TYPE TR-4722 SZÉLESSÁVÚ ELŐERŐSÍTŐ

1589-U-52

TYPE TR-4722 SZÉLESSÁVÚ ELŐERŐSÍTŐ

1589-U-52

Gyástja:

ELEKTRONIKUS MÉRŐKÉSZÜLÉKEK GYÁRA 1163, Budapest, Cziráky v. 26-32. Telefon: 837-950 Telex: 22-45-35

Forgalomba hoz za:

MIGÉRT
MÜSZER- ÉS IRODAGÉPÉRTÉKESITŐ VÁLLALAT
1065 Budapest, Bajasy-Zsilinszky ut 37.

"515011-it.-iff" pr. 32. 1979. F. K.: Kirs Jovák Jázsaf

TARTALOMJEGYZÉK

U**-**52

	Oldal
1. A KÉSZÜLÉK RENDELTETÉSE ÉS ALKALMAZÁSI TERÜLETE	3
2. MÜSZAKI ADATOK	4
3. MÜKÖDÉSI ELV	6
4. ELŐZETES UTMUTATÁSOK	8
4.1. Kicsomagolási utmutatás	8
4.2. Üzembehelyezés előkészitése	8
5. HASZNÁLATI UTASITÁS	9
5.1. Biztonsági intézkedések	9
5.2. Az egység kezelőszerveinek ismertetése	9
5.3. Üzembehelyezés, előzetes beállitás	10
5.4. A használatra vonatkozó általános tudnivalók	12
6. RÉSZLETES MÜSZAKI LEIRÁS	17
6.1. Bemeneti áramkör	17
6.2. CHl bemeneti erősitő	17
6.3. Földelt bázisu kapcsoló áramkör	18
6.4. CH2 bemeneti erősitő	19
6.5. Kimeneti erősitő	19
6.6. Elektronkapcsoló	19
7. A KÉSZÜLÉK MECHANIKAI FELÉPITÉSE	23
8. HITELESITÉS	24
8.1. Általános utmutatások	24
8.2. A hitelesitéshez szükséges müszerek	24
8.3. Hitelesités	25
9. KARBANTARTÁS ÉS HIBAELHÁRITÁS	35
9.1. Karbantartás	35
9.2. Hibaelháritás	35
10. raktározási és szállitási feltételek	42
MELLÉKLETEK	

1

1. A KÉSZÜLÉK RENDELTETÉSE ÉS ALKALMAZÁSI TERÜLETE

Az EMG-1589-U-52 elektronkapcsolós kétsugaras előerősitő az EMG-1555 tipusu nagyfrekvenciás oszcilloszkóppal együtt használható, szélessávu előerősitő. Az előerősitőt a készülék baloldali tartórészébe kell behelyezni. Alkalmazásával két jel egymáshoz képesti fázisviszonyait vizsgálhatjuk előnyösen. Az oszcilloszkóp sávszélessége az előerősitővel együtt 0-100 MHz. A készülék nagy érzékenysége (10 mV/cm) lehetővé teszi kis, jelek vizsgálatát is. Mindkét csatornán polaritás váltás lehetséges. Az elektronkapcsoló Chopped (szaggatott) vagy Alternate (váltakozó) üzemmódban müködhet. Az előbbi alacsonyfrekvenciás jelek, az utóbbi pedig nagyfrekvenciás jelek vizsgálatára alkalmas. A müködési üzemmódok között van még az algebrailag összegező (ADDED) üzemmód, mellyel két jelet összeadhatunk. Ha az ADDED üzemmódban az egyik csatorna polaritását megforditjuk az előerősitő differenciálerősitőként müködik. A készülék bemenete nagyimpedanciáju, (1 Mohm 25 pF). Az előerősitő bemeneti ellenállása és bemeneti kapacitása minden osztóállásban állandó. A DC bemenet mellett AC valamint GND állás is van. A kapcsoló GND állásában az erősitő bemenetét leföldelhetjük, miközben a mérendő objektum azaz a bemenet szabaddá válik. Ezzel a kapcsolóellenállással egyenfeszültségű méréseknél megállapithatjuk a zérus egyenfeszültségű szintet anélkül, hogy a mérendő objektumról le kellene vennünk a mérőkábelt. A készülék helyes jelalakátvitelre beállitott osztót tartalmaz, mellyel maximálisan 2000-szeres leosztás eszközölhető. Az erősitő erősitése, ill érzékenysége kalibrált, igy vele pontos mérések végezhetők. A szinkronizáció céljára az előerősitő belsőszinkron kicsatolással ill. belső szinkronerősitővel rendelkezik. A belső szinkronizációt vagy a közös csatornajelből, vagy a második csatorna jeléből végezhetjük. A második csatorna bemenőjelét a CH2 OUT erősitő is felerősiti. Ezt a felerősitett jelet két célra lehet felhasználni:

- a. Az érzékenység növelésére olymódon, hogy a két erősitőt kaszkádkapcsoljuk. Ekkor a CH2 OUT erősitő kimenetét rákapcsoljuk a CH1 bemenetre.
- b. CHOPPED állásban szinkronjelként használjuk a CH2 OUT kimenőjelet. A készülékhez kiskapacitásu 1:10 osztásu mérőfej használható, amely lehetővé teszi, hogy áramkörök kisméretű alkatrészein méréseket végezzünk.

2. MÜSZAKI ADATOK

Az alábbi müszaki adatok a dugaszolható függőleges eősitő egységre (EMG--1589-U-52) vonatkoznak, de természetesen a NAGYFREKVENCIÁS OSZCILLOSZ-KÓP (EMG-1555) müszaki adatait is figyelembe kell venni.

Függőleges erősitő

(EMG-1555 készülékkel)

Bemeneti csatlakozás:
Bemeneti impedancia:
Frekvencia határok:
Lineáris torzitás:

Alacsonyfrekvenciás sávhatár AC állásban:

Polaritás: Érzékenység:

Bemeneti csillapitó fokozatai:

Bemeneti csillapitó pontossága: A folyamatos erősités szabályozás átfogása:

Bemeneti feszültség: Felfutási idő:

Müködési módok:

Belső inditási módok: CH2 OUTPUT erősitő:

Belső késleltetés:

DC, AC vagy GND

1 Mohm | 25 pF

0 - 100 MHz

max. -3 dB (100 MHz-en) 100 kHz-re

vonatkoztatva, 40 mm-es jellel

mérve

2 Hz (-3 dB)

NORM vagy INVERT

0,01 V/cm - 20 V/cm

(11 fokozatban átkapcsolható)

0,01; 0,02; 0,05; 0,1; 0,2; 0,5;

1; 2; 5; 10; 20 V/cm

+ 2 %

kb. 1: 2,5

max. 500 V
cs-cs
3,5 ns (számitott érték)

CH1, CH2, váltakozó(ALTERNATE)

szaggatott (CHOPPED), algebrailag
összegzett (ADDED)

NORM, CH2 ONLY

Kimeneti feszültség: ≥ 100 mV/cm
az ernyőn mérve, lezáratlanul

Sávszélesség: 20 MHz, ha a két
csatorna kaszkád van kapcsolva
Csatolás: DC

Kimeneti ellenállás: kb. 100 ohm 180 ns

U-52

EGYÉB ADATOK

Méretek:

Suly: kb. 2,5 kg

Csatlakozók: BNC rendszerüek

120 x 160 x 320 mm

Klimaadatok

Referencia klimaadatok:

Hőmérséklettartomány: $+15^{\circ}$ C $- +35^{\circ}$ C

Páratartalom: 45 - 75 %

Légnyomás: 860 - 1060 mB

Üzemi klimaadatok:

Hőmérséklettartomány: +5°C - +40°C

Páratartalom: max. 85 %

Légnyomás: 860 - 1060 mb

Szállitási és raktározási klimaadatok:

Hőmérséklettartomány: -25°C - +55°C

Páratartalom: max. 98 %

Légnyomás: 860 - 1060 mb

TARTOZÉKOK

"A" tartozék (a készülék árában bennfoglalt)

Használati utasitás 1 db

"B" tartozék (a készülékkel együtt rendelendő, az ár külön felszámitása mellett)

10252 50 ohmos kábel (20 cm) mindkét végén

"BNC" dugóval 1 db

1396-5 Kiskapacitásu mérőfej 1:10 osztásu ká-

bellel és beépitett kompenzálással,

másik végén "BNC" csatlakozó dugóval

2 db

3. MÜKÖDÉSI ELV

(Rövid ismertetés a tömbvázlat alapján)

A tömbvázlat a 2. ábrán látható.

A készülék villamos felépitése szempontjából a következőket tartalmazza:

- 1. 2. Bemeneti áramkör
- 3. CHl bemeneti erősitő
- 4. CH2 bemeneti erősitő
- 5. 6. Diódás kapuáramkör
- 7. Elektronkapcsoló
- 8. Kioltó impulzus CHOPPED üzemmódban
- 9. Szinkron impulzus erősitő
- 10. CH2 trigger erősitő
- 11. Kimeneti erősitő
- 12. Trigger erősitő
- 13. 14. Függőleges pozició változtatás
- 15. 16. Polaritást váltó kapcsoló
- 17. Üzemmódkapcsoló
- 18. "Z" erősitőhöz
- 19. Időeltéritő egységből jövő többsugaras szinkron impulzus
- 20. Késleltető vonalhoz
- 21. Időeltéritő egységhez

A készülék működése a tömbvázlat alapján a következő: A mérendő jel a a CH1 IN vagy CH2 IN feliratu bemeneti csatlakozóról a választó kapcsolón keresztül jut a megfelelő bemeneti osztóra (1,2).

A bemeneti osztók (VOLTS/CM feliratu kapcsolók) nagy amplitudóju jelek vizsgálatát teszik lehetővé. A leosztott jelek kerülnek a bemeneti erő-sitőkre (3,4). A felerősitett jel függőleges poziciótolását potenciométerek (13,14) végzik. A bemeneti erősitő a bejövő feszültségjelet áram-jellé alakitja, a poziciótolás tulajdonképpen áramváltoztatás utján történik. A PULL TO INVERT kapcsoló (15,16) a bemeneti erősitő és a poziciótolás között van elhelyezve, igy a polaritásváltáskor a poziciótolás polaritása változatlan. A bemeneti erősitőkről a diódás kapukon (5,6) keresztül jut a kimeneti erősitőre (11.) a jel. A diódás kapukat az elektronkapcsoló (7) vezérli. Az elektronkapcsolót (7) a MODE kapcsolóval (17) vezéreljük, és a következő kapcsolási módokat hozhatjuk létre a kimeneti erősitő (11) felé:

1. MODE kapcsoló CHI állásában: csak a CHI bemeneti erősitő jele jut az erősitőre.

- 2. MODE kapcsoló CH2 állásában: csak a CH2 bemeneti erősitő jele jut az erősitőre.
- 3. MODE kapcsoló ALTER állásában: a CH1 és CH2 bemeneti erősitők jelét felváltva adjuk a kimeneti erősitőre. Ebben az állásban az időeltéritő generátorból érkező többsugaras szinkron impulzus (19) vezérli a szinkron impulzus erősitőn (9) keresztül az elektronkapcsolót (7).
- 4. MODE kapcsoló CHOPPED állásában: a CH1 és CH2 bemeneti erősitő jelét l MHz frekvenciával szaggatva adjuk a kimenetre, ez alacsony frekvenciás jelek megfigyelését teszi lehetővé. A CHOPPED kioltó blocking oszcillátor (8) az átkapcsolás időtartamára kioltja a fényt.
- 5. MODE kapcsoló ADDED állásában: a CHl és CH2 bemeneti erősitők jele összegezve jut a kimeneti erősitőre. Ebben az állásban polaritás váltással kivonódnak a jelek egymásból.

Az EMG 1589-U-592 időeltéritő egység részére a belső szinkron jelet (21) az EMG 1589-U-52 egységből kaphatjuk a TRIGGER kapcsolótól függően:

- 1. NORM állásban a kimeneti erősitőről (11) a trigger erősitőn (12) keresztül történik.
- 2. A CH2 ONLY állásban a CH2 bemeneti erősitőből (4) a CH2 trigger erősitőn (10) és a trigger erősitőn (12) keresztül történik a trigger jel kicsatolása.

U-52

4. ELŐZETES UTMUTATÁSOK

4.1. Kicsomagolási utmutatás

A többrétegű burkolatba csomagolt készülék külső burkolata a hullámpapir doboz, melyet a ragasztások mentén kell felbontani. A készülékről – a hullámpapir dobozból történt kiemelés után – a légmentesen zárt műanyag burkolat is eltávolitható és a készülék a belső papir boritásból kibontható. A krómozott, v. nikkelezett alkatrészekről a parafinpapir védőboritást le kell göngyölni és a vékony vazelinréteget puha textilanyaggal, vagy széntetraclorid oldatos vattával letörölni. Mindezek elvégzése után a készülék üzembehelyezhető. Amennyiben a készülék ismét szállitásra kerül, becsomagolása a fent ismertetett mód forditott sorrendjében történjék, lehetőleg minden csomagolási anyag felhasználásával, nehogy a készülék az ujabb szállitás folyamán károsodást szenvedjen.

4.2. Üzembehelyezés előkészitése

Az üzembehelyezés előkészitése az EMG 1589-U-52 szélessávu előerősitőnek az EMG 1555 készülékbe való dugaszolásából áll. A további részletes előkészitést a készülék müszerkönyvének azonos fejezete tartalmazza.

5. HASZNÁLATI UTASITÁS

5.1. Biztonsági intézkedések

Az egység kezelése különleges biztonsági intézkedéseket nem igényel. Azonban vigyázzunk arra, hogy ha az egység nincs bedugaszolva a 1555 készülékbe, az alkatrészek között ne okozzunk zárlatot.

5.2. Az egység kezelőszerveinek ismertetése

Az előlapon található kezelőszervek a 3. ábrán láthatók.

AC-DC-GND: A kapcsolóállástól függően mind az egyenfeszültségü, mind a CHl: Sl váltakozófeszültségü komponensét vizsgálhatjuk a jelnek.

CH2: S101 Az AC állásban a bemeneti jel kondenzátoron keresztül jut az erősitő bemenetére, tehát az egyenfeszültséget a kondenzátor leválasztja. Az alacsonyfrekvenciás sávhatár: 2 Hz (-3 dB).

A GND állásban a kapcsoló az erősitő bemenetét leföldeli, ugy,

hogy a rajta lévő mérendő objektum nem kerül földre.

VOLTS/CM: Az érzékenység beállitására szolgáló 11 állásu kapcsoló.

CH1: S2 Az erősités minden állásban kalibrált, ha a VARIABLE poten-

CH2: S102 ciométer CAL. állásban van. Az érzékenység változtatható 0,01 - 20 V/cm-ig.

VARIABLE: A függőleges érzékenység folyamatos változtatására szolgál.

Az érzékenység változás értéke nagyobb, mint 1:2,5. Pl. Ha a CHl: P5

CH2: P105 VOLTS/CM kapcsoló 1 V/cm állásban van, akkor az érzékenység 1 V/cm - 2,5 V/cm tartományban változtatható.

POSITION: Ezzel a potenciométerrel a sugár helyzete változtatható füg-

CH1: P11 gőlegesen az ernyőn.

CH2: P111

PULL TO

INVERT: Polaritás váltásra szolgáló kétállásu kapcsoló.

CH1: S3

CH2: S103

MODE: Öt állásu kapcsoló, mely az üzemmód kiválasztására alkalmas; S301 az üzemmódok a következők:

CHl: Az l. bemenetre adott jel jelenik meg a katódsugárcső ernyőjén. A 2. csatorna nem müködik, azonban a CH2 bemenetre adott jel a CH2 OUTPUT kimeneten ilyenkor is megjelenik felerősitve.

CH2: A 2. bemenetre adott jel jelenik meg a katódsugárcső ernyőjén. Az 1. csatorna nem müködik.

ALTER: Az 1. és 2. csatorna jele felváltva jelenik meg a katódsugár-

cső ernyőjén. Az ilymódon váltakozva müködtetett csatornák váltása ill. a visszafutás a fürészgenerátor szünetideje alatt történik. A villodzás frekvenciája, amelyet a váltakozás okoz, az időeltérités ismétlődési frekvenciájától, tehát az időeltéritő generátor sebességétől függ. Ezt az üzemmódot nagyfrekvenciás méréseknél használhatjuk előnyösen.

CHOP: Szaggatott üzemmód, amelynél az elektronkapcsoló kb. l MHz ismétlődési frekvenciával felváltva az l. ill. a 2. csatornát müködteti. Ilymódon az ernyőn látható ábra 0,5 µs idejü vonaldarabkákból áll. Az átkapcsolás ideje alatt a katódsugárcső fénye ki van oltva.

ADDED: Az ernyőn láthat jel a l. és a 2. csatorna jelének algebrai összege. Ha az erősitőt differenciálerősitőként kivánjuk mü-ködtetni, a PULL TO INVERT kapcsolók közül az egyiket INVERT állásba kell kapcsolni.

TRIGGER: Kétállásu kapcsoló, mellyel ha belső inditást alkalmazunk, (S201) a triggerjel forrását meghatározzuk.

NORM: állásában az inditójelet, a két csatorna közös jeléből veszszük.

ONLY CH2: állásban a 2. csatorna bemenőjeléből származik a belső triggerjel.

GAIN: A csavarhúzós potenciométer, amellyel az erősitő érzékenysé-CH1: P9 gét állithatjuk be hiteles értékre.

CH2: P109

VAR ATTEN BAL: Csavarhúzós potenciométer, amellyel az erősitő szimmet-

CH1: P2 riáját állithatjuk be. A helyes beállitás esetén, ha nem

CH2: P102 adunk a függőleges bemenetre jelet és változtatjuk az érzékenységet a VARIABLE potenciométerrel, a vizszintes vonal nem mozdul el függőleges irányba az ernyőn.

5.3. Üzembehelyezés, előzetes beállitás

Az EMG 1589-U-52 elektronkapcsolós előerősitő egységet az EMG 1555 tipusú nagyfrekvenciás oszcilloszkóp baloldali fiókjába kell bedugaszolni (a jobboldali fiókba pedig az időeltéritő egységet).

5.3.1. A következőkben leirt módon járjunk el a készülék üzembehelyezésénél:

a. Állitsuk a kezelőszerveket a következő helyzetbe:

AC-DC-GND

DC (mindkét csatornán)

VOLTS/CM

0,01 (mindkét csatornán)

VARIABLE

CAL. (mindkét csatornán)

POSITION Középállásba (mindkét csatornán)

MODE CH1

PULL TO INVERT betolva (mindkét csatornán)

TRIGGER NORM

b. Adjunk 20 mV-os jelet a kalibrátor kimenetről mindkét függőleges bemenetre. Állitsuk be az időeltérités kezelőszerveit ugy, hogy álló ábrát lássunk az ernyőn. Használjuk az l ms/cm (Sl) és az AC (S8) állást és alkalmazzunk belső inditást. Az ernyőn 2 cm nagyságu négyszögjelet látunk. A CH1 POSITION (Pl1) potenciométerrel állitsuk középre a jelet.

- c. Kapcsoljuk a MODE (S301) kapcsolót CH2 állásba, ismét 2 cm nagyságu négyszögjelet látunk az ernyőn. Állitsuk a CH2 POSI-TÍON (P111) potenciométerrel az ábrát az ernyőn középre.
- d. Kapcsoljuk a MODE (S301) kapcsolót az ALTER állásba. Amennyiben szükséges állitsuk be a LEVEL (P202a) potenciométert ugy, hogy két álló ábrát lássunk az ernyőn. A két sugár váltakozási frekvenciája az eltéritési sebesség állásától függ.
- e. Állitsuk a MODE (S301) kapcsolót CHOP állásba, továbbá a TRIG-GER (S201) kapcsolót CH2 ONLY állásba. Amennyiben szükséges állitsuk be ismét a LEVEL (P202a) potenciométert ugy, hogy álló ábrát kapjunk az ernyőn. Két sugarat kell ismét látnunk az ernyőn.
- f. Kapcsoljuk a MODE (S301) kapcsolót ADDED állásba. Ekkor egy sugárnak kell megjelenni az ernyőn, az ernyőn látható ábrának pedig 4 cm lesz a nagysága. A jel az l. és a 2. csatorna jeleinek az összege. Ellenőrizzük, hogy mindkét POSITION potenciométer forgatása mozgatja-e függőlegesen az ábrát.
- g. Állitsuk a VAR.ATTEN.BAL (P2) potenciométert ugy, hogy ha a VARIABLE (P5) potenciométer forgatása esetén ne mozduljon el a sugár függőleges irányba az ernyőn.
- h. Ismételjük meg az eljárást a 2. csatorna esetében is.
- 5.3.2. A GAIN (P9) potenciométert a következő módon kell helyesen beállitani:
 - a. Kapcsoljuk a TRIGGER (S201) kapcsolót NORM állásba.
 - b. Kapcsoljuk az l. csatorna AC-GND-DC (S1) kapcsolóját DC állásba, a MODE (S301) kapcsolót pedig CHl állásba.
 - c. Állitsuk az l. csatorna VOLTS/CM (S2) kapcsolóját 0,01 állásba a VARIABLE (P5) potenciométert pedig CAL. állásba.
 - d. Az időeltéritő egységgel állitsunk elő szabadonfutó időeltéritést, melynek a sebessége: 0,1 msec/cm.

บ-52

- e. Adjunk 50 mV-os nagyságu kalibráló jelet az 1. csatorna bemenetére.
- f. Az ernyőn 5 cm-es jelet kell látnunk. Ha az ábra nagysága eltérő, állitsuk be helyesen a GAIN (P9) potenciométert.
- g. Ismételjük meg ugyanezt a 2. csatorna esetében is.
- h. Huzzuk ki a PULL TO INVERT (S3) kapcsolót. Kapcsoljuk az időeltéritést (S6) FREE RUN üzemmódba. A katódsugárcső ernyőjén látható vizszintes vonal azt jelzi, hogy a két jelet algebrailag kivontuk egymásból, ugyanis a két jel egyforma volt.
- 5.3.3. VAR ATTEN BAL ÉS GAIN potenciométerek beállitása
 Mielőtt 1589-U-52 egységet pontos mérésekre használnánk, a VAR.
 ATTEN.BAL. (P2) és a GAIN (P9) potenciométereket pontosan be kell
 állitani. Mindkét kezelőszerv az előlapon található csavarhúzós
 állitásu potenciométer. A GAIN potenciométert minden egyes esetben ujra be kell állitani, ha a 1589-U-52 egységet másik EMG 1555
 tipusú oszcilloszkópba dugaszoljuk.

Ha az erősitő szimmetriája nincs helyesen beállitva, akkor a VA-RIABLE potenciométer állitásakor a sugár függőlegesen elmozdul a képernyőn.

- A VAR ATTEN BAL (P2/Pl02) beállitását a következőkép végezzük:
- a. Kapcsoljuk mindkét csatornánál az AC-DC-GND (S1/S101) kapcsolót GND állásba.
- b. Kapcsoljuk a MODE (S301) kapcsolót CH1 (CH2) állásba, és állitsunk elő szabadonfutó időeltéritést az ernyőn.
- c. Állitsuk a vizszintes vonalat az ernyő közepére.
- d. Állitsuk a P2 (PlO2) potenciométereket ugy, hogy a fényvonal helyzete ne mozduljon el, miközben a VARIABLE potenciométert elforgatjuk.

5.4. A használatra vonatkozó általános tudnivalók

A két erősitő csatorna bármelyike külön-külön használható, a mérendő jelet a megfelelő bemenetre kell csatlakoztatni. Az üzemmódot a MODE (S301) kapcsolóval választhatjuk ki.

A mérendő jelet a bemenetre különféle módokon vezethetjük.

a. Mérőzsinór, mérőkábel.

A módszer előnye az egyszerüség.

Hátránya, hogy a szórt kapacitás miatt a frekvenciaátvitel korlátozott, gyors jeleknél a jelátvitel torzitást szenved.

A méréshez BNC-banándugó átmenet szükséges. A mérésnél 1 Mohm | 25 pF

impedancia és még a mérőkábel szórt kapacitása terheli a mérendő objektumot. Kellemetlen lehet, hogy az árnyékolás hiánya miatt a mérésnél szórt jelek zavarhatják a mérést.

b. Lezáratlan koaxiális kábel.

Előnye, hogy az érzékenységet nem csökkenti.

Hátránya, hogy a nagy kábelkapacitás miatt jelentősen korlátozza a nagyfrekvenciás átvitelt.

A méréshez BNC végződésü kábel szükséges. A mérendő generátort

1 Mohm | 25 pF impedancia és még a koaxiális kábel kapacitása terheli.

c. Lezárt koaxiális kábel.

A lezárásnak az oszcilloszkóp bemeneténél kell lennie.

Előnye, hogy az oszcilloszkóp érzékenységét nem csökkenti. Helyes lezárás esetén az impulzusátvitel jó és a terhelés ohmos.

Hátránya, hogy a lezárás csökkenti a jelamplitúdót, ill. szükség lehet leválasztó kapacitás használatára.

A méréshez BNC-végződésü kábelre van szükség. A mérőeszköz R_0 \parallel 25 pF terhelést okoz, ami reflexiókat okozhat. Hátránya még, hogy az általában 50 ohmos lezárás miatt nagyobb teljesitményekre van szükség.

d. 50 ohmos osztóval lezárt koaxiális kábel.

Előnye, hogy kisebb a reflexió, mint a csupán 50 ohmmal lezárt kábel esetében.

Hátránya, hogy az érzékenységet az osztás csökkenti. A lezárás ill. osztó korlátozza a teljesitményt, amelyet mérhetünk, ill. nagyobb mérendő jelre van szükség a veszteség miatt.

A mérésnél jelentkező terhelő impedancia tisztán ohmos: $R_0=50$ ohm.

A méréshez 50-ohmos koaxiális osztó szükséges.

e. 1:10 osztásu mérőfej.

Előnye, hogy csökkenti az ohmos és kapacitiv terhelést.

Hátránya, hogy csökken az érzékenység.

A mérőfej impulzusátvitelre kompenzált, ennek helyességét alacsonyfrekvenciás négyszögjellel ellenőrizzük. (Célszerüen 1 kHz-en.)

A méréshez a 1396-5 tipusú mérőfejet használjuk. A mérőfej által okozott terhelés: 10 Mohm \parallel 12 pF.

Bemeneti csatolás:

Ha a vizsgált jelnek mind az egyenfeszültségü, mind a váltakozófeszültségü komponensét kivánjuk vizsgálni, akkor az AC-GND-DC kapcsolót DC állásba kell kapcsolni. Ha csak a váltófeszültségü komponenst kivánjuk vizsgálni, akkor pedig AC állásba. Ebben az utóbbi esetben a jel kondenzátoron keresztül jut a bemenetre. A kondenzátor miatt alacsonyfrekvenciás vágás jön létre, amelynek a -3 dB-es pontja 2 Hz-nél van, ha a ge-

nerátor impedancia klesi. da es AC állást használjuk, akkor alacsonyfrekvenciás torzitássel kell számolnunk. Ha mérőfejjel mérünk AC állásban, akkor ez az időállandó 0,2 Hs.

Érzékenység

Az érzékenységet három tényező határozza meg: a VOLTS/CM kapcsoló, valamint a VARIABLE potenciométer állása, és az esetleg alkalmazott mérőfej osztása. A VOLTS/CM kapcsoló által jelzett érzékenység csak abban az esetben érvényes, ha a VARIABLE potenciométer a CAL állásban van. A VARIABLE potenciométer átfogása min. 1:2,5. Az elérhető legiksebb nem kalibrált érzékenység értéke: 50 V/cm.

Kétsugaras elektronkapcsolós müködés

Az elektronkapcsolós üzemmódok közül bizonyos esetekben a CHOPPED, máskor pedig az ALTERNATE üzemmódot célszerű használni.

Két nem ismétlődő jel vizsgálata esetén:

A CHOPPED üzemmódot 10 /u s/cm eltéritési sebességnél lassubb eltéritési sebességek esetében használhatjuk előnyösen, ha a vizsgált két jel nem ismétlődő. Szélső esetben pl. 0,l msec periódus idejü jel egy periódusnál 10 cm-re nyujtva látjuk a katódsugárcső ernyőjén. Ha gyorsabb, nem ismétlődő jeleket kivánunk vizsgálni, gyorsabb időeltérités alkalmazásával, akkor egysugaras üzemmódot kell alkalmazni.

Két ismétlődő jel vizsgálata esetén:

Ebben az esetben célszerű az alternate üzemmódot alkalmazni. Azonban ilyenkor a használt eltéritési sebesség értéke 0,5 msec/cm érték felett kell, hogy legyen. Ha 250 Hz-nél nagyobb ismétlődési frekvenciáju jeleket vizsgálunk az ALTERNATE üzemmódban, akkor villódzás mentes ábrát látunk az ernyőn. Ha ennél lassubb eltéritést alkalmazunk, akkor a két sugár váltakozási frekvenciája már zavaró lesz, emiatt célszerübb a CHOPPED üzemmódot használni.

Feszültségmérés

Ha két pont közötti feszültséget akarunk mérni, a két pont közötti távolságot kell mérnünk függőleges irányban a katódsugárcső ernyőjén. Ezt
az értéket szorozva az eltéritési tényezővel (a VOLTS/CM kapcsolón leclvasható érték) kapjuk a feszültségkülönbséget. A mérés akkor helyes,
ha a VARIABLE potenciométer CAL. helyzetben van. Mérőfej alkalmazása
esetén a mérőfej osztását is figyelembe kell venni. (Pl. EMG 1396-5
használata esetén tizszeresét kell venni a mért értéknek.) Ez a mérés
alkalmas AC feszültségmérésre.

Ha a jel egyenfeszültségű szintjére vagyunk kiváncsiak, akkor a mérés módja ettől kissé eltérő. Először kapcsoljuk az AC-GND-DC kapcsolót GND állásba. Ezután állitsuk be a POSITION potenciométert ugy, hogy a viz-

- szintes vonal éppen az ernyő közepén legyen. Ilymódon a zérus egyenfeszültségü szint a raszter középső vonalának felel meg. Ezután az AC feszültségmérésnél követett módon eljárva a taszter léptékének a megállapitásánál DC állásban mérünk.
 - Pl. A nulla szint megállapitására kapcsoljunk GND állásba. Állitsuk a POSITION potenciométerrel a sugarat az ernyő közepére. Kapcsoljunk DC állásba. Mérjük meg hány cm-re van a nulla szinttől a mérendő pont. A mért érték pl. 2,6 cm. 7

Az eltéritési tényező: 2 VOLTS/CM. CAL. állásban vagyunk, 1:10 osztásu mérőfejet használtunk: az eltéritési tényező igy: 20 V/cm.

- A mért feszültség: $20 \times 2,6 = 52 \text{ V}$.
 - A mért feszültség pozitiv.
- Amennyiben a feszültséget kisebb eltéritési tényező mellett mérjük, akkor a mérés végrehajtásánál előfordulhat, hogy célszerü a nulla egyenszintet nem az ernyő közepére, hanem valamelyik másik rasztervonalra állitani. Ebben az esetben természetesen a mért feszültség nagyságát az igy megállapitott nulla vonaltól való távolság határozza meg.

Feszültségmérés összehasonlitással

Bizonyos esetekben a feszültségmérést célszerübb nem az előzőekben ismertetett módon végrehajtani, hanem összehasonlitással mérni. Ha például tudjuk, hogy a mérendő jel valamely más jel amplitudójának csak egészszámu többszöröse lehet. Ekkor a referenciaként szolgáló jel amplitudóját
célszerü a VARIABLE finomszabályozó potenciométer segitségével 1 cm nagyságura beállitani, függetlenül attól, hogy a referencia jel nagysága pl.
1,5 cm nagyságu lenne valamelyik kalibrált eltéritési tényező mellett.
A továbbiakban ezt az immár 1 cm-nek megfelelő referenciajelet használhatjuk amplitudó, azaz feszültségegységnek.

A mérés végrehajtása azonos ezután, az előző módszerrel, csak az eredmény kiszámitásánál nem Voltban, hanem relativ egységekben kapjuk a mért feszültség nagyságát.

Pontos DC mérés a millivolt tartományban

Amennyiben a legérzékenyebb eltéritési tényezővel mérünk az EMG 1589-U--52 egységgel, és a legfelső frekvenciáju tartományban, célszerü lehet 50 ohmos mérőrendszert alkalmazni. Továbbá a mérés pontossága érdekében győződjünk meg arról, hogy a VAR ATTEN BAL és a GRID CURRENT ZERO potenciométerek beállitása helyes-e.

A VAR ATTEN BAL potenciométer beállitását az üzembehelyezés cimü fejezetben már láttuk.

A GRID CURRENT ZERO potenciométer beállitását a következőképp végezzük:

- 1. A bekapcsolt készüléket működtessük legalább 10 percig, hogy a készülék hőegyensulya beállhasson.
- 2. A MODE kapcsolót kapcsoljuk abba az állásba, amelyik csatornát hasz-náljuk.
- 3. Állitsuk be helyesen a VAR ATTEN BAL potenciométert.
- 4. Állitsuk a VOLTS/CM kapcsolót 0,01 állásba, a VARIABLE potenciométert CAL állásba, az AC-DC-GND kapcsolót pedig GND állásba.
- 5. Állitsunk elő az ernyőn szabadonfutó időeltéritést, a sugarat állitsuk az ernyő közepére. Kapcsoljuk az AC-DC-GND kapcsolót DC állásba. Figyeljük meg, hogy átkapcsoláskor elmozdul-e a sugár függőlegesen az ernyőn. Ha elmozdul, állitsuk be a GRID CURRENT ZERO potenciométert ugy, hogy az elmozdulás a megismételt átkapcsoláskor megszünjön.

6. RÉSZLETES MÜSZAKI LEIRÁS (Az áramkörök ismertetése)

A készülék müködésének részletesebb ismertetése a villamos kapcsolási rajzok (7. 8. 9. 10. 11. ábrák) megfelelő poziciószámaira való utalások-kal történik.

6.1. Bemeneti áramkör

Az EMG 1589-U-52 egységhez BNC csatlakozón keresztül csatlakozhatunk. A bemenőjel frekvenciakompenzált osztón keresztül jut a bemenetre, kivéve a VOLTS/CM (S2) kapcsoló 0,01 állását. A bemenet minden osztó állásában 1 Mohm | 25 pF terhelést képvisel. Az osztó a VOLTS/CM kapcsoló minden állásában külön-külön kondenzátorral kompenzált. Ez a rendszer biztositja, hogy az osztó állásokban is a teljes sávszélességet használhassuk.

Az összes osztó két vagy három ellenállást és két kapacitást tartalmaz. Egy további sönt kapacitás teszi lehetővé, hogy az állandó bemenő kapacitást beállitsuk.

6.2. CHl bemeneti erősitő

A bemeneti erősitőt a V2 bemeneti katódkövető vezérli. A katódkövető anódfeszültségét a TR1 és TR2 kaszkádba kapcsolt emitterkövetők szolgáltatják. A V2 katódkövető anódfeszültségének a változtatásával a V2 katódfeszültségét 1,2 V-ra állitjuk be. A bemeneti katódkövető esetleges rácsáramát kompenzálja a GRID CURRENT ZERO potenciométer (P3) feszültsége, amely a rácsáramnak megfelelően kissé negativ feszültséget juttat az R14 rácslevezető ellenállás alsó pontjára.

A V2 katódfeszültséget - az anódfeszültség változtatásával - azonosra kell beállitani az R20 és R21 ellenállásból álló osztó közepén található feszültséggel.

Ekkor a VARIABLE (P5) és a GAIN (P4) potenciométereken keresztül nem folyik egyenáram, vezérlés nélküli esetben, igy ha a potenciométereket elforgatjuk, nem mozdul el a vizszintes vonal az ernyőn. A TR3 tranzisztor bázisáramát a BASE CURRENT (P6) potenciométer szolgáltatja, igy lehetővé válik a potenciotolás nélküli érzékenység változtatás. A TR3 és TR4 fokozatból álló fázisfokozat forditó, a TR5 és TR6 tranzisztorokból álló ellenütemű fokozatot vezérli. Ezen ellenütemű erősitő fokozat emitterkörében található a CH1 GAIN RANGE (P9) potenciométer, mely az erősités

U-52

belső állitására szolgál.

A CHI INV BAL (P8) potenciométerrel, a TR3, TR4 tranzisztorokból álló erősitőfokozat egyenáramu szimmetriáját lehet beállitani. A helyes beállitást olymódon lehet ellenőrizni, hogy a PULL TO INVERT (S3) kapcsolót működtetjük. Helyes beállitás esetén nem mozdul el a vizszintes vonal a katódsugárcső ernyőjén. A TR5 és TR6 tranzisztorokból álló ellenütemű erősitő fokozat kimenő szintjét a CH1 COMM MODE CURRENT (P10) potenciométerrel állithatjuk be. Ez a potenciométer a fokozat kollektor tápfeszültségét változtatja.

A D3 dióda a TR5 és TR6 tranzisztorokból álló erősitőfokozat hőmérsékletkompenzációjára szolgál. Hőmérsékletváltozás esetén a D3 dióda nyitóirányu ellenállsa a TR5 és TR6 tranzisztorok emitter-bázis ellenállásához hasonlóan változik meg, ez a hatás a tranzisztorok hőmérsékletváltozását kompenzálja.

A TR301 és TR302 földeltbázisu erősitő fokozatot védi tulvezérlés ellen a D4 és D5 dióda. Ha a TR301 és TR302 tranzisztorokra jutó vezérlő jel nagyobb, mint a D4 és D5 diódák nyitófeszültsége, akkor a diódák vezetni kezdenek. Ez lehetővé teszi, hogy tulvezérlés esetén az ujjáéledés gyors legyen.

6.3. Földelt bázisu kapcsoló áramkör

A bemeneti erősitő kollektor áramkörében van elhelyezve a PULL TO INVERT (S3) kapcsoló, mely lehetővé teszi, hogy a vizsgált jel polaritását megforditsuk. Ugyancsak itt található a függőleges pozició szabályozó potenciométer (P11).

A TR 301 és TR302 tranzisztorokból álló földeltbázisu kapcsoló erősitő fokozat kettős vezérlést kap; egyrészt a TR5, TR6 tranzisztorokról a bemeneti jellel vezéreljük, másrészt a TR311 és TR312 bistabil multivibrátor kapuzza a továbbmenő jelet a D301, D302, D303 és D304 diódákon keresztül. Ha a D301 és D304 dióda nyitva van, a D302 és D303 dióda pedig le van zárva, akkor a TR301 és TR302 tranzisztorokról kap vezérlést a kimeneti erősitő. Ha a D301 és D304 diódák le vannak zárva, akkor a kimeneti erősitőt a CH2 csatorna bemenő erősitője vezérli.

A földelt bázisu kapcsoló erősitő kollektor-feszültsége a kapcsoló dió-dák hatására jelentősen megváltozik. Ez azonban, a tranzisztorkarakte-risztika pentóda jellege miatt nem hat vissza a bemeneti erősitőre.

A TR301 és TR 302 tranzisztorokra csatlakozó kapcsoló áramkörök az üzemmód kapcsoló állásától függetlenül ugyanakkora áramot táplálnak a földelt bázisu fokozatba.

Az algebrai összegező ADDED üzemmód mindkét kimenetet összekapcsolja.

Ilymódon a kimeneti erősitőt mindkét bemeneti erősitőt vezérli. A MAIN AMPL DIFF BAL (P301) potenciométer a kapcsoló erősitő szimmetriájának beállitására szolgál. A MAIN AMPL CURRENT (P302) potenciométer pedig alkalmas arra, hogy a kapcsolóerősitő kimeneti feszültségszintjét változtassuk.

6.4. CH2 bemeneti erősitő

A CH2 bemeneti erősitő felépitése majdnem teljesen megegyezik a CH1 bemeneti erősitő felépitésével. A Vl02 bemeneti katódkövető biztositja a nagy bemeneti ellenállást. A katódkövető anódfeszültségét, azzal az áramát a TR101 és TR102 emitterkövetők biztositják. A VAR ATTEN BAL (Pl02) potenciométer szerepe azonos a CH1 bemenő erősitő hasonló elnevezésü potenciométerének szerepével. Teljesen azonos a megoldása a GAIN (Pl04) és a VARIABLE (Pl05) potenciométereknek is, mint a CH1 csatornánál. A TR103 és TR106 tranzisztorok fázisforditó fokozatot alkotnak. Az INV BAL (Pl08) potenciométer szolgál a szimmetria beállitására. A TR105 és TR106 tranzisztorok emitterköréből csatoljuk ki a belső szinkron jelet.

6.5. Kimeneti erősitő

A kimeneti erősitő három visszacsatolt szimmetrikus fokozatból áll.
Az első tranzisztor pár (TR305 és TR306) földelt emitteres fokozat, mely a második tranzisztor párra (TR307 és TR308 visszacsatolás nélküli földelt emitteres fokozat) csatlakozik. A harmadik tranzisztor pár (TR309 és TR310) emittereiből a második tranzisztor pár (TR307 és TR308) emittereire történő visszacsatolás javitja a nagyfrekvenciás átvitelt ill. meghatározza az erősitést. A harmadik tranzisztor pár emittereiből a közös triggererősitő (TRIGGER NORM) kicsatolása történik. A második és a harmadik pár induktivitással kompenzált. A plug-in csatlakozási szintje +9 V.

6.6. Elektronkapcsoló

A TR311 és TR312 tranzisztorokból álló bistabil multivibrátor abban az esetben vezet, ha a MODE kapcsoló ALTER vagy CHOP állásban van. CHOP állásban az emitterek az R342, R343 ellenállásokon keresztül valamint a T314 impulzustranszformátoron keresztül a -15 V-os tápfeszültségre csatlakoznak. A multivibrátor ekkor szabadon fut, és a TR316 tranzisztor kioltó jeleket szolgáltat.

Az ALTERNATE módban az emitterek a D309, a D310 és D311 diódákon keresztül, valamint az R344 ellenálláson és a TR313 tranzisztoron keresztül csatlakoznak a -15 V-os tápfeszültségre. Ekkor a multivibrátor bistabil áramkörként működik. A kioltó erősitő pedig nem működik. A kapcsoló multivibrátoron mérhető feszültségeket a következő táblázat tünteti fel:

	CHl	CH2	A LTER	CHOP	ADDED
TR311 kollektro	+2,8	+8,8	+6 , 5	+6 , 5	+2,8
TR312 kollektor	+8,8	+2,8	+6,5	+6 , 5	+2,8
TR311 emitter	+2,0	+2,0	+0,9	+1,8	+2,0
TR 312 emitter	+2,0	+2,0	+0,9	+1,8	+2,0

CHOPPED üzemmód

A TR 311 és TR312 tranzisztorokból álló multivibrátor astabil multivibrátorként működik, amelynek a kapcsolási frekvenciáját a két emitter között található R-C elemek határozzák meg. A báziskörben található kondenzátorok csupán csatolásra valók. Látható, hogy a TR311 tranzisztor emittere 2,5 V-on van addig, amig a TR312 emitterén nem csökken -1,6 V-ra a feszültség. Ekkor megkezdődik a billenési folyamat. A billenési folyamat kezdetén TR311 tranzisztor lezár, kollektorfeszültsége növekszik, ezzel együtt növekszik a TR312 bázisfeszültsége is. A TR312 emitterfeszültsége is növekszik, ami C343 kondenzátoron keresztül növeli TR311 emitterfeszültségét is ilymódon erősen lezárásban viszi a TR311 tranzisztort. Ezután az R342 és C343 elemeken keresztül a TR311 emittere +4,3 V-ról -1,6 V-ra esik. Mikor a tranzisztor emitterfeszültsége negativabb lesz, mint a bázisfeszültség, a tranzisztor vezet.

A katódsugárcső kioltása

A CHOPPED üzemmód esetén a kapcsolás idejére a katódsugárcső fényét kioltjuk. A kioltást a TR314, TR315 és TR316 tranzisztorok végzik. A TR314
tranzisztort a MODE kapcsoló müködőképes állapotba hozza, ilyenkor a
TR314 tranzisztor egy-egy tüskét állit elő a TR311 és TR312 multivibrátor minden egyes billenésekor. Ha a multivibrátor átbillen, az emitteráram müködteti a T314 impulzustranszformátoron keresztül a TR314 tranzisztort. A TR314 tranzisztor ilyenkor vezetni kezd. A kollektorfeszültség értéke ekkor telitésben -12 V. A TR315 bázisára jutó jelet az R349
és R350 ellenállásokból álló osztó jelentősen leosztja. A T314 impulzusa után a TR314 tranzisztor lezár. A C348 kondenzátor töltése tartja a
TR314 tranzisztort lezárásban addig, mig a következő nyitó impulzust
megkapja.

A TR315 tranzisztor bázisfeszültsége, amikor a TR314 tranzisztor le van zárva, 0,7 V. Ekkor az emitterfeszültség értéke kb. 0 V. A C354 kondenzátor a TR316 tranzisztort lezárva tartja. Amikor a TR314 tranzisztor vezetni kezd, a TR315 tranzisztort lezárja, az emitterfeszültség pedig

csökken az R353 és R354 ellenállásokon, valamint a C354 kondenzátor által meghatározott időállandó szerint. Amikor a feszültség értéke -0,7 V-ra csökken, akkor a TR316 blocking oszcillátor működni kezd, és egy blocking periódus zajlik le. A T316 transzformátor a TR316 bázisfeszültségét kb. 4 V-ra növeli, ennek hatására a D314 diódán keresztül 100 mV nagyságu impulzus halad át. Az impulzus időtartama kb. 0,08 /us.

ALTERNATE üzemmód

Ha a MODE kapcsoló ALTER állásban van, akkor a TR313 tranzisztor működik, a TR311 és TR312 tranzisztorok pedig a D309 és D310 diódákon ill. az R344 ellenálláson keresztül csatlakoznak a TR313 tranzisztor kollektorához. Ebben az esetben a multivibrátor működtetéséhez triggerimpulzusra van szükség. A triggerimpulzust az időeltéritő generátor a csatlakozó "la" érintkezőjén keresztül szolgáltatja.

Az R346 ellenállásra érkező impulzus feszültsége 5 V, amely minden idő-eltérités után hirtelen nullára csökken. A TR313 tranzisztor bázisfe-szültsége -10,9 V, (a szürt -15 V értéke kb. -11,5 V). A TR313 tranzisztor ekkor telitésben van. A D309 és D310 diódák közös pontja pedig 1 V feszültségen van.

A TR 313 bázisára érkező negativ jel rövid időre lezárja a TR313 tranzisztort. A multivibrátor tranzisztorai közül az a tranzisztor, amelyik vezet az lezár, a lezárt tranzisztor pedig vezetni kezd. Ez C343 hatására történik. Igy minden időeltéritési periódus végén a negativ triggerjel átbillenti a TR311, TR312 multivibrátort, ezzel átkapcsolva az 1. csatornáról a 2. csatornára a sugarat.

Trigger erősitők

A CH2 trigger erősitő hasonló a trigger erősitőhöz. Mindkettő kis bemenő impedanciáju és nagy áramkimenetű. Mindkét erősitő két fokozatu és mindkettő visszacsatolt, amely lényegében a fokozat áramerősitését a tranzisztorparaméter változástól, hőmérsékletváltozástól függetlenné teszi. A CH2 trigger erősitő első pár tranzisztora TR201, TR202 földelt emitteres fokozat. A második tranzisztor pár TR203, TR204 emitterkövető. Emitterekből az első pár TR201, TR202 bázisára történő visszacsatolás javitja a nagyfrekvenciás átvitelt. A TR204 tranzisztor kollektor köréből történik a CH2 OUT jelének kivezetése. A trigger erősitő első pár tranzisztora TR205, TR206. Második fokozata TR207, TR208. E fokozat emittereiből történik a visszacsatolás az első fokozatra. Az emitterkörben lévő RL és RC tagok a fokozat nagyfrekvenciás átvitelét javitják. A kollektor körből jut a jel a csatlakozó 7 c. és 9 c. pontjain át az időeltéritő cserélhető egység trigger erősitőjébe.

Մ-52

Feszültség előállitások

A 1589-U-52 tipusú cserélhető előerősitőben a TR209 és a TR317 pozicióju emitterkövetők speciális feszültség előeállitást végeznek. Mindkét emitterkövető kisimpedanciás feszültség forrást biztosit. A pontos feszültséget a báziskörükben elhelyezett nagypontosságu ellenállások biztositják.

A TR209 tranzisztor a Trigger erősitők -3,45 és -4,2 V feszültséget a TR317 tranzisztor pedig a földelt bázisu kapcsolóerősitők és a kimenő-erősitő földelt emitterü fokozatának +4,8 és +5,1 V feszültségét állitja elő.

22

7. A KÉSZÜLÉK MECHANIKAI FELÉPITÉSE

Az előerősitő az EMG 1555 nagyfrekvenciás oszcilloszkóp dugaszolható egysége. A készülék elő- és hátlapját négy tartórud köti össze, melyek egyben az oszcilloszkópba való bevezetést is megkönnyitik. Az egység rögzitése az EMG 1555 oszcilloszkóp előlapján levő csavaros rögzitő elemmel történik.

Az EMG 1589-U-52 alegység előlapját a kezelőszervekkel és csatlakozók-kal a 3. ábra szemlélteti.

A 4. 5. 6. ábrák a készülék egyes részeit mutatják megfelelő poziciózással ellátva.

Az egységet bal oldalról nézve a következő főbb részeit látjuk:

- a. A kúpkerék segitségével forgatott bemeneti osztókat, fedőlemezükön az osztó kompenzáló trimmerkondenzátorainak megfelelően poziciózott lyukakkal.
- b. Az előerősitő egyenfeszültségü beállitására szolgáló potenciométereket.
- c. A trigger kapcsolót.
- d. Az áramkör ellenállásainak, kondenzátorainak és induktivitásainak legnagyobb részét.

Az egységet jobb oldalról nézve láthatjuk az összes tranzisztort és a két csatorna bemeneti katódkövetőjét, a PULL-TO INVERT kapcsolókat. Az egység hátlapján van a 30 pólusu csatlakozó.

8. HITELESITÉS

8.1. Általános utmutatások

Az EMG 1589-U-52 elektronkapcsolós előerősitőt minden 6 hónapban, vagy minden 500 órás müködés után ujra kell hitelesiteni. Abban az esetben, ha a készülékben alkatrészeket cserélünk, a készülék egy részét szintén hitelesiteni kell. Ez a fejezet a teljes hitelesitési eljárást tartalmazza. A hitelesitési eljárás egyes lépéseit a leirt sorrendben kell végrehajtani.

Figyelem!

A 8. hitelesitési eljárás utmutatásként szolgál a hitelesités végrehajtásához, azonban nem tekinthető a specifikáció ellenőrzésére szolgáló előirásnak. A leirt hitelesitési eljárás végrehajtása után a készülék a specifikációnak megfelelően fog működni.

8.2. A hitelesitéshez szükséges müszerek

Az alábbi felsorolásban levő müszerek a készülék hitelesitéséhez célszerüen alkalmazhatók. Azonban más hasonló specifikációnak megfelelő berendezésekkel természetesen a hitelesités ugyancsak végrehajtható. Ajánlott müszerek:

- 1. Orivohm EMG 1343
- 2. EMG 1555 tipusu oszcilloszkóp
- 3. EMG 1589-U-592 időeltéritő egység
- 4. Dugaszolható egység hosszabbitó
- 5. Digitális voltmérő
- 6. 50 ohmos koaxiális kábel, mindkét végén BNC csatlakozóval
- 7. BNC 50 ohmos lezárás
- 8. Négyszög generátor 1 nsec-nél gyorsabb felfutásu
- 9. Amfenol (+) BNC (-) átmenet
- 10. 1:10 koaxiális BNC osztó
- 11. Kapacitásmérő
- 12. Szignálgenerátor 100 kHz 100 MHz-ig
- 13. RC tag, mely alkalmas a bemeneti kapacitás beállitásához (1 Mohm | 25 pF)
- 14. Nagyfrekvenciás feszültségmérő (100 kHz 100 MHz)
- 15. Infragenerátor

8.3. Hitelsités

A hitelesités megkezdése előtt a következőket hajtsuk végre:

- a. Távolitsuk el az EMG 1555 tipusú oszcilloszkóp baloldali oldallapját.
- b. Csatlakoztassuk az EMG 1589-U-52 egységet az EMG 1555 oszcilloszkóp-hoz, célszerű a dugaszolható egység hosszabitót alkalmazni. Csatlakoztassuk az EMG 1589-U-592 időeltéritő egységet az EMG 1555 oszcilloszkóp jobboldali fiókjába. A jobboldali fiókba alkalmazhatjuk az EMG 1589-U-591 időeltéritő egységet is.
- c. Állitsuk be az EMG 1589-U-52 kezelőszerveit a következő módon:
 A beállitás mindkét csatornára vonatkozik:

VAR ATTEN BAL a teljesen jobbracsavart helyzettől 180°-ra GAIN a teljesen jobbracsavart helyzettől 180°-ra

POSITION középállásba

PULL TO INVERT betolva
VOLTS/CM 0,01
VARIABLE CAL
AC-GND-DC GND
MODE CH1
TRIGGER CH2 ONLY

- d. Állitsuk be az INTENSITY potenciométert baloldali szélső helyzetébe. Kapcsoljuk be a készüléket és várjunk néhány percig, amig a készülék bemelegszik.
- e. Állitsuk be az EMG 1589-U-592 egységet ugy, hogy szabadonfutó, nyujtatlan, 0,5 ms/cm sebességű időeltéritést kapjunk.
- f. Állitsuk be az INTENSITY potenciométert ugy, hogy vonalat lássunk az ernyőn. Ha nem látunk vonalat az ernyőn, állitsuk be a P8 potenciométert ugy, hogy megjelenjék a vonal az ernyőn.
 - 8.3.1. DC beállitások

MEGJEGYZÉS

Az 1-10 lépéseket mind az 1, mind a 2 csatornán végre kell hajtani. Először az 1. csatornán végezzük el a hitelesítést ill. beállitást. Azután a 2. csatornán, miközben a beállitásoknál értelemszerüen a 2. csatorna kezelőszerveit állitjuk azokon a helyeken, ahol a 2. csatorna helyett 1. csatorna áll a szövegben.

A POSITION potenciométerhez a hitelesités során ne nyuljunk, csak, ha külön emlités történik róla.

- 8.3.1.1. ATTEN BAL RANGE beállitása
- a. Kapcsoljuk a DC voltmérőt olyan mérési tartományba, ahol legalább 1,5 V-ot tudunk mérni vele. Csatlakozzunk a V2 nuvisztor katódjára.

U-52

- b. Állitsuk be az ATTEN BAL RANGE P2 potenciométert ugy, hogy a voltmérőn 1,2 V feszültséget mérjünk.
- c. Távolitsuk el a voltmérőt a V2 katódjáról.
- 8.3.1.2. Az INV BAL potenciométer beállitása
- a. Állitsuk be a P8 ill. Pl08 potenciométereket ugy, hogy a vizszintes vonal az ernyőn középen legyen.
- 8.3.1.3. COM MODE CURRENT potenciométer beállitása
- a. A voltmérőt kapcsoljuk 10 V-os mérési tartományba. Csatlakoztassuk a TR311 (TR312) tranzisztor kollektorára.
- b. Kapcsoljuk a MODE kapcsolót CH1 (CH2) állásba.
- c. Állitsuk be a PlO (PllO) potenciométereket ugy, hogy a feszültségmérő +9 V-ot mutasson.
- d. Távolitsuk el a voltmérőt, kapcsoljuk a MODE kapcsolót CH1 (CH2) állásba.
- 8.3.1.4. ATTEN BAL RANGE potenciométer végleges beállitása
- a. Jegyezzük meg a sugár helyét az ernyőn.
- b. Forgassuk el a CHl (CH2) VARIABLE potenciométereket teljesen jobbra és jegyezzük fel a sugár elmozdulásának a nagyságát.
- c. Állitsuk be a P2 (P102) potenciométereket ugy, hogy a fényvonal visszafelé mozduljon el, mint a VARIABLE potenciométer forgatásakor, a távolság pedig fele legyen az elmozdulásnak. Amennyiben szükséges, állitsuk ismét be a P8 /P108/ potenciométereket, ezzel az ernyőre hozva a sugarakat.
- d. Forgassuk a P5 (PlO5) VARIABLE potenciométereket a bal szélső helyzetbe, továbbá ismételjük meg az a.; b.; és c. lépéseket egészen addig, amig további javulás már nem érhető el.
- 8.3.1.5. BASE CURRENT beállitása
- a. Ha a vonal helyzete, mikor a VARIABLE potenciométer középső helyzetben van, l mm-nél jobban eltér attól a helyzettől,
 mikor a VARIABLE potenciométer valamelyik szélső helyzetében
 van, állitsuk be a potenciométert abba a helyzetbe, ahol az
 eltérés a legnagyobb, és jegyezzük fel az eltérést.
 Amennyiben az eltérés kisebb mint l mm, folytassuk a hitelesitést a 6. lépéssel.
- b. Állitsuk be a P6 (PlO6) potenciométereket ugy, hogy az eltérés a maximális helyzettől, a VARIABLE potenciométer valamelyik szélső helyzetében négyszer akkora legyen. (A max. eltérést az "a"-ban láttuk.) Amennyiben szükséges, állitsuk

be a P8 (P108) potenciométereket, hogy a vouch an ernyon legyen.

- 8.3.1.6. INV. BAL második beállitása
- a. Jegyezzük fel a sugár előző helyzetét.
- b. Huzzuk ki a PULL TO INVERT nyomógombot.
- c. Állitsuk be a P8 (PlO8) INV BAL potenciométereket, hogy a sugár félig visszatérjen előző helyzetébe.
- d. Toljuk be a PULL TO INVERT nyomógombot.
- e. Ismételjük meg az előző négy lépést annyiszor, mig a fényvonal elugrása a PULL TO INVERT nyomógomb kihuzásakor kisebb nem lesz, mint 2 mm.
- 8.3.1.7. VAR ATTEN BAL beállitása
- a. Állitsuk be a P2 (PlO2) potenciométereket ugy, hogy a fényvonal helyzete azonos legyen a VARIABLE potenciométer mindkét szélső helyzetében.
- 8.3.1.8. BASE CURRENT végleges beállitása
- a. Állitsuk be a P6 (PlO6) potenciométereket ugy, hogy a fényvonal ne mozduljon miközben a VARIABLE potenciométert elforgatjuk.
- 8.3.1.9. INV BAL végleges beállitása
- a. Állitsuk be a P8 (PlO8) potenciométereket ugy, hogy a vonal 2 mm-nél többet ne mozduljon el, ha a PULL TO INVERT nyomó-gombot kihuzuk ill. visszatoljuk.
- 8.3.1.10. GRID CURRENT ZERO beállitása
- a. Állitsuk be a fényvonalat az ernyő közepére a CH1 PCSITION (CH2 POSITION) potenciométerek segitségével.
- b. Állitsuk be a P3 (PlO3) potenciométereket ugy, hogy a vonal helyzete ne változzék az ernyőn amikor az AC-DC-GND kapcso-lót DC-ből GND állásba kapcsoljuk.
- 8.3.1.11. A CH2 csatorna hitelesitése

 Kapcsoljuk a MODE kapcsolót CH2 állásba és ismételjük meg
 az 1-10 pontokban leirtakat a 2. csatornára vonatkozóan is.
- 8.3.1.12. COM MODE CURRENT és MAIN AMPL. CURRENT végleges beállitása
- a. Csatlakozzunk DC voltmérővel az R321 és R322 ellenállások közös pontjára.
- b. Kapcsoljuk a MODE kapcsolót CH2 állásba. Állitsuk be a Pl10 potenciométert ugy, hogy a voltmérő O V-ot mutasson.
- c. Kapcsoljuk a MODE kapcsolót ADDED állásba.
- d. Állitsuk be a PlO potenciométert ugy, hogy a voltmérő ismét O V-ot mutasson.

- e. Kapcsoljuk a MODE kapcsolót CHl állásba.
- f. Állitsuk be a P302 potenciométert ugy, hogy a feszültségmérő O V-ot mutasson.
- g. Kapcsoljuk a MODE kapcsolót CH2 állásba.
- h. Állitsuk be a PllO potenciométert ugy, hogy a voltmérő O V-ot mutasson.
- i. Ellenőrizzük, hogy a voltmérő minden állásban 0 V + 5 mV-ot mutasson, (MODE kapcsoló CH1, CH2, ADDED) amennyiben az eltérés nagyobb, ismételjük meg az előző lépéseket (a-h).
- 8.3.1.13. MAIN AMP DIFF beállitása
- a. Kapcso'juk a MODE kapcsolót CH2 állásba.
- b. Állitsuk be a POSITION CH2 potenciométert ugy, hogy a fényvonal az ernyő közepén legyen.
- c. Kapcsoljuk a MODE kapcsolót ADDED állásba.
- d. Állitsuk be a CH1 POSITION potenciométert ugy, hogy az ernyő közepére kerüljön a fényvonal.
- e. Kapcsoljuk a MODE kapcsolót CH1 állásba.
- f. Állitsuk be a P301 potenciométert ugy, hogy a fényvonal éppen az ernyő közepére essék.
- g. Kapcsoljuk a MODE kapcsolót CH2 állásba.
- h. Állitsuk be a CH2 POSITION potenciométert ugy, hogy a fényvonal éppen az ernyő közepére essék.
- i. Ellenőrizzük, hogy a vonal nem mozdul-e 2 mm-nél többet el az ernyőn, ha a MODE kapcsolót CHl állásból ADDED állásba kapcsoljuk.
- 8.3.1.14. NORM. TRIG DC BAL beállitása
- a. Kapcsoljuk az EMG 1555 tipusu oszcilloszkóp kalibrátorát 0,2 V-os állásba.
- b. Csatlakoztassuk a kalibráló jelet a CHl bemenetre.
- c. Állitsuk az alábbi kapcsolókat a következő állásba:

MODE CH1
TRIGGER NORM
CH1 VOLTS/CM 0,1

VARIABLE CAL helyzetbe

CH1 AC-GND-DC AC

CHI POSITION a négyszögjel az ábra közepén legyen

d. Az EMG 1589-U-592 időeltéritő egység kapcsolóit állitsuk az alábbi állásba:

SOURCE INT COUPLING DC

TRIG MODE

AUTO

TRIG LEVEL

0

Nem biztos, hogy álló ábrát kapunk.

- e. Állitsuk be a P202 potenciométert ugy, hogy inditott álló ábrát kapjunk az ernyőn.
 - Ezután csökkentsük a kalibráló jel amplitudóját és finomitsuk a P202 potenciométer beállitását. A finomitást 20 mV-os amplitudóig folytassuk.
- f. Távolitsuk el a bemenő jelet, állitsunk elő ismét szabadonfutó időeltéritést az ernyőn.
- 8.3.1.15. CH2 OUT DC LEVEL beállitása
- a. Kapcsoljuk az AC-GND-DC kapcsolót GND állásba.
- b. Kössük össze koaxiális kábellel a CH2 OUTPUT kimenetet a CH1 bemeneti csatlakozóval. (INPUT)
- c. Állitsuk be a POSITION potenciométert ugy, hogy a fényvonal az ernyő közepére essék.
- d. Kapcsoljuk az AC-GND-DC kapcsolót DC állásba.
- e. Állitsuk be a P201 potenciométert, hogy a fényvonal ismét az ernyő közepére essék.
- f. Távolitsuk el a koaxiális kábelt.

8.3.2. Az erősités beállitása

GAIN RANGE beállitása

a. Kapcsoljuk az alábbi kapcsolókat a következő állásba:

VOLTS/CM

0,01

VARIABLE

 \mathtt{CAL}

AC-GND-DC

AC

PULL TO INVERT

AU

betolva CHl

- b. Kapcsoljuk az oszcilloszkóp kalibrátorát 50 mV-os állásba.
- c. Csatlakoztassunk egy koaxiális kábelt a CAL OUT és a CHl bemenet közé.
- d. A P4 és P9 potenciométereket állitsuk a maximális erősités eléréséig. Ekkor körülbelül 30 % erősitéstöbbletet kapunk.
- e. Állitsuk be a P9 potenciométert ugy, hogy az ernyőn az erősitéstöbblet 10 % legyen.
- f. A P4 potenciométerrel állitsuk be az erősités pontos értékét, az ernyőn a jel amplitudójának 5 cm-nek kell lennie.

8.3.3. Az osztók ellenőrzése

Megjegyzés: Az EMG 1555 tipusu oszcilloszkóp kalibrátorának amplitudópontossága † 2 %.

U-52

Az EMG 1589-U-52 egység bemeneti osztójának a pontossága \pm 2 %. Ilymódon a legkedvezőtlenebb esetben az ernyőn mérhető hiba $^+$ 4 % lehet.

Tehát ugy látszik, mintha a türésnél kedvezőtlenebb lenne az eredmény. Ennek elkerülése céljából célszerü ilyenkor ellenő-rizni, hogy valójában az adott értéknél milyen pontosságu a kalibráló jel.

- 8.3.3.1. A VOLTS/CM osztó ellenőrzése
- a. Kapcsoljuk mindkét VOLTS/CM kapcsolót 0,01 állásba.
- b. Adjunk 20 mV-os hiteles kalibrálójelet a bemenetekre.
- c. Állitsuk be a P4 ill. P104 GAIN potenciométereket a hiteles erősitésnek megfelelően.
- d. Ellenőrizzük az összes osztóállásokat, megfelelően változtatva a bemenőjel értékét is.
- 8.3.3.2. Az erősités finomszabályozójának ellenőrzése
- a. Kapcsoljuk a VOLTS/CM kapcsolót 0,01 állásba. Adjunk 50 mV-os kalibráló jelet a bemenetre. A VARIABLE potenciométert
 forgassuk el balra ütközésig. A jelnek 2 cm-nél kisebbre
 kell csökkenni az ernyőn.
- b. Ellenőrizzük azt, hogy a CAL állás a potenciométer jobb szélső helyzetében van-e.
- c. Végezzük el az l. és 2. ellenőrzését a másik csatornára vonatkozóan is. Távolitsuk el a vezérlő jelet a bemenetről.

8.3.4. Az osztó nagyfrekvenciás beállitása

Megjegyzés:

Az osztó árnyékoló lemezén lévő poziciószámok megkönnyitik a beállitandó trimmerkondenzátorok megkeresését.

- 8.3.4.1. Az osztó kompenzációja
- a. Kapcsoljuk a VOLTS/CM kapcsolókat 0,02 állásba, az AC-GND-- DC kapcsolót pedig DC állásba.
- b. Adjunk a bemenetre a négyszög generátorból (7) bemenő jelet.
- c. Állitsuk az időeltéritési sebességet 0,2 msec/cm-re, állitsuk be a jel ismétlődési frekvenciáját 2,5 kHz-re, állitsunk elő álló ábrát az ernyőn.
- d. Állitsuk be a négyszöggenerátor amplitudóját ugy, hogy 5 cm-es ábrát lássunk az ernyőn.
- e. Állitsuk be a C404 trimmerkondenzátort ugy, hogy a négyszög jelalakja helyes legyen.
- f. Kapcsoljuk a CHl VOLTS/CM kapcsolót az alábbi táblázat szerint, megfelelően változtatva a bemenőjel amplitudóját, minden egyes állásban állitsuk be a megfelelő trimmerkondenzátort.

VOLTS/CM	CHl	CH2
0,02	C404	C443
0,05	C408	C447
0,1	C411	C450
0,2	C414	C453
0,5	C418	C457
1,0	C422	C461
2,0	C426	C465
5 , 0	C430	C469
10,0	C434	C473
20,0	C438	C477

- g. Kapcsoljuk a MODE kapcsolót CH2 állásba és ismételjük meg az egyes lépéseket a 2-es csatornára vonatkozóan a fenti táblázat szerint.
- h. Távolitsuk el a négyszög generátort.
- 8.3.4.2. A bemeneti időállandó beállitása
- a. Kapcsoljuk az EMG 1555 tipusu oszcilloszkóp CALIBRATOR kapcsolóját 0,1 V-os állásba és az EMG 1589-U-52 egység VOLTS/CM kapcsolóit 0,01 állásba.
- b. Csatlakozzunk az RC tagon keresztül (1 Mohm | 25 pF) bemenetre.
- c. Használjunk 0,5 ms/cm időeltéritési sebességet. Állitsuk be a TRIGGER kezelőszerveket ugy, hogy inditott álló ábrát kapjunk az ernyőn. Az ernyőn látható négyszög amplitudója 5 cm nagyságu.
- d. Állitsuk be a VOLTS/CM kapcsoló bemeneti kapacitását változtató kondenzátort ugy, hogy az ernyőn látható négyszög teteje egyenes legyen (C401, C440).
- e. Kapcsoljuk a VOLTS/CM kapcsolót 0,02 állásba.
- f. Kapcsoljuk az 1 kHz-es kalibrátort 0,2 V állásba.
- g. Állitsuk be a megfelelő bemenő kapacitást változtató kondenzátort ugy, hogy ismét egyenes legyen az ernyőn látható négyszögjel teteje (C403, C442).

Ismételjük meg a beállitást CH1 VOLTS/CM kapcsoló összes állásaiban.

VOLTS/CM	CHl	CH2
0,05	C407	C446
0,1	C410	C449
0.2	C413	C452

VOLTS/CM	CHl	CH2
0,5	C417	C456
1,0	C421	C460
2,0	C425	C463
5 , 0	C429	C468
10,0	C433	C472
20,0	C437	C476

- h. Végezzük el a bementi időállandó (bemenő kapacitás) beállitását a második (CH2) esetében a fenti táblázat szerint.
- i. Távolitsuk el a mérőkábelt és az RC tagot.
- 8.3.5. Az erősitő nagyfrekvenciás átvitelének beállitása
 - a. Állitsuk be az EMG 1589-U-52 egység kezelőszerveit a következő módon:

CH1 és CH2 csatornán: VOLTS/CM 0,01

VARIABLE CAL

POSITION középállásban

AC-GND-DC DC
TRIGGER NORM
MODE CH1

- b. Csatlakozzunk impulzusgenerátorról az EMG 1589-U-52 CHl bemenetére.
- c. Állitsuk be az impulzusgenerátor kezelőszerveit ugy, hogy 50 mV-os amplitudóju pozitiv impulzus jusson a bemenetre.
- d. Állitsuk be az időeltérités kezelőszerveit ugy, hogy 20 ns/cm időeltéritési sebességgel lássuk a jelet az ernyőn (0,2 /us/cm, l0x-es nyujtással). Az inditás belső trigger állásban +, AC állásban történjék.

Megjegyzés:

Szükség lehet arra, hogy besötétitsük a helyiséget, amelyben a mérést végezzük, továbbá a fényerőt maximális állásban használ-juk, azért, hogy az ábrát lássuk az ernyőn. Hasznos lehet to-vábbá, hogy hosszabb fényellenzőt használjunk.

Az ernyőn kb. 5 cm nagységu pozitiv impulzust kell látni.

- e. Állitsuk be a C27, C40 trimmerkondenzátorokat ugy, hogy az ernyőn minél tökéletesebb alaku impulzust lássunk. Ismétel-jük meg a beállitást CH2 kapcsoló állásban: Cl27, Cl40.
- f. Állitsuk be az L316 induktivitást ugy, hogy az impulzus átvitel lehető legjobb legyen.
- g. Távolitsuk el a mérőkábelt.

8.3.6. A függőleges erősitő felfutási ideje

- 1. A mérési elrendezés azonos, mint amit az előző mérésnél használtunk.
- 2. Állitsuk be az impulzusgenerátort olymódon, hogy az ernyőn látható impulzus kb. 5 cm nagyságu legyen.
- 3. Állitsuk be az időeltéritést ugy, hogy az időeltérités sebessége 10 ns/cm legyen, (0,1 /us/cm, 10x-es nyujtás).
- 4. Ellenőrizzük, hogy a felfutási idő kisebb legyen, mint 4,5 nsec.
- 5. Ellenőrizzük a másik csatorna felfutási idejét hasonló módon.
- 6. Távolitsuk el az impulzus generátort.

A müködés ellenőrzése

1. Chopped Mode

- a. Állitsuk be az időeltéritést ugy, hogy szabadon futó időeltéritést kapjunk, amelynek sebessége nyujtás nélkül 0,5/us/cm.
- b. Kapcsoljuk az EMG 1589-U-52 MODE kapcsolóját a CHOP állásba. Ha megfelelően beállitjuk a két csatorna POSITION potenciométereit, két vonalat kell kapnunk a katódsugárcső ernyőjén.

2. Chopped Blanking

- a. Állitsuk be a két pozició potenciométert ugy, hogy az egyik vonal az ernyő felső szélén, a másik pedig az ernyő alsó szélén legyen.
- b. Állitsuk be az időeltéritést ugy, hogy inditott időeltérités esetén az ernyőn látszólag négyszögjelet lássunk, azonban a négyszög felfutó és lefutó éle nem látható, kivéve azt az esetet ha fényerőt maximális állásba csavarjuk.

3. Alternate Mode

- a. Állitsuk be az időeltéritést ugy, hogy 20 ms/cm sebességű szabadonfutó időeltéritést kapjunk.
- b. Kapcsoljuk az EMG 1589-U-52 MODE kapcsolóját ALTER állásba. Ekkor két felváltva megjelenő vizszintes vonalat látunk az ernyőn.

4. CH2 OUTPUT jel amplitudójának ellenőrzése

- a. Kapcsoljuk a CHl VOLTS/CM kapcsolót O,l állásba. Kapcsoljuk a CH2 VOLTS/CM kapcsolót O,Ol állásba, a MODE kapcsolót pedig CHl állásba.
- b. Kapcsoljuk az EMG 1555 tipus 1 kHz-es kalibrátorát 20 mV állásba.
- c. Kössük össze a CAL OUT kimenetet a CH2 bemenettel.
- d. Kössük össze a CH2 OUTPUT kimenetet a CH1 bemenettel.

e. Állitsuk be az időeltéritést ugy, hogy belső inditás legyen, az eltérités sebessége 0,5 ms/cm legyen. Az ernyőn négyszögjelet kell látni, melynek amplitudója 2 és 3 cm között van.

5.4

9. KARBANTARTÁS ÉS HIBAELHÁRITÁS

9.1. Karbantartás

Az EMG 1589-U-52 tipus karbantartását hasonló módon végezzük, mint az EMG 1555 tipusu oszcilloszkópot, ezért a karbantartásra vonatkozó részletes utmutatást az EMG 1555 tipus kezelési utmutatásának megfelelő fejezetében találjuk.

Az EMG 1589-U-52 megbizható készülék, mely hosszu ideig hibamentesen müködik. Azonban, hogy készülékünk mindig pontos mérésekre legyen alkalmas, ezért minden 500 órás használat után, vagy ha nem folyamatosan müködtetjük minden hat hónapban ujra kell hitelesiteni a készüléket. Ugyancsak ujra kell hitelesiteni a készüléket, ha alkatrészeket cserélünk a készülékben, ez esetben azonban általában elegendő a hitelesités egy részének végrehajtása.

9.2. Hibaelháritás

9.2.1. Tudnivalók a hibaelháritással kapcsolatban

Az EMG 1555 tipus kezelési utasitásában általános utmutatásokat találunk esetleges meghibásodás alkalmával követendő módszerek-ről. Az ott elmondottak az EMG 1589-U-52 tipus esetében is alkalmazhatók.

Amennyiben másik függőleges eltéritő egység is rendelkezésre áll, mindig próbáljuk ki először az EMG 1589-U-52 egységgel együtt üzemeltetett EMG 1555 tipusu oszcilloszkópot, és csak amennyiben a hiba a másik függőleges fiókkal nem áll fenn kezdjünk hozzá az egység javitásához. Ugyancsak feltétlenül érdemes ellenőrizni az EMG 1589-U-582 vizszintes eltéritő egységet is olymódon, hogy más időeltéritő egységet helyezünk be az EMG 1555 tipus jobboldali fiókjának helyére, ha ilyen rendelkezésre áll. Ugyanis számos hiba a vizszintes eltéritő egységre vezethető vissza. (Pl. ALTERNATE üzemmódban) Természetesen azonos egységek egymás között való kicserélése a legcélravezetőbb, de megfelelő az EMG 1589-U-532 ill. az EMG 1589-U-591 egység is. Az EMG 1589-U-52 egység a nagybonyolultságu készülékek közé tartozik, ezért javitása még tapasztalt szakember részére is komoly feladat. Éppen ezért esetleges meghibásodás esetén a legcélszerübb a gyártó mü szervizszolgálatát igénybe venni. Amennyiben magunk végezzük a javitást, a hiba behatárolására kell törekednünk. Amennyiben a hiba az EMG 1589-U-52 egységben

van, először a csatlakozón mérhető impedanciákat ellenőrizzük le, ezzel sok esetben már részben behatárolhatjuk a hiba pontosabb helyét.

A csatlakozón mérhető ellenállásértékek (ohm-értékben) a földhöz képest a következők:

la	2a	3a	4a	5a	6a	7a	8a	9a	10a
00	120	00	ll k	∞	∞	00	80	•	∞
lb	2b	3b	4b	5b	6ъ	7b	8b	9b	10b
35 k	300	∞	∞	∞	∞.	∞	∞	∞	0
lc	2c	3c	4c	5c	6c	7c	8c	9c	10c
00	00	170	00	170	0	600	0	600	0

A hiba megkeresésében nagy segitséget nyujt a hibajelenség pontos megfigyelése, ezért ha a hiba nem nagymérvü meghibásodás, akkor az előlapon található kezelőszervek müködtetésével észeleljük a hibajelenséget. Nagymérvü meghibásodás esetében pl. tápegységzárlat, amelynek következtében a készülék füstöl stb., ilyen vizsgálódásnak nincsen helye addig, mig pl. a tápegységzárlatot okozó diódát, tranzisztort vagy egyéb alkatrészt el nem távolitottuk, és a zárlatot meg nem szüntettük. Ezután következhet a bekapcsolt állapotban történő hiba megfigyelése, miközben a kezelőszerveket müködtetjük. Az ilyen vizsgálódás gyakran azzal az eredménnyel jár, hogy elegendő csupán ujrahitelesiteni a készüléket és nem szükséges hibás alkatrészt keresnünk. Hibakeresés előtt ajánlatos meggyőződni arról, hogy a legutóbbi hat hónapban volt-e hitelesitve a készülék.

A hiba keresésénél célszerű szisztematikus módszert követni, mert ezzel a hibát pontosan fel tudjuk deriteni és általában a hiba megkeresésében is ez adja a leggyorsabb módszert. A kö-vetkező fejezetben röviden ismertetünk egy ilyen módszert.

9.2.2. Rendszeres hibakeresés

A hibakeresés megkezdése előtt kapcsoljuk a kezelőszerveket a következő állásba:

EMG 1555 oszcilloszkóp:

INTENSITY: középállásba középállásba ASTIGMATISM: középállásba SCALE ILLUM: tetszőleges CALIBRATOR: 20 mV (1 kHz)

EMG 1589-U-592 időeltéritő egység:

HOR. DISPLAY:

11 A 11

MAGN.:

OFF

"A" COUPLING:

DC

"A" SOURCE:

INT

LEVEL:

középállásba

A többi kezelőszerv állása tetszőleges.

EMG 1589-U-52:

CHl

AC-GND-DC:

AC

VOLTS/CM:

0,01

VARIABLE:

CAL

POSITION:

középállásba

PULL TO INVERT: betolt helyzetbe

CH2

Megegyező a CHl kezelőszerveivel.

TRIGGER:

NORM

MODE:

CHl

Ezután bekapcsoljuk a készüléket. Várunk néhány percig, mig a készülék bemelegszik. Vizszintes fényes vonalnak kell megjelenni az ernyőn.

A továbbiakban egyrészt ismertetjük a müködés ellenőrzésére alkalmas beállitásokat ill. méréseket (nem a specifikáció ellenőrzéséről, hanem a müködés ellenőrzéséről lesz szó), másrészt felsoroljuk az esetleges hibajelenségeket, végül közöljük azokat a méréseket, amelyek alkalmasak a hiba behatárolá-

9.2.2.1. A vonal nem jelenik meg az ernyőn

FREE RUN állásba kapcsolunk, ezzel kizárjuk az AUTO állás hibáját.

CH2 állásba kapcsolunk: ha a vonal ekkor nem jelenik meg az ernyőn, akkor egy 100 ohmos ellenállással TR305 és TR306 bázisait rövidrezárjuk.

Ha a fény nem jelenik meg, a MODE kapcsolót CH2 állásba kapcsoljuk.

Ha vonal ismét nem jelenik meg a hiba a TR305- TR 310 tranzisztorok áramkörében van. Célszerű először a tranzisztorokat cserélni.

Figyelem: párbaválogatott tranzisztorok szükségesek. A hiba elháritása után a vonal megjelenik.

A hiba elháritása után a vonal csak a TR305 és TR306 tranzisztorok bázisának összekötése után jelenik meg.

- 9.2.2.2. Ellenőrizzük, hogy CHl ill. CH2 állásban van-e vonal.
- a. Egyik esetben sincs vonal. Ekkor ellenőrizzük a TR311 és
 TR312 kollektorfeszültségeit. Ha a feszültségértékek nem
 megfelelőek, a bistabil áramkörben keressük a hibát.
 Ha a feszültségek helyesek, akkor ellenőrizzük a TR301,
 TR302, TR303 és TR304 tranzisztorok bázis és emitterfeszültségeit. Az egyenfeszültségek ellenőrzésén tulmenően mintavételes oszcilloszkóppal győződjünk meg arról, hogy nem gerjed-e
 nagyfrekvencián a fokozat.

További hibalehetőség: a kapcsoló diódák, D301-D308. Esetleges hibás elem javitása után a vonal megjelenik.

- b. A fény nem jelenik meg, az előző mérések negativ eredménnyel végződtek. A hiba lehetséges oka: A P301 vagy a P302 potenciométerek áramköre. A hibát kijavitva a vonal megjelenik.
- 9.2.2.3. A mérések és a hibák kijavitása után sem jelenik meg a fény.

CHI állásban megmérjük a TR5 és TR6 tranzisztorok kollektorfeszültségét. Ha a feszültség nem megfelelő, mérjük a TR3,TR4 kollektorfeszültségét. Ha a feszültség nem megfelelő, mérjük a TR3 és TR4 bázisfeszültségét.

Ha a feszültség nem megfelelő, beállitjuk a P8 potenciométert. Ha a TR3 bázisfeszültsége nem megfelelő, állitsunk a P4, P5 esetleg a P6 potenciométeren.

Ha a feszültség nem állitható be helyes értékre, a hibát keressük a V2 muvisztor áramkörében.

A hibát megkeresve beállitjuk a TR3 helyes bázisfeszültségét a P2 potenciométerrel. A vonal megjelenik az ernyőn.

9.2.2.4. Ellenőrizzük, hogy a CH2 állásban van-e fény az ernyőn. Ha nincs, kapcsoljuk a TRIGGER kapcsolót NORM állásba.

Ha nincsen ismét fény, TR105 és TR106 tranzisztorok kollektorán feszültséget mérünk.

Ha a feszültség helyes, mérjük a feszültséget TR103 és TR104 tranzisztorok kollektorán.

Ha a feszültség helyes, akkor feszültséget mérünk a TR103 és TR104 tranzisztorok bázisán.

Ha a feszültség nem megfelelő, beállitjuk a Pl08 potenciométerrel. Ha a TR103 bázisának feszültsége nem megfelelő, állitunk a Pl04, a Pl05 esetleg a Pl06 potenciométeren. Ha a feszültség még mindig men megfelelő, akkor hibát keresünk a Vlo2 nuvisztor áramkörében. Miután a hibát megkerestük, Plo2 potenciométerrel beállitjuk a helyes feszültséget.

A vonal megjelenik az ernyőn.

potenciométereket.

9.2.2.5. A kalibrátorból 20 mV feszültséget adva a bemenetre ellenőrizzük az erősitők átvitelét CHl és CH2 állásban. Ha az erősités nem megfelelő, beállitjuk helyesen a P4 és Pl04

Ha nem lehet 2 cm-es ábrát beállitani, akkor a csatlakozótól visszafelé haladva oszcilloszkóppal erősitést mérünk, és behatároljuk, hogy melyik fokozatban van a hiba.

A hibát kijavitva az ábra 2 cm nagyságu lesz.

9.2.2.6. A TRIGGER kapcsolót CH2 ONLY állásba kapcsoljuk és ellenőrizzük, hogy a TRIGGER kapcsoló mindkét állásában van-e szinkronizáció.

Ha nincsen szinkronizáció a CH2 állásban, hibát keresünk a TR201, TR202, TR203 és TR204 tranzisztorok áramkörében. Ha a hiba kijavitása után sincsen szinkronizáció, hibát keresünk a TR205, TR206, TR207 és TR208 tranzisztorok áramkörében. A hibát kijavitva a szinkronizáció működik.

9.2.2.7. A TRIGGER kapcsolót NORM. állásba kapcsolva ellenőrizzük a szinkronizációt. Ha nem müködik, mérjük a TR205 és TR206 tranzisztorok bemenetére jutó feszültséget NORM állásban. Ha ez hibás, hibát keressünk a TR309 és TR310 tranzisztorok emitterkörében, ahonnan a kicsatolás történik.

A hibát megkeresve a szinkronizáció mindkét állásában helyesen működik.

9.2.2.8. Ellenőrizzük PULL TO INVERT kapcsoló helyes müködését. Ha hibás, javitjuk a bekötést, esetleg helyesen beállitjuk a P8 ill. Pl08 potenciométert.

Figyelem! Nem biztos, hogy a helyes beállitást ezekkel a potenciométerekkel el lehet érni. Amennyiben szükséges a hitelesitési részben leirtak alapján kell a kiegyenlitést végrehajtani.

Ezután a polaritás váltást helyesen végre lehet hajtani.

9.2.2.9. Ellenőrizzük a helyes müködést a MODE kapcsoló ALTER állásában.

Kapcsoljuk a TIME/CM kapcsolót 100 ms/cm állásba. Ekkor az ernyőn egymás után lefutó két vonalat kell látnunk. A kapcsolót (TIME/CM). kapcsoljuk végig a teljes sávban. Az ernyőn minden kapcsolóállásban két vonalat kell látnunk.

Ha nem jelenik meg az ernyőn két vonal, ugy hibát keresünk a TR311, TR312 és TR313 tranzisztorok áramkörében. Ellenőrizzük, hogy a csatlakozó "la" érintkezőjén érkezik-e inditó impulzus. Ha az impulzus nem érkezik, a hiba nem az EMG 1589-U-52 egységben van. Amennyiben az impulzus megvan, a hibát az emlitett tranzisztorok áramkörében kell keresnünk. A hiba kijavitása után az ernyőn két vonal jelenik meg. 9.2.2.10. Ellenőrizzük a CHOP kapcsolóállásban a helyes mükö-

A MODE kapcsoló CHOP állásában a TIME/CM kapcsolót l /us/cm állásba kapcsoljuk. Ellenőrizzük, hogy l MHz ismétlődési idejü négyszögjelet látunk-e az ernyőn.

Ha a müködés nem megfelelő, hibát keresünk a TR311, TR312, ill. TR313 tranzisztorok áramkörében.

A hibát kijavitva, a négyszögjel megjelenik. Ha a négyszögjel megjelent, de a fel- és lefutás nincsen kioltva, akkor hibát keresünk a TR314, TR315 és TR316 tranzisztorok áramkörében. A hiba megkeresése után a fel- és lefutás az ernyőn nem látszik. 9.2.2.11. Ellenőrizzük az ADDED kapcsoló állásban a helyes mű-ködést.

Adjunk 20 mV-os kalibrálójelet mindkét bemenetre. Kapcsoljuk a MODE kapcsolót ADDED állásba. Kapcsoljuk a TRIGGER kapcsolót CH2 ONLY állásba. Az ernyőn 4 cm nagyságu négyszögjelet kell látnunk. A CH2 csatorna

PULL TO INVERT kapcsolóját kihuzva a jelnek el kell tünnie. Ha a müködés nem megfelelő, ugy hibát keresünk a TR311 ill. TR312 tranzisztorok vagy a P301 és P302 potenciométerek áramkörében.

A hibát kijavitva a müködés megfelelő lesz.

9.2.2.12. Ellenőrizzük a CH2 OUTPUT erősitő müködését.

Csatlakozzunk BNC kábellel a CH2 OUTPUT kimenetről a CH1 bemenetre. Kapcsoljuk mindkét VOLTS/CM kapcsolót 10 mV/cm állásba.
Adjunk 2 mV-os kalibráló jelet a CH2 bemenetre.

Az ernyőn 2 cm-es ábrát kell látnunk.

Ha nem látunk, ellenőrizzük le a TR203 és TR204 tranzisztorok áramkörét, és a hibát kijavitva 2 cm-es jelet látunk az ernyőn. 9.2.2.13. Ellenőrizzük a POSITION potenciométerek müködését. Az AC-GND-DC kapcsolót GND állásba kapcsolva forgassuk el a POSITION potenciométert. A fényvonalat a katódsugárcső ernyőjéről fel- és lefelé ki kell tudni tolni.

Ha a müködés hibás, fokozatonként végigmérjük az erősitőt, a kimenettől visszafelé haladva.

9.2.2.14. Ellenőrizzük az erősitő linearitasát.

10 mV-cs kalibrálójelet adjunk a CHl bemenetre. Állitsunk te éppen 1 cm nagyságu ábrát a GAIN potenciométerrel.

Ha megnöveljük az ábrát ill. a bemenőjelet 40 mV-ra, az ábrának is éppen 4 cm-re kell megnőni. (A megengedett hiba + 0,4 mm.) Hiba esetén a hibát fokozatonként keresi.

A mérést a POSITION potenciométer müködtetésével és 10 mV-cs jellel is végrehajtjuk.

A hibát kijavitva a linearitás megfelelő lesz.

9.2.2.15. Ellenőrizzük az AC-GND-DC kapcsoló müködését.

Adjunk 10 mV-os kalibrálójelet a bemenetre, l cm-es ábrát kell látnunk az ernyőn. A kapcsolót GND állásba kapcsolva vizszintes Tényvonalat kell látnunk az ernyőn. Állitsuk a fényvonalat pontosan az ernyő közepére.

Kapcseljuk a kapcsolót AC állásba, ekkor a jelnek pontosan az ernyő közepén kell elhelyezkedni.

Kapcsoljuk a kapcsolót DC állásba: ekkor a négyszögjel alsó vonalának a középvonallal egybe kell esni.

Hiba esetén ellenőrizzük a kapcsolót és a C9 ill. a Cl09 kondenzátort.

A hibák kijavitása és a működés ellenőrzése után hitelesitsük az erősitőt a 8. fejezetben leirtak szerint.

U-52

10. RAKTÁROZÁSI ÉS SZÁLLITÁSI FELTÉTELEK

A készüléket a 4.1. pontnak megfelelően becsomagolt és leragasztott állapotban olyan raktárhelyiségben, ill. olyan külső körülmények között kell raktározni és szállitani, melyek az alanti előirásoktól nem térnek el:

Környezeti hőmérséklet:

-25°C és +55°C

Levegő relativ nedvessége:

max. 98 %

Légnyomás:

860 - 1060 mb

A készülék hosszu idejű raktározása különleges óvintézkedést nem tesz szükségessé.

Raktározás után a készülék kicsomagolva és hálózatra csatlakoztatva üzemi körülmények között azonnal üzemképes.

O alatti hőmérsékleten történt raktározás után, használat előtt a ké-szüléket célszerű állandósitó légtérbe helyezni és tartani, mindaddig, mig hőmérséklet-egyensulyba jut és csak azután üzembehelyezni.

MELLÉKLETEK

Alkatrészjegyzék

Nézeti kép /l. ábra/

Tömbvázlat /2. ábra/

Előlap a kezelőszervekkel /3. ábra/

Belső elrendezés /4,5,6 ábra/

Kapcsolási rajz /7,8,9,10,11 ábra/

U-52

MELLÉKLETEK APPENDICES ANHANG ПРИЛОЖЕНИЯ

ALKATRÉSZJEGYZÉK PARTS LIST SCHALTTEILLISTE LISTE DU MATERIEL СПЕЦИФИКАЦИЯ ДЕТАЛЕЙ

DE I	fém rétege llenállás	metal-film resistor	Metallschichtwiderstand
RF	szénrétegellenállás	crystal-carbon resistor	Kohlenschichtwiderstand
RK RT	tárcsaellenállás	disc resistor	Scheibenwiderstand
RH	huzalellenállás	wire-wound resistor	Drahtwiderstand
RPH	preciziós huzalellenállás	precision wire-wound resistor	Präzisions-Drahtwiderstand
RZ	zománcbevonatu huzalellen- állás	wire-wound resistor (enamelled)	Drahtwiderstand
PH PR	huzalpotenciométer réteg potenciométer	wire-wound potentiometer film-type potentiometer	Drahtpotentiometer Schichpotentiometer
C.D.			De des bandenesses
CP	papirkondenzátor	paper capacitor	Papierkondensator
CC	csillámkondenzátor	mica capacitor	Glimmerkondensator
CK CF	kerámia kondenzátor	ceramic capacitor	Keramikkondensator
CE	elektrolit kondenzátor	electrolytic capacitor	Elektrolytkondensator
CS CMP	styroflex kondenzátor	styroflex capacitor	Styroflexkondensator Metallpapierkondensator
CMF	fémezett papirkondenzátor	metallized paper capacitor metallized plastic foil	Metallkunstoff-Folien-
	fémezett müanyagfóliás kondenzátor	capacitor	kondensator
CML	fémezett lakkfilm kondenzátor	metallized lacquered capacitor	Metallisierte-Kunststoffkon densator mit Lackfolien
CMS	fémezett styroflex kondenzátor	metallized styroflex capacitor	Metallstyroflexkondensator
CT	trimmer kondenzátor	trimmer capacitor	Trimmerkondensator
CME	fémezett poliészter kondenzátor	metallized polyester capacitor	Metallpolyesterkondensator
CET	tantál elektrolit kondenzátor	tantal electrolytic capacitor	Tantalelektrolytkondensato
CFE	poliészter kondenzátor	polyester capacitor	Polyesterfolienkondensator
\mathbf{v}	elektroncső	tube	Röhren
NJ	számjelző eszközök	numerical indicators	Ziffernanzeigen
D	dióda	diode	Dioden
Se	szelén egyenirányító	selenium rectifier	Selen
TR	tranzisztor	transistor	Transistoren
Th	termisztor	thermistor	Termistor
IC	integrált áramkör	integrated circuit	Integrierte Stromkreise
XL	kristály	crystal	Schwingquarz
So Pl	csatlakozó aljzat	socket	Buchse Stecker
T	csatlakozó dugó	plug connector transformer	Transformatoren/Übertrag
L	transzformátor	inductivity, coil	Spulen
A	induktivitás	rechargeable battery	Batterie
REG	akkumulátor regisztráló	recorder	Schreiber
F	biztositó betét	fuse	Sicherungseinsatz
H	hallgató	headphone	Kopfhörer/Ohrhörer
Нх	hangszóró	loudspeaker	Lautsprecher
RY	jelfogó	relay	Relais
J	jelzőlámpa	pilot lamp	Signallampe
G	parázsfényl á mpa	glow discharge lamp	Glimmlampe
S	kapcsoló	switch	Schalter
мот	motor	motor	Motor
в	telep	battery	Batterie
		meter	Anzeigeinstrument

resistance à couche métallique	резистор металлизированный	RF
résistance à couche de carbone	резистор углеродистый поверхностный	RK
résistance à disque	резистор дисковый	RT
résistance bobinée	резистор проволочный	RH
résistance bobinée de précision	резистор прецизионный проволочный	RPH
résistance émaillée	резистор проволочный с эмалевым	RZ
	покрытием	
		1
potentiomètre bobiné	резистор переменный проволочный	PH
potentiomètre à couche	резистор переменный углеродистый	PR
condensateur au papier	конденсатор бумажный	CP
condensateur au mica	конденсатор сумаалын	CC
condensateur céramique	конденсатор сывымном	CK
condensateur électrolytique	конденсатор жерамический конденсатор электролитический	CE
condensateur au styroflex	конденсатор полистирольный	cs
condensateur au papier métallisé	конденсатор полистированный бумажный	CMP
condensateur à feuille en matière	конденсатор металлизированный с пластмассо-	CMF
synthétique métallisé	конденсатор жетамымомрованиям с нядетжассе	
condensateur au film de vernis métallisé	металлизированный конденсатор на лакопле- ночной основе	CML
condensateur au styroflex métallisé	конденсатор полистирольный, металлизированный	CMS
condensateur trimmer	конденсатор подстроечный	CT
condensateur au polyester métallisé	металлизированный полиэфирный конденсатор	CME
condensateur électrolytique au tantale	электролитический танталовый конденсатор	CET
condensateur au polyester	полиэфирный конденсатор	CFE
tube électronique	электронная лампа	\mathbf{v}
indicateur numérique	цифровой индикатор	NJ
diode	диод	D
redresseur au sélénium	выпрямитель селеновый	Se
transistor	транзистор	TR
thermistor	термистор	Th
circuit intégré	интегральная схема	IC
cristal	кварцевый резонатор	XL
douille	разьем	So
fiche	штепсель	Pl
transformateur	трансформатор	T
bobine	катушка индуктивности	L
accumulateur	аккумуляторная батарея	A
enregistreur i	регистратор	REG
		1
fusible à tube en verre	предохранительная вставка	F
écouter	наушник	H
haut-parleur relais	громкоговоритель	Hx
lampe-témoin	pene	RY J
lampe à effluves	сигнальная лампа	G
interrupteur, selecteur, commutateur	лампа тлеющего разряда выключатель	S
moteur	мотор	MOT
batterie	мотор батарея	B MOI
indicateur	стрелочный прибор	M
	3. Footo time the cop	744

т

Minden mérőkészülék - a megbizhatóság és a müszaki adatokban előirt határértéken belüli nagyobb pontosság érdekében - gondos egyedi méréssel és beszabályozással készül. Ennek következtében előfordulhat, hogy a készülékek a mellékelt alkatrészjegyzéktől eltérő értékü alkatelemeket is tartalmaznak.

With a view to reliability and increased accuracy within the specifications, each unit has been subjected to careful individual control measurement and alignment. Therefore, it may occur that an instrument includes components with ratings slightly different from those given in the Parts List below.

Jedes Gerät wird im Interesse einer höchstmöglichen Genauigkeit und Verlässlichkeit einer sorgfältigen individuellen Messung und Eichung unterzogen. Demzufolge kann es verkommen, dass die Geräte auch Teile enthalten, deren Werte von den in der vorliegenden Schaltteilliste angeführten Werten abweichen.

Chaque appareil de mesure a été fabriqué avec des mesaures et des réglages individuels soignés dans l'intérêt de la fiabilitée et d'une plus grande précision, en-dedans des valeurs limites prescrites dans les caractéristiques téchniques. En raison de ceci il peut arriver que l'appareil contienne des éléments dont la valeur est autre que celle spécifiée dans la Liste du matériel ci-jointe.

Каждый прибор - в интересах достижения более высокой точности в пределах величин, приведенных в технических данных, а также с целью повышения надёжности - подвергается тщательной индивидуальной настройке и наладке. В результате этого может случиться, что приборы содержат и детали, величина которых отличается от величины, приведенной в спецификации деталей прибора.

R2 RF 1,47 k 1 0,125 R45 RF 56 1 0,5 R44 RF 51 1 0,5 R47 RF 10 k 5 0,7 RF 10 k 1 0,7 RF 10 k 0,7 0,7 RF					R -					
R3	No		Ω	%	W	No		Ω	%	w
R3 RF 14,7 k 1 0,5 R44 RF 51 1 0, R4 RF 1 k 5 0,5 R45 RF 51 1 0,5 R46 RF 10 k 5 0,7 RF 15 k 5 0,25 R47 RF 10 k 5 0,7 R7 RF 1 k 5 0,25 R47 RF 10 k 5 0,7 R7 RF 1 k 5 0,25 R47 RF 10 k 5 0,25 R102 RF 14,7 k 1 0,7 R1 R8 RF 51 5 0,25 R103 RF 14,7 k 1 0,7 R1 R1 0,7 R100 RF 10 0,25 R103 RF 14,7 k 1 0,7 R11 R1 0,7 R10 RF 1 k 0,7 R10 RF 1 k 0,7 R10 RF 1 k 0,7 R10	R2	RF	1,47 k	1	0,125	R43	R F	56	1	U,1 a
R4 RF 1 k 5 0,5 R45 RF 51 1 0,5 R45 RF 10 k 5 0,7 RF 10 k 5 0,7 RR RF 10 k 5 0,25 RR RF 51 5 0,25 RR 10 k 5 0,25 RR 12 k 1 0,00 RR 11 k 5 0,00 0,00 11 k 5 0,00 RR 11 k 5 0,00 RR 11 k 5 0,00 RR 11 k 5 0,00 0,00 0,00 0,00 0,00 0,	1 1		1						1	0,2 >
R5 RF 15 k 5 1 R46 RF 10 k 5 0,25 R6 RF 15 k 5 0,25 R47 RF 10 k 5 0,5 R7 RF 1 k 5 2 R48 RF 51 5 0,5 R8 RF 150 5 0,25 R102 RF 1,47 k 1 0,7 R10 RF 1 M 5 0,25 R102 RF 14,7 k 1 0,7 R11 RF 1 M 5 0,25 R104 RF 14,7 k 1 0,0 R12 RF 1 M 5 0,25 R104 RF 14,7 k 1 0,0 R13 RF 1 M 1 0,25 R105 RF 14,7 k 1 0,2 R14 RF 1 M 1 0,25 R105 RF 1 k 5 0,2						R45			ł	0,5
R6 RF 15 k 5 0,25 R47 RF 10 k 5 0,25 R7 RF 1 k 5 2 R48 RF 51 5 0,25 R8 RF 150 5 0,25 R102 RF 1,47 k 1 0,25 R10 RF 47 5 0,25 R103 RF 14,7 k 1 0,25 R11 RF 10 5 0,5 R103 RF 14,7 k 1 0,25 R11 RF 10 5 0,25 R104 RF 1 k 5 0,25 R12 RF 10 5 0,25 R106 RF 15 k 5 1 R13 RF 10 5 0,25 R106 RF 15 k 5 1 R14 RF 100 5 0,25 R106 RF 15 k 5 2 <th< td=""><td>i I</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>U,5</td></th<>	i I		1							U,5
R7 RF 1 k 5 2 R48 RF 51 5 0,25 R9 RF 47 5 0,25 R102 RF 1,47 k 1 0,7 R10 RF 1 M 5 0,5 R103 RF 14,7 k 1 0,7 R11 RF 10 5 0,25 R104 RF 1 k 5 0,7 R103 RF 14,7 k 1 0,7 R11 RF 10 5 0,25 R105 RF 1 k 5 0,7 R104 RF 1 k 5 0,7 R106 RF 1 k 5 0,7 R107 RF 1 k 5 0,7 R106 RF 1 k 1 k 1 k 1 k					0,25	1				G, p
R8	L I					1		51		υ,
R10			150	5	0,25					
R10	R9	RF		5		R102	R F	1,47 k	1	(/ _j .,
R11		R F	1 M			R103	R F		1	ويرا
R12 RF 2,15 k 1 0,25 R105 RF 15 k 5 R13 RF 51 5 0,25 R106 RF 15 k 5 0, R14 RF 1 M 1 0,5 R107 RF 1 k 5 0, R15 RF 100 k 5 0,25 R108 RF 15 k 5 0, R16 RF 100 k 5 0,25 R108 RF 15 k 5 0, R16 RF 100 k 5 0,25 R108 RF 47 5 0, R16 RF 100 k 5 0,25 R109 RF 47 5 0, R17 RF 4,02 k 1 0,125 R110 RF 1 M 5 0, R18 RF 383 1 0,125 R112 RF 2,15 k 1 0, R20 RF 1,69 k 1 0,25 R114 RF <td< td=""><td>1 1</td><td>RF</td><td>10</td><td></td><td></td><td>R104</td><td>RF</td><td></td><td>5</td><td>0,5</td></td<>	1 1	RF	10			R104	R F		5	0,5
R13 RF 51 5 0,25 R106 RF 15 k 5 C, R14 RF 1 M 1 0,5 R107 RF 1 k 5 C, R15 RF 100 k 5 0,25 R108 RF 150 5 C, R16 RF 100 k 5 0,25 R109 RF 47 5 C, R17 RF 4,02 k 1 0,125 R111 RF 10 5 C, R19 RF 23,7 k 1 0,125 R112 RF 2,15 k 1 C, R20 RF 1,69 k 1 0,25 R115 RF 100 b 0, R22 RF 100 1 0,25 R115 RF 100 5 C, R22 RF 100 1 0,25 R116 RF 100 k 5 C, R24 RF 1,54 k 1 0,25 R116 RF 23,7 k 1 0,25 R117 RF 4,02 k 1 C, R26 RF 1,54 k 1 0,25 R118 RF 23,7 k 1 0,25 R118 RF 23,7 k 1 0,25 R18 RF 23,7 k 1 0,25 R19 RF 23,7 k 1 0,25 R12 RF 162 1 0,125 R12 RF 162 1 0,25 R12 RF 1,69 k 1 0,25 R12 RF 162 1 0,25 R12 RF 164 1 0,25 R12 RF 164 1 0,25 R12 RF 1,54 k 1 0,25 R12 RF 1,54 k 1 0,25 R12 RF 178 RF 2,05 k 1 0,125 R12 RF 66,5 k 1 RR RF 178 RF 128 RF 12 RF 124 RF 1,24 R 1 RR	R12	. R F	2,15 k		1	R105	RF	15 k		
R14 RF	R13	RF	4	5		R106	RF	15 k		6,20
R15 RF 100 5 0,25 R108 RF 150 5 0, R16 RF 100 k 5 0,25 R109 RF 47 5 0, R17 RF 4,02 k 1 0,125 R110 RF 1 M 5 0, R18 RF 283 1 0,125 R111 RF 10 5 0, R20 RF 1,69 k 1 0,25 R113 RF 51 5 0, R21 RF 100 1 0,25 R114 RF 100 5 0, R23 RF 464 1 0,25 R115 RF 100 k 5 0, R24 RF 1,54 k 1 0,25 R116 RF 23,7 k 1 0,25 R117 RF 4,02 k 1 0, R25 R18 RF 23,7 k 1 0, R26 RF 1,24 k 1 0,25 R118 RF 283 1 0, R27 RF 66,5 1 0,125 R120 RF 1,69 k 1 0, R28 RF 1,24 k 1 0,25 R120 RF 1,69 k 1 0, R29 RF 1,24 k 1 0,25 R120 RF 1,69 k 1 0, R31 RF 464 1 0,25 R121 RF 162 1 0, R30 RF 115 1 0,125 R122 RF 100 1 0, R31 RF 464 1 0,25 R123 RF 464 1 0, R32 RF 215 1 0,125 R123 RF 464 1 0, R32 RF 215 1 0,125 R124 RF 1,54 k 1 0, R34 RF 1,54 k 1 0, R35 RF 215 R 1,54 k 1 R 1,54 k	R14	RF	1 M	1		R107	RF	1 k		
R16 RF 100 k 5 0,25 R109 RF 47 5 6,8 R17 RF 4,02 k 1 0,125 R110 RF 1 M 5 6 R18 RF 383 1 0,125 R111 RF 10 5 6 R19 RF 23,7 k 1 0,125 R111 RF 10 5 6 R20 RF 1,69 k 1 0,25 R113 RF 51 5 0 R21 RF 162 1 0,125 R114 RF 1 M 1 0 R22 RF 100 1 0,25 R115 RF 100 5 0 R22 RF 100 1 0,25 R116 RF 100 k 5 0 R23 RF 464 1 0,25 R117 RF 4,02k 1 0 R24 RF 1,54 k 1 0,25 R117 RF 4,02k 1 <td< td=""><td>R15</td><td>$R\mathbf{F}$</td><td>100</td><td>5</td><td></td><td>R108</td><td>RF</td><td>150</td><td>5</td><td>U,</td></td<>	R15	$R\mathbf{F}$	100	5		R108	R F	150	5	U,
R17 RF 4,02 k 1 0,125 R110 RF 1 M 5 6 R18 RF 383 1 0,125 R111 RF 10 5 6 R19 RF 23,7 k 1 0,125 R112 RF 2,15 k 1 0 R20 RF 1,69 k 1 0,25 R113 RF 51 5 0 R21 RF 162 1 0,125 R114 RF 1 M 1 0 R22 RF 100 1 0,25 R115 RF 100 5 0 R22 RF 100 1 0,25 R116 RF 100 k 5 0 R23 RF 464 1 0,25 R116 RF 100 k 5 0 R24 RF 1,54 k 1 0,25 R118 RF 383 1 0 R27 RF 66,5 1 0,125 R120 RF 1,69k 1	R16	$R\mathbf{F}$	100 k	5		R109	\mathbf{RF}	47		C, C
R18 RF 383 1 0,125 R111 RF 10 5 6	R17	R F	4,02 k		0,125	R110	$R\mathbf{F}$	1 M		4,5
R19 RF 23,7 k 1 0,125 R112 RF 2,15 k 1 0, R20 RF 1,69 k 1 0,25 R113 RF 51 5 0, R21 RF 162 1 0,125 R114 RF 1 M 1 0, R22 RF 100 1 0,25 R115 RF 100 5 0, R23 RF 464 1 0,25 R116 RF 100 k 5 R24 RF 1,54 k 1 0,25 R117 RF 4,02k 1 0, R26 RF 1,54 k 1 0,25 R118 RF 383 1 0, R27 RF 66,5 1 0,125 R119 RF 23,7k 1 0, R28 RF 12 k 1 0,125 R120 RF 1,69k 1 0, R29 RF 1,24 k 1 0,25 R121 RF 162 1 0, R30 RF 115 1 0,125 R122 RF 100 1 0, R31 RF 464 1 0,25 R123 RF 464 1 0, R32 RF 215 1 0,125 R124 RF 1,54k 1 0, R33 RF 215 1 0,125 R125 RF 51 5 R34 RF 2,05 k 1 0,125 R126 RF 1,54k 1 0, R35 RF 2,05 k 1 0,125 R126 RF 1,54k 1 0, R36 RF 178 1 0,125 R127 RF 06,5k 1 0, R37 RF 178 1 0,125 R128 RF 12 k 1 0, R38 RF 178 1 0,125 R129 RF 1,24k 1 0, R39 RF 4,64 k 1 0,125 R129 RF 1,24k 1 0, R39 RF 4,64 k 1 0,125 R129 RF 1,24k 1 0, R39 RF 4,64 k 1 0,125 R129 RF 1,24k 1 0, R39 RF 4,64 k 1 0,125 R130 RF 115 1 0, R39 RF 4,64 k 1 0,125 R130 RF 115 1 0, R39 RF 4,64 k 1 0,125 R131 RF 464 1 0, R40 RF 68 1 0,125 R131 RF 464 1 0, R59 RF 4,64 k 1 0,125 R131 RF 464 1 0, R59 RF 4,64 k 1 0,125 R131 RF 464 1 0, R59 RF 4,64 k 1 0,125 R131 RF 464 1 0, R59 RF 4,64 k 1 0,125 R131 RF 464 1 0, R59 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R131 RF 464 1 0, R50 RF 4,64 k 1 0,125 R132 RF 215 1 0, R50 RF 4,64 K 1 0,125 R131 RF 464 1 0, R50 RF 4,64 K 1 0,125 R132 RF 215 1 0, R50 RF 4,64 K 1 0,125 R132 RF 215 1 0, R50 RF 4,64 K 1 0,125 R132 RF 215 1 0, R50 RF 4,64 K 1 0,125 R132 RF 215 1 0, R50 RF 4,64 K 1 0,125 R132 RF 215 1 0, R50 RF 4,64 RF 1 0,125 R132 RF 215 1 0, R50	R18	$R\mathbf{F}$	383	1	0,125	R111	RF	10		1.
R20 RF 1,69 k 1 0,25 R113 RF 51 5 0, R21 RF 162 1 0,125 R114 RF 1 M 1 0, R22 RF 100 1 0,25 R115 RF 100 5 0, R23 RF 464 1 0,25 R116 RF 100 k 5 0, R23 RF 1464 1 0,25 R116 RF 100 k 5 0, R24 RF 1,54 k 1 0,25 R116 RF 100 k 5 0, R24 1 0,25 R118 RF 100 k 5 0, R24 1 0,25 R118 RF 100 k 5 0, R24 1 0,25 R118 RF 383 1 0, R24 1 0,25 R118 RF 383 1 0, R27 RF 66,5 1 0,125 R120 RF 1,69k 1 0, R24 RF 1,69k 1 0, R24 RF 1,69k 1 0, R25 R121 RF 162 1 0, R25 R	R19	\mathbf{RF}	23,7 k	1		R112	R F	2,15 k		ر صول
R21 RF 162 1 0,125 R114 RF 1 M 1 0, R22 RF 100 1 0,25 R115 RF 100 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R20	$R\mathbf{F}$	1,69 k	1	0,25	R113	RF			رء,0
R23 RF 464 1 0,25 R116 RF 100 k 5 3.8. R24 RF 1,54 k 1 0,25 R117 RF 4,02k 1 0, R26 RF 1,54 k 1 0,25 R118 RF 383 1 0, R27 RF 66,5 1 0,125 R119 RF 23,7k 1 0, R28 RF 12 k 1 0,125 R120 RF 1,69k 1 0, R29 RF 1,24 k 1 0,25 R121 RF 162 1 0, R30 RF 115 1 0,125 R122 RF 100 1 0, R31 RF 464 1 0,25 R123 RF 100 1 0, R31 RF 464 1 0,25 R123 RF 1,54k 1 0, R31 RF 215 1 0,125 R125 RF 1,54k	R21	\mathbf{RF}	162	1	0,125	R114	R F	1 M		0,5
R23 RF 464 1 0,25 R116 RF 100 k 5 0. R24 RF 1,54 k 1 0,25 R117 RF 4,02k 1 0. R26 RF 1,54 k 1 0,25 R118 RF 383 1 0. R27 RF 66,5 1 0,125 R119 RF 23,7k 1 0. R28 RF 12 k 1 0,125 R120 RF 1,69k 1 0. R29 RF 1,24 k 1 0,25 R121 RF 162 1 0. R30 RF 115 1 0,125 R122 RF 100 1 0. R31 RF 464 1 0,25 R123 RF 464 1 0. R32 RF 215 1 0,125 R123 RF 1,54k 1 0. R33 RF 215 1 0,125 R125 RF 51 5 <td>R22</td> <td>$R\mathbf{F}$</td> <td>100</td> <td>1</td> <td>0,25</td> <td>R115</td> <td>RF</td> <td>100</td> <td>5</td> <td>0,35</td>	R22	$R\mathbf{F}$	100	1	0,25	R115	RF	100	5	0,35
R24 RF 1,54 k 1 0,25 R117 RF 4,02k 1 0, RE R118 RF 383 1 0, RE R118 RF 383 1 0, RE 1, 69k 1 0, RE 1 0, RE 1, 69k 1 0, RE 1	R23	RF	464	1	1 1	R116	RF	100 k		9.75
R26 RF 1,54 k 1 0,25 R118 RF 383 1 0, R27 RF 66,5 1 0,125 R119 RF 23,7k 1 0, RF 1,69k 1 0, RF 1 0, RF 1,69k 1 0, RF 1 0, RF 1,69k 1 0, RF 1 0, RF 1 0, RF 1,69k 1 0, RF 1	R24	\mathbf{RF}	1,54 k	1		R117	R F	4,02k		جنش با
R27 RF 66,5 1 0,125 R119 RF 23,7k 1 0, RF 1,69k 1 0, RF 1 0, RF 1,69k 1 0, RF 1 0, RF 1 0, RF 1 0, RF 1,69k 1 0, RF	R26	R F	1,54 k	1	0,25	R118	RF	383	1	0,125
R28 RF 12 k 1 0,125 R120 RF 1,69k 1 0, R29 RF 1,24 k 1 0,25 R121 RF 162 1 0, R30 RF 115 1 0,125 R122 RF 100 1 0, R31 RF 464 1 0,25 R123 RF 464 1 0, R32 RF 464 1 0,25 R123 RF 464 1 0, R32 RF 215 1 0,125 R124 RF 1,54k 1 0, R33 RF 215 1 0,125 R125 RF 51 5 5 5 6	R27	RF	66,5	1	1 1	R119	R F	23,7k	1	0,125
R30 RF 115 1 0,125 R122 RF 100 1 0, R31 RF 464 1 0,25 R123 RF 464 1 0, R32 RF 215 1 0,125 R124 RF 1,54k 1 0. R33 RF 215 1 0,125 R125 RF 51 5 0. R34 RF 2,05 k 1 0,125 R126 RF 1,54k 1 0. R35 RF 2,05 k 1 0,125 R126 RF 1,54k 1 0. R35 RF 2,05 k 1 0,125 R126 RF 1,54k 1 0. R35 RF 178 1 0,125 R127 RF 66,5k 1 0. R37 RF 178 1 0,125 R128 RF 1,24k 1 0. R39 RF 4,64 k 1 0,125 R130 RF 115 <	R28	RF	12 k	1	0,125	R120	RF	1,69k	1	0,25
R30 RF 115 1 0,125 R122 RF 100 1 0, R31 RF 464 1 0,25 R123 RF 464 1 0, R32 RF 215 1 0,125 R124 RF 1,54k 1 0, R33 RF 215 1 0,125 R125 RF 51 5 0, R34 RF 2,05 k 1 0,125 R126 RF 1,54k 1 0, R35 RF 2,05 k 1 0,125 R126 RF 1,54k 1 0, R36 RF 178 1 0,125 R127 RF 65,5k 1 . . . R37 RF 178 1 0,125 R128 RF 1,24k 1 . . R38 RF 4,64 k 1 0,125 R130 RF 115 1 . . R39 RF 4,64 k 1 0,125	R29	RF	1,24 k	1	0,25	R121	R F	162	1	ريار)
R32 RF 215 1 0,125 R124 RF 1,54k 1 R33 RF 215 1 0,125 R125 RF 51 5 R34 RF 2,05 k 1 0,125 R126 RF 1,54k 1 R35 RF 2,05 k 1 0,125 R127 RF 66,5k 1 R36 RF 178 1 0,125 R128 RF 12 k 1 R37 RF 178 1 0,125 R129 RF 1,24k 1 R38 RF 4,64 k 1 0,125 R130 RF 115 1 R39 RF 4,64 k 1 0,125 R131 RF 464 1 R40 RF 68 1 0,125 R132 RF 215 1	R30	R F	115	1	0,125	R122	RF	100	1	0,15
R32 RF 215 1 0,125 R124 RF 1,54k 1 0. R33 RF 215 1 0,125 R125 RF 51 5 . R34 RF 2,05 k 1 0,125 R126 RF 1,54k 1 . R35 RF 2,05 k 1 0,125 R126 RF 1,54k 1 . . R36 RF 178 1 0,125 R127 RF 05,5k 1 . <	R31	RF	464	1	0,25	R123	$\mathbf{R}\mathbf{F}$	464	1	0,.5
R34 RF 2,05 k 1 0,125 R126 RF 1,54k 1 R35 RF 2,05 k 1 0,125 R127 RF 66,5k 1 R36 RF 178 1 0,125 R128 RF 12 k 1 R37 RF 178 1 0,125 R129 RF 1,24k 1 R38 RF 4,64 k 1 0,125 R130 RF 115 1 R39 RF 4,64 k 1 0,125 R131 RF 464 1 R40 RF 68 1 0,125 R132 RF 215 1	R32	\mathbf{RF}	215	1	0,125	R124	RF	1,54k	1	(°,7)
R34 RF 2,05 k 1 0,125 R126 RF 1,54k 1 R35 RF 2,05 k 1 0,125 R127 RF 06,5k 1 R36 RF 178 1 0,125 R128 RF 12 k 1 R37 RF 178 1 0,125 R129 RF 1,24k 1 R38 RF 4,64 k 1 0,125 R130 RF 115 1 R39 RF 4,64 k 1 0,125 R131 RF 464 1 R40 RF 68 1 0,125 R132 RF 215 1	R33	\mathbf{RF}	215	1	0,125	R125	R F	51	5	
R36 RF 178 1 0,125 R128 RF 12 k 1 R37 RF 178 1 0,125 R129 RF 1,24k 1 R38 RF 4,64 k 1 0,125 R130 RF 115 1 R39 RF 4,64 k 1 0,125 R131 RF 464 1 R40 RF 68 1 0,125 R132 RF 215 1	R34	\mathbf{RF}	2,05 k	1	0,125	R126	RF	1,54k		13. a
R37 RF 178 1 0,125 R129 RF 1,24k 1 . R38 RF 4,64 k 1 0,125 R130 RF 115 1 . R39 RF 4,64 k 1 0,125 R131 RF 464 1 . R40 RF 68 1 0,125 R132 RF 215 1 .	R35	RF	2,05 k	1	0,125	R127	RF	€6,5k	1	,
R38 RF 4,64 k 1 0,125 R130 RF 115 1 . R39 RF 4,64 k 1 0,125 R131 RF 464 1 . R40 RF 68 1 0,125 R132 RF 215 1 .	R36	RF	178	1	0,125	R128	R F	12 k	1	· · · ,
R39 RF 4,64 k 1 0,125 R131 RF 464 1 0.125 R132 RF 215 1	R37	R F	178	1	0,125	R129	R F	1,24k	1	N 1
R40 RF 68 1 0,125 R132 RF 215 1 .	R38	R F	4,64 k	1	0,125	R130	R F	115	1	
	R39	RF	4,64 k	1	0,125	R131	$R\mathbf{F}$	464	1	· .
R41 RF 68 1 0,125 R153 RF 215 1	R40	R F	68	1	0,125	R132	RF	215	1	,
	R41	R F	68	1	0,125	R133	R F	215	1	ş.
R42 RF 56 1 0,125 R134 RF 2,05k 1	R42	RF	56	1	0,125	R134	$R\mathbf{F}$	2,05k	1	· .

				R					
B		Ω	%	W	No		Ω	%	W
ן לנ ז	RF	2,05k	1	0,125	R222	RF	205	1	0,125
ha to	RF	1,1 k	1	0,25	R223	RF	205	1	0,125
Rasy	RF	1,1 k	1	0,25	R224	RF	316	1	0,125
R+38	$R\mathbf{F}$	143	1	0,125	R225	RF	316	1	0,125
R-59	$\mathbf{k}\mathbf{F}$	143	1	0,125	R226	R F	56,2	1	0,125
O+1. 73	RF	68	1	0,125	R227	R F	619	1	0,5
n:41	RF	68	1	0,125	R228	RF	620	1	0,5
K 42	RF	31,6	1	0,125	R229	RF	750	1	0,5
8343	RF	31,6	1	0,125	R230	RF	750	1	0,5
K.44	RF	487	1	0,25	R231	R F	562	1	0,12
ñ.45	RF	487	1	0,25	R232	R F	2,43 k	1	0,12
8146	RF	56	1	0,125	R233	RF	2	5	0,25
h147	RF	56	1	0,125	R234	R F	220	5	1
R148	$R\mathbf{F}$	51	1	0,125	R235	RF	220	5	0,5
Rawy	RF	51	1	0,125	R236	R F	220	5	0,5
67.50	$\mathbf{K}\mathbf{F}$	10 k	5	0,25	R239	R F	12	5	0,25
RT51	RF	10 k	5	0,25	R240	R F	47	5	0,25
R.52	kF	12	5	0,25					',
j		j .			R301	RF	150	5	0,25
Re tolk	к F	196	1	0,125	R302	R F	150	5	0,25
k202	RF	196	1	0,125	R303	RF	1,3 k	1	0,125
1,203	RF	464	1	0,125	R304	RF	1,3 k	1	0,125
16204	KF	464	1	0,125	R305	R F	1,2 k	0,5	0,125
R205	RF	34,8	1	0,125	R306	RF	1,2 k	0,5	0,125
az0o	RF	39,2	1	0,125	R307	RF	422	1	0,125
1,207	RF	82	1	0,25	R308	RF	422	1	0,125
hau8	RF	39,2	1	0,125	R309	RF	464	1	0,125
E200	RF	82	1	0,25	R310	R F	316	1	0,125
E210	RF	576	1	0,5	R311	RF	66,5	1	0,125
1.11	RP	576	1	0,5	R312	RF	464	– ו	0,125
1.1.	$\mathbf{R}\mathbf{F}$	750	1	0,5	R313	R F	316	1	0,125
1 3	RF	115	1	0,125	R314	RF	154	1	0,125
h . 34	RF	3,9 k	5	0,25	R315	R F	154	1	0,125
きによう	RF	75	5	0,25	R316	R F	133	1	0,125
fac to	RF	120	0,5	0,125	R317	R F	133	1	0,125
hely	RF	10 k	1	0,125	R318	R F	93,1	1	0,25
alia I	R F	46,4	1	0,125	R319	R F	93,1	1	0,25
ويانا	КF	12 k	0,5	0,125	R320	R F	2,4 k	5	0,25
9 11	RF	46,4	1	0,125	R321	RF	5,1 k	0,5	0,125
s1	R F	12 k	0,5	0,125	R322	R F	6,8 k	0,5	0,125

1207-0-52

R →□→										
No		Ω	70	w	No		Ω	%	W	
R323	RF	620	0,5	0,25	R363	RF	150	5	u , 25	
R324	$R\mathbf{F}$	261	1	0,25	R364	RZ	68	<u>.</u> 1	Ġ	
R325	R F	261	1	0,25	R365	RZ	68	2	5	
R326	RF	261	1	0,25	R366	RF	27,4	1	0,25	
R327	R F	261	1	0,25	R367	R F	56,2	1	6,25	
R328	$\mathtt{R}\mathbf{F}$	620	0,5	0,25	R368	RF	75	1	0,25	
R329	$R\mathbf{F}$	66,5	1	0,125					Ĭ	
R330	RF	75	1	0,25	R404	RF	500 k	1	0,25	
R331	R F	237	1	0,25	R405	R F	1 M	1	0,25	
R332	RF	3,3 s	5	0,25	R408	RF	800 k	1	0,5	
R333	R F	3,3 k	5	0,25	R409	$R\mathbf{F}$	250 k	1	ز.11,0	
R334	$R\mathbf{F}$	100	5	0,25	R411	R₽	900 k	1	0,5	
R335	RF	100	5	0,25	R412	R F	lll k	1	0,105	
R356	R F	196	1	0,5	R414	RF	950 k	1	0,5	
R337	$R\mathbf{F}$	196	1	0,5	R415	RF	52,6 k	1	0,125	
R338	RF	1,62 k	1	0,125	R418	R F	980 k	1	0,5	
R339	RF	1,62 k	1	0,125	R419	$R\mathbf{F}$	20,4k	1	0,125	
R340	R F	3,83 k	1	0,125	R422	$R\mathbf{F}$	990 k	1	0,5	
R341	R F	3,83 k	1	0,125	R423	RF	10,1k	ļ	0,125	
R342	R F	750	1	0,25	R424	RF	47	5	0,25	
R343	$R\mathbf{F}$	750	1	0,25	R426	${f RF}$	995 k	1	0,25	
R344	RF	38 <i>3</i>	1	0,5	R427	$R\mathbf{F}$	5,03 k	ì	0,125	
R345	R F	15 k	5	0,25	R428	R F	62	5	0,25	
R346	$R\mathbf{F}$	1,2 k	5	0,25	R430	RF	9 98 k	1	0,25	
R347	$R\mathbf{F}$	6,8 k	5	0,25	R431	RF	22	5	0,25	
R348	RF	220 k	5	0,25	R432	RF	2 k	1	0,125	
R349	RF	10 k	1	0,125	R433	R F	999 k	1	0,25	
R350	R F	464	1	0,125	R434	R F	33	5	0,25	
R351	R F	3,3 k	5	0,25	R435	RF	l k	1	0,125	
R352	RF	1,5 k	5	0,25	R437	RF	1 M	1	0,5	
R353	RF	1,90 k	1	0,25	R438	RF	30	5	0,25	
R354	R F	33	5	0,25	R439	RF	5 00	1	0,125	
R355	RF	51	1	0,125	R442	RF	500 k	1	0,25	
R356	RF	220	5	0,25	R443	RF	1 M	1	0,25	
R357	$R\mathbf{F}$	220	5	0,25	R 44 6	R F	800 k	1	0,5	
R358	RF	1,5 k	5	0,25	R447	R F	250 k	l	0,125	
R359	RF	15	5	0,5	R449	R F	900 k	1	0,5	
R360	RF	l k	1.	0,25	R450	RF	111 k	1	0,125	
R361	RF	620	0,5	0,125	R453	RF	950 k	1	0,5	
R 3 62	R F	10	5	0,25	R454	RF	52,6 k	1	0,125	

		R											
iv		Ω	%	w	No		Ω	%	W				
it et	I: F	jou k	1	0,5									
iller o	ηF	20,4 k	1	0,125	k468	RF	22	5	0,25				
20 1	КF	990 k	ì	U , 5	R470	R F	2 k	1	0,125				
there is	kF	47	5	C,25	Ř472	R F	999 k	1	0,25				
1 sie r	ŔF	, 1 k	1	0,125	R473	R F	33	5	0,25				
25.575	kF	99] K	1	0,25	R474	RF	l k	1	0,125				
dêr 🗸	RF	62	5	C,25	R476	RF	1 M	1	0,5				
20700	кF	5,01 €	1	0,125	R477	RF	30	5	0,25				
W of	A 5'	,98 k	1	0,25	R478	RF	500	1	0,125				
Stage, de catigorigi en la 1880 e 2 july.				P -,									
Alex			ØŽ.	w	No			at .	w				
No	.	Ω	%	W	No		Ω	%	W				
No L Z	rΒ	Ω 5 k	% 20	W	No P105	PR	Ω 250	% 20	1				
String Statement of the	eR FR	1				PR PR							
13 14		5 k 25 k 100	20 . 0 20	1	P105 P106 F107	PR PR	250 25 k 100	20 20 20	1				
+ 4 + 5 + 4	17k 1 R 1 B	5 k 25 k 100 250	20 . 0 20 20	1 1	P105 P106 F107 P108	PR PR PR	250 25 k 100 25 k	20 20 20 20	1 1				
- 2 1 3 . 4 . 25	lak La	5 k 25 k 100 250	20 . 0 20 20	1 1 1	P105 P106 F107 P108 P109	PR PR PR PR	250 25 k 100 25 k 100	20 20 20 20 20	1 1 1				
+ 4 + 5 + 4	PR FR FR FR	5 k 45 k 100 250 25 k	20 . 0 20 20 20 20	1 1 1 1 1	P105 P106 F107 P108 P109 P110	PR PR PR PR PR	250 25 k 100 25 k 100	20 20 20 20 20 20	1 1 1 1				
13 14 25 25 27	PR FR FR FR FR	5 k 25 k 100 250 25 k 100 25 k	20 . 0 20 20 20 20 20	1 1 1 1 1	P105 P106 F107 P108 P109	PR PR PR PR	250 25 k 100 25 k 100	20 20 20 20 20	1 1 1 1				
12 13 14 25 25 27 27	PR FR FR FR FR	5 k 25 k 100 250 25 k 100 25 k	20 . 0 20 20 20 20 20 20	1 1 1 1 1 1	P105 P106 F107 P108 P109 P110 P111	PR PR PR PR PR PR	250 25 k 100 25 k 100 100	20 20 20 20 20 20 20	1 1 1 1				
-2 -3 -4 -25 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	PR FR FR PR	5 k 45 k 100 250 25 k 100 25 k 100	20 . 0 20 20 20 20 20 20 20	1 1 1 1 1 1 1	P105 P106 F107 P108 P109 P110 P111	PR PR PR PR PR PR PR	250 25 k 100 25 k 100 100 10k+10k	20 20 20 20 20 20 20 20	1 1 1 1				
12 13 14 25 25 27 27	PR FR FR FR FR	5 k 25 k 100 250 25 k 100 25 k	20 . 0 20 20 20 20 20 20	1 1 1 1 1 1	P105 P106 F107 P108 P109 P110 P111	PR PR PR PR PR PR	250 25 k 100 25 k 100 100	20 20 20 20 20 20 20	1 1 1 1 2x0,15				
-2 -3 -4 -25 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	PR FR FR PR	5 k 45 k 100 250 25 k 100 25 k 100	20 . 0 20 20 20 20 20 20 20	1 1 1 1 1 1 1	P105 P106 F107 P108 P109 P110 P111	PR PR PR PR PR PR PR	250 25 k 100 25 k 100 100 10k+10k	20 20 20 20 20 20 20 20	1 1 1 1 2x0,15				
12 13 14 25 10 11 11	PR PR PR PR PR PR	5 k 25 k 100 250 25 k 100 25 k 100 100 40k+10k	20 . 0 20 20 20 20 20 20 20 20	1 1 1 1 1 1 1 1 2x0,15	P105 P106 F107 P108 P109 P110 P111 P201	PR PR PR PR PR PR PR	250 25 k 100 25 k 100 100 10k+10k	20 20 20 20 20 20 20 20	1 1 1 1 2x0,15				

1589-0-52

	C +										
No		F	%	V	No		F	%	V		
c 3	CK	10 n	+50 - 20	500	0230	CK	22 n	+8020	40		
C4	CK	10 n	+50-20	500	0234	CK	22 n	+8020	40		
C6	CK	10 n	+50 - 20	500	C240	CK	68 p	5	500		
C7	CFE	100 n	10	100							
C8	CK	47 p	5	500	C301	CK	ln	20	50		
C10	CK	6,8 n	+50~20	500	0302	CK	1 n	20	50		
C9	CK	18 p	5	500	C320	CK	18 p	5	500		
C11	CMOP	100 n	20	630	C330	CK	100 n	+8020	40		
C13	CK	100 n	+80~20	40	0336	CK	270 p	5	500		
C24	CK	15 p	5	500	C337	CK	270 p	5	500		
C27	CT	2,1 p		500	C338	CK	22 n	+80-20	40		
C40	CT	2,1 p		500	C339	CK	22 n	+80-20	40		
C44	CK	10 p	0 , 5p	500	0343	CK	1,5 n	20	50		
C45	CK	10 p	0,5p	500	C345	CK	270 p	5	500		
C48	CE	4,7 /u	+100-10	40	C346	CK	56 p	5	500		
}		/			C348	CK	22 r	+80 20	40		
C103	CK	10 n	+50-20	500	C354	CK	270 p	5	500		
C104	CK	10 n	+50-20	500	0356	CK	22 n	+80-20	40		
C106	CK	10 n	+50-20	50 0	0359	CK	22 n	+80-20	40		
C107	CFE	100 n	10	100	C367	CK	22 n	+80-20	40		
C108	CK	47 p	5	500	C368	CK	22 n	+80-20	40		
C109	CK	18 p	5	500	C352	CK	22 n	+8020	40		
C110	CK	6,8 n	+30-20	500							
Clll	CMP	100 n	20	630	C 402	CK	5 P	0,5p	500		
C113	CK	100 n	+80~20	40	C403	CT	0,2-1,5p		700		
C124	CK	15 p	5	500	C404	CT:	2,1-11p		500		
C127	CT	2,1-11 p	1	500	0405	CK	5 p	0,5p	500		
C138	CK	82 p	5	500	C406	CK	8 p	0,5p	500		
C139	CK	82 p	5	500	C407	CT	0,5-4,2p	7,72	,,,,		
C140	CT	2,1-11 p	1	500	C408	!	0,5-4,2p				
C148	CK	10 p	0,5p	500	C409	CK	8 p	0,5p	500		
C149	CK	10 p	0,5p	500	C410	CT	0,5-4,2p	-125	,,,,,		
C125	CE	4,7 /u	+100-10	40	C411		0,5-4,2p				
		[''			0412	CK	8 p	0 , 5p	500		
C218	CK	47 p	5	500	C413	CT	0,5-4,2p	- 125	7.3		
C220	CK	47 p	5	500	C414		0,5-4,2p				
C226	CK	18 p	5	500	0415	CK	27 p	5	500		
C202	CK	22 n	+80-20	40	C416	CK	8 p	0,5p	500		
C212	CK	22 n	+80-20	40	C417	CT	0,5-4,2p	-,25			
C215	CK	15 p	5	500	C418	CT	0,5-4,2p				
	V43			<i>)</i> 00	0410	ΟT.	ν,)-4, < p	anglesijanis (an il qua pilipanakeu anglesianakeu anglesianakeu ang	-		

C +											
No		F	%	V	No		F	%	V		
C419	CK	47 p	5	500							
C420	CK	10 p	0,5p	500	C451	CK	g 8	0,5p	500		
C421	\mathtt{CT}	0,5-4,2p			C452	CT	0,5-4,2p				
C422	CT	0,2-1,5p			C453	CT	0,5-4,2p				
C423	CC	100 p	10	500	C454	CK	27 p	5	500		
C424	CK	10 p	0 , 5p	500	C455	CK	8 p	0,5p	500		
C425	CT	0,5-4,2p			C456	CT	0,5-4,2p				
¢426	CT	0,2-1,5p			0457	CT	0,5-4,2p				
0427	CC	q 002	10	500	C458	CK	47 p	5	500		
¢428	CK	10 p	0 , 5p	500	C459	CK	10 p	0,5p	500		
C429	CT	0,5-4,2p			C478	CC	2 n	5	500		
C430	CT	0,2-1,5p			C479	CK	2 p	0,5p	500		
C431	CC	500 p	10	500	C480	CK	2 p	0,5p	500		
0432	CK.	10 p	0,5p	500	C460	CT	0,5-4,2p				
C433	CT	0,5-4,2p			C461	CT	0,2-1,5p				
C434	CT	0,2-1,5p			C462	CC	100 p	10	500		
C435	CC	l n	5	500	C463	CK	10 p	0,5p	500		
C436	CK	10 p	0 , 5p	500	C464	CT	0,5-4,2p				
C437	CT	0,5 - 4,2p			C465	CT	0,2 - 1,5p				
C438	CT	0,2 - 1,5p			C466	CC	200 p	10	500		
C439	CC	2 n	5	500	C467	CK	10 p	0,5p	500		
C441	CK	5 p	0 , 5p	500	C468	СT	0,5-4,2p				
C442	CT	0,2 - 1,5p			C469	CT	0,2 - 1,5p				
C443	CT	2,1 - 11p		500	C470	CC	500 p	10	500		
C444	CK	5 p	0,5p	500	C471	CK	10 p	0,5p	500		
C445	CK	8 p	0 , 5p	500	C472	CT	0,5 - 4,2p				
C446	CT	0,5 - 4,2p			C473	CT	0,2 - 1,5p				
C447	CT	0,5-4,2p			C474	CC	ln	5	500		
C448	CK	8 p	0,5p	500	C475	CK	10 p	0,5p	500		
C449	CT	0,5 - 4,2p			C476	CT	0,5-4,2p				
C450	CT	0,5-4,2p			C477	CT	0,2-1,5p				

c

	V -	D -	H	TR -	Ď
Vl	∇	NM2L6OVO,5mA	Vlol	V	NM2L60V0,5mA
V 2	Δ	7586	V102	Δ	7586
Dl	D	1N4148	D302	D	FD777
D2	Q	lN4148	D303	D	FD777
D3	D	lN4148	D304	D	FD777
D4	D	lN4148	D305	D	FD777
.D5	D	lN4148	D306	D	FD777
			ס307	D	FD777
D101	D	lN4148	D308	D	FD777
D102	D	1N4148	D309	D	1N4148
D103	D	lN4148	D310	D	lN4148
D104	D	1N4148	D311	D	IN4148
D105	D	lN4148	D312	D	1N4148
			D313	D	LN4151
D301	D	FD777	D314	D	1N4151
TRL	TR	2N2219A			
TR2	TR	2N2219A	TR208	TR	2N918
TR3	TR	BFW30	TR209	TR	2N2219A
TR4	TR	BFW30			
TR5	TR	BFW30	TR301	TR	BFW30
TR6	TR	BFW30	TR302	TR	BFW30
			TR303	TR	BFW30
TRIO1	TR	2N2219A	TR304	TR	BFW30
TR102	TR	2N2219A	TR305	TR	2N5769
TR103	TR	BFW30	TR306	TR	2N5769
TR104	TR	BFW30	TR307	TR	BFW30
TR105	TR	BFW30	TR308	TR	BFW30
TR106	TR	BFW30	TR309	TR	2N5769
			TR310	TR	2N5769
TR201	TR	BFW30	TR311	TR	2N2219A
TR202	TR	BFW30	TR312	TR	2N2219A
TR203	TR	2N918	TR313	TR	2N5769
TR204	TR	2N918	TR314	TR	2N2219A
TR205	TR	BFW30	TR315	TR	2N2219A
TR206	TR	BFW30	TR316	TR	2N2219A
TR207	TR	2N918	TR317	TR	2N2219A
	-			ALVERTA AND AND AND AND AND AND AND AND AND AN	

• • •	3 3	EØ	O -	→	- •••
T314	Т		T316	Т	
L1	L	N-100	ł		
L2	L	N-100	L304	L	N-100
			L305	L	N-100
L201	L	0,3/uH	L306	L	N-100
L202	L	0,3/uH	L307	L	N-100
L206	L	0,15 _/ uH	L308	L	N-100
L207	L	N-100	L314	L	0,1 /u
L208	L	N-100	L315	L	0 , 1 /u
L209	L	N-100	L316	L	,
			L336	L	N-100
L301	L	N-100	L337	L	N-100
L302	${ m L}$	N-100	L356	Ĺ	100 /u
L303	L	N-100	L358	L	5 /u
					,

1589-U-52

5

1,8

3

) 13 ا 15

1589-U-52

N

CHI IN AC O DC O GND

ATTENHATORS 5

 \sim

9 1589-U-52

10 1589-U-52

6