Homework 6

JY Fan

1. 用 K-T 条件求解下列问题

min
$$x_1^2 - x_2 - 3x_3$$
,
s.t. $-x_1 - x_2 - x_3 \ge 0$,
 $x_1^2 + 2x_2 - x_3 = 0$.

2. 求原点 $x^{(0)} = (0,0)^{\mathrm{T}}$ 到凸集

$$S = \{x \mid x_1 + x_2 \ge 4, \ 2x_1 + x_2 \ge 5\}$$

的最小距离.

3. 给定非线性规划问题

$$\min c^{\mathrm{T}}x$$

s.t.
$$Ax = 0$$
,

$$x^{\mathrm{T}}x < \gamma^2$$

其中 A 为 $m \times n$ 矩阵 (m < n) , A 的秩为 m , $c \in \mathbb{R}^n$ 且 $c \neq 0$, γ 是一个正数. 试求问题的最优解及目标函数最优值.

4. 给定非线性规划问题

$$\max \ b^{\mathrm{T}}x, \quad x \in \mathbb{R}^n$$

s.t.
$$x^{\mathrm{T}}x \leq 1$$
,

其中 $b \neq 0$. 证明向量 $\bar{x} = b/\|b\|$ 满足最优性的充分条件.

- 5. 用内点法求解下列问题:
- (1) min x, s.t. $x \ge 1$;
- (2) min $(x+1)^2$, s.t. $x \ge 0$.

6. 考虑下列问题:

$$\min x_1 x_2$$

s.t.
$$g(x) = -2x_1 + x_2 + 3 \ge 0$$
.

(1) 用二阶最优性条件证明点

$$\bar{x} = \begin{bmatrix} \frac{3}{4} \\ -\frac{3}{2} \end{bmatrix}$$

是局部最优解. 并说明它是否为全局最优解?

(2) 定义障碍函数为

$$G(x,r) = x_1 x_2 - r \ln g(x),$$

试用内点法求解此问题, 并说明内点法产生的序列趋向点 \bar{x} .