R16

Code No: 133AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, April/May - 2018 ANALOG ELECTRONICS

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

		(25 Marks)
1.a)	Write the characteristic of CE amplifier.	[2]
b)	Discuss the need of Darlington pair circuit.	[3]
c)	What is meant by gain bandwidth product?	[2]
d)	Short circuit CE current gain of a transistor is 25 at a frequency of 2 MHz. if	$f_{\beta}=200 \text{ kHz}$
	calculate f_T , h_{fe} and $ A_i $ at frequency of 10 MHz and 100 MHz.	[3]
e)	State the advantages and disadvantages of cascode stage.	[2]
f)	What is the folded cascode amplifier? Discuss.	[3]
g)	Classify the various negative feedback amplifers.	[2]
h)	For a phase shift oscillator, the feedback network uses R=6 K Ω and C=1500 pF. The	
	transistorized amplifier used, has a collector resistance of 18 K Ω . Calculate t	he frequency
	of oscillation and minimum value of h _{fe} of the transistor.	[3]
i)	What is the use of the heat sink in power amplifiers?	[2]
j)	What is meant by loaded and unloaded Q.	[3]
	PART-B	
		(FO N (. 1 .)

(50 Marks)

2.a) Discuss the low frequency response of BJT amplifier and the effect of coupling and bypass capacitors.

b) Explain the different coupling schemes used in amplifiers.

[5+5]

OR

3. For a two stage amplifier shown in figure 1 calculate (a)Av (b) Avs, (c) Ri (d) Ro Neglect the effect of all capacitances, Assume hat the both the transistors are identical with following parameters. $h_{fe}=50$, $h_{ie}=1.1$ K Ω , $h_{re}=2.5\times10^{-4}$ $h_{oe}=24\times10^{-6}$ A/V. [10]

- 4.a) For a single stage CE amplifier whose hybrid Π parameters are given below. What value of Rs will give 3 dB frequency $f_{H'}$ which is half the value obtained with R_s =0. Hybrid 'Π' parameters are: g_m =50 mA/V, r_{bb} =100Ω, $r_{b'e}$ =1 K , C_C =3 pF, C_e =100 pF.
 - b) A BJT has the following parameters measured at I_c =1 mA, h_{ie} =3 K Ω , h_{fe} =100, f_T =4 MHz, C_C =2pF and C_e =18 pF. Find $r_{b'e}$, $r_{bb'}$, g_m and f_H for R_L =1 K Ω . [5+5]

OR

- 5.a) Prove that $h_{fe}=g_m r_{b'e}$.
 - b) Derive the expression for CE short circuit current gain A_i as a function of frequency.

[4+6]

- 6.a) Compare the performance of BJT and FET amplifiers.
 - b) Draw and explain the CS amplifier with current source load. Derive an expression for $A_{v.}$ [5+5]

OR

- 7.a) Draw and explain the MOS small signal model.
 - b) Discuss the analysis of CD JFET amplifier.

[5+5]

- 8.a) What are the advantages and disadvantages of negative amplifier in detail?
 - b) For the given circuit shown in figure 2, calculate R_{mf} , A_{vf} and R_{if} . The transistors with parameters $h_{ie}=2$ K, $h_{fe}=100$. Neglect h_{oe} and h_{re} . [5+5]

Figure: 2 OR

- 9.a) In a colpitt's oscillator, the values of the inductors and capacitors in the tank circuit are L=40 mH, $C_1=100 \text{ pF}$, $C_2=500 \text{ pF}$.
 - i)Find the frequency of oscillation.
 - ii) if the output voltage is 10 V, find the feedback voltage.
 - iii) find the minimum gain, if the frequency is changed by changing 'L' alone.
 - iv)find the value of c_1 , for a gain of 10.
 - v)also find the new frequency of oscillation.
 - b) Compare the RC phase shift and wein bridge oscillators.

[5+5]

- 10.a) Explain the principle of operation of class C amplifier.
 - b) Design a class B power amplifier to deliver 25 W to a load resistors R_L =8 Ω using transformer coupling, V_m = V_{CC} =25 V. Assume reasonable data where ever necessary.

[5+5]

OR

- 11.a) An RF tuned voltage amplifier using FET with r_d =100 K Ω and g_m =500 μ s has tuned circuit, consisting of L=2.5mH and C=200 pF as its load. At its resonant frequency, the circuit offers an equivalent shunt resistance of 100 K Ω . For the amplifier, determine the (i) the resonant gain (ii) the effective Q and (iii) the bandwidth.
 - b) Draw and explain the double tuned amplifier with the help of the frequency response.

[5+5]

--00000---