EXAMEN de Matemática Discreta y Lógica Matemática (Parcial Febrero 2018)

5.	Definimos una relación R en $\mathbb N$ como sigue: $aRb \Longleftrightarrow a+b$ es par.
	R no es una relación de equivalencia.
	$\hfill \square$ R es una relación de equivalencia y $ A/R =1$
	$\hfill \square$ R es una relación de equivalencia y $ A/R =2$
	$\hfill \square$ R es una relación de equivalencia y $ A/R $ es infinito.
6.	Sobre $\mathcal{P}(\mathbb{N})$ se define la relación binaria $ARB \Longleftrightarrow A \cap B = C$, siendo $C \in \mathcal{P}(\mathbb{N})$ un conjunto fijado a priori. Entonces:
	es una relación de equivalencia.
	es un orden parcial.
	es un orden estricto.
	Ninguna de las anteriores afirmaciones es cierta.
7.	$ \begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \bf [1.5 \ puntos] \end{tabular} \begin{tabular}{ll} \bf Demuestra por inducción, indicando qué tipo de inducción usas, que para todo $n \geq 1$,} \\ \hline \end{tabular}$
	$\sum_{i=1}^{n} i2^{i} = (n-1)2^{n+1} + 2$
8.	[1 punto] Sea p un número primo y sean $a, b \in \mathbb{Z}$ siendo $a, b \ge 2$. Si $p a^2$ y $p b^3$, demuestra que $p a + b$
9.	[3 puntos] Definimos la relación R en $\mathcal{P}(\mathbb{N})$ como:
	$XRY \Longleftrightarrow X \cap Y = X \ X,Y \subseteq \mathbb{N}$
	a) [1 punto] Demuestra que R es una relación de orden sobre $\mathcal{P}(\mathbb{N})$.
	b) Definimos el conjunto $\mathcal{F}' = \{X \in \mathcal{P}(\mathbb{N}) \mid X \text{ es impar}\}$ y consideramos el conjunto parcialmente ordenado (\mathcal{F}',R)
	1) [1 punto] Estudia sus elementos extremales.

- 2) [1 punto] Sea $S = \{X \subseteq \{1,2,3,4,5\} | |X| = 1 \text{ o } |X| = 3\} \subseteq \mathcal{F}'$. Estudia los elementos extremales de S. Calcula las cotas superiores e inferiores de S y su supremo e ínfimo, si existen.
- 10. [1.5 puntos] Sea $g: \mathbb{Z}^+ \longrightarrow \mathbb{Z}^+$

$$g(n) = \left\{ \begin{array}{ll} n & \text{si } n \text{ es par} \\ (n+1)/2 & \text{si } n \text{ es impar} \end{array} \right.$$

Estudia si f es inyectiva y/o suprayectiva. En caso afirmativo demuéstralo formalmente y en caso negativo da un contraejemplo.