University of Texas, Dallas Department of Electrical and Computer Engineering CE/EEDG 6325: VLSI Design D FlipFlop

Submitted by Dhruvi Shah (DDS200004) Navya Bandari (NXB210004) Naga Mutya Kumar Kumtsam (NXK210028)

Times of D FlipFlop

Parameter	Passing 1	Passing 0
Tsu_dd	39.85ps	29.85ps
Tsu_opt	82.85ps	82.85ps
Thold	29.85ps	39.85ps
Tclk>Q	234.5ps	241.5ps
tD	317ps	324ps

Analysis of D FlipFlop

Height : 7.942um Width : 8.5um Area : 67.507um

Introduction:

We have designed a schematic for D-Flip-Flop and applied Dual Euler Trail (DET). After obtaining DET, we designed a layout with 2 diffusion breaks and characterized the D-Flip-Flop. The D Flip- flop has three inputs:

- a) D
- b) CLK
- c) Reset (R) and

one output:

a) Q

We have calculated Tsu_dd, Tsu_opt, Thold, Tclk->Q and tD for passing '0' and passing '1' conditions of the flip-flop using a rising edge clock.

Steps to find the time of D-FF

- a) SetupTime(Tsu): Time Duration that an input signal D must be present and stable before capturing edge to get a valid logic value at the Output.
- b) DropDead Setup Time(Tsu_dd): Absolute minimum time required for the input signal D to arrive before triggering clock edge such that input signal is captured at the output.
- c) Clock to Q time(Tclk>q): Time taken for the output Q to take a value after the capturing edge.
- d) Delay Time(tD): Time taken by input signal to appear at output.

e) Hold Time; Minimum time measured from triggering edge for which the input must be stable to get the valid output.

Tsu
$$dd(1)$$
= Thold(0) and Viceversa

f) Optimum Setup Time(Tsu_opt); Time for which tD is minimum and can be obtained by using Tsu and tD.

Schematic

Layout

Abstract View

Distance of Pin Grid

Distance between Right offset and Clk

Distance between Clk and D

Distance between D and R

Distance between R and Out

Distance between Out and Offset

Waveforms

Passing 1:

Passing '0'

Opt time vs Clk

Setup time

Minimal Time opt

Spice testing Setup File

For Passing '1'

\$transistor model

.include

"/proj/cad/library/mosis/GF65_LPe/cmos10lpe_CDS_oa_dl064_11_20160415/models/YI-SM00 030/Hspice/models/design.inc"

.include "DFlipFlop.pex.sp"

.option post runlvl=5

xi GND! OUT VDD! CLK D RST DFlipFlop

vdd VDD! GND! 1.2v

va CLK GND! pwl(0ns 1.2v 1ns 1.2v 1.083ns 0v 4ns 0v 4.083ns 1.2v 8ns 1.2v 8.083ns 0v 12ns 0v 12.083ns 0v 14ns 0v)

vb D GND! pwl(0ns 0v 'unit' 0v 'unit + 83.3ps' 1.2v)

vc RST GND! pwl(0ns 1.2v 2ns 1.2v 2.0625ns 0v 3ns 0v 3.0625ns 0v 14ns 0v)

cout OUT GND! 50f

\$transient analysis

.tran 0.001ns 14ns sweep unit 3.8ns 3.99ns 1ps

.measure t_su trig v(D) val=0.6 rise=1 targ v(CLK) val=0.6 rise = 1 .measure clk_Qt trig v(CLK) val=0.6 rise = 1 targ v(OUT) val=0.6 rise=1 .measure tdelay param='t su + clk Qt'

.end

For Passing '0'

```
$transistor model
.include
"/proj/cad/library/mosis/GF65 LPe/cmos10lpe CDS oa dl064 11 20160415/models/YI-SM00
030/Hspice/models/design.inc"
.include "DFlipFlop.pex.sp"
.option post runlvl=5
xi GND! OUT VDD! CLK D RST DFlipFlop
vdd VDD! GND! 1.2v
va CLK GND! pwl(0ns 1.2v 1ns 1.2v 1.083ns 0v 4ns 0v 4.083ns 1.2v 8ns 1.2v 8.083ns 0v 12ns
0v 12.083ns 0v 14ns 0v)
vb D GND! pwl(0ns 1.2v 'unit' 1.2v 'unit + 83.3ps' 0v)
vc RST GND! pwl(0ns 1.2v 2ns 1.2v 2.0625ns 0v 3ns 0v 3.0625ns 0v 14ns 0v)
cout OUT GND! 50f
$transient analysis
.tran 0.001ns 14ns sweep unit 3.5ns 4ns 10ps
.measure t su trig v(D) val=0.6 fall=1 targ v(CLK) val=0.6 rise = 1
.measure clk Qt trig v(CLK) val=0.6 rise = 1 targ v(OUT) val=0.6 fall=1
.measure tdelay param='t su + clk Qt'
.end
```