MA2287: Complex Analysis Exam Notes

Robert Davidson

Contents

1	Que	estion 1:
	1.1	Sketch the region in the complex plane determined by the inequality
	1.2	Determine all solutions to roots of unity
	1.3	Determine and sketch the image under the mapping
	1.4	Find z where the function is 0
	1.5	Calculate principal value $\text{Log}(z)$
	1.6	Prove the following
2	Que	estion 2:
	2.1	Determine image of the line
	2.2	State and Use Cauchy-Riemann Equations
	2.3	Show that
	2.4	Find Mobius Transformation

1 Question 1:

1.1 Sketch the region in the complex plane determined by the inequality

• |z-4| > 3|z+4| 2023 Q1(a)

 $\bullet \ \ \{z \in \mathbb{C}: |2z-1| < 2|2z-i|\} \\ 2022 \ \mathrm{Q1(a)}, \ 2021 \ \mathrm{Q1(d)}, \ 2017 \ \mathrm{Q1(a)}, \ 2016 \ \mathrm{Q1(a)}, \ 2011 \ \mathrm{Q1($

1.2 Determine all solutions to roots of unity

• $z^6 - 1 = 0$ and factorize $x^6 - 1$ as a product of linear and quadratic factors 2023 Q1(b),

• $z^4 = -81i$ and find a polynomial p(z) with complex coefficients with root w and $p(\overline{w}) \neq 0$ 2022 Q1(b), 2018 Q1(b)

• $z^6 - 1 = 0$ and factorize $x^6 - 1$ as a product of linear and quadratic factors 2021 Q1(c)

• $z^3=1+i$, let $n\in\mathbb{N}$ and $w\neq 1$ be an n-th root of unity. Prove $1+w+w^2+\ldots+w^{n-1}=0$ 2016 Q1(c)

1.3 Determine and sketch the image under the mapping

• $w = e^z$, $\{z \in \mathbb{C} : \pi/4 \le \text{Im}(z) \le \pi/2\}$ 2023 Q1(c), 2021 Q1(a), 2017 Q1(d)

• $w = \text{Log}(z), \{z : |z| > 1, 0 \le \text{Arg}(z) \le \pi/2\}$ 2022 Q1(d), 2018 Q1(d), 2016 Q1(d)

1.4 Find z where the function is 0

• $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$ 2022 Q1(d)

1.5 Calculate principal value Log(z)

• $z = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and prove e^z is the inverse function of Log(z) 2022 Q1(c), 2018 Q1(c), 2017 Q1(c)

1.6 Prove the following

- Define the complex conjugate (\overline{w}) and prove if w is a zero of a polynomial $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ then \overline{w} is also a zero of p(z) 2021 Q1(b), 2018 Q1(a), 2016 Q1(b)
- Define the complex exponential function e^z and prove Eulers Formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ 2017 Q1(b)

2 Question 2:

2.1 Determine image of the line

• $f(z) = \frac{1}{z}$ { $z \in \mathbb{C} : \text{Re}(z) = 2$ } 2023 Q2(a), 2021 Q2(a)

• $f(z) = \frac{1}{z}$ $\{z \in \mathbb{C} : \text{Re}(z) = 1\}$ 2022 Q2(a), 2018 Q2(a)

2.2 State and Use Cauchy-Riemann Equations

• State CRE, and use to prove $f(z) = \frac{1}{z}$ is holomorphic on $\mathbb{C}\setminus\{0\}$ 2023 Q2(a)

• State CRE, and use to prove $f(z)=z^2$ is holomorphic on $\mathbb C$ 2022 Q2(b)

2.3 Show that

- If $\overline{f(z)} = f(\overline{z})$ for all $z \in \mathbb{C}$ then f(x) is real for all $x \in \mathbb{R}$. And if in addition f is holomorphic at $x \in \mathbb{R}$ then f'(x) is real.
- Define that is meant for a function g to be harmonic. If f=u+iv is holomorphic on $\Omega\subset\mathbb{C}$, prove that v(x,y) is a harmonic function, and that ∇u and ∇v are perpendicular of equal length. 2022 Q2(c), 2018 Q2(b)
- If $\overline{f(z)} = f(\overline{z})$ for all $z \in \mathbb{C}$ then f(x) is real for all $x \in \mathbb{R}$. And if in addition f is holomorphic at 0 then f'(0) is real. 2021 Q2(a)
- Let f(z) = u + iv be holomorphic on an open subset Ω of the complex plane and let h(u,v) be a harmonic function of u and v on $f(\Omega)$. Prove that g(x,y) = h(u(x,y),v(x,y)) is harmonic on Ω (You may assume $\nabla u, \nabla v$ are equal length and perpendicular)

2.4 Find Mobius Transformation

• $T(z): (-1,1,\infty) \mapsto (-1,-i,1)$ 2023 Q1(d)

• $T(z):(2,1,-1)\mapsto (1,0,\infty)$ 2022 Q1(d)

• $T(z): (-i, -1, 1) \mapsto (0, 1, \infty)$ and find the inverse Mobius Transformation 2021 Q1(d)