Chapter 6: Advanced Cryptanalysis

Linear and Differential Cryptanalysis

Introduction

- Both linear and differential cryptanalysis developed to attack DES
- Applicable to other block ciphers
- Differential Biham and Shamir, 1990
 - Apparently known to NSA in 1970s
 - A chosen plaintext attack
- Linear cryptanalysis Matsui, 1993
 - o Perhaps not know to NSA in 1970s
 - A known plaintext attack

Overview of Differential Cryptanalysis

- Recall that all of DES is linear except for the S-boxes
- Differential attack focuses on overcoming this nonlinearity
- Idea is to compare input and output differences
- For simplicity, first consider only one round and only one S-box

Suppose a cipher has 3-bit to 2-bit S-box

		colun	nn	
row	00	01	10	11
0	10	01	11	00
1	00	10	01	11

- □ Sbox(abc) is element in row a column bc
- \square Example: Sbox(010) = 11

		colun	nn	
row	00	01	10	11
0	10	01	11	00
1	00	10	01	11

- □ Suppose $X_1 = 110, X_2 = 010, K = 011$
- □ Then $X_1 \oplus K = 101$ and $X_2 \oplus K = 001$
- □ Sbox($X_1 \oplus K$) = 10 and Sbox($X_2 \oplus K$) = 01

		colun	nn	
row	00	01	10	11
0	10	01	11	00
1	00	10	01	11

- Suppose
 - o Unknown key: K
 - o Known inputs: X = 110, X = 010
 - o Known outputs: $Sbox(X \oplus K) = 10$, $Sbox(X \oplus K) = 01$
- □ Know $X \oplus K \in \{000,101\}, X \oplus K \in \{001,110\}$
- □ Then $K \in \{110,011\} \cap \{011,100\} \Rightarrow K = 011$

- Attacking one S-box not very useful!
- To make this work we must do 2 things
- 1. Extend the attack to one round
 - Have to deal with all S-boxes
 - Choose input so only one S-box "active"
- 2. Then extend attack to (almost) all rounds
 - Output of one round is input to next round
 - Choose input so output is "good" for next round

- We deal with input and output differences
- \square Suppose we know inputs X and X
 - o For X the input to S-box is $X \oplus K$
 - For X the input to S-box is $X \oplus K$
 - o Key K is unknown
 - o Input difference: $(X \oplus K) \oplus (X \oplus K) = X \oplus X$
- □ Input difference is independent of key K
- Output difference: Y ⊕ Y is (almost) input difference to next round
- Goal is to "chain" differences thru rounds

- If we obtain known output difference from known input difference...
 - May be able to chain differences thru rounds
 - o It's OK if this only occurs with some probability
- □ If input difference is 0...
 - ...output difference is 0
 - Allows us to make some S-boxes "inactive" with respect to differences

S-box Differential Analysis

row	00	01	10	11
0	10	01	11	00
1	00	10	01	11

- Input diff 000 not interesting
- □ Input diff 010 always gives output diff 01
- More biased, the better (for Trudy)

	$Sbox(X) \oplus Sbox$						
	00	01	10				
000	8	0	0				
001	0	0	4				
010	0	8	0				
011	0	0	4				
100	0	0	4				
101	4	4	0				
110	0	0	4				
111	4	4	0				

Overview of Linear Cryptanalysis

Linear Cryptanalysis

- □ Like differential cryptanalysis, we target the nonlinear part of the cipher
- But instead of differences, we approximate the nonlinearity with linear equations
- □ For DES-like cipher we need to approximate S-boxes by linear functions
- □ How well can we do this?

S-box Linear Analysis

- □ Input $x_0x_1x_2$ where x_0 is row and x_1x_2 is column
- \bigcirc Output y_0y_1
- Count of 4 is unbiased
- Count of 0 or 8is best for Trudy

		column							
row	00	01	10	11					
0	10	01	11	00					
1	00	10	01	11					

		output						
		y_0	\mathbf{y}_1	$y_0 \oplus y_1$				
	0	4	4	4				
i	\mathbf{x}_0	4	4	4				
n	\mathbf{x}_1	4	6	2				
p	\mathbf{x}_2	4	4	4				
u	$\mathbf{x}_0 \oplus \mathbf{x}_1$	4	2	2				
t	$x_0 \oplus x_2$	0	4	4				
	$x_1 \oplus x_2$	4	6	6				
\mathbf{x}_0	$\bigoplus x_1 \bigoplus x_2$	4	6	2				

Linear Analysis

□ For example, $y_1 = x_1$

with prob. 3/4

And

$$y_0 = x_0 \oplus x_2 \oplus 1$$
 with prob. 1

□ And $y_0 \oplus y_1 = x_1 \oplus x_2$ with prob. 3/4

		colu	mn	
row	00	01	10	11
0	10	01	11	00
1	00	10	01	11

		Оисрис					
		y_0	\mathbf{y}_1	$y_0 \oplus y_1$			
	0	4	4	4			
i	\mathbf{x}_0	4	4	4			
n	\mathbf{x}_1	4	6	2			
p	\mathbf{x}_2	4	4	4			
u	$\mathbf{x}_0 \oplus \mathbf{x}_1$	4	2	2			
t	$x_0 \oplus x_2$	0	4	4			
	$x_1 \oplus x_2$	4	6	6			
\mathbf{x}_0	$\bigoplus x_1 \bigoplus x_2$	4	6	2			

output

Linear Cryptanalysis

- Consider a single DES 5-box
- \Box Let Y = Sbox(X)
- □ Suppose $y_3 = x_2 \oplus x_5$ with high probability
 - o I.e., a good linear approximation to output y_3
- Can we extend this so that we can solve linear equations for the key?
- As in differential cryptanalysis, we need to "chain" thru multiple rounds

Tiny DES

Tiny DES (TDES)

- A much simplified version of DES
 - o 16 bit block
 - o 16 bit key
 - o 4 rounds
 - o 2 S-boxes, each maps 6 bits to 4 bits
 - o 12 bit subkey each round
- \square Plaintext = (L_0, R_0)
- \Box Ciphertext = (L_4, R_4)

TDES Fun Facts

- □ TDES is a Feistel Cipher
- \Box (L₀,R₀) = plaintext
- \square For i = 1 to 4

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

- \Box Ciphertext = (L_4,R_4)
- □ $F(R_{i-1}, K_i) = Sboxes(expand(R_{i-1}) \oplus K_i)$ where $Sboxes(x_0x_1x_2...x_{11}) = (SboxLeft(x_0x_1...x_5), SboxRight(x_6x_7...x_{11}))$

TDES Key Schedule

- \square **Key**: $K = k_0k_1k_2k_3k_4k_5k_6k_7k_8k_9k_{10}k_{11}k_{12}k_{13}k_{14}k_{15}$
- Subkey
 - o Left: $k_0k_1...k_7$ rotate left 2, select 0,2,3,4,5,7
 - o Right: $k_8k_9...k_{15}$ rotate left 1, select 9,10,11,13,14,15
- \square Subkey $K_1 = k_2k_4k_5k_6k_7k_1k_{10}k_{11}k_{12}k_{14}k_{15}k_8$
- \square Subkey $K_2 = k_4 k_6 k_7 k_0 k_1 k_3 k_{11} k_{12} k_{13} k_{15} k_8 k_9$
- \square Subkey $K_3 = k_6 k_0 k_1 k_2 k_3 k_5 k_{12} k_{13} k_{14} k_8 k_9 k_{10}$
- \square Subkey $K_4 = k_0 k_2 k_3 k_4 k_5 k_7 k_{13} k_{14} k_{15} k_9 k_{10} k_{11}$

TDES expansion perm

Expansion permutation: 8 bits to 12 bits

■ We can write this as

expand
$$(r_0r_1r_2r_3r_4r_5r_6r_7) = r_4r_7r_2r_1r_5r_7r_0r_2r_6r_5r_0r_3$$

TDES S-boxes

```
Right S-box
0 1 2 3 4 5 6 7 8 9 A B C D E F
C 5 0 A E 7 2 8 D 4 3 9 6 F 1 B
                                 SboxRight
 C 9 6 3 E B 2 F 8 4 5 D
F A E 6 D 8 2 4 1 7 9 0 3 5 B C
0 A 3 C 8 2 1 E 9 7 F 6 B 5 D 4
```

- Left S-box
- SboxLeft

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	6	9	A	3	4	D	7	8	\mathbf{E}	1	2	В	5	C	F	0
1	9	E	В	A	4	5	0	7	8	6	3	2	C	D	1	F
2	8	1	C	2	D	3	E	F	0	9	5	A	4	В	6	7
3	9	0	2	5	A	D	6	E	1	8	В	C	3	4	7	F

Differential Cryptanalysis of TDES

TDES

□ TDES SboxRight

- \square For X and X suppose $X \oplus X = 001000$
- □ Then $SboxRight(X) \oplus SboxRight(X) = 0010$ with probability 3/4

Differential Crypt. of TDES

Select P and P so that

$$P \oplus P = 0000\ 0000\ 0000\ 0010 = 0x0002$$

- □ Note that P and P differ in exactly 1 bit
- Let's carefully analyze what happens as these plaintexts are encrypted with TDES

TDES

- □ If $Y \oplus Y = 001000$ then with probability 3/4 SboxRight(Y) \oplus SboxRight(Y) = 0010
- \square $Y \oplus Y = 001000 \Rightarrow (Y \oplus K) \oplus (Y \oplus K) = 001000$
- □ If $Y \oplus Y = 000000$ then for any S-box, we have $Sbox(Y) \oplus Sbox(Y) = 0000$
- □ Difference of (0000 0010) is expanded by TDES expand perm to diff. (000000 001000)
- □ If $X \oplus X = 00000010$ then $F(X, K) \oplus F(X, K) = 00000010$ with prob. 3/4

TDES

- □ From the previous slide
 - Suppose $\mathbb{R} \oplus \mathbb{R} = 0000\ 0010$
 - Suppose K is unknown key
 - Then with probability 3/4

$$F(R,K) \oplus F(R,K) = 0000\ 0010$$

- □ With probability 3/4...
 - o Input to next round same as current round
- So we can chain thru multiple rounds

Arr Select P and P with $P \oplus P = 0x0002$

$$(L_0, R_0) = P$$

$$L_1 = R_0$$

$$R_1 = L_0 \oplus F(R_0, K_1)$$

$$L_2 = R_1$$

$$R_2 = L_1 \oplus F(R_1, K_2)$$

$$L_3 = R_2$$

$$R_3 = L_2 \oplus F(R_2, K_3)$$

$$L_4 = R_3$$

$$R_4 = L_3 \oplus F(R_3, K_4)$$

$$C = (L_4, R_4)$$

$$(L_0,R_0) = P$$

$$L_1 = R_0$$

$$R_1 = L_0 \oplus F(R_0, K_1)$$

$$L_2 = R_1$$

$$R_2 = L_1 \oplus F(R_1, K_2)$$

$$L_3 = R_2$$
 $L_3 = R_2$ $R_3 = L_2 \oplus F(R_2, K_3)$ $R_3 = L_2 \oplus F(R_2, K_3)$

$$L_4 = R_3$$
 $L_4 = R_3$ $R_4 = L_3 \oplus F(R_3, K_4)$ $R_4 = L_3 \oplus F(R_3, K_4)$

$$\mathbf{C} = (\mathbf{L}_4, \mathbf{R}_4)$$

$$P \oplus P = 0x0002$$

$$\begin{array}{ll} L_1 = R_0 & L_1 = R_0 & \text{With probability } 3/4 \\ R_1 = L_0 \oplus F(R_0, K_1) & R_1 = L_0 \oplus F(R_0, K_1) & (L_1, R_1) \oplus (L_1, R_1) = 0 \text{x} 0202 \end{array}$$

$$L_2 = R_1$$
 With probability $(3/4)^2$
 $R_2 = L_1 \oplus F(R_1, K_2)$ $R_2 = L_1 \oplus F(R_1, K_2)$ $(L_2, R_2) \oplus (L_2, R_2) = 0x0200$

With probability
$$(3/4)^2$$
 $(L_3,R_3) \oplus (L_3,R_3) = 0x0002$

With probability
$$(3/4)^3$$
 $(L_4,R_4) \oplus (L_4,R_4) = 0x0202$

$$\mathbb{C} \oplus \mathbb{C} = 0$$
x0202

- \square Choose P and P with $P \oplus P = 0x0002$
- \Box If $C \oplus C = 0x0202$ then

$$R_4 = L_3 \oplus F(R_3, K_4) \qquad R_4 = L_3 \oplus F(R_3, K_4)$$

$$R_4 = L_3 \oplus F(L_4, K_4) \qquad R_4 = L_3 \oplus F(L_4, K_4)$$
and $(L_3, R_3) \oplus (L_3, R_3) = 0x0002$

- □ Then $L_3 = L_3$ and $C=(L_4, R_4)$ and $C=(L_4, R_4)$ are both known
- □ Since $L_3 = R_4 \oplus F(L_4, K_4)$ and $L_3 = R_4 \oplus F(L_4, K_4)$, for correct choice of subkey K_4 we have

$$R_4 \oplus F(L_4, K_4) = R_4 \oplus F(L_4, K_4)$$

- □ Choose P and P with $P \oplus P = 0x0002$
- $\Box \text{ If } \mathbb{C} \oplus \mathbb{C} = (\mathbb{L}_4, \mathbb{R}_4) \oplus (\mathbb{L}_4, \mathbb{R}_4) = 0 \times 0202$
- \Box Then for the correct subkey K_4

$$R_4 \oplus F(L_4, K_4) = R_4 \oplus F(L_4, K_4)$$

which we rewrite as

$$R_4 \oplus R_4 = F(L_4, K_4) \oplus F(L_4, K_4)$$

where the only unknown is K_4

□ Let $L_4 = l_0 l_1 l_2 l_3 l_4 l_5 l_6 l_7$. Then we have

$$0010 = SBoxRight(l_0l_2l_6l_5l_0l_3 \oplus k_{13}k_{14}k_{15}k_9k_{10}k_{11})$$

 \oplus SBoxRight($l_0l_2l_6l_5l_0l_3 \oplus k_{13}k_{14}k_{15}k_9k_{10}k_{11}$)

Algorithm to find right 6 bits of subkey K_4

```
\begin{aligned} &\text{count}[i] = 0, \text{ for } i = 0,1,\dots,63\\ &\text{for } i = 1 \text{ to iterations}\\ & &\text{\it Choose P and P with P} \oplus P = 0x0002\\ & &\text{\it Obtain corresponding C and C}\\ &\text{\it if C} \oplus \textbf{\it C} = 0x0202\\ &\text{\it for } K = 0 \text{ to } 63\\ &\text{\it if } 0010 == (SBoxRight(\ l_0l_2l_6l_5l_0l_3 \oplus K) \oplus SBoxRight(\ l_0l_2l_6l_5l_0l_3 \oplus K))\\ &++count[K]\\ &\text{\it end if}\\ &\text{\it next } K\\ &\text{\it end if} \end{aligned}
```

All K with max count[K] are possible (partial) K_4

- Experimental results
- □ Choose 100 pairs P and P with $P \oplus P = 0x0002$
- □ Found 47 of these give $C \oplus C = 0x0202$
- □ Tabulated counts for these 47
 - Max count of 47 for each
 K ∈ {000001,001001,110000,111000}
 - o No other count exceeded 39
- \square Implies that K_4 is one of 4 values, that is,

```
k_{13}k_{14}k_{15}k_9k_{10}k_{11} \! \in \{000001,\!001001,\!110000,\!111000\}
```

□ Actual key is K=1010 1001 1000 0111

Linear Cryptanalysis of TDES

Linear Approx. of Left S-Box

□ TDES left S-box or SboxLeft

- □ Notation: $y_0y_1y_2y_3 = SboxLeft(x_0x_1x_2x_3x_4x_5)$
- □ For this S-box, $y_1=x_2$ and $y_2=x_3$ both with probability 3/4
- Can we "chain" this thru multiple rounds?

TDES Linear Relations

- Recall that the expansion perm is
 - expand $(r_0r_1r_2r_3r_4r_5r_6r_7) = r_4r_7r_2r_1r_5r_7r_0r_2r_6r_5r_0r_3$
- □ And $y_0y_1y_2y_3 = SboxLeft(x_0x_1x_2x_3x_4x_5)$ with $y_1=x_2$ and $y_2=x_3$ each with probability 3/4
- lacktriangleq Also, expand(R_{i-1}) \oplus K_i is input to Sboxes at round i
- □ Then $y_1=r_2\oplus k_m$ and $y_2=r_1\oplus k_n$ both with prob 3/4

TDES Linear Cryptanalysis

□ Known $P=p_0p_1p_2...p_{15}$ and $C=c_0c_1c_2...c_{15}$

TDES Linear Cryptanalysis

- Experimental results
- □ Use 100 known plaintexts, get ciphertexts.
 - Let $P=p_0p_1p_2...p_{15}$ and let $C=c_0c_1c_2...c_{15}$

Resulting counts

- o $c_1 \oplus p_{10} = 0$ occurs 38 times
- o $c_1 \oplus p_{10} = 1$ occurs 62 times
- o $c_2 \oplus p_9 = 0$ occurs 62 times
- o $c_2 \oplus p_9 = 1$ occurs 38 times

Conclusions

- Since $k_0 \oplus k_1 = c_1 \oplus p_{10}$ we have $k_0 \oplus k_1 = 1$
- Since $k_7 \oplus k_2 = c_2 \oplus p_9$ we have $k_7 \oplus k_2 = 0$
- □ Actual key is K = 1010 0011 0101 0110

To Build a Better Block Cipher...

- How can cryptographers make linear and differential attacks more difficult?
 - 1. More rounds success probabilities diminish with each round
 - 2. Better confusion (S-boxes) reduce success probability on each round
 - 3. Better diffusion (permutations) more difficult to chain thru multiple rounds