

Master II : IS

Séries Temporelles.

Anne Philippe Université de Nantes

Fiche 5

Exercice 1.

On considère le modèle AR(2) défini par

$$(1) X_t + a_1 X_{t-1} + a_2 X_{t-2} = \varepsilon_t$$

où $(\varepsilon_t)_t$ est une suite iid suivant la loi standard gaussienne.

Pour les trois situations suivantes

- $a_1 = \frac{-5}{6}$ et $a_2 = \frac{1}{6}$ $a_1 = \frac{-5}{6}$ et $a_2 = .9$ $a_1 = -1.12$ et $a_2 = 0.5$
- 1) Calculer les racines du polynôme AR.
- 2) Tracer la suite des ACF théoriques (ARMAacf).
- 3) Simuler et représenter une trajectoire de longueur n=2500
- 4) A partir de la trajectoire simulée, comparer graphiquement les ACF théoriques et estimées
- 5) Représenter en fonction de n l'évolution des estimateurs de (a_1, a_2) .

EXERCICE 2. ANALYSE DE LA SÉRIE data(lynx)

On note la série $(Ly_t)_t$. On cherche à modéliser les 109 premières valeurs de cette série par un processus stationnaire AR(p). Les 5 dernières valeurs sont conservées pour évaluer les performances des prévisions réalisées.

Modélisation

- 1) Tracer la série (Ly_t) , ses autocorrélations empiriques et ses autocorrélations partielles empiriques. Commenter.
- 2) Modéliser cette série par un processus AR d'ordre p.
- 3) Peut on valider la modélisation obtenue.
- 4) Calculer et représenter les racines du polynôme auto-régressif.

Comparaison avec une série simulée suivant le modèle estimé

- 5) Simuler une trajectoire de longueur 109 suivant le modèle autorégressif obtenu à la question 2).
- 6) Tracer la série simulée, ses autocorrélations empiriques et ses autocorrélations partielles empiriques. Commenter.

Prévision

7) À partir du modèle estimé, calculer les prévisions $\hat{Ly}_{110}, \dots, \hat{Ly}_{114}$. Représenter sur un même graphique les prévisions, les valeurs de la série et l'intervalle de prévision.

Exercice 3. Analyse de la série varve

La série varve, disponible dans la librarie astsa, contient l'enregistrement des dépots sédimentaires (varve glacière) dans le Massachusetts pendant 634 années (il y a près de 12 000 ans). La série (notée x_t) montre une certaine non-stationnalité.

- 1) Comparer la variance de l'échantillon sur la première moitié et la seconde moitié des données. Commenter
- 2) On applique la transformation $y_t = log(x_t)$. Illustrer que cette transformation stabilise la variance de la série. Représenter l'évolution de la variance empirique calculée sur des blocs de longueur m. (utiliser rollapply de la librairie zoo)
- 3) Tracer les histogrammes de x_t et y_t . Commenter l'effet de la transformation log sur la loi.
- 4) Représenter les autocorrélations de y_t . Commenter.
- 5) Calculer $u_t = y_t y_{t-1}$ et analyser les propriétés de cette séries. La différenciation des données y_t produit elle une série raisonnablement stationnaire?
- 6) Représenter les autocorrélations empiriques et les autocorrélations partielles empiriques de la série (u_t) Le modèle MA(1) vous semble-t-il justifié pour modéliser la série (u_t) ?
- 7) Calculer une estimation des paramètres du modèe ARIMA(0,1,1) sur la série (y_t) .
- 8) Peut on valider le modèle estimé sur la série (y_t) ?
- 9) Si ce modèle n'est pas validé, proposer une autre modélisation ARIMA pour la série (y_t) .
- 10) Pour la modélisation que vous avez retenue (et donc validée) calculer la prévision aux horizons 1 à 20 avec des intervalles de prévision, pour la série (y_t) puis la série initiale varve