Databases

Biological experiments (macromolecular sequences, structures, expression profiles, pathways etc) provide wealth of data.

The data are available randomly in the literature

It is necessary to collect the scattered data and put in proper order in the form of a database

Database is an organized collection of information, in computerreadable form.

Databases: Characteristics

- 1. The contents
- 2. The ontology: the list of valid terms and their definitions
- 3. The logical structure, or the expression of the inter-relationships among the data, called the schema.
- 4. The format of the data
- 5. The routes for selective retrieval of data, and presentation of results, or pasting them on to a program for analysis
- 6. Links to other information resources: other databases, references to original publications of data, tutorial background etc.

Characteristics

Organization: Relational database

In 1970, E.F. Codd from IBM described the relational database.

The basic unit of a relational database is a set of correspondence between different features of the database contents, called tables.

Relational database is the one in which data are organized as tables, each table comprising a group of records with the same fields (known as attributes). This allows related data to be linked (reassembled) as required without reorganizing the original tables.

The set theoretic operations (union, intersection, difference, Cartesian product) on tables facilitate processing of logically complex queries.

Example

wo tables from	a retional	database of	properties of	amino acids	
Amino acid	3-letter code	1-letter code	Volume (ų)	Surface area (Ų)	Distal group
Alanine	Ala	Α	88.6	115	Methyl
Arginine	Arg	R	173.4	225	Guanidinium
Asparagine	Asn	N	111.1	150	Amide
Aspartic acid	Asp	D	114.1	160	Carboxyl
Cysteine	Cys	c	108.5	135	Sulphydryl
Glutamic acid	Glu	E	138.4	190	Carboxyl
Glutamine	Gln	Q	143.8	180	Amide
Glycine	Gly	G	60.1	75	Hydrogen
Histidine	His	н	153.2	195	Imidazole
Isoleucine	lle	1	166.7	175	Methyl
Leucine	Leu	L	166.7	170	Methyl
Lysine	Lys	к	168.6	200	Amino
Methionine	Met	м	162.9	185	Methyl
Phenylalanine	Phe	F	189.9	210	Phenyl
Proline	Pro	Р	112.7	145	Pyrrolidine
Serine	Ser	S	89.0	115	Hydroxyl
Threonine	Thr	T	116.1	140	Hydroxyl
Tryptophan	Trp	w	227.8	255	Indole
Tyrosine	Tyr	Y	193.6	230	Phenol
Valine	Val	V	140.0	155	Methyl

Distal group	H-bond donor	H-bond acceptor
Amide	yes	yes
Amino	yes	no
Carboxyl	no	yes
Guanidinium	yes	yes
Hydrogen	no ,	no
Hydroxyl	yes	yes
Indole	yes	yes
Methyl	no	no
Phenol	yes	yes
Phenyl	no	no
Pyrrolidine	yes	no
Sulphydryl .	yes	no

Simple: What are the three letter codes of the amino acids, which have distal carboxyl group?

View

Compound: What are the three letter codes of the amino acids with volume more than $125 A^3$ and have distal carboxyl group?

What are the three letter codes of the amino acids, which can serve as hydrogen bond donors?

Join

Example

General form of joining is the Cartesian product of the two tables. If the set contains n and m elements the product will contain nm elements. Here, 20 amino acids and 12 distal groups and the total will be 240 rows.

From Table 1						From Table 2							
AA	AA 3 1 V		A	A Group		Gr	Group		Donar Accepto				
Alanine	Ala	A	88.6		115	Methyl		Amide		Yes		Yes	
Alanine	Ala	A	88.6		115	Methyl		Amide		Yes		No	
Alanine	Ala	A	88.6		115	Methyl		Methyl		No		No	
Aspartic acid Asp	D	114.	1	160	Car	boxyl	Car	<u>boxyl</u>	No		Yes		

Three letter codes of amino acids that have side chains that could serve as hydrogen bond acceptors:

Natural join

Complex queries

What are the three letter codes of amino acids with volumes between 100 and 150 AND [(that can serve as hydrogen bond donors AND NOT serve as hydrogen bond acceptors) OR (that have surface areas greater than 120 A2 AND have distal methyl groups)].

The structured Query Language (SQL) is fairly well standardized syntax for probing relational databases with complex queries.

Complex queries containing logical connectivities are translatable into Codd's set of operations on tables.

Syntax

SELECT <3_letter_code> from <amino_acid_table)

WHERE (sidechain_volume between 100 and 150)

AND

(H-bond_donor = "yes" AND Hhond_acceptor = "no")

OR

(surface_area > 120 AND distal_group = "methyl"))

Database collections

Nucleic acid research Database issue (First issue in every year). It is available for free access.

http://nar.oupjournals.org/

Listing of databases

http://www.oxfordjournals.org/nar/database/a/

Database categories

- Nucleotide Sequence Databases
 - RNA sequence databases
 - Protein sequence databases
 - Structure Databases
 - ➤ Thermodynamic databases
 - <u>Genomics Databases (non-vertebrate)</u>
 - Metabolic and Signaling Pathways
 - Human and other Vertebrate Genomes
 - Human Genes and Diseases
 - Microarray Data and other Gene Expression Databases
 - Proteomics Resources
- Other Molecular Biology Databases (PUBMED)
 - Organelle databases
 - > Plant databases
 - Immunological databases

Nucleotide sequence databases

International collaboration

- 1. DDBJ (DNA Data Bank of Japan)
- 2. EMBL (European Molecular Biology Laboratory)
- 3. Genbank (USA)

They exchange sequences via SINET3 Computer network SINET: Science Information Network

1. DNA Data Bank of Japan

http://www.ddbj.nig.ac.jp/

DDBJ: Growth

Dec 2016: > 2.1 Trillion nucleotides

Number of sequences: > 790 millions

DDBJ: Topmost 10 organisms

No. Organism	Nucleotides	Entries
001 Homo sapiens	17382318654 bp	20522483
002 Mus musculus	9988986985 bp	9727377
003 Rattus norvegicus	6525616319 bp	2197920
004 Bos taurus	5390887315 bp	2202851
005 Zea mays	5076664404 bp	3963159
006 Sus scrofa	4890614452 bp	3289376
007 Danio rerio	3120659920 bp	1726789
008 Marine metagenome	2482805950 bp	3173890
009 Vitis vinifera	1555395119 bp	810152
010 Hordeum vulgare	1455338435 bp	1009480

Search

Name Source Accession number Keywords Authors Reference **PUBMED** index Nucleotide sequence Number of bases A, T, C and G Protein sequence (translated) JOURNAL

//

```
Contents
LOCUS
                                               mRNA
                                                       linear
                                                                 HUM 10-APR-1997
           H.sapiens (xs4) mRNA, 315bp.
DEFINITION
ACCESSION
            Z36833
VERSION
            236833.1
KEYWORDS
SOURCE
            Homo sapiens (human)
 ORGANISM
           Homo sapiens
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
           Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
            Catarrhini: Hominidae: Homo.
REFERENCE
            1 (bases 1 to 315)
           Mueller-Pillasch, F., Gress, T., Lehrach, H. and Adler, G.
 AUTHORS
            Differential gene expression in pancreatic cancer. Use of an
 TITLE
            automated approach for the large scale isolation and
            characterisation of cDNA clones containing differentially expressed
            sequences.
            Unpublished.
  JOURNAL
            2 (bases 1 to 315)
REFERENCE
 AUTHORS
            Gress, T.
            Submitted (16-AUG-1994) to the INSDC. Gress T., University of Ulm,
 JOURNAL
            Department of Internal Medicine I, Robert Koch Str. 8, 89081 Ulm,
            Germany, 89081
            4 (bases 1 to 315)
REFERENCE
            Gress, T.M., Muller-Pillasch, F., Geng, M., Zimmerhackl, F.,
 AUTHORS
            Zehetner, G., Friess, H., Buchler, M., Adler, G. and Lehrach, H.
            A pancreatic cancer-specific expression profile
 TITLE
            Oncogene 13(8), 1819-1830(1996).
   PUBMED
            8895530
   BASE COUNT
                                                       82 g
                                                                      76 t
                         80 a
   ORIGIN
           1 atcageggat ttgegtegta ttgggegeet ggateaceag ggetgetttt atctetggta
          61 aagtggatat tgttgacatc actgaccccc acattgacca catatacatg gtttacatgt
         121 tocaatatga otocacccat gagatatton atgacaccga caggggtgag aacgggnago
         181 ttgacatcaa tggaaatccc acaccatctn cgaggagaga catcctccaa catcatgtgg
         241 cgagatgttg cgctgagtac gtcgtggagt cactgtgtct cacacatgag aggtgtgctc
         301 atggaggggg agcaa
```

Advanced search

Advanced Search Ouick Search Show examples Field Primary Accession Number Search Result 434 bp LOCUS AF217656 DNA linear VRL 30-NOV-2000 Human papillomavirus isolate FA14 major capsid protein L1 gene, DEFINITION Facet partial cds. AF217656 ACCESSION VERSION AF217656.1 **List of Entries** KEYWORDS Human papillomavirus SOURCE 1 - 30 entries / Number of founds: 26506 FlatFile Human papillomavirus ORGANISM PrimaryAccessionNumber Definition Se Viruses; dsDNA viruses, no RNA stage; Papillomaviridae; AF217656 Definition: Human papillomavirus is unclassified Papillomaviridae. Organism: Human papillomavirus 1 (bases 1 to 434) REFERENCE AF217657 Definition: Human papillomavirus is Antonsson, A., Forslund, O., Ekberg, H., Sterner, G. and Hansson, B.G. AUTHORS Organism: Human papillomavirus The ubiquity and impressive genomic diversity of human skin TITLE AF217659 Definition: Human papillomavirus is Organism: Human papillomavirus /translation="NIYNNQGTRLEVPKVSGNQHRVFRLKLPDPNRFALADMSVYNPD AF217658 Definition: Human papillomavirus KERLVWGLKGIEIGRGQPLGIGSSGHPLFNKVNDTENGNTYRNSSKDDRQNISFDPKQ Organism: Human papillomavirus AF217660 Definition: Human papillomavirus LOMFIIGCTPCIGEHWDRAPACVNDDOAGRCPPIELINSYIO" Organism: Human papillomavirus BASE COUNT 153 a 117 ± 71 c 93 a AF217661 Definition: Human papillomavirus ORIGIN Organism: Human papillomavirus 1 tcaatattta taacaatcaa ggcacacgat tggaggttcc taaagtatca ggaaatcaac AF455142 Definition: Human papillomavirus Organism: Human papillomavirus 61 acagggtatt tagattaaag ctaccagatc ctaataggtt tgcgttagct gacatgtcag AF455144 Definition: Human papillomavirus 121 tatataaccc tgacaaagaa agattagtat ggggtttgaa aggcatagaa ataggcaggg Organism: Human papillomavirus 181 gccaaccttt aggaataggc agcagtggtc atccactgtt taataaggtt aatgatacag AF455146 Definition: Human papillomavirus 241 aaaatggcaa tacatatagg aactcctcta aggatgatag acaaaatatt tcatttgacc Organism: Human papillomavirus 301 ccaagcagtt gcaaatgttt attattggct gtactccatg tataggagaa cattgggaca Reference PubmedID 361 gagcaccagc atgtgttaat gatgatcaag ctggtagatg teeteetata gagttaataa 421 actcatatat acag //

DDBJ Data Submission

- Single sequence
- Multiple sequences
- Updates

Sequence, address, contact details, status of publications.

SAKURA is a nucleotide sequence data submission system through the WWW server at DDBJ.

SAKURA has been open to public and continuously refined since 1995. Using this system, you can interactively enter and submit nucleotide and translated amino acid sequences, functions and features of the sequences, and references as well as your name, affiliation and address.

Mass Submission System (MSS)

Japanese

Go

We recommend using Mass Submission System (MSS) when:

- 1. The submission consists of large number of entries.
- The submission involves long nucleotide, complex submission resulting in a many features such as genome data.
- 3. The submission is unsuitable for SAKURA

Genbank

S NCBI Reso	ources 🗹	How To ⊡							
GenBank		Nucleotide ▼							
GenBank ▼	Submit	▼ Genomes ▼	WGS ▼	HTGs ▼	EST/GSS ▼	Metagen			
GenBank Overview What is GenBank?									
GenBank [®] is the NIH genetic sequence database, an annotated collection of all publicly available DNA (<u>Nucleic Acids Research, 2013 Jan;41(D1):D36-42</u>). GenBank is part of the <u>International Nucleotide Sicollaboration</u> , which comprises the DNA DataBank of Japan (DDBJ), the European Molecular Biology I and GenBank at NCBI. These three organizations exchange data on a daily basis.									
The complete <u>release notes</u> for the current version of GenBank are available on the NCBI ftp site. A ne every two months. GenBank growth <u>statistics</u> for both the traditional GenBank divisions and the WGS of from each release.									
An example of a	GenBank <u>ı</u>	record may be viewed	l for a Sacch	aromyces cei	revisiae gene.				
Access to GenBank									
There are sever	al ways to s	search and retrieve d	ata from Ger	nBank.					
	<u>oreNucleoti</u>	equence identifiers ar i <u>de</u> (the main collectio							

GenBank® is the NIH genetic sequence database, an annotated collection of all publicly available DNA sequences

Genbank: contents

```
SCU49845
LOCUS
                            5028 bp
                                        DNA
                                                          PLN
                                                                      21-JUN-1999
             Saccharomyces cerevisiae TCP1-beta gene, partial cds, and Ax12p
DEFINITION
             (AXL2) and Rev7p (REV7) genes, complete cds.
ACCESSION
             U49845
VERSION
             U49845.1 GI:1293613
KEYMORDS
SOURCE
             Saccharomyces cerevisiae (baker's yeast)
             Saccharomyces cerevisiae
  ORGANISM
             Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes;
             Saccharomycetales; Saccharomycetaceae; Saccharomyces.
REFERENCE
             1 (bases 1 to 5028)
  AUTHORS
             Torpey, L.E., Gibbs, P.E., Nelson, J. and Lawrence
                                                                                      complement (3300..4037)
                                                                        aene
                                                                                      /gene="REV7"
             Cloning and sequence of REV7, a gene whose fun
  TITLE
                                                                        CDS
                                                                                      complement (3300..4037)
             DNA damage-induced mutagenesis in Saccharomyce:
                                                                                      /gene="REV7"
  JOURNAL.
             Yeast 10 (11), 1503-1509 (1994)
                                                                                      /codon start=1
                                                                                      /product="Rev7p"
  PUBMED
             7871890
                                                                                      /protein id="AAA98667.1"
REFERENCE
             2 (bases 1 to 5028)
                                                                                      /db xref="GI:1293616"
  AUTHORS
             Roemer, T., Madden, K., Chang, J. and Snyder, M.
                                                                                      /translation="MNRWVEKWLRVYLKCYINLILFYRNVYPPQSFDYTTYQSFNLPQ
  TITLE
             Selection of axial growth sites in yeast requi:
                                                                                      FVPINRHPALIDYIEELILDVLSKLTHVYRFSICIINKKNDLCIEKYVLDFSELQHVD
             plasma membrane glycoprotein
                                                                                      KDDOIITETEVFDEFRSSLNSLIMHLEKLPKVNDDTITFEAVINAIELELGHKLDRNR
                                                                                      RVDSLEEKAEIERDSNWVKCQEDENLPDNNGFQPPKIKLTSLVGSDVGPLIIHQFSEK
  JOURNAL
             Genes Dev. 10 (7), 777-793 (1996)
                                                                                      LISGDDKILNGVYSQYEEGESIFGSLF"
  PUBMED
             8846915
                                                                   ORIGIN
             3 (bases 1 to 5028)
REFERENCE
                                                                          1 gatoctocat atacaacggt atotocacct caggtttaga totoaacaac ggaaccattg
                                                                          61 ccgacatgag acagttaggt atcgtcgaga gttacaagct aaaacgagca gtagtcagct
  AUTHORS
             Roemer, T.
                                                                         121 ctgcatctga agccgctgaa gttctactaa gggtggataa catcatccgt gcaagaccaa
  TITLE
             Direct Submission
                                                                         181 gaaccgccaa tagacaacat atgtaacata tttaggatat acctcgaaaa taataaaccg
             Submitted (22-FEB-1996) Terry Roemer, Biology,
  JOURNAL
                                                                         241 ccacactqtc attattataa ttaqaaacaq aacqcaaaaa ttatccacta tataattcaa
             Haven, CT, USA
                                                                         301 agacgcgaaa aaaaaagaac aacgcgtcat agaacttttg gcaattcgcg tcacaaataa
                                                                         361 attttggcaa cttatgtttc ctcttcgagc agtactcgag ccctgtctca agaatgtaat
FEATURES
                       Location/Qualifiers
                                                                         421 aatacccatc gtaggtatgg ttaaagatag catctccaca acctcaaagc tccttgccga
     source
                       1..5028
                                                                         481 gagtegeet cetttgtega gtaattttea etttteatat gagaaettat tttettatte
                       /organism="Saccharomyces cerevisiae"
                       /db xref="taxon:4932"
                       /chromosome="IX"
```

/man="9"

Genbank: contents

The LOCUS field contains locus name, sequence length, molecule type, GenBank division, and modification date

Definition: Brief description of sequence; includes information such as source organism, gene name/protein name, or some description of the sequence's function

Accession: The unique identifier for a sequence record

Version: A nucleotide sequence identification number that represents a single, specific sequence in the GenBank database. GI: GenInfo identifier.

Keywords: Word or phrase describing the sequence

Source: organism name

Reference: Publications by the authors of the sequence that discuss the data reported in the record.

The GenBank database is divided into 18 divisions:

- 1. PRI primate sequences
- 2. ROD rodent sequences
- 3. MAM other mammalian sequences
- 4. VRT other vertebrate sequences
- 5. INV invertebrate sequences
- 6. PLN plant, fungal, and algal sequences
- 7. BCT bacterial sequences
- 8. VRL viral sequences
- 9. PHG bacteriophage sequences
- 10. SYN synthetic sequences
- 11. UNA unannotated sequences
- 12. EST EST sequences (expressed sequence tags)
- 13. PAT patent sequences
- 14. STS STS sequences (sequence tagged sites)
- 15. GSS GSS sequences (genome survey sequences)
- 16. HTG HTG sequences (high-throughput genomic sequences)
- 17. HTC unfinished high-throughput cDNA sequencing
- 18. ENV environmental sampling sequences

Genbank: contents

Title: TMFunction: database for functional residues in membrane proteins.

Authors: Gromiha MM, Yabuki Y, Suresh MX, Thangakani AM, Suwa M, Fukui K.

Journal: Nucleic Acids Res. 2009 Jan;37(Database issue):D201-4.

PMID: 18842639

Features: Information about genes and gene products, as well as regions of biological significance reported in the sequence.

CDs: Coding sequence; region of nucleotides that corresponds with the sequence of amino acids in a protein (location includes start and stop codons).

complete feature is simply written as *n..m* Example: 687..3158

< indicates partial on the 5' end Example: <1..206

> indicates **partial on the 3' end**Example: 4821..5028>

(complement) indicates that the feature is on the complementary strand
Example: complement(3300..4037)
The feature extends from base 3300 through base 4037 but is actually on the complementary strand.

Translation: The amino acid translation corresponding to the nucleotide coding sequence

Base count: Frequency of occurrence of the different base types, A, C, G and T in the sequence.

Genbank: search

EMBL: Nucleotide sequence database

The EMBL Nucleotide Sequence Database (also known as EMBL-Bank) constitutes Europe's primary nucleotide sequence resource. Main sources for DNA and RNA sequences are <u>direct submissions</u> from individual researchers, genome sequencing projects and patent applications.

EMBL: Statistics

Release on 16-Jan-2014.

The release contains 798.2 million sequence entries comprising 2004.9 billion nucleotides.

Database entry

EMBL-EBI Enter	FH FH	Key L	ocation/Qualifiers
Databases Tools Research Training Indust EBI > Databases > Database Browsing > Dbfetch > EMBL-Bank: TRBG361	FT FT FT	/	1859 'organism="Trifolium repens" 'mol_type="mRNA"
EBI Dbfetch	FT		clone_lib="lambda gt10" clone="TRE361"
ID X56734; SV 1; linear; mRNA; STD; PLN; 1859 BP. XX AC X56734; S46826;	FT FT FT	/ / CDS 1	tissue_type="leaves" db_xref=" <u>taxon:3899</u> " 41495 product="beta-glucosidase"
xx	FT	/	EC_number="3.2.1.21"
DT 12-SEP-1991 (Rel. 29, Created) DT 25-NOV-2005 (Rel. 85, Last updated, Version 11)	FT		'note="non-cyanogenic" 'db xref=" <u>GOA:P26204</u> "
XX	FT		'db_xref="InterPro:IPR001360"
DE Trifolium repens mRNA for non-cyanogenic beta-glu			db_xref="InterPro:IPR013781"
XX KW beta-glucosidase.	FT		'db_xref="InterPro:IPR017853" 'db xref="InterPro:IPR018120"
XX XX	FT		'db xref="UniProtKB/Swiss-Prot:P26204"
OS Trifolium repens (white clover)	FT	/	protein_id=" <u>CAA40058.1</u> "
OC Eukaryota; Viridiplantae; Streptophyta; Embryophy		·	translation="MDFIVAIFALFVISSFTITSTNAVEASTLLDIGNLSRSSFPRGFI
OC Spermatophyta; Magnoliophyta; eudicotyledons; cor OC fabids; Fabales; Fabaceae; Papilionoideae; Trifol	FT		GAGSSAYQFEGAVNEGGRGPSIWDTFTHKYPEKIRDGSNADITVDQYHRYKEDVGIMK QNMDSYRFSISWPRILPKGKLSGGINHEGIKYYNNLINELLANGIQPFVTLFHWDLPQ
XX	FT		VLEDEYGGFLNSGVINDFRDYTDLCFKEFGDRVRYWSTLNEFWVFSNSGYALGTNAPGR
RN [5]	FT		SASNVAKPGDSGTGPYIVTHNQILAHAEAVHVYKTKYQAYQKGKIGITLVSNWLMPLD
RP 1-1859	FT	D	NSIPDIKAAERSLDFQFGLFMEQLTTGDYSKSMRRIVKNRLPKFSKFESSLVNGSFDF
RX DOI; 10.1007/BF00039495	FT	I	GINYYSSSYISNAPSHGNAKPSYSTNPMTNISFEKHGIPLGPRAASIWIYVYPYMFIQ
RX PUBMED; <u>1907511</u> .	FT	E	DFEIFCYILKINITILQFSITENGMNEFNDATLPVEEALLNTYRIDYYYRHLYYIRSA
RA Oxtoby E., Dunn M.A., Pancoro A., Hughes M.A.;	FT		RAGSNVKGFYAUSFLDCNEWFAGFTVRFGLNFVD"
RT "Nucleotide and derived amino acid sequence of the	FT		1859
RT beta-glucosidase (linamarase) from white clover	FT		experiment="experimental evidence, no additional details"
RL Plant Mol. Biol. 17(2):209-219(1991). XX	FT	r	ecorded"
RN [6]	50	Semience 1859 BP:	609 A; 314 C; 355 G; 581 T; O other;
RP 1-1859	20	-	gatt ttattgtagc catatttgct ctgtttgtta ttagctcatt 60
RA Hughes M.A.;			aatq caqttqaaqc ttctactctt cttqacataq qtaacctqaq 120
RT ;			cgtg gcttcatctt tggtgctgga tcttcagcat accaatttga 180
RL Submitted (19-NOV-1990) to the INSDC.			ασσο στασασσαςς aaσtatttog gatacettca eccataaata 240

EMBL: Search

ID XX AC XX DT DT XX DE

KW XX OS OC OC XX RN RP RX RA

RT RL XX DR DR DR

FH FH

FT FT

				-
		FT	mRNA	<11268
,	M33197; SV 1; linear; mRNA; STD; H			/note="GAPDH mRNA"
X.		FT	CDS	611068
3		FT		/codon_start=1
X		FT		/gene="GAPD"
Γ		FT		/note="glyceraldehyde-3-phosphate dehydrogenase (EC
Γ	17-APR-2005 (Rel. 83, Last updated	FΤ		1.2.1.12)"
X		FΤ		/db_xref="GDB:119249"
£	Human glyceraldehyde-3-phosphate de	FT		/db_xref="GOA:P04406"
X		FT		/db_xref="H-InvDB:HIT000195501"
J	glyceraldehyde-3-phosphate dehydro	FT		/db_xref="HGNC:4141"
X		FT		/db_xref="InterPro:IPR006424"
3		FT		/db_xref="InterPro:IPR016040"
C	Eukaryota; Metazoa; Chordata; Cran:			/db_xref="InterPro:IPR020828"
C	Eutheria; Euarchontoglires; Primate	FT		/db_xref="InterPro:IPR020829"
C	Homo.	FT		/db_xref="InterPro:IPR020830"
X		FT		/db_xref="InterPro:IPR020831"
1	[1]	FT		/db_xref="PDB:1U8F"
₽.	1-1268	FT		/db_xref="PDB:1ZNQ"
X		FT		/db_xref="PDB:2FEH"
A.	Tokunaga K., Nakamura Y., Sakata K	FT		/db_xref="PDB:3GPD"
A.		FT		/db_xref="UniProtKB/Swiss-Prot:P04406"
Γ	"Enhanced expression of a glyceral	FT		/protein_id="AAA52518.1"
Γ		FT		translation="MGKVKVGVNGFGRIGRLVTRAAFNSGKVDIVAINDPFIDLNYMVY/
L	Cancer Res. 47(21):5616-5619(1987)	FT		MFQYDSTHGKFHGTVKAENGKLVINGNPITIFQERDPSKIKWGDAGAEYVVESTGVFTT
X		FT		MEKAGAHLQGGAKRVIISAPSADAPMFVMGVNHEKYDNSLKIISNASCTTNCLAPLAKV
R	Ensembl-Gn; ENSG00000111640; Homo_:	FT		IHDNFGIVEGLMTTVHAITATQKTVDGPSGKLWRDGRGALQNIIPASTGAAKAVGKVIP
R	Ensembl-Tr; ENST00000229239; Homo_:	FT		ELNGKLTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVVKQASEGPLKGILGYTEHQV
R	Ensembl-Tr; ENST00000396859; Homo_:			VSSDFNSDTHSSTFDAGAGIALNDHFVKLISWYDNEFGYSNRVVDLMAHMASKE"
R	Ensembl-Tr; ENST00000396861; Homo_s	XX		
X		SQ	Sequence 1268 BF	; 295 A; 385 C; 326 G; 262 T; O other;
H	Key Location/Qualifier:		gttcgacagt cagco	grate ttettttgeg tegecageeg agecacateg etcagacace 60
H			atggggaagg tgaag	gtcgg agtcaacgga tttggtcgta ttgggcgcct ggtcaccagg 120
Γ	source 11268			ggtaa agtggatatt gttgccatca atgacccctt cattgacctc 180
Γ	/organism="Homo saj			atgtt ccaatatgat tccacccatg gcaaattcca tggcaccgtc 240
Γ	/map="12p13"			yaaget tgteateaat ggaaateeea teaceatett eeaggagega 300
Γ	/mol type="mRNA"			

Literature database

Chemical abstracts

Physical abstracts

Science citation index

PUBMED

Mainly for biological sciences and are freely available

Useful for getting the references of any work and related papers

PUBMED

Search with the keyword "DDBJ Nucleic acid sequence database"

Abstract

What is Open Access?

Full text

Nucleic Acids Research

Journal List > Nucleic Acids Res > v.39(Database issue); Jan 2011

Nucleic Acids Res. 2011 January; 39(Database issue): D22–D27. Published online 2010 November 8. doi: 10.1093/nar/gkg1041.

PMCID: PMC3013661

Copyright @ The Author(s) 2010. Published by Oxford University Press.

DDBJ progress report

Eli Kaminuma, Takehide Kosuge, Yuichi Kodama, Hideo Aono, Jun Mashima, Takashi Gojobori, Hideaki Sugawara, Osamu Ogasawara, Toshihisa Takagi, Kousaku Okubo, and Yasukazu Nakamura*

Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization for Information and Systems, Yata, Mishima, 411-8510, Japan

*To whom correspondence should be addressed. Tel: Phone: +81 55 981 6859; Fax: +81 55 981 6889; Email: yanakamu@genes.nig.ac.jp

Received September 27, 2010; Revised October 7, 2010; Accepted October 11, 2010.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Other Sections▼

The DNA Data Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp) provides a nucleotide sequence archive database and accompanying database tools for sequence submission, entry retrieval and annotation analysis. The DDBJ collected and released 3 637 446 entries/2 272 231 889 bases between July 2009 and June 2010. A highlight of the released data was archive datasets from next-generation sequencing

Formats: Abstract | Full Text | PDF (3.6M)

PubMed articles by these authors

- Kaminuma, E.
- Kosuge, T.
- Kodama, Y.
- Nakamura, Y.

PubMed related articles

- DDBJ launches a new archive database with analytical tools for next-generation sequence data. [Nucleic Acids Res. 2010]
- Biological databases at DNA Data Bank of Japan in the era of next-generation sequencing technolo [Adv Exp Med Biol. 2010]
- The sequence read archive.

[Nucleic Acids Res. 2011]

- Review The EMBL Nucleotide Sequence Database. Contributing and accessing data. [Mol Biotechnol. 1999]
- Review From mapping to sequencing, post-sequencing and beyond. [Plant Cell Physiol. 2005]

» See reviews... | » See all...

Recent Activity

Turn Off Clear

DDBJ progress report

Nucleic Acids Res

Related articles

PUBMED: Features

Search with keywords display the results from the latest article.

Search with "related entries" show the output from the most relevant article.

One can also use the mesh terms to get a specific article. E.g. Nucleic Acids Res. 34, D204-D206 (2006)

204-206[PAGE] AND 34[VOL] AND 2006[PDAT]

Disease database

Alterations in proteins cause cancer.

Dr. Akinoi Sarai's group in Japan

Protein P53							
PDBENTRY	SOURCE	MUTATION	PROTEIN	GENE_NAME	DISEASE	DISEASE_DB	swiss
1TUP)	Homo sapiens	Gly 245 Arg	TUMOR SUPPRESSOR P53	TP53	ADENOCARCINOMA	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Pro 152 Leu	TUMOR SUPPRESSOR P53	TP53	ADRENOCORTICAL CARCINOMA	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Arg 158 His	TUMOR SUPPRESSOR P53	TP53	ADRENOCORTICAL CARCINOMA	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Arg 196 Ter	TUMOR SUPPRESSOR P53	TP53	ADRENOCORTICAL CARCINOMA	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Pro 219 Ser	TUMOR SUPPRESSOR P53	TP53	ADRENOCORTICAL CARCINOMA	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Asn 235 Asp	TUMOR SUPPRESSOR P53	TP53	ADRENOCORTICAL CARCINOMA	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Glu 286 Ala	TUMOR SUPPRESSOR P53	TP53	ADRENOCORTICAL CARCINOMA	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Pro 151 Ser	TUMOR SUPPRESSOR P53	TP53	ASTROCYTOMA	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Arg 283 His	TUMOR SUPPRESSOR P53	TP53	ASTROCYTOMA	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Arg 181 Cys	TUMOR SUPPRESSOR P53	TP53	BREAST CANCER	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Arg 181 His	TUMOR SUPPRESSOR P53	TP53	BREAST CANCER	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Arg 267 Gln	TUMOR SUPPRESSOR P53	TP53	BREAST CANCER	<u>OMIM</u>	P53_HUMAN
	Homo sapiens	Pro 278 Leu	TUMOR SUPPRESSOR P53	TP53	BREAST CANCER	<u>OMIM</u>	P53_HUMAN

Protein function database

Search Results

Search Conditions
Function Drug

Parameter All

UniProt ID All

Source

Important residues for protein function M.M. Gromiha et al. CBRC, AIST, Japan

]	ніт	: 216							
	No.	Protein	UniProt ID	Mutation	Parameter	Data	Function	Experiment	PubMed ID
	187	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	S1233A	Relative resistance factor to vincristine	12.5	Drug resistance	site-directed mutagenesis	11925441
	188	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	S1235A	Relative resistance factor to vincristine	9.3	Drug resistance	site-directed mutagenesis	11925441
	189	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	Y1236F	Relative resistance factor to vincristine	4.8	Drug resistance(partial)	site-directed mutagenesis	11925441
	190	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	S1237A	Relative resistance factor to vincristine	13.7	Drug resistance	site-directed mutagenesis	11925441
	191	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	Q1239A	Relative resistance factor to vincristine	17.3	Drug resistance	site-directed mutagenesis	11925441
	192	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	T1241A	Relative resistance factor to vincristine	4.4	Drug resistance	site-directed mutagenesis	11925441
	193	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	Y1243F	Relative resistance factor to vincristine	4.2	Drug resistance(partial)	site-directed mutagenesis	11925441
	194	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	N1245A	Relative resistance factor to vincristine	29.3	Drug resistance(partial)	site-directed mutagenesis	11925441
	195	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	nul1	null	null	Drug resistance	site-directed mutagenesis	11925441
	196	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	null	null	null	Drug resistance	site-directed mutagenesis	11925441
	198	Multidrug resistance protein 1; MRP1	MRP1 HUMAN (P33527)	S1233A	Relative resistance factor to VP- 16	13.3	Drug resistance	site-directed mutagenesis	11925441

M.M. Gromiha et al. (2009) Nucleic Acids Res. 37, D201-204

TMFunction: database for functional residues in membrane proteins

M. Michael Gromiha^{1,*}, Yukimitsu Yabuki¹, M. Xavier Suresh¹, A. Mary Thangakani², Makiko Suwa¹ and Kazuhiko Fukui¹

¹Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Bio-IT Research Building, 2-42 Aomi, Koto-ku, Tokyo 135-0064 and ²Advanced Technology Inc., Tokyo, Japan