Testing Poisson versus Poisson mixtures with application to neuroscience

Yunran Chen Surya Tapas Tokdar

Department of Statistical Science, Duke University Durham, North Carolina, USA

AISC, 2018

Outline

- Introduction
 - Background
 - Poisson and Poisson mixture
- Testing Poisson versus Poisson mixture
 - Hypothesis Testing
 - Bayes Factor
 - Estimate $P(Y|M_1)$: PRML algorithm
 - Estimate $P(Y|M_0)$
- Comparison
 - Pearson χ^2 goodness of fit test
 - Simulation Result
- Testing between different Poisson mixtures
 - Hypothesis Testing
 - Estimate $P(Y|M_i)$: PRMLG-LP algorithm
 - Simulation Result

Background Non-Poisson behavior

- In neuroscience, spike counts are usually modeled as Poisson distribution for simplicity.
- Non-Poisson behavior is to be expected and has been documented under many situations.¹
 - The stimuli or the internal state of the subject may change over time and vary from trial to trial.
 - "refractory period"
- Poisson mixtures attract increasing attention.
 - It can be seen as a generalized version of Poisson distribution.
 - It offers a rich class of alternatives to the Poisson distribution.

^{1.} Kass R E, Ventura V, Brown E N. Statistical issues in the analysis of neuronal data[J]. Journal of neurophysiology, 2005, 94(1): 8-25.

Background Non-Poisson behavior

- In neuroscience, spike counts are usually modeled as Poisson distribution for simplicity.
- Non-Poisson behavior is to be expected and has been documented under many situations.
 - The stimuli or the internal state of the subject may change over time and vary from trial to trial.
 - "refractory period"
- Poisson mixtures attract increasing attention.
 - It can be seen as a generalized version of Poisson distribution.
 - It offers a rich class of alternatives to the Poisson distribution.

^{1.} Kass R E, Ventura V, Brown E N. Statistical issues in the analysis of neuronal data[J]. Journal of neurophysiology, 2005, 94(1): 8-25.

Background Unsuitable Poisson assumption

Testing Poisson versus Poisson mixtures

- Unsuitable model assumption may lead to distortion of inference.
- Need to filter out non-Poisson behavior trials.
- Traditional testing procedure : χ^2 goodness of fit test
 - Whether χ^2 test can give us Poisson-like data?
 - Is there better method for this?
- Bayesian perspective : Predictive recursion marginal likelihood (PRML) testing²
 - Better performance as measured by ROC-AUC
 - Testing between different types of Poisson mixtures

^{2.} Martin R, Tokdar S T. Semiparametric inference in mixture models with predictive recursion marginal likelihood[J]. Biometrika, 2014 98(3): 567-582.

Background Unsuitable Poisson assumption

Testing Poisson versus Poisson mixtures

- Unsuitable model assumption may lead to distortion of inference.
- Need to filter out non-Poisson behavior trials.
- Traditional testing procedure : χ^2 goodness of fit test
 - Whether χ^2 test can give us Poisson-like data?
 - Is there better method for this?
- Bayesian perspective : Predictive recursion marginal likelihood (PRML) testing²
 - Better performance as measured by ROC-AUC
 - Testing between different types of Poisson mixtures

^{2.} Martin R, Tokdar S T. Semiparametric inference in mixture models with predictive recursion marginal likelihood[J]. Biometrika, 2014 98(3) 567,582.

Background Unsuitable Poisson assumption

Testing Poisson versus Poisson mixtures

- Unsuitable model assumption may lead to distortion of inference.
- Need to filter out non-Poisson behavior trials.
- Traditional testing procedure : χ^2 goodness of fit test
 - Whether χ^2 test can give us Poisson-like data?
 - Is there better method for this?
- Bayesian perspective : Predictive recursion marginal likelihood (PRML) testing²
 - Better performance as measured by ROC-AUC
 - Testing between different types of Poisson mixtures

^{2.} Martin R, Tokdar S T. Semiparametric inference in mixture models with predictive recursion marginal likelihood[J]. Biometrika, 2011, 98(3): 567-582.

Poisson and Poisson mixture

Poisson

$$Y_i \stackrel{i.i.d}{\sim} Poi(\mu), \mu \in (\mu_I, \mu_U)$$

Poisson mixture

$$Y_i \overset{i.i.d}{\sim} \int Poi(\mu) f(\mu) d\mu, support(f) = (\mu_I, \mu_U)$$

Or

$$Y_i \stackrel{i.i.d}{\sim} Poi(\mu_i), \mu_i \stackrel{i.i.d}{\sim} f$$

- A generalized version of Poisson distribution
- A rich class of alternatives to the Poisson distribution
- An overdispersion model

Hypothesis Testing

Consider the data Y_i for i = 1, ..., n,

- $H_0: Y_i \overset{i.i.d}{\sim} Poi(\mu)$ for unknown $\mu \in (\mu_I, \mu_U)$
- $H_1: Y_i \overset{i.i.d}{\sim} \int Poi(\mu) f(\mu) d\mu$ where $support(f) = (\mu_I, \mu_U)$

Methods

- Bayes Factor : $\frac{P(Y|M_0)}{P(Y|M_1)}$ PRML algorithm
- p value : χ^2 goodness of fit test

Bayes Factor Bayes Factor= $P(Y|M_0)/P(Y|M_1)$

Bayes' Factor: Ratio of marginal likelihood based on corresponding model assumption.

$$BF = \frac{P(Y|M_0)}{P(Y|M_1)}$$

The larger the Bayes' Factor, the stronger evidence showing Model 0 (Poisson) is better than Model 1 (Poisson mixture).

BF	Strength of evidence	
1 to 3	not worth more than a bare mention	
3 to 20	positive	
20 to 150	strong	
>150	very strong	

Bayes Factor Bayes Factor= $P(Y|M_0)/P(Y|M_1)$

Bayes' Factor: Ratio of marginal likelihood based on corresponding model assumption.

$$BF = \frac{P(Y|M_0)}{P(Y|M_1)}$$

The larger the Bayes' Factor, the stronger evidence showing Model 0 (Poisson) is better than Model 1 (Poisson mixture).

BF	Strength of evidence	
1 to 3	not worth more than a bare mention	
3 to 20	positive	
20 to 150	strong	
>150	very strong	

Bayes Factor Bayes Factor= $P(Y|M_0)/P(Y|M_1)$

Bayes' Factor: Ratio of marginal likelihood based on corresponding model assumption.

$$BF = \frac{P(Y|M_0)}{P(Y|M_1)}$$

The larger the Bayes' Factor, the stronger evidence showing Model 0 (Poisson) is better than Model 1 (Poisson mixture).

BF	Strength of evidence	
1 to 3	not worth more than a bare mention	
3 to 20	positive	
20 to 150	strong	
>150	very strong	

Marginal likelihood approximation

$P(Y|M_0)$

- $H_0: Y_i \overset{i.i.d}{\sim} Poi(\mu)$ for unknown $\mu \in (\mu_I, \mu_U)$
- Setting a prior and integrate out the parameter.
- If it is hard to get integral, we can apply Laplace approximation.

$P(Y|M_1)$

- $H_1: Y_i \overset{i.i.d}{\sim} \int Poi(\mu) f(\mu) d\mu$ where $support(f) = (\mu_I, \mu_U)$
- Applying predictive recursion marginal likelihood (PRML) algorithm.

Marginal likelihood approximation

$P(Y|M_0)$

- $H_0: Y_i \overset{i.i.d}{\sim} Poi(\mu)$ for unknown $\mu \in (\mu_I, \mu_u)$
- Setting a prior and integrate out the parameter.
- If it is hard to get integral, we can apply Laplace approximation.

$P(Y|M_1)$

- $H_1: Y_i \overset{i.i.d}{\sim} \int Poi(\mu) f(\mu) d\mu$ where $support(f) = (\mu_I, \mu_U)$
- Applying predictive recursion marginal likelihood (PRML) algorithm.

PRML algorithm : Restate the problem Estimate $P(Y|M_1)$

Calculate

$$p(Y|M_1) = \int p(Y|\mu)f(\mu)d\mu$$

Known:

- Likelihood Function : Poisson $p(Y|\mu)$
- support of $f(\cdot)$

Unknown:

• Mixture density $f(\mu)$

Mixture model density estimation: PRML

PRML algorithm Estimate $P(Y|M_1)$

Calculate $p(Y|M_1) = \int p(Y|\mu)f(\mu)d\mu$

Predictive recursion (PR) is an accurate and computationally efficient algorithm for nonparametric estimation of mixing densities in mixture model.

Required information:

- p(Y|µ) known − Poisson;
- support and continuity properties Model assumptions. Pass the information via f_0 in initialization and $m_f(y)$ in integral.

Output

- Estimation on $f(\mu)$
- Estimation on marginal likelihood $p(Y|M_1)$

PRML Algorithm Estimate $P(Y|M_1)$

$$p(Y|M_1) = \int p(Y|\mu)f(\mu)d\mu$$

Input: i.i.d observations $Y_1, ..., Y_n$

Output : $L = \prod_{i=1}^n m_i(y)$

Initialize: $f_0(\mu)$ — Usually uniformly distributed on the support.

$$w_1,...,w_n \in (0,1)-w_i = \frac{1}{1+i}; \sum_{i=1}^{\infty} w_i = \infty, \sum_{i=1}^{\infty} w_i^2 < \infty$$

For i = 1,...,n:

$$m_i(y) = \int p(Y_i|\mu)f_{i-1}(\mu)d\mu = \sum_{k=1}^m s_k p(Y_i|\mu_k)f_{i-1}(\mu_k)$$

$$f_i(\mu) = (1 - w_i)f_{i-1}(\mu) + w_i \rho(Y_i|\mu)f_{i-1}(\mu)/m_i(y)$$

PRML Algorithm Estimate *P*(*Y*|*M*₁)

$$p(Y|M_1) = \int p(Y|\mu) f(\mu) d\mu$$

Input : i.i.d observations $Y_1, ..., Y_n$

Output : $L = \prod_{i=1}^n m_i(y)$

Initialize: $f_0(\mu)$ — Usually uniformly distributed on the support.

$$w_1,...,w_n \in (0,1) - w_i = \frac{1}{1+i}; \sum_{i=1}^{\infty} w_i = \infty, \sum_{i=1}^{\infty} w_i^2 < \infty$$

For i = 1,...,n:

$$m_i(y) = \int p(Y_i|\mu)f_{i-1}(\mu)d\mu = \sum_{k=1}^m s_k p(Y_i|\mu_k)f_{i-1}(\mu_k)$$

$$f_i(\mu) = (1 - w_i)f_{i-1}(\mu) + w_i \rho(Y_i|\mu)f_{i-1}(\mu)/m_i(y)$$

PRML Algorithm Estimate $P(Y|M_1)$

$$p(Y|M_1) = \int p(Y|\mu)f(\mu)d\mu$$

Input: i.i.d observations $Y_1, ..., Y_n$

Output : $L = \prod_{i=1}^n m_i(y)$

Initialize: $f_0(\mu)$ – Usually uniformly distributed on the support.

$$w_1,...,w_n \in (0,1) - w_i = \frac{1}{1+i}; \sum_{i=1}^{\infty} w_i = \infty, \sum_{i=1}^{\infty} w_i^2 < \infty$$

For i = 1,...,n:

$$m_i(y) = \int \rho(Y_i|\mu) f_{i-1}(\mu) d\mu = \sum_{k=1}^m s_k \rho(Y_i|\mu_k) f_{i-1}(\mu_k)$$

$$f_i(\mu) = (1 - w_i)f_{i-1}(\mu) + w_i p(Y_i|\mu)f_{i-1}(\mu)/m_i(y)$$

PRML Algorithm : Permutation Version Estimate $P(Y|M_1)$

- 1 dataset \rightarrow 1 estimator L
- 1 dataset \rightarrow shuffle \rightarrow 10 datasets \rightarrow 10 estimator $L_1,...,L_{10}$ \rightarrow average \rightarrow L_p

Estimate $P(Y|M_0)$

Consider

$$p(Y|M_0) = \int p(Y|\mu)f(\mu)d\mu$$

- Setting a prior and integrate out the parameter.
 - Uniform prior : $Unif[\mu_I, \mu_U]$
 - $\int_{\mu_l}^{\mu_u} \prod_{i=1}^n dpoi(Y_i|\mu) \times \frac{1}{\mu_u \mu_l} d\mu$
- For unknown μ_I , μ_u , use robust estimator
 - $\hat{\mu}_{I} = Y_{0.25} \alpha \times IQR$
 - $\hat{\mu}_u = Y_{0.75} + \alpha \times IQR$
 - $IQR = Y_{0.75} Y_{0.25}$
 - • Simulation shows the performance of PRML is not sensitive to parameter α

Estimate $P(Y|M_0)$

Consider

$$p(Y|M_0) = \int p(Y|\mu)f(\mu)d\mu$$

- Setting a prior and integrate out the parameter.
 - Uniform prior : $Unif[\mu_I, \mu_U]$
 - $\int_{\mu_l}^{\mu_u} \prod_{i=1}^n dpoi(Y_i|\mu) \times \frac{1}{\mu_u \mu_l} d\mu$
- For unknown μ_I , μ_u , use robust estimator
 - $\hat{\mu}_I = Y_{0.25} \alpha \times IQR$
 - $\hat{\mu}_u = Y_{0.75} + \alpha \times IQR$
 - $IQR = Y_{0.75} Y_{0.25}$
 - Simulation shows the performance of PRML is not sensitive to parameter α

Pearson χ^2 goodness of fit test

- $H_0: Y_i \stackrel{i.i.d}{\sim} Poi(\mu)$ for $\mu \in (\mu_I, \mu_U)$
- $H_0: Y_i \stackrel{i.i.d}{\sim} Poi(\hat{\mu})$

•

$$X = \sum_{i} \frac{(O_i - E_i)^2}{E_i}$$

- $X \sim \chi_{df}^2$
- approximate X using Monte Carlo p-value calculation

Testing Poisson versus Poisson mixtures

Testing Poisson versus Poisson mixture

$$H_0: Y_i \stackrel{i.i.d}{\sim} Poi(240)$$

$$H_1: Y_i \stackrel{i.i.d}{\sim} \int_{150}^{300} Poi(\mu) gamma_{[150,300]}(\mu|480,2) d\mu$$

 Generate datasets with size N = 200, half comes from Poisson and half comes from Poisson mixture.

Testing Poisson versus Poisson mixtures

FIGURE – Plots of the AUC. x-axis indicates different sample size n=25,50,100. Different colors indicate different methods. Different shapes of the point indicate different value for α .

Testing Poisson versus Poisson mixtures

- PRML, PPRML testing perform much better than tradition χ^2 test
- As sample size increases, the performance improves.
- PPRML is much stable than PRML testing.

Comments

Traditional testing procedure based on p-value sets too general alternative hypothesis containing too large "model space", leading to a conservative decision, or we say a loss of power (or sensitivity).

Poisson versus Poisson mixed with normal

Testing Poisson versus Poisson mixed with normal

$$H_0: Y_i \stackrel{i.i.d}{\sim} Poi(240)$$

$$H_1: Y_i \overset{i.i.d}{\sim} 0.9 Poi(240) + 0.1 N_{[0,\infty)}(240, \sigma^2)$$

• Generate datasets with size N = 200, half comes from Poisson and half comes from Poisson mixed with normal.

Poisson versus Poisson mixed with normal

FIGURE – Plots of the AUC. Different panels indicate different sample size n. Different colors indicate different methods. Different shapes of the point indicate different value for α .

Poisson versus Poisson mixed with normal

- For $\sigma \leq$ 15, PRML, PPRML testing perform much worse than Pearson χ^2 testing. For $\sigma >$ 15, PRML, PPRML testing perform better than Pearson χ^2 testing.
- As σ increase, the performances of PRML, PPRML testing improve.
- $\sigma < \sqrt{240} (\approx 15.5)$ underdispersion model

Comments

When the alternative model is mis-specified (underdispersion model), PRML, PPRML testing on Poisson versus Poisson mixtures is not applicable.

Hypothesis Testing

- $Y_j^A \overset{i.i.d}{\sim} Poi(\mu^A)$, $Y_j^B \overset{i.i.d}{\sim} Poi(\mu^B)$ for unknown μ^A, μ^B
- $Y_j^{AB} \overset{i.i.d}{\sim} \int Poi(\mu) f(\mu) d\mu$ with four competing scenarios for the support of f:
 - M_1 (Mixture) : for unknown $\mu \in \{\mu^A, \mu^B\}$
 - M_2 (Intermediate) : for unknown $\mu \in (min(\mu^A, \mu^B), max(\mu^A, \mu^B))$
 - M_3 (Outside): for unknown $\mu \in [\mu_I, min(\mu^A, \mu^B))$ or $\mu \in (max(\mu^A, \mu^B), \mu_U]$, where known μ_I, μ_U indicate the lower bound and upper bound of μ respectively.
 - $M_4(Single)$: for $\mu = \mu^A$ or $\mu = \mu^B$
- Our goal : Choosing the best fit model.

$$BF_{12} = \frac{P(Y^{AB}|M_i)}{P(Y^{AB}|M_i)}$$

Four competitive scenarios

FIGURE – Four possible types of Poisson mixtures which spike counts may exhibit ³

3. Caruso V C, Mohl J T, Glynn C, et al. Single neurons may encode simultaneous stimuli by switching between activity patterns[J]. Nature communications, 2018, 9(1): 2715.

Known and Unknown

Known:

- Triplets Data: Y^A, Y^B, Y^{AB}
- Likelihood Function : Poisson $p(Y^A|\mu^A), p(Y^B|\mu^B), p(Y^{AB}|\mu^{AB})$
- Relationship on support between μ^A , μ^B , μ^{AB}
 - Mixture : $\mu^{AB} \in \{\mu^A, \mu^B\}$
 - Intermediate : $\mu^{AB} \in (\mu_{min}, \mu_{max})$
 - Outside : $\mu^{AB} \in [\mu_I, \mu_{min})$ or $\mu^{AB} \in (\mu_{max}, \mu_u]$
 - Single $\mu^{AB} = \mu^{A}$ or $\mu^{AB} = \mu^{B}$

Unknown:

- Parameters : μ^A , μ^B , μ^{AB}
- Mixture density $f(\mu^{AB}|\mu^A,\mu^B)$

Goal: Marginal likelihood

$$p(Y^{AB}|M,Y^A,Y^B) = \int_{\Omega} p(Y^{AB}|\theta,M)p(\theta|Y^A,Y^B)d\theta$$

Estimate $P(Y|M_i)$: Laplace Approximation

$$\rho(Y^{AB}|M, Y^A, Y^B) = \int_{\Theta} \rho(Y^{AB}|\theta, M) \rho(\theta|Y^A, Y^B) d\theta
= \int_{\Theta} \int \rho(Y^{AB}|\mu^{AB}) f(\mu^{AB}|\theta) d\mu^{AB} \rho(\theta|Y^A, Y^B) d\theta
\approx (2\pi)^{k/2} |\hat{\Sigma}|^{1/2} \rho(Y^{AB}|M, \hat{\theta}) \rho(\hat{\theta}|Y^A, Y^B)$$

With Laplace approximation, we have

$$\frac{p(Y^{AB}|M,Y^A,Y^B)}{N(\hat{\theta}|\hat{\theta},\hat{\Sigma})} \approx \frac{\frac{p(Y^{AB}|M,\hat{\theta})p(\hat{\theta}|Y^A,Y^B)}{N(\hat{\theta}|\hat{\theta},\hat{\Sigma})}$$
 where $k = dim(\theta)$

$$\hat{ heta} = \underset{ heta}{argmax} logp(Y^{AB}|M, heta) p(heta|Y^A, Y^B)$$

$$\hat{\Sigma} = \{ -\nabla^2 logp(Y^{AB}|M, heta) p(heta|Y^A, Y^B)|_{ heta = \hat{ heta}} \}^{-1}$$

Estimate $P(Y|M_i)$: optimization problem

Object function : $I(\theta) = log p(Y^{AB}|M, \theta) p(\theta|Y^A, Y^B)$

Hessian Matrix : $H = \nabla^2 I(\theta)$

Marginal likelihood estimator :

$$p(Y^{AB}|M, Y^A, Y^B) \approx (2\pi)^{k/2} |-H|^{1/2} e^{l(\hat{\theta})}$$

- If we provide the gradient $\nabla I(\mu^A, \mu^B)$, the computation could be eased a lot.
- PRML gradient algorithm (PRMLG): calculate gradient in each recursion without significant computation increase.

Estimate $P(Y|M_i)$:PRMLG algorithm

$$\begin{array}{l} p(Y^{AB}|\mu^A,\mu^B,M) = \int p(Y^{AB}|\mu^{AB})f(\mu^{AB}|\mu^A,\mu^B)d\mu^{AB} \\ \text{Input: i.i.d observations } Y_1,...,Y_n \\ \text{Output: } logL = \sum_{i=1}^n logm_i(y), \ \, \forall logL = \sum_{i=1}^n \forall logm_{i,\theta}(Y_i) \\ \text{Initialize: } f_0(\mu^{AB}|\mu^A,\mu^B), \forall f_{0,\theta}, \text{ weights } w_1,...,w_n \in (0,1) \end{array}$$

For
$$i = 1,...,n$$
:

$$m_{i}(y) = \int p(Y_{i}^{AB}|\mu^{AB}) f_{i-1}(\mu^{AB}) d\mu^{AB}$$

$$f_{i}(\mu^{AB}) = (1 - w_{i}) f_{i-1}(\mu^{AB}) + w_{i} p(Y_{i}^{AB}|\mu^{AB}) f_{i-1}(\mu^{AB}) / m_{i}(y)$$

$$\nabla log m_{i,\theta}(Y_{i}) = \int G(\theta, u) d\mu(u) / m_{i,\theta}(Y_{i})$$

$$\nabla f_{i,\theta}(u) = (1 - w_{i}) \nabla f_{i-1,\theta}(u) + w_{i} \frac{G(\theta, u) - p(Y_{i}|\theta, u) f_{i-1,\theta}(u) \nabla log m_{i,\theta}}{m_{i,\theta}(Y_{i})}$$

Estimate $P(Y|M_i)$: specify $p(Y^{AB}|M,\theta)$ – PRML

support and continuity properties – Model assumptions.

Model	Support	f_0	$m_f(y)$
Mixture	$\{\mu^{A},\mu^{B}\}$	(0.5, 0.5)	$\sum_{A,B} p(Y_i^{AB} \mu^{AB}) f_{i-1}(\mu')$
Intermediate	$(\mu_{\textit{min}}, \mu_{\textit{max}})$	$\textit{Unif}(\mu_{\textit{min}}, \mu_{\textit{max}})$	$\int_{\mu_{min}}^{\mu_{max}} p(Y_i^{AB} \mu') f_{i-1}(\mu') d\mu'$
OutsideA	$(\mu_I,\mu_{ extit{min}})$	$\mathit{Unif}(\mu_{\mathit{I}}, \mu_{\mathit{min}})$	$\int_{\mu_{l}}^{\mu_{min}} p(Y_{i}^{AB} \mu') f_{i-1}(\mu') d\mu'$
OutsideB	(μ_{max}, μ_u)	$\textit{Unif}(\mu_{\textit{min}}, \mu_{\textit{u}})$	$\int_{\mu_{max}}^{\dot{\mu}_u} p(Y_i^{AB} \mu') f_{i-1}(\mu') d\mu'$
SingleA	$\{\mu^{A}\}$	1	$p(Y_i^{AB} \mu^{AB})f_{i-1}(\mu^A)$
SingleB	$\{\mu^{\mathcal{B}}\}$	1	$p(Y_i^{AB} \mu^{AB})f_{i-1}(\mu^B)$

TABLE – PRML setting under different model assumptions

Estimate $P(Y|M_i)$: Reparameterization

Model	Reparameterization	Support
Mixture	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	{0,1}
Intermediate	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	[0, 1]
OutsideA	$\mu^{AB} = h(z) = \mu_I + z(\mu^A - \mu_I)$	[0, 1]
OutsideB	$\mu^{AB} = h(z) = \mu^B + z(\mu_U - \mu_B)$	[0, 1]

TABLE – Reparameterization for PRMLG algorithm

Model	Restriction	Reparameterization
Mixture	$\mu^{A}, \mu^{B} > 0$	$ heta = (log(\mu^A), log(\mu^B))$
Intermediate	$0<\mu_{min}<\mu_{max}$	$ heta = (\textit{log}(\mu_{\textit{min}}), \textit{log}(\mu_{\textit{max}}))$
OutsideA	$0<\mu_I<\mu^{A}$	$ heta = extstyle log(\mu^{ extstyle A} - \mu_I)$
OutsideB	$0<\mu^B<\mu_U$	$ heta = extstyle{logit}(rac{\mu^{ extstyle{B}}}{\mu_{ extstyle{B}}})$
SingleA	$\mu^{A} > 0$	$ heta = extstyle{log}(\mu^{m{ ilde{A}}})$
SingleB	$\mu^{B}>0$	$\theta = log(\mu^B)$

Simulation Setting

Generate N = 100 samples for each model. Set $\mu_A = 150$, $\mu_B = 300$, sample size n = 25, 50.

- Generate $Y^A \sim Poi(\mu^A)$ with $n^A = 1.5n$; $Y^B \sim Poi(\mu^B)$ with $n^B = 1.2n$.
- Generate Y^{AB} with sample size n.
 - Mixture : $Y^{AB} \sim \alpha Poi(\mu_A) + (1 \alpha)Poi(\mu_B)$ with $\alpha = 0.5$;
 - Intermediate : $Y^{AB} \sim \int Poi(\mu) Ga_{[180,270]}(\mu|144,0.6) d\mu$;
 - Outside B : generate $Y^{AB} \sim Poi(400)$;
 - Outside A : generate $Y^{AB} \sim \int Poi(\mu) Ga_{[30,120]}(\mu|20.25, 0.225) d\mu.$
 - Single A : generate Y^{AB} ∼ Poi(150);
 - Single B : generate Y^{AB} ∼ Poi(300).

For estimation, consider $\mu_I = 30$, $\mu_U = 600$, nGQ = 20, nP = 100. For PRML-LP, set conjugate prior $r_A = 15$, $s_A = 0.1$, $r_B = 30$, $s_B = 0.1$; initial value $\mu_0^A = 120$, $\mu_0^B = 330$.

Testing between four Poisson mixtures

FIGURE – Bayes Factor with sample size n = 25.

Testing between four Poisson mixtures

FIGURE – Bayes Factor with sample size n = 50.

Estimate $P(Y|M_i)$: Introduce parameter e

Model	Reparameterization	Support
Mixture	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	{0,1}
Intermediate	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	[0, 1]

TABLE – Reparameterization for PRMLG algorithm under e = 0

Model	Reparameterization	Support
Mixture	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	{ <i>e</i> , 1 − <i>e</i> }
Intermediate	$\mu^{AB} = h(z) = \mu_{min} + z(\mu_{max} - \mu_{min})$	[<i>e</i> , 1 – <i>e</i>]

TABLE – Reparameterization for PRMLG algorithm under e

Effect of parameter e

FIGURE – Bayes Factor sample size n = 25

Effect of parameter e

FIGURE – Bayes Factor sample size n = 50

- As sample size n increase, the performances of our proposed testing would get improved.
- PRML-LP and PPRML-LP perform as well as the benchmark method. They can identify these four Poisson mixtures with strong evidence except for distinguishing mixture, intermediate and single.
- This is due to the **specification of the continuity** of the domain of μ .
- With introduce parameter e to define mixture and single more clearly, our proposed testing (PRML-LP and PPRML-LP) can distinguish single, mixture and intermediate with strong evidence (especially when sample size is large).

Conclusion

Pros

- Testing Poisson versus Poisson mixture
- Testing between different Poisson mixtures

Cons

- Misspecification of model
- Choice of w_i remains opening question
- Normality assumption

References I

Biometrika 98.3 (2011): 567-582.

Caruso V C, Mohl J T, Glynn C, et al. Single neurons may encode simultaneous stimuli by switching between activity patterns[J]. Nature communications, 2018, 9(1): 2715.

Kass R E, Ventura V, Brown E N. Statistical issues in the analysis of neuronal data[J]. Journal of neurophysiology, 2005, 94(1): 8-25.