MA491: Introduction to Real Analysis

Baker University — Spring 2024

Each of the following items refers to the indicated section from the course textbook *Introduction to Real Analysis* (Fourth Edition) by Robert G. Bartle and Donald R. Sherbert.

Exam 1: Essential Properties of Real Numbers

date	day	section	topic(s)
			• sets and functions
1/29	M	Chapter 1: Preliminaries	o mathematical induction
			• finite and infinite sets
			• field operations
1/31	W	$\S 2.1$: The Algebraic and Order Properties of $\mathbb R$	o (ir)rational numbers
			o inequalities
			o absolute value
2/2	F	§2.2 Absolute Value and the Real Line	o Triangle Inequality
			o neighborhoods

date	day	section	topic(s)
2/5	M	\$2.2. The Completeness Dropenty of D	• upper and lower bounds
2/3	IVI	§2.3: The Completeness Property of \mathbb{R}	o suprema and infima
			o bounded functions
2/7	W	§2.4: Applications of the Supremum Property	• Archimedean Property
			\circ density of $\mathbb Q$ in $\mathbb R$
			o open- and closedness
2/9	F	§2.5: Intervals	\circ nested intervals
			\circ uncountability of $\mathbb R$

date	day	section	$\mathrm{topic}(\mathrm{s})$
2/12	M	Exam 1 Review	
2/14	W	Exam 1 Review	Exam 1 Practice Test
			∘ §1.1: Sets and Functions
			∘ §1.2: Mathematical Induction
2/16 F		F Exam 1	∘ §1.3: Finite and Infinite Sets
	E		\circ §2.1: The Algebraic and Order Properties of $\mathbb R$
2/10	Γ		∘ §2.2: Absolute Value and the Real Line
			\circ §2.3: The Completeness Property of \mathbb{R}
			∘ §2.4: Applications of the Supremum Property
			∘ §2.5: Intervals

Exam 2: Sequences of Real Numbers

date	day	section	$\mathrm{topic}(\mathrm{s})$
2/19	M	§3.1: Sequences and Their Limits	o convergence of sequences
2/19	1V1	go.1. Sequences and Their Limits	o uniqueness of limits
			o boundedness
2/21	W	§3.2: Limit Theorems	o Squeeze Theorem
			o algebraic operations
			o monotonicity
2/23	F	F §3.3: Monotone Sequences	o Monotone Convergence Theorem
			o applications and examples

date	day	section	$\mathrm{topic}(\mathrm{s})$
		§3.4: The Bolzano-Weierstrass Theorem	o subsequences
2/26	M		Divergence Criterion
2/20	1V1		Monotone Subsequence Th'm
			o Bolzano-Weierstrass Th'm
2/28	W Car Till C. I Citain	\$2 5. The Cauchy Critorian	Cauchy sequences
2/20	VV	W §3.5: The Cauchy Criterion	Cauchy Convergence Criterion
9 /1	E	F §3.6: Properly Divergent Sequences	o infinite limits
3/1	Г		∘ Monotone Convergence Th'm

date	day	section	$\mathrm{topic}(\mathrm{s})$
3/4	M	Exam 2 Review	
3/6	W	Exam 2 Review	Exam 2 Practice Test
			• §3.1: Sequences and Their Limits
		F Exam 2	∘ §3.2: Limit Theorems
3/8	E		∘ §3.3: Monotone Sequences
3/0	I.		• §3.4: Subsequences and the Bolzano-Weierstrass Th'm
			∘ §3.5: The Cauchy Criterion
			∘ §3.6: Properly Divergent Sequences

Exam 3: Limits and Continuity

date	day	section	$\mathrm{topic}(\mathrm{s})$
			o cluster points
9/11	M	\$4.1. Limits of Europians	• uniqueness of limits
3/11	1V1	§4.1: Limits of Functions	• Sequential Criterion
			o Divergence Criteria
9/19	W	§4.2: Limit Theorems	o algebraic operations
3/13			∘ Squeeze Theorem
			o one-sided limits
9/15	F	\$4.2. Same Extensions of the Limit Concent	o infinite limits
3/15	Г	F §4.3: Some Extensions of the Limit Concept	o limits at infinity
			o Comparison Theorems

date	day	section	topic(s)
			o Sequential Criterion
3/25	M	§5.1: Continuous Functions	o Discontinuity Criterion
			o Dirichlet's function
			o algebraic operations
3/27	W	§5.2: Combinations of Continuous Functions	o polynomial functions
			o rational functions

date	day	section	$\mathrm{topic}(\mathrm{s})$
			o Boundedness Theorem
4/1	M	\$5.2. Continuous Functions on Intervals	o Maximum-Minimum Theorem
4/1	1V1	§5.3: Continuous Functions on Intervals	o Intermediate Value Theorem
			• Preservation of Intervals Th'm
	W	§5.4: Uniform Continuity	o nonuniform continuity
4/9			∘ Uniform Continuity Th'm
4/3			• Lipschitz functions
			∘ Continuous Extension Th'm
			o monotonicity
4/5	F	F §5.6: Monotone and Inverse Functions	o jump at a point
			o Continuous Inverse Theorem

date	day	section	$\mathrm{topic}(\mathrm{s})$
4/8	M	Exam 3 Review	
4/10	W	Exam 3 Review	Exam 3 Practice Test
			∘ §4.1: Limits of Functions
			∘ §4.2: Limit Theorems
4/12 F		F Exam 3	∘ §4.3: Some Extensions of the Limit Concept
	E		∘ §5.1: Continuous Functions
4/12	Г		∘ §5.2: Combinations of Continuous Functions
			∘ §5.3: Continuous Functions on Intervals
			∘ §5.4: Uniform Continuity
			∘ §5.6: Monotone and Inverse Functions

Exam 4: Differentiability and Integrability

date	day	section	$\mathrm{topic}(\mathrm{s})$
			o differentiability
			o differentiability implies continuity
4/15	M	§6.1: The Derivative	o algebraic operations
			o Carathéodory's Theorem
			o Chain Rule
4/17	W	Scholars Symposium	
			o Interior Extremum Theorem
4/10	F	F §6.2: The Mean Value Theorem	o Rolle's Theorem
4/19			o First Derivative Test
			o Darboux's Theorem

date	day	section	$\mathrm{topic}(\mathrm{s})$
4/22	M	\$6.2. LVII;2.:4-1/- D1-	o indeterminate form
4/22	IVI	§6.3: L'Hôpital's Rule	o Cauchy Mean Value Theorem
			o (tagged) partitions
			o norm of a partition
4/94	W	§7.1: Riemann Integral	o Riemann sum
4/24	VV		o Riemann integrability
			o uniqueness of Riemann integrals
			o Boundedness Theorem
		F §7.2: Riemann Integrable Functions	Cauchy Criterion
			∘ Squeeze Theorem
4/26	F		o continuity
			o monotonicity
			o additivity of Riemann integrals

date	day	section	$\mathrm{topic}(\mathrm{s})$
4/29	М	§7.3: The Fundamental Theorem	o Substitution Theorem
			o Composition Theorem
			o Product Theorem
			o integration by parts
5/1	W	Exam 4 Review	
5/3	F	Exam 4	∘ §6.1: The Derivative
			∘ §6.2: The Mean Value Theorem
			∘ §6.3: L'Hôpital's Rule
			∘ §7.1: Riemann Integral
			∘ §7.2: Riemann Integrable Functions
			∘ §7.3: The Fundamental Theorem

date	day	section	$\mathrm{topic}(\mathrm{s})$
5/6	M	Final Exam Review	
5/8	W	Final Exam Review	
5/10	F	Final Exam Review	Final Exam Practice Test

Our final exam will be held Friday, May 17 from 1:00 PM to 4:00 PM in Mulvane 401.