ĐẠI HỌC BÁCH KHOA HÀ NỘI

ĐỒ ÁN TỐT NGHIỆP

Nghiên cứu và đề xuất mô hình học liên kết hướng người dùng

ĐOÀN NGỌC KHÁNH

khanh.dn180110@sis.hust.edu.vn

Ngành: Công nghệ thông tin

Giảng viên hướng dẫn:	TS. Nguyễn Phi Lê
	Chữ kí GVHD
Khoa:	Khoa học máy tính
Trường:	Công nghê thông tin và Truyền thông

HÀ NỘI, 03/2023

LÒI CẨM ƠN

Hơn bốn năm học đại học trôi qua thật nhanh mà cũng thật chậm. Chậm cho những giây phút đợi chờ, nhanh cho những khoảng khắc đáng nhớ mà ta đã không kịp trân trọng đúng mực. Bách Khoa đã cho tôi thật nhiều, cũng lấy đi thật nhiều, nhưng giúp tôi trưởng thành và khôn lớn. Bách Khoa là nền tảng, là bước ngoặt trong cuộc đời tôi.

Trước hết, con xin cảm ơn cha mẹ, chị gái, gia đình, và đặc biệt cảm ơn TS. Nguyễn Phi Lê. Mọi người đã luôn quan tâm, chăm sóc cho con, luôn giúp đỡ con những lúc khó khăn, lúc con đáng trách nhất.

Em xin cảm ơn cô Nguyễn Phi Lê và mọi anh chị em trong tập thể AIoT Lab. Cô là người tận tâm, chuyên cần, tận tình và thấu đáo. Cô đã chỉ dạy cho em rất nhiều, tạo cho em nhiều cơ hội học tập, tiếp xúc tốt đẹp. Được làm việc trong lab là được trao đổi với mọi người, giúp em xây dựng được hướng đi, cách nghĩ, cách làm việc.

Cảm ơn Bá Tân, Đức Long, Quang Điện, Hồng Sang, Việt Hoàng, Tiến Long, Phi Phúc, Trần Anh đã sát cánh trong suốt 4 năm đại học, cùng nhau vượt qua những khó khăn, những ngày vui và bao chuyện đáng nhớ. Cảm ơn những người bạn cấp ba vẫn luôn gắn bó với tôi.

Cuối cùng, xin được cảm ơn Bách Khoa.

TÓM TẮT NỘI DUNG ĐỒ ÁN

Cách mạng công nghiệp lần thứ tư đem lại nhiều thay đổi lớn đối với nhân loại, đó là sư phổ biến của Internet kết nối van vât (IoT), dữ liêu lớn (BigData) và trí tuê nhân tao (AI). Các thiết bi di đông với khả năng tính toán tương đối tốt ngày một phổ biến. Dữ liêu gia tăng với tốc đô hàm mũ, được lưu trữ, số hóa và trở thành tài nguyên phát triển các mô hình học máy, học sâu của trí tuê nhân tạo. Việc huấn luyên các mô hình học sâu thông thường cần yêu cầu tập hợp dữ liêu lai trên cùng một thiết bi. Tuy nhiên, bên canh các nguồn dữ liêu mở, dữ liêu mang tính cá nhân, bảo mật chiếm đa số. Học liên kết (federated learning) ra đời như một giải pháp xây dưng mô hình học sâu từ nhiều thiết bị riêng biệt với bộ dữ liêu độc lập để đảm bảo hiệu quả tốt trên tập dữ liệu kiểm thử. Học liên kết hướng người dùng (personalized federated learning) là một ngữ cảnh khác khi mà mỗi thiết bị tham gia có một tập dữ liệu kiểm thử riêng bên canh việc có một tập dữ liệu huấn luyên riêng. Muc tiêu khi này là xây dựng cho mỗi thiết bi một mô hình riêng đạt hiệu quả cao trên bô dữ liêu kiểm thử của chính nó. Trong những nghiên cứu gần đây về bài toán này, có một nghiên cứu mới nổi là Personalized Federated Learning through Local Memorization [1] đem lai hiệu quả tốt dưa trên kỹ thuật tương đối đơn giản đó là sử dung kết hợp mô hình huấn luyên chung giữa các thiết bi với thuật toán K **láng giềng gần nhất** (KNN) khi thực hiện dự đoán. Trong đồ án này, em đề xuất phương pháp huấn luyện sử dụng học đối lập (contrastive learning) khi huấn luyện mô hình nhằm cải thiện hiệu quả của phương pháp KNN, qua đó nâng cao hiệu quả của phương pháp trên.

MỤC LỤC

CHƯƠNG 1. GIỚI THIỆU ĐỀ TÀI	1
1.1 Đặt vấn đề	1
1.1.1 Học liên kết (Federated Learning)	1
1.1.2 Học liên kết hướng người dùng (Personalized Federated Learning)	
1.2 Các giải pháp hiện tại và hạn chế	4
1.3 Mục tiêu và định hướng giải pháp	4
1.4 Đóng góp của đồ án	4
1.5 Bố cục đồ án	4
CHƯƠNG 2. NỀN TẢNG LÝ THUYẾT	6
2.1 Kiến thức cơ bản về học máy và học sâu	6
2.1.1 K láng giềng gần nhất	6
2.1.2 Thuật toán Robbins-Monro và tối ưu trong học sâu	6
2.1.3 Mạng tích chập , kĩ thuật kết nối tắt và mô hình MobileNet V2	8
2.2 Học liên kết, học liên kết hướng người dùng và nghiên cứu <i>Personalized</i> Federated Learning through Local Memorization	12
2.2.1 Học liên kết	12
2.2.2 Học liên kết hướng người dùng	14
2.2.3 Nghiên cứu <i>Personalized Federated Learning through Local Memoriz</i> 14	zation
2.3 Học đối lập (contrastive learning)	15
2.3.1 Contrastive Loss	16
2.3.2 Triplet Loss	16
2.3.3 NT-Xent Loss	16

CHƯƠNG 3. PHƯƠNG PHÁP ĐỀ XUẤT	18
3.1 Tổng quan giải pháp	18
3.2 Học đối lập theo biểu diễn cục bộ	18
3.3 Học đối lập kết hợp biểu diễn cục bộ và toàn cục	20
3.4 Phương pháp tối ưu tránh bề mặt nhọn	22
3.5 Kĩ thuật lấy mẫu ngẫu nhiên có trọng số (weighted random sampling)	24
CHƯƠNG 4. ĐÁNH GIÁ THỰC NGHIỆM	26
4.1 Dữ liệu và phương pháp chia dữ liệu cho bài toán học liên kết	26
4.1.1 Dữ liệu	26
4.1.2 Phương pháp chia dữ liệu cho bài toán học liên kết	27
4.1.3 Mô tả về các trường hợp chia dữ liệu	30
4.2 Các tham số đánh giá	32
4.3 Phương pháp thí nghiệm	33
4.3.1 Bộ dữ liệu CIFAR-10.	33
4.3.2 Bộ dữ liệu CIFAR-100	34
4.4 Quan sát về trạng thái thí nghiệm	35
4.5 Đánh giá kết quả thí nghiệm	37
CHƯƠNG 5. KẾT LUẬN	42
5.1 Kết luận	42
5.2 Hướng phát triển trong tương lai	42
TÀI LIỆU THAM KHẢO	45

DANH MỤC HÌNH VỄ

Hình	1.1	Sơ đồ hoạt động thuật toán FedAvg	1
Hình	1.2	Mô hình hoạt động tại mỗi vòng của thuật toán FedAvg	2
Hình	1.3	Hệ thống học liên kết truyền thống (trái) và hệ thống học liên	
	kết h	ướng người dùng (phải)	3
Hình	2.1	Thuật toán KNN	6
Hình	2.2	Batch, mini-batch và stochastic gradient descent	8
Hình	2.3	Ảnh dưới dạng 3 kênh màu	8
Hình	2.4	Phép tích chập trên ảnh	9
Hình	2.5	Mạng tích chập LeNet	10
Hình	2.6	Luồng hoạt động kết nối tắt	10
Hình	2.7	Mô hình mạng ResNet18	11
Hình	2.8	Tích chập tách biệt chiều sâu	12
Hình	2.9	Học đối lập với khoảng cách Euclid	15
Hình	2.10	Học đối lập với độ tương đồng cosine	16
Hình	3.1	Luồng tính toán hàm mục tiêu của học đối lập theo biểu diễn	
	cục b		19
Hình	3.2	Hiện tượng thiếu nhất quán của không gian biểu diễn (inconsisten	су
	of rep	presentation space) (a) và sai lệch về biểu diễn (misalignment	
	of rep	presentations) (b)	20
Hình	3.3	Phương pháp SimCLR	21
Hình	3.4	Luồng tính toán hàm mục tiêu của học đối lập kết hợp biểu	
	diễn	cục bộ và toàn cục	21
Hình	3.5	Đồ thị hàm mục tiêu trên tập huấn luyện (đen) và kiểm thử	
	(đỏ),	các điểm cực tiểu "nhọn" và "phẳng" [19]	22
Hình	3.6	Hướng cập nhật của SAM so với gradient descent thông thường	25
Hình	4.1	Bộ dữ liệu CIFAR-10	26
Hình	4.2	Bộ dữ liệu CIFAR-100 với chia tiết phân tầng về lớp	27
Hình	4.3	Biểu diễn mật độ của phân phối Dirichlet đối xứng bậc 3	28
Hình	4.4	(CIFAR-10) Tỉ lệ về số mẫu xuất hiện trong từng thiết bị \dots	30
Hình	4.5	(CIFAR-10) Số lượng thiết bị theo số lượng nhãn xuất hiện	
	trong	tập dữ liệu huấn luyện	31
Hình	4.6	(CIFAR-10) Histogram về kích thước các tập dữ liêu huấn luyên	31

Hình	4.7	(CIFAR-100) Histogram về kích thước các tập dữ liệu huấn	
	luyện		32
Hình	4.8	(CIFAR-100) Histogram về kích thước các tập dữ liệu huấn	
	luyện		32
Hình	4.9	Hàm mục tiêu và độ chính xác trong quá trình huấn luyện	
	(CIF	AR-10)	36
Hình	4.10	Hàm mục tiêu và độ chính xác trong quá trình huấn luyện	
	(CIF	AR-100)	36
Hình	4.11	Độ chính xác của mô hình khi chưa áp dụng $K\mathbf{N}\mathbf{N}$ (CIFAR-10).	37
Hình	4.12	Độ chính xác của mô hình khi chưa áp dụng $K\mathbf{N}\mathbf{N}$ (CIFAR-10).	38
Hình	4.13	Độ chính xác tốt nhất đạt được (CIFAR-10)	39
Hình	4.14	Độ chính xác tốt nhất đạt được (CIFAR-100)	39
Hình	4.15	Độ chính xác trung bình đạt được (CIFAR-10)	40
Hình	4.16	Độ chính xác trung bình đạt được (CIFAR-100)	40
Hình	4.17	Trung bình độ tương đồng và chênh lệch giữa các cặp cùng	
	nhãn	và khác nhãn (CIFAR-10)	41
Hình	4.18	Trung bình độ tương đồng và chênh lệch giữa các cặp cùng	
	nhãn	và khác nhãn (CIFAR-100)	41

DANH MỤC BẢNG BIỂU

Bảng 4.1	Các tham số trong thí nghiệm gốc của nghiên cứu kNN-Per	
(CIF.	AR-10)	33
Bảng 4.2	Các tham số trong thí nghiệm học đối lập theo biểu diễn cục	
bộ (C	CIFAR-10)	34
Bång 4.3	Các tham số trong thí nghiệm học đối lập kết hợp biểu diễn	
cục t	oộ và toàn cục (CIFAR-10)	34
Bảng 4.4	Các tham số trong thí nghiệm gốc của nghiên cứu kNN-Per	
(CIF.	AR-100)	34
Bång 4.5	Các tham số trong thí nghiệm học đối lập kết theo biểu diễn	
cục b	oộ (CIFAR-100)	35
Bảng 4.6	Các tham số trong thí nghiệm ọc đối lập kết hợp biểu diễn	
cuc b	oộ và toàn cục (CIFAR-100)	35

DANH MỤC THUẬT NGỮ VÀ TỪ VIẾT TẮT

Thuật ngữ	Ý nghĩa
KNN	Thuật toán K láng giềng gần nhất
	(KNN)
KNN-Per	Nghiên cứu Personalized Federated
	Learning through Local
	Memorization
FedAvg	Thuật toán FedAvg trong học liên kết
FedProx	Thuật toán FedProx trong học liên kết
SAM	Phương pháp tối ưu tránh điểm cực tiểu
	có bề mặt nhọn (Sharpness Aware
	Minimization)

CHƯƠNG 1. GIỚI THIỆU ĐỀ TÀI

1.1 Đặt vấn đề

1.1.1 Học liên kết (Federated Learning)

Học liên kết được Google giới thiệu vào năm 2017. Với hướng tiếp cận xây dựng các mô hình học máy trước đó, chúng ta cần tập trung dữ liệu lại trên một thiết bị hay trung tâm dữ liệu, và bài toán hướng đến là tập trung nâng cao hiệu quả mô hình. Học liên kết tồn tại một máy chủ (server), cho phép nhiều thiết bị kết nối với máy chủ, như điện thoại di động với khả năng tính toán tương đối tốt, tham gia huấn luyện một mô hình học sâu chung bằng những bộ dữ liệu trên từng thiết bị đó.

Thuật toán đầu tiên được đề xuất giải quyết bài toán học liên kết đó là **FedAvg** [2]. Đây cũng là hình mẫu chung cho nhiều thuật toán về sau phát triển. Như học sâu thông thường, ban đầu máy chủ sẽ khởi tạo một bộ tham số mô hình. Quá trình học mô hình sẽ tồn tại nhiều vòng, gọi là vòng kết nối (communication round). Tại mỗi vòng, máy chủ sẽ chọn một hay một vài thiết bị ngẫu nhiên, gửi bộ tham số mô hình hiện tại về cho các thiết bị đó. Các thiết bị này sẽ tiến hành huấn luyện mô hình dữ trên bộ dữ liệu của chúng với một số ít vòng lặp, sau đó gửi lại máy chủ mô hình thu được. Máy chủ sẽ tổng hợp lại các mô hình này theo phương pháp trung bình cộng có trọng số, trong đó trọng số tỷ lệ thuận với lượng dữ liệu huấn luyện của các thiết bị tham gia. Đây sẽ là bộ tham số mới của mô hình tại vòng này. Vòng mới sẽ được bắt đầu tương tự cho đến khi mô hình hội tụ.

Hình 1.1: Sơ đồ hoạt động thuật toán FedAvg

Tồn tại bốn thách thức lớn đối với học liên kết [3]: