MATLAB Physics Simulations

Volcano projectiles simulation file

```
Volcan.m × +
       %% INGRESO DE DATOS INICIALES
1
2
       % Paulo Ogando, Cesar Emiliano Palome, Jose Luis Madrigal, Jorge Isidro Blanco, Fernando Emilio
 3
      % 45, 100, 5426, 5, 1.5, 250
 4 -
      angulo = input("Dame el angulo de salida del proyectil en grados: ");
 5 -
       velocidad inicial = input("Dame la Velocidad Inicial del Proyectil en m/s: ");
       altura volcan = input("; Cuánto mide el Volcan? (m): ");
 6 -
7 -
       resistencia aire b = input("Medida de la resistencia del aire: ");
8 -
      exponente_velocidad_n = input("Exponente de la Velocidad entre 1.1 y 1.9: ");
9 -
       masa_proyectil = input("¿Cuánto pesa el proyectil?(kg): ");
10
      % CALCULO DE OTROS DATOS RELEVANTES PARA EL CALCULO DE LA TRAYECTORIA
11 -
      Voy = velocidad_inicial * sind(angulo);
      Vox = velocidad inicial * cosd(angulo);
12 -
13 -
      tiempo recorrido = (-(-Voy)+sqrt(Voy^2-(4*(4.9)*-altura volcan)))/(2*4.9);
      Axj = (-resistencia_aire_b*(Vox^2+Voy^2)^((exponente_velocidad n-1)/2)*Vox)/masa proyectil;
14 -
15 -
      Ayj = ((-resistencia aire b*(Vox^2+Voy^2)^((exponente velocidad n-1)/2)*Voy)/masa proyectil)-9.81;
16 -
      dt = tiempo recorrido/5000;
17 -
      c = 1;
      t = 0;
18 -
       x = 0;
19 -
       Verlet = [c t x altura volcan Vox Voy Axj Ayj];
20 -
      %% METODO DE VERLET
21
23 -
          Verlet(c+1,:) = [c+1]
<
```

Inputs

```
>> Volcan
Dame el angulo de salida del proyectil en grados: 45
Dame la Velocidad Inicial del Proyectil en m/s: 100
¿Cuánto mide el Volcan?(m): 5426
Medida de la resistencia del aire: 5
Exponente de la Velocidad entre 1.1 y 1.9: 1.5
¿Cuánto pesa el proyectil?(kg): 250
```

Graph with air friction and without it (remember this is shown as an animation to see trajectory)

Roller coaster car file

```
Montaña_rusa.m × +
       %% INGRESO DE DATOS INICIALES
 1
 2
       % Paulo Ogando, Cesar Emiliano Palome, Jose Luis Madrigal, Jorge Isidro Blanco, Fernando Emilio
 3
       % -50, 3, 100, 0.1, 35, 30, 0.03
 4 -
       v = input("Dame la Velocidad Inicial del carrito en m/s: ");
 5 -
       k = input("Medida de la resistencia del aire: ");
 6 -
       m= input("¿Cuánto pesa el carrito?(kg): ");
 7 -
       mk = input("Dame el coeficiente de friccion de la pista(menor a .5): ");
       largo = input("Dame la longitud de la montaña rusa: ");
 8 -
 9 -
       posinicial = input("Dame la posicion inicial del carrito: ");
       dt = input("Dame delta t: ");
10 -
       %% Grafica Montaña Rusa
11
12 -
       X = 0:.2:largo;
13 -
       Y = [];
14 -
     \neg for x = 0:.2:largo;
15 -
           paren = (pi*x)/25;
           y = 12*cos(paren) + 15;
16 -
            Y = [Y \ y];
17 -
18 -
       end
19 -
       hold on
20 -
       plot(X,Y,'r');
21 -
       title("Montaña Rusa");
22 -
       ylabel("Altura");
23 -
       xlabel("Longitud");
```

Inputs

>> Montana rusa

Dame la Velocidad Inicial del carrito en m/s: -50

Medida de la resistencia del aire: 3

¿Cuánto pesa el carrito?(kg): 100

Dame el coeficiente de friccion de la pista (menor a .5): 0.1

Dame la longitud de la montaña rusa: 35

Dame la posicion inicial del carrito: 30

Dame delta t: 0.03

Simulation (this is an animation as well)

Implementation in App Designer

José Luis Madrigal

Acknowledgments

To my friends who helped me better understand some concepts, Pol (with the Physics laws) and Palome (with the App Designer).