Programming Lab – Ballistic Motion: Constant Acceleration in 2-Dimensions - PYTHON PHYS 2511 – Prof. Matthew Newby – Spring 2018

Goal:	Create a python program that iteratively calculates and visualizes the motion of an object in a constant gravitational field.
Requirements:	The iterative calculation may only deviate from the analytic trajectory by 1%. Inputs and outputs should be on one sheet, with calculations on other sheet(s).
Inputs:	 Gravitational constant Initial velocity magnitude Initial velocity angle Initial height Time step
Outputs:	 Highest point Distance to ground Flight time Optional: Plot of x-y motion (Covered next class)

Possible Issues: Accuracy

Background:

The position of an object in 1-dimension is given analytically by: $x(t) = x_0 + v_0 t + \frac{1}{2}at^2$ Where the "0" subscript represents initial values.

The Average Velocity and Average Acceleration are given by:

$$\bar{a} = \frac{\Delta \vec{v}}{\Delta t}$$
 (1) $\bar{v} = \frac{\Delta \vec{x}}{\Delta t}$ (2)

Rearranging:

$$\Delta v = a\Delta t$$
 (3) $\Delta x = v\Delta t$ (4)

Given initial values, and choosing a value for Δt , we can calculate v, Δt after 0, from that x at Δt .

We can keep going, using the output from the previous step (i), to get the velocity and position at a new step (i+1), like so:

$$v_{i+1} = v_i + a\Delta t$$
 (5) $x_{i+1} = x_i + v\Delta t$ (6)

We can calculate as many steps as we need, depending on our ending condition.