

Inteligência Artificial

Época Normal – 22 Junho de 2005

Com Consulta / Duração: 2h30m

1. Métodos de Resolução de Problemas (5 Val)

Suponha o seguinte jogo (para 1 jogador). Um tabuleiro constituído por 6 casas contém três peças do tipo "X" e três peças do tipo "O". O objectivo do jogo é colocar as três peças "X" na linha de cima e as três peças "O" na linha de baixo (tal como é demonstrado na figura) realizando o mínimo de movimentos. Para tal, o jogador pode, em cada jogada, trocar a posição de duas peças (diferentes) adjacentes segundo a horizontal ou vertical.

X	X	X
O	О	О

a) Formule o problema como um problema de pesquisa, descrevendo detalhadamente a representação do estado, estado inicial, teste objectivo, operadores (para calcular os sucessores) e suas pré-condições e efeitos e função de custo. Suponha que o estado inicial é o seguinte: (2 Val.)

X	О	О
X	X	О

- b) Defina uma função f(n) = g(n) + h(n) que lhe permita aplicar o Algoritmo A* a este problema. (1 Val).
- c) Apresente a árvore de pesquisa gerada pelo A* partindo do estado inicial apresentado (1 Val).
- d) Indique justificando qual o factor de ramificação médio da árvore de pesquisa e qual a dimensão do espaço de estados do problema? (1 Val).

2. Raciocínio Impreciso e Sistemas Periciais (3 Val.)

Seja a seguinte situação:

- Dado que o céu está nublado temos uma crença de 0.6 que possa Chover;
- Dado que o vento está do sul temos uma crença de 0.5 que possa Chover;
- a) Com que Crença combinada concluíamos que poderia Chover, usando o método de Dempster-Shafer?
- b) Qual a relação desse resultado com o calculado pelo Modelo dos Factores de Certeza? Explique.
- c) Dado que, seguidamente, o boletim meteorológico diz que não vai chover com 0.8 de certeza diga qual a nova Crença em Chover e qual a Plausibilidade.

3. Aprendizagem (4 Val)

Vários programas de TV foram classificados por diferentes espectadores em bons e maus, e os resultados encontram-se na tabela seguinte:

Tipo	Localização	Duração	Classificação
comedia	Porto	30	Bom
comedia	Lisboa	60	Mau
info	Outros	60	Bom
info	Lisboa	30	Bom
desporto	Outros	60	Mau
comedia	Porto	60	Mau

Os programas de TV foram caracterizados segundo três atributos que podem assumir os valores:

Tipo = { comedia, drama, informação, desporto }

Localização = { Porto, Lisboa, Outros }

Duração = { 30m, 60m }

Pretende-se prever quais programas de TV podem vir a ser considerados os mais populares, aplicando o algoritmo de aprendizagem indutiva ID3.

- a) Determine o atributo da raiz da árvore de decisão. Explique, e apresente os cálculos que efectuou.
- b) Encontre as regras induzidas pelo algoritmo ID3 sobre a classificação de programas de TV. Apresente todos os cálculos que efectuar.

Nota: $\log_2 3 = 1.585$; $\log_2 5 = 2.322$; $\log_2 6 = 2.585$; $\log_2 7 = 2.807$

4. Inteligência Artificial. (8 Val).

Responda às seguintes questões em 5/10 linhas:

- 4.1) Comente: "O Xadrez é um ambiente muito complexo para umagente inteligente! Esta complexidade deve-se a este ambiente ser contínuo (pois as jogadas são feitas de forma contínua), não determinístico (pois nunca podemos determinar quais as jogadas que o adversário vai fazer) e dinâmico (pois as peças estão sempre a mudar de posição no tabuleiro)!"
- 4.2) Supondo a seguinte árvore de pesquisa em que cada arco apresenta o custo do operador correspondente e h é uma função heurística que estima um custo para a solução, diga qual o nó expandido em seguida utilizando cada um dos seguintes métodos: a) Pesquisa em largura; b) Pesquisa em Profundidade; c) Pesquisa Gananciosa; d) Pesquisa de Custo Uniforme; e) Pesquisa A*

- 4.3) Comente a seguinte afirmação: "Não e boa ideia usar a pesquisa em profundidade iterativa (aprofundamento progressivo) pois estamos sempre a repetir a mesma pesquisa o que gasta muito mais tempo. Na pesquisa em profundidade e na pesquisa em largura não existe esta repetição pelo que estes métodos são melhores."
- 4.4) Comente: "O hill-climbing tem como principal vantagem o facto de melhorar sempre a solução de iteração para iteração ao contrário, por exemplo, do arrefecimento simulado que permite piorar a solução de uma iteração para a seguinte."
- 4.5) Suponha que estamos a tentar encontrar os valores inteiros positivos de X_1 , X_2 , X_3 e X_4 que maximizam a seguinte expressão: f = 5 $X_1 3$ $X_2X_3 + X_3 2X_4$. Pretende-se para tal utilizar algoritmos genéticos. Defina uma população inicial, e os métodos de selecção, cruzamento e mutação que permitam resolver este problema.
- 4.6) Suponha o programa Prolog apresentado ao lado. Quais as soluções que se obtêm ao efectuar as seguintes questões, pedindo sucessivamente novas respostas caso o predicado suceda: a) ?-frase. b) ?-frase(X,[]). c) ?-frase([cao],X). d) ?-frase(A,B).

nome --> [cao]. nome --> [gato]. verbo --> [come]. verbo --> [salta]. frase --> nome, verbo.

- 4.7) Em que consiste o fenómeno de "overfitting" (sobre-especialização) em Redes Neuronais? Quais as suas possíveis causas e quais os efeitos?
- 4.8) Considere uma RN muito simples, formada por um único neurónio. Os exemplos de treino são os seguintes: (Ent=-5, Saída=1); (Ent=4, Saída=1), (Ent=7, Saída=1), (Ent=-1, Saída=0), (Ent=2, Saída=0). Pode este conjunto ser aprendido com esta rede simples? Justifique.

Eugénio Oliveira Ana Paula Rocha Luís Paulo Reis