TP 5-Découverte des chaînes de Markov

Durée: 3h

1 Chaîne de Markov

1.1 Notion de chaîne de Markov

Définition 1 (Chaîne de Markov)

Soient (Ω, \mathcal{A}, P) un espace probabilisé et $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires définies sur (Ω, \mathcal{A}, P) et à valeurs dans un ensemble E. On dit que $(X_n)_{n \in \mathbb{N}}$ est une **chaîne de Markov** si pour tout $n \in \mathbb{N}$, pour tout $(x_0, \ldots, x_{n+1}) \in E^{n+2}$ tels que $P(X_0 = x_0, \ldots, X_n = x_n) > 0$ on a

$$P_{[X_0=x_0]\cap\cdots\cap[X_n=x_n]}([X_{n+1}=x_{n+1}])=P_{[X_n=x_n]}([X_{n+1}=x_{n+1}]).$$

Dans ce cas, on dit que

- E est l'**espace d'états** de la chaîne de Markov;
- pour tout $n \in \mathbb{N}$, pour tout $(x, y) \in \mathbb{E}^2$ la probabilité $P_{[X_n = x]}([X_{n+1} = y])$, notée $p_{x,y}(n)$ est appelée la **probabilité de transition** pour aller de l'état x à l'état y à l'instant n.

Remarque 1

Intuitivement, la variable n représente le temps et la suite $(X_n)_{n\in\mathbb{N}}$ représente l'évolution d'une grandeur aléatoire au cours du temps. La relation

$$\mathbf{P}_{[\mathbf{X}_0 = x_0] \cap \cdots \cap [\mathbf{X}_n = x_n]} \left([\mathbf{X}_{n+1} = x_{n+1}] \right) = \mathbf{P}_{[\mathbf{X}_n = x_n]} \left([\mathbf{X}_{n+1} = x_{n+1}] \right)$$

signifie que le futur (l'état X_{n+1} à l'instant n+1) ne dépend du passé (les états $X_0,...,X_n$) que par le présent (l'état X_n à l'instant n).

Définition 2 (Chaîne de Markov homogène)

Une chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ à valeurs dans un ensemble E est dite **homogène** si pour tout $(x, y) \in E^2$ les probabilités de transition pour aller de l'état x à l'état y ne dépendent pas du temps :

$$\forall n \in \mathbb{N}, \quad p_{x,y}(n) = p_{x,y}(0)$$

autrement dit

$$\forall n \in \mathbb{N}, \quad P_{[X_n = x]}([X_{n+1} = y]) = P_{[X_0 = x]}([X_1 = y])$$

On note alors simplement $p_{x,y}$ les probabilités de transition.

Aramis le chat répartit son temps entre ses trois occupations préférées : dormir, manger et faire sa toilette. Au début de la journée, il dort puis il change d'activité toutes les heures de la façon suivante :

- Si, à l'heure *n*, il est en train de manger, alors il va dormir l'heure suivante avec probabilité 0.3 et faire sa toilette avec probabilité 0.7.
- Si, à l'heure n, il est en train de dormir, alors à l'heure n+1 il continue de dormir avec probabilité 0.4, il va manger avec probabilité 0.3 et il va faire sa toilette avec probabilité 0.3.
- Si, à l'heure *n*, il est en train de faire sa toilette, il va manger l'heure suivante avec probabilité 0.4 et il va dormir avec probabilité 0.6.

On s'intéresse ici à l'évolution du comportement d'Aramis. On numérote les activités de 1 à 3 (1 :« Dormir », 2 :« Manger », 3 :« Faire sa toilette ») et, pour tout $n \in \mathbb{N}$, on appelle X_n la variable aléatoire égale à l'état du chat à l'instant n.

· Jı	ustifier que $(X_n)_{n\in\mathbb{N}}$ est une chaîne de Markov

Diagramme de transition

Une chaîne de Markov homogène $(X_n)_{n\in\mathbb{N}}$ avec un nombre fini d'états peut être représentée par un graphe orienté pondéré :

- les sommets correspondent aux états;
- une flèche relie le sommet x aux sommets y si $p_{x,y} > 0$; cette flèche est pondérée par $p_{x,y}$.

Ce graphe s'appelle le diagramme de transition de la chaîne de Markov.

La chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ décrivant le comportement d'Aramis le chat a trois états (1, 2 et 3). Son diagramme de transition va donc comporter 3 sommets. Lorsqu'Aramis est dans l'état 1 (« Dormir ») l'instant suivant

- il reste dans l'état 1 avec probabilité 0.4 : le diagramme de transition comporte une flèche du sommet 1 vers le sommet 1 pondérée par 0.4;
- il va dans l'état 2 (« Manger ») avec probabilité 0.3 : le diagramme de transition comporte une flèche du sommet 1 vers le sommet 2 pondérée par 0.3 ;
- il va dans l'état 3 (« Faire sa toilette ») avec probabilité 0.3 : le diagramme de transition comporte une flèche du sommet 1 vers le sommet 3 pondérée par 0.3.

FIGURE 1 - Diagramme de transition (incomplet)

► Compléter le diagramme de transition de la chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ décrivant le comportement d'Aramis.

1.2 Matrice de transition

Définition 3 (Matrice de transition)

On considère une chaîne de Markov homogène $(X_n)_{n\in\mathbb{N}}$ avec un nombre fini m d'états numérotés de 1 à m. La **matrice de transition** de $(X_n)_{n\in\mathbb{N}}$ est la matrice $A=(p_{i,j})$ où $p_{i,j}$ est la probabilité de transition pour passer de l'état i à l'état j. Autrement dit, $A=(p_{i,j})$ est la matrice de $\mathcal{M}_m(\mathbb{R})$ définie définie par :

$$\forall (i, j) \in [1, m]^2, \quad p_{i, j} = P_{[X_0 = i]}(X_1 = j).$$

>	Déterminer la matrice de transition A de la chaîne de Markov de $(X_n)_{n\in\mathbb{N}}$ décrivant le comportement d'Aramis.
D	ans la suite, on note $U_n = (P(X_n = 1) P(X_n = 2) P(X_n = 3))$ le vecteur définissant la loi de X_n .
•	A l'aide de la formule des probabilités totales, exprimer $P(X_{n+1}=1)$ en fonction de $P(X_n=1)$, $P(X_n=2)$, $P(X_n=3)$
	et des coefficients de la matrice de transition A.
	English and a making D(V 2) at D(V 2) Find delicing and a material of SN 11 11 A
	Exprimer de même $P(X_{n+1} = 2)$ et $P(X_{n+1} = 3)$. En déduire que, pour tout $n \in \mathbb{N}$, $U_{n+1} = U_n A$.
	Exprimer U_n en fonction de A et de U_0 . Que signifie le choix $U_0 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$? Comment obtient-on U_n dans ce
	cas?
•	Avec Scilab, calculer A^5 , A^{10} , A^{20} , A^{100} . Que remarque-t-on?

	D et une matrice inversible P telles que A = PDP ⁻¹ . En déduire A ⁿ pour tout $n \in \mathbb{N}$.
L	
S	imulation avec Scilab
	Simulation des trajectoires
-[]	Définition 4 (Trajectoire d'une chaîne de Markov)
c	Caiant (O . / D) un canaca probabilisá at (V) una abaîna da Markay dáfinica aux (O . / D)
	Soient (Ω, \mathscr{A}, P) un espace probabilisé et $(X_n)_{n \in \mathbb{N}}$ une chaîne de Markov définies sur (Ω, \mathscr{A}, P) . Pour $\omega \in \Omega$, on appelle trajectoire de taille n la suite finie $(X_0(\omega), \ldots, X_n(\omega))$.
_	out $\omega \in \mathbb{Z}_2$, on append trajectoric de tame n it out to fine $(x_0(\omega), \dots, x_n(\omega))$.
_	
0	de 1 (Simulation de trajectoire avec Scilab)
i I	a matrice de transition A est déjà définie dans Scilab, la commande
	<pre>grand(n,'markov', A ,x0)</pre>
	_
	rmet de simuler une trajectoire de taille n dont l'état initial est x0 où A est la matrice de transition de la cl Markov :
е.	
	• la trajectoire obtenue démarre à l'instant 1 ;
	• les états sont nommées 1,, m où m est la taille de A.
Ç	Simuler une trajectoire de la vie d'Aramis sur 100 heures. Combien d'heure passe-t-il à dormir? Manger?
Γ	minuter une trajectorie de la vie d'Admins sur 100 ficures. Combien d ficure passe è il a dornini : Maniger :
L	Comportement asymptotique
(souhaite déterminer le comportement du chat après n heures lorsque n tend vers $+\infty$. Pour cela, on com
n	a loi théorique de X_n donnée par le vecteur U_n ,
n l	une valeur approchée de U_n obtenue en déterminant l'effectif de chaque état pour un nombre $\mathbb N$ de simula
n l	une valeur approchée de U_n obtenue en déterminant l'effectif de chaque état pour un nombre N de simula de trajectoires de taille \mathtt{n} .
n l	une valeur approchée de U_n obtenue en déterminant l'effectif de chaque état pour un nombre $\mathbb N$ de simula
n l	une valeur approchée de U_n obtenue en déterminant l'effectif de chaque état pour un nombre N de simula de trajectoires de taille \mathtt{n} .
n l	une valeur approchée de U_n obtenue en déterminant l'effectif de chaque état pour un nombre N de simula de trajectoires de taille \mathtt{n} .
n l	une valeur approchée de U_n obtenue en déterminant l'effectif de chaque état pour un nombre N de simula de trajectoires de taille \mathtt{n} .

On considère le programme incomplet suivant :

```
//Valeur des parametres
\mathbb{N} = ------
n=----
x0 = -----
//Distribution theorique
A = [0.4, 0.3, 0.3; 0.3, 0, 0.7; 0.6, 0.4, 0]
B=A^n
P=----
//Valeurs observees
0bs = zeros(1,N)
for i = 1: N
   trajectoire = -----
    Obs(i) = -----
end
//Calcul des effectifs observes
v=tabul(Obs)
clf()
//Diagramme des frequences observees
bar(v(:, 1) + 0.5,----, width=0.4, 'red')
//Diagramme de la distribution theorique
bar (1:3,P,width=0.4)
```

- ► Compléter le programme ci-dessus qui
 - demande à l'utilisateur un entier N, un entier n et un état initial x0,
 - stocke dans la variable P la loi théorique de X_n donnée par le vecteur U_n ,

3)) $_{n\in\mathbb{N}}$ convergent) qu'elle relation peut-on en déduire entre sa limite U_{∞} et A?

- simule \mathbb{N} trajectoires et stocke dans \mathbb{O} bs les réalisations de \mathbb{X}_n ,
- affiche le diagramme en barre des fréquences observées et de la distribution théorique.
- ► Exécuter le programme pour N=1000, n=50, x0=1.

	Executer to programme pour w 1000, if 00, x0 1.
>	Observer le diagramme obtenu et comparer le avec les diagrammes obtenues pour les mêmes valeurs de $\mathbb N$ et de n mais en prenant comme état initial 2 puis 3. Que remarque-t-on?
>	Que cela signifie-t-il sur le comportement à terme d'Aramis?
•	En admettant que $(U_n)_{n\in\mathbb{N}}$ converge (c'est-à-dire que les trois suites $(P(X_n=1))_{n\in\mathbb{N}}$, $(P(X_n=2))_{n\in\mathbb{N}}$, $(P(X_n=2))_{n\in\mathbb{N}}$

Définition 5 (I	Distribution stationnaire)
Un vecteur lign) un espace probabilisé et $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov définies sur (Ω, \mathcal{A}, P) . ne π dont tous les coefficients sont positifs ou nuls et dont la somme des coefficients vaut 1 ribution stationnaire ou loi stationnaire si
	$\pi A=\pi$
où A est la mat	rice de transition de la chaîne de Markov.
arque 2	
	e distribution stationnaire alors ${}^t\pi$ est un vecteur propre de ${}^t{\rm A}$ associé à la valeur propre 1.
2. On peut me tribution in	ontrer qu'une chaîne de Markov homogène sur un espace d'états fini possède toujours un nvariante.
	ypothèse supplémentaire (appelée irréductibilité) on peut montrer que chaîne de Markov h n espace d'états fini possède une unique distribution invariante.
Que représente	e le vecteur U_∞ pour la chaîne de Markov $(\mathrm{X}_n)_{n\in\mathbb{N}}$?
A l'aide du calc	cul de A^n réalisé précédemment, déterminer une loi stationnaire de la chaîne de Markov (X_n
1	