Feb. 27, 2014

Math 2401 M - Exam 2

First Name (Print):		Last Name (Print):		Signature:	
Please choose your section:	□ M1	□ M2	□ M3		

- There are 5 questions on 6 pages. The exam is worth 50 points in total.
- Answer the questions clearly and completely. You must provide work clearly justifying your solution.
 - You can NOT write your work on the back of the page. Use it for scratch work if needed.
 - You have 50 minutes to finish your work.

1. (3+4 points) Find the limit **OR** show the nonexistence of the limit of the following functions.

(a)
$$\lim_{(x,y)\to(-4,2),x\neq-4,y\neq y^2} \frac{x+4}{xy^2-xy+4y^2-4y}$$

Solution.

$$\lim_{(x,y)\to(-4,2),x\neq-4,y\neq y^2} \frac{x+4}{xy^2 - xy + 4y^2 - 4y}$$

$$= \lim_{(x,y)\to(-4,2),x\neq-4,y\neq y^2} \frac{x+4}{(x+4)y(y-1)}$$

$$= \lim_{(x,y)\to(-4,2),x\neq-4,y\neq y^2} \frac{1}{y(y-1)} = \frac{1}{2}.$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 - y^2}$$

Solution.

$$\lim_{(x,y)\to(0,0),y=kx^2,k^2\neq 1}\frac{x^2y}{x^4-y^2}=\lim_{x\to 0,y=kx^2,k^2\neq 1}\frac{x^2kx^2}{x^4-(kx^2)^2}=\lim_{x\to 0,y=kx^2,k^2\neq 1}\frac{k}{1-k^2}=\frac{k}{1-k^2}$$

The limit changes with each value of k. By the two-path test, the limit does not exist.

2. (6+2 points) Let

$$z = 4e^x \ln y$$
, $x = \ln(u \cos v)$, $y = u \sin v$.

- $\begin{array}{l} (1) \ \text{Express} \ \frac{\partial z}{\partial u} \ \text{in terms of} \ u \ \text{and} \ v \ \text{by the Chain Rule;} \\ (2) \ \text{Evaluate} \ \frac{\partial z}{\partial u} \ \text{at the point} \ (u,v) = (2,\frac{\pi}{4}). \end{array}$

Solution.

(1)

$$\begin{split} \frac{\partial z}{\partial u} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\ &= 4e^x \ln y \frac{\cos v}{u \cos v} + 4e^x \frac{1}{y} \sin v \quad \text{(Substitute for } x \text{ and } y \text{, and simplify)} \\ &= 4(\cos v) \ln(u \sin v) + 4 \cos v. \end{split}$$

(2)
$$\frac{\partial z}{\partial u}(2, \frac{\pi}{4}) = \sqrt{2} \ln 2 + 2\sqrt{2}.$$

3. (6+4 points) Let $f(x, y, z) = \sin(xy) + e^{yz} + \ln(xz)$, and $P_0 = (1, 0, 1)$.

(a) Find directions in which f(x, y, z) increases and decreases most rapidly at P_0 , respectively.

Solution.

$$f_x(x, y, z) = y \cos(xy) + \frac{1}{x} \implies f_x(1, 0, 1) = 1,$$

 $f_y(x, y, z) = x \cos(xy) + ze^{yz} \implies f_y(1, 0, 1) = 2,$
 $f_z(x, y, z) = ye^{yz} + \frac{1}{z} \implies f_z(1, 0, 1) = 1.$

Therefore, $\nabla f(1,0,1) = \vec{i} + 2\vec{j} + \vec{k}$.

f(x,y,z) increases most rapidly in the direction of $\nabla f(1,0,1)$, which is $\frac{1}{\sqrt{6}}(\vec{i}+2\vec{j}+\vec{k})$. f(x,y,z) decreases most rapidly in the direction of $-\nabla f(1,0,1)$, which is $-\frac{1}{\sqrt{6}}(\vec{i}+2\vec{j}+\vec{k})$.

(b) Find the derivative of f(x, y, z) at P_0 in the direction of $\vec{v} = 2\vec{i} + \vec{j} - 2\vec{k}$. Solution.

The direction of \vec{v} is $\vec{u} = \frac{1}{3}(2\vec{i} + \vec{j} - 2\vec{k})$, so

$$(D_{\vec{u}})_{P_0} = \nabla f(1,0,1) \cdot \vec{u} = (\vec{i} + 2\vec{j} + \vec{k}) \cdot \left[\frac{1}{3}(2\vec{i} + \vec{j} - 2\vec{k})\right] = \frac{2}{3}.$$

4. (15 points) Let

$$f(x,y) = 2 + 2x + 2y - x^2 - y^2$$

defined on the closed triangular region D in the first quadrant bounded by the lines x=0, y=0 and x+2y=8.

(a) Find the critical points of f(x,y) in the interior of region D and classify them (local maxima, local minima or saddle points).

Solution.

Since f(x, y) is differentiable, so the critical points can be founded by the first derivative test for local extreme values.

$$\begin{cases} f_x(x,y) = 2 - 2x, \\ f_y(x,y) = 2 - 2y. \end{cases} \implies (x,y) = (1,1) \text{ is a critical point in interior of } D.$$

To classify the critical point (1, 1), we calculate the second derivatives

$$f_{xx}(x,y) = -2 < 0, f_{xy}(x,y) = 0, f_{yy}(x,y) = -2.$$

The discriminant of f(x, y) at (1, 1) is

$$f_{xx}(1,1)f_{yy}(1,1) - (f_{xy}(1,1))^2 = 4 > 0,$$

so by the second derivative test for local extreme values, f(x, y) has a local maximum value f(1, 1) = 4 at (1, 1).

(b) Find the absolute maxima and minima of f(x, y) on the region D.

Solution.

y B(0, 4) (2, 3) O(1, 0) A(8, 0)

5

Interior points. We have found the critical points in the interior of D in part (a), and f(x,y) has a local maximum value f(1,1)=4 at (1,1).

Boundary points. $\partial D = OA \cup OB \cup AB$.

(i) On the segment OA, y = 0, so

$$f(x,y) = f(x,0) = 2 + 2x - x^2, \ 0 \le x \le 8.$$

The extrema of f(x, 0) may occur at the interior point where f'(x, 0) = 2 - 2x = 0, so x = 1, and f(1, 0) = 3.

We also need to check the endpoints x = 0 and x = 8. Therefore, we have f(0,0) = 2 and f(8,0) = -46.

(ii) On the segment OB, x = 0, so

$$f(x,y) = f(0,y) = 2 + 2y - y^2, \ 0 \le y \le 4.$$

The extrema of f(0, y) may occur at the interior point where f'(0, y) = 2 - 2y = 0, so y = 1, and f(0, 1) = 3.

We also need to check the endpoints y=0 and y=4. Therefore, we have f(0,0)=2 and f(0,4)=-6.

(iii) On the segment AB, we have $y=4-\frac{x}{2}$, so

$$f(x,y) = f(x,4-\frac{x}{2}) = 2 + 2x + 2(4-\frac{x}{2}) - x^2 - (4-\frac{x}{2})^2 = -\frac{5}{4}x^2 + 5x - 6, \ \ 0 \le x \le 8.$$

Let
$$f'(x, 4 - \frac{x}{2}) = -\frac{5}{2}x + 5 = 0$$
, then $x = 2$ and $y = 4 - \frac{2}{2} = 3$, and $f(2, 3) = -1$.

We have checked the endpoints x=0 and x=8 in (i) and (ii), and f(0,4)=-6 and f(8,0)=-46.

Look through the lists.

$$f(1,1) = 4, f(0,0) = 2, f(1,0) = 3, f(8,0) = -46, f(0,1) = 3, f(0,4) = -6, f(2,3) = -1.$$

Therefore f(x, y) takes on absolute maximum value 4 at (1, 1), and absolute minimum value -46 at (8, 0).

6

5. (10 points) Find the maximum and minimum distances from the point on the sphere $x^2 + y^2 + z^2 = \frac{3}{4}$ to the point (1, -1, 1) by the **method of Lagrange multipliers**.

Solution.

We find the extreme values of

$$f(x, y, z) = (x - 1)^{2} + (y + 1)^{2} + (z - 1)^{2}$$

[the square of the distance from (x, y, z) to the point (1, -1, 1)] subject to the constraint

$$g(x, y, z) = x^2 + y^2 + z^2 - \frac{3}{4} = 0.$$

Solve the system

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z), \tag{0.1}$$

$$g(x, y, z) = 0 ag{0.2}$$

for x, y, z, and λ . The gradient equation (0.1) gives

$$2(x-1)\vec{i} + 2(y+1)\vec{j} + 2(z-1)\vec{k} = \lambda [2x\vec{i} + 2y\vec{j} + 2z\vec{k}],$$

SO

$$\begin{cases} 2(x-1) = 2\lambda x, \\ 2(y+1) = 2\lambda y, \\ 2(z-1) = 2\lambda z. \end{cases} \Longrightarrow \begin{cases} x = \frac{1}{1-\lambda}, \\ y = \frac{1}{\lambda-1}, \\ z = \frac{1}{1-\lambda}. \end{cases}$$
 (0.3)

Substitute (0.3) into (0.2), and we have

$$(\lambda - 1)^2 = 4 \Longrightarrow \lambda = -1 \text{ or } \lambda = 3.$$

$$\begin{split} &\text{If } \lambda = -1\text{, } (x,y,z) = (\frac{1}{2},-\frac{1}{2},\frac{1}{2}) \text{ and } f(\frac{1}{2},-\frac{1}{2},\frac{1}{2}) = \frac{3}{4}. \\ &\text{If } \lambda = 3\text{, } (x,y,z) = (-\frac{1}{2},\frac{1}{2},-\frac{1}{2}) \text{ and } f(-\frac{1}{2},\frac{1}{2},-\frac{1}{2}) = \frac{27}{4}. \end{split}$$

Therefore, the minimum distance is $\frac{\sqrt{3}}{2}$, and the maximum distance is $\frac{3\sqrt{3}}{2}$.