

Grado en Informática y Mátematicas Métodos Numéricos I. Curso 2012/13.

Convocatoria de Septiembre (03-09-2013):

ALUMNO:	D.N.I.:

Parte de Teoría

1. Ejercicios

1. **2 puntos** Considera el problema siguiente:

Hallar $p(x) \in \mathbb{P}_2$ tal que p(0) = -1, p'(1) = 1, $\int_{-1}^{1} p(x) dx = 0$

- a) Calcula la matriz de Gram asociada al problema respecto de la base canónica de \mathbb{P}_2 y verifica si el problema admite solución única.
- b) Calcula, si es posible, una base de tipo Lagrange y la solución del problema con la fórmula de Lagrange.
- 2. **2 puntos** Calcula la curva spline natural que pasa por los puntos del plano

$$(x_i, y_i) := \{(-1, 2), (1, 1), (2, 5)\}$$

- 3. **3 puntos** Dada la función, f(x) = 1/x con $x \in [1, 4]$, se pide:
 - a) calcula la mejor aproximación m.c. continua mediante funciones del tipo: $u(x)=ax+bx^2$ con $a,b\in\mathbb{R}$
 - b) calcula la mejor aproximación m.c. discreta para f(x) en los nodos $x_i := \{1, 2, 3, 4\}$ con funciones del tipo: $u(x) = ax + bx^2$ con $a, b \in \mathbb{R}$
 - c) si consideramos como medida del error el siguiente: $E = max\{|f(x) u(x)| : 1 \le x \le 4\}$, ¿cuál de las dos aproximaciones es mejor?
- 4. **3 puntos** Se considera el sistema lineal, $\mathbf{A}\mathbf{x} = \mathbf{b}$, donde $\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix}$ y $\mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}$
 - a) calcula la solución exacta mediante el método de Gauss con pivote parcial escalado.
 - b) escribe las ecuaciones del método iterativo de Jacobi para aproximar la solución del sistema y calcula 2 aproximaciones desde la aproximación inicial: $x_1^{(0)} = 1$, $x_2^{(0)} = 0$, $x_3^{(0)} = 1$.
 - c) estudia la convergencia del método a partir de:
 - 1) da la matriz del método de Jacobi; es decir, \mathbf{B}_{j} .
 - 2) calcula una aproximación del valor propio dominante de \mathbf{B}_j mediante la aplicación del método de las potencias tres veces partiendo de vector inicial: $\mathbf{x}^{(0)} = (3, 2, 3)^t$ (Use dos decimales en los cálculos)
 - 3) teniendo en cuenta los resultados obtenidos, ¿que se puede decir sobre la convergencia del método de Jacobi?