Chapter 7: 4.3, 4.6, 4.7 Chapter 8: 1.5, 1.11, 1.12, 1.17

Exercise 4.3 Let $B = \{0\} \cup \{\frac{-1}{n^2}\}_{n \in \mathbb{N}}$ and $E = \mathbb{R} \setminus B$. Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}$$

on the set *E*.

- 1. Prove that the series converges absolutely for all $x \in E$; therefore it converges pointwise to a function $f : E \to \mathbb{R}$.
- 2. Prove that the series converges uniformly to f on $(-\infty, -\delta) \cup (\delta, \infty) \setminus B$ for any $\delta > 0$, but that it does not converge uniformly to f on E.
- 3. Prove that *f* is continous.
- 4. Prove that $f(0+) = +\infty$, that therefore f is not a bounded function.

Exercise 4.6 Find the radius of convergence for each of the following power series:

$$\sum_{n=0}^{\infty} n^n z^n \quad \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad \sum_{n=0}^{\infty} z^n \quad \sum_{n=0}^{\infty} \frac{z^n}{n} \quad \sum_{n=0}^{\infty} \frac{z^n}{n^2}.$$

Exercise 4.7 Consider the power series $\sum_{n=0}^{\infty} c_n z^n$. Let R be the radius of convergence of the power series, and assume R > 0. Let $f: (-R, R) \to \mathbb{R}$ be the function defined by $f(z) = \sum_{n=0}^{\infty} c_n z^n$. Prove the following statements, which refine Thm 4.5.

- 1. For any $r \in (0, R)$, the series $\sum_{n=0}^{\infty}$ converges uniformly on (-r, r) to f.
- 2. f is continuous on all of (-R, R).

_

Exercise 1.5 Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in \mathbb{R}$. Prove that f is constant.

Exercise 1.11 Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable, and assume $\lim_{x \to +\infty} x |f'(x)| = 0$. Define a sequence (a_n) in \mathbb{R} by $a_n = f(2n) - f(n)$ for each $n \in \mathbb{N}$. Prove that $a_n \to a$ s $n \to \infty$.

Exercise 1.12 Let $f:(a,b)\to\mathbb{R}$ be differentiable with f'(x)>0 for all $x\in(a,b)$.

- 1. Prove that *f* is injectibe.
- 2. By part (1), there exists a function $g: f((a,b)) \to (a,b)$ such that g(f(x)) = x for all $x \in (a,b)$. Prove that g is continuous.
- 3. Prove that g is differentiable, and that $g'(f(x)) = \frac{1}{f'(x)}$, for all $x \in (a, b)$.

Exercise 1.17 Use Taylor's Theorem with remainder to estimate $e^{\frac{1}{2}}$ to an accuracy of within 10^{-3} . Prove your answer has the desired accuracy.