CO: Computer Organization

Cache Memory

Indian Institute of Information Technology, Sri City

Jan - May - 2018

http://co-iiits.blogspot.in/


```
void MultiplyMatrices(int nCount, double **matrixA,
                double **matrixB, double **matrixC)
    int i, j, k;
   for (i = 0; i < nCount; i++)
        for (j = 0; j < nCount; j++)
            matrixC[i][j]=0;
            for (k = 0; k < nCount; k++)
                matrixC[i][j] +=
                    matrixA[i][k]*matrixB[k][j];
```

- ► Locality of reference: If a processor accesses some data now, the same data or neighbouring data will be accessed in near feature.
- ► **Temporal Locality:** Accesses to the same memory location that occur close together in time.
- ► **Spacial Locality:** Accesses to the memory locations that are close together in space.
- ▶ 90% of Execution time is spent on 10% of the code.

Cache Memory

Cache memory is a small-sized volatile memory that provides high-speed access to a processor and stores frequently used instructions and data.

Memory Access

 $t_{\text{cm1}} < t_{\text{cm2}} < t_{\text{cm3}} < t_{\text{mm}}$

Physical Addresses 0000 0000 0000 0000 0000 0000 0000 0001 MMB:0 0000 0000 0011 1111 0000 0001 0000 0000 0000 0001 0000 0001 MMB:4 0000 0001 0011 1111 1111 1111 0000 0000 1111 1111 0000 0001 MMB:1020 1111 1111 0011 1111

Try to answer the following

- ▶ If word length is 64-bits, how many bytes in a word.
- ▶ If block size is 64 bytes, how many words in a block.
- ▶ If a cache size is 256 bytes, how many blocks in the cache.
- ▶ If main memory size is 64KB, how many blocks in the main memory.
- How many MMBs are mapped to single CMB?.

8 / 31

Direct Mapping (1-Way Set Associative Mapping)

Try to answer the following

- ▶ If word length is 32-bits, how many bytes in a word.
- ▶ If block size is 32 bytes, how many words in a block.
- ▶ If a cache size is 256KB, how many blocks in the cache.
- ▶ If main memory size is 4GB(Physical Address Space is 4GB) , how many blocks in the main memory.
- How many MMBs are mapped to single CMB?.

$$AMAT = T_{avg} = hC + (1 - h)M$$

- Et us assume that there are two computers A and B. A has no cache, the processor takes 100ns (nano seconds) for each memory access.
 B has a cache with hit rate of 00% and its access time is 10ns. Facility
 - B has a cache with hit rate of 90% and its access time is 10ns. Each memory access from MM takes 110ns.
- Q1: Then How much time A and B take, to execute 100 instructions (assume that no instruction requires a read or a write operation).
- Q1: Then How much time A and B take, to execute 100 instructions (assume that 30 instructions requires a read or a write operation).

$$AMAT = T_{avg} = hC + (1 - h)M$$

- Let us assume that there are two computers A and B. A has no cache, the processor takes 100ns (nano seconds) for each memory access.
 B has a cache with hit rate of 90% and its access time is 10ns. Each
 - B has a cache with hit rate of 90% and its access time is 10ns. Each memory access from MM takes 110ns.
- Q1: Then How much time A and B take, to execute 100 instructions (assume that no instruction requires a read or a write operation).
- Q1: Then How much time A and B take, to execute 100 instructions (assume that 30 instructions requires a read or a write operation).

$$AMAT = T_{avg} = hC + (1 - h)M$$

- Let us assume that there are two computers A and B. A has no cache, the processor takes 100ns (nano seconds) for each memory access.
 B has a cache with hit rate of 00% and its access time is 10ns. Facility
 - B has a cache with hit rate of 90% and its access time is 10ns. Each memory access from MM takes 110ns.
- Q1: Then How much time A and B take, to execute 100 instructions (assume that no instruction requires a read or a write operation).
- Q1: Then How much time A and B take, to execute 100 instructions (assume that 30 instructions requires a read or a write operation).

$$AMAT = T_{avg} = hC + (1 - h)M$$

- Let us assume that there are two computers A and B. A has no cache, the processor takes 100ns (nano seconds) for each memory access.
 B has a cache with hit rate of 00% and its access time is 10ns. Each
 - B has a cache with hit rate of 90% and its access time is 10ns. Each memory access from MM takes 110ns.
- Q1: Then How much time A and B take, to execute 100 instructions (assume that no instruction requires a read or a write operation).
- Q1: Then How much time A and B take, to execute 100 instructions (assume that 30 instructions requires a read or a write operation).

Let 'h1' be the hit ratio of L1 cache, 'h2' be the hit ratio of L2 cache, 'M' be a MM access time, 'C1' be L1-CM access time, and 'C2' be L2-CM access time.

$$AMAT = T_{avg} = h1.C1 + (1 - h1).h2.C2 + (1 - h1).(1 - h2).M$$

- Let us assume that there are three computers A,B, and C. A has no cache, the processor takes 100ns (nano seconds) for each memory access.
 - B has L1 cache with hit rate of 90% and its access time is 10ns. Each memory access from MM takes 110ns.
 - C has L1 and L2 caches. L1 cache with hit rate of 90% and its access time is 10ns. L2 cache with hit rate of 99% and its access time is 30ns Each memory access from MM takes 130ns.
- Q1: Then How much time A,B and C take, to execute 100 instructions (assume that no instruction requires a read or a write operation).

Let 'h1' be the hit ratio of L1 cache, 'h2' be the hit ratio of L2 cache, 'M' be a MM access time, 'C1' be L1-CM access time, and 'C2' be L2-CM access time.

$$AMAT = T_{avg} = h1.C1 + (1 - h1).h2.C2 + (1 - h1).(1 - h2).M$$

- Let us assume that there are three computers A,B, and C. A has no cache, the processor takes 100ns (nano seconds) for each memory access.
 - B has L1 cache with hit rate of 90% and its access time is 10ns. Each memory access from MM takes 110ns.
 - C has L1 and L2 caches. L1 cache with hit rate of 90% and its access time is 10ns. L2 cache with hit rate of 99% and its access time is 30ns Each memory access from MM takes 130ns.
- Q1: Then How much time A,B and C take, to execute 100 instructions (assume that no instruction requires a read or a write operation).

■ Let 'h1' be the hit ratio of L1 cache, 'h2' be the hit ratio of L2 cache, 'M' be a MM access time, 'C1' be L1-CM access time, and 'C2' be L2-CM access time.

$$AMAT = T_{avg} = h1.C1 + (1 - h1).h2.C2 + (1 - h1).(1 - h2).M$$

- Let us assume that there are three computers A,B, and C. A has no cache, the processor takes 100ns (nano seconds) for each memory access.
 - B has L1 cache with hit rate of 90% and its access time is 10ns. Each memory access from MM takes 110ns.
 - C has L1 and L2 caches. L1 cache with hit rate of 90% and its access time is 10ns. L2 cache with hit rate of 99% and its access time is 30ns Each memory access from MM takes 130ns.
- Q1: Then How much time A,B and C take, to execute 100 instructions (assume that no instruction requires a read or a write operation).

■ Let 'h1' be the hit ratio of L1 cache, 'h2' be the hit ratio of L2 cache, 'M' be a MM access time, 'C1' be L1-CM access time, and 'C2' be L2-CM access time.

$$AMAT = T_{avg} = h1.C1 + (1 - h1).h2.C2 + (1 - h1).(1 - h2).M$$

- Let us assume that there are three computers A,B, and C. A has no cache, the processor takes 100ns (nano seconds) for each memory access.
 - B has L1 cache with hit rate of 90% and its access time is 10ns. Each memory access from MM takes 110ns.
 - C has L1 and L2 caches. L1 cache with hit rate of 90% and its access time is 10ns. L2 cache with hit rate of 99% and its access time is 30ns Each memory access from MM takes 130ns.
- Q1: Then How much time A,B and C take, to execute 100 instructions (assume that no instruction requires a read or a write operation).

Difference between Direct and 2-Way Set Associative Mappings

cached by just one cache location.

2-Way Set Associative Mapping

Try to answer the following

- ▶ If word length is 32-bits, how many bytes in a word.
- ▶ If block size is 32 bytes, how many words in a block.
- ► If main memory size is 4GB(Physical Address Space is 4GB), how many blocks in the main memory.
- ▶ If a cache size is 256KB, how many blocks in the cache.
- ▶ If a cache supports 2-way set associative, how many MMBs are mapped to a single CMB?.
- ▶ If a cache supports 4-way set associative, how many MMBs are mapped to a single CMB?.

4-way Mapping

Cache miss is a state where the data requested for processing is not found in the cache memory.

Types of Cache Misses

- Compulsory or Cold Misses: The first reference to a block of memory, starting with an empty cache.
- Capacity Misses: The cache is not big enough to hold every block you want to use.
- Conflict Misses: Two blocks are mapped to the same location and there is not enough room to hold both.

FIFO Replacement Algorithm

Replacement Algorithms

Least Recently Used (LRU) Replacement Algorithm

Replacement Algorithms

Important Points

- ▶ Valid bit says whether the cache block has a valid data or not.
- ▶ **Dirty bit (modify bit)** says whether the contents of the cache line/block are different to what are there in main memory.
- ▶ Inclusive Cache: $L1 \subset L2 \subset L3$
- ▶ Exclusive Cache: $L1 \cap L2 \cap L3 = \emptyset$
- ▶ Non-inclusive Cache : $(L1 \cap L2 = \varnothing)$ and $((L1 \cup L2) \cap L3 = L1 \cup L2)$

All Mappings

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
9		
4		
5	137 150 150 151	
6		
7		

Two-way set associative

Set	Tag	Data	Tag	Data
0			5	
1		10 W		
2				
9				

Four-way sel associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0	85 R			(i) (ii)				
1	5 G			0 70				20 N

Eight-way set associative (fully associative)

Tag	Data	Tag	Data	Tag	Data	Tag	Data	Tag	Data	Tag	Data	Tag	Data	Tag	Data
			6	la di			9			6	81 (51			9	

Interleaving

Interleaving is a technique for improving the speed of access. Our objective - transfer data blocks from MM to CM.

(a) Consecutive words in a module

- Cache with 8-word blocks.
- On a read miss, the block contains the desired word must be copied from the MM into the CM.
- One clock cycle to send a address to MM.
- First word is accessed in 8 clock cycles and subsequent words are accessed in 4 clock cycles.
- Once clock cycle to send one word to the CM.

If consecutive words in a module, then how much time it takes.

- Cache with 8-word blocks.
- On a read miss, the block contains the desired word must be copied from the MM into the CM.
- ▶ One clock cycle to send a address to MM.
- First word is accessed in 8 clock cycles and subsequent words are accessed in 4 clock cycles.
- Once clock cycle to send one word to the CM.

If consecutive words in a module, then how much time it takes.

- Cache with 8-word blocks.
- ► On a read miss, the block contains the desired word must be copied from the MM into the CM.
- ▶ One clock cycle to send a address to MM.
- First word is accessed in 8 clock cycles and subsequent words are accessed in 4 clock cycles.
- Once clock cycle to send one word to the CM.

If consecutive words in a module, then how much time it takes.

- Cache with 8-word blocks.
- ► On a read miss, the block contains the desired word must be copied from the MM into the CM.
- ▶ One clock cycle to send a address to MM.
- First word is accessed in 8 clock cycles and subsequent words are accessed in 4 clock cycles.
- Once clock cycle to send one word to the CM.

If consecutive words in a module, then how much time it takes.

- Cache with 8-word blocks.
- On a read miss, the block contains the desired word must be copied from the MM into the CM.
- ▶ One clock cycle to send a address to MM.
- First word is accessed in 8 clock cycles and subsequent words are accessed in 4 clock cycles.
- Once clock cycle to send one word to the CM.

If consecutive words in a module, then how much time it takes.

- Cache with 8-word blocks.
- ► On a read miss, the block contains the desired word must be copied from the MM into the CM.
- ▶ One clock cycle to send a address to MM.
- First word is accessed in 8 clock cycles and subsequent words are accessed in 4 clock cycles.
- Once clock cycle to send one word to the CM.

If consecutive words in a module, then how much time it takes.

- Cache with 8-word blocks.
- ► On a read miss, the block contains the desired word must be copied from the MM into the CM.
- ▶ One clock cycle to send a address to MM.
- First word is accessed in 8 clock cycles and subsequent words are accessed in 4 clock cycles.
- Once clock cycle to send one word to the CM.

If consecutive words in a module, then how much time it takes.

- Cache with 8-word blocks.
- ► On a read miss, the block contains the desired word must be copied from the MM into the CM.
- ▶ One clock cycle to send a address to MM.
- First word is accessed in 8 clock cycles and subsequent words are accessed in 4 clock cycles.
- Once clock cycle to send one word to the CM.

If consecutive words in a module, then how much time it takes.

- Cache with 8-word blocks.
- ► On a read miss, the block contains the desired word must be copied from the MM into the CM.
- ▶ One clock cycle to send a address to MM.
- First word is accessed in 8 clock cycles and subsequent words are accessed in 4 clock cycles.
- Once clock cycle to send one word to the CM.

If consecutive words in a module, then how much time it takes.

Interleaving

Interleaving is a technique for improving the speed of access. Our objective - transfer data blocks from MM to CM.

(b) Consecutive words in consecutive modules

Addressing Processor References

Virtual Memory

A technique for moving data between MM and Secondary storage device.

Mapping from a VM-Page to a PM-Page or MM-Page (PM-Page is also called a Page Frame)

Try to answer the following

- ▶ If size of a page is 4KB, how many bits are required to identify a byte in the page.
- ▶ If size of a program is 2GB, how many pages are required to store the program.
- ▶ If the size of MM is 512MB, how many pages it can accommodate.
- ▶ If the size of virtual address space is 4GB, how the VA is converted to a physical address.

Mapping Table

index	Valid Bit	Physical Page Number
0	1	3
1	1	0
2	1	1
3	1	2

Table 1: Page Table.

Assume that base address of page table is available in PTBR (Page Table Base Register).

Translation of VA to PA

Translation Lookaside Buffer(TLB)

Small Cache for a Page Table (available in MMU). It has information about most recently accessed pages.

