

$\frac{DO\;NOT\;WRITE\;ANYTHING\;ON\;QUESTION\;PAPER\;EXCEPT\;YOUR\;NAME,\;DEPARTMENT\;AND}{ENROLMENT\;No.}$

Name of Student	Enrolment No
Department / School	
BENNETT UNIVERSITY, GREATER NOIDA Mid Term Examination, Fall SEMESTER 2019-20	
COURSE NAME: Electrodynamics	MAX. MARKS: 60
Note:	
1) Find the electric field inside a sphere that carries from the origin, $\rho = k r$, where k is a constant.	a charge density proportional to the distance
	- 15 Marks
2) Find the potential at a distance z above the cent charge density λ . Also find the electric field from	0 0
[Useful formula: $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log x + \sqrt{x^2 + a^2}$	$\sqrt{x^2 + a^2} \mid + C \mid$
	- 15 Marks
	2 <i>L</i>
3) A rectangular pipe, running parallel to the x-axis plates at $y = 0$ and $y = a$. The other two sides constant potential V_0 . Find the potential inside the	at $z = b$ and $z = -b$ are maintained at a
	- 15 Marks
4) The potential at the surface of a sphere of radiu a constant. Find the potential outside the sphere.	is R is given by $V_0(\theta) = k \cos \theta$, where k is
$[V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos\theta)$	9)]
	- 15 Marks