

dougsweetser ~ <u>Help</u>

Course <u>Progress</u> <u>Dates</u> **Discussion** <u>Wiki</u>

Course / 4. Multivalued functions and regular branches. / Dedicated problems

Previous			ď	Next 2
Problem 4.8 Bookmark this page				
Homework due Problem 4.8	Nov 14, 2020 19:00 EST			
return to its init curve), in such a generalize this finite complex p the new variabl	called a branch point for the cial value as a closed curve are away that f varies continuous definition to the point $z=\infty$ plane and then apply to it the e $\zeta=1/z$ and then applying options below that correspond to the	complex (multiple) valued function ound the point is traced (starting fally as the path is traced. It is possible. The simplest way to do so is to faprior definition. This we can do use a prior definition at $\zeta=0$. Conside functions that have branch points at $z=0$.	rom some arbitrary point ole and sometimes useful irst map $z=\infty$ into a posing the inversion map: by der the following example	on the to int on the introducing
$\int f(z) = \ln z$				
$\int f(z) = 1$	$\ln\left(z^2-1 ight)$			
$igcup_{} f(z) = $	$\sqrt{z^2-1}$			
Submit	ou have used 0 of 6 attempts			

Next >

© All Rights Reserved

edX

Careers

< Previous

About Affiliates edX for Business Open edX