Diseños factoriales fraccionados

Kevin García 1533173 Alejandro Vargas 1525953 Alejandro Soto 1532457

7 de marzo de 2019

Introducción

En esta presentación veremos la aplicación del AFM a la base de datos data(orange) de la librería missMDA, la cual corresponde a la descripción sensorial de 12 jugos de naranja por 8 atributos, esta base presenta cerca del 20 % de datos faltantes, por lo cuál se hará primero un proceso de imputación para posteriormente realizar el método AFM. Se analizará e interpretará el porcentaje de Inercia explicado, la nube de individuos, la nube de variables, la nube de los grupos, los coeficientes Lg y Rv de Escoufier y se realizará el gráfico de representación Superpuesta y de los ejes parciales, todo esto luego de un debido análisis descriptivo de las variables del estudio.

Base de datos

	Color.intensity	Odor.intensity	Attack.intensity	Sweet	Acid	Bitter	Pulp	Typicity
1	4.791667	5.291667	NA	NA	NA	2.833333	NA	5.208333
2	4.583333	6.041667	4.416667	5.458333	4.125000	3.541667	4.625000	4.458333
3	4.708333	5.333333	NA	NA	4.291667	3.166667	6.250000	5.166667
4	6.583333	6.000000	7.416667	4.166667	6.750000	NA	1.416667	3.416667
5	NA	6.166667	5.333333	4.083333	NA	4.375000	3.416667	4.416667
6	6.333333	5.000000	5.375000	5.000000	5.500000	3.625000	4.208333	4.875000
7	4.291667	4.916667	5.291667	5.541667	5.250000	NA	1.291667	4.333333
8	NA	4.541667	4.833333	NA	4.958333	2.916667	1.541667	3.958333
9	4.416667	NA	5.166667	4.625000	5.041667	3.666667	1.541667	3.958333
10	4.541667	4.291667	NA	5.791667	4.375000	NA	NA	5.000000
11	4.083333	5.125000	3.916667	NA	NA	NA	7.333333	5.250000
12	6.500000	5.875000	6.125000	4.875000	5.291667	4.166667	1.500000	3.500000

Análisis descriptivo

• Definición de variables:

- Intensidad del color: Cuantitativa continua. Escala de intervalos.
- Intensidad del olor: Cuantitativa continua. Escala de intervalos.
- Intensidad del ataque(sensación inicial del jugo en la boca):

 Cuantitativa continua. Escala de intervalos.
- Dulce: Cuantitativa continua. Escala de intervalos.
- Ácido: Cuantitativa continua. Escala de intervalos.
- Amargo: Cuantitativa continua. Escala de intervalos.
- Pulpa: Cuantitativa continua. Escala de intervalos.
- Tipicidad: Cuantitativa continua. Escala de intervalos.

Análisis descriptivo

• Resumen estadístico:

	Color.intensity	Odor.intensity	Attack.intensity	Sweet	Acid	Bitter	Pulp	Typicity
Mínimo	4.083	4.292	3.917	4.083	4.125	2.833	1.292	3.417
Cuartil 1	4.448	4.958	4.833	4.510	4.375	3.104	1.510	3.958
Mediana	4.646	5.292	5.292	4.938	5.042	3.583	2.479	4.438
Media	5.083	5.326	5.319	4.943	5.065	3.536	3.312	4.462
Cuartil 3	5.948	5.938	5.375	5.479	5.292	3.792	4.521	5.042
Máximo	6.583	6.167	7.417	5.792	6.750	4.375	7.333	5.250
Des. Estándar	0.9809135	0.630481	1.005842	0.6318818	0.7971605	0.5529671	2.22528	0.6521764
NA's	2	1	3	4	3	4	2	0

Análisis descriptivo

Matriz de correlaciones

	Color.intensity	Odor.intensity	Attack.intensity	Sweet	Acid	Bitter	Pulp	Typicity
Color.intensity	1.0000000	0.61111536	0.7441370	-0.7630744	0.7183662	0.8327382	-0.29700410	-0.4570463
Odor.intensity	0.6111154	1.00000000	0.4143692	-0.5650579	0.2786459	0.7312423	0.04552839	-0.3173757
Attack.intensity	0.7441370	0.41436921	1.0000000	-0.7829896	0.9584735	0.8725642	-0.73475086	-0.8447980
Sweet	-0.7630744	-0.56505792	-0.7829896	1.0000000	-0.7904037	-0.9269297	0.50992903	0.6527152
Acid	0.7183662	0.27864586	0.9584735	-0.7904037	1.0000000	0.8149900	-0.74605657	-0.7572032
Bitter	0.8327382	0.73124233	0.8725642	-0.9269297	0.8149900	1.0000000	-0.50555139	-0.7165638
Pulp	-0.2970041	0.04552839	-0.7347509	0.5099290	-0.7460566	-0.5055514	1.00000000	0.8739956
Typicity	-0.4570463	-0.31737571	-0.8447980	0.6527152	-0.7572032	-0.7165638	0.87399562	1.0000000

Análisis Factorial Múltiple

Para realizar el AFM, debemos dividir la tabla en subtablas dependiendo de los tipos de variables y su definición. En este caso, dado que todas las variables son cuantitativas continuas, nuestro criterio de división se baso en la definición de las variables. Decidimos dividir la tabla en dos subtablas, la primera consta de las tres primeras variables(columnas), Intensidad del color, intensidad del olor e intensidad del ataque, esta primera tabla fue denominada percepción previa, ya que las tres variables se miden antes de degustar el jugo. La segunda subtabla consta de las cinco últimas variables, dulce, acido, amargo, pulpa y tipicidad, esta segunda tabla fue denominada percepción posterior, ya que todas estas variables involucradas son medibles solamente después de catar o degustar el jugo.

Imputación AFM

Dado que la base de datos tiene valores faltantes en una cantidad considerable(20 % de valores faltantes), se realizó una imputación o estimación de estos valores por el método EM.

La matriz imputada es:

	Color.intensity	Odor.intensity	Attack.intensity	Sweet	Acid	Bitter	Pulp	Typicity
1	4.791667	5.291667	4.124561	5.501018	4.154464	2.833333	5.574109	5.208333
2	4.583333	6.041667	4.416667	5.458333	4.125000	3.541667	4.625000	4.458333
3	4.708333	5.333333	4.168132	5.449296	4.291667	3.166667	6.250000	5.166667
4	6.583333	6.000000	7.416667	4.166667	6.750000	4.748854	1.416667	3.416667
5	6.169035	6.166667	5.333333	4.083333	5.332292	4.375000	3.416667	4.416667
6	6.333333	5.000000	5.375000	5.000000	5.500000	3.625000	4.208333	4.875000
7	4.291667	4.916667	5.291667	5.541667	5.250000	3.213539	1.291667	4.333333
8	4.536606	4.541667	4.833333	5.430180	4.958333	2.916667	1.541667	3.958333
9	4.416667	4.957997	5.166667	4.625000	5.041667	3.666667	1.541667	3.958333
10	4.541667	4.291667	4.278448	5.791667	4.375000	2.724521	3.593447	5.000000
11	4.083333	5.125000	3.916667	5.712512	3.833623	2.790614	7.333333	5.250000
12	6.500000	5.875000	6.125000	4.875000	5.291667	4.166667	1.500000	3.500000

Porcentaje de inercia explicado

El porcentaje de varianza explicado por cada dimensión se puede ver en la siguiente tabla:

	Valor propio	Porcentaje de Inercia	Porcentaje de Inercia acumulado
Dim.1	1.840695280	69.6179879	69.61799
Dim.2	0.501038381	18.9500589	88.56805
Dim.3	0.169785432	6.4215518	94.98960
Dim.4	0.065450856	2.4754542	97.46505
Dim.5	0.044459815	1.6815401	99.14659
Dim.6	0.016131006	0.6101000	99.75669
Dim.7	0.004671617	0.1766879	99.93338
Dim.8	0.001761408	0.0666192	100.00000

Porcentaje de inercia explicado

Coordenadas

	Dim.1	Dim.2
1	-1.3143364	0.66717540
2	-0.3841853	0.79937921
3	-1.0565914	0.62799661
4	2.9064639	-0.12345710
5	1.4632792	0.92058312
6	0.4665257	0.06981062
7	-0.2300072	-0.89133817
8	-0.5225866	-1.13568796
9	0.1370254	-0.90435088
10	-1.3937676	-0.67628794
11	-1.7680431	0.54456430
12	1.6962234	0.10161280

Nube de individuos

	Dim.1	Dim.2
1	7.82077792	7.40334197
2	0.66821834	10.62804681
3	5.05418322	6.55937355
4	38.24430069	0.25350113
5	9.69373756	14.09528211
6	0.98534439	0.08105705
7	0.23950776	13.21395346
8	1.23638399	21.45190194
9	0.08500387	13.60259270
10	8.79463025	7.60695852
11	14.15215481	4.93226139
12	13.02575720	0.17172937

	Dim.1	Dim.2
1	0.78366123	0.201927428
2	0.10365480	0.448759438
3	0.72290537	0.255377089
4	0.97704556	0.001762857
5	0.65512731	0.259296895
6	0.17896249	0.004007318
7	0.04884725	0.733571370
8	0.16466255	0.777671827
9	0.01490332	0.649165033
10	0.73853508	0.173881625
11	0.88421345	0.083882184
12	0.88317768	0.003169413

Coordenadas

	Dim.1	Dim.2
Color.intensity	0.8542630	0.28809072
Odor.intensity	0.6141905	0.71649921
Attack.intensity	0.9502405	-0.23400493
Sweet	-0.8979722	-0.07642941
Acid	0.9039337	-0.31789113
Bitter	0.9697080	0.17204423
Pulp	-0.6398293	0.70466313
Typicity	-0.8053443	0.40789439

Nube de variables

	Dim.1	Dim.2
Color.intensity	18.104829	7.5645086
Odor.intensity	9.358741	46.7900601
Attack.intensity	22.401565	4.9908234
Sweet	11.162149	0.2970666
Acid	11.310847	5.1391316
Bitter	13.016792	1.5052657
Pulp	5.666961	25.2520138
Typicity	8.978116	8.4611302

	Dim.1	Dim.2
Color.intensity	0.7297652	0.082996266
Odor.intensity	0.3772299	0.513371117
Attack.intensity	0.9029570	0.054758309
Sweet	0.8063541	0.005841454
Acid	0.8170961	0.101054769
Bitter	0.9403336	0.029599218
Pulp	0.4093815	0.496550127
Typicity	0.6485794	0.166377831

Representación simultánea

Nube de los grupos

Coeficiente Lg

• Coeficiente Lg: Es un indicador del grado de similitud o deformación con respecto a un foco (homotecia) entre los conjuntos de indicadores, y cuando se calcula para un solo conjunto de ellos. Esto se conoce como indicador de la dimensionalidad de la nube. que es igual al número de direcciones ortogonales de inercia no cero, es decir, el número de valores propios no cero. Esta cantidad es 0 cuando todas las variables de un grupo son ortogonales a todas las variables del otro grupo. Es mas alto en cuanto cada una de las variables de un grupo este más relacionada con el conjunto de variables del otro grupo.

Se define por:

$$Lg = \frac{Traza(S'T)}{\alpha_1^2 x \lambda_1^2}$$

Coeficiente Lg

Los coeficientes Lg se pueden observar en la siguiente tabla:

	Percepción previa	Percepción posterior	MFA
Percepción previa	1.0839432	0.7761085	1.0105158
Percepción posterior	0.7761085	1.0384112	0.9857795
MFA	1.0105158	0.9857795	1.0845333

El valor del coeficiente $Lg_{(P.Previa)} = 1,0839$ para la percepción previa indica que es de dimensionalidad uno, es decir, que puede sintetizarse en un solo factor; $Lg_{(P.Posterior)} = 1,0384$ indica que la percepción posterior también tiene una dimensión o factor que lo caracteriza. El coeficiente Lg cruzado $Lg_{(P.Prev,P.Post)} = 0,7761$ indica que estos dos grupos comparten un factor; y finalmente, el coeficiente $Lg_{(MFA)} = 1,0845$ indica que éste se puede sintetizar como mínimo en un factor.

Coeficiente Rv de Escoufier

Es una generalización multivariada del coeficiente de correlación de Pearson al cuadrado. Este coeficiente mide el vínculo entre dos grupos o dos matrices de variables. Este coeficiente, al igual que el de correlación de Pearson, se encuentra entre 0(todas las variables del primer grupo o matriz, son ortogonales a todas las variables del segundo grupo o matriz) y 1(los dos grupos o matrices son homotéticos)

El coeficiente de RV se define como (Robert y Escoufier, 1976; Schlich, 1996):

$$RV(W_i, W_j) = \frac{T(W_i, W_j)}{[T(W_i, W_i) \cdot T(W_j, W_j)]^{\frac{1}{2}}}$$

Coeficiente Rv de Escoufier

Donde $T(W_i, W_j) = \sum_{l,m} w_{l,m}^i w_{l,m}^j$ es un coeficiente de covarianza generalizado entre las matrices W_i y W_j , $T(W_i, W_i) = \sum_{l,m} {w_{l,m}^i}^2$ es una varianza generalizada de la matriz W_i y $w_{l,m}^2$ es el (I,m) elemento de la matriz W_i .

Los coeficientes Rv se pueden observar en la siguiente tabla:

	Percepción previa	Percepción posterior	MFA
Percepción previa	1.0000000	0.7315340	0.9320054
Percepción posterior	0.7315340	1.0000000	0.9289101
MFA	0.9320054	0.9289101	1.0000000

Coeficiente Rv de Escoufier

Los valores de los coeficientes $Rv_{(MFA,P.Previa)} = 0.932 \text{ y } Rv_{(MFA,P.Posterior)} = 0.9289$ nos indican que ambos grupos (percepción previa y posterior) tienen una estructura cercana a la de toda la degustación ó en otras palabras, tienen un grado considerable de asociación con el AFM. Es decir, que su representación sobre los planos generados por el AFM es adecuada. Además, entre la percepción previa y posterior el coeficiente Rv es de 0.7315340 lo que significa que existe un vinculo considerable entre estos dos grupos (algunas de las variables del primer grupo están asociadas con las del segundo grupo).

Representación superpuesta

Ejes parciales

Construcción indice

Las coordenadas de las variables para las dos primeras dimensiones son:

	Dim.1	Dim.2
Color.intensity	0.8581049	0.2236407
Odor.intensity	0.6316557	0.7028833
Attack.intensity	0.9522195	-0.2260020
Sweet	-0.8881581	-0.1346408
Acid	0.9028145	-0.3139184
Bitter	0.9640321	0.1981328
Pulp	-0.6320766	0.7018089
Typicity	-0.8054955	0.3978624

Construcción indice

El indice para el primer grupo (percepción previa) es:

I = 0.8581049 Color + 0.6316557 Odor + 0.9522195 Attack

Jugo	Indice
1	11.03415
2	11.823
3	11.16971
4	16.35666
5	14.28656
6	13.58883
7	11.71434
8	11.12588
9	11.61305
10	10.57015
11	10.35774
12	14.9813

Referencias

- Kassambara, A. & Mundt, F. (2017), factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.5. *https://CRAN.R-project.org/package=factoextra
- Lê, S., Josse, J. & Husson, F. (2008), 'FactoMineR: A package for multivariate analysis', Journal of Statistical Software 25(1), 1-18.
- Ludovic Lebart, Alain Morineau, M. P. (1995), Statistique exploratoire multidimensionnelle, Dunod, Paris.
- Salamanca, J. A. C. (2017), 'Análisis factorial múltiple para clasificación de universidades latinoamericanas', Comunicaciones en Estadística.

Referencias

- Wickham, H. (2009), ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York. *http://ggplot2.org
- Wickham, H. & Bryan, J. (2018), readxl: Read Excel Files. R package version 1.1.0.
 *https://CRAN.R-project.org/package=readxl
- Zelaya, J. T. (n.d.), ANÁLISIS MULTIVARIADO DE DATOS, Universidad de Costa Rica.