明細書

インサート端子付きケースおよびこのケースを用いた圧電型電気音響変換器、インサート端子付きケースの製造方法

技術分野

[0001] 本発明はインサート端子付きケースおよびこのケースを用いた圧電型電気音響変換器に関するものである。

背景技術

- [0002] 従来、電子機器、家電製品、携帯電話機などにおいて、警報音や動作音を発生する 圧電サウンダや圧電レシーバなどの圧電型電気音響変換器が広く用いられている。 この種の圧電型電気音響変換器として、インサート端子付きのケースの中に圧電振 動板を収納し、空気漏れなく接着した後、ケースの上面開口部に放音孔を有するカ バーを接着した構造のものがある。圧電振動板としては、金属板の片面に圧電セラミ ックよりなる圧電体を貼り付けたユニモルフ型の圧電振動板や、積層構造の圧電セラ ミックからなるバイモルフ型の圧電振動板などがある。
- [0003] 図15は特許文献1に示された圧電型電気音響変換器の一例であり、40はケース、4 2はケース40に収納された圧電振動板、43はケース40にインサート成形された端子 である。ケース40の内周部には支持部45が設けられ、この支持部45に圧電振動板 42が支持され、弾性を持つ絶縁剤48で圧電振動板42の端面を覆った後、絶縁剤4 8を跨いで導電性接着剤46を塗布することにより、圧電振動板42と端子43とが電気 的に接続されている。なお、導電性接着剤46を塗布した後、シリコーンゴムなどの弾 性接着剤(図示せず)によって圧電振動板42の周囲がケース40に固定され、ケース 40の上面開口部に図示しないカバーが接着される。

特許文献1:特開2003-58166号公報

[0004] 端子43は導電性接着剤46との導通性を確保するため、所定の長さだけケース40の内側へ露出する必要がある。ところが、図15のように端子43を水平方向に露出させると、端子43の露出長だけ圧電振動板42の寸法Sをケース40の開口寸法Lに比べて小さくしなければならない。近年、電子機器の小型化に伴い、圧電型電気音響変

換器も小型化が要求されており、ケース40を小型化するということは、圧電振動板42の寸法Sがさらに小さくなることを意味する。圧電振動板42の寸法Sが小さくなると、その共振周波数が高くなり、音圧が小さくなるため望ましくない。そのため、ケース40の開口寸法Lと圧電振動板42の寸法Sとの寸法差をできるだけ小さくすることが、共振周波数を低く、かつ音圧を大きくするために重要である。

発明の開示

発明が解決しようとする課題

[0005] そこで、本発明の目的は、ケースの開口寸法と圧電振動板の寸法との寸法差をできるだけ小さくできるインサート端子付きケースおよびこのケースを用いた圧電型電気音響変換器を提供することにある。

他の目的は、スライド型のような複雑な金型を使用せずに成形でき、樹脂成形時の圧力により端子が変形するのを防止できるインサート端子付きケースの製造方法を提供することにある。

課題を解決するための手段

- [0006] 本発明は、底壁と4つの側壁とを有し、上面に開口部を有するケースであって、上記側壁のうち少なくとも1つの側壁には板状金属板よりなる端子がインサート成形によって縦向きに固定されており、上記端子が固定された側壁の外側面に、下方に向かって縦方向に延びる凹溝が形成され、上記凹溝に上記端子の外側面の一部が露出しており、上記凹溝に露出した端子の外側面と対向する内側面の一部が上記側壁の内側面に露出していることを特徴とするインサート端子付きケースである。
- [0007] 本発明では、ケースの側壁に板状金属板よりなる端子がインサート成形によって縦向きに固定されており、端子の内側面が側壁の内側面に露出している。そのため、ケースに圧電振動板を収納する場合、ケースの側壁と圧電振動板の外周縁とを近づけることができ、ケースと圧電振動板との寸法差を小さくできる。つまり、圧電振動板の共振周波数を低く、音圧を大きくすることができる。
- [0008] ケースの側壁に端子をインサート成形する場合、端子が樹脂成形時の圧力で変形するのを防止する必要がある。そこで、下型に凸部を形成しておき、この凸部と上型の一部とで端子の内外両側面を挟持することで、樹脂成形時の圧力により端子が変形

するのを防止でき、端子を側壁の内側面に確実に露出させることができる。このように スライド型のような複雑な金型を使用せず、上下型だけで端子をインサート成形でき るので、金型が簡単になり、成形時間を短縮できるとともに、多数個取りを行うことも容 易である。

[0009] ケースの側壁の外側面には、下型の凸部に対応した凹溝が形成されるが、この凹溝をケースの側壁の外側面ではなく、内側面に設けることも可能である。この場合は、凹溝が側壁の内側面に沿って上方に向かって延びるので、凹溝を設けたケースの側壁上端の厚みを端子と同一厚みとしなければならない。端子としては、例えば厚み0.1mm程度の薄肉な金属板が使用される。しかし、樹脂ケースの厚みを0.1mm程度にすると、機械的強度が得られず、かつカバーなどを接着する際の接着面積も確保できない。

これに対し、側壁の外側面に下方に向かって延びる凹溝を形成すれば、側壁の上端部には所定の厚みを確保できる。よって、上記のような問題を解消できる。

[0010] また、ケースの側壁の外側面の底面近傍に、端子の外側面を、凹溝から露出する端子の露出部より広い面積で露出させる切欠部を設け、凹溝の下端を切欠部と連結してもよい。

表面実装型電子部品のケースの場合、回路基板などの実装する際にはんだフィレットを形成するため、端子をケースの側壁の外側面に所定の範囲で露出させるのがよい。一方、凹溝はインサート成形時に端子の外側面を保持するために必然的に形成されるものであり、できるだけ短い溝とする方が望ましい。そのため、ケースの側壁部の外側面に端子を露出させる切欠部を設けた場合、上記凹溝の下端を切欠部と連結させれば、凹溝の長さを短くでき、ケースの強度低下を抑制できる。

[0011] また、凹溝の上端を、端子の上端部より低い位置で終端とするのがよい。 凹溝の上端を端子の上端と同一位置あるいはそれより高い位置とすることも可能であ る。この場合、端子の上端の表裏面が側壁の内外面に露出するため、端子の上端部 の保持力が十分でなく、端子が内外方向に変形しやすくなる。これに対し、凹溝の上 端を端子の上端より低い位置とすれば、端子の上端の外側面をケース(樹脂部分)で 保持できるので、端子の内外方向の変形を防止することができる。 [0012] また、木発明にかかるインサート端子付きケースを圧電型電気音響変換器に適用するのがよい。

圧電型電気音響変換器の場合、ケースの開口寸法に対して圧電振動板の寸法をできるだけ近づけることが、圧電振動板の共振周波数を低くし、音圧を大きくする点で望ましい。本発明にかかるケースは側壁の内面に縦方向(圧電振動板に対して垂直方向)に端子が酵出するので、圧電振動板とケースの側壁との隙間を小さくでき、圧電振動板の低周波化および音圧向上を実現できる。

[0013] また、ケースの内面を形成する凸部を有する上金型と、上記ケースの外面を形成する凹部を有する下金型とを準備する工程と、板状金属板よりなるL字形端子の底板部を下金型の凹部底面上に配置し、上記端子の起立部を上金型の凸部外側面と下金型の凹部内側面との間で挟持するように上下の金型を型締めする工程と、上記上下の金型の凸部と凹部との間に形成されるキャビティに樹脂を射出し、硬化させる工程と、上記樹脂の硬化後に上下の金型を開くことにより、ケースを取り出す工程と、を備えるインサート端子付きケースの製造方法を用いるのがよい。

上記のような上金型と下金型とを用いることで、スライド型を使用せずに側壁の内面 に端子が露出したインサート端子付きケースを成形でき、かつ樹脂成形時の圧力に より端子の起立部が変形するのを防止できる。

- [0014] また、下金型の凹部の内側面に、上端が端子の起立部上端より下方に位置し、下端が凹部の底面まで延びる凸条部を形成し、凸条部の内側面と上金型の凸部外側面との間で端子の起立部を挟持する場合には、ケースの側壁部の上端に端子の起立部上端を覆う樹脂部を成形できるので、端子の起立部上端が樹脂部で保護され、端子の曲がりを防止できる。
- [0015] また、端子の起立部に両側方へ突出した腕部を設け、型締め工程において、腕部の表裏両面を上金型の凸部外側面と下金型の凹部内側面との間で挟持するようにすれば、ケースの内面のコーナ部近傍にのみ端子を露出させることも可能である。 発明の効果
- [0016] 本発明では、ケースの側壁に端子をインサート成形によって縦向きに固定し、端子の 内側面を側壁の内側面に露出させたので、ケースに圧電振動板を収納する場合、ケ

ースの側壁と圧電振動板の外周縁とを近づけることができ、ケースと圧電振動板との 寸法差を小さくできる。その結果、圧電振動板の共振周波数を低く、音圧を大きくす ることができる。

また、端子がインサートされたケースの側壁の外側面に、下方に向かって縦方向に延びる凹溝を形成し、凹溝に端子の外側面の一部を酵出させ、凹溝に酵出した端子の外側面と対向する内側面の一部を側壁の内側面に酵出させたので、端子をインサート成形する際、上下の金型で端子の内外両側面を挟持でき、樹脂成形時の圧力により端子が変形するのを防止でき、端子を側壁の内側面に確実に酵出させることができる。

[0017] また、本発明は、端子の起立部を上金型の凸部外側面と下金型の凹部内側面との 間で挟持した状態で樹脂を射出するので、スライド型を使用せず上下型だけで端子 をインサート成形でき、金型構造が簡単で低コストとなり、成形時間も短縮できる。ま た、多数個取りを行うことも容易である。

発明を実施するための最良の形態

- [0018] 以下に、本発明の実施の形態を、実施例を参照して説明する。 実施例 1
- [0019] 図1〜図4は本発明にかかるケースを用いた圧電型電気音響変換器、例えば圧電サウンダの例を示す。
 - この圧電サウンダは、大略、圧電振動板1とケース20とカバー30とで構成されている。ケース20とカバー30とで筐体が構成される。
- [0020] この実施例の圧電振動板1は、図5,図6に示すように、略正方形状の金属板2と、金属板2の表面全面に形成された絶縁層3と、絶縁層3の上に接着固定された金属板2より小形な略正方形状の圧電体4とで構成されている。
 - 金属板2はバネ弾性を備えた材料が望ましく、例えばリン青銅, 42Niなどが用いられる。絶縁層3は、ポリイミド、エポキシなどの樹脂コーティングで構成することもできるし、酸化処理によって酸化物被膜を形成してもよい。
- [0021] 圧電体4は、2層の圧電セラミック層4a, 4bをグリーンシートの状態で内部電極5を間にして積層し、同時焼成したものであり、表裏面のほぼ全面に外部電極6, 7が設けら

れている。各圧電セラミック層4a, 4bは、図6に矢印Pで示すように厚み方向に逆向きに分極されている。内部電極5は、その一辺が圧電体4の端面に露出しているが、反対側の辺は圧電体4の端面から一定距離だけ手前で終端となっている。圧電体4の表裏の外部電極6, 7は一方の端面電極8を介して相互に接続され、内部電極5は他力の端面電極9を介して表裏面に形成された引出電極10, 11と接続されている。引出電極10, 11は、圧電体4の1つの辺の中央部に沿って形成された小形の電極であり、表裏の外部電極6, 7と電気的に分離されている。一方の端面電極8は圧電体4の1辺に相当する長さを有するが、他方の端面電極9は引出電極10, 11の長さに応じた長さとしてある。なお、この実施例では、引出電極10, 11を表面だけでなく裏面にも形成したが、これは圧電体4の方向性をなくすためであり、裏面の引出電極11は省略してもよい。また、引出電極10, 11を圧電体4の1辺に相当する長さとしてもよい。原電体4の裏面は、エポキシ系接着剤などの接着剤12(図5参照)によって絶縁層3の中央部上面に接着されている。金属板2は圧電体4より大形であり、圧電体4より外方へ延出する延長部2aの表面にも絶縁層3が連続的に形成されている。

- [0022] ケース20は樹脂により底壁20aと4つの側壁20b~20eとを持つ略正方形の箱型に形成されている。ケース材料としては、LCP(液晶ポリマー), SPS(シンジオタクチックポリスチレン), PPS(ポリフェニレンサルファイド), エポキシなどの耐熱性樹脂が望ましい。ケース20の側壁20b~20eの内側には、振動板1を全周で受ける支持部21が形成され、対向する2つの側壁20b, 20dの内側面には、振動板1の表面側外部電極6と引出電極10とにそれぞれ電気的に接続される端子22, 23の内部接続部22a, 23aが露出している。また、支持部21と端子22, 23の内部接続部22a, 23aとの間には、ケース20から一体に隔壁部24が形成されている(図4参照)。この隔壁部24は、後述するように支持部21上に金属板2を載置したとき、金属板2が端子22, 23に接触するのを防止するスペーサとして機能するものである。
- [0023] 端子22,23はケース20にインサート成形された端子であり、例えば板厚が0.1mm 程度の金属板(リン青銅など)で形成されている。この端子22,23は図7に示すように 、フープ材29から一体的に打ち抜かれた端子22,23の一端部22a,23aを上方へ 垂直に折り曲げ、この折り曲げ部を振動板1との内部接続部としている。このように内

部接続部22a, 23aをケース底面(振動板1)に対して垂直に起立させることにより、 内部接続部22a, 23aがケース20の内部へ張り出さず、ケース20の開口寸法Lと圧 電振動板1の寸法Sとの寸法差を小さくできる。端子22, 23の外部接続部22b, 23b はケース20の底面に沿うように内側へ延びている。

- [0024] 端子22, 23を設けた側壁20b, 20dの外側面には、図8, 図9に示すように、底面側に幅広な切欠部27が形成され、切欠部27の上端には縦方向に延びる幅狭な凹滞28が形成されている。凹溝28の下端は切欠部27と連結されている。凹溝28には端子22, 23の外側面の一部が露出しており、凹溝28に露出した端子22, 23の外側面と対向する内側面の一部(内部接続部22a, 23a)が側壁20b, 20dの内側面に露出している。凹溝28の上端は、端子22, 23の上端部より δ だけ低い位置で終端となっている。つまり、端子22, 23の上端の外側面が側壁20b, 20dで覆われているので、端子22, 23の上端部が背後から保持され、端子22, 23の内外方向の変形を防止できる。側壁20b, 20dは端子22, 23の板厚より大きな肉厚Dを有するので、ケース20としての強度を確保できるとともに、カバー30との接着面積をも確保できる。
- [0025] ケース20の端子22,23を設けていない一方の側壁20eの底部側に下側放音孔25 が形成され、他方の側壁20cの頂部に放音用の溝26が形成されている。この実施例のカバー30は、ケース20と同種の材料で平板状に形成されている。カバー30をケース20の側壁の頂部に接着剤31で接着することにより、溝26は上側放音孔となる。なお、カバー30は平板状とする必要はなく、断面略凹型のキャップ形状であってもよい。また、上側放音孔26はケース20の側壁頂部に設けた溝とする必要はなく、カバー30に設けた孔でもよい。
- [0026] 圧電振動板1は、その金属板2が底壁と対面するようにケース20の中に収納され、その周辺部が支持部21上に載置される。次に、絶縁剤32が金属板2の縁部と端子22,23の内部接続部22a,23aとの間に線状に塗布され、硬化される。絶縁剤32としては如何なる絶縁性接着剤を用いてもよいが、ウレタン系,シリコーン系などの弾性を持つ接着剤を用いる方がよい。次に、上記絶縁剤32に対して直交方向に、導電性接着剤33が表面側外部電極6と端子22の内部接続部22aとの間、および引出電極10と端子23の内部接続部23aとの間に塗布され、硬化される。端子22,23の内部

接続部22a, 23aは垂直に起立しているが、広い面積で露出しているので、導電性接着剤33としては、ウレタン系などの弾性を持つ接着剤に導電性フィラーを含むものがよい。導電性接着剤33としては、ウレタン系などの弾性を持つ接着剤に導電性フィラーを含むものがよい。導電性接着剤33は金属板2の上に途布されるが、金属板2の上には絶縁層3が予め設けられ、かつ金属板2の外周縁部は絶縁剤32で覆われているので、導電性接着剤33が金属板2に直接接触することがない。次に、金属板2の周囲全周とケース20との間が接着剤34で固定される。この接着剤34は公知の絶縁性接着剤を用いればよいが、ウレタン系、シリコーン系などの弾性を持つ接着剤を使用するのがよい。上記のように振動板1をケース20に固定した後、ケース20の上面開口部にはカバー30が接着剤31で接着される。カバー30を接着することで、カバー30と振動板1との間、および振動板1とケース20の底部との間には音響空間が形成され、表面実装型の圧電サウンダが完成する。

[0027] 上記のように振動板1とケース20とを固定する接着剤32,33,34として、弾性材料を使用することで、振動板1の変位を最大限にでき、大きな音圧を得ることが可能となる

また、振動板1の電極部分(表面側外部電極6と引出電極10)と、ケース20の電極部分(端子22,23)とを導電性接着剤33によって接続しているので、金属板2を介して導通を取る場合に比べて、電気的信頼性が向上する。しかも、導電性接着剤33は、ディスペンサーなどの塗布装置によってケース20の上方から塗布することができるので、自動化が容易であり、リード線を半田付けする場合に比べて製造効率および品質を向上させることができる。

[0028] 上記ケース20に設けられた端子22,23間に、振動板1の共振周波数とほぼ等しい 周波数の交番信号(交流信号または矩形波信号)を印加すると、圧電体4が平面方 向に伸縮し、金属板2は伸縮しないので、全体として振動板1は屈曲変形を起こす。 振動板1の周辺部がケース20に支持され、振動板1の表側と裏側との間が接着剤34 で封止されているので、所定の音波を発生することができる。この音波は上側放音孔 26から外部へ放出される。

端子22,23の内部接続部22a,23aをケース10の側壁の内側面に露出させ、ケー

ス底面(振動板1)に対して垂直に起立させたので、内部接続部22a, 23aがケース10の内側へ張り出さず、圧電振動板1の寸法Sをケース20の開口寸法Lに対してできるだけ近づけることができる。その結果、ケースの開口寸法Lが同一でも、圧電振動板1の寸法Sを大きくできるので、共振周波数を低くでき、音圧を大きくすることができる。

[0029] 図10は、ケース20に端子22,23をインサート成形する方法を示す。

図10の(a)は上型35と下型36の型締め時を示し、(b)は上型35と下型36の型開き時を示す。

上型35にはケース20の内面を形成する凸部35aが形成され、凸部35aの側面の一部35bが外側へ突出している。また、下型36にはケース20の外面を形成する凹部36aが形成され、凹部36aの側面の一部に内側へ突出する凸条部36bが設けられている。凸条部36bの上端は、後述する端子22の起立部22aの上端よりやや下方にあり、凸条部36bの下端は凹部36aの底面まで延びている。上記凸部35aと凹部36aとの間でキャビティが構成される。

- [0030] 図10(a)に示すように、L字形に形成された端子22が上下の型35,36内に配置され、型締めされる。型締め状態において、端子22の底板部(外部接続部)22bが下型36の凹部36aの底面上に配置される。また、上型35の凸部35aの一部35bと、下型36の凹部36aの凸条部36bとで端子22の起立部22aの表裏両面が挟持されているので、樹脂の射出圧力により端子22の起立部22aが変形するのが防止される。
- [0031] 図10(b)のように上下の型35,36を上下方向に開くと、上型35の凸部35aによってケース20の内側空間が形成され、下型36の凹部36aによってケース20の外表面が形成され、凹部36aの凸条部36bによって切欠部27および凹溝28が形成される。ケース20の側壁20bの内側に端子22の起立部(内部接続部)22aを露出させることができる。

比較例

[0032] 図16は本発明と対比するための圧電型電気音響変換器の比較例を示す。 図16において、端子53がケース50にインサートされ、端子53の内部接続部53aは ケース50の側壁部51の内側面に露出されている。ケース50の側壁部51の内側に は支持部52が設けられ、この支持部52に圧電振動板54が載置されている。圧電振動板54はケース50に弾性を持つ接着剤55により固定され、端子53の内部接続部53aと圧電振動板54とは導電性接着剤56によって電気的に接続されている。この比較例の場合も、第1実施例と同様に、端子53の内部接続部53aがケース50の側壁部51の内側面に酵出しているので、ケース50の側壁部51に圧電振動板54の外周縁を近づけることができ、ケース50と圧電振動板54との寸法差(L-S)を小さくすることができる。そのため、圧電振動板54の共振周波数を低く、音圧を大きくすることができる。

- [0033] 図17は上型60と下型61とを用いてケース50に端子53をインサート成形する様子を示す。矢印方向に樹脂が流れるが、その圧力によって端子53の起立部(内部接統部)53aが外側に変形し、側壁部51の内側へ端子53を露出させることができなくなる恐れがある。
- [0034] そこで、図18に示すようにスライド型62を用いてインサート成形する方法もある。図1 8の(a)はインサート成形時、(b)はスライド型の離脱時、(c)は上下型の離脱時であ る。

この場合には、スライド型62と上型60との間で端子53の起立部53aを挟持しているので、樹脂成形時の圧力が作用しても、端子53の変形が防止される。

しかしながら、スライド型62を用いた成形方法では、スライド動作の時間ロスが発生するとともに、金型も複雑で高価となり、高密度の多数個取りを行うことは難しく、コスト上昇を招く欠点がある。

[0035] これに対し、第1実施例の場合には、図10の(a)に示すように、上型35の凸部35aの一部35bと、下型36の凹部36aの凸条部36bとで端子22の起立部22aの表裏両面が挟持されるので、樹脂の射出圧力により端子22の起立部22aが変形するのが防止される。そのため、スライド型を使用せずに、樹脂成形時の圧力により端子が変形するのを防止できる。

実施例 2

[0036] 図11〜図13は本発明にかかるケースの第2実施例を示す。第1実施例(図1〜図10)と同一部分には同一符号を付して重複説明を省略する。

第1実施例では、ケース20に対し圧電振動板1をその対向する2辺の中央部で絶縁 材32および導電性接着剤33によって支持したが、圧電振動板1の振動特性によっ ては、コーナ部近傍で支持する方が望ましい場合がある。そこで、この実施例では、 ケース20の対向する側壁20b, 20dの内側面であって、かつコーナ部近傍に端子2 2, 23の内部接続部22a, 23a(但し23aは図3、図7参照)を2箇所で露出させ、この 露出部で圧電振動板(図示せず)を支持するものである。

[0037] ケース20の側壁20b, 20dにインサートされた端子22, 23の起立部に両側方へ突出した腕部22cを形成し、その腕部22cと対応するケース20の側壁20b, 20dの外側面に、下方に向かって縦方向に延びる一対の凹溝28を設けてある。この場合は、一対の凹溝28の中間位置に、端子22, 23の起立部の外側面を露出させる切欠部27が別個に形成されている。

ケース20の側壁20b, 20dの内側面には、下方に向かって内側へ傾斜したテーパ面24aが形成され、テーパ面24aの2箇所に端子22, 23の腕部22c, 23cの一部(内部接続部22a, 23a)を露出させる切欠部24bが形成されている。端子22, 23の内部接続部22a, 23aはテーパ面24aより外側に位置しているので、支持部21上に圧電振動板1を載置した際、金属板2が端子22, 23と直接接触するのを防止できる。また、テーパ面24aは圧電振動板1をケース20に挿入する際のガイド面としても機能する。

なお、この実施例では、ケース20の側壁20b, 20dの内側面(テーパ面24a)に、端子22, 23の2つの内部接続部22a, 23aをそれぞれ露出させたが、一方の内部接続部22a, 23aだけを露出させてもよい。

[0038] 図14は、第2実施例におけるケース20に端子22, 23をインサート成形する方法を示す。

図14の(a)は上型35と下型36の型締め時を示し、(b)は上型35と下型36の型開き時を示す。

図10と同様に、上型35にはケース20の内面を形成する凸部35aが形成され、凸部35aの側面35cはテーパ状に形成され、その一部に外側へ突出する凸条部35bが設けられている。この凸条部35bは切欠部24bと対応している。また、下型36にはケ

- ース20の外面を形成する凹部36aが形成され、凹部36aの側面の一部に内側へ突出する凹条部36bが設けられている。凸条部36bは凹溝28に対応している。また、凸条部36bとは別に、切欠部27に対応する凹部(図示せず)も設けられている。凸条部36bの上端は端子22の腕部22cの上端よりやや下方にあり、凸条部36bの下端は凹部36aの底面まで延びている。上記凸部35aと凹部36aとの間でキャビティが構成される。
- [0039] 図14(a)に示すように、L字形に形成された端子22が上下の型35,36内に配置され、型締めされる。型締め状態において、端子22の底板部(外部接続部)22bが下型36の凹部36aの底面上に配置される。また、上型35の凸条部35bと、下型36の凸条部36bとで端子22の内部接続部22aの表裏両面が挟持されているので、樹脂の射出圧力により端子22の内部接続部22aが変形するのが防止される。
- [0040] 図14(b)のように上下の型35,36を上下方向に開くと、上型35の凸部35aによってケース20の内側空間が形成され、下型36の凹部36aによってケース20の外表面が形成される。そして、下型36の凸条部36bによって凹溝28が形成され、上型35の凸部35aの側面35cによってテーパ面24aが形成され、凸条部35aによって切欠部24bが形成される。そのため、ケース20の側壁20bの内側テーパ面24aから端子22の内部接続部22aを露出させることができる。
- [0041] 本発明は上記実施例に限定されるものではない。

上記実施例の圧電振動板1は、金属板に積層構造の圧電体4を接着した構造のものであるが、圧電体は積層構造に限らず、単板構造でもよい。

本発明の圧電振動板は、金属板に圧電体を貼り付けたユニモルフ構造に限るものではなく、特開2001-95094号公報に記載のような積層圧電セラミックのみからなるバイモルフ構造の圧電振動板であってもよい。

上記実施例ではケースの内側に、圧電振動板の4辺を支持する支持部を設けたが、 端子が露出した2辺、あるいは4つの角部に支持部を設けてもよい。

[0042] 上記実施例では、筐体を凹型のケースとその開口部を閉鎖するカバーとで構成したが、筐体の構成はこれに限るものではない。

本発明は、圧電サウンダのような共振領域で使用される電気音響変換器に限らず、

圧電レシーバのような広いレンジの周波数に対応した電気音響変換器にも適用できる。

さらに、本発明のケースは圧電型電気音響変換器以外にも種々の電子部品に適用 可能であることは勿論である。

図面の簡単な説明

[0043] [図1]本発明に係るケースを用いた圧電型電気音響変換器の一例の分解斜視図である。

[図2]図1に示す圧電型電気音響変換器のカバーおよび接着剤を除外した平面図である。

[図3]図2のA-A線断面図である。

[図4]図3の一部拡大図である。

[図5]圧電振動板の分解斜視図である。

[図6]圧電振動板の断面図である。

[図7]端子とケースとのインサート成形状態を示す図である。

[図8]ケースの側面図である。

[図9]図8のB-B線断面図である。

[図10]第1実施例のケースに端子をインサート成形する方法を示す工程図である。

[図11]本発明に係るケースの第2実施例の斜視図である。

[図12]図11に示すケースの側面図である。

[図13]図12のC-C線断面図である。

[図14]第2実施例のケースに端子をインサート成形する方法を示す工程図である。

[図15]従来の圧電型電気音響変換器の一例の断面図である。

[図16]比較例としての圧電型電気音響変換器の部分断面図である。

[図17]図16に示すケースのインサート成形時の断面図である。

「図18]スライド型を用いたインサート成形時の工程図である。

符号の説明

[0044] 20 ケース(筐体)

20a 底壁

20b 側壁

22, 23 端子

22a, 23a 内部接続部

22b, 23b 外部接統部

27 切欠部

35 上型

36 下型

請求の範囲

[1] 底壁と4つの側壁とを有し、上面に開口部を有するケースであって、

上記側壁のうち少なくとも1つの側壁には板状金属板よりなる端子がインサート成形によって縦向きに固定されており、

上記端子が固定された側壁の外側面に、下方に向かって縦方向に延びる凹溝が形成され、

上記凹溝に上記端子の外側面の一部が露出しており、

上記凹溝に露出した端子の外側面と対向する内側面の一部が上記側壁の内側面に 露出していることを特徴とするインサート端子付きケース。

- [2] 上記側壁の外側面の底面近傍には、上記端子の外側面を、上記凹溝から露出する端子の露出部より広い面積で露出させる切欠部が設けられ、
 - 上記凹溝の下端は上記切欠部と連結されていることを特徴とする請求項1に記載のインサート端子付きケース。
- [3] 上記凹溝の上端は、上記端子の上端部より低い位置で終端となっていることを特徴とする請求項1または2に記載のインサート端子付きケース。
- [4] 請求項1ないし3のいずれかに記載のケースと、上記ケースの内部に収容され、2つの電極間に交番信号を印加することにより屈曲振動する圧電振動板と、上記ケースの上面開口部に固定されるカバーとを備えた圧電型電気音響変換器であって、上記ケースの側壁のうち対向する2つの側壁にそれぞれ端子がインサート成形によって固定されており、

上記側壁の内側面に露出した上記端子の内側面と上記圧電振動板の電極とが導電 性接着剤により電気的に接続されていることを特徴とする圧電型電気音響変換器。

[5] ケースの内面を形成する凸部を有する上金型と、上記ケースの外面を形成する凹部 を有する下金型とを準備する工程と、

板状金属板よりなるL字形端子の底板部を下金型の凹部底面上に配置し、上記端子の起立部を上金型の凸部外側面と下金型の凹部内側面との間で挟持するように上下の金型を型締めする工程と、

上記上下の金型の凸部と凹部との間に形成されるキャビティに樹脂を射出し、硬化さ

せる工程と、

上記樹脂の硬化後に上下の金型を開くことにより、ケースを取り出す工程と、を備えるインサート端子付きケースの製造方法。

- [6] 上記下金型の凹部の内側面には、上端が上記端子の起立部上端より下方に位置し、下端が凹部の底面まで延びる凸条部が形成されており、
 - 上記凸条部の内側面と上記上金型の凸部外側面との間で上記端子の起立部が挟持されることを特徴とする請求項5に記載のインサート端子付きケースの製造方法。
- [7] 上記端子の起立部には、両側方へ突出した腕部が設けられ、 上記型締め工程において、上記腕部の表裏両面が上金型の凸部外側面と下金型の 凹部内側面との間で挟持されることを特徴とする請求項5または6に記載のインサート 端子付きケースの製造方法。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図8]

[図9]

[図10]

[図11]

[図12]

[図13]

[図14]

[図15]

[図16]

[図17]

[図18]

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (second sheet) (January 2004)

International application No.
PCT/JP2004/010097

CLASSIFICATION OF SUBJECT MATTER Int.Cl⁷ H04R17/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl7 H04R17/00, H05K5/00-7/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2004 Jitsuyo Shinan Koho Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuvo Shinan Toroku Koho 1996-2004 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A JP 2002-238094 A (Murata Mfg. Co., Ltd.), 1-7 23 August, 2002 (23.08.02), Full text; Figs. 1 to 13 (Family: none) JP 2-216896 A (Teikoku Tsushin Kogyo A 1-7 Kabushiki Kaisha), 29 August, 1990 (29.08.90), Full text; Figs. 1 to 24 (Family: none) Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 30 July, 2004 (30.07.04) 17 August, 2004 (17.08.04) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No. Facsimile No.

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ¹ H04R17/00			
B. 調査を行った分野			
調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ^T H04R17/00、H05K5/00-7/00			
母小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2004年 日本国登録実用新案公報 1994-2004年 日本国実用新案登録公報 1996-2004年			
国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)			
C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2002-238094 A (株式会社村田製作所) 2002.08.23 全文,第1-13図 (ファミリーなし)		1 — 7
A	JP 2-216896 A (帝国通信工業材全文, 第1-24図(ファミリーなし		1 — 7
□ C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。			
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願		の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献	
国際調査を完了した日 30.07.2004		国際調査報告の発送日 17.8.2004	
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号		特許庁審査官(権限のある職員) 大 野 弘 電話番号 03-3581-1101	5C 9175 内線 3539