

CHAPTER 10 LINEAR PROGRAMMING

Iris Hui-Ru Jiang Fall 2017

Department of Electrical Engineering National Taiwan University

Linear Programming

- Course contents:
 - Linear programming
 - Formulation
 - Duality
 - The simplex method
- Reading:
 - Chapter 7 (Dasgupta)
 - Chapter 29 (Cormen)

Linear Programming

- Linear programming describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions.
- Linear programming consists of three parts:
 - A set of decision variables
 - An objective function:
 - maximize or minimize a given linear objective function
 - A set of constraints:
 - satisfy a set of linear inequalities involving these variables

Example: Profit Maximization (1/4)

- A boutique chocolatier has two products:
 - A (Pyramide): profit \$1 per box
 - B (Nuit): profit \$6 per box
- Constraints:
 - The daily demand for these exclusive chocolates is limited to at most 200 boxes of A and 300 boxes of B
 - The current workforce can produce a total of at most 400 boxes of chocolate per day
- Decision variables:
 - $-x_1 = Boxes of A$
 - $-x_2 = Boxes of B$
- Objective Function:
 - Maximize profit

Objective function
$$\max x_1 + 6x_2$$

Constraints $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

Example: Profit Maximization (2/4)

- A linear equation in x₁ and x₂ defines a line in the 2D plane
- A linear inequality designates a half-space
- The set of all feasible solutions of this linear program is the intersection of five half-spaces. It is a convex polygon

Linear programming

Example: Profit Maximization (3/4)

- Search for the optimal solution
 - It is a general rule of linear programs that the optimum is achieved at a vertex of the feasible region.

Example: Profit Maximization (4/4)

- The Simplex method: hill climbing
 - George Dantzig, 1947
 - Starts at a vertex, say (0, 0)
 - Repeatedly looks for an adjacent vertex (connected by an edge of the feasible region) of better objective value

Upon reaching a vertex that has no better neighbor, simplex

declares it to be optimal and halts

Multipliers?

```
max x_1 + 6x_2

x_1 \le 200 (1)

x_2 \le 300 (2)

x_1 + x_2 \le 400 (3)

x_1, x_2 \ge 0.
```

- Optimal: $(x_1, x_2) = (100, 300)$; objective value = 1900
- Can this answer be checked somehow?
 - (1) + 6*(2): $x_1 + 6x_2 \le 2000$ - 0*(1) + 5*(2) + (3): $x_1 + 6x_2 \le 1900$
 - The multipliers (0, 5, 1) constitute a certificate of optimality
 - How would we systematically find the magic multipliers?

Duality (1/3)

• Multipliers y_i 's must be nonnegative

Multiplier Inequality
$$y_1 x_1 \leq 200$$
 $y_2 x_2 \leq 300$
 $y_3 x_1 + x_2 \leq 400$

max
$$x_1 + 6x_2$$

 $x_1 \le 200$ (1)
 $x_2 \le 300$ (2)
 $x_1 + x_2 \le 400$ (3)
 $x_1, x_2 \ge 0$.

$$(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3.$$

 If the left-hand side looks like our objective function, the right-hand side is an upper bound on the optimum solution

$$x_1 + 6x_2 \le (y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$$

if
$$\left\{ \begin{array}{l} y_1, y_2, y_3 \ge 0 \\ y_1 + y_3 \ge 1 \\ y_2 + y_3 \ge 6 \end{array} \right\}.$$

• We want a tight bound! minimize $200y_1 + 300y_2 + 400y_3$

Duality (2/3)

 A new LP: finding multipliers that gives the best upper bound on our original LP

```
\begin{array}{lll} - \ \mathsf{Primal\ LP} & - \ \mathsf{Dual\ LP} \\ \max \ x_1 + 6x_2 & \min \ 200y_1 + 300y_2 + 400y_3 \\ x_1 \leq 200 & y_1 + y_3 \geq 1 \\ x_2 \leq 300 & y_2 + y_3 \geq 6 \\ x_1 + x_2 \leq 400 & y_1, y_2, y_3 \geq 0 \\ x_1, x_2 > 0 & \end{array}
```

- Any feasible value of dual LP is an upper bound on primal LP
- If we find a pair of primal and dual feasible values that are equal, they must be both optimal.

```
Primal: (x_1, x_2) = (100, 300); Dual: (y_1, y_2, y_3) = (0, 5, 1).
```

Duality (3/3)

Generic form:

Primal LP:

Dual LP:

$$\begin{aligned}
\max \ \mathbf{c}^T \mathbf{x} & \min \ \mathbf{y}^T \mathbf{b} \\
\mathbf{A} \mathbf{x} \le \mathbf{b} & \mathbf{y}^T \mathbf{A} \ge \mathbf{c}^T \\
\mathbf{x} \ge 0 & \mathbf{y} \ge 0
\end{aligned}$$

 Dual theorem: If a linear program has a bounded optimum, then so does its dual, and the new optimum

The Simplex Algorithm

let v be any vertex of the feasible region while there is a neighbor v' of v with better objective value: set v=v'

Every constraint specifies an *n*-dimensional half-space

Travel along "edges" until no improvement can be made

Vertex and Neighbors

let v be any vertex of the feasible region while there is a neighbor v' of v with better objective value: set v=v'

- Pick a subset of the inequalities. If there is a unique point that satisfies them with equality, and this point happens to be feasible,
 then it is a vertex
 - $\{2, 3, 7\} \rightarrow A$
 - $\{4, 6\} \rightarrow \text{no vertex}$
- Two vertices are neighbors if they have
 n 1 defining inequalities in common
 - $\{2, 3, 7\} \rightarrow A$
 - $\{1, 3, 7\} \rightarrow C$

The Simplex Algorithm

- On each iteration, simplex has two tasks:
 - Task 1: Check whether the current vertex is optimal
 - Task 2: Determine where to move next
- Both tasks are easy if the vertex happens to be at the origin
 - Transform the coordinate system to move vertex u to the origin

$$\max_{\mathbf{A}\mathbf{x}} \mathbf{c}^T \mathbf{x}$$
$$\mathbf{A}\mathbf{x} \le \mathbf{b}$$
$$\mathbf{x} > 0$$

if one of these enclosing inequalities is $\mathbf{a}_i \cdot \mathbf{x} \leq b_i$,

$$y_i = b_i - \mathbf{a}_i \cdot \mathbf{x}.$$

- The origin is optimal if and only if all $c_i \le 0$
- Task 2:
 - We can move by increasing some x_i for which $c_i > 0$
 - Until we hit some other constraint

Example (1/3)

Initial LP:

Current vertex: $\{4, 5\}$ (origin). Objective value: 0.

Move: increase x_2 .

5 is released, 3 becomes tight. Stop at $x_2 = 3$.

New vertex $\{4,3\}$ has local coordinates (y_1,y_2) :

$$y_1 = x_1, \quad y_2 = 3 + x_1 - x_2$$

Example (2/3)

Rewritten LP:

Current vertex: $\{4,3\}$. Objective value: 15.

Move: increase y_1 .

4 is released, 2 becomes tight. Stop at $y_1 = 1$.

New vertex $\{(2), (3)\}$ has local coordinates (z_1, z_2) :

$$z_1 = 3 - 3y_1 + 2y_2, \quad z_2 = y_2$$

Example (3/3)

Rewritten LP:

$$\max 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2 \\
-\frac{1}{3}z_1 + \frac{5}{3}\overline{z_2} \le 6 \quad ①$$

$$z_1 \ge 0 \quad ②$$

$$z_2 \ge 0 \quad ③$$

$$\frac{1}{3}z_1 - \frac{2}{3}z_2 \le 1 \quad ④$$

$$\frac{1}{3}z_1 + \frac{1}{3}z_2 \le 4 \quad ⑤$$

Current vertex: $\{2,3\}$. Objective value: 22.

Optimal: all $c_i < 0$.

Solve (2), (3) (in original LP) to get optimal solution $(x_1, x_2) = (1, 4)$.

Standard Form

Variants

- Either a maximization or a minimization problem
- Constraints can be equations and/or inequalities
- Variables are restricted to be nonnegative or unrestricted in sign

Standard form

- Objective function: minimization
- Constraints: equations
- Variables: nonnegative

$$\max x_1 + 6x_2$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 \le 400$$

$$x_1, x_2 \ge 0$$

$$\min \ -x_1 - 6x_2$$

$$x_1 + s_1 = 200$$

$$x_2 + s_2 = 300$$

$$x_1 + x_2 + s_3 = 400$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$
 Slack variables