CLIPPEDIMAGE= JP404214537A

PAT-NO: JP404214537A

DOCUMENT-IDENTIFIER: JP 04214537 A TITLE: THIN FILM TRANSISTOR MATRIX

PUBN-DATE: August 5, 1992

INVENTOR-INFORMATION:

NAME

NASU, YASUHIRO WATABE, JUNICHI MATSUMOTO, TOMOTAKA

ASSIGNEE-INFORMATION:

NAME

FUJITSU LTD

COUNTRY N/A

APPL-NO: JP02401500

APPL-DATE: December 12, 1990

INT-CL_(IPC): G02F001/136; H01L027/12; H01L029/784

US-CL-CURRENT: 349/FOR.111

ABSTRACT:

PURPOSE: To attain a structure for preventing the discontinuity of a drain bus in a manufacturing process to improve the yield.

CONSTITUTION: A thin film transistor matrix consists of a drain electrode 8 and

a drain bus 9 on a substrate 1. The drain bus 9 is connected to the drain

electrode 8. At that connection, the drain bus 9 overlaps the drain electrode

8 in the longitudinal direction of the drain bus 9 leaving a part of the drain

bus 9 not overlapping in the right-angled direction.

The structure is such

that an angle between the periphery of the drain electrode 8 defining the

overlapped area of the drain electrode 8 and the drain

bus 9 and the periphery of the drain bus 9 is the acute one.

COPYRIGHT: (C) 1992, JPO&Japio

07/03/2001, EAST Version: 1.02.0008

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-214537

(43)公開日 平成4年(1992)8月5日

(51) Int.Cl. ⁵ G 0 2 F 1/136 H 0 1 L 27/12 29/784	識別記号 5 0 0 A	庁内整理番号 9018-2K 7514-4M	FΙ	技術表示箇所
20,101		9056-4M	H 0 1 L	29/78 3 1 1 A
			.	審査請求 未請求 請求項の数 2 (全 4 頁)
(21)出願番号	特顧平2-401500		(71)出願人	000005223
(22)出願日	平成2年(1990)12月	112日		富士通株式会社 神奈川県川崎市中原区上小田中1015番地
(22) 田鳴	一种成2 年(1990)12万	11213	(72)発明者	那須 安宏 神奈川県川崎市中原区上小田中1015番地
			(72)発明者	富士通株式会社内 渡部 純一 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内
			(72)発明者	松本 友孝 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内
			(74)代理人	弁理士 井桁 貞一

(54) 【発明の名称】 薄膜トランジスタマトリツクス

(57)【要約】

【目的】 薄膜トランジスタマトリックスに関し、製造 プロセスにおけるドレインパスの断線を防止し歩留りを 向上する構造を目的とする。

【構成】 基板1上にドレイン電極8とドレインバス9 を有し、ドレインバス9はドレイン電極8に接続し、そ の接続部においてドレインバス9は、ドレインバス9の 長さ方向に直角な方向にドレインバス9の一部を残して ドレイン電極8の上に重なっている薄膜トランジスタマ トリックスにより構成する。また、ドレイン電極8とド レインパス9の重なる領域を区画するドレイン電極8周 縁部とドレインバス9周縁部とのなす角が鈍角であるよ うに構成する。

実施例を説明するための回

1

【特許請求の範囲】

【請求項1】 基板(1) 上にドレイン電極(8) とドレイ ンパス(9) を有し、該ドレインパス(9) は該ドレイン電 極(8) に接続し、その接続部において該ドレインバス (9) は、該ドレインバス(9) の長さ方向に直角な方向に **該ドレインバス(9)** の一部を残して該ドレイン電極(8) の上に重なっていることを特徴とする薄膜トランジスタ マトリックス。

【請求項2】 前記ドレイン電極(8) と前記ドレインバ ス(9) の重なる領域を区画する該ドレイン電極(8) 周縁 10 的とする。 部と該ドレインバス(9) 周縁部とのなす角が鈍角である ことを特徴とする請求項1記載の薄膜トランジスタマト リックス。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は薄膜トランジスタマトリ ックスに関する。近年、液晶ディスプレイ、エレクトロ ルミネッセンス等の駆動素子として、薄膜トランジスタ (以下, TFTと称する) マトリックスが使用されるよ うになった。このようなTFTマトリックスにおいて 20 は、数十万箇のTFTを無欠陥で作製する必要がある が、大面積基板上の微細加工を伴うため、製造歩留りが 十分でなく、製造歩留りの向上が強く要望されている。 [0002]

【従来の技術】図2(a), (b)は従来例を説明するための 図で、液晶ディスプレイを駆動するTFTマトリックス の1素子とその周辺を示し、(a) は上面図、(b) はA-A断面図であり、1はガラス基板、2はゲートバス、2A はゲート電極, 3はゲート絶縁膜, 4は非晶質Si(a -Si)層, 5は接合層, 6はチャネル保護膜, 7はソ 30 に断線に到るということはない。 ース電極, 8はドレイン電極, 9はドレインバス, 10は 層間絶縁膜,11は表示電極を表す。

【0003】まずガラス基板1上にゲートバス2とそれ に接続するゲート電極2Aが形成され,次いで、ゲート絶 縁膜3を介して活性層となるa-Si層4が形成され る。 a-Si層4の上に、接合層5、チャネル保護膜 6、ソース電極7、ドレイン電極8が画素ごとに分離し て作られ、画素ごとにTFTが形成される。接合層5は 例えばりん(P)ドープa-Si, チャネル保護膜6は 例えば SiO_2 , ソース電極7とドレイン電極8は例え 40 ばTiからなる。

【0004】ドレインバス9とゲートバス2の交叉部と なる場所に層間絶縁膜10を形成し、それから全面にA 1 膜を形成し、そのAI膜をマスクを用いてエッチングす ることによりドレイン電極8に接続するドレインパス9 を形成する。

【0005】ところで、このエッチングは通常ウエット エッチングにより行うが、ドレイン電極8の上にドレイ ンパス9が乗り上げる段差部の両端からサイドエッチン グが進み、段差部でドレインバス9が断線することがあ 50 a-Si層4,チャネル保護膜6として厚さが例えば14

る。

【0006】このような事故の生じる確率は必ずしも高 くはないが、数十万箇のTFTを含むTFTマトリック スの製造においては歩留り低下の一要因となっていた。 [00007]

【発明が解決しようとする課題】本発明は上記の問題に 鑑み、たとえドレイン電極8とドレインバス9の段差部 からサイドエッチングが進行したとしても断線に到らな い構造を有するTFTマトリックスを提供することを目

[0008]

【課題を解決するための手段】図1(a), (b)は, 実施例 を説明するための図である。上記課題は、基板1上にド レイン電極8とドレインパス9を有し、該ドレインパス 9は該ドレイン電極8に接続し、その接続部において該 ドレインバス9は、該ドレインバス9の長さ方向に直角 な方向に該ドレインバス9の一部を残して該ドレイン電 極8の上に重なっているTFTマトリックスによって解 決される。

【0009】また、前記ドレイン電極8と前記ドレイン バス9の重なる領域を区画する該ドレイン電極8周縁部 と該ドレインバス9周縁部とのなす角が鈍角であるTF Tマトリックスによって解決される。

[0010]

【作用】ドレイン電極8とドレインバス9の重なる領域 を上記(図1(a))のように形成すれば、ドレイン電極 8とドレインバス9の段差部の片側からしかサイドエッ チングは進行しない。また、たとえサイドエッチングが 進行し、ドレインバス9に亀裂が生じたとしても、完全

【0011】さらに、重なる領域を区画するドレイン電 極8周縁部とドレインバス9周縁部とのなす角が鈍角で あれば、そこからのサイドエッチングの進行速度が小さ くなるということを本発明者等は見出した。

【0012】したがって、ドレイン電極8とドレインバ ス9の接続部を本発明のような形状とすることにより. ドレインパス9の断線を防ぎ、TFTマトリックスの製 造歩留りの向上を期することができる。

[0013]

【実施例】図1(a), (b)は実施例を説明するための図 で、液晶ディスプレイを駆動するTFTマトリックスの 1素子とその周辺を示し、(a) は上面図、(b) はA-A 断面図を示す。製造工程の概略は次の如くである。

【0014】ガラス基板1上に幅が例えば20μm, 厚 さが例えば1000ÅのA1のゲートバス2と、それに接続 する幅が例えば5μm, 厚さが例えば800 ÅのTiのゲ ート電極2Aを形成する。

【0015】次に、厚さが例えば3000人のゲート絶縁膜 を形成し、その上に活性層として厚さが例えば150 人の

00ÅのSiO2 膜を形成する。ゲート電極2Aをマスクに して、チャネル保護膜6をセルフアラインでパターニン グした後、チャネル保護膜6両側のa-Si膜4上に厚 さが例えば500 Åのn a-Si層の接合層 5. 厚さが 例えば1000ÅのTiのソース電極7,ドレイン電極8を リフトオフ法により形成する。

【0016】ゲートバス2と直交するドレインバス9の 交叉部に厚さが1μm程度のポリイミドの層間絶縁膜10 を形成する。あるいはチャネル保護膜6のSi〇2 膜を 層間絶縁膜10に兼用することもできる。

【0017】次に、全面に厚さが例えば6000AのA1膜 を形成し、そのAI膜をマスクを用いてりん酸系のエッ チング液によりエッチングすることによりドレイン電極 8に接続するドレインバス9を形成する。ドレインバス 9の幅は例えば10μmである。ドレイン電極8に接続 するドレインパス9がドレイン電極8と重なる領域は、 幅が例えば約5 μ m, 長さが例えば300 μ mである。

【0018】この重なる領域はドレイン電極8の周縁部 とドレインバス9の周縁部で区画されるが、そのドレイ ン電極8の周縁部とドレインバス9の周縁部がなす角度 20 4はa-Si層 は, 直角より大きく, 例えば135 度である。

【0019】サイドエッチングによるドレインバス9の 断線はなく、特性に影響を与えるほどの幅の細りも見ら れなかった。ソース電極7に接続する表示電極11を形成 する。表示電極11は厚さが、例えば3000人のITOであ

【0020】本発明のTFTマトリックスはドレイン電 極8とドレインバス9のパターンの形状のみが従来と異

なり、製造プロセスは、従来のプロセスと変わらない。 [0021]

【発明の効果】以上説明したように、本発明によれば、 製造プロセスは従来のプロセスの変更を伴うことなく、 ドレイン電極8とドレインパス9のパターンの形状変更 のみでドレインパス9のサイドエッチングによる断線を 防ぐことができる。

【0022】本発明はTFTマトリックスの製造歩留り を顕著に向上するという効果を奏するものである。

10 【図面の簡単な説明】

【図1】実施例を説明するための図で、(a) は上面 図、(b) はA-A断面図である。

【図2】従来例を説明するための図で, (a) は上面図, (b) はA-A断面図である。

【符号の説明】

1は基板であってガラス基板

2Aはゲート電極

2はゲートバス

3はゲート絶縁膜

5 は接合層

6はチャネル保護膜

7はソース電極

8はドレイン電極

9はドレインバス

10は層間絶縁膜

11は表示電極

【図1】

実施例を説明するための図

【図2】

従来例を説明するための②

