

DEVOIR SURVEILLÉ

Module: Techniques d'estimation pour l'ingénieur **Date**: 16/03/2024

Classes: 3^{ème} année Durée: 1hNombre de pages : 4

Documents autorisés : OUI □ NON ☒ Calculatrice autorisée : OUI \boxtimes NON \square

Exercice 1:(3 points)

Cocher, en justifiant, la bonne réponse :

1. (1 pt) Soit X une variable aléatoire continue telle que sa fonction densité est représentée cidessous:

Alors

$$\boxed{\mathbf{A}} \ X \sim \mathcal{U}[0 \ ; \ 0, 2]$$

$$oxed{\mathbf{B}} X \sim \mathcal{U}[0; 6]$$

$$\boxed{\mathbf{B}} \ X \sim \mathcal{U}[0; 6] \qquad \boxed{\mathbf{C}} \ X \sim \mathcal{U}[1; 7]$$

$$\boxed{\mathbf{D}} X \sim \mathcal{U}[2; 8]$$

(a) (1 pt) Soit X une variable aléatoire qui suit une loi exponentielle de paramètre $\lambda > 0$, alors pour tout s, t > 0, on a:

$$\boxed{\mathbf{A}} \ \mathbb{P}((X \ge t + s)/(X \ge t)) = \mathbb{P}(X \ge t + s) \qquad \boxed{\mathbf{C}} \ \mathbb{P}((X \ge t + s)/(X \ge t)) = \mathbb{P}(X \ge s)$$

$$\boxed{\mathbf{C}} \ \mathbb{P}((X \ge t + s)/(X \ge t)) = \mathbb{P}(X \ge s)$$

$$\boxed{\mathbf{B}} \ \mathbb{P}((X \ge t + s)/(X \ge t)) = \mathbb{P}(X \ge t)$$

$$\boxed{\mathbf{B}} \ \mathbb{P}((X \ge t + s)/(X \ge t)) = \mathbb{P}(X \ge t)$$
 $\boxed{\mathbf{D}} \ \mathbb{P}((X \ge t + s)/(X \ge t)) = \mathbb{P}(X \ge 0)$

(b) (1 pt) Soient $\hat{\theta}_1$ et $\hat{\theta}_2$ deux estimateurs d'un paramètre inconnu θ . Alors $\hat{\theta}_1$ est meilleur que

$$\boxed{\mathbf{A}} \ \mathbb{E}(\hat{\theta}_1) = \mathbb{E}(\hat{\theta}_2) \ \& \ \mathbb{V}(\hat{\theta}_1) > \mathbb{V}(\hat{\theta}_2)$$

$$\boxed{\mathbf{C}} \mathbb{E}(\hat{\theta}_1) \neq \mathbb{E}(\hat{\theta}_2) \& \mathbb{V}(\hat{\theta}_1) = \mathbb{V}(\hat{\theta}_2)$$

$$\boxed{\mathbf{B}} \ \mathbb{E}(\hat{\theta}_1) = \mathbb{E}(\hat{\theta}_2) = \theta \ \& \ \mathbb{V}(\hat{\theta}_1) < \mathbb{V}(\hat{\theta}_2)$$

$$\boxed{\mathbf{D}} \ \mathbb{E}(\hat{\theta}_1) \neq \mathbb{E}(\hat{\theta}_2) \ \& \ R_{\hat{\theta}_1}(\theta) > R_{\hat{\theta}_2}(\theta)$$

Exercice 2:(8 points)

Une usine embouteille de l'eau. L'étiquette de la bouteille indique 1,5 litre. Le volume de la bouteille est de 1,55 litre. A l'embouteillage, le volume d'eau versé dans une bouteille est une variable aléatoire X qui suit la loi normale de moyenne m=1,5 et d'écart-type $\sigma=0,015$.

Figure 1 – F1

Figure 2 - F2

- 1. (1 pt) L'une des deux figures ci-dessus donne la courbe représentative de la densité de cette loi normale. Indiquer la figure correspondante en expliquant votre choix.
- 2. (1 pt) Quelle est la probabilité qu'une bouteille contienne exactement 1,5 litre?
- 3. (2 pts) Quelle est la probabilité qu'une bouteille contienne entre 1,46 litre et 1,54 litre?
- 4. (2 pts) Quelle est la probabilité qu'une bouteille déborde sur la chaîne d'embouteillage (c-à-d un volume versé supérieur à 1.55 litres)?
- 5. (2 pts) Déterminer la valeur limite l telle que $\mathbb{P}(m-l \leq X \leq m+l) = 0.95$.

Exercice 3:(9 points)

Soit X une variable aléatoire de fontion de densité f, définie par :

$$f(x) = \begin{cases} (\theta - 1) x^{-\theta} & \text{si} \quad x > 1; \\ 0 & \text{sinon.} \end{cases}$$

avec, $\theta > 2$ un paramètre inconnu à estimer.

- 1. (1 pt) Vérifier que f est bien une fonction de densité de probabilité.
- 2. (1.5 pts) Calculer la fonction de répartition de X.

On considère (X_1, \ldots, X_n) , un n-échantillon de n variables aléatoires indépendantes, identiquement distibuées et de même loi que X et (x_1, \ldots, x_n) une réalisation de cet échantillon.

- 3. (1 pt) Montrer que $\mathbb{E}(X) = \frac{\theta 1}{\theta 2}$.
- 4. (1.5 pts) En déduire un estimateur T_1 de θ par la méthode des moments.
- 5. a. (2 pts) Déterminer la fonction de vraisemblance $\mathcal{L}(x_1,\ldots,x_n,\theta)$ associée à la réalisation (x_1,\ldots,x_n) .
 - b. (1 pt) Montrer que la fonction Log-vraisemblance est donnée par :

$$\ln \mathcal{L}(x_1, \dots, x_n, \theta) = n \ln(\theta - 1) - \theta \sum_{i=1}^n \ln(x_i)$$

c. (1 pt) En déduire un estimateur T_2 de θ par la méthode du maximum de vraisemblance.

Loi normale réduite : probabilités unilatérales

Cette table donne p tel que P(Z > a) = p, où Z est la loi normale réduite

a	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,50000	0,49601	0,49202	0,48803	0,48405	0,48006	0,47608	0,47210	0,46812	0,46414
0,10	0,46017	0,45620	0,45224	0,44828	0,44433	0,44038	0,43644	0,43251	0,42858	0,42465
0,20	0,42074	0,41683	0,41294	0,40905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591
0,30	0,38209	0,37828	0,37448	0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
0,40	0,34458	0,34090	0,33724	0,33360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207
0,50	0,30854	0,30503	0,30153	0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
0,60	0,27425	0,27093	0,26763	0,26435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510
0,70	0,24196	0,23885	0,23576	0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
0,80	0,21186	0,20897	0,20611	0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
0,90	0,18406	0,18141	0,17879	0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109
1,00	0,15866	0,15625	0,15386	0,15151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13786
1,10	0,13567	0,13350	0,13136	0,12924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702
1,20	0,11507	0,11314	0,11123	0,10935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853
1,30	0,09680	0,09510	0,09342	0,09176	0,09012	0,08851	0,08691	0,08534	0,08379	0,08226
1,40	0,08076	0,07927	0,07780	0,07636	0,07493	0,07353	0,07215	0,07078	0,06944	0,06811
1,50	0,06681	0,06552	0,06426	0,06301	0,06178	0,06057	0,05938	0,05821	0,05705	0,05592
1,60	0,05480	0,05370	0,05262	0,05155	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551
1,70	0,04457	0,04363	0,04272	0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673
1,80	0,03593	0,03515	0,03438	0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938
1,90	0,02872	0,02807	0,02743	0,02680	0,02619	0,02559	0,02500	0,02442	0,02385	0,02330
2,00	0,02275	0,02222	0,02169	0,02118	0,02068	0,02018		0,01923	0,01876	0,01831
2,10	0,01786	0,01743	0,01700	0,01659	0,01618	0,01578	0,01539	0,01500	0,01463	0,01426
2,20	0,01390	0,01355	0,01321	0,01287	0,01255	0,01222	0,01191	0,01160	0,01130	0,01101
2,30	0,01072	0,01044	0,01017	0,00990	0,00964	0,00939	0,00914	0,00889	0,00866	0,00842
2,40	0,00820	0,00798	0,00776	0,00755	0,00734	0,00714	0,00695	0,00676	0,00657	0,00639
2,50	0,00621	0,00604	0,00587	0,00570	0,00554	0,00539	0,00523	0,00508	0,00494	0,00480
2,60	0,00466	0,00453	0,00440	0,00427	0,00415		0,00391	0,00379	0,00368	0,00357
2,70	0,00347	0,00336	0,00326	0,00317	0,00307	0,00298	0,00289	0,00280	0,00272	0,00264
2,80	0,00256	0,00248	0,00240	0,00233	0,00226	0,00219	0,00212	0,00205	0,00199	0,00193
2,90	0,00187	0,00181	0,00175	0,00169	0,00164	0,00159	0,00154	0,00149	0,00144	0,00139
3,00	0,00135	0,00131	0,00126	0,00122	0,00118	0,00114	0,00111	0,00107	0,00104	0,00100
3,10	0,00097	0,00094	0,00090	0,00087	0,00084	0,00082	0,00079	0,00076	0,00074	0,00071
3,20	0,00069	0,00066	0,00064	0,00062	0,00060	0,00058	0,00056	0,00054	0,00052	0,00050
3,30	0,00048	0,00047	0,00045	0,00043	0,00042	0,00040	0,00039	0,00038	0,00036	0,00035
3,40	0,00034	0,00032	0,00031	0,00030	0,00029	0,00028	0,00027	0,00026	0,00025	0,00024
	0,00023		0,00022			0,00019			0,00017	0,00017
-	0,00016		0,00015	0,00014		0,00013			0,00012	0,00011
	0,00011	0,00010	0,00010	0,00010	0,00009				0,00008	0,00008
3,80		0,00007	0,00007	0,00006	0,00006				0,00005	0,00005
3,90			0,00004	0,00004	0,00004		0,00004	0,00004	0,00003	0,00003
4,00	0,00003	0,00003	0,00003	0,00003	0,00003	0,00003	0,00002	0,00002	0,00002	0,00002