Ray API: Tasks & Actors

DS 5110: Big Data Systems
Spring 2025
Lecture 9

Yue Cheng

A recap of big data systems covered so far...

Dask: Exposes APIs that automatically parallelize Python analytics programs to a cluster of workers

MapReduce: Developers program Map and Reduce to implement batch processing applications

Spark: Based on MapReduce, but with extensive perf optimizations and a much richer set of programming APIs

A recap of big data systems covered so far...

Dask: Exposes APIs that automatically parallelize Python analytics programs to a cluster of workers

MapReduce: Developers program Map and Reduce to implement batch processing applications

Spark: Based on MapReduce, but with extensive perf optimizations and a much richer set of programming APIs

Ray is different from all the others that we covered...

Learning objectives

- Know the unique requirements of RL applications and the motivation behind Ray
- Understand the difference of two Ray APIs: tasks and actors

Motivation: Reinforcement learning

^{*:} Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602

Motivation: Reinforcement learning

RL application pattern

 Process inputs from different sensors (sources) in parallel & real-time

 Execute large number of simulations, e.g., up to 100s of millions

RL setup

Agent Environment Policy: state → action State/reward

RL setup zoomed in

RL setup zoomed in (Lunar Lander)

DS5110 Spring '25

10

Y. Cheng

Scaling out the RL setup

RL application pattern

- Process inputs from different sensors (sources) in parallel & real-time
- Execute large number of simulations, e.g., up to 100s of millions
- Simulation outcomes are used to update policy (e.g., Q-learning/SGD/Adam)

RL application requirements

- Need to handle dynamic task graphs, where tasks have:
 - heterogeneous durations (seconds to minutes)
 - heterogeneous computations (CPUs vs. GPUs)

Need to schedule millions of tasks / sec

 Need to make it easy to parallelize ML algorithms (in Python)

Today's AI/ML data system landscape

Distributed systems

Data processing

Spark, Hadoop, Dask, Modin, ...

Distributed systems

Model training

PyTorch, TensorFlow, scikit-learn, ...

Distributed systems

Model tuning

Optuna, Hyperopt, SigOpt, MLflow, ...

Distributed systems

Model serving

vLLM, FastAPI, Arize, Alibi, ...

Today's AI/ML data system landscape

Distributed systems

Data processing

Spark, Hadoop, Dask, Modin, ...

Distributed systems

Model training

PyTorch, TensorFlow, scikit-learn, ...

Distributed systems

Model tuning

Optuna, Hyperopt, SigOpt, MLflow, ...

Distributed systems

Model serving

vLLM, FastAPI, Arize, Alibi, ...

Emerging AI applications require **stitching** together **multiple** disparate systems

Ad hoc integrations are difficult to manage and program!

Ray ecosystem offers a unified solution

Distributed systems

Data processing

Spark, Hadoop, Dask, Modin, ...

Distributed systems

Model training

PyTorch, TensorFlow, scikit-learn, ...

Distributed systems

Model tuning

Optuna, Hyperopt, SigOpt, MLflow, ...

Distributed systems

Model serving

vLLM, FastAPI, Arize, Alibi, ...

Ray Al Runtime (AIR)

Data processing Ray Dataset Model training
Ray Training
Ray RLlib

Model tuning Ray Tune Model serving Ray Serve

Ray Core

(remote tasks, actors, scheduling, data sharing, etc.)

```
database = [
    "learning",
    "Ray",
    "for",
    "distributed",
    "data",
    "processing"
]
```

```
def retrieve(item_idx):
   time.sleep(item_idx / 10.)
   return item_idx, database[item_idx]
```

data = [retrieve(idx) for idx in range(6)]

```
database = [
    "learning",
    "Ray",
    "for",
    "distributed",
    "data",
    "processing"
]
def retrieve(item_idx):
    time.sleep(item_idx / 10.)
    return item_idx, database[item_idx]

def retrieve(item_idx):
    time.sleep(item_idx / 10.)
    return item_idx, database[item_idx]

def retrieve(item_idx):
    time.sleep(item_idx)
    return item_idx, database[item_idx]

def retrieve(item_idx):
    time.sleep(item_idx):
    return item_idx, database[item_idx]

def retrieve(item_idx):
    return item_idx
```

```
database =
                               def retrieve(item_idx):
  "learning",
                                   time.sleep(item_idx / 10.)
  "Ray",
                                   return item_idx, database[item_idx]
  "for",
  "distributed",
  "data",
  "processing"
                                      0
                     data = [retrieve(idx) for idx in range(6)]
                                                  0, "learning"
```

```
database = [
    "learning",
    "Ray",
    "for",
    "distributed",
    "data",
    "processing"
]

def retrieve(item_idx):
    time.sleep(item_idx / 10.)
    return item_idx, database[item_idx]

1

data = [retrieve(idx) for idx in range(6)]
```

```
database = [
    "learning",
    "Ray",
    "for",
    "distributed",
    "data",
    "processing"
]

def retrieve(item_idx):
    time.sleep(item_idx / 10.)
    return item_idx, database[item_idx]

1

data = [retrieve(idx) for idx in range(6)]
```

```
database =
                               def retrieve(item idx):
  "learning",
                                   time.sleep(item_idx / 10.)
  "Ray",
                                   return item idx, database[item idx]
  "for",
  "distributed",
  "data",
  "processing"
                     data = [retrieve(idx) for idx in range(6)]
                                                 - 1, "Ray"
```

```
database = [
                               def retrieve(item_idx):
  "learning",
                                   time.sleep(item idx / 10.)
  "Ray",
                                   return item_idx, database[item_idx]
  "for",
  "distributed",
  "data",
  "processing"
                                      5
                     data = [retrieve(idx) for idx in range(6)]
                                                5, "processing"
```

Expect a runtime of around (0+1+2+3+4+5)/10 = 1.5 seconds

Ray API: Remote Ray tasks

```
database =
                                 def retrieve(item_idx):
  "learning",
                                      time.sleep(item idx / 10.)
  "Ray",
                                      return item_idx, database[item_idx]
  "for",
  "distributed",
                       Ray task
                                 @ray.remote
                      decorator
  "data",
                                 def retrieve task(item idx):
  "processing"
                                      return retrieve(item idx)
obj refs = [
      retrieve task.remote(idx) for idx in range(6)
data = ray.get(obj refs)
```

Ray tasks are decorated Python functions that can execute remotely.

task.remote() executes a task remotely asynchronously and immediately returns a future (i.e., an object reference, which you need to explicitly ask the result of).

ray.get(ObjRef) fetches the computed result of a remote task referenced by ObjRef.

Ray API: Remote Ray tasks

```
database = [
                                      def retrieve(item_idx):
     "learning",
                                           time.sleep(item idx / 10.)
      "Ray",
                                           return item_idx, database[item_idx]
     "for",
     "distributed",
                                      @ray.remote
      "data",
                                      def retrieve task(item idx):
     "processing"
                                           return retrieve(item idx)
   obj refs = [
          retrieve task.remote(idx) for idx in range(6)
   data = ray.get(obj_refs)
                                             Worker node
                         retrieve task()
          Head node
                                             Worker
                                      lask
 Task 1
                                                             Worker node
                                      Task 4
           Driver
 Task 2
                                                                           Task 5
          database
                         retrieve task()
                                                              Worker
                                                                           Task 6
retrieve task(idx, db)
                              Cluster of machines
```

Ray API: Remote Ray tasks

```
database = [
    "learning",
    "Ray",
    "for",
    "distributed",
    "data",
    "processing"
]
```

```
def retrieve(item_idx):
    time.sleep(item_idx / 10.)
    return item_idx, database[item_idx]

@ray.remote
def retrieve_task(item_idx):
    return retrieve(item_idx)
```

```
obj_refs = [
          retrieve_task.remote(idx) for idx in range(6)
]
data = ray.get(obj_refs)
Worker node
```

Task 1 Task 2

Task 3
Task 4

Q: How would driver share data with distributed workers?

Cluster of machines

Ray API: Distributed object store

```
database = [
    "learning",
    "Ray",
    "for",
    "distributed",
    "data",
    "processing"
]
```

```
@ray.remote
def retrieve_task(item_idx, db):
    time.sleep(item_idx / 10.)
    return item_idx, db[item_idx]
```

Use distributed object store to share data across all workers in the cluster

Ray API: Actors

```
database = [
    "learning",
    "Ray",
    "for",
    "distributed",
    "data",
    "processing"
]
```

```
Ray task definition
```

Ray actor class

definition

```
@ray.remote
class DataTracker:
    def __init__(self):
        self._counts = 0
    def increment(self):
        self._counts += 1
    def counts(self):
        return self._counts
```

```
@ray.remote
def retrieve_task_n_track(item_idx, tracker, db):
    time.sleep(item_idx / 10.)
    tracker.increment.remote()
    return item_idx, db[item_idx]
```

Invoke remote actor

Ray tasks are decorated Python functions.

Ray actors are decorated Python classes, which encapsulate state.

Actors allows you to run stateful computations on a cluster.

Demo ...

An example task graph

Y. Cheng