

OPCIÓN 2

PROBLEMA 1:

Considera en R⁴ los subespacios:

$$S=\{(x,y,z,t)\in R^4/x+2y+z-t=0; z-t=0\}$$
 y $T=\langle (1,1,1,1)\rangle$.

- a) Obtener una base de S + T.
- b) Razonar por qué la suma S + T es directa.
- c) Determinar si $\vec{v} = (7,1,5,5)$ pertenece a S + T y en caso afirmativo descomponer \vec{v} como suma de un vector $\overrightarrow{v_S}$ en S y un vector $\overrightarrow{v_T}$ en T.
- d) ¿Son S y T complementarios uno del otro?

PROBLEMA 2:

Dado un cuadrante AB, de una circunferencia de centro O y radio R, determinar sobre él un punto M de modo que la superficie del cuadrilátero determinado por los radios OA, OB y por las tangentes al arco trazadas por M y por A tenga área mínima.

PROBLEMA 3:

Calcular
$$\int_0^{+\infty} \frac{x - [x]}{2^{[x]}} dx$$
, donde $[x]$ es la parte entera de x .

PROBLEMA 4:

Disponemos de dos urnas con N bolas cada una, numeradas de 1 a N en ambas. Se extrae simultáneamente una bola de cada urna y sin devolverlas repetimos esta operación, hasta vaciar las urnas.

- a) Hallar la probabilidad de que en ninguna de las extracciones los números de las bolas coincidan.
- b) Hallar el límite de dicha probabilidad cuando N tiende a infinito.

PROBLEMA 5:

Dada la circunferencia de centro (1, 0) y radio 2, se trazan por el origen de coordenadas dos rectas variables que forman entre sí un ángulo de 30°. Sean A y B los puntos medios de las cuerdas que cada una de ellas intercepta en la circunferencia. Sea M el punto medio de AB. Hallar el lugar geométrico de los puntos M.

PROCEDEMENTO SELECTIVO PES 2021 MATEMÁTICAS PRIMEIRA PROBA PARTE A

OPCIÓN 2

PROBLEMA 1:

Considérase en R⁴ os subespazos:

$$S=\{(x,y,z,t)\in R^4/x+2y+z-t=0;z-t=0\}$$
 e $T=<(1,1,1,1)>$.

- a) Obter unha base de S + T.
- b) Razoar por que a suma S + T é directa.
- c) Determinar se $\vec{v} = (7,1,5,5)$ pertence a S + T e en caso afirmativo descompoñer \vec{v} como suma dun vector $\vec{v_S}$ en S e un vector $\vec{v_T}$ en T.
- d) Son S e T complementarios un do outro?

PROBLEMA 2:

Dado un cuadrante AB, dunha circunferencia de centro O e raio R, determinar sobre el un punto M de xeito que a superficie do cuadrilátero determinado polos raios OA, OB e polas tanxentes ao arco trazadas por M e por A teña área mínima.

PROBLEMA 3:

Calcular
$$\int_0^{+\infty} \frac{x - [x]}{2^{[x]}} dx$$
, onde $[x]$ é a parte enteira de x .

PROBLEMA 4:

Dispoñemos de dúas urnas con N bólas cada unha, numeradas de 1 a N en ambas. Extráese simultaneamente unha bóla de cada urna e sen devolvelas repetimos esta operación, ata baleirar as urnas.

- a) Achar a probabilidade de que en ningunha das extraccións os números das bólas coincidan.
- b) Achar o límite da devandita probabilidade cando N tende a infinito.

PROBLEMA 5:

Dada a circunferencia de centro (1, 0) e raio 2, trázanse pola orixe de coordenadas dúas rectas variables que forman entre si un ángulo de 30°. Sexan A e B os puntos medios das cordas que cada unha delas intercepta na circunferencia. Sexa M o punto medio de AB. Achar o lugar xeométrico dos puntos M.