

Modelos Lineales

Regresión y Clasificación

Modelos de Regresión

- Un modelo de regresión se usa para modelar la relación de una variable dependiente \mathbf{y} numérica con n variables independientes $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$.
- A grandes rasgos queremos conocer el valor esperado de y a partir los valores de x:

$$\mathbb{E}(y|x_1,x_2,\ldots,x_n)$$

- Usamos estos modelos cuando creemos que la variable de respuesta y puede ser modelada por otras variables independientes también conocidas como covariables o atributos.
- Para realizar este tipo de análisis necesitamos un dataset formado por m observaciones que incluyan tanto a la variable de respuesta como a cada uno de los atributos.
- Nos referimos al proceso de **ajustar** una función de regresión al proceso en que a partir de los datos inferimos una función de hipótesis **h** que nos permite predecir valores de **y** desconocidos usando los valores de los atributos.

Modelos de Regresión

- A este proceso de ajustar una función a partir de los datos se le llama en machine learning como entrenamiento.
- Se entiende que las funciones aprenden a partir de los datos.
- Como necesitamos observaciones donde el valor de y sea conocido para aprender la función, se le llama a este tipo de técnicas como técnicas de aprendizaje supervisado.
- Cuando y es una variable categórica hablamos de un problema de clasificación.

Modelos de Regresión

- En la regresión lineal simple se tiene una única variable independiente x para modelar la variable dependiente y.
- Se asume la siguiente relación lineal entre la variables:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \quad \forall i$$

- El parámetro β_0 representa el intercepto de la recta (el valor de **y** cuando **x** vale cero).
- El parámetro β₁ es la pendiente y representa el cambio de y cuando variamos el valor de x. Entre mayor sea la magnitud de este parámetro mayor será la relación lineal entre las variables.
- Los valores ε_i corresponden a los errores asociados al modelo.
- Tenemos que encontrar una función lineal o recta $\mathbf{h}_{\mathbf{\beta}}$ que nos permita encontrar una estimación de \mathbf{y} , $\hat{\mathbf{y}}$ para cualquier valor de \mathbf{x} con el mínimo error esperado.

$$h(x) = \beta_0 + \beta_1 x$$

Mínimos Cuadrados

- El método de mínimos cuadrados ordinarios se usa para estimar $\hat{\beta}_0$ y $\hat{\beta}_1$ minimizando la suma de los errores cuadráticos (SSE) de los datos observados.
- Supongamos que tenemos m observaciones de y y de x, calculamos la suma de los errores cuadráticos (SSE) o E de error de la siguiente forma:

$$E = \sum_{i=1}^{m} (y_i - h(x_i))^2 = \sum_{i=1}^{m} (y_i - \beta_0 - \beta_1 x_i)^2$$
 (1)

• Para encontrar los parámetros que minimizan el error calculamos las derivadas parciales de SSE respecto a β_0 y β_1 . Luego igualamos las derivadas a cero y resolvemos la ecuación para despejar los parámetros.

$$\frac{\partial E}{\partial \beta_0} = -2\sum_{i=1}^m (y_i - \beta_0 - \beta_1 x_i) = 0$$
 (2)

$$\frac{\partial E}{\partial \beta_1} = -2\sum_{i=1}^m (y_i - \beta_0 - \beta_1 x_i) x_i = 0 \tag{3}$$

Mínimos Cuadrados (2)

 Del sistema de ecuaciones anterior se obtienen las soluciones normales:

$$\hat{\beta}_1 = \frac{\sum_i^m (x_i - \overline{x})(y_i - \overline{y})}{\sum_i^m (x_i - \overline{x})^2} \tag{4}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} \tag{5}$$

El modelo ajustado representa la recta de mínimo error cuadrático.

Coeficiente de Determinación R²

- Una vez ajustado nuestro modelo lineal debemos evaluar la calidad del modelo.
- Una medida muy común es el coeficiente de determinación R².
- Para calcularlo debo calcular otros errores distintos a los errores cuadráticos SSE.
- Se define a la suma cuadrática total (SST) como el error predictivo cuando usamos la media y para predecir la variable de respuesta y (es muy similar a la varianza de la variable):

$$SST = \sum_{i}^{m} (y_i - \overline{y})^2$$

Luego tenemos a la suma de los cuadrados explicada por el modelo (SSM)
que nos indica la variabilidad de los valores predichos por el modelo respecto a
la media.

$$SSM = \sum_{i}^{m} (\hat{y}_{i} - \overline{y})^{2}$$

Coeficiente de Determinación R²

Se define el coeficiente de determinación para un modelo lineal R² como:

$$R^{2} = \frac{\text{SSM}}{\text{SST}} = \frac{\sum_{i}^{m} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i}^{m} (y_{i} - \overline{y})^{2}}$$
(6)

 El coeficiente adquiere valores entre 0 a 1 y mientras más cercano a 1 sea su valor mayor será la calidad del modelo.

• El valor de R² es equivalente a la correlación lineal (Pearsons) entre y e ŷ al cuadrado.

$$R^2 = \operatorname{cor}(y, \hat{y})^2$$

Regresión Lineal Múltiple

- Supongamos que tenemos n variables independientes: x₁, x₂, ..., x_n.
- Intuitivamente, estas variables en conjunto podrían explicar de mejor manera la variabilidad de la variable de respuesta y que un modelo simple.
- Se define un modelo lineal multivariado de la siguiente manera:

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \cdots + \beta_n x_{i,n} + \epsilon_i \quad \forall i \in \{1, m\}$$

- En el modelo multivariado se extienden todas las propiedades del modelo lineal simple.
- Se puede representar el problema de manera matricial:

$$Y = X\beta + \epsilon$$

• Donde Y es un vector de m × 1 de variables de respuesta:

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

Regresión Lineal Múltiple

- X es una matriz de $m \times (n + 1)$ con las variables explicativas.
- Tenemos m observaciones de las n variables.
- La primera columna es constante igual a 1 ($x_{i,0} = 1 \ \forall i$) para incluir la variable de intercepto β_0 de manera limpia.

$$X = \begin{pmatrix} x_{1,0} & x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,0} & x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{m,0} & x_{m,1} & x_{m,2} & \cdots & x_{m,n} \end{pmatrix}$$

Luego, β es un vector de parámetros de (n + 1) × 1

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

Regresión Lineal Múltiple

• Finalmente, ε es un vector con los errores del modelo de dimensiones m \times 1.

$$\epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{pmatrix}$$

 Usando la notación matricial, podemos ver que la suma de los errores cuadráticos (SSE) se puede expresar como:

$$SSE = (Y - X\beta)^T (Y - X\beta)$$

 Minimizando esta expresión derivando el error en función de β e igualando a cero se llega a las ecuaciones normales:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Supuestos del Modelo Lineal

Cada vez que ajustamos un modelo lineal estamos asumiendo implícitamente ciertos supuestos sobre los datos.

01	Linealidad	La variable de respuesta se relaciona linealmente con los atributos.
02	Normalidad	Los errores tienen distribución normal de media cero: $\epsilon_i \sim N(0, \sigma^2)$
03	Homocedasticidad	Los errores tienen varianza constante (mismo valor de σ^2).
04	Independencia	Los errores son independientes entre sí.

Interpretación Probabilística

 Considerando los supuestos anteriores podemos ver que la densidad de probabilidad (PDF) de los errores ε se definen por una normal de media cero y varianza constante:

$$\mathsf{PDF}(\epsilon_i) = rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{\epsilon_i^2}{2\sigma^2}
ight)$$

Esto implica que:

$$\mathsf{PDF}(y_i|x_i;\beta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - h_\beta(x_i))^2}{2\sigma^2}\right)$$

- Lo que implica que la distribución de y dada los valores de x y parametrizada por β sigue una distribución normal.
- Luego si uno estima los parámetros de β usando una técnica de estimación llamada máxima verosimilitud llega a los mismos resultados que haciendo una estimación por mínimos cuadrados.
- Esto nos dice que cuando estimamos los parámetros del modelo usando mínimos cuadrados estamos realizando las mismas hipótesis probabilísticas mencionadas anteriormente.

Ejemplo

Rape~Assault+Murder

Métricas de Evaluación

Algunas métricas usadas para evaluar modelos de regresión:

Error cuadrático medio (RMSE)

RMSE(
$$\mathbf{X}, h$$
) = $\sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(h(\mathbf{x}^{(i)}) - y^{(i)} \right)^2}$

Error absoluto medio (MAE)

MAE(
$$\mathbf{X}, h$$
) = $\frac{1}{m} \sum_{i=1}^{m} \left| h(\mathbf{x}^{(i)}) - y^{(i)} \right|$

Entrenando un modelo lineal

- Una forma alternativa a ver el problema de regresión es definiendo una función de pérdida L(ŷ, y), indicando la pérdida o error de la predicción de ŷ cuando la salida verdadera es y.
- Una función de pérdida calcula un valor escalar a partir de ŷ e y.
- Una función de pérdida a usar para regresión es el error cuadrático medio (MSE), que es el SSE normalizado por la cantidad de ejemplos.

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - h(x_i))^2$$
 (7)

 El objetivo del entrenamiento es minimizar la pérdida en los datos de entrenamiento.

Entrenando un modelo lineal

- La regresión lineal es un caso particular de modelo de regresión donde los parámetros tienen solución **exacta** (ecuaciones normales).
- Alternativamente, una regresión se puede entrenar usando métodos iterativos basados en gradientes.
- Se calculan los gradientes de los parámetros con respecto a la pérdida L, y se mueven los parámetros en las direcciones opuestas del gradiente.
- Diferentes métodos de optimización difieren en cómo se calcula la estimación del error y cómo se define el movimiento en la dirección opuesta al gradiente.

Descenso del Gradiente

Figure 4.1: Gradient descent. An illustration of how the gradient descent algorithm uses the derivatives of a function to follow the function downhill to a minimum.

Imagen sacada de [1].

Descenso del Gradiente

 Imagen sacada de: https://sebastianraschka.com/images/fag/closed-form-vs-gd/ball.png

Descenso del Gradiente

• Imagen sacada de: https://www.coursera.org/learn/machine-learning

Descenso del Gradiente Online Estocástico (SGD)

- Se inicializan los parámetros w con valores iniciales (o pesos) aleatorios.
- Por cada dato de entrenamiento (x, y) calculo L con el valor actual de w y actualizo los parámetros usando la siguiente regla hasta converger:

$$\mathbf{W}_i \leftarrow \mathbf{W}_i - \eta \frac{\partial L}{\mathbf{W}_i}(\mathbf{X}, \mathbf{y})$$
 (Para todos los parámetros \mathbf{W}_i)

Algorithm 2.1 Online stochastic gradient descent training.

Input:

- Function $f(x; \Theta)$ parameterized with parameters Θ .
- Training set of inputs x_1, \ldots, x_n and desired outputs y_1, \ldots, y_n .
- Loss function L.

```
1: while stopping criteria not met do
```

- 2: Sample a training example x_i , y_i
- 3: Compute the loss $L(f(x_i; \Theta), y_i)$
- 4: $\hat{g} \leftarrow \text{gradients of } L(f(x_i; \Theta), y_i) \text{ w.r.t } \Theta$
- 5: $\Theta \leftarrow \Theta \eta_t \hat{g}$
- 6: return Θ

Descenso del Gradiente Online Estocástico (SGD)

- La tasa de aprendizaje **n** puede ser fija a lo largo del proceso de entrenamiento o se puede decaer en función del paso de tiempo t.
- El error calculado en la línea 3 se basa en un solo dato de entrenamiento y, por lo tanto, es solo una estimación aproximada de la pérdida total L que queremos minimizar.
- El ruido en el cálculo de la pérdida puede dar lugar a gradientes inexactos (un sólo dato puede proporcionar **información ruidosa**).

Funciones de Pérdida para clasificación

El MSE es una función de pérdida para entrenar modelos de regresión. También se puede tener funciones de pérdida para entrenar modelos de **clasificación**.

- Hinge (función bisagra): para problemas de clasificación binaria, la salida del clasificador es un escalar \tilde{y} y la salida deseada y está en $\{+1, -1\}$.
- La regla de clasificación es $\hat{y} = \text{sign}(\tilde{y})$, y la clasificación se considera correcta cuando y $\cdot \tilde{y} > 0$.

$$L_{\text{hinge(binary)}}(\tilde{y}, y) = \text{máx}(0, 1 - y \cdot \tilde{y})$$

- Esta es la función de pérdida de la SVM (hiperplano de máximo margen).
- ¡Podemos entrenar una SVM lineal usando SGD!
- ¿Es máx una función derivable? Para aplicar SGD a máx(0, x), el valor del gradiente es 1 cuando x > 0 y 0 para el caso contrario.

Regresión Logística

- Una regresión logística es un modelo de clasificación que estima la probabilidad posterior P(y|x) de una variable binaria y dado los datos observados x ajustando un modelo lineal a los datos.
- Los parámetros del modelo son un vector de parámetros w.
- Si asumimos el término de intercepto como 1 $x_0 = 1$, tenemos una función lineal de la siguiente forma:

$$\tilde{y} = \sum_{i=0}^{n} w_i x_i = w^T x \tag{8}$$

• Para darle una interpretación probabilística a la salida, transformamos \tilde{y} al intervalo [0, 1] usando una función sigmoidal:

$$g(z) = \frac{1}{1 + e^{-z}} \tag{9}$$

Función Sigmoidal

Regresión Logistica

• Esto se puede resumir en la función de pérdida logística:

$$L_{\text{logistic}}(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

- Esta función de pérdida es entonces el negativo del log-likelihood de un modelo probabilístico donde P(y|x) sigue una distribución de Bernoulli.
- Muchas funciones de pérdidas son el negativo de una función de verosimilitud.
- Entonces, minimizar la pérdida equivale en esos casos a realizar estimación por máxima verosimilitud.

¡Podemos entrenar una regresión logística usando SGD!

Bilbiografía

1. L. Wasserman All of Statistics: A Concise Course in Statistical Inference, Springer Texts in Statistics, 2005.

www.dcc.uchile.cl

