Contrastive learning of medical visual representations from paired images and text

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, Curtis P. Langlotz

Presented by Yufeng Zhang 10/30/23

Outline

- Motivation & Goal
- Introduction
- Methodology
- Experiments & results
- Comments and concurrent works

Motivation

Currently limitations

Scarcity of human annotation

High inter-class similarity

ConVIRT

learn better medical visual representations exploiting naturally occurring paired descriptive text

Bidirectional contrastive objective between two modalities

Goal

- Learn a parameterized image encoder function f_v , which maps an image to a fixed-dimensional vector
- f_v can be used for <u>classification</u> or <u>image retrieval</u>

Paired medical image-text

Contrastive learning recap

❖ simCLR Framework

Application in medical image classification

Huang, Shih-Cheng, et al. "Self-supervised learning for medical image classification: a systematic review and implementation guidelines." *NPJ Digital Medicine* 6.1 (2023): 74.

Overview of the proposed ConVIRT framework

standard ResNet50

BERT base encoder initialized with ClinicalBERT pretrained on the MIMIC clinical notes

Training Loss

$$\ell_i^{(v \to u)} = -\log \frac{\exp(\langle \mathbf{v}_i, \mathbf{u}_i \rangle / \tau)}{\sum_{k=1}^{N} \exp(\langle \mathbf{v}_i, \mathbf{u}_k \rangle / \tau)}$$

$$\ell_i^{(u \to v)} = -\log \frac{\exp(\langle \mathbf{u}_i, \mathbf{v}_i \rangle / \tau)}{\sum_{k=1}^{N} \exp(\langle \mathbf{u}_i, \mathbf{v}_k \rangle / \tau)}$$

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(\lambda \ell_i^{(v \to u)} + (1 - \lambda) \ell_i^{(u \to v)} \right)$$

Pretraining Dataset

- Chest X-ray image-text dataset:
 - from MIMIC-III
 - 217k pairs
- Bone image-text dataset:
 - from the Rhode Island Hospital system
 - 48k pairs

Image classification task

- Dataset
 - RSNA Pneumonia Detection
 - CheXpert
 - COVIDx
 - MURA

- Evaluation method
 - Linear probing
 - Fine tuning

(a) Linear classification

	RS	NA (AU	(C)	Che	Xpert (A	UC)	COVID	x (Accu.)	MU	JRA (AU	JC)
Method	1%	10%	all	1%	10%	all	10%	all	1%	10%	all
General initialization met	hods										
Random Init.	55.0	67.3	72.3	58.2	63.7	66.2	69.2	73.5	50.9	56.8	62.0
ImageNet Init.	82.8	85.4	86.9	75.7	79.7	81.0	83.7	88.6	63.8	74.1	79.0
In-domain initialization n	nethods										
Caption-Transformer	84.8	87.5	89.5	77.2	82.6	83.9	80.0	89.0	66.5	76.3	81.8
Caption-LSTM	89.8	90.8	91.3	85.2	85.3	86.2	84.5	91.7	75.2	81.5	84.1
Contrastive-Binary-Loss	88.9	90.5	90.8	84.5	85.6	85.8	80.5	90.8	76.8	81.7	85.3
ConVIRT (Ours)	90.7	91.7	92.1	85.9	86.8	87.3	85.9	91.7	81.2	85.1	87.6

(b) Fine-tuning

	RS	NA (AU	(C)	Che	Xpert (A	UC)	COVID	x (Accu.)	MU	JRA (AU	JC)
Method	1%	10%	all	1%	10%	all	10%	all	1%	10%	all
General initialization met	hods										
Random Init.	71.9	82.2	88.5	70.4	81.1	85.8	75.4	87.7	56.8	61.6	79.1
ImageNet Init.	83.1	87.3	90.8	80.1	84.8	87.6	84.4	90.3	72.1	81.8	87.0
In-domain initialization n	nethods										
Caption-Transformer	86.3	89.2	92.1	81.5	86.4	88.2	88.3	92.3	75.2	83.2	87.6
Caption-LSTM	87.2	88.0	91.0	83.5	85.8	87.8	83.8	90.8	78.7	83.3	87.8
Contrastive-Binary-Loss	87.7	89.9	91.2	86.2	86.1	87.7	89.5	90.5	80.6	84.0	88.4
ConVIRT (Ours)	88.8	91.5	92.7	87.0	88.1	88.1	90.3	92.4	81.3	86.5	89.0

Zero-shot image-image/text-image retrieval

	Image-Image Retrieval			Text-Image Retrieval			
Method	Prec@5	Prec@10	Prec@50	Prec@5	Prec@10	Prec@50	
Random	12.5	12.5	12.5	12.5	12.5	12.5	
ImageNet	14.8	14.4	15.0	_	_	_	
In-domain initialization methods							
Caption-Transformer	29.8	28.0	23.0	_	_	_	
Caption-LSTM	34.8	32.9	28.1	_	_	_	
Contrastive-Binary-Loss	38.8	36.6	29.7	15.5	14.5	13.7	
ConVIRT (Ours)	45.0	42.9	35.7	60.0	57.5	48.8	
Fine-tuned							
ConVIRT + CheXpert Supervised	56.8	56.3	48.9	_	_	_	

(a) ImageNet Pretraining

(b) ConVIRT Pretraining

Comparison to image-only contrastive learning

Method	RSNA (Linear, 1%)	CheXpert (Linear, 1%)	Image-Image (Prec@10)
ImageNet	82.8	75.7	14.4
SimCLR (Chen et al., 2020a)	86.3	77.4	17.6
MoCo v2 (Chen et al., $2020b$)	86.6	81.3	20.6
ConVIRT	90.7	85.9	42.9

Existing Limitations and improvements

Other visual language models

CLIP

- Simplified framework
- Image and text encoder

MedCLIP

- Unpaired medical images and text
- SemanticMatchingLoss

ALBEF

- MomentumDistillation
- Triplet loss for pre-training objectives

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. PMLR, 2021.

Wang, Zifeng, et al. "Medclip: Contrastive learning from unpaired medical images and text." arXiv preprint arXiv:2210.10163 (2022).

Li, Junnan, et al. "Align before fuse: Vision and language representation learning with momentum distillation." Advances in neural information processing systems 34 (2021): 9694-9705.

Criticism

Final Decision

ICLR 2021 Conference Program Chairs

Decision: Reject

Comment: The proposed ConVIRT learns representations of medical data from paired image and text data. While the paper addresses a relevant problem, the reviewers agree that the method has limited novelty. Two reviewers find and that the experiments are not convincing. One reviewer notes that the paper does not compare to the state-of-the-art methods for the tasks.

Comparison with ViLBERT

Proposed Vilbert

Co-attention transformer layer

- Proposed structure
- Loss function

Thanks!

Quiz

• Q1: How does contrastive learning contribute to mitigating the interclass similarity in medical images?

• Q2: What distinguishes CLIP from ConVIRT in terms of major enhancements?