Semestrale zum Elektronikpraktikum WS00/01 Prof. W. Gläser

Montag, 29.02.01, 14:00 Uhr

Aufgabe (5P):

a) Berechnen Sie die Ausgangsspannung und den Ausgangswiderstand der Schaltung in Abb. 1a! Geben Sie das Thevenin - Ersatzschaltbild an (ideale Spannungsquelle mit Serienwiderstand)!

b) An den Ausgang wird ein Verbraucher $(R=1k\Omega)$ angeschlossen (Abb 1b). Wie groß ist jetzt die Ausgangsspannung?

Abb. 1

2. Aufgabe (5P):

Skizzieren Sie die Übertragungsfunktion $A(\omega) = U_a/U_e$ und die Phasenverschiebung zwischen U_a und U_e der Schaltung in Abb. 2 als Funktion der Frequenz ω !

Bei welcher Frequenz ist A = -3dB? Wie groß ist die Phasenverschiebung an diesem Punkt? Wie sinkt $A(\omega)$ für Frequenzen $\omega < \omega_{-3dB}$ (in dB/Oktave oder dB/Dekade)?

3. Aufgabe (8P):

a) Wie groß sind in der Verstärkerschaltung (Abb. 3) die Basisspannung U_B , die Emitterspannung U_E und der Kollektorstrom I_C für $U_{in} = 0V$.

Abb. 3

- b) Wie groß ist die Spannungsverstarkung $V = U_{out}/U_{in}$? Ist U_{out} in Phase zu U_{in} (±10%-Antworten sind ausreichend)?
- c) Wo liegt die untere Grenzfrequenz (-3dB Punkt) für die Spannungsverstärkung? Zeichnen Sie ein Ersatzschaldbild für den Eingang (der Kondensator $0.33\mu F$ bildet zusammen mit dem Basis-Spannungsteiler und dem Eingangswiderstand des Transistors einen $Hoch-pa\beta$). Die Stromverstärkung des Transistors sei $\beta=100$.

4. Aufgabe (4P):

Geben Sie die Verstärkung (mit Vorzeichen) der beiden Schaltungen (Abb. 4a, b) an. Wie groß sind die Eingangsimpedanzen?

Abb. 4

5. Aufgabe (3P):

Eine Stromquelle liefere einen Strom I. Wandeln Sie diesen mittels eines Strom-Spannungs-Wandlers in ein propotionale Spannung $U[V] = 1.0 \times I[mA]$. Verwenden Sie dazu einen idealen Operationsverstärker mit geeigneter Beschaltung.

Abb. 5

6. Aufgabe (3P):

- a) Wie groß ist die Ausgangsspannung $U_a(t)$ des Integrators in Abb. 6 als Funktion einer beliebigen zeitabhängigen Eingangsspannung $U_e(t)$?
- b) Es sei $R = 1M\Omega$, $C = 2\mu F$. Zur Zeit t = 0 wird eine Gleichspannung $U_e = 1V$ an den Eingang gelegt, die Ausgangsspannung zu diesem Zeitpunkt sei $U_a(t = 0) = 0V$. Wie groß ist die Ausgangsspannung nach t = 1s?

Abb. 6