#### Project

# Robustness of Hidden Information in Digital Data



PD Dr.Andreas Jakoby

#### Discrete Wavelet Transform

Dixith Pinjari (118976) dixith.pinjari@uni-Weimar.de



- Introduction
- Limitations of FFT
- FFT vs Wavelets
- Wavelets
- Types fo Wavelets
- Discrete Wavelet Transfrom



### Introduction

- Signal decomposition
- Fourier Transform
  - Frequency domain
  - Temporal domain 8









### **STFT** (Window size Limitation)

Time -Frequency localization depends on window size.

-Wide window good frequency localization, poor time localization



Narrow window good time localization, poor frequency localization.



## Limitations of Fourier Transform:

To show the limitations of Fourier Transform, we chose a well-known signal in SONAR and RADAR applications, called the Chirp.

A Chirp is a signal in which the frequency increases ('up-chirp') or decreases ('down-chirp').



# Limitations of Fourier Transform:



### Wavelet Transform

### Uses a variable length window, e.g.:

Narrower windows are more appropriate at high frequencies

Wider windows are more appropriate at low frequencies



### What is wavelet?

A function that "waves" above and below the x-axis with the following properties:

- –Varying frequency
- -Limited duration
- -Zero average value
- •This is in contrast to sinusoids, used by FT, which have infinite duration and constant frequency.

Sinusoid Wavelet

## Types of Wavelets

There are many different wavelets, for example:



## Basis Functions Using Wavelets

Like sin() and cos() functions in the Fourier Transform, wavelets can define a set of basis functions ψk(t):

$$f(t) = \sum_{k} a_{k} \psi_{k}(t)$$

Span of  $\psi k(t)$ : vector space S containing all functions f(t) that can be represented by  $\psi k(t)$ .

# Basis Construction —"Mother" Wavelet

The basis can be constructed by applying translations and scaling's (stretch/compress) on the "mother" wavelet  $\psi(t)$ :

$$\psi(s,\tau,t) = \frac{1}{\sqrt{s}}\psi(\frac{t-\tau}{s})$$









### Discrete wavelet transforms

Discrete wavelet transform (DWT), which transforms a discrete time signal to a discrete wavelet representation.

It converts an input series x0, x1, ...xm, into one high-pass wavelet coefficient series and one low-pass wavelet coefficient series (of length n/2 each) given by:

$$\mathbf{H_i} = \sum_{\mathbf{m}=\mathbf{0}}^{\mathbf{k}-\mathbf{1}} \mathbf{x}_{2\mathbf{i}-\mathbf{m}} \cdot \mathbf{s_m}(\mathbf{z}) \tag{1}$$

$$\mathbf{L_i} = \sum_{\mathbf{m}=0}^{K-1} \mathbf{x_{2i-m}} \cdot \mathbf{t_m(z)}$$
 (2)



where  $s_m(Z)$  and  $t_m(Z)$  are called *wavelet filters*, K is the length of the filter, and i=0, ..., [n/2]-1.

In practice, such transformation will be applied recursively on the low-pass series until the desired number of iterations is reached.

## DWT



## 2-D DWT for Image



## 2-D DWT for Image



## 2-D DWT for Image



# Compression algorithms using DWT

#### Embedded zero-tree (EZW)

- Use DWT for the decomposition of an image at each level.
- Scans wavelet coefficients subband by subband in a zigzag manner.

#### Set partitioning in hierarchical trees (SPHIT)

Highly refined version of EZW.

Perform better at higher compression ratio for a wide variety of images than EZW.

# Compression algorithms using DWT (cont..)

#### Zero-tree entropy (ZTE)

- Quantized wavelet coefficients into wavelet trees to reduce the number of bits required to represent those trees.
- Quantization is explicit instead of implicit, make it possible to adjust the quantization according to where the transform coefficient lies and what it represents in the frame.
- Coefficient scanning, tree growing, and coding are done in one pass.
- Coefficient scanning is a depth first traversal of each tree



- Peak Signal to Noise ratio used to be a measure of image quality.
- The PSNR between two images having 8 bits per pixel or sample interms of decibels(dBs)is given by:

PSNR=
$$10log10\left(\frac{255^2}{MSE}\right)$$
  
mean square error (MSE)

Generally when PSNR is 40 dB or greater, then the original and the reconstructed images are virtually indistinguishable by human observers

### Lenna Image



Source: http://sipi.usc.edu/database/

## -

### Lenna DWT



## **DWT for Image Compression**

### Block Diagram





2D discrete wavelet transform (1D DWT applied alternatively to vertical and horizontal direction line by line) converts images into "sub-bands" Upper left is the DC coefficient Lower right are higher frequency sub-bands.



### **DWT for Image Compression**

- Image Decomposition
  - Scale 1

| $LL_{I}$ | $\mathit{HL}_1$ |
|----------|-----------------|
| $LH_1$   | $HH_{I}$        |

- 4 subbands: LL<sub>1</sub>,HL<sub>1</sub>,LH<sub>1</sub>,HH<sub>1</sub>
- Each coeff.  $\leftrightarrow$  a 2\*2 area in the original image
- Low frequencies:  $0 < |\omega| < \pi/2$
- High frequencies:  $\pi/2 < \omega < \pi$



- ImageDecomposition
  - Scale 2 LL<sub>2</sub>,HL<sub>2</sub>,LH<sub>2</sub>,HH<sub>2</sub>
  - 4 subbands:
  - Each coeff. ↔ a
    2\*2 area in scale 1
    image

| • | Low | Frequency: | $0< \omega $ | $<\pi/4$ |
|---|-----|------------|--------------|----------|
|---|-----|------------|--------------|----------|

• High frequencies:  $\pi/4 < \omega < \pi/2$ 

| $LL_2$          | $HL_2$ | $HL_I$ |  |
|-----------------|--------|--------|--|
| LH <sub>2</sub> | $HH_2$ |        |  |
| $LH_{j}$        | 1      | $HH_I$ |  |
|                 |        |        |  |



## **DWT for Image Compression**

- Image Decomposition
  - Parent
  - Children
  - Descendants: corresponding coeff. at finer scales
  - Ancestors: corresponding coeff. at coarser scales



## **DWT for Image Compression**

### Image Decomposition

- Feature 1:
  - Energy distribution similar to other TC: Concentrated in low frequencies
- Feature 2:
  - Spatial self-similarity across subbands





The scanning order of the subbands for encoding the significance map.



### **DWT Watermarking**





## Thank You!

Any question ??