9. Procesor

Vysvetlite úlohu procesora v počítačových systémoch: (parametre a technológie CPU) <u>CPU</u> → centrálna procesorová jednotka → vykonáva inštrukcie a spracováva dáta programu vo forme strojového kódu **Parametre** // vedieť aj s krátkym popisom \rightarrow Frekvencia \rightarrow počet cyklov za 1s [Hz] \rightarrow f = 1/T (perióda) \rightarrow koľkokrát je CPU schopný zmeniť svoj stav za 1s → Taktovanie CPU → proces \uparrow alebo \downarrow výsl. frekvencie CPU → <u>Ako zmeníme frekvenciu?</u> → zmena **BCLK** – oscilátor na Motherboard, alebo **úpravou** hodnoty násobiča \rightarrow FLOPS \rightarrow Floating operation per second \rightarrow operacie s desatinnou čiarkou (zabezpečuje numerický koprocesor) // (1,0006..) \rightarrow **Socket** (pätica) \rightarrow je na Motherboard \rightarrow slúži na pripojenie CPU → <u>Delenie podľa typu pinov:</u> **I.** <u>dierky</u> v pätici na základnej doske (CPU má piny) // <u>AMD</u> II. plôšky → priložia sa na päticu // Intel III. nemá piny, ale malé guľôčky, ktoré sa prispájkujú do otvorov \rightarrow Cache \rightarrow rýchla vyrovnávacia pamäť, slúži na urýchlenie toku údajov do z CPU do OP, nakoľko pamäť sa zväčšuje (niekoľko MB) \rightarrow 3 úrovne: L1 (malá) \rightarrow v jadre \rightarrow 2x (dátová a inštrukčná) $L2 \rightarrow v$ CPU, nie v jadre $L3 \rightarrow najpomalšia, najväčšia$ \rightarrow Šírka slova \rightarrow počet bitov, ktoré je CPU schopný spracovať v rámci 1 inštrukcie \rightarrow Šírka dátovej zbernice \rightarrow počet bitov, ktoré je CPU schopný preniesť po zbernici (komunikácia) → Veľkosť adresovateľnej pamäte → veľkosť operačnej pamäte, ktoré je schopné CPU adresovať \rightarrow 32/64 bit OS \rightarrow Chladič \rightarrow je umiestnený priamo na CPU \rightarrow chladenie (aktívne - vodné, pasívne - vzduch) **Technológie** → Počet jadier, vlákien → Hyper-threading → jadro môže spracovať viac vlákien \rightarrow Boost frekvencia

→ Integrovanie grafického jadra priamo do hlavného CPU

→ TDP – thermal design power (tepelný výkon CPU)

→ Výrobná technológia

Zostavte blokovú schému procesora (8-bitového): (bloková schéma MikroCPU)

Popíšte jednotlivé bloky procesora: (vnútorná štruktúra CPU)

- $\rightarrow RJ$, ALU, Registre, Zbernice
- → **ALU** = vykonáva aritmetické (+,-,*,/) a logické (AND, OR, NOT, XOR) operácie a posuny (logický, kruhový)
 - → skladá sa z: akumulátora, ALU, registre (Flag register = register príznakov, 8 bit)
 - → ALU robí aj **vyhodnotenie operácií** (ukladá ju do FLAG)
 - → <u>najpoužívanejšie príznaky</u>: Zero bit, Signum, Parity, Carry bit, AC
- \rightarrow **RJ** = vyberá inštrukcie z vyrovnávacej L1 cache, dekóduje ich a zebezpečuje ich vykonanie
 - → Skladá sa z: Register I, Dékoder I, počítadlo I, časovacie a riadiace signály
- → Registre = univerzálne a špeciálne (Program counter, Adresové registre, Ukazovateľ zásobníka
- stack pointer, Stavový register)
- → **Zbernice prepájajú 4 subsystémy** (RJ, ALU, Sada registrov, Vonkajšia jednotka rozhrania) **dátová** – **prenos** I + údajov

adresná – prenos adries generovaných nadriadeným prvkom ZB

riadiaca – povely, ktoré nadriadené zariadenie dáva podriadenému

žiadosti, ktoré podriadené zariadenie žiada nadriadené (napr. prerušenie)

Popíšte výrobu procesorov:

Keby si to nechápal tu máš YouTube video je to eazy https://www.youtube.com/watch?v=N7ut61pSLwk

V rýchlosti čo ti stačí dole je to rozpísane:

- 1: Ťažba piesku kde je kremík
- 2: Oddelenie sa kremík od piesku
 - 3: Kremík sa roztaví do ingotu
- 4: Na otáčajúci sa kremík sa nalieva modra kvapalina ktorá je daná na UV žiarenie
 - 5: Vytvorí sa vzor masky (pomocou šošovky)
 - **6**: Zotretie vrstvy a leptanie
 - 7: IÓNOVÝ DOPING: Povrch sa ionizuje aby viedol lepšie El energiu
 - 8: Galvanické pokovanie a vrstvenie
 - 9: Spájanie tranzistorov podlá návrhu

10: Testovanie a rezanie kotúčov (vnútro procesora sa kontroluje po výrobe)

11: Binning celková kontrola funkčnosti procesora (meranie parametrov)

Rozpísané

1: Piesok

Je základný, zároveň aj kľúčový prvok ktorý sa používa pri výrobe procesorov. Obsahuje kremík a to je základný prvok pre polovodiče.

2: Oddelenie kremíku od piesku

Potom ako sa oddelí kremík od piesku tak sa musí ešte očistiť aby bol pripravený na výrobu polovodič ov.

3: Roztavenie kremíku do ingotu

Následne sa kremík roztaví a vytvorí sa z neho ingot, ktorý váži 100kg a tvorí ho 99,9999% kremíka.

4: Vystavenie uv žiareniu

- Kým sa kotúč otáča vysokou rýchlosťou naleje sa naňho modrá kvapalina – svetlu odolná vrstva.

5: Vytvorenie vzoru masky pomocou presvietenia a šošovky.

Vystavenie sa vykonáva pomocou niečoho, čo sa nazýva "maska"- pôsobí ako šablóna, zatiaľ čo medzi maskou a kotúčom je šošovka, ktorá zmenšuje obraz masky na malé ohnisko. Vďaka tomu bude veľkosť šošovky štyrikrát menšia ako veľkosť pôvodného objektívu.

(tento proces sa opakuje viackrát)

6: ZOTRETIE SVETLU ODOLNEJ VRSTVY A LEPTANIE

Potom sa na leptanie alebo čiastočné rozpustenie substrátovej časti, ktorá bola odhalená, použije chemi cké rozpúšťadlo.

7: IÓNOVÝ DOPING

Znovu sa nanesie svetlu odolná vrstva a znova sa zotrie, následne je pomocou iónovej implantácie odh alené kremíkové časti vystavené iónom. Menia spôsob, akým kremík v týchto oblastiach vedie elektrickú energiu.

8: GALVANICKÉ POKOVOVANIE A VRSTVENIE

Následne sa vloží do roztoku síranu meďnatého tak, aby mu bol vystavený iba jeho vrch a potom pri galvanickom pokovovaní sa na jeho povrch ukladajú ióny medi.

Medené ióny sa usádzajú na povrchu a vytvárajú tenkú vrstvu medi, prebytočný materiál sa umyje. To tvorí celý tranzistor a potom sú tieto tranzistory spojené niekoľkými vrstvami. (tranzistor - fialový)

9: Rôzne tranzistory sú navzájom prepojené podľa architektúry a dizajnu konkrétneho CPU

Toto tvorí komplexný obvod, ktorý môže mať viac ako 20 vrstiev.

Moorov zákon: V roku 1965 Gordon E. Moore, zakladateľ firmy Fairchild Semiconductor a neskorší spoluzakladateľ firmy Intel. V článku z roku 1965 napísal, že každý rok dochádza k zdvojnásobeniu počtu komponentov na jeden integrovaný obvod a predpokladá, že táto miera rastu bude pokračovať aspoň ďalšie desaťročie. Po prvom desaťročí od tohto tvrdenia sa rozhodol, že zdvojnásobenie prebieha každé dva roky.

TL;DR – Moorov zákon hovorí o tom, že počet tranzistorov v integrovanom obvode (procesore) sa zdvojnásobuje každé dva roky.

10: TESTOVANIE A REZANIE KOTÚČOV

Je podrobený testu funkčnosti, testovacie schémy a odozva sa porovná so správnou odpoveďou. Tieto testy určujú správne fungovanie.

Následne sa kotúče rozrežú na malé kúsky "matrice", matrice ktoré dodali správnu odpoveď ostávajú a chybné sa zahodia.

Fyzické balenie zahŕňa - kremíkove matrice, zelený substrát, ktorý vytvára elektrické a mechanické ro zhranie, v ktorom procesor spolupracuje so zvyškom systému PC a na vrchole toho je zavedený rozdeľovač tepla.

11: BINNING

Posledný krok, meranie reálnych vlastností procesora, ako je napätie, generovanie tepla, frekvencia, pr evádzkové charakteristiky vyrovnávacích pamätí, počet funkčných jadier atď...

Z binningu sa potom vychádza pri určovaní modelu procesora.

Príklad: Ak vyrábame i9-12900k tak nám z celého waferu bude vyhovovať iba pár procesoru, namiesto zahodenia zbytku waferu sa preskúša každý kúsok, vyhodnotí ktorému modelu vyhovuje a priradí sa mu adekvátne modelové číslo ako napríklad i7-12700k, i5-12400, i3-12300.. Úplne nevyhovujúce časti sa potom recyklujú.

Vysvetlite úlohu procesora vo vertikálnom kanáli číslicového osciloskopu:

Kanál osciloskopu je neodmysliteľne spojený s obrazovkou osciloskopu.

<u>V AO:</u> boli separé kanáli na horizontálne a vertikálne vychyľovacie vinutia obrazovky typu CRT. Vertikálny kanál má za úlohu vychyľovať elektrónový lúč v osi Y (napäťovej osi).

<u>V DO:</u> obrazovka má za vstup digitálny obraz, ktorý je zložený z mnoho pixelov. Pointa je, že digitálna obrazovka dostáva celý obraz naraz po jednej zbernici. Jednou z úloh procesora v DO je vygenerovať obraz na zobrazenie (pre obrazovku). Tam zohľadňuje GUI samotný meraný signál/y, poprípade renderovanie kurzorov a pod. Túto grafickú časť nemusí robiť priamo hlavný procesor, kľudne ju môže vykonávať grafický koprocesor - záleží od designu osciloskopu. Ďalšími úlohami procesora je **postprocessing** a **preprocessing**.

<u>Preprocessing</u> = vykonávanie MAT operácií. Blok preprocessingu dovoľuje zvýšiť vzorkovaciu frekvenciu, pričom nie je potrebné extrémne zväčšovať veľkosť pamäte. Musí riešiť v reálnom čase.

<u>Preprocessing</u> = spracováva dáta uložené v pamäti, rekonštruuje vzorky v pamäti tak, aby zobrazenie bolo kvalitnejšie (aby sme si vystačili s nižším počtom vzoriek).

JATKY F POLOVODIČE

NEVODIČE = izvlanty

// len niečo z tohto spomenúť

MATERIÁL	POUŽITIE
KREMÍK (Si)	diódy, tranzistory, integrované obvody,
	tyristory, solárne články
GERMÁNIUM (Ge)	vysokofrekvenčné tranzistory, detektory
	rádioaktívneho žiarenia
GÁLIUMARZENID (GaAs)	svetelné diódy, laser, vysokofrekvenčné
	tranzistory
INDIUMANTIMONID (InSb)	magnetorezistory, Hallove generátory
INDIUMARSENID(InAs)	
KADMIUMSULFID (CdS)	fotoodpory, solárne články
KARBIDKREMÍKA (SiC)	varistory, svetelné diódy

