Networks II: Market Design—Lecture 2 Matching Markets with Non-transferable Utilities

ARPITA GHOSH

Dept. Of Information Science, Cornell University

'Stuff'

- New to course:
 - Please catch up on Lecture 1, especially course information
 - Missed material: Slides on CMS (recall not full transcript!)
- Recall also: In general, responsible for content of lecture (logistics and course material), whether present in class or not

Outline

- Introduction to matching markets without money
- Introduction to preferences
- Binary preference structures: Ideal allocations; perfect matchings
- Introduction to Matching Theorem

Matching

- Matching markets: Allocation of indivisible resources
- Two sets of entities: Entity from one side of market 'can be matched' only with an entity from other side
 - Value created only when entities from opposite sides are paired
 - Entities: Agents, objects
 - Retail goods, markets for services, knowledge exchange, . . .

- Matching markets with 'one-sided preferences':
 - Agents on one side, objects on the other
 - Allocation/exchange of objects among agents
- Two-sided preferences: Agents on both sides

Allocations in matching markets

- Central issue: Which entities to pair together
 - How to choose matching?
- Networks I: Maximize total value of match
 - Suppose each edge has 'value' vij
 - v_{ij} : Agent i's (maximum) willingness to pay for object j
 - Pair agents and objects to maximize welfare: $\sum v_{ij}$
 - Market-clearing prices achieve welfare-maximizing allocation

Matching markets without money

- Networks I: Matching markets with money
- Money—payments—central to "making all agents happy"
 - Cannot always give every agent item they like best
 - But: Can set prices so every agent likes her assignment best
- Money: Transfer utility between agents
- What happens in matching markets where payments are infeasible?
 - 'Matching markets with non-transferable utilities'

Markets without money: New conceptual questions

- Settings with non-transferable utilities
 - Agent-object markets: Dorm rooms, course allocation . . .
 - Agent-agent markets: Students-schools, men-women, . . .
- 'What happens' in matching markets without money?
 - Recall central issue: How to allocate/pair entities?
 - Agents with preferences: Cannot always make everybody happy
 - No money: Cannot make up for unhappiness with money!
 - What are 'good' allocations?

But before we go there...

- Are there really 'important' markets without money?
 - And can anything really be done about them?
- Yes! 2012 Nobel Prize in Economics for 'market design'
 - Al Roth and Lloyd Shapley: "For the theory of stable allocations and the practice of market design"
 - Market design: Moving beyond traditional economics (analyzing institutions) to designing for better outcomes
 - All cited applications: Design of matching markets without money

A quick aside: 'Stable allocations and market design'

- 'Theory of stable allocations':
 - Marriage model, Gale-Shapley algorithm, ...
- 'Practice of market design':
 - ullet Redesign of NRMP (hospital-intern residency) match (\sim 1984)
 - Redesigning school choice assignments for fairness (Boston, NYC, \sim 2003)
 - Designing kidney exchanges to maximize number of transplants, . . . (~ 2003 onwards)

Outline

- Introduction to matching markets
 - Matching markets: One-sided and two-sided preferences
 - Markets with non-transferable utilities
- One-sided markets
 - Binary preference structures: Ideal allocations and perfect matchings
 - Existence of perfect matchings: Proving the Matching Theorem

Starting out simple

- Our question: 'What happens' in matching markets without money?
 - How to allocate/pair entities?
- Note: Need 'language' for preferences—could be a design element!
- To begin: Matching markets with one-sided preferences
- Simplest preferences: Binary (0-1) preferences
 - Each agent finds each object acceptable or not
 - Room allocation, Doodle polls for timeslots, . . .

Markets with one-sided binary preferences

- Canonical setting for binary preferences
 - Room allocation: n students, n rooms
 - A room is either acceptable to a student or not
- Choosing an allocation: Ideal of 'perfect happiness'
 - Can we assign students to rooms to 'make everyone happy'?
- Modeling choices: Binary preferences, no group preferences, no conditional preferences, centralized allocation, . . .

Markets with one-sided binary preferences

- Abstract model: Preferences as bipartite graph M
 - Bipartite graph: Nodes can be partitioned into N_L , N_R so no edges amongst nodes in N_L , N_R
 - LHS nodes: rooms; RHS nodes: students
 - Edge: Room acceptable to student
- \bullet Matching: Subset of edges in ${\mathcal M}$ such that no two edges share an endpoint node
- Size of matching: Number of edges in it

Matchings and room assignments

- Perfect matching: Set of edges that contains each node in M, exactly once
- ullet There is an assignment of rooms to students to 'make everyone happy' iff ${\mathcal M}$ contains a perfect matching

ullet How to decide whether or not ${\mathcal M}$ has a perfect matching?

Outline

- Introduction to matching markets
 - One-sided and two-sided markets
 - Markets with non-transferable utilities
 - Market design
- One-sided markets
 - Binary preference structures: Ideal allocations and perfect matchings
 - Existence of perfect matchings: The Matching Theorem

Constricted sets

• \mathcal{M} : Bipartite graph with n nodes on each side

- Constricted set S in \mathcal{M} : |S| > |N(S)|
 - For simplicity, in this course: S always on 'agent side' of graph

Constricted sets and perfect matchings: The Matching Theorem

How to decide whether or not \mathcal{M} has a perfect matching?

Theorem

A bipartite graph (with equal numbers of nodes on the left and right) has no perfect matching iff it contains a constricted set.

- Proven independently by Konig (1931); Hall (1935)
- 'Matching theorem'; 'Hall's theorem'

Why study the Matching Theorem?

- Why is the matching theorem useful?
 - Provide evidence of non-existence of perfect matching
 - Proof contains important ideas (including for 'improving' matchings in more complex settings)
- What will we learn from the proof?
 - Enlarging a matching: Concept of augmenting paths
 - How to find a perfect matching
 - Maximum matchings
- 'Improving' matchings in other models: Key ideas used in School Choice!

Proving the Matching Theorem

- A bipartite graph has no perfect matching **iff** it contains a constricted set |S| with |S| > |N(S)|
- One direction is easy: If constricted set, no perfect matching

Proving the Matching Theorem

- \bullet 'Only if': No perfect matching \Rightarrow Constricted set
 - No other reason for a perfect matching to not exist(!)
- Key issue: Identifying a constricted set, knowing only that there is no perfect matching
- Outline of proof structure:
 - No perfect matching: Maximum matching does not include all nodes
 - Start with a maximum matching
 - Try to enlarge maximum matching: Will fail
 - Failed attempt at enlarging returns a constricted set (unless original matching was perfect)!

Enlarging matchings

• How do we enlarge a given matching in a bipartite graph?

 Alternating path: A path that alternates between non-matching and matching edges

Enlarging matchings

Augmenting paths: Alternating paths with unmatched endpoints

• Claim: A matching in a bipartite graph can be enlarged if there is an augmenting path

Enlarging matchings

Augmenting paths: Alternating paths with unmatched endpoints

 Claim: A matching in a bipartite graph can be enlarged if there is an augmenting path

Finding augmenting paths

 Augmenting paths can be much longer than our previous example:

Finding augmenting paths

 Augmenting paths can be much longer than our previous example:

Finding augmenting paths

- And they aren't always easy to find!
- Is this a maximum matching?

• If not, can you find an augmenting path?

Proving Hall's theorem: Where are we now?

- Recall key issue: Identifying a constricted set, knowing only that there is no perfect matching
 - Start with a maximum matching
 - Try to enlarge it
 - Augmenting paths: A matching in a bipartite graph can be enlarged if there is an augmenting path
 - Show this produces a constricted set unless the matching was perfect
- Alternating Breadth-first Search: A way to look for augmenting paths so that a failure to find one produces a constricted set— unless the matching was perfect to start with