

Algorithms for Scientific Computing

Hierarchical Methods - Interpolation, Approximation and Classification -

Michael Bader Technical University of Munich

Summer 2022

Part I

Approximation, Classification – Towards Data Mining

Recall Interpolation Problem

Interpolation problem:

- *N* ansatz functions: $g_k(x)$, k = 0, ..., N-1
- *N* supporting points: x_n , n = 0, ..., N-1
- *N* interpolation values: f_n , n = 0, ..., N-1
- find N coefficients c_k such that at all supporting points

$$f_n = \sum_{k=0}^{N-1} c_k g_k(x_n)$$

How to choose the $g_k(x)$?

- polynomials $\phi_i(x) = x^j \rightsquigarrow$ numerics lecture . . .
- sine and cosine functions, or $\phi_k(x) = e^{ikx}$
 - \leadsto Discrete Fourier Transform: $f_n = \sum\limits_{k=0}^{N-1} F_k e^{i2\pi nk/N}$
- now: piecewise linear functions

Piecewise Linear Interpolation

$$\varphi_k(x) := \begin{cases} \frac{1}{h_{k-1}}(x - x_{k-1}) & x_{k-1} < x < x_k \\ \frac{1}{h_k}(x_{k+1} - x) & x_k < x < x_{k+1} \\ 0 & \text{otherwise} \end{cases}$$

with
$$h_k := x_{k+1} - x_k$$

Solution of the interpolation problem?

- ansatz function $\varphi_k(x) = 1$ at $x = x_k$
- ansatz function $\varphi_k(x) = 0$ at all $x_n \neq x_k$
- thus: $c_k = f_k$ for all k, because $f_n = \sum_{k=0}^{N-1} c_k \phi_k(x_n) = \cdots = c_n$

Too trivial? → consider a slightly more complicated problem ...

Classification in Data Mining

Now for something completely different?

- We consider another application: classification in data mining (our contribution to "Big Data")
- Aim is to extract new and (hopefully) useful information (out of data bases, etc.)

- We consider predictive modelling in data mining:
 - Forecast values on new, previously unseen data
 - Prediction based on given set of data points (training data)

Problem Setting: Binary Classification

Classification aims to

- assign a "correct" class label k ∈ K
- to all data points \vec{x} in some d-dimensional feature space $\Omega = \mathbb{R}^d$
- based on set S of pre-classified data points for training

$$S := \{(\vec{x}_i, y_i) \in \Omega \times K\}_{i=1}^m$$

• Here: binary classification, for us $K := \{+1, -1\}$

Tasks (examples):

- Did a passenger of the Titanic survive? (dimensions: age, male/female, income, ...)?
- Is a bank customer credit-worthy?
 (dimensions: income, type of house, ...)?
- Will personalized advertising pay off for a certain person?
 (dimensions: interests, previous purchases, ...)

Classification

Many approaches exist:

- Decision trees
- Rule-based classifiers (decision rules)
- Instance-based classifiers (k-Nearest Neighbour, ...)
- Probabilistic (Bayes) classifiers
- Based on function representation (artificial neural networks, support vector machines, . . .)

Here: Discretization-Based Classification:

- Approach based on discretization of Ω (i.e., approximate S by a function)
- Strength: allows linear training time w.r.t. size of training set (in contrast to many/most others – classification based on comparisons of data point, e.g., implies quadratic growth with size of training set)
- Roadblock: curse of dimensionality
 - \Rightarrow possible solution: sparse grids! (to be discussed ...)

Classification using *d*-Dimensional Functions

Given: training set (normalized)

$$S := \left\{ (\vec{x}_i, y_i) \in [0, 1]^d \times \{+1, -1\} \right\}_{i=1}^m$$

- Assume: training data obtained by random sampling of unknown function f (possibly disturbed by noise)
- Find approximation f_N of f:

$$f(\vec{x}) \approx f_N(\vec{x}) = \sum_{j=1}^N v_j \phi_j(\vec{x})$$

- → following our "coefficients and basis functions" approach
- To determine classification of a new data point \vec{x} :
 - Compute $f_N(\vec{x})$
 - Classify as +1, if $f_N(\vec{x}) \ge 0$; otherwise -1

First: Classification in 1D

Given: training set (normalized)

$$S := \{(\vec{x}_i, y_i) \in [0, 1] \times \{+1, -1\}\}_{i=1}^m$$

Find approximation f_N of f:

$$f(x) \approx f_N(x) = \sum_{j=1}^N v_j \phi_j(x)$$

Classical approach: minimize quadratic error

$$\sum_{i=1}^{m} (f_N(x_i) - y_i)^2 \stackrel{!}{=} \min \quad \Leftrightarrow \quad \sum_{i=1}^{m} \left(\sum_{i=1}^{N} v_i \phi_i(x_i) - y_i \right)^2 \stackrel{!}{=} \min$$

• Remember solution via "least squares": $G^TGv = G^Ty$ where $G_{ii} = \phi_i(x_i)$

Classification in 1D – Least Squares Solution

minimize quadratic error → find values v_i that minimize

$$\sum_{i=1}^{m} \left(\sum_{j=1}^{N} v_{j} \phi_{j}(x_{i}) - y_{i} \right)^{2} \quad \text{or} \quad \sum_{i=1}^{m} \left(\sum_{j=1}^{N} G_{ij} v_{j} - y_{i} \right)^{2}$$

• approach: set all partial derivatives $\frac{\partial}{\partial v_i}$ to zero

$$\frac{\partial}{\partial V_{k}} \left(\sum_{i=1}^{m} \left(\sum_{j=1}^{N} G_{ij} v_{j} - y_{i} \right)^{2} \right) = \sum_{i=1}^{m} \frac{\partial}{\partial V_{k}} \left(\sum_{j=1}^{N} G_{ij} v_{j} - y_{i} \right)^{2} = 0$$

$$\Leftrightarrow \sum_{i=1}^{m} 2 \left(\sum_{j=1}^{N} G_{ij} v_{j} - y_{i} \right) G_{ik} = 2 \sum_{i=1}^{m} \left(\sum_{j=1}^{N} G_{ik} G_{ij} v_{j} - G_{ik} y_{i} \right) = 0$$

$$\Leftrightarrow \sum_{i=1}^{m} \sum_{j=1}^{N} G_{ik} G_{ij} v_{j} - \sum_{i=1}^{m} G_{ik} y_{i} = \sum_{i=1}^{m} G_{ik} \sum_{j=1}^{N} G_{ij} v_{j} - \sum_{i=1}^{m} G_{ik} y_{i} = 0$$

$$\underbrace{ = (G^{T} G_{V})_{k}}_{=(G^{T} G_{V})_{k}}$$

Classification in 1D – Ansatz Functions?

How to choose the $\phi_i(x)$?

- polynomials $\phi_i(x) = x^j \rightsquigarrow$ numerics lecture . . .
- sine and cosine functions, or $\phi_j(x) = e^{ijx}$ \rightarrow Discrete Fourier Transform! (see tutorials)
- new idea: piecewise linear functions

$$\varphi_j(\mathbf{x}) := \begin{cases} \frac{1}{h}(\mathbf{x} - \xi_{j-1}) & \xi_{j-1} < \mathbf{x} < \xi_j \\ \frac{1}{h}(\xi_{j+1} - \mathbf{x}) & \xi_j < \mathbf{x} < \xi_{j+1} \\ 0 & \text{otherwise} \end{cases}$$

with grid points $\xi_j := j \cdot h$

How difficult is it to compute the solution?

Classification with Piecewise Linear Functions

Structure of the matrix G, where $G_{ij} = \varphi_i(x_i)$:

- assume N_j data points per interval $[\xi_{j-1}, \xi_j]$
- these N_j data points generate N_j non-zeros in column G_{*,j-1} and N_j non-zeros in column G_{*,j}
- Example structure (3 basis functions, 4 intervals, 10 data points):

- G^TG is thus a tridiagonal matrix
- system $G^TGv = G^Ty$ therefore easy to solve

What problems do you expect?

Classification with Piecewise Linear Functions

Possible Problems:

- How to chose resolution h?
 - → too fine: intervals might be empty (and undetermined)
 - → too coarse: bad approximation of signal
 - → too fine: over-approximation of noisy signal
- What if data points are not equally distributed?
 - → fine resolution required at clustered data points
 - → coarse resolution required in "empty" regions

Requirements and Possible Approaches:

- · Adaptive placement of grid points
 - → invest grid points where the data points are clustered
- "Regularization" for noisy data
 - → avoid over-approximation via additional requirements
 - → require "smooth" approximation and/or limit gradients, e.g.

Hierarchical Basis

piecewise linear functions with multi-level resolution:

- coarse-level functions (with wide support) → never "too fine"
- also "never too coarse"? → interaction of fine and coarse?

Define Hierarchical Basis

- consider mesh size $h_n = 2^{-n}$ and grid points $x_{n,i} = i \cdot h_n$
- Define "mother of all hat functions"

$$\phi(x) := \max\{1 - |x|, 0\}$$

• nodal basis then $\Phi_n := \{\phi_{n,i}, 0 \le i \le 2^n\}$ with

$$\phi_{n,i}(x) := \phi\left(\frac{x - x_{n,i}}{h_n}\right)$$

• hierarchical basis combines $\widehat{\Phi}_n := \{\phi_{n,i}, i = 1, 3, \dots, 2^n - 1\}$ (only odd indices) and defines basis as

$$\Psi_n := \bigcup_{l=1}^n \widehat{\Phi}_l$$

• hierarchical basis still represents all piecewise linear functions: span (Φ_n) = span (Ψ_n)

Classification with Hierarchical Basis Functions

Structure of the matrix G, where $G_{ij} = \varphi_j(x_i)$, where $\{\varphi_1, \varphi_2, \varphi_3\} = \{\phi_{2,1}, \phi_{1,1}, \phi_{2,3}\}$:

- again assume N_j data points per interval $[\xi_{j-1}, \xi_j]$
- Example structure then (again with 3 basis functions, 4 intervals, 10 data points):

- G^TG no longer tridiagonal → expect a denser matrix
- how difficult is it to solve $G^TGv = G^Ty$?
 - \rightarrow later in the lecture
- efficiency of this approach for data mining?
 - → requires hierarchical basis in high dimensions

The Curse of Dimensionality

Recall: d-dimensional training set

$$S := \left\{ (\vec{x}_i, y_i) \in [0, 1]^d \times \{+1, -1\} \right\}_{i=1}^m$$

- How many grid points necessary for classification?
- Nodal basis in *d* dimensions:
 n grid points per dimension, thus n^d grid points
 → curse of dimensionality
- How to build hierarchical basis in d dimensions?
- How to build adaptive hierarchical approximations?
 Preferably in d dimensions?
- Can we beat the curse of dimensionality using a hierarchical basis approach?

 "sparse grids"

Part II

Exercises

Interpolation with Hierarchical Basis

Solve interpolation problem:

- given f_n and regular grids points x_n
- using hierarchical basis $\psi_k(x)$
- requiring: $f_n = \sum_{k=1}^N c_k \psi_k(x_n)$

Questions:

- **1.** set up linear system of equations to obtain c_k for n=3
- **2.** derive formulas for the c_k (depending on the f_n)
- 3. repeat questions 1 and 2 for n = 7
- 4. how does this extend to $n = 2^L 1$?

Interpolation with Partly-Hierarchical Basis

Consider new (partly hierarchical) basis:

Again, solve interpolation problem:

- **1.** set up linear system of equations to obtain c_k for n=7
- 2. how does this extend to $n = 2^L 1$?
- 3. how does this extend to solving the interpolation problem for a hierarchical basis?

Part III

Sparse Grid Classification (Outlook)

Example 1 – Ripley Data Set

- Artificial, 2d data set, frequently used as a benchmark (mixture of Gaussian distributions plus noise)
- 250 points for training, 1000 to test on

Constructed to contain 8% of noise

Outlook – Ripley Data Set (Using Sparse Grids)

Compute adaptive sparse grid classifier, e.g.:

- Best accuracy: 91.5% on test data (max. 92%)
- Suitable treatment of boundary needed Michael Bader | Algorithms for Scientific Computing | Hierarchical Methods | Summer 2022

Example 2 – Optidigits

Now for something really high-dimensional...

- Optical recognition of handwritten digits: Classify images of handwritten digits
- 64-dimensional data set of gray-values (0,1,...,16)

Outlook – Optidigits (Using Sparse Grids)

- Construct ten different binary classifiers (one digit (+1) against all others (-1))
- Take the one with highest prediction (function value)
- ⇒ Best accuracy: 97.7% correctly classified

Summary

- Even high-dimensional problems ("real problems" are often not that high-dimensional) can be successfully solved
- Typically requires to adapt sparse grids to given problem
 - What to do with the boundary (3 points per dim. equiv. to 3^d → already really large for d = 64)?
 - Adaptive refinement!
 - Consider dependency of algorithms in d, N, and m (not only exponential parts can hurt!)
 - •