$T(n) = 47 \binom{n}{3} + n^{2} \log n$ $= 4 \binom{n}{47} + n^{2} \binom{n}{2} + n^{2} \binom{n}{2}$ $+ (4 + 2 + 1) n^{2} los n$ $+ (2^{2} + 2! + 2^{0}) n^{2} los n$ $+ (\sum_{i=0}^{K-1} 2^{i}) n^{2} los n$ $= 4^{\kappa} T \left(\frac{n}{2^{\kappa}} \right) + \left(2^{\kappa} - 1 \right) n^2 \log n$ $\frac{n}{2^k} = 1$ $\Rightarrow n = 2K = 1000 = 1000 = 2K <math>\Rightarrow 1000 = K$ + 4 T(1) + (2 1092 n - 1) n2 logn $= n^{2} T(1) + (n^{092^{2}} - 1) n^{2} los n$ $= n^{2} T(1) + (n - 1) n^{2} los n$. O(nalogn)