Digital Systems Design and Laboratory [12. Registers and Counters]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Spring 2019

Sequential Logic Design

- ☐ Unit 11: Latches and Flip-Flops
 - > Basic unit
- ☐ Unit 12: Registers and Counters
 - > Simple sequential circuit
- ☐ Units 13--15: Finite State Machines
 - > Complex sequential circuit
- ☐ Unit 16: Summary
 - > Put it all together

Outline

- Registers and Register Transfers
- ☐ Shift Registers
- ☐ Design of Binary Counters
- ☐ Counters for Other Sequence
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

Registers (1/2)

- Register: a group of D flip-flops with a common clock
- Example
 - ➤ 4-bit D flip-flop registers with Data, Load, Clear (ClrN), Clock (Clk)
- ☐ First Implementation: gated clock
 - ➤ When Load = 1, load data at D to Q at Clk falling

Registers (2/2)

- ☐ Register: a group of D flip-flops with a common clock
- Example
 - ➤ 4-bit D flip-flop registers with Data, Load, Clear (ClrN), Clock (Clk)
- ☐ Second implementation: clock enable
 - ➤ When Load = 1, load data at D to Q at Clk falling

Data Transfer between Registers

☐ 2-to-1 MUX

- \triangleright If En = 1, Q = A
- \triangleright If En = 0, Q = B

8-Bit Register with Tri-State Output (1/2)

■ Symbol

☐ Logic diagram

8-Bit Register with Tri-State Output (2/2)

Data transfer

Outline

- ☐ Registers and Register Transfers
- **□** Shift Registers
- ☐ Design of Binary Counters
- ☐ Counters for Other Sequence
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

Shift Registers (1/2)

- ☐ Shift register: a group of flip-flops where binary data can be stored and shifted left or right when a shift signal is applied
- ☐ Example: 4-bit right-shift register

Shift Registers (2/2)

☐ Timing diagram of a 4-bit right-shift register

N-bit Serial-In Serial-Out Shift Registers

☐ Take (n-1) cycles to output data

> SI: Serial In

> SO: Serial Out

Parallel-In Parallel-Out Right Shift Register (1/2)

☐ Parallel-in parallel-out (PIPO)

Sh (Shift)	L (Load)	Q ₃ +	Q ₂ +	Q ₁ +	Q_0^+	Action
0	0	Q_3	Q_2	Q_1	Q_0	No Change
0	1	D_3	D_2	D_1	D_0	Load
1	X	SI	Q_3	Q_2	Q_1	Right Shift

Parallel-In Parallel-Out Right Shift Register (2/2)

☐ Implement using flip-flops and MUXes

Shift Register with Inverted Feedback

- ☐ Johnson counter: a shift register with inverted feedback
 - > Counter: a circuit that cycles through a fixed sequence of states

Outline

- ☐ Registers and Register Transfers
- ☐ Shift Registers
- Design of Binary Counters
- ☐ Counters for Other Sequence
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

Counting 0--7 (1/2)

- ☐ Synchronous counter: flip-flops are synchronized by a clock
- ☐ First implementation: T flip-flops

F	Present State	t	Ne	Flip-Flop Inpu (By Observation			•	
С	В	Α	C ⁺	B ⁺	A ⁺	T _C	T _B	T _A
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Counting 0--7 (2/2)

☐ Second implementation: D flip-flops

$$\triangleright$$
 D_A = A⁺ = A[']

$$\triangleright$$
 D_B = B⁺ = BA' + B'A = B \bigoplus A

- B changes when A = 1
- \triangleright D_C = C⁺ = C'BA + CB' + CA' = C \bigoplus BA
 - C changes when A = B = 1

F	Presen State	t	Next State			
С	В	Α	C+	B ⁺	A ⁺	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	0	

Up-Down Counter

☐ U and D control "up" and "down"

- \triangleright Do not allow U = D = 1
- \triangleright D_A = A⁺ = A \oplus (U + D)
- \triangleright D_B = B⁺ = B \oplus (UA + DA')
- \triangleright D_C = C⁺ = C \oplus (UBA + DB'A')

СВА	C+B	-+A+
	U	D
000	001	111
001	010	000
010	011	001
011	100	010
100	101	011
101	110	100
110	111	101
111	000	110

Outline

- ☐ Registers and Register Transfers
- ☐ Shift Registers
- ☐ Design of Binary Counters
- **☐** Counters for Other Sequence
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

State Diagram of Counter

☐ What if the sequence is not in straight binary order?

f	Presen State	t	Next State			
С	В	Α	C ⁺	B ⁺	A ⁺	
0	0	0	1	0	0	
0	0	1	-	-	-	
0	1	0	0	1	1	
0	1	1	0	0	0	
1	0	0	1	1	1	
1	0	1	-	-	-	
1	1	0	-	-	-	
1	1	1	0	1	0	

K-Map Derivation

■ Next states

ВАС	0	1
00	1	1
01	X	Х
11	0	0
10	0	Х
		`+ `

BAC	0	1
00	0	1
01	X	Х
11	0	1
10	1	Х
	<u> </u>	<u> </u>

С	В	Α	C ⁺	B ⁺	A ⁺
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	-	-	-
1	1	0	-	-	-
1	1	1	0	1	0

Implementation: T Flip-Flops (1/2)

 \square T inputs: T = Q \oplus Q⁺

С	В	Α	C+	B ⁺	A ⁺
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	-	-	-
1	1	0	-	-	-
1	1	1	0	1	0

Implementation: T Flip-Flops (2/2)

Don't Care States

- ☐ If flip-flops are initially set to CBA = 001
 - > Tracking signals through the network shows that $T_C = T_B = 1$ and $T_A = 0$, so the state changes to 111

- ☐ When the power is turned on, the initial states of all flip-flops are unpredictable!!
 - Don't care states should be checked to make sure that they eventually lead into the main counting sequence
 - Or use power-up reset

Implementation: D Flip-Flops (1/2)

■ Next states

Implementation: D Flip-Flops (2/2)

Outline

- ☐ Registers and Register Transfers
- ☐ Shift Registers
- ☐ Design of Binary Counters
- ☐ Counters for Other Sequence
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

Recap: S-R Flip-Flops

- ☐ What is the relation between S, R and Q, Q⁺?
 - ➤ We do it reversely from Q and Q+ to S and R

S	R	Q	Q+		Q	Q ⁺	S	R		Q	Q ⁺	S	R
0	0	0	0	Unchanged	0	0	0	0		0	0	0	X
0	0	1	1	Jonangea	U	U	0	1		U	U	U	^
0	1	0	0	Reset to 0	0	1	1	0		0	1	1	0
0	1	1	0	L veset to o	U	1	1	U	\Rightarrow	U	T	1	U
1	0	0	1	Set to 1	1	0	0	1	-	1	0	0	1
1	0	1	1	J Set to 1	1	U	U	1		1	U	U	T
1	1	0	Х	Inputs Not	1	1	0	0		1	1	Х	0
1	1	1	Х	Allowed	1	1	1	0		1	Τ	٨	U

Excitation Table

Using S-R Flip-Flops (1/2)

☐ Derive S-R flip-flop inputs from the excitation table

Q	Q ⁺	S	R
0	0	0	Х
0	1	1	0
1	0	0	1
1	1	Χ	0

С	В	Α	C+	B ⁺	A ⁺	S _C	R_{C}	S _B	R_B	S _A	R_A
0	0	0	1	0	0	1	0	0	X	0	X
0	0	1	-	-	-	Х	X	Χ	Χ	Χ	Χ
0	1	0	0	1	1	0	X	Χ	0	1	0
0	1	1	0	0	0	0	X	0	1	0	1
1	0	0	1	1	1	Х	0	1	0	1	0
1	0	1	-	-	-	Х	X	Χ	X	Χ	X
1	1	0	-	-	-	Х	Χ	Χ	Χ	Χ	Χ
1	1	1	0	1	0	0	1	Χ	0	0	1

By Karnaugh maps

$$S_C = B', R_C = A, S_B = C, R_B = C'A, S_A = CA' + BA', R_A = A$$

Using S-R Flip-Flops (2/2)

☐ Alternative: derive S-R flip-flop inputs with K-maps (fasters?)

Q	Q ⁺	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	X	0

Recap: J-K Flip-Flops

- ☐ What is the relation between J, K and Q, Q⁺?
 - ➤ We do it reversely from Q and Q⁺ to J and K

J	K	Q	Q ⁺		Q	Q ⁺	J	K		Q	Q+	J	K
0	0	0	0	Linchanged	0	0	0	0		0)	0	V
0	0	1	1	} Unchanged	0	0	0	1		U	0	0	X
0	1	0	0	Docat to O	0	1	1	0		0	1	1	V
0	1	1	0	Reset to 0	0	1	1	1	0	1	1	Χ	
1	0	0	1	Cot to 1	1	0	0	1		1	0	V	1
1	0	1	1	Set to 1	1	0	1	1		1	0	X	1
1	1	0	1	Togglo	1	1	0	0		1	1	V	0
1	1	1	0	} Toggle	1	1 1	1	0		1	1	X	0

Using J-K Flip-Flops

☐ Derive J-K flip-flop inputs from the excitation table

С	В	Α	C+	B ⁺	A ⁺	J _C	K _C	J _B	K _B	J _A	K _A
0	0	0	1	0	0	1	X	0	X	0	X
0	0	1	-	-	-	X	Χ	Χ	Χ	Χ	Χ
0	1	0	0	1	1	0	Χ	Χ	0	1	Χ
0	1	1	0	0	0	0	Χ	Χ	1	Χ	1
1	0	0	1	1	1	X	0	1	X	1	Χ
1	0	1	-	-	-	X	Χ	Χ	Χ	Χ	Χ
1	1	0	-	-	-	Χ	Χ	Χ	Χ	Χ	Χ
1	1	1	0	1	0	X	1	X	0	Χ	1

By Karnaugh maps

$$J_{C} = B', K_{C} = A, J_{B} = C, K_{B} = C'A, J_{A} = C + B, K_{A} = 1$$

Implementation

☐ S-R flip-flops

☐ J-K flip-flops

Outline

- ☐ Registers and Register Transfers
- ☐ Shift Registers
- ☐ Design of Binary Counters
- ☐ Counters for Other Sequence
- ☐ Counter Design Using S-R and J-K Flip-Flops
- **□** Derivation of Flip-Flop Input Equations

Derivation of Flip-Flop Input Equations

- Determine the flip flop input equations from the <u>next-state</u> <u>equations</u> using K-maps
 - > Always copy X's from next state maps onto input maps first
 - > Fill in the remaining squares with 0's

Type	lagut	Q = (Q = 1		Rules for forming input map from next state map		
of FF	Input	$Q^{+} = 0$	Q+ = 1	$Q^+ = 0$	Q+ = 1	Q = 0 Half of Map	Q = 1 Half of Map	
D	D	0	1	0	1	No change	No change	
Т	Т	0	1	1	0	No change	Complement	
	S	0	1	0	Х	No change	Replace 1's with X's	
S-R	R	X	0	1	0	Replace 0's with X's Replace 1's with 0's	Complement	
J-K	J	0	1	X	Х	No change	Fill in with X's	
J-I/	К	Х	Х	1	0	Fill in with X's	Complement	

Important Tables

Q	Q ⁺	D
0	0	0
0	1	1
1	0	0
1	1	1

D		li	n_	ΕI	\mathbf{a}	n
U	Г	П	ν-	ГΙ	U	μ

Q	Q ⁺	Т
0	0	0
0	1	1
1	0	1
1	1	0

T Flip-Flop

Q	Q ⁺	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

S-R Flip-Flop

Q	Q ⁺	J	K
0	0	0	X
0	1	1	Χ
1	0	Χ	1
1	1	X	0

J-K Flip-Flop

3-Variable Example (1/3)

3-Variable Example (2/3)

3-Variable Example (3/3)

4-Variable Example (1/3)

BC Q	1A 00	01	11	10	BCQ	¹ A 00	01	11	10
00	0	1	0	1	00	0	1	1	0
01	X	1	1	0	01	X	1	0	1
11	1	х	Х	1	11	1	х	Х	0
10	0	0	0	Х	10	0	0	1	Х
'		Q	1+		'		Т	1	

4-Variable Ex. (2/3)

CQ_2 AE	3 00	01	11	10			
00	1	X	1	0			
01	0	0	X	1			
11	1	0	X	1			
10	Х	0	0	1			
Q ₂ ⁺							

CQ_2 AE	00	01	11	10	
00	1	X	1	0	
01	0	0	X	Х	
11	Х	0	Х	X	S ₂
10	Х	0	0	1	
CQ_2 AE	3 00	01	11	10	
00	0	X	0	X	
01	1	1	Х	0	
11	0	1	X	0	R ₂
10	Х	Х	Х	0	

4-Variable Ex. (3/3)

Q_3C	3 00	01	11	10		
00	0	0	1	Х		
01	0	1	Х	1		
11	X	Х	0	0		
10	1	1	1	0		
Q_3^+						

Q_3C AE	3 00	01	11	10	•
00	0	0	1	X	
01	0	1	Х	1	
11	Х	Х	Х	Х	J ₃
10	X	x	X	X	
Q_3C	3 00	01	11	10	J
Q_3C	3 00 X	01 X	11 X	10 X	
Q ₃ C 00	00				
Q ₃ C\	X	Х	Х	Х	K ₃

Q&A

Announcement (0513)

- ☐ Homework 3: grades will be announced soon
 - ➤ We are holding 24 points before demo
- ☐ Homework 4: due at noon on Jun 3
 - ➤ Lab 2 part will be announced next week
- ☐ Lab 2: May 20 (next week)
 - Please bring your laptop
 - Our plan is that you can complete most of Lab 2 in the lecture time
- ☐ Plan from now
 - ➤ May 20: Lab 2 + Short Talk by Prof. Jie-Hone Jiang
 - ➤ May 27: Lecture (+ Short Talk by Prof. Chien-Mo Li)
 - > Jun 3: Lab 1 and Lab 2 Demo
 - > Jun 10: Lecture
 - ➤ Jun 17: Final Exam