COMS W4701: Artificial Intelligence

Lecture 11: RL Prediction

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

Reinforcement learning

Monte Carlo (MC) prediction

Temporal difference (TD) prediction

Comparing DP, MC, and TD

Learning from Experience

Dynamic programming requires knowledge of environment model
 (transition and reward functions), but often inaccessible or intractable

- Reinforcement learning: Find optimal policies through experience
- Interact with environment, receive rewards, and formulate policies

Dimensions of RL

- Model-based methods learn an approximation of the underlying model
- Model-free methods directly learn policies or value functions
- Can be useful even when model is known but DP is intractable

- Prediction: Given a fixed policy π , learn V^{π}
- Control: Learn an optimal policy π^* , state-action value function Q^*

 Model-free methods for both prediction and control include Monte Carlo and temporal difference algorithms

Monte Carlo Methods

 Monte Carlo methods: Generate sampled experience and average them for different states and actions

• Recall the definition of value function for a fixed policy π :

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right]$$

 Idea: Approximate the expectation by taking averages of sample reward sequences over multiple episodes

State Value Estimation

- Idea: V(s) can be estimated by averaging utilities observed after visiting s
- Think of each sample as a path from a given node to a leaf node in search tree

First-Visit MC Prediction

- MC prediction: Estimate state values by averaging utilities over multiple episodes
- First-visit MC: A value is estimated after first visit to state within episode
- Initialize $V^{\pi}(s) \leftarrow 0$, $N(s) \leftarrow 0$ for each state $s \in S$
- Loop:
 - **Generate** episode *E* following π : s_0 , a_0 , r_1 , s_1 , a_1 , r_2 , ..., s_{T-1} , a_{T-1} , r_T
 - **For** each state *s*:
 - $G \leftarrow \sum_{j=t+1}^{T} \gamma^{j-(t+1)} r_j$, where s_t is first occurrence of s in E
 - $V^{\pi}(s) \leftarrow \frac{1}{N(s)+1} (N(s) \times V^{\pi}(s) + G)$
 - $N(s) \leftarrow N(s) + 1$

- States: A, B, C; actions: L, R; rewards received upon entering each state
- Policy: $\pi(s) = L$ for all states s
- Suppose we use episodes with 5 transitions

■ Episode 1:
$$(A, +3, A, -2, B, +1, C, -2, B, +3)$$

$$\gamma = 0.5$$

$$V^{\pi}(A) \leftarrow G(A) = 3 + \gamma(-2) + \gamma^{2}(1) + \gamma^{3}(-2) + \gamma^{4}(3) = 2.1875$$

$$V^{\pi}(B) \leftarrow G(B) = 1 + \gamma(-2) + \gamma^{2}(3) = 0.75$$

$$V^{\pi}(C) \leftarrow G(C) = -2 + \gamma(3) = -0.5$$

- States: A, B, C; actions: L, R; rewards received upon entering each state
- Policy: $\pi(s) = L$ for all states s
- Suppose we use episodes with 5 transitions

■ Episode 2:
$$(A, -2, B, +3, A, -2, B, +1, C, -2)$$

$$\gamma = 0.5$$

$$V^{\pi}(A) \leftarrow \frac{1}{2} \left(V^{\pi}(A) + G(A) \right) = \frac{1}{2} (2.1875 - 1) = 0.59375$$

$$V^{\pi}(B) \leftarrow \frac{1}{2} \left(V^{\pi}(B) + G(B) \right) = \frac{1}{2} (0.75 + 2) = 1.375$$

$$V^{\pi}(C) \leftarrow \frac{1}{2} \left(V^{\pi}(C) + G(C) \right) = \frac{1}{2} (-0.5 - 2) = -1.25$$

- States: A, B, C; actions: L, R; rewards received upon entering each state
- Policy: $\pi(s) = L$ for all states s
- Suppose we use episodes with 5 transitions

■ Episode 3:
$$(C, +1, C, -2, B, +3, A, -2, B, +3)$$

$$\gamma = 0.5$$

$$V^{\pi}(A) \leftarrow \frac{1}{3} (2V^{\pi}(A) + G(A)) = \frac{1}{3} (2(0.59375) - 0.5) = 0.229$$

$$V^{\pi}(B) \leftarrow \frac{1}{3} (2V^{\pi}(B) + G(B)) = \frac{1}{3} (2(1.375) + 2.75) = 1.833$$

$$V^{\pi}(C) \leftarrow \frac{1}{3} (2V^{\pi}(C) + G(C)) = \frac{1}{3} (2(-1.25) + 0.6875) = -0.604$$

Finer Points

• Different states will have different visited frequencies, but all states will be visited infinitely often in the limit—values will converge to true V^π

- Estimates of different state values are independent (in contrast to DP)
- Accuracy of $V^{\pi}(s)$ does *not* depend on accuracy of $V^{\pi}(s')$
- Result: Computational complexity of estimating specific state values is independent of state space size!
- Can choose to focus on certain states and ignore others

Constant- α Monte Carlo

Another way of writing the state value updates:

$$V^{\pi}(s_t) \leftarrow \frac{NV^{\pi}(s_t) + G_t}{N+1} = V^{\pi}(s_t) + \frac{1}{N+1} \left(G_t - V^{\pi}(s_t) \right)$$

- Update: "new estimate" = "old estimate" + "step size" × ("target" "old estimate")
- In some problems, we may want to give a higher weight to recent returns
- Constant- α MC exponentially decays the weights on past returns by factor $1-\alpha$

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (G_t - V^{\pi}(s_t)) = \alpha \sum_{i=1}^t (1 - \alpha)^{t-i} G_i$$

Recency-Weighted Average

• For constant α , we end up applying an *exponentially smaller* weight to each return value further back in the past:

$$V^{\pi}(s_{t}) \leftarrow V^{\pi}(s_{t}) + \alpha \left(G_{t} - V^{\pi}(s_{t})\right) = \alpha G_{t} + (1 - \alpha)V^{\pi}(s_{t})$$

$$= \alpha G_{t} + (1 - \alpha)(\alpha G_{t-1} + (1 - \alpha)V^{\pi}(s_{t-1}))$$

$$= \alpha G_{t} + (1 - \alpha)\alpha G_{t-1} + (1 - \alpha)^{2}V^{\pi}(s_{t-1})$$

$$= \cdots = \alpha \sum_{i=1}^{t} (1 - \alpha)^{t-i} G_{i}$$

Temporal-Difference Learning

- MC requires episodic structure—what about infinite horizon problems?
- State values in MC are estimated entirely independently of each other
- Maybe we can borrow the idea of the Bellman update from dynamic programming
- One-step TD (TD(0)): We can replace the *target* term with the sum of immediate reward with discounted successor state value
- We can update $V^{\pi}(s)$ immediately before the episode ends

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \Big(r_{t+1} + \gamma V^{\pi}(s') - V^{\pi}(s) \Big)$$
 Target

TD(0) for Prediction

• Given: Policy π , learning rate α between 0 and 1

- Initialize $V^{\pi}(s) \leftarrow 0$
- Loop:
 - Initialize starting state s if needed
 - **Generate** sequence $(s, \pi(s), r, s')$
 - $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (r + \gamma V^{\pi}(s') V^{\pi}(s))$
 - $\blacksquare s \leftarrow s'$

• All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$

• Policy to evaluate: $\pi(s) = L$ for all states

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$$

• Observed state and reward sequence: (A, +3, A)

$$\begin{pmatrix} V^{\pi}(A) \\ V^{\pi}(B) \\ V^{\pi}(C) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad V^{\pi}(A) \leftarrow V^{\pi}(A) + \alpha (r + \gamma V^{\pi}(A) - V^{\pi}(A)) \\ V^{\pi}(A) \leftarrow 0 + 0.5(3 + 0.8(0) - 0) = 1.5$$

• All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$

• Policy to evaluate: $\pi(s) = L$ for all states

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$$

• Observed state and reward sequence: (A, -2, B)

$$\begin{pmatrix} V^{\pi}(A) \\ V^{\pi}(B) \\ V^{\pi}(C) \end{pmatrix} = \begin{pmatrix} 1.5 \\ 0 \\ 0 \end{pmatrix} \qquad V^{\pi}(A) \leftarrow V^{\pi}(A) + \alpha \left(r + \gamma V^{\pi}(B) - V^{\pi}(A) \right) \\ V^{\pi}(A) \leftarrow 1.5 + 0.5(-2 + 0.8(0) - 1.5) = -0.25$$

• All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$

• Policy to evaluate: $\pi(s) = L$ for all states

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$$

• Observed state and reward sequence: (B, +1, C)

$$\begin{pmatrix} V^{\pi}(A) \\ V^{\pi}(B) \\ V^{\pi}(C) \end{pmatrix} = \begin{pmatrix} -0.25 \\ 0 \\ 0 \end{pmatrix} \qquad V^{\pi}(B) \leftarrow V^{\pi}(B) + \alpha (r + \gamma V^{\pi}(C) - V^{\pi}(B)) \\ V^{\pi}(B) \leftarrow 0 + 0.5(1 + 0.8(0) - 0) = 0.5$$

• All values initialized to 0; $\gamma = 0.8$, $\alpha = 0.5$

• Policy to evaluate: $\pi(s) = L$ for all states

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha (r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$$

• Observed state and reward sequence: (C, -2, B)

$$\begin{pmatrix} V^{\pi}(A) \\ V^{\pi}(B) \\ V^{\pi}(C) \end{pmatrix} = \begin{pmatrix} -0.25 \\ 0.5 \\ 0 \end{pmatrix} \qquad V^{\pi}(C) \leftarrow V^{\pi}(C) + \alpha (r + \gamma V^{\pi}(B) - V^{\pi}(C)) \\ V^{\pi}(C) \leftarrow 0 + 0.5(-2 + 0.8(0.5) - 0) = -0.8$$

Finer Points

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha \delta_t$$

- TD methods perform updates immediately with no episodic structure (MC)
- Useful if problems have long episodes or are continuing tasks
- If α is constant, V^{π} will continue jumping around with each new target
- May be desirable if problem is nonstationary
- We can also shrink α over time if we want V^{π} to converge

Optimality of TD(0)

- Suppose we use a *sequence* of α_n step size values over time
- Stochastic approximation theory assures us that TD(0) if α_n meets the following conditions:

$$\sum_{n=1}^{\infty} \alpha_n = \infty \qquad \sum_{n=1}^{\infty} \alpha_n^2 < \infty$$

- First condition ensures that initial steps are large enough to overcome initial conditions or random fluctuations
- Second condition ensures that updates do eventually shrink to 0
- These conditions are satisfied by the sample averaging method $\alpha_n = \frac{1}{n}$

MDP Method Comparison

Summary

- Reinforcement learning is used to estimate values/policies from data
- Instead of using underlying models, agent observes state-action-rewards

Prediction problem: Evaluate a given policy

Monte Carlo methods estimate by averaging samples of episodic returns

Temporal difference methods bootstrap by using estimates to inform other estimates