

EGEC 180 – Digital Logic and Computer Structures

Spring 2024

Lecture 3: Logic Gates (1.5)

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton

Office Hour: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Office Hour Zoom Meeting ID: 891 2907 5346

Email: <u>ramahto@fullerton.edu</u> **Phone No**: 657-278-7274

Logical Gates

Basic Operations

- The basic operations of Boolean Algebra are AND, OR, and complement (also known as the Inverse or NOT operations)
- Operator precedence: Parentheses, NOT, AND, OR
- Inverse or NOT or Negation or Complement
 - So here, we formally state that the complement of "0" is "1", complement of "1" is "0".

Example: Ones Complement arithmetic we flipped the 1s and 0s.

• Symbol a tick mark (') is often used to denote complementation.

Example: if
$$X = 0$$
 then $X' = 1$
if $X = 1$ then $X' = 0$

Basic Operations (AND)

AND operation -> Z=1 iff X=1 and Y=1
 if X=1 AND Y=1 then Z=1 else Z=0;

When two or more variables are ANDed together, the value of the result will be 1 if and only if (iff) all the variables have the value 1. If any of the variables have the value 0, the result of the AND operation will be 0.

Representation: XY=Z, X•Y=Z, X.Y=Z

Truth Table

AB	$C = A \cdot B$
0 0	0
0 1	0
10	0
11	1
Input	Output

Basic Operations (OR)

 OR operation -> Z = 0, iff X=0 and Y=0 if X=1 OR Y=1 then Z=1 else Z=0;

When two or more variables are ORed together, the value of the result will be 1 if and only if (iff) one or both of the variables have the value 1. The result of the OR operation will be a 0 iff all of the variables have the value 0.

$$X+Y=Z$$
, $X \vee Y=Z$

NOTE: Binary Logic (Boolean Algebra) ≠ Binary Arithmetic

$$\begin{array}{c|c} A & \\ \hline B & + \\ \hline \end{array} = C = A + B$$

Example Problem #1

• Lets evaluate XY+Z

X	Y	Z	XY	XY+Z
0	0	0	0.0 = 0	0+0 = 0
0	0	1	0.0 = 0	0+1 = 1
0	1	0	0.1 = 0	0+0 = 0
0	1	1	0.1 = 0	0+1 = 1
1	0	0	1.0 = 0	0+0 = 0
1	0	1	1.0 = 0	0+1 = 1
1	1	0	1.1 = 1	1+0 = 1
1	1	1	1.1 =1	1+1 = 1

Practice Problem #1

Lets evaluate X+YZ'

X	Y	Z	Z'	YZ'	X+YZ'
0	0	0	1	0.1 = 0	0+0 = 0
0	0	1	0	0.0 = 0	0+0 = 0
0	1	0	1	1.1 = 1	0+1 = 1
0	1	1	0	1.0 = 0	0+0 = 0
1	0	0	1	0.1 = 0	1+0 = 1
1	0	1	0	0.0 = 0	1+0 = 1
1	1	0	1	1.1 = 1	1+1 = 1
1	1	1	0	1.0 = 0	1+0 = 1

Practice Problem #2

• Is XY+Z = X+YZ'

XY+Z	_	X+YZ'
0+0 = 0		0+0 = 0
0+1 = 1		0+0 = 0
0+0 = 0		0+1 = 1
0+1 = 1		0+0 = 0
0+0 = 0		1+0 = 1
0+1 = 1		1+0 = 1
1+0 = 1	_	1+1 = 1
1+1 = 1		1+0 = 1

So the answer is NO

Example Problem #2

- Is A+B = (A'.B')'?
- Step 1 Complete the truth table for A+B

Practice Problem # 3

• Is AB = (A'+B')'

Α	В	A'	B ′	A'+B'	(A'+B')'
0	0	1	1	1+1 = 1	0
0	1	1	0	1+0 = 1	0
1	0	0	1	0+1 = 1	0
1	1	0	0	0+0 = 0	1
					` ノ

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Practice Problem # 4

What is the output for the function (X+X').Y

X	Y	X'	X+X'	(X+X').Y
0	0	1	0+1 = 1	1.0=0
0	1	1	0+1 = 1	1.1=1
1	0	0	1+0 = 1	1.0=0
1	1	0	1+0 = 1	1.1=1
	•			·

Why implement the circuit It does not change Y?

TABLE 1.1 Major binary operators with variables (or signals) in a Boolean expression

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Boolean expression	Type of operation	VHDL equivalent
\overline{X}	Complement of X	NOT X
$X \cdot Y$	Intersection of <i>X</i> , <i>Y</i>	X AND Y
X + Y	Union of X, Y	X OR Y

Operator precedence: parentheses, NOT, AND, OR

Switching Algebra (Switches)

If switch X is open, then we will define the value of X to be 0; if switch X is closed, then we will define the value of X to be 1.

Used with Factory floor automation systems and VHDL Labs.

Seventh way of playing with Boolean Functions!!!!

Boolean Algebra or Switching Algebra

Switching Algebra (AND)

$$T = AB$$

$$1 \stackrel{A}{\longrightarrow} 0 \stackrel{B}{\longrightarrow} 0 \stackrel{2}{\longrightarrow} 2 \stackrel{A}{\longrightarrow} 0 \stackrel{A}{\longrightarrow} 0 \stackrel{B}{\longrightarrow} 0 \stackrel{A}{\longrightarrow} 0 \stackrel{A}{\longrightarrow} 0 \stackrel{B}{\longrightarrow} 0 \stackrel{A}{\longrightarrow} 0 \stackrel{A}{\longrightarrow} 0 \stackrel{B}{\longrightarrow} 0 \stackrel{A}{\longrightarrow} 0 \stackrel{A}{\longrightarrow} 0 \stackrel{A}{\longrightarrow} 0 \stackrel{B}{\longrightarrow} 0 \stackrel{A}{\longrightarrow} 0 \stackrel{A$$

T = 0 open circuit between terminals 1 and 2

T = 1 closed circuit between terminals 1 and 2

Switching Algebra (OR)

Note: Parallel Structure T = A+B

More on Switching Algebra

If two switches are both labeled with the variable A, this means that both switches are open when A = 0 and both are closed when A = 1, thus the following circuits are equivalent:

Switching Algebra (OR Idempotent)

Note: By similar reasoning A.A = A

_	A+A	Α	Α
_	0+0=0	0	0
A	1+1=1	1	1

Switching Algebra (Identities)

Switching Algebra (Tautology)

A in parallel with A' can be replaced with a closed circuit because one or the other of the two switches is always closed.

Switching Algebra (Fallacy)

Similarly, switch A in series with A' can be replaced with an open circuit because one or the other of the two switches is always open.

Boolean Algebra Theorems

Absorption Theorem	T1a: $X \cdot (X + Y) = X$	Double Complementation or Double Negation Theorem	T7: $\overline{\overline{X}} = X$
	T1b: $X + X \cdot Y = X$	Double (vegation Theorem	
Adjacency Theorem	T2a: $X \cdot Y + X \cdot \overline{Y} = X$	Idempotency Theorem	T8a: $X \cdot X = X$
	T2b: $(X + Y) \cdot (X + \overline{Y}) = X$		T8b: $X + X = X$
Associative Theorem	T3a: $X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$	Identity Element Theorem	T9a: $X \cdot 0 = 0$
	T3b: $X + (Y + Z) = (X + Y) + Z$	4/.	T9b: $X + 1 = 1$
Consensus Theorem	T4a: $X \cdot Y + \overline{X} \cdot Z + Y \cdot Z = X \cdot Y + \overline{X} \cdot Z$	Simplification Theorem	T10a: $X \cdot (\overline{X} + Y) = X \cdot Y$
	T4b: $(X + Y) \cdot (\overline{X} + Z) \cdot (Y + Z) = (X + Y) \cdot (\overline{X} + Z)$		T10b: $X + \overline{X} \cdot Y = X + Y$

DeMorgan's Theorem (with two variables)	T5a:	$\overline{X \cdot Y} = \overline{X} + \overline{Y}$
two variables)	T5b:	$\overline{X + Y} = \overline{X} \cdot \overline{Y}$
DeMorgan's Theorem (with	Т6а:	$\overline{X \cdot Y \cdot Z \dots} = \overline{X} + \overline{Y} + \overline{Z} + \dots$
multiple variables)	T6b:	$\overline{X + Y + Z + \ldots} = \overline{X} \cdot \overline{Y} \cdot \overline{Z} \cdot \ldots$

Comparing circuit complexity for the Boolean functions F1 and F2

In general, it is better to use fewer logic gates to minimize complexity, cost, and power requirements.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Application of T2a

Adjacency T2a:
$$X \cdot Y + X \cdot \overline{Y} = X$$

Theorem T2b: $(X + Y) \cdot (X + \overline{Y}) = X$

Proving Boolean Algebra Theorems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Simpli	fication Theorem T10b	$: X + \overline{X} \cdot Y = X + Y$				
Proof by perfect induction method	Proof by perfect induction method					
Step 1: Make the truth table $X \ Y \mid \overline{X} \overline{X} \cdot Y X + \overline{X} \cdot Y X + Y$	Substitute postulates and/or theorems to show that $EOR = EOL$, which can be tricky because it involves trial and error					
0 0	X + Y	Jsing the following postulat	es and/or theorems:			
0 1	$X + Y \cdot 1$	Variable dominate rule	P1a: $X \cdot 1 = X$			
1 0	$X + Y \cdot (X + \overline{X})$	Complement rule	P4b: $X + \overline{X} = 1$			
1 1	$X + Y \cdot X + Y \cdot \overline{X}$	Distributive rule	P3a: $X \cdot (Y + Z) = X \cdot Y + X \cdot Z$			
Step 2: Fill in each column in the table	$X \cdot 1 + Y \cdot X + Y \cdot \overline{X}$	Variable dominate rule	P1a: $X \cdot 1 = X$			
using the operator definitions	$X \cdot 1 + X \cdot Y + \overline{X} \cdot Y$	Commutative rule	P2a: $X \cdot Y = Y \cdot X$			
$X \ Y \ \ \overline{X} $ $\overline{X} \cdot Y $ $X + \overline{X} \cdot Y $ $X + Y$	$X \cdot (1 + Y) + \overline{X} \cdot Y$	Distributive rule	P3a: $X \cdot (Y + Z) = X \cdot Y + X \cdot Z$			
000000 (000 0000000 0000000 000000 000000	$X \cdot 1 + \overline{X} \cdot Y$	Identity element theorem	T9b: $X + 1 = 1$			
0 0 1 0 0 0	$X + \overline{X} \cdot Y$	Variable dominate rule	P1a: $X \cdot 1 = X$			
0 1 1 1 1 1	Note that $EOR = EOL$					
1 0 0 0 1 1						
1 1 0 0 1 1						
EOL = EOR						
Step 3: Verify that $EOL = EOR$						

Proof of Adjacency Theorem

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Adjacency Theorem T2a: $X \cdot Y + X \cdot \overline{Y} = X$												
Proof by perfect induction method					Proof by mathematical manipulation method (proving that EOL = EOR)							
X Y	\overline{Y}	$X \cdot Y$	$X \cdot \overline{Y}$	$X \cdot Y + X \cdot \overline{Y}$	$X \cdot Y + X \cdot \overline{Y}$	Using the following postula	ates and/or theorems:					
0 0	1	0	0	0	$X \cdot (Y + Y)$	Distributive rule	P3a: $X \cdot (Y + Z) = X \cdot Y + X \cdot Z$					
0 1	0	0	0	0	<i>X</i> ·1	Complement rule	P4b: $X + X = 1$					
1 0	1	0	1	1	X	Variable dominate rule	P1a: $X \cdot 1 = X$					
1 1	0	1	0	1	Note that $EOL = E$	EOR						
EOR			=	EOL								

Truth Table

We can use a Truth Table to specify the output values of a circuit of logic gates in terms of the values of the input variables.

If an expression has n variables and each variable can have the value 0 or 1, the number of different combinations of values of the variables is 2ⁿ.

Thus, a Truth Table for an n-variable expression will have n columns and 2ⁿ rows.

Two expressions are equal if they have the same value for every possible combination of the variables.

Truth Table for 3 variables

Since the expression (A + C)(B' + C) has the same value as AB' + C for all eight combinations of values of the variables A, B, and C, we conclude that:

$$AB' + C = (A + C)(B' + C)$$

ABC	B'	AB'	AB'+C	A+C	B'+C	(A+C)(B'+C)
000	1	0.1=0	0+0=0	0+0=0	1+0=1	0.1=0
001	1	0.1=0	0+1=1	0+1=1	1+1=1	1.1=1
010	0	0.0=0	0+0=0	0+0=0	0+0=0	0.0=0
011	0	0.0=0	0+1=1	0+1=1	0+1=1	1.1=1
100	1	1.1=1	0+1=1	1+0=1	0+1=1	1.1=1
101	1	1.1=1	1+1=1	1+1=1	1+1=1	1.1=1
110	0	1.0=0	0+0=0	1+0=1	0+0=0	1.0=0
111	0	1.0=0	1+0=1	1+1=1	0+1=1	1.1=1

Other Operations (exclusive OR)

Exclusive OR (XOR) operation -> Z = 1, iff X ≠ Y
 if X != Y then Z=1 else Z=0;

When two or more variables are XORed together, the value of the result will be 1 if and only if (iff) they are not the same of the. The result of the XOR operation will be a 0 iff both have the same value.

X xor Y=Z,
$$X \oplus Y=Z$$
, $XY'+X'Y=Z$, $X\overline{Y}+\overline{X}Y=Z$

Truth Table

Output

Input

CALIFORNIA STATE UNIVERSITY
FULLERTON

Basic Operations (Not AND)

Not AND (NAND) operation -> Z=0 iff X=1 and Y=1
if X=0 AND Y=0 then Z=1 else Z=0;

When two or more variables are NANDed together, the value of the result will be 1 if and only if (iff) all the variables have the value of the variables have the value 1, the result of the NAND operation will be 0.

Representation: XY=Z, X•Y=Z, (X.Y)'=Z

Note: the Negation or Inversion Bubble

Truth Table

Input

<u>Output</u>

Basic Operations (Not OR)

Not OR or NOR operation -> Z = 1, iff X=0 and Y=0 if X=1 OR Y=1 then Z=0 else Z=1;

When two or more variables are NORed together, the value of the result will be 1 if and only if (iff) both of the variables have the value \underline{o} . The result of the NOR operation will be a 1 iff any of the variables have the value 1.

Q&A

