TD1 STRUCTURES ALGÉBRIQUES POUR L'INFORMATIQUE

Exercice 1 - Exemples d'image directe et d'image réciproque

Soit $f:\{a,b,\ldots z\}\to\{97,98,\ldots 122\}$, qui à un caractère associe le code ASCII du caractère, et soit $A=\{c,\ldots,h\}$ et $B=\{100,\ldots 110\}$. Déterminer

- 1. l'image directe de A par f;
- 2. l'image réciproque de B par f.

Dec	H	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Hx	Oct	Html Ch	<u>ır</u>
0	0	000	NUL	(null)	32	20	040	6#32;	Space	64	40	100	a#64;	0	96	60	140	`	8
1	1	001	SOH	(start of heading)	33	21	041	6#33;	1	65	41	101	A	A	97	61	141	@#97;	a
2	2	002	STX	(start of text)	34	22	042	@#3 4 ;	**	66	42	102	B	В	98	62	142	@#98;	b
3	3	003	ETX	(end of text)	35	23	043	# ;	#				C						C
4	4	004	EOT	(end of transmission)				%#36;					D					@#100;	
5	5	005	ENQ	(enquiry)				%#37;					E					a#101;	
6				(acknowledge)				&					a#70;					a#102;	
7				(bell)				6#39;					G					@#103;	
8		010		(backspace)				&# 4 0;					H					h	
9	-	011		(horizontal tab)				6#41;					6#73;					i	
10		012		(NL line feed, new line)				6#42;					a#74;					a#106;	
11		013		(vertical tab)				a#43;					a#75;					k	
12	_	014		(NP form feed, new page)				a#44;					L					a#108;	
13	_	015		(carriage return)				%#45 ;			_		M					m	
14	_	016		(shift out)				a#46;					a#78;					n	
15		017		(shift in)				6#47;					6#79;					o	
		020		(data link escape)				a#48;					P					p	
			DC1	(device control 1)				6# 49 ;					Q					@#113;	
18	12	022	DC2	(device control 2)				2					R					@#114;	
				(device control 3)				3					%#83;					s	
20	14	024	DC4	(device control 4)				4					 4 ;					a#116;	
21	15	025	NAK	(negative acknowledge)				5					U		1			@#117;	
22	16	026	SYN	(synchronous idle)				 4 ;					V		1			@#118;	
				(end of trans. block)				6#55;					W					6#119;	
			CAN	(cancel)				8					X					@#120;	
25	19	031	EM	(end of medium)				<u>4,57;</u>					6#89;					@#121;	
				(substitute)				:					Z					z	
			ESC	(escape)				;					[@#123;	
		034		(file separator)				<					\					@#12 4 ;	
		035		(group separator)				=					6#93 ;					}	
		036		(record separator)				>					4 ;					~	
31	1F	037	US	(unit separator)	63	ЗF	077	?	2	95	5F	137	_ ;	_	127	7F	177	@#127;	DEL
													5	ourc	e: 4	AVW.	.Look	upTables	.com

Exercice 2 - Exemples d'image directe et d'image réciproque

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$. Déterminer
 - (a) l'image directe de $A = \{-2, 3\}$ par f;
 - (b) l'image de f.
 - (c) l'image réciproque de $A = \{4, 9\}$ par f;
 - (d) l'image réciproque de \mathbb{R}_{-} par f;
 - (e) l'image directe de [-1, 4] par f;
 - (f) l'image réciproque de [-1, 4] par f.
- 2. On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x^2 + y^2$. Soit $a \in \mathbb{R}$. Déterminer selon la valeur de a, l'image réciproque $f^{-1}(\{a\})$.
- 3. On considère la fonction $\sin : \mathbb{R} \to \mathbb{R}$. Quelle est l'image directe, par \sin , de \mathbb{R} ? De $[0, 2\pi]$? de $[0, \pi/2]$? Quelle est l'image réciproque, par \sin , de [0, 1]? de [3, 4]? de [1, 2]?

Exercice 3 - Exemples d'image directe et d'image réciproque

 $M_2(\mathbb{Z})$ désigne l'ensemble des matrices carrées 2×2 à coefficients entiers. Soit $f: \mathcal{M}_2(\mathbb{Z}) \to \mathcal{M}_2(\mathbb{Z})$, $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \mapsto \begin{pmatrix} x+2 & y-3 \\ z+1 & t \end{pmatrix}$, et soit A l'ensemble des matrices carrées 2×2 à coefficients entiers positifs. Déterminer

- 1. l'image directe de A par f;
- 2. l'image réciproque de A par f.

Exercice 4 - Ensembles et images réciproques

Soient E et F deux ensembles et soit $f: E \to F$. Soient également A et B deux parties de F.

- 1. Démontrer que $A \subset B \implies f^{-1}(A) \subset f^{-1}(B)$. La réciproque est-elle vraie?
- 2. Démontrer que $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 3. Démontrer que $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Exercice 5 - Injections, surjections, bijections: quelques exemples

Les fonctions suivantes sont-elles injectives ? surjectives ? bijectives ?

- 1. la fonction qui associe à une voiture sa plaque d'immatriculation;
- 2. la fonction qui associe à une carte réseau son adresse MAC (= identifiant physique stocké dans la carte réseau conçu pour être unique au monde).

Exercice 6 - Injections, surjections, bijections : sur un téléphone

Soit C l'ensemble des caractères composé de lettres (A, B, ..., Z), de chiffres (0, 1, 2, ..., 9), du dièse (#) et de l'étoile (*). On définit f comme la fonction qui associe à un élément de C une touche de téléphone selon le clavier suivant :

Par exemple, f(A) est la touche en haut au milieu.

Les fonctions suivantes sont-elles injectives ? surjectives ? bijectives ?

- 1. la fonction f;
- 2. la fonction f dont l'ensemble de départ est restreint aux lettres A, B, \ldots, Z ;
- 3. la fonction f dont l'ensemble de départ est restreint aux chiffres $0, 1, \ldots, 9$;
- 4. la fonction f dont l'ensemble de départ est restreint au dièse, à l'étoile et aux chiffres 0, 1, ..., 9.

Exercice 7 - Des exemples plus mathématiques

Les fonctions suivantes sont-elles injectives ? surjectives ? bijectives ?

$$f_1: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto 2n, \ f_2: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto -n$$

 $f_3: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2, \ f_4: \mathbb{R} \to \mathbb{R}_+, \ x \mapsto x^2$
 $f_5: \mathbb{C} \to \mathbb{C}, z \mapsto z^2.$

Exercice 8 - Encore des exemples

Les applications suivantes sont-elles injectives, surjectives, bijectives?

- 1. $f: \mathbb{N} \to \mathbb{N}, \ n \mapsto n+1$.
- 2. $g: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+1$.
- 3. $h: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x + y, x y)$.

Exercice 9 - Injective ou surjective

L'application $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x+y,xy)$ est-elle injective? surjective?

Exercice 10 - Caractérisations

Soit $f: E \to F$ et $g: F \to G$ deux applications. On note $h = g \circ f$ la composée.

- 1. On suppose h injective. Montrer que f est injective.
- 2. On suppose h surjective. Montrer que g est surjective.
- 3. On suppose h injective et f surjective. Montrer que g est injective.
- 4. On suppose h surjective et g injective. Montrer que f est surjective.

Exercice 11 - Caractérisations

Soient X, Y, Z trois ensembles et $f: X \to Y$ une application.

- 1. Montrer que f est injective si et seulement si, pour tout $g: Z \to X$ et tout $h: Z \to X$, on a $f \circ g = f \circ h \implies g = h$.
- 2. Montrer que f est surjective si et seulement si, pour tout $g: Y \to Z$ et tout $h: Y \to Z$, on a $g \circ f = h \circ f \implies g = h$.

Exercice 12 - Composition et injectivité

Soient f et g les applications de N dans N définies par f(x) = 2x et

$$g(x) = \begin{cases} \frac{x}{2} & \text{si } x \text{ est pair} \\ 0 & \text{si } x \text{ est impair.} \end{cases}$$

Les applications f et g sont-elles injectives? surjectives? bijectives? Déterminer $g \circ f$ et $f \circ g$. Sont-elles bijectives?

Exercice 13 - Un exemple avec des fonctions

Soit
$$f: \mathbb{R} \to \mathbb{R}$$
 définie par $f(x) = 2x/(1+x^2)$.

1. f est-elle injective? surjective?

- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.
- 3. Montrer que la restriction $g: [-1,1] \to [-1,1], g(x) = f(x)$ est une bijection.

EXERCICE 14 - Une bijection de \mathbb{N}^2 dans \mathbb{N}

Soit $f: \mathbb{N}^2 \to \mathbb{N}^*$, $(n,p) \mapsto 2^n(2p+1)$. Démontrer que f est une bijection. En déduire une bijection de \mathbb{N}^2 sur \mathbb{N} .

EXERCICE 15 - Un exemple avec de l'arithmétique

Soit $f: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{Q}$, $(p,q) \mapsto p + \frac{1}{q}$. f est-elle injective, surjective?

Exercice 16 - Image directe de l'image réciproque... et vice-versa!

Soient E et F deux ensembles et $f: E \to F$. Démontrer que

- 1. $\forall A \subset E, A \subset f^{-1}(f(A));$
- 2. f est injective ssi $\forall A \subset E, f^{-1}(f(A)) = A$.
- 3. $\forall B \subset F, \ f(f^{-1}(B)) = B \cap f(E).$
- 4. $\forall B \subset F, f(f^{-1}(B)) \subset B$.
- 5. f est surjective ssi $\forall B \subset F$ $f(f^{-1}(B)) = B$.
- 6. f est bijective ssi $\forall A \subset E$ $f(\overline{A}) = \overline{f(A)}$ (où \overline{A} désigne le complémentaire de A dans E et $\overline{f(A)}$ désigne le complémentaire de f(A) dans F).

Exercice 17 - Intersection d'images et d'images réciproques

Soit E, F deux ensembles et $f: E \to F$. Soit $A \subset E$ et $B \subset F$. Démontrer l'équivalence :

$$f(A) \cap B = \emptyset \iff A \cap f^{-1}(B) = \emptyset.$$

Exercice 18 - Fonction définie sur l'ensemble des parties

Soient E un ensemble, $\mathcal{P}(E)$ l'ensemble de ses parties, et A et B deux parties de E. On définit

$$f: \mathcal{P}(E) \rightarrow \mathcal{P}(A) \times \mathcal{P}(B)$$

 $X \mapsto (X \cap A, X \cap B).$

- 1. Montrer que f est injective si et seulement si $A \cup B = E$.
- 2. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 3. Donner une condition nécessaire et suffisante sur A et B pour que f soit bijective. Donner dans ce cas la bijection réciproque.

Exercice 19 - Fonctions et fonctions d'ensemble

Soient E et F deux ensembles, et $f: E \to F$. On définit deux applications f^{\sharp} et f_{\sharp} par :

$$f^{\sharp}: \mathcal{P}(E) \to \mathcal{P}(F), \qquad f^{\sharp}(A) = f(A)$$

 $f_{\sharp}: \mathcal{P}(F) \to \mathcal{P}(E), \qquad f_{\sharp}(A) = f^{-1}(A).$

Démontrer que

1. f^{\sharp} est injective si et seulement si f est injective.

2. f_{\sharp} est injective si et seulement si f est surjective.

Exercice 20 - Fonctions et fonctions d'ensemble

- 1. Déterminer une bijection de \mathbb{N} dans \mathbb{N}^* .
- 2. Déterminer une bijection de $\{1/n; n \geq 1\}$ dans $\{1/n; n \geq 2\}.$
- 3. Déduire de la question précédente une bijection de [0,1] dans [0,1[. (Indication: Séparer [0,1] en 2 parties : les réels qui s'écrivent 1/n, et les autres. Pour les premiers, prendre l'application précédente. Pour les seconds, appliquer l'identité!)
- 4. Déterminer une bijection de \mathbb{N} dans \mathbb{Z} .