(19)日本国特許庁 (JP) (12) 公表特許公報(A)

(11)特許出願公表番号 特表2003-528070 (P2003-528070A)

(43)公表日 平成15年9月24日(2003.9.24)

(51) Int.Cl. ⁷		識別記号		FΙ			₹·	-7]-ド(参考)
A01N	37/46			A 0 1	N 37/46			4 C 0 5 5
	43/08				43/08		F	4 C 0 6 3
	43/10				43/10		В	4H006
							G	4H011
	43/36				43/36		Α	
			審査請求	未請求	予備審査請求	有	(全258頁)	最終頁に続く

(21)出願番号	特顧2001-568883(P2001-568883)
(86) (22)出顧日	平成13年3月20日(2001.3.20)
(85)翻訳文提出日	平成14年9月9日(2002.9.9)
(86)国際出願番号	PCT/US01/09338
(87)国際公開番号	WO01/070671
(87)国際公開日	平成13年9月27日(2001.9.27)
(31)優先権主張番号	60/191, 242
(32)優先日	平成12年3月22日(2000.3.22)
(33)優先権主張国	米国 (US)
(31)優先権主張番号	60/220, 232
(32)優先日	平成12年7月24日(2000.7.24)
(33)優先権主張国	米国(US)

(71)出願人 イー・アイ・デュポン・ドウ・ヌムール・ アンド・カンパニー E. I. DU PONT DE NEMO URS AND COMPANY アメリカ合衆国、デラウエア州、ウイルミ ントン、マーケット・ストリート 1007 (72)発明者 ラーム, ジョージ・ピー アメリカ合衆国デラウエア州19808ウイル

ミントン・フエアヒルドライブ148 (74)代理人 弁理士 小田島 平吉

最終頁に続く

(54) 【発明の名称】 殺虫性アントラニルアミド類

(57)【要約】

本発明は式(1)の化合物、それらのN-オキシド及び 農業的に適した塩を提供し、式中、A、B、J、R1、 R³、R³及びR⁴ならびにnは本開示中で定義した通り である。節足動物又はそれらの環境を殺節足動物的に有 効な量の式(1)の化合物と接触させることを含んでな る節足動物の抑制法ならびに式(1)の化合物を含有す る組成物も開示する。

【化1】

$$(\mathbb{R}^4)_{n} \xrightarrow{2} \mathbb{N}_{\mathbb{R}^2} \mathbb{N}_{\mathbb{R}^3}$$
 (1)

【特許請求の範囲】

【請求項1】 節足動物又はそれらの環境を殺節足動物的に有効な量の式1 【化1】

$$(\mathbb{R}^4)_n$$

$$\begin{array}{c} 3 \\ 2 \\ N \\ R^1 \\ \end{array}$$

$$\begin{array}{c} R^1 \\ R^2 \\ \end{array}$$

[式中、

A及びBは独立してO又はSであり;

各」は独立して $1\sim 2$ 個の $R^{\mathfrak{s}}$ で置換され且つ場合により $1\sim 3$ 個の $R^{\mathfrak{s}}$ で置換されていることができるフェニル又はナフチル基であるか;

あるいは各 J は独立して 5-もしくは 6- 員複素芳香環又は芳香族 8-、 9-もしくは 10- 員縮合複素二環式環系であり、ここで各環又は環系は場合により 1-4個の 10-1で置換されていることができ;

$n l 1 \sim 4 r b 0$;

R'は $C_2 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルアミノカルボニル又は $C_4 - C_6$)」であり;

¥.

 R^{2} $times C_{1} - C_{6}$ $ruhethouse C_{2} - C_{6}$ $ruhethouse C_{3} - C_{6}$ $ruhethouse C_{4} - C_{6}$ $ruhethouse C_{5} - C_{6}$ $ruhethouse C_{7} - C_{7}$ $ruhethouse C_{7}$

 R^3 はH;G;それぞれ場合により Λ ロゲン、G、CN、 NO_2 、ヒドロキシ、C、 – C、アルコキシ、C、 – C、ハロアルコキシ、C、 – C、アルキルチオ、C、 – C。 アルキルスルフィニル、C₁ – C₄ アルキルスルホニル、C₂ – C₆ アルコキシカル ボニル、C,-C,アルキルカルボニル、C,-C,トリアルキルシリル、又は各環 が場合により $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 C_3 ¸ – C。シクロアルキル、C」 – C。ハロアルキル、C₂ – C。ハロアルケニル、C₂ - C。ハロアルキニル、C。 - C。ハロシクロアルキル、ハロゲン、CN、NO。、 ミノ、C, - C。ジアルキルアミノ、C。- C。シクロアルキルアミノ、C。- C。(アルキル)シクロアルキルアミノ、C₁-C₄アルキルカルボニル、C₁-C₆アル コキシカルボニル、 C 、 - C 。 アルキルアミノカルボニル、 C 。 - C 。 ジアルキルア ミノカルボニル又はC, −C。トリアルキルシリルより成る群から独立して選ばれ る1~3個の置換基で置換されていることができるフェニル、フェノキシ又は5 -もしくは6-員複素芳香環より成る群から選ばれる1個もしくはそれより多い 置換基で置換されていることができるC,-C,アルキル、C2-C,アルケニル、 $C_1 - C_2 P \mathcal{N} + \mathcal{N} \times C_3 - C_4 \mathcal{N} + \mathcal{N} \times C_4 - C_4 \mathcal{N} \times C_5 - C_6 \mathcal{N} \times C_6 + C_6 \mathcal{N} \times C_6 +$ C, - C, アルコキシカルボニル又はC, - C, アルキルカルボニルであるか;ある いは

 R^2 及び R^3 はそれらが結合している窒素と一緒になって、 $2\sim6$ 個の炭素原子及び場合により1個の追加の窒素、硫黄もしくは酸素原子を含有する環を形成することができ、該環は場合により C_1-C_2 アルキル、ハロゲン、CN、 NO_2 及び C_1-C_2 アルコキシより成る群から選ばれる $1\sim4$ 個の置換基で置換されていることができ;

Gは、場合によりC(=O)、SOもしくはS(O)、より成る群から選ばれる 1もしくは2個の環メンバーを含んでいることができ且つ場合によりC、-C、アルキル、ハロゲン、CN、NO、及びC、-C、アルコキシより成る群から選ばれる $1\sim4$ 個の置換基で置換されていることができる 5 - もしくは 6 - 員非芳香族 炭素環式もしくは複素環式環であり;

各R⁺は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 NO_2 、ヒドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルカニール、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルカニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_8$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ又は $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各R⁴は独立してフェニル、ベンジル又はフェノキシであり、それぞれ場合により $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアルケニル、 $C_2 - C_4$ ハロアルキニル、 $C_3 - C_6$ ハロアルキル、ハロゲン、CN、 NO_2 、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルスルカニル、 $C_1 - C_4$ アルキルスルカニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ (アルキル)シクロアルキルアミノ、 $C_2 - C_4$ アルキルカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_1 - C_4$ アルキルアミノカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ ドリアルキルシリルで置換されていることができ;

各R⁵ は独立して $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 CO_2 H、 $CONH_2$ 、 NO_2 、E ドロキシ、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ アルキルチオ、 $C_1 - C_6$ アルキルスルフィニル、 $C_1 - C_6$ アル

キルスルホニル、 $C_1 - C_6$ ハロアルキルチオ、 $C_1 - C_6$ ハロアルキルスルフィニル、 $C_1 - C_6$ ハロアルキルスルホニル、 $C_1 - C_6$ アルキルアミノ、 $C_2 - C_1$ ジアルキルアミノ又は $C_3 - C_6$ シクロアルキルアミノ、 $C_2 - C_6$ アルキルカルボニル、 $C_1 - C_6$ アルコキシカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルアミノカルボニル、 $C_3 - C_6$ トリアルキルシリルであるか;あるいは

 (R^s) ,は、隣接炭素原子に結合している場合、-OCF,O-、-CF,CF,O- O- ZUU-OCF,CF,O- ZUU- ZUU-

各 $R^{\mathfrak{s}}$ は独立してH、ハロゲン、 $C_{\mathfrak{s}}-C_{\mathfrak{s}}$ アルキル、 $C_{\mathfrak{s}}-C_{\mathfrak{s}}$ アルキニル、 $C_{\mathfrak{s}}-C_{\mathfrak{s}}$ クロアルキル、 $C_{\mathfrak{s}}-C_{\mathfrak{s}}$ アルコキシ又は $C_{\mathfrak{s}}-C_{\mathfrak{s}}$ アルコキシカルボニルであるか;あるいは

各R⁶ は独立してフェニル、ベンジル、フェノキシ、5 ーもしくは6 ー員複素芳香環又は芳香族8 ー、9 ーもしくは10 ー員縮合複素二環式環系であり、各環は場合により C_1 ー C_4 アルキル、 C_2 ー C_4 アルケニル、 C_2 ー C_4 アルキニル、 C_3 ー C_6 シクロアルキル、 C_1 ー C_4 ハロアルキル、 C_2 ー C_4 ハロアルケニル、 C_2 ー C_4 ハロアルキニル、 C_3 ー C_4 ハロアルキニル、 C_5 ー C_6 ハロシクロアルキル、ハロゲン、 C_5 、 C_7 、 C_8 アルコキシ、 C_1 ー C_4 アルコキシ、 C_1 ー C_4 アルキルスルフィニル、 C_1 ー C_4 アルキルスルホニル、 C_1 ー C_4 アルキルアミノ、 C_2 ー C_4 ジアルキルアミノ、 C_3 ー C_6 シクロアルキルアミノ、 C_3 ー C_6 (アルキル)シクロアルキルアミノ、 C_4 ー C_4 アルキルカルボニル、 C_5 ー C_6 アルコキシカルボニル、 C_7 ー C_6 アルキルアミノカルボニル、 C_7 ー C_6 アルキルアミノカルボニルスは C_7 ー C_6 トリアルキルシリルより成る群から独立して選ばれる1~3個の置換基で置換されていることができ;

各R⁷は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、 $C_1 - C_6$ ハロシクロアルキル、ハロゲン、 $C_1 - C_6$ ハロシクロアルキル、ハロゲン、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルフ

ィニル、 $C_1 - C_4$ ハロアルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_1 - C_6$ アルキルカルボニル、 $C_1 - C_6$ アルコキシカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各R¹は独立してフェニル、ベンジル、ベンゾイル、フェノキシ、5-もしくは 6- 員複素芳香環又は芳香族8-、9-もしくは10- 員縮合複素二環式環系であり、各環は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキール、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロアルキル、 C_2-C_4 ハロアルケニル、 C_2-C_4 ハロアルキニル、 C_3-C_6 ハロアルキル、ハロゲン、CN、NO2、C1-C4アルコキシ、C1-C4アルコキシ、C1-C4アルキルスルカイニル、C1-C4アルキルスルカイニル、C1-C4アルキルスルカルボニル、C1-C4アルキルアミノ、C2-C4アルキルアミノ、C3-C6シクロアルキルアミノ、C3-C6シクロアルキルアミノ、C3-C6シクロアルキルアミノ、C3-C6シクロアルキルアミノ、C3-C6シクロアルキルアミノ、C3-C6シクロアルキルアミノ、C3-C6・アルコキシカルボニル、C2-C6アルキルアミノカルボニル、C3-C6シクロアルキルカルボニル、C3-C6シクロアルキルカルボニル、C3-C6シクロアルキルカルボニル、C3-C6シクロアルキルカルボニル、C3-C6シクロアルキルカルボニル、C3-C6シクロアルキルカルボニル、C3-C6シクロアルキルカルボニル、C3-C6シクロアルキルカルボニル、C3-C6シクロアルキルカルボニル、C3-C6シクロアルキルカルボニル、C3-C6・D1アルキルシリルより成る群から独立して選ばれる1-3000置換基で置換されていることができ;

- (1) A及びBが両方ともOであり、 R^1 がH又は $C_1 C_3$ アルキルであり、 R^3 がH又は $C_1 C_3$ アルキルであり且つ R^4 がH、ハロゲン、 $C_1 C_6$ アルキル、フェニル、ヒドロキシ又は $C_1 C_6$ アルコキシである場合、1個の R^5 はハロゲン、 $C_1 C_6$ アルキル、ヒドロキシ又は $C_1 C_6$ アルコキシ以外であるか;あるいは
- (2) J は場合により置換されていることができる1, 2, 3- チアジアゾール 以外である]

の化合物、そのN-オキシド又は農業的に適した塩と接触させることを含んでなる節足動物の抑制法。

【請求項2】 Jが $1\sim2$ 個のR°で置換され且つ場合により $1\sim3$ 個のR°で置換されていることができるフェニル基である請求項1の方法。

【請求項3】 A及びBが両方ともOであり;

nが1~2であり;

R'がH、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_1 - C_4$ アルキニル、 $C_3 - C_6$ アルキルカルボニル又は $C_1 - C_6$ アルコキシカルボニルであり:

 R^{2} がH、 C_{1} - C_{4} Pルキル、 C_{7} - C_{6} Pルケニル、 C_{7} - C_{6} Pルキニル、 C_{7} - C_{6} Pルキルカルボニル又は C_{7} - C_{6} Pルコキシカルボニルであり:

 R^s がそれぞれ場合によりハロゲン、CN、 $C_1 - C_2$ アルコキシ、 $C_1 - C_2$ アルキルチオ、 $C_1 - C_2$ アルキルスルフィニル及び $C_1 - C_2$ アルキルスルホニルより成る群から選ばれる1個もしくはそれより多い置換基で置換されていることができる $C_1 - C_2$ アルキル、 $C_2 - C_3$ アルキニル又は $C_3 - C_4$ シクロアルキルであり;

 R^4 基の1つがフェニル環に2-位又は5-位で結合し、そして該 R^4 が C_1 - C_4 アルキル、 C_1 - C_4 ハロアルキル、ハロゲン、C N、 NO_2 、 C_1 - C_4 アルコキシ、 C_1 - C_4 ハロアルコキシ、 C_1 - C_4 アルキルチオ、 C_1 - C_4 アルキルスルフィニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルスルホニル、 C_1 ー C_4 ハロアルキルスルフィニル、 C_1 ー C_4 ハロアルキルスルホニルであり;

各 R^5 が独立して C_1 $-C_4$ Λ ロアルキル、C N O_2 、 C_1 $-C_4$ Λ ロアルコキシ 、 C_1 $-C_4$ アルキルチオ、 C_1 $-C_4$ アルキルスルフィニル、 C_1 $-C_4$ アルキルスルホニル、 C_1 $-C_4$ Λ ロアルキルチオ、 C_1 $-C_4$ Λ ロアルキルスルカール、 C_1 $-C_4$ Λ ロアルキルスルホニル又は C_2 $-C_4$ アルコキシカルボニルであるか;あるいは

 (R^5) ,が、隣接炭素原子に結合している場合、-OCF,O-、-CF,CF,O- O- ZU-OCF,CF,O- ZU- ZU-

各 R^6 が独立してH、ハロゲン、 $C_1 - C_4$ アルキル、 $C_1 - C_2$ アルコキシ又は C_2 $- C_4$ アルコキシカルボニルであるか、あるいは

各 R^6 が独立してフェニル又はS-6もしくはS-6は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_3-C_4 アルキニル、 C_3-C_4 アルキニル

 C_6 シクロアルキル、 C_1 $-C_4$ ハロアルキル、 C_2 $-C_4$ ハロアルケニル、 C_2 $-C_4$ ハロアルキニル、 C_3 $-C_6$ ハロシクロアルキル、ハロゲン、CN、 NO_2 、 C_1 $-C_4$ アルコキシ、 C_1 $-C_4$ アルキルスルフィニル、 C_1 $-C_4$ アルキルスルホニル、 C_1 $-C_4$ アルキルアミノ、 C_2 $-C_6$ ジアルキルアミノ、 C_3 $-C_6$ シクロアルキルアミノ、 C_3 $-C_6$ (アルキル)シクロアルキルアミノ、 C_2 $-C_4$ アルキルカルボニル、 C_2 $-C_6$ アルコキシカルボニル、 C_2 $-C_6$ アルキルアミノカルボニル、 C_3 $-C_6$ ジアルキルアミノカルボニル、 C_3 $-C_6$ ジアルキルアミノカルボニル又は C_3 $-C_6$ トリアルキルシリルで置換されていることができる請求項2の方法。

【請求項4】 R'及びR'が両方ともHであり;

 R^3 が場合によりハロゲン、CN、OCH $_3$ 、S(O), CH $_3$ で置換されていることができる C_1 - C_4 アルキルであり;

各 R^4 が独立してH、 CH_3 、 CF_3 、 OCF_3 、 $OCHF_2$ 、S (O) $_{\mathfrak{p}}CF_3$ 、S (O) $_{\mathfrak{p}}CHF_2$ 、CN又はハロゲンであり;

各R⁵が独立してCF₃、OCF₃、OCHF₂、S(O),CF₃、S(O),CH F₂、OCH₂CF₃、OCF₂CHF₂、S(O),CH₂CF₃又はS(O),CF₂ CHF₂であり;

各R⁶が独立してH、ハロゲン又はメチル;あるいはフェニル、ピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環は場合により C_1-C_4 アルキル、 C_1-C_4 ハロアルキル、ハロゲン又はCNで置換されていることができ:

pが0、1又は2である

請求項3の方法。

【請求項5】 R³がi-プロピル又はt-ブチルである請求項4の方法。

【請求項 6 】 」が場合により $1 \sim 4$ 個の R^7 で置換されていることができる 5-6 しくは 6-6 複素芳香環である請求項 1 の方法。

【請求項7】 JがJ-1、J-2、J-3、J-4及びJ-5【化2】

より成る群から選ばれる5-もしくは6-員複素芳香環であり、各1は場合により $1\sim3$ 個の R^{7} で置換されていることができ、

QはO、S又はNR¹であり;

W、X、Y及びZは独立してN又はCR⁷であり、但し、J-4及びJ-5において、W、X、Y又はZの少なくとも1個はNである 請求項6の方法。

【請求項8】 A及びBがOであり:

nが1~2であり:

R'がH、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_3 - C_4$ アルキニル、 $C_4 - C_6$ アルキルカルボニル又は $C_4 - C_6$ アルコキシカルボニルであり;

 R^{2} がH、 C_{1} - C_{4} Pルキル、 C_{2} - C_{4} Pルケニル、 C_{1} - C_{4} Pルキニル、 C_{3} - C_{6} シクロアルキル、 C_{1} - C_{6} Pルキルカルボニル又は C_{1} - C_{6} Pルコキシカルボニルであり;

 R^s がH; 又はそれぞれ場合によりハロゲン、CN、 $C_1 - C_2$ アルコキシ、 $C_1 - C_2$ アルキルチオ、 $C_1 - C_2$ アルキルスルフィニル及び $C_1 - C_2$ アルキルスルホニルより成る群から選ばれる 1 個もしくはそれより多い置換基で置換されていることができる $C_1 - C_2$ アルキル、 $C_2 - C_3$ アルケニル、 $C_3 - C_4$ アルキルであり;

R'基の1つがフェニル環に2 -位で結合し、そして該R'が $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン、CN、 NO_2 、 $C_1 - C_4$ アルコキシ、 $C_1 - C_5$

 $_4$ ハロアルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 C_1 $- C_4$ アルキルスルホニル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルホニルであり;

各 R^{τ} が独立してH、 $C_1 - C_4$ アルキル、 $C_1 - C_4$ アルキル、 $C_1 - C_4$ アルキル、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルカースルカースルカースルカースルカースルカルボニル、 $C_1 - C_4$ アルコキシカルボニル ; あるいはフェニル又は S - S もしくは S - S もしくは S - S であり、各環は場合により S - S の S の S であり、各環は場合により S の

請求項6又は7の方法。

【請求項9】 Jがピリジン、ピリミジン、ピラゾール、イミダゾール、トリアゾール、チオフェン、チアゾール及びオキサゾール、フラン、イソチアゾール及びイソオキサゾールより成る群から選ばれ、それぞれ場合により1~3個のR'で置換されていることができる請求項8の方法。

【請求項10】 Jがピリジン、ピリミジン、ピラゾール、チオフェン及び チアゾールより成る群から選ばれ、それぞれ場合により1~3個の R^7 で置換されていることができ;

R¹及びR²が両方ともHであり;

 R^3 が場合によりハロゲン、CN、 OCH_3 、S(O)。 CH_3 で置換されていることができる $C_1 - C_4$ アルキルであり;

各R¹が独立してH、CH₁、CF₃、OCF₃、OCHF₂、S(O)_pCF₃、S(O)_pCF₃、S(O)_pCHF₂、CN又はハロゲンであり;

各 R^{7} が独立してH、ハロゲン、CH₃、CF₃、OCHF₂、S(O)。CF₃、S(O)。CH₂CF₃、S(O)。CH₂CF₃、S(O)。CH₂CF₃、S(O)。CH₂CF₃、S(O)。CH₂CF₃、S(O)。CF₂CHF₂;又はフェニル、ピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環は場合によりC₁ - C₄ アルキル、C₁ - C₄ アルコキシ、C₁ - C₄ アルコキシ、C₁ - C₄ アルコキシ、C₁ - C₄ アルコキシ、C₁ - C₄ アルキルスルフィニル、C₁ - C₄ アルキルスルホニル、ハロゲン又はCNで置換されていることができ;

pが0、1又は2である

請求項9の方法。

【請求項11】 」が場合により $1\sim3$ 個の R^7 で置換されていることができるピリジンである請求項10の方法。

【請求項12】 1個の R^{7} が場合により $C_{1}-C_{4}$ アルキル、 $C_{1}-C_{4}$ ハロアルキル、ハロゲン又はCNで置換されていることができるフェニルである請求項11の方法。

【請求項13】 1個の R^{7} がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により C_1-C_4 アルキル、 C_1-C_4 ハロアルキル、ハロゲン又はCNで置換されていることができる請求項11の方法。

【請求項14】 J が場合により $1\sim3$ 個の R^7 で置換されていることができるピリミジンである請求項10 の方法。

【請求項15】 1個のR⁷が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができるフェニルである請求項14の方法。

【請求項16】 1個の R^{7} がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができる請求項14の方法。

【請求項17】 $」 が場合により1~3個の<math>R^7$ で置換されていることができるピラゾールである請求項10の方法。

【請求項18】 1個のR⁷が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができるフェニルである請求項17の方法。

【請求項19】 1個のR'がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができる請求項17の方法。

【請求項20】 R^7 が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができるピリジンである請求項19の方法。

【請求項21】 3-メチル-N-(1-メチルエチル)-2-[[4-(トリフルオロメチル) ベンゾイル] アミノ] -ベンズアミド、

2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ] カルボニル] フェニル] -4-(トリフルオロメチル) ベンズアミド、

2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ] カルボニル] フェニル] -6-(トリフルオロメチル) -3-ピリジンカルボキシアミド、

1-(2-7)ルオロフェニル)-N-[2-8) -N-[-1] -N-[-

1-(3-DDD-2-UJジニル)-N-[2-メチル-6-[[(1-メチルエチル)アミノ]カルボニル]フェニル]-3-(トリフルオロメチル)-1H-ピラゾール-5-カルボキシアミド、

N-[2-クロロ-6-[[(1-メチルエチル) アミノ] カルボニル] フェ

3-ブロモ-1-(2-クロロフェニル)-N-[2-メチル-6-[[(1 -メチルエチル)アミノ]カルボニル]フェニル]-1H-ピラゾール-5-カルボキシアミド、及び

3- $\overline{)}$ $\overline{)}$

より成る群から選ばれる式1の化合物を含んでなる請求項1の方法。

【請求項22】 式1

【化3】

$$(R^4)_n$$
 A
 R^1
 R^2
 R^3

[式中、

A及びBは独立してO又はSであり:

各」は独立して $1\sim 2$ 個の R^{5} で置換され且つ場合により $1\sim 3$ 個の R^{5} で置換されていることができるフェニル又はナフチル基であるか:

あるいは各 J は独立して 5-6しくは 6- 員複素芳香環又は芳香族 8-、 9-6 しくは 10- 員縮合複素二環式環系であり、ここで各環又は環系は場合により 1- 10 で置換されていることができ;

nは1~4であり;

R'はH; 又はそれぞれ場合によりハロゲン、CN、NO2、Eドロキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルキルチオ、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルフィニル

 C_4 アルキルスルホニル、 C_1 $-C_4$ アルコキシカルボニル、 C_1 $-C_4$ アルキルア ミノ、 C_2 $-C_4$ ジアルキルアミノ及び C_3 $-C_6$ シクロアルキルアミノより成る群から選ばれる 1 個もしくはそれより多い置換基で置換されていることができる C_4 $-C_6$ アルキル、 C_2 $-C_6$ アルキニルもしくは C_3 $-C_6$ シクロアルキルであるか; あるいは

R'は $C_1 - C_6$ アルキルカルボニル、 $C_1 - C_6$ アルコキシカルボニル、 $C_1 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルアミノカルボニル又は $C_4 - C_6$) I であり;

 R^2 はH、 C_1 $-C_6$ Pルキル、 C_2 $-C_6$ Pルケニル、 C_1 $-C_6$ Pルキニル、 C_3 $-C_6$ シクロアルキル、 C_1 $-C_4$ Pルコキシ、 C_1 $-C_4$ Pルキルアミノ、 C_2 $-C_6$ ジアルキルアミノ、 C_3 $-C_6$ シクロアルキルアミノ、 C_2 $-C_6$ Pルコキシカルボニル又は C_2 $-C_6$ Pルキルカルボニルであり;

 R^3 はH; それぞれ場合によりハロゲン、CN、 NO_2 、ヒドロキシ、 $C_1 - C_4$ ア ルコキシ、C₁ - C₄ ハロアルコキシ、C₁ - C₄ アルキルチオ、C₁ - C₄ アルキル スルフィニル、C₁ - C₄ アルキルスルホニル、C₂ - C₆ アルコキシカルボニル、 $C_2 - C_6$ アルキルカルボニル、 $C_3 - C_6$ トリアルキルシリル又は場合により C_1 $-C_4$ アルキル、 C_2 $-C_4$ アルケニル、 C_2 $-C_4$ アルキニル、 C_3 $-C_6$ シクロア ルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアルケニル、 $C_2 - C_4$ ハロアルキ ニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 NO_2 、 $C_1 - C_4$ アルコ キシ、C₁ - C₄ ハロアルコキシ、C₁ - C₄ アルキルチオ、C₁ - C₄ アルキルスル フィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_8$ ジ アルキルアミノ、C₃-C₆シクロアルキルアミノ、C₃-C₆(アルキル)シクロ アルキルアミノ、 $C_2 - C_4$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル 、 C₁ – C₆ アルキルアミノカルボニル、 C₁ – C₆ ジアルキルアミノカルボニル又 はC。-C。トリアルキルシリルより成る群から独立して選ばれる1~3個の置換 基で置換されていることができるフェノキシ環より成る群から選ばれる1個もし くはそれより多い置換基で置換されていることができるC」-C。アルキル、C2 ルコキシ; $C_1 - C_4$ アルキルアミノ; $C_2 - C_8$ ジアルキルアミノ; $C_3 - C_6$ シク

ロアルキルアミノ; $C_1 - C_6$ アルコキシカルボニル又は $C_1 - C_6$ アルキルカルボニルであるか; あるいは

 R^2 及び R^3 はそれらが結合している窒素と一緒になって、 $2\sim6$ 個の炭素原子及び場合により1個の追加の窒素、硫黄もしくは酸素原子を含有する環を形成することができ、該環は場合により C_1-C_2 アルキル、ハロゲン、CN、 NO_2 及び C_1-C_2 アルコキシより成る群から選ばれる $1\sim4$ 個の置換基で置換されていることができ;

各R⁴は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、 $C_1 - C_6$ ハロアルキニル、 $C_1 - C_4$ ハロアルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ ハロアルキルアメルフィニル、 $C_1 - C_4$ ハロアルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ又は $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各R'は独立してフェニル、ベンジル又はフェノキシであり、それぞれ場合により $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアルケニル、 $C_2 - C_4$ ハロアルナニル、 $C_3 - C_4$ ハロアルキル、 $C_1 - C_4$ ハロアルキール、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 NO_2 、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルカニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_3 - C_6$ (アルキル)シクロアルキルアミノ、 $C_2 - C_4$ アルキルカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニルスは $C_3 - C_6$ トリアルキルシリルで置換されていることができ;

ル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルフィニル、 $C_1 - C_4$ ハロアルキルスルホニル、 C_N 、 NO_2 、 $C_1 - C_4$ アルコキシカルボニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_4$ ジアルキルアミノ、 $C_3 - C_4$ シクロアルキルアミノ、 $C_4 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル又は $C_3 - C_6$ ジアルキルアミノカルボニルであるか;あるいは

隣接炭素原子に結合している(R^5),は、 $-OCF_2O-$ 、 $-CF_2CF_2O-$ 又は $-OCF_3CF_3O-$ として一緒になることができ;

各 R^6 は独立してH、ハロゲン、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_1 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ アルコキシ又は $C_2 - C_4$ アルコキシカルボニルであるか;あるいは

各R⁶は独立してフェニル、ベンジル、フェノキシ、5-もしくは6-員複素芳香環又は芳香族8-、9-もしくは10-員縮合複素二環式環系であり、各環は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキニル、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロアルキル、 C_2-C_4 ハロアルケニル、 C_2-C_4 ハロアルキール、 C_3-C_6 ハロシクロアルキル、 C_1-C_4 ハロアルキール、 C_1-C_4 ハロアルコキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルホニル、 C_1-C_4 アルキルアミノ、 C_2-C_6 ジアルキルアミノ、 C_3-C_6 シクロアルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_2-C_6 アルキルカルボニル、 C_1-C_6 アルコキシカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_2-C_6 アルキルアミノカルボニル、 C_3-C_6 ジアルキルアミノカルボニル又は C_3-C_6 トリアルキルシリルより成る群から独立して選ばれる1~3個の置換基で置換されていることができ;

ィニル、 $C_1 - C_4$ ハロアルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_2 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_5 - C_6$ トリアルキルシリルであるか;あるいは

各R^Tは独立してフェニル、ベンジル、ベンゾイル、フェノキシ又は5-もしくは6-員複素芳香環、8-、9-もしくは10-員縮合複素二環式環系であり、各環は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキニル、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロアルキル、 C_2-C_4 ハロアルケニル、 C_2-C_4 ハロアルキニル、 C_1-C_4 ハロアルキール、 C_1-C_4 ハロアルキール、 C_1-C_4 ハロアルキール、 C_1-C_4 アルコキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルキルチオ、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルホニル、 C_1-C_4 アルキルアミノ、 C_2-C_6 アルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_2-C_4 アルキルカルボニル、 C_2-C_6 アルコキシカルボニル、 C_2-C_6 アルキルアミノカルボニル、 C_3-C_6 ジアルキルアミノカルボニル又は C_3-C_6 トリアルキルシリルより成る群から独立して選ばれる1~3個の置換基で置換されていることができ;但し、

- (i) 少なくとも1個のR'及び少なくとも1個のR'はH以外であり:
- (ii) Jは場合により置換されていることができる1,2,3-チアジアゾール以外であり;
- (i i i) Jが場合により置換されていることができるピリジンであり且つ R^i がHである場合、 R^i はH又は CH_i 以外であり;
- (i v) J が場合により置換されていることができるピリジンである場合、 R^7 は $CONH_2$ 、 C_2-C_3 アルキルアミノカルボニル又は C_3-C_3 ジアルキルアミノカルボニルであることはできず;
- (v) Jが場合により置換されていることができるピラゾール、テトラゾール又はピリミジンである場合、R'及びR'は両方が水素であることはできない]の化合物、そのN-オキシド及び農業的に適した塩。

【請求項23】 Jが1~2個のR5で置換され且つ場合により1~3個のR5で置換されていることができるフェニル基である請求項22の化合物。

【請求項24】 A及びBが両方ともOであり:

nが1~2であり:

R'がH、 C_1 $-C_4$ Pルキル、 C_2 $-C_4$ Pルケニル、 C_3 $-C_4$ Pルキニル、 C_3 $-C_4$ Pルキル、 C_4 $-C_5$ Pルキルカルボニル又は C_4 $-C_6$ Pルコキシカルボニルであり;

 R^2 がH、 C_1 $-C_4$ Pルキル、 C_2 $-C_4$ Pルケニル、 C_3 $-C_4$ Pルキニル、 C_3 $-C_6$ Pルキルカルボニル又は C_2 $-C_6$ Pルコキシカルボニルであり;

 R^s がそれぞれ場合によりハロゲン、CN、 $C_1 - C_2$ アルコキシ、 $C_1 - C_2$ アルキルチオ、 $C_1 - C_2$ アルキルスルフィニル及び $C_1 - C_2$ アルキルスルホニルより成る群から選ばれる1個もしくはそれより多い置換基で置換されていることができる $C_1 - C_2$ アルキル、 $C_2 - C_3$ アルキニル又は $C_3 - C_4$ シクロアルキルであり:

 R^4 基の1つがフェニル環に2-位又は5-位で結合し、そして該 R^4 が C_1 - C_4 アルキル、 C_1 - C_4 ハロアルキル、ハロゲン、C N、N O $_2$ 、 C_1 - C_4 アルコキシ、 C_1 - C_4 アルコキシ、 C_1 - C_4 アルキルスルフィニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルスルホニルであり:

各 R^5 が独立して C_1 $-C_4$ Λ ロアルキル、CN、 NO_2 、 C_1 $-C_4$ Λ ロアルコキシ、 C_1 $-C_4$ アルキルチオ、 C_1 $-C_4$ アルキルスルフィニル、 C_1 $-C_4$ アルキルスルホニル、 C_1 $-C_4$ Λ ロアルキルチオ、 C_1 $-C_4$ Λ ロアルキルスルフィニル、 C_1 $-C_4$ Λ ロアルキルスルホニル又は C_2 $-C_4$ アルコキシカルボニルであるか;あるいは

 (R^5) ,が、隣接炭素原子に結合している場合、 $-OCF_1O-$ 、 $-CF_2CF_2O-$ O- Zは $-OCF_2CF_2O-$ Zとして一緒になることができ;

各 R^6 が独立してH、ハロゲン、 $C_1 - C_4$ アルキル、 $C_1 - C_2$ アルコキシ又は C_2 $- C_4$ アルコキシカルボニルであるか、あるいは

各R⁶が独立してフェニル又は5-もしくは6-員複素芳香環であり、各環は場合により C_1 - C_4 アルキル、 C_2 - C_4 アルケニル、 C_2 - C_4 アルキニル、 C_3 - C_6 シクロアルキル、 C_1 - C_4 ハロアルキル、 C_1 - C_4 ハロアルキル、 C_1 - C_4 ハロアルキニル、 C_3 - C_6 ハロシクロアルキル、ハロゲン、CN、 NO_2 、 C_1 - C_4 アルコキシ、 C_1 - C_4 ハロアルコキシ、 C_1 - C_4 アルキルスルフィニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルアミノ、 C_2 - C_6 ジアルキルアミノ、 C_3 - C_6 (アルキル) シクロアルキルアミノ、 C_4 - C_4 アルキルアミノ、 C_5 - C_6 (アルキル)シクロアルキルアミノ、 C_5 - C_6 アルキルアミノ、 C_7 - C_6 アルキルアミノ、 C_7 - C_6 アルキルアミノカルボニル、 C_7 - C_6 アルキルアミノカルボニル、 C_7 - C_6 アルキルアミノカルボニル又は C_7 - C_6 トリアルキルシリルで置換されていることができる請求項25の化合物。

【請求項25】 R'及びR'が両方ともHであり;

 R^3 が場合によりハロゲン、CN、 OCH_3 、S (O) $_{1}$ CH_3 で置換されていることができる $C_1 - C_4$ アルキルであり;

各 R^4 が独立してH、 CH_3 、 CF_3 、 OCH_3 、 OCH_4 、S (O), CF_3 、S (O), CH_4 、CN又はNロゲンであり;

各 R^5 が独立して CF_3 、 OCF_3 、 $OCHF_2$ 、S (O), CF_3 、S (O), CH_2 CF_3 、 OCF_4 CF_3 、 OCF_4 CF_5 (O), CH_4 CF_5 CHF_4 であり;

各 R^6 が独立してH、ハロゲン又はメチル;あるいはフェニル、ピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環は場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はC N で置換されていることができ;

pが0、1又は2である

請求項26の化合物。

【請求項26】 R^3 がi-プロピル又は<math>t-ブチルである請求項25の化合物。

【請求項27】 Jが場合により $1\sim4$ 個のR⁷で置換されていることができる5-もしくは6-員複素芳香環である請求項26の化合物。

【請求項28】 JがJ-1、J-2、J-3、J-4及びJ-5 【化4】

$$\begin{array}{c|cccc}
Q-X & X=Y & X=Y \\
Y & Z & N & Z & R^7
\end{array}$$

$$\begin{array}{c|cccc}
Y & X=Y & X=X & X$$

より成る群から選ばれる5-もしくは6-員複素芳香環であり、各Jは場合により $1\sim3$ 個の R^{7} で置換されていることができ、

QはO、S又はNR¹であり;

W、X、Y及びZは独立してN又はC R 7 であり、但し、J -4 及びJ -5 において、W、X、Y又はZ の少なくとも1 個はN である 請求項2 7 の化合物。

【請求項29】 A及びBがOであり:

nが1~2であり:

R'がH、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_1 - C_4$ アルキニル、 $C_2 - C_4$ アルキルカルボニル又は $C_2 - C_4$ アルコキシカルボニルであり;

 R^2 がH、 C_1 $-C_4$ Pルキル、 C_2 $-C_4$ Pルケニル、 C_3 $-C_4$ Pルキニル、 C_3 $-C_4$ Pルキルカルボニル又は C_2 $-C_4$ Pルコキシカルボニルであり;

 R° がH; 又はそれぞれ場合によりハロゲン、CN、 $C_1 - C_2$ アルコキシ、 $C_1 - C_3$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル及び $C_1 - C_4$ アルキルスルホニルより成る群から選ばれる 1 個もしくはそれより多い置換基で置換されていることができる $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_3 - C_4$ アルキルであり;

 R^4 基の1つがフェニル環に2-位で結合し、そして該 R^4 が C_1 - C_4 アルキル、 C_1 - C_4 ハロアルキル、ハロゲン、CN、 NO_2 、 C_1 - C_4 アルコキシ、 C_1 - C_4 アルコキシ、 C_1 - C_4 アルキルチオ、 C_1 - C_4 アルキルスルフィニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 ハロアルキルチオ、 C_1 - C_4 ハロアルキルスルホニルであり;

各R[†]が独立してH、C₁ - C₄ アルキル、C₁ - C₄ ハロアルキル、ハロゲン、C N、NO₂、C₁ - C₄ ハロアルコキシ、C₁ - C₄ アルキルチオ、C₁ - C₄ アルキルスルオニル、C₁ - C₄ アルキルスルオニル、C₁ - C₄ ハロアルキルスルオニルスはC₂ - C₄ ハロアルキルスルフィニル、C₁ - C₄ ハロアルキルスルオニル又はC₂ - C₄ アルコキシカルボニル;あるいはフェニル又は5 - もしくは6 - 員複素芳香 環であり、各環は場合によりC₁ - C₄ アルキル、C₂ - C₄ アルキニル、C₃ - C₆ シクロアルキル、C₁ - C₄ ハロアルキル、C₂ - C₄ ハロアルキニル、C₃ - C₆ シクロアルキル、C₁ - C₄ ハロアルカルボニル、C₁ - C₄ ハロアルカルオニル、C₁ - C₄ アルキルスルフィニル、C₁ - C₄ アルキルスルオニル、C₁ - C₄ アルキルアミノ、C₂ - C₄ ジアルキルアミノ、C₂ - C₆ ジアルキルアミノ、C₂ - C₆ シクロアルキルアミノ、C₂ - C₆ アルコキシカルボニル、C₂ - C₆ アルコキシカルボニル、C₂ - C₆ アルキルアミノカルボニル、C₂ - C₆ ジアルキルアミノカルボニル、C₃ - C₆ ジアルキルアミノカルボニルで置換されていることができる

請求項27又は請求項28の化合物。

【請求項30】 Jがピリジン、ピリミジン、ピラゾール、イミダゾール、トリアゾール、チオフェン、チアゾール及びオキサゾール、フラン、イソチアゾール及びイソオキサゾールより成る群から選ばれ、それぞれ場合により1~3個のR⁷で置換されていることができる請求項29の化合物。

【請求項31】 Jがピリジン、ピリミジン、ピラゾール、チオフェン及びチアゾールより成る群から選ばれ、それぞれ場合により1~3個のR⁷で置換されていることができ:

R'及びR'が両方ともHであり;

 R^3 が場合によりハロゲン、CN、 OCH_3 、S (O) $_{\mathfrak{g}}$ CH_3 で置換されていることができる $C_1 - C_4$ アルキルであり;

各R⁴が独立してH、CH₃、CF₃、OCF₃、OCHF₂、S(O),CF₃、S(O),CHF₂、CN又はハロゲンであり;

各R⁷が独立してH、ハロゲン、CH₃、CF₃、OCHF₂、S(O), CF₃、S (O), CHF₂、OCH₂ CF₃、OCF₂ CHF₂、S(O), CH₂ CF₃、S(O), CF₂ CHF₂; 又はフェニル、ピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環は場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルスルフィニル、C₁ - C₄ アルキルスルホニル、ハロゲン又はCNで置換されていることができ;

pが0、1又は2である

請求項30の化合物。

【請求項32】 $」 が場合により1~3個の<math>R^7$ で置換されていることができるピリジンである請求項31の化合物。

【請求項33】 1個の R^7 が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができるフェニルである請求項32の化合物。

【請求項34】 1個の R^7 がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により C_1-C_4 アルキル、 C_1-C_4 ハロアルキル、ハロゲン又はCNで置換されていることができる請求項32の化合物。

【請求項35】 $」 が場合により1~3個の<math>R^7$ で置換されていることができるピリミジンである請求項31の化合物。

【請求項36】 1個の R^{7} が場合により $C_{1}-C_{4}$ アルキル、 $C_{1}-C_{4}$ ハロアルキル、ハロゲン又はCNで置換されていることができるフェニルである請求項35の化合物。

【請求項37】 1個の R^{7} がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により $C_{1}-C_{4}$ アルキル、 $C_{1}-C_{4}$

ハロアルキル、ハロゲン又はCNで置換されていることができる請求項35の化合物。

【請求項38】 」が場合により $1\sim3$ 個のR7で置換されていることができるピラゾールである請求項32の化合物。

【請求項39】 1個のR⁷が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができるフェニルである請求項38の化合物。

【請求項40】 1個のR'がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができる請求項38の化合物。

【請求項41】 R'が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができるピリジンである請求項38の化合物。

【請求項42】 3-メチル-N-(1-メチルエチル)-2-[[4-(トリフルオロメチル) ベンゾイル] アミノ] -ベンズアミド、

2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ] カルボニル] フェニル] -4-(トリフルオロメチル) ベンズアミド、

2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ] カルボニル] フェニル] -6-(トリフルオロメチル) -3-ピリジンカルボキシアミド、

1-(2-7)ルオロフェニル)-N-[2-3) -N-[-2-3] -N-[-2-3]

 1H-ピラゾール-5-カルボキシアミド、

N-[2-DDD-6-[[(1-メチルエチル) アミノ] カルボニル] フェニル] <math>-1-(3-DDD-2-ピリジニル) -3-(トリフルオロメチル) -1H-ピラゾール-5-カルボキシアミド、

3-ブロモ-1-(2-クロロフェニル)-N-[2-メチル-6-[[(1 -メチルエチル)アミノ]カルボニル]フェニル]-1H-ピラゾール-5-カルボキシアミド、及び

3-プロモ-N-[2-クロロ-6-[[(1-メチルエチル)アミノ]カルボニル]フェニル]-1-(2-クロロフェニル)-1H-ピラゾール-5-カルボキシアミド

より成る群から選ばれる請求項22の化合物。

【請求項43】 殺節足動物的に有効な量の請求項1で記載した式1の化合物ならびに界面活性剤、固体希釈剤及び液体希釈剤より成る群から選ばれる少なくとも1種の追加の成分を含んでなる殺節足動物性組成物。

【発明の詳細な説明】

[0001]

[発明の背景]

本発明はある種のアントラニルアミド類、それらのN-オキシド、農業的に適した塩及び組成物ならびに農耕的及び非農耕的環境の両方における殺節足動物剤としてのそれらの使用法に関する。

[0002]

有害節足動物の抑制は、高い作物効率(crop efficiency)の達成において非常に重要である。成長している及び保存されている農耕作物への節足動物による損害は、生産性における有意な減少を引き起こし得、それにより消費者へのコストを増加させる。森林、温室作物、観賞植物、苗床作物、保存食品及び繊維製品、家畜、家庭ならびに公衆及び動物の健康における有害節足動物の抑制も重要である。これらの目的のために多くの製品が商業的に入手可能であるが、より有効であるか、より安価であるか、毒性がより低いか、環境的により安全であるか又は異なる作用様式を有する新規な化合物に対する要求が続いている。

[0003]

NL 9202078は式i

[0004]

【化5】

$$R^{3}$$
 R^{4}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{8}
 R^{2}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}

[0005]

[式中、中でも

Xは直接結合であり:

YはH又はC₁-C₆アルキルであり;

のN-アシルアントラニル酸誘導体を殺虫剤として開示している。

[0006]

[発明の概略]

本発明は、節足動物又はそれらの環境を殺節足動物的に有効な量の式1

[0007]

【化6】

[0008]

[式中、

A及びBは独立してO又はSであり:

各 J は独立して $1 \sim 2$ 個の R^5 で置換され且つ場合により $1 \sim 3$ 個の R^6 で置換されていることができるフェニル又はナフチル基であるか:

nは1~4であり;

R' はH;又はそれぞれ場合によりハロゲン、CN、 NO_2 、ヒドロキシ、 C_1 –

R'は $C_1 - C_6$ アルキルカルボニル、 $C_1 - C_6$ アルコキシカルボニル、 $C_1 - C_6$ アルキルアミノカルボニル、 $C_1 - C_6$ ジアルキルアミノカルボニル又は $C_1 - C_6$) J であり;

 R^2 はH、 C_1 $-C_6$ Pルキル、 C_2 $-C_6$ Pルケニル、 C_1 $-C_6$ Pルキニル、 C_3 $-C_6$ シクロアルキル、 C_1 $-C_4$ Pルコキシ、 C_1 $-C_6$ Pルキルアミノ、 C_2 $-C_6$ ジアルキルアミノ、 C_3 $-C_6$ シクロアルキルアミノ、 C_4 $-C_6$ Pルコキシカルボニル又は C_4 $-C_6$ Pルキルカルボニルであり;

 R^3 はH;G; それぞれ場合によりハロゲン、G、CN、NO2、ヒドロキシ、C、 − C。アルコキシ、C、 − C。ハロアルコキシ、C、 − C。アルキルチオ、C、 − C。 アルキルスルフィニル、C₁ - C₄ アルキルスルホニル、C₂ - C₆ アルコキシカル ボニル、C₁-C₆アルキルカルボニル、C₁-C₆トリアルキルシリル、又は各環 が場合により $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 C_3 $_3 - C_6$ > $C_1 - C_4 P N \Box + b$, $C_1 - C_4 N \Box P N \Box + b$, $C_1 - C_4 P N + b N + d$, $C_1 - C_4 P N \Box + b$ ミノ、CューCュジアルキルアミノ、CューC。シクロアルキルアミノ、CューC。(アルキル)シクロアルキルアミノ、C₁-C₄アルキルカルボニル、C₁-C₆アル コキシカルボニル、 $C_1 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルア ミノカルボニル又はC₃-C₀トリアルキルシリルより成る群から独立して選ばれ る1~3個の置換基で置換されていることができるフェニル、フェノキシ又は5 -もしくは6-員複素芳香環より成る群から選ばれる1個もしくはそれより多い 置換基で置換されていることができるC,-C,アルキル、C,-C,アルケニル、

 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル; $C_1 - C_4$ アルコキシ; $C_1 - C_6$ アルキルアミノ; $C_2 - C_6$ ジアルキルアミノ; $C_3 - C_6$ シクロアルキルアミノ; $C_2 - C_6$ アルコキシカルボニル又は $C_2 - C_6$ アルキルカルボニルであるか;あるいは

 R^2 及び R^3 はそれらが結合している窒素と一緒になって、 $2\sim6$ 個の炭素原子及び場合により1個の追加の窒素、硫黄もしくは酸素原子を含有する環を形成することができ、該環は場合により C_1-C_2 アルキル、ハロゲン、CN、 NO_2 及び C_1-C_2 アルコキシより成る群から選ばれる $1\sim4$ 個の置換基で置換されていることができ:

Gは、場合によりC (=O)、SOもしくはS (O)、 $_{1}$ より成る群から選ばれる $_{1}$ もしくは $_{2}$ 個の環メンバーを含んでいることができ且つ場合により C_{1} $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$

各R⁺ は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 NO_2 、ヒドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルメルテオ、 $C_1 - C_4$ アルキルスルカスルホニル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルカスルホニル、 $C_1 - C_4$ ハロアルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ又は $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各 R^4 は独立してフェニル、ベンジル又はフェノキシであり、それぞれ場合により $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアルケニル、 $C_2 - C_4$ ハロアルケニル、 $C_1 - C_4$ ハロアルキル、ハロゲン、 $C_1 - C_4$ アルキール、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、 $C_1 - C_4$ アルキルスルコキシ、 $C_1 - C_4$ アルキルスルカニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_4$ アルキルアミノ、 $C_2 - C_4$ アルキルアミノ、 $C_2 - C_4$ アルキルアミノ、 $C_3 - C_4$ アルキルアミノ、 $C_4 - C_4$ アルキルアミノ、 $C_5 - C_6$ アルキルアミノ $C_5 - C_6$ アルキルア・ $C_5 - C_6$ アルキャルア・ $C_5 - C_6$ ア

 C_s ジアルキルアミノ、 $C_s - C_s$ シクロアルキルアミノ、 $C_s - C_s$ (アルキル) シクロアルキルアミノ、 $C_t - C_s$ アルキルカルボニル、 $C_t - C_s$ アルコキシカルボニル、 $C_t - C_s$ アルキルアミノカルボニル、 $C_t - C_s$ ジアルキルアミノカルボニル又は $C_t - C_s$ トリアルキルシリルで置換されていることができ;

各 R^5 は独立して C_1 $-C_6$ $アルキル、C_2$ $-C_6$ $アルケニル、C_2$ $-C_6$ $アルキニル、C_3$ $-C_6$ シクロアルキル、 C_1 $-C_6$ ハロアルキル、 C_2 $-C_6$ ハロアルケニル、 C_2 $-C_6$ ハロアルキニル、 C_3 $-C_6$ ハロシクロアルキル、ハロゲン、CN、CO $_2$ H、CONH $_2$ 、NO $_2$ 、ヒドロキシ、 C_1 $-C_6$ $_4$ $_4$ $_5$ $-C_6$ $_5$ $_4$ $_5$ $-C_6$ $_5$ $_4$ $_5$ $-C_6$ $_5$ $_5$ $-C_6$ $_5$ $_5$ $-C_6$ $_5$ $_5$ $-C_6$ $_5$ $-C_6$ $_5$ $-C_6$ $_5$ $-C_6$ $-C_$

 (R^5) ,は、隣接炭素原子に結合している場合、-OCF,O-、-CF,CF,O-又は-OCF,CF,O-として一緒になることができ;

各R⁶ は独立してH、ハロゲン、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_3 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ アルコキシ又は $C_2 - C_4$ アルコキシカルボニルであるか; あるいは

各 R^6 は独立してフェニル、ベンジル、フェノキシ、5-もしくは6-員複素芳香環又は芳香族8-、9-もしくは10-員縮合複素二環式環系であり、各環は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキニル、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルキニル、 C_1-C_4 ハロアルキニル、 C_1-C_4 ハロアルキニル、 C_1-C_4 ハロアルキン、 C_1-C_4 ハロアルコキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルホニル、 C_1-C_4 アルキルアミノ、 C_1-C_4 アルキルアミノ、 C_1-C_6 ジアルキルアミノ、 C_1-C_6 ジアルキルアミノ、 C_1-C_6 ジアルキルアミノ、 C_1-C_6 ジアルキルアミノ、 C_1-C_6 ジアルキルアミノ、 C_1-C_6 ジアルキル

シカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルアミノカルボニル又は $C_3 - C_6$ トリアルキルシリルより成る群から独立して選ばれる1~3個の置換基で置換されていることができ;

各R⁷ は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 CO_2 H、 $CONH_2$ 、 NO_2 、 ヒドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルカニル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルフィニル、 $C_1 - C_4$ ハロアルキルスルカルボニル、 $C_1 - C_4$ ハロアルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_2 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各 R^{τ} は独立してフェニル、ベンジル、ベンゾイル、フェノキシ、5-もしくは 6- 員複素芳香環又は芳香族 8-、9-もしくは 10- 員縮合複素二環式環系であり、各環は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキニル、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルキル、ハロゲン、 C_1-C_4 ハロアルキニル、 C_1-C_4 ハロアルキン、 C_1-C_4 アルコキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルキルチオ、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルホニル、 C_1-C_4 アルキルアミノ、 C_2-C_4 ジアルキルアミノ、 C_3-C_6 ジアルキルアミノ、 C_4-C_6 ジアルキルカルボニル、 C_1-C_4 アルキルカルボニル、 C_1-C_4 アルキルアミノカルボニル、 C_1-C_4 アルキルアミノカルボニル、 C_1-C_4 アルキルアミノカルボニル、 C_1-C_4 アルキルアミノカルボニルスは C_1-C_4 アルキルシリルより成る群から独立して選ばれる $1\sim3$ 個の置換基で置換されていることができ;但し、

(1) A及びBが両方ともOであり、 R^{1} がH又は $C_{1} - C_{3}$ アルキルであり、 R^{3} がH又は $C_{1} - C_{3}$ アルキルであり且つ R^{4} がH、ハロゲン、 $C_{1} - C_{6}$ アルキル、

フェニル、ヒドロキシ又は C_1-C_6 アルコキシである場合、 1 個の R^6 はハロゲン、 C_1-C_6 アルキル、ヒドロキシ又は C_1-C_6 アルコキシ以外であるか;あるいは

(2) Jは場合により置換されていることができる1, 2, 3-チアジアゾール 以外である]

の化合物、そのN-オキシド又は農業的に適した塩と接触させることを含んでなる節足動物の抑制法に関する。

[0009]

本発明は、式1

[0010]

【化7】

$$(\mathbb{R}^4)_{\mathbb{R}^4}$$
 \mathbb{R}^2
 \mathbb{R}^3

[0011]

「式中、

A及びBは独立してO又はSであり:

各」は独立して $1\sim 2$ 個の R° で置換され且つ場合により $1\sim 3$ 個の R° で置換されていることができるフェニル又はナフチル基であるか;

あるいは各」は独立して5-もしくは6-員複素芳香環又は芳香族8-、9-も しくは10-員縮合複素二環式環系であり、ここで各環又は環系は場合により1~4個のR7で置換されていることができ;

nは1~4であり;

 R^1 はH; 又はそれぞれ場合によりハロゲン、CN、 NO_2 、 ヒドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルス

R'は $C_1 - C_6$ アルキルカルボニル、 $C_1 - C_6$ アルコキシカルボニル、 $C_1 - C_6$ アルキルアミノカルボニル、 $C_1 - C_6$ ジアルキルアミノカルボニル又は $C_1 - C_6$) 」であり;

 R^2 はH、 C_1 $-C_6$ Pルキル、 C_2 $-C_6$ Pルケニル、 C_1 $-C_6$ Pルキニル、 C_3 $-C_6$ シクロアルキル、 C_1 $-C_4$ Pルコキシ、 C_1 $-C_6$ Pルキルアミノ、 C_2 $-C_6$ ジアルキルアミノ、 C_3 $-C_6$ シクロアルキルアミノ、 C_2 $-C_6$ Pルコキシカルボニル又は C_2 $-C_6$ Pルキルカルボニルであり;

 R^3 はH; それぞれ場合によりハロゲン、CN、 NO_2 、ヒドロキシ、 $C_1 - C_2$ ア ルコキシ、C₁ - C₄ ハロアルコキシ、C₁ - C₄ アルキルチオ、C₁ - C₄ アルキル スルフィニル、C₁ – C₄ アルキルスルホニル、C₂ – C₄ アルコキシカルボニル、 $C_1 - C_2$ アルキルカルボニル、 $C_2 - C_3$ トリアルキルシリル又は場合により C_1 $-C_4$ アルキル、 C_2 $-C_4$ アルケニル、 C_2 $-C_4$ アルキニル、 C_3 $-C_6$ シクロア ルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアルケニル、 $C_2 - C_4$ ハロアルキ ニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 NO_2 、 $C_1 - C_4$ アルコ キシ、C,-C,ハロアルコキシ、C,-C,アルキルチオ、C,-C,アルキルスル フィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_8$ ジ アルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_3 - C_6$ (アルキル)シクロ アルキルアミノ、C₂-C₄アルキルカルボニル、C₂-C₆アルコキシカルボニル 、 C₂ – C₀ アルキルアミノカルボニル、 C₃ – C₀ ジアルキルアミノカルボニル又 はC。-C。トリアルキルシリルより成る群から独立して選ばれる1~3個の置換 基で置換されていることができるフェノキシ環より成る群から選ばれる1個もし くはそれより多い置換基で置換されていることができるC、-C。アルキル、C。 ルコキシ; $C_1 - C_4$ アルキルアミノ; $C_2 - C_6$ ジアルキルアミノ; $C_3 - C_6$ シク

ロアルキルアミノ; C_1 $-C_6$ アルコキシカルボニル又は C_1 $-C_6$ アルキルカルボニルであるか; あるいは

 R^{1} 及び R^{3} はそれらが結合している窒素と一緒になって、 $2\sim6$ 個の炭素原子及び場合により1個の追加の窒素、硫黄もしくは酸素原子を含有する環を形成することができ、該環は場合により $C_{1}-C_{2}$ アルキル、ハロゲン、CN、 NO_{2} 及び $C_{1}-C_{2}$ アルコキシより成る群から選ばれる $1\sim4$ 個の置換基で置換されていることができ;

各R⁺は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_1 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、 $C_1 - C_6$ ハロアルコキシ、 $C_1 - C_6$ ハロアルコキシ、 $C_1 - C_6$ ハロアルコキシ、 $C_1 - C_6$ アルキルチオ、 $C_1 - C_6$ アルキルスルフィニル、 $C_1 - C_6$ アルキルスルホニル、 $C_1 - C_6$ アルキルチオ、 $C_1 - C_6$ アルキルスルフィニル、 $C_1 - C_6$ アルキルスルホニル、 $C_1 - C_6$ ジアルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ又は $C_3 - C_6$ トリアルキルシリルであるか; あるいは

各R⁺は独立してフェニル、ベンジル又はフェノキシであり、それぞれ場合により $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ アルケニル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ アルケニル、 $C_1 - C_4$ アルコキン、 $C_1 - C_4$ アルコキン、 $C_1 - C_4$ アルコキン、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_3 - C_6$ (アルキル)シクロアルキルアミノ、 $C_2 - C_4$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル又は $C_3 - C_6$ トリアルキルシリルで置換されていることができ;

各R⁵ は独立して $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_1 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、 $C_4 - C_6$ ハロアルコキシ、 $C_4 - C_6$ アルキルチオ、 $C_4 - C_6$ アルキルスルフィニル、 $C_4 - C_6$ アルキルスルホニ

ル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルフィニル、 $C_1 - C_4$ ハロアルキルスルホニル、 C_1 C_1 C_4 アルキルアミノ、 C_2 C_4 C_4 アルキルアミノ、 C_4 C_5 C_6 C_6 C_7 C_7 C_8 C_7 C_8 C_8 C_9 $C_$

隣接炭素原子に結合している(R^5)、は、 $-OCF_2O-$ 、 $-CF_2CF_2O-$ 又は $-OCF_3CF_3O-$ として一緒になることができ;

各 R^6 は独立してH、ハロゲン、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ アルコキシ又は $C_2 - C_4$ アルコキシカルボニルであるか;あるいは

各R⁶は独立してフェニル、ベンジル、フェノキシ、5 -もしくは6 - 員複素芳香環又は芳香族8 - 、9 -もしくは10 - 員縮合複素二環式環系であり、各環は場合により C_1 - C_4 アルキル、 C_2 - C_4 アルケニル、 C_2 - C_4 アルキニル、 C_3 - C_6 シクロアルキル、 C_1 - C_4 ハロアルキル、 C_2 - C_4 ハロアルキール、 C_3 - C_4 ハロアルキール、 C_5 - C_6 ハロアルキール、 C_5 - C_6 ハロアルキール、 C_7 - C_8 ハロシクロアルキル、ハロゲン、 C_7 、 C_8 - C_8 ハロアルコキシ、 C_1 - C_4 アルキルスルフィニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルアミノ、 C_1 - C_4 ジアルキルアミノ、 C_3 - C_6 ジアルキルアミノ、 C_4 - C_6 ジアルキルアミノ、 C_5 - C_6 ジアルキルアミノ、 C_7 - C_8 ジアルキルアミノカルボニル、 C_7 - C_8 ジアルキルアミノカルボニル、 C_7 - C_8 ジアルキルアミノカルボニルスは C_7 - C_6 トリアルキルシリルより成る群から独立して選ばれる1~3 個の置換基で置換されていることができ:

各R¹ は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 CO_2 H、 $CONH_2$ 、 NO_2 、E ドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルフ

ィニル、 $C_1 - C_4$ ハロアルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_4 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各R^{*}は独立してフェニル、ベンジル、ベンゾイル、フェノキシ又は5-もしくは6-員複素芳香環、8-、9-もしくは10-員縮合複素二環式環系であり、各環は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキニル、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロアルキル、 C_2-C_4 ハロアルケニル、 C_2-C_4 ハロアルキニル、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロシクロアルキル、ハロゲン、CN、NO2、C1-C4 アルコキシ、C1-C4 アルコキシ、C1-C4 アルキルチオ、C1-C4 アルキルスルフィニル、C1-C4 アルキルスルホニル、C1-C4 アルキルアミノ、C1-C4 アルキルアミノ、C1-C6 アルキルアミノ、C2-C6 ジアルキルアミノ、C3-C6 (アルキル)シクロアルキルアミノ、C1-C4 アルキルカルボニル、C1-C6 アルコキシカルボニル、C1-C6 アルキルアミノカルボニル、C1-C6 アルキルアミノカルボニルスはC3-C6 トリアルキルシリルより成る群から独立して選ばれる1~3個の置換基で置換されていることができ;但し、

- (i) 少なくとも1個のR⁴及び少なくとも1個のR⁷はH以外であり;
- (ii) Jは場合により置換されていることができる1, 2, 3-チアジアゾール以外であり;
- ($i\ i\ i$) Jが場合により置換されていることができるピリジンであり且つ R^{2} がHである場合、 R^{3} はH又は CH_{3} 以外であり;
- (i v) Jが場合により置換されていることができるピリジンである場合、 R^7 は $CONH_2$ 、 C_2-C_6 アルキルアミノカルボニル又は C_3-C_6 ジアルキルアミノカルボニルであることはできず;
- (v) Jが場合により置換されていることができるピラゾール、テトラゾール又はピリミジンである場合、R²及びR³は両方が水素であることはできない]の化合物、それらのN-オキシド及び農業的に適した塩にも関する。

[0012]

本発明は、殺節足動物的に有効な量の式1の化合物ならびに界面活性剤、固体 希釈剤及び液体希釈剤より成る群から選ばれる少なくとも1種の追加の成分を含 む殺節足動物性組成物にも関する。

[0013]

[発明の詳細]

上記において、単独で又は「アルキルチオ」又は「ハロアルキル」のような複 合語において用いられる「アルキル」という用語は、直鎖状もしくは分枝鎖状ア ルキル、例えばメチル、エチル、n-プロピル、i-プロピル又は種々のブチル 、ペンチルもしくはヘキシル異性体を含む。「1~2個のアルキル」という用語 は、その置換基のために利用できる位置の1個もしくは2個がアルキルであるこ とができることを示す。「アルケニル」は直鎖状もしくは分枝鎖状アルケン、例 えば1-プロペニル、2-プロペニル及び種々のブテニル、ペンテニル及びヘキ セニル異性体を含む。「アルケニル」は1,2-プロパジエニル及び2,4-へ キサジエニルのようなポリエンも含む。「アルキニル」は直鎖状もしくは分枝鎖 状アルキン、例えば1-プロピニル、2-プロピニル及び種々のブチニル、ペン チニル及びヘキシニル異性体を含む。「アルキニル」は2,5-ヘキサジイニル のような複数の三重結合を含む部分も含み得る。「アルコキシ」は例えばメトキ シ、エトキシ、n-プロピルオキシ、イソプロピルオキシ及び種々のブトキシ、 ペントキシ及びヘキシルオキシ異性体を含む。「アルコキシアルキル」はアルキ ル上のアルコキシ置換を示す。「アルコキシアルキル」の例はCH3OCH2、C H_1 O C H_2 C H_3 C H_4 O C H_4 、 C H_4 C H_4 C H_4 C H_4 O C H_4 及び C H_4 CH, OCH, CH, を含む。「アルキルチオ」は直鎖状もしくは分枝鎖状アルキ ルチオ部分、例えばメチルチオ、エチルチオ及び種々のプロピルチオ、ブチルチ オ、ペンチルチオ及びヘキシルチオ異性体を含む。「シクロアルキル」は、例え ばシクロプロピル、シクロブチル、シクロペンチル及びシクロヘキシルを含む。

[0014]

「複素環式環」又は「複素環式環系」という用語は、少なくとも1個の環原子が炭素でなく、窒素、酸素及び硫黄より成る群から独立して選ばれる1~4個の

複素原子を含む環もしくは環系を示し、但し各複素環式環は4個以下の窒素、2 個以下の酸素及び2個以下の硫黄を含有する。複素環式環はいずれかの利用でき る炭素もしくは窒素を介して、該炭素もしくは窒素上の水素の置き換えにより結 合していることができる。「芳香族環系」という用語は、多環式環系が芳香族で ある完全に不飽和の炭素環及び複素環を示す(ここで芳香族は、環系に関してヒ ュッケル則が満たされていることを示す)。「複素芳香環」という用語は、少な くとも1個の環原子が炭素でなく、窒素、酸素及び硫黄より成る群から独立して 選ばれる1~4個の複素原子を含む完全に芳香族の環を示し、但し各複素環式環 は4個以下の窒素、2個以下の酸素及び2個以下の硫黄を含有する(ここで芳香 族は、ヒュッケル則が満たされていることを示す)。複素環式環はいずれかの利 用できる炭素もしくは窒素を介して、該炭素もしくは窒素上の水素の置き換えに より結合していることができる。「芳香族複素環式環系」という用語は、完全に 芳香族の複素環及び多環式環系の少なくとも1個の環が芳香族である複素環を含 む。(ここで芳香族は、ヒュッケル則が満たされていることを示す)。「縮合複 素二環式環系」という用語は、2個の縮合環から成り、その中の少なくとも1個 の環原子が炭素でなく、上記で定義した芳香族又は非芳香族であることができる 環系を含む。

[0015]

[0016]

置換基中の炭素原子の合計数は「 $C_1 - C_2$ 」の接頭辞により示され、ここでi 及びjは $1 \sim 6$ の数である。例えば $C_1 - C_2$ アルキルスルホニルはメチルスルホ ニルからプロピルスルホニルを示し; C_2 アルコキシアルキルは CH_2 0 CH2を示し; C_3 アルコキシアルキルは例えば CH_3 1 CH2 (OCH3)、CH3 OCH4 CH4 又は CH_3 2 CH4 OCH4 を示し; C_4 7ルコキシアルキルはアルコキシ基で置換されたアルキル基の種々の異性体であって、合計で4個の炭素原子を含有するものを示し、例には CH_2 1 CH4 OCH4 及び CH_3 2 CH4 OCH4 CH5 が含まれる。上記において、式1の化合物が複素環式環を含有する場合、すべての置換基はいずれかの利用できる炭素もしくは窒素を介して、該炭素もしくは窒素上の水素の置き換えによりこの環に結合している。

[0017]

例えばR³のように、基が水素であり得る置換基を含有し、そしてこの置換基が水素として理解される場合、これは該基が非置換であることに等しいと理解される。

[0018]

本発明の化合物は1種もしくはそれより多い立体異性体として存在することができる。種々の立体異性体にはエナンチオマー、ジアステレオマー、アトロプ異性体及び幾何異性体が含まれる。当該技術分野における熟練者は、1つの立体異性体が単数もしくは複数の他の立体異性体に対して濃縮された時又は単数もしくは複数の他の異性体から分離された時に、より活性であり得るか及び/又は有益な効果を示し得ることがわかるであろう。さらに、熟練者は該立体異性体を分離、濃縮及び/又は選択的に製造する方法を知っている。従って、本発明の化合物は立体異性体の混合物、個々の立体異性体としてあるいは光学的に活性な形態として存在することができる。

[0019]

本発明は式1、それらのN-オキシド及び農業的に適した塩から選ばれる化合物を含む。当該技術分野における熟練者は、酸化物への酸化には利用できる孤立電子対を窒素が必要とするで、すべての窒素含有複素環がN-オキシドを形成で

きるわけではないことがわかるであろう:当該技術分野における熟練者はN-オ キシドを形成できる窒素含有複素環がわかるであろう。当該技術分野における熟 練者は、第3級アミンがN-オキシドを形成できることもわかるであろう。複素 環及び第3級アミンのN-オキシドの製造のための適した合成法は、当該技術分 野における熟練者により十分に周知であり、ペルオキシ酸、例えば過酢酸及びm - クロロ過安息香酸 (MCPBA)、過酸化水素、アルキルヒドロペルオキシド 、例えばtーブチルヒドロペルオキシド、過硼酸ナトリウム及びジオキシラン、 例えばジメチルジオキシランを用いる複素環及び第3級アミンの酸化が含まれる 。N-オキシドの製造のためのこれらの方法は広範囲に記載され目つ文献に総説 されており、例えば: Comprehensive Organic Synt hesis, vol. 7, pp 748-750, S. V. Ley, Ed., P ergamon PressにおけるT. L. Gilchrist;Compr ehensive Heterocyclic Chemistry, vol. 3, pp 18-19, A. J. Boulton and A. McKillo p, Ed., Pergamon PressにおけるM. Tisler and B. Stanovik; Advances in Heterocyclic Chemistry, vol. 43, pp 139-151, A. R. Kat ritzky, Ed., Academic PressにおけるM. R. Gri mmett and B. R. T. Keene; Advances in He terocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Ed., Academic PressにおけるM. Tisler and B. Sta novnik;ならびにAdvances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katr itzky and A. J. Boulton, Ed., Academic P ressにおけるG. W. H. Cheeseman and E. S. G. We rstiukを参照されたい。

[0020]

本発明の化合物の塩は無機もしくは有機酸、例えば臭化水素酸、塩酸、硝酸、

リン酸、硫酸、酢酸、酪酸、フマル酸、乳酸、マレイン酸、マロン酸、シュウ酸 、プロピオン酸、サリチル酸、酒石酸、4-トルエンスルホン酸又は吉草酸との 酸-付加塩を含む。

[0021]

II方

[0022]

【化8】

$$(\mathbb{R}^4)_n$$
 $(\mathbb{R}^5)_m$
 \mathbb{R}^1
 \mathbb{R}^3
 \mathbb{R}^3

[0023]

[式中、

X及びYはOであり;

mは1~5であり;

nは1~4であり;

 R^1 はH; 又はそれぞれ場合によりハロゲン、CN、 NO_2 、Eドロキシ、 C_1 - C_4 Pルコキシ、 C_1 - C_4 Pルキルチオ、 C_1 - C_4 Pルキルスルフィニル、 C_1 - C_4 Pルキルスルホニル、 C_2 - C_4 Pルコキシカルボニル、 C_1 - C_4 Pルキルアミノ及び C_3 - C_6 シクロアルキルアミノより成る群から選ばれる 1 個もしくはそれより多い置換基で置換されていることができる C_1 - C_6 Pルキル、 C_2 - C_6 Pルキル、 C_2 - C_6 Pルキルであるか;あるいは

R'は $C_1 - C_6$ アルキルカルボニル、 $C_1 - C_6$ アルコキシカルボニル、 $C_1 - C_6$ アルキルアミノカルボニル又は $C_3 - C_6$ ジアルキルアミノカルボニルであり;

 R^{2} はH、 C_{1} - C_{6} Pルキル、 C_{1} - C_{6} Pルキニル、 C_{1} - C_{6} Pルキルル、 C_{1} - C_{6} Pルコキシ、 C_{1} - C_{6} Pルキルアミノ、 C_{1} - C_{6} Pルコキシカルボニル又は C_{1} - C_{6} Pルキルカルボニルであり;

R'はi-プロピル又はt-ブチルであり;

各R'及びR'は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 CO_2 H、 $CONH_2$ 、 NO_2 、Eドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルカフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルコキシカルボニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_2 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルシリルであるか; あるいは

各R'及びR'は独立して、場合により $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアルケニル、 $C_2 - C_4$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、 $C_4 - C_4$ ハロアルケニル、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルスルカニー C_4 アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルコキシカルボニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_3 - C_6$ (アルキル)シクロアルキルアミノ、 $C_2 - C_4$ アルキルカルボニル、 $C_3 - C_6$ アルコキシカルボニル、 $C_4 - C_6$ アルキルアミノカルボニル、 $C_5 - C_6$ ジアルキルアミノカルボニル又は $C_5 - C_6$ トリアルキルシリルで置換されていることができるフェニルである] ある種の化合物は注目すべきである。

[0024]

節足動物又はそれらの環境を殺節足動物的に有効な量の式IIの化合物と接触

させることを含む節足動物の抑制法ならびにそれらの殺虫性組成物も注目すべき である。

[0025]

式III

[0026]

[化9]

[0027]

「式中、

A及びBは独立してO又はSであり;

Jは1~2個のR⁵で置換され且つ場合により1~3個のR⁵で置換されていることができるフェニル基、あるいは場合により1~4個のR⁵で置換されていることができる5−もしくは6−員複素芳香環であり;

nは1~4であり;

 R^1 はH; 又はそれぞれ場合によりハロゲン、CN、 NO_2 、 E^1 にはH; 又はそれぞれ場合によりハロゲン、CN、 NO_2 、 E^1 に E^1 にE

R' は $C_2 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_1 - C_6$ アルキルアミノカルボニル又は $C_3 - C_6$ ジアルキルアミノカルボニルであり;

 R^{2} tidh, $C_{1} - C_{6}$ rh+h, $C_{1} - C_{6}$ rh+h, $C_{1} - C_{6}$ rh+h, $C_{1} - C_{6}$ rh+h, $C_{1} - C_{4}$ rh+h, $C_{1} - C_{4}$ rh+h, $C_{1} - C_{6}$ rh+h, $C_{1} - C_{6}$ rh+h, $C_{1} - C_{6}$ rh+h, $C_{2} - C_{6}$ rh+h, $C_{3} - C_{6}$ rh+h, rh+h

各R⁺は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 CO_2 H、 $CONH_2$ 、 NO_2 、Eドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ ハロアルキルスルフィニル、 $C_1 - C_4$ ハロアルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_2 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルアミノカルボニル、 $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各R⁴は独立してフェニル、ベンジル又はフェノキシであり、それぞれ場合により $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアルキール、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、 $C_1 - C_4$ ア

ルコキシ、 $C_1 - C_4$ ハロアルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_4$ アルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_3 - C_6$ (アルキル)シクロアルキルアミノ、 $C_1 - C_4$ アルキルカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルアミノカルボニルズは $C_3 - C_6$ トリアルキルシリルで置換されていることができ;

各 R^5 は独立して C_1 – C_6 ハロアルキル、 C_2 – C_6 ハロアルケニル、 C_2 – C_6 ハロアルキニル、 C_3 – C_6 ハロシクロアルキル、 C_1 – C_4 ハロアルコキシ、 C_1 – C_4 アルキルチオ、 C_1 – C_4 アルキルスルフィニル、 C_1 – C_4 アルキルスルホニル、 C_1 – C_4 ハロアルキルチオ、 C_1 – C_4 ハロアルキルスルホニル、 C_1 – C_4 ハロアルキルスルホニル、 C_1 – C_4 アルキルアミノ、 C_2 – C_6 ジアルキルアミノ、 C_3 – C_6 シクロアルキルアミノ、 C_2 – C_6 アルキルカルボニル、 C_2 – C_6 アルコキシカルボニル、 C_2 – C_6 アルキルアミノカルボニル又は C_3 – C_6 ジアルキルアミノカルボニルであるか;あるいは

 (R^5) ,は、隣接炭素原子に結合している場合、-OCF,O-、-CF,CF,O-又は-OCF,CF,O-として一緒になることができ;

各R⁶ は独立してH、ハロゲン、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ アルコキシであるか; あるいは

各R⁶は独立してフェニル、ベンジル又はフェノキシであり、それぞれ場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_1-C_4 アルキル、 C_1-C_4 ハロアルキル、 C_2-C_4 ハロアルケニル、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルキル、 C_1-C_4 アルキル・ C_1-C_4 アルキル・ C_1-C_4 アルキル・ C_1-C_4 アルキルスルカニル、 C_1-C_4 アルキルスルカニル、 C_1-C_4 アルキルアミノ、 C_2-C_4 アルキルアミノ、 C_3-C_6 シクロアルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_2-C_4 アルキルカルボニル、 C_1-C_4 アルキルアミノカルボニル、 C_2-C_4 アルキルアミノカルボニル、 C_3-C_6 ジアルキルアミノカルボニルズは C_3-C_6 トリアルキルシリルで置換されていることができ;

各R'は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 CO_2 H、 $CONH_2$ 、 NO_2 、 ヒドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルフィニル、 $C_1 - C_4$ ハロアルキルスルカンフィニル、 $C_1 - C_4$ ハロアルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_2 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各R'は独立してフェニル、ベンジル又はフェノキシであり、それぞれ場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキニル、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロアルキル、 C_2-C_4 ハロアルケニル、 C_1-C_4 ハロアルキニル、 C_3-C_6 ハロアルキル、 C_1-C_4 ハロアルキニル、 C_3-C_6 ハロシクロアルキル、ハロゲン、CN、NO2、 C_1-C_4 アルコキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルキルスルホニル、 C_1-C_4 アルキルスルボニル、 C_1-C_4 アルキルアミノ、 C_1-C_4 アルキルアミノ、 C_3-C_6 シクロアルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_2-C_6 アルキルカルボニル、 C_1-C_6 アルコキシカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_2-C_6 アルキルアミノカルボニル、 C_3-C_6 ジアルキルアミノカルボニル又は C_3-C_6 トリアルキルシリルで置換されていることができる]

のある種の化合物も注目すべきである。

[0028]

節足動物又はそれらの環境を殺節足動物的に有効な量の式 I I I の化合物と接触させることを含む節足動物の抑制法ならびにそれらの殺虫性組成物も注目すべきである。

[0029]

式IV

[0030]

【化10】

$$(\mathbb{R}^4)_n$$
 A
 IV
 A
 IV
 A
 IV

[0031]

[式中、

A及びBは独立してO又はSであり;

Jは $1\sim2$ 個の R° で置換され且つ場合により $1\sim3$ 個の R° で置換されていることができる7ェニル基、あるいは場合により $1\sim4$ 個の R° で置換されていることができる5-もしくは6-員複素芳香環であり;

nは1~4であり:

 R^{1} は C_{1} $-C_{6}$ アルキルカルボニル、 C_{1} $-C_{6}$ アルコキシカルボニル、 C_{1} $-C_{6}$ アルキルアミノカルボニル又は C_{3} $-C_{6}$ ジアルキルアミノカルボニルであり; R^{2} はH、 C_{1} $-C_{6}$ アルキル、 C_{2} $-C_{6}$ アルケニル、 C_{2} $-C_{6}$ アルキニル、 C_{3} $-C_{6}$ シクロアルキル、 C_{1} $-C_{4}$ アルコキシ、 C_{1} $-C_{4}$ アルキルアミノ、 C_{2} $-C_{6}$ ジアルキルアミノ、 C_{3} $-C_{6}$ シクロアルキルアミノ、 C_{2} $-C_{6}$ アルコキシカルボ

ニル又はC₁ - C₀アルキルカルボニルであり;

 R^3 はH; それぞれ場合によりハロゲン、CN、 NO_2 、Eドロキシ、 C_1 $-C_4$ アルキルチオ、 C_1 $-C_4$ アルキルスルフィニル及び C_1 $-C_4$ アルキルスルホニルより成る群から選ばれる1 個もしくはそれより多い置換基で置換されていることができる C_1 $-C_6$ アルキル、 C_2 $-C_6$ アルケニル、 C_2 $-C_6$ アルキニル、 C_3 $-C_6$ シクロアルキル; C_1 $-C_4$ アルコキシ; C_1 $-C_4$ アルキルアミノ; C_2 $-C_6$ ジアルキルアミノ; C_2 $-C_6$ ジアルキルアミノ; C_3 $-C_6$ シクロアルキルアミノ; C_4 $-C_6$ アルコキシカルボニル又は C_4 $-C_6$ アルカルボニルであるか;あるいは C_4 C_5 C_7 C_7 C_8 C_8

各R⁺は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_1 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 CO_2 H、 $CONH_2$ 、 NO_2 、Eドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルフィニル、 $C_1 - C_4$ ハロアルキルスルカンフィニル、 $C_1 - C_4$ ハロアルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_2 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各R⁺は独立してフェニル、ベンジル又はフェノキシであり、それぞれ場合により $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアルケニル、 $C_2 - C_4$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、 $C_1 - C_4$ アルキルカコキシ、 $C_1 - C_4$ アルキルカカマルカーカーの $C_1 - C_4$ アルキルカカマルカーの $C_1 - C_4$ アルキルカカマルカーカーの $C_1 - C_4$ アルキルカカマルカーカーの $C_1 - C_4$ アルキルカターの $C_1 - C_4$ アルキャルカターの $C_1 - C_4$ アルカターの $C_1 - C_4$

スルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ ジアルキルアミノ、 $C_3 - C_6$ (アルキル) シクロアルキルアミノ、 $C_2 - C_4$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_2 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルアミノカルボニル、 $C_3 - C_6$ ジアルキルアミノカルボニルズは $C_3 - C_6$ トリアルキルシリルで置換されていることができ;

各R⁵ は独立してC₁ - C₆ アルキル、C₂ - C₆ アルケニル、C₂ - C₆ アルキニル、C₃ - C₆ シクロアルキル、C₁ - C₆ ハロアルキル、C₂ - C₆ ハロアルケニル、C₂ - C₆ ハロアルキニル、C₃ - C₆ ハロシクロアルキル、ハロゲン、CN、CO₂ H、CONH₂、NO₂、ヒドロキシ、C₁ - C₄ アルコキシ、C₁ - C₄ ハロアルコキシ、C₁ - C₄ アルキルチオ、C₁ - C₄ アルキルスルフィニル、C₁ - C₄ アルキルスルカフィニル、C₁ - C₄ アルキルスルカフィニル、C₁ - C₄ ハロアルキルスルカンイニル、C₁ - C₄ ハロアルキルスルカンオニル、C₁ - C₄ ハロアルキルアミノ、C₂ - C₆ ジアルキルアミノ、C₃ - C₆ シクロアルキルアミノ、C₂ - C₆ アルキルカルボニル、C₂ - C₆ アルコキシカルボニル、C₂ - C₆ アルキルアミノカルボニル、C₃ - C₆ トリアルキルシリルであるか;あるいは(R⁶) $_2$ は、隣接炭素原子に結合している場合、-OCF $_2$ O-、-CF $_2$ CF $_2$ O-又は-OCF $_3$ CF $_4$ O-として一緒になることができ;

各 R^6 は独立してH、ハロゲン、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ アルコキシであるか;あるいは

各 R^6 は独立してフェニル、ベンジル、フェノキシ又は5-もしくは6-員複素 芳香環であり、各環は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキニル、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロアルキル、 C_2-C_4 ハロアルケニル、 C_2-C_4 ハロアルケニル、 C_1-C_4 ハロアルキニル、 C_1-C_4 ハロアルキール、 C_1-C_4 ハロアルコキシ、 C_1-C_4 ハロアルコキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルホニル、 C_1-C_4 アルキルアミノ、 C_2-C_6 ジアルキルアミノ、 C_3-C_6 シクロアルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_2-C_4 アルキルカルボニル、 C_1-C_4 アルコキシカルボニル、 C_1-C_4 アルキルフェノカルボニル、 C_1-C_4 アルコキシカルボニル、 C_1-C_4 アルキルアミノカルボニル、 C_1-C_4 アルコキシカルボニル、 C_1-C_4 アルキルアミノカルボニル、 C_1-C_4 アルキルアミノカルボニル、 C_1-C_4 アルコキシカルボニル、 C_1-C_4 アルキルアミノカルボニル、 C_2-C_6 アルコキシカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_2-C_6 アルコキシカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_1-C_6 アルコキシカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_1-C_6

 $_{3}$ - C_{8} ジアルキルアミノカルボニル又は C_{3} - C_{6} トリアルキルシリルで置換されていることができ;

各R'は独立してH、 $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_6$ ハロアルキル、 $C_2 - C_6$ ハロアルケニル、 $C_2 - C_6$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、CN、 CO_2 H、 $CONH_2$ 、 NO_2 、E ドロキシ、 $C_1 - C_4$ アルコキシ、 $C_1 - C_4$ アルキルチオ、 $C_1 - C_4$ アルキルスルフィニル、 $C_1 - C_4$ アルキルスルホニル、 $C_1 - C_4$ ハロアルキルチオ、 $C_1 - C_4$ ハロアルキルスルフィニル、 $C_1 - C_4$ ハロアルキルスルカンフィニル、 $C_1 - C_4$ ハロアルキルスルホニル、 $C_1 - C_4$ アルキルアミノ、 $C_2 - C_6$ アルキルアミノ、 $C_3 - C_6$ シクロアルキルアミノ、 $C_2 - C_6$ アルキルカルボニル、 $C_2 - C_6$ アルコキシカルボニル、 $C_3 - C_6$ アルキルアミノカルボニル、 $C_3 - C_6$ シアルキルアミノカルボニル、 $C_3 - C_6$ トリアルキルシリルであるか;あるいは

各R⁷は独立してフェニル、ベンジル、ベンゾイル、フェノキシ又は5-もしくは6-員複素芳香環であり、各環は場合により C_1 - C_4 アルキル、 C_2 - C_4 アルキニル、 C_3 - C_6 シクロアルキル、 C_1 - C_4 ハロアルキル、 C_2 - C_4 ハロアルケニル、 C_2 - C_4 ハロアルケニル、 C_2 - C_4 ハロアルキニル、 C_3 - C_6 ハロアルキニル、 C_3 C_6 ハロシクロアルキル、ハロゲン、CN、 NO_2 、 C_1 C_4 アルコキシ、 C_1 C_4 アルコキシ、 C_1 C_4 アルキルチオ、 C_1 C_4 アルキルスルフィニル、 C_1 C_4 アルキルスルフィニル、 C_1 C_4 アルキルスルカンボニル、 C_1 C_4 C_5 C_6 C_7 C_8 C_7 C_8 C_8

但し、A及びBが両方ともOであり、 R^2 がH又は $C_1 - C_3$ アルキルであり、 R^3 がH又は $C_1 - C_3$ アルキルであり且つ R^4 がH、ハロゲン、 $C_1 - C_6$ アルキル、フェニル、ヒドロキシ又は $C_1 - C_6$ アルコキシである場合、1個の R^3 はハロゲン、 $C_1 - C_6$ アルキル、ヒドロキシ又は $C_1 - C_6$ アルコキシ以外である] のある種の化合物も注目すべきである。

[0032]

節足動物又はそれらの環境を殺節足動物的に有効な量の式 I Vの化合物と接触させることを含む節足動物の抑制法ならびにそれらの殺虫性組成物も注目すべきである。

[0033]

より高い活性の故に好ましい方法は:

好ましい方法 1. Jが $1 \sim 2$ 個の R5 で置換され且つ場合により $1 \sim 3$ 個の R5 で置換されていることができるフェニル基である式 I の化合物を含む方法、

好ましい方法2. A及びBが両方ともOであり;

 $n \dot{m} 1 \sim 2 \, \text{\it cos} \, 0$;

R'がH、 C_1 $-C_4$ Pルキル、 C_2 $-C_4$ Pルケニル、 C_3 $-C_4$ Pルキニル、 C_3 $-C_4$ Pルキルカルボニル又は C_2 $-C_4$ Pルコキシカルボニルであり;

 R^2 がH、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_2 - C_6$ アルキルカルボニル又は $C_2 - C_6$ アルコキシカルボニルであり;

 R^3 がそれぞれ場合によりハロゲン、CN、 $C_1 - C_2$ アルコキシ、 $C_1 - C_2$ アルキルチオ、 $C_1 - C_2$ アルキルスルフィニル及び $C_1 - C_2$ アルキルスルホニルより成る群から選ばれる1個もしくはそれより多い置換基で置換されていることができる $C_1 - C_2$ アルキル、 $C_2 - C_3$ アルキニル又は $C_3 - C_4$ シクロアルキルであり;

 R^4 基の1つがフェニル環に2-位又は5-位で結合し、そして該 R^4 が C_1 - C_4 アルキル、 C_1 - C_4 ハロアルキル、ハロゲン、CN、 NO_2 、 C_1 - C_4 アルコキシ、 C_1 - C_4 ハロアルコキシ、 C_1 - C_4 アルキルチオ、 C_1 - C_4 アルキルスルフィニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルスルホニルであり:

 $_1$ - C $_4$ \cap C \cap C

(R⁵),が、隣接炭素原子に結合している場合、-OCF,O-、-CF,CF,O-又は-OCF,CF,O-として一緒になることができ:

各 R° が独立してH、ハロゲン、 $C_1 - C_2$ アルキル、 $C_1 - C_2$ アルコキシ又は C_2

各R⁶が独立してフェニル又は5-もしくは6-員複素芳香環であり、各環は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_1-C_4 アルキニル、 C_3-C_4 クロアルキル、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルキニル、 C_3-C_4 ハロアルキニル、 C_3-C_4 ハロアルキニル、 C_1-C_4 ハロアルコキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルカースニル、 C_1-C_4 アルキルスルカースニル、 C_1-C_4 アルキルアミノ、 C_2-C_4 ジアルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_1-C_4 アルキルカルボニル、 C_1-C_6 アルコキシカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_1-C_6 アルキルアミノカルボニル、 C_1-C_6 アルキルアミノカルボニルスは C_1-C_6 トリアルキルシリルで置換されていることができる好ましい方法1の方法、

好ましい方法3. R'及びR'が両方ともHであり;

 R^3 が場合によりハロゲン、CN、 OCH_3 、S(O), CH_3 で置換されていることができる $C_1 - C_4$ アルキルであり;

各 R^4 が独立してH、 CH_3 、 CF_3 、 OCF_3 、 $OCHF_2$ 、S (O), CF_3 、S (O), CHF_2 、CN又はハロゲンであり;

各R⁵が独立してCF₃、OCF₃、OCHF₂、S(O),CF₃、S(O),CH F₂、OCH₂CF₃、OCF₂CHF₂、S(O),CH₂CF₃又はS(O),CF₂CHF₂であり;

各 R^6 が独立してH、ハロゲン又はメチル;あるいはフェニル、ピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環は場合により C_1-C_4 アルキル、 C_1-C_4 ハロアルキル、ハロゲン又はCNで置換されていることができ;

pが0、1又は2である

好ましい方法2の方法、

好ましい方法4. R³がi-プロピル又はt-ブチルである

好ましい方法3の方法、

好ましい方法 5. J が場合により 1~4個の R¹で置換されていることができる 5-もしくは 6-員複素芳香環である

式1の化合物を含む方法、

好ましい方法6. JがJ-1、J-2、J-3、J-4及びJ-5

[0034]

【化11】

[0035]

より成る群から選ばれる5-もしくは6-員複素芳香環であり、各Jは場合により $1\sim3$ 個の R^7 で置換されていることができ、

QはO、S又はNR'であり;

W、X、Y及びZは独立してN又はC R 7 であり、但し、J -4 及びJ -5 において、W、X、Y又はZ の少なくとも1 個はN である

好ましい方法5の方法、

好ましい方法7. A及びBがOであり;

 $n \dot{m} 1 \sim 2 \, \text{\it cos} \, 0$;

R' $\dot{m}H$, $C_1 - C_4$ P ν P

R'がH、 C_1 $-C_4$ Pルキル、 C_2 $-C_4$ Pルケニル、 C_3 $-C_4$ Pルキニル、 C_4 $-C_4$ Pルキニル、 C_5 $-C_6$ Pルキルカルボニル又は C_5 $-C_6$ Pルコキシカルボニルであり;

 R^3 がH; 又はそれぞれ場合によりハロゲン、CN、 $C_1 - C_2$ アルコキシ、 $C_1 - C_2$ アルキルチオ、 $C_1 - C_2$ アルキルスルフィニル及び $C_1 - C_2$ アルキルスルホニルより成る群から選ばれる1個もしくはそれより多い置換基で置換されていることができる $C_1 - C_2$ アルキル、 $C_2 - C_3$ アルケニル、 $C_3 - C_4$ シクロアルキルであり;

 R^4 基の1つがフェニル環に2-位で結合し、そして該 R^4 が C_1 - C_4 アルキル、 C_1 - C_4 ハロアルキル、ハロゲン、CN、 NO_2 、 C_1 - C_4 アルコキシ、 C_1 - C_4 アルコキシ、 C_1 - C_4 アルキルチオ、 C_1 - C_4 アルキルスルフィニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 7ルキルスルホニル、 C_1 - C_4 7ロアルキルチオ、 C_1 - C_4 1ロアルキルスルホニルであり;

各 R^{1} が独立してH、 $C_{1}-C_{4}$ アルキル、 $C_{1}-C_{4}$ ハロアルキル、ハロゲン、CN、 NO_{2} 、 $C_{1}-C_{4}$ ハロアルコキシ、 $C_{1}-C_{4}$ アルキルチオ、 $C_{1}-C_{4}$ アルキルスルカニル、 $C_{1}-C_{4}$ ハロアルキルチオ、 $C_{1}-C_{4}$ アルキルスルカニル、 $C_{1}-C_{4}$ ハロアルキルチオ、 $C_{1}-C_{4}$ ハロアルキルスルカニル又は $C_{2}-C_{4}$ ハロアルキルスルガニル;あるいはフェニル又はS-もしくはS- 優複素芳香環であり、各環は場合により $S_{1}-S_{4}$ アルキル、 $S_{2}-S_{4}$ アルキニル、 $S_{3}-S_{4}$ 0ロアルキル、 $S_{1}-S_{4}$ 0ロアルキル、 $S_{2}-S_{4}$ 1のロアルキル、 $S_{2}-S_{4}$ 1のロアルキルスルフィニル、 $S_{1}-S_{4}$ 1のロアルキルスルホニル、 $S_{1}-S_{4}$ 1のロアルキルアミノ、 $S_{2}-S_{4}$ 1のロアルキルアミノ、 $S_{2}-S_{4}$ 1のロアルキルアミノ、 $S_{2}-S_{4}$ 1のロアルキルアミノ、 $S_{2}-S_{4}$ 1のロアルキルアミノ、 $S_{2}-S_{4}$ 1のロアルキルカルボニル、 $S_{2}-S_{4}$ 1のロアルキルアミノカルボニル、 $S_{2}-S_{4}$ 1のロアルキルアミノカルボニル $S_{3}-S_{4}$ 1のロアルキルアミノカルボニル $S_{2}-S_{4}$ 1のロアルキルシリルで置換されていることができる

好ましい5の方法又は好ましい6の方法の方法、

好ましい方法8. Jがピリジン、ピリミジン、ピラゾール、イミダゾール、トリアゾール、チオフェン、チアゾール及びオキサゾール、フラン、イソチアゾール及びイソオキサゾールより成る群から選ばれ、それぞれ場合により1~3個のR¹で置換されていることができる

好ましい方法7の方法、

好ましい方法9. Jがピリジン、ピリミジン、ピラゾール、チオフェン及びチアゾールより成る群から選ばれ、それぞれ場合により $1\sim3$ 個の R^7 で置換されていることができ;

R¹及びR¹が両方ともHであり;

 R^3 が場合によりハロゲン、CN、 OCH_3 、S(O), CH_3 で置換されていることができる C_1 $-C_4$ アルキルであり;

各 R^4 が独立してH、 CH_3 、 CF_3 、 OCF_3 、 $OCHF_2$ 、S (O) $_{\mathfrak{p}}CF_3$ 、S (O) $_{\mathfrak{p}}CHF_2$ 、CN又はハロゲンであり;

各 R^7 が独立してH、ハロゲン、 CH_3 、 CF_3 、 $OCHF_2$ 、S (O) $_{_1}CF_3$ 、S (O) $_{_2}CH_2$ (CF $_3$ 、OCF $_2$ CHF $_2$ 、S (O) $_{_3}CH_2$ CF $_3$ 、S (O) $_{_3}CH_2$ CF $_3$ 、S (O) $_{_3}CH_2$ CF $_3$ 、S (O) $_{_3}CF_2$ CHF $_2$;又はフェニル、ピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環は場合により C_1-C_4 アルキル、 C_1-C_4 アルキル、 C_1-C_4 アルキル、 C_1-C_4 アルキル、 C_1-C_4 アルキン、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルホニル、ハロゲン又はCNで置換されていることができ;

pが0、1又は2である

好ましい方法8の方法、

好ましい方法10. Jが場合により $1\sim3$ 個のR 7 で置換されていることができるピリジンである

好ましい方法9の方法、

好ましい方法11.1個の R^7 が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができるフェニルである好ましい方法10の方法、

好ましい方法 12.1 個の R⁷ がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロゲン又は C N で置換されていることができる好ましい方法 10 の方法、

好ましい方法13. Jが場合により $1\sim3$ 個のR 7 で置換されていることができるピリミジンである

好ましい方法9の方法、

好ましい方法 14.1 個の R^7 が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又は C N で置換されていることができるフェニルである好ましい方法 130 の方法、

好ましい方法 15.1 個の R^{\dagger} がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又は C N で置換されていることができる好ましい方法 13 の方法、

好ましい方法16. Jが場合により $1\sim3$ 個のR'で置換されていることができるピラゾールである

好ましい方法9の方法、

好ましい方法 1.7.1 個の R^7 が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又は C N で置換されていることができるフェニルである好ましい方法 1.60 の方法、

好ましい方法 18.160 R⁷がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により C₁ - C₄ アルキル、 C_1 - C₄ ハロアルキル、ハロゲン又は C N で置換されていることができる好ましい方法 160 方法、

好ましい方法19. R^{7} が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又はCNで置換されていることができるピリジンである

好ましい方法18の方法

である。

[0036]

1-1

最も好ましいのは:

3-メチル-N-(1-メチルエチル)-2-[[4-(トリフルオロメチル)ベンゾイル]アミノ]-ベンズアミド、

2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ] カルボニル] フェニル] -4-(トリフルオロメチル) ベンズアミド、

2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ] カルボニル] フェニル] -6-(トリフルオロメチル) -3-ピリジンカルボキシアミド、

1-(2-7)ルオロフェニル)-N-[2-メチル-6-[[(1-メチルエチル) アミノ) カルボニル] フェニル] <math>-3-(トリフルオロメチル) -1 H- ピラゾール-5-カルボキシアミド、

1-(3-DDD-2-ピリジニル)-N-[2-メチル-6-[[(1-メチルエチル)アミノ]カルボニル]フェニル]3-(トリフルオロメチル)-1 H-ピラゾール-5-カルボキシアミド、

N-[2-DDD-6-[[(1-XFNTFN)]]] カルボニル] フェニル] -1-(3-DDD-2-ピリジニル) -3-(トリフルオロメチル) -1H-ピラゾール-5-カルボキシアミド、

3-プロモ-1-(2-クロロフェニル)-N-[2-メチル-6-[[(1-ーメチルエチル)アミノ]カルボニル]フェニル]-1H-ピラゾール-5-カルボキシアミド及び

3-プロモーN- [2-クロロ-6-[[(1-メチルエチル) アミノ] カルボニル] フェニル] -1- (2-クロロフェニル) -1 H-ピラゾール-5-カルボキシアミド

より成る群から選ばれる式1の化合物を含む方法である。

[0037]

より高い活性及び/又は合成の容易さの故に好ましい化合物は:

好ましい化合物 A. J が $1 \sim 2$ 個の R^6 で置換され且つ場合により $1 \sim 3$ 個の R^6 で置換されていることができるフェニル基である式 I の化合物、

好ましい化合物 B. A及び Bが両方ともOであり; nが $1 \sim 2$ であり:

R'がH、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_3 - C_6$ シクロアルキル、 $C_2 - C_6$ アルキルカルボニル又は $C_2 - C_6$ アルコキシカルボニルであり:

R'がH、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_3 - C_4$ アルキニル、 $C_3 - C_6$ シクロアルキル、 $C_2 - C_6$ アルキルカルボニル又は $C_2 - C_6$ アルコキシカルボニルであり:

 R^3 がそれぞれ場合によりハロゲン、CN、 $C_1 - C_2$ アルコキシ、 $C_1 - C_3$ アルキルチオ、 $C_1 - C_2$ アルキルスルフィニル及び $C_1 - C_2$ アルキルスルホニルより成る群から選ばれる 1 個もしくはそれより多い置換基で置換されていることができる $C_1 - C_3$ アルキル、 $C_2 - C_3$ アルキニル又は $C_3 - C_4$ シクロアルキルであり:

 R^4 基の1つがフェニル環に2-位又は5-位で結合し、そして該 R^4 が C_1 - C_4 アルキル、 C_1 - C_4 ハロアルキル、ハロゲン、CN、 NO_2 、 C_1 - C_4 アルコキシ、 C_1 - C_4 ハロアルコキシ、 C_1 - C_4 アルキルチオ、 C_1 - C_4 アルキルスルフィニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルスルホニルであり;

 (R^5) ,が、隣接炭素原子に結合している場合、-OCF,O-、-CF,CF,O- O- ZU-OCF,CF,O- ZU- ZU-

各 R^{6} が独立してH、ハロゲン、 $C_{1}-C_{4}$ アルキル、 $C_{1}-C_{5}$ アルコキシ又は $C_{7}-C_{4}$ アルコキシカルボニルであるか、あるいは

各R⁶が独立してフェニル又は 5-もしくは 6- 員複素芳香環であり、各環は場合により C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_2-C_4 アルキニル、 C_3-C_6 シクロアルキル、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルキール、 C_1-C_4 ハロアルキール、 C_1-C_4 ハロアルコキシ、 C_1-C_4 アルコキシ、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルフィニル、 C_1-C_4 アルキルスルホニル、 C_1-C_4 アルキルアミノ、 C_2-C_6 ジアルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_3-C_6 (アルキル)シクロアルキルアミノ、 C_2-C_6 アルキルカルボニル、 C_2-C_6 アルコキシカルボニル、 C_2-C_6 アルキルアミノカルボニル、 C_3-C_6 ジアルキルアミノカルボニル、 C_3-C_6 ジアルキルアミノカルボニル又は C_3-C_6 トリアルキルシリルで置換されていることができる好ましい化合物Aの化合物、

好ましい化合物C. R'及びR'が両方ともHであり;

 R^3 が場合によりハロゲン、CN、 OCH_3 、S(O), CH_3 で置換されていることができる $C_1 - C_4$ アルキルであり;

各R⁴が独立してH、CH₃、CF₃、OCF₃、OCHF₂、S(O),CF₃、S(O),CHF₂、CN又はハロゲンであり;

各R⁵が独立してCF₃、OCF₃、OCHF₂、S(O),CF₃、S(O),CH F₂、OCH₂CF₃、OCF₂CHF₂、S(O),CH₂CF₃又はS(O),CF₂ CHF₂であり;

各 R^6 が独立してH、ハロゲン又はメチル;あるいはフェニル、ピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環は場合により C_1-C_4 アルキル、 C_1-C_4 ハロアルキル、ハロゲン又はC Nで置換されていることができ;

pが0、1又は2である

好ましい化合物Bの化合物、

好ましい化合物 D. R^3 が i - プロピル又は t - ブチルである 好ましい化合物 C の化合物、

好ましい化合物 E. J が場合により $1 \sim 4$ 個の R で置換されていることができる 5- もしくは 6- 員複素芳香環である

式1の化合物、

好ましい化合物 F. Jが J - 1、 J - 2、 J - 3、 J - 4 及び J - 5 【 0 0 3 8 】

【化12】

$$\begin{array}{c|ccccc}
Q - X & X = Y & X = Y \\
Y & Z & N & Z & R^7
\end{array}$$

$$\begin{array}{c|ccccc}
Y & X = Y & X = Y & R^7 & R$$

[0039]

より成る群から選ばれる5-もしくは6-員複素芳香環であり、各Jは場合により $1\sim3$ 個の R^{7} で置換されていることができ、

QはO、S又はNR⁷であり:

W、X、Y及びZは独立してN又はC R 7 であり、但し、J-4 及びJ-5 において、W、X、Y又はZ の少なくとも1 個はN である

好ましい化合物Eの化合物、

好ましい化合物G. A及びBがOであり;

nが1~2であり;

R'がH、 $C_1 - C_4$ アルキル、 $C_2 - C_4$ アルケニル、 $C_2 - C_4$ アルキルカルボニル又は $C_2 - C_4$ アルコキシカルボニルであり:

 R^{2} がH、 C_{1} $-C_{4}$ Pルキル、 C_{2} $-C_{4}$ Pルケニル、 C_{2} $-C_{4}$ Pルキニル、 C_{3} $-C_{4}$ Pルキルカルボニル又は C_{1} $-C_{6}$ Pルコキシカルボニルであり;

 R^3 がH;又はそれぞれ場合によりハロゲン、CN、 C_1 $-C_2$ アルコキシ、 C_1 $-C_3$ アルキルチオ、 C_1 $-C_3$ アルキルスルフィニル及び C_1 $-C_3$ アルキルスルホ

ニルより成る群から選ばれる 1 個もしくはそれより多い置換基で置換されていることができる $C_1 - C_6$ アルキル、 $C_2 - C_6$ アルケニル、 $C_2 - C_6$ アルキニル又は $C_3 - C_6$ シクロアルキルであり;

 R^4 基の1つがフェニル環に2-位で結合し、そして該 R^4 が C_1 - C_4 アルキル、 C_1 - C_4 ハロアルキル、ハロゲン、C N、 NO_2 、 C_1 - C_4 アルコキシ、 C_1 - C_4 アルキルチオ、 C_1 - C_4 アルキルスルフィニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 アルキルスルホニル、 C_1 - C_4 ハロアルキルチオ、 C_1 - C_4 ハロアルキルスルホニルであり;

各R'が独立してH、C₁ - C₄アルキル、C₁ - C₄ハロアルキル、ハロゲン、C N、NO₂、C₁ - C₄ハロアルコキシ、C₁ - C₄アルキルチオ、C₁ - C₄アルキルスルフィニル、C₁ - C₄アルキルスルホニル、C₁ - C₄ハロアルキルチオ、C₁ - C₄ハロアルキルスルフィニル、C₁ - C₄ハロアルキルスルホニル又はC₂ - C₄アルコキシカルボニル;あるいはフェニル又は5 - もしくは6 - 員複素芳香 環であり、各環は場合によりC₁ - C₄アルキル、C₂ - C₄アルナール、C₂ - C₄アルキル、C₂ - C₄アルキル、C₂ - C₄ハロアルキル、C₂ - C₄ハロアルキル、C₂ - C₄ハロアルキル、ハロゲン、CN、NO₂、C₁ - C₄アルコキシ、C₁ - C₄ハロアルコキシ、C₁ - C₄アルキルアミノ、C₁ - C₄アルキルアミノ、C₁ - C₄アルキルアミノ、C₁ - C₄アルキルアミノ、C₁ - C₄アルキルアミノ、C₂ - C₄アルキルアミノ、C₂ - C₄アルキルアミノ、C₃ - C₆(アルキル)シクロアルキルアミノ、C₂ - C₄アルキルカルボニル、C₂ - C₅アルコキシカルボニル、C₂ - C₆アルキルアミノカルボニル、C₃ - C₆ジアルキルアミノカルボニル又はC₃ - C₆トリアルキルシリルで置換されていることができる

好ましい化合物E又は好ましい化合物Fの化合物、

好ましい化合物 H. Jがピリジン、ピリミジン、ピラゾール、イミダゾール、トリアゾール、チオフェン、チアゾール及びオキサゾール、フラン、イソチアゾール及びイソオキサゾールより成る群から選ばれ、それぞれ場合により $1\sim3$ 個の R^7 で置換されていることができる

好ましい化合物Gの化合物、

好ましい化合物 I. Jがピリジン、ピリミジン、ピラゾール、チオフェン及びチアゾールより成る群から選ばれ、それぞれ場合により $1 \sim 3$ 個の R^7 で置換されていることができ;

R'及びR'が両方ともHであり;

 R^3 が場合によりハロゲン、CN、 OCH_3 、S (O)。 CH_3 で置換されていることができる $C_1 - C_4$ アルキルであり;

各R'が独立してH、CH₃、CF₃、OCF₃、OCHF₂、S(O),CF₃、S(O),CF₃、S(O),CHF₂、CN又はハロゲンであり;

各R'が独立してH、ハロゲン、CH₃、CF₃、OCHF₂、S(O)。CF₃、S (O)。CHF₂、OCH₂CF₃、OCF₂CHF₂、S(O)。CH₂CF₃、S(O)。CF₂CHF₂、S(O)。CF₂CHF₂、S(O)。CF₂CHF₂;又はフェニル、ピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環は場合によりC₁ - C₄ - アルキル、C₁ - C₄ - C₄ - アルキル、C₁ - C₄ - C₇ - C₄ - C₇ - C₇

pが0、1又は2である

好ましい化合物Hの化合物、

好ましい化合物 J. J が場合により $1 \sim 3$ 個の R^7 で置換されていることができるピリジンである

好ましい化合物Iの化合物、

好ましい化合物 K. 1 個の R が場合により C_1 $-C_4$ アルキル、 C_1 $-C_4$ ハロアルキル、ハロゲン又は C N で置換されていることができるフェニルである好ましい化合物 I の化合物、

好ましい化合物 L. 1 個の R' がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロゲン又は C N で置換されていることができる

好ましい化合物」の化合物、

好ましい化合物M. J が場合により $1 \sim 3$ 個の R^7 で置換されていることができるピリミジンである

好ましい化合物 I の化合物、

好ましい化合物 N. 1 個の R' が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又は C N で置換されていることができるフェニルである好ましい化合物 M の化合物、

好ましい化合物 O. 1 個の R' がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又は C N で置換されていることができる

好ましい化合物 P. J が場合により $1 \sim 3$ 個の R^7 で置換されていることができるピラゾールである

好ましい化合物Iの化合物、

好ましい化合物Mの化合物、

好ましい化合物 Q. 1 個の R' が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、ハロゲン又は C N で置換されていることができるフェニルである好ましい化合物 P の化合物、

好ましい化合物 R. 1個の R¹ がピラゾール、イミダゾール、トリアゾール、ピリジン又はピリミジンであり、各環が場合により C₁ - C₄ アルキル、C₁ - C₄ ハロアルキル、ハロゲン又は CN で置換されていることができる

好ましい化合物Pの化合物、

好ましい化合物 S. R' が場合により $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、 ハロゲン又は CN で置換されていることができるピリジンである

好ましい化合物Rの化合物

である。

[0040]

最も好ましいのは:

3-メチル-N-(1-メチルエチル)-2-[[4-(トリフルオロメチル) ベンゾイル] アミノ] -ベンズアミド、

2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ] カルボニル] フェニル] -4-(トリフルオロメチル) ベンズアミド、

2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ] カル

ボニル]フェニル]-6-(トリフルオロメチル)-3-ピリジンカルボキシアミド、

1-(2-7)ルオロフェニル)-N-[2-3) -N-[-1] -N-[-

1-(3-DDD-2-ピリジニル)-N-[2-メチル-6-[[(1-メチルエチル)アミノ]カルボニル]フェニル]3-(トリフルオロメチル)-1 H-ピラゾール-5-カルボキシアミド、

N-[2-DDD-6-[[(1-メチルエチル) アミノ] カルボニル]フェニル]-1-(3-DDD-2-ピリジニル)-3-(トリフルオロメチル)-1H-ピラゾール-5-カルボキシアミド、

3-ブロモー1-(2-クロロフェニル)-N- [2-メチル-6- [[(1- メチルエチル)アミノ] カルボニル] フェニル] -1 H-ピラゾール-5-カルボキシアミド及び

3-プロモ-N-[2-クロロ-6-[[(1-メチルエチル)アミノ]カルボニル]フェニル]-1-(2-クロロフェニル)-1H-ピラゾール-5-カルボキシアミド

より成る群から選ばれる式1の化合物である。

[0041]

好ましい組成物は、好ましい方法1~19における好ましい式1の化合物、そして特定的には上記の好ましい化合物を含む組成物である。

[0042]

上記の通り、各」は独立して $1\sim 2$ 個の R^5 で置換され且つ場合により $1\sim 3$ 個の R^6 で置換されていることができるフェニル基又はナフチル基であるか;あるいは各」は独立して5-6もしくは6-6複素芳香環又は芳香族8-60-もしくは10-646名複素二環式環系であり、ここで各環又は環系は場合により $1\sim 6$ 500

4個のR'で置換されていることができる。これらのJ基に関連して、「場合に より置換されていることができる」という用語は、非置換であるか又は非置換類 似体が有する殺節足動物剤活性を失わせない少なくとも1個の非-水素置換基を 有する基を指す。上記のJ-1~J-5が5-もしくは6-員複素芳香環を示し ていることも注目されたい。1~2個のR⁵で置換され且つ場合により1~3個 のR⁶で置換されていることができるフェニルの例は表示(Exhibit)1 中にJ-6として示されている環であり、ここでmは1~2の整数であり、qは 1~3の整数である。 J−6中に少なくとも1個のR⁵が存在しなければならな いことに注目されたい。構造J-6中にR6基が示されているが、それらは場合 による置換基なので、それらが存在する必要はないことが注目される。1~2個 のR⁶で置換され且つ場合により1~3個のR⁶で置換されていることができるナ フチル基の例は、表示1中に示されているJ-59であり、ここでmは1~2の 整数であり、aは1~3の整数である。J-59中に少なくとも1個のR゚が存 在しなければならないことに注目されたい。構造 J-59中にR⁶基が示されて いるが、それらは場合による置換基なので、それらが存在する必要はないことが 注目される。場合により1~4個のR¹で置換されていることができる5-もし くは6-員複素芳香環の例には表示1中に示されている環J-7~J-58が含 まれ、ここでrは1~4の整数である。J-7~J-26はJ-1の例であり、 J-27~J-41はJ-2の例であり、J-42~J-44はJ-3の例であ り、J-46~J-53はJ-4の例であり、J-54~J-58はJ-5の例 であることに注目されたい。窒素原子の原子価を満たすために置換を必要として いる窒素原子はR'で置換されている。いくつかのJ基は4個未満のR'基で置換 されるのみであり得ることに注目されたい(例えばJ-19、J-20、J-2 3~J-26及びJ-37~J-40は1個のR′で置換されているのみである ことができる)。場合により1~4個のR'で置換されていることができる芳香 族8-、9-もしくは10-員縮合複素二環式環系の例には、表示1中に示され ているJ-60~J-90が含まれ、ここでrは1~4の整数である。R′基は 構造J-7~J-58及びJ-60~J-90において示されているが、それら は場合による置換基なので、それらが存在する必要はないことが注目される。あ

る原子に結合している時にR⁵、R⁶及び/又はR⁷がHである場合、これは該原子が非置換であると同じであることに注目されたい。(R⁵)』、(R⁶)。又は(R⁷),とJ基の間の結合点が流動的であると示されている場合、(R⁵)』、(R⁵)。又は(R⁷),はJ基のいずれの利用できる炭素原子に結合していることもできることに注目されたい。J基上の結合点が流動的であると示されている場合、J基はJ基のいずれの利用できる炭素を介しても、水素原子の置き換えによって式1の残りの部分に結合できることに注目されたい。

[0043]

【化13】

表示1

[0044]

【化14】

[0045]

【化15】

[0046]

【化16】

[0047]

【化17】

[0048]

【化18】

[0049]

上記の通りGは、場合によりC(=O)、SO又はS(O),より成る群から 選ばれる1もしくは2個の環メンバーを含んでいることができ且つ場合によりC 」-C₂アルキル、ハロゲン、CN、NO₂及びC₁-C₂アルコキシより成る群か ら選ばれる1~4個の置換基で置換されていることができる5-もしくは6-員 非芳香族炭素環式もしくは複素環式環である。これらのG基に関連して、「場合 により置換されていることができる」という用語は、非置換であるか又は非置換 類似体が有する殺節足動物剤活性を失わせない少なくとも1個の非-水素置換基 を有する基を指す。G基上の結合点が流動的であると示されている場合、G基は G基のいずれの利用できる炭素を介しても、水素原子の置き換えにより式1の残 りの部分に結合できることに注目されたい。場合による置換基はいずれの利用で きる炭素にも、水素原子の置き換えにより結合することができる。Gとしての5 -もしくは6-員非芳香族炭素環式環の例は表示2のG-1~G-8として示さ れている環を含み、ここでそのような環は場合により C, - C, アルキル、ハロゲ ン、CN、NO2及び $C_1 - C$ 2アルコキシより成る群から選ばれる $1 \sim 4$ 個の置 換基で置換されていることができる。Gとしての5-もしくは6-員非芳香族複 素環式環の例は表示2のG-9~G-48として示されている環を含み、ここで そのような環は場合により $C_1 - C_2$ アルキル、ハロゲン、CN、 NO_2 及び $C_1 - C_2$ C, アルコキシより成る群から選ばれる1~4個の置換基で置換されていること ができる。GがG-31~G-34、G-37及びG-38から選ばれる環を含 む場合、Q'はO、S又はNから選ばれることに注目されたい。GがG-11、 G13, G-14, G16, G-23, G-24, $G-30\sim G-34$, G-37及びG-38である場合、Q'はNであり、窒素原子はH又は C_1-C_2 アルキ ルを用いる置換によりその原子価を満たすことができることに注目されたい。

[0050]

【化19】

表示2

[0051]

【化20】

[0052]

上記の通り、各 R^6 及び各 R^7 は独立して(とりわけ) 5-もしくは 6- 員複素 芳香環又は芳香族 8-、9-もしくは 10- 員縮合複素二環式環系であることが

でき、各環は場合により $C_1 - C_1$ アルキル、 $C_2 - C_3$ - アルケニル、 $C_2 - C_4$ ア ルキニル、 $C_3 - C_6$ シクロアルキル、 $C_1 - C_4$ ハロアルキル、 $C_2 - C_4$ ハロアル ケニル、 $C_1 - C_4$ ハロアルキニル、 $C_3 - C_6$ ハロシクロアルキル、ハロゲン、 C_4 $N \setminus NO_1 \setminus C_1 - C_1 \cap C_2 \cap C_2 \cap C_3 \cap C_4 \cap$ チオ、C₁ – C₄ アルキルスルフィニル、C₁ – C₄ アルキルスルホニル、C₁ – C₄ アルキルアミノ、CューCュジアルキルアミノ、CューCュシクロアルキルアミノ、 $C_3 - C_6$ (アルキル) シクロアルキルアミノ、 $C_2 - C_4$ アルキルカルボニル、 C_3 $1 - C_{i} P N$ 1 + i 1アルキルアミノカルボニル又はC。-C。トリアルキルシリルより成る群から独立 して選ばれる1~3個の置換基で置換されていることができる。そのようなR⁶ 及び R^{7} 基の例には、そのような環が場合により(R^{7}), ではなくて $C_{1} - C_{2}$ ア ルキル、 $C_1 - C_4 - P$ ルケニル、 $C_1 - C_4 P$ ルキニル、 $C_3 - C_6$ シクロアルキル $C_1 - C_4 \cap C_2 \cap C_4 \cap C_2 - C_4 \cap C_2 \cap C_4 \cap C_4$ $C_3 - C_6 \land D_2 \land D_3 \land D_4 \land D_4 \land D_5 \land D_6 \land D_8 \land D_8$ $C_1 - C_4 \cap C_1 = C_4 \cap C_4$ ル、C₁ - C₄ アルキルスルホニル、C₁ - C₄ アルキルアミノ、C₂ - C₈ ジアルキ ルアミノ、C₃-C₆シクロアルキルアミノ、C₃-C₆(アルキル)シクロアルキ ルアミノ、 $C_1 - C_4$ アルキルカルボニル、 $C_1 - C_6$ アルコキシカルボニル、 C_2 $-C_{\mathfrak{s}}$ アルキルアミノカルボニル、 $C_{\mathfrak{s}}-C_{\mathfrak{s}}$ ジアルキルアミノカルボニル又は $C_{\mathfrak{s}}$ -C。トリアルキルシリルより成る群から選ばれる1~3個の置換基で置換され ていることができることを除いて、表示1中に示されている環J-7~J-58 及びJ-60~J-90として示されている環又は環系が含まれる。これらの置 換基はJ基のいずれの利用できる炭素にも、水素原子の置き換えにより結合でき ることに注目されたい。J基上の結合点が流動的であると示されている場合、J 基は J 基のいずれの利用できる炭素を介しても、水素原子の置き換えにより式1 の残りの部分に結合できることに注目されたい。

[0053]

スキーム1~17に記載される1つもしくはそれより多くの以下の方法及び変法を式1の化合物の製造に用いることができる。下記の式1~34の化合物中の

A、B、J、R¹、R²、R³、R⁴、R⁵、R⁶、R⁷、m及びnの定義は、上記において本発明の概略中で定義した通りである。式1 a \sim c、2 a \sim b、4 a \sim g 、5 a \sim b o 化合物は式1、2、4 及び5 の化合物の種々のサブセットである。

[0054]

スキーム1~17に概述する方法により式1の化合物を製造することができる。 典型的な方法はスキーム1に詳述されており、酸掃去剤の存在下において式2のアントラニルアミドを式3の酸塩化物とカップリングさせて式1aの化合物を得ることを含む。 典型的な酸掃去剤にはアミン塩基、例えばトリエチルアミン、ジイソプロピルエチルアミン及びピリジンが含まれ;他の掃去剤には水酸化物、例えば水酸化ナトリウム及びカリウムならびに炭酸塩、例えば炭酸ナトリウム及び炭酸カリウムが含まれる。 ある場合にはポリマーー担持酸掃去剤、例えばポリマーー結合ジイソプロピルエチルアミン及びポリマーー結合ジメチルアミノピリジンを用いるのが有用である。 続く段階に、五硫化リン及びLawesson's 試薬を含む多様な標準的チオ転移試薬を用いて、式1aのアミドを式1bのチオアミドに転換することができる。

[0055]

【化21】

<u>スキーム1</u>

[0056]

式1 a の化合物の製造のための代わりの方法は、ジシクロヘキシルカルボジイミド(DCC)のような脱水剤の存在下で式2のアントラニルアミドを式4の酸

とカップリングさせることを含む。この場合もポリマー担持試薬、例えばポリマー ーー結合シクロヘキシルカルボジイミドが有用である。この型の反応に関する合成の文献は広範囲なので、スキーム1及び2の合成法は式1の化合物の製造のための有用な方法の単なる代表的例である。

[0057]

【化22】

[0058]

式3の酸塩化物を式4の酸から、多数の周知の方法により製造できることも、 当該技術分野における熟練者は分かるであろう。

[0059]

式2aのアントラニルアミドは、典型的には式5の対応する2-ニトロベンズアミドから、ニトロ基の接触水素化を介して得ることができる。典型的な方法は、パラジウムカーボン又は酸化白金のような金属触媒の存在下且つエタノール及びイソプロパノールのようなヒドロキシル性溶媒(hydroxylic solvents)中における水素を用いる還元を含む。これらの方法は化学文献中で十分に実証されている。アルキル、置換アルキルなどのようなR'置換基は一般にこの段階に、直接アルキル化を含む既知の方法を介してあるいはアミンの還元的アルキル化の一般に好ましい方法を介して導入され得る。普通に用いられる方法は、ナトリウムシアノボロハイドライドのような還元剤の存在下でアニリン2aをアルドヒドと結合させ、R'がアルキル、アルケニル、アルキニル又はそれらの置換誘導体である式2bの化合物を製造することである。

[0060]

【化23】

<u>スキーム3</u>

[0061]

式5aの中間アミドは商業的に入手可能な2-二トロ安息香酸から容易に製造される。典型的なアミド形成法をここで適用することができる。これらには、例えばDCCを用いる式6の酸と式7のアミンの直接脱水的カップリングならびに酸塩化物もしくは無水物のような活性化形態への酸の転換及び続く式5aのアミドを形成するアミンとのカップリングが含まれる。我々は、クロロギ酸エチルが酸の活性化を含むこの型の反応のための特に有用な試薬であることを見いだした。この型の反応についての化学文献は広範囲である。式5aのアミドは、五硫化リン及びLawesson's試薬のような商業的に入手可能なチオ転移試薬の使用により容易に式5bのチオアミドに転換される。

[0062]

【化24】

スキーム4

$$(R^4)_n$$
 の R^2 R^3 R^3 R^2 R^3 R^3 R^2 R^3 R

式4(Jは場合により置換されていることができるフェニルである)の安息香酸は一般に当該技術分野において周知であり、同様にそれらの製造法も周知である。本発明の安息香酸の1つの特に有用なサブセットは式4a(R。は例えばC F_s 、 C_s F_r に等しい)の2-メチル-4-ペルフルオロアルキル安息香酸である。これらの化合物の合成をスキーム5~9に概述する。式4aの安息香酸は式8のベンゾニトリルから加水分解により製造することができる。用いられる条件は水、エタノール又はエチレングリコールのような溶媒中におけるアルカリ金属水酸化物又はアルコキシド(例えば水酸化カリウムもしくはナトリウム)のような塩基の使用を含むことができる(例えばJ.Chem.Soc.1948,1025)。あるいは又、水のような適した溶媒中で硫酸又はリン酸のような酸を用いて加水分解を行うことができる(例えばOrg.Synth.1955,Co11 vo1.3,557)。条件の選択は、反応条件へのR。の安定性に依存的であり、この変換を達成するためには通常高められた温度が用いられる。

[0064]

【化25】

<u>スキーム5</u>

$$R^5$$
 加水分解 OH R^6 8 4a R^6 はMeである

[0065]

式8のニトリルは式9のアニリンから、ジアゾ化及びシアン化銅塩を用いる中間ジアゾニウム塩の処理を含む古典的な順序により製造することができる(例えばJ. Amer. Chem. Soc. 1902, 24, 1035)。

[0066]

【化26】

[0067]

式9のアニリンは式10の化合物から製造することができる。この変換は、ラネイニッケルを用いる周知の方法により行われ得る(Org.Synth.Coll.Vol.VI,581)。あるいは又、水素の存在下でパラジウムのような適した触媒を用いることによって同じ変換を行うことができる。反応は通常1 $0^2 \sim 10^5$ k Paの圧力において、トルエンのような、しかしこれに限られない適した有機溶媒中で行われる。変換を達成するためには $80 \sim 110$ Cの高められた温度が通常必要である。当該技術分野における熟練者にわかる通り、チオエーテル部分の多数の化学的変更が可能であり、この変換を容易にするために必要な場合にはそれを用いることができる。

[0068]

【化27】

[0069]

式10の化合物は式11のイミノスルフランから製造することができる。メタ ノール又は水のようなプロトン性溶媒中で、トリエチルアミン(例えばOrg. Synth. Coll. Vol. VI, 581) 又はナトリウムメトキシドのような適した塩基の存在下におけるジクロロメタン又はトルエンのような非ープロトン性溶媒中で、あるいはプロトン性溶媒、非プロトン性溶媒及び塩基の組合わせ中で変換を行うことができる。反応が行われる温度は通常40~110℃の範囲内である。当該技術分野における熟練者にわかる通り、式11の化合物の適した塩、例えばこれらに限られるわけではないが塩酸塩、硫酸塩又は重硫酸塩を用いることもでき、但し、塩基の適した量は最初に遊離の塩基11の生成に用いられる。これは別個の段階として又は式10の化合物への式11の化合物の変換を含む段階の欠くことのできない部分として行われ得る。

[0070]

【化28】

又は塩

<u>スキーム8</u>

[0071]

式11の化合物は式12のアニリンから、硫化ジメチル及び適した塩素化剤、例えばこれらに限られるわけではないがN-クロロスクシンイミド(例えばOrg.Synth.Coll.Vol.VI,581)、塩素又はN-クロロベンゾトリアゾールとの反応により製造することができる。あるいは又、式12のアニリンを、無水酢酸、トリフルオロ酢酸無水物、トリフルオロメタンスルホン酸無水物、シクロヘキシルカルボジイミド、三酸化硫黄又は五酸化リンのような試薬(agent)を用いる処理により「活性化」されたジメチルスルホキシドで処理することができる。反応はジクロロメタン又はジメチルスルホキシドのような適した有機溶媒中で行われる。反応は-70 \sim 25 \sim 0 \sim 25 \sim 0 \sim 0 \sim 25 \sim 0 \sim 0 \sim 0 \sim 25 \sim 0 \sim 0 \sim 0 \sim 0 \sim 25 \sim 0 \sim 0 0 \sim 0 \sim

られる溶媒及び試薬に依存する。

[0072]

【化29】

[0073]

式13及び14(スキーム10)のイサト酸無水物から式2a及び2bの中間アントラニリルアミドを製造することもできる。典型的な方法は、ピリジン及びジメチルホルムアミドのような極性非プロトン性溶媒中で、室温から100℃の範囲の温度において、等モル量のアミン7をイサト酸無水物と合わせることを含む。アルキル及び置換アルキルのようなR'置換基は、既知のアルキル化剤、R'ーLg(ここでLgはハロゲン、アルキルもしくはアリールスルホネート又はアルキルサルフェートのような離脱基である)を用いてイサト酸無水物13を塩基触媒アルキル化し、アルキル置換中間体14を得ることによって導入され得る。式13のイサト酸無水物は、Coppola、Synthesis 505-36(1980)に記載されている方法により製造することができる。

[0074]

【化30】

スキーム10

[0075]

特定の式1の化合物(式中、AがOであり、BがOであり、R'がHである)の製造のための代わりの方法は、アミン7の式15のベンズオキサジノンとの反応を含む。典型的な方法は、テトラヒドロフラン又はピリジンのような溶媒中で、室温から溶媒の還流温度の範囲の温度において、アミンをベンズオキサジノンと合わせることを含む。ベンズオキサジノンは化学文献において十分に実証付けられており、アントラニル酸又はイサト酸無水物と酸塩化物のカップリングを含む既知の方法を介して得られ得る。ベンズオキサジノンの合成及び化学に関連して、Jakobson et al, Biorganic and Medicinal Chemistry, 2000, 8, 2095-2103及びその中に引用されている参照文献を参照されたい。Coppola, J. Heterocyclic Chemistry, 1999, 36, 563-588も参照されたい。

[0076]

【化31】

スキーム11

$$(R_4)_n$$
 $+$ R_2 R_3 $+$ R_4 R_4 R_5 R_5 R_6 R_7 R_8 R_9 R_9

[0077]

Jが場合により置換されていることができる複素環に等しい複素環式酸4はス キーム12~17に概述する方法により製造することができる。チオフェン、フ ラン、ピリジン、ピリミジン、トリアゾール、イミダゾール、ピラゾール、チア ゾール、オキサゾール、イソチアゾール、チアジアゾール、オキサジアゾール、 トリアジン、ピラジン、ピリダジン及びイソオキサゾールを含む多様な複素環式 酸への一般的及び特定的参考の両方は、以下の解説中に見いだされ得る:Rod d's Chemistry of Chemistry of Carbon Compounds, Vol. IVa to IV1., S. Coffey editor, Elsevier Scientific Publishin g, New York, 1973; Comprehensive Hetero cyclic Chemistry, Vol. 1-7, A. R. Katritz ky and C. W. Rees editors, Pergamon Pre ss. New York, 1984; Comprehensive Heter ocyclic Chemistry II, Vol. 1-9, A. R. Kat ritzky, C. W. Rees, and E. F. Scriven edit ors, Pergamon Press, New York, 1996;及びシ リーズ、The Chemistry of Heterocyclic Co

mpounds, E. C. Taylor, editor, Wiley, New York。本発明の特に有用な複素環式酸にはピリジン酸、ピリミジン酸及びビラゾール酸が含まれる。それぞれの代表的例の合成法をスキーム $12\sim17$ に詳述する。多様な複素環式酸及びそれらの合成のための一般的方法はWorld Patent Application WO 98/57397に見いだされ得る。

[0078]

代表的ピリジン酸(4b)の合成をスキーム12に描く。この方法は $\beta-$ ケトエステル及び4-アミノブテノン(19)からのピリジンの既知の合成を含む。置換基(substituent groups)R'(a) 及びR'(b) には例えばアルキル及びハロアルキルが含まれる。

[0079]

【化32】

スキーム12

[0800]

代表的ピリミジン酸(4c)の合成をスキーム13に描く。この方法はビニリデンー β ーケトエステル(22)及びアミジンからのピリミジンの既知の合成を含む。置換基R'(a)及びR'(b)には例えばアルキル及びハロアルキルが含まれる。

[0081]

【化33】

$$R^{7}(b)$$
 $R^{7}(b)$
 $R^{7}(b)$
 $R^{7}(b)$
 $R^{7}(b)$
 $R^{7}(b)$
 $R^{7}(a)$
 $R^{7}(a)$
 $R^{7}(a)$
 $R^{7}(b)$
 $R^{7}(a)$
 $R^{7}(a)$
 $R^{7}(b)$
 $R^{7}(a)$
 $R^{7}(a)$

[0082]

代表的ピラゾール酸($4\,d\sim 4\,g$)の合成をスキーム $1\,4\sim 1\,7$ に描く。ピラゾール $4\,d$ をスキーム $1\,4$ に記載する。スキーム $1\,4$ の合成は重要段階としてピラゾールのアルキル化を介する R^{7} (b)置換基の導入を含む。アルキル化剤 R^{7} (b)ー $L\,g$ (ここで $L\,g$ は $C\,l$ 、 $B\,r$ 、 I、スルホネート、例えば p-hルエンスルホネート又はメタンスルホネートあるいはサルフェート、例えば $-S\,O_2$ O R^{7} (b)のような離脱基である)は、 C_1-C_6 アルキル、 C_2-C_6 アルケニル、 C_2-C_6 アルキニル、 C_3-C_6 シクロアルル、 C_1-C_6 ハロアルキル、 C_2-C_6 アルキール、 C_3-C_6 ハロアルキール、 C_3-C_6 ハロアルキール、 C_3-C_6 ハロアルキール、 C_3-C_6 シクロアルボニル、 C_3-C_6 ジアルキルアミノカルボニル、 C_3-C_6 トリアルキルシリル;あるいはフェニル、ベンジル、ベンゾイル、5-6 しくは 6- 複素芳香環又は芳香族 8-、9-6 しく

は10-員縮合複素二環式環系のようなR'(b)基を含み、ここで各環もしく は環系は場合により置換されていることができる。メチル基の酸化はピラゾール カルボン酸を与える。いくつかのより好ましいR'(a)基にはハロアルキルが 含まれる。

[0083]

【化34】

スキーム14

$$R^{7}(a)$$
 $R^{7}(a)$ $R^{7}(a)$ $R^{7}(a)$ $R^{7}(b)$ $R^{7}(b)$ $R^{7}(b)$ $R^{7}(b)$ $R^{7}(b)$ $R^{7}(a)$ $R^{7}(a$

[0084]

ピラゾール4 e をスキーム15 に記載する。これらのピラゾール酸は、重要段階としての式28のピラゾールの金属化及びカルボキシル化を介して製造することができる。R'(b)基はスキーム14の方法に類似した方法で、すなわちR'(b)アルキル化剤を用いるアルキル化を介して導入される。代表的R'(a)基には例えばシアノ及びハロアルキルが含まれる。

[0085]

【化35】

スキーム15

[0086]

ピラソール4 f をスキーム16に記載する。これらは場合により置換されていることができるフェニルヒドラジン29をピルビン酸エステル30と反応させてピラゾールエステル31を得ることを介して製造することができる。エステルの加水分解はピラゾール酸4fを与える。この方法は、 R^{7} (b)が場合により置換されていることができるフェニルであり、 R^{7} (a)がハロアルキルである化合物の製造に特に有用である。

[0087]

【化36】

<u>スキーム16</u>

$$R^{7}(b)$$
-NHNH₂ + $R^{7}(a)$
 $CO_{2}Et$
 $R^{7}(b)$
 $R^{7}(b)$

[0088]

式4gのピラゾール酸をスキーム17に記載する。これらは、適切に置換されたニトリルイミンと置換プロピオレート(33)又はアクリレート(36)の3+2付加環化を介して製造することができる。アクリレートとの付加環化は、中間ピラゾリンからピラゾールへの追加の酸化を必要とする。エステルの加水分解はピラゾール酸4gを与える。この反応のために好ましいイミノハライドにはトリフルオロメチルイミノクロリド(38)及びイミノジブロミド(39)が含まれる。38のような化合物は既知である(J. Heterocycl. Chem. 1985, 22(2), 565-8)。39のような化合物は既知の方法により得ることができる(Tetrahedron Letters 1999, 40, 2605)。これらの方法は、 R^{7} (b)が場合により置換されていることができるフェニルであり、 R^{7} (a)がハロアルキル又はブロモである化合物の製造に特に有用である。

[0089]

【化37】

<u>スキーム17</u>

$$R^{7}(a)$$
 X_{1} X_{1} X_{1} X_{1} X_{1} X_{1} X_{1} X_{2} X_{1} X_{1} X_{2} X_{1} X_{1} X_{2} X_{1} X_{2} X_{1} X_{2} X_{1} X_{2} X_{1} X_{2} X_{1} X_{2} X_{2} X_{3} X_{1} X_{2} X_{3} X_{1} X_{2} X_{3} X_{1} X_{2} X_{3} X_{3} X_{1} X_{2} X_{3} X_{4} X_{4}

[0090]

式1の化合物の製造のための上記のいくつかの試薬及び反応条件は、中間体中に存在するある種の官能基と適合性でないかも知れないことがわかる。これらの場合には、保護/脱保護工程(sequences)又は官能基相互転換を合成中に挿入することが所望の生成物を得ることを助けるであろう。保護基の使用及び選択は、化学合成における熟練者に明らかであろう(例えばGreene, T.W.; Wuts, P.G. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991を参照されたい)。当該技術分野における熟練者には、いくつか

の場合に、定められた試薬をそれぞれのスキームにそれが描かれている通りに導入した後、式1の化合物の合成を完了させるために、詳細には記載されていない追加の日常的合成段階を行うことが必要であり得ることがわかるであろう。当該技術分野における熟練者には、上記のスキームに例示されている段階の組合わせを、式1の化合物の製造のために、示されている特定の工程が意味する順序以外の順序で行うことが必要であり得ることもわかるであろう。

[0091]

当該技術分野における熟練者には、式1の化合物及び本明細書に記載されている中間体を種々の求電子的、求核的、ラジカル、有機金属、酸化及び還元反応に供し、置換基を加えるか又は現存する置換基を変更することができることもわかるであろう。

[0092]

当該技術分野における熟練者は前の記述を用いて、さらに苦心することなく、本発明をその最大の程度まで利用できると思われる。従って以下の実施例は単に例示であって、いかようにも全く開示を制限するものではないと理解されるべきである。クロマトグラフィー溶媒混合物の場合、あるいは他にことわる場合を除いて、パーセンテージは重量による。クロマトグラフィー溶媒混合物に関する部及びパーセンテージは、他にことわらなければ容量による。 † H NMRスペクトルはテトラメチルシランからのppm低磁場において報告され; † sは一重項であり、dは二重項であり、t は三重項であり、q は四重項であり、mは多重項であり、d d d は二重項の二重項であり、d t は三重項の二重項であり、b r s はブロードな一重項である。

[0093]

【実施例】

実施例1

 段階A:
 3-メチル-N-(1-メチルエチル)-2-ニトロベンズアミドの

 製造

25mLの塩化メチレン中の3-メチル-2-二トロ安息香酸(2.00g、 11.0ミリモル)及びトリエチルアミン(1.22g、12.1ミリモル)の 溶液を10℃に冷却した。クロロギ酸エチルを注意深く加え、固体沈殿を生成させた。30分間撹拌した後、イソプロピルアミン(0.94g、16.0ミリモル)を加え、均一な溶液が生じた。反応物をさらに1時間撹拌し、水中に注ぎ、酢酸エチルで抽出した。有機抽出物を水で洗浄し、硫酸マグネシウム上で乾燥し、減圧下で蒸発させて1.96gの所望の中間体を126~128℃で融解する白色の固体として得た。

[0094]

'H NMR (CDCl₃) δ1.24 (d, 6H), 2.38 (s, 3H), 4.22 (m, 1H), 5.80 (br s, 1H), 7.4 (m, 3H)。

<u>段階B: 2-アミノ-3-メチル-N-(1-メチルエチル) ベンズアミドの</u>製造

段階Aの2-二トロベンズアミド(1.70g、7.6ミリモル)を40mlのエタノール中で5%Pd/C上において、50psiで水素化した。水素の吸収が止んだら、セライトを介して反応物を濾過し、セライトをエーテルで洗浄した。濾液を減圧下で蒸発させ、1.41gの表題化合物を149~151℃で融解する固体として得た。

[0095]

'H NMR (CDCl₃) δ1. 24 (dd, 6H), 2. 16 (s, 3H), 4. 25 (m, 1H), 5. 54 (br s, 2H), 5. 85 (br s, 1H), 6. 59 (t, 1H), 7. 13 (d, 1H), 7. 17 (d, 1H).

段階C: 3-メチル-N-(1-メチルエチル) -2-[[4-(トリフルオ ロメトキシ) ベンゾイル] アミノ] ベンズアミドの製造

塩化4-(トリフルオロメトキシ)ベンゾイル(0.29g、1.3ミリモル)を、5mLの塩化メチレン中の段階Bからのアニリン(0.25g、1.3ミリモル)及びトリエチルアミン(0.13g、1.3ミリモル)の混合物に、室温で滴下した。1時間撹拌した後、反応物を水中に注ぎ、酢酸エチルで抽出した。合わせた抽出物を硫酸マグネシウム上で乾燥し、減圧下で蒸発させた。得られる固体をヘキサン/エーテルで洗浄し、濾過して、本発明の化合物である0.4

1gの表題化合物を207~209℃で融解する固体として得た。

[0096]

'H NMR (CDC1₃) δ1. 19 (d, 6H), 2. 33 (s, 3H),
4. 15 (m, 1H), 5. 97 (br d, 1H), 7. 2-7. 4 (m, 6
H), 8. 04 (d, 1H), 10. 11 (br s, 1H).

[0097]

実施例2

<u>段階A: 1-エチル-3-トリフルオロメチルピラゾール-5-イルカルボン</u> 酸の製造

30mLのN, N-ジメチルホルムアミド中で撹拌されている3-トリフルオロメチルピラゾール(5g、37ミリモル)及び粉末炭酸カリウム(10g、72ミリモル)の混合物に、ヨードエタン(8g、51ミリモル)を滴下した。穏やかな発熱の後、反応物を室温で終夜撹拌した。反応混合物を100mLのジエチルエーテルと100mLの水の間に分配した。エーテル層を分離し、水(3X)及びブラインで洗浄し、硫酸マグネシウム上で乾燥した。真空中における溶媒の蒸発は4gの油を与えた。

[0098]

ドライアイス/アセトン浴中で窒素下に、40mLのテトラヒドロフラン中で 撹拌されている3.8gのこの油に、テトラヒドロフラン中のnーブチルリチウムの2.5M溶液を17mL(43ミリモル)滴下し、溶液を一78℃で20分間撹拌した。撹拌されている溶液中に過剰の二酸化炭素ガスを、穏やかな速度で10分間泡立てた。二酸化炭素の添加の後、反応物がゆっくり室温となるのを許し、終夜撹拌した。反応混合物をジエチルエーテル(100mL)と0.5N水酸化ナトリウム水溶液(100mL)の間に分配した。塩基性層を分離し、濃塩酸を用いて2~3のpHに酸性化した。水性混合物を酢酸エチル(100mL)で抽出し、有機抽出物を水及びブラインで洗浄し、硫酸マグネシウム上で乾燥した。真空中における溶媒の蒸発の後に残る油性の残留物を少量の塩化nーブチルから摩砕して固体とした。濾過及び乾燥の後、わずかに不純な1ーエチルー3ートリフルオロメチルーピラゾールー5ーイルカルボン酸(1.4g)の試料が広 範囲で融解する(broad-melting)固体として得られた。

[0099]

'H NMR (CDCl₃): 9.85 (br s, 1H), 7.23 (s, 1H), 4.68 (q, 2H), 1.51 (t, 3H) ppm.

<u>段階B</u>: 2-[1-エチル-3-トリフルオロメチルピラゾール-5-イルカルバモイル] <math>-3-メチル-N-(1-メチルエチル) ベンズアミドの製造

 $20\,\mathrm{mL}$ の塩化メチレン中で撹拌されている $1-\mathrm{x}$ チルー $3-\mathrm{hJ}$ フルオロメチルーピラゾールー $5-\mathrm{dI}$ ルガルボン酸($0.5\,\mathrm{g}$ 、 $2.4\,\mathrm{sJ}$ モル)の溶液に、塩化オキサリル($1.2\,\mathrm{mL}$ 、 $14\,\mathrm{sJ}$ モル)を加えた。 $2\,\mathrm{mo}$ N, N ージメチルホルムアミドを加えると、発泡及び泡立ち($\mathrm{foaming}$ and bu bbling)が起こった。反応混合物を黄色の溶液として $1\,\mathrm{fh}$ 間加熱還流した。冷却後、溶媒を真空中で除去し、得られる残留物を $20\,\mathrm{mL}$ のテトラヒドロフラン中に溶解した。撹拌されている溶液に、 $2-\mathrm{rsJ}$ - $3-\mathrm{y}$ - $3-\mathrm{y}$ - $3-\mathrm{y}$ - $1-\mathrm{y}$ -

[0100]

'H NMR (DMSO-D₆): 10. 15 (s, 1H), 8. 05 (d, 1 H), 7. 45 (s, 1H), 7. 43-7. 25 (m, 3H), 4. 58 (q, 2H), 3. 97 (m, 1H), 2. 45 (s, 3H), 1. 36 (t, 3H), 1. 06 (d, 6H) ppm_o

[0101]

実施例3

<u>段階A: S, S-ジメチル-N-[4-(トリフルオロメチル)フェニル]ス</u>

ルフィルイミンの製造

~170mLのジクロロメタン中のN-クロロスクシンイミド(12.43g、93.1ミリモル)の溶液を、230mLのジクロロメタン中の4-(トリフルオロメチル)アニリン(15g、93.1ミリモル)及び硫化ジメチル(6.35g、102ミリモル)の混合物に $-5\sim0$ ℃において加えた。添加が完了した後、混合物を $0\sim5$ ℃で1時間撹拌し、N-クロロスクシンイミド(0.02g、4.64ミリモル)を加えた。さらに30分の後、混合物を500mLの1N水酸化ナトリウムで洗浄した。

[0102]

有機相を乾燥し、蒸発させ、101~103℃で融解する固体19.72gとして生成物を得た(酢酸エチル/ヘキサンからの結晶化の後)。

[0103]

IR (ヌジョール) 1603, 1562, 1532, 1502, 1428, 1402, 1335, 1300, 1270, 1185, 1150, 1103, 1067, 1000, 972, 940, 906, 837, 817cm⁻¹。

<u>段階B: 2-[(メチルチオ)メチル]-4-(トリフルオロメチル)ベンゼ</u>ンアミン

メタノール中のナトリウムメトキシド(1.95g、9.02ミリモル、25%)を、15mLのトルエン中の段階AからのS,S-ジメチル-N-[4-(トリフルオロメチル)フェニル]スルフィルイミン(2g、9.04ミリモル)に加えた。混合物を-80 に1時間温めた。混合物を25 に冷まし、100 mLの水中に注いだ。混合物を2x100 mLの酢酸エチルで抽出し、合わせた抽出物を乾燥し、蒸発させて1.8gの生成物を65.5 -67.5 で融解する固体として得た(ヘキサンからの結晶化の後)。

[0104]

IR (ヌジョール) 3419, 3333, 1629, 1584, 1512, 1440, 1334, 1302, 1235, 1193, 1139, 1098, 1078, 979, 904, 832cm⁻¹。

[0105]

'H NMR (CDC1₃) δ 7. 35 (dd, J=1. 5Hzx8. 2Hz, 1H), 6. 72 (d, J=8. 4Hz) 4. 39 (br. 5, 2H, 3. 69 (5, 2H), 1. 99 (5, 3H).

段階C: 2-メチル-4-(トリフルオロメチル)ベンゼンアミンの製造

1 Lのエタノール中の2 - [(メチルチオ)メチル] -4- (トリフルオロメチル)ベンゼンアミン(5 5 . 3 g、0 . 2 5 モル)の溶液に活性化ラネイニッケル(5 0 0 gの湿ったペースト、~5 0 μ)を、2 5 ~ 3 0 $^{\circ}$ において3 0 分かけて分けて加えた。添加の後、不均一な混合物を3 0 分間激しく撹拌した。撹拌を止め、1 時間かけて固体を沈降させた。固体から液体をデカンテーションし、濾紙を介して注いだ。濾液を減圧下で蒸発させ、残留物をジクロロメタン中に取り上げた。有機相を少量の水から分離し、硫酸マグネシウム上で乾燥し、減圧下で蒸発させて3 7 . 6 gの表題化合物を琥珀色の油として得た。

[0106]

'H NMR (CDC1₃) δ 7. 28 (m, 2H), 6. 68 (d, 1H), 3. 87 (br s, 2H), 2. 19 (s, 3H).

段階D: 2-メチル-4-(トリフルオロメチル)ベンゾニトリルの製造

2 - メチルー4 - (トリフルオロメチル) ベンゼンアミン(14g、80ミリモル)及び120mLの水の不均一な混合物に、激しく撹拌しながら濃塩酸(16mL)を穏やかな速度で滴下した。濃い懸濁液が生じ、それを20分間撹拌し、280mlの水で希釈し、5℃に冷却した。亜硝酸ナトリウム(5.5g、80ミリモル)及び25mLの水の溶液を反応懸濁液にゆっくり加えた。5℃で30分間撹拌した後、溶液が得られ、それをさらに30分間冷温で撹拌し、次いで炭酸カリウムを用いて中和した。このジアゾニウム塩溶液を次いでカニューレを介し、シアン化カリウム(22g、0.34モル)、硫酸銅五水和物(20g、80ミリモル)及び140mLの水の撹拌された95℃の混合物に分けて加えた。添加の後、混合物を95℃で30分間撹拌し、次いで室温に冷ました。エーテルを加え、不均一な混合物をセライトを介して濾過した。固体をエーテルで洗浄し、濾液を分配した。水相をエーテルで抽出し、合わせた有機抽出物を硫酸マグネシウム上で乾燥し、減圧下で濃縮し、13.1gの表題化合物を褐色の油とし

て得た。

[0107]

'H NMR (CDCl₃) δ7. 74 (d, 1H), 7. 60 (s, 1H), 7. 55 (d, 1H), 2. 64 (s, 3H).

段階E: 2-メチル-4-トリフルオロメチル安息香酸の製造

2-メチル-4-(トリフルオロメチル)ベンゾニトリル(13g、70ミリモル)及び135mLのエチレングリコールの撹拌された不均一な混合物に、水酸化カリウム(15.7g、0.28モル)及び15mLの水を溶液として加えた。反応混合物を120~130℃において20時間加熱し、室温に冷ました。暗色の溶液を800mLの水中に注ぎ、セライトを介して濾過した。濾液をエーテルで洗浄し、次いで濃塩酸を用いて水相を酸性化した。この水相を酢酸エチルで3回抽出し、有機抽出物を合わせ、硫酸マグネシウム上で乾燥し、減圧下で蒸発させ、表題化合物を淡褐色の固体として得た。

[0108]

'H NMR (CDCl₃) δ7. 98 (d, 1H), 7. 70 (s, 1H), 7. 65 (d, 1H), 2. 60 (s, 3H).

<u>段階F:</u> 2-メチル-4-(トリフルオロメトキシ)ベンゾイルクロリドの製造

10mLのトルエン中の段階Eからの安息香酸(0.50g、2.4ミリモル)の溶液に、室温で塩化チオニル(0.42g、3.5ミリモル)を加えた。反応物を3時間還流させ、次いで室温に冷却した。溶媒を減圧下で蒸発させ、過剰の塩化チオニルをトルエンとの共沸により除去した。得られる塩化ベンゾイルを直接段階Gにおいて用いた。

段階G: 2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ]カルボニル]フェニル]-4-(トリフルオロメチル)ベンズアミドの製造 段階Fの塩化ベンゾイル(0.29g、1.3ミリモル)を、10mLのクロロホルム中の実施例1、段階Bからのアニリン(0.36g、1.9ミリモル)及びジイソプロピルエチルアミン(0.26g、2.0ミリモル)の混合物に室温で加えた。反応物を終夜撹拌した。固体沈殿を濾過し、乾燥し、本発明の化合

物である 0.38gの表題化合物を 247~248℃で融解する固体として得た

[0109]

'H NMR (CDC 1₃) α1. 24 (d, 6H), 2. 41 (s, 3H),
2. 58 (s, 3H), 4. 20 (m, 1H), 5. 94 (br d, 1H),
7. 2-7. 3 (m, 2H), 7. 40 (d, 1H), 7. 52 (s, 1H),
7. 53 (d, 1H), 7. 70 (d, 1H), 9. 36 (br s, 1H).

実施例4

段階A: 2-メチルー6-(トリフルオロメチル)-3-ピリジンカルボニル クロリドの製造

75mLのトルエン中の2-メチル-6-トリフルオロメチルニコチン酸(5.00g、24.4ミリモル)の混合物に塩化チオニル(4.35g、36.5ミリモル)を加え、混合物を3時間加熱還流した。反応物を室温に冷却し、溶媒を減圧下で除去した。過剰の塩化チオニルをトルエンとの共沸により除去した。得られる酸塩化物をそのまま実施例4、段階Bで用いた。

段階B: 8-メチル-2-[2-メチル-6-(トリフルオロメチル)-3-ピリジニル]-4H-3, 1-ベンズオキサジンの製造

6-メチルイサト酸無水物(3.92g、22.1ミリモル)及び段階Aからの酸塩化物(5.45g、24.3ミリモル)の混合物をピリジン中で16時間加熱還流した。暗褐色の溶液を室温に冷却し、溶媒を減圧下で除去した。過剰のピリジンをトルエンとの共沸により除去した。エーテルを加え、得られる褐色の固体を濾過により取り出した。固体を重炭酸ナトリウム水溶液及びクロロホルムの混合物中に取り上げ、クロロホルム抽出物を硫酸マグネシウム上で乾燥し、蒸発させた。過剰のピリジンを再びトルエンとの共沸により除去し、5.1gの表題化合物を褐色の固体として得た。

[0111]

'H NMR (CDC1₃) d2. 65 (s, 3H), 3. 11 (s, 3H), 7. 49 (t, 1H) 7. 40 (m, 1H), 7. 68-7. 73 (m, 2H) , 1. 11 (d, 1H), 8. 58 (d, 1H).

段階C: 2-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミノ]カルボニル]フェニル]-6-(トリフルオロメチル)-3-ピリジンの製造

 $30\,\mathrm{mL}$ のテトラヒドロフラン中の段階Bのベンズオキサジノン(4.00g、12.5ミリモル)の混合物にイソプロピルアミン(7.37g、0.125ミリモル)を加えた。均一な溶液が生成した。混合物を短時間加熱し、その後どろどろの(thick)白色の沈殿が生成した。減圧下で溶媒を除去し、得られる固体をエーテルで洗浄し、濾過して4.48gの表題化合物を247~248 Cで融解する固体として得た。

[0112]

'H NMR (CDCl₃) d1. 24 (d, 6H), 2. 41 (d, 3H),
2. 77 (s, 3H), 4. 17 (m, 1H), 5. 96 (bd, 1H), 7.
21 (m, 2H), 7. 40 (m, 1H), 7. 53 (d, 1H), 7. 97 (d, 1H), 9. 80 (bs, 1H).

[0113]

実施例5

段階A: 4-メチル-N-[2-メチル-6-[[(1-メチルエチル) アミ] カルボニル] フェニル] <math>-2-(トリフルオロメチル) -5-ピリミジンカルボキシアミドの製造

15mLの塩化メチレン中で撹拌されている0.8g(4ミリモル)の4-メチルー2ートリフルオロメチルピリミジンー5ーカルボン酸 [Palankiet al, J. Med. Chem. 2000, 43, 3995の方法により製造]の溶液に、塩化オキサリル(2mL、23ミリモル)を加えた。2滴のN, Nージメチルホルムアミドを加えると、発泡及び泡立ちが起こった。反応混合物を黄色の溶液として1時間加熱還流した。冷却後、溶媒を真空中で除去し、得られる残留物を20mLのテトラヒドロフラン中に溶解した。撹拌されている溶液に、2ーアミノー3ーメチルーNー(1ーメチルエチル)ベンズアミド(1g、5ミリモル)を加え、続いてN, Nージイソプロピルエチルアミン(3mL、1

7ミリモル)を滴下した。室温で終夜撹拌した後、反応混合物を酢酸エチル(200mL)と1N塩酸水溶液(75mL)の間に分配した。分離した有機層を水及びブラインで洗浄し、硫酸マグネシウム上で乾燥した。真空中における蒸発は白色の固体残留物を与え、それを少量の酢酸エチル中に懸濁させ、濾過して、本発明の化合物である248~251℃で融解する(乾燥後に)650mgの表題化合物を得た。

[0114]

'H NMR (DMSO-D₆): 10.3 (s, NH), 9.07 (s, 1H), 8.25 (d, NH), 7.43-7.25 (m, 3H), 4.03 (m, 1H), 2.73 (s, 3H), 2.32 (s, 3H), 1.12 (d, 6H) ppm₆

[0115]

実施例 6

<u>段階A: 2-メチル-1-フェニル-4-(トリフルオロメチル)-1H-ピ</u>ラゾールの製造

水酢酸(60mL)中の1,1,1ートリフルオロペンタン-2,4ージオン(20.0g、0.130モル)の溶液を、氷/水浴を用いて7℃に冷却した。フェニルヒドラジン(14.1g、0.130モル)を60分かけて滴下した。反応塊の温度は滴下の間に15℃に上昇した。得られるオレンジ色の溶液を60分間周囲条件下に保った。65℃の浴温での回転蒸発器上におけるストリッピングにより酢酸の大部分を除去した。残留物を塩化メチレン(150mL)中に溶解した。溶液を重炭酸ナトリウム水溶液(50mLの水中に3g)で洗浄した。紫ー赤色の有機層を分離し、活性炭(2g)及びMgSO4で処理し、次いで濾過した。回転蒸発器上で揮発性物質を除去した。粗生成物は28.0gのローズー色の油から成り、それは~89%の所望の生成物及び11%の1ーフェニルー5ー(トリフルオロメチル)-3ーメチルピラゾールを含有した。

[0116]

'H NMR (DMSO-D₆) δ 2. 35 (s, 3H), 6. 76 (s, 1H), 7. 6-7. 5 (m, 5H).

段階B: 1-フェニル-3-(トリフルオロメチル)-1H-ピラゾール-5-カルボン酸の製造

粗1-フェニル-3-(トリフルオロメチル)-5-メチルピラゾール(~8 9%、50.0g、0.221モル)の試料を水(400mL)及びセチルトリ メチルアンモニウムクロリド(4.00g、0.011モル)と混合した。混合 物を95℃に加熱した。過マンガン酸カリウムを~8分の間隔を開けた10個の 等しい部分として加えた。この間、反応塊を95~100℃に保持した。最後の 部分を加えた後、混合物を~15分間95~100℃に保ち、そうすると紫色の 過マンガン酸塩の色が消えた(discharged)。150mlの粗いガラ ス濾過器上で1cmの厚さのCelite®の床を介し、反応塊を熱時(~75 \mathbb{C}) に濾過した。フィルターケークを温(~50 \mathbb{C})水(3x100 \mathbb{C})で洗 浄した。合わせた濾液及び洗浄液をエーテル(2×100mL)で抽出し、水に 不溶性の少量の黄色の材料を除去した。水層を窒素でパージして残留エーテルを 除去した。 p H が~ 1. 3 に達するまで (2 8 g 、 0. 2 8 モル) 濃塩酸を滴下 することにより、透明な無色のアルカリ性溶液を酸性化した。滴下の最初の3分 の2の間は気体の発生が激しかった。濾過を介して生成物を集め、水で洗浄し(3 x 4 0 m L)、次いで55℃で真空中において終夜乾燥した。生成物は11. 7gの白色の結晶性粉末から成り、それは H NMRに基づいて本質的に純粋 であった。

[0117]

¹H NMR (CDCl₃) δ 7. 33 (s, 1H), 7. 4-7. 5 (m, 5 H).

<u>段階C: 1-フェニル-3-(トリフルオロメチル)-1H-ピラゾール-5</u> -カルボニルクロリドの製造

粗1-7ェニル-3-(トリフルオロメチル)ピラゾール-5-カルボン酸(4.13g、16.1ミリモル)の試料を塩化メチレン(45mL)中に溶解した。溶液を塩化オキサリル(1.80mL、20.6ミリモル)で処理し、続いてN, N-ジメチルホルムアミド(0.010mL、0.13ミリモル)で処理した。N, N-ジメチルホルムアミド触媒の添加から短時間の後に気体の発生が

始まった。反応混合物を周囲条件下で ~ 20 分間撹拌し、次いで35 分間加熱還流した。55 \sim の浴温における回転蒸発器上で反応混合物をストリッピングすることにより、揮発性物質を除去した。生成物は4.43 gの明-黄色の油から成った。 † H NMRにより観察される唯一の不純物はN, N-ジメチルホルムアミドであった。

[0118]

'H NMR (CDCl₃) δ 7. 40 (m, 1H), 7. 42 (s, 1H), 7. 50-7. 53 (m, 4H).

段階D: N-[2-メチル-6-[[(1-メチルエチル) アミノ] カルボニ ル] フェニル] -1-フェニル-3-(トリフルオロメチル) -1H-ピラゾール-5-カルボキシアミドの製造

[0119]

'H NMR (DMSO-D₆) δ 1. 07 (d, 6H), 2. 21 (s, 3H), 4. 02 (八重項, 1H), 7. 2-7. 4 (m, 3H), 7. 45-7.

6 (m, 6H), 8. 10 (d, 1H), 10. 31 (s, 1H).

実施例7

段階A: 3-hリフルオロメチル-2-[3-(hリフルオロメチル)-1H-ピラゾール-1-イル] ピリジンの製造

2-クロロー3-トリフルオロメチルピリジン(3.62g、21ミリモル)、3-トリフルオロメチルピラゾール(2.7g、20ミリモル)及び炭酸カリウム(6.0g、43ミリモル)の混合物を100℃で18時間加熱した。冷却された反応混合物をx/x(100mL)に加えた。混合物をエーテル(100mL)で2回抽出し、合わせたエーテル抽出物をx(100mL)で2回洗浄した。有機層を硫酸マグネシウムを用いて乾燥し、濃縮して油とした。溶離剤としてヘキサン:酢酸エチル $8:1\sim 4:1$ を用いるシリカゲル上のクロマトグラフィーは表題化合物(3.5g)を油として与えた。「1H NMR(CDC 1_3)36.75 (1H NMR)、1H)、1H)。

段階B: 3-(トリフルオロメチル)-1-[3-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-5-カルボン酸の製造

実施例 5、段階Aの表題化合物(3.4g、13ミリモル)の混合物をテトラヒドロフラン(30mL)中に溶解し、-70℃に冷却した。リチウムジイソプロピルアミド(ヘプタン/テトラヒドロフラン中の2N、(Aldrich)9.5mL、19ミリモル)を加え、得られる暗色の混合物を10分間撹拌した。混合物を介して乾燥二酸化炭素を15分間泡立てた。混合物を23℃に温め、水(50mL)及び1N水酸化ナトリウム(10mL)で処理した。水性混合物をエーテル(100mL)及び次いで酢酸エチル(100mL)で抽出した。6N塩酸を用いて水層を $pH1\sim2$ まで酸性化し、ジクロロメタンで2回抽出した。有機層を硫酸マグネシウムを用いて乾燥し、濃縮して表題化合物(1.5g)を得た。 $^{\dagger}H$ NMR(CDCl $_{3}$) δ 7.6(m,1H),7.95(m,1H),8.56(m,1H),8.9(m,1H),14.2(br,1H)。段階C:N-[2-メチル-6-[(1-メチルエチル)アミノ]カルボニ

[0121]

当該技術分野において既知の方法と一緒に、本明細書に記載した方法によって、表 $1\sim17$ の以下の化合物を製造することができる。表中で以下の略字を用いる: t は第 3 級であり、 s は第 2 級であり、 n はノルマルであり、 i はイソであり、 c はシクロであり、 d をはメチルであり、 d と d

[0122]

<u>表1</u>

R ⁴	R ⁵ 及び/又は R ⁶	R ⁴	R ⁵ 及び/又は R ⁶	R ⁴	R ⁵ 及び/又はR ⁶
Me	2-CF ₃	Me	3-CF ₃	Ме	4-CF ₃
Me	2-OCF3	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF ₂ CF ₂ H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Ме	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Ме	4-SOCF ₂ H
Ме	2-SO ₂ CF ₂ H	. Me	3-SO ₂ CF ₂ H	Ме	4-80 ₂ CF ₂ H

[0123]

【表2】

Cl	2-CF ₃	Cl	3-CF ₃	Ci	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	Cl	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-OCF ₂ H	CI	4-OCF ₂ H
Cl	2-OCF2CF2H	Cl	3-OCF ₂ CF ₂ H	CI	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	CI	3-OCH ₂ CF ₃	Cl	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	CI	4-SCF ₃
Cl	2-SOCF ₃	CI	3-SOCF ₃	Cl	4-SOCF ₃
Cl	2-SO ₂ CF ₃	CI	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
Cl	. 2-SCF ₂ H	CI	3-SCF ₂ H	Cl	4-SCF ₂ H
Cl	2-SOCF ₂ H	Cl	3-SOCF ₂ H	CI	4-SOCF ₂ H
Cl	2-SO ₂ CF ₂ H	Cı	3-SO ₂ CF ₂ H	Cl	4-SO ₂ CF ₂ H
F	2-CF ₃	F	3-CF ₃	F.	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	_ F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF ₂ CF ₂ H	F	3-OCF ₂ CF ₂ H	F.	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	· F	4-socf ₂ h
F	2-SO ₂ CF ₂ H	F	3-SO ₂ CF ₂ H	F	4-SO ₂ CF ₂ H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-0CF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO ₂ CF ₂ H	Br	3-80 ₂ CF ₂ H	Br	4-SO ₂ CF ₂ H
I	2-CF ₃	1	3-CF ₃	1	4-CF ₃
I	2-OCF ₃	1	3-OCF ₃	1	4-OCF ₃
1	2-OCF ₂ H	I	3-0CF ₂ H	1	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H

[0124]

1	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	1	4-OCH ₂ CF ₃
1	2-SCF ₃	I	3-SCF ₃	· I	4-SCF ₃
1	2-SOCF ₃	I	3-SOCF ₃	1	4-SOCF3
I	2-SO ₂ CF ₃]	3-SO ₂ CF ₃	ı	4-SO ₂ CF ₃
I	2-SCF ₂ H	I	3-SCF ₂ H	1	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	1	4-SOCF ₂ H
I	2-SO ₂ CF ₂ H	I	3-SO ₂ CF ₂ H	I	4-SO ₂ CF ₂ H
OMe	2-CF ₃	ОМе	3-CF ₃	OMe ·	4-CF ₃
OMe	2-OCF ₃	ОМе	3-OCF ₃	OMe	4-OCF ₃
OMe	2-OCF ₂ H	ОМе	3-OCF ₂ H	OMe	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	ОМе	3-OCF ₂ CF ₂ H	ОМв	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	ОМе	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF3	OMe	3-SCF ₃	OMe ·	4-SCF ₃
OMe	2-SOCF ₃	ОМе	3-SOCF ₃	ОМе	4-SOCF ₃
ОМе	2-SO ₂ CF ₃	ОМе	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	ОМе	3-SCF ₂ H	ОМе	4-SCF ₂ H
OMe	2-SOCF ₂ H	ОМе	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO ₂ CF ₂ H	OMe	3-SO ₂ CF ₂ H	ОМе	4-SO ₂ CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF3
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H .
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO ₂ CF ₂ H	CF ₃	3-SO ₂ CF ₂ H	CF ₃	4-SO ₂ CF ₂ H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	осғ ₂ н	4-CF ₃
OCF ₂ H	2-OCF ₃	ocf ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	OCF ₂ H	4-0CF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃
OCF ₂ H	2-SCF ₃	осғ ₂ н	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	осғ ₂ н	3-SOCF ₃	OCF ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	OCF ₂ H	4-SO ₂ CF ₃

[0125]

OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	OCF ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-socr ₂ h	OCF ₂ H	4-SOCF ₂ H
осғ ₂ н	2-SO ₂ CF ₂ H	OCF ₂ H	3-SO₂CF ₂ H	OCF ₂ H	4-SO ₂ CF ₂ H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Ci	2-Me-4-CF ₃
Me	2-Me-4-OCF3	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	CI.	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	CI	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Mc-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	CI	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO ₂ CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	_ Cl	2-Me-4-SO ₂ CF ₂ H
Вг	2-Me-4-CF ₃	I	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	ОМе	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	OMe	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br ·	2-Me-4-SCF ₃	I	2-Me-4-SCF3	ОМе	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF ₃	ОМе	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	ОМе	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	1	2-Me-4-SCF ₂ H	ОМе	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br ·	2-Me-4-SO ₂ CF ₂ H	I	2-Me-4-SO ₂ CF ₂ H	ОМе	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO ₂	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO ₂	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO_2	2-Me-4-OCH ₂ CF ₃	SMe	2-Mc-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Mo-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF3	SMe	2-Mo-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO_2	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	NO_2	2-Me-4-SO ₂ CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

[0126]

【表5】

<u>表2</u>

R ⁴	R ⁵ 及び/又は R ⁶	R ⁴	R ⁵ 及び/又はR ⁶	R ⁴	R ⁵ 及び/又はR ⁶
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF3	Me	3-OCF ₃	Me	4-OCF3
Ме	2-OCF ₂ H	Мє	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-0CF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF3	Мс	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Me	3-SCF ₂ H	· Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO ₂ CF ₂ H	Me	3-SO ₂ CF ₂ H	Me	4-SO ₂ CF ₂ H
CI	2-CF ₃	Ci	3-CF ₃	C1	4-CF ₃
Cl	2-OCF3	Cl	3-OCF ₃	Ci	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-OCF ₂ H	Cl	4-OCF ₂ H.
Cl	2-OCF ₂ CF ₂ H	CI	3-OCF ₂ CF ₂ H	CI	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	Cl	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	Cl	4-SCF ₃
Cl	2-SOCF ₃	Cl	3-SOCF ₃	CI	4-SOCF3
Cl	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	ci	3-SCF ₂ H	CI	4-SCF ₂ H
Cl	2-SOCF ₂ H	. CI	3-SOCF ₂ H	Cl	4-SOCF ₂ H
Cl	2-SO ₂ CF ₂ H	Cı	3-SO ₂ CF ₂ H	CI	4-SO ₂ CF ₂ H
F	2-CF3	F	3-CF ₃	F	4-CF3
F	2-OCF ₃	F	· 3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-0CF ₂ H	F	4-OCF ₂ H
. E	2-OCF ₂ CF ₂ H	F	3-OCF ₂ CF ₂ H	,F	4-OCF ₂ CF ₂ H

[0127]

	_		i		
E	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO ₂ CF ₂ H	F	3-SO ₂ CF ₂ H	F	4-SO ₂ CF ₂ H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
·Br	2-OCF3	Br	3-0CF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-0CF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	. Br	4-OCH ₂ CF ₃
Br	2-SCF3	Br	3-SCF ₃	_ Br ·	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF3	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	·Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO ₂ CF ₂ H	Br	3-SO ₂ CF ₂ H	Br	4-SO ₂ CF ₂ H
ĭ	2-CF ₃	I	3-CF ₃	I	4-CF ₃
ĭ	2-OCF ₃	I	3-OCF ₃	I	4-OCF ₃
I	2-OCF ₂ H	1	3-OCF ₂ H	. 1	4-OCF ₂ H
· 1	2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
I	2-OCH ₂ CF ₃	1	3-OCH ₂ CF ₃	I	4-OCH ₂ CF ₃
1	2-SCF ₃	I	3-SCF ₃	I	4-SCF ₃
. 1	2-SOCF ₃	I	3-SOCF ₃	I	4-SOCF ₃
1	2-SO ₂ CF ₃	I .	3-SO ₂ CF ₃	I	4-SO ₂ CF ₃
I	2-SCF ₂ H	I	3-SCF ₂ H	I	4-SCF ₂ H
1	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
I	2-SO ₂ CF ₂ H	I	3-SO ₂ CF ₂ H	I	4-SO ₂ CF ₂ H
OMe	2-CF ₃	OMe	3-CF ₃	OMe	4-CF ₃
OMe	2-OCF ₃	OMe	3-OCF ₃	OMe	4-OCF ₃
OMe	2-OCF ₂ H	OMe	3-OCF ₂ H	OMe	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	OMe	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	OMe	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃

	_				
OMe	2-SCF ₂ H	ОМе	3-SCF ₂ H	ОМе	4-SCF ₂ H
OMe	2-SOCF ₂ H	OMe	3-SOCF ₂ H	ОМс	4-SOCF ₂ H
OMe	2-SO ₂ CF ₂ H	ОМе	3-SO ₂ CF ₂ H	ОМе	4-SO ₂ CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF3	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF2CF2H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	_ CF ₃	4-SOCF ₂ H
CF ₃	2-SO ₂ CF ₂ H	CF ₃	3-SO ₂ CF ₂ H	CF ₃	4-SO2CF2H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
ocf ₂ H	2-OCF ₃	ocf ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	OCF ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	осг ₂ н	3-OCF ₂ CF ₂ H	ocf ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	ocf ₂ H	4-OCH ₂ CF ₃
OCF ₂ H	2-SCF ₃	ocf ₂ h	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	ocf ₂ H	3-SOCF ₃	OCF ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	ocf ₂ h	3-SO ₂ CF ₃	ocf ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	ocf ₂ H	3-SCF ₂ H	ocf ₂ h	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	ocf ₂ H	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
ocf ₂ H	2-SO ₂ CF ₂ H	ocf ₂ h	3-SO ₂ CF ₂ H	ocf ₂ h	4-SO ₂ CF ₂ H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	C1	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F _.	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	. Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	CI	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO ₂ CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	Cl	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	1	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF3	OMe	2-Me-4-OCF ₃

[0129]

Вг	2-Me-4-OCF ₂ H	ī	2-Me-4-OCF ₂ H	OMe	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	1	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	1	2-Me-4-SCF ₃	ОМе	2-Me-4-SCF3
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF ₃	ОМе	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	. 1	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	ОМе	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO ₂ CF ₂ H	I	2-Me-4-SO ₂ CF ₂ H	ОМе	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF3	NO_2	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO_2	2-Me-4-OCF ₃	SMe	2-Mc-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO ₂	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Mo-4-SCF ₃	NO_2	2-Mc-4-SCF3	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO_2 .	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO_2	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	NO_2	2-Me-4-SO ₂ CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

R ⁴	R ⁵ 及び/又はR ⁶	R ⁴	R ⁵ 及び/又はR ⁶	R ⁴	R ⁵ 及び/又はR ⁶
Ме	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Ме	2-SOCF3	Me	3-SOCF ₃	Me	4-SOCF ₃

[0130]

Me	2-SO ₂ CF ₃	Ме	3-SO ₂ CF ₃ ·	Me.	4-SO ₂ CF ₃
Ме	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO ₂ CF ₂ H	Me	3-SO ₂ CF ₂ H	Me	4-SO ₂ CF ₂ H
Cl	2-CF ₃	Cl	3-CF ₃	. C I	4-CF ₃
Cl .	2-OCF ₃	Cl	3-OCF ₃	Cl	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-0CF ₂ H	C1	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	Cl	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	Cl	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	CI	4-SCF ₃
Cl	2-SOCF ₃	C1	3-SOCF ₃	Cl	4-SOCF ₃
CI	2-SO ₂ CF ₃	Cì	3-SO ₂ CF ₃	C1	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	Cl	3-SCF ₂ H	_ Cl	4-SCF ₂ H
Cl	2-SOCF ₂ H	Cl	3-SOCF ₂ H	CI	4-SOCF ₂ H
Cl	2-SO ₂ CF ₂ H	Cl	3-SO ₂ CF ₂ H	C1	4-SO ₂ CF ₂ H
F	2-CF ₃	. F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF2CF2H	F	3-OCF2CF2H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-\$O ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F .	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO ₂ CF ₂ H	F	3-SO ₂ CF ₂ H	P	4-SO ₂ CF ₂ H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
·Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	. 4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO ₂ CF ₂ H	Br	3-SO ₂ CF ₂ H	Br	4-SO ₂ CF ₂ H

[0131]

【表10】

2-CF ₃	I	3-CF ₃	I	4-CF ₃
2-OCF ₃	I	3-OCF ₃	I	4-OCF ₃
2-ОСҒ ₂ Н	I	3-0CF ₂ H	I	4-OCF ₂ H
2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	1	4-OCH ₂ CF ₃
2-SCF ₃	I	3-SCF ₃	I	4-SCF ₃
2-SOCF ₃	ĭ	3-SOCF ₃	I	4-SOCF ₃
2-SO ₂ CF ₃	ĭ	3-SO ₂ CF ₃	1	4-SO ₂ CF ₃
2-SCF ₂ H	I	3-SCF ₂ H	I	4-SCF ₂ H
2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
2-SO ₂ CF ₂ H	I	3-SO ₂ CF ₂ H	I	4-SO ₂ CF ₂ H
2-CF ₃	ОМе	3-CF ₃	ОМе	4-CF ₃
2-OCF ₃	ОМе	. 3-OCF ₃	OMe -	4-OCF3
2-0CF ₂ H	ОМе	3-OCF ₂ H	ОМе	4-OCF ₂ H
2-OCF ₂ CF ₂ H	OMe	3-OCF ₂ CF ₂ H	ОМе	4-OCF ₂ CF ₂ H
2-OCH ₂ CF ₃	ОМе	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
2-SCF ₃	ОМе	3-SCF ₃	OMe	4-SCF ₃
2-SOCF ₃	ОМе	3-SOCF ₃	ОМе	4-SOCF ₃
2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	ОМе	4-SO ₂ CF ₃
2-SCF ₂ H	ОМе	3-SCF ₂ H	OMe	4-SCF ₂ H
2-SOCF ₂ H	OMe	3-SOCF ₂ H	OMe	4-SOCF ₂ H
2-SO ₂ CF ₂ H	OMe	3-SO ₂ CF ₂ H	ОМе	4-SO ₂ CF ₂ H
2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
2-SCF ₃	CF ₃	=		4-SCF ₃
2-SOCF ₃	CF ₃	3-SOCF ₃	· CF ₃	4-SOCF ₃
2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
2-SO ₂ CF ₂ H	CF ₃	3-SO ₂ CF ₂ H	CF ₃	4-SO ₂ CF ₂ H
	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
2-OCF ₂ H	OCF ₂ H		1	
2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
	2-OCF ₃ 2-OCF ₂ H 2-OCF ₂ CF ₂ H 2-OCH ₂ CF ₃ 2-SCF ₃ 2-SCF ₃ 2-SO ₂ CF ₃ 2-SCF ₂ H 2-SO ₂ CF ₂ H 2-SO ₂ CF ₂ H 2-CF ₃ 2-OCF ₂ H 2-OCF ₂ CF ₂ H 2-OCH ₂ CF ₃ 2-SCF ₃ 2-SCF ₃ 2-SCF ₃ 2-SCF ₃ 2-SCF ₂ H 2-SO ₂ CF ₃ 2-SCF ₂ H 2-CF ₃ 2-SCF ₃ 2-SCF ₂ H 2-CF ₃ 2-SCF ₃ 2-SCF ₃ 2-SCF ₂ H 2-CF ₃ 2-SCF ₂ H 2-SO ₂ CF ₃ 2-SCF ₂ H 2-SO ₂ CF ₃ H	2-OCF ₂ H 2-OCF ₂ CF ₂ H 1 2-OCF ₂ CF ₂ H 1 2-OCH ₂ CF ₃ 1 2-SCF ₃ 1 2-SCF ₃ 1 2-SOCF ₃ 1 2-SO ₂ CF ₃ 1 2-SO ₂ CF ₃ 1 2-SO ₂ CF ₂ H 1 2-SO ₂ CF ₂ H 1 2-SO ₂ CF ₂ H 1 2-CF ₃ 0Me 2-OCF ₂ H 2-OCF ₂ CF ₂ H 0Me 2-OCF ₂ CF ₃ 0Me 2-SCF ₃ 0Me 2-SCF ₃ 0Me 2-SCF ₃ 0Me 2-SCF ₃ 0Me 2-SO ₂ CF ₃ CF ₃ 2-SCF ₂ H 0Me 2-SO ₂ CF ₂ H 0Me 2-SO ₂ CF ₂ H CF ₃ 2-OCF ₂ CF ₃ CF ₃ 2-OCF ₂ CF ₃ CF ₃ 2-OCF ₂ CF ₃ CF ₃ 2-SCF ₂ H	2-OCF ₂ H 2-OCF ₂ CF ₂ H 1 3-OCF ₂ CF ₂ H 1 3-OCF ₂ CF ₂ H 1 3-OCF ₂ CF ₂ H 2-OCH ₂ CF ₃ 1 3-OCH ₂ CF ₃ 1 3-OCH ₂ CF ₃ 2-SCF ₃ 1 3-SCF ₃ 2-SOCF ₃ 1 3-SOCF ₃ 2-SOCF ₃ 1 3-SOCF ₃ 2-SCF ₂ H 1 3-SOCF ₂ H 2-SOCF ₂ H 1 3-SOCF ₂ H 2-SO ₂ CF ₂ H 1 3-SO ₂ CF ₃ 2-CF ₃ 0Me 3-CF ₃ 2-OCF ₃ 0Me 3-OCF ₂ CF ₂ H 2-OCF ₂ CF ₂ H 2-OCF ₂ CF ₂ H 2-OCF ₂ CF ₃ 0Me 3-OCF ₂ CF ₂ H 2-OCH ₂ CF ₃ 0Me 3-SOCF ₃ 2-SCF ₃ 0Me 3-SOCF ₃ 2-SOCF ₃ 0Me 3-SOCF ₃ 2-SOCF ₃ 0Me 3-SOCF ₃ 2-SOCF ₃ 2-SOCF ₂ H 0Me 3-SOCF ₂ H 2-SOCF ₂ H 0Me 3-SOCF ₂ H 2-SOCF ₂ H 0Me 3-SOCF ₂ H 2-SOCF ₂ H 2-CF ₃ CF ₃ 3-CF ₃ 3-CF ₃ 2-OCF ₃ 2-OCF ₃ CF ₃ 3-OCF ₂ CF ₂ H 2-OCF ₂ CF ₂ H 2-OCF ₂ CF ₂ H 2-OCF ₂ CF ₃ 3-OCF ₃ 2-SCF ₃ 2-SCF ₃ 3-SCF ₃ 2-SCF ₃ 2-SCF ₃ 3-SCF ₃ 2-SCF ₃ 2-SCF ₃ 3-SCF ₃ 3-SCF ₃ 2-SCF ₃ 2-SCF ₃ 3-SCF ₃ 3-SCF ₃ 2-SCF ₃ 3-SCF ₃ 2-SCF ₃ 3-SCF ₃ 3-SCF ₃ 2-SCF ₃ 3-SCF ₃ 3-SCF ₃ 2-SCF ₃ 3-SCF ₃ 3-SCF ₃ 3-SCF ₃ 2-SCF ₃ 3-SCF ₂ H 2-SCF ₂ H CF ₃ 3-SCF ₂ H 3-SCF ₂ H 2-SCF ₂ H CF ₃ 3-SCF ₂ H 3-SCF ₂ H 2-SCF ₂ H CF ₃ 3-SCF ₂ H 3-SCF ₂ H 2-SCF ₂ H CF ₃ 3-SCF ₂ H 3-SCF ₂ H 2-SCF ₂ H CF ₃ 3-SCF ₂ H 3-SCF ₂ H 2-SCF ₂ H CF ₃ 3-SCF ₂ H	2-OCF ₂ H 2-OCF ₂ CF ₂ H 1 3-OCF ₂ CF ₂ H 1 2-OCF ₂ CF ₂ CF ₂ H 1 3-OCF ₂ CF ₂ CF ₂ H 1 2-OCH ₂ CF ₃ 1 3-OCH ₂ CF ₃ 1 2-SCF ₃ 1 3-SCF ₃ 1 2-SOCF ₃ 1 3-SOCF ₃ 1 2-SO ₂ CF ₃ 1 2-SO ₂ CF ₃ 1 2-SO ₂ CF ₃ 1 3-SO ₂ CF ₃ 1 2-SOCF ₂ H 1 3-SO ₂ CF ₃ 1 2-SO ₂ CF ₂ H 1 2-SO ₂ CF ₂ H 1 3-SO ₂ CF ₂ H 1 2-CF ₃ 0Me 3-CF ₃ 0Me 2-OCF ₂ CF ₂ H 0Me 3-OCF ₂ CF ₂ H 0Me 2-OCF ₂ CF ₂ CF ₂ H 0Me 3-OCF ₂ CF ₂ CF ₃ 0Me 2-SCF ₃ 0Me 3-SCF ₃ 0Me 2-SCCF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₂ CF ₂ CF ₃ 0Me 2-SCF ₂ CF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₂ CF ₃ 0Me 3-SCF ₂ CF ₃ 0Me 2-SCF ₃ 1 3-CF ₃ 2-OCF ₃ 1 3-CF ₃ 2-OCF ₃ 1 3-OCF ₂ CF ₂ CF ₃ 1 3-SCF

[0132]

	•			•	
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	OCF ₂ H	4-SCF ₃
ocf ₂ H	2-SOCF ₃	OCF ₂ H	3-SOCF ₃	OCF ₂ H	4-SOCF ₃
ocf ₂ H	2-SO ₂ CF ₃	осғ ₂ н	3-SO ₂ CF ₃	OCF ₂ H	4-SO ₂ CF ₃
ocf ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	OCF ₂ H	4-SCF ₂ H
ocf ₂ H	2-SOCF ₂ H	ocf ₂ h	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO ₂ CF ₂ H	OCF ₂ H	3-SO ₂ CF ₂ H	OCF ₂ H	4-SO ₂ CF ₂ H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	CI	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF3
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me .	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	_ Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO ₂ CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	Cl	2-Mo-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	1	2-Me-4-CF ₃	ОМе	2-Mo-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	r	2-Me-4-OCF ₂ H	OMe	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	1	2-Me-4-OCH ₂ CF ₃	· OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	. 1	2-Me-4-SCF3	ОМе	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF3	OMe	2-Me-4-SOCF3
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	ОМе	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	I	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	ОМе	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO ₂ CF ₂ H	1	2-Me-4-SO ₂ CF ₂ H	OMe	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	. NO ²	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO ₂	2-Me-4-OCF3	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	№2	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO ₂	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF2H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	NO ₂	2-Me-4-SO ₂ CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H
•					

[0133]

【表12】

表4

R ⁴	R ⁵ 及び/又はR ⁶	R ⁴	R ⁵ 及び/又は R ⁶	R ⁴	R ⁵ 及び/又は R ⁶
Me	2-CF ₃	Me	3-CF ₃	Мс	4-CF ₃
Me	2-OCF ₃	Me	3-OCF3	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-0CF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-0CH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
· Me	2-SOCF3	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Ме	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO ₂ CF ₂ H	Me	3-SO ₂ CF ₂ H	Me	4-SO ₂ CF ₂ H
Cl	2-CF ₃	Cl	3-CF ₃	Cl	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	C1	4-OCF ₃
Cl	2-OCF ₂ H	C)	3-OCF ₂ H	Cl	4-OCF ₂ H
Cl ·	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	CI	4-OCF ₂ CF ₂ H
C)	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	Cì	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃ ·	C1	4-SCF ₃
Cl	2-SOCF ₃	CI	3-SOCF ₃	Cl	4-SOCF ₃
Cl	2-SO ₂ CF ₃	Cı	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	Cl	3-SCF ₂ H	CI	4-SCF ₂ H
Cl	2-SOCF ₂ H	C1	3-SOCF ₂ H	Cl	4-SOCF ₂ H
Cl	2-SO ₂ CF ₂ H	CI	3-SO ₂ CF ₂ H	CI	4-SO ₂ CF ₂ H
F.	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF ₂ CF ₂ H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H

[0134]

【表13】

F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO ₂ CF ₂ H	F	3-SO ₂ CF ₂ H	F	4-SO ₂ CF ₂ H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF3
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF2CF2H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF3	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO ₂ CF ₂ H	Br	3-SO ₂ CF ₂ H	Br	4-SO ₂ CF ₂ H
1	2-CF ₃	I	. 3-CF ₃	I	4-CF ₃
I	2-OCF ₃	I	3-OCF ₃	. I	4-OCF ₃
I	2-OCF ₂ H	I	3-OCF ₂ H	· I	4-OCF ₂ H
1	2-OCF ₂ CF ₂ H	1	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
1	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	I	4-OCH ₂ CF ₃
Ι.	2-SCF ₃	1	3-SCF ₃	I	4-SCF ₃
I	2-SOCF ₃	I	3-SOCF ₃	I	4-SOCF ₃
I	2-SO ₂ CF ₃	I	3-SO ₂ CF ₃	I	4-SO ₂ CF ₃
1	2-SCF ₂ H	Ι.	3-SCF ₂ H	I	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
I	2-SO ₂ CF ₂ H	I	3-SO ₂ CF ₂ H	I	4-SO ₂ CF ₂ H
OMe	2-CF ₃	OMe ·	3-CF ₃	OMe	4-CF ₃
OMe	2-OCF ₃	OMe	3-OCF ₃	OMe	4-OCF ₃
ОМе	2-OCF ₂ H	OMe	3-OCF ₂ H	ОМе	. 4-OCF ₂ H
OMe	2-OCF2CF2H	OMe	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	ОМе	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
ОМе	2-SOCF ₃	OMe	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃

[0135]

【表14】

OMe	2-SCF ₂ H	ОМе	3-SCF ₂ H	ОМе	4-SCF ₂ H
OMe	2-SOCF ₂ H	ОМе	3-SOCF ₂ H	ОМе	4-SOCF ₂ H
OMe	2-SO ₂ CF ₂ H	ОМе	3-SO ₂ CF ₂ H	ОМе	4-SO ₂ CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃ .
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	_ CF ₃	4-SOCF ₂ H
CF ₃	2-SO ₂ CF ₂ H	CF ₃	3-SO ₂ CF ₂ H	CF ₃	4-SO ₂ CF ₂ H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	осг ₂ н	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	ост ₂ н	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	осғ ₂ н	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	осғ ₂ н	4-OCF2CF2H
ocf ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃
ocf ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	OCF ₂ H	3-SOCF ₃	OCF ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	OCF ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	ocf ₂ h	3-SCF ₂ H	ocf ₂ h	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
ocf ₂ h	2-SO ₂ CF ₂ H	ocf ₂ H	3-SO ₂ CF ₂ H	OCF ₂ H	4-SO ₂ CF ₂ H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Mo-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	CI	2-Mo-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	CI	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F ·	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	CI	. 2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Mo-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO ₂ CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	CI	2-Mc-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	I	2-Me-4-CF ₃	ОМе	2-Mo-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	ОМе	2-Me-4-OCF ₃

[0136]

Br	2-Me-4-OCF ₂ H	1	2-Me-4-OCF ₂ H	ОМе	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF3	1	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF3	OMe	2-Me-4-SOCF3
Br	2-Me-4-SO ₂ CF ₃	1	2-Me-4-SO ₂ CF ₃	ОМе	2-Me-4-SO2CF3
Br .	2-Me-4-SCF ₂ H	I	2-Mc-4-SCF ₂ H	ОМе	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	1	2-Me-4-SOCF ₂ H	ОМе	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO2CF2H	I	2-Mc-4-SO ₂ CF ₂ H	OMe	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO_2	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO_2	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO_2	2-Mc-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO_2	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO_2	2-Me-4-SCF3	SMe	2-Mo-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO_2	2-Me-4-SOCF3	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO ₂	2-Me-4-SO ₂ CF ₃	SMe .	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	NO ₂	2-Me-4-SO ₂ CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

R ³	R ⁴	R ⁷	. w	х	Y	
i-Pr	Me	CF ₃	. CMe	. N	СН	CH
i-Pr	Cl	CF ₃	СМе	И	CH	CH
i-Pr	Br	CF ₃	СМе	N	CH	CH
i-Pr	I	CF ₃	СМе	И	CH	CH
i-Pr	F	CF ₃	СМе	N	CH	CH
i-Pr	н	CF ₃	CMe	N	CH	CH
i-Pr	Et	CF ₃	СМе	И	CH	CH

[0137]

i-Pr	Me	CF ₃	СМе	СН	N	СН
i-Pr	Cl	CF ₃	СМе	СН	N	СН
i-Pr	Br	CF ₃	СМе	СН	N	СН
<i>i</i> -Pr	I	CF ₃	СМе	СН	N	CH
i-Pr	F	CF ₃	СМе	СН	N	СН
i-Pr	H	CF ₃	СМе	СН	N	СН
i-Pr	Et	CF ₃	СМе	CH	N	СН
i-Pr	Me	CF ₃	СМе	СН	СН	N
i-Pr	Cl	CF ₃	СМе	CH	СН	N
i-Pr	Br	CF ₃	СМе	CH	CH	N
i-Pr	I	CF ₃	СМе	СН	CH .	N
i-Pr	$\mathbf{F}_{:}$	CF ₃	СМе	CH	. СН	N
<i>i</i> -Pr	H	CF ₃	СМе	СH	CH	· N
<i>i</i> -Pr	Et	CF ₃	CMe	CH	СН	N
<i>i</i> -Pr	Me	CF ₃	СМе	N	CH	N
i-Pr	Cl	CF ₃	CMe	N	CH	N
i-Pr	Br	CF ₃	CMe	N	CH	N
i-Pr	1	CF ₃	СМе	N	CH	N
i-Pr	F	CF ₃	СМе	N	CH	N
i-Pr	H	CF ₃	СМе	N	CH	N
i-Pr	Et	CF ₃	СМе	N	· CH	N
<i>t</i> -Bu	Me	CF ₃	CMe	N	CH	СН
t-Bu	CI	CF ₃	СМе	N	CH	CH
t-Bu	Br	CF ₃	СМе	N	СН	СН
t-Bu	I	CF ₃	СМе	N	CH	CH
<i>t-</i> Bu	. F	CF ₃	СМе	N .	CH	CH
t-Bu	H	CF ₃	СМе	N	CH	CH
<i>t</i> -Bu	Et	CF ₃	СМе	N	CH	CH
<i>t</i> -Bu	Me	CF ₃	CMe	. CH	N	CH
t-Bu	ĊI	CF ₃ ⋅	СМе	CH	N	CH
<i>t</i> -Bu	Br	CF ₃	СМе	CH	N	CH
t-Bu	I	CF ₃	СМе	CH	N.	CH
t-Bu	F	CF ₃	СМе	CH	. N	CH
r-Bu	H	CF ₃	CMe	CH	N	CH
t-Bu	Et	CF ₃	СМе	CH	N	СН
t-Bu	Me	CF ₃	CMe	CH	CH	Ŋ
t-Bu	Cl	CF ₃	СМе	CH	CH	N

[0138]

【表17】

t-Bu	Вт	CF ₃	СМе	СН	CH	N
t-Bu	1	CF ₃	СМе	CH	СН	И
t-Bu	F	CF ₃	СМе	СН	CH	N
t-Bu	н	CF ₃	СМе	CH	СН	N
t-Bu	Et	CF ₃	СМе	СН	CH	И
i-Pr	Me	OCF ₃	СМе	N.	CH	CH
i-Pr	Cl	OCF ₃	СМе	N	CH	CH
i-Pr	Br	OCF ₃	CMe	N	CH	CH
i-Pr	I	OCF ₃	СМе	N	CH	CH
i-Pr	F	OCF ₃	СМе	N	CH	CH
i-Pr	H	OCF ₃	CMe	N	CH	CH
i-Pr	Et	OCF ₃	CMe	N·	CH	CH
i-Pr	Me	CF ₃	СН	И	CH	CH
i-Pr	Cl	CF ₃	CH	N	CH	CH
i-Pr	Br	CF ₃	CH	N	CH	CH
i-Pr	. 1	CF ₃	CH	И	CH	CH
i-Pr	F	CF ₃	CH	N	CH	CH
i-Pr	н	CF ₃	CH	N	CH	CH
i-Pr	Et	CF ₃	CH	N	CH	CH
i-Pr	Me	Cl	CMe	CH	CH	N
· i-Pr	Cl	Cl	СМе	СН	CH	И
i-Pr	Br	Cl	СМе	CH	CH	N
i-Pr	I	Cl	СМе	CH	CH	N
i-Pr	F	Cl	CMe	CH	CH	N
i-Pt	н	Cl	СМе	CH	CH	N
i-Pr	Et	Cl	СМе	CH	CH	N

[0139]

【表18】

_	_		•		
R ³	R ⁴	R ⁷	Χ.	Y	Z
i-Pr	Me	CF ₃	СМе	N	СН
i-Pr	Cl	CF ₃	СМе	N	СН
<i>i-</i> Pr	Br	CF ₃	СМе	N	CH
i-Pr	I	CF ₃	СМе	N	СН
i-Pr	F	CF ₃	СМе	N	СН
<i>i</i> -Pr	H	CF ₃	CMe	N	СН
i-Pr	Et	CF3	СМе	N	CH
i-Pr	Me	CF ₃	CMe	СН	N
i-Pr	Cl	CF ₃	СМе	СН	N
i-Pr	Br	CF ₃	СМе	CH	N
<i>i</i> -Pr	1	CF ₃	CMe	СН	N
<i>i</i> -Pr	F	CF ₃	СМе	CH	N
<i>i</i> -Pr	H	CF ₃	СМе	CH	N
<i>i</i> -Pr	Et	CF ₃	СМе	CH	N
i-Pr	Me	CF ₃	СМе	N	N
i-Pr	Cl	CF ₃	СМе	N	N
i-Pr	Br	CF ₃	СМе	N	N
i-Pr	I	CF ₃	СМе	N	N
i-Pr	F	CF ₃	СМе	N	N
i-Pt	H	CF ₃	СМе	'n	N
i-Pr	Et	CF ₃	CMe	N	N
i-Pr	Me	CF ₃	CEt	СН	N
i-Pr	Cl	CF ₃	CEt	CH	N
i-Pr	Br	CF ₃	CEt	СН	N
i-Pr	I	CF ₃	CEt	CH	N
i-Pr	F	CF ₃	CEt	CH	N
i-Pr	H	CF ₃	CE _t	CH	N .
i-Pr	Et	CF ₃	CEt	CH	N
t-Bu	Me	CF ₃	СМе	N	CH
t-Bu	C1	CF ₃	CMe	N	CH
<i>t</i> -Bu	Br	CF ₃	СМв	N	CH
t-Bu	1	CF ₃	СМе	N	CH
t-Bu	F	· CF ₃	СМе	N	СН
<i>t</i> -Bu	H	CF ₃	СМе	N	CH
t-Bu	Et	CF ₃	СМе	N	CH
t-Bu	Me	CF ₃	СМе	CH	N

[0140]

【表19】

t-Bu	Cl	CF ₃	СМе	CH	N
t-Bu	Br	CF ₃	СМе	CH	N
t-Bu	1	CF ₃	СМе	CH	N
t-Bu	F	CF ₃	СМе	СН	N
<i>t</i> -Bu	н	CF ₃	СМе	CH	N
t-Bu	Et	CF ₃	СМе	CH	N
t-Bu	Me	CF ₃	СМе	Ν.	N
t-Bu	Cl	CF ₃	СМе	N	N
t-Bu	Br	CF ₃	СМе	N	N
t-Bu	I	CF ₃	СМе	N	N
t-Bu	F	CF ₃	СМе	N	N
t-Bu	H	CF ₃	СМе	И	N
t-Bu	Et	CF ₃	CMe	Й	N
i-Pr	Me	OCF3	СМе	CH	N
i-Pr	Cl	OCF ₃	СМе	CH	N
<i>i</i> -Pr	Br	OCF ₃	СМе	CH	N
i-Pr	· I	OCF ₃	СМе	CH	N
i-Pr	F	OCF ₃	CMe	CH	N
i-Pr	н	OCF ₃	СМе	CH	N
i-Pr	Et	OCF ₃	СМе	CH	N
i-Pr	Me	CF ₃	CH	CH	N
i-Pr	Cl	CF ₃	CH	CH	N
i-Pr	Br	CF ₃	CH	CH	И
i-Pr	Ï	CF ₃	CH	CH	Й
i-Pr	F	CF ₃	CH	CH	N
i-Pr	н	CF ₃	CH	CH	Й
i-Pr	Et	CF ₃	CH	CH	N
i-Pr	Me	Cl	СМе	CH ·	N
i-Pr	Cl	Cl	СМе	СН	N
i-Pr	Br	Cl	СМе	CH	И
i-Pr	I	Cl	СМе	CH	N
i-Pr	F	Ci	СМе	CH	М.
i-Pr	н	Cl	СМе	CH	N
i-Pr	Et	CI	СМе	CH	N

[0141]

【表20】

表7

R ³	R ⁴	Q	x	Y	z
i-Pr	Me	S	CCF ₃	CH	CH
i-Pr	Cl	S	CCF ₃	СН	CH
i-Pr	Br	S	CCF ₃	CH	CH
<i>i-</i> Pr	1	S	CCF ₃	CH	CH
i-Pr	F	s	CCF ₃	CH	CH
i-Pr	н	S	CCF ₃	CH	CH
i-Pr	Et	s	CCF ₃	CH	CH
i-Pr	Me	S	CCF ₃	СМе	CH
i-Pr	Cl	S	CCF ₃	СМс	CH
i-Pr	Br	S	CCF ₃	СМе	CH
<i>i-</i> Pr	I	S	CCF ₃	СМе	CH
i-Pt	F	S	CCF ₃	СМе	CH
i-Pr	н	S	CCF ₃	СМе	CH
i-Pr	Et	S	CCF ₃	СМе	CH
t-Bu	Me	S	CCF ₃	СМе	CH
t-Bu	Cl	S	CCF3	СМе	CH
t-Bu	Br	S	CCF ₃	СМе	CH
t-Bu	1	S	CCF ₃	СМе	CH
t-Bu	F	S	CCF ₃	СМе	CH
t-Bu	н	S	CCF ₃	СМе	CH
t-Bu	Et	s	CCF ₃	CMe	CH
i-Pr	Me	S	CCF ₃	СМе	·N
i-Pr	Cl	s	CCF3	СМе	И
i-Pr	Br	S	CCF ₃	СМе	N
i-Pr	1	S	CCF ₃	СМе	N
i-Pr	F	s	CCF ₃	СМв	И
<i>i</i> -Рт	н	S	CCF ₃	СМе	N

[0142]

i-Pr	Et	s	CCF ₃	СМе	N
i-Pr	Ме	s	COCH ₂ CF ₃	СМе	N
<i>i</i> -P⊤	Cl	S	COCH ₂ CF ₃	СМе	N
i-Pr	Br	S	COCH ₂ CF ₃	СМе	N
i-Pr	1	s	COCH ₂ CF ₃	СМе	N
i-Pr	F	S	COCH ₂ CF ₃	СМе	N
i-Pr	Н	S	COCH ₂ CF ₃	СМе	N
<i>i</i> -Pr	Et	S	COCH ₂ CF ₃	СМе	И
i-Pr	Me	S	COCHF ₂	СМе	N
<i>i</i> -Pr	Cl	S	COCHF ₂	СМе	N
i-Pr	Br	S	COCHF ₂	СМе	N
i-Pr	r	S	COCHE	СМе	N
i-Pr	F	S	COCH	СМе	N
i-Pr	H	S	COCHF ₂	СМе	N
<i>i</i> -Pr	Et	S	COCHF ₂	СМе	N
<i>i-</i> Pr	Me	0	CCF ₃	СМе	N
i-Pr	Cl	О	CCF ₃	СМе	N
i-Pr	Br	0	CCF ₃	СМе	N
i-Pr	I	О	CCF ₃	СМе	N
i-Pr	F -	O	CCF ₃	CMe	N
i-Pr	H	0	CCF ₃	ĊМе	N
i-Pr	Et	0	CCF ₃	CMe	И
i-Pr	Me	NMe	N	CH	CCF ₃
i-Pr	Cl	NMe	N	CH	CCF ₃
i-Pr	. Br	NMe	Й	CH	CCF ₃
i-Pr	I	NMe	N	CH	CCF ₃
i-Pr	F	NMe	N	CH	CCF ₃
i-Pr	H	NMe	N	CH	CCF ₃
i-Pr	Et	NMe	N .	CH	CCF ₃
i-Pr	Me	NEt	N .	CH	CCF ₃
i-Pr	Cl	NEt	. N	CH	CCF ₃
i-Pr	Br	NEt	N	CH	CCF ₃
i-Pr	I	NEt	N	CH	CCF ₃
i-Pr	F	NEt	N	CH	CCF ₃
i-Pr	H	NEt	И	CH	CCF ₃
i-Pr	Et	NEt	И	CH	CCF ₃
<i>i</i> -Pr	Me	NMe	И	CH	CC ₂ F ₃

[0143]

【表22】

i-Pr	Cl	NMe	N	ĊН	CC ₂ F ₃
i-Pr	Br	NMe	И	CH	CCF ₃
i-Pr	1	NMe	N	CH	CCF ₃
i-Pr	F	NMe	N	CH	CCF ₃
i-Pr	H	NMe	N	СН	CCF ₃
i-Pr	Et	NMe	N	СН	CCF ₃
t-Bu	Me	NMe	N	СН	CCF ₃
r-Bu	Cl	NMe	N	СН	CCF ₃
t-Bu	Br	· NMe	N	CH	CCF ₃
t-Bu	I	NMe	N	CH	CCF ₃
t-Bu	F	NMe	N	CH	CCF ₃
t-Bu	H	NMe	N	CH	CCF ₃
t-Bu	Et	NMe	N	.CH	CCF ₃
i-Pr	Me	NMe	CH	N	CCF ₃
i-Pt	Cl	NMe	CH	N	CCF ₃
i-Pr	Br	NMe	CH	N	CCF ₃
i-Pr	I	NMe	CH	N	CCF ₃
i-Pr	F	NMe	CH	N	CCF ₃
i-Pr	H	NMe	CH	N	CCF ₃
i-Pr	Et	NMe	CH	Ŋ	CCF ₃
i-Pr	Me	NMe	И	N	· CCF ₃
i-Pr	Cl	NMe	N	N	CCF ₃
i-Pr	Br	NMe	N	N	CCF ₃
i-P r	I	NMe	N	И	CCF ₃
i-Pr	F	NMe	N	N	CCF ₃
i-Pr	H	NMe	·N	N	CCF ₃
i-Pr	Et	NMe	N	N	CCF ₃

表8

[0144]

【表23】

R ³	R ⁴	Q	x	. Y	z
i-Pr	Me	NCHF ₂	СМе	N	CH
<i>i</i> -Pr	Cl	NCHF ₂	СМе	N	СН
i-Pr	Br	NCHF ₂	CMe	N .	CH
i-Pr	I	NCHF ₂	СМе	N	СН
i-Pr	F	NCHF ₂	СМе	N	СН
i-Pr	H	NCHF ₂	СМе	N	CH
i-Pr	Et	NCHF ₂	CMe	N	CH
i-Pr	Me	NCHF ₂	CH	N	СМе
i-Pr	Cl	NCHF ₂	CH	N	CMe
i-Pr	Br	NCHF ₂	CH	N	CMe
<i>i</i> -Pr	I	NCHF2	CH	N	CMe
<i>i</i> -Pr	F	NCHF ₂	CH	Ŋ	СМе
i-Pr	H	NCHF ₂	CH	N	СМе
i-Pr	Et	NCHF ₂	CH	N	СМе
<i>i</i> -Pr	Me	NCF2CHF2	CMe	N	CH
i-Pt	Cl	NCF2CHF2	СМе	И	CH
i-Pr	Br	NCF2CHF2	СМе	N	CH
i-Pr	I	NCF ₂ CHF ₂	СМе	N	CH
i-Pr	F	NCF2CHF2	СМе	N	CH
i-Pr	H	NCF2CHF2	СМе	'n.	CH
i-Pr	Et	NCF ₂ CHF ₂	CMe	N	CH
i-Pr	Me	NCF2CHF2	CH	N	СМе
i-Pr	Cl	NCF2CHF2	CH	N ·	СМе
i-Pr	Br	NCF ₂ CHF ₂	CH	И	СМе
i-Pr	1	NCF ₂ CHF ₂	CH	N	CMe
i-Pr	F	NCF ₂ CHF ₂	CH	И .	СМе
· i-Pr	H	NCF ₂ CHF ₂	CH	N	СМе
i-Pr	Et	NCF ₂ CHF ₂	CH	N	CMe
i-Pr	· Me	NCH ₂ CF ₃	СМе	N	CH
<i>i</i> -Pr	Cl	NCH ₂ CF ₃	. CMe	N	CH
<i>i</i> -Pr	Br	NCH ₂ CF ₃	СМе	И	CH
i-Pr	I	NCH ₂ CF ₃	СМе	N	CH
i-Pr	F	NCH ₂ CF ₃	СМе	N	CH
i-Pr	H	NCH ₂ CF ₃	СМе	N	CH
i-Pr	Et	NCH ₂ CF ₃	СМе	N	CH
i-Pr	Me	NCH ₂ CF ₃	CH	N	СМе

[0145]

【表24】

i-Pt	C1 .	NCH ₂ CF ₃	CH	N	СМе
i-Pt	Br	NCH ₂ CF ₃	CH	N	СМе
i-Pt	I	NCH2CF3	СН	N	-CMe
i-Pr	F	NCH ₂ CF ₃	CH	И	СМе
i-Pr	н	NCH ₂ CF ₃	CH	N	СМе
i-Pr	Et	NCH ₂ CF ₃	CH	N	СМе
i-Pr	Me	NCF2CHF2	N	CH	СМе
i-Pr	Cl	NCF2CHF2	N	CH	СМе
i-Pr	Br	NCF ₂ CHF ₂	N	CH	СМе
i-Pr	1	NCF2CHF2	N	CH	СМе
i-Pr	F	NCF2CHF2	N	CH	СМе
i-Pr	H	NCF2CHF2	N	CH	СМе
i-Pr	Et	NCF2CHF2	N	СН	СМе

w	x	Y	z	R ³	R ⁴	R ⁷	R ⁸	
CH	CH	СН	CH	<i>i</i> -Pr	Me	CF ₃	Me	
СН	CH	CH	CH	t-Bu	Me	CF ₃	Me	
СН	CH	CH	CH	i-Pr	Cl	CF ₃	Me	
CH	CH	CH	CH	t-Bu	CI	CF ₃	Me	
СĤ	CH	CH	CH	i-Pr	Br	CF3	Me	
CH	CH	CH	CH	f-Bu	Br	CF ₃	Me	
CH	CH	CH	СН	i-Pr	Me	CI	Me	
СН	СН	CH	CH	t-Bu	Mc	Cl	Me	
CH	. CH	CH	СН	i-Pr	Cl	Cl	Me	
CH .	СН	CH	CH	t-Bu	CI	Cl	Me	

[0146]

【表25】

CH	СН	CH	СН	<i>i-</i> Pτ	Br	Cl .	Me
CH	CH	CH	CH	t-Bu	Br	Cl	Me
CH	CH	CH	CH	i-Pr	Me	Br	Ме
CH	CH	СН	СН	t-Bu	Me	Br	Me
CH	CH.	СН	CH	i-Pr	Cl	Br	Me
CH	CH	CH	CH	t-Bu	Cl	Br	Ме
CH	СН	СН	CH	i-Pr	Br	Br	Me
CH	CH	СН	CH	t-Bu	Br	Br	Me
CH	CH	СН	CH	i-Pr	Me	CN	Me
CH	CH	CH	CH	<i>t</i> -Bu	Me	CN	Me
CH	CH	CH	CH	i-Pr	CI	CN	Me
CH	CH	CH	CH	t-Bu	Cl	CN	Me
CH	CH	CH	CH	i-Pr	Br _	CN	Me
CH	CH	CH	CH	. <i>t-</i> Bu	. Br	CN	Me
CH	CH	CH	CH	i-Pr	Me	CF ₃	F
CH	CH	CH	CH	t-Bu	Me	CF ₃	F
CH	CH	CH	CH	i-Pr	Cl	CF ₃	F
CH	CH	CH	CH	t-Bu	Cl	CF3	F
CH	CH	CH	CH	i-Pr	Br	CF ₃	F
CH	CH	CH	CH	t-Bu	Br	CF ₃	F
CH	CH	CH	CH	<i>i-</i> Pr	· Me	Cl	F
CH	CH	CH	CH	t-Bu	Me	Cl	F
CH	CH	CH	CH	i-Pr	Cl	Cl	F
CH	CH	CH	CH	t-Bu	Cl	Cl	F
CH	CH	CH	CH	i-Pr	Br	Cl	F
CH	CH	CH	CH	t-Bu	Br	C1	F
CH	CH	CH	CH	i-Pr	Me	Br	F
CH	CH	CH	CH	t-Bu	Me	Br	F
CH	CH	CH	CH	i-Pr	Cl	Br	F
CH	CH	CH	CH	t-Bu	Cl	Br	F
CH	CH	CH	CH	<i>i-</i> Pr	Br	Br	F
CH	CH	CH .	CH	t-Bu	Br	Br.	F
CH	CH	CH	CH	i-Pr.	Me	CN	F
CH	CH	CH	CH	t-Bu	Me	CN	F
CH	CH	CH	CH	i-Pr	Cl	CN	F
CH	CH	CH	CH	<i>t</i> -Bu	Cl	CN	F
CH	CH.	CH	CH	i-Pr	Br	CN	F

[0147]

【表 2 6 】

CH	CH .	СН	СН	<i>t</i> -Bu	Br	CN	F
CH	СН	CH	CH	i-Pr	Me	CF ₃	Cl
CH	CH	CH	CH	t-Bu	Ме	CF ₃	Cl
CH	CH	CH	CH (i-Pr	Cl	CF ₃	Cl
CH	CH	CH	CH	t-Bu	CI	CF ₃	Cl
CH	CH	СН	CH	i-Pr	Br	CF ₃	Cl
CH	CH	CH	СН	t-Bu	Br	CF ₃	Cl
CH	CH	CH	CH	i-Pr	Me	Cl	Cl
CH	CH	CH	CH	t-Bu	Me	Cl	Cl
CH	CH	CH	CH	i-Pr	Cl	Cl	C1
CH	CH	CH	CH	t-Bu	Cl	Cl	Cl
CH	CH	CH	CH	i-Pr	Br	Cl	Cl
CH	CH	CH	CH	t-Bu	Br	C1	Cl
СН	CH	CH	CH	i-Pr	Me	Br	CI
CH	CH	CH	CH	<i>t</i> -Bu	Me	Br	Ċ1
CH	CH	CH	CH	i-Pr	Cl	Br	CI
СН	CH	CH	СН	t-Bu	Cl	Br	C1
CH	CH	CH	CH	i-Pr	Br	Br	CI
CH	CH	CH	CH	t-Bu	Br	Br	Cl
CH	CH	CH	CH	i-Pr	Me	CN	Cl
CH	CH	CH	CH	t-Bu	Me	CN	Cl
CH	CH	CH	CH	i-Pr	CI	CN	Cl
CH	CH	CH	CH	t-Bu	CI	CN	Cl
CH	CH	CH	CH	i-Pr	Br	CN	Cl
CH	CH	CH	CH	t-Bu	Br	CN	Cl
CH	CH	CH	CH	i-Pr	Me	CF ₃	Br
CH	CH	CH	CH	t-Bu	Me	CF ₃	Br
CH	CH	CH	CH	i-Pr	Cl	CF ₃	Br
CH	CH	СН	CH	t-Bu	Cl	CF ₃	Br
CH	CH	CH	CH	i-Pr	Br	CF ₃	Br
CH	CH ·	CH	CH .	t-Bu	Br	CF ₃	Br
CH	CH	CH	CH	i-Pr	Me	Cl.	Br
CH	CH	CH	CH	t-Bu	Me	Cl	Br
CH	CH	CH	CH	i-Pr	Cl	Cl	Br
CH	CH	CH	CH -	t-Bu	Cl	CI	Br
CH	CH	CH	CH	i-Pr	Br	Cl	Br
CH .	CH	CH	CH	t-Bu	Br	Cl	Br

[0148]

【表27】

CH	CH	СН	CH	i-Pr	Me.	Br	Br
CH	CH	CH	CH	<i>t-</i> Bu	Me	Br	Br
CH	· CH	СН	CH	i-Pr	Cl	Br	Br
CH	CH	CH	CH	t-Bu	Cl	Br	Br
CH	CH	CH	CH	i-Pr	Br	Br	Br
CH	CH	СН	CH	t-Bu	Br	Br	Br
CH	CH	CH	CH	i-Pr	Me	CN	Br
СН	CH	CH	CH	<i>t</i> -Bu	Me	CN	Br
CH	CH	CH	CH.	i-Pr	Cl	CN	Br
CH	CH	CH	CH	t-Bu	Cì	CN	Br
CH	CH	CH	CH	i-Pr	Br	CN	Br
CH	CH	CH	CH	t-Bu	Br	CN	Br
CH	CH	СН	CH	i-Pr	Me	CF ₃	CN
CH	CH	CH	CH	t-Bu	Me	CF ₃	CN
CH	CH	CH	CH	i-Pr	Cl	CF ₃	CN
CH	CH	СН	CH	t-Bu	Cl	CF ₃	CN
CH	CH	CH	CH	i-Pr	Br	CF ₃	CN
CH	CH	CH	CH	t-Bu	Br	CF ₃	CN
CH	CH	CH	CH	i-Pr	Me	CI	CN
CH	CH	CH	CH	t-Bu	Ме	Cl	CN
CH	CH	CH	CH	i-Pr	CI .	Cl	CN
CH	CH	CH	CH	t-Bu	Cl	· Cl	CN
CH	CH	CH	CH	<i>i</i> -Pr	Br	Cl	CN
CH	CH	CH	CH	<i>t</i> -Bu	Br	Cl	CN
CH	CH	CH	CH	<i>i</i> -Pr	Me	Br	CN
CH	CH	СН	CH	t-Bu	Me	Br	CN
CH.	CH	CH	CH	i-Pr	Cl	Br	CN
CH	CH	CH	CH	t-Bu	Cl	Br	CN
CH	CH	CH	CH	i-Pr	Br	Br	CN
CH	CH	CH	CH	t-Bu	Br	Br	CN
CH	CH	CH	CH	i-Pr	Me	CN	CN
CH	CH	CH	CH	<i>t</i> -Bu	Me	CN	CN
CH	CH	CH	CH .	i-Pr	Cì	CN	CN
CH	CH	CH	CH	t-Bu	Ci	CN	CN
CH	CH	CH	CH	<i>i</i> -Pr	Br	CN	CN
CH	CH	CH	CH	r-Bu	Br	CN	CN
CH .	CH	CH	N	i-Pr	Me	CF ₃	Me

[0149]

【表28】

СН	CH	CH	N	t-Bu	Me	CF ₃	Me
СН	CH	CH	N	i-Pr	Cl	CF ₃	Me
CH	CH	CH	N	t-Bu	Cl	CF ₃	Me
CH	CH	CH	N	i-Pr	Br	CF ₃	Me
СН	CH	CH	n .	t-Bu	Br	CF ₃	Me
СН	CH	CH	N	i-Pr	Me	Cl	Me
CH	СН	CH	N	t-Bu	Me	Cl	Me
CH	СН	CH	N	i-Pr	Cl	CI	Me
CH	CH	CH	N	t-Bu	Cl	Cl	Me
СН	CH	CH	N	i-Pr	Br	Cl	Me
CH	CH	CH	N	t-Bu	Br	Ci	Me
CH	CH	CH	N	i-Pr	Me	Br	Me
CH	CH	CH	N	t-Bu	Me	Br	Me
CH	CH	CH	N	i-Pr	Cl	Br	Me
CH	CH	CH	N	t-Bu	CI	Br	Me
CH	CH	CH	N	<i>i</i> -Pr	Br	Br	Me
CH	CH	CH	N	t-Bu	Br	Br	Me
CH	CH	CH	N	i-Pr	Me	CN	Me
CH	CH	CH	N	t-Bu*	Me	CN	Me
CH	CH	CH	N	i-Pr	Cl	CN	Me
CH	CH	CH	N	<i>t</i> -Bu	CI .	CN	Me
CH	CH	CH	N	<i>i</i> -Pr	Br	CN	Me
CH	CH	CH	Ŋ	t-Bu	Br	CN	Me
CH	CH	CH	N	i-Pr	Me	CF ₃	F
CH	CH	CH	И	<i>t</i> -Bu	Me	CF ₃	F
CH	CH	CH	· N	<i>i</i> -Pr	Cl	CF ₃	F
CH	CH	CH	N	t-Bu	Cl	CF ₃	F
CH	CH	CH	N	i-Pr	Br	CF ₃	F
CH	CH	CH	N	t-Bu	Br	CF ₃	F
CH	CH	CH	N	i-Pr	Me	CI	F
CH	CH	CH	N	r-Bu		C1	F
CH	CH	CH	N	<i>i-</i> Pr	Cl .	Cl.	F
CH	CH	CH	N	t-Bu	Cl	· ·Cl	F
CH ·	CH	CH	N	<i>i</i> -Pr	Br	C1	F
CH	CH	CH	N	<i>t</i> -Bu	Br	Cl	F
CH	CH	CH	N	i-Pr	Me	Br	F
CH	CH	CH	N	<i>t</i> -Bu	Me	Br .	F

[0150]

【表29】

СН	CH	CH	N	i-Pr	Cl	Br .	F
СН	СН	СН	N	t-Bu	Cl	Br	F
CH	CH	CH	N	i-Pr	Br	Br	F
CH	CH	CH	N	t-Bu	Br	Br	F
CH	CH	CH	N	i-Pr	Me	CN	F
CH	CH	CH	N	t-Bu	Me	CN	F
CH	СН	CH	N	f-Pr	Cl	CN	F
CH	CH	CH	N	t-Bu	C1	CN	F
CH	CH	CH	N	i-Pr	Br	CN	F
CH	CH	CH	N	t-Bu	Br	CN	F
CH .	CH	CH	N	i-Pr	Me	CF ₃	Cl
CH	CH	CH	N	t-Bu	Me	CF ₃	Cl
CH	CH	СН	N	i-Pr	Cl	CF ₃	Cl
СН	CH	CH	N	t-Bu	CI	CF ₃	Cl
CH	CH	CH	N	i-Pr	Br	CF ₃	Cl
CH	CH	CH	N	t-Bu	Br	CF ₃	Cl
CH	CH	CH	N	i-Pr	Me	C1	CÌ
CH	CH	CH	N	t-Bu	Me	Cl	Cl
CH	CH	CH	И	i-Pr	CI	Cl	Cl
CH	CH	CH	N	t-Bu	Cl	Cl	C1
CH	CH	CH	N	i-Pr	Br ·	Cl	Cl
CH	CH	CH	N	t-Bu	Br	Cl	C1
CH	CH	CH	N	i-Pr	Me	Br	C1
CH	CH	CH	N	t-Bu	Me	Br	Cl
CH	CH	CH	И	i-Pr	Cl	Br	Cl
CH	CH	СН	N	t-Bu	C1	Br	Çl
CH	СН	CH	N	i-Pr	Br	Br	Ci
CH	CH	CH	N	t-Bu	Br	Br	Cl
CH	CH	CH	N	i-Pr	·Me	CN	CI
CH	CH	CH	N	t-Bu	Me	CN	CI
CH	CH	CH	N .	i-Pr	Cl	CN	C1
CH	CH	CH	N	t-Bu	Cl	CN	Cl
CH	CH	CH	N	i-Pr	Br	CN	C1
СН	CH	CH	N	t-Bu	Br	CN	C1
СН	CH	CH	N	i-Pr	Me	CF ₃	Br
CH	CH	CH	И	t-Bu	Me	CF ₃	Br
CH .	CH	CH	N	i-Pr	CI	CF ₃	Br
-							

[0151]

【表30】

CH	CH	CH	N	t-Bu	Cl	CF ₃	Br
CH	CH	CH	N	i-Pr	Br	CF ₃	Br
CH	CH	CH	N	t-Bu	Br	CF ₃	Br
CH	CH	CH	N	<i>i</i> -Pr	Me	Cl	Br
CH	CH	CH	N	t-Bu	Me	Cl	Br
CH	CH	CH	N	i-Pr	Cl	Cl	Br
CH	CH	CH	N	<i>t-</i> Bu	Cl	C)	Br
CH	CH	CH	N	<i>i</i> -Pr	Br	Cl	Br
CH	CH	CH	N	t-Bu	Br	Cl	Br
CH	CH	CH	N	<i>i</i> -Pr	Me	Br	Br
CH	CH	CH	N	t-Bu	Me	Br	Br
CH	CH	CH	N	i-Pr	Cl	Br	Br
CH	CH	CH	N	t-Bu	CI _	Br	Br
CH	CH	CH	N	i-Pr	Br	Br	Br
CH	CH	CH	N	<i>t</i> -Bu	Br	Br	Br
CH	CH	СН	N	i-Pr	Me	CN	Br
CH	CH	CH	N	<i>t-</i> Bu	Мe	CN	Br
CH	CH	CH	N	<i>i</i> -Pr	Cl	CN	Br
CH	CH	CH	N	<i>t</i> -Bu	·Cl	CN	Br
CH	CH	CH	N	i-Pr	Br	CN	Br
CH	CH	CH	N	t-Bu	Br '	CN	Br
CH	CH	CH	N	<i>i</i> -Pr	Me	CF ₃	CN
СН	CH	CH	N	t-Bu	Me	CF ₃	CN
CH	CH	CH	N	i-Pr	Cl	CF ₃	CN
CH	CH	CH	N	t-Bu	Ci	CF ₃ .	CN
CH	CH	CH	N	i-Pr	Br	CF ₃	CN
CH	CH	CH	N	t-Bu	Br	CF ₃	CN
CH	CH	CH	N	i-Pr	Me	Cl	. CN
CH	CH	CH	N	t-Bu	·Me	Cl	CN
CH	CH	CH	И	i-Pr	Cl	Cl	CN
CH	CH	CH	N	r-Bu	. Cl	Cl	· CN
CH	CH	CH	N	i-Pr	Br	Cl	CN
CH	CH	CH	N	t-Bu	Br	CI	CN
CH	CH	CH	N	i-Pr	Me	Br	CN
CH	CH	CH	N	t-Bu	Me	Br	CN
CH	CH	CH	N	i-Pr	Cl	Br	CN.
CH	CH	CH	N	t-Bu	Cl	Br	CN
•							

[0152]

【表31】

СН	CH	CH	N	i-Pr	Br	Br	CN
СН	СН	СН	N	r-Bu	Br	Br	CN
СН	СН	CH	N	i-Pr	Me	CN	CN
СН	СН	СН	N	t-Bu	Me	CN	CN
СН	СН	СН	N	і-Рт	Cl	CN	CN
СН	СН	СН	N	r-Bu	Cl	CN	CN
СН	СН	СН	N	i-Pr .	Br	CN	CN
CH	СН	СН	N	t-Bu	Br	CN	CN
CH	CH	CH	CH	Ме	Me	CF ₃	F
CH	CH	CH	CH	Et	Me	CF ₃	F
CH	CH	CH	CH	CH(CH ₃)CH ₂ OCH ₃	Me	CF ₃	F
CH	СН	CH	CH	CH(CH ₃)CH ₂ SCH ₃	Me	CF ₃	F
CH	СН	СН	CH	プロバルキール	Me	CF ₃	F
CH	СН	CH	CH	Me	Me	CF ₃	Cl
CH	CH	CH	CH	Et	Me	CF ₃	Cl
CH	CH	CH	CH	CH(CH ₃)CH ₂ OCH ₃	Me	CF ₃	CI
CH	CH	CH	CH	CH(CH ₃)CH ₂ SCH ₃	Me	CF ₃	CI
CH	CH	CH	CH	プロパルキル	Me	CF ₃	Cl
CH	CH	CH	CH	Ме	Me	Br	F
CH	CH	CH	CH	Et	Me	Br	F
СН	CH	CH	CH	CH(CH ₃)CH ₂ OCH ₃	Me	Br	F
CH	CH	CH	CH	CH(CH ₃)CH ₂ SCH ₃	Me	Br	F
СН	CH	СН	CH	プロパルキル	Me	Br	F.
СН	CH	СН	CH	Me	Me	Br	Cl
CH	CH	CH	CH	Et	Me	Br	Cl
CH	СН	CH	CH	CH(CH ₃)CH ₂ OCH ₃	Me	Br	Cl
CH	CH	CH	CH	CH(CH ₃)CH ₂ SCH ₃	Me	Br	Cl
CH	СН	СН	CH	ブロハ・ルキ・ル	Me	Br	Cl
CH	CH	CH	CH	Me	Cl	CF ₃	F
CH	CH	CH	CH	Et	Cl	CF ₃	F
CH	СН	СН	CH	CH(CH ₃)CH ₂ OCH ₃	Cl	CF ₃	F
CH	CH	CH	CH	CH(CH ₃)CH ₂ SCH ₃	Cl	CF ₃	F
CH	СН	CH	CH	プロパルキ゚ル	Cl	CF ₃	F
CH	CH	CH	CH	Me	Cl	CF ₃	Cl
CH	СН	СН	CH	Et	Cl	CF ₃	CI
CH	CH	CH	CH	СН(СН ₃)СН ₂ ОСН ₃	Cl	CF ₃	CI
СН	CH	CH	CH	CH(CH ₃)CH ₂ SCH ₃	Cl	CF ₃	Cì

[0153]

【表32】

СН	CH	CH	СН	プロハルキル	Cl	CF ₃	Cl
CH	CH	CH	CH	Me	Cl	Br	F
СН	СН	СН	CH	Et	Cl	Br	F
СН	СН	CH	CH	СН(СН3)СН2ОСН3	Cl	Br	F
СН	СН	CH	CH	CH(CH ₃)CH ₂ SCH ₃	Cl	Br	F
СН	СН	СН	CH	プロパルキプル	Cl	Br	F
CH	СН	CH	CH	Me	Cl	Br	Ci
СН	СН	СН	CH	Et	Cl	Br	Ci
СН	СН	CH	CH	CH(CH ₃)CH ₂ OCH ₃	Cl	Br	Cl
CH	СН	СН	CH	CH(CH ₃)CH ₂ SCH ₃	CI	Br	Cl
СН	СН	СН	СН	ブロパルキプル	Cl	Вг	Cl
СН	СН	CH	N	Ме	Ме	CF ₃	F
CH	СН	СН	N	Et	Me	CF ₃	F
СН	CH	CH	N	СН(СН3)СН2ОСН3	Me	CF ₃	F
CH	CH	CH	N	CH(CH ₃)CH ₂ SCH ₃	Me	CF ₃	F
CH	CH	CH	N	プロペルキール	Me	CF ₃	F
CH	CH	CH	N	Me	Me	CF ₃	Cl
CH	CH	CH	N	Et	Me	CF ₃	Cl
CH	CH	CH	N	CH(CH ₃)CH ₂ OCH ₃	Ме	CF ₃	Cl
СН	CH	CH	N	CH(CH ₃)CH ₂ SCH ₃	Me	CF ₃	Cl
CH	CH	CH	N	プロパルキル	Me	CF ₃	Cl
CH	CH	CH	N	Me	Me	Br	F
CH	CH	CH	И	Et	Me	Br	F
CH	CH	CH	N	СН(СН ₃)СН ₂ ОСН ₃	Me	Br	F
CH	СН	CH	N	CH(CH ₃)CH ₂ SCH ₃	Me	Br	F
СН	CH	CH	N	フ¨ロハ・ルキ・ル	Me	Br	F
CH	CH	CH	N	Ме	Ме	Br	Cl
CH	CH	СН	N	Et	Me	Br	Cl
СН	CH	CH	N	CH(CH ₃)CH ₂ OCH ₃	Ме	Br	Cl
CH	CH	СН	N	CH(CH ₃)CH ₂ SCH ₃	Me	Br	Cl
СН	CH	CH	N	プロパルキル	Me	Br	Cl
CH	CH	CH	N	Ме	Cl	CF ₃	F
CH	CH	CH	N	Et	Cl	CF ₃	F
CH	CH	CH	N	СН(СН3)СН2ОСН3	Cl	CF ₃	F
СН	CH	CH	N	CH(CH ₃)CH ₂ SCH ₃	Cl	CF ₃	F
СН	CH	CH	N	フロバルキル	Cl	CF ₃	F
СН	СН	CH	N	Me	Cl	CF ₃	Cl

[0154]

【表33】

СН	СН	CH	N	Et	Cl	CF ₃	Cl
CH	СН	СН	N	СН(СН3)СН2ОСН3	Cl	CF ₃	Cl
СН	СН	СН	N	CH(CH ₃)CH ₂ SCH ₃	CI	CF ₃	Cl
СН	СН	СН	N	プロペルキル	Cl	CF ₃	Cl
СН	СН	CH	И	Ме	Cl	Br	F
СН	СН	СН	N	Et	CI	Br	F
СН	CH	СН	N	СН(СН3)СН2ОСН3	CI	Br	F
СН	СН	CH	N	CH(CH ₃)CH ₂ SCH ₃	Cl	Br	F
CH	СН	CH ·	N	プロバルキル	Cl	Br	F
СН	СН	CH	N	Ме	Cl	Br	Cl
СН	СН	CH	N	Et	Cl	Br	Cl
СН	CH	CH	И	CH(CH ₃)CH ₂ OCH ₃	CI	Br	Cl
CH	CH	CH	N	CH(CH ₃)CH ₂ SCH ₃	CI	Br	Cl
СН	СН	CH	И	プロバルキル	Cl	Br	Cl
C-Cl	СН	CH	CH	i-Pr	Me	CF ₃	Cl
C-F	СН	СН	СН	i-Pr	Ме	CF ₃	F
СН	СН	CH	СН	i-Pr	Me	CF ₃	アセチレン
CH	CH	CH	CH	i-Pr	Me	CF ₃	I
CH	CH	CH	CH	i-Pr	Me	CF ₃	SO ₂ Me
C-CI	CH	CH	CH	<i>i</i> -Pr	Cl	CF ₃	Cl
C-F	CH	CH	CH	i-Pr	Cl '	CF ₃	F
CH	CH	CH	CH	i-Pt	Cì	CF ₃	アセチレン
CH	CH	CH	CH	i-Pr	C1	CF ₃	1
CH	CH	CH	CH	i-Pr	Cl	CF ₃	SO ₂ Me
C-Cl	CH	CH	CH	i-Pt	Me	Br	Cl
C-F	CH	CH	CH	<i>i</i> -Pr	Me	Br	F
CH	CH	CH	CH	i-Pr	Me	Br	アセチレン
CH	CH	CH	CH	i-Pr	Me	Br	3
CH	CH	CH	СН	i-Pr	Me	Br	SO ₂ Me
C-Cì	CH	CH	CH	i-Pr	Cl	Br	Cl
C-F	CH	CH	CH	<i>i</i> -Pr	Cl	Br	F
CH	CH	CH	CH	і-Рт	Cl	Br	アセチレン
CH	CH	CH	CH	i-Pr	Cl	Br	I
CH	CH	CH	CH	i-Pt	Cl	Br	SO ₂ Me
C-Cl	CH	CH	И	i-Pt	Me	CF ₃	Cl
C-F	СН	CH .	N	i-Pr	Me	CF ₃	F
CH	CH	CH	N	i-Pr	Me	CF ₃	アセチレン

[0155]

【表34】

СН	CH	СН	N	i-Pr	Me	CF ₃	1
CH	CH	СН	N	i-Pr	Me	CF ₃	SO ₂ Me
C-CI	CH	СН	Ň	<i>i</i> -Pr	Cl	CF ₃	C)
C-F	CH	CH	N	i-Pr	Cl	CF3	F
СН	CH	CH	N	i-Pr	Cl	CF ₃	アセチレン
СН	CH	CH	N	i-Pr	CI	CF ₃	I
СН	СН	CH	N	i-Pr	Cl	CF ₃	SO ₂ Me
C-Cl	СН	СН	N	i-Pr	Me	Br	Cl
C-F	CH	CH	И	i-Pr	Me	Br	F
CH	CH	CH	N	i-Pr	Me	Br	アセチレン
CH	СН	CH	И	i-Pt	Me	Br	I
CH	CH	CH	Й	i-Pr	Me	Br	SO ₂ Me
C-Cl	CH	CH	N	i-Pr	Cl	Br	Cl
C-F	CH	CH	N	i-Pr	Cl	Br	F
CH	CH	CH	N	i-Pr	Cl	Br	アセチレン
CH	CH	CH	N	i-Pr	CI	Br	I
CH	CH ·	CH	N	i-Pr	Cl	Br	SO ₂ Me
CH	N	CH	И	i-Pr	Me	CF ₃	н
СН	N	CH	N	i-Pr	Me	CF ₃	Me
CH	N	СН	N	i-Pr	Me	CF ₃	Cl
CH	N	CH	N	i-Pr	Cl	CF ₃	H
CH	N	CH	И	i-Pr	Cl	CF ₃	Me
CH	N	CH	N	i-Pr	Cl	CF ₃	Cl
CH	N	CH	N	i-Pr	Me	CN	H
CH	N	CH	И	i-Pr	Me	CN	Me
CH	N	CH	N	<i>i</i> -Pr	Me	CN	Cl
СН	N	CH	N	i-Pr	Cl	CN	H
CH	N	CH	N	i-Pr	CI	CN	Me
CH	И	CH	N	i-Pr	·Cl	CN	CI
CH	N	CH	И	i-Pr	Me	Br	H
CH	N	CH	И	i-Pr	Me	Br	Me
СН	N	CH	N	i-Pr	Me	Br	CI
СН	N	CH	N	i-Pr	Cl	Br	H
СН	И	CH	N	i-Pr	Cl	Br	Me
CH	N	CH	И	i-Pr	CI	Br	Cl
CH	N	CH	N	t-Bu	Me	CF ₃	Н
CH	N	CH	N	t-Bu	Me	CF ₃	Me

[0156]

【表35】

CH	N	CH	N	t-Bu	Me	CF ₃	Cl
CH	N	CH	N	t-Bu	Cl	CF ₃	H
CH	N	СН	N.	t-Bu	CI	CF ₃	Me
CH	N	СН	N	t-Bu	Cl	CF ₃	Cl
CH	N	СН	N	t-Bu	Me	CN	н
CH	N	·CH	N	t-Bu	Me	CN	Me
CH	N	CH	N	t-Bu	Me	CN	Cl
CH	Ν -	CH	N	t-Bu	Cl	CN	H
СН	N	CH	N	t-Bu	Cl	CN	Me
CH	N	CH	N	t-Bu	Cl	CN	Cl
CH	N	CH	N	t-Bu	Me	Br	H
CH	N	CH	N	t-Bu	Me	Br	Me
CH	N	CH	N	t-Bu	M e _	Br	Cl
CH	N	CH	N	<i>t</i> -Bu	Cl	Br	H
CH	N	CH	N	t-Bu	Cl	Br	Me
CH	· N	CH	N	t-Bu	Cl	$\mathbf{B_r}$	Cl
СН	CH	N	N	i-Pr	Me	CF ₃	H
CH	CH	N	N	<i>i</i> -Pr	Me	CF ₃	Me
CH	CH	N	N	i-Pr	Me	CF ₃	Cl
CH	CH	N	N	i-Pr	Cl	CF ₃	H
CH	CH	И	N	i-Pr	Cl	CF ₃	Me
CH	CH	N	N	i-Pr	Cl	CF ₃	Cl
CH	CH	N	N	i-Pr	Me	СИ	H
CH	CH	N	N	<i>i</i> -Pr	Me	CN	·Me
CH	CH	N	N	i-Pr	Me	CN	Cl
CH	CH ·	N	N	i-Pr	Ci	CN	H
CH	CH	N	N	i-Pr	Cl	CN	Me
CH	CH	N	· N	i-Pr	Cl	CN	Cl
CH	CH	N	N	i-Pr	Me	Br	H
CH	CH	N	N	i-Pr	Me	Br	Me
CH	CH	N	N	i-Pr	Me	Br	Cl
CH	CH	N	N	i-Pr	Cl	Br.	H
CH	CH	N	И	i-Pr	Cl	Br	Me
CH	CH	И	И	i-Pr	Cl	Br	Cl
CH	CH	N	И	i-Pr	Me	CF ₃	H
CH	CH	N	N	i-Pr	Me	CF ₃	Me
СН	CH	N	И	i-Pr	Me	CF ₃	Cl

[0157]

【表36】

CH	CH	N	И	i-Pr	Cl	CF ₃	H
СН	CH	N	N	i-Pr	Ci	CF ₃	Me
CH	CH	N	N	i-Pr	Cl	CF ₃	Ci
СН	CH	N	N	i-Pr	Me	CN	н
CH	CH	N	И	i-Pr	Me	CN	Ме
СН	CH	N	N	<i>i</i> -Pτ	Me	CIN	Ci
СН	CH	N	N	i-Pr	Cl	CN	H
СН	CH	N	N	i-Pr	Cl	CN	Me
СН	CH	N	N	i-Pr	Cl	CN	Cl
CH	CH	N	N	i-Pr	Me	Br	H
CH	CH	N	N	i-Pr	Me	Br	Me
CH	СН	N	N	i-Pr	Me	Вт	CI
CH	CH	N	N	<i>i</i> -Pr	Cl	Br.	. H
CH	CH	N	N	i-Pr	CI	Br	Me
CH	CH	N	N	i-Pr	Cl	Br	Cl

表10

R³	R ⁴	R ⁷	R ^s	R9	R ¹⁰	
Ме	CF ₃	i-Pr	Me	Н	Н	
Me	CF ₃	i-Pr	Me	Н	Me	
Ме	CF ₃	i-Pr	Me	Cl	H	
Me	CF ₃	i-Pr	Me	CI	Me	
Me	CF ₃	i-Pr	Me	Me	Me	
Cl	CF ₃	i-Pr	Me	H	H	
C)	CF ₃	i-Pr	Me	H	Me	
Cl	CF ₃	i-Pr	Me	CI	H	
Cl	CF ₃	<i>i</i> -Pr	Me	Cl	Me	

[0158]

【表37】

Cl	CF ₃	i-Pr	Me	Me	Me
Me	CF ₃	r-Bu	Me .	н	· H
Me	CF ₃	t-Bu	Me	H	Ме
Me	CF ₃	t-Bu	Me	Cl	н
Mc	CF ₃	t-Bu	Me	CI	Me
Me	CF ₃	t-Bu	Me	Ме	Me
Cl	CF ₃	<i>t-</i> Bu	Me	H	H
CI	. CF ₃	t-Bu	Me	H	Me
Cl	CF ₃	t-Bu	Me	Cl	H
Cl	· CF ₃	t-Bu	Me	Cl	Ме
CI	CF ₃	1-Bu	Me	Me	Me

R³	R ⁴	R ⁷	R ⁸	R ⁹	R ¹⁰	
Me	CF ₃	<i>i</i> -Pr	Me	Н	Me	
Me	CF ₃	<i>i</i> -Pr	Me	Me	Me	
Me	CF ₃	i-Pr	CI	H	Me	
Me	CF ₃	i-Pr	Cl	Me	Me	
Cl	CF ₃	i-Pr	Me	H	Me	
Cl	CF ₃	i-Pr	Me	Me	Me	
Cl	CF ₃	i-Pr	Ct	H	Me	
Cl	CF ₃	<i>i</i> -Pr	Cl	Me	Ме	
Me	CF ₃	t-Bu	Me	н	Me	
Me	CF ₃	t-Bu	Me	Me	Me	
Mc	CF ₃	<i>t</i> -Bu	Cl	н	Me	
Me	CF ₃	/-Ba	Cl	Me	Me	
CI	CF ₃	t-Bu	Me	н	Me	

[0159]

【表38】

Cl
$$CF_3$$
 $t\text{-Bu}$ Me Me Me Me Cl CF_3 $t\text{-Bu}$ Cl H Me Cl CF_3 $t\text{-Bu}$ Cl Me Me

表12

₩	x	Y	Z	R ³	R ⁴	R ⁷	R ⁸
CH	СН	СН	CH	Et	Me	CF ₃	C1 ·
СН	CH	СН	CH	i-Pr	Me	CF ₃	CI
CH	СН	СН	СН	t-Bu	Me	CF ₃	C1
СН	СН	CH	CH	Et	Me	CF ₃	Br
CH	'CH	CH	CH	i-PT	Me	CF ₃	Br
СН	CH	CH	CH	1-Bu	Me	CF ₃	Br
СН	CH	CH	CH	Et	Me	CF ₃	1
CH	CH	CH	CH	j-Pτ	Me	CF ₃	I
CH	СН	CH	CH	t-Bu	Me	CF ₃	I
CH	CH	CH	CH	Et	Me	CF ₃	F
CH	CH	CH	CH	<i>i</i> -Pr	Me	CF ₃	F
СН	CH	CH	CH	t-Bu	Mc	CF ₃	P
СН	CH	CH	CH	Et	Me	CF ₃	Me
CH	CH	CH	CH	i-Pr	Me	CF ₃	Me
CH	СН	СН	CH	t-Bu	Me	CF ₃	Me
СН	СН	CH	CH	Et	Me	CF ₃	CF ₃
CH	CH	CH	CH	i-Pr	Me	CF ₃	CF ₃
CH	CH	СН	CH	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	CH	Et	Me	CF ₃	OMe
СН	CH	СН	CH	i-Pr	Me	CF ₃	OMe
СН	CH	СН	CH	r-Bu	'Me	CF ₃	OMe
СĦ	CH	СН	CH	Et	Me	CF ₃	CN

[0160]

【表39】

					-		
CH	CH	CH	СН	i-P r	· Me	CF ₃	CN
СН	CH	CH	CH	t-Bu	Me	CF ₃	CN
CH	CH	СН	CH	Et	Cl	CF ₃	Cl
CH	CH	CH	CH	i-Pr	Cl	CF ₃	Ci
CH	CH	CH	СН	r-Bu	Cl	CF ₃	Cl
CH	CH	CH	СН	Et	Cl	CF₃	Br
CH	CH	CH	СН	i-Pr	C3	CF ₃	Br
CH	CH	CH	CH	t-Bu	Cl	CF ₃	Br
CH	CH	CH	CH	Et	Cl	CIF₃	ı
СН	CH	CH	СН	i-Pr	Cl	.CF ₃	1
CH	CH	СН	СН	t-Bu	Cl	CF ₃	1
CH	CH	CH	CH	Et ·	Cl	CF ₃	F
CH	CH	CH	CH	i-Pr	Çl	CF3	F
CH	CH	CH	CH	t-Bu	CI	CF ₃	, F
CH	CH	СН	CH	Et	Cl	CF ₃	Me
CH	CH	CH	CH	i-Pr.	Cl	CF ₃	Me
CH	CH	CH	СН	<i>t</i> -Bu	Cl	CF ₃	Ме
CH	CH	CH	СН	Et	a	CF ₃	CF ₃
CH	СĦ	CH	CH	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CH	t-Bu	Cl	CF ₃	CP ₃
CH	CH	CH	CH	Et	Ċl	CF ₃	OMe
CH	CH	CH	CH	i-Pr	CI	CF ₃	ОМе
CH	CH	CH	CH	t-Bu	Cl	CF ₃	OMe
CH	CH	CH	CH	Et	CI	CF ₃	CN
CH	CH	CH	CH	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CH	t-Bu	Cl	CF ₃	CN
CH	CH	CH	N	Et	Ме	CF ₃	Cl
CH	CH	CH	N	i-Pr	Me	CF ₃	CI
CH	CH	CH	N	t-Bu	Me	CF ₃	CI
CH	CH	CH	И.	Et	Me	CF ₃	Br
CH	CH	CH	Ŋ	, i-Pr	Me	CF ₃	Br
CH	CH	CH	N	t-Bu	Me	CF ₃	Br
CH	CH	CH	\mathbf{N} .	Et	Me	CF ₃	1
CH	CH	CH	N	<i>i</i> -Pr	Me	CF ₃	I
CH	CH	CH	N	t-Bu	Me	CF ₃	I.
CH	CH	CH	N	Et	Me	CF ₃	· F ·
CH	CH	CH	N	i-Pr	Me	CF ₃	F

[0161]

【表40】

			•				
CH .	CH	CH	N	t-Bu	Mo	CF ₃	F
CH	CH	CH	N	Et	Me	CF ₃	Me
СН	CH	CH	N	i-Pr	Me	CF ₃	Me
CH	CH	CH	И	t-Bu	Me	CF ₃	Me
CH	СН	CH	N	Et	Me	CF ₃	CF ₃
CH	СН	CH	N	<i>i</i> -Pr	Me	CF ₃	CF ₃
CH	CH	CH	N	t-Bu	Me	CF ₃	CF ₃
CH	CH .	CH	N	Et	Me	CF ₃	ОМе
CH	CH	СН	N	i-Pr	Me	CF ₃	OMe
CH	CH	CH	N	t-Bu	Me	CF ₃	OMe
CH	CH	CH	N	Et	Me	CF ₃	CN
СН	CH	CH	N	i-Pr	Me	CF ₃	CN
CH	CH	CH	N	t-Bu	Me	·CF ₃	CN
CH	CH	CH	N	Et	Cl	CF ₃	Cl
CH	CH	CH	N	i-Pr	C1	CF ₃	CI
СН	CH	CH	N .	t-Bu	Cl	CF ₃	Cl
CH	CH	CH	N	Et	Cl	CF ₃	Br
CH	CH	CH	N	i-Pr	Cl	CF ₃	Br
CH	CH	CH	N	. t-Bu	C1	CF ₃	Br
CH	СН	CH	N	Et	C1	CF ₃	1
CH	CH	CH	N	i-Pr	ĊI	CF ₃	1
CH	CH	CH	N	· t-Bu	C1	CF ₃	I
CH	CH	CH	N	Et	Cl	CF ₃	F
CH	CH	CH	N	i-Pr	Cl	.CF3	F
CH	CH	CH	N	t-Bu	Cl	CF ₃	F
CH	CH	CH	N	Et	CI	CF ₃	Me
CH	CH	CH	N	<i>i</i> -Pr	Cl	CF ₃	· Me
CH	CH	CH	N	t-Bu	, CI	CF ₃	Me
CH	CH	CH	N	Et	Cl	CF ₃	CF ₃
CH	CH	CH	N	<i>i</i> -Pr	Cl	CF ₃	CF ₃
CH	CH	CH	,N	: t-Bu	C1	CF ₃	CF ₃
CH	CH	CH	И	Et	Cl	CF ₃	OMe
CH	СН	CH	N	i-Pr	CI	CF ₃	OMe
CH	CH	CH	N	t-Bu	Cl	CF3	ОМо
СН	CH	CH	N	Et	Cl	CF ₃	CN
CH	CH	CH	N	i-Pr	Cl	CF ₃	CN
CH	CH	CH	N	t-Bu	C1	CF ₃	CN

[0162]

【表41】

CH	СН	N	CH	Et	Me	CF ₃	CI
CH	CH	N	CH	I-Pr	Me	CF ₃	C1
CH	CH	N	CH	t-Bu	Me	CF ₃	Cl
CH	CH	N	СН	Et	Me ·	CF ₃	Br
CH	СН	N	CH	i-Pr	Me	CF ₃	Br
CH	CH	N	CH	t-Bu	Me	CF ₃	Br
СН	CH	N	CH	Et	Me	CF ₃	1
CH	CH	N	CH	i-Pr	Me	CF ₃	1
CH	CH	N ·	CH	t-Bu	Me	CF ₃	I
CH	CH	N	CH	Et	Me	CF ₃	F
CH	CH	N	СН	i-Pr	Me	CF ₃	F
СН	CH	N	CH	t-Bu	Me	CIE ₃	F
СН	CH	N	CH	Et	Μe	CF ₃	Me
CH	CH	N	СН	i-Pr	Мс	CF ₃	Me
CH	СН	N	CH	t-Bu	Me	CF ₃	Me
CH	. СН	N	СН	Et	Me	CF ₃	CF ₃
CH	CH	N	CH	i-Pr	Me	CF ₃	CF ₃
СН	CH	N	CH	t-Bu	Me	CF ₃	CF ₃
CH	CH	N	CH	· Et	Me	CF ₃	ОМе
CH	CH	N	СН	<i>i</i> -Pr	Me	CF ₃	OMe
CH	CH	N	CH	t-Bu	Me	CF ₃	OMe
CH	СН	N	CH	Et	Me	CF ₃	CN
CH	CH	И	CH	i-Pr	Me	CF ₃	CN
CH	CH	N	CH	t-Bu	Me	CF ₃	CN
CH	CH	· N	CH	Et	Cl	ĊF ₃	C 1
СН	CH	И	CH	i-Pr	Cl	CF ₃	Cl
СН	CH	N	CH	t-Bu	Cl	CF ₃	Cl
CH	CH	N	CH	Et	CI	CF ₃	Br
C H	CH	N	CH	t-Pr	. C 1	CF ₃	Br
CH	CH	N	CH-	t-Bu	Cl	CF ₃	Br
CH	CH	N	CH	Et	Ci	CF ₃	1
CH	СН	И	CH	i-Pr	Cl	CF ₃	I
CH	CH	N	CH	t-Bu	Cl	CF ₃	I
CH	СН	N	СН	Et	CI	CF ₃	F
CH	CH	N	CH	<i>i</i> -Pr	Cl	CF ₃	F
CH	CH	N	CH	<i>t</i> -Bu	Cl	CF ₃	F
CH	CH	N	CH	Et	Cl	CF ₃	Me

[0163]

【表42】

CH	CH	N	CH	i-Pr	C1	CF ₃	Me
СН	CH	N	CH	t-Bu	Cl	CF ₃	Me
CH	CH	N	CH	Et	Cì	CF ₃	CF ₃
CH	CH	N	CH	i-Pr	C]	CF ₃	CF ₃
CH	CH	N	CH	<i>t</i> -Bu	CJ	CF ₃	CF ₃
CH	CH	N	CH	Et	Ci	CF ₃	OMe
CH	CH	N	CH	i-Pr	Cl	CF ₃	ОМе
CH	CH	N	CH	t-Bu	Cì	CF ₃	ОМе
CH	CH	И	CH	Et	Cl	CF ₃	CN
CH	CH	N	CH	i-Pr	Cl	CF ₃	CN
CH	CH	N	CH	t-Bu	Cl	CF ₃	CN
CH	N	CH	CH	Et	Me	CF ₃	Cl
CH	N	CH	CH	<i>i</i> -Pr	Мe	CF ₃	ci
CH	N	CH	CH	t-Bu	Me	CF ₃	Cl
CH	, N	СН	CH	. Et	Me	CF ₃	Br
CH	N	CH	CH	i-Pr	· Me	CF ₃	Br
CH	N	СН	CH	t-Bu	Me	CIF ₃	Br
CH	N	CH	CH	Et	Me	CF ₃	I
CH	N	CH	CH	<i>i</i> -Pr	Me	CF ₃	1
CH	N	CH	CH	<i>t</i> -Bu	Me	CF ₃	1
CH	N	CH	СН	Et	Мe	CF ₃	F
CH	N	CH	CH	<i>i</i> -Pr	Me	CF ₃	. F
CH .	· N.	CH	CH	t-Bu	Me	CF ₃	F
CH	N	CH	CH	Et	Me	CF ₃	Me
CH	N	CH	CH	i-Pr	Me	CF ₃	Me
CH	N	CH	CH	t-Bu	Me	CF ₃	Me
CH	N	CH	CH	Et	Me	CF ₃	CF ₃
CH	N	CH	CH	i-Pr	Me	CF ₃	CF ₃
CH	N	CH	CH	t-Bu	· Me	CF ₃	CF ₃
CH	N	CH	CH	Et	Me	CF ₃	ОМе
CH	И	CH	CH ·	i-Pr	Me	CF ₃	OMe
CH	N .	CH	CH	t-Bu	Me	CF ₃	ОМе
CH	N	СН	CH	Et	Me	CF ₃	CN
CH	N	CH	CH	<i>i</i> -Pr	Me	CF ₃	CN
CH	N	CH	CH	t-Bu	Me	CF ₃	CN
CH	N	CH	CH .	Et	Cl	. CF ₃	Cl
CH ·	N	CH	CH	i-Pr	C)	CF ₃	CI
						-	

[0164]

【表43】

CH	И	CH	CH	1-Bu	Cl	CF ₃	Cl
CH	. И.	CH	CH	Et.	Cl	CF ₃	Br
CH	И	CH	CH	i-Pr	CI	CF ₃	Br
CH	И	CH	CH	. t-Bu	CI	CF ₃	Br
CH	N	CH	CH	Et	Ci	CF ₃	1
CH	И	CH	CH	i-Pr	CI	CF ₃	I
CH	N	CH	CH	t-Bu	Cl	CF ₃	I
CH	. N	CH	CH	Et	Cl	CF ₃	F
СН	N	CH	СН	i-Pr	Cl	Cæ3	F
CH	N	CH	СН	<i>t</i> -Bu	C1	CF ₃	F
СН	N	CH	CH	Et	Cl	CF₃	Me
CH	N	CH	CH	i-Pr	CI	CF₃	Me
CH	N	CH	CH	t-Bu	CĮ	CF ₃	Me
CH	N	CH	CH	Et	CI	CF ₃	CF ₃
CH	N	CH	CH	i-Pr	Cl	CF ₃	CF ₃
CH	N	CH	CH	t-Bu	CI	CF ₃	CF ₃
CH	N	CH	CH	Et	CI	CF ₃	OMe
CH	N	CH	CH	i-Pr	Cl .	CF ₃	ОМе
CH	N	CH	CH	t-Bu	, CI	CF ₃	ОМе
CH	N	CH	CH	Et	Cl	CF ₃	CN
CH	N	CH	CH	i-Pr	ĊI	CF ₃	CN
CH	N	CH	CH	t-Bu	Cl	CF ₃	CN
N	СН	CH	CH	Et.	Me	CF ₃	Cl
И	CH	CH	CH	i-Pr	Mc	CF ₃	Cl
N	CH	CH	CH	t-Bu	Me	CF ₃	Cl
И	CH	CH	CH	Et	Me	CF ₃	₿r
N	CH	CH	CH	i-Pr	Me	CF ₃	Br
N	CH	CH	CH	t-Bu	Me	CF ₃	Br
N	CH	CH	CH	Et	Me	· CF ₃	1
N	CH	CH	CH.	i-Pr	Me	CF_3	1
N	CH	CH	CH	t-Bu	Me	CF ₃	I
N	CH	CH	CH	Et .	Me	CF ₃	F
N	CH	CH	CH	<i>i</i> -Pr	Me	CF ₃	F
N	CH	CH	CH	. t-Bu	Me	CF ₃	F
N	CH	CH	СН	Et	Me	CF ₃	Me
N	CH	CH	CH	i-Pr	Me	CF ₃	Me
N	CH	CH	CH	t-Bu	Me	CF ₃	Me

[0165]

【表44】

N	CH	СН	СН	Et	Ме	CF ₃	CF ₃
N	CH	CH	CH	i-Pr	Ме	CF ₃	CF ₃
N	CH	CH	CH	<i>t</i> -Bu	Me	CF ₃	CF ₃
N	CH	CH	CH	Et	Ме	CF ₃	OMe
N	CH	СН	CH	i-Pr	Ме	CF ₃	ОМе
N	CH	CH	CH	<i>t-</i> Bu	Me	CF ₃	ОМе
N	CH	CH	CH	Et	Me	CF ₃	CN
N	CH	CH	СН	, <i>i-</i> Pr	Me	CF ₃	CN
N	CH	CH	CH	t-Bu	Ме	CF ₃	CN
N	CH	CH	CH	Et	CI	CF ₃	CI
N	CH	CH	CH	i-Pr	Cl	CF ₃	CI
N	СН	СН	CH	<i>t</i> -Bu	Cl	CF ₃	CI
N	CH	CH	CH	Et	Cl	CF ₃	Br .
N	CH	CH	CH	i-Pr	CI	CF ₃	Br
N	CH	CH	CH	t-Bu	Cl	CF ₃	Br
N	CH	CH	CH	Et	CI	CF ₃	1
N	CH	CH	CH	i-Pr	Cl	CF ₃	1
N	CH	CH	CH	t-Bu	Cl	CF ₃	1
N	CH	CH	CH	Et	Cl	. CF ₃	F
N	CH	CH	СН	<i>i</i> -Pr	Cl	CF ₃	F
N	CH	CH	CH	t-Bu	Ċl	CF ₃	F
N	CH	CH	CH	Et	C1	CF ₃	Me
N -	CH	CH	CH	i-Pr	CI	CF ₃	Me
N	CH	СН	CH	t-Bu	CI	CF ₃ .	Me
N	CH	CH	CH	Et	Cl	CF ₃	CF ₃
N	CH	СН	CH	i-Pr	Cl	CF ₃	CF ₃
N	CH	CH	CH	<i>t</i> -Bu	Cl	CF ₃	CF ₃
N	CH	CH	CH	Et	Cl	CF ₃	OMe
N	CH	CH .	CH	i-Pr	· Cl	CF ₃	ОМе
N	CH	CF	CH	t-Bu	CI	CF ₃	OMe
и.	CH	CH	CH ·	Et	Cl	CF ₃	CN
N	CH ·	CH	CH	i-Pr	Cl	CF ₃	CN
N ~~	CH	CH	CH	t-Bu	Cl	CF ₃	CN
CH	N	CH	N	Et	Me	CF ₃	CI
CH	N	CH ·	N	i-Pr	Me	CF ₃	Cl
CH	N	CH	N	<i>t</i> -Bu	Me	CF ₃	CI
TH .	N	CH	N	Et	Me	CF ₃	Br

[0166]

【表45】

Br	CF ₃	М́е	t-Pr	N	CH	N	CH
Br	CF ₃	Me	t-Bu	N	СН	ν.	CH
1	CF ₃	Me	Et	N	CH	N	CH
I	CF ₃	Me	i-Pr	N	CH	N	CH
I	CF ₃	Me	t-Bu	N	CH	N	СН
F	CF ₃	Me	Et	N	CH	N	CH
F	CF ₃	Me	i-Pr	. N	CH	N	CH
F	CF ₃	Me	t-Bu	N	CH	N	СН
Me	CF ₃	Me	Et	N	CH	N	CH
Me	CF ₃	Me	i-Pr	N	CH	N	CH
Me	CF ₃	Me	t-Bu	N	CH	N	CH
CF ₃	CF ₃	Me	Et	退	СН	N	CH
CF ₃	· CF ₃	Me	i-Pr	197	CH	N	CH
CF₃	CF ₃	Me	t-Bu	N	CH	N	CH
OMe	CF ₃	Me	Et	N	CH	N	CH
ОМе	CF ₃	Me	i-Pr	n .	CH	N	CH
ОМе	CF ₃	Me	<i>t-</i> Bu	И	CH	N	CH
CN	. CF ₃	Me ·	Et	N	CH	N	CH
CN	CF ₃	Me	i-Pr	N	CH	N	CH
CN	CF ₃	Me	t-Bu	N	CH	N	CH
Cl	CF ₃	Ċl	Et	N	CH	N	CH
Cl	CF ₃	Cl	i-Pr	N	CH	И	CH
CI	CF ₃	C1	t-Bu	N	CH	N	CH
Br	CF ₃	Cl	Et	N	CH	N	CH
Br	CF ₃	Cl	i-Pr	N	CH	N	CH
Br	CF ₃	Ċl	t-Bu	N	CH	N	CH
1	CF ₃	Cl	. Et	N	CH	И	CH
1	CF ₃	Cl	í-Pr	N	CH	N	CH
· I.	CF ₃	. CI	t-Bu	N	CH	N	CH
F	CF ₃	Cì	Et	N -	CH	N	CH
· F	CF ₃	Cl	· i-Pr	, N	CH	N	CH
F	CF ₃	Cl	<i>t</i> -Bu	N	CH	N .	CH
Ме	CF ₃	CI	Et	N	CH	N	CH
Mc	CF ₃	. C I	i-Pt	N	CH	N	CH
Me	CF ₃	C1	t-Bu	N	CH	N	CH
CF ₃	CF ₃	Cl	Et	N	CH	И	CH
CF3	CF ₃	Cl	i-Pr	N	CH	N	CH

[0167]

【表46】

CH	N	CH	N	<i>t</i> -Bu	CI	CF ₃	CF ₃
CH	N	CH	N	Et	Cl	CF ₃	OMe
CH	N	CH	N	i-Pr	Cl	CF ₃	OMe
CH	N	CH	N	t-Bu	Cl	CF ₃	OMe
СН	N	CH	N	Et ·	Ci	CF ₃	CN
CH	N	CH	И	i-Pr	Cl	CF ₃	CN
CH	N	CH	N	t-Bu	C)	CF ₃	CN
CH	СН	СН	CCI	Et	Me	CF ₃	Cl
CH	СН	CH.	CC1	i-Pr	Me	CF ₃	Cl
CH	CH	CH	CCI	t-Bu	Me	CF ₃	Cl
CH	CH	CH	CCI	Et	Me	CF ₃	Br
CH	CH	CH	CCI	<i>i</i> -Pr	Me	CF ₃	Br
CH	CH	CH	CCI	t-Bu	Me	CF ₃	Br
CH	CH	CH	CCl	Et	Me	CF ₃	I
CH	CH	CH	CCI	i-Pr	Me	CF ₃	I
CH	. CH	CH	CC1	t-Bu	Me	CF ₃	1
CH	СН	CH	CCI	Et	Me	CF ₃	F
CH	CH	CH	CCl	i-Pr	Me	CF ₃	F
CH	CH	CH	CCI	r-Bu	Me	CL3.	F
CH	CH	CH	CC1	Et	Me	CF ₃	Me
CH	CH	CH	CCI	i-Pt	Me	CF ₃	Me
CH	CH	CH	CCI	. <i>t-</i> Bu	Me	CF ₃	Me
CH	CH	CH	CCI	Et	Me	CF ₃	CF ₃
CH	CH	CH	CCI	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CCI	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	CCI	Et	Me	CF ₃	OMe
CH	CH	CH	CCI	i-Pr	Me	CF ₃	OMe
CH	CH	CH	CCI	t-Bu	Me	CF ₃	ОМе
CH	. CH	CH	CCI	Et	Me	CF ₃	CN
CH	CH	CH	CCI	i-Pr	Me	CF ₃	CN
CH	CH	CH	CC1	· . t-Bu	Me	CF ₃	CN
CH	CH .	CH	CCI	Et	Cl	CF ₃	Cl
CH	CH	CH	CCl	<i>i</i> -Pr	Cl	CF ₃	Cl
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	Cl
CH	CH	CH	CCI	Et	Cl	CF ₃	Br
CH	CH	CH	CCI	i-Pr	Cl	CF ₃	Br
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	Br

[0168]

【表47】

CH	CH	СН	CCI	Et	CI	CF ₃	1
CH	CH	CH	CC1	i-Pr	Cì	CF ₃	ī
CH	CH	CH	CCI	t-Bu	Cl	. CIF3 .	I
CH	CH	CH	CCI	Et	Cl	CF ₃	F
CH	CH	СН	CCI	i-Pr	Cl	CF₃	F
CH	CH	CH	CCl	t-Bu	Cl	CF ₃	F
CH	CH	CH	CCI	Et	CI	CF ₃	Me
СН	СН	CH ·	CCI	<i>i</i> -Pr	Ci	CF ₃	Me
CH	СН	CH	CCI	t-Bu	Cl	CF ₃	Me
CH	CH	CH	CCI	Et	Cl	CF ₃	CF ₃
CH	CH.	CH	CCI	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CCI	t-Bu	C1	CF ₃	CF ₃
CH	CH	CH	CC1	Et	Cl	CF ₃	OMe
CH	CH	CH	CCI	<i>i</i> -Pr	CI	CF ₃	OMe
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	OMe
CH	CH	CH	CCI	Et	Cl	CF ₃	CN
CH	CH-	CH	CCI	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	CN
CH	CH	CH	CF	Et	Me	CF ₃	Cl
CH	CH	CH	CF	i-Pr	Me	CF ₃	Cl
CH	CH	CH	CF ·	t-Bu	Me	CF ₃	Cl
CH	CH	CH	CF	Et	Me	CF ₃	Br
CH	CH	CH	CF	i-Pr	Me	CF ₃	Br
CH	CH	CH	CF	t-Bu	Me	CF ₃	Br
CH	CH	CH	CF	Et	Me	CF ₃	1
CH	CH	CH	CF	i-Pr	Me	. CF ₃	I
CH	CH	CH	CF	t-Bu	Me	CF ₃	I
CH	CH	CH	CF	Et	Me	CF ₃	F
CH	CH	CH	CF	i-Pr	Me	CF ₃	F
CH	СН	CH	CF.	t-Bu	Me	CF ₃	, F
CH ·	СН	CH	CF	Et	Me	CF ₃	Me
CH	CH.	CH	CF	i-Pr	Me	CF ₃	Me
CH	CH	CH	CF	t-Bu	Me	CF ₃	· Me
CH	CH	CH	CF	Et	Me	CF ₃	CF ₃
CH	CH	CH	CF	i-Pr	Ме	CF ₃	CF ₃
CH	CH	CH	CF	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	CF	Et	Me	CF ₃	OMe

[0169]

【表48】

						•	
CH	CH	CH	CF	i-Pr	Me	CF ₃	OMe
CH	CH	CH	CF	t-Bu	Me	CF ₃	ОМе
CH	CH	CH	CF	Et	Me	CF ₃	CN
CH	CH	CH	CF	i-Pr	Me	CF ₃	CN
CH	CH	CH	CF	t-Bu	Me	CF ₃	CN
CH	CH	CH	CF	Et	Cì	CF ₃	Cl
CH	CH	CH	CF	i-Pr	C1	CF ₃	Cl
CH	CH	CH.	CF	t-Bu	Cl	CF ₃	CI
CH	СН	CH	CF ·	Et	Cl	CF ₃	Br
CH	СН	CH	CF	<i>i</i> -Pr	Cl	CF ₃	Br
CH	CH	CH	CF	t-Bu	Cl	CF ₃	Br
CH	CH	CH	CF	Et	Cl	CF ₃	1
CH	CH	CH	CF	i-Pr	Çl	·CF ₃	I
CH	CH	CH	CIF	t-Bu	CI	CF ₃	1
CH	CH	CH	CF	i-Pr	Cl	CF ₃	F
CH	CH	CH	CF	t-Bu	Cl	CF ₃	F
CH	СН	CH	CF	Et	Cl	CF ₃	Ме
CH	CH	CH	CF	<i>i</i> -Pr	CI	CF ₃	Ме
CH	CH	CH	CF	t-Bu	Cl	CF ₃	Ме
СН	CH	CH	CF	Et	C1	CF ₃	CF ₃
CH	CH	CH	CF	<i>i</i> -Pr	ĊI	CF ₃	CF ₃
CH	CH	CH	CF	t-Bu	CI	CF ₃	CF ₃
CH	CH	CH	CF	. Et	Cl	CF ₃	OMe
CH	CH	CH	CF .	i-Pr	Cl	CF ₃	OMe
CH	СН	CH	CF	t-Bu	Cl	· CF ₃	ОМе
CH	CH	CH	CF	Et	Ci	CF ₃	CN
CH	CH	CH	CF	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CF	t-Bu	C1	CF ₃	CN
CH	CH	CH	CH	Et	Me	C_2F_5	C1
CH	CH	CH	CH.	i-Pr	Me	C_2F_5	Cl
CH	CH	CH	СН	· t-Bu	Me	C ₂ F ₅	Cl
CH	CH	СН	СН	Et	Mc	C ₂ F ₅	Br
CH	CH	CH	СН	i-Pr	Me	C ₂ F ₅	Br
CH	CH	CH	CH	1-Bu	Me	C ₂ F ₅	Br
CH	CH	CH .	· CH	Et	Me	C ₂ F ₅	1
CH	СН	CH	CH	i-Pr	Me	C ₂ F ₅	· 1
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	I

[0170]

【表49】

CH	CH	CH.	CH	Et	Me	C_2F_5	F
CH	CH	CH	CH	i-Pr	Me	C ₂ F ₅	· F
CH	CH	CH	CH	t-Bu	Ме	C_2F_5	· F
CH	CH	CH	CH	Et	Me	C_2F_5	Мо
CH	CH	CH	CH	i-Pr	Me	C ₂ F ₅	Me
CH	ĆĦ	CH	CH	t-Bu	Me	C ₂ F ₅	Me
CH	CH	CH	CH	Et	Me	C ₂ F ₅	CF ₃
СН	CH	CH	СН	<i>i</i> -Pr	Me	C ₂ F ₅	CF ₃
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	CF ₃
CH	CH	CH	CH	Et	Me	C ₂ F ₅	ОМе
CH	· CH	CH	СН	i-Pr	Me	C_2F_5	ОМс
CH	СН	CH	CH	t-Bu	Me	C ₂ F ₅	OMe
CH	CH	CH	CH	Et	Me	C_2F_5	CN
CH	CH	CH	CH	<i>i</i> -Pr	Me	C ₂ F ₅	CN
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	CN
CH	ĊН	CH	CH	Et	CI	C ₂ F ₅	CI
CH	CH	CH	CH	i-Pr	C1	C_2F_5	CI
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	· Cl
CH	CH	CH	CH	Et	CI	C ₂ F ₅	Br
CH	CH	CH	CH	i-Pr	C 1	C_2F_5	Br
CH	CH	CH	CH	<i>t-</i> Bu	Cl	C ₂ F ₅	Br
CH	CH	СН	CH	Et	Cl	C_2F_5	1
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	1
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	I
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	F
CH	CH	CH	CH	<i>i</i> -Pr	Cl	C ₂ F ₅	F
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	F
CH	CH	CH	CH	Et	Cl	C_2F_5	Me
CH	CH	ĊН	CH	i-Pr	. C 1	C_2F_5	Me
CH	CH	CH	CH	t-Bu	Cl	C ₂ F ₅	Me
CH	CH	CH	CH .	· Et	Cl	C_2F_5	CF ₃
CH .	CH .	CH	CH	i-Pr	CI	C ₂ F ₅	CF ₃
CH	CH	CH	CH	t-Bu	CI	C ₂ F ₅	CF₃
CH .	CH	CH	CH	Et	Ċ1	C_2F_5	ОМе
CH	CH	CH	CH	. I-Pr	Cl	C ₂ F ₅	ОМе
CH	CH	CH	CH	t-Bu	Cl	C ₂ F ₅	ОМе
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	CN
						-	

[0171]

【表50】

Et

Me

CF₃

CN

[0172]

【表51】

CH	CH	СН	СН	i-Pr	Me	CF ₃	CN
CH	CH	СН	СН	t-Bu	Me	CF ₃	CN
CH	CH	СН	CH	Et	Cl	CF ₃	Cl
СН	CH	CH	СН	<i>i</i> -Pτ	Cl	CF ₃	CI
СН	CH	СН	CH	t-Bu	Cl	CF ₃	CI
CH	СН	CH	СН	Et	·Cl	CF ₃	Br
CH	СН	CH	CH	i-Pr	Cl	CF ₃	Br
СН	CH	СН	CH	t-Bu	. CI	CF ₃ ·	Br
CH	CH	CH	CH	Et	Cl	CF ₃	1
CH	СН	CH	СН	i-Pr	Cl	CF ₃	1
CH.	CH	CH	CH	#-Bu	Cl	CF ₃	I
CH	CH	CH	CH	Et	Cl	CF ₃	F
CH	CH	CH	CH	<i>i</i> -Pr	C!	CF ₃	F
CH	СН	CH	CH	t-Bu	ä	CF ₃	F
CH	СН	CH	CH	Et	a	CF ₃	Me
CH	СН	CH	CH	i-Pr	CI	CF ₃	Me
CH	CH	CH	CH.	t-Bu	Cl	CF ₃	Me
CH	CH	CH	CH	Et	Cl	CF ₃	CF ₃
CH	CH	СН	CH	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CH	t-Bu	, C 1	CF ₃	CF ₃
CH	CH	CH	CH	Et	Cl	CF ₃	OMe
CH	CH	CH	CH	i-Pr	Cl	CF ₃	ОМе
CH	CH	CH	CH	t-Bu	Cl	CF ₃	ОМе
CH	CH	CH	CH	Et	Cl	CF ₃	CN
CH	CH	CH	CH	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CH	t-Bu	CI	CF ₃	CN
CH	CH	CH	N	Et	Me	CF ₃	Cl
CH	CH	CH	И	i-Pr	Me	CF ₃	Cl
CH	CH	CH	N	t-Bu	· Me	CF ₃	Cl
CH	CH	CH	N	Et	Me	CF ₃	Br
CH	CH	·CH	N	· i-Pr	Me	CF ₃	Br
CH	CH	CH	N	t-Bu	Мe	CF ₃	Br
CH	СН	CH	N	Et	Me	CF ₃	1
CH	СН	CH	N	i-Pr	Me	CF ₃	ľ
CH	CH	CH	N	t-Bu	Me	CF ₃	1
CH	CH	CH	N	Et	Me	CF ₃	· F ·
CH	CH	CH ·	N	i-Pr	Me	CF ₃	F

[0173]

【表52】

CH	CH	CH	N	<i>t</i> -Bu	Me	CF ₃	F
CH	CH	CH	N	Et	Me	CF ₃	Me
CH	CH	CH	N	i-Pr	Me	CF ₃	Me
CH	СН	CH	N	t-Bu	Me	CF ₃	Me
CH	CH	CH	N	Et	Me	CF ₃	CF ₃
CH	CH	CH	N	i-Pr	Ме	CF ₃	CF ₃
CH	CH	CH	N	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	N	Et	Me	CF ₃	OMe
CH	· CH	CH	N	i-Pr	Me	CF ₃	OMe
CH	CH	CH	N	t-Bu	Me	CF ₃	ОМе
CH	CH	CH	N	Et	Me	CF ₃	CN
CH	CH	CH	N	i-Pr	Me	CF ₃	CN
CH	CH	CH	N	t-Bu	Me	CF ₃	CN
CH	CH	CH	N	Et	Cl	CF ₃	Cl
CH	CH	СН	N	i-Pr	CI	CF ₃	Cl
CH	СН	CH	N	t-Bu	Cl	CF ₃	Cl
CH	CH	CH	N	Et	Cl	CF ₃	Br
CH	CH	CH	N	i-Pr	Cì	CF ₃	Br
CH	CH	CH	N	t-Bu	CI ·	CF ₃	Br
CH	CH	CH	N	Et	Cl	CF ₃	I
CH	CH	CH	N	i-Pr	Cl	CF ₃	1
CH	CH	CH	N	t-Bu	Cl	CF ₃	I
CH	CH	CH	N	Et	Cl	CF ₃	F
CH	CH	CH	N	i-Pr	Cl	CF ₃	F
CH	CH	CH	N	t-Bu	Cl	CF ₃	F
CH	CH	CH	И	Et	Cl	CF ₃	Me
CH	CH	CH	N	i-Pr	Cl	CF ₃	Me
CH	CH	CH	N	t-Bu	Cl	CF ₃	Me
CH	CH	CH	N	Et	· Cl	CF ₃	CF ₃
CH	CH	CH	N.	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	N	<i>t-</i> Bu	Cl	CF ₃	CF ₃
CH	CH	CH	N	Eŧ	Cl	CF ₃	OMe
CH	CH	CH	N	i-Pr	C1	CF ₃	OMe
CH	CH	CH	N	t-Bu	CI	CF ₃	OMe
CH	CH	CH	N	Et	Cl	CF ₃	CN
CH	CH	CH	N	i-Pr	Cl	CF ₃	'CN
CH .	CH	CH	N	t-Bu	Cl	CF ₃	CN

[0174]

【表53】

							•
CH	CH	N	CH	Et	Me	CF ₃	CI
CH	CH	N	CH	I-P⊤	Me	CF ₃	Cì
СН	СН	И	CH	t-Bu	Me	CF ₃	Cl
CH	CH	N	СН	Et	Me ·	CF ₃	Br
СН	СН	N	CH	i-Pr	Me	CF ₃	Br
CH	CH	N	СН	t-Bu	Me	CF ₃	Br
CH	CH	N	СН	Et	Me	CF ₃	1
СН	CH	N	CH	i-Pr	Me	CF ₃	I
СН	CH	N	CH	t-Bu	Me	CF ₃	I
CH	СН	N	CH	Et	Me	CF ₃	F
CH	CH	N	CH	i-Pr	Me	CF ₃	F
СН	CH	N	CH	t-Bu	Me	CF ₃	F
CH	CH	N	CH	Et	Мe	.CF ₃	Me
СН	CH	N	CH	i-Pr	Me	CF ₃	Me
СН	CH	N	СН	t-Bu	Me	CF ₃	Mc
CH	CH	N	CH	Et	Me	CF ₃	CF ₃
CH	CH	N	CH	i-Pr	Me	CF ₃	CF ₃
CH	CH	N	CH	t-Bu	Me	CF ₃	CF ₃
CH	CH	N	CH	Et	Me	CF ₃	OMe
CH	CH	N	CH	<i>i</i> -Pr	Me	CF ₃	OMe
CH	CH	N	CH	t-Bu	Me	CF ₃	ОМе
CH	CH	N	CH	· Et	Me	CF ₃	CN
CH	CH	N	CH	<i>i-</i> Pr	Me	CF ₃	CN
CH	CH	N .	CH	t-Bu	Me	CF ₃	CN
CH	CH	N	CH	Et	Cl	CF ₃	CI
CH	CH	N	CH	i-Pr	Cl	CF ₃	Cl
CH	CH	N	CH	t-Bu	Cl	CF ₃	CI
CH	СН	N	CH	Et	Cl	CF ₃	Br
CH	CH	N	CH	i-Pr	Ci	CF ₃	Br
CH	CH	N	CH.	t-Bu	Cl	CF ₃	Br
CH	CH	N	CH	Et	Cl	CF ₃	I
CH	CH	N	CH	i-Pr	Cl	CF ₃	I
CH	CH	N	CH	t-Bu	Cl	CF ₃	1
CH	CH	И	CH	Et	Cl	CF ₃	F
CH	CH	N	CH	i-Pr	C)	CF ₃	F
CH	CH	N	CH	t-Bu	Cl	CF ₃	F
CH	CH	N	CH	Et	Cl	. CF ₃	Me

[0175]

【表54】

		_					
CH	CH	N	СН	i-Pr	CI	CF ₃	Me
CH	СН	N	CH	t-Bu	CI	CF ₃	Me
CH	CH	N	CH	Et	Cl	CF ₃	CF ₃
CH	CH	N	CH	i-Pr	Cl	CF ₃	CF ₃
CH	CH	N	CH	t-Bu	Cl	CF ₃	CF ₃
CH	СН	N	СН	Et	Cl	CF ₃	OMe
CH	CH	N	CH	i-Pr	Cl	CF ₃	OMe
CH	CH	N	СН	t-Bu	CI	CF ₃	OMe
CH	CH	N	CH	Et	Cl	CF ₃	CN
СН	CH	N	CH	i-Pr	Cl	CF ₃	CN
CH	CH	N	CH	t-Bu	CI	CF ₃	CN
CH	N	CH	CH	Et	Me	CF ₃	Cl
CH	N	CH	CH	i-Pr	Me	CF ₃	Cl
CH	. N	CH	CH	<i>t</i> -Bu	Мв	CF ₃	Cl
CH	N	CH	CH	Et	Me	CF ₃	Br
CH	И	CH	CH	i-Pr	Me	CF ₃	Br
CH	И	CH	CH	t-Bu	Me	CF ₃	Br
CH	N	CH	CH	Et	Me	CF ₃	I
CH	N	CH	CH	<i>i</i> -Pr	Me	CF ₃	I
CH	N	CH	CH	t-Bu	Ме	CF ₃	I
CH	N	CH	CH	Et	Me ·	CF ₃	F
CH	N	CH	CH	i-Pr	Me	CF ₃	F
CH	N	CH	CH	t-Bu	Me	CF ₃	F
CH	N	CH	СН	Et	Me	CF ₃	Me
CH	N	CH	СН	i-Pr	Me	CF ₃	Me
CH	N	CH	СН	t-Bu	Me	CF ₃	Ме
CH	N	CH	CH	Et	Me	CF ₃	CF ₃
CH	N	CH	СН	i-Pr	Me	CF ₃	CF ₃
CH	N	CH	CH	t-Bu	Me	CF ₃	CF ₃
CH	N	CH	CH	Et	Me	CF ₃	ОМе
CH	N	CH	CH	<i>i</i> -Pr	. Me	CF ₃	ОМе
CH	N	. CH	СН	t-Bu	Me	CF ₃	ОМе
CH	N	CH	CH	Et	Me	CF ₃	CN
CH	N	CH	CH	<i>i</i> -Pr	Me	CF ₃	CN
CH	. N	CH	CH	t-Bu	Me	CF ₃	CN
CH	N	CH	CH	Et	Cl	CF ₃	, CI ,
CH .	N	CH	CH	i-Pr	Cl	CF ₃	Cl
-							

[0176]

【表55]

CH	N	CH	CH	<i>t</i> -Bu	Cl	CF ₃	CI
CH	N	CH	СН	Et	Cl	CF ₃	Br
CH	И	CH	CH	i-Pr	CI	CF ₃	Br
CH	N	CH	СН	· r-Bu	CI	CF ₃	Br
CH	N	CH	СН	Et	CI	CF ₃	1
CH	N	CH	CH	i-Pr	Cl	CF3	1
CH	Ŋ	CH	CH	t-Bu	Cl	CF3	1
CH	N	CH	CH	Et ·	Cl	CF ₃	F
CH	N	CH	CH	i-Pr	Cl	CF ₃	F
CH	N	CH	CH	t-Bu	Cl	CF ₃	F
CH	N	CH	CH	Et	CI	CF ₃	Me
CH	N	CH	CH	i-Pr	C1	CF ₃	Me
CH	N	CH	CH	t-Bu	СĨ	CF ₃	Ме
CH	N	CH	CH	Et	C1	CF ₃	CF ₃
СН	N	CH	CH	i-Pr	Cl	CF ₃	CF ₃
CH	N	CH	CH	t-Bu	Cl	CF ₃	CF ₃
CH	N	CH	CH	Et	CI	CF ₃	OMe
CH	N	CH	CH	i-Pr	Cì	CF ₃	ОМе
CH	N	CH	CH	t-Bu	Cl	CF ₃	OMe
CH	N	CH	CH	Et	C)	CF ₃	CN
CH	N	CH	CH	i-Pr	Cl	CF ₃	CN
CH	N	CH	CH	t-Bu	Cl	CF ₃	CN
N	CH	СН	CH	Et	Me	CF ₃	Cl
N	CH	CH	CH	i-Pr	Me	CF ₃	a
N	CH	CH	CH	t-Bu	Me	CF ₃	CI
N	CH	CH	CH	Et	Me	CF ₃	Br
N	CH	CH	CH	i-Pr	Me	CF ₃	Br
И	CH	CH	CH	t-Bu	Me	CF ₃	Br
N	CH	CH	CH	Et	Me	CF ₃	1
N	CH	CH	CH.	i-Pr	Me	CF ₃	1
N	CH	CH	CH	r-Bu	Me	CF ₃	1
N	CH	CH	CH	Et	Mc	CF ₃	F
N	CH	CH	CH	i-Pr	Me	CF ₃	F
N	CH	CH	CH	<i>t</i> -Bu	Me	CF ₃	F
N	CH	CH	CH	Et	Me	CF ₃	Me
N	CH	CH	CH	<i>i</i> -Pr	Me	CF ₃	Me
N	CH	CH	CH	t-Bu	Me	CF ₃	Me

[0177]

【表56】

	•						
N	CH	CH	CH	Et	Me	CF₃ ·	CF ₃
N	СН	CH	CH	<i>i-</i> Pr	Me	CF ₃	CF,
N	CH	CH	CH	t-Bu	Me	CF ₃	CF ₃
N	CH	СН	CH	Et	Ме	CF ₃ ⋅	OMe
И	CH	CH	CH	i-Pr	Me	CF ₃	ОМе
N	CH	CH	CH	t-Bu	Me	CF ₃	ОМе
N	CH	CH	CH	Et	Me	CF ₃	CN
N	CH	CH	СН	i-Pr	Ме	CF ₃	CN
N	CH	CH	CH	<i>t</i> -Bu	Me	CF ₃	CN
N	CH	CH	CH	Et	Cl	CF ₃	Cl
N	CH	CH	CH	i-Pr	Cl	CF ₃	Cl
N	CH	CH	CH	t-Bu	Cl	CF ₃	Cl
N	CH	СН	CH	Et	ĊĬ	CF ₃	Br
И	CH	CH	CH	i-Pr	C1	CF ₃	Br
N	CH	CH	CH	t-Bu	Cl	CF ₃	Br
N	CH	CH	CH	Et	Cl	CF ₃	I
N	CH	CH	CH	i-Pr	Cl	CF ₃	I
N	CH	CH	CH	t-Bu	Cl	CF ₃	1
И	CH	CH	CH	Et	CI	CF ₃	F
N	CH	CH	CH	i-Pr	C1	CF ₃	F
И	CH	CH	CH	t-Bu	Cl	CF ₃	F
N	CH	CH	CH	Et	Cl	CF ₃	Me
N	CH	CH	CH	i-Pr	Cl	CF ₃	Me
И	СН	CH	CH	t-Bu	Cì	CF ₃	Me
N	СН	CH	CH	Et	Cl	CF ₃	CF ₃
N	CH	CH	CH	i-Pr	Cl	CF ₃	CF ₃
N	CH	CH	CH	<i>t</i> -Bu	Cl	CF ₃	CF ₃
И	CH	CH	CH	Et	CI	CF ₃	ОМе
И	СН	CH	CH	i-Pr	. CI	CF ₃	ОМе
N	CH	CH	CH	<i>t</i> -Bu	Cl	CF ₃	ОМе
N	CH	CH	CH ·	· Et	Cl	CF ₃	CN
Ν.	CH .	CH	CH	i-Pr	Cl	CF ₃	CN
N	CH	CH	CH	t-Bu	Cl	CF ₃	CN
CH	N	CH	N	Et	Me	CF ₃	CI
CH ·	N	CH	И	i-Pr	Me	. CF ₃	Cl
CH	N	СН	N	t-Bu	Me	CF ₃	, CI
CH ·	N	CH	. и	Et	Ме	CF ₃	Br

[0178]

【表57】

СН	N	СН	N.	i-Pr	Me	CF ₃	Br
СН	И	СН	N	t-Bu	Me	CF ₃	Вт
CH	N	СН	N	Et	Me	CF ₃	I
CH	N	CH	N	i-Pr	Me	CIF₃	1
CH	N	.CH	N	t-Bu	Me	CF ₃	I
CH	И	СН	N	Et	Me	CF ₃	F
СН	N	CH	N	i-Pr	Me	CF ₃	F
CH	N	CH	N	t-Bu	Me	CF ₃	F
CH	И	СН	N	Et	Me	CF ₃	Me
СН	И	CH	N	· - I-Pr	Me	CF ₃	Me
CH	N	CH	N	t-Bu	Me	CF _{3.}	Ме
CH	N	СН	N	Et	Me	CF ₃	CF ₃
CH	N	CH	N	i-Pr	Me	CF ₃	CF ₃
CH	И	CH	N	t-Bu	Me	CF ₃	CF ₃
СН	N	CH	N	Et	Me	CF ₃	OMe
CH	N	CH	N	i-Pr	Me	CF ₃	ОМе
CH	N	CH	N	t-Bu	Me	CF ₃	ОМе
CH	N	CH	И	Et	Me	CF ₃	CN
CH	N	CH	N	i-Pr	Me	CF ₃	. CN
CH	N	CH	N	t-Bu	Me	CF ₃	CN
CH	N	CH	N	Et	CI	CF ₃	Cl
CH	N	CH	N	i-PT	Cl	CF ₃	Cl
CH	N	CH	N	⊁ Bu	Cl	CF ₃	Cl
CH	N	CH	N	Et	Cl	CF ₃	Br
CH	N	CH	N	<i>i</i> -Pr	Cl	CF ₃	Br
CH ·	N	СН	N	t-Bu	CI	CF ₃	Br
CH	N	СН	N	Et	Cl	CF ₃	I
CH	N	СН	N	i-Pr	Cl	CF ₃	I
CH	N	CH	N	t-Bu	CI	CF ₃	I
CH	N	CH	N .	Et	Cl	CF ₃	F
CH	И	CH	N	· - i-Pr	Cl	CF ₃	F
CH	N	CH	N	t-Bu	Cl	CF ₃	F
CH	N	CH	И	· Et	CI	CF ₃	Me
CH	N	CH	N	<i>t</i> -Pr	Cl	CF ₃	Ме
CH	N	CH	N	t-Bu	CI	CF ₃	Ме
CH	N	CH	N	Et	Cl	CF ₃	CF ₃
CH ·	N	CH	N	i-Pr	CI	CF ₃	CF ₃
						-	

[0179]

【表58】

CH	N	CH	N	r-Bu	Cl	CF ₃	CF3
CH	N	CH	N	Et	Cl	CF ₃	OMe
CH	N	CH	N	i-Pr	Cl	CF ₃	ОМе
CH	N	CH	N	t-Bu	Cl	CF ₃	OMe
CH	N	CH	N	Et	Cl	CF ₃	CN
CH	И	CH	N	<i>i</i> -Pr	C)	CF ₃	CN
CH	N	СН	N	t-Bu	Cl	CF ₃	CN
CH	CH	CH	CCI	Et	Ме	CF ₃	Cl
CH	CH	CH	CCI	i-Pr	Me	CF ₃	CI
CH	CH	CH	CCI	t-Bu	Me	CF ₃	Cl
CH	CH	CH	CC1	Et	Me	CF ₃	. Br
CH	CH	CH	CCI	i-Pr	Ме	CF ₃	Br
CH	CH	CH	CCI	t-Bu	Ме	·CF ₃	Br
CH	CH	CH	CCI	· Et	Me	CF ₃	1
CH	CH	CH	CCI	<i>i</i> -Pr	Me	CF ₃	. I
CH	CH	CH	CC1	t-Bu	Me	CF ₃	1
CH	CH	CH	CC1	Et	Me	CF ₃	F
CH	CH	CH	CCI	i-Pr	Me	CF ₃	·
CH	CH	CH	CC1	t-Bu	Me	CF ₃	F
CH	CH .	CH	CC1	Et	Me	CF ₃	Me
CH	CH	CH	CCI	i-Pr	Me	CF ₃	Me
CH	CH	CH	CCI	t-Bu	Me	CF ₃	Me
CH	CH	СН	CCI	Et	Me	CF ₃	CF ₃
CH	CH	CH	CCI	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CC1	t-Bu	Ме	CF ₃	CF ₃
CH	CH	CH	CCI	Et	Me	CF ₃	ОМе
CH	CH	CH	CCI	<i>i</i> -Pr	Me	CF ₃	ОМе
CH	CH	CH	CCI	t-Bu	Me	CF ₃	ОМе
CH	CH	CH	CCI	· Et	Me	CF ₃	CN
CH	CH	CH	CCI	i-Pr	Me	CF ₃	CN
CH	CH	CH	CCI	t-Bu	Me	CF ₃	CN
СĦ	CH .	CH	CCI	Et	CI	CF ₃	Cl
CH	CH	CH	CCI	i-Pr	Cl	CF ₃	CI
CH	CH	CH	CCI	r-Bu	CI	CF ₃	CI
CH	CH	CH	CCI	Et	Cl	CF ₃	Br
CH	CH	CH	CCI	i-Pr	Ci	CF ₃	Br
CH	CH	CH	CCl	t-Bu	Cl	CF ₃	Br

[0180]

【表59】

CH	СН	CH	CCI .	Et	Cl	CF ₃	1
CH	СН	. CH	CCI	i-Pr	Cl	CF ₃	1
CH	. СН	СН	CCl	· t-Bu	CI	CF ₃	T
CH	CH	. CH	CCI	Et	CI	CF ₃	F
СН	CH	CH	CCI	i-Pr	Cl	CF ₃	F
CH	CH	CH	CCI	<i>t</i> -Bu	C)	CF ₃	F
CH	CH	CH	CCI	Et	Cl	CF ₃	Me
CH	CH	CH	CCI	i-Pt	Cl	CF ₃	Ме
CH	CH	СН	CCI	t-Bu	Cl	CF ₃	Me
CH	CH	СН	CCI	Et	CI	CF ₃	CF ₃
CH	СН	СН	CCI	i-Pr	CI	CF ₃	CF ₃
СН	CH	СН	CCI	t-Bu	Cl	CF ₃	CF ₃
CH	CH	СН	CCI	Et	Cl	CF ₃	ОМе
CH	CH	CH	CCI	i-Pr	Ċ1	CF ₃	ОМе
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	ОМе
CH	CH	CH	CCI	Et	Cl	CF ₃	CN
CH	CH	CH	CCI	i-Pr	Cl	CF ₃	CN
CH	CH	. CH	CC1	t-Bu	CI	CF ₃	CN
CH	СН	CH	CF	. Et	Ме	CF ₃	Ci
CH	CH	CH	CF	i-Pr	Me	CF ₃	Cl
CH	CH	СН	CF	t-Bu	Me	CF ₃	CI
CH	CH	CH	CF	Et	Me	CF ₃	Br
CH	CH	CH	CF	i-Pr	Me	CF ₃	Br
CH	CH	CH	CF	t-Bu	Me	CF ₃	Br
CH	CH	CH	CF	Et	Me	CF ₃	1
CH	CH	CH	CF	i-Pr	Me	CF ₃	1
CH	CH	CH	CF	t-Bu	Me	CF ₃ ·	1
CH	CH	CH	CF	Et	Me	CF ₃	F
CH	CH	CH	· CF	i-Pr	· Me	CF ₃	F
CH	CH	CH	CF	t-Bu	Me	CF ₃	F
CH	CH	CH	CF ·	Et	Me	CF ₃	Me
CH	CH	CH	CF	i-Pr	Me	CF ₃	Me
CH	. CH	CH	CF	<i>t</i> -Bu	Me	CF ₃	Me
CH	CH	CH	. CF	Et	Me	CF ₃	CF ₃
CH	CH	CH	CF	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CF	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	CF	Et	Me	CF ₃	OMe

[0181]

【表60】

CH	CH	ĊH	CF	i-Pr	Me	CF ₃	OMe
СН	CH	CH	CF	t-Bu	Me	CF ₃	OMe
СН	CH	CH	CF	Et	Me	CF ₃	CN
CH	CH	CH	CF	i-Pr	Me	CF ₃	CN
CH	СН	CH	CF	t-Bu	Me	CF ₃	CN
CH	CH	CH	CF	Et	Cì	CF ₃	Cl
CH	CH	CH	CF	i-Pr	Cl	CF ₃	Cl
CH	CH	CH	CF	t-Bu	Cl	CF ₃	Cl
CH	CH	CH	CF	Et	Cl	CF ₃	Br
СН	CH	CH	CF	i-Pr	Cl	CF ₃	Br
CH	CH	CH	CF	t-Bu	CI	CF ₃	Br
CH	CH	CH	CF	Et	Cl	CF ₃	1
CH	CH	CH	CF	i-Pr	ĊJ	·· CF ₃	1
CH	CH	CH	CF	t-Bu	Cl	CF ₃	I
CH	CH	CH	CF	i-Pr	, CI	CF ₃	F
CH	CH	CH	CF	t-Bu	Cl	CF ₃	F
CH	CH	CH	CF	Et	CI	CF ₃	Me
CH	CH	CH	CF	i-Pr	Cl	CF ₃	Me
CH	CH	CH	CF	. t-Bu	Cl	CF ₃	Me
CH	CH	CH	CF	Et	Cl	CF ₃	.CF ₃
CH	CH	CH	CF	i-Pr	C1	CF ₃	CF ₃
CH	CH	CH	CF	· t-Bu	Cl	CF ₃	CF ₃
CH	CH	CH	CF	Et	Cl	CF ₃	OMe
CH	CH	CH	CF	<i>i</i> -Pr	Cl	CF ₃	OMe
CH	CH	CH	CF	<i>t-</i> Bu	CI	CF ₃	OMe
CH	CH	CH	CF	Et	Cl	CF ₃	CN
CH	CH	CH	CF	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CF	t-Bu	CI	CF ₃	CN
CH	CH	CH	CH	Et	Me	C ₂ F ₅	Cl
CH	CH	· CH ·	CH.	i-Pr	Me	C ₂ F ₅	Cl
CH	CH	CH	CH	. t-Bu	Me	C ₂ F ₅	Cl
CH	CH	CH	CH	Et	Me	C ₂ F ₅	Br
CH	CH	CH	CH	i-Pr	Ме	C ₂ F ₅	Br
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	Br
CH	CH	CH	CH	Et	Me	C ₂ F ₅	I
CH	CH	CH	СН	i-Pr	Me	C ₂ F ₅	1
CH	CH	CH	CH	t-Bu	Me	C_2F_5	I

[0182]

【表61】

CH	СН	СН	CH	Et	Me	C ₂ F ₅	· F
CH	CH	CH	CH	i-Pr	Me	C ₂ F ₅	F
СН	СН	CH	CH	t-Bu	Me	C ₂ F ₅	F
CH	СН	СН	CH	Et	Me	C ₂ F ₅	Me
CH	СН	СН	СН	i-Pr	Me	C ₂ F ₅	Ме
СН	СН	CH	СН	t-Bu	Me	C ₂ F ₅	Me
СН	СН	CH	СН	Et	Me	C ₂ F ₅	CF ₃
CH	· CH	CH	СН	i-Pr	Me	C ₂ F ₅	CF ₃
CH ·	CH	СН	CH	t-Bu	Me	C ₂ F ₅	CF ₃
CH	CH	СН	CH	Et	Me	C ₂ F ₅	OMe
СН	CH	СН	СН	i-Pr	Me	C_2F_5	ОМе
CH	CH	CH .	CH	t-Bu	Me	C_2F_5	ОМе
CH	CH	CH	CH	Et	Me	c_2r_5	CN
CH	CH	CH	СН	i-Pr	Me	C ₂ F ₅	CN 'F
CH ·	CH	CH	СН	t-Bu	Me	C_2F_5	CN
CH	CH	CH	CH	Et	Cl	C_2F_5	Cl
CH	CH	CH	CH	i-Pr	Cl	C_2F_5	Cl
СН	CH	CH	CH	t-Bu	Cl	$c_2 r_5$	Cl
CH	CH	CH	СН	Et	CI	C_2F_5	Br
CH	CH	CH	CH	i-Pr	Cl	C_2F_5	Br
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	Br
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	1
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	1
CH	CH	CH	ĊН	t-Bu	Cl	C_2F_5	1
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	F
CH	CH	CH	CH	<i>i</i> -Pr	Cl	C ₂ F ₅	F
CH	CH	CH	CH	r-Bu 🦡	Cl	C_2F_5	F
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	Me
CH	CH	CH	CH .	i-Pr	. CI	C_2F_5	Me
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	Ме
CH	CH	CH	CH	- Et	CI	C_2F_5	CF ₃
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	CF ₃
CH.	CH .	CH	CH	t-Bu	Cl	C ₂ F ₅	CF ₃
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	OMe
CH	CH	CH	CH	i-Pr	Cl	C_2F_5	ОМе
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	OMe
CH	CH	CH	CH	Et	Cl	C_2F_5	CN

[0183]

【表62】

C₂F₅ CN CH CH CH СН i-Pr Cł C₂F₅ СН CH CH Cl CN CH t-Bu

表14

w	· x	Y	z	R ³	R ⁴	_R 7	R ⁸
СН	CH	CH	СН	Et	Me	CF ₃	a
CH	CH	CH	CH	i-Pr	Me	CF ₃	Cl
CH	СН	CH	СН	t-Bu	Me	CF ₃	CI
СН	CH	СН	CH	Et	Ме	CF ₃	Br
СН	CH	CH	CH	<i>i</i> -Pr	Me	CF ₃	Br
СН	CH	CH	CH	t-Bu	Me	CF ₃	Br
CH	CH	CH	СН	Et	Ме	CF ₃	I
CH	CH	CH	CH	i-Pr	Me	CF ₃	1
CH	CH	CH	CH	t-Bu	Me	CF ₃	ĭ
CH	CH	CH	CH	Et	Me	CF ₃	F
CH	CH	CH	СН	i-Pr	Me	CF ₃	F
CH	CH	CH	CH	t-Bu	Me	CF ₃	F
CH	CH	CH	CH	Et	Me	CF ₃	Me
CH	CH	CH	CH	i-Pr	Me	CF ₃	Me
CH	CH	CH	CH	t-Bu	Me	CF ₃	Me
CH	CH	CH	CH	Et	Mc	CF ₃	CF ₃
CH	CH	ĊН	СН	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CH	t-Bu	Me	CF ₃	CF ₃
CH	СH	CH	CH	Et	Me	CF ₃	OMe
CH	CH	CH	СН	i-Pr	Me	CF ₃	OMe
CH	CH	CH	СН	t-Bu	Me	CF ₃	ОМе
CH	СН	CH	СН	Et	Me	CF ₃	CN

[0184]

【表63】

CH	CH	CH	СН	<i>i</i> -Pr	Me	CF ₃	CN
СН	CH	CH	CH	t-Bu	Me	CF ₃	CN
СН	СН	CH	CH	Et	Cl	CF ₃	Cl
СН	СН	CH	CH	i-Pr	Cl	CF ₃	Cl
CH	CH	CH	CH	t-Bu	Cl	CF ₃	Cl
CH	CH	CH	CH	Et	Cl	CF ₃	Br
CH	CH	CH	CH	<i>i</i> -Pr	Cl	CF ₃	Br
CH	СН	CH	CH	t-Bu	Cl	CF ₃	Br
CH	CH	CH	CH	Et	CJ	CF ₃	ŗ
CH	CH	CH	CH	<i>I</i> -Pr	Cl	CF ₃	I
CH	CH	CH	CH	t-Bu	Cl	CF ₃	· 1
ĊН	CH	CH	CH	Et	Cl	CF ₃	F
CH	CH	CH	CH	i-Pr	Cl	CF ₃	F
СН	CH	CH	CH	<i>t-</i> Bu	CÏ	CF ₃	P
CH	CH	CH	CH	Et	Cl .	CF ₃	Me
СН	CH	CH	CH	i-Pr	Cl	CF ₃	Me
CH	CH	CH	CH	t-Bu	Cl	CF ₃	Me
CH	CH	CH	CH	Et	Cl	CF ₃	CF ₃
CH	CH	CH	CH	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CH	t-Bu	Cl	CF ₃	CF ₃
CH	CH	CH	CH	Et	Ċ1	CF ₃	OMe
СН	CH	CH	CH	i-Pr	Cl	CF ₃	OMe
СН	CH	CH	CH	t-Bu	Cl	CF ₃	OMe
CH	CH	CH	CH	Et	Cl	CF ₃	CN
CH	CH	CH	CH	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CH	t-Bu	Cl	CF ₃	CN
CH	CH	CH	N	Et	Me	CF ₃	CI
CH	СН	CH	N	<i>i</i> -Pr	Me	CF ₃	Cl
CH	CH	CH	N	t-Bu	Me	CF ₃	Cl
CH	CH	CH	N	Et	Me	CF ₃	Br
CH	CH	CH	, N	i-Pr	Me	CF ₃	Br
CH	СН	CH	N	t-Bu	Me	CF ₃	Br
СН	CH	CH	N	Et	Me	CF ₃	I
CH	CH	CH	N	· i-Pr	Me	CF ₃	1
CH	CH	CH	N	<i>t</i> -Bu	Мe	CP ₃	1
CH	CH	CH	N	Et	Me	CF ₃	F
CH	CH	CH	N	i-Pr	Me	CF ₃	F

[0185]

【表64】

CH	CH	СН	N	t-Bu	Me	CF ₃	F
CH	CH	CH	N	Et	Me	CF ₃	Me
CH.	CH	СН	N	i-Pr	Me ·	CF ₃	Me
CH	CH	CH	N	t-Bu	Me	CF ₃	Me
CH	CH	CH	N	Et	Me	CF ₃	· CF ₃
CH	CH	CH	N	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	N	<i>t</i> -Bu	Me	CF ₃	CF ₃
CH	CH	CH	N	Et	Me	CF ₃	ОМе
CH	CH	CH	N	i-Pr	Me	CF ₃	OMe
CH	CH	CH .	N	t-Bu	Me	CF ₃	ОМе
CH	CH	СН	N	Et	Me	CF ₃	CN
CH	CH	CH	N	i-Pr	Me	CF ₃	CN
CH	CH	CH	N	t-Bu	Мę	CF ₃	CN
CH	CH	CH	N	Et	Cl ·	CF₃	CI
CH	CH	CH	N	i-Pr	CI	CF ₃	CI
СН	CH	CH	N	t-Bu	Cl	CF ₃	CI
CH	CH	CH	N	Et	Cl	CF ₃	Br
CH	CH	CH	N	i-Pr	CI	CF ₃	Br
CH	CH	CH	N	<i>t-</i> Bu	a	CF ₃	. Br
CH	CH	CH	N	Et	Cl	CF ₃	1
CH	CH	CH	N	i-Pr	Cl	CF ₃	. 1
CH	CH	CH	N	t-Bu	CI	CF ₃	1
CH	CH	CH	И	Et	Cl	CF ₃	F
CH	CH	CH	N	i-Pr	CI	CF ₃	F
CH	CH	CH	N	t-Bu	Cl	CF ₃	, F
CH	CH	CH	N	Et	Cl	CF ₃	Me
CH	CH	CH	N	<i>i</i> -Pr	Cl	CF ₃	Me
CH	CH	CH	N	<i>t</i> -Bu	Cl	CF ₃	Ме
CH	CH	CH	N	Et	CI	CF ₃	CF ₃
CH	CH	CH	N -	<i>i</i> -Pr	Cl	CF ₃	CF ₃
CH	CH	CH	N	t-Bu	Cl	CF ₃	CF ₃
CH	CH	· CH	N	Et	CI	CF ₃	OMe
CH	CH	CH	N	i-Pr	Cl	CF ₃	ОМе
CH	CH	СН	N	t-Bu	Cl	CF ₃	OMe
CH	СН	CH	N	Et	Cl	CF ₃	CN
CH ~~~	CH	CH	N	i-Pr	CI	CF ₃	CN
CH ·	CH	CH	N	t-Bu	Cl	CF ₃	CN

[0186]

【表65】

СН	СН	N	CH	Et	Me	CF ₃	CI
CH	СН	N	CH	i-Pr	Me	CF ₃	Cl
CH	СН	N	CH	<i>t</i> -Bu	Me	CF ₃	CI
CH	СН	N	CH	Et	Me	CF ₃	Br
CH	CH	N	CH	i-Pr	Me	CF ₃	. Br
CH	CH	N	CH	t-Bu	Me	CF ₃	Br
CH	CH	И	CH	Et	Me	CF ₃	1
CH	CH	N	CH	<i>i</i> -P⊤	Me	CF ₃	I
CH	CH	N	CH	<i>t</i> -Bu	Me	CF ₃	1
CH	CH	N	CH	Et	Me	CF ₃	F
CH	СН	И	CH	i-Pr	Me	CF ₃	F
CH	CH	N	CH	t-Bu	Ме	CF ₃	F
CH	CH	N	CH	, Et	Me	CF ₃	Me
CH	CH	N	CH	<i>F</i> Pr	Me	CF ₃	Me
CH	CH	N	CH	t-Bu	Me	CF ₃	Me
CH	CH	N .	CH	Et	Me	CF ₃	CF ₃
CH	CH	И	CH	i-Pt	Me	CF ₃	CF ₃
CH	CH	N	CH	t-Bu	Me	CF ₃	CF ₃
CH	CH	N	CH	Et	Me	CF ₃	OMe
CH	CH	N	CH	i-Pr	Me	CF ₃	OMe
CH	CH	. N	CH	t-Bu	Me	CF ₃	OMe
CH p	CH	N	CH	Et	Me	CF ₃	CN
CH	CH	N	CH	i-Pr	Me	CF ₃	CN
CH	CH	И	CH	t-Bu	Me	CF ₃	CN
CH	CH	N	CH	Et	Cl	CF ₃	Cl
CH	CH	N	CH	i-Pr	Cl	CF ₃	Cl
CH	CH	N	CH	t-Bu	Cl	CF ₃	Cl
CH	CH	N .	CH	Et	Cl	CF ₃	Br
CH	CH	N	CH	i-Pr	Cl	CF ₃	Br
CH	CH	N	CH.	t-Bu	Cl	CF ₃	Br
CH	CH	N	CH ·	Et	Cl	CF ₃	I
CH	CH	N	CH	i-Pr	C1	CF ₃	I
CH	CH	N	CH	t-Bu	Cl	CF ₃	I
CH	CH.	N	CH	Et	Cl	CF ₃	F
CH	CH	N	CH	i-Pr	CI	CF ₃	F
СН	CH	N	CH	r-Bu	Cl	CF ₃	·F
CH	CH	N	CH	Et	C1	CF ₃	Me

[0187]

【表66】

CH	CH	N	СН	i-Pr	CI	CF ₃	Me
CH	CH	N	СΉ	t-Bu	Cl	CF ₃	Me
CH	CH	N	СН	Et	CI	CF ₃	CF ₃
CH	CH	N	CH .	<i>t</i> -Pr	CI	CF ₃	CF ₃
CH	CH	N	СН	t-Bu	Cl	CF ₃	CF ₃
CH	CH	И	CH	Et	CI	CF ₃	OMe
CH	CH	N	CH	i-Pr	CI	CF ₃	OMe
CH	CH	N	CH	t-Bu	C1	CF ₃	OMe
CH	CH	N	CH	Et	Cl	CF ₃ .	CN
CH	CH	N	CH	i-Pr	CI	CF ₃	CN
CH	CH	N	CH	t-Bu	C1	CF ₃	CN
СН	N	CH	CH	Et	Me	CF ₃	CI
CH	N	CH	CH	i-Pr	Мূе	CF ₃	Cl
CH	N	CH	CH	<i>t</i> -Bu	Ме	CF ₃	Cl
CH	N	CH	CH	Et	Me	CF ₃	Br
CH	N	CH	CH	i-Pr	Ме	CF ₃	Br
CH	N	CH	CH	t-Bu	Ме	CF ₃	Br
CH	N	CH	CH	Et	Me	CF ₃	1
CH	N	CH	CH	i-Pr	Ме	CF ₃	I
CH	N	CH	CH	<i>t</i> -Bu	Me	CF ₃	Ţ
CH	N	CH	CH	Et	Me	CF ₃	F
CH	N	CH	CH	i-Pr	Me	CF ₃	F
CH	N	CH	CH	t-Bu	Me	CF ₃	F
CH	N	CH	CH	Et	Me	CF ₃	. Me
CH	N	CH	CH	i-Pr	Ме	CF3	Me
CH	N	CH	CH	t-Bu	Me	CF ₃	Me
CH .	N	CH	CH	Et	Me	CF ₃	CF ₃
CH	N	CH	CH	i-Pr	Me	CF ₃	CF ₃
CH	N	CH	CH	<i>t-</i> Bu	Me	CF ₃	CF ₃
CH	N	CH	CH	Et	Me	CF ₃	ОМе
CH	N	CH	CH	i-Pr	Me	CF ₃	ОМе
CH	N	CĤ	CH	t-Bu	Me	CF ₃	ОМе
CH	N	CH	CH	Et	Mc	CF ₃	CN
CH	N	CH	CH	i-Pr	Me	CF ₃	CN
CH	N	CH	CH	<i>t</i> -Bu	Me	CF ₃	CN
CH	N	CH	CH	Et	Cl	CF ₃	CI
CH	N	CH	CH	<i>i</i> -Pr	Cl	CF ₃	a

[0188]

【表67】

CH	N	CH	_ CH	<i>t</i> -Bu	Cl	CF ₃	Ċ
CH	N	CH	CH	Eţ	Cl	CF ₃	Br
СН	N	CH	CH	<i>i</i> -Pr	CI	CF ₃	Br
CH	N	CH	CH	t-Bu	CI	CF ₃	Br
CH	N	CH	CH	Et	Cl	CF ₃	1
CH	N .	CH	CH	i-Pr	CI	CF ₃	1
CH	N	CH	CH	t-Bu	CI	CF ₃	1
СН	N	CH	CH	Et	Cl	CF ₃	F
CH	N	CH	CH	i-Pr	C1	CF ₃	F
СН	N	CH	CH	<i>t</i> -Bu	a	CF ₃	F
CH	N	CH	CH	Et	Cl	CF ₃	Me
CH	N	CH	CH	<i>i</i> -Pr	Cl	CF ₃	Me
CH	N	CH	CH	<i>t-</i> Bu	CĪ	·CF ₃	Me
CH	N	CH	CH	Et	Cl	CF ₃	CF ₃
CH	N	CH	CH	i-Pt	Cl	CF ₃	CF ₃
CH	N	CH	CH	t-Ba	Cl	CF ₃	CF ₃
CH	N	CH	CH	Et	Ci	CF ₃	OMe
CH	N	· CH	CH	i-Pr	Cl	CF ₃	OMe
CH	Ν.	CH	CH	. t-Bu	Cl	CF ₃	OMe
CH	N	CH	CH	Et	Cl	CF ₃	CN
CH	N	CH	CH	i-Pr	CI	CF ₃	CN
CH	И	CH	CH	t-Bu	Cl	CF ₃	CN
N	CH	CH	CH	Et	Me	CF ₃	Cl
N	CH	CH	CH	i-Pr	Me	CF ₃	Ci
N	CH	CH	CH	t-Bu	Me	CF3	CI
N	CH	CH	CH	Et	Me	CF ₃	Br
N	CH	CH	CH	i-Pr	Me	CF ₃	Br
N	CH	CH	CH	t-Bu	Me	CF ₃	Br
N .	CH	CH	CH	Et	Me	CF ₃	I
N	CH	CH.	CH-	i-Pr	Me	CF ₃	1
N	CH	CH	CH	t-Bu	Me	CF ₃	1
N	CH .	CH	CH	Et	Me	CF ₃	F
N	СН	CH	CH	. i-Pr	Me	CF ₃	F
N	CH	CH	CH	t-Bu	Me	CF ₃	F
N	CH	CH	CH	Et	Me	CF ₃	Me
N	CH	CH	CH	i-Pr	Me	CF ₃	Me
N _.	CH	CH	CH	t-Bu	Me	CF ₃	Me

[0189]

【表68】

				•			
N	СН	CH	CH	Et	Me	CF ₃	CF ₃
N	CH	СН	CH	i-Pr	Me	CF ₃	CF3
N	СН	CH	CH	t-Bu	Me	CF ₃	CF ₃
N	CH	СН · ··-	CH	Et	Me	CF ₃	OMe
N	CH	CH	CH	i-Pr	Me	CF ₃	ОМе
N	CH	CH	CH	t-Bu	Me	CF ₃	OMe
N	CH	СН	CH	Et	Me	CF ₃	CN
N	CH	CH	CH	i-Pr	Me	CF ₃	CN
N	CH	CH	CH	t-Bu	Me	CF ₃	CN
N	CH	CH	CH	Et	Cl	CF ₃	Cl
N	СН	CH	CH	i-Pr	CI	CF ₃	Cl
И	СН	CH	CH	t-Bu	Cl	CF ₃	Cl
N	CH	CH	CH	Et	C1	CF ₃	Br
N	CH	CH	CH	i-Pr	Cl	CF ₃	Br
N	CH	CH	CH	t-Bu	Cl	CF ₃	Br
И	CH	CH	CH .	Et	a	CF ₃	I
N	CH	CH	CH	i-Pr	Cl	CF ₃	1
N	CH	CH	CH	t-Bu	CI .	CF ₃	I
N	CH	CH	CH	Et	Cl	CF ₃	F
N	CH	CH	CH	i-Pr	Cl	CF ₃	f
N	CH	CH	CH	t-Bu	CI	CF ₃	F
N	CH	СН .	CH	Et	-C1	CF ₃	Me
И	CH	CH	CH	i-Pr	Cl	CF ₃	Me
N	CH	CH	CH	t-Bu	Cl	CF ₃	. Ме
N	CH	CH	CH	· Et	Cl	CF ₃	CF ₃
N	CH	CH	CH	i-Pr	Cl	CF ₃	CF ₃
N	CH	CH	CH	t-Bu	Cl	CF ₃	CF ₃
N	CH	CH	CH	Et	Cl	CF ₃	OMe
N	CH	CH	CH	i-Pt	, CI	CF ₃	OMe
N	CH	CH	CH-	<i>t</i> -Bu	CI	CF ₃	OMe
N	CH	CH	CH	Et	Cl	CF ₃	CN
N	CH .	CH	CH	i-Pr	Cl	CF ₃	CN
И	CH	CH	CH	t-Bu	Cl	CF ₃	CN
CH	N	CH	N	Et	Me	CF ₃	C1
CH	N	CH	N	i-Pr	Me	CF ₃	CI
CH	N	CH	N	∤-Bu	Me	CF ₃	Cl
CH	N	CH	Ŋ	Et	Me	CF ₃	Br

[0190]

【表69】

СН	N	CH	N	i-Pr	Me	CF ₃	Br
CH	N	CH	N	t-Bu	Me	CF ₃	Br
CH	N	CH	N	Et	Me	CF ₃	1
CH	N	CH	N	i-Pr	Me ·	CF ₃	1
СН	N	СН	N	t-Bu	Me	CF ₃	1
СН	N	CH	И	Et	Me	CP ₃	F
CH	N	CH	N	i-Pr	Me	CF ₃	F
CH	И	CH	N	t-Bu	Me	CF ₃	F
CH	N	CH	N	Et	Me	CF ₃	Me
CH	N	CH	N	<i>i</i> -Pr	Me	CF ₃	Me
CH	N	CH	N	t-Bu	Me	CF ₃	Me
CH	N	CH	N	Et	Me	CF ₃	CF ₃
СН	N	CH	И	i-Pr	Me	CF3	CF ₃
CH	N	CH	N	. t-Bu	Me	CF ₃	CF ₃
CH	N	CH	N	Et	Me	CF ₃	OMe
CH	N	CH	N	i-Pr	Me	CF ₃	OMe
CH	N	CH	N	t-Bu	Me	CF ₃	OMe
CH	N	CH	N	Et	Me	CF ₃	CN
CH	N	СН	N	i-Pr	Me	CF ₃	CN
CH	N	СН	N	t-Bu	Me	CF ₃	CN
CH	N	CH	N	Et	C1	CF ₃	Cì
CH	, N	CH	N	i-Pr	Cl	CF ₃	Cl
CH	N	CH	И	t-Bu	Cl	CF ₃	Cl
CH	N	CH	N	Et	CI	CF ₃	Br
CH	N	CH	Ň	i-Pr	Cl	CF ₃	Br
CH	N	CH	N	t-Bu	Cl	CF ₃	Br
CH	И	CH	И	Et	Cl	CF ₃	· I
CH	И	CH	И	i-Pr	Cl	CF ₃	1
CH	N	CH	N	<i>t-</i> Bu	Cl	CF ₃	r
CH	И	CH	N -	Et	Cl	3	·· F
CH	N	CH	. N	· i-Pr	CI	CF ₃	F
CH	N .	CH	N	t-Bu	Cl	CF ₃	F
CH	И	CH	N	Et	CI	CF ₃	Mo
CH	N	CH	N	i-Pr	Cl	CF ₃	Me
CH	N	CH	N	t-Bu	CI	CF ₃	Me
CH	N	CH	И	Et	ĊI	CF ₃	CF ₃
CH	N	CH	И	i-Pr	Cl	CF ₃	CF ₃

[0191]

【表70】

CH	N	CH .	N	1-Bu	Cl	CF ₃	CF ₃
CH	N ·	CH	N	Et	CI	CF ₃	OMe
CH	N	CH	N .	i-Pr	Cl	CF ₃	OMe
CH	N	CH	N	t-Bu	Cl	CF ₃	OMe
CH	N	CH	N	Et	Cl	CF ₃	CN
СН	N	CH	N	<i>i</i> -Pr	CI	CF ₃	CN
CH	N	CH	N	t-Bu	Cl	CF ₃	CN
CH	CH	CH	CC1	Et	Me	CF ₃	Cl
СН	CH	CH .	CCI	<i>i</i> -Pr	Me	CF ₃	Cl
CH	CH	CH	CCI ·	t-Bu	Me	CF ₃	CI
СН	CH	CH	CCI	Et	Me	CF ₃	Br
CH	CH	CH	CCI	i-Pr	Me	CF ₃	Br
CH	CH	CH	CCI	t-Bu	Μe	CF3	Br
CH	CH	CH	CC1 .	Et	Me	CF ₃	1
CH	CH	CH	CCI	i-Pr	Me	CF ₃	1
CH	CH	CH	CCI .	t-Bu	Me	CF ₃	ĭ
CH	CH	CH	CCI	Et	Me	CF ₃	F
CH	CH	CH	. cci	. <i>i-</i> Pr	Me	CF ₃	F
CH	CH	CH	CCI	t-Bu	Me	CF ₃	F
CH	CH	CH	CCI	Et	Me	CF ₃	Me
CH	CH	CH	CCI	<i>i</i> -Pr	Me	CF ₃	Me
CH	CH	CH	CCI	t-Bu	Me	CF ₃	Me
CH	CH	CH	CCI	Et	Me	CF ₃	CF ₃
CH	CH	CH	CC1	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CC1	t-Bu	Me	CF ₃	CF ₃
CH	CH	. СН	CCI	Et	Me	CF ₃	OMe
CH	CH	CH	CCI	i-Pr	Mo	CF ₃	OMe
CH	CH	CH	CCI	t-Bu	Me	CF ₃	ОМе
CH	CH	CH	CCI	Et	Me	CF ₃	CN
CH	CH	CH	CCI	i-Pr	Me ·	CF ₃	CN
CH	CH	CH	CCI	t-Bu	Me	CF ₃	CN
CH	CH	CH	CCI	Et	a	CF ₃	Cl
CH	CH	CH	CCI	:-Pr	Cl	CF ₃	Cl
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	Cl
CH	CH	CH	CC1	Et	Cl	CF ₃	Br
CH	CH	CH	CCI	i-Pr	Cl	CF ₃	Br
CH	CH	CH	CCI	t-Bu	Cì	CF ₃	Br
•							

[0192]

【表71】

СН	CH	СН	CCI	Et	Cl	CF3	I
СН	СН	CH	CCI	i-Pr	Cl	CF ₃	I
CH	СН	CH	CCI	<i>t</i> -Bu	Cl	CF ₃	1
CH	СН	CH	ca	Et	Cl	CF ₃	F
СН	CH	CH	CCI	i-Pr	Cl	CF ₃	F
CH	СН	СН	CCI	t-Bu	CI	CF ₃	F
СН	СН	CH	CCI	Et	Cl	CF ₃	Me
СН	CH	CH	CCI	i-Pt	C1	CF ₃	Me
CH	CH	СН	CCI	t-Bu	C)	CF ₃	Me
СН	CH	CH	CCI	Et	Cł	CF ₃	CF ₃
СН	CH	CH	CCl	i-Pr	CI	CF ₃	CF ₃
CH	CH	CH	CCI	<i>t</i> -Bu	CI	CF ₃	CF ₃
CH	CH ·	CH	CCI	Et	a	CF ₃	OMe
CH ·	CH	CH	CCI	i-Pr	CI	CF ₃	ОМе
CH	CH	CH	CC1	t-Bu	Cl	CF ₃	OMe
CH	CH	CH	CCI	Et	Cl	CF ₃	CN
CH	СН	СН	CC1	i-Pr	Cì	CF ₃	CN
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	CN
СН	CH	CH	CF	Et	Me	CF ₃	C1
CH	CH	CH	CF	i-Pr	Me	CF ₃	Cl
CH	СН	CH	CF	t-Bu	Me	CF ₃	C1
CH	CH	CH	CF	Et	Me	CF ₃	Br
CH	CH	CH	CF	i-Pr	Me	CF ₃	Br
CH	CH	CH	CF	t-Bu	Me	CF ₃	Br
CH	CH	CH	CF	Et	Me	CF ₃	I
CH	CH	CH	CF	i-Pr	Me	CF ₃	I
CH	CH	CH	CF	<i>t</i> -Bu	Мо	CF ₃	ĭ
CH	CH	CH	ÇF	Et	Me	CF ₃	F
CH	CH	CH	CF	· i-Pr	Me	CF ₃	F
CH	CH	CH	CF	t-Bu	Me	CF ₃	F
CH	CH	CH	CF .	Et	Me	CF ₃	Me
CH	CH	CH	CF	i-Pr	Me	CF ₃	Me
CH	CH	CH	CF	<i>t</i> -Bu	Me	CF ₃	Me
CH	CH	CH	CF	Et	Me	CF ₃	CF ₃
CH	CH	CH	CF	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CF	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	CF	Et	Me	CF ₃	OMe

[0193]

【表72】

CH	CH	CH	CF	i-Pr	Me	CF ₃	OMe
CH	СН	CH	CF	r-Bu	Me	CF ₃	OMe
CH	CH	СН	. CF	Et	Me	CF ₃	CN
CH	CH	CH	CF	ï-Pr	Me	CF ₃	CN
CH	СН	CH	CF	t-Bu	Me	CF ₃	CN
CH	CH	CH	CF	Et	Cl	CF ₃	Ci
CH	CH	CH	CF	<i>i</i> -Pr	C1	CF ₃	Cl
CH	CH	CH	CF	t-Ba	Cl	CF ₃	Cl
CH	CH	CH	CF	Et	Cl	CF ₃	Br
CH	CH	CH	CF	i-Pr	C1	CF3	Br
CH	CH	CH	CF	t-Bu	C1	CF ₃	Br
CH	CH	CH	CF	Et	Cl	CF ₃	1
CH	CH	CH	CF	i-Pr	C1	CF ₃	1
CH	CH ·	CH	CF	t-Bu	Cl	CF ₃	I
CH	CH	CH	CF	i-Pr	Cl	CF ₃	F
CH	CH	СН	CF .	t-Bu	C1	CF ₃	F
CH	CH	CH	CF	Et	Cl	CF ₃	Me
CH	CH	CH	CF	i-Pr	Cl	CF ₃	Me
CH	CH	CH	CF	t-Bu	Cl	CF ₃	Me
CH	CH	·CH	CF	Et	Cl	CF ₃	CF ₃
CH	CH	CH	CF	· i-Pr	Ċ	CF ₃	CF ₃
CH	CH	CH	CF	t-Bu	C1	CF ₃	CF ₃
CH	CH	CH	CF	Et	Cl	CF ₃	OMe
CH	CH	CH	CF	i-Pr	CI	CF ₃	ОМе
CH	CR	CH	CF	<i>t</i> -Bu	Cl	CF ₃	OMe
CH	CH	CH	CF	Et	Cl	CF ₃	CN
CH	CH	CH	CF	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CF	#Bu	Ci	CF ₃	CN
CH	CH	CH	CH	Et	Me	C_2F_5	CI
CH	CH	CH	CH-	i-Pr	Me	C ₂ F ₅	Cl
CH	CH	CH	CH	· t-Bu	Me	C_2F_5	Cl
CH	CH	CH	CH	Et	Me	C ₂ F ₅	Br
CH	CH	CH	CH	i-Pr	Me	. C ₂ F ₅	Br
CH	CH	CH	CH	r-Bu	Me	C_2F_5	Br
CH	CH	CH	CH	Et	Me	C_2F_5	I
CH	CH	CH	CE	i-Pr	Me	C_2F_5	Ţ
CH	CH	CH	CH	t-Bu	Me	C_2F_5	ĭ

[0194]

【表73】

СН	СН	СН	СН	Et	Me	C ₂ F ₅	F
СН	СН	CH	СН	i-Pr	Me	C ₂ F ₅	F
СН	CH .	СН	CH	<i>t</i> -Bu	Me	C ₂ F ₅	F
СН	СН	CH	СН	Et	Me	C ₂ F ₅	Me
СН	СН	CH	СН	i-Pr	Me	C ₂ F ₅	Me
CH	CH	CH	CH	t-Bu	Me .	C ₂ F ₅	Me
СН	СН	CH	СН	Et	Me	C ₂ F ₅	CF ₃
СН	СН	СН	CH	<i>i</i> -Pr	Me	C ₂ F ₅	CF3
СН	СН	CH	СН	t-Bu	Me	C ₂ F ₅	CF ₃
СН	CH	CH	CH	Et	Me	C_2F_5	ОМе
CH	CH	СН	CH	<i>i</i> -Pr	Me	C ₂ F ₅	OMe
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	OMe
CH	CH	CH	CH	Et	Me ·	C_2F_5	CN
CH	CH	CH	CH	<i>i</i> -Pr	Me	C_2F_5	CN
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	CN
CH	CH	CH	CH	Et	C1	C ₂ F ₅	C1
СН	. CH	CH	CH	i-Pr	Cl	C_2F_5	Cl
CH	CH	CH	CH	t-Bu	Cl	C ₂ F ₅	Cl
CH	CH	CH	CH	. Et	Cl	C ₂ F ₅	Br
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	Br
CH	CH	CH	CH	t-Bu	Ċ	C_2F_5	Br
CH	CH	CH	CH	Bt	CI	C_2F_5	I
CH	CH	CH	CH	i-Pr	Cl	C_2F_5	I
CH	CH	CH	CH	t-Bu	CI	C_2F_5	I
СН	CH	CH	CH	Et	Cl	C_2F_5 .	F
CH	CH	CH	CH	i-Pr	Cl.	C_2F_5	F
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	F
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	Me
CH	. CH	CH	CH	i-Pr	. CI	C_2F_5	Ме
CH	CH	CH	СН	t-Bu	C1	C ₂ F ₅	Me
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	CF ₃
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	CF ₃
CH	CH	CH	CH	t-Bu	CI	C ₂ F ₅	CF ₃
CH	CH	CH	CH	Et	Cl	C_2F_5	OMe
CH	CH	CH	CH	i-Pr	CI	C ₂ F ₅	OMe
CH	CH	CH	CH	t-Bu	Cl	C ₂ F ₅	ÖMe
CH	CH	CH	CH	Et	Cl	C_2F_5	CN.

[0195]

【表74】

CH CH CH CH
$$i$$
-Pr C1 C_2F_5 CN CH CH CH t -Bu C1 C_2F_5 CN

<u>表15</u>

W	x	Y	z .	R ³	R ⁴	R ⁷	R ⁸
СН	СН	СН	CH	Et	Me	CF ₃	CI
CH	CH	CH	CH	i-Pr	Me	CF ₃	Cl
CH	CH	CH	СН	s-Bu	Me	CF ₃	Cl
CH	CH	CH	CH	Et	Me	CF ₃	Br
CH	CH	CH	CH	i-Pr	Me	CF ₃	Br
СН	СН	CH	CH	⊬B u	Me	CF ₃	Br
СН	CH	CH	CH	Et	Me	CF ₃	1
СН	СН	CH	CH	i-Pt	Me	CF ₃	1
СН	CR	CH	CH	t-Bu	Me	CF ₃	7
CH	CH	CH	CH	Et	Me	CF ₃	F
СН	CH	CH	CH	i-Pr	Mc	CF ₃	F
CH	СН	CH	CH	t-Bu	Me	CF ₃	F
СН	CH	CH	CH	Et	Me	CF ₃	Me
CH	СН	CH	CH	i-Pr	Me	CF ₃	Me
CH	СН	CH	CH	r-Bu	Me	CF3	Me
СН	CH	CH	СН	Et	Me	CF ₃	CF ₃
CH	СН	CH	CH	i-Pt	Me	CF ₃	CF ₃
CH	CH	CH	CH	t-Bu	Me	CF ₃	CF ₃
CH	СН	CH	CH	Et	Me	CF ₃	OMe
СН	CH	CH	CH	<i>i</i> -Pr	Me	CF ₃	OMe
СН	CH	СН	CH	r-Bu	Me	CF ₃	OMe
CH	CH	CH	CH	Et	Me	CF ₃	CN

[0196]

【表75】

CH	CH	CH	СН	i-Pr	Me	CF ₃	CN
CH	СН	CH	CH	t-Bu	Me	CF ₃	CN
CH	СН	CH	СН	Et	Cl	CF ₃	Cl
CH	CH	CH	СН	i-Pr	CI	CF ₃	Cl
CH	CH	CH	CH	t-Bu	Cl	CF ₃	Cl
СН	CH	CH	СН	Et	Cl	CF ₃	Br
CH	CH	СН	CH	i-Pr	CI	CF ₃	Br
CH	CH	CH	CH.	t-Bu	Cl	CF ₃	Br
CH	CH	CH	CH	. Et	Cl	CF ₃	1
CH	CH	CH	CH	i-Pr	Cl	CF ₃	1
CH	CH	CH	СН	t-Bu	Cl	CF ₃	I
CH	CH	CH	CH	Et	Cl	CF ₃	F
CH	CH	CH	CH	i-Pr	ĆĮ	CF ₃	F
CH	CH	CH	CH	t-Bu	Cl	CF ₃	F
CH	CH	CH	CH	Et	CI	CF ₃ .	Me
CH	CH	CH	CH	i-Pr	Cl	CF ₃	Me
CH	CH	CH	CH	<i>t</i> -Bu	a	CF ₃	Me
CH	CH	CH	CH	Et	Cl	CF ₃	CF ₃
CH	CH	CH	CH	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CH	t-Bu	CI	CF ₃	CF ₃
CH	CH	CH	CH	Et	Ċl	CF ₃	ОМе
CH	CH	CH	CH	i-Pr	C1	CF ₃	OMe
CH	CH	CH	CH	⊱ Bu	Ci	CF ₃	OMe
CH	CH	CH	CH	Et	Cl	CF ₃	CN
CH	CH	CH	CH	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CH	t-Bu	Cl	CF ₃	CN
CH	CH	CH	N	Et	Me	CF ₃	Cl
CH	CH	CH	N	i-Pr	Me	CF ₃	Cl
CH	CH	CH	N	t-Bu	Me	CF ₃	Cl
CH	CH	CH	. N·	Et	Me	CF ₃	Br
CH	CH	CH	. N	· i-Pr	Me	CF ₃	Br
CH	CH	CH	N	t-Bu	Me	CF ₃	Br
CH	CH	CH	N	Et	Me	CF ₃	I
CH	CH	CH	N	i-Pt	Me	CF ₃	. I
CH	CH	CH	И	t-Bu	Me	CF ₃	
CH	CH	CH	N	Et	Me	CF ₃	F
CH	CH	СĦ	N	i-Pr	Me	CF ₃	F

[0197]

【表76】

СН	СН	СН	N	t-Bu	Me	CF ₃	F
CH	СН	CH	N	Et	Me	CF ₃	Me
CH	CH	CH	N	I-Pr	Me ·	CF ₃	Me
СН	СН	CH	N	t-Bu	Me	CF ₃	Me
СН	СН	CH	N	Et	Me	CF ₃	CF ₃
СН	СН	СН	И	i-Pr	Me	CF ₃	CF₃
СН	СН	CH	N	t-Bu	Me	CF ₃	CF ₃
СН	СН	CH	N	Et	Me	CF ₃	OMe
CH	СН	CH	N	i-Pr	Me	CF ₃	OMe
СН	CH	СН	N	t-Bu	Me	CF ₃	OMe
СН	CH	CH	N	Et	Me	CF ₃	CN
CH	CH	CH	N	<i>i</i> -Pr	Me	CF ₃	CN
CH	СН	CH	N	t-Bu	Me	CF ₃	CN
CH	СН	CH	N	Et	Ci	CF ₃	CI
CH	CH	CH	N	i-Pr	Cl	CF ₃	Cl
CH	CH	CH	N .	t-Bu	Cl	CF ₃	Cl
CH	CH	CH	N	Et	CI	CF ₃	Br
CH	CH	CH	N	i-Pr	Cl	CF ₃	Br
CH	CH	CH	N	t-Bu	Cl	CF ₃	Br
CH	СH	CH	N	Et	Cl	CF ₃	1
CH	CH	· CH	N	i-Pr	C1	CF ₃	I
CH	CH	CH	И	<i>t</i> -Bu	Cl	-CF ₃	1
CH	CH	CH	N	Et	Cl	CF ₃	F
CH	CH	CH	N.	i-Pr	CI	CF ₃	F
CH	CH	CH	N	t-Bu	Cl	CF ₃	F
СН	CH	CH	N	Et	CI	CF ₃	Me
CH	CH	CH	N	i-Pr	CI	CF ₃	Me
CH	CH	CH	N	t-Bu	Cl	CF ₃	Me
CH	. CH	CH	N	Et	. CI	CF ₃	CF ₃
CH	CH	CH .	N	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	, N	. t-Bu	Cİ	CF ₃	CF ₃
CH	CH	CH	N	Et	CI	CF ₃	OMe
CH	CH	CH	N	i-Pr	Cl	CF ₃	OMe
CH	CH	CH	И	t-Bu	CI	CF ₃	OMe
CH	CH	CH	N	Et	C1	CF ₃	CN
CH	CH	CH	N	i-Pr	Cl	CF₃	CN
CH	CH	CH	N	t-Bu	Cl	CF ₃	CN

[0198]

【表77】

СН	СН	N	CH	Et	Me	CF ₃	Cl
СН	СН	N	СН	i-Pr	Me	CF ₃	CI.
СН	CH	N	CH	t-Bu	Me	CF ₃	Cl
СН	СН	N	CH	Et	Me	CF ₃	Br
СН	СН	N	CH	<i>i-</i> Pr	Me	CF ₃	Br
СН	СН	N	CH	t-Bu	Me	CF ₃	Br
СН	CH .	N	CH	Et	Me	CF ₃	1
СН	СН	N	CH	i-Pr	Me	CF ₃	1
CH	СН	И	CH	t-Bu	Me	CF ₃	I
CH	СН	И	CH	Et	Me	CF ₃	F
CH	CH	N	CH	<i>i-</i> Pr	Me	CF ₃	F
CH	СН	N	CH	t-Bu	Me	CF ₃	F
СН	CH	N	CH	Et	Me	.CF ₃	Me
CH	СН	N	СН	i-Pr	Me	CF ₃	Me
CH	CH	N	CH	t-Bu	Me	CF ₃	Me
CH	CH	N	СН	Et	Me	CF ₃	CF ₃
CH	CH	N	CH	i-Pr	Me	CF ₃	CF ₃
CH	СН	N	CH	t-Bu	Me	CF ₃	CF ₃
CH	CH	И	CH	Et	Me	CF ₃	ОМе
CH	СН	N	CH	i-Pr	Me	CF ₃	OMe
CH	CH	N	СН	t-Bu	Me	CF ₃	ОМе
CH	CH	N	CH	Ėt	Me	CF ₃	CN
CH ·	CH	N	CH	i-Pr	Me	CF ₃	CN
CH	CH	. N	CH	t-Bu	Me	CF ₃	CN
CH	CH	N	CH	Et	Cl	CF ₃	·. Cl
CH	CH	N	CH	<i>i</i> -Pr	Cl	CF ₃	Cì
CH	CH	N	CH	t-Bu	Cl	CF ₃	.C1
CH	CH	N	CH	Et	Cl	CF ₃	Br
CH	CH	N	CH	i-Pr	· CI	CF ₃	Br
CH	CH	N	CH	t-Bu	CI	CF ₃	Br
СН	CH	N	CH	Et	CI	CF ₃	I
CH	CH	N	CH	i-Pr	Cl	CF ₃	1
CH	CH	N	CH	f-Bu	Cl	CF ₃	1
CH	CH	N	CH	Et	C 1	CF ₃	F
CH	CH	N	CH	i-Pr	Cl	CF ₃	F
CH	CH	N	CH	t-Bu	Cl	CF ₃	· F
CH	CH	N	CH	Et	Ci	CF ₃	Me

[0199]

【表78】

CH	СН	N	CH	i-Pr	CI .	CF ₃	Me
CH	CH	N	CH	t-Bu	CI	CF ₃	
CH	CH	N	CH	Et	Cl	CF ₃	CF ₃
СН	CH	И	CH .	i-Pr	Cl	CF ₃	CF ₃
CH	CH	N	CH	t-Bu	CI	CF ₃	CF ₃
CH	СН	N	CH	Et	Cl	CF ₃	OMe
CH	CH	N	CH	i-Pr	Cl	CF ₃	OMe
CH	CH	N	CH	t-Bu	Cl	CF ₃	OMe
CH	CH	N	CH	Et	CI	CF ₃	CN
CH .	ĊH	N	CH	i-Pr	Cl	CF ₃	CN
CH	CH	N	CH	t-Bu	Cl	CF ₃	CN
CH	N	CH	CH	Et	Me	CF ₃	Cl
CH	N	CH	CH	i-Pr	Me	.CF3	C)
CH	И	CH	CH .	t-Bu	Me	CF ₃	Cl
CH	N	CH	CH	Et	Me	CF ₃	Br
CH	N	CH	CH	i-Pr	Me	CF ₃	Br
CH	N	CH	CH	t-Bu	Me	CF ₃	Br
CH	И	CH	CH	Et	Me	CF ₃	I
CH	N	CH	CH	i-Pr	Me	CF ₃	1
CH	N	CH	CH	t-Bu	Me	CF ₃	I
CH	N	CH	CH	Et	Me	CF ₃	F
CH	N	CH	CH.	i-Pr	Me	CF3	F
CH	N	CH	CH	t-Bu	Me	CF ₃	F
CH	N	CH	CH	Et	Me	CF ₃	Me
CH	N	CH	CH	i-Pr	Me	CF ₃	Mc
CH	N	CH	CH	t-Bu	Me	CF ₃	Me
CH	И	CH	CH	Et	Me	CF ₃	CF ₃
CH	N	CH	CH	<i>i-</i> Pr	Me	CF ₃	CF ₃
CH	N	CH	CH	t-Bu	Me	CF ₃	CF ₃
CH	N	CH	CH.	Et	Me	CF ₃	OMe
CH	N	CH	CH	i-Pr	Me	CF ₃	OMe
CH	N	CH	CH	t-Bu	Me	CF ₃	ОМе
CH	N .	CH	CH	Et	Me	· · CF ₃	CN
CH	И	CH	CH	i-Pr	Me	CF ₃	CN
CH	И	CH	CH	t-Bu	Me	CF ₃	CN
CH	N	CH	CH	Et	Cl	CF ₃	CI
CH	N.	CH	CH	<i>i</i> -Pr	Cl	CF ₃	Ci

[0200]

【表79】

CH	N	CH	СН	t-Bu	CI	CF ₃	Ci
CH	N	CH	CH	Et	CI	CF ₃ ·	Br
CH	N	CH	CH	<i>i-</i> Pr	Cl	CF ₃	Br
СН	N	CH	CH	t-Bu	Cl	CF ₃	Br
CH	N	CH	CH	Et	. C J	CF ₃	1
CH	N	CH	CH	i-Pr	Cl	CF ₃	I
CH	. N	CH	CH	t-Bu	Cl	CF ₃	1
CH	N	CH	CH	Et	Cl	CF ₃	F
CH	N	CH	CH	i-Pr	Cl	CF ₃	F
CH	N	CH	CH	t-Bu	Cl	CF ₃	· F
CH	N	CH	CH	· Bt	Cl	CF ₃	Me
CH	N	CH	СН	i-Pr	Cl	CF ₃	Ме
CH	N	CH	CH	t-Bu	Cl	.CF ₃	Me
CH	N	CH	CH	Et	Ċ1	CF ₃	CF ₃
CH	N	CH	CFI	i-Pr	Cl	CF ₃	CF ₃
CH	N	CH	CH	⊱ Bu	Cl	CF ₃	CF ₃
CH	N	CH	CH	Et	Cl	CF ₃	OMe
CH	N	CH	CH	i-Pr	CI	CF ₃	ОМе
CH	N	CH .	CH	. t-Bu	Ci	CF ₃	OMe
CH	N	CH	СН	Et	Cl	. CF ₃	CN
CH	N	CH	CH	<i>i</i> -Pr	Cl	CF ₃	CN
CH	N	CH	CH	t-Bu	Cl	CF ₃	CN
N	CH	CH	CH	Et	Me	CF ₃	CI
N	CH	CH	CH	i-Pr	Me	CF ₃	Cl
N	CH	CH	CH	t-Bu	Me	CF ₃	Cl
N	CH	CH	CH	Et	Me	CF ₃	Br
N	CH	CH	CH	i-Pr	Me	CF ₃	Br
И	CH	CH	CH	t-Bu	Me	CF ₃	Br
N	CH	CH	CH	Et	Me	CF ₃	1
N .	CH	CH	CH.	i-Pr	Me	CF ₃	I
N	CH	CH	CH	r-Bu	Me	CF ₃	I
N	CH .	CH	CH	Et	Me	CF ₃	F
N	CH	CH	CH	i-Pr	Me	CF ₃	F
N	CH	CH	CH	t-Bu	Me	CF ₃	F
N	CH	CH	CH	Et	Me	CF ₃	Ме
N	CH	CH	CH	i-Pr	Me	CF ₃	Me
N	CH	· CH	CH	t-Bu	Me	CF ₃	Me

[0201]

【表80】

N	CH	CH	СН	Et	Me	CF ₃	CF3
N	CH	CH .	CH	<i>i</i> -Pr	Me	CF ₃	CF ₃
И	CH	CH	CH	t-Bu	Me	CF ₃	CF ₃
N	CH	CH	CH	Et	Me	CF ₃	ОМе
N	СН	CH	CH	i-Pr	Me	CF ₃	ОМе
И	CH	CH	CH	t-Bu	Me	CF ₃	ОМе
N	CH	CH	СН	Et	Me	CF ₃	CN
N	CH	CH	CH	<i>i</i> -Pr	Me	CF ₃	CN
N	CH	CH	CH	t-Bu	Me	CF ₃	CN
N	CH	CH	CH	Et	Cl	CF ₃	Cl
N	CH	CH	CH	<i>i</i> -Pr	CI	CF ₃	Cl
N	CH	CH	CH	<i>t</i> -Bu	Cl	CF ₃	Cl
N	CH	CH	CH	Et	Çl	CF ₃	Br
N	CH	CH	CH	i-Pr	Cl	CF ₃	Br
N	CH	CH	CH	<i>t</i> -Bu	CI	CF ₃	Br
N	CH	CH	CH	Et	Cl	CF ₃	I
N	· CH	CH	CH	i-Pr	Ci	CF ₃	1
N	CH	CH	CH	t-Bu	CI	CF ₃	1
N	CH	CH	CH	Et	C1	CF ₃	F
N	CH	CH	CH	i-Pr	Cl	CF ₃	F
N	CH	CH	CH	t-Bu	CI	CF ₃	F
N	CH	CH	CH	Et	C1	CF ₃	Me
N	CH	CH	CH	i-Pr	Cl	CF ₃	Ме
N	CH	CH	CH	t-Bu	Cl	CF ₃	Me
N	CH	CH	CH	Et	. C l	CF ₃	CF ₃
N	CH	CH	CH	i-Pr	CI	CF ₃	CF ₃
И	CH	СН	CH	t-Bu	C1	CF ₃	CF ₃
N	CH	CH	CH	Et	ĊI	CF ₃	ОМе
N	CH	CH	CH	i-Pr	. CI	CF ₃	ОМе
N	CH	CH	CH	. <i>t-</i> Bu	Cl	CF ₃	OMe
N	CH	CH	CH.	. Et	Cl	CF ₃	CN
N	CH	CH .	CH	<i>i</i> -Pr	Cl	CF ₃	CN
N	CH	CH	CH	t-Bu	CI	CF ₃	CN
CH	N	CH	N	Et	Me	CF ₃	Cl
CH	N	CH	И	<i>i</i> -Pr	Me	CF ₃	Cl
CH	N	· CH	N	t-Bu	Me	CF ₃	. CI
CH	N	CH	N	Eŧ	Me	CF ₃	Br

[0202]

【表81】

CH	N	CH	. N	i-Pr	Me	CF ₃	Br
CH	N	CH	N	t-Bu	Me	CF ₃	Br
CH	N	CH	N	Et	Me	CF ₃	I
CH	N	CH	N	i-Pr	Me	CF ₃	I.
CH	N	CH	N	t-Bu	Me .	CF ₃	1
СН	N	CH	N	Et	Me	CF ₃	F
СН	N	CH	N	i-Pr	Me	CF ₃	F
CH	И	CH	N	t-Bu	Me	CF ₃	F
CH	N	СН	N	Et	Me ·	CF ₃	Me
CH	И	CH	N	· i-Pr	Me	CF ₃	Me
CH	И	CH	N	t-Bu	Me	CF ₃	Me
CH	N	CH	N	Et	Me	CF ₃	CF ₃
CH	N	CH	N	<i>i</i> -Pr	Me	CF ₃	CF ₃
CH	N	CH	N	t-Bu	Me	CF ₃	CF ₃
CH	И	CH	N	Et	Me	CIF ₃	OMe
CH	N	CH	N	i-Pr	Me	CF ₃	OMe
CH	N	. CH	И	t-Bu	Me	CF ₃	OMe
CH	И	CH	N	Et	Me	CF ₃	CN
CH	И	CH	N	i-Pr	Me	CF ₃	CN
CH	N	CH	N	t-Bu	Me	CF ₃	CN
CH	N	CH	N	Et	Cl	CF ₃	Cl
CH	N	CH	, N	i-Pr	Cl	CF ₃	Cl
CH	И	CH	N	t-Bu	Cl	CF ₃	CI
CH	N	CH	N	Et	Cl	CF ₃	Br
CH	N	CH	И	i-Pr	Cl	CF ₃	Br
CH	И	CH	N	t-Bu	Cl	CF ₃	Br
CH	И	CH	N	Et	Cl	CF ₃	1.
CH	N	CH	N	<i>i</i> -Pr	CI	CF ₃	I
CH	N	CH	И	t-Bu	· Cl	CF ₃	I
CH	И	CH	N .	Et	CI	CF ₃	F
CH	N	CH	N	i-Pr	Cl	CF ₃	F
CH	N .	CH	N	t-Bu	Cl	CF ₃	F
CH	N .	CH	N	Et	Cl	CF ₃	Me
CH	N	CH	N	i-Pr	Cl	CF ₃	Me
CH	N	CH	И	t-Bu	Cl	CF ₃	Me
CH	N	CH	N	Et	Cl	CF ₃	CF,
CH ·	N	CH	N	i-Pr	Cl	CF₃	CF₃

[0203]

【表82】

СН	N	CH	N	t-Bu	Cì	CF ₃	CF ₃
CH	N	CH	N	Et	C1	CF ₃	ОМе
CH	N	CH	N	<i>i</i> -Pr	, Cl	CF ₃	ОМе
СН	N	СН	N	t-Bu	C]	CF ₃	ОМе
CH	N	CH	N	Et	Cì	CF ₃	CN
CH	N.	СН	N	i-Pr	Cl	CF ₃	CN
CH	N	CH	N	t-Bu	Cl	CF ₃	CN
СН	· CH	СН	CC1	Et	Me	CF ₃	Cì
СН	СН	CH	CCI	i-Pr	Me	CF ₃	Cl
СН	СН	CH	CCi	t-Bu	Me	CF ₃	Cl
CH	CH	CH	CCI	Et	Me	CF ₃	Br
CH	CH	; CH	CCI	i-Pr	Me	CF ₃	Br
СН	CH	CH	CCI	t-Bu	Me	CF ₃	Br
CH	СН	·CH	CCI	Et	Me	CF ₃	I
CH	CH	CH	CCI	<i>i</i> -Pr	Me	CF ₃	I
CH	CH	CH	CC1	t-Bu	Me	CF ₃	1
CH	CH	CH	CCI	Et	Me	CF ₃	F
CH	CH	CH	CC1	i-Pr	Me	CF ₃	F
CH	CH	CH	CCI	t-Bu	Me	CF ₃	F
CH	CH	CH	CCl	Bt	Me	CF ₃	Me
CH	CH	CH	CCI	i-Pr	Me	· CF ₃	Me
CH	CH	CH	CCl	t-Bu	Me	CF ₃	Me
CH	CH	CH	ĊC1	Et	Me	CF ₃	CF ₃
CH	CH	CH	CC1	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CCI	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	CCI	Et	Me	CF ₃	ОМе
CH	CH	CH	CC1	<i>i</i> -Pr	Me	CF ₃	ОМе
CH	CH	CH	CCI	t-Bu	Me	CF ₃	OMe
CH	CH	CH	CC1	Et	Me	CF ₃	CN
CH	CH	CH	CCI	i-Pr	Me	CF ₃	CN
CH	CH	CH	CCI	t-Bu	Me	CF ₃	CN
CH	CH	CH.	CCI	Et	CI	CF ₃	Cl
CH	CH	CH	CCl	i-Pr	Cl	CF ₃	Ci
CH	CH	CH	CCI	t-Bu	CI	CF ₃	Cl
CH	CH	· CH	CCI	Et	Cl	CF ₃	Br
CH	CH	CH	CCI	<i>i</i> -Pr	Cl	CF ₃	Br
CH	CH	CH	CCI	t-Bu	CI	CF ₃	Br

[0204]

【表83】

	•						
CH	CH	CH	CCI	Et	Cl	CF ₃	i
CH	СН	CH	CCI	i-Pr	CI	CF ₃	1
СН	CH	CH	CCI	t-Bu	Cl	CF ₃	1
CH	CH	CH	ccı	Et	CI	CF ₃	F
CH	CH	CH	CCI	<i>i</i> -P r	Cl	CF ₃	F
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	F
CH	CH	CH	CCI	Et	Cl	CF ₃	Me
CH	CH	СН	CCI	i-Pr	Cl	CF ₃	Me
CH	CH	CH	CCI	t-Bu	C3	CF ₃	Me
CH	CH	CH	CCI	Et	Cl	CF ₃	CF ₃
CH	CH	CH	CCI	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	CF ₃
CH	CH	CH	CCI	Et	Cl	CF ₃	ОМе
CH	CH	CH	CCI	i-Pr	Cl	CF ₃	ОМе
CH	CH	CH	CCl	t-Bu	Cl	CF ₃	ОМе
CH	CH	СН	CC1	Et	CI	CF ₃	CN
CH	CH	CH	CCI	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CCI	<i>t</i> -Bu	Cl	CF ₃	CN
CH	CH	CH	CF	Et	Me	CF ₃	CI
СН	CH	CH	CF	i-Pr	Me	CF ₃	Cl
CH	CH	CH	CF	t-Bu	Me	CF ₃	Cl
CH	CH	CH	CF	Et	Me	CF ₃	Br
CH	CH	CH	CF	i-Pr	Me	CF ₃	Br
CH	CH	CH	CF	t-Bu	Me	CF ₃	Br
CH	CH	CH	CF	Et	Me	CF ₃	ĭ
CH	CH .	CH	CF	i-Pt	Me	CF ₃	1
CH	CH	CH	CF	t-Bu	Me	CF ₃	1
CH	CH	CH	CF	Et	Me	CF ₃	F
CH	CH	CH	CF	<i>t</i> -Pr	Me	CF ₃	F
CH	CH	CH	CF	t-Bu	Me	CF ₃	F
CH	CH	CH	CF	Et .	Me	CF ₃	Me
CH	CH	CH	CF	i-Pr	Me	CF ₃	Me
CH	CH	CH	CF	t-Bu	Me	CF ₃	Me
СН	CH	CH	CF	Et	Me	CF ₃	CF ₃
CH	CH	CH	CF	<i>i</i> -Pr	Me .	CF ₃	CF ₃
CH	CH	CH	CF	<i>t</i> -Bu	Me	CF ₃	CF ₃
CH	CH	CH	CF	Et	Me	CF ₃	ОМе

[0205]

【表84】

CH	CH	CH	CF	i-Pr	Ме	CF ₃	OMe
CH	CH	CH	CF	t-Bu	Me	CF ₃	OMe
CH	CH	CH	CF	Et	Me	CF ₃	CN
СН	CH	CH	CF	<i>i-</i> Pr	Me	CF ₃	CN
CH.	CH	CH	CF	t-Bu	Me	CF ₃	CN
CH	CH	CH	CF	Et	Cl	CF ₃	Cl
CH	CH	CH	CF	i-Pr	Cl	CF ₃	Cl
СН	CH	CH	CF	t-Bu	Cl	CF ₃	C)
CH	CH	CH	CF	Et	Cl	CF ₃	Br
CH	CH	CH	CF	i-Pr	CI	CF ₃	Br
CH	CH	CH	CF	t-Bu	Cl	CF ₃	Br
CH	CH	CH	CF	Et	Cl	CF ₃	1
CH	CH	CH	CF	i-Pr	CĪ	CF ₃	I
CH	CH	CH	CF	t-Bu	Cl	CF ₃	1
CH	CH	CH	CF	i-Pr	Cl	CF ₃	F
CH	СН	CH	CF .	t-Bu	Cì	CF ₃	F
CH	CH	CH	CF	· Et	a	CF ₃	Ме
CH	CH	CH	CF	i-Pr	CI	CF ₃	Me _.
CH	СН	CH	CF	. t-Bu	Cl	CF ₃	Me
CH	CH	CH	CF	Et	Cl	CF ₃	CF ₃
CH.	CH	CH	CF	i-Pt	Ċl	CF ₃	CF ₃
CH	CH	CH	CF	t-Bu	Cl	CF ₃	CF ₃
CH	CH	СН	CF	Et	Cl	CF ₃	OMe
CH	CH	CH	CF	<i>i-</i> Pr	CI	CF ₃	OMe
CH	CH	CH	CF	t-Bu	Cl	CF ₃	OMe
CH	CH	CH	CF	Et	Cl	CF ₃	CN
CH	CH	CH	CF	i-Pt	Cl	CF ₃	CN
CH	CH	CH	CF	t-Bu	Cl	CF ₃	CN
CH	CH	CH	CH	Et	Me	C_2F_5	Cl
CH	CH	CH	CH-	i-Pr	Me	C_2F_5	Cl
CH	CH	CH	CH	t-Bu	Me	C_2F_5	Cl
CH	CH	CH	CH	Et	Me	C ₂ F ₅	Br
CH	CH	CH	CH	i-Pr	Me	C_2F_5	Br
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	Br
CH	CH	CH	CH	Et	Me	C_2F_5	1
CH	CH	CH	CH	i-Pr	Me	C ₂ F ₅	1
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	1

[0206]

【表85】

СН	CH	CH	СН	Et	Ме	C ₂ F ₅	F
CH	CH	CH	СН	i-Pr	Me	C ₂ F ₅	F
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	F
CH	CH	СН	СН	Et	Me	C ₂ F ₅	Me
СН	· CH	CH	СН	i-Pr	Me	C ₂ F ₅	Me
CH	CH	CH	CH	· t-Bu	Me	C ₂ F ₅	Me
СН	CH	СН	СН	Et	Me	C ₂ F ₅	CF ₃
СН	CH	CH	СН	i-Pr	Me	C ₂ F ₅	CF,
CH	CH	CH	СН	t-Bu	Me	C ₂ F ₅	CF,
СН	CH	СН	CH	Et	Me	C ₂ F ₅	OMe
СН	CH	CH	CH.	i-Pr	Me	C ₂ F ₅	OMe
CH	CH	CH	CH	<i>t</i> -Bu	Ме	C ₂ F ₅	ОМе
CH	CH	CH	CH	Et	Me	C ₂ F ₅	CN
CH	CH	СН	СН	i-Pt	Me	C ₂ F ₅	CN
CH	CH	СН	CH	t-Bu	Ме	C ₂ F ₅	CN
CH	CH	CH	СН	Et	Cl	C ₂ F ₅	Cl
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	Cl
CH	CH	CH	CH .	t-Bu	C1	C ₂ F ₅	Cl
CH	CH	CH	CH	. Et	Cl	C ₂ F ₅	Br
CH	CH	CH	CH	<i>i</i> -Pr	C1	C ₂ F ₅	Br
CH	CH	CH	CH	- <i>t</i> -Bu	Ċl	C ₂ F ₅	Br
CH	CH	СН	CH	Et	Ci	C_2F_5	1
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	I
CH	CH	CH	CH	t-Bu	CI	C_2F_5	I
CH	CH	CH	CH	' Et	Cl	C ₂ F ₅	F
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	F
CH	CH	CH	CH	t-Bu	CI	C_2F_5	F
CH	CH	CH	CH	Et	C1	C_2F_5	Ме
CH	CH	CH	CH	<i>i</i> -Pr	. CI	C ₂ F ₅	Me
CH	CH.	CH	CH.	t-Bu	Cl	C_2F_5	Ме
CH	CH	CH	CH	· Et	Cl	C ₂ F ₅	CF ₃
CH	CH .	CH	CH	i-Pr	Cl	C ₂ F ₅	CF ₃
CH	CH	CH	CH	<i>t-</i> Bu	Cl	C ₂ F ₅	CF ₃
CH	CH	CH	CH	Et .	CI	C_2F_5	ОМе
CH	CH	CH	CH	i-Pr	Cl	C_2F_5	ОМе
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	ОМе
CH	CH	CH	CH	Et	Cl	C_2F_5	CN

[0207]

【表86】

CF₃

CF₃

CF3

CF₃

 CF_3

CF₃

CF₃

CF₃

Me

CF₃

CF₃

CF3

OMe

OMc

OMc

CN

CH-

CH

CH

CH

CH

CH

CH

CH

t-Bu

Et

i-Pr

t-Bu

Et

i-Pr

t-Bu

Et

Me

Me

Мє

Me

Μe

Me

Me

Me

CH

CH

CH

CH

CH

CH

CH

CH

[0208]

CH

CH

СН

CH

【表87】

						•	
CH	ĊН	CH	CH	i-Pr	Me	CF ₃	CN
CH	СН	CH	CH	t-Bu	Me	CF ₃	CN
CH	СН	CH	CH	Et	Cl	CF ₃	Cl
CH	СН	CH	CH	<i>i</i> -Pr	CI	CF ₃	Cl
CH	CH	CH	CH	t-Bu	Cl	CF ₃	Cì
CH	CH	CH	СН	Et	. CI	CF ₃	Br
CH	CH	CH	CH	<i>i</i> -Pr	C1	CF ₃	Br
CH	CH	CH	CH	t-Bu	Cl	CF ₃	Br
CH	CH	CH	CH	Et .	Cl	CF ₃	I
CH	CH	CH	CH	<i>i</i> -Pr	Cl	CF ₃	1
CH	CH	CH	CH	t-Bu	Cl	CF ₃	1
CH	. CH	CH	CH	Et	Cl	. CF ₃	F
CH	CH	CH	CH	I-Pr.	Cl	.CF ₃	F
СН	CH	CH	CH	t-Bu	CI	CF ₃	F
CH	CH	CH	CH	Et	Cl	CF ₃	Me
CH	CH	CH	CH	i-Pr	. C1	CF ₃	Ме
CH	CH	CH	CH	<i>t</i> -Bu	Cl	CF ₃	Ме
CH	CH	CH	CH	Et	CI	CF ₃	CF ₃
CH	CH	CH	CH	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CH	t-Bu	Ċl	CF ₃	CF ₃
CH	CH	CH	CH	Et	ĊI	CF ₃	OMe
CH	CH	CH	CH	i-Pr	Cl	CF ₃	OMe
CH	CH	CH	CH	<i>t</i> -Bu	Cl	CF ₃	ОМе
CH	CH	CH	CH	Et	Cl	CF ₃	CN
CH	CH	CH	CH	i-Pr	Cl	CF ₃ .	CN
CH	CH	CH	CH	t-Bu	CI	CF ₃	CN
CH	СН	CH	N	Et	Me	CF ₃	CI
CH	CH	CH	N	<i>i</i> -Pr	Me	CF ₃	C1
CH	CH	CH	И	t-Bu	Me	CF ₃	Cl
CH	CH	CH	И·	Et	Me	CF ₃	Br
CH	CH	CH	, N	i-Pr	Me	CF ₃	Br
CH —	CH	CH	N	t-Bu	Me	CF ₃	Br
CH	CH	CH	N	Et	Me	· CF ₃	I
СН	CH	CH	N	i-Pr	Me	CF ₃	1
СН	CH	CH	N	t-Bu	Me	· CF ₃	1
CH	СН	CH	N	Et	Me	CF ₃	·F
CH	CH	CH	N	i-Pr	Me	CF ₃	F

[0209]

【表88】

CH	CH	СН	N	t-Bu	Me	CF ₃	P
СН	CH	CH	N	Et	Me	CF ₃	Me
CH	СН	СН	N	i-Pr	Me	CF ₃	Me
CH	CH	CH	N	t-Bu	Me	CF ₃	Me
CH	CH	CH	N	Et	Me	CF ₃	CF ₃
CH	CH	CH	N	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	N	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	N	Et	Me	CF ₃	OMe
CH	CH	CH	N	i-Pr	Me	CF ₃	ОМе
CH	CH	CH	N	t-Bu	Me	CF ₃	ОМе
CH	CH	CH	N	Et	Me	CF ₃	CN
CH	CH	CH	N	i-Pr	Me	CF ₃	CN
СН	CH	CH	N	t-Bu	Me	.CF ₃	CN
CH	CH	CH	N	Et	Cl	CF ₃	Cī
CH	CH	CH	N	i-Pr	Cl	CF ₃	CI
CH	CH	CH	N	t-Bu	Cl	CF ₃	Cl
CH	CH	CH	N	Et	Cl	CF ₃	Br
CH	CH	СН	N	i-Pr	Cl	CF ₃	Br
CH	CH	CH	N	t-Bu	Cl	CF ₃	Br
CH	CH	CH	N	Et	Cl	CF ₃	I
CH	CH	CH	И	i-Pr	C1	CF ₃	1
CH	CH	CH	N	t-Bu	Cl	CF ₃	1
CH	CH	CH	N	Et	Cl	CF ₃	F
CH	CH	CH	N	<i>i-</i> Pr	CI	CF ₃	F
CH	CH	CH	И	t-Bu	Cl	CF ₃	F
CH	CH	CH	N	Et	CI	CF ₃	Me
CH	CH	CH	N	i-Pr	Cl	CF ₃	Ме
CH	CH	CH	N	t-Bu	Cl	CF ₃	Me
CH	CH	CH	N	Et	Cl	CF ₃	CF ₃
CH	. CH	CH	N	i-Pr	CI	CF ₃	CF ₃
CH	CH	CH	,N	t-Bu	Cl	CF ₃	CF ₃
CH	CH .	CH	N	Et	Cl	CF ₃	OMe
CH	CH	CH	N	i-Pr	Cl	CF ₃	OMe
CH	CH	CH	Ŋ	t-Bu	Cl	CF ₃	OMe
CH	CH	CH	N	Et	Cl	CF ₃	CN
CH	CH	CH	И	<i>i</i> -Pr	CI	CF ₃	CN
CH	CH	CH	N	<i>t</i> -Bu	Cl	CF ₃	CN

[0210]

【表89】

CH	CH	N	CH	Et	Me	CF ₃	CI
СН	CH	N	CH	· <i>F</i> -Pr	Me	CF ₃	Cl
СН	CH	N	CH	t-Bu	Me	CF ₃	Cl
CH ·	СН	N	CH	Et	Me	CF ₃	Br
CH	CH	N	CH	i-Pr	Mc	CF ₃	Br
СН	CH	И	CH	t-Bu	Me	CF ₃	Br
СН	CH	N	CH	Et	Me	CF ₃	1
CH	СН	N	CH	i-Pr	Me	CF ₃	I
СН	CH	N	CH	t-Bu	Me	CF ₃	1
CH	CH	N	CH	Et	Me	CF ₃	F
СН	СН	N	CH	<i>i</i> -Pr	Me	CF ₃	F
CH	CH	N	CH	t-Bu	Me	CF ₃	F
CH	CH	N	CH	Bt	Me	CF ₃	Me
CH	CH	N	CH	i-Pr	Me	CF ₃	Me
CH	CH	N	CH	t-Bu	Me	CF ₃	Me
CH	CH	N	CH	Et	Me	CF ₃	CF ₃
CH	CH	N	CH	<i>i</i> -Pr	Me	CF ₃	CF ₃
CH	CH	И	CH	t-Bu	Me	CF ₃	CF ₃
CH	CH	N	CH	Et	Me	CF ₃	OMe
CH	CH	N	CH	i-Pr	Me	CF ₃	OMe
CH	CH	N	CH	t-Bu	Me	CF ₃	ОМе
CH	CH	N	CH	Et	Me	CF ₃	CN
CH	CH	N	CH	i-Pr	Me	CF ₃	CN
CH	CH	N	CH	t-Bu	Me	CF3	CN
CH	CH	N	CH	Et	Cl	CF ₃	Cl
CH	CH	N	CH	i-Pr	CI	CF ₃	CI
CH	CH	N	ĊН	t-Bu	Cl	CF ₃	Cl
CH	CH	N	CH	Et	Cl	CF ₃	Br
CH	CH	N	CH	i-Pr	. Cl	CF ₃	Br
CH	CH	N	CH	t-Bu	Cl	CF ₃	Br
CH	CH	N	CH	· . Et	Cl ·	CF ₃	1
CH	CH	N	CH	<i>i</i> -Pr	Ci	CF ₃	1
CH	CH	N	CH	t-Bu	CI	· CF ₃	1
CH	CH	N	CH	. Et	Cl	CF ₃	F
CH	CH	N	CH	i-Pr	Cl	CF ₃	. F
CH	CH	N	CH	t-Bu	Cl	CF ₃	F
СĦ	CH	N	CH	Et	Cl	CF ₃	Me

[0211]

【表90】

CH	СН	N	CH	i-Pr	Cl	CF ₃	Me
CH	CH	N	CH	-Bu	Cl	CF ₃	Me
CH	CH	N	CH	Et	Cl	CF ₃	CF ₃
CH	CH	N	CH	<i>i</i> -Pr	Cl	CF ₃	CF ₃
СН	CH	N	CH	<i>t</i> -Bu	CI	CF ₃	CF ₃
CH	CH	N	CH	Et	Cl	CF ₃	OMe
CH	CH	N	CH	i-Pr	Cl	CF ₃	OMe
CH	CH	N	CH	t-Bu	Cl	CF ₃	OMe
CH	CH	N	CH	Et	Cl	CF ₃	CN
CH	CH	N	CH	i-Pr	Cl	CF ₃	CN
CH	CH	И	CH	t-Bu	Cl	CF ₃	CN
CH	N	CH	CH	· Et	Me	CF ₃	Cl
CH	N	CH	CH	i-Pr	Мe	··CF ₃	C1
CH	N	CH	CH	t-Bu	Me	CF ₃	Cl
CH	N	CH	CH	Et	Me	CF ₃	Br
CH	N	СН	CH	i-Pr	Me	CF ₃	Br
CH	N	CH	CH	t-Bu	Me	CF ₃	Br
CH	И	CH	CH	Et	Me	CF ₃	1
CH	N	CH	CH	i-PT	Me	CF ₃	I
CH	N	CH	CH	t-Bu	Me _.	CF ₃	1
CH	N	CH	CH	Et	Me	CF ₃	F
CH	N	CH	CH	i-Pr	Me	CF ₃	F
CH	N	CH	CH	#Bu	Me	CF ₃	F
CH	N	CH	CH	Et	Me	CF ₃	Me
CH	N	CH	CH	i-Pr	Me	CF ₃	Me
CH	И	CH	CH	t-Bu	Me	CF ₃	Мс
CH	N	CH	CH	. Et	Me	CF ₃	CF ₃
CH	N	CH	CH	<i>i</i> -Pr	Me	CF ₃	CF ₃
CH	N	CH	CH	t-Bu	Me	CF ₃	CF ₃
CH	N	CH	CH-	Et	Me	CF ₃	OMe
CH	И	CH	CH	· i-Pr	Me	CF ₃	OMe
CH	N .	CH '	CH	<i>t</i> -Bu	Me	CF ₃	OMe
CH	N	CH	CH	Et	Me	CF ₃	CN
CH	И	CH	CH	i-Pr	Me	CF ₃	CN
CH	N	CH	CH	t-Bu	Me	CF ₃ .	CN
CH	N	CH	CH	Et	Cl	CF ₃	Cl
CH	Ν.	CH	CH	i-Pr	C 1	CF ₃	CI · ·

[0212]

【表91】

CH	N	CH	CH	<i>t</i> -Bu	CI	CF ₃	Cl
CH	N	CH	CH	Et	CI	CF ₃	Br
CH	. N	СН	CH	i-Pr	CI ·	CF ₃	Br
CH	И	СН	CH	t-Bu	CI	CF ₃	Br
CH	N	CH	CH	Et	Cl	CF ₃	I
CH	N	СН	СН	i-Pr	CI	CF ₃	1
СН	N	CH	СН	t-Bu	CI	CF ₃	1
CH	N	СН	CH	Et	Cl	CF ₃	F
CH	и	СН	ĊĦ	i-Pr	Cl	CF ₃	F
CH	И	CH	CH	t-Bu	Cl	CF ₃	F
CH	N	CH	СН	Et	Cl	CF ₃	Me
CH	N	СН	CH	i-Pr	Cl	CF ₃	Me
СН	N	CH	CH	t-Bu	ĊĨ	CF ₃	Ме
CH	N	CH	CH	Et	CI	CF ₃	CF ₃
CH	· N	CH	CH	i-Pr	Ci	CF ₃	CF ₃
CH	N	CH	CH	. <i>t</i> -Bu	Cl	CF ₃	CF ₃
CH	И	CH	CH	Et	C1	CF ₃	OMe
CH	N	СН	СН	i-Pr	Cl	CF ₃	OMe
CH	И	CH	CH	t-Bu	Cl	CF ₃	ОМе
CH	и	CH	CH	Et	Cl	CF ₃	CN
CH	N	CH	CH	i-Pr	Ċl	CF ₃	CN
CH	И	CH	CH	, <i>t</i> -Bu	Cl	CF ₃	CN
N	CH	CH	CH	Et	Me	CF ₃	Cl
N	CH	CH	CH	i-Pr	Me	CF ₃	CI
N	CH	CH	CH	t-Bu	Me	CF ₃	Cl
N	. CH	CH	CH	Et	Me	CF ₃	Br
N	CH	CH	CH	i-Pr	Me	CF ₃	Br
И	CH	CH	CH	t-Bu	Me	CF ₃	Br
И	CH	CH	CH	Et	Me	CF ₃	1
И	CH	CH	CH	f-Pr	Me	CF ₃	I
N	CH	CH	CH	t-Bu	Мe	CF ₃	I
N	CH	CH	CH	Et	Me	CP ₃	F
N	CH	CH	CH	i-Pr	Me	CP ₃	F
N	CH	CH	CH	t-Bu	Me	CF ₃	F.
И	CH	CH	CH	Et	Me	CF ₃	Me
N	CH	CH	CH.	i-Pr	Me	CF ₃	Me
. N	CH	CH	CH	t-Bu	Me	CP ₃	Me

[0213]

【表92】

N	СН	СН	СН	Et	Me	CF ₃	CF ₃
N	СН	CH	CH	i-Pr	Me	CF ₃	CF ₃
N	СН	CH	CH	t-Bu	Me	CF ₃	CF ₃
N	СН	CH	CH	Et	Me	CF ₃	ОМе
N	СН	CH	CH	i-Pr	Me	CF ₃	ОМе
N	СН	CH	СН	t-Bu	Me	CF ₃	ОМе
N	СН	CH	СН	Et	Me	CF ₃	CN
N	CH	СН	CH	i-Pr	Me	CF ₃	CN
N	CH	СН	CH	t-Bu	Me	CF ₃	CN
N	CH	СН .	CH	Et	Cl	CF ₃	Cl
N	CH	CH	CH	i-Pr	Cl	CF ₃	C1
N	СН	CH	CH	t-Bu	Cì	CF ₃	CI
N	СН	CH	CH	Et	ČI	CF ₃	Br
N	СН	CH	CH	<i>i</i> -Pr	Cl	CF ₃	Br
N	CH	CH	CH	t-Bu	Cl	CF ₃	Br
N	CH	CH ·	СН	Et	Cl	CF ₃	1
N	CH	CH	CH	i-Pr	Cl	CF ₃	I
N	CH	CH	CH	t-Bu	Cl	CF ₃	1
N	CH	CH	CH	Et	Cl	CF ₃	F
N	CH	CH	CH	<i>i</i> -Pr	Cl	CF ₃	F
N	CH	CH	CH	t-Bu	Ċ	CF ₃	Ł.
N	CH	CH	CH	Et	Cl	CF ₃	Me
N	CH	CH	CH	i-Pt	CI	CF ₃	Me
N	CH	CH	CH	t-Bu	C1	CF ₃	Me
N	CH	CH	CH	Et	Cl	CF ₃	CF ₃
И	CH	CH	CH	i-Pr	Cl	CF ₃	CF ₃
N	CH	CH	CH	t-Bu	Cl	CF ₃	CF ₃
N	CH	CH	CH	Et	cı · —	CF ₃	OMe
N	CH	CH	СН	<i>i</i> -Pr	Cl	CF₃	OMe
N	CH	CH	CH	t-Bu	. CI	CF ₃	OMe
N .	CH	CH	CH	Et	Cl	CF ₃	CN
N	CH	CH	CH	<i>i-</i> Pr	CI	CF ₃	CN
N	CH	CH	CH		. C1	CF ₃	CN
CH	N	CH	N	Et	Me	CF ₃	CI CI
CH .	N	CH	N	i-Pr - Pr	Mo	CF ₃	· CI
CH	N	CH	N	t-Bu	Me	CF ₃	Br
CH	N	CH	N	Et	. Me	CF ₃	

[0214]

【表93】

CH	N	СН	N	i-Pr	Me	CF ₃	Br
СН	N	CH	N	t-Bu	Me	CF ₃	Br
CH	N	CH	N	Et	Me	CF ₃	I
CH	N	СН	N	i-Pr	Me	CF ₃	I
CH	N	CH	N	t-Bu	Me	CF ₃	1
CH	. N	CH	N	Et	Me	CF ₃	F
СН	И	CH	N	i-Pr	Me	CF ₃	F
CH	N	CH	N	₽-Bu	Me	CF ₃	F
CH	N	CH	N	. Et	Me	CF ₃	Me
CH	N	CH	N	i-Pr	Ме	CF ₃	Me
CH	N	CH	N	t-Bu	Me	CF ₃	Me
CH	N	CH	N	Et	Me	CF ₃	CF ₃
CH	N	СН	N	i-Pt	Me	CF ₃	CF ₃
CH	N	CH	N	t-Bu	Me	. CF ₃	CF ₃
CH	N	CH	N	Et	Me	CF ₃	ОМе
CH	N	CH	N	i-Pr	Me	CF ₃	OMe
CH	N	CH	N	t-Bu	Me	CF ₃	OMe
CH	N	CH	N	Et	Me	CF ₃	CN
CH	И	CH	И	i-Pr	Ме	CF ₃	CN
CH	И	CH	И	t-Ba	Мс	CF ₃	CN
CH	И	CH	N	Et	ĊI	CF ₃	Cl
CH	N	CH	N	<i>i</i> -Pr	Cl	CF ₃	CI
CH	N	CH	N	t-Bu	C1	CF ₃	Cl
CH	N	CH	N	Et	Cl	CF ₃	Br
CH	N	CH	N	i-Pr	Cl	CF ₃	Br
CH	N	CH	N	t-Bu	Cl	CF ₃	Br
CH	N	CH	N	Et	CI	CF ₃	1
CH	N	CH	N	i-Pr	Cl	CF ₃	1
CH	И	CH.	И	t-Bu	Cl	CF ₃	1
CH	. N	CH	N ·	Et	C1	CF ₃	F
CH	N	CH	, N	i-Pr	Cl	CF ₃	F
CH	N .	CH	N	t-Bu	Cl	CF ₃	F
CH	N	CH	И	Et	Cl	CF ₃	Me
CH	N	CH	N	i-Pr	Cl	CF ₃	Me
CH	N	CH	И	<i>t</i> -Bu	CI	CF ₃	Me
CH	N	CH	N	Et	Cl	CF ₃	CF ₃
CH	N	CH	N	i-Pr	Cl	CF ₃	CF ₃

[0215]

【表94】

CH	N	CH	N	t-Bu	Cl	CF ₃	CF ₃
СН	И	CH	N	Et	Cì	CF ₃	OMe
СН	N	CH	N	<i>i</i> -Pr	Cl	CF ₃	OMe
СН	N	CH	И	t-Bu	Cl	CF ₃	OMe
СН	. N	CH	N	Et	C1	CF ₃	CN
CH	N	CH	N	i-Pr	Cl	CF ₃	CN
CH	N	CH	И	t-Bu	CI	CF ₃	. CN
CH	CH	CH	CCI	Et	Me	CF ₃	CI
CH	CH	CH	CCI	<i>i</i> -Pr	Me	CF ₃	. C1
CH	CH	CH	CCI	t-Bu	Me	CF ₃	CI
CH	CH	CH	CCI	Et	Me	CF ₃	Br
CH	CH	CH	CCI	i-Pr	Me	CF ₃	Br
CH	CH	CH	CC1	. t-Bu	Мe	CF ₃	Br
CH	CH	CH	CCI	Et	Me	CF ₃	I
CH	CH	CH	CCl	i-Pt	Me	CF ₃	1
CH	CH	CH	CCI	t-Bu	Me	CF ₃	I
CH	CH	CH	CCI	Et	Me	CF ₃	F
CH	CH	CH	CCI	i-Pr	Me	CF ₃	F
CH	СН	CH	CCI	t-Bu	Me	CF ₃	F
CH	CH	CH	CCI	Et	Me	CF ₃	Me
CH	CH	CH	CCI	i-Pr	Me	CF ₃	Me
CH	СН	CH	CCl	t-Bu	Me	CF ₃	Me
CH	СН	CH	CC1	Et	· Me	CF ₃	CF ₃
CH	CH	CH	CCI	i-Pt	Me	CF ₃	CF ₃
CH	CH	CH	CCI	r-Bu	Me	CF ₃	CF ₃
CH	СН	CH	CCI	Eŧ	Me	CF ₃	OMe
CH	CH	CH	CCI	<i>i</i> -Pr	Me	CF ₃	ОМе
CH	CH	CH	CCI	. t-Bu	Me	CF ₃	OMe
CH	CH	CH	CCI	Et	Me	CF ₃	CN
CH	CH	CH	CCI	<i>i</i> -Pr	Me	CF ₃	CN
CH	CH	CH	CCI	t-Bu	Me	CF ₃	CN
CH	CH	CH	CCI	Et	Cl	CF ₃	Cl
CH	CH	CH	CCI	I-Pr	Cl	CF ₃	Cl
CH	CH	CH	CCI	<i>t</i> -Bu	Cl	CF ₃	a
CH	CH	CH	CCI	Et	Cì	CF ₃	Br
CH	CH	CH .	CCI	i-Pr	Cl ·	CF ₃	Br
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	Br

[0216]

【表95】

СН	CH	CH	CCI	Et	Cl	CF ₃	1
СН	CH	CH	CCI	i-Pr	Cl	CF ₃	I
CH	CH	CH	CCI	t-Bu	C1	CF ₃	1
CH	CH	СН	CCI	Et	CI	CF ₃	F
СН	CH	CH	ca	i-Pr	Cl	CF ₃	F
СН	CH	CH	CCI	t-Bu	Cl	CF ₃	F
СН	CH	CH	CCI	Et	Cl	CF ₃	Me
СН	CH	CH	CCI	i-Pr	Cì	CIF ₃	Ме
CH	CH	CH	CCl	t-Bu	Ci	CF ₃	Me
CH	CH	CH	CCI	Et	Ci	CF ₃	CF ₃
CH	CH	СН	CCI	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CC1	t-Bu	Cl	CF ₃	CF ₃
CH	CH	CH	CCI	Et	Cl	CF ₃	ОМе
CH	CH	CH	CCI	<i>i</i> -Pr	ci	CF ₃	ОМе
СН	CH	CH	ca	t-Bu	Cl	CF ₃	ОМе
CH	CH	CH	CCI	Et	Cl	CF ₃	CN
СН	CH	CH	CCI	i-P r	Cl	CF ₃	CN
СН	CH	CH	CCI	t-Bu	· CI	CF ₃	CN
СН	CH	СН	CF	Et	Me	CF ₃	CI
CH	CH	CH	CF	i-Pr	Me	CF ₃	CI
CH	CH	CH	CF	t-Bu	Me	CF ₃	, CI
СН	CH	CH	CF	Et	Me	CF ₃	Br
CH	CH	CH	CF	<i>i-</i> Pr	Me	CF ₃	Br
CH	CH	CH	CF	t-Bu	Me	CF ₃	Br
CH	CH	CH	CF	Et	Me	CF ₃	1
CH	CH	CH	CF	i-Pr	Me	CF ₃	1
CH .	СН	CH	CF	t-Bu	Me	CF ₃	I
CH	CH	CH	CF	Et	Me	CF ₃	F
CH	CH	CH	CF	i-Pr	Me	CF ₃	F
CH	CH	CH	CF	t-Bu	Me	CF ₃	· F
CH	CH	CH	CF	. Et	Me	CF ₃	Me
CH	СН	CH	CF	i-Pt	Me	CF ₃	Ме
СН	СН	CH	CF	<i>t</i> -Bu	Me	CF ₃	Me
CH	CH	CH	CF	Et	Me	CF ₃	CF ₃
CH	CH	CH	CF	i-Pr	Me	CF ₃	CF ₃
CH	СН	CH	CF	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	CF	Et.	Me	CF3	OMe

[0217]

【表96】

CH	CH	СН	CF	i-Pr	Me	CF ₃	ОМе
СН	СН	CH	CF	t-Bu	Me	CF ₃	OMe
CH	СН	CH	CF	Et	Me	CF ₃	CN
СН	СН	CH	CF	i-Pr	Me	CF ₃	CN
CH	CH	СН	CF	<i>t</i> -Bu	Me	CF ₃	CN
CH	CH	CH	CF	Et	cı	CF ₃	Cl
CH	СН	CH	CF	i-Pr	Cl	CF ₃	Cl
CH	CH	CH	CF	<i>t-</i> Bu	Cl	CF ₃	C1
CH	CH	CH	CF	Et	CI	CF ₃	Br
CH	CH	CH	CF	<i>i</i> -Pr	Cl	CF ₃	Br
CH	· CH	CH	CF	t-Bu	Cl	CF ₃	Br
CH	СН	CH	CF	Et	Cl	CF ₃	1
CH	СН	CH	CF	i-Pr	Cl	CF ₃	1
CH	CH	CH	CF	t-Bu	Cl	CF3	1
CH	СН	CH	CF	i-Pr	Cl	CF ₃	F
CH	CH	CH	CF	t-Bu	Cl	CF ₃	F
CH	CH	CH	CF	Et	CI	CF ₃	Me
СН	CH	CH	CF	<i>i</i> -Pr	Cl	CF ₃	Ме
CH	CH	CH	CF	. t-Bu	C1	CF ₃	Me
CH	CH	CH	CF	Et	Cl	CF ₃	CF ₃
CH	CH	CH	CF	i-Pr	CI	CF ₃	CF ₃
CH	CH	CH	CF	r-Bu	Cl	CF ₃	CF ₃
CH	CH	CH	CF	Et	Cl	CIF ₃	ОМе
CH	CH	CH	CF	i-Pr	C)	CF ₃	OMe
CH	CH	CH	CF ·	t-Bu	CI	CF ₃	OMe
CH	CH	CH	CF	Et	Cl	CF ₃	CN
CH	CH	CH	CF	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CF	<i>t</i> -Bu	Cl	CF ₃	CN
CH	CH	CH	CH	Et	Me	C_2F_5	Cl
CH	CH	CH	CH	i-Pr	Me	C_2F_5	. Cl
CH	CH	CH	CH.	· t-Bu	Me	C ₂ F ₅	Cl
CH	CH	CH	CH	Et	Me	C_2F_5	Br
CH	CH	CH	CH	i-Pr	Me	C ₂ F ₅	Br
CH	CH	CH	CH	t-Bu	Me	C_2F_5	Br
СЯ	CH	CH	CH	Et	Me	C_2F_5	I
CH	. CH	CH	CH	<i>i</i> -Pr	Me	C ₂ F ₅	Ì
CH	CH	CH	CH	· t-Bu	Me	C ₂ F ₅	I

[0218]

【表 9 7】

CH	CH	CH	СН .	Et	Me	C ₂ F ₅	· F
СН	CH	CH	CH	i-Pr	Me	C ₂ F ₅	F
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	F
CH	CH	CH	CH	Et	Me	C ₂ F ₅	Me
CH	CH	CH	CH	i-Pr	Ме	C ₂ F ₅	Me
CH	CH	СН	СН	t-Bu	Ме	C ₂ F ₅	Ме
CH	CH	CH	СН	Et	Me	C ₂ F ₅	CF ₃
CH	· CH	CH	CH	i-Pr	Me	C ₂ F ₅	CF ₃
CH	CH	CH	CH	t-Bu	Me	C_2F_5	CF ₃
CH	CH	CH	CH	Et	Me	C ₂ F ₅	OMe
CH	CH	CH	CH	<i>i</i> -Pr	Me	C ₂ F ₅	OMe
СН	CH	CH	CH	<i>t</i> -Bu	Me	C ₂ F ₅	ОМе
СН	CH	CH	CH	Et	Me	C ₂ F ₅	CN
CH	CH	СН	CH	<i>i-</i> Pr	Me	C ₂ F ₅	CN
CH	CH	CH	CH	1-Bu	Me	C ₂ F ₅	CN
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	Cl
CH	CH	CH	CH	I-PT	Çl	C ₂ F ₅	Cl
CH	CH	CH	CH	t-Bu	Cl	C ₂ F ₅	Cl
CH	CH	CH	CH	Et	CI	C ₂ F ₅	Br
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	Br
CH	CH	CH	CH _	<i>t-</i> Bu	Ċì	C ₂ F ₅	Br
CH	CH	CH	CH	Et	Cl	C_2F_5	1
CH	СН	CH	СН	<i>i</i> -Pr	Cl	C ₂ F ₅	1
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	r
CH	СН	CH	CH	Et	C1	C ₂ F ₅	F
CH	CH	CH	СН	i-Pr	C1	C ₂ F ₅	F
CH	CH	CH	CH	t-Bu	Cl	C ₂ F ₅	· F
CH	CH	CH	CH	Et	CI	C ₂ F ₅	Me
CH	CH.	CH	CH	i-Pr	Cl	C_2F_5	Me
CH	CH	CH	CH-	t-Bu	Cl	C_2F_5	Me
CH	CH	CH	CH	Et	Cl	C_2F_5	CF ₃
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	CF₃
CH	CH	CH	CH	t-Bu	Cl	C ₂ F ₅	CF ₃
CH	CH	CH	CH	Et	Cl	C_2F_5	OMe
CH	CH	CH	CH	<i>i</i> -Pr	Cl	C_2F_5	ОМе
CH	СН	CH	CH	t-Bu	Cl	C_2F_5	ОМе
CH	СН	CH	CH	Et	Cl	C_2F_5	CN

[0219]

【表98】

CH CH CH CH
$$i\text{-Pr}$$
 Ci C_2F_5 CN CH CH CH $i\text{-Bu}$ Ci C_2F_5 CN

表17

w	x	Y	z	R ³	R ⁴	R ⁷	R ⁸
CH	CH	СН	СН	Et	Me	CF ₃	Cl
CH	CH	CH .	СН	i-Pr	Me	CF ₃	Cl
CH	CH	СН	СН	t-Bu	Me	CF ₃	CI
CH	СН	CH	CH	Et	Me	CF ₃	Br
CH	CH	CH	CH	i-Pr	Me	CF ₃	Br
CH	CH	CH	CH	t-Bu	Me	CF ₃	Br
СН	CH	CH	CH	Et	Me	CF ₃	I
СН	CH	СН	СН	i-Pr	Me	CF ₃	1
CH	CH	CH	CH	t-Bu	Me	CF ₃	I
CH	CH	CH	CH	Et	Me	CF ₃	F
CH	CH	CH	CH	i-Pr	Me	CF ₃	F
CH	CH	CH	CH	r-Bu	Mc	CF ₃	F
СН	CH	СН	CH	Et	Me	CF ₃	Me
CH	CH	CH	CH	i-Pr	Me	CF ₃	Me
CH	CH	CH	CH	t-Bu	Me	CF ₃	Мe
CH	CH	СН	СН	Et	Me	CF ₃	CF ₃
CH	CH	CH	СН	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CH	<i>t</i> -Bu	Me	CF ₃	CF ₃
CH	СН	CH	CH	Et	Me	CF ₃	ОМе
CH	CH	СН	СН	i-Pr	Me	CF ₃	OMe
СН	CH	CH	CH	t-Bu	Me	CF ₃	ОМе
CH	CH	CH	CH	Et	Me	CF ₃	. CN

[0220]

【表99】

СН	CH	CH	CH	i-Pt	Me	CF ₃	CN
СН	СН	СН	CH	t-Bu	Me	CF ₃	CN
СН	CH	CH	CH	Et	Cl	CF ₃	Cl
CH	СН	CH	ĊН	. i-Pr	C)	CF ₃	Cl
СН	CH	CH	CH	t-Bu	C)	CF ₃	Cl
СН	CH	CH	CH	Et	Cl	CF ₃	Br
СН	CH	CH	CH	i-Pr	Cl	CF ₃	Br
СН	CH	CH	CH	t-Bu	Cl	CF ₃	Br
CH	CH	CH	CH	Et	Cl	CF ₃	I
СН	CH	CH	CH	i-Pr	Cl	CF ₃	I
CH	CH	CH	CH	t-Bu	Cl	CF ₃	1
СН	CH	CH	CH	Et	Cl	CF ₃	F.
CH	CH	СН	CH	<i>i-</i> Pr	Ċİ	CF ₃	F
CH	CH	CH	CH	t-Bu	CI	CF ₃	F
CH	CH	CH	CH	Et	Cl	CF ₃	Me
CH	CH	CH	CH	i-Pr	Cl	CF ₃	Me
CH	CH	СН	CH	t-Bu	Cl	CF ₃	Me
CH	CH	CH	CH	Et	Cl	CF ₃	CF ₃
CH	CH	CH	CH	. <i>i</i> -Pr	Cl	CF ₃	CF ₃
CH	CH	СН	CH	t-Bu	Cl	CF ₃	CF ₃
CH	CH	CH	CH	Et	ĊI	CF ₃	OMe
CH	CH	CH	CH	i-Pr	Cl	CF ₃	OMe
CH	CH	CH	CH	t-Bu	Cl	CF ₃	OMe
CH	CH	CH	CH	Et	Cl	CF ₃	CN
CH	CH	CH	CH	i-Pt	Cl	CF ₃	CN
CH	CH	СН	CH	t-Bu	Cl	CF ₃	CN
CH	CH	CH	N	Et	Me	CF ₃	Cl
CH	CH	CH	N	i-Pr	Me	CF ₃	Cl
CH	CH	CH	И	t-Bu	Me	CF ₃	Cl
CH	CH	CH	N	Et	Me	CF ₃	Br
CH	CH	CH	N	· . <i>i</i> -Pr	Me	CF ₃	Br
CH	CH	CH	N	t-Bu	Me	CF ₃	Br
CH	CH	CH	N	Et	Me	CF ₃	I
CH	CH	CH	N	. <i>i-</i> Pr	Me	CF ₃	1 -
CH	. CH	CH	N	t-Bu	Me	CF ₃	. I
CH	CH	CH	N	Et	Me	CF ₃	F
CH	CH	CH	N	<i>i</i> -Pr	Me	CF ₃	F

[0221]

【表100】

CH	CH	СН	N	t-Bu	Me	CF ₃	F
CH	CH	CH	N	Et	Me	CF ₃	Me
CH	CH	CH	N	i-P r	Me	CF ₃	Me
CH	CH	CH	N	t-Bu	Me	CF ₃	Me
CH	CH	CH	N	Et	Me	CF ₃	CF ₃
CH	CH	CH	N	<i>i</i> -Pr	Me	CF ₃	CF ₃
CH	CH	CH	N	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	N	Et	Me	CF ₃	OMe
CH	CH	CH	N	i-Pr	Me	CF ₃	OMe
CH	CH	CH	N	t-Bu	Me	CF ₃	OMe
СН	CH	CH	N	Et	Me	CF ₃	CN
CH	· CH	CH	N	i-Pr	Me	CF ₃	CN
CH	CH	CH	N	t-Bu	Me	··CF ₃	CN
СН	CH	CH	N	Et	Ci	CF ₃	CI
СН	CH	CH	N	i-Pr	Cl	CF ₃	Cl
CH	CH	CH	N	t-Bu	Cl	CF ₃	CI .
CH	CH	CH	N	Et	C1	CF ₃	Br
CH	CH	CH	N	i-Pr	Cì	CF ₃	Br
CH	CH	CH	N	<i>t</i> -Bu	Cl	CF ₃	Br
CH	CH	CH	N	Et	Cl	CF ₃	1
CH	CH	CH	N	i-Pr	Ċ	CF ₃	I
CH	CH	CH	N	<i>t</i> -Bu	Cl	CF ₃	I
CH	CH	CH	N	Et	Ci	CF ₃	F
CH	СН	CH	N	i-Pr	Cl	CF ₃	F
CH	CH	CH	N	t-Bu	Cl	CF ₃	F
CH	CH	CH	N	Et	Cl	CF ₃	Me
CH	CH	CH	N	i-Pr	CI	CF₃	Me
CH	CH	CH	. И	t-Bu	Cl	CF ₃	Me
CH	CH	CH	N	Et	Cl	CF ₃	CF ₃
CH	CH	CH	И	i-Pr	Cl	CF ₃	CF ₃
CH	CH	CH	, N	t-Bu	CI	CF ₃	CF ₃
CH	CH	CH	И	Et	Cl	CF ₃	ОМе
CH	CH	CH	N	i-Pr	CI	CF ₃	ОМе
СН	CH	CH	N	t-Bu	Cl	CF ₃	ОМе
CH	CH	CH	N	Et	Cl	CF ₃	CN
CH	CH	CH	N	<i>i</i> -Pr	C1	CF ₃	CN
CH ·	CH	CH	И	t-Bu	Cl	CF ₃	CN

[0222]

【表101】

CH	СН	N	CH	Et	Me	CF ₃	Cl
CH	ĊН	N	СН	<i>i</i> -Pr	Me	CF ₃	Cl
CH	CH	N	СН	t-Bu	Me	CF ₃	Cl
CH	СН	N	CH	Et	Me	CF ₃	Br
CH	CH	N	СН	i-Pr	Me [^]	CF ₃	Br
CH	СН	N	СН	t-Bu	Me	CF ₃	Br
СН	CH	N	СН	Et	Me	CF ₃	1
CH	CH	N	CH	i-Pr	Me	CF ₃	1
CH	СН	N	СН	t-Bu	Me	CF ₃	I
CH	CH	N	СН	Et	Me	CF ₃	F
CH	CH	N	CH	i-Pr	Me	CF ₃	F
CH	CH _.	N	СН	<i>t</i> -Bu	Me	CF ₃	F
CH	СН	N	CH	Et	Me	CF ₃	Me
CH	CH	N	СН	i-Pr	Me	CF ₃	Me
CH	СН	И	CH	t-Bu	Me	CF3	Me
CH	СН	И	CH	Et	Me	CF ₃	CF ₃
CH	CH	N	CH	i-Pt	Me	CF ₃	CF ₃
CH	CH	И	CH	t-Bu	Me	CF ₃	CF ₃
CH	CH	N	CH	. Et	Me	CF ₃	OMe
CH	CH	N	CH	i-Pt	Me	CF ₃	OMe.
СН	CH	N	CH	t-Bu	Мe	CF ₃	ОМе
CH	CH	N	CH	Et	Me	CF ₃	CN
CH	CH	N	CH	i-Pr	Me	CF ₃	CN
CH	CH	И	CH	t-Bu	Me	CF ₃	CN
CH	СН	N	CH	Et	Cl	CF ₃	CI
CH	CH	N	CH	i-Pr	Cl	CF ₃	Cl
CH	CH	N	CH	t-Bu	Cl	CF ₃	Cl
CH	CH	N	CH	Et	Cl	CF ₃	Br
CH	CH	N	CH	i-Pr	. Cl	CF ₃	Br
CH	CH	N	CH.	t-Bu	Cl	CF ₃	Br
CH	CH	N	CH	· . Et	Cl	CF ₃	1
CH	CH .	N	CH	i-Pr	C1	CF3	1
CH	CH	N	CH	t-Bu	CI ·	CF ₃	I
CH	CH	N	CH	Et	CI	CF ₃	F
CH	CH	N	CH	i-Pr	Cl	CF ₃	F
CH	CH	N	CH	t-Bu	CI	CF ₃	F
CH _.	CH	N	CH	Et	Cl	CF ₃	Me

[0223]

【表102】

		_					
CH	· CH	N	CH	i-Pr	Cl	CF ₃	Me
СН	СН	N	CH	t-Bu	Cl	CF ₃	Me
CH	CH	N	СН	Et	Cl	CF ₃	CF,
CH	CH	N	CH	<i>i</i> -Pr	Cl	CF ₃	CF ₃
CH	CH	N	CH	<i>t-</i> Bu	Cl	CF ₃	CF ₃
CH	CH	N	CH	Et	Cl	CF ₃	OMe
CH	CH	N	CH	i-Pr	CI	CF ₃	ОМе
CH	CH	N	CH	t-Bu	C1	CF ₃	ОМе
СН	CH	N	CH	Et	C)	CF ₃	CN
CH	CH	N	CH.	i-Pr	Cl	CF ₃	CN
CH	CH	N	CH	t-Bu	a	CF ₃	CN
CH	И	CH	CH	Et	Me	CF ₃	Cl
CH	N	CH	CH	i-Pr	Me	-CF ₃	Cl
CH	И	CH	CH	t-Bu	Me	CF ₃	C1
CH	N	CH	CH	Et	Mo	CF ₃	Br
CH	И	CH	CH	i-Pr	· Me	CF ₃	Br
CH	N	CH	CH	· t-Bu	Me	CF ₃	Br
CH	И	CH	CH	Et	Me	CF ₃	Ţ
CH	N	CH	CH	i-Pr	Me	CF ₃	I
CH	N	CH	CH	t-Bu	Me	CF ₃	I
CH	N	CH	CH	Et	Мe	CF ₃	F
CH	N	CH	CH	i-Pr	Me	CF ₃	F
CH	N	CH	CH	t-Bu	Me	CF ₃	F
CH	N	CH	CH	Et	Me	CF ₃	Me
CH	N	CH	CH	i-Pr	Me	\mathbb{CP}_3	Me
CH ·	N	CH	CH	t-Bu	Me	CF ₃	Me
CH	N	CH	CH	Et	Me	CF ₃	CF ₃
CH	N	CH	CH	i-Pr	Me	CF ₃	CF ₃
CH	N	CH	CH	t-Bu	Me	CF ₃	CF ₃
CH	N	CH	CH.	Et	Me	CF ₃	OMe
CH	N	CH	ĊH	i-Pr	Me	CF ₃	ОМе
CH	N .	CH	CH	t-Bu	Me	CF ₃	ОМе
CH	N	CH	CH	Et	Me	CF ₃	CN
CH	N	CH	CH	i-Pr	Me	CF ₃	CN
CH	N	CH	CH	⊁Bu	Mc	CF ₃	CN
CH	N	CH	CH	Et	Cl	CF ₃	Cl
CH	И	CH	CH	i-Pr	CI	CF ₃	. C1

[0224]

【表103】

						•	
CH	N	СН	СН	t-Bu	Cl	CF ₃	Cl
CH	N	CH	CH	Et	Cl	CF ₃	Br
CH	N	СН	CH	i-Pr	Cl	CF ₃	Br
СН	N	CH	СН	t-Bu	Cl	CF ₃	Br
СН	N	CH	. CH	Et	Cl	CF ₃	1
CH	N	CH	CH	<i>i</i> -Pr	CI	CF ₃	1
CH	N	CH	CH	t-Bu	Cl	CF ₃	1
CH	N	CH	CH	Et	Cl	CF ₃	F
CH	N	CH	CH	i-Pr	Cì	CF ₃	F
СН	N	СН	CH	<i>t</i> -Bu	CI	CF ₃	F
CH	N	CH	CH	Et	C1	CF ₃	Me
CH	N	CH	СН	i-Pr	Cì	CF ₃	Me
CH	N	СН	CH	t-Bu	Ci	CF ₃	Me
CH	N	CH	CH	Et	Cl	CF ₃	CF ₃
CH	N	CH	CH	i-Pr	Cl	CF ₃	CF ₃
CH	' N	СН	CH .	<i>t-</i> Bu	CI	CF ₃	CF ₃
CH	N	СН	CH	Et	CI	CF ₃	OMe
CH	N	СН .	CH	i-Pr	Cl	CF ₃	ОМе
CH	N	CH	CH .	t-Bu	Cl	CF ₃	OMe
CH	N	CH	CH	Et	Cl	CF ₃	CN
CH	N	СН	CH	i-Pr	C)	CF ₃	СŅ
CH	N	CH	CH	t-Bu	CI	CF ₃	CN
N	CH	CH	СН	Et	Me	CF ₃	Cl
N	CH	СН	СН	i-Pr	Me	CF ₃	Ci
N	CH	CH	CH	t-Bu	Me	CF ₃	CI
N	CH	CH	CH	Et	Me	CF ₃	Br
N	CH	CH	CH	i-Pr	Me	CF ₃	Br
N	CH	CH	CH	t-Bu	Me	CF ₃	Br
N	CH	CH	CH	Et	Me	CF ₃	1
N	CH	CH	CH	i-Pr	Me	CF ₃	I
N	CH	CH	СН	t-Bu	Me	CF ₃	1
N	CH	CH	CH	Et	Me	CF ₃	F
N	CH	CH	CH	i-Pr	Me	CF ₃	F
N	CH	CH	CH	t-Bu	Me	CF ₃	F
N	CH	CH	CH	Et	Me	CF ₃	Me
N	CH	CH	CH	i-Pr	Ме	CF ₃	Me
Ŋ	CH	CH	CH	t-Bu	Me	CF ₃	Me

[0225]

【表104】

N	CH	CH	CH	Et	Me	CF ₃	CF ₃
N	CH	CH	CH	i-Pt	Me	CF ₃	CF ₃
N	CH	CH	CH	t-Bu	Me	CF ₃	CF ₃
N	CH	CH	CH	Et	Me	CF ₃	OMe
N	CH	СН	CH	i-Pr	Me	CF ₃	ОМе
N	CH	CH	CH	t-Bu	Ме	CF ₃	ОМе
N	CH	CH	CH	Et	Me	CF ₃	CN
N	CH	CH	CH	i-Pr	Me	CF ₃	CN
N	CH	CH	CH	t-Bu	Me	CF ₃	CN
N	CH	CH	CH	Et	Cl	CF ₃	CI
N	CH	CH	CH	i-Pr	Cl	CF ₃	Cl
N	СН	CH	CH	t-Bu	cı	CF ₃	Cl
N	CH	CH .	CH	Et	Cl	CF ₃	Br
N	CH	CH	CH	<i>i</i> -Pr	cı	CF ₃	Br
N	CH	CH	CH	t-Bu	C1	CF ₃	Br
И	CH	CH	CH	Et	Cl	CF ₃	I
N	CH	CH	CH	i-Pr	Cl	CF ₃	1
N	CH	CH	CH	t-Bu	Cl	CF ₃	1
N	CH	CH	CH	Et	Cl	CF ₃	F
N	CH	CH	CH	i-Pr	Ci	CF ₃	F
N	CH	CH	CH	#-Bu	C I	CF ₃	F
N	CH	CH	CH	Et	Cl	CF ₃	Me
N	CH .	CH	CH	i-Pr	Cl	CF ₃	Me
N	CH	CH	CH	t-Bu	Cl	CF ₃	Me
N	CH	CH	CH	Et	CI	CF ₃	CF ₃
N	CH	CH	CH	/-Pr	Cl	CF ₃	CF ₃
N	CH	CH	CH	t-Bu	Cl	CF ₃	CF ₃
N	CH	CH	CH	Et	CI	CF ₃	OMe
N	CH	CH	CH	i-Pr	CI	CF ₃	ОМе
N	CH	CH	CH	<i>t</i> -Bu	CI	CF ₃	OMe
N	CH	CH	CH	· . Et	Cl	CF ₃	CN
N	CH	CH	CH	i-Pr	Cl	CF ₃	CN
N	CH	CH	CH	<i>t</i> -Bu	Cl	CF ₃	CN
CH	N	CH	И	Et	Me .	CF ₃	Cl
CH	N	CH	N	i-Pr	Me	CF ₃	Cl
CH	N	CH	N	. t-Bu	Me	CF ₃	. C1
CH	N	CH	N	Et	Me	CF ₃	Br

[0226]

【表105】

CH	N	СН	N	i-Pr	Me	CF ₃	Br
CH	N	CH	N	<i>t</i> -Bu	Me	CF ₃	Br
CH	N	CH	N	Et	Me	CF ₃	1
CH	N	CH	N	i-Pr	Me	CF ₃	1
CH	N	CH	N	<i>t</i> -Bu	Me	CF ₃	I
СН	N	CH	N	Et	Me	CF ₃	F
CH	N	CH	N	i-Pr	Me	CF ₃	F
CH	N	CH	N	t-Bu	Me	CF ₃	F
CH	N	CH	N	Et	Me	CF ₃	Ме
CH	N	CH	N	i-Pr	Me	CF ₃	Ме
CH	N	CH	N	t-Bu	Me	CF ₃	Me
CH	N	CH	N	Et	Me	CF ₃	CF3
CH	N	CH	N	i-Pr	Me	CF ₃	CF ₃
CH	N	CH	N	t-Bu	Me	CF ₃	CF ₃
CH	N	CH	N	Et	Me	CF ₃	OMe
ĊН	N	CH	и.,	<i>i</i> -Pr	Me	CF ₃	ОМе
CH	N	CH	N	t-Bu	Me	CF ₃	ОМе
CH	N	СН	И	Et	Me	CF ₃	CN
CH	N	CH	И	. i-Pr	Me	CF ₃	CN
CH	N	CH	N	t-Bu	Me	CF ₃	CN
CH	N	CH	N	Et	Cl	CF ₃	Cl
CH	N	CH	N	i-Pr	Cl	CF3	Cl
CH	N	CH	N	t-Bu	CI	CF ₃	Cl
CH	N	CH	N	Et	CI	CF ₃	Br
CH	N	CH	N	i-Pr	Cl	CF ₃	$\mathbf{B_r}$
СН	N	CH	N	t-Bu	CI	CF ₃	Br
CH	N	CH	N	Et	Cl	CF ₃	I
CH	N	CH	N	<i>i</i> -Pr	Cl	CF ₃	r
CH	N	CH	N	t-Bu	CI	CF ₃	1
CH	N	CH	N	· Et	Cl	CF ₃	F
CH	N	CH	, N	i-Pr	Cl	CF ₃	F
CH	N .	CH	N	<i>t</i> -Bu	C1	CF3	F
CH	N	CH-	И	Et	CI	CF ₃	Me
CH	N	CH	N	<i>i-</i> Pr	Cì	CF ₃	Me
CH	N	CH	И	t-Bu	CI	CF ₃	Me
СН	N	CH	N	Et	Cl	CF ₃	CF ₃
CH	N	CH	N	<i>i</i> -Pr	Cl	CF ₃	CF ₃

[0227]

【表106】

CH	N	CH	N	t-Bu	Cl	CF ₃	· CF ₃
CH	N	CH	И	Et	Cl	CF ₃	OMe
CH	N	CH	N	r-Pr	Cì	CF ₃	OMe
CH	N	CH	N	<i>t</i> -Bu	Cl	CF ₃	OMe
CH	N	CH	N	Et	Cl	CF ₃	CN
CH	N	CH	N	i-Pr	Cl	CF ₃	CN
CH	N	CH	, N	t-Bu	Cl	CF ₃	CN
СН	CH	СН	CCI	Et	Me	CF ₃	Cl
CH	CH	CH	CCI	· i-Pr	Ме	CF ₃	CI
CH	CH	CH	CCI	t-Bu	Me	CF ₃	Cl
СН	СН	CH	CCI	Et	Me	CF ₃	Br
CH	CH	CH	CCI	i-Pr	Me	CF ₃	Br
CH	CH	CH	CCl	t-Bu	Me	CF ₃	Br
CH	CH	CH	CCI	Et	Me	CF ₃	1
CH	CH	CH ,	CCI	i-Pr	Me	CF ₃	I
CH	ÇН	CH	CCI	t-Ba	Me	CF ₃	I
CH	CH	CH	CCI	Et	Me	CF ₃	F
CH	CH	CH	CC1	i-Pr	Me	CF ₃	F
CH	CH	CH	CCI	t-Bu	Me	CF ₃	F
CH	CH	CH	CCI	Et	Me	CF ₃	Me
CH	CH	CH	CCI	i-Pr	Me	CF ₃	Me
CH	CH	CH	CCI	⊬Bu	Me .	CF ₃	Me
CH	CH	CH	CCI	Et	Me	CF ₃	CF ₃
CH	CH	CH	CC1	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CCI	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	CCI	Et	Me	CF ₃	ОМе
СН	CH	CH	CCI	i-Pr	Me	CF ₃	OMe
CH	ĊН	CH	CCl	t-Bu	Me	CF ₃	OMe
CH	CH	CH	CCI	Et	Me	CF ₃	CN
CH	СH	CH	CCI	i-Px	Me	CF ₃	CN
CH	CH	CH	.CC1	t-Bu	Me	CF ₃	CN
CH	CH	CH	CCI	Et	Cl	CF ₃	Cl
CH	CH	CH	CCI	i-Pr	C1	CF ₃	Cl
CH	CH	CH	CCI.	t-Bu	ci	CF ₃	Cl
CH	CH	CH	CCI	Et	Cl	CF ₃	Br · _
CH	CH	CH	CCI	i-Pr	Cl	. CF ₃	Br
CH	CH	CH	CC1	t-Bu	Cl	CF ₃	Br

[0228]

【表107】

СН	СН	CH	CCI	Et	CI	CF ₃	I
CH	СН	СН	CCl	i-Pr	CI .	CF ₃	I
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	1
СН	CH	CH	CCI	Et	Cl	CF ₃	F
CH	CH	CH	CCI	i-Pr	Cl	CF ₃	F
CH	CH	CH	CCI	t-Bu	Cl	CF ₃	F
СН	CH	CH	CCI	Et	C1	CF ₃	Ме
CH	СН	CH	CCI	i-Pr	Cl	CF ₃	Me
СН	CH	CH	CCI	<i>t</i> -Bu	C1	CF ₃	Me
CH	CH	CH	CCI	Et	C)	CF ₃	CF ₃
CH	CH	CH	CC1	<i>i-</i> Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CC1	<i>t</i> -Bu	Cl	CF ₃	CF ₃
CH	CH	CH·	CCI	Et	Cl	CF ₃	ОМе
CH	CH	СН	CCI	<i>i</i> -Pr	ci	CF ₃	OMe
CH	CH	CH	CCl	<i>t</i> -Bu	ĊI	CF ₃	OMe
CH	CH	CH	CCl	Et	Cl	CF ₃	CN
CH	CH	CH	CCI	i-Pr	Cl	CF ₃	CN
CH	CH	CH	CCl	t-Bu	Cl	CF ₃	CN
CH	CH	CH	CF	Et	Me	CF ₃	cı
· CH	CH	CH	CF	i-Pr	Mε	CF ₃	Cl
CH	CH	CH	CF	t-Bu	Me	CF ₃	Cl -
CH	CH	CH	CF	Et	Me	CF ₃	Br
CH	CH	СН	CF	i-Pr	Me	CF ₃	Br
CH	CH	CH	CF	t-Bu	Me	CF ₃	Br
CH	CH	CH	CF	Et	Me	CF ₃	I
CH	CH	CH	CF	i-Pr	Me	CF ₃	1
CH	CH	CH	CF	t-Bu	Me	CF ₃	I
CH	CH	CH	CF	Et	Me	CF ₃	F
CH	CH	CH	CF	i-Pr	Me	CF ₃	F
CH	CH	CH	CF	t-Bu	Me	CF ₃	F
CH	CH	CH	CF	· Et	Me	CF ₃	Me
CH	CH .	CH	CF	i-Pr	Me	CF ₃	Me
CH	CH	СН	CF	t-Bu	Me	CF ₃	Mc
CH	CH	CH	CF	Et	Me	CF ₃	CF ₃
CH	CH	CH	CF	i-Pr	Me	CF ₃	CF ₃
CH	CH	CH	CF	t-Bu	Me	CF ₃	CF ₃
CH	CH	CH	CF	Et	Me	CF ₃	OMe

[0229]

【表108】

СН	СН	СН	CF.	i-Pr	Me	CF ₃	OMe
CH	СН	СН	CF	<i>t-</i> Bu	Ме	CF ₃	OMe
СН	CH	СН	CF	Et ·	Me	· CF ₃	CN
CH	СН	CH	CF	i-Pr	Me	CF ₃	CN
CH	СН	СН	CF	<i>t-</i> Bu	Me	CF ₃	CN
CH	СН	СН	CF	Et	Cl	CF ₃	CI
СН	СН	CH	CF	i-Pr	Cl	CF ₃	Cl
СН	CH	СН	CF	<i>t</i> -Bu	Cl	CF ₃	CI
СН	CH	СН	CF	Et	Cl	CF ₃	Br
СН	CH	CH	CF	i-Pr	C1	CF ₃	Br
СН	СН	CH	CF	t-Bu	CI	CF ₃	Br
CH	CH	CH	CF	Et	Cl	CF ₃	1
CH	CH	CH	CF	i-Pr	Cl	CF3	I
CH	CH	СН	CF	t-Bu	Ċl	CF ₃	1
CH	CH	CH	CF	i-Pr	Cl	CF ₃	F
CH	СН	CH	CF	t-Bu	Cl	CF ₃	F
СН	CH	CH	CF	Et	C1	· CF ₃	Me
CH	СН	CH	CF	i-Pt	Cl	CF ₃	Me
CH	CH	CH	CF	, t-Bu	CI	CF ₃	Me
CH	CH	CH	CF	. Et	Cl	CF ₃	CF ₃
. CH	CH	CH	CF	<i>i</i> -Pr	Cl	CF ₃	CF ₃
CH	CH	CH	CF	t-Bu	Cl	CF ₃	CF ₃
CH	CH	CH	CF	Et	Cl	CF ₃	OMe
CH	CH	CH	CF	i-Pr	CI	CF ₃	OMe
CH	CH	CH	CF	t-Bu	Cl	CF ₃	OMe
CH	CH	СН	CF	Et	C 1	CF ₃	CN
CH	CH	CH	CF	i-Pr	Cl	CF ₃	CN
CH	CH	CH.	CF	t-Bu	CI	CF ₃	CN
CH	CH	CH	CH	Et	Me	C ₂ F ₅	Cl
CH	CH	CH	CH	i-Pr	Me	C_2F_5	Cl
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	Cl
CH	CH	CH	CH	Et	Me	C ₂ F ₅	Br
CH	CH	CH	CH	i-Pr	Me	C ₂ F ₅	Br
CH	CH	CH	CH	t-Bu	Me	C_2F_5	Br
CH	CH	CH	CH	Et	Me	C ₂ F ₅	I
CH	CH	CH	CH	<i>i</i> -Pr	Me	C_2F_5	Ţ
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	I

[0230]

【表109】

CH	СН	СН	CH	Et	Mo	C ₂ F ₅	F
CH	CH.	CH	СН	<i>i</i> -Pr	Me	C ₂ F ₅	F
СН	CH	СН	СН	<i>t-</i> Bu	Me	C_2F_5	F
CH.	CH	СН	CH	Et	Me	C ₂ F ₅	Me
CH	CH	CH	СН	i-Pr	Ме	C_2F_5	Me
CH	CH	СН	СН	t-Bu	Me .	C ₂ F ₅	Me
CH	CH	СН	СН	Et	Me	C ₂ F ₅	CF,
CH	CH	CH	CH	i-Pr	·Me	C_2F_5	CF ₃
CH	CH	СН	CH	<i>t</i> -Bu	Me	C ₂ F ₅	CF ₃
CH	CH	CH	CH	Et	Me	C_2F_5	ОМе
CH	CH	CH	CH	i-Pr	Me	c_2 F ₅	ОМе
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	ОМе
CH	СН	CH	CH	Et:	Me	C_2F_5	CN
CH	CH	CH	CH	i-Př	Мe	C ₂ F ₅	CN
CH	CH	CH	CH	t-Bu	Me	C ₂ F ₅	CN
CH	СН	CH	CH	Et	Cl	C_2F_5	Cl
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	Cl
CH	CH	CH	CH	t-Bu	Cl	C_2F_5	Cl
CH	CH	CH	CH	Et	Cl	C_2F_5	Br
CH	CH	CH	CH	i-Pr	CI	C_2F_5	Br
CH	CH	CH	CH	t-Bu	Cl	C ₂ F ₅	Br
CH	CH	CH	CH	Et	CI	C_2F_5	ĭ
CH	CH	CH .	CH	i-Pr	CI	C_2F_5	I
CH	CH	CH	CH	t-Bu	· Cl	C_2F_5	1
CH	CH	CH	CH	Et	Cl	C_2F_5	F
CH	CH	СĤ	CH	i-Pr	Cl	C_2F_5	F
CH	CH	CH	CH	t-Bu	CI	C_2F_5	F
CH	CH	CH	CH	Et	Cl	C_2F_5	Me
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	Me
CH	CH	CH	CH.	t-Bu	CI	C ₂ F ₅	Me
. CH	CH	CH	CH	Et	CI	C_2F_5	CF ₃
CH	CH	CH	CH	i-Pr	Cl	C ₂ F ₅	CF ₃
CH	CH	CH .	CH	t-Bu	. C I	C ₂ F ₅	CF₃
CH	CH	CH	CH	Et	Cl	C ₂ F ₅	OMe
CH	CH	CH	СН	i-Pr	Cl	C_2F_5	OMe
CH	CH	CH	CH	t-Bu	Cl	C ₂ F ₅	ОМе
CH	CH	CH	CH	Et	Cl	C_2F_5	CN
							• •

[0231]

【表110】

CH CH CH CH i-Pt CI C_2F_5 CN CH CH CH CH ĊI t-Bu C₂F₅ CN

[0232]

調剤/用途

本発明の化合物は一般に、液体希釈剤、固体希釈剤又は界面活性剤の少なくとも1つを含む農業的に適した担体との調剤又は組成物として用いられるであろう。調剤又は組成物の成分は、活性成分の物理的性質、適用の様式及び環境的因子、例えば土壌の型、湿度及び温度と調和するように選ばれる。有用な調剤は溶液(乳化可能な濃厚液を含む)、懸濁剤、乳剤(マイクロエマルジョン及び/又はサスポエマルジョンを含む)などのような液体を含み、それらは場合により増粘されてゲルとなっていることができる。有用な調剤はさらに固体、例えば微粉剤、粉剤、顆粒剤、ペレット、錠剤、フィルムなどを含み、それらは水一分散性(「水和性」)又は水溶性であることができる。活性成分は(マイクロ)カプセル封入され且つさらに懸濁剤又は固体調剤とされていることができ;あるいは又、活性成分の調剤全体がカプセル封入されている(又は「オーバーコートされている」)ことができる。カプセル封入は活性成分の放出を制御するか又は遅延させることができる。スプレー噴霧可能な調剤を適した媒体中に伸展し、1ヘクタール当たり約1-数百リットルのスプレー噴霧量で用いることができる。高濃度の組成物は主に、さらに調製するための中間体として用いられる。

[0233]

調剤は典型的には有効量の活性成分、希釈剤及び界面活性剤を、合計で100 重量%となる以下の大体の範囲内で含有するであろう。

[0234]

		重量パーセント	
	活性成分	希釈剤	界面活性剤
水ー分散性及び水溶性	5 - 9 0	0 - 9 4	1 - 1 5
顆粒剤、錠剤及び粉剤			

0 - 2

90-99 0-10

懸濁剤、乳剤、溶液5-5040-950-15(乳化可能な濃厚液を含む)1-2570-990-5顆粒剤及びペレット0.01-995-99.990-15

典型的な固体希釈剤は、Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jerseyに記載されている。典型的な液体希釈剤は、Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950に記載されている。McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, ならびにSisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964は、界面活性剤及び薦められる使用を挙げている。すべての調剤は泡、ケーギング、腐食、微生物成長などを軽減するための少量の添加剤あるいは粘度を増加させるための増粘剤を含有することができる。

[0235]

高濃度組成物

界面活性剤には例えばポリエトキシル化アルコール、ポリエトキシル化アルキルフェノール、ポリエトキシル化ソルビタン脂肪酸エステル、スルホコハク酸ジアルキル、硫酸アルキル、アルキルベンゼンスルホネート、オルガノシリコーン、N,Nージアルキルタウレート、リグニンスルホネート、ナフタレンスルホネートホルムアルデヒド縮合物、ポリカルボキシレート及びポリオキシエチレン/ポリオキシプロピレンブロックコポリマーが含まれる。固体希釈剤には例えば粘土、例えばベントナイト、モントモリロナイト、アタパルジャイト及びカオリン、澱粉、糖、シリカ、タルク、ケイ藻土、尿素、炭酸カルシウム、炭酸及び重炭酸ナトリウムならびに硫酸ナトリウムが含まれる。液体希釈剤には例えば水、N

, Nージメチルホルムアミド、ジメチルスルホキシド、Nーアルキルピロリドン、エチレングリコール、ポリプロピレングリコール、パラフィン、アルキルベンゼン、アルキルナフタレン、オリーブ油、ヒマシ油、アマニ油、キリ油、ゴマ油、コーン油、落花生油、綿実油、大豆油、ナタネ油及びココナツ油、脂肪酸エステル、ケトン、例えばシクロヘキサノン、2ーヘプタノン、イソホロン及び4ーヒドロキシー4ーメチルー2ーペンタノンならびにアルコール、例えばメタノール、シクロヘキサノール、デカノール及びテトラヒドロフルフリルアルコールが含まれる。

[0236]

乳化可能な濃厚液を含む溶液は、成分を単に混合することにより調製すること ができる。微粉剤及び粉剤は配合し、通常はハンマーミル又は流体-エネルギー ミル (fluid-energy mill) などにおいて摩砕することにより 調製することができる。懸濁剤は通常湿式磨砕法により調製される;例えばU. S. 3,060,084号を参照されたい。顆粒剤及びペレットは、活性材料を 予備形成された顆粒状担体上にスプレー噴霧することによるか又は凝集法により 調製することができる。Browning,"Agglomeration", Chemical Engineering, December 4, 1967 , pp147-148. Perry's Chemical Engineer 's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pp8-57及び以下ならびにWO 91/13546を 参照されたい。ペレットはU.S.4,172,714に記載されている通りに 調製することができる。水ー分散性及び水溶性顆粒剤はU. S. 4, 144, 0 50、U.S.3,920,442及びDE3,246,493に記載されてい る通りに調製することができる。錠剤はU.S.5,180,587、U.S. 5. 232, 701及びU.S.5, 208, 030に記載されている通りに調 製することができる。フィルムはGB2,095,558及びU.S.3,29 9,566に記載されている通りに調製することができる。

[0237]

調剤の技術分野に関するさらなる情報のために、U.S.3,235,361

、6欄16行~7欄19行及び実施例10~41; U. S. 3,309,192、5欄43行~7欄62行及び実施例8、12、15、39、41、52、53、58、132、138~140、162~164、166、167及び169~182; U. S. 2,891,855、3欄66行~5欄17行及び実施例1~4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York,1961,pp81-96; ならびにHance et al., Weed Control Handbook,8th Ed.,Blackwell Scientific Publications,Oxford,1989を参照されたい。

[0238]

以下の実施例において、すべてのパーセンテージは重量により、すべての調剤 は通常の方法で調製される。化合物番号は索引表Aにおける化合物を指す。

[0239]

実施例A

水和性粉剤

化合物 1	65.	0 %
ドデシルフェノールポリエチレングリコールエーテル	2.	0 %
リグニンスルホン酸ナトリウム	4.	0 %
シリコアルミン酸ナトリウム	6.	0 %
モントモリロナイト(焼成)	23.	0 %

実施例B

顆粒剤

化合物 1 1 0.0%

アタパルジャイト顆粒 (低揮発性物質、0.71/0.30 mm;

U. S. S. No. 25-50シーブ)

90.0%

実施例C

押出ペレット

化合物 1 25.0%

無水硫酸ナトリウム	10.	0 %
粗リグニンスルホン酸カルシウム	5.	0 %
アルキルナフタレンスルホン酸ナトリウム	1.	0 %
カルシウム/マグネシウムベントナイト	59.	0 %
宝施例り		

夫虺例レ

乳化可能な濃厚液

化合物 1	20.	0 %
油溶性スルホネート及び		
ポリオキシエチレンエーテルの配合物	10.	0 %
イソホロン	70.	0 %

本発明の化合物は、成長中及び保存中の農耕作物、森林、温室作物、観賞植物 、苗床作物、保存されている食品ならびに繊維製品、家畜、家庭、公衆及び動物 の健康の有害生物である広範囲の葉-摂食性、果実-摂食性、幹-もしくは根摂 食性、種子-摂食性、水生及び土壌-棲息性節足動物(「節足動物」という用語 は昆虫、ダニ類及び線虫類を含む)に対して活性を示す。当該技術分野における 熟練者は、すべての化合物がすべての有害生物のすべての成長段階に対して等し く有効なわけではないことがわかるであろう。それにもかかわらず、すべての本 発明の化合物は:鱗翅類(Lepidoptera)の目の卵、幼虫及び成虫; 甲虫類(Coleoptera)の目の卵、葉-摂食性、果実-摂食性、根-摂 食性、種子-摂食性幼虫及び成虫;半翅類(Hemiptera)及び同翅類(Homoptera)の目の卵、未成熟虫(immatures)及び成虫;ダ 二類(Acari)の目の卵、幼虫、若虫及び成虫;アザミウマ類(Thysa noptera)、直翅類(Orthoptera)及びハサミムシ類(Der maptera)の目の卵、稚虫及び成虫;双翅類(Diptera)の目の卵 、稚虫及び成虫;ならびに線虫類(Phylum Nematoda)の卵、幼 形及び成虫を含む有害生物に対して活性を示す。本発明の化合物は膜翅類(Hv menoptera)、等翅類(Isoptera)、ノミ類(Siphona ptera)、ゴキブリ類(Blattaria)、シミ類(Thysanur a)及びチャタテムシ類(Psocoptera)の目の有害生物;クモ形類(Class Arachnida) 及び扁形動物 (Phylum Platyh elminthes)に属する有害動物に対しても活性である。特に化合物はサ ザンコーンルートワーム (Southern corn rootworm) (ディアブロチカ・ウンデシンプンクタタ・ホワルジ (Diabroyica u ndecimpunctata howardi))、アスターヨコバイ(マス クロステレス・ファシフロンス (Macrosteles fascifron s))、ボールゾウムシ(アントノムス・グランディス(Anthonomus grandis))、ナミハダニ(テトラニクス・ウルチカエ(Tetran ychus urtocae))、フォールアーミーワーム (fall arm yworm) (スポドプテラ・フルギペルダ (Spodoptera frui giperda))、ブラックビーンアブラムシ(black bean hid) (アフィス・ファバエ (Aphis fabae))、モモアカアブラ ムシ (ミズス・ペルシカ (Myzus persica))、綿アブラムシ (ア フィス・ゴシピイ (Aphys gossypii))、ロシアコムギアブラム シ (ジウラフィス・ノクシア (Diuraphis noxia))、イングリ ッシュグレインアブラムシ (English grain aphid) (シト ビオン・アベナエ (Sitobion avenae))、白バエ (ベミシア・ タバチイ(Bemisia tabacii))、タバコバズワーム(ヘリオチ ス・ビレセンス (Heliothis virescens))、ライスウォー ターゾウムシ(リソルホプツルス・オリゾフィルス(Lissorhoptru s oryzophilus))、ライスリーフビートル (rice leaf beetle) (オウレマ・オリザエ (Oulema oryzae))、ホ ワイトバックドプラントホッパー (whitebacked planthop per) (ソガテラ・フルシフェラ (Sogatella furcifera))、グリーンヨコバイ(ネフォテチクス・シンクチセプス(Nephotet tix cincticeps))、ブラウンプラントホッパー(brown planthopper) (ニラパルバタ・ルゲンス (Nilaparvata lugens))、スモールブラウンプラントホッパー(small bro wn planthopper) (ラオデルファクス・ストリアテルス (Lao

delphax striatellus))、ライスステムボーラー (ric e stem borer) (チロ・スプレサリス (Chilo suppre ssalis)), ライスリーフローラー (rice leafroller) (クナファロクロシス・メジナリス (Cnaphalocrocis medi nalis))、ブラックライススティンクバグ(black rice st ink bug) (スコチノファラ・ルリダ (Scotinophara lu rida))、ライススティンクバグ(rice stink bug)(オエ バルス・プグナクス (Oebalus pugnax))、ライスバグ (ric e bug) (レプトコリサ・チネンシス (Leptocorisa chin ensis))、スレンダーライスバグ (slender rice bug) (クレツス・プンチゲル (Cletus puntiger))、サザングリー ンスティンクバグ(southern green stink bug)(ネ ザラ・ビリヅラ(Nezara viridula))及びドイツゴキブリ(ブ ラテラ・ゲルマニカ (Blatella germanica)) に対して活性 である。化合物はダニ類に対して活性であり、テトラニクス・ウルチカエ(T e tranychus urticae)、テトラニクス・シンナバリヌス (Te tranychus cinnabarinus)、テトラニクス・ムクダニエ リ(Tetranychus mcdanieli)、テトラニクス・パシフィ クス(Tetranychus pacificus)、テトラニクス・ツルケ スタニ(Tetranychus turkestani)、ビロビア・ルブリ オクルス(Byrobia rubrioculus)、パノニクス・ウルミ (Panomychus ulmi)、パノニクス・シトリ (Panonychu s citri)、エオテトラニクス・カルピニ・ボレアリス(Eotetra nychus carpini borealis)、エオテトラニクス、ヒコ リアエ(hicoriae)、エオテトラニクス・セクスマクラツス(Eote tranychus sexmaculatus)、エオテトラニクス・ユメン シス(Eotetranychus yumensis)、エオテトラニクス・ バンクシ(Eotetranychus banksi)及びオリゴニクス・プ ラテンシス(Oligonychus pratensis)を含むテトラニシ

ダエ(Tetranychidae);ブレビパルプス・レウィシ(Brevipalpus lewisi)、ブレビパルプス・フォエニシス(Brevipalpus phoenicis)、ブレビパルプス・カリフォルニクス(Brevipalpus californicus)及びブレビパルプス・オボバツス(Brevipalpus obovatus)を含むテヌイパルピダエ(Tenuipalpidar);フィロコプツルタ・オレイボラ(Phyllocoptruta oleivora)、エリオフィエス・シェルドニ(Eriophyes sheldoni)、アクルス・コルヌツス(Aculus cornutus)、エピトリメルス・ピリ(Epitrimerus pyri)及びエリオフィエス・マンギフェラエ(Eriophyes mangiferae)を含むエリオフィダエ(Eriophyidae)のような科に対して殺卵、殺幼虫及び化学不稔化活性を示す。さらに詳細な有害生物の記載に関し、WO 90/10623及びWO 92/00673を参照されたい。

[0240]

本発明の化合物を1種又はそれより多い他の殺虫剤(insecticides)、殺菌・殺力ビ剤(fungicides)、殺線虫剤(nematocides)、殺がクテリア剤(bactericides)、殺が二剤(acaricides)、成長調節剤、化学不稔化剤、セミオケミカルズ(semiochemicals)、忌避剤、誘引剤、フェロモン類、摂食刺激剤あるいは他の生物学的に活性な化合物と混合し、さらに広範囲の農業的保護を与える多成分有害生物防除剤を形成することもできる。本発明の化合物を一緒に調製することができるそのような農業的保護剤の例は:殺虫剤、例えばアバメクチン、アセフェート、アベルメクチン、アジンフォスーメチル、ビフェンスリン、ブプロフェジン、カルボフラン、クロルフェナピル、クロルピリフォス、クロルピリフォスーメチル、クロチアニジン、シフルスリン、ベーターシフルスリン、シハロスリン、ラムダーシハロスリン、シペルメスリン、デルタメスリン、ジアフェンチウロン、ジアジノン、ジフルベンズロン、ジメトエート、ジオフェノラン、エマメクチン、エンドスルファン、エスフェンバレレート、フェノチオカルブ、フェノキシカルブ、フェンプロパスリン、フェンバレレート、フィプロニル、フルシスリ

ネート、タウーフルバリネート、フルフェノクスロン、フォノフォス、イミダク ロプリド、イソフェンフォス、マラチオン、メタルデヒド、メタミドフォス、メ チダチオン、メトミル、メトプレン、メトキシクロル、7-クロロ-2,5-ジ ヒドロー2-[[N-(メトキシカルボニル)-N-[4-(トリフルオロメト キシ)フェニル] アミノ] カルボニル] インデノ [1, 2-e] [1, 3, 4] オキサジアジン-4a(3H)-カルボン酸メチル(インドキサカルブ)、モノ クロトフォス、オキサミル、パラチオン、パラチオンーメチル、ペルメスリン、 フォレート、フォサロン、フォスメト、フォスファミドン、ピリミカルブ、プロ フェノフォス、ピメトロジン、ピリプロキシフェン、ロテノン、スピオンサド、 スルプロフォス、テブフェノジド、テフルスリン、テルブフォス、テトラクロル ビンフォス、チアクロプリド、チオジカルブ、トラロメスリン、トリクロルフォ ン及びトリフルムロン:殺菌・殺カビ剤、例えばアシベンゾラル、アゾキシスト ロビン、ベノミル、ブラスチシジン-S、ボルドー混合物(3塩基性硫酸锔)、 ブロムコナゾール、カルプロパミド(KTU 3616)、カプタフォル、カプ タン、カルベンダジン、クロロネブ、クロロタロニル、オキシ塩化銅、銅塩、シ モキサニル、シプロコナゾール、シプロジニル (CGA 219417)、(S) -3, 5-ジクロロ-N-(3-クロロ-1-エチル-1-メチル-2-オキ ソプロピル) - 4 - メチルベンズアミド (RH 7281)、ジクロシメト (S -2900)、ジクロメジン、ジクロラン、ジフェノコナゾール、(S) -3, 5-ジヒドロ-5-メチル-2-(メチルチオ)-5-フェニル-3-(フェニ ルアミノ) - 4H-イミダゾール-4-オン(RP 407213)、ジメトモ ルフ、ジニコナゾール、ジニコナゾール-M、ドジン、エジフェンフォス、エポ キシコナゾール(BAS 480F)、ファモキサドン、フェナミドン、フェナ リモル、フェンブコナゾール、フェンカラミド(SZX0722)、フェンピク ロニル、フェンプロピジン、フェンプロピモルフ、フェンチンアセテート、フェ ンチンヒドロキシド、フルアジナム、フルジオキソニル、フルメトベル(RPA 403397)、フルクインコナゾール、フルシラゾール、フルトラニル、フ ルトリアフォル、フォルペト、フォセチル-アルミナム、フララキシル、フラメ タピル(S-82658)、ヘキサコナゾール、イプコナゾール、イプロベンフ

ォス、イプロジオン、イソプロチオラン、カスガマイシン、クレソキシム-メチ ル、マンコゼブ、マネブ、メフェノキサム、メプロニル、メタラキシル、メトコ ナゾール、メトミノストロビン/フェノミノストロビン(SSF-126)、ミ クロブタニル、ネオーアソジン(メタンひ素酸第2鉄)、オキサジキシル、ペン コナゾール、ペンシクロン、プロベナゾール、プロクロラツ、プロパモカルブ、 プロピコナゾール、ピリフェノクス、ピラクロストロビン、ピリメタニル、ピロ クイロン、クイノキシフェン、スピロキサミン、硫黄、テブコナゾール、テトラ コナゾール、チアベンダゾール、チフルザミド、チオファネートーメチル、チラ ム、トリアジメフォン、トリアジメノル、トリシクラゾール、トリフロキシスト ロビン、トリチコナゾール、バリダマイシン及びビンクロゾリン;殺線虫剤、例 えばアルジカルブ、オキシミル及びフェナミフォス:殺バクテリア剤、例えばス トレプトマイシン:殺ダニ剤、例えばアミトラツ、チノメチオナト、クロロベン ジレート、シヘキサチン、ジコフォル、ジエノクロル、エトキサゾール、フェナ ザクイン、フェンブタチンオキシド、フェンプロパスリン、フェンピロキシメー ト、ヘキシチアゾクス、プロパルギテ、ピリダベン及びテブフェンピラド;なら びに生物剤、例えばバシルス・ツリンギエンシス(Bacillus thur ingiensis)、バシルス・ツリンギエンシスデルタ内毒素、バクロウィ ルス及び昆虫病原性(entomopathogenic)バクテリア、ウィル ス及び菌・カビである。

[0241]

本発明の化合物との混合に好ましい殺虫剤及び殺ダニ剤にはピレスロイド類、例えばシペルメスリン、シハロスリン、シフルスリン及びベーターシフルスリン、エスフェンバレレート、フェンバレレート及びトラロメスリン;カルバメート類、例えばフェノチオカルブ、メトミル、オキサミル及びチオジカルブ;ネオニコチノイド類、例えばクロチアニジン、イミダクロプリド及びチアクロプリド、神経ナトリウムチャンネルブロッカー、例えばインドキサカルブ、殺虫性大環状ラクトン類、例えばスピノサド、アバメクチン、アベルメクチン及びエマメクチン;GABA拮抗薬、例えばエンドスルファン及びフィプロニル;殺虫性尿素類、例えばフルフェノクスロン及びトリフルムロン、擬似幼若ホルモン、例えばジ

オフェノラン及びピリプロキシフェン; ピメトロジン; ならびにアミトラツが含まれる。本発明の化合物との混合に好ましい生物剤にはバシルス・ツリンギエンシステルタ内毒素が含まれる。

[0242]

最も好ましい混合物には、シハロスリンとの本発明の化合物の混合物;ベーターシフルスリンとの本発明の化合物の混合物;エスフェンバレレートとの本発明の化合物の混合物;メトミルとの本発明の化合物の混合物;イミダクロプリドとの本発明の化合物の混合物;チアクロプリドとの本発明の化合物の混合物;インドキサカルブとの本発明の化合物の混合物;アパメクチンとの本発明の化合物の混合物の混合物;コィプロニルとの本発明の化合物の混合物;フィプロニルとの本発明の化合物の混合物;フルフェノクスロンとの本発明の化合物の混合物;ピリプロキシフェンとの本発明の化合物の混合物; との本発明の化合物の混合物;ピメトロジンとの本発明の化合物の混合物;アミトラツとの本発明の化合物の混合物;パシルス・ツリンギエンシスとの本発明の化合物の混合物が含まれるシルス・ツリンギエンシスデルタ内毒素との本発明の化合物の混合物が含まれる

[0243]

ある場合には、類似の抑制範囲を有するが、作用の様式が異なる他の殺節足動物剤との組み合わせが耐性の処理に特に有利であろう。

[0244]

1種もしくはそれより多い本発明の化合物を有効量で、農耕的及び/又は非農耕的出没場所を含む有害生物の環境、保護されるべき地域あるいは直接抑制されるべき有害生物に適用することにより、有害節足動物が抑制され、農耕作物、園芸作物及び特殊作物、動物及び人間の健康の保護が達成される。かくして本発明はさらに、1種又はそれより多い本発明の化合物あるいは少なくとも1種のそのような化合物を含む組成物を有効量で、農耕的及び/又は非農耕的出没場所を含む有害生物の環境、保護されるべき地域あるいは直接抑制されるべき有害生物に適用することを含む、葉及び土壌棲息性有害節足動物及び線虫の抑制ならびに農耕的及び/又は非農耕的作物の保護のための方法を含む。好ましい適用法はスプ

レー噴霧による。あるいは又、これらの化合物の顆粒状調剤を植物の葉又は土壌に適用することができる。他の適用法には、直接及び残留性スプレー(directanderight irectanderight i

[0245]

本発明の化合物をそれらの純粋な状態で適用することができるが、最も頻繁な適用は、1種もしくはそれより多い化合物を適した担体、希釈剤及び界面活性剤と一緒に且つおそらく意図されている最終的用途に依存して食物と組み合わせて含む調剤の適用である。好ましい適用法は、化合物の水分散液又は精製油溶液のスプレー噴霧を含む。スプレー油、濃厚スプレー油、粘着展延剤、添加剤、他の溶剤及び相乗剤、例えばピペロニルブトキシドとの組み合わせは、化合物の効力を強化することが多い。

[0246]

有効な抑制に必要な適用率は、抑制されるべき節足動物の種、有害生物の生活 環、発育段階、その大きさ、場所、季節、宿主作物又は動物、食性、配偶挙動、 周囲湿度、温度などのような因子に依存するであろう。通常の状況下では $1 \land 0 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 2 \ne 0$ の $1 \land 3 \ne 0$ の $1 \land$

[0247]

以下の試験は本発明の化合物の特定の有害生物への抑制効力を示す。「抑制効力」は摂食を有意に減少させる節足動物の生育の阻害(死亡率を含む)を示す。 しかしながら化合物により与えられる有害生物抑制保護はこれらの種に限られない。化合物の記述に関しては索引表A~Qを参照されたい。下記の索引表におい て以下の略字を用いる: t は第 3 級であり、n はノルマルであり、i はイソであり、c はシクロであり、s は第 2 級であり、Me はメチルであり、E t はエチルであり、Pr はプロピルであり、i-Pr はイソプロピルであり、c-Pr はシクロプロピルであり、Bu はブチルであり、s-Bu は第 2 級ブチルであり、Pe e n t はペンチルであり、OMe はメトキシであり、OE t はエトキシであり、OMe はメチルチオであり、SE t はエチルチオであり、CN はシアノであり、 NO_2 はニトロであり、He t は複素環である。「E x.」の略字は「実施例」を示し、C 化合物が製造される実施例を示す数字が続く。

[0248]

【表111】

索引表A

示されている場合を除いてBはOである

化合物	\mathbb{R}^{1}	R ²	R ³	R ⁴	R ⁵ 及び/又は R ⁶	融点。℃
1 (Ex 1)	н	i-Pr	Н	2-Me	4-OCF ₃	207-209

[0249]

【表112】

						•
2	Н	i-Pr	H	5-C1	2-CF ₃	195-196
3	н	i-Pr	H	5-C1	2-Me-4-CF3	182-184
4	н	i-Pr	H	2-Me	4-CF ₃	238-240
5	Н	i-Pr	H	2-Me	4-CO ₂ Me	216-217
6	н	i-Pr	H	2-Me	3-NO ₂	230-233
7	H	i-Pr	H	2-Me	3-CF ₃ -4-F	223-225
8	н	i-Pr	н	2-Me	3-CN	237-239
9	н	i-Pr	H	2-Me	2-OCF ₃	191-193
10	Н	t-Bu	H	2-Me	4-OCF ₃	163-167
11	Ħ	t-Bu	H	2-Me	4-CO ₂ Me	164-169
12	н	i-Pr	н	2-C1	4-CO ₂ Me	224-225
13	н	t-Bu	H	2-Me	2-OCF ₃	203-204
14	H	t-Bu	H	2-Me	3-NO ₂	193-195
15	Н	t-Bu	H	2-Mc	3-CF ₃ -4-F	198-199
16	H	i-Pr	H	2-ОМе	4-OCF ₃	178-181
17	H	i-Pr	H	2-Me	2-OCF ₃	170-172
18	H	i-Pr .	Ħ	2-OMe	3-CF ₃ -4-F	209-211
19	Ħ	i-Pr	H	2-C1	4-OCF ₃	215-216
20	H	i-Pr	Me	2-Me	2-OCF ₃	153-155
21	H	i-Pr	·H	5-Me	4-OCF ₃	173-175
22	H	i-Pr	H	5-Me	2-OCF ₃	180-185
23	Н	i-Pr	H	5-Me	4-CO ₂ Me	182-184
24	H	i-Pr	Мс	2-Me	4-OCF ₃	がラス状
25	H	i-Pr	Me	2-Me	4-CO ₂ Me	67-73
26	H	(1,2->-Me)-Pr	H	2-Me	4-OCF ₃	189-191
27	H	CH(CH ₃)CH ₂ OCH ₃	H	2-Me	4-OCF ₃	147-148
28	н	CH ₂ CH ₂ OCH ₃	H	2-Me	4-OCF ₃	153-155
29	H	2-Pent	H	2-Me	4-OCF ₃	165-168
30	H	s-Bu	H	2-Me	4-OCF ₃	181-183
31	Н	ブロバルキル	H	2-Me	4-OCF ₃	190-192
32	H	n-Pr	H	2-Mc	4-0CF ₃	189-191
33	H	allyl	H	2-Me	4-OCF ₃	185-187
34	H	Me2NCH2CH2	H	2-Me	4-OCF ₃	168-170
35	H	プロバルキル	H	2-Me	4-OCF ₃	202-204
36	H	i-Bu	·H	2-Me	4-OCF ₃	182-183
37	H	3-Pr	H	2,4->-Me	4-OCF ₃	205-208
38	H	i-Pr	H	2,4-ジ-Me	4-CF ₃	> 230

[0250]

【表113】

39	H	i-Pr	H	2,4->'-Me	2-OCF3	231-232
40	H	i-Pr	H	2,4-∵-Me	4-CO ₂ Me	219-221
41	H	i-Pr	н	2,4-ジ-Me	3-CF ₃ -4-F	222-224
42	H	t-Bu	H	2-OMe	4-CF ₃	210-214
43	Н	t-Bu	Н	2-OMe	4-OCF ₃	170-173
44	Н	i-Pr	Me	2-Me	3-NO ₂	油状
45	H	i-Pr	H	2-C1	4-OCF3	187-194
46	H	t-Bu	H	2-C1	4-OCF ₃	205-207
47	H	allyl	н	2-C1	4-OCF ₃	188-189
48	H	s-Bu	H	2-C1	4-OCF ₃	192-193
49	H	-СН ₂ СН ₂ СН ₂ СН	[!] 2-	2-Me	4-OCF ₃	138-142
50	H	CH ₂ CF ₃	H	2-Me	4-OCF ₃	> 230
51	H	c-Bu	H	2-Me	4-OCF3	218-220
52 (Ex 3)	H	i-Pr	H	2-Me	2-Me-4-CF ₃	247-248
53	н	i-Pr	Н	5-Me	2-Me-4-CF3	186-188
54	H	i-Pr	н	H	4-OCF ₃	185-187
55	H	i-Pr	H	H	3-NO ₂	199-200
56	н	i-Pr	H	н	2-OCF3	118-122
57	Me	i-Pr	H	H	4-OCF ₃	117-118
58	Me	i-Pr	H	H	3-NO ₂	134-136
59	Me	i-Pr	Н	H	2-OCF ₃	128-130
60	Н	i-Pr	H	H	3-CF ₃	176-177
61	Н	i-Pr	H	H	2-Mo-4-CF3	100-106
62	Н	Me	Ĥ.	2-Me	4-OCF ₃	204-206
63	H	Et	H	2-Me	4-OCF ₃	198-200
64	Н	NHi-Pr	H	2-Me	4-OCF ₃	126-128
65	H	i-Pr	H	2-Me	3-CF ₃	198-200
66	H	i-Pr	H	2-Me	4-CN	> 230
67	H	i-Pr	H	2-Me	2-NO ₂	> 230
68	H	i-Pr	H	2-Me	3,5-di-CF ₃	> 230
69	H	i-Pr	H	2-Mc	4-NO ₂	227-230
70	H	i-Pr	H	2-Me	2-CF ₃	227-230
71	H	i-Pr	H	H	2-Mo-4-OCF ₃	118-124
72	H	i-Pr	Ħ	H	4-CF ₃	196-198
73	H	i-Pr	H	2-Me	2-Me-4-SCF ₂ H	212-213
74	H	t-Bu	H	2-Me	2-Me-4-SCF ₂ H	193-195
75	H	i-Pr	H	2-Me	2-Me-4-OCF ₃	221-222

[0251]

【表114】

76	H	t-Bu	H	2-Me	4-CF ₃	217-219
77	H	t-Bu	н	2-Me	3-CF ₃	197-198
78	н	t-Bu	н	2-Me	3,5-di-CF ₃	206-207
79	н	t-Bu	н	2-Me	4-CN	> 230
80	н	t-Bu	H	2-Me	4-NO ₂	> 230
81	Me	i-Pr	H	2-Me	2-CF ₃	油状
82	Me	i-Pr	н	2-Me	4-OCF ₃	151-157
83	Mŧ	i-Pr	H	н	2-Me-4-OCF3	103-107
84	Me	t-Bu	н	2-Me	2-Me-4-CF ₃	233-234
85	H	t-Bu	н	2-Me	2-Me-4-OCF3	207-209
86	H	t-Bu	H	, 2-Mc	2,5-di-CF ₃	199-201
87	н	i-Pr	H	2-CF3	4-OCF ₃	183-185
88	н	i-Pr	Ħ	2-CF3	4-CF ₃	211-212
89	H	t-Bu	H	2-CF3	4-CF ₃	191-192
90	H	R-(-)-s-Bu	н	2- M e	4-OCF ₃	170-172
91	H	S-(+)-s-Bu	H	2-Me	4-OCF ₃	177-179
92	Me	i-Pr	H	н	4-CF ₃	油状
93	Me	i-Pr	H	2-OCF ₂ H	4-OCF ₃	162-164
94	н	t-Bu	H	2-CF3	4-OCF ₃	145-148
95	н	i-Pr	Me	2-CF ₃	4-CF3	151-154
96	н	i-Pr	Me	2-CF ₃	4-OCF ₃	140-144
97	H	i-Pr	H	2-OCF ₂ H	4-CF ₃	224-227
98	H	i-Pr	H	2,4->-Me	2-Me-4-CF ₃	> 230
99	Н	i-Pr	H	2-Cl	2-Me-4-CF3	>230
100	н	CH(CH ₃)CH ₂ OCH ₃	H	2-Cl	2-Me-4-CF ₃	194-197
101	н	s-Bu	H	2-C1	2-Me-4-CF ₃	212-214
102	H	c-Pr	H	2-Me	4-OCF ₃	208-210
103	H	CH(CH ₃)CH ₂ OCH ₃	H	2,4->-Me	4-OCF ₃	166-168
104	н	CH(CH ₃)CH ₂ OCH ₃	H	2,4->-Me	4-CF ₃	192-194
105	н	i-Pr	H	4-Me	4-CF ₃	212-213
106	н	i-Pr	H.	4-Mc	4-OCF ₃	204-205
107	н	i-Pr	H	2-Br-4-Me	4-OCF ₃	> 230
108	н	t-Bu	H	2-Br-4-Me	4-OCF ₃	118-120
109	Н	i-Pr	H	2-NO ₂	4-CF ₃	203-204
110	H	t-Bu	H	2-NO2	4-CF ₃	199-200
111	н	i-Pr	H	2-NO ₂	4-OCF ₃	204-205
112	H	t-Bu	H	2-NO ₂	4-OCF ₃	181-183

[0252]

【表115】

113	H	i-Pr	Н	2-Me	2-Me-4-S(O) ₂ CF ₂ H	218-221
114	H	i-Pr	H	2-Me	2-Me-4-S(O)CF ₂ H	203-206
115	H	CH(CH ₃)CH ₂ OCH ₃	H	3-C1	4-CF ₃	158-161
116	H	i-Pr	Н	4-Br	4-CF ₃	232-234
117	H	t-Bu	Н	4-Br	4-CF ₃	204-206
118	Ħ	СН(СН3)СН2ОСН3	Н	4-Br	4-CF3	157-158
119	H	i-Pr	Н	4-Br	4-OCF3	221-222
120	Ħ	t-Bu	H	4-Br	4-OCF ₃	173-175
121	н	СН(СН3)СН2ОСН3	Н	4-Br	4-OCF ₃	153-155
122	н	CH(CH ₃)CH ₂ OCH ₃	H	3-C1	4-OCF ₃	137-140
123	н	i-Pr	Н	4-F	4-CF ₃	205-206
124	H	t-Bu	H	2-Cl	2-Me-4-CF3	237-240
125	H	2-Pent	H	2-Me	4-CF ₃	194-196
126	н	s-Bu	H	2-Me	4-CF ₃	207-210
127	H	Et	H	2-Me	4-CF ₃	> 240
128	H	Mc	H	2-Me	4-CF ₃	236-237
129	H	i-Pr	H	4-F	4-0CF ₃	208-209
130	H	CH(CH ₃)CH ₂ OCH ₃	H	4-F	4-OCF ₃	151-152
131	H	CH(CH ₃)CH ₂ OCH ₃	H	2-Me	4-CF ₃	188-190
132	CH ₂ CO ₂ Me	i-Pr	H	H	4-CF ₃	油状
133	CH ₂ CO ₂ Me	i-Pr	H	H	4-OCF ₃	油状
134	Me	Et	H	2-Me	4-CF ₃	油状
135	Me	Et	H	2-Me	4-OCF ₃	油状
136	Me	Et	Ħ	2-Mc	2-Me-4-SCF ₂ H	132-136
137	н	CH(CH ₃)CH ₂ OCH ₃	Ħ	2-Me-4-Br	4-CF ₃	197-199
138	н	CH(CH ₃)CH ₂ OCH ₃	H	2-Me-4-Br	4-OCF ₃	188-190
139	. Н	i-Pr	H	3-C1	4-CF ₃	201-202
140	H	t-Bu	H	3-Cl	4-CF ₃	159-161
141	H	i-Pr	H	3-Cl	4-OCF ₃	190-192
142	н	t-Bu	H	3-Cl	4-OCF ₃	150-152
143	н	iPr	H	2-Br-4-Me	4-CF ₃	>230
144	H	t-Bu	H	2-Br-4-Me	4-CF ₃	213-215
145	H	сн(сн ₃)сн ₂ осн ₃	H	5-F	4-CF ₃	145-147
146	H	so ₂	H	2-Me	4-CF ₃	>230
147	H	i-Pr	H	2-Me	2-F-4-CF ₃	224-226
148	H	i-Pr	Н	2-Me	2-CF ₃ -4-F	223-225
•						

[0253]

【表116】

149	H	t-Bu	H	4-F	4-OCF ₃	180-187
150	H	СН(СН3)СН2ОСН3	Ħ	2-Me	2-Me-4-CF3	194-197
151	H	Me	H	2-Me	2-Mo-4-CF3	>230
152	H	Et	H	2-Me	2-Me-4-CF3	243-245
153	н	SO ₂	н	2-Me	2-Me-4-CF ₃	>230
154	н	i-Pr	H	3-NO ₂	4-CF ₃	244-246
155	н .	i-Pr	н	3-NO ₂	4-OCF ₃	239-240
156	H	t-Bu	H	3-NO ₂	4-OCF ₃	180-184
157	H	CH(CH ₃)CH ₂ OCH ₃	H	3-NO ₂	4-OCF ₃	172-175
158	H	t-Bu	H	3-NO ₂	4-CF ₃	194-196
159	H	CH(CH ₃)CH ₂ OCH ₃	Н	3-NO ₂	4-CF ₃	178-179
160	H	i-Pr	H	2-Cl	4-CF ₃	>230
161	н	СН(СН3)СН2ОСН3	H	2-C1	4-CF ₃	182-185
162	н	t-Bu	H	5-C1	2-Me-4-CF3	203-205
163	H	CH(CH ₃)CH ₂ OCH ₃	H	5-Cl	2-Me-4-CF3	154-155
164	н	i-Pr	H	2-Me	2,4-(CF ₃) ₂	>230
165	н	i-Pr	H	2-Me	3,4-OCF ₂ O-	199-200
166	н	CH ₂ CN	H	2-Me	4-CF ₃	218-223
167	н	CH(CH ₃)Ph	H	2-Me	4-CF ₃	225-228
168	н	CH(CH3)Ph	H	2-Me	4-OCF ₃	208-210
169	H	t-Bu	H	2-C1	4-CF ₃	191-193
170	н	i-Pr	Me	2-C1	4-CF ₃	136-140
171	H	i-Pr	н	2-Me	4-SO ₂ CH ₃	>250
172	Н	i-Pr	H	5-C1	4-CF ₃	217-218
173	H	t-Bu	н	5-C1	4-CF ₃	231-235
174	H	CH(CH ₃)CH ₂ OCH ₃	H	5-Ci	4-CF ₃	175-177
175	н	i-Pr	H	4-1	4-CF ₃	>230
176	н	t-Bu	н	4-I	4-CF ₃	215-219
177	H	СН(СН3)СН2ОСН3	H	4-1	4-CF ₃	173-178
178	н	i-Pr	H	4-I	4-OCF ₃	>230
179	H	t-Bu	Н	4-I	4-OCF ₃	192-194
180	H	CH(CH ₃)CH ₂ OCH ₃	н	4-I	4-OCF ₃	178-180
181	н	CH2(3-ヒリシニル)	H	2-Me	4-CF ₃	198-199
182	H	CH ₂ CN	н.	2-Mc	2-Me-4-CF3	>230
183	н	CH(CH ₃)CO ₂ CH ₃	н	2-Me	4-CF ₃	223-225
184	н	i-Pr	H	2-F	4-CF ₃	228-229
_						

[0254]

【表117】

185	н	i-Pr	H	5-F	4-CF ₃	169-170
186	н	i-Pr	Н	2-F	2-Me-4-OCF3	206-208
187	н	i-Pr	H	5-F	2-Me-4-OCF3	125-126
188	н	i-Pr	H	2-F	2-Mc-4-CF3	234-235
189	H	i-Pr	H	5-F	2-Me-4-CF3	133-135
190	н	CH2(3-ピリジニル)	H	2-Me	4-OCF ₃	201-202
191	н	CH2CH2SCH3	H	2-Me	4-CF ₃	187-188
192	н	CH ₂ CH ₂ SCH ₃	H	2-Me	2-Me-4-CF3	250-251
193	H	CH2CH2SEt	H	2-Me	4-CF ₃	190-191
194	н	CH2CH2SEt	H	2-Me	2-Me-4-CF ₃	228-230
195	н	CH(CH ₃)CH=CH ₂	H	2-Me	2-Me-4-CF3	211-214
196	н	i-Pr	H	2-Et	4-CF ₃	228-230
197	н	СН(СН3)СН2ОСН3	H	2-Et	4-CF ₃	176-177
198	н	i-Pr	H	2-Me	3,4-OCF ₂ CF ₂ O-	218-220
199	H	i-Pr	Н	2-Me	2-(CONMe2)-4,5-Cl2	229-230
200	H	i-Pr	H	2-Me	2-(CO-1-ビペリジニル)-	202-205
					4,5-Cl ₂	
201	H	t-Bu	H	2-Et	4-CF ₃	187-191
202	H	CH(CH ₃)CH ₂ SCH ₃	H	2-Et	2-Me-4-CF ₃	206-208
203	H	i-Pr	H	2-Me	2-(CONMe2)-4-Br	191-194
204	H	i-Pr	H	2-Me	2-(CONMe2)-5-Br	190-194
205	H	CH(CH ₃)CH ₂ SO ₂ CH ₃	H	2-Me	2-Me-4-CF3	231-233
206	H	c-Pr	H	2-Me	2-Me-4-CF ₃	258-261
207	H	c-Pr	Ħ	2-C1	2-Mc-4-CF ₃	>260
208	H	i-Pr	H	2-I	2-Me-4-OCF ₃	241-242
209	н	i-Pr	H	2-I	2-Me-4-CF ₃	260-262
210	H	i-Pr	H	2-Me	2-(CONMe2)-4-F	164-170
211	H	i-Pr	H	2-Me	2-(CONMe ₂)-5-F	167-171
212	H	i-Pr	H	2-Me	2-(CO-1-ビペリジニル)-4-	105-117
		•			Br	
213	H	сн(сн ₃)сн ₂ он	H.	2-Me	2-Me-4-CF ₃	179-180
214	H	СН(СН ₃)СН ₂ ОН	· H	2-C1	2-Me-4-CF3	183-185
215	H	i-Pr	H	2-C1	2-(CONMe ₂)-4-Br	165-170
216	H	i-Pr	H	2-C1	2-(CONMe ₂)-5-Br	
217	H	i-Pt	H	2-Me	2-(3-CF ₃ -1-ピラゾリル)-4-	243-244
					CF ₃	
218	H	i-Pr	Н	2-Me	2-(1-(1,2,4-トリアゾリル))-4-	238-240

[0255]

【表118】

	•				CF ₃	
219	н	i-Pr	н.	2-Me	2-(3-Br-1-ピラゾリル)-4-	>250
			•	•	CF ₃	
220	н	i-Pr	н	2-Me	2-(3-CN-1-ピラゾリル)-4-	>250
					CF ₃	
221	н	i-Pr	H	2-Me	2-(4-CF3-1-159'Y'IA)-	>250
_					4-CF ₃	
222	н	i-Pr	H	2-Me	2-(3-CH ₃ -1-ピラソ゚リル)-	248-250
					4-CF ₃	
223	Н	i-Pr	H	2-Me	2-(2-CH ₃ -1-イミタ'ソ'リル)-	186-188
					4-CF ₃	
224	H	i-Pr	H	2-Me	2-(3-CF3-1-(1,2,4-	254-256
					トリアソ ル))-4-CF ₃	
225	Н	i-Pr	H	2-Me	2-(1-ピラソ゚リル)-4-CF3	246-248
226	н	i-Pr	H	2-Mc	2-(3-CO ₂ Et-5-Me-1-	224-225
					ピラソリル)-4-CF3	
227	Н	i-Pr	H	2-Me	2-(1-125'Y'IIN)-4-CF3	240-241
228	н	i-Pr	H	2-Me	2-(3-CF ₃ -5-Me-1-	229-231
•					t*ラソ'リル)-4-CF3	
229	H	i-Pr	H	2-Me	2-(3,5-Me ₂ -1-ピラゾリル)-	214-218
					4-CF ₃	
230	Н	i-Pr	H	2-Me	2-(2,4-Me ₂ -1-	246-248
					イミダケリル)-4-CF3	
231	H	i-Pr	H	2-Me	2-(4-Me-1-イミタンリル)-	223-225
					4-CF ₃	
232	Н	i-P r	H	2-C1	2-(3-CF ₃ -1-t'7)''), N)-4-	>250
222	Н,	/ D=	77	2.6	CF ₃	252 254
233	п	i-Pr	H	2-Ci	2-(1-(1,2,4-トリアゾリル))-4-	252-254
234	н .	i-Pr	·H	2-C1	CF ₃ 2-(3-Br-1-ピラゾリル)-4-	>250
234		PI	·U	2-C1	CF ₃	7230
235	н	i-Pr	H.	2-Cl	2-(3-CO ₂ Et-5-Me-1-	220.221
233		1-11	**	2-01	E'59'UN)-4-CF3	220-321
236	н	i-Pr	н	2-Cl	2-(4-CO ₂ Me-1-	255-257
			**	2-01	1ミタンリル)-4-CF3	ا بسه-دنیم
237	Н	i-Pr	H	2-C1	2-(3-CN-1-t"ラン"リル)-4-	>250
					CF ₃	
					J	

[0256]

【表119】

238	Н	j-Pr	H	2-C1	2-(1-イミダンリル)-4-CF3	248-249
239	Н	i-Pr	H	2-Me	2-(4-CO ₂ Me-1-	219-222
					155'Y'UN)-4-CF3	
240	H	i-Pr	Ħ	2-Me	2-(2- fi=n)-4-CF3	241-243
241	н	i-Pr	H	2-Me	2-(3-71=N)-4-CF3	229-231
242	н	i-Pr	H	2-Me	2-(2-75=N)-4-CF3	246-247
243	H	i-Pr	H	2-Me	2-(3-t-Bu-1-ピラゾリル)-4-	247-249
					CF ₃	
244	H	і-Рт	H	2-Me	2-(3-s-Bu-1-ピラゾリル)-	224-225
					4-CF ₃	
245	H	i-Pr	H	2-Me	2-(3-c-Pr-1-ピラソリル)-4-	220-221
					CF ₃	
246	Н	i-Pr	н	2-Me 2	:-(3-Me-5-イソオキサゾリル) -4-	233-234
					CF ₃	
247	H	i-Pr	H	2-Me	2-	>250
					N	
	•				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
					-4-CF ₃	
248	H	i-Pr	H	2-Me	2-(CONM ₆₂)-4-CF ₃	188-192
249	H	i-Pr	H	2-Me	2-(CONM ₂)-5-CF ₃	194-196
250	н	i-Pr	H	2-Me	2-(CO-1-ピロリシニル)-4-	201-204
					CF ₃	
251	H	i-Pr	H	2-Me	2-(CO-1-t'ロリシ'ニル)-5-	221-223
					CF ₃	
252	H	i-Pr	Н	2-Me	2-OCH3-4-CF3	188-189
253	H	i-Pr	Н	2-Me	2-(3-Cl-5-イソオキサゾリル)-4-	247-248
					CF ₃	
254	H	i-Pr	H	2-Me	2-Oi-Pr-4-CF ₃	158-159
255	H	i-Pr	н	2-Cl	2-(4-Mc-1-ピラゾリル)-4-	252-253
					CF ₃	
256	H	i-Pr	H	2-Me	2-(4-Me-1-ビラゾリル)-4-	226-227
	•				CF ₃	
257	· H	i-Pr	H	2,5-Cl ₂	2-Me-4-CF ₃	235-237
258	H	i-Pr	H	2-Me	4-Ph	221-224
259	H	i-Pr	H	2-Me	4-(4-OCH ₃)Ph	->230
260	H	i-Pr	H	2-Me	4-(2-Me)Ph	156-158
261	н	i-Pr	H	2-Me	4-(3-CH ₃)Ph	225-226

[0257]

262	Н	i-Pr	H	2-Me	4-(3-CF ₃)Ph	214-215
263	Н	i-Pr	H	2-Me	4-(4-F)Ph	>230
264	H	-CH2CH2CH2CH2	<u>-</u>	2-C1	3-C1	158-161
265	н	so ₂	H	2-Me	4-OCF ₃	>230
266	н	i-Pr	н	2-CF ₃	2-Me-4-Br	>230
267	H	t-Bu	H	2-CF ₃	2-Me-4-Br	234-236
268	н	i-Pr	Me	2-CF ₃	2-Me-4-Br	154-158
269	н	CH(CH ₃)CH ₂ OCH ₃	H	2-CF ₃	2-Me-4-Br	202-204
270	н	s-Bu	H	2-CF ₃	2-Me-4-Br	>230
271	н	S-ヘンチル	H	2-CF ₃	2-Me-4-Br	215-217
272	Н	i-Pr	H	2-CH ₃	2-Me-4-CF ₃	>230
273	н	i-Pr	Me	2-OCHF ₂	2-Me-4-Br	224-227
274	Н	i-Pr	H	2-CH ₃	2-(CONMe ₂)-4-CF ₃	130-137
275	BはSであるH	i-Pr	H	2-Me	2-Me-4-CF3	193-195
276	H	i-Pr	H	2-C1	2-(1-ピラゾリル)-4-CF ₃	249-250
277	BはSであるH	i-Pr	H	2-Me	4-OCF ₃	169-171
278	BはSであるH	i-P r	H	2-Me	4-CF ₃ Ph	204-206
			_			

索引表B

$$R^{7(c)}$$
 $R^{7(a)}$
 示されている場合を除いてR⁷(c)はHであり 且つ示されている場合を除いてBはOである

化合物	R ²	R ³	(R ⁴) _n	R ⁷ (a)	R ⁷ (b)	融点℃
B1 (Ex. 4)	i-Pr	H	2-Me	CF ₃	CH ₃	247-248
B2	і-Рт	Ħ	2-Me	OCH ₂ CF ₃	H	188-191
В3	i-Pr	H	2-C1	CF ₃	CH ₃	234-236
B4	t-Bu	H	2-C1	CF ₃	CH ₃	243-245
B5	CH(CH ₃)CH ₂ OCH ₃	H	2-Cl	CF ₃	СН3	198-201
B6 .	CH(CH ₃)CH=CH ₂	H	2-Me	CF ₃	CH ₃	226-227
В7	i-Pr	H	2-Cl	OCH ₂ CF ₃	н	⁻ 208 - 210

[0258]

【表121】

B8	t-Bu	н	2-C1	OCH ₂ CF ₃	н	174-175
B9	СН(СН ₃)СН ₂ ОСН ₃	H	2-C1	OCH ₂ CF ₃	H	163-165
B10	i-Pr	H	2-Me	CF ₃	н	208-211
BII	CH(CH ₃)CH ₂ OCH ₃	H	2-Me	CF ₃	CH ₃	187-191
B12	s-Bu	H	2-Me	CF ₃	CH ₃	215-218
B13	2-ヘンチル	H	2-Me	CF ₃	CH ₃	213-215
B14	i-Pr	H	2-Me	Cl	H	235-237
B15	i-Pr	H	2-Me	H	Cl	235-237
B16	i-Pr	H	2-OCHF ₂	CF ₃	CH ₃	221-224
B17	i-Pr	H	2-Me	CF ₂ CF ₃	CH ₃	208-209
B18	t-Bu	H	2-Me	CF ₂ CF ₃	CH ₃	211-212
B19	CH(CH ₃)CH ₂ OCH ₃	H	2-Me	CF ₂ CF ₃	CH ₃	193-196
B20	t-Bu	H	2-CF ₃	CF ₃	CH ₃ .	>250
B2 I	t-Bu	H	2-CF ₃	CF ₃	CH ₃	218-222
B22	CH(CH ₃)CH ₂ OCH ₃	H	2-CF ₃	CF ₃	СН3	200-202
B23	i-Pr	H	2-Me	CF ₃	Br	253-255
B24	CH(CH ₃)CH ₂ SCH ₃	Ħ	2-Me	CF ₃	CH ₃	222-223
B25	CH(CH ₃)CH ₂ CN	H	2-Me	CF ₃	CH ₃	230-232
B26	CH ₂ CH ₂ CN	H	2-Me	CF ₃	CH ₃	>260
B27	c-Pr	H	2-Me	CF ₃	CH ₃	>260
B28	i-Pτ	H	2-Me	CF ₃	OCH ₃	181-183
B29	i-Pr	H	2-Me	CI	CH ₃	246-247
B30	· i-Pr	Н	2-Me	CF ₃	Ph	>250
B31	i-Pr	H	2-I	CF ₃	CH ₃	256-257
B32	i-Pr	H	2-F	CF ₃	CH ₃	218-220
B33	і-Рт	Н	5-F	CF ₃	CH ₃	144-146
B34	CH(CH ₃)CH ₂ SO ₂ CH ₃	H	2-Me	CF ₃	CH ₃	243-245
B35	CH(CH ₃)CH ₂ OH	H	2-Me	CF ₃	CH ₃	222-223
B36	CH(CH ₃)CH ₂ CO ₂ CH ₃	H	2-Me	CF ₃	CH ₃	204-206
B37	i-P r	H.		CF ₃	CH ₂ OCH ₃	241-242
B38	i-Pr	H	2-Me	CF ₃	CH ₂ CH ₃	229-231
B39	i-Pr	H	2-Me	CH ₃	Cl	236-237
B40	i-Pr	H	2-Me	CH ₃	2-ピリジニル	278-281
B41	t-Bu	H	2-Me	CF ₃	CH ₃	234-236
B42	j-Pt	H	2-Me .	CF ₃	n-Pr	224-226
B43	i-Pr	Me	2-Me	CF ₃	CH ₃	202-205
B44	i-Pr	H	2-Me	c-Pr	CH ₃	226-229

[0259]

【表122】

B45	i-	Pr	н	2-Me	с-Рт	CH ₃ , HCl塩	>230
B46	i-	Pr	н	2-Me	CF ₃	Cl	248-254
B47	i-	-Pr	H	2-Me	CF ₃	i-Pr	235-237
B48	į.	-Pr	Н	2-Me	CF ₃	1-(1,2,4-トリアン゙リル	>260
B49	i-	-Pr	Н	2-Br	CF ₃	CH ₃	247-248
B50	j.	-Pr	н	2-Me	OCH ₂ CF ₃	CH ₃	150-160
B51	j	-Рт	н	2-Me	CF ₃	2・フェノキシ	231-232
B52	j	-Pr	н	2-Me	CF ₃	1- モルネリニル	>250
B53	i	-Pr	H .	2-Me	CF ₃	1-(3-CF ₃ -イミダゾリル)	247-250
B54	j	-Pr	н	2-Me	CF ₃	1-(3-Br-ピラゾリル)	>260
B55	i	-Рт	н	2-Me	CF ₃	1-(3-CF ₃ -ピラソ゚リル)	>260
B56	i	i-Pr	H	2-Me	CF ₃	1-((3-CF ₃)-1,2,4-トリアゾリルン	>260
B57	i	i-Pr	н	2-Me	CF ₃	1-((3-CN)-1,2,4-トリアソリル)	>260
B58	i	i-Pr	H	2-Me	i-Bu	Cl	185-190
B59	į	i-Pr	H	2-Me	CF ₃	2-MePh	200-203
B60	:	i-Pī	H	2-Me	i-Pr	CH ₃	186-190
B61		i-Pr ,	Н	2-Me	Ph	Cl	229-234
B62		i-Pr	H	2-Me	CF ₃	SCH2CH(CH3)2	230-231
B63		i-Pr	H	2-Me	CF2CF3	CH ₂ CH ₃	209-211
B64		j-Pr	H	2-Me	CF ₃	1-ピラゾリル	>250
B65		i-Pr	H	2-Me	CF2CF3	H	>250
B66		i-Pr	H	2-Me	CF ₂ CF ₃	i-Pr	209-212
B67		i-Pr	H	2-Me, 4-Br	CF ₃	CH ₃	>250
B68		i-Pr	H	2-Me	OCH ₂ CF ₃	n-Pr	165-169
B69		i-Pr	H	2-Me	Cl	n-Pr	200-205
B 70		i-Pr	H	2-Me	Cl	Et	200-205
B71		i-Pr	н	2-Me	CF ₃	CN	214-215
B72		i-Pr	H	2,5-Cl ₂	CF ₃	CH ₃	>240
B73		i-Pr	H	2-Me	H	H, R ⁷ (c)はSPhである	223-225
B74	BはSである	i-Pr	H	2-Me	CF ₃	CH ₃	201-203
B75	BはSである	i-Pr	H	2-Me	CF ₃	Et	173-175
B76	BはSである	i-Pr	н	2-Me	CF ₂ CF ₃	CH ₃	156-158
B77		i-Pr	н	2-Me	Н	1-((3-CF ₃)-ビラゾリル)	224-225
B78		i-Pr	H	2-Me	CF ₃	2-CIPh	223-225

[0260]

【表123】

索引表C

示されている場合を除いてBはOである

化合物	R ²	R ³	(R ⁴) _n	R ⁷ (a)	R ⁷ (b)	融点℃
C1 (Ex. 5)	i-P r	H	2-Me	CF ₃	CH ₃	252-253
æ	i-Pr	Н	2-CI	CF ₃	CH ₃	260-262
C3	i-Pr	H	2-Me	CF ₃	OCH ₃	195-196
C4	i-Pr	н	2-Me	CF ₃	N(CH ₃) ₂	270-272
CS	i-Pr	н	2-Me	CF ₃	Et	246-248
C6	i-Pr	H	2-Me	CF ₃	Ph	175-177
C7	i-Pr	H	2-Me	i-Pr	Et	179-182
CB	i-Pr	H	2-Me	c-Pr	Et	202-204
C9	i-Pr	H	2-Me	i-Pr	· СН ₃	206-209
Cio	i-Pr	Ĥ	2-Me	c-Pr	CH ₃	222-225
C11	i-Pr	H	2-Me	c-Pr	Ph	236-239
C12	i-Pr	H	2-Me	CF ₃	SCH ₃	244-247
C13	i-Pr	H	2-Me	CF ₃	1-ピロリシニル	272-273
C14	i-Pr	Н	2-Me	CF ₃	OCH ₂ C(CI)=CH ₂	142-144
C15	Et	н	2-Me	CF ₃	2-MePh	253-256
C16	i-Pr	H	2-Me	CF ₃	2-MePh	244-246
C17	t-Bu	H	2-Me	CF ₃	2-MePh	251-253
C18	Et	H	2-C1	CF ₃	2-MePh	242-243
C19	i-Pr	H	2-C1	CF ₃	2-MePh	237-240
C20	t-Bu	H	2-C1	CF ₃	2-MePh	253-255
C21	Et	н	2-Mc	CF ₃	2-CIPh	251-252
C22	i-Pr	H	2-Me	CF ₃	2-CIPh	246-248
C23	t-Bu	Ħ	2-Me	CF ₃	2-CIPh	238-239
C24	Et	H	2-C1	CF ₃	2-CIPh	248-249
C25	i-Pr	н	2-C1	CF ₃	2-CIPh	254-255
C26	t-Bu	H	2-C1	CF ₃	2-ClPh	240-242

[0261]

【表124】

C27	Et	H	2-Me	CF ₃	c-Pr	236-238
C28	i-Pr	Н	2-Me	CF ₃	c-Pr	240-241
C29	t-Bu	H	2-Me	CF ₃	c-Pr	246-248
C30	Et	н	2-C1	CF ₃	c-Pr	240-242
C31	i-Pr	н	2-C1	CF ₃	с-Рт	232-235
. C32	t-Bu	H	2-C1	CF ₃	. c-Pr	266-268
C33	Et	H	2-Me	CF ₃	i-Pr	230-231
C34	i-Pr	H	2-Me	CF ₃	i-Pr	211-214
C35	t-Bu	н	2-Me	CF ₃	i-Pr	210-213
C36	Et	н	2-Cl	CF3	i-Pr	247-249
C37	i-Pr	H	2-C1	CF ₃	i-Pr	236-239
C38	t-Bu	H	2-Cl	CF ₃	i-Pr	235-238
C39	Et	H	2-Me .	CF2CF3	2-MePh	247
C40	i-Pr	H	2-Me	CF ₂ CF ₃	2-MePh	218-220
C41	t-Bu	н	2-Me	CF ₂ CF ₃	2-McPh	224-226
C42	Et	H	2-Cl	CF ₂ CF ₃	2-McPh	241-243
C43	i-Pr	н	2-Cl	CF ₂ CF ₃	2-MePh	232-234
C44	t-Bu	H	2-Cl	CF2CF3	2-MePh	237-239
C45	Et	H	2-Me	CP2CF3	2-CIPh	255-257
C46	i-Pr	H	2-Me	CF2CF3	2-CIPh	224
C47	t-Bu	н	2-Me	CF ₂ CF ₃	2-CIPh	215
C48	Et	Н	2-Cl	CF ₂ CF ₃	2-ClPh	248-250
C49	i-Pr	н	2-C1	CF2CF3	2-ClPh	222-224
C50	t-Bu	Н	2-Cl	CF2CF3	2-CIPh	242
C51	Et	H	2-Me	CF ₂ CF ₃	Ph	246-248
C52	i-Pr	Н	2-Me	CF ₂ CF ₃	Ph	220
C53	t-Bu	H	2-Me	CF ₂ CF ₃	Ph.	242
C54	Et	H	2-C1 .	CF ₂ CF ₃	Ph	238-240
C55	i-Pr	H	2-CI	CF ₂ CF ₃	Ph	260
C56	t-Bu	H	2-C1	CF ₂ CF ₃	Ph	231-232
C57	i-Pr	H	2-Me -	CF ₂ CF ₃	CH ₃	208
C58	t-Bu	н	2-Me	CF ₂ CF ₃	CH ₃	242-244
C59	Et	Н	2-C1	CF ₂ CF ₃	CH ₃	210-212
C60	i-Pr	H	2-C1	CF ₂ CF ₃	CH ₃	195
C61	t-Bu	H-	2-C1	CF ₂ CF ₃	CH ₃	246-248
C62	Et	H	2-Me	CF ₂ CF ₃	c-Pr	224-225
C63	i-Pr	H	2-Me	CF ₂ CF ₃	c-Pr	232-234

[0262]

【表125】

C64	Et	H	2-C1	CF ₂ CF ₃	c-Pr	216-218
C65	i-Pr	H	2-CI	CF ₂ CF ₃	c-Pr	·218-220
C66	t-Bu	H	2-C1	CF ₂ CF ₃	c-Pr	210-212
C67	Et	H	2-Me	CF ₂ CF ₃	i-Pr	218-220
C68	i-Pr	H	2-Me	CF ₂ CF ₃	i-Pr	196-198
C69	t-Bu	H	2-Me	CF ₂ CF ₃	i-Pr	212-214
C70	Et	H	2-CI	CF ₂ CF ₃	i-Pr	216-220
C71	i-Pr	H	2-Ci	CF ₂ CF ₃	j-Pr	215-218
C72	t-Bu	H	2-C1	CF ₂ CF ₃	i-Pr	240-244
C73	i-Pr	H	2-Me	CF ₂ CF ₃	Et	210-212
C74	Et	Н	2-Me	CF2CF3	Et	230-232
C75	Et	Ħ	2-C1	CF ₂ CF ₃	Et	210-213
C76	i-Pr	Н	2-C1	CF ₂ CF ₃	Et .	203-204
C77	t-Bu	H	2-Cl	CF ₂ CF ₃	Et	230-232
C78	Et	H	2-Me	CF ₂ CF ₃	CH ₃	238-240
C79 BはSである	i-Pr	H	2-Me	CF ₃	Et	190-193
C80	i-Pr	H	2-Me	CF ₃	2-CF ₃ Ph	255-258

示されている場合を除いてR⁷(c)はHであり 且つ示されている場合を除いてBはOである

化合物	R ²	R ³	$(\mathbb{R}^4)_n$	R ⁷ (a)	R ⁷ (b)	融点℃
Di	i-Pr	H	2-Me	CF ₃	CH ₃	200-204
D2 (Ex. 2)	i-Pr	H	2-Me	CF ₃	Et	123-126
D3	i-Pr	H	2-C1	CF ₃	CH ₃	233-235
D4	t-Bu	H	2-Me	CF ₃	Et	215-218
D5	i-Pr	Н	2-Me	СН3	Ph	238-239
D6	i-Pr	H	2-Me	CH ₃	CH ₃	206-208

[0263]

【表126】

D7	i-Pr	н	2-Me	CH ₃	CH ₂ CF ₃	246-248
D8	i-Pr	H	2-Cl	Et	CF ₃	235-237
D9	i-Pr	H	2-Me	CH ₃ C	H ₃ , R ⁷ (c) は C)である	205-207
D10	i-Pr	H	2-Me	CH ₃	4-CF ₃ Ph	256-258
DII	i-Pr	H	2-Me	CH ₃	2-CF ₃ Ph	204-206
D12	t-Bu	Н	2-Me	CH ₃	Ph	236-238
D13	i-Pr	H	2-F	CH ₃	Ph	227-229
D14	i-Pr	H	5- F	CH ₃	Ph	20 9 -211
D15	i-Pr	H	2-C1	CH ₃	Ph	233-234
D16	i-Pr	н	H	CH ₃	Ph	215-217
D17	i-Pr	н	2-NO ₂	CH ₃	Ph	236-237
D18	i-Pr	н	2-CI	CF ₃	Ph	240-242
D19 (Ex. 6)	i-Pr	H	2-Me	CF ₃	Ph	260-262
D20	i-Pr	· H	2-I	СН3	Ph	250-251
D21	i-Pr	H	2- I	СН3	2-CF ₃ Ph	251-253
D22	Н	н	2-Me	СН3	Ph	253-255
D23	Et	Et	2-Me	CH ₃	Ph	182-184
D24	t-Bu	H	2-C1	CF ₃	Ph	232-234
D25	i-Pr	н	2-1	CF ₃	Ph	271-273
D26	t-Bu	Н	2-1	CF ₃	Ph	249-250
D27	i-Pr	H	2-Me	CH ₃	t-Bu	210-211
D28	i-Pr	H	2-Br	CF ₃	Ph	257-259
D29	i-Pr	H	2-Br	CH ₃	Ph	246-247
D30	i-Pr	H	2-Me	CF ₃	2-ピリシニル	237-238
D31	i-Pr	н	2,5-Cl ₂	CF ₃	Ph	>250
D32 Blas	である i-Pr	R	2-Me	CF ₃	Ph	169-172
D33	i-Pr	H	2-Me	CF ₃	2-CIPh	208-209
D34	i-Pr	Н	2-Cl	CF ₃	2-CIPh	234-235
D35	i-Pr	H	2-Me	CF ₃	4-CIPh	289-290
D36	i-Pr	H	2-C1	CF ₃	4-ClPh	276-278
D37	i-Pr	H	2-C1	CF ₃	2-ピリシ ニル	239-240
D38	i-Pr	H	2-Me	CF ₃	2-ピリミジニル	205-208
D39	i-Pr	H	2-Me	CF ₃	2-(3-CH ₃ -ヒリシニル)	183-187
D40	i-Pr	H	2-Me	CF ₂ CF ₃	Ph	231-232
D41	i-Pr	н	2-Cl	CF2CF3	Ph	206-207
D42	t-Bu	H	2-C1	CF ₂ CF ₃	Pb	212-213
D43	i-Pr	H	2-Br	CF ₂ CF ₃	Ph	219-222

[0264]

【表127】

D44	i-Pr	H	2-Me	CF ₃	3-CIPh	278-280
D45	i-Pr	H	2-C1	CF ₃	3-CIPh	272-273
D46	i-Pr	Н	2-Me	CF ₃	2-FPh	217-218
D47	j-P _T	H	2-C1	CF ₃	2-FPh	220-221
D48	i-P _T	H	2-Me	CF ₃	4-FPh	269-270
D49	i-Pr	H	2-C1	CF ₃	4-FPh	279-280
D50	i-Pr	H	.· 2-I	c-Pr	CH ₃	222-224
D51	i-Pr	H	5-1	с-Рг	CH ₃	215-217
D52	i-Pr	H	2-CF ₃	CF ₃	Ph	247-249
D53	i-Pr	H	2-C1	CF ₃	i-Pr	255-258
, D54	i-P r	H	2-Me	CF ₃	3-FPh	277-278
D55	i-Pr	н	2-C1	CF ₃	3-FPh	256-257
D56	i-Pr	. н	2-Me	CF ₃	2-CF ₃ Ph	215-216
D57	i-Pr	H	2-C1	CF ₃	2-CF ₃ Ph	230-231
D58	i-Pr	H	2-Me	CF ₃	2-BrPh	207-208
D59	i-Pr	H	2-C1	CF ₃	2-BrPh	239-240
D60	i-Pr	H	2-OCH3	CF ₃	Pb	215-216
D61	i-Pr	H	5-C1	CF ₃	2-(3-CH ₃ -ピリジニル)	224-225
D62	i-Pr	H	5- Me	CF ₃	2-(3-C1-ビリジニル)	179-181
D63	s-Bu	H	2-C1	CF ₃	Ph	>240
D64	с-Рт	H.	. 2-C1	CF ₃	Ph	>240
D65	Et	H	2-C1	CF ₃	Ph	>240
D66	· t-Bu	H	2-CF ₃	CF ₃	Ph	230-233
D67	Et	H	2-CF ₃	CF ₃	Ph	246-249
D68	CH(CH ₃)CH ₂ SCH ₃	H	2-CF ₃	CF ₃	Ph	215-217
D69	CH(CH ₃)CH ₂ OCH ₃	H	2-CF ₃	CF ₃	Ph	220-223
D70	i-Pr	H	5-CI	CF ₃	2-(3-CI-ピリジニル)	230-233
D71	i-Pr	H	5-Me	CF ₃	2~チアソ・リル	201-203
D72	i-Pr	H	5-Me	CF ₃	2-ピラジニル	252-253
D73	i-Pr	H	5-Me	CF ₃	4-ピリシニル	224-228
D74	i-Pr	н	2-Me	CF ₃	i-Pr	236-243
D75	i-Pr	H	2-Me	CF ₃	2-CH ₃ Ph	211-212
D76	i-Pr	H	2-C1	CF ₃	2-CH ₃ Ph	232-234
D77	i-Pr	H	2-Br	CF ₃	2-ClPh	247-248
D78	t-Bu	H	2-Me	CF ₃	2-CIPh	216-217
D79 (Ex. 7)	i-Pr	H	2-Me	CF ₃	2-(3-CF ₃ -ピリジニル)	227-230
D80	CH ₂ CH ₂ Cl	H	2-C1	CF ₃	Ph	237-242

[0265]

【表128】

D81	CH2CH2CH2CI	Н	2-CI	CF3	Ph	233-239
D82	СН(СН ₃)СО ₂ СН ₃	Ħ	2-C1	CF ₃	Ph	221-222
D83	S-CH(i-Pr)CO2CH3	H	2-C1	CF ₃	Ph	212-213
D84	i-Pr	H	2-Me	CF ₃	2,6-Cl ₂ -Ph	267-268
D85	i-Pr	н	2-C1	CF ₃	2,6-Cl ₂ -Ph	286-287
D86	i-Pr	н	2-Me	Br	Ph	253-255
D87	i-Pr	Н	2-C1	Br	Ph	247-248
D88	i-Pr	H	2-Me	CF ₃	i-Bu	205-210
D89	i-Pr	H	2-Me	CF ₃	CH ₂ Ph	235-237
D90	i-Pr	H	2-Me	CF ₃	2-(3-OCH ₃ -ビリジニル)	221-222
D91	i-Pr	H	2-Mc	CF ₃	3-ピリシニル	260-261
D92	і-Рт	H	2-Me	CF ₃	4-キノリニル	>260
D93	i-Pr	H	2 Me	CN	2-(3-C1-t"リシ"ニル)	203-204
D 9 4	i-Pr	H	2-Me	CF ₃	2,4-F ₂ -Fh	245-246
D95	i-Pr	H	2-C1	CF ₃	2,4-F ₂ -Ph	252-253
D96	i-Pr	H	2-Me	CF ₃	2-Et-Ph	207-209
D97	i-Pr	H	2-Cl	CF ₃	2-Et-Ph	221-222
D98	i-Pr	H	H	CF ₃	2-ClPh	206-207
D99	t-Bu	H	Ħ	CF ₃	2-CiPh	197-198
D100	CH(CH ₃)CH ₂ OCH ₃	H	H	CF ₃	2-CIPh	145-148
D101	CH(CH ₃)CH ₂ SCH ₃	H	Н	CF ₃	2-CIPh	158-160
D102	CH(CH ₃)CH ₂ SCH ₃	H	2-C1	CF ₃	Ph	184-186
D103	СН(СН3)СН2ОСН3	H	2-C1	CF ₃	Ph	217-218
D104	n-Pr	H	2-Cl	CF ₃	Ph	247-248
D105	i-Bu	H	2-C1	CF ₃	Ph	244-245
D106	CH ₃	H	2-Ct	CF ₃	Ph	>250
D107	i-Pr	Me	2-C1	CF ₃	Ph	193-194
D108	CH ₂ C≅CH	H	2-C1	CF ₃	Ph	>250
D109	CH ₂ CH=CH ₂	H	2-C)	CF ₃	Ph	248-249
D110	CH ₂ (2-フラニル)	H	2-C1	CF ₃	. Ph	246-247
DIII	i-Pr	H	2-Me	Ph	2-CIPh	133-136
D112	i-Pr	H	2-C1	Ph	2-CIPh	220-221
D113	i-Pr	H	2-Me	CF ₃	4-(3,5-Cl ₂ -ピリジニル)	239-242
D114	i-Pr	H	2-C1	CF ₃	4-(3,5-Cl ₂ -ピリジニル)	229-231
D115	CH(CH ₃)CH ₂ SCH ₃	H	2-Me	CF ₃	2-CIPh	194-195
D116	CH(CH ₃)CH ₂ OCH ₃	H	2-Me	CF ₃	2-ClPh	181-183
D117	s-Bu	H	2-Me	CF ₃	2-ClPh	199-200

[0266]

【表129】

D118	c-P r	H	2-Me	CF ₃	2-CIPh	234-235
D119	n-Pr	H	2-Me	CF ₃	2-CIPh	222-223
D120	i-Bu	H	2-Me	CF ₃	2-ClPh	235-237
D121	Me	н	2-Mc	CF ₃	2-СІРЬ	242-243
D122	i-Pr	Me	2-Me	CF ₃	2-CIPh	90-93
D123	CH ₂ C≡CH	H	2-Me	CF ₃	2-CIPh	215-216
D124	Et	Н	2-Me	CF ₃	2-CIPh	228-229
D125	CH ₂ CH=CH ₂	H	2-Me	CF ₃	2-CIPh	227-228
D126	CH ₂ (2-フラニル)	н	2-Me	CF ₃	2-CIPh	218-219
D127	CH(CH ₃)CH ₂ SCH ₃	н	2-Me	CF ₃	Pb	179-180
D128	СН(СН ₃)СН ₂ ОСН ₃	н	2-Me	CF ₃	Ph	219-220
D129	s-Bu	H	2-Me	CF ₃	Ph	244-245
D130	c-Pr	Ħ	2-Me	CF ₃	Ph	>250
D131	n-Pr	H	2-Me	CF ₃	Ph	238-239
D132	i-Bu	H	2-Me	CF ₃	Ph	237-238
D133	Ме	H	2-Me	CF ₃	Ph	263-265
D134	i-Pr	Me	2-Mc	CF ₃	Ph	178-179
D135	CH ₂ C≡CH	H	2-Me	CF ₃	Ph	253-254
D136	Et	H	2-Mc	CF ₃	Ph	244-245
D137	CH ₂ CH=CH ₂	H	2-Me	CF ₃	Ph	240-241
D138	CH ₂ (2-フラニル)	H	2-Me	CF ₃	Ph	245-246
D139	i-Pr	H	2-OCHF ₂	CF ₃	2-CIPh	200-201
D140	i-Pr	H	2-OCH ₃	CF ₃	2-CIPh	206-207
D141	i-Pr	H	2-I	CF ₃	2-ClPh	253-256
D142	i-Pr	Н	2-Me	Br	2-ClPh	147-150
D143	î-Pr	H	2-C1	Br	2-CIPh	246-247
D144	j-Pr	H	2-Me	CF ₃	2-OCH ₃ Ph	218-219
D145	i-Pr	H	2-C1	CF ₃	2-OCH ₃ Ph	243-244
D146	i-Pr	H	2-Me	CF ₃	1-イソキノリニル	252-253
D147	CH(CH ₃)CH ₂ SCH ₃	H	2-C1	CF ₃	2-CIPh	217-218
D148	CH(CH ₃)CH ₂ OCH ₃	H	2-C1	CF ₃	2-CIPh	207-208
D149	s-Bu	H	2-C1	CF ₃	2-ClPh	216-217
D150	c-Pr	H	2-C1	CF ₃	2-CIPh	261-262
D151	n-Pr	H	2-C1	CF ₃	2-CIPh	231-232
D152	i-Bu	H	2-C1	CF ₃	2-CIPh	255-256
D153	Me	H	2-C1	CF ₃	2-CIPh	233-235
D154	i-Pr	Me	2-C1	CF ₃	2-CIPh	127-128

[0267]

【表130】

					•	
D155	CH ₂ C≡CH	Н	2-C1	CF ₃	2-CIPh	226-227
D156	Et	H	2-C1	CF ₃	2-CIPh	244-246
D157	CH ₂ CH=CH ₂	H	2-C1	CF ₃	2-CIPh	235-236
D158	CH ₂ (2-フラニル)	H	2-C1	CF ₃	2-CIPh	207-208
D159	i-Pr	Ħ	C≡CSi(CH ₃) ₃	CF ₃	2-ClPh	256-258
D160	i-Pr	Н	C≖CH	CF ₃	2-CIPh	228-230
D161	i-Pr	H	2-C1	C∈CH	2-CIPh	219-222
D162	i-Pr	Н	2-Me	H	H, R ⁷ (c)はCH ₃ である	220-223
D163	i-Pr	H	2-Me	CH ₃	Ph, R ⁷ (c)は Clである	
D164	BはSである i-Pr	Н	2-C1	CF ₃	Ph	169-174
D165	i-Pr	Н	2-Me	CF ₃	2,6-F ₂ Ph	223-225
D166	i-Pr	H	2-Me	CF ₃	2-Cl-6-FPh	203-206
D167	i-Pr	H	· 2-Ci	CF ₃	2-Cl-6-FPh.	218-221
D163	i-Pr	H	2-Me-4-Br	CF ₃	2-FPh	232-233
D169	t-Bu	Н	2-C1	CF ₃	2-(3-C1- ピリジニル)	250-251
D170	Me	H	2-Cl	CF ₃	2-(3-C1- ビリジニル)	>250
	_<					
D171	Et	Et	2-C1	CF ₃	2-CIPh	243-247
D172	Me	Me	2-C1	CF ₃	2-CIPh	234-235
D173	Et	Et	2-Me	CF ₃	2-CIPh	237-238
D174	Mc	Me	2-Me	CF ₃	2-ClPh	225-226
D175	CH ₂ CH ₂ N(Me) ₂	H	2-Me	CF ₃	2-CiPh	188-190
D176	i-Pr	H	2-C1	CF ₃	2-ピラジニル	242-243
D177	t-Bu	H	2-Me-4-Br	CF ₃	2-CIPh	>260
D178	CH(CH ₃)CH ₂ OCH ₃	H	2-Me	CF ₃	2-(3-C1-ビリジニル)	176-177
D179	CH(CH ₃)CH ₂ SCH ₃	H	2-Me	CF ₃	2-(3-CI-ピリジニル)	196-197
D180	CH(CH ₃)CH ₂ OCH ₃	H	2-Cì	CF ₃	2-(3-Cl-ビリジニル)	197-198
D181	CH(CH ₃)CH ₂ SCH ₃	H	2-C1	CF ₃	2-(3-C1-ピリジニル)	202-203
D182	i-Pr	H	2-Me	CF ₃	2-IPh	221-222
D183	i-Pr	H	2-Cl	CF ₃	2-IPh	238-240
D184	i-Pr	H	2-Me	CF ₃	2-(C≡CH)-Ph	215-217
D185	i-Pr	H	2-CI	CF ₃	2-(C≡CH)-Ph	244-246
D186	t-Bu	H	2-C1	CF3	2-(3-C1-ビリジニル)	250-251
D187	Me	H	2-Cl	CF ₃	2-(3-C1- ピリジニル)	>250
	7					
D188	i-Pr	H	2-Mc	CF ₃	2-Cl-4-FPh	203-205
D189	i-Pr	H	2-C1	CF ₃	2-Cl-4-FPh	218-219

[0268]

【表131】

Me	Mc	2-Me	CF ₃	2-ClPh	225-226
Et	Et	2-Me	CF ₃	2-CIPh	243-247
i-Pr	Н	2-Me	CF ₃	2,6-Me ₂ Ph	259-260
i-Pr	H	2-C1	CF ₃	2,6-Me ₂ Ph	268-269
i-Pr	H	2-Me	CF ₃	2,6-Cl ₂ -4-CNPh	*
i-Pr	H	2-Me	CF ₃	2-CNPh	225-235
i-Pr	Н	2-Me	CF ₃	2-(OCF3)Ph	214-215
i-Pr	н	2-Cl	CF ₃	2-(OCF ₃)Ph	223-224
i-Pr	H	2-Me	CF ₃	2-Br-4-FPh	202-203
i-Pr	H	2-C1	CF ₃	2-Br-4-FPh	222-223
i-Pr	н	2-Me	CF ₃	2-(3-Me-t'7) = A)	205-207
Me	H	2-C]	CF ₃	2-(3-Cl-ピリジニル)	215-220
CH ₂ C≡CH	H	2-Cl	CF ₃	2-(3-Cl-ピリジニル)	197-198
Ме	H	2- Me	CF ₃	2-(3-Ci-ピリジニル)	193-196
Et	H	2- Me	CF ₃	2-(3-C1-ピリジニル)	204-206
CH ₂ C≡CH	н	2-Me	CF ₃	2-(3-C1-ピリジニル)	177-178
i-Pr	Ħ	2-Me	CF ₃	4-(8-C1- キノリニル)	>250
i-Pr	H	2-Me	CF ₃	4-(2-Me-+/リニル)	>250
i-Pr	H	2-C1	CF ₃	4-(2-Me-キノリニル)	>250
i-Pr	H	2-Me	CF ₃	4-(7-Cl-キノリニル)	>250
i-Pr	H	2,4-Br ₂	CF ₃	2-CIPh	233-234
i-Pr	H	2-Br	Br	2-CIPh	255-258
Me	H	2-Me	Br	2-CIPh	236-237
t-Bu	Н	2-CI	Br	2-CIPh	260-261
Et	H	2-Me	Br	2-CIPh	254-255
t-Bu	H	2-Me	Br	2-CIPh	259-260
c-Bu	H	2-C1	CN	2-(3-CI-ビリジニル)	177-180
i-P r	H	2-Me	CF ₃	2-(3-C1-ピリジニル)	237-239
i-Pr	H	2-Me	CF ₃	4-(6-Cl-キノリニル)	>250
Me	Me	2-Me	CF ₃	4-(6-C1-キノリニル)	>250
O-i-Pr	н	2-C1	CF ₃	2-CIPb	218-219
i-Pr	H	2-C1	CN	2-(3-C1-ピリジニル)	195-200
t-Bu	н	2-C1	CN	2-(3-CI-ビリジニル)	>250
Et	H	2-C]	CN	2-(3-C1-ピリジニル)	200-205
i-Pr	H	2-C1	CF ₃	2-(3-Me-ピラジニル)	225-230
t-Bu	H	2-C1	CF ₃	2-(3-Me-t 7) = 1	235-240
Et	H	2-CI	CF ₃	2-(3-Me-ピラジニル)	210-220
	Et i-Pr i-Pr i-Pr i-Pr i-Pr i-Pr i-Pr i-Pr	Et	Et Et 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Cl i-Pr H 2-Me Me H 2-Cl Me H 2-Cl Me H 2-Me Et H 2-Me i-Pr H 2-Me t-Bu H 2-Cl i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Me i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl i-Pr H 2-Cl	E! Et 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 Me H 2-Me CF3 Me H 2-Me CF3 CH2C≡CH H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me Br t-Bu H 2-Me Br t-Bu H 2-Me Br t-Bu H 2-Me Br t-Bu H 2-Me Br t-Bu H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-Me CF3 i-Pr H 2-CI CN i-Pr H 2-CI CN t-Bu H 2-CI CN t-Bu H 2-CI CN t-Bu H 2-CI CN t-Bu H 2-CI CN t-Bu H 2-CI CN t-Bu H 2-CI CN	El Et 2-Me CF3 2-GPh i-Pr H 2-Me CF3 2,6-Me2Ph i-Pr H 2-Me CF3 2,6-Me2Ph i-Pr H 2-Me CF3 2,6-Me2Ph i-Pr H 2-Me CF3 2,6-Cl2-4-CNPh i-Pr H 2-Me CF3 2-CNPh i-Pr H 2-Me CF3 2-CNPh i-Pr H 2-Me CF3 2-COCF3)Ph i-Pr H 2-Me CF3 2-COCF3)Ph i-Pr H 2-Me CF3 2-Br-4-FPh i-Pr H 2-Me CF3 2-Br-4-FPh i-Pr H 2-Me CF3 2-G-Cl-t-Vy-Z-h) Me H 2-Me CF3 2-G-Cl-t-Vy-Z-h) Me H 2-Me CF3 2-G-Cl-t-Vy-Z-h) El H 2-Me CF3 2-G-Cl-t-Vy-Z-h) El H 2-Me CF3 2-G-Cl-t-Vy-Z-h) i-Pr H 2-Me CF3 2-G-Cl-t-Vy-Z-h) i-Pr H 2-Me CF3 4-(2-Me-4-y)Z-h) i-Pr H 2-Me Br 2-CIPh I-Pr H 2-Me Br 2-CIPh I-Pr H 2-Me Br 2-CIPh I-Pr H 2-Me Br 2-CIPh I-Pr H 2-Me Br 2-CIPh I-Pr H 2-Me Br 2-CIPh I-Pr H 2-Me Br 2-CIPh I-Pr H 2-Me Br 2-CIPh I-Pr H 2-Me CF3 4-(6-Cl-t-Vy-Z-h) i-Pr H 2-Me CF3 4-(6-Cl-t-Vy-Z-h) i-Pr H 2-Me CF3 4-(6-Cl-t-Vy-Z-h) i-Pr H 2-Me CF3 2-G-Cl-t-Vy-Z-h) i-Pr H 2-Cl CN 2-G-Cl-t-Vy-Z-h)

[0269]

【表132】

D227	i-Pr	Н	2-Me	CF ₃	3-(2-C1-ピリジニル)	•
D228	i-Pr	H	2-C1	CF ₃	2,3-Cl ₂ Ph	217-219
D229	t-Bu	H	2-C1	CF ₃	2,3-Cl ₂ Ph	254-256
D230	i-Pr	Н	2-Me	CF ₃	2,3-Cl ₂ Ph	208-209
D231	t-Bu	H	2-Me	CF ₃	2,3-Cl ₂ Ph	232-233
D232	t-Bu	H	2-Me-4-Br	Br	2-CIPh	239-241
D233	Me	Н	2-Me-4-Br	Br	2-CIPh	150-152
D234	Et	H	2-Me-4-Br	Br	2-ClPh	223-225
D235	i-Pr	H	2-Me-4-Br	Br	2-ClPh	197-198
D236	Me	H	2-Me	CF ₃	2-FPh	245-247
D237	СН ₂ С≡СН	H	2-Me	CF ₃	2-FPh	222-227
D238	O-i-Pr	н	2-C1	CN	2-(3-C1-ピリジニル)	205-206
D239	O-i-Pr	H	2-Ме	CN	2-(3-C1-ピリジニル)	210-211
D240	Me	Me	2-C1	CF ₃	2-CIPh	234-236
D241	сн ₂ с≡сн	H	2-Mo-4-Br	Br	2-CIPh	187-188

^{*&}lt;sup>1</sup>H NMRデータに関して索引表Qを参照されたい

<u>索引表E</u>

$$R^{7}(c)$$
 $R^{7}(a)$
 $R^{7}(b)$
 $R^{7}(b)$
 $R^{7}(b)$
 $R^{7}(b)$

化合物	R ²	R ³	(R ⁴) _n	R ⁷ (a)	R ⁷ (b)	R ⁷ (c)	融点°C
El	i-Pr	H	2-Me	СН3	CH ₃	н	143-145
E2	i-Pr	Н	2-Me	CH ₃	CH ₂ CF ₃	H	198-199
E3	i-Pr	H	2-Me	СН3	сн3	Cl	188-190
E4	i-Pr	H	2-Me	СН3	4-CF ₃ -Ph	H	198-199
E5	i-Pr	H	2-Me	CH ₃	2-CF ₃ -Ph	Ħ	211-213
E6	i-Pr	H	2-Me	СН3	t-Bu	H	125-127
E7	i-Pr	H	2-Me	CF ₃	сн ₂ рь	H	130-135
E8	i-Pr	H	2-Me	H	Ph	CH ₃	249-250
E9	i-Pr	H	2-Me	H	СНз	Ph	268-270

[0270]

【表133】

E10	i-Pr	H	2-C1	H	Ph	CH ₃	260-261
EII	i-Pr	H	2-Me	H	CH ₂ CF ₃	Ph	213-215
E12	i-Pr	H	2-C1	H	CH ₂ CF ₃	Ph	208-209
E13	i-Pr	H	2-Me	H	CHF ₂	Ph	•
E14	i-Рт	H	2-Me	CF ₂	2-(3-C1-ピリジニル)	н	249-250

*1H NMRデー外に関して索引表Qを参照されたい

<u>索引表F</u>

化合物	R ²	R ³	(R ⁴) _n	R ⁷ (a)	R ⁷ (b)	R ⁷ (c)	融点℃
F1	i-Pr	н	2-Me	CH ₂ CF ₃	СН3	н	254-255
F2	i-Pr	H	2-Me	CH ₂ CF ₃	H	CH ₃	200-205
F3	i-Pr	H	2-Me	CH ₂ (3-CF ₃)Ph	·H	CH ₃	212-215
F4	i-Pr	H	2-C1	CH ₂ CF ₃	H	CH ₃	215-217
F5	i-Pr	H	2-Me	Ph	H	CF ₃	223-224
F6	i-Pr	H	2-Cl	Ph	H	CF ₃	206-208
F7	i-Pr	H	2-Mc	CH ₂ CF ₃	H	Ph	156-158
F8	i-Pr	H	2-CI	CH ₂ CF ₃	H	Ph	162-164

[0271]

【表134】

化合物	Q	\mathbb{R}^2	R ³	$(\mathbb{R}^4)_{n}$	R ⁷ (a)	R ⁷ (b)	融点℃
G1	s	i-Ps	H	2-Me	4-OCF ₃ Ph	CH ₃	233-234
G2	s	i-Pr	H	2-Me	OCH ₂ CF ₂ CF ₃	CH ₃	170-173
G3	s	i-Pr	Н	2-Me	Ci	CH ₃	164-167
G4	s	i-Pr	H	2-Me	CH ₃	Ph	216-219
G5	s	i-Pr	H	2-Me	С(СН3)2ОН	CH ₃	*
G6	s	i-Pr	н	2-Me	i-Pr	CH ₃	180-181
G7	s	i-Pr	H	2-Me	i-Pr	Ph	182-183
G8	0	i-Pr	н	2-Me	i-Pr	СН3	163-164
	G2 G3 G4 G5 G6 G7	G1 S G2 S G3 S G4 S G5 S G6 S G7 S	G1 S i-Pr G2 S i-Pr G3 S i-Pr G4 S i-Pr G5 S i-Pr G6 S i-Pr G7 S i-Pr	G1 S i-Pr H G2 S i-Pr H G3 S i-Pr H G4 S i-Pr H G5 S i-Pr H G6 S i-Pr H G7 S i-Pr H	G1 S i-Pr H 2-Me G2 S i-Pr H 2-Me G3 S i-Pr H 2-Me G4 S i-Pr H 2-Me G5 S i-Pr H 2-Me G6 S i-Pr H 2-Me G7 S i-Pr H 2-Me	G1 S i-Pr H 2-Me 4-OCF ₃ Ph G2 S i-Pr H 2-Me OCH ₂ CF ₂ CF ₃ G3 S i-Pr H 2-Me Cl G4 S i-Pr H 2-Me CH ₃ G5 S i-Pr H 2-Me C(CH ₃) ₂ OH G6 S i-Pr H 2-Me i-Pr G7 S i-Pr H 2-Me i-Pr	G1 S i-Pr H 2-Me 4-OCF ₃ Ph CH ₃ G2 S i-Pr H 2-Me OCH ₂ CF ₂ CF ₃ CH ₃ G3 S i-Pr H 2-Me Cl CH ₃ G4 S i-Pr H 2-Me CH ₃ Ph G5 S i-Pr H 2-Me C(CH ₃) ₂ OH CH ₃ G6 S i-Pr H 2-Me i-Pr CH ₃

^{*1}HNMRデータに関して索引表Qを参照されたい

索引表出

$$(\mathbb{R}^4)_{\overline{n}}$$
 $(\mathbb{R}^4)_{\overline{n}}$
化合物	Q	R ²	R ³	$(R^4)_n$	R ⁷ (a)	R ⁷ (b)	R ⁷ (c)	融点℃
HI	S	i-Pr	н	2-Me	H	H	H	192-195
H2	S	CH(CH ₃)CH ₂ OCH ₃	H	2-Me	H	Н	Н	120-123
нз	S	t-Bu	H	2-Me	H	H	H	120-123
H4	NMe	ì-Pr	H	2-Me	Me	H	H	193-195
H5	NPh	i-Pr	Н	2-Me	H	Me	H	188-192
H6	NPh	i-Pr	H	2-Me	Br	H	H	176-179
H7	NPh	i-Pr	H	2-Me	Br	H	Br	215-216
H8	NPh	i-Pr	H	2-Me	H	H	Br	150-154
Н9	NPb	i-Pr	H	2-Me	CF ₃	H	H	182-184
HIO	N(2-ClPh)	i-Pr	H	2-Me	Br	H	H	100-110
H11	N(2-FPh)	i-Pr	H	2-Me	Br	H	H	178-179
H12	N(2-FPh)	t-Bu	H	2-Me	Br	H	H	186-188
HI3	N(2-CIPh)	t-Bu	H	2-Me	Br	H	H	225-229

[0272]

【表135】

<u> 素引表</u>J

化合物	R ²	R ³	$(R^4)_n$	R ⁷ (a)	R ⁷ (b)	融点℃
11	i-Pr	н	2-Me	Me	Me	221-222
J2	i-Pr	H	H	CF ₃	Ph	2 79-28 1
J3	i-Pr	н	2-Me	CF ₃	Ph	263-268
J4	i-Pr	H	2-C1	CF ₃	2-CIPh	235-238
15	i-Pr	Н	2-Cl	CF ₃	Ph	245-246
J6	i-Pr	Н	2-Me	CF ₃	2-ClPh	240-242
J7	i-Pr	Н	2-C1	CF ₃	2-F-4-ClPh	246-247
J8	i-Pr	Н	2-Me	CF ₃	2-F-4-CIPh	266-268
J9	i-Pr	н	2-Me	CF ₃	2-ピリジニル	258-260

<u>索引表K</u>

$$R^{7}(b)$$
 $R^{7}(a)$
 $R^{7}(a)$
 $R^{7}(a)$
 $R^{7}(a)$
 $R^{7}(a)$

化合物	R ²	R ³	(R ⁴) _n	R ⁷ (a)	R ⁷ (b)	融点℃
 K1	i-Pr	н	2-Me	Br	Ĥ	177-180
K2	t-Bu	H	2-Me	Br	H	188-194

[0273]

【表136】

<u>索引表L</u>

化合物	R ²	R ³	(R ⁴) _n	R ⁷ (a)	R ⁷ (b)	配点 °C	-
Ll	i-Pr	н	2-Me	Me	Me	203-205	
1.2	i-Pr	н	2-Me	Me	2,6-Cl ₂ Ph	218-223	

<u>索引表M</u>

$$R^{7}(a)$$
 $R^{7}(a)$
 $R^{7}(b)$
 $R^{7}(c)$
 $R^{7}(b)$
 $R^{7}(c)$

化合物	Q	\mathbb{R}^2	\mathbb{R}^3	$(\mathbb{R}^4)_n$	R ⁷ (a)	R ⁷ (Ъ)	R ⁷ (c)	融点。℃
M1	S	i-Pr	н	2-Me	Cl	Me	H	203-205
м2	S	i-Pr	H	2-Cl	Cl	Me	H	210-213
м3	NCHF2	t-Bu	H	2-Me	H	H	Ph	165-166
M4	NH	i-Pr	H	2-Me	CF ₃	· Ph	H	118-120
M5	NMe	i-Pr	H	2-Me	CF ₃	Ph	H	110-112
М6	NCHF2	i-Pr	H	2-Me	2-FPh	H	н	143-144
M7	NCHF ₂	t-Bu	H	2-Me	2-FPh	H	H.	120-123
M8	NCH ₂ CF ₃	і-Рт	н	2-Me	2-FPh	H.	H	235-237

[0274]

【表137】

<u>素引表N</u>

化合物	Het	融点℃
NI	Me N Pb	169-171
N2	N a	227-230
N3	Me	243-246

<u>素引表P</u>

化合物			
Pi	NH ity	178-179	

[0275]

【表138】

索引表Q

化合物 番号	『H NMRデーダ他にことわらなければ CDCl3 溶液》®
D194	(DMSO-d6) & 1.03 (d, 6H), 2.18 (s, 3H), 3.92 (m, 1H), 7.22-7.30 (m, 2H),
	7.35 (m, 1H), 7.62 (dd, 1H), 7.81 (s, 1H), 8.02 (d, 1H), 8.15 (dd, 1H), 8.55
	(dd, 1H), 10.34 (s, 1H).
D227	(DMSO-d6) δ 1.01 (d, 6H), 2.16 (s, 3H), 3.92 (m, 1H), 7.27 (m, 2H), 7.35
	(m, 1H), 7.89 (s, 1H), 7.96 (m, 1H), 8.37 (s, 2H), 10.42 (s, 1H).
G5	δ 1.22 (d, 6H), 2.05 (s, 6H), 2.31 (s, 3H), 2.76 (s, 3H), 4.18 (m, 1H), 5.94
	(d, 1H), 7.20 (dd, 1H), 7.29 (d, 1H), 7.38 (d, 1H), 9.83 (br s, 1H).
E13	δ 1.12 (d, 6H), 2.32 (s, 1H), 4.14 (m 1H), 4.95 (d, 1H), 7.19 (dd, 1H), 7.28
	(t, 1H), 7.32 (m, 5H), 7.59 (dd, 2H), 7.92 (s, 1H), 9.51 (br s, 1H).

[0276]

[0277]

本発明の生物学的実施例

試験

適用:他にことわらなければ、10%のアセトン、90%の水及び300ppmのX-77界面活性剤溶液中で化合物を調製する。調製された化合物を、各試験装置の最上部より1/2"上に置かれた1/8JJカスタムボディ(custom body)(Spraying Systems)を有するSUJ2アトマイザーノズルを用いて適用する。6個のこれらのノズルがあり、それらがスプレーブームを構成し、これがベルトスプレー噴霧器内に固定されている。6種の昆虫試験装置のラック(又はキャリア)をコンベアベルト上に置き、各装置がノズルの下を中心として置かれるように止める。ラックが中心に置かれると、1mLの液体が各試験装置中にスプレー噴霧され;次いでラックはスプレー噴霧器の端までベルトを下に移動し続け、下ろされる。このスクリーニングにおけるすべ

ての実験化合物に250ppmでスプレー噴霧し、3回繰り返した。

[0278]

コナガ(DBM)ープルテラ・キシロステラ(Plutella Xylos tella):試験装置は $12\sim14$ 日令のラディッシュの植物が中に入った小さい自己充足的装置から成る。これらに1片の昆虫の餌上の $10\sim15$ 匹の新生幼虫をあらかじめたからせる(コアーサンプラーを用いて)。1mLの調製された化合物を各試験装置中にスプレー噴霧したら、試験装置を1時間乾燥させてからシリンダーの上に黒い網状の(screened)キャップを置く。それらを25で及び70%相対湿度において生育室内に6日間保持する。

[0279]

植物摂食損害を0~10の尺度で視覚的に評価し、ここで0は摂食なしであり 、1は10%以下の摂食であり、2は20%以下の摂食であり、3は30%以下 の摂食であり、10の最大得点まで続き、10は葉の100%の消費である。調 べた化合物の中で、以下が優れたレベルの植物保護を与えた(0~1の評価、1 0%以下の摂食損害):1,2,3,4,6,7,9,10,13,14,15 , 19, 20, 24, 27, 28, 29, 30, 31, 32, 33, 35, 37 , 38, 39, 51, 52, 53, 60, 61, 62, 63, 64, 65, 66 , 68, 69, 72, 73, 74, 75, 76, 79, 80, 84, 86, 88 , 8 9, 9 0, 9 2, 9 6, 9 7, 9 8, 9 9, 1 0 0, 1 0 1, 1 0 2, 1 0 3, 107, 113, 124, 126, 127, 143, 144, 146, 14 7, 148, 150, 151, 152, 153, 158, 159, 160, 16 1, 162, 163, 164, 165, 166, 167, 169, 170, 17 1, 174, 183, 184, 185, 186, 187, 188, 189, 19 0, 191, 193, 194, 195, 196, 198, 202, 203, 20 4, 205, 206, 207, 208, 209, 210, 211, 212, 21 3, 214, 215, 216, 217, 218, 219, 220, 222, 22 3, 225, 227, 228, 229, 230, 231, 232, 233, 23 5, 238, 239, 240, 244, 245, 246, 248, 249, 25 0, 251, 252, 253, 256, 257, 275, 276, 277, 27

8, B2, B4, B5, B6, B7, B8, B9, B10, B11, B12, B 13, B14, B15, B16, B17, B18, B19, B20, B21, B 23, B24, B25, B28, B29, B30, B31, B32, B33, B 35, B37, B38, B39, B40, B42, B43, B44, B45, B 46, B47, B48, B49, B50, B53, B55, B57, B58, B 59, B60, B61, B62, B63, B64, B66, B67, B68, B 69, B70, B71, B72, B74, B75, B76, C1, C2, C3, C4, C5, C7, C8, C9, C10, C11, C12, C79, D2, D3 , D4, D5, D6, D7, D8, D11, D12, D13, D14, D15, D16, D18, D19, D20, D23, D24, D25, D26, D27, D28, D29, D30, D32, D33, D34, D37, D38, D39, D40, D41, D42, D45, D46, D47, D48, D50, D51, D52, D53, D54, D55, D56, D57, D58, D59, D60, D61, D62, D63, D64, D65, D66, D67, D68, D69, D70, D71, D72, D73, D74, D75, D76, D77, D78, D79, D81, D83, D84, D85, D86, D87, D88, D89, D91, D92, D93, D94, D95, D96, D97, D111, D11 3, D114, D115, D116, D117, D118, D119, D120 , D121, D122, D123, D124, D125, D126, D162, D164, E4, F2, F5, F6, F7, F8, G2, G3, G5, H1, H 2, H3, H4, J3, J4, J6, M1, M3, N2及びP1。

v

【国際調査報告】

INTERNATIONAL SEARCH REPORT ir ational Application No PCT/US 01/09338 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07C237/30 C07D231/14 C07D213/82 C07D239/28 CO7D231/06 A01N37/22 A01N43/56 A01N43/40 A01N43/54 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07C C07D A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where predical, search terms used) EPO-Internal, WPI Data, PAJ, CHEM ABS Data, BEILSTEIN Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. NL 9 202 078 A (RIJKSLANDBQUWHOGESCHOOL) X 1-5,21, 16 June 1994 (1994-06-16) 42,43 cited in the application page 1, line 1 -page 2, line 3 examples X DE 44 28 380 A (BAYER AG) 1-5,21, 15 February 1996 (1996-02-15) 42.43 page 2, line 11 - line 25 page 16, line 6 -page 18, line 33 example 33 Α US 4 321 371 A (PARG ADOLF ET AL) 1-43 23 March 1982 (1982-03-23) column 1, line 1 - line 12 column 1, line 45 -column 4, line 33 Further documents are listed in the continuation of box C. Patent tamity members are listed in somex * Special categories of cited documents : 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the investigation. "A" document defining the general state of the left which is not considered to be of particular relevance. *E* earlier document but published on or after the international tiling date invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. 'L' document which may throw doubts on priority claim(s) or which is ched to establish the publication date of another citation or other special reason (as specified) "V" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such doce-ments, such combination being obvious to a person skilled *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international fiting date but later than the priority date claimed "8." document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 10 September 2001 27/09/2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawijk Tel. (+31-70) 340-3016 Fax: (+31-70) 340-3016

1

O'Sullivan, P

INTERNATIONAL SEARCH REPORT

	ional Application No
Pu [/	US 01/09338

		PCT/US 01/09338
(Continue	STON) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 728 693 A (STEVENSON THOMAS MARTIN) 17 March 1998 (1998-03-17) column 1, line 17 - line 35 table 1	1-43
A	DE 198 40 322 A (BAYER AG) 9 March 2000 (2000-03-09) page 2, line 10 - line 31 page 4, line 32 - line 37 table 1	1-43
A	US 5 602 126 A (BARNETTE NILLIAN E ET AL) 11 February 1997 (1997-02-11) the whole document	1-43
А	DATABASE BEILSTEIN 'Online! BEILSTEIN INSTITUTE FOR ORGANIC CHEMISTRY, FRANKFURT/MAIN, DE; Database accession no. 7311021 XP002177117 abstract & SUTO, MARK J ET AL: TETRAHEDRON LETTERS., vol. 36, no. 40, 1995, pages 7213-7216, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL ISSN: 0040-4039	22-42
		-

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent (amily members

ht national Application No Ft. [/US 01/09338

				PC1/US	01/09338
Patent document cited in search repor		Publication date		Patent tamily member(s)	Publication date
NL 9202078	Α	16-06-1994	NON	E	
DE 4428380	Α	15-02-1996	AU	3382295 A	07-03-1996
			WO	9605170 A	22-02-1996
US 4321371	Α	23-03-1982	DE	2934543 A	02-04-1981
			AR	226317 A	30-06-1982
			AT	2952 T	15-04-1983
			AU	6176280 A	05-03-1981
			BR	8005163 A	24-02-1981
			CA	1159059 A	20-12-1983
			CS	215071 B	30-07-1982
			DD	152710 A	09-12-1981
			DE	3062630 D	11-05-1983
			DK	364780 A	28-02-1981
			EP	0024669 A	11-03-1981
			HŲ	185902 B	28-04-1985
			IL	60833 A	29-02-1984
			JP	56034660 A	06-04-1981
			SU	997598 A	15-02-1983
			ZA	8005260 A	30-09-1981
US 5728693	Α	17-03-1998	AU	1433695 A	17-07-1995
			DE	69427409 D	12-07-2001
			ΕP	0737188 A	16-10-1996
			JP	9507081 T	15-07-1997
			MO	9518116 A	06-07-1995
DE 19840322	Α	09-03-2000	AU	5970399 A	27-03-2000
			BR	9913383 A	22-05-2001
			MO	0014071 A	16-03-2000
US 5602126	Α	11-02-1997	US	5500438 A	19-03-1996

Form PCT/ISA/210 (patent terruty armex) (July 1992)

フ	ン	r	ペ	 :)	മ	纳	去	

(51) Int. Cl. '	識別記号	FI			テーマコード(参考)
A01N 43/40	101	A 0 1 N	43/40	101D	
				101E	
	102			102	
43/50	0		43/50	Α	
43/5	4		43/54	В	
				С	
				D	
43/5	6		43/56	С	
				D	
43/60	0		43/60		
43/6	47		43/647		
43/6	53		43/653	L	
43/7	6 101		43/76	101	
43/7	8		43/78	Α	
				В	
43/8	0 1 0 1		43/80	1 0 1	
43/9			43/90	103	
	1 0 4			1 0 4	
C 0 7 C 237/4	2	C 0 7 C			
317/4	0		317/40		
323/4	2		323/42		
327/4			327/48		
C 0 7 D 213/8		C 0 7 D			
231/1			231/14		
401/0			401/04		
(31)優先権主張番号		. =			
(32)優先日	平成12年12月11日(2000.	12. 11)			•
(33)優先権主張国	米国 (US)				
(31)優先権主張番号					
(32) 優先日	平成13年1月17日(2001.	1. 17)			
(33)優先権主張国	米国(US)				

(81)指定国 EP(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, I T, LU, MC, NL, PT, SE, TR), OA(BF , BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP(GH, G M, KE, LS, MW, MZ, SD, SL, SZ, TZ , UG, ZW), EA(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, B Z, CA, CH, CN, CO, CR, CU, CZ, DE , DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, I S, JP, KE, KG, KP, KR, KZ, LC, LK , LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, P T, RO, RU, SD, SE, SG, SI, SK, SL , TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW

(72) 発明者 マイヤース, ブライアン・ジエイ アメリカ合衆国ペンシルベニア州19363オ ツクスフオード・イーストラデイダツクサ ークル102

(72)発明者 セルビー,トーマス・ピー アメリカ合衆国デラウエア州19808ウイル ミントン・ハンターコート116

(72)発明者 スチープンソン,トーマス・エム アメリカ合衆国デラウエア州19702ニユー アーク・イロクオイスコート103

F 夕一ム(参考) 4C055 AA01 BA02 BA03 BA06 BA13 CA02 CA58 CB11 DA01 DA06 AC06 AA01 BB02 CC22 DD12 EE03 AH006 AA01 AA03 AB02 BJ50 BM10 BM71 BP30 BV72 BV74 AH011 AC01 AC02 AC04 AC05 BA01

BA05 BB06 BB08 BB09 BB10 BC07 BC18 BC19 BC20 DA02 DA03 DA13 DA15 DH03