Machine Learning Final Project: Machine Unlearning

Aashai Avadhani Masters Applied Data Science Candidate

Problem Statement:

- Goal: Create an unlearning algorithm that can maintain accuracy on the test/validation dataset without the "deleted" data
- Deep Learning Models rely on more training data and mroe parameters to create higher accuracy
 - GPT 4 from OpenAI is trained on 45 GB of data with
 1.8 trillion parameters¹
- Privacy Policies cause users to delete their data from systems cause deep learning models to have poor performance and not compliant with Privacy Policies
 - GDPR in Europe allows users to remove their data
- Data erasures from systems require models to be retrained on an entire dataset consistently which is expensive
- Unlearning algorithms take in a pretrained model and "unlearn" the dataset from the deep learning model

Figure 1: Overall Machine Unlearning Process that shows how an unlearning model is compared vs a model trained on the "forget" dataset

Data Overview and Approach

- Based from the Google Neurips Challenge
- Data
 - CIFAR-10
 - X: 32x32 color images of 10 classes
 - y: Label of each image (Truck, Car etc....)
- Model Pre-trained model ResNet18
 - Convolutional Neural Network that predicts the label of an image
- Unlearning algorithm (Each Approach has a slide)
 - Pruning
 - KL loss approach

Evaluation

- Compare between the Unlearned Algorithm and the model that is trained on the "retrain set"
- **Metrics:** Train Accuracy, Test Accuracy, MIA attack
- Membership Inference Attacks determines the probability of

Figure 5: Initial Output of a ResNet18 Model being trained on

	Training Accuracy	Test Set Accuracy
Resnet18	98.03%	84%

Exploratory Data Analysis

CIFAR 10 Dataset

Random Sampled to create the "Forget" and "Retain" Set from the Training Distribution

The **Retaining** set has an equal amount of each **class of image**

Each set according to the T-SNE has a more distribution on animals (deers, cats, birds) than other transportation images (trucks, ships)

The **ResNet model** will be skewed to animals than transportations

Figure 1: Forget set has an unbalanced number of classes while the retain set has an equal amount of class distribution

Feature Engineering and Transformation

- The Feature Engineering main goal was to ensure the ResNet18 model is not tuned in noisy sample data
- The mean image of each dataset was a blurry picture (as seen in the right)
- The current state of the dataset would result in the Resnet18 model being fine-tuned on noise rather than the core image class

 Transformation: Normalization image using a Normalizing Tensor function

• **Post Transformation:** you can see how the images are slightly more clear which gives more protection against the risk of fine-tuning on noisy sample data

Mean Images of Each Class in Retain Set

Proposed Modeling Approaches for the UnLearning Algorithm

CNN Pruning

- Deep Learning Models can be pruned to reduce the amount of neurons used per training
- Prasandi Paper on Pruning Modeling
- Use <u>L1 Regularization</u> from each neuron to zero out the ineffective neurons

- 2 Step "Dummy" Labels

- 1st Infer the forget data from the pretrained model
- Use a simple unlearning (provided by google which is the SGD loss fine tuning)
- Finetune the pretrained model with the identified data and incorrect inferences as "dummy labels"

Figure 6: Model Pruning from CNNs about each of the neurons

Evaluating through Membership Inference Attacks

- Membership Inference Attack
 - Logistic Regression that predicts whether the model was trained on a particular sample from that samples loss
 - We will use it to predict whether or not the model was trained using the training set or the retain set
- Needed as a layer to evaluate the new weights of the
- Similar to a discriminator in a GAN, we aim for the MIA to be 50% scoring since that is "randomly guessing"
- Objective: Reach and MIA score of close to 0.50

Losses on train and test set (pre-trained model) 10¹ Test set Train set 10^{0} Frequency 10^{-1} 10^{-3} 10^{-4} 10 Loss

Figure 9: The current Train vs Test loss for the pretrained model

Figure 10: Mmembership inference score with the Pre-trained Resnet18 model

		Test Set Accuracy	MIA Score
Resnet18	98.03%	84%	0.579

Final UnLearning Results and Proposed Solution

- CNN Pruning retained the most training and test accuracy
 - However it did not have the best MIA score which means the model is slightly more prone to not "unlearning" the entire dataset
- Dummy Labels had the least accuracy but the lowest MIA score
 - This is due to the first inference step to completely forget all the data which eliminates those weights from the beginning

Chosen Methodology: CNN Pruning

Table: The various results of the unlearning algorithms

	Train Accuracy	Test Accuracy	Retain Accuracy	MIA Score
Pre-Trained Resnet	98.5%	84.3%	90%	0.578
CNN Pruning	93.7%	82.1%	93.5%	0.52
Dummy Labels	78.3%	72.9%	13,8%	0.505

Figure 7: To the left is the MIA prediction for Dummy Labels while to the right is CNN pruning

Future Work

- Choosing CNN pruning since it is the more intuitive and we only tried L1 regularization for the weights
- Further work would be building on top of the pruning algorithm to try other pruning algorithms such as cosine distance (similarity between weights and the sample distribution)
- **Generating synthetic data** that could anonymize or "mimic" the forgotten dataset rather than completely unlearning the algorithm
- **Expand to text data** and analyze the performance of transformers loss functions with unlearning algorithms
- Many Use cases will revolve around personalized content/recommendation systems which require a different pruning criteria (correlation matrix)

Fig. 5. Pruning criteria

