

Navy Case No. 77222

I HEREBY CERTIFY THAT THIS CORRESPONDENCE IS BEING DEPOSITED WITH
THE UNITED STATES POSTAL SERVICE AS EXPRESS MAIL POST OFFICE TO ADDRESSEE,
EXPRESS MAIL LABEL NUMBER EM056745288US IN AN ENVELOPE
ADDRESSED TO:

COMMISSIONER OF PATENTS AND TRADEMARKS
WASHINGTON, DC 20231

ON 7 August, 1997
BY Linda B. Brady
Linda B. Brady
DEPOSITOR
SIGNATURE

1 HIGH RESOLUTION IMAGING LIDAR FOR DETECTING SUBMERGED OBJECTS

2 Background of the Invention

3 The present invention relates to the detection of
4 submerged objects in a scattering medium such as water. More
5 specifically, but without limitation thereto, the present
6 invention relates to a device for forming high resolution
7 images of objects submerged in shallow water and coastal
8 regions from an airborne platform using improved lidar (light
9 detection and ranging, analogous to radar, i.e., radio
10 detection and ranging) to provide high resolution imaging.

11 A number of military and civilian applications require
12 searching for certain objects in a scattering medium. For
13 example, moored and bottom mines deployed in shipping lanes
14 generally must be detected before measures can be taken to
15 disarm them. It is also useful in various applications to
16 locate and map submerged obstacles, cables, pipelines, barrels,

Navy Case No. 77222

1 oil drums, etc.

2 An imaging lidar is commonly applied to the problem of
3 detecting submerged objects in shallow water, such as mines. An
4 exemplary lidar is described in U.S. Patent No. 5,243,541
5 issued to Ulich on September 7, 1993 incorporated herein by
6 reference thereto. This lidar improves the spatial resolution
7 of objects by pulsing the laser and range gating the
8 photodetector to exclude scattered light from the surface and
9 depths not of interest.

10 Line scanning is another image acquisition technique that
11 is typically used with a laser on a moving submerged platform.
12 The laser scans the ocean bottom transversely with respect to
13 the direction of motion of the platform and images the
14 scattered light with a narrow field of view photomultiplier
15 tube. In order to generate an image at a practical resolution,
16 the scan rate should be about 700,000 pixels per second. A
17 slower scan rate would increase the data acquisition time,
18 causing vulnerability in hostile environments, or reduce the
19 image resolution.

20 A problem with current scanning lidars is that they
21 perform poorly in ambient light. Because blue-green lasers are
22 typically used for underwater transmission, sunlight scattered
23 back to the photomultiplier tube degrades the signal to noise
24 ratio. Another problem is that surface scattering dictates that
25 the laser/detector platform be submerged to prevent heavy

Navy Case No. 77222

1 losses in the transmitted signal. Still another problem is that
2 a 700 KHz scan rate dictates the use of CW lasers, because most
3 lasers cannot be pulsed at rates on the order of 700 KHz
4 without significantly degrading the laser efficiency, which
5 prevents locating the laser/detector platform on an aircraft
6 for use above the water surface.

7 Summary of the Invention

8 An imaging lidar of the present invention is directed to
9 overcoming the problems described above, and may provide
10 further related advantages. No embodiment of the present
11 invention described herein should be construed to preclude
12 other embodiments or advantages that may exist or become
13 obvious to those skilled in the art.

14 An imaging lidar of the present invention comprises a
15 laser for generating a line scan of light beam pulses to
16 illuminate an area surrounding a target. An image acquisition
17 controller selects pulse width and pulse rate of the light beam
18 pulses emitted by the laser. A photomultiplier tube detects
19 energy from the light beam pulses scattered by the target and
20 generates an output signal comprising a series of pixels
21 defined by the light beam pulses. A display generates an image
22 from the output signal that is representative of the target.
23 The photomultiplier tube output signal may be gated to block

Navy Case No. 77222

1 light scattered from ranges other than a selected range window
2 for the target, such as from a water surface.

3 An advantage of the imaging lidar of the present invention
4 is that the scanning beam may be pulsed at a rate sufficient
5 for high data acquisition rates used in high resolution
6 imaging applications and at a high energy efficiency suitable
7 for airborne platforms.

8 Another advantage is that the signal-to-noise ratio may be
9 substantially improved relative to current line scanning
10 systems using a CW laser by gating the received pulse to
11 exclude most of the ambient sunlight and surface scattered
12 light reaching the scanning beam detector.

13 Yet another advantage is that the range of objects in the
14 scanned image may be determined with high resolution for
15 contour mapping applications.

16 The features and advantages summarized above in addition
17 to other aspects of the present invention will become more
18 apparent from the description accompanied by the following
19 drawings.

20 Brief Description of the Drawings

21 Fig. 1 is diagram of an imaging lidar of the present
22 invention on an airborne platform.

1 Description of the Invention

2 The following description is presented solely for the
3 purpose of disclosing how the present invention may be made and
4 used. The scope of the invention is defined by the claims.

5 In Fig. 1 an imaging lidar system 10 of the present
6 invention comprises a pulsed laser 102, a photomultiplier 104,
7 and a control/display 108. An aircraft 106, by way of example,
8 may be used to provide relative motion of the lidar components
9 over water surface 116. Pulsed laser 102 may be made as
10 described

11 in U.S. Patent No. 5,530,711 issued to Richard Scheps on June
12 25, 1996 incorporated herein by reference thereto and
13 configured with photomultiplier 104 and control/display 108 as
14 described in U.S. Patent No. 4,143,400 issued to Paul Heckman
15 et al. on March 6, 1979 incorporated herein by reference
16 thereto.

17 In operation pulsed laser 102 emits pulses in, for
18 example, the blue-green wavelength region for optimum
19 transmission in water at a rate of, for example, 700 KHz to
20 match the data acquisition rate of typical CW lidar systems.

21 ^{INSTA}) This is possible due to the short ^{A1} The pulses may be scanned
22 transversely with respect to the direction of relative motion
23 to generate scan lines 110 as shown in Fig. 1. Light pulses 114
24 scattered by a target object 112 are detected by

1 photomultiplier 104. The combined advantages of line scanning
2 and temporal discrimination for image acquisition with reduced
3 backscatter are made possible by using a laser diode pumped dye
4 laser for pulsed laser 102 to achieve high power efficiency,
5 high repetition rate, and short pulse width due to the short
6 decay time of dye lasers. Rather than using an optical shutter
7 to generate pulses from a CW laser, the present invention
8 switches the laser pump diode(s) of pulsed laser 102 on and off
9 at the pulse rate so that all of the available power of the dye
10 laser is used in the pulse.

11 Line scan reduces the backscattered return signal by
12 spatial discrimination, and in the present invention the output
13 signal from photomultiplier 104 is gated to further reduce the
14 backscattered return signal by temporal discrimination. For
15 example, using a 5 ns pulse width at a pulse rate of 700 KHz
16 results in a duty cycle of about .0035, i.e., only about .35%
17 of the ambient light is added to the signal from light pulses
18 114. The range detection window may be selected by varying the
19 delay between the pulse transmission time and the gating
20 interval. The range resolution along the path of the scanning
21 beam is substantially equal to the pulse length. A pulse width
22 of 5 ns results in a pulse length of about four feet. Each
23 pulse defines a single pixel in the beam scan. The range
24 resolution may be further improved by shortening the control
25 pulse to pulse laser 102. The output of photomultiplier 104 is

Navy Case No. 77222

1 input to control/display 104. Control/display 104 provides
2 pulsing signals to pulsed laser 102 and generates a pixel by
3 pixel raster scan display from light pulses 114 scattered from
4 the output of photomultiplier 104 that shows the dimensions of
5 target 112.

6 Alternatively, a periodically poled crystal may be used as
7 a frequency multiplying gain element to obtain shorter output
8 wavelengths from a laser pumped by a laser diode.

9 Other modifications, variations, and applications of the
10 present invention may be made in accordance with the above
11 teachings other than as specifically described to practice the
12 invention within the scope of the following claims.