1 Notebook Information

• Name: Azzaleah Faith G. Oxina

• **Y&S:** BSCS 3A IS

Course: CSST 102 | Basic Machine Learning
Topic: Topic 2: Supervised Learning Techniques

• Due date: N/A

- 2 Laboratory Exercise #2: Exercises for K-Nearest Neighbors (KNN) and Logistic Regression on Breast Cancer Diagnosis Dataset
- 3 Exercise 1: Data Exploration and Preprocessing

```
[]:  # Load necessary libraries
     import pandas as pd
     # Load the dataset, ensure flexibility in file path handling
     df = pd.read_csv('Breast Cancer Diagnosis Dataset with Tumor Characteristics.
     ⇔csv')
     # Check column names for consistency
     print("Column Names:", df.columns)
     # Display the first 10 rows
     print("First 10 Rows:")
     print(df.head(10))
     # Check for missing values
     print("Missing Values per Column:")
     print(df.isnull().sum())
     # Descriptive statistics
     print("Descriptive Statistics:")
     print(df.describe())
    Column Names: Index(['id', 'diagnosis', 'radius_mean', 'texture_mean',
    'perimeter_mean',
           'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
           'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
           'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
           'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
           'fractal_dimension_se', 'radius_worst', 'texture_worst',
           'perimeter_worst', 'area_worst', 'smoothness_worst',
           'compactness_worst', 'concavity_worst', 'concave points_worst',
           'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'],
          dtype='object')
```

First 10 Rows:							
	id diagnosi	s radius_mean te	xture_mean p	erimeter_mean	area_mean	\	
0	842302	M 17.99	10.38	122.80	1001.0		
1	842517	M 20.57	17.77	132.90	1326.0		
2	84300903	M 19.69	21.25	130.00	1203.0		
3	84348301	M 11.42	20.38	77.58	386.1		
4	84358402	M 20.29	14.34	135.10	1297.0		
5	843786	M 12.45	15.70	82.57	477.1		
6	844359	M 18.25	19.98	119.60	1040.0		
7	84458202	M 13.71	20.83 90.2		577.9		
8	844981	M 13.00	21.82	87.50	519.8		
9	84501001	M 12.46	24.04	83.97	475.9		
	smoothness_mean	compactness_mean	concavity_mean	n concave poi	nts_mean \		
0	0.11840	0.27760	0.3001	0	0.14710		
1	0.08474	0.07864	0.0869	0	0.07017		
2	0.10960	0.15990	0.1974	0.19740			
3	0.14250	0.28390	0.2414	0	0.10520		
4	0.10030	0.13280	0.1980	0	0.10430		
5	0.12780	0.17000	0.1578	0.15780			
6	0.09463	0.10900	0.1127	0.11270			
7	0.11890	0.16450	0.0936	0.09366			
8	0.12730	0.19320	0.18590		0.09353		
9	0.11860	0.23960	0.2273	0	0.08543		
	texture_wors	t perimeter_worst	area_worst	smoothness_wo	rst \		
0	17.3	-			622		
1	23.4	1 158.80	1956.0	0.1	238		
2	25.5	3 152.50	1709.0	0.1	444		
3	26.5	0 98.87	567.7	0.2	098		
4	16.6	7 152.20	1575.0		374		
5	23.7	5 103.40	741.6	791			
6	27.6	6 153.20	1606.0	0.1	0.1442		
7	28.1	4 110.60	897.0	0.1	0.1654		
8	30.73 106		739.3	703			
9	40.6	97.65	711.4	0.1	853		
	compactness_worst	concavity_worst	concave poin	ts_worst symm	etry_worst	\	
0	0.6656	0.7119		0.2654	0.4601		
1	0.1866	0.2416		0.1860	0.2750		
2	0.4245	0.4504		0.2430	0.3613		
3	0.8663	0.6869		0.2575	0.6638		
4	0.2050	0.4000		0.1625	0.2364		
5	0.5249	0.5355		0.1741	0.3985		
6	0.2576	0.3784		0.1932	0.3063		
7	0.3682	0.2678		0.1556	0.3196		
8	0.5401	0.5390		0.2060	0.4378		
9	1.0580	1.1050		0.2210	0.4366		

fractal_dimensi	on worst	Unnamed	: 32
0	0.11890		NaN
1	0.08902		NaN
2	0.08758		NaN
3	0.17300		NaN
4	0.07678		NaN
5	0.12440		NaN
6	0.08368		NaN
7	0.11510		NaN
8	0.10720		${\tt NaN}$
9	0.20750		NaN
[10 rows x 33 colu	mnsl		
Missing Values per	_		
id	002	0	
diagnosis		0	
radius_mean		0	
texture_mean		0	
perimeter_mean		0	
area_mean		0	
smoothness_mean		0	
compactness_mean		0	
concavity_mean		0	
concave points_mean	n	0	
symmetry_mean		0	
fractal_dimension_	mean	0	
radius_se		0	
texture_se		0	
perimeter_se		0	
area_se		0	
smoothness_se		0	
compactness_se		0	
concavity_se		0	
concave points_se		0	
symmetry_se		0	
fractal_dimension_	se	0	
radius_worst		0	
texture_worst		0	
perimeter_worst		0	
area_worst		0	
smoothness_worst		0	
compactness_worst		0	
concavity_worst		0	
<pre>concave points_wor</pre>	st	0	
symmetry_worst		0	
fractal_dimension_	worst	0	
Unnamed: 32		569	

dtype: int64

Descriptive Statistics:

Descriptive Statistics:									
	id	radius_mean	texture_	mean	perimeter.	_mean	area_m	ean	\
count	5.690000e+02	569.000000	569.00	00000	569.00	00000	569.000	000	
mean	3.037183e+07	14.127292	19.28	39649	91.96	69033	654.889	104	
std	1.250206e+08	3.524049	4.30	1036	24.29	98981	351.914	129	
min	8.670000e+03	6.981000	9.71	0000	43.79	90000	143.500	000	
25%	8.692180e+05	11.700000				70000	420.300		
50%	9.060240e+05	13.370000				40000	551.100		
75%	8.813129e+06	15.780000			104.10		782.700		
max	9.113205e+08	28.110000			188.50		2501.000		
	smoothness_me	an compactn	.ess_mean	conca	avity_mean	conca	ve points	mear	n \
count	569.0000	-	9.000000		569.000000		569.0		
mean	0.0963		0.104341		0.088799			48919	
std	0.0140		0.052813		0.079720			38803	
min	0.0526		0.019380		0.000000			00000	
25%	0.0863		0.064920		0.029560			20310	
50%	0.0958		0.092630		0.061540			33500	
75%	0.1053		0.130400		0.130700			74000	
max	0.1634		0.345400		0.426800			01200	
	0.2001		0.010100		0.12000		***		
	symmetry_mean	textu	re_worst	perin	neter_worst	are	a_worst	\	
count	569.000000		9.000000	r	569.000000		.000000	•	
mean	0.181162		5.677223		107.261213		.583128		
std	0.027414		6.146258		33.602542		.356993		
min	0.106000		2.020000		50.410000		.200000		
25%	0.161900		1.080000		84.110000		.300000		
50%	0.179200		5.410000		97.660000		.500000		
75%	0.195700		9.720000		125.400000		.000000		
max	0.304000		9.540000		251.200000		.000000		
man	0.001000		.0.01000		201.200000	1201			
	smoothness_wo	rst compact	ness_worst	cor	ncavity_wors	st \			
count	569.000	-	569.000000		569.0000				
mean	0.132		0.254265		0.27218				
std	0.022		0.157336		0.2086				
min	0.071		0.027290		0.0000				
25%	0.116		0.147200		0.11450				
50%	0.131		0.211900		0.22670				
75%	0.146		0.339100		0.38290				
max	0.222		1.058000		1.25200				
man	0.222		1.00000	,	1.2020	30			
	concave point	s worst. svm	metry_wors	st fi	ractal_dimen	nsion	worst \		
count	•	.000000	569.00000		armor	569.0			
mean		.114606	0.29007				83946		
std		.065732	0.06186				18061		
min		.000000	0.15650				55040		
25%		.064930	0.15030				71460		
20/0	U	. 554550	0.20040	, 0		0.0	, 1 100		

```
50%
                       0.099930
                                        0.282200
                                                                  0.080040
    75%
                       0.161400
                                        0.317900
                                                                  0.092080
                       0.291000
                                        0.663800
                                                                  0.207500
    max
           Unnamed: 32
                   0.0
    count
                   NaN
    mean
    std
                   NaN
    min
                   NaN
    25%
                   NaN
    50%
                   NaN
    75%
                   NaN
                   NaN
    max
    [8 rows x 32 columns]
[]: #@title ## **Task: Summarize the Dataset:**
     # Number of instances and features
     print(f'Number of Instances: {df.shape[0]}')
     print(f'Number of Features: {df.shape[1]}')
     # Breakdown of target variable (diagnosis)
     print("Diagnosis Breakdown (M = Malignant, B = Benign):")
     print(df['diagnosis'].value_counts())
     # Display missing values for further action
     missing_values = df.isnull().sum()
     print("Missing Values:")
     print(missing_values[missing_values > 0])
    Number of Instances: 569
    Number of Features: 33
    Diagnosis Breakdown (M = Malignant, B = Benign):
    diagnosis
         357
    В
         212
    Name: count, dtype: int64
    Missing Values:
    Unnamed: 32
                   569
    dtype: int64
[]: #0title ## **3. Preprocessing:**
     from sklearn.preprocessing import StandardScaler
     # Drop irrelevant columns
     if 'id' in df.columns:
```

```
df = df.drop(columns=['id'])
if 'Unnamed: 32' in df.columns:
    df = df.drop(columns=['Unnamed: 32'])

# Convert Diagnosis column to binary (M -> 1, B -> 0)
df['diagnosis'] = df['diagnosis'].map({'M': 1, 'B': 0})

# Check for any missing values before scaling
missing_values = df.isnull().sum()
if missing_values.any():
    print("There are still missing values. Consider handling them before scaling.

--")
else:
    # Normalize features
    scaler = StandardScaler()
    features = df.drop(columns=['diagnosis'])
    scaled_features = scaler.fit_transform(features)
```

Training Set Size: 455 samples Testing Set Size: 114 samples

4 Exercise 2: Implementing K-Nearest Neighbors (KNN) Model

```
[]: #@title ## **1. Train the KNN Classifier:**

from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix,

→classification_report

# Initialize and train the KNN classifier
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)

# Predict the test set
```

```
y_pred = knn.predict(X_test)
     # Accuracy
     accuracy = accuracy_score(y_test, y_pred)
     print(f'Accuracy: {accuracy * 100:.2f}%')
     # Confusion matrix
     conf_matrix = confusion_matrix(y_test, y_pred)
     print('Confusion Matrix:')
     print(conf_matrix)
     # Classification report
     print('Classification Report:')
     print(classification_report(y_test, y_pred, target_names=['Benign',_
     Accuracy: 95.61%
    Confusion Matrix:
    [[71 1]
     [ 4 38]]
    Classification Report:
                  precision recall f1-score
                                                  support
          Benign
                       0.95
                                 0.99
                                           0.97
                                                       72
                       0.97
                                 0.90
                                           0.94
                                                       42
       Malignant
                                           0.96
        accuracy
                                                      114
       macro avg
                       0.96
                                 0.95
                                           0.95
                                                      114
    weighted avg
                       0.96
                                 0.96
                                           0.96
                                                      114
[]: #@title ## **2. Experiment with Different n_neighbors:**
     import matplotlib.pyplot as plt
     from sklearn.metrics import accuracy_score
     # Define a list of different neighbor values to experiment with
     neighbors = [3, 5, 7, 9]
     accuracies = []
     # Iterate over different n_neighbors values
     for n in neighbors:
        knn = KNeighborsClassifier(n_neighbors=n)
         knn.fit(X_train, y_train)
         y_pred = knn.predict(X_test)
         # Calculate accuracy for each model
```

```
accuracy = accuracy_score(y_test, y_pred)
    accuracies.append(accuracy)
# Plot accuracy vs n_neighbors
plt.plot(neighbors, accuracies, marker='o', color='blue', linestyle='--')
plt.xlabel('n_neighbors')
plt.ylabel('Accuracy')
plt.title('Accuracy for Different n_neighbors')
# Highlight the optimal n_neighbors
optimal_n = neighbors[accuracies.index(max(accuracies))]
optimal_acc = max(accuracies)
plt.axvline(x=optimal_n, color='red', linestyle='--', label=f'Optimal_
\hookrightarrown={optimal_n}')
plt.legend()
plt.show()
# Print the best n_neighbors
print(f'The optimal n_neighbors is {optimal_n} with an accuracy of {optimal_acc⊔
 →* 100:.2f}%.')
```


The optimal n_neighbors is 5 with an accuracy of 95.61%.

5 Exercise 3: Implementing Logistic Regression

```
[]: #@title ## **1. Train Logistic Regression:**
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import classification_report, accuracy_score, u
     # Logistic Regression
    logreg = LogisticRegression(max_iter=10000)
    logreg.fit(X_train, y_train)
     # Predict the test set
    y_pred_lr = logreg.predict(X_test)
     # Accuracy and classification report
    accuracy_lr = accuracy_score(y_test, y_pred_lr)
    print(f'Logistic Regression Accuracy: {accuracy_lr * 100:.2f}%')
     # Confusion matrix
    conf_matrix_lr = confusion_matrix(y_test, y_pred_lr)
    print('Confusion Matrix (Logistic Regression):')
    print(conf_matrix_lr)
     # Classification report
    print('Classification Report (Logistic Regression):')
    print(classification_report(y_test, y_pred_lr, target_names=['Benign',_
     Logistic Regression Accuracy: 97.37%
    Confusion Matrix (Logistic Regression):
    [[71 1]
     [ 2 40]]
    Classification Report (Logistic Regression):
                 precision
                              recall f1-score
                                                 support
          Benign
                      0.97
                                0.99
                                          0.98
                                                      72
       Malignant
                      0.98
                                0.95
                                          0.96
                                                      42
                                          0.97
                                                     114
        accuracy
       macro avg
                      0.97
                                0.97
                                          0.97
                                                     114
                                0.97
                                          0.97
    weighted avg
                      0.97
                                                     114
```

```
[]: #@title ## **2. Comparison of KNN and Logistic Regression:**
    import pandas as pd
     # Accuracy for KNN and Logistic Regression
    accuracy_knn = accuracy_score(y_test, y_pred)
    accuracy_lr = accuracy_score(y_test, y_pred_lr)
     # Precision, Recall, F1-Score for both models
    report_knn = classification_report(y_test, y_pred, target_names=['Benign',_
     report_lr = classification_report(y_test, y_pred_lr, target_names=['Benign',__
     # Create a comparison DataFrame
    comparison_df = pd.DataFrame({
         'Model': ['KNN', 'Logistic Regression'],
         'Accuracy': [accuracy_knn * 100, accuracy_lr * 100],
         'Precision (Benign)': [report_knn['Benign']['precision'], __
     →report_lr['Benign']['precision']],
         'Recall (Benign)': [report_knn['Benign']['recall'],
     →report_lr['Benign']['recall']],
         'F1-Score (Benign)': [report_knn['Benign']['f1-score'],
     →report_lr['Benign']['f1-score']],
         'Precision (Malignant)': [report_knn['Malignant']['precision'], ___
     →report_lr['Malignant']['precision']],
         'Recall (Malignant)': [report_knn['Malignant']['recall'], __
     →report_lr['Malignant']['recall']],
         'F1-Score (Malignant)': [report_knn['Malignant']['f1-score'],__
     →report_lr['Malignant']['f1-score']]
    })
     # Display the comparison
    print(comparison_df)
     # Determine which model performs better
    if accuracy_knn > accuracy_lr:
        print("KNN performs better in terms of accuracy.")
    elif accuracy_knn < accuracy_lr:</pre>
        print("Logistic Regression performs better in terms of accuracy.")
    else:
        print("Both models have the same accuracy.")
```

```
Model Accuracy Precision (Benign) Recall (Benign) \
0 KNN 94.736842 0.934211 0.986111
1 Logistic Regression 97.368421 0.972603 0.986111
```

6 Exercise 4: Hyperparameter Tuning and Cross-Validation

```
[]: #@title ## **1. GridSearchCV for KNN:**
     from sklearn.model_selection import GridSearchCV
     # Defining the parameter grid for KNN
     param_grid = {'n_neighbors': [3, 5, 7, 9], 'weights': ['uniform', 'distance'],
     \rightarrow'p': [1, 2]}
     # Perform Grid Search with 5-fold cross-validation
     grid_search = GridSearchCV(KNeighborsClassifier(), param_grid, cv=5)
     grid_search.fit(X_train, y_train)
     # Output the best parameters and corresponding accuracy
     best_params = grid_search.best_params_
     best_score = grid_search.best_score_
     print(f'Best Parameters: {best_params}')
     print(f'Best Cross-Validation Accuracy: {best_score * 100:.2f}%')
    Best Parameters: {'n_neighbors': 3, 'p': 2, 'weights': 'uniform'}
    Best Cross-Validation Accuracy: 96.92%
[]: #@title ## **2. Cross-Validation for Logistic Regression:**
     from sklearn.model_selection import cross_val_score
     # Perform 5-fold cross-validation for Logistic Regression
     cv_scores = cross_val_score(logreg, scaled_features, df['diagnosis'], cv=5)
     # Output the mean cross-validated accuracy
     mean_cv_accuracy = cv_scores.mean()
     print(f'Cross-Validated Accuracy (Logistic Regression): {mean_cv_accuracy * 100:.
```

Cross-Validated Accuracy (Logistic Regression): 98.07%

7 Exercise 5: Decision Boundary Visualization

[]: LogisticRegression(max_iter=10000)

```
[]: #@title ## **Task: Plot the Decision Boundary:**
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    def plot_decision_boundary(model, X, y, title):
        x_{min}, x_{max} = X[:, 0].min() - 1, X[:, 0].max() + 1
        y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),
                             np.arange(y_min, y_max, 0.01))
        # Predict on the mesh grid
        Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # Plot decision boundary
        plt.contourf(xx, yy, Z, alpha=0.3, cmap=ListedColormap(('lightblue', ___
     →'lightcoral')))
        plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor='k', u
     plt.title(title)
        plt.xlabel('PCA Component 1')
```

```
plt.ylabel('PCA Component 2')
plt.show()

# Plot decision boundaries for KNN and Logistic Regression

plot_decision_boundary(knn_pca, X_pca_test, y_test_pca, title='KNN Decision_
→Boundary (PCA)')

plot_decision_boundary(logreg_pca, X_pca_test, y_test_pca, title='Logistic_
→Regression Decision Boundary (PCA)')
```


