

Tennis Match Prediction

Machine Learning Project

Anastasios Sarafidis (mtn2028)

Supervisor: Theodoros Giannakopoulos

Data Gathering

- Tennis ATP singles matches data gathered
 - https://github.com/JeffSackmann/tennis_atp
 - > For the time period 2010-2019
- Tournament information
 - > Tournament id, surface, draw size etc
- Players' information
 - > Name, height, playing hand etc
- Matches statistics
 - > Score, minutes, aces etc

Data Cleaning and Feature Engineering

Data Cleaning

- > Remove stats that are unknown before the match
- > Remove unnecessary columns
- Surface & Rank Points are important
 - Remove entries with no info about those

Feature Engineering

- > Transform data so that we have First Player & Second Player
- > Create "label" column
 - "0" if First Player wins
 - "1" if Second Player wins

Data Cleaning and Feature Engineering

- Final shape of Dataset
- Multiple null values in "Height" columns
 - > Use columns' means to fill these values

Categorical values -> Numerical

Remove missing values

	eIndex: 57108 entrie						
Data	columns (total 18 columns):						
#	Column	Non-Null Count	Dtype				
	H-H-H						
0	surface	57108 non-null	object				
1	draw_size	57108 non-null	int64				
2	tourney_level	57108 non-null	object				
3	second_hand	57097 non-null	object				
4	second_ht	47781 non-null	float64				
5	second_ioc	57108 non-null	object				
6	second_age	57106 non-null	float64				
7	first_hand	57097 non-null	object				
8	first_ht	47781 non-null	float64				
9	first_ioc	57108 non-null	object				
10	first_age	57106 non-null	float64				
11	best_of	57108 non-null	int64				
12	round	57108 non-null	object				
13	second_rank_points	57108 non-null	float64				
14	first_rank_points	57108 non-null	float64				
15	tourney-year	57108 non-null	int32				
16	tourney-month	57108 non-null	int32				
17	label	57108 non-null	float64				
dtyp	es: float64(7), int3	2(2), int64(2),	object(7)				

• Balance of Dataset

Correlations

• Players' rank points Histogram

Players' height Histogram

Players' age Histogram

Model Training & Evaluation

- Train Test split for fitting and evaluation
 - > 80% train size
 - > 20% test size

Standardize Features

ML Models Evaluation

Naïve Bayes

Confusion Matrix: [[3815 1899] [2897 2806]] Accuracy Score: 0.5799246737321538 Training set score: 0.599 Test set score: 0.580 recall f1-score support precision 0.0 0.57 0.67 0.61 5714 1.0 0.60 0.49 0.54 5703 accuracy 0.58 11417 0.58 0.58 0.58 11417 macro avg weighted avg 0.58 0.58 0.58 11417

```
Mean F1 Score = 59.94% - SD F1 Score = 0.81%
Mean Recall Score = 59.97% - SD Recall = 1.06%
Mean Precision Score = 59.93% - SD Precision = 1.08%
```

KFold

• Decision Tree

```
Confusion Matrix:
 [[3380 2334]
[2389 3314]]
Accuracy Score:
 0.5863186476307262
Training set score: 1.000
Test set score: 0.586
                           recall f1-score
              precision
                                               support
         0.0
                   0.59
                              0.59
                                        0.59
                                                   5714
                   0.59
                              0.58
                                        0.58
                                                   5703
         1.0
                                        0.59
                                                  11417
    accuracy
                                        0.59
   macro avg
                   0.59
                              0.59
                                                  11417
weighted avg
                   0.59
                                        0.59
                                                  11417
                              0.59
```

KFold

```
Mean F1 Score = 58.80% - SD F1 Score = 0.72%
Mean Recall Score = 59.05% - SD Recall = 1.02%
Mean Precision Score = 58.99% - SD Precision = 0.75%
```

ML Models Evaluation

Random Forest

Confusion Matrix: [[4008 1706] [2594 3109]] Accuracy Score: 0.6233686607690286 Training set score: 0.986 Test set score: 0.623 precision recall f1-score support 0.0 0.61 0.70 0.65 5714 1.0 0.65 0.55 0.59 5703 accuracy 0.62 11417 macro avg 0.63 0.62 0.62 11417 weighted avg 0.63 0.62 0.62 11417

KFold

Mean F1 Score = 60.06% - SD F1 Score = 0.70% Mean Recall Score = 55.57% - SD Recall = 1.06% Mean Precision Score = 65.36% - SD Precision = 0.89%

XGBoost

Confusion Matrix: [[3689 2025] [1935 3768]] Accuracy Score: 0.653148813173338 Training set score: 0.678 Test set score: 0.653 recall f1-score precision support 0.65 0.0 0.66 0.65 5714 1.0 0.65 0.66 0.66 5703 accuracy 0.65 11417 0.65 11417 macro avg 0.65 0.65 weighted avg 0.65 0.65 0.65 11417

KFold

Mean F1 Score = 66.64% - SD F1 Score = 0.54% Mean Recall Score = 66.62% - SD Recall = 0.76% Mean Precision Score = 66.68% - SD Precision = 0.85%

ML Models Evaluation

K-Nearest Neighbors

KFold

Confusion Matrix: [[3256 2458] [2527 3176]] Accuracy Score: 0.5633704125426995 Training set score: 0.726 Test set score: 0.563

Test set	scor	e: 0.563			
HELVELY CHARLES HELVES (HELVES)		precision	recall	f1-score	support
	0.0	0.56	0.57	0.57	5714
	1.0	0.56	0.56	0.56	5703
accur	racy			0.56	11417
macro	avg	0.56	0.56	0.56	11417
weighted	avg	0.56	0.56	0.56	11417

Mean F1 Score = 61.61% - SD F1 Score = 0.59% Mean Recall Score = 61.54% - SD Recall = 0.73% Mean Precision Score = 61.70% - SD Precision = 1.07%

Best Model Decision

- XGBoost is clearly the best choice for our Dataset
 - > Based on Mean F1 Scores
 - > Every other model has a lower Mean F1 Score
 - >5% or more

Thank you for your time!