

升压超小型 300 kHz PWM / PFM切换控制 DC/DC控制器

描述:

GS1660 是一种由基准电压源、振荡电路、误差放大器、相位补偿电路、PWM/PFM切换控制电路等构成的CMOS 升压DC/DC 控制器。通过使用外接低通态电阻N沟道功率MOS,即可适用于需要高效率、高输出电流的应用电路上。通过PWM/PFM切换控制电路,在负载较轻时,将工作状态切换为占空系数为15%的PFM 控制电路,可以防止因IC的工作电流引起的效率降低。

应用:

- 移动电话 (PDC, GSM, CDMA, IMT200等)
- 蓝牙设备
- PDA
- 便携式通讯设备
- 游戏机
- 数码相机
- 无绳电话
- 笔记本

特点:

- 低电压工作: 可保证以 0.9 V (Iout = 1 mA)启动
- 占空比: 内置 PWM / PFM 切换控制电路(15~78%)
- 振荡频率: 300KHz
- 输出电压: 在 1.5~15V 之间
- 输出电压精度: ±2%
- 软启动功能: 2mS
- 带开/关控制功能
- 外接部件:线圈、二极管、电容器、晶体管
- 封装形式: SOT-23-5L

引脚排列图:

引脚分配:

引脚号	符号	引脚描述		
SOT-23-5L	10 7			
1	FB	电压调整		
2	VDD	IC 电源引脚		
3	CE	使能引脚		
4	GND	接地引脚		
5	EXT	外接晶体管引脚		

功能块框图:

绝对最大额定值:

参数	符号	极限值	单位	
VDD 脚电压	VDD	-0.3~6.5	V	
EXT 脚电压	EXT	-0.3~VDD+0.3	V	
VOUT 脚电压	VOUT	-0.3∼15V	V	
CE 脚电压	VCE	-0.3~Vin+0.3	V	
EXT 脚电流	IEXT	±40	mA	
封装功耗(SOT-23-5L)	Pd	250	mW	
工作温度	T_{Opr}	-25~+85	$^{\circ}$	
储存温度	T_{stg}	-40~+125	$^{\circ}$	

主要参数及工作特性:

测试条件: VIN=VOUT(S)X0.6,IOUT=100mA,VCE=VDD=VOUT, Topt=25℃。有特殊说明除外。

测试项目	符号	<u>条件</u>		最小值	典型值	最大值	单位	测定 电路
输出电压	VOUT	-		VOUT (S) X0. 98	VOUT(S)	VOUT (S) X1. 02	V	2
输入电压	VIN	-		-	_	6	V	2
开始工作电压	VST1	IOUT=1mA		-	-	0. 9	V	2
振荡开始电压	VST2	没有外接,向 VOUT 加电压		-	-	0.7	V	1
工作保持电压	VHLD	IOUT=1mA,降低 VIN 观测		0. 7	-	-	V	2
消耗电流 1	ISS1	$VOUT=VOUT(S) \times 0.95$		-	200	_	uA	1
消耗电流 2	ISS2	VOUT=VOUT(S)+0.5V		_	20	_	uA	1
休眠时消耗电流	ISSS	VCE=0V		_	0. 1	0.5	uA	1
EXT 端子输出电流·	IEXTH	VEXT=VOUT-0.4V		-	-35	-	mA	1
	IEXTL	VEXT=0. 4V		-	55	-	mA	1
输入稳定度	△V0UT1	VIN=VOUT(S) \times 0. 4 \sim \times 0. 6		_	30	_	mV	2
负载稳定度	△V0UT2	IOUT=10uA~VOUT/50×1.25		_	35	_	mV	2
输出电压温度系数		Ta=−25—85°C		_	±50	_	ppm/℃	2
振荡频率	fosc	VOUT=VOUT(S) \times 0.95		255	300	345	kHz	1
最大占空系数	MAXDUTY	VOUT=VOUT(S) \times 0.95		_	78	_	%	1
模式切换占空系数	PFMDUTY	VIN=VOUT(S)-0.1V,没有负载		_	15	_	%	1
CE 端输入	VSH	测定 EXT 端振荡		0.75	-	_	V	1
电压	VSL1	判断 EXT 端	VOUT≥1.5V	_	_	0.3	V	1
电压	VSL2	振荡停止	VOUT < 1.5V	_	-	0.2	V	1
CE 端输入	ISH	VCE=VOUT(S) \times 0.95		-0.1	-	0. 1	uA	1
电流	ISL	VCE=0V		-0.1	_	0.1	uA	1
软启动时间	tss			_	2	_	mS	2
效率	EFFI			-	85	-	%	2

外部器件(推荐):

1. Diode采用肖特基二极管(正向压降约为0.2V),如IN5819,IN5822

2. 电感: 采用22uH(r<0.5 Ω)

3. 电容: 采用钽电容,47uF

测定电路:

1.

外接器件的选择:

外接部件的特性参数与升压电路的主要特性之间的关系如图1所示。

图1 主要特性与外接部件之间的关系

1. 电感器

电感值(L值)对最大输出电流(Iour)和效率(η)产生很大的影响。 GS1660的Iour、 η 的"L"依靠性的曲线图如图2所示

图2 L 值-IOUT 特性、L 值-η特性

L值变得越小,峰值电流(IPK)就变得越大,提高电路的稳定性并使Iour增大。接着,若使L值变得更小,会降低效率而导致开/关切换晶体管的电流驱动能力不足,促使Iour逐渐减少。L值逐渐变大时,开/关切换晶体管的Ipk所引起的功耗也随之变小,达到一定的L值时效率变为最大。接着,若使L值变得更大,因线圈的串联电阻所引起的功耗变大,而导致工作效率的降低。Iour也会减少。因为振荡频率较高的产品可以选择L值较小的产品,因此可使线圈的形状变小。推荐使用22~100 μ H的电感器。此外,在选用电感器时,请注意电感器的容许电流。若电感器流入超过此容许电流的电流,会引起电感器处于磁性饱和状态,而明显地降低工作效率并导致IC的破损。因此,请选用Ipk不超过此容许电流的电感器。在连续模式下的Ipk如下公式所示。

$$I_{PK} = \sqrt{\frac{2I_{OUT}(V_{OUT} + V_D - V_{IN})}{f_{OSC}.L}}(A)$$

在此,fosc为振荡频率。VD大约为0.4 V。

2. 二极管

所使用的外接二极管请满足以下的条件。

- 正向电压较低。(VF<0.3 V)
- 开关切换速度快。(500 ns 最大值)
- 反向耐压在VOUT+VF 以上。
- 电流额定值在IPK 以

3. 电容器 (CIN、CL)

输入端电容器(CIN)可以降低电源阻抗,另外可使输入电流平均化而提高效率。请根据使用电源的阻抗的不同而选用CIN 值。

输出端电容器(CL)是为了使输出电压变得平滑而使用的,升压型的产品因为针对负载电流而断续地流入电流,与降压型产品相比需要更大的电容值。在输出电压较高以及负载电流较大的情况下,由于纹波电压会变大,因此请根据各自的情况而选用相应的电容值。推荐使用10 μ F以上电容器。

为了获得稳定的输出电压,请注意电容器的等效串联电阻(Resr)。本IC因Resr的不同,输出的稳定领域会产生变化。因电感值(L值)的不同而异,使用30~500 mΩ左右的Resr,可以发挥最佳的特性。但是,最佳的Resr值因L值以及电容值、布线、应用电路(输出负载)而不同,请根据实际的使用状况,在进行充分的评价之后,再予以决定。

4. 外接晶体管

外接晶体管可以使用增强(N 沟道)MOS FET 型产品。所选用的MOS FET,请使用N沟道功率MOS FET。由于所外接的功率MOS FET的门极电压以及电流,是由升压后的输出电压(VOUT)来供应,因此可以更有效地驱动MOS FET。因所选用的MOS FET的不同而异,在接通电源时有可能流入较大的电流。请在实际电路上进行充分的评价基础上,再予以使用。推荐使用MOS FET的输入容量在700 pF以下的产品。

另外,MOS FET 的通态电阻依靠输出电压(VOUT)与MOS FET 的阈值电压的电压差,因此会对输出电流量以及效率产生影响。输出电压处于较低的情况下,如果不选用带有输出电压值以下的阈值电压的MOS FET,电路就不能正常工作,务请注意。

特性曲线图

1.输出波形

Iout=1mA

Iout=10mA

Iout=100mA

Iout=200mA

2.过渡响应特性

(1) 电源投入 (Vin: 0→2V)

Iout=100mA

(2) CE端子响应(Vin: 0→2V)

Iout=1mA

Iout=100mA

3.输出电流(Iout)—输出电压(Vout)特性

4.输出电流(Iout)—效率 (Efficiency) 特性

中广芯源 GS1660

使用注意事项:

- 外接的电容器、二极管、线圈等请尽量安装在IC 的附近。
- 包含了DC/DC控制器的IC,会产生特有的纹波电压和尖峰噪声。另外,在电源投入时会产生冲击电流。这些现象会因所使用的线圈、电容器以及电源阻抗的不同而受到很大的影响,因此在设计时,请在实际的应用电路上进行充分的评价。
- 请注意开/关切换晶体管的功耗(特别在高温时)不要超过封装的容许功耗。
- DC/DC控制器的性能会因为基板布局、外围电路、外围部件的设计的不同而产生很大的变化。设计时,请在实际的应用电路上进行充分的评价。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。

封装尺寸:

