Algorithms and Data Structures Runtime Complexity, Associative Arrays

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science

Algorithms and Data Structures, November 2018

Structure

Runtime Complexity

Associative Arrays
Introduction
Practical Example
Sorting
Associative Array

Structure

Runtime Complexity

Associative Arrays
Introduction
Practical Example
Sorting
Associative Array

- ► The runtime does not entirely depend on the size of the problem, but also on the type of input
- This results in:
 - ► Best runtime:
 - Lowest possible runtime complexity for an input of size n
 - Worst runtime: Highest possible runtime complexity for an input of size n
 - Average / Expected runtime:
 The average of all runtime complexities for an input of size n

Example 1 - Conditions

- ▶ Input: Array a with n elements $a[i] \in \mathbb{N}, \ 1 \le a[i] \le n, \ 0 \le i < n$
- ▶ Output: Updated a with n elements where $a[0] \neq 1$

$$\begin{array}{c}
\text{if } a[0] == 1: \\
a[0] = 2 \\
\text{else :} \\
\text{for } i \text{ in range}(0, n): \\
a[i] = 2
\end{array}$$

$$\begin{array}{c}
\mathcal{O}(1) \\
\mathcal{O}(1)
\end{array}$$

$$\begin{array}{c}
\mathcal{O}(1) \\
\mathcal{O}(1)
\end{array}$$

$$\begin{array}{c}
\mathcal{O}(n) \\
\mathcal{O}(1)
\end{array}$$

$$\begin{array}{c}
\mathcal{O}(n) \cdot \mathcal{O}(1) \\
\mathcal{O}(1)
\end{array}$$

Example 1 - Conditions

- ▶ Input: Array a with n elements $a[i] \in \mathbb{N}, \ 1 \le a[i] \le n, \ 0 \le i < n$
- ▶ Output: Updated a with n elements where $a[0] \neq 1$

$$\begin{aligned}
& \text{if } a[0] == 1: \\
& a[0] = 2 \\
& \text{else :} \\
& \text{for } i \text{ in range}(0, n): \\
& a[i] = 2
\end{aligned}
\quad
\begin{aligned}
& \underbrace{\mathcal{O}(1)}_{\mathcal{O}(1)} \\
& \underbrace{\mathcal{O}(n)}_{\mathcal{O}(1)}
\end{aligned}
\quad
\end{aligned}
\quad
\end{aligned}
\quad
\end{aligned}
\quad
\end{aligned}
$$\underbrace{\mathcal{O}(1)}_{\mathcal{O}(1)} \\
& \underbrace{\mathcal{O}(n) \cdot \mathcal{O}(1)}_{\mathcal{O}(1)}
\end{aligned}$$$$

- ▶ Best runtime: $\mathcal{O}(1) + \mathcal{O}(1) = \mathcal{O}(1)$
- ▶ Worst runtime: $\mathcal{O}(1) + \mathcal{O}(n) = \mathcal{O}(n)$

Example 1 - Average Runtime

► The average runtime is determined by the average runtime for all input instances of size *n*

- ► The average runtime is determined by the average runtime for all input instances of size *n*
- Every element of a can have n different values $\Rightarrow n \cdot ... \cdot n = n^n$ different input instances of size n

- ► The average runtime is determined by the average runtime for all input instances of size n
- Every element of a can have n different values $\Rightarrow n \cdot ... \cdot n = n^n$ different input instances of size n
 - ightharpoonup a [0] == 1 in n^{n-1} instances

- ► The average runtime is determined by the average runtime for all input instances of size n
- Every element of a can have n different values $\Rightarrow n \cdot ... \cdot n = n^n$ different input instances of size n
 - ightharpoonup a [0] == 1 in n^{n-1} instances
 - ▶ $a[0] != 1 \text{ in } n^n n^{n-1} = n^{n-1} \cdot (n-1) \text{ instances}$

- ► The average runtime is determined by the average runtime for all input instances of size *n*
- Every element of a can have n different values $\Rightarrow n \cdot ... \cdot n = n^n$ different input instances of size n
 - ightharpoonup a [0] == 1 in n^{n-1} instances
 - ▶ $a[0] != 1 \text{ in } n^n n^{n-1} = n^{n-1} \cdot (n-1) \text{ instances}$
- Sum of all runtime complexities:

$$\underbrace{n^{n-1} \cdot \mathcal{O}(1)}_{\mathsf{a} [0] == 1} + \underbrace{n^{n-1} \cdot (n-1) \cdot \mathcal{O}(n)}_{\mathsf{a} [0] != 1}$$

Example 1 - Average Runtime

- ► The average runtime is determined by the average runtime for all input instances of size n
- Every element of a can have n different values $\Rightarrow n \cdot ... \cdot n = n^n$ different input instances of size n
 - ightharpoonup a [0] == 1 in n^{n-1} instances
 - $a[0] != 1 \text{ in } n^n n^{n-1} = n^{n-1} \cdot (n-1) \text{ instances}$
- Sum of all runtime complexities:

$$\underbrace{n^{n-1} \cdot \mathcal{O}(1)}_{\mathsf{a}[0] == 1} + \underbrace{n^{n-1} \cdot (n-1) \cdot \mathcal{O}(n)}_{\mathsf{a}[0] != 1}$$

Average runtime: (normalize by number of instances)

$$\frac{n^{n-1}+n^{n-1}\cdot(n-1)\cdot n}{n^n}=\frac{1}{n}+n-1\in\mathcal{O}(n)$$

Example 2 - Binary Addition

▶ Input: binary number b with n digits

▶ Output: binary number b + 1 with n digits

Table: Binary addition

Digits (n)	Input	Output	Steps
10	1011100100	1011100101	1
4	1011	1100	3
8	11111111	00000000	8

Example 2 - Binary Addition

- ▶ Input: binary number b with n digits
- ▶ Output: binary number b + 1 with n digits
- Runtime of the algorithm is determined by the number of bits getting changed (steps)
 - 1. "0" \to "1"
 - $\textcolor{red}{\textbf{2.}} \ "\textbf{1"} \ \rightarrow "\textbf{0"}$

Table: Binary addition

Digits (n)	Input	Output	Steps
10	1011100100	1011100101	1
4	1011	1100	3
8	11111111	00000000	8

Example 2 - Binary Addition

- ▶ Input: binary number b with n digits
- ▶ Output: binary number b + 1 with n digits
- Runtime of the algorithm is determined by the number of bits getting changed (steps)
 - 1. "0" \rightarrow "1" 2. "1" \rightarrow "0"
- ▶ Best runtime: $1 \text{ step} = \mathcal{O}(1)$
- ▶ Worst runtime: n steps = $\mathcal{O}(n)$

Table: Binary addition

Input	Output	Steps
1011100100	1011100101	1
1011	1100	3
11111111	00000000	8
	1011100100	1011100100 1011100101 1011 1100

Example 2 - Average Steps

Table: Binary addition with n = 1

Input	Output	Steps
0	1	1
1	0	1

$$\overline{\text{steps}} = \frac{1+1}{2} = 1$$

Example 2 - Average Steps

Table: Binary addition with n = 1

Input	Output	Steps
0	1	1
1	0	1

$$\overline{\text{steps}} = \frac{1+1}{2} = 1$$

Table: Binary addition with n = 2

Input	Output	Steps
00	01	1
01	10	2
10	11	1
11	00	2

$$\overline{\text{steps}} = \frac{1 + 2 + 1 + 2}{4} = \frac{3}{2}$$

Example 2 - Average Steps

Table: Binary addition with n = 3

Input	Output	Steps
000	001	1
001	010	2
010	011	1
011	100	3
100	101	1
101	110	2
110	111	1
111	000	3

$$\overline{\text{steps}} = \frac{1+2+1+3+1+2+1+3}{8} = \frac{7}{4}$$

Example 2 - Average Steps

Table: Binary addition with
$$n = 3$$

Input	Output	Steps
000	001	1
001	010	2
010	011	1
011	100	3
100	101	1
101	110	2
110	111	1
111	000	3

$$\overline{\text{steps}} = \frac{1+2+1+3+1+2+1+3}{8} = \frac{7}{4}$$

$$= 2 - \frac{1}{4} = 2 - \frac{1}{2^{n-1}}$$

$$\Rightarrow \text{Average runtime:}$$

$$2 - \frac{1}{2^{n-1}} \in \mathcal{O}(1)$$

Example 2 - Average Steps

Table: Case analysis for instances of size n

Input	Input Output Instances Step			
0	1	2^{n-1}	1	
01	10	2^{n-2}	2	
011	100	2^{n-3}	3	
:	:	:	:	
_01 1111	_100000	2^1	n-1	
0111111	1000000	2^{0}	n	
111 1111	0000000	1	n	

Example 2 - Average Steps

Table: Case analysis for instances of size *n*

Input	Output	Instances	Steps
0	1	2^{n-1}	1
01	10	2^{n-2}	2
011	100	2^{n-3}	3
÷	÷	÷	:
_01 1111	_10 0000	2^1	n-1
$011 \dots 1111$	1000000	2^{0}	n
111 1111	0000000	1	n

Average steps:

$$\frac{1 \cdot 2^{n-1} + 2 \cdot 2^{n-2} + \dots + (n-1) \cdot 2^{1} + n \cdot 2^{0} + n \cdot 1}{2^{n-1} + 2^{n-2} + \dots + 2^{1} + 2^{0} + 1} =$$

Example 2 - Average Steps

Table: Case analysis for instances of size n

Input	Output	Instances	Steps
0	1	2^{n-1}	1
01	10	2^{n-2}	2
011	100	2^{n-3}	3
:	:	÷	:
_01 1111	_10 0000	2^1	n-1
011 1111	1000000	2^{0}	n
111 1111	0000000	1	n

Average steps:

$$\frac{1 \cdot 2^{n-1} + 2 \cdot 2^{n-2} + \dots + (n-1) \cdot 2^{1} + n \cdot 2^{0} + n \cdot 1}{2^{n-1} + 2^{n-2} + \dots + 2^{1} + 2^{0} + 1} = \frac{\left(\sum\limits_{i=1}^{n} i \cdot 2^{n-i}\right) + \left(\sum\limits_{i=0}^{n-1} 2^{i}\right) + 1}{\left(\sum\limits_{i=0}^{n-1} 2^{i}\right) + 1}$$

Example 2 - Average Steps

Denominator:

$$\left(\sum_{i=0}^{n-1}2^i
ight)+1$$
 geometric series $=(2^n-1)+1=2^n$

Example 2 - Average Steps

Denominator:

geometric
$$\left(\sum_{i=0}^{n-1}2^i\right)+1=2^n$$
 $=$ $(2^n-1)+1=2^n$

$$\left(\sum_{i=1}^n i \cdot 2^{n-i}\right) + n$$

Example 2 - Average Steps

Denominator:

geometric
$$\left(\sum_{i=0}^{n-1} 2^i\right) + 1 = 2^n$$

$$= (2^n - 1) + 1 = 2^n$$

$$\left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n \stackrel{[x=2x-x]}{=} \left(2 \sum_{i=1}^{n} i \cdot 2^{n-i}\right) - \left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n$$

Example 2 - Average Steps

Denominator:

$$\left(\sum_{i=0}^{n-1} 2^i\right) + 1 \qquad \begin{subarray}{c} {\rm geometric} \\ {\rm series} \\ {\rm =} \\ \end{array} \qquad (2^n-1) + 1 = 2^n$$

$$\left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n^{\left[x=2x-x\right]} \left(2\sum_{i=1}^{n} i \cdot 2^{n-i}\right) - \left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n$$

$$= 1 \cdot 2^{n} + 2 \cdot 2^{n-1} + 3 \cdot n^{n-2} + \dots + (n-1) \cdot 2^{2} + n \cdot 2^{1}$$

$$-1 \cdot 2^{n-1} - 2 \cdot 2^{n-2} - \dots - (n-2) \cdot 2^{2} - (n-1) \cdot 2^{1} - n \cdot 2^{0}$$

Example 2 - Average Steps

Denominator:

geometric
$$\left(\sum_{i=0}^{n-1} 2^i\right) + 1 = 2^n$$

$$= (2^n - 1) + 1 = 2^n$$

$$\left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n^{\left[x=2x-x\right]} \left(2\sum_{i=1}^{n} i \cdot 2^{n-i}\right) - \left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n$$

$$= 1 \cdot 2^{n} + 2 \cdot 2^{n-1} + 3 \cdot n^{n-2} + \dots + (n-1) \cdot 2^{2} + n \cdot 2^{1}$$

$$-1 \cdot 2^{n-1} - 2 \cdot 2^{n-2} - \dots - (n-2) \cdot 2^{2} - (n-1) \cdot 2^{1} - n \cdot 2^{0}$$

$$= \underbrace{2^{n} + 2^{n-1} + \dots + 2^{1} + 2^{0}}_{2^{n+1} - 1} - 2^{0} = 2^{n+1} - 2$$

Example 2 - Average Steps

Average steps:

$$\overline{steps} = \frac{\left(\sum_{i=1}^{n} i \cdot 2^{n-i}\right) + n}{\left(\sum_{i=0}^{n-1} 2^{i}\right) + 1} = \frac{2^{n+1} - 2}{2^{n}} = 2 - \frac{1}{2^{n-1}}$$

$$\lim_{n \to \infty} \left(2 - \frac{1}{2^{n-1}}\right) = 2 \in \mathcal{O}(1)$$

Structure

Runtime Complexity

Associative Arrays
Introduction
Practical Example
Sorting
Associative Array

Associative Arrays

Introduction

Normal array:

$$\textit{A} = [0 \Rightarrow \textit{A}_0, \ 1 \Rightarrow \textit{A}_1, \ 2 \Rightarrow \textit{A}_2, \ 3 \Rightarrow \textit{A}_3, \ \dots]$$

- ► Searching elements by index
- ► Lookup of element with index "3": $\Rightarrow A[3] = A_3$

Associative Arrays

Introduction

- In practice: all major programming project require associative arrays
- ► In our lecture: example of countries with associated information

Associative array:

$$A = \left[egin{array}{ll} "\textit{Europa}" \Rightarrow A_0, "\textit{Amerika}" \Rightarrow A_1, \\ "\textit{Asien}" \Rightarrow A_2, "\textit{Afrika}" \Rightarrow A_3, \\ \dots \end{array}
ight]$$

- Searching elements by key
- The keys can be of any type with unique elements
- ► Lookup of element with key "Afrika":

$$\Rightarrow$$
 $A["Afrika"] = A_3$

Structure

Runtime Complexity

Associative Arrays

Introduction

Practical Example

Sorting

Associative Array

Associative Arrays

Practical Example

Table: Country data query from http://geonames.org

ISO	ISO3	Country	Continent	
AD	AND	Andorra	EU	
ΑE	ARE	United Arab Emirates	AS	
AF	AFG	Afghanistan	AS	
AG	ATG	Antigua and Barbuda	NA	
ΑI	AIA	Anguilla	NA	
AL	ALB	Albania	EU	
AM	ARM	Armenia	AS	
AO	AGO	Angola	AF	
AQ	ATA	Antarctica	AN	
÷	:	<u>:</u>	:	٠

Associative Arrays

Practical Example

Task: How many countries belong to each continent?

- ▶ We are interested in column 3 (Country) and 4 (Continent)
- There are two typical ways to solve this:
 - Using sorting
 - Using an associative array

Structure

Runtime Complexity

Associative Arrays

Introduction

Practical Example Sorting

Associative Array

Associative Arrays

Practical Example

Idea using sorting:

- We sort the table by Continent, so that all countries from the same continent are grouped in one block
- We count the size of the blocks

Disadvantage:

- ▶ Runtime of $\Theta(n \log n)$
- We have to iterate the array twice (sort and then count)

Advantage:

Easy to implement (even with simple linux / unix commands)

Practical Example - Sorting With Linux / Unix Commands

Input:

- The data is saved as tab seperated text (countryInfo.txt)
- ► Comments begin with a hash sign #

Commands:

cut: Selects specific columns of each line (tab separated)
cut -f5,9
-f5,9: columns 5 and 9 (= columns 3+4 of shown
Table 17)

Practical Example - Sorting With Linux / Unix Commands

Commands:

```
sort: Sorts lines by a key
sort -t ' '-k2,2
-t ' ': Separator: Tab (Insert with CTRL-V TAB)
-k2,2: Key from column 2 to 2
```

- uniq: Finds or counts unique keysuniq -c-c: count occurences of keys
- ► head: Displays a provided number of lines head -n30
 ¬n30: Displays the first 30 lines
 - -n30: Displays the first 30 lines
- less: Displays the file page wise

Practical Example - Sorting With Linux / Unix Commands

Sort countries by continent:

```
grep -v '^#' countryInfo.txt | cut -f5,9 \
   | sort -t ' ' -k2,2 | less
    Table: Resulting data
                                  Figure: Data pipeline
      Algeria
                ΑF
                                        grep
                ΑF
      Angola
       Benin AF
                                         cut
     Botswana AF
    Burkina Faso AF
      Burundi AF
                                        sort
     Cameroon AF
     Cape Verde AF
                                         less
```

Practical Example - Sorting With Linux / Unix Commands

Count countries per continent:

```
grep -v '^#' countryInfo.txt | cut -f9 \
   | sort | uniq -c | sort -nr
    Table: Resulting data
                                     Figure: Data pipeline
         58
             AF
                                            grep
         54 EU
         52 AS
                                             cut
         42 NA
         27 OC
                                            sort
         14 SA
         5
             AN
                                            uniq
                                            sort
```

Structure

Runtime Complexity

Associative Arrays

Introduction

Practical Example

Sorting

Associative Array

Practical Example - Associative Array

Idea using associative arrays:

- Take the continent as key
- Use a counter (occurences) or a list with all countries associated with this continent as value

Advantage:

Runtime $\mathcal{O}(n)$, implied we can find an element in $\mathcal{O}(1)$ as in normal arrays

Python

Python:

```
# creates a new map (called dictionary)
countries = {"DE" : "Deutschland", \
    "EN" : "England"}
# check if element exists
if "EN" in countries:
    print("Found %s!" % countries["EN"])
# map key "DE" to value "Germany"
countries["DE"] = "Germany"
# delete key "DE"
del countries["DE"]
```

Associative Arrays Efficiency

Efficiency:

- Depends on implementation
- Two typical implementations:
 - ► **Hashing:** Calculates a checksum of the key used as key of a normal array

```
search: \mathcal{O}(1) \dots \mathcal{O}(n)
insert: \mathcal{O}(1) \dots \mathcal{O}(n)
delete: \mathcal{O}(1) \dots \mathcal{O}(n)
```

► (Binary-)Tree: Creates a sorted (binary) tree

```
search: \mathcal{O}(\log n) \dots \mathcal{O}(n)
insert: \mathcal{O}(\log n) \dots \mathcal{O}(n)
delete: \mathcal{O}(\log n) \dots \mathcal{O}(n)
```

Associative Arrays Efficiency

Table: Map implementions of programming languages

	Hashing	(Binary-)Tree
Python	all dictionaries	
Java	java.util.HashMap	java.util.TreeMap
C++11/14	std::unordered_map	std::map
C++98	gnu_cxx::hash_map	std::map

Further Literature

General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

Further Literature

► Map - Implementations / API

```
[Java] Java - HashMap
    https://docs.oracle.com/javase/7/docs/api/
    java/util/HashMap.html

[Javb] Java - TreeMap
    https://docs.oracle.com/javase/7/docs/api/
    java/util/TreeMap.html

[Pyt] Python - Dictionaries (Hash table)
    https://docs.python.org/3/tutorial/
```

datastructures.html#dictionaries

Further Literature

► Map - Implementations / API

```
[Cppa] C++ - hash_map
          http://www.sgi.com/tech/stl/hash_map.html
[Cppb] C++ - map
          http://www.sgi.com/tech/stl/Map.html
```