Zeitschrift

für

anorganische und allgemeine Chemie

Gegründet von GERHARD KRÜSS

Unter Mitwirkung von

W. Biltz-Hannover, Niels Bjerrum-Kopenhagen, J. N. Brönsted-Kopenhagen, F. W. Clarke-Washington, A. Classen-Aachen, Franz Fischer-Mülheim-Ruhr, F. A. Gooch-New Haven, Connecticut (U. S. A.), F. Haber-Berlin-Dahlem, G. von Hevesy-Freiburg i. B., K. A. Hofmann-Berlin-Charlottenburg, O. Hönigschmid-München, F. M. Jaeger-Groningen, A. Klemenc-Wien, R. Kremann-Graz, N. S. Kurnakow-Leningrad, W. Manchot-München, F. Mylius-Berlin-Charlottenburg, W. Nernst-Berlin, Fr. Paneth-Berlin, P. Pfeiffer-Bonn, W. Prandtl-München, E. H. Riesenfeld-Berlin, A. Rosenheim-Berlin, O. Ruff-Breslau, R. Schenck-Münster i. W., A. Sieverts-Jena, A. Stock-Karlsruhe i. B., A. Thiel-Marburg (Lahn), M. Trautz-Heidelberg, C. Tubandt-Halle, H. v. Wartenberg-Danzig-Langfuhr, R. F. Weinland-Würzburg, L. Wöhler-Darmstadt, R. Zsigmondy-Göttingen

herausgegeben von

G. Tammann

in Göttingen

und

Richard Lorenz

in Frankfurt a. M.

EIPZIG - VERLAG VON LEOPOLD VOSS

Die Zeitschrift erscheint in zwanglosen Heften von verschiedenem Umfang. 4 Hefte bilden stets einen Band. Der Abonnementspreis beträgt pro Band Rm. 18.—

Ausgegeben am 7. Juni 1929

Bibliotheken, die Einband. enthält das alphabetische Autoren- und Sachregister für die Bände 178-180. Dieses Heft

Inhalt

Den Arbeiten ist in Klammern das Datum des Einlaufes bei der Redaktion beigefügt

MAX TRAUTZ und WILHELM GABLER-Heidelberg: Über Zünddrucke von Phosphingemischen. 9. Mitteilung aus dem Physikalisch-Chemischen Institut in Heidelberg. Mit 10 Figuren im Text. (11. März 1929.).	Seite
MILDA PRYTZ-Oslo: Hydrolysemessungen in Berylliumsalzlösungen. Mit 5 Figuren im Text. (15. März 1929.)	
O. HASSEL-Oslo: Ist das Gitter des tetragonalen Quecksilbercyanids ein Molekül- oder Radikalgitter? Mit einer Figur im Text. (3. März 1929.)	370
R. FRICKE-Münster i. W.: Nachschrift zur Arbeit von O. HASSEL: Ist das Gitter des tetragonalen Quecksilbercyanids ein Molekül- oder Radikalgitter? (29. März 1929.)	374
Register für die Bände 178, 179 und 180	377

Bei der Redaktion eingegangene Arbeiten werden im nächsten Heft bekannt gegeben.

Die Arbeiten werden in der Reihenfolge ihres Einlaufes abgedruckt, soweit nicht durch die Anfertigung von Figuren oder durch nicht rechtzeitige Rücksendung der Korrekturen Verzögerungen eintreten.

Neuerscheinung:

Physikalische Chemie der Silikate

Von

Prof. Dr. Wilhelm Eitel

Direktor des Kaiser-Wilhelm-Institutes für Silikat-Forschung, Berlin-Dahlem

XII, 552 Seiten mit 459 Abb. im Text und 1 Tafel. 1929. gr. 8°

Rm. 60.—, geb. Rm. 63.—

Der Verfasser hat die großen Hauptabschnitte der exakten Silikatforschung auf physikalisch-chemischer Grundlage klar herausgearbeitet und vermittelt außerdem dem Praktiker einen Überblick über dasjenige Gebiet, auf welchem für die nahe Zukunft noch entscheidende Fortschritte einer exakten Begründung der Silikatindustrien erwartet werden darf.

Er betrachtet zunächst das Wesen des Siliciums und der Kieselsäure und ihre Rolle im gesamten Aufbau unserer Planeten. Danach behandelt er die Fragen nach dem Wesen der verschiedenen Zustände der Silikate, in den kristallisierten, glasigen, flüssigen und kolloiden Phasen. Die Gleichgewichtslehre unter besonderer Berücksichtigung der bei den Silikaten bestimmten Richtlinien ist Gegenstand eines weiteren ausführlichen Hauptteiles, auf welchen eine kurze Darstellung der speziellen Forschungsergebnisse folgt. Eine besondere Behandlung erfahren die Erscheinungen der Beteiligung gasförmiger und Lösungsphasen an den Reaktionen der Silikate. Zuletzt folgt das große Gebiet der technischen Silikate im Glase, den keramischen Massen, den Zementen und Mörteln.

LEOPOLD VOSS / VERLAG / LEIPZIG

Über Zünddrucke von Phosphingemischen.

Von Max Trautz und Wilhelm Gabler.

Mit 10 Figuren im Text.

9. Mitteilung aus dem Physikalisch-Chemischen Institut in Heidelberg.

I. Bisherige Tatsachen und Vorversuche. 1)

1. Historisches über Grenzdrucke.

Bei manchen Oxydationen mit Sauerstoffgas wächst seine Reaktionsfähigkeit, wenn man seinen Druck verkleinert.

Das klassische Beispiel ist die langsame Oxydation des P. Fourcroy2) stellte fest, daß reiner O2 von Atmosphärendruck auf P nicht einwirkt, während Luft schnell mit ihm reagiert. Beim gasanalytischen Arbeiten mit der Phosphorpipette nimmt man darauf Rücksicht. Van Marum³) brachte mit Watte umhüllten P zur Entflammung, indem er den O₂-Druck durch Ausdehnen verminderte.

Bringt man ein Stückchen an Luft leuchtenden P in reinen O₂, so hört das Leuchten auf; es beginnt wieder beim Verdünnen des O₂ durch Hinzufügen eines anderen Gases oder Dilatation und zwar bei einem bestimmten O2-Druck, dem maximalen Grenzdruck (Leuchtdruck).

Er tritt auch bei einigen P-Verbindungen auf; nach Thorpe und Tutton⁴) bei P₄O₆, nach E. Scharff⁵) bei P₄S₃.

Nicht immer sind solche Grenzdruckoxydationen von Leuchten begleitet, so bei der langsamen Oxydation von S und As, wie JOUBERT⁶) feststellte. Von 200° ab leuchtet nach Heumann?) allerdings auch der S an Luft unter campherähnlichem Geruch.

Als Houton Labillardière⁸) ein Gemisch von PH₃ und Luft über Hg langsam ausdehnte, explodierte das Gemisch bei einem

¹⁾ Die Literatur konnte nur bis zum Jahre 1924 berücksichtigt werden.

²⁾ Fourcroy, Mémoires de l'académie des sciences, 1788.

³⁾ VAN MARUM, Verhandelingen uitgegeven door Teylors Tweede Genootschap, 10, 1798.

⁴⁾ THORPE und TUTTON, Journ. Chem. Soc. 57 (1890), 569.

⁵) E. Scharff, Zeitschr. f. phys. Chem. 62 (1908), 179.

⁶⁾ Joubert, Thése sur la phosphorescence du phosphore, 1874.

⁷⁾ HEUMANN, Ber. Dtsch. Chem. Ges. 8 (1874), 1198.

⁸⁾ HOUTON LABILLARDIÈRE, Ann. de Chim. et de Phys. 6 (1817), 304.

Z. anorg. u. allg. Chem. Bd. 180.

bestimmten Druck. Dumas¹) bestätigt dies. Nach Friedel und Ladenburg²) tritt Explosion ein, wenn man SiH4 mit Luft gemischt ausdehnt. Nach Mitscherlich³) sinkt die Entzündungstemperatur des Knallgases von 620° auf 540° durch Druckverminderung von 760 auf 360 mm Hg. Demnach sollte das Gemisch bei Temperaturen in diesem Intervall durch Dilatation zur Explosion gebracht werden können. Explosivität von Gasgemischen wird durch Hinzufügen von Fremdgasen nicht immer herab-, sondern unter Umständen auch heraufgesetzt. So kann man dasselbe Leuchtgasvolumen nach Eitner⁴) mit weniger O₂ zur Explosion bringen, wenn man beträchtliche Mengen N₂ oder CO₂ zusetzt.⁵)

Ewan⁶) fand, daß bei langsamer Oxydation von Aldehyd bei O₂-Drucken von 450 mm aufwärts die Geschwindigkeitskonstante immer kleiner wird. Bei mehr als 530 mm Druck hört die merkliche Oxydation auf. Das legt die Vermutung nahe, daß auch andere Autoxydationen, vielleicht alle von organischen Stoffen Grenzdrucke zeigen können. Bei Oxydation von C₂HBr treten auch Leuchterscheinungen und Grenzdrucke auf.⁷)

A. W. Palmer⁸) berichtet vom (CH₃)₂AsH: "Es entflammt heftig, wenn es mit Luft in Berührung kommt. Wenn man zu der Mischung seiner Dämpfe mit Wasserstoff Luft zutreten läßt, so werden dichte weiße Nebel gebildet." Nach A. W. Hofmann⁹) gilt dasselbe für (CH₃)₂PH; bei der Oxydation von Diamylphosphin treten die bekannten Leuchterscheinungen auf. Die Beziehungen zum PH₃ lassen auch hier eine O₂-Druckgrenze vermuten.

2. Vorversuche über Grenzdrucke bei anderen Reaktionen.

Bei (C₂H₅)₂Zn ist von uns der Nachweis dafür erbracht, indem es gelang, Mischungen von Zinkdiäthyldampf, O₂ und CO₂ durch Ausdehnen zu zünden. Aus später zu besprechenden Gründen ist dies jedoch schlecht reproduzierbar.

¹⁾ Dumas, Ann. de Chim. et de Phys. 6 (1817), 304.

²⁾ FRIEDEL und LADENBURG, Ann. de Chim. et de Phys. (4) 23 (1871), 430.

³⁾ Berl. Ber. 26, 399.

⁴⁾ EITNER, Habilitationsschrift München 1902.

⁵⁾ F. EPSTEIN und P. KRASSA, Zeitschr. f. phys. Chem. 71 (1910), 45.

⁶⁾ Ewan, Zeitschr. f. phys. Chem. 16 (1895), 315.

¹⁾ MIHR, Diss. Marburg.

⁸⁾ A. W. PALMER, Ber. 27, 1378.

⁶) A. W. Hofmann, Ber. 4 (1871), 605 und 6, 298.

Weiter stellten wir fest, daß CS₂-Dampf im Gemisch mit O₂ sich wie PH₃ verhält. Ausdehnung bei 110—120° führt bei einem bestimmten Druck zur Explosion, gut reproduzierbar. Bei noch höheren Temperaturen gelang es, auch H₂- und CO-Knallgas so zu zünden. In ein einseitig geschlossenes, durch einen Silitofen geheiztes senkrechtes Quarzrohr mit Hg variierbarer Höhe als Sperrflüssigkeit, wurden die Gase durch einen seitlichen, verschließbaren Ansatz eingeführt. Nach Einfüllen des Gases wurde die Einstellbirne so weit gesenkt, daß das Hg ungefähr 5—10 cm unter der heizbaren Zone lag. Dann wurde auf bestimmte Temperatur geheizt, und durch Druckverminderung schließlich Zündung hervorgerufen. Diese Versuche sind unter sich vergleichbar und in Tabelle 1 mitgeteilt.

Neben dem Quarzrohr wurde auch ein innen glasiertes Porzellanrohr (der Hg-Meniskus läßt sich bei Durchleuchtung der Röhre leicht
beobachten) sowie ein Rohr aus Kaliglas benutzt. Daß die Knallgasreaktion stark von der Wand abhängt¹), zeigen Versuch 6, 7 und 8
(Tabelle 1).

Tabelle 1.

Nr.	Zusammensetzung des Gemisches	Temperatur O C	Zünddruck mm Hg	Rohrmaterial
1	$1 H_2 + 1 O_2$	720	758	1
2	$1 \text{H}_2 + 1 \text{O}_2$	650	230	
3	$1 \mathrm{H_2} + 1 \mathrm{O_2}$	630	235	1
4	$1 H_2 + 1 O_2$	560	173	Quarz
5	$1 \mathrm{H_2} + 1 \mathrm{O_2}$	540	114	
6	$1 \mathrm{H_2} + 1 \mathrm{O_2}$	650	230	
7	$1 \text{H}_2 + 1 \text{O}_2$	650	360	Porzellan
8	$1 H_2 + 1 O_2$	650	316	Glas
9	$2CO + 1O_{2}$	750	759)
10	$2CO + 10^{\circ}$	730	528	
11	$2CO + 1O_2$	700	174	Donnellan
12	$2CO + 10^{\circ}$	700	165	Porzellan
13	$2CO + 10^{\circ}$	690	135	
14	2CO + 10	685	139	

3. Vorarbeiten über Phosphinoxydation.

Das wenige, was wir über diese Reaktion aus der Literatur wissen, reicht weit zurück. Van't Hoff²) stellte fest, daß die Druckgrenze etwa bei 0,1 Atm. O₂-Teildruck liegt, und daß eine Steigerung des PH₃-Gehaltes die Druckgrenze nur wenig herabsetzt. Außerdem machte er die sehr wichtige Beobachtung, daß die "geheimnis-

¹⁾ Bodenstein, Zeitschr. f. physik. Chem. 29 (1899), 665.

²⁾ VAN'T HOFF, Etudes de dynamique chimique 1884, 60.

volle" Grenze, wie er sie nannte, sich auch von unten her erreichen läßt. Durch schnelles Dilatieren des Gemisches über die sonstige Grenze hinaus kann man eine Zündung verhindern; durch darauffolgendes langsames Komprimieren tritt bei Erreichen der Grenze Explosion ein.

1893 fand van de Stadt¹), daß der analytische Befund bei der langsamen Oxydation des PH₃ im wesentlichen den Gleichungen:

1.
$$2PH_3 + 3O_2 = 2PO_3H_3$$
 und
2. $PH_3 + O_2 = PHO_2 + H_2$

entspricht. Die zweite Gleichung nimmt für diesen Sonderfall die Wieland'sche Dehydrierungstheorie der Autoxydation vorweg.

Bei geringen Drucken verläuft die Reaktion ausschließlich nach Gleichung 2. Die Verbrennung unter H₂-Abspaltung geschieht unter Bildung eines Nebels, der im Dunkeln grünlich leuchtet. Van de Stadt konnte die Verbrennung bei niederen Drucken (28 mm) annähernd im Sinn der Gleichung 2 leiten, indem er in überschüssiges PH₃ vorsichtig O₂ eintreten ließ.

Für die Oxydationsgeschwindigkeit des PH₃ fand van de Stadt je nach den Versuchsbedingungen wechselnde Werte. Die Höhe des Zünddruckes hing aber nicht davon ab, ob die Reaktionsgeschwindigkeit der vorausgehenden langsamen Oxydation größer oder kleiner war. Dilatation wirkt nach van de Stadt so, als ob plötzlich etwas neues zur Geltung kommt, was die spontane Verbrennung bewirkt.

Weiter stellt er fest, daß auch bei der PH₃-O₂-Druckgrenze H₂O eine Rolle spielt; er verfolgte diese Erscheinung jedoch nicht weiter.

Er glaubte, das Resultat van't Hoff's bestätigen zu können, wonach dann Zündung eintritt, wenn der O₂-Teildruck ungefähr 0,1 Atm. beträgt.

Wir haben nun die quantitativen Kenntnisse über die Explosionsdruckgrenze bei PH₃-O₂-Gemischen zu erweitern versucht. Die
Wahl fiel gerade deshalb auf das PH₃, weil es sich im Gegensatz
zu SiH₄, P₄O₆ oder Zinkalkylen nicht erheblich mit H₂O umsetzt.
Es ist dies deshalb wichtig, weil, soweit man weiß, zu einem definierten Zünddruck ein bestimmter Feuchtigkeitsgrad der Gase gehört. Außerdem gehen die Versuche mit PH₃ schon bei Zimmertemperatur.

¹⁾ VAN DE STADT, Zeitschr. f. phys. Chem. 12 (1893), 322.

4. Überblick über die Bedingungen für das Auftreten von Grenzdrucken.

n

f-

95

er

h

r

S

r

e

t

r

 Z_i

Rolle des Wassers, der Teildrucke von O_2 und O_2 -Empfänger und der Temperatur.

a) Sauerstoff oder Ozon.

Darüber, ob Sauerstoff in Form von reinem O₃ ebenfalls eine Druckgrenze bei der Reaktjon mit anderen Stoffen zeigt, ist nichts bekannt; hingegen ist festgestellt worden (Scharff u. a.), daß O₃ die Lage der Druckgrenze von O₂ beeinflussen kann. Speziell bei der langsamen Verbrennung des P wird das Leuchten durch das entstehende O₃ sehr stark begünstigt und der maximale Leuchtdruck bedeutend nach oben verschoben. Scharff benutzte bei seinen Messungen ein Stückchen Kautschuk als Ozonfänger.

b) Wasser.

In hohem Maße werden die Grenzdrucke in allen darauf geprüften Fällen von Wasser beeinflußt und zwar in beiden Richtungen. In feuchtem O_2 leuchten P, P_4O_6 und P_4S_3 bei höheren Drucken, als in trockenem. H_2O begünstigt besonders bei höheren Temperaturen. Z. B. beträgt nach Scharff der Leuchtdruck des P_4S_3 bei 90° in trockenem O_2 595 mm und steigt in feuchtem O_2 (H_2O -Druck 9,81 mm) auf 870 mm. In trockenem O_2 hört das P_4O_6 -Leuchten völlig auf.

Bei anderen Autoxydationen hemmt das H₂O, so nach van de Stadt bei PH₃-O₂-Gemischen. Auch hängt der Grenzdruck, der die Zündung von SiH₄ und Zinkalkylen bewirkt, ebenso von der Anwesenheit von H₂O ab. Da sich diese letztgenannten Stoffe mit H₂O ziemlich schnell umsetzen und in trockenem Zustand, mit trockenem O₂ bei beliebigen Drucken entflammen, ist ihre Zünddruckgrenze schlecht reproduzierbar. Sie läßt sich qualitativ bei schnellem Arbeiten mit feuchten Gasen beobachten.

Auch wo erst bei hohen Temperaturen Grenzdrucke zu sehen sind, übt H₂O Einfluß aus. Nach Dixon¹) ist trockenes CO-Knallgas gar nicht oder nur äußerst schwierig zündbar. Eine CO-Flamme (trockenes Gas) erlischt bekanntlich in getrockneter Luft. Es war demnach zu erwarten, daß durch H₂O auch der Zünddruck beim Kohlenoxydknallgas heraufgesetzt wird, was der Versuch auch bestätigt. Ein Gemisch von 2 Raumteilen CO und 1 Raumteil O₂ mit 8,4 mm H₂O entflammte bei 700° durchschnittlich bei 170 mm Druck mit etwa 14 mm H₂O im Mittel bei 200 mm. Mit H₂SO₄

¹⁾ Dixon, Chem. News 64 (1891), 70.

getrocknet, entzündeten sich die Gase bis 780° nicht, auch nicht beim Dilatieren. Wasserstoffknallgas entzündet sich umgekehrt trocken bei tieferer Temperatur als feucht. Da aber im Knallgas eben vor der Entflammung auch nach vorhergegangener Trocknung notwendig H₂O vorhanden sein muß, bleibt sein Einfluß auf die Lage der Druckgrenze unsicher.

Möglicherweise findet man noch Reaktionen, auf die Wasser überhaupt nicht merklich wirkt. Aber bisher fehlen dafür Beispiele.

Solange keine Grenzdruckreaktionen ohne Wassereinfluß gefunden sind, kann man also sogar fragen, ob nicht das Auftreten von Druckgrenzen bei Gasreaktionen an die Anwesenheit von Wasser gebunden ist.

Es gibt also zurzeit 2 Gruppen:

1. Begünstigender Einfluß des Wassers:

P, P4O6, P4S3, CO.

2. Hemmender Einfluß des Wassers:

 PH_3 , SiH_4 , Zn-Alkyle, $(H_2?)$.

Es wird kaum Zufall sein, daß die zweite Gruppe nur H-haltige Verbindungen enthält, während solche in der ersten Gruppe völlig fehlen. CS₂ müßte danach in die erste Gruppe gehören.

c) Konzentrationsvariation von Zündgas, von O₂ oder bloß vom Verhältnis beider.

Messungen, bei denen die eine Komponente (P, P₄S₃ usw.) immer kondensiert zugegen ist und sich während des ganzen Versuches mit einem bestimmten konstanten Teildruck am Gesamtdruck beteiligt, lassen Variation der Zündgaskonzentration für sich nicht zu, ohne Temperaturvariation. Anders, wenn beide Komponenten Gase sind, wie im Fall des PH₃.

d) Fremdgase.

Wohl kann man das Konzentrationsverhältnis Zündgas: O₂ bei Versuchen mit P usw. durch Hinzufügen einer dritten Komponente (Fremdgas) abändern. Dies ändert den Gesamtleuchtdruck und den Teil-Leuchtdruck des O₂. Nach Scharff sinkt z. B. der O₂-Leuchtdruck bei der Oxydation des P₄S₃ in Luft auf den vierten Teil desjenigen in reinem O₂, während der Teildruck des O₂ ungefähr ein Fünftel des Gesamtdruckes beträgt (von dem geringen Teildruck des P₄S₃-Dampfes abgesehen). Aber bei diesem Verfahren muß man

erst der kinetischen Indifferenz des Fremdgases sicher sein, die vielleicht gar nicht allgemein besteht.

e) Temperatur.

Die Druckgrenzen sind temperaturabhängig, für jeden oxydablen Körper an ein bestimmtes Temperaturgebiet gebunden. So tritt bei ungefähr — 6° in feuchtem O₂ bei keinem Druck mehr das Leuchten des P auf, bei hinreichend hohen Temperaturen jedoch bei beliebigen Drucken.

II. Neue Messungen.

1. Die Ausgangsstoffe.

Phosphin (Fig. 1) wurde in dem mit aufgeschliffenem Tropftrichter versehenen Kölbehen E nach Hofmann aus $\mathrm{PH_4J}$ durch Auftröpfeln von Wasser gewonnen und aufbewahrt. Das Jodid wurde in das Kölbehen gebracht, die Luft durch trockenes, reines $\mathrm{CO_2}$ verdrängt, von A her über den Hahn H bei

Fig. 1.

geöffnetem Tropftrichterhahn. Dann wurde H gedreht, so daß das nunmehr entwickelte Gas zunächst die Kalilaugewaschflaschen R durchströmte, dann durch ein Glaswollefilter F_1 in den Gasbehälter G_1 gelangte, wo es zur völligen Absorption von CO_2 etwa 24 Stunden über Kalilauge aufbewahrt wurde. Dann ging es über ein zweites Glaswollefilter F_2 in den mit konzentrierter CaCl_2 -Lösung gefüllten Gasbehälter G_2 , von wo es durch die Glasleitung L dem Meßapparat zugeführt werden konnte, nachdem es den Wasserdampfdruck über der CaCl_2 -Lösung angenommen hatte.

Die Wasserdampfdrucke wurden nach der Durchströmungsmethode bestimmt und (im Rohr R Fig. 3) nach der Barometermethode kontrolliert. Es wurden Lösungen folgender Konzentration angewendet.

Tabelle 2.

Temp.	Was	Wasserdampfdruck in mm Hg über:									
	Lösung 1	Lösung 2	Lösung 3	Lösung 4	Wasser.						
16	6,0	7,6	9,6	11,5	13,6						
17	6,7	8,4	10,5	12,3	14,5						
18	7,5	9,1	11,3	13,2	15,5						
19	8,3	9,9	12,2	14,1	16,5						
20	9,1	10,8	13,0	14.9	17,5						
21	10,0	11,5	13,7	15,8	18,7						
22	10,8	12,2	14,5	16,7	19,8						

Sperrflüssigkeit in den Gasbehältern war Lösung 2. Feuchtes PH₃ zeigt bei weitgehendem Ausschluß von Licht und Erwärmung keine Spuren von Zersetzung.

Sauerstoff wurde (Fig. 2) durch Elektrolyse bestleitender reinster Kalilauge (27% KOH) an Ni-Stabelektrode erhalten. Das Glaswollefilter R hielt etwa mitgerissene Kalilauge zurück, während bei P durch Pd-Asbest (von außen elektrisch auf etwa 200° geheizt) H₂-Spuren verbrannt wurden. In G wurde der O₂ gesammelt und über Lösung 2 aufbewahrt, durch L dem Meßapparat zugeführt.

2. Apparat und Methode.

 L_1 und L_2 (Fig. 3) waren durch Leitungen mit dem PH₃- bzw. O₂-Behälter verbunden. L_3 konnte zum Zuleiten eines dritten Gases benutzt werden, während L_4 ins Freie mündete. Die Wirkung der Teile und den Verlauf einer Messung erläutert ein Beispiel: Der Zünddruck eines Gemisches von gleichen Teilen PH₃ und O₂ soll gemessen werden.

Der Apparat wird durch Heben von B_2 und B_3 mit Hg gefüllt. Der Teil des Apparates am weitesten links in der Figur kommt hier nicht in Betracht. Sind Rohr R, Manometerrohr M, Schenkelrohr A, Spirale S, Zwischenstück H_6-H_7 und H_6-H_4 mit Hg gefüllt (die Luft kann man durch geeignete Hahnstellungen bei L_4 oder C entweichen lassen), so wird Hahn H_4 in die in der Figur angedeutete Stellung gebracht. Mit Einstellgefäß B_1 (die entsprechenden Hahnstellungen vorausgesetzt) wird nun das Stück $H_5-H_4-H_1-H_2$ mit Hg gefüllt und H_2 darauf um 180° gedreht. Beim Senken von B_1 folgt von L_2 her der O_2 dem Hg nach. Das Zwischenstück H_4-H_5 (mit P bezeichnet) dient als Meßpipette. Ist das Hg bis an H_5 gelangt, so wird dieser Hahn in die in der Figur angedeutete Stellung gebracht, und der O_2 strömt durch die ausgezogene Spitze C

aus. In diesem Moment dreht man H_4 um 90° im Uhrzeigersinn, darauf H_5 um ebensoviel in entgegengesetzter Richtung und kann nun die abgemessene Gasmenge durch Heben von B_1 auf dem Wege über den bis dahin geschlossenen H_6 und H_7 in den einen Schenkel von A drücken. H_6 wird dann geschlossen und auf dieselbe Weise eine Pipette PH_3 in den anderen Schenkel von A gebracht (Fig. 3).

Man mischt die Gase durch Heben und Senken von B_2 und B_3 so, daß sie verschiedene Male von A nach R und zurück gedrückt werden. Dann läßt man das

Hg von A her dem Gase bis zum Hahn H_8 folgen und schließt dann diesen; Überführung der abgemessenen Gasmengen in das Explosionsrohr R. Die Dilatation kann jetzt beginnen. Man schließt H_{10} , öffnet H_{9} und senkt die Birne B_3 bis zu gleicher Höhe mit H₁₀. Das Manometerrohr ist schon zu Beginn des ganzen Versuches bis zur Höhe von H_6 mit Hg gefüllt und H_9 (mit weiter Bohrung) geschlossen worden. H_{10} wird nun vorsichtig ganz wenig geöffnet, wodurch Hg aus R und M nach B_3 abfließt und das Gasgemisch ausgedehnt wird. Hinter R und M liegt eine in Millimeter eingeteilte Skala. Beobachtet wird nur die Hg-Kuppe in M, und ihr Stand bei der Explosion. Den Stand in R kann man nach erfolgter Explosion mit hinreichender Genauigkeit bestimmen, da der

Fig. 3.

abgeschiedene P die Rohrwandung beschlägt. Bei Gemischen von viel O₂ und wenig PH₃ fehlt dieser Beschlag; in diesem Fall geschieht die Ablesung der Kuppe zweckmäßig durch einen zweiten Beobachter. Die Höhendifferenz der beiden Hg-Kuppen wird vom (unkorrigierten) Barometerstand subtrahiert, wodurch man den Grenzdruck erhält. Im folgenden ist der Gesamtdruck des Gasgemisches, bei dem die Zündung erfolgt, mit Zünddruck bezeichnet. Unter Teilzünddruck des O₂ (oder PH₃) ist der Teildruck dieses Gases verstanden.

Der Apparat ist peinlich sauber zu halten und für gute Trocknung zu sorgen. Das Rohr R wurde nach jedem Versuch herausgenommen, mit Bichromatschwefelsäure, dann mit Natronlauge gereinigt, mit viel Wasser durchspült, dann unter Erwärmen mit Durchsaugen gereinigter trockener Luft sorgfältig getrocknet. Als Hahnfett, das die Resultate nicht beeinflußte, bewährte sich am besten ein Gemisch von gleichen Teilen Vaseline und Paraffin.

Elektrische Erscheinungen, hervorgerufen durch die Bewegung des Hg am Glas, stören die Reproduzierbarkeit und werden durch die Erdung des Hg beseitigt. In das Manometerrohr M und in die Einstellgefäße tauchten zu diesem Zweck an die Wasserleitung angelötete Ni-Drähte.

3. Reproduzierbarkeit und Genauigkeit.

Die Reproduzierbarkeit wächst mit dem H₂O-Gehalt der Gase und mit dem Anwachsen des O₂-Teildruckes. In ein begrenztes Gebiet fallen die Ergebnisse jedoch immer; es scheint ein bestimmtes "Zündgebiet", wenigstens für bestimmte Mischverhältnisse, zu existieren, dessen obere und untere Grenze mit kleiner werdendem O₂-Teildruck und sinkendem H₂O-Gehalt immer weiter auseinanderrücken.

Die Genauigkeit der Zünddruckbestimmungen kann in Anbetracht der schwierigen Umstände nicht allzu groß sein: Die beiden Hg-Kuppen müssen abgelesen werden, während sie sich bewegen und die Fallgeschwindigkeit der Hg-Kuppe in M ungefähr 1 bis 2 mm/sec beträgt. Der Fehler bei der Ablesung beträgt schätzungsweise höchstens \pm 2 mm. Deshalb ist nur auf ganze mm abgelesen worden.

4. Ergebnisse.

a) Der Einfluß der Wand.

Eine Reihe von Zünddruckmessungen wurde angestellt, wobei nur die Beschaffenheit der Gefäßwand von Fall zu Fall abgeändert wurde. Die Dilatation erfolgte hier in einseitig geschlossenen Röhren aus Glas, Quarz oder Porzellan. Einmal war das Glasrohr innen mit Paraffin überzogen, ein anderes Mal zur Vergrößerung der Wandfläche mit Glasperlen gefüllt. Auch wurden verschiedene Metalle in Blechform in den Gasraum gebracht, um ihren etwaigen Einfluß auf die Höhe des Zünddruckes festzustellen. Die Zünddrucke bei Messungen mit zwei verschiedenen Gemischen sind in folgender Tabelle (Tabelle 3) angegeben und stellen das Mittel von je 2 bis 5 Einzelversuchen dar.

Tabelle 3.

Deschaffenheit	Gemisch: 1	$O_2 + 2PH_3$	Gemisch: 1	Gemisch: $10_2 + 4PH_3$		
Beschaffenheit des Explosionsrohres	Temperatur ° C	Zünddruck mm	Temperatur ^o C	Zünddruck mm		
Glas	17,6	305	17,6	471		
Quarz	18,7	312	17,6	459		
Porzellan	17,0	315	18,2	462		
Glas, paraffiniert	16,6	307	18,2	455		
Glasrohr mit Perlen .	18,1	315	16,0	473		
Glasrohr mit Ni-Blech .	18,2	300	18,2	466		
Glasrohr mit Cu-Blech .	18,4	307	18,3	463		
Glasrohr mit Fe-Blech .	18,2	295	18,3	480		

Von einer Beeinflussung des Zünddruckes durch die Wand oder durch anwesende Metalle kann offenbar, wenigstens bei den hier in Betracht kommenden Temperaturen, nicht die Rede sein.

b) Der Einfluß der Zusammensetzung der Gasgemische.

Der Zünddruck erwies sich abhängig als vom

- 1. Mischverhältnis: O_2 $PH_3 + O_2$
- 2. H2O-Gehalt der Gase,
- 3. Gehalt der Gase an Fremdgasen und -dämpfen.
- α) Definition und Herstellung von Mischverhältnis und Wassergehalt.

Wir geben das Mischverhältnis an durch den Bruch:

O2-Volumen (Druck)

PH₃-Volumen (Druck) + O₂-Volumen (Druck)

Multiplikation des um den Wasserdampfdruck verminderten Gesamtdruckes mit dieser Verhältniszahl (in den Tabellen mit M bezeichnet) ergibt den O₂-Teildruck.

Während dieses Mischverhältnis auf einfache Weise variiert werden konnte, war das mit dem an sich kleinen Wasserdampfdruck schwieriger. Dazu mußte das Hg mit einer Lösung bestimmten Wasserdampfdruckes überschichtet werden. Ein Trichter, der zu dem Schliff des Rohres R paßte, wurde nach Einfüllen des Gasgemisches in R mit der Lösung gefüllt und durch Abfließenlassen von Hg aus R die erforderliche Menge Lösung in das Explosionsrohr hineingesogen. Es waren CaCl₂-Lösungen verschiedener Konzentration, wie sie oben in Tabelle 2 angegeben sind, sowie reines H₂O. Bei langsamem Ausdehnen des Gasgemisches blieb also der Wasserdampfdruck stets wohl etwa gleich, aber er kann auch jeweils wegen nicht nachkommender Verdampfung kleiner gewesen sein. Dafür spricht u. a. der Versuch S. 335 Mitte. Den verschiedenen Lösungen entsprechen verschiedene Versuchsserien, innerhalb deren dann das Mischverhältnis geändert wurde. Die Tabellen 4-9 mit den dazugehörigen graphischen Darstellungen zeigen die Einflüsse des Mischverhältnisses und des Wassergehaltes auf die Lage der Druckgrenze.

Bei Tabelle 9 wurde jedoch über Hg ohne Überschichtung dilatiert. Hier blieb also der Wasserdampfdruck während der Dila-

tion nicht konstant, sondern der im Anfang vorhandene (8,4 mm) wurde proportional dem Gesamtdruck kleiner.

β) Die Nebelerscheinungen.

Kurz vor der Zündung bildet sich jedesmal bei einem 1—3 mm höheren Druck als dem Zünddruck ein Nebel, der bis zur Zündung an Intensität stark zunimmt. Mitunter läßt sich sein Auftreten durch Drucksteigerung wieder rückgängig machen, jedoch nur selten. Das Gemisch ist in diesem Intervall sehr empfindlich und entflammt nach einiger Zeit, auch wenn man die Dilatation beim Auftreten des Nebels unterbricht. Die Dichtigkeit des Nebels hängt vom Mischverhältnis ab, ist bedeutend bei Gemischen mit wenig H₂O oder mit viel PH₃, bei solchen mit viel O₂ (M größer als 0,5) außerordentlich gering. Man hat daher bei hohen Zünddrucken starke, bei niederen schwache Nebelbildung.

Im Dunkeln macht sich das Auftreten des Nebels durch ein fahlgrünes Leuchten bemerkbar. Es mag hier derselbe Nebel vorliegen, den van de Stadt bei der PH₃-Oxydation bei kleinen Drucken beobachtet hat.

Führt man in einen senkrecht stehenden weiten Glaszylinder von unten her drei Glasröhren durch einen Kork so ein, daß sie mit ihren spitz ausgezogenen Öffnungen einander gegenüberstehen und leitet man durch sie PH₃, O₂ und CO₂ ein, so kann man durch Regulieren der Gasströme erreichen, daß der obere Teil des Zylinders für längere Zeit von dem fahlgrünen leuchtenden elektrisch leitenden Nebel erfüllt ist. In nebelfreien PH₃-O₂-Gemischen waren keine Träger nachzuweisen.

Sehr merkwürdig sind andere Nebelerscheinungen, die man bei Dilatation mit Wasser beobachten kann und die retrograder Kondensation entsprechen.¹) Bei einem bestimmten Druck tritt Nebelbildung ein, deren Intensität zuerst zu-, dann wieder abnimmt. Sie führt aber nicht zu einer Zündung, selbst dann nicht, wenn man die Dilatation beim Maximum der Intensität unterbricht und das Gemisch bei diesem Druck beliebig lange stehen läßt. Auch leuchtet dieser Nebel im Dunkeln nicht, im Gegensatz zu dem anderen, der zur Zündung führt. PH₃ allein bildet mit Wasserdampf ebenfalls Nebel, der bei Druckverminderung jedoch verschwindet. Nach CAILLETET bestehe dieser Nebel aus PH₄.OH.

¹⁾ J. P. KUENEN, Diss. Leiden 1892.

y) Zünddruck und Mischverhältnis.

Trägt man die gefundenen Zünddrucke gegen das Mischverhältnis auf, so sieht man aus den Diagrammen, daß für ein bestimmtes Mischverhältnis und für einen bestimmten Wassergehalt ein Optimum der Zündbarkeit besteht. Zwei Kurvenäste, die ein "Zündgebiet" begrenzen, treten besonders deutlich bei den Messungen mit ganz feuchten Gasen hervor; sie laufen hier getrennt und zwar so, daß sie keine zwei Zünddrucke für ein bestimmtes Mischverhältnis angeben. Bei trockeneren Gasen gehören zu einem bestimmten Intervall von Mischverhältnissen zwei verschiedene Zünddrucke, ein oberer und ein unterer. Es ist jedoch nicht möglich gewesen, etwas über die

Bedingungen zu erfahren, unter denen das Gemisch beim einen oder anderen Druck gezündet wird. Die Zündung findet scheinbar willkürlich bei einmal dem höheren, einmal bei dem tieferen Druck statt.

Auch kommen merkwürdige Überschreitungserscheinungen vor. Der
Zünddruck läßt sich nämlich sowohl von oben, als
auch von unten her erreichen. Letzteres erfordert eine vorangehende
Überschreitung eines "labilen" Gebietes, die durch
schnelle Dilatation, jedoch
bei weitem nicht immer,
gelingt. Die Häufigkeit der

Fig. 4. Zünddruck gegen Mischverhältnis. Dilatation über Wasser.

Kompressionszünddrucke wächst mit dem H₂O-Gehalt der Gase. Bei vollkommen feuchten Gemischen (Dilatation über Wasser) werden sie sogar zur Regel und nur ausnahmsweise kommt es hier vor, daß die Zündung beim Dilatieren eintritt. Sie ist hier offenbar verzögert. Umgekehrt sind bei trockeneren Gemischen Überschreitungserscheinungen selten. Man sollte erwarten, daß bei Dilatation jeweils bei der oberen, bei Kompression bei der unteren Grenze des Zündgebietes die Zündung erfolgt. Dies ist aber nicht der Fall; so wie beim Dilatieren die obere

Grenze überschritten werden kann, so beim Komprimieren die untere. Ja, es kommt vor, daß beim Komprimieren sogar beide Grenzen überschritten werden und die Zündung erst bei nachmaligem Dilatieren erfolgt. Die Kompressionszünddrucke sind in den Tabellen durch ein K hinter dem letzten Stab gekennzeichnet.

δ) Zünddruck und Wassergehalt.

Je trockener das Gas, desto höher die Zünddrucke. Deshalb ist es auch nicht möglich, vollkommen trockene Gase bei Atmosphären-

Fig. 5. a) Zünddruck gegen Mischverhältnis. b) Partialdruck des O₂ gegen Mischverhältnis. c) ,, PH₃ ,, ,,

druck zu mischen, ohne daß Zündung eintritt. Die beiden Gase wurden z. B. durch Tiefkühlung auf — 80° (Toluol und Kohlensäureschnee) nahezu vollkommen entwässert. Es gelang aber nicht ein einziges Mal, die Gase ohne sofortige Entflammung zusammen-

zubringen. Das beweist, daß die bekannte Annahme, P₂H₄-Gehalt bedinge die Selbstentzündlichkeit, falsch ist. Denn die Tiefkühlung müßte auch P₂H₄ entfernt haben. Es wurde deshalb künftig nur der O₂ durch Tiefkühlung getrocknet, während im PH₃ ungefähr 8,4 mm Wasserdampfdruck beibehalten wurde. Auch hier ist es nicht möglich, ein bei höheren Drucken haltbares Gemisch zu erhalten, auch dann nicht, wenn das PH₃ tiefgekühlt und der O₂ in feuchtem Zustande verwendet wurde. Erst von etwa 6 mm Wasserdampfdruck aufwärts trat die Erscheinung der Druckgrenze auf und war reproduzierbar.

Feuchte Gemische zünden erst bei niederen Drucken, aber nicht bei jedem Mischverhältnis; wird nämlich das Verhältnis größer als 0.25, so zünden diese Gemische bei Dilatation über Wasser nicht mehr. Diese Zündbarkeitsgrenze verschiebt sich mit sinkendem Wassergehalt nach größeren Mischverhältnissen. Bei Dilatation über der konzentriertesten $CaCl_2$ -Lösung liegt sie bereits bei M=1.5.

Trägt man die Zünddrucke gegen den H₂O-Dampfdruck auf, so müßte die entstehende Kurve nach dem eben gesagten sich etwa asymptotisch der Zünddruckachse nähern. Dem widersprechen jedoch die Ergebnisse der Dilatationen über Hg. Z. B. zündet ein Gemisch von 2 Raumteilen O₂ und 1 Raumteil PH₃ bei 62 mm Gesamtdruck, wenn die Dilatation über Hg erfolgt. Der anfängliche Wasserdampfdruck beträgt 8,4 mm; derjenige beim Zünddruck also ungefähr 0,7 mm. Es sind also bei diesen Versuchen kleine Zünddrucke bei kleinen Wasserdampfdrucken möglich. Es wäre danach nicht einerlei, ob von vornherein eine bestimmte, unveränderliche Wasserdampfmenge im Gas vorhanden ist oder ob durch Überschichten des Hg der Wasserdampfdruck konstant gehalten wird. Die Wichtigkeit der Nebelbildungen tritt anscheinend in dieser Tatsache in anderer Form hervor. (Vgl. aber auch S. 331 unten.)

So wie Wasser auf die Lage des Zünddruckes einwirkt, hemmt es auch die langsame Oxydation des mit O₂ gemischten PH₃. Solche Gemische explodieren nämlich nach mehr oder weniger langer Dauer von selbst, wenn sie nicht zu viel H₂O enthalten. Die langsame Oxydation bewirkt Volumen-, also auch eine Druckabnahme, was schließlich zur Zündung führt. Bei feuchten Gemischen findet keine merkbare langsame Oxydation statt. Ein solches von gleichen Raumteilen PH₃ und O₂ hält sich über Wasser als Sperrflüssigkeit monatelang, ohne daß eine Änderung irgendwelcher Art beobachtet werden kann.

ε) Der Teilzünddruck des O2.

Van't Hoff hat festgestellt, daß die Zündung von PH₃-O₂-Gemischen beim Dehnen dann eintritt, wenn der O₂-Partialdruck ungefähr 0,1 Atm. beträgt. Er überschichtete ebenfalls das Hg mit einer konzentrierten CaCl₂-Lösung. Trägt man die O₂-Teilzünddrucke

Fig. 6. Partialzünddruck des O₂ gegen Zünddruck. Unten: Abhängigkeit des Zünddruckes von der Wasserdampftension bei konstantem Mischverhältnis.

der Tabelle 7 (diese Versuche entsprechen etwa denjenigen van't Hoff's) gegen das Mischverhältnis auf, so findet man, daß der O₂-Teilzünddruck zwar dem angegebenen Werte nahekommt, daß aber sein Wert, ebenso wie der des Zünddruckes, vom Mischverhältnis stark abhängt. Er kann alle Werte von 100 mm an abwärts annehmen. Auch hier besteht ein Optimum für ein bestimmtes Mischverhältnis, wie beim Zünddruck.

5. Tabellen der Versuchsergebnisse.

Barometerstand und Zünddruck sind bei allen Messungen nicht auf Hg von 0°C reduziert.

Tabelle 4.

Dilatation über Wasser, Variation des Mischverhältnisses.

Nr.	Baro- meter-	Temp.	Volu	imen:	M	Zünd- druck		Teildruck d	les
MI.	stand	0 C	O ₂	PH ₃	212	mm	O_2	PH ₃	H_2O
1	761	17,3	1	2	1/3	1		(14,8
2	761	17,3	1	3	1/.	W.	ine 7m	J	14,8
3	756	17,1	1	3	1/4	Ke	ine Zün	aung	14,6
4	756	17,1	1	3	1/4				14,6
5	759	17,2	4	13	4/17	145	30,2	100,1	14,77
6	759	17,2	4	13	4/17	185	40,1	130,2	14,77
7	755	17,6	3	10	1/19	236	51	170	15,07
8	755	17,6	2	7	2/9	269	56,4	197,6	15,07
9	755	17,6	5	19	5/24	284	56,0	213	15,07
10	756	17,4	5	16	5/21	162	35,0	112,1	14,9
11	749	16,5	4	15	4/19	270	53,9	202,1	14,07
12	749	16,5	4	15	4/	305	61,2	229,8	14,07
13	750	16,8	2	7	2/19	224	46,6	163,3	14,1
14	755	17,1	4	15	4/ ₁₉	224	44,1	175,3	14,6 K
15	756	17,3	2	7	2/19	279	58,7	205,5	14,8
16	759	17,2	2 4	13	4/9	185	40,0	130,3	14,7 K
17	750	17,3	1	4	$0,2^{1/17}$	309	58,8	235,4	
18	750	17,3	1	4	0,2	310	59,0		14,8 %
19	750	17,4	1	4	0,2	305		236,2	14,8 %
20	750	17,1	1	4			58,0	232,1	14,9 K
21	749		1	1 2	0,2	315	60,1	240,3	14,6 K
22	749	17,0	1	4	0,2	308	59,5	228,0	14,5 K
23		17,0	1	4	0,2	313	59,7	238,8	17,5
	749	17,1	1	4	0,2	298	56,7	226,7	14,6 K
24	750	17,1	2	9	2/11 2/11	235	40,1	180,3	14,6 K
$\frac{25}{26}$	750	17,1	$\frac{2}{2}$	9	/11	221	37,5	168,9	14,6 K
	750	17,1		13	16	220	38,5	166,9	14,6 K
27	758	17,2	5	24	90	287	47,0	225,3	14,7 K
28	760	16,7	4	19	4/23	279	46,0	218,8	14,2
29	760	16,7	4	19	23	256	42,1	199,7	14.2 K
30	760	16,7	2	. 9	2/11	227	38,7	174,1	14,2 K
31	754	15,2	-2 4	9	7/11	199	33,8	152,2	13,0E
32	760	16,7		17	4/21	151	26,0	110,7	14,3E
33	759	17,3	4	17	4/21	149	25,5	108,7	14,8
34	759	17,2	4	17	4/21	167	29,0	123,3	14,7 K
35	759	17,3	4	17	4/21	135	22,9	97,3	14,8 K
36	750	17,4	1 ,	5	1/6	293	46,3	231,8	14,9 k
37	750	17,1	1	5	1/6	304	48,2	241,2	14,6
38	760	18,0	1	5	1/6	302	47,7	238,9	15,4 K
39	760	18,1	5	26	5/21	301	46	239,5	15,5 K
40	759	17,0	2	11	-/19	280	40,8	224,7	14,5 K
41	761	13,9	2	11	2/13	251	36,7	202,2	12,1 K
12	759	17,2	4	21	0,10	290	44	231,3	14,7 K
43	759	17,2	4	21	0,16	279	42,2	222,1	14,7 K
14	755	17,6	1	6	1/7	242	32,4	194,6	15 K
45	759	17,3	1	6	1/7	251	33,7	202,5	14,8 K

Bei 44 und 45 vorübergehende Nebelbildung bei etwa 390 mm.

46	759	17,3	2	13	2/15	227	28,3	183,9 $168,8$ $185,5$	14.8 K
47	761	14,1	2	13	2/15	207	26,0	168,8	12,2
48	755	17,6	1	7	0,125	217	26,5	185,5	15 K

Z. anorg. u. allg. Chem. Bd. 180.

Tabelle 4 (Fortsetzung).

	Baro-	Temp.	Volu	imen:		Zünd-		Teildruck d	les
Nr.	meter- stand	o C	O_2	PH_3	M	druck mm	O_2	PH_3	H_2O
	Bei 4'	7 und 48	8 vori	ibergel	nende N	ebelbildu	ng bei	etwa 420 m	m.
49	760	18,1	1	7	0,125	210	24,3	170,2	15,5
50	760	17,4	1	7	0.125	253	29,8	208,3	14,9
51	751	18,7	2	15	2/17	216	23,5	276,5	16
52	751	18,7	2	15	2/17	202	21,9	164,1	16
53	751	18,6	1	8	1/3	195	19,9	159,2	15,9
54	751	18,6	1	8	1/9	201	20,5	164,6	15,9
55	750	17,4	1	9	0,1	180	16,5	148,6	14,9
	Be	ei 55 voi	rüberg	gehende	e Nebell	bildung b	ei etwa	420 mm.	
56	750	17,4	1	9	0,1	182	16,7	150.1	14,9
57	750	17.1	1	9	0,1	175	16,0	144,4	14,6
58	750	17,1	î	10	1/11	174	14,5	144,9	14,6
59	755	. 18,2	1	11	1/11	175	13,3	146,1	15,6
	Ве	ei 59 voi	rüberg	zehende		bildung b	ei etwa	430 mm.	
80	750	17,1	1	11		175	13,4	147	14,6
61	752	16,8	1	12	1/12	165	11,6	139,1	14,3
62	752	16.8	1	14	1/13	162	9,8	129,3	14,3
63	755	18,2	1	14	1/15	167	10,1	141,3	15,6
64	752	16,8	1	16	1/15	149	7,9	126,8	14,3
35	752		1	16	1/17	155			
		16,8	1		1/17		8,3	132,4	14,3
66	752	16,8	1	16	1/17	165	8,8	141,9	14,3
57	751	17,0	1	18	1/19	150	7,1	128,4	14,57
68	751	17,0	1	18	1/19	161	7,7	138,8	14,51
69	750	17,1	1	20	1/21	155	6,7	133,7	14,6
70	751	17,0	1	20	1/21	157	6,8	135,7	14,57
					Tabelle	5.			
]	Dilatation	über C	aCla-I	ösung	Nr. 4.	Variation	des M	ischverhältn	isses.
1	747	17,0	1	3	0,25	295	70,7	212,0	12,37
2	747	17,0	î	4	0,2	269	51,3	205,4	12,37
3	747	17,1	1	5	1/6	382	61,6	308	12,47
4	747	17,1	1	6	1/6	398	55,1	330,5	12,47
5	748	17,3	1	7	0.195	395		334,6	12,6
			1	9	0,125		47,8	1	
6	748	17,3	1		0,1	366	35,3	318,1	12,67
7	747	17,1	1	13	1/14	358	24,7	320,9	12,4
8 9	747	17,1	1	17	1/20	345	18,9	313,7	12,41
-			2 2	5	2/7	Wains	7 and		
0		-	2	5	-/7	Keine	Zündu	ing	
1	_	_	2	4	1/3	,			
					Tabelle	6.			
1			aCl ₂ -I	ösung	Nr. 3,			schverhältn	
1	762	17,0	1	3	0,25	350	84,9	254,6	10,5 H
2 3	763	17,0	1	3	0,25	226	53,9	161,6	10,5 P
	762	17,0	2	7	2/_	414	89,8	313,7	10,5 %
4	762	17,0	2 2 2		2/9	404	87,4	306,1	10,5 %
5	762	17,0	2	7 7	2/9	326	70,0	245,4	10,5
6	763	17,2	1	4	0,2	350	67,8	271,5	10,7
7	763	17,2	1	4 4	0,2	381	74,1	296,2	10,7 %
	757	17,0	2	9	2/11	533	95,0	427,5	10,5
8	AND THE REAL PROPERTY.	170	6)	0	9/	299	05.0	407 5	705

Tabelle 6 (Fortsetzung).

Nr.	Baro- meter-	Temp.	Volu	imen:	М	Zünd- druck	TOUGHIOR GOS			
741.	stand	o C	O_2	PH ₃		mm	O_2	PH_3	H_2O	
9	757	17,0	2	9	2/11	505	90,0	404,5	10,5 K	
10	752	16,8	2	9	2/11	512	91,2	410,5	10,3	
11	752	16,8	2	9	2/11	407	72,1	324,6	10,3	
12	757	17,0	2	9	2/11	460	81,7	367,8	10,5	
13	757	17,0	1	5	1/6	449	73,1	365,4	10,5	
14	757	17,0	1	6	1/7	477	66,6	399,9	10,5	
15	759	18,1	1	7	0,125	480	58,6	410,0n	11,4	
16	759	18,1	1	9	0,1	457	44,6	401.0	11,4	
17	759	18,1	1	12	1/13	441	33,0	396,6	11,4	
18	759	18,1	1	17	1/18	430	23,2	395,4	11,4	
19	-	_	2	5	2/7	1 W.	7:			
20	-		2	4	1/3	Ken	ne Zünd	ung		

					Tabelle	e 7.			
	Dilatatio	n über	CaCl ₂ -	Lösun	g Nr. 2,	Variatio	on des Mi	schverhältn	nisses.
1	758	16,8	2	3	0,4	93	33,9	50,9	8,2K
2 3	761	17,2	2	3	0,4	105	38,5	57,9	8,6
3	757	17,5	4	7	4/11	127	43,0	75,2	8,8K
4	_	-	2	2	0,5	1 7	,	,	
5	-	-	4	5	4/9) Ne	eine Zünd	ung	
6	757	16,7	1	2	1/3	100	30,6	61,3	8,1
7	759	16,8	1	2 2	1/3	245	78,9	157,9	8,2
8	759	16,8	2	4	1/2	240	87,3	174,5	8,2
9	759	16,8	2 3	4	1/3	81	24,3	48,5	8,2
10	757	17,5	3	7	0,3	268	77,8	181,4	8,8
11	757	17,5	4	9	4/13	261	77,6	174,6	8,8
12	749	16,8	2 2	5	2/7	381	106,5	266,3	8,2
13	749	16,8	2	5	2/7	405	113,4	283,4	8,2
14	743	14,6	2	5	2/7	211	59,0	145,3	6,7
15	757	16,7	1	3	0,25	315	76,2	228,7	8,1
16	749	17,0	2	6	0,25	450	110,4	331,2	8,4
17	749	17,1	- 1	3	0,25	366	89,4	268,1	8,5
18	749	17,1	1	3	0,25	347	84,6	253,9	8,5 K
19	759	16,8	2	6	0,25	460	112,9	338,7	8,2
20	753	17,6	4	13	4/17	333	76,2	247,9	8,9
21	757	17,2		7	2/9	390	84,7	296,7	8,6
22	757	16,8	2	5	2/7	243	67,1	167,7	8,2
23	749	17,1	2	7	2/-	417	90,8	317,7	8,5
24	749	17,1	2 2 2 2	7	2/2	423	92,1	322,4	8,5
25	749	16.8	4	15	4/19	494	102,3	383,5	8,2
26	749	16,8	4	15	4/19 n	425	87,7	329,1	8,2
27	755	15,9	2	7	1 2/	340	74,0	258,5	7,5
28	757	16,0	1	4	0,2	420	82,5	329,9	7,6
29	752	16,0	î	4	0,2	467	91,9	367,5	7,6
30	752	16,0	î	4	0,2	433	85,1	340,3	7,6
31	752	16,2	i	4	0,2	445	87,4	349,8	7,8
32	749	17,1	î	4	0,2	439	86,1	344,4	8,5
33	762	17,3		8	0,2	472	92,7	370,6	8,7 K
34	762	17,3	2	8	0.2	535	105,2	421,1	8,7
35	756	18,2	2	9	2/11	574	102,7	462,0	9,3
36	749	16,2	2	9	2/11	479	85,7	385,5	7,8
37	749	16,2	2	9	/11	490	87,7	394,5	7.8K
38	756	17,0	2 2 2 2 2 2 2	9	2/11	486	86,8	390,8	8,4
	100	11,0	1 4	9	2/11	400	00,0	99	0,1

Tabelle 7 (Fortsetzung).

NI-	Baro-	Temp.	Volu	men:	М	Zünd-		Teildruck d	les
Nr.	meter- stand	o C	O_2	$\mathrm{PH_{3}}$	M	druck mm	O ₂	PH_3	H_2O
39	756	17,0	2	9	2/11	480	85,7	385,9	8,4
40	757	16,0	1	5	1/6	497	81,6	407,8	7,6
41	749	17,1	1	5	1/8	504	82,6	412,9	8,5
42	747	17,2	2	11	2/13	515	77,9	428,5	8,6
43	747	17,2	2 2 2	11	2/13	536	81,1	446,3	8,6
44	747	17,2	2	11	2/13	524	79,3	436,1	8,6
45	747	17,3	1	6	1/7	506	71,0	426,3	8,7
46	747	17,3	1	6	1/7	550	77,3	464,0	8,7
47	752	19,1	1	6	1/7	564	79	475	10,0
48	752	18,9	1	6	1/7	547	76,7	460,5	9,8
49	752	18,7	1	6	1/7	545	76,6	458,9	9,6
50	753	17,6	1	7	0,125	558	68,6	480,6	8,8
51	750	16,0	1	7	0,125	515	63,4	444,0	7,6
52	750	16,0	2 2	15	2/17	548	63,7	476,7	7.6
53	750	16,2	2	15	2/17	555	64,4	482,8	7,8
54	750	16,2	1	8	1/9	551	60,3	482,9	7,8
55	760	17,5	1	8	1/9	547	59,8	478,4	8,8
56	760	17,5	2	13	2/15	511	66,9	435,3	8,8
57	750	15,5	1	9	0,1	524	51,7	465,0	7,3
58	750	15,5	1	9	0,1	515	50,8	457	7,8
59	760	18,1	1	9	0,1	549	54,0	485,8	9,21
60	754	14,6	1	12	1/13	570	43,3	520	6,7
61	755	14,7	1	12	1/13	531	40,3	483,9	6,8
62	752	17,9	1	12	1/13	520	39,3	471,7	9,0
63	760	17,5	1	12	1/13	521	39,4	472,8	8,8
64	749	17,1	1	15	1/16	524	32,2	483,3	8,5
65	747	17,3	1	15	1/16	480	29,4	441,9	8,7
66	750	16,8	1	15	1/16	515	31,7	475,1	8,2
67	750	16,8	1	12	1/13	509	38,5	462,3	8,2
68	750	15,5	1	18	1/19	520	27,0	485,8	7,2
69	752	18,7	1	18	1/10	514	26,5	477,8	9,7
70	753	17,6	1	20	1/21	524	24,5	490,7	8,8
71	760	18,1	1	20	1/21	530	24,8	496	9,2

Tabelle 8.

Dilatation über CaCl₂-Lösung Nr. 1, Variation des Mischverhältnisses.

1	-		2	1	2/3	1)		1	
2		-	2	1	2/3	Kei	ne Zündu	ng	
3		-	3	2	0,6				
4	762	17,5	2	2	0,5	63	27,9	28,0	7,1
5	762	17,5	1	2	1/3	350	114,3	228,6	7,1
6	753	17,5	1	3	0,25	403	98,9	297	7,1
7	753	17,5	1	3	0,25	390	95,7	287,2	7.1
8	747	16,2	1	3	0,25	480	118,5	355,4	6,1
9	740	19,0	1	3	0,25	545	134,2	402,5	8,3
10	740	19,0	1	4	0,2	425	83,3	333,4	8,3
11	752	17,1	1	4	0,2	615	121,6	486,6	6,8
12	752	17,1	1	4	0,2	501	98,8	395,4	6,8
13	747	16,2	1	5	1/6	525	86,5	432,3	6,2
14	740	19.0	1	5	1/6	638	104,9	524,8	8,3K
15	753	17,5	1	5	1/6	714	117.8	589,1	7,1
16	753	17,5	1	5	1/6	662	109,1	545,8	7,1
17	752	17.1	1	5	1/6	626	103,2	516,0	6,8
18	753	17,5	1	6	1/7	464	65,3	391,6	7,1

Tabelle 8 (Fortsetzung).

N-	Baro- meter-	Temp.	Volu	men:	M	Zünd- druck	Т	eildruck:	des
Nr.	stand	0 C	O ₂	PH_3	272	mm	O ₂	PH_3	H ₂ O
19	740	19,0	1	6	1/7	590m	83,1	498,6	8,3
20	749	20,1	1	6	1/7	740	104,4	626,4	9,2
21	749	20,1	1	6	1/7	713	100,5	603,3	9,2
22	749	20,1	1	6	1/7	703	99,1	594,7	9,2
23	749	20,1	1	6	1/7	585	82,3	493,5	9,2
24	753	17,5	1	9	0,1	572	56,5	508,4	7,1
25	740	19,0	1	9	0,1	575	56,7	510	8,3
26	740	19,0	1	15	1/16	570	35,1	526,6	8,3
27	753	17,5	1	15	1/16	1 7000			
28	753	17,5	1	20	1/21	} Zuno	lung erio	olgt bei der	Mischt
					Tabell	le 9.			
1	770	17,0	3	2	0,6	80	47,5	31,6	0,87
	768	16,0	3	2	0,6	78	46,3	30,9	0,77
2 3	754	15,1	3	2	0,6	98	58,3	38,8	0,93
4	754	15,5	3	2	0,6	95	56,5	37,6	0,93
5	753	15,5	6	4	0,6	83	49,3	32,9	0,8
6	756	15,0	6	4	0,6	47	27,9	18,6	0,43
7	752	15,5	3	2	0,6	12	7,2	4,7	0,11
8	756	15,5	4	2 2	2/3	38	25,1	12,5	0,36
9	753	15,9	6	3	2/3	34	22,4	11,2	0,34
10	749	18,0	3		3/_	78	46,2	30,8	0,94
11	755	15,2	2	2	$\frac{2}{3}$	62	40,9	20,5	0,57
12	754	15,5	2 5	4	5/9	103	56,7	45,3	1,0
13	756	14,8	5	4	5/_	90	49,2	40,0	0,83
14	756	15,2	8	7	8/15 0.5	112	51,7	59,3	1,0
15	744	17,2	1	1	0,5	121	59,8	59,8	1,3
16	752	15,0		2	0,5	142	70,4	70,4	1,3
17	754	13,2	2 4	2 4	0,5	108	53,5	53,5	1,0
18	754	17,3	6	6	0,5	134	66,3	66,3	1,5
19	753	14,5		5	0,5	97	48,1	48,1	0,9
20	753	14,5	5 5	5	0,5	125	62	62	0,9
21	756	15,1	5	5	0,5	108	53,5	53,5	1,0 %
22	756	15,1		5	0,5	178	88,2	88,2	1,6
23	749	16,2	5	5	0,5	122	60,3	60,3	1,3
24	749	16,2	5 5 5	5	0,5	125	61,9	61,9	1,3
25	749	16,3		5	0,5	147	72,7	72,7	1,5
26	749	16,3	5	5	0,5	102	50,5	50,5	1,0
27	751	16,8	5 5 5	5	0,5	110	54,4	54,4	1,2
28	751	16,7	5	5	0,5	114	56,4	56,4	1,2
29	751	16,7	5	5	0,5	122	60,3	60,3	1,3
30	751	16,7	5	5	0,5	104	51,5	51,5	1,0
31	755	21,6	6	6	0,5	121	59,6	59,6	1,9
32	755	21,6	6	6	0,5	115	56,6	56,6	1,8
33	760	16,0	1	1	0,5	124	61,4	61,4	1,2
34	760	17,0	1	1	0,5	132	65,3	65,3	1,4
35	753	15,9	3	6	1/2	321	105,9	211,9	3,2 1
36	754	17,3	6	7	6/13	129	59	68,5	1,5
37	754	15,5	7	8	7/15	168	. 77	89,4	1,6
38	754	15,5	9	11	9/20	199	89	108,6	1,4
39	755	18,9	9	11	E 1	187	83,1	101,5	2,4
40	745	21,1	9	11	9/20	194	86.0	105	3,0

Tabelle 9 (Fortsetzung).

NY-	Baro-	Temp.	Volu	men:	M	Zünd- druck		Teildruck:	des
Nr.	meter- stand	° C.	O_2	PH_3	M	mm	O ₂	PH_3	H ₂ C
42	745	21,1	4	5	4/9	210	91,8	115	3,2
43	761	13,5	3	4	3/7	185	78,8	105,1	1,1
44	754	17,0	3	4	3/7	141	59,8	79,7	1,5
45	742	16,3	4	6	0,4	214	84,7	127,1	2,2
46	760	16,0		3	0,4	157	62,1	93,1	1,8
			2 2 4	3	0,4	213	84,4	126,6	2,0
47	752	15,0	4	6			87,9	120,0	2,1
48	753	15,5	4		0,4	222		152,8	
49	754	15,5	4	6	0,4	257	101,8		2,4
50	754	15,5		6	0,4	211	83,6	125,4	2,0
51	758	19,7	4	6	0,4	217	85,6	128,4	3,01
52	752	16,0	$\frac{2}{3}$	3	0,4	279	100,5	175,7	2,8
53	757	14,7	3	5	3/8	179	66,4	110,8	1,8
54	757	16,0	2 7	3	2/5	201	79,6	119,4	2,0
55	747	16,8	7	13	0,35	263	91	169	3,0
56	743	14,9	7	13	0,35	268	92,8	172,4	2,8
57	755	15,2	3	5	3/8	223	82,8	138,1	2,1
58	755	15,2	3	5	3/_	246	91,4	152,3	2,3
59	755	15,6	3	5	3/_	241	90	148,7	2,3
30	761	16,4	1	2	1/3	276	91	182,1	2,9
31	742	14,8	3	6	1/3	260	85,8	171,8	2,4
32	754	15,3	2	4	1/3	363	119,9	240	3,1
33	740	16,5	2 2 2 2 2 2 3	4	1/_	374	123,3	246,7	4,0
34	746	17,6	2	4	1/3	350	115,3	230,6	4,1
35	746	17,6	2	4	1/3	271	92,6	185,3	3,1
36	751	19,2	5	4	1/3	245	80,6	161,1	3,3
37	751	19,3	9	4	1/3	270	88,8	177,6	3,6
			2	6	1/3	305	100,3	200,5	4,2
88	751	19,5	3	6	1/3	358	117,8	235,5	4,7
39	751	19,5	3	0	1/3	338		chnell dila	
70	753	15,5	3	7	0,3	370	110,0	256,6	3,4
71	753	14,5	3	7	0,3	287	85,3	199,1	2,6
2	753	14,5	3	7	0,3	286	85,0	198,4	2,6
3	753	15,5	3	7	0,3	365	108,5	253,1	3,4
4	755	15,3	3	7	0,3	323	96	224	3,0
5	768	15,0	9	5	2/7	379	107,3	268,3	3,4
			2 2	5	2/7		96,5	241,2	3,3
6	768	16,0	9	5	2/7	341	102,8	257	3,3
7	743	14,2	2	5	2/7	363	102,8	258,6	3,0
8	743	13,9	2 2 2 2		2/7	365		320,2	
9	742	14,8	2	6	0,25	431	106,7		4,1
0	752	15,5		6	0,25	411	101,7	305,3	4,0
1	736	15,2	1	3	0,25	357	88,4	265,2	3,4
2	740	15,8	1	3	0,25	436	107,9	323,7	4,4
3	736	15,3	1	3	0,25	470	116,7	349,1	4,5
4	745	20,2	2	6	0,25	325	80,1	240,2	4,7
5	745	20,3	2	6	0,25	455	112,1	336,3	6,6
6	745	20,3	2	6	0,25	475	117,0	351,1	6,9
7	748	15,9	2 2 2 2 1	6	0,25	351	86,9	260,6	3,5
8	748	15,9	1	3	0,25	370	91,6	274,7	3,7
9	750	15,8	2	8	0,2	453	89,7	358,8	4,5
0	750	15,8	2	. 8	0,2	457	90,5	362,0	4,5
i	758	16,5	2	8	0,2	314	62,1	248,6	3,3
2		16,5	2	8	0,2	414	81,9	337,7	4,4
	758 758	16,5	2 2 2 2 2	8	0,2	386	76,4	305,5	4,1
3 4	760		2	8		426	84,3	337,3	4,4 K
-	400	16,6	4	0	0,2	420		angsam di	

Tabelle 9 (Fortsetzung).

	Baro-	Temp.	Volu	men:	16	Zünd-	Т	eildruck:	les
Nr	meter- stand	o C	O_2	PH ₃	M	druck	O_2	PH_3	H_2O
95	761	15,7	1	4	0,2	448	88,8	355,1	4,1
96	761	15,7	î	4	0,2	472	93,5	374,2	4,3
	754	15,5		8	0,2	464	91,9	367,9	4,2
97	754	15,5	2 2 2	8	0,2	479	94.9	379,9	
98			9	8					4,2
99		15,5	1		0,2	472	93,6	374,2	4,2
100		15,5		4	0,2	468	92,8	371,0	4,2
101	740	15,5	1	4	0,2	413 m	81,8	327,3	3,9
102		15,2	1	4	0,2	402	79,6	318,7	3,7
103		16,0	1	4	0,2	499	99,0	395,9	4,1
104	754	15,5	1	4	0,2	574	113,7	454,9	5,4
105	750	15.0	9	0		ehr schn			4.0
105		15,6	2	8	0,2	420	83,2	332,8	4,0
106	752	15,6	1	4	0,2	541	107,2	428,7	5,1
107	752	15,6	2 2 1	8	0,2	564	111,7	447,0	5,3
108	752	17,6	2	8	0,2	541	107,2	428,7	5,1
109		16,4		4	0,2	549	108,7	434,7	5,6
110		16,5	1	4	0,2	553	109,5	437,9	5,6
111		17,2	1	4	0,2	538	106,4	425,5	6,1
112		15,5	2	10	1/6	512	84,5	422,5	5,0
113	752	15,5	2 2 1	10	1/6	514	84,8	424,2	5,0
114	747	16,7	1	5	1/6	625	103,0	515,3	6,7
115	747	16,7	2	10	1/6	431	71,0	355,4	4,6
116		16,7	1	5	1/6	700	115,4	577,2	7,4
117		17,5	3	17	0,15	661	98,0	555,4	7,6
118		16,3	3	17	0,15	630	93,5	529,8	6,7
119		16,0	3	17	0,15	643	95,5	540,9	6,6
120		15,5	3	17	0,15	675	100,3	568,3	6,4
121	749	17,8	1	6	1/7	703	99,2	595,4	8,4
122	753	17,1	î	6	1/7	491	69,4	416,2	5,4
122	100	1,,1	1	0	/7	101		elle Dilatat	
123	753	17,1	1	6	1/7	752	106,2	637,4	8,4
124		20,5	î	6	1/7	495	69,7	418	7,3
125		13,5		14	0,125	529	65,6	459,4	4,0
126	756	15,5	2 2 1	14	0,125	464	57,4	402,2	4,4
127	756	15,5	9	14	0,125	562	69,6	487	5,4
128		22,6	1	7	0,125	519	63,8	446,2	9,0
129	742		1	7	0,125	711	87,3	611,3	
130		22,3	1	7	0,125	519		446,4	12,4
131	742	22,3	2	16		537	63,7 59	473	8,9
132	754	14,8	ī		1/9		56	450	5,0
133		19,2		8	1/9	513	90	400	7,0
134	754 754	19,2 19,2	1	8	1/9	Zünd	lung bein	m Mischen	
135		16,0	9	18		688	68,1	612,8	7,1
136		15,5	2	9	$0,1 \\ 0,1$	766	75,9	682,6	7,5
137	752	15,6	1	9		627	62,1	558,8	6,1
138					0,1				
		14,7	1	9	0,1	474	47,0	422,7	4,3
139		14,8	1	9	0,1	Zünd	lung bei	m Mischen	
140		14,8	1	9	0,1				
141	747	15,0	1	10	1/11	576	51,9	518,7	5,4
142		15,0	1	10	1/11		ung bei		
143		15,0	1	12	1/13	617	47,0	564,2	5,8
144	10.000	15,2	1	12	1/13			***	
145		15,2	1	12	1/13	Zünd	lung bein	m Mischen	
146	748	15,2	1	12	1/13				

Tabelle 9 (Fortsetzung).

Nr.	Baro- meter-	Temp.	Volu	Volumen:		Zünd- druck	Teildruck: des			
	stand	o C	O ₂	PH_3	M	mm	O_2	PH_3	H_2O	
147	748	15,2	1	12	1/13	1 70-1		Nr. 1		
148	748	15,0	1	12	1/13	Zund	ung ben	m Mischen		
149	757	14,7	1	14	1/15	613	40,5	567	5,5	
150	757	14,8	1	15	1/16	701	43,4	651,5	6,4	
151	757	15,0	1	. 15	1/16	1	,-		-,-	
152	757	14,9	1	15	1/16	Zünd	ung bei	m Mischen		
153	757	14,9	1	15	1/16					
154	754	17,3	1	19	0,05	645	31,9	605.7	7,4	
155	754	17,3	1	20	1/21	1	,-		.,-	
156	755	17.5	1	20	1/21					
157	755	17,5	1	20	1/21	Zünd	ung bei	m Mischen		
158	755	17,5	1	20	1/21			Discourt		
159	745	13,6	1	20	1/21)				

Bei allen diesen Versuchen wurde die Dilatation über Hg (ohne Überschichten einer Lösung) vorgenommen.

6. Die Beeinflussung des Zünddruckes durch die Anwesenheit von Fremdgasen und -dämpfen.

Zu einem bestimmten Gemisch (M=0,2) von $\mathrm{PH_3}$ und $\mathrm{O_2}$ wurden wechselnde Mengen von Fremdgasen gleichen Trocknungsgrades hinzugefügt (Tabellen 10—14). Die Versuche wurden mit $\mathrm{H_2}$, $\mathrm{N_2}$, $\mathrm{N_2}$ O, CO und $\mathrm{CO_2}$ vorgenommen. Auch hier ist unter Zünddruck der Gesamtdruck aller Gase des Gemisches verstanden.

Wie aus den Tabellen und den graphischen Darstellungen ersichtlich, ist der Einfluß der Fremdgase auf die Höhe des Zünddruckes durchweg gering.

Dagegen hängt der Teilzünddruck des O₂ erheblich von der Menge des hinzugefügten Fremdgases ab.

O₃, dem Gemisch zugesetzt, verhält sich wie gewöhnlicher O₂. Es wurde mehrfach statt O₂ in reiner Form, solcher mit ungefähr $5\,^0/_0$ O₃ mit PH₃ gemischt, ohne daß ein besonderer Einfluß festzustellen war. Zum Vorversuch wurde durch eine ausgezogene Spitze sowohl O₃ in PH₃ geleitet, als auch umgekehrt, ohne daß etwas Besonderes zu beobachten war. Der ozonisierte Sauerstoff wurde nicht über CaCl₂-Lösung, sondern über H₂SO₄ vom spez. Gew. 1,34 aufbewahrt. Ihr Wasserdampfdruck beträgt bei 20° ungefähr 8,4 mm, also ebensoviel wie über der CaCl₂-Lösung.

Auch NH₃ beeinflußte die Zündgrenze nicht stark.

Selbst kleine Mengen organischer Dämpfe sind für die Reproduzierbarkeit verhängnisvoll, weshalb Apparat und Explosionsrohr nicht mit Äther und Alkohol gereinigt oder getrocknet wurden.

Das Leuchten des P und des P₄S₃ wird ebenfalls durch Anwesenheit von Dämpfen organischer Substanzen beeinflußt. Messungen sind von Scharff¹) und Centnerszwer²) gemacht worden.

Fig. 7. Einwirkung von Fremdgasen auf die Lage des Zünddruckes.

Es gibt Stoffe, die die Zündung sofort bewirken, wenn sie auch nur in Spuren zugegen sind: NO (d. h. wohl NO₂) und die Halogene. Deshalb wurde die Reinigung des Apparates auch nicht mit Königswasser vorgenommen.

Tabelle 10. Zusatzgas: Wasserstoff, im Apparat Fig. 1 elektrolytisch erhalten. $M' = \frac{\text{Volumen des H}_2}{\text{Volumen des O}_2}.$

Nr.	Barometer-	Temp. Volumen:		imen:	H_2	M	M'	Zünddruck
141.	stand	o C	O_2	PH_3	112		- 111	mm
1	750	15,0	1	4	3	0,2	3	478
2	749	16,5	1	4	2	0,2	2	499
3	749	16,6	1	4	7	0,2	7	422
4	749	15,5	1	4	5	0,2	5	451
5	749	15,4	1	4	6	0,2	6	493
6	758	16,7	1	4	5	0,2	5	322
7	758	16,7	1	4	7	0,2	7	322
8	758	16,5	1	4	5	0,2	5	438
9	758	14,3	1	4	5	0,2	5	367
10	758	14,3	1	4	7	0,2	7	411

¹⁾ Scharff, Diss. Marburg, S. 47.

²⁾ CENTNERSZWER, Zeitschr. f. phys. Chem. 26 (1898), 9.

Tabelle 10 (Fortsetzung).

Nr.	Barometer-	Temp.	Volu	men:	H_2	M	M'	Zünddruck
	stand	o C	O_2	PH_3				mm
11	758	14,2	1	4	6	0,2	6	376
12	758	14,2	1	4	6	0,2	6	392
13	758	14,2	1	4	9	0,2	9	376
14	740	15,2	1	4	9	0,2	9	213
15	740	15,2	1	4	9	0,2	9	259
16	742	14,8	1	4	9	0,2	9	381
17	742	14,8	1	4	6	0,2	6	425
18	742	14,8	1	4	4	0,2	4	455
19	749	16,0	1	4	8	0,2	8	260
20	749	16,0	1	4	12	0,2	12	303
21	749	16.0	1	4	10	0,2	10	405
22	749 n	16,0	1	4	12	0,2	12	184
23	752	16,0	1	4	12	0,2	12	373
24	742	16,2	1	4	12	0,2	12	365
25	742	16,2	1	4	10	0,2	10	372

Tabelle 11. Zusatzgas: N₂, aus NaN₃ und Jod.

Nr.	Barometer- stand	Temp.		men:	N_2	M	M'	Zünddruck
	Dearies	• 0	O_2	L113				mm
1	748	15,2	1	4	12	0,2	12	523
2	748	15,2	1	4	2	0,2	2	530
3	748	15,3	1	4	10	0,2	10	490
4	748	15,3	1	4	4	0,2	4	532
5	748	15,3	1	4	14	0,2	14	477
6	748	15,3	1	4	7	0,2	7	529
7	749	15,5	1	4	7	0,2	7	485
8	749	15,5	1	4	6	0,2	6	504
9	749	15,7	1	4	10	0,2	10	483
10	763	14,8	1	4	7	0,2	7	500
11	763	14,7	1	4	4	0,2	4	520
12	763	14,7	1	4	1	0,2	1	539

Tabelle 12. Zusatzgas: N₂O, aus NH₄NO₃.

Nr.	Barometer- stand	Temp.	Volu O ₂	PH ₃	N_2O	M	M'	Zünddruck mm
1	747	13,7	1	4	1	0,2	1	491
2	747	14,0	1	4	3	0,2	3	462
3	747	14,2	1	4	5	0,2	5	448
4	747	14,4	1	4	8	0,2	8	400
5	747	14,7	1	4	8	0,2	8	358
6	751	13,1	1	4	11	0,2	11	362
7	741	12,7	1	4	4	0,2	4	400
8	752	13,1	1	4	7	0,2	7	357
9	752	13,2	1	4	6	0,2	6	400
10	741	13,2	1	4	6	0,2	6	375
11	741	13,6	1	4	7	0,2	7	380
12	741	13.6	1	4	9	0,2	. 9	365

Tabelle 13.
Zusatzgas: CO aus H·COOH und H₂SO₄.

Nr.	Barometer- stand	Temp.	Volu O ₂	men: PH ₃	СО	М	M'	Zünddruck mm
1	751	13,8	1	4	2	0,2	2	493
2	751	13,5	1	4	11	0,2	11	464
3	751	13,5	1	4	11	0,2	11	435
4	758	16,0	1	4	6	0,2	6	373
5	758	16,3	1	4	10	0,2	10	341
6	757	16,0	1	4	2	0,2	2	450
7	758	15,5	1	4	4	0,2	4	478
8	758	16,0	-1	4	1	0,2	1	461
9	758	16,0	2	8	8	0,2	4	568
10	758	16,0	2	8	2	0,2	1	532
11	753	20,5	1	4	4	0,2	4	550
12	753	20,5	1	4	1	0,2	1	590
13	748	19,5	2	8	8	0,2	4	560
14	748	20,0	2	8	2	0,2	1	563
15	748	20,2	1	4	8	0,2	8	544
16	746	17,2	1	4	4	0,2	4	405
17	746	17,3	2	8	2	0,2	1	406
18	746	17,3	1	4	2	0,2	1	499
19	739	17,4	1	4	3	0,2	3	407
20	739	17,4	1	4	1	0,2	1	455
21	739	17,6	1	4	8	0,2	8	350
22	739	17.6	1	4	12	0,2	12	326
23	742	16,4	1	4	12	0,2	12	334
24	742	16,5	1	4	5	0,2	5	375

Tabelle 14.
Zusatzgas: CO₂ aus NaHCO₃ durch Erhitzen.

Nr.	Barometer-	Temp.	Volu	men:	CO.	M	M'	Zünddruck
411.	stand	o C	O_2	PH_3	002	M	III.	mm
1	770	17,0	1	4	1	0,2	1	496
2 3	770	17,0	1	4	2	0,2	2	565
3	768	16,0	1	4	2 2 3	0,2	2 2 3	444
4	768	16,0	1	4	3	0,2	3	376
5	760	14.0	1	4	5	0,2	5	368
6	760	14,0	1	4	4	0,2	4	371
7	760	14,0	1	4	7	0,2	7	357
8	742	16,0	1	4	7	0,2	7	405
9	742	16,0	1	4	5	0,2	5	429
10	741	17,0	1	4	9	0,2	9	353
11	741	17,2	1	4	3	0,2	3	413
12	741	17,2	1	4	6	0,2	6	433
13	741	17,0	1	4	6	0,2	6	451
14	744	17,0	1	4	6	0,2	6	436
15	744	15,2	1	4	5	0,2	5	391
16	744	16,2	1	4	6	0,2	6	336
17	744	16,2	1	4	9	0,2	9	389
18	744	16,2	1	4	9	0,2	9	384
19	748	13,5	1	4	5	0,2	5	389
20	748	13,5	1	4	11	0,2	11	334

Tabelle 14 (Fortsetzung).

Nr.	Barometer-	Temp. Volumen:		CO ₂	M	M'	Zünddruck	
	stand	0 C	O ₂	PH_3			-	mm
21	748	14.0	1	4	4	0.2	4	410
22	748	14.0	1	4	3	0,2	3	403
23	751	13,8	1	. 4	12	0.2	12	345
24	757	15.2	1	4	10	0.2	10	339
25	751	14.5	1	4	1	0.2	1	475
26	751	14,4	1	4	2	0.2	2v	443
27	751	14,4	1	4	3	0.2	3	410

7. Methylphosphin.

Es war nicht ausgeschlossen, daß alkylierte Phosphine gemischt mit O_2 beim Ausdehnen ebenfalls sich entzündeten. Die mit CH_3 · PH_2 angestellten Versuche verliefen aber ergebnislos, wenigstens bei

Fig. 8. Der Einfluß des Methylphosphins.

Temperaturen bis etwa 120°. Gemische von O₂ und PH₂·CH₃ zeigten keine besonderen Erscheinungen. Hingegen übte es einen bedeutenden Einfluß auf die Lage der Druckgrenze bei PH₃-O₂-Gemischen aus, wenn man es diesem zusetzte.

Die Darstellung des PH₂·CH₃ geschah nach folgender Modifikation einer von Auger¹) angegebenen Methode.

Für die Reaktion gibt Augen die Formel:

$$2P + 3NaOH + CH_3J = PO_3Na_2H + NaJ + CH_3PH_2$$

In 300 ccm CH₃OH wurden 6 g NaOH gelöst, weißer P (etwa 3 g) in kleinen Stückchen zugesetzt, unter Schütteln und zeitweiligem Erwärmen auf dem Wasserbad. Die vom ungelösten P abgegossene dunkelrote Flüssigkeit wurde dann mit 7 g CH₃J versetzt und auf dem Wasserbad am Rückflußkühler langsam erwärmt. Das Gas wurde durch konzentrierte Salzsäure absorbiert und aus ihr nachher durch Natronlauge wieder freigemacht.

Der bedeutende Einfluß, den $\mathrm{CH_3PH_2}$ als Zusatzgas auf die Lage der Zündgrenze ausübt, geht aus den beiden folgenden Versuchsreihen hervor. Bei der ersten ist das Mischverhältnis von $\mathrm{PH_3}$ und $\mathrm{O_2}$ konstant, während bei der zweiten das $\mathrm{PH_3}$ im Gemisch (1 Raumteil $\mathrm{O_2} + 4$ Raumteile $\mathrm{PH_3}$) nach und nach durch $\mathrm{CH_3}$ · $\mathrm{PH_2}$ ersetzt wurde.

Tabelle 15.

Nr.	Baro- meter- stand	Temp,	Volu O ₂	men: PH ₃	$\mathrm{PH_{2}CH_{3}}$	M	M'	Zünddruck mm
1	745	18.2	1	4	1	0,2	1	345
2	746	18,5	1	4	2	0.2	2	260
3	746	18,5	1	4	3	0.2	3	209
4	746	18,5	1	4	4	0,2	4	175
5	746	18,5	1	4	8	0.2	8	zündet nicht
6	746	19,0	1	4	5	0,2	5	134
	-	_	1	4	0	0,2	0	450—550 im Mittel

Tabelle 16.

736	16,5	1	3	1	0.25	1	181
737	17,1	1	2	2	1/2	2	keine Zündung
737	17,1	2	5	3	2/	1.5	140
737	17,0	2	7	1	2/0	0,5	288
737	17,1	3	7	5	0,3	5/3	37
744	14,5	2	5	3	2/7	1.5	125
744	15,5	3	8	4	3/11	4/3	137
744	16,2	3	7	5	0,3	5/	n 88
744	17,0	1	2	2	1/3	2	127
744	17.0	2	3	5	0,4	2,5	57
744	17,8	2	4	4	1/3	2	117
745	17,8	2	3	.5	0,4	2,5	77
745	18,0	3	2	10	0,6	10/3	unter 30
745	18,0	1	1	3	0.5	3	unter 40
745	18,0	1	2	2	1/3	2	- 70
	737 737 737 737 744 744 744 744 744 745 745 745	737 17,1 737 17,1 737 17,0 737 17,1 744 14,5 744 15,5 744 16,2 744 17,0 744 17,0 744 17,8 745 17,8 745 18,0 745 18,0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

 $M' = rac{ ext{Volumen } ext{PH}_2 ext{CH}_3}{ ext{Volumen } ext{O}_2}$

¹⁾ Auger, Compt. rend. 139, 639.

8. Zünddruck und Temperatur.

Das Rohr R des Meßapparates wurde mit einem toluolgefüllten, elektrisch heizbaren Glasmantel umgeben; für tiefere Temperaturen

Fig. 9. Zünddruck gegen Temperatur bei konstantem Mischverhältnis.

wurde der Mantel um R mit Eis- oder Kältemischung gefüllt. Entweder wurde bei konstantem Druck die Temperatur gesteigert oder

Fig. 10. Zünddruck gegen Temperatur bei Dilatation über Wasser und Chlorcaleiumlösung.

bei konstanter Temperatur dilatiert. Je nach den Umständen kamen beide Methoden zur Anwendung. In den Tabellen 17—20 wurde die Dilatation über Hg vorgenommen. Die Zünddrucke steigen mit wachsender Temperatur sehr schnell an. Die von Gemischen mit viel PH₃ sind bei Zimmertemperatur (10—20°) schon sehr stark temperaturabhängig.

Es folgen nun noch 2 Versuchsreihen, bei denen das Hg mit der CaCl₂-Lösung Nr. 3 überschichtet wurde. Zugleich mit der Temperatur änderte sich auch hier der Wasserdampfdruck. Aus der graphischen Darstellung der Ergebnisse (Tabellen 21 und 22) folgt, daß man ein Gemisch von PH₃ und O₂ sowohl durch Erwärmen als auch durch Abkühlen zünden können muß. Letzteres läßt sich leicht bestätigen, indem man ein mit dem Gemisch gefülltes Glaskügelchen in festes Kohlendioxyd bringt. Sobald das Gemisch im Innern durch die Abkühlung genügend trocken ist, tritt Explosion ein.

Tabelle 17.

Nr.	Barometer- stand	Volumen: $O_2 \mid PH_3$		M	Versuchs- temperatur	Zünddruck mm
1	756	3	1	0.75	40.0	61
2	756	3	1	0.75	60.5	102
3	756	3	1	0.75	91.7	303

Tabelle 18.

Nr.	Barometer- stand	Temp.			M	Versuchs- temperatur	Zünddruck
		0 C	O_2	PH_3		, C	mm
1	754	19,4			2/3	0	41
2 3	756	18,6			2/2	0	38
3	760	15,2		1 . 1	2/9	0	22
4	760	15,2			2/2	15,2	50
5	756	15,5			2/2	15,2	38
6	753	15,9			2/2	15,2	34
7	752	16,3			2/9	25,2	79
8	758	23,0			2/9	35,0	86
9	755	18,6			2/2	40,0	123
10	758	23,6			-/9	44,5	128
11	758	23,6			2/3	50,0	119
12	754	19,4			2/3	51,0	185
13	758	23,6			2/3	59,0	234
14	760	14,3			2/3	64,3	308
15	758	23,6			2/3	70,5	369
16	755	18,6			2/9	72,0	341
17	755	18,6			2/2	83,5	755^{1})
18	755	18,7			2/3	87,2	7551)
19	757	20,1	2	1	2/3	50,5	169
20	757	20,1	2	1	2/3	45,0	155

¹⁾ Atmosphärendruck.

Tabelle 19.

Nr.	Barometer- stand	Temp.	M	Versuehstemp.	Zünddruck mm	
1	755	18,0	0.4	- 6,2	160	
2 3	755	17,8	0.4	0	179	
3	755	18,0	0.4	0	168	
4	752	15,0	0.4	15,0	213	
5	753	15,5	0.4	15,5	222	
6 7	754	15,5	0.4	15,5	257	
7	754	15,5	0.4	15,5	211	
8	758	19,7	0.4	19,7	217	
9	742	16,3	0.4	16,3	214	
10 m	760	18,0	0.4	18,0	157	
11	758	18,9	0.4	25,7	290	
12	758	19,0	0.4	32,6	313	
13	758	19,0	0.4	38,6	380	
14	758	19,0	0.4	45,8	479	
15	758	19,2	0.4	53,5	758^{1})	
		7	Tabelle 20).		
1	750	19,6	0.25	- 10	253	
2 3	754	16,7	0.25	0	289	
3	742	14.8	0.25	14,8	431	
4	736	15,2	0.25	15,2	357	
5	736	15,3	0.25	15,3	470	
6	752	15,5	0.25	15,5	411	
7	740	15,8	0.25	15,8	436	
6 7 8	748	15,9	0.25	15,9	351	
9	748	15,9	0.25	15,9	370	
10	745	20,2	0.25	20,2	325	
11	745	20,3	0.25	20,3	455	
12	745	20,3	0.25	20,3	475	
13	750	19,6	0.25	28,0	684	
14	750	19,6	0.25	34,1	750^{1})	

Tabelle 21.

Nr.	Barometer- stand	Temperatur ⁶ C	M	Versuchs- temperatur	$egin{array}{c c} Z \ddot{ ext{u}} & ext{d} d ext{ruck} \\ mm & pw & mm \end{array}$	
1	757	15.2	1/-	6,0	361	7
2	759	17,3	1/2	17.3	251	14.7 K
3	755	17.6	1/2	17.6	242	14.7 K
4	757	15,3	1/2	32,3	198	36.3 K
5	758	15,3	1/2	47.5	202	81.6
6	758	15,3	1/2	63,4	219	174.4
7	748	15,6	1/2	85.2	457	438 K

In dieser und der folgenden Tabelle ist in der Rubrik pw mm der Wasserdampfdruck der über das Quecksilber geschichteten Lösung angegeben. Bemerkenswert sind auch hier die Zündungen durch Kompression.

¹⁾ Atmosphärendruck.

Tabelle 22.

Nr.	Barometer- stand	Temperatur	M	Versuchs- Temperatur	Zünddruck	
		0 C		0 C	mm	pw mm
1	755	18,8	1/7	0	605	3,2
2	755	18,6	1/7	6,3	640	4
3	755	18,6	1/2	42,5	498	32
4	752	20,6	1/7	67,0	608	102
5	752	20,6	1/7	72.0	549	140
6	752	20,7	1/2	89.6	7521)	310
7	747	17,3	1/7	17.3	506	-
8	747	17,3	1/70	17.3	550	-
9	752	19,1	1/7	19,1	564	8,4
10	752	18,9	1/2	18.9	547	-
11	752	18,7	1/7	18,7	545	-

Zusammenfassung der Ergebnisse.

- Gemische von PH₃ und O₂ werden durch Druckverminderung bei einem bestimmten Zünddruck gezündet, der von der Natur der Wand nicht abhängt.
- 2. Die Lage des Zünddruckes hängt ab:
 - a) von der Zusammensetzung des Gemisches; im allgemeinen steigt der Zünddruck mit größer werdendem PH₃-Teildruck.
 - b) Vom H₂O-Gehalt der Gase. Der Zünddruck fällt bei zunehmendem H₂O-Gehalt der Gase und ist bei sehr trockenen Gasen nicht mehr nachzuweisen. Sie reagieren sofort.
 - c) Von der Anwesenheit fremder Gase. Die Anwesenheit von N₂, N₂O, H₂, CO, NH₃ und CO₂ bewirkt geringes Fallen des Zünddruckes. NO oder Halogene zünden sofort.
 - d) Von der Temperatur. Der Zünddruck steigt mit der Temperatur stark an.
- 3. Gemische von $CH_3 \cdot PH_2$ und O_2 werden durch Dilatation nicht gezündet. $CH_3 \cdot PH_2$ als Zusatzgas drückt den Zünddruck stark herab.
- 4. Bei konstantem Wasserdampfdruck existiert ein bestimmtes Mischverhältnis von optimaler Zündbarkeit.
- 5. Der Zünddruck läßt sich sowohl von oben, als auch von unten her erreichen (Überschreitungserscheinung), jedoch hängt die Aussicht auf Erfolg von der Zusammensetzung des Gemisches ab. Bei feuchten Gemischen überwiegen die Kompressions-, bei trockenen die Dilatationszünddrucke.

¹⁾ Atmosphärendruck.

6. Der Zündung voran geht eine Nebelbildung. Der Nebel leuchtet im Dunkeln und ist stark elektrizitätsleitend. Seine optische Dichtigkeit nimmt mit zunehmender Feuchtigkeit ab. Beim Ausdehnen von feuchten Gemischen tritt bei einem bestimmten Druck eine vorübergehende Nebelbildung ein (retrograde Kondensation), die jedoch nicht zur Zündung führt. Dieser Nebel leuchtet auch nicht im Dunkeln. PH₃ allein gibt mit H₂O-Dampf ebenfalls Nebel, die aber bei Dilatation verschwinden.

Heidelberg, Physikalisch-chemisches Institut der Universität, März 1929.

Bei der Redaktion eingegangen am 11. März 1929.

Hydrolysemessungen in Berylliumsalzlösungen.

Von MILDA PRYTZ.

Mit 5 Figuren im Text.

1. Einleitung.

Die Hydrolyse der Berylliumsalzlösungen ist bei 99,7°C von Lev¹) und bei 40°C von Bruner²) mittels der Methode der Zuckerinversion gemessen worden. Sie fanden, daß das Chlorid stärker als das Sulfat invertiert, doch ist die Hydrolyse der beiden Salze von derselben Größenordnung. Es ist schon früher von Berzelius³) darauf hingewiesen worden, daß eine Berylliumsulfatlösung die Fähigkeit besitzt, größere Mengen Berylliumhydroxyd zu lösen. Diese Erscheinung kann entweder dadurch erklärt werden, daß das Sulfat die Löslichkeit des Hydroxyds steigert, oder daß basische Sulfate sich bilden.⁴)

Zweck der vorliegenden Arbeit ist, den Hydrolysenvorgang bei potentiometrischen Titrierungen mit NaOH von Berylliumsalzlösungen zu studieren. Es wurde eine Reihe von Berylliumsulfat — und Berylliumchloridlösungen mit 1 m-NaOH titriert. Um die Reversibilität des Vorganges zu kontrollieren, wurden auch einige der Sulfatlösungen mit 0,5 m-H₂SO₄ zurücktitriert.

2. Versuchsanordnung und Meßresultate.

Die Messungen wurden bei 25°C in einem elektrisch regulierten Luftthermostat ausgeführt. Als Vergleichselektrode wurde eine 3,5 m-KCl-Kalomelelektrode benutzt. Nach Untersuchungen von A. Unmack, ausgeführt in dem chemischen Laboratorium der landwirtschaftlichen Hochschule Kopenhagen, hat diese bei 25°C einen

¹⁾ H. LEY, Z. phys. Chem. 30 (1899), 199.

²⁾ L. Bruner, Z. phys. Chem. 32 (1900), 132.

³⁾ J. J. Berzelius, Journ. f. Chem. (Schweiger) 15 (1815), 296.

⁴⁾ C. L. Parsons, Z. anorg. Chem. 42 (1904), 250; Journ. Amer. Chem. Soc. 26 (1904), 1347. — C. L. Parsons u. W. O. Robinson, Science 24 (1906), 202. — C. L. Parsons, W. O. Robinson u. C. T. Fuller, Journ. Phys. Chem. 11 (1907), 651, vgl. auch: The Chemistry and Literature of Beryllium by C. L. Parsons.

Wert gleich 0,2503 Volt gegenüber einer Wasserstoffelektrode mit Wasserstoffionenaktivität 1 und Wasserstoffdruck 1 Atm. Hieraus folgt, daß die pa_H-Werte mittels der Gleichung:

$$-\log a_{_{\mathrm{H}}} = pa_{_{\mathrm{H}}} = \frac{E_{\mathrm{beobachtet}} - 0.2503}{0.0591}$$

zu berechnen sind, wenn pa_H die Aktivität der Wasserstoffionen ausdrückt. pa_H ist ein p_H -Wert, berechnet mit einem etwas ge- änderten E_0 -Wert, um so genau wie möglich gleich — $\log a_H$ zu sein. 1)

Die Platinelektroden wurden für jeden Versuch gereinigt und frisch platiniert. Das Wasserstoffionenpotential stellte sich in den ursprünglichen Lösungen immer glatt ein und blieb auf längere Zeit konstant. Während der Titrierung war dies auch der Fall, bis beinahe 1 Äquivalent NaOH zugesetzt war, worauf sich das Potential nach jeder Weitertitration oft sehr langsam einstellte. Auf jeden neuen Zusatz von Natronlauge folgte eine starke Steigung des Potentials, worauf es oft sehr langsam sank, so daß einige Zeit verging, ehe das Potential einen konstanten Wert annahm. Diese Unregelmäßigkeit verschwand, wenn der Wendepunkt der Kurve passiert war. Bei der Zurücktitrierung mit H₂SO₄ entsprach eine langsame Steigung des Potentials dem Potentialfall bei der Vorwärtstitrierung. Die Einstellung eines konstanten Potentials wurde durch Rühren mit einer Platinspirale beschleunigt. Die Reproduzierbarkeit der Potentiale geht übrigens aus den Versuchen 10, 11, 12 und 13 hervor.

Zur Herstellung der Sulfatlösungen diente reines BeSO₄·4H₂O, dessen Gehalt an Beryllium und Sulfat beziehungsweise durch Glühen als Berylliumoxyd und Fällung als Bariumsulfat kontrolliert worden war. Das Chlorid kam nicht direkt zur Verwendung, sondern es wurde durch Fällung einer Berylliumsulfatlösung mit einer Bariumchloridlösung eine Lösung von Berylliumchlorid hergestellt, und diese wurde auf verschiedene Verdünnungen gebracht.

Es sind im ganzen folgende Versuche vorgenommen worden:

Versuch	1.	50	cm ⁸	0,1	$m-BeSO_4$	mit	1	m-NaOH	titrier
,,	2.	50	,,	0,07	,,	"	1	,,	"
12	3.	50	79	0,06	,,	,,	1	"	"
99	4.	50	"	0,05	,,	27	1	"	"

¹⁾ N. BJERRUM u. J. K. GJALDBÆK, Den Kgl. Vet. og Landbohøjskoles Aarsskrift (1919), S. 73; vgl. auch C. FAURHOLT, Diss. København (1924), S. 20; vgl. auch S. P. L. Sørensen und K. Linderstrøm-Lang, Compt. rend. Lab. Carlsberg Kopenhagen 15 (1924), Heft 6.

Versuch	5.	50	cm ³	0,04	m-BeSO4	mit	1	m-NaO	H titriert
"	6.	500	"	0,02	"	"	1	"	"
22	7.	500	"	0,01	"	99	1	,,	"
22	8.	500	"	0,007	"	93	1	,,,	**
22	9.	300	"	0,0117	,,	"	1	"	,,
"	10.	200	,,	0,0175	"	23	1	22	vorwärts,
		mit	0,5	m-H2S	O ₄ rückwä	rts t	itri	ert.	
27	11.	400	cm3	0,0087	5 m-BeSO	mit	1	m-NaOH	vorwärts,
		mit	0,5	m-H2S	O4 rückwä	rts t	itri	ert,	
"	12.	600	cm3	0,0058	3 m-BeSO	mit	1	m-NaOH	vorwärts,
		mit	0,5	m-H2S	O4 rückwä	rts t	itri	ert,	
,,	13.	700	cm ³	0,005	m-BeSO ₄	mit :	1 n	n-NaOH	vorwärts,
		mit	0,5	m-H2S	O ₄ rückwä	irts t	itri	iert,	
,,	14.	40	cm ³	0,1	m-BeCl, 1	nit 1	n	n-NaOH	titriert,
"	15.	80	"	0,05	",	,, 1		"	"
,,	16.	200	"	0,02	,,	,, 1		"	,,
"	17.	400	37	0,01	"	,, 1		,,	23
,,	18.	500	,,	0,008	**	,, 1		,,	"
,,	19.	800	,,,	0,005	"	,, 1		"	"

Fig. 1.

Die Resultate sind in graphischer Darstellung aus Fig. 1, 2, 3, 4 und 5 ersichtlich. Auf den Figuren geben die Ordinaten die pa_H-Werte. Längs der Abszissenachse ist die zugesetzte Menge NaOH in Äquivalenten pro Molekül aufgetragen. Um mehrere Kurven auf demselben Bild eintragen zu können, wurden gewöhnlich für die verschiedenen Kurven verschiedene Anfangspunkte für die Abszissenmaßstäbe angewandt. In den Versuchen 10, 11, 12 und 13

geben die kreuzförmigen Punkte die pa_H-Werte bei der Vorwärtstitrierung und die kreisförmigen Punkte die entsprechenden Werte bei der Rückwärtstitrierung an.

3. Berechnung der hydrolytischen Konstante.

Die Titrierkurven der Berylliumsalzlösungen zeigen einen gleichmäßigen Verlauf. Sie können in drei verschiedene Zweige zerlegt werden. Bis etwa 1 Äquivalent Natronlauge zugesetzt ist, steigt die Kurve stetig, und die Lösung bleibt ganz klar. Dies Kurvenstück umfaßt also eine Hydrolyse, welche zur Bildung löslicher basischer Ionen führt. Wenn der erste Äquivalenzpunkt überschritten

ist, trübt sich die Lösung. Bei weiterem Zusatz von Lauge bildet sich ein basischer Niederschlag und die Kurve steigt sehr langsam, indem jeder neue Zusatz von Natronlauge keine wesentliche Änderung von pa_H herbeiführt. Bei den Chloridversuchen biegt die Kurve

nach oben, wenn sich die zugefügte Menge der Natronlauge 2 Äquivalenten pro Atom Beryllium nähert, und der Wendepunkt der Titrierkurven fällt bei sämtlichen Versuchen mit dem zweiten Äquivalenzpunkt völlig zusammen. Dies deutet darauf hin, daß der Niederschlag aus Berylliumhydroxyd besteht, nur evtl. mit einem kleinen Gehalt an adsorbiertem Chlor. Bei den Sulfatversuchen aber liegt der Wendepunkt der Kurven mehr oder weniger vor dem zweiten Äquivalenzpunkt. Der Niederschlag bei den Sulfatversuchen kann daher nicht aus reinem Hydroxyd bestehen, sondern es wird auch bei der Titrierung etwas Sulfat mit gefällt.

Der erste Zweig der Titrierkurven kann zur Berechnung des Hydrolysengrads von Berylliumsulfat- und Berylliumchloridlösungen dienen. Damit muß man die Konzentration der Wasserstoffionen und der Berylliumionen in den Lösungen kennen. Die Wasserstoffionenkonzentration ist mittels der experimentell gefundenen pan-Werte berechnet. Bei den Sulfatversuchen wurde die Aktivität mit einem Säurefaktor f, multipliziert. Dieser Faktor ist einer Arbeit von S. P. L. Sørensen entnommen. 1) Er maß das Wasserstoffionenpotential in Lösungen von Ammoniumsulfat mit einem sehr geringen Zusatz von Schwefelsäure und berechnete aus den experimentell gefundenen p_H-Werten für verschiedene Sulfatkonzentrationen den Faktor f, der das Verhältnis zwischen der wirklich gegenwärtigen Säuremenge und der gemessenen Wasserstoffionenaktivität gibt. Sørensen's p_H-Werte wurden auf pa_H umgerechnet, und die hierdurch erhaltenen f.-Werte wurden als Ordinate gegen $\sqrt[n]{c}$ (c = die molare Sulfatkonzentration) als Abszissen graphisch aufgetragen. Die zu benutzenden f.-Werte wurden direkt dieser Kurve entnommen.

Harned und Sturgis²) haben den mittleren Aktivitätskoeffizient für H₂SO₄ in Lösungen mit K₂SO₄, Na₂SO₄ und Åkerlöf³) hat den Koeffizient in Lösungen mit K₂SO₄, Na₂SO₄ und Li₂SO₄ bestimmt. Die Schwefelsäurekonzentration aber war bei allen diesen Versuchen viel größer als diejenige, die in den Berylliumsalzlösungen infolge von Hydrolyse vorhanden ist.

Bei den Chloridversuchen wurden die von RANDALL und Breckenridge⁴) bestimmten mittleren Aktivitätskoeffizienten für HCl

¹⁾ S. P. L. Sørensen, Medd. fra Carlsberg Laboratoriet 12 (1917), 85.

²⁾ H. S. HARNED u. R. D. STURGIS, Journ. Amer. Chem. Soc. 47 (1925), 945.

⁸⁾ G. ÅKERLÖF, Journ. Amer. Chem. Soc. 48 (1926), 1160.

⁴⁾ M. RANDALL u. G. F. BRECKENBIDGE, Journ. Amer. Chem. Soc. 49 (1927), 1435.

in Lösungen mit BaCl_2 benutzt. Durch graphische Interpolation und Extrapolation ihrer Resultate in den Lösungen, wo das Verhältnis zwischen Säure und Salz am kleinsten war, wurden die zu benutzenden Werte für den Koeffizient $f_{\rm H}$ gefunden.

Die hydrolytische Konstante ist unter der Annahme berechnet worden, daß der Hydrolysenvorgang durch folgende Gleichung dargestellt wird:

 $Be^{++} + H_2O = BeOH^+ + H^+$ (a)

Dementsprechend kann gesetzt werden:

$$K = A_{\rm H} \cdot \frac{c_{\rm BeOH^+}}{c_{\rm Be^{++}}} \,, \label{eq:K}$$

wo $A_{\rm H}$ die Aktivität der Wasserstoffionen, $c_{\rm BeOH^+}$ und $c_{\rm Be^{++}}$ die Konzentration der respektiven Ionen bezeichnet. Die $A_{\rm H}$ -Werte gehen direkt aus den pa_H-Werten der Kurven hervor. Die Konzentration der Berylliumionen $c_{\rm Be^{++}}$ und der Monohydroxoionen $c_{\rm BeOH^+}$ ist folgendermaßen berechnet worden:

Bezeichnet man die Gesamtkonzentration des Berylliums mit (Be), und die Äquivalentbruchteile der zugesetzten Natronlauge mit N, so wird:

(Be) =
$$c_{\text{Be}^{++}} + c_{\text{BeOH}^{+}}$$
 (1)

und

$$c_{\text{BeOH}^+} = N \cdot (\text{Be}) + c_{\text{H}^+}. \tag{2}$$

Aus den Gleichungen (1) und (2) erhält man:

$$c_{\text{Be}^{++}} = (\text{Be}) - N \cdot (\text{Be}) - c_{\text{H}^{+}} = (\text{Be})(1 - N) - c_{\text{H}^{+}}$$
 (3)

und es folgt:

$$\frac{c_{\rm BeOH^{+}}}{c_{\rm Be^{++}}} = \frac{N + \frac{c_{\rm H^{+}}}{(\rm Be)}}{1 - \left(N + \frac{c_{\rm H^{+}}}{(\rm Be)}\right)}. \tag{4}$$

Für die Sulfatversuche gilt $c_{\rm H^+}=A_{\rm H}\cdot f_s$ und für die Chloridversuche $c_{\rm H^+}=\frac{A_{\rm H}}{f_{\rm H}}$, und somit wird für die Versuche in Sulfatlösungen:

$$K = A_{\rm H} \cdot \frac{N + \frac{A_{\rm H} \cdot f_s}{({\rm Be})}}{1 - \left(N + \frac{A_{\rm H} \cdot f_s}{({\rm Be})}\right)} \tag{5a}$$

und für die Versuche in Chloridlösungen:

$$K = A_{\rm H} \cdot \frac{N + \frac{A_{\rm H}}{({\rm Be}) \cdot f_{\rm H}}}{1 - \left(N + \frac{A_{\rm H}}{({\rm Be}) \cdot f_{\rm H}}\right)} \cdot \tag{5b}$$

Die Zahlenwerte dieser Konstante wurden für alle experimentell gefundenen pa_H -Werte des ersten Zweigs der Titrierkurven berechnet. Sie zeigten ein regelmäßiges Anwachsen mit N. Dies war bei den Chloridversuchen ausgeprägter als bei den Sulfatversuchen. Es darf wohl durch die Zunahme der Hydroxoionen während der Titrierung seine Erklärung finden. Aus diesem Grunde ist, um entsprechende Größen zu erhalten, bei sämtlichen Versuchen als Maß der Konstante der Wert für N=0.5 angeführt worden. Der Fehler, den man begeht, wenn man die Änderung der molaren Konzentration der Berylliumsalze infolge der Volumenzunahme während der Titrierung nicht berücksichtigt, kann gegen N vernachlässigt werden. Die Resultate dieser Berechnungen finden sich in der fünften Kolonne der Tabellen 1 und 2.

Tabelle 1.
Berechnung der hydrolytischen Konstante in Berylliumsulfatlösungen.

Versuch Nr.	Mol. Konz. BeSO ₄	$pa_{\rm H} am Punkt$ $N = 0.5$	$A_{\mathbf{H}} \cdot f_s = c_{\mathbf{H}} +$	$K \cdot 10^5$	$K_0 \cdot 10^7$
1	0,1	3,92	0,00036	12,2	1,5
2	0,07	4,00	0,00026	10,2	1,5
3	0,06	4,02	0,000239	9,7	1,6
4	0,05	4,05	0,000210	9,1	1,6
5	0,04	4,02	0,000207	9,8	2,4
6	0,02	4,28	0,0000945	5,3	1,4
10	0,0175	4,34	0,0000799	4,7	1,3
9	0,0117	4,42	0,0000600	3,9	1,3
7	0,01	4,44	0,0000558	3,7	1,3
11	0,00875	4,51	0,0000457	3,2	1,1
8	0,007	4,54	0.0000403	3,0	1,2
12	0,00583	4,58	0,0000355	2,7	1,2
13	0,005	4,63	0.0000304	2,4	1,1

Tabelle 2.
Berechnung der hydrolytischen Konstante in Berylliumchloridlösungen.

Versuch Nr.	$\begin{array}{c} \text{Mol. Konz.} \\ \text{BeCl}_2 \end{array}$	$pa_H am Punkt$ $N = 0.5$	$\frac{A_{\rm H}}{f_{\rm H}} = c_{\rm H} +$	$K \cdot 10^5$	$K_0 \cdot 10^7$
14	0,1	3,79	0,000224	(16,3)	(2,7)
15	0,05	3,98	0,000139	10,6	2,2
16	0,02	4,24	0,0000713	5,8	1,7
17	0,01	4,42	0,0000452	3,9	1,5
18	0.008	4,49	0,0000382	3,3	1,7
19	0,005	4,61	0,0000283	2,5	1,3

Aus der Tabelle 1 geht hervor, daß die Zahlenwerte für K eine stetige Abnahme mit der Verdünnung zeigen. Dies ist, wie man aus der Tabelle 2 ersieht, bei den Chloridversuchen ebensoviel der Fall.

Eine Erklärung für die Abnahme der K-Werte ist in folgendem gesucht worden:

Nimmt man an, daß das Monohydroxoion BeOH⁺ in eine dimere Form Be₂(OH)₂⁺⁺ übergegangen ist ¹), so wird die Reaktion nicht durch Gleichung (a) wiedergegeben, sondern es gilt:

$$2\operatorname{Be}^{++} + 2\operatorname{H}_2\operatorname{O} = \operatorname{Be}_2(\operatorname{OH})_2^{++} + 2\operatorname{H}^+$$
 oder, wenn Wasserabspaltung stattfindet,
$$2\operatorname{Be}^{++} + \operatorname{H}_2\operatorname{O} = \operatorname{Be}_2\operatorname{O}^{++} + 2\operatorname{H}^+$$
 (b)

und man kann schreiben:

$$K_{\rm 0} = A_{\rm H}^{-2} \cdot \frac{c_{\rm Be_2(OH)_2^{++}}}{c_{\rm Be^{++2}}} \quad {\rm oder} \quad K_{\rm 0} = A_{\rm H}^{-2} \cdot \frac{c_{\rm Be_2O^{++}}}{c_{\rm Be^{++2}}} \, .$$

Die molare Konzentration des Dihydroxoions muß gleich $\frac{1}{2}$ [N(Be) + $c_{\text{H+}}$] sein, und somit ergibt sich auch für die Konstante an Stelle von (5a) und (5b) der Ausdruck:

$$K_{0} = A_{H}^{2} \cdot \frac{\frac{1}{2} \cdot \left[N + \frac{A_{H} \cdot f_{s}}{(Be)} \right]}{(Be) \cdot \left[1 - \left(N + \frac{A_{H} \cdot f_{s}}{(Be)} \right) \right]^{2}}$$

$$= \frac{K}{2} \cdot \frac{A_{H}}{(Be) \cdot \left[1 - \left(N + \frac{A_{H} \cdot f_{s}}{(Be)} \right) \right]}$$
(6 a)

und

$$K_{0} = A_{H}^{2} \cdot \frac{\frac{1}{2} \cdot \left[N + \frac{A_{H}}{(Be) \cdot f_{H}} \right]}{(Be) \cdot \left[1 - \left(N + \frac{A_{H}}{(Be) \cdot f_{H}} \right) \right]^{2}}$$

$$= \frac{K}{2} \cdot \frac{A_{H}}{(Be) \cdot \left[1 - \left(N + \frac{A_{H}}{(Be) \cdot f_{H}} \right) \right]} \cdot$$

$$(6b)$$

Die K_0 -Werte sind in der letzten Kolonne der Tabellen 1 und 2 aufgetragen. Das stetige Abfallen mit der Verdünnung ist hier nicht so auffallend wie bei den K-Werten. Man darf wohl die K_0

¹) Vgl. N. Bjerrum, Diss. København (1908), S. 111; vgl. auch M. Prytz, Z. anorg. u. allg. Chem. 174 (1928), 364.

als eine wirkliche Konstante auffassen und deshalb auch annehmen, daß die Reaktion, die tatsächlich stattfindet, durch Gleichung (b) dargestellt wird. Für die Berylliumsulfatlösungen erhält man den Mittelwert $K_0 = 1,4 \cdot 10^{-7}$ und für die Berylliumchloridlösungen $K_0 = 1,7 \cdot 10^{-7}$.

4. Berechnung des Löslichkeitsprodukts L des Berylliumhydroxyds.

Wie erwähnt, blieben die Berylliumsalzlösungen während der Titrierung ganz klar, bis der erste Äquivalenzpunkt erreicht war. Beim Passieren dieses Punktes konnte eine Trübung der Lösung beobachtet werden, und ein weißer gallertartiger Niederschlag folgte jedem neuen Zusatz von Natronlauge. Dementsprechend biegen auch die Kurven beim ersten Äquivalenzpunkt um, und das Kurvenstück, das die Fällung umfaßt, steigt nicht wie der erste Zweig der Kurven, nähert sich aber mehr dem horizontalen Verlauf. Mittels der experimentell gefundenen pa_H-Werte während der Fällung wird man das Löslichkeitsprodukt des Hydroxyds berechnen können.

Wäre die Hydrolyse von der Gleichung (a) bedingt, so würde eine Fällung von Be(OH)₂ der Gleichung

$$BeOH^{+} + H_{2}O = Be(OH)_{2} + H^{+}$$
 (c)

folgen, und es müßte das Verhältnis $\frac{c_{\text{BeOH}}^+}{c_{\text{H}}^+}$ eine Konstante werden.

Setzt man aber voraus, daß das Monohydroxoion BeOH⁺ in eine dimere Form Be₂(OH)⁺⁺₂, oder wenn Wasserabspaltung stattfindet, in die Form Be₂O⁺⁺ übergegangen ist, so daß die Hydrolyse durch die Reaktionsgleichung (b) dargestellt wird, so ergibt sich hieraus für eine Fällung von Be(OH)₂

$$\begin{array}{c} \operatorname{Be_2(OH)_2^{++}} + 2\operatorname{H_2O} = 2\operatorname{Be(OH)_2} + 2\operatorname{H^+} \\ \operatorname{Be_2O^{++}} + 3\operatorname{H_2O} = 2\operatorname{Be(OH)_2} + 2\operatorname{H^+} \end{array} \right\} \tag{d}$$

und es wird:

$$\frac{c_{\text{Be}_2(\Omega \text{H})_2}^{++}}{c_{\text{H}^{+2}}} = \frac{c_{\text{Be}_2\Omega}^{++}}{c_{\text{H}^{+2}}} = \text{Konst.}$$

Die Verhältnisse

$$S = \frac{c_{\text{BeOH}^+}}{c_{\text{H}^+}}$$
 und $S_0 = \frac{c_{\text{Be}_2(\text{OH})_2}^{++}}{c_{\text{H}^{+2}}} = \frac{c_{\text{Be}_2\text{O}^{++}}}{c_{\text{H}^{+2}}}$

sind bei den experimentell gefundenen pa_H-Punkten des zweiten Zweigs der Titrierkurven berechnet worden. Die Konzentration der Wasserstoffionen ist aus den pa_H-Werten ermittelt worden, ganz genau wie bei der Berechnung der hydrolytischen Konstante. Die molare Konzentration der Hydroxoionen ist unter der Annahme berechnet worden, daß mit Annäherung an den ersten Äquivalenzpunkt die gesamte Berylliummenge als basische Ionen in der Lösung ist. Setzt man keine Polymerisation voraus, so kann bei N=1 geschrieben werden $c_{\rm BeOH^+}=$ (Be). Ist das Monohydroxoion in die dimere Form übergegangen, so wird bei

$$N=1$$
, $c_{{\rm Be_2(OH)_2}^{++}}=c_{{\rm Be_2O}^{++}}=\frac{1}{2}({\rm Be})$,

wo (Be) wie früher die Gesamtkonzentration des Berylliums bezeichnet. Beim Wendepunkt der Titrierkurven muß alles Beryllium ausgefällt sein. Wie erwähnt, fällt bei den Chloridversuchen der Wendepunkt mit dem zweiten Äquivalenzpunkt zusammen. Bei den Sulfatversuchen aber, wo die Fällung sulfathaltig ist, fällt der Wendepunkt vor den zweiten Äquivalenzpunkt. Die genaue Lage des Punktes, wo alles Beryllium ausgefällt ist, muß hier geschätzt werden und somit auch der Bruchteil des Berylliums, der durch Fällung aus der Lösung verschwunden ist.

Die Resultate der Berechnungen sind für den Punkt N=1,5 in den Tabellen 3 und 4 aufgetragen, und zwar enthält die fünfte Kolonne die S-Werte und in der sechsten Kolonne sind die Zahlenwerte von S_0 gegeben. Die Änderung der molaren Konzentration der Berylliumsalze infolge der Volumenzunahme während der Titrierung ist nur bei den Versuchen beabsichtigt worden, wo das ursprüngliche Volumen kleiner als 100 cm^3 war.

Tabelle 3.

Berechnung der Sättigungskonstante für Berylliumhydroxyd aus Messungen in Berylliumsulfatlösungen.

Versuch Nr.	Ursprüngl. mol. Beryl- liumkonz.	$pa_{\rm H} \operatorname{am} \operatorname{Punkt}$ $N = 1.5$	$A_{\mathrm{H}} \cdot f_{\bullet} = c_{\mathrm{H}}$ am Punkt N = 1,5	$S \cdot 10^{-3}$	S ₀ · 10 ⁻⁹
1	0,1	5,87	0,00000406	8,7	1,1
2	0,07	5,73	0,00000532	5,0	0,5
3	0,06	5,86	0,00000345	6,8	1,0
4	0,05	5,84	0,00000340	6,2	0,9
5	0,04	5,83	0,00000321	5,3	0,8
6	0,02	5,94	0,00000207	3,1	0,7
10	0,0175	5,98	0,00000184	3,8	1,0
9	0,0117	5,98	0,00000166	2,8	0,8
7	0,01	6,02	0,00000147	2,4	0,8
11	0,00875	6,04	0,00000135	2,6	1,0
8	0,007	6,01	0,00000137	2,0	0,7
12	0,00583	6,06	0,00000118	1,9	0,8
13	0,005	6,06	0,00000113	1,7	0,7

Aus den Tabellen ist ersichtlich, daß die S-Werte ein ähnliches Abfallen mit der Verdünnung zeigen wie die K-Werte, die auch berechnet worden sind ohne Rücksicht auf eine eventuelle Polymerisation. Wie die Tabelle 4 zeigt, tritt diese Neigung bei den Chloridversuchen stärker hervor als bei den Sulfatversuchen.

Tabelle 4.

Berechaung der Sättigungskonstante des Berylliumhydroxyds aus Messungen in Berylliumchloridlösungen.

Versuch Nr.	Ursprüngl. mol. Beryl- liumkonz.	$pa_{ m H}$ am Punkt $N=1,5$	$\frac{A_{\rm H}}{f_{\rm H}} = c_{\rm H}$ am Punkt $N = 1,5$	$S \cdot 10^{-3}$	S ₀ • 10 ⁻⁹
14	0,1	5,76	0,00000250	(18,0)	(3,5)
15	0,05	5,83	0,00000196	11,9	3,0
16	0,02	5,93	0,00000145	6,9	2,4
17	0,01	6,03	0,00000111	4,5	2,0
18	0,008	6,06	0,00000103	4,0	2,0
19	0,005	6,07	0,00000098	2,6	1,3

Die S_0 -Werte zeigen zwar bei den Chloridversuchen eine Abnahme mit der Verdünnung, aber nicht in demselben Grad wie die S-Werte, und bei den Sulfatversuchen tritt dieser Gang nicht hervor. Die Größe S_0 steht zum Löslichkeitsprodukt L des Berylliumhydroxyds in einem einfachen Verhältnis, und zwar wie folgt:

Nach Untersuchungen von B. Bleyer und S. W. Kaufmann¹) hat ein frisch gefälltes Berylliumhydroxyd die Formel Be₂O₃H₂. Anstatt der Gleichung (d) muß dann entweder geschrieben werden:

$$\begin{array}{c} \operatorname{Be_2(OH)_2^{++}} + \operatorname{H_2O} = \operatorname{Be_2O_3H_2} + 2\operatorname{H^+} \\ \operatorname{oder, \ wenn \ Wasserabspaltung \ stattgefunden \ hat,} \\ \operatorname{Be_2O^{++}} + 2\operatorname{H_2O} = \operatorname{Be_2O_3H_2} + 2\operatorname{H^+}, \end{array} \right\}$$
 (e)

was zu dem schon berechneten Verhältnis $S_0 = \frac{c_{\text{Be}_2\text{O}^{++}}}{c_{\text{H}^{+2}}}$ führt. Dies stimmt auch mit der Beobachtung überein, daß sich ein Niederschlag erst bildet, wenn mehr als 1 Äquivalent NaOH zugesetzt worden ist, und deshalb praktisch alles Beryllium in der Lösung als basische Ionen vorhanden ist. Das Löslichkeitsprodukt des Hydroxyds ergibt sich dann aus der Gleichung

$$Be_2O^{++} + 2OH^- = Be_2O_3H_2$$
,

woraus folgt:

$$L = c_{\text{Be}_2\text{O}}^{++} \cdot c_{\text{OH}^{-2}}^{-} = \frac{c_{\text{Be}_2\text{O}}^{++}}{c_{\text{H}^{+2}}} \cdot K_W^2 = S_0 \cdot K_W^2.$$

¹⁾ B. BLEYER u. S. W. KAUFMANN, Z. anorg. Chem. 82 (1913), 71.

 S_0 ist die Sättigungskonstante des Berylliumhydroxyds genannt worden. Ihre Zahlenwerte finden sich in der letzten Kolonne der Tabellen 3 und 4. Die Berylliumsulfatlösungen geben als Mittelwert der Sättigungskonstante $S_0 = 0.8 \cdot 10^9$ und die Chloridlösungen geben $S_0 = 2.1 \cdot 10^9$.

 K_W ist die Dissoziationskonstante des Wassers. Sie ist von der Ionenstärke der benutzten Lösungen abhängig. Diese Abhängigkeit ist in KCl-Lösungen von A. Unmack (Chemisches Laboratorium der landwirtschaftlichen Hochschule Kopenhagen) bestimmt worden. Sie maß Wasserstoffelektroden in KCl-Lösungen mit einem kleinen Zusatz von KOH und fand, daß die Konzentrations-Dissoziationskonstante $c_{\rm H}^+ \cdot c_{\rm OH}^-$ des Wassers in KCl-haltigen Lösungen bei 25°C nach folgender Formel zu berechnen ist:

$$-\log K_W = 14,002 + 0,112 \cdot c_{\text{Ion}} - 0,275 \cdot \sqrt[3]{c_{\text{Ion}}},$$

wo c_{Ion} die Ionenkonzentration bedeutet. Demgemäß wird in einer 0,1 m-KCl-Lösung $K_W = 1,30 \cdot 10^{-14}$ und in einer 0,01 molaren KCl-Lösung $K_W = 1,14 \cdot 10^{-14}$. In den Versuchen 15—19 liegt die molare Chlorionenkonzentration zwischen 0,1 und 0,01. Rechnet man mit einem mittleren Wert der Dissoziationskonstante gleich $1,2 \cdot 10^{-14}$, so geben die Berylliumchloridlösungen als Mittelwert des Löslichkeitsprodukts

$$L = c_{\text{Be}_2\text{O}^{++}} \cdot c_{\text{OH}^{-2}} = S_0 \cdot K_W^2 = 2.1 \cdot 10^9 \cdot 1.4 \cdot 10^{-28} = 2.9 \cdot 10^{-19}.$$

Die Sulfatversuche geben einen geringeren Wert der Sättigungskonstante. Setzt man auch hier den Wert der K_W zu etwa $1,2 \cdot 10^{-14}$, so geben die Messungen in den Sulfatlösungen

$$L = S_0 \cdot K_W^2 = 0.8 \cdot 10^9 \cdot 1.4 \cdot 10^{-28} = 1.1 \cdot 10^{-19}.$$

Eine größere Übereinstimmung ist wohl nicht zu erwarten, wenn man berücksichtigt, daß das gefällte Hydroxyd in den letzteren Lösungen etwas Sulfat okkludiert hat. Die Größenordnung des Löslichkeitsprodukts muß jedoch als festgestellt betrachtet werden.

5. Zusammenfassung.

1. Es wurde eine Reihe von Berylliumsulfat- und Berylliumchloridlösungen mit 1 m-NaOH potentiometrisch titriert. Die Versuchsresultate sind graphisch wiedergegeben. Die pa_H-Werte sind als Ordinaten und die zugesetzten Äquivalente NaOH als Abszissen aufgetragen. 2. Es wird die Annahme gemacht, daß bei der Hydrolyse zuerst ein Monohydroxoion BeOH⁺ nach der Gleichung

$$Be^{++} + H_2O = BeOH^+ + H^+$$
 (1)

gebildet wird, und daß dies sogleich, ohne oder mit Wasserabspaltung, in eine dimere Form Be₂(OH)₂⁺⁺ bzw. Be₂O⁺⁺ übergeht, so daß man schreiben kann:

oder $2Be^{++} + 2H_2O = Be_2(OH)_2^{++} + 2H^+$ $2Be^{++} + H_2O = Be_2O^{++} + 2H^+.$ (2)

Gleichung (1) gibt nämlich das Verhältnis $K=\frac{c_{\rm BeOH}^+}{c_{\rm Be}^{++}}\cdot A_{\rm H}$, dessen Zahlenwert mit der Verdünnung stark sinkt. Eine hydrolytische Konstante $K_0=\frac{c_{\rm Be_2O}^{++}}{c_{\rm Be}^{++2}}\cdot A_{\rm H^2}$ ist nach Gleichung (2) an dem Punkt N=0,5 berechnet worden. Ihre Zahlenwerte gehen aus den Tabellen 1 und 2 hervor. Als Mittelwert dieser Konstante erhält man für Berylliumsulfat $K_0=1,4\cdot 10^{-7}$ und für Berylliumchlorid $K_0=1,7\cdot 10^{-7}$.

3. Kein Niederschlag wird gefällt, bis mehr als 1 Äquivalent NaOH zugesetzt ist. Es wird angenommen, daß dieser Niederschlag ein Hydroxyd mit der Zusammensetzung Be₂O₃H₂ ist. Vgl. B. Bleyer und S. W. Kaufmann (l. c.). Demgemäß verläuft die Fällung des Hydroxyds nach der Gleichung:

$$Be_2O^{++} + 2OH^{-} = Be_2O_3H_2$$
. (3)

Hieraus folgt

$$L = c_{\text{Be}_2\text{O}^{++}} \cdot c_{\text{OH}^{-2}} = \frac{c_{\text{Be}_2\text{O}^{++}}}{c_{\text{H}^{+2}}} \cdot K_W^2$$
,

wo L das Löslichkeitsprodukt des Hydroxyds $\operatorname{Be_2O_3H_2}$ und K_W die Dissoziationskonstante des Wassers ist. Das konstante Verhältnis $\frac{c_{\operatorname{Be_2O++}}}{c_{\operatorname{H+}^2}}$ wird die Sättigungskonstante S_0 genannt. Sie ist am Punkt N=1,5 mittels der Wasserstoffionenkonzentration berechnet worden. Die Resultate gehen aus den Tabellen 3 und 4 hervor. Nach den Messungen in Berylliumchloridlösungen wird das Löslichkeitsprodukt etwa $2,9\cdot 10^{-19}$ und nach den Messungen in Berylliumsulfatlösungen etwa $1,1\cdot 10^{-19}$.

- 4. Bei den Chloridversuchen fällt der Wendepunkt der Titrierkurven mit dem zweiten Äquivalenzpunkt völlig zusammen, und es wird also reines Hydroxyd gefällt. Bei den Sulfatversuchen aber fällt der Wendepunkt vor den zweiten Äquivalenzpunkt und die Fällung ist also sulfathaltig.
- 5. Es wurden einige Zurücktitrierungen mit 0,5 m-H₂SO₄ in Berylliumsulfatlösungen vorgenommen. Die Potentiale erwiesen sich hierdurch als gut reproduzierbar.

Oslo, Chemisches Laboratorium der Universität.

Bei der Redaktion eingegangen am 15. März 1929.

Ist das Gitter des tetragonalen Quecksilbercyanids ein Molekül- oder Radikalgitter?

Von O. HASSEL.

Mit einer Figur im Text.

Nach einer Untersuchung des Verfassers 1) kommt dem tetragonal kristallisierenden $\mathrm{Hg}(\mathrm{CN})_2$ die Raumgruppe V_d^{-1} zu und die Hg-Atome sind in einer achtzähligen Punktlage mit der Eigensymmetrie C_2 (digonale Drehachse) unterzubringen.

Vor etwa einem Jahr haben R. FRICKE und L. HAVESTADT² ohne Kenntnis der oben zitierten Arbeit, aber im wesentlichen nach denselben Methoden, das Hg(CN)₂ untersucht. Sie kommen betreffs der Raumgruppe zu demselben Ergebnis wie wir, meinen aber die Hg-Atome in die zwei vierzähligen Punktlagen mit der Eigensymmetrie S₄ unterbringen zu können, eine Alternative, welche wir an Hand der von uns ermittelten Intensitäten streng ausschließen zu können überzeugt waren und noch sind. Die betreffende Diskussion der Intensitäten wäre leicht durchzuführen gewesen, falls die Verfasser nicht mitgeteilt hätten, daß sie in ihrem Drehdiagramm um die Richtung [110] nur Schichtlinien gerader Ordnung beobachtet haben. Auf unsere briefliche Bemerkung, daß sie ja selbst in ihren übrigen Diagrammen Reflexionen gefunden haben, die hier auf Schichtlinien ungerader Ordnung auftreten müßten und daß in unserer Arbeit 48 solche Reflexe, zum Teil mit beträchtlicher Intensität, in der Tabelle 2 enthalten sind, gibt Herr Prof. FRICKE zu, daß er sich diese Diskrepanz nicht erklären kann und schlägt uns vor, die Aufnahme um [110], die wir nicht angefertigt hatten, noch herzustellen.

Da die Frage der Punktlage der Hg-Atome für die Beurteilung des Gittertypus von Bedeutung ist (s. w. u.) und einige Leser vielleicht nicht auf das große, in unserer Abhandlung vorhandene Material, das zur Widerlegung des Einwandes von Fricke und Havestadt dienen kann, aufmerksam werden, haben wir vor kurzem

¹⁾ O. HASSEL, Z. Kristallographie 64 (1926), 217.

²⁾ R. FRICKE und HAVESTADT, Z. anorg. u. allg. Chem. 171 (1928), 344.

die betreffende Drehaufnahme um [110] angefertigt und in Übereinstimmung mit unserer Erwartung gefunden, daß die Schichtlinien ungerader Ordnung kaum schwächer als diejenigen gerader Ordnung waren, von einem Verschwinden derselben also keine Rede ist. Dies gilt auch für die äußeren Teile der Schichtlinien, also bei größeren Abbeugungswinkeln, wo fast nur die Hg-Atome für die Interferenzen verantwortlich sind. Es ist nicht leicht, eine Erklärung des Befundes von Fricke und Havestadt zu geben, denn die sonst naheliegende Annahme, daß ihr Kristall soweit von exakter Orientierung entfernt war, daß wegen der Aufspaltung der Schichtlinien nur die innersten

Fig. 1. Drehdiagramm um [110].

starken Punkte der 2. und 4. Schichtlinie deutlich erkennbar waren, erscheint etwas gewagt, solange die Verfasser ihre Diagramme für genügend gut halten, um daraus Schlüsse über die Atomverteilung ziehen zu können. Die von uns benutzten Kristalle waren einwandfreie klare tetragonale Prismen mit schön ausgebildeten spiegelnden Flächen, die nicht falsch orientiert werden konnten. Alle Drehaufnahmen wurden diesmal mit Fe-K-Strahlung aufgenommen. Eine Reproduktion einer Drehaufnahme um [110] soll versucht werden, obwohl Filme von Hg-Verbindungen bekanntlich starke Allgemeinschwärzung zeigen, was eine Reproduktion erschwert. Um den Einwand zurückweisen zu können, daß Kupferstrahlung sich anders verhalten könnte als Eisenstrahlung, wurde ein Diagramm des Hg(CN)₂ um [001] mit Fe-Strahlung aufgenommen und die völlige Überein-

stimmung der Intensitäten dieses Diagrammes mit denen des entsprechenden mit Cu-Strahlung aufgenommenen Diagrammes sichergestellt. Um zu zeigen, daß die [110]-Periode tatsächlich die
doppelte der von Fricke und Havestadt angegebenen ist, seien die
Schichtlinienvermessungen eines Diagrammes von einem besonders
kleinen Kristall (kleiner Absorptionseinfluß) mitgeteilt:

Tabelle 1.

Nummer der Schiehtlinie	Abstand 2e in em	$\cot g \ \mu = \frac{2e}{5,73}$	I _[110]
1	0,80	0,139	13,80
2	1,70	0,265	13,55
3	2,69	0,424	13,65
4	3,99	0,568	13,60

Für die [100]-Periode hatten wir die Länge zu 9,67 A angegeben, FRICKE und HAVESTADT geben 9,74 Å an. Da es vielleicht von Interesse sein kann, die Perioden des Gitters mit einer Genauigkeit von 0,01 Å zu kennen, haben wir die (100)-Fläche in einer Bragg-Kamera von dem mit natürlichem Steinsalz empirisch ermittelten Radius R = 5,877 cm zur Reflexion gebracht. Aus dem Abstand der Ka-Reflexion von (200) und (400) von 2,47 cm berechnet man I_[100] gleich 9,68 Å, der Abstand der α-Reflexionen von (200) und (600) war 5,185 cm, wieder I = 9,68 ergebend. Endlich berechneten wir I aus dem Abstand der β-Reflexionen von (200) und (600) von 4,615 cm zu 9,685 Å. Es folgt also $I_{[100]} = 9,68$ Å in bester Ubereinstimmung mit dem in unserer ersten Arbeit aus Schichtlinienvermessungen erhaltenen Wert 9,67 A. Für I_[001] erhält man hieraus und aus dem kristallographisch ermittelten Achsenverhältnis (0,4596) den Wert 8,90 A, während unsere Schichtlinienvermessung 8,92 Å, die der Herren Fricke und Havestadt 8,94 Å ergeben hatte.

Da die Punktlagen ohne Freiheitsgrade und mit der Eigensymmetrie S_4 die große Intensität einer Reihe von beobachteten Interferenzen unmöglich erklären können, und da die eine der in V_d^2 noch mögliche nachtzähligen Punktlagen mit der Symmetrie CC_2 unabhängig von der Wahl des Parameters den Beitrag der Hg-Atome zu den Reflexionen (710), (910), (950), (10, 4, 2), (12, 0, 2), (12, 2, 2) usw. auf Null reduzieren würde, während diese Reflexe, die alle größere Abbeugungswinkel besitzen, stark oder mittelstark gefunden wurden, bleibt uns nach wie vor die zweite achtzählige Punktlage (Wyckoffs Punktlage d) als einzige mit der Raumgruppe

Ist das Gitter d. tetragon. Quecksilbereyanids ein Molekül- oder Radikalgitter? 373

verträgliche Möglichkeit übrig. Daß der Parameterwert u=0,21 sehr genau bestimmt ist, haben wir nicht behauptet, glauben aber nicht, daß eine genauere Bestimmung zur Zeit von größerem Interesse sein wird.

Zum Schluß möchten wir ein paar Worte über den Gittertyp sagen. Die Punktlagen ohne Freiheitsgrade besitzen die Eigensymmetrie S_4 , was die Folge hat, daß ein darin befindliches Hg-Atom symmetrisch und in gleichem Abstand von 4 Cyan-Gruppen umgeben sein würde, so daß die Lokalisierung der Hg in dieser Lage also nicht mit dem Vorhandensein eines Molekülgitters zu vereinbaren ist. Die von uns in der Raumgruppe V_d^{-2} als die einzig mögliche bezeichnete Punktlage kennzeichnet das Gitter durch den Freiheitsgrad und die Symmetrie CC_2 der Hg-Atome als ein Molekülgitter.

Oslo, Chemisches Laboratorium der Universität, Februar 1929.

Bei der Redaktion eingegangen am 3. März 1929.

Zur Arbeit von O. Hassel:

Ist das Gitter des tetragonalen Quecksilbercyanids ein Molekül- oder Radikalgitter?

Nachschrift von R. FRICKE.

Herr Dozent Dr. O. Hassel war so liebenswürdig, mir vor der Publikation Abschrift des ersten Teiles vorstehender Arbeit zuzusenden, um mir Gelegenheit zu geben, mich dazu zu äußern. Schon einige Tage, bevor er die Abschrift sandte, teilte er mir sein Ergebnis betr. I[110] mit und schickte mir einen Abzug des betr. Drehdiagramms. Wir sind daraufhin sofort darangegangen, unsere Drehaufnahme um [110] zu wiederholen.

Durch Umkristallisieren aus etwa 94°/0 igem Alkohol gelang es bald, schöne, klare und flächenreiche Kriställchen von Hg(CN)2 zu erhalten. Die Drehaufnahme eines solchen Kriställchens um [110] (mit Cu-Strahlung) lieferte folgende Identitätsperioden, nach steigender Ordnung der Schichtlinien aufeinanderfolgend: 13,75; 13,66; 13,68; 13,67 und 13,71, im Mittel 13,69 Å, einen Wert, der mit dem Herrn Hassel's von 13,65 Å befriedigend übereinstimmt.

Aber die Intensitäten stimmen mit denen des mir von Herrn Hassel übersandten Abzugs absolut nicht überein. Vielmehr sind bei uns die erste, dritte und fünfte Schichtlinie nur mit sehr viel schwächeren Reflexen belegt als die zweite und vierte, während bei Herrn Hassel die durchschnittlichen Intensitäten auf den verschiedenen Schichtlinien fast gleich sind.\(^1\) Wie dieser Widerspruch zu erklären ist, erscheint vorläufig unklar. Man könnte geneigt sein, an etwas Ähnliches zu denken, wie die kürzlich von H. Mark und G. v. Susich\(^2\)) beschriebene Erscheinung, daß die relativen Intensitätsverhältnisse auf einem Lauediagramm des Pentaerythrit nach längerem Belichten ganz andere waren, als nach kürzerem.

¹⁾ Die Intensitäten zeigen hier sogar eher das umgekehrte Verhalten.

²) H. Mark und G. v. Susich, Z. f. Kristallographie 69 (1928), 105, und zwar S. 110 und Tafel V.

Jedenfalls zeigt also unser neues Drehdiagramm um [110] bezüglich der besprochenen Intensitätsverhältnisse Ähnlichkeit mit unserem alten, auf dem die Schichtlinien ungerader Ordnung überhaupt nicht zu erkennen sind. 1)

Besonders möchte ich darauf hinweisen, daß die Schichtlinien des alten Diagramms nicht aufgelöst sind, wie Herr Hassel in vorstehender Arbeit diskutiert. Der Kristall war demnach gut orientiert, und wir haben für die Bestimmung von I[110] = 6,89 Å gerade nicht die Schichtlinienabstände in der Nähe des Durchstoßpunktes, sondern die bei höheren Ablenkungwinkeln gemessen.²) Die Schichtlinien sind auch bei dieser Aufnahme praktisch bis zu den Filmenden hin gut vermeßbar.

Im übrigen kann es natürlich nur befriedigen, daß Herr Hassel in Richtung [110] die doppelte Schichtlinienzahl und damit die doppelte Identitätsperiode gefunden hat, wie wir auf unserer ersten Aufnahme. Denn damit ist ein Widerspruch beseitigt, der uns schon bei der Bestimmung des Elementarkörpers aufgefallen ist (vgl. S. 345 unserer Arbeit). Wenn nämlich $I_{[110]} = 6,89$ Å und damit gleich $\frac{1}{2}I_{[100]}\sqrt{2}$ war, so mußte es unverständlich bleiben, daß die Rollen beider nicht vertauscht, also dieses $I_{[110]}$ nicht an Stelle von $I_{[100]}$ als Kante des Elementarkörpers verwandt werden konnte. Darauf, daß dies nicht möglich war, haben wir auf S. 345 unserer Arbeit hingewiesen. Auch ist natürlich nunmehr gegen die von Herrn Hassel errechneten Atomlagen nichts mehr einzuwenden.

Sehr zu begrüßen ist auch, daß Herr Hassel jetzt eine Netzebenenabstandbestimmung mit dem Braggspektrographen ausgeführt hat, weil eine solche unter allen Umständen viel genauer ist, als die Bestimmung dieser Größe auf Grund von Schichtlinienabständen. Herr Hassel findet eine sehr gute Übereinstimmung seiner aus Schichtliniendiagrammen bestimmten Identitätsperioden mit den spektrographisch bestimmten, nämlich eine Übereinstimmung auf 0,01—0,02 Å, während die von uns aus Schichtlinienabständen be-

¹) Zusatz bei der Korrektur: Inzwischen haben wir eine dritte Drehaufnahme um [110] mit Cu-strahlung gemacht, auf der die Schichtlinien ungerader Ordnung neben den kräftigen gerader Ordnung nur noch eben zu erkennen sind.

²) Vgl. R. FRICKE u. L. HAVESTADT, Z. anorg. u. allg. Chem. 171 (1928), 345, Anm. 1.

stimmten Werte mit den von Herrn Hassel spektrographisch bestimmten nur auf 0.04-0.06 Å übereinstimmen. Die auffallend gute Übereinstimmung bei Herrn Hassel kann aber natürlich nur auf einem Zufall beruhen. Denn sein $I_{[001]} = 8.92$ Å ist ausgemittelt aus den Werten 8.91; 8.98 und 8.88 und sein $I_{[100]} = 9.67$ Å aus den Werten 9.74; 9.55; 9.68 und 9.69.

Münster i. W., Chemisches Institut der Universität, 28. März 1929.

Bei der Redaktion eingegangen am 29. März 1929.

¹⁾ Vgl. O. HASSEL, Z. f. Kristallographie 64 (1926), 218, Tab. 1.

Register für die Bände 178-180.

(Bearbeitet von I. Koppel, Berlin.)

Autorenregister.

- Abresch, K., 1929, 179, 345. Zur Kenntnis der Sulfitosalze (m. G. Jantsch).
- Aden, Theodor, 1929, 180, 129. Amphotere Oxydhydrate, deren wäßrige Lösungen und kristallisierende Verbindungen VIII. Wolframate, Isopoly- und Heteropoly-Wolframsäuren (m. G. Jander u. D. Mojert).
- Anastasiadis, L., 1929, 179, 145. Aluminium und seine Mischkristallbildung mit Si. Bennewitz, Rudolf, 1929, 179, 113. Die potentiometrische Bestimmung von Gold und Platin mit Stannochlorid (m. E. Mueller).
- Benrath, A., 1929, 179, 369. Heterogenes Gleichgewicht bei 97° in Systemen, die neben Wasser und Natriumsulfat Sulfate von Vitriolbildnern enthalten (m. H. Benrath).
- Benrath, H., 1929, 179, 369. Heterogenes Gleichgewicht bei 97° in Systemen, die neben Wasser und Natriumsulfat Sulfate von Vitriolbildnern enthalten (m. A. Benrath).
- Bischof, W., 1929, 178, 371. Berechnung des Wassergasgleichgewichts vermittelst der genauen Nernst'schen Wärmegleichung (m. E. Maurer).
- Botschwar, A. A., 1929, 178, 325. Einfluß der Abkühlungsgeschwindigkeit auf die Struktur des Eutektikums (m. G. Tammann).
- Cadenbach, Gustav, 1929, 178, 289. Reindarstellung und Eigenleitfähigkeit des Fluorwasserstoffs (m. K. Fredenhagen).
- Dahmlos, Johannes, 1929, 178, 272. Dielektrizitätskonstante des flüssigen Fluorwasserstoffs (m. K. Fredenhagen).
- 1929, 179, 77. Dichte, innere Reibung, Dielektrizitätskonstante, Lösungsvermögen und dissoziierende Kraft des Cyanwasserstoffs (m. K. Fredenhagen).
- D'Ans, J., 1929, 178, 252. Saure Phosphate des Thoriums (m. W. Dawihl). Dawihl, W., 1929, 178, 252. Saure Phosphate des Thoriums (m. J. D'Ans).
- Debus, Max, 1929, 178, 157. Thoriumformiate (m. H. Reihlen).
- Ebert, Fritz, 1929, 179, 279. Ein einfaches Verfahren zur Abkürzung der Belichtungszeiten bei photographischen Aufnahmen, speziell bei Röntgenaufnahmen.
- 1929, 179, 418. Kristallstruktur des Strontiums und Bariums (m. H. Hartmann).
 1929, 180, 19. Beiträge zur Keramik hochfeuerfester Stoffe. I. Die Formen
- des Zirkondioxyds (m. O. Ruff).

 1929, 180, 215. Beiträge zur Keramik hochfeuerfester Stoffe II. Das System ZrO₂-CaO (m. O. Ruff u. E. Stephan).
- 1929, 180, 252. Beiträge zur Keramik hochfeuerfester Stoffe III. Das System ZrO₂-ThO₂ (m. O. Ruff u. H. Woitinek).
- Eitel, Wilhelm, 1929, 178, 108. Lösung von Metallen in Salzschmelzen (m. B. Lange). Elsen, G., 1929, 180, 304. Das Aktiniumproblem.
- Erbe, F., 1929, 179, 339. Der Verteilungssatz III. Anwendung des van Laar'schen Verteilungssatzes auf ein kondensiertes System aus geschmolzenen Metallen (m. R. Lorenz u. G. Schulz).
- Faber, Hermann, 1929, 179, 321. Gewinnung hochwertiger Rubidiumpräparate aus Carnalliten (m. G. Jander).
- Fischer, Joseph, 1929, 179, 161. Iridiumfluoride (m. O. Ruff).
- Fischer, Waldemar M., 1929, 179, 332. Bestimmung und Trennung der salpetrigen Säure nach der Esterifizierungsmethode (m. A. Schmidt).
- Fredenhagen, Karl, 1929, 178, 272. Dielektrizitätskonstante des flüssigen Fluorwasserstoffs (m. J. Dahmlos).
- 1929, 178, 289. Reindarstellung und Eigenleitfähigkeit des Fluorwasserstoffs (m. G. Cadenbach).
- 1929, 178, 353. Bindung der Alkalimetalle durch Kohlenstoff II. (m. H. Suck).
- 1929, 179, 77. Dichte, innere Reibung, Dielektrizitätskonstante, Lösungsvermögen und dissoziierende Kraft des Cyanwasserstoffs (m. J. Dahmlos).

- Fricke, R., 1929, 178, 400. Die beiden Formen des kristallinen Berylliumhydr. oxydes und das System BeO-Na₂O-H₂O (m. H. Humme).
- 1929, 179, 287. Das kristallinische Tonerdehydrat v. Bonsdorff's II.
- 1929, 180, 374. Ist das Gitter des tetragonalen Quecksilbercyanids ein Molekül- oder Radikalgitter?
- Gabler, Wilhelm, 1929, 180, 321. Zünddrucke von Phosphingemischen (m. M. Trautz).
- Garside, Harry, 1929, 179, 49. Zur Kenntnis des Systems Eisenoxyd-Wasser (m. G. F. Hüttig).
- Gerlach, Walther, 1929, 179, 111. Spektralanalytische Untersuchung der Auflösung von Metallegierungen und die Tammann'schen Resistenzgrenzen.
- Glatzel, Gunther, 1929, 178, 309. Bemerkungen zur Schmelzdruckkurve (m. F. Simon).
- Glauner, R., 1929, 178, 177. Komplexchemisches Verhalten des Lithiums. Systeme Lithiumhalogenid-Mono-, Di- und Trimethylamin (m. A. Simon).
- Gleu, Karl, 1929, 179, 233. Die Einwirkung von Ozon auf Alkaliazid. Persalpetrige Säure I. (m. E. Roell).
- Grigorjew, A. T., 1929, 178, 97. Legierungen von Gold mit Platin. 1929, 178, 213. Einige physikalische Eigenschaften des Platins.
- Gromann, Fr., 1929, 180, 257. Beitrag zur quantitativen Spektralanalyse von Lösungen.
- Gürsching, Martin, 1929, 179, 1. Abweichungen von Dalton's Teildruckgesetz und ihre chemische Deutung (m. M. Trautz).
- Halla, F., 1929, 180, 83. Kohlensäure-Kohlenoxydgleichgewicht an Kupfer.
- Hartmann, Hellmuth, 1929, 179, 418. Kristallstruktur des Strontiums und Bariums (m. F. Ebert).
- 1929, 180, 275. Siedetemperaturen von Magnesium, Calcium, Strontium, Barium und Lithium (m. R. Schneider).
- Hassel, O., 1929, 180, 370. Ist das Gitter des tetragonalen Quecksilbercyanids ein Molekül- oder Radikalgitter?
- Hering, Margarete, 1928, 178, 33. Gleichgewichte zwischen Metallen und Salzen im Schmelzfluß. Nr. 13. Verschiebungen des Schmelzgleichgewichts Cd + PbCl₂ ⇒ Pb + CdCl₂ durch Zusätze zur Salzphase (m. R. Lorenz).
- 1929, 178, 40. Gleichgewichte zwischen Metallen und Salzen im Schmelzfluß. Nr. 14. Verschiebungen des Schmelzgleichgewichts Cd + PbCl₂ ⇒ Pb + CdCl₂ durch Zusätze zu beiden Phasen gleichzeitig (m. R. Lorenz).
- 1929, 178, 337. Gleichgewichte zwischen Metallen und Salzen im Schmelzfluß. Nr. 15. Verschiebungen des Äquivalenzpunktes bei dem Schmelzgleichgewicht Cd + PbCl₂ ⇒ Pb + CdCl₂ (m. R. Lorenz).
- Hermanowicz, E., 1929, 180, 184. Kinetik der Auflösung von Aluminium und Cadmium in Salzsäure (m. K. Jablezynski u. H. Wajchselfisz).
- Hertel, Eduard, 1929, 178, 202. Haftfestigkeit und Raumbeanspruchung organischer Liganden in Molekülverbindungen (m. E. Rissel u. F. Riedel).
- Herz, W., 1929, 179, 211. Molrefraktion und Molekelanzahl.
- 1929, 179, 277. Entropie und Verdampfungswärme.
 1929, 180, 159. Die Temperaturabhängigkeit von Dichte und Brechungs-
- quotient.
 1929, 180, 284. Zur Kenntnis fester Elemente.
- Hevesy, G. v., 1929, 180, 150. Platzwechselgeschwindigkeit des Silbers im Silbertellurid, -Antimonid und -Zinnid (m. W. Seith).
- Hieber, Walter, 1929, 180, 89. Zur Kenntnis des komplex-chemischen Verhaltens aromatischer Diamine. Metallsalzverbindungen mit Ortho-Phenylendiamin (m. C. Schließmann u. K. Ries).
- 1929, 180, 105. Konstitution der Metallsalzverbindungen mit p-Phenylendiamin und Benzidin (m. K. Ries).
- 1929, 180, 225. Molekularvolumen organischer Liganden in Komplexsalzen. I. Raumbeanspruchung des Ortho-Phenylendiamins in seinen Metallsalzverbindungen (m. K. Ries).
- Hönigschmid, O., 1928, 178, 1. Atomgewichte von Silber und Barium. Analyse des Bariumperchlorats (m. R. Sachtleben).

- Hübner, Wilhelm, 1919, 178, 275. Gemischte Oxalato-fluoro- usw. -Anionen des dreiwertigen Chroms, Eisens, Antimons und Wismuts (m. R. Weinland).
- Hüttig, Gustav F., 1929, 179, 49. Zur Kenntnis des Systems Eisenoxyd-Wasser (m. G. Garside).
- Humme, H., 1929, 178, 400. Die beiden Formen des kristallinen Berylliumhydroxydes und das System BeO-Na₂O-H₂O (m. R. Fricke).
- Jablezynski, K., 1929, 180, 184. Kinetik der Auflösung von Aluminium und Cadmium in Salzsäure (m. E. Hermanowicz u. H. Wajchselfisz).
- Jänecke, Ernst, 1929, 178, 73. Über zwei zusammengehörige räumliche Modelle zur Darstellung der Gleichgewichte im System Fe-C-O.
- Jander, Gerhart, 1929, 179, 321. Gewinnung hochwertiger Rubidiumpräparate aus Carnalliten (m. H. Faber).
- 1929, 180, 129. Amphotere Oxydhydrate, deren wäßrige Lösungen und kristallisierende Verbindungen VIII. Wolframate, Isopoly- und Heteropoly-Wolframsäuren (m. D. Mojert u. Th. Aden).
- Jantsch, G., 1929, 179, 345. Zur Kenntnis der Sulfitosalze (m. K. Abresch).
 Jenckel, Ernst, 1929, 179, 89. Verfärbung dünner Silberjodidschichten im Licht.
 Jessen, Vitus, 1929, 179, 125. Diffusionskoeffizienten von Gasen in Wasser und ihre Temperaturabhängigkeit (m. G. Tammann).
- Jordan, Karl, 1929, 178, 389. Gleichgewichtsstudien an dem System Calcium-Schwefel-Sauerstoff I. (m. R. Schenck).
- Jungfer, L., 1929, 178, 49. Beiträge zur systematischen Indikatorenkunde. Phenolphthalein und einige seiner Homologen (m. A. Thiel).
- Kandelaky, B., 1929, 180, 11. Koagulation und Teilchengröße (m. P. A. Thiessen u. K. L. Thater).
- Kieffer, R., 1929, 179, 215. Die Adsorption von Kohlendioxyd und Ammoniak an Kieselsäuregel (m. A. Magnus).
- Klas, Heinrich, 1929, 178, 146. Gleichgewichtsuntersuchungen über die Reduktions-, Oxydations- und Kohlungsvorgänge beim Eisen VII. (m. R. Schenck).
- Klemenc, Alfons, 1929, 179, 379. Zur Kenntnis der Salpetersäure. Verhalten des Systems HNO₃-HNO₂ bei der Oxydation. Aktivierung der Salpetersäure (m. L. Klima).
- Klima, Ludwig, 1929, 179, 379. Zur Kenntnis der Salpetersäure. Verhalten des Systems HNO₃-HNO₂ bei der Oxydation. Aktivierung der Salpetersäure (m. A. Klemenc).
- Körner, Otto, 1929, 180, 65. Ferriäthylat (Darstellung und Eigenschaften) (m. P. A. Thiessen).
- 1929, 180, 115. Kolloides Eisenoxyd ohne elektrolytartige Beimengungen (m. P. A. Thiessen).
- Köster, W., 1929, 179, 297. Einfluß fein verteilter Ausscheidungen auf die Koerzitivkraft.
- Krause, Alfons, 1929, 180, 120. Peptisation geglühter Ferrioxyde und die Bildung eines Ferrioxydspiegels.
- Krauss, F., 1929, 179, 357. Cyanide und Rhodanide des Rhodiums (m. H. Umbach).

 1929, 179, 413. Doppelsulfate und ihre Komponenten. III. Zur Kenntnis
- der Chrom(III)-sulfate (m. H. Querengässer u. P. Weyer).

 1929, 180, 42. Zur Kenntnis der Doppelsulfate und ihrer Komponenten IV. Rhodiumsulfat und seine Hydrate (m. H. Umbach).
- Kröger, C., 1929, 179, 27. Einwirkungsgrenze der Mg-Cd-Legierungen und deren Spannungskonzentrationslinie.
- Kussmann, A., 1929, 178, 317. Härte und magnetische Eigenschaften von Eisen-Kupferlegierungen und ihre Beziehungen zum Zustandsdiagramm (m. B. Scharnow).
- Laar, J. J. van, 1929, 180, 193. Die Abhängigkeit der Oberflächenspannung γ und der Verdampfungswärme λ von Dichte und Temperatur bis an die kritische Temperatur
- Lange, Bruno, 1929, 178, 108. Lösung von Metallen in Salzschmelzen (m. W. Eitel).
- LeBlanc, M., 1929, 180, 127. Die Alkaliperborate im festen Zustand (m. R. Zellmann). Leroux, J. A. A., 1929, 178, 257. Untersuchungen über das Silber-Kupfereutektikum (m. E. Raub).

- Lorenz, Richard, 1928, 178, 33. Gleichgewichte zwischen Metallen und Salzen im Schmelzfluß. Nr. 13. Verschiebungen des Schmelzgleichgewichts Cd + PbCl₂ ⇒ Pb + CdCl₂ durch Zusätze zur Salzphase (m. M. Hering).
- 1929, 178, 40. Gleichgewichte zwischen Metallen und Salzen im Schmelzfluß. Nr. 14. Verschiebungen des Schmelzgleichgewichts Cd + PbCl₂ ⇒ Pb + CdCl₂ durch Zusätze zu beiden Phasen gleichzeitig (m. M. Hering).
- 1929, 178, 337. Gleichgewichte zwischen Metallen und Salzen im Schmelzfluß Nr. 15. Verschiebungen des Äquivalenzpunktes bei dem Schmelzgleichgewicht Cd + PbCl₂ ⇒ Pb + CdCl₂ (m. M. Hering).
- 1929, 178, 346. Der Verteilungssatz. I. Der ideale Verteilungssatz in Molenbruchform.
- 1929, 178, 366. Der Verteilungssatz. II. Der Verteilungssatz für kondensierte Systeme.
- 1929, 179, 97. Gleichgewichte zwischen Metallen und Salzen im Schmelzfluß. Nr. 16. Verschiebung der Gleichgewichte durch Zusätze und ihre vorläufige Berechnung nach den Formeln des neuen Massenwirkungsgesetzes (m. G. Schulz).
- 1929, 179, 281. Zustandsdiagramm Calcium-Natrium (m. R. Winzer).
- 1929, 179, 293. Berechnung der van der Waals'schen a-Konstanten aus den Duehring'schen spezifischen Faktoren gemäß der van Laar'schen Formel der Dampfspannungskurve.
- 1929, 179, 339. Der Verteilungssatz III. Anwendung des van Laar'schen Verteilungssatzes auf ein kondensiertes System aus geschmolzenen Metallen (m. G. Schulz u. F. Erbe).
- Magnus, A., 1929, 179, 215. Die Adsorption von Kohlendioxyd und Ammoniak an Kieselsäuregel (m. R. Kieffer).
- Maurer, Ed., 1929, 178, 371. Berechnung des Wassergasgleichgewichts vermittelst der genauen Nernst'schen Wärmegleichung (m. W. Bischof).
- Maydel, J., 1929, 178, 113. Allgemeine Formeln zur Berechnung der Atom- oder Molekularwärme sowie der spezifischen Wärme der Elemente im festen Zustande.
- Mojert, Dietrich, 1929, 180, 129. Amphotere Oxydhydrate, deren wäßrige Lösungen und kristallisierende Verbindungen. VIII. Wolframate, Isopoly-und Heteropoly-Wolframsäuren (m. G. Jander u. Th. Aden).
- Müller, Erich, 1929, 179, 113. Die potentiometrische Bestimmung von Gold und Platin mit Stannochlorid (m. R. Bennewitz).
- Nesmejanow, A. N., 1929, 178, 300. Doppelsalze von Phenyldiazoniumjodid mit Quecksilberjodid und Bildung von Diphenyljodoniumsalzen bei der Zersetzung.
- Nuka, P., 1929, 180, 235. Zur Kenntnis der Fluoride des Mangans und Cadmiums. Oberhauser, F., 1929, 178, 381. Eine neue empfindliche Reaktion auf Kieselsäure (m. J. Schormueller).
- Probst, Johannes, 1929, 179, 155. Gewinnung von Unterphosphorsäure durch Einwirkung von Hypochlorit auf roten Phosphor.
- Prytz, Milda, 1929, 180, 355. Hydrolysemessungen in Berylliumsalzlösungen. Querengässer, H., 1929, 179, 413. Doppelsulfate und ihre Komponenten. III.
- Zur Kenntnis der Chrom(III)-sulfate (m. F. Krauss u. P. Weyer). Raub, Ernst, 1929, 178, 225. Gleichgewichtsstudien an den Systemen Co-S-O
- und Ni-S-O (m. R. Schenck).
 1929, 178, 257. Untersuchungen über das Silber-Kupfereutektikum (m.
- J. A. A. Leroux).

 Rây, Ksitish Chandra Bose, 1929, 178, 329. Eine neue Art komplexer Platinverbindungen. Drei- und fünfwertiges Platin (m. P. Ch. Rây).
- Rây, Prafulla Chandra, 1929, 178, 329. Eine neue Art komplexer Platinverbindungen. Drei- und fünfwertiges Platin (m. K. Ch. B. Rây).
- Reihlen, Hans, 1929, 178, 157. Thoriumformiate (m. M. Debus).
- Rein, Karl, 1929, 178, 219. Ferrioxalat und ein Ferri-oxalat-perchlorat (m. R. Weinland).
- Riedel, Fritz, 1929, 178, 202. Haftfestigkeit und Raumbeanspruchung organischer Liganden in Molekülverbindungen (m. E. Hertel u. E. Rissel).

- Ries, Karl, 1929, 180, 89. Zur Kenntnis des komplex-chemischen Verhaltens aromatischer Diamine. Metallsalzverbindungen mit Ortho-Phenylendiamin (m. W. Hieber u. C. Schließmann).
- 1929, 180, 105. Konstitution der Metallsalzverbindungen mit p-Phenylendiamin und Benzidin (m. W. Hieber).
- 1929, 180, 225. Molekularvolumen organischer Liganden in Komplexsalzen. I. Raumbeanspruchung des Ortho-Phenylendiamins in seinen Metallsalzverbindungen (m. W. Hieber).
- Rissel, Ernst, 1929, 178, 202. Haftfestigkeit und Raumbeanspruchung organischer Liganden in Molekülverbindungen (m. E. Hertel u. F. Riedel).
- Roell, Ernst, 1929, 179, 233. Die Einwirkung von Ozon auf Alkaliazid. Persalpetrige Säure I. (m. K. Gleu).
- Ruff, Otto, 1929, 179, 161. Iridiumfluoride (m. J. Fischer).
- 1929, 180, 19. Beiträge zur Keramik hochfeuerfester Stoffe. I. Die Formen des Zirkondioxyds (m. F. Ebert).
- 1929, 180, 215. Beiträge zur Keramik hochfeuerfester Stoffe. II. Das System ZrO₂-CaO (m. F. Ebert u. E. Stephan).
- 1929, 180, 252. Beiträge zur Keramik hochfeuerfester Stoffe. III. Das System ZrO₂-ThO₂ (m. F. Ebert u. W. Woitinek).
- Sachtleben, R., 1928, 178, 1. Atomgewichte von Silber und Barium. Analyse des Bariumperchlorats (m. O. Hönigschmid).
- Saslawsky, J. J., 1929, 180, 241. Volumänderung bei der Neutralisation (m. E. G. Standel u. W. W. Towarow).
- Sawai, Ikutaro, 1929, 180, 287. Schrumpfung des Glasfadens beim Erhitzen (m. Y. Ueda).
- Scharnow, B., 1929, 178, 317. Härte und magnetische Eigenschaften von Eisen-Kupferlegierungen und ihre Beziehungen zum Zustandsdiagramm (m. A. Kussmann).
- Schenck, Rudolf, 1929, 178, 146. Gleichgewichtsuntersuchungen über die Reduktions-, Oxydations- und Kohlungsvorgänge beim Eisen VII (m. H. Klas).
- 1929, 178, 225. Gleichgewichtsstudien an den Systemen Co-S-O und Ni-S-O (m. E. Raub).
- 1929, 178, 389. Gleichgewichtsstudien an dem System Calcium-Schwefel-Sauerstoff. I. (m. K. Jordan).
- Schließmann, Clarita, 1929, 180, 89. Zur Kenntnis des komplex-chemischen Verhaltens aromatischer Diamine. Metallsalzverbindungen mit Ortho-Phenylendiamin (m. W. Hieber u. K. Ries).
- Schmidt, Arvid, 1929, 179, 332. Bestimmung und Trennung der salpetrigen Säure nach der Esterifizierungsmethode (m. W. M. Fischer).
- Schneider, Reinhard, 1929, 180, 275. Siedetemperaturen von Magnesium, Calcium, Strontium, Barium und Lithium (m. H. Hartmann).
- Schormüller, J., 1929, 178, 381. Eine neue empfindliche Reaktion auf Kieselsäure (m. F. Oberhauser).
- Schramm, Walter, 1929, 180, 161. Einwirkung von Oxalsäure und Malonsäure auf die Tetraminm-kobaltikomplexe und ihre Analogen.
- Schulz, Georg, 1929, 179, 97. Gleichgewichte zwischen Metallen und Salzen im Schmelzfluß. Nr. 16. Verschiebung der Gleichgewichte durch Zusätze und ihre vorläufige Berechnung nach den Formeln des neuen Massenwirkungsgesetzes (m. R. Lorenz).
- 1929, 179, 339. Der Verteilungssatz III. Anwendung des van Laar'schen Verteilungssatzes auf ein kondensiertes System aus geschmolzenen Metallen (m. R. Lorenz u. F. Erbe).
- Seith, W., 1929, 180, 150. Platzwechselgeschwindigkeit des Silbers im Silbertellurid, -antimonid und -zinnid. (m. G. v. Hevesy).
- Simon, A., 1929, 178, 177. Komplexchemisches Verhalten des Lithiums. Systeme Lithiumhalogenid-, Mono-, Di- und Trimethylamin (m. R. Glauner).
- Simon, Franz, 1929, 178, 309. Bemerkungen zur Schmelzdruckkurve (m. G. Glatzel).
- Stamm, Hellmuth, 1929, 179, 193. Die indirekte Analyse einer chemisch einheitlichen Phase in einem aus zwei Phasen bestehenden System (m. E. Weitz).

- Standel, E. G., 1929, 180, 241. Volumänderung bei der Neutralisation (m. J. J. Saslawsky u. W. W. Towarow).
- Stephan, Edward, 1929, 180, 215. Beiträge zur Keramik hochfeuerfester Stoffe II. Das System ZrO₂—CaO (m. O. Ruff u. F. Ebert).
- Straumanis, M., 1929, 180, 1. Verteilung von Beimengungen in Zinkeinkristallen. Suck, Hermann, 1929, 178, 353. Bindung der Alkalimetalle durch Kohlenstoff II (m. K. Fredenhagen).
- Tammann, G., 1929, 178, 325. Einfluß der Abkühlungsgeschwindigkeit auf die Struktur des Eutektikums (m. A. A. Botschwar).
- 1929, 179, 125. Diffusionskoeffizienten von Gasen in Wasser und ihre Temperaturabhängigkeit (m. V. Jessen).
- 1929, 179, 186. Die Schmelzkurven einiger Salzhydrate.
- Tananaeff, N. A., 1929, 180, 75. Nachweis von Alkalimetallen in Salzgemischen und Silicaten.
- Thater, K. L., 1929, 180, 11. Koagulation und Teilchengröße (m. P. A. Thiessen u. B. Kandelaky).
- Thiel, A., 1929, 178, 49. Beiträge zur systematischen Indikatorenkunde. Phenolphthalein und einige seiner Homologen (m. L. Jungfer).
- Thiessen, P. A., 1929, 179, 267. Kernzahlen bei der Kristallisation aus Gelen. (m. E. Triebel).
- 1929, 180, 11. Koagulation und Teilehengröße (m. K. L. Thater u. B. Kandelaky).
- 1929, 180, 57. Spontane Keimbildung in verdünnten, hochübersättigten Goldlösungen.
- 1929, 180, 65. Ferriäthylat. (Darstellung und Eigenschaften) (m. O. Körner).
- 1929, 180, 110. Kleinste Kristallkeime in hochübersättigten Goldlösungen.
 1929, 180, 115. Kolloides Eisenoxyd ohne elektrolytartige Beimengungen (m. O. Körner).
- Towarow, W. W., 1929, 180, 241. Volumänderung bei der Neutralisation (m. J. J. Saslawsky u. E. G. Standel).
- Trautz, Max, 1929, 179, 1. Abweichungen von Dalton's Teildruckgesetz und ihre chemische Deutung (m. M. Guersching).
- 1929, 180, 321. Zünddrucke von Phosphingemischen (m. W. Gabler).
- Triebel, E., 1929, 179, 267. Kernzahlen bei der Kristallisation aus Gelen (m. P. A. Thiessen).
- Ueda, Yoshihiro, 1929, 180, 287. Schrumpfung des Glasfadens beim Erhitzen (m. I. Sawai).
- Umbach, H., 1929, 179, 357. Cyanide und Rhodanide des Rhodiums (m. F. Krauss).
 1929, 180, 42. Zur Kenntnis der Doppelsulfate und ihrer Komponenten IV.
 Rhodiumsulfat und seine Hydrate (m. F. Krauss).
- Wajchselfisz, H., 1929, 180, 184. Kinetik der Auflösung von Aluminium und Cadmium in Salzsäure (m. K. Jablezynski u. E. Hermanowicz).
- Weinland, R., 1929, 178, 219. Ferrioxalat und ein Ferri-oxalat-per-chlorat (m. K. Rein).
- 1929, 178, 275. Gemischte Oxalato-fluoro- usw. -Anionen des dreiwertigen Chroms, Eisens, Antimons und Wismuts (m. W. Hübner).
- Weitz, Ernst, 1929, 179, 193. Die indirekte Analyse einer chemisch einheitlichen Phase in einem aus zwei Phasen bestehenden System (m. H. Stamm).
- Weyer, P., 1929, 179, 413. Doppelsulfate und ihre Komponenten III. Zur Kenntnis der Chrom-(III)-sulfate (m. F. Krauss u. H. Querengässer).
- Wiberg, Egon, 1929, 179, 309. Konstitution der Borwasserstoffe. (Erwiderung auf die Kritik von Erich Müller).
- Winzer, Robert, 1929, 179, 281. Zustandsdiagramm Calcium-Natrium (m. R. Lorenz).
- Weitinek, Hans, 1929, 180, 252. Beiträge zur Keramik hochfeuerfester Stoffe III. Das System ZrO₂-ThO₂ (m. O. Ruff u. F. Ebert).
- Zellmann, R., 1929, 180, 127. Alkaliperborate im festen Zustand (m. M. Le Blanc).

Register der Laboratorien.

- Aachen, Technische Hochschule, Anorganisches Laboratorium, 1929, 179, 369. A. Benrath, H. Benrath: Heterogenes Gleichgewicht bei 97° in Systemen, die neben Wasser und Natriumsulfat Sulfate von Vitriolbildern enthalten.
- Berlin, Deutsche Gasglühlicht-Auer-Gesellschaft m. b. H., Wissenschaftliches Laboratorium, 1929, 178, 252. J. D'Ans, W. Dawihl: Saure Phosphate des Thoriums.
- Berlin, Universität, Physikalisch-Chemisches Institut, 1929, 178, 309. F. Simon, G. Glatzel: Bemerkungen zur Schmelzdruckkurve.
- Berlin-Charlottenburg, Phys.-Techn. Reichsanstalt, 1929, 178, 317. A. Kussmann, B. Scharnow: Härte und magnetische Eigenschaften von Eisen-Kupferlegierungen und ihre Beziehungen zum Zustandsdiagramm.
- Berlin-Charlottenburg, Technische Hochschule, Metallhüttenmännisches Institut, 1929, 179, 145. L. Anastasiadis: Aluminium und seine Mischkristallbildung mit Si.
- Berlin-Dahlem, Kaiser Wilhelm-Institut für Silikatforschung, 1929, 178, 108. W. Eitel, B. Lange: Lösung von Metallen in Salzschmelzen.
- Bonn, Universität, Chemisches Institut. 1929, 178, 202. E. Hertel, E. Rissel, F. Riedel: Haftfestigkeit und Raumbeanspruchung organischer Liganden in Molekülverbindungen.
- — 1929, 179, 345. G. Jantsch, K. Abresch: Zur Kenntnis der Sulfitosalze.
 Braunschweig, Technische Hochschule, Chemisches Institut, 1929, 179, 357. F. Krauss, H. Umbach: Cyanide und Rhodanide des Rhodiums.
- — 1929, 179, 413. F. Krauss, H. Querengässer, P. Weyer: Doppelsulfate und ihre Komponenten III. Zur Kenntnis der Chrom-(III)-sulfate.
- — 1929, 180, 42. F. Krauss, H. Umbach: Zur Kenntnis der Doppelsulfate und ihrer Komponenten IV. Rhodiumsulfat und seine Hydrate.
- Breslau, Technische Hochschule, Anorganisch-chemisches Laboratorium, 1929, 179, 161. O. Ruff, J. Fischer: Iridiumfluoride.
- — 1929, 179, 279. F. Ebert: Ein einfaches Verfahren zur Abkürzung der Belichtungszeiten bei photographischen Aufnahmen, speziell bei Röntgenaufnahmen.
- — 1929, 179, 418. F. Ebert, H. Hartmann: Kristallstruktur des Strontiums und Bariums.
- — 1929, 180, 19. O. Ruff, F. Ebert: Beiträge zur Keramik hochfeuerfester Stoffe I. Die Formen des Zirkondioxyds.
- — 1929, 180, 215. O. Ruff, F. Ebert, E. Štephan: Beiträge zur Keramik hochfeuerfester Stoffe II. Das System ZrO₂-CaO.
- — 1929, 180, 252. O. Ruff, F. Ebert, H. Woitinek: Das System ZrO₂— ThO₂.
- Breslau, Universität, Chemisches Institut, Anorganische Abteilung, 1929, 180, 161. W. Schramm: Einwirkung von Oxalsäure und Malonsäure auf Tetrammin-kobaltikomplexe und ihre Analogen.
- Breslau, Universität, Chem. Inst., Physikalisch-chemische Abteilung, 1929, 179, 211. W. Herz: Molrefraktion und Molekelanzahl.
- — 1929, 179, 277. W. Herz: Entropie und Verdampfungswärme.
- — 1929, 180, 159. W. Herz: Die Temperaturabhängigkeit von Dichte und Brechungsquotient.
- - 1929, 180, 284. W. Herz: Zur Kenntnis fester Elemente.
- Calcutta, University College of Science and Technology, Chemisches Laboratorium, 1929, 178, 329. P. Ch. Rây, K. Ch. B. Rây: Eine neue Art komplexer Platinverbindungen. Drei- und fünfwertiges Platin.

- Delft, Technische Hochschule, 1929, 180, 304. G. Elsen: Das Aktiniumproblem.
- Dortmund, Vereinigte Stahlwerke A.-G., Forschungsinst., 1929, 179, 297. W. Köster: Einfluß fein verteilter Ausscheidungen auf die Koerzitivkraft.
- Dresden, Technische Hochschule, Anorganisch-chemisches Institut, 1929, 179, 155. J. Probst: Gewinnung von Unterphosphorsäure durch Einwirkung von Hypochlorit auf roten Phosphor.
- Dresden, Technische Hochschule, Institut für Elektrochemie und physikalische Chemie, 1929, 179, 113. E. Müller, R. Bennewitz: Die potentiometrische Bestimmung von Gold und Platin mit Stannochlorid.
- Frankfurt (Main), Universität, Institut für physikalische Chemie, 1929, 178, 33. R. Lorenz, M. Hering: Verschiebungen des Schmelzgleichgewichtes Cd + PbCl₂ ⇒ Pb + CdCl₂ durch Zusätze zur Salzphase.
- — 1929, 178, 40. R. Lorenz, M. Hering: Verschiebungen des Schmelzgleichgewichtes Cd + PbCl₂ ⇒ Pb + CdCl₂ durch Zusätze zu beiden Phasen gleichzeitig.
- — 1929, 178, 337. R. Lorenz, M. Hering: Verschiebungen des Äquivalenzpunktes bei dem Schmelzgleichgewicht $Cd + PbCl_2 \rightleftharpoons Pb + CdCl_2$.
- — 1929, 178, 346. R. Lorenz: Der Verteilungssatz I. Der ideale Verteilungssatz in Molenbruchform.
- — 1929, 178, 366. R. Lorenz: Der Verteilungssatz II. Der Verteilungssatz für kondensierte Systeme.
- — 1929, 179, 97. R. Lorenz, G. Schulz: Verschiebung der Gleichgewichte durch Zusätze und ihre vorläufige Berechnung nach den Formeln des neuen Massenwirkungsgesetzes.
- — 1929, 179, 215. A. Magnus, R. Kieffer: Die Adsorption von Kohlendioxyd und Ammoniak an Kieselsäuregel.
- — 1929, 179, 281. R. Lorenz, R. Winzer: Zustandsdiagramm Calcium-Natrium.
- — 1929, 179, 293. R. Lorenz: Berechnung der van der Waals'schen a-Konstanten aus den Dühring'schen spezifischen Faktoren gemäß der van Laarschen Formel der Dampfspannungskurve.
- - 1929, 179, 339. R. Lorenz, G. Schulz, F. Erbe: Der Verteilungssatz III.
- Freiberg i. S., Sächs. Bergakademie, Eisenhütten-Institut, 1929, 178, 371. E. Maurer, W. Bischof: Berechnung des Wassergasgleichgewichts vermittelst der genauen Nernst'schen Wärmegleichung.
- Freiburg i. B., Universität, Physikalisch-chemisches Institut, 1929, 180, 150. G. v. Hevesy, W. Seith: Platzwechselgeschwindigkeit des Silbers im Silbertellurid, -antimonid und -zinnid.
- Göttingen, Universität, Allgemeines chemisches Laboratorium, Anorganische Abteilung, 1929, 179, 321. G. Jander, H. Faber: Gewinnung hochwertiger Rubidiumpräparate aus Carnalliten.
- — 1929, 180, 129. G. Jander, D. Mojert, Th. Aden: Wolframate, Isopoly-und Heteropoly-Wolframsäuren.
- Göttingen, Universität, Institut für anorganische Chemie, 1929, 179, 267. P. A. Thiessen, E. Triebel: Kernzahlen bei der Kristallisation aus Gelen. — 1929, 180, 11. P. A. Thiessen, K. L. Thater, B. Kandelaky: Koa-
- gulation und Teilchengröße.
 — 1929, 180, 57. P. A. Thiessen: Spontane Keimbildung in verdünnten, hochübersättigten Goldlösungen.
- — 1929, 180, 65. P. A. Thiessen, O. Körner: Ferriäthylat. (Darstellung und Eigenschaften.)
- — 1929, 180, 110. P. A. Thiessen: Kleinste Kristallkeime in hochübersätigten Goldlösungen.
- — 1929, 180, 115. P. A. Thiessen, O. Körner: Kolloides Eisenoxyd ohne elektrolytartige Beimengungen.

- Göttingen, Universität, Physikalisch-chemisches Institut, 1929, 178, 325. G. Tammann, A. A. Botschwar: Einfluß der Abkühlungsgeschwindigkeit auf die Struktur des Eutektikums.
- — 1929, 179, 27. C. Kröger: Einwirkungsgrenze der Mg-Cd-Legierungen und deren Spannungskonzentrationslinie.
- — 1929, 179, 89. E. Jenckel: Verfärbung dünner Silberjodidschichten im Licht.
- — 1929, 179, 125. G. Tammann, V. Jessen: Diffusionskoeffizienten von Gasen in Wasser und ihre Temperaturabhängigkeit.
- — 1929, 179, 186. G. Tammann: Die Schmelzkurven einiger Salzhydrate.
- Graz, Technische Hochschule, Institut für anorganisch-chemische Technologie, 1929, 179, 345. G. Jantsch, K. Abresch: Zur Kenntnis der Sulfitosalze.
- Greifswald, Universität, Chemisches Institut, Abteilung f. physikalische Chemie, 1929, 178, 272. K. Fredenhagen, J. Dahmlos: Dielektrizitätskonstante des flüssigen Fluorwasserstoffs.
- — 1929, 178, 289. K. Fredenhagen, G. Cadenbach: Reindarstellung und Eigenleitfähigkeit des Fluorwasserstoffs.
- — 1929, 178, 353. K. Fredenhagen, H. Suck: Bindung der Alkalimetalle durch Kohlenstoff II.
- — 1929, 179, 77. K. Fredenhagen, J. Dahmlos: Dichte, innere Reibung, Dielektrizitätskonstante und dissoziierende Kraft des Cyanwasserstoffs.
- Halle (Saale), Universität, Chemisches Institut, 1929, 179, 193. E. Weitz, H. Stamm: Die indirekte Analyse einer chemisch einheitlichen Phase in einem aus zwei Phasen bestehenden System.
- Heidelberg, Universität, Chemisches Institut, Anorganische Abteilung, 1929, 180, 89. W. Hieber, C. Schließmann, K. Ries: Zur Kenntnis des komplex-chemischen Verhaltens aromatischer Diamine. Metallsalzverbindungen mit Ortho-Phenylendiamin.
- — 1929, 180, 105. W. Hieber, K. Ries: Konstitution der Metallsalzverbindungen mit p-Phenylendiamin und Benzidin.
- — 1929, 180, 225. W. Hieber, K. Ries: Molekularvolumen organischer Liganden in Komplexsalzen. I. Raumbeanspruchung des Ortho-Phenylendiamins in seinen Metallsalzverbindungen.
- Heidelberg, Universität, Physikalisch-chemisches Institut, 1929, 179, 1. M. Trautz, M. Gürsching: Abweichungen von Dalton's Teildruckgesetz und ihre chemische Deutung.
- Iwanowo-Wosnessensk, Polytechnisches Institut, Kabinett der allgemeinen Chemie, 1929, 180, 241. J. J. Saslawsky, E. G. Standel, W. W. Towarow: Volumänderung bei der Neutralisation.
- Jena, Universität, Chemisches Institut, 1929, 179, 233. K. Gleu, E. Roell: Die Einwirkung von Ozon auf Alkaliazid. Persalpetrige Säure I.
- Karlsruhe, Technische Hochschule, Chemisches Institut, 1929, 178, 157.
 H. Reihlen, M. Debus: Thoriumformiate.
- Kiew, Polytechnisches Institut, Laboratorium für analytische Chemie, 1929, 180, 75. N. A. Tananaeff: Nachweis von Alkalimetallen in Salzgemischen und Silicaten.
- Kyoto (Japan), Universität, Institut für chemische Untersuchung, 1929, 180, 287. I. Sawai, Y. Ueda: Schrumpfung des Glasfadens beim Erhitzen.
- Laibach (Jugoslawien), Universität, Chemisches Institut, 1929, 178, 113, J. Maydel: Allgemeine Formeln zur Berechnung der Atom- oder Molekularwärme sowie der spezifischen Wärme der Elemente im festen Zustande.
- Leipzig, Universität, Physikalisch-chemisches Institut, 1929, 180, 127. M. Le Blanc, R. Zellmann: Alkaliperborate im festen Zustand.
 - Z. anorg. u. allg. Chem. Bd. 180.

- Leningrad, Berginstitut, Chemisches Laboratorium, 1929, 178, 97.

 A. T. Grigorjew: Legierungen von Gold mit Platin.
- Marburg, Universität, Physikalisch-chemisches Institut, 1929, 178, 49. A. Thiel, L. Jungfer: Beiträge zur systematischen Indikatorenkunde. Phenolphthalein und einige seiner Homologen.
- Moskau, I. Staatsuniversität, Laboratorium für organische und analytische Chemie, 1929, 178, 300. A. N. Nesmejanow: Doppelsalze von Phenyldiazoniumjodid mit Quecksilberjodid und Bildung von Diphenyljodoniumsalzen bei der Zersetzung.
- München, Bayerische Akademie der Wissenschaften, Chemisches Laboratorium, 1929, 178, 1. O. Hönigschmid, R. Sachtleben: Atomgewichte von Silber und Barium. Analyse des Bariumperchlorats.
- München, Technische Hochschule, Anorganisches Laboratorium, 1929, 178, 381. F. Oberhauser, J. Schormüller: Eine neue empfindliche Reaktion auf Kieselsäure.
- Münster i. W., Westfälische Wilhelms-Universität, Chemisches Institut, 1929, 178, 146. R. Schenck, H. Klas: Gleichgewichtsuntersuchungen über die Reduktions-, Oxydations- und Kohlungsvorgänge beim Eisen VII.

- — 1929, 179, 287. R. Fricke: Das kristallinische Tonerde-hydrat v. Bonsdorff's. II.
- Oppau, I. G. Farbenindustrie A.-G., Forschungslaboratorium, 1928, 178, 73. E. Jänecke: Über zwei zusammengehörige räumliche Modelle zur Darstellung der Gleichgewichte im System Fe-C-O.
- Oppau, I. G. Farbenindustrie A.-G., Physikalisch-technisches Laboratorium der Betriebskontrolle, 1929, 180, 257. Fr. Gromann: Beitrag zur quantitativen Spektralanalyse von Lösungen.
- Oslo, Universität, Chemisches Laboratorium, 1929, 180, 355. M. Prytz: Hydrolysemessungen in Berylliumsalzlösungen.
- — 1929, 180, 370. O. Hassel: Ist das Gitter des tetragonalen Quecksilbercyanids ein Molekül- oder Radikalgitter?
- Posen, Universität, Institut für Pflanzenphysiologie und Agrikulture chemie, 1929, 180, 120. A. Krause: Peptisation geglühter Ferrioxyde und die Bildung eines Ferrioxydspiegels.
- Prag, Deutsche Technische Hochschule, Institut für anorganische und analytische Chemie, 1929, 179, 49. G. F. Hüttig, H. Garside: Zur Kenntnis des Systems Eisenoxyd-Wasser.
- Riga, Universität, Analytisches und synthetisches Laboratorium, 1929, 179, 332. W. M. Fischer, A. Schmidt: Bestimmung und Trennung der salpetrigen Säure nach der Esterifizierungsmethode.
- Riga, Universität, Physikalisch-chemisches Laboratorium, 1929, 180, 1 M. Straumanis: Verteilung von Beimengungen in Zinkeinkristallen.
- Schwäb. Gmünd, Forschungs-Institut für Edelmetalle, 1929, 178, 257 J. A. A. Leroux, E. Raub: Untersuchungen über das Silber-Kupfereutektikum.
- Stuttgart, Technische Hochschule, Laboratorium für anorganische Chemie und anorganisch-chemische Technologie, 1929, 178, 177.

 A. Simon, R. Glauner: Systeme Lithiumhalogenid-Mono-, Di- und Trimethylamin.

- Tavel sur Clarens (Schweiz), 1929, 180, 193. J. J. van Laar: Die Abhängigkeit der Oberflächenspannung γ und der Verdampfungswärme λ von Dichte und Temperatur bis an die kritische Temperatur.
- Tübingen, Universität, Physikalisches Institut, 1929, 179, 111. W. Gerlach: Spektralanalytische Untersuchung der Auflösung von Metallegierungen und die Tammann'schen Resistenzgrenzen.
- Warschau, Universität, Institut für anorganische Chemie, 1929, 180, 184. K. Jablczynski, E. Hermanowicz, H. Wajchselfisz: Kinetik der Auflösung von Aluminium und Cadmium in Salzsäure.
- Wien, Technische Hochschule, Institut für physikalische Chemie, 1929, 180, 83. F. Halla: Kohlensäure-Kohlenoxydgleichgewicht an Kupfer.
- Wien, Universität, I. Chemisches Laboratorium, Anorganische Abteilung, 1929, 179, 379. A. Klemenc, L. Klima: Zur Kenntnis der Salpetersäure. Verhalten des Systems HNO₃-HNO₂ bei der Oxydation. Aktivierung der Salpetersäure.
- Würzburg, Universität, Laboratorium für angewandte Chemie, 1929, 178, 219. R. Weinland, K. Rein: Ferrioxalat und ein Ferri-oxalat-perchlorat.

Sachregister.

A.

- Abkühlungsgeschwindigkeit. Einfl. auf d. Form d. Eutektikums v. Silber u. Kupfer. J. A. A. Leroux, E. Raub, 178, 257.
- d. Eutektikums bin. Legg.; Einfl. a. d. Struktur. G. Tammann, A. A. Botschwar, 178, 325.
- Absorption s. auch Lichtabsorption.
- Acetylen. Diffusion i. W.; Temp.-Koeff. G. Tammann, V. Jessen, 179, 125. Actinium. Entstehung. G. Elsen, 180, 304.
- Actiniumreihe. Abstammungsmöglichkeiten. G. Elsen, 180, 304.; s. auch
- Adsorption v. Alkalimetallen durch Kohlenstoff. K. Fredenhagen, H. Suck, 178, 353.
- v. Kohlen-2-oxyd u. Ammoniak an Kieselsäuregel; Isothermen, Adsorptionswärme. A. Magnus, R. Kieffer, 179, 215.
- Adsorptionswärme s. Wärmetönung d. Adsorption.
- Äthyläther. Oberflächenspannung, Verdampfungswärme. J. J. van Laar, 180, 193.
- Äthylen. Darst., Abweichungen d. Drucke s. Gemische m. H₂ v. Teildruckgesetz. M. Trautz, M. Gürsching, 179, 1.
- Athyljodid. Einw. a. Cadmium-Magnesiumlegg. C. Kröger, 179, 27.
- Agar. Einfl. a. d. Diffusion v. Gasen i. W. G. Tammann, V. Jessen, 179, 125.
 Aktivierung v. Aluminium u. Cadmium. K. Jablczynski, E. Hermanowicz,
 H. Wajchselfisz, 180, 184.
- v. Salpetersäure durch Salpetrigsäure. A. Klemenc, L. Klima, 179, 379;
 s. auch Act...
- Alkalimetalle. Bindung (Adsorption) durch Kohlenstoff. K. Fredenhagen, H. Suck, 178, 353.
- Nachw. i. Salzgemischen u. Silicaten. N. A. Tananaeff, 180, 75.
- Alterung v. Eisen-3-hydroxyd-Hydraten; Änderung d. phys. u. chem. Eigensch. G. F. Hüttig, H. Garside, 179, 49.
- Aluminium. Legg., bin., m. Silicium; Erstarrungspp., Leitverm., el.; Grenze d. Mischkristallbldg. L. Anastasiadis, 179, 145.
- Rk.-geschw. d. Auflsg. i. HCl. K. Jablczynski, E. Hermanowicz, 180, 184.
- Verteilg. v. Ag zw. Al u. Pb. R. Lorenz, G. Schulz, 179, 339.
- Aluminium-3-hydroxyd. Darst. v. 2 Formen (Hydrargillit u. Bayerit) u. ihr Röntgenogramm. R. Fricke, 179, 287.
- Amine, organische. Komplexverbb. m. Nickelcyanid; Dampfdruck, Raumbeanspr. d. org. Liganden. E. Hertel, E. Rissel, F. Riedel, 178, 202.
- Ammine v. Metallsalzen; Vergleich m. ähnl. Komplexverbb. W. Hieber, C. Schließmann, K. Ries, 180, 89.
- Ammoniak. Adsorption an Kieselsäuregel; Isothermen, Adsorptionswärme. A. Magnus, R. Kieffer, 179, 215.
- Einw. a. Komplexverbb. v. o-Phenylendiamin u. Metallsalzen. W. Hieber,
 C. Schließmann, K. Ries, 180, 89.
- Ammoniumhydroxyd. Vol.-änderung b. Neutralisation m. HNO₃. J. J. Saslawsky, E. G. Standel, W. W. Towarow, 180, 241.
- Analyse. Best. v. Quecksilber durch quant. Spektralanalyse v. Lsgg. Fr. Gromann, 180, 257.
- Best. u. Trenng. v. Salpetrigsäure durch Veresterung u. Jodometrie d. Esters. W. M. Fischer, A. Schmidt, 179, 332.
- Nachw. v. Alkalimetallen i. Salzgemischen u. Silicaten. N. A. Tananaeff, 180, 75.
- Nachw. v. Kieselsäure m. Molybdänsäure. F. Oberhauser, J. Schormüller, 178, 381.
- Analyse, indirekte v. chem. einheitl. Phasen i. einem System aus 2 Phasen. E. Weitz, H. Stamm, 179, 193.

- Anlauffarben v. Silberjodidschichten; Änderung i. Licht. E. Jenckel, 179, 89. Antimon. Einfl. a. d. Gleichgew. d. Rk.: Cd + PbCl2 = Pb + CdCl2 i. Schmelzfluß. R. Lorenz, M. Hering, 178, 337.
- Einfl. a. d. Gleichgew. d. Rk.: Pb + CdCl₂ ⇒ Cd + PbCl₂ i. Schmelzfluß. R. Lorenz, M. Hering, 178, 40.
- Einfl. a. d. Gleichgew. d. Rk.: Pb + CdCl₂ ⇒ Cd + PbCl₂ u. ähnlicher; Ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97. 4-Antimon-8-Pyridinium-2-Hydro-5-oxalat-12-ehlorid. R. Weinland, W. Hübner. 178, 275.
- Antimon-1-Pyridinium-1-oxalat-2-fluorid. R. Weinland, W. Hübner, 178, 275. Apparat z. Best. d. Dielektrizitätskonstanten v. Fluorwasserstoff. K. Fredenhagen, J. Dahmlos, 178, 272.
- z. Best. d. Diffusion v. Gasen i. Wasser. G. Tammann, V. Jessen, 179, 125. - z. Best. d. Schrumpfung v. Glasfäden. J. Sawai, Y. Ueda, 180, 287.
- z. Best. d. Siedetemp. v. Erdalkalimetallen. H. Hartmann, R. Schneider, 180, 275.
- z. Best. d. Zünddrucke v. PH₃-O₂-gemischen. M. Trautz, W. Gabler, 180, 321.
- z. Dampfdruckbest. feuchtigkeitsempfindlicher Stoffe. P. A. Thiessen, O. Körner, 180, 65.
- z. Darst. v. Iridium-6-fluorid m. Flußspatrohr. O. Ruff, J. Fischer,
- z. Erzeugung v. Funken f. quant. Spektralanalyse. Fr. Gromann, 180, 257.
- z. Herst. u. Analyse v. Per-Salpetrigsäure. K. Gleu, E. Roell, 179, 233.
- Ofen m. Acetylen-Sauerstoffgebläse. O. Ruff, F. Ebert, E. Stephan, 180, 215.
- z. Prüfung v. Dalton's Teildruckgesetz. M. Trautz, M. Gürsching, 179, 1. - z. Reindarst. v. Fluorwasserstoff. K. Fredenhagen, G. Cadenbach,
- 178, 289. Tensieudiometer z. Unters. d. Verbb. v. Lithiumhalogeniden m. Aminen.
- A. Simon, R. Glauner, 178, 177. - z. Untersuchung d. Einwirkung v. Alkalimetallen auf Kohlenstoff.
- K. Fredenhagen, H. Suck, 178, 353. - z. Veresterung u. Best. v. Salpetrigsäure. W. M. Fischer, A. Schmidt, 179, 332. Arsenit. Verh. geg. Lsgg. v. Per-Salpetrigsäure. K. Gleu, E. Roell, 179, 233. Arsensäure. Einfl. a. d. Diff. v. Wolframaten. G. Jander, D. Mojert,
- Th. Aden, 180, 129. Atombindung. Bez. z. Platzwechselgeschw. G. v. Hevesy, W. Seith, 180, 150. Atomgewicht v. Protactinium; Bedeutung f. d. Genesis d. Actiniumreihe. G. Elsen, 180, 304.
- v. Silber u. Barium; Neubest. durch Analyse v. BaClO₄. O. Hönigschmid, R. Sachtleben, 178, 1.
- Atomgewichte, praktische. Deutsche Atomgewichts-Kommission, 178, 411.
- Atomverteilung i. Cadmium-Magnesiumlegg. C. Kröger, 179, 27.
- Atomwärme d. Elemente; Formel z. Ber. u. Bez. z. period. Syst. J. Maydel,
- Austenit. Gleichgeww., het., i. Syst. Fe-C-O. E. Jänecke, 178, 73. Azide d. Alkalimetalle; Verh. ihrer Lsgg. geg. Ozon; Bldg. v. Per-Salpetrigsaure. K. Gleu, E. Roell, 179, 233.

- Barium. Atomgew.; Neubest. durch Analyse v. BaClO₄. O. Hönigschmid, R. Sachtleben, 178, 1.
- Kristallstruktur. F. Ebert, H. Hartmann, 179, 418.
- Siedep., Dampfdruck, Verd.-wärme, chem. Konst., krit. Temp. H. Hartmann, R. Schneider, 180, 275.
- Barium-per-chlorat. Reindarst., Analyse z. Atomgew.-best. v. Ag u. Ba. O. Hönigschmid, R. Sachtleben, 178, 1.
- n. Vol.-änderung b. Neutralisation. J. J. Saslawsky, E. G. Standel, W. W. Towarow, 180, 241. Basen.

- Bayerit. Darst. u. Röntgenogramm. R. Fricke, 179, 287.
- Benzidin. Komplexverbb. m. Metallsalzen. W. Hieber, K. Ries, 180, 105.
- Benzol. Oberflächenspanng., Verdampfungswärme. J. J. van Laar, 180, 193. Berylliumchlorid. Hydrolyse s. Lsgg. M. Prytz, 180, 355.
- Beryllium-2-hydroxyd. Darst. v. 2 Formen; Röntgenogramm, Lösl. i. NaOH. R. Fricke, H. Humme, 178, 400.
- Löslichkeitsprod. M. Prytz, 180, 355.
- Berylliumoxyd. Lösungsgleichgew. i. Syst.: BeO-Na₂O-H₂O. R. Fricke, H. Humme, 178, 400.
- Berylliumsulfat. Hydrolyse s. Lsgg. M. Prytz, 180, 355.
- Bildungswärme s. Wärmetönung d. Bldg.
- Blei. Gleichgew., het., d. Rk.: Pb + CdCl₂ ⇒ Cd + PbCl₂ im Schmelzfluß; Änderung durch Zusätze v. NaCl-KCl u. Sb(Bi). R. Lorenz, M. Hering, 178, 337.
- Gleichgew., het., d. Rk.: Pb + CdCl₂ ⇒ Cd + PbCl₂ i. Schmelzfluß;
 Einfl. v. Salzzusätzen. R. Lorenz, M. Hering, 178, 33.
- Gleichgew., het., d. Rk.: Pb+CdCl₂ ⇒ PbCl₂ + Cd u. ähnlicher i. Schmelz-fluß; Ber. d. Einfl. v. Zusätzen nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Gleichgew., het., d. Rk.: Pb + CdCl₂ ⇒ Cd + PbCl₂ i. Schmelzfluß;
 Einfl. v. Zusätzen i. beiden Phasen. R. Lorenz, M. Hering, 178, 40.
- Legg., bin., m. Wismut; Einfl. d. Abkühlungsgeschw. a. d. Struktur d. Eutektikums. G. Tammann, A. A. Botschwar, 178, 325.
- Verteilg. v. Ag zw. Al u. Pb. R. Lorenz, G. Schulz, 179, 339.
- Blei-2-bromid. Gleichgew., het., d. Rk.: PbBr₂ + Sn ⇒ SnBr₂ + Pb i. Schmelzfluß; Einfl. v. Zusätzen, ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Blei-2-chlorid. D. des gewöhnlichen u. d. aus Uranblei. W. Hieber, K. Ries, 180, 225.

 Gleichgew., het., d. Rk.: PbCl₂ + Cd ⇒ Pb + CdCl₂ i. Schmelzfluß; Änderung durch Zusätze v. NaCl-KCl u. Sb (Bi). R. Lorenz, M. Hering,
- 178, 337.

 Gleichgew., het., d. Rk.: PbCl₂ + Cd ⇌ CdCl₂ + Pb i. Schmelzfluß; Einfl. v. Salzzusätzen. R. Lorenz, M. Hering, 178, 33.
- Gleichgew., het., d. Rk.: PbCl₂ + Cd ⇒ Pb + CdCl₂ u. ähnlicher im Schmelzfluß; Einfl. v. Zusätzen, ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Gleichgew., het., d. Rk.: Pb + CdCl₂ ⇒ PbCl₂ + Cd i. Schmelzfluß; Einfl.
 v. Zusätzen i. beiden Phasen. R. Lorenz, M. Hering, 178, 40.
- Per-Borate d. Alkalimetalle, Rkk. m. KJ-lsg., Konst. M. Le Blanc, R. Zellmann, 180, 127.
- Borhydride. Elektronenanordnung. E. Wiberg, 179, 309.

Brom. Einw. a. IrF₆. O. Ruff, J. Fischer, 179, 161.

- Borwasserstoff s. Borhydrid.
- Brechungskoeffizient. Bez. s. Temp.-Koeff. z. Ausdehnungskoeff. W. Herz, 180, 159.
- Brechungszahl, molare. Bez. z. Molekelnanzahl. W. Herz, 179, 211.

C

- Cadmium. Gleichgew., het., d. Rk. Cd + PbCl₂ ⇒ Pb + CdCl₂ i. Schmelzfluß; Änderung durch Zusätze v. NaCl-KCl u. Sb (od. Bi). R. Lorenz, M. Hering, 178, 337.
- Gleichgew., het., d. Rk.: Cd + PbCl₂ ⇒ Pb + CdCl₂ u. ähnlicher i. Schmelzfluß; Ber. d. Einfl. v. Zusätzen nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Gleichgew., het., d. Rk.: Cd + PbCl₂ ⇒ Pb + CdCl₂ i. Schmelzfluß; Einfl.
 v. Salzzusätzen. R. Lorenz, M. Hering, 178, 33.
- Gleichgew., het., d. Rk.: Cd + PbCl₂ ⇒ Pb + CdCl₂ i. Schmelzfluß; Einfl.
 v. Zusätzen i. beiden Phasen. R. Lorenz, M. Hering, 178, 40.
- Legg. m. Magnesium; Einwirkungsgrenze, Pot., galv., Kristallgitter.
 C. Kröger, 179, 27.

Lsg. i. geschmolz. Cadmiumchlorid; Bldg. v. Cdn+1Cl2. Cadmium. W. Eitel, B. Lange, 178, 108.

Rk.-geschw. d. Auflsg. i. Salzsäure. K. Jablezynski, W. Wajchselfisz,

180, 184.

Verteilg. i. Einkristallen v. Zink. M. Straumanis, 180, 1. Cadmiumbromid-1-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105.

Cadmiumchlorid. Gleichgew., het., d. Rk.: CdCl₂ + Pb ⇒ Cd + PbCl₂ i. Schmelzfluß; Anderung durch Zusätze v. NaCl-KCl u. Sb(Bi). R. Lorenz, M. Hering, 178, 337.

Gleichgew., het., d. Rk.: $CdCl_2 + Pb \rightleftharpoons PbCl_2 + Cd$ i. Schmelzfluß; Einfl. v. Salzzusatz. R. Lorenz, M. Hering, 178, 33.

- Gleichgew., het., d. Rk.: CdCl₂ + Pb ⇒ PbCl₂ + Cd u. ähnlicher im Schmelzfluß; Einfl. v. Zusätzen, ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.

Gleichgew., het., d. Rk.; $Cd + PbCl_2 \rightleftharpoons Pb + CdCl_2$ i. Schmelzfluß; Einfl.

v. Zusätzen i. beiden Phasen. R. Lorenz, M. Hering, 178, 40.

 Lsg. v. Cd i. geschmolzenem —, Größe d. Metallteilchen. W. Eitel, B. Lange, 178, 108.

(n+1) Cadmium-2-chlorid. Existenz i. einer Lsg. v. Cd i. geschmolzenem CdCl₂. W. Eitel, B. Lange, 178, 108.

Cadmiumchlorid-1-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Cadmiumchlorid-1-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105.

Cadmiumchlorid-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Cadmiumfluorid-2-Hydrat. Lösl. P. Nuka, 180, 235.

Cadmiumjodid-1-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105.

Cadmium-2-Natrium-2-sulfat. Lösungsgleichgew. i. Syst. Na₂SO₄-CdSO₄-H₂O. A. u. H. Benrath, 179, 369.

Cadmium-6-Natrium-4-sulfat. Lösungsgleichgew. i. Syst.: Na₂SO₄-CdSO₄-H₂O. A. u. H. Benrath, 179, 369.

Cadmiumsalze. D. u. Mol.-raum ihrer Komplexverbb. m. o-Phenylendiamin. W. Hieber, K. Ries, 180, 225.

Cadmiumsulfat-1-Hydrat. Lösungsgleichgew. i. Syst. Na₂SO₄-CdSO₄-H₂O. A. u. H. Benrath, 179, 369.

Cadmiumsulfat-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Cadmiumsulfat-3-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Cadmiumsulfat-1-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105. Caesium. Schmelzdrucklinie. F. Simon, G. Glatzel, 178, 309.

Calcium. Gleichgeww., het., i. Syst.: Ca-S-O₂. R. Schenck, K. Jordan, 178, 389. - Legg., bin., m. Natrium; Erstarrungsdiagr., Kleingef. R. Lorenz, R. Winzer. 179, 281.

- Siedep., Dampfdruck, Verd.-wärme, chem. Konst., krit. Temp. H. Hartmann, R. Schneider, 180, 275.

Calciumfluorid. Herst. v. Geräten a. Flußspat. O. Ruff, J. Fischer, 179, 161. Calciumoxyd. Rk.m. SO_2 ; Gleichgew., het., i. d. Rkk.: $4 \text{CaO} + 4 \text{SO}_2 \rightleftharpoons 3 \text{CaSO}_4 +$ CaS u. $4\text{CaO} + 2\text{S}_2 \rightleftharpoons \text{CaSO}_4 + 3\text{CaS}$. R. Schenck, K. Jordan, 178, 389.

Schmelzgleichgeww. s. Gemische m. ZrO₂; Röntgenogramm, D. d. Verb.

CaZrO₃. O. Ruff, F. Ebert, E. Stephan, 180, 215. Calciumsulfat. Gleichgeww., het., d. Rkk.: $3CaSO_4 + CaS \rightleftharpoons 4CaO + 4SO_2$ u. $CaSO_4 + 3CaS \rightleftharpoons 4CaO + 2S_2$ usw. R. Schenck, K. Jordan, 178, 389.

Calciumsulfid. Gleichgeww., het., d. Rkk.: $CaS + 3CaSO_4 \rightleftharpoons 4CaO + 4SO_2$ u.

 $3\text{CaS} + \text{CaSO}_4 \rightleftharpoons 4\text{CaO} + 2\text{S}_2$. R. Schenck, K. Jordan, 178, 389. iumzirkonat. Darst., Smp., Röntgenogramm, D. O. Ruff, F. Ebert, Calciumzirkonat. E. Stephan, 180, 215.

Carnallit. Verarbtg. a. Rubidiumpräp. G. Jander, H. Faber, 179, 321. Chemische Konstante v. Magnesium, Ca, Sr, Ba, Li. H. Hartmann, R. Schneider, 180, 275.

Chlor. Einw. a. IrF₆. O. Ruff, J. Fischer, 179, 161.

Hypo-Chlorit. Einw. a. roten Phosphor. J. Probst, 179, 155.

Chlorwasserstoff. Einw. a. Eisenhydroxyd versch. Alters. G. F. Hüttig, H. Garside, 179, 49.

- 2-Chrom-1-Chinolinium-3-oxalat-1-nitrat-1-Chinolin-4-Hydrat (Cr^{III}). R. Weinland, W. Hübner, 178, 275.
- 2-Chrom-2-Pyridinium-1-Hydro-2-oxalat-5-fluorid-5-Hydrat (Cr^{III}). R. Weinland, W. Hübner, 178, 275.
- 2-Chrom-1-Pyridinium-2-oxalat-3-fluorid-1-Pyridin-7-Hydrat (Cr^{III}). R. Weinland, W. Hübner, 178, 275.
- 2-Chrom-3-Pyridinium-3-oxalat-3-nitrat-1-Pyridin-3-Hydrat (Cr^{III}). R. Weinland, W. Hübner, 178, 275.
- 2-Chrom-3-sulfat-Hydrat (grün, amorph). Abbau, isobarer; Verh. d. Lsg. geg. Ba... F. Krauss, H. Querengässer, P. Weyer, 179, 413.
- 2-Chrom-3-sulfat-12-Hydrat (grün, krist.). Abbau, isobarer; Bldg. v. 6- u. 0-Hydrat, Verh. d. Lsg. geg. Ba. F. Krauss, H. Querengässer, P. Weyer, 179, 413.
- 2-Chrom-3-sulfat-18-Hydrat (viol.) (Cr^{III}). Abbau, isobarer; Bldg. v. 9-, 3- u. 0-Hydrat. F. Krauss, H. Querengässer, P. Weyer, 179, 413.
- Cyanide v. Rhodium. F. Krauss, H. Umbach, 179, 357.
- Cyanwasserstoff. D., Zähigkeit, Dielektrizitätskonst., Lösungsverm., Leitverm., el. K. Fredenhagen, J. Dahmlos, 179, 77.

D.

- Dalton's Teildruckgesetz. Deutung d. Abweichungen aus Bldg. chem. Verbb. M. Trautz, M. Gürsching, 179, 1.
- Dampfdruck v. Chromsulfat-Hydraten. F. Krauss, H. Querengässer, P. Weyer, 179, 413.
- v. Eisenhydroxyd versch. Herstellung; Einfl. d. Alters. G. F. Hüttig, H. Garside, 179, 49.
- v. Iridium-6-fluorid. O. Ruff, J. Fischer, 179, 161.
- d. Lithiumhalogenid-Methylaminverbb. A. Simon, R. Glauner, 178, 177.
- v. Magnesium, Ca, Sr, Ba, Li. H. Hartmann, R. Schneider, 180, 275.
- v. Nickelcyanid-Amminen. E. Hertel, E. Rissel, F. Riedel, 178, 202.
- v. Sauerstoff über CuO u. Cu2O. F. Halla, 180, 83.
- v. Schwefel u. Schwefel-2-oxyd i. Syst.: Ca-S-O₂. R. Schenck, K. Jordan, 178, 389.
- v. Schwefel-2-oxyd b. versch. Rkk. d. Systst. Ni-O₂-S u. Co-O₂-S.
 R. Schenck, E. Raub, 178, 225.
- Dampfdrucklinie. Bez. z. d. spez. Faktoren v. Dühring. R. Lorenz, 179, 293. Dichte. Bez. d. Ausdehnungskoeff. z. Temp.-Koeff. d. Brechung. W. Herz, 180, 159.
- Bezz. z. Oberflächenspanng. u. Verdampfungswärme. J. J. van Laar, 180, 193.
- v. Calciumzirkonat. O. Ruff, F. Ebert, E. Stephan, 180, 215.
- v. Cyanwasserstoff. K. Fredenhagen, J. Dahmlos, 179, 77.
- v. Iridium-6-fluorid. O. Ruff, J. Fischer, 179, 161.
- d. Lsgg. v. Na₂SO₄ u. R^{II}SO₄ (R" = Mn, Fe, Co, Ni, Cu, Zn, Cd). A. u. H. Benrath, 179, 369.
- v. o-Phenylendiaminverbb. m. Metallsalzen; v. NaCl u. PbCl₂. W. Hieber, K. Ries, 180, 225.
- v. Säurelsgg. (CH₃CO₂H, HNO₃, H₂SO₄); Änderung b. Neutralisation.
 J. J. Saslawsky, E. G. Standel, W. W. Towarow, 180, 241.
- v. Zirkon-2-oxyd i. versch. Formen. O. Ruff, F. Ebert, 180, 19.
- Dielektrizitätskonstante v. Cyanwasserstoff. K. Fredenhagen, J. Dahmlos, 179, 77.
- v. fl. Fluorwasserstoff. K. Fredenhagen, J. Dahmlos, 178, 272.
- Diffusionskoeffizient v. Gasen (CO_2 , C_2H_2 , H_2 , O_2 , N_2) i. Wasser; Abhāng. v. d. Temp. G. Tammann, V. Jessen, 179, 125.
- v. Natriumwolframatlsgg. G. Jander, D. Mojert, Th. Aden, 180, 129.
- v. Silber b. Diff. i. d. Tellurid, Antimonid, Stannid v. Cu; Bez. z. Koordinationszahl. G. v. Hevesy, W. Seith, 180, 150.
- Dimethylamin. Verbb. m. Lithiumhalogeniden; Existenzbereich, Bldgs.warme. A. Simon, R. Glauner, 178, 177,
- Dimethyl-fluoran. A. Thiel, L. Jungfer, 178, 49.

- Diphenyljodonium jodid. Bldg. a. Phenyldiazonium jodid i. Ggw. v. HgJ₂. A. N. Nesmejanow, 178, 300.
- Dissoziationsdruck s. auch Dampfdruck.
- Dissoziationsvermögen v. Cyanwasserstoff. K. Fredenhagen, J. Dahmlos, 179, 77.
- Doppelsalze d. Vitriole m. Natriumsulfat; Lösungsgleichgeww. A. u. H. Benrath, 179, 369.
- Druck. Einfl. a. d. Schmelzp. verschiedener Stoffe. F. Simon, G. Glatzel, 178, 309.
 - E.
- Einkristalle v. Zink; Herst., Verteilg. v. Cd. u. anderen Stoffen in ihnen. M. Straumanis, 180, 1.
- Einwirkungsgrenze v. Cadmium-Magnesiumlegg. geg. CH₃OH u. Äthyljodid. C. Kröger, 179, 27.
- d. Goldlegg. m. Silber, Kupfer, Blei. W. Gerlach, 179, 111.
- Eisen. Atom- u. Umwandlungswärme. J. Maydel, 178, 113.
- Gleichgew., het., m. Kohlenstoff u. Sauerstoff; räuml. Modelle. E. Jänecke, 178, 73.
- Legg. m. C od. N; Änderung v. Koerzitivkraft u. and. magnet. Eigensch. durch Ausscheidungen. W. Köster, 179, 297.
- Legg., bin., m. Kohle; Einfl. d. Abkühlungsgeschw. a. d. Struktur d. Eutektikums. G. Tammann, A. A. Botschwar, 178, 325.
- Legg., bin., m. Kupfer; Härte, Magnetismus. A. Kussmann, B. Scharnow, 178, 317.
- Eisen-3-äthylat. Anwdg. z. Herst. v. elektrolytfreien Fe(OH)₃-solen. P. A. Thiessen, O. Koerner, 180, 115.
- Darst., Kristallform, Löslichkeit. P. A. Thiessen, O. Koerner, 180, 65. 3-Eisen-1-carbid. Gleichgew., het., i. Syst. Fe-C-O. E. Jänecke, 178, 73.
- Eisen-3-chlorid. Einw. a. Natriumäthylat. P. A. Thiessen, O. Köerner, 180, 65. Eisen-1-oxo-1-hydroxyd (Goethit). Bldg. a. Eisenhydroxyden; Röntgendiagramm. G. F. Hüttig, H. Garside, 179, 49.
- Eisen-3-hydroxyd-Hydrat. Dampfdruck, Spez. W., Katalyt. Wirkung, Löslichkeit in Abhängigkeit v. Wassergehalt; Röntgendiagramm. G. F. Hüttig, H. Garside, 179, 49.
- Eisen-3-hydroxydsol aus Eisenaethylat ohne u. mit Elektrolytzusatz. P. A. Thiessen, O. Koerner, 180, 115.
- Verhalten "isomerer" Formen. A. Krause, 180, 120.
- Eisen-6-Natrium-4-sulfat (Fe^{II}). Lösungsgleichgew. i. Syst. Na₂SO₄-FeSO₄-H₂O A. u. H. Benrath, 179, 369.
- Eisen-2-Natrium-2-sulfat-2-Hydrat (Fe^{II}). Lösungsgleichgew. i. Syst. Na₂SO₄-FeSO₄-H₂O. A. u. H. Benrath, 179, 369.
- 2-Eisen-3-oxalat-5-Hydrat (Fe^{III}). Darst., Konst. R. Weinland, K. Rein, 178, 219.
- 3-Eisen-2-Hydro-3-oxalat-5-per-chlorat-14-Hydrat. R. Weinland, K. Rein, 178, 219.
- Eisen-1-oxyd. Gleichgeww., het., i. Syst. Fe-C-S. E. Jänecke, 178, 73.
- 2-Eisen-3-oxyd. Bldg. a. Eisenhydroxyd; Röntgendiagramm. G. F. Hüttig, H. Garside, 179, 49.
- Gleichgeww., het., i. Syst. Fe-O-C. E. Jänecke, 178, 73.
- Peptisation nach Glühen; verschiedene Formen. A. Krause, 180, 120.
- 3-Eisen-4-oxyd. Gleichgeww., het., i. Syst. Fe-C-O. E. Jänecke, 178, 73. 2-Eisen-3-oxyd-Hydrate. Dampfdruck, Spez. W., Katalyt. Wirkung, Löslichkeit i. Abhängigkeit v. Wassergehalt. G. F. Hüttig, H. Garside, 179, 49.
- Eisen-1-Pyridinium-1-oxalat-2-fluorid-2-Hydrat (Fe^{III}). R. Weinland, W. Hübner, 178, 275.
- Eisen-1-sulfat-1-Hydrat (Fe^{II}). Lösungsgleichgew. i. Syst. Na₂SO₄-FeSO₄-H₂O. A. u. H. Benrath, 179, 369.
- Elektronenanordnung v. Borhydriden u. anderen Borverbb. E. Wiberg, 179, 309.

- Elemente, chemische. Bezz. zw. Entropie, Verdampfungs- u. spez. Wärme. W. Herz, 180, 284.
- Entropie u. Verdampfungswärme. W. Herz, 179, 277.
- Formeln z. Ber. v. Atom- u. Molekelwärme; Bezz. dieser Größen z. period. Syst. J. Maydel, 178, 113.
- Entropie. Bez. z. Verdampfungswärme b. Elementen u. Salzen. W. Herz. 179, 277.
- v. Elementen; Bezz. zu Verdampfungs- u. spez. Wärmen. W. Herz, 180
- Erstarrungslinie d. Calcium-Natrium-schmelzen. R. Lorenz, R. Winzer, 179, 281.
- d. Gold-Platinlegg. A. T. Grigorjew, 178, 97.
- Esterifizierung v. Salpetrigsäure; Anwdg. z. quant. Best. u. Trenng. W. M. Fischer, A. Schmidt, 179, 332.
- Eutektikum v. bin. Legg.; Abhängigkeit d. Korngröße v. Abkühlungsgeschw. G. Tammann, A. A. Botschwar, 178, 325.
- v. Silber u. Kupfer; verschiedene Ausbildungsformen. J. A. A. Leroux, E. Raub, 178, 257.
- Essigsäure. Vol.-änderung b. Neutralisation m. KOH u. NaOH. J. J. Saslawsky, E. G. Standel, W. W. Towarow, 180, 241.
- Extinktion v. Phenolphthalein u. s. Homologen. A. Thiel, L. Jungfer, 178, 49. Extinktionskoeffizient v. Wolframatlsgg. G. Jander, D. Mojert, Th. Aden, 180, 129.

F.

- Farbstoffindikatoren d. Phenolphthaleinreihe; Absorptionsspektrum, Umschlagspunkte, Rk.-geschw. d. Entfärbung. A. Thiel, L. Jungfer, 178, 49. Fluor. Einw. a. Iridium. O. Ruff, J. Fischer, 179, 161.
- Fluoride v. Cadmium u. Mangan; Darst., Doppelsalze, Lösl. P. Nuka, 180, 235.
- Fluorwasserstoff, flüssiger. Dielektrizitätskonstante. K. Fredenhagen, J. Dahmlos, 178, 272.
- Reindarst., Leitverm., elektr. K. Fredenhagen, G. Cadenbach, 178, 289. Flußspatgeräte. Vf. z. Herst. O. Ruff, J. Fischer, 179, 161.
- Formaldehyd. Verh. geg. Lsgg. v. Per-Salpetrigsäure. K. Gleu, E. Roell, 179, 233.

- Gas. Diffusionskoeff. i. W.; Temp.-Koeff., Hydratbldg. G. Tammann, V. Jessen, 179, 125.
- Gasanalyse. App. z. Unters. v. Per-Salpetrigsäurelsgg. K. Gleu, E. Roell, 179, 233.
- Gasgesetze. Deutung d. Abweichungen v. Teildruckgesetz durch chem. Verbb. M. Trautz, M. Gürsching, 179, 1.
- Gel v. Natriumoleat; Kristallkernzahl i. Abhäng. v. Vorbehandg., Unterkühlung, Konz. P. A. Thiessen, E. Triebel, 179, 267; s. auch Hydrogel.
- Glasfaden. Schrumpfung b. Erhitzen. J. Sawai, Y. Ueda, 180, 287. Gleichgewicht, heterogenes d. Aluminium-Siliciumlsgg.; Erstarrungsdiagramm L. Anastasiadis, 179, 145.
- d. Calcium-Natriumlegg. R. Lorenz, R. Winzer, 179, 281.
- d. Gold-Platinlegg.; Erstarrungsdiagramm. A. T. Grigorjew, 178, 97.
- d. Löslichkeit i. Syst.: BeO-Na₂O-H₂O. R. Fricke, H. Humme, 178, 400.
- d. Löslichkeit d. Systst.: Na₂SO₄-RSO₄-H₂O(R=Mn, Fe, Co, Ni, Cu, Zn, Cd). A. u. H. Benrath, 179, 369.
- d. Methanzerfalls über Kobalt m. C od. Con C als Bodenkörper. R. Schenck, H. Klas, 178, 146.
- d. Rk. $Cd + PbCl_2 \rightleftharpoons Pb + CdCl_2$; Anderung durch KCl-NaCl-zusatz zur Salzphase u. durch Sb-(Bi)-zusatz zur Metallphase. R. Lorenz, M. Hering,
- d. Rk. $Cd + PbCl_2 \rightleftharpoons Pb + CdCl_2$ im Schmelzfluß; Einfl v. NaCl-KCl-Zusätzen. R. Lorenz, M. Hering, 178, 33.

- Gleichgewicht, heterogenes, d. Rk.: Cd + PbCl₂ ⇒ Pb + CdCl₂ i. Schmelzfluß; Einfluß v. Zusätzen zu beiden Phasen. R. Lorenz, M. Hering, 178, 40.
- d. Rk.: Cd + PbCl₂ ⇒ Pb + CdCl₂ im Schmelzfluß u. ähnlicher Rkk.; Berechnung der Wirkung v. Zusätzen nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- d. Rkk.: 2CuO + CO ⇒ Cu₂O + CO₂ u. Cu₂O + CO ⇒ 2Cu + CO₂. F. Halla, 180, 83.
- i. Syst. Ca-S-O₂; SO₂-S-Druck über CaO, CaS, CaSO₄ u. Rkk. zwischen diesen Stoffen. R. Schenck, K. Jordan, 178, 389.
- i. Syst. Co-C; Mischkristallgrenze. R. Schenck, H. Klas, 178, 146.
- d. Syst. Co-S-O u. Ni-S-O; SO₂-drucke monovarianter Systeme. R. Schenck,
 E. Raub, 178, 225.
- i. Syst. Fe-C-O; räumliche Modelle. E. Jänecke, 178, 73.
- d. Zerfalls v. Lithiumhalogenid-Aminen. A. Simon, R. Glauner,
- v. ZrO₂-CaO-gemischen m. ihren Schmelzen. O. Ruff, F. Ebert, E. Stephan, 180, 215.
- Gleichgewicht, homogenes d. Rk.: $CO_2 + H_2 \rightleftharpoons CO + H_2O$; Ber. d. Konstanten m. d. Nernstschen Wärmesatz. E. Maurer, W. Bischof, 178, 371.
- i. Salpetersäure-Salpetrigsäurelsgg. A. Klemenc, L. Klima, 179, 379.
 Goethit. Bldg. b. Altern v. Eisenhydroxyd; Röntgendiagramm. G. F. Hüttig,
 H. Garside, 179, 49.
- Gold. Best., maßanalyt.-potentiometr., m. SnCl₂-lsg. E. Müller, R. Bennewitz, 179, 113.
- Legg., bin., m. Platin; Schmelzdiagramm, Kleingef., Härte. A. T. Grigorjew, 178, 97.
- Legg. m. Silber, Kupfer, Blei; spektralanalyt. Nachw. d. Verteilg. d. Metalle. W. Gerlach, 179, 111.
- Spont. Keimbildg. i. s. übersättigten Lsgg. P. A. Thiessen, 180, 57.
- Verh. geg. IrF₆. O. Ruff, J. Fischer, 179, 161.
- Goldhydrosol. Abhäng. d. Koagulation v. d. Teilchengröße. P. A. Thiessen, K. L. Thater, B. Kandelaky, 180, 11.
- m. amikroskop. Keimen; Ber. v. deren Größe. P. A. Thiessen, 180, 110.
 Herst., Keimwachstum. P. A. Thiessen, 180, 57.

ш

- Härte v. Eisen-Kupferlegg.; Bezz. z. Zustandsdiagramm. A. Kussmann, B. Scharnow, 178, 317.
- v. Gold-Platinlegg. A. T. Grigorjew, 178, 97.
 v. Platin, rein. A. T. Grigorjew, 178, 213.
- Haftfestigkeit organischer Liganden i. Molekelverbb. E. Hertel, E. Rissel, F. Riedel, 178, 202.
- Hydrargillit. Künstl. Darst. u. Röntgenogramm. R. Fricke, 179, 287.
- Hydraziniumehlorid. Einfl. a. d. Wachstum v. Goldkeimen. P. A. Thiessen, 180, 57.
- Hydrogel v. Eisenhydroxyd; Einfl. d. Alters u. d. Herst. a. phys. u. chem. Eigenschaften; Röntgendiagramme. G. F. Hüttig, H. Garside, 179, 49.
- v. Natriumoleat; Kristallkernzahl i. Abhäng. v. Vorbehandlg., Unterkühlung, Konz. P. A. Thiessen, E. Triebel, 179, 267.
- v. Silicium-2-oxyd; Adsorbens f. CO₂ u. NH₃. A. Magnus, R. Kieffer, 179, 215; s. auch Gel.
- Hydrolyse v. Berylliumsalzen. M. Prytz, 180, 355.
- Hydrosol v. Eisenhydroxyd aus Eisenäthylat ohne Elektrolyte. P. A. Thiessen, O. Koerner, 180, 115.
- v. 2-Eisen-3-oyxd; Bldg. a. geglühtem Oxyd; Verh. verschied. Präparate.
 A. Krause, 180, 120.
- v. Gold; Abhäng. d. Koagulation v. d. Teilchengröße. P. A. Thiessen, K. L.
 Thater, B. Kandelaky, 180, 11.
- v. Gold m. amikroskop. Keimen. P. A. Thiessen, 180, 110.
- v. Gold; Keimwachstum. P. A. Thiessen, 180, 57.

- Hydroxylammoniumehlorid. Einfl. a. d. Wachstum v. Goldkeimen. P. A. Thiessen, 180, 57.
- Hydroxylionen. Einfl. a. d. Entfärbung v. Phenolphthalein u. s. Homologen. A. Thiel, L. Jungfer, 178, 49.

I, J.

- Indikatoren d. Phenolphthaleinreihe; Absorptionsspektrum, Umschlagspunkte, Rk.-geschw. d. Entfärbung. A. Thiel, L. Jungfer, 178, 49.
- Innere Reibung s. Zähigkeit. Jod. Einw. a. IrF₆. O. Ruff, J. Fischer, 179, 161.
- Einw. a. Silber u. a. durch Licht verfärbte Silberjodidschichten. E. Jenckel, 179, 89.
- Jodion. Verh. geg. Iridiumverbb. O. Ruff, J. Fischer, 179, 161.
- Iridium. Verh. geg. Fluor u. IrF6. O. Ruff, J. Fischer, 179, 161.
- Iridium-4-fluorid. O. Ruff, J. Fischer, 179, 161.
- Iridium-5-fluorid. Nichtexistenz. O. Ruff, J. Fischer, 179, 161.
- Iridium-6-fluorid. Darst., phys. u. chem. Eigensch. O. Ruff, J. Fischer, 179, 161.
- Iridium-1-oxy-4-fluorid. O. Ruff, J. Fischer, 179, 161.
- Iridium-4-hydroxyd. Kolloidlsg. O. Ruff, J. Fischer, 179, 161.
- Isothermen d. Adsorption v. CO₂ u. NH₃ an Silicagel. A. Magnus, R. Kieffer, 179, 215.
- Isotop v. Uran als Stammsubstanz d. Actiniumreihe. G. Elsen, 180, 304.

K.

- Kalium. Bindung (Adsorption) an Graphit u. Ruß. K. Fredenhagen, H. Suek, 178, 353.
- Nachw. i. Salzgemischen u. Silicaten. N. A. Tananaeff, 180, 75.
- Schmelzdrucklinie. F. Simon, G. Glatzel, 178, 309.
- Kaliumchlorid. Einfl. a. d. Gleichgew. d. Rk.: Cd + PbCl₂ ⇒ Pb + CdCl₂ i. Schmelzfluß. K. Lorenz, M. Hering, 178, 33, 40.
- Einfl. a. d. Gleichgew. d. Rk.: Cd + PbCl₂ ⇒ CdCl₂ + Pb i. Schmelzfluß.
 R. Lorenz, M. Hering, 178, 337.
- Einfl. a. d. Gleichgew. d. Rk.: Pb + CdCl₂ ⇒ Cd + PbCl₂ u. ähnlicher im Schmelzfluß; Ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Lösl. i. Cyanwasserstoff; Leitverm. d. Lsg. K. Fredenhagen, J. Dahmlos, 179, 77.
- Kaliumcyanid. Lösl. i. Cyanwasserstoff, Leitverm. d. Lsg. K. Fredenhagen, J. Dahmlos, 179, 77.
- Kalium-1-Hydro-2-fluorid. Therm. Zersetzung z. Darst. v. Fluorwasserstoff. K. Fredenhagen, G. Cadenbach, 178, 289.
- Kaliumhydroxyd. Vol.-änderung b. Neutralisation m. CH₃ CO₂H. J. J. Saslawsky, E. G. Standel, W. W. Towarow, 180, 241.
- Kaliumnitrat. Lösl. i. Cyanwasserstoff; Leitverm. d. Lsg. K. Fredenhagen, J. Dahmlos, 179, 77.
- Katalyse d. Oxydationswirkung v. HNO₃. A. Klemenc, L. Klima, 179, 379.

 v. Per-Salpetrigsäurelsg. durch MnO₂. K. Gleu, E. Roell, 179, 233.
- v. Wasserstoff-per-oxyd durch Eisenhydroxyd. G. F. Hüttig, H. Garside, 179, 49.
- Keime, amikroskopische, v. Goldhydrosolen; Ber. d. Größe. P. A. Thiessen, 180, 110.
- Keimbildung, spontane, i. übersättigten Goldlsgg. P. A. Thiessen, 180, 57. Kernzahlen b. Krist. v. Gelen d. Natriumoleats; Einfl. v. Vorbehandlung, Unterkühlung, Konz. P. A. Thiessen, E. Triebel, 179, 267.
- Kieselsäure. Nachw. m. Molybdänsäure. F. Oberhauser, J. Schormüller, 178, 381.
- Kieselsäuregel. Adsorbens f. CO₂ u. NH₃; Isothermen; Adsorptionswärme; Einfl. d. Wassers. A. Magnus, R. Kieffer, 179, 215.

- Kieselsäure-molybdate. Natriumsalz; Darst. u. Anwdg. z. Trenng. d. Rb. v. K i. Carnallit. G. Jander, H. Faber, 179, 321.
- Kleingefüge v. Calcium-Natriumlegg. R. Lorenz, R. Winzer, 179, 281.
- d. Eutektikums binärer Legg., Einfl. d. Abkühlungsgeschw. G. Tammann, A. A. Botschwar, 178, 325.
- v. Gold-Platinlegg. A. T. Grigorjew, 178, 97.
- d. Silber-Kupfer-Eutektikums. J. A. A. Leroux, E. Raub, 178, 257.
- d. Zink-Cadmiumlegg. M. Straumanis, 180, 1.
- Koagulation v. Goldhydrosol; Abhäng. v. d. Teilchengröße. P. A. Thiessen, K. L. Thater, V. Kandelaky, 180, 11.
- Kobalt. Atom-u. Umwandlungswärme. J. Maydel, 178, 113.
- Gleichgew., het., m. Schwefel u. Sauerstoff; SO₂-druck d. Rk.: 3CoSO₄
 + CoS ⇒ 4Co + SO₂. R. Schenck, E. Raub, 178, 225.
- + CoS ⇒ 4Co + SO₂. R. Schenck, E. Raub, 178, 225.

 Katalysator d. Rk.: CH₄ ⇒ C + 2H₂. R. Schenck, H. Klas, 178, 146.

 Kobaltammine (Co^{III}), 2-Äthylendiamin-2-Aquo-Kobalt-salze; Verh. geg
 Oxal- u. Malons. W. Schramm, 180, 161.
- 2-Äthylendiamin-2-Bromo-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 2-Äthylendiamin-1-Carbonato-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 2-Äthylendiamin-2-Chloro-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 2-Äthylendiamin-1-Malonato-Kobaltsalze. W. Schramm, 180, 161.
- 2-Athylendiamin-1-Oxalato-Kobaltsalze. W. Schramm, 180, 161.
 4-Ammoniak-1-Aquo-1-Bromo-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 4-Ammoniak-1-Aquo-1-Chloro-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 4-Ammoniak-1-Aquo-1-Hydroxo-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 4-Ammoniak-2-Aquo-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 4-Ammoniak-2-Bromo-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 4-Ammoniak-1-Carbonato-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 4-Ammoniak-1-Malonato-Kobaltsalze. W. Schramm, 180, 161.
- 4-Ammoniak-2-Nitrato-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 4-Ammoniak-2-Nitrito-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure.
 W. Schramm, 180, 161.
- 4-Ammoniak-1-Oxalato-Kobaltsalze. W. Schramm, 180, 161.
- 2-Propylendiamin-1-Carbonato-Kobaltsalze; Verh. geg. Oxal- u. Malonsäure. W. Schramm, 180, 161.
- 2-Propylendiamin-2-Chlor-Kobaltsalze; Verh. geg. Oxal- u. Malon-säure. W. Schramm, 180, 161.
- 2-Propylendiamin-1-Malonato-Kobaltsalze. W. Schramm, 180, 161.
 2-Propylendiamin-1-Oxalato-Kobaltsalze. W. Schramm, 180, 161.
- Kobalt-2-bromid-4-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Kobaltearbid. Gleichgew., het., d. Rk.: $nCo + CH_4 \rightleftharpoons Co_nC + 2H_2$ u. i. Syst. Co-C. R. Schenck, H. Klas, 178, 146.
- Kobalt-2-chlorid-1-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Kobalt-2-chlorid-1-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105.
- Kobalt-2-chlorid-1,5-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105.
- Kobalt-2-chlorid-4-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.
- Kobalt-2-chlorid-6-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.
- Kobalt-2-jodid-4-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.

- Kobalt-3-Kalium-3-sulfit-6-Hydrat (Co^{III}). G. Jantsch, K. Abresch, 179, 345. Kobalt-3-Lithium-3-sulfit-4-Hydrat (Co^{III}). Darst., Leitverm. G. Jantsch, K. Abresch, 179, 345.
- Kobalt-3-Natrium-6-cyanid. Verh. geg. Sulfite. G. Jantsch, K. Abresch, 179, 345.
- Kobalt-3-Natrium-3-oxalat. Verh. geg. Sulfite. G. Jantsch, K. Abresch, 179, 345.
- Kobalt-2-Natrium-2-sulfat-4-Hydrat, Lösungsgleichgew. i. Syst.: Na₂SO₄-CoSO₄-H₂O. A. u. H. Benrath, 179, 369.
- Kobalt-3-Natrium-3-sulfit-4-Hydrat. G. Jantsch, K. Abresch, 179, 345.
- Kobalt-1-oxyd. Gleichgew., het., d. Rk.: $4\text{CoO} + \text{SO}_2 \Rightarrow 3\text{CoSO}_4 + \text{CoS}$ u. d. Rk.: $2\text{CoO} + 2\text{SO}_2 + \text{O}_2 \Rightarrow 2\text{CoSO}_4$. R. Schenck, E. Raub, 178, 225.
- Kobaltsalze. D. u. Mol.-raum ihrer Komplexverbb. m. o-Phenylendiamin. W. Hieber, K. Ries, 180, 225.
- Kobaltsulfat. Gleichgew., het., d. Rk.: $3\cos O_4 + \cos \rightleftharpoons 4\cos O_7 + \cos O_8$ u. d. Rk.: $2\cos O_4 \rightleftharpoons 2\cos O_7 + \cos O_8$; Bldgs.-wärme. R. Schenck, E. Raub, 178, 225.
- Kobaltsulfat-1-Hydrat. Lösungsgleichgew. i. Syst. Na₂SO₄-CoSO₄-H₂O. A. u. H. Benrath, 179, 369.
- Kobaltsulfat-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Kobalt-1-sulfid. Gleichgew., het., d. Rk.: $CoS + 3CoSO_4 \rightleftharpoons 4CoO + SO_2$. R. Schenck, E. Raub, 178, 225.
- Kobaltsulfit-5-Hydrat. G. Jantsch, K. Abresch, 179, 345.
- Koerzitivkraft v. Eisenlegg., Änderung durch fein verteilte Ausscheidungen. W. Köster, 179, 297.
- Kohle. Gleichgewicht d. Rk.: $C + 2H_2 \rightleftharpoons CH_4$ u. i. Syst. Co-C. R. Schenck, H. Klas, 178, 146.
- Kohlen-1-oxyd. Einfl. a. d. Zünddruck v. PH₃-O₂-gemischen. M. Trautz, W. Gabler, 180, 321.
- Gleichgew., het., d. Rkk.: $2\text{CuO} + \text{CO} \rightleftharpoons \text{Cu}_2\text{O} + \text{CO}_2$ u. $\text{Cu}_2\text{O} + \text{CO} \rightleftharpoons 2\text{Cu} + \text{CO}_2$. F. Halla, 180, 83.
- Gleichgew. het., i. Syst.: Fe-C-O. E. Jänecke, 178, 73.
- Gleichgew., hom., d. Rk.: CO + H₂O ⇒ CO₂ + H₂; Ber. d. Konst. nach
 d. Nernst'schen Wärmesatz. E. Maurer, W. Bischof, 178, 371.
- Verh. geg. IrF6. O. Ruff, J. Fischer, 179, 161.
- Kohlen-2-oxyd. Abweichung d. Drucke s. Gemische m. Methyläther v. Teildruckgesetz; Bldg. einer Verb. M. Trautz, M. Gürsching, 179, 1.
- Adsorption an Kieselsäuregel; Isothermen, Adsorptionswärme. A. Magnus,
 R. Kieffer, 179, 215.
- Diffusion i. W., Temp.-Koeff. G. Tammann, V. Jessen, 179, 125.
- Einfl. a. d. Zünddruck v. PH₃-O₂-gemischen. M. Trautz, W. Gabler, 180, 321.
- Gleichgew., het., d. Rkk.: $2\text{CuO} + \text{CO} \rightleftharpoons \text{Cu}_2\text{O} + \text{CO}_2$ u. $\text{Cu}_2\text{O} + \text{CO} \rightleftharpoons 2\text{Cu} + \text{CO}_2$. F. Halla, 180, 83.
- Gleichgeww., het., i. Syst. Fe-C-O. E. Jänecke, 178, 73.
- Gleichgew., hom., d. Rk.: CO₂ + H₂ ⇒ CO + H₂O; Ber. d. Konst. nach
 d. Nernst'schen Wärmesatz. E. Maurer, W. Bischof, 178, 371.
- Schmelzdrucklinie. F. Simon, G. Glatzel, 178, 309.
- Kohlenstoff. Gleichgew., het., m. Eisen u. Sauerstoff; räuml. Modelle. E. Jänecke, 178, 73.
- Kohlenstoff (Diamant). Verh. geg. Alkalimetalle. K. Fredenhagen, H. Suck, 178, 353.
- Kohlenstoff (Graphit). Bindung (Adsorption) v. Alkalimetallen. K. Fredenhagen, H. Suck, 178, 353.
- Legg., bin., m. Eisen; Einfl. d. Abkühlungsgeschw. a. d. Struktur d. Eutektikums. G. Tammann, A. A. Botschwar, 178, 325.
- Kohlenstoff (Ruß). Bindung (Adsorption) v. Alkalimetallen. K. Fredenhagen, H. Suck, 178, 353.
- Kolloidlösung v. Eisen-3-hydroxyd; Bldg. a. geglühtem Oxyd. A. Krause, 180, 120.

- Kolioidiösung v. Eisenoxyd ohne Elektrolyte (aus Eisenäthylat). P. A. Thiessen, O. Koerner, 180, 115.
- v. Gold m. amikroskop. Keimen. P. A. Thiessen, 180, 110.
- v. Gold; Bezz. zw. Koagulation u. Teilchengröße. P. A. Thiessen, K. L. Thater, B. Kandelaky, 180, 11.
- s. auch Hydrosol.
- Komplexsalze v. Quecksilber-2-jodid m. Phenyldiazoniumjodid. A. N. Nesmejanow, 178, 300.
- Komplexverbindungen v. Chrom, Eisen, Antimon u. Wismut m. Oxalsäure u. Fluor usw. R. Weinland, W. Hübner, 178, 275.
- v. Lithiumhalogeniden m. Aminen. A. Simon, R. Glauner, 178, 177.
- v. Nickelcyanid m. org. Stoffen. E. Hertel. E. Rissel, F. Riedel, 178, 202.
 v. o-Phenylendiamin m. Metallhalogeniden; Mol.-raum. W. Hieber, K. Ries, 180, 225.
- v. o-Phenylendiamin m. Metallsalzen. W. Hieber, C. Schließmann, K. Ries, 180, 89.
- v. p-Phenylendiamin od. Benzidin m. Metallsalzen. W. Hieber, K. Ries, 180, 105.
- v. Platinchlorid m. organ. Sulfiden. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
 Konstante a von van der Waals. Berechnung. R. Lorenz, 179, 293.
 Konstitution d. Per-Borate. M. Le Blanc, R. Zellmann, 180, 127.
- d. Borwasserstoffe. E. Wiberg, 179, 309.
- d. Komplexverbb v. o-Phenylendiamin m. Metallsalzen. W. Hieber,
 C. Schließmann, K. Ries, 180, 89.
- d. Komplexverbb. v. p-Phenylendiamin od. Benzidin m. Metall-salzen. W. Hieber, K. Ries, 180, 105.
- Koordinationswert v. o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.
- v. p-Penylendiamin u. Benzidin. W. Hieber, K. Ries, 180, 105.
- Kresolphthalein (m- u. o-). Darst., Verh. als Indikator, Absorptionsspektrum, Entfärbung. A. Thiel, L. Jungfer, 178, 49.
- Kristall (Einkristall) v. Zink; Herst., Verteilg. v. Cd u. and. Stoffen in ihnen. M. Straumanis, 180, 1.
- Kristallgitter v. Cadmium-Magnesiummischkristallen. E. Kröger, 179, 27.
- v. Calciumzirkonat. O. Ruff, F. Ebert, E. Stephan, 180, 215.
 d. Mischkristalle v. Zirkonoxyd m. Thoriumoxyd. O. Ruff, F. Ebert,
 H. Weitingh, 180, 250.
- H. Woitinek, 180, 252.

 v. Quecksilber-2-cyanid. O. Hassel, 180, 370.
- v. Quecksilber-2-cyanid. R. Fricke, 180, 374.
 v. Zirkon-2-oxyd i. versch. Formen u. v. Magnesiumzirkonat. O. Ruff, F. Ebert, 180, 19.
- s. Kristallstruktur.
- Kristallisationsvermögen, spontanes, v. Natriumoleatlsgg.; Einfl. v. Vorbehandg., Unterkühlung, Konz. P. A. Thiessen, E. Triebel, 179, 267.
- Kristallkeime i. Goldhydrosolen; Größenberechnung. P. A. Thiessen, 180, 110. Kristallstruktur v. Barium u. Strontium. F. Ebert, H. Hartmann, 179, 418. s. Kristallgitter.
- Kritische Daten. Bezz. z. Oberflächenspannung u. Verdampfungswärme. J. J. van Laar, 180, 193.
- Kritische Temperatur v. Magnesium Ca, Sr, Ba, Li, H. Hartmann R. Schneider, 180, 275.
- Kupfer. Gleichgew. d. Rk.: $Cu + CO_2 \rightleftharpoons Cu_2O + CO$. F. Halla, 180, 83.
- Legg., bin., m. Eisen; Härte, Magnetismus. A. Kussmann, B. Scharnow, 178, 317.
 Legg., bin., m. Silber; verschiedene Formen d. Eutektikums. J. A. A. Leroux, E. Raub, 178, 257.
- Verh. geg. IrF₆. O. Ruff, J. Fischer, 179, 161.
- Kupfer-2-chlorid-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Kupfer-2-Natrium-2-sulfat-2-Hydrat. Löschungsgleichgew. i. Syst. Na₂SO₄-CuSO₄-H₂O. A. u. H. Benrath, 179, 369.
- Kupfer-2-nitrat-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.

- Kupfer-1-oxyd. Sauerstoffdruck; Gleichgew. d. Rk.: 2CuO + CO

 Cu₀O + CO₂. F. Halla, 180, 83.
- 2-Kupfer-1-oxyd. Sauerstoffdruck; Gleichgew. d. Rk.: Cu₂O + CO = 2Cu + CO. F. Halla, 180, 83.
- Kupfersulfat-3-Hydrat. Lösungsgleichgew. i. Syst. Na₂SO₄-CuSO₄-H₂O₄. A. u. H. Benrath, 179, 369.
- Kupfersulfat-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.

L.

- Legierungen v. Eisen m. C od. N; Anderung d. Koerzitivkraft durch fein verteilte Ausscheidungen. W. Köster, 179, 297.
- v. Gold m. Blei, Silber u. Kupfer; Spektralanalyt. Nachw. d. Verteilung d. Metalle. W. Gerlach, 179, 111.
- Legierungen, binäre, v. Aluminium m. Silicium; Erstarrungspp., Leitverm., el.; Grenze d. Mischkristallbldg. L. Anastasiadis, 179, 145.
- v. Cadmium u. Magnesium; Einwirkungsgrenze, Pot., galv., Kristallgitter. C. Kröger, 179, 27.
- v. Calcium m. Natrium; Erstarrungsdiagr., Kleingef. R. Lorenz, R. Winzer, 179, 281.
- Einfl. d. Abkühlungsgeschw. a. d. Struktur d. Eutektikums. G. Tammann, A. A. Botschwar, 178, 325.
- v. Eisen m. Kupfer; Härte, Magnetismus. A. Kussmann, B. Scharnow, 178, 317.
- v. Gold m. Platin; Schmelzdiagramm, Kleingef., Härte. A. T. Grigorjew. 178, 97.
- v. Silber u. Kupfer; Eutektikum. J. A. A. Leroux, E. Raub, 178, 257.
- v. Zink m. Cadmium; Kristallisation als Einkristall. M. Straumanis, 180, 1. Leitvermögen, elektrisches, v. Aluminium-Siliciumlegg. L. Anastasiadis, 179, 145.
- v. Cyanwasserstoff u. s. Lsgg. K. Fredenhagen, J. Dahmlos, 179, 77.
 v. Fluorwasserstoff, flüssig. K. Fredenhagen, G. Cadenbach, 178, 289.
- v. Kobalt-3-Lithium-3-sulfitlsgg. G. Jantsch, K. Abresch, 179, 345.
- v. Platin, rein. A. T. Grigorjew, 178, 213.
- v. Rhodiumsulfatlsgg. F. Krauss, H. Umbach, 180, 42.
- v. Thoriumformiatkomplexen. H. Reihlen, M. Debus, 178, 157.
- Licht. Einfl. a. dünne Silberjodidschichten; Abscheidg. v. Silber. E. Jenckel, 179, 89.
- Vf. z. Verkürzung d. Belichtungszeit b. phot. Aufnahmen. F. Ebert, 179, 279,
- Licht, ultraviolettes. Einfl. a. d. Keimbldg. v. übersättigten Goldlegg. P. A. Thiessen, 180, 57.
- Lichtabsorption v. Phenolphthalein u. s. Homologen. A. Thiel, L. Jungfer, 178, 49.
- v. Wolframatlsgg. G. Jander, D. Mojert, Th. Aden, 180, 129.
- Lithium. Siedep., Dampfdruck, Verd.-wärme, chem. Konst., Krit. Temp. H. Hartmann, R. Schneider, 180, 275.
- Lithiumbromid. Reindarst., Verbb. m. Methylaminen. A. Simon, R. Glauner, 178, 177.
- Lithiumbromid- θ , $\delta(1, 2, 3, 4, 5)$ -Dimethylamin. Existenzbereich, wärme. A. Simon, R. Glauner, 178, 177.
- Bldgs.-wärme. Lithiumbromid-1(2,3,4,5)-Methylamin. Existenzbereich, A. Simon, R. Glauner, 178, 177.
- Existenzbereich, Lithiumbromid-1(2)-Trimethylamin. Bldgs.-wärme. A. Simon, R. Glauner, 178, 177.
- Lithiumehlorid, Reindarst., Verbb. m. Methylaminen. A. Simon, R. Glauner, 178, 177.
- Lithiumchlorid-1(2,3)-Dimethylamin. Existenzgebiete, Bldgs.-wärme. A. Simon, R. Glauner, 178, 177.
- Lithiumchlorid-1(2,3,4)-Methylamin. Existenzgebiete, Bldgs.-wärme. A. Simon, R. Glauner, 178, 177.

Lithiumchlorid-1(2)-Trimethylamin. Existenzgebiete, Bldgs. - wärme. A. Simon, R. Glauner, 178, 177.

Lithiumjodid. Reindarst., Verbb. m. Methylaminen. A. Simon, R. Glauner. 178, 177.

Lithium jodid - 1(0,5; 1,5; 2; 3; 5) - Dimethylamin. Existenz bereich. wärme. A. Simon, R. Glauner, 178, 177.

Lithium jodid-1(0,25; 0,5; 2; 3; 3,5)-Methylamin. Existenzbereich, Bldgs. warme. A. Simon, R. Glauner, 178, 177.

Lithium jodid-1(1,5; 2)-Trimethylamin. Existenzbereich, Bldgs.-wärme. A. Simon, R. Glauner, 178, 177.

Löslichkeit v. Berylliumhydroxyd i. NaOH-lsgg. R. Fricke, H. Humme, 178, 400.

- v. Eisen-3-äthylat. P. A. Thiessen, O. Koerner, 180, 65.

- v. Mangan-2-fluorid u. Cadmium-2-fluorid. P. Nuka, 180, 235. - v. Salzen i. Cyanwasserstoff. K. Fredenhagen, J. Dahmlos, 179, 77. v. Thoriumphosphaten i. Phosphorsäurelsgg. J. D'Ans, W. Dawihl, 178, 252. Löslichkeitsgleichgewicht d. Systst. Na₂SO₄-R^{II}SO₄-H₂O(R^{II} = Mn, Fe, Co, Ni, Cu, Zn, Cd). A. u. H. Benrath, 179, 369.

Löslichkeitsprodukt v. Berylliumhydroxyd. M. Prytz, 180, 355.

Lösungsvermögen v. Cyanwasserstoff f. Salze. K. Fredenhagen, J. Dahmlos, 179, 77.

Lyophilie v. Eisenhydroxydsolen. P. A. Thiessen, O. Koerner, 180, 115.

M.

Magnesium. Legg. m. Cadmium; Einwirkungsgrenze, Pot. galv., Kristallgitter. C. Kröger, 179, 27.

- Siedep., Verd.-wärme, chem. Konst., Dampfdruck, krit. Temp. H. Hartmann, R. Schneider, 180, 275.

Magnesiumchlorid-6-Hydrat. Schmelzpunktslinie. G. Tammann, 179, 186. Magnesiumoxyd. Einfl. a. Zirkon-2-oxyd; Bldg. v. Verbb. O. Ruff, F. Ebert, 180, 19.

2-Magnesium-3-zirkonat. Darst., Röntgenogramm. O. Ruff, F. Ebert, 180, 19. Magnetismus v. Eisen-Kupferlegg.; Bezz. z. Zustandsdiagramm. A. Kussmann, B. Scharnow, 178, 317.

- v. Eisenlegg.; Anderung b. Härten u. Anlassen. W. Köster, 179, 297. Malonsäure. Einw. a. 4-Ammin-2-X-Kobaltsalze; Bldg. v. 4-Ammin-Malonatoverbb. W. Schramm, 180, 161.

Mangan. Atom- u. Umwandlungswärme. J. Maydel, 178, 113.

Mangan-1-Ammonium-3-fluorid. P. Nuka, 180, 235.

Per-Manganat. Verh. geg. Lsgg. v. Per-Salpetrigsäure. K. Gleu, E. Roell, 179, 233.

Mangan-2-fluorid. Darst., Lösl., Doppelsalze. P. Nuka, 180, 235.

Mangan-2-fluorid-4-Hydrat. Lösl. P. Nuka, 180, 235. Mangan-1-Kalium-3-fluorid. P. Nuka, 180, 235.

Mangan-1-Natrium-3-fluorid. P. Nuka, 180, 235.

Mangan-6-Natrium-4-sulfat. Lösungsgleichgew. i. Syst. Na₂SO₄-MnSO₄-H₂O. A. u. H. Benrath, 179, 369.

Mangan-2-Natrium-2-sulfat-2-Hydrat. Lösungsgleichgew. i. Syst. Na₂SO₄-MnSO₄-H₂O. A. u. H. Benrath, 179, 369.

Mangansulfat-1-Hydrat. Lösungsgleichgew. i. Syst.: MnSO₄-Na₂SO₄-H₂O A. u. H. Benrath, 179, 369.

Maßanalyse. Jodometrie v. Salpetrigsäure nach Trenng. v. d. Begleitern als Ester. W. M. Fischer, A. Schmidt, 179, 332.

Maßanalyse, potentiometrische, v. Gold u. Platin m. SnCl₂-lsgg.

R. Bennewitz, 179, 113. Massenwirkungsgesetz, neues. Anwdg. z. Ber. d. Einfl. v. Zusätzen a. d. Gleichgew. d. Rk.: Cd + PbCl₂ ⇒ Pb + CdCl₂ u. ähnlicher. R. Lorenz, G. Schulz, 179, 97.

Metalle. Entropie u. Verdampfungswärme. W. Herz, 179, 277.

- Lösung i. Salzschmelzen; Verteilung d. Metalles i. d. Schmelze. W. Eitel, B. Lange, 178, 108.

Z. anorg. u. allg. Chem. Bd. 180.

Methan. Zerfallsgleichgew. über Kobalt m. C od. ConC als Bodenkörper. R. Schenck, H. Klas, 178, 146.

Methyläther. Darst., Abweichung d. Drucke s. bin. Gemische m. SO₂, CO₂, CH₃Cl v. Teildruckgesetz, Bldg. v. Verbb. M. Trautz, M. Gürsching, 179, 1.

Methylalkohol. Einw. a. Cadmium-Magnesiumlegg. C. Kröger, 179, 27. Methylamin. Verbb. m. Lithiumhalogeniden; Existenzbereich, Bldgs.-wärme. A. Simon, R. Glauner, 178, 177.

Methylchlorid. Abweichung d. Druckes s. Gemische m. Methyläther v. Teildruckgesetz; Bldg. einer Verb. M. Trautz, M. Gürsching, 179, 1. Methylnitrit. Anwdg. z. Trenng. d. Salpetrigsäure v. Begleitern. W. M. Fi.

scher, A. Schmidt, 179, 332.

Methyl-Phenolphthaleine. Darst., Verh. als Indikator; Absorptionsspektrum, Entfärbung. A. Thiel, L. Jungfer, 178, 49.

Methylphosphin. Einfl. a. d. Zünddruck v. PH3-O2-Gemischen. M. Trautz,

W. Gabler, 180, 321.

Minerale. Carnallit; Verarbtg. a. Rubidiumpräp. G. Jander, H. Faber, 179, 321.

— Goethit, Rubinglimmer; Röntgendiagramm; Bezz. z. Eisenhydroxyd.

G. F. Hüttig, H. Garside, 179, 49.

Mischkristalle v. Aluminium u. Silicium; Grenze d. Mischkrist.-bldg. L. An-

astasiadis, 179, 145.

– v. Cadmium u. Magnesium; Einwirkungsgrenze, Pot., galv. Kristallgitter. C. Kröger, 179, 27.

- v. Gold u. Platin. A. T. Grigorjew, 178, 97.

− v. Kobalt m. Kohlenstoff; Sättigungsgrenze u. Gleichgew. d. Rk. nCo + $CH_4 \rightleftharpoons Co_nC + 2H_2$. R. Schenck, H. Klas, 178, 146.

v. Nickel u. Nickelsulfid; Gleichgew., het., m. NiO u. SO₂. R. Schenck,
 E. Raub, 178, 225.

- v. Zirkonoxyd m. CaO. O. Ruff, F. Ebert, E. Stephan, 180, 215.

v. Zirkonoxyd m. Thoriumoxyd. O. Ruff, F. Ebert, H. Woitinek, 180, 252.
 Modell, räumliches, d. Gleichgeww. i. Syst. Fe-C-O. E. Jänecke, 178, 73.
 Molarraum v. Aminen u. dgl. i. Nickelcyanidkomplexen. E. Hertei, E. Rissel, F. Riedel, 178, 202.

v. o-Phenylendiamin u. s. Komplexverbb. W. Hieber, K. Ries, 180, 225.

Molarbrechung. Bez. z. Molekelnanzahl. W. Herz, 179, 211.

Molekelnzahl v. anorg. u. org. Verbb.; Bez. z. Molbrechung. W. Herz, 179, 211. Molekelverbindungen v. Nickelcyanid; Haftfestigkeit u. Raumbeanspruchung org. Liganden. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Molekelwärme d. Elemente; Formel z. Ber. u. Bez. z. period. Syst. J. Maydel, 178, 113.

Molekularvolumen s. Molarraum.

Molybdänsäure. Anwdg. z. Nachw. v. Kieselsäure. F. Oberhauser, J. Schormüller, 178, 381.

N.

Natrium, Bindung (Adsorption) an Graphit u. Ruß. K. Fredenhagen, H. Suck, 178, 353.

 Legg., bin., m. Calcium, Erstarrungsdiagr., Kleingef. R. Lorenz, R. Winzer, 179, 281.

- Nachw. i. Salzgemischen u. Silicaten. N. A. Tananaeff, 180, 75.

- Schmelzdrucklinie. F. Simon, G. Glatzel, 178, 309.

Natriumazid. Verh. d. Lsg. geg. Ozon; Bldg. v. Per-Salpetrigsäure. K. Gleu, E. Roell, 179, 233.

Natrium-1-Hydro-1-beryllat-1-Hydrat. Darst., Lösl. R. Fricke, H. Humme, 178, 400.

Natrium-per-borat. Rk. m. K.J-lsg., Konst. M. Le Blanc, R. Zellmann, 180, 127. Natriumchlorid. D. W. Hieber, K. Ries, 180, 225.

Einfl. a. d. Gleichgew. d. Rk.: Cd + PbCl₂ ⇒ Pb + CdCl₂ i. Schmelzfluß.
 R. Lorenz, M. Hering, 178, 33, 40.

Einfl. a. d. Gleichgew. d. Rk.: Pb₂ + CdCl₂ ⇒ Cd + PbCl₂ i. Schmelzfluß.
 R. Lorenz, M. Hering, 178, 337.

J. J. Saslawsky,

Natriumehlorid. Einfl. a. d. Gleichgew. d. Rk.: Pb + CdCl₂ ⇒ PbCl₂ + Cd u. ähnlicher i. Schmelzfluß; Ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.

Natriumhydroxyd. Lösungsgleichgew. i. Syst.: BeO-Na₂O-H₂O. R. Fricke,

H. Humme, 178, 400.

Vol.-änderung b. Neutralisation m. CH₃CO₂H, HNO₃, H₂SO₄. J. J. Saslawsky, E. G. Standel, W. W. Towarow, 180, 241.

Natriumoleat. Kristallkernzahl d. Gels i. Abhäng. v. Vorbehandlg., Unterkühlg., Konz. P. A. Thiessen, E. Triebel, 179, 267.

2-Natrium-1-sub-phosphat. Darst. a. rot. Phosphor u. Hypo-Chlorit. J. Probst, 179, 155.

Natriumsilicomolybdat. Anwdg. z. präp. Trenng. v. Rb u. K. G. Jander, H. Faber, 179, 321.

Natriumsulfat. Lösungsgleichgeww. d. Systst.: $Na_2SO_4-R^{11}SO_4-H_2O$ ($R^{11}=Mn$, Fe, Co, Ni, Cu, Zn, Cd). A. u. H. Benrath, 179, 369.

Natriumsulfat-10-Hydrat. Schmelzpunktslinie. G. Tammann, 179, 186. 2-Natrium-1-wolframat. Diffusions- u. Extinktionskoeff. s. Lsgg. G. Jander,

D. Mojert, Th. Aden, 180, 129.

Natrium-para-wolframat. Darst., Analyse, Identität m. Natriumhexawolframat; Diff.- u. Extinktionskoeff. s. Lsg. G Jander, D. Mojert, Th. Aden, 180, 129.

5-Natrium-1-Hydro-6-wolframat-Hydrat. Darst., Analyse, Identität m. Para-Wolframat; Existenz i. sauren Wolframatlsgg. G. Jander, D. Mojert, Th. Aden, 180, 129.

Nebelbildung b. Zündung v. PH₃-O₂-gemischen. M. Trautz, W. Gabler, 180, 321. Nernst'scher Wärmesatz. Anwdg. z. Ber. d. Wassergasgleichgew. nach d. Methode d. kleinst. Quadrate. E. Maurer, W. Bischof, 178, 371.

Neutralisation v. Basen durch Säuren; Vol.-änderung. E. G. Standel, W. W. Towarow, 180, 241.

Nickel. Atom- u. Umwandlungswärme. J. Maydel, 178, 113.

 Gleichgew., het., i. Syst.: Ni-S-O₂; SO₂-drucke versch. Rkk. R. Schenck, E. Raub, 178, 225.

Nickel-2-bromid-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.

Nickel-2-bromid-4-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89-Nickel-2-chlorid-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Nickel-2-chlorid-4-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.

Nickel-2-chlorid-6-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Nickelcyanid. Komplexverbb. m. Aminen. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickelcyanid-1-Athylamin. Dampfdruck, Mol.-raum. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickelcyanid-2-Athylamin. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickelcyanid-1-Ammoniak-Hydrat. Dampfdruck, Mol.-raum. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickeleyanid-2-Anilin. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickeleyanid-1-Benzylamin-(1-Hydrat). Dampfdruck, Mol.-raum. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickelcyanid-1(2)-Butylamin. Dampfdruck, Mol.-raum. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickelcyanid-1-Diathylamin. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickeleyanid-1-Dimethylamin. Dampfdruck. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickelcyanid-1-Methylamin. Dampfdruck, Mol.-raum. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickeleyanid-2-Methylamin. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickelcyanid-ω-Phenyläthylamin. Dampfdruck. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickeleyanid-1(2)-Propylamin. Dampfdruck, Mol.-raum. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Nickeleyanid-1-Trimethylamin. Dampfdruck. E. Hertel, E. Rissel, F. Riedel. 178, 202.

Nickel-2-jodid-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Nickel-2-jodid-3-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Nickel-2-jodid-4-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.

Nickel-2-Natrium-2-sulfat-4-Hydrat. Lösungsgleichgew. i. Syst.: Na₂SO₄-NiSO₄-H₂O. A. u. H. Benrath, 179, 369.

Nickel-1-oxyd. Gleichgew., het., d. Rk.: $2\text{NiO} + \text{NiS} \rightleftharpoons 3\text{Ni} + \text{SO}_2$ u. d. Rk.: $3\text{NiSO}_4 + \text{NiS} \rightleftharpoons 4\text{NiO} + 4\text{SO}_2$. R. Schenck, E. Raub, 178, 225.

Nickelsalze. D. u. Mol.-raum ihrer Komplexverbb. m. o-Phenylendiamin. W. Hieber, K. Ries, 180, 225.

Nickelsulfat. Gleichgew., het., d. Rk.: 3NiSO₄+NiS

⇒ 4NiO + 4SO₂; Bldgs.wärme. R. Schenck, E. Raub, 178, 225.

Nickelsulfat-6-Hydrat. Lösungsgleichgew. i. Syst. Na₂SO₄-NiSO₄-H₂O. A. u. H. Benrath, 179, 369.

Nickelsulfat-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Nickelsulfat-4-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Nickel-1-sulfid. Gleichgew., het., d. Rk.: NiS + 2NiO \rightleftharpoons 3Ni + SO₂ u. d. Rk.: NiS + 3NiSO₄ \rightleftharpoons 4NiO + 4SO₂. R. Schenck, E. Raub, 178, 225.

Nitrite. Best. u. Trenng. als Methylnitrit. W. M. Fischer, A. Schmidt, 179, 332.

0.

Oberflächenspannung. Abhäng. v. Dichte u. Temp. J. J. van Laar, 180, 193. — v. Glas, Ber. a. d. Schrumpfung v. Glasfäden. J. Sawai, Y. Ueda, 180, 287. Ofen m. Acetylen-Sauerstoffgebläse. O. Ruff, F. Ebert, E. Stephan, 180, 215.

Oleinsäure. Kristallkernzahl i. Gel ihres Na-salzes. P. A. Thiessen, E. Triebel, 179, 267.

Organische Liganden. Haftfestigkeit u. Raumbeanspruchung i. Molekelverbb. E. Hertel, E. Rissel, F. Riedel, 178, 202.

Organische Stoffe. Bezz. v. Ausdehnungskoeff. z. Temp.-Koeff. d. Brechung W. Herz, 180, 159.

- Bez. zw. Molbrechung u. Molekelnzahl. W. Herz, 179, 211.

Oxalsäure. Einw. a. 4-Ammin-2-X-Kobaltsalze; Bldg. v. 4-Ammoniak-Oxalatoverbb. W. Schramm, 180, 161.

Ozon. Einfl. a. d. Zünddrucke v. PH₃-O₂-gemischen. M. Trautz, W. Gabler, 180, 321.

 Einw. a. Alkaliazidlsgg.; Bldg. v. Per-Salpetrigsäure. K. Gleu, E. Roell, 179, 233.

Ρ.

Partialdruck s. Teildruck.

Passivierung v. Aluminium u. Cadmium. K. Jablczynski, E. Hermanowicz, H. Wajchselfisz, 180, 184.

Peptisation v. 2-Eisen-3-oxyd, geglüht. A. Krause, 180, 120.

Periodisches System d. Elemente; Gesetzmäßigkeiten d. Atomwärmen. J. Maydel, 178, 113.

Phenol-m-kresolphthalein. Darst., Verh. als Indikator, Absorptionsspektrum, Entfärbung. A. Thiel, L. Jungfer, 178, 49.

Phenolphthalein als Indikator; Absorptionsspektrum, Rk.-geschw. d. Entfärbung; Vergleich m. subst. Phenolphthaleinen. A. Thiel, L. Jungfer, 178, 49.

Phenyldiazonium jodid. Doppelsalze m. HgJ₂. A. N. Nesmejanow, 178, 300. o-Phenylendiamin. Komplexverbb. m. Metallsalzen. W. Hieber, C. Schließmann, K. Ries, 180, 89.

Mol.-raum i. Komplexverbb. m. Metallhalogeniden. W. Hieber, K. Ries, 180, 225.

p-Phenylendiamin. Komplexverbb. m. Metallsalzen. W. Hieber, K. Ries, 180, 105.

Phosphate v. Thorium; Löslichkeitsverhältnisse. J. D'Ans, W. Dawihl, 178, 252.

- Sub-Phosphat. Darst. a. rot. Phosphor u. Hypo-Chlorit; Best. m. Ag. J. Probst, 179, 155.
- Phosphin s. Phosphorwasserstoff.
- Phosphor, rot. Verh. geg. Hypo-Chlorit; Bldg. u. Sub-Phosphat. J. Probst, 179, 155.
- Unter-Phosphorsäure. Darst. a. rot. Phosphor u. Hypo-Chlorit; Best. m. Ag. J. Probst, 179, 155.
- Phosphorwasserstoff. Zünddrucke s. Gemische m. Sauerstoff; Einfl. v. H₂O u. anderen Zusätzen. M. Trautz, W. Gabler, 180, 321.
- Photographische Platte. Vf. z. Abkürzung d. Belichtungszeit. F. Ebert, 179, 279. Platin. Best., maßanalyt.-potentiometr., m. SnCl₂-lsgg. E. Müller, R. Bennewitz, 179, 113.
- Legg., bin. m. Gold; Schmelzdiagramm, Kleingef., Härte. A. T. Grigorjew, 178, 97.
- Reindarst., Leitverm., el., Härte. A. T. Grigorjew, 178, 213.
- Verh. geg. IrF6. O. Ruff, J. Fischer, 179, 161.
- 13-Platin-1-chlorid-10-Diäthyldisulfid-2-Äthylamin-8-Hydrat. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- 5-Platin-1-chlorid-4-Diäthyldisulfid-2-Äthylendiamin. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- 3-Platin-1-chlorid-2-Diäthyldisulfid-2-Ammoniak-6-Hydrat. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- 5-Platin-1-chlorid-4-Diäthyldisulfid-1-Anilin. P. Ch. Rây, K. Ch. B. Rây, 178, 329. 5-Platin-1-chlorid-4-Diäthyldisulfid-1-Benzylamin. P. Ch. Rây, K. Ch. B. Rây, 178,
- 5-Platin-1-chlorid-4-Diäthyldisulfid-1-Diäthylamin. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- 5-Platin-1-chlorid-4-Diäthyldisulfid-4-Hydrazin. P. Ch. Rây, K. Ch. B. Rây, 178, 329
- 5-Platin-1-chlorid-4-Diäthyldisulfid-2-Methylamin. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- 9-Platin-1-chlorid-7-Diäthyldisulfid-2-Phenylhydrazin. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- 3-Platin-1-chlorid-2-Diäthyldisulfid-1-Piperidin. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- 5-Platin-1-chlorid-4-Diäthyldisulfid-1-Piperidin. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- 7-Platin-1-chlorid-5-Diäthyldisulfid-2-Propylamin. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- 5-Platin-1-chlorid-4-Diäthyldisulfid-1-Toluidin. P. Ch. Rây, K. Ch. B. Rây, 178, 329. Platin-1-chlorid-1-Dibenzylsulfid. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- Platinverbindungen, komplexe, m. org. Sulfiden. P. Ch. Rây, K. Ch. B. Rây, 178, 329.
- Platzwechselgeschwindigkeit v. Silber i. Tellurid, Antimonid, Stannid. G. v. Hevesy W. Seith, 180, 150.
- Polymorphie v. Berylliumhydroxyd. R. Fricke, H. Humme, 178, 400.
- v. Zirkon-2-oxyd. O. Ruff, F. Ebert, 180, 19.
- Potential, galvanisches, v. Cadmium-Magnesiummischkristallen geg. MgSO₄-lsgg. C. Kröger, 179, 27.
- Potential, thermodynamisches s. Thermodynamisches Potential.
- Protaktinium. Bedeutung f. d. Aktinium problem. G. Elsen, 180, 304.

Q

- Quecksilber. Best. durch quant. Spektralanalyse. Fr. Gromann, 180, 257.

 Schmelzdrucklinie. F. Simon, G. Glatzel, 178, 309.
- Verh. geg. IrF6. O. Ruff, J. Fischer, 179, 161.
- Quecksilber-2-cyanid. Kristallgitter. O. Hassel, 180, 370.
- Kristallgitter. K. Fricke, 180, 374.
- Quecksilber-1-Diphenyljodonium-3-jodid (HgII). Bldg.a. Quecksilber-Phenyldiazonium-jodid. A. N. Nesmejanow, 178, 300.

- Quecksilber-2-Diphenyljodonium-4-jodid (HgII). A. N. Nesmejanow, 178, 300. Quecksilber-1-Phenyldiazonium-3-jodid (HgII). Darst., Zerfall. A. N. Nes-
- mejanow, 178, 300. Quecksilber-2-Phenyldiazonium-4-jodid (Hg¹¹). Darst., Zerfall. A. N. Nes

R.

- Radioaktive Stoffe. Actinium problem. G. Elsen, 180, 304.
- Radiumbleichlorid. D. W. Hieber, K. Ries, 180, 225.
- Raumbeanspruchung, org. Liganden i. Molekelverbb. E. Hertel, E. Rissel, F. Riedel, 178, 202.
- v. o-Phenylendiamin i. s. Komplexverbb. m. Metallsalzen. W. Hieber, K. Ries, 180, 225.
- Reaktionsgeschwindigkeit d. Auflag. v. Al u. Cd i. Salzsäure. K. Jablczynski, E. Hermanowicz, H. Wajchselfisz, 180, 184.
- d. Bldg. u. d. Zerfalls v. aktivierter Salpetersäure. A. Klemenc, L. Klima, 179, 379.
- d. Entfärbung v. Phenolphthalein u. s. Homologen. A. Thiel, L. Jungfer, 178, 49.
- Reaktionskinetik d. Auflösung v. Aluminium u. Cadmium i. Salzsäure. K. Jablezynski, E. Hermanowicz, H. Wajchselfisz, 180, 184.
- Reaktionsmechanismus d. Entfärbung v. Phenolphthalein u. s. Homologen. A. Thiel, L. Jungfer, 178, 49.
- Refraktion s. Brechung.

mejanow, 178, 300.

- Resistenzgrenze s. Einwirkungsgrenze.
- Rhodanide v. Rhodium. F. Kraus, H. Umbach, 179, 357.
- 4-Rhodium-12-cyanid-7-Ammoniak-7-Hydrat. F. Krauss, H. Umbach, 179, 357. Rhodium-3-cyanid-α-Hydrat. Darst., Entwässerung. F. Krauss, H. Umbach, 179, 357.
- Rhodium-3-Kalium-6-cyanid (Rh^{III}). Darst. F. Krauss, H. Umbach, 179, 357. 2 -Rhodium-3-Kupfer-12-cyanid-5-Ammoniak-5-Hydrat (Cu^{II}, Rh^{III}). F. Krauss, H. Umbach, 179, 357.
- 2-Rhodium-3-Kupfer-12-cyanid-x-Hydrat (Cu^{II}, Rh^{III}). F. Krauss, H. Umbach, 179, 357.
- 2-Rhodium-3-Kupfer-12-cyanid-5-Pyridin-5-Hydrat (Cu^{II}, Rh^{III}). F. Krauss, H. Umbach, 179, 357.
- 2-Rhodium-3-Nickel-12-cyanid-4-Ammoniak-10-Hydrat (Rh^{III}). F. Krauss, H. Umbach, 179, 357.
- 2-Rhodium-3-Nickel-12-cyanid-x-Hydrat (Rh^{III}). F. Krauss, H. Umbach, 179, 357. Rhodium-3-rhodanid-x-Hydrat (Rh^{III}). F. Krauss, H. Umbach, 179, 357.
- 2-Rhodium-3-sulfat-4-Hydrat (rot) (Rh^{III}). Darst., Abbau, Isomerie, Leitverm. u. Rkk. d. Lsg. F. Krauss, H. Umbach, 180, 42.
- 2-Rhodium-3-sulfat-15-Hydrat (gelb) (Rh^{III}). Darst., Abbau zu anderen Hydraten, Isomerie, Leitverm. u. Rk. d. Lsgg. F. Krauss, H. Umbach, 180, 42.
- Röntgendiagramm v. Aluminium-3-hydroxyd (Hydrargillit, Bayerit). R. Fricke, 179, 287.
- v. Barium u. Strontium. F. Ebert, H. Hartmann, 179, 418.
- v. Berylliumhydroxyd i. 2 Formen. R. Fricke, H. Humme, 178, 400.
- v. Eisenhydroxyd nach Altern sowie v. Fe₂O₃ u. FeO. OH. G. F. Hüttig, H. Garside, 179, 49.
- v. Quecksilber-2-cyanid. O. Hassel, 180, 370.
- v. Quecksilber-2-cyanid. R. Fricke, 180, 374.
 v. Zirkon-2-oxyd i. versch. Formen u. v. Magnesiumzirkonat. O. Ruff, F. Ebert, 180, 19.
- v. ZrO₂, CaO u. CaZrO₃. O. Ruff, F. Ebert, E. Stephan, 180, 215.
- Röntgenphotographie. Vf. z. Abkürzung d. Belichtungszeit. F. Ebert, 179, 279. Rubidium. Schmelzdrucklinie. F. Simon, G. Glatzel, 178, 309.
- Rubidiumehlorid. Gewinnung a. Carnallit durch Fällg. m. Silicomolybdat. G. Jander, H. Faber, 179, 321.

Rubinglimmer. Röntgendiagramm. G. F. Hüttig, H. Garside, 179, 49. Rührgeschwindigkeit. Einfl. a. d. Auflsg. v. Aluminium u. Cadmium i. Salzsäure. K. Jablczynski, E. Hermanowicz, H. Wajchselfisz, 180, 184.

S.

- Säuren. Vol.-änderung b. Neutralisation. J. J. Saslawsky, E. G. Standel, W. W. Towarow, 180, 241.
- Salpetersäure. Oxydations- u. Nitrierungswirkung; Aktivierung durch Salpetrigsäure. A. Klemenc, L. Klima, 179, 379.
- Vol.-änderung b. Neutralisation m. NaOH u. NH₄OH. J. J. Saslawsky,
 E. G. Standel, W. W. Towarow, 180, 241.
- Salpetersäure, aktivierte. Bldg. durch HNO₂; Kinetik d. Zerfalls, Oxydationswirkung. A. Klemenc, L. Klima, 179, 379.
- Salpetrigsäure. Best., maßanalyt., nach Trenng. v. Begleitern als Ester. W. M. Fischer, A. Schmidt, 179, 332.
- Bldg. b. Einw. v. Ozon auf Azide. K. Gleu, E. Roell, 179, 233.
- Einfl. a. d. Oxydationswirkung v. HNO₃. Gleichgew. hom. i. HNO₃-HNO₂-lsgg. A. Klemenc, L. Klima, 179, 379.
- Per-Salpetrigsäure. Bldg. a. Alkaliazid u. Ozon; Verss. z. Isolierung; Rkk. K. Gleu, E. Roell, 179, 233.
- Salze. Entropie u. Verdampfungswärme. W. Herz, 179, 277.
- Salzhydrate. Änderung d. Schmelzpunktes durch Druck. G. Tammann, 179, 186.
- Sauerstoff. Diffussion i. W., Temp.-Koeff. G. Tammann, V. Jessen, 179, 125.

 Gleichgew., het., m. Eisen- u. Kohlenstoff; räuml. Modelle. E. Jänecke, 178, 73.
- Gleichgew., het., m. Nickel u. Schwefel u. m. Co u. S; SO₂-drucke versch.
 Rkk. R. Schenck, E. Raub, 178, 225.
- Gleichgeww., het., i. Syst.: O₂-S-Ca. R. Schenck, K. Jordan, 178, 389.
- Zünddrucke s. Gemische m. Phosphorwasserstoff. M. Trautz, W. Gabler, 180, 321,
- Sauerstoff (Ozon). Einw. a. Alkaliazidlsgg.; Bldg. v. Per-Salpetrigsäure. K. Gleu, E. Roell, 179, 233.
- Schmelzdrucklinie. Diskussion d. allgem. Verlaufes. F. Simon, G. Glatzel, 178, 309.
- Schmelzlinie v. Salzhydraten (Na₂SO₄.10H₂O u. MgCl₂.6H₂O). G. Tammann, 179, 186.
- Schmelzpunkt. Abhängigkeit v. Druck; Darst. durch neue Formel. F. Simon, G. Glatzel, 178, 309.
- v. Calcium u. s. Legg. m. Na. R. Lorenz, R. Winzer, 179, 281.
- v. Gold, Platin u. ihren bin. Legg. A. T. Grigorjew, 178, 97.
- v. Iridium-6-fluorid. O. Ruff, J. Fischer, 179, 161.
 v. Salzhydraten (Na₂SO₄.10 H₂O u. MgCl₂.6 H₂O); Änderung durch Druck. G. Tammann, 179, 186.
- v. Thoriumoxyd u. s. Gemischen m. Zirkonoxyd. O. Ruff, F. Ebert, H. Woitinek, 180, 252.
- v. ZrO₂-CaO-gemischen u. CaZrO₃. O. Ruff, F. Ebert, E. Stephan, 180, 215. Schrumpfung v. Glasfäden b. Erhitzen; Anwdg. z. Ber. v. Oberflächenspanng.
- u. Zähigkeit. J. Sawai, Y. Ueda, 180, 287.
 Schwefel. Gleichgew., het., m. Nickel u. Sauerstoff u. m. Co u. Sauerstoff;
 SO-drucke versch. Rkk. R. Schenck. E. Raub. 178, 225.
- SO₂-drucke versch. Rkk. R. Schenck, E. Raub, 178, 225.

 Gleichgeww. het i Syst S-Ca-O. R. Schenck K. Jordan 178, 389.
- Gleichgeww., het., i. Syst.: S-Ca-O₂. R. Schenck, K. Jordan, 178, 389.
 Verh. geg. IrF₆. O. Ruff, J. Fischer, 179, 161.
- Schwefel-2-oxyd. Abweichungen d. Drucke s. Gemische m. Methyläther v. Teildruckgesetz; Bldg. einer Verb. M. Trautz, M. Gürsching, 179, 1.
- Einw. a. CaOu. Gleichgeww., het., i. Syst.: Ca-S-O₂. R. Schenck, K. Jordan, 178, 389.
- Gleichgew., het., versch. Rkk. i. d. Systst.: Co-S-O u. N₂-S-O. R. Schenck,
 E. Raub, 178, 225.
- Verh. geg. IrF6. O. Ruff, J. Fischer, 179, 161.

- Schwefelsäure. Vol.-änderung b. Neutralisation m. NaOH. J. J. Saslawsky, E. G. Standel, W. W. Towarow, 180, 241.
- Schwefelwasserstoff. Einw. a. Eisenhydroxyd versch. Alters. G. F. Hüttig, H. Garside, 179, 49.
- Einw. a. IrF₆. O. Ruff, J. Fischer, 179, 161.
- Siedepunkt v. Iridium-6-fluorid. O. Ruff, J. Fischer, 179, 161.
- v. Magnesium, Calcium, Strontium, Barium, Lithium; Abhäng. v. Druck. H. Hartmann, R. Schneider, 180, 275.
- Silber. Atomgew., Neubest. durch Analyse v. BaClO₄. O. Hönigschmid, R. Sachtleben, 178, 1.
- Legg. m. Kupfer; Verschied. Formen d. Eutektikums. J. A. A. Leroux, E. Raub, 178, 257.
- Platzwechselgeschw. i. Tellurid, Antimonid, Stannid; Diff.-koeff. G. v. Hevesy, W. Seith, 180, 150.
- Verh. geg. IrF6. O. Ruff, J. Fischer, 179, 161.
- Verteilg. zw. fl. Al u. Pb. R. Lorenz, G. Schulz, 179, 339.
- 3-Silber-1-antimonid. Diff. geg. Cu₃Sb. G. v. Hevesy, W. Seith, 180, 150.
- Silber-per-chlorat-3-Ammoniak. Best. d. Formel a. graph. Wege. E. Weitz, H. Stamm, 179, 193.
- Silberjodid. Verfärbung dünner Schichten im Licht durch Abscheidung v. Silber. E. Jenckel, 179, 89.
- Silbernitrat-3-Ammoniak. Best. d. Formel a. graph. Wege. E. Weitz, H. Stamm, 179, 193.
- Silberoxalat-4-Ammoniak. Best. d. Formel a. graph. Wgee. E. Weitz, H. Stamm, 179, 193.
- Silber-sub-phosphat. Anwdg. z. Best. v. Sub-Phosphat. J. Probst, 179, 155.
- 4-Silber-1-stannid. Diff. geg. Cu₄Sn. G. v. Hevesy, W. Seith, 180, 150.
- 2-Silber-1-Tellurid. Diffusion geg. Cu₂Te. G. v. Hevesy, W. Seith, 180, 150. Silicagel. Adsorbens f. CO₂ u. NH₃; Isothermen; Adsorptionswärme; Einfl. d. W.
- A. Magnus, R. Kieffer, 179, 215.
 Silicate. Nachw. d. SiO₂ darin durch Molybdänsäure. F. Oberhauser, J. Schor-
- müller, 178, 381.
 Silicium. Legg., bin., m. Aluminium; Erstarrungspp., Leitverm., el., Grenze d. Mischkristallbldg. L. Anastasiadis, 179, 145.
- Silicium-2-oxyd. Nachw. m. Molybdänsäure. F. Oberhauser, J. Schormüller, 178, 381.
- Verh. geg. IrF6. O. Ruff, J. Fischer, 179, 161.
- Silicium-2-oxyd-gel. Adsorbens f. CO₂ u. NH₃; Isothermen; Adsorptionswärme; Einfl. d. Wassers. A. Magnus, R. Kieffer, 179, 215.
- Silicomolybdat. Anwdg. z. Trenng. d. Rb v. K i. Carnallit. G. Jander, H. Faber, 179, 321.
- Sorption v. Kohlen-2-oxyd u. Ammoniak an Kieselsäuregel; Isothermen, Adsorptionswärme. A. Magnus, R. Kieffer, 179, 215.
- s. auch Absorption u. Adsorption.
- Spannung s. Potential, galv.
- Spektralanalyse. Absorptionsspektrum v. Phenolphthalein u. Homologen. A. Thiel, L. Jungfer, 178, 49.
- Emissionsspektrum v. Metallegierungen z. Unters. d. Kleingef. W. Gerlach, 179, 111.
- Spektralanalyse, quantitative, v. Lösungen; Best. v. Quecksilber. Fr. Gromann, 180, 257.
- Spektroskopie. Röntgendiagramme v. Entwässerungsprodd. d. Eisenhydroxydes. G. F. Hüttig, H. Garside, 179, 49.
- Röntgeninterferenzen v. Berylliumhydroxyd. R. Fricke, H. Humme, 178, 400; s. auch Röntgendiagramme.
- Spezifische Wärme v Eisenhydroxyden; Einfl. d. Alters. G. F. Hüttig, H. Garside, 179, 49.
- v. Elementen, Bezz. z. Entropie u. Verdampfungswärme. W. Herz, 180, 284.
- d. Elemente; Formel z. Ber. u. Bez. z. period. Syst. J. Maydel, 178, 113.

- Stabilität v. Kolloidlsgg.; Abhäng. v. Teilchengröße. P. A. Thiessen, K. L. Thater, B. Kandelaky, 180, 11.
- Stahl. Einfl. fein verteilter Ausscheidungen a. d. Koerzitivkraft. W. Köster, 179, 297.
- Stickstoff. Diffusion i. W., Temp.-koeff. G. Tammann, V. Jessen, 179, 125. Einfl. a. d. Zünddruck v. PH₃-O₂-gemischen. M. Trautz, W. Gabler, 180, 321.
- Stickstoff-1-oxyd. Einfl. a. d. Zünddruck v. PH₃-O₂-gemischen. M. Trautz, W. Gabler, 180, 321.
- Gleichgew. m. HNO₃ u. HNO₂ i. Lsg. A. Klemenc, L. Klima, 179, 379. Stickstoff-2-oxyd. Rolle b. d. Aktivierung v. Salpetersäure durch HNO₂. A. Klemenc, L. Klima, 179, 379.
- 2-Stickstoff-1-oxyd. Einfl. a. d. Zünddruck v. PH₃-O₂-gemischen. M. Trautz, W. Gabler, 180, 321.
- Stickstoffwasserstoffsäure. Verh. ihrer Alkalisalze geg. Ozon; Bldg. v. Per-Salpetrigsäure. K. Gleu, E. Roell, 179, 233.
- Strontium. Kristallstruktur. F. Ebert, H. Hartmann, 179, 418.
- Siedep., Dampfdruck, Verd.-wärme, chem. Konst., krit. Temp. H. Hartmann, R. Schneider, 180, 275.
- Sulfite, komplexe, v. Kobalt (CoIII). G. Jantsch, K. Abresch, 179, 345.
- System, binäres. 2-Eisen-3-oxyd-Wasser; Abhängigkeit phys. u. chem. Eigenschaften v. Wassergehalt d. Eisenhydroxydes. G. F. Hüttig, H. Garside, 179, 49.
- Zirkonoxyd-Thoriumoxyd; Smpp., Kristallgitter, Mischkristalle. O. Ruff,
 F. Ebert, H. Woitinek, 180, 252.
- System, periodisches, s. Periodisches System.
- System, ternäres. BeO-Na₂O-H₂O; Lösungsgleichgew. R. Fricke, H. Humme, 178, 400.
- v. Ca-S-O₂; het. Gleichgeww. R. Schenck, K. Jordan, 178, 389.
- Kobalt-Schwefel-Sauerstoff; SO₂-drucke monovarianter Systeme
 R. Schenck, E. Raub, 178, 225.
- Na₂SO₄-R^{II}SO₄-H₂O (R^{II} = Mn, Fe, Co, Ni, Cu, Zn, Cd); Lösungsgleichgew. A. u. H. Benrath, 179, 369.
- Nickel-Schwefel-Sauerstoff; SO₂-drucke monovarianter Systeme.
 R. Schenck, E. Raub, 178, 225.
- m. 2 Phasen; Graph. Best. d. Zusammensetzung einer einheitlichen Phase.
 E. Weitz, H. Stamm, 179, 193.

T

- Teildruckgesetz v. Dalton; Deutung d. Abweichungen durch Bldg. v. chem. Verbb. M. Trautz, M. Gürsching, 179, 1.
- Thallium. Gleichgew., het., d. Rkk.: 2Tl + CdCl₂ ⇒ Cd + 2TlCl i. Schmelz-fluß; Einfl. v. Zusätzen, ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Thallium-1-chlorid. Gleichgew., het., d. Rk.: 2TlCl + Cd ⇒ 2Tl + CdCl₂ i. Schmelzfluß; Einfl. v. Zusätzen, ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Thermodynamisches Potential. Anwdg. z. Ableitg. d. Verteilungssatzes. R. Lorenz, 178, 346.
- Thoriumformiat. Komplexsalze. H. Reihlen, Max Debus, 178, 157.
- 3-Thorium-12-formiat-9(3,5)-Hydrat. H. Reihlen, M. Debus, 178, 157.
- 3-Thorium-2-hydroxy-10-formiat-7-Hydrat. H. Reihlen, M. Debus, 178, 157. 3-Thorium-3-hydroxy-9-formiat-10-Hydrat. H. Reihlen, M. Debus, 178, 157.
- 3-Thorium-6-hydroxy-6-formiat-4-Hydrat. H. Reihlen, M. Debus, 178, 157.
- 3-Thorium-5-hydroxy-6-formiat-1-nitrat. H. Reihlen, M. Debus, 178, 157.
 3-Thorium-1-Kalium-4-hydroxyd-1-oxo-6-formiat-1-chlorat-Hydrat. H. Reihlen,
- M. Debus, 178, 157.
 3-Thorium-1-Kalium-4-hydroxy-1-oxo-6-formiat-1-nitrat-Hydrat. H. Reihlen, M. Debus, 178, 157.
- 3-Thorium-2-Kalium-2-hydroxy-2-oxo-6-formiat-2-rhodanid. H. Reihlen, M. Debus, 178, 157.

- 3-Thorium-1-Kalium-4-hydroxy-1-oxo-6-formiat-1-rhodanid-7-Hydrat. H. Reihlen, M. Debus, 178, 157.
- 3-Thorium-1-Natrium-4-hydroxy-1-oxo-6-formiat-1-chlorat-13-Hydrat, H. Reihlen, M. Debus, 178, 157.
- 3-Thorium-1-Natrium-4-hydroxy-1-oxo-6-formiat-1-per-chlorat-9-Hydrat. H. Reihlen, M. Debus, 178, 157.
- 3-Thorium-1-Natrium-4-hydroxy-1-oxo-6-formiat-1-nitrat-10,5-Hydrat. H. Reihlen, M. Debus, 178, 157.
- Thorium-2-oxyd. Smp., Smpp. u. Kristallgitter d. Gemische m. Zirkon-oxyd. O. Ruff, F. Ebert, H. Woitinek, 180, 252.
- 3-Thorium-4-phosphat. Lösl. i. Phosphorsäurelsgg. J. D'Ans, W. Dawihl, 178, 252.
- Thorium-2-Hydro-2-phosphat-1-Hydrat. Lösl., i. Phosphorsäurelsgg. J. D'Ans, W. Dawihl, 178, 252.
- Thorium-5-Hydro-3-phosphat-2-Hydrat. Lösl. i. Phosphorsäurelsgg. J. D'Ans, W. Dawihl, 178, 252.
- Thorium-1-Hydro-1-sulfat-1-phosphat-4-Hydrat. J. D'Ans, W. Dawihl, 178, 252. 2-Thorium-12-Hydro-1-sulfat-6-phosphat-8-Hydrat. J. D'Ans, W. Dawihl, 178, 252.
- Tonerde s. Aluminium-3-hydroxyd.

 Trimethylamin. Verbb. m. Lithiumhalogeniden; Existenzbereich, Bldgs.wärme. A. Simon, R. Glauner, 178, 177.

II.

- Überführung v. Kobalt-3-Lithium-3-sulfit. G. Jantsch, K. Abresch, 179, 345. Umwandlungspunkt v. Iridium-6-fluorid. O. Ruff, J. Fischer, 179, 161.
- v. Salzhydraten; Einfl. d. Druckes. G. Tammann, 179, 186.
- v. Zirkon-2-oxyd. O. Ruff, F. Ebert, 180, 19.
- Umwandlungswärme s. Wärmetönung d. Umwandlung.
- Unterkühlung. Einfl. a. d. Form d. Silber-Kupfer-Eutektikums. J. A. A. Leroux, E. Raub, 178, 257.
- Einfl. a. d. Kristallkernzahl v. Natriumoleatgel. P. A. Thiessen, E. Triebel, 179, 267.
- Uranisotop. Stammsubstanz d. Actiniumreihe. G. Elsen, 180, 304.

V.

- Valenz, homöopolare, b. Bor. E. Wiberg, 179, 309.
- Verbindungen, chemische. Anwdg. z. Deutung d. Abweichungen v. Dalton's Teildruckgesetz. M. Trautz, M. Gürsching, 179, 1.
- Best. ihrer Formel i. einem 2-Phasensystem a. rechn. od. graph. Wege.
 E. Weitz, H. Stamm, 179, 193.
- Verdampfungswärme s. Wärmetönung d. Verdampfung.
- Verteilung v. Beimengungen i. Zinkeinkristallen. M. Straumanis, 180, 1. v. Silber zw. fl. Al u. Pb. R. Lorenz, G. Schulz, 179, 339.
- Verteilungssatz. Anwdg. a. Systst. v. fl. Metallen. R. Lorenz, G. Schulz, 179, 339.
- f. kondensierte Systeme. R. Lorenz, 178, 366.
- i. Molenbruchform. R. Lorenz, 178, 346. Vitriole. Lösungsgleichgeww. i. d. Systst. $Na_2SO_4-R^{11}SO_4-H_2O$ ($R^{11}=Mn$, Fe, Co, Ni, Cu, Zn, Cd). A. u. H. Benrath, 179, 369.
- Volumenänderung b. d. Neutralisation. J. J. Saslawsky, E. G. Standel, W. W. Towarow, 180, 241.

W

- Wägung i. Vak. O. Hönigschmid, R. Sachtleben, 178, 1.
- Wärme, spezifische, s. Spezifische Wärme.
- Wärmetönung d. Adsorption v. CO₂ u. NH₃ von Silicagel. A. Magnus, R. Kieffer, 179, 215.
- d. Bldg. v. Eisenhydroxyden, ber. a. d. Dampfdrucken. G. F. Hüttig, H. Garside, 179, 49.
- d. Bldg. v. Lithiumhalogenidverbb. m. Methylaminen. A. Simon,
 R. Glauner, 178, 177.

- Wärmetönung d. Bldg. d. Sulfate v. Nickel u. Kobalt, ber. a. d. Gleichgew. i. d. Systst. Ni-S-O u. Co-S-O. R. Schenck, E. Raub, 178, 225.
- d. Bldg. v. Verbb. d. (CH₃)₂O m. SO₂, CO₂, CH₃Cl. M. Trautz, M. Gürsching,
 179, 1.
- d. Bldg. u. Verdampfung v. IF₆. O. Ruff, J. Fischer, 179, 161.
 d. Umwandlung v. Elementen; Berechnung. J. Maydel, 178, 113.
- d. Verdampfung; Abhäng. v. Dichte u. Temp. J. J. van Laar, 180, 193.
- d. Verdampfung; Bez. z. Entropie u. spez. Wärme. W. Herz, 180, 284.
- d. Verdampfung v. Elementen u. Salzen; Bezz. z. Entropie. W. Herz, 179, 277.
- d. Verdampfung v. Magnesium, Ca, Sr, Ba, Li. H. Hartmann, R. Schneider, 180, 275.
- Wasser. Einfl. a. d. Adsorptionsverm. v. Silicagel f. CO₂ u. NH₃. A. Magnus, R. Kieffer, 179, 215.
- Einfl. a. d. Leitverm. v. fl. Fluorwasserstoff. K. Fredenhagen, G. Cadenbach, 178, 289.
- Hydratbldg. m. Gasen; die Molekelart 1. G. Tammann, V. Jessen, 179, 125.
 Wasserdampf. Einfl. a. d. Zünddrucke v. Phosphorwasserstoff-Sauerstoffgemischen. M. Trautz, W. Gabler, 180, 321.
- Gleichgew., hom., d. Rk.: H₂O + CO ⇒ H₂ + CO₂; Ber. d. Konst. nach d.
 Nernst'sehen Wärmesatz. E. Maurer, W. Bischof, 178, 371.
- Wassergasgleichgewicht. Berechnung d. Konstanten a. d. Nernst'schen Wärmegleichung. Ed. Maurer, W. Bischof, 178, 371.
- Wasserstoff. Abweichung d. Drucke s. Gemische m. Äthylen v. Teildruckgesetz. M. Trautz, M. Gürsching, 179, 1.
- Diffusion i. W.; Temp.-Koeff. G. Tammann, V. Jessen, 179, 125.
- körper. R. Schenck, H. Klas, 178, 146.

 Gleichgew., hom., d. Rk.: $H_2 + CO_2 \rightleftharpoons H_2O + CO$; Ber. d. Konst. nach d.
- Nernst'schen Wärmesatz. E. Maurer, W. Bischof, 178, 371. Wasserstoffionenkonzentration. Einfl. a. d. Farbe v. Phenolphthalein u. s. Homologen. A. Thiel, L. Jungfer, 178, 49.
- Wasserstoff-per-oxyd. Katalyse durch Eisenhydroxyd versch. Alters. G. F. Hüttig, H. Garside, 179, 49.
- Wismut. Einfl. a. d. het. Gleichgew. d. Rk.: Pb + CdCl₂ ⇒ Cd + PbCl₂ u. ähnlicher i. Schmelzfluß; Ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Legg., bin., m. Blei; Einfl. d. Abkühlungsgeschw. a. d. Struktur d. Eutektikums. G. Tammann, A. A. Botschwar, 178, 325.
- 3-Wismut-4-Pyridinium-5-Hydro-4-oxalat-10-chlorid. R. Weinland, W. Hübner, 178, 275.
- Wolframate d. Natriums; Darst.; Konst., Diff.-Koeff. u. Extinktionskoeff. d. Lsgg. G. Jander, D. Mojert, Th. Aden, 180, 129.
- Heteropoly-Wolframate. Konst. G. Jander, D. Mojert, Th. Aden, 180, 129. Isopoly-Wolframate d. Natriums, Darst., Konst., Diff.- u. Extinktionskoeff. d. Lsgg. G. Jander, D. Mojert, Th. Aden, 180, 129.

X.

p-Xylenolphthalein. Darst., Verh. als Indikator, Absorptionsspektrum, Entfärbung. A. Thiel, L. Jungfer, 178, 49.

Z.

- Zähigkeit v. Cyanwasserstoff. K. Fredenhagen, J. Dahmlos, 179, 77.
- Einfl. a. d. Diffusionskoeff. v. Gasen i. W. G. Tammann, V. Jessen, 179, 125.
 v. Glas; Ber. a. d. Schrumpfung v. Glasfäden. J. Sawai, Y. Ueda, 180, 287.
- Zink. Atom- u. Umwandlungswärme. J. Maydel, 178, 113.
- Verteilg. v. Cd u. anderen Stoffen i. seinen Einkristallen. M. Straumanis, 180, 1.

- Zink-2-Ammonium-2-sulfat-6-Hydrat. Best. d. Formel a. graph. Wege. E. Weitz, H. Stamm, 179, 193.
- Zinkbromid-1-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105. Zinkbromid-3-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Zink-per-chlorat-4-o-Phenylendiamin. W. Hieber, C. Schließmann,
- Zinkchlorid-1-Benzidin. W. Hieber, K. Ries, 180, 105. Zinkehlorid-2-Benzidin. W. Hieber, K. Ries, 180, 105.
- Zink-1-Hydro-3-chlorid-2-Hydrat. Best. d. Formel a. graph. Wege. E. Weitz, H. Stamm, 179, 193.
- Zinkehlorid-1-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89. Zinkchlorid-6-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.
- Zinkehlorid-1-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105. Zinkjodid-3-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.
- Zinkjodid-4-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.
- Zinkjodid-1-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105. Zink-6-Natrium-4-sulfat. Lösungsgleichgew. i. Syst. Na₂SO₄-ZnSO₄-H₂O. A. u.
- H. Benrath, 179, 369. Zink-2-Natrium-2-sulfat-4-Hydrat. Lösungsgleichgew. i. Syst. Na₂SO₄-ZnSO₄-H₂O.
- A. u. H. Benrath, 179, 369. Zinksalze. D. u. Molarraum ihrer Komplexverbb. m. o-Phenylendiamin
- W. Hieber, K. Ries, 180, 225. Zinksulfat-1-Hydrat. Lösungsgleichgew. i. Syst. Na₂SO₄-ZnSO₄-H₂O. A. u.
- H. Benrath, 179, 369. Zinksulfat-2-o-Phenylendiamin. W. Hieber, C. Schließmann, K. Ries, 180, 89.
- Zinksulfat-1-p-Phenylendiamin. W. Hieber, K. Ries, 180, 105.
- Zinn. Gleichgew., het., d. Rk.: $Sn + PbBr_2 \Rightarrow SnBr_2 + Pb$ u. ähnlicher i. Schmelzfluß; Einfl. v. Zusätzen, ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Zinn-2-bromid. Gleichgew., het., d. Rk.: $SnBr_2 + Pb \rightleftharpoons Sn + PbBr_2$ u. ähnlicher i. Schmelzfluß; Einfl. v. Zusätzen, ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Zinn-2-chlorid. Anwdg. z. maßanalyt.-potentiometr. Best. v. Gold- u. Platin. E. Müller, R. Bennewitz, 179, 113.
- Gleichgew., het., d. Rk.: $SnCl_2 + Cd \Rightarrow Sn + CdCl_2$ i. Schmelzfluß; Einfl. v. Zusätzen, ber. nach d. neuen Massenwirkungsgesetz. R. Lorenz, G. Schulz, 179, 97.
- Zinn-2-fluorid. Oxydation durch HNO₃-HNO₂-lsgg. A. Klemenc, L. Klima, 179, 379.
- Zirkon-2-oxyd. Polymorphie, D., Röntgendiagramme d. versch. Formen. O. Ruff, F. Ebert, 180, 19.
- Schmelzgleichgeww. s. Gemische m. CaO; Röntgenogramme, Dichte d. Verb. CaZrO₃. O. Ruff, F. Ebert, E. Stephan, 180, 215.
- Smpp. u. Kristallgitter d. Gemische m. ThO2. O. Ruff, F. Ebert, H. Woitinek, 180, 252.
- Zünddrucke v. Phosphin-Sauerstoff-gemischen; Einfl. v. Temp., H₂O u. anderen Zusätzen. M. Trautz, W. Gabler, 180, 321.
- Zustandsdiagramm d. Aluminium-Siliciumlegg. L. Anastasiadis, 179, 145.
- v. Calcium-Natriumlegg. R. Lorenz, R. Winzer, 179, 281. - v. Eisen-Kupferlegg.; Bezz. z. Härte u. Magnetismus. A. Kussmann, B. Scharnow, 178, 317.
- v. Gold-Platinlegg. A. T. Grigorjew, 178, 97.
- d. Syst.: Fe-C-O. E. Jänecke, 178, 73.
- d. Zirkonoxyd-CaO-gemische. O. Ruff, F. Ebert, E. Stephan, 180, 215.
 - d. Zirkonoxyd-Thoriumoxyd-gemische. O. Ruff, F. Ebert, H. Woitinek,
- Zustandsgleichung v. van der Waals; Berechng. v. a. R. Lorenz, 179, 293.

Manuskriptsendungen sind unter der Anschrift

Professor Dr. Richard Lorenz,

Institut für physikalische Chemie der Universität Frankfurt a. M., Robert Mayerstrasse 2

einzusenden. Der Verlag bittet die Arbeiten in möglichst gedrängter Kürze abzufassen und die Manuskriptblätter nur auf einer Seite zu beschreiben. Die Drucklegung und Veröffentlichung der Arbeiten erfolgt in der Reihenfolge des Einlaufes.

Figuren. Alle Vorlagen zu den Kurven sind gesondert vom Text auf glattem Papier mit hellblauem Millimeternetz (Koordinatenpapier) einzureichen (Kurven und Koordinatenlinien mit Tusche ausgezogen, Beschriftung nur mit Bleistift eingetragen). Die Vorlagen sind am besten in einfacher bis doppelter Größe (doppelte Länge der Koordinaten), in der sie nachher in der Zeitschrift abgedruckt werden, auszuführen. Wenn die graphisch dargestellten experimentellen Bestimmungen Fehler haben, die höchstens ein Prozent des gemessenen Wertes ausmachen, so ist neben der graphischen Darstellung eine Wiedergabe der Messungen in Tabellenform nicht nötig. Zeichnungen von Apparaten müssen ebenfalls auf glattem Papier, aber ohne Millimeternetz geliefert werden.

Jeder Figur (sowohl von Kurven, wie von Apparaten und Abbildungen) muß eine Unterschrift beigefügt sein, so daß die Figur unabhängig vom

Text der Abhandlung wieder erkennbar ist.

Anmerkungen: Der Name des im Text genannten Autors ist zu wiederholen. Die Zeitschrift für anorganische und allgemeine Chemie ist mit "Z. anorg. u. allg. Chem." zu zitieren, nicht mit "diese Zeitschrift."

Klischees. Wenn von seiten der Herren Autoren der Zeitschrift f. anorg. u. allg. Chemie für den Druck ihrer Arbeiten Klischees zur Verfügung gestellt werden, so sind dieselben direkt an die

Buchdruckerei Metzger & Wittig in Leipzig C 1, Hohe Strasse 1, zu senden.

Sonderabzüge. Jedem Autor werden 50 Sonderabzüge mit Umschlag umsonst geliefert. Mehr gewünschte Sonderabzüge werden

> bei einem Umfange bis zu ¹/₂ Bogen mit je 15 Pfg., bei einem Umfange bis zu 1 Bogen mit je 20 Pfg., Umschlag mit je 5 Pfg. berechnet.

Anschrift des Verlages: Leopold Voss, Leipzig C 1, Salomonstr. 18b.

Carl Friedrich Plattner's Probierkunst mit dem Lötrohre

Eine vollständige Anleitung zu qualitativen und quantitativen Lötrohr-Untersuchungen

Von

Dr. phil., Dr. h. c. Friedrich Kolbeck

Geh. Bergrat, Prof. der Mineralogie und Lötrohrprobierkunde an der Bergakademie Freiberg I. Sa.

Achte, umgearbeitete Auflage

XVI, 500 Seiten mit 72 Abbildungen. 1927. 8°

Rm. 21.50, geb. Rm. 24.—

Anzeiger f. Berg-, Hütten- u. Maschinenwesen: Das Buch enthält eine Beschreibung der zur Lötrohrprobe erforderlichen Gegenstände, Instrumente, wie Reagenzien, dann die qualitativen und die quantitativen Lötrohrproben. Die Geltung des Werkes ist alt und festbegründet. Neue Deutsche Bergbau-Zeitung: Sowohl nach seiner historischen Entwickelung als auch nach dem vorliegenden Inhalte ist das Buch vom allerbesten, was es auf diesem Gebiete gibt und es verschafft jedem, der sich für diese Disziplin interessiert, sichere Anleitung in der Ausfübung der Probierkunst mit dem Lötrohr.

B. R.

JOHANN AMBROSIUS BARTH / VERLAG / LEIPZIG

Feinsilber Kühl- und Heizschlangen für die chemische Großindustrie aus nahtlosem Feinsilberrohr in jeder Größe und einwandfreier Ausführung Erste Referenzen!

SIEBERT # HANAU%

Neuerscheinung:

Jahresbericht über die Leistungen der chemischen Technologie für das Jahr 1928

74. Jahrgang

Von

Prof. Dr. B. Rassow und Dr. A. Loesche Leipzig

(Jahrgang 1-25 v. R. v. Wagner, Jahrgang 26-56 v. Ferd. Fischer)

- 1. Abteilung: Unorganischer Teil. VIII, 514 Seiten mit 152 Abbildungen. 1929. 8°. Rm. 36.—, geb. Rm. 39.—
- 2. Abteilung: Organischer Teil. IV, 612 Seiten mit 67 Abbildungen. 1929. 8°. Rm. 36.—, geb. Rm. 39.—

Kali: Es gibt wohl kaum ein anderes Gebiet der Technologie, welches über ein so bedeutendes Werk verfügt, wie es diese Jahresberichte sind. In lückenloser Reihenfolge mit dem Jahre 1855 beginnend, geben diese Bände ein eingehendes Bild von der Entwicklung der chemischen Technologie. Ja, in den ersten Jahrzenten waren sie die einzige regelmäßige Veröffentlichung auf chemisch-technischem Gebiete.

JOHANN AMBROSIUS BARTH / VERLAG / LEIPZIG

