Descending from on high: Lyman series cascades and spin-kinetic temperature coupling in the 21cm line

Jonathan Pritchard
Steve Furlanetto
Marc Kamionkowski
(Caltech)

Overview

- 21cm studies provide a way of probing the first galaxies (Barkana & Loeb 2004)
- Fluctuations in the Lyman α flux lead to 21cm fluctuations via the Wouthysen-Field effect
- Previous calculations have assumed <u>all</u> photons emitted between Lyman β and Lyman limit are converted into Lyman α photons
- Quantum selection rules mean that some photons will be lost due to the 2S->1S two photon decay
- Here consider atomic physics to calculate the details of the cascade process and illustrate the effect on the 21cm power spectra

21cm Basics

 Observe difference of spin temperature against CMB temperature

$$T_B = \tau \left(\frac{T_s - T_\gamma}{1 + z} \right)$$

- •Spin temperature determined by radiative, collisional x_c and Wouthysen-Field x_{α} coupling
- •Fluctuations: density, Lyman α flux, x_{HI} , velocity gradient

$$\delta_{T_b} = \beta \delta + \frac{x_{\alpha}}{\tilde{x}_{tot}} \delta_{x_{\alpha}} + \delta_{x_{HI}} - \delta_{d_r v_r}$$

$$\delta_{d_r v_r}(k) = -\mu^2 \delta$$
Places denote 9. All

$$\delta_{d_r v_r}(k) = -\mu^2 \delta$$

Bharadwaj & Ali 2004

Anisotropy of velocity gradient term allows angular separation

$$P_{T_b}(\mathbf{k}) = \mu^4 P_{\mu^4} + \mu^2 P_{\mu^2} + P_{\mu^0}$$

Barkana & Loeb 2004

Wouthysen-Field Effect

Higher Lyman Series

- Two possible contributions
 - Direct pumping: Analogy of the W-F effect
 - Cascade: Excited state decays through cascade to generate Lyα
- Direct pumping is suppressed by the possibility of conversion into lower energy photons
 - Ly α scatters ~10⁶ times before redshifting through resonance
 - Ly n scatters ~1/P_{abs}~10 times before converting
 - ⇒ Direct pumping is not significant
- Cascades end through generation of Ly α or through a two photon decay
 - Use basic atomic physics to calculate fraction recycled into Ly α
 - Discuss this process in the next few slides...

Lyman β

$$A_{3p,2s} = 0.22 \times 10^8 \text{s}^{-1}$$

$$\gamma\gamma$$

$$A_{\gamma\gamma}=8.2s^{-1}$$

$$A_{3p,1s} = 1.64 \times 10^8 \text{ s}^{-1}$$

- Optically thick to Lyman series
 - ⇒ Regenerate direct transitions to ground state
- Two photon decay from 2S state
- •Decoupled from Lyman α

•
$$f_{\text{recycle},\beta}=0$$

Lyman γ

Lyman δ

Calculating Recycling Fractions

Lyman Series Cascades

α		β	γ	δ	\propto	
						ν
~			~			$\underline{\text{Total}}$
No. Photons: (pop III)	2670	(965	451	810	4896
$f_{recycle}$:	1.0	(0	0.26	0.35	0.62
$Ly\alpha$ Contribution:	2670	(0	118	268	3056
Shell size $@z = 20$ (Mpc):	278	ć	90	40	22	

- Photons redshift until they hit Lyman series resonance
- •~62% emitted photons recycled into Lyman α
- Contribution limited to scales within Lyman α range and outside HII region of galaxy ⇒ n_{max}=23 Groningen 28/6/2005

Origin of Density Fluctuations

 Overdense region modifies observed flux from region dV

$$dA \to \left(1 + \frac{2}{3}\delta\right)dA$$

$$n \to \left(1 + b(z)\delta\right)n$$

$$dz \to \left(1 + \delta_{d_r v_r}\right)dz$$

Barkana & Loeb 2004

•Relate Ly α fluctuations to overdensities $\delta_{x_{\alpha}}(\mathbf{k}) = W(k)\delta(\mathbf{k})$

Extract power spectrum

$$P_{\mu^2}(k) = 2P_{\delta}(k) \left[\beta + \frac{x_{\alpha}}{\tilde{x}_{tot}} W(k) \right]$$

Density Fluctuations

- •Excess power on scales less than 24 Mpc⁻¹
- •Recover shape of matter power spectrum on small scales
- •Cutoffs from width of 21cm line and pressure support on small scales
- •Fluctuation ∝ flux ⇒Reduction ~ 0.65

Groningen 28/6/2005

Origin of Poisson Fluctuations

Fluctuations independent of density perturbations

$$P_{un-\delta}(k) \equiv P_{\mu^0} - \frac{P_{\mu^2}^2}{4P_{\mu^4}} = \left(\frac{x_\alpha}{\tilde{x}_{tot}}\right)^2 \left(P_\alpha - \frac{P_{\delta-\alpha}^2}{P_\delta}\right)$$

- •Small number statistics
- •Different regions see some of the same sources though at different times in their evolution

Groningen 28/6/2005

Poisson Fluctuations

- Higher Lyman transitions increase correlation on small scales
- •No correlation on scales larger than twice Ly α range
- •Excess power in wavenumbers larger than 0.01 Mpc⁻¹
- •Fluctuation ∝ flux² ⇒Reduction ~ 0.4

Groningen 28/6/2005

Conclusions

- Including correct atomic physics is important for extracting astrophysical information from 21cm fluctuations
- Cascade generated Lyman α photons increase the theoretical signal, but not as much as has previously been thought
- \sim 62% emitted Lyman series photons recycled into Lyman α
- Recycling fractions are straightforward to calculate and should be included in future work on this topic
- Basic atomic physics encoded in characteristic scales