Manual

Benchmarking integration of single-cell RNA-seq differential analysis

Hai C. T. Nguyen^{1†}, Bukyung Baik^{1†}, Sora Yoon^{1,2}, Hae-Ock Lee, Taesung Park³, Dougu Nam^{1,4*}

¹Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

²Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104

³Department of Statistics, Seoul National University, Seoul, 08826, Republic of Korea

⁴Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

†These authors contributed equally to this work.

*To whom correspondence should be addressed. Tel: +82-52-217-2525; Fax: +82-52-217-2639; Email: dougnam@unist.ac.kr

1. Github folder structure

- 'code' contains the core analysis R scripts for this study
 - 'analysis' contains scripts for all interesting methods and integration approaches that were benchmarked in this study.
 - 'false-positive-analysis' contains Splatter scripts for generating null dataset for false positive analysis.
 - 'model-free-simulation' contains scripts for generating batch effected dataset for false positive analysis.
 - 'sign-preservation' contains scripts for checking the ratio of DE genes that preserved their signs during batch correction procedures.
 - o **'splatter-simulation'** contains Splatter scripts for simulating 2-batch and 4-batch datasets.
- 'data' contains some of figures and tables of the experimental results for illustration
- 'doc' contains R markdown tutorials for 'model-free simulation' and 'incomplete association simulation' and this manual.

2. Analysis code input-output

R gb_process	
R GBC_run_mast_cov	R GBC-run_limma_trend_False_cov
R GBC_run_mast	R GBC-run_limma_trend_False
R GBC-run_zinbwave_edger_cov	R GBC-run_limma_trend_Combat_false
R GBC-run_zinbwave_edger	R GBC-run_limma_trend_Combat
R GBC-run_zinbwave_deseq2_cov	R GBC-run_limma_trend
R GBC-run_zinbwave_deseq2	R GBC-run_limma
R GBC-run_zinbwave	R GBC-run_edger_cov
R GBC-run_seurat3	R GBC-run_edger_DetRate_cov
R GBC-run_scmerge	R GBC-run_edger_DetRate
R GBC-run_pseudobulk_edger	R GBC-run_edger
R GBC-run_limma_voom_cov	R GBC-run_deseq2_cov
R GBC-run_limma_voom	R GBC-run_deseq2
R GBC-run_limma_trend_scMerge_False	R GBC-run_combat
R GBC-run_limma_trend_scMerge	R GBC-run_MNN
R GBC-run_limma_trend_mnnCorrect_False	R GBC-run_DEGs_zinbwave_auc
R GBC-run_limma_trend_mnnCorrect	R GBC-run_DEGs_from_Seurat_auc
R GBC-run_limma_trend_cov	R GBC-Seurat_DEG_analysis_auc

- 'gb_process': a list of all testing methods to run multiple scripts at the same time.
- 'GBC-run_<method_name>': script to specifically test a particular method

o input:

■ a count matrix (genes × cells)

*	X1_A	‡ х	1_A.1	‡	X1_A.2	‡	X1_A.3	‡	X1_A.4	‡	X1_A.5	‡	X1_A.6	‡	X1_A.7	‡	X1_A.8	‡	X1_A.9	‡	X1_A.10	‡
0610007P14Rik																						
0610012G03Rik		0		0								0								0		
1110004E09Rik																						
1110004F10Rik		0		0								0								0		
1110008F13Rik																						
1110008P14Rik		0		0								0								0		
1110038B12Rik																						
1110038F14Rik		0		0								0								0		
1110059E24Rik																						
1110059G10Rik		0		0								0								0		
1300002E11Rik																						
1600020E01Rik		0		0								0								0		
1700037H04Rik																						
1700097N02Rik		0		0								0								0		

• a data frame of cell descriptions (group, batch, ... information)

a data frame of gene descriptions (id, name, code, ...information)

o output:

• batch effect correction methods: a matrix of corrected values (genes × cells)

Wilcoxson rank sum test: a data frame of gene ranking analysis

• parametric and integration methods: a data frame of gene ranking analysis

meta-analysis methods: a data frame of gene ranking analysis

3. Visualization

o 'GBC-meta':

Aggerate all output results and visualize F-beta performance

o 'GBC-meta_PR':

Aggerate all output results and illustrate the AUPR curve

