Department of Mathematics MTL 601 (Probability and Statistics) Tutorial Sheet No. 5

- 1. Prove that \overline{X} , the mean of a random sample of size n from a distribution that is $N(\theta, \sigma^2)$, $-\infty < \theta < \infty$ is an efficient estimator of θ for every known $\sigma^2 > 0$.
- 2. Assuming population to be $\mathcal{N}(\mu, \sigma^2)$, show that sample variance is a consistent estimator for population variance σ^2 .
- 3. Let X_1, X_2, \ldots, X_n be a random sample from uniform distribution on an interval $(0, \theta)$. Show that $(\prod_{i=1}^n X_i)^{1/n}$ is consistent estimator of θe^{-1} .
- 4. Let $X_1, X_2, ..., X_n$ be a random sample from the geometric distribution with pmf $P(x; p) = (1-p)^{x-1}p$, x = 1, 2, ... Prove that maximum likelihood estimator of p is $\hat{p} = \frac{n}{n} = \frac{1}{x}$.
- 5. Let X_1, X_2, \ldots, X_n be a random sample from Poisson distribution $P(\lambda)$. Show that $\alpha \overline{X} + (1-\alpha)s^2, 0 \le \alpha \le 1$, is a class of unbiased estimators for λ . Also find an unbiased estimator for $e^{-\lambda}$.
- 6. Let X_1, X_2, \ldots, X_n be a random sample from binomial distribution B(1, p). Find an unbiased estimators for p^2 if it exists.
- 7. Suppose that 200 independent observations X_1, X_2, \dots, X_{200} are obtained from random variable X. We are told that $\sum_{i=1}^{200} X_i = 300$ and that $\sum_{i=1}^{200} X_i^2 = 3754$. Using these values obtain unbiased estimates for E(X) and Var(X).
- 8. Find the maximum likelihood estimator based on a sample of size n from the two sided exponential family with pdf given as follows.

$$f(x) = \frac{1}{2}e^{-|x-\theta|}, \quad -\infty < x < \infty$$

Is the estimator unbiased?

- 9. Using method of moments, find the estimators of the parameters for the following population distributions (a) $\mathcal{N}(\mu, \sigma^2)$ (b) B(n, p).
- 10. Let X_1, X_2 and X_3 be three independent random variables having the Poisson distribution with the parameter λ . Show that

$$\hat{\lambda_1} = \frac{X_1 + 2X_2 + 3X_3}{6}$$

is an unbiased estimator of λ . Also compare the efficiency of $\hat{\lambda_1}$ with that of the alternate estimator.

$$\hat{\lambda_2} = \frac{X_1 + X_2 + X_3}{3} \ .$$

11. Let X_1, X_2, \ldots, X_n be a random sample from the normal distribution with both mean and variance equal to an unknown parameter θ .

1

- (a) Is there a sufficient statistics?
- (b) What is the MLE?
- (c) What is the Cramer-Rao lower bound?
- 12. Prove that for the family of uniform distribution on $[0,\theta]$, $max(x_1,x_2,\ldots,x_n)$ is the MLE for θ .

- 13. Consider the normal distribution $N(0,\theta)$. With a random sample X_1, X_2, \ldots, X_n we want to estimate the standard deviation $\sqrt{\theta}$. Find the constant c so that $Y = c \sum_{i=1}^{n} |X_i|$ is an unbiased estimator of $\sqrt{\theta}$ and determine its efficiency.
- 14. Suppose that the random sample arises from a distribution with pdf

$$f(x; \theta) = \begin{cases} \theta x^{\theta - 1}, & 0 < x < 1, & \theta \in \Omega = \{\theta; \ 0 < \theta < \infty\} \\ 0 & \text{otherwise.} \end{cases}$$

Show that $\hat{\theta} = -\frac{n}{\ln \prod_{i=1}^{n} X_i}$ is the maximum likelihood estimator of θ . Further prove that in a limiting sense, $\hat{\theta}$ is the unbiased minimum variance estimator of θ and thus θ is asymptotically efficient.

15. Let X_1, X_2, \dots, X_n be random sample from a distribution with pdf

$$f(x;\theta) = \begin{cases} \theta^x (1-\theta), & x = 0, 1, 2, \dots; \ 0 \le \theta \le 1 \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the MLE $\hat{\theta}$ of θ .
- (b) Show that $\sum_{i=1}^{n} X_i$ is a complete sufficient statistics for θ .
- (c) Determine the unbiased maximum variance estimator of θ .