METHOD OF DESIGNING RISER

METHOD TO SOLVE NUMERICAL:

- 1. In the given problem if % of Shrinkage is given use 4th method. E.g. Shrinkage volume consideration.
- 2. If not, check the values of a, b, c if given use 1^{st} method.
- 3. If not given, check the table given for shape factor corresponding to volumetric ratio of given use 3rd method.
- 4. If not then use the 2nd method. E.g. Modulus method.

For Circular Riser, $M_r = D/6 \& M_c = V_c/A_c$	M_r =Modulus of Riser (Volume/ Surface Area),	
For Side Riser: $D = H$,	M_c =Modulus of Casting (Volume/ Surface Area),	
For Top Riser: $D = 2H$	V_r =Volume of Riser,	
$V_r = \pi D^2 H / 4$	V_C =Voume of Casting,	

1. CAINES METHOD:

Freezing Ratio = $\frac{M_r}{M_c}$	a, b, c =Constants depends on the material, y =Voumetric ratio, A_c =Surface Area of Casting,	
$x = \frac{a}{y - b} - c, Where \ y = Volumetric \ Ratio = \frac{V_r}{V_c}$ According to this method, $x = M_r/M_c$		

2. MODULUS METHOD:

$ au_r \geq au_C$	τ_C =Solidification time of Casting,		
$M_r \ge M_c(\because \tau \propto M^2)$	τ_r = Solidification time of Riser,		
According to this method, $M_r = K M_c$	K = Constant,		
In exam,	Method-I: $K = 1.2$	Method-II: $K = 1$	

3. NOVEL RESEARCH METHOD:

Shape Factor, S. F. = $\frac{L+W}{t}$		L = Length of Casting, W = Width of Casting,			
$Volumetric\ Ratio = y = \frac{V_r}{V_c}$		t = Thickness of Casting,In exam shape factor will be given,			
Hence, $V_r = yV_C$					
In Exam Table	will be given,	For Sphere,	For	Solid Cylinder,	For Hollow Cylinder,
S.F.	y	L=D,W=D,	L=L,W=D,t=D,		$W = \pi D_{avg} = \pi [(D_o + D_i)/2],$
		$t = D, \Rightarrow S.F. = 2$		S.F. = (L+D)/D	$t = (D_o - D_i)/2,$

4. SHRINKAGE VOLUME CONSIDERATION METHOD:

$V_r \ge 3V_{SC}$, Where $V_{SC} = aV_C$	V_{SC} =Voume of Shrinkage,
H & D obtained from above equation is not final,	a = % of Shrinkage,
Cross verify, this D with Modulus method criteria with K=1,	
If Criteria satisfied, D is our answer.	
Else Obtain new D from Modulus method criteria with K=1 is our answer.	