PRÁCTICA 1: MEDIDAS EN CORRIENTE ALTERNA

Por: Arturo Cortés Sánchez 22-11-2018

Objetivo:

Observar cómo se modifica la tensión de la señal de salida al medir la tensión entre dos puntos del circuito cuando se modifica la frecuencia de la señal de entrada. Obtener los valores necesarios para realizar el diagrama de Bode de amplitud de la salida en el condensador del circuito.

Fundamento y análisis teórico

En esta práctica hemos construido un filtro paso bajo el cual solo deja pasar las frecuencias bajas. Para ello hemos usado un condensador de 2,2 nF en serie con una resistencia de $10K\Omega$ conectados a una fuente de tensión alterna. Podemos calcular la frecuencia de corte del filtro paso bajo usando la siguiente formula:

$$f_0 = \frac{1}{2 \pi RC}$$

Simulaciones

Calculamos la frecuencia teórica de corte
$$\rightarrow f_0 = \frac{1}{2 \pi \cdot 10 \cdot 10^3 \cdot 2, 2 \cdot 10^{-9}} \approx 7082,347 \, Hz$$

Experimental

Durante la práctica hemos tratado de encontrar la frecuencia de corte del filtro paso bajo de forma experimental. Para ello hemos ido ido variando la frecuencia de la de la fuente conectada al circuito y hemos realizando una medida con cada frecuencia.

Hz	rad/s	Vipp	Vopp	Vopp/Vipp	LOG(w)	20 LOG(Vopp/Vipp)
50	314	20	19,7	0,985	2,4969296481	-0,131275390047765
80	502,4	20	19,7	0,985	2,7010496307	-0,131275390047765
100	628	20	19,6	0,98	2,7979596437	-0,175478486150102
200	1256	20	19,4	0,97	3,0989896394	-0,264565314675103
300	1884	20	19,4	0,97	3,2750808985	-0,264565314675103
500	3140	20	19,4	0,97	3,4969296481	-0,264565314675103
800	5024	20	19,4	0,97	3,7010496307	-0,264565314675103
1000	6280	20	19,2	0,96	3,7979596437	-0,354575339208632
2000	12560	20	18,8	0,94	4,0989896394	-0,537442928006026
3000	18840	20	18	0,9	4,2750808985	-0,915149811213502
5000	31400	20	15,6	0,78	4,4969296481	-2,15810794619039
7082,247	44476,51116	20	13,6	0,68	4,6481307129	-3,34982174587527
8000	50240	20	12,8	0,64	4,7010496307	-3,87640052032226
10000	62800	20	11,1	0,555	4,7979596437	-5,11414033754648
20000	125600	20	6,38	0,319	5,0989896394	-9,92418633885638
30000	188400	20	4,44	0,222	5,2750808985	-13,0729405109872
50000	314000	20	2,72	0,136	5,4969296481	-17,3292218325957
80000	502400	20	1,7	0,085	5,7010496307	-21,4116214857141
100000	628000	20	1,38	0,069	5,7979596437	-23,2230181852549
200000	1256000	20	0,7	0,035	6,0989896394	-29,1186391129945
300000	1884000	20	0,469	0,02345	6,2750808985	-32,597143058978
500000	3140000	20	0,278	0,0139	6,4969296481	-37,1397039949181
800000	5024000	20	0,178	0,0089	6,7010496307	-41,0121998671017
1000000	6280000	20	0,14	0,007	6,7979596437	-43,0980391997149

En la tabla podemos ver que con unas frecuencias entre 5000Hz y 8000Hz el voltaje de salida empieza a descender. Por lo que vemos que se los resultados experimentales se corresponden bastante bien con los teóricos.

Posteriormente hemos realizado el diagrama de bode con los datos obtenidos

En el diagrama podemos apreciar como la linea empieza a descender aproximadamente cuando el logaritmo de la frecuencia es 4,5. Lo que se corresponde con 5000Hz o una frecuencia ligeramente superior.

Conclusiones

Comparando los resultados teóricos con los experimentales vemos se aprecia cierta correspondencia, aun así si comparamos el diagrama de bode los cálculos iniciales vemos que hay un margen de error de unos 1500Hz

Bibliografía

PDF proporcionado de la práctica 1