PERSAMAAN KUADRAT

A. Persamaan Kuadrat

Persamaan kuadrat adalah suatu persamaan yang variabelnya mempunyai pangkat tertinggi sama dengan 2.

Bentuk baku persamaan kuadrat adalah dalam x adalah:

$$ax^2 + bx + c = 0$$

.... rumus 1

Dengan:

 $a \neq 0$ dan a, b, c adalah anggota himpunan bilangan nyata.

Ada beberapa bentuk khusus persamaan kuadrat yaitu :

$$a=1 \rightarrow x^2 + bx + c = 0$$

: persamaan kuadrat biasa

$$b = 0 \rightarrow x^2 + c + 0$$

: persamaan kuadrat murni

$$c = 0 \rightarrow x^2 + bx = 0$$

 $c = 0 \rightarrow x^2 + bx = 0$: persamaan kuadrat tak lengkap

Contoh:

(a)
$$-x^2 + 4x + 4 = 0$$

(b)
$$x^2 + 2x = 0$$

$$(c) x^2 + 9 = 0$$

B. Akar – akar Persamaan Kuadrat

Nilai yang memenuhi persamaan kuadrat $ax^2 + bx + c = 0$ disebut **akar** persamaan kuadrat dan dinotasikan dengan x_1 dan x_2 .

Akar – akar persamaan kuadrat dapat dicari dengan beberapa cara, yaitu:

1. Faktorisasi

Bentuk $x^2 + bx + c = 0$ diuraikan kebentuk

$$(x-x1)(x-x2)=0$$

.....rumus 2

Contoh:

$$x^{2} + 5x + 6 = 0$$

$$\rightarrow (x+3)(x+2) = 0$$

$$x+3=0 \rightarrow x1 = -3$$

$$x+2=0 \rightarrow x2 = -2$$

2. Melengkapkan Kuadrat Sempurna

Bentuk $x^2 + bx + c = 0$, dijabarkan kebentuk

$$(x+p)^2 = q$$
rumus

Contoh:

a.
$$x^2 + 4x - 1 = 0$$

 $x^2 + 4x = 1 \rightarrow$ kemudian masing – masing suku ditambah dengan 4

$$x^{2} + 4x + 4 + = 1 + 4$$
$$(x+2)^{2} = 5$$
$$x + 2 = \pm \sqrt{5}$$

Maka
$$x_1 = \sqrt{5} - 2$$
 dan $x_2 = -\sqrt{5} - 2$

b.
$$x^2 - 6x - 2 = 0$$

 $x^2 - 6x - 2 \rightarrow$ kemudian masing-masing suku ditambahkan dengan 9

$$x^{2} - 6x + 9 = 2 + 9$$

 $(x - 3)^{2} = 11$
 $x - 3 = \pm \sqrt{11}$ $\rightarrow x_{1} = \sqrt{11} + 3$ dan $x_{2} = -\sqrt{11} + 3$

3. Menggunakan Rumus abc

Persamaan kuadrat $ax^2 + bx + c = 0$, mempunyai akar – akar persamaan :

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
rumus 4

Cara mencari rumus tersebut adalah sebagai berikut :

 $ax^2 + bx + c = 0 \rightarrow \text{kemudian masing} - \text{masing suku dikalikan } 4a$

$$4a^2x^2 + 4abx + 4ac = 0$$

$$4a^2x^2 + 4abx + 4ac + (b^2 - b^2) = 0$$

$$(4a^2x^2 + 4abx + b^2) - (b^2 - 4ac) = 0$$

 $(2ax + b)^2 - \sqrt{(b^2 - 4ac)^2} = 0 \rightarrow \text{ kemudian masing-masing suku}$ diakar

$$(2ax + b - \sqrt{b^2 - 4ac}) = 0 \rightarrow$$
 harga dari akar bisa (+) dan (-)

Sehingga diperoleh rumus:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \dots rumus 4$$

Nilai b^2 - 4ac disebut **diskriminan** dari persamaan $ax^2 + bx + c = 0$ dan diyulis dengan huruf **D**. maka rumus diatas menjadi :

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$
.....rumus 5

Contoh:

Carilah akar – akar dari persamaan kuadrat : $4x^2 + 5x + 1 = 0$ Jawab

$$4x^{2} + 5x + 1 = 0 \rightarrow a = 4, b = 5 \ dan \ c = 1$$

$$x_{1,2} = \frac{-5 \pm \sqrt{5^{2} - 4.4.1}}{2.4} \qquad x_{1,2} = \frac{-5 \pm \sqrt{25 - 16}}{8}$$

$$x_{1,2} = \frac{-5 \pm 3}{8}$$

$$x1 = \frac{-5 - 3}{8} = -1$$

$$x_2 = \frac{-5 + 3}{8} = -\frac{1}{4}$$

C. Jumlah dan hasil kali akar – akar persamaan kuadrat

Misal akar – akar dari persamaan kuadrat $ax^2 + bx + c = 0$ adalah x_1 dan x_2 . Rumus pemyelesaian dari persamaan kuadrat tersebut :

$$x_1 = \frac{-b + \sqrt{D}}{2a}$$
 dan $x_2 = \frac{-b - \sqrt{D}}{2a}$

Maka jumlah akar-akar tersebut adalah : $x_1 + x_2 = \frac{-b + \sqrt{D} - b - \sqrt{D}}{2a}$

Atau $x_1, x_2 = \frac{-b}{a}$ rumus 6

Sedangkan hasil kali akar – akar tersebut adalah :

$$x_1, x_2 = \frac{\left\{ (-b)^2 - (\sqrt{D}) \right\}^2}{4a^2} = \frac{b^2 - b^2 + 4ac}{4a^2}$$

Atau $x_1, x_2 = \frac{c}{a}$ rumus 7

Selisih akar – akar tersebut adalah:

 $x_1 - x_2 = \frac{2\sqrt{D}}{2a}$ sehingga $x_1 - x_2 = \frac{\sqrt{D}}{a}$ rumus 8

Atau $D = a^2 (x_1 - x_2)^2$ rumus 9

Contoh:

$$2x^2 + 4x + 6 = 0$$

Tentukan nilai $x_1^2 + x_2^2$ tanpa mencari x_1 dan x_2

Jawab

$$2x^{2} + 4x + 6 = 0 \rightarrow a = 2, b = 4 dan c = 6$$

$$x_{1} + x_{2} = -\frac{4}{2} = -2$$

$$x_{1}.x_{2} = \frac{6}{2} = 3$$

$$x_{1}^{2} + x_{2}^{2} = (x_{1} + x_{2})^{2} - 2.x_{1}.x_{2}$$

$$= (-2)^{2} - 2.3 = -2$$

D. Jenis akar – akar persamaan kuadrat

Akar – akar persamaan kuadrat $ax^2 + bx + c = 0$ adalah x_1 dan x_2 dimana

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$
....rumus 5

 $D = b^2 - 4ac$ adalah disriminan.

Jenis akar – akar persamaan berdasarkan diskriminan adalah :

- 1. Jika D > 0, Maka terdapat dua akar real yang tidak sama ($x_1 \neq x_2$)
- 2. Jika D = 0, Maka akar akarnya kembar atau sama dan real ($x_1 \neq x_2$).
- Jika D < 0, Maka kedua akar tidak real atau tidak mempunyai akar – akar yang real.

Contoh:

1). Tentukan q supaya persamaan $x^2 + qx + a = 0$ mempunyai dua akar nyata dan berlainan.

Jawab

$$x^2 + qx + q = 0$$

mempunyai dua kar berlainan, maka D > 0

$$D = b^2 - 4ac = q^2 - 4 \cdot 1 \cdot q = q^2 - 4q > 0$$

Atau
$$q (qa - 4) > 0$$

 $q_1 = 0$; $(q - 4) = 0 \rightarrow q_2 = 4$
Maka: $q < 0$ ataua $q > 4$.

2). Tentukan nilai p agar persamaan kuadrat $x^2 - (2 + p)x + 4 = 0$ mempunyai akar – akar kembar.

Jawab:

$$x^{2} - (2 + p)x + 4 = 0$$

akar – akarnya kembar, maka D = 0
 $D = b^{2} - 4ac$
 $= -(2 + p)^{2} - 4 \cdot 1 \cdot 4$
 $= 4 + 4p + p^{2} - 16$

$$p^2 + 4p - 12 = 0$$

$$(p+6)(p-2)=0$$

$$p_1 = -6$$
 dan $p_2 = 2$

E. Contoh Soal dan Penyelesaian

1). Apabila m menjalani bilangan – bilangan nyata, selidikilah banyaknya akar – akar persamaan : $x^2 - 2(1 + 3m)x + 7(3 + 2m) = 0$

Jawab

Banyaknya akar – akar persamaan kuadrat ditentukan adanya diskriminan itu. Kita hitung dahulu besarnya diskriminan itu yaitu:

$$D = 4 (1 + 3m)^{2} - 28 (3 + 2m)$$
$$= 4 + 24m + 36m^{2} - 84 - 56m$$
$$= 36m^{2} - 32m - 80$$

Ada 3 kemungkinan:

a). Kalau D > 0 atau $36\text{m}^2 - 32\text{m}$ 80 > 0 maka $36\text{m}^2 - 32\text{m}$ -80 > 0 disederhanakan menjadi $4(9\text{m}^2 - 8\text{m} - 20) > 0$

$$4(9m+10)(m-2) > 0$$

Kalau D > 0, maka m > 2 atau m <
$$-\frac{10}{9}$$

Yang berarti persamaan di atas mempunyai dua akar yang nyata dan berlainan

b). Kalau D = 0 atau
$$36m^2 - 32m - 80 = 0$$
 akan memberikan m_1
= 2 atau $m_2 = -\frac{10}{9}$

untuk m_1 dan m_2 sebesar tersebut diatas, maka persamaan tersebut diatas mempunyai dua akar yang nyata dan kembar.

Untuk $m = -\frac{10}{9}$, akar kembar itu adalah :

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$
 \rightarrow karena D = 0 maka

$$x_{1,2} = \frac{-b}{2a} = \frac{2(1+3m)}{2.1} = \frac{2+6.(-10/9)}{2}$$
$$= 1+3.(-10/9) = 1-10/3$$
$$= -7/3$$

- c). kalau D < 0 atau $36m^2 32m$ 80 < 0, maka persamaan diatas tidak mempunyai akar yang nyata.
- 2). Tentukan akar akar persamaan

$$\frac{x^2 - 7x}{x^2 - 9} + 1 = \frac{x^2 - 21}{x^2 - 9}$$

Jawab:

Jika 1 diganti dengan $\frac{x^2-9}{x^2-9}$ maka

$$\frac{x^2 - 7x}{x^2 - 9} + 1 = \frac{x^2 - 21}{x^2 - 9}$$

$$x^2 - 7x + x^2 - 9 = x^2 - 21$$

$$x^2 - 7x + x^2 - 9 = -21$$

$$x^2 - 7x + 12 = 0$$

$$(x-4)(x-3)=0$$

$$x-4=0 \longrightarrow x_1=4$$

$$x-3=0 \rightarrow x_2=3$$

 $x_2 = 3$ apabila dimasukkan ke soal, persamaannya tidak terdefinisikan.

Maka akarnya adalah x = 4

3). Akar – akar persamaan kuadrat $2x^2 - 6x - p = \text{ialah } x_1 \text{ dan } x_2$ jika $x_1^2 - x_2^2 = 15$.

Tentukan harga p!

Jawab:

$$x_1 + x_2 = \frac{-b}{a}$$
 maka $x_1 + x_2 = -\frac{(-6)}{2} = 3$ (1)

$$x_1$$
. $x_2 = \frac{c}{a}$ maka x_1 . $x_2 = -\frac{P}{2}$ (2)

$$x_1^2 - x_2^2 = 15$$
(3)

$$(x_1 + x_2) (x_1 - x_2) = 15^{(*)}$$

$$3(x_1 - x_2) = 15 \rightarrow (x_1 - x_2) = 5$$
(4)

Dengan mengeleminasi persamaan (1) dan (4):

$$x_1 + x_2 = 3$$

$$\underline{x_1 - x_2} = 5 + \longrightarrow x_1 = 4 \longrightarrow -1$$

$$2x_1 = 8$$

Dari persamaan (2) $\rightarrow x_1$. $x_2 = -\frac{P}{2}$

$$4.(-1) = -\frac{P}{2} \rightarrow p = 8$$

Catatan:

(*) ingat rumus
$$x_1^2 - x_2^2 = (x_1 + x_2) (x_1 - x_2)$$

= $3(x_1 - x_2)$

4). Tentukan harga x dari persamaan $\frac{4}{x^2} - \frac{6}{x} - 3 = 0$

Jawab:

Bentuk lain dari persamaan tersebut adalah $4.x^{-2} - 6.x^{-1} - 3 = 0$ Selanjutnya direduksi dengan memisalkan $t = x^{-1}$,

Sehingga $t^2 = x^{-2}$

Dengan demikian persamaan di atas menjadi $4.t^2 - 6.t - 3 = 0$

$$t_{1,2} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4.4(-3)}}{2.4} = \frac{6 \pm \sqrt{36 + 46}}{8}$$

$$t_1 = \frac{6 + \sqrt{84}}{8} \operatorname{dan} t_2 = \frac{6 - \sqrt{84}}{8}$$

karena $t = x^{-1}$ maka $x = \frac{1}{t}$ sehinga:

$$x_I = \frac{1}{t_1} = \frac{1}{\frac{6 + \sqrt{84}}{8}} = \frac{8}{6 + \sqrt{84}} = 0,5275$$

$$x_2 = \frac{1}{t_2} = \frac{1}{\frac{6 - \sqrt{84}}{8}} = \frac{8}{6 - \sqrt{84}} = -2,5275$$