Meat Wagons - Transporte de Prisioneiros

Turma 2 Grupo 3

up201806250@fe.up.pt up201806490@fe.up.pt up201806554@fe.up.pt Diogo Samuel Gonçalves Fernandes Hugo Miguel Monteiro Guimarães Telmo Alexandre Espirito Santo Baptista

18 de Abril de 2020

Projeto CAL - 2019/20 - MIEIC

Professor das Aulas Práticas: Rosaldo José Fernandes Rossetti

Índice

1	Descrição do Problema	3
2	Formalização do Problema	4
	2.1 Dados de Entrada	4
	2.2 Dados de Saída	5
	2.3 Restrições	
	2.4 Função objetivo	
3	Perspectiva de solução	7
	3.1 Pré-processamento dos dados de entrada	7
	3.2 Identificação do problema	7
	3.3 Caminho mais curto	
	3.4 TSP/VRP	
4	Bibliografia	10

1 Descrição do Problema

Os transportes de prisioneiros entre diversos estabelecimentos como, por exemplo, as prisões, esquadras e tribunais são feitos usando carrinhas que se encontram adaptadas ao serviço. Estes veículos têm a necessidade de serem altamente resistentes uma vez que é necessário garantir que os prisioneiros não conseguem escapar.

Para este projeto, queremos optimizar o percurso dos veículos de forma a recolher e entregar os prisioneiros nos pontos de interesse. De modo a cumprir o pretendido, é possivel dividir nas seguintes fases:

Primeira Iteração - Recolha não seletiva de prisioneiros utilizando uma única carrinha

Inicialmente considere que só existe uma única camioneta para realizar todos os serviços. Com a primeira iteração pretende-se que apenas uma carrinha vá recolher os prisioneiros a uma dada localização, tendo em conta a urgência da situação. As situações que sejam mais exigentes serão respondidas primeiro pela carrinha.

É importante de notar que a recolha só pode ser efetuada se exisrem caminhos que liguem todos os pontos de interesse, ou seja, o grafo necessita de ser conexo.

Algumas vezes, obras nas vias públicas podem fazer com que certas zonas tornem-se inacessíveis, inviabilizando o acesso ao destino de alguns prisioneiros. Avalie a conectividade do grafo, a fim de identificar pontos de recolha e de entrega com pouca acessibilidade.

Segunda Iteração - Recolha seletiva de prisioneiros utilizando uma única carrinha

Durante a segunda fase, cada prisioneiro irá ser agrupado com outros prisioneiros sempre que seja possivel, de modo a não exceder a capacidade da carrinha.

Terceira Iteração - Recolha seletiva de prisioneiros utilizando várias carrinhas

Concluindo, nesta ultima fase vai-se ter em consideração o diverso número de carrinhas que a frota possui. Algumas carrinhas vão diferir de outras, tendo cada carrinha uma determinada função. Por exemplo, vão existir carrinhas especificas para transportar prisioneiros até aos aeroportos, linhas de comboio.

2 Formalização do Problema

2.1 Dados de Entrada

 C_i - sequência de veículos, sendo $C_i(i)$ o seu i-ésimo elemento. Cada veículo é caraterizado por:

- capacity número de prisioneiros que pode transportar
- *type* tipo de veículo

 R_i - sequência de pedidos de transporte de prisioneiros, sendo $R_i(i)$ o seu i-ésimo elemento. Cada pedido é caraterizado por:

- pickup local de recolha dos prisioneiros
- dest local de destino dos prisioneiros
- $\bullet \ num Pris$ número de prisioneiros a serem transportados
- type tipo de prisioneiros
- p_d peso da distância no trajeto a efetuar
- p_t peso do tempo no trajeto a efetuar

 $G_i = (V_i, E_i)$ - grafo dirigido pesado, composto por:

- \bullet V vértices, representando pontos da rede viária, com:
 - ID Identificador único do vértice
 - D Densidade populacional no vértice
 - $-Adj \subseteq E$ arestas que saiem do vértice
- E arestas, representando conexão entre dois pontos da rede viária, com:
 - ID Identificador único da aresta
 - $-W_d$ peso da aresta em relação à distância (representa a distância entre os dois vértices)
 - $-W_t$ peso da aresta em relação ao tempo (representa o tempo médio que demora a percorrer a distância entre os dois vértices, considerando o tráfego normal naquela conexão da rede viária)
 - open se a conexão entre os vértices está aberta, isto é, se a rua estiver cortada por alguma razão então não é possível utilizar esta conexão

S - vértice da central

2.2 Dados de Saída

 $G_f = (V_f, E_f)$ - grafo dirigido pesado, tendo V_f e E_f os mesmos atributos que V_i e E_i , excluindo atributos específicos do algoritmo utilizado

 C_f - sequência de veículos com os serviços a realizar, sendo $C_f(i)$ o seu i-ésimo elemento. Cada veículo é caraterizado por:

- S sequência de serviços a realizar, sendo S(i) o seu i-ésimo elemento. Cada serviço é caraterizado por:
 - emptySeats número de lugares vazios
 - $-R_f$ sequência de pedidos atendidos, sendo $R_f(i)$ o seu i-ésimo elemento. Cada pedido atendido é caraterizado por:
 - * pickupHour hora de chegada ao local de recolha
 - * destHour hora de chegada ao local de destino
 - * p_d peso da distância no trajeto a efetuar
 - * p_t peso do tempo no trajeto a efetuar
 - P=e ϵ E_i sequência de arestas a percorrer, sendo P(i)o seu i-ésimo elemento
 - dist distância percorrida no serviço
 - startHour hora esperada de ínicio do serviço
 - endHour hora esperada de termino do serviço

2.3 Restrições

Sobre os dados de entrada

- $\forall i \ \epsilon \ [0, |C_i|[: capacity(C_i(i)) > 0$, uma vez que não faz sentido os veículos não poderem transportar prisioneiros
- $\forall r \in R_i, dest(r)$ deve pertencer ao mesmo componente fortemente conexo do grafo G_i que o vértice S, uma vez que o veículo tem de ser capaz de voltar à central
- $\forall r \in R_i, numPris(r) > 0$, uma vez que não faz sentido ter um pedido para transportar zero prisioneiros
- $\forall r \in R_i, p_d \geq 0 \land p_t \geq 0 \land (p_d \neq 0 \lor p_t \neq 0)$
- $\forall e \ \epsilon \ E_i, W_d(e) > 0 \land W_t(e) > 0$, uma vez que o peso da aresta representa a distância ou o tempo médio necessário para percorrer a aresta, se esta distância ou tempo forem zero estaremos num ciclo no mesmo vértice
- $\forall e \ \epsilon \ E_i, e$ deve ser uma rua ao qual os veículos possam utilizar, ruas que os veículos não tenham permissão para entrar não são incluídas no grafo G_i
- $S \in V_i$, uma vez que a central é um vértice do grafo G_i

Sobre os dados de saída

- $|C_f| \leq |C_i|$ não se pode usar mais veículos que os disponíveis
- $\forall v_f \in V_f, \exists v_i \in V_i$ tal que v_i e v_f têm os mesmos valores para todos os atributos, com exceção de atributos específicos aos algoritmos utilizados
- $\forall e_f \in E_f, \exists e_i \in E_i$ tal que e_i e e_f têm os mesmo valores para todos os atributos, com exceção de atributos específicos aos algoritmos utilizados
- $\forall r_f \in R_f, \exists r_i \in R_i$ tal que $r_f \in r_i$ têm os mesmo valores para os atributos $p_d \in p_t$
- $\forall c \in C_f, \forall s \in S(c), 0 \leq emptySeats < capacity(c)$ pois cada serviço deve ter pelo menos um prisioneiro, e não pode haver sobrelotação do veículo
- $\forall c \in C_f, \forall s \in S(c), |R_f(s)| > 0$ uma vez que só faz sentido realizar um serviço se for houver um pedido de transporte de prisioneiros
- $\forall c \in C_f, \forall s \in S(c), endHour(s) > startHour(s)$
- $\forall c \in C_f, \forall s \in S(c), startHour(s) < pickupHour(\forall r \in R_f) < endHour(s) \land startHour(s) < destHour(\forall r \in R_f) \leq endHour(s)$

2.4 Função objetivo

A solução ótima passa por minizar a soma ponderada da distância percorrida e o tempo do serviço de uma determinada carrinha, que resulta na seguinte função:

$$\sum_{c \in C_f} \sum_{s \in S} \sum_{e \in P} (W_d(e) * max(p_d(R_f(s))) + W_t(e) * max(p_t(R_f(s)))$$

- $max(p_d(R_f(s)))$ é o maior valor para o peso da distância numa determinada sequência de pedidos de um serviço de uma carrinha
- $max(p_t(R_f(s)))$ é o maior valor para o peso do tempo numa determinada sequência de pedidos de um serviço de uma carrinha

Deste modo, obtivemos a função objetivo para o nosso problema que se encontra acima.

3 Perspectiva de solução

3.1 Pré-processamento dos dados de entrada

Grafo

Partindo da central todos as arestas que não forem alcançáveis têm a variável *open* definida como falsa. Além disso, todas os vértices do grafo que não pertencerem à componente fortemente conexa de origem devem ter as arestas que lhe alcançam marcadas como inacessíveis.

Pedidos de transporte de prisioneiros

Remover todos os pedidos de transporte de prisioneiros que não pertençam ao grafo préprocessado, isto é, remover aqueles que façam parte de arestas que têm a componente *open* definida como falsa.

Também devemos organizar os pedidos de transporte de prisioneiros por ordem decrescente do número de prisioneiros a transportar, facilitando depois no alocamento de veículos para o seu transporte.

Veículos para transporte de prisioneiros

Relativamente ao pré-processamento dos veículos de transporte, devemos organizá-los por ordem decrescente de capacidade. Assim, como também temos os pedidos de transporte de prisioneiros organizados por ordem decrescente do número de prisioneiros a transportar podemos potencialmente minizar o número de veículos utilizados.

3.2 Identificação do problema

A empresa de transporte de prisioneiros Meat Wagons necessita de transportar os prisioneiros de um ponto de recolha até um determinado destino. De modo a otimizar este transporte, a empresa optou por procurar o caminho mais eficiente para a efetuar a viagem.

Na primeira iteração, onde apenas está disponível um veículo, que realiza os pedidos de transporte um de cada vez, este problema trata-se do **caminho mais curto** entre a origem e o local de recolha seguido do **caminho mais curto** entre o local de recolha e o destino. A segunda iteração é semelhante à primeira iteração, variando apenas o número de veículos disponíveis para realizar os pedidos.

Na terceira e última iteração, não só varia o número de veículos disponíveis, como também o número de pedidos de transporte que um veículo pode realizar num único serviço, equiparandose ao problema designado por **Vehicle Routing Problem**, uma generalização do problema do **Travelling Salesman Problem**, um problema NP-díficil.

Vale também realçar que os veículos devem retornar para a central no fim

3.3 Caminho mais curto

Este é o problema referido na primeira e segunda iteração, e trata-se de encontrar o percurso mais curto e eficiente entre dois pontos, ou entre todos os pares de pontos do grafo.

Entre dois pontos

Entre os vários algoritmos que existem para calcular o caminho mais curto entre dois pontos destacam-se os seguintes algoritmos:

Algoritmo de Dijkstra

Este algoritmo foi concebido por Edsger W. Dijkstra e resolve problemas do caminho mais curto de uma única origem em grafos que possuam pesos não negativos.

Para poder aplicar este algoritmo é necessário que cada vértice guarde a seguinte informação:

- ullet W custo mínimo até ao local da origem (combinação linear da distância e tempo, como visto na função objetivo)
- path vértice antecessor no caminho mais curto

O algoritmo de Dijkstra pode utilizar uma priorityqueue ou um array para inserir os novos vértices. Este consiste em inicializar os vértices, o que se pode fazer em tempo linear O(|V|). Seguidamente, inicializar a estrutura auxiliar, que neste caso consideramos a priorityqueue devido a ter maior eficiência relativamente ao array, com o vértice origem.

Processam os vértices que se encontram na queue extraindo-os e seguidamente percorrendo cada aresta do vértice a ser processado. Posteriormente, se o custo relativo ao vértice de destino da aresta for maior do que o custo do caminho atual, terá que se atualizar o vértice de destino e inserindo na priorityqueue caso ele ainda não esteja na fila de processamento ou fazendo a operação DECREASE - KEY caso este já esteja na fila de processamento.

As operações de inserção, extração e DECREASE-KEY têm complexidade temporal O(log(N)). Dado que é necessário percorrer todos os vértices e arestas resulta numa complexidade de O((|V|+|E|)*log(|V|)).

Algoritmo A*

Algoritmo de Bellman-Ford

Entre todos os pares de pontos

Algoritmo de Floyd-Warshall

Johnson's??

3.4 TSP/VRP

Brute-force

Held-Karp

nearest neighbour

genetic

4 Bibliografia

- Apresentações fornecidas pelo professor Rosaldo José Fernandes Rossetti nas aulas téoricas da cadeira Conceção e Análise de Algoritmos
- Shortest Path Problem
- Dijkstra's Algorithm
- Traveling Salesman Problem
- Vehicle Routing Problem