Calculate the number of steps and Big-O estimate for this function.

```
function do_it(A, B: matrices) {

for i= 1 to m {
    for j= 1 to n {
        c<sub>ij</sub>=0
    for q= 1 to k
        C<sub>ij</sub>=C<sub>ij</sub>+A<sub>iq</sub>*B<sub>qj</sub>
    }
}
return c
}
```

$$m \left(1+n\left(1+k\left(1+1\right)\right)+1$$

$$= m+m \left\{n\left(2k+1\right)\right\}+1$$

$$= m+2kmn+mm+1$$

$$m = n = k$$

$$= n+2n^{3}+n^{2}+1$$

$$= 2n^{3}+n^{3}+n+1$$

$$= 2n^{3}+n^{3}+n^{3}+n^{3}$$

$$= 5n^{3}$$

$$o(n^{3})$$

Find the big O of the function $f(n) = n^{2^n} + n^{n^2}$

```
Criven, f(n) = n^{2n} + n^{n^2}
Let us assume that g(n) = n^{2n}
when n > 4 we have the properties

n^2 \le 2^n
For convenience sake, we will choose

k = 4 and then use x > 4

|f(n)| = |n^{2n} + n^{n^2}|
= n^{2n} + n^{n^2} \le n^{2n} + n^{2n}
= 2n^{2n} = n^2 + n^{n^2} \le n^{2n} + n^{2n}
Thus we need to choose n > 4
at least n > 4
```

By the definition of the Big o notation
$$f(n) = n^2 + n^2$$
 is $o(n^{2^n})$ with $k=4$ and $e=2$

Ans: $o(n^{2^n})$

Let f(x) = 3x + 2 and $g(x) = x^2$ be functions defined on the integers $(f: Z \rightarrow Z, g: Z \rightarrow Z)$. Find the Big O estimate of $g \circ f$.

Q1A)
$$f(x) = 3x+2$$

 $g(x) = x^2$
(gof)(x) = $g(f(x)) = g(3x+2) = (3x+2)^2$
 $= 9x^2 + 12x + 4$
Thus we see for $x > 12$
 $(gof)(x) = 9x^2 + 12x + 4 < 10.x^2$
Thus $(gof)(x) = O(g(x))$ if there exists constant $C > 0$ and $n_0 \in \mathbb{N}$ such that $f(x) = O(g(x))$ if there exists constant $C > 0$ and $n_0 \in \mathbb{N}$ such that $f(x) = O(g(x))$ if there exists constant $C > 0$ and $n_0 \in \mathbb{N}$ such that $f(x) \leq C \cdot g(x) + n > n_0$
This big O estimate of $f(x) \leq C \cdot g(x) + n > n_0$

Prove by induction that: $1 + 4 + 7 + \cdots + (3n - 2) = n(3n - 1)/2$

```
Q
    1+4+7+ ... + (3n-2) = n (2n-1)
    Prove by Induction
  for h = 1
  1 + = 1 (31-1)
     1 =
            2
  Result
        true for not
 Assume
       Result true for n=k
 Prove that Result true for n= k+1
 1+4+7+ ... + (3K-2) + (3(k+1)-2
           = [1+4+7+ ... + (3k-2)] + [3(k+1)-2]
          = k(3k-1) (3(k+1)-2)
           = 3 k2 k + (3 k+3-2)
           = 3 K2+K + (3K+1)
          = 3k2-k + 6k +2 =
                                3K+5K+2
  L.H.S
 Now check R.H.S for n= K+1
        R.H.S = (k+1) (8(k+1)-1)
        = (K+1) (3K+3-1) = (K+1) (3K+2)
        = 3K+ 4K+ 3K+2 = 3K+5K+2
```

Use mathematical induction to show that $2^n > n^2 + n$ whenever n is an integer greater than 4.

Give a recursive definition of $P_m(n)=m^*n$, the product of the integer m and the nonnegative integer n.

Let $P_m(n)$ be the product of the integer m and the non-negative integer n.

So
$$P_m(n) = m \cdot n$$

We have to give the recursive definition of $P_m(n)$.

The recursive definition contains two parts.

Firstly $P_m(0)$ is specified.

$$P_m(0) = 0$$
 (since $m \times 0 = 0$, m is any integer) ... (1)

Comment

Step 2 of 3 ^

Then the rule for finding $P_m(n+1)$ is

$$P_m(n+1) = m(n+1)$$
$$= m \cdot n + m$$

Given

$$P_m(n+1) = P_m(n) + m$$
 for $n = 0, 1, 2, 3, ...$...(2)

Comment

The two equations (1) and (2) uniquely define $P_m(n)$ for integer m and non-negative integer n.

Then the recursive definition of $P_m(n)$ is

$$P_{m}(0) = 0$$

$$P_m(n+1) = P_m(n) + m$$
 for $n = 0,1,2,3,...$

Give a recursive definition of F(n) where F(n) = 1 + 2 + 3 + ... + n.

Suppose that there are 27 students in discrete mathematics class. Show that the class must have at least 14 male students or at least 14 female students.

```
8. bin = 2
object = 27
\therefore \lceil 27/2 \rceil = \lceil 13.5 \rceil = 14
```

```
Give a steps count and give a big-O estimate of the
algorithm. (hint: n =x.length)
int do_it(int [] x)
  int i,j;
                                          1+1+n(1+n(1+1+1))+1
= 3+n(1+3n)
=3n^2+n+3
  int count =0;
  for(i=0;i<x.length;++i){
      for(j=0;j<i;++j){
           if(x[i] + x[j]<0)
               count+=1;
                                         3n^2+n+3<= 3n^2+n^2+3n^2
                                                 <=7n^2
                                          C=7
                                          K=1
 return count;
                                          3n^2+n+3 = O(n^2)
```

3n^2 + n + 3 <= 3n^2 + n^2 + n^2 <= 5n^2 এইখাৰে 5 n^2 Hobe .. So, c=5

Prove that $1+2+--+n=\frac{n(n+1)}{2}$ by induction

EXAMPLE 1 Show that if n is a positive integer, then

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$
.

Solution: Let P(n) be the proposition that the sum of the first n positive integers, $1+2+\cdots n=\frac{n(n+1)}{2}$, is n(n+1)/2. We must do two things to prove that P(n) is true for $n=1,2,3,\ldots$. Namely, we must show that P(1) is true and that the conditional statement P(k) implies P(k+1) is true for $k=1,2,3,\ldots$

BASIS STEP: P(1) is true, because $1 = \frac{1(1+1)}{2}$. (The left-hand side of this equation is 1 because 1 is the sum of the first positive integer. The right-hand side is found by substituting 1 for n in n(n+1)/2.)

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) holds for an arbitrary positive integer k. That is, we assume that

$$1+2+\cdots+k=\frac{k(k+1)}{2}.$$

Under this assumption, it must be shown that P(k + 1) is true, namely, that

$$1 + 2 + \dots + k + (k+1) = \frac{(k+1)[(k+1)+1]}{2} = \frac{(k+1)(k+2)}{2}$$

is also true. When we add k + 1 to both sides of the equation in P(k), we obtain

$$1 + 2 + \dots + k + (k+1) \stackrel{\text{IH}}{=} \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k(k+1) + 2(k+1)}{2}$$
$$= \frac{(k+1)(k+2)}{2}.$$

This last equation shows that P(k + 1) is true under the assumption that P(k) is true. This completes the inductive step.

Prove by induction that $1+2+2^2+2^3+.....+2^n=2^{n+1}-1$ whenever n is a nonnegative integer.

If you are rusty simplifying algebraic expressions, this is the time to do some reviewing! EXAMPLE 3 Use mathematical induction to show that

$$1+2+2^2+\cdots+2^n=2^{n+1}-1$$

for all nonnegative integers n.

Solution: Let P(n) be the proposition that $1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 1$ for the integer n.

BASIS STEP: P(0) is true because $2^0 = 1 = 2^1 - 1$. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis, we assume that P(k) is true for an arbitrary nonnegative integer k. That is, we assume that

$$1+2+2^2+\cdots+2^k=2^{k+1}-1$$
.

To carry out the inductive step using this assumption, we must show that when we assume that P(k) is true, then P(k+1) is also true. That is, we must show that

$$1 + 2 + 2^2 + \dots + 2^k + 2^{k+1} = 2^{(k+1)+1} - 1 = 2^{k+2} - 1$$

assuming the inductive hypothesis P(k). Under the assumption of P(k), we see that

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (1 + 2 + 2^{2} + \dots + 2^{k}) + 2^{k+1}$$

$$\stackrel{\text{IH}}{=} (2^{k+1} - 1) + 2^{k+1}$$

$$= 2 \cdot 2^{k+1} - 1$$

$$= 2^{k+2} - 1$$

Note that we used the inductive hypothesis in the second equation in this string of equalities to replace $1+2+2^2+\cdots+2^k$ by $2^{k+1}-1$. We have completed the inductive step.

war in the first transfer and a section

Give a recursive definition of $S_m(n)=m+n$, the sum of the integer m and the nonnegative integer n.

The objective is to give a recursive definition of $s_m(n)$, the sum of the integer m and the nonnegative integer n;

Consider that the $s_m(n)$ is defined as,

$$S_m(n) = m + n$$

As n is the nonnegative integer, thus the first term is obtained when n=0. So,

$$S_m(0) = m+0$$

= m

For
$$n=n-1$$
,

$$S_m(n-1) = m + (n-1)$$
$$= m + n - 1$$

Now, $S_m(n)$ can be written as,

$$S_m(n) = m+n-1+1$$

= $S_m(n-1)+1$

Thus, the recursive definition of sum of integer and non-negative integer is as follows.

$$S_m(n) = \begin{cases} m, & n = 0 \\ S_m(n-1)+1, & n \neq 0 \end{cases}$$

Find the value of a_4 if $a_1 = 1$, $a_2 = 2$, and $a_n = a_{n-1} + a_{n-2} + \cdots + a_1$

Show that $f(x) = 5x^2 + x + 1$ is $O(x^2)$ with suitable C and k.

Show transcribed image text

Expert Answer

Anonymous answered this 96 answers

As per defination - Let fand gibe real-valued functions. We say that f(x) is O(g(x)) if there are constants C and k such that :- $|f(x)| \le C|g(x)|$ for all x>k.

So:-

 $f(x) = |5x^2 + x + 1|$ $\leq |5x^2| + |x| + |1|$ ≤5x²+ x+ 1,for all x>0 $\leq 5x^2 + x^2 + x^2$, for all x>1 ≤7x²,for all x>1

Hence f(x) Is O(x2) with C=7 and K=1

Observe that C= 7 and k= 1 from the definition of big-O.