1

Note. Every subgroup of an abelian group is abelian.

Theorem

Let G be a group and H_1, \ldots, H_k be subgroups of G. Then $H_1 \cap \ldots \cap H_k \cap \ldots$ is a subgroup of G.

Proof

(i) $e \in H_i$ for all i, so $e \in \bigcap H_i$

(ii) Let $x, y \in \bigcap H_i$, then for each $i, x \in H_i$ and $y \in H_i \Rightarrow$ for each $i, x * y \in H_i \Rightarrow x * y \in \bigcap H_i$.

(iii) for each $i, x \in H_i \Rightarrow$ for each $i, x^{-1} \in H_i \Rightarrow x^{-1} \in \bigcap H_i$.

Note. Unions of subgroups are usually not subgroups, since x*y might not be in the set.

Theorem

Let G be a group and let a_1, a_2, \ldots, a_k be elements of G. Then there is a smallest subgroup H of G that contains a_1, \ldots, a_k .

Note. Smallest means that every other subgroups contains this subgroup.

Proof

Take all such subgroups and intersect them. Then

$$H = \bigcap H_i$$
.

is the smallest subgroup. H_i is well-defined because at least G is such subgroup. \Box

Theorem

Let (G,*) be a group. Let $a,b,c \in G$. Let H be the smallest subgroup containing a,b,c. Then, $H=\langle a,b,c\rangle$.

Example. A word in the generators and their inverses: $a^{-2}b^3ca^{-1}c^{-1}b^2a^{-3}$. This lies in H.

Theorem

The set of "words in the generators and their inverses" forms a subgroup.

Proof

- (i) $a_1 a_1^{-1}$ the identity is a word.
- (ii) Closure: juxtaposition gives another word.
- (iii) Inverses: just another word.

Theorem

The words a_1, \ldots, a_k and their inverses is the smallest subgroup containing a_1, \ldots, a_k .

Proof

We want to show that $H = \langle a, b, c \rangle = \bigcap H_i$.

Intuition. The intersection starts big and the generator starts small. They both give the same result.

Definition: finitely generated

If there exists a finite set $\{a_1, \ldots, a_k\}$ of elements in G with $G = \langle a_1, \ldots, a_k \rangle$, we call G finitely generated.

Example. V_4 . $H = \langle a, b \rangle$. Then

$$H = \{e, a, b, c\}.$$

So V_4 can be generated by 2 elements but not 1 element.

 $\it Note.$ Every finite group is finitely generated. Just take all elements as generators.

Example. \mathbb{Z} is an infinite group that is finitely generated. $\mathbb{Z} = \langle 1 \rangle$.

Example (Challenge). Show that $\mathbb Q$ is not finitely generated.

Example (Figure 7.11(b)). See iPad.