Loss Data Analytics

An open text authored by the Actuarial Community

Contents

Pı	eface		9
	Ackr	nowledgements	10
		tributors	10
	Revi	ewers	12
1	ъл_:	n Time Line	10
1			13 13
	1.1	Relevance of Analytics	
		1.1.1 What is Analytics?	13
		1.1.2 Short and Long-term Insurance	13
		1.1.3 Insurance Processes	13
	1.2	Insurance Company Operations	13
		1.2.1 Initiating Insurance	13
		1.2.2 Renewing Insurance	13
		1.2.3 Claims and Product Management	13
		1.2.4 Loss Reserving	13
	1.3	Case Study: Wisconsin Property Fund	13
		1.3.1 Fund Claims Variables: Frequency and Severity	13
		1.3.2 Fund Rating Variables	13
		1.3.3 Fund Operations	13
	1.4	Further Resources and Contributors	13
2	Fred	quency Modeling	15
_	2.1	Frequency Distributions	17
	2.1	2.1.1 How Frequency Augments Severity Information	17
	2.2	Basic Frequency Distributions	17
	2.2	2.2.1 Foundations	17
		2.2.2 Moment and Probability Generating Functions	17
			17
	0.2	1 1	
	2.3	The (a, b, 0) Class	17
	2.4	Estimating Frequency Distributions	17
		2.4.1 Parameter estimation	17
		2.4.2 Frequency Distributions MLE	17
	2.5	Other Frequency Distributions	17
		2.5.1 Zero Truncation or Modification	17
	2.6	Mixture Distributions	17
	2.7	Goodness of Fit	17
	2.8	Exercises	17
	2.9	Quiz	17
	2.10	R Code for Plots in this Chapter	17
	2.11	Further Resources and Contributors	17
3	Var	ying Scale Gamma Densities	19

	3.1	Further Resources and Contributors	9
4	Mod	del Selection and Estimation 2	1
	4.1	Nonparametric Inference	3
		4.1.1 Nonparametric Estimation	3
		4.1.2 Tools for Model Selection	3
		4.1.3 Starting Values	
	4.2	Model Selection	
		4.2.1 Iterative Model Selection	
		4.2.2 Model Selection Based on a Training Dataset	
		4.2.3 Model Selection Based on a Test Dataset	
		4.2.4 Model Selection Based on Cross-Validation	
	4.3	Estimation using Modified Data	
	4.5	Θ	
	4 4	4.3.2 Nonparametric Estimation using Modified Data	
	4.4	Bayesian Inference	
		4.4.1 Bayesian Model	
		4.4.2 Decision Analysis	
		4.4.3 Posterior Distribution	
	4.5	Further Resources and Contributors	3
	_		
5		enz Curve 25	
	Tech	nnical Supplement A. Gini Statistic	
		TS A.1. The Classic Lorenz Curve	
		TS A.2. Ordered Lorenz Curve and the Gini Index	
		TS A.3. Out-of-Sample Validation	5
6		gregate Loss Models 2'	
	6.1	Introduction	
	6.2	Individual Risk Model	
	6.3	Collective Risk Model	8
		6.3.1 Moments and Distribution	8
		6.3.2 Stop-loss Insurance	8
		6.3.3 Analytic Results	8
		6.3.4 Tweedie Distribution	8
	6.4	Computing the Aggregate Claims Distribution	
	0.1	6.4.1 Recursive Method	
		6.4.2 Simulation	
	6.5	Effects of Coverage Modifications	
	0.0	6.5.1 Impact of Exposure on Frequency	
		6.5.2 Impact of Deductibles on Claim Frequency	
		6.5.3 Impact of Policy Modifications on Aggregate Claims	
	6 6		
	6.6	Further Resources and Contributors	
	6.7	Generating Independent Uniform Observations	
	6.8	Inverse Transform	
	6.9	How Many Simulated Values?	3
7	Pre	mium Calculation Fundamentals	9
8	Ricl	k Classification 3:	1
G	8.1	Introduction	
	-		
	8.2	Poisson Regression Model	
		8.2.1 Need for Poisson Regression	
		8.2.2 Poisson Regression	
		8.2.3 Incorporating Exposure	2

			32
	8.3	g ·	32
			32
			32
			32
			32
	8.4		32
	8.5	Technical Supplement – Estimating Poisson Regression Models	32
9	Exp		33
	9.1		34
	9.2	V.	34
		v i v	34
		v 00 0	34
			34
		9.2.4 Partial Credibility	34
	9.3	Bühlmann Credibility	34
		9.3.1 Credibility Z, EPV, and VHM	34
	9.4	Bühlmann-Straub Credibility	34
	9.5	Bayesian Inference and Bühlmann	34
		9.5.1 Gamma-Poisson Model	34
		9.5.2 Exact Credibility	34
	9.6		34
			34
			34
		•	34
			34
	9.7	· · · · · · · · · · · · · · · · · · ·	34
10	For		35
			35
		•	35
	10.1		35
			35
		10.1.2 Tail Value-at-Risk	35
		10.1.3 Properties of risk measures	35
		10.1.4 Proportional Reinsurance	35
		10.1.5 Non-Proportional Reinsurance	35
		10.1.6 Additional Reinsurance Treaties	35
11	Loss	Reserving	37
12	Exp	erience Rating using Bonus-Malus	39
13			41
	13.1		43
		v -	43
		9	43
		·	43
		ŭ	43
	13.2	v v	43
		v	43
		1 0	43
		•	43
		13.2.4 Parametric versus Nonparametric	43

	13.2.5 Explanation versus Prediction
	13.2.6 Data Modeling versus Algorithmic Modeling
	13.2.7 Big Data Analysis
	13.2.8 Reproducible Analysis
	13.2.9 Ethical Issues
13.3	Data Analysis Techniques
	13.3.1 Exploratory Techniques
	13.3.2 Descriptive Statistics
	13.3.3 Cluster Analysis
	13.3.4 Confirmatory Techniques
13 4	Some R Functions
	Summary
	Further Resources and Contributors
10.0	ruther resources and Contributors
14 Der	pendence Modeling
	Variable Types
	14.1.1 Qualitative Variables
	14.1.2 Quantitative Variables
	14.1.3 Multivariate Variables
14 2	Classic Measures of Scalar Associations
11.2	14.2.1 Association Measures for Quantitative Variables
	14.2.2 Pearson correlation between Claim and Coverage
	14.2.3 Pearson correlation between Claim and log(Coverage)
	14.2.4 Rank Based Measures
	14.2.5 Spearman correlation between Claim and Coverage
	14.2.6 Spearman correlation between Claim and log(Coverage)
	14.2.7 Kendall's tau correlation between Claim and Coverage
	14.2.8 Kendall's tau correlation between Claim and log(Coverage)
440	14.2.9 Nominal Variables
	Introduction to Copulas
14.4	Application Using Copulas
	14.4.1 Data Description
	14.4.2 Marginal Models
	14.4.3 Probability Integral Transformation
	14.4.4 Joint Modeling with Copula Function
14.5	Types of Copulas
	14.5.1 Elliptical Copulas
	14.5.2 Archimedian Copulas
	14.5.3 Properties of Copulas
14.6	Why is Dependence Modeling Important?
	14.6.1 Normal Copula
	14.6.2 Normal Copula
14.7	Further Resources and Contributors
Tecl	nnical Supplement A. Other Classic Measures of Scalar Associations
	A.1. Blomqvist's Beta
	14.7.1 Blomqvist's beta correlation between Claim and Coverage
	14.7.2 Blomqvist's beta correlation between Claim and log(Coverage)
	14.7.3 Blomqvist's beta correlation between Claim and Coverage
	14.7.4 Blomqvist's beta correlation between Claim and log(Coverage)
	A.2. Nonparametric Approach Using Spearman Correlation with Tied Ranks
15 Ap _l	pendix A: Review of Statistical Inference
	Basic Concepts
	15.1.1 Random Sampling

		15.1.2 Sampling Distribution	50
		15.1.3 Central Limit Theorem	50
	15.2	Point Estimation and Properties	50
		15.2.1 Method of Moments Estimation	50
		15.2.2 Maximum Likelihood Estimation	50
	15.3	Interval Estimation	50
		15.3.1 Exact Distribution for Normal Sample Mean	50
		15.3.2 Large-sample Properties of MLE	50
		15.3.3 Confidence Interval	50
	15.4	Hypothesis Testing	50
		15.4.1 Basic Concepts	50
		15.4.2 Student- t test based on MLE	50
		15.4.3 Likelihood Ratio Test	50
		15.4.4 Information Criteria	50
10			P 1
то		pendix B: Iterated Expectations	51 51
	10.1	Conditional Distribution and Conditional Expectation	51
		16.1.2 Conditional Expectation and Conditional Variance	51 51
	16.9	Iterated Expectations and Total Variance	51
	10.2	16.2.1 Law of Iterated Expectations	51
		16.2.2 Law of Total Variance	51
		16.2.3 Application	51
		10.2.5 Application	91
17	App	endix C: Maximum Likelihood Theory	53
	17.1	Likelihood Function	53
		17.1.1 Likelihood and Log-likelihood Functions	53
		17.1.2 Properties of Likelihood Functions	53
	17.2	Maximum Likelihood Estimators	53
		17.2.1 Definition and Derivation of MLE	53
		17.2.2 Asymptotic Properties of MLE	53
		17.2.3 Use of Maximum Likelihood Estimation	53
	17.3	Statistical Inference Based on Maximum Likelhood Estimation	53
		17.3.1 Hypothesis Testing	53
		17.3.2 MLE and Model Validation	53

Preface

Date: 01 October 2018

Book Description

Loss Data Analytics is an interactive, online, freely available text.

- The online version contains many interactive objects (quizzes, computer demonstrations, interactive graphs, video, and the like) to promote deeper learning.
- A subset of the book is available for offline reading in pdf and EPUB formats.
- The online text will be available in multiple languages to promote access to a worldwide audience.

What will success look like?

The online text will be freely available to a worldwide audience. The online version will contain many interactive objects (quizzes, computer demonstrations, interactive graphs, video, and the like) to promote deeper learning. Moreover, a subset of the book will be available in pdf format for low-cost printing. The online text will be available in multiple languages to promote access to a worldwide audience.

How will the text be used?

This book will be useful in actuarial curricula worldwide. It will cover the loss data learning objectives of the major actuarial organizations. Thus, it will be suitable for classroom use at universities as well as for use by independent learners seeking to pass professional actuarial examinations. Moreover, the text will also be useful for the continuing professional development of actuaries and other professionals in insurance and related financial risk management industries.

Why is this good for the profession?

An online text is a type of open educational resource (OER). One important benefit of an OER is that it equalizes access to knowledge, thus permitting a broader community to learn about the actuarial profession. Moreover, it has the capacity to engage viewers through active learning that deepens the learning process, producing analysts more capable of solid actuarial work. Why is this good for students and teachers and others involved in the learning process?

Cost is often cited as an important factor for students and teachers in textbook selection (see a recent post on the \$400 textbook). Students will also appreciate the ability to "carry the book around" on their mobile devices.

Why loss data analytics?

Although the intent is that this type of resource will eventually permeate throughout the actuarial curriculum, one has to start somewhere. Given the dramatic changes in the way that actuaries treat data, loss data seems like a natural place to start. The idea behind the name *loss data analytics* is to integrate classical loss data models from applied probability with modern analytic tools. In particular, we seek to recognize that big data (including social media and usage based insurance) are here and high speed computation s readily available.

Project Goal

The project goal is to have the actuarial community author our textbooks in a collaborative fashion.

To get involved, please visit our Loss Data Analytics Project Site.

Acknowledgements

Edward Frees acknowledges the John and Anne Oros Distinguished Chair for Inspired Learning in Business which provided seed money to support the project. Frees and his Wisconsin colleagues also acknowledge a Society of Actuaries Center of Excellence Grant that provided funding to support work in dependence modeling and health initiatives.

We acknowledge the Society of Actuaries for permission to use problems from their examinations.

We thank Rob Hyndman, Monash University, for allowing us to use his excellent style files to produce the online version of the book.

We thank Yihui Xie and his colleagues at Rstudio for the R bookdown package that allows us to produce this book.

We also wish to acknowledge the support and sponsorship of the International Association of Black Actuaries in our joint efforts to provide actuarial educational content to all.

Contributors

The project goal is to have the actuarial community author our textbooks in a collaborative fashion. The following contributors have taken a leadership role in developing Loss Data Analytics.

- Zeinab Amin is the Director of the Actuarial Science Program and Associate Dean for Undergraduate Studies of the School of Sciences and Engineering at the American University in Cairo (AUC). Amin holds a PhD in Statistics and is an Associate of the Society of Actuaries. Amin is the recipient of the 2016 Excellence in Academic Service Award and the 2009 Excellence in Teaching Award from AUC. Amin has designed and taught a variety of statistics and actuarial science courses. Amin's current area of research includes quantitative risk assessment, reliability assessment, general statistical modelling, and Bayesian statistics.
- Katrien Antonio, KU Leuven
- Jan Beirlant, KU Leuven
- Carolina Castro University of Buenos Aires

• Curtis Gary Dean is the Lincoln Financial Distinguished Professor of Actuarial Science at Ball State University. He is a Fellow of the Casualty Actuarial Society and a CFA charterholder. He has extensive practical experience as an actuary at American States Insurance, SAFECO, and Travelers. He has served the CAS and actuarial profession as chair of the Examination Committee, first editor-inchief for Variance: Advancing the Science of Risk, and as a member of the Board of Directors and the Executive Council. He contributed a chapter to Predictive Modeling Applications in Actuarial Science published by Cambridge University Press.

- Edward W. (Jed) Frees is an emeritus professor, formerly the Hickman-Larson Chair of Actuarial Science at the University of Wisconsin-Madison. He is a Fellow of both the Society of Actuaries and the American Statistical Association. He has published extensively (a four-time winner of the Halmstad and Prize for best paper published in the actuarial literature) and has written three books. He also is a co-editor of the two-volume series *Predictive Modeling Applications in Actuarial Science* published by Cambridge University Press.
- Guojun Gan is an assistant professor in the Department of Mathematics at the University of Connecticut, where he has been since August 2014. Prior to that, he worked at a large life insurance company in Toronto, Canada for six years. He received a BS degree from Jilin University, Changchun, China, in 2001 and MS and PhD degrees from York University, Toronto, Canada, in 2003 and 2007, respectively. His research interests include data mining and actuarial science. He has published several books and papers on a variety of topics, including data clustering, variable annuity, mathematical finance, applied statistics, and VBA programming.
- Lisa Gao is a doctoral student at the University of Wisconsin-Madison.
- José Garrido, Concordia University
- Noriszura Ismail is a Professor and Head of Actuarial Science Program, Universiti Kebangsaan Malaysia (UKM). She specializes in Risk Modelling and Applied Statistics. She obtained her BSc and MSc (Actuarial Science) in 1991 and 1993 from University of Iowa, and her PhD (Statistics) in 2007 from UKM. She also passed several papers from Society of Actuaries in 1994. She has received several research grants from Ministry of Higher Education Malaysia (MOHE) and UKM, totaling about MYR1.8 million. She has successfully supervised and co-supervised several PhD students (13 completed and 11 on-going). She currently has about 180 publications, consisting of 88 journals and 95 proceedings.
- Joseph H.T. Kim, Ph.D., FSA, CERA, is Associate Professor of Applied Statistics at Yonsei University, Seoul, Korea. He holds a Ph.D. degree in Actuarial Science from the University of Waterloo, at which he taught as Assistant Professor. He also worked in the life insurance industry. He has published papers in Insurance Mathematics and Economics, Journal of Risk and Insurance, Journal of Banking and Finance, ASTIN Bulletin, and North American Actuarial Journal, among others.
- Shyamalkumar Nariankadu University of Iowa
- Nii-Armah Okine is a dissertator at the business school of University of Wisconsin-Madison with a major in actuarial science. He obtained his master's degree in Actuarial science from Illinois State University. His research interests includes micro-level reserving, joint longitudinal-survival modeling, dependence modelling, micro insurance and machine learning.
- Margie Rosenberg University of Wisconsin
- Emine Selin Sarıdaş is a doctoral candidate in the Statistics department of Mimar Sinan University. She holds a bachelor degree in Actuarial Science with a minor in Economics and a master degree in Actuarial Science from Hacettepe University. Her research interest includes dependence modeling, regression, loss models and life contingencies.
- Peng Shi University of Wisconsin Madison
- Jianxi Su, Purdue University

- Tim Verdonck, KU Leuven
- Krupa Viswanathan is an Associate Professor in the Risk, Insurance and Healthcare Management Department in the Fox School of Business, Temple University. She is an Associate of the Society of Actuaries. She teaches courses in Actuarial Science and Risk Management at the undergraduate and graduate levels. Her research interests include corporate governance of insurance companies, capital management, and sentiment analysis. She received her Ph.D. from The Wharton School of the University of Pennsylvania.

Reviewers

The project goal is to have the actuarial community author our textbooks in a collaborative fashion. Part of the writing process involves many reviewers who generously donated their time to help make this book better. They are:

- Chunsheng Ban, Ohio State University
- Vytaras Brazauskas, University of Wisconsin Milwaukee
- Chun Yong Chew, Universiti Tunku Abdul Rahman (UTAR)
- Eren Dodd, University of Southampton
- Gordon Enderle, University of Wisconsin Madison
- Rob Erhardt, Wake Forest University
- Liang (Jason) Hong, Robert Morris University
- Hirokazu (Iwahiro) Iwasawa
- Himchan Jeong, University of Connecticut
- Paul Herbert Johnson, University of Wisconsin Madison
- Samuel Kolins, Lebonan Valley College
- Andrew Soon-Yong Kwon, Zurich Re
- Ambrose Lo, University of Iowa
- Mark Maxwell, University of Texas at Austin
- Tatjana Miljkovic, Miami University
- Bell Ouelega, American University in Cairo
- Zhiyu (Frank) Quan, University of Connecticut
- Jiandong Ren, Western University
- Rajesh V. Sahasrabuddhe, Oliver Wyman
- Ranee Thiagarajah, Illinois State University
- Ping Wang, Saint Johns University
- Chengguo Weng, University of Waterloo
- Toby White, Drake University
- Michelle Xia, Northern Illinois University
- Di (Cindy) Xu, University of Nebraska Lincoln
- Lina Xu, Columbia University
- Jorge Yslas, University of Copenhagen
- Jeffrey Zheng, Temple University
- Hongjuan Zhou, Arizona State University

Main Time Line

D	lace	I 1	1_1	
\mathbf{r}	ıace.	11()	(1	e_{Γ}

1.1	Relevance	of	Anal	vtics

- 1.1.1 What is Analytics?
- 1.1.2 Short and Long-term Insurance
- 1.1.3 Insurance Processes

1.2 Insurance Company Operations

- 1.2.1 Initiating Insurance
- 1.2.2 Renewing Insurance
- 1.2.3 Claims and Product Management
- 1.2.4 Loss Reserving
- 1.3 Case Study: Wisconsin Property Fund
- 1.3.1 Fund Claims Variables: Frequency and Severity
- 1.3.2 Fund Rating Variables
- 1.3.3 Fund Operations

1.4 Further Resources and Contributors

Frequency Modeling

2.1 Frequency Distributions

2.1.1 How Frequency Augments Severity Information

Basic Terminology

The Importance of Frequency

Why Examine Frequency Information

2.2 Basic Frequency Distributions

- 2.2.1 Foundations
- 2.2.2 Moment and Probability Generating Functions
- 2.2.3 Important Frequency Distributions

Binomial Distribution

Poisson Distribution

Negative Binomial Distribution

- 2.3 The (a, b, 0) Class
- 2.4 Estimating Frequency Distributions
- 2.4.1 Parameter estimation
- 2.4.2 Frequency Distributions MLE
- 2.5 Other Frequency Distributions
- 2.5.1 Zero Truncation or Modification
- 2.6 Mixture Distributions
- 2.7 Goodness of Fit
- 2.8 Exercises
- 2.9 Quiz
- 2.10 R Code for Plots in this Chapter
- 2.11 Further Resources and Contributors

Varying Scale Gamma Densities

Placeholder

3.1 Further Resources and Contributors

Model Selection and Estimation

4.1 Nonparametric Inference

4.1.1 Nonparametric Estimation

Moment Estimators

Empirical Distribution Function

Quantiles

Density Estimators

4.1.2 Tools for Model Selection

Graphical Comparison of Distributions

Statistical Comparison of Distributions

4.1.3 Starting Values

Method of Moments

Percentile Matching

4.2 Model Selection

- 4.2.1 Iterative Model Selection
- 4.2.2 Model Selection Based on a Training Dataset
- 4.2.3 Model Selection Based on a Test Dataset
- 4.2.4 Model Selection Based on Cross-Validation

4.3 Estimation using Modified Data

4.3.1 Parametric Estimation using Modified Data

Parametric Estimation using Grouped Data

Censored Data

Truncated Data

Parametric Estimation using Censored and Truncated Data

4.3.2 Nonparametric Estimation using Modified Data

Grouped Data

Right-Censored Empirical Distribution Function

Right-Censored, Left-Truncated Empirical Distribution Function

4.4 Bayesian Inference

Lorenz Curve

Placeholder

Technical Supplement A. Gini Statistic

TS A.1. The Classic Lorenz Curve

TS A.2. Ordered Lorenz Curve and the Gini Index

Ordered Lorenz Curve

Gini Index

TS A.3. Out-of-Sample Validation

Discussion

Aggregate Loss Models

- 6.1 Introduction
- 6.2 Individual Risk Model
- 6.3 Collective Risk Model
- 6.3.1 Moments and Distribution
- 6.3.2 Stop-loss Insurance
- 6.3.3 Analytic Results
- 6.3.4 Tweedie Distribution
- 6.4 Computing the Aggregate Claims Distribution
- 6.4.1 Recursive Method
- 6.4.2 Simulation
- 6.5 Effects of Coverage Modifications
- 6.5.1 Impact of Exposure on Frequency
- 6.5.2 Impact of Deductibles on Claim Frequency
- 6.5.3 Impact of Policy Modifications on Aggregate Claims
- 6.6 Further Resources and Contributors

Exercises

- 6.7 Generating Independent Uniform Observations
- 6.8 Inverse Transform
- 6.9 How Many Simulated Values?

Premium Calculation Fundamentals

This is a placeholder file

Risk Classification

- 8.1 Introduction
- 8.2 Poisson Regression Model
- 8.2.1 Need for Poisson Regression
- 8.2.2 Poisson Regression
- 8.2.3 Incorporating Exposure
- 8.2.4 Exercises
- 8.3 Categorical Variables and Multiplicative Tariff
- 8.3.1 Rating Ractors and Tariff
- 8.3.2 Multiplicative Tariff Model
- 8.3.3 Poisson Regression for Multiplicative Tariff
- 8.3.4 Numerical Examples
- 8.4 Contributors and Further Resources

Further Reading and References

Contributor

8.5 Technical Supplement – Estimating Poisson Regression Models

Experience Rating Using Credibility Theory

- 9.1 Introduction to Applications of Credibility Theory
- 9.2 Limited Fluctuation Credibility
- 9.2.1 Full Credibility for Claim Frequency
- 9.2.2 Full Credibility for Aggregate Losses and Pure Premium
- 9.2.3 Full Credibility for Severity
- 9.2.4 Partial Credibility
- 9.3 Bühlmann Credibility
- 9.3.1 Credibility Z, EPV, and VHM
- 9.4 Bühlmann-Straub Credibility
- 9.5 Bayesian Inference and Bühlmann
- 9.5.1 Gamma-Poisson Model
- 9.5.2 Exact Credibility
- 9.6 Estimating Credibility Parameters
- 9.6.1 Full Credibility Standard for Limited Fluctuation Credibility
- 9.6.2 Nonparametric Estimation for Bühlmann and Bühlmann-Straub Models
- 9.6.3 Semiparametric Estimation for Bühlmann and Bühlmann-Straub Models
- 9.6.4 Balancing Credibility Estimators
- 9.7 Further Resources and Contributors

Exercises

For the gamma distributions, use

Ρl	lace	ho.	ld	ler
----	------	-----	----	-----

10.0.1	Classification	Based	on	Moments
--------	----------------	-------	----	---------

10.0.2 Comparison Based on Limiting Tail Behavior

10.1 Risk Measures

10.1.1 Value-at-Risk

10.1.2 Tail Value-at-Risk

10.1.3 Properties of risk measures

10.1.4 Proportional Reinsurance

Quota Share is Desirable for Reinsurers

Optimizing Quota Share Agreements for Insurers

10.1.5 Non-Proportional Reinsurance

Excess of Loss

10.1.6 Additional Reinsurance Treaties

Surplus Share Proportional Treaty

Layers of Coverage

Loss Reserving

This is a placeholder file

Experience Rating using Bonus-Malus

This is a placeholder file

Bonus-Malus

Bonus-malus system, which is used interchangeably as "no-fault discount", "merit rating", "experience rating" or "no-claim discount" in different countries, is based on penalizing insureds who are responsible for one or more claims by a premium surcharge, and awarding insureds with a premium discount if they do not have any claims (Frangos and Vrontos, 2001). Insurers use bonus-malus systems for two main purposes; firstly, to encourage drivers to drive more carefully in a year without any claims, and secondly, to ensure insureds to pay premiums proportional to their risks which are based on their claims experience.

NCD and Experience Rating

No Claim Discount (NCD) system is an experience rating system commonly used in motor insurance. NCD system represents an attempt to categorize insureds into homogeneous groups who pay premiums based on their claims experience. Depending on the rules in the scheme, new policyholders may be required to pay full premium initially, and obtain discounts in the future years as a results of claim-free years.

Hunger for Bonus

An NCD system rewards policyholders for not making any claims during a year, or in other words, it grants a bonus to a careful driver. This bonus principle may affect policy holders' decisions whether to claim or not to claim, especially when involving accidents with slight damages, which is known as 'hunger for bonus' phenomenon (Philipson, 1960). The option of 'hunger for bonus' implemented on insureds under an NCD system may reduce insurers' claim costs, and may be able to offset the expected decrease in premium income.

Data Systems

13.1. DATA 43

1	n	1	\mathbf{T}	
1	3.		- 17	ata

- 13.1.1 Data Types and Sources
- 13.1.2 Data Structures and Storage
- 13.1.3 Data Quality
- 13.1.4 Data Cleaning
- 13.2 Data Analysis Preliminary
- 13.2.1 Data Analysis Process
- 13.2.2 Exploratory versus Confirmatory
- 13.2.3 Supervised versus Unsupervised
- 13.2.4 Parametric versus Nonparametric
- 13.2.5 Explanation versus Prediction
- 13.2.6 Data Modeling versus Algorithmic Modeling
- 13.2.7 Big Data Analysis
- 13.2.8 Reproducible Analysis
- 13.2.9 Ethical Issues
- 13.3 Data Analysis Techniques
- 13.3.1 Exploratory Techniques
- 13.3.2 Descriptive Statistics

Principal Component Analysis

- 13.3.3 Cluster Analysis
- 13.3.4 Confirmatory Techniques

Linear Models

Generalized Linear Models

Tree-based Models

- 13.4 Some R Functions
- 13.5 Summary
- 12 6 Funther Descriptions and Contributer

Dependence Modeling

TT.I VALIABLE I V DE	Lypes	ole	Varia	4.1	1
----------------------	-------	-----	-------	-----	---

- 14.1.1 Qualitative Variables
- 14.1.2 Quantitative Variables
- 14.1.3 Multivariate Variables
- 14.2 Classic Measures of Scalar Associations
- 14.2.1 Association Measures for Quantitative Variables

Pearson Correlation

- 14.2.2 Pearson correlation between Claim and Coverage
- 14.2.3 Pearson correlation between Claim and log(Coverage)
- 14.2.4 Rank Based Measures

Spearman's Rho

- 14.2.5 Spearman correlation between Claim and Coverage
- 14.2.6 Spearman correlation between Claim and log(Coverage)

Kendall's Tau

- 14.2.7 Kendall's tau correlation between Claim and Coverage
- 14.2.8 Kendall's tau correlation between Claim and log(Coverage)
- 14.2.9 Nominal Variables

Bernoulli Variables

Categorical Variables

Ordinal Variables

Parametric Approach Using Normal Based Correlations

Interval Variables

Discrete and Continuous Variables

14.3 Introduction to Copulas

- 14.4 Application Using Copulas
- 14.4.1 Data Description
- 14.4.2 Marginal Models

Appendix A: Review of Statistical Inference

- 15.1 Basic Concepts
- 15.1.1 Random Sampling
- 15.1.2 Sampling Distribution
- 15.1.3 Central Limit Theorem
- 15.2 Point Estimation and Properties
- 15.2.1 Method of Moments Estimation
- 15.2.2 Maximum Likelihood Estimation
- 15.3 Interval Estimation
- 15.3.1 Exact Distribution for Normal Sample Mean
- 15.3.2 Large-sample Properties of MLE
- 15.3.3 Confidence Interval
- 15.4 Hypothesis Testing
- 15.4.1 Basic Concepts
- 15.4.2 Student-t test based on MLE
- 15.4.3 Likelihood Ratio Test
- 15.4.4 Information Criteria

Appendix B: Iterated Expectations

Placeholder

16.1 Conditional Distribution and Conditional Expectation

16.1.1 Conditional Distribution

Discrete Case

Continuous Case

16.1.2 Conditional Expectation and Conditional Variance

Discrete Case

Continuous Case

16.2 Iterated Expectations and Total Variance

- 16.2.1 Law of Iterated Expectations
- 16.2.2 Law of Total Variance
- 16.2.3 Application

Appendix C: Maximum Likelihood Theory

Placeholder

1	7.1	Lil	أنام	hood	4 E	unc	tion
	(. I	1111	сен	11000	l r	umc	LIOH

- 17.1.1 Likelihood and Log-likelihood Functions
- 17.1.2 Properties of Likelihood Functions
- 17.2 Maximum Likelihood Estimators
- 17.2.1 Definition and Derivation of MLE
- 17.2.2 Asymptotic Properties of MLE
- 17.2.3 Use of Maximum Likelihood Estimation
- 17.3 Statistical Inference Based on Maximum Likelhood Estimation
- 17.3.1 Hypothesis Testing
- 17.3.2 MLE and Model Validation