Exercise 1

(a)

(i)

(ii)

$$\operatorname{sgn}(\langle 0, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \rangle) = \operatorname{sgn}(0) = 1 \neq y_1$$

$$\Rightarrow w \leftarrow w + y_1 x_1 = 0 + (-1) \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$

$$\operatorname{sgn}(\langle \begin{bmatrix} -2 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \rangle) = \operatorname{sgn}(-1) = -1 \neq y_2$$

$$\Rightarrow w \leftarrow w + y_2 x_2 = \begin{bmatrix} -2 \\ -1 \end{bmatrix} + 1 \cdot \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \end{bmatrix}$$

Blue: weight vector (with hyperplane) after first update Orange: weight vector (with hyperplane) after second update

$$\min_{(x,y)\in S} \tfrac{|\langle w,x\rangle|}{||w||} = \min_{(x,y)\in S} \tfrac{|\langle w,x\rangle|}{\sqrt{(-3)^2+2^2}} = \min\{\tfrac{|-4|}{\sqrt{13}},\tfrac{|9|}{\sqrt{13}},\tfrac{|11|}{\sqrt{13}},\tfrac{|4|}{\sqrt{13}},\tfrac{|-7|}{\sqrt{13}},\tfrac{|-12|}{\sqrt{13}}\} = \tfrac{4}{\sqrt{13}} = 1.109$$

(b)

Exercise 2

(a)

maj is realizable using weight vector
$$\hat{w} = \underbrace{(1, \dots, 1)}_{n-times}$$

Cluster(γ1\	Cluster	(γ^2)) Cluster	(~3)
Olusieli	~	Cluster	(~) Clustell	~

1. Iteration	x_1	x_2	$x_3, x_4, x_5, x_6, x_7, x_8$
Undated aluster control	$\sim 1 - (9.5)$	\sim^2 — (2 4)	\sim^3 — (0.5.1)

Updated cluster centres
$$z^{1} = (-3, 5)$$
 $z^{2} = (-2, 4)$ $z^{3} = (-2, 4)$ 2. Iteration x_{1} x_{2}, x_{4} x_{3}, x_{5}

2. Iteration
$$x_1$$
 x_2, x_4 x_3, x_5, x_6, x_7, x_8 Updated cluster centres $z^1 = (-3, 5)$ $z^2 = (-3, 2)$ $z^3 = (1.4, 1.2)$ 3. Iteration x_1, x_2 x_2, x_3 x_5, x_6, x_7, x_8 Updated cluster centres $z^1 = (-2.5, 4.5)$ $z^2 = (-2.5, 1)$ $z^3 = (2, 1)$

Exercise 3

Exercise 4

(a)

(b)

$$z^1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, z^2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, z^3 = \begin{bmatrix} 0 \\ 3 \end{bmatrix},$$

(e)

Yes, for example
$$z^1 = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$$
, $z^2 = \begin{bmatrix} -1.5 \\ 3 \end{bmatrix}$, $z^3 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$,

Exercise 5