2ELE043 - Princípios de Comunicações

EXPERIÊNCIA 7 – Modulador AM

Taufik ABRÃO[†] and Jaime L. JACOB[†], Lab. Telecom - Depto Eng. Elétrica da UEL

RESUMO Experimento e análise de um circuito modulador AM com transistor bipolar e à diodo (modulador passivo). *palavras-chave:* Modulador AM-DSB.

1. OBJETIVOS

• Implementar e analisar dois tipos de moduladores AM-DSB: passivo e ativo.

2. MATERIAL NECESSÁRIO

2.1 Utilizar o aplicativo Orcad

3. INTRODUÇÃO

Veja unidade 4 - Moduladores e Demoduladores AM.

4. ROTEIRO EXPERIMENTAL

4.1 Modulador AM-DSB

O circuito modulador AM-DSB da figura 1 emprega modulação do tipo série. Q1 opera como amplificador de RF e Q2 como modulador. O trimpot R_1 controla o índice de modulação, m.

Figura 1 Modulador AM-DSB.

- 1. Montar o circuito da figura 1;
- 2. Utilize o gerador de áudio como sinal modulante (200Hz e amplitude de $2V_{\rm pico}$) e o gerador de sinal senoidal ajustado inicialmente para 100KHz como sinal da portadora;
- 3. Obtenha o índice de modulação, m, utilizando os dois métodos (osciloscópio no modo varredura interna e método do trapézio). Com esta montagem, quais são os limites para m?
 - a. Caso seja possível obter índice m>1, observe o que ocorre com o sinal quando se utiliza método do trapézio. É possível aplicar este método na avaliação de índices de modulação maiores do que 100%? Por que?

- 4. Determine o fator de mérito experimental do modulador, $Q_{\text{Load Exp}}$ utilizando como carga a própria ponta de prova do osciloscópio.
 - a. Modifique o circuito de tal forma a obter $Q_{\rm Load}^* = \frac{{}^Q{\rm Load} \; {\rm Exp}}{2}. \;\; {\rm Mostre \; os \; c\'alculos \; e}$ esboce a nova configuração e confirme a validade dos c\'alculos através de uma medida.
- 5. Como é possível reduzir eventuais compenentes de frequências espúrias à saída?

4.2 Modulador AM-DSB com Diodo

Pode-se obter um simples gerador de sinais AM-DSB de banda estreita empregando-se diodo, figura 2. Na junção de R1 e R2 o sinal resultante é a soma do sinal de áudio e da portadora. Neste ponto, a portadora ainda não está modulada em amplitude. S_1 foi acrescentada ao circuito simplesmente para facilitar compreensão e análise. Tomando como exemplo $f_{carrier}=100 \rm kHz$ e sinal modulante tonal com $f_{in}=2 \rm kHz$, somente aparecerão na saída a portadora e as duas bandas laterais (98kHz e 102kHz), enquanto que o sinal modulante será filtrado.

Figura 2 Modulador AM a diodo.

- 1. Monte o circuito da figura 2 com L_1 disponível na bancada e faça C_1 de tal forma a obter o conjunto C_1L_1 ressonante em até algumas centenas de kHz.
- 2. Ajuste a frequência da portadora de forma a obter máxima amplitude de saída quando não houver sinal modulante. Esta frequência representa a ressonância do circuito LC paralelo. Confirme através de cálculos a frequência de ressonância do circuito C_1L_1 .
- 3. Para o sinal modulante, escolha uma frequência para $f_{\rm in}$ de tal forma a obter uma modulação em banda estreita. Verifique as formas de onda em cada nó, com S_1 aberta e fechada.
- 4. Meça o índice de modulação, m.
- 5. Meça o Q_{Loaded} do modulador.