

LAB 6 ARCH-GARCH FORECASTING

Teaching Assistant Time Series Econometrics 2023

Table of contents

- Volatility Clustering
- ARCH-GARCH
- Pengembangan Model ARCH-GARCH
- Tahapan ARCH-GARCH
- ARCH Effect Test
- ARCH Model
- GARCH Model
- GARCH with ARMA Process
- Model with ARCH-GARCH
- Stationarity Test on Variance

Volatility Clustering

Sebagian data memiliki ragam yang kecil sedangkan sebagian lain memiliki ragam yang besar

Varians tidak konstan antar waktu

Data tidak stasioner dan terjadi heteroskedastisitas

FIGURE 3.3 Percentage Change in the NYSE U.S. 100 (January 4, 2000-July 16, 2012)

ARCH-GARCH

Model univariat yang merupakan kelanjutan dari model ARIMA untuk data yang memiliki masalah heteroskedastisitas

Remediasi masalah heteroskedastisitas

Model ARCH digunakan untuk menyelesaikan masalah heteroskedastisitas pada model atau kondisi dimana varians dari error term data tidak konstan

Kelanjutan dari ARIMA dan OLS

Model ini diperlukan jika kalian ingin membuat persamaan univariat dengan data yang mempunyai masalah heterokedastisitas

Pengembangan Model ARCH-GARCH

- ARCH Model
- GARCH Model
- ARCH in Mean
- GARCH with ARMA Process
- EGARCH
- TARCH

Tahapan Forecast ARCH-GARCH

Tahapan untuk melakukan permodelan ARCH-GARCH

Uji Stasioneritas

Mencari Ordo Terbaik

ARCH Effect Test
(Melihat
Heterokedastisitas)

Melakukan Permodelan ARCH-GARCH

Melihat Stasioneritas pada Variance

6

ARCH-GARCH Forecasting

4

ARCH Effect Test

01) Melakukan regresi dari residu ARIMA

Command:

- Model ARIMA terbaik
- predict uhat, resid
- reg uhat

02) Mengecek Heteroskedastisitas

Command: estatarchlm, lags(1/n)

Hipotesis:

- HO: Tidak memiliki ARCH Effect
- Ha: Memiliki ARCH Effect

Kriteria:

- p.value $< \alpha$ HO ditolak
- p.value > α HO tidakdapatditolak

Kesimpulan:

 Dengan tingkat signifikansi 1% / 5% / 10% dapat disimpulkan bahwa model (memiliki/tidak memiliki) ARCH effect pada periode ...

ARCH Model

Modelling conditional variance yang berkaitan dengan error term kuadrat periode sebelumnya (AR Model)

$$Y_t = \beta_0 + \beta_p Y_{t-p} + e_t$$
 (Conditional Mean)

$$\sigma_t^2 = w + \alpha_1 e_{t-p}^2 + Vt$$
 (Conditional Variance)

GARCH Model

Modelling conditional variance yang berkaitan dengan error term kuadrat periode sebelumnya dan juga conditional variance periode sebelumnya (ARMA Model)

$$Y_t = \beta_0 + \beta_p Y_{t-p} + e_t$$
 (Conditional Mean)

$$\sigma_t^2 = w + \alpha_1 e_{t-p}^2 + \alpha_2 \sigma_{t-1}^2 + Vt$$
 (Conditional Variance)

Conditional variance sama seperti GARCH Model, Conditional Mean diregresi dengan proses ARMA dan memiliki efek seasonal.

$$Y_t = \beta_0 + \beta_p Y_{t-p} + \gamma_0 e_{t-1} + \gamma_1 e_{t-4} + e_t \quad \text{(Conditional Mean)}$$

$$\sigma_t^2 = w + \alpha_1 e_{t-p}^2 + \alpha_2 \sigma_{t-1}^2 + Vt$$
 (Conditional Variance)

EGARCH

Jika terdapat leverage effect dan terdapat negativity dalam variance equation yang dimiliki **GARCH** murni

$$Y_t = \beta_0 + \beta_p Y_{t-p} + \gamma_0 e_{t-1} + \gamma_1 e_{t-4} + e_t$$

Conditional Variance
$$\ln(\sigma^2_t) = w + \alpha_1 \frac{e_{t-1}}{\sigma^2_{t-1}} + \alpha_2 \left(\left| \frac{e_{t-1}}{\sigma^2_{t-1}} \right| - \sqrt{\frac{2}{\pi}} \right) + \alpha_3 \ln \sigma^2_{t-1} + Vt$$

"Bad news" lebih mempengaruhi volatilitas daripada "Good news".

Kondisi di pasar saham biasanya memiliki korelasi yang tinggi antara

return saat ini dengan volatilitas di masa depan.

Leverange Effect
Return Volatility
Return Volatility

Untuk mengatasi asimetri yang terjadi yaitu:

- 1. TARCH (Treshold-GARCH)
- 2. EGARCH (Exponential-GARCH)

Command untuk masing-masing model

ARCH:

arch varnamel I.varname, arch (p)

GARCH:

arch varnamel I.varname, arch (p) garch (q)

ARCH-M:

arch varnamel I.varname, archm arch (p)

GARCH with ARMA Process:

arch varname, ar (p) ma (q) arch (p) garch (q)

EGARCH:

arch varname, ar (p) ma (q) earch (p) egarch (q)

Model with ARCH-GARCH

Keterangan:

(p) = lag atau ordo dari model AR

(q) = lag atau ordo dari model MA

Contoh: Model GARCH dengan ordo ARMA(1,1)

Maka Commandnya: arch varname I.varname, arch(1) garch(1)

Stationarity test on variance

Hipotesis:

HO: non-stasioner

Ha: stasioner

Kriteria:

p.value $< \alpha$ HO ditolak

p.value > α HO tidak dapat ditolak

Kesimpulan:

Jadi, dengan tingkat signifikansi 1%/5%/10% dapat disimpulkan bahwa variansnya stasioner di tingkat level

Forecasting

Metode untuk mengetahui apa yang terjadi di masa depan agar kita bisa mengambil kebijakan efektif dan efisien saat ini. Terdapat 2 tipe forecasting:

Static Forecasting

- Menggunakan data asli.
- Hanya bisa memprediksi 1
 periode saja. perbedaan
 data asli dan peramalan
 tidak jauh berbeda (mirip).

Dynamic Forecasting

- Menggunakan data peramalan di periode sebelumnya untuk memprediksi periode setelahnya. dapat meramalkan >1 periode.
- Perbedaan data asli ϵt peramalan jauh lebih besar/erornya lebih besar dibanding statis.

Thanks!

Teaching Assistant Time Series Econometrics 2023

@econometrics.unpad