^{\pi/\omega} [\sin 2\omega t + 0] dt = 0$

$$\begin{split} & \textit{If } n \neq 1, \ a_n = \frac{\omega E}{2\pi} \bigg[-\frac{\cos(1+n)\omega t}{(1+n)\omega} - \frac{\cos(1-n)\omega t}{(1-n)\omega} \bigg]_0^{\pi/\omega} \\ & = \frac{E}{2\pi} \bigg[\frac{-\cos(1+n)\pi + 1}{1+n} + \frac{-\cos(1-n)\pi + 1}{1-n} \bigg] \\ & = \begin{cases} 0, & \textit{odd } n \\ \frac{E}{2\pi} \bigg[\frac{2}{1+n} + \frac{2}{1-n} \bigg] = -\frac{2E}{(n-1)(n+1)\pi}, & \textit{even } n \end{cases} \end{split}$$

$$(6-b) b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx = \frac{1}{\pi/\omega} \int_{0}^{\pi/\omega} E \sin \omega t \sin \frac{n\pi t}{\pi/\omega} dt$$

$$= \frac{\omega E}{\pi} \int_{0}^{\pi/\omega} \sin \omega t \sin n\omega t dt$$

$$= -\frac{\omega E}{2\pi} \int_{0}^{\pi/\omega} [\cos(1+n)\omega t - \cos(1-n)\omega t] dt$$

If
$$n = 1$$
, $b_1 = \frac{\omega E}{2\pi} \int_0^{\pi/\omega} [\cos 2\omega t + 1] dt = \frac{E}{2}$

If $n \neq 1$, $b_n = \frac{\omega E}{2\pi} \left[\frac{\sin (1+n)\omega t}{(1+n)\omega} - \frac{\sin (1-n)\omega t}{(1-n)\omega} \right]_0^{\pi/\omega} = 0$

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

$$a_0 = rac{E}{\pi}$$

If $n=1,\ a_n=0$

If $n
eq 1,\ a_n = egin{cases} 0, & odd \ n \ -rac{2E}{(n-1)(n+1)\pi}, & even \ n \end{cases}$

If $n=1,\ b_n = rac{E}{2}$ If $n
eq 1,\ b_n = 0$

$$= \frac{E}{\pi} + \frac{E}{2} \sin \omega t - \frac{2E}{\pi} \left(\frac{1}{1 \cdot 3} \cos 2\omega t + \frac{1}{3 \cdot 5} \cos 4\omega t + \cdots \right)$$

2. Simplifications: Even and Odd Functions

If f(x) is an even function, f(-x)=f(x).

$$\int_{-L}^{L} f(x) dx = \int_{-L}^{0} f(x) dx + \int_{0}^{L} f(x) dx
\int_{-L}^{0} f(x) dx = \int_{L}^{0} f(-t) (-dt) [\because x = -t, dx = -dt]
= -\int_{L}^{0} f(t) dt = \int_{0}^{L} f(x) dx$$

$$\therefore \int_{-L}^{L} f(x) dx = \int_{-L}^{0} f(x) dx + \int_{0}^{L} f(x) dx = 2 \int_{0}^{L} f(x) dx$$

If f(x) is an odd function, f(-x) = -f(x).

$$\int_{-L}^{L} f(x)dx = \int_{-L}^{0} f(x)dx + \int_{0}^{L} f(x)dx$$
 $\int_{-L}^{0} f(x)dx = \int_{L}^{0} f(-t)(-dt)[\because x = -t, dx = -dt]$
 $= -\int_{L}^{0} [-f(t)]dt = -\int_{0}^{L} f(x)dx$

$$\int_{-L}^{L} f(x) dx = \int_{-L}^{0} f(x) dx + \int_{0}^{L} f(x) dx = 0$$

Case 1: f(x) is an even function.

(6-0)
$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

= $\frac{1}{2L} \cdot 2 \int_{0}^{L} f(x) dx = \frac{1}{L} \int_{0}^{L} f(x) dx$ (5*)

$$(6-a) \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$= \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx \qquad (5*)$$

$$(6-b) b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx = 0 \ (\because odd \ function)$$

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

$$= \frac{1}{2L} \cdot 2 \int_{-L}^{L} f(x) dx$$

$$= \frac{1}{2L} \cdot 2 \int_{0}^{L} f(x) dx = \frac{1}{L} \int_{0}^{L} f(x) dx \quad (5^*)$$

$$(6-a) \ a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$= \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx \quad (5^*)$$

$$(6-b) \ b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx = 0 \quad (\because odd \ function)$$

$$= a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

Case 2: f(x) is an odd function.

$$(6-0) \ a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) \, dx = 0$$

$$(6-a) \ a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = 0 \ (\because odd \ function)$$

$$(6-b) b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$
$$= \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n\pi x}{L} dx \qquad (6**)$$

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

$$egin{aligned} a_0 &= 0 \ a_n &= 0 \ b_n &= rac{2}{L} \int_0^L \! f(x) \sinrac{n\pi x}{L} dx \end{aligned}$$

$$=\sum_{n=1}^{\infty}b_{n}\sinrac{n\pi x}{L}$$

EX 4 Fourier Cosine and Sine Series

The rectangular wave is even.

Hence it follows without calculation that $b_n=0$.

THEOREM 1 Sum and Scalar Multiple

The Fourier coefficients of a sum f_1+f_2 are the sum of the corresponding Fourier coefficients of f₁ and f₂.

The Fourier coefficients of cf are c times the corresponding Fourier coefficients of f.

EX 5 Sawtooth Wave

Find the Fourier series of the function(Fig. 268).

$$f(x) = x + \pi \ if \ -\pi < x < \pi$$

and $f(x + 2\pi) = f(x)$

$$f(x)=f_1+f_2$$
 where $f_1=x$, $f_2=\pi$
$$f(x)$$

$$f(x)=f_1+f_2$$

$$f(x)$$

$$f_1(x) = x = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 $a_0 = 0$
 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f_1(x) \cos nx \, dx = 0 \ (\because odd \ function)$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f_1(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx$
 $= \frac{2}{\pi} \int_{0}^{\pi} x \sin nx \, dx$
 $= \frac{2}{\pi} \left[x \left(\frac{-\cos nx}{n} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} 1 \cdot \frac{-\cos nx}{n} \, dx \right]$
 $= -\frac{2}{\pi} \cos n\pi$

$$f_1(x) = a_0 + \sum_{n=1}^{\infty} [a_n \cos mx + b_n \sin nx]$$

$$a_0 = a_n = 0$$

$$b_n = -\frac{2}{n} \cos n\pi$$

$$= 2 \left(\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - + \cdots \right)$$

$$f(x) = f_1(x) + f_2(x)$$

= $\pi + 2 \left(\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - + \cdots \right)$

$$f(x) = \pi + 2\left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - + \cdots\right)$$

3. Half-Range Expansions

Consider a function f(x) given 0 < x < L. For example,

- shape of a distorted violin string
- the temperature in a metal bar of length L

f(x) continued as an even periodic function

f(x) continued as an odd periodic function

EX 6 "Triangle" and Its Half-Range Expansions

Find the two half-range expansions of the following function.

$$f(x) = \begin{cases} (2k/L)x & \text{if } 0 < x < L/2 \\ (2k/L)(L-x) & \text{if } L/2 < x < L \end{cases}$$

Sol.

(a) Even periodic expansion

$$(6^*) \begin{cases} a_0 = \frac{1}{L} \int_0^L f(x) dx \\ a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi}{L} x dx \end{cases}$$

(b) Odd periodic expansion

$$(6**) \quad b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi}{L} x \, dx$$

1-7. Are the following functions even or odd or neither even nor odd?

- **1.** e^x , $e^{-|x|}$, $x^3 \cos nx$, $x^2 \tan \pi x$, $\sinh x \cosh x$
- **2.** $\sin^2 x$, $\sin(x^2)$, $\ln x$, $x/(x^2+1)$, $x \cot x$
- 3. Sums and products of even functions
- **4.** Sums and products of odd functions
- **5.** Absolute values of odd functions
- 6. Product of an odd times an even function
- 7. Find all functions that are both even and odd.

8. Is the given function even or odd or neither even nor odd? Find its Fourier series. Show details of your work.

$$\begin{split} f(x) &= |x| \ (-1 < x < 1) \ , \ L = 1 \\ a_0 &= \frac{1}{2} \int_{-1}^1 |x| dx = \int_0^1 x \, dx = \frac{1}{2} \\ a_n &= \int_{-1}^1 |x| \cos n \pi x dx = 2 \int_0^1 x \cos n \pi x \, dx \\ &= \frac{2}{n^2 \pi^2} \left[(-1)^n - 1 \right] = \begin{cases} 0 & (n : \text{ even}) \\ \frac{-4}{n^2 \pi^2} & (n : \text{ odd}) \end{cases} \\ b_n &= \int_{-1}^1 |x| \sin (n \pi x) dx = 0 \end{split}$$

$$\therefore f(x) = \frac{1}{2} - \frac{4}{\pi^2} \left[\cos \pi x + \frac{1}{9} \cos 3\pi x + \frac{1}{25} \cos 5\pi x + \cdots \right]$$

10. Is the given function even or odd or neither even nor odd? Find its Fourier series. Show details of your work.

$$f(x) = \begin{cases} -x - 4 & (-4 < x < 0) \\ -x + 4 & (0 < x < 4) \end{cases}, L = 4$$

$$a_0 = \frac{1}{8} \int_{-4}^{0} (-x - 4) dx + \frac{1}{8} \int_{0}^{4} (-x + 4) dx = 0$$

$$a_n = \frac{1}{4} \int_{-4}^{0} (-x - 4) \cos \frac{n\pi x}{4} dx + \frac{1}{4} \int_{0}^{4} (-x + 4) \cos \frac{n\pi x}{4} dx$$

$$= \frac{1}{4} \int_{-4}^{4} -x \cos \frac{n\pi x}{4} dx - \int_{-4}^{0} \cos \frac{n\pi x}{4} dx + \int_{0}^{4} \cos \frac{n\pi x}{4} dx = 0$$

$$b_n = \frac{1}{4} \int_{-4}^{0} (-x - 4) \sin \frac{n\pi x}{4} dx + \frac{1}{4} \int_{0}^{4} (-x + 4) \sin \frac{n\pi x}{4} dx$$

$$= \frac{1}{4} \left[\frac{4(x + 4)}{n\pi} \cos \frac{n\pi x}{4} - \frac{16}{n^2 \pi^2} \sin \frac{n\pi x}{4} \right]_{-4}^{0} + \frac{1}{4} \left[\frac{4(x - 4)}{n\pi} \cos \frac{n\pi x}{4} - \frac{16}{n^2 \pi^2} \sin \frac{n\pi x}{4} \right]_{0}^{4}$$

$$\therefore f(x) = \frac{8}{\pi} \left(\sin \frac{\pi x}{4} + \frac{1}{2} \sin \frac{\pi x}{2} + \frac{1}{3} \sin \frac{3\pi x}{4} + \cdots \right) = \frac{8}{n\pi}$$

24. Find (a) the Fourier cosine series, (b) the Fourier sine series. Sketch and its two periodic extensions. Show the details.

$$f(x) = \begin{cases} 0 & (0 < x < 2) \\ 1 & (2 < x < 4) \end{cases}, \ p = 8, \ L = 4$$

(a) Fourier cosine series

$$a_0 = \frac{1}{4} \int_2^4 1 dx = \frac{1}{2},$$
 $a_n = \frac{1}{2} \int_2^4 \cos \frac{n\pi x}{4} dx = -\frac{2}{n\pi} \sin \frac{n\pi}{2}$

$$f(x) = \frac{1}{2} - \frac{2}{\pi} \left(\cos \frac{\pi x}{4} - \frac{1}{3} \cos \frac{3\pi x}{4} + \frac{1}{5} \cos \frac{5\pi x}{4} - \cdots \right)$$

(b) Fourier sine series

(b) Fourier sine series
$$b_{n} = \frac{1}{2} \int_{2}^{4} \sin \frac{n\pi x}{4} dx = \frac{2}{n\pi} \left(\cos \frac{n\pi}{2} - \cos n\pi \right) = \begin{cases} 0 & (n = 4k) \\ \frac{2}{n\pi} & (n = 4k+1) \\ \frac{-4}{n\pi} & (n = 4k+2) \\ \frac{2}{n\pi} & (n = 4k+3) \end{cases}$$

$$\therefore f(x) = \frac{2}{\pi} \left(\sin \frac{\pi x}{4} - \sin \frac{\pi x}{2} + \frac{1}{3} \sin \frac{3\pi x}{4} + \frac{1}{5} \sin \frac{5\pi x}{4} - \frac{1}{3} \sin \frac{3\pi x}{2} + \frac{1}{7} \sin \frac{7\pi x}{4} + \frac{1}{9} \sin \frac{9\pi x}{4} - \frac{1}{5} \sin \frac{5\pi x}{2} + \cdots \right)$$

25. Find (a) the Fourier cosine series, (b) the Fourier sine series. Sketch and its two periodic extensions. Show the details.

$$f(x) = \pi - x, \ (0 < x < \pi)$$

(a) Fourier cosine series

$$a_0 = \frac{1}{\pi} \int_0^{\pi} (\pi - x) dx = \frac{\pi}{2}$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (\pi - x) \cos nx dx = \frac{-2}{n^2 \pi} (\cos n\pi - 1)$$

$$\therefore f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{-2}{n^2 \pi} ((-1)^2 - 1) \cos nx = \frac{\pi}{2} + \frac{4}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right)$$

(b) Fourier sine series

$$b_n = \frac{2}{\pi} \int_0^{\pi} (\pi - x) \sin nx dx = \frac{2}{n}$$

$$\therefore f(x) = \sum_{n=1}^{\infty} \frac{2}{n} \sin nx = 2 \left(\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \cdots \right)$$

11.3 Forced Oscillations (강제진동)

(1)
$$my'' + cy' + ky = r(t)$$
 (1*) $LI'' + RI' + \frac{1}{C}I = E'(t)$

Steady-state solution:

a harmonic oscillation with frequency equal to that of r(t)

Ex. 1 Forced Oscillations under a Nonsinusoidal Periodic Driving Force

$$y'' + 0.05y' + 25y = r(t),$$

$$r(t) = \begin{cases} t + \frac{\pi}{2} & (-\pi < t < 0) \\ -t + \frac{\pi}{2} & (0 < t < \pi) \end{cases}$$

$$r(t + 2\pi) = r(t)$$

Find the steady-state solution y(t).

- 1. Represent r(t) by a Fourier series.
- 2. Find the steady-state solution y(t) by solving the ODE.

1. Represent r(t) by a Fourier series.

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt = 0$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt = \frac{2}{\pi} \int_{0}^{\pi} \left(-t + \frac{\pi}{2}\right) \cos nt dt$$

$$= \frac{2}{\pi} \left(-\int_{0}^{\pi} t \cos nt dt + 0\right) = \frac{2}{\pi} \left(-\int_{0}^{\pi} t \cos nt dt\right)$$

$$a_n = rac{2}{\pi} \left(-\int_0^{\pi} t \cos nt \, dt
ight)$$
 $= rac{2}{\pi} \left(-t rac{\sin nt}{n} \Big|_0^{\pi} + \int_0^{\pi} rac{\sin nt}{n} \, dt
ight)$
 $= rac{2}{\pi} \left[-rac{\cos nt}{n^2} \Big|_0^{\pi} = rac{2}{\pi} \left[rac{1 - \cos n\pi}{n^2}
ight]$
 $= \begin{cases} 0 & for \ even \ n \\ rac{4}{n^2 \pi} for \ odd \ n \end{cases}$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi t}{L} dt = 0$$

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{L} + b_n \sin \frac{n\pi t}{L} \right), L = \pi$$

$$a_0 = b_n = 0$$

$$a_n = \frac{4}{n^2 \pi} for \ odd \ n$$

$$= \sum_{\substack{\text{odd } n}} \frac{4}{n^2 \pi} \cos nt$$

2. Find the steady-state solution y(t) by solving the ODE.

$$y'' + 0.05y' + 25y = \frac{4}{n^2\pi} \cos nt$$
 $(n = 1, 3, 5, \dots)$

$$y'' + 0.05y' + 25y = \frac{4}{n^2\pi} \cos nt \quad (n = 1, 3, 5, \cdots)$$

$$y_n = A_n \cos nt + B_n \sin nt$$

$$y_n' = -nA_n \sin nt + nB_n \cos nt$$

$$y_n'' = -n^2(A_n \cos nt + B_n \sin nt)$$

$$\begin{split} &(-n^2A_n + 0.05nB_n + 25A_n)_{\text{COS}}nt \\ &+ (-n^2B_n - 0.05nA_n + 25B_n)_{\text{Sin}}nt = \frac{4}{n^2\pi}_{\text{COS}}nt \\ &\left\{ -n^2A_n + 0.05nB_n + 25A_n = \frac{4}{n^2\pi} \\ &- n^2B_n - 0.05nA_n + 25B_n = 0 \end{split} \right.$$

$$\begin{cases} -n^2A_n + 0.05nB_n + 25A_n = \frac{4}{n^2\pi} \\ -n^2B_n - 0.05nA_n + 25B_n = 0 \end{cases}$$

$$\begin{bmatrix} 25 - n^2 & 0.05n \\ -0.05n & 25 - n^2 \end{bmatrix} \begin{bmatrix} A_n \\ B_n \end{bmatrix} = \begin{bmatrix} 4/(n^2\pi) \\ 0 \end{bmatrix}$$

$$A_n = \frac{\begin{vmatrix} 4/(n^2\pi) & 0.05n \\ 0 & 25 - n^2 \end{vmatrix}}{\begin{vmatrix} 25 - n^2 & 0.05n \\ -0.05n & 25 - n^2 \end{vmatrix}} = \frac{[4/(n^2\pi)](25 - n^2)}{(25 - n^2)^2 + (0.05n)^2}$$

$$= \frac{4(25 - n^2)}{(n^2\pi)D_n}, \quad where \quad D_n = (25 - n^2)^2 + (0.05n)^2$$

$$\begin{bmatrix} 25 - n^2 & 0.05n \\ -0.05n & 25 - n^2 \end{bmatrix} \begin{bmatrix} A_n \\ B_n \end{bmatrix} = \begin{bmatrix} 4/(n^2\pi) \\ 0 \end{bmatrix}$$

$$B_{n} = \frac{\begin{vmatrix} 25 - n^{2} & 4/(n^{2}\pi) \\ -0.05n & 0 \end{vmatrix}}{\begin{vmatrix} 25 - n^{2} & 0.05n \\ -0.05n & 25 - n^{2} \end{vmatrix}} = \frac{0.2n/(n^{2}\pi)}{D_{n}}$$
$$= \frac{0.2}{n\pi D_{n}}$$

$$\begin{aligned} y_n &= A_n \mathrm{cos} nt + B_n \mathrm{sin} nt \\ &= \sqrt{A_n^2 + B_n^2} \cos(nt - \phi_n) \\ &= where \\ \phi_n &= \tan^{-1}(B_n/A_n) \end{aligned}$$

$$\begin{split} C_n &= \sqrt{A_n^{\,2} + B_n^{\,2}} \quad A_n = \frac{4(25 - n^2)}{(n^2 \pi) D_n}, \ B_n = \frac{0.2}{n \pi D_n} \\ &= \sqrt{\left[\frac{4(25 - n^2)}{(n^2 \pi) D_n}\right]^2 + \left[\frac{0.2}{n \pi D_n}\right]^2} \end{split}$$

$$\begin{split} C_n &= \sqrt{\left[\frac{4(25-n^2)}{(n^2\pi)D_n}\right]^2 + \left[\frac{0.2}{n\pi D_n}\right]^2} \\ &= \sqrt{\frac{[4(25-n^2)]^2 + (0.2n)^2}{(n^2\pi D_n)^2}} \\ &= \sqrt{\frac{16[(25-n^2)^2 + (0.05n)^2]}{(n^2\pi D_n)^2}} = \sqrt{\frac{16D_n}{(n^2\pi D_n)^2}} \\ &= \frac{4}{n^2\pi\sqrt{D}} \end{split}$$

 y_5 is the dominating term.

The steady-state solution y(t):

7. Find a general solution of the ODE $y'' + \omega^2 y = r(t)$ with r(t) as given. Show the details of your work.

$$r(t) = \sin t$$
, $\omega = 0.5, 0.9, 1.1, 1.5, 10$

$$r(t) = \sin t \longrightarrow y_p = A \cos t + B \sin t$$

$$y'' + \omega^2 y = r(t) \longrightarrow -(A\cos t + B\sin t) + \omega^2 (A\cos t + B\sin t) = \sin t$$
$$(\omega^2 - 1)A = 0, \quad (\omega^2 - 1)B = 1 \Longrightarrow A = 0, \quad B = \frac{1}{\omega^2 - 1}$$
$$\therefore y_p = \frac{1}{\omega^2 - 1} \sin t \qquad y = c_1 \cos \omega t + c_2 \sin \omega t + \frac{1}{\omega^2 - 1} \sin t$$

$$\therefore y_p = \frac{1}{\omega^2 - 1} \sin t \qquad y = c_1 \cos \omega t + c_2 \sin \omega t + \frac{1}{\omega^2 - 1} \sin \omega t$$

$$\omega = 0.5$$
: $y = c_1 \cos 0.5t + c_2 \sin 0.5t - \frac{4}{3} \sin t$

$$\omega = 0.9$$
: $y = c_1 \cos 0.9t + c_2 \sin 0.9t - \frac{100}{19} \sin t$

$$\omega = 1.1$$
: $y = c_1 \cos 1.1t + c_2 \sin 1.1t + \frac{100}{21} \sin t$

$$\omega = 1.5$$
: $y = c_1 \cos 1.5t + c_2 \sin 1.5t + \frac{4}{5} \sin t$

$$\omega = 10$$
: $y = c_1 \cos 10t + c_2 \sin 10t + \frac{1}{99} \sin t$

11. Find a general solution of the ODE
$$y'' + \omega^2 y = r(t)$$
 with $r(t)$ as given.
$$r(t) = \begin{cases} -1 & \text{if } -\pi < t < 0 \\ 1 & \text{if } 0 < t < \pi \end{cases}$$
 $|\omega| \neq 1, 3, 5, \cdots$

$$\begin{split} b_n &= \frac{2}{\pi} \int_0^\pi \sin nt dt = \frac{2}{n\pi} \left[1 - (-1)^n \right] = \begin{cases} 0 & (n : \text{even}) \\ \frac{4}{n\pi} & (n : \text{odd}) \end{cases} \\ r(t) &= \frac{4}{\pi} \left[\sin t + \frac{1}{3} \sin 3t + \frac{1}{5} \sin 5t + \cdots \right] \end{split}$$

$$\begin{split} r(t) &= \frac{4}{n\pi} \sin nt & y_{pn} = A_n \cos nt + B_n \sin nt \\ & A_n = 0 \,, \ B_n = \frac{4}{\left(\omega^2 - n^2\right)n\pi} \\ & = \frac{4 \sin nt}{\left(\omega^2 - n^2\right)n\pi} \end{split}$$

$$y = c_1 \cos \omega t + c_2 \sin \omega t + \frac{4 \sin t}{(\omega^2 - 1)\pi} + \frac{4 \sin 3t}{3(\omega^2 - 9)\pi} + \cdots$$

13. Find the steady-state oscillations of y'' + cy' + y = r(t) with c>0 and r(t) as given.

$$r(t) = \sum_{n=1}^{N} (a_n \cos nt + b_n \sin nt)$$

$$y'' + cy' + y = r(t) = a_n \cos nt + b_n \sin nt$$
$$y_n = A_n \cos nt + B_n \sin nt$$

-
$$n^2(A_n \cos nt + B_n \sin nt)$$
 + $cn(-A_n \sin nt + B_n \cos nt)$
+ $(A_n \cos nt + B_n \sin nt)$ = $a_n \cos nt + b_n \sin nt$

$$\begin{cases} (-n^2+1)A_n + cn B_n = a_n \\ (-n^2+1)B_n - cn A_n = b_n \end{cases} \longrightarrow A_n = \frac{(1-n^2)a_n - cn b_n}{c^2 n^2 + (1-n^2)^2} \,, \quad B_n = \frac{cn a_n + (1-n^2)b_n}{c^2 n^2 + (1-n^2)^2}$$

$$y = \sum_{n=1}^{N} \left[A_n \cos nt + B_n \sin nt \right]$$