

Disjoint Set Class

Fall 2020 School of Software Engineering South China University of Technology

Equivalence Relations

- •A relation R is defined on set S if for every pair of elements a, b ϵ S, a R b is either true or false.
- •An equivalence relation is a relation R that satisfies the 3 properties:
 - Reflexive: a R a for all a ϵ S
 - •Symmetric: a R b iff b R a; a, b \in S
 - Transitive: a R b and b R c implies a R c
- some examples
 - Relation "≤", "≥"---not equivalence relation
 - Relation "be in the same class", "Electrical connectivity" --- equivalence relation

Equivalence Classes

- •Given an equivalence relation R, decide whether a pair of any elements a, b \in S is such that a R b.
- The equivalence class of an element a ∈
 S is the subset of S of all elements related to a.
- Different equivalence classes of S are disjoint.
 - Every member of S appears in exactly one equivalence class

Dynamic Equivalence Problem

•Given an equivalence relation R, decide whether a pair of elements a, b ϵ S is such that a R b.

- Check whether a and b are in the same equivalence class
- Equivalence Problem
 - the problem of assigning the members of a set to equivalence classes.

Dynamic Equivalence Problem

- •Strategy:
 - Starting with each element in a singleton set. These singleton sets are **disjoint**.
 - two operations:
 - Find the equivalence class (set) of a given element
 - Union of two sets
- •It is a dynamic (on-line) problem because the sets change during the operations and Find must be able to cope!

Disjoint Union/Find

- •A set of pairwise disjoint sets.
 - Each set has a unique name, one of its members
 - •{3,5,7}, {4,2,8}, {9}, {1,6}
- •Find(x) return the name of the set containing x.
 - Find(6) = 1
 - Find(4) = 8
 - Find(9) = 9
- Union(x,y) take the union of two sets named x and y
 - Union $(5,1) = \{3,5,7,1,6\}, \{4,2,8\}, \{9\},$

An Application

·Build a random maze by erasing edges.

An Application (ct'd)

Pick Start and End

Sta	rt				
				E	nd

An Application (ct'd)

• Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- •Every cell is reachable from every other cell.
- •There are no cycles no cell can reach itself by a path unless it retraces some part of the path.

A Cycle (we don't want that)

A Good Solution

Good Solution: A Hidden Tree

Number the Cells

We have disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\},... \{36\} \}$ each cell is unto itself. We have all possible edges $E = \{ (1,2), (1,7), (2,8), (2,3), ... \}$ 60 edges total.

C.	tم	nt
	га	rт

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

End

Basic Algorithm

- •S = set of sets of connected cells
- \cdot E = set of edges
- Maze = set of maze edges initially empty

```
While there is more than one set in S

pick a random edge (x,y) and remove from E

u := Find(x); v := Find(y);

if u ≠ v then

Union(u,v) //knock down the wall between the

// cells (cells in the same set are

// connected)

else

add (x,y) to Maze //don't remove because there is

// already a path between x and y

All remaining members of E together with Maze form the maze
```

Example Step

Pick (8,14)

Start	1	2	3	4	5	6	
	7	8	9	10	11	12	
	13	14	15	16	17	18	
	19	20	21	22	23	24	
	25	26	27	28	29	30	
	31	32	33	34	35	36	End

```
S
{1,2,7,8,9,13,19}, {3}, {4}, {5}, {6}, {10}, {11,17}, {12}, {14,20,26,27}, {15,16,21}

.
{22,23,24,29,30,32,33,34,35,36}
```

Example

Pick (8,14)

```
S
\{1,2,7,8,9,13,19\}
                                                     \{1,2,7,8,9,13,19,
                             Find(8) = 7
{3}
                                                     14,20 26,27}
                             Find(14) = 20
{4}
                                                     {3}
{5}
                                                     {4}
                             Union(7,20)
6}
                                                     {5}
{<u>10</u>}
                                                     {<u>6</u>}
\{11, 17\}
                                                     {<u>10</u>}
{<u>12</u>}
                                                     {11,<u>17</u>}
\{14, 20, 26, 27\}
                                                     12
\{15, \frac{16}{10}, 21\}
                                                     \{15, \frac{16}{10}, 21\}
{22,23,24,29,39
                                                     {22,23,24,29,39
,32, 33,<mark>34</mark>,35,36}
                                                     ,32,33,<mark>34</mark>,35,36}
```

Example

Pick (19,20)

							_
Start	1	2	3	4	5	6	
	7	8	9	10	11	12	
	13	14	15	16	17	18	
	19	20	21	22	23	24	
	25	26	27	28	29	30	
	31	32	33	34	35	36	End

```
S
{1,2,7,8,9,13,19,14,20,26,27}, {3}, {4}, {5}, {6}, {10}, {11,17}, {12}, {15,16,21}

.
{22,23,24,29,30,32,33,34,35,36}
```

Example at the End

How to implement Find&Union

- two strategies
 - One ensures that the find can be executed in constant worst-case time
 - The other ensures that the union can be executed in constant worst-case time
 - Both (find and union) cannot be done simultaneously in constant worst-case time.

Up-Tree for D-U/F

 The union can be executed in constant worst-case time

Up-Tree: use a tree to represent each set; each element has a parent link

D-U/F with Up-Tree

Find Operation

•Find(x) follow x to the root and return the root (which is the name of the class).

Union Operation

Union(i,j) - assuming i and j roots, point j to i.

Simple Implementation

```
class DisjSets{
public:
  explicit DisjSets( int numElements );
  int find( int x ) const;
  int find( int x );
  void unionSets( int root1, int root2 );
private:
  vector<int> s;
/**
* Construct the disjoint sets object.
* numElements is the initial number of
* disjoint sets.
DisjSets::DisjSets(int numElements):
s{ numElements, - 1 }
\{
```

Union

```
/**
 * Union two disjoint sets.
 * For simplicity, we assume root1 and
 * root2 are distinct and represent set
 * names.
 * root1 is the root of set 1.
 * root2 is the root of set 2.
 */
void DisjSets::unionSets( int root1, int root2 )
{
    s[ root2 ] = root1;
}
```

Constant Time!

Find

```
/**
 * Perform a find.
 * Error checks omitted again for simplicity.
 * Return the set containing x.
 */
int DisjSets::find( int x ) const
{
   if( s[ x ] < o )
      return x;
   else
      return find( s[ x ] );
}</pre>
```

A Bad Case

Weighted Union

- Weighted Union (weight = number of nodes)
 - Always point the smaller tree to the root of the larger tree (Union-by-Size)

Example Again

Weighted Union

•How to save weight information?

Weighted Union

·Less space to save weight information.

Analysis of Weighted Union

- •With weighted union an up-tree of height h has weight at least 2h.
- Proof by induction
 - Basis: h = o. The up-tree has one node, $2^o = 1$
 - Inductive step: Assume true for all h' < h.

Minimum weight up-tree of height h formed by weighted unions

$$W(T_1) \ge W(T_2) \ge 2^{h-1}$$

Weighted Induction hypothesis

Analysis of Weighted Union

- •Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- $N > 2^h$
- $\log_2 N \ge h$
- •Find(x) in tree T takes O(log N) time.
- ·Can we do better?

Worst Case for Weighted Union

N/2 Weighted Unions

N/4 Weighted Unions

Example of Worst Cast (cont')

After N -1 = N/2 + N/4 + ... + 1 Weighted Unions

If there are $N = 2^k$ nodes then the longest path from leaf to root has length k.

An alternative implementation

Union-by- height

Union-by- height

```
/**
* Union two disjoint sets.
* For simplicity, we assume root1 and root2
* are distinct and represent set names.
* root1 is the root of set 1.
* root2 is the root of set 2.
*/
void DisjSets::unionSets( int root1, int root2 )
{
  if(s[root2] < s[root1]) // root2 is deeper
     s[root1] = root2; // Make root2 new root
  else
     if(s[root1] == s[root2])
     --s[ root1 ]; // Update height if same
     s[root2] = root1; // Make root1 new root
```

Path Compression

•On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Path Compression Find

```
/**
 * Perform a find with path compression.
 * Error checks omitted again for simplicity.
 * Return the set containing x.
 */
int DisjSets::find( int x )
{
   if( s[ x ] < o )
      return x;
   else
      return s[ x ] = find( s[ x ] );
}</pre>
```

Example

return s[x] = find(s[x]);

Disjoint Union / Find with Weighted Union and Path Compression

- •Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log N).
- •Time complexity for $m \ge N$ operations on N elements is $O(m \log^* N)$.
 - Here, $\log^* N$ is iterated logarithm and a very slow growing function. ($\log^* 2^{65536} = 5$)
 - Essentially constant time per operation!

Amortized Complexity

- •For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is O(log N).
- An individual operation can be costly, but over time the average cost per operation is not.

Homework 6

Textbook Exercises 8.1,8.2