

Review recent msd data

Cristian and I obtained more inner droplet motion data during his intern in Paris. In this note, I review these data and pick out the useful ones.

50-70 contains 29 experiments, and is the densest bin with size 20

With in this OD bracket, the outer and inner droplet diameters has the following distribution:

First, plot 5 MSD on one plot and manually measure R^∞ and τ^* , meantime filter out too short or too jumpy trajectories.

Plot all the MSD's in the same plot, try to rescale $\left<\Delta y^2\right>$ with $(D-d)^2.$ (unsuccessful attempt)

rescale y-axis

It's also interesting to rescale $\left\langle \Delta y^2
ight
angle$ in such a way that all the plateau values

collapse, to inspect the time scale difference.

If we rescale Δt with τ^* as well, all the curves can be collapsed.

Such collapse demonstrates that the motions of inner droplets share a similar pattern, which can be described by two parameters R^∞ and τ^* . However, theoretical

understanding of these two parameters, in particular how confinement influences them, is still lacking.

Next, we try to reveal the confinement effect by plotting R^{∞} and τ^* as functions of D and d.

vs. D

vs. d

