PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :			(11	1) International Publication Number: WO 98/42738				
C07K 14/00	1	A1	(43	3) International Publication Date: 1 October 1998 (01.10.98)				
	19 March 1998 (March 1997 (21.03.97)	19.03.9 U	08) US	60/056,370 19 August 1997 (19.08.97) US 60/060,862 2 October 1997 (02.10.97) US (71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).				
60/042,344 211 60/041,277 211 60/048,355 30 60/048,096 30 60/048,154 30 60/048,160 30 60/048,169 30 60/048,186 30 60/048,186 30 60/048,187 30 60/048,099 30 60/048,352 30 60/048,352 30 60/048,352 30 60/048,352 30 60/048,135 30 60/048,352 30 60/048,352 30 60/048,352 30 60/048,353 30 60/048,353 30 60/048,350 30	March 1997 (21.03.97) March 1997 (21.03.97) March 1997 (21.03.97) May 1997 (30.05.97)	07)		(72) Inventors; and (75) Inventors/Applicants (for US only): YOUNG, Paul [US/US]; 122 Beckwith Street, Gaithersburg, MD 20878 (US). GREENE, John, M. [US/US]; 872 Diamond Avenue, Gaithersburg, MD 20878 (US). FERRIE, Ann, M. [US/US]; 13203 L Astoria Hill Court, Germantown, MD 20874 (US). RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Olney, MD 20832 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). DUAN, Roxanne [US/US]; 4541 Fairfield Drive, Bethesda, MD 20814 (US). HU, Jing-Shan [CN/US]; 1247 Lakeside Drive #3034, Sunnyvale, CA 94086 (US). FLORENCE, Kimberly, A. [US/US]; 12805 Atlantic Avenue, Rockville, MD 20851 (US). OLSEN, Henrik, S. [DK/US]; 182 Kendrick Place #24, Gaithersburg, MD 20878 (US). EBNER, Reinhard [DE/US]; 9906 Shelburne Terrace #316, Gaithersburg, MD 20878 (US). BREWER, Laurie, A. [US/US]; 14920 M. Nebo Road, Poolesville, MD 20837 (US). MOORE, Paul, A. [GB/US]; Apartment 104, 1908 Holly Ridge Drive, McLean, VA 22102 (US). SHI, Yanggu [CN/US]; 437 West Side Drive, Gaithersburg, MD 20878 (US). LAFLEUR, David, W. [US/US]; 1615 Q Street, N.W. #807, Washington, DC 20009 (US). NI, Jian [CN/US]; 5502 Manorfield Road, Rockville, MD 20853 (US).				
				(74) Agents: BROOKES, Anders, A. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 10850 (US).				
				(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).				
		·		Published With international search report.				

(54) Title: 87 HUMAN SECRETED PROTEINS

(57) Abstract

The present invention relates to 87 novel human secreted proteins and isolated nucleic acids containing the coding regions of the genes encoding such proteins. Also provided are vectors, host cells, antibodies, and recombinant methods for producing human secreted proteins. The invention further relates to diagnostic and therapeutic methods useful for diagnosing and treating disorders related to these novel human secreted proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania	ES	Spain	LS	Lesotho	SI	Slovenia
Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
Austria	FR	France	LU	Luxembourg	SN	Senegal
Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
Brazil	IL	Israel	MR	Mauritania	UG	Uganda
Belarus	IS	Iceland	MW	Malawi	US	United States of America
Canada	IT	Italy	MX	Mexico		Uzbekistan
Central African Republic	JР	Japan	NE	Niger		Viet Nam
Congo	KE	Kenya	NL	Netherlands		Yugoslavia
Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
Cameroon		Republic of Korea	PL	Poland		
China	KR	Republic of Korea	PT	Portugal		
Cuba	KZ	Kazakstan	RO	Romania		
Czech Republic	LC	Saint Lucia	RU	Russian Federation		
Germany	LI	Liechtenstein		Sudan		
Denmark	LK	Sri Lanka	SE	Sweden		
Estonia	LR	Liberia	$\mathbf{s}\mathbf{G}$	Singapore		
	Armenia Australia Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark	Armenia FI Austria FR Australia GA Azerbaijan GB Bosnia and Herzegovina GE Barbados GH Belgium GN Burkina Faso GR Bulgaria HU Benin IE Brazil IIL Belarus IS Canada IT Central African Republic JP Congo KE Switzerland KG Côte d'Ivoire KP Cameroon China KR Cuba KZ Czech Republic LC Germany LI Denmark	Armenia FI Finland Austria FR France Australia GA Gabon Azerbaijan GB United Kingdom Bosnia and Herzegovina GE Georgia Barbados GH Ghana Belgium GN Guinea Burkina Faso GR Greece Bulgaria HU Hungary Benin IE Ireland Brazil IL Israel Belarus IS Iceland Canada IT Italy Central African Republic JP Japan Congo KE Kenya Switzerland KG Kyrgyzstan Côte d'Ivoire KP Democratic People's Cameroon China KR Republic of Korea Cuba KZ Kazakstan Czech Republic LC Saint Lucia Germany LI Liechtenstein Denmark LK Sri Lanka	Armenia FI Finland LT Austria FR France LU Australia GA Gabon LV Azerbaijan GB United Kingdom MC Bosnia and Herzegovina GE Georgia MD Barbados GH Ghana MG Belgium GN Guinea MK Burkina Faso GR Greece Bulgaria HU Hungary ML Benin IE Ireland MN Brazil IL Israel MR Belarus IS Iceland MW Canada IT Italy MX Central African Republic JP Japan NE Congo KE Kenya NL Switzerland KG Kyrgyzstan NO Côte d'Ivoire KP Democratic People's NZ Cameroon RO China KR Republic of Korea PL China KR Republic of Korea PT Cuba KZ Kazakstan RO Czech Republic LC Saint Lucia RU Cermany LI Liechtenstein SD Denmark LK Sri Lanka SE	Armenia FI Finland LT Lithuania Austria FR France LU Luxembourg Australia GA Gabon LV Latvia Azerbaijan GB United Kingdom MC Monaco Bosnia and Herzegovina GE Georgia MD Republic of Moldova Barbados GH Ghana MG Madagascar Belgium GN Guinea MK The former Yugoslav Burkina Faso GR Greece Republic of Macedonia Bulgaria HU Hungary ML Mali Benin IE Ireland MN Mongolia Brazil IL Israel MR Mauritania Belarus IS Iceland MW Malawi Canada IT Italy MX Mexico Central African Republic JP Japan NE Niger Congo KE Kenya NL Netherlands Switzerland KG Kyrgyzstan NO Norway Côte d'Ivoire KP Democratic People's NZ New Zealand China KR Republic of Korea PL Poland China KR Republic of Korea PT Portugal Cuba KZ Kazakstan RO Romania Czech Republic LC Saint Lucia RU Russian Federation Germany LI Liechtenstein SD Sudan Denmark LK Sri Lanka SE Sweden	Armenia FI Finland LT Lithuania SK Austria FR France LU Luxembourg SN Australia GA Gabon LV Latvia SZ Azerbaijan GB United Kingdom MC Monaco TD Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Barbados GH Ghana MG Madagascar TJ Belgium GN Guinea MK The former Yugoslav TM Burkina Faso GR Greece Republic of Macedonia TR Bulgaria HU Hungary ML Mali TT Benin IE Ireland MN Mongolia UA Brazil IL Israel MR Mauritania UG Belarus IS Iceland MW Malawi US Canada IT Italy MX Mexico UZ Central African Republic JP Japan NE Niger VN Congo KE Kenya NL Netherlands YU Switzerland KG Kyrgyzstan NO Norway ZW Cote d'Ivoire KP Democratic People's NZ New Zealand China KR Republic of Korea PL Poland China KR Republic of Korea PT Portugal Cuba KZ Kazakstan RO Romania Czech Republic LC Saint Lucia RU Russian Federation Germany LI Liechtenstein SD Sudan Denmark LK Sri Lanka SE Sweden

WO 98/42738 PCT/US98/05311

87 Human Secreted Proteins

I

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

5

10

15

20

25

30

35

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.

10

15

20

25

30

35

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

10

15

20

25

30

35

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and $20~\mu g/ml$ denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65° C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

10

15

20

25

30

35

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

10

15

20

30

35

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

25 Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

The translation product of this gene shares sequence homology with nucleolin, which is thought to be important in macromolecule binding, as well as some membrane proteins. Preferred polypeptide fragments comprise the amino acid sequence: DPEAADSGEPQNKRTPDLPEEEYVKEEIQENEEAVKKMLVEATREFEEVVVDES (SEQ ID NO:239); QKLKRKAEEDPEAADSGEPQNKRTPDLPEEEYVKEEIQENEE AVKKMLVEATREFEEVVVDES (SEQ ID NO:240); KAMEKSSLTQHSWQSLKDR YLKHLRGQEHKYLLGDAPVSPSSQKLKRKAEEDPEAADSGEPQNKRTPDLPEE EYVKEEIQENEEAVKKMLVEATREFEEVVVDESPPDFEIHI (SEQ ID NO:241). Also preferred are the polynucleotide fragments encoding these polypeptide fragments.

10

15

20

25

30

35

This gene maps to chromosome 16, and therefore can be used as a marker in linkage analysis for chromosome 16.

This gene is expressed primarily in brain and kidney and to a lesser extent in wide range of tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cell-cell interaction or cell-matrix interaction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and kidney, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:125 as residues: Met-1 to Trp-10.

The tissue distribution and homology to nucleolin indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment/diagnosis of diseases involving cell-cell interaction or cell-extracellular matrix interaction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

The translation product of this gene shares sequence homology with a porcine zona pellucida protein ZPDS.1711. (See Accession No. R39356.) These two proteins have weak homology with *Drosophila* commissureless and metal homeostasis proteins which are thought to be important in controlling growth cone guidance across the CNS midline and protecting cells against reactive oxygen toxicity. thus, based on homology, it is likely that this gene also be involved in development. Preferred polypeptide fragments comprise the amino acid sequence: LPSYDEAERTKAEATIPLVPGRDEDF VGRDDFDDADQLRIGNDGIFMLTFFMAFLFNWIGFFLSFCLTTSAAGRYGAISG FGLSLIKWILIVRFSTYFPGYFDGQYWLWWVFLVLGFLLFLRGFINYAKVRKM PETFSNLPRTRVLFI (SEQ ID NO:242); and/or AGRYGAISGFGLSLIKWILIVRFS (SEQ ID NO:243). Also preferred are polynucleotide fragments encoding these polypeptide fragments. This gene maps to chromosome 5, and therefore can be used in linkage analysis as a marker for chromosome 5.

This gene is expressed primarily in kidney, adrenal gland, brain and to a lesser extent in wide range of tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, fertilization control or tissue damages by metabolites or other toxic agents. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and urosecretion system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., kidney, adrenal gland, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to zona pellucida protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for fertility control such as controceptive development. The homology with metal homeostasis and commissureless genes indicates the gene's function in spermatozoa guidance and protection. It would also be useful for the treatment/diagnosis of tissue damages caused by toxic metabolites and other agents since the gene product is also expressed in urosecretive tissues.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 3

5

10

15

20

30

35

This gene is expressed primarily in liver and to a lesser extent in placenta. Preferred polypeptide fragments comprise the amino acid sequence: MKHLSAWNFT KLTFLQLWEI FEGSVENCQTLTSYSKLQIKYTFSRGSTFYI (SEQ ID NO:244). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, digestive and nutrient transport/utilization disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive and

10

15

20

25

30

35

circulatory system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., liver, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in liver and placenta indicates that the protein product is either an extracellular enzyme or a molecule carrier. Therefore, polynucleotides and polypeptides corresponding to this gene are useful for diagnosis/treatment of digestive and nutrient transport/utilization disorders, including malabsorption and malnutrition.

FEATURES OF PROTEIN ENCODED BY GENE NO: 4

This gene shares homology with the sap47 gene of Drosophila melanogaster, a gene which codes for a conserved neuronal protein associated with synaptic terminals. (See Mol. Brain Res. 32:45-54 (1995); see also, Accession No. 929571.) Thus, based on homology, the gene of the present invention also should be associated with synaptic terminals. Preferred polypeptide fragments comprise the amino acid sequence: FSSDFRTSPWESRRVESKATSARCGLWGSGPRRRPASGMFRGLSSWLGLQQP VAGGGOPNGDAPPEQPSETVAESAEEELQQAGDQELLHQAKDFGNYLFNFASA ATKKITESVAETAOTIKKSVEEGKIDGIIDKTIIGDFQKEQKKFVEEQHTKKSEA AVPPWVDTNDEETIQQQILALSADKRNFLRDPPAGVQFNFDFDQMYPVALVML (SEO ID NO:245); MRFALVPKLVKEEVFWRNYFYRVSLIKQSAQLTALAAQQQA AGKGGEEQ (SEQ ID NO:246); STSPGVSEFVSDAFDACNLNQEDLRKEMEQL VLDKKQEETAVLEEDSADWEKELQQELQEYEVVTESEKRDENWDK (SEQ ID NO:247); SPWESRRVESKATSARCGLWGSGPRRRPASGMFRGLSSWLGLQQ PVAGGGQPNGDAPPEQPS (SEQ ID NO:248); PVAGGGQPNGDAPPEQPSETV ESAEELQQAGDQELLHQAKDFGNYLFNFASAATKKITESVAE (SEQ ID NO: 249); and/or FQKEQKKFVEEQHTKKSEAAVPPWVDTNDEETIQQQILALSADKR NFLRDPPAGVQFNFDFDQMYPVALVML (SEQ ID NO:250). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in kidney pyramids and to a lesser extent in lung and other tissues of various types. This gene fluxes calcium in human aortic smooth muscle cells, and therefore is involved in signal transduction.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, renal and nervous disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney and/or nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., kidney, lung, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in kidney and lung and homology with sap47 indicates that the protein product has regulatory or direct functions in molecular exchange with body fluids and nervous system signaling. Polynucleotides and polypeptides corresponding to this gene are useful for treatment of disorders in kidney and nervous system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

The translation product of this gene shares sequence homology with the mouse Ly-9.2 antigen which is thought to be an important cell surface marker in lymphoids, myeloids and hematopoietic progenitors. (See Accession No. gil198932.) Preferred polypeptide fragments comprise the amino acid sequence: PFICVARNPVSRNFSSPI LARKLCEGAA (SEQ ID NO:251); and/or KEDPANTVYSTVEIPKKMENPHSLLT MPDTPRL (SEQ ID NO:252). Also preferred are polynucleotide fragments encoding these polypeptide fragments. Based on homology, it is likely that this gene is also a cell surface marker, involved in hematopoiesis.

This gene is expressed primarily in activated macrophages, monocytes and T-cells and to a lesser extent in spleen and bone marrow.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., blood cells, and bone marrow, and cancerous and wounded

10

15

20

25

30

35

tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:129 as residues: Lys-26 to Tyr-33, Arg-44 to Ile-49, Ser-53 to Lys-71, Lys-86 to Pro-91.

The tissue distribution and homology to Ly-9.2 surface immunoglobulin family indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis of immune and hematopoietic disorders. Polypeptides and polynucleotides corresponding to this gene are also be used as a marker for leukemia or a modulator of the functions of the cells of macrophage/monocyte or T-cell types.

FEATURES OF PROTEIN ENCODED BY GENE NO: 6

The translation product of this gene shares sequence homology with the *Drosophila* glutactin gene which is thought to be important in cell-cell interaction or cell-extracellular matrix contact.

This gene is expressed primarily in colon tissue, aorta endothelial cells and to a lesser extent in skin, breast tissue and T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of these tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the gastrointestinal tract, vascular system or T-cell development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the digestive system, cardiovascular system, and immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., colon, cardiovascular tissue, skin, mammary tissue, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to glutactin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the development and maintenance of the integrity of the basal membrane in the gastrointestinal tract and

10

15

20

cardiovascular system. The expression in T-cells also indicate the protein may be involved in T-cell adhesion, cell-cell interaction and development.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

The translation product of this gene shares sequence homology with MURF4 protein, an ATPase homolog, which is thought to be important in ATP hydrolysis.

This gene is expressed primarily in breast tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, breast cancer and non-neoplastic breast diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the breast tissue, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to MURF4 gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of neoplastic or non-neoplastic breast diseases because ATPase like protein may be involved in changed metabolic states of the breast.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

This gene shares homology to the alcohol dehydrogenase gene. Preferred polypeptide fragments comprise comprise the amino acid sequence: ASAVLLDLPNSG GEAQAKKLGNNCVFAPADVTSEKDVQTALALAKGKFGRVDVAVNCAGIAVAS KTYNLKKGQTHTLEDFQRVLDVNLMGTFNVIRLVAGEMGQNEPDQGGQRGVI INTASVAAFEGQVGQAAYSASKGGIVGMTLPIARDLAPIGIRVMTIAPGLFGTPL LTSLPEKVCNFLASQVPFPSRLGDPAEYAHLVQAIIENPFLNGEVIRLDGAIRMQ P (SEQ ID NO:253); and/or SVAAFEGQVGQAAYSASKGGIVGMTLPIA (SEQ ID NO:254). Polynucleotides encoding these fragements are also encompassed by the invention. Other groups have also recently cloned this gene, recognizing its homology to alcohol dehydrogenase. (See Accession No. 1778355.) Moreover, a second group

recently cloned the mouse homologue of this gene. (See Accession No. 2078284.) They found that the mouse homologue binds to amyloid beta-peptide and mediates neurotoxicity in Alzheimer's disease, calling the protein ERAB. This gene maps to chromosome X, and therefore can be used in linkage analysis as a marker for chromosome X. Therefore, mutations in the translated product of this gene may be involved in Alzheimer's disease in humans, as well as other sex linked diseases. This gene can be used as a diagnostic marker for these diseases.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO:132 as residues: Arg-45 to Ser-53.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

The translation product of this gene shares week sequence homology with rat N-methyl-D-aspartate receptor subunit and other proline-rich proteins which are thought to be important in neurotransmission or protein-protein intereaction.

This gene is expressed primarily in synovial hypoxia and to a lesser extent in ovary, senescent cells and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, synovial hypoxia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the synovia and brain, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., synovial tissue, ovary and other reproductive tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in synovial hypoxia and nerve tissues, and homology to N-methyl-D-aspartate receptor subunit and other proline-rich proteins indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and intervention of synovial hypoxia and other synovial disorders.

35

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

This gene is expressed primarily in prostate and to a lesser extent in placenta and ovary.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, male and female infertility, cancer, and other hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system and neoplasia, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., prostate, placenta, ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:134 as residues: Pro-17 to Met-23, Ala-30 to Trp-38, Ile-49 to Trp-54, Lys-68 to Gly-74, Thr-93 to Gly-99, Met-126 to Glu-132, Gly-173 to Ser-178, Lys-205 to Tyr-214.

The tissue distribution of this gene in the prostate, placenta and ovary indicates that this gene product is useful for treatment/diagnosis of male or female infertility, endocrine disorders, fetal deficiencies, ovarian failure, amenorrhea, ovarian cancer, benign prostate hyperplasia, prostate cancer, and other forms of cancer of the reproductive system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 11

This gene is expressed primarily in the thyroid and to a lesser extent in the pineal gland. This gene maps to chromosome 10, and therefore can be used as a marker in linkage analysis for chromosome 10. Preferred polypeptide fragments comprise the amino acid sequence: HPIEWAINAATLSQFY (SEQ ID NO:256); CWIKYCLTLMQN AQLSMQDNIG (SEQ ID NO:257); KVSYLRPLDFEEARELFLLGQHYVF (SEQ ID NO:258); MERRCKMHKRXIAMLEPLTVDLNPQ (SEQ ID NO:259); and/or SHIV KKINNLNKSALKY YQLFLD (SEQ ID NO:260). Also preferred are polynucleotides encoding these polypeptide fragments.

Therefore, polynucleotides and polypeptides of the invention are useful as

15

20

25

30

35

reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune, thyroid and pineal gland disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., thyroid and pineal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:135 as residues: Ser-2 to Ser-8, Thr-38 to Arg-44.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treating/detecting immune disorders such as arthritis, asthma, immune deficiency diseases (e.g., AIDS), and leukemia, as well as treating/detecting thymus disorders (e.g., Graves Disease, lymphocytic thyroiditis, hyperthyroidism, and hypothyroidism), and treating/detecting pineal gland disorders (e.g., circadian rhythm disturbances associated with shift work, jet lag, blindness, insomnia and old age).

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

This gene is expressed primarily in lung and tonsils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, pulmonary or immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., pulmonary tissue, and tonsils, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily

5 -

10

15

20

25

30

35

fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:136 as residues: Glu-28 to Gly-49.

The tissue distribution of this gene only in lung indicates that it could play a role in the treatment/detection of lung lymphoma or sarcoma formation, pulmonary edema and embolism, bronchitis and cystic fibrosis. Its expression in tonsils indicates a potential role in the treatment/detection of immune disorders such as arthritis, asthma, immune deficiency diseases (e.g., AIDS), and leukemia, in addition to the treatment/detection of tonsillitis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 13

This gene is expressed primarily in lymphoid, myeloid and erythroid cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, myeloid cells, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The predominant tissue distribution of this gene in hematopoietic cell types indicates that the gene could be important for the treatment or detection of immune or hematopoietic disorders including arthritis, asthma, immunodeficiency diseases and leukemia. Preferred embodiments of the present invention are polypeptide fragments comprising the amino acid sequence: FTHLSTCLLSLLLVRMSGFLLLARASPSI CALDSSCFVEYCSSYSSSCFLHQHFPSLLDHLCQ (SEQ ID NO:261); or FLLL ARASPSICALDSSCFVQEY (SEQ ID NO:262). Also preferred are polynucleotide fragments encoding these polypeptide fragments.

FEATURES OF PROTEIN ENCODED BY GENE NO: 14

This gene is homologous to the *Drosophila Regena* (Rga) gene. (See Accession No. 1658504.) This *Drosophila* gene is thought to be a homolog of the global negative

10

15

20

25

transcriptional regulator NOT2 (CDC36) from yeast, which modifies gene expression and suppresses position effect variegation. Preferred polypeptide fragments comprise the amino acid sequence: PDGRVTNIPQGMVTDQFGMIGLLTFIRAAETDPGMVHL ALGSDLTTLGLNLNS (SEQ ID NO:263); VHLALGSDLTTLGLNLNSPENLYP (SEQ ID NO:265); EDLLFYLYYMNGGDVLQLLAAVELFNRDWRYHKEERVWI TR (SEQ ID NO:264); and/or HNEDFPALPGS (SEQ ID NO:266).

This gene is expressed primarily in placenta and to a lesser extent in infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurodegenerative and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the neurological system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., placenta, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:138 as residues: Leu-9 to Tyr-15, Asp-34 to Gln-46, Pro-51 to Asp-57, Gly-88 to Thr-104, Thr-123 to Ser-128.

The tissue distribution of this gene indicates that it could be used in the detection and/or treatment of neurological disorders such as Such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, and panic disorder.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 15

This gene is expressed primarily in adrenal gland tumor and osteoclastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, endocrine and bone disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for

35

10

15

20

25

30

35

differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system and in bone, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., adrenal gland, and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:139 as residues: Ile-52 to Trp-57.

The tissue distribution of this gene indicates that it may be involved in the treatment and/or detection of adrenal gland tumors, osteosarcomas, endocrine disorders and bone disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

The translation product of this gene shares sequence homology with the FK506 binding protein, a protein which plays an important role in immunosupression. (See Accession No. M75099.) Specifically, a 12-kDa FK506-binding protein (FKBP-12) is a cytosolic receptor for the immunosuppressants FK506 and rapamycin. (See, Proc. Natl. Acad. Sci. 88: 6677-6681 (1991).) Thus, based on homology, it is likely that this gene also has immunosuppression activity. Preferred polypeptides comprise the amino acid sequence: GRIIDTSLTRDPLVIELGQKQVIPGLEQSLLDMCVGEKRRAIIPSH LAYGKRGFPPSVPADAVVQYDVELIALIR (SEQ ID NO:267); and/or IHYTGSLV DGR IIDTS (SEQ ID NO:268). Also preferred are the polynucleotide fragments encoding these polypeptides.

This gene is expressed primarily in melanocytes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and other hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and cancer, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., melanocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

10

15

20

25

30

35

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:140 as residues: Ala-118 to Phe-124, Arg-178 to Lys-201.

The tissue distribution and homology to the FK506 binding proteins which are believed to a role in immunosupression mediated by the immunosupressant drugs rapamycin and cyclosporin, indicates that this gene could serve as a novel target for the identification of novel immunosupressant drugs.

FEATURES OF PROTEIN ENCODED BY GENE NO: 17

The translation product of this gene shares sequence homology with the rat calcium-activated potassium channel rSK3, which is thought to be important in regulating vascular tone. (See Accession No. gil2564072, gil1575663, and gil1575661.) Although homologous to these proteins, this gene contains an 18 amino acid insert, not previously identified in the homologs. Preferred polypeptide fragments comprise the amino acid sequence: CESPESPAQPSGSSLPAWYH (SEQ ID NO:269). Also preferred are the polynucleotide fragments encoding these polypeptides.

This gene is expressed primarily in B-cells, frontal cortex and endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular (hyper/hypotension, asthma, pulmonary edema, pneumonia, heart disease, restenosis, atherosclerosis, stoke, angina and thrombosis) and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, brain and other tissue of the nervous system, and endothelium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:141 as residues: Glu-72 to Gly-82, His-90 to Val-95, Gln-168 to Lys-174, Val-202 to Ser-212.

10

15

20

25

30

The tissue distribution and homology to calcium-activated potassium channels indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of vascular disorders (hyper/hypotension, athesma, pulmonary edema, pneumonia, heart disease, restenosis, atherosclerosis, stoke, angina and thrombosis).

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

This gene is expressed primarily in smooth muscle and to a lesser extent in brain (amygdala, corpus colosum, hippocampus).

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cardiovascular (hypertension, heart disease, athesma, pulmonary edema, restenosis, atherosclerosis, stoke, angina, thrombosis, and wound healing), and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular and neurological systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., smooth muscle, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:142 as residues: Lys-43 to Arg-49, Tyr-58 to Glu-65.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of cadiovascular disorders (hypertension, heart disease, athesma, pulmonary edema, restenosis, atherosclerosis, stoke, angina, thrombosis, and wound healing). Expression in brain indicates a role in the treatment and diagnosis of behavioral or neurological disorders, such as depression, schizophrenia, Alzheimer's disease, mania, dementia, paranoia, and addictive behavior.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 19

This gene is expressed primarily in T-cells (Jurkats, resting, activated, and

10

15

20

25

30

35

anergic T-cells), endothelial cells, pineal gland, and to a lesser extent in a variety of other tissues and cell types. Preferred polypeptide fragments comprise the amino acid sequence: EEAGAGRRCSHGGARPAGLGNEGLGLGGDPDHTDTGSRSKQRINN WKESKHKVIMASASARGNQDKDAHFPPPSKQSLLFCPKSKLHIHRAEISK (SEQ ID NO:270); and/or SKQRINNWKESKHKVIMASASAR (SEQ ID NO:271). Also preferred are the polynucleotide fragments encoding these polypepides.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation, immune and cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, neurological and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, endothelial cells, and pineal gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:143 as residues: Phe-71 to Arg-76, Pro-82 to His-87, Glu-103 to Ala-111.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. In addition, expression in the pineal gland might suggest a role in the diagnosis of specific brain tumors and treatment of neurological disorders. Endothelial cell expression might suggest a role in cadiovascular or respiratory/pulmonary disorders or infections (athesma, pulmonary edema, pneumonia).

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

This gene is expressed primarily in brain and embryo and to a lesser extent in leukocytes. This gene maps to chromosome 15, and therefore can be used as a marker in linkage analysis to chromosome 15.

Therefore, polynucleotides and polypeptides of the invention are useful as

10

15

20

25

30

35

PCT/US98/05311

reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental and neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:144 as residues: Met-1 to Gly-8.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. The expression in the brain -- and in particular the fetal brain -- would suggest a possible role in the treatment and diagnosis of developmental and neurodegenerative diseases of the brain and nervous system (depression, schizophrenia, Alzheimer's disease, mania, dementia, paranoia, and addictive behavior).

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

This gene is expressed primarily in brain, kidney, lung, liver, spleen, and a variety of leukocytes (especially T-cells) and to a lesser extent in a variety of other tissues and cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, leukemias, lymphomas, autoimmune, immunosuppressive, and immunodeficiencies, hematopoietic disorders, as well as renal disorders, and neoplasms. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the renal, pulmonary, immune, and central nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g.,

10

15

20

25

30

35

brain and other tissue of the nervous system, kidney, pulmonary tissue, liver, spleen, and blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of renal conditions, such as acture renal failure, kidney fibrosis, and kidney tubule regeneration. The expression in leukocytes and other immune tissues indicates a role in immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. The expression in the brain -- and in particular the fetal brain -- indicates a possible role in the treatment and diagnosis of developmental and neurodegenerative diseases of the brain and nervous system (depression, schizophrenia, Alzheimer's disease, mania, dementia, paranoia, and addictive behavior).

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

This gene is expressed primarily in skin (fetal epithelium, keratinocytes and skin). This gene also maps to chromosome 19, and therefore can be used in linkage analysis as a marker for chromosome 19.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, skin cancers (e.g., melanomas), eczema, psoriasis or other disorders of the skin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skin, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., skin and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:146 as residues: Pro-28 to Glu-35, Ser-39 to Phe-44, Ala-94 to Gln-99.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of skin cancers (e.g., melanomas), eczema, psoriasis or other disorders of the skin.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 23

This gene maps to chromosome 11. Another group recently isolated this same gene, associating the sequence to the region thought to harbor the gene involved in Multiple Endocrine Neoplasia Type 1, or MEN 1. (See Accession No. 2529721 and Genome Res. 7(7), 725-735 (1997), incorporated herein by reference in its entirety.) Preferred polypeptide fragments comprise the amino acid sequence: LFHWACLNERA AOLPRNTAXAGYQCPSCNGPS (SEQ ID NO:272).

This gene is expressed primarily in epididymus, pineal gland, T-cells, as well as fetal epithelium, lung and kidney.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune, metabolic mediated disorders, and MEN. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, renal, neurological and pulmonary systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., epididymus and other reproductive tissue, pineal gland, T-cells and other blood cells, epithelium, lung, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of developmental deficiencies or abnormalities as well as a host of different disorders which arise as a result of conditions in the indicated tissues or cell types. An area of particular interest is in the treatment and diagnosis of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. The expression in the brain, and in particular the fetal brain, would suggest a possible role in the treatment and diagnosis of

10

15

20

25

30

35

developmental and neurodegenerative diseases of the brain and nervous system (depression, schizophrenia, Alzheimer's disease, mania, dementia, paranoia, and addictive behavior). Respiratory/pulmonary disorders, such as athesma, pulmonary edema are also potential therapeutic areas, as well as renal conditions such as acute renal failure, kidney fibrosis and kidney tubule regeneration. Moreover, this gene can be used in the treatment and/or detection of MEN I.

FEATURES OF PROTEIN ENCODED BY GENE NO: 24

This gene is expressed primarily in fetal spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, leukemia, lymphoma, AIDS, hematopoeitic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., spleen and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

A closely related homolog of this gene was recently cloned by another group, calling the gene CDO, an oncogene-, serum-, and anchorage-regulated member of the Ig/fibronectin type III repeat family. (See Accession No. 2406628, and J. Cell Biol. 138(1): 203-213 (1997), herein incorporated by reference in its entirety.) Preferred polypeptide fragments comprise the amino acid sequence: FYTYYRPTDSDNDSDYKK DMVEGDKYWHSISHLQPETSYDIKMQCFNEGGESEFSNVMICETKARKSSGQP GRLPPPTLAPPQPPLPETIERPVGTGAMVARSSDLPYLIVGVVLGSIVLIIVTFIPF CLWRAWSKQKHTTDLGFPRSALPPSCPYTMVPLGGLPGHQAVDSPTSVASVD

10

15

20

25

30

35

GPVLM (SEQ ID NO:273); or YIYYRPTDSDNDSDYKKDMVEGDKYWHSISHLQ PETSYDIKMQCFNEGGESEFSNVMICETKARKS (SEQ ID NO:274).

This gene is expressed primarily in fetal lung and kidney, human embryo and osteoclastoma stromal cells and to a lesser extent in a variety of other tissues and cell types.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, developmental disorders and cancers, as well as pulmonary and renal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the respiratory/pulmonary, skeletal and renal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., lung, kidney, embryonic tissue, and bone cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:149 as residues: Thr-5 to Pro-18, Ala-76 to Thr-84.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of: osteoperosis, fracture, osteosarcoma, ossification, and osteonecrosis, as well as respiratory/pulmonary disorders, such as athesma, pulmonary edema, and renal conditions such as acute renal failure, kidney fibrosis and kidney tubule regeneration.

FEATURES OF PROTEIN ENCODED BY GENE NO: 26

This gene is homologous to the HIV envelope glycoprotein. (See Accession No. 2641463.) Preferred polypeptide fragments comprise the amino acid sequence: NVRALLHRMPEPPKINTAKFNNNKRKNLSL (SEQ ID NO:275).

This gene is expressed primarily in pineal gland and skin, and to a lesser extent in lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

not limited to, neurological and behavior disorders; respiratory/pulmonary disorders, such as athesma, pulmonary edema; skin conditions such as eczema, psoriasis, acne and skin cancer, as well as AIDS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and respiratory systems, as well as skin and AIDS, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, pineal gland, epidermis, and pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:150 as residues: Gln-15 to Gln-20.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of conditions which affect the above tissues, such as: skin cancer, eczema, psoriasis, acne, athesma, pulmonary edema, neuro-degenerative or developmental disorders such as Alzheimer's, depression, schizophrenia, dementia, and AIDS.

20

25

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

Preferred polypeptide encoded by this gene comprise the following amino acid sequence: NTNQREALQYAKNFQPFALNHQKDIQVLMGSLVYLRQGIENSPYVHL LDANQWADICDIFTRDACALLGLSVESPLSVSFSAGCVALPALINIKAVIEQRQC TGVWNQKDELPIEVDLGKKCWYHSIFACPILRQQTTDNNPPMKLVCGHIISRD ALNKMFNGSKLKCPYCPMEQSPGDAKQIFF (SEQ ID NO:276). Polynucleotides encoding such polypeptides are also provided as are complementary polynucleotides thereto.

This gene is expressed primarily in liver (adult and fetal) and spleen tissue, and to a lesser extent in placenta, T helper cells, kidney tumor, ovarian tumor, melanocytes and fetal heart.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and developmental diseases and disorders and liver diseases such as liver cancer. Similarly, polypeptides and antibodies directed to these

35

polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, circulatory and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, placenta, blood cells, kidney, ovary and other reproductive tissue, melanocytes, and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of growth, hematopoietic and immune system disorders particularly related to the liver.

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

5

10

15

20

25

30

35

The translation product of this gene shares sequence homology with prostaglandin transporter which is thought to be important in metabolic and endocrine disorders. See, for example, Gastroenterology Oct:109(4):1274-1282 (1995). Preferred polypeptides encoded by this gene comprise the following amino acid sequence: SYLSACFAGCNSTNLTGCACLTTVPAENATVVPGKCPSPGCQEAFLTFLCVMCI CSLIGAMARHP (SEQ ID NO:277); and/or PSVIILIRTVSPELKSYALGVLFLLLRL LGFIPPPLIFGAGIDSTCLFWSTFCGEQGACVLYDNVVYRYLYVSIAIALKSFAFI (SEQ ID NO:278).

This gene is expressed primarily in hematopoietic and brain tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic, immune and endocrine diseases and disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the metabolic, immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., endocrine tissue, hematopoietic tissue, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

10

15

20

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to prostaglandin (and anion) transporter indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of endocrine, metabolic, immune and kidney disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

This gene is expressed primarily in early stage human lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, growth and respiratory disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the developmental and respiratory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:153 as residues: Val-50 to Trp-55.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of respiratory and growth diseases and disorders.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 30

The translation product of this gene shares sequence homology with human DNA helicase which is thought to be important in accurate and complete DNA replication in creation of new cells. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: QSLFTRFVRVGVPTVDLDAQGRARA SLCXXYNWRYKNLGNLPHVQLLPEFSTANAGLLYDFQLINVEDFQGVGESEPN PYFYQNLGEAEYVVALFMYMCLLGYPADKISILTTYNGQKHLIRDIINRRCGNN PLIGRPNKVTTVDRFQGQQNDYILLSLVRTRAVGHLRDVRRLVVAMSRAR (SEQ ID NO:279); and/or LVKEAKIIAMTCTHAALKRHDLVKLGFKYDNILMEE AAQILEIETFIPLLLQNPQDGFSRLKRWIMIGDHHQLPPVI (SEQ ID NO:280).

This gene is expressed primarily in testes tumor and to a lesser extent in adrenal

gland tumor and placenta.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers and endocrine/growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine, developmental, and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., testes and other reproductive tissue, adrenal gland, and placenta, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to DNA helicase indicates that the protein products of this gene are useful for study, treatment, and diagnosis of many cancer types, including testicular cancer; as well as disorders involving endocrine function and normal growth and development.

20

15

5

10

FEATURES OF PROTEIN ENCODED BY GENE NO: 31

The translation product of this gene shares sequence homology with BID-apoptotic death gene (mouse), Genbank accession no. PID g1669514, which is thought to be important in programmed cell death.

25

30

35

This gene is expressed primarily in jurkat membrane bound polysomes and activated neutrophils and to a lesser extent in endothelial cells and human cerebellum.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancers and other proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, endothelium, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,

10

15

20

25

30

35

urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:155 as residues: Glu-4 to Leu-11, Cys-28 to Arg-35, Gln-50 to His-66, Glu-73 to Gln-79, Gly-94 to Ser-100, Arg-114 to Asp-126, Pro-139 to Lys-146.

The tissue distribution and homology to BID-apoptotic death gene indicates that the protein products of this gene are useful for study of cell death, and treatment and diagnosis of proliferative disorders and cancers. Apoptosis - programmed cell death - is a physiological mechanism involved in the deletion of peripheral T lymphocytes of the immune system, and its dysregulation can lead to a number of different pathogenic processes. Diseases associated with increased cell survival, or the inhibition of apoptosis, include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, such as breast cancer, prostrate cancer, Kaposiís sarcoma and ovarian cancer); autoimmune disorders (such as systemic lupus erythematosus and immune-related glomerulonephritis rheumatoid arthritis) and viral infections (such as herpes viruses, pox viruses and adenoviruses), inflammation; graft vs. host disease, acute graft rejection, and chronic graft rejection. Diseases associated with increased apoptosis include AIDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Retinitis pigmentosa, Cerebellar degeneration); myelodysplastic syndromes (such as aplastic anemia), ischemic injury (such as that caused by myocardial infarction, stroke and reperfusion injury), toxin-induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia. Thus, the invention provides a method of enhancing apoptosis in an individual by treating the individual with a polypeptide encoded by this gene.

FEATURES OF PROTEIN ENCODED BY GENE NO: 32

The translation product of this gene shares sequence homology with human fructose transporter which is thought to be important in normal metabolic function and activity.

This gene is expressed primarily in T-cell lymphoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, leukemia and other cancers, and metabolic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic, lymph and metabolic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:156 as residues: Pro-22 to Gly-48, Ser-54 to Pro-61.

The tissue distribution indicates that the protein products of this gene are useful for study of mechanisms leading to cancer, treatment and diagnosis of cancerous and pre-cancerous conditions; as well as the study and treatment of various metabolic diseases and disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 33

This gene is expressed primarily in human meningima.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and other disorders of the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., meningima and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:157 as residues: Asn-23 to Pro-31.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of disorders of the CNS and inflammatory responses.

10

15

20

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

This gene is expressed primarily in activated monocytes and wound healing tissues and to a lesser extent in fetal epithelium.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and inflammatory disorders and wound healing and tissue repair dysfunctions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, epithelial and gastrointestinal systems, and healing wounds, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., monocytes and other blood cells, and epithelium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:158 as residues: Ala-28 to Ala-33, Gly-35 to Glu-45.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis, study and treatment of immune and inflammatory disorders and wound healing dysfunctions.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 35

This gene is expressed primarily in human osteosarcoma and prostate cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, skeletal and neoplastic conditions such as bone and prostate cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and skeletal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., bone, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial

10

15

20

25

30

35

fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:159 as residues: Ser-14 to Gly-22, Leu-37 to Gln-43.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of skeletal disorders and cancer).

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

This gene encodes a protein which is highly homologous to a protein called congenital heart disease protein 5, presumably implicated in congenital heart disease (see Genbank PID g2810996).

This gene is expressed primarily in Hodgkin's lymphoma, erythroleukemia cells, and TNF activated synovial fibroblasts, to a lesser extent in ovarian cancer, cerebellum, spleen, fetal liver and placenta and finally to a lesser extent in various other mesenchymal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer, immune, hematopoietic and cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, hematopoietic and cardiovascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., heart and other cardiovascular tissue, lymphoid tissue, blood cells, bone marrow, ovary and other reproductive tissue, brain and other tissue of the nervous system, spleen, liver, and mesenchymal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:160 as residues: Lys-41 to Met-49, Gln-54 to Glu-59, Glu-76 to Thr-88.

The homology of this gene and translation product to congenital heart disease protein 5 indicates a role for this protein in the diagnosis, prognosis and/or treatment of

heart disease or other cardiovascular related disorders. In addition, predominant expression in cells associated with the immune and hematopoetic system indicates a role for this protein in the treatment, diagnosis and/or prognosis of immune and autoimmune diseases, such as lupus, transplant rejection, allergic reactions, arthritis, asthma, immunodeficiency diseases, leukemia, AIDS, thymus disorders such as Graves Disease, lymphocytic thyroiditis, hyperthyroidism and hypothyroidism, graft versus host reaction, graft versus host disease, transplant rejection, myelogenous leukemia, bone marrow fibrosis, and myeloproliferative disease. The protein could also be used to enhance or protect proliferation, differentiation and functional activation of hematopoietic progenitor cells such as bone marrow cells, which could be useful for cancer patients undergoing chemotherapy or patients undergoing bone marrow transplantation. The protein may also be useful to increase the proliferation of peripheral blood leukocytes, which could be useful in the combat of a range of hematopoietic disorders including immunodeficiency diseases, leukemia, and septicemia.

15

20

25

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 37

This gene is expressed primarily in ovarian cancer.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, urogenital neoplasias. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., ovary and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:161 as residues: Asn-22 to Asn-27.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis and treatment of ovarian and other tumors.

35

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 38

The translation product of this gene shares sequence homology with zinc finger proteins.

This gene is expressed primarily in various fetal, cancer, and endothelial lines.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune and growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissue, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for study, diagnosis and treatment of immune and developmental conditions and cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

This gene is expressed primarily in fetal, infant, and adult brain and to a lesser extent in other brain and endocrine organs and blastomas.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain tumors and neurodegenerative conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, endocrine tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the

disorder.

10

15

20

25

The tissue distribution indicates that the protein products of this gene are useful for the study, diagnosis and treatment of brain cancer and other neurological disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 40

The translation product of this gene shares sequence homology with vesicular glycoproteins and lectins. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: DTYPNEEKQQERVFPXXSAMVNNGSLSYDHER DGRPTELGGCXAIVRNLHYDTFLVIRYVKRHLTIMMDIDGKHEWRDCIEVPGV RLPRGYYFGTSSITGDLSDNHDVISLKLFELTVERTPEEE (SEQ ID NO:281); and/or LKREHSLSKPYQGVGTGSSSLWNLMGNAMVMTQYIRLTPDMQSKQGA LWNRVPCFLRDWELQVHFKIHGQGKKNLHGDGLAIWYT (SEQ ID NO:282).

This gene is expressed primarily in infant brain and to a lesser extent in various normal and transformed neural, endocrine, and immune organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological and neurodevelopmental conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and hormonal systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, endocrine tissue, and tissue and cells of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:164 as residues: Pro-64 to Gly-71, Gly-94 to Leu-100, Thr-110 to Pro-116, Thr-135 to Arg-145, Glu-164 to Glu-171, Asp-204 to Asp-211, Arg-253 to His-261, Asn-312 to Tyr-323.

The tissue distribution indicates that the protein products of this gene are useful for the study, diagnosis and treatment of mental retardation and other neurological disorders and neoplasias.

35

30

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

This gene displays homology to the glycosyltransferase family, which catalyze the addition of sialic acids to carbohydrate groups which are present on glycoproteins.

This gene is expressed primarily in smooth muscle and to a lesser extent in pineal gland, fetal liver, and infant brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, gastrointestinal injury, inflammatory and neurodegenerative conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and nervous systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., smooth muscle, pineal gland, liver, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:165 as residues: Ser-12 to Trp-21, Arg-24 to Pro-32, Asp-73 to Lys-82, Lys-90 to Ala-97.

The tissue distribution indicates that the protein products of this gene are useful for the study, diagnosis and treatment of neurodegenerative and growth disorders and gastrointestinal repair.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

The translation product of this gene shares sequence similarity with metallothionein polypeptides. See, for example, Proc. Natl. Acad. Sci. U S A 1992 Jul 15:89(14):6333-6337. Metallothioneins are believed to inhibit neuronal survival among other biological functions. Based on the sequence similarity (especially the conserved cysteine motifs characteristic of the metallothionein family) the translation product of this gene is expected to share certain biological activities with other members of the metallothionein polypeptide family. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: PGTLQCSALHHDPGCANCSRFCRD CSPPACQC (SEQ ID NO:283).

This gene is expressed exclusively in placenta and fetal liver.

10

15

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, hematopoietic and immune disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., placenta, liver, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to metallothionien indicates that the protein products of this gene are useful for diagnosis and treatment of immune and hematopoietic system disorders and neurological diseases, especially in fetal development.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 43

Preferred polypeptides encoded by this gene comprise the following amino acid sequence: FLYDVLMXHEAVMRTHQIQLPDPEFPS (SEQ ID NO:284).

This gene is expressed primarily in T-cells and synovial tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., synovial tissue, and T-cells and other blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

The tissue distribution indicates that the protein products of this gene are useful for treatment and diagnosis of disorders of the immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

The translation product of this gene shares sequence similarity with several methyltransferases (e.g., see Genbank gil1065505).

This gene is expressed primarily in ovary, thymus, infant adrenal gland, tissues of the nervous system and the hematopoietic tissue, and to a lesser extent in adipose tissue and many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, disorders of the reproductive system, the endocrine system, the hematopoietic system and the CNS. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, endocrine, CNS and reproductive system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., ovary and other reproductive tissue, thymus, adrenal gland, brain and other tissue of the nervous system, hematopoietic tissue, and adipose tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:168 as residues: Ser-3 to Gly-12, Asp-19 to Arg-31, Tyr-70 to Tyr-77, Asn-130 to Lys-140, Pro-165 to Gln-170, Pro-192 to Lys-199, Leu-216 to Glu-227, Glu-254 to Phe-281.

The tissue distribution and homology to methyltransferase indicates that the protein products of this gene are useful for diagnosis and treatment of disorders of the CNS, the hematopoietic system and reproductive organs and tissues. For example, the abundant expression in the ovary may indicate that the gene product can be used as a hormone with either systemic or reproductive functions; as growth factors for germ cell maintenance and in vitro culture; as a fertility control agent; remedy for sexual dysfunction or sex development disorders; diagnostics/treatment for ovarian tumors, such as serous adenocarcinoma, dysgerminoma, embryonal carcinoma,

15

20

25

30

35

choriocarcinoma, teratoma, etc; The expression in thymus may indicate its utilities in T-cell development and thus its applications in immune related medical conditions, such as infection, allergy, immune deficiency, tissue/organ transplantation, etc.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with cytochrome C oxidase which is thought to be important in metabolic function of cells. This gene has now recently been published as estrogen response gene. See Genbank accession no. AB007618 and Mol. Cell. Biol. 18 (1), 442-449 (1998). See also J Immunol. Mar 1:154(5): 2384-2392 (1995), where the mouse homologue was published and implicated in siliocis.

This gene is expressed primarily in adipose tissue, kidney and fetal brain and to a lesser extent in several other tissues and organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolic diseases involving especially adipose tissue, brain and kidney. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the CNS and vascular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., adipose tissue, kidney, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:169 as residues: Thr-5 to Ser-14.

The tissue distribution and homology to cytochrome C oxidase, estrogen response gene product and siliocis related gene product indicates that the protein products of this gene are useful for diagnosis and treatment of metabolic disorders in the CNS, adipose tissue and kidney, particularly siliocis.

FEATURES OF PROTEIN ENCODED BY GENE NO: 46

The translation product of this gene shares sequence homology with reticulocalbin. See, for example, J. Biochem. 117 (5), 1113-1119 (1995). Based on the

10

15

20

25

30

35

sequence similarity, the translation product of this gene is expected to share certain biological activities with reticulocalbin, e.g., Ca++ binding activities. This gene product is sometimes hereinafter referred to as "Reticulocalbin-2".

This gene is expressed primarily in breast, endothelial cells, synovial, heart and smooth muscle cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the breast, vascular and skeletal/cardiac muscular system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the breast, vascular and skeleto-muscular system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., mammary tissue, endothelial cells, synovial tissue, heart and other cardiovascular tissue, and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:170 as residues: Gly-16 to Arg-32, Ala-42 to Asn-50, Glu-66 to Gln-76, Arg-85 to Gly-94, Thr-108 to Asp-115, Trp-121 to Gly-130, Leu-137 to His-144, Glu-155 to Lys-161, Asp-175 to Ser-180, Glu-209 to Gly-217, Glu-232 to Glu-237, Thr-243 to Asp-261, Glu-287 to Arg-295.

The tissue distribution indicates that the protein products of this gene are useful for diagnosis and treatment of diseases of the vascular and skeletal/cardiac muscular system. The homology of the gene with reticulocalbin indicates its biological function in regulating calcium store, a particularly important function in muscular cell types. The gene expression in the heart may indicate its utilities in diagnosis and remedy in heart failure, ischemic heart diseases, cardiomyopathy, hypertension, arrhythmia, etc. The abundant expression in the breast may indicate its applications in breast neoplasia and breast cancers, such as fibroadenoma, papillary carcinoma, ductal carcinoma, Pagetís disease, medullary carcinoma, mucinous carcinoma, tubular carcinoma, secretory carcinoma and apocrine carcinoma; juvenile hypertrophy and gynecomastia, mastitis and abscess, duct ectasia, fat necrosis and fibrocystic diseases, etc.

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 47

The translation product of this gene shares weak sequence homology with H+-transporting ATP synthase which is thought to be important in cell metabolism or signal transduction.

This gene is expressed only in testis.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of some types of diseases and conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and hematopoietic tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Since only one out of about a million expressed sequence tag is found in testes indicates that its expression is low and selectively in testes. Since some of the genes only expressed in testes are usually expressed in brain or in certain induced hematopoietic cells/tissues, it is speculated that this gene to be expressed in brain or hematopoietic cells/tissues and is useful for diagnosis and treatment of disorders these systems.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of this gene shares sequence homology with human polymeric immunoglobulin receptor (accession No.X73079) which is thought to be important in antibody recognition and immune defenses. In one embodiment, polypeptides of the invention comprise the sequence GWYWCG (SEQ ID NO:285). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in placenta and to a lesser extent in corpus callosum and fetal liver and spleen.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, disorders of the immune system, e.g. autoimmune diseases and immunodeficiency. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., placenta, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:172 as residues: Tyr-37 to Cys-49, Gly-51 to Tyr-56, Lys-88 to Trp-93, Leu-130 to Glu-136.

The tissue distribution and homology to human polymeric immunoglobulin receptor indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders, e.g. autoimmune diseases and immunodeficiencies.

FEATURES OF PROTEIN ENCODED BY GENE NO: 49

This gene is expressed in thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., thymus and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immune disorders, e.g. autoimmunity and immunodeficiency.

10

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

Preferred polypeptide encoded by this gene comprise the following amino acid sequence: MKVGARIRVKM,SVNKAHPVVSTHWRWPAEWPQMFLHLAQEPRTE VKSRPLGLAGFIRQDSKTRKPLEQETIMSAADTALWPYGHGNREHQENELQKY LQYKDMHLLDSGQSLGHTHTLQGSHNLTALNI (SEQ ID NO:286). Polynucleotides encoding this polypeptide are also provided as are complementary polynucleotides thereto.

This gene is expressed primarily in adrenal gland, pituitary, T helper cells, and breast cells and to a lesser extent in a wide variety of tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of the some diseases and conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., adrenal gland, pituitary, T-cells and other blood cells, and mammary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:174 as residues: Gln-39 to Ser-47, Arg-57 to Glu-67, Tyr-82 to Gln-95.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of a wide range of disorders, such as immune and endocrine disorders.

30 FEATURES OF PROTEIN ENCODED BY GENE NO: 51

The translation product of this gene shares sequence homology with human Sop2p-like protein which is important in cytoskeleton structure. In one embodiment, polypeptides of the invention comprise the sequence SLHKNSVSQISVLSGGKAKCS QFCTTGMDGGMSIWDVKSLESALKDLKI (SEQ ID NO:287). Polynucleotides encoding this polypeptide are also encompassed by the invention. This gene maps to chromosome 7. Therefore, polynucleotides of the invention can be used in linkage

35

10

15

20

analysis as a marker for chromosome 7.

This gene is expressed primarily in immune and hematopoietic tissues/cells and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immunological and hematopoietic disorders and inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., immune and hematopoietic tissue/cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:175 as residues: Lys-49 to Gln-54, Ala-61 to Arg-66, Lys-82 to Lys-87, Glu-126 to Val-133, His-136 to Ile-141, Glu-175 to Ser-187, Asp-286 to Leu-296, Ala-298 to Ser-310.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of immunological, hematopoietic, and inflammatory disorders, e.g, immunodeficiency, autoimmunity, inflammation.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 52

The translation product of this gene shares sequence homology with *Caenorhabditis elegans* R53.5 gene encoding a putative secreted protein without known function.

This gene is expressed primarily in endothelial cells, brain and several highly vascularized, and tumor tissues and to a lesser extent in other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, aberrant angiogensis and tumorigenesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

15

20

25

30

35

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular and brain system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endothelial cells, brain and other tissue of the nervous system, and vascular tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:176 as residues: Thr-43 to Asn-60, Thr-106 to Phe-115, Asp-122 to Arg-133, Arg-186 to Asp-192, Leu-211 to Lys-216.

The tissue distribution and homology to a *C. elegans* secreted protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis or treatment of disorders in vascular or brain system, e.g. aberrant angiogenesis, ischemia, neurodegeneration, etc.

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

In one embodiment, polypeptides of the invention comprise the sequence EASKSSHAGLDLFSVAACHRF (SEQ ID NO:288). Polynucleotides encoding this polypeptide are also encompassed by the invention.

This gene is expressed primarily in T-cells and to a lesser extent in brain. Therefore, polynucleotides and polypeptides of the invention are useful as

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, lymphocytic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the lymphoid system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:177 as residues: Pro-3 to Thr-8, Arg-37 to Asp-46.

15

20

25

30

35

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, treatment, and cure of lymphocytic disorders.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 54

The translation product of this gene shares sequence homology with secreted cartilage matrix protein, a major component of the extracellular matrix of nonarticular cartilage which is thought to be important in cartilage structure. In specific embodiments, polypeptides of the invention comprise the sequence: RCKKCTEGPI DLVFVIDGSKSLGEENFEVVKQF (SEQ ID NO:297); VTGIIDSLTISPKAARVGL LQYSTQVH (SEQ ID NO:290); TEFTLRNFNSAKDMKKAVAHMKYM (SEQ ID NO:291); GKGSMTGLALKHMFERSFTQGEGARPF (SEQ ID NO:292); STRVP RAAIVFTDGRAQDDVSEWASKAKANGITMYAVGVGKAIE (SEQ ID NO:293); EELQEIASEPTNKHLFYAEDFSTMDEISEKLKKGICEALEDS (SEQ ID NO:294); TQRLEEMTQRM (SEQ ID NO:295); PQGCPEQPLH (SEQ ID NO:296); and/or YMGKGSMTGLALKHMFERSFT (SEQ ID NO:289). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in placenta, infant brain, prostate, fetal lung and to a lesser extent in endometrium and fetal tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, abnormal placenta and pregnancy, disorder and injury in brain, prostate, and vasculature. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproduction, neuronal, and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., placenta, brain and other tissue of the nervous system, prostate, lung and endometrium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to cartilage matrix protein indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis,

10

15

20

25

30

35

treatment, and cure of abnormalities in placenta and pregnancy, disorder and injury in brain, prostate, and vasculature.

FEATURES OF PROTEIN ENCODED BY GENE NO: 55

The translation product of this gene is the human ortholog of bovine and hamster CII-3, a succinate-ubiquinone oxidoreductase complex II membrane-intrinsic subunit, which is thought to be important in mitochondrial electron transport chain during metabolism. In specific embodiments, the polypeptides of the invention compriseMAALLLRHVGRHCLRAHFSPQLCIRNAVPLGTTAKEEMERFWNKNIG SNRPLSPHITIYS (SEQ ID NO:298); VFPLMYHTWNGIRHLMWDLGKGLKIPQL YQSG (SEQ ID NO:299); MAALLLRHVGRHCLRAH (SEQ ID NO:300); VKSLCL GPALIHTAKFAL (SEQ ID NO:301); VFPLMYHTWNGIRHLMWDLGKGL (SEQ ID NO:302).

This gene is expressed in 8-week old early stage human.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, metabolism disorder. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the [insert system where a related disease state is likely, e.g., immune], expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis, treatment, and cure of metabolism disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

This gene is expressed primarily in umbilical vein endothelial cells, human ovarian tumor cells, human meningima cells, and human Jurkat membrane bound polysomes. In specific embodiments, polypeptides of the invention comprise the amino acid sequence: RVWDVRPFAPKERCVKIFQGNV (SEQ ID NO:303); HNFEKNLL

10

15

20

25

RCSWSPDGSKIAAGSADRFVYV (SEQ ID NO:304); and/or WDTTSRRILYKLPG HAGSINEVAFHPDEPI (SEQ ID NO:305). Polynucleotides encoding these polypeptides are also encompassed by the invention.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation, immune and cardiovascular disorders and urogenital neoplasias. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of these tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, neurological, urogenital, reproductive system and vascular systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., blood cells, cells, endothelial cells, ovary and other reproductive tissue, meningima, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:143 as residues: Phe-71 to Arg-76, Pro-82 to His-87, Glu-103 to Ala-111.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of immune disorders including: leukemias, lymphomas, auto-immune, immuno-supressive (e.g. transplantation) and immunodeficiencies (e.g. AIDS) and hematopoietic disorders. In addition, expression in ovarian tumor cells suggests that polynucleotides and polypeptides corresponding to this gene are useful for study, diagnosis, and treatment of ovarian tumors, and other tumors and neoplasias. Further, endothelial cell expression suggests a role in cadiovascular or respiratory/pulmonary disorders or infections (athsma, pulmonary edema, pneumonia).

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 57

The translation product of this gene shares sequence homology with type I collagen. In specific embodiments, the polypeptides of the invention comprise the sequence: GRIPAPAPSVPAGPDSR (SEQ ID NO:309); VRGRTVLRPGLDAEPE LSPE (SEQ ID NO:306); EQRVLERKLKKERKKEERQ (SEQ ID NO:307); ARRSG

10

15

AELAWDYLCRWAQKHKNWRFQKTRQTWLLLHMYDSDKVPDEHFSTLLAYLE GLQGR (SEQ ID NO:255); and/or RLREAGLVAQHPP (SEQ ID NO:308). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in epididymus, prostate cell line (LNCAP), and pituitary gland; and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, abnormalities of the epididymus, prostate (especially prostate cancer), and pituitary gland. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system and neuroendocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., epididymus and other reproductive tissue, prostate, and pituitary gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to type I collagen, indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of abnormalities of the epididymus, prostate (especially prostate cancer), and pituitary gland.

25

30

35

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

This gene is expressed primarily in the frontal cortex of the brain from a schizophrenic individual.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, schizophrenia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of

10

15

20

25

30

35

the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of schizophrenia.

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

The polypeptide encoded by Gene 59 is homologous to human surface 4 integral membrane protein. In specific embodiments, the polypeptides of the invention comprise the sequence: TGCVLVLSRNFVQYACFGLFGIIALQTIAYSILWDLKF LMRN (SEQ ID NO:310); SRSEGKSMFAGVPTMRESSPKQYMQLGGRVLLV LMFMTLLHFDASFFSIVQNIVG (SEQ IDNO:311); GTAEDFADQFLRVTKQYLP HVARLCLISTFLEDGIRMFQWSEQRDYIDTTWNCGYLLAS (SEQ ID NO:312); LMRNESRS (SEQ ID NO:314); ASFLLSRTSWGTA (SEQ ID NO:315); and/or ASFLLSRTSWGTALMIL (SEQ ID NO:313). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in Hodgkin's lymphoma and lung; and to a lesser extent in many other human tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, Hodgkin's lymphoma, tumors or other abnormalities of the lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and respiratory systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., lymphoid tissue, and pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:183 as residues: Met-20 to Trp-27.

The tissue distribution indicates that polynucleotides and polypeptides

10

15

20

25

30

35

corresponding to this gene are useful for diagnosis and treatment of Hodgkin's lymphoma, tumors or other abnormalities of the lung.

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

This gene is expressed primarily in bone cancer and stomach cancer, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, bone cancer and stomach cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone, and the stomach, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., bone, and stomach, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of bone cancer and stomach cancer and possibly other cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 61

This gene is expressed primarily in epididymus, and lymph node of breast cancer, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, abnormalities of the epididymus, and breast cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the epididymus and breast, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., epididymus and other reproductive tissue, lymphoid tissue, and mammary tissue, and cancerous and wounded tissues) or bodily fluids

15

20

25

30

35

(e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:185 as residues: Arg-57 to Ser-65.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of abnormalities of the epididymus, and breast cancer.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 62

The translation product of this gene appears to be the human homolog of bovine NADH dehydrogenase which is thought to be important in cellular metabolism. In specific embodiments, the polypeptides of the invention comprise the amino acid sequence: SMSALTRLASFARVGGRLFRSGCARTAGDGGVRHAGGGVHIEPRY RQFPQLTRSQVFQSEFFSGLMWFWILWRFWHDSEEVLGHFPYPDPSQWTDEEL GIPPDDED (SEQ ID NO:323), or fragments thereof. Polynucleotides encoding this polypeptide are also encompassed by the invention.

This gene is expressed in larynx tumor, lymph node, brain amygdala, human cardiomyopathy, and retina.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases affecting cellular metabolism. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., larynx, lymphoid tissue, brain and other tissue of the nervous system, heart and cardiovascular tissue, and retina, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:208 as residues: Pro-27 to Gln-32, Arg-42 to Glu-51.

The tissue distribution and homology to NADH dehydrogenase indicates that

10

15

20

polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases involving cellular metabolism.

FEATURES OF PROTEIN ENCODED BY GENE NO: 63

This gene is expressed primarily in amygdala, and to a lesser extent in many other tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, abnormalities of the amygdala. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the amygdala, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., amygdala, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:187 as residues: Gln-17 to Glu-29, Pro-41 to Phe-46, Ser-59 to Ile-70, Thr-97 to Leu-105.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of abnormalities of amygdala.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 64

This gene is expressed primarily in female bladder, and to a lesser extent in chronic synovitis and hemangiopericytoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, bladder cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the urinary tract, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., bladder, synovial tissue, and

vascular tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:188 as residues: Pro-2 to Gln-7, Pro-27 to Phe-34.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatments of defects of the urinary tract, especially bladder cancer.

10

15

20

25

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

This gene is expressed primarily in fetal spleen, and to a lesser extent in hemangiopericytoma, thymus, and synovial sarcoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, defects of immune of hematopoietic systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune of hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., spleen, vascular tissue, thymus, blood cells, and synovial tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The protein product of this gene is useful for treatment of defects of the immune or hematopoietic systems, because of the gene's expression in thymus and spleen.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

This gene is expressed primarily in human pituitary and to a lesser extent in placenta and fetal lung.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are

10

15

20

25

30

35

not limited to, endocrine growth disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endocrine system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., pituitary and other endocrine tissue, placenta, and pulmonary tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:190 as residues: Val-38 to Asn-44, Gly-53 to Ser-65.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of growth disorders related to pituitary dysfunction.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

The translation product of this gene shares sequence homology with a *Caenorhabditis elegans* gene of unknown function. In specific embodiments, the polypeptides of the invention comprise the sequence: DPRRPNKVLRYKPPPSE CNPALDDPTP (SEQ ID NO:317); DYMNLLGMIFSMCGLMLKLKWCAWVA VYCS (SEQ ID NO:318); FISFANSRSSEDTKQMMSSF (SEQ ID NO:316); and/or MLSISAVVMSYLQNPQPMTPPW (SEQ ID NO:319). Polynucleotides encoding these polypeptides are also encompassed by the invention.

This gene is expressed primarily in primary breast cancer and lymph node breast cancer and to a lesser extent in adult brain, lung cancer, colon cancer, epithelioid sarcoma, and Caco-2 cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cancer and tumor tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., mammary tissue, lymphoid tissue, brain and other tissue of the nervous system, lung, colon, and

epithelium, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:191 as residues: Asn-34 to Lys-42.

The tissue distribution in a variety of cancer tissues indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of a variety of cancer and tumor types.

10

15

20

35

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 68

The translation product of this gene shares sequence homology with steroid membrane binding protein. The translation product of this gene has recently been published as progesterone binding protein. See Genbank AJ002030. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: AAGDGDVKLGTLGSGSESSNDGGSESPGDAGAAAXGGGWAAAALALLTG GGE (SEQ ID NO:320).

This gene is expressed primarily in breast, and to a lesser extent in placenta and fetal tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as

reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, breast cancer or developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of breast or fetal tissues, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., mammary tissue, placenta, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the

The tissue distribution and homology to steroid membrane binding protein and to progesterone binding protein indicates that the protein products of this gene are

54 to Pro-64, Asp-110 to Asp-118, Lys-138 to Tyr-143, Pro-150 to Asp-170.

comprising a sequence shown in SEQ ID NO:192 as residues: Pro-43 to Asp-49, Gln-

standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those

10

15

20

25

30

35

useful for treatment of breast cancers, especially those caused by estrogen and progesterone binding.

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

Preferred polypeptides encoded by this gene comprise the following amino acid sequence: AADNYGIPRACRNSARSYGAAWLLLXPAGSSRVEPTQDISISDQLGG QDVPVFRNLSLLVVGVGAVFSLLFHLGTRERRRPHAXEPGEHTPLLAPATAQPL LLWKHWLREXAFYQVGILYMTTRLIVNLSQTYMAMYLTYSLHLPKKFIATIPLV MYLSGFLSSFLMKPINKCIGRN (SEQ ID NO:321).

This gene is expressed primarily in macrophage (GM-CSF treated), and to a lesser extent in monocytes and dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and infection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., macrophages and other blood cells, and dendritic cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein products of this gene are useful for treatment of infection or inflammation or other events or defects involving the immune system.

FEATURES OF PROTEIN ENCODED BY GENE NO: 70

This gene is expressed primarily in adult brain and to a lesser extent in thyroid, 12 week old early stage human, and stromal cell TF274.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, neurological or neuro-endocrine diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes

10

20

25

30

35

for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous or endocrine systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., brain and other tissue of the nervous system, thyroid, and stromal cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:194 as residues: Pro-65 to Cys-71.

The tissue distribution indicates that the protein products of this gene are useful for treatment and diagnosis of neurological diseases or metabolic conditions involving the neuro-endocrine system.

15 FEATURES OF PROTEIN ENCODED BY GENE NO: 71

This gene is expressed in T-cell helper and to a lesser extent in adult brain and adult testes.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, immune disorders, meningitis or reproductive problems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, neural and reproductive systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, brain and other tissue of the nervous system, testes and other reproductive tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:195 as residues: Val-18 to Tyr-24, Ala-89 to Asp-99, Asp-104 to Ala-117, Leu-121 to Pro-136.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis immune and

10

15

20

25

30

35

reproductive disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 72

The translated polypeptide of this contig has a high degree of identity with the Ob Receptor-Associated Protein deposited as GenBank Accession No. 2266638. No function has been determined for the Ob Receptor-Associated Protein, however it is expressed upon stimulation of the Ob Receptor by Leptin.

This gene is expressed in T-cells and to a lesser extent in endothelial and bone marrow cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, acute lymphoblastic leukemia, hematapoetic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematapoetic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, endothelial cells, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:196 as residues: Ser-61 to Trp-70.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of leukemia and other disorders of the primary immune system. In addition, since this gene appears to be related to the Ob Receptor-Related Protein, it is likely that this polypeptide is also involved in the Ob/Leptin signal transduction cascade. As a result, this protein may be of use in the molecular diagnosis and therapeutic intervention of obesity and related disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 73

The translation product of this contig has homology with furin, a protein thought to be a key endopeptidase in the constitutive secretory pathway. The identification and initial characterization of Furin was reported by Takahasi and

10

15

20

25

30

35

colleagues (Biochem Biophys Res Commun 1993 Sep 15;195(2):1019-1026).

This gene is expressed in neutrophils.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases of the immune system such as allergies, wound healing and antigen recognition. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., neutrophils and other blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment of allergies or other immune disorders since neutrophils are an important part of an allergic response. Further, since this protein appears to be related to Furin, it can be used diagnostically and therapeutically to treat secretory protein processing disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 74

This gene is expressed in the frontal cortex.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, of the motor activity and sensory functions that involve the central nervous system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

10

15

20

25

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the detection and treatment of neural disorders that affect cognitive functions.

FEATURES OF PROTEIN ENCODED BY GENE NO: 75

The translation product of this gene shares sequence homology with inorganic pyrophophatase which is thought to be important in the catalysis the hydrolysis of diphosphate bonds, chiefly in nucleoside di- and triphosphates and essential enzymes that are important for controlling the cellular levels of inorganic pyrophosphate (PPi). The bovine homolog of this gene has been identified by Yang and Wensel (J. Biol. Chem. 267:24641-24647 (1992)).

This gene is expressed in osteoclastoma cells and to a lesser extent in epithelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoporosis and other bone weakening diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., bone, and epithelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:199 as residues: Lys-22 to Tyr-28, Asp-64 to Lys-77, Pro-86 to Ile-91, Gln-99 to Pro-119, Tyr-169 to Asp-174, Lys-176 to Gly-181, Trp-189 to Asn-202, Lys-233 to Gly-239, Ser-250 to Asp-257.

The tissue distribution and homology to inorganic pyrophophatase indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of osteoporosis through the removal of bone by demineralization.

35

30

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 76

The translation product of this gene shares exact sequence homology with ATP sulfurylase/APS kinase (GenBank Accession No. 2673862) which is thought to be important in biosynthesis of the activated sulfate donor, adenosine 3'-phosphate 5'-phosphosulfate, involves the sequential action of two enzyme activities: ATP sulfurylase, which catalyzes the formation of adenosine 5'-phosphosulfate (APS) from ATP and free sulfate, and APS kinase, which subsequently phosphorylates APS to produce adenosine 3'-phosphate 5'-phosphosulfate.

This gene is expressed in osteoclastoma cells and to a lesser extent in developmental tissues.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, antibiotic resistant bacterial infections, osteoarthritis and other auto immune diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune or skeletal structure expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., bone, and developmental tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:200 as residues: Asn-15 to Trp-20, Ser-36 to Gly-41, Pro-103 to Val-110, Pro-134 to Arg-143, Leu-173 to Arg-178, Ser-190 to Ala-197, His-314 to Arg-319, Arg-354 to Asn-362, Asp-391 to Arg-397, Glu-402 to Asp-409, Asp-434 to Leu-439, Glu-441 to Arg-446, Gly-455 to Asp-462, Pro-528 to His-541, Asn-566 to Arg-571, Tyr-574 to Glu-581, Thr-589 to Glu-603.

The tissue distribution and homology to ATP sulfurylase/APS kinase indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment or detection of autoimmune diseases.

FEATURES OF PROTEIN ENCODED BY GENE NO: 77

This polypeptide is identical to the SLP-76-associated protein reported by Musci and colleagues (J. Biol. Chem. 272 (18), 11674-11677 (1997)) and to the FYB protein

10

15

20

25

30

35

reported by da Silva and coworkers (Proc. Natl. Acad. Sci. U.S.A. (1997) In press). These proteins have been reported to be novel T-cell Proteins which bind FYN and SLP-76 and regulate IL-2 production. Preferred polypeptides encoded by this gene comprise the following amino acid sequence: RITDNPEGKWLGRTARGSYGYIK TTAVEIXYDSLKLKKDSLGAPSRPIEDDQEVYDDVAEQDDISSHSQSGSGGIFPP PPDDDIYDGIEEEDADDGFPAPPKQLDMGDEVYDDVDTSDFPVSSAEMSQGTNV GKAKTEEKDLKKLKKQXKEXKDFRKKFKYDGEIRVLYSTKVTTSITSKKWGT RDLQVKPGESLEVIQTTDDTKVLCRNEEGKYGYVLRSYLADNDGEIYDDIADGC IYDND (SEQ ID NO:322).

This gene is expressed in CD34 positive cells (hematopoietic progenitor cells) and to a lesser extent in adult spleen derived from a chronic lymphocytic leukemia patient.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, chronic lymphocytic leukemia; hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., T-cells and other blood cells, bone marrow, hematopoietic cells, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Further, nucleic acids and polypeptides of the present invention are useful both diagnostically and therapeutically in the intervention of immune and other disorders in which the ability to alter IL-2 expression is desired. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:201 as residues: Ala-17 to Lys-37, Val-39 to Ser-45, Lys-59 to His-70, Arg-90 to Leu-95, Lys-97 to Lys-107, Ser-117 to Leu-124, Phe-133 to Ser-138, Trp-146 to Leu-167, Pro-175 to Asn-185, Lys-190 to Ser-211, Pro-213 to Ser-222, His-230 to Pro-235, Pro-240 to Pro-246, Pro-253 to Gly-261, Leu-271 to Leu-303, Leu-305 to Leu-326, Lys-343 to Leu-349, Thr-363 to Leu-371, Arg-373 to Tyr-381, Tyr-391 to Leu-401, Pro-404 to Val-414, Ser-426 to Ser-432, Ile-448 to Ser-457, Gln-462 to Trp-468, Lys-477 to Ser-501, Asp-518 to Ser-523, Ala-541 to Gln-554.

15

20

25

30

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of a variety of hematopoietic disorders. The noted expression of this gene in the hematopoietic progenitor cell compartment - as determined by its expression on CD34 positive hematopoietic stem and progenitor cells - indicates that it plays a critical role in the expansion or proliferation of hematopoietic stem/progenitor cells, as well as in the differentiation of the various blood cell lineages. Thus it could be useful in the reconstitution of the hematopoietic system of patients with leukemias and other hematopoietic diseases.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 78

This gene is homologous to heparin cofactor II (HCII) which is a 66-kDa plasma glycoprotein that inhibits thrombin rapidly in the presence of dermatan sulfate or heparin.

This gene is expressed in apoptotic and anergic T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, thrombopienia T-cell lymphomas; Hodgkin's lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system most notably the T-cell compartment, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The homology to heparin cofactor II (HCII) and the tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment and diagnosis of hematopoietic disorders particularly in thrombopoesis, most notably of the T-cell compartment. This could include immune modulation, inflammation, immune surveillance, graft rejection, and autoimmunity.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 79

The translation product of this gene shares sequence homology with a mouse

10

15

20

protein believed to represent an integral membrane protein.

This gene is expressed in fetal cochlea and epididymus and to a lesser extent in adult spleen and osteoclastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoclastoma; disorders of the inner ear; male fertility disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the inner ear; male reproductive tract; bone; and immune systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., cochlea, epididymus and other reproductive tissue, spleen, and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:203 as residues: Lys-13 to Gly-23, Cys-38 to Asp-43, Gly-48 to Trp-53, Cys-223 to Ile-237, Ile-240 to Ser-246.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for the treatment of hearing and fertility disorders. Likewise, it may have a role in the modulation of immune function and in the treatment of osteoporosis.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 80

The translation product of this gene shares sequence homology with reticulocalbin which is thought to be important in the binding of calcium, particularly within the endoplasmic reticulum.

This gene is expressed in endothelial cells and stromal cells and to a lesser extent in osteoblasts, osteoclasts, and T-cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoperosis; osteoclastomas; T-cell lymphomas; Hodgkin's disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in

10

15

20

25

30

35

providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vasculature, bone, and immune systems - particularly the T-cell compartments, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endothelial cells, stromal cells, bone, T-cells and other blood cells, and lymphoid tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:204 as residues: Lys-20 to Arg-27, Pro-32 to Asp-48, Leu-64 to Arg-72, Asp-108 to Lys-114, Glu-128 to Thr-133, Asp-139 to Phe-147, Thr-196 to Ala-204, Tyr-218 to Glu-228, Val-230 to Gln-236, Arg-241 to Lys-255, Glu-276 to Lys-287.

The tissue distribution and homology to reticulocalbin indicates that polynucleotides and polypeptides corresponding to this gene are useful for the diagnosis and treatment of bone disorders such as osteoporosis; the diagnosis and treatment of T-cell lymphomas and Hodgkin's lymphoma; and the treatment of diseases and defects of the vasculature, such as vascular leak syndrome and aberrant angiogenesis that accompanies tumor growth.

FEATURES OF PROTEIN ENCODED BY GENE NO: 81

The translation product of this gene shares sequence homology with a family of peptide transport genes - particularly the AtPTR2-B gene from *Arabidopsis* - which are thought to be important in the uptake of small peptides.

This gene is expressed in a number of fetal tissues, most notably lung, brain, cochlea, and liver/spleen, and to a lesser extent in osteoclastoma and endometrial tumors.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, osteoclastoma; endometrial tumors; cancer; leukemias. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the bone and endometrium, expression of this gene at significantly higher or lower levels may be

10

15

20

25

30

35

routinely detected in certain tissues (e.g., fetal tissue, pulmonary tissue, bone, brain and other tissue of the nervous system, cochlea, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:205 as residues: Lys-186 to Asn-199, Pro-202 to Ala-207.

The tissue distribution and homology to peptide transport genes indicates that polynucleotides and polypeptides corresponding to this gene are useful for the control of cell proliferation, owing to its strong expression in fetal tissues undergoing active cell division, as well as its expression in a variety of tumors or cancers of adult tissues. Potentially, it may regulate the uptake of peptides that stimulate cell proliferation. This gene product may also be useful in stimulating the uptake of a variety of peptide-based drug compounds.

FEATURES OF PROTEIN ENCODED BY GENE NO: 82

This gene is expressed in fetal liver and spleen and to a lesser extent in endothelial cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, cancer and tumors of a hematopoietic and/or endothelial cell origin; leukemias. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and/or vasculature, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., liver, spleen, endothelial cells, vascular tissue, and tissue and cells of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:206 as residues: Met-1 to Asp-9, Arg-66 to Gly-76, Asp-164 to Arg-171.

The tissue distribution indicates that polynucleotides and polypeptides

10

15

20

25

30

corresponding to this gene are useful for the treatment of disorders of the immune system. Expression of this gene product in both fetal liver/spleen and endothelial cells indicates that it may be expressed in the hemangioblast, the progenitor cell for both the immune system and the vasculature. Thus, it is most likely expressed in hematopoietic stem cells, and may be useful for the expansion of hematopoietic stem and progenitor cells in conjunction with cancer treatment for a variety of leukemias.

FEATURES OF PROTEIN ENCODED BY GENE NO: 84

The translation product of this gene shares sequence homology with NADH dehydrogenase which is thought to be important in cellular metabolism.

This gene is expressed in fetal dura mater and to a lesser extent in T-cells and hypothalamus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, diseases affecting cellular metabolism. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., fetal tissue, T-cells and other blood cells, and brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:208 as residues: Pro-27 to Gln-32, Arg-42 to Glu-51.

The tissue distribution and homology to NADH dehydrogenase indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases involving cellular metabolism.

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 85

The translation product of this gene shares sequence homology with I-TRAF, a novel TNF receptor associated factor (TRAF)-interacting protein that regulates TNF receptor-mediated signal transduction. This protein is thought to be important in regulating the cellular response to tumor necrosis factor (TNF), which is an important mediator of inflammation.

This gene is expressed in endothelial cells and to a lesser extent in glioblastoma and osteoblastoma.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation; glioblastoma and osteoblastoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., endothelial cells, bone, and glial cells and tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:209 as residues: Glu-15 to Thr-22, Glu-46 to Leu-62, Arg-103 to Glu-119, Gln-127 to Glu-132, Asn-152 to Trp-158, Gln-191 to Gln-210, Glu-264 to Thr-271, Tyr-282 to Leu-288, Trp-319 to Thr-331, Glu-335 to Ser-348, Ser-353 to Ser-358, Asp-382 to Asn-392.

The tissue distribution and homology to I-TRAF indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammatory diseases, including rheumatoid arthritis, sepsis, inflammatory bowel disease, and psoriasis, particularly where tumor necrosis factor is known to be involved.

FEATURES OF PROTEIN ENCODED BY GENE NO: 86

This gene has homology with a candidate gene involved in X-linked Retinopathy reported by Wong and colleagues (Genomics 15:467-471 (1993)).

This gene is expressed in a T-cell line.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, inflammation and autoimmune diseases; T-cell lymphoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues and cell types (e.g., T-cells and other blood cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of inflammatory disorders such as sepsis, inflammatory bowel disease, psoriasis, and rheumatoid arthritis as well as autoimmune disease such as lupus. It could also be useful in immune modulation and in the process of immune surveillance. The present invention can be used diagnostically and therapeutically to treat X-linked Retinopathy.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 87

This gene is expressed in human brain tissue.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions, which include, but are not limited to, brain disorders; neurodegenerative disorders; tumors of a brain origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous system, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues (e.g., brain and other tissue of the nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,

5

10

15

20

30

10

urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Preferred epitopes include those comprising a sequence shown in SEQ ID NO:211 as residues: Cys-32 to Tyr-38.

The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of CNS disorders such as epilepsy, paranoia, depression, Alzheimer's disease, and schizophrenia. It could be useful in the survival and/or proliferation of neurons and could effect neuronal regeneration.

Last AA of ORF	30	44	69	<u>8</u>	38	22	109
First AA of Secreted Portion		27	45	26	25	23	21
		26	44	25	24	22	20
First Last AA AA of of Sig Sig Pep Pep	 1	Ť	1		1	1	
AA SEQ NO: Y	125	126	212	213	127	128	129
5' NT of First AA of Signal Pep	353	128	170	413	66	006	103
5' NT of Start Codon	353	128	170	413	66	006	103
	1607	1786	1487	1637	1212	2061	733
5' NT 3' NT of of Clone Clone Seq.	247	87	<i>L</i>	394	_	882	10
Total NT Seq.	1679	1830	1487	1653	1212	2061	1412
SEQ SEQ NÖ:	11	12	86	66	13	14	15
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	XXXXX 03/19/98	209641 02/25/98	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97
cDNA Clone ID	HAGEW82	HAGFY16	HBMCF37	HFLQB16	HALAA60	HAPBL78	HASAV70
Gene No.		2	2	2	3	4	v

						
Last AA of ORF	62	29	52	99	215	48
First AA of Secreted Portion	18		24	18	61	27
Last AA of Sig Pep	17		23	17	18	26
First AA of Sig Pep	1	_	-	1	-	1
AA SEQ ID NO: Y	130	131	132	133	134	135
S' NT of AA F First SEQ AA of ID Signal NO:	538	181	98	761	401	793
s' NT of Start Codor	538	181	98	192	401	793
3' NT of Clone Seq.	088	683	1007	1393	1070	2011
5' NT 3' NT of of Clone Clone Seq. Seq.	276	-	98	132	277	614
Total NT Seq.	1052	683	1054	1393	1215	2042
SEQ NO: X	16	17	18	61	20	21
Vector	Uni-ZAP XR					
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97
cDNA Clone ID	HBNAF22	HBNBL77	HCDDR90	HCEEF50	HCEMU42	HCENE16
Gene No.	9	7	∞	6	10	

Last AA of ORF	29	51	539	80	56	8	200
First AA of of Secreted Portion (24	30	31	23	27	37	28
Last AA of Sig Pep	23	29	30	22	56	36	27
First AA of Sig Pep	1	1	-	1			
AA SEQ ID NO: Y	136	137	138	214	139	215	140
5' NT of First SEQ AA of ID Signal NO: Pep Y	69	68	808	515	196	295	70
5' NT of Start Codon	69	89	808	515	196	295	70
3' NT of Clone Seq.	1872	289	3532	1115	907	734	717
5' NT of Clone Seq.	21	-	2821	435		25	44
Total NT Seq.	1872	289	3533	1145	1148	734	717
SEQ NO DO	22	23	24	100	25	101	26
Vector	Uni-ZAP XR	ZAP Express	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	209179 07/24/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97
cDNA Clone ID	HMSJJ74	HCUBF15	HE2DE47	HE2DE47	HKMLH01	HE6DG34	HE9DG49
Gene No.	12	13	14	14	15	15	16

Last AA of ORF	202	215	185	101	111	19
First AA of Secreted Portion	59	23	26	43	31	
Last AA of Sig Pep	28	22	25	42	30	
rst A of ig	1	—	1	1	_	_
AA SEQ ID NO: Y	216	141	217	142	143	144
5' NT of First AA of Signal Pep	78	38	149	128	294	496
5' NT 3' NT of AA Fi of AA Fi of Of S' NT First SEQ A Of Clone Clone of AA of ID of Start Signal NO: Seq. Seq. Start Signal NO: Seq. Codon Pep Y P	78	38	149	128	294	496
3' NT of Clone Seq.	713	1099	1080	941	756	2093
5' NT of Clone Seq.	17			171	62	408
Tota NT Seq	713	1099	1080	941	756	2100
X SEQUENCE NO SEQU	102	27	103	28	29	30
Vector	Uni-ZAP XR					
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97
cDNA Clone ID	HE9DG49	HELBA06	HELBA06	HSLFM29	HELBW38	HETHN28
Gene No.	16	17	17	18	19	20

Last AA of ORF	29	86	7	38	130	31	13
First AA of Secreted Portion				17	27	22	
Last AA of Sig Pep		28		16	26	21	
First AA of Sig Pep		-		1	Ţ	1	-
SEQ NO: Y	145	146	147	148	149	150	151
5' NT of First AA of Signal Pep	567	21	210	242	178	144	1104
S' NT of Start Codon	567	21	210	242	178	144	1104
3' NT of Clone Seq.	1392	409	1322	710	1161	938	1581
5' NT 3' NT of of Clone Clone Seq. Seq.	475	1	-		110	-	974
Total NT Seq.	1448	456	1326	710	1188	956	1603
SEQ NO:	31	32	33	34	35	36	37
Vector	Uni-ZAP XR	Uni-ZAP XR					
ATCC Deposit Nr and Date	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97923 03/07/97 209071 05/22/97	97924 03/07/97
cDNA Clone ID	HFCDK17	HFEAF41	HFKFL13	HFSBG13	HFTBE43	HFTDJ36	HKTAC77
Gene No.	21	22	23	24	25	26	27

Last AA of ORF	7	29	25	194	90	30	68	68	88	173	137	47	44
First AA of Secreted Portion		33		33	61	31	20	23	19	21	21	28	28
Last AA of Sig Pep		32		32	18	30	19	22	18	20	20	27	27
First AA of Sig Pep	I	1	1	1	I	1	1	_	1	1	1	1	-
AA SEQ ID NO: Y	152	153	154	155	951	151	158	218	159	091	219	220	161
5' NT of First AA of Signal Pep	506	119	281	126	43	171	25	58	17	15	72	54	269
5' NT of Start Codon		119	581	126	43	171	55	58	17	15	72	54	269
3' NT of Clone Seq.	1067	629	1793	1123	875	843	489	489	534	1374	640	1399	969
5' NT 3' NT of of Clone Clone Seq.	55	1	408	13	1	I	3	9	1	Ī	58	40	1
Total NT Seq.	1089	629	1964	1522	875	843	489	489	534	1374	640	1529	596
NT SEQ D NO:	38	39	40	41	42	43	44	104	45	46	105	106	47
Vector	pBluescript	pBluescript	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	pSport1	Uni-ZAP XR						
ATCC Deposit Nr and Date	97924 03/07/97												
cDNA Clone ID	нгнѕнз6	96ASHTH	98ОВОТН	HLTBX31	HLTCJ63	HMKAH44	HMQAJ64	HMQAJ64	HOABG65	HODCL36	HODCL36	HODCL36	HODCL50
Gene No.	28	29	30	31	32	33	34	34	35	36	36	36	37

Last AA of ORF	22	69	322	69	319	82	30	71	280	42	22	326	183
First AA of Secreted Portion		<u>8</u>	07	32	61	22		19	31	31		20	24
Last AA of Sig Pep		17	19	31	09	21		18	30	30		19	23
First AA of Sig Pep	1	_		-	-	1	1	1		_			
AA SEQ ID NO: Y	162	163	164	221	165	222	991	191	168	223	169	170	224
5' NT of First AA of Signal Pep	170	638	99	928	150	239	432	142	25	433	217	57	35
5' NT of Start Codon	170	638	66	928	150	239	432	142	25	433	217	23	35
3' NT of Clone Seq.	822	2020	2432	2435	2340	791	601	337	1141	1166	1148	809	586
5' NT 3' NT of Ol Clone Clone Seq. Seq.	66	569	848	849	1627	92	188		1	21	63	164	4
Total NT Seq.	851	2020	2432	2435	2340	805	601	359	1141	9911	1560	1507	586
SEQ NÖ:	48	49	50	107	51	108	52	53	54	109	55	99	110
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	pBluescript SK-	Uni-ZAP XR						
ATCC Deposit Nr and Date	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97	97924 03/07/97
cDNA Clone ID	HODCV74		HTOEU03	HTOEU03	HPBCJ74	HPBCJ74	HPMBU33	HSAUL66	HSIDQ18	HSIDQ18	HSJBB37	HSJBQ79	HSJBQ79
Gene No.	38	39	40	40	41	41	42	43	44	44	45	46	46

Last AA of ORF	89	158	70	122	128	6	371
First AA of Secreted Portion	36	16	20	19	31		2
	35	15	19	18	30		1
First Last AA AA of of Sig Sig Pep Pep	-	1	1			1	-
AA ISEQ BOOK	171	172	225	173	174	226	175
5' NT of First AA of Signal Pep	83	163	155	115	52	829	114
5' NT of Start Codon	83	163	155	115	52	829	114
3' NT of Clone Seq.	450	1147	1134	TTT	298	1333	1554
5' NT 3' NT of of Clone Clone Seq. Seq.	_			-	48	594	443
Total NT Seq.	450	1147	1134	777	1191	1333	1580
NT SEQ ID NO:	57	58	111	59	09	112	61
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	209235 09/04/97
cDNA Clone ID	HTEGA76	HTEJN13	HTEJN13	HTHBL86	HTSF071	HTSF071	HAPNO80
Gene No.	47	48	84	49	50	50	51

Last AA of ORF	137	215	54	22	102	47
First AA of Secreted Portion	29	29	33	21	34	39
	28	28	32	20	33	38
First Last AA AA of of of Sig Sig Pep	1	_		-	—	1
AA SEQ ID NO: Y	227	176	<i>LL</i> 1	178	179	180
S' NT of AA IFirst SEQ AA of ID Signal NO:	244	182	<i>L</i> 6	150	231	703
5' NT of Start Codon	244	182	<i>L</i> 6	150	231	703
3' NT of Clone Seq.	708	1034	361	1638	1303	1011
Son Seq. (Cone Seq. (Cone Seq. (Cone Seq. Seq. (Cone Se		105	_		35	655
Total NT Seq.	1015	1117	361	1668	1353	1011
SEQ NÖ: NÖ:	113	62	63	64	59	99
Vector	Uni-ZAP XR	pBluescript	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97
cDNA Clone ID	HAUCC47	HBMCL41	HCFLD84	НЕ8ЕМ69	HE8EZ48	HEBGF73
Gene No.	51	52	53	54	55	56

Last AA of ORF	95	94	26	10	64	21
First AA of Secreted Portion	36	30	22		20	22
	35	29	21		61	21
AA First Last SEQ AA AA ID of of NO: Sig Sig Y Pep Pep	1	I	1	I	I	1
AA SEQ ID NO: Y	181	182	183	184	185	186
of AA For Signal NO: Signal NO: Yeb	459	63	839	270	272	127
of of Start	459	63	839	270	272	127
3' NT of Clone Seq.	1090	260	1581	711	935	484
S' NT 3' NT of of Sclone Seq. Cone	267	—	765	∞	111	113
Total NT Seq.	1193	260	1657	711	935	504
SEQ NÖ:	29	89	69	92	71	72
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Lambda ZAP II	Lambda ZAP II	Lambda ZAP II
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97
cDNA Clone ID	HFEBF41	HFRBU14	HFVGZ79	нн <u></u> ссм76	HHGCO88	HHGCP52
Gene No.	57	58	59	09	61	62

Last AA of ORF	131	89	44	64	22	169
Last AA First AA Last of of AA Sig Secreted of Pep Portion ORF	61	33	28	37	12	15
Last AA of Sig Pep	18	32	27	36	11	14
AA AA of Sig			1		_	
AA SEQ ID NO: Y	187	188	189	190	228	192
of AA F First SEQ AA of ID Signal NO: Pep Y	96	248	630	167	575	187
of of Start	96	248	630	167		187
3' NT of Clone Seq.	620	581	1786	008	9/01	1888
S' NT 3' NT of of Clone Clone Seq.		156	537	116	398	88
Total NT Seq.	620	581	1843	1441	1076	2776
SEQ NÖ:	73	74	75	76	114	78
Vector	Lambda ZAP II	Lambda ZAP II	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 3.0
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97	97958 03/13/97 209072 05/22/97
cDNA Clone ID	HHGDB72	HHGDI71	HHSDI45	HHSEB66	HJPAZ83	HLDBO49
Gene No.	63	64	65	99	19	89

Last AA of ORF	9	131	91	175	69	24	72
First AA of Secreted Portion	23	23	33	24	27	21	26
Last AA of Sig Pep	22	22	32	23	26	20	25
First Last AA AA of of Sig Sig Pep Pep	Ī	I	1	1	I	1	Ţ
AA SEQ NÖ:	193	229	194	195	961	<i>1</i> 61	198
5' NT of First AA of Signal Pep	534	534	40	238	286	28	14
5' NT of Start Codon	534	534	40	238	286	58	14
5' NT 3' NT of Olone Clone Seq. Seq.	1480	1487	1077	780	770	481	623
5' NT of Clone Seq.	401	401	33	81	101		
Total NT Seq.	1525	1487	1563	1020	770	481	644
SEQ NÖ:	79	115	08	81	82	83	84
Vector	pCMVSport 3.0	pCMVSport 3.0	Uni-ZAP XR	Uni-Zap XR	Uni-ZAP XR	Uni-ZAP XR	pCMVSport 3.0
ATCC Deposit Nr and Date	97958 03/13/97 209072 05/22/97	209226 08/28/97	97958 03/13/97 209072 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97
cDNA Clone ID	нгрв019	HLDBQ19	HMSGT42	HMWIC78	HTTCT79	HNGJU84	HNTAC73
Gene No.	69	69	70	71	72	73	74

Last AA of ORF	288	27	623	09	648	28
First AA of Secreted Portion	13		31	33	31	22
	12	-	30	32	30	21
First Last AA AA of of Sig Sig Pep Pep			1			
AA SEQ ID NO: Y	199	230	200	231	201	232
of AA Fi of AA Fi AA of ID O Signal NO: S Pep Y P	86	545	99	477	251	21.9
	86		56	477	251	229
3' NT of Clone Seq.	1284	1283	1747	1747	2566	1098
NT SEQ of of S' N SEQ OF S' N Seq. Seq. Cod	435	428	290	288	1843 2566	375
Total NT Seq.	1351	1350	2527	2527	2566	1098
×ÖBÖ NÖ:	85	116	98	117	87	118
Vector	Uni-ZAP XR					
ATCC Deposit Nr and Date	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97
cDNA Clone ID	HOSEI45	HOSEI45	HOSFD58	HOSFD58	HSAUM95	HSAUM95
Gene No.	75	75	76	76	77	77

Last AA of ORF	54	265	17	314	206	194
First AA of Secreted Portion	33	12		20	21	70
AA AA of Sig	32	11		19	20	69
First I AA of Sig Pep I	_	I		_	I	_
AA SEQ DO: Y	202	203	233	204	205	206
of AA First SEQ AA of D Signal NO:	83	188	315	92	414	157
5' NT of Start Codon	83	188	315	92	414	157
3' NT of Clone Seq.	540	1165	1166	2449	2058	1411
5' NT 3' NT of of Clone Clone Seq. Seq.		152	152	1149	476	345
Total NT Seq.	540	1863	1679	2478	2058	1411
SEQ NO: NO:	88 88	68	119	06	16	92
Vector	Uni-ZAP XR	pBluescript				
ATCC Deposit Nr and Date	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97
cDNA Clone ID	HSAUR67	HSKDI81	HSKD181	HSKDW91	HTLEX50	HSKHL65
Gene No.	78	79	79	08	<u></u>	82

Last AA of ORF	71	329	95	57	391	25
First AA of Secreted Portion	38	31	20	21	2	22
Last AA of Sig Pep	37	30	19	20		21
First AA of Sig Pep	I	1	Ī	-	—	-
AA SEQ ID NO: Y	235	207	236	208	209	210
First Last of AA First Last Expression of AA of Discolar Start Signal NO: Sig Sig Sig Start Pep Pep I	526	397	228	445	523	117
5° NT of Start Codon	526	397	228	445	523	117
3' NT of Clone Seq.	1411	2184	2063	809	2394	672
5' NT of Clone Seq.	345	147	138	524	481	
Total NT Seq.	1411	2187	2256	757	2394	672
X SEQ	121	93	122	94	95	96
Vector	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	ZAP Express	Uni-ZAP XR
ATCC Deposit Nr and Date	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97	97957 03/13/97 209073 05/22/97
cDNA Clone ID	HSKHL65	HHFGA11	HHFGA11	HWTBL40	HBXFG80	HCACY32
Gene No.	83	83	83	84	85	98

Last AA of ORF	37
5' NTAAFirstLastofAAFirstLastT FirstSEQAAAAFirst AALastAA ofIDofofAAt SignalNO:SigSicretedofonPepYPepPortionORF	21
Last AA of Sig Pep	20
First AA of Sig Pep	_
AA SEQ ID NO: Y	211
5' NT of First AA of Signal Pep	207 211 1 20
Son Seq. Seq. Start Si Seq. Seq. Seq. Fodon Fodon Codon Start Si Seq. Seq. Seq. Fodon Final Fodon Final Si Seq. Seq. Seq. Seq. Final	
3' NT of Clone Seq.	1419
5' NT of Clone Seq.	-
Total NT Seq.	1419
KÖBÖ× ×ÖBÖ;×	<i>1</i> 6
Vector	Uni-ZAP XR 97 1419 1 1419 207
ATCC Deposit Nr and Date	97957 03/13/97 209073 05/22/97
cDNA Clone ID	НСЕ D021
Gene No.	87

10

15

20

25

30

35

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

10

15

20

25

30

35

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

10

15

20

25

30

35

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely

15

20

25

30

35

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

10 Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence shown in Table 1, the ORF (open reading frame), or any fragement specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are:

Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization

10

15

20

25

30

35

Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignement of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query

10

15

20

25

30

35

amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequences shown in Table 1 or to the amino acid sequence encoded by deposited DNA clone can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. (1990) 6:237-245). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or Cterminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and Cterminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the Nterminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini 5 not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-10 termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to made for the 15 purposes of the present invention.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after

20

25

30

10

15

20

25

30

35

deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

WO 98/42738 PCT/US98/05311

97

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

35

5

10

15

20

25

10

15

20

25

30

35

Polynucleotide and Polypeptide Fragments

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, or 701 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, or 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any

10

15

20

25

30

35

combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983).)

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et

10

15

20

25

30

35

al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a

denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

WO 98/42738 PCT/US98/05311

101

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

5

10

15

20

25

10

15

20

25

30

35

Vectors, Host Cells, and Protein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

10

15

20

25

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

30 Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat

10

15

20

25

30

35

polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined.

10

15

20

25

30

35

First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying

10

15

20

25

30

35

personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

PCT/US98/05311

Uses of the Polypeptides

5

10

15

20

25

30

35

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (1251, 1211), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

10

15

20

25

30

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

35 **Immune Activity**

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the

10

15

20

25

30

35

proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clet formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

10

15

20

25

30

35

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect

10

15

20

25

30

35

interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes

Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention 15 include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, 20 Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, 25 and Staphylococcal. These bacterial or fungal families can cause the following diseases or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme 30 Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria, Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect 35

any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis,

Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis,

Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas.

These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related),

Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

15

20

25

30

35

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue

10

20

25

30

35

regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

15 Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit

10

15

20

25

30

35

(antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

10

15

20

25

30

35

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of

10

15

20

25

30

35

positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type

10

15

20

25

30

35

Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

10

15

20

25

30

35

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

10

15

20

25

30

35

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

10

25

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	Vector Used to Construct Library	Corresponding Deposited Plasmid
	Lambda Zap	pBluescript (pBS)
	Uni-Zap XR	pBluescript (pBS)
15	Zap Express	pBK
	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
•	pCMVSport 3.0	pCMVSport 3.0
20	pCR [®] 2.1	pCR [®] 2.1

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res.

- 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS.
- The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain

35

20

DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized

using an Applied Biosystems DNA synthesizer according to the sequence reported.

The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).)

The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to

1.104), or other techniques known to those of skill in the art.

20

25

30

35

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is

used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

5

10

15

20

25

30

35

WO 98/42738

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on

15

20

25

30

35

either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

5 Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^r). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high

10

15

20

25

30

affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

10

15

20

25

30

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

10

15

20

25

30

35

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

10

15

20

25

30

35

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life

10

15

20

Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine</sup> (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

Example 8: Expression of a Polypeptide in Mammalian Cells

A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used

35

10

15

20

25

30

35

include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No.209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

10

15

20

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

25

30

35

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion

10

15

25

30

35

proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC
CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACC
CAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGT
GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG
GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC
AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAACCCCC
ATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGT
GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCACGGTCAGCCT
GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA
GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCTCCCGTGCTGG
ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGACCA
GGTGGCAGCAGGGGAACGTCTTCTCCTCTCTCCGTGTATGCATGAGGCTCTGC
ACAACCACTACACGCAGAAGACCTCCCTGTCTCCCGGGTAAATGAGTGC
GACGGCCGCGACTCTTAGAGGAT (SEO ID NO:1)

10

15

20

25

30

35

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide.

10

15

25

30

35

Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

20 Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L $CuSO_4-5H_2O$; 0.050 mg/L of $Fe(NO_3)_3-9H_2O$; 0.417 mg/L of $FeSO_4-7H_2O$; 311.80 20 mg/L of Kcl; 28.64 mg/L of MgCl₂; 48.84 mg/L of MgSO₄; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO₃; 62.50 mg/L of NaH₂PO₄-H₂0; 71.02 mg/L of Na₂HPO4; .4320 mg/L of ZnSO₄-7H₂O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of Oleic 25 Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitic Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂0; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 30 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H₂0; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H₂0; 99.65 mg/ml of L-35 Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of

15

20

25

30

35

Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock 10 solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in

10

15

20

25

many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

	<u>Ligand</u>	tyk2	JAKs Jak l	Jak2	Jak3	<u>STATS</u>	GAS(elements) or ISRE
5	IFN family IFN-a/B IFN-g II-10	+	+ + ?	- + ?	-	1,2,3 1 1,3	ISRE GAS (IRF1>Lys6>IFP)
10	gp130 family IL-6 (Pleiotrohic) Il-11(Pleiotrohic) OnM(Pleiotrohic)	+ ? ?	+ + + + .	+ ? +	????	1,3 1,3 1,3	GAS (IRF1>Lys6>IFP)
15	LIF(Pleiotrohic) CNTF(Pleiotrohic) G-CSF(Pleiotrohic) IL-12(Pleiotrohic)	? -/+ ? +	+ + + -	+ + ? +	? ? +	1,3 1,3 1,3 1,3	
20	g-C family IL-2 (lymphocytes) IL-4 (lymph/myeloid) IL-7 (lymphocytes) IL-9 (lymphocytes) IL-13 (lymphocyte) IL-15	- - - - - ?	+ + + + +	- - - ? ?	+ + + + ?	1,3,5 6 5 5 6 5	GAS GAS (IRF1 = IFP >>Ly6)(IgH) GAS GAS GAS GAS GAS
25	gp140 family IL-3 (myeloid) IL-5 (myeloid) GM-CSF (myeloid)	- -	- - -	: + +	- - -	5 5 5 5	GAS (IRF1>IFP>>Ly6) GAS GAS
30	Growth hormone fam GH PRL EPO	ily ? ? ?	- +/-	+ + +	- -	5 1,3,5 5	GAS(B-CAS>IRF1=IFP>>Ly6)
35 40	Receptor Tyrosine Ki EGF PDGF CSF-1	nases ? ? ?	+ + +	++++	- - -	1,3 1,3 1,3	GAS (IRF1) GAS (not IRF1)

10

15

20

25

30

35

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an Xhol site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATGATTTCCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID NO:3)

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

10

15

20

25

30

35

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies)

10

15

20

25

30

with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10⁷ per transfection), and resuspend in OPTI-MEM to a final concentration of 10⁷ cells/ml. Then add 1ml of 1 x 10⁷ cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest $2x10e^7$ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

10

15

20

25

30

35

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

- 5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
- 5' GCGAAGCTTCGCGACTCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine

10

15

20

25

30

growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as $5x10^5$ cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to $1x10^5$ cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-κB (Nuclear Factor κB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-κB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-κB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I- κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-kB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating

10

15

20

25

30

diseases. For example, inhibitors of NF-kB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

To construct a vector containing the NF-κB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-κB binding site (GGGGACTTTCCC) (SEQ ID NO:8), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an XhoI site: 5':GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGACTTTCCGGGGACTTTCCGGGGACTTTCCGGGGACTTTCCGGGGACTTTCCGGGGACTTTCCGGGACTTTCCGGGACTTTCCGGGGACTTTCCGGGACTTTCCGGGACTTTCCGGGACTTTCCGGGACTTTCCGGGACTTTCCGGGACTTTCCGGAGACTTTCCGGGACTTTCCGGAGACTTTCGAGACTTTCGAGAACTTTCGAGAACTTTCGAGAACTTTCGAGAACTTTCGAGAACTTCGAGAACTTTCGAGAACTTTCGAGAACTTTCGAGAACTTTCGAGAACTTTCA

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCC ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCA TCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACT AATTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC CAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTT: 3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-kB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-κB/SV40/SEAP cassette is removed from the above NF-κB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-κB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

10

15

20

25

Once NF-κB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

Reaction	Dullet Folimulation.	
# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4
15	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6

23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
· 27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

5

10

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37°C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca⁺⁺ concentration.

20

25

5

10

15

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

30

35

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

10

15

20

25

30

35

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a

10

15

20

25

30

35

biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other

10

15

20

phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

25

30

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies).

10

15

20

25

30

35

The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10.

10

15

20

25

30

35

The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally,

10

15

20

25

30

35

intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Bjomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

WO 98/42738 PCT/US98/05311

159

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

35

30

5

10

15

20

WO 98/42738

5

10

15

20

25

30

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37°C for approximately one week.

WO 98/42738 PCT/US98/05311

161

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

35

30

5

10

15

20

WO 98/42738 PCT/US98/05311

162

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

	(1) GENERAL INFORMATION:
5	(i) APPLICANT: Human Genome Sciences, Inc. et al.(ii) TITLE OF INVENTION: 87 Human Secreted Proteins(iii) NUMBER OF SEQUENCES: 323(iv) CORRESPONDENCE ADDRESS:
10	 (A) ADDRESSEE: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue (C) CITY: Rockville (D) STATE: Maryland (E) COUNTRY: USA (F) ZIP: 20850
15	(v) COMPUTER READABLE FORM:
20	(A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage(B) COMPUTER: HP Vectra 486/33(C) OPERATING SYSTEM: MSDOS version 6.2(D) SOFTWARE: ASCII Text
25	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: March 19, 1998 (C) CLASSIFICATION:</pre>
30	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
35	<pre>(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: A. Anders Brookes (B) REGISTRATION NUMBER: 36,373 (C) REFERENCE/DOCKET NUMBER: PZ004PCT</pre>
40	(vi) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (301) 309-8504 (B) TELEFAX: (301) 309-8439
45	(2) INFORMATION FOR SEQ ID NO: 1:
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 733 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

	GGGATCCGGA GCCCAAATCT TCTGACAAAA CTCACACATG CCCACCGTGC CCAGCACCTG	60
	ANTTCGAGGG TGCACCGTCA GTCTTCCTCT TCCCCCCAAA ACCCAAGGAC ACCCTCATGA	120
5	. TCTCCCGGAC TCCTGAGGTC ACATGCGTGG TGGTGGACGT AAGCCACGAA GACCCTGAGG	180
	TCAAGTTCAA CTGGTACGTG GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCGCGGG	240
10	AGGAGCAGTA CAACAGCACG TACCGTGTGG TCAGCGTCCT CACCGTCCTG CACCAGGACT	300
10	GGCTGAATGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGCCCTCCCA ACCCCCATCG	360
	AGAAAACCAT CTCCAAAGCC AAAGGGCAGC CCCGAGAACC ACAGGTGTAC ACCCTGCCCC	420
15	CATCCCGGGA TGAGCTGACC AAGAACCAGG TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT	480
	ATCCAAGCGA CATCGCCGTG GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA	540
20	CCACGCCTCC CGTGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG	600
20	ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT GAGGCTCTGC	660
	ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG TAAATGAGTG CGACGGCCGC	720
25	GACTCTAGAG GAT	733
30 35	(2) INFORMATION FOR SEQ ID NO: 2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
40	Trp Ser Xaa Trp Ser 1 5	
45	(2) INFORMATION FOR SEQ ID NO: 3:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 86 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
55	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60

86

60

CCCGAAATAT CTGCCATCTC AATTAG

	(2) INFORMATION FOR SEQ ID NO: 4:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
15		
	(2) INFORMATION FOR SEQ ID NO: 5:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 271 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60
20	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
30	GCCCCTAACT CCGCCCAGTT CCGCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT	180
	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
35	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
40	(2) INFORMATION FOR SEQ ID NO: 6:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
50	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
55	(2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 31 base pairs	
60	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	

WO 98/42738 PCT/US98/05311

166

	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
5	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31
10	(2) INFORMATION FOR SEQ ID NO: 8:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
20	GGGGACTTTC CC	12
25	(2) INFORMATION FOR SEQ ID NO: 9:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 73 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
35	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
	CCATCTCAAT TAG	73
40		
	(2) INFORMATION FOR SEQ ID NO: 10:	
45	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 256 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
50	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	CTCGAGGGGA CTTTCCGGG GACTTTCCGG GGACTTTCCA TCTGCCATCT	60
55	CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC	120
	CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG CAGAGGCCGA	180

GGCCGCCTCG GCCTCTGAGC TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG

240

PCT/US98/05311

CTTTTGCAAA AAGCTT 256

5

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1679 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GCAGCGCACC CGGGCGATCG CTTCACGGAT GCGGACGACG TAGCCATCCT TACCTACGTG 60 AAGGAAAATG CCCGCTCGCC CAGCTCCGTC ACCGGTAACG CCTTGTGGAA AGCGATGGAG 120 AAGAGCTCGC TCACGCAGCA CTCGTGGCAG TCCCTGAAGG ACCGCTACCT CAAGCACCTG 20 180 CGGGGCCAGG AGCATAAGTA CCTGCTGGGG GACGCGCCGG TGAGCCCCTC CTCCCAGAAG 240 300 CTCAAGCGGA AGGCGGAGGA GGACCCGGAG GCCGCGGATA GCGGGGAACC ACAGAATAAG 25 AGAACTCCAG ATTTGCCTGA AGAAGAGTAT GTGAAGGAAG AAATCCAGGA GAATGAAGAA 360 GCAGTCAAAA AGATGCTTGT GGAAGCCACC CGGGAGTTTG AGGAGGTTGT GGTGGATGAG 420 AGCCCTCCTG ATTTTGAAAT ACATATAACT ATGTGTGATG ATGATCCACC CACACCTGAG 480 30 GAAGACTCAG AAACACAGCC TGATGAGGAG GAAGAAGAAG AAGAAGAAAA AGTTTCTCAA 540 CCAGAGGTGG GAGCTGCCAT TAAGATCATT CGGCAGTTAA TGGAGAAGTT TAACTTGGAT 600 35 CTATCAACAG TTACACAGGC CTTCCTAAAA AATAGTGGTG AGCTGGAGGC TACTTCCGCC 660 TTCTTAGCGT CTGGTCAGAG AGCTGATGGA TATCCCATTT GGTCCCGACA AGATGACATA 720 GATTTGCAAA AAGATGATGA GGATACCAGA GAGGCATTGG TCAAAAAATT TGGTGCTCAG 780 40 840 AAAGTCATGG TAGGTGAGGT GGTTAAAAAA AATTGTGACC AATGAACTTT AGAGAGTTCT 900 45 TGCATTGGAA CTGGCACTTA TTTTCTGACC ATCGCTGCTG TTGCTCTGTG AGTCCTAGAT 960 TTTTGTAGCC AAGCAGAGTT GTAGAGGGGG ATAAAAAGAA AAGAAATTGG ATGTATTTAC 1020 AGCTGTCCTT GAACAAGTAT CAATGTGTTT ATGAAAGGAA GATCTAAATC AGACAGGAGT 1080 50 TGGTCTACAT AGTAGTAATC CATTGTTGGA ATGGAACCCT TGCTATAGTA GTGACAAAGT 1140 GAAAGGAAAT TTAGGAGGCA TAGGCCATTT CAGGCAGCAT AAGTAATCTC CTGTCCTTTG 1200 55 GCAGAAGCTC CTTTAGATTG GGATAGATTC CAAATAAAGA ATCTAGAAAT AGGAGAAGAT 1260 TTAATTATGA GGCCTTGAAC ACGGATTATC CCCAAACCCT TGTCATTTCC CCCAGTGAGC 1320 1380 60 TCTGATTTCT AGACTGCTTT GAAAATGCTG TATTCATTTT GCTAACTTAG TATTTGGGTA

WO 98/42738 PCT/US98/05311

168

	CCCTGCTCTT	TGGCTGTTCT	TTTTTTGGAG	CCCTTCTCAG	TCAAGTCTGC	CGGATGTCTT	1440
5	TCTTTACCTA	CCCCTCAGTT	TTCCTTAAAA	CGCGCACACA	ACTCTAGAGA	GTGTTAAGAA	1500
3	TAATGTTACT	TGGTTAATGT	GTTATTTATT	GAGTATTGTT	TGTGCTAAGC	ATTGTGTTAG	1560
	ATTTAAAAAA	TTAGTGGATT	GACTCCACTT	TGTTGTGTTG	TTTTCATTGT	TGAAAATAAA	1620
10	TATAACTTTG	TATTCGAAAA	ААААААААА	AAAATNRCTG	CGGNCCGACA	AGGGAATTC	1679

15 (2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1830 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

25	GCGACCGCGC	CCTTCAGCTA	GCTCGCTCGC	TCGCTCTGCT	TCCCTGCTGC	CGGCTGCGCA	60
	TGGCTTNGGC	GTTGGCGGCG	CTGGCGGCGG	TCGAGCNGCC	TGCGSAGCCG	GTACCAGCAG	120
30	TTGCAGAATG	AAGAAGAGTC	TGGAGAACCT	GAACAGGCTG	CAGGTGATGC	TCCTCCACCT	180
50	TACAGCAGCA	TTTCTGCAGA	GAGCGCACAT	NATTTTGACT	ACAAGGATGA	GTCTGGGTTT	240
	CCAAAGCCCC	CATCTTACAA	TGTAGCTACA	ACACTGCCCA	GTTATGATGA	AGCGGAGAGG	300
35	ACCAAGGCTG	AAGCTACTAT	CCCTTTGGTT	CCTGGGAGAG	ATGAGGATTT	TGTGGGTCGG	360
	GATGATTTTG	ATGATGCTGA	CCAGCTGAGG	ATAGGAAATG	ATGGGATTTT	CATGTTAACT	420
40	TTTTTCATGG	CATTCCTCTT	TAACTGGATT	GGGTTTTTCC	TGTCTTTTTG	CCTGACCACT	480
	TCAGCTGCAG	GAAGGTATGG	GGCCATTTCA	GGATTTGGTC	TCTCTCTAAT	TAAATGGATC	540
	CTGATTGTCA	GGTTTTCCAC	CTATTTCCCT	GGATATTTTG	ATGGTCAGTA	CTGGCTCTGG	600
45	TGGGTGTTCC	TTGTTTTAGG	CTTTCTCCTG	TTTCTCAGAG	GATTTATCAA	TTATGCAAAA	660
	GTTCGGAAGA	TGCCAGAAAC	TTTCTCAAAT	CTCCCCAGGA	CCAGAGTTCT	CTTTATTTAT	720
50	TAAAGATGTT	TTCTGGCAAA	GCCTTCCTG	CATTTATGAA	TTCTCTCTCA	AGAAGCAAGA	780
	GAACACCTGC	AGGAAGTGAA	TCAAGATGCA	GAACACAGAG	GAATAATCAC	CTGCTTTAAA	840
	AAAATAAAGT	ACTGTTGAAA	AGATCATTTC	TCTCTATTTG	TTCCTAGGTG	ТААААТТТТА	900
55	ATAGTTAATG	CAGAATTCTG	TAATCATTGA	ATCATTAGTG	GTTAATGTTT	GAAAAAGCTC	960
	TTGCAATCAA	GTCTGTGATG	ТАТТААТААТ	GCCTTATATA	TTGTTTGTAG	TCATTTTAAG	1020
60	TAGCATGAGC	CATGTCCCTG	TAGTCGGTAG	GGGGCAGTCT	TGCTTTATTC	ATCCTCCATC	1080

	TCAAAATGAA	CTTGGAATTA	AATATTGTAA	GATATGTATA	ATGCTGGCCA	TTTTAAAGGG	1140
	GTTTTCTCAA	AAGTTAAACT	TTTGTTATGA	CTGTGTTTTT	GCACATAATC	CATATTTGCT	1200
5	GTTCAAGTTA	ATCTAGAAAT	TTATTCAATT	CTGTATGAAC	ACCTGGAAGC	AAAATCATAG	1260
	TGCAAAAATA	CATTTAAGGT	GTGGTCAAAA	ATAAGTCTTT	AATTGGTAAA	TAATAAGCAT	1320
10	TAATTTTTA	TAGCCTGTAT	TCACAATTCT	GCGGTACCTT	ATTGTACCTA	AGGGATTCTA	1380
10	AAGGTGTTGT	CACTGTATAA	AACAGAAAGC	ACTAGGATAC	AAATGAAGCT	TAATTACTAA	1440
	AATGTAATTC	TTGACACTCT	TTCTATAATT	AGCGTTCTTC	ACCCCCACCC	CCACCCCAC	1500
15	CCCCCTTATT	TTCCTTTTGT	CTCCTGGTGA	TTAGGCCAAA	GTCTGGGAGT	AAGGAGAGGA	1560
	TTAGGTACTT	AGGAGCAAAG	AAAGAAGTAG	CTTGGAACTT	TTGAGATGAT	CCCTAACATA	1620
20	CTGTACTACT	TGCTTTTACA	ATGTGTTAGC	AGAAACCAGT	GGGTTATAAT	GTAGAATGAT	1680
20	GTGCTTTCTG	CCCAAGTGGT	AATTCATCTT	GGTTTGCTAT	GTTAAAACTG	TAAATACAAC	174
	AGAACATTAA	TAAATATCTC	TTGTGTAGCA	CCTTTTAAAA	АААААААА	АААААААА	180
25	AAAAAAAAA	AANCCCGGGG	GGGGGCCCCN				183

30 (2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1212 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

40	TGTTTGAAGT	TGTTACTTTT	GTTTACAGCA	AAGTTTGATG	TAGTGTGCAG	TAGTGAGCTC	60
	TAGACTGATC	TTTTTCTAAA	TCAGAAAGTG	ATTAAAGTAT	GCACAACCAA	AGGCAGGTTT	120
45	TTCTTTTTCA	TTTATTCAGC	AACTATTTAT	TAAGCATCAA	CTCTGTGCCA	GGCACGTTAC	180
45	TAGCTGCTAC	ATACTGTCTG	AACATGACAT	ACGGTTAAGT	AACTTTACAA	TTATTATCAA	240
	ATACTTCAAT	GTAGATATTT	CTTAAGTTGA	AATAGCATTA	ACTAGGATAA	TGCTTTCATG	300
50	TTATTTTATT	TGTCTTGTGA	TAGAAATTCA	ACTTTGTACC	ATCTTAAAAC	TAGGTTGCTA	360
	TAAAAATAGG	AGGATGAAGT	CAATAAAGTT	TATGCCAGTT	TAAAAACTGG	AAGGAAAAGG	420
==	TAAGAGCTCT	CCATTATAAA	ATAGTTGCAT	TCGGTTAATT	TTTACACATT	AGTGCATTGC	480
55	GTATATCAAC	TGGCCCTCAA	TGAAGCATTT	AAGTGCTTGG	AATTTTACTA	AACTGACTTT	540
	TTTGCAACTT	TGGGAGATTT	TTGAGGGGAG	TGTTGAAAAT	TGCCAAACAC	TCACCTCTTA	600
60	CTCAAAACTT	САААТААААТ	ACACATTTTC	AAGAGGGAGC	ACCTTTTATA	TTTGATAAGT	660

	TTTCATTATA	AACCTTATAA	TACCAGTCAC	AAAGAGGTTG	TCTGTCTATG	GTTTAGCAAA	720
5	CATTTGCTTT	TCTTTTTGGA	AGTGTGATTG	CAATTGCAGA	ACAGAAAGTG	AGAAAACACT	780
3	GCCAGCGGTG	ATTGCTACTT	GAGGTAGTTT	TTTACAACTA	CCATTTCCCC	TCCATGAAAT.	840
	TATGTGAAAT	TTATTTTATC	TTTGGGAAAA	GTTGAGAAGA	TAGTAAAAGA	ATTAGGAATT	900
10	TAAAATTACA	GGGAAAAATA	TGTAAGTGAA	AAGCAATAAA	TATTTTGTTC	ACTTTGCTAT	960
	CAAGATGTTC	ACTATCAGAT	ATTTATTATA	TGGCAGCAAT	TTTTTATATTT	AATCATTGCC	1020
15	CATTAATAGA	CGCAGTAAAA	TATTTTTGAA	TCAGACATTT	GGGGTTTGTA	TGTGCATTAA	1080
13	AATTGTCTTT	TGTACTGTAA	GTTACTGTTA	ATTTGAATAT	TTTATTGAAC	TGTCTCCCTG	1140
	TGCCTTTATA	ATATAAAGTT	GTTTCTACAA	CTTTTAATGA	TCTTAATAAA	GAATACTTTA	1200
20	AGAAAAAAA	AA					1212

25 (2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2061 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

35	GGTTTTCCTC	CGACTTCCGG	ACATCTCCCT	GGGAGTCGCG	CAGAGTGGAG	TCAAAGGCAA	60
	CCAGTGCTCG	CTGCGGTCTC	TGGGGATCGG	GACCGCGGCG	GCGGCCCGCG	AGCGGGATGT	120
40	TCCGGGGCTT	GAGCAGTTGG	TTGGGCTTGC	AGCAGCCGGT	GGCAGGCGGT	GGGCAGCCCA	180
40	ATGGAGATGC	TCCACCCGAG	CAGCCGTCCG	AGACGGTGGC	TGAGTCTGCG	GAGGAGGAGC	240
	TGCAGCAAGC	GGGAGACCAG	GAGCTCCTCC	ACCAGGCCAA	AGACTTCGGC	AACTATTTAT	300
45	TTAACTTTGC	ATCTGCTGCC	ACAAAAAAGA	TAACTGAATC	AGTTGCTGAA	ACAGCACAAA	360
	CAATAAAGAA	ATCCGTAGAA	GAAGGAAAAA	TAGATGGCAT	CATTGACAAG	ACAATTATAG	420
50	GAGATTTTCA	GAAGGAACAG	AAAAAATTTG	TTGAAGAGCA	ACATACAAAG	AAGTCAGAAG	480
50	CAGCTGTGCC	CCCATGGGTT	GACACTAACG	ATGAAGAAAC	AATTCAACAA	CAAATTTTGG	540
	CCTTATCAGC	TGACAAGAGG	AATTTCCTTC	GTGACCCTCC	GGCTGGCGTG	CAATTTAATT	600
55	TCGACTTTGA	TCAGATGTAC	CCCGTGGCCC	TGGTCATGCT	CCAGGAGGAT	GAGCTGCTAR	660
	CAAGATGAGA	TTTGCCCTCG	TTCCTAAACT	TGTGAAGGAA	GAAGTGTTCT	GGAGGAACTA	720
60	CTTTTACCGC	GTCTCCCTGA	TTAAGCAGTC	AGCCCAGCTC	ACGGCCCTGG	CTGCCCAACA	780

120

	GCAGGCCGCA	GGGAAGGGAG	GAGAAGAGCA	ATGGCAGAGA	GCAAGATTTG	CCGCTGGAGA	840
	GGCAGTACGG	CCCAAAACGC	CACCCGTTGT	AATCAAATCT	CAGCTTAAAA	CTCAAGAGGA	900
5	TGAGGAAGAA	ATTTCTACTA	GCCCAGGTGT.	TTCTGAGTTT	GTCAGTGATG	CCTTCGATGC	960
	CTGTAACCTA	AATCAGGAAG	ATCTAAGGAA	AGAAATGGAG	CAACTAGTGC	TTGACAAAAA	1020
10	GCAAGAGGAG	ACAGCCGTAC	TGGAAGAGGA	TTCTGCAGAT	TGGGAAAAAG	AACTGCAGCA	1080
10	GGAACTTCAA	GAATATGAAG	TGGTGACAGA	ATCTGAAAAA	CGAGATGAAA	ACTGGGATAA	1140
	GGAAATAGAG	AAAATGCTTC	AAGAGGAAAA	TTAGCTGTTC	CTGAAATAGA	AGAATAATCC	1200
15	TTAACAGTCT	GCAAACTGAC	ATTAAATTCT	AGATGTTGAC	AATTACTGAA	TCAGAAGGCA	1260
	TGAAAGAGTA	ΤΑΑΤΤΤ ΤΑΤ G	AAATTCAAAA	TTATTCTTTT	TTCAAGTTGA	AACTTGCCTC	1320
20	TTCTACTTTA	AAAAAGTATA	TAGAACAGTT	ACTTCTAATA	ATCAGAAAGA	GATGTTTAT	1380
20	AGAACATTTC	TTTAATATAA	AGTTAGAGAT	GTCTTCATAG	GCAGTATGGC	TATCTTTGCC	1440
	ACAGAAACAT	AAGTAAAATT	TTAGAGTTCT	GTTTTCCATG	AGGTCAAAAA	TATAATTTAT	1500
25	TCCTCAGTCA	TGGTTTTCTA	AATATCTGTA	CTCCACATTC	CATTTTAATT	GATATGAGGG	1560
	TGTTAAAGTA	CCTACTTAAT	GGGTTGATTA	СТАТСААААТ	GACCAAATTA	TACCAAAGAA	1620
30	CTTAAGAGGA	AGCACTTTCA	GAACTATTCA	CTTGCCAGGT	ATTTTCTAAA	ATTCCACCTG	1680
30	AAAGCCAAAA	GATAAAATAC	ATNAGTTGGA	TTTTAATGAT	ATAAGCATCA	CACAATTTTA	1740
	CATTAAGAAA	TACTGTGCAG	CCCATGCGTG	GTGGCTCAGG	CCTGTAATCC	CAGCANTTTG	1800
35	GGAGGCCGAG	GTGGGCAGAT	CACCGGAGGT	CAGGAGTTCG	AGACCAGCCT	TGCCAACATA	1860
	GTGAAACCCT	GTCTTTACTA	ААААТАСААА	AATTAGCCGG	GCATGGTGGC	AGGCACCTGT	1920
40	AATCCCAGCT	ACTAGGGAGG	CTTTTGAACC	CAGGAGGCAG	AGGTTGCAGC	GAGCTGAGAT	1980
-10	CGCGCCACTG	CACTCCAGCC	TGGGTGATAG	AGTGAGATTC	AGTCTCAAAA	AAAAAAAAA	2040
	AAAAAAAA	AATGACCTCG	; A				2061
45							
	(2) INFORM	MATION FOR S	SEO ID NO: 1	.5:			
50		SEQUENCE (
50	(1)	(A) LE	NGTH: 1412 PE: nucleic	base pairs			
		(C) ST	RANDEDNESS: POLOGY: line	double			
55	(vá	i) SEQUENCE			O: 15:		
	·					CATCCTTGCC	60

AGGAAGCTCT GTGAAGGTGC TGCTGATGAC CCAGATTCCT CCATGGTCCT CCTGTGTCTC

	CTGTTGGTGC	CCCTCCTGCT	CAGTCTCTTT	GTACTGGGGC	TATTTCTTTG	GTTTCTGAAG	180
5	AGAGAGAGAC	AAGAAGAGTA	CATTGAAGAG	AAGAAGAGAG	TGGACATTTG	TCGGGAAACT	240
5	CCTAACATAT	GCCCCATTC	TGGAGAGAAC	ACAGAGTACG	ACACAATCCC	TCACACTAAT	300
	AGAACAATCC	TAAAGGAAGA	TCCAGCAAAT	ACGGTTTACT	CCACTGTGGA	AATACCGAAA	360
10	AAGATGGAAA	ATCCCCACTC	ACTGCTCACG	ATGCCAGACA	CACCAAGGCT	ATTTGCCTAT	420
	GAGAATGTTA	TCTAGACAGC	AGTGCACTCC	CCTAAGTCTC	TGCTCAAAAA	AAAAACAATT	480
15	CTCGGCCCAA	AGAAAACAAT	CAGAAGAATT	CACTGATTTG	ACTAGAAACA	TCAAGGAAGA	540
15	ATGAAGAACG	TTGACTTTTT	TCCAGGATAA	ATTATCTCTG	ATGCTTCTTT	AGATTTAAGA	600
	GTTCATAATT	CCATCCACTG	CTGAGAAATC	TCCTCAAACC	CAGAAGGTTT	AATCACTTCA	660
20	TCCCAAAAAT	GGGATTGTGA	ATGTCAGCAA	ACCATAAAAA	AAGTGCTTAG	AAGTATTCCT	720
	ATAAAAATGT	AAATGCAAGG	TCACACATAT	TAATGACAGC	CTGTTGTATT	AATGATGGCT	780
25	CCAGGTCAGT	GTCTGGAGTT	TCATTCCATC	CCAGGGCTTG	GATGTCAGGA	TTATACCAAG	840
	AGTCTTGCTA	CCAGGAGGGC	AAGAAGACCA	AAACAGACAG	ACAAGTCCAG	CAGAAGCAGA	900
	TGCACCTGAC	AAAAATGGAT	GTATTAATTG	GCTCTATAAA	CTATGTGCCC	AGCAYTATGC	960
30	TGAGCTTACA	CTAATTGGTC	AGACATGCTG	TCTGCCCTCA	TGAAATTGGC	TCCAAATGAW	1020
	TGAACTACTT	TCATGAGCAG	TTGTAGCAGG	CCTGACCACA	GATTCCCAGA	GGGCCAGGTG	1080
35	TGGATCCACA	GGACTTGAAG	GTCAAAGTTC	ACAAAGATGA	AGAATCAGGG	TAGCTGACCA	1140
55	TGTTTGGCAG	ATACTATAAT	GGAGACACAG	AAGTGTGCAT	GGCCCAAGGA	CAAGGACCTC	1200
	CAGCCAGGCT	TCATTTATGC	ACTTGTCTGC	AAAAGAAAAG	TCTAGGTTTT	AAGGCTGTGC	1260
40	CAGAACCCAT	CCCAATAAAG	AGACCGAGTC	TGAAGTCACA	TTGTAAATCT	AGTGTAGGAG	1320
	ACTTGGAGTC	AGGCAGTGAG	ACTGGTGGGG	CACGGGGGGC	ANTGGGTANT	GTAAACCTTT	1380
45	TAAAGATGGT	TAATTCNTCA	TTAGTGTTTT	TT			1412

(2) INFORMATION FOR SEQ ID NO: 16:

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1052 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

TTCCTCTCT CTCTCTACCC CTCCTGTCTC TCCTCCCCTC CTCTCTCTC CTCTCCTCTC 60

	TCTCTTCCTC	TCCTCTCTCT	TCCCTTCCTG	TCTCTCTTCC	CCTCCTCTCT	CTCTTCCTGT	120
	CCTCTATCTC	TTCCCCTCCT	CTATCTCTTC	CTCTCCTCTC	TCTCTTCCTC	TCCTCTCTCT	180
5	CTCTTSCTTT	CTTCTCTCTC	TCCTGTCTCG	GCTGTTGTGG	GTTGCAGGTT	GGGTGCTGCT	240
	GTTGTGGTCC	TTCCCAGAAA	CTGCCAGTAG	AGGGCAGCCT	GGGCATCCTA	ATGCTTACTC	300
10	TGGTTGTTAC	ACAAAGAAAA	TATTGGGGTC	ACTGGCGAGC	CCACCCACAC	TCACCAGAAT	360
10∉	CTCCACTGTA	GTCCCCTAA	CAAACAGCCC	TTCACTTCCT	CTCCCACTTC	AGCAATTTGT	420
	ATTTTGATGC	CATTGGCCTC	AGATCAGAGT	GTTTTAAATC	ATCACGCCCT	GGCTTATCCC	480
15	TGGTCGAGCC	AGGACACGGG	GTGCTTCAGT	GGGTCTGTCA	CCCTCTCTCC	TTGAAGCATG	540
	TTGCTTTTAT	TTATTTACTT	TTACTCTCAC	CCTGCTCCTG	TACCAGCAGG	GGCCACTTCA	600
20	AAGCCAAGGT	ACAGGGTGAT	AACTTGTGGT	CCAGCATCAG	TTTTCTCCAC	TTCTTTCTCC	660
20	CACTCACCCC	CAGCAAGGTG	CCTGGGGAGA	CTTGAGCAGA	TGTTTCATTT	TGGCCTGGCC	720
	AGTGGCTGAA	AGCAGGCCTC	CAATGCACTG	TGACCTCTGG	CTTCCCCAGC	AGCTTTCCCA	780
25	GAGAGGCAGA	GGGGCCTTCC	ACAGCCCGGG	TTCTCCTGCT	GCCTCCTGCC	TGCTGCAGCT	840
	GCAGGCATTC	TGAGGGGCAA	CGTGGAGGAA	GGGCCAGGGA	TGCATGGGAT	TTTAATTGTT	900
30	TCATCACACC	TTCCCCGTGG	CAAAGAAACA	GTCAGTCCTC	TTCAGGTGTC	TTCTGGATTT	960
30	CTGGTGATGG	ACAGAGAAAT	CTTTTTACAG	TTTCAAATTA	TGTTCAACAA	ATAAAAATTG	1020
	CATTTTTTAT	TTTGGAAAAA	ААААААААА	AA			1052

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 17:

40 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 683 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

AATTCGGCAG AGGCACTTAT CATGTACATA TAGCCTGTTT TTTAGCATTG TTAGACAAAG 60

TAGGCATATT CCTTTCCATC CAAGAACTCA TAACCTAGTA ATTGTAGTTG GCTGATAGCT 120

CATTGCCCAT ACACAAGGAT CTAACACAAC CTCTTGAATA AACATCCCCC TTATTCAGAA 180

ATGCCTTTTC CTATTTCCAT ATTGCAACTT TGCTTACAAA TTTCCAATCT GTCTTTCTGT 240

TTACAGAAGA TATACAAAAT TCCTTTTGTA TGATCTCTTT ATATCTCTTG ATTTTCTTTT 300

GTGTTTGCTA CCAAAGGGCC TGCACATAGT GAGAAGATTG TGCATGATCT GTGAGCTCTA 360

CCACACCTGG AATTAGGGAT CACCAATATG AGAAAAAAAA TTGGAGGTAC AAATAACATT 420

WO 98/42738 PCT/US98/05311

174

	ATCATATGTW	ATTGGCATAT	AAATTACAGA	TGTWTCTATG	ACTAAAAACC	CTGTGGATAT	480
5	WAACCMAATG	CAGATAAWTW	WTAAAATW	WTAAAAATW	TWATCMAATA	ATGATAGTGC	540
3	ТАТТСАААТА	CTTCAAATTT	GCACAGTGAT	TTATTTCTTA	AAATATGTTA	ACACATGTGA	600
	GCCAATACAC	TGAGGTCACT	GGATAAATAA	ACAGATTCTT	GCAAAAAAAA	AAAAAAAA	660
10	ACTCGAGGG	GGCCCGTACC	CTT				683

15 (2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1054 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

25	AAACTCATTT	AGGTGACACT	ATAGAAGGTA	CGCCTGCAGG	TACCGGTCCG	GAATTCCCGG	60
	GTCGACCCAC	GMGNCCGGCG	ACAAGATGGC	AGCAGCGTGT	CGGAGCGTGA	AGGGCCTGGT	120
30	GGCGGTAATA	ACCGGAGGAG	CCTCGGGCCT	GGGCCTGGCC	ACGGCGGACG	ACTTGTGGGG	180
50	CAGGGAGCCT	CTGCTGTGCT	TCTGGACCTG	CCCAACTCGG	GTGGGGAGGC	CCAAGCCAAG	240
	AAGTTAGGAA	ACAACTGCGT	TTTCGCCCCA	GCCGACGTGA	CCTCTGAGAA	GGATGTGCAA	300
35	ACAGCTCTGG	CTCTAGCAAA	AGGAAAGTTT	GCCCTCTGG	ATGTAGCTGT	CAACTGTGCA	360
	GGCATCGCGG	TGGCTAGCAA	GACGTACAAC	TTAAAGAAGG	GCCAGACCCA	TACCTTGGAA	420
40	GACTTCCAGC	GAGTTCTTGA	TGTGAATCTC	ATGGGCACCT	TCAATGTGAT	CCGCCTGGTG	480
. •	GCTGGTGAGA	TGGGCCAGAA	TGAACCAGAC	CAGGGAGGCC	AACGTGGGGT	CATCATCAAC	540
	ACTGCCAGTG	TGGCTGCCTT	CGAGGGTCAG	GTTGGACAAG	CTGCATACTC	TGCTTCCAAG	600
45	GGGGGAATAG	TGGGCATGAC	ACTGCCCATT	GCTCGGGATC	TGGCTCCCAT	AGGTATCCGG	660
	GTGATGACCA	TTGCCCCAGG	TCTGTTTGGC	ACCCCACTGC	TGACCAGCCT	CCCAGAGAAA	720
50	GTGTGCAACT	TCTTGGCCAG	CCAAGTGCCC	TTCCCTAGCC	GACTGGGTGA	CCCTGCTGAG	780
50	TATGCTCACC	TCGTACAGGC	CATCATCGAG	AACCCATTCC	TCAATGGAGA	GGTCATCCGG	840
	CTGGATGGGG	CCATTCGTAT	GCAGCCTTGA	AGGGAGAAGG	CAGAGAAAAC	ACACGCTCCT	900
55	CTGCCCTTCC	TTTCCCTGGG	GTACTACTCT	CCAGCTTGGG	AGGAAGCCCA	GTAGCCATTT	960
	TGTAACTGCC	TACCAGTCGC	CCTCTGTGCC	TAATAAAGTC	TCTTTTTCTC	ACANAAAAA	1020
60	ААААААА	AAAAAAAA	AAAAAAAA	AAAA			1054

(2) INFORMATION FOR SEQ ID NO: 19:

5 .

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1393 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

	(XI) SEQUENCE DESCRIPTION. SEQ ID No. 17.	
15	GGAACAAGCT GGGATATGTG AGCGTTAAGC TACTCACATC CTTCAAAAAG GTGAAACATC	60
15	TTACACGGGA CTGGAGAACC ACAGCACATG CTTTGAAGTA TTCAGTGGTC CTTGAGTTGA	120
	ATGAGGNCCA CCGGAAGGTG AGGAGGACCA CCCCCGTCCC ACTGTTCCCC AACGAGAACC	180
20	TCCCCAGCAA GATGCTCCTG GTCTATGATC TCTACTTGTY TCCTAAGCTG TGGGCTCTGG	240
	CCACCCCCA GAAGAATGGG AAGGGTGCAA GARAAGGTGA TGGAACACCT GCTCAAGCTT	300
25	TTTGGGACTT TTGGAGTCAT CTCATCAGTG CGGATCCTCA AACCTGGGAG AGAGCTGCCC	360
23	CCTGACATCC GGAGGNTCCA GCAGCCGCTA CAGCTCCTCT GACCCCGAGA GCAACCCCAC	420
	ATCCCCTATG GCGGGCCGAC GGCACGNGKC CACCAACAAG CTCAGCCCGT CTGGCCACCA	480
30	GAATCTCTTT CTGAGTCCAA ATGCCTCCCC GTGCACAAGT CCTTGGAGCA GCCCCTTGGC	540
	CCAACGCAAA GGCGTTTCCA GAAAGTCCCC ACTGGCGGAG GAAGGTAGAC TGAACTGCAG	600
35	CACCAGCCCT GAGATCTTCC GCAAGTGTAT GGATTATTCC TCTGACAGCA GCGTCACTCC	660
33	CTCTGGCAGC CCCTGGGTCC GGAGGCGTCG CCAAGCCGAG ATGGGGACCC AGGAGAAAAG	720
	CCCCGGTACG AGTCCCCTGC TCTCCCGGAA GATGCAGACT GCAGATGGGS TACCCGTAGG	780
40	TNGCTTGAGG TTGCCCAGGG GTCCTGACAA CACCAGAGGA TTTCATGGCC ATGAGAGGAG	840
	CAGGGCCTGT GTATAAATAC CTTCTATTTT TAATACAAGC TCCACTGAAA ACCACCTTCG	900
45	TTTTCAAGGT TCTGACAAAC ACCTGGCATG ACAGAATGGA ATTCGTTCCC CTTTGAGAGA	960
43	TTTTTTATTC ATGTAGACCT CTTAATTTAT CTATCTGTAA TATACATAAA TCGGTACGCC	1020
	ATGGTTTGAA GACCACCTTC TAGTTCAGGA CTCCTGTTCT TCCCAGCATG GCCACTATTT	1080
50	TGATGATGGC TGATGTGTGT GAGTGTGATG GCCCTGAAGG GCTGTAGGAC GGAGGTTCCC	1140
	TGGGGGAAGT CTGTTCTTTG GTATGGAATT TTTCTCTCTT CTTTGGTATG GAATTTTTCC	1200
55	CTTCAGTGAC TGAGCTGTCC TCGATAGGCC ATGCAAGGGC TTCCTGAGAG TTCAGGAAAG	1260
55	TTCTCTTGTG CAACAGCAAG TAGCTAAGCC TATAGCATGG TGTCTTGTAG GACCAAATCG	1320
	ATGTTACCTG TCAAGTAAAT AAATAATAAA ACACCCAACT GGGAGTGCTG AAAAAAAAANA	1380
60	ANNAAAAAC TCG	1 3 93

5 (2) INFORMATION FOR SEQ ID NO: 20:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1215 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

15	AGGAAAAGTT	TTCCNAATTG	GAAAGCGGGC	AGTGAGCGCA	ACGCAATTAA	TGTGAGTTAG	60
	NTCANTCATT	AGGCACCCCA	GGCTTTACAC	TTTATGCTTC	CGGNTCGTAT	GTTGTGTGGA	120
20	ATTGTGAGCG	GATAACAATT	TCACACAGGA	AACAGCTATG	ACCATGATTA	CGCCAAGCTN	180
20	TAATACGACT	CACTATAGGG	AAAGCTGGTA	CGCCTGCAGG	TACCGGTCCG	GAATTCCCGG	240
	GTCGACCCAC	GCGTCCGCCC	ACGCGTCCGT	GAAAATCCGA	AGTGCCGCGG	AAAGTGGAGG	300
25	TGAGGGCCGC	CCGCCCTAGA	GGTGCCCGTC	CGAGAGGCAG	AGCTGACAAG	GAAGGTTTCG	360
	AGCGTT T TGC	TGGCAAAGGG	ATTTCTTACA	ACCTCCAGGC	ATGCGTCTTT	CTGCCCTGCT	420
30	GGCCTTGGCA	TCCAAGGTCA	CTCTGCCCCC	CCATTACCGC	TATGGGATGA	GCCCCCAGG	480
30	CTCTGTTGCA	GACAAGAGGA	AGAACCCCCC	ATGGATCAGG	CGGCGCCCAG	TGGTTGTGGA	540
	ACCCATCTCT	GATGAAGACT	GGTATCTGTT	CTGTGGGGAC	ACGGTGGAGA	TCCTAGAAGG	600
35	CAAGGATGCC	GGGAAGCAGG	GCAAAGTGGT	TCAAGTTATC	CGGCAGCGAA	ACTGGGTGGT	660
	CGTGGGAGGG	CTGAACACAC	ATTACCGCTA	CATTGGCAAG	ACCATGGATT	ACCGGGGAAC	720
40	CATGATCCCT	AGTGAAGCCC	CCTTGCTCCA	CCGCCAGGTC	AAACTTGTGG	ATCCTATGGA	780
40	CAGGAAACCC	ACTGAGATCG	AGTGGAGATT	TACTGAAGCA	GGAGAGCGGG	TACGAGTCTC	840
	CACACGATCA	GGGAGAATTA	TCCCTAAACC	CGAATTTCCC	AGAGCTGATG	GCATCGTCCC	900
45	TGAAACGTGG	ATTGATGGCC	CCAAAGACAC	ATCAGTGGAA	GATGCTTTAG	AAAGAACCTA	960
	TGTGCCCTGT	CTAAAGACAC	TGCAGGAGGA	GGTGATGGAG	GCCATGGGGA	TCAAGGAGAC	1020
50	CCGGAAATAC	AAGAAGGTCT	ATTGGTATTG	AGCCTGGGGC	AGAGCAGCTC	CTCCCCAACT	1080
30	TCTGTCCCAG	CCTTGAAGGC	TGAGGCACTT	CTTTTTCAGA	TGCCAATAAA	GAGCACTTTA	1140
	TGAGTCCTCC	AAAAAAAA	ААААААААА	ААААААААА	ААААААААА	ААААААААА	1200
55	AAAAGGGGCG	GCCGC					1215

60 (2) INFORMATION FOR SEQ ID NO: 21:

5

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2042 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

CTGCATCCAG GCGCAGAATA ACCTGGGTAT CTTGTGGTCT GAAAGAGAGA AATTGAAACT

	GCACAGGCTT ACCTAGAGTC ATCAGAAGCA CTATATAATC AGTATATGAA AGAGGTTGGG	120
15	AGTCCTCCTC TTGATCCTAC TGAGCGTTTT CTTCTGAAGA AGAGAAACTT ACTGAACAAG	180
15	AGAGATCAAA AAGATTTGAA AAGGTTTATA CTCATAACCT ATATTACCTA GCTCAAGTCT	240
	ACCAGCATCT GGAAATGTTT GAGAAGGCTG CTCACTATTG CCATAGTACA CTAAAACGCC	300
20	AGCTTGAGCA CAATGCCTAC CATCCTATAG AGTGGGCTAT CAATGCTGCT ACCTTGTCAC	360
	AGTTTTACAT CAATAAGCTA TGCTTTATGG AGGCCAGGCA CTGTTTATCA GCTGCTAATG	420
25	TCATTTTTGG TCAAACTGGA AAGATCTCAG CCACAGAAGA CACTCCTGAA GCTGAAGGAG	480
23	AAGTGCCAGA GCTTTATCAT CAAAGAAAGG GGGAAATAGC AAGGTGCTGG ATCAAATACT	540
	GTTTGACTCT CATGCAGAAT GCCCAACTCT CCATGCAGGA CAACATAGGA GAGCTTGATC	600
30	TTGATAAACA GTCTGAACTT AGAGCTTTAA GGAAAAAAGA ACTAGATGAG GAGGAAAGCA	660
	TTCGGAAAAA AGCTGTGCAG TTTGGAACCG GTGAACTGTG TGATGCCATC TCTGCAGTAG	720
35	AAGAGAAAGT GAGCTACTTG AGACCTTTAG ATTTTGAAGA AGCCAGAGAA CTTTTCTTAT	780
20	TGGGTCAGCA CTATGTCTTT GAGGCAAAAG AGTTCTTTCA GATTGATGGT TATGTCACTG	840
	ACCATATTGA AGTTGTCCAA GACCACAGTG CTCTGTTTAA GGTGCTTGCA TTCTTTGAAA	900
40	CTGACATGGA GAGACGGTGC AAGATGCATA AACGCRGAAT AGCCATGCTA GAGCCCCTAA	960
	CTGTAGACCT GAATCCACAG TATTATCTGT TGGTCAACAG ACAGATCCAG TTTGAAATTG	1020
45	CACATGCTTA CTATGATATG ATGGATTTGA AGGTTGCCAT TGCTGACAGG CTAAGGGATC	1080
-15	CTGATTCACA CATTGTAAAA AAAATAAATA ATCTTAATAA GTCAGCACTG AAGTACTACC	1140
	AGCTCTTCTT AGACTCCCTG AGAGACCCAA ATAAAGTATT CCCTGAGCAT ATAGGGGAAG	1200
50	ATGTTCTTCG CCCTGCCATG TTAGCTAAGT TTCGAGTTGC CCGTCTCTAT GGCAAAATCA	1260
	TTACTGCAGA TCCCAAGAAA GAGCTGGAAA ATTTGGCAAC ATCATTGGGA ACATTACAAA	1320
55	TTTATIGTTG ATTACTGTGA AAAGCATCCT GAGGCCGCCC AGGAAATAGA AGTTGAGCTA	1380
33	GAACTTAGTA AAGAGATGGT TAGTCTTCTC CCAACAAAAA TGGAGAGATT CAGAACCAAG	1440
	ATGGCCCTGA CTTAATCCTT GTTTTTAAAG AAAGGAAATG TGCAATATTG AAGTGATCTT	1500
60	TTTCCCTAGT CAGACAGGCC CAATTCCATT GTGATGTTTA CCTTTATAGC CAGGTGAGTG	1560

WO 98/42738

PCT/US98/05311

178

	CAGTTTGAAC TTGAGATACA GTCAACTGAG TGTTTGCTAG GATCCTAAGG AACATAAAGT	1620
5	TAATTAAAAA CTTACACCTA ATTATGTAAA TTGCCTTGTT AAAGACATGT GATTTGTATT	1680
J	TTAGATGCTT GTTTCCTATT AAAATACAGA CATTTCTACC CTCAGTTTCT AAATGTAGAC	1740
	TATTTGTTGG CTAGTACTTG ATAGATTCCT TGTAAGAAAA AATGCTGGGT AATGTACCTG	1800
10	GTAACAAGCC TGTTAATATA TTAAGATTGA AAAAGTAACT TCTATAGTTA CTCCTTCTAA	1860
	AATATTTGAC TTCCTACATT CCCCCCACCC AAAATCTTTC CCTTTTGAAA ATACTAAAAA	1920
1.5	CTAAGTTATG TTATTATAAA GTGTAAAATG GTTTGTCTTA ATTATAGGAG AAAAAGGCCT	1980
15	TGTTAGAAAT AAAATAAACT GACTTATTTC ACTAATGAAA AAAAAAAAAA	2040
	тт	2042
20		
	(2) INFORMATION FOR SEQ ID NO: 22:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1872 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
	GGGTCGACCC ACGCGTCCGA TTGGCCTAGA GCTCCTGTGA CCGAGAGCGC CACGGAAGCC	60
35	TGGGGATGAT GTCGGGCAGC TTTATTCTTT GCTTGGCTTT GGTAACTAGG TGGTCCCCTC	120
	AAGCATCCTC AGTTCCTCTT GCTGTTTATG AATCTAAGAC AAGGAAGTCC TATAGAAGCC	180
40	AAAGGGACAG GGACGGAAAG GACAGGTCCC AAGGGATGGG GCTGTCTTTA CTTGTGGAAA	240
	CCAGGAAATT GCTCCTCTCA GCCAACCAAG GTTGACCACA CACCACCCTT CCGGAGCAGC	300
	TCAGTCAGCC CTCGGGGACG RGAAACCACA AGCGCAGAGA CGCTGAGGCC CAGGCAGGTG	360
45	AAGAGGAAGT GGCTTTGGGT TTTTAAAGTA GGTGAGCGTG ACCTCTCTGA CTGCTTCTTC	420
	CCCGGGGGG ACTGCAAACC GCTCAGGGTT GCGGCAGAGC CATGGACTTC CGGTCCCTGC	480
50	AACGGGTGAC CTAAGCGTGG TGCACCCATC AGTCACGCAG GAGGACTGAC TTGACAGACG	540
30	AAAGACAAGC CCGGATGACA CAGGGTGAGA AGAGTCAGGG CCGCACCTCT GTCCCTGCAA	600
	ACCAACAGET GCATGGTGAG TGTGGCAGTC CCCACAGCTC CACAATGGGC TCCCCCGCCA	660
55	ACGGGGACGA CAGGGATCTT CAGGAACTTC TGACCTCACC AAGTCAAGTG GACCACTCTC	720
	CACTCCACGA GGATGTGAAA CGGTTCTTTA AAATGGGATT TTAGAGCCTC GGGAATGCAT	780
	GTGCGTCGCA TCTTTCATAT TATGGGTCAG GATAGATTCA TTTCTTGCAA CATAGTGGAA	840

179

	AAGATATAAG	CTGCAGTAAT	TIGCTCTTTG	AATGACCGTC	ACCCCCAGTA	TAGGATATGC	900
	TTGTATCCCC	CCGTCACTCC	TCCGCCTGTT	TTTTAAACTT	TTCCACCACC	TGCGTCCAAA	960
5	AAGAATGTTA	TAGCGAGTGC	TCTTAAATGT	TGAACCTGGG	TGTTGCTTCC	GGGCCAGTCT	1020
	GCGTGGCTCC	ATGAAAAGCT	CACTGCTGCC	CCAGCCGGGC	TTCTTAGAGG	AGGTCAGTTG	1080
• •	TCCTATGTAT	CATCATTTAC	TCTGGGAATC	CTACTGTGAA	ATCATGTCTG	TATTTTTCTG	1140
10	GAGCAGTTCA	CATAGAGTAG	AATGTGGAAT	TTCCCGTGAA	CGTCTCCTTC	CTCCCCCGTA	1200
	TCTGCCGCCT	GTCACTTCGC	CACCGTGCTA	GAATACTGTT	GTGTTGTAAG	ATGACTAATT	1260
15	TTAAAAGAAC	CTGCCCTGAA	AAGTTCTTAG	AAACGCAATG	AAAGGGAGGA	ACTIGICCTI	1320
	TACCCAGTTT	TTCCTTTGTA	GGATGGGAAA	GTATAAAAAG	GCACAGAAGG	TTGTCATGGG	1380
•	CTGTTCCTTG	GGGGTTTTTA	TCCTGCTCAC	CGTGGAGATA	AGCCTGCGGC	TTGTCTAACC	1440
20	AGCGCAGCGM	AAAGGTCTCA	ATGCCTTTTG	GTAACATCCG	TCATTGCAGA	AGAAAGTTTA	1500
	CACGACGTCA	AAAAGTGACG	TTCATGCTAA	GTGTTTTTCC	AGAAATATTG	GTTTCATGTT	1560
25	TCTTATTKGC	TCTGCCTCCT	GTGCTTATAT	CATCCAAAAA	СТТТТТАААА	AGGTCCAGAA	1620
	TTCTATTTA	ACCTGATGTT	GAGCACCTTT	AAAACGTTCG	TATGTGTGTT	GCACTAATTC	1680
•	TAAACTTTGG	AGGCATTTTG	CTGTGTGAGG	CCGATCGCCA	CTGTAAAGGT	CCTAGAGTTG	1740
30	CCTGTTTGTC	TCTGGAGATG	GAATTAAACC	AAATAAAGAG	CTTCCACTGG	AGGCTTGTAT	1800
	TGACCTTGTA	ACTATATGTT	AATCTCGTGT	ТААААТАААТ	TATAACTTGT	GAAAAAAAA	1860
35	дааааааааС	NT					1872

40 (2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 289 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

50 CATTTACCCA CCTATCAACA TGTTTGCTTT CTCTTTTGTT GGTGAGAATG AGTGGCTTCT 60

TGCTCCTAGC TAGAGCCAGT CCTTCCATAT GTGCTTTAGA TTCTTCCTGT TTTGTTCAAG 120

AATATTGCTC AAGCTATTCT TCCTCCTGTT TCCTGCATCA GCATTTCCCC TCTCTACTAG 180

ATCATCTCTG TCAGTAAATG AACATGTTGT TGTTTCTCCT AGAAGTACTG TTTCTATATC 240

TAGATAGTAC TCTAGCTAGA GTTAAAAAAA AAAAAAAAA CCTNGGGGG 289

60

(2) INFORMATION FOR SEQ ID NO: 24:

5	(i) S	(A) LENG (B) TYPE (C) STRA	ARACTERISTI TH: 3533 ba : nucleic a NNDEDNESS: O LOGY: linea	ase pairs acid double			
10	(xi)	SEQUENCE D	ESCRIPTION:	SEQ ID NO:	24:		
	TTTTATTTAC T	TCAAATTAA	CTGTACTTTA	CTCAAATAGA	AAANGAATAA	TTTTCACATT	60
15	ATGAAGCTAC AG	CAATTCCAA	AATACACATG	CTGAGGCTCT	TTTTAAGTCC	GAATTGTCTA	120
	GTAATTACAA A	AAAGTGAAG	AGTTTACAGA	TATACAAGGA	AATAAAGGCG	AATTATTGCA	180
20	AAGAAAACAA G	TTTAATTTC	ACTTTGAATG	ACAACGATTT	TTCTGGAAAG	CAGATACTTC	240
	ACTCCTTTAA G	TTTCCACCC	AAGCCACAAT	AATTTCAAAC	GGTCTTGCGG	ATGACCCAGC	300
	TGGTCACTCT T	GTTTATGTG	GGGACTGGAG	GTAATGAGAG	CCAAAAAAAG	TGCTATAAAC	360
25	CTAATTTGGC T	AGAGCAAGT	TCACACGACA	CGACCGTGCT	TTAAAAACTT	GCTCTCCATT	420
	ATGTACTTCC T	TCCATCAGG	TTGGGGAAAA	AAAAATGGTG	GGGATGGTGA	GTAAACACAC	480
30	CAGTGGTTTC A	TCAGAGGGG	AACTCACTAC	TCAGGAGGTG	ACGGTGACGT	GGTGCCGGTC	540
	CCTGAAGTAC G	CGCACAAGC	TCCGGAGGTT	GCGGGAGCTT	CCGCTGCCGC	CTGGAGGGAA	600
	GCCGGAGCGA C	GGGGTCAC	GGCGGCGGTC	AGAGGGTAAA	GGTCTTGCTC	CCAGCAGCCT	660
35	CCGCGGTGGA T.	ACGTCGCCA	TCTTGGATCC	GCGGGACAAG	AAAATTCATG	CGAGGGAGAC	720
	GTGGTGGGCG G	TCCTTCCTG	TGACACGACC	CTTGAGTGAC	AGTTCTATTT	GATTGCCTCC	780
40	GGTACTGTGA G	GAAAGGACA	CGACTCTATG	GTGAGGACTG	ATGGACATAC	ATTATCTGAG	840
10	AAAAGAAACT A	CCAGGTGAC	AAACAGCATG	TTTGGTGCTT	CAAGAAAGAA	GTTTGTAGAG	900
	GGGTCGACA G	TGACTACCA	TGACGAAAAC	ATGTACTACA	GCCAGTCTTC	TATGTTTCCA	960
45	CATCGGTCAG A	AAAAGATAT	GCTGGCATCA	CCATCTACAT	CAGGTCAGCT	GTCTCAGTTT	1020
	GGGGCAAGTT T	ATACGGGCA	ACAAAGTGCA	CTAGGCCTTC	CAATGAGGGG	GATGAGCAAC	1080
50	AATACCCCTC A	GTTAAATCG	CAGCTTATCA	CAAGGCACTC	AGTTACCGAG	CCACGTCACG	1140
50	CCAACAACAG G	GGTACCAAC	AATGTCACTT	CACACGCCTC	CATCTCCAAG	CAGGGGTATT	1200
	TTGCCTATGA A	TCCTARGAA	TATGATGAAC	CACTCCCAGG	TTGGTCAGGG	CATTGGAATT	1260
55	CCTAGCAGGA C	CAAATAGCAT	GAGCAGTTCA	GGGTTAGGTA	GCCCCAACAG	AAGCTCGCCA	1320
	AGCATAATAT G	STATGCCAAA	GCAGCAGCCT	TCTCGACAGC	CTTTTACTGT	GAACAGTATG	1380
60	TCTGGATTTG G	SAATGAACAG	GAATCAGGCA	TTTGGAATGA	ATAACTCCTT	ATCAAGTAAC	1440

	ATTTTTAATG	GAACAGACGG	AAGTGAAAAT	GTGACAGGAT	TGGACCTTTC	AGATTTCCCA	1500
	GCATTAGCAG	ACCGAAACAG	GAGGGAAGGA	AGTGGTAACC	CAACTCCATT	AATAAACCCC	1560
5	TTGGCTGGAA	GAGCTCCTTA	TGTTGGAATG	GTAACAAAAC	CAGCAAATGA	ACAATCCCAG	1620
	GACTTCTCAA	TACACAATGA	AGATTTTCCA	GCATTACCAG	GCTCCAGCTA	TAAAGATCCA	1680
10	ACATCAAGTA	ATGATGACAG	TAAATCTAAT	TTGAATACAT	CTGGCAAGAC	AACTTCAAGT	1740
10	ACAGATGGAC	CCAAATTCCC	TGGAGATAAA	AGTTCAACAA	CACAAAATAA	TAACCAGCAG	1800
	AAAAAAGGGA	TCCAGGTGTT	ACCTGATGGT	CGGGTTACTA	ACATTCCTCA	AGGGATGGTG	1860
15	ACGGACCAAT	TTGGAATGAT	TGGCCTGTTA	ACATTTATCA	GGGCAGCAGA	GACAGACCCA	1920
	GGAATGGTAC	ATCTTGCATT	AGGAAGTGAC	TTAACAACAT	TAGGCCTCAA	TCTGAACTCT	1980
20	CCTGAAAATC	TCTACCCCAA	ATTTGCGTCA	CCCTGGGCAT	CTTCACCTTG	TCGACCTCAA	2040
20	GACATAGACT	TCCATGTTCC	ATCTGAGTAC	TTAACGAACA	TTCACATTAG	GGATAAGCTG	2100
	GCTGCAATAA	AACTTGGCCG	ATATGGTGAA	GACCTTCTCT	TCTATCTCTA	TTACATGAAT	2160
25	GGAGGAGACG	TATTACAACT	TTTAGCTGCA	GTGGAGCTTT	TTAACCGTGA	TTGGAGATAC	2220
	CACAAAGAAG	AACGAGTATG	GATTACCAGG	GCACCAGGCA	TGGAGCCAAC	AATGAAAACC	2280
30	AATACCTATG	AGAGGGGAAC	ATATTACTTC	TTTGACTGTC	TTAACTGGAG	GAAAGTAGCT	2340
50	AAGGAGTTCC	ATCTGGAATA	TGACAAATTA	GAAGAACGGC	CTCACCTGCC	ATCCACCTTC	2400
	AACTACAACC	CTGCTCAGCA	AGCCTTCTAA	AAAAAAAAA	AAAAAAAAA	AAAAAGACTT	2460
35	CCCTTTTCTT	GGGGTATGGC	TGTCTCAGCA	CAATACTCAA	CATAACTGCA	GAACTGATGT	2520
	GGCTCAGGCA	CCCTGGTTTT	AATTCCTTGA	GGATCTGGCA	ATTGGCTTAC	GCAAAAGGTC	2580
40	ACCATTIGAG	GTCCTGCCTT	ACTAATTATG	TGCTGCCCAA	CAACTAAATT	TGTAATTTGT	2640
	TTTTCTCTAG	TTTGAGCAGG	GTCTGAATTT	TTTCATTTAT	TTCCTTTTTT	GCCAGCAGAC	2700
	AGACTTGAGT	CTGTAAAGAC	AAGCAAATAC	ACTGACAGAA	GTTTACCATA	GTTTCTAAAA	2760
45	TGTAAAAAAG	AAAACCCCCA	AAAGACTCAA	GAAAATTAGA	CCACAAATTT	TGCATTGTTC	2820
	ATTGTAGCAC	TATTGGTAAT	AAAATAACAA	ATGTTTGTGC	ATTTTTATGT	GAAGATCCTT	2880
50	CTCGTATTTC	ATTTGGAAAG	ATGAGCAAGA	GGTCTGCTTC	CTTCATTTTA	CTTCCCCTTC	2940
	TGTTTTTGAA	AGGCAGTTTC	GCCAAGCTTA	ATGCAAGAAT	ATCTGACTGT	TTAGAAGAAA	3000
	GATATTGCCA	CAATCTCTGG	ATGGTTTTCC	AGGGTTGTGT	TATTACTGAG	CTTCATCTTT	3060
55	CCAGAATGAG	CAAAACACTG	TCCAGTCTT	GTTACGATTI	TGTAATAAAT	GTGTACATTT	3120
	TTTTAAATT	TTTGGACATC	ACATGAATAA	AGGTATGTAT	GTACGAATGT	GTATATATTA	3180
60	TATATATGAC	ATCTATTTG	GAAAATGTT	GCCCTGCTGT	· ACCTCATTTI	TAGGAGGTGT	324

182

	GCATGGATGC AATATATGAA AATGGGACAT TCTGGAACTG CTGGTCAGGG GA	ACTTTGTCG 3300
	CCCTGTGCAC TAAAAGGGCC AGATTTTCAG CAGCCAAGGA CATCCATACC CA	AAGTGAATG 3360
5	TGATGGGACT TAAAAGAAGT GAACTGAGAC AATTCACTCT GGCTGTTTGA AC	CAGCAGCGT 3420
	TTCATAGGAA GAGAAAAAA GATCAATCTT GTATTTTCTG ACCACATAAA GG	SCTTCTTCT 3480
10	CTTTGTAATA AAGTAGAAAA GCTCTCCTCA AAAAAAAAAA	AG 3533
15	(2) INFORMATION FOR SEQ ID NO: 25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1148 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
25	ACCCACGCGT CCGCAAATTA TACTTCCTCA TTCATATTAT GTTGATACAA AA	AGACCTTGG 60
	CAGCCATTTC TCCCAGCAGT TTTAAAGGAT GAACATTGGA TTTCATGCCA TC	CCCATAGAA 120
	AACCTGTTTT AAAATTTTAG GGATCTTTAC TTGGTCATAC ATGAAAAGTA CA	ACTGCTTAG 180
30	AAATTATAGA CTATTATGAT CTGTCCACAG TGCCCATTGT CACTTCTTTG TO	CTCATTTCT 240
	TCCCTTTGTT CCTTAGTCAT CCAAATAAGC CTGAAAACCA TAAGAGATAT TA	ACTTTATTG 300
35	AATATGGTTG GCATTAAATT TAGCATTTCA TTATCTAACA AAATTAATAT AA	AATTCCAGG 360
33	ACATGGTAAA ATGTGTTTTA ATAACCCCCA GACCCAAATG AAAATTTCAA AG	GTCAATACC 420
	AGCAGATTCA TGAAAGTAAA TTTAGTCCTA TAATTTTCAG CTTAATTATA AA	ACAAAGGAA 480
40	CAAATAAGTG GAAGGGCAGC TATTACCATT CGCTTAGTCA AAACATTCGG TT	TACTGCCCT 540
	TTAATACACT CCTATCATCA GCACTTCCAC CATGTATTAC AAGTCTTGAC CC	CATCCCTGT 600
4.5	CGTAACTCCA GTAAAAGTTA CTGTTACTAG AAAATTTTTA TCAATTAACT GA	ACAAATAGT 660
45	TTCTTTTTAA AGTAGTTTCT TCCATCTTTA TTCTGACTAG CTTCCAAAAT GI	rgttccctt 720
	TTTGAATCGA GGTTTTTTTG TTTTGTTTTG TTTTCTGAAA AAATCATACA AC	CTTTGTGCT 780
50	TCTATTGCTT TTTTGTGTTT TGTTAAGCAT GTCCCTTGGC CCAAATGGAA GA	AGGAAATGT 840
	TTAATTAATG CTTTTTAGTT TAAATAAATT GAATCATTTA TAATAATCAG TO	GTTAACAAT 900

TTAGTGACCC TTGGTAGGTT AAAGGTTGCA TTATTTATAC TTGAGATTTT TTTCCCCTAA

CTATTCTGTT TTTTGTACTT TAAAACTATG GGGGAAATAT CACTGGTCTG TCAAGAAACA

GCAGTAATTA TTACTGAGTT AAATTGAAAA GTCCAGTGGA CCAGGCATTT CTTATATAAA

TAAAATTGGT GGTACTAATG TGAAAAAAAA AAAAAAAAA AACTCGAGGG GGGCCCGGTA

960

1020

1080

1140

55

PCT/US98/05311

	CCCTATTA	1148
5		
	(2) INFORMATION FOR SEQ ID NO: 26:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 717 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	·
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	GGCACGAGCT AGCTGCCGCC ACCCGAACAG CCTGTCCTGG TGCCCCGGCT CCCTGCCCCG	60
20	CGCCCAGTCA TGACCCTGCG CCCCTCACTC CTCCCGCTCC ATCTGCTGCT GCTGCTGCTG	120
20	CTCAGTGCGG CGGTGTGCCG GGCTGAGGCT GGGCTCGAAA CCGAAAGTCC CGTCCGGACC	180
	CTCCAAGTGG AGACCCTGGT GGAGCCCCCA GAACCATGTG CCGAGCCCGC TGCTTTTGGA	240
25	GACACGCTTC ACATACACTA CACGGGAAGC TTGGTAGATG GACGTATTAT TGACACCTCC	300
	CTGACCAGAG ACCCTCTGGT TATAGAACTT GGCCAAAAGC AGGTGATTCC AGGTCTGGAG	360
2.0	CAGAGTCTTC TCGACATGTG TGTGGGAGAG AAGCGAAGGG CAATCATTCC TTCTCACTTG	420
30	GCCTATGGAA AACGGGGATT TCCACCATCT GTCCCAGCGG ATGCAGTGGT GCAGTATGAC	480
	GTGGAGCTGA TTGCACTAAT CCGAGCCAAC TACTGGCTAA AGCTGGTGAA GGGCATTTTG	540
35	CCTCTGGTAG GGATGGCCAT GGTGCCAGCC CTCCTGGGCC TCATTGGGTA TCACCTATAC	600
	AGAAAGGCCA ATAGACCCAA AGTCTCCAAA AAGAAGCTCA AGGAAGAGAA ACGAAACAAG	660
40	AGCAAAAAGA AATAATAAAT ААТАААТТТТ ААААААААА АААААААА ААААААА	717
45	(2) INFORMATION FOR SEQ ID NO: 27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1099 base pairs	
50	(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
55	GGCACGAGCC GATGTGGACA TCATCCTGTC TATCCCCATG TTCCTGCGCC TGTACCTGAT	60
23	CGCCCGAGTC ATGCTGCTGC ACAGCAAGCT CTTCACCGAT GCCTCGTCCC GCAGCATCGG	120
	GGCCCTCAAC AAGATCAACT TCAACACCCG CTTTGTCATG AAGACGCTCA TGACCATCTG	180
60	CCCTGGCACT GTGCTGCTCG TGTTCAGCAT CTCTCTGTGG ATCATTGCTG CCTGGACCGT	240

	CCGTGTCTGT	GAAAGTCCTG	AATCACCAGC	CCAGCCTTCT	GGCTCATCAC	TTCCTGCTTG	300
5	GTACCATGAC	CAGCAGGACG	TAACTAGTAA	CTTTCTGGGT	GCCATGTGGC	TCATCTCCAT	360
3	CACATTCCTT	TCCATTGGTT	ATGGGGACAT	GGTGCCCCAC	ACATACTGTG	GGAAAGGTGT	420
	CTGTCTCCTC	ACTGGCATCA	TGGGTGCAGG	CTGCACTGCC	CTTGTGGTGG	CCGTGGTGGC	480
10	CCGAAAGCTG	GAACTCACCA	AAGCGGAGAA	GCACGTTCAT	AACTTCATGA	TGGACACTCA	540
	GCTCACCAAG	CGGATCAAGA	ATGCTGCAGC	CAATGTCCTT	CGGGAAACAT	GGTTAATCTA	600
15	TAAACACACA	AAGCTGCTAA	AGAAGATTGA	CCATGCCAAA	GTGAGGAAAC	ACCAGAGGAA	660
13	GTTCCTCCCA	AGCTATCCAC	CAGTTTGAGG	AGCGTCCCAG	ATGGAACAGA	GGAAAGCTGA	720
	GTGACCAAGC	CAACACTCTG	GTGGACCTTT	CCAAGATGCA	GAATGTCATG	TATGACTTAA	780
20	TCACAGAACT	CAATGACCGG	AGCGAAGACC	TGGAGAAGCA	GATTGGCAGC	CTGGAGTCGA	840
	AGCTGGAGCA	TCTCACCGCC	AGCTTCAACT	CCCTGCCGCT	GCTCATCGCC	GACACCCTGC	900
25	GCCAGCAGCA	GCAGCAGCTC	CTGTCTGCCA	TCATCGAGGC	CCGGGGTGTC	AGCGTGGCAG	960
23	TGGGCACCAC	CCACACCCCA	ATCTCCGATA	GCCCCATTGG	GGTCAGCTCC	ACCTCCTTCC	1020
	CGACCCCGTN	CACAAGTTCA	AGCAGTTGCT	AAATAAATCT	CCCCACTCCA	GAAGCATTAA	1080
30	ААААААААА	AAAAAAA					1099

35 (2) INFORMATION FOR SEQ ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 941 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

45 AATTCGGCAG AGAGCCAACC GAGGGCGTTC CTGTCGGGGC TGCAGCGGCG GGAGGGAGCC 60 CAGTGGAGGC GCCCTCCCGA AGCGCCACTG CCCATGCTGA CCACCCAGCC CTCCGGCTGC 120 TGATGTCATG AGTAACACCA CTGTGCCCAA TGCCCCCCAG GCCAACAGCG ACTCCATGGT 180 50 GGGCTATGTG TTGGGGCCCT TCTTCCTCAT CACCCTGGTC GGGGTGGTGG TGGCTGTGT 240 AATGTATGTA CAGAAGAAAA AGCGGGTGGA CCGGCTGCGC CATCACCTGC TCCCCATGTA 300 55 CAGCTATGAC CCAGCTGAGG AACTGCATGA GGCTGAGCAG GAGCTGCTCT CTGACATGGG 360 AGACCCCAAG GTGGTACATG GCTGGCAGAG TGGCTACCAG CACAAGCGGA TGCCACTGCT 420 GGATGTCAAG ACGTGACCTG ACCCCCTTGC CCCACCCTTC AGAGCCTGGG GTYCTGGACT 480 60

	GCCTGGGGCC	CTGCCATCTG	CTTCCCCTGC	TGTCACCTGG	STCCCCCTGC	TGGGTGCTGG	540
	GTCTCCATTT	CTCCCTCCAC	CCACCCTCAG	CAGCATCTGC	TTCCCATGCC	CTCACCATCA	600
5	CCTCACTGCC	CCCAGGCCTT	CTGCCCTTTG	TGGGTGTTGA	GCTCACCGCC	CACCCACAGG	660
	CACTCATGGG	AAGAGGCTTT	CCTTCTGGGA	TGGCGGCGGC	TGGTAGACAC	CTTTGCTTTC	720
10	TCTAGCCCTC	CTGGGCTGGG	CTTGGGCACA	AATCCCCAGG	CAGGCTTTGG	AGTTGTTTCC	780
10	ATGGTGATGG	GGCCAGATGT	ATAGTATTCA	GTATATATTT	TGTAAATAAA	ATGTTTTGTG	840
	GCTAAAAAAA	АААААААА	ATCNAAGGGG	GGGCCGGTAC	CCAAATTCCC	CCTATANTGA	900
15	ATTCGTATTA	ACAATTCACT	TGGGGCCGTC	CTTTTAANAA	С		941

20 (2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 756 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

30	GGCACGAGGA	AGCTGGAGCG	GGCCGGCGGT	GCAGTCACGG	GGGAGCGAGG	CCTGCTGGGC	60
	TTGGCAACGA	GGGACTCGGC	CTCGGAGGCG	ACCCAGACCA	CACAGACACT	GGGTCAAGGA	120
35	GTAAGCAGAG	GATAAACAAC	TGGAAGGAGA	GCAAGCACAA	AGTCATCATG	GCTTCAGCGT	180
33	CTGCTCGTGG	AAACCAAGAT	AAAGATGCCC	ATTTTCCACC	ACCAAGCAAG	CAGAGCCTGT	240
	TGTTTTGTCC	AAAATCAAAA	CTGCACATCC	ACAGAGCAGA	GATCTCAAAG	ATTATGCGAG	300
40	AATGTCAGGA	AGAAAGTTTC	TGGAAGAGAG	CTCTGCCTTT	TTCTCTTGTA	AGCATGCTTG	360
	TCACCCAGGG	ACTAGTCTAC	CAAGGTTATT	TGGCAGCTAA	TTCTAGATTT	GGATCATTGC	420
45	CCAAAGTTGC	ACTTGCTGGT	CTCTTGGGAT	TTGGCCTTGG	AAAGGTATCA	TACATAGGAG	480
43	TATGCCAGAG	TAAATTCCAT	TTTTTTGAAG	ATCAGCTCCG	TGGGGCTGGT	TTTGGTCCAC	540
	AGCATAACAG	GCACTGCCTC	CTTACCTGTG	AGGAATGCAA	AATAAAGCAT	GGATTAAGTG	600
50	AGAAGGGAGA	CTCTCAGCCT	TCAGCTTCCT	AAATTCTGTG	TCTGTGACTT	TCGAAGTTTT	660
	TTAAACCTCT	GAATTTGTAC	ACATTTAAAA	TTTCAAGTGT	ACTTTAAAAT	AAAATACTTC	720
55	TAATGGAAAA	AAAAAAAA	AAAAAAAA	ACTCGA			756

(2) INFORMATION FOR SEQ ID NO: 30:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2100 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

10	NCCAGAGGCA	GAAAGTCCTG	CTTCTGGGGC	GTAACCTACA	GGATATCCTT	GGAACAGAAG	60
10	ATCTTATTGT	GGAAGTRACT	TCCAATGATG	CTGTGAGATT	TTATCCCTGG	ACCATTGATA	120
	АТАААТАСТА	TTCAGCAGAC	ATCAATCTAT	GTGTGGTGCC	AAACAAATTT	CTTGTTACTG	180
15.	CAGAGATTGC	AGAATCTGTC	CAAGCATTTG	TGGTTTACTT	TGACAGCACA	CAAAAATCGG	240
	GCCTTGATAG	TGTCTCCTCA	TGGCTTCCAC	TGGCAAAAGC	ATGGTTACCY	GAGGTGATGA	300
20	TCTTGGTCTG	CGATAGAGTG	TCTGAAGATG	GTATAAACCG	ACAAAAAGCT	CAAGAATGGT	360
20	GCATCCAAAC	ATGGCTTTGA	ATTGGTAGAA	CTTAGTCCAG	AGGAGTTGCC	TGAGGAGGAT	420
	GATGACTTCC	CAGAATCTAC	AGGAGTAAAG	CGAATTGTCC	AAGCCCTGAA	TGCCAATGTG	480
25	TGGTCCAATG	TAGTGATGAA	GAATGATAGG	AACCAAGGCT	TTAGCTTGCT	GCAACTCATT	540
	GACTGGAACA	AACCATAGCA	TTGGGTCAGC	AGATCCCTGT	CACCCAGAGC	AACCCCATTT	600
30	GCCAGCAGCA	GATAGTACTG	AATCCCTCTC	TGATCATCGG	GGTGGTGCAT	CTAACACAAC	660
30	AGATGCCCAG	GTTGATAGCA	TTGTGGATCC	CATGTTAGAT	CTGGATATTC	AAGAATTAGC	720
	CAGTCTTACC	ACTGGAGGAG	GAGATGTGGA	GAATTTTGAA	AGACTCTTTT	CAAAGTTAAA	780
35	GCAAATGAAA	GACAAGGCTG	CGACGCTTCC	TCATGAGCAA	AGAAAAGTGC	ATGCAGAAAA	840
	GGTGGCCAAA	GCATTCTGGA	TGGCAATCGG	GGGAGACAGA	GATGAAATTG	AAGGCCTTTC	900
40	ATCTGATGAA	GAGCACTGAA	TTATTCATAC	TAGGGTTTGA	CCAACAAAGA	TGCTAGCTGT	960
	CTCTGAGATA	CCTCTCTACT	CAGCCCAGTC	ATATTTTGCC	AAAATTGCCC	TTATCATGTT	1020
	GGCTGCCTGA	CTTGTTTATA	GGGTCCCCTT	AATTTTAGTT	TTTAGTAGGA	GGTTAAGGAG	1080
45	AAATCTTTTT	TTTCCTCAGT	ATATTGTAAG	AGAGTGAGGA	ATACAGTGAT	AGTAATGAGT	1140
	GAGGATTTCT	TAAATRTACT	TTTTTTTTGT	TCTAGGAATG	AGGGTAGGAT	AAATCTCAGA	1200
50	GGTCTGTGTG	ATTTACTCAA	GTTGAAGACA	ACCTCCAGGC	CATTCCTGGT	CAACCTTTTA	1260
50	AGTAGCATTT	CCAGCATTCA	CACTTGATAC	TGCACATCAG	GAGTTGTGTC	ACCTTTCCTG	1320
	GGTGATTTGG	GTTTTCTCCA	TTCAAGGAGC	TTGTAGCTCT	GAAGCTATGA	TGCTTTTATT	1380
55	GGGAGGAAAG	GAGGCAGCTG	CAGAATTGAT	GTGAGCTATG	TGGGGCCGAA	GTCTCAGCCC	1440
	GCAGCTAAGT	CTCTACCTAA	GAAAATGCCT	CTGGGCATTC	TTTTGAAGTA	TAGTGTCTGA	1500
60	GCTCATGCTA	GAAAGAATCA	AAAAGCCAGT	GTGGATTTTT	AGACTGTAAT	AAATGAGGCA	1560

	AAGGATTTCT	ATTCCAGTGG	GAAGRAAACC	TCTCTACTGA	GTTGTGGGGG	ATATGTTGTA	1620
	TGTTAGAGAG	AACCTTAAGG	AGTCCTTGTA	TGGGCCATGG	AGACAGTATG	TGATAACATA	1680
5	CCGTGATTTT	CATGAAGAAA	TTCTTCTGTC	TTAGAGTTCT	CCCCTGCTGC	TTGAGATGCC	1740
	AGAGCTGTGT	TGTTGCACAC	CTGCAAAACA	AGGCACATTT	CCCCCTTTCT	CTTTAAAGCC	1800
10	AAAGAGAGAT	CACTGCCAAA	GTGGGAGCAC	TAAGGGGTGG	GTGGGGAAGT	GAAATGTTAG	1860
	GCGATGAATT	CCTGAGCACC	TIGTTTTTCT	TCCAAGGTTC	GTAGCTCCTC	TCTGCCCTTC	1920
	CAAGCCTGTA	ACCTCGGAGG	ACTATCTTTT	GTTCTTTATC	CTTTGTCTTG	TTTGAGTGGG	1980
15	TCAGCCCCAG	AGGAACTGAT	AAGCAAATGG	CAAGTTTTTA	AAGGAAGAGT	GGAAAGTACT	2040
	GCAAATAAAA	ATCCTTATT	GTTTTTGTAG	AAAAAAAA	AAAAAAAA	AAAAAAAAAG	210

20

25

(2) INFORMATION FOR SEQ ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1448 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

AAAAAAAAA AAAGCCCACC TGAAAGCCTG TCTCTTTCCA CTTTGTTGGC CCTTCCAGTG 60 GGATTATCGA GCATGTTGTT TTTTCATAGT GCCTTTTTCC TTATTTCAAG GGTTGCTTCT 120 35 GAGTGGTGTT TTTTTTTTTT TTAATTTGTT TTGTTTTAAA ATAAGTTAAA GACAGTCCAG 180 AGCTTTTCAG CCAATTTGTC TCCTACTCTG TGTAAATATT TTTCCCTCCG GGCAGGGGAG 240 CCAGGGTAGA GCAAAGGAGA CAAGCAGGAG TGGAAGGTGA GGCGTTCTCC TGCTTGTACT 300 40 AAGCCAGGAG STTTAAGCTC CAGCTTTAAG GGTTGTGAGC CCCTTGGGGT TCAGGGAACT 360 GCTTGCCCAG GGTGCAGTGT GAGTGTGATG GGCCACCGGG GCAAGAGGGA AGGTGACCGC 420 45 CCAGCTCTCC CACATCCCAC TGGATCTGGC TTACAGGGGG GTCGGAAGCC TGTCCTCACC 480 GTCTCGGGGG TTGTGGCCCC CGCCCCCTCC CTATATGCAC CCCTGGAACC AGCAAGTCCC 540 50 AGACAAGGAG AGCGGAGGAG GAAGTCATGG GAACGCAGCC TCCAGTTGTA GCAGGTTTCA 600 CTATTCCTAT GCTGGGGTAC ACAGTGAGAG TACTCACTTT TCACTTGTCT TGCTCTTAGA 660 TTGGGCCATG GCTTTCATCC TGTGTCCCCT GACCTGTCCA GGTGAGTGTG AGGGCAGCAC 720 55 TGGGAAGCTG GAGTGCTGCT TGTGCCTCCC TTCCCAGTGG GCTGTGTTGA CTGCTGCTCC 780 CCACCCTAC CGATGGTCCC AGGAAGCAGG GAGAGTTGGG GAAGGCAAGA TTGGAAAGAC 840 900 AGGAAGACCA AGGCCTCGGC AGAACTCTCT GTCTTCTCTC CACTTCTGGT CCCCTGTGGT 60

	GATGTGCCTG TAATCTTTTT CTCCACCCAA ACCCCTTCCC ACGACAAAAA CAAGACTGCC	960
_	TCCCTCTCTT CCGGGAGCTG GTGACAGCCT TGGGCCTTTC AGTCCCAAAG CGGCCGATGG	1020
5	GAGTCTCCCT CCGACTCCAG ATATGAACAG GGCCCAGGCC TGGAGCGTTT GCTGTGCCAG	1080
	GAGGCGGCAG CTCTTCTGGG CAGAGCCTGT CCCCGCCTTC CCTCACTCTT CCTCATCCTG	1140
10	CTTCTCTTTT CCTCGCAGAT GATAAAAGGA ATCTGGCATT CTACACCTGG ACCATTTGAT	1200
	TGTTTTATTT TGGAATTGGT GTATATCATG AAGCCTTGCT GAACTAAGTT TTGTGTGTAT	1260
	ATATTTAAAA AAAAAATCAG TGTTTAAATA AAGACCTATG TACTTAATCC TTTAACTCTG	1320
15	CGGATAGCAT TTGGTAGGTA GTGATTAACT GTGAATAATA AATACACAAT GAATTCTTMA	1380
	AAAAAAAAA AAAAAAAAA AAAAAAAAAA AAACCCCGGG GGGGCCCCG GGCCCCAATT	1440
20	CCCCCCAA	1448
0.5		
25	(2) INFORMATION FOR SEQ ID NO: 32:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 456 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
35	GGCACAGCAA ACTTGACGCC ATGAAGATCC CGGTCCTTCC TGCCGTGGTG CTCCTCTCCC	60
	TCCTGGTGCT CCACTCTGCC CAGGGAGCCA CCCTGGGTGG TCCTGAGGAA GAAAGCACCA	120
40	TTGAGAATTA TGCGTCACGA CCCGAGGCCT TTAACACCCC GTTCCTGAAC ATCGACAAAT	180
	TGCGATCTGC GTTTAAGGCT GATGAGTTCC TGAACTGGCA CGCCCTCTTT GAGTCTATCA	240
	AAAGGAAACT TCCTTTCCTC AACTGGGATG CCTTTCCTAA GCTGAAAGGA CTGAGGAGCG	300
45	CAACTCCTGA TGCCCAGTGA CCATGACCTC CACTGGAAGA GGGGGCTAGC GTGAGCGCTG	360
	ATTCTCAACC TACCATAACT CTTTCCTGCC TCAGGAACTC CAATAAAACA TTTTCCATCC	420
50	AAAAAAAAA AAAAAAAAC CCCNGGGGGG GCCCGG	456
	(2) INFORMATION FOR SEQ ID NO: 33:	
55	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1326 base pairs (B) TYPE: nucleic acid	
60	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	33
------	----------	--------------	-----	----	-----	----

5	GGCACGAGTG	CAGGCCCAGA	GAGGACTCAT	TGAAAGGACT	GAAAGGGGAG	GTGGCGTTTT	60
	CTTCCTACCC	AAACTTACCC	CTGTGAGCTG	GACAGCTTGG	TAGCACCTGC	CTGGACTTAG	120
	ATGGTGGTAG	CCAAGAAGAC	TGACATTTTA	GGGAACAGGA	CGGGGAGGAG	AAGGCTCTGG	180
10	CACACACACA	TGTGTCCATA	TGTCCTGCAA	TGGTCTGGGG	ACTATTGCTA	GGCTAGGAGC	240
	CCTAAGTGTC	TTCTTCCTCA	TGTCTMTTCT	CCCCTGTSTC	ATGGGCCCTA	AGRTCTCTTT	300
15	CACTGGGCCT	GCCTCAATGA	ACGTGCTGCC	CAGCTACCCC	GAAACACGGC	ANCTGCCGGC	360
13	TATCAATGCC	CCAGCTGCAA	TGGCCCATCT	TCCCCCAACC	AACCTGGCTG	GGCCCGTGGG	420
	CTCCGCACTG	AGARARAAAS	TTGGCACART	CAACTGGGCC	CGGGCAGGAC	TGGGCCYCCC	480
20	TCTGATCGAT	GAAGKTGGTG	ARCCCAGAGC	CCGAGCCCCT	CAACACGTCT	GACTTCTCTG	540
	ACTGGTCTAG	TTTTAATGCC	AGCAGTACCC	CTGGACCAGA	GGAGGTAGAC	AGCGCCTCTG	600
25	CTGCCCCAGC	CTTCTACAGC	CGAGCCCCCC	GGCCCCCAGC	TTCCCCAGGC	CGGCCCGAGC	660
23	AGCACACAGT	GATCCACATG	GGCAATCCTG	AGCCCTTGAC	TCACGCCCCT	AGGAAGGTGT	720
	ATGATACGCG	GGATGATGAC	CGGACACCAG	GCCTCCATGG	AGACTGTGAC	GATGACAAGT	780
30	ACCGACGTCG	GCCGGCCTTG	GGTTGGCTGG	CCCGGCTGCT	AAGGAGCCGG	GCTGGGTCTC	840
	GGAAGCGRCC	GCTGACCCTG	CTCCAGCGGG	CGGGGCTGCT	GCTACTCTTG	GGACTGCTGG	900
35	GCTTCCTGGC	CCTCCTTGCC	CTCATGTCTC	GCCTAGGCCG	GGCCGCAGCT	GACAGCGATC	960
33	CCAACCTGGA	CCCACTCATG	AACCCTCACA	TCCGCGTGGG	CCCCTCCTGA	GCCCCCTTGC	1020
	TTGTGGCTAG	GCCAGCCTAG	GATGTGGGTT	CTGTGGAGGA	GAGGCGGGT	AATGGGGAGG	1080
40	CTGAGGGCAC	CTCTTCACTG	CCCCTCTCCC	TCAAGCCTAA	GACACTAAGA	CCCCAGACCC	1140
	AAAGCCAAGT	CCACCAGAGT	GGCTGCAGGC	CAGGCCTGGA	GTCCCCGTGG	GTCAAGCATT	1200
45	TGTCTTGACT	TGCTTTCCTC	CCGGGTYTCC	AGCCTCCGAC	CCCTCGCCCC	ATGAAGGAGC	1260
73	TGGCAGGTGG	AAATAAACAA	CAACTTTATT	AAAAAAAA	AAAAAAAAA	AAAAAAAAA	1320
	AANAA						1326

(2) INFORMATION FOR SEQ ID NO: 34:

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 710 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

190

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
	GCGAAAGAGA AAAAGGCTGG AGCTCCCGCC CCCGGGGCTG TCAGATGGCT TGGGTTTCTG	60
5	CGACGCGATT GGCTCGCGGA GGGCAGAAAT TACTCAGCAA ACATGACTAT TATTAGCTGC	120
	TTAGCAACAG CTCACCAAAG TAGAGAGACC ACCCAGGTAG GCAACCCAGT GTGTGCATCC	180
10	TCGGCTTCGG GGCAGCCTCT GAGAGCGCCA ACCTTCTCGC ATGCAATACT TCCATTAAGG	240
10	AATGCTCCCC CTCCTTTCTC TCTTATTCCT TTTCTTTTCA ACAGTGTCTT CTTTTTGTGG	300
	GATGCCTTTG CGCGCACACA CGCGCGCGCA SGCACACACA CGAACATTTG CCTCGCGGTA	360
15	GACACGGGG GAAATGTWAT ATTTTTTTAA GCGCTTAAAC AATTTCTGAA ATTCCTCAAA	420
	GAAAAGCCTT TCAGARGCAC CTTGGCCTCA AGCTGCAACA AATACTGGGA RGTCCGGCTC	480
20	GCATTCCCAG GCCTGCACCA ATAATGACAG CGTGCTGGAT ARTGCGCCAG TGTGTGCCAG	540
20	ATTTTTTTT CCTCTTCTCT TTTCTTTTAT AACTAAAGGG AAGACTTAGG CTCTTGCAGG	600
	GAACAACGCC TCGCATTAAG ATAAACAGAA TGGAAAGTTA AAGAGGAAAG CAAGGACGTT	660
25	GGGAAAAGCC ATCTTTCTTA AAATCCGTCT GCCCCCCAGC CGCTTTCTCC	710
30	(2) INFORMATION FOR SEQ ID NO: 35:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1188 base pairs(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
40	GATGGCTTTT ATATCTATTA TCGACCCACA GACAGTGACA ATGATAGTGA CTACAAGAAG	60
	GATATGGTGG AAGGGGACAA GTACTGGCAC TCCATCAGCC ACCTGCAGCC AGAGACCTCC	120
15	TACGACATTA AGATGCAGTG CTTCAATGAA GGAGGGGAGA GCGAGTTCAG CAACGTGATG	180
45	ATCTGTGAGA CCAAAGCTCG GAAGTCTTCT GGCCAGCCTG GTCGACTGCC ACCCCCAACT	240
	CTGGCCCCAC CACAGCCGCC CCTTCCTGAA ACCATAGAGC GGCCGGTGGG CACTGGGGCC	300
50	ATGGTGGCTC GCTCCAGCGA CCTGCCCTAT CTGATTGTCG GGGTCGTCCT GGGCTCCATC	360
	GTTCTCATCA TCGTCACCTT CATCCCCTTC TGCTTGTGGA GGGCCTGGTC TAAGCAAAAA	420
	CATACAACAG ACCTGGGTTT TCCTCGAAGT GCCCTTCCAC CCTCCTGCCC GTATACTATG	480
55		

GTGCCATTGG GAGGACTCCC AGGCCACCAG GCAGTGGACA GCCCTACCTC AGTGGCATCA

GTGGACGGC CTGTGCTAAT GGGATCCACA TGAATAGGGG CTGCCCCTCG GCTGCAGTGG

GCTACCCGGG CATGAAGCCC CAGCAGCACT GCCCAGGCGA GCTTCAGCAG CAGAGTGACA

540

600

660

	CCAGCAGCCT	GCTGAGGCAG	ACCCATCTTG	GCAATGGATA	TGACCCCCAA	AGTCACCAGA	720
5	TCACGAGGGG	TCCCAAGTCT	AGCCCGGACG	AGGGCTCTTT	CTTATACACA	CTGCCCGACG	780
J	ACTCCACTCA	CCAGCTGCTG	CAGCCCCATC	ACGACTGCTG	CCAACGCCAG	GAGCAGCCTG	840
	CTGSTGTGGG	CCAGTCAGGG	GTGAGGAGAG	CCCCGACAG	TCCTGTCCTG	GAAGCAGTGT	900
10	GGGACCCTCC	ATTTCACTCA	GGCCCCCAT	GCTGCTTGGG	CCTTGTGCCA	GTTGAAGAGG	960
	TGGACAGTCC	TGACTCCTGC	CAAGTGAGTG	GAGGAGACTG	GTGTCCCCAG	CACCCCGTAG	1020
15	GGGCCTACGT	AGGACAGGAA	CCTGGAATGC	AGCTCTCCCC	GGGCCACTG	GTGCGTGTGT	1080
13	CTTTTGAAAC	ACCACCTCTC	ACAATTTAGG	CAGAAGCTGA	TATCCCAGAA	AGACTATATA	1140
	TTGTTTTTT	TTTAAAAAAA	АААААААА	AWCYCGGGGG	GGGCCCC		1188

20

(2) INFORMATION FOR SEQ ID NO: 36:

25 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 956 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

	GGCAGAGCAG	TGAAAATGCA	TCCTAAAAAT	TCAATGTTTA	TACCAGGCTC	ATGACACTAA	60
35	GATGTGACAT	CTGGACACGA	GGGTCAGCC	ACGTGGATAC	ATCCCTCCCA	GATTGCATCT	120
	CCAGGAATCA	CTCTGCTAGC	AGAATGGGCG	CCCCATCCCT	TACTATGCTG	CTCCTCCTCA	180
40	AAGTGCAGCC	CAGAAGGACC	CAGGCCTTTG	ATGCACATTG	GGTGGGTCTC	CCACTACTTT	240
	AGTTGAAATG	GGAGCATGCT	GGAGTCGGCG	TTCTGTTGCT	TCTGGTGAGA	AGGACATCCC	300
	ATTGACCCCT	GGCCACCAGG	TCCAGTATTC	CATCCTTCCT	TCTGTCCCAG	CCTATCGCCC	360
45	TCCCCACYAG	GCCCACCCC	ACAACTTCTC	CTCAAGGGAG	GTTNTCCCGC	AGCTGGAGGG	420
	CTTGCACAGA	CCAGCAGTCA	CAGAAATCAT	TCTTCCTGCT	GTACTGGGCC	TTAACTGCCT	480
50	GCAAATGTCC	GAGCACTACT	GCATAGGATG	CCAGAGCCAC	CGAAGATAAA	CACAGCCAAG	540
50	ТТТААТААТА	ATAAAAGGAA	AAATCTCAGC	CTGCAGAACT	CTGGTTTTGA	CCCACCATCG	600
	GCCAGATGCA	CATCTTCAGG	GCCTGTTGAG	CACCTTCTGA	AAAGCAGGGC	TCGTAATAGA	660
55	CTCCAGCACA	TTCCATCAGA	GTCAGGAAAA	CTGCGGTGAG	TCCCAGAGAA	TCTAGGGTGC	720
	AGGGCAGGGA	GCAGGAGTCA	TAAGGAGTGA	TAACCTAAAC	TGTGTGTAGT	CAGCGGGGAG	780
60	GGTCTTATGT	TATCAGGTGA	AATGAGAGCC	AGTAAGTTAG	TTGATCCTGT	CACAGATATA	840

192

ACCCTGATA	CACCCCATAG	ATACGCGACA	CGTGTGTCCT	GCCCTGCTT	TCCCCATCCA	900
ACATGGTTCT	TCTGTTCCAC	AGACATTAAA	GGGGCTTTCT	GCAATTACTT	AAAAA	956

5

(2) INFORMATION FOR SEQ ID NO: 37:

10 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1603 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

20

25

30

35

40

45

50

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

TCGACCCACG CGTCCGCTCT GCCAGGAATC TGGTCTTTCT GTAGACCCAA GTCAGAAAGA 60 ACCATTTGTG GAGTTAAATC GAATATTAGA RGCATTAAAR GTCAGAGTTC TGAGACCTGC 120 TCTGGAATGG GCAGTTTCAA ACCGAGAGAT GCTTATAGCC CAAAACAGCT CCTTGGAATT 180 TAAACTACAC AGACTGTATT TTATTAGCTT RTTAATGGGT GGAACACAAA TCAGCGAGAR 240 GCATTACAAT ATGCTAAAAA TTTTCAGCCA TTTGCCCTAA ATCATCAAAA AGACATTCAG 300 GTTTTGATGG GAAGCCTTGT GTACCTGAGA CAAGGGATTG AGAACTCACC ATATGTTCAC 360 CTACTTGATG CAAACCAGTG GGCTGATATC TGTGACATCT TTACACGGGA TGCTTGTGCC 420 CTCCTGGGGC TCTCCGTGGA GTCCCCTCTC AGTGTCAGTT TCTCAGCAGG TTGTGTGGCG 480 CTGCCAGCTT TAATTAACAT CAAAGCCGTG ATTGAACAGA GGCAGTGTAC TGGAGTTTGG 540 AACCAGAAAG ATGAATTACC TATTGAAGTG GACCTTGGTA AAAAGTGCTG GTATCACTCT 600 ATATTTGCCT GCCCCATTCT TCGTCAGCAA ACAACAGATA ACAATCCACC CATGAAATTG 660 GTCTGTGGTC ATATTATATC AAGAGATGCC CTGAATAAAA TGTTTAATGG TAGCAAATTA 720 AAATGTCCCT ACTGTCCAAT GGAACAAAGT CCAGGAGATG CCAAACAGAT ATTTTTCTGA 780 AGAGATAACT TTAGTTTGCA ATTTGTAAGT GAAACTGAAT CGTGGGTGCA TTTCAGAAGA 840 GAACGTTCCA TATAATGCAG CTAACCAAGG ACTCCTGTGT TTCTATAAGC TAATGCTCCA 900 GAAACTTTGC CAACCTGTTA GTGTACACAC ACTGAGGGGA GTGCTCCCGG TGAATATTAT 960 CATAGGGCTT TATTATATTC TTGGTCTTCA TTTCTGATCA AGTAAATACA CCAGCAGTTG 1020 TCATTCAATG CAGGTTTTTG TACTTAATTA TATGGTGATT TTTTTACTTT TTAAGAGCAG 1080 AAACGGAAAT TGACCTCCCC GCCATGTGTT TAATATTCCT CCTGCTTTTA CTTTTGTCAT 1140 TTTCTTGATA ATCGTAAGCC TTGAGAGTGT TTGTGAAAAA GTTTTATTTC CTGTTATGTA 1200 TACATAATTA AATGAAAATT CTTCAGAAAA AGTTTGATAA ATTGAATTGT GGTTATGAAA 1260 CTAATTTGCA TTTTTATTTG CTTAAGAAAG AAAGCTGTGA TAGATTCCAG ATATGCTTTT 1320

	TGATGTTTTC	CTCTGCTCCA	GCTCCAAGAA	GTCAGCACAC	CTGCATTTTA	GCTCTGCATG	1380
5	CAGCCCCAGC	AGGCTGCGTG	TTTAAGAATT	TCATTGTTTA	ACTGGCTGGT	GTGAGAAGTC	1440
3	TTCCGTTAGC	ATAGAGTGGA	AGGAGTACTA	TTGTTTGGTT	GGGTTTTTGT	TTGTTTGTTT	1500
	TTTGTTTTTG	CTTTTATTGC	CAAGAGGTGC	TTGTTTTAAA	AGTATGTTTA	ATAAAATGAA	1560
10	ATTCTAAAGT	TAARAAGTGT	TCTTAAAGTT	GATATTTAAC	TCT		1603

15 (2) INFORMATION FOR SEQ ID NO: 38:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1089 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

25	GGCACGAGCT	ACCTTTCTGC	CTGCTTTGCT	GGCTGCAACA	GCACGAATCT	CACGGGCTGT	60
	GCGTGCCTCA	CCACCGTCCC	TGCTGAGAAC	GCAACCGTGG	TTCCTGGAAA	ATGCCCCAGT	120
30	CCTGGGTGCC	AAGAGGCCTT	CCTCACTTTC	CTCTGTGTGA	TGTGTATCTG	CAGCCTGATC	180
50	GGTGCCATGG	CAAGACACCC	TCAGTCATCA	TCCTCATCAG	GACAGTCAGC	CCTGAACTCA	240
	AGTCTTACGC	TTTGGGAGTT	CTTTTTCTCC	TCCTTCGTTT	GTTGGGCTTC	ATCCCTCCAC	300
35	CCCTCATCTT	CGGGGCTGGC	ATCGACTCCA	CCTGCCTGTT	CTGGAGCACG	TTCTGTGGGG	360
	AGCAAGGCGC	CTGCGTCCTC	TACGACAATG	TGGTCTACCG	ATACCTGTAT	GTCAGCATCG	420
40	CCATCGCGCT	CAAATCCTTC	GCCTTCATCC	TGTACACCAC	CACGTGGCAG	TGCTGAGGAA	480
	АААСТАТААА	CGCTACATCA	AAAACCACGA	GGGCGGGCTG	AGCACCAGTG	AGTTCTTTGC	540
	CTCTACTCTG	ACCCTAGACA	ACCTGGGGAG	GGACCCTGTG	CCCGCAAACC	AGACACATAG	600
45	GACAAAGTTT	ATCTATAACC	TGGAAGACCA	TGAGTGGTGT	GAAAACATGG	AGTCCGTTTT	660
	ATAGTGACTA	AAGGAGGCT	GAACTCTGTA	TTAGTAATCC	AAGGGTCATT	TTTTTCTTAA	720
50	AAAAAGAAAA	AAAGGTTCCA	AAAAAAACCA	AAACTCAGTA	CACACACACA	GGCACAGATG	780
	CACACACACG	CAGACAGACA	CACCGACTTT	GTCCTTTTTC	TCAGCATCAG	AGCCAGACAG	840
	GATTCAGAAT	AAGGAGAGAA	TGACATCGTG	CGGCAGGGTC	CTGGAGGCCA	CTCGCGCGC	900
55	TGGGCCACAG	AGTCTACTTT	GAAGGCACCT	CATGGTTTTC	AGGATGCTGA	CAGCTGCAAG	960
	CAACAGGCAC	TGCCAAATTC	AGGGAACAGT	GGTGGCCAGC	TTGGAGGATG	GACATTTCTG	1020
60	GATACACATA	CACATACAAA	. ACAGAAAACA	AAAATTTTTT	GAAGTTICCT	ААААТАААА	1080

WO 98/42738

	ААААААА	1089
5	(2) INFORMATION FOR SEQ ID NO: 39:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 629 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
	AGCTCAGTTC CCTTAGAAAT GAAATTTTAA ATGACACTAC CAGGTAAGCC ACTGAGACCA	60
	GTGGAGGTGA TAGCTAAGAA CATAAGGAAT TAAGAATTTT TAATGGAGAA AGGAGGTAAT	120
20	GAATACCAGT TACATCCTAA GACTCACTGT AGTGGTGAGT GTTGTAATTT ATCTCGCTAT	180
	CCATCCTCTT TTAAGTTTTT CCTTAGAAAG TCCTCTATTG GTACCTTGGA GGGACTGCTG	240
25	TCAAAATATA TGGAAAAGTG GGTCTGTGTG GTACAAGAGG TGGACTTTGC CACACATGGA	300
25	AGTTTGCTGC CAAGATCTTC ACTAATGAAA GAAATCACCA GTGAGCTGCA CAGATTAGCC	360
	AAATACTGAG CTCATTAGAA CTACTAAGGC CTGGACATTT CTGCCTAATC CAGGACTCCT	420
30	GTAATTATCA GTCTTTGCTT TGGAGCTTCC CATTGTGTAG CTGARAATTT GTCATATCTG	480
	CATTATAATC TAAGGCTCCA CATACTTAAT CCTGCTTCTC CCCCTTTTTC TTTCCCTTTC	540
	CCAGCGGTCA GCTCTGCTGC ATAGTCTGAA GACTTTCCCT GCCCAATCCT GATAAAATTC	600
35	TTGCACTCGT AACCCCATCT CAGTGTCTG	629
40	(2) INFORMATION FOR SEQ ID NO: 40:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1964 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
50	AAGAAGACAT GGAAATTGCT GAAGGATGTT TCAGGCATAT TAAGAAAATC TTTACGCAGC	60
	TTGAGGAATT CAGAGCCTCT GAATTGCTTC GAAGTGGACT GGACAGATCT AAATACCTTT	120
55	TAGTGAAAGA AGCCAAAATT ATTGCTATGA CCTGTACTCA TGCTGCCTTA AAACGACATG	180
	ACTTGGTCAA GCTAGGTTTC AAGTATGACA ACATTTTGAT GGAAGAGGCT GCTCAGATTC	240
60	TGGAGATAGA AACTTTTATC CCTCTTCTTC TACAGAATCC TCAGGATGGA TTTAGCCGAC	300

	TAAAACGATG	GATTATGATT	GGCGATCATC	ACCAGTTACC	TCCAGTTATT	AANGAACATG	360
	GCCTTTCAAA	AGTACTCAAA	CATGGAGCAG	TCTCTCTTCA	CTCGCTTTGT	TCGCGTTGGA	420
5	GTTCCGACTG	TTGACCTTGA	TGCTCAAGGG	AGAGCCAGAG	CAAGCTTGTG	CAMCTNCTAC	480
	AACTGGCGAT	ACAAGAATCT	AGGAAACTTA	CCCCATGTGC	AGCTCTTGCC	AGAGTTTAGT	540
10	ACAGCAAATG	CTGGCTTACT	GTATGACTTC	CAGCTCATTA	ATGTTGAAGA	TTTTCAAGGA	600
10	GTGGGAGAAT	CTGAACCTAA	TCCTTACTTC	TATCAGAATC	TTGGAGAGGC	AGAATATGTA	660
	GTAGCACTTT	TTATGTACAT	GTGTTTACTT	GGTTACCCTG	CTGACAAAAT	CAGTATTCTA	720
15	АСААСАТАТА	ATGGCCAAAA	GCATCTTATT	CGCGACATCA	TCAATAGACG	ATGTGGAAAC	780
	AATCCATTGA	TTGGAAGACC	AAACAAGGTG	ACAACTGTTG	ATAGATTTCA	AGGTCAACAG	840
20	AATGACTATA	TTCTTCTTTC	TCTGGTACGA	ACCAGGGCAG	TGGGCCATCT	GAGGGATGTC	900
20	CGTCGCTTGG	TAGTGGCCAT	GTCTAGAGCC	AGACTTGGAC	TTTATATCTT	CGCCAGAGTA	960
	TCCCTCTTCC	AAAACTGTTT	TGAACTGACT	CCAGCTTTCA	GTCAGCTCAC	AGCTCGCCCC	1020
25	CTTCATTTGC	ATATAATTCC	AACAGAACCT	TTCCCAACTA	CTAGAAAGAA	TGGAGAGAGA	1080
	CCATCTCATG	AAGTACAAAT	ТААААААТАА	ATGCCCCAGA	TGGCAAACTT	TGTATACAAC	1140
30	ATGTACATGC	ATTTGATACA	GACTACACAT	CATTATCATC	AGACTITATT	ACAACTACCA	1200
50	CCTGCTATGG	TAGAAGAGGG	TGAGGAAGTT	CAAAATCAAG	AAACAGAATT	GGAAACAGAA	1260
	GAAGAGGCCA	TGACTGTTCA	AGCTGACATC	ATACCCAGTC	CAACAGACAC	CAGCTGCCGT	1320
35	CAAGAAACTC	CAGCCTTTCA	AACTGACACC	ACCCCAGTG	AGACAGGAGC	CACTTCCACT	1380
	CCAGAAGCCA	TCCCTGCTTT	ATCTGAGACC	ACCCCTACTG	TGGTAGGAGC	TGTATCTGCA	1440
40	CCGGCAGAAG	CTAACACACC	TCAGGATGCC	: ACATCTGCCC	: CAGAAGAGAC	CAAGTAGCCA	1500
70	AACTGTAGTC	CTTCTAAAGG	AGGACATGGC	AGTCAAAAAG	TCTGAGTAAA	GCTGTTTTT	1560
	GTATTTATA	TTIGCTTCTG	CCATTTTACT	GTCACTAATT	PATTTTAGT	TCTTATATTT	1620
45	GTTAACTGAT	TTCGGTGTCT	TGAATATAT	TTTTTAAATT	TATGTGTATG	ACAATTCTAG	1680
	TTTCATTTGT	TCAATCAGAA	GAGCAAATA	A CCATTCCTT	CATGTTTTG	A TCACTGAGTG	174
50	TGTCTGTAAT	CATACCTACA	TTAAAATCAT	TTTCTATGA	CATAATATAT	T ATACTTCACA	180
50	TTTTTAGTG	A ACTTCTCTAP	AGAAGAGGA	C AGAATATACT	r GGACTTAACO	CACGAATACCC	186
	TTGAGTGTC	C AAATIGGGAA	GGAACTKGT	TCTTCYGTT	A TACTAYCAA	A TGCTTAAATT	192
55	CKGTTTCCT	r TTTTCTTACC	TTTGTTTGC	r grctttatg:	r aaag		196

^{60 (2)} INFORMATION FOR SEQ ID NO: 41:

196

(i) SEQUENCE CHARACTERISTICS:

5

(A) LENGTH: 1522 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

		_					
10	CGTGTCCGCG	CGCCTGGGAG	ACGCTGCCTC	GGCCCGGACG	CGCCCGCGCC	CCCGCGGCTG	60
	GAGGGTGGTC	GCCACTGGGA	CACTGTGAAC	CAGGAGTRAG	TCGGAGCTGC	CGCGCTGCCC	120
15	AGGCCATGGA	CTGTGAGGTC	AACAACGGTT	CCAGCCTCAG	GGATGAGTGC	ATCACAAACC	180
13	TACTGGTGTT	TGGCTTCCTC	CAAAGCTGTT	CTGACAACAG	CTTCCGCAGA	GAGCTGGACG	240
	CACTGGGCCA	CGAGCTGCCA	GTGCTGGCTC	CCCAGTGGGA	GGGCTACGAT	GAGCTGCAGA	300
20	CTGATGGCAA	CCGCAGCAGC	CACTCCCGCT	TGGGAAGAAT	AGAGGCAGAT	TCTGAAAGTC	360
	AAGAAGACAT	CATCCGGAAT	ATTGCCAGGC	ACCTCGCCCA	GGTCGGGGAC	AGCATGGACC	420
25	GTAGCATCCC	TCCGGGCCTG	GTGAACGGCC	TGGCCCTGCA	GCTCAGGAAC	ACCAGCCGGT	480
25	CGGAGGAGGA	CCGGAACAGG	GACCTGGCCA	CTGCCCTGGA	GCAGCTGCTG	CAGGCCTACC	540
	CTAGAGACAT	GGAGAAGGAG	AAGACCATGC	TGGTGCTGGC	CCTGCTGCTG	GCCAAGAAGG	600
30	TGGCCAGTCA	CACGCCGTCC	TTGCTCCGTG	ATGTCTTTCA	CACAACAGTG	ATTTTATTA	660
	ACCAGAACCT	ACGCACCTAC	GTGAGGAGCT	TAGCCAGAAA	TGGGATGGAC	TGAACGGACA	720
35	GTTCCAGAAG	TGTGACTGGC	TAAAGCTCGA	TGTGGTCACA	GCTGTATAGC	TGCTTCCAGT	780
33	GTAGACGGAG	CCCTGGCATG	TCAACAGCGT	TCCTAGAGAA	GACAGGCTGG	AAGATAGCTG	840
	TGACTTCTAT	TTTAAAGACA	ATGTTAAACT	TATAACCCAC	TATAAAATTT	CTACATTAAT	900
40	ATACTTGAAT	GAAAATGTCC	ATTTACACGT	ATTTGAATGG	CCTTCATATC	ATCCACACAT	960
	GAATCTGCAC	ATCTGTAAAT	CTACACACGG	TGCCTTTATT	TCCACTGTGC	AGGTTCCCAC	1020
45	TTAAAAATTA	AATTGGAAAG	CAGGTTTCAA	GGAAGTAGAA	ACAAAATACA	ATTTTTTGG	1080
73	ТАААААААА	TTACTGTTTA	TTAAAGTACA	ACCATAGAGG	ATGGTCTTAC	AGCAGGCAGT	1140
	ATCCTGTTTG	AGGAAAGCAA	GAATCAGAGA	AGGAACATAC	CCCTTACAAA	TGAAAAATTC	1200
50	CACTCAAAAT	AGGGACTATC	YATCTTAATA	CTAAGGAACC	AACAATCTTC	CTGTTTAAAA	1260
	AACCACATGG	CACAGAGATT	CNGAACTAAA	GTGCTGCACT	CAAATGATGG	GAAGTCCCGG	1320
55	CCCCAGTACA	CCAGGGGCTT	TGGACTTTTT	TCAACTTCGT	TTCCTTTTGT	TTGGANTCCA	1380
55	AAAGAACCAC	TTTGTGGTTC	TTAAAAGGGT	GTGAAGGTGA	TTTAAGGGGC	CCAGGTCAGC	1440
	CACTGGTTGG	TTTACAAAAT	CNGGGTAACT	AACTGCATAC	AACTTTTTCC	CNTTTCCATG	1500
60	NCATCAGGAC	TTTGCTAAAG	AC				1522

5	(2) INFORMATION FOR SEQ ID NO: 42:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 875 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
15	TGGGATTTCC CTTTATCATG GAGGCCTTGT CCCACTTCCT CTATGTCCCT TTCCTTGGTG	60
	TCTGTGTCTG TGGGGCCATC TACACTGGCC TGTTCCTTCC TGAGACCAAA GGCAAGACCT	120
20	TCCAAGAGAT CTCCGAGGAA TTACACAGAC TCAACTTCCC CAGGCGGCCC CAGGGCCCCA	180
20	CGTGGAGGAG CCTGGAGGTT ATCCAGTCAA CAGAACTCTA GTCCCAAAGG GGTGGCCGTA	240
	GCCAAAGCCA GCTACCGTCC TGTCCTCTGC TTCCTGCCAG GGCCCTGGTC CTCAMTYCCT	300
25	YCTGCATTCC TCATTTAAGG AGTGTTTATT GAGCACCCTT TGTGTGCAGA CATGGCTCCA	360
	GGTGCTTAGC AATCAWIGGT GAGCGTGGTA TCCAGGCTAA AGGTAATTAA CTGACAGRAA	420
30	ATCAGTAACA ACATAATTAC AGGYTGGTTG TGGCAGYTCA TGACTGTAAT CCCAGCACTT	480
30	TTGGGAGCCA AGGTGGGARG ATCAATTGAG GCCAGAGTTT GAAAMCAGCT AGGTAACATA	540
	GTGAGACCCC CTATCTCTAC AAAAAATTTT AAACATTAGC TGGGCATGGT GGTATGTGCT	600
35	AACAGCTCTA GCTACTCAGG AGGCTGAGGC AGCAGGATCA CTTGAGTCCA AGAGTTCAAG	660
	GTAGCAGTAA GCTACAATCA CACCACTGCA TGCCAGACTG GGTGACAGAG GGAGACTTCA	720
40	TCTCTTTAAA ACATAATAAT AATAATTACA GACTCAGGAA ATGCAGTGAA AGAAAAATAC	780
40	AGGTTGGCCA GGTGAGGTGG CTGATGCCTG TAATCCCAGC ACTTTGGGAG GCCAAGATGG	840
	GAAGATTGCT TTGAGACCAG AAGTTTGAGA CCAGC	875
45		
	(a) THEOREM TOD GIVE ID NO. 42.	
50	(2) INFORMATION FOR SEQ ID NO: 43:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 843 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	60
60	CCCACGCGGT CCGNATCGTC CTTCCCTCAC TTCAGAGGGT GGCCAGAGCT GAATACCCAG	120

	CACCTGACAG	TTACAGAGGA	AACCCGCACC	CAGAATGCAC	GTGCTGTCTT	ATGGGAACAC	180
5	TCAGCGCAGA	GTGCTCAGGT	CCGGCCACAC	TCGGGCTGTG	CTTGGTCGTG	CCATGGAATT	240
3	CCTCAGGACT	TTCTCAGCCT	CCCTAATGGC	AGAAGCCCCT	TTACAGCAAG	ACATTTACCG	300
	TTTGTCTGAA	AATAGCCGAA	CTGAGCTTTT	CTTCAGGCTA	TATGAGAAGT	CTCTAGACAG	360
10	TGGGCACCGT	CAGAAAGCCC	AGAGCCTTGT	GATAGCTCCC	ACCCTGCCTG	GCTCAGATCT	420
	TCCCATTTTT	TTTCCTCTGG	CACTAACCTC	ACCTTTTGTT	TTTTTGTGTT	TGTGTTTGTT	480
15	TTTGTTTTTG	CAGAGTTGGA	TTACAGAAAC	TCCTATGAAA	TTGAATATAT	GGAGAAAATT	540
15	GGCTCCTCCT	TACCTGTAAG	TTCGTCTGCC	TCGGGCCACT	TAGGGGACTC	GCTTTCCTGC	600
	CTTCAGGGGC	CTCCTCCCCT	GTGCAGAGTG	TCTCTGGGAG	CTCAGACCCC	AAATCGAGTG	660
20	TTTTCTGTGT	ACACAGCTTC	CCGGGTGCAC	AGCAATGATG	GACTGGGGCT	GGGGGTTGA	720
	GGTTTGTACT	CAATCCACTT	CGTTTGACAT	TTTCAGGGAG	AAAATGATAG	AATACAATTA	780
25	GACGTCCTGC	AGAATTACTT	TCCTAGACTG	AGAAAGAGCT	AGAGATTTCT	ТТААААААА	840
	AAA						843

35

40

(2) INFORMATION FOR SEQ ID NO: 44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 489 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

CTCTTAGGCT TTGAAGCATT TTTGTCTGTG CTCCCTGATC TTCAGGTCAC CACCATGAAG 60 TTCTTAGCAG TCCTGGTACT CTTGGGAGTT TCCATCTTTC TGGTCTCTGC CCAGAATCCG 120 45 ACAACAGCTG CTCCAGCTGA CACGTATCCA GCTACTGGTC CTGCTGATGA TGAAGCCCCT 180 GATGCTGAAA CCACTGCTGC TGCAACCACT GCGACCACTG CTGCTCCTAC CACTGCAACC 240 ACCGCTGCTT CTACCACTGC TCGTAAAGAC ATTCCAGTTT TACCCAAATG GGTTGGGGAT 300 50 CTCCCGAATG GTAGAGTGTG TCCCTGAGAT GGAATCAGCT TGAGTCTTCT GCAATTGGTC 360 ACACTATTC ATGCTTCCTG TGATTTCATC CAACTACTTA CCTTGCCTAC GATATCCCCT 420 55 TTATCTCTAA TCAGTTTATT TTCTTTCAAA TAAAAAATAA CTATGAGCAA CAAAAAAAA 480 АААААААА 489

199

	(2) INFORMATION FOR SEQ ID NO: 45:	
5.	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 534 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
	GAAGCAGTGT GTATCTATGA TTATATCTCT GTTCATCTAT ATATTTTTGA CATGTAGCAA	60
15	CACCTCTCCA TCTTATCAAG GAACTCAACT CGGTCTGGGT CTCCCCAGTG CCCAGTGGTG	120
15	GCCTTTGACA GGTAGGAGGA TGCAGTGCTG CAGGCTATTT TGTTTTTGT TACAAAACTG	180
	TCTTTTCCCT TTTCCCCTCC ACCTGATTCA GCATGATCCC TGTGAGCTGG TTCTCACAAT	240
20	CTCCTGGGAC TGGGCTGAGG CAGGGGCTTC GCTCTATTCT CCCTAACCAT ACTGTCTTCC	300
	TTTCCCCTTG CCACTTAGCA GTTATCCCCC CAGCTATGCC TTCTCCCTCC CTCCCTTGCC	360
25	CTGGCATATA TTGTGCCTTA TTTATGCTGC AAATATAACA TTAAACTATC AAGTGAAAAA	420
	AAAAAAAAA AAAACTCCAA GGGGGGCCG GTACCCAATT CCCCCTATAN TGAGTCNTAT	480
	TACAATTCAC TGGGCCGTCG TTTTACAACG TCGTGAATGG GAAAACCTGG GCGT	534
30		
	(2) INFORMATION FOR SEQ ID NO: 46:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1374 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	60
15	GGCACGAGTC CGGGATGAGC TCAGCCGCGG CCGACCACTG GGCGTGGTTG CTGGTGCTCA GCTTCGTGTT TGGATGCAAT GTTCTTAGGA TCCTCCTCC GTCCTTCTCA TCCTTCATGT	120
45	CCAGGGTGCT GCAGAAGGAC GCGGAGCAGG AGTCACAGAT GAGAGCGGAG ATCCAGGACA	
	TGAAGCAGGA GCTCTCCACA GTCAACATGA TGGACGAGTT TGCCAGATAT GCCAGGCTGG	240
50	AAAGAAAGAT CAACAAGATG ACGGATAAGC TCAAAACCCA TGTGAAAGCT CGGACAGCTC	300
	AATTAGCCAA GATAAAATGG GTGATAAGTG TCGCTTTCTA CGTATTGCAG GCTGCCCTGA	360
55	TGATCTCACT CATTTGGAAG TATTATTCTG TCCCTGTGGC TGTCGTGCCG AGTAAATGGA	420
55	TAACCCCTCT AGACCGCCTG GTAGCCTTTC CTACTAGAGT AGCAGGTGGT GTTGGAATTA	480
	IMMCCCCICI MUNCCOCCIA GINGCCIIIC CINCINGNGI NGCNOGIGGI GIIGGMNIN	200

CCTGTTGGAT TTTAGTCTGT AACAAAGTTG TCGCTATTGT GCTTCATCCG TTCAGCTGAA

200

	CAGGAGGATG	GATACAGCCG	CGAGGCTAAA	AAACGGATTT	CCTCTTCCTA	GCTTAAAATC	600
	TGATTTACAC	TGTTTTGTTT	TTTAAGAAAC	AAAAGTGCAT	AGTTTAGATT	TTTTTTTTG	660
5	TTGAATATGT	TIGTTCTIGG	ACTTTATGAG	AGAGTCTTAT	AAGAATCACG	ATTTTCTACA	720
	CCTGTCATTG	AGCCAAGAAA	GTCCAGTTTA	TGACACGTAT	GTACTAGTGA	ACACCGTCCT	780
10	CGATCTGTAC	GAAATGTGAA	ATGTTTAGGG	ACATCTCCAT	GCTGTCACTT	GTGATTTGCC	840
10	CTCTTATGTA	TTTTGGTCAT	ATTGCCAACT	GGAAAGTCAA	AATTTTCTAA	CAACTTTAAG	900
	TAAGTTCTTT	GAAGACTTAG	TGCTGTTTTT	AATCCAGTTT	AGAAAGTAAC	TTAATTTAA	960
15	TACCACTACT	AAAAATTCGA	AAATTTCTTC	TTTAATCACA	TTCAATATGG	TTAAAAGAAC	1020
	AACACTAATT	GACATTGCGT	GGGCTTTTTC	TCCCTTTGTT	TAAAATGTCA	TTTGTTGAGC	1080
20	AAGAGTTGTA	TAGTATTATC	TACTTACTTG	AGGCTGTTAA	TTTTTCATTA	CAGTGTTTTG	1140
20	TAAATGTATC	CACGAGACCA	TGATGCATTG	TTTTGTGCTC	AACTTGTGTT	TTGTATTTAA	1200
	AGCATTTTGA	ATGAAGTGTA	TTTTATAAGC	ATTTAATATT	TATGCTCTTT	AGAATGGAAC	1260
25	ACAGAAAACA	AACCTTATAA	GTCCTGATTA	ATCTGAACCA	ATAACCTGTG	TGGCCTACAA	1326
	AGTATAATTC	TATTAAATGT	TCCTTAAAAC	АААААААА	AAAAAAAA	AAAA	137
30							

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 596 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

GAATTCGNCA	CGAGATTACT	TGGACATGAA	AGAACTCAGG	TTCAAGTTTA	TTCATTTACT	60
AAGTTAGTTA	AATCATGTGC	CTTCCATGAG	CCTTCATTTG	GTAACTTGGA	AAATGGAAAT	120
AATAACACTA	GTCATATATA	TTCTACACTG	CTACCATATG	GACCAAAGGG	ATTATAGATT	180
ACAATCACCA	TCATTCCTGC	TGACAGGTAT	ATAGAAAACA	ATTTCATTGA	AGAAAAGTCC	240
TTACATTTAT	CCTTTTCCTA	ATATCTGCAT	GGGTAAACTA	ATAAATATAG	TCATTAGAAA	300
ACCCTTATTA	TTATTATTAG	TTCAATGTGA	GAACTGCTGC	AGAAAAAATA	TGCTTTATAA	360
TATTTTCTTG	AATATACATA	ATATTCATAA	ATTTCAAAT	CATTGAAAAT	TACCTTAAAA	420
TTGGAAAAA	TGTGCATTTC	TACTCATATA	ACAGTATAAA	ATTCCTATGT	CAATCTCTTT	480
TTTTTTTT	TGTTTTGAGT	TGGAGTCTCG	CTCTGTCGCC	CAGGCTGGGC	AACAGAGCAG	540
GACCCTGTCT	ТААТТАААА	ААААААААА	AAACTCGAGG	GGGCCCGGT	ACCCTA	596

5	(2) INFORMATION FOR SEQ ID NO: 48:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 851 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
15	CACATGAAGA CACACAGTGG TGAGAAGCCC TTCCGCTGCG CCCGCTGTCC TTATGCCTCT	60
	CCTCATCTGG ATAACCTGAA ACGGCACCAG CGCGTCCATA CAGGAGAGAA GCCCTACAAG	120
20	TGCCCCCTCT GCCCTTATGC CTGTGGCAAT CTGGCCAACC TCAAGCGTCA TGGTCGCATC	180
20	CACTCTGGTG ACAAACCTTT TCGGTGTAGC CTTTGCAACT ACAGCTGCAA CCAGAGCATG	240
	AACCTCAAAC GTCACATGCT GCGGCACACA GGCGAGAAGC CTTCCGCTGT GCCACCTGCG	300
25	CCTATACCAC GGGCCACTGG GACAACTACA AGCGCCACCA GAAGGTGCAT GGCCACGGTG	360
	GGGCAGGAGG GCCTGGTCTC TCTGCCTCTG AGGGCTGGGC CCCACCTCAT AGCCCACCCT	420
30	CTGTTTTGAG CTCTCGGGGC CCACCAGCCC TGGGGACTGC TGGCAGCCGG GCTGTCCACA	480
50	CAGACTCATC CTGAACTAGG TCCTTCTTCC CCATGTTTTA TACAGACGGA CCAGAAGCCA	540
	CCTTTTTCTC CCCCGCTGGC CAGGGGCTCC ACACAGACTA ACGTAGGCAC TATAAGGACC	600
35	AGCCCAACCC CATGGGCGGG GGGGCCCATA TGGACCAGGG GACCTTGCCT TGACTGAGGC	660
	ACTTCACGAG CTCAGTGAGA AGGGCCCTGT ATTCACCTCC ACTGCCCCCA GGGGCTGTGG	720
40	ACAAACCGGC TGGGGGACTG CCCAGCCTCC CACCTGTTTA TTTAACTTAT TTCAGTGCTT	780
-10	TATAATAAAG GAAACACTAA CAAAGCCATG TCTATGCTGA ATTGGCAATG GCAGGCAATT	840
	TGGCCTTACC C	851
45		
	(2) INFORMATION FOR SEQ ID NO: 49:	
50	(i) SEOUENCE CHARACTERISTICS:	
	(A) LENGTH: 2020 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
	GTGAAATGAA AACAGTCTTT TTATAGCCTT TAGCTTGTGA GTTTGGAAGT TTGGGGGGTC	60
60	TTATGTTTGT TTTGCCTCTT CTGTTTCTTG GAGGAGAGTT GAGGCTTTTC TTAGGTGCAT	120

	ACACAGACCC	AGGTGAACAC	GCTGACTGTG	AACCTGCCCT	GTATCCGGAG	CTGTGCTGGG	180
5	CACTGAGGGG	ATGCAACAAA	ATTAGGAGAG	GWTCCTTGCT	CCCAACGTCT	ACTTCTCCTA	240
۶,	CCTCAACAGG	GGTCCAGGGT	GCAGTGAACT	CAGTTCTTGG	CCCTTGGGTG	AGGATTCATG	300
	GATGAATGAA	AGCTAGACCT	GATGGGGAGG	CATTATGACT	AAATAGGCCC	AGCCTCCTTC	360
10	CCTTCCAGCT	CTGTCCTAGG	AGCATAGGCG	GGAAATCTGA	GTAGAGTCTG	ACTGCAGTTT	420
	TTGCTTATGA	TTTGTAAAAG	CCGTCATGGG	GTCAATAAGA	AAATAGGGGT	GATGGAGGG	480
15	GAGAAGCCCA	GGACTGGGAG	AATCGCACGT	GCCCCAGGGG	TTTTCACCAA	GGATTTTCAA	540
13	GACAAACTGG	AGTAAGAATT	AAAGCCCCAG	AGGATTTAAT	TATCCTGGTT	TGCAAAAGAG	600
	CCTCCCATGC	CAGTACCGCC	CAGCCTTGGA	GGCCGGAATG	CTCATGGCCC	CTGTGGTCTG	660
20	CTTGTCCTTC	AGCCCATGCC	CAGCAGATAC	CTCTCTGACT	GGAGACGGGC	TCAAAGCTGG	720
	ATTAGAAAGG	GGAGMGGCAC	TTGTGACTTT	GTTTGACTCT	GTGACTCACT	TCCTCGCTCA	780
25	CACCTTGTTT	GAACTACTGG	ACTTTCAACT	GGCTTTCCTT	AGGTCAGGCA	AGCAGACAGC	840
	TCCCCACTGA	AGAGGTCTGT	ACAGTGACAA	ccceeeccee	CAGCAAGGAC	ACAGATGCAG	900
	CCACAGTAAG	GCTCCATCAG	GACTGGGTCA	GTGATGGCAA	CAGGATGGCC	AAGGATGGCT	960
30	CTAGAACAYT	CTGTCCATGC	GTCACTCCCC	CCAGTTTTRT	TTTTAGCTTT	GGCTTCAGGG	1020
	AGTGACAGCC	ATCACAAATA	GCCACATTCT	GCTCTACTCT	CCAACATACC	AGATTSTACA	1080
35	CTGTTGTTAT	TTCATGAGAC	GTGAATGTTG	CAGAGAGTGG	GGGGATTCTG	GTTGTTAAGG	1140
	AACTTACACT	GGGGAGCTTT	ACTCTTCCGT	GTCAACAATG	TGACTACATG	TTCTCCAGAT	1200
	TAGCCACACA	TGCAAACATC	AGTGTCCTTC	TAGCTTTANC	CGAGAAAGAA	ACCAGTCCCA	1260
40	GGGAATGAAT	GGTGGTCTCC	CCACTCCCGG	CAGCACTTTA	GGCAGCCCAT	AAGCTATGCG	1320
	AGAATGTGAA	CGCTCACCTT	GCTCCGTCAC	GGTTCTGACC	TACCACATAA	ACAGGAAGAA	1380
45	GCCAGTGACC	GGAACAGCTC	TAGGAATAAC	AAGTCAGAAT	AGAAGTGTCC	TTTATATTAC	1440
	CAGAAAATAT	GGGCTTGGCC	TAAGTCGCTG	TCTCCTAACC	TGCCGGGGTC	ATTCCCCACC	1500
	AAACACCCCA	TACTAAGGAG	CCATGAGCCA	CCTGGACATT	CACCTTTTCT	TTGACCATCT	1560
50	GGAGTCTGGG	GCAACTTAAG	GAAGGCNCCA	CACAGTGGTG	CAGGCACATT	TCCAAGCGTA	1620
	GGTGTCCCTG	GCTTTTGTGG	CCAAAGCTAG	TGTTATGGTC	AACAACAGGC	CAGGGTCTGT	1680
55	GGGGCACTGA	CCTTGAAAGT	GGCAAAATGG	AGGTTTCACA	GGCTGTGCGG	GAGCAGGACG	1740
	GCTTGCTTCA	TCTAACAATC	TCAGTTTCCT	TTAAAAAAAG	AAAGAAAGGA	AAAGATTTCA	1800
	TAAGCAGGTG	TCAGTGGACA	GTTTAAGYAC	TTAACCATTT	CTCTTTCTTC	TTATGGATGT	1860
60	GAACTGTGCT	GTGGATAAAT	CATTIGTATT	TCTTGAATGT	TCTCTATGAC	TAACAGTTAT	1920

	TAAGTCGGTT GTGTATATGT GTAACTAATG TAACTGCCTT TTAAAATTTC ATTACAATAA	1980
5	AAATGACTTT GCTCTGAAMA AAAAAAAAAA AAAAACTCGA	2020
10	(2) INFORMATION FOR SEQ ID NO: 50: (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 2432 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
20	ATGAAGGGTC GTTGGTGGGA AAGATGGCGG CGACTCTGGG ACCCCTTGGG TCGTGGCAGC	60
20	AGTGGCGGCG ATGTTTGTCG GCTCGGGATG GGTCCAGGAT GTTACTCCTT CTTCTTTTGT	120
	TGGGGTCTGG GCAGGGGCCA CAGCAAGTCG GGGCGGGTCA AACGTTCGAG TACTTGAAAC	180
25	GGGAGCACTC GCTGTCGAAG CCCTACCAGG GTGTGGGCAC AGGCAGTTCC TCACTGTGGA	240
	ATCTGATGGG CAATGCCATG GTGATGACCC AGTATATCCG CCTTACCCCA GATATGCAAA	300
20	GTAAACAGGG TGCCTTGTGG AACCGGGTGC CATGTTTCCT GAGAGACTGG GAGTTGCAGG	360
30	TGCACTTCAA AATCCATGGA CAAGGAAAGA AGAATCTGCA TGGGGATGGC TTGGCAATCT	420
	GGTACACAAG GAATCGGATG CAGCCAGGGC CTGTGTTTGG AAACATGGAC AAATTTGTGG	480
35	GGCTGGGAGT ATTTGTAGAC ACCTACCCCA ATGAGGAGAA GCAGCAAGAG CGGGTATTCC	540
	CCTACATCTC AGCCATGGTG AACAACGGCT CCCTCAGCTA TGATCATGAG CGGGATGGGC	600
40	GGCCTACAGA GCTGGGAGGC TGCACAGCCA TTGTCCGCAA TCTTCATTAC GACACCTTCC	660
40	TGGTGATTCG CTACGTCAAG AGGCATTTGA CGATAATGAT GGATATTGAT GGCAAGCATG	720
	AGTGGAGGA CTGCATTGAA GTGCCCGGAG TCCGCCTGCC CCGCGGCTAC TACTTCGGCA	780
45	CCTCCTCCAT CACTGGGGAT CTCTCAGATA ATCATGATGT CATTTCCTTG AAGTTGTTTG	840
	AACTGACAGT GGAGAGAACC CCAGAAGAGG AAAAGCTCCA TCGAGATGTG TTCTTGCCCT	900
	CAGTGGACAA TATGAAGCTG CCTGAGATGA CAGCTCCACT GCCGCCCCTG AGTGGCCTGG	960
50	CCCTCTTCCT CATCGTCTTT TTCTCCCTGG TGTTTTCTGT ATTTGCCATA GTCATTGGTA	1020
	TCATACTCTA CAACAAATGG CAGGAACAGA GCCGAAAGCG CTTCTACTGA GCCCTCCTGC	1080
55	TGCCACCACT TTTGTGACTG TCACCCATGA GGTATGGAAG GAGCAGGCAC TGGCCTGAGC	1140
	ATGCAGCCTG GAGAGTGTTC TTGTCTCTAG CAGCTGGTTG GGGACTATAT TCTGTCACTG	1200
	GAGTTTTGAA TGCAGGGACC CCGCATTCCC ATGGTTGTGC ATGGGGACAT CTAACTCTGG	1260
60		

	TCTGGGAAGC	CACCCACCCC	AGGCAATGC	TGCTGTGATG	TGCCTTTCCC	TGCAGTCCTT	1320	
	CCATGTGGGA	GCAGAGGTGT	GAAGAGAATT	TACGTGGTTG	TGATGCCAAA	ATCACAGAAC	1380	
5	AGAATTTCAT	AGCCCAGGCT	GCCGTGTTGT	TTGACTCAGA	AGGCCCTTCT	ACTTCAGTTT	1440	
	TGAATCCACA	AAGAATTAAA	AACTGGTAAC	ACCACAGGCT	TTCTGACCAT	CCATTCGTTG	1500	
10	GGTTTTGCAT	TTGACCCAAC	CCTCTGCCTA	CCTGAGGAGC	TTTCTTTGGA	AACCAGGATG	1560	
10	GAAACTTCTT	CCCTGCCTTA	CCTTCCTTTC	ACTCCATTCA	TTGTCCTCTC	TGTGTGCAAC	1620	
	CTGAGCTGGG	AAAGGCATTT	GGATGCCTCT	CTGTTGGGGC	CTGGGGCTGC	AGAACACACC	1680	
15	TGCGTTTCAC	TGGCCTTCAT	TAGGTGGCCC	TAGGGAGATG	GCTTTCTGCT	TTGGATCACT	1740	
	GTTCCCTAGC	ATGGGTCTTG	GGTCTATTGG	CATGTCCATG	GCCTTCCCAA	TCAAGTCTCT	1800	
20	TCAGGCCCTC	AGTGAAGTTT	GGCTAAAGGT	TGGTGTAAAA	ATCAAGAGAA	GCCTGGAAGA	1860	
20	CATCATGGAT	GCCATGGATT	AGCTGTGCAA	CTGACCAGCT	CCAGGTTTGA	TCAAACCAAA	1920	
	AGCAACATTT	GTCATGTGGT	CTGACCATGT	GGAGATGTTT	CTGGACTTGC	TAGAGCCTGC	1980	
25	TTAGCTGCAT	GTTTTGTAGT	TACGATTTT	GGAATCCCAC	TTTGAGTGCT	GAAAGTGTAA	2040	
	GGAAGCTTTC	TTCTTACACC	TIGGGCTTGG	ATATTGCCCA	GAGAAGAAAT	TTGGCTTTTT	2100	
30	TTTTCTTAAT	GGACAAGAGA	CAGTTGCTGT	TCTCATGTTC	CAAGTCTGAG	AGCAACAGAC	2160	
50	CCTCATCATC	TGTGCCTGGA	AGAGTTCACT	GTCATTGAGC	AGCACAGCCT	GAGTGCTGGC	2220	
	CTCTGTCAAC	CCTTATTCCA	CTGCCTTATT	TGACAAGGGG	TTACATGCTG	CTCACCTTAC	2280	
35	TGCCCTGGGA	TTAAATCAGT	TACAGGCCAG	AGTCTCCTTG	GAGGGCCTGG	AACTCTGAGT	2340	
	CCTCCTATGA	ACCTCTGTAG	CCTAAATGAA	ATTCTTAAAA	TCACCGATGG	AACCAAAAAA	2400	
40	АААААААА	АААААААА	AAAAAAAA	AA			2432	
10								
	(2) INFORM	ATION FOR SI	FO TO NOV 5	1 -				
45			_					
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2340 base pairs (B) TYPE: nucleic acid							
50		(C) STR	ANDEDNESS: OLOGY: line	double				
50	(ari	,,			. 51.			
) SEQUENCE				coccocce	60	
55		GCGGGTGGGG					60	
		GGACGAAGCG					120	
	AGGCAGCGGC	GGCACCTGCC	GGCCGAGCAA	TGCCAAGTGA	GTACACCTAT	GTRAAACTGA	180	

GAAGTGATTG CTCGAGGCCT TCCCTGCAAT GGTACACCCG AGCTCAAAGC AAGATGAGAA 240

WO 98/42738 PCT/US98/05311

	GGCCCAGC'1"1	GITATTAAAA	GACATCCTCA	AATGTACATT	GCTTGTGTTT	GGAGTGTGGA	300
5	TCCTTTATAT	CCTCAAGTTA	AATTATACTA	CTGAAGAATG	TGACATGAAA	AAAATGCATT	360
3	ATGTGGACCC	TGACCATGTA	AAGAGAGCTC	AGAAATATGC	TCAGCAAGTC	TTGCAGAAGG	420
	AATGTCGTCC	CAAGTTTGCC	AAGACATCAA	TGGCGCTGTT	ATTTGAGCAC	AGGTATAGCG	480
10	TGGACTTACT	CCCTTTTGTG	CAGAAGGSCC	CCAAAGACAG	TGAAGCTGAG	TCCAAGTACG	540
	ATCCTCCTTT	TGGGTTCCGG	AAGTTCTCCA	GTAAAGTCCA	GACCCTCTTG	GAACTCTTGC	600
15	CAGAGCACGA	CCTCCCTGAA	CACTTGAAAG	CCAAGACCTG	TCGGCGCTGT	GTGGTTATTG	660
13	GAAGCGGAGG	AATACTGCAC	GGATTAGAAC	TGGGCCACAC	CCTGAACCAG	TTCGATGTTG	720
	TGATAAGGTT	AAACAGTGCA	CCAGTTGAGG	GATATTCAGA	ACATGTTGGA	AATAAAACTA	780
20	CTATAAGGAT	GACTTATCCA	GAGGGCGCAC	CACTGTCTGA	CCTTGAATAT	TATTCCAATG	840
	ACTTATTTGT	TGCTGTTTTA	TTTAAGAGTG	TTGATTTCAA	CTGGCTTCAA	GCAATGGTAA	900
25	AAAAGGAAAC	CCTGCCATTC	TGGGTACGAC	TCTTCTTTTG	GAAGCAGGTG	GCAGAAAAA	960
	TCCCACTGCA	GCCAAAACAT	TTCAGGATTT	TGAATCCAGT	TATCATCAAA	GAGACTGCCT	1020
	TTGRACATCC	TTCAGTACTC	AGAGCCTCAG	TCAAGGTTCT	GGGGCCGAG	ATAAGAACGT	1080
30	CCCCACAATC	GGTGTCATTG	CCGTTGTCTT	AGCCACACAT	CTGTGCGATG	AAGTCAGTTT	1140
	GGCGGGTTTT	GGATATGACC	TCAATCAACC	CAGAACACCT	TTGCACTACT	TCGACAGTCA	1200
35	ATGCATGGCT	GCTATGAACT	TTCAGACCAT	GCATAATGTG	ACAACGGAAA	CCAAGTTCCT	1260
55	CTTAAAGCTG	GTCAAAGAGG	GAGTGGTGAA	AGATCTCAGT	GGAGGCATTG	ATCGTGAATT	1320
	TTGAACACAG	AAAACCTCAG	TTGAAAATGC	AACTCTAACT	CTGAGAGCTG	TTTTTGACAG	1380
40	CCTTCTTGAT	GTATTTCTCC	ATCCTGCAGA	TACTTTGAAG	TGCAGCTCAT	GTTTTTAACT	1440
	TTTAATTTAA	AAACACAAAA	AAAATTTTAG	CTCTTCCCAC	TTTTTTTTC	CTATTTATTT	1500
45	GAGGTCAGTG	TTTGTTTTTG	CACACCATTT	TGTAAATGAA	ACTTAAGAAT	TGAATTGGAA	1560
73	AGACTTCTCA	AAGAGAATTG	TATGTAACGA	TGTTGTWTTG	ATTTTTAAGA	AAGTAATTTA	1620
	ATTTGTAAAA	CTTCTGCTCG	TTTACACTGC	ACATTGAATA	CAGGTAACTA	ATTGGAAGGA	1680
50	GAGGGGAGGT	CACTCTTTTG	ATGGTGGCCC	TGAACCTCAT	TCTGGTTCCC	TGCTGCGCTG	1740
	CTTGGTGTGA	CCCACGGAGG	ATCCACTCCC	AGGATGACGT	GCTCCGTAGC	TCTGCTGCTG	1800
55	ATACTGGGTC	TGCGATGCAG	CGGCGTGAGG	CCTGGGCTGG	TTGGAGAAGG	TCACAACCCT	1860
JJ	TCTCTGTTGG	TCTGCCTTCT	GCTGAAAGAC	TCGAGAACCA	ACCAGGGAAG	CTGTCCTGGA	1920
	GGTCCCTGGT	CGGAGAGGGA	CATAGAATCT	GTGACCTCTG	ACAACTGTGA	AGCCACCCTG	1980
60	GGCTACAGAA	ACCACAGTCT	TCCCAGCAAT	' TATTACAATI	CTTGAATTCC	TTGGGGATTT	2040

	TTTACTGCCC TTTCAAAGCA CTTAAGTGTT AGATCTAACG TGTTCCAGTG TCTGTCTGAG	2100
5	GTGACTTAAA AAATCAGAAC AAAACTTCTA TTATCCAGAG TCATGGGAGA GTACACCCTT	2160
3	TCCAGGAATA ATGTTTTGGG AAACACTGAA ATGAAATCTT CCCAGTATTA TAAATTGTGT	2220
	ATTTAAAAAA AAGAAACTTT TCTGAATGCC TACTGGCGGT GTATACCAGG CAGTGTGCCA	2280
10	GTTTAAAAAG ATGAAAAAGA ATAAAAACTT TTGAGGAAMA AAAAAAAAAA AAAAACTCGA	2340
15	(2) INFORMATION FOR SEQ ID NO: 52:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 601 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
25	AGTAGGGGAG ACTGAGACTG ACCGGTAGCC AGGCAGGCGG ACGACGCACG CCCGGACAGA	60
	CTGAGCAGGC GCCGGAGAAC CACTCACAGG TTCCCCCCGC CTTTCCCTTT GAAANCTAGG	120
20	CTTTTGCCTT TCCCGTGGCG CCCGAGAGAG AATGCTGGAC TCTGCCGACT TCAGCGCAAC	180
30	TAANGATTTC TCAAGCTAGG GGACAAACGA TCAGCCCAAT CCTGAGAAGG GGGGAACCAA	240
	GCACCCCGTC CCCATCCCCC TCCCCTCCCC CGACTAAACT CGGGCGCCAA ACCCAGCCCT	300
35	TCTCTAACCA CCCTACTTCC TCCTCTCTT TCTAGCATGG TGGCTGTATG GACAGTCTGA	360
	CAGAACAGAG ACTGACATCT CCCAATCTGC CGGCCCCCCA CCTGGAACAC TACAGTGTTC	420
40	TGCATTGCAC CATGACCCTG GATGTGCAAA CTGTAGTCGT TTTTGCCGTG ATTGTAGTCC	480
	TCCTGCTTGT CAATGTCATA CTCATGTTTT TCCTGGGAAC GCGCTGAATG GAGTCCAGNC	540
	ACCTGAGCTG TCGCGAACTC TCGCTTTGAT TTCATCCCGA GAGCCACCGA GAAGAAAAAA	600
45	A	601
50	(2) INFORMATION FOR SEQ ID NO: 53:	
	(i) SEQUENCE CHARACTERISTICS:	
<i></i>	(A) LENGTH: 359 base pairs(B) TYPE: nucleic acid	
55	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
60	CTCGTGCCGA ATTCGGCACG AGAGATGGTA CTTTTAAGAG GTAATTAGGT TGCTAAGATG	60

PCT/US98/05311

207

	GATTAACATC	TTTCTCTTGA	CACTGAGACT	GGGTTCTCCT	GGGAATGGTT	AGTTCCCAAG	120
5	AGAGTGAGTT	GTTATAAAAC	AATGCTGCCT	CTTCTATTTT	GCGCTTTTTG	TTTGCACAAA	180
	CTCGGTCCCC	TTCTGTTTCT	CTACGATGTT	TTGATGCRGC	ATGAGGCAGT	CATGAGAACC	240
	CACCAGATAC	AGCTGCCTGA	TCCTGAATTT	CCCAGCCAAC	AGAACCAAGT	GCTAAATAAA	300
10	ACTCTTTTTA	ATAAGTTAAA	АААААААА	АААААААА	AANAAANANA	АААААААА	359

15 (2) INFORMATION FOR SEQ ID NO: 54:

20

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1141 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

25	GGCACGAGCT	GCTGAGGCGT	GAGAATGGCG	TCCCGCGGCC	GGCGTCCGGA	GCATGGCGGA	60
	CCCCAGAGC	TGTTTTATGA	CGAGACAGAA	GCCCGGAAAT	ACGTTCGCAA	CTCACGGATG	120
30	ATTGATATCC	AGACCAGGAT	GGCTGGGCGA	GCATTGGAGC	TTCTTTATCT	GCCAGAGAAT	180
50	AAGCCCTGTT	ACCTGCTGGA	TATTGGCTGT	GGCACTGGGC	TGAGTGGAAG	TTATCTGTCA	240
	GATGAAGGGC	ACTATTGGGT	GGCCTGGAT	ATCAGCCCTG	CCATGCTGGA	TGAGGCTGTG	300
35	GACCGAGAGA	TAGAGGGAGA	CCTGCTGCTG	GGGGATATGG	GCCAGGGCAT	CCCATTCAAG	360
	CCAGGCACAT	TTGATGGTTG	CATCAGCATT	TCTGCTGTGC	AGTGGCTCTG	TAATGCTAAC	420
40	AAGAAGTCTG	AAAACCCTGC	CAAGCGCCTG	TACTGCTTTT	TTGCTTCTCT	TTTTTCTGTT	480
.0	CTCGTCCGGG	GATCCCGAGC	TGTCCTGCAG	CTGTACCCTG	AGAACTCAGA	GCAGTTGGAG	540
	CTGATCACAA	CCCAGGCCAC	AAAGGCAGGC	TTCTCCGGTG	GCATGGTGGT	AGACTACCCT	600
45	AACAGTGCCA	AAGCAAAGAA	ATTCTACCTC	TGCTTGTTTT	CTGGGCCTTC	GACCTTTATA	660
	CCAGAGGGGC	TGAGTGAAAA	TCAGGATGAA	GTTGAACCCA	GGGAGTCTGT	GTTCACCAAT	720
50	GAGAGGTTCC	CATTAAGGAT	GTCGAGGCGG	GGAATGGTGA	GGAAGAGTCG	GGCATGGGTG	780
50	CTGGAGAAGA	AGGAGCGGCA	CAGGCGCCAG	GGCAGGGAAG	TCAGACCTGA	CACCCAGTAC	840
	ACCGGCCGCA	AGCGCAAGCC	CCGCTTCTAA	GTCACCACGC	GGTTCTGGAA	AGGCACTTGC	900
55	CTCTGCACTT	TTCTATATTG	TTCAGCTGAC	AAAGTAGTAT	TTTAGAAAAG	TTCTAAAGTT	960
	ATAAAAATGT	TTTCTGCAGT	AAAAAAAAG	TTCTCTGGGC	CGGGCGTGGT	GGCTCACACC	1020
60	TGTAATCCCA	GCACCTTGGG	AGGCTGAGGT	GGGAGGATCA	TTTGAGGCCA	GGAGTTTGAG	1080

	ACCIGCTIGG GCAACATAAT GAAACTICCT TICCAGGGAG AAAAAAAAA AAAAAAAAA	1140
	A	1141
5		
	(2) INFORMATION FOR SEQ ID NO: 55:	
10 15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1560 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
13	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
	TCCTTCTCTG GGGCGGTCGC GTTGGCAGCG GATGCGGGAA GCCGGACTCT GGGCGTCATG	60
20	TACTACAAGT TTAGTGGCTT CACGCAGAAG TTGGCAGGAG CATGGGCTTC GGAGGCCTAT	120
	AGCCCGCAGA TINAAAGCCT GTGGTTTCCA CAGAAGCACC ACCTATCATA TTTGCCACAC	180
25	CAACTAAACT GACCTCCGAT TCCACAGTGT ATGATTATGC TGGGAAAAAC AAAGTTCCAG	240
23	AGCTACAAAA GTTTTTCCAG AAAGCTGATG GTGTGCCCGT CTACCTGAAA CGAGGCCTGC	300
	CTGACCAAAT GCTTTACCGG ACCACCATGG CGCTGACTGT GGGAGGGACC ATCTACTGCC	360
30	TGATCGCCCT CTACATGGCT TCGCAGCCCA AAAACAAATG AGTTAGGCTG CAGAGGACTG	420
	GTTTGTTTTT TGGCATAAAC CCTTTGAAGT TCCTTTTTCA TTGTTAAATT AAAATTTTTT	480
35	TTTTTACTTG GATGGCTTAA CATTTTTGCA AGAAAAATAG GAAGATATGA AGATGATGTT	540
33	TIGGTITGTT TATGAAATGC ATATGGCTTG TCAGAGCTCA TTCGACAGTT AAAGCCATTG	600
	TTTAAAGAAA CGGTGCTTTG CTCTGTGTTT GTGCTCCTGA TTTCCCTGGA GGTTCTGGAT	660
40	GAAGGCTGAA CACAGGCTTG TTAATGTCAG TCTGTGCTGA GGACCTCAGG GACTTGAGGT	720
	TGCATTTTTG AGCATGGGGT GCAGGAGCCT TTCTGGATTT GGATGTGGCT ATGGAAAGAA	780
15	CACAGAAGCC AAGGTCATGT GCATGAAATG AGGAGTTTGA GTTAGTCACC TCGGGGATTT	840
45	TTTCCATTTT GCAGTAAAAT GTTAAATTAA TGTAGCCTGC CTCTATTTGT TGGGCAGGTA	900
	ATTTCAAAGG GTTATTTGCC TCATCTCCTA TCTTTAGTGA AATCTTATGT GTAATTGTGT	960
50	GTATTTATTC CACCGTGGGA ACAGAGAATA CCTGTTTAGT GTTGCACTTT AGACTGGTGT	1020
	CTGTTTGTT AATGCAGCTG TGCCACAAAT TCTCCTTTAT CTTTTAAAAA TGTTATAGCT	1080
	TTAAATTTIG ATTTATTTIG ACTGTGGAAT AAATACATGA ATGAAAAATT TTAAGTTTGA	1140
55	AGTTCTTTGA ATGACCTTTC AGAGTAATTT CAGAACACCA GCAGCATCTT AAACCTGAGT	1200
	CTAATTTCTT TCTTGTTAAT TAGGCACCAG ATAATCTTTA TAAAATGGTC TTAAAAGCTA	1260
60	GTAATAGGAG CTTAATGGCA ATKGATGATT ACCACAKGGT TTTTTATAAA AACCTGCCTG	1320

	CCCCTWAGTG AAAGGTACCT GTAACYCACA GTYCATTI	AG ACACTAATTT (CCTYTGCYGT	1380
5	CATGATTGGK AGACTTCACT TACCCTATAT TAATTTTC	AA AAAAGGTGGA A	TATTATTTT	1440
5	ATATGAAGGA ATAGTTTGTA TCTTACCATA GCACAGAA	CA GTGACCTCTT (GCTCAGGATA	1500
	AGATGTGGTG ATTTGAAAAT ACTCATAGTA GCCTTGCA	GT GATACCTCTC 1	PCNCTCTCTC	1560
10				
	(2) INFORMATION FOR SEQ ID NO: 56:			
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1507 base pair	5		
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double			
20	(D) TOPOLOGY: linear			
	(xi) SEQUENCE DESCRIPTION: SEQ ID	NO: 56:		
	GGAACGCAGA GCGGAGCGTG GAGAGCGGAG CGAAGCTY	GA TAACAGGGGA (CCGATGATGT	60
25	GGCGACCATC AGTTCTGCTG CTTCTGTTGC TACTGAGG	SCA CGGGGCCCAG (GGGAAGCCAT	120
	CCCCAGACGC AGGCCCTCAT GGCCAGGGGA GGGTGCAG	CCA GGCGGCCCCC (CTGAGCGACG	180
30	CTCCCCATGA TGACGCCCAC GGGAACTTCC AGTACGA	CCA TGAGGCTTTC (CTGGGACGGG	240
30	AAGTGGCCAA GGAATTCGAC CAACTCACCC CAGAGGA	AAG CCAGGCCCGT	CTGGGGCGGA	300
	TCGTGGACCG CATGGACCGC GCGGGGGACG GCGACGG	CTG GGTGTCGCTG	GCCGAGCTTC	360
35	GCGCGTGGAT CGCGCACACG CAGCAGCGGC ACATACG	GGA CTCGGTGAGC	GCGGCCTGGG	420
	ACACGTACGA CACGGACCGC GACGGGCGTG TGGGTTG	GGA GGAGCTGCGC .	AACGCCACCT	480
40	ATGGCCACTA CGCGCCCGGT GAAGAATTTC ATGACGT	GGA GGATGCAGAG	ACCTACAAAA	540
40	AGATGCTGGC TCGGGACGAG CGGCGTTTCC GGGTGGC	CGA CCAGGATGGG	GACTCGATGG	600
	CCACTCGAGA GGAGCTGACA GCCTTCCTGC ACCCCGA	GA GTTCCCTCAC	ATGCGGGACA	660
45	TCGTGATTGC TGAAACCCTG GAGGACCTGG ACAGAAA	CAA AGATGGCTAT	GTCCAGGTGG	720
	AGGAGTACAT CGCGGATCTG TACTCAGCCG AGCCTGG	GGA GGAGGAGCCG	GCGTGGGTGC	780
	AGACGGAGAG GCAGCAGTTC CGGGACTTCC GGGATCT	GAA CAAGGATGGG	CACCTGGATG	840
50	GGAGTGAGGT GGGCCACTGG GTGCTGCCCC CTGCCCA	GGA CCAGCCCCTG	GTGGAAGCCA	900
	ACCACCTGCT GCACGARAGC GACACGGACA AGGAYGG	GCG GCTGAGCAAA	GCGSAAATCC	960
55	TGGGTAATTG GAACATGTTT GTGGGCAGTC AGGCCAC	CAA CTATGGYGAG	GACCTGACCC	1020
	GGCACCACGA TGAGCTGTGA GCMCCGNGCA CCTGCCA	CAG CCTCAGAGGC	CCGCACAATG	1080
	ACCGGAGGAG GGGCCGCTGT GGTCTGGCCC CCTCCCT	GTC CAGGCCCCGC	AGGAGGCAGA	1140
60				

	TGCAGTCCCA GGCATCCTCC TKCCCCTGGG CTCTCAGGGA CCCCCTGGGT CGGCTTCTGT	1200
	CCCTGTCACA CCCCCAACCC CAGGGAGGGG CTGTCATAGT CCCAGAGGAT AAGCAATACC	1260
5	TATTTCTGAC TGAGTCTCCC AGCCCAGACC CAGGGACCCT NGGCCCCAAG CTCAGCTCTA	1320
	AGAACCGCCC CAACCCCTCC AGCTCCAAAT CTGAGCCTCC ACCACATAGA CTGAAACTCC	1380
10	CCTGGCCCCA GCCCTCTCCT GCCTGGCCTG GCCTGGGACA CCTCCTCTCT GCCAGGAGGC	1440
10	AATAAAAGCC AGCGCCGGGA AAAAAAAAAA AAAAAAAAA AAAAAAAA	1500
	AAAAAN	1507
15		
	(2) INFORMATION FOR SEQ ID NO: 57:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 450 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
20	GAATTCGGCA CGAGCAGTGT CCAACACTGT AGCTGGTGCC TGCCAGGTTC CCAGTGGCTG	60
30	GGGTCACCAG GTCTGAAGAG AGATGTGCTG GCTGCGGGCA TGGGSCCAGA TCYTCCTGCC	120
	AGTTTTCYTC TCCYTCTTTC TCATCCAATT GCTTATCAGC TTCTCAGAGA ATGGTTTTAT	180
35	CCACAGCCCC AGGAACAATC AGAAACCAAG AGATGGGAAT RAAGAGGAAT GTGCTGTAAA	240
	GAAGAGTTGT CAATTGTGCA CAGAAGATAA GAAATATATG ATGAATAGAT AATTGAAAAG	300
40	AGATCCTCCA GAAAGAGCAG AAGGAAGTTT CTTCAATGGC TTCCTTCAGG ATTTTAATCA	360
40	TCCTTACAGC CTCTTTGAGA ATGATTGAAC TTCCAAATTC CCTGAAGTTA AAATTTTAAA	420
	TTCTATTAAA CATTTTTTCG AGTAAAAAA	450
45		
	(2) INFORMATION FOR SEQ ID NO: 58:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1147 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
	GGCACGAGAC CCATTGAGCA GAAGGAGGCC AGGTGGGAAA GCTCCTGGGA AGAGCAGCCA	60
60	GACTGGACAC TGGGCTGCTT GAGTCCTGAG TCACAATTCA GAATTCCTGG GCTCCCTGGG	120

	TGCATTCTAT	CATTCCAGTT	GAAAGTTTGC	TTCCTTCCAG	TCATGTGGCT	CTTCATTCTA	180
	CTCTCCTTGG	CTCTCATTTC	AGATGCCATG	GTCATGGATG	AAAAGGTCAA	GAGAAGCTTT	240
.5	GTGCTGGACA	CGGCTTCTGC	CATCTGCAAC	TACAATGCCC	ACTACAAGAA	TCACCCCAAA	300
	TACTGGTGCC	GAGGCTATTT	CCGTGACTAC	TGCAACATCA	TCGCCTTCTC	CCCTAACAGC	360
10	ACCAATCATG	TGGCCCTGAA	GGACACAGGG	AACCAGCTCA	TTGTCACTAT	GTCCTGCCTG	420
10	AACAAAGAAG	ACACGGGCTG	GTACTGGTGT	GGCATCCAGC	GGGACTTTGC	CAGGGATGAC	480
	ATGGATTTTA	CAGAGCTGAT	TGTAACTGAC	GACAAAGGAA	CCTGGCCAAT	GACTTTGGTC	540
15	TGGGAAAGAC	TATCAGGCAC	AAAACCAGAA	GCTGCAAGGC	TCCCAAAGTT	GTCCGCAAGG	600
	CTGACCGCTC	CAGGACGTCC	ATTCTCATCA	TTTGCATACT	GATCACGGGT	TTGGGAATCA	660
20	TCTCTGTAAT	CAGTCATTTG	ACCAAAAGGA	GGAGAAGTCA	AAGGAATAGA	AGGGTAGGCA	720
20	ACACTTTGAA	GCCCTTCTCG	CGTGTCCTGA	CTCCAAAGGA	AATGGCTCCT	ACTGAACAGA	780
	TGTGACTGAA	GATTTTTTA	ATTTAGTTCA	TAAAGTGATG	CTACAACAGA	ATAATCACCA	840
25	TGACAACTGG	CCCCACACCT	CAGAGACTGA	TTCTGATCTC	CCAGGAATTC	TGAAGGTCCC	900
	TCTATCCTTG	ACAACAATCA	TTTGCAGCCA	GGTAGCAACG	GCAGTAGTCA	GAGGAGCTAT	960
30	GATAGACCAC	ACCCAAGCAA	GGCTGCCCTC	AAATAACATC	TCAAGATCTT	AGTTCTTATG	1020
30	CATTCCATCA	GTCAGAAGTG	AAGAAGAGGT	GGAGAATCTG	GATTGGGGAC	CAGGAAATCA	1080
	CTTGTATTTT	GTTAGCCAAT	AAATTCCTAG	CCAGTGTTGA	ATGAAAAAA	AAAAAAAA	1140
35	АААААА						1147

40 (2) INFORMATION FOR SEQ ID NO: 59:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 777 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

GCAGAGGCT CCTCAGAAGG GCGTGGGCTC TCCAGTCTTC CACAGTCCCC ACCATGCCCT 60

GTTGCCTTAC CGCTGACGTA GCTCACCCAT CTTTTACTTG CCTGGCTAAG ATGCATGGCA 120

TYWCATTTCC TCCTTGTTGC ACTGCAGTCA GTCCCTCACT GCCCCCATCT CCTGGAAGAG 180

GAGCATAAGC TTTGCAAGGT CAGCCACTTC TCTGGGGTCA CACTAGTTAC ATCAAGACAG 240

GACTCCAGCT CATATGTGCC AGTGCAGACA CTCTTCATCC ACCTGGGGCC CTGGGCTTGG 300

GACCTGGYTC CTTGCACAGC AGARGACCCG GAGGCTGAGA GGAGCTTGCG GTTGTGTCAT 360

	AGTCACCTGG	CCAGARGGAA	CGTGAGCCCC	TCCCAAGCTG	CAGARGGARG	GARCARGCGT	420
5	GGCTGTCAGC .	ACCGAGGTAG	CAGAGAATTA	ACATTCTTGT	CAGCAGAGAA	TGAAGCAGGA	480
3	ATATAATTAA .	AACTTTGCCC	TTGGAATAGC	TGATTCATTT	GAATTTTATT	CCACACGTTT	540
	GAAAGAGGAA	AGAAAATGTG	AAGACTTGCA	GCCTGGTTCT	CGCCTGGCCT	GGGCTGGCCC	600
10	AGCTGTCAGG	CCCGGTTCCT	TTCTGAGCAT	TCAGTCCACT	GATGTTGACT	GAGGGCCAGG	660
	AGAGACCCTC	AGCAGGGTAT	TACCATATCA	GCCTCCTATC	GCTGCTGGGA	GAAATTACCA	720
15	TGAATTCAGT	GGCTTAAAAC	AACACACGAG	CCTCTCTGAG	CCTACCCTGG	CTCAGGA	777
20	(2) INFORMA	SEQUENCE CH	EQ ID NO: 60 HARACTERIST GTH: 1191 b E: nucleic	ICS: ase pairs			
25		(C) STR	ANDEDNESS: OLOGY: line	double			
	(xi)	SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 60:		
30	AAGANTGATT	TTCCTTACTC	TCCAAAGCGT	CAGCATTTTG	AAGTTTCTTT	TATGAAAGTG	60
	GGGGCAAGAA	TCAGGGTGAA	AATGAGTGTA	AACAAAGCCC	ATCCTGTGGT	CAGCACCCAC	120
	TGGAGGTGGC	CAGCAGAGTG	GCCTCAGATG	TTCCTGCACC	TGGCCCAGGA	GCCCAGGACA	180
35	GAGGTCAAAT	CTAGGCCCCT	TGGTCTGGCT	GGATTCATCA	GGCAAGATTC	GAAAACAAGA	240
	AAACCTCTAG	AACAAGAAAC	AATCATGTCT	GCAGCAGATA	CGGCACTGTG	GCCCTATGGC	300
40	CATGGCAATC	GTGAGCACCA	AGAGAATGAG	TTACAGAAAT	ATCTCCAATA	CAAAGACATG	360
	CATCTCCTGG	ACAGTGGACA	GTCGCTGGGA	CACACACACA	CACTTCAAGG	CTCACACAAC	420
	CTAACAGCCT	TAAATATCTG	AAGAAACAGA	ATCACGACAT	TAAGTCAGCA	GAGGGAGAGG	480
45	TAGGCTGAAG	CAGCAGGAGG	CCAATTTTAT	ATCCCACAGA	TTTTTTTAAA	AATGACTCCC	540
	CAGCAAGGGG	TGGGGAGAAA	GCCACTGATT	TAGGAGAGTT	CTTGGCTCAG	CCAACCACTG	600
50	CGGTTATCTA	CACGTTTTAC	AAAGGCACRG	AAGTAGAGAG	GGGCTGCACT	CACGACCCTC	660
	CCCAGGGCCC	GCACAGCCAG	ACACGGTGGG	TTCTTCCTTT	TTCCCTTCTG	GCCTTGGTGG	720
	AATTCCTACC	ACGGTGGCCT	CTGCCTTTGG	GACAATGCCT	TCATGCTCAT	CCCCGGGTCA	780
55	AGGATGGAGT	CTGTTACCAT	TTTCCAGGGG	AAATTCCAAG	GACCAGCCCC	GCCTCATTAC	840
	GTTCACCCCA	CAGGAAGGTG	ATCTGGAAAG	CCTGTAAACA	CGTACTCTGG	GTGGCTGAGT	900

GGTGTCACCA AGCTGCTTTT GTGCAGGGCT GAAGCACAGA CAAGAGGGCA GGCAGCTGCC

960

	GGAGGCCTGA	AGTGGGGAGA	GATCCCCGCA	GGCCTGCAGG	AGCCAGGGAG	AACCTCCAAC	1020
	TGGATCTAAA	CTGTGGGACA	GCCCAGGCGT	GCCCTCTTC	ACATGGCTCC	CAGGCTCCCT	1080
5	CAAAGCCCTT	CCCAGGCCCT	GCAGGAAGAG	AGGGAGGGTG	AGGAGAGGCA	GGGAGGCAG	1140
	AGGTCGCCTG	AAAGCCTGGG	CTCCGAACTC	CCTCAGCAGA	GCTTTAAAGT	G	1191

15

(2) INFORMATION FOR SEQ ID NO: 61:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1580 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

	CCCCGCCCCC	CGCCCACGAA	GGAAGTGGCT	GCTGCTCCGG	CGCGGACCCA	GAGCCGGTTC	60
25	GGCGCGTCGA	CTGCCCAGAG	TCCGCGGCCG	GGCGCGGGAG	GAGCCAAGCC	GCCATGGCCT	120
23	ACCACAGCTT	CCTGGTGGAG	CCCATCAGCT	GCCACGCCTG	GAACAAGGAC	CGCACCCAGA	180
	TIGCCATCTG	CCCCAACAAC	CATGAGGTGC	ATATCTATGA	AAAGAGCGGT	GCCAAATGGA	240
30	CCAAGGTGCA	CGAGCTCAAG	GAGCACAACG	GGCAGGTGAC	AGGCATCGAC	TGGGCCCCCG	300
	AGAGTAACCG	TATTGTGACC	TGCGGCACAG	ACCGCAACGC	CTACGTGTGG	ACGCTGAAGG	360
35	GCCGCACATG	GAAGCCCACG	CTGGTCATCC	TGCGGATCAA	CCGGGCTGCC	CGCTGCGTGC	420
33	GCTGGGCCCC	CAACGAGAAC	AAGTTTGCTG	TGGGCAGCGG	CTCTCGTGTG	ATCTCCATCT	480
	GTTATTTCGA	GCAGGAGAAT	GACTGGTGGG	TTTGCAAGCA	CATCAAGAAG	CCCATCCGCT	540
40	CCACCGTCCT	CAGCCTGGAC	TGGCACCCCA	ACAATGTGCT	GCTGGCTGCC	GGCTCCTGTG	600
	ACTTCAAGTG	TCGGATCTTT	TCAGCCTACA	TCAAGGAGGT	GGAGGAACGG	CCGGCACCCA	660
45	CCCCGTGGGG	CTCCAAGATG	CCCTTTGGGG	AACTGATGTT	CGAATCCAGC	AGTAGCTGCG	720
73	GCTGGGTACA	TGGCGTCTGT	TTCTCAGCCA	GCGGGAGCCG	CGTGGCCTGG	GTAAGCCACG	780
	ACAGCACCGT	CTGCCTGGCT	GATGCCGACA	AGAAGATGGC	CGTCGCGACT	CTGGCCTCTG	840
50	AAACACTACC	ACTGCTGGCG	CTGACCTTCA	TCACAGACAA	CAGCCTGGTG	GCAGCGGGCC	900
	ACGACTGCTT	CCCGGTGCTG	TTCACCTATG	ACGCCGCCGC	GGGGATGCTG	AGCTTCGGCG	960
55	GGCGGCTGGA	CGTTCCTAAG	CAGAGCTCGC	AGCGTGGCTT	GACGGCCCGC	GAGCGCTTCC	1020
33	AGAACCTGGA	CAAGAAGGCG	AGCTCCGAGG	GTGGCACGGC	TGCGGGCGCG	GGCCTAGACT	1080
	CGCTGCACAA	GAACAGCGTC	AGCCAGATCT	CGGTGCTCAG	CGGCGGCAAG	GCCAAGTGCT	1140
60	CGCAGTTCTG	CACCACTGGC	ATGGATGGCG	GCATGAGTAT	CTGGGATGTG	AAGAGCTTGG	1200

	AGTCAGCCTT GAAGGACCTC AAGATCAAAT GACCTGTGAG GAATATGTTG CCTTCATCCT	1260
5	AGCTGCTGGG GAAGCGGGGA GAGGGGTCAG GGAGGCTAAT GGTTGCTTTG CTGAATGTTT	1320
٠.	CTGGGGTACC AATACGAGTT CCCATAGGGG CTGCTCCCTC AAAAAGGGAG GGGACAGATG	1380
	GGGAGCTTTT CTTACCTATT CAAGGAATAC GTGCCTTTTT CTTAAATGCT TTCATTTATT	1440
10	GAAAAAAAA AAAAATGCCC CCAAAGCACT ATGCTGGTCA TGAACTGCTT CAAAATGTGG	1500
	AGGTAATAAA ATGCAACTGT GTAAAAAAAA AAAAAAAAAA	1560
15	AACTAGNCGG ACGCNTGGGT	1580
20 25	(2) INFORMATION FOR SEQ ID NO: 62: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1117 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
	GCACGAGGC GCGATGCAGC ACAGGCTAGA GGCTGCGCAA SGCGGGGGCC CGCCCCTGGG	60
30	ACCCTCCGGG CCGGCCGCTT TGGCCCCCTTA GCGCCCGGGC GTCGGGGCGG TAAAAGGCCG	120
	GCAGAAGGGA GGCACTTGAG AAATGTCTTT CCTCCAGGAC CCAAGTTTCT TCACCATGGG	180
35	GATGTGGTCC ATTGGTGCAG GAGCCCTGGG GGCTGCTGCC TTGGCATTGC TGCTTGCCAA	240
	CACAGACGTG TITCTGTCCA AGCCCCAGAA AGCGGCCCTG GAGTACCTGG AGGATATAGA	300
	CCTGAAAACA CTGGAGAAGG AACCAAGGAC TTTCAAAGCA AAGGAGCTAT GGGAAAAAAA	360
40	TGGAGCTGTG ATTATGGCCG TGCGGAGGCC AGGCTGTTTC CTCTGTCGAG AGGAAGCTGC	420
	GGATCTGTCC TCCCTGAAAA GCATGTTGGA CCAGCTGGGC GTCCCCCTCT ATGCAGTGGT	480
45	AAAGGAGCAC ATCAGGACTG AAGTGAAGGA TTTCCAGCCT TATTTCAAAG GAGAAATCTT	540
	CCTGGATGAA AAGAAAAAGT TCTATGGTCC ACAAAGGCGG AAGATGATGT TTATGGGATT	600
	TATCCGTCTG GGAGTGTGGT ACAACTTCTT CCGAGCCTGG AACGGAGGCT TCTCTGGAAA	660
50	CCTGGAAGGA GAAGGCTTCA TCCTTGGGGG AGTTTTCGTG GTGGGATCAG GAAAGCAGGG	720
	CATTCTTCTT GAGCACCGAG AAAAAGAATT TGGAGACAAA GTAAACCTAC TTTCTGTTCT	780
55	GGAAGCTGCT AAGATGATCA AACCACAGAC TTTGGCCTCA GAGAAAAAAT GATTGTGTGA	840
	AACTGCCCAG CTCAGGGATA ACCAGGGACA TTCACCTGTG TTCATGGGAT GTATTGTTTC	900
	CACTICATATIC COTTATICATOR CAGATATOR THE TOTAL ACTICATOR ACTICATOR TAXALATERATERA	960

	ATGTATTTTA ATATTCTGTT TAGGCCCACT AAGGCAAAAT AGCCCCAAAA CAAGACTGAC	1020
	AAAAATCTGA AAAACTAATG AGGATTATTA AGCTAAAACC TGGGAAATAG GAGGCTTWAA	1080
5	ATGACTGCCM GCTGGTGCRT GCTCACACTT GGCCCAC	1117
10	(2) INFORMATION FOR SEQ ID NO: 63:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 361 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
20	CCCACGCGTG CKGGCGCCTG GCAGCCACCG CCTGGGAGGT TACTGTAAGG CCCGCAGCTC	60
	CCGCCAGCTC CCGCGGACTS CTGCCGCCTC CTTACCATGA AGCCAGTAAG TCGTCGCACG	120
25	CTGGACTGGA TTTATTCAGT GTTGCTGCTT GCCATCGTTT TAATCTCCTG GGGCTGCATC	180
23	ATCTATGCTT CGATGGTGTC TGCAAGACGA CAGCTAAGGA AGAAATACCC AGACAAAATC	240
	TTTGGGACGA ATGAAAATTT GTAACTCTTC TGGATTTAAT TATCTGAAAA TACAGTTCTT	300
30	TCCCTCATGC TTATGTAGAT ATAAAAATAA AATTCATAAT GCAAAAAAAA AAAAAAAAAA	360
	G	361
35		
	(2) INFORMATION FOR SEQ ID NO: 64:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 1668 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
	GGCACGAGGT CTGCCAAGCT ATAGACCATG GCTGTGAACA CATTTGTGTG AACAGTGACG	60
50	ACTCATACAC GTGCGAGTGC TTGGAGGGAT TCCGGCTCGC TGAGGATGGG AAACGCTGCC	120
50	GAAGAAGGAT GTCTGCAAAT CAACCCACCA TGGCTGCGAA CACATTTGTG TTAATAATGG	180
	GAATTCCTAC ATCTGCAAAT GCTCAKAGGG ATTTGTTCTA GCTGAGGACG GAAGACGGTG	240
55	CAAGAAATGC ACTGAAGGCC CAATTGACCT GGTCTTTGTG ATCGATGGAT CCAAGAGTCT	300
	TGGAGAAGAG AATTTTGAGG TCGTGAAGCA GTTTGTCACT GGAATTATAG ATTCCTTGAC	360
60	AATTTCCCCC AAAGCCGCTC GAGTGGGGCT GCTCCAGTAT TCCACACAGG TCCACACAGA	420

	GTTCACTCTG	AGAAACTTCA	ACTCAGCCAA	AGACATGAAA	AAAGCCGTGG	CCCACATGAA	480
	ATACATGGGA	AAGGGCTCTA	TGACTGGGCT	GGCCCTGAAA	CACATGTTTG	AGAGAAGTTT	540
5	TACCCAAGGA	GAAGGGCCA	GCCCTTTCC	ACAAGGGTGC	CCAGAGCAGC	CATTGTGTTC	600
	ACCGACGGAC	GGGCTCAGGA	TGACGTCTCC	GAGTGGGCCA	GTAAAGCCAA	GGCCAATGGT	660
10	ATCACTATGT	ATGCTGTTGG	GGTAGGAAAA	GCCATTGAGG	AGGAACTACA	AGAGATTGCC	720
10	TCTGAGCCCA	CAAACAAGCA	TCTCTTCTAT	GCCGAAGACT	TCAGCACAAT	GGATGAGATA	780
	AGTGAAAAAC	TCAAGAAAGG	CATCTGTGAA	GCTCTAGAAG	ACTCCGATGG	AAGACAGGAC	840
15	TCTCCAGCAG	GGGAACTGCC	AAAAACGGTC	CAACAGCCAA	CAGTGCAACA	CAGATATCTG	900
	TTTGAAGAAG	ACAATCTTTT	ACGGTCTACA	CAAAAGCTTT	CCCATTCAAC	AAAACCTTCA	960
20	GGAAGCCCTT	TGGAAGAAAA	ACACGATCAA	TGCAAATGTG	AAAACCTTAT	AATGTTCCAG	1020
20	AACCTTGCAA	ACGAAGAAGT	AAGAAAATTA	ACACAGCGCT	TAGAAGAAAT	GACACAGAGA	1080
	ATGGAAGCCC	TGGAAAATCG	CCTGAGATAC	AGATGAAGAT	TAGAAATCGC	GACACATTTG	1140
25	TAGTCATTGT	ATCACGGATT	ACAATGAACG	CAGTGCAGAG	CCCCAAAGCT	CAGGCTATTG	1200
	TTAAATCAAT	AATGTTGTGA	AGTAAAACAA	TCAGTACTGA	GAAACCTGGT	TTGCCACAGA	1260
30	ACAAAGACAA	GAAGTATACA	CTAACTTGTA	TAAATTTATC	TAGGAAAAA	ATCCTTCAGA	1320
30	ATTCTAAGAT	GAATTTACCA	GGTGAGAATG	AATAAGCTAT	GCAAGGTATT	TTGTAATATA	1380
	CTGTGGACAC	AACTTGCTTC	TGCCTCATCC	TGCCTTAGTG	TGCAATCTCA	TTTGACTATA	1440
35	CGATAAAGTT	TGCACAGTCT	TACTTCTGTA	GAACACTGGC	CATAGGAAAT	GCTGTTTTTT	1500
	TGTAYTGGAC	TTTACCTTGA	TATATGTATA	TGGATGTATG	CATAAAATCA	TAGGACATAT	1560
40	GTACTTGTGG	AACAAGTTGG	ATTTTTTATA	CAATATTAAA	ATTCACCACT	TCAGAGRAAA	1620
70	AAAAAAAA	AAAAAAAA	АААААААА	AAAAAAAA	AAANAAA		1668

50

(2) INFORMATION FOR SEQ ID NO: 65:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1353 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

GGGTCGACCC ACGCGTCCGC CCACGCGTCC GGATGGCTGC GCTGTTGCTG AGACACGTTG

GTCGTCATTG CCTCCGAGCC CACTTTAGCC CTCAGCTCTG TATCAGAAAT GCTGTTCCTT

120

TGGGAACCAC GGCCAAAGAA GAGATGGAGC GGTTCTGGAA TAAGAATATA GGTTCAAACC

180

120

180

	GTCCTCTGTC	TCCCCACATT	ACTATCTACA	GTTGGTCTCT	TCCCATGGCG	ATGTCCATCT	240
5	GCCACCGTGG	CACTGGTATT	GCTTTGAGTG	CAGGGGTCTC	TCTTTTTGGC	ATGTCGGCCC	300
3	TGTTACTCCC	TGGGAACTTT	GAGTCTTATT	TGGAACTTGT	GAAGTCCCTG	TGTCTGGGGC	360
	CAGCACTGAT	CCACACAGCT	AAGTTTGCAC	TTGTCTTCCC	TCTCATGTAT	CATACCTGGA	420
10	ATGGGATCCG	ACACTTGATG	TGGGACCTAG	GAAAAGGCCT	GAAGATTCCC	CAGCTATACC	480
	AGTCTGGAGT	GGTTGTCCTG	GTTCTTACTG	TGTTGTCCTC	TATGGGGCTG	GCAGCCATGT	540
15	GAAGAAAGGA	GGCTCCCAGC	ATCATCTTCC	TACACATTAT	TACATTCACC	CATCTTTCTG	600
13	TTTGTCATTC	TTATCTCCAG	CCTGGGAAAA	GTTCTCCTTA	TTTGTTTAGA	TCCTTTTGTA	660
	TTTTCAGATC	TCCTTGGAGC	AGTAGAGTAC	CTGGTAGACC	ATAATAGTGG	AAAAGGGTCT	720
20	AGTITTCCCC	TTGTTTCTAA	AGATGAGGTG	GCTGCAAAAA	CTCCCCTTTT	TTGCCCACAG	780
	CTTGCCTACT	CTCGGCCTAG	AAGCAGTTAT	TCTCTCTCCA	TATTGGGCTT	TGATTTGTGC	840
25	TGAGGGTCAG	CTTTTGGCTC	CTTCTTCCTG	AGACAGTGGA	AACAATGCCA	GCTCTGTGGC	900
23	TTCTGCCCTG	GGGATGGGCC	GGGTTGGGG	GTGGGTTGGT	GAGGCTTTGG	GTGCCACTGC	960
	CTGTGGGTTG	CTGGCTTAAA	GGACAATTCT	CTTCATTGGT	GAGAGCCCAG	GCCATTAACA	1020
30	CCTACACAGT	GTTATTGAAA	GAAGAGAGGT	GGGGGTGGAG	GGGAATTAGT	CTGTCCCAGC	1080
	TAGAGGGAGA	TAAAGAGGC	TAGTTAGTTC	TTGGAGCAGC	TGCTTTTGAG	GAGAAAATAT	1140
35	ATAGCTTTGG	ACACGAGGAA	GATCTAGAAA	ATTATCATTG	AACATATTAA	TGGTTATTTC	1200
55	TTTTTCTTGG	ATTTCCAGAA	AAGCCTCTTA	ATTTTATGCT	TTCTCATCGA	AGTAATGTAC	1260
	CCTTTTTTC	TGAAACTGAA	TTAAATACTC	ATTTTATCTT	TGAAAAAAA	AAAAAAAACC	1320
40	TNGGGGGGG	CCCCGGACCC	NAATTGGCCC	TAT			1353
45	(2) INFORM	MATION FOR S	EQ ID NO: 6	6:			
	(i)	SEQUENCE C					
		• • •	NGTH: 1011 b PE: nucleic	-			
50		(C) ST	RANDEDNESS: POLOGY: line	double			
	(x :			N: SEQ ID NO	D: 66:		

CGGAAGAAAG CAGCCATCCA GACATTTCAG AACACGTACC AGGTGTTAGC TGTGACCTTC

AATGACACAA GTGATCAGAT TATTTCTGGT GGAATAGACA ATGATATCAA GGTCTGGGAC

TGCGCCAGAA CAAGCTAACC TACACCATGA GAGGCCATGC AGATTCAGTG ACTGGCCTGA

55

218

	GTTTAAGTTC	TGAAGGCTCT	TATCTTTTGT	CCAATGCAAT	GGACAATACA	GTTCGTGTCT	240
	GGGATGTCCG	GCCATTTGCC	CCCAAAGAGA	GATGTGTAAA	GATATTTCAA	GGAAATGTGC	300
5	ACAACTTTGA	AAAGAACCTT	CTGAGATGTT	CTTGGTCACC	TGATGGAAGC	AAAATAGCAG	360
	CTGGCTCAGC	CGACAGGTTT	GTTTATGTGT	GGGATACCAC	AAGCAGGAGA	ATATTGTATA	420
10	AGCTGCCCGG	CCATGCTGGC	TCCATCAATG	AAGTGGCTTT	CCACCCTGAT	GAGCCCATCA	480
10	TTATCTCAGC	ATCGAGTGAC	AAGAGACTGT	ATATGGGAGA	GATTCAGTGA	AGATATGGAC	540
	TGGAAGACTC	CAAGGCCGCT	TGTCTTTGAG	ACCTCAGACT	GCATAAGTGA	TGCCAAATGT	600
15	TGGATGTCCA	GGYTAGCACC	CTCCCTTCAG	ATGACCATTG	CTAGCAAGAA	ACAGGAGGCG	660
	GTGGCCATAT	TCCAAAAACC	ACTTCTGTCC	CATTTCACCA	GGATGACTAA	GGCAAGCTCC	720
20	CTGTGGCCTC	TAAAAACCAC	CTGCCAGATT	TCAGGGACTG	TTTTTTTTT	TCTTTTTCTT	780
20	TTTTCCTGTT	TTCTAATGCA	GGCCCAATGT	GACAAATTTG	TTGGTTGGGA	TALTALTALTAL	840
	TTTTTGTAAC	TGGCTTGTAT	GATATTTTCT	TTCTGTATTT	CTCTATATCA	TTTTGTATTA	900
25	AAAGCCAAAT	AGATGCCTTT	TTACAAGARM	АААААААА	ААААААААА	NNAAAAAAA	960
	CTGGGAGGG	GGGCCCGGTA	CCCAAATCGC	CGGATATGAT	CGTAAACAAT	С	1011

30

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1193 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

GGCCGGGCGG TGCGCACTGC GGGCGCATCC CTGCCCCGGC GCCGTCCGTG CCCGCGGGAC 60 CTGACAGCCG GGTCAGAGGG CGAACTGTGC TCAGGCCCGG GCTGGACGCA GAGCCAGAGC 120 TGTCCCCAGA GGAGCAGAGG GTCCTGGAAA GGAAGCTGAA AAAGGAACGG AAGAAAGAG 180 AGAGGCAGCG TCTGCGGGAG GCAGGCCTTG TGGCCCAGCA CCCGCCTGCC AGGCGCTCGG 240 GGGCCGAACT GGCCTGGGAC TACCTCTGCA GATGGGCCCA AAAGCACAAG AACTGGAGGT 300 TTCAGAAGAC GAGGCAGACG TGCCTCCTGC TGCACATGTA TGACAGTGAC AAGGTTCCCG 360 ATGAGCACTT CTCCACCTG CTGGCCTACC TGGAGGGGCT GCAGGGCCGG GCCCGAGAGC 420 TGACGGTGCA GAAGGCGGAA GCCTGATGCG GGAGCTGGAT GAGGAGGGCT CTGATCCCCC 480 CCTGCCGGGG AGGGCCCAGC GCATCCGACA GNTGCTGCAG CTGCTCTCCT AGTGGGTTCA 540 600 GCGCGGGCG GGCCGCTGC CCAGTGCAGG GCTGCCTCAG ACCACAGG GTGCAGCTCC

	TCCGGCGGTG	GGGCCGGGT	TCACCAGCAG	GGCAGCGGCT	GAGCAAGGGC	TTTCAGCTCC	660
~	TCCGGTGGTG	GGGCCGGGA	TCACCAGCAC	CAGAGCCTCG	CAAGGCCCC	TTCCCTCCTC	720
5	CAGACCCTCC	TTGGCCGGTG	ACGCTGTGAC	AGTGATGGCA	GGTTCAGTGC	CTTCAGCGCA	780
	GAGCGTGGAT	GCTCTGGAAT	CACCCGGACC	CCTGGCCTTG	GAGGGACCCT	CCAGCCCCAG	840
10	GAATCTGCTT	TGGAGGGAAA	TGTCTATTTT	TCTACCGGGA	ATATTTTAGA	GATTGGGGCA	900
	TGCTGGCTCC	TCCCGCCAGC	TGCAAACCTG	CACCTTCCGC	CTGATTCCCG	ATCCCCCTGC	960
	GTGGGCCGCA	TTCCTGGTCC	CCTGCCTGCG	TCCATCGAGG	GGCCTGGCTG	TGGCCTGTTT	1020
15	TCCTTTGACC	CCACACAGCG	TCATTGCGGG	TCATGGGGAG	CCCCTGGTGG	GAGCTTGTGG	1080
	AGTCGGATCA	CGTACCTGTG	CAGAAACCGC	CTCTGTGGCT	GCATTTGAAA	TAAAACCCGA	1140
20	CCCAGCAGCA	AAAAAAAA	AAAAAANCNC	NAGGGGGGC	CCGGNACCCA	ATT	1193

25 (2) INFORMATION FOR SEQ ID NO: 68:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 560 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

GAATTCGGCA	CGAGTTGGCA	CATGATGCAA	AATGCATTTC	TCAGAGTAGA	TTGCAGTCAA	60
AAATGTTGGA	AACTACTAAG	CATGTGCARA	TAGCATGCAT	GCTGCTGCTG	ACCTGCCAGA	120
TATTTCTCCC	TTCCTCCCTT	TCTCCCTCAT	TTATTCATTC	ATTAACTGAT	TCATTCATCC	180
CATTAAAAAA	ATTATATGTA	TGTTTTGTGC	AAAGCACCCT	ACTCAAGGCT	GCGGGGTACA	240
AAAGTATATC	AGAAGCCTTG	GGCTTTGACM	WACTTCTCTG	TAGTAGTGCT	AGATTTGTGT	300
GGATCTGCCA	CACTTACTCC	AGGCCTCTTG	TGACCTGTGC	TTTGCATTAA	TCTCTTAGGC	360
TAAGCCACAT	ACCTTTTCAT	TATACAATCT	TTGCTGATGC	TAAGGACAGA	TTCCAAAGTG	420
CCCTCCTTAT	AATTTTTGTA	TTTAATGCAA	AGTGTAATCA	AGAATAGGCC	ATTGTTAGGT	480
CAATTGCTTT	TCTGTATTTA	TCTTTTCAAA	СААТАААТАА	TCAGTGGGAT	GAAAAAGGGC	540
CGGAAAAAA	ААААААААА					560

55

30

35

40

45

50

(2) INFORMATION FOR SEQ ID NO: 69:

(i) SEQUENCE CHARACTERISTICS:

220

(A) LENGTH: 1657 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:

	CGGACNGAGC	CGCCGCCGGG	CACTTCCTGT	GGAGGCCGCA	GCGGGTGCGG	GCGCCGACGG	60
10	GCGAGAGCCA	GCGAGCGAGC	GAGCGAGCCG	AGCCGAGCCT	CCCGCCGTCG	CCATGGGCCA	120
	GAACGACCTG	ATGGGCACGG	CCGAGGACTT	CGCCGACCAG	TTCCTCCGTG	TCACAAAGCA	180
15	GTACCTGCCC	CACGTGGCGC	GCCTCTGTCT	GATCAGCACC	TTCCTGGAGG	ACGCCATCCG	240
15	TATGTGGTTC	CAGTGGAGCG	AGCAGCGCGA	CTACATCGAC	ACCACCTGGA	ACTGCGGCTA	300
	CCTGCTGGCC	TCGTCCTTCG	TCTTCCTCAA	CTTGCTGGGA	CANTGACTGG	CTGCGTCCTG	360
20	GTGTTGAGCA	GGAACTTCGT	GCAGTACGCC	TGCTTCGGGC	TCTTTGGAAT	CATAGCTCTG	420
	CAGACGATTG	CCTACAGCAT	TTTATGGGAC	TTGAAGTTTT	TGATGAGGAA	CCTGGCCCTG	480
25	GGAGGAGGCC	TGTTGCTGCT	CCTAGCAGAA	TCCCGTTCTG	AAGGGAAGAG	CATGTTTGCG	540
23	GGCGTCCCCA	CCATGCGTGA	GAGCTCCCCC	AAACAGTACA	TGCAGCTCGG	AGGCAGGGTC	600
	TTGCTGGTTC	TGATGTTCAT	GACCCTCCTT	CACTTTGACG	CCAGCTTCTT	TTCTATTGTC	660
30	CAGAACATCG	TGGGGCACAG	CTCTGATGAT	TTTAGTGGCC	ATTGG TTTT A	AAACCAAGCT	720
	GGCTGCTTIG	ACTCTTGTTG	TGTGGCTCTT	TGCCATCAAC	GTATATTTCA	ACGCCTTCTG	780
35	GACCATTCCA	GTCTACAAGC	CCATGCATGA	CTTCCTGAAA	TACGACTTCT	TCCAGACCAT	840
33	GTCGGTGATT	GGGGGCTTGC	TCCTGGTGGT	GGCCCTGGGC	CCTGGGGGTG	TCTCCATGGA	900
	TGAGAAGAAG	AAGGAGTGGT	AACAGTCACA	GATCCCTACC	TGCCTGGCTA	AGACCCGTGG	960
40	CCGTCAAGGA	CTGGTTCGGG	GTGGATTCAA	CAAAACTGCC	AGCTTTTATG	TATCCTCTTC	1020
	CCTTCCCCTC	CCTTGGTAAA	GGCACAGATG	TTTTGAGAAC	TTTATTTGCA	GAGACACCTG	1080
45	AGAATCAATG	GCTTCAGGAC	ATGGGTTCTC	TTCTCCTGTG	ATCATTCAAG	TGCTCACTGC	1140
45	ATGAAGACTG	GCTTGTCTCA	GTGTTTCAAC	CTCACCAGGG	CTGTCTCTTG	GTCCACACCT	1200
	CGCTCCCTGT	TAGTGCCGTA	TGACAGCCCC	CATCAAATGA	CCTTGGCCAA	GTCACGGTTT	1260
50	CTCTGTGGTC	AAGGTTGGTT	GGCTGATTGG	TGGAAAGTAG	GGTGGACCAA	AGGAGGCCAC	1320
	GTGAGCAGTC	AGCACCAGTT	CTGCACCAGC	AGCGCCTCCG	TCCTAGTGGG	TGTTCCTGTT	1380
55	TCTCCTGGCC	CTGGGTGGGC	TAGGGCCTGA	TTCGGGAAGA	TGCCTTTGCA	GGGAGGGGAG	1440
55	GATAAGTGGG	ATCTACCAAT	TGATTCTGGC	AAAACAATTT	CTAAGATTIT	TTTGCTTTAT	1500
	GTGGGAAACA	GATCTAAATC	TCATTTATG	CTGTATTTTA	TATCTTAGTT	GTGTTTGAAA	1560
60	ACGTTTTGAT	TTTTGGAAAC	ACATCAAAAT	AAATAATGGC	GTTTGTTGTA	АААААААА	1620

PCT/US98/05311

	AAAAAAACTC GRGGGGGGC CCGGTACCCA AATCGCC	1657
5		
	(2) INFORMATION FOR SEQ ID NO: 70:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 711 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
	GGCACGAGCG AAGACCCTGT TCGGACCCTG CCCCGATTCC AGACTCAGGT AGATCGTCGG	60
20	CATACCCTCT ACCGTGGACA CCAGGCAGCC CTGGGGCTGA TGGAGAGAGA TCAGGTATCC	120
20	CCCAGGGAGT AGGGGCTACC TTGAGGGGAT GATAGACCTC CCCCACTCCC AGTGKKACTC	180
	TGGAAATATG AAGGAACTAG GGAGTGGAAG AGATTTCAGA GCTGGGGAGA GGAGTTCCTC	240
25	CCTTCAAAGC CAGCAACTGC CTTTGGGGAA TGTCGGGGGG TCTCTCCTTT CTCCTGCTTG	300
	TTTRAGGTGG TACACAGTCC CCCCTTCAMC TGGSGGGAAG CTGTNCCGGA CARACTCATC	360
30	TCAGCTTTCC CTTGGGGCAG GATCGGGGGC AGCAGCTCCA GCAGAAACAG CAGGATCTGG	420
50	AGCAGGAAGG CCTCGAGGCC ACACAGGGGC TGCTGGCCGG CGAGTGGGCC CCACCCCTCT	480
	GGRAGCTGGG CAGCCTCTTC CAGGCCTTCG TGAAGAGGGA GAGCCAGGCT TATGCGTAAG	540
35	CTTCATAGCT TCTGCTGGCC TGGGGTGGAC CCAGGACCCC TGGGGCCTGG GTGCCCTGAG	600
	TGGTGGTAAA GTGGAGCAAT CCCTTCACGC TCCTTGGCCA TGTTCTGAGC GGCCAGCTTG	660
40	GCCTTTGCCT TAATAAATGT GCTTTATTTT CAAAAAAAAAA	711
45	(2) INFORMATION FOR SEQ ID NO: 71:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 935 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
<i></i>	GGCACAGGGT GAAAGCCCAGC TAAACCCCCAA GTGGAGAAGT GAAAGACATG GTTGTTCCCA	60
55	TAAGTTTATT GCTCACATTA TGAAAGAAGC CATAGTCATG AGTGAACCAC TCCCTAGGTT	120
	GATAAGGAAA CCAACACGGA AGATCTCTTT CTGGAAGAAG CAGCCAGCCT CGTGAAGGAG	180
60	CGGCCCAGCC GCCGGGCCCG AGGGTCGCCT TTTGTTCGGA GTGGCACGAT TGTCCGTTCC	240

	CAGACATTCT	CGCCTGGAGC	ACGAAGCCAG	TATGTTTGCA	GACTTTATCG	TAGTGACAGC	300
5	GACAGTTCAA	CGCTGCCCCG	GAAGTCCCCC	TTTGTCCGAA	ATACTTTGGA	AAGACGAACC	360
3	CTTCGCTATA	AGCAGTCATG	CAGGTCTTCC	CTGGCTGAGC	TCATGGCCCG	CACCTCCCTG	420
	GACTTGGAGC	TGGATCTCCA	GGCGTCGAGA	ACACGGCAGA	GGCAGCTGAA	TGAGGAGCTC	480
10	TGCGCCCTCC	GTGAGCTGCG	GCAGCGGTTN	GGAGGACGCC	CAGCTCCGTG	GCCAGACTGA	540
	CCTCCCACCC	TGGGTGCTTC	GGGACGAGCG	GCTCCGTGGC	CTGCTGCGGG	AGCCGAGCGG	600
15	CAGACAAGAC	AGACCAAACT	TGACTACCGT	CATGAGCAGG	CGGCTGAGAA	GATGCTGAAG	660
15	AAGGCCTCCA	AGGAGA T CTA	CCAGCTGCGT	GGCAGAGCCA	CAAAGAGCCC	ATCCAAGTGC	720
	AGACCTTTAG	GGAGAAGATA	GCATTCTTCA	CAAGGCCAAG	GATCAACATA	CCTCCTCTCC	780
20	CAGCCGACGA	CGTCTGATGG	AGTGCATTGT	GCACATGAAG	TATTTATCCA	CCTGTTTTAT	840
	TTTCATGAAG	TTCTTAGACT	AGCTGAATTT	GTCTTTAAAA	TATTTGTGCA	AAGCTATTAA	900
25	TATACACATT	TTGTAAAAAA	AAAAAAAA	AAACT			935
	(2) INFORM	ATION FOR SE	EQ ID NO: 72	2:			
30		SEQUENCE CI					
			GTH: 504 ba E: nucleic	-			
35		• •	ANDEDNESS: OLOGY: line				
	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 72:		
	GCAGGGGCGA	GGGGYTGGGG	ACCGCGGGGC	GGACGGGAGC	GAGTATGTCC	GCTCTGACTC	60
40	GGCTGGCGTC	TTTCGCTCGC	GTTGGAGGCC	GCCTTTTCAG	AAGCGGCTGC	GCACGGACTG	120
	CTGGAGATGG	TGGAGTCCGT	CATGCCGGTG	GTGGTGTGCA	CATTGAGCCC	CGGTATAGAC	180
45	AGTTCCCCCA	GCTGACCAGA	TCCCAGGTGT	TCCAGAGCGA	GTTCTTCAGC	GGACTCATGT	240
	GGTTCTGGAT	TCTCTGGCGC	TTTTGGCATG	ACTCAGAAGA	GGTGCTGGGT	CACTTTCCGT	300
= 0	ATCCTGATCC	TTCCCAGTGG	ACAGATGAAG	AATTAGGTAT	CCCTCCTGAT	GATGAAGACT	360
50	GAAGGTGTAG	ACTCAGCCTC	ACTCTGTACA	AGAGCCAGGT	GAGAATTTCA	AGGATTATCG	420
	ACTTCATATT	GCACATTAAA	GTTACAAATT	AAAGTGGCTT	GGTCAAGAAT	GARAAAAAA	480
55	АААААААТТ	GGGGGGGGC	CCCN				504

60 (2) INFORMATION FOR SEQ ID NO: 73:

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
10	GAATTCGGCA CGAGGAGGAG GGGAGGCGGG GTAAGTTTGG TGGGAAACTC TGTAATTTCC	60
	WITTITACTT TCACAGCAAT AGTGCAGAAT CCAGAATGGA TGTCCTCTTT GTAGCCATCT	120
15	TTGCTGTGCC ACTTATCCTG GGACAAGAAT ATGAGGATGA AGAAAGACTG GGAGAGGATG	180
13	AATATTATCA GGTGGTCTAT TATTATACAG TCACCCCCAG TTATGATGAC TTTAGTGCAG	240
	ATTTCACCAT TGATTACTCC ATATTTGAGT CAGAGGACAG GCTGAACAGG TTGGATAAGG	300
20	ACATAACAGA AGCAATAGAG ACTACCATTA GTCTTGAAAC AGCACGTGCA GACCATCCGA	360
	AGCCTGTAAC TGTGAAACCA GTAACAACGG AACCTCAGAG TCCAGATCTG AACGATGCCG	420
25	TGTCCAGTTT GCGAAGTCCT ATTCCCCTCC TCCTGTCGTG TGCCTTTGTT CAGGTGGGGA	480
	TGTATTTCAT GTAGAAGGTG GAAGAAGGCT GCTATGACTC TTTGGATGGG AGTCTGGCAA	540
	GAGGAAATTG GAAGATAAAA TAAATAATAA GTGAAATAAA AAAAAAAA	600
30	GGGGGGCCC GGTACCCAAT	620
35 40	(2) INFORMATION FOR SEQ ID NO: 74: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 581 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	
45	ACAAGGTGTG TGTAAAGTTT ATGTTTGTAA ACTGAATTCT ATCTTAAATC CAAAAAGAAC	60
	TCGGGAGTAA TTCATTTTTG TAGCATAAAG ATCCCTAAGT TTTATTTTGA AATATCTGAT	120
50	TTTTACACGT TAAAAAATAA CAGGGCATCG AGAGGATTCC TAGGTGACAT CCAGACTCCT	180
	TTAGCTTTGT GTGTGTGGCA CCGGTTAGTC TGCTTCTCT TCCTTTCTTG CACTGCTTCA	240
	CACAGCCATG CCCTGCCAGC CCGGGCAGGT GCCTTCCTGT CAATGTACAT TTGGGCTTCT	300
55	GCTCATGCTG CCCTCCCTCC CCTCCCCTGC CTCCCAACCC CGCCCCTTTT GTTCCTCCAT	360
	GGAGTACTTC CATGGGTGTG CCTCCCCCAG CCAAGCCATA ATAGGTGGTT TCCCCTTCGC	420
60	TYCTGTAGCC CTTGCAGACA TCCTCTGTTT ACAGTAGGTG TTGACTTACT TCCCCTCTCC	480

PCT/US98/05311 WO 98/42738

224

60

CCGSTAAAGC	CATAAACTCC	TTAAGGACAG	GTAGCATTCT	TAGTATCTTC	GTTCTTCTCA	540
ATGACCAGTA	GACCATTAAA	CATGTAGCAA	ACAAATGTGA	A		581

(2) INFORMATION FOR SEQ ID NO: 75:

5

10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1843 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear 15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

AAACCCAACN CCCTCCGGTC CCCNAAAGAA AGCCCAGCCC AAATCCCAAG CCGGCAGTGA 20 GCCGCGAAC AAGGCCCTCA AGACGCCCAG NCGAACAAGC AGCCCCCAGG AGGCCCCGCA 120 AGAGAACTCC CTGGCGGCCC AAGCGGGCAG CTTCTGTGCG GCAGAACTCA GCCACCGAGA 180 240 GCGCAGACAG CATCGAGATT TATGTCCCGG AGNCCCAGAC CAGGCTCTGA GACCATGCAG 25 GAGGAAAGAA ACGATTTTAA ATCATTAAAA ACACAAAAAC TAAGTGCGAA CGGAACAGAG 300 TTTTCTCAAC CTTTGCTATG GTTATTCTGT CTAGAGACCC TGAGCCAACT TTCAAATTGA 360 30 CGCATACAAG GGCTCACAAT TTGGCTTTTT TGGGTCCCTC CCAGCTTTAG GTTATGAAGA 420 TTTTACTCAC AAAAAAATC AACAAAAATC ACGAAACTAG AAAACTTTTT TTTTCCTCTT 480 540 GCTGGCCGTG GTGGACTAGA TAGATGGACG TCGGCAACTC CCGGCCCAGC CTCCATACTG 35 CGGTCTTTT ACTCGTTCTA TCTGATGAGA ACTCACACTA GCTTGTTTAC AAGATGACGA 600 CAGTCCAAGG GCAGCCTTGG GCACCTGCCA TGTCCCTCCT TTCCCCAGCT ATCCCCGCTC 660 40 TGACCTTGAT TTTCATTCTT ATGTTTTTCT CTTTTCCCTT CAGAGCTCAC ACAGTGGTCA 720 CCATTGTGGC AAGCGGCTTT CTGGGTCTCA GCCCTCTCTG CGGTTGAGGG CCCAGAGGAC 780 AGAGAGATGG ACATGCGTCC CCTCCCTCCC CCCGCCAAGT GCTCACACAC AACCTCACGC 840 45 GCACACACA ACACGCAGAT GGAGGCGCCT CACTGGGAGG TGCCCCGCCA GCCCTGGGCA 900 GTGTCAGGCA GGACTCACTC ACCGCTGAGC AGATGAGAGA AGTTTTAGTC TTGGCGGGTG 960 50 GAAATGAGAC GAAGCCACAG TTATCACACT CCAGACTCCT GCCCTTTTAT TTTCTCCAGC 1020 CCCTTCTTCC TTCAGCAAAA TCTAGGACTC CCGAGTGGCT TCCAGGGGGC CGTCAGTCCT 1080 CAGCCGCGC TGTGTCCGGT GCCCGAGGGG CGGGCGGCGG TGTCTGTATG TATGTGTACA 1140 55 TATGCACATA GACCTTAGAG TGTATAGTTA ACAAACGCCC ATCTGCTCAC CCATGCCCAC 1200 CCAGCGCCGC CGCCGCTGGC TCTCGGGGCA CCTGGCAGGA GGCGGGTGTG TGAATAGCAT 1260 60 ATATTTTTAC ATGTACTATA TCTAGGTGTG TGTACAAGTG TGTGTAAAAA TATATACCTT 1320

GTGTGTAAGC AGCCCTTTTT TTTTTTGGTC TCCACCCCC TCCCCCGCC CCGCACTCCT 1380 AAGGGCCCAT CTGCCCAGCC TCTGAGTTTT CTGTTCTATT TTTTTTTTAA CCCCAATTAT 1440 5 CCTTCTCTCT CTCCTGCCCC CGCATCCCAC TCCCAGGGTG TCACGAGCCC TGAGCTGCAA 1500 TGGCCCGGGC CTGCAGGGCG GGGTAGGGGA GGGCARGGCT SAGCCCCGAA GCCAGCTCAG 1560 10 TACCTGAGGG GCTGCTCTAT GCTGTGTATG CGCCTCTCTG GCATCCGAGA CATCCTCTTG 1620 GTGGGGCTTG CTNGCAGGGG ACCCCCCCC CGTCCCCAGG TGAACCAAGG GTCTGCTCCG 1680 GGGCCCATTT CCAGCTTGGC CGCCGTCTGT GACCTTGGGC AAGTCACTTG ACCTCTGTGT 1740 15 1800 GCCTCAACTT CCTCCTCTGT AAAACGGGGA CAGTCCCTGC CCCTCCCTAC CTCACAGGCA 1843 TGTTGTGAGA ATAAATGAGG TAACGTGTAA AAAAAAAAA AAT

20

(2) INFORMATION FOR SEQ ID NO: 76:

(i) SEQUENCE CHARACTERISTICS: 25

(A) LENGTH: 1441 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:

60 TCGACCCACG CGTCCGGCTC CCCGAGCCCT GCCAACCATG GTGAACTTGG GTCTGTCCCG 120 35 GGTGGACGAC GCCGTGGCTG CCAAGCACCC GGGACTCGGG GAGTATGCCG CATGCCAGTC ACACGCCTTC ATGAAGGGCG TTTTCACCTT CGTCACAGGC ACCGGCATGG CCTTTGGCTT 180 GCAGATGTTC ATTCAGAGGA AGTTTCCATA CCCTTTGCAG TGGAGCCTCC TAGTGGCCGT 240 40 GGTTGCAGGC TCTGTGGTCA GCTACGGGGT GACGAGAGTG GAGTCGGAGA AATGCAACAA 300 CCTCTGGCTC TTCCTGGAGA CCGGGCAGCT CCCCAAAGAC AGGAGCACAG ATCAGAGAAG 360 45 CTAGGAGAGC TCCAGCAGGG GCACAGAGGA TTGGGGGCAG GAGGAGTCTG GAACACAGCC 420 TTCATGCCCC CTGACCCCAG GCCGACCCTC CCCACACCCT AGGGTACCCC AGTCGTATCC 480 TCTGTCCGCA TGTKTGGCCA GGCCTGACAA ACACCTGCAG ATGGCTGCTG CCCCAACCTG 540 50 600 GGACCTGCCC AGRAGGTTGG AGCAGAAAGG GCTCTCCCTG GGGTGGTGTT TCTCCTCTAG 660 GGTATTGGGA TGCATGTTCT GCACTGCCAG CAGAGAGGGT GTGTCTGGGG GCCACCACCT 55 ATGGGACACG GGGTCGAAGG GGCCTGTACA CTCTGTCATT TCCTTTCTAG CCCCTGCATC 720 780 TCCAACAGT CCAAGGTGAC AGCTGGTGCT AGGGGCGTGG GGTTAATAAA TGGCTTATCC TTCTCTCCAC CCAAGTTTCC ACCTGACCAG GTGAAAAACA AATCAGAAGG GTAAGATGAT 840 60

226

	GACAGGTCAC	ATGAAACCTT	TATTACCCTA	CAGTTGATAT	ATGAGGATCA	CATGCAAGTT	900
	ACATACTGAG	GATGTACAGG	GAAGTTCCCA	GCGCTGAACC	CCAGAATTAG	ACGTTCGCAT	960
5	CAGCCCCGTA	GGCCACGTGG	ACACCACCAC	AGCCTCTCTG	TATGGGGGTC	TGCCTCTGTA	1020
	GCACTTGGCA	TGTAGGGGCA	GAGCAAAAGG	GGCCANGCTG	GCCAGAGCCT	GGCTGCTGGG	1080
10	NAGARGAGGG	ACTTGTGGGS	CACGCCACNT	GCCTATCATT	CCCCAYTCAT	CTATTAGCCA	1140
	AAGTCACTCC	CCAGAGGCAG	AGCTAGCCCG	TTGTAGCCGT	GTCTGTGTGG	AGGGAAAGCT	1200
	TCTGAGTGGG	CAAGCCTACA	CACAGCCCCG	AGCCCCAAGA	GGAGGAAGAG	GTGGAGACCA	1260
15	GACGGAACCT	CCACAAGTCC	ATCATGGTTA	CAGCTGGCTT	CCCCGCAGCA	CCGAAGACCC	1320
	ACAGCATNGG	CCCTGCTGCC	CCCGACCCAG	CTCAGCTGCC	ANGCCTCACC	TTGCCAGGAA	1380
20	TTGAAAGAAA	GTTATTGAGT	ACTAATTGGC	CTCAGAGTNA	CAGGAAGCTC	AAGTTAAAGT	1440
	G						1441
25							

30

35

(2) INFORMATION FOR SEQ ID NO: 77:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 910 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:

GGCAGAGCTG GCCTTCGACT CGCTATGTCC ACTAACAATA TGTCGGACCC ACGGAGGCCG 60 AACAAAGTGC TGAGGTGAGG ACCCCAGCGT CGTGGGCACG GGTTCGGGTT GTGGGTGTGG 120 40 ATCGGGGCCC TGGGAAGCGC CTGTCTATCC CGGGGGCAGG ACCTGAGCGC CCCTGACCCT 180 CGAGCCTGTC GCAGGTACAA GCCCCCGCCG AGCGAATGTA ACCCGGCCTT GGACGACCCG 240 ACGCCGGACT ACATGAACCT GCTGGGCATG ATCTTCAGCA TGTGCGGCCT CATGCTTAAG 300 45 CTGAAGTGGT GTGCTTGGGT CGCTGTCTAC TGCTCCTTCA TCAGCTTTGC CAACTCTCGG 360 AGCTCGGAGG ACACGAAGCA AATGATGAGT AGCTTCATGT GAGACTTGCC CTACAGAACA 420 50 AGTGACTCTT GAGTAAGGGG TGGGGGGACC CCAGCCTGGC CATCCTAGAC TGACACCTCT 480 CTCCTGTCTT CATGCTGTCC ATCTCTGCCG TGGTGATGTC CTATCTGCAG AATCCTCAGC 540 CCATGACGCC CCCATGGTGA TACCAGCCTA GAAGGGTCAC ATTTTGGACC CTGTCTATCC 600 55 ACTAGGCCTG GGCTTTGGCT GCTAAACCTG CTGCCTTCAG CTGCCATCCT GGACTTCCCT 660 GAATGAGGCC GTCTCGGTGC CCCCAGCTGG ATAGAGGGAA CCTGGCCCTT TCCTAGGGAA 720 60 CACCCTAGGC TTACCCCTCC TGCCTCCCTT CCCCTGCCTG CTGCTGGGGG AGATGCTGTC 780

	CATGTTTCTA GGGGTATTCA TTTGCTTTCT CGTTGAAACC TGTTGTTAAT AAAGTTTTTC	840
5	ACTCTGAAAA AAAAAAAAAA AAAAAAAAAC TYGRGGGGGG GCCCGGAACC CAATTCSCCG	900
5	GATAGTGAGT	910
10	(2) INFORMATION FOR SEQ ID NO: 78:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2776 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
20	TCGACCCACG CGTCCGGGCG GGCAGTGATG GCGGCTGGTG ATGGGGACGT GAAGCTAGGC	60
	ACCCTGGGGA GTGGCAGCGA GAGCAGCAAC GACGGCGGCA GCGAGAGTCC AGGCGACGCG	120
25	GGAGCGGCAG CGRAAGGGGG AGGCTGGGCG GCGCCGCCGT TGGCGCTTCT GACGGGGGCC	180
	GGGGAAATGC TGCTGAACGT GGCGCTGGTG GCTCTGGTGC TGCTGGGGGC CTACCGGCTG	240
30	TGGGTGCGCT GGGGGGGCG GGGTCTGGGG GCCGGGGCCG GGGCGGCGA GGAGAGCCCC	300
	GCCACCTCTC TGCCTCGCAT GAAGAAGCGG GACTTCAGCT TGGAGCAGCT GCGCCAGTAC	360
	GACGGCTCCC GCAACCCGCG CATCCTGCTC GCGGTCAATG GGAAAGTCTT CGACGTGACC	420
35	AAAGGCAGCA AGTTCTACGG CCCGGCGGGT CCATATGGAA TATTTGCTGG TAGGGATGCC	480
	TCCAGAGGAC TGGCCACATT TTGCCTAGAT AAAGATGCAC TTAGAGATGA ATATGATGAT	540
40	CTCTCAGATT TGAATGCAGT ACAAATGGAG AGTGTTCGAG AATGGGAAAT GCAGTTTAAA	600
	GAAAAATATG ATTATGTAGG CAGACTCCTA AAACCAGGAG AAGAACCATC AGAATATACA	660
	GATGAAGAAG ATACCAAGGA TCACAATAAA CAGGATTGAA CTTTGTAAAC AACCAAAGTC	720
45	AGGGGCCTTC AGAACTGCAA TTCTTACTCC CTTTCACAGA CTGTCCGGAG TCTTTGGGTT	780
	TGATTCACCT GCTGCGAAAA ACATTCAACA AATTGTGTAC AAGATAAATT AATCTCACTA	840
50	TGAAGATTTG AATAACTAGA CATTATTTAT GCTGCCAAAC TCATTTGTTG CAGTTGTTTG	900
	TAATGTCTAG TGGGGCTTCA TCATCCTGAA AAGAAGGAGA CAGGGATTTT TTTAAAGAGC	960
	AAGAAAGTCA CAATATTACT TCTTTCCTTC CTTTTTTCCT TCTTTCCTTT CTTCTT	1020
55	TTTCTTTCTT TTTAAAATAT ATTGAAGACA ACCAGATATG TATTTGCTAC TCAAGTGTAC	1080
	AGATCTCCTC AAGAAACATC AAGGGACTCC TGTGTCACAT ACTGTGTTTT TATTTTAACA	1140
60	TGGGTGAGGG AGGCGACCTG ATCAGGGGAG GTGGGGGGTAC ACATCAATTT GAGTTGTTCA	1200

	GGCTACTGAA	ACATTAAAAT	GIGAATICCC	AAACTTTTCT	TTTTGGCTTT	GTCAGGGAAA	1260
	AGAAAAATAT	CTTTATAAAG	AAATCTTTGG	AAATTAGGAG	AAGGAATTTC	AGGTGGGTTT	1320
5	AAGTCAGAGC	TAGTTCCCCA	ACAGAAAGAT	CATTTGAAAC	CAGTTTTTAT	CCCTTCTCTT	1380
	TCCTTCCCTT	TCCCTAAATC	AAATCAATAT	TAATTGTGCC	TTATTTCACT	TAACATAGAC	1440
10	TTGAATTATT	TTTAGGGAAA	GCCCCTATAA	TGAATTCAGA	AATCACTACA	AGCAGCATTA	1500
10	AGACTGAAGT	TGGAATATTC	TGTTGACCAT	AAAACCTTGA	TATCATTCTG	TGTATATAGA	1560
	ATGTAAAAGG	AATATTACAG	TGTTAACTGC	CATATATGTA	ATATACACAA	ACTCAATTAG	1620
15	CATTGTAATG	GCCAAATGCA	TTCCCCCATG	CTTTTCTGTT	TTCAAAAAAA	TTGAAAAACA	1680
	AATCAACTCT	TATCCCCAAC	AGCTGCCTAA	TTTTAGGAGT	CTGACCCTCC	ACATCTCACT	1740
20	GGTGTGGGTG	CATGGGGCTG	TGGAGTGGGT	GTCAGTATGG	ATGTGTCTGA	ATGTGTGAGG	1800
20	CCTTGGAAGG	GACTCTTTCT	GCAGATACTG	TAAATACAAG	TACCATTTTA	ATAAAGCATG	1860
	TACAATAAAC	CAAAATAAGC	TTGAGTTGGA	CTTTATATAC	AGAACTGTAA	GCCAGTGCAT	1920
25	TATGATACAG	TTGTAAGATT	GTGCATTTGA	TTCAAGATAA	GGAAAAATCT	TGGAAATGAA	1980
	AAGCAGGCAC	KGGTTAACCA	AGTTGTACAC	ATTGTACCAC	ATTCAGCATA	ACTTTAGGAA	2040
30	GAAATTCCAC	TTTGTGAACA	TTCTCCAGAA	ATCCAAGATT	ATTCAGGTAA	GAATTGGTAT	2100
-	ATTAAATGTA	CATCTTTTA	CTTTCTATTT	TGATGCCAAC	TGATTATACT	AGACAATTAG	2160
	CACTCCAGGT	GGTTATTGAA	CACAAAACAG	TAAAAGAATA	TTGCACTGAT	AGATACTAAA	2220
35	TTATTATTTT	ATTAGGTTGA	AAAAGCCCTT	ACTAAAAGCC	CCTCATATAT	CAATTACTTT	2280
	ATTTCATTAT	GACTACTTAG	GTTCCGGGCT	GGGGACAAGT	TCACTTAAAA	AGGCAATGTT	2340
40	ATTTAACAGG	TCACCAGTTA	AGACTTCTGC	TTTGTAGATA	CATGCAGAAG	CCATCAAACA	2400
	AGGGGGRGCT	TTTAACTGCA	ACAATAAGCT	AAAGTATGTA	AAATACTACA	TTCTATTCAG	2460
	TCTTGGAGTG	TTTTGTAGAA	AGTTATCTTC	AGCCAAATCT	TTGCTGAAGA	CTGGTTGTGG	2520
45	AGTGTTGGTA	AATGCTTTGT	GTTTTTATGT	AAAATATTTT	СТАААСАААА	AATGTTAAAA	2580
	GTACATGTCC	TCTGTAGTAA	ACTGATATCT	ATATATATGA	ATCATTCAAG	CCTAAAGTCT	2640
50	AGTAATAAAC	TGTACTTGTG	AATAGAGAAA	CCCTAAATAT	TCATGCAGWA	AAAATTATGC	2700
	GGTCTGTTAA	GAAAAATGAG	TAATTTGTGT	TTTGGACTTG	AAATAAACAG	TGTTCTGTAG	2760
	ATAATTCCTC	AACTTC					2776

(2) INFORMATION FOR SEQ ID NO: 79:

60 (i) SEQUENCE CHARACTERISTICS:

229

(A) LENGTH: 1525 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	
	CCGCTGCTGA TAACTATGGC ATCCCCCGGG CCTGCAGGAA TTCGGCACGG AGCTACGGCG	60
10	CCGCCTGGCT CCTGCTGNCA CCTGCAGGCT CGTCGCGGGT GGAGCCCACC CAAGACATCA	120
	GCATCAGCGA CCAGCTGGGG GGCCAGGACG TGCCCGTGTT CCGGAACCTG TCCCTGCTGG	180
15	TGGTGGGTGT CGGCGCCGTG TTCTCACTGC TATTCCACCT GGGCACCCGG GAGAGGCGCC	240
13	GGCCGCATGC GGASGAGCCA GGCGAGCACA CCCCCCTGTT GGCCCCTGCC ACGGCCCAGC	300
	CCCTGCTGCT CTGGAAGCAC TGGCTCCGGG AGCSGGCTTT CTACCAGGTG GGCATACTGT	360
20	ACATGACCAC CAGGCTCATC GTGAACCTGT CCCAGACCTA CATGGCCATG TACCTCACCT	420
	ACTCGCTCCA CCTGCCCAAG AAGTTCATCG CGACCATTCC CCTGGTGATG TACCTCAGCG	480
25	GCTTCTTGTC CTCCTTCCTC ATGAAGCCCA TCAACAAGTG CATTGGGAGG AACATGACCT	540
23	ACTTCTCAGG CCTCCTGGTG ATCCTGGCCT TTGCCGCCTG GGTGGCGCTG GCGGAGGGAC	600
	TGGGTGTGGC CGTGTACGCA GCGGCTGTGC TGCTGGGTGC TGGCTGTGCC ACCATCCTCG	660
30	TCACCTCGCT GGCCATGACG GCCGACCTCA TCGGTCCCCA CACGAACAGC GGACTKTCGT	720
	GTACGGCTCC ATGAGCTTCT TGGATAAGGT GGCCAATGGG CTGGCAGTCA TGGCCATCCA	780
35	GAGCCTGCAC CCTTGCCCCT CAGAGCTCTG CTGCAGGGCC TGCGTGAGCT TTTACCACTG	840
33	GGCGATGGTG GCTGTGACGG GCGGCGTGGG CGTGGCCGCT GCCCTGTGTC TCTGTAGCCT	900
	CCTGCTGTGG CCGACCCGCC TGCGACGCTG GGACCGTGAT GCCCGGCCCT GACTCCTGAC	960
40	AGCCTCCTGC ACCTGTGCAA GGGAACTGTG GGGACGCACG AGGATGCCCC CCARGGCCTT	1020
	GGGGAAAAGC CCCCACTGCC CCTCACTCTT CTCTGGACCC CCACCCTCCA TCCTCACCCA	1080
45	GCTCCCGGGG GTGGGGTCGG GTGAGGGCAG CAGGGATGCC CGCCAGGGAC TTGCAAGGAC	1140
73	CCCCTGGGTT TTGAGGGTGT CCCATTCTCA ACTCTAATCC ATCCCAGCCC TCTGGAGGAT	1200
	TTGGGGTGCC CCTCTCGGCA GGGAACAGGA AGTAGGAATC CCAGAAGGGT CTGGGGGAAC	1260
50	CCTAACCCTG AGCTCAGTCC AGTTCACCCC TCACCTCCAG CCTGGGGGTC TCCAGACACT	1320
	GCCAGGGCCC CCTCAGGACG GCTGGAGCCT GGAGGAGACA GCCACGGGGT GGTGGGCTGG	1380
55	GCCTGGACCC CACCGTGGTG GGCAGCAGGG CTGCCCGGCA GGCTTGGTGG ACTCTGCTGG	1440
در	CAGCAAATAA AGAGATGACG GCAAAAAAAA AAAAAAAAAA	1500
	AAAAAAAAA AAACCCACCG TCCGC	1525

(2) INFORMATION FOR SEQ ID NO: 80:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1563 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	
	AATTCGGCAC GAGNCAGAAA CCTGCGGAAA ATGGTAGCGA TGGCGGCTGG GCCGAGTGGG	60
15	TGTCTGGTGC CGGCGTTTGG GCTACGGTTG TTGTTGGCGA CTGTGCTTCA AGCGGTGTCT	120
	GCTTTTGGGG CAGAGTTTTC ATCGGAGGCA TGCAGAGAGT TAGGCTTTTC TAGCAACTTG	180
20	CTTTGCAGCT CTTGTGATCT TCTCGGACAG TTCAACCTGC TTCAGCTGGA TCCTGATTGC	240
	AGAGGATGCT GTCAGGAGGA AGCACAATTT GAAACCAAAA AGCTGTATGC AGGAGCTATT	300
	CTTGAAGTTT GTGGAAA ATTGGGAAGG TTCCCTCAAG TCCAAGCTTT TGTTAGGAGT	360
25	GATAAACCCA AACTGTTCAG AGGACTGCAA ATCAAGTATG TCCGTGGTTC AGACCCTGTA	420
	TTAAAGCTTT TGGACGACAA TGGGAACATT GCTGAAGAAC TGAGCATTCT CAAATGGAAC	480
30	ACAGACAGTG TAGAAGAATT CCTGAGTGAA AAGTTGGAAC GCATATAAAT CTTGCTTAAA	540
	TTTTGTCCTA TCCTTTTGTT ACCTTATCAA ATGAAATATT ACAGCACCTA GAAAATAATT	600
	TAGTTTTGCT TGCTTCCATT GATCAGTCTT TTACTTGAGG CATTAAATAT CTAATTAAAT	660
35	CGTGAAATGG CAGTATAGTC CATGATATCT AAGGAGTTGG CAAGCTTAAC AAAACCCATT	720
	TTTTATAAAT GTCCATCCTC CTGCATTTGT TGATACCACT AACAAAATGC TTTGTAACAG	780
40	ACTTGCGGTT AATTATGCAA ATGATAGTTT GTGATAATTG GTCCAGTTTT ACGAACAACA	840
	GATTTCTAAA TTAGAGAGGT TAACAAGACA GATGATTACT ATGCCTCATG TGCTGTGTGC	900
	TCTTTGAAAG GAATGACAGC AGACTACAAA GCAAATAAGA TATACTGAGC CTCAACAGAT	960
45	TGCCTGCTCC TCAGAGTCTC TCCTATTTTT GTATTACCCA GCTTTCTTTT TAATACAAAT	1020
	GTTATTTATA GTTTACAATG AATGCACTGC ATAAAAACTT TGTAGCTTCA TTATTGTAAA	1080
50	ACATATTCAA GATCCTACAG TAAGAGTGAA ACATTCACAA AGATTTGCGT TAATGAAGAC	1140
50	TACACAGAAA ACCTTTCTAG GGATTTGTGT GGATCAGATA CATACTTGGC AAATTTTTGA	1200
	GTTTTACATT CTTACAGAAA AGTCCATTTA AAAGTGATCA TTTGTAAGAC CAAAATATAA	1260
55	ATAAAAAGTT TCAAAAATCT ATCTGAATTT GGAATTCTTC TGGTTTGTTC TTTCATGTTT	1320
	AAAAATGATG TTTTTCAATG CATTTTTTTC ATGTAAGCCC TTTTTTTTAGC CAAAATGTAA	1380
60	AAATGGCTGT AATATTTAAA ACTTATAACA TCTTATTGTT GGTAATAGTG CTTTATATTT	1440

	GTCTGATTTT ATTITTCAAA GTTTTTTCAT TTATGAACAC ATTITCATTG GTATATTATT	1500
	TAAGGAATAT CTCTTGATAT AGAATTTTTA TATTAAAAAT GATTTTTCTT TGCTTAAAAA	1560
5	AAA	1563
10	(2) INFORMATION FOR SEQ ID NO: 81:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1020 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
20	TGCACGCTGG CCATGTGGGN GTTGGGCCAC TGCGACCCCC GGCGCTGCAC GGGCCGCAAG	60
	CTGGCCCGCC TGGGGCTGGT GCGCTGCCTG CGCCTGGGCC ACAGATTCGG CGGTCTGGTG	120
25	CTGAGCCCCG TGGGCAAGCA GTACGCGTCC CCCGCAGACA GACAGCTGGT GGCGCAGTCT	180
25	GGGGTCGCCG TCATCGACTG CTCCTGGGCC AGGCTGGACG AGACACCGTT TGGGAAGATG	240
	CGAGGGAGCC ACTTGCGCCT GTTGCCCTAC CTGGTGGCCG CCAACCCCGT GAACTATGGC	300
30	CGGCCCTACA GACTITCCTG CGTGGAAGCG TTTGCTGCCA CCTTCTGCAT CGTAGGCTTT	360
	CCAGACCTTG CTGTCATTTT GCTGCGGAAG TTTAAATGGG GCAAGGGCTT CTTGGACCTG	420
25	AACCGCCAGC TCCTGGACAA GTACGCGGCC TGCGGCAGCC CGGAGGAGGT GCTGCAGGCG	480
35	GAGCAGGAGT TCTTGGCCAA TGCCAAGGAG AGCCCCCAGG AGGAGGAGAT CGATCCCTTC	540
	GATGTGGATT CAGGGAGAGA GTTTGGAAAC CCCAACAGGC CTGTGGCCAG CACCCGGCTG	600
40	CCCTCGGACA CTGATGACAG TGATGCGTCT GAGGACCCAG GGCCTKGCGC CGAGCGCGGA	660
	GGAGCCAGCA GCAGCTGCTG TGAAGAGGAG CAGACGCAGG GACGGGGGC TGAGGCCAGG	720
	GCCCCGGCTG AGGTTTGGAA AGGAATCAAG AAACGGCAGA GAGACTGAGG GTTGCAGACA	780
45	CATATATTTT TGAGGCTGGG TGACGAGAAA ATCTAGAGAC ATGAGGGACA TAAATGGGCC	840
	TGGCAGCCTC GGCTCTTTGC GGCTGCTGGC AGGACTGAGC TGTCCGGGTT CTCCCCACAC	900
50	TTCCAGCACA GCTGTGCTCT GTGTCCTGCC TCGGCGCTCT CGCAAATGAA GCTGCAGGCC	960
	AAGAAAAAA AAAAAAAAA AAAAAAAAA AAAAAAAAA	1020

- (2) INFORMATION FOR SEQ ID NO: 82:
- (i) SEQUENCE CHARACTERISTICS:
- 60 (A) LENGTH: 770 base pairs

300

360

420

480

232

(B) TYPE: nucleic acid

	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
	TCGACCCACG CGTCCGGGCC GCCGTAGCGC GTCTTGGGTC TCCCGGCTGC CGCTGCTGCC	60
10	GCCGCCGCCT CGGGTCGTGG AGCCAGGAGC GACGTCACCG CCATGGCAGG CATCAAAGCT	120
10	TTGATTAGTT TGTCCTTTGG AGGAGCAATC GGACTGATGT TTTTRATGCT TGGATGTGCC	180
	CTTCCAATAT ACAACAAATA CTGGCCCCTC TTTGTTCTAT TTTTTTACAT CCTTTCACCT	240
15	ATTCCATACT GCATAGCAAG AAGATTAGTG GATGATACAG ATGCTATGAG TAACGCTTGT	300
	AAGGAACTTG CCATCTTTCT TACAACGGC ATTGTCGTGT CAGCTTTTGG ACTCCCTATT	360
20	GTATTTGCCA GAGCACATCT GATTGAGTGG GGAGCTTGTG CACTTGTTCT CACAGGAAAC	420
	ACAGTCATCT TTGCAACTAT ACTAGGCTTT TTCTTGGTCT TTGGAAGCAA TGACGACTTC	480
	AGCTGGCAGC AGTGGTGAAA AGAAATTACT GAACTATTGT CAAATGGACT TCCTGTCATT	540
25	TGTTGGCCAT TCACGCACAC AGGAGATGGG GCAGTTAATG CTGAATGGTA TAGCAAGCCT	600
	CTIGGGGGTA TITTAGGTGC TCCCTTCTCA CTTTTATTGT AAGCATACTA TTTTCACAGA	660
30	GACTTGCTGA AGGATTAAAA GGATTTTCTC TTTTGGAAAA AAAAAAAAA AAAAACYCGA	720
	GGGGGGCCC GTWCCCATTC SCCCYATATG AATTCCNTTT TTACAATCCC	770
25		
35	(2) INFORMATION FOR SEQ ID NO: 83:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 481 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	
75	GAATICGGCA CGAGCATAGT GTTAACCACT AGAATTCACT GCCCTTCCTA TCCAAAAATG	60
	ACACTACTGA TCATTTTTCT TCCTTTTSCT TTTACAACAT TMACAAATTC AGGTGGCTCT	120
50	TTCCCAGTAC GGTAGGCTGA TTCGTATGGA TGCACCACGG TTGGTGACTC CCCCCACCCC	180

ACAGAGTITC TGGCGTTCAT TCGGTTGAAC CCAAGGCCAG CAAGGGCTGA CTGGGAACAA

ACCGAACACT AGGCCGTGAA CCAATCGTCT CTCCGTGCCC GGGAGCGAMC CCGGGGGCCT

TTCACTCTCC CAAGGACTCC ANGGGGGGGC CGGGTACCCA ATTCCGCCCC TATAGTGAAT

CCGTNATTAC AATTCCACNT GGGCCGTCCN TTTTTACAAA CGTTCCGTTG AACTGGGAAA

AACCCCTTGG CGGTTTACCC CAACTTTAAT CCGCCTTTGC AAGCACATCC CCCCCCTTTT

55

	С	481
5		
	(2) INFORMATION FOR SEQ ID NO: 84:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 644 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
	GCTGGGATAG AGCATGAAAG GAGAACTGCT CCCTTTTCTG TTTCTCACAG TTTGGTTATG	60
	GCTTTATAAA CTTKTATTTG GTGAAAGCCC CAGATACCCA AATGTCATTG GCAAAACTTA	120
20	TTTTTTTTC TGGACAGATC AGATTTCTAG AGAGAGCAGA TTTCTAGAGA GATTAGCATT	180
	CATAGTAAGT GAAAATTGTC TAATTTTTT AATCCATGCT ATTACTGGGC AGTAGGTCTA	240
25	ATTTTTTTTG ACAAAAATA GATCTATTTT CCTTATATAT TGATTTAGAA TCTTAAGTTA	300
	GAATTITATA GAAGAAATGT CTGAGCAGTT CTATGTATGG AGGAGCAATT CAGCTTTTCA	360
	GCAGCAACTT TATCTTTTGC CACTAGAGGG AGATCTGTGG TTGCTTTCTC CTTTGGAGAA	420
30	TAGCTGCTTT GCTTTTATTT TTAATTTCTA AGGTTGGAAT AGAACTTATT CTCAAAATTC	480
	CTTTAGTGTT ATTAAATATT TTCATTTATT AGTCAAAGGT AAGTTAATTA AGCTTGTTTA	540
35	ATGATGCCAA TCTTATGCTT TTCTGTAATC TTCAATTTTT AATAAATGTG AGTTAGATAC	600
	TAAGTGAAAA AAAAAAAAA AAAAAAAAA AAAAAAAAA	644
40		
	(2) INFORMATION FOR SEQ ID NO: 85:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1351 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
	GGCACGAGTG CGCASGCGTG GGGCTCTCTC CTTGTCAGTC GGCGCCGCGT GCGGGCTGGT	60
	GGCTCTGTGG CAGCGGCGC GGCAGGACTC CGGCACTATG AGCGGCTTCA GCACCGAGGA	120
55	GCGCGCCGCG CCNTTCTCCC TGGAGTACCG AGTCTTCCTC AAAAATGAGA AAGGACAATA	180
	TATATCTCCA TITCATGATA TICCAATTTA TGCAGATAAG GATGTGTTC ACATGGTAGT	240
60	TGAAGTACCA CGCTGGTCTA ATGCAAAAAT GGAGATTGCT ACAAAGGACC CTTTAAACCC	300

	TATTAAACAA	GATGTGAAAA	AAGGAAAACT	TCGCTATGTT	GCGAATTTGT	TCCCGTATAA	360
5	AGGATATATC	TGGAACTATG	GTGCCATCCC	TCAGACTTGG	GAAGACCCAG	GGCACAATGA	420
J	TAAACATACT	GGCTGTTGTG	GTGACAATGA	CCCAATTGAT	GTGTGTGAAA	TTGGAAGCAA	480
	GGTATGTGCA	AGAGGTGAAA	TAATTGGCGT	GAAAGTTCTA	GGCATATTGG	CTATGATTGA	540
10	CGAAGGGGAA	ACCGACTGGA	AAGTCATTGC	CATTAATGTG	GATGATCCTG	ATGCAGCCAA	600
	TTATAATGAT	ATCAATGATG	TCAAACGGCT	GAAACCTGGC	TACTTAGAAG	CTACTGTGGA	660
15	CTGGTTTAGA	AGGTATAAGG	TTCCTGATGG	AAAACCAGAA	AATGAGTTTG	CGTTTAATGC	720
15	AGAATTTAAA	GATAAGGACT	TTGCCATTGA	TATTATTAAA	AGCACTCATG	ACCATTGGAA	780
	AGCATTAGTG	ACTAAGAAAA	CGAATGGAAA	AGGAATCAGT	TGCATGAATA	CAACTTTGTC	840
20	TGAGAGCCCC	TTCAAGTGTG	ATCCTGATGC	TGCCAGAGCC	ATTGTGGATG	CTTTACCACC	900
	ACCCTGTGAA	TCTGCCTGCA	CAGTACCAAC	AGACGTGGAT	AAGTGGTTCC	ATCACCAGAA	960
25	AAACTAATGA	GATTTCTCTG	GAATACAAGC	TGATATTGCT	ACATCGTGTT	CATCTGGATG	1020
	TATTAGAAGT	AAAAGTAGTA	GCTTTTCAAA	GCTTTAAATT	TGTAGAACTC	ATCTAACTAA	1080
	AGTAAATTCT	GCTGTGACTA	ATCCAATATA	CTCAGAATGT	TATCCATCTA	AAGCATTTTT	1140
30	CATATCTCAA	CTAAGATAAC	TTTTAGCACA	TGCTTAAATA	TCAAAGCAGT	TGTCATTTGG	1200
	AAGTCACTTG	TGAATAGATG	TGCAAGGGGA	GCACATATTG	GATGTATATG	TTACCATATG	1260
35	TTAGGAAATA	TTTTATTAAA	GCTGAAAAA	АААААААА	AACCNCGGGG	GGGCCCCGG	1320
	TCCCCATTTG	GCCCTTTGGG	GGGNGGTTTT	A			1351

45

(2) INFORMATION FOR SEQ ID NO: 86:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2527 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

CTCTTGCTAC CTTCCCGGCG CAGAGAACCC CGGCTGCTCA GCGCGCTCCG GGGTCATGGA 60

GATCCCCGGG AGCCTGTGCA AGAAAGTCAA GCTGAGCAAT AACGCGCAGA ACTGGGGAAT 120

55 GCAGAGAGCA ACCAATGTCA CCTACCAAGC CCATCATGTC AGCAGGAACA AGAGAGGTCA 180

GGTGGTGGGG ACCAGAGGTG GCTTTCGTGG TTGCACAGTT TGGCTAACAG GCTTGTCTGG 240

AGCGGGAAAG ACTACTGTGA GCATGGCCTT GGAGGAGTAC CTGGTTTGTC ATGGTATTCC 300

	ATGCTACACT	CTGGATGGTG	ACAATATTCG	TCAAGGTCTC	AATAAAAATC	TTGGCTTTAG	360
	TCCTGAAGAC	AGAGAAGAGA	ATGTTCGACG	CATCGCAGAA	GTTGCTAAAC	TGTTTGCAGA	420
5	TGCTGGCTTA	GTGTGCATCA	CAAGTTTCAT	ATCACCTTAC	ACTCAGGATC	GCAACAATGC	480
	AAGGCAAATT	CATGAAGGTG	CAAGTTTACC	GTTTTTTGAA	GTATTTGTTG	ATGCTCCTCT	540
10	GCATGTTTGT	GAACAGAGGG	ATGTCAAAGG	ACTCTACAAA	AAAGCCCGGG	CAGGAGAAAT	600
10	TAAAGGTTTC	ACTGGGATCG	ATTCTGAATA	TGAAAAGCCA	GAGGCCCCTG	AGTTGGTGCT	660
	GAAAACAGAC	TCCTGTGATG	TAAATGACTG	TGTCCAGCAA	GTTGTGGAAC	TTCTACAGGA	720
15	ACGGGATATT	GTACCTGTGG	ATGCATCTTA	TGAAGTAAAA	GAACTATATG	TGCCAGAAAA	780
	TAAACTTCAT	TTGGCAAAAA	CAGATGCGGA	AACATTACCA	GCACTGAAAA	TTAATAAAGT	840
20	GGATATGCAG	TGGGTGCAGG	TTTTGGCAGA	AGGTTGGGCA	ACCCCATTGA	ATGGCTTTAT	900
20	GAGAGAGAGG	GAGTACTTGC	AGTGCCTTCA	TTTTGATTGT	CTTCTGGATG	GAGGTGTCAT	960
	TAACTTGTCA	GTACCTATAG	TTCTGACTGC	GACTCATGAA	GATAAAGAGA	GGCTGGACGG	1020
25	CTGTACAGCA	TTTGCTCTGA	TGTATGAGGG	CCGCCGTGTG	GCCATTCTTC	GCAATCCAGA	1080
	GTTTTTTGAG	CACAGGAAAG	AGGAGCGCTG	TGCCAGACAG	TGGGGAACGA	CATGCAAGAA	1140
30	CCACCCCTAT	ATTAAGATGG	TGATGGAACA	AGGAGATTGG	CTGATTGGAG	GAGATCTTCA	1200
50	AGTCTTGGAT	CGAGTTTATT	GGAATGATGG	TCTTGATCAG	TATCGTCTTA	CTCCTACTGA	1260
	GCTAAAGCAG	AAATTTAAAG	ATATGAATGC	TGATGCTGTC	TTTGCATTTC	AACTACGCAA	1320
35	CCCAGTGCAC	AATGGACATG	CCCTGTTAAT	GCAGGATACC	CATAAGCAAC	TTCTAGAGAG	1380
	GGGCTACCGG	CGCCCTGTCC	TCCTCCTCCA	CCCTCTGGGT	GGCTGGACAA	AGGATGACGA	1440
40	TGTTCCTTTG	ATGTGGCGTA	TGAAGCAGCA	TGCTGCAGTG	TTGGAGGAAG	GAGTTCTGAA	1500
10	TCCTGAGACG	ACAGTGGTGG	CCATCTTCCC	ATCTCCCATG	ATGTATGCTG	GACCAACTGA	1560
	GGTCCAGTGG	CATTGCAGAG	CACGGATGGT	TGCAGGAGCC	AACTTTTACA	TTGTTGGACG	1620
45	AGACCCTGCT	GGCATGCCTC	ATCCAGAAAC	AGGGAAGGAT	CTTTATGAGC	CAAGTCATGG	1680
	TGCCAAAGTG	CTGACGATGG	CCCCTGGTTT	AATCACT TT G	GAAATAGTTC	CCTTTCGAGT	1740
50	TGCAGCTTAC	AACAAGAAAA	AGAAGCGTAT	GGACTACTAT	GACTCTGAAC	ACCATGAAGA	1800
	CTTTGAATTT	ATTTCAGGAA	CACGAATGCG	CAAACTTGCT	CGAGAAGGCC	AGAAACCACC	1860
	TGAAGGTTTC	ATGGCTCCCA	AGGCTTGGAC	CGTGCTGACA	GAATACTACA	AATCCTTGGA	1920
55	GAAAGCTTAG	GCTGTTAACC	CAGTCACTCC	ACCTTTGACA	CATTACTAGT	AACAAGAGGG	1980
	GACCACATAG	TCTCTGTTGG	CATTTCTTTG	TGGTGTCTGT	CTGGACATGC	TTCCTAAAAA	2040
60	CAGACCATTT	TCCTTAACTT	GCATCAGTTI	TGGTCTGCCT	TATGAGTTCT	GTTTTGAACA	2100

236

	AGTGTAACAC	ACTGATGGTT	TTAATGTATC	TTTTCCACTT	ATTATAGTTA	TATTCCTACA	2160
	ATACAATTT	AAAATTGTCT	TTTTATATTA	TATTTATGCT	TCTGTGTCAT	GATTTTTTCA	2220
5	AGCTGTTATA	TTAGTTGTAA	CCAGTAGTAT	TCACATTAAA	TCTTGCTTTT	TTTCCCCTTA	2280
	AAAAAAGAAA	AAAATTACCA	AACAATAAAC	TTGGCTAGAC	CTTGTTTTGA	GGATTITACA	2340
10	AGACCTTTGT	AGCGATTAGA	TTTTTTTCT	ACATTGAAAA	TAGAAACTGC	TTCCTTTCTT	2400
10	CTTTCCAGTC	AGCTATTGGT	CTTTCCAGCT	GTTATAATCT	AAAGTATTCT	TATGATCTGT	2460
	GTAAGCTCTG	AATGAACTTC	TTTACTCAAT	AAAATTAATT	TTTTGGCTTC	ТТААААААА	2520
15	AAAAAA						2527

20 (2) INFORMATION FOR SEQ ID NO: 87:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2566 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

CCCAAGAATT CGGCACGAGC GNGGCAWAAK TGGGATTTCT GAAACCTGTA GGCCCCAAGC 60 CCATCAACTT GCCCAAAGAA GATTCCAAAC CTACATTTCC CTGGCCTSCT GGAAACAAGC 120 CATCTCTTCA CAGTGTAAAC CAAGACCATG ACTTAAAGCC ACTAGGCCGA AATCTGGGCC 180 35 TACTCCTCCA ACCTCAGAAA ATGAACAGAA GCAAGCKTTT CCCAAATTGA CTGGGGTTAA 240 AGGGAAATTT ATGTCAGCAT CACAAGATCT TGAACCCAAG CCCCTCTTCC CCAAACCCGC 300 40 CTTTGGCCAG AAGCCGCCC TAAGTACCGA GAACTCCCAT GAAGACGAAA GCCCCATGAA 360 GAATGTGTCT TCATCAAAAG GGTCCCCAGC TCCCCTGGGA GTCAGGTCCA AAAGCGGCCC 420 TTTAAAACCA GCAAGGGAAG ACTCAGAAAA TAAAGACCAT GCAGGGGAGA TTTCAAGTTT 480 45 GCCCTTTCCT GGAGTGGTTT TGAAACCTGC TGCGAGCAGG GGAGGCCCAG GTCTCTCCAA 540 AAATGGTGAA GAAAAAAAGG AAGATAGGAA GATAGATGCT GCTAAGAACA CCTTCCAGAG 600 50 CAAAATAAAT CAGGAAGAGT TGGCCTCAGG GACTCCTCCT GCCAGGTTCC CTAAGGCCCC 660 TTCTAAGCTG ACAGTGGGG GGCCATGGGG CCAAAGTCAG GAAAAGGAAA AGGGAGACAA 720 GAATTCAGCC ACCCGAAAC AGAAGCCATT GCCTCCCTTG TTTACCTTGG GTCCACCTCC 780 55 ACCAAAACCC AACAGACCAC CAAATGTTGA CCTGACGAAA TTCCACAAAA CCTCTTCTGG 840 AAACAGTACT AGCAAAGGCC AGACGTCTTA CTCAACAACT TCCCTGCCAC CACCTCCACC 900 60 ATCCCATCCG GCCAGCCAAC CACCATTGCC AGCATCTCAC CCATCACAAC CACCAGTCCC 960

25

	AAGCCTACCT	CCCAGAAACA	TTAAACCTCC	GTTTGACCTA	AAAAGCCCTG	TCAATGAAGA	1020
5	CAATCAAGAT	GGTGTCACGC	ACTCTGATGG	TGCTGGAAAT	CTAGATGAGG	AACAAGACAG	1080
.5	TGAAGGAGAA	ACATATGAAG	ACATAGAAGC	ATCCAAAGAA	AGAGAGAAGA	AAAGGGAAAA	1140
	GGAAGAAAAG	AAGAGGTTAG	AGCTGGAGAA	AAAGGAACAG	AAAGAGAAAG	AAAAGAAAGA	1200
10	ACAAGAAATA	AAGAAGAAAT	TTAAACTAAC	AGGCCCTATT	CAAGTCATCC	ATCTTGCAAA	1260
	AGCTTGTTGT	GATGTCAAAG	GAGGAAAGAA	TGAACTGAGC	TTCAAGCAAG	GAGAGCAAAT	1320
15	TGAAATCATC	CGCATCACAG	ACAACCCAGA	AGGAAAATGG	TTGGGCAGAA	CAGCAAGGG	1380
13	TTCATATGGC	TATATTAAAA	CAACTGCTGT	AGAGATTGAC	TATGATTCTT	TGAAACTGAA	1440
	AAAAGACTCT	CTTGGTGCCC	CTTCAAGACC	TATTGAAGAT	GACCAAGAAG	TATATGATGA	1500
20	TGTTGCAGAG	CAGGATGATA	TTAGCAGCCA	CAGTCAGAGT	GGAAGTGGAG	GGATATTCCC	1560
	TCCACCACCA	GATGATGACA	TTTATGATGG	GATTGAAGAG	GAAGATGCTG	ATGATGGCTC	1620
25	CACACTACAG	GTTCAAGAGA	AGAGTAATAC	GTGGTCCTGG	GGGATTTTGA	AGATGTTAAA	1680
4 3	GGGAAAAGAT	GACAGAAAGA	AAAGTATACG	AGAGAAACCT	AAAGTCTCTG	ACTCAGACAA	1740
	TAATGAAGGT	TCATCTTTCC	CTGCTCCTCC	TAAACAATTG	GACATGGGAG	ATGAAGTTTA	1800
30	CGATGATGTG	GATACCTCTG	ATTTCCCTGT	TTCATCAGCA	GAGATGAGTC	AAGGAACTAA	1860
	TGTTGGAAAA	GCTAAGACAG	AAGAAAAGGA	CCTTAAGAAG	CTAAAAAAGC	AGRAAAARA	1920
35	ARAAAAAGAC	TTCAGGAAAA	AATTTAAATA	TGATGGTGAA	ATTAGAGTCC	TATATTCAAC	1980
55	TAAAGTTACA	ACTTCCATAA	CTTCTAAAAA	GTGGGGAACC	AGAGATCTAC	AGGTAAAACC	2040
	TGGTGAATCT	CTAGAAGTTA	TACAAACCAC	AGATGACACA	AAAGTTCTCT	GCAGAAATGA	2100
40	AGAAGGGAAA	TATGGTTATG	TCCTTCGGAG	TTACCTAGCG	GACAATGATG	GAGAGATCTA	2160
	TGATGATATT	GCTGATGGCT	GCATCTATGA	CAATGACTAG	CACTCAACTT	TGGTCATTCT	2220
45	GCTGTGTTCA	TTAGGTGCCA	ATGTGAAGTC	TGGATTTTAA	TTGGCATGTT	ATTGGGTATC	2280
	AAGAAAATTA	ATGCACAAAA	CCACTTATTA	TCATTTGTTA	TGAAATCCCA	ATTATCTTTA	2340
	CAAAGTGTTT	AAAGTTTGAA	CATAGAAAAT	AATCTCTCTG	CTTAATTGTT	ATCTCAGAAG	2400
50	ACTACATTAG	TGAGATGTAA	GAATTATTAA	ATATTCCATT	TCCGCTTTGG	CTACAATTAT	2460
	GAAGAAGTTG	AAGGTACTTC	TTTTAGACCA	CCAGTAAATA	ATCCTCCTTC	AAAAAAAA	2520
55	AATAAAAAAA	AAAAAAAAA	ACTCGAGGGG	GGGCCCGGTA	CCCAAT		2566

(2) INFORMATION FOR SEQ ID NO: 88:

238

	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 540 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
10	GAATTCGGCA CGAGGCTTTC TGTGTCCTCT GTGGCTGCTT TAGTGTGCCA CCAGGGGCAG	60
10	ACTTGGGTGG GTTGCAGCAG AGATGGCATG GCCCTCAAGG TCCAAGATGT TTACTCTCTT	120
	GCCGGTCCTC TGTTATCTCT GGTCTTTGTG GTTGCCACAG TTTTCTTGGA TCCAGGAGTT	180
15	AAAGGCAGTC CTGAGGGATG ATGGCCTCAT CTCCGCAGTT GCYTGGAATG CTGAATTTCA	240
	GACGTGCTAA AGGAGGGTTG CAGACATTGT GTGGWATGCA TTCAGACCCC AGATGTGGGT	300
20	GCAGGAAGGC AGGCATGGCA CAGCCAGGTA GAGACTGGTT TCCAGGCCCA AGCAGCCTTC	360
20	AGCAGCTGTG CGCCTTGTTT CTGATGTTGT TTGGGAGTAA GAATAATGTA GACATGGGGG	420
	GTCATGARGC TCAATAAAAA CTTCAAGGAA ACCTCCCATG GCATGGTTGG GCGCAGTGAC	480
25	TCATGCCTGT AACCCCAGCA CTGTGGAATG CCAAGGTGGA AGGATCGCTT GAGGCCAAGA	540
20		
30	(2) INFORMATION FOR SEQ ID NO: 89:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1863 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
40	TCGACCCACG CGTCCGGCGA GATCCCTACC GCAGTAGCCG CCTCTGCCGC CGCGGAGCTT	60
	CCCGAACCTC TTCAGCCGCC CGGAGCCGCT CCCGGAGCCC GGCCGTAGAG GCTGCAATCG	120
45	CAGCCGGGAG CCCGCAGCCC GCGCCCCGAG CCCGCCGCCG CCCTTCGAGG GCGCCCCAGG	180
10	CCGCGCCATG GTGAAGGTGA CGTTCAACTC CGCTCTGGCC CAGAAGGAGG CCAAGAAGGA	240
	CGAGCCCAAG AGCGGCGAGG AGGCGCTCAT CATCCCCCCC GACGCCGTCG CGGTGGACTG	300
50	CAAGGACCCA GATGATGTGG TACCAGTTGG CCAAAGAAGA GCCTGGTGTT GGTGCATGTG	360
	CTTTGGACTA GCATTTATGC TTGCAGGTGT TATTCTAGGA GGAGCATACT TGTACAAATA	420
55	TTTTGCACTT CAACCAGATG ACGTGTACTA CTGTGGAATA AAGTACATCA AAGATGATGT	480

CATCTTAAAT GAGCCCTCTG CAGATGCCCC AGCTGCTCTC TACCAGACAA TTGAAGAAAA

TATTAAAATC TTTGAAGAAG AAGAAGTTGA ATTTATCAGT GTGCCTGTCC CAGAGTTTGC

AGATAGTGAT CCTGCCAACA TTGTTCATGA CTTTAACAAG AAACTTACAG CCTATTTAGA

540

660

	TCTTAACCTG GATAAGTGCT ATGTGATCCC TCTGAACACT TCCATTGTTA	TGCCACCCAG	720
_	AAACCTACTG GAGTTACTTA TTAACATCAA GGCTGGAACC TATTTGCCTC	AGTCCTATCT	780
5	GATTCATGAG CACATGGTTA TTACTGATCG CATTGAAAAC ATTGATCACC	TGGGTTTCTT	840
	TATTTATCGA CTGTGTCATG ACAAGGAAAC TTACAAACTG CAACGCAGAG	AAACTATTAA	900
10	AGGTATTCAG AAACGTGAAG CCAGCAATTG TTTCGCAATT CGGCATTTTG	AAAACAAATT	960
	TGCCGTGGAA ACTTTAATTT GTTCTTGAAC AGTCAAGAAA AACATTATTG	AGGAAAATTA	1020
15	ATATCACAGC ATAACCCCAC CCTTTACATT TTGTGCAGTG ATTATTTTTT	AAAGTCTTCT	1080
13	TTCATGTAAG TAGCAAACAG GGCTTTACTA TCTTTTCATC TCATTAATTC	AATTAAAACC	1140
	ATTACCTTAA AATTTTTTC TTTCGAAGTG TGGTGTCTTT TATATTTGAA	TTAGTAACTG	1200
20	TATGAAGTCA TAGATAATAG TACATGTCAC CTTAGGTAGT AGGAAGAATT	ACAATTTCTT	1260
	TAAATCATTT ATCTGGATTT TTATGTTTTA TTAGCATTTT CAAGAAGACC	GATTATCTAG	1320
25	AGAATAATCA TATATATGCA TACGTAAAAA TGGACCACAG TGACTTATTT	GTAGTTGTTA	1380
	GTTGCCCTGC TACCTAGTTT GTTAGTGCAT TTGAGCACAC ATTTTAATTT	TCCTCTAATT	1440
	AAAATGTGCA GTATTTTCAG TGTCAAATAT ATTTAACTAT TTAGAGAATC	ATTTCCACCT	1500
30	TTATGTTTTA ATATCCTAGG CATCTGCTGT AATAATATTT TAGAAAATGT	TTGGAATTTA	1560
	AGAAATAACT TGTGTTACTA ATTTGTATAA CCCATATCTG TGCAATGGAA	TATAAATATC	1620
35	ACAAAGTTGT TTAACTAGAC TGCGTGTTGT TTTTCCCGTA TAATAAAACC	AAAGAATAGT	1680
	TTGGTTCTTC AAATCTTAAG AGAATCCACA TAAAAGAAGA AACTATTTT	TAAAAATTCA	1740
	CTTCTATATA TACAATGAGT AAAATCACAG ATTTTTCTT TAAATAAAA	TAAGTCATTT	1800
40	TAATAACTAA ACCAGATTCT TTGTGATACT ATTAANGTAA CATTTAGCCC	САААААААА	1860
	AAA		1863
45			
	(2) INFORMATION FOR SEQ ID NO: 90:		
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2478 base pairs (B) TYPENTERS: double		

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:

> 60 GGCACAGCGG CACGAGGTGA GCTGAGCCGG TGGGTGAGCG GCGGCCACGG CATCCTGTGC TGTGGGGGCT ACGAGGAAAG ATCTAATTAT CATGGACCTG CGACAGTTTC TTATGTGCCT 120

	GTCCCTGTGC	ACAGCCTTTG	CCTTGAGCAA	ACCCACAGAA	AAGAAGGACC	GTGTACATCA	180
	TGAGCCTCAG	CTCAGTGACA	AGGTTCACAA	TGATGCTCAG	AGTTTTGATT	ATGACCATGA	240
5.	TGCCTTCTTG	GGTGCTGAAG	AAGCAAAGAC	CTTTGATCAG	CTGACACCAG	AAGAGAGCAA	300
	GGAAAGGCTT	GGAAAGATTG	TAAGTAAAAT	AGATGGCGAC	AAGGACGGGT	TTGTCACTGT	360
10	GGATGAGCTC	AAAGACTGGA	TTAAATTTGC	ACAAAAGCGC	TGGATTTACG	AGGATGTAGA	420
10	GCGACAGTGG	AAGGGGCATG	ACCTCAATGA	GGACGGCCTC	GTTTCCTGGG	AGGAGTATAA	480
	AAATGCCACC	TACGGCTACG	TTTTAGATGA	TCCAGATCCT	GATGATGGAT	TTAACTATAA	540
15	ACAGATGATG	GTTAGAGATG	AGCGGAGGTT	TAAAATGGCA	GACAAGGATG	GAGACCTCAT	600
	TGCCACCAAG	GAGGAGTTCA	CAGCTTTCCT	GCACCCTGAG	GAGTATGACT	ACATGAAAGA	660
20	TATAGTAGTA	CAGGAAACAA	TGGAAGATAT	AGATAAGAAT	GCTGATGGTT	TCATTGATCT	720
20	AGAAGAGTAT	ATTGGTGACA	TGTACAGCCA	TGATGGGAAT	ACTGATGAGC	CAGAATGGGT	780
	AAAGACAGAG	CGAGAGCAGT	TTGTTGAGTT	TCGGGATAAG	AACCGTGATG	GGAAGATGGA	840
25	CAAGGAAGAG	ACCAAAGACT	GGATCCTTCC	CTCAGACTAT	GATCATGCAG	AGGCAGAAGC	900
	CAGGCACCTG	GTCTATGAAT	CAGACCAAAA	CAAGGATGGC	AAGCTTACCA	AGGAGGAGAT	960
30	CGTTGACAAG	TATGACTTAT	TTGTTGGCAG	CCAGGCCACA	GATTTTGGGG	AGGCCTTAGT	1020
50	ACGGCATGAT	GAGTTCTGAG	CTRCGGAGGA	ACCCTCATTT	CCTCAAAAGT	TTTTTATTTAA	1080
	TACAGCTTCT	GGTTTCACAT	GAAATTGTTT	GCGCTACTGA	GACTGTTACT	ACAAACTTTT	1140
35	TAAGACATGA	AAAGGCGTAA	TGAAAACCAT	CCCGTCCCCA	TTCCTCCTCC	TCTCTGAGGG	1200
	ACTGGAGGGA	AGCCGTGCTT	CTGAGGAACA	ACTCTAATTA	GTACACTTGT	GTTTGTAGAT	1260
40	TTACACTTTG	TATTATGTAT	TAACATGGCG	TGTTTATTTT	TGTATTTTC	TCTGGTTGGG	1320
	AGTATGATAT	GAAGGATCAA	GATCCTCAAC	TCACACATGT	AGACAAACAT	TAGCTCTTTA	1380
	CTCTTTCTCA	ACCCCTTTTA	TGATTTTAAT	AATTCTCACT	TAACTAATTT	TGTAAGCCTG	1440
45	AGATCAATAA	GAAATGTTCA	GGAGAGAGGA	AAGAAAAAA	ATATATGCTC	CACAATTTAT	1500
	ATTTAGAGAG	AGAACACTTA	GTCTTGCCTG	TCAAAAAGTC	CAACATTTCA	TAGGTAGTAG	1560
50	GGGCCACATA	TTACATTCAG	TTGCTATAGG	TCCAGCAACT	GAACCTGCCA	TTACCTGGGC	1620
	AAGGAAAGAT	CCCTTTGCTC	TAGGAAAGCT	TGGCCCAAAT	TGATTTTCTT	CTTTTTCCCC	1680
	CTGTAGGACT	GACTGTTGGC	TAATTTTGTC	AAGCACAGCT	GIGGIGGGAA	GAGTTAGGGC	1740
55	CAGTGTCTTG	AAAATCAATC	AAGTAGTGAA	TGTGATCTCT	TTGCAGAGCT	ATAGATAGAA	1800
	ACAGCTGGAA	AACTAAAGGA	AAAATACAAG	TGTTTTCGGG	GCATACATTI	TTTTTCTGGG	1860
60	TGTGCATCTG	TTGAAATGCT	CAAGACTTAA	TTATTTGCCT	' TTTGAAATCA	CTGTAAATGC	1920
-							

	CCCCATCCGG	TICCTCTTCT	TCCCAGGTGT	GCCAAGGAAT	TAATCTTGGT	TTCACTACAA	1980
	TTAAAATTCA	CTCCTTTCCA	ATCATGTCAT	TGAAAGTGCC	TTTAACGAAA	GAAATGGTCA	2040
5	CTGAATGGGA	ATTCTCTTAA	GAAACCCTGA	GATTAAAAAA	AGACTATTTG	GATAACTTAT	2100
	AGGAAAGCCT	AGAACCTCCC	AGTAGAGTGG	GGATTTTTTT	CTTCTTCCCT	TTCTCTTTTG	2160
10	GACAATAGTT	AAATTAGCAG	TATTAGTTAT	GAGTTTGGTT	GCAGTGTTCT	TATCTTGTGG	2220
10	GCTGATTTCC	AAAAACCACA	TGCTGCTGAA	TTTACCAGGG	ATCCTCATAC	CTCACAATGC	2280
	AAACCACTTA	CTACCAGGCC	TTTTTCTGTG	TCCACTGGAG	AGCTTGAGCT	CACACTCAAA	2340
15	GATCAGAGGA	CCTACAGAGA	GGGCTCTTTG	GTTTGAGGAC	CATGGCTTAC	CTTTCCTGCC	2400
	TTTGACCCAT	CACACCCCAT	TTCCTCCTCT	TTCCCTCTCC	CCGCTGCCAA	TTCCTGCAGC	2460
20	CCGGGGGAAC	CACTAGTT					2478

(2) INFORMATION FOR SEQ ID NO: 91:

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2058 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- 30 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

TCGGCCTTGC TTTTGTGGYC TTCCTCTGTG GCCAGAGCGT TTTCATCACC AAGCCTCCTG 60 35 120 ATGGCAGTNC CTTCACCGAT ATGTTCAAGA TACTGACGTA TTCCTGCTGT TCCCAGAAGC GAAGTGGAGA GCGCCAGAGT AATGGTGAAG GCATTGGAGT NTTTCAGCAA TCTTCTAAAC 180 40 240 AAAGTCTGTT TGATTCATGT AAGATGTCTC ATGGTGGGCC ATTTACAGAA GAGAAAGTGG 300 AAGATGTGAA AGCTCTGGTC AAGATTGTCC CTGTTTTCTT GGCTTTGATA CCTTACTGGA CAGTGTATTT CCAAATGCAG ACAACATATG TTTTACAGAG TCTTCATTTG AGGATTCCAG 360 45 AAATTTCAAA TATTACAACC ACTCCTCACA CGCTCCCTGC AGCCTGGCTG ACCATGTTTG 420 ATGCTGTGCT CATCCTCGTG CTCATCCCTC TGAAGGACAA ACTGGTCGAT CCCATTTTGA 480 50 540 GAAGACATGG CCTGCTCCCA TCCTCCTGA AGAGGATCGC CGTGGGCATG TTCTTTGTCA TGTGCTCRGC CTTTGCTGCA GGAATTTTGG AGAGTAAAAG GCTGAACCTT GTTAAAGAGA 600 AAACCATTAA TCAGACCATC GGCAACGTCG TCTACCATGC TGCCGATCTG TCGCTGTGGT 660 55 GGCAGGTGCC GCAGTACTTG CTGATTGGGA TCAGCGAGAT CTTTGCAAGT ATCGCAGGCC 720 TGGAATTTGC ATACTCAGCT GCCCCCAAGT CCATGCAGAG TGCCATAATG GGCTTGTTCT 780 60 840 TTTTCTTCTC TGGCGTCGGG TCGTTCGTGG GTTCTGGACT GCTGGCACTG GTGTCTATCA

	AAGCCATCGG	ATGGATGAGC	AGTCACACAG	ACTTTGGTAA	TATTAACGGC	TGCTATTTGA	900
5	ACTATTACTT	TTTCCTTCTG	GCTGCTATTC	AAGGAGCTAC	CCTCCTGCTT	TTCCTCATTA	960
3	TTTCTGTGAA	ATATGACCAT	CATCGAGACC	ATCAGCGATC	AAGAGCCAAT	GGCGTGCCCA	1020
	CCAGCAGGAG	GCCTGACCT	TCCTGAGGCC	ATGTGCGGTT	TCTGAGGCTG	ACATGTCAGT	1080
10	AACTGACTGG	GGTGCACTGA	GAACAGGCAA	GACTTTAAAT	TCCCATAAAA	TGTCTGACTT	1140
	CACTGAAACT	TGCATGTTGC	CTGGATTGAT	TTCTTCTTTC	CCTCTATCCA	AAGGAGCTTG	1200
15	GTAAGTGCCT	TACTGCAGCG	TGTCTCCTGG	CACGCTGGGC	CCTCCGGGAG	GAGAGCTGCA	1260
13	GATTTCGAGT	ATGTCGCTTG	TCATTCAAGG	TCTCTGTGAA	TCCTCTAGCT	GGGTTCCCTT	1320
	TTTTACAGAA	ACTCACAAAT	GGAGATTGCA	AAGTCTTGGG	GAACTCCACG	TGTTAGTTGG	1380
20	CATCCCAGTT	TCTTAAACAA	ATAGTATCAC	CTGCTTCCCA	TAGCCATATC	TCACTGTAAA	1440
	AAAAAAATT	AATAAACTGT	TACTTATATT	TAAGAAAGTG	AGGATTTTTT	TTTTTTAAAG	1500
25	ATAAAAGCAT	GGTCAGATGC	TGCAAGGATT	TTACATAAAT	GCCATATTTA	TGGTTTCCTT	1560
<i>4.</i> J	CCTGAGAACA	ATCTTGCTCT	TGCCATGTTC	TTTGATTTAG	GCTGGTAGTA	AACACATTTC	1620
	ATCTGCTGCT	TCAAAAAGTA	CTTACTTTTT	AAACCATCAA	CATTACTTTT	CTTTCTTAAG	1680
30	GCAAGGCATG	CATAAGAGTC	ATTTGAGACC	ATGTGTCCCA	TCTCAAGCCA	CAGAGCAACT	1740
	CACGGGGTAC	TTCACACCTT	ACCTAGTCAG	AGTGCTTATA	TATAGCTTTA	TTTTGGTACG	1800
35	ATTGAGACTA	AAGACTGATC	ATGGTTGTAT	GTAAGGAAAA	CATTCTTTTG	AACAGAAATA	1860
55	GTGTAATTAA	AAATAATTGA	AAGTGTTAAA	TGTGAACTTG	AGCTGTTTGA	CCAGTCACAT	1920
	TTTTGTATTG	TTACTGTACG	TGTATCTGGG	GCTTCTCCGT	TTGTTAATAC	TTTTTCTGTA	1980
40	TTTGTTGCTG	TATTTTTGGC	ATAACTTTAT	TATAAAAAGC	ATCTCAAATG	CGAAAWAAAA	2040
	ААААААААА	AAAAAAAC					2058

50

(2) INFORMATION FOR SEQ ID NO: 92:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1411 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

GGCACAGGAG CGACCCGGGA GAAGGAGGGC CAMGAKGCGG AAGCGGAGGA GTCTCCAGGA 60
GACCCGGGGA CAGCATCGCC CAGGCCCCTG TTTGCAGGCC TTTCAGATAT ATCCATCTCA 120

	CAAGACATCC	CCGTAGAAGG	AGAAATCACC	ATTCCTATGA	GATCTCGCAT	CCGGGAGTTT	180
	GACAGCTCCA	CATTAAATGA	ATCTGTTCGC	AATACCATCA	TGCGTGATCT	AAAAGCTGTT	240
5	GGGAAAAAT	TCATGCATGT	TTTGTACCCA	AGGAAAAGTA	ATACTCTTTT	GAGAGATTGG	300
	GATTIGTGGG	GCCCTTTGAT	CCTTTGTGTG	ACACTCGCAT	TAATGCTGCA	AAGAGACTCT	360
10	GCAGATAGTG	AAAAAGATGG	AGGGCCCCAA	TTTGCAGAGG	TGTTTGTCAT	TGTCTGGTTT	420
10	GGTGCAGTTA	CCATCACCCT	CAACTCAAAA	CTTCTTGGAG	GGAACATATC	TTTTTTCAG	480
	AGCCTCTGTG	TGCTGGGTTA	CTGTATACTT	CCCTTGACAG	TAGCAATGCT	GATTTGCCGG	540
15	CTGGTACTTT	TGGCTGATCC	AGGACCTGTA	AACTTCATGG	TTCGGCTTTT	TGTGGTGATT	600
	GTGATGTTTG	CCTGGTCTAT	AGTTGCCTCC	ACAGCTTTCC	TTGCTGATAG	CCAGCCTCCA	660
30	AACCGCAGAG	CCCTAGCTGT	TTATCCTGTT	TTCCTGTTTT	ACTTTGTCAT	CAGTTGGATG	720
20	ATTCTCACCT	TTACTCCTCA	GTAAATCAGG	AATGGGAAAT	TAAAAACCAG	TGAATTGAAA	780
	GCACATCTGA	AAGATGCAAT	TCACCATGGA	GCTTTGTCTC	TGGCCCTTAT	TTGTCTAATT	840
25	TTGGAGGTAT	TTGATAACTG	AGTAGGTGAG	GAGATTAAAA	GGGAGCCATA	TAGCACTGTC	900
	ACCCCTTATT	TGAGGAACTG	ATGTTTGAAA	GGCTGTTCTT	TTCTCTCTTA	ATGTCATTTC	960
20	TTTAAAAATA	CATGTGCATA	CTACACACAG	TATATAATGC	CTCCTTAAGG	CATGATGGAG	1020
30	TCACCGTGGT	CCATTIGGGT	GACAACCAGT	GACTTGGGAA	GCACATAGAT	ACATCTTACA	1080
	AGTTGAATAG	AGTTGATAAC	TATTTTCAGT	TTTGAGAATA	CCAGTTCAGG	TGCAGCTCTT	1140
35	AAACACATTG	CCTTATGACT	ATTAGAATAT	GCCTCTCTTT	тсаталатаа	AAATACATGG	1200
	TCTATATCCA	TTTTCTTTTA	TTTCTCTCTC	TTAAGCTTAA	AAAGGCAATG	AGAGAGGTTA	1260
40	GGAGTGGGTT	CATACACGGA	GAATGAGAAA	ACATGCATTA	ACCAATATTC	AGATTTTGAT	1320
40	CAGGGGAAAT	TCTAYACTTG	TTGCAAAAAA	AAAAAAAA	AAACTCGAGG	GGGGCCCGGT	1380
	ACCCAATCGC	NGTATATGAT	CGNAAACAAT	C			1411
45							
				2			
50	/		EQ ID NO: 9				
50	(1)	(A) LEI	CHARACTERIST NGTH: 2187 l PE: nucleic	oase pairs			
		(C) ST	RANDEDNESS:	double			
55	,		POLOGY: line		. 03.		
	·	-	DESCRIPTION				60
	GCTTTGGCTT	TTTTTGGCGG	ACTGGGGGGG	CCTCCGGAAG	CGTTTCCAAC	TTTCCAGAAG	60

TTTCTCGGGA CGGGCAGGAG GGGGTGGGGA CTGCCATATA TAGATCCCGG GAGCAGGGGA 120

	GCGGGCTAAG	AGTAGAATCG	TGTCGCGCTC	GAGAGCGAGA	GTCACGTCCC	GGCGCTAGCC	180
5	CAGCCCGACC	CAGGCCCACC	GTGGTGCACG	CAAACCACTT	CCTGGCCATG	CGCTCCCTCC	240
5	TGCTTCTCAG	CGCCTTCTGC	CTCCTGGAGG	CGCCCTGCC	CGCCGAGGTG	AAGAAACCTG	300
	CAGCCGCAGC	AGCTCCTGGC	ACTGCGGAGA	AGTTGAGCCC	CAAGGCGGCC	ACGCTTGCCG	360
10	AGCGCAGCCG	GCCTGGCCTT	CAGCTTGTAC	CAGGCCATGG	CCAAGGACCA	GGCAGTGGAG	420
	AACATCCTGG	TGTCACCCGT	GGTGGTGGCC	TCGTCGCTGG	GGCTCGTGTC	GCTGGGCGGC	480
15	AAGGCGACCA	CGGCGTCGCA	GGCCAAGGCA	GTGCTGAGCG	CCGAGCAGCT	GCGCGACGAG	540
13	GAGGTGCACG	CCGGCCTGGG	CGAGCTGCTG	CGCTCACTCA	GCAACTCCAC	GGCGCGCAAC	600
	GTGACCTGGA	AGCTGGGCAG	CCGACTGTAC	GGACCCAGCT	CAGTGAGCTT	CGCTGATGAC	660
20	TTCGTGCGCA	GCAGCAAGCA	GCACTACAAC	TGCGAGCACT	CCAAGATCAA	CTTCCGCGAC	720
	AAGCGCAGCG	CGCTGCAGTC	CATCAACGAG	TGGGCCGCGC	AGACCACCGA	CGGCAAGCTG	780
25	CCCGAGGTCA	CCAAGGACGT	GGAGCGCACG	GACGGCGCCC	TGTTAGTCAA	CGCCATGTTC	840
-	TTCAAGCCAC	ACTGGGATGA	GAAATTCCAC	CACAAGATGG	TGGACAACCG	TGGCTTCATG	900
	GTGACTCGGT	CCTATACCGT	GGGTGTCATG	ATGATGCACC	GGACAGGCCT	CTACAACTAC	960
30	TACGACGACG	AGAAGGAAAA	GCTGCAAATC	GTGGAGATGC	CCCTGGCCCA	CAAGCTCTCC	1020
	AGCCTCATCA	TCCTCATGCC	CCATCACGTG	GAGCCTCTCG	AGCGCCTTGA	AAAGCTGCTA	1080
35	ACCAAAGAGC	AGCTGAAGAT	CTGGATGGGG	AAGATGCAGA	AGAAGGCTGT	TGCCATCTCC	1140
	TTGCCCAAGG	GTGTGGTGGA	GGTGACCCAT	GACCTGCAGA	AACACCTGGC	TGGGCTGGGC	1200
	CTGACTGAGG	CCATTGACAA	GAACAAGGCC	GACTTGTCAC	GCATGTCAGG	CAAGAAGGAC	1260
40	CTGTACCTGG	CCAGCGTGTT	CCACGCCACC	GCCTTTGAGT	TGGACACAGA	TGGCAACCCT	1320
	TTGACCAGAA	TTACGGGCGG	AGGAGTGCGC	ACCCAAGTGT	TCTACGCCGA	CCACCCCTTC	1380
45	ATTTCCTAGT	GCGGGACACC	CAAAGCGGTC	CCTGCTATTC	ATTGGGCGCC	TGGTCCGGCC	1440
••	TAAGGGTGAC	AAGATGCGAG	ACGAGTTATA	GGCCTCAGGG	TGCACACAGG	ATGGCAGGAG	1500
	GCATCCAAAG	GCTCCTGAGA	CACATGGGTG	CTATTGGGGT	TGGGGGGGAG	GTGAGGTACC	1560
50	AGCCTTGGAT	ACTCCATGGG	GTGGGGTGGA	AAAGCAGACC	GGGGTTCCCG	TGTGCCTGAG	1620
	CGGACTTCCC	AGCTAGAATT	CACTCCACTT	GGACATGGGC	CCCAGATACC	ATGATGCTGA	1680
55	GCCCGGAAAC	TCCACATCCT	GTGGGACCTG	GGCCATAGTC	ATTCTGCCTG	CCCTGAAAGT	1740
	CCCAGATCAA	GCCTGCCTCA	ATCAGTATTC	ATATTTATAG	CCAGGTACCT	TCTCACCTGT	1800
	GAGACCAAAT	TGAGCTAGGG	GGGTCAGCCA	GCCCTCTTCT	GACACTAAAA	CACCTCAGCT	1860
60	GCCTCCCCAG	CTCTATCCCA	ACCTCTCCCA	ACTATAAAAC	TAGGTGCTGC	AGCCCCTGGG	1920

	ACCAGGCACC CCCAGAATGA CCTGGCCGCA GTGAGGCGGA TTGAGAAGGA GCTCCCAGGA	1980
	GGGGCTTCTG GGCAGACTCT GGTCAAGAAG CATCGTGTCT GGCGTTGTGG GGATGAACTT	2040
5	TTTGTTTTGT TTCTTCCTTT TTTAGTTCTT CAAAGATAGG GAGGGAAGGG GGAACATGAG	2100
	CCTTTGTTGC TATCAATCCA AGAACTTATT TGTACATTTT TTTTTTCAAT AAAACTTTTC	2160
10	CAATGACAAA AAAAAAAAA AAAAAAA	2187
1.5		
15	(2) INFORMATION FOR SEQ ID NO: 94:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 757 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
25	GACAGTACGG TCGGATTCCC GGGTCGACCC ACGCGTCCGC GGACGGTGAA GAAGGTGAAG	60
	ATGGCGGTGG CCAGGGCCGG GGTCTTGGGA GTCCAGTGGC TGCAAAGGGC ATCCCGGAAC	120
30	GTGATGCCGC TGGGCGCACG GACAGCCTCC CACATGACCA AGGACATGTT CCCGGGGCCC	180
50	TATCCTAGGA CCCCAGAAGA ACGGGCCGCC GCCGCCAAGA AGTATAATAT GCGTGTGGAA	240
	GACTACGAAC CTTACCCGGA TGATGGCATG GGGTATGGCG ACTACCCGAA GCTCCCTGAC	300
35	CGCTCACAGC ATGAGAGAGA TCCATGGTAT AGCTGGGACC AGCCGGGCCT GAGGTTGAAC	360
	TGGGGTGAAC CGATGCACTG GCACCTAGAC ATGTACAACA GGAACCGTGT GGATACATCC	420
40	CCCACACCTG TTTCTTGGCA TGTCATGTGT ATGCAGCTCT TCGGTTTCCT GGCTTTCATG	480
	ATATTCATGT GCTGGGTGGG GGACGTGTAC CCTGTCTACC AGCCTGTGGG ACCAAAGCAG	540
	TATCCTTACA ATAATCTGTA CCTGGAACGA GGCGGTGATC CCTCCAAAGA ACCAGAGCGG	600
45	GTGGTTCACT ATGAGATCTG AGGAGGCTTC GTGGGCTTTT GGGTCCTCTA ACTAGGACTC	660
	CCTCATTCCT AGAAATTTAA CCTTAATGAA ATCCCTAATA AAACTCAGTG CTGTGTTAAA	720
50	AAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA	757
	(2) INFORMATION FOR SEQ ID NO: 95:	
55	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2394 base pairs (B) TYPE: nucleic acid	
60	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	

GGCACGAGCA	CTCCTGCACT	TCCCCACCCC	CACGACCGAA	CCTGGCTTCG	CTAACGCCCT	
CCCACCTCCC	TO COCCO TO A	CALCCCALAN	CCTCCCCCT	CCCTCCCCC	CACCCCCCA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

5	GGCACGAGCA	CTCCTGCACT	TCCCCACCCC	CACGACCGAA	CCTGGCTTCG	CTAACGCCCT	60
3	CCCAGCTCCC	TCGGGCCTGA	CTTCCGGTTT	CCTCGCGCGT	CCCTGGCGCC	GAGCCGCGGA	120
	CAGCAGCCCC	TTTTCCGGCT	GAGAGCTCAT	CCACACTTCC	AATCACTITC	CGGAGTGCTT	180
10	CCCCTCCCTC	CGGCCCGTGC	TGGTCCCGAC	GCCGGCCTG	GGTCTCGCGC	GCGTATTGCT	240
	GGGTAACGGG	CCTTCTCYCG	CGTCGGCCCG	GCCCTCCTG	CCTCGGCTCG	TCCCTCCTTC	300
15	CAGAACGTCC	CGGGCTCCTG	CCGAGTCAGA	AGAAATGGGA	CTCCCTCCGC	GACGTGCCCG	360
10	GAGCAGCTCC	CTTCGCTGTG	GAAGCGGCGG	TGTCTTCGAA	GAAACCGGAA	GCCCGTGGTG	420
	ACCCCTGGCG	ACCCGGTTTG	TTTTCGGTCC	GTTTCCAAAC	ACTAAGGAAT	CGAAACTCGG	480
20	CGGCCTTGGG	GGCGGCCCTA	CGTAGCCTGG	CTTCTGGTTG	TCATGGATGC	ACTGGTAGAA	540
	GATGATATCT	GTATTCTGAA	TCATGAAAAA	GCCCATAAGA	GAGATACAGT	GACTCCAGTT	600
25	TCAATATATT	CAGGAGATGA	ATCTGTTGCT	TCCCATTTTG	CTCTTGTCAC	TGCATATGAA	660
	GACATCAAAA	AACGACTTAA	GGATTCAGAG	AAAGAGAACT	CTTTGTTAAA	GAAGAGAATA	720
	AGATTTTTGG	AAGAAAAGCT	AATAGCTCGA	TTTGAAGAAG	AAACAAGTTC	CGTGGGACGA	780
30	GAACAAGTAA	ATAAGGCCTA	TCATGCATAT	CGAGAGGTTT	GCATTGATAG	AGATAATTTG	840
	AAGAGCAAAC	TGGACAAAAT	GAATAAAGAC	AACTCTGAAT	CTTTGAAAGT	ATTGAATGAG	900
35	CAGCTACAAT	CTAAAGAAGT	AGAACTCCTC	CAGCTGAGGA	CAGAGGTGGA	AACTCAGCAG	960
	GTGATGAGGA	ATTTAAATCC	ACCTTCATCA	AACTGGGAGG	TGGAAAAGTT	GAGCTGTGAC	1020
	CTGAAGATCC	ATGGTTTGGA	ACAAGAGCTG	GAACTGATGA	GGAAAGAATG	TAGCGATCTC	1080
40	AAAATAGAAC	TACAGAAAGC	CAAACAAACG	GATCCATATC	AGGAAGACAA	TCTGAAGAGC	1140
	AGAGATCTCC	AAAAACTAAG	CATTTCAAGT	GATAATATGC	AGCATGCATA	CTGGGAACTG	1200
45	AAGAGAGAAA	TGTCTAATTT	ACATCTGGTG	ACTCAAGTAC	AAGCTGAACT	ACTAAGAAAA	1260
	CTGAAAACCT	CAACTGCAAT	CAAGAAAGCC	TGTGCCCCTG	TAGGATGCAG	TGAAGACCTT	1320
	GGAAGAGACA	GCACAAAACT	GCACTTGATG	AATTTTACTG	CAACATACAC	AAGACATCCC	1380
50	CCTCTCTTAC	CAAATGGCAA	AGCTCTTTGT	CATACCACAT	CTTCCCCTTT	ACCAGGAGAT	1440
	GTAAAGGTTT	TATCAGAGAA	AGCAATCCTC	CAATCATGGA	CAGACAATGA	GAGATCCATT	1500
55	CCTAATGATG	GTACATGCTT	TCAGGAACAC	AGTTCTTATG	GCAGAAATTC	TCTGGAAGAC	1560
	AATTCCTGGG	TATTTCCAAG	TCCTCCTAAA	TCAAGTGAGA	CAGCATTTGG	GGAAACTAAA	1620
	ACTAAAACTT	TGCCTTTACC	CAACCTTCCA	CCACTGCATT	ACTTGGATCA	ACATAATCAG	1680
60	AACTGCCTTT	ATAAGAATTA	ATTTGGAAGA	GATTCACGAT	TTCACCATGA	GGACACTTAT	1740

247

	CTCTTTCAGT	GGTCCTCCCA	AGAAATTATT	TAACAAACTG	AANGGAGATT	TTGATTAAAA	1800
5	TTTTGCAGAG	GTCTTCAGTA	TCTATATTTG	AACACACTGT	ACAATAGTAC	AAAAACCAAC	1860
3	ATAGTTGGTT	TTCTAGTATG	AAAGAGCACC	CTCTAGCTCC	ATATTCTAAG	AATCTGAAAT	1920
	ATGCTACTAT	ACTAATTAAT	AAGTAAACTT	AAGGTGTTTA	AAAAACTCTG	CCTTCTATAT	1980
10	TAATTGTAAA	ATTTTGCCTC	TCAGAAGAAT	GGAATTGGAG	ATTGTAGACG	TGGTTTTACA	2040
	AAATGTGAAA	TGTCTAAATA	TCTGTTCATA	AAAATAAAAG	GAAAACATGT	TTCTTCAAAT	2100
15	TGCATAATGG	AACAAATGGC	AATGTGAGTA	GGTTACATTT	CTGTTGTTAT	AATGCGTAAA	2160
13	GATATTGAAA	ATATAATGAA	ATAAAAGCAT	CTTAGGTTAT	ACCATCTTTA	TATGCTATTG	2220
	CGTTTCAATA	TTTAAGATTT	AAAGTGATTT	TTTGGTCACA	GTGTTTTGTT	GATAAAATTT	2280
20	TTTTAGAATT	GAAGTTTGAA	TTCTAAGACT	TGAAACAACC	TGATCACTGA	AGCCAACTTT	2340
	GTCCCAGCAC	ATTCCTTAAG	TCCTAATTGG	GGAAAAAAA	ААААААААА	TCGA	2394

25

30

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 96:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 672 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NC: 96:

AGTGCTCTGT TGCCCAGGCT GGAGTGCGTT AGTGTAATGT CAGTCCACTG CAACCTCCAC 60 CCCCAGGTTC AAGCAATTCT CATGCCTCAG CCTCCCAAGT AGCTGAAATT ACTGGCATGC 120 ACCACCACAC CCAGCTGATG TTTATTTATT TATTTATATA TTTATTTATT TTAGGTGTTT 180 TTTTTTTTT TTTTGAGAC GGAGTCTTGC TCTGTTGCCC TGGGTGTGGT TACGTGGRAT 240 TACCATYCTG GGTGACTCAC TGAAATGTAC TCMCAGTGAG TCATGCCTTC MAATGACATC 300 TCAAGTTCTG CCTGCTTGGA GATACATCTG GGGATCTTAA GGGGTGAGGG ACTACTCAAC 360 AAGAAGGAAT TTAGCCTGTC TTTTTAAATA AACGGCATTT CTTTTTCCTA KAAAAATGGG 420 AAATTCTTCA ATTCTCTAAT ACAGGGACAC TGAGATAACA AAGAGGAAAG TGTCTGGTTG 480 540 600 AAATCMAGCA AAGCACAARA AAKTTTCCCT TTGCTAAAAG GGAAAAGATG CCCCMCAATG CCCATAAACA TGAACTGGGG ATAAGGAGGA RAATGTCTCT YCTTGGCACC CCCAAACAAA 660 672 CGTTAATTAC CC

(2)	INFORMATION	FOR	SEQ	$_{ m ID}$	NO:	97:
-----	-------------	-----	-----	------------	-----	-----

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1419 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

15	TAAGAACAGA	ACAGCAAGTA	TGAACCACAT	GGAACTTAAA	ACATATGGGT	GTGAAGTCCA	60
13	CTTATGTAGA	CAAAACTTAT	AATTTCCAAA	CTGTTGTCTA	GTATACAGTG	ATCAGTTGCT	120
	CTCTGTTCAA	GTCATTCCAC	ACATTTCCCT	ATTTTAGGCT	ATTATAATAT	AGAAAGAAAA	180
20	TGGGAAGCAT	TAGTTGGAGC	TAGAAAATGA	ACTGTATATT	ATTGCTATAT	TTGCTAATAC	240
	CAACTATTTC	AATAAGTGTT	GTACCATATG	TAGCATTAAA	TATAAAATAC	ATAAAAGAAT	300
25	GTACAGAAAA	TAGCTTTTAT	TGAGTAATAT	TACATTTCAT	TTATACTGTA	GCAATATATT	360
25	TGTAGGTATA	CTCTGTAAGG	GCTTTAAATA	AAAGAGGTCC	ATTAATACTT	CCTTATAAAA	420
	ATTCTAGTCT	GTTTCATTAC	TGCCCAGATG	TTTTAGAGAT	AAATATTTAT	GCAGAAGGTA	480
30	TTTTKGAAAG	TCYCCYTTTG	TCTGATAGAG	TTTAACNAGA	TATTTAAATT	TAGTGCYCNA	540
	GAAATCCCAC	AAGTCACGGT	CTAAACACAC	TTAGAATACT	ACAGCATAAA	TCTGTTAGCA	600
~-	TTANTTGCCA	AATAAGACAG	TTGGGATCCC	AAACCCCAAG	TCCTTGAGCA	ATGTTTTCC	660
35	TCAAAAAGCT	GCTATNCCAA	TGATATAGGA	AAAWACATTG	TGTTTTCCTA	AACACACTTT	720
	TCTTTTTAAA	TGTGCTTCAT	TGTTTGATTT	GGTCCTGCCT	AAATTTCACA	AGCTAGGCCA	780
40	ATGAAGGCTG	AATCAAAGAC	ATTTCATCCA	CCAATATCAT	GTGTAGATAT	TATGTATAGA	840
	ATAAAATA	AATTATGGCT	CTAACTTCTG	TGTTGCTGTT	TATCTTGTTA	TTTTTCGGCG	900
	ТТАТАСТААТ	GNGTTTATTG	AGAGCATTTT	ACCTTCCAGA	CTTCTCATGG	CTAACTTTTG	960
45	GTCTGWATTT	TGSTCCTTAG	ATGKGAATAT	TTCTTATTAG	TYTGCTYCCT	GCWACGCAAT	1020
	GACTGCATTT	CTATCATTTC	TCAGTTTGTT	AGWATATGTG	GATAGTATTC	TACTGTATAA	1080
50	ATGATTGCAA	AGTTTATCAA	АААСАААТТА	TTATATGTAG	CTTTTCTACA	GTGCTTTGCT	1140
	AAACCATGTA	GTACTAGTTA	AGTSTTCCTT	GAAAATAAAG	ATACACTCTT	ATAGGGGACA	1200
	GTTCCTGTTC	ACTCCCAGGA	AACTTTTTTA	AAAGATGACA	CTGAATGTTT	ATTGCACTTT	1260
55	AGTGCAGTGA	AGTGGCAATA	AAACCTAACA	TGAATCAAGG	TTGTTTATGG	CAGATGCATG	1320
		CAGAGTTTAG					1380
60		AACATTATTC					1419

5 (2) INFORMATION FOR SEQ ID NO: 98:

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1487 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

	•	-					
15	GCGACCGCGC	CCCTTTCAGC	TAGCTCGCTC	GCTCGCTCTG	CTTCCCTGCT	GCCGGCTGCG	60
	CATGGCKWTG	GCGTTGGCGG	CGCTGGCGGC	GGTCGAGCCG	GCCTGCGCAG	CCGGTACCAG	120
20	CAGTTGCAGA	ATGAAGAAGA	GTCTGGAGAA	CCTGAACAGG	CTGCAGGTGA	TGCTCCTCCA	180
	CCTTACAGCA	GCATTTCTGC	AGAGAGCGCA	GTTTTCCACC	TATTTCCCTG	GATATTTTGA	240
	TGGTCAGTAC	TGGCTCTGGT	GGGTGTTCCT	TGTTTTAGGC	TTTCTCCTGT	TTCTCAGAGG	300
25	ATTTATCAAT	TATGCAAAAG	TTCGGAAGAT	GCCAGAAACT	TTCTCAAATC	TCCCCAGGAC	360
	CAGAGTTCTC	TTTATTTATT	AAAGATGTTT	TCTGGCAAAG	GCCTTCCTGC	ATTTATGAAT	420
30	TCTCTCTCAA	GAAGCAAGAG	AACACCTGCA	GGAAGTGAAT	CAAGATGCAG	AACACAGAGG	480
	AATAATCACC	TGCTTTAAAA	AAATAAAGTA	CTGTTGAAAA	GATCATTTCT	CTCTATTTGT	540
	TCCTAGGTGT	AAATTTTAA	TAGTTAATGC	AGAATTCTGT	AATCATTGAA	TCATTAGTGG	600
35	TTAATGTTTG	AAAAAGCTCT	TGCAATCAAG	TCTGTGATGT	ATTAATAATG	CCTTATATAT	660
	TGTTTGTAGT	CATTTTAAGT	AGCATGAGCC	ATGTCCCTGT	AGTCGGTAGG	GGGCAGTCTT	720
40	GCTTTATTCA	TCCTCCATCT	CAAAATGAAC	TTGGAATTAA	ATATTGTAAG	ATATGTATAA	780
40	TGCTGGCCAT	TTTAAAGGGG	TTTTCTCAAA	AGTTAAACTT	TTGTTATGAC	TGTGTTTTTG	840
	CACATAATCC	ATATTTGCTG	TTCAAGTTAA	TCTAGAAATT	TATTCAATTC	TGTATGAACA	900
45	CCTGGAAGCA	AAATCATAGT	GCAAAAATAC	ATTTAAGGTG	TGGTCAAAAA	TAAGTCTTTA	960
	ATTGGTAAAT	AATAAGCATT	AATTTTTTAT	AGCCTGTATT	CACAATTCTG	CGGTACCTTA	1020
50	TTGTACCTAA	GGGATTCTAA	AGGTGTTGTC	ACTGTATAAA	ACAGAAAGCA	CTAGGATACA	1080
	AATGAAGCTT	AATTACTAAA	ATGTAATTCT	TGACACTCTT	TCTATAATTA	GCGTTCTTCA	1140
55	CCCCCACCC	CACCCCCACC	CCCCTTATTT	TCCTTTTGTC	TCCTGGTGAT	TAGGCCAAAG	1200
	TCTGGGAGTA	AGGAGAGGAT	TAGGTACTTA	GGAGCAAAGA	AAGAAGTAGC	TTGGAACTTT	1260
	TGAGATGATC	CCTAACATAC	TGTACTACTI	GCTTTTACAA	TGTGTTAGCA	GAAACCAGTG	1320
60	GGTTATAATG	TAGAATGATG	TGCTTTCTGC	CCAAGTGGTA	ATTCATCTTG	GTTTGCTATG	1380
00							

250

60

TTAAAACTGT	AAATACAACA	GAACATTAAT	AAATATCTCT	TGTGTAGCAC	CTTTAAAAAA	1440
АААААААА	АААААААА	AAAAAAAAN	cccccccccc	GGCCCCN		1487

5

(2) INFORMATION FOR SEQ ID NO: 99:

10 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1653 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

GCGACCGCGC CCTTCAGCTA GCTCGCTCGC TCGCTCTGCT TCCCTGCTGC CGGCTGCGCA

20	TGGCTTNGGC	GTTGGCGGCG	CTGGCGGCGG	CTCGAGCCGC	CTGCGSAGCC	GGTACCAGCA	120
	GTTGCAGAAT	GAAGAAGAGT	CTGGAGAACC	TGAACAGGCT	GCAGGTGATG	CTCCTCCACC	180
25	TTACAGCAGC	ATTTCTGCAG	AGAGCGCACA	TNATTTTGAC	TACAAGGATG	AGTCTGGGTT	240
23	TCCAAAGCCC	CCATCTTACA	ATGTAGCTAC	AACACTGCCC	AGTTATGATG	AAGCGGAGAG	300
	GACCAAGGCT	GAAGCTACTA	TCCCTTTGGT	TCCTGGGAGA	GATGAGGATT	TTGTGGGTCG	360
30	GGATGATTTT	GATGATGCTG	ACCAGCTGAG	GATAGGAAAT	GATGGGATTT	TCATGTTAAC	420
	TTTTTTCATG	GCATTCCTCT	TTAACTGGAT	TGGGTTTTTC	CTGTCTTTTT	GCCTGACCAC	480
35	TTCAGCTGCA	GGAAGGTATG	GGGCCATTTC	AGGATTTGGT	CTCTCTCTAA	TTAAATGGAT	540
33	CCTGATTGTC	AGGTTTTCCA	CCTATTTCCC	TGCATTTATG	AATTCTCTCT	CAAGAAGCAA	600
	GAGAACACCT	GCAGGAAGTG	AATCAAGATG	CAGAACACAG	AGGAATAATC	ACCTGCTTTA	660
40	AAAAAAAA	GTACTGTTGA	AAAGATCATT	TCTCTCTATT	TGTTCCTAGG	TGTAAAATTT	720
	TAATAGTTAA	TGCAGAATTC	TGTAATCATT	GAATCATTAG	TGGTTAATGT	TTGAAAAAGC	780
45	TCTTGCAATC	AAGTCTGTGA	TGTATTAATA	ATGCCTTATA	TATTGTTTGT	AGTCATTTTA	840
15	AGTAGCATGA	GCCATGTCCC	TGTAGTCGGT	AGGGGGCAGT	CTTGCTTTAT	TCATCCTCCA	900
	TCTCAAAATG	AACTTGGAAT	TAAATATTGT	AAGATATGTA	TAATGCTGGC	CATTTTAAAG	960
50	GGGTTTTCTC	AAAAGTTAAA	CTTTTGTTAT	GACTGTGTTT	TTGCACATAA	TCCATATTTG	1020
	CTGTTCAAGT	TAATCTAGAA	ATTTATTCAA	TTCTGTATGA	ACACCTGGAA	GCAAAATCAT	1080
55	AGTGCAAAAA	TACATTTAAG	GTGTGGTCAA	AAATAAGTCT	TTAATTGGTA	AATAATAAGC	1140
55	ATTAATTTT	TATAGCCTGT	ATTCACAATT	CTGCGGTACC	TTATTGTACC	TAAGGGATTC	1200
	TAAAGGTGTT	GTCACTGTAT	AAAACAGAAA	GCACTAGGAT	ACAAATGAAG	CTTAATTACT	1260
60	AAAATGTAAT	TCTTGACACT	СТТТСТАТАА	TTAGCGTTCT	TCACCCCCAC	CCCCACCCC	1320

	ACCCCCTTA	TTTTCCTTTT	GTCTCCTGGT	GATTAGGCCA	AAGTCTGGGA	GTAAGGAGAG	1380
5	GATTAGGTAC	TTAGGAGCAA	AGAAAGAAGT	AGCTTGGAAC	TTTTGAGATG	ATCCCTAACA	1440
3	TACTGTACTA	CTTGCTTTTA	CAATGTGTTA	GCAGAAACCA	GTGGGTTATA	ATGTAGAATG	1500
	ATGTGCTTTC	TGCCCAAGTG	GTAATTCATC	TTGGTTTGCT	AT GTTAAA AC	TGTAAATACA	1560
10	ACAGAACATT	AATAAATATC	TCTTGTGTAG	CACCTTTTAW	ААААААААА	AAAAAAAA	1620
	ААААААААА	AAAAANCCCG	GGGGGGGCC	CCN			1653

15

20

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 100:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1145 base pairs

TTTTTTTTT TTTTTTTT TTGACTGAAC TAAGTGGCTT TTTTATTAGA GAAAGCCAGA

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

11111111						
ATTACAAAAG	ACTTCCCTTT	TCTTGGGGTA	TGGCTGTCTC	AGCACAATAC	TCAACATAAC	120
TGCAGAACTG	ATGTGGCTCA	GGCACCCTGG	TTTTAATTCC	TTGAGGATCT	GGCAATTGGC	180
TTACGCAAAA	GGTCACCATT	TGAGGTCCTG	CCTTACTAAT	TATGTGCTGC	CCAACAACTA	240
AA TT TGTAAT	TIGTTTTTCT	CTAGTTTGAG	CAGGGTCTGA	ATTTTTCAT	TTATTTCCTT	300
TTTTGCCAGC	AGACAGACTT	GAGTCTGTAA	AGACAAGCAA	ATACACTGAC	AGAAGTTTAC	360
CATAGTTTCT	AAAATGTAAA	AAAGAAAACC	CCCAAAAGAC	TCAAGAAAAT	TAGACCACAA	420
ATTTTGCATT	GTTCATTGTA	GCACTATTGG	ТААТАААТА	ACAAATGTTT	GTGCATTTTT	480
ATGTGAAGAT	CCTTCTCGTA	TTTCATTTGG	AAAGATGAGC	AAGAGGTCTG	CTTCCTTCAT	540
TTTACTTCCC	CTTCTGTTTT	TGAAAGGCAG	TTTCGCCAAG	CTTAATGCAA	GAATATCTGA	600
CTGTTTAGAA	GAAAGATATT	GCCACAATCT	CTGGATGGTT	TTCCAGGGTT	GTGTTATTAC	660
TGAGCTTCAT	CTTTCCAGAA	TGAGCAAAAC	ACTGTCCAGT	CTTTGTTACG	ATTTTGTAAT	720
AAATGTGTAC	ATTTTTTTA	AATTTTTGGA	CATCACATGA	ATAAAGGTAT	GTATGTACGA	780
ATGTGTATAT	АТТАТАТАТА	TGACATCTAT	TTTGGAAAAT	GTTTGCCCTG	CTGTACCTCA	840
TTTTTAGGAG	GTGTGCATGG	ATGCAATATA	TGAAAATGGG	ACATTCTGGA	ACTGCTGGTC	900
AGGGGACTTT	GTCGCCCTGT	GCACTAAAAG	GGCCAGATTT	TCAGCAGCCA	AGGACATCCA	960
TACCCAAGTG	AATGTGATGG	GACTTAAAAG	AAGTGAACTG	AGACAATTCA	CTCTGGCTGT	1020

	TTGAACAGCA GCGTTTCATA GGAAGAGAAA AAAAGATCAA TCTTGTATTI TCTGACCACA	1080
	TAAAGGCTTC TTCTCTTTGT AATAAAGTAG AAAAGCTCTC CTCAAAAAAA AAAAAAAAA	1140
5.	AAAAA	1145
10	(2) INFORMATION FOR SEQ ID NO: 101:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 734 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
20	TACCCGGCGG ATTCCAGGAA GGTAAATTTA GTCCTATAAT TTTCAGCTTA ATTATAAACA	60
	AAGGAACAAA TAAGTGGAAG GGCAGCTATT ACCATTCGCT TAGTCAAAAC ATTCGGTTAC	120
25	TGCCCTTTAA TACACTCCTA TCATCAGCAC TTCCACCATG TATTACAAGT CTTGACCCAT	180
23	CCCTGTCGTA ACTCCAGTAA AAGTTACTGT TACTAGAAAA TTTTTTATCAA TTAACTGACA	240
	AATAGTTTCT TTTTAAAGTA GTTTCTTCCA TCTTTATTCT GACTAGCTTC CAAAATGTGT	300
30	TCCCTTTTTG AATCGAGGTT TTTTTGTTTT GTTTTGTTTT	360
	TGTGCTTCTA TTGCTTTTTT GTGTTTTGTT AAGCATGTCC CTTGGCCCAA ATGGAAGAGG	420
35	AAATGTTTAA TTAATGCTTT TTAGTTTAAA TAAATTGAAT CATTTATAAT AATCAGTGTT	480
	AACAATTTAG TGACCCTTGG TAGGTTAAAG GTTGCATTAT TTATACTTGA GATTTTTTTC	540
	CCCTAACTAT TCTGTTTTTT GTACTTTAAA ACTATGGGGG AAATATCACT GGTCTGTCAA	600
40	GAAACAGCAG TAATTATTAC TGAGTTAAAT TGAAAAGTCC AGTGGACCAG GCATTTCTTA	660
	TATAAATAAA ATTGGTGGTA CTAATGTGAA AAAAAAAAAA	720
45	CCGGTACCCT ATTA	734
50	(2) INFORMATION FOR SEQ ID NO: 102:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 713 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
55	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	
60	CCGCGGGAAC GCTGTCCTGG CTGCCGNCAC CCGAACAGCC TGTCCTGGTG CCCCGGCTCC	60

	CTGCCCCGCG	CCCAGTCATG	ACCCTGCGCC	CCTCACTCCT	CCCGCTCCAT	CTGCTGCTGC	120
	TGCTGCTGCT	CAGTGCGGCG	GTGTGCCGGG	CTGAGGCTGG	GCTCGAAACC	GAAAGTCCCG	180
5	TCCGGACCCT	CCAAGTGGAG	ACCCTGGTGG	AGCCCCCAGA	ACCATGTGCC	GAGCCCGCTG	240
	CTTTTGGAGA	CACGCTTCAC	ATACACTACA	CGGGAAGCTT	GGTAGATGGA	CGTATTATTG	300
10	ACACCTCCCT	GACCAGAGAC	CCTCTGGTTA	TAGAACTTGG	CCAAAAGCAG	GTGATTCCAG	360
10	GTCTGGAGCA	GAGTCTTCTC	GACATGTGTG	TGGGAGAGAA	GCGAAGGGCA	ATCATTCCTT	420
	CTCACTTGGC	CTATGGAAAA	CGGGGATTTC	CACCATCTGT	CCCAGCGGAT	GCAGTGGTGC	480
15	AGTATGACGT	GGAGCTGATT	GCACTAATCC	GAGCCAACTA	CTGGCTAAAG	CTGGTGAAGG	540
	GCATTTTGCC	TCTGGTAGGG	ATGGCCATGG	TGCCACCCTC	CTGGGCCTCA	TTGGGTATCA	600
20	CCTATACAGA	AAGGCCAATA	GACCCAAAGT	CTCCAAAAAG	AAGCTCAAGG	AAGAGAAACG	660
20	AAACAAGAGC	AAAAAGAAAT	AATAAATAAT	AAATTTTAAA	AAACTTAAAA	AAA	713

25

30

(2) INFORMATION FOR SEQ ID NO: 103:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1080 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

35 CCGATGTGGA CATCATCCTG TCTATCCCCA TGTTCCTGCG CCTGTACCTG ATCGCCCGAG 60 TCATGCTGCT GCACAGAAGC TCTTCACCGA TGCCTCGTCC CGCAGCATCG GGGCCCTCAA 120 40 CAAGATCAAC TTCAACACCC GCTTTGTCAT GAAGACGCTC ATGACCATCT GCCCTGGCAC 180 TGTGCTGCTC GTGTTCAGCA TCTCTCTGTG GATCATTGCT GCCTGGACCG TCCGTGTCTG 240 TGAAAGTCCT GAATCACCAG CCCAGCCTTC TGGCTCATCA CTTCCTGCTT GGTACCATGA 300 45 CCAGCAGGAC GTAACTAGTA ACTTTCTGGG TGCCATGTGG CTCATCTCCA TCACATTCCT 360 TTCCATTGGT TATGGGGACA TGGTGCCCCA CACATACTGT GGGAAAGGTG TCTGTCTCCT 420 50 CACTGGCATC ATGGGTGCAG GCTGCACTGC CCTTGTGGTG GCCGTGGTGG CCCGAAAGCT 480 GGAACTCACC AAAGCGGAGA AGCACGTTCA TAANTTCATG ATGGACACTC AGCTCACCAA 540 GCGGATCAAG AATGYTGCAG CCAATGTCCT TSGGGAAACA TGGTTAATCT ATAAACACAC 600 55 AAAGYTGYTA AAGAAGATTG ACCATGCCAA AGTGAGGAAC ACCAGAGGAA GTTCYTCCAA 660 GTATCCACCA GTTGAGGAGC GTCAAGATGG AACAGAGGAA GCTGAGTGAC CAAGCCAACA 720 780 60 NTCTGGTGGA CCTTTCCAAG ATGCAGAATG TCMTGTATGA CTTAATCACA GAACTCAATG

	ACCGGAGCGA AGACCTGGAG AAGCAGATTG GCAGCCTGGA GTCGAAGCTG GAGCATCTCA	840
-	CCGCCAGCTT CAACTCCCTG CCGCTGCTCA TCGCCGACAC CCTGCGCCAG CAGCAGCAGC	900
5	AGCTCCTGTC TGCCATCATC GAGGCCCGGG GTGTCAGCGT GGCAGTGGGC ACCACCCACA	960
	CCCCAATCTC CGATAGCCCC ATTGGGGTCA GCTCCACCTC CTTCCCGACC CCGTACACAA	1020
10	GTTCAAGCAG TTGCTAAATA AATCTCCCCA CTCCAGAAGC ATTAAAAAAA AAAAAAAAAA	1080
	·	
1.5		
15	(2) INFORMATION FOR SEQ ID NO: 104:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 489 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	
25	GGCACGAGAG GCTTTGAAGC ATTTTTGTCT GTGCTCCCTG ATCTTCAGGT CACCACCATG	60
	AAGTTCTTAG CAGTCCTGGT ACTCTTGGGA GTTTCCATCT TTCTGGTCTC TGCCCAGAAT	120
30	CCGACAACAG CTGCTCCAGC TGACACGTAT CCAGCTACTG GTCCTGCTGA TGATGAAGCC	180
30	CCTGATGCTG AAACCACTGC TGCTGCAACC ACTGCGACCA CTGCTGCTCC TACCACTGCA	240
	ACCACCGCTG CTTCTACCAC TGCTCGTAAA GACATTCCAG TTTTACCCAA ATGGGTTGGG	300
35	GATCTCCCGA ATGGTAGAGT GTGTCCCTGA GATGGAATCA GCTTGAGTCT TCTGCAATTG	360
	GTCACAACTA TTCATGCTTC CTGTGATTTC ATCCAACTAC TTACCTTGCC TACGATATCC	420
40	CCTTTATCTC TAATCAGTTT ATTTTCTTTC AAATAAAAAA TAACTATGAG CAACAAAAAA	480
40	ААААААА	489
45	(A) TITTODIUS TOU TOU TO NO. 105	
	(2) INFORMATION FOR SEQ ID NO: 105:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 640 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
<i></i>	GCGGTCGCCG CTGTTGTTGT GGTCCCCATG GAGCTGCCGT AGCGGACCCA GCACAGCCAG	60
	GAGCGTCCGG GATGAGCTCA GCCGCGGCCG ACCACTGGGC GTGGTTGCTG GTGCTCAGCT	120
60	TCGTGTTTGG ATGCAATGTT CTTAGGATCC TCCTCCCGTC CTTCTCATCC TTCATGTCCA	180

	GGGTGCTGCA	GAAGGACGCG	GAGCAGGAGT	CACAGATGAG	AGCGGAGATC	CAGGACATGA	240
5	AGCAGGAGCT	CTCCACAGTC	AACATGATGG	ACGAGTTTGC	CAGATATGCC	AGGCTGGAAA	300
3	GAAAGATCAA	CAAGATGACG	GATAAGCTCA	AAACCCATGT	GAAAGCTCGG	ACAGCTCAAT	360
	TAGCCAAGAT	AAAATGGGTG	ATAAGTGTCG	CTTTCTACGT	ATTGCAGGCT	GCCCTGATGA	420
10	TCTCACTCAT	TTGGAAGTAT	TATTCTGTCC	CTGTGGCTGT	CGTGCCGAGT	AAATGGATAA	480
	CCCTYTAGAC	CGCCTGGTAG	CCTTTCCYAY	TAGAGTAGCA	GGTGGTGTTG	GAATTACTGT	540
15	TGGATTTART	CTGTACAAAT	TGTCCTATTG	TGCTTCACCG	TYCASTGAAC	AGGAGGTGGT	600
13	ACAGCCGGAG	TTAAAAACGG	TTTCCNTTCC	AGTTTAAAAT			640

20

25

30

(2) INFORMATION FOR SEQ ID NO: 106:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1529 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

GGGCACNAGA TGGAGCTGCC GTAGCGGACC CAGCACAGCC AGGAGCGTCC GGGATGAGCT 60 CAGCCGCGC CGACCACTGG GCGTGGTTGC TGGTGCTCAG CTTCGTGTTT GGATGCAATG 120 TTCTTAGGAT CCTCCTCCG TCCTTCTCAT CCTTCATGTC CAGGGTGCTG CAGAAGGACG 180 35 CGGACAGGAG TCACAGATGA GAGCGGAGAT CCAGGACATG AAGCAGGAGC TCTCCACAGT CAACATGATG GACGAGTTTG CCAGATATGC CAGGCTGGAA AGAAAGATCA ACAAGATGAC 300 40 GGATAAGCTC AAAACCCATG TGAAAGCTCG GACAGCTCAA TTAGCCAAGA TAAAATGGGT 360 GATAAGTGTC GCTTTCTACG TATTGCAGGC TGCCCTGATG ATCTCACTCA TTTGGAAGTA 420 45 TTATTCTGTC CCTGTGGCTG TCGTGCCGAG TAAATGGATA ACCCCTCTAG ACCGCCTGGT 480 AGCCTTTCCT ACTAGAGTAG CAGGTGGTGT TGGAATTACC TGTTGGATTT TAGTCTGTAA 540 CAAAGTTGTC GCTATTGTGC TTCATCCGTT CAGCTGAACA GGAGGATGGA TACAGCCGCG 600 50 AGTAAAAAA CGGATTTCCT CTTCCTAGCT TAAAATCTGA TTTACACTGT TTTGTTTTTT 660 AAGAAACAAA AGTGCATAGT TTAGATTTTT TTTTTGTTGA ATATGTTTGT TCTTGGACTT 720 780 55 TATGAGATAG TCTTATAAGA ATCACGATTT TCTACACCTG TCATTGAGCC AAGAAAGTCC AGTTTATGAC ACGTATGTAC TAGTGAACAC CGTCCTCGAT CTGTACGAAA TGTGAAATGT 840 TTAGGGACAT CTCCATGCTG TCACTTGTGA TTTGCCCTCT TATGTATTTT GGTCATATTG 900 60

WO 98/42738 PCT/US98/05311

256

	CCAACTGGAA	AGTCAAAATT	TTCTAACAAC	TTTAAGTAAG	TTCTTTGAAG	ACTTAGTGCT	960
	GTTTTTAATC	CAGTTTAGAA	AGTAACTTAA	TTTTAATACC	RCTACTAAAA	ATTCGAAAAT	1020
5	TTCTTCTTTA	ATCACATTCA	ATATGGTTAA	AAGAACAACA	CTAATTGACA	TTGCGTGGGC	1080
	TTTTTCTCCC	TTTGTTTAAA	ATGTCATTTG	TTGAGCAAGA	GTTGTATAGT	ATTATCTACT	1140
10	TACTTGAGGC	TGTTAATTTT	TCATTACAGT	GTTTTGTAAA	TGTATCCACG	AGACCATGAT	1200
10	GCATTGTTTT	GTGCTCAACT	TGTGTTTTGT	ATTTAAAGCA	TTTTGAATGA	AGTGTATTTT	1260
	ATAAGCATTT	AATATTTATG	CTCTTTAGAA	TGGAACACAG	AAAACAAACC	TTATAAGTCC	1320
15	TGATTAATCT	GAACCAATAA	CCTGTGTGGC	CTACAAAGTA	TAATTCTATT	AAATGTTCCT	1380
	TAAAACACTT	TTTTCTAATT	AAAATCTTTG	CAAATGCTTG	TGTAACTTCC	TGCCTTACAG	1440
20	CTACTTGTTT	GCTGTGAGCC	ACCCGCAACT	GACAAGTGGC	TGTTAACTGA	GTCACCATAT	1500
20	CCCAGTAAAG	CTGAATTTTC	ТСАСТАААА				1529

25

30

(2) INFORMATION FOR SEQ ID NO: 107:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2435 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

 $\mbox{(xi) SEQUENCE DESCRIPTION: SEQ ID NO: } 107: \\ 35$

ATGAAGGTC GTTGGTGGA AAGATGCCGG CGACTCTGGG ACCCCTTGGT CGTGGCAGCA 60 GTGGCGRCGA TGTTTGTCGG CTCGGGATGG GTCCAGGATG TTACTCCTTC TTCTTTTGTT 120 40 GGGGTCTGGG CAGGGGCCAC AGCAAGTCGG GGCGGGTCAA ACGTTCGAGT ACTTGAAACG 180 GGAGCACTCG CTGTCGAAGC CCTACCAGGG TGTGGGCACA GGCAGTTCCT CACTGTGGAA 240 TCTGATGGGC AATGCCATGG TGATGACCCA GTATATCCGC CTTACCCCAG ATATGCAAAG 300 45 TAAACAGGGT GCCTTGTGGA ACCGGGTGCC ATGTTTCCTG AGAGACTGGG AGTTGCAGGT 360 GCACTTCAAA ATCCATGGAC AAGGAAAGAA GAATCTGCAT GGGGATGGCT TGGCAATCTG 420 50 GTACACAAAG GRWTCGGATG CAGCCAGGGC CTGTNTTTGG GAAACATGGA CAAATTTGTG 480 GGGCTGGGAG TATTTGTAGA CACCTACCCC AATGAGGAGA AGCAGCAAGA GCGGGTATTC 540 CCCTRCMTCT CAGCCATGGT GAACAACGGC TCCCTCAGCT ATGATCATGA GCGGGATGGG 600 55 CGGCCTACAG AGCTGGGAGG CTGCASAGCC ATTGTCCGCA ATCTTCATTA CGACACCTTC 660 CTGGTGATTC GCTACGTCAA GAGGCATTTR ACGATAATGA TGGATATTGA TGGCAAGCAT 720 60 GAGTGGAGGG ACTGCATTGA AGTGCCCGGA GTCCGCCTGC CCCGCGGCTA CTACTTCGGC 780

	ACCTCCTCCA	TCACTGGGGA	TCTCTCAGAT	AATCATGATG	TCATTTCCTT	GAAGTTGTTT	840
5	GAACTGACAG	TGGAGAGAAC	CCCAGAAGAG	GAAAAGCTCC	ATCGAGATGT	GTTCTTGCCC	900
5	TCAGTGGACA	ATATGAAGCT	GCCTGAGATG	ACAGCTCCAC	TGCCGCCCCT	GAGTGGCCTG	960
	GCCCTCTTCC	TCATCGTCTT	TTTCTCCCTG	GGTGTTTTCT	GTATTTGCCA	TAGTCATTGG	1020
10	TATCATACTC	TACAACAAAT	GGCAGGAACA	GAGCCGAAAG	CGCTTCTACT	GAGCCCTCCT	1080
	GCTGCCACCA	CTTTTGTGAC	TGTCACCCAT	GAGGTATGGA	AGGAGCAGGC	ACTGGCCTGA	1140
15	GCATGCAGCC	TGGAGAGTGT	TCTTGTCTCT	AGCAGCTGGT	TGGGGACTAT	ATTCTGTCAC	1200
13	TGGAGTTTTG	AATGCAGGGA	CCCCGCATTC	CCATGGTTGT	GCATGGGGAC	ATCTAACTCT	1260
	GGTCTGGGAA	GCCACCCACC	CCAGGGCAAT	GCTGCTGTGA	TGTGCCTTTC	CCTGCAGTCC	1320
20	TTCCATGTGG	GAGCAGAGGT	GTGAAGAGAA	TTTACGTGGT	TGTGATGCCA	AAATCACAGA	1380
	ACAGAATTTC	ATAGCCCAGG	CTGCCGTGTT	GTTTGACTCA	GAAGGCCCTT	CTACTTCAGT	1440
25	TTTGAATCCA	CAAAGAATTA	AAAACTGGTA	ACACCACAGG	CTTTCTGACC	ATCCATTCGT	1500
23	TGGGTTTTGC	ATTTGACCCA	ACCCTCTGCC	TACCTGAGGA	GCTTTCTTTG	GAAACCAGGA	1560
	TGGAAACTTC	TTCCCTGCCT	TACCTTCCTT	TCACTCCATT	CATTGTCCTC	TCTGTGTGCA	1620
30	ACCTGAGCTG	GGAAAGGCAT	TTGGATGCCT	CTCTGTTGGG	GCCTGGGGCT	GCAGAACACA	1680
	CCTGCGTTTC	ACTGGCCTTC	ATTAGGTGGC	CCTAGGGAGA	TGGCTTTCTG	CTTTGGATCA	1740
35	CTGTTCCCTA	GCATGGGTCT	TGGGTCTATT	GGCATGTCCA	TGGCCTTCCC	AATCAAGTCT	1800
33	CTTCAGGCCC	TCAGTGAAGT	TTGGCTAAAG	GTTGGTGTAA	AAATCAAGAG	AAGCCTGGAA	1860
	GACATCATGG	ATGCCATGGA	TTAGCTGTGC	AACTGACCAG	CTCCAGGTTT	GATCAAACCA	1920
40	AAAGCAACAT	TTGTCATGTG	GTCTGACCAT	GTGGAGATGT	TTCTGGACTT	GCTAGAGCCT	1980
	GCTTAGCTGC	ATGTTTTGTA	GTTACGATTT	TTGGAATCCC	ACTTTGAGTG	CTGAAAGTGT	2040
45	AAGGAAGCTT	TCTTCTTACA	CCTTGGGCTT	GGATATTGCC	CAGAGAAGAA	ATTTGGCTTT	2100
73	TTTTTTNCTT	AATGGACAAG	AGACAGTTGC	TGTTCTCATG	TTCCAAGTCT	GAGAGCAACA	2160
	GACCCTCATC	ATCTGTGCCT	GGAAGAGTTC	ACTGTCATTG	AGCAGCACAG	CCTGAGTGCT	2220
50	GGCCTCTGTC	AACCCTTATT	CCACTGCCTT	ATTTGACAAG	GGGTTACATG	CTGCTCACCT	2280
	TACTGCCCTG	GGATTAAATC	AGTTACAGGC	CAGAGTCTCC	TTGGAGGGCC	TGGAACTCTG	2340
55	AGTCCTCCTA	TGAACCTCTG	TAGCCTAAAT	GAAATTCTTA	AAATCACCGA	TGGAACCAAA	2400
JJ	АААААААА	AAAAAAAAA	ААААААААА	AAAAN			2435

120

180

240

300

258

	(2) INFORMATION FOR SEQ ID NO: 108:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 805 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:	60
	ATGAAACTTA AGAATTGAAT TGGAAAGACT TCTCAAAGAG AATTGTATGT AACGATGTTG	60
	TATTGATTTT TAAGAAAGTA ATTTAATTTG TAAAACTTCT GCTCGTTTAC ACTGCACATT	120
15	GAATACAGGT AACTAATTGG AAGGAGAGGG GAGGTCACTC TTTTGATGGT GGCCCTGAAC	180
	CTCATTCTGG TTCCCTGCTG CGCTGCTTGG TGTGACCCAC GGAGGATCCA CTCCCAGGAT	240
20	GACGTGCTCC GTAGCTCTGC TGCTGATACT GGGTCTGCGA TGCAGCGGCG TGAGGCCTGG	300
20	GCTGGTTGGA GAAGGTCACA ACCCTTCTCT GTTGGTCTGC CTTCTGCTGA AAGACTCGAG	360
	AACCAACCAG GGAAGCTGTC CTGGAGGTCC CTGGTCGGAG AGGGACATAG AATCTGTGAC	420
25	CTCTGACAAC TGTGAAGCCA CCCTGGGCTA CAGAAACCAC AGTCTTCCCA GCAATTATTA	480
	CAATTOTTGA ATTCOTTGGG GATTTTTTAC TGCCCTTTCA AAGCACTTAA GTGTTAGATC	540
	TAACGTGTTC CAGTGTCTGT CTGAGGTGAC TTAAAAAAATC AGAACAAAAC TTCTATTATC	600
30		
	CAGAGTCATG GGAGAGTACA CCCTTTCCAG GAATAATGTT TTGGGAAACA CTGAAATGAA	660
	ATCTTCCCAG TATTATAAAT TGTGTATTTA AAAAAAAGAA ACTTTTCTGA ATGCCTACTG	720
35	GCGGTGTATA CCAGGCAGTG TGCCAGTTTA AAAAGATGAA AAAGAATAAA AACTTTTGAG	780
	GAACAAAAA AAAAAAAAA AAATT	805
40		
	(2) INFORMATION FOR SEQ ID NO: 109:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 1166 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

GGCACGAGAG GCGCCAGTCG CAGGTGTGCT GCTGAGGCGT GAGAATGGCG TCCCGCGGCC

GGCGTCCGGA GCATGGCGGA CCCCCAGAGC TGTTTTATGA CGAGACAGAA GCCCGGAAAT

ACGTTCGCAA CTCACGGATG ATTGATATCC AGACCAGGAT GGCTGGGCGA GCATTGGAGC

TTCTTTATCT GCCAGAGAAT AAGCCCTGTT ACCTGCTGGA TATTGGCTGT GGCACTGGGC

TGAGTGGAAG TTATCTGTCA GATGAAGGGC ACTATTGGGT GGGCCTGGAT ATCAGCCCTG

BNSDOCID:	<wo< th=""><th>9842738A1_IA></th><th></th></wo<>	9842738A1_IA>	
BNSDCCID.	· **O	9042130M1_IM2	

50

55

	CCATGCTGGA	TGAGGCTGTG	GACCGAGAGA	TAGAGGGAGA	CCTGCTGCTG	GGGGATATGG	360
5	GCCAGGGCAT	CCCATTCAAG	CCAGGCACAT	TTGATGGTTG	CATCAGCATT	TCTGCTGTGC	420
3	AGTGGCTCTG	TAATGCTAAC	AAGAAGTCTG	AAAACCCTGC	CAAGCGCCTG	TACTGCTTTT	480
	TIGCTTCTCT	TTTTTCTGTT	CTCGTCCGGG	GATCCCGAGC	TGTCCTGCAG	CTGTACCCTG	540
10	AGAACTCAGA	GCAGTTGGAG	CTGATCACAA	CCCAGGCCAC	AAAGGCAGGC	TTCTCCGGTG	600
	GCATGGTGGT	AGACTACCCT	AACAGTGCCA	AAGCAAAGAA	ATTCTACCTC	TGCTTGTTTT	660
15	CTGGGCCTTC	GACCTTTATA	CCAGAGGGGC	TGAGTGAAAA	TCAGGATGAA	GTTGAACCCA	720
13	GGGAGTCTGT	GTTCACCAAT	GAGAGGTTCC	CATTAAGGAT	GTCGAGGCGG	GGAATGGTGA	780
	GGAAGAGTCG	GGCATGGGTG	CTGGAGAAGA	AGGAGCGGCA	CAGGCGCCAG	GGCAGGGAAG	840
20	TCAGACCTGA	CACCCAGTAC	ACCGGCCGCA	AGCGCAAGCC	CCGCTTCTAA	GTCACCACGC	900
	GGTTCTGGAA	AGGCACTTGC	CTCTGCACTT	TTCTATATTG	TTCAGCTGAC	AAAGTAGTAT	960
25	TTTAGAAAAG	TTCTAAAGTT	ATAAAAATGT	TTTCTGCAGT	AAAAAAAAAG	TTCTCTGGGC	1020
23	CGGGCGTGGT	GGCTCACANC	TGTAATCCCA	GCACCTTGGG	AGGCTGAGGT	GGGAGGATCA	1080
	TTIGAGGCCA	GGAGTTTGAG	ACCTGCCTGG	GCAACATAAT	GAAACTTCCT	TTCCAGGGAG	1140
30	ААААААААА	AAAAAAAAA	ACTCGA				1166

35 (2) INFORMATION FOR SEQ ID NO: 110:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 586 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

45 60 AGAGCGGACG AAGCTGGATA ACAGGGGACC GATGATGTGG CGACCATCAG TTCTGCTGCT TCTGTTGCTA CTGAGGCACG GGGCCCAGGG GAAGCCATCC CCAGACGCAG GCCCTCATGG 120 CCAGGGGAGG GTGCACCAGG CGGCCCCCCT GAGCGACGCT CCCCATGATG ACGCCCACGG 180 50 GAACTTCCAG TACGACCATG AGGCTTTCCT GGGACGGGAA GTGGCCAAGG AATTCGACCA 240 ACTCACCCCA GAGGAAAGCC AGGCCCGTCT GGGGCGGATC GTGGACCGCA TGGACCGCGC 300 55 GGGGGACGGC GACGGCTGGG TGTCGCTGGC CGAGCTTCGC GCGTGGATCG CGCACACGCA 360 GCAGCGCAC ATACGGGACT CGGTGAGCGC GGCCTGGGAC ACGTACGACA CGGACCGCGA 420 CGGGCGTGTG GGTTGGGAGG AGCTGCGCAA CGYCACCTAT GGCCACTASG SGCCCGKTGA 480 60

	AGAATTICAT GACGICGAGG AIGCAGAGAC YI'ACAAAAAG AIGCIGGYI'C GGGACGAGC	CG 540
	GCGTTTCCGG GTGGCCGACC AGGATGGGGA CTCGATGGCC ACTCGA	586
5		
	(2) INFORMATION FOR SEQ ID NO: 111:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1134 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:	
	ACCCATTGAG CAGAAGGAGG CCAGGTGGGA AAGCTCCTGG GAAGAGCAGC CAGACTGGA	AC 60
20	ACTGGGCTGC TTGAGTCCTG AGTCACAATT CAGAATTCCT GGGCTCCCTG GGTGCATTC	T 120
	ATCATTCCAG TTGAAAGTTT GCTTCCTTCC AGTCATGTGG CTCTTCATTC TACTCTCCT	TT 180
25	GGCTCTCATT TCAGATGCCA TGGTCATGGA TGAAAAGGTC AAGAGAAGTT TGTGCTGGA	AC 240
23	ACGGCTTCTG CCATCTGCAA CTACAATGCC CAYTACAAGA ATCACCCCAA ATACTGGTC	SC 300
	CGAGGYTATT TCCGTGAYTA CTGCAACATC ATCGCCTTCT CCCCTAACAG CACCAATCA	AT 360
30	GTGGCCCTGA AGGACACAGG GAACCAGCTC ATTGTCACTA TGTCCTGCCT GAACAAANA	AA 420
	GACACGGGCT GGTACTGGTG TGGCATCCAR CGGGACTTTG CMAGGGATGA CATGGATTT	rr 480
35	ACAGAGCTGA TTGTAACTGA CGACAAAGGA ACCCTGGCCA ATGACTTTTG GTCTGGGAA	\ A 540
33	GACCTATCAG GCAACAAAAC CAGAAGCTGC AAGGCTCCCA AAGTTGTCCG CAAGCTGAC	CC 600
	GCTCCAGGAC GTCCATTCTC ATCATTTGCA TACTGATCAC GGGTTTGGGA ATCATCTCT	rg 660
40	TAATCAGTCA TTTGACCAAA AGGAGGAGAA GTCAAAGGAA TAGAAGGGTA GGCAACACT	r r 720
	TGAAGCCCTT CTCGCGTGTC CTGACTCCAA AGGAAATGGC TCCTACTGAA CAGATGTGA	AC 780
45	TGAAGWITTT TTTAATTTAG TINCATAAAG TGATGNCTAC AACAGAWIAA TCACCCATC	GA 840
	CAACTGGCCC CACACCTCAG AGACTGATTC TGATCTCCCA GGAATTCTGA AGGACCCTC	T 900
	ATCCTTGACA ACAATCATTT GCAGCCAGGT AGCAACGGCR GTAGTCAGAG GAGCTATGA	AT 960
50	AGACCACACC CAAGCAAGGC TGCCCTCAAA TAACATCTCA AGATCTTAGT TCTTATGCA	AT 1020
	TCCATCAGTC AGAAGTGAAG AAGAGGTGGA GAATCTKGAT TGGGGACCAG GAAATCACT	rr 1080
55	GTATTTTGTT AGCCAATAAA TTCCTAGCCA GTGTTGAATG AAAAAAAAAA	1134

(2) INFORMATION FOR SEQ ID NO: 112:

III SECUENCE CHARACIERISIIC	(i)	SEOUENCE	CHARACTERISTICS	3:
-----------------------------	-----	----------	-----------------	----

(A) LENGTH: 1333 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

5. (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

10	CACTTTAAAG	CTCTGCTGAG	GGAGTTCGGA	GCCCAGGCTT	TCAGGCGACC	TCTGCCCTCC	60
10	CTGCCTCTCC	TCACCCTCCC	TCTCTTCCTG	CAGGGCCTGG	GAAGGGCTTT	GAGGGAGCCT	120
	GGGAGCCATG	TGAAGAGGGG	CACGCCTGGG	CTGTCCCACA	GTTTAGATCC	AGTTGGAGGT	180
15	TCTCCCTGGC	TCCTGCAGGC	CTGCGGGGAT	CTCTCCCCAC	TTCAGGCCTC	CGGCAGCTGC	240
	CTGCCCTCTT	GTCTGTGCTT	CAGCCCTGCA	CAAAAGCAGC	TTGGTGACAC	CACTCAGCCA	300
20	CCCAGAGTAC	GTGTTTACAG	GCTTTCCAGA	TCACCTTCCT	GTGGGGTGAA	CGTAATGAGG	360
20	CGGGGCTGGT	CCTTGGAATT	TCCCCTGGAA	AATGGTAACA	GACTCCATCC	TTGACCCGGG	420
	GATGAGCATG	AAGGCATTGT	CCCAAAGGCA	GAGGCCACCG	TGGTAGGAAT	TCCACCAAGG	480
25	CCAGAAGGGA	AAAAGGAAGA	ACCCACCGTG	TCTGGCTGTG	CGGGCCCTGG	GGAGGGTCGT	540
	GAGTGCAGCC	CCTCTCTACT	TCYGTGCCTT	TGTAAAACGT	GTAGATAACC	GCAGTGGTTG	600
30	GCTGAGCCAA	GAACTCTCCT	AAATCAGTGG	CTTTCTCCCC	ACCCCTTGCT	GGGGAGTCAT	660
30	TTTTAAAAAA	ATCTGTGGGA	TATAAAATTG	GCCTCCTGCT	GCTTCAGCCT	ACCTCTCCCT	720
	CTGCTGACTT	AATGTCGTGA	TTCTGTTTCT	TCAGATATTT	AAGGCTGTTA	GGTTGTGTGA	780
35	GCCTTGAAGT	GTGTGTGTGT	GTCCCAGCGA	CTGTCCACTG	TCCAGGAGAT	GCATGTCTTT	840
	GTATTGGAGA	TATTTCTGTA	ACTCATTCTC	TTGGTGCTCA	CGATTGCCAT	GGCCATAGGG	900
40	CCACAGTGCC	GTATCTGCTG	CAGACATGAT	TGTTTCTTGT	TCTAGAGGTT	TTCTTGTTTT	960
40	CGAATCTTGC	CTGATGAATC	CAGCCAGACC	AAGGGCCTA	GATTTGACCT	CTGTCCTGGG	1020
	CTCCTGGGCC	AGGTGCAGGA	ACATCTGAGG	CCACTCTGCT	GGCCACCTCC	AGTGGGTGCT	1080
45	GACCACAGGA	TGGGCTTTGT	TTACACTCAT	TTTCACCCTG	ATTCTTGCCC	CCACTTICAT	1140
	AAAAGAAACT	TCAAAATGCT	GACGCTTTGG	G AGAGTAAGAA	AATCAATCTT	GGCTGGGCAC	1200
50	GGTGGCTCCT	GCCTGTGATC	CTAGCACTTI	GGGAGGCTGA	AGCTGAAGGA	TCACTTGAGC	1260
50	TCAGGAGTTG	GAGACCAACC	CTGGCAACAT	AACAAGACCC	TGTCTCTACA	AAAAAAAA	1320
	AAAAAAACT	CGA					1333

55

(2) INFORMATION FOR SEQ ID NO: 113:

(i) SEQUENCE CHARACTERISTICS:

WO 98/42738 PCT/US98/05311

262

(A) LENGTH: 1015 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEO ID NO: 113:

5

GGCACGAGCG GCACGAGCGG CACGAGGTGA CTTCAAGTGT CGGATCTTTT CAGCCTACAT 60 10 CAAGGAGGTG GAGGAACGGC CGGCACCCAC CCCGTGGGCT CCAAGATGCC CTTTGGGGAA 120 CTGATGTTCG AATCCAGCAG TAGCTGCGGC TGGGTACATG GCGTCTGTTT CTCAGCCAGC 180 GGGAGCCGCG TGGCCTGGGT AAGCCACGAC AGCACCGTCT GCCTGGCTGA TGCCGACAAG 240 15 AAGATGCCCG TCGCGACTCT GGCCTCTGAA ACACTACCAC TGCTGGCGCT GACCTTCATC 300 ACAGACAACA GCCTGGTGGC AGCGGGCCAC GACTGCTTCC CGGTGCTGTT CACCTATGAC 360 20 GCCGCCGCG GGATGCTGAG CTTCGGCGGG CGGCTGGACG TTCCTAAGCA GAGCTCGCAG 420 CGTGGCTTGA CGGCCCGCGA GCGCTTCCAG AACCTGGACA AGAAGGCGAG CTCCGAGGGT 480 GGCACGGCTG CGGGCGCGG CCTAGACTCG CTGCACAAGA ACAGCGTCAG CCAGATCTCG 540 25 GTGCTCAGCG GCGGCAAGGC CAAGTGCTCG CAGTTCTGCA CCACTGGCAT GGATGGCGGC 600 ATGAGTATCT GGGATGTGAA GAGCTTGGAG TCAGCCTTGA AGGACCTCAA GATCAAATGA 660 30 CCTGTGAGGA ATATGTTGCC TTCATCCTAG CTGCTGGGGA AGCGGGGAGA GGGGTCAGGG 720 AGGCTAATGG TTGCTTTGCT GAATGTTTCT GGGGTACCAA TACGAGTTCC CATAGGGGCT 780 GCTCCCTCAA AAAGGGAGGG GACAGATGGG GAGCTTTTCT TACCTATTCA AGGAATACGT 840 35 GCCTTTTCT TAAATGCTTT CATTTATTGA AAAAAAAAA AAATGCCCCC AAAGCACTAT 900 960 40 1015

45 (2) INFORMATION FOR SEQ ID NO: 114:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1076 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

55 GGCACGAGGG GAAAGCCATG CTCCCAGGAC TCCTTCCTTG CAGCCTTAAA TCGGTCTGTA 60
CGGAAAATTC CGCGCCTTAG AAACCCACGC TTGGGTGTAA CTTATTATTG TTCTTCCTGA 120
CCTACTTCCT GTTTATCACT TCCGGGTTCA TCATTTTGGC ATTTCGGTGA TCGGGTTGGA 180

	ACTATTGAAG	CCCGCTTTCA	GGTTCTTTTC	CCCATTTTCC	CTTTGAAAGG	AAGACTTCTG	240
	GCTTCTCCTA	AATCTCCGTT	CTCTGGGTAA	GGGGAGTCCA	AGCCTCTGTC	ATGAGGAACG	300
5	GAAATGCGAG	GCCTCGGGT	GTTACTCTAA	AATCCGCCCT	CAGCTTGCAC	GCCGGAAGCT	360
	GCGATTCCTG	CAGCGGAAGA	GGCGTGATCT	GGCCTTCGAC	TCGCTATGTC	CACTAACAAT	4 20
10	ATGTCGGACC	CACGGAGGCC	GAACAAAGTG	CTGAGGTACA	AGCCCCCGCC	GAGCGAATGT	480
10	AACCCGGCCT	TGGACGACCC	GACGCCGGAC	TACATGAACC	TGCTGGGCAT	GATCTTCAGC	540
	ATGTGCGGCC	TCATGCTTAA	GCTGAAGTGG	TGTGCTTGGG	TCGCTGTCTA	CTGCTCCTTC	600
15	ATCAGCTTTG	CCAACTCTCG	GAGCTCGGAG	GACACGAAGC	AAATGATGAG	TAGCTTCATG	660
	CTGTCCATCT	CTGCCGTGGT	GATGTCCTAT	CTGCAGAATC	CTCAGCCCAT	GACGCCCCCA	720
20	TGGTGATACC	AGCCTAGAAG	GGTCACATTT	TGGACCCTGT	CTATCCACTA	GGCCTGGGCT	780
20	TTGGCTGCTA	AACCTGCTGC	CTTCAGCTGC	CATCCTGGAC	TTCCCTGAAT	GAGGCCGTCT	840
	CGGTGCCCCC	AGCTGGATAG	AGGGAACCTG	GCCCTTTCCT	AGGGAACACC	CTAGGCTTAC	900
25	CCCTCCTGCC	TCCCTTCCCC	TGCCTGCTGC	TGGGGGAGAT	GCTGTCCATG	TTTCTAGGGG	960
	TATTCATTTG	CTTTCTCGTT	GAAACCTGTT	GTTAATAAAG	TTTTTCACTC	TGAAAAAAA	1020
30	AAAAAAAAA	RAAAACNCGN	GGGGGGCCC	GGAACCCAAT	TCSCCGGATA	GTGAGT	1076
~ ~							

(2) INFORMATION FOR SEQ ID NO: 115:

35

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1487 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

40 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

CCGCTGCTGA TAACTATGGC ATCCCCCGGG CCTGCAGGAA TTCGGCACGG AGCTACGGCG 60 45 CCGCCTGGCT CCTGCTGNCA CCTGCAGGCT CGTCGCGGGT GGAGCCCACC CAAGACATCA 120 180 GCATCAGCGA CCAGCTGGGG GGCCAGGACG TGCCCGTGTT CCGGAACCTG TCCCTGCTGG 240 50 TEGTEGETET CEGCECCETE TTCTCACTEC TATTCCACCT GEGCACCCGG GAGAGGCGCC 300 GGCCGCATGC GGASGAGCCA GGCGAGCACA CCCCCCTGTT GGCCCCTGCC ACGGCCCAGC CCCTGCTGCT CTGGAAGCAC TGGCTCCGGG AGCSGGCTTT CTACCAGGTG GGCATACTGT 360 55 ACATGACCAC CAGGCTCATC GTGAACCTGT CCCAGACCTA CATGGCCATG TACCTCACCT 420 ACTCGCTCCA CCTGCCCAAG AAGTTCATCG CGACCATTCC CCTGGTGATG TACCTCAGCG 480 GCTTCTTGTC CTCCTTCCTC ATGAAGCCCA TCAACAAGTG CATTGGGAGG AACATGACCT 540 60

	ACTTCTCAGG	CCTCCTGGTG	ATCCTGGCCT	TTGCCGCCTG	GGTGGCGCTG	GCGGAGGGAC	600
5.	TGGGTGTGGC	CGTGTACGCA	GCGGCTGTGC	TGCTGGGTGC	TGGCTGTGCC	ACCATCCTCG	660
,	TCACCTCGCT	GGCCATGACG	GCCGACCTCA	TCGGTCCCCA	CACGAACAGC	GGAGCKTTCG	720
	TGTACGGCTC	CATGAGCTTC	TTGGATAAGG	TGGCCAATGG	GCTGGCAGTC	ATGGCCATCC	780
10	AGAGCCTGCA	CCCTTGCCCC	TCAGAGCTCT	GCTGCAGGGC	CTGCGTGAGC	TTTTACCACT	840
	GGGCGATGGT	GGCTGTGACG	GGCGGCGTGG	GCGTGGCCGC	TGCCCTGTGT	CTCTGTAGCC	900
15	TCCTGCTGTG	GCCGACCCGC	CTGCGACGCT	GATGAGACCT	GCACGCANTG	GCTCACAGCA	960
13	GCACGATTTG	TGACAGCCCG	AGGCGGAGAA	CACCGAACAC	CCAGTGAAGG	TGAGGGGATC	1020
	AGCACGGCGC	GGCCACCCAC	GCACCCACGC	GCTGGAATGA	GACTCAGCCA	CAAGGAGGTG	1080
20	CGAAGCTCTG	ACCCAGGCCA	CAGTGCGGAT	GCACCTTGAG	GATGTCACGC	TCAGTGAGAG	1140
	ACACCAGACA	CAGAAGGGTA	CGCTGTGATC	CCACTTCTAT	GAAATGTCCA	GGACAGACCA	1200
25	ATCCACAGAA	TCAGGGAGAG	GATTCGTGGG	TGCCGGGACT	GGGGAGGGG	ACCTGGGGGT	1260
	GACTAGGTGA	CATAATGGGG	ACAGGGCTGC	CTTCTGGGTG	ATGAGAATGT	TCTGGAATCA	1320
	GATGGGATGG	CTGCACGGCG	TGGTGAAGGT	ACTGAACGCC	ACCTCACTGT	AAGACGGTAG	1380
30	ATTTTGTATT	TTACCACAAT	AAACAAAACA	AAACAAAACC	AAAAAAAA	AAAAAAAA	1440
	AAAAAAAAGG	AATTCGATAT	CAAGCTTATC	GATACCGTCG	ACCTCGA		1487

40

(2) INFORMATION FOR SEQ ID NO: 116:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1350 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:

	GGCACGAGTG	CGCANGCGTG	GGGCTCTCTC	CTTGTCAGTC	GCCCCCCT	GCGGGCTGGT	60
50	GGCTCTGTGG	CAGCGGCGGC	GGCAGGACTC	CGGCACTATG	AGCGGCTTCA	GCACCGAGGA	120
30	GCGCGCCGCG	CCTTCTCCCT	GGAGTACCGA	GTCTTCCTCA	AAAATGAGAA	AGGACAATAT	180
	ATATCTCCAT	TTCATGATAT	TCCAATTTAT	GCAGATAAGG	ATGTGTTTCA	CATGGTAGTT	240
55	GAAGTACCAC	GCTGGTCTAA	TGCAAAAATG	GAGATTGCTA	CAAAGGACCC	TTTAAACCCT	300
	ATTAAACAAG	ATGTGAAAAA	AGGAAAACTT	CGCTATGTTG	CGAATTTGTT	CCCGTATAAA	360
60	GGATATATCT	GGAACTATGG	TGCCATCCCT	CAGACTTGGG	AAGACCCAGG	GCACAATGAT	420

	AAACATACTG	GCTGTTGTGG	TGACAATGAC	CCAATTGATG	TGTGTGAAAT	TGGAAGCAAG	480
	GTATGTGCAA	GAGGTGAAAT	AATTGGCGTG	AAAGTTCTAG	GCATATTGGC	TATGATTGAC	540
5	GAAGGGGAAA	CCGACTGGAA	AGTCATTGCC	ATTAATGTGG	ATGATCCTGA	TGCAGCCAAT	600
	TATAATGATA	TCAATGATGT	CAAACGGCTG	AAACCTGGCT	ACTTAGAAGC	TACTGTGGAC	660
10	TGGTTTAGAA	GGTATAAGGT	TCCTGATGGA	AAACCAGAAA	ATGAGTTTGC	GTTTAATGCA	720
10	GAATTTAAAG	ATAAGGACTT	TGCCATTGAT	ATTATTAAAA	GCACTCATGA	CCATTGGAAA	780
	GCATTAGTGA	CTAAGAAAAC	GAATGGAAAA	GGAATCAGTT	GCATGAATAC	AACTTTGTCT	840
15	GAGAGCCCCT	TCAAGTGTGA	TCCTGATGCT	GCCAGAGCCA	TTGTGGATGC	TTTACCACCA	900
	CCCTGTGAAT	CTGCCTGCAC	AGTACCAACA	GACGTGGATA	AGTGGTTCCA	TCACCAGAAA	960
20	AACTAATGAG	ATTTCTCTGG	AATACAAGCT	GATATTGCTA	CATCGTGTTC	ATCTGGATGT	1020
20	ATTAGAAGTA	AAAGTAGTAG	CTTTTCAAAG	CTTTAAATTT	GTAGAACTCA	TCTAACTAAA	1080
	GTAAATTCTG	CTGTGACTAA	TCCAATATAC	TCAGAATGTT	ATCCATCTAA	AGCATTTTTC	1140
25	ATATCTCAAC	TAAGATAACT	TTTAGCACAT	GCTTAAATAT	CAAAGCAGTT	GTCATTTGGA	1200
	AGTCACTTGT	GAATAGATGT	GCAAGGGGAG	CACATATTGG	ATGTATATGT	TACCATATGT	1260
20	TAGGAAATAA	AATTATTTTG	CTGAAAAAA	АААААААА	ACCTSGGGG	GGGSCCCGGT	1320
30	CCCCATTTGG	CCCTTTGGGG	GGNGGTTTTA				1350

35

40

(2) INFORMATION FOR SEQ ID NO: 117:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2527 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

45 60 CTCTTGCTAC CTTCCCGGCG CAGAGAACCC CGGCTGCTCA GCGCGCTCCG GGGTCATGGA GATCCCCGGG AGCCTGTGCA AGAAAGTCAA GCTGAGCAAT AACGCGCAGA ACTGGGGAAT 120 50 GCAGAGAGCA ACCAATGTCA CCTACCAAGC CCATCATGTC AGCAGGAACA AGAGAGGTCA 180 GGTGGTGGGG ACCAGAGGTG GCTTTCGTGG TTGCACAGTT TGGCTAACAG GCTTGTCTGG 240 AGCGGGAAAG ACTACTGTGA GCATGGCCTT GGAGGAGTAC CTGGTTTGTC ATGGTATTCC 300 55 ATGCTACACT CTGGATGGTG ACAATATTCG TCAAGGTCTC AATAAAAATC TTGGCTTTAG 360 TCCTGAAGAC AGAGAAGAGA ATGTTCGACG CATCGCAGAA GTTGCTAAAC TGTTTGCAGA 420 TGCTGGCTTA GTGTGCATCA CAAGTTTCAT ATCACCTTAC ACTCAGGATC GCAACAATGC 480 60

	AAGGCAAATT	CATGAAGGTG	CAAGTTTACC	GTTTTTTGAA	GTATTTGTTG	ATGCTCCTCT	540
5	GCATGTTTGT	GAACAGAGGG	ATGTCAAAGG	ACTCTACAAA	AAAGCCCGGG	CAGGAGAAAT	600
J	TAAAGGTTTC	ACTGGGATCG	ATTCTGAATA	TGAAAAGCCA	GAGGCCCCTG	AGTTGGTGCT	660
	GAAAACAGAC	TCCTGTGATG	TAAATGACTG	TGTCCAGCAA	GTTGTGGAAC	TTCTACAGGA	720
10	ACGGGATATT	GTACCTGTGG	ATGCATCTTA	TGAAGTAAAA	GAACTATATG	TGCCAGAAAA	780
	TAAACTTCAT	TTGGCAAAAA	CAGATGCGGA	AACATTACCA	GCACTGAAAA	TTAATAAAGT	840
15	GGATATGCAG	TGGGTGCAGG	TTTTGGCAGA	AGGTTGGGCA	ACCCCATTGA	ATGGCTTTAT	900
13	GAGAGAGAGG	GAGTACTTGC	AGTGCCTTCA	TTTTGATTGT	CTTCTGGATG	GAGGTGTCAT	960
	TAACTTGTCA	GTACCTATAG	TTCTGACTGC	GACTCATGAA	GATAAAGAGA	GGCTGGACGG	1020
20	CTGTACAGCA	TTTGCTCTGA	TGTATGAGGG	CCGCCGTGTG	GCCATTCTTC	GCAATCCAGA	1080
	GTTTTTTGAG	CACAGGAAAG	AGGAGCGCTG	TGCCAGACAG	TGGGGAACGA	CATGCAAGAA	1140
25	CCACCCCTAT	ATTAAGATGG	TGATGGAACA	AGGAGATTGG	CTGATTGGAG	GAGATCTTCA	1200
20	AGTCTTGGAT	CGAGTTTATT	GGAATGATGG	TCTTGATCAG	TATCGTCTTA	CTCCTACTGA	1260
	GCTAAAGCAG	AAATTTAAAG	ATATGAATGC	TGATGCTGTC	TTTGCATTTC	AACTACGCAA	1320
30	CCCAGTGCAC	AATGGACATG	CCCTGTTAAT	GCAGGATACC	CATAAGCAAC	TTCTAGAGAG	1380
	GGGCTACCGG	CGCCCTGTCC	TCCTCCTCCA	CCCTCTGGGT	GGCTGGACAA	AGGATGACGA	1440
35	TGTTCCTTTG	ATGTGGCGTA	TGAAGCAGCA	TGCTGCAGTG	TTGGAGGAAG	GAGTTCTGAA	1500
	TCCTGAGACG	ACAGTGGTGG	CCATCTTCCC	ATCTCCCATG	ATGTATGCTG	GACCAACTGA	1560
	GGTCCAGTGG	CATTGCAGAG	CACGGATGGT	TGCAGGAGCC	AACTTTTACA	TTGTTGGACG	1620
40	AGACCCTGCT	GGCATGCCTC	ATCCAGAAAC	AGGGAAGGAT	CTTTATGAGC	CAAGTCATGG	1680
	TGCCAAAGTG	CTGACGATGG	CCCCTGGTTT	AATCACTTTG	GAAATAGTTC	CCTTTCGAGT	1740
45	TGCAGCTTAC	AACAAGAAAA	AGAAGCGTAT	GGACTACTAT	GACTCTGAAC	ACCATGAAGA	1800
	CTTTGAATTT	ATTTCAGGAA	CACGAATGCG	CAAACTTGCT	CGAGAAGGCC	AGAAACCACC	1860
	TGAAGGTTTC	ATGGCTCCCA	AGGCTTGGAC	CGTGCTGACA	GAATACTACA	AATCCTTGGA	1920
50	GAAAGCTTAG	GCTGTTAACC	CAGTCACTCC	ACCTTTGACA	CATTACTAGT	AACAAGAGGG	1980
	GACCACATAG	TCTCTGTTGG	CATTTCTTTG	TGGTGTCTGT	CTGGACATGC	TTCCTAAAAA	2040
55	CAGACCATTT	TCCTTAACTT	GCATCAGTTT	TGGTCTGCCT	TATGAGTTCT	GTTTTGAACA	2100
	AGTGTAACAC	ACTGATGGTT	TTAATGTATC	TTTTCCACTT	ATTATAGTTA	TATTCCTACA	2160
	ATACAATTTT	AAAATTGTCT	TTTTATATTTA	TATTTATGCT	TCTGTGTCAT	GATTTTTTCA	2220
60	ልርርጥርጥጥልጥል	ጥጥ አርጥጥርጥ አ አ	ССАСТАСТАТ	ጥሮልሮልሞሞል ልል	ՎՀ-ԱՎՀ-ԱՎՎ	тттсссстта	2280

WO 98/42738 PCT/US98/05311

267

10	AAAAAA						2527
	GTAAGCTCTG	AATGAACTTC	TTTACTCAAT	AAAATTAATT	TTTTGGCTTC	TTAAAAAAA	2520
5	CTTTCCAGTC	AGCTATTGGT	CTTTCCAGCT	GTTATAATCT	AAAGTATTCT	TATGATCTGT	2460
	AGACCTTTGT	AGCGATTAGA	TTTTTTTCT	ACATTGAAAA	TAGAAACTGC	TTCCTTTCTT	2400
	AAAAAAGAAA	AAAATTACCA	AACAATAAAC	TTGGCTAGAC	CTTGTTTTGA	GGATTTTACA	2340

15 (2) INFORMATION FOR SEQ ID NO: 118:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1098 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

25	CGCATCACAG	ACAACCCAGA	AGGAAAATGG	TTGGGCAGAA	CAGCAAGGGG	TTCATATGGC	60
	TATATTAAAA	CAACTGCTGT	AGAGATTNNC	TATGATTCTT	TGAAACTGAA	AAAAGACTCT	120
30	CTTGGTGCCC	CTTCAAGACC	TATTGAAGAT	GACCAAGAAG	TATATGATGA	TGTTGCAGAG	180
30	CAGGATGATA	TTAGCAGCCA	CAGTCAGAGT	GGAAGTGGAG	GGATATTCCC	TCCACCACCA	240
	GATGATGACA	TTTATGATGG	GATTGAAGAG	GAAGATGCTG	ATGATGGTTT	CCCTGCTCCT	300
35	CCTAAACAAT	TGGACATGGG	AGATGAAGTT	TACGATGATG	TGGATACCTC	TGATTTCCCT	360
	GTTTCATCAG	CAGAGATGAG	TCAAGGAACT	AATGTTGGAA	AAGCTAAGAC	AGAAGAAAAG	420
40	GACCTTAAGA	AGCTAAAAA	GCAGRAAAAA	GAARAAAAAG	ACTTCAGGAA	AAATTTAAAA	480
40	TATGATGGTG	AAATTAGAGT	CCTATATTCA	ACTAAAGTTA	CAACTTCCAT	AACTTCTAAA	540
	AAGTGGGGAA	CCAGAGATCT	ACAGGTAAAA	CCTGGTGAAT	CTCTAGAAGT	TATACAAACC	600
45	ACAGATGACA	CAAAAGTTCT	CTGCAGAAAT	GAAGAAGGGA	AATATGGTTA	TGTCCTTCGG	660
	AGTTACCTAG	CGGACAATGA	TGGAGAGATC	TATGATGATA	TTGCTGATGG	CTGCATCTAT	720
50	GACAATGACT	AGCACTCAAC	TTTGGTCATT	CTGCTGTGTT	CATTAGGTGC	CAATGTGAAG	780
30	TCTGGATTTT	AATTGGCATG	TTATTGGGTA	TCMAGAAAAT	TAATGCACAR	AACCACTTAT	840
	TATCATTTGT	TATGAAATCC	CAATTATCTT	TACAAAGTGT	TTAAAGTTTG	AACATAGAAA	900
55	ATAATCTCTC	TGCTTAATTG	TTATCTCAGA	AGACTACATT	AGTGAGATGT	AAGAATTATT	960
	AAATATTCCA	TTTCCGCTTT	GGCTACAATT	ATGAAGAAGT	TGAAGGTACT	TCTTTTAGAC	1020
60	CACCAGTAAA	TAATCCTCCT	ТСАААААТА	ААААТААААА	AAAAAAAA	AAACTCGAGG	1080

WO 98/42738 PCT/US98/05311

268

	GGGGCCCGG TACCCAAT	1098
5	(2) INFORMATION FOR SEQ ID NO: 119:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1679 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:	
	TCGACCCACG CGTCCGGCGA GATCCCTACC GCAGTAGCCG CCTCTGCCGC CGCGGAGCTT	60
	CCCGAACCTC TTCAGCCGCC CGGAGCCGCT CCCGGAGCCC GGCCGTAGAG GCTGCAATCG	120
20	CAGCCGGGAG CCCGCAGCCC GCGCCCCGAG CCCGCCGCCG CCCTTCGAGG GCGCCCCAGG	180
	CCGCGCCATG GTGAAGGTGA CGTTCAACTC CGCTCTGGCC CAGAAGGAGG CCAAGAAGGA	240
25	CGAGCCCAAG AGCGGCGAGG AGGCGCTCAT CATCCCCCCC GACGCCGTCG CGGTGGACTG	300
23	CAAGGACCCA GATGATGTGG TACCAGTTGG CCAAAGAAGA GCCTGGTGTT GGTGCATGTG	360
	CTTTGGACTA GCATTTATGC TTGCAGGTGT TATTCTAGGA GGAGCATACT TGTACAAATA	420
30	TTTTGCACTT CAACCAGATG ACGTGTACTA CTGTGGAATA AAGTACATCA AAGATGATGT	480
	CATCTTAAAT GAGCCCTCTG CAGATGCCCC AGCTGCTCTC TACCAGACAA TTGAAGAAAA	540
25	TATTAAAATC TTTGAAGAAG AAGAAGTTGA ATTTATCAGT GTGCCTGTCC CAGAGTTTGC	600
35	AGATAGTGAT CCTGCCAACA TTGTTCATGA CTTTAACAAG AAACTTACAG CCTATTTAGA	660
	TCTTAACCTG GATAAGTGCT ATGTGATCCC TCTGAACACT TCCATTGTTA TGCCACCCAG	720
40	AAACCTACTG GAGTTACTTA TTAACATCAA GGCTGGAACC TATTTGCCTC AGTCCTATCT	780
	GATTCATGAG CACATGGTTA TTACTGATCG CATTGAAAAC ATTGATCACC TGGGTTTCTT	840
	TATTTATCGA CTGTGTCATG ACAAGGAAAC TTACAAACTG CAACGCAGAG AAACTATTAA	900
45	AGGTATTCAG AAACGTGAAG CCAGCAATTG TTTCGCAATT CGGCATTTTG AAAACAAATT	960
	TGCCGTGGAA ACTTTAATTT GTTCTTGAAC AGTCAAGAAA AACATTATTG AGGAAAATTA	1020
50	ATATCACAGC ATAACCCCAC CCTTTACATT TTGTGCAGTG ATTATTTTTT AAAGTCTTCT	1080
	TTCATGTAAG TAGCAAACAG GGCTTTACTA TCTTTTCATC TCATTAATTC AATTAAAACC	1140
	ATTACCTTAA AATTITTTTC TTTCGAAGTG TGGTGTCTTT TATATTTGAA TTAGTAACTG	1200
55	TATGAAGTCA TAGATAATAG TACATGTCAC CTTAGGTAGT AGGAAGAATT ACAATTTCTT	1260
	TAAATCATTT ATCTGGATTT TTATGTTTTA TTAGCATTTT CAAGAAGACG GATTATCTAG	1320

AGAATAATCA TATATATGCA TACGTAAAAA TGGACCACAG TGACTTATTT GTAGTTGTTA

1380

	GTTGCCCTGC	TACCTAGTTT	GTTAGTGCAT	TTGAGCACAC	TTTAATTTA	TCCTCTAATT	1440
5	AAAATGTGCA	GTATTTTCAG	TGTCAAATAT	ATTTAACTAT	TTAGAGAATG	ATTTCCACCT	1500
	TTATGTTTTA	ATATCCTAGG	CATCTGCTGT	AATAATATT	TAGAAAATGT	TTGGAATTTA	1560
	AGAAATAACT	TGTGTTACTA	ATTTGTATAA	CCCATATCTG	TGCAATGGAA	TATAAATATC	1620
10	ACAAAGT T GT	TTAAMWAAAA	AAAAAAAA	ААААААААА	AAAAAAAA	AAAAAAAA	1679

15 (2) INFORMATION FOR SEQ ID NO: 120:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1308 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

25	TTGGCANCNG	GGAGAGGGAA	AGAGGAGGAA	ATGGGGTTTG	AGGACCATGG	CTTACCTTTC	60
	CTGCCTTTGA	CCCATCACAC	CCCATTTCCT	CCTCTTTCCC	TCTCCCCGCT	GCCAAAAAAA	120
30	AAAAAAAAGG	AAACGTTTAT	CATGAATCAA	CAGGGTTTCA	GTCCTTATCA	AAGAGAGATG	180
50	TGGAAAGAGC	TAAAGAAACC	ACCCTTTGTT	CCCAACTCCA	CTTTACCCAT	ATTTTATGCA	240
	ACACAAACAC	TGTCCTTTTG	GGTCCCTTTC	TTACAGATGG	ACCTCTTGAG	AAGAATTATC	300
35	GTATTCCACG	TTTTTAGCCC	TCAGGTTACC	AAGATAAATA	TATGTATATA	TAACCTTTAT	360
	TATTGCTATA	TCTTTGTGGA	TAATACATTC	AGGTGGTGCT	GGGTGATTTA	TTATAATCTG	420
40	AACCTAGGTA	TATCCTTTGG	TCTTCCACAG	TCATGTTGAG	GTGGGCTCCC	TGGTATGGTA	4 80
10	AAAAGCCAGG	TATAATGTAA	CTTCACCCCA	GCCTTTGTAC	TAAGCTCTTG	ATAGTGGATA	540
	TACTCTTTTA	AGTTTAGCCC	CAATATAGGG	TAATGGAAAT	TTCCTGCCCT	CTGGGTTCCC	600
45	CATTITTACT	ATTAAGAAGA	CCAGTGATAA	TTTAATAATG	CCACCAACTC	TGGCTTAGTT	660
	AAGTGAGAGT	GTGAACTGTG	TGGCAAGAGA	GCCTCACACC	TCACTAGGTG	CAGAGAGCCC	7 20
50	AGGCCTTATG	TTAAAATCAT	GCACTTGAAA	AGCAAACCTT	AATCTGCAAA	GACAGCAGCA	7 80
20	AGCATTATAC	GGTCATCTTG	AATGATCCCT	TTGAAATTTT	TTTTTTTTTT	GTTTGTTTAA	840
	ATCAAGCCTG	AGGCTGGTGA	ACAGTAGCTA	CACACCCATA	TTGTGTGTTC	TGTGAATGCT	900
55	AGCTCTCTTG	AATTTGGATA	TTGGTTATTT	TTTATAGAGT	GTAAACCAAG	TTTTATATTC	960
	TGCAATGCGA	ACAGGTACCT	ATCTGTTTCT	AAATAAAACT	GTTTACATTC	ATTATGGGGT	1020
60	ATGTATGACC	TTCATTTTCC	AAGAAATAGA	ACTCTAGCTT	AGAATTATGG	ATGCTCTAAA	1080

1140

1200

270

	ATGTCAGAAT	GGGAACTCTC	CTCGAAGTTC	TCCCAAACTC	AGAGACAGCA	CTGCCTTCTC	1140
	CTAAATGATT	ATTCTTTTCT	CCCTGTTTTC	TGGTATTTTC	TAGGCATCCT	TCTCACCACA	1200
5	GCCATAACCC	TTTTTTACTT	CCATTAGGCC	GTATAACTGG	NGGGACNGCT	GGTCGGTATA	1260
	TAATACTGGT	WCCAACAMAG	GGGTTCTGGA	TGTACACMAG	GTTATCTT		1308
10							
	(2) INFORM	ATION FOR SE	EQ ID NO: 12	21:			•
	(i)	SEQUENCE CI	нурусфертсф.	TCC ·			
15	(1)	(A) LEN (B) TYP (C) STR	GTH: 1411 b E: nucleic ANDEDNESS: OLOGY: line	ase pairs acid double			
20	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 121:		
	GGCACAGGAG	CGACCCGGGA	GAAGGAGGC	CAMGAKGCGG	AAGCGGAGGA	GTCTCCAGGA	60
25	GACCCGGGGA	CAGCATCGCC	CAGGCCCCTG	TTTGCAGGCC	TTTCAGATAT	ATCCATCTCA	120
23	CAAGACATCC	CCGTAGAAGG	AGAAATCACC	ATTCCTATGA	GATCTCGCAT	CCGGGAGTTT	180
	GACAGCTCCA	CATTAAATGA	ATCTGTTCGC	AATACCATCA	TGCGTGATCT	AAAAGCTGTT	240
30	GGGAAAAAAT	TCATGCATGT	TTTGTACCCA	AGGAAAAGTA	ATACTCTTTT	GAGAGATTGG	300
	GATTTGTGGG	GCCCTTTGAT	CCTTTGTGTG	ACACTCGCAT	TAATGCTGCA	AAGAGACTCT	360
35	GCAGATAGTG	AAAAAGATGG	AGGGCCCCAA	TTTGCAGAGG	TGTTTGTCAT	TGTCTGGTTT	420
33	GGTGCAGTTA	CCATCACCCT	CAACTCAAAA	CTTCTTGGAG	GGAACATATC	TTTTTTCAG	480
	AGCCTCTGTG	TGCTGGGTTA	CTGTATACTT	CCCTTGACAG	TAGCAATGCT	GATTTGCCGG	540
40	CTGGTACTTT	TGGCTGATCC	AGGACCTGTA	AACTTCATGG	TTCGGCTTTT	TGTGGTGATT	600
	GTGATGTTTG	CCTGGTCTAT	AGTTGCCTCC	ACAGCTTTCC	TTGCTGATAG	CCAGCCTCCA	660
45	AACCGCAGAG	CCCTAGCTGT	TTATCCTGTT	TTCCTGTTTT	ACTTTGTCAT	CAGTTGGATG	720
73	ATTCTCACCT	TTACTCCTCA	GTAAATCAGG	AATGGGAAAT	TAAAAACCAG	TGAATTGAAA	780
	GCACATCTGA	AAGATGCAAT	TCACCATGGA	GCTTTGTCTC	TGGCCCTTAT	TTGTCTAATT	840
50	TTGGAGGTAT	TTGATAACTG	AGTAGGTGAG	GAGATTAAAA	GGGAGCCATA	TAGCACTGTC	900
	ACCCCTTATT	TGAGGAACTG	ATGTTTGAAA	GGCTGTTCTT	TTCTCTCTTA	ATGTCATTTC	960
55	тттааааата	CATGTGCATA	CTACACACAG	TATATAATGC	CTCCTTAAGG	CATGATGGAG	1020
J J							

TCACCGTGGT CCATTTGGGT GACAACCAGT GACTTGGGAA GCACATAGAT ACATCTTACA

AGTTGAATAG AGTTGATAAC TATTTTCAGT TTTGAGAATA CCAGTTCAGG TGCAGCTCTT

AAACACATTG CCTTATGACT ATTAGAATAT GCCTCTCTTT TCATAAATAA AAATACATGG

	TCTATATCCA TTTTCTTTTA TTTCTCTCTC TTAAGCTTAA AAAGGCAATG AGAGAGGTTA	1260
_	GGAGTGGGTT CATACACGGA GAATGAGAAA ACATGCATTA ACCAATATTC AGATTTTGAT	1320
5	CAGGGGAAAT TCTAYACTTG TTGCAAAAAA AAAAAAAAAA AAACTCGAGG GGGCCCCGGT	1380
	ACCCAATCGC NGTATATGAT CGNAAACAAT C	1411
10		
	400	
	(2) INFORMATION FOR SEQ ID NO: 122:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2256 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
	GCTTTGGCTT TTTTTGGCGG ACTGGGGCGC CCTCCGGAAG CGTTTCCAAC TTTCCAGAAG	60
25	TTTCTCGGGA CGGGCAGGAG GGGGTGGGGA CTGCCATATA TAGATCCCGG GAGCAGGGGA	120
	GCGGGCTAAG AGTAGAATCG TGTCGCGGCT CGAGAGCGAG AGTCACGTCC CGGCGCTAGC	180
30	CAGCCCGACC CAGGCCCACC GTGGTGCACG CAAACCACTT CCTGGCCATG CGCTCCCTCC	240
50	TGCTTCTCAG CGCCTTCTGC CTCCTGGAGG CGGCCCTGGC CGCCGAGGTG AAGAAACCTG	300
	CAGCCGCAGC AGCTCCTGGC ACTGCGGAGA AGTTGAGCCC CAAGGCGGCC ACGCTTGCCG	360
35	AGCGCANGCC GGCCTGGCCT TCAGCTTGTA CCAGGCCATG GCCAAGGACC AGGCAGTGGA	420
	GAACATCCTG GTGTCACCCG TGGTGGTGGC CTCGTCGCTG GGGCTCGTGT CGCTGGGCGG	480
40	CAAGGCGACC ACGGCGTCGC AGGCCAAGGC AGTGCTGAGC GCCGAGCAGC TGCGCGACGA	540
40	GGAGGTGCAC GCCGGCCTGG GCGAGCTGCT GCGCTCACTC AGCAACTCGA CGGCGCGCAA	600
	CGTGACCTGG AAGCTGGGCA GCCGACTGTA CGGACCCAGC TCAGTGAGCT TCGCTGATGA	660
45	CTTCGTGCGC ACAGCAAGCA GCACTACAAC TGCGAGCACT CCAAGATCAA CTTCCGCGAC	720
	AAGCGCAGNG CGCTGCAGTC CATCAACGAG TGGGCCGCGC AGACCACCGA CGGCAAGCTG	780
50	CCCGAGGTCA CCAAGGACGT GGAGCGCACG GACGGCGCCC TGCTAGTCAA CGCCATGTTC	840
50	TTCAAGCCAC ACTGGGATGA GAAATTCCAC CACAAGATGG TGGACAACCG TGGCTTCATG	900
	GTGACTCGGT CCTATACYGT GGGTGTCATG ATGATGCACC GGACAGGCCT CTACAACTAC	960
55	TACGACGACG AGAAGGAAAA GCTGCAAATC GTGGAGATGC CCCTGGCCCA CAAGCTCTCC	1020
	AGCCTCATCA TCCTCATGCC CCATCACGTG GAGCCTCTCG AGCGCCTTGA AAAGCTGCTA	1080
	ACCAAAGAGC AGCTGAAGAT CTGGATGGGG AAGATGCAGA AGAAGGCTGT TGCCATCTCC	1140
60		

TTGCCCAAGG	GTGTGGTGGA	GGTGACCCAT	GACCTGCAGA	AACACCTGGC	TGGGCTGGGC	1200
CTGACTGAGG	CCATTGACAA	GAACAAGGCC	GACTTRTCAC	GCATGTCAGG	CAAGAAGGAC	1260
CTGTACCTGG	CCAGCGTGTT	CCACGCCACC	GCCTTTGAGT	TGGACACAGA	TGGCAACCCC	1320
TTTGACCAGG	ACATCTACGG	GCGCGAGGAG	CTGCGCANCC	CAAGCTGTTC	TACGCCGACC	1380
ACCCCTTCAT	CTTCCTAGTG	CGGGACACCC	AAAGCGGCTC	CCTGCTATTC	ATTGGGCGCC	1440
TGGTCCGGCC	TAAGGGTGAC	AAGATGCGAG	ACGAGTTATA	GGGCCTCAGG	GTGCACACAG	1500
GATGGCAGGA	GGCATCCAAA	GGCTCCTGAG	ACACATGGGT	GCTATTGGGG	TTGGGGGGGA	1560
GGTGAGGTAC	CAGCCTTGGA	TACTCCATGG	GGTGGGGGTG	GAAAARCAGA	CCGGGGTTCC	1620
CGTGTGCCTG	AGCGGACCTT	CCCAGCTAGA	ATTCACTCCA	CTTGGACATG	GGCCCCAGAT	1680
ACCATGATGC	TGAGCCCGGA	AACTCCACAT	CCTGTGGGAC	CTGGGCCATA	GTCATTCTGC	1740
CTGCCCTGAA	AGTCCCAGAT	CAAGCCTGCC	TCAATCAGTA	TTCATATTTA	TAGCCAGGTA	1800
CCTTCTCACC	TGTGAGACCA	AATTGAGCTA	GGGGGTCAG	CCAGCCCTCT	TCTGACACTA	1860
AAACACCTCA	GCTGCCTCCC	CAGCTCTATC	CCAACCTCTC	ССААСТАТАА	AACTAGGTGC	1920
TGCAGCCCCT	GGGACCAGGC	ACCCCCAGAA	TGACCTGGCC	GCAGTGAGGC	GGATTGAGAA	1980
GGAGCTCCCA-	GGAGGGGCTT	CTGGGCAGAC	TCTGGTCAAG	AAGCATCGTG	TCTGGCGTTG	2040
TGGGGATGAA	CTTTTTGTTT	TGTTTCTTCC	TTTTTTAGTT	CTTCAAAGAT	AGGGAGGGAA	2100
GGGGGAACAT	GAGCCTTTGT	TGCTATCAAT	CCAAGAACTT	ATTTGTACAT	TTTTTTTTC	2160
AATAAAACTT	TTCCAATGAC	АААААААА	АААААААА	AAAAAGGGGS	GGGCCGCTCC	2220
TAGAGGGATC	CCTCCGANGG	NGCCCAATCG	AAAATN			2256
(2) INFORM	ATTON FOR CE	70 TD NO. 11				
		_				
(i)	_					
(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 123:		
ATGCGCTCCC	TCCTGCTTCT	CAGCGCCTTC	TGCCTCCTGG	AGGCGGCCCT	GGCCGCCGAG	60
GTGAAGAAAC	CTGCAGCCGC	AGCAGCTCCT	GGCACTGCGG	AGAAGTTGAG	CCCCAAGGCG	120
GCCACGCTTG	CCGAGCGCAA	GCGGCCTGGC	CTTCAGCTTG	TACCAGGCCA	TGGCCAAGGA	180
CCAGGCAGTG	GAGAACATCC	TGGTGTCACC	CGTGGTGGTG	GCCTCGTCGC	TGGGGCTCGT	240
	CTGACTGAGG CTGTACCTGG TTTGACCAGG ACCCCTTCAT TGGTCCGGCC GATGGCAGGA GGTGAGGTAC CGTGTGCCTGAA CCTTCTCACC AAACACCTCA TGCAGCCCCT GGAGCTCCCA TGGGGATGAA GGGGGAACAT AATAAAACTT TAGAGGGATC (2) INFORMA (i) (xi ATGCGCTCCC GTGAAGAAAC GCCACGCTTG	CTGACTGAGG CCATTGACAA CTGTACCTGG CCAGCGTGTT TTTGACCAGG ACATCTACGG ACCCCTTCAT CTTCCTAGTG TGGTCCGGCC TAAGGGTGAC GATGGCAGGA GGCATCCAAA GGTGAGGTAC CAGCCTTGGA CGTGTGCCTG AGCGGACCTT ACCATGATGC TGAGCCCGGA CTGCCCTGAA AGTCCCAGAT CCTTCTCACC TGTGAGACCA AAACACCTCA GCTGCCTCCC TGCAGCCCCT GGGACCAGGC GGAGCTCCCA GGAGGGGCTT TGGGGATGAA CTTTTTGTTT GGGGGAACAT GAGCCTTTGT AATAAAACTT TTCCAATGAC TAGAGGGATC CCTCCGANGG (1) SEQUENCE CI (A) LEN (B) TYP (C) STR (D) TOP (xi) SEQUENCE CI CXI SEQUENCE CI	CTGACTGAGG CCATTGACAA GAACAAGGCC CTGTACCTGG CCAGCGTGTT CCACGCCACC TTTGACCAGG ACATCTACGG GCGCGAGGAG ACCCCTTCAT CTTCCTAGTG CGGGACACCC TGGTCCGGCC TAAGGGTGAC AAGATGCGAG GATGGCAGGA GGCATCCAAA GGCTCCTGAG GGTGAGGTAC CAGCCTTGGA TACTCCATGG CGTGTGCCTG AGCCGGACCTT CCCAGCTAGA ACCATGATGC TGAGCCCGGA AACTCCACAT CTGCCCTGAA AGTCCCAGAT CAAGCCTGCC CCTTCTCACC TGTGAGACCA AATTGAGCTA AAACACCTCA GCTGCCTCC CAGCTCTATC TGCAGCCCCT GGGACCAGGC ACCCCCAGAA GGAGCTCCCA GGAGGGGCTT CTGGGCAGAC TGGGGAACAT GAGCCTTTGT TGTTTCTTCC GGGGGAACAT GAGCCTTTGT TGCTATCAAT AATAAAACTT TTCCAATGAC AAAAAAAAAA TAGAGGGATC CCTCCGANGG NGCCCAATCG (2) INFORMATION FOR SEQ ID NO: 12 (i) SEQUENCE CHARACTERIST: (A) LENGTH: 829 ba (B) TYPE: nucleic (C) STRANDEDNESS: (D) TOPOLOGY: line (xi) SEQUENCE DESCRIPTION ATGCGCTCCC TCCTGCTTCT CAGCGCCTTC GTGAAGAAAC CTGCAGCCGC AGCAGCTCCT	CTGACTGAGG CCATTGACAA GAACAAGGCC GACTTRTCAC CTGTACCTGG CCAGCGTGTT CCACGCCACC GCCTTTGAGT TTTGACCAGG ACATCTACGG GCGCGAGGAG CTGCGCANCC ACCCCTTCAT CTTCCTAGTG CGGGACACCC AAAGCGGCTC TGGTCCGGCC TAAGGGTGAC AAGATGCGAG ACGAGTTATA GATGGCAGGA GGCATCCAAA GGCTCCTGAG ACACATGGGT GGTGAGGTAC CAGCCTTGGA TACTCCATGG GGTGGGGGTG CGTGTGCCTG AGCGCACCT CCCAGCTAGA ATTCACTCCA ACCATGATGC TGAGCCCGGA AACTCCACAT CCTGTGGGAC CTGCCCTGAA AGTCCCAGAT CAAGCCTGCC TCAATCAGTA CCTTCTCACC TGTGAGACCA AATTGAGCTA GGGGGGTCAG AAACACCTCA GCTGCCTCCC CAGCTCTAC CCAACCTCTC TGCAGCCCCT GGGACCAGGC ACCCCCAGAA TGACCTGGC GGAGCTCCCA GGAGGGGCTT CTGGGCAGAC TCTGGTCAAG TGGGGATGAA CTTTTTGTTT TGTTTCTTCC TTTTTTAGTT GGGGAACAT GAGCCTTTGT TGCTATCAAT CCAAGAACTT AATAAAACTT TTCCAATGAC AAAAAAAAAA AAAAAAAAA TAGAGGGATC CCTCCGANGG NGCCCAATCG AAAATN (2) INFORMATION FOR SEQ ID NO: 123: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO ATGCGCTCCC TCCTGCTTCT CAGCGCCTTC TGCCTCTGG GTGAAGAAAC CTGCAGCCGC AGCAGCTCCT GGCACTCCGG GTGAAGAAAAC CTGCAGCCGC AGCAGCTCCT GGCACTCCGG GTGAAGAAAAC CTGCAGCCGCAAGCGCCTCT GGCACTCCGG GCCACGCTTG CCGAGCGCAA GCGGCCTCGC CTTCAGCTTG	CTGACTGAGG CCATTGACAA GAACAAGGCC GACTTRTCAC GCATGTCAGG CTGTACCTGG CCAGCGTGTT CCACGCCACC GCCTTTGAGT TGGACACAGA TTTGACCAGG ACATCTACGG GCGCGAGGAG CTGCGCANCC CAAGCTGTTC ACCCCTTCAT CTTCCTAGTG CGGGACACCC AAAGCGGCTC CCTGCTATTC TCGTCCGGCC TAAGGGTGAC AAGATGCGAG ACGAGTTATA GGGCCTCAGG GATGGCAGGA GGCATCCAAA GGCTCCTGAG ACACATGGGT GCTATTGCGG GGTGAGGTAC CAGCCTTGGA TACTCCATGG GGTGGGGGTG GAAAARCAGA CGTGTGCCTG AGCGCACCT CCCAGCTAGA ATTCACTCCA CTTGGACATG ACCATGATGC TGAGCCCGGA AACTCCACAT CCTGTGGGAC CTGGGCCATA CTGCCCTGAA AGTCCCAGAT CAAGCCTGCC TCAATCAGTA TTCATATTTA CCTTCTCACC TGTGGAGACCA AATTGAGCTA GGGGGGTCAG CCAGCCCTCT AAACACCTCA GCTGCCTCCC CAGCTCATC CCAACCTCTC CCAACTATAA TGCAGCCCCT GGGACCAGGC ACCCCCAGAA TGACCTGGCC GCAGTGAGGC GGAGCTCCCA GGAGGGGCTT CTGGGCAGAC TCTGGTCAAG AAGCATCGTG TGGGGATGAA CTTTTTGTTT TGTTTCTTCC TTTTTTAGTT CTTCAAAGAT GGGGGAACAT GAGCCTTTGT TGCTATCAAT CCAAGAACTT ATTTGTACAT AATAAAACTT TCCCAATGAC AAAAAAAAAA AAAAAAAAAA	(2) INFORMATION FOR SEQ ID NO: 123: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

GTCGCTGGGC GGCAAGGCGA CCACGGCGTC GCAGGCCAAG GCAGTGCTGA GCGCCGAGCA

	GCTGCGCGAC	GAGGAGGTGC	ACGCCGGCCT	GGGCGAGCTG	CTGCGCTCAC	TCAGCAACTC	360
5	CACGGCGCGC	AACGTGACCT	GGAAGCTGGG	CAGCCGACTG	TACGGACCCA	GCTCAGTGAG	420
ڔ	CTTCGCTGAT	GACTTCGTGC	GCAGCAGCAA	GCAGCACTAC	AACTGCGAGC	ACTCCAAGAT	480
	CAACTTCCGC	GACAAGCGCA	GCGCGCTGCA	GTCCATCAAC	GAGTGGGCCG	CGCAGACCAC	540
10	CGACGGCAAG	CTGCCCGAGG	TCACCAAGGA	CGTGGAGCGC	ACGGACGGCG	CCCTGTTAGT	600
	CAACGCCATG	TTCTTCAAGC	CACACTGGGA	TGAGAAATTC	CACCACAAGA	TGGTGGACAA	660
15	CCGTGGCTTC	ATGGTGACTC	GGTCCTATAC	CGTGGGTGTC	ATGATGATGC	ACCGGACAGG	720
13	CCTCTACAAC	TACTACGACG	ACGAGAAGGA	AAAGCTGCAA	ATCGTGGAGA	TGCCCCTGGC	780
	CCACAAGCTC	TCCAGCCTCA	TCATCCTCAT	GCCCCATCAC	GTGGAGCCT		829

20

(2) INFORMATION FOR SEQ ID NO: 124:

25 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2223 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

	CCTCCGGAAG	CGTTTCCAAC	TTTCCAGAAG	TTTCTCGGGA	CGGGCAGGAG	GGGGTGGGGA	60
35	CTGCCATATA	TAGATCCCGG	GAGCAGGGGA	GCGGGCTAAG	AGTAGAATCG	TGTCGCGGCT	120
	CGAGAGCGAG	AGTCACGTCC	CGGCGCTAGC	CAGCCCGACC	CAGGCCCACC	GTGGTGCACG	180
40	CAAACCACTT	CCTGGCCATG	CGCTCCCTCC	TGCTTCTCAG	CGCCTTCTGC	CTCCTGGAGG	240
40	CGGCCCTGGC	CGCCGAGGTG	AAGAAACCTG	CAGCCGCAGC	AGCTCCTGGC	ACTGCGGAGA	300
	AGTTGAGCCC	CAAGGCGGCC	ACGCTTGCCG	AGCGCAGNCG	GCCTGGCCTT	CAGCTTGTAC	360
45	CAGGCCATGG	CCAAGGACCA	GGCAGTGGAG	AACATCCTGG	TGTCACCCGT	GGTGGTGGCC	420
	TCGTCGCTGG	GGCTCGTGTC	GCTGGGCGGC	AAGGCGACCA	CGGCGTCGCA	GGCCAAGGCA	480
50	GTGCTGAGCG	CCGAGCAGCT	GCGCGACGAG	GAGGTGCACG	CCGGCCTGGG	CGAGCTGCTG	540
30	CGCTCACTCA	GCAACTCSAC	GGCGCGCAAC	GTGACCTGGA	AGCTGGGCAG	CCGACTGTAC	600
	GGACCCAGCT	CAGTGAGCTT	CGCTGATGAC	TTCGTGCGCA	CAGCAAGCAG	CACTACAACT	660
55	GCGAGCACTC	CAAGATCAAC	TTCCGCGACA	AGCGCACGCG	CTGCAGTCCA	TCAACGAGTG	720
	GGCCGCGCAG	ACCACCGACG	GCAAGCTGCC	CGAGGTCACC	AAGGACGTGG	AGCGCACGGA	780
60	CGGCGCCCTG	YTAGTCAACG	CCATGTTCTT	CAAGCCACAC	TGGGATGAGA	AATTCCACCA	840

	CAAGATGGTG	GACAACCGTG	GCTTCATGGT	GACTCGGTCC	TATACYGTGG	GTGTCATGAT	900
	GATGCACCGG	ACAGGCCTCT	ACAACTACTA	CGACGACGAG	AAGGAAAAGC	TGCAAATCGT	960
5	GGAGATGCCC	CTGGCCCACA	AGCTCTCCAG	CCTCATCATC	CTCATGCCCC	ATCACGTGGA	1020
	GCCTCTCGAG	CGCCTTGAAA	AGCTGCTAAC	CAAAGAGCAG	CTGAAGATCT	GGATGGGGAA	1080
10	GATGCAGAAG	AAGGCTGTTG	CCATCTCCTT	GCCCAAGGGT	GTGGTGGAGG	TGACCCATGA	1140
i U	CCTGCAGAAA	CACCTGGCTG	GGCTGGGCCT	GACTGAGGCC	ATTGACAAGA	ACAAGGCCGA	1200
	CTTRTCACGC	ATGTCAGGCA	AGAAGGACCT	GTACCTGGCC	AGCGTGTTCC	ACGCCACCGC	1260
15	CTTTGAGTTG	GACACAGATG	GCAACCCCTT	TGACCAGGAC	ATCTACGGGC	GCGAGGAGCT	1320
	GCGCASCCCA	AGCTGTTCTA	CGCCGACCAC	CCCTTCATCT	TCCTAGTGCG	GGACACCCAA	1380
20	AGCGGCTCCC	TGCTATTCAT	TGGGCGCCTG	GTCCGGCCTA	AGGGTGACAA	GATGCGAGAC	1440
20	GAGTTATAGG	GCCTCAGGGT	GCACACAGGA	TGGCAGGAGG	CATCCAAAGG	CTCCTGAGAC	1500
	ACATGGGTGC	TATTGGGGTT	GGGGGGAGG	TGAGGTACCA	GCCTTGGATA	CTCCATGGGG	1560
25	TGGGGTGGA	AAARCAGACC	GGGGTTCCCG	TGTGCCTGAG	CGGACCTTCC	CAGCTAGAAT	1620
	TCACTCCACT	TGGACATGGG	CCCCAGATAC	CATGATGCTG	AGCCCGGAAA	CTCCACATCC	1680
30	TGTGGGACCT	GGGCCATAGT	CATTCTGCCT	GCCCTGAAAG	TCCCAGATCA	AGCCTGCCTC	1740
50	AATCAGTATT	CATATTTATA	GCCAGGTACC	TTCTCACCTG	TGAGACCAAA	TTGAGCTAGG	1800
	GGGTCAGCC	AGCCCTCTTC	TGACACTAAA	ACACCTCAGC	TGCCTCCCCA	GCTCTATCCC	1860
35	AACCTCTCCC	AACTATAAAA	CTAGGTGCTG	CAGCCCCTGG	GACCAGGCAC	CCCCAGAATG	1920
	ACCTGGCCGC	AGTGAGGCGG	ATTGAGAAGG	AGCTCCCAGG	AGGGGCTTCT	GGGCAGACTC	1980
40	TGGTCAAGAA	GCATCGTGTC	TGGCGTTGTG	GGGATGAACT	TTTTGTTTTG	TTTCTTCCTT	2040
••	TTTTAGTTCT	TCAAAGATAG	GGAGGGAAGG	GGGAACATGA	GCCTTTGTTG	CTATCAATCC	2100
	AAGAACTTAT	TTGTACATTT	TTTTTTCAA	TAAAACTTTT	CCAATGACAA	АААААААА	2160
45	AAAAAAAA	MWMGGGGSGG	GCCGCTCCTA	GAGGGATCCC	TCCGANGGNG	CCCAATCGAA	2220
	AAT						2223

55

(2) INFORMATION FOR SEQ ID NO: 125:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 31 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

60 Met Lys Lys Gln Ser Lys Arg Cys Leu Trp Lys Pro Pro Gly Ser Leu

	1				5					10					15	
5	Arg	Arg	Leu	Trp 20	Trp	Met	Arg	Ala	Leu 25	Leu	Ile	Leu	Lys	Tyr 30	Ile	
3	(0)			n	non.	are.			126							
10	(2)	INF		SEQUI ()	ENCE A) L B) T	CHAI ENGT YPE:	RACT H: 4 ami	NO: 1 ERIS' 5 am no a lin	TICS ino cid		s					
15	Met 1	Lys		_				PTIO Leu						Met	Leu 15	Leu
20	His	Leu	Thr	Ala 20	Ala	Phe	Leu	Gln	Arg 25	Ala	His	Xaa	Ile	Leu 30	Thr	Thr
	Arg	Met	Ser 35	Leu	Gly	Phe	Gln	Ser 40	Pro	His	Leu	Thr	Met 45			
25	(2)	INF	ORMA'	rion	FOR	SEQ	ID	NO: I	127:							
30				(A) L B) T D) T	ENGT YPE : OPOL	H: 3 ami OGY:	ERIS 9 am no a lin PTIO	ino cid ear	acid		: 12	7:			
35	Met 1		Asn	Gln	Arg 5	Gln	Val	Phe	Leu	Phe 10	His	Leu	Phe	Ser	Asn 15	Tyr
40			Ser Asn 35	20					Gly 25	Thr	Leu	Leu	Ala	Ala 30	Thr	Tyr
45	(2)	INF	'ORMA	TION	FOR	SEQ	ID	NO:	128:							
50				((A) I (B) T (D) T	LENGT TYPE : TOPOI	H: 2 ami OGY	PERIS 23 am ino a : lir :PTIC	mino acid near	ació): 1 2	8:			
55	Met 1		l Lys	Lys	Phe 5		Leu	Ala	. Gln	Val 10		. Leu	Ser	Leu	Ser 15	Val
60	Met	Pro	Ser	Met 20		Val	Thr	•								
60																

	(2)	INF	ORMAT	NOI	FOR	SEQ	ID 1	10:1	29:							
.5			(i) S	() ()	A) L B) T D) T	ENGTI YPE : OPOL	H: 1 ami OGY:	ERIST 10 ar no ao line PTION	mino cid ear	acio		: 129	∂:			
10	Met 1	Val	Leu	Leu	Cys 5	Leu	Leu	Leu	Val	Pro 10	Leu	Leu	Leu	Ser	Leu 15	Phe
1.5	Val	Leu	Gly	Leu 20	Phe	Leu	Trp	Phe	Leu 25	Lys	Arg	Glu	Arg	Gln 30	Glu	Glu
15	Tyr	Ile	Glu 35	Glu	Lys	Lys	Arg	Val 40	Asp	Ile	Cys	Arg	Glu 45	Thr	Pro	Asn
20	Ile	Cys 50	Pro	His	Ser	Gly	Glu 55	Asn	Thr	Glu	Tyr	Asp 60	Thr	Ile	Pro	His
	Thr 65		a Arg	Thr	Ile	Leu 70	Lys	Glu	Asp	Pro	Ala 75	Asn	Thr	Val	Tyr	Ser 80
25	Thr	Val	Glu	Ile	Pro 85		Lys	Met	Glu	Asn 90	Pro	His	Ser	Leu	Leu 95	Thr
30	Met	: Pro	asp	Thr 100		Arg	Leu	Phe	Ala 105	Tyr	Glu	Asn	Val	Ile 110		
	(2)	IN	FORMA	TION	FOR	R SEQ	ID	NO:	130:							
35					(A) I (B) ' (D) '	LENGT TYPE TOPOI	TH: (: am LOGY	TERIS 63 am ino a : lir IPTIC	nino acid near	acio)· 13	.o.			
40		t Le	u Lev			e Ile					His			. Pro	Val 15	
45	Ala	a Gl	y Ala	Thi 20		r Lys	s Pro	Arg	Туг 25		y Val	Ile	e Thr	Cys 30	Gly	Pro
	Al	a Se	r Val		e Sei	r Thi	: Se	r Phe		His	s Sei	r Pro	Pro 45		Arg	Cys
50	Le		y Arg	g Lei	ı Gl	u Gli	n Me		e His	∋ Phe	e Gly	/ Let 60		a Ser	Gly	,
55	(2) IN	JFORM.													
			(i)	SEQ		LENG TYPE	TH: : an	TERI: 30 a nino	mino acid	aci	ds					
60					(D)	TOPC	LOGY	: li	near	•						

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:
     Met Pro Phe Pro Ile Ser Ile Leu Gln Leu Cys Leu Gln Ile Ser Asn
 5
     Leu Ser Phe Cys Leu Gln Lys Ile Tyr Lys Ile Pro Phe Val
10
      (2) INFORMATION FOR SEQ ID NO: 132:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 53 amino acids
15
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:
     Met Ala Ala Cys Arg Ser Val Lys Gly Leu Val Ala Val Ile Thr
20
                                          10
     Gly Gly Ala Ser Gly Leu Gly Leu Ala Thr Ala Asp Asp Leu Trp Gly
                                      25
25
      Arg Glu Pro Leu Leu Cys Phe Trp Thr Cys Pro Thr Arg Val Gly Arg
                                  40
      Pro Lys Pro Arg Ser
          50
30
      (2) INFORMATION FOR SEQ ID NO: 133:
35
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 57 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:
40
      Met Leu Leu Val Tyr Asp Leu Tyr Leu Xaa Pro Lys Leu Trp Ala Leu
      Ala Thr Pro Gln Lys Asn Gly Lys Gly Ala Arg Xaa Gly Asp Gly Thr
45
      Pro Ala Gln Ala Phe Trp Asp Phe Trp Ser His Leu Ile Ser Ala Asp
50
      Pro Gln Thr Trp Glu Arg Ala Ala Pro
55
      (2) INFORMATION FOR SEQ ID NO: 134:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 216 amino acids
                    (B) TYPE: amino acid
60
                    (D) TOPOLOGY: linear
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

5	Met 1	Arg	Leu	Ser	Ala 5	Leu	Leu	Ala	Leu	Ala 10	Ser	Lys	Val	Thr	Leu 15	Pro
3	Pro	His	Tyr	Arg 20	Tyr	Gly	Met	Ser	Pro 25	Pro	Gly	Ser	Val	Ala 30	Asp	Lys
10	Arg	Ĺys	Asn 35	Pro	Pro	Trp	Ile	Arg 40	Arg	Arg	Pro	Val	Val 45	Val	Glu	Pro
	Ile	Ser 50	Asp	Glu	Asp	Trp	Tyr 55	Leu	Phe	Суз	Gly	Asp 60	Thr	Val	Glu	Ile
15	Leu 65	Glu	Gly	Lys	Asp	Ala 70	Gly	Lys	Gln	Gly	Lys 75	Val	Val	Gln	Val	Ile 80
20	Arg	Gln	Arg	Asn	Trp 85	Val	Val	Val	Gly	Gly 90	Leu	Asn	Thr	His	Tyr 95	Arg
20	Tyr	Ile	Gly	Lys 100	Thr	Met	Asp	Tyr	Arg 105	Gly	Thr	Met	Ile	Pro 110	Ser	Glu
25	Ala	Pro	Leu 115	Leu	His	Arg	Gln	Val 120	Lys	Leu	Val	Asp	Pro 125	Met	Asp	Arg
	Lys	Pro 130	Thr	Glu	Ile	Glu	Trp 135	Arg	Phe	Thr	Glu	Ala 140	Gly	Glu	Arg	Val
30	Arg 145	Val	Ser	Thr	Arg	Ser 150	Gly	Arg	Ile	Ile	Pro 155	Lys	Pro	Glu	Phe	Pro 160
35	Arg	Ala	Asp	Gly	Ile 165	Val	Pro	Glu	Thr	Trp 170	Ile	Asp	Gly	Pro	Lys 1 7 5	Asp
55	Thr	Ser	Val	Glu 180	Asp	Ala	Leu	Glu	Arg 185	Thr	Tyr	Val	Pro	Cys 190	Leu	Lys
40	Thr	Leu	Gln 195	Glu	Glu	Val	Met	Glu 200	Ala	Met	Gly	Ile	Lys 205	Glu	Thr	Arg
	Lys	Туг 210	Lys	Lys	Val	Tyr	Trp 215									
45																
	(2)	INF	ORMA													
50					(A) I (B) I (D) I	LENGT TYPE : TOPOI	TH: 4 : ami LOGY:	ERIS 19 am ino a : lir :PTIC	mino acid near	acio): 1 3	35:			
55	Met	. Ser	Leu							: Arg	Lev			Met		
	1		. T	T	5			mb	- mb	10		Cur		. አ~~	15	
60	T'nr	116	e Leu	20		ser	ьys	Thr	25		. wel	. сув	ь Leu	30		nei

	His	Ser	Leu 35	Lys	Leu	Thr	Trp	Arg 40	Asp	Gly	Ala	Arg	Cys 45	Ile	Asn	Ala
5	Glu															
10	(2)	INF	ORMAT	SEQUI ()	ENCE A) L B) T	CHAI ENGT: YPE :	RACT H: 6 ami	ERIST 8 am: no ac	rICS ino cid		5					
15			(xi)			OPOL				EQ II	ON C	: 136	ō :			
	Met 1	Ser	Gly	Ser	Phe 5	Ile	Leu	Cys	Leu	Ala 10	Leu	Val	Thr	Arg	Trp 15	Ser
20	Pro	Gln	Ala	Ser 20	Ser	Val	Pro	Leu	Ala 25	Val	Tyr	Glu	Ser	Lys 30	Thr	Arg
25	Lys	Ser	Туr 35	Arg	Ser	Gln	Arg	Asp 40	Arg	Asp	Gly	Lys	Asp 45	Arg	Ser	Gln
23	Gly	Met 50	Gly	Leu	Ser	Leu	Leu 55	Val	Glu	Thr	Arg	Lys 60	Leu	Leu	Leu	Ser
30	Ala 65	Asn	Gln	Gly												
35 40	(2)	INF	ORMA(i)	SEQU)))	ENCE A) L B) T D) T		RACT H: 5 ami OGY:	ERIS 32 am no a lin	TICS ino cid ear	acid		: 13	7 :			
	Met 1	-	Phe	Arg	Phe 5	Phe	Leu	Phe	Cys	Ser 10	Arg	Ile	Leu	Leu	Lys 15	Leu
45	Phe	Ph∈	e Leu	Leu 20	Phe	Pro	Ala	Ser	Ala 25		Pro	Leu	Ser	Thr 30	Arg	Ser
50	Ser	Leu	Ser 35		Asn	Glu	His	Val 40	Val	Val	Ser	Pro	Arg 45	Ser	Thr	Val
30	Ser	Il∈ 50	e Ser	Arg												
55	(2)	INF	FORMA	MOIT	FOR	SEQ	ID	NO:	138:							
60			(i)		(A) I	E CHA LENGT	rH: !	541 a	mino		ds					

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:

5	Met 1	Val	Arg	Thr	Asp 5	Gly	His	Thr	Leu	Ser 10	Glu	Lys	Arg	Asn	Tyr 15	Gln
	Val	Thr	Asn	Ser 20	Met	Phe	Gly	Ala	Ser 25	Arg	Lys	Lys	Phe	Val 30	Glu	Gly
10	Val	Asp	Ser 35	Asp	Tyr	His	Asp	Glu 40	Asn	Met	Tyr	Tyr	Ser 45	Gln	Ser	Ser
15	Met	Phe 50	Pro	His	Arg	Ser	G1u 55	Lys	Asp	Met	Leu	Ala 60	Ser	Pro	Ser	Thr
	Ser 65	Gly	Gln	Leu	Ser	Gln 70	Phe	Gly	Ala	Ser	Leu 75	Tyr	Gly	Gln	Gln	Ser 80
20	Ala	Leu	Gly	Leu	Pro 85	Met	Arg	Gly	Met	Ser 90	Asn	Asn	Thr	Pro	Gln 95	Leu
	Asn	Arg	Ser	Leu 100	Ser	Gln	Gly	Thr	Gln 105	Leu	Pro	Ser	His	Val 110	Thr	Pro
25	Thr	Thr	Gly 115	Val	Pro	Thr	Met	Ser 120	Leu	His	Thr	Pro	Pro 125	Ser	Pro	Ser
30	Arg	Gly 130	Ile	Leu	Pro	Met	Asn 135	Pro	Xaa	Asn	Met	Met 140	Asn	His	Ser	Gln
	Val 145	Gly	Gln	Gly	Ile	Gly 150	Ile	Pro	Ser	Arg	Thr 155	Asn	Ser	Met	Ser	Ser 160
35	Ser	Gly	Leu	Gly	Ser 165	Pro	Asn	Arg	Ser	Ser 170	Pro	Ser	Ile	Ile	Cys 175	Met
	Pro	Lys	Gln	Gln 180	Pro	Ser	Arg	Gln	Pro 185	Phe	Thr	Val	Asn	Ser 190	Met	Ser
40	Gly	Phe	Gly 195	Met	Asn	Arg	Asn	Gln 200	Ala	Phe	Gly	Met	Asn 205	Asn	Ser	Leu
45	Ser	Ser 210	Asn	Ile	Phe	Asn	Gly 215	Thr	Asp	Gly	Ser	Glu 220	Asn	Val	Thr	Gly
	Leu 225	Asp	Leu	Ser	Asp	Phe 230	Pro	Ala	Leu	Ala	Asp 235	Arg	Asn	Arg	Arg	Glu 240
50	Gly	Ser	Gly	Asn	Pro 245	Thr	Pro	Leu	Ile	Asn 250	Pro	Leu	Ala	Gly	Arg 255	Ala
	Pro	Tyr	Val	Gly 260	Met	Val	Thr	Lys	Pro 265	Ala	Asn	Glu	Gln	Ser 270	Gln	Asp
55	Phe	Ser	Ile 275	His	Asn	Glu	Asp	Phe 280	Pro	Ala	Leu	Pro	Gly 285	Ser	Ser	Тут
60	Lys	Asp 290	Pro	Thr	Ser	Ser	Asn 295	Asp	Asp	Ser	Lys	Ser 300	Asn	Leu	Asn	Thr

	Ser 305	Gly	Lys	Thr	Thr	Ser 310	Ser	Thr	Asp	Gly	Pro 315	Lys	Phe	Pro	Gly	Asp 320
5	Lys	Ser	Ser	Thr	Thr 325	Gln	Asn	Asn	Asn	Gln 330	Gln	Lys	Lys	Gly	11e 335	Gln
	Val	Leu	Pro	Asp 340	Gly	Arg	Val	Thr	Asn 345	Ile	Pro	Gln	Gly	Met 350	Val	Thr
10	Asp	Gln	Phe 355	Gly	Met	Ile	Gly	Leu 360	Leu	Thr	Phe	Ile	Arg 365	Ala	Ala	Glu
15	Thr	Asp 370	Pro	Gly	Met	Val	His 375	Leu	Ala	Leu	Gly	Ser 380	Asp	Leu	Thr	Thr
	Leu 385	Gly	Leu	Asn	Leu	Asn 390	Ser	Pro	Glu	Asn	Leu 395	Tyr	Pro	Lys	Phe	Ala 400
20	Ser	Pro	Trp	Ala	Ser 405	Ser	Pro	Cys	Arg	Pro 410	Gln	Asp	Ile	Asp	Phe 415	His
	Val	Pro	Ser	Glu 420	Tyr	Leu	Thr	Asn	11e 425	His	Ile	Arg	Asp	Lys 430	Leu	Ala
25	Ala	Ile	Lys 435	Leu	Gly	Arg	Tyr	Gly 440	Glu	Asp	Leu	Leu	Phe 445	Tyr	Leu	Tyr
30	Tyr	Met 450	Asn	Gly	Gly	Asp	Val 455	Leu	Gln	Leu	Leu	Ala 460	Ala	Val	Glu	Leu
	Phe 465	Asn	Arg	Asp	Trp	Arg 470	Туr	His	Lys	Glu	Glu 475	Arg	Val	Trp	Ile	Thr 480
35	Arg	Ala	Pro	Gly	Met 485	Glu	Pro	Thr	Met	Lys 490	Thr	Asn	Thr	Tyr	Glu 495	Arg
	Gly	Thr	Tyr	Tyr 500	Phe	Phe	Asp	Cys	Leu 505	Asn	Trp	Arg	Lys	Val 510	Ala	Lys
40	Glu	Phe	His 515	Leu	Glu	Tyr	Asp	Lys 520	Leu	Glu	Glu	Arg	Pro 525	His	Leu	Pro
4 5	Ser	Thr 530	Phe	Asn	Tyr	Asn	Pro 535	Ala	Gln	Gln	Ala	Phe 540	Xaa			
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	NO: 1	L 3 9:							
50			(i) :	(A) L B) T	ENGT YPE:	H: 5 ami	ERIS 8 am no a	ino cid		s					
55			(xi)					lin PTIO		EQ II	D NO	: 13	9:			
_	Met 1	Ile	Cys	Pro	Gln 5	Cys	Pro	Leu	Ser	Leu 10	Leu	Cys	Leu	Ile	Ser 15	Ser
50	Leu	Cys	Ser	Leu 20	Val	Ile	Gln	Ile	Ser 25	Leu	Lys	Thr	Ile	Arg 30	Asp	Ile

	Thr	Leu	Leu 35	Asn	Met	Val	Gly	Ile 40	Lys	Phe	Ser	Ile	Ser 45	Leu	Ser	Asn
5	Lys	Ile 50	Asn	Ile	Asn	Ser	Arg 55	Thr	Trp	Xaa						
10	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: 1	L40:							
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 202 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140: 															
20	Met 1	Thr	Leu	Arg	Pro 5	Ser	Leu	Leu	Pro	Leu 10	His	Leu	Leu	Leu	Leu 15	Leu
	Leu	Leu	Ser	Ala 20	Ala	Val	Cys	Arg	Ala 25	Glu	Ala	Gly	Leu	Glu 30	Thr	Glu
25	Ser	Pro	Val 35	Arg	Thr	Leu	Gln	Val 40	Glu	Thr	Leu	Val	Glu 45	Pro	Pro	Glu
	Pro	Cys 50	Ala	Glu	Pro	Ala	Ala 55	Phe	Gly	Asp	Thr	Leu 60	His	Ile	His	Tyr
30	Thr 65	Gly	Ser	Leu	Val	Asp 70	Gly	Arg	Ile	Ile	Asp 75	Thr	Ser	Leu	Thr	Arg 80
35	Asp	Pro	Leu	Val	Ile 85	Glu	Leu	Gly	Gln	Lys 90	Gln	Val	Ile	Pro	Gly 95	Leu
30	Glu	Gln	Ser	Leu 100	Leu	Asp	Met	Cys	Val 105	Gly	Glu	Lys	Arg	Arg 110	Ala	Ile
40	Ile	Pro	Ser 115	His	Leu	Ala	Tyr	Gly 120	Lys	Arg	Gly	Phe	Pro 125	Pro	Ser	Val
	Pro	Ala 130	Asp	Ala	Val	Val	Gln 135	Tyr	Asp	Val	Glu	Leu 140	Ile	Ala	Leu	Ile
45	Arg 145	Ala	Asn	Tyr	Trp	Leu 150	Lys	Leu	V al	Lys	Gly 155	Ile	Leu	Pro	Leu	Val 160
50	Gly	Met	Ala	Met	Val 165	Pro	Ala	Leu	Leu	Gly 170	Leu	Ile	Gly	Tyr	His 175	Leu
50	Tyr	Arg	Lys	Ala 180	Asn	Arg	Pro	Lys	Val 185	Ser	Lys	Lys	Lys	Leu 190	Lys	Glu
55	Glu	Lys	Arg 195	Asn	Lys	Ser	Lys	Lys 200	Lys	Xaa						
60	(2)	INF	ORMA'	TION	FOR	SEQ	ID :	NO:	141:							

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 217 amino acids (B) TYPE: amino acid															
5			(xi)	(D) T	OPOL	OGY :	lin		EQ II	ON C	: 14:	1 :			
	Met 1	Phe	Leu	Arg	Leu 5	Tyr	Leu	Ile	Ala	Arg 10	Val	Met	Leu	Leu	His 15	Ser
10	Lys	Leu	Phe	Thr 20	Asp	Ala	Ser	Ser	Arg 25	Ser	Ile	Gly	Ala	Leu 30	Asn	Lys
15	Ile	Asn	Phe 35	Asn	Thr	Arg	Phe	Val 40	Met	Lys	Thr	Leu	Met 45	Thr	Ile	Cys
13	Pro	Gly 50	Thr	Val	Leu	Leu	Val 55	Phe	Ser	Ile	Ser	Leu 60	Trp	Ile	Ile	Ala
20	Ala 65	Trp	Thr	Val	Arg	Val 70	Cys	Glu	Ser	Pro	Glu 75	Ser	Pro	Ala	Gln	Pro 80
	Ser	Gly	Ser	Ser	Leu 85	Pro	Ala	Trp	Tyr	His 90	Asp	Gln	Gln	Asp	Val 95	Thr
25	Ser	Asn	Phe	Leu 100	Gly	Ala	Met	Trp	Leu 105	Ile	Ser	Ile	Thr	Phe 110	Leu	Ser
30	Ile	Gly	Туг 115	Gly	Asp	Met	Val	Pro 120	His	Thr	Tyr	Cys	Gly 125	Lys	Gly	Val
30	Cys	Leu 130	Leu	Thr	Gly	Ile	Met 135	Gly	Ala	Gly	Cys	Thr 140	Ala	Leu	Val	Val
35	Ala 145	Val	Val	Ala	Arg	Lys 150	Leu	Glu	Leu	Thr	Lys 155	Ala	Glu	Lys	His	Val 160
	His	Asn	Phe	Met	Met 165	Asp	Thr	Gln	Leu	Thr 170	Lys	Arg	Ile	Lys	Asn 175	Ala
40	Ala	Ala	Asn	Val 180	Leu	Arg	Glu	Thr	Trp 185	Leu	Ile	Tyr	Lys	His 19 0	Thr	Lys
45	Leu	Leu	Lys 195	Lys	Ile	Asp	His	Ala 200	Lys	Val	Arg	Lys	His 205	Gln	Arg	Lys
43	Phe	Leu 210	Pro	Ser	Tyr	Pro	Pro 215	Val	Xaa							
50	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	142:							
			(i)						TICS		.ds					
55			(xi)	1	(B) I (D) I OUENC	OPOL	.OGY :	lir		EQ I	D NC	: 14	2:			
60	Met 1					Val			Ala	_	Gln			Ser	Asp 15	Ser

	Met	Val	Gly	Туr 20	Val	Leu	Gly	Pro	Phe 25	Phe	Leu	Ile	Thr	Leu 30	Val	Gly
5	Val	Val	Val 35	Ala	Val	Val	Met	Tyr 40	Val	Gln	Lys	Lys	Lys 45	Arg	Val	Asp
10	Arg	Leu 50	Arg	His	His	Leu	Leu 55	Pro	Met	Tyr	Ser	Tyr 60	Asp	Pro	Ala	Glu
	Glu 65	Leu	His	Glu	Ala	Glu 70	Gln	Glu	Leu	Leu	Ser 75	Asp	Met	Gly	Asp	Pro 80
15	Lys	Val	Val	His	Gly 85	Trp	Gln	Ser	Gly	Tyr 90	Gln	His	Lys	Arg	Met 95	Pro
	Leu	Leu	Asp	Val 100	Lys	Thr										
20																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	1 0: 1	143:							
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 112 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:																
30	Met 1	-	Glu	Cys	Gln 5	Glu	Glu	Ser	Phe	Trp 10	Lys	Arg	Ala	Leu	Pro 15	Phe
35	Ser	Leu	Val	Ser 20	Met	Leu	Val	Thr	Gln 25	Gly	Leu	Val	Tyr	Gln 30	Gly	Tyr
	Leu	Ala	Ala 35		Ser	Arg	Phe	Gly 40	Ser	Leu	Pro	Lys	Val 45	Ala	Leu	Ala
40	Gly	Leu 50		Gly	Phe	Gly	Leu 55	Gly	Lys	Val	Ser	Tyr 60	Ile	Gly	Val	Суѕ
	Gln 65		Lys	Phe	His	Phe 70	Phe	Glu	Asp	Gln	Leu 75	Arg	Gly	Ala	Gly	Phe 80
45	Gly	Pro	Gln	His	Asn 85	Arg	His	Cys	Leu	Leu 90	Thr	Cys	Glu	Glu	Cys 95	Lys
50	Ile	Lys	His	Gly 100		Ser	Glu	Lys	Gly 105	Asp	Ser	Gln	Pro	Ser 110	Ala	Ser
55	(2)	INF	ORMA						144: TICS							
60			(+)		(A) I		rH: 2	20 ar	nino		ls					
					,		· •									

```
(D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:
     Met Lys Asn Asp Arg Asn Gln Gly Phe Ser Leu Leu Gln Leu Ile Asp
 5
     Trp Asn Lys Pro
10
      (2) INFORMATION FOR SEQ ID NO: 145:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 30 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:
20
     Met Gly Thr Gln Pro Pro Val Val Ala Gly Phe Thr Ile Pro Met Leu
                                  10
              5
      Gly Tyr Thr Val Arg Val Leu Thr Phe His Leu Ser Cys Ser
                                     25
25
      (2) INFORMATION FOR SEQ ID NO: 146:
30
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 99 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:
35
      Met Lys Ile Pro Val Leu Pro Ala Val Val Leu Leu Ser Leu Leu Val
      Leu His Ser Ala Gln Gly Ala Thr Leu Gly Gly Pro Glu Glu Glu Ser
40
      Thr Ile Glu Asn Tyr Ala Ser Arg Pro Glu Ala Phe Asn Thr Pro Phe
      Leu Asn Ile Asp Lys Leu Arg Ser Ala Phe Lys Ala Asp Glu Phe Leu
45
      Asn Trp His Ala Leu Phe Glu Ser Ile Lys Arg Lys Leu Pro Phe Leu
                                             75
50
      Asn Trp Asp Ala Phe Pro Lys Leu Lys Gly Leu Arg Ser Ala Thr Pro
                                         90
      Asp Ala Gln
55
      (2) INFORMATION FOR SEQ ID NO: 147:
60
```

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 8 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
 5
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:
     Met Val Trp Gly Leu Leu Leu Gly
10
      (2) INFORMATION FOR SEQ ID NO: 148:
             (i) SEQUENCE CHARACTERISTICS:
15
                    (A) LENGTH: 39 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:
20
      Met Leu Pro Leu Leu Ser Leu Leu Phe Leu Phe Phe Ser Thr Val Ser
               5
                                         10
      Ser Phe Cys Gly Met Pro Leu Arg Ala His Thr Arg Ala Xaa Ala His
                  20
                                      25
25
      Thr Arg Thr Phe Ala Ser Arg
              35
30
      (2) INFORMATION FOR SEQ ID NO: 149:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 131 amino acids
35
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:
      Met Ile Cys Glu Thr Lys Ala Arg Lys Ser Ser Gly Gln Pro Gly Arg
40
      Leu Pro Pro Pro Thr Leu Ala Pro Pro Gln Pro Pro Leu Pro Glu Thr
45
      Ile Glu Arg Pro Val Gly Thr Gly Ala Met Val Ala Arg Ser Ser Asp
      Leu Pro Tyr Leu Ile Val Gly Val Leu Gly Ser Ile Val Leu Ile
50
      Ile Val Thr Phe Ile Pro Phe Cys Leu Trp Arg Ala Trp Ser Lys Gln
      Lys His Thr Thr Asp Leu Gly Phe Pro Arg Ser Ala Leu Pro Pro Ser
55
                                           90
      Cys Pro Tyr Thr Met Val Pro Leu Gly Gly Leu Pro Gly His Gln Ala
                  100
                                      105
60
      Val Asp Ser Pro Thr Ser Val Ala Ser Val Asp Gly Pro Val Leu Met
```

287

115 120 125 Gly Ser Thr 130 5 (2) INFORMATION FOR SEQ ID NO: 150: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150: 15 Met Gly Ala Pro Ser Leu Thr Met Leu Leu Leu Leu Lys Val Gln Pro Arg Arg Thr Gln Ala Phe Asp Ala His Trp Val Gly Leu Pro Leu Leu 20 25 20 25 (2) INFORMATION FOR SEQ ID NO: 151: (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 14 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151: Met Cys Leu Ile Phe Leu Leu Leu Leu Leu Ser Phe Ser 35 1 5 40 (2) INFORMATION FOR SEQ ID NO: 152: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid 45 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152: His Pro His Gln Asp Ser Gln Pro 1 5 50 (2) INFORMATION FOR SEQ ID NO: 153: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 68 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153: 60

	Met 1	Asn	Thr	Ser	Tyr 5	Ile	Leu	Arg	Leu	Thr 10	Val	Val	Val	Ser	Va1 15	Val
.5	Ile	Tyr	Leu	Ala 20	Ile	His	Pro	Leu	Leu 25	Ser	Phe	Ser	Leu	Glu 30	Ser	Pro
	Leu	Leu	Val 35	Pro	Trp	Arg	Asp	Cys 40	Cys	Gln	Asn	Ile	Trp 45	Lys	Ser	Gly
10	Ser	Va1 50	Trp	Tyr	Lys	Arg	Trp 55	Thr	Leu	Pro	His	Met 60	Glu	Val	Cys	Cys
15	Gln 65	Asp	Leu	His												
20	(2)		ORMAT	SEQUI () ()	ENCE A) L B) T D) T	CHAI ENGT YPE: OPOL	RACTI H: 2 ami: OGY:	ERIS 6 am no a lin	TICS ino cid ear	acid						
25	Met 1	Leu	(xi) Lys	_					N: S					Ile	Leu 15	Thr
30	Ser	Ile	Arg	11e 20	Leu	Glu	Arg	Gln	Asn 25	Met						
35	(2)	INF	ORMA'	SEQU (ENCE A) L	CHA ENGT YPE :	RACT H: 1	ERIS 95 a no a	TICS mino cid		ds					
40			(xi)	SEQ						EQ I	D NO	: 15	5:			
	Met 1	Asp	Cys	Glu	Val 5	Asn	Asn	Gly	Ser	Ser 10	Leu	Arg	Asp	Glu	Cys 15	Ile
45	Thr	Asn	Leu	Leu 20	Val	Phe	Gly	Phe	Leu 25	Gln	Ser	Суѕ	Ser	Asp 30	Asn	Ser
50	Phe	Arg	Arg 35	Glu	Leu	Asp	Ala	Leu 40	Gly	His	Glu	Leu	Pro 45	Val	Leu	Ala
50	Pro	Gln 50	Trp	Glu	Gly	Tyr	Asp 55	Glu	Leu	Gln	Thr	Asp 60	Gly	Asn	Arg	Ser
55	Ser 65	His	Ser	Arg	Leu	Gly 70	Arg	Ile	Glu	Ala	Asp 75	Ser	Glu	Ser	Gln	Glu 80
	Asp	Ile	Ile	Arg	Asn 85	Ile	Ala	Arg	His	Leu 90	Ala	Gln	Val	Gly	Asp 95	Ser
60	Met	Asp	Arg	Ser	Ile	Pro	Pro	Gly	Leu	Val	Asn	Gly	Leu	Ala	Leu	Gln

				100					105					110		
5	Leu	Arg	Asn 115	Thr	Ser	Arg	Ser	Glu 120	Glu	Asp	Arg	Asn	Arg 125	Asp	Leu	Ala
5	Thr	Ala 130	Leu	Glu	Gln	Leu	Leu 135	Gln	Ala	Tyr	Pro	Arg 140	Asp	Met	Glu	Lys
10	Glu 145	Lys	Thr	Met	Leu	Val 150	Leu	Ala	Leu	Leu	Leu 155	Ala	Lys	Lys	Val	Ala 160
	Ser	His	Thr	Pro	Ser 165	Leu	Leu	Arg	Asp	Val 170	Phe	His	Thr	Thr	Val 175	Asn
15	Phe	Ile	Asn	Gln 180	Asn	Leu	Arg	Thr	Туг 185	Val	Arg	Ser	Leu	Ala 190	Arg	Asn
20	Gly	Met	Asp 195													
	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO:	156:							
25				(A) L B) T D) T	ENGT YPE: OPOL	H: 9 ami OGY:	ERIS 1 am no a lin	ino cid ear	acid		. 16	<i>c</i> .			
30				~				PTIO							_	
	Met 1	Ser	Leu	Ser	Leu 5	Val	Ser	Val	Ser	Val 10	Gly	Pro	Ser	Thr	Leu 15	Ala
35	Cys	Ser	Phe	Leu 20	Arg	Pro	Lys	Ala	Arg 25	Pro	Ser	Lys	Arg	Ser 30	Pro	Arg
	Asn	Tyr	Thr 35	Asp	Ser	Thr	Ser	Pro 40	Gly	Gly	Pro	Arg	Ala 45	Pro	Arg	Gly
40	Gly	Ala 50		Arg	Leu	Ser	Ser 55		Gln	Asn	Ser	Ser 60	Pro	Lys	Gly	Val
45	Ala 65	Val	Ala	Lys	Ala	Ser 70		Arg	Pro	Val	Leu 75		Phe	Leu	Pro	Gly 80
40	Pro	Trp	Ser	Ser	Xaa 85	Pro	Xaa	Ala	Phe	Leu 90						
50	(2)	INF	ORMA	TION	FOR	SEQ	· ID	NO:	157:							
55				,	(A) I (B) I (D) I	LENGT TYPE : TOPOI	TH: : : am: LOGY	TERIS Ino a Ino a IPTIC	mino acid near	acio): 15	57 :			٠
60	Met 1	Gly	Thr	Leu	Ser		Glu	Cys	Ser	Gly		Ala	Thr	Leu	Gly	

	Cys	Leu	Val	Val 20	Pro	Trp	Asn	Ser	Ser 25	Gly	Leu	Ser	Gln	Pro 30	Pro	
5																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID N	10: 1	.58:							
10				(A) Li B) T D) T	ENGT: YPE: OPOL	H: 9 ami: OGY:	1 am no ao line	ino a cid ear	acid		: 158	B:			
15	Met 1	Lys	Phe	Leu	Ala 5	Val	Leu	Val	Leu	Leu 10	Gly	Val	Ser	Ile	Phe 15	Leu
20	Val	Ser	Ala	Gln 20	Asn	Pro	Thr	Thr	Ala 25	Ala	Pro	Ala	Asp	Thr 30	Tyr	Pro
20	Ala	Thr	Gly 35	Pro	Ala	Asp	Asp	Glu 40	Ala	Pro	Asp	Ala	Glu 45	Thr	Thr	Ala
25	Ala	Ala 50		Thr	Ala	Thr	Thr 55	Ala	Ala	Pro	Thr	Thr 60	Ala	Thr	Thr	Ala
	Ala 65	Ser	Thr	Thr	Ala	Arg 70	Lys	Asp	Ile	Pro	Val 75	Leu	Pro	Lys	Trp	Val 80
30	Gly	Asp	Leu	Pro	Asn 85	Gly	Arg	Val	Суз	Pro 90	Xaa					
35	(2)	INF	ORMA	TION	FOR	SEQ	ID:	NO:	159:							
40				(A) I B) T D) T	ENGI YPE : OPOL	TH: 8 ami LOGY:	39 am no a : lin	nino cid near	ació): 1 5	9 :			
	Met 1	Ile	⊇ Il∈	e Ser	Leu 5			Tyr				Thr	Cys	Ser	Asn 15	Thr
45	Ser	Pro	Ser	туr 20		Gly	Thr	Gln	Leu 25		Leu	Gly	Leu	Pro 30		Ala
50	Glr	Tr	Tr 35	Pro	Leu	Thr	Gly	Arg 40		Met	Gln	Cys	Cys 45		Leu	Phe
	Суз	Phe 50		ı Lev	Gln	Asn	Cys 55		Phe	Pro	Phe	Pro 60		His	Leu	Ile
55	Glr 65		s As _]	o Pro) Cys	Glu 70		ı Val	Leu	Thr	75		Trp	Asp	Trp	Ala 80
60	Glı	ı Ala	a Gl	y Ala	Ser 85		і Туі	Ser	Pro	>						

	(2)	TMLC	JRMAI	TOM	FOR	SEQ	א טד	10: 1	.00:							
5			(i) S	- (: (:	A) L B) T		H: 1 ami	74 ar no ac	mino cid	: aci	ds					
10			(xi)	SEQ	JENCI	E DES	SCRII	OITS	1: SI	EQ II	OM C	: 160	0:			
10	Met 1	Ser	Ser	Ala	Ala 5	Ala	Asp	His	Trp	Ala 10	Trp	Leu	Leu	Val	Leu 15	Ser
15	Phe	Val	Phe	Gly 20	Cys	Asn	Val	Leu	Arg 25	Ile	Leu	Leu	Pro	Ser 30	Phe	Ser
	Ser	Phe	Met 35	Ser	Arg	Val	Leu	Gln 40	Lys	Asp	Ala	Glu	Gln 45	Glu	Ser	Gln
20	Met	Arg 50	Ala	Glu	Ile	Gln	Asp 55	Met	Lys	Gln	Glu	Leu 60	Ser	Thr	Val	Asn
25	Met 65	Met	Asp	Glu	Phe	Ala 70	Arg	Tyr	Ala	Arg	Leu 75	Glu	Arg	Lys	Ile	Asn 80
23	Lys	Met	Thr	Asp	Lys 85	Leu	Lys	Thr	His	Val 90	Lys	Ala	Arg	Thr	Ala 95	Gln
30	Leu	Ala	Lys	Ile 100	Lys	Trp	Val	Ile	Ser 105	Val	Ala	Phe	тут	Val 110	Leu	Gln
	Ala	Ala	Leu 115	Met	Ile	Ser	Leu	11e 120	Trp	Lys	Tyr	Tyr	Ser 125	Val	Pro	Val
35	Ala	Val 130	Val	Pro	Ser	Lys	Ттр 135	Ile	Thr	Pro	Leu	Asp 140	Arg	Leu	Val	Ala
40	Phe 145	Pro	Thr	Arg	Val	Ala 150	Gly	Gly	Val	Gly	Ile 155	Thr	Cys	Trp	Ile	Leu 160
40	Val	Cys	Asn	Lys	Val 165	Val	Ala	Ile	Val	Leu 170	His	Pro	Phe	Ser		
45	(2)	INF	'ORMA'	TION	FOR	SEO	ID	NO:	1 61:							
	(2)															
50			(i)	_	(A) I	CHA LENGI TYPE:	TH: 4	15 am	nino	acio	as					
			(xi)		,	ropoi E de				SEQ I	D NC): 16	1:			
		63												I 0	Lov	Ι
55	1	•	, Lys		5	ı				10	1				1 5	
	Leu	ı Val	Gln	Cys 20		Asn	Cys	Cys	Arg 25		Asn	Met	Leu	Туr 30		. Ile
60	$Ph\epsilon$	Leu	ı Asn	Ile	His	Asn	Ile	His	Lys	Phe	Ser	Asr	His	:		

292

35 40 45 5 (2) INFORMATION FOR SEQ ID NO: 162: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid 10 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162: Met Val Ala Ser Thr Leu Val Thr Asn Leu Phe Gly Val Ala Phe Ala 10 15 Thr Thr Ala Ala Thr Arg Ala 20 20 (2) INFORMATION FOR SEQ ID NO: 163: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 amino acids 25 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163: Met Leu Met Ala Pro Val Val Cys Leu Ser Phe Ser Pro Cys Pro Ala 30 Asp Thr Ser Leu Thr Gly Asp Gly Leu Lys Ala Gly Leu Glu Arg Gly 35 Xaa Ala Leu Val Thr Leu Phe Asp Ser Val Thr His Phe Leu Ala His Thr Leu Phe Glu Leu Leu Asp Phe Gln Leu Ala Phe Leu Arg Ser Gly 40 Lys Gln Thr Ala Pro His 65 45 (2) INFORMATION FOR SEQ ID NO: 164: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 323 amino acids 50 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164: Met Leu Leu Leu Leu Leu Gly Ser Gly Gln Gly Pro Gln Gln 55 1 5 10 Val Gly Ala Gly Gln Thr Phe Glu Tyr Leu Lys Arg Glu His Ser Leu

Ser Lys Pro Tyr Gln Gly Val Gly Thr Gly Ser Ser Ser Leu Trp Asn

			35					40					45			
5	Leu	Met 50	Gly	Asn	Ala	Met	Val 55	Met	Thr	Gln	Tyr	Ile 60	Arg	Leu	Thr	Pro
3	Asp 65	Met	Gln	Ser	Lys	Gln 70	Gly	Ala	Leu	Trp	Asn 75	Arg	Val	Pro	Суѕ	Phe 80
10	Leu	Arg	Asp	Trp	Glu 85	Leu	Gln	Val	His	Phe 90	Lys	Ile	His	Gly	Gln 95	Gly
	Lys	Lys	Asn	Leu 100	His	Gly	Asp	Gly	Leu 105	Ala	Ile	Trp	Tyr	Thr 110	Arg	Asn
15	Arg	Met	Gln 115	Pro	Gly	Pro	Val	Phe 120	Gly	Asn	Met	Asp	Lys 125	Phe	Val	Gly
20	Leu	Gly 130	Val	Phe	Val	Asp	Thr 135	Tyr	Pro	Asn	Glu	Glu 140	Lys	Gln	Gln	Glu
	Arg 145	Val	Phe	Pro	Tyr	11e 150	Ser	Ala	Met	Val	Asn 155	Asn	Gly	Ser	Leu	Ser 160
25	Тут	Asp	His	Glu	Arg 165	Asp	Gly	Arg	Pro	Thr 170	Glu	Leu	Gly	Gly	Cys 175	Thr
	Ala	Ile	Val	Arg 180	Asn	Leu	His	Tyr	Asp 185	Thr	Phe	Leu	Val	Ile 190	Arg	Tyr
30	Val	Lys	Arg 195	His	Leu	Thr	Ile	Met 200	Met	Asp	Ile	Asp	Gly 205	Lys	His	Glu
35	Trp	Arg 210		Cys	Ile	Glu	Val 215	Pro	Gly	Val	Arg	Leu 220	Pro	Arg	Gly	Tyr
	Tyr 225	Phe	Gly	Thr	Ser	Ser 230	Ile	Thr	Gly	Asp	Leu 235	Ser	Asp	Asn	His	Asp 240
40	Val	Ile	Ser	Leu	Lys 245		Phe	Glu	Leu	Thr 250	Val	Glu	Arg	Thr	Pro 255	Glu
	Glu	Glu	Lys	Leu 260		Arg	Asp	Val	Phe 265	Leu	Pro	Ser	Val	Asp 270	Asn	Met
45	Lys	Leu	Pro 275		Met	Thr	Ala	Pro 280		Pro	Pro	Leu	Ser 285	Gly	Leu	Ala
50	Leu	Phe 290		Ile	Val	Phe	Phe 295		Leu	Val	Phe	Ser 300		Phe	Ala	Ile
	Val 305		Gly	Ile	Ile	1 Leu 310		Asn	Lys	Trp	Gln 315		Gln	Ser	Arg	Lys 320
55	Arg	Phe	Tyr													
	(2)	INF	ORMA	AOIT.	I FOR	SEÇ) ID	NO:	165:							
60																

			(i)	(A) L B) T	ENGT YPE :	H: 3 ami	ERIS' 21 a no a lin	mino cid		ds					
5			(xi)	SEQ						EQ II	D NO	: 16	5:			
	Met 1	Pro	Ser	Glu	Tyr 5	Thr	Tyr	Val	Lys	Leu 10	Arg	Ser	Asp	Cys	Ser 15	Arg
10	Pro	Ser	Leu	Gln 20	Trp	Tyr	Thr	Arg	Ala 25	Gln	Ser	Lys	Met	Arg 30	Arg	Pro
15	Ser	Leu	Leu 35	Leu	Lys	Asp	Ile	Leu 40	Lys	Cys	Thr	Leu	Leu 45	Val	Phe	Gly
	Val	Trp 50	Ile	Leu	Tyr	Ile	Leu 55	Lys	Leu	Asn	Tyr	Thr 60	Thr	Glu	Glu	Cys
20	Asp 65	Met	Lys	Lys	Met	His 70	Tyr	Val	Asp	Pro	Asp 75	His	Val	Lys	Arg	Ala 80
	Gln	Lys	Tyr	Ala	Gln 85	Gln	Val	Leu	Gln	Lys 90	Glu	Cys	Arg	Pro	Lys 95	Ph∈
25	Ala	Lys	Thr	Ser 100	Met	Ala	Leu	Leu	Phe 105	Glu	His	Arg	Tyr	Ser 110	Val	Asp
30	Leu	Leu	Pro 115	Phe	Val	Gln	Lys	Xaa 120	Pro	Lys	Asp	Ser	Glu 125	Ala	Glu	Ser
	Lys	Tyr 130	Asp	Pro	Pro	Phe	Gly 135	Phe	Arg	Lys	Phe	Ser 140	Ser	Lys	Val	Glr
35	Thr 145	Leu	Leu	Glu	Leu	Leu 150	Pro	Glu	His	Asp	Leu 155	Pro	Glu	His	Leu	Lys 160
	Ala	Lys	Thr	Суѕ	Arg 165	Arg	Cys	Val	Val	Ile 170	Gly	Ser	Gly	Gly	Ile 175	Leu
40	His	Gly	Leu	Glu 180	Leu	Gly	His	Thr	Leu 185	Asn	Gln	Phe	Asp	Val 190	Val	Il∈
45	Arg	Leu	Asn 195	Ser	Ala	Pro	Val	Glu 200	Gly	Tyr	Ser	Glu	His 205	Val	Gly	Asr
	Lys	Thr 210	Thr	Ile	Arg	Met	Thr 215	Tyr	Pro	Glu	Gly	Ala 220	Pro	Leu	Ser	Asp
50	Leu 225	Glu	Tyr	Tyr	Ser	Asn 230	Asp	Leu	Phe	Val	Ala 235	Val	Leu	Phe	Lys	Ser 240
	Val	Asp	Phe	Asn	Trp 245	Leu	Gln	Ala	Met	Val 250	Lys	Lys	Glu	Thr	Leu 255	Pro
55	Phe	Trp	Val	Arg 260	Leu	Phe	Phe	Trp	Lys 265		Val	Ala	Glu	Lys 270	Ile	Pro
60	Leu	Gln	Pro 275	Lys	His	Phe	Arg	Ile 280	Leu	Asn	Pro	Val	Ile 285	Ile	Lys	Glu

	Thr	Ala 290	Phe	Xaa	His	Pro	Ser 295	Val	Leu	Arg	Ala	Ser 300	Val	Lys	Val	Leu
5	Gly 305	Ala	Glu	Ile	Arg	Thr 310	Ser	Pro	Gln	Ser	Val 315	Ser	Leu	Pro	Leu	Ser 320
	Xaa															
10				n. 7.011	700	aro	, TD ,	10	1.66							
15	(2)	INF	(i)	SEQU)))	FOR ENCE A) L B) T D) T UENC	CHAI ENGT YPE:	RACT H: 3 ami OGY:	ERIS' 1 am no a lin	TICS ino cid ear	acid		: 16	6 :			
20	Met 1	Thr	Leu	Asp	Val 5	Gln	Thr	Val	Val	Val 10	Phe	Ala	Val	Ile	Val 15	Val
25	Leu	Leu	Leu	Val 20	Asn	Val	Ile	Leu	Met 25	Phe	Phe	Leu	Gly	Thr 30	Arg	
30	(2)	INF	(i)	SEQU (FOR ENCE (A) I (B) I (D) I	CHA ENGI YPE :	RACT H: 7 ami OGY:	ERIS 2 am no a lin	TICS nino ncid near	acid		o: 16	7:			
35	Met 1				Leu 5						Leu			Leu	Gly 15	Pro
40	Leu	Leu	Phe	Leu 20	Tyr	Asp	Val	Leu	Met 25		His	Glu	Ala	Val 30	Met	Arg
	Thr	His	Gln 35		e Glni	Leu	Pro	Asp 40		Glu	. Phe	Pro	Ser 45	Gln	Gln	Asn
45	Gln	Val		Asn	Lys	Thr	Leu 55		Asn	Lys	Leu	. Lys 60		Lys	Lys	Lys
50	Lys 65	_	: Lys	Хаа	. Xaa	. Xaa 70		Lys								
	(2)	INF	FORMA	MOIT	1 FOR	SEÇ	ID	NO:	168:							
55			(i)		(B) '	LENG' TYPE	TH: : am	reris 282 a ino a : lir	amino acid		ids					
60			(xi)) SE	QUENC					SEQ :	ID NO): 16	58:			

	Met 1	Ala	Ser	Arg	Gly 5	Arg	Arg	Pro	Glu	His 10	Gly	Gly	Pro	Pro	Glu 15	Leu
5	Phe	Tyr	Asp	Glu 20	Thr	Glu	Ala	Arg	Lys 25	Tyr	Val	Arg	Asn	Ser 30	Arg	Met
	Ile	Asp	11e 35	Gln	Thr	Arg	Met	Ala 40	Gly	Arg	Ala	Leu	Glu 45	Leu	Leu	Туг
10	Leu	Pro 50	Glu	Asn	Lys	Pro	Cys 55	Tyr	Leu	Leu	Asp	Ile 60	Gly	Cys	Gly	Thr
15	Gly 65	Leu	Ser	Gly	Ser	Tyr 70	Leu	Ser	Asp	Glu	Gly 75	His	Tyr	Trp	Val	Gly 80
	Leu	Asp	Ile	Ser	Pro 85	Ala	Met	Leu	Asp	Glu 90	Ala	Val	Asp	Arg	Glu 95	Ile
20	Glu	Gly	Asp	Leu 100	Leu	Leu	Gly	Asp	Met 105	Gly	Gln	Gly	Ile	Pro 110	Phe	Lys
	Pro	Gly	Thr 115	Phe	Asp	Gly	Cys	Ile 120	Ser	Ile	Ser	Ala	Val 125	Gln	Trp	Leu
25	Cys	Asn 130	Ala	Asn	Lys	Lys	Ser 135	Glu	Asn	Pro	Ala	Lys 140	Arg	Leu	Tyr	Cys
30	Phe 145	Phe	Ala	Ser	Leu	Phe 150	Ser	Val	Leu	Val	Arg 155	Gly	Ser	Arg	Ala	Val 160
	Leu	Gln	Leu	Tyr	Pro 165	Glu	Asn	Ser	Glu	Gln 170	Leu	Glu	Leu	Ile	Thr 175	Thr
35	Gln	Ala	Thr	Lys 180	Ala	Gly	Phe	Ser	Gly 185	Gly	Met	Val	Val	Asp 190	Tyr	Pro
	Asn	Ser	Ala 195	Lys	Ala	Lys	Lys	Phe 200	Tyr	Leu	Cys	Leu	Phe 205	Ser	Gly	Pro
40	Ser	Thr 210	Phe	Ile	Pro	Glu	Gly 215	Leu	Ser	Glu	Asn	Gln 220	Asp	Glu	Val	Glu
45	Pro 225	Arg	Glu	Ser	Val	Phe 230	Thr	Asn	Glu	Arg	Phe 235	Pro	Leu	Arg	Met	Ser 240
	Arg	Arg	Gly	Met	Val 245	Arg	Lys	Ser	Arg	Ala 250	Trp	Val	Leu	Glu	Lys 255	Lys
50	Glu	Arg	His	Arg 260	Arg	Gln	Gly	Arg	Glu 265	Val	Arg	Pro	Asp	Thr 270	Gln	Tyr
	Thr	Gly	Arg 275	Lys	Arg	Lys	Pro	Arg 280	Phe	Xaa						
55	(0)															
	(2)	TNF				SEQ				:						
60			,			ENGT					s					

								no ac line								
			(xi)	SEQU	JENCE	DES	SCRI	OITS	J: SI	EQ II	NO:	169) :			
5	Met 1	Leu	Gly	Lys	Thr 5	Lys	Phe	Gln	Ser	Туr 10	Lys	Ser	Phe	Ser	Arg 15	Lys
10	Leu	Met	Val	Cys 20	Pro	Ser	Thr									
	(2)	INFO	RMAT	NOI	FOR	SEQ	I DI	JO: 1	70:							
15			(i) S	(1	A) LI B) T	ENGT YPE :	H: 31	ERIST 28 am no ao line	mino cid		ds					
20			(xi)	SEQ	JENCE	E DES	SCRI	PTIO	1: SI	EQ II	ОИО	: 170):			
20	Met 1	Trp	Arg	Pro	Ser 5	Val	Leu	Leu	Leu	Leu 10	Leu	Leu	Leu	Arg	His 15	Gly
25	Ala	Gln	Gly	Lys 20	Pro	Ser	Pro	Asp	Ala 25	Gly	Pro	His	Gly	Gln 30	Gly	Arg
	Val	His	Gln 35	Ala	Ala	Pro	Leu	Ser 40	Asp	Ala	Pro	His	Asp 45	Asp	Ala	His
30	Gly	Asn 50	Phe	Gln	Tyr	Asp	His 55	Glu	Ala	Phe	Leu	Gly 60	Arg	Glu	Val	Ala
25	Lys 65	Glu	Phe	Asp	Gln	Leu 70	Thr	Pro	Glu	Glu	Ser 75	Gln	Ala	Arg	Leu	G17
35	Arg	Ile	Val	Asp	Arg 85	Met	Asp	Arg	Ala	Gly 90	Asp	Gly	Asp	Gly	Trp 95	Va]
40	Ser	Leu	Ala	Glu 100	Leu	Arg	Ala	Trp	Ile 105	Ala	His	Thr	Gln	Gln 110	Arg	His
	Ile	Arg	Asp 115	Ser	Val	Ser	Ala	Ala 120	Trp	Asp	Thr	Tyr	Asp 125	Thr	Asp	Arg
45	Asp	Gly 130	Arg	Val	Gly	Trp	Glu 135	Glu	Leu	Arg	Asn	Ala 140	Thr	Tyr	Gly	His
50	Туг 145	Ala	Pro	Gly	Glu	Glu 150	Phe	His	Asp	Val	Glu 155	Asp	Ala	Glu	Thr	Туз 160
50	Lys	Lys	Met	Leu	Ala 165	Arg	Asp	Glu	Arg	Arg 170	Phe	Arg	Val	Ala	As p	
55	Asp	Gly	Asp	Ser 180	Met	Ala	Thr	Arg	Glu 185		Leu	Thr	Ala	Phe 190		Hi
	Pro	Glu	Glu 195	Phe	Pro	His	Met	Arg 200	Asp	Ile	Val	Ile	Ala 205		Thr	Lei
60	Glu	Asp	Leu	Asp	Arg	Asn	Lys	Asp	Gly	туr	Val	Gln	Val	Glu	Glu	Ту

		210					215					220				
5	Ile 225	Ala	Asp	Leu	Tyr	Ser 230	Ala	Glu	Pro	Gly	Glu 235	Glu	Glu	Pro	Ala	Trp 240
3	Val	Gln	Thr	Glu	Arg 245	Gln	Gln	Phe	Arg	Asp 250	Phe	Arg	Asp	Leu	Asn 255	Lys
10	Asp	Gly	His	Leu 260	Asp	Gly	Ser	Glu	Val 265	Gly	His	Trp	Val	Leu 270	Pro	Pro
	Ala	Gln	Asp 275	Gln	Pro	Leu	Val	Glu 280	Ala	Asn	His	Leu	Leu 285	His	Glu	Ser
15	Asp	Thr 290	Asp	Lys	Asp	Gly	Arg 295	Leu	Ser	Lys	Ala	Xaa 300	Ile	Leu	Gly	Asn
20	Trp 305	Asn	Met	Phe	Val	Gly 310	Ser	Gln	Ala	Thr	Asn 315	Tyr	Gly	Glu	Asp	Leu 320
20	Thr	Arg	His	His	Asp 325	Glu	Leu	Xaa								
25	(2)	INFO	ORMA:	rion	FOR	SEQ	ID N	NO: 1	.71:							
				SEQUI	ENCE	CHAI	RACTI	ERIS 9 am	rics		~					
30			(xi)	(1	B) T	YPE: OPOL	ami OGY:	no a lin PTIO	cid ear			: 17	1:			
35	Met 1	Cys	Trp	Leu	Arg 5	Ala	Trp	Xaa	Gln	Ile 10	Xaa	Leu	Pro	Val	Phe 15	Xaa
	Ser	Xaa	Phe	Leu 20	Ile	Gln	Leu	Leu	11e 25	Ser	Phe	Ser	Glu	Asn 30	Gly	Phe
40				20				Leu Gln 40	25					30		
	Ile	His	Ser 35	20 Pro	Arg	Asn	Asn	Gln	25 Lys	Pro	Arg	Asp	Gly 45	30 Asn	Xaa	Glu
40 45	Ile Glu	His Cys 50	Ser 35 Ala	20 Pro	Arg Lys	Asn	Asn Ser	Gln 40	25 Lys	Pro	Arg	Asp Thr	Gly 45	30 Asn	Xaa	Glu
	Ile Glu Tyr 65	His Cys 50 Met	Ser 35 Ala Met	20 Pro Val Asn	Arg Lys Arg	Asn Lys	Asn Ser 55	Gln 40 Cys	25 Lys Gln	Pro	Arg	Asp Thr	Gly 45	30 Asn	Xaa	Glu
45	Ile Glu Tyr 65	His Cys 50 Met	Ser 35 Ala Met	20 Pro Val Asn FION SEQUI	Arg Lys Arg FOR	Asn Lys SEQ CHAI	Asn Ser 55	Gln 40 Cys	25 Lys Gln L72:	Pro Leu	Arg Cys	Asp Thr	Gly 45	30 Asn	Xaa	Glu
45	Ile Glu Tyr 65	His Cys 50 Met	Ser 35 Ala Met	20 Pro Val Asn TION ((((((((((((((((((((((((((((((((((((Arg Lys FOR FOR ENCE A) L B) T D) T	Asn Lys SEQ CHALENGT YPE: OPOL	Asn Ser 55 ID N RACTH: 1 ami	Gln 40 Cys	25 Lys Gln 172: rics mino cid ear	Pro Leu : aci	Arg Cys	Asp Thr 60	Gly 45 Glu	30 Asn	Xaa	Glu

Val Met Asp Glu Lys Val Lys Arg Ser Phe Val Leu Asp Thr Ala Ser

				20					25					30		
5	Ala	Ile	Суs 35	Asn	Tyr	Asn	Ala	His 40	Tyr	Lys	Asn	His	Pro 45	Lys	Tyr	Trp
10	Cys	Arg 50	Gly	Tyr	Phe	Arg	Asp 55	Tyr	Cys	Asn	Ile	Ile 60	Ala	Phe	Ser	Pro
	Asn 65	Ser	Thr	Asn	His	Val 70	Ala	Leu	Lys	Asp	Thr 75	Gly	Asn	Gln	Leu	Ile 80
15	Val	Thr	Met	Ser	Cys 85	Leu	Asn	Lys	Glu	Asp 90	Thr	Gly	Trp	Tyr	Trp 95	Cys
	Gly	Ile	Gln	Arg 100	Asp	Phe	Ala	Arg	Asp 105	Asp	Met	Asp	Phe	Thr 110	Glu	Leu
20	Ile	Val	Thr 115	Asp	Asp	Lys	Gly	Thr 120	Trp	Pro	Met	Thr	Leu 125	Val	Trp	Glu
25	Arg	Leu 130	Ser	Gly	Thr	Lys	Pro 135	Glu	Ala	Ala	Arg	Leu 140	Pro	Lys	Leu	Ser
	Ala 145	Arg	Leu	Thr	Ala	Pro 150	Gly	Arg	Pro	Phe	Ser 155	Ser	Phe	Ala	Tyr	Xaa 160
30																
35	(2)	INF		SEQU (ENCE A) L B) T	CHA ENGT YPE:	RACT H: 1 ami	NO: : ERIS .23 a no a	TICS minc		.ds					
40			(xi)					lin PTIO		EQ I	D NO	: 17	3:			
	Met 1	Ala	Xaa	His	Phe 5	Leu	Leu	Val	Ala	Leu 10		Ser	Val	Pro	His 15	Cys
45	Pro	His	Leu	Leu 20	Glu	Glu	Glu	His	Lys 25		Cys	Lys	Val	Ser 30	His	Phe
50	Ser	Gly	Val		Leu	Val	Thr	Ser 40		Gln	Asp	Ser	Ser 45	Ser	Tyr	Val
50	Pro	Val 50		Thr	Leu	Phe	Ile 55		Leu	Gly	Pro	Trp 60		Trp	Asp	Leu
55	Xaa 65		Cys	Thr	Ala	Glu 70		Pro	Glu	Ala	Glu 75		Ser	Leu	Arg	Leu 80
	Cys	His	s Ser	His	Leu 85		. Arg	Xaa	Asn	Va]		Pro	Ser	Gln	Ala 95	Ala
60	Glu	Gly	/ Xaa	a Xaa	Xaa	Arg	Gly	Cys	Glr	His	Arç	Gly	ser ser	Arg	Glu	Leu

				100					105					110		
5	Thr	Phe	Leu 115	Ser	Ala	Glu	Asn	Glu 120	Ala	Gly	Ile					
	(2)	INFO	OR MA'I	NOI	FOR	SEQ	ID N	10: 1	74:							
10			(i) :	~ (; (; (;	A) LI B) T D) T	ENGT: YPE : OPOL	H: 1 ami: OGY:	29 ar no ao line	mino cid ear	aci		: 174	1:			
15	Met 1	Lys	Val	Gly	Ala 5	Arg	Ile	Arg	Val	Lys 10	Met	Ser	Val	Asn	Lys 15	Ala
20	His	Pro	Val	Val 20	Ser	Thr	His	Trp	Arg 25	Trp	Pro	Ala	Glu	Trp 30	Pro	Gln
	Met	Phe	Le u 35	His	Leu	Ala	Gln	Glu 40	Pro	Arg	Thr	Glu	Val 45	Lys	Ser	Arg
25	Pro	Leu 50	Gly	Leu	Ala	Gly	Phe 55	Ile	Arg	Gln	Asp	Ser 60	Lys	Thr	Arg	Lys
30	Pro 65	Leu	Glu	Gln	Glu	Thr 70	Ile	Met	Ser	Ala	Ala 75	Asp	Thr	Ala	Leu	Trp 80
50	Pro	Tyr	Gly	His	Gly 85	Asn	Arg	Glu	His	Gln 90	Glu	Asn	Glu	Leu	G 1 n 95	Lys
35	Tyr	Leu	Gln	Tyr 100	Lys	Asp	Met	His	Leu 105	Leu	Asp	Ser	Gly	Gln 110	Ser	Lev
	Gly	His	Thr 115	His	Thr	Leu	Gln	Gly 120	Ser	His	Asn	Leu	Thr 125	Ala	Leu	Asr
40	Ile															
45	(2)	INF	'ORMA	TION	FOR	SEQ	ID	NO:	17 5:							
50				((A) I (B) I (D)	ENGT YPE : YOPOI	TH: 3 ami LOGY:	ERIS 372 a ino a : lin	mino cid ear	aci): 17	5:			
55	Met 1		Tyr	His	Ser 5		Leu	Val	Glu	Pro 10		Ser	Cys	His	Ala 15	Tr
<i></i>	Asr	Lys	s Asp	Arg 20		Gln	ılle	Ala	Ile 25		Pro	Asn	Asn	His 30		۷a:
60	His	s Ile	• Tyr 35		Lys	Ser	· Gly	Ala 40		Trp	Thr	Lys	Val 45		Glu	Le

	Lys	Glu 50	His	Asn	Gly	Gln	Val 55	Thr	Gly	Ile	Asp	Trp 60	Ala	Pro	Glu	Ser
5	Asn 65	Arg	Ile	Val	Thr	Cys 70	Gly	Thr	Asp	Arg	Asn 75	Ala	Tyr	Val	Trp	Thr 80
10	Leu	Lys	Gly	Arg	Thr 85	Trp	Lys	Pro	Thr	Leu 90	Val	Ile	Leu	Arg	Ile 95	Asn
10	Arg	Ala	Ala	Arg 100	Суз	Val	Arg	Trp	Ala 105	Pro	Asn	Glu	Asn	Lys 110	Phe	Ala
15	Val	Gly	Ser 115	Gly	Ser	Arg	Val	Ile 120	Ser	Ile	Cys	Туг	Phe 125	Glu	Gln	Glu
	Asn	Asp 130	Trp	·Trp	Val	Cys	Lys 135	His	Ile	Lys	Lys	Pro 140	Ile	Arg	Ser	Thr
20	Val 145	Leu	Ser	Leu	Asp	Trp 150	His	Pro	Asn	Asn	Val 155	Leu	Leu	Ala	Ala	Gly 1 60
25	Ser	Cys	Asp	Phe	Lys 165	Cys	Arg	Ile	Phe	Ser 170	Ala	Tyr	Ile	Lys	Glu 175	Val
23	Glu	Glu	Arg	Pro 180	Ala	Pro	Thr	Pro	Trp 185	Gly	Ser	Lys	Met	Pro 190	Phe	Gly
30	Glu	Leu	Met 195	Phe	Glu	Ser	Ser	Ser 200	Ser	Cys	Gly	Trp	Val 205	His	Gly	Val
	Cys	Phe 210	Ser	Ala	Ser	Gly	Ser 215	Arg	Val	Ala	Trp	Val 220	Ser	His	Asp	Ser
35	Thr 225	Val	Cys	Leu	Ala	Asp 230	Ala	Asp	Lys	Lys	Met 235	Ala	Val	Ala	Thr	Leu 240
40	Ala	Ser	Glu	Thr	Leu 245	Pro	Leu	Leu	Ala	Leu 250	Thr	Phe	Ile	Thr	Asp 255	Asn
40	Ser	Leu	Val	Ala 260	Ala	Gly	His	Asp	Cys 265	Phe	Pro	Val	Leu	Phe 270	Thr	Tyr
45	Asp	Ala	Ala 275	Ala	Gly	Met		Ser 280		Gly	Gly	Arg	Leu 285		Val	Pro
	Lys	Gln 290		Ser	Gln	Arg	Gly 295		Thr	Ala	Arg	Glu 300	Arg	Phe	Gln	Asn
50	Leu 305		Lys	Lys	Ala	Ser 310		Glu	Gly	Gly	Thr 315		Ala	Gly	Ala	Gly 320
55	Leu	Asp	Ser	Leu	His 325		Asn	Ser	Val	Ser 330		Ile	Ser	Val	Leu 335	
55	Gly	Gly	Lys	Ala 340		Суѕ	Ser	Gln	Phe		Thr	Thr	Gly	Met 350		Gly
60	Gly	Met	Ser 355		Trp	Asp	Val	Lys 360		Leu	Glu	Ser	Ala 365		Lys	Asp

Leu Lys Ile Lys 370

5

(2) INFORMATION FOR SEQ ID NO: 176:

(i) SEQUENCE CHARACTERISTICS:

10

- (A) LENGTH: 216 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:
- 15 Met Trp Ser Ile Gly Ala Gly Ala Leu Gly Ala Ala Ala Leu Ala Leu

Leu Leu Ala Asn Thr Asp Val Phe Leu Ser Lys Pro Gln Lys Ala Ala

20 Leu Glu Tyr Leu Glu Asp Ile Asp Leu Lys Thr Leu Glu Lys Glu Pro 40

Arg Thr Phe Lys Ala Lys Glu Leu Trp Glu Lys Asn Gly Ala Val Ile 25 55

Met Ala Val Arg Arg Pro Gly Cys Phe Leu Cys Arg Glu Glu Ala Ala

30 Asp Leu Ser Ser Leu Lys Ser Met Leu Asp Gln Leu Gly Val Pro Leu

Tyr Ala Val Val Lys Glu His Ile Arg Thr Glu Val Lys Asp Phe Gln

Pro Tyr Phe Lys Gly Glu Ile Phe Leu Asp Glu Lys Lys Phe Tyr

Gly Pro Gln Arg Arg Lys Met Met Phe Met Gly Phe Ile Arg Leu Gly 40 135

Val Trp Tyr Asn Phe Phe Arg Ala Trp Asn Gly Gly Phe Ser Gly Asn **15**5

45 Leu Glu Gly Glu Gly Phe Ile Leu Gly Gly Val Phe Val Val Gly Ser

Gly Lys Gln Gly Ile Leu Leu Glu His Arg Glu Lys Glu Phe Gly Asp 185

Lys Val Asn Leu Leu Ser Val Leu Glu Ala Ala Lys Met Ile Lys Pro

Gln Thr Leu Ala Ser Glu Lys Lys 55

(2) INFORMATION FOR SEQ ID NO: 177:

60

50

			(1) \$	(1	A) L1 3) T	ENGTI YPE :	d: 55 amir	o am:	ino a cid	acids	3					
5			(xi)	•) TO JENCI				ear N: SE	EQ II	NO:	177	:			
	Met 1	Lys	Pro	Val	Ser 5	Arg	Arg	Thr	Leu	Asp 10	Trp	Ile	Tyr	Ser	Val 15	Leu
10	Leu	Leu	Ala	11e 20	Val	Leu	Ile	Ser	Trp 25	Gly	Cys	Ile	Ile	Tyr 30	Ala	Ser
15	Met	Val	Ser 35	Ala	Arg	Arg	Gln	Leu 40	Arg	Lys	Lys	Tyr	Pro 45	Asp	Lys	Ile
13	Phe	Gly 50	Thr	Asn	Glu	Asn	Leu 55			•						
20	(2)	INF	OR MA '	rion	FOR	SEQ	ID 1	VO: 3	178:							
25				(A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	3 am no a lin		acid		: 178	3:			
30	Met 1	Ala	Ala	Asn	Thr 5	Phe	Val	Leu	Ile	Met 10	Gly	Ile	Pro	Thr	Ser 15	Ala
35	Asn	Ala	Xaa	Arg 20	Asp	Leu	Phe									
	(2)	INF	ORMA	TION	FOR	SEQ	ID:	NO:	179:							
40					(A) I (B) T (D) T	ENGT TYPE : TOPOI	TH: 1 ami	l03 a ino a : lir		aci		: 17	9:			
45	Met 1		: Ile	e Cys	His		Gly	Thr	Gly	11e		Leu	Ser	Ala	Gly 15	
~ 0	Ser	Leu	ı Phe	e Gly 20		. Ser	· Ala	Leu	Leu 25		Pro	Gly	Asn	Phe 30		Ser
50	Tyr	Let	ı Glı 39		ı Val	Lys	s Ser	Leu 40	ı Cys	Leu	Gly	Pro	Ala 45		Ile	His
55	Thr	: Ala		s Phe	e Ala	a Leu	val 55		e Pro	Leu	n Met	Tyr 60		Thr	Trp	Asn
	Gly 65		e Ar	g His	s Lei	Met 70		Asp	o Lev	ı Gly	/ Lys 75		Leu	Lys	: Ile	Pro 80
60	Glr	ı Le	а Ту	r Glı	n Sei	r Gly	y Val	l Vai	l Val	l Le	ر Val	Leu	Thr	val	Leu	ser

304

95 85 90 Ser Met Gly Leu Ala Ala Met 100 5 (2) INFORMATION FOR SEQ ID NO: 180: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 48 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180: 15 Met Thr Lys Ala Ser Ser Leu Trp Pro Leu Lys Thr Thr Cys Gln Ile Ser Gly Thr Val Phe Phe Leu Phe Leu Phe Ser Cys Phe Leu Met 20 20 25 Gln Ala Gln Cys Asp Lys Phe Val Gly Trp Asp Phe Phe Phe Leu 40 25 30 (2) INFORMATION FOR SEQ ID NO: 181: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 96 amino acids (B) TYPE: amino acid 35 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181: Met Arg Arg Ala Leu Ile Pro Pro Cys Arg Gly Gly Pro Ser Ala Ser 10 40 Asp Xaa Cys Cys Ser Cys Ser Pro Ser Gly Phe Ser Ala Gly Arg Gly Arg Cys Pro Val Gln Gly Cys Leu Arg Pro His Arg Val Gln Leu Leu 45 Arg Arg Trp Gly Pro Gly Ser Pro Ala Gly Gln Arg Leu Ser Lys Gly 50 Phe Gln Leu Leu Arg Trp Trp Gly Pro Gly Ser Pro Ala Pro Glu Pro 70 75 Arg Lys Gly Pro Phe Pro Pro Pro Asp Pro Pro Trp Pro Val Thr Leu 95 90 55

BNSDOCID: <WO___9842738A1_IA>

	(2)	TNF	JRMA'	TOM	FOR	SEQ	יו טד	MO: T	182:							
5				- (. (.	A) L B) T D) T	CHAI ENGT: YPE: OPOL	H: 9 ami: OGY:	5 am no a lin	ino d cid ear	acid		: 18	2 :			
10	Met 1		Glu	Thr	Thr 5	Lys	His	Val	Gln	Ile 10	Ala	Cys	Met	Leu	Leu 15	Leu
	Thr	Cys	Gln	Ile 20	Phe	Leu	Pro	Ser	Ser 25	Leu	Ser	Pro	Ser	Phe 30	Ile	His
15	Ser	Leu	Thr 35	Asp	Ser	Phe	Ile	Pro 40	Leu	Lys	Lys	Leu	Тут 45	Val	Cys	Phe
20	Val	Gln 50	Ser	Thr	Leu	Leu	Lys 55	Ala	Ala	Gly	Tyr	Lys 60	Ser	Ile	Ser	Glu
20	Ala 65	Leu	Gly	Phe	Asp	Xaa 70	Leu	Leu	Cys	Ser	Ser 75	Ala	Arg	Phe	Val	Trp 80
25	Ile	Cys	His	Thr	Tyr 85	Ser	Arg	Pro	Leu	Val 90	Thr	Cys	Ala	Leu	His 95	
30	(2)	INF		SEQU (ENCE A) L	SEQ CHA ENGT YPE:	RACT H: 2	ERIS	TICS ino		ls					
35			(xi)	(D) I	OPOL E DE	.OGY :	lin	ear	EQ I	D NC	: 18	3:			
	Met 1		Val	Ile	Gly 5	Gly	Leu	Leu	Leu	Val 10	Val	Ala	Leu	Gly	Pro 15	Gly
40	Gly	Val	Ser	Met 20	Asp	Glu	Lys	Lys	Lys 25	Glu	Trp					
45	(2)	INF		SEQU	ENCE	SEQ CHA	RACI	ERIS	TICS		1					
50			(xi)		(B) 1 (D) 1	LENGT TYPE: TOPOI LE DE	ami LOGY :	ino a : lir	acid near): 1 8	34:			
55	Met		: Gly	· Gly	Leu 5	Ser	Phe	. Leu	Leu	10						
	(2)	INF	FORMA	MOIT	FOF	SEÇ	D	NO:	185:							
60			(i)	SEQU	JENCE	E CHA	RACT	reris	STICS	S:						

```
(A) LENGTH: 65 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185:
5
     Met Phe Ala Asp Phe Ile Val Val Thr Ala Thr Val Gln Arg Cys Pro
                                          10
     Gly Ser Pro Pro Leu Ser Glu Ile Leu Trp Lys Asp Glu Pro Phe Ala
10
                                       25
                   20
      Ile Ser Ser His Ala Gly Leu Pro Trp Leu Ser Ser Trp Pro Ala Pro
                                  40
15
      Pro Trp Thr Trp Ser Trp Ile Ser Arg Arg Glu His Gly Arg Gly
      Ser
      65
20
      (2) INFORMATION FOR SEQ ID NO: 186:
25
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 22 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:
30
      Met Val Glu Ser Val Met Pro Val Val Val Cys Thr Leu Ser Pro Gly
      Ile Asp Ser Ser Pro Ser
35
                   20
      (2) INFORMATION FOR SEQ ID NO: 187:
40
             (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 132 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
45
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:
      Met Asp Val Leu Phe Val Ala Ile Phe Ala Val Pro Leu Ile Leu Gly
50
      Gln Glu Tyr Glu Asp Glu Glu Arg Leu Gly Glu Asp Glu Tyr Tyr Gln
                                       25
                                                            30
      Val Val Tyr Tyr Tyr Thr Val Thr Pro Ser Tyr Asp Asp Phe Ser Ala
55
      Asp Phe Thr Ile Asp Tyr Ser Ile Phe Glu Ser Glu Asp Arg Leu Asn
                               55
                                                   60
      Arg Leu Asp Lys Asp Ile Thr Glu Ala Ile Glu Thr Thr Ile Ser Leu
60
                           70
                                               75
       65
```

	Glu	Thr	Ala	Arg	Ala 85	Asp	His	Pro	Lys	Pro 90	Val	Thr	Val	Lys	Pro 95	Val
5	Thr	Thr	Glu	Pro 100	Gln	Ser	Pro	Asp	Leu 105	Asn	Asp	Ala	Val	Ser 110	Ser	Leu
10	Arg	Ser	Pro 115	Ile	Pro	Leu	Leu	Leu 1 20	Ser	Cys	Ala	Phe	Val 125	Gln	Val	Gly
10	Met	Туг 130	Phe	Met												
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	1 0: í	188:							
20			(i)	(A) L B) T	CHAI ENGT YPE:	H: 6 ami	9 am no a	ino cid		s					
			(xi)			E DE				EQ I	D NO	: 18	8:			
25	Met 1	Pro	Cys	Gln	Pro 5	Gly	Gln	Val	Pro	Ser 10	Cys	Gln	Cys	Thr	Phe 15	Gly
	Leu	Leu	Leu	Met 20	Leu	Pro	Ser	Leu	Pro 25	Ser	Pro	Ala	Ser	Gln 30	Pro	Arg
30	Pro	Phe	Cys 35	Ser	Ser	Met	Glu	Tyr 40	Phe	His	Gly	Cys	Ala 45	Ser	Pro	Ser
35	Gln	Ala 50	Ile	Ile	Gly	Gly	Phe 55	Pro	Phe	Ala	Ser	Val 60	Ala	Leu	Ala	Asp
55	Ile 65	Leu	Cys	Leu	Gln											
40	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	189:							
45			(i)	~	(A) I (B) T	CHA LENGT TYPE:	TH: 4 : ami	l5 an Ino a	mino acid	_	ls					
			(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NC): 18	39:			
50	Met 1		Leu	Leu	Ser 5		Ala	Ile	Pro	Ala 10		Thr	Leu	Ile	Phe 15	
	Leu	Met	. Ph∈	Phe 20		Phe	Pro	Phe	Arg 25		His	Thr	Val	Val 30		Ile
55	Val	. Ala	Ser 35	_	Phe	e Leu	Gly	Leu 40		Pro	Leu	ı Cys	Gly 45			
60	(2)	INF	ORMA	4OITA	1 FOF	R SEÇ) ID	NO:	190:							

5			(i) 5 (xi)	() () ()	A) L B) T D) T	ENGT YPE : OPOL	H: 6! amin OGY:	5 am no a line	ino a cid ear	acid		: 19) :			
10	Met 1		Phe											Pro	Tyr 15	Pro
10	Leu	Gln	Trp	Ser 20	Leu	Leu	Val	Ala	Val 25	Val	Ala	Gly	Ser	Val 30	Val	Ser
15	Tyr	Gly	Val 35	Thr	Arg	Val	Glu	Ser 40	Glu	Lys	Cys	Asn	Asn 45	Leu	Trp	Leu
	Phe	Leu 50	Glu	Thr	Gly	Gln	Leu 55	Pro	Lys	Asp	Arg	Ser 60	Thr	Asp	Gln	Arg
20	Ser 65															
25	(2)	INF	ORMA	rion	FOR	SEQ	ID 1	NO: :	191:							
30				- (A) I B) T D) T	CHA ENGI YPE: OPOL E DE	H: 5 ami OGY:	0 am no a lin	ino cid ear	ació): 19	1:			
35	Met		Leu	Leu	Gly 5		Ile	Phe	Ser	Met 10	Cys	Gly	Leu	Met	Leu 15	Lys
33	Leu	Lys	Trp	Cys 20		Trp	Val	Ala	Val 25	Tyr	Cys	Ser	Phe	Ile 30	Ser	Phe
40	Ala	Asn	Ser 35		Ser	Ser	Glu	Asp 40		Lys	Gln	Met	Met 45	Ser	Ser	Phe
	Met	: Xaa 50														
45	(2)	INF	ORMA	MOIT	FOF	SEÇ	ID	NO:	192:							
50	ν,		(i)	SEQU	ENCE (A) : (B) '	E CHA LENG! IYPE IOPOI	ARACT TH: 1 : ami	ERIS 170 a ino a : lir	STICS amind acid near	ac:		D: 19	92:			
55		Let L	ı Leu	ı Asr	Val		. Leu	Val	. Ala	Let 10		Lev	Leu	Gly	Ala 15	
60	Arg	g Lei	ı Trç	Va]		Trp	Gly	Arg	Arg 25		/ Let	ı Gly	⁄ Ala	Gly 30		Gly

	Ala	Gly	Glu 35	Glu	Ser	Pro	Ala	Thr 40	Ser	Leu	Pro	Arg	Met 45	Lys	Lys	Arg
5	Asp	Phe 50	Ser	Leu	Glu	Gln	Leu 55	Arg	Gln	Tyr	Asp	Gly 60	Ser	Arg	Asn	Pro
	Arg 65	Ile	Leu	Leu	Ala	Val 70	Asn	Gly	Lys	Val	Phe 75	Asp	Val	Thr	Lys	Gly 80
10	Ser	Lys	Phe	Tyr	Gly 85	Pro	Ala	Gly	Pro	Туr 90	Gly	Ile	Phe	Ala	Gly 95	Arg
15	Asp	Ala	Ser	Arg 100	Gly	Leu	Ala	Thr	Phe 105	Cys	Leu	Asp	Lys	Asp 110	Ala	Leu
10	Arg	Asp	Glu 115	Tyr	Asp	Asp	Leu	Ser 120	Asp	Leu	Asn	Ala	Val 125	Gln	Met	Glu
20	Ser	Val 130	Arg	Glu	Trp	Glu	Met 135	Gln	Phe	Lys	Glu	Lys 140	Tyr	Asp	Tyr	Val
	Gly 1 4 5	Arg	Leu	Leu	Lys	Pro 150	Gly	Glu	Glu	Pro	Ser 155	Glu	Tyr	Thr	Asp	Glu 160
25	Glu	Asp	Thr	Lys	Asp 165	His	Asn	Lys	Gln	Asp 170						
30	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO:	193:							
35				((A) I (B) T (D) T	ENGT YPE: YPOL	H: 6 ami OGY:	66 am no a lin	nino Icid Iear	ació): 1 9	3:			
40	Met		Tyr	Phe	Ser 5		Leu	Leu	Val	Ile 10		Ala	Phe	Ala	Ala 15	Trp
40	Val	Ala	Leu	Ala 20		Gly	Leu	Gly	Val 25		Val	Tyr	Ala	Ala 30		Val
45	Leu	Leu	Gly 35		. Gly	Cys	Ala	Thr 40		Leu	Val	Thr	Ser 45	Leu	Ala	Met
	Thr	Ala 50		Leu	Ile	: Gly	Pro 55		Thr	Asr	Ser	Gly 60		Ser	. Cys	Thr
50	Ala 65	Pro	>													
55	(2)	INE	FORM	MOITA	1 FOF	R SEÇ) ID	NO:	194:							
			(i)	SEQU	(A)	E CHA LEING TYPE	TH:	92 aı	mino		ds					
60						TOPO:										

			(xi)	SEQ	UENCI	E DES	SCR1	PTIO	N: S	EQ II	ON C	: 19	4:			
5	Met 1	Ala	Ala	Gly	Pro 5	Ser	Gly	Суѕ	Leu	Val 10	Pro	Ala	Phe	Gly	Leu 15	Arg
5	Leu	Leu	Leu	Ala 20	Thr	Val	Leu	Gln	Ala 25	Val	Ser	Ala	Phe	Gly 30	Ala	Glu
10	Phe	Ser	Ser 35	Glu	Ala	Cys	Arg	Glu 40	Leu	Gly	Phe	Ser	Ser 45	Asn	Leu	Let
	Cys	Ser 50	Ser	Суѕ	Asp	Leu	Leu 55	Gly	Gln	Phe	Asn	Leu 60	Leu	Gln	Leu	Asp
15	Pro 65	Asp	Cys	Arg	Gly	Cys 70	Cys	Gln	Glu	Glu	Ala 75	Gln	Phe	Glu	Thr	Lys
20	Lys	Leu	Tyr	Ala	Gly 85	Ala	Ile	Leu	Glu	Val 90	Cys	Gly				
	(2)	INF	ORMA?			_										
25			(i) :	(ENCE A) L B) T D) T	ENGT YPE:	H: 1 ami	76 a no a	mino cid		ds					
30			(xi)	SEQ	UENC:	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 19	5:			
	Met 1	Arg	Gly	Ser	His 5	Leu	Arg	Leu	Leu	Pro 10	Tyr	Leu	Val	Ala	Ala 1 5	Ası
35	Pro	Val	Asn	Tyr 20	Gly	Arg	Pro	Tyr	Arg 25	Leu	Ser	Cys	Val	Glu 30	Ala	Phe
	Ala	Ala	Thr 35	Phe	Cys	Ile	Val	Gly 40	Phe	Pro	Asp	Leu	Ala 45	Val	Ile	Let
40	Leu	Arg 50	Lys	Phe	Lys	Trp	Gly 55	Lys	Gly	Phe	Leu	Asp 60	Leu	Asn	Arg	Glı
45	Leu 65	Leu	Asp	`Lys	Tyr	Ala 70	Ala	Cys	Gly	Ser	Pro 75	Glu	Glu	Val	Leu	G1:
	Ala	Glu	Gln	Glu	Phe 85	Leu	Ala	Asn	Ala	Lys 90	Glu	Ser	Pro	Gln	Glu 95	Glı
50	Glu	Ile	Asp	Pro 100	Phe	Asp	Val	Asp	Ser 105	Gly	Arg	Glu	Phe	Gly 110	Asn	Pro
	Asn	Arg	Pro 115	Val	Ala	Ser	Thr	Arg 120	Leu	Pro	Ser	Asp	Thr 125	Asp	Asp	Se
55	Asp	Ala 130	Ser	Glu	Asp	Pro	Gly 135	Pro	Xaa	Ala	Glu	Arg 140	Gly	Gly	Ala	Se
60	Ser 145	Ser	Cys	Cys	Glu	Glu 150	Glu	Gln	Thr	Gln	Gly 155	Arg	Gly	Ala	Glu	Ala 16

	Arg Ala Pro Ala Glu Val Trp Lys Gly Ile Lys Lys Arg Gln Arg Asp 165 170 175
.5	
10	(2) INFORMATION FOR SEQ ID NO: 196: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196:
	Met Ser Asn Ala Cys Lys Glu Leu Ala Ile Phe Leu Thr Thr Gly Ile 1 5 10 15
20	Val Val Ser Ala Phe Gly Leu Pro Ile Val Phe Ala Arg Ala His Leu 20 25 30
25	Ile Glu Trp Gly Ala Cys Ala Leu Val Leu Thr Gly Asn Thr Val Ile 35 40 45
23	Phe Ala Thr Ile Leu Gly Phe Phe Leu Val Phe Gly Ser Asn Asp Asp 50 55 60
30	Phe Ser Trp Gln Gln Trp 65 70
35	(2) INFORMATION FOR SEQ ID NO: 197: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid
40	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197:
	Met Thr Leu Leu Ile Ile Phe Leu Pro Phe Xaa Phe Thr Thr Xaa Thr 1 5 10 15
45	Asn Ser Gly Gly Ser Phe Pro Val Arg 20 25
50	(2) INFORMATION FOR SEQ ID NO: 198:
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198:
60	Met Lys Gly Glu Leu Leu Pro Phe Leu Phe Leu Thr Val Trp Leu Trp 1 5 10 15

	Leu	Tyr	Lys	Leu 20	Xaa	Phe	Gly	Glu	Ser 25	Pro	Arg	Tyr	Pro	Asn 30	Val	Ile
5	Gly	Lys	Thr 35	Tyr	Phe	Phe	Phe	Trp 40	Thr	Asp	Gln	Ile	Ser 45	Arg	Glu	Ser
	Arg	Phe 50	Leu	Glu	Arg	Leu	Ala 55	Phe	Ile	Val	Ser	Glu 60	Asn	Cys	Leu	Ile
10	Phe 65	Leu	Ile	His	Ala	Ile 70	Thr	Gly	Gln							
15	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	NO: 1	.99:							
20				~ (: (:	A) L: B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	ERIST 89 ar no ao line PTION	mino cid ear	aci		: 19	9 :			
25	Met 1	Ser	Gly	Phe	Ser 5	Thr	Glu	Glu	Arg	Ala 10	Ala	Pro	Phe	Ser	Leu 15	Glu
23	Tyr	Arg	Val	Phe 20	Leu	Lys	Asn	Glu	Lys 25	Gly	Gln	Tyr	Ile	Ser 30	Pro	Phe
30	His	Asp	Ile 35	Pro	Ile	Tyr	Ala	Asp 40	Lys	Asp	Val	Phe	His 45	Met	Val	Val
	Glu	Val 50	Pro	Arg	Trp	Ser	Asn 55	Ala	Lys	Met	Glu	Ile 60	Ala	Thr	Lys	Asp
35	Pro 65	Leu	Asn	Pro	Ile	Lys 70	Gln	Asp	Val	Lys	Lys 75	Gly	Lys	Leu	Arg	Туг 80
40	Val	Ala	Asn	Leu	Phe 85	Pro	Tyr	Lys	Gly	Туr 90	Ile	Trp	Asn	Тут	Gly 95	Ala
40	Ile	Pro	Gln	Thr 100	Trp	Glu	Asp	Pro	Gly 105	His	Asn	Asp	Lys	His 110	Thr	Gly
45	Cys	Cys	Gly 115	Asp	Asn	Asp	Pro	Ile 120	Asp	Val	Cys	Glu	Ile 125	Gly	Ser	Lys
	Val	Cys 130	Ala	Arg	Gly	Glu	Ile 135	Ile	Gly	Val	Lys	Val 140		Gly	Ile	Leu
50	Ala 145	Met	Ile	Asp	Glu	Gly 150		Thr	Asp	Trp	Lys 155		Ile	Ala	Ile	Asn 160
<i>55</i>	Val	Asp	Asp	Pro	Asp 165		Ala	Asn	Tyr	Asn 170		Ile	Asn	. Asp	Val 175	Lys
55	Arg	Leu	Lys	Pro 180	_	Tyr	Leu	Glu	Ala 185		Val	Asp	Тгр	Phe 190		Arg
60	Tyr	Lys	Val		Asp	Gly	Lys	Pro 200	Glu	Asn	Glu	Phe	Ala 205		Asn	Ala

	Glu	Phe 210	Lys	Asp	Lys	Asp	Phe 215	Ala	Ile	Asp	11e	11e 220	rys	ser	inr	HIS
5	Asp 225	His	Trp	Lys	Ala	Leu 230	Val	Thr	Lys	Lys	Thr 235	Asn	Gly	Lys	Gly	Ile 240
10	Ser	Суѕ	Met	Asn	Thr 245	Thr	Leu	Ser	Glu	Ser 250	Pro	Phe	Lys	Cys	As p 255	Pro
10	Asp	Ala	Ala	Arg 260	Ala	Ile	Val	Asp	Ala 265	Leu	Pro	Pro	Pro	Суs 270	Glu	Ser
15	Ala	Cys	Thr 275	Val	Pro	Thr	Asp	Val 280	Asp	Lys	Trp	Phe	His 285	His	Gln	Lys
	Asn															
20																
	(2)	INF	ORMAT	LION	FOR	SEQ	ID N	NO: 2	200:							
25				~ (A) L B) T D) T	CHAI ENGT YPE: OPOL	H: 6 ami OGY:	25 a no a lin	mino cid ear	aci	ds D NO	. 20	0.			
30	Met 1		Ile	Pro	Gly 5	Ser	Leu	Cys	Lys	Lys 10	Val	Lys	Leu	Ser	Asn 15	Asn
35	Ala	Gln	Asn	Trp 20	Gly	Met	Gln	Arg	Ala 25	Thr	Asn	Val	Thr	Туr 30	Gln	Ala
33	His	His	Val 35		Arg	Asn	Lys	Arg 40	Gly	Gln	Val	Val	Gly 45	Thr	Arg	Gly
40	Gly	Phe 50	Arg	Gly	Cys	Thr	Val 55	Trp	Leu	Thr	Gly	Leu 60		Gly	Ala	Gly
	Lys 65		Thr	Val	Ser	Met 70	Ala	Leu	Glu	Glu	Tyr 75	Leu	Val	Суѕ	His	Gly 80
45	Ile	e Pro	Cys	Tyr	Thr 85		Asp	Gly	Asp	Asn 90		Arg	Gln	Gly	Leu 95	
50	Lys	s Asr	1 Leu	Gly 100		e Ser	Pro	Glu	Asp 105		, Glu	Glu	Asn	Val		Arg
30	Ile	e Ala	a Glu 115		. Ala	Lys	Leu	Phe 120		Asp	Ala	Gly	Leu 125		. Cys	: Ile
55	Th	r Sei	r Phe	e Ile	e Ser	Pro	Туг 135		Glr	n Asp	Arg	Asr 140		Alá	Arg	g Gln
	11 14		s Glu	ı Gly	/ Ala	a Ser 150		Pro	Ph∈	e Phe	∋ Glu 155		l Phe	val	l Asr	Ala 160
60	Pr	o Le	u His	s Vai	l Cys	s Glu	ı Glr	ı Arç	g Asp	va.	l Lys	Gly	/ Let	туз	c Lys	s Lys

					165					170					175	
5	Ala	Arg	Ala	Gly 1 80	Glu	Ile	Lys	Gly	Phe 185	Thr	Gly	Ile	Asp	Ser 190	Glu	Tyr
.5	Glu	Lys	Pro 195	Glu	Ala	Pro	Glu	Leu 200	Val	Leu	Lys	Thr	Asp 205	Ser	Cys	Asp
10	Val	Asn 210	Asp	Cys	Val	Gln	Gln 215	Val	Val	Glu	Leu	Leu 220	Gln	Glu	Arg	Asp
	Ile 225	Val	Pro	Val	Asp	Ala 230	Ser	Tyr	Glu	Val	Lys 235	Glu	Leu	Туr	Val	Pro 240
15	Glu	Asn	Lys	Leu	His 245	Leu	Ala	Lys	Thr	Asp 250	Ala	Glu	Thr	Leu	Pro 255	Ala
20	Leu	Lys	Ile	Asn 260	Lys	Val	Asp	Met	Gln 265	Trp	Val	Gln	Val	Leu 270	Ala	Glu
20	Gly	Trp	Ala 275	Thr	Pro	Leu	Asn	Gly 280	Phe	Met	Arg	Glu	Arg 285	Glu	Tyr	Leu
25	Gln	Cys 290	Leu	His	Phe	Asp	Cys 295	Leu	Leu	Asp	Gly	Gly 300	Val	Ile	Asn	Leu
	Ser 305	Val	Pro	Ile	Val	Leu 310	Thr	Ala	Thr	His	Glu 315	Asp	Lys	Glu	Arg	Leu 320
30	Asp	Gly	Суѕ	Thr	Ala 325	Phe	Ala	Leu	Met	Tyr 330	Glu	Gly	Arg	Arg	Val 335	Ala
35	Ile	Leu	Arg	Asn 340	Pro	Glu	Phe	Phe	Glu 345	His	Arg	Lys	Glu	Glu 350	Arg	Cys
	Ala	Arg	Gln 355	Trp	Gly	Thr	Thr	Cys 360	Lys	Asn	His	Pro	Туг 365	Ile	Lys	Met
40	Val	Met 370	Glu	Gln	Gly	Asp	Trp 375	Leu	Ile	Gly	Gly	Asp 380	Leu	Gln	Val	Leu
	Asp 385	Arg	Val	Tyr	Trp	Asn 390	Asp	Gly	Leu	Asp	Gln 395	Tyr	Arg	Leu	Thr	Pro 400
45	Thr	Glu	Leu	Lys	Gln 405	Lys	Phe	Lys	Asp	Met 410		Ala	Asp	Ala	Val 415	Phe
50	Ala	Phe	Gln	Leu 420	_	Asn	Pro	Val	His 425	Asn	Gly	His	Ala	Leu 430	Leu	Met
	Gln	Asp	Thr 435	His	Lys	Gln	Leu	Leu 440	Glu	Arg	Gly	Tyr	Ar g 4 45	Arg	Pro	Val
55	Leu	Leu 450		His	Pro	Leu	Gly 455	_	Trp	Thr	Lys	Asp 460	Asp	Asp	Val	Pro
	Leu 4 65		Trp	Arg	Met	Lys 470	Gln	His	Ala	Ala	Val 475	Leu	Glu	Glu	Gly	Val 480
60	Leu	Asn	Pro	Glu	Thr	Thr	Val	Val	Ala	Ile	Phe	Pro	Ser	Pro	Met	Met

					485					490					495	
5	Tyr	Ala	Gly	Pro 500	Thr	Glu	Val	Gln	Trp 505	His	Cys	Arg	Ala	Arg 510	Met	Val
5	Ala	Gly	Ala 515	Asn	Phe	Tyr	Ile	Val 520	Gly	Arg	Asp	Pro	Ala 525	Gly	Met	Pro
10	His	Pro 530	Glu	Thr	Gly	Lys	Asp 535	Leu	Tyr	Glu	Pro	Ser 540	His	Gly	Ala	Lys
	Val 545	Leu	Thr	Met	Ala	Pro 550	Gly	Leu	Ile	Thr	Leu 555	Glu	Ile	Val	Pro	Phe 560
15	Arg	Val	Ala	Ala	Туг 565	Asn	Lys	Lys	Lys	Lys 570	Arg	Met	Asp	Tyr	Туr 575	Asp
20	Ser	Glu	His	His 580	Glu	Asp	Phe	Glu	Phe 585	Ile	Ser	Gly	Thr	Arg 590	Met	Arg
	Lys	Leu	Ala 595	Arg	Glu	Gly	Gln	Lys 600	Pro	Pro	Glu	Gly	Phe 605	Met	Ala	Pro
25	Lys	Ala 610	Trp	Thr	Val	Leu	Thr 615	Glu	Tyr	Tyr	Lys	Ser 620	Leu	Glu	Lys	Ala
	Xaa 625															
30																
	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	201:							
35			(i)	(A) L B) T	ENGT YPE :	H: 6	ERIS	mino cid		ds					
			(xi)					· lin PTIO		EQ I	D NO	: 20	1:			
40	Met 1		Ala	Ser	Gln 5	Asp	Leu	Glu	Pro	Lys 10	Pro	Leu	Phe	Pro	Lys 15	Pro
45	Ala	Phe	Gly	Gln 20		Pro	Pro	Leu	Ser 25		Glu	Asn	Ser	His 30		Asp
73	Glu	Ser	Pro 35		Lys	Asn	Val	Ser 40		Ser	Lys	Gly	Ser 45		Ala	Pro
50	Leu	G1y 50		Arg	Ser	Lys	Ser 55	Gly	Pro	Leu	Lys	Pro 60		Arg	Glu	Asp
	Ser 65		. Asn	Lys	Asp	His		Gly	Glu	Ile	Ser 75		Leu	Pro	Phe	Pro 80
55	Gly	Val	. Val	. Leu	Lys 85		Ala	a Ala	Ser	Arg		Gly	Pro	Gly	Leu 95	
60	Lys	s Asr	ı Gly	Glu 100		Lys	. Lys	s Glu	105		Lys	; Ile	e Asp	Ala 110		Lys

	Asn	Thr	Phe 115	Gln	Ser	Lys	Ile	Asn 120	Gln	Glu	Glu	Leu	Ala 125	Ser	Gly	Thr
5	Pro	Pro 130	Ala	Arg	Phe	Pro	Lys 135	Ala	Pro	Ser	Lys	Leu 140	Thr	Val	Gly	Gly
	Pro 145	Trp	Gly	Gln	Ser	Gln 150	Glu	Lys	Glu	Lys	Gly 155	Asp	Lys	Asn	Ser	Ala 160
10	Thr	Pro	Lys	Gln	Lys 165	Pro	Leu	Pro	Pro	Leu 170	Phe	Thr	Leu	Gly	Pro 175	Pro
15	Pro	Pro	Lys	Pro 180	Asn	Arg	Pro	Pro	Asn 185	Val	Asp	Leu	Thr	Lys 190	Phe	His
13	Lys	Thr	Ser 195	Ser	Gly	Asn	Ser	Thr 200	Ser	Lys	Gly	Gln	Thr 205	Ser	Tyr	Ser
20	Thr	Thr 210	Ser	Leu	Pro	Pro	Pro 215	Pro	Pro	Ser	His	Pro 220	Ala	Ser	Gln	Pro
	Pro 225	Leu	Pro	Ala	Ser	His 230	Pro	Ser	Gln	Pro	Pro 235	Val	Pro	Ser	Leu	Pro 240
25	Pro	Arg	Asn	Ile	Lys 245	Pro	Pro	Phe	Asp	Leu 250	Lys	Ser	Pro	Val	Asn 255	Glu
30	Asp	Asn	Gln	Asp 260	Gly	Val	Thr	His	Ser 265	Asp	Gly	Ala	Gly	Asn 270	Leu	Asp
50	Glu	Glu	Gln 275	Asp	Ser	Glu	Gly	Glu 280	Thr	Tyr	Glu	Asp	Ile 285	Glu	Ala	Ser
35	Lys	Glu 290	Arg	Glu	Lys	Lys	Arg 295	Glu	Lys	Glu	Glu	Lys 300	Lys	Arg	Leu	Glu
	Leu 305	Glu	Lys	Lys*	Glu	Gln 310	Lys	Glu	Lys	Glu	Lys 315	Lys	Glu	Gln	Glu	11e 320
40	Lys	Lys	Lys	Phe	Lys 325	Leu	Thr	Gly	Pro	Ile 330	Gln	Val	Ile	His	Leu 335	Ala
45	Lys	Ala	Суѕ	Cys 3 4 0	Asp	Val	Lys	Gly	Gly 345	Lys	Asn	Glu	Leu	Ser 350	Phe	Lys
43	Gln	Gly	Glu 355	Gln	Ile	Glu	Ile	Ile 360	Arg	Ile	Thr	Asp	Asn 365	Pro	Glu	Gly
50	Lys	Trp 370	Leu	Gly	Arg	Thr	Ala 375	Arg	Gly	Ser	Tyr	Gly 380	Tyr	Ile	Lys	Thr
	Thr 385	Ala	Val	Glu	Ile	Asp 390	Tyr	Asp	Ser	Leu	Lys 395	Leu	Lys	Lys	Asp	Ser 400
55	Leu	Gly	Ala	Pro	Ser 405	Arg	Pro	Ile	Glu	Asp 410	Asp	Gln	Glu	Val	туr 415	Asp
60	Asp	Val	Ala	Glu 420	Gln	Asp	Asp	Ile	Ser 425	Ser	His	Ser	Gln	Ser 430	Gly	Ser

	Gly	Gly	11e 435	Phe	Pro	Pro	Pro	Pro 440	Asp	Asp	Asp	Ile	Tyr 445	Asp	Gly	Ile
5	Glu	Glu 450	Glu	Asp	Ala	Asp	Asp 455	Gly	Ser	Thr	Leu	Gln 460	Val	Gln	Glu	Lys
	Ser 465	Asn	Thr	Trp	Ser	Trp 470	Gly	Ile	Leu	Lys	Met 475	Leu	Lys	Gly	Lys	Asp 480
10	Asp	Arg	Lys	Lys	Ser 485	Ile	Arg	Glu	Lys	Pro 490	Lys	Val	Ser	Asp	Ser 495	Asp
15	Asn	Asn	Glu	Gly 500	Ser	Ser	Phe	Pro	Ala 505	Pro	Pro	Lys	Gln	Leu 510	Asp	Met
•	Gly	Asp	Glu 515	Val	Tyr	Aşp	Asp	Val 520	Asp	Thr	Ser	Asp	Phe 525	Pro	Val	Ser
20	Ser	Ala 530	Glu	Met	Ser	Gln	Gly 535	Thr	Asn	Val	Gly	Lys 540	Ala	Lys	Thr	Glu
	Glu 545	Lys	Asp	Leu	Lys	Lys 550	Leu	Lys	Lys	Gln	Xaa 555	Lys	Xaa	Xaa	Lys	Asp 560
25	Phe	Arg	Lys	Lys	Phe 565	Lys	Tyr	Asp	Gly	Glu 570	Ile	Arg	Val	Leu	Туг 575	Ser
30	Thr	Lys	Val	Thr 580	Thr	Ser	Ile	Thr	Ser 585	Lys	Lys	Trp	Gly	Thr 590	Arg	Asp
	Leu	Gln	Val 595	Lys	Pro	Gly	Glu	Ser 600	Leu	Glu	Val	Ile	Gln 605	Thr	Thr	Asp
35	Asp	Thr 610	Lys	Val	Leu	Cys	Arg 615	Asn	Glu	Glu	Gly	Lys 620	Tyr	Gly	Tyr	Val
	Leu 625	Arg	Ser	Tyr	Leu	Ala 630	Asp	Asn	Asp	Gly	Glu 635	Ile	Tyr	Asp	Asp	Ile 640
40	Ala	Asp	Gly	Cys	11e 645	Tyr	Asp	Asn	Asp		•					
45	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 2	202:							
50			(i)	(ENCE A) L B) T	ENGT	H: 5	5 am	ino		s					
50			(xi)		D) T UENC					EQ I	D NO	: 20	2:			
55	Met 1	Ala	Trp	Pro	Ser 5	Arg	Ser	Lys	Met	Phe 10	Thr	Leu	Leu	Pro	Val 15	Leu
	Cys	Tyr	Leu	Trp 20	Ser	Leu	Trp	Leu	Pro 25	Gln	Phe	Ser	Trp	Ile 30	Gln	Glu
60	Leu	Lys	Ala 35	Val	Leu	Arg	Asp	Asp 40	Gly	Leu	Ile	Ser	Ala 45	Val	Ala	Trp

	Asn	Ala 50	Glu	Phe	Gln	Thr	Cys 55									
5																
	(2)	INFO	RMAT	TION	FOR	SEQ	ID N	1 0: 2	203:							
10			(i) s	(; (;	A) L B) T D) T	ENGT: YPE : OPOL	RACTI H: 2 amin OGY: SCRII	67 au no a lin	mino cid ear	aci		: 20	3:			
15	Met 1	Val	Lys	Val	Thr 5	Phe	Asn	Ser	Ala	Leu 10	Ala	Gln	Lys	Glu	Ala 15	Lys
20	Lys	Asp	Glu	Pro 20	Lys	Ser	Gly	Glu	Glu 25	Ala	Leu	Ile	Ile	Pro 30	Pro	Asp
20	Ala	Val	Ala 35	Val	Asp	Cys	Lys	Asp 40	Pro	Asp	Asp	Val	Val 45	Pro	Val	Gly
25	Gln	Arg 50	Arg	Ala	Trp	Суз	Trp 55	Cys	Met	Суз	Phe	Gly 60	Leu	Ala	Phe	Met
	Leu 65	Ala	Gly	Val	Ile	Leu 70	Gly	Gly	Ala	Tyr	Leu 75	Tyr	Lys	Tyr	Phe	Ala 80
30	Leu	Gln	Pro	Asp	Asp 85	Val	Tyr	Tyr	Cys	Gly 90	Ile	Lys	Tyr	Ile	Lys 95	Asp
35	Asp	Val	Ile	Leu 100	Asn	Glu	Pro	Ser	Ala 105	Asp	Ala	Pro	Ala	Ala 110	Leu	Tyr
55	Gln	Thr	Ile 115	Glu	Glu	Asn	Ile	Lys 120	Ile	Phe	Glu	Glu	Glu 125	Glu	Val	Glu
40	Phe	Ile 130	Ser	Val	Pro	Val	Pro 135	Glu	Phe	Ala	Asp	Ser 140	Asp	Pro	Ala	Asn
	Ile 145	Val	His	Asp	Phe	Asn 150	Lys	Lys	Leu	Thr	Ala 155	Tyr	Leu	Asp	Leu	Asn 160
45	Leu	Asp	Lys	Cys	Туг 165	Val	Ile	Pro	Leu	Asn 170	Thr	Ser	Ile	Val	Met 175	Pro
50	Pro	Arg	Asn	Leu 180	Leu	Glu	Leu	Leu	Ile 185	Asn	Ile	Lys	Ala	Gly 190	Thr	Tyr
50	Leu	Pro	Gln 195	Ser	Tyr	Leu	Ile	His 200	Glu	His	Met	Val	Ile 205	Thr	Asp	Arg
55	Ile	Glu 210		Ile	Asp	His	Le u 215	Gly	Phe	Phe	Ile	Tyr 220		Leu	Cys	His
	Asp 225		Glu	Thr	Tyr	Lys 230	Leu	G1n	Arg	Arg	Glu 235	Thr	Ile	Lys	Gly	Ile 240
60	Gln	Lys	Arg	Glu	Ala	Ser	Asn	Cys	Phe	Ala	Ile	Arg	His	Phe	Glu	Asr

					245					250					255	
5	Lys	Phe	Ala	Val 260	Glu	Thr	Leu	Ile	Cys 265	Ser	Xaa					
10	(2)		ORMAT													
10			(i) \$	~ (. (:	A) L: B) T	ENGT	H: 3 ami		mino cid	acio	ds					
15			(xi)	SEQ	JENCI	E DES	SCRI	PTIO	1: SI	EQ II	ON C	: 204	4:			
13	Met 1	Asp	Leu	Arg	Gln 5	Phe	Leu	Met	Cys	Leu 10	Ser	Leu	Cys	Thr	Ala 15	Phe
20	Ala	Leu	Ser	Lys 20	Pro	Thr	Glu	Lys	Lys 25	Asp	Arg	Val	His	His 30	Glu	Pro
	Gln	Leu	Ser 35	Asp	Lys	Val	His	Asn 40	Asp	Ala	Gln	Ser	Phe 45	Asp	Tyr	Asp
25	His	Asp 50	Ala	Phe	Leu	Gly	Ala 55	Glu	Glu	Ala	Lys	Thr 60	Phe	Asp	Gln	Leu
30	Thr 65	Pro	Glu	Glu	Ser	L ys 70	Glu	Arg	Leu	Gly	Lys 75	Ile	Val	Ser	Lys	1 l e
	Asp	Gly	Asp	Lys	Asp 85	Gly	Phe	Val	Thr	Val 90	Asp	Glu	Leu	Lys	Asp 95	Trp
35	Ile	Lys	Phe	Ala 100	Gln	Lys	Arg	Trp	Ile 105	Tyr	Glu	Asp	Val	Glu 110	Arg	Gln
	Trp	Lys	Gly 1 1 5	His	Asp	Leu	Asn	Glu 120	Asp	Gly	Leu	Val	Ser 125	Trp	Glu	Glu
40	Tyr	Lys 130	Asn	Ala	Thr	Tyr	Gly 135	Tyr	Val	Leu	Asp	Asp 140	Pro	Asp	Pro	Asp
45	Asp 145	Gly	Phe	Asn	Tyr	Lys 150	Gln	Met	Met	Val	Arg 155	Asp	Glu	Arg	Arg	Phe 160
,,,	Lys	Met	Ala	Asp	Lys 165	Asp	Gly	Asp	Leu	Ile 170	Ala	Thr	Lys	Glu	Glu 175	Phe
50	Thr	Ala	Phe	Leu 180	His	Pro	Glu	Glu	Туг 185	Asp	Tyr	Met	Lys	Asp 190	Ile	Val
	Val	Gln	Glu 195	Thr	Met	Glu	Asp	Ile 200	Asp	Lys	Asn	Ala	Asp 205	Gly	Phe	Ile
55	Asp	Leu 210	Glu	Glu	Tyr	Ile	Gly 215	_	Met	Tyr	Ser	His 220	Asp	Gly	Asn	Thr
60	Asp 225		Pro	Glu	Trp	Val 230		Thr	Glu	Arg	Glu 235		Phe	Val	Glu	Phe 240

	Arg	Asp	Lys	Asn	Arg 245	Asp	Gly	Lys	Met	Asp 250	Lys	Glu	Glu	Thr	Lys 255	Asp
5	Trp	Ile	Leu	Pro 260	Ser	Asp	Tyr	Asp	H i s 265	Ala	Glu	Ala	Glu	Ala 270	Arg	His
	Leu	Val	Туг 275	Glu	Ser	Asp	Gln	Asn 280	Lys	Asp	Gly	Lys	Leu 285	Thr	Lys	Glu
10	Glu	Ile 290	Val	Asp	Lys	Tyr	Asp 295	Leu	Phe	Val	Gly	Ser 300	Gln	Ala	Thr	Asp
15	Phe 305	Gly	Glu	Ala	Leu	Val 310	Arg	His	Asp	Glu	Phe 315					
20	(2)	INF		SEQU () (A) L B) T D) T	CHAI ENGT YPE: OPOL	RACT H: 2 ami OGY:	ERIS' 07 a no a lin	FICS mino cid	aci		. 20	5.			
25	Met 1	Phe												Lys	Asp 15	Lys
30	Leu	Val	Asp	Pro 20		Leu	Arg	Arg	His 25	Gly	Leu	Leu	Pro	Ser 30	Ser	Leu
	Lys	Arg	Ile 35		Val	Gly	Met	Phe 40	Phe	Val	Met	Cys	Ser 45	Ala	Phe	Ala
35	Ala	Gly 50		Leu	Gl u	Ser	Lys 55		Leu	Asn	Leu	Val 60	Lys	Glu	Lys	Thr
40	Ile 65		Gln	Thr	Ile	Gly 70	Asn	Val	Val	Tyr	His 75		Ala	Asp	Leu	Ser 80
					85					90	1				95	
45				100)				105					110		Lys
			115	5				120	•				125			Val
50	Gly	Ser 130		e Val	l Gly	Ser	Gly 135		ı Leu	Ala	Let	140		· Ile	Lys	: Ala
55	11e 145		/ Tr	Met	: Ser	Ser 150		s Thr	: Asp	Phe	e Gly 155		ı Ile	Asn	Gly	7 Cys 160
	Туз	Leu	ı Ası	туі	165		e Ph€	e Lei	ı Lev	170		à Il∈	e Glr	n Gly	Ala 175	Thr
60	Lev	ı Lei	ı Le	ı Phe 180		ı Ile	e Ile	e Sei	Val 185		з Туз	Asp) His	His 190		J Asp

	His	Gln	Arg 195	Ser	Arg	Ala	Asn	Gly 200	Val	Pro	Thr	Ser	Arg 205	Arg	Ala	
5																
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID 1	NO: 2	206:							
10				(A) L B) T D) T	ENGT: YPE: OPOLA	H: 1 ami: OGY:	96 a no a lin		aci		: 20	5:			
15	Met 1	Arg	Ser	Arg	Ile 5	Arg	Glu	Phe	Asp	Ser 10	Ser	Thr	Leu	Asn	Glu 15	Ser
20	Val	Arg	Asn	Thr 20	Ile	Met	Arg	Asp	Leu 25	Lys	Ala	Val	Gly	Lys 30	Lys	Phe
20	Met	His	Val 35	Leu	Tyr	Pro	Arg	Lys 40	Ser	Asn	Thr	Leu	Leu 45	Arg	Asp	Trp
25	Asp	Leu 50	Trp	Gly	Pro	Leu	Ile 55	Leu	Cys	Val	Thr	Leu 60	Ala	Leu	Met	Leu
	Gln 65	Arg	Asp	Ser	Ala	Asp 70	Ser	Glu	Lys	Asp	Gly 75	Gly	Pro	Gln	Phe	Ala 80
30	Glu	Val	Phe	Val	Ile 85	Val	Trp	Phe	Gly	Ala 90	Val	Thr	Ile	Thr	Leu 95	Asn
35	Ser	Lys	Leu	Leu 100	Gly	Gly	Asn	Ile	Ser 105	Phe	Phe	Gln	Ser	Leu 110	Cys	Val
33	Leu	Gly	Туг 115	Cys	Ile	Leu	Pro	Leu 120	Thr	Val	Ala	Met	Leu 125	Ile	Cys	Arg
40	Leu	Val 130		Leu	Ala	Asp	Pro 135	Gly	Pro	Val	Asn	Phe 140	Met	Val	Arg	Leu
	Phe 145	Val	Val	Ile	Val	Met 150	Phe	Ala	Trp	Ser	Ile 155	Val	Ala	Ser	Thr	Ala 160
45	Phe	Leu	Ala	Asp	Ser 165	Gln	Pro	Pro	Asn	Arg 170	Arg	Ala	Leu	Ala	Val 175	Tyr
50	Pro	Val	Phe	Leu 180		Tyr	Phe	Val	Ile 185		Trp	Met	Ile	Leu 190	Thr	Phe
50	Thr	Pro	Gln 195	Xaa												
55	(2)	INF	ORMA	MOIT	FOR	SEQ	ID	NO:	207:							
			(i)	-					TICS		ids					
60					(B) T	TYPE	: am:	ino a	acid							

(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207:

5	Met 1	Ala	Lys	Asp	Gln 5	Ala	Val	Glu	Asn	Ile 10	Leu	Val	Ser	Pro	Val 15	Val
	Val	Ala	Ser	Ser 20	Leu	Gly	Leu	Val	Ser 25	Leu	Gly	Gly	Lys	Ala 30	Thr	Thr
10	Ala	Ser	Gln 35	Ala	Lys	Ala	Val	Leu 40	Ser	Ala	Glu	Gln	Leú 45	Arg	Asp	Glu
15	Glu	Val 50	His	Ala	Gly	Leu	Gly 55	Glu	Leu	Leu	Arg	Ser 60	Leu	Ser	Asn	Ser
13	Thr 65	Ala	Arg	Asn	Val	Thr 70	Trp	Lys	Leu	Gly	Ser 75	Arg	Leu	Tyr	Gly	Pro 80
20	Ser	Ser	Val	Ser	Phe 85	Ala	Asp	Asp	Phe	Val 90	Arg	Ser	Ser	Lys	Gln 95	His
	Tyr	Asn	Cys	Glu 100	His	Ser	Lys	Ile	Asn 105	Phe	Arg	Asp	Lys	Arg 110	Ser	Ala
25	Leu	Gln	Ser 115	Ile	Asn	Glu	Trp	Ala 120	Ala	Gln	Thr	Thr	Asp 125	Gly	Lys	Leu
30	Pro	Glu 130	Val	Thr	Lys	Asp	Val 135	Glu	Arg	Thr	Asp	Gly 140	Ala	Leu	Leu	Val
	Asn 145	Ala	Met	Phe	Phe	Lys 150	Pro	His	Trp	Asp	Glu 1 55	Lys	Phe	His	His	Lys 160
35	Met	Val	Asp	Asn	Arg 165	Gly	Phe	Met	Val	Thr 170	Arg	Ser	Tyr	Thr	Val 175	Gly
	Val	Met	Met	Met 180	His	Arg	Thr	Gly	Leu 185	Tyr	Asn	Tyr	Tyr	Asp 190	Asp	Glu
40	Lys	Glu	Lys 195	Leu	Gln	Ile	Val	Glu 200	Met	Pro	Leu	Ala	His 205	Lys	Leu	Ser
45	Ser	Leu 210	Ile	Ile	Leu	Met	Pro 215	His	His	Val	Glu	Pro 220	Leu	Glu	Arg	Leu
15	Glu 225	Lys	Leu	Leu	Thr	Lys 230	Glu	Gln	Leu	Lys	11e 235	Trp	Met	Gly	Lys	Met 240
50	Gln	Lys	Lys	Ala	Val 245	Ala	Ile	Ser	Leu	Pro 250	Lys	Gly	Val	Val	Glu 255	Va]
	Thr	His	Asp	Leu 260		Lys	His	Leu	Ala 265	Gly	Leu	Gly	Leu	Thr 270	Glu	Alá
55	Ile	Asp	Lys 275		Lys	Ala	Asp	Leu 280		Arg	Met	Ser	Gly 285	_	Lys	Asp
60	Leu	Туг 290		Ala	Ser	Val	Phe 295		Ala	Thr	Ala	Phe 300		Leu	Asp	Thu

	305	Gly	Asn	Pro		Thr . 310	Arg	IIe	Thr	GIY	315	GIÀ	vai	Arg		320
5.	Val	Phe	Tyr		Asp 325	His	Pro	Phe		Ser 330	Xaa					
10	(2)			•	NCE		ACTE	RIST B ami	ICS:		5					
15			(xi)	I) SEQU		POLC DES				EQ II	OM C	: 208	3:			
	Met 1	Cys	Met	Gln	Leu 5	Phe	Gly	Phe	Leu	Ala 10	Phe	Met	Ile	Phe	Met 15	Cys
20	Trp	Val	Gly	Asp 20	Val	Tyr	Pro	Val	Тут 25	Gln	Pro	Val	Gly	Pro 30	Lys	Gln
25	Tyr	Pro	Tyr 35	Asn	Asn	Leu	Tyr	Leu 40	Glu	Arg	Gly	Gly	Asp 45	Pro	Ser	Lys
23	Glu	Pro 50	Glu	Arg	Val	Val	His 55	Tyr	Glu	Ile						
30	(2)	INFO		rion												
35				C	A) L B) T D) T	ENGT: YPE : OPOL	H: 3 ami OGY:	92 a no a lin	mino cid ear	aci		: 20	9 :			
40	Met 1	Asp	Ala	Leu	Val 5	Glu	Asp	Asp	Ile	Cys 10	Ile	Leu	Asn	His	Glu 15	Lys
	Ala	His	Lys	Arg 20	Asp	Thr	Val	Thr	Pro 25	Val	Ser	Ile	Tyr	Ser 30	Gly	Asp
45	Glu	Ser	Val 35	Ala	Ser	His	Phe	Ala 40	Leu	Val	Thr	Ala	Тут 45	Glu	Asp	Ile
50	Lys	Lys 50		Leu	Lys	Asp	Ser 55	Glu	Lys	Glu	Asn	Ser 60	Leu	Leu	Lys	Lys
50	Arg 65	Ile	Arg	Phe	Leu	Glu 70	Glu	Lys	Leu	Ile	Ala 75		Ph∈	: Glu	Glu	Glu 80
55	Thr	Ser	Ser	Val	Gly 85	Arg	Glu	Gln	Val	Asn 90		: Ala	Tyr	His	Ala 95	Tyr
	Arg	Glu	ı Val	Cys 100		Asp	Arg	Asp	Asn 105		Lys	s Ser	Lys	Leu 110		Lys
60	Met	Asr	ı Lys	Asp	Asn	Ser	Glu	Ser	Leu	Lys	val	L Leu	Asr	ı Glu	Gln	Leu

			115					120					125			
5	Gln	Ser 130	Lys	Glu	Val	Glu	Leu 135	Leu	Gln	Leu	Arg	Thr 140	Glu	Val	Glu	Thr
3	Gln 145	Gln	Val	Met	Arg	Asn 150	Leu	Asn	Pro	Pro	Ser 155	Ser	Asn	Trp	Glu	Val 160
10	Glu	Lys	Leu	Ser	Cys 165	Asp	Leu	Lys	Ile	His 170	Gly	Leu	Glu	Gln	Glu 175	Leu
	Glu	Leu	Met	Arg 180	Lys	Glu	Cys	Ser	Asp 185	Leu	Lys	Ile	Glu	Leu 190	Gln	Lys
15	Ala	Lys	Gln 195	Thr	Asp	Pro	Tyr	Gln 200	Glu	Asp	Asn	Leu	Lys 205	Ser	Arg	Asp
20	Leu	Gln 210	Lys	Leu	Ser	Ile	Ser 215	Ser	Asp	Asn	Met	Gln 220	His	Ala	Tyr	Trp
20	Glu 225	Leu	Lys	Arg	Glu	Met 230	Ser	Asn	Leu	His	Leu 235	Val	Thr	Gln	Val	Gln 240
25	Ala	Glu	Leu	Leu	Arg 245	Lys	Leu	Lys	Thr	Ser 250	Thr	Ala	Ile	Lys	Lys 255	Ala
	Cys	Ala	Pro	Val 260	Gly	Cys	Ser	Glu	Asp 265	Leu	Gly	Arg	Asp	Ser 270	Thr	Lys
30	Leu	His	Leu 275	Met	Asn	Phe	Thr	Ala 280	Thr	Tyr	Thr	Arg	His 285	Pro	Pro	Leu
35	Leu	Pro 290	Asn	Gly	Lys	Ala	Leu 295	Cys	His	Thr	Thr	Ser 300	Ser	Pro	Leu	Pro
	Gly 305		Val	Lys	Val	Leu 310	Ser	Glu	Lys	Ala	Ile 315	Leu	Gln	Ser	Trp	Thr 320
40	Asp	Asn	Glu	Arg	Ser 325	Ile	Pro	Asn	Asp	Gly 330	Thr	Cys	Phe	Gln	Glu 335	His
	Ser	Ser	Tyr	Gly 340	Arg	Asn	Ser	Leu	Glu 345	Asp	Asn	Ser	Trp	Val 350	Phe	Pro
45	Ser	Pro	Pro 355		Ser	Ser	Glu	Thr 360	Ala	Phe	Gly	Glu	Thr 365	Lys	Thr	Lys
50	Thr	Leu 370		Leu	Pro	Asn	Leu 375	Pro	Pro	Leu	His	Tyr 380	Leu	Asp	Gln	His
30	Asn 385		Asn	Cys	Leu	Туr 390	Lys	Asn								
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	210:							
			(i)					ERIS			ie.					
60								ino a		acit	A.D					

			(xi)	I) SEQU				line TION		EQ II	ONO:	: 210) :			
5	Met 1	His	His	His	Thr 5	Gln	Leu	Met	Phe	Ile 10	Tyr	Leu	Phe	Ile	Tyr 15	Leu
	Phe	Ile	Leu	Gly 20	Val	Phe	Phe	Phe	Phe 25	Phe	Xaa					
10																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID N	10: 2	:11:							
15				(1	A) L: 3) T 0) T	ENGT YPE: OPOL	H: 3 ami: OGY:	9 am no a lin	ino d cid ear	acid		: 21	1:			
20	Met 1	Asn	Cys	Ile	Leu 5	Leu	Leu	Tyr	Leu	Leu 10	Ile	Pro	Thr	Ile	Ser 15	Ile
25	Ser	Val	Val	Pro 20	Туг	Val	Ala	Leu	Asn 25	Ile	Lys	Tyr	Ile	Lys 30	Glu	Cys
23	Thr	Glu	Asn 35	Ser	Phe	Tyr	Xaa									
30	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: 2	212:					Ÿ		
35				(A) L B) T D) T	ENGT YPE: OPOL	H: 7 ami OGY:	l am no a lin	ino cid ear	ació		: 21	2:			
40	Met 1	Leu	Leu	His	Leu 5	Thr	Ala	Ala	Phe	Leu 10	Gln	Arg	Ala	Gln	Phe 15	Ser
	Thr	Tyr	Phe	Pro 20	Gly	Tyr	Phe	Asp	Gly 25		Tyr	Trp	Leu	Trp 30	Trp	Va]
45	Phe	Leu	Val	Leu	Gly	Phe	Leu	Leu 40	Phe	Leu	Arg	Gly	Phe 45	Ile	Asn	Туз
50	Ala	Lys 50		Arg	Lys	Met	Pro 55		Thr	Phe	Ser	Asn 60		Pro	Arg	Thi
30	Arg 65		. Leu	. Phe	Ile	Туr 70										
55	(2)	INF	FORMA	ATION	FOR	SEÇ	ID	NO:	213:							
			(i)	SEQU							a –					
60								83 ar ino a		aci	as					

			(xi)					line PTIOI		EQ II	ОИС	: 213	3 :			
5.	Met 1	Leu	Thr	Phe	Phe 5	Met	Ala	Phe	Leu	Phe 10	Asn	Trp	Ile	Gly	Phe 15	Phe
	Leu	Ser	Phe	Cys 20	Leu	Thr	Thr	Ser	Ala 25	Ala	Gly	Arg	Tyr	Gly 30	Ala	Ile
10	Ser	Gly	Phe 35	Gly	Leu	Ser	Leu	Ile 40	Lys	Trp	Ile	Leu	Ile 45	Val	Arg	Phe
15	Ser	Thr 50	Tyr	Phe	Pro	Ala	Phe 55	Met	Asn	Ser	Leu	Ser 60	Arg	Ser	Lys	Arg
13	Thr 65	Pro	Ala	Gly	Ser	Glu 70	Ser	Arg	Cys	Arg	Thr 75	Gln	Arg	Asn	Asn	His 80
20	Leu	Leu	Xaa				•									
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 2	214:							
25			(i)	_				ERIS			ls					
30			(xi)	(D) T	OPOL	OGY:	no a lin PTIO	ear	EQ I	D NO	: 21	4:			
	Met 1	Ser	Lys	Arg	Ser 5	Ala	Ser	Phe	Ile	Leu 10	Leu	Pro	Leu	Leu	Phe 15	Leu
35	Lys	Gly	Ser	Phe 20	Ala	Lys	Leu	Asn	Ala 25	Arg	Ile	Ser	Asp	Cys 30	Leu	Glu
40	Glu	Arg	Tyr 35		His	Asn	Leu	Trp	Met	Val	Phe	Gln	Gly 45	Cys	Val	Ile
40	Thr	Glu 50	Leu	His	Leu	Ser	Arg 55		Ser	Lys	Thr	Leu 60		Ser	Leu	Cys
45	Туr 65		Phe	Val	Ile	Asn 70		Tyr	Ile	Phe	Phe 75		Phe	Leu	Asp	Ile 80
	Thr															
50	(2)	TNE	ORMA	MOTT.	FOR	SEC) ID	NO:	215:							
55	, , ,			SEQU	JENCE (A) I (B) T	E CHA LENG IYPE	ARACT	CERIS 19 ar ino a : lir	TICS mino acid	S:	ds					
60	Met	: Cys		SE(QUENC	CE DE	ESCR	PTIC	: NC					. Leu	Phe	Ser

	1				5					10					15	
5	Glu	Lys	Ile	Ile 20	Gln	Leu	Cys	Ala	Ser 25	Ile	Ala	Phe	Leu	Cys 30	Phe	Val
5	Lys	His	Val 35	Pro	Trp	Pro	Lys	Trp 40	Lys	Arg	Lys	Cys	Leu 45	Ile	Asn	Ala
10	Phe															
15	(2)		ORMAT							:						
20			(xi)	(B) T	YPE: OPOL	ami OGY:	03 a no a lin PTIO	cid ear			: 210	6:			
	Met 1	Thr	Leu	Arg	Pro 5	Ser	Leu	Leu	Pro	Leu 10	His	Leu	Leu	Leu	Leu 15	Leu
25	Leu	Leu	Ser	Ala 20	Alā	Val	Cys	Arg	Ala 25	Glu	Ala	Gly	Leu	Glu 30	Thr	Glu
30	Ser	Pro	Val 35	Arg	Thr	Leu	Gln	Val 40	Glu	Thr	Leu	Val	Glu 45	Pro	Pro	Glu
30	Pro	Cys 50	Ala	Glu	Pro	Ala	Ala 55	Phe	Gly	Asp	Thr	Leu 60	His	Ile	His	Tyr
35	Thr 65	Gly	Ser	Leu	Val	Asp 70	Gly	Arg	Ile	Ile	Asp 75	Thr	Ser	Leu	Thr	Arg 80
	Asp	Pro	Leu	Val	Ile 85	Glu	Leu	Gly	Gln	Lys 90	Gln	Val	Ile	Pro	Gly 95	Leu
40	Glu	Gln	Ser	Leu 100	Leu	Asp	Met	Cys	Val 105	Gly	Glu	Lys	Arg	Arg 110	Ala	Ile
45	Ile	Pro	Ser 115	His	Leu	Ala	Tyr	Gly 120	Lys	Arg	Gly	Phe	Pro 125	Pro	Ser	Val
45	Pro	Ala 130	Asp	Ala	Val	Val	Gln 135	Tyr	Asp	Val	Glu	Leu 140		Ala	Leu	Ile
50	Arg 145		Asn	Tyr	Trp	Leu 150		Leu	Val	Lys	Gly 155	Ile	Leu	Pro	Leu	Val
	Gly	Met	Ala	Met	Val 165		Pro	Ser	Trp	Ala 170	Ser	Leu	Gly	Ile	Thr 175	
55	Thr	Glu	Arg	Pro		Asp	Pro	Lys	Ser 185		Lys	Arg	Ser	Ser 190		Lys
60	Arg	Asn	Glu 195		Arg	Ala	Lys	Arg 200		Asn	Lys					

	(2)	INF	PAMAC	NOI	FOR	SEQ	ID N	10: 2	217:							
5			(i) \$	(1	A) L B) T		H: 1	86 au no a			ds					
10			(xi)	SEQU	JENCI	E DES	SCRI:	PTIO	N: SI	EQ II	ON C	: 21	7:			
	Met 1	Lys	Thr	Leu	Met 5	Thr	Ile	Cys	Pro	Gly 10	Thr	Val	Leu	Leu	Val 15	Phe
15	Ser	Ile	Ser	Leu 20	Trp	Ile	Ile	Ala	Ala 25	Trp	Thr	Val	Arg	Val 30	Cys	Glu
	Ser	Pro	Glu 35	Ser	Pro	Ala	Gln	Pro 40	Ser	Gly	Ser	Ser	Leu 45	Pro	Ala	Trp
20	Tyr	His 50	Asp	Gln	Gln	Asp	Val 55	Thr	Ser	Asn	Phe	Leu 60	Gly	Ala	Met	Trp
25	Leu 65	Ile	Ser	Ile	Thr	Phe 70	Leu	Ser	Ile	Gly	Туг 75	Gly	Asp	Met	Val	Pro 80
4 9	His	Thr	Tyr	Cys	Gly 85	Lys	Gly	Val	Cys	Leu 90	Leu	Thr	Gly	Ile	Met 95	Gly
30	Ala	Gly	Cys	Thr 100	Ala	Leu	Val	Val	Ala 105	Val	Val	Ala	Arg	Lys 110	Leu	Glu
	Leu	Thr	Lys 115	Ala	Glu	Lys	His	Val 120	His	Xaa	Phe	Met	Met 125	Asp	Thr	Gln
35	Leu	Thr 130		Arg	Ile	Lys	Asn 135	Xaa	Ala	Ala	Asn	Val 140	Leu	Xaa	Glu	Thr
40	Trp 145	Leu	Ile	Tyr	Lys	His 150	Thr	Lys	Leu	Leu	Lys 155	Lys	Ile	Asp	His	Ala 160
40	Lys	Val	Arg	Asn	Thr 165	Arg	Gly	Ser	Ser	Ser 170	Lys	Tyr	Pro	Pro	Val 175	Glu
45	Glu	Arg	Gln	Asp 180	Gly	Thr	Glu	Glu	Ala 185	Glu						
50	(2)	INF	ORMA						218: TICS	• .						
			(1)	((A) I	LENGT	H: S	00 ar i.no a	nino acid		ls					
55			(xi)			OPOI E DE			near N: S	SEQ I	D NC): 21	.8:			
	Met 1		Phe	Leu	Ala 5		Leu	Val	Leu	Leu 10		Val	. Ser	Ile	Phe 15	Leu
60	Va1	Ser	Ala	Gln	Asn	Pro	Thr	Thr	· Ala	Ala	Pro	Ala	Asp	Thr	Tyr	Pro

				20					25					30		
_	Ala	Thr	Gly 35	Pro	Ala	Asp	Asp	Glu 40	Ala	Pro	Asp	Ala	Glu 45	Thr	Thr	Ala
5	Ala	Ala 50	Thr	Thr	Ala	Thr	Thr 55	Ala	Ala	Pro	Thr	Thr 60	Ala	Thr	Thr	Ala
10	Ala 65	Ser	Thr	Thr	Ala	Arg 70	Lys	Asp	Ile	Pro	Val 75	Leu	Pro	Lys	Trp	Val 80
	Gly	Asp	Leu	Pro	Asn 85	Gly	Arg	Val	Cys	Pro 90						
15																
	(2)	INF						NO: 2								
20				(A) L B) T D) T	ENGT YPE: OPOL	H: 1 ami OGY:	ERIS' 39 a no a lin PTIO	mino cid ear	aci		: 21	9:			
25	Met 1	Ser	Ser	Ala	Ala 5	Ala	Asp	His	Trp	Ala 10	Trp	Leu	Leu	Val	Leu 15	Ser
30	Phe	Val	Phe	Gly 20	Cys	Asn	Val	Leu	Arg 25	Ile	Leu	Leu	Pro	Ser 30	Phe	Ser
50	Ser	Phe	Met 35		Arg	Val	Leu	Gln 40	Lys	Asp	Ala	Glu	Gln 45	Glu	Ser	Gln
35	Met	Arg 50		Glu	Ile	Gln	Asp 55	Met	Lys	Gln	Glu	Leu 60	Ser	Thr	Val	Asn
	Met 65		Asp	Glu	Phe	Ala 70	Arg	Tyr	Ala	Arg	Leu 75		Arg	Lys	Ile	Asn 80
40	Lys	Met	Thr	Asp	Lys 85	Leu	Lys	Thr	His	Val 90	Lys	Ala	. Arg	Thr	Ala 95	Glm
45	Leu	Ala	Lys	Ile 100		Trp	Val	Ile	Ser 105		Ala	Phe	Tyr	Val 110	Leu	Glr
	Ala	Ala	Leu 115		Ile	Ser	Leu	11e 120		Lys	Tyr	Tyr	Ser 125	Val	Pro	Val
50	Ala	Val 130		Pro	Ser	Lys	Trp 135	Ile	Thr	Leu	Xaa					
55	(2)	INF						NO:		•						
			(1)		(A) I (B) :	LENG: IYPE	TH: 4	reris 48 ar ino a	mino acid		is					
60			(xi)					: lir IPTIC		SEQ :	D NO	D: 22	20:			

	Met 1	Ser	Ser	Ala	Ala 5	Ala	Asp	His	Trp	Ala 10	Trp	Leu	Leu	Val	Leu 15	Ser
5	Phe	Val	Phe	Gly 20	Cys	Asn	Val	Leu	Arg 25	Ile	Leu	Leu	Pro	Ser 30	Phe	Ser
10	Ser	Phe	Met 35	Ser	Arg	Val	Leu	Gln 40	Lys	Asp	Ala	Asp	Arg 45	Ser	His	Arg
15	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 3	221:							
20				(A) L B) T D) T	ENGT YPE : OPOL	H: 7 ami OGY:	0 am no a lin	ino cid ear	acid		: 22	1:			
25	Met 1	Thr	Ala	Pro	Leu 5	Pro	Pro	Leu	Ser	Gly 10	Leu	Ala	Leu	Phe	Leu 15	Ile
	Val	Phe	Phe	Ser 20	Leu	Gly	Val	Phe	Cys 25	Ile	Cys	His	Ser	His 30	Trp	Tyr
30	His	Thr	Leu 35	Gln	Gln	Met	Ala	Gly 40		Glu	Pro	Lys	Ala 45	Leu	Leu	Leu
35	Ser	Pro 50		Ala	Ala	Thr	Thr 55		Val	Thr	Val	Thr 60	His	Glu	Val	Trp
	Lys 65		Gln	Ala	Leu	Ala 70										
40	(2)	INF	ORMA	MOIT	FOR	SEQ	ID	NO:	222:							
45					(A) I (B) ! (D) !	LENG TYPE TOPOI	TH: { : am: LOGY	33 ar ino a : lir	mino acid near	acio		o: 22	:2:			
50	Met 1		Cys	s Ser	Val		Lev	Leu	ı Lev	ı Ile		ı Gly	Leu	Arg	Cys 15	Ser
	Gly	/ Val	l Arg	g Pro 20		· Leu	ı Val	. Gl ₃	/ Glu 25		His	s Asn	Pro	Ser 30		Leu
55	Va]	l Cys	Let 35		Let	Lys	asp	Sei 4(Thr	Ası	n Glr	Gly 45		Cys	Pro
60	Gl	/ Gl ₃ 5(_	o Trī	Sei	Glu	ı Arg		o Ile	e Glu	ı Sei	c Val		Ser	Asp	Asn

	Cys (Glu .	Ala '	Thr 1	Leu (Gly ' 70	Tyr .	Arg A	Asn 1	His S	Ser 75	Leu	Pro	Ser	Asn	Туг 80
5	Tyr i	Asn	Ser													
10	(2)			EQUE	NCE	CHAR	ACTE	O: 2	ICS:	ai da						
15		(xi)	(E	3) TY 3) TO	PE:	amir XGY:	ami no ac line TION	id ar			223	:			
	Met 1	Leu	Thr	Arg	Ser 5	Leu	Lys	Thr	Leu	Pro 10	Ser	Ala	Cys	Thr	Ala 15	Phe
20	Leu	Leu	Leu	Phe 20	Phe	Leu	Phe	Ser	Ser 25	Gly	Asp	Pro	Glu	Leu 30	Ser	Cys
25	Ser	Cys	Thr 35	Leu	Arg	Thr	Gln	Ser 40	Ser	Trp	Ser					
	(2)	INFC	RMAT	NOI	FOR	SEQ	ID N	JO: 2	24:							
30			(i) S	(1	A) LI 3) T	ENGTI YPE :	H: 1: ami	ERIST 84 ar	nino cid		ds					
35			(xi)	-	-			line PTION		EQ II	OM C	: 224	4:			
	Met 1	Trp	Arg	Pro	Ser 5	Val	Leu	Leu	Leu	Leu 10	Leu	Leu	Leu	Arg	His 15	Gly
40	Ala	Gln	Gly	Lys 20	Pro	Ser	Pro	Asp	Ala 25	Gly	Pro	His	Gly	Gln 30	Gly	Arg
	Val	His	Gln 35	Ala	Ala	Pro	Leu	Ser 40	Asp	Ala	Pro	His	Asp 45	Asp	Ala	His
45	Gly	Asn 50	Phe	Gln	Tyr	Asp	His 55	Glu	Ala	Phe	Leu	Gly 60	Arg	Glu	Val	Ala
50	Lys 65	Glu	Phe	Asp	Gln	Leu 70	Thr	Pro	Glu	Glu	Ser 75	Gln	Ala	Arg	Leu	Gly 80
30	Arg	Ile	Val	Asp	Arg 85	Met	Asp	Arg	Ala	Gly 90	Asp	Gly	Asp	Gly	Trp 95	
55	Ser	Leu	Ala	Glu 100	Leu	Arg	Ala	Trp	Ile 105	Ala	His	Thr	Gln	Gln 110		His
	Ile	Arg	Asp 115	Ser	Val	Ser	Ala	Ala 120	Trp	Asp	Thr	Tyr	Asp 125		· Asp	Arg
60	Asp	Gly	Arg	Val	Gly	Trp	Glu	Glu	Leu	Arg	Asn	Xaa	Thr	Туг	Gly	His

		130					135					140				
5	Xaa 145	Xaa	Pro	Xaa	Glu	Glu 150	Phe	His	Asp	Val	Glu 155	Asp	Ala	Glu	Thr	Туг 160
,	Lys	Lys	Met	Leu	Xaa 165	Arg	Asp	Glu	Arg	Arg 170	Phe	Arg	Val	Ala	Asp 175	Gln
10	Asp	Gly	Asp	Ser 180	Met	Ala	Thr	Arg								
15	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 2	225:							
			(i) :	(A) L B) T	ENGT YPE:		1 am no a	ino cid		ls					
20			(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	ои о	: 22	5:			
	Met 1	Trp	Leu	Phe	Ile 5	Leu	Leu	Ser	Leu	Ala 10	Leu	Ile	Ser	Asp	Ala 15	Met
25	Val	Met	Asp	Glu 20	Lys	Val	Lys	Arg	Ser 25	Leu	Cys	Trp	Thr	Arg 30	Leu	Leu
30	Pro	Ser	Ala 35	Thr	Thr	Met	Pro	Xaa 40	Thr	Arg	Ile	Thr	Pro 45	Asn	Thr	Gly
30	Ala	Glu 50	Xaa	Ile	Ser	Val	Xaa 55	Thr	Ala	Thr	Ser	Ser 60	Pro	Ser	Pro	Leu
35	Thr 65	Ala	Pro	Ile	Met	Trp 70	Pro									
40	(2)	INF	ORMA'						226: TICS	١.						
			(1)	((A) I	ENGT	CH: 1 ami	.0 an	nino acid		ls					
45			(xi)				.OGY : :SCRI		near N: S	EQ I	D NC): 22	:6:			
	Met 1		Val	Phe	Val 5		Glu	Ile	Phe	Leu 10						
50																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	227 :							
55				~	(A) I (B) 1 (D) 1	LENG: FYPE FOPOI	TH: : : am: LOGY	l38 a ino a : lir		o aci		o: 22	27 :			
60	Met	: Ala												Leu	Ala	. Leı

	1				5					10					15	
5	Thr	Phe	Ile	Thr 20	Asp	Asn	Ser	Leu	Val 25	Ala	Ala	Gly	His	Asp 30	Cys	Phe
3	Pro	Val	Leu 35	Phe	Thr	Tyr	Asp	Ala 40	Ala	Ala	Gly	Met	Leu 45	Ser	Phe	Gly
10	Gly	Arg 50	Leu	Asp	Val	Pro	Lys 55	Gln	Ser	Ser	Gln	Arg 60	Gly	Leu	Thr	Ala
	Arg 65	Glu	Arg	Phe	Gln	Asn 70	Leu	Asp	Lys	Lys	Ala 75	Ser	Ser	Glu	Gly	Gly 80
15	Thr	Ala	Ala	Gly	Ala 85	Gly	Leu	Asp	Ser	Leu 90	His	Lys	Asn	Ser	Val 95	Ser
20	Gln	Ile	Ser	Val 100	Leu	Ser	Gly	Gly	Lys 105	Ala	Lys	Cys	Ser	Gln 110	Phe	Суѕ
20	Thr	Thr	Gly 1 1 5	Met	Asp	Gly	Gly	Met 120	Ser	Ile	Trp	Asp	Val 125	Lys	Ser	Leu
25	Glu	Ser 130	Ala	Leu	Lys	Asp	Leu 135	Lys	Ile	Lys						
	(2)	TNF	ORMA'	NOTT	FOR	SEO	ו מד	VO:	228:							
30	(2)	1111	(i)	SEQU.	ENCE	CHA	RACT	ERIS			la Is					
35			(ará)	(B) T D) T	YPE: OPOL	ami OGY:	no a lin	cid ear			: 22	Ω.			
33		Gly		~										Thr	Leu 15	Gly
40	1 Ala	Arg	Arg			Ser	Lys			10					13	
				20												
45	(2)	INF	ORMA'													
50				(A) I B) T D) T	ENGT YPE : YOPOL	TH: 1 ami OGY:	l33 a lno a : lir	mind cid ear	aci): 22	19:			
	Met 1		Tyr	Phe	Ser 5	_	Leu	Leu	Val	Ile		Ala	. Phe	Ala	Ala 15	
55	Val	Ala	Leu	Ala 20		Gly	Leu	Gly	Val		Val	. Tyr	Ala	. Ala 30	Ala	Val
60	Leu	Leu	Gly 35		Gly	Cys	Ala	Thr		. Leu	. Val	. Thr	Ser 45	Leu	Ala	Met

	Thr	Ala 50	Asp	Leu	Ile	Gly	Pro 55	His	Thr	Asn	Ser	Gly 60	Ala	Phe	Val	Tyr
5	Gly 65	Ser	Met	Ser	Phe	Leu 70	Asp	Lys	Val	Ala	Asn 75	Gly	Leu	Ala	Val	Met 80
10	Ala	Ile	Gln	Ser	Leu 85	His	Pro	Cys	Pro	Ser 90	Glu	Leu	Cys	Cys	Arg 95	Ala
. •	Cys	Val	Ser	Phe 100	Tyr	His	Trp	Ala	Met 105	Val	Ala	Val	Thr	Gly 110	Gly	Val
15	Gly	Val	Ala 115	Ala	Ala	.Leu	Cys	Leu 120	Суѕ	Ser	Leu	Leu	Leu 125	Trp	Pro	Thr
	Arg	Leu 130	Arg	Arg	Xaa											
20																
	(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	NO: 2	230:							
25				(A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	8 am no a lin		acid		: 23	0:			
30	Gly 1	Lys	Pro	Thr	Gly 5	Lys	Ser	Leu	Pro	Leu 10	Met	Trp	Met	Ile	Leu 15	Met
35	Gln	Pro	Ile	Ile 20	Met	Ile	Ser	Met	Met 25	Ser	Asn	Gly				
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 3	231:							
40			(i)	(A) L	ENGT	H: 6		TICS ino .cid		ls					
			(xi)					lin PTIO	ear N: S	EQ I	D NO	: 23	1:			
45	Met 1	Gln	Gly	Lys	Phe 5	Met	Lys	Val	Gln	Val 10	-	Arg	Phe	Leu	Lys 15	Tyr
50	Leu	Leu	Met	Leu 20	Leu	Cys	Met	Phe	Val 25	Asn	Arg	Gly	Met	Ser 30	Lys	Asp
	Ser	Thr	Lys 35	Lys	Pro	Gly	Gln	Glu 40	Lys	Leu	Lys	Val	Ser 45	Leu	Gly	Ser
55	Ile	Leu 50		Met	Lys	Ser	Gln 55	_	Pro	Leu	Ser	Trp 60	_			
60	(2)	INF	ORMA	TION	FOR	SEQ	ID:	NO:	232:							

```
(i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 29 amino acids
                    (B) TYPE: amino acid
 5
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232:
     Met Met Glu Arg Ser Met Met Ile Leu Leu Met Ala Ala Ser Met Thr
                       5
10
     Met Thr Ser Thr Gln Leu Trp Ser Phe Cys Cys Val His
                                       25
15
      (2) INFORMATION FOR SEQ ID NO: 233:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 18 amino acids
20
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233:
      Met Trp Tyr Gln Leu Ala Lys Glu Glu Pro Gly Val Gly Ala Cys Ala
25
      Leu Asp
30
      (2) INFORMATION FOR SEQ ID NO: 234:
             (i) SEQUENCE CHARACTERISTICS:
35
                     (A) LENGTH: 2 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 234:
40
      Leu Xaa
       . 1
45
      (2) INFORMATION FOR SEQ ID NO: 235:
              (i) SEQUENCE CHARACTERISTICS:
                     (A) LENGTH: 72 amino acids
                     (B) TYPE: amino acid
50
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 235:
      Met Leu Ile Cys Arg Leu Val Leu Leu Ala Asp Pro Gly Pro Val Asn
55
      Phe Met Val Arg Leu Phe Val Val Ile Val Met Phe Ala Trp Ser Ile
                                        25
                   20
      Val Ala Ser Thr Ala Phe Leu Ala Asp Ser Gln Pro Pro Asn Arg Arg
60
                                    40
               35
```

	Ala	Leu 50	Ala	Val	Tyr	Pro	Val 55	Phe	Leu	Phe	Tyr	Phe 60	Val	Ile	Ser	Trp
5	Met 65	Ile	Leu	Thr	Phe	Thr 70	Pro	Gln								
10	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: 2	36:							
15				(. ()	A) L B) T D) T	ENGT YPE : OPOL	H: 9 ami OGY:	ERIST 6 am: no ac line PTION	ino d cid ear	acid		: 230	5:			
20	Met 1	Arg	Ser	Leu	Leu 5	Leu	Leu	Ser	Ala	Phe 10	Cys	Leu	Leu	Glu	Ala 15	Ala
20	Leu	Ala	Ala	Glu 20	Val	Lys	Lys	Pro	Ala 25	Ala	Ala	Ala	Ala	Pro 30	Gly	Thr
25	Ala	Glu	Lys 35	Leu	Ser	Pro	Lys	Ala 40	Ala	Thr	Leu	Ala	Glu 45	Arg	Xaa	Pro
	Ala	Trp 50	Pro	Ser	Ala	Cys	Thr 55	Arg	Pro	Trp	Pro	Arg 60	Thr	Arg	Gln	Trp
30	Arg 65		Ser	Trp	Cys	His 70	Pro	Trp	Trp	Trp	Pro 75	Arg	Arg	Trp	Gly	Ser 80
35	Cys	Arg	Trp	Ala	Ala 85	Arg	Arg	Pro	Arg	Arg 90	Arg	Arg	Pro	Arg	Gln 95	Cys
40	(2)	INF	'ORMA	TION	FOR	SEQ	ID	NO: 3	237:							
45				((A) I (B) I (D) I	ENGT YPE : OPOI	TH: 1 : ami LOGY:	PERIS 143 a ino a : lin	mino cid ear	aci): 23	7:			
50	Met		ser	Leu	Leu 5		. Leu	Ser	Ala	Phe		Leu	Leu	Glu	Ala 15	Ala
	Leu	ı Ala	a Ala	Glu 20		Lys	Lys	Pro	Ala 25		Ala	Ala	Ala	Pro		Thr
55	Ala	a Glu	Lys 35		Ser	Pro	Lys	: Ala 40		Thr	Leu	Ala	Glu 45		Lys	Arg
60	Pro	5 Gl		ı Gln	Leu	Val	Pro 55	Gly	His	: Gly	Gln	Gly 60		Gly	Ser	Gly

	Glu 65	His	Pro	Gly	Val	Thr 70	Arg	Gly	Gly	Gly	Leu 75	Val	Ala	Gly	Ala	Arg 80
5	Val	Ala	Gly	Arg	Gln 85	Gly	Asp	His	Gly	Val 90	Ala	Gly	Gln	Gly	Ser 95	Ala
	Glu	Arg	Arg	Ala 100	Ala	Ala	Arg	Arg	Gly 105	Gly	Ala	Arg	Arg	Pro 110	Gly	Arg
10	Ala	Ala	Ala 115	Leu	Thr	Gln	Gln	Leu 120	His	Gly	Ala	Gln	Arg 125	Asp	Leu	Glu
15	Ala	Gly 130	Gln	Pro	Thr	Val	Arg 135	Thr	Gln	Leu	Ser	Glu 140	Leu	Arg	Xaa	
20	(2)	INF	ORMAC (i) (xi)	SEQU')))	ENCE A) L B) T D) T	CHA ENGT YPE:	RACT H: 1 ami OGY:	ERIS 42 a no a lin	TICS mino cid	aci		: 23	8:			
25	Met 1	Arg												Glu	Ala 15	Ala
30	Leu	Ala	Ala	Glu 20	Val	Lys	Lys	Pro	Ala 25	Ala	Ala	Ala	Ala	Pro 30	Gly	Thr
	Ala	Glu	Lys 35	Leu	Ser	Pro	Lys	Ala 40	Ala	Thr	Leu	Ala	Glu 45	Arg	Xaa	Arg
35	Pro	Gly 50		Gln	Leu	Val	Pro 55	Gly	His	Gly	Gln	Gly 60	Pro	Gly	Ser	Gly
40	65			•		70	_	_	Ī		7 5					80
	Val	Ala	Gly	Arg	Gln 85	Gly	Asp	His	Gly	Val 90	Ala	Gly	Gln	Gly	Ser 95	Ala
45	Glu	Arg	Arg	Ala 100	Ala	Ala	Arg	Arg	Gly 105	Gly	Ala	Arg	Arg	Pro 110	Gly	Arg
	Ala	Ala	Ala 115		Thr	Gln	Gln	Leu 120		Gly	Ala	Gln	Arg 125		Leu	Glu
50	Ala	Gly 130		Pro	Thr	Val	Arg 135		Gln	Leu	Ser	Glu 140		Arg		
55	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	239:							
			(i)	_	(A) I		гн: 5	54 an	TICS mino acid		is					
60						ropoi										

			(xi)	SEQU	JENCE	E DES	CRII	OIT	1: SI	EQ II	NO:	239):			
5	Asp 1	Pro	Glu	Ala	Ala 5	Asp	Ser	Gly	Glu	Pro 10	Gln	Asn	Lys	Arg	Thr 15	Pro
3	Asp	Leu	Pro	Glu 20	Glu	Glu	Tyr	Val	Lys 25	Glu	Glu	Ile	Gln	Glu 30	Asn	Glu
10	Glu	Ala	Val 35	Lys	Lys	Met	Leu	Val 40	Glu	Ala	Thr	Arg	Glu 45	Phe	Glu	Glu
	Val	Val 50	Val	Asp	Glu	Ser										
15																
	(2)			rion												
20			,	(A) L: B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	3 am no a lin	ino cid ear	acid		: 240	0:			
25	Gln 1	Lys		Lys										Ala	Asp 15	Ser
20	Gly	Glu	Pro	Gln 20	Asn	Lys	Arg	Thr	Pro 25	Asp	Leu	Pro	Glu	Glu 30	Glu	Tyr
30	Val	Lys	Glu 35	Glu	Ile	Gln	Glu	Asn 40	Glu	Glu	Ala	Val	Lys 45	Lys	Met	Leu
35	Val	Glu 50		Thr	Arg	Glu	Phe 55	Glu	Glu	Val	Val	Val 60	Asp	Glu	Ser	
40	(2)	INF			ENCE	CHA ENGT	RACT	ERIS	TICS	: o aci	.ds					
45			(xi)		(B) T (D) T UENC	OPOL	OGY :	lir	near	EQ I	D NC	: 24	1:			
	Lys 1		Met	Glu	Lys 5		Ser	Leu	Thr	Gln 10		Ser	Trp	Gln	Ser 15	Leu
50	Lys	asp	Arg	Tyr 20		Lys	His	Leu	Arg 25		Gln	Glu	His	Lys 30		Leu
55	Lev	ı Gly	Asp 35		Pro	Val	Ser	Pro 40		Ser	Gln	Lys	Leu 45		Arg	Lys
JJ	Ala	a Glu 50		ı Asp	Pro	Glu	Ala 55		. Asp	Ser	Gly	Glu 60		Gln	Asn	Lys
60	Arg 69		r Pro) Asp	Leu	Pro		Glu	ı Glu	ı Tyr	Val 75		Glu	Glu	Ile	Gln 80

	Glu	Asn	Glu	Glu	Ala 85	Val	Lys	Lys	Met	Leu 90	Val	Glu	Ala	Thr	Arg 95	Glu
5	Phe	Glu	Glu	Val 100	Val	Val	Asp	Glu	Ser 105	Pro	Pro	Asp	Phe	Glu 110	Ile	His
	Ile															
10																
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID	NO: 2	242:							
15				(A) L B) T D) T	ENGT: YPE: OPOL	H: 1 ami OGY:	48 a no a lin		aci		: 24	2 :			
20	Leu 1	Pro	Ser	Tyr	Asp 5	Glu	Ala	Glu	Arg	Thr 10	Lys	Ala	Glu	Ala	Thr 15	Ile
25	Pro	Leu	Val	Pro 20	Gly	Arg	Asp	Glu	Asp 25	Phe	Val	Gly	Arg	Asp 30	Asp	Phe
	Asp	Asp	Ala 35	Asp	Gln	Leu	Arg	Ile 40	Gly	Asn	Asp	Gly	Ile 45	Phe	Met	Leu
30	Thr	Phe 50	Phe	Met	Ala	Phe	Leu 55	Phe	Asn	Trp	Ile	Gly 60	Phe	Phe	Leu	Ser
35	65					70					75			Ile		80
					85					90				Phe	95	
40				100					105					Trp 110		
	Leu	Val	Leu 115		Phe	Leu	Leu	Phe 120	Leu	Arg	Gly	Phe	Ile 125	Asn	Tyr	Ala
45	Lys	Val 130		Lys	Met	Pro	Glu 135		Phe	Ser	Asn	Leu 140		Arg	Thr	Arg
50	Val 145		Phe Phe	lle												
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	243:							
55			(i)	_	(A) I (B) T	ENGT	TH: 2				ds					
60			(xi)						N: S	SEQ I	D NO): 24	13:		٠	

	Ala 1	Gly	Arg	Tyr	Gly 5	Ala	Ile	Ser	Gly	Phe 10	Gly	Leu	Ser	Leu	Ile 15	Lys
5	Trp	Ile	Leu	Ile 20	Val	Arg	Phe	Ser								
10	(2)		TAMAC	SEQUE ()	ENCE A) L B) T	CHAI ENGTI YPE :	RACTI H: 5	ERIST 1 am no a	TICS: ino a		5					
15			(xi)					line PTIOI		EQ II	ON C	: 24	4:			
	Met 1	Lys	His	Leu	Ser 5	Ala	Trp	Asn	Phe	Thr 10	Lys	Leu	Thr	Phe	Leu 15	Gln
20	Leu	Trp	Glu	Ile 20	Phe	Glu	Gly	Ser	Val 25	Glu	Asn	Cys	Gln	Thr 30	Leu	Thr
25	Ser	Tyr	Ser 35	Lys	Leu	Gln	Ile	Lys 40	Tyr	Thr	Phe	Ser	Arg 45	Gly	Ser	Thr
	Phe	Tyr 50	Ile													
30	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 2	245:							
35			(i) . (xi)	(; (; (;	A) L B) T D) T	ENGT YPE: OPOL	H: 2 ami OGY:	ERIST 13 a no a lin PTIO	mino cid ear	aci		: 24	5:			
40	Phe 1	Ser	Ser	Asp	Phe 5	Arg	Thr	Ser	Pro	Trp 10	Glu	Ser	Arg	Arg	Val 15	Glu
	Ser	Lys	Ala	Thr 20	Ser	Ala	Arg	Cys	Gly 25	Leu	Trp	Gly	Ser	Gly 30	Pro	Arg
45	Arg	Arg	Pro 35	Ala	Ser	Gly	Met	Phe 40	Arg	Gly	Leu	Ser	Ser 45	Trp	Leu	Gly
50	Leu	Gln 50	Gln	Pro	Val	Ala	Gly 55	Gly	Gly	Gln	Pro	Asn 60	Gly	Asp	Ala	Pro
	Pro 65	Glu	Gln	Pro	Ser	Glu 70	Thr	Val	Ala	Glu	Ser 75	Ala	Glu	Glu	Glu	Leu 80
55	Gln	Gln	Ala	Gly	Asp 85	Gln	Glu	Leu	Leu	His 90	Gln	Ala	Lys	Asp	Phe 95	Gly
	Asn	Tyr	Leu	Phe 100	Asn	Phe	Ala	Ser	Ala 105	Ala	Thr	Lys	Lys	Ile 110	Thr	Glu
60	Ser	Val	Ala	Glu	Thr	Ala	Gln	Thr	Ile	Lys	Lys	Ser	Val	Glu	Glu	Gly

			115					120					125			
£	Lys	Ile 130	Asp	Gly	Ile	Ile	Asp 135	Lys	Thr	Ile	Ile	Gly 140	Asp	Phe	Gln	Lys
5	Glu 145	Gln	Lys	Lys	Phe	Val 150	Glu	Glu	Gln	His	Thr 155	Lys	Lys	Ser	Glu	Ala 160
10	Ala	Val	Pro	Pro	Ттр 165	Val	Asp	Thr	Asn	Asp 170	Glu	Glu	Thr	Ile	Gln 175	Gln
	Gln	Ile	Leu	Ala 180	Leu	Ser	Ala	Asp	Lys 185	Arg	Asn	Phe	Leu	Arg 190	Asp	Pro
15	Pro	Ala	Gly 195	Val	Gln	Phe	Asn	Phe 200	Asp	Phe	Asp	Gln	Met 205	Tyr	Pro	Val
20	Ala	Leu 210	Val	Met	Leu											
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO: 1	246:							
25			(i)	(A) L B) T	CHA ENGT YPE:	H: 4	9 am no a	ino cid		ls					
30			(xi)	SEQ						EQ I	D NO	: 24	6:			
	Met 1	Arg	Phe	Ala	Leu 5	Val	Pro	Lys	Leu	Val 10		Glu	Glu	Val	Phe 15	Trp
35	Arg	Asn	Tyr	Phe 20	Tyr	Arg	Val	Ser	Leu 25	Ile	Lys	Gln	Ser	Ala 30	Gln	Leu
	Thr	Ala	Leu 35		Ala	Gln	Gln	Gln 40		Ala	Gly	Lys	Gly 45	Gly	Glu	Glu
40	Gln															
45	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	247:							
50			(i) (xi)		(A) I (B) I (D) I	CHA LENGT TYPE TOPOI CE DE	PH: ' : am: LOGY	76 ar ino a : lir	mino acid near	acio		D: 24	1 7 :			
	Ser 1		Ser	Pro	Gly 5		. Ser	Glu	Ph∈	• Va]		: Asp) Ala	Phe	Asp	
55	Cys	: Asr	ı Lev	ı Asn 20		Glu	ı Asp) Lev	Arç 25		s Glu	ı Met	: Glu	Gln 30		val
60	Leu	ı Asp	Lys 35		Glr	Glu	ı Glı	ı Thi		u Val	l Lei	ı Glu	ı Glu 45		Ser	Àla

	Asp	Trp 50	Glu	Lys	Glu	Leu	Gln 55	Gln	Glu	Leu	Gln	Glu 60	Tyr	Glu	Val	Val
5	Thr 65	Glu	Ser	Glu	Lys	Arg 70	Asp	Glu	Asn	Trp	Asp 75	Lys				
10	(2)	INF	ORMAT	rion	FOR	SEQ	ID 1	NO: 2	248:							
			(i) :	(.	A) L	ENGT	н: 6		rics ino cid		s					
15			(xi)					lin PTIO	ear N: S	EQ II	D NO	: 24	В:			
20	Ser 1	Pro	Trp	Glu	Ser 5	Arg	Arg	Val	Glu	Ser 10	Lys	Ala	Thr	Ser	Ala 15	Arg
20	Cys	Gly	Leu	Trp 20	Gly	Ser	Gly	Pro	Arg 25	Arg	Arg	Pro	Ala	Ser 30	Gly	Met
25	Phe	Arg	Gly 35	Leu	Ser	Ser	Trp	Leu 40	Gly	Leu	Gln	Gln	Pro 45	Val	Ala	Gly
	Gly	Gly 50		Pro	Asn	Gly	Asp 55	Ala	Pro	Pro	Glu	Gln 60	Pro	Ser		
30																
	(2)	INF						NO: :								
35				(A) L B) T D) T	ENGT YPE : OPOL	H: 6 ami OGY:	5 am no a lin	ear	acid		2.4	0			
40		**- 1							N: S					Dro	Clu	Cln
40	Pro 1		Ala	GTÀ	5	GIY	GIII	PIO	ASII	10	Аър	АІа	PIO	FIO	15	Gln
45	Pro	Ser	Glu	Thr 20	Val	Ala	Glu	Ser	Ala 25	Glu	Glu	Glu	Leu	Gln 30	Gln	Ala
73	Gly	Asp	Gln 35		Leu	Leu	His	Gln 40		Lys	Asp	Phe	Gly 45	Asn	Tyr	Leu
50	Phe	Asn 50		Ala	Ser	Ala	Ala 55		Lys	Lys	Ile	Thr 60	Glu	Ser	Val	Ala
	Glu 65															
55																
	(2)	INF	FORMA	TION	FOR	SEQ	ID	NO:	250:							
60			(i)						TICS nino		is					

	(B) TYPE: amino acid (D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250:
5	Phe Gln Lys Glu Gln Lys Lys Phe Val Glu Glu Gln His Thr Lys Lys 1 5 10 15
	Ser Glu Ala Ala Val Pro Pro Trp Val Asp Thr Asn Asp Glu Glu Thr 20 25 30
10	Ile Gln Gln Gln Ile Leu Ala Leu Ser Ala Asp Lys Arg Asn Phe Leu 35 40 45
15	Arg Asp Pro Pro Ala Gly Val Gln Phe Asn Phe Asp Phe Asp Gln Met 50 55 60
	Tyr Pro Val Ala Leu Val Met Leu 65 70
20	
	(2) INFORMATION FOR SEQ ID NO: 251:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251:
30	Pro Phe Ile Cys Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser Ser 1 5 10 15
35	Pro Ile Leu Ala Arg Lys Leu Cys Glu Gly Ala Ala 20 25
	(2) INFORMATION FOR SEQ ID NO: 252:
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids
	(B) TYPE: amino acid (D) TOPOLOGY: linear
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252: Lys Glu Asp Pro Ala Asn Thr Val Tyr Ser Thr Val Glu Ile Pro Lys 1 5 10 15
50	Lys Met Glu Asn Pro His Ser Leu Leu Thr Met Pro Asp Thr Pro Arg 20 25 30
	Leu
55	
	(2) INFORMATION FOR SEQ ID NO: 253:
60	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 227 amino acids

			(xi)	(D) T	OPOL	OGY:	line PTIO	ear	EQ II	O M C	: 253	3:			
5	Ala 1	Ser	Ala	Val	Leu 5	Leu	Asp	Leu	Pro	Asn 10	Ser	Gly	Gly	Glu	Ala 15	Gln
10	Ala	Lys	Lys	Leu 20	Gly	Asn	Asn	Cys	Val 25	Phe	Ala	Pro	Ala	Asp 30	Val	Thr
10	Ser	Glu	Lys 35	Asp	Val	Gln	Thr	Ala 40	Leu	Ala	Leu	Ala	Lys 45	Gly	Lys	Phe
15	Gly	Arg 50	Val	Asp	Val	Ala	Val 55	Asn	Cys	Ala	Gly	Ile 60	Ala	Val	Ala	Ser
	Lys 65	Thr	Tyr	Asn	Leu	Lys 70	Lys	Gly	Gln	Thr	His 75	Thr	Leu	Glu	Asp	Phe 80
20	Gln	Arg	Val	Leu	Asp 85	Val	Asn	Leu	Met	Gly 90	Thr	Phe	Asn	Val	Ile 95	Arg
25	Leu	Val	Ala	Gly 100	Glu	Met	Gly	Gln	Asn 105	Glu	Pro	Asp	Gln	Gly 110	Gly	Gln
23	Arg	Gly	Val 115	Ile	Ile	Asn	Thr	Ala 120	Ser	Val	Ala	Ala	Phe 125	Glu	Gly	Gln
30	Val	Gly 130	Gln	Ala	Ala	Tyr	Ser 135	Ala	Ser	Lys	Gly	Gly 140	Ile	Val	Gly	Met
	Thr 145	Leu	Pro	Ile	Ala	Arg 150	Asp	Leu	Ala	Pro	Ile 155	Gly	Ile	Arg	Val	Met 160
35	Thr	Ile	Ala	Pro	Gly 165	Leu	Phe	Gly	Thr	Pro 170	Leu	Leu	Thr	Ser	Leu 17 5	Pro
40	Glu	Lys	Val	Cys 180	Asn	Phe	Leu	Ala	Ser 185	Gln	Val	Pro	Phe	Pro 190	Ser	Arg
40	Leu	Gly	Asp 195	Pro	Ala	Glu	Tyr	Ala 200	His	Leu	Val	Gln	Ala 205	Ile	Ile	Glu
45	Asn	Pro 210	Phe	Leu	Asn	Gly	Glu 2 1 5		Ile	Arg	Leu	Asp 220	Gly	Ala	Ile	Arg
	Met 225		Pro													
50																
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	254:							
55				1	(A) I (B) 1 (D) 1	ENGT TYPE : TOPOI	TH: 2 ami LOGY:	ERIS 29 am ino a : lir	nino acid near	acio		ı. 25				
60	Ser	. Val						PTIC Gln						Tyr	Ser	Ala

345

	1		5			10		1	5
5	Ser	Lys Gly	Gly Ile 20	Val Gly	Met Thr 25	Leu Pro	Ile Ala		
	(2)	INFORMA	TION FOR	SEQ ID	NO: 255:				
10			(A) L (B) T (D) T	ENGTH: 6 YPE: ami OPOLOGY:	TERISTICS of amino ino acid of linear of PTION: S	acids	o: 255:		
15	Ala 1	Arg Arg	Ser Gly 5	Ala Glu	Leu Ala	Trp Asp	Tyr Leu	Cys Ar	
20	Ala	Gln Lys	His Lys 20	Asn Trp	Arg Phe 25	Gln Lys	Thr Arg	Gln Th	r Trp
	Leu	Leu Leu 35	His Met	Tyr Asp	Ser Asp 40	Lys Val	Pro Asp 45		s Phe
25	Ser	Thr Leu 50	Leu Ala	Tyr Leu 55	Glu Gly	Leu Gln	Gly Arg 60		
30 35	(2)	(i)	(A) L (B) T (D) T	CHARACT ENGTH: 2 YPE: ami	PERISTICS 22 amino ino acid	acids): 256:		
	His 1		Glu Trp 5	Ala Ile	. Asn Ala	Ala Thr	Leu Ser	Gln Ph	
40	Ile	Asn Lys	Leu Cys 20	Phe					
45	(2)	INFORMA	TION FOR	SEQ ID	NO: 257:				
50			(A) L (B) T (D) T	ENGTH: 2 YPE: am: YOPOLOGY	TERISTICS 22 amino ino acid : linear IPTION: S	acids); 2 57:		
55	1		Lys Tyr 5 Asn Ile 20	_	Thr Leu	Met Glm	n Asn Ala		u Ser 5

BNSDOCID: <WO___9842738A1_IA>

	(2) INFORMATION FOR SEQ ID NO: 258:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258:
10	Lys Val Ser Tyr Leu Arg Pro Leu Asp Phe Glu Glu Ala Arg Glu Leu 1 5 10 15
	Phe Leu Leu Gly Gln His Tyr Val Phe 20 25
15	
	(2) INFORMATION FOR SEQ ID NO: 259:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259:
25	Met Glu Arg Arg Cys Lys Met His Lys Arg Xaa Ile Ala Met Leu Glu 1 5 10 15
30	Pro Leu Thr Val Asp Leu Asn Pro Gln 20 25
	(2) INFORMATION FOR SEQ ID NO: 260:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260: Ser His Ile Val Lys Lys Ile Asn Asn Leu Asn Lys Ser Ala Leu Lys
	1 5 10 15
45	Tyr Tyr Gln Leu Phe Leu Asp 20
50	(2) INFORMATION FOR SEQ ID NO: 261:
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 64 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261:
	Phe Thr His Leu Ser Thr Cys Leu Leu Ser Leu Leu Leu Val Arg Met 1 5 10 15
60	Sor Cly Pho Lou Lou Lou Ala Arg Ala Sor Pro Sor Tle Cyc Ala Leu

		20		25			30	
-	Asp Ser Ser 35	Cys Phe Val	Gln Glu 40	Tyr Cy	s Ser S	Ser Tyr 45	Ser Sei	s Ser
5	Cys Phe Leu 50	His Gln His	Phe Pro 55	Ser Le	u Leu A	Asp His	Leu Cy:	s Gln
10								
15		TION FOR SEQ SEQUENCE CHA (A) LENGT	RACTERIS	TICS:	.ds			
20	(xi)	(B) TYPE: (D) TOPOL SEQUENCE DE	amino a OGY: lin	cid ear		262:		
	Phe Leu Leu 1	Leu Ala Arg 5	Ala Ser	Pro Se		Cys Ala	Leu Ası	
25	Ser Cys Phe	Val Gln Glu 20	Tyr					
30	(2) INFORMA	TION FOR SEQ	ID NO:	263:				
35		SEQUENCE CHA (A) LENGT (B) TYPE: (D) TOPOI SEQUENCE DE	TH: 53 am : amino a LOGY: lin	nino aci cid near		263:		
40	Pro Asp Gly 1	Arg Val Thr 5	Asn Ile		n Gly i 0	Met Val	Thr As	
	Phe Gly Met	Ile Gly Leu 20	Leu Thr	Phe Il 25	e Arg i	Ala Ala	Glu Th	r Asp
45	Pro Gly Met 35	Val His Leu	ı Ala Leu 40		er Asp 1	Leu Thr 45	Thr Le	u Gly
	Leu Asn Leu 50	Asn Ser						
50								
		TION FOR SEQ						
55		(B) TYPE	TH: 41 ar : amino a LOGY: lir	mino ac acid near		264:		
60	Glu Asn Leu	Leu Phe Tvi	r Leu Tvr	-	et Asn	Glv Glv	Asp Va	ıl Lei

	1				5					10					15	
	Gln	Leu	Leu	Ala 20	Ala	Val	Glu	Leu	Phe 25	Asn	Arg	Asp	Trp	Arg '	Tyr	His
5	Lys	Glu	Glu 35	Arg	Val	Trp	Ile	Thr 40	Arg							
10	(2)	INFO	RMAT	NOI	FOR	SEQ	ID 1	JO: 2	:65:							
15				() () ()	A) L B) T D) T	ENGT YPE : OPOL	H: 2 ami OGY:	ERIST 4 am: no ac line PTION	ino a cid ear	acid	s D No:	265	:			
20	Val 1	His	Leu	Ala	Leu 5	Gly	Ser	Asp	Leu	Thr 10	Thr	Leu	Gly	Leu	Asn 15	Leu
	Asn	Ser	Pro	Glu 20	Asn	Leu	Tyr	Pro								
25																
	(2)	INF						NO: 2								
30				(A) L B) T D) T	ENGT YPE: OPOL	H: 4 ami OGY:	ERIS' 1 am no a lin PTIO	ino cid ear	acid	ls D NO	: 266	5 :			
35	His 1	Asn	Glu	Asp	Phe 5	Pro	Ala	Leu	Pro	Gly 10	Ser					
40	(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO:	267:							
45				((A) I (B) T (D) T	ENGT TYPE : TOPOL	H: 7 ami OGY:	PERIS 5 am ino a 1 lin PTIO	nino ncid near	ació	als On di	: 26	7:			
50	Gly 1	Arg	Ile	Ile	Asp 5		Ser	Leu	Thr	Arg	Asp	Pro	Leu	Val	Ile 15	Glu
50	Leu	Gly	Gln	Lys 20		Val	Ile	Pro	Gly 25		Glu	Gln	Ser	Leu 30	Leu	Asp
55	Met	Cys	Val 35		Glu	Lys	Arg	Arg 40		Ile	: Ile	Pro	Ser 45	His	Leu	Ala
	Tyr	Gly 50		Arg	Gly	Phe	Pro 55		Ser	Val	. Pro	Ala 60		Ala	Val	Val
60	Gln	Tvr	Asp	Val	Glu	ı Leu	ı Ile	e Ala	. Leu	Ile	e Arg					

349

65 70 75 5 (2) INFORMATION FOR SEQ ID NO: 268: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid 10 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268: Ile His Tyr Thr Gly Ser Leu Val Asp Gly Arg Ile Ile Asp Thr Ser 15 20 (2) INFORMATION FOR SEQ ID NO: 269: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids 25 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269: Cys Glu Ser Pro Glu Ser Pro Ala Gln Pro Ser Gly Ser Ser Leu Pro 30 Ala Trp Tyr His 35 (2) INFORMATION FOR SEQ ID NO: 270: (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 95 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270: 45 Glu Glu Ala Gly Ala Gly Arg Arg Cys Ser His Gly Gly Ala Arg Pro Ala Gly Leu Gly Asn Glu Gly Leu Gly Leu Gly Gly Asp Pro Asp His 50 Thr Asp Thr Gly Ser Arg Ser Lys Gln Arg Ile Asn Asn Trp Lys Glu Ser Lys His Lys Val Ile Met Ala Ser Ala Ser Ala Arg Gly Asn Gln 55

Asp Lys Asp Ala His Phe Pro Pro Pro Ser Lys Gln Ser Leu Leu Phe

Cys Pro Lys Ser Lys Leu His Ile His Arg Ala Glu Ile Ser Lys

75

70

350

90

5 .	(2) INFORMATION FOR SEQ ID NO: 271:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271:
15	Ser Lys Gln Arg Ile Asn Asn Trp Lys Glu Ser Lys His Lys Val Ile 1 5 10 15 Met Ala Ser Ala Ser Ala Arg 20
20	(2) INFORMATION FOR SEQ ID NO: 272:
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272:
30	Leu Phe His Trp Ala Cys Leu Asn Glu Arg Ala Ala Gln Leu Pro Arg 1 5 10 15
35	Asn Thr Ala Xaa Ala Gly Tyr Gln Cys Pro Ser Cys Asn Gly Pro Ser 20 25 30
40	(2) INFORMATION FOR SEQ ID NO: 273: (i) SEQUENCE CHARACTERISTICS:
45	(A) LENGTH: 185 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273:
50	Phe Tyr Ile Tyr Tyr Arg Pro Thr Asp Ser Asp Asn Asp Ser Asp Tyr 1 5 10 15
50	Lys Lys Asp Met Val Glu Gly Asp Lys Tyr Trp His Ser Ile Ser His 20 25 30
55	Leu Gln Pro Glu Thr Ser Tyr Asp Ile Lys Met Gln Cys Phe Asn Glu 35 40 45
	Gly Gly Glu Ser Glu Phe Ser Asn Val Met Ile Cys Glu Thr Lys Ala 50 55 60
60	Arg Lys Ser Ser Gly Gln Pro Gly Arg Leu Pro Pro Pro Thr Leu Ala

	65					70					75					80
_	Pro	Pro	Gln	Pro	Pro 85	Leu	Pro	Glu	Thr	Ile 90	Glu	Arg	Pro	Val	Gly 95	Thr
5	Gly	Ala	Met	Val 100	Ala	Arg	Ser	Ser	Asp 105	Leu	Pro	Tyr	Leu	Ile 110	Val	Gly
10	Val	Val	Leu 115	Gly	Ser	Ile	Val	Leu 120	Ile	Ile	Val	Thr	Phe 125	Ile	Pro	Phe
	Cys	Leu 130	Trp	Arg	Ala	Trp	Ser 135	Lys	Gln	Lys	His	Thr 140	Thr	Asp	Leu	Gly
15	Phe 145	Pro	Arg	Ser	Ala	Leu 150	Pro	Pro	Ser	Cys	Pro 155	Tyr	Thr	Met	Val	Pro 160
20	Leu	Gly	Gly	Leu	Pro 165	Gly	His	Gln	Ala	Val 170	Asp	Ser	Pro	Thr	Ser 175	Val
20	Ala	Ser	Val	Asp 180	Gly	Pro	Val	Leu	Met 185							
25	400		051414	DT 011	FIOR	ano.	TD	NO. 1	274							
	(2)	INF		SEQU	ENCE	СНА	RACT	NO: Z	TICS		1					
30			(i)	(B) T	YPE:	ami OGY:	66 am no a lin PTIO	cid ear			v 27	Λ.			
35	Tyr 1							Asp						Asp	Tyr 15	
			Met	Val 20	Glu	Gly	Asp	Lys	Tyr 25		His	Ser	Ile	Ser	His	Leu
40	Gln	Pro	Glu 35		Ser	Tyr	Asp	11e 40	Lys	Met	Gln	Cys	Phe 45		Glu	Gly
	Gly	Glu 50		Glu	Phe	Ser	Asn 55	Val	Met	Ile	Cys	Glu 60		Lys	Ala	Arg
45	Lys 65	Ser	•													
50																
	(2)	INF						NO: TERIS								
55					(A) 1 (B) 1 (D) 1	LENG' I'YPE I'OPO!	TH: : : am: LOGY	30 ar ino a : lim	mino acid near	acio		o: 25	75 :			
60	Asr 1		l Arg	g Ala	a Leu		ı His	a Arc	, Met	: Pro		ı Pro) Pro	Lys	: Ile	

	Thr	Ala	Lys	Phe 20	Asn	Asn	Asn	Lys	Arg 25	Lys	Asn	Leu	Ser	Leu 30		
5																
	(2)	INFO	ORMAT													
10			(i) :	(A) L B) T D) T	ENGT: YPE : OPOL	H: 1 ami OGY:	ERIS 85 a no a lin PTIO	mino cid ear	aci		: 27	6 :			
15	Asn 1	Thr	Asn	Gln	Arg 5	Glu	Ala	Leu	Gln	Tyr 10	Ala	Lys	Asn	Phe	Gln 15	Pro
20	Phe	Ala	Leu	Asn 20	His	Gln	Lys	Asp	Ile 25	Gln	Val	Leu	Met	Gly 30	Ser	Leu
20	Val	Tyr	Leu 35	Arg	Gln	Gly	Ile	Glu 40	Asn	Ser	Pro	Tyr	Val 45	His	Leu	Leu
25	Asp	Ala 50	Asn	Gln	Trp	Ala	Asp 55	Ile	Cys	Asp	Ile	Phe 60	Thr	Arg	Asp	Ala
	Cys 65	Ala	Leu	Leu	Gly	Leu 70	Ser	Val	Glu	Ser	Pro 75	Leu	Ser	Val	Ser	Phe 80
30	Ser	Ala	Gly	Cys	Val 85	Ala	Leu	Pro	Ala	Leu 90	Ile	Asn	Ile	Lys	Ala 95	Val
35	Ile	Glu	Gln	Arg 100	Gln	Cys	Thr	Gly	Val 105	Trp	Asn	Gln	Lys	Asp 110	Glu	Leu
55	Pro	Ile	Glu 115	Val	Asp	Leu	Gly	Lys 120	Lys	Cys	Trp	Tyr	His 125	Ser	Ile	Phe
40	Ala	Cys 130	Pro	Ile	Leu	Arg	Gln 135	Gln	Thr	Thr	Asp	Asn 140	Asn	Pro	Pro	Met
	Lys 145	Leu	Val	Cys	Gly	Ніs 150	Ile	Ile	Ser	Arg	Asp 155	Ala	Leu	Asn	Lys	Met 160
45	Phe	Asn	Gly	Ser	Lys 165	Leu	Lys	Cys	Pro	Tyr 170		Pro	Met	Glu	Gln 175	Ser
50	Pro	Gly	Asp	Ala 180		Gln	Ile	Phe	Phe 185							
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	277 :							
55			(i)	_	(A) I (B) T	ENGT	CH: 6	ERIS	nino acid		ls					
60			(xi)					PTIC		EQ I	D NC): 27	7:			

	Ser 1	Tyr	Leu	Ser	Ala 5	Cys	Phe	Ala	Gly	Cys 10	Asn	Ser	Thr	Asn	Leu 15	Thr
5	Gly	Cys	Ala	Cys 20	Leu	Thr	Thr	Val	Pro 25	Ala	Glu	Asn	Ala	Thr 30	Val	Val
	Pro	Gly	Lys 35	Cys	Pro	Ser	Pro	Gly 40	Cys	Gln	Glu	Ala	Phe 45	Leu	Thr	Phe
10	Leu	Cys 50	Val	Met	Cys	Ile	Cys 55	Ser	Leu	Ile	Gly	Ala 60	Met	Ala	Arg	His
15	Pro 65															
	(2)	INF	'AMAC	TION	FOR	SEQ	ID 1	NO: 2	278 :							
20			(i)	~ (A) L B) T	CHAI ENGT YPE : 'OPOL	H: 8 ami	4 am no a	ino cid		s					
25			(xi)			E DE				EQ I	D NO	: 27	8:			
	Pro 1	Ser	Val	Ile	Ile 5	Leu	Ile	Arg	Thr	Val 10	Ser	Pro	Glu	Leu	Lys 15	Ser
30	Tyr	Ala	Leu	Gly 20	Val	Leu	Phe	Leu	Leu 25	Leu	Arg	Leu	Leu	Gly 30	Phe	Ile
	Pro	Pro	Pro 35		Ile	Phe	Gly	Ala 40	Gly	Ile	Asp	Ser	Thr 45	Cys	Leu	Phe
35	Trp	Ser 50		Phe	Cys	Gly	Glu 55	Gln	Gly	Ala	Cys	Val 60	Leu	Tyr	Asp	Asn
40	Val 65		Tyr	Arg	Tyr	Leu 70	Tyr	Val	Ser	Ile	Ala 75	Ile	Ala	Leu	Lys	Ser 80
40	Phe	Ala	Phe	Ile												
45	(2)	INF	'ORMA	TION	FOR	SEQ	ID	NO:	279:							
50			,_,	-	(A) I (B) 7 (D) 7	E CHA LENGT TYPE: TOPOL CE DE	H: : am: LOGY	182 a ino a : 1ir	amino acid near	aci): 2 7	'9:			
55	Gln 1					Arg					. Gly			Thr	Val 15	
	Leu	ı Asp) Ala	a Gln 20	_	⁄ Arg	Ala	Arg	Ala 25		Leu	ı Cys	: Xaa	Xaa 30		Asn
60	Trp	o Arg	д Туг	. Lys	. Asn	ı Leu	Gl _y	/ Asr	Leu	ı Pro	His	. Val	Glr	Leu	Leu	Pro

			35					40					45			
						_			_	_				01-		т] -
5	Glu	Phe 50	Ser	Thr	Ala	Asn	Ala 55	GIA	Leu	Leu	Tyr	Asp 60	Pne	GIn	Leu	11e
	Asn 65	Val	Glu	Asp	Phe	Gln 70	Gly	Val	Gly	Glu	Ser 75	Glu	Pro	Asn	Pro	Туr 80
10	Phe	Tyr	Gln	Asn	Leu 85	Gly	Glu	Ala	Glu	Tyr 90	Val	Val	Ala	Leu	Phe 95	Met
	Tyr	Met	Cys	Leu 100	Leu	Gly	Tyr	Pro	Ala 105	Ąsp	Lys	Ile	Ser	Ile 110	Leu	Thr
15	Thr	Tyr	Asn 115	Gly	Gln	Lys	His	Leu 120	Ile	Arg	Asp	Ile	Ile 125	Asn	Arg	Arg
20	Cys	Gly 130	Asn	Asn	Pro	Leu	Ile 135	Gly	Arg	Pro	Asn	Lys 140	Val	Thr	Thr	Val
20	Asp 145	Arg	Phe	Gln	Gly	Gln 150	Gln	Asn	Asp	Tyr	Ile 155	Leu	Leu	Ser	Leu	Val 160
25	Arg	Thr	Arg	Ala	Val 165	Gly	His	Leu	Arg	Asp 170	Val	Arg	Arg	Leu	Val 175	Val
	Ala	Met	Ser	Arg 180	Ala	Arg										
30																
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	N O: 1	280:							
35				~ ((A) I (B) I (D) I	ENGT YPE : OPOL	RACT H: 7 ami OGY:	7 am no a lin	ino cid ear	ació): 2 8	0 :			
40	Leu 1	Val	Lys	Glu	Ala 5		Ile	Ile	Ala	Met 10	Thr	Cys	Thr	His	Ala 15	Ala
15	Leu	Lys	Arg	His 20		Leu	Val	Lys	Leu 25		Phe	Lys	Tyr	Asp 30	Asn	Ile
45	Leu	Met	Glu 35		Ala	Ala	Gln	Ile 40		Glu	Ile	Glu	Thr 45	Phe	Ile	Pro
50	Leu	Leu 50		Gln	Asn	Pro	Gln 55		Gly	Phe	Ser	Arg		Lys	Arg	Trp
	Ile 65		: Ile	: Gly	Asp	His	His	Gln	Leu	Pro	Pro 75		Ile			
55																
	(2)	INF	ORMA	MOIT.	FOR	SEÇ	ID	NO:	281:							
60			(i)				RACT				ids					

			(xi)	(D) T	OPOL	OGY:	no a line PTIO		EQ II	O NO	: 28	1:			
5	Asp 1	Thr	Tyr	Pro	Asn 5	Glu	Glu	Lys	Gln	Gln 10	Glu	Arg	Val	Phe	Pro 15	Xaa
10	Xaa	Ser	Ala	Met 20	Val	Asn	Asn	Gly	Ser 25	Leu	Ser	Tyr	Asp	His 30	Glu	Arg
10	Asp	Gly	Arg 35	Pro	Thr	Glu	Leu	Gly 40	Gly	Cys	Xaa	Ala	Ile 45	Val	Arg	Asn
15	Leu	His 50	Tyr	Asp	Thr	Phe	Leu 55	Val	Ile	Arg	тук	Val 60	Lys	Arg	His	Leu
	Thr 65	Ile	Met	Met	Asp	Ile 70	Asp	Gly	Lys	His	Glu 75	Trp	Arg	Asp	Cys	Ile 80
20	Glu	Val	Pro	Gly	Val 85	Arg	Leu	Pro	Arg	Gly 90	Tyr	Tyr	Phe	Gly	Thr 95	Ser
25	Ser	Ile	Thr	Gly 100	Asp	Leu	Ser	Asp	Asn 105	His	Asp	Val	Ile	Ser 110	Leu	Lys
	Leu	Phe	Glu 1 15	Leu	Thr	Val	Glu	Arg 120	Thr	Pro	Glu	Glu	Glu 125			
30	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO: 2	282:							
35				(A) L B) T D) T	ENGT YPE: OPOL	H: 8 ami OGY:	5 am no a lin		acid		: 28	2:			
40	Leu 1		Arg	Glu	His 5	Ser	Leu	Ser	Lys	Pro 10	Tyr	Gln	Gly	Val	Gly 15	Thr
	Gly	Ser	Ser	Ser 20	Leu	Trp	Asn	Leu	Met 25	Gly	Asn	Ala	Met	Val 30	Met	Thr
45	Gln	Tyr	Ile 35	Arg	Leu	Thr	Pro	Asp 40	Met	Gln	Ser	Lys	Gln 45	Gly	Ala	Leu
50	Trp	Asn 50	Arg	Val	Pro	Cys	Phe 55	Leu	Arg	Asp	Trp	Glu 60	Leu	Gln	Val	His
50	Phe 65	_	Ile	His	Gly	Gln 70	Gly	Lys	Lys	Asn	Leu 75	His	Gly	Asp	Gly	Leu 80
55	Ala	. Ile	Trp	Tyr	Thr 85											
60	(2)	INF	'ORMA	TION	FOR	SEQ	ID	NO:	283:							

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids
5	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 283:
5	Pro Gly Thr Leu Gln Cys Ser Ala Leu His His Asp Pro Gly Cys Ala
	1 5 10 15
10	Asn Cys Ser Arg Phe Cys Arg Asp Cys Ser Pro Pro Ala Cys Gln Cys 20 25 30
15	
	(2) INFORMATION FOR SEQ ID NO: 284:
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284:
	Phe Leu Tyr Asp Val Leu Met Xaa His Glu Ala Val Met Arg Thr His 1 5 10 15
30	Gln Ile Gln Leu Pro Asp Pro Glu Phe Pro Ser 20 25
35	(2) INFORMATION FOR SEQ ID NO: 285:
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 6 amino acids(B) TYPE: amino acid
40	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285:
	Gly Trp Tyr Trp Cys Gly 1 5
45	
	(2) INFORMATION FOR SEQ ID NO: 286:
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 129 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286:
55	Met Lys Val Gly Ala Arg Ile Arg Val Lys Met Ser Val Asn Lys Ala 1 5 10 15
60	His Pro Val Val Ser Thr His Trp Arg Trp Pro Ala Glu Trp Pro Gln 20 25 30
UU	

	Met	Phe	Leu 35	His	Leu	Ala	Gln	Glu 40	Pro	Arg	Thr	Glu	Val 45	Lys	Ser	Arg
5	Pro	Leu 50	Gly	Leu	Ala	Gly	Phe 55	Ile	Arg	Gln	Asp	Ser 60	Lys	Thr	Arg	Lys
	Pro 65	Leu	Glu	Gln	Glu	Thr 70	Ile	Met	Ser	Ala	Ala 75	Asp	Thr	Ala	Leu	Trp 80
10	Pro	Tyr	Gly	His	Gly 85	Asn	Arg	Glu	His	Gln 90	Glu	Asn	Glu	Leu	Gln 95	Lys
15	Tyr	Leu	Gln	Туг 100	Lys	Asp	Met	His	Leu 105	Leu	Asp	Ser	Gly	Gln 110	Ser	Leu
13	Gly	His	Thr 115	His	Thr	Leu	Gln	Gly 120	Ser	His	Asn	Leu	Thr 125	Ala	Leu	Asn
20	Ile															
	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO:	287:	•						
25	, _ ,			SEQU	ENCE	СНА	RACT	ERIS	TICS	: acid	ls					
30			(xi)	(B) T D) T UENC	OPOL	.OGY :	lir	ear	EQ I	D NO	: 28	7 :			
50	Ser 1										Ser			Ser	Gly 15	Gly
35			Lys	Cys 20	Ser	Gln	Phe	Cys	Thr 25			Met	Asp	Gly 30		Met
40	Ser	Ile	Trp		Val	Lys	Ser	Leu 40		Ser	Ala	Leu	Lys 45	Asp	Leu	Lys
40	Ile	:														
45	(2)	INF	ORMA	MOITA	I FOR	SEÇ) ID	NO:	288:							
50					(A) 1 (B) 1 (D) 1	LENG! IYPE IOPO!	TH: : : am: LOGY	21 ar ino a : lir	acid near	acio	ds ID NO	D: 28	38:			
55	Glu 1		a Ser	Lys	Ser 5		His	a Ala	Gly	Lev 10		Lev	ı Phe	e Ser	Val	
	Ala	a Cys	s His	arç 20		:										
60																

	(2) INFORMATION FOR SEQ ID NO: 289:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 289:
10	Tyr Met Gly Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe 1 5 10 15
15	Glu Arg Ser Phe Thr 20
	(2) INFORMATION FOR SEQ ID NO: 290:
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid
25	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290:
<i>23</i>	Val Thr Gly Ile Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg 1 5 10 15
30	Val Gly Leu Gln Tyr Ser Thr Gln Val His 20 25
25	(2) INFORMATION FOR SEQ ID NO: 291:
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291:
	Thr Glu Phe Thr Leu Arg Asn Phe Asn Ser Ala Lys Asp Met Lys Lys 1 5 10 15
45	Ala Val Ala His Met Lys Tyr Met 20
50	(2) INFORMATION FOR SEQ ID NO: 292:
55	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 292:
60	Gly Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg 1 10 15

Ser Phe Thr Gln Gly Glu Gly Ala Arg Pro Phe (2) INFORMATION FOR SEQ ID NO: 293: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 293: Ser Thr Arg Val Pro Arg Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile 25 Thr Met Tyr Ala Val Gly Val Gly Lys Ala Ile Glu 35 (2) INFORMATION FOR SEQ ID NO: 294: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294: Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser 35

(2) INFORMATION FOR SEQ ID NO: 295:

45

5

10

15

20

25

30

35

40

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295:

> Thr Gln Arg Leu Glu Glu Met Thr Gln Arg Met 5

55

- (2) INFORMATION FOR SEQ ID NO: 296:
- (i) SEQUENCE CHARACTERISTICS:

60 (A) LENGTH: 10 amino acids

	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296:	
5	Pro Gln Gly Cys Pro Glu Gln Pro Leu His 1 5 10	
10	(2) INFORMATION FOR SEQ ID NO: 297:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297: 	
20	Arg Cys Lys Lys Cys Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile 1 5 10 15	:
	Asp Gly Ser Lys Ser Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln 20 25 30	i
25	Phe .	
30	(2) INFORMATION FOR SEQ ID NO: 298: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 amino acids	
35	(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 298:	
	Met Ala Ala Leu Leu Leu Arg His Val Gly Arg His Cys Leu Arg Ala 1 5 10 15	à
40	His Phe Ser Pro Gln Leu Cys Ile Arg Asn Ala Val Pro Leu Gly Thr 20 25 30	c
45	Thr Ala Lys Glu Glu Met Glu Arg Phe Trp Asn Lys Asn Ile Gly Ser 35 40 45	r
43	Asn Arg Pro Leu Ser Pro His Ile Thr Ile Tyr Ser 50 55 60	
50	(2) INFORMATION FOR SEQ ID NO: 299:	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 299: 	
60	Val Phe Pro Leu Met Tyr His Thr Trp Asn Gly Ile Arg His Leu Me 1 5 10 15	t

Trp Asp Leu Gly Lys Gly Leu Lys Ile Pro Gln Leu Tyr Gln Ser Gly 25 5 10 (2) INFORMATION FOR SEQ ID NO: 300: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid 15 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300: Met Ala Ala Leu Leu Leu Arg His Val Gly Arg His Cys Leu Arg Ala 20 His 25 (2) INFORMATION FOR SEQ ID NO: 301: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 amino acids 30 (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301: Val Lys Ser Leu Cys Leu Gly Pro Ala Leu Ile His Thr Ala Lys Phe 35 10 Ala Leu 40 (2) INFORMATION FOR SEQ ID NO: 302: (i) SEQUENCE CHARACTERISTICS: 45 (A) LENGTH: 23 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302: Val Phe Pro Leu Met Tyr His Thr Trp Asn Gly Ile Arg His Leu Met 50 5 Trp Asp Leu Gly Lys Gly Leu 20 55 (2) INFORMATION FOR SEQ ID NO: 303: 60 (i) SEQUENCE CHARACTERISTICS:

<i>c</i>	(A) LENGTH: 22 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303:
5	Arg Val Trp Asp Val Arg Pro Phe Ala Pro Lys Glu Arg Cys Val Lys 1 5 10 15
10	Ile Phe Gln Gly Asn Val 20
15	(2) INFORMATION FOR SEQ ID NO: 304: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 304:
	His Asn Phe Glu Lys Asn Leu Leu Arg Cys Ser Trp Ser Pro Asp Gly 1 5 10 15
25	Ser Lys Ile Ala Ala Gly Ser Ala Asp Arg Phe Val Tyr Val 20 25 30
30	(2) INFORMATION FOR SEQ ID NO: 305:
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305:
40	Trp Asp Thr Thr Ser Arg Arg Ile Leu Tyr Lys Leu Pro Gly His Ala 1 5 10 15 Gly Ser Ile Asn Glu Val Ala Phe His Pro Asp Glu Pro Ile
45	20 25 30
	(2) INFORMATION FOR SEQ ID NO: 306: (i) SEQUENCE CHARACTERISTICS:
50	(A) LENGTH: 20 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306:
55	Val Arg Gly Arg Thr Val Leu Arg Pro Gly Leu Asp Ala Glu Pro Glu 1 5 10 15
	Leu Ser Pro Glu 20
60	

PCT/US98/05311 WO 98/42738

```
(2) INFORMATION FOR SEQ ID NO: 307:
             (i) SEQUENCE CHARACTERISTICS:
5
                    (A) LENGTH: 19 amino acids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307:
10
     Glu Gln Arg Val Leu Glu Arg Lys Leu Lys Lys Glu Arg Lys Lys Glu
                                          10
     Glu Arg Gln
15
      (2) INFORMATION FOR SEQ ID NO: 308:
20
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 13 amino acids
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308:
25
     Arg Leu Arg Glu Ala Gly Leu Val Ala Gln His Pro Pro
30
      (2) INFORMATION FOR SEQ ID NO: 309:
             (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 17 amino acids
35
                     (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 309:
      Gly Arg Ile Pro Ala Pro Ala Pro Ser Val Pro Ala Gly Pro Asp Ser
40
                       5
      Arg
45
      (2) INFORMATION FOR SEQ ID NO: 310:
              (i) SEQUENCE CHARACTERISTICS:
50
                     (A) LENGTH: 42 amino acids
                     (B) TYPE: amino acid
                     (D) TOPOLOGY: linear
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310:
      Thr Gly Cys Val Leu Val Leu Ser Arg Asn Phe Val Gln Tyr Ala Cys
55
      Phe Gly Leu Phe Gly Ile Ile Ala Leu Gln Thr Ile Ala Tyr Ser Ile
                                                            30
                                        25
60
```

	Leu Trp Asp Leu Lys Phe Leu Met Arg Asn 35 40
5	(2) INFORMATION FOR SEQ ID NO: 311:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 55 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 311:
15	Ser Arg Ser Glu Gly Lys Ser Met Phe Ala Gly Val Pro Thr Met Arg 1 5 10 15
	Glu Ser Ser Pro Lys Gln Tyr Met Gln Leu Gly Gly Arg Val Leu Leu 20 25 30
20	Val Leu Met Phe Met Thr Leu Leu His Phe Asp Ala Ser Phe Phe Ser 35 40 45
25	Ile Val Gln Asn Ile Val Gly 50 55
30	(2) INFORMATION FOR SEQ ID NO: 312: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312: Gly Thr Ala Glu Asp Phe Ala Asp Gln Phe Leu Arg Val Thr Lys Gln 1 5 10 15
40	Tyr Leu Pro His Val Ala Arg Leu Cys Leu Ile Ser Thr Phe Leu Glu 20 25 30
	Asp Gly Ile Arg Met Trp Phe Gln Trp Ser Glu Gln Arg Asp Tyr Ile 35 40 45
45	Asp Thr Thr Trp Asn Cys Gly Tyr Leu Leu Ala Ser 50 55 60
50	(2) INFORMATION FOR SEQ ID NO: 313:
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313:
60	Ala Ser Phe Leu Leu Ser Arg Thr Ser Trp Gly Thr Ala Leu Met Ile 1 5 10 15

Leu

5	(2) INFORMATION FOR SEQ ID NO: 314:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 314:
15	Leu Met Arg Asn Glu Ser Arg Ser 1 5
20	(2) INFORMATION FOR SEQ ID NO: 315: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid
25	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 315:
30	Ala Ser Phe Leu Leu Ser Arg Thr Ser Trp Gly Thr Ala 1 5 10
	(2) INFORMATION FOR SEQ ID NO: 316:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316:
40	Phe Ile Ser Phe Ala Asn Ser Arg Ser Ser Glu Asp Thr Lys Gln Met 1 5 10 15
45	Met Ser Ser Phe 20
	(2) INFORMATION FOR SEQ ID NO: 317:
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 317:
55	Asp Pro Arg Arg Pro Asn Lys Val Leu Arg Tyr Lys Pro Pro Pro Ser 1 5 10 15
60	Glu Cys Asn Pro Ala Leu Asp Asp Pro Thr Pro

BNSDOCID: <WO___9842738A1_IA>

5	(2) INFORMATION FOR SEQ ID NO: 318:
3	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 318:
	Asp Tyr Met Asn Leu Leu Gly Met Ile Phe Ser Met Cys Gly Leu Met 1 5 10 15
15	Leu Lys Leu Lys Trp Cys Ala Trp Val Ala Val Tyr Cys Ser 20 25 30
20	(2) INFORMATION FOR SEQ ID NO: 319:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319:
30	Met Leu Ser Ile Ser Ala Val Val Met Ser Tyr Leu Gln Asn Pro Gln 1 5 10 15
	Pro Met Thr Pro Pro Trp 20
35	(2) INFORMATION FOR SEQ ID NO: 320:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320:
45	Ala Ala Gly Asp Gly Asp Val Lys Leu Gly Thr Leu Gly Ser Gly Ser 1 5 10 15
	Glu Ser Ser Asn Asp Gly Gly Ser Glu Ser Pro Gly Asp Ala Gly Ala 20 25 30
50	Ala Ala Xaa Gly Gly Gly Trp Ala Ala Ala Ala Leu Ala Leu Leu Thr 35 40 45
55	Gly Gly Glu 50
	(2) INFORMATION FOR SEQ ID NO: 321:
60	(i) SECTEMOE CHARACTERISTICS.

								77 ai		aci	ds					
			(zi)	(1) T	OPOL	CGY:	line PTIO	ear	:O TI	O NO:	321	L:			
5														0	3]_	3
	Ala 1	Ala	Asp	Asn	Tyr 5	Gly	Ile	Pro	Arg	10	Cys	Arg	Asn	Ser	15	Arg
10	Ser	Tyr	Gly	Ala 20	Ala	Trp	Leu	Leu	Leu 25	Xaa	Pro	Ala	Gly	Ser 30	Ser	Arg
	Val	Glu	Pro 35	Thr	Gln	Asp	Ile	Ser 40	Ile	Ser	Asp	Gln	Leu 45	Gly	Gly	Gln
15	Asp	Val 50	Pro	Val	Phe	Arg	Asn 55	Leu	Ser	Leu	Leu	Val 60	Val	Gly	Val	Gly
20	Ala 65	Val	Phe	Ser	Leu	Leu 70	Phe	His	Leu	Gly	Thr 75	Arg	Glu	Arg	Arg	Arg 80
	Pro	His	Ala	Xaa	Glu 85	Pro	Gly	Glu	His	Thr 90	Pro	Leu	Leu	Ala	Pro 95	Ala
25	Thr	Ala	Gln	Pro 100	Leu	Leu	Leu	Trp	Lys 105	His	Trp	Leu	Arg	Glu 110	Xaa	Ala
	Phe	Tyr	Gln 115	Val	Gly	Ile	Leu	Туг 120	Met	Thr	Thr	Arg	Leu 125	Ile	Val	Asn
30	Leu	Ser 130	Gln	Thr	Tyr	Met	Ala 135	Met	Tyr	Leu	Thr	Tyr 140	Ser	Leu	His	Leu
35	Pro 145	Lys	Lys	Phe	Ile	Ala 150	Thr	Ile	Pro	Leu	Val 155	Met	Tyr	Leu	Ser	Gly 160
	Phe	Leu	Ser	Ser	Phe 165	Leu	Met	Lys	Pro	11e 170	Asn	Lys	Cys	Ile	Gly 175	Arg
40	Asn															
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	322:							
45			(i)	((A) I	ENGT	H: 2	ERIS 243 a ino a : lir	mino acid		ids					
50			(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N: S	EQ 1	D NC	: 32	2:			
50	Arg 1		Thr	Asp	Asn 5		Glu	Gly	Lys	Trp		Gly	Arg	Thr	Ala 15	
55	Gly	Ser	Tyr	Gly 20		Ile	. Lys	Thr	Thr 25		Val	Glu	Ile	Xaa 30		Asp
	Ser	Leu	ı Lys 35		Lys	Lys	Asp	Ser 40		Gl	⁄ Ala	Pro	Ser 45		Pro	Ile
60	Glu	ı Asp	Asp	Gln	Glu	(Va)	Туг	Asp	Asp	Va]	Ala	Glu	Glr	Asp	asp	Ile

		50					55					60				
5	Ser 65	Ser	His	Ser	Gln	Ser 70	Gly	Ser	Gly	Gly	Ile 75	Phe	Pro	Pro	Pro	Pro 80
3	Asp	Asp	Asp	Ile	Tyr 85	Asp	Gly	Ile	Glu	Glu 90	Glu	Asp	Ala	Asp	Asp 95	Gly
10	Phe	Pro	Ala	Pro 100	Pro	Lys	Gln	Leu	Asp 105	Met	Gly	Asp	Glu	Val 110	Tyr	Asp
	Asp	Val	Asp 115	Thr	Ser	Asp	Phe	Pro 120	Val	Ser	Ser	Ala	Glu 125	Met	Ser	Gln
15	Gly	Thr 130	Asn	Val	Gly	Lys	Ala 135	Lys	Thr	Glu	Glu	Lys 140	Asp	Leu	Lys	Lys
20	Leu 145	Lys	Lys	Gln	Xaa	Lys 150	Glu	Xaa	Lys	Asp	Phe 155	Arg	Lys	Lys	Phe	Lys 160
	Tyr	Asp	Gly	Glu	Ile 165	Arg	Val	Leu	Tyr	Ser 170	Thr	Lys	Val	Thr	Thr 175	Ser
25	Ile	Thr	Ser	Lys 180	Lys	Trp	Gly	Thr	Arg 185	Asp	Leu	Gln	Val	Lys 190	Pro	Gly
	Glu	Ser	Leu 195	Glu	Val	Ile	Gln	Thr 200	Thr	Asp	Asp	Thr	Lys 205	Val	Leu	Cys
30	Arg	Asn 210	Glu	Glu	Gly	Lys	Tyr 215	Gly	Tyr	Val	Leu	Arg 220	Ser	Tyr	Leu	Ala
35	Asp 225	Asn	Asp	Gly	Glu	11e 230	Tyr	Asp	Asp	Ile	Ala 235	Asp	Gly	Cys	Ile	Tyr 240
	Asp		Asp													
40	(2)	INF		TION SEQU						S:						
				((B) 1	TYPE:	: ami	l06 a ino a : lir	acid	ac:	ids					
45											ED NO					
50	1				5					10)		Arg		15	
	Arg	Leu	ı Phe	Arg 20		: Gly	, Cys	: Ala	Arg 25		Ala	Gly	Asp	Gly -30		Val
55	Arg	f His	Ala 35		Gly	gly	/ Val	40		e Glı	ı Pro	Arg	тут 45		Glr	n Ph∈
		50)				55	5				60				
60	Leu	ı Me	t Trp	Phe	Tr	o Ile	e Leu	Tr	Arg	g Phe	e Trį	His	Asp	Ser	Glu	ı Glı

WO 98/42738 PCT/US98/05311

369

65 70 75 80

Glu Leu Gly Ile Pro Pro Asp Asp Glu Asp 100 105

•	_	•	
1	,	u	

Applicant's or agent's tile	'.004PCT	International application Unassigned	
		international application Ontassigned	
reference number			
701010111111111111111111111111111111111			

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism re on page 73 . line 1	eferred to in the description N/A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture	Collection
Address of depositary institution (including postal code and control of the code and control of the code and control of the code and code	ountry)
Date of deposit March 7, 1997	Accession Number 97923
C. ADDITIONAL INDICATIONS (leave blank if not app	TIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS The indications listed below will be submitted to the International Number of Deposit (1)	(leave blank if not applicable) ional Bureau later (specify the general nature of the indications, e.g., "Accessio
For receiving Office use only	For International Bureau use only
This sheet was received with the international application Authorized officer	This sheet was received by the International Bureau on: Authorized officer
Ouginia Lliling	

Form PCT/R9/134 (July 1992)
BNSDOCID: <WO 9842738A1_IA>

Applicant's or agent's file Z004PCT International application Unassigned			
a first of the first team of t	, , , , , , , , , , , , , , , , , , ,	Z004PCT	The state of the s

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism ref	erred to in the description I/A .
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture C	Collection
Address of depositary institution (including postal code and code	untry)
10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	
Date of deposit May 22, 1997	Accession Number 209071
C. ADDITIONAL INDICATIONS (leave blank if not applied)	reable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICAT	IONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (1e	rave blank if not applicable)
The indications listed below will be submitted to the Internation Number of Deposit")	nat Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
Authorized officer	This sheet was received by the International Bureau on: Authorized officer
Luginia Llely Form PCT/180/134 (July 1992)	

BNSDOCID: <WO_9842798ACTAXO/134 (July 1992)

Applicants or agent's tile Z004	PCT International application	Unassigned
Applicants of agents in a	international apprecation	
reference number	7 3	1 T. Free 1 Lat 1944
totetettee mannes.	i time c	trace trace thank .

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page 73 . line N/A		
B. IDENTIFIC	CATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of deposita	ry institution American Type Culture	Collection
10801 Universi	inia 20110-2209	ountry)
Date of deposit	February 25, 1998	Accession Number 209641
C. ADDITIO	NAL INDICATIONS (leave blank if not app	plicable) This information is continued on an additional sheet
D. DESIGNA	TED STATES FOR WHICH INDICA	TIONS ARE MADE (if the indications are not for all designated States
E. SEPARAT	E FURNISHING OF INDICATIONS	(leave blank if not applicable)
The indications Number of Deposi	listed below will be submitted to the Internat	ional Bureau later (specify the general nature of the indications, e.g., "Acces
	For receiving Office use only	For International Bureau use only
This sheet	was received with the international application	This sheet was received by the International Bureau on:
Authorized office	unia I Ily	Authorized officer

Form PCT/RO/ 34 (July 1992) BNSDOCID: <WO__9842738A1_IA>

Applicant's or agent's file reference number	Z004PCT	International application . Unassigned

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution	Culture Collection
Address of depositary institution (including postal coll 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	ode and country)
Date of deposit July 24, 1997	Accession Number 209179
C. ADDITIONAL INDICATIONS (leave blank	if not applicable) This information is continued on an additional sheet
E. SEPARATE FURNISHING OF INDICAT	PIONE
The indications listed below will be submitted to the Number of Deposit")	International Bureau later (specify the general nature of the indications, e.g., "Accession of the indications of the indication of

BNSDOCID: <WO__Examp/dear (July 1992)

•	-	

Applicant's or agent's file Z004PCT reference number	International application Unassigned
	The state of the s

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism reference on page 77 . line No.	·
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture C	follection
Address of depositary institution (including postal code and con- 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	intry)
Date of deposit March 7, 1997	Accession Number 97924
C. ADDITIONAL INDICATIONS (leave blank if not applied	cable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATI	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (led	ave blank if not applicable)
	al Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only This sheet was received with the international application Authorized officer Unquie L Llly	For International Bureau use only This sheet was received by the International Bureau on: Authorized officer

BNSDOCID: <WO__9527738ATTRO134 (July 1992)

Applicant's or agent's file Z004PCT reference number	International application . Unassigned
	<u> </u>

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism roon page 80 . line	eterred to in the description N/A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture	· Collection
Address of depositary institution (including postal code and control of the code and	country)
Date of deposit March 13, 1997	Accession Number 97958
C. ADDITIONAL INDICATIONS (leave blank if not app	plicable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICA	TIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS	
Number of Deposit")	ional Bureau later (specify the general nature of the indications, e.g., "Accession of the indications of the indication
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Lugania Llely	Authorized officer

Applicant's or agent's file	Z004PCT	International application Unassigned
	200	international appreciation Ollassigned
reference number		and E. S. Mari, Mari Seell
		A CAR A CONTRACT SHOPE

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism on page 80 . line	referred to in the description N/A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture	re Collection
Address of depositary institution (including postal code and 10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	country)
Date of deposit May 22, 1997	Accession Number 209072
C. ADDITIONAL INDICATIONS (leave blank if not ap	pplicable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICA	ATIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS The indications listed below will be submitted to the Internal	5 (leave blank if not applicable) ational Burcau later (specify the general nature of the indications. e.g., "Accessio
Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Sugaria L lily	Authorized officer

From PC //RO/134 (July 1992)
BNSDOCID: <WO___9842738A _ IA>

Applicant's or agent's tile	Z004PCT	International application .	Unassigned	
reference number		Den T		

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism ref on page 80 . line N	I/A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture (Collection
Address of depositary institution (including postal code and co	ountry)
10801 University Boulevard Manassas, Virginia 20110-2209 United States of America	
Date of deposit September 4, 1997	Accession Number 209235
C. ADDITIONAL INDICATIONS (leave blank if not appl	licable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICAT	TIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (I	leave blank if not applicable)
	onal Bureau later (specify the general nature of the indications, e.g., "Accession
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Vugunia Llely	Authorized officer

Form PCT/RC 134 (July 1992) BNSDOCID: <WO___984273BA1_IA>

•	-	•
- 1	•	n

Applicant's or agent's tile	Z004PCT	International application	Unassigned	
reference number		TO THE	sia Ta.	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism refe on page 84 . line N/	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture Co	ollection
Address of depositary institution (including postal code and cou	intry)
Manassas, Virginia 20110-2209 United States of America	
Date of deposit August 28, 1997	Accession Number 209226
C. ADDITIONAL INDICATIONS (leave blank if not applic	cable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATI	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (Ie.	ave blank if not applicable)
	nal Bureau later (specify the general nature of the indications, e.g., "Accessio
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received by the International Bureau on:
Authorized officer Virginia Lleling	Authorized officer

ENSDOCID: <WO__9842738A1_A97/134 (July 1992)

Applicant's or agent's file	7004PCT	International application I Imperiance	
Applicant's or agent's the	20041 C 1	International application Unassigned	
C number		the state of the s	
reference number			
		The state of the s	_

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism reference on page 84 , line $N/2$	erred to in the description /A
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Type Culture C	Collection
Address of depositary institution (including postal code and could 10801 University Boulevard Manassas. Virginia 20110-2209 United States of America	intry)
Date of deposit March 13, 1997	Accession Number 97957
C. ADDITIONAL INDICATIONS (leave blank if not applied) D. DESIGNATED STATES FOR WHICH INDICATION.	This information is continued on an additional sheet
E. SEPARATE FURNISHING OF INDICATIONS (le	cave blank if not applicable)
The indications listed below will be submitted to the Internation Number of Deposit")	nal Bureau later (specify the general nature of the indications. e.g., "Accessio
For receiving Office use only This sheet was received with the international application	For International Bureau use only This sheet was received by the International Bureau on:
Suginia L lily	Authorized officer

Applicant's or agent's file	Z004PCT	International application	Unassigned
reference number			<u> </u>

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

	organism referred to in the description
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution American Typ	ne Culture Collection
Address of depositary institution (including postal of 10801 University Boulevard	code and country)
Manassas, Virginia 20110-2209 United States of America	
Date of deposit May 22, 1997	Accession Number 209073
C. ADDITIONAL INDICATIONS (leave blan	nk if not applicable) This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH	INDICATIONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICA	ATIONS (leave blank if not applicable)
	ATIONS (leave blank if not applicable) the International Bureau later (specify the general nature of the indications, e.g., "Accession of the indications of the indication of
The indications listed below will be submitted to the	
The indications listed below will be submitted to the	
The indications listed below will be submitted to the	
The indications listed below will be submitted to the	he International Bureau later (specify the general nature of the indications, e.g., "Accession of the indications of the indication
The indications listed below will be submitted to the Number of Deposit')	he International Bureau later (specify the general nature of the indications, e.g., "Accession for the indication for the indic
The indications listed below will be submitted to the Number of Deposit's For receiving Office use only	he International Bureau later (specify the general nature of the indications, e.g., "Accession for the indication for the indic

Form PCT/XQ/134 (July 1992) BNSDOCID: <WO__9842738A1_M>

10

15

20

25

What Is Claimed Is:

- 1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
- (a) a polynucleotide fragment of SEQ ID NO:X or a polynucleotide fragment of the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (b) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (c) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y or a polypeptide domain encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (d) a polynucleotide encoding a polypeptide epitope of SEQ ID NO:Y or a polypeptide epitope encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X;
- (e) a polynucleotide encoding a polypeptide of SEQ ID NO:Y or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X, having biological activity;
 - (f) a polynucleotide which is a variant of SEQ ID NO:X;
 - (g) a polynucleotide which is an allelic variant of SEQ ID NO:X;
 - (h) a polynucleotide which encodes a species homologue of the SEQ ID NO:Y;
- (i) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h), wherein said polynucleotide does not hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence of only A residues or of only T residues.
- 2. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein.
- 3. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises a nucleotide sequence encoding the sequence identified as SEQ ID NO:Y or the polypeptide encoded by the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

4. The isolated nucleic acid molecule of claim 1, wherein the polynucleotide fragment comprises the entire nucleotide sequence of SEQ ID NO:X or the cDNA sequence included in ATCC Deposit No:Z, which is hybridizable to SEQ ID NO:X.

5

- 5. The isolated nucleic acid molecule of claim 2, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 10 6. The isolated nucleic acid molecule of claim 3, wherein the nucleotide sequence comprises sequential nucleotide deletions from either the C-terminus or the N-terminus.
- 7. A recombinant vector comprising the isolated nucleic acid molecule of claim 1.
 - 8. A method of making a recombinant host cell comprising the isolated nucleic acid molecule of claim 1.
- 9. A recombinant host cell produced by the method of claim 8.
 - 10. The recombinant host cell of claim 9 comprising vector sequences.
- An isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
 - (a) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (b) a polypeptide fragment of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z, having biological activity;
 - (c) a polypeptide domain of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (d) a polypeptide epitope of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (e) a secreted form of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;
 - (f) a full length protein of SEQ ID NO:Y or the encoded sequence included in ATCC Deposit No:Z;

30

15

20

25

30

- (g) a variant of SEQ ID NO:Y;
- (h) an allelic variant of SEQ ID NO:Y; or
- (i) a species homologue of the SEQ ID NO:Y.
- 12. The isolated polypeptide of claim 11, wherein the secreted form or the full length protein comprises sequential amino acid deletions from either the C-terminus or the N-terminus.
 - 13. An isolated antibody that binds specifically to the isolated polypeptide of claim 11.
 - 14. A recombinant host cell that expresses the isolated polypeptide of claim 11.
 - 15. A method of making an isolated polypeptide comprising:
 - (a) culturing the recombinant host cell of claim 14 under conditions such that said polypeptide is expressed; and
 - (b) recovering said polypeptide.
 - 16. The polypeptide produced by claim 15.
 - 17. A method for preventing, treating, or ameliorating a medical condition, comprising administering to a mammalian subject a therapeutically effective amount of the polypeptide of claim 11 or the polynucleotide of claim 1.
 - 18. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or absence of a mutation in the polynucleotide of claim 1; and
 - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or absence of said mutation.
 - 19. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:
 - (a) determining the presence or amount of expression of the polypeptide of claim 11 in a biological sample; and
 - (b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the presence or amount of expression of the polypeptide.

- 20. A method for identifying a binding partner to the polypeptide of claim 11 comprising:
 - (a) contacting the polypeptide of claim 11 with a binding partner; and
- 5 (b) determining whether the binding partner effects an activity of the polypeptide.
 - 21. The gene corresponding to the cDNA sequence of SEQ ID NO:Y.
- 10 22. A method of identifying an activity in a biological assay, wherein the method comprises:
 - (a) expressing SEQ ID NO:X in a cell;
 - (b) isolating the supernatant;
 - (c) detecting an activity in a biological assay; and
 - (d) identifying the protein in the supernatant having the activity.
 - 23. The product produced by the method of claim 22.

International Application No PCT/US 98/05311

A. CLASSIFICATION OF SUBJECT MATTER
I PC 6 C12N15/12 C12N5/10 C07K14/47 C07K16/18 C12N1/21 G01N33/53 G01N33/50 G01N33/68 A61K38/17 C1201/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K C12Q G01N IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category L. HILLIER ET AL.: "The WashU-Merck EST 1-3, Х 7-11,21 project" EMBL SEQUENCE DATABASE, 2 July 1995, HEIDELBERG, FRG, XP002068365 y187a06.rl Homo sapiens cDNA clone 44938 5': Accession no. H08241; 1-3, 7-11,21 "The "WashU-Merck EST L. HILLIER ET AL.: X project" EMBL SEQUENCE DATABASE, 26 August 1995, HEIDELBERG, FRG, XP002068366 ym94e01.rl Homo sapiens cDNA clone 166584 5'. Accession no. R88485; 1 - 23WO 97 07198 A (GENETICS INSTITUT) 27 Α February 1997 see the whole document -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Χ Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 16, 09, 1998 17 June 1998 Authorized office: Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 HORNIG H.

International Application No
PCT/ CO 98/05311

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
.(Continua	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
\	WO 97 04097 A (GENETICS INST) 6 February 1997	1-23
	see the whole document	
	US 5 536 637 A (JACOBS KENNETH) 16 July 1996 see the whole document	1-23
	JACOBS K ET AL: "A novel method for isolating eukaryotic cDNA clones encoding secreted proteins." KEYSTONE SYMPOSIUM ON DENDRITIC CELLS: ANTIGEN PRESENTING CELLS OF T AND B LYMPHOCYTES, TAOS, NEW MEXICO, USA, MARCH 10-16, 1995. JOURNAL OF CELLULAR BIOCHEMISTRY SUPPLEMENT 0 (21A). 1995. 19. ISSN: 0733-1959, XP002027246 abstract no. C1-207 see abstract	1-23
4	WO 90 14432 A (GENETICS INST) 29 November 1990 see the whole document	1-23
A	WO 96 17925 A (IMMUNEX CORP) 13 June 1996 see the whole document	1-23

Inte .ional application No.

PCT/US 98/05311

Box I Observations where certain claims were f und uns archabl (Continuati n of it m 1 ffirst sheet)				
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 17 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.				
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:				
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows: See further information sheet				
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.				
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:				
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: see further information sheet				
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1. Claims: (1-23) partially

-An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from SEQ ID no. 11; wherein said polynucleotide fragment comprises a nucleotide sequence encoding a secreted protein encoding the sequence SEQ ID no.125 or the polypeptide encoded by the cDNA sequence included in ATCC Deposit nos: 97923/209071, which is hybridizable to SEQ ID no.11; a recombinant vector comprising said isolated nucleic acid molecule; a method of making a recombinant host cell comprising said isolated nucleic acid molecule; a recombinant host cell comprising said vector; an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence SEQ ID no. 125; an isolated antibody that binds specifically to said isolated polyeptitde; a recombinant host cell that expresses said isolated polypeptide; a method of making said polypeptide; a method for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of said polypeptide; a method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject using said polynucleotide and/or polypeptide sequence; a method for identifying a binding partner to said polypeptide; a gene corresponding to the cDNA sequence of SEQ ID no.11; a method for identifying an activity in a biological assay, by using the expression of SEQ ID no. 125;

Inventions 2 to 87. Claims: (12-23) partially

-Idem as subject 1 but limited to gene nos. 2 to 87 respectively cDNA clone sequences HAGFY16/HBMCF37/HFLQB16 to HCED021. (Invention 2 is limited to SEQ ID nos. 12,98,99,126,212 and 213; Invention 3 is limited to SEQ ID nos.13 and 127;; Invention 87 is limited to SEQ ID nos.97 and 211;)

nt ation on patent family members

International Application No
PCT/US 98/05311

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9707198 A	27-02-97	US 5707829 A AU 6712396 A AU 6768596 A EP 0839196 A EP 0851875 A WO 9704097 A	13-01-98 18-02-97 12-03-97 06-05-98 08-07-98 06-02-97
WO 9704097 A	06-02-97	US 5707829 A AU 6712396 A EP 0839196 A AU 6768596 A EP 0851875 A WO 9707198 A	13-01-98 18-02-97 06-05-98 12-03-97 08-07-98 27-02-97
US 5536637 A	16-07-96	US 5712116 A	27-01-98
WO 9014432 A	29-11-90	US 5580753 A AT 147436 T AU 637620 B AU 5928990 A CA 2056997 A DE 69029657 D DK 473724 T EP 0473724 A ES 2099096 T JP 4506006 T US 5734037 A US 5414071 A	03-12-96 15-01-97 03-06-93 18-12-90 24-11-90 20-02-97 14-04-97 11-03-92 16-05-97 22-10-92 31-03-98 09-05-95
WO 9617925 A	13-06-96	AU 4639396 A CA 2206488 A FI 972390 A NO 972455 A	26-06-96 13-06-96 05-06-97 06-08-97

THIS PAGE BLANK (USPTO)