

Methylation of lysine 4 of histone H3

Эпигенетическая модификация - Histone methylation

Лапшина Ксения	<u>AIRE</u>	Histone modification read, TF	
Васильева Дарья	KMT2A	Histone modification write	
Степанянц Максим	RAG2	Histone modification read	
Зарипов Данис	PHF8	Histone modification erase	
Ярцев Кирилл	<u>ING4</u>	Histone modification read	
Епифанов Евгений	ZCWPW1	Histone modification read	
Сильвестрова Анна	MLL2	Histone modification write	
Митурич Василий	<u>TAF3</u>	Histone modification read	
Сушкова Дарья	WDR5	Histone modification read	
Белова Наталья	CCDC101	HIstone modification read	

AIRE	" AIRE selectively interacts with histone H3 through its first plant homeodomain (PHD) finger (AIRE–PHD1) and preferentially binds to non-methylated H3K4 (H3K4me0) AIRE–PHD1 is an important member of a newly identified class of PHD fingers that specifically recognize H3K4me0 Org et al., 2008 "Certain posttranslational modifications of H3 tails, notably dimethylation or trimethylation at H3K4, abrogated binding by Aire, whereas others were tolerated." Koh et al., 2008
KMT2A	"Histone lysine methyltransferase 2 (KMT2) proteins form multimeric enzymatic complexes that methylate lysine 4 on histone H3 (H3K4) at transcription regulatory elements in the genome" - doi: 10.1016/j.bbagrm.2020.194545 "KMT2A (MLL1) is responsible for generating mono-, di-, and tri-methylated H3K4 through its SET domain and by interaction with cofactors"-doi:10.2217/epi.15.1 "Of the many PHD fingers only PHD3 of KMT2A in KMT2 family exhibit H3K4 binding properties" - doi: 10.3390/cells7030017
RAG2	RAG2 (Recombination activating gene) contains a plant homeodomain (PHD) near its C terminus (RAG2-PHD) that recognizes histone H3 methylated at lysine 4 (H3K4me) and influences V(D)J recombination. Two aspects of RAG2-PHD are unique. First, in the absence of the modified peptide, a peptide N-terminal to RAG2-PHD occupies the substrate-binding site, which may reflect an autoregulatory mechanism. Second, in contrast to other H3K4me3-binding PHD domains, RAG2-PHD substitutes a carboxylate that interacts with arginine 2 (R2) with a Tyr, resulting in binding to H3K4me3 that is enhanced rather than inhibited by dimethylation of R2. source
PHF8 (<u>1</u> , <u>2</u>)	1) PHD finger protein 8 (PHF8) belongs to the JmJc domain-containing family of proteins that can remove methyl groups from arginine or lysine residues () the identified H3K4me3 readers Sgf29, TRRAP, PHF8 () 2) PHF8 is associated with hypomethylated rRNA genes
ING4	Full-length ING4 recognizes methylated H3K4 peptides, but an ING4 derivative lacking the PHD finger, ING4 $_{\Delta PHD}$ (aa 1–194), does not, demonstrating that the PHD finger of ING4 is necessary and sufficient for the H3K4me peptide binding activity of ING4.
ZCWPW1	Here, we demonstrate that Zcwpw1 is an H3K4me3 reader that is required for DSB repair and synapsis in mouse testes.
MLL2	Here, we show that MII2, one of the six Set1/Trithorax-type H3K4 methyltransferases in mammals, is required for trimethylation of bivalent promoters in mouse embryonic stem cells.
TAF3	TAF3 contributes to promoter recognition and selectivity and acts as antiapoptotic factor. Further analyses show that H3K4me3 enhances p53-dependent transcription by stimulating preinitiation complex (PIC) formation; () H3K4me3-TAF3/TFIID interactions regulate geneselective functions of p53 in response to genotoxic stress.
WDR5	"Here we show that the WD40-repeat protein WDR5 directly associates with histone H3 di- and trimethylated at K4 and with H3-K4-dimethylated nucleosomes. WDR5 is required for binding of the methyltransferase complex to the K4-dimethylated H3 tail as well as for global H3 K4 trimethylation" - doi: 10.1016/j.cell.2005.03.036
CCDC101	"SGF29 (CCDC101) specifically recognizes and binds methylated 'Lys-4' of histone H3 (H3K4me), with a preference for trimethylated form (H3K4me3) In the SAGA-type complexes, SGF29 is required to recruit complexes to H3K4me"

В какие комплексы входят выбранные белки?

AIRE	Not found
KMT2A	MLL-HCF, CHD8, COMPASS-like MLL1,2
RAG2	not found
PHF8	PHF8-TOPBP1
ING4	HBO1
ZCWPW1	Not found
MLL2(KMT2D)	Set1/COMPASS,SWI/SNF (BAF),NuA4 (Tip60-p400) ,MLL2
TAF3	TFIID
WDR5	ATAC, NSL, RING2-L3MBTL2, MLL1/2, MLL3/4
CCDC101	ATAC

Экспрессия (ткани)

Ген	Название ткани + медианный ТРМ
AIRE	GTEx Brain: Hypothalamus (4.017), Anterior cingulate cortex (1.691), Cortex (1.383), Frontal Cortex (1.305), Nucleus accumbens (basal ganglia) (1.152) NCBI Lymph node (0.592); Thymus (0.443); Adrenal (0.069), Lymph node (0.056), Brain (0.044)
KMT2A	GTEx: Brain - Cerebellum 34.84, Brain - Cerebellar Hemisphere 32.50, Ovary 26.88, Artery - Tibial 25.50, Uterus 24.74, Nerve - Tibial 21.77, Artery - Aorta 21.16,
RAG2	В организме человека почти только в щитовидной железе (RPKM 16.6), но также понемногу в семенниках и костном мозге [ncbi]. По GTEx, есть на минимальном уровне везде, но в ощутимых размерах в щитовидной железе и немного в семенниках.
PHF8	Testis (59.4), Ovary (30.1), Uterus (24.3)
ING4	Brain cerebellar hemisphere 79.6, Brain cerebellum 76.35, Thyroid 69.97, Endocervix 67.59, Ectocervix 60.35, Uterus 60.29

Экспрессия (ткани)

ZCWPW1	Testis(144.0)
MLL2	adrenal gland (2.783),appendix (4.121),bone marrow (9.459),cerebral cortex (3.186),colon (4.104),duodenum (2.446) endometrium (4.128), esophagus (2.945), adipose tissue(3.081), gall bladder (3.217),heart (2.105),kidney (3.749),liver (1.068),lung (3.531),lymph node (3.521),ovary (5.62),pancreas (1.316),placenta (4.067),prostate (3.391),salivary gland (1.87),skin (5.759),small intestine (2.624),spleen (5.17),tomach (3.076),testis (5.013),thyroid (4.12)
TAF3	Артерия (16.29) - Мозг (14.95) - полушарие мозжечка (13.74)
WDR5	Testis (95.45), Brain - Cerebellar Hemisphere (62.63), Brain - Cerebellum (59.44), Cells - Cultured fibroblasts (58.67), Cells - EBV-transformed lymphocytes (51.34) (Данные взяты из БД GTEx)
CCDC101	Ubiquitous expression in testis (13.2) and ovary (12.9)

Доменная структура AIRE

Доменная структура КМТ2А

PHD finger 1 found in histone-lysine N-methyltransferase 2A (KMT2A); KMT2A (also termed ALL-1, ...

PHD finger 2 found in histone-lysine N-methyltransferase 2A (KMT2A); KMT2A (also termed ALL-1, ...

FY-rich domain, C-terminal region; is sometimes closely juxtaposed with the N-terminal region ...

CXXC zinc finger domain; This domain contains eight conserved cysteine residues that bind to .

F/Y-rich N-terminus: This region is normally found in the trithorax/ALL1 family proteins. It ...

4.36e-33

2.00e-32

3.46e-32

2.17e-21

4.65e-16

1433-1479

3672-3755

1481-1530

1147-1194

2027-2074

[+] PHD1 KMT2A

[+] PHD2 KMT2A

[+] FYRC

[+] FYRN

[+] zf-CXXC

cd15588

cd15590

pfam02008

pfam05964

smart00542

Доменная структура RAG2

PF13341

RAG2 PHD domain

PFAM

This domain is found at the C-terminus of the RAG2 protein. The structure of this domain has been shown bound to histone H3 trimethylated at lysine 4 (H3K4me3) [[cite:PUB00057307]].

Note: существует RAG1, но он выполняет другую эпигенетическую функцию, экспрессируется в других тканях. Генетическая общая в том, что Recombination activation (The protein encoded by this gene is involved in activation of immunoglobulin V-D-J recombination. The encoded protein is involved in recognition of the DNA substrate, but stable binding and cleavage activity also requires RAG2.)

Доменная структура PHF8

View Concise Results

Conserved domains on [ref|NP 055922.1]

:1-1024 histone lysine demethylase PHF8 isoform 2 [Homo sapiens]

LID	t or domain mits
	No.

. Name	Accession	Description	Interval	E-value	
[+] JHD	pfam17811	Jumonji helical domain; This 4-helix bundle domain is associated with the Jumonji domain	338-441	3.77e-62	
[+] PHD_PHF8	cd15642	PHD finger found in histone lysine demethylase PHF8; PHF8, also termed PHD finger protein 8,	6-57	1.21e-33	
[+] cupin_RmlC-like super family	cl40423	RmIC-like cupin superfamily; This superfamily contains proteins similar to the RmIC (dTDP	234-334	1.92e-15	
[+] JmjC	smart00558	A domain family that is part of the cupin metalloenzyme superfamily; Probable enzymes, but of	199-262	2.54e-12	

References:

- 💹 Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res. 45(D) 200-3.
- 💹 Marchler-Bauer A et al. (2015), "CDD: NCBI's conserved domain database.", Nucleic Acids Res.43(D)222-6.
- 💹 Marchler-Bauer A et al. (2011), "CDD: a Conserved Domain Database for the functional annotation of proteins.", Nucleic Acids Res.39(D)225-9.
- 💹 Marchler-Bauer A, Bryant SH (2004), "CD-Search: protein domain annotations on the fly.", Nucleic Acids Res.32(W)327-331.

Доменная структура ING4

Доменная структура ZCWPW1

Доменная структура MLL2

Conserved domains on [lcl|seqsig_MDSQK_a354bfe1de21c999e8b503585ab8bee0]

View Concise Results >

NP_003473.3 KMT2D [organism=Homo sapiens] [GeneID=8085]

Graphical summary Zoom to residue level show extra options »

Search for simila

ar domain architectures	Refine search
-------------------------	---------------

ist of domain hits				
Name	Accession	Description	Interval	E-valu
SET_KMT2D	cd19209	SET domain (including post-SET domain) found in histone-lysine N-methyltransferase 2D (KMT2D)	5382-5536	1.44e
ePHD2_KMT2D	cd15698	Extended PHD finger 2 found in histone-lysine N-methyltransferase 2D (KMT2D); The extended	5032-5138	9.33
HMG-box KMT2D	cd22027	high mobility group (HMG)-box found in histone-lysine N-methyltransferase 2D (KMT2D) and	1995-2078	9.47
ePHD1 KMT2D	cd15695	Extended PHD finger 1 found in histone-lysine N-methyltransferase 2D (KMT2D); The extended	134-217	4.43
PHD5_KMT2D	cd15601	PHD finger 5 found in Histone-lysine N-methyltransferase 2D (KMT2D); KMT2D, also termed	1506-1556	6.72
PHD3 KMT2D	cd15597	PHD finger 3 found in Histone-lysine N-methyltransferase 2D (KMT2D); KMT2D, also termed	1378-1428	7.92
FYRC	smart00542	FY-rich domain, C-terminal region; is sometimes closely juxtaposed with the N-terminal region	5240-5327	1.88
PHD5 KMT2C like	cd15513	PHD finger 5 found in Histone-lysine N-methyltransferase 2C (KMT2C) and PHD finger 4 found in	1429-1475	6.34
PHD SF super family	cl22851	PHD finger superfamily; The PHD finger superfamily includes a canonical plant homeodomain (PHD)	275-320	1.45
PHD1 KMT2C like	cd15509	PHD finger 1 found in Histone-lysine N-methyltransferase 2C (KMT2C) and 2D (KMT2D); KMT2C,	228-273	1.26
FYRN	pfam05964	F/Y-rich N-terminus; This region is normally found in the trithorax/ALL1 family proteins. It	5181-5232	2.08
PHA03247 super family	cl33720	large tegument protein UL36; Provisional	2108-2600	2.17
PHA03247 super family	cl33720	large tegument protein UL36; Provisional	690-1272	1.02
PHA03247 super family	cl33720	large tegument protein UL36; Provisional	469-860	8.84
PHA03247 super family	cl33720	large tegument protein UL36; Provisional	4162-4426	4.96

References:

- Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
- Marchler-Bauer A et al. (2015), "CDD: NCBI's conserved domain database.", Nucleic Acids Res.43(D)222-6.
- 💹 Marchler-Bauer A et al. (2011), "CDD: a Conserved Domain Database for the functional annotation of proteins.", Nucleic Acids Res.39(D)225-9.
- 💹 Marchler-Bauer A, Bryant SH (2004), "CD-Search: protein domain annotations on the fly.", Nucleic Acids Res.32(W)327-331.

Доменная структура WDR5

WD40 domain, found in a number of eukaryotic proteins that cover a wide variety of functions ...

large tegument protein UL36; Provisional

8.32e-03

3.16e-03

21308-21400

23519-24667

[+] WD40 super family

[+] PHA03247 super family

cl29593

cl33720

