Clustering/PCA

Raviraj Kuber

Data Cleansing/Massaging

```
In [4]: # Basic checks on data
        base_data_df.country.value_counts()
        base_data_df.info()
       base_data_df.isnull().sum()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 167 entries, 0 to 166
       Data columns (total 10 columns):
       country 167 non-null object
       child_mort 167 non-null float64
                     167 non-null float64
        exports
                     167 non-null float64
        health
                     167 non-null float64
        income
                     167 non-null int64
        inflation
                    167 non-null float64
        life expec 167 non-null float64
                   167 non-null float64
                     167 non-null int64
        dtypes: float64(7), int64(2), object(1)
       memory usage: 13.1+ KB
Out[4]: country
        child mort
        exports
        health
        imports
        income
       inflation
       life_expec
        total_fer
       dtype: int64
```

Observations- All columns Non Null. No Need of Dropping any columns/rows

All Columns are Non-Null. Hence no dropping of columns or any Data Infusion Required.

Outlier Treatment

The number of Outliers are considerably huge in the dataset. In the dataset, each country has single records against itself & dropping any outlier might result in loss of information i.e. records against a country might be eliminated.

- 1) This might cause discrepancies in final analysis, where all the countries are not considered.
- 2) Although PCA is prone to Outliers, the effect of dropping Outliers on Variance, before & after PCA is marginal.
- 3) Since the outliers are huge, they might create a new cluster for further analysis.

Considering the above 3 points,

Outliers have not been eliminated.

PCA- Variance & Scree Plot

```
In [12]: from sklearn.decomposition import PCA
         pca = PCA(svd solver = 'randomized', random state = 42)
                                                                                                                              1.0
         pca.fit(base data df new2)
Out[12]: PCA(copy=True, iterated power='auto', n components=None, random state=42,
             svd_solver='randomized', tol=0.0, whiten=False)
                                                                                                                               0.9
In [13]: #IDentifying Value of Vectors Post PCA
         pca.components
Out[13]: array([[-0.41951945, 0.28389698, 0.15083782, 0.16148244,
                                                                    0.39844111,
                 -0.19317293, 0.42583938, -0.40372896, 0.39264482],
                                                                                                                           Variance
8.0
                [ 0.19288394, 0.61316349, -0.24308678, 0.67182064, 0.02253553,
                 -0.00840447, -0.22270674, 0.15523311, -0.0460224 ]
                [-0.02954353, 0.14476069, -0.59663237, -0.29992674, 0.3015475 ,
                  0.64251951, 0.11391854, 0.01954925, 0.12297749],
                [ 0.37065326, 0.00309102, 0.4618975 , -0.07190746, 0.39215904,
                  0.15044176, -0.20379723, 0.37830365, 0.53199457],
                                                                                                                              0.7
                [-0.16896968, 0.05761584, 0.51800037, 0.25537642, -0.2471496,
                  0.7148691 , 0.1082198 , -0.13526221, -0.18016662],
                [ 0.20062815, -0.05933283,  0.00727646, -0.03003154,  0.16034699,
                  0.06628537, -0.60112652, -0.75068875, 0.01677876],
                [-0.07948854, -0.70730269, -0.24983051, 0.59218953, 0.09556237,
                  0.10463252, 0.01848639, 0.02882643, 0.24299776],
                                                                                                                               0.6
                [-0.68274306, -0.01419742, 0.07249683, -0.02894642, 0.35262369,
                 -0.01153775, -0.50466425, 0.29335267, -0.24969636],
                [ 0.3275418 , -0.12308207, 0.11308797, 0.09903717, 0.61298247,
                 -0.02523614, 0.29403981, -0.02633585, -0.62564572]])
                                                                                                                               0.5
In [14]: # Identifying the Variance Ratio of Components Post PCA
         pca.explained variance ratio
Out[14]: array([0.4595174, 0.17181626, 0.13004259, 0.11053162, 0.07340211,
                0.02484235, 0.0126043 , 0.00981282, 0.00743056])
                                                                                                                                                                                 Number of Coponents
```

From the Above Variance Ratio values & Scree Plot, The first 4 Components describe the Maximum Variance (about 87%). Hence Considering the 4 Components for PCA.

K-Means Clustering- Number of Clusters

```
In [67]: #Calculating Hopkins Value
hopkins(pca_df2.drop('ID', axis=1))
#Hopkins Value is Fluctuating between range of 79 & 87. Hence Clustering can be performed on the mentioned dataset.
Out[67]: 0.8392613641113088
```

Hopkins value is Fluctuating between 79% & 87 % .Hence Clustering can be applied on the above dataset.

```
In [23]: #Calculating Silhouette Score
    from sklearn.metrics import silhouette_score
    ss = []
    for k in range(2,10):
        kmeans = KMeans(n_clusters = k).fit(cluster_df)
        ss.append([k, silhouette_score(cluster_df, kmeans.labels_)])
    plt.plot(pd.DataFrame(ss)[0], pd.DataFrame(ss)[1])
```

Out[23]: [<matplotlib.lines.Line2D at 0x1bbdfc2b898>]

Silhouette Score Drastically Drops Post n=4, hence clustering with n=4

The Silhouette Score increase from n=2 till n=4 & then drastically drops Post n=4.Hence Considering number of clusters=4.

Scatter Plot of Principal Components- K Means Clustering

```
In [27]: # Scatter Plots - PC1 & PC2
          sns.scatterplot(x = 'PC1', y = 'PC2', hue = 'ClusterID', data = dat_km, palette='Set1')
Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x1bbe57239e8>
                     ClusterID
          \overline{C}
             -2
                                     PC1
In [28]: # Scatter Plots - PC3 & PC4
          sns.scatterplot(x = 'PC3', y = 'PC4', hue = 'ClusterID', data = dat_km, palette='Set2')
Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x1bbe57cc400>
          8
                                  -2
                                                      2
                                             0
                                     PC3
```

K Means Clustering- Outliers Post PCA

From the Box plots, it is seen that for Cluster 1 Countries Income & GDP is low but Child Mortality is high. Hence these countries require Maximum AID.

It was observed that the Outlier Behaviour Pre & Post PCA are almost identical. Since the Number of Outliers are large, we are considering not to Drop Any Outlier, as they contain Valuable information.

K-Means Clustering- Cluster Analysis

```
In [34]: # Cluster Analysis for gdpp,income
          km_clustered_df[['gdpp', 'income', 'ClusterID']].groupby('ClusterID').mean().plot(kind = 'bar')
Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x1bbe6b6f358>
           60000
                  income
           50000
           40000
           30000
           20000
           10000
                                   ClusterID
In [35]: # Cluster Analysis for child_mort
          km_clustered_df[['child_mort','ClusterID']].groupby('ClusterID').mean().plot(kind = 'bar')
Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x1bbe6d76358>
                                               ____ child_mort
           80
           60
           40
           20
```

From the Above Charts, for GDP,Income & Child Mortality, it is seen that Countries in Cluster 1 have Low GDP & Income Rate & High rate of Child Mortality. Hence These are the countries that need to be taken in to consideration for HELP.

K Means Clustering- Identifying Countries

	country	
ClusterID		
0	31	
1	47	
2	86	
3	3	
country	child_mort	
Haiti	208.0	
Sierra Leone	160.0	
Chad	150.0	
Central African Republic	149.0	
Mali	137.0	

From the Above Analysis, using PCA & Kmeans Clustering, there are 47 countries in Cluster 1 that required AID. By Sorting the countries based on Child Mortality, High to Low, above are the Top 5 Countries that require AID at the earliest

Since Countries in Cluster 1 require Aid on priority, Identifying the countries in Cluster 1.

Hierarchical Clustering

From the Above Types of Hierarchical Clustering, Considering the Complete Linkage type, we can draw a line @ height=8 and derive 4 clusters. Hence n=4, for hierarchical Clustering.

Hierarchical Clustering- Box Plot Analysis

From the Box plots, it is seen that for Cluster 0 Countries Income & GDP is low but Child Mortality is high. Hence these countries require Maximum AID.

Hierarchical Clustering – Cluster Analysis

```
In [44]: # Cluster Analysis for gdpp, income for Hierarchical Clustering
          km clustered df[['gdpp', 'income', 'Cl ClusterID']].groupby('Cl ClusterID').mean().plot(kind = 'bar')
Out[44]: <matplotlib.axes. subplots.AxesSubplot at 0x1bbe4a6a278>
                                                        gdpp
           60000
                                                        income
           50000
           40000
           30000
           20000
           10000
                                   CI ClusterID
          # Cluster Analysis for gdpp, income for Hierarchical Clustering
          km clustered df[['child mort', 'Cl ClusterID']].groupby('Cl ClusterID').mean().plot(kind = 'bar')
Out[45]: <matplotlib.axes._subplots.AxesSubplot at 0x1bbe5a918d0>
                   child mort
           120
           100
            80
            60
            40
            20
                                 CI ClusterID
```

From the Above Charts, for GDP,Income & Child Mortality, it is seen that Countries in Cluster 0 & Cluster 3 have Low GDP & Income Rate & High rate of Child Mortality. Hence These are the countries that need to be taken in to consideration for HELP.

Hierarchical Clustering- Identifying Countries

	country	child_mort
	Haiti	208.0
Sier	ra Leone	160.0
	Chad	150.0
Central African	Republic	149.0
	Mali	137.0
ClusterID	countr	у
54		
109		
		3
		1

From the Above Analysis, using PCA & Hierarchical Clustering, there are 54 countries in Cluster 0 that required AID. By Sorting the countries based on Child Mortality, High to Low, above are the Top 5 Countries that require AID at the earliest

Final List of Countries

• Considering Both K-Means Clustering & Hierarchical Clustering, following are the

Top 5 Countries that Require urgent Aid.

- Haiti
- Sierra Leone
- Chad
- Central African Republic
- Mali

