Анализ данных при помощи языка Python

Горин Н.А.

МГТУ им. Н.Э. Баумана

6 июля 2023 г.

Аннотация

Для анализа данных были выбраны два исследования по наблюдению за морфологией Дарвиновых выюрков (лат. Geospizinae), проведённые в 1975 г. и 2012 г. Питером и Розмари Грант ($Peter\ and\ Rosemary\ Grant$). Выбранная работа является классическим научным трудом, позволяющим проследить эволюцию живых организмов (вьюрков вида $Geospiza\ fortis$ и $Geospiza\ scandens$) на коротком временном отрезке.

Введение

В данной работе представлен статистический анализ данных, сделанный при помощи языка Python. При выполнении работы использовались библиотеки matplotlib, numpy, pandas и seaborn.

Основная часть

Импортируем библиотеки и подключаем выборки:

```
1 import seaborn as sns
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5
6 sns.set_theme()
7
8 beaks_1975 = pd.read_csv('1975.csv')
9 beaks_2012 = pd.read_csv('2012.csv')
```

Редактируем файлы для более удобного анализа:

```
1 beaks_1975['year'] = "1975"
2 beaks_2012['year'] = "2012"
3 beaks_1975.rename(columns={'Beak depth, mm' : 'bdepth', 'Beak length, mm' : 'blength'}, inplace=True)
4 data = pd.concat([beaks_1975, beaks_2012]).reset_index(drop=True)
5 fortis = data[data.species == 'fortis'].reset_index(drop=True)
6 scandens = data[data.species == 'scandens'].reset_index(drop=True)
```

Маркируем данные и строим графики типа ScatterPlot:

```
1 markers = {'1975': "v", '2012': "X"}
2 fig = plt.figure(figsize=(12, 8))
3 sns.scatterplot(data=fortis, x='blength', y='bdepth', style='year', markers = markers)
4 plt.show()
5
6 markers = {'1975': "v", '2012': "X"}
7 fig = plt.figure(figsize=(12, 8))
8 sns.scatterplot(data=scandens, x='blength', y='bdepth', style='year', markers=markers)
9
10 plt.show()
```

Длина и ширина клюва (mm) вьюрков вида fortis

Длина и ширина клюва (mm) вьюрков вида scandens

Из графиков видно заметное различие в параметрах клюва у вьюрков вида scandens. Дальнейшие данные будем систематизирвоать по особям этого вида.

Разделим особей вида *scandens* по временным промежуткам проведённых исследований и построим графики типа **SwarmPlot**.

```
1 scandens_1975 = beaks_1975[beaks_1975['species'] == 'scandens']
2 candens_2012 = beaks_2012[beaks_2012['species'] == 'scandens']
3 scandens_bdepth_1975 = scandens_1975['bdepth'].reset_index(drop=True)
4 scandens_bdepth_2012 = scandens_2012['bdepth'].reset_index(drop=True)
5
6 sns.swarmplot(scandens, x='year', y='bdepth')
7 plt.xlabel('year')
8 plt.ylabel('Beak depth, mm')
9
10 scandens_blength_1975 = scandens_1975['blength'].reset_index(drop=True)
11 scandens_blength_2012 = scandens_2012['blength'].reset_index(drop=True)
12 sns.swarmplot(scandens, x='year', y='blength')
13 plt.xlabel('year')
14 plt.ylabel('Beak blength, mm')
15
16 plt.show()
```

Ширина клюва вьюрков вида scandens за 1975 и 2012 гг.

Длина клюва выюрков вида scandens за 1975 и 2012 гг.

Построенные графики позволяют выявить явные статистические изменение в морфологии строения клюва вида scandens за 37 лет.

Выполним проверку результатов на графиках другого типа: **BarPlot**.

```
1 sns.barplot(scandens, x="year", y="bdepth")
2 plt.xlabel('year')
3 plt.ylabel('Beak bdepth, mm')
4
5 sns.barplot(scandens, x="year", y="blength")
6 plt.xlabel('year')
7 plt.ylabel('Beak blength, mm')
8
9 plt.show()
```

Ширина клюва вьюрков вида scandens за 1975 и 2012 гг.

Длина клюва вьюрков вида scandens за 1975 и 2012 гг.

В завершение работы посмотрим, как менялась ширина и длина клюва выорков вида *scandens* в совокупности за 1975 и 2012 гг. Выполнить анализ помогут графики типа **ECDFPlot**.

Функция *ECDF* (эмпирическая кумулятивная функция распределения) представляет долю или количество наблюдений, попадающих ниже каждого уникального значения в наборе данных. Преимущество по сравнению с гистограммой или графиком заключается в том, что каждое наблюдение визуализируется напрямую, а это означает, что нет необходимости корректировать параметры группирования или сглаживания.

```
1 sns.ecdfplot(scandens, x="bdepth")
2 plt.xlabel('bdepth')
3 plt.ylabel('Proportion')
4
5 ns.ecdfplot(scandens, x="blength")
6 plt.xlabel('blength')
7 plt.ylabel('Proportion')
8
9 plt.show()
```

Ширина клюва вьюрков вида scandens

Заключение

Проведённый статистический анализ является прямым свидетельством морфологической изменчивости вида scandens, произошедшими за

Длина клюва вьюрков вида scandens

37 лет между исследованиями.

Результатом работы служит новое доказательство эволюционной теории Ч. Дарвина.