

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2004年 6月 4日

出願番号
Application Number: 特願2004-167723

パリ条約による外国への出願に用いる優先権の主張の基礎となる出願の国コードと出願番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出願人
Applicant(s): キヤノン株式会社

J P 2004-167723

2005年 6月 22日

特許庁長官
Commissioner,
Japan Patent Office

小川

BEST AVAILABLE COPY

【書類名】
【整理番号】
【提出日】
【あて先】
【国際特許分類】

付印願
5517380-01
平成16年 6月 4日
特許庁長官殿
G02F 1/167
G09F 9/37

【発明者】
【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
【氏名】 池田 勉

【発明者】
【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
【氏名】 曽田 岳彦

【特許出願人】
【識別番号】 000001007
【氏名又は名称】 キヤノン株式会社
【代表者】 御手洗 富士夫

【代理人】
【識別番号】 100086483
【弁理士】
【氏名又は名称】 加藤 一男
【電話番号】 04-7191-6934

【手数料の表示】
【予納台帳番号】 012036
【納付金額】 16,000円

【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 9704371

【請求項 1】

間隙を開けた状態で配置された第1の基板と第2の基板と、該両基板の間隙に配置された隔壁部材と、該両基板と該隔壁部材に囲まれた間隙に配置された複数の粒子と、前記間隙に面して配置された複数の電極とによって形成された複数の画素を備えた粒子移動型表示装置であって、前記複数の画素からなる表示部の外周部の少なくとも一部に、前記隔壁部材とほぼ同じ高さの突起部と前記粒子が落ち込み得るように形成された凹部を含む構造体が設けられていることを特徴とする粒子移動型表示装置。

【請求項 2】

前記突起部がメッシュ状、直線的または曲線的なライン状、ドット状、表示部を閉じて包围する形状、井桁状、十字状、あるいはそれらの組み合わせ形状に形成されていることを特徴とする請求項1記載の粒子移動型表示装置。

【請求項 3】

前記突起部の上面の最小線幅ないし径が前記粒子の直径の10倍程度以下であることを特徴とする請求項1または2記載の粒子移動型表示装置。

【請求項 4】

前記構造体の少なくとも一部及びその周辺部に2種の電極層が形成されていることを特徴とする請求項1乃至3のいずれかに記載の粒子移動型表示装置。

【請求項 5】

請求項4記載の粒子移動型表示装置の製造方法であって、前記第2の基板を隔壁部材及び構造体に被せて各画素を封止するとき、前記電極層間に交流電圧を印加しながら行うことの特徴とする粒子移動型表示装置の製造方法。

【請求項 6】

前記間隙に面して配置された複数の電極にも交流電圧を印加しながら前記第2の基板を隔壁部材及び構造体に被せて各画素を封止することを特徴とする請求項5記載の粒子移動型表示装置の製造方法。

【技術分野】

【0001】

本発明は、粒子を移動させることにより表示を行う電気泳動表示装置などの粒子移動型表示装置に関する。

【背景技術】

【0002】

近年、バックライトを用いない反射型の表示装置についての研究が盛んに行われている。その中で、特に注目度が高いのが粒子移動型表示装置である。粒子移動型表示装置は、例えば、所定間隙を開けた状態で配置された一対の基板と、これらの基板の間隙に配置された複数の粒子と、該間隙に内接するように配置された一対の電極と、を備えており、液晶表示素子に比べて、表示コントラストが高く、視野角が広く、表示にメモリー性があり、バックライトや偏光板が不要である等、種々の特徴を有している。

【0003】

一般に、粒子移動型表示装置は、一対の基板間の各画素に一定量の粒子が配置され電界等を印加することにより各画素内で粒子を移動させて表示を行なう。その為の構成としては、通常、二枚の基板間に複数の粒子を挟み、基板上に電極が形成され、該電極は、画素毎に形成される画素電極と全画素共通の共通電極よりなる。粒子は、0.5～5ミクロン程度のものが使用される。そして、粒子が画素間を移動して不均一に分布するのを防ぐために、画素毎に隔壁が形成されている。

【0004】

こうした隔壁構造を有する粒子移動型表示装置の場合、通常、一方の基板上に電極や隔壁等をすべて形成したのちに隔壁間に粒子を入れ、他方の基板で粒子を各画素内に封止するという工程で作製される（特許文献1、特許文献2参照）。

【特許文献1】特開平5-307197号公報

【特許文献2】特許第2612472号公報

【発明の開示】

【発明が解決しようとする課題】

【0005】

粒子移動型表示装置の封止工程では、上記他方の基板と、隔壁及び表示部の外周に形成される接着固定部との間に粒子が挟み込まれないことが必要となる。この間に粒子が挟まれて残ってしまうと、表示部の封止が完全にできず、粒子が他の画素や表示部の外に移動してしまったりして、満足な表示できなくなってしまうからである。しかしながら、多数の粒子を各画素にほぼ均一に分布・配置したうえで、上記の如き粒子の挟み込みを防止して表示部を封止するのは容易なことではなく、粒子移動型表示装置の製造についてさらに歩留まりを向上させる方法が望まれていた。

【課題を解決するための手段】

【0006】

上記課題に鑑み、本発明の粒子移動型表示装置は、間隙を開けた状態で配置された第1の基板と第2の基板と、該両基板の間隙に配置された隔壁部材と、該両基板と該隔壁部材に囲まれた間隙に配置された複数の粒子と、前記間隙に面して配置された複数の電極とによって形成された複数の画素を備えた粒子移動型表示装置であって、前記複数の画素からなる表示部の外周部の少なくとも一部に、前記隔壁部材とほぼ同じ高さの突起部と前記粒子が落ち込み得るように形成された凹部を含む構造体が設けられていることを特徴とする。構造体は、表示部の外周部の一部に設けられても効果があるが、表示部の密閉性と強度の観点からは全周囲に亘って設けられるのが好ましい。

【0007】

また、上記課題に鑑み、本発明の粒子移動型表示装置の製造方法は、前記第2の基板を隔壁部材及び構造体に被せて各画素を封止するとき、前記構造体の少なくとも一部及びその

凹凸部に形成された電極間に又交流電圧を印加しながらノードを付與する。これに、前記間隙に面して配置された複数の電極である各画素に備えられた画素電極及び共通電極間にも交流電圧を印加しながら前記第2基板を隔壁部材及び構造体に被せて各画素を封止することもできる。

【発明の効果】

【0008】

上記の本発明によれば、表示領域の外周部の少なくとも一部に、隔壁部材とほぼ同じ高さの突起部と粒子が落ち込み得るように形成された凹部を含む構造体が形成されるので、欠陥の少ない粒子移動型表示装置を容易に提供できる。

【発明を実施するための最良の形態】

【0009】

以下、図1乃至図6を参照して、本発明の実施の形態について説明する。

まず、本発明の代表的な粒子移動型表示装置の一構成例を図1に沿って説明する。この実施形態では、上面図である図1(a)に示すように、第1基板1上にメッシュ状の隔壁2及び構造体3が形成されている。図示例では簡単のために、4つの画素4が描かれているのみであるが、実際には多数の画素がマトリクス状に形成されているのが通常である。各画素4は隔壁2によって囲まれて区画されていて、複数の画素4から成る表示部の周囲には、画素4と隣接してメッシュ状の構造体3が配置されている。

【0010】

図1(a)のA-A'部における断面図である図1(b)に示すように、各画素4内には、絶縁性液体11と、絶縁性液体11に分散された複数の泳動粒子5が配置されていて、メッシュ状の隔壁2と構造体3の上面に第2基板12をひつたりと被せて、これを周囲の縁部で第1基板1に接着剤で接合・固定することで各画素4を封止している。図1(b)では、この接着剤による接合・固定の様子は示されていないが、図1(a)では第2基板12は描かれていない。表示部の気密性と強度を向上させるために、より大きな力がかかる構造体3のメッシュの密度は、隔壁2のメッシュの密度より大きくなっている。

【0011】

構造体3について更に説明する。構造体3は、粒子5の落ち込み得るように形成された凹部3bと突起部3aを含み、突起部3aの高さは、全体的に、表示部に形成されている隔壁2と実質的に同等に形成されるか、あるいは表示部に隣接する部分から外側の部分に向かってなだらかに低くなるように形成されている。これは、第2基板12と構造体3の突起部3aの上面との密着性を良くして気密性を確保するためである。構造体3の突起部3aの上面の線幅は、表示装置の製造工程において該上面に粒子5が止まり難いように、好ましくは泳動粒子5の径の10倍程度以下、さらに好ましくは5倍程度以下がよい（このことは、メッシュ状の隔壁2の上面の線幅についても同様である）。これは、要求される構造体3の強度と突起部3aの上面への粒子5の止まり難さの両方を勘案して決めればよい。

【0012】

また、構造体形成領域における構造体3の突起部3aの密度は特に制限は無いが、突起部3aの上面に粒子が止まり難くするために、好ましくは50%程度以下である。ただし、強度上、5%程度以上の密度は必要である。また、構造体形成領域における構造体3の突起部3aの密度は、外側に向かって構造体3のメッシュの密度を高めてもよい。封止による気密性を高める効果があるからである。構造体3の突起部3aの上面の線幅が比較的広く、泳動粒子5の10倍程度であるような場合、第2基板12で表示部を封止する際に、後述する交流電圧をかけて粒子5を突起部3aの上面から確実に落とすようにすると良い。線幅が比較的狭いときは、第2基板12で封止する際に交流電圧をかけなくてもよい場合もある。

【0013】

本発明の構造体3の突起部3aの上から見た形状としては、メッシュ状のほか、図2に示すような直線的なライン状（ここでは、ライン状突起部3aは各辺において内から外側に

凹部 3 b は、凹部 3 b の内側に凹部 3 a が複数個存在する構造である。凹部 3 a は表示部を多重に閉じて包囲する形状（ここでは、矩形状突起部 3 a が 2 重に表示部を包囲していて、その間が凹部 3 b となっている）、図 4 に示すようなドット状（ここでは、表示部をほぼ包囲して多数のドットが同程度の密度で分布していて、その間が凹部 3 b となっている）、波状などの曲線的なライン状、井桁状、十字状、あるいはそれらの組み合わせなどがあるが、これらには限られるものではない。また、メッシュ状、ライン、ドット等のピッチはほぼ均一でもよいが、好ましくは突起部の割合を大きくして外側の強度を大きくするために表示部領域から外側に向かって小さくする方がよい。さらに、構造体 3 の突起部 3 a の上から見たパターンは規則的でも不規則的でもよいし、パターン形状は基板の面内方向において閉じていてもよいし（図 1 のメッシュ状、図 3 の包囲形状がその例である）、開放して（図 2 の直線的なライン状、図 4 のドット状がその例である）いてもよい。閉じている場合は、第 2 基板 1 2 で覆って封止したときに基板の面内方向において多重に封止されることになるので、密閉性に優れる。開放している場合は、絶縁性液体 1 1 や泳動粒子 5 がたとえ構造体 3 の凹部 3 b 内にも吐出されたとしても、最終的には残留量は少なくなる。さらに、構造体 3 は図 6 に示すように表示領域全ての周りに形成されていなくてもよい。

【0014】

本発明の構造体 3 には、好ましくは構造体用電極層 6 が形成される。構造体用電極層 6 は、構造体 3 の突起部 3 a の表面、内部、基板と構造体の突起部 3 a の間、あるいは構造体 3 の突起部 3 a の近傍（すなわち構造体 3 の凹部 3 b 内）等に形成される。この構造体用電極 6 は、後述する共通電極 7 と接続されていてもよい。また、基板 1 上で構造体 3 の突起部 3 a に囲まれた部分（すなわち構造体 3 の凹部 3 b）の基板面には、表示領域外電極 8 を形成しておく。これらの電極 6、8 は、後述するように表示装置の製造過程で使用される。

【0015】

さらに、表示領域の各画素 4 には、画素電極 9 と共通電極 7 が配置される。例えば、泳動粒子 5 を基板の面内方向とほぼ平行な方向に移動させて表示を行なう表示装置の場合、各画素 4 の第 1 基板 1 上に画素電極 9 が配置される。ここでは、画素電極 9 には光反射層の機能を兼ねさせる。その為に、好ましくは反射層の観察者側（図 1 (b) の上方側）に散乱層を設けるか、反射層の表面に凹凸をつけて乱反射する構成とする。そして、画素電極 9 は、第 1 基板 1 上に形成された薄膜トランジスタ（TFT）等のスイッチング素子 1 0 に接続される。共通電極 7 は隔壁 3 近傍あるいは隔壁表面を被うように形成する。これら画素電極 9、共通電極 7 により、各画素 4 内に封じ込められた絶縁性液体 1 1 中に分散された複数の泳動粒子 5 が移動・制御される。

【0016】

表示は、画素電極 9 及び共通電極 7 間に電圧を印加して、泳動粒子 5 を両電極間で移動させることにより行う。図 1 (b) の左側の画素 4 に示すように、泳動粒子 5 を画素電極 9 上に配置することにより粒子 5 の色を表示できる。一方、右側の画素 4 に示すように、泳動粒子 5 を共通電極 7 に集めることで、画素電極 9 面で入射光を反射させると共に散乱層で散乱させられる。こうしたスイッチング素子 1 0 を含む画素回路を備えているアクティブマトリクス駆動方式では、これら複数の画素回路の各々は、データ線と走査線との交差部に対応して配置されている。もちろん、単純マトリクス駆動方式で粒子を移動・制御してもよい。単純マトリクス駆動方式では、複数のライン状の第 1 の電極と複数のライン状の第 2 の電極を交差させて交差点の所の各画素に粒子を封入し、交差点の各画素に選択的に電界を作用させて粒子を移動・制御する。

【0017】

上述のような電気泳動表示装置を用いて白黒表示を行うには、泳動粒子 5 を黒色として、この粒子をシャッター駆動させればよい。一方、カラー表示を行うには、泳動粒子 5 を着色するか、他の部材を適宜着色しておけばよい。例えば、黒色の泳動粒子 5 を用い、画素電極 9 面上にカラーフィルター層を形成することにより、カラー表示が可能となる。

次に、図5に沿って、本実施形態の粒子移動型表示装置の代表的な製造方法の一例を述べる。

まず、第1基板1上の表示領域内に TFT等のスイッチング素子10及び配線（不図示）を形成する。この上層に凹凸及びコンタクトホールを形成した絶縁層を形成し、各スイッチング素子10に対して画素電極9を形成して、同時に表示部外周に表示領域外電極8を形成する。次に、この画素電極9及び表示領域外電極8上に絶縁層15を形成する（図5（a））。続いて、この絶縁層15上に隔壁2及び構造体3を形成する。次に、形成された隔壁2及び構造体3の表面に共通電極層7、構造体用電極層6を形成する。これらは連続して形成される。そして、この表面を絶縁層（不図示）で被覆する（図5（b））。

【0019】

次に、表示領域の各画素4内に絶縁性液体11及び泳動粒子5をほぼ均一に充填する（図5（c））。充填時、絶縁性液体11の量は画素4内に空気が残留しないように隔壁2の高さより高くなるように入れる。絶縁性液体11及び泳動粒子5の充填は、円筒ノズルやスリットのノズル等を用いて行なうことができる。これらノズルを用いての泳動粒子5の充填は、制御を精密に行なうことによって表示領域の各画素4内にほぼ均一に粒子を配置することができる。しかしながら、充填領域の周辺部は不均一になりやすい。これは、ノズルからの絶縁性液体11及び泳動粒子5の吐出が急には安定しないからである。したがって、表示領域に均一に安定して充填を行なうために、その周辺部には絶縁性液体11及び泳動粒子5の充填のための安定化領域が必要となる。構造体3の領域はその役目をも果たすことができる。

【0020】

次に、第2基板12によって各画素4を封止する。第2基板12による封止時、共通電極7及び構造体用電極層6と、画素電極9及び表示領域外電極8の間で適当な周期の交流電圧を印加しておく。これにより、充填された泳動粒子5は、共通電極7と画素電極9の間に留まらせることが可能となる。一方、表示領域周辺部にも絶縁性液体11及び泳動粒子5がばら撒かれた状態となっているが、表示領域周辺部が構造体3の突起部3aにより、メッシュ状、ライン状、ドット状等となっているため、そこに形成された構造体用電極層6と表示領域外電極8の間の凹部3bに泳動粒子5を保持することができる。これらにより、隔壁2あるいは構造体3の突起部3aの上面と第2基板12との接合面に泳動粒子5を留まらせなくすることが可能となり、泳動粒子5の挟み込みによる封止欠陥を防止できる。また、構造体3があるので、第2基板12と第1基板1との接着固定強度も充分なものとなる。第2基板12による封止の際、第2基板12が可撓性を有するならば、その一端部を構造体3あるいは第1基板1に接着固定した状態で、可撓性第2基板12の他端部を持ち上げて余分な絶縁性液体11を押し出しつつ構造体3の突起部3aと隔壁2の上面に第2基板12を密着させながら押し当てて、この他端部を他方の端部の構造体3あるいは第1基板1に接着固定する。第2基板12が剛体的であるならば、そのまま構造体3と隔壁2に上から密着的に被せて周囲の端部を構造体3あるいは第1基板1に接着固定する。以上のように構成した構造に電圧印加回路を接続して表示装置を作製できる（図5（d））。

【0021】

次に、使用する材料、その他の形成方法について説明する。

第1基板1や第2基板12には、ポリエチレンテレフタレート（PET）やポリカーボネート（PC）やポリエーテルサルファン（PES）等のプラスチックフィルムの他、ガラスや石英、ステンレス等を使用することができる。観察者側に配置される方の基板や基材には透明な材料を使用する必要があるが、電気泳動表示装置を反射型とした場合、他方の基板には、ポリイミド（PI）などの着色されているものを用いてもよい。

【0022】

画素電極9に反射層を兼ねさせる場合は、画素電極9を銀やAl等の光反射性の高い材料で形成すると良い。入射光を散乱させ方法としては、樹脂中に屈折率の異なる微粒子等を

が取てて凹凸を形成する方法、又は前述したように凹凸を付与して散乱させる方法等がある。

【0023】

絶縁性液体11には、イソパラフィン、シリコーンオイル、キシレン、トルエン等の非極性溶媒であって透明なものを使用すると良い。粒子5を液体なしで使用することも可能である。

【0024】

泳動粒子5としては、着色されていて絶縁性液体11中で正極性または負極性の良好な帶電特性を示す材料を用いると良い。例えは、各種の無機顔料や有機顔料やカーボンブラック、或いは、それらを含有させた樹脂を使用すると良い。粒子の粒径は通常0.01μm～50μm程度のものを使用できるが、好ましくは、0.1から10μm程度のものを用いると良い。更には、0.5から5μm程度が良い。

【0025】

なお、上述した絶縁性液体11や泳動粒子5中には、泳動粒子の帶電を制御し、安定化させるための荷電制御剤や、泳動粒子同士の凝集を防ぎ、分散状態を維持するための分散剤を添加しておいてもよい。

【0026】

隔壁2及び構造体3の形成には、どのような方法を用いても良い。例えは、感光性樹脂層を塗布した後、露光及びウェット現像を行う方法、又は別に作製した隔壁2及び構造体3を接着する方法、印刷法によって形成する方法等を用いることができる。

【0027】

ここでは、電気泳動表示装置について説明したが、上記したように液体を用いず粒子のみを駆動させて表示を行なう、所謂トナーディスプレイにも同様に本発明を適用できる。

【実施例】

【0028】

以下、更に具体的な実施例に沿って本発明を説明する。

(実施例1)

本実施例の電気泳動表示装置は図1に示す構造を有する。この電気泳動表示装置の製造方法について説明する。まず、TFT10及び配線等が形成された第1基板1を作製する。この上に絶縁層を形成し、TFT10に対してコンタクトホールを形成する。画素電極9形成部にレジストを用いて凹凸を形成した後、この凹凸上に画素電極9を形成する。画素電極9には、アルミニウム膜を使用し、フォトリソグラフィでパターン化する。ここで、画素電極9の形成と同時に表示領域の周辺部に表示領域外電極8を形成する。次に、画素電極9上、及び表示領域外電極8上に、さらに透明な絶縁層15を形成する。

【0029】

次に、表示領域内に形成される各画素4の境界部に隔壁2を形成する。隔壁2の幅は5μmとし、高さは15μmとする。同時に、表示領域の周囲にメッシュ状の構造体3を画素4にして20個分の幅で形成する。構造体3の突起部3aの幅、高さは隔壁2と同様とした。この幅の広さは、粒子5の径の10倍程度より充分小さくなっている。また、構造体3のメッシュのピッチは画素領域の隔壁2のピッチの1/2とする。次に、隔壁2及び構造体3の表面に金属層を成膜しバーニングして共通電極7、構造体用電極層6を形成する。そして、これらの電極7、6の表面に絶縁層を形成する。

【0030】

次に、画素電極9と表示領域外電極8が同電位になるようにし、これらと電極7、6の間に500Hzの周波数で±10Vの電圧を印加する。電圧を印加した状態で各画素4内に絶縁性液体11及び泳動粒子5をノズルを用いて充填する。泳動粒子5は、交流の電圧印加により隔壁2あるいは構造体3の突起部3aの頂部には存在せず、隔壁間、構造体の突起部3a間あるいは隔壁・構造体突起部3a間に集められる。この状態で第2基板12により各画素4を封止する。これに電圧印加回路を接続して表示装置とする。

【0031】

半導体部の裏面側に形成により、逆反で離れてノン、隔壁 μ m及び隔壁 μ mの大さゆうと第2基板12間に泳動粒子5が挟まれることにより発生する封止欠陥を抑制できる。

【0032】

(実施例2)

実施例2でも、実施例1と同様に、TFT10、配線等、絶縁層、画素電極9、表示領域外電極8を第1基板1に形成する。

【0033】

次に、表示領域内に形成される各画素4の境界部に隔壁2を形成する。隔壁2の幅を5μmとし、高さを15μmとする。同時に、表示領域の周囲にライン状の構造体3を形成する(図2参照)。構造体3の突起部3aの幅、高さは隔壁2と同様とした。次に、隔壁2及び構造体4の突起部3aの表面に金属層を成膜して共通電極7及び表示領域外電極8を形成する。そして、共通電極7及び表示領域外電極8の表面に絶縁層を形成する。

【0034】

次に、画素電極9と表示領域外電極8が同電位になるようにし、これらと電極7、6の間に500Hzの周波数で±15Vの電圧を印加する。電圧を印加した状態で、各画素4内に絶縁性液体11及び泳動粒子5を円筒ノズルを用いて充填する。泳動粒子5は、交流の電圧印加により隔壁2あるいは構造体4の突起部3aの頂部には存在せず、隔壁間、構造体の突起部3a間あるいは隔壁・構造体の突起部3a間に集められる。この状態で第2基板12により各画素4を封止する。これに電圧印加回路を接続して表示装置とする。

【0035】

本実施例の表示装置の構成によっても、強度を確保しつつ、隔壁2及び構造体3の突起部3aと第2基板12間に泳動粒子5が挟まれることにより発生する封止欠陥を抑制できる。

【産業上の利用可能性】

【0036】

本発明の表示装置は様々な電子機器などに用いられる。例えば、モバイル型のパソコンコンピュータ(情報処理装置)に適用できる。このパソコンコンピュータは、キーボードを備えた本体部と、上述した表示装置を備えて構成される。また、携帯電話の表示部にも適用できる。この携帯電話は、複数の操作ボタンの他、受話口、送話口と共に上述した表示装置を備えるものである。また、ファインダに用いたデジタルスチルカメラにも適用できる。このデジタルスチルカメラは、観察側に、光学レンズやCCD等を含んだ受光ユニットが設けられ、被写体の光像をCCD等の撮像素子により光電変換して撮像信号を生成する。デジタルスチルカメラのケースの背面には、CCDによる撮像信号に基づいて表示を行う為の上述した表示装置が設けられ、表示装置は、被写体を表示するファインダとして機能する。さらには、本発明の表示装置は、電子ブック、電子ペーパー、液晶テレビ、カーナビゲーション装置、電子手帳、タッチパネルを備えた機器などにも適用できる。

【図面の簡単な説明】

【0037】

【図1】本発明に係る粒子移動型表示装置の一実施形態を説明するための平面図と断面図である。

【図2】本発明に係る粒子移動型表示装置の他の実施形態を説明するための平面図である。

【図3】本発明に係る粒子移動型表示装置他の実施形態を説明するための平面図である。

【図4】本発明に係る粒子移動型表示装置他の実施形態を説明するための平面図である。

【図5】本発明に係る粒子移動型表示装置の製造工程の一例を説明するための断面図である。

【図6】本発明に係る粒子移動型表示装置の他の実施形態を説明するための平面図である。

【図ラベル説明】

【0038】

- 1 第1基板
- 2 隔壁
- 3 構造体
- 3 a 構造体の突起部
- 3 b 構造体の凹部
- 4 画素
- 5 泳動粒子
- 6 構造体用電極層
- 7 共通電極
- 8 表示領域外電極
- 9 画素電極
- 1 2 第2基板

【図3】

【要約】

【課題】 不必要な所に粒子が挟まって欠陥を生じさせるようなことを少なくした構造を持つ粒子移動型表示装置である。

【解決手段】 粒子移動型表示装置は、間隙を開けた状態で配置された第1基板1と第2基板1'2と、両基板1、1'2の間隙に配置された隔壁部材2と、両基板1、1'2と隔壁部材2に囲まれた間隙に配置された複数の粒子5と、間隙に面して配置された複数の電極7、9とによって形成された複数の画素4を備える。複数の画素4からなる表示部の外周部の少なくとも一部には、隔壁部材2とほぼ同じ高さの突起部3aと粒子5が落ち込み得るように形成された凹部3bを含む構造体3が設けられている。

【選択図】 図1

000001007

19900830

新規登録

595017850

東京都大田区下丸子3丁目30番2号

キヤノン株式会社

BEST AVAILABLE COPY

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/010630

International filing date: 03 June 2005 (03.06.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-167723
Filing date: 04 June 2004 (04.06.2004)

Date of receipt at the International Bureau: 07 July 2005 (07.07.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse