# Detection and replication of epistasis influencing human transcription

Gibran Hemani Konstantin Shakhbazov Grant W Montgomery Peter M Visscher Joseph E Powell

Queensland Brain Institute, University of Queensland
University of Queensland Diamantina Institute

## Outline

- Epistasis
- Study design
- 3 Results
- 4 Acknowledgements

# **Epistasis**

#### Definition

The effect on the phenotype caused by locus A depends on the genotype at locus B

## Two dimensional GWAS







# Impact of LD on detecting epistasis



# Multiple testing problem

#### Curse of dimensionality

As the dimensionality of the search increases the background noise drowns out all real biological signals

$$N_{\text{tests}} = \frac{m \times (m-1)}{2}$$

e.g. 500000k SNPs  $\rightarrow 1.25 \times 10^{11}$  tests

## Outline

- Epistasis
- Study design
- 3 Results
- 4 Acknowledgements

# Expression traits likely have larger effect sizes



# Discovery data

- BSGS data 842 individuals
- Gene expression on whole blood
- 7339 traits with  $n \ge 90\%$
- 528,509 SNPs

# Replication data

- Fehrmann
  - n = 1240
  - Identical SNP chip and expression chip
- EGCUT
  - n = 891
  - Identical SNP chip and expression chip
- CHDWB
  - n = 139
  - Different SNP chip, same expression chip

# Computation

#### Total number of tests

528,509 pairwise SNPs  $\times$  7,339 traits = 1.02 quadrillion tests

#### epiGPU software

Performs  ${\sim}12$  million association tests per second

#### **GPU** clusters

Supercomputers with 10s or 100s of GPUs can do this in a few weeks

# Analysis outline

- Discovery scan
- Filtering of results based on threshold etc
- 3 Filtering based on interaction vs genetic effects
- Replication in independent samples

# Discovery and filtering

Perform 8 d.f. test for full genetic effect (additive + dominance + epistasis) at each SNP pair

Results

- Significance threshold  $T = 2.91 \times 10^{-16}$
- ② Remove SNP pairs with any class size < 5
- **3** Remove SNP pairs with LD  $r^2 > 0.1$  or D' > 0.1
- Keep the sentinel SNP pair for each chromosome × chromosome × trait
- 11155 SNP pairs remain
- Perform nested test of full genetic model (8 d.f.) vs marginal model (a + d, 4 d.f.)
- Keep 4 d.f. interaction effects with p < 0.05/11155

501 significant interaction SNP pairs

## Outline

- Epistasis
- 2 Study design
- Results
- 4 Acknowledgements

# 501 significant interactions in 238 expression traits

#### Genomic positions

- 47 cis-cis
- 441 cis-trans
- 13 trans-trans

# 501 significant interactions in 238 expression traits

#### Genomic positions

- 47 cis-cis
- 441 cis-trans
- 13 trans-trans

## Marginal effects ( $p < 1.0 \times 10^{-10}$ )

- 9 between two main effects
- 428 with only one main effect
- 64 with no main effects

## 501 significant interactions in 238 expression traits

#### Genomic positions

- 47 cis-cis
- 441 cis-trans
- 13 trans-trans

## Marginal effects $(p < 1.0 \times 10^{-10})$

- 9 between two main effects
- 428 with only one main effect
- 64 with no main effects

#### Largest epistatic variance component

- 120 A x A
- 255 A x D
- 126 D x D

## Replication

- Only 20 SNP pairs passed filtering in CHDWB
- 434 SNPs pairs passed QC in both EGCUT and Fehrmann
- 30 were significant for interaction p-values (p < 0.05/434) in EGCUT and Fehrmann

# Q-Q plots of replication interaction p-values



# Bonferroni level replicated GP maps



# Map of interactions



## **TMEM149**





Chr 19 x 6 rs8106959 x rs6926382



Chr 19 x 1 rs8106959 x rs914940



Chr 19 x 4 rs8106959 x rs2351458



Chr 19 x 2 rs8106959 x rs6718480



Chr 19 x 8 rs8106959 x rs1843357



Chr 19 x 13 rs8106959 x rs9509428



Chr 19 x 3 rs8106959 x rs10937361



Chr 19 x 10 rs8106959 x rs10508289



Chr 19 x 11 rs8106959 x rs471728



Chr 19 x 14 rs8106959 x rs17719594



Chr 19 x 12 rs8106959 x rs1401098



Chr 19 x 7 rs8106959 x rs2539000



Chr 19 x 17 rs8106959 x rs7213338



Chr 19 x 9 rs8106959 x rs10819626



Chr 21 x 19 rs2839013 x rs8106959



Chr 19 x 5 rs8106959 x rs2731711



Chr 19 x 18 rs8106959 x rs1557335



## Chromosome interactions



## Contribution relative to additive effects

## At the same threshold $(2.91 \times 10^{-16})$

- 453 expression traits have a significant additive effect
- 238 have a significant interaction effect

## Contribution relative to additive effects

## At the same threshold $(2.91 \times 10^{-16})$

- 453 expression traits have a significant additive effect
- 238 have a significant interaction effect

## At the same threshold $(2.91 \times 10^{-16})$

- Significant additive effects explain 1.73% of phenotypic variance of 7339 traits
- Significant epistatic effects explain 0.25% (seven times less)

## Outline

- Epistasis
- 2 Study design
- 3 Results
- 4 Acknowledgements

# Acknowledgements

- University of Queensland
  - Joseph Powell
  - Konstantin Shakhbazov
  - Allan McRae
  - Jian Yang
  - Peter Visscher
- QIMR
  - Grant Montgomery
  - Nicholas Martin
  - Anjali Henders
- Estonian Genomics Centre
  - Tonu Esko
  - Andres Metspalu

- Georgia Tech University
  - Greg Gibson
- University of Groningen
  - Harm-Jan Westra
  - Lude Franke
- Computer resources
  - iVEC at University of Western Australia
  - MASSIVE project
  - QBI IT Team