Lista II

Pedro Henrique Honorio Saito 122149392 Milton Salgado 122169279

Questão 1

Enunciado: Dada uma assinatura \mathcal{A} com dois símbolos para operações, sendo P unário e R binário. Provaremos ou refutaremos cada um dos itens abaixo.

Item B

Iremos refutar a fórmula $\varphi := P(x) \models P(y)$ por meio de um contraexemplo. Assim, considere:

- A estrutura ε com domínio $D(\varepsilon)$ dos números naturais \mathbb{N} .
- A especificação para relação unária dada por $P^{\varepsilon}=$ é par.
- A atribuição a para x e y valendo, respectivamente, 2 e 3.

Portanto, sabemos que para a estrutura ε e atribuição a definidas, vale $P(x)[x \leftarrow 2]$ pois 2 é par, isto é, vale dizer que ε , $a[x \leftarrow 2] \models P(x)$. No entanto, é incorreto afirmar o consequente $P(y)[y \leftarrow 3]$ dado que 3 não consta no conjunto dos números pares. Donde concluímos que ε , $a[y \leftarrow 3] \not\models P(y)$.

Item G

Novamente, vamos refutar a fórmula $\varphi := \forall x \exists y (xRy) \models \exists x \forall y (xRy)$ a partir de um contramodelo. Considere:

- A estrutura ε com domínio $D(\varepsilon)$ do conjunto $\{\{\Box\}, \{\blacksquare\}\}$.
- A especificação para relação binária R(x,y) equivale a dizer: " $x\subset y$ " na noção usual de Teoria dos Conjuntos.

Nesse sentido, para a estrutura ε vale afirmar o antecedente $\forall x \exists y (xRy)$, ou seja, para cada um dos subconjuntos $\{\Box\}$ e $\{\blacksquare\}$, existe um outro subconjunto que o contenha, isto é, $\forall x \exists y (xRy)$. Essa afirmação é válida pois podemos escolher o mesmo conjunto de modo que (xRx). Desempacotando:

$$\begin{split} \varepsilon, a &\vDash \forall x \exists y (xRy) \\ \text{Para todo } d_0 \in D(\varepsilon), \text{existe } d_1 \in D(\varepsilon) \text{ tal que } \varepsilon, a[x \leftarrow d_0, y \leftarrow d_1] \vDash \forall x \exists y (xRy) \\ \text{Para todo } d_0 &\in \{\{\Box\}, \{\blacksquare\}\}, \text{existe } d_1 \in \{\{\Box\}, \{\blacksquare\}\} \text{ tal que } \left(x^{\varepsilon, a[x \leftarrow d_0]}\right) \subset \left(y^{\varepsilon, a[y \leftarrow d_1]}\right) \\ \text{Para todo } d_0 &\in \{\{\Box\}, \{\blacksquare\}\}, \text{existe } d_1 \in \{\{\Box\}, \{\blacksquare\}\} \text{ tal que } (a[x \leftarrow d_0])(x) \subset (a[x \leftarrow d_1])(y) \\ \text{Para todo } d_0 &\in \{\{\Box\}, \{\blacksquare\}\}, \text{existe } d_1 \in \{\{\Box\}, \{\blacksquare\}\} \text{ tal que } d_0 \subset d_1 \end{split}$$

Portanto, se temos $d_0 = \{ \Box \}$ ou $d_0 = \{ \blacksquare \}$, basta escolher $d_1 = d_0$ e assim satisfazemos o antecedente da fórmula. Dessa forma, a estrutura e atribuição escolhidas satisfazem a primeira parte da implicação. Agora, precisamos demonstrar que o consequente $\mathbf{n}\mathbf{\tilde{a}o}$ é satisfeito. Novamente, desempacotando:

$$\varepsilon, a \vDash \exists x \forall y (xRy) \tag{2}$$

Desse modo, deve existir $d_0 \in \{\{\Box\}, \{\blacksquare\}\}$ tal que, para todo $d_1 \in \{\{\Box\}, \{\blacksquare\}\}$, temos $d_0 \subset d_1$. Se fixarmos $d_0 = \{\Box\}$, a fórmula exige que $\{\Box\} \subset \{\Box\}$ e $\{\Box\}$. Contudo, essa última afirmação é inválida, pois o conjunto $\{\blacksquare\}$ não contém $\{\Box\}$.

Item K

Aqui provaremos a fórmula $\psi \coloneqq$ "Se x não ocorre livre em φ , então $\varphi \vDash \forall x \varphi$ ".

Por definição, para:

- Uma assinatura \mathcal{A} .
- Um conjunto de fórmulas Σ de \mathcal{A} .
- Uma uma fórmula φ de \mathcal{A} .

Dizemos que φ é consequência semântica de Σ , denotado $\Sigma \vDash \varphi$, se: Em qualquer estrutura ε para \mathcal{A} e qualquer atribuição a para ε temos se para todo $\sigma \in \Sigma$ temos ε , $a \vDash \sigma$ então ε , $a \vDash \varphi$.

Sejam ε , a tais que ε , $a \vDash \varphi$ onde φ é uma fórmula na qual x não ocorre como variável livre, desejamos provar que ε , $a \vDash \forall x \varphi$. Primeiramente, vamos esclarecer esta última fórmula:

$$\varepsilon, a \vDash \forall x \varphi \Leftrightarrow \text{Para todo } d \in D(\varepsilon), \text{ temos } \varepsilon, a[x \leftarrow d] \vDash \varphi.$$
 (3)

Como sabemos que x não ocorre como variável livre em φ , podemos separar a fórmula original em dois casos:

1. x não ocorre em φ : A adição do quantificador $\forall x$ não alterará o significado da proposição φ , pois x não ocorre em φ . A substituição $a[x \leftarrow d]$ também não afeta φ , pois x não aparece em φ . Assim,

$$\varepsilon, a[x \leftarrow d] \Leftrightarrow \varepsilon, a \vDash \varphi \tag{4}$$

Logo, como isso vale para todo $d \in D(\varepsilon)$, concluímos que:

$$\varepsilon, a \vDash \forall x \varphi. \tag{5}$$

2. x ocorre ligada em φ : Isso nos diz que todas as ocorrências de x em φ estão sob o escopo de algum quantificador como $\exists x$ ou $\forall x$. Portanto, uma atribuição diferente para x como $a[x \leftarrow d']$ não modifica a interpretação de φ , pois a variável x já está internamente determinada na fórmula. Assim, novamente temos:

$$\varepsilon, a[x \leftarrow d] \Leftrightarrow \varepsilon, a \vDash \varphi \tag{6}$$

para todo $d \in D(\varepsilon)$, o que implica:

$$\varepsilon, a \vDash \forall x \varphi.$$
 (7)

Questão 2

Chamamos de *modelagem* o processo de formalizar (simbolizar) frases ou argumentos da linguagem natural para a LPO usando alguma assinatura apropriada. Deve-se indicar a correspondência entre os componentes da frase da linguagem natural e os símbolos da linguagem formal.

Item B

Frase: "Toda pessoa que tem um filho deveria ser carinhosa com ele". Use a assinatura abaixo:

Linguagem natural	Simbólico
x é pai de y	P(x,y)
\boldsymbol{x} deveria ser carinhoso com \boldsymbol{y}	C(x,y)

Sendo x o pai, então a afirmação corresponde a dizer que todo pai (isto é, pessoa que tem filho) deve ser carinhoso com seu filho. Assim,

Tradução: $\forall x \forall y (P(x,y) \rightarrow C(x,y))$.

Explicação: Na minha formulação, procurei transmitir a noção: Para todo par de indivíduos x e y, se x é pai de y, então x deve ser carinhoso com y. Note que, na minha formulação nada impede "autopartenidade", isto é, x=y. Se for necessária essa restrição, bastaria modificar a fórmula para:

$$\forall x \forall y ((P(x,y) \land \neg (x=y)) \rightarrow C(x,y)). \tag{8}$$

Questão 3

Enunciado: Em cada item abaixo, defina uma assinatura e encontre uma sentença φ dessa assinatura com a propriedade desejada.

Item B

Enunciado: Os modelos de φ são **torneios** (grafos direcionados, sem laços, tais que entre qualquer par de vértices distintos existe exatamente uma aresta).

Seja $\mathcal A$ uma assinatura que contenha um símbolo R para relação. Assim,

Formulação:
$$\forall x (\neg(xRx)) \land \forall x \forall y ((x \neq y) \rightarrow ((xRy) \oplus (yRx)))$$

Onde a relação \oplus é uma forma concisa de expressar a relação $A \oplus B = (A \land \neg B) \lor (\neg A \land B)$.

Explicação: Neste exercício, precisamos garantir duas propriedades importantes mencionadas no enunciado, isto é, a ausência de laços e a existência de uma única aresta entre quaisquer dois vértices distintos. Para essa finalidade, defini a relação R que indica uma arco (aresta direcionada).

Com efeito, a primeira fórmula $\forall x(\neg(xRx))$ restringe que um mesmo vértice se ligue consigo mesmo. Além disso, a segunda parte da fórmula nos garante que se dois vértices são distintos, então existe uma aresta direcionada do "primeiro" para o "segundo" **ou** vice-versa. Vale ressaltar que o **ou** em questão é *exclusivo*.

Item F

Enunciado: Os modelos de φ tem exatamente n elementos, sendo $n \geq 2$ um número natural qualquer.

Seja \mathcal{A} uma assinatura vazia. Nesse sentido, temos precisamos garantir as seguintes propriedades:

- Existem pelo menos n elementos distintos.
- Existem no máximo n elementos distintos.

Portanto, teremos a seguinte sentença:

$$\textbf{Formulação} : \exists x_1 \exists x_2 ... \forall x_n, \left(\bigwedge_{1 \leq i < j \leq n} \left(x_i \neq x_j \right) \land \forall y \bigvee_{i=1}^n \left(y = x_i \right) \right)$$

Onde a relação $\neq (A,B)$ equivale a $\neg (A=B)$ e a notação com variável ligada $\bigwedge_{1 \leq i < j < n}$ corresponde a dizer: Substitua todas as combinações de i,j no intervalo [1,n] com i < j na fórmula $(x_i \neq x_j)$ e

una-os por uma conjunção. Por fim, a notação $\bigvee_{i=1}^n$ realiza um procedimento semelhante, mas unindo as fórmulas por disjunções.

Explicação: Como solicitado, a primeira fórmula restringe a existência de pelo menos n elementos distintos $x_0,...,x_n$, enquanto a segunda apenas nos informa que todo elemento do domínio será equivalente a um desses.

Item H

Enunciado: Os modelos de φ são infinitos.

Seja \mathcal{A} uma assinatura com um símbolo para relação binária R. Desse modo, para simplificar a fórmula final, denotaremos cada propriedade da seguinte forma:

- Transitividade: $\alpha := \forall x \forall y \forall z ((R(x,y) \land R(y,z)) \rightarrow R(x,z)).$
- Assimetria: $\beta := \forall x \forall y (R(x, y) \rightarrow \neg R(y, x)).$
- Irreflexividade: $\gamma := \forall x(\neg(xRx))$.

Desse modo, obtemos:

Formulação: $(\alpha \land \beta \land \gamma \land \forall x \exists y R(x, y))$.

onde a relação R(x,y) é uma relação de **ordem parcial estrita**.

Explicação: Nesta questão, precisamos definir o conceito de <u>relação</u> de <u>ordem parcial estrita</u> e, então, afirmar que para todo elemento do domínio x, existe um y de modo que R(x,y), ou seja, "x vem antes de y". O objetivo é formular uma sentença que só possa ser satisfeita por estruturas cujo domínio seja infinito. Por definição, as relações de ordem parcial estrita satisfazem as seguintes propriedades:

- Irreflexividade: Assegura que nenhum elemento se relacione consigo mesmo, evitando a existência de "laços", isto é, um elemento relacionado com si próprio.
- Assimetria: Impede ciclos de comprimento 2.
- **Transitividade**: Permite estender a "cadeia de comparações" indefinidamente e, assim, evitar a existência de ciclos como um todo. Por exemplo, se

$$x_0 R x_1 R \dots R x_n R \dots ag{9}$$

Por fim, a última proposição $\forall x \exists y (R(x,y))$ nos garante que todo elemento do domínio está relacionado com alguém.

Em vista disso, escolha um elemento inicial x_0 . Pela **irreflexividade** e pela condição $\forall x \exists y (xRy)$, existe $\neg (x_1 = x_0)$ tal que

$$x_0 R x_1.$$
 (10)

Novamente, pela **assimetria** não podemos ter x_1Rx_0 . Aplicando novamente a última proposição à x_1 , obtemos um $\neg(x_2=x_1)$ de modo que

$$x_0 R x_1 R x_2,$$
 (11)

e assim sucessivamente. Com efeito, a **transitividade** permite construir uma única cadeia infinita de elementos relacionados unilateralmente com o próximo nesta ordem

$$x_0 R x_1 R x_2 R \dots R x_n R \dots$$
 (12)

Questão 5

Enunciado: Seja $\mathcal A$ uma assinatura com um símbolo para constante u, com dois símbolos para operações binárias \oplus , \odot e um símbolo para relação binária \triangleleft . Seja $\varepsilon_{\mathbb R}$ a estrutura para essa assinatura que tem o conjunto dos reais $\mathbb R$ como domínio e que interpreta u como 1, as operações \oplus , \odot respectivamente como adição e multiplicação, e a relação \triangleleft como "estritamente menor que".

Item A

Enunciado: Prove que todo número inteiro é definível em $\varepsilon_{\mathbb{R}}$.

Antes de mais nada, vamos recordar a definibilidade de um elemento d pertencente ao domínio $D(\varepsilon)$.

Definição: Seja $\mathcal A$ assinatura, ε estrutura para $\mathcal A$ e $d\in D(\varepsilon)$. Dizemos que d é definível em ε se existe uma fórmula φ de $\mathcal A$ com exatamente 1 variável livre (digamos x) tal que, para toda atribuição a para ε temos

$$\varepsilon, a \vDash \varphi \Leftrightarrow a(x) = d \tag{13}$$

Nesse caso, dizemos que φ define d em ε .

Dito isso, como temos a estrutura $\varepsilon_{\mathbb{R}}$ e a assinatura \mathcal{A} , vamos começar definindo o "zero" por meio da seguinte fórmula com a variável livre x:

$$\psi(0)(x) \coloneqq (x = x \oplus x) \tag{14}$$

Onde $\psi(0)(x)$ é a fórmula que define o elemento 0 pertencente a $D(\varepsilon)=\mathbb{R}$ usando a variável livre x. A fórmula anterior é válida, pois sabemos que o 0 é o único elemento dos reais que satisfaz a equação. Feito isso, se quisermos definir valores positivos ou negativos, usaremos a fórmula abaixo:

$$\psi(n)(z) := \begin{cases}
z = z \oplus z, & n = 0 \\
z = \underbrace{u \oplus \dots \oplus u}_{n}, & n > 0 \\
u = z \oplus \underbrace{u \oplus \dots \oplus u}_{|n|+1}, & n < 0
\end{cases} \tag{15}$$

Onde z corresponde a variável livre que define a unidade inteira desejada.

Explicação: Nesse contexto, começamos a partir da constante $u^{\varepsilon}=1$. A ideia é que, se u representa a unidade, então é suficiente somar a constante u um total de n vezes para obter um número inteiro positivo. Alternativamente, podemos partir de um valor negativo e aplicar |n|+1 incrementos com u até retornarmos ao zero, posto que z corresponde ao inverso aditivo.

Em termos formais, para representar o inteiro 4, definimos

$$\psi(4)(z) := \left(z = \underbrace{u \oplus u \oplus u \oplus u}_{4}\right) \tag{16}$$

Por outro lado, se tentarmos representar $\pi=3.141592653589793...$, teríamos:

$$\psi(\pi)(z) := \left(z = \underbrace{u \oplus \dots \oplus u}_{\pi}\right),\tag{17}$$

no entanto como π não é inteiro, a <u>Equação 17 não é "formável"</u> e, portanto, não é capaz de definir o elemento $d=\pi\in\mathbb{R}$.

Item B

Enunciado: Um número *racional* é um número que pode ser escrito como uma fração com numerador e denominador inteiros. Prove que todo racional é definível em $\varepsilon_{\mathbb{R}}$.

Seja $r \in D(\varepsilon_{\mathbb{R}})$. Para caracterizar r como um número racional, introduzimos duas variáveis p e q que definem inteiros por meio das fórmulas $\psi(p)$ e $\psi(q)$, respectivamente. Além disso, exigimos que o denominador q não seja zero. Abaixo, definimos a fórmula $\omega(r)(z)$ que capta essas condições:

$$\omega(r)(z) := \exists p \exists q \big(\psi(p) \land \psi(q) \land \neg(\psi(0)(q)) \land (p = z \otimes q) \big)$$
(18)

onde a variável livre z representa o racional r que desejamos definir.

Explicação: Como solicitado no enunciado, obrigamos p e q a serem inteiros por meio das fórmulas $\psi(p)$ e $\psi(q)$. Além disso, asseguramos que o denominador q não seja zero e que z corresponda à $\frac{p}{q}$.

Item C

Enunciado: Prove que qualquer raiz de polinômio com coeficientes racionais é definível em $\varepsilon_{\mathbb{R}}$.

Primeiramente, definiremos a operação polinômio com aridade n+1, sendo n o grau do polinômio e +1 equivalente à variável x que pode assumir qualquer valor. Portanto, denotando a operação do polinômio por $p(a_{n-1},...,a_0,a_1,x)$ temos:

$$p(a_n,...,a_1,a_0,x)=a_n\otimes\underbrace{x\otimes...\otimes x}_n\oplus...\oplus a_1\otimes x\oplus a_0 \tag{19}$$

Essa notação será útil para simplificar a formulação final da raiz. Dito isso, seja r_i a i-ésima raiz de um polinômio qualquer, vamos especificar a entrada e saída da operação da raiz com r_i livre:

Observação: As raízes estão ordenadas de forma não crescente começando em 0, isto é, se duas raízes tem índices i < j, então $r_i \ge r_j$. Em particular, para quaisquer $i, r_i \ge r_{i+1}$ e, caso $r_i = r_{i+1}$, sua ordem relativa é indiferente.

Nesse sentido, denotaremos cada propriedade da seguinte forma:

- A *i-ésima* raiz r_i de um polinômio com uma coeficientes racionais $a_{n-1},...,a_0$ deve satisfazer:

$$\alpha := p(a_n, ..., a_0, r_i) = 0. \tag{21}$$

• A *i-ésima* raiz r_i , em ordem não crescente, de um polinômio onde r_0 é maior e assim sucessivamente deve satisfazer:

$$\beta \coloneqq \big(\neg (r_1 \lhd r_0) \land \dots \land \neg (r_{i+1} \lhd r_i) \land \dots \land \neg (r_{n+1} \lhd r_n) \big). \tag{22}$$

· Por fim, precisamos garantir que todas as fórmulas

Desse modo, derivamos a seguinte fórmula:

$$R(a'_{n},...,a'_{0},i)(r_{i}) = \exists a_{n}...\exists a_{0}((a_{n} = \omega(a'_{n})) \land ... \land (a_{0} = \omega(a'_{0})) \land \alpha \land \beta). \tag{23}$$

Questão 7

Enunciado: Prove que $\varphi, \psi \vdash \beta$ onde

$$\varphi := \forall x [(F(x) \land G(x)) \to H(x)] \to \exists x [F(x) \land (\neg G(x))]$$

$$\psi := \forall x [F(x) \to G(x)] \lor \forall x [F(x) \to H(x)]$$

$$\beta := [(F(x) \land H(x)) \to G(x)] \to \exists x [\langle F(x) \land G(x) \rangle \land \neg H(x)].$$
(24)

Onde cada nós e sua restrição de constante seguem, respectivamente, os modelos abaixo

fórmula :
$$julgamento(origem)^{indice}$$
 tal que $\checkmark = mexido$ e $X = fechado$ (25)

fórmula com constante atualmente restrita e fórmula sem constante ou sem constante restrita

Seja o conjunto de proposições da LPO $\Gamma = \{\varphi : V, \psi : V, \beta : F\}$, uma árvore para Γ é dada abaixo.

Figura 1: Árvore de avaliação totalmente fechada.