		ı						
		RELA	ATÓRIO TÉCNIC	o	N°: RI	L-3A00.00-1500-	94G-R	1N-001
13	R	CLIENTE:		UN-BS/	ATP-TUPI		FOLHA:	1 de 50
		PROGRAMA: DESENVOLVIMENTO DO CAMPO TUPI						
PETRO	BRAS	ÁREA:	DESENVO			/IFU TUPI		-
		,			DE TUPI			-
	_					IAG-02 À P-66 -	SUB/ES	/ED-BDESC/EDF
	<u> </u>		ANÁLISE DE ES	FORÇO	S EM EQUI	P. SUB. (MCV)		-
			/EL TÉCNICO:		CREA:			
RINA SE	RVIÇOS	RODRIGO D	E SOUZA E SILVA I	PICANÇA	2014114980			_
TÉCNICO	OS LTDA	CONTRATO:			RUBRICA:	Rip		
		5900.012097	71.22.2			BIP		
			ÍNDICE	DE F	REVISÕE	S		
REV.			DESCRIÇ	ÃO E/Ol	J FOLHAS A	ATINGIDAS		
0	EMISS	ÃO ORIGIN	IAL					
								
		REV. 0	REV. A	REV. B	RE	V. C REV. D)	REV. E
DATA EXECUÇÃO		12/04/2024						
VERIFICAÇA		F7U2 AXW4						
APROVAÇÃ		DX8F						
		R-00337, AS INFORM	IAÇÕES DESTE DOCUMENT	O SÃO PROPI	RIEDADE DA PETROI	BRAS, SENDO PROIBIDA A U	JTILIZAÇÃO I	FORA DA SUA
FINALIDADE.	FORMULÁRIO	PADRONIZADO PEI	A NORMA PETROBRAS N-3	81-REV M		-		

FOLHA: 2 de 50
SUB/ES/ED-BDESC/EDF

SUMÁRIO

1.		OBJETIVO	3
2.		DOCUMENTOS DE REFERÊNCIA	4
3.		NOMENCLATURAS	5
4.		PREMISSAS DE CÁLCULO	6
	4.1. 4.2. 4.3. 4.4.	Carregamentos e Condições de Lançamento Dados de Referência Casos de Carregamento Sistema de Referência	10 12
5.		RESULTADOS	14
6.		CONCLUSÃO	19
7.		RECOMENDAÇÕES	20
8.		ANEXOS	21

R	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
CLIENTE:	UN-BS/	ATP-TUPI	FOLHA: 3	de 50
TÍTULO:	DUTO DE INJEÇÃO DE GÁS DO MSIAG-02 À P-66 - SUB/ES/ED-B			
	ANÁLISE DE ESFORÇOS	S EM EQUIP. SUB. (MCV)	-	

1. OBJETIVO

O presente relatório (RL) tem como objetivo informar os esforços solicitantes atuantes no flange do MCV (Módulo de Conexão Vertical) durante a interligação da linha de injeção de gás de 6" do manifold MSIAG-02 à P-66 do campo de Tupi.

Esta análise corresponde à CVD de 1ª extremidade.

Os esforços solicitantes foram obtidos através de análises no 'software' ORCAFLEX, e serão utilizados para verificação da adequabilidade do projeto estrutural e de balanceamento do MCV.

A seguir são apresentados os contatos do responsável por este RL na Petrobras:

Nome	Endereço eletrônico	Lotação
Hugo Citeli	hugo.citeli@petrobras.com.br	SUB/SSUB/ISBM/SIDS
Carlos Armani	carlosdelalibera@petrobras.com.br	SUB/ES/ ED-BDESC/EDF

R	ELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0	
CLIENTE:	UN-BS/	FOLHA: 4	de 50		
TÍTULO:	DUTO DE INJEÇÃO DE GÁS DO MSIAG-02 À P-66 - SUB/ES/ED-				
	ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)				

2. DOCUMENTOS DE REFERÊNCIA

Ref./1/ ET-3000.00-1500-941-PMU-006 Rev. C – Metodologia e Diretrizes para Análise de Carga em MCV;

Ref./2/ XPE0042703 – SOLICITAÇÃO DE SERVIÇO: 5.11 - Análise padrão de MCV – padrão (SUB/ES/EDD/EDF);

Ref./3/ DE-3A26.02-1500-942-PMU-003 Rev. N – Arranjo Submarino de Interligação do Campo de Lula Sul (FPSO P-66).

F	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
CLIENTE:	UN-BS/	FOLHA: 5	de 50	
TÍTULO:	DUTO DE INJEÇÃO DE GA	SUB/ES/ED-E	3DESC/EDF	
	ANÁLISE DE ESFORÇOS	-	,	

3. NOMENCLATURAS

BAP: Base Adaptadora de Produção

CVD: Conexão Vertical Direta

EQSB: Equipamentos Submarinos

ISBM: Interligação Submarina

MCV: Módulo de Conexão Vertical

	R	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
138	CLIENTE:	UN-BS/	ATP-TUPI	FOLHA: 6	de 50
	TÍTULO:	DUTO DE INJEÇÃO DE GA	ÁS DO MSIAG-02 À P-66 -	SUB/ES/ED-	BDESC/EDF
PETROBRAS		ANÁLISE DE ESFORÇOS	EM EQUIP. SUB. (MCV)		_

4. PREMISSAS DE CÁLCULO

4.1. Carregamentos e Condições de Lançamento

Este RL informa os carregamentos (forças e momentos) impostos pelo flexível no flange do MCV, durante seu lançamento, em seis momentos diferentes. Na referência 1, estão discriminadas as análises que são realizadas para avaliação de cargas em MCV.

4.1.1. CVD de 2^a - Topo (Caso 1)

Esta análise visa obter o máximo carregamento axial no flange do MCV no momento do overboarding do mesmo durante o CVD de 2ª extremidade. Analogamente, esta análise também simula o recolhimento do MCV assim que o equipamento chega à embarcação após desconexão de 1ª extremidade.

Figura 4.1 – CVD de 2ª extremidade

Para o dimensionamento do MCV para o caso de CVD de 2ª extremidade logo após o overboarding do equipamento, as cargas no topo serão definidas pela ELT (Estimated Laying Tension):

$$\textit{ELT} = A + (LDA + 10) \cdot FC \cdot FAD \cdot w$$

Onde:

A – Peso estimado dos acessórios;

LDA – Lâmina D'água;

FC – Fator de catenária;

FAD – Fator de amplificação dinâmica;

w – Peso Linear do duto flexível, alagado e imerso.

Na análise foi considerado o ângulo de topo de catenária durante o lançamento de 3º.

4.1.2. CVD de 1ª - Equilíbrio (Caso 2)

Esse caso representa a situação de conexão vertical de primeira extremidade em que o MCV está bem próximo do hub no instante de ser assentado. É criada uma configuração em que o ângulo de inclinação do MCV seja igual à zero. O duto é considerado cheio de água.

O MCV é considerado verticalizado desde que possua um desalinhamento máximo de \pm 0,5°, situação que possibilita o assentamento.

Figura 4.2 – MCV verticalizado (CVD 1ª extremidade)

_	R	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
138	CLIENTE:	UN-BS/	ATP-TUPI	FOLHA: {	3 de 50
	TÍTULO:	DUTO DE INJEÇÃO DE GA	ÁS DO MSIAG-02 À P-66 -	SUB/ES/ED-	BDESC/EDF
PETROBRAS		ANÁLISE DE ESFORÇOS	S EM EQUIP. SUB. (MCV)		_

4.1.3. CVD de 1^a – MCV no Hub com Linha Suspensa (Caso 3i)

Este caso representa a situação de CVD de primeira extremidade em que o MCV está assentado no hub e a linha suspensa pelo PLSV.

O duto é considerado cheio de água.

O propósito deste caso é determinar o momento máximo na interface do MCV e a linha no sentido de suspender o flange do MCV. O momento máximo é determinado aplicando-se um deslocamento vertical de 1,8 m na extremidade da linha, a partir da condição do caso "CVD 1ª – Equilíbrio (Caso 2)" (item 4.1.2).

A fim de que os resultados obtidos considerem a dinâmica do duto durante o deslocamento vertical aplicado, foi feita uma análise transiente em que a amplitude do movimento vertical na extremidade da linha é aplicada em um tempo igual a ¼ do período do movimento imposto (T = 8,6s), neste caso 2,15s.

Figura 4.3 – Aplicação do deslocamento vertical com MCV engastado (CVD 1ª extremidade)

4.1.4. CVD de 1^a - MCV no Hub (Caso 3ii)

O objetivo desta análise é determinar os esforços na interface do MCV com o flowline <u>no instante</u> <u>que a linha toca o solo marinho</u> após a conexão do MCV no hub da BAP. Estes esforços deverão ser considerados para dimensionamento do equipamento.

Para este caso o duto é considerado cheio de água.

Figura 4.4 – MCV engastado no momento do toque da linha no solo (CVD 1ª extremidade)

4.1.5. CVD de 1^a – Teste Offshore (Caso 4)

Esta análise simula a condição de operação durante teste hidrostático com o MCV travado e a linha assentada no fundo do mar.

Para este caso o duto é considerado cheio de água.

4.1.6. CVD de 1a - Operação (Caso 5)

Esta análise simula a condição de operação com o MCV travado e a linha assentada no fundo do mar.

Para este caso o duto é considerado cheio de água.

Figura 4.5 – Condição de Teste Offshore e Operação (CVD 1ª extremidade)

4.2. Dados de Referência

Na Tabela 4.1 são apresentadas as informações gerais utilizadas nas análises.

Tabela 4.1 – Informações gerais utilizadas nas análises

Item	Referência
	152.2553-RD-4042-6 / Rev. 01 / BHGE
Estruturas	152.52656 / Rev. 3 / TechnipFMC
	152.53755 / Rev. 3 / TechnipFMC
Bend Restrictor	CB-BR1522553-00-01 / Rev. 01 / BHGE
Conector	CB-EF1522540-00-05 / Rev.04 / BHGE
MCV	11,035 t / P7000051394 / TechnipFMC
Adaptador	Não Aplicável
Lâmina d'água (LDA)	2176 m

A altura do flange do MCV ao solo marinho foi considerada igual a 4,498 m, conforme dados contidos no Anexo 4.

Foi considerado o MBR da vértebra igual a 4,140 m.

Conforme recomendado pelo documento de Ref./1/, considerando que os dados batimétricos podem não condizer exatamente com as condições encontradas para o lançamento do duto flexível no leito marinho, os casos 3ii, 4 e 5 devem ser executados duas vezes: (a) altura do flange ao solo marinho nominal +52cm e (b) altura do flange ao solo marinho nominal -52cm.

A estrutura 152.2553-RD-4042-6 / Rev. 01, fabricada pela BHGE, teve o valor de rigidez flexional modificado para compensar os efeitos da temperatura e pressão na condição de instalação e teste hidrostático. Foram consideradas as curvas "Momento Fletor x Curvatura" para aquisição da rigidez flexional de acordo com cada curvatura do duto. Tais curvas são informadas no Anexo 5.

É importante ressaltar que as análises foram realizadas considerando o anular do duto alagado.

Foram consideradas as seguintes curvas:

- Casos CVD 1ª/2ª - Equilíbrio (caso 2); MCV no Hub com Linha Suspensa (Caso 3i), e MCV no Hub (caso 3ii):

R	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.:
CLIENTE:	UN-BS/	FOLHA: 11	l de 50	
TÍTULO:	DUTO DE INJEÇÃO DE GÁS DO MSIAG-02 À P-66 - SUB/ES/E			
	ANÁLISE DE ESFORÇOS	-		

Rigidez Flexional (EI) na temperatura da máxima LDA de projeto, e pressão interna e externa ao duto equivalente a máxima pressão da LDA de projeto.

- Caso CVD 1ª/2ª - Teste (caso 4):

Rigidez Flexional (EI) na temperatura da máxima LDA de projeto, 110% da pressão de projeto interna ao duto e pressão externa equivalente a máxima pressão da LDA de projeto.

- Caso CVD 1ª/2ª - Operação (caso 5):

Rigidez Flexional (EI) na temperatura da máxima LDA de projeto, pressão interna igual a pressão de projeto acrescida da pressão devido a coluna de fluido e pressão externa equivalente a máxima pressão da LDA de projeto.

R	ELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
CLIENTE:	UN-BS/	FOLHA: 12	2 de 50	
TÍTULO:	DOTO DE INJEÇÃO DE GAS DO MISIAG-02 A F-00 -			BDESC/EDF
	ANÁLISE DE ESFORÇOS	-		

4.3. Casos de Carregamento

Os casos de carregamento do item 4.1 do RL estão resumidos na Tabela 4.2.

Tabela 4.2 – Casos de carregamento para as análises

Caso de carregamento		Objetivo	Observações
CVD 2 ^a – Topo (Caso 1)		Determinar máxima tração no flange	- A: 14,641 t; - FC: 1,06; - FAD: 1,3; - w: 1,1677 kN/m; - LDA: 2176 m.
CVD 1 ^a – Equilíbrio (C	aso 2)	Determinar esforços para balanceamento do MCV	- Análise estática somente; - Altura do flange do MCV ao solo = 3,978 m.
CVD 1 ^a – MCV no Hub com linha suspense (Caso 3i)		Determinar os esforços no sentido de suspender o flange	- Deslocamento vertical de 1,8 m; - Altura do flange do MCV ao solo = 3,978 m.
CVD 1ª – MCV no	(a)	Determinar os esforços no	- Altura do flange do MCV ao solo = 5,018 m.
Hub (Caso 3ii)	(b)	sentido de abaixar o flange	- Altura do flange do MCV ao solo = 3,978 m.
CVD 1ª – Teste	(a)	Determinar cargas de teste	- Altura do flange do MCV ao solo = 5,018 m; - Pressão interna = Pressão de teste da linha = 110% da pressão de projeto da linha (68,258 MPa).
Offshore (Caso 4)	(b)	hidrostático no flange	 - Altura do flange do MCV ao solo = 3,978 m; - Pressão interna = Pressão de teste da linha = 110% da pressão de projeto da linha (68,258 MPa).
CVD 1ª – Operação	(a)	Determinar cargas de	- Altura do flange do MCV ao solo = 5,018 m; - Pressão interna = Pressão de projeto da linha (62,053 MPa).
(Caso 5)	(b)	operação no flange	- Altura do flange do MCV ao solo = 3,978 m; - Pressão interna = Pressão de projeto da linha (62,053 MPa).

_	R	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
138	CLIENTE: UN-BS/ATP-TUPI				
	TÍTULO:	DUTO DE INJEÇÃO DE GA	ÁS DO MSIAG-02 À P-66 -	SUB/ES/ED-	BDESC/EDF
PETROBRAS		ANÁLISE DE ESFORÇOS	EM EQUIP. SUB. (MCV)		_

4.4. Sistema de Referência

Na Figura 4.6 é apresentado o sistema de referência considerado na impressão dos valores dos esforços solicitantes obtidos das análises.

Figura 4.6 – Sistema de referência para os esforços solicitantes (Fx – Tração; Fz – Cortante, e My – Momento Fletor)

_	R	ELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-00)1 REV.: 0
138	CLIENTE:	FOLHA:	14 de 50		
	TÍTULO:	DUTO DE INJEÇÃO DE GA	ÁS DO MSIAG-02 À P-66 -	SUB/ES/	/ED-BDESC/EDF
PETROBRAS		ANÁLISE DE ESFORÇOS	S EM EQUIP. SUB. (MCV)		-

5. RESULTADOS

A condição sem flutuadores não permitiu a verticalização do MCV respeitando a integridade da linha e dos acessórios. A condição proposta para verticalização do MCV, respeitando a integridade da linha, dos acessórios e as premissas do projeto, foi o uso de um sistema de flutuadores acoplado à vértebra e à linha. A Figura 5.1 ilustra a configuração proposta.

Figura 5.1 – Ilustração do sistema de flutuação proposto [Caso (b) – Perfil, - 52 cm]

Os dados da configuração proposta são:

- Utilização de 06 flutuadores:
 - O primeiro afastado 3,00 m do flange com 1,00 tonelada de empuxo;
 - O segundo afastado 3,00 m do flange com 0,50 toneladas de empuxo;
 - O terceiro afastado 3,00 m do flange com 0,20 toneladas de empuxo;
 - O quarto afastado 3,00 m do flange com 0,20 toneladas de empuxo;
 - O quinto afastado 6,00 m do flange com 1,00 tonelada de empuxo;
 - O sexto afastado 9,00 m do flange com 1,00 tonelada de empuxo.
- O perfil de altura do solo ao longo do azimute da linha não permitiu a verticalização do MCV sem a necessidade de dragagem. A Figura 5.2 ilustra a dragagem proposta.

RL-3A00.00-1500-94G-R1N-001

REV.:

CLIENTE:

UN-BS/ATP-TUPI

SUB/ES/ED-BDESC/EDF

TÍTULO:

DUTO DE INJEÇÃO DE GÁS DO MSIAG-02 À P-66 -ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)

00b/L3/LD-bDI

Figura 5.2 – Ilustração da dragagem

- Sobre a ilustração da dragagem deve ser considerado o seguinte:
 - A dragagem deve ser realizada de modo que a linha passe centralizada longitudinalmente pela vala;
 - O azimute da vala foi retirado do Doc. Ref./3/.

F	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
CLIENTE:	UN-BS/	ATP-TUPI	FOLHA: 16	6 de 50
TÍTULO:	DUTO DE INJEÇÃO DE G	SUB/ES/ED-E	BDESC/EDF	
	ANÁLISE DE ESFORCOS	S EM EQUIP. SUB. (MCV)	_	

Na Tabela 5.1 são apresentados os resultados das análises da configuração proposta.

Tabela 5.1 – Resultados das análises – Configuração proposta

Caso de carregamento		Esforço		Valor		
CVD 2ª – Topo (Caso 1)			Tração (Fx)	3661 kN		
CVD 1ª – Equilibri (Caso 2 - Flutuado		Mo	Tração (Fx) orça Cortante (Fz) omento Fletor (My) MBR (Vértebra) MBR (Flexível)	7.62 kN -11.30 kN 10.72 kN.m 5.91 m 5.17 m		
CVD 1 ^a – MCV no Hub com linha suspensa (Caso 3i - Flutuador)		Momento Fletor Força Cortante (Fz) Máximo Momento Fletor (My) Momento Fletor Força Cortante (Fz) Fletor Força Cortante (Fz) Minimo Momento Fletor (My) MBR (Vértebra) MBR (Flexivel)		4.87 kN -8.51 kN 26.68 kN.m 9.02 kN -12.91 kN 4.01 kN.m 4.14 m 4.14 m		
CVD 1 ^a – MCV no Hub (Caso 3ii – Flutuador)	(a)	Mo	Tração (Fx) orça Cortante (Fz) omento Fletor (My) Tração (Fx)	7.40 kN -12.25 kN 2.90 kN.m 7.58 kN		
CVD 1ª – MCV no Hub	(b) (a)	Força Cortante (Fz) <u>Momento Fletor (My)</u> Tração (Fx) Força Cortante (Fz) Momento Fletor (My)		-11.73 kN 6.60 kN.m 49.54 kN -31.41 kN -53.64 kN.m		
(Caso 3ii – Após retirada do Flutuador)	(b)	Tração (Fx) Força Cortante (Fz) Momento Fletor (My)		49.37 kN -28.39 kN -42.84 kN.m		
CVD 1 ^a – Teste Offshore	(a)	Tração (Fx) Força Cortante (Fz) Momento Fletor (My)		5.68 kN -11.06 kN 31.03 kN.m		
(Caso 4 – Flutuador)	(b)	Tração (Fx) Força Cortante (Fz)				15.42 kN -10.36 kN 35.62 kN.m
CVD 1 ^a – Teste Offshore (Caso 4 – Após retirada	(a)		Tração (Fx) orça Cortante (Fz) omento Fletor (My)	37.58 kN -35.48 kN -63.68 kN.m		
do Flutuador)	(b)	Tração (Fx) Força Cortante (Fz) Momento Fletor (My)		41.12 kN -30.73 kN -34.90 kN.m		
CVD 1ª – Operação	(a)	F	Tração (Fx) orça Cortante (Fz) omento Fletor (My)	38.35 kN -35.26 kN -64.01 kN.m		
(Caso 5 — Após retirada do Flutuador)	(b)	F	Tração (Fx) orça Cortante (Fz) omento Fletor (My)	41.79 kN -30.55 kN -35.77 kN.m		

	R	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
138	CLIENTE:	UN-BS/	ATP-TUPI	FOLHA: 1	7 de 50
	TÍTULO:	DUTO DE INJEÇÃO DE GA	ÁS DO MSIAG-02 À P-66 -	SUB/ES/ED-I	BDESC/EDF
PETROBRAS		ANÁLISE DE ESFORCOS	S EM FQUIP SUB (MCV)		

Como pode ser observado na Tabela 5.1, houve travamento da vértebra para os casos de carregamento 3i e 3ii. Na Figura 5.3 apresenta-se o gráfico da curvatura ao longo do comprimento da mesma, podendo-se observar que ocorreu travamento parcial.

Admitindo-se o travamento da vértebra, a fim de verificar sua integridade, na Figura 5.4 apresenta-se o momento fletor e na Figura 5.5 apresenta-se a força cortante atuante na mesma durante os casos de carregamento 3i e 3ii. O momento fletor máximo atuante na vértebra foi de 4,87 kNm, enquanto a força cortante máxima foi de 22,86 kN, valores **inferiores** ao momento fletor máximo admissível do acessório (70,00 kNm) e cortante máximo admissível (34,00 kN), conforme Anexo 3.

Figura 5.3 – Curvatura ao longo da vértebra durante os casos de carregamento 3i e 3ii

Figura 5.4 – Momento fletor atuante na vértebra durante os casos de carregamento 3i e 3ii

Figura 5.5 – Força cortante atuante na vértebra durante os casos de carregamento 3i e 3ii

R	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
CLIENTE:	UN-BS/	ATP-TUPI	FOLHA: 19	9 de 50
TÍTULO:	DUTO DE INJEÇÃO DE GA	SUB/ES/ED-E	BDESC/EDF	
	ANÁLISE DE ESFORÇOS	S EM EQUIP. SUB. (MCV)	-	

6. CONCLUSÃO

A configuração final a ser adotada na CVD será definida pela instaladora de acordo com as propriedades específicas do PLSV escolhido para a instalação.

O parecer final da adequabilidade do MCV para os esforços combinados deve ser emitido pelo SUB/SSUB/IESUB/STIES após verificação junto ao fabricante.

É importante ressaltar que foi utilizado um movimento de heave up de 1,8 m.

Houve travamento da vértebra durante os casos de carregamento 3i e 3ii, porém, o momento fletor máximo e a força cortante máxima atuantes (4,87 kNm e 22,86 kN) na vértebra foram **inferiores** aos máximos admissíveis do acessório (70,00 kNm e 34,00 kN), conforme Anexo 3.

É importante ressaltar que foi necessária dragagem para verticalizar o MCV. Os dados da mesma foram informados no corpo deste relatório.

É importante ressaltar que a soltura dos flutuadores foi considerada de forma gradual com intervalos de 30 segundos entre cada conjunto de flutuadores, sendo o primeiro conjunto a ser solto a 9,0 metros do flange do MCV e o último conjunto a ser solto a 3,0 metros do flange do MCV.

Informamos que todos os esforços foram aprovados no ábaco do MCV TAG P7000051394, como pode ser observado no Anexo 7.

R	ELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.: 0
CLIENTE:	UN-BS/	UN-BS/ATP-TUPI FOLHA: 2		
TÍTULO:	DUTO DE INJEÇÃO DE G	SUB/ES/ED-E	BDESC/EDF	
	ANÁLISE DE ESFORÇOS	S EM EQUIP. SUB. (MCV)	-	

7. RECOMENDAÇÕES

É recomendável que as análises do fornecedor do equipamento sigam o seguinte roteiro para aprovação do MCV:

- ✓ Análise Analítica
- ✓ Análise Numérica Elástica
- ✓ Análise Numérica Elastoplástica
- ✓ Análise Numérica Elastoplástica considerando o As Built.

O fornecedor deve informar os fatores de segurança atingidos nas análises.

R	ELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001	REV.:)
CLIENTE:	UN-BS/	ATP-TUPI	FOLHA: 21	de 50	
TÍTULO:	DUTO DE INJEÇÃO DE G	SUB/ES/ED-E	BDESC/E)F	
	ANÁLISE DE ESFORÇOS	S EM EQUIP. SUB. (MCV)	-		

8. ANEXOS

Anexo 1 – FOLHA DE DADOS DA ESTRUTURA DO FLEXÍVEL

Anexo 2 - DESENHO DO CONECTOR

Anexo 3 – DESENHO DA VÉRTEBRA

Anexo 4 – DADOS DO MCV

Anexo 5 - DADOS DE RIGIDEZ FLEXIONAL

Anexo 6 – UNIFILAR DA LINHA

Anexo 7 – ÁBACO DE CARREGAMENTOS ADMISSÍVEIS

		RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G		REV.: 0
BR	CLIENTE: TÍTULO:		/ATP-TUPI		22 de 50
PETROBRAS	TITOLO.	DUTO DE INJEÇÃO DE G ANÁLISE DE ESFORÇOS	SUB/ES/ED	-BDESC/EDF	
		ANEX	(0 1		

DOCUMENT ID: WS_D_000000036253/@2

APPROVED BY/APPROVED ON:

STATIC 152.4 mm 62.053 MPa 2500 m 6 Inch Gas Injection Flowline Structure Number: WSI 152.2553-RD-4042-6 R1 S.I. Units Pipe Data Sheet, 152.2553-RD-4042-6 R1

Prepared by: Gustavo Dionisio		hecked by: Victor Carr	Approved			
Inside Diameter	152.4 mm	Service	Static	Ма	x. Fluid Temp.	90 °C
Design Pressure	62.053 MPa	Conveyed Fluid	Gas		Water Depth	2500 m
Layer	Material		I.D.	Thick	O.D.	Weight
			[mm]	[mm]	[mm]	[kg/m]
Flexbody	Duplex 2205		152.40	8.40	169.20	18.855
Flexbarrier	PA 12 Natural		169.20	10.00	189.20	5.742
Flexlok	Steel 100ksi YS 125ksi U	TS	189.20	11.99	213.18	52.109
Flextape	Tape PA 11 P20 30mil		213.18	1.52	216.22	1.076
Flextensile 1	0.7% C Steel 135ksi MYS	150 UTS	216.22	7.00	230.22	33.244
Flextape	Polypropylene		230.22	0.30	230.81	0.199
Flextape	High Strength Glass Filan	nent	230.81	2.03	234.87	1.932
Flextape	Polypropylene		234.87	0.30	235.47	0.203
Flextensile 2	0.7% C Steel 135ksi MYS	150 UTS	235.47	7.00	249.47	36.063
Flextape	Polypropylene		249.47	0.30	250.06	0.215
Flextape	High Strength Glass Filan	nent	250.06	2.03	254.12	2.092
Flextape	Polypropylene		254.12	0.30	254.71	0.219
Flextape	Tape Polyester Fabric		254.71	0.41	255.53	0.217
Flexshield	PE100 Grade GP100BK		255.53	7.00	269.53	5.642
Flexinsul	PT7000 Insulation (Reinfo	rcing Layer)	269.53	3.50	276.53	2.048
Flextape	Tape Polyester Fabric		276.53	0.41	277.34	0.236
Abrasion	PE100 Grade GP100BK		277.34	7.00	291.34	6.111
Layer	Raw Material	Dimensions	Mfg Pitch	Wires	Angle	Filled
Flexbody	55.0mm x 1.6mm	2.165in x 0.063in			87.9	85.48%
Flexlok (Profile H)	27.3mm x 12.0mm	1.076in x 0.472in			88.2	91.96%
Flextensile 1	12.0mm x 7.0mm	0.472in x 0.276in	1079.8mm	46	33.0	96.90%
Flextensile 2	12.0mm x 7.0mm	0.472in x 0.276in	1267.7mm	51	31.0	96.52%
Flexinsul	50.8mm x 3.5mm	2.000in x 0.138in				90.60%
Outside Diameter		291.34 mm	Volume (a	t OD)		66.381 l/m
Storage Radius, SE	3R	1.89 m	Volume (a	t ID)		20.095 l/m
Operating Radius,	OBR (Dry Bore) ¹	4.60 m	Wt, Empty	in Air		166.20 kg/m
Operating Radius,	OBR (Flooded Bore) ²	2.40 m	S/W filled	in Air		186.81 kg/m
Pipe bending stiffn	iess at 23 °C, El	40.412 kNm ²	Air filled in	n S/W		98.14 kg/m
Spooling Tension		11292 N	S/W filled	in S/W		118.74 kg/m
Therm. Cond./Leng	gth, C/L	5.26 w/m°C	Burst Pres	sure		120.75 MPa
Effective Thermal (Cond, ke	0.54 w/m°C	Burst/Desi	ign		1.95
OHTC, Uo {based o	on ID}	10.99 w/m ² °C	Collapse F	Pressure (W	et Flexlok)	30.32 MPa
SWDR with bore en	mpty	3.30 N/m mm	Collapse D	Pepth (Wet I	Flexlok)	3015 m
SWDR with bore fil	led by SW	4.00 N/m mm	Collapse/D	Design (Wet	Flexlok)	1.2
Pipe torsional stiff	ness (GJ) at 23 °C:		Failure Te	nsion		5913.1 kN
Limp direction		1685 kNm²				
Stiff direction		3559 kNm ²				
Axial Stiffness		563380 kN				

<u>Notes</u>

¹OBR (MBR) increased to comply with internal carcass design criteria (0.85) for bent collapse failure mode.

²OBR (MBR) for pipe flooded condition in order to comply with Petrobras tensile armour design criteria (0.67) for tensile buckling failure mode.

Pipe Data Sheet revised to adjust correct Spooling Tension value. No structural/layer change.

DOCUMENT ID: WS_D_000000036253/@2

APPROVED BY/APPROVED ON: Récrtot contactos par

STATIC 6 in 9000 psi 8202.1 ft 6 Inch Gas Injection Flowline Structure Number: WSI 152.2553-RD-4042-6 R1 U. S. Units Pipe Data Sheet, 152.2553-RD-4042-6 R1

Prepared by: Gusta	avo Dionisio (Checked by: Victor Carr	nauba	Approved	by: Igor Pereira	
Inside Diameter	• 6 in	Service	Static	Ma	ax. Fluid Temp.	194 °F
Design Pressure	9000 psi	Conveyed Fluid	Gas		Water Depth	8202.1 ft
Layer	Material		I.D.	Thick	O.D.	Weight
			[in]	[in]	[in]	[lbm/ft]
Flexbody	Duplex 2205		6.000	0.331	6.661	12.670
Flexbarrier	PA 12 Natural		6.661	0.394	7.449	3.859
Flexlok	Steel 100ksi YS 125ksi U	JTS	7.449	0.472	8.393	35.015
Flextape	Tape PA 11 P20 30mil		8.393	0.060	8.513	0.723
Flextensile 1	0.7% C Steel 135ksi MYS	S 150 UTS	8.513	0.276	9.064	22.339
Flextape	Polypropylene		9.064	0.012	9.087	0.134
Flextape	High Strength Glass Fila	ment	9.087	0.080	9.247	1.298
Flextape	Polypropylene		9.247	0.012	9.270	0.136
Flextensile 2	0.7% C Steel 135ksi MYS	S 150 UTS	9.270	0.276	9.821	24.233
Flextape	Polypropylene		9.821	0.012	9.845	0.145
Flextape	High Strength Glass Fila	ment	9.845	0.080	10.005	1.406
Flextape	Polypropylene		10.005	0.012	10.028	0.147
Flextape	Tape Polyester Fabric		10.028	0.016	10.060	0.146
Flexshield	PE100 Grade GP100BK		10.060	0.276	10.611	3.791
Flexinsul	PT7000 Insulation (Reinf	orcing Layer)	10.611	0.138	10.887	1.376
Flextape	Tape Polyester Fabric	,	10.887	0.016	10.919	0.159
Abrasion	PE100 Grade GP100BK		10.919	0.276	11.470	4.106
Layer	Raw Material	Dimensions	Mfg Pitch	Wires	Angle	Filled
Flexbody	55.0mm x 1.6mm	2.165in x 0.063in			87.9	85.48%
Flexlok (Profile H)	27.3mm x 12.0mm	1.076in x 0.472in			88.2	91.96%
Flextensile 1	12.0mm x 7.0mm	0.472in x 0.276in	42.51in	46	33.0	96.90%
Flextensile 2	12.0mm x 7.0mm	0.472in x 0.276in	49.91in	51	31.0	96.52%
Flexinsul	50.8mm x 3.5mm	2.000in x 0.138in				90.60%
Outside Diameter		11.470 in	Volume (a	it OD)		0.715 ft³/ft
Storage Radius, SI	BR	6.21 ft	Volume (a	it ID)		0.216 ft ³ /ft
Operating Radius,	OBR (Dry Bore)1	15.09 ft	Wt, Empty	/ in Air		111.68 lb/fl
Operating Radius,	OBR (Flooded Bore) ²	7.87 ft	S/W filled	in Air		125.53 lb/fl
Pipe bending stiffn	ness at 23 °C, El	97791 lbf ft²	Air filled i	n S/W		65.95 lb/fl
Spooling Tension		2538 lbf	S/W filled	in S/W		79.79 lb/fl
Therm. Cond./Leng	gth, C/L	3.04 BTU/hrft°F	Burst Pres	ssure		17514 ps
Effective Thermal	Cond, ke	0.31 BTU/hrft°F	Burst/Des	ign		1.95
OHTC, Uo {based o	on ID}	1.94 BTU/hrft²°F	Collapse	Pressure (W	et Flexiok)	4398 ps
SWDR with bore er	mpty	5.749 lbf/ft in	Collapse	Depth (Wet	Flexlok)	9893 ff
SWDR with bore fil		6.957 lbf/ft in	Collapse/	 Design (Wet	Flexlok)	1.21
Pipe torsional stiff	•		Failure Te		•	1329318 lbf
Limp direction		4077 Kip ft ²				
Stiff direction		8612 Kip ft²				
Axial Stiffness		126653 Kip				

<u>Notes</u>

¹OBR (MBR) increased to comply with internal carcass design criteria (0.85) for bent collapse failure mode.

²OBR (MBR) for pipe flooded condition in order to comply with Petrobras tensile armour design criteria (0.67) for tensile buckling failure mode.

Pipe Data Sheet revised to adjust correct Spooling Tension value. No structural/layer change.

DOCUMENT ID: WS_D_000000036253/012

APPROVED BY/APPROVED ON:

Baker Hughes Proprietary

STATIC 152.4 mm 62.053 MPa 2500 m 6 Inch Gas Injection Flowline Structure Number: WSI 152.2553-RD-4042-6 R1 Customer Pipe Data Sheet: 152.2553-RD-4042-6 R1

Prepared by: Gustavo Dionisio Checked by: Victor Carnauba Approved by: Igor Pereira

Inside Diameter	152.40 mm	6.00 in Conveyed Fluid	Gas
Outside Diameter	291.34 mm	11.470 in Burst/Design Ratio	1.95
Water Depth	2500 m	8202.1 ft Collapse/Design	1.21
Fluid Temperature	90 °C	194 °F based on Wet Flexlok	

Design Pressure	62.05 MPa	9000 psi
Factory Test Pressure (1.3 * Design Pressure)	80.67 MPa	11700 psi
Burst Pressure	120.75 MPa	17514 psi
Collapse Pressure (Wet Flexlok)	30.32 MPa	4398 psi
Collapse Depth (Wet Flexlok)	3015 m	9893 ft
Failure Tension	5913 kN	1329318 lbf
Storage Bend Radius	1.89 m	6.21 ft
Operating Radius, OBR (Dry Bore) ¹	4.60 m	15.09 ft
Operating Radius, OBR (Flooded Bore) ²	2.40 m	7.87 ft
Pipe bending stiffness at 23 °C	40.412 kNm²	97791 lbf ft²
Volume (at OD)	66.381 l/m	0.715 ft³/ft
Volume (at ID)	20.095 l/m	0.216 ft³/ft
Weight Empty in Air	166.20 kg/m	111.68 lb/ft
S/W filled in Air	186.81 kg/m	125.53 lb/ft
Air filled in S/W	98.14 kg/m	65.95 lb/ft
S/W filled in S/W	118.74 kg/m	79.79 lb/ft
Therm. Cond./Length, C/L	5.26 w/m°C	3.04 BTU/hrft°F
OHTC, Uo {based on ID}	10.99 w/m ² °C	1.94 BTU/hrft²°F
Pipe torsional stiffness (GJ) at 23 °C:		
Limp direction	1685 kNm²	4077 Kip ft²
Stiff direction	3559 kNm²	8612 Kip ft²
Axial Stiffness	563380 kN	126653 Kip

Notes

¹OBR (MBR) increased to comply with internal carcass design criteria (0.85) for bent collapse failure mode.

²OBR (MBR) for pipe flooded condition in order to comply with Petrobras tensile armour design criteria (0.67) for tens buckling failure mode.

Pipe Data Sheet revised to adjust correct Spooling Tension value. No structural/layer change.

CONFIDENCIAL - NÃO DIVULGAR SEM AUTORIZAÇÃO

51690-BRA-MOP-ENG-004 Rev. 3

Página: 46 / 67

Estrutura 152.52656

INTERNAL DIAMETER 6.00" SOUR SERVICE

DESIGN PRESSURE 9645 psi 664 bar

DESIGN TEMPERATURE 90 °C

FACTORY TEST PRESSURE 12539 psi 864 bar

FTP/DP 1.30

N°	LAYER DESCRIPTION	UTS	MYS	Mass	I.D.	Th.	SDP
		(MPa)	(MPa)	(Kg/m)	(mm)	(mm)	(MPa)
1	INTERLOCKED CARCASS	660	-	22.08	152.40	9.00	
	72.0 x 1.8 x 9.0 DUPLEX (FE 04)						
2	PRESSURE SHEATH RILSAN P40TL TP01			4.84	170.40	7.70	
3	ZETA WIRE 8.0 FI 09	850	750	32.31	185.80	8.00	468
4	SPIRAL FI 09	850	750	25.86	201.80	6.00	436
	2 Flat wires: 14 x 6						
5	FABRIC TAPE			0.20	213.80	0.80	
6	FIRST ARMOUR LAY. FI42	1200	1080	29.48	215.40	6.00	367
	39 Flat wires: 14 x 6 at 35 deg.						
7	FABRIC TAPE			0.21	227.40	0.80	
8	SECOND ARMOUR LAY FI42	1200	1080	30.99	229.00	6.00	326
	41 Flat wires: 14 x 6 at -35 deg.						
9	HIGH STRENGTH TAPE			1.11	241.00	2.47	
	TECH/TECH						
10	EXTERNAL SHEATH TP-FLEX TP26 Yellow			4.88	245.94	6.50	

THEORETICAL CHARACTERISTICS	IMPERIAL	METRIC
DIAMETER inside	6.00 in	152.40 mm
DIAMETER outside	10.19 in	258.94 mm
VOLUME internal	0.215 cf/ft	19.99 l/m
VOLUME external	0.567 cf/ft	52.66 l/m
WEIGHT in air empty	102.13 lbf/ft	151.98 kgf/m
WEIGHT in air full of seawater	115.90 lbf/ft	9 '
WEIGHT in seawater empty	65.86 lbf/ft	98.00 kgf/m
WEIGHT in seawater full of seawater	79.63 lbf/ft	118.50 kgf/m
SPECIFIC GRAVITY in sea water empty	2.82	2.82
PRESSURE Nominal bursting	15910 psi	1097 bars
HYDROSTATIC collapse pressure lay 2	4699 psi	324 bars
DAMAGING PULL in straight line	1185587 lbf	5273.76 kN
MINIMUM BENDING RADIUS for STORAGE	5.52 ft	1.68 m
BENDING STIFFNESS at 20°C	50290 lbf.ft2	20.78 kN.m2
RELATIVE ELONGATION at design pressure	0.164 %	0.164 %
RELATIVE ELONGATION for 100 kN	0.015812 %	0.015812 %
THERMAL EXCHANGE COEFFICIENT at 20°C	3.99 Btu/hftF	6.91 W/m.K

CONFIDENTIAL - DO NOT DISCLOSE WITHOUT AUTHORIZATION

53068-BRA-MOP-ENG-001

Revision: 3 Page: 26 / 170

6.1.3 Riser bottom section - Structure 152.53755

INTERNAL DIAMETER
DESIGN PRESSURE
DESIGN TEMPERATURE
FACTORY TEST PRESSURE
13500 psi
90° C
FACTORY TEST PRESSURE
13500 psi
932 bar

N°	LAYER DESCRIPTION	UTS	MYS	Mass	I.D. (mm)	Th.	SDP
		(MPa)	(MPa)	(Kg/m)		(mm)	(MPa)
1	INTERLOCKED CARCASS	660	-	18.27	152.40	7.50	
	60.0 x 1.5 x 7.5 DUPLEX 2205 (FE 04)						
2	PRESSURE SHEATH RILSAN P40TL TP01			5.80	167.40	9.30	
3	ZETA WIRE 10.0 FI 09	850	700	41.21	186.00	10.00	372
4	SPIRAL FI 09	850	750	26.38	206.00	6.00	344
	2 Flat wires: 14 x 6						
5	ANTI-WEAR TAPE 75.0 x 1.5 (BF 01)			0.98	218.00	1.50	
6	FIRST ARMOUR LAY. FI42	1200	1080	30.17	221.00	6.00	357
	39 Flat wires: 14 x 6 at 37 deg.						
7	ANTI-WEAR TAPE 75.0 x 1.5 (BF 01)			1.05	233.00	1.50	
8	SECOND ARMOUR LAY FI42	1200	1080	31.71	236.00	6.00	303
	41 Flat wires: 14 x 6 at -37 deg.						
9	HIGH STRENGTH TAPE			1.80	248.00	3.27	
	TECH/TECH						
10	LEAKPROOF SHEATH HD-FLEX (TP26+TP28) Yellow			5.47	254.54	7.00	
11	INSULATION MO03			6.14	268.54	11.00	
	2 Strips: 50 x 5.5						
12	FABRIC TAPE			0.59	290.54	1.05	
13	EXTERNAL SHEATH HD-FLEX (TP26+TP28) Yellow			6.27	292.64	7.00	

THEORETICAL CHARACTERISTICS	IMPERIAL	METRIC
DIAMETER inside	6.00 in	152.40 mm
DIAMETER outside	12.07 in	306.64 mm
VOLUME internal	0.212 cf/ft	19.68 l/m
VOLUME external	0.795 cf/ft	73.85 l/m
WEIGHT in air empty	118.16 lbf/ft	175.84 kgf/m
WEIGHT in air full of seawater	131.72 lbf/ft	196.02 kgf/m
WEIGHT in seawater empty	67.30 lbf/ft	100.15 kgf/m
WEIGHT in seawater full of seawater	80.85 lbf/ft	120.32 kgf/m
SPECIFIC GRAVITY in sea water empty	2.32	2.32
PRESSURE Nominal bursting	17883 psi	1233 bars
HYDROSTATIC collapse pressure lay 2	4220 psi	291 bars
HYDROSTATIC collapse pressure lay 10	8455 psi	583 bars
DAMAGING PULL in straight line	1171534 lbf	5211.24 kN
MINIMUM BENDING RADIUS for STORAGE	6.53 ft	1.99 m
BENDING STIFFNESS at 20°C	132790 lbf.ft2	54.88 kN.m2
RELATIVE ELONGATION at design pressure	0.190 %	0.190 %
RELATIVE ELONGATION for 100 kN	0.017855 %	0.017855 %
THERMAL EXCHANGE COEFFICIENT at 20°C	1.92 Btu/hftF	3.33 W/m.K

	-	DEL ATÓDIO TÉCNICO	DI 2400 00 4500 040	D4N 004	REV.:
147-0	CLIENTE:	RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G- /ATP-TUPI	_	28 de 50
BR	TÍTULO:			4	28 de 50 D-BDESC/EDF
PETROBRAS		ANÁLISE DE ESFORÇOS	ÁS DO MSIAG-02 À P-66 – S EM EQUIP. SUB. (MCV)		-
		ANEX	(O 2		
			(O 2		

	R	ELATÓRIO TÉCNICO	RL-3A00.00-1500-94G	-R1N-001	REV.: 0
₿R	CLIENTE:		ATP-TUPI	_	31 de 50
PETROBRAS	TÍTULO:	DUTO DE INJEÇÃO DE G	ÁS DO MSIAG-02 À P-66 – S EM EQUIP. SUB. (MCV)	SUB/ES/ED	-BDESC/EDF
PETROBRAS		ANALISE DE ESFORÇOS	S EM EQUIP. SUB. (MCV)		
		ANEX	(O 3		

DUTO DE INJEÇÃO DE GÁS DO MSIAG-02 À P-66 - ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV) ANEXO 4		RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	R1N-001 REV.: 0
DUTO DE INJEÇÃO DE GÁS DO MSIAG-02 À P-66 — ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV) - SUB/ES/ED-BDESC/EDF - SUB/ES/ED-BDESC/EDF - SUB/ES/ED-BDESC/EDF -	BR	CLIENTE: UN-BS/		
		DUTO DE INJEÇÃO DE GA	ÁS DO MSIAG-02 À P-66 -	
ANEXO 4	PETROBRAS	ANALISE DE ESFORÇOS	S EM EQUIP. SUB. (MCV)	-
ANEXO 4				
		ANEX	(O 4	
l l				

ÍNDICE DE REVISÕES REV. **DESCRIÇÃO E/OU FOLHAS ATINGIDAS** ORIGINAL ATUALIZAÇÃO DE DADOS Α ADAPTAÇÃO À NOVA MÁSCARA E ACREÇÃO DE DADOS RETIFICAÇÃO DE DADOS С ADAPTAÇÃO À NOVA MÁSCARA D

	REV. 0	REV. A	REV. B	REV. C	REV. D	REV. E	REV. F	REV. G	REV. H
DATA	09/03/2016	18/05/2016	09/01/2017	30/03/2017	16/08/2019				
PROJETO	ESSUB/ENGES	ESSUB/ENGES	SUB/ES/EECE	SUB/ES/EECE	SUB/ES/EECE				
EXECUÇÃO	Felipe Stamile	Felipe Stamile	Felipe Stamile	Felipe Stamile	Felipe Stamile				
VERIFICAÇÃO	Felipe Stamile	Felipe Stamile	Felipe Stamile	Felipe Stamile	Felipe Stamile				
APROVAÇÃO	Felipe Stamile	Felipe Stamile	Felipe Stamile	Felipe Stamile	Felipe Stamile				
AC INICODMAÇÕES DES	TE DOCUMENTO CÂ	O DDODDIEDADE D	A DETROPRAC CEN	DO BROIRIDA A LITI	IZAÇÃO FORA DA C	LIA FINIALIDADE			

ORMULÁRIO PERTENCENTE A PETROBRAS N-0381 REV. L

	FOLHA DE DA	DADOS	Nº FD-3A00.	FD-3A00.00-1514-276-PEK-001	5-PEK-(01	REV.	٥
BR	TÍTULO:		_			NP-1		
PETROBRAS	Interlig	Interligação dos manifolds MSIAG FMC	lds MSIAG FMC			SUB/ES/EECE	l H	
		DETAI	HES DA OPERAÇÃO	-				
OPERAÇÃO OPSUB		Interligação	Interligação dos manifolds MSIAG FMC					
OPERAÇÃO EQSB		Inte	Interligação dos MCVs					
POÇO OU EQUIPAMENTO	MSIAGS FMC		NAVIO PREVISTO (PLSV)		,			
LOCAÇÃO	MSIAGS FMC		DATA DE INÍCIO DAS OPERAÇÕES					
LÂMINA D'ÁGUA			TAG PRINCIPAL					
FUNÇÕES DAS LINHAS	Injeção de Água, Injeção de Gás e UEH		FORNECEDOR DOS EQUIPAMENTOS		TechnipFMC	MC		
PLATAFORMA (UEP) / ATIVO			FABRICANTE EPCI? (Sim/Não)		Não			
	CONTATOS (nome / chave)		DATAS					
COORDENADOR IPSUB			DATA DE SOLICITAÇÃO		15/08/2019)19		
ENGENHARIA BÁSICA ISBM	GEMDI		DATA DE RESPOSTA		16/08/2019	119		
COMPRADOR	SUB/ES/EECE/EES		HÁ PENDÊNCIAS? (Sim/Não)		Não			
	DADOS PARA ANÁLI	SE DE CARGAS DOS MCVs -	-ASE DE INSTALAÇÃO					
C	(() VIO	() () () () () () () () () ()			INFORMAÇÃO	0	
		COTA (mim)	DESCRIÇÃO	MCV	MCVEIA MCVEIG	3 EHDM	MCVI	UTM
		α	Ângulo do gooseneck	.09	.09	45°	°09	45°
		*A	Distância vertical do flange do MCV ao solo marinho	4602	1498	3005	3810	3005
		В	Distância vertical do olhal ao flange	1005	1005	1311	502	1311
		C	Distância horizontal do olhal ao flange	1786	1786	1324	907	1324
		D	Distância vertical do flange ao centro de gravidade	815	5 823	-352	681	-319
		3	Distância horizontal do flange ao centro de gravidade	1879	9 1893	1388	864	1380
	A A	F	Distância vertical do flange à base do MCV	2655	5 2656	1537	2037	1537
2. Sa		9	Distância horizontal do flange ao centro do hub do MCV	cv 2163	3 2163	1700	839	1700
		Н	Posição do centro de gravidade em relação ao Eixo Y	16	17	5	0	0
		Peso Submerso	Peso do MCV submerso [kgf]	11123	23 11035	5 2003	5043	1769
	-	Estaiamento	Típico (T), Atípico (A) ou Não Definido (ND)	L	-	⊢	-	-
Ohservarões:							-	

Observações:

* Na tabela acima, as distâncias verticais dos flanges ao solo são calculadas com base nas dimensões dos equipamentos, obtidos nos manuais de seus fabricantes, e em medições reais feitas pelas embarcações instaladoras das alturas do Alojador de Alta ou dos hubs da BAP em relação ao solo. Por se tratarem de valores empíricos, estes estão

sujeitos a erros de leitura. Assim, deve ser considerada uma margem de erro de 500mm para mais ou para menos nos valores indicados nos campos. A .

* Assumir que a capacidade de carga dos olhais dos MCVs é sempre igual ou superior a aquela das manilhas ou das ferramentas de instalação que serão utilizadas.

* Em casos de divergência de valores entre fontes de informações distintas, deve-se considerar aqueles consolidados na Folha de Dados como sendo os corretos.

				DA	DOS PARA ELABORAÇÃO DO MEMORIA	AL DESCRITIVO		
			Informa	ções solicitadas pela ISBM		Informações rei	tornadas à ISBM pela El	:CE
ltem	Sub- item	Equipamentos	Sub- Equipamentos	Informações necessárias	Descrição	Informação solicitada	Disponibilidade em Aplicativo Corporativo	Quitação EECE
ŏ *	tags inf	formados são aqueles planej	jados no moment	to do preenchimento da planilha e	e estão sujeitos a mudança antes da inst	alação		
1	1.01	Manifold (Estrutura)	N.A	NP	NP do Manifold	P7000048053	MA-3000.00-1514-276- FBG-002	SIM
1	1.02	Manifold (Estrutura)	N.A	Desenho	Número do desenho do Manifold	DU700163669	N.A	SIM
1	1.03	Manifold (Estrutura)	N.A	Diagrama hidráulico	NP ou número do desenho do diagrama hidráulico do Manifold	DA700142633	Sindotec	SIM
1	1.04	Manifold (Estrutura)	N.A	Dimensões	Dimensões principais do Manifold	15463mm x 10140mm x 3825mm	Sindotec	SIM
1	1.05	Manifold (Estrutura)	N.A	Especificação dos Flanges	Especificação dos flanges do Manifold (em caso de Manifold DA)	N.A	N.A	SIM
1	1.06	Manifold (Estrutura)	N.A	Interface elétrica	Especificação da interface elétrica entre o cabo elétrico e o equipamento	P7000048062	Sindotec	SIM
1	1.07	Manifold (Estrutura)	Capa de Proteção - Hubs	NP	NP da Capa de Proteção dos Hubs	P7000048075 (MCVE) P7000048074 (MCVI)	Sindotec	SIM
1	1.08	Manifold (Estrutura)	Capa de Proteção · Hubs	Desenho	Número do desenho da Capa de Proteção dos Hubs	DU700157874 (MCVE) DU700153208 (MCVI)	Sindotec	SIM
н	1.09	Manifold (Estrutura)	Capa de Proteção - Hubs	Peso (kgf)	Dimensões principais das Capas de Teste dos Hubs da BAP	129 Kgf (MCVE) 64 Kgf (MCVI)	Sindotec	SIM
Н	1.10	Manifold (Estrutura)	Capa de Proteção - Hubs	Dimensões	Pesos das Capas de Teste dos Hubs da BAP no ar	638mm x 503mm x 652mm (MCVE) 468mm x 333mm x 639mm (MCVI)	Sindotec	SIM
7	2.01	MCVE de Injeção de Água	N.A	NP	NP do MCVE de interligação da linha de IA à Plataforma	P7000048061	Sindotec	SIM
7	2.02	MCVE de Injeção de Água	N.A	Desenho	Número do desenho do MCVE IA	DU700149583	Sindotec	SIM
7	2.03	MCVE de Injeção de Água	N.A	Peso (kgf)	Peso do MCVE IA no ar	12786 Kgf	Sindotec	SIM
7	2.04	MCVE de Injeção de Água	N.A	Modelo da Manilha	Modelo da manilha do MCVE IA ou NP da ferramenta e o modelo de sua manilha	Crosby G-2160 - 500 Tf	Sindotec	SIM
7	2.05	MCVE de Injeção de Água	N.A	Tolerância de assentamento vertical	Tolerância vertical de assentamento do MCVE IA	°9	Sindotec	SIM
7	2.06	MCVE de Injeção de Água	N.A	Tolerância de assentamento horizontal	Tolerância horizontal de assentamento do MCVE IA	30°	Sindotec	SIM
7	2.07	MCVE de Injeção de Água	N.A	Válvula de bloqueio	Informação se o MCVE IA é dotado de válvula de bloqueio	Possui	Sindotec	SIM
7	2.08	MCVE de Injeção de Água	N.A	Especificação do Flange	Especificação do flange em contato com a linha e o modelo do anel de vedação	9" - API 17SV - 10K Psi - Anel BX-157	Sindotec	SIM
7	2.09	MCVE de Injeção de Água	N.A	Diagrama hidráulico	NP ou número do desenho do diagrama hidráulico do MCVE IA	DA700162616	Sindotec	SIM
7	2.10	MCVE de Injeção de Água	N.A	Carga máxima no Braço do MCV	Indicação do carregamento máximo que o gooseneck do MCVE IA pode suportar	500 Tf	Sindotec	SIM
7	2.11	MCVE de Injeção de Água	N.A	Swivel do Flange	Informação se o flange do MCVE IA (interface com a linha flexível) possui swivel	Possui	Sindotec	SIM
7	2.12	MCVE de Injeção de Água	N.A	Ângulo do Goose Neck	Informação da angulação que o goose- neck do MCVE IA faz com a vertical	°09	Sindotec	SIM
2	2.13	MCVE de Injeção de Água	N.A	Revestimento do Flange	Informação do material de revestimento do flange do MCVE IA	Inconel 625	Sindotec	SIM
2	2.14	MCVE de Injeção de Água	SKID TRANSP	NP	NP do Skid de Transporte do MCVE IA	P7000048094	Sindotec	SIM
7	2.15	MCVE de Injeção de Água	SKID TRANSP	Desenho	Número do desenho do Skid de Transporte do MCVE IA	DU700164747	Sindotec	SIM
7	2.16	MCVE de Injeção de Água	SKID TRANSP	Peso (kgf)	Peso no ar do Skid de Transporte do MCVE IA	2593 Kgf	Sindotec	SIM
7	2.17	MCVE de Injeção de Água	SKID TRANSP	SWL dos olhais de içamento	SWL dos olhais de içamento do Skid de Transporte do MCVE IA	3,875 Tf	Sindotec	SIM
7	2.18	MCVE de Injeção de Água	SKID TRANSP	Dimensões	Dimensões principais do Skid de Transporte do MCVE IA	3759mm x 2515mm x 3573mm	Sindotec	SIM

1.00					AQ	DOS PARA ELABORAÇÃO DO MEMORIAL	DESCRITIVO		
Particular Par		-		Informa	ções solicitadas pela ISBM		Intormações rei	tornadas à ISBM pela El	ECE
2.21 MONT de bigledo de Água la LASA CHATALA Processo de Nacional De La Company de La	Item		Equipamentos	Sub- Equipamentos	Informações necessárias	Descrição	Informação solicitada	Disponibilidade em Aplicativo Corporativo	Quitação EECE
2.23 MONCE de hajegio de Agua a NASTOR ETSTE No de la ses de l'ance de NOCHALA PYRODOS SERVICE DE NOCHALA LA NOCHA DE NOCHALA LA NOCHA DE NO	* Os	tags info	ormados são aqueles planeja	ados no momen	to do preenchimento da planilha	e estão sujeitos a mudança antes da insta	ação		
2.21 MCVC de Injegle de Agua DATORITARIO Preca Nation Precapant Nation Pre	7	2.19	MCVE de Injeção de Água	BASE DE TESTE	dΝ	NP da Base de Teste do MCVE IA	P7000048079	Sindotec	SIM
	2	2.20	MCVE de Injeção de Água	BASE DE TESTE	Desenho	Número do desenho da Base de Teste do MCVE IA	DU700158077	Sindotec	SIM
2.23 MOCI de higebo de Água DASE DETESTR SPAR do cubal de éponento WILCONDITION DE ÉPONENTO STATION DE ÉPONENTO STATION DE SANTON	2	2.21	MCVE de Injeção de Água	BASE DE TESTE	Peso (kgf)	Peso no ar da Base de Teste do MCVE IA	1976 Kgf	Sindotec	SIM
2.23 MACK de higeção de Gás IA.A Demendie periodo de Mack de Minima de Computo MACK de higeção de Gás 2.27 mm x 26/6 mm x 26/	2	2.22	MCVE de Injeção de Água	BASE DE TESTE	SWL dos olhais de içamento	SWL dos olhais de içamento da Base de Teste do MCVE IA	500 Kgf	Sindotec	SIM
2.24 MACK de binjeção de Gás N.A. Attura misma de conjunto Mar. Vinturação de bina de los de conjunto Mar. Vinturação de bina de los de conjunto Mar. Vinturação de bina de los de conjunto Mar. Vinturação de bina de conjunto Mar. Vinturação de los de conjunto Mar. Vinturação de los de conjunto Mar. Vinturação de conjunto M	7	2.23	MCVE de Injeção de Água	BASE DE TESTE	Dimensões	Dimensões principais da Base de Teste do MCVE	3277mm x 2654mm x 2227mm	Sindotec	SIM
3.10 MOCTE de Injeção de Gais N.A. Proposito de NACE de Injeção de Gais N.A. Tobalendo de Analysis Complex de VINA Complex de VINA Complex de VINA Complex de VINA Sindores 3.26 MOCTE de Injeção de Gais N.A. Tobalendo de Gais N.A. Tobalendo de Cais (A) N.A. Expectigação	7	2.24	MCVE de Injeção de Água	N.A	Altura máxima do conjunto MCV assentado sobre a base de testes	Informação da altura máxima do conjunto MCVE IA/Base de Teste	4266mm	Sindotec	SIM
3.32 MOCE de Injeção de Gás NA A Poecenho Manifus Proceso MOCE de Injeção de Gás NA A Proceso Manifus Proceso MOCE de Injeção de Gás NA A Proceso Manifus Proceso MOCE de Injeção de Gás NA A Proceder da Manifus Proceso de Caraby C2.160 - 500 TF Sindorec 3.06 MOCE de Injeção de Gás NA A Toberáncia de assentamento vortez da composição su manifus Toberáncia de assentamento portez de a manifus de la composição de Gás NA A Toberáncia de assentamento vortez de notacida de assentamento portez de a manifus de la composição de Gás NA A Toberándo de assentamento vortez de notacida de assentamento portez de la composição de Gás NA A Toberándo de assentamento portez de notacida de assentamento portez de la composição de Gás NA A Toberándo de assentamento portez de notacida de assentamento portez de la composição de Gás NA A Toberándo de assentamento portez de notacida de assentamento portez de la composição de Gás NA A Toberándo de Assentamento portez de notacida de processa de composito de la composito de composito de processa de la composito de Gás NA A Capacidado de Gás </th <th>m</th> <th>3.01</th> <th>MCVE de Injeção de Gás</th> <th>N.A</th> <th>NP</th> <th>NP do MCVE de interligação da linha de IA à Plataforma</th> <th>P7000051394</th> <th>Sindotec</th> <th>SIM</th>	m	3.01	MCVE de Injeção de Gás	N.A	NP	NP do MCVE de interligação da linha de IA à Plataforma	P7000051394	Sindotec	SIM
3.04 MCVE de Injeçto de Gist N.A. Phezo (light) Prezo (light) of the name of the control of the summation of the control of	m	3.02	MCVE de Injeção de Gás	N.A	Desenho	Número do desenho do MCVE IG	DU700164510	Sindotec	SIM
3.04 MCVE de Injeção de Gás N.A Tolechado de Abanilha Vincidado de Amanilha de Mondio de Gás N.A Tolechado de Gás de Cás de Injeção de Gás de Cás de La Carde de Amanilha de Mondio de Cás de Injeção de Gás de Amanilha de Doqualo de Parage de Mondio de Amanilha de Mondio de Amanilha de Mondio de Amanilha de Amanilha de Doqualo de Amanilha de Doqualo de Amanilha de Mondio de Amanilha de Amanilha de Amanilha de Amanilha de Mondio de Amanilha de Amanilha de Amanilha de Cás de Injeção de Gás N.A.A. Analisa de Cás de Injeção de Gás S. N.A.A. Analisa de Cás de Injeção de Gás S. N.A.A. Analisa de Cás de Injeção de Gás S. N.A.A. Analisa de Cás de Injeção de Gás S. N.A.A. Analisa de Cás de Injeção de Gás S. N.A.A. Analisa de Gás de Injeção de Gás S. N.D.A.A.A.A.A. Analisa de Gás de Injeção de Gás S. N.D.A.A.A.A.A.A. Analisa de Gás de Injeção de Gás S. N.D.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	m	3.03	MCVE de Injeção de Gás	N.A	Peso (kgf)	Peso do MCVE IG no ar	12684 Kgf	Sindotec	SIM
3.05 MACY de Injeção de Gás NA.A Toterância de assentamento bentical de la consciola de la compario de la consciola de la cons	က	3.04	MCVE de Injeção de Gás	N.A	Modelo da Manilha	Modelo da manilha do MCVE IG ou NP da ferramenta e o modelo de sua manilha	Crosby G-2160 - 500 Tf	Sindotec	SIM
3.06 MCVC de Injegão de Gais N.A. Toterdancia de assentamento horizontal Toterdancia de assentamento horizontal Toterdancia de assentamento horizontal Toterdancia de assentamento horizontal Toterdancia de severación April de logo de Gais N.A. Valvada de bloqueto Toterdancia de severación Possual Sindotec Sindotec 3.08 MCVCE de Injegão de Gais N.A. Capacidação do Flange Especificação do Flange Especificação do Flange Especificação do Flange Specificação do Flange Specificação do Flange Specificação do Flange Specificação do Flange N.A. Ante Bara Assentanto no Bração do MAC N.A. Ante Bara Assentanto no Bração do MAC N.A. Ante Bara Assentanto no Bração do MAC N.A. Ante Bara Assentanto no Bração do MAC Specificação do Flange N.A. Ante Bara Assentanto no Bara Assentanto do Flange N.A. Ante Bara Assentanto do Roba Assentanto do	m	3.05	MCVE de Injeção de Gás	N.A	Tolerância de assentamento vertical	Tolerância vertical de assentamento do MCVE	9	Sindotec	SIM
3.08 MCVC de injeção de Gás NA Vajvou de bloqueio Informação se MACM (se de injeção de Gás) NAA Especificação do Figuaçe Especificação do Figuaçe Especificação de Gás INAA Especificação do Figuaçe Especificação do Figuaçe Especificação do Figuaçe Especificação do Figuaçe Informação se montaco de senho do Revergão Anne BA-15G Sindotec Sindotec 3.10 MCVC de injeção de Gás NAA Carga máxima no Barço de MAC Informação de Carga máxima que o Revergão Sindotec Sindotec 3.11 MCVC de injeção de Gás NAA Angula do Goose Neck Informação de Mach o Revergimento do Revergão Informação de Mach o Revergimento do Mach o Revergimento do Revergão Informação de Revergimento do Revergão Informação d	m	3.06	MCVE de Injeção de Gás		Tolerância de assentamento horizontal	Tolerância horizontal de assentamento do MCVE 1G	30°	Sindotec	SIM
3.08 MCVE de Injeção de Gás N.A Especificação do Flange Cisposificação do Flange Cisposificação do Flange Cisposificação do Garangaman hidráulico N.A Diagrama hidráulico N.A Diagrama hidráulico N.A Diagrama hidráulico N.A Carga máxima no Barço do MCV Inflicação do Garangaman Anol BX-15.55 Sindotec Sindotec 3.10 MCVE de Injeção de Gás N.A Savivel do Flange Inflicação do Carga máxima no Barço do MCV Inflicação do Carga máxima no Barço do Carga máxima máxi	m	3.07	MCVE de Injeção de Gás	N.A	Válvula de bloqueio	Informação se o MCVE IG é dotado de válvula de bloqueio	Possui	Sindotec	SIM
3.10 MCVE de Injeção de Gás N.A Daggaman hidráulico NP Diagraman hidr	m	3.08	MCVE de Injeção de Gás	N.A	Especificação do Flange	Especificação do flange em contato com a linha e o modelo do anel de vedação	7 1/16" API 17SV - 10K Psi - Anel BX-156	Sindotec	SIM
3.10 MCVE de Injeção de Gaás NAA Carga máxima no Baqco do MCV Influentação de MACVE (Es pode surpentento máximo que o BACVE (Es pode surpentento do Plange) Influentação de MACVE (Es pode surpentento do Plange) Influentação de Gaás NAA Angulo do Goose Neck Influentação de Logose neck do MACVE (Es pode surpentento do Plange) Influentação de Logose neck do MACVE (Es pode surpentento do Plange) Influentação de Logose neck do MACVE (Es pode surpentento do Plange) Influentação de Logose neck do MACVE (Es pode surpentento do Plange) Influentação de Caás SKID TRANSP NAP NAP Desembo NAP Desembo NAP DESEMBOR (Es pode Gaás) NAP DESEMBOR (Es pode Gaás) <th< td=""><th>m</th><td>3.09</td><td>MCVE de Injeção de Gás</td><td>N.A</td><td>Diagrama hidráulico</td><td>NP ou número do desenho do diagrama hidráulico do MCVE IG</td><td>DA700162616</td><td>Sindotec</td><td>SIM</td></th<>	m	3.09	MCVE de Injeção de Gás	N.A	Diagrama hidráulico	NP ou número do desenho do diagrama hidráulico do MCVE IG	DA700162616	Sindotec	SIM
3.12 MCVE de Injeção de Gás NAA Swivel do Flange Informação de no directe coma alima fletivele possul swivel Possul Sindotec 3.12 MCVE de Injeção de Gás NAA Angulo do Goose Neck Informação da angulação que o goose- neck do MOVE IG 60° Sindotec Sindotec 3.13 MCVE de Injeção de Gás SKID TRANS NAA Revestimento do Flange Informação da material de revestimento do MOVE IG P7000048094 Sindotec 3.14 MCVE de Injeção de Gás SKID TRANS NA Pesenho Número do desemho do Sid de Transporte do MOVE IG P7000048094 Sindotec 3.15 MCVE de Injeção de Gás SKID TRANSP Preson ho na do Skid de Transporte do MOVE IG Sindotec Sindotec 3.16 MCVE de Injeção de Gás SKID TRANSP SWL dos olhais de içamento Número do desenho MOVE IG P7000048079 Sindotec 3.18 MCVE de Injeção de Gás SKID TRANSP SWL dos olhais de içamento NVE GA FISTE NVE GA BER TESTE NVE GA BER TESTE NVE GA BER TESTE PRESO (kgf) PRESO MOVE IG P7000048079 Sindotec 3.22 MCVE de Injeção de Gás <th>က</th> <td>3.10</td> <td>MCVE de Injeção de Gás</td> <td>N.A</td> <td></td> <td>Indicação do carregamento máximo que o gooseneck do MCVE IG pode suportar</td> <td>500 Tf</td> <td>Sindotec</td> <td>SIM</td>	က	3.10	MCVE de Injeção de Gás	N.A		Indicação do carregamento máximo que o gooseneck do MCVE IG pode suportar	500 Tf	Sindotec	SIM
3.12 MCVE de Injeção de Gás N.A Ângulo do Goose Neck Informação da mujeção de Gás Informação da mujeção de Gás Informação da mujeção de Gás Informação da mujeção de material de revestimento do la material de revestimento de la material de la materi	m	3.11	MCVE de Injeção de Gás	N.A	Swivel do Flange	Informação se o flange do MCVE IG (interface com a linha flexível) possui swivel	Possui	Sindotec	SIM
3.13 MCVE de Injeção de Gás N.A Revestimento do Flange do material de revestimento do Flange do MCVE IG Incone I 625 Sindotec 3.14 MCVE de Injeção de Gás SKID TRANSP NP do Skid de Transporte do MCVE IG PP7000048994 Sindotec 3.15 MCVE de Injeção de Gás SKID TRANSP Desenho Nûmero do desembra do Skid de Transporte do MCVE IG DU700164747 Sindotec 3.16 MCVE de Injeção de Gás SKID TRANSP SWL dos olhais de Içamento SWL dos Olhais de Içamento do Skid de Transporte do MCVE IG S1593 Kgf Sindotec 3.17 MCVE de Injeção de Gás SKID TRANSP SWL dos olhais de Içamento SWL dos Olhais de Içamento do Skid de Transporte do MCVE IG 3759mm x 2515mm x 3573mm Sindotec 3.18 MCVE de Injeção de Gás BASE DE TESTE NP Dimensões principals do Skid de Transporte do MCVE IG PP7000048979 Sindotec 3.22 MCVE de Injeção de Gás BASE DE TESTE NP Pesco no ar da Base de Teste do MCVE IG PP7000048979 Sindotec 3.22 MCVE de Injeção de Gás BASE DE TESTE SWL dos olhais de içamento PP600 MCVE IG PP7000048079 Sindotec	m	3.12	MCVE de Injeção de Gás	N.A	Ângulo do Goose Neck	Informação da angulação que o goose- neck do MCVE IG faz com a vertical	°09	Sindotec	SIM
3.14 MCVE de Injeção de Gás SKID TRANSP NP do Skid de Transporte do MCVE IG P7000048094 Sindotec 3.15 MCVE de Injeção de Gás SKID TRANSP Desembo Numero do desembo do Skid de Transporte do MCVE IG DU700164747 Sindotec 3.16 MCVE de Injeção de Gás SKID TRANSP Peso (lgf) Peso no ar do Skid de Transporte do MCVE IG Sindotec Sindotec 3.17 MCVE de Injeção de Gás SKID TRANSP Dimensões Dimensões principais do Skid de Transporte do MCVE IG 3759mm x 2515mm x 3573mm Sindotec 3.18 MCVE de Injeção de Gás BASE DE TESTE NP NP de Base de Teste do MCVE IG P7000048079 Sindotec 3.20 MCVE de Injeção de Gás BASE DE TESTE Peso (lgf) Peso no ar da Base de Teste do MCVE IG DU700158077 Sindotec 3.21 MCVE de Injeção de Gás BASE DE TESTE SVIL dos olhais de içamento Número do desembo do Base de Teste do MCVE IG 1976 kgf Sindotec 3.22 MCVE de Injeção de Gás BASE DE TESTE SVIL dos olhais de içamento da Base de Teste do MCVE IG SOO kgf Sindotec	m	3.13	MCVE de Injeção de Gás	N.A	Revestimento do Flange	Informação do material de revestimento do flange do MCVE IG	Inconel 625	Sindotec	SIM
3.15MCVE de Injeção de GásSKID TRANSPDesenhoNúmero do desenho do Skid de Transporte do MCVE IGDU700164747Sindotec3.16MCVE de Injeção de GásSKID TRANSPSWL dos olhais de içamento or skid de Transporte do MCVE IG3,875 TfSindotec3.17MCVE de Injeção de GásSKID TRANSPDimensões principals do Skid de Transporte do MCVE IG3,875 TfSindotec3.18MCVE de Injeção de GásBASE DE TESTENPNP da Base de Teste do MCVE IG\$75500048079Sindotec3.20MCVE de Injeção de GásBASE DE TESTENo de Base de Teste do MCVE IG\$7500048079Sindotec3.21MCVE de Injeção de GásBASE DE TESTEPesso No ar da Base de Teste do MCVE IG\$19750 KgfSindotec3.22MCVE de Injeção de GásBASE DE TESTESWL dos olhais de Içamento da Base de Teste do MCVE IG\$1976 KgfSindotec3.23MCVE de Injeção de GásBASE DE TESTESWL dos olhais de Içamento da Base de Teste do MCVE IG\$1977 mm x 2624mm x 2227mmSindotec	m	3.14	MCVE de Injeção de Gás	SKID TRANSP	dN	NP do Skid de Transporte do MCVE IG	P7000048094	Sindotec	SIM
3.16MCVE de Injeção de GásSKID TRANSPSSML dos olhais de içamentoSSML dos olhais de içamento do Skid de Transporte do MCVE IG2593 kgfSindotec3.17MCVE de Injeção de GásSKID TRANSPSML dos olhais de içamentoSML dos olhais de içamento do Skid de Transporte do MCVE IG3759mm x 2515mm x 3573mmSindotec3.18MCVE de Injeção de GásBASE DE TESTENP da Base de Teste do MCVE IGPPO00048079Sindotec3.20MCVE de Injeção de GásBASE DE TESTEPesso (kgf)Pesso no ar da Base de Teste do MCVE IG1976 kgfSindotec3.21MCVE de Injeção de GásBASE DE TESTEPesso (kgf)Pesso no ar da Base de Teste do MCVE IG1976 kgfSindotec3.22MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamento da Base de Teste do MCVE IG1976 kgfSindotec3.23MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamento da Base de Teste do MCVE IGSOO kgfSindotec3.24MCVE de Injeção de GásBASE DE TESTEDimensões principals da Base de Teste do MCVE IGSOO kgfSindotec	m	3.15	MCVE de Injeção de Gás	SKID TRANSP	Desenho	Número do desenho do Skid de Transporte do MCVE IG	DU700164747	Sindotec	SIM
3.17MCVE de Injeção de GásSKID TRANSPSWL dos olhais de içamentoSWL dos olhais de içamentoSWL dos olhais de içamento do Skid de Transporte do MCVE IG3.875 TfSindotec3.18MCVE de Injeção de GásSKID TRANSPDimensões principais do Skid de Transporte do MCVE IG3759mm x 2515mm x 3573mmSindotec3.19MCVE de Injeção de GásBASE DE TESTENPNP da Base de Teste do MCVE IGPP7000048079Sindotec3.20MCVE de Injeção de GásBASE DE TESTEPeso no ar da Base de Teste do MCVE IGDU700158077Sindotec3.21MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamentoSWL dos olhais de jeamentoSWL dos olhais de jeamento do MCVE IGSOO KgfSindotec3.23MCVE de Injeção de GásBASE DE TESTEDimensões principais da Base de Teste do MCVE IG3277mm x 2654mm x 2227mmSindotec	m	3.16	MCVE de Injeção de Gás	SKID TRANSP	Peso (kgf)	Peso no ar do Skid de Transporte do MCVE IG	2593 Kgf	Sindotec	SIM
3.18MCVE de Injeção de GásSKID TRANSPDimensões princípais do Skid de Transporte do MCVE IG3759mm x 2515mm x 3573mmSindotec3.19MCVE de Injeção de GásBASE DE TESTENP da Base de Teste do MCVE IGP7000048079Sindotec3.20MCVE de Injeção de GásBASE DE TESTEPeso (kgf)Peso no ar da Base de Teste do MCVE IG1976 KgfSindotec3.21MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamento da Base de Teste do MCVE IGSOO kgfSindotec3.22MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamento da Base de Teste do MCVE IG500 kgfSindotec3.23MCVE de Injeção de GásBASE DE TESTEDimensões principais da Base de Teste do MCVE IG3277mm x 2654mm x 2227mmSindotec	m	3.17	MCVE de Injeção de Gás	SKID TRANSP	SWL dos olhais de içamento	SWL dos olhais de içamento do Skid de Transporte do MCVE IG	3,875 Tf	Sindotec	SIM
3.19MCVE de Injeção de GásBASE DE TESTENP da Base de Teste do MCVE IGPro000048079Sindotec3.20MCVE de Injeção de GásBASE DE TESTEDesenhoNúmero do desenho da Base de Teste do MCVE IGDU700158077Sindotec3.21MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamento da Base de Teste do MCVE IGSON KgfSindotec3.22MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamento da Base de Teste do MCVE IG500 KgfSindotec3.23MCVE de Injeção de GásBASE DE TESTEDimensões principais da Base de Teste do MCVE IG3277mm x 2654mm x 2227mmSindotec	m	3.18	MCVE de Injeção de Gás	SKID TRANSP	Dimensões	Dimensões principais do Skid de Transporte do MCVE IG	3759mm x 2515mm x 3573mm	Sindotec	SIM
3.20MCVE de Injeção de GásBASE DE TESTEDesenhoNúmero do desenho da Base de Teste do MCVE IGDU700158077Sindotec3.21MCVE de Injeção de GásBASE DE TESTEPeso (kgf)Peso no ar da Base de Teste do MCVE IG1976 kgfSindotec3.22MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamento da Base de Teste do MCVE IG do MCVE IG500 kgfSindotec3.23MCVE de Injeção de GásBASE DE TESTEDimensões principais da Base de Teste do MCVE IG IG3277mm x 2654mm x 2227mmSindotec	m	3.19	MCVE de Injeção de Gás	BASE DE TESTE	dΝ	NP da Base de Teste do MCVE IG	P7000048079	Sindotec	SIM
3.21MCVE de Injeção de GásBASE DE TESTEPeso (kgf)Peso no ar da Base de Teste do MCVE IG do MCVE IG1976 KgfSindotec3.22MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamento da Base de Teste do MCVE IG do MCVE IG500 kgfSindotec	က	3.20	MCVE de Injeção de Gás	BASE DE TESTE	Desenho	Número do desenho da Base de Teste do MCVE IG	DU700158077	Sindotec	SIM
3.22MCVE de Injeção de GásBASE DE TESTESWL dos olhais de içamento do MCVE de Injeção de GásSML dos olhais de içamento da Base de Teste do MCVE IGSON KgfSindotec3.23MCVE de Injeção de GásBASE DE TESTEDimensões DimensõesDimensões principais da Base de Teste do MCVE IG3277mm x 2654mm x 2227mmSindotec	m	3.21	MCVE de Injeção de Gás	BASE DE TESTE	Peso (kgf)	Peso no ar da Base de Teste do MCVE IG	1976 Kgf	Sindotec	SIM
3.23 MCVE de Injeção de Gás BASE DE TESTE Dimensões principais da Base de Teste do MCVE 3277mm x 2654mm x 2227mm Sindotec Sindotec	m	3.22	MCVE de Injeção de Gás	BASE DE TESTE	SWL dos olhais de içamento	SWL dos olhais de içamento da Base de Teste do MCVE IG	500 Kgf	Sindotec	SIM
	က	3.23	MCVE de Injeção de Gás	BASE DE TESTE	Dimensões	Dimensões principais da Base de Teste do MCVE IG	3277mm x 2654mm x 2227mm	Sindotec	SIM

				Q	ADOS PARA ELABORACÃO DO MEMORIAL	DESCRITIVO		
			Informag	ções solicitadas pela ISBM		Informações ret	tornadas à ISBM pela El	ECE
Item	Sub- item	Equipamentos	Sub- Equipamentos	Informações necessárias	Descrição	Informação solicitada	Disponibilidade em Aplicativo Corporativo	Quitação EECE
*	s tags inf	ormados são aqueles planeja	ados no moment	to do preenchimento da planilha	le estão sujeitos a mudança antes da insta	lação		
m	3.24	MCVE de Injeção de Gás	N.A	Altura máxima do conjunto MCV assentado sobre a base de testes	Informação da altura máxima do conjunto MCVE IG/Base de Teste	4266mm	Sindotec	SIM
4	4.01	MTU DE Plataforma (EHDM)	N.A	NP	NP do MTU (EHDM) de interligação da linha de UEH à Plataforma	P7000048062	Sindotec	SIM
4	4.02	MTU DE Plataforma (EHDM)	N.A	Desenho	Número do desenho do EHDM	DU700152194	Sindotec	SIM
4	4.03	MTU DE Plataforma (EHDM)	N.A	Peso (kgf)	Peso do EHDM no ar	2302 Kgf	Sindotec	SIM
4	4.04	MTU DE Plataforma (EHDM)	N.A	Válvula de bloqueio	Informação se o EHDM é dotado de válvula de bloqueio	Possui	Sindotec	SIM
4	4.05	MTU DE Plataforma (EHDM)	N.A	Modelo da Manilha	Modelo da manilha do EHDM ou NP da ferramenta e o modelo de sua manilha	Crosby G-2140 - 175 Tf	Sindotec	SIM
4	4.06	MTU DE Plataforma (EHDM)	N.A	Especificação do Flange	Especificação do flange em contato com o flange da linha, se este é rotativo ou fixo e o	Rotativo - 9" API 6B - 2K Psi	Sindotec	SIM
4	4.07	MTU DE Plataforma (EHDM)	N.A	Diagrama hidráulico	NP ou número do desenho do diagrama hidráulico do EHDM	DA700148299	Sindotec	SIM
4	4.08	MTU DE Plataforma (EHDM)	N.A	Carga máxima no Braço do MCV	Indicação do carregamento máximo que o gooseneck do EHDM pode suportar	156 Tf	Sindotec	SIM
4	4.09	MTU DE Plataforma (EHDM)	N.A	Swivel do Flange	Informação se o flange do EHDM (interface com a linha flexível) possui swivel	Possui	Sindotec	SIM
4	4.10	MTU DE Plataforma (EHDM)	N.A	Ângulo do Goose Neck	Informação da angulação que o goose- neck do EHDM faz com a vertical	45°	Sindotec	SIM
4	4.11	MTU DE Plataforma (EHDM)	N.A	Conectores Hidráulicos	Informação dos modelos dos conectores hidráulicos na placa hidráulica do EHDM	Linhas hidráulicas: 3/8" x JIC-8 Injeção química: 5/8" x JIC-8	Sindotec	SIM
4	4.12	MTU DE Plataforma (EHDM)	N.A	Conectores Elétricos	Informação do modelo dos conectores elétricos na placa hidráulica do EHDM	JIC 8	Sindotec	SIM
4	4.13	MTU DE Plataforma (EHDM)	SKID TRANSP / BASE DE TESTE	dN	NP do Skid de Transporte do EHDM	P7000053720	Sindotec	SIM
4	4.14	MTU DE Plataforma (EHDM)	SKID TRANSP / BASE DE TESTE	Desenho	Número do desenho do Skid de Transporte do EHDM	DU700164179	Sindotec	SIM
4	4.15	MTU DE Plataforma (EHDM)	SKID TRANSP / BASE DE TESTE	Peso (kgf)	Peso no ar do Skid de Transporte do EHDM	1740 Kgf	Sindotec	SIM
4	4.16	MTU DE Plataforma (EHDM)	SKID TRANSP / BASE DE TESTE	SWL dos olhais de içamento	SWL dos olhais de içamento do Skid de Transporte do EHDM	1,025 Tf	Sindotec	SIM
4	4.17	MTU DE Plataforma (EHDM)	SKID TRANSP / BASE DE TESTE	Dimensões	NP do Skid de Transporte do EHDM	3454mm x 2197mm x 3483mm	Sindotec	SIM
2	5.01	MTU de Poço	N.A	NP	NP do MTU de interligação da linha de UEH aos poços	P7000048063	Sindotec	SIM
Ŋ	5.02	MTU de Poço	N.A	Desenho	NP e o número do desenho do MTU	DU700152195	Sindotec	SIM
Ŋ	5.03	MTU de Poço	N.A	Peso (kgf)	Peso do MTU no ar	2033 Kgf	Sindotec	SIM
72	5.04	MTU de Poço	N.A	Modelo da Manilha	Modelo da manilha do MTU ou NP da ferramenta e o modelo de sua manilha	Crosby G-2140 - 175 Tf	Sindotec	SIM
Ŋ	5.05	MTU de Poço	N.A	Especificação do Flange	Especificação do flange em contato com o flange da linha, se este é rotativo ou fixo e o	Rotativo - 9" API 6B - 2K Psi	Sindotec	SIM
Ŋ	5.06	MTU de Poço	N.A	Diagrama hidráulico	NP ou número do desenho do diagrama hidráulico do MTU	DA700154529	Sindotec	SIM
ī	5.07	MTU de Poço	N.A	Carga máxima no Braço do MCV	Indicação do carregamento máximo que o gooseneck do MTU pode suportar	156 Tf	Sindotec	SIM
Ŋ	5.08	MTU de Poço	N.A	Ângulo do Goose Neck	Informação da angulação que o goose- neck do MTU faz com a vertical	45°	Sindotec	SIM
2	5.09	MTU de Poço	N.A	Conectores Hidráulicos	Informação dos modelos dos conectores hidráulicos na placa hidráulica do MTU	Linhas hidráulicas: 3/8" x JIC-8 Injeção química: 5/8" x JIC-8	Sindotec	SIM
2	5.10	MTU de Poço	N.A	Conectores Elétricos	Informação do modelo dos conectores elétricos na placa hidráulica do MTU	JIC 8	Sindotec	SIM

				DA	DOS PARA ELABORAÇÃO DO MEMORIAL	DESCRITIVO		
			Informa	ções solicitadas pela ISBM		Informações ret	tornadas à ISBM pela El	ECE
Item	Sub-	Equipamentos	Sub- Equipamentos	Informações necessárias	Descrição	Informação solicitada	Disponibilidade em Aplicativo Corporativo	Quitação EECE
* Os	tags inf	formados são aqueles planeja	ados no momen	to do preenchimento da planilha	e estão sujeitos a mudança antes da insta	lação		
Ŋ	5.11	MTU de Poço	SKID TRANSP / BASE DE TESTE	NP	NP do Skid de Transporte do MTU	P7000048095	Sindotec	SIM
ıs	5.12	MTU de Poço	SKID TRANSP / BASE DE TESTE	Desenho	Número do desenho do Skid de Transporte do MTU	DU700164263	Sindotec	SIM
ıs	5.13	MTU de Poço	SKID TRANSP / BASE DE TESTE	Peso (kgf)	Peso no ar do Skid de Transporte do MTU	1658 Kgf	Sindotec	SIM
2	5.14	MTU de Poço	SKID TRANSP / BASE DE TESTE	SWL dos olhais de içamento	SWL dos olhais de içamento do Skid de Transporte do MTU	1,025 Tf	Sindotec	SIM
2	5.15	MTU de Poço	SKID TRANSP / BASE DE TESTE	Dimensões	NP do Skid de Transporte do MTU	3416mm x 1943mm x 3483mm	Sindotec	SIM
9	6.01	MCVI de Água e Gás (5 1/8")	N.A	NP	NP do MCV de interligação das linhas de IA e IG ao Poço	P7000048060	Sindotec	SIM
9	6.02	MCVI de Água e Gás (5 1/8")	N.A	Desenho	Número do desenho do MCVI	DU700154300	Sindotec	SIM
9	6.03	MCVI de Água e Gás (5 1/8")	N.A	Peso (kgf)	Peso do MCVI no ar	5797 Kgf	Sindotec	SIM
9	6.04	MCVI de Água e Gás (5 1/8")	N.A	Modelo da Manilha	Modelo da manilha do MCVI ou NP da ferramenta e o modelo de sua manilha	Crosby G-2160 - 500 Tf	Sindotec	SIM
9	6.05	MCVI de Água e Gás (5 1/8")	N.A	Tolerância de assentamento vertical	Tolerância vertical de assentamento do MCVI	,9	Sindotec	SIM
9	90.9	MCVI de Água e Gás (5 1/8")	N.A	Tolerância de assentamento horizontal	Tolerância horizontal de assentamento do MCVI	30°	Sindotec	SIM
9	6.07	MCVI de Água e Gás (5 1/8")	N.A	Válvula de bloqueio	Informação se o MCVI é dotado de válvula de bloqueio	Não Possui	Sindotec	SIM
9	80.9	MCVI de Água e Gás (5 1/8")	N.A	Especificação do Flange	Especificação do flange em contato com a linha e o modelo do anel de vedação	7 1/16" API 17SV - 10K Psi - Anel BX-156 - Rotativo	Sindotec	SIM
9	60.9	MCVI de Água e Gás (5 1/8")	N.A	Diagrama hidráulico	NP ou número do desenho do diagrama hidráulico do MCVI	DA700149865	Sindotec	SIM
9	6.10	MCVI de Água e Gás (5 1/8")	N.A	Carga máxima no Braço do MCV	Indicação do carregamento máximo que o gooseneck do MCVI pode suportar	470 Tf	Sindotec	SIM
9	6.11	MCVI de Água e Gás (5 1/8")	N.A	Swivel do Flange	Informação se o flange do MCVI (interface com a linha flexível) possui swivel	Possui	Sindotec	SIM
9	6.12	MCVI de Água e Gás (5 1/8")	N.A	Ângulo do Goose Neck	Informação da angulação que o goose- neck do MCVI faz com a vertical	.09	Sindotec	SIM
9	6.13	MCVI de Água e Gás (5 1/8")	N.A	Revestimento do Flange	Informação do material de revestimento do flange do MCVI	Inconel 625	Sindotec	SIM
9	6.14	MCVI de Água e Gás (5 1/8")	SKID TRANSP	dN	NP do Skid de Transporte do MCVI	P7000048093	Sindotec	SIM
9	6.15	MCVI de Água e Gás (5 1/8")	SKID TRANSP	Desenho	Número do desenho do Skid de Transporte do MCVI	DU700164348	Sindotec	SIM
9	6.16	MCVI de Água e Gás (5 1/8")	SKID TRANSP	Peso (kgf)	Peso no ar do Skid de Transporte do MCVI	1452 Kgf	Sindotec	SIM
9	6.17	MCVI de Água e Gás (5 1/8")	SKID TRANSP	SWL dos olhais de içamento	SWL dos olhais de içamento do Skid de Transporte do MCVI	2,0 Tf	Sindotec	SIM
9	6.18	MCVI de Água e Gás (5 1/8")	SKID TRANSP	Dimensões	Dimensões principais do Skid de Transporte do MCVI	2553mm x 1867mm x 2879mm	Sindotec	SIM
9	6.19	MCVI de Água e Gás (5 1/8")	BASE DE TESTE	NP	NP da Base de Teste do MCVI	P7000048078	Sindotec	SIM
9	6.20	MCVI de Água e Gás (5 1/8")	BASE DE TESTE	Desenho	Número do desenho da Base de Teste do MCVI	DU700158080	Sindotec	SIM
9	6.21	MCVI de Água e Gás (5 1/8")	BASE DE TESTE	Peso (kgf)	Peso no ar da Base de Teste do MCVI	1110 Kgf	Sindotec	SIM
9	6.22	MCVI de Água e Gás (5 1/8")	BASE DE TESTE	SWL dos olhais de içamento	SWL dos olhais de içamento da Base de Teste do MCVI	275 Kgf	Sindotec	SIM
9	6.23	MCVI de Água e Gás (5 1/8")	BASE DE TESTE	Dimensões	Dimensões principais da Base de Teste do MCVI	2159mm x 2159mm x 2227mm	Sindotec	SIM
9	6.24	MCVI de Água e Gás (5 1/8")	N.A	Altura máxima do conjunto MCV assentado sobre a base de testes	Informação da altura máxima do conjunto MCVI/Base de Teste	3059mm	Sindotec	SIM

DUTO DE INJEÇÃO DE GÁS DO MSIAG-02 À P-66-ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV) ANEXO 5		RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G-	-R1N-001 REV.: 0
DUTO DE INJEÇÃO DE GÁS DO MSIAG-02 À P-66 — ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV) - SUB/ES/ED-BDESC/EDF - SUB/ES/ED-BDESC/EDF -	₽R	CLIENTE: UN-BS/		
		DUTO DE INJEÇÃO DE GA	ÁS DO MSIAG-02 À P-66 -	\vdash
ANEXO 5	PETROBRAS	ANALISE DE ESFORÇOS	S EM EQUIP. SUB. (MCV)	-
ANEXO 5				
		ANEX	(O 5	
I				

DOCUMENT ID: WS_D_000000033237/01

C2891.1 / Petrobras
Document Classification: Confidential
Appendices

WSI 152.2553-RD-4042-6 - Stiffness Table

	Flowline - \	WSI 152.2553-RD-40	42-6 R0	
Load Case Number	WD [m]	Axial Stiffness [kN]	Torsional Stiffness [kNm^2]	Equivalent Bend Stiffness [kNm^2]
GI / GM Cases	0-500	508765	5300	68
GJ Cases	0-500	508765	5300	68
GK Cases	0-500	511880	5510	267
GL Cases	0-500	508765	5300	68
GI / GM Cases	500-1000	507986	5481	306
GJ Cases	500-1000	509152	5480	291
GK Cases	500-1000	509591	5503	509
GL Cases	500-1000	480025	5294	74
GI / GM Cases	1000-1500	507188	5473	542
GJ Cases	1000-1500	509436	5471	514
GK Cases	1000-1500	507195	5496	745
GL Cases	1000-1500	457160	5306	84
GI / GM Cases	1500-2000	506734	5465	770
GJ Cases	1500-2000	509774	5462	727
GK Cases	1500-2000	506988	5488	970
GL Cases	1500-2000	437756	5317	94
GI / GM Cases	2000-2500	506930	5457	991
GJ Cases	2000-2500	509916	5453	935
GK Cases	2000-2500	507131	5480	1190
GL Cases	2000-2500	420565	5329	104

C2891.1 / Petrobras
Document Classification: Confidential
Appendices

APPROVED BY/APPROVED ON: Renato Matos /14-Jun-202214:32 Raquel Barbaroto /14-Jun-2022 19:49

RELEASE DATE:14-Jun-2022 19:49

DOCUMENT ID: WS_D_000000033237/01

Curvature				Bending Mo	oment [Nm]			
[1/m]			nnulus				Annulus	
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
0.0000	0 11265	0 11265	0 11265	0 11265	0 4872	0 1322	9583	9865
0.0060	24978	24978	24978	24978	5233	1531	16080	16570
0.0090	41141	41141	41141	41141	5493	1775	19159	20630
0.0140	59752	59752	59752	59752	5779	2055	20068	21751
0.0190	80812	80812	80812	80812	6098	2372	20622	22384
0.0240 0.0300	95366 101254	99078 106474	103148 117678	103334 118536	6453 6844	2726 3116	21087 21538	22886 23353
0.0360	104610	110516	124559	125841	7271	3543	22001	23828
0.0440	106795	113081	128587	130055	7736	4007	22486	24320
0.0510	108380	114905	131279	132860	8237	4508	22998	24837
0.0590	109640	116314	133252	134899	8775	5046	23544	25385
0.0680	110709	117493	134803	136501	9350	5621	24125	25968
0.0780 0.0870	111666 112568	118527 119478	136102 137254	137830 139007	9961 10609	6232 6880	24742 25395	26586 27239
0.0870	113447	120393	138306	140077	11295	7565	26084	27929
0.1090	114314	121292	139300	141084	12017	8287	26809	28655
0.1210	115182	122185	140273	142066	12775	9046	27571	29417
0.1330	116061	123085	141237	143037	13571	9841	28368	30215
0.1450	116956	123997	142205	144011	14403	10674	29203	31050
0.1590 0.1730	117874 118821	124926 125879	143182 144172	144993 145988	15272 16178	11543 12449	30074 30981	31921 32829
0.1730	119798	126861	145179	147000	17121	13391	31926	33774
0.2020	120807	127874	146208	148032	18101	14371	32906	34755
0.2170	121849	128920	147265	149090	19117	15388	33924	35772
0.2120	99319	106391	124736	126561	9291	12743	14233	15370
0.2060	71892	78963	97309	99134	8651	12326	1758	2624
0.1980	39567	46638	64984	66809	8130	11838	-4409	-5504
0.1900 0.1800	2344 -39776	9416 -32705	27761 -14360	29586 -12534	7559 6921	11277 10644	-6213 -7321	-7732 -8995
0.1690	-68908	-69339	-59132	-57656	6212	9936	-8251	-10000
0.1580	-80702	-84062	-88251	-88154	5430	9155	-9152	-10934
0.1440	-87379	-92114	-101865	-102597	4574	8301	-10078	-11883
0.1300	-91748	-97244	-109911	-111023	3646	7373	-11048	-12868
0.1150 0.0990	-94913 -97433	-100896 -103709	-115299 -119240	-116633 -120712	2643 1567	6371 5295	-12072 -13164	-13902 -14997
0.0990	-97433	-106067	-119240	-123915	418	4146	-14327	-16163
0.0620	-101484	-108135	-124939	-126571	-805	2924	-15561	-17399
0.0430	-103288	-110036	-127244	-128924	-2102	1627	-16866	-18706
0.0220	-105044	-111866	-129346	-131064	-3472	257	-18244	-20085
0.0000	-106779	-113663	-131335	-133078	-4916	-1187	-19694	-21537
-0.0240 -0.0480	-108515 -110273	-115450 -117250	-133280 -135208	-135041 -136983	-6433 -8024	-2704 -4295	-21217 -22813	-23061 -24658
-0.0730	-112063	-119075	-137144	-138932	-9689	-5959	-24482	-26327
-0.1000	-113900	-120933	-139098	-140897	-11427	-7698	-26224	-28070
-0.1280	-115792	-122837	-141079	-142887	-13239	-9510	-28039	-29886
-0.1560	-117746	-124801	-143093	-144909	-15125	-11395	-29927	-31775
-0.1860	-119765	-126828	-145151	-146973	-17084	-13355	-31889	-33737
-0.2170 -0.2120	-121849 -99319	-128920 -106391	-147265 -124736	-149090 -126561	-19117 -9291	-15388 -12743	-33924 -14233	-35772 -15370
-0.2120	-71892	-78963	-97309	-99134	-8651	-12326	-1758	-2624
-0.1980	-39567	-46638	-64984	-66809	-8130	-11838	4409	5504
-0.1900	-2344	-9416	-27761	-29586	-7559	-11277	6213	7732
-0.1800	39776	32705	14360	12534	-6921	-10644	7321	8995
-0.1690 -0.1580	68908 80702	69339 84062	59132 88251	57656 88154	-6212 -5430	-9936 -9155	8251 9152	10000 10934
-0.1380	87379	92114	101865	102597	-5430	-8301	10078	11883
-0.1300	91748	97244	109911	111023	-3646	-7373	11048	12868
-0.1150	94913	100896	115299	116633	-2643	-6371	12072	13902
-0.0990	97433	103709	119240	120712	-1567	-5295	13164	14997
-0.0810	99570	106067	122343	123915	-418	-4146	14327	16163
-0.0620 -0.0430	101484 103288	108135 110036	124939 127244	126571 128924	805 2102	-2924 -1627	15561 16866	17399 18706
-0.0430	105288	111866	127244	131064	3472	-257	18244	20085
0.0000	106779	113663	131335	133078	4916	1187	19694	21537
0.0240	108515	115450	133280	135041	6433	2704	21217	23061
0.0480	110273	117250	135208	136983	8024	4295	22813	24658
0.0730	112063	119075	137144	138932	9689	5959	24482	26327
0.1000 0.1280	113900 115792	120933 122837	139098 141079	140897 142887	11427 13239	7698 9510	26224 28039	28070 29886
0.1260	117746	124801	143093	144909	15125	11395	29927	31775
0.1860	119765	126828	145151	146973	17084	13355	31889	33737
0.2170	121849	128920	147265	149090	19117	15388	33924	35772

	1		Г		DEV.
		RELATÓRIO TÉCNICO	RL-3A00.00-1500-94G		REV.: 0
BR	CLIENTE: TÍTULO:		/ATP-TUPI		4 de 50 -BDESC/EDF
PETROBRAS		ANÁLISE DE ESFORÇOS	ÁS DO MSIAG-02 À P-66 – S EM EQUIP. SUB. (MCV)	-	- BDESC/EDF
		ANALIOE DE LOI ORÇO	5 EM EQUI : 00B. (MOV)		-
		ANEX	/O 6		
		ANE	10 6		

470 135 kg GR-TDC2891Xx-00-01 - Anode Collar for Service Life 27 kg i. 470 (24.00 - 1.00 - 1.00 - 1.00 + 1.	REV DESCRIPTION APPROVED DMT	The same of the sa			3					L
1 15/10	17.5 17.5				,		EV		/ED	DAIE
110 110	19 472 19 17 18 18 18 18 18 18 18	N° .: 4511113981					8			13/2022
170 473 135 kg 1.0 1	110 670 135 tg 1.0 1						4			/5/2022
11/3 470 135 tg 1.	110 470 125 s 12 12 12 12 12 12 12						4			15/2022
110 470 155 tp 1. 1. 1. 1. 1. 1. 1. 1	10 470 155 470						-			3/2022
110 470 155 y 1 1 1 1 1 1 1 1 1	100 477 1581-9 1.0 1						+			
110 479 478 155 kg 1 4 470 155 kg 2 4 470 470 kg 2 4 470 kg 2 4 4 4 4 4 4 4 4 4	100 GTP 175 g G G G G G G G G G G G G G G G G G G						+			
110 479 478	110 470 470 175 481 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 155 4 1 1 1 1									
110 479 478 155 kg 1 4 4 4 4 4 4 4 4 4	100 470 175 470						+			
110 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479 175 479	100 470 470 155 49 1 155 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
110 470 155 y 1 1 1 1 1 1 1 1 1	100 477 128 428						+			
110 470 155 y 1 1 1 1 1 1 1 1 1	100 477 128 428									
110 479 478 155 kg 1 4 470 155 kg 2 4 470 470 kg 2 4 470 kg 2 4 4 4 4 4 4 4 4 4	100 GTP 175 g G G G G G G G G G G G G G G G G G G						+			
110 479 478 155 kg 1 4 4 4 4 4 4 4 4 4	100 470 175 470									
110 470 470 485 48 48 48 48 48 48 4	192 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470 175 470									
110 470 135 kg 1. Cart TOOTBELLOK OFF IR A MOOSE COLINE NO Service Let 27 kg ig are farfithing. Downing Number CB-TDXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	102 470 135 470									
110 470 1554g 1. G-17628DX-00-21 1. Acode Date to Service L6.27 Rig Lee Endfatting Dateing Namber CB: TDXXXXXXXXQ.00 (1 L4d) + Nevgrene Blanket 100 4.00	110 470 1818 470 47									
110 470 135 kg 1. C4 C1 C2 C2 C2 C3 C3 C3 C3 C3	110 470 135 kg 1 1 1 1 1 1 1 1 1									
110 470 135 kg 1. (4 m 10280) 2x + 60 431 x Antode Cough for Service Life 27 kg (g par Endfilling, Dawing Number CB-TDXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110 470 585 128 kg 1 1 1 1 1 1 1 1 1									
17.0 47.0 135 kg 1. 1. 1. 1. 1. 1. 1. 1	110 470 15354 1 4.07 15354 2 4 4 4 4 4 4 4 4									
110 470 470 486 4.0	110 470 470 485 48 48 48 48 48 48 4									
110 470 13519 1. C1-T2C2BEXCV-0-13 Accoss Collier for Service Life 27 (8) G per Existing, Drawing Number CB-TDXXXXXXCA011 LAGS) + Noncome Binnot 100 470 410	110 470 1135 kg 4.0 1135 kg 4.0 4.									
110 470	110 470 478 138 kg 1 1 470 138 kg 2 1 1 470 148 kg 2 2 1 470 148 kg 2 2 1 470 148 kg 2 2 2 470 kg 2 2 470 kg 2 2 470 kg 470 kg 2									
170 470 175 kg 1. Ca = 1702 (2512x-30-20.2) Abrono Callie for Service Life 27 kg is per Endfring, Drawing Number CIG-IDXXXXXXXX4045 (3.4446) + Nongerine Blanket 100 470 4	110 470 115 12 12 13 13 14 14 14 14 14 14									
110 470 155 49 1 155 49 1 4 14 14 14 15 14 14	110 470									
110 470 156 kg 1 1 156 kg 2 1 1 156 kg 2 2 1 156 kg 2 2 2 156 kg 2 2 2 2 2 2 2 2 2	110 470 470 478 488 4 4 4 4 4 4 4 4									
110 470 470 (158 g - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	110 470 155 kg 1. 1. 1. 1. 1. 1. 1. 1									
110 470 470 155 kg 1 155 kg 2 1 170 128 kg 2 1 170	110 670 1155 yr 1.5									
110 470 155 ap 1.5 ap	110 470 155 kg 1 1 470 155 kg 1 1 4 4 4 4 4 4 4 4									
110 670 136 kg 1 1 1 1 1 1 1 1 1	110 470 158 kg 1 4 4 4 4 4 4 4 4 4									
110 470 135 kg	110 470 138 kg - 1 -									
110 470 135 kg - 1 -	110 400 103 kg 1.0 1									
110 470 135 kg 1. 1. 1. 1. 1. 1. 1. 1	110 470 128 kg 1. 1. 1. 1. 1. 1. 1. 1									
110 470 (128 kg 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	110 470 470 488 1 2 3 3 3 4 4 4 4 4 4 4									
110 470 135 kg 1.0 cir. TOC/283bx - 20-01 cir. Anoted Collar for Service Life 27 Ng G per Endfriting, Drawing Namier CB-TDXXXXXXX.00.01 (1/4) + Neogenee Blanket 100 cir. TOC/283bx - 20-01 cir. Anoted Collar for Service Life 27 Ng G per Endfriting, Drawing Namier CB-TDXXXXXXX.00.01 (1/4) + Neogenee Blanket 100 cir. Anoted Collar for Service Life 27 Ng G per Endfriting, Drawing Namier CB-TDXXXXXXXX.00.01 (1/4) + Neogenee Blanket 100 cir. Anoted Collar for Service Life 27 Ng G per Endfriting, Drawing Namier CB-TDXXXXXXXX.00.01 (1/4) + Neogenee Blanket 100 cir. Anoted Collar for Service Life 27 Ng G per Endfriting, Drawing Namier CB-TDXXXXXXXX.00.01 (1/4) + Neogenee Blanket 100 cir. Anoted Collar for Service Life 27 Ng G per Endfriting, Drawing Namier CB-TDXXXXXXXXX.00.01 (1/4) + Neogenee Blanket 100 cir. Anoted Collar for Service Life 27 Ng G per Endfriting, Drawing Namier CB-TDXXXXXXXXX.00.01 (1/4) + Neogenee Blanket 100 cir. Anoted Collar for Service Life 27 Ng G per Endfriting, Drawing Namier CB-TDXXXXXXXXXX.00.01 (1/4) + Neogenee Blanket 100 cir. Anoted Collar for Service Life 27 Ng G per Endfriting, Drawing Namier CB-TDXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	110 470 135 kg 1 1 1 1 1 1 1 1 1									
110 470 868 g - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	110 470 135 kg 1 1 1 1 1 1 1 1 1									
110 470 135 kg 1 1 1 1 1 1 1 1 1	100 470 135 kg -1 -2 -1 -2 -2 -2 -2 -2									
110 470 135 kg	110 470 155 kg 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1									
110 470 135 kg 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	110 470 138 kg 1 1 1 1 1 1 1 1 1									
110 470 135 kg 1 1 155 kg 1 1 1 1 1 1 1 1 1	110 470 138 kg 1. 1. 1. 1. 1. 1. 1. 1									
110 470 135 kg 1 1 1 1 1 1 1 1 1	110 470 135 kg -									
110 470 135 kg 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	110 470 135 kg 1 1 1 1 1 1 1 1 1									
110 470 470 135 kg -	110 470 135 kg -									
110 470 135 kg -1 -2 -3 -3 -3 -3 -3 -3 -3	110 470 470 135 kg - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -									
110 470 478 478 478 470 478 470	110 470 135 kg - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -									
110 470 135 kg 1 1 135 kg 2	110 470 135 kg 1 2 3 3 4 4 4 4 4 4 4 4									
110 470 135 kg	110 470 135 kg 1. Ca-TDC281Dxx-00-01 Anode Collar for Service Life 27 kg (5 per EndFilting, Drawing Number CB-TDXXXXXXXX.00.01.14AC)+ Neopene Blanket 100 470 648 kg 1. Ca-TDC281Dxx-00-01 Anode Collar for Service Life 27 kg (5 per EndFilting, Drawing Number CB-TDXXXXXXXXX.00.01.14AC)+ Neopene Blanket 100 470 648 kg 1. Ca-TDC281Dxx-00-01 Anode Collar for Service Life 27 kg (6 per EndFilting, Drawing Number CB-TDXXXXXXXXX.00.01.14AC)+ Neopene Blanket 100 520 4									
110 470 135 kg - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	110 470 470 135 kg									
110 470 135 kg 1 c 3 c 3 c 3 c 3 c 3 c 3 c 3 c 3 c 3 c	110 470 135 kg 1.0 1									
100 470 648 kg 4.0 car-TDC2891Xx-00-01. Anode Collar for Service Life 27 kg (4 per EndFilting, Drawing Number CB-TDXXXXXXX.0C.0.1.14AC) + Neoprene Blanket 1 (1) (2) Anode Collar for Service Life 27 kg (4 per EndFilting, Drawing Number CB-TDXXXXXXXX.0C.0.1.14Y) + Neoprene Blanket (1) (2) (2) (2 car-TDC2891Xx-00-0.1) 2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Relative Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. For Tensioner Hydratight H. (For Installation) (1) (2) (2 car of Studs and Bolls, 7 11/6" API 68X Flange, 10000 psi, 8X 156. With N2 Seal Port - Single Barrier - Full Flange, Port - Singl	100 470 648 kg	110 470		CB-TDC2891XX-00-01	Ŀ	Anode Collar for Service Life 27 Kg (5 per EndFitting. Drawing Number C	B-TDXXX	XXXXX-00-01.14AB) + Neoprene Blanket		
10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	100 470	<u> </u>	CR-TDC2891xx-00-01	Ŀ	Apode Collar for Service Life 27 Kg (4 per EndEi#ipa Drawing Number C	R-TDXXX	XXXXX-00-01 14AC) + Necerges Blanket		
90 47/0 216 kg - <th< td=""><td>90 470 216 kg - CG-TDC263IXX-00-01 - Anode Collar to Service Line 2.7 (kg Set End-fitting). Drawing Number OS-IDIXXXXXXX.00.01 (147) New Page Flance (1000 ps). BX 156. For Tensioner Hydratight H. (For Installation) (1) (2) 40 520 - - N/A - Set of Studs and Boils. 7 /1/16" API GBX Flange, 10000 ps). BX 156. For Tensioner Hydratight H. (For Installation) (1) (2) 50 50 - - N/A - Set of Studs and Boils. 7 /1/16" API GBX Flange, 10000 psi. BX 156. For Tensioner Hydratight H. (For Installation) (1) (2) 70 480 10 - - N/A - Set of Studs and Boils. 7 /1/16" API GBX Flange, 10000 psi. BX 156. For Tensioner Hydratight H. (For Installation) (1) (2) 80 480 10 - N/A - Seal Ring BX 156 incone i 625. For Installation) (1) (2) 80 490 6 - - N/A - Installation Test Head, 7 /1/16" API GBX Flange, 10000 psi. BX 156 (SML= 55 tl) 90 440 - - - - - - - - - - - -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>+</td></th<>	90 470 216 kg - CG-TDC263IXX-00-01 - Anode Collar to Service Line 2.7 (kg Set End-fitting). Drawing Number OS-IDIXXXXXXX.00.01 (147) New Page Flance (1000 ps). BX 156. For Tensioner Hydratight H. (For Installation) (1) (2) 40 520 - - N/A - Set of Studs and Boils. 7 /1/16" API GBX Flange, 10000 ps). BX 156. For Tensioner Hydratight H. (For Installation) (1) (2) 50 50 - - N/A - Set of Studs and Boils. 7 /1/16" API GBX Flange, 10000 psi. BX 156. For Tensioner Hydratight H. (For Installation) (1) (2) 70 480 10 - - N/A - Set of Studs and Boils. 7 /1/16" API GBX Flange, 10000 psi. BX 156. For Tensioner Hydratight H. (For Installation) (1) (2) 80 480 10 - N/A - Seal Ring BX 156 incone i 625. For Installation) (1) (2) 80 490 6 - - N/A - Installation Test Head, 7 /1/16" API GBX Flange, 10000 psi. BX 156 (SML= 55 tl) 90 440 - - - - - - - - - - - -								_	+
40 520 4 - N/A - Set of Studs and Boils, 7 /116° API GBX Flange, 10000 psi, BX 156. For Tensioner Hydratight HL (For Installation) (1) (2) 60 510 10 - - N/A - Set of Studs and Boils, 7 /116° API GBX Flange, 10000 psi, BX 156. For Tensioner Hydratight HL (For Installation) (1) (2) 50 50 - - N/A - Set of Studs and Boils, 7 /116° API GBX Flange, 10000 psi, BX 156. For Tensioner Hydratight HL (For Installation) (1) (2) 70 480 10 - N/A - Set of Studs and Boils, 7 /116° API GBX Flange, 10000 psi, BX 156 (SWL = 56 tf) Set Ring BX 156 (For Installation) (1) (2) 80 490 6 - N/A - Installation Test Head, 7 /116° API GBX Flange, 10000 psi, BX 156 (SWL = 56 tf) Promise API API GBX Flange, 10000 psi, BX 156 (SWL = 56 tf) Promise API API API GBX Flange, 10000 psi, BX 156 (SWL = 56 tf) Promise API API API GBX Flange, 10000 psi, BX 156 (SWL = 56 tf) Promise API API API GBX Flange, 10000 psi, BX 156 (SWL = 56 tf) Promise API API API GBX Flange, 10000 psi, BX 156 (SWL = 56 tf) Promise API API API API API GBX Flange, 10000 psi, BX 156 (SWL = 56 tf) Promise API API API API API API API API GBX Flange, 10000 psi, BX 156 (SWL = 56 tf) P	40 520 4 5 5 5 6 6 6 6 6 6 6	30 4/0 ZIORG		CB-IDC2891XX-00-01	٠	Anode Collar for Service Life 27 Ng (o per Endriung, Drawing Number C		AAAA-UU-UI.141) + Neopiene biankei		+
60 510 10 N N A - Set of Studs and Bolts, 7 1/16" API GBX Flange, 10000 psi, BX 156. For Tensioner Hydratight HL (For Installation) (1) (2) 50 50 N N A - Set of Studs and Bolts, 7 1/16" API GBX Rotative Flange, 10000 psi, BX 156. For Tensioner Hydratight HL (For Installation) (1) (2) 70 480 10 - N N A - Seal Ring BX 156 Income GZ5 (For Installation) <t< td=""><td>60 510 10 - - N/A - Set of Studs and Bolts, 71/16° API 6BX Flange, 10000 psi, BX 156. For Tensioner Hydratight HL (For Installation) (1)(2) 50 50 2 - N/A - Set of Studs and Bolts, 71/16° API 6BX Relative Flange, 10000 psi, BX 156. For Tensioner Hydratight HL (For Installation) (1)(2) 70 480 10 - N/A - Seal Ring BX 156 kloshel (For transports and tests) (1)(2) 80 490 6 - N/A - Seal Ring BX 156 kloshel (For transports and tests) - Residence (Spillation) -</td><td>40 520 4</td><td>,</td><td>N/A</td><td>'</td><td>Set of Studs and Bolts, 7 1/16" API 6BX Flange, 10000 psi, BX 156, For</td><td>Tensionel</td><td>r Hydratight HL (For Installation)</td><td>(1)(2</td><td>_</td></t<>	60 510 10 - - N/A - Set of Studs and Bolts, 71/16° API 6BX Flange, 10000 psi, BX 156. For Tensioner Hydratight HL (For Installation) (1)(2) 50 50 2 - N/A - Set of Studs and Bolts, 71/16° API 6BX Relative Flange, 10000 psi, BX 156. For Tensioner Hydratight HL (For Installation) (1)(2) 70 480 10 - N/A - Seal Ring BX 156 kloshel (For transports and tests) (1)(2) 80 490 6 - N/A - Seal Ring BX 156 kloshel (For transports and tests) - Residence (Spillation) -	40 520 4	,	N/A	'	Set of Studs and Bolts, 7 1/16" API 6BX Flange, 10000 psi, BX 156, For	Tensionel	r Hydratight HL (For Installation)	(1)(2	_
50 50 - N/A - Set Ring BX 156 kluds and Bolts, 71/16" API 6BX Rotative Flange, 10000 psi, BX 156, For Tensioner Hydratight HL (For Installation) (1) (2) 70 480 10 - - N/A - Seal Ring BX 156 kluds and Bolts, 71/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 500 tf) - - N/A - Seal Ring BX 156 inconel 625 (For Installation) - - - N/A - - N/A - - - - - - N/A -	50 50 2 - Ni/A - Set of Studs and Boils, 71/16" API 6BX Rotative Flange, 10000 psi, BX 156, For Tensioner Hydratight HL (For Installation) (1) (2) 70 480 10 - - N/A - Seal Ring BX 156 (Hor Installation) -	60 510 10		N/A	٠	Set of Studs and Bolts, 7 1/16" API 6BX Flange, 10000 psi, BX 156, For	Tensionel	r Hydratight HL (For transport and tests)	(1)(2	_
70 480 10 - N/A - Seal Ring BX 156 (Hornet 625 (For Installation) 80 490 6 - - N/A - Seal Ring BX 156 (Incomet 625 (For Installation) - 490 6 - - N/A - Installation Test Head, 71/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 50tf) -	70 480 10 - N / A - Seal Ring BX 156 (For Irrasial lation) - - N / A - Seal Ring BX 156 (Incomet 625 (For Irrasial lation) - - - N / A - Seal Ring BX 156 (Incomet 625 (For Irrasial lation) - - - - - N / A - </td <td>50 500 2</td> <td></td> <td>N/A</td> <td>·</td> <td>Set of Studs and Bolts, 7 1/16" API 6BX Rotative Flange, 10000 psi, BX</td> <td>156 , For 1</td> <td>Tensioner Hydratight HL (For Installation)</td> <td>(1)(2</td> <td></td>	50 500 2		N/A	·	Set of Studs and Bolts, 7 1/16" API 6BX Rotative Flange, 10000 psi, BX	156 , For 1	Tensioner Hydratight HL (For Installation)	(1)(2	
80 490 6 -	17 1177 8 140 150	70 10		«\z		Seel Bing BY 456 AISI 3461 (Ear transmorts and toots)				
80 490 6 - N/A - Seal Ring BX 156 inconel @25 (For Installation) - - - - Seal Ring BX 156 inconel @25 (For Installation) - - Seal Ring BX 156 (SWL= 500 tf) - <	80 490 6 6 - 2 - N N/A - 1 Stall Ring BX 156 Inconet 625 (For Installation) - 2 - 2 - 5 5 N/A - 2 Installation Test Head, 7 1/16° API 6BX Flange, 10000 psi, BX 156 (SWL=500 ft) - 30 - 440 2 2 - 5 5 N/A - 2 Handling Test Head, 7 1/16° API 6BX Flange, 10000 psi, BX 156 (SWL=55 ft) - 30 440 2 - 6 - 5 6 N/A - 2 Handling Test Head, 7 1/16° API 6BX Flange, 10000 psi, BX 156 (SWL=55 ft) - 30 - 440 2 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	200	†	C/N	1	Seal wilg by 130 Aid old (191 transports and tests)				+
- - 5 N/A - Installation Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 50tf) BX 156 (SWL= 50tf) CR 2 CR 3	- - 5 N/A - Installation Test Head, 71/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 50t fl) Ex 100 mm Avg 2 -	80 490	-	N/A	•	Seal Ring BX 156 Inconel 625 (For Installation)				
- - 5 N/A - Flanding Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL=55 ff) BX 156 (SWL=55 ff) <t< td=""><td>- - - 5 N/A - Handling Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 55 ff) BX 152 (SWL= 55 ff) B</td><td></td><td>2</td><td>N/A</td><td>•</td><td>Installation Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWI</td><td>= 500 tf)</td><td></td><td></td><td></td></t<>	- - - 5 N/A - Handling Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 55 ff) BX 152 (SWL= 55 ff) B		2	N/A	•	Installation Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWI	= 500 tf)			
30 440 2 - <td>30 440 2 -<td></td><td>2</td><td>N/A</td><td>Ŀ</td><td>Handling Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL=</td><td>55 tf)</td><td></td><td></td><td></td></td>	30 440 2 - <td></td> <td>2</td> <td>N/A</td> <td>Ŀ</td> <td>Handling Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL=</td> <td>55 tf)</td> <td></td> <td></td> <td></td>		2	N/A	Ŀ	Handling Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL=	55 tf)			
20 30 10 2 2 2 2 2 2 2 2 2	10 370 4730 m 2. 3.0 3.0 4.0 3.0	30		CR-RP1522553-00-01	L	Bond Destrictor 6" ID Cas Injection Flowline 72 Degrees (Califod)				
20 390 10 - CB-ET 1322540-00-05 - End Fitting 6" ID Gas Injection Flowline 71/16" API 6BX Flange, 10000 psi, BX 156 With N2 Seal Port - Single Barrier - Full Protection Protection Name 10 370 4730 m - w. 132.2553-RD-4042-6 - 6" ID Gas Injection Flexible Flowline Description Protection No or Name PCS ITEM NEW QTY: BY CLIENT REV NO OR NAME	20 390 10 -	2	1	1						1
10 370 4730 a - a with time and the man an	10 Stream Cors. Team Cors. Team Cors. Team Corr. Sprake. Supplied Fig. 1. 2.2553-RD-4042-6 2. 6" ID Gas Injection Flexible Flowline Description Flowing Post Team Corr. Sprake. Supplied Flow. Team Corp. Sprake. Sprak	20 390 10	,	CB-EF1522540-00-05	<u>.</u>	End Fitting 6" ID Gas Injection Flowline 7 1/16" API 6BX Flange, 10000 p	si, BX 156	6 With N2 Seal Port - Single Barrier - Full Protection		
PCS TIEM CBS TIEM NEW CITY. SPARE. SUPPLIED DOCUMENT No. 1 TEN: MEANS TO BE DEFINED. THE STO BE ASSEMBLED OFFSHORE. THE TIEMS TO BE DEFINED WITH OFFSHORE. THE TIEMS TO BE DELIVERED WITH OFFSHORE OFFSHORE. THE TIEMS TO BE DELIVERED WITH OFFSHORE OFFSHORE.	PCS ITEM CBS ITEM NEW OTT. SPARE. SUPPLIED DOCUMENT IN PARE IN SUPPLIED SOCIETY OF SECURITY OF SECURIT	370	-	WSI 152.2553-RD-4042-6	'	6" ID Gas Injection Flexible Flowline				
N/A: MEANS NOT APPLICABLE. TBD: MEANS TO BE DEFINED. TITEMS TO BE ASSEMBLED OFFSHORE.	N/A: MEANS NOT APPLICABLE. TBD: MEANS TO BE DEFINED. (I) - 11 1/2" - 8 UN x 13 1/2" BOLTS (12 PER FLANCE), BITCHONG OVER CAMPILM. 1 1/2" - 8 UN MATS (24 PER FLANCE), BITCHONG OVER CAMPILM. (2) - 11 N ACCORDANCE WITH MIL-6040.	PCS ITEM CBS ITEM NEW QTY. SPARE.	PLIED	DOCUMENT N°	REV	SEQ	CRIPTION		NOTES	
N/A:MEANS NOT APPLICABLE. TBD: MEANS TO BE DEFINED. TITEMS TO BE ASSEMBLED OFFSHORE.	NIA: MEANS NOT APPLICABLE. TBD: MEANS TO BE DEFINED. TEMS TO BE ASSEMBLED OFFSHORE. TITEMS TO BE PARTIAL ASSEMBLED OFFSHORE. TITEMS TO BE PARTIAL ASSEMBLED OFFSHORE.	÷			ż					-
	- 1 1/2"- 8 UN X 15 1/2" BOLTS (12 PER FLANGE), BICHROME OVER CADMIUM: 1 1/2" - 8 UN NUTS (24 PER FLANGE), BICHROME OVER CADMIUM. (2) - IN ACCORDANCE WITH MTL-6040.	N/A: MEANS NOT APPLICABLE.	ANS TO E			ASSEMBLED OFFSHORE.	IL ASSEME		1 OFFSHORE	ONES.
	- 1 1/2" - 8 un x 15 1/2" BOLTS (12 PER FLANGE), BICHROME OVER CADMIUM. 1 1/2" - 8 un nuts (24 PER FLANGE), BICHROME OVER CADMIUM.							l		

520 520 510 500 480 490	216 kg			TO 00 001		7 Co of Look and South	Annde Coller for Service I fie 27 Kr. (8 ner Endfitting Drawing Nimber CR. TDXXXXXX 0L.01.14V) + Neonrene Blanket		
	4		-	CB-1DC269TVV-00-0T	<u>-</u>	NIONE CONTAIN TO SEIVICE LITE Z/ N	ing (5 per criatisming) crawing indinaction of the contract of		
		_	,	N/A	i	et of Studs and Bolts, 7 1/16" AF	Set of Studs and Bolts, 7 1/16" API 6BX Flange, 10000 psi, BX 156, For Tensioner Hydratight HL (For Installation)	(1)	(1)(2)
	10		,	N/A	i	et of Studs and Bolts, 7 1/16" AF	Set of Studs and Bolts, 7 1/16" API 6BX Flange, 10000 psi, BX 156, For Tensioner Hydratight HL (For transport and tests)	(1)	(1)(2)
	2	,		N/A	'	et of Studs and Bolts, 7 1/16" AF	Set of Studs and Bolts, 7 1/16" API 6BX Rotative Flange, 10000 psi, BX 156, For Tensioner Hydratight HL (For Installation)	(1)	(1)(2)
490	10	,	,	N/A	i	Seal Ring BX 156 AISI 316L (For transports and tests)	r transports and tests)		
	9	,		N/A	į	Seal Ring BX 156 Inconel 625 (For Installation)	or Installation)		
	-	,	2	N/A	Ē	nstallation Test Head, 7 1/16" AP	Installation Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 500 tf)		
	-	-	2	N/A	Ī	landling Test Head, 7 1/16" API	Handling Test Head, 7 1/16" API 6BX Flange, 10000 psi, BX 156 (SWL= 55 tf)		
440	2	-		CB-BR1522553-00-01	Ī	end Restrictor, 6" ID Gas Injectic	Bend Restrictor, 6" ID Gas Injection Flowline 72 Degrees (Splited)		
390	10	-		CB-EF1522540-00-05	Ī	ind Fitting 6" ID Gas Injection Flo	End Fitting 6" ID Gas Injection Flowline 7 1/16" API 6BX Flange, 10000 psi, BX 156 With N2 Seal Port - Single Barrier - Full Protection	uc	
370 47:	4730 m	-	-	WSI 152.2553-RD-4042-6	Ĭ	6" ID Gas Injection Flexible Flowline	line		
CBS ITEM NEV	NEW QTY. SPA	SPARE. SU QTY. BY	SUPPLIED BY CLIENT	DOCUMENT N°	Ş.º		DESCRIPTION	-ON	NOTES CHECK
N/A: MEANS NOT APPLICABLE.		TBD: ME	EANS TO E	TBD: MEANS TO BE DEFINED.	IEN	ITEMS TO BE ASSEMBLED OFFSHORE.	☐ ITEMS TO BE PARTIAL ASSEMBLED OFFSHORE.	ITEMS TO BE DELIVERED WITH OFFSHORE ONES.	RE ONES.
N × 15 1/2" BOLTS (12	PER FLANGE)), BICHROME	E OVER CADM	(L) - 1 1/2" - 8 UN X 15 1/2" BOLTS (12 PER FLANGE), BICHROME OVER CAMMUM. 1 1/2" - 8 UN NUTS (24 PER FLANGE), BICHROME OVER CAMMUM.	R FLANGE)	BICHROME OVER CADMILM.	(2) - IN ACCORDANCE WITH WTL-8040.		
BY AND IS THE EX	CLUSIVE PF	ROPERTY	Y OF WELL	LSTREAM. IT IS DISCLOSED IN	N CONF	DENCE WITH THE UNDERSTANDI	THE DESIGN WAS ORIGINATED BY AND IS THE EXCLUSIVE PROPERTY OF WELLSTREAM. IT IS DISCLOSED IN CONFIDENCE WITH THE UNDERSTANDING THAT NO REPRODUCING OR OTHER USE OF THE INFORMATION IS AUTHORIZED WITHOUT SPECIFIC IN WRITING BY WELLSTREAM.	IFIC IN WRITING BY WELL	-STREAM.
			ENGIN	ENGINEERED BY:	DATE	REV:	TITLE: LULA NORTE FIELD DEVELOPMENT		SHEET.:
				Tobias Campos	16	16/12/2021 RMs			:
**************************************	(Q)		SHEQ.	CHECKED BY:	DATE		COMPOSITION DRAWING - Gas Injection - P-67/MSIAG-BHGE-01/8-LL-108D-RJS	08D-RJS	1/2
UGHES				Marcio Moraes	×	20/12/2021 GSa	CLIENT: TOP CONFIGURATION: DRAWING	DRAWING NUMBER:	REV.:
a GE company			APPRC	APPROVED BY: João Lima	DATE:	20/12/2021 RBa	Petrobras N/A	C2891.1 UN-15	4

WELL 9 2 8 6 (7) 330mF (0/+12) C2891 A-32 (2) (£ (10) 9 7 6 1100mF (0/+16m) C2891 A-31 (2) (1) (2)-(12) 12 -9 7 6 01 ◆ LAUNCHING SEQUENCE 1100mF (0/+16m) C2891 A-30 (2) (1) (2) 12 (15) 10 9 7 6 1100mF (0/+16m) C2891 A-29 (12) (12) (1) (1) -9 2 6 01 **2** 1100mF (0/+16m) C2891 A-28 MARINE UNIT 9 8 7 6

THE DESIGN WAS ORIGINATED BY AND IS THE EXCLUSIVE PROPERTY OF WELLSTREAM. IT IS DISCLOSED IN CONFIDEN	OF WELLSTREAM. IT IS DISCLOSED	IN CONFIDENCE WITH TH	HE UNDERSTANDIN	ICE WITH THE UNDERSTANDING THAT NO REPRODUCING OR OTHER USE OF THE INFORMATION IS AUTHORIZED WITHOUT SPECIFIC IN WRITING BY WELLSTREAM.	IF THE INFORMATION IS AUTHORIZED WITH	OUT SPECIFIC IN WRITING BY WEI	LSTREAM.
	ENGINEERED BY:	DATE:	REV:	те	LULA NORTE FIELD DEVELOPMENT		SHEET.:
	Tobias Campos	16/12/2021	RMs	STEEL	TOLIG CALCASTO	0.000	200
BAKEK	СНЕСКЕД ВУ:	DATE:		COMPOSITION DRAWING	COMPOSITION DRAWING - Gas Injection - P-6//MSIAG-BHGE-01/8-LL-108D-KJS	01/8-LL-108D-KJS	77
HUGHES	Marcio Moraes	20/12/2021	GSa	CLIENT:	TOP CONFIGURATION:	DRAWING NUMBER:	REV::
a GE company	APPROVED BY:	DATE:					
	João Lima	20/12/2021	RBa	Petrobras	NA	CZ891.1 UN-15	4

			Aprovação			0
	Análise Estrut	ural - I	MCV P7000051394 (Manifo	old Pré-Sal)		
Índice	Caso de Carregamento		Esforço	Valor (input)		Resultado Final
1	CVD 2ª - Topo (Caso 1)		Tração	3,660.99	kN	aprovado
2	CVD 1ª - MCV no <i>hub</i> com linha suspensa (Caso 3i - Flutuador/peso morto)	(a)	Tração (Fx)	4.87	kN	aprovado
			Cortante (Fz)	-8.51	kN	
			Momento fletor (My)	26.68	kN.m	
		(b)	Tração (Fx)	9.02	kN	aprovado
			Cortante (Fz)	-12.91	kN	
			Momento fletor (M _y)	4.01	kN.m	
3	CVD 1ª - MCV no <i>hub</i> (Caso 3ii - Flutuador/peso morto)	(a)	Tração (Fx)	7.40	kN	aprovado
			Cortante (Fz)	-12.25	kN	
			Momento fletor (M _y)	2.90	kN.m	
		(b)	Tração (Fx)	7.58	kN	aprovado
			Cortante (Fz)	-11.73	kN	
			Momento fletor (M _y)	6.60	kN.m	
4	CVD 1ª - MCV no <i>hub</i> (Caso 3ii - Após retirada do flutuador/peso morto)	(a)	Tração (F _x)	49.54	kN	aprovado
			Cortante (Fz)	-31.41	kN	
			Momento fletor (M _V)	-53.64	kN.m	
		(b)	Tração (F _x)	49.37	kN	aprovado
			Cortante (Fz)	-28.39	kN	
			Momento fletor (M _V)	-42.84	kN.m	
5	CVD 1º - Teste <i>offshore</i> (@ 11000 psi) (Caso 4 - Flutuador/peso morto)	(a)	Tração (Fx)	5.68	kN	aprovado
			Cortante (F _z)	-11.06	kN	
			Momento fletor (M _v)	31.03	kN.m	
		(b)	Tração (Fx)	15.42	kN	aprovado
			Cortante (F _z)	-10.36	kN	
			Momento fletor (M _y)	35.62	kN.m	
6	CVD 1ª - Teste <i>offshore</i> (@ 11000 psi) (Caso 4 - Após retirada do flutuador/peso morto)	(a)	Tração (F _x)	37.58	kN	aprovado
			Cortante (Fz)	-35.48	kN	
			Momento fletor (M _y)	-63.68	kN.m	
		(b)	Tração (F _x)	41.12	kN	aprovado
			Cortante (Fz)	-30.73	kN	
			Momento fletor (M _y)	-34.90	kN.m	
7	CVD 1ª - Operação (@ 11000 psi) (Caso 5 - Após retirada do flutuador/peso morto)	(a)	Tração (Fx)		kN	aprovado
			Cortante (Fz)	-35.26	kN	
			Momento fletor (M _y)	-64.01	kN.m	
		(b)	Tração (Fx)		kN	aprovado
			Cortante (Fz)	-30.55	kN	
			Momento fletor (M _v)		kN.m	