Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

Presentation by: Rafael Ferreira

Date: 14/05/2020

Content

- 1. T5 Text-to-Text Transfer Transformer
- 2. The Transformer
- 3. T5 Applications
- 4. Tasks and Datasets
- 5. T5 Model Baseline
- 6. Architectures
- 7. Unsupervised Objectives
- 8. Pre-training Datasets
- 9. Training strategies
- 10. Scaling
- 11. Conclusion
- 12. Research Opportunities

T5 – Text-to-Text Transfer Transformer

Text-To-Text – Relates to the input and output formats of the model.

The model receives input to utilize as context to then produce an output.

Transfer – Transfer learning. A Transfer learning model is a model that is first pre-trained on large amounts of data (unsupervised) and is then fine-tuned on a task.

Transformer – The architecture of the model.

The Transformer

- The encoder-decoder version of T5 follows the architecture proposed in **Attention is** all you need¹.
- One of the most important parts of this architecture is the **self-attention** mechanism. A variant of attention that replaces each element in a sequence by a weighted average of the rest of the sequence.

• A tutorial on the attention mechanism and the transformer architecture can be seen <u>here</u>.

T5 Applications

One of the advantages of a text-to-text format is that it provides a **consistent training objective** both for pre-training and fine-tuning.

T5 is also able to handle **multiple tasks** by adding task-specific prefixes to the original input sequence.

- Machine Translation
- "Regression"

Summarization

Classification

- Question Answering
- Coreference Resolution

Tasks and Datasets

- GLUE¹ and SuperGLUE² collection of text classification tasks.
- CNNDM³ (CNN/Daily Mail) summarization task.
- SQuAD⁴ extractive question-answering dataset.
- EnDe, EnFr and EnRo translation tasks from English to German (Deutsch), French, and Romanian respectively.

T5 Model - Baseline

- Architecture Encoder-decoder transformer architecture.
 - 24 layers / hidden dimension size 768 / 12 attention heads,
 - 220 Million parameters (similar to BERT_{BASE}).
- Training Maximum likelihood.
 - Pre-trained model for 2¹⁹ steps and fine-tuned for 2¹⁸ steps,
 - Maximum sequence length of 512 tokens and batch size of 128 sequences.
- **Unsupervised Objective** "denoising", predicting missing or corrupted tokens from the input.

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline average Baseline standard deviation No pre-training	83.28 0.235 66.22	19.24 0.065 17.60	80.88 0.343 50.31	71.36 0.416 53.04	26.98 0.112 25.86	39.82 0.090 39.77	27.65 0.108 24.04

Architectures

Attention Masks

• Used to zero out certain weights to attend only to inputs it considers necessary at each step.

Model Structures:

- Encoder-decoder:
 - Encoder uses fully-visible attention mask
 - Decoder uses causal attention mask
- · Language model:
 - Next Step Prediction
- Prefix LM
 - Fully-visible attention mask on prefix
 - Causal attention mask outside prefix

Architectures

• Considering the number of layers and parameters as $\bf L$ and $\bf P$ respectively of a BERT_{BASE} model, and $\bf M$ as the number of FLOPs.

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	\dot{M}	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39

Unsupervised Objectives

• Decision of which algorithm to use as the unsupervised objective during pre-training is essential, because it provides the method through which the model "learns the knowledge".

- Examples of unsupervised objectives for the sentence:
 - "Thank you for inviting me to your party last week."

Objective	Inputs	Targets
Prefix language modeling BERT-style Deshuffling I.i.d. noise, mask tokens I.i.d. noise, replace spans I.i.d. noise, drop tokens Random spans	Thank you for inviting Thank you <m> <m> me to your party apple week. party me for your to. last fun you inviting week Thank Thank you <m> <m> me to your party <m> week. Thank you <x> me to your party <y> week. Thank you me to your party week. Thank you <x> to <y> week.</y></x></y></x></m></m></m></m></m>	me to your party last week . (original text) (original text) (original text) <x> for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <z></z></y></x></z></y></x>

Unsupervised Objectives

- Deshuffling objectives perform significantly worse.
- Denoising objectives are the best but comparable between themselves.
- The major advantage of span corruption comes from their **lower computational cost**, because on average, span corruption produces shorter sequences.

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Prefix language modeling	80.69	18.94	77.99	65.27	26.86	39.73	27.49
BERT-style [Devlin et al., 2018]	82.96	19.17	80.65	69.85	26.78	40.03	27.41
Deshuffling	73.17	18.59	67.61	58.47	26.11	39.30	25.62
MASS-style [Song et al., 2019]	82.32	19.16	80.10	69.28	26.79	39.89	27.55
Replace corrupted spans	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Drop corrupted tokens	84.44	19.31	80.52	68.67	27.07	39.76	27.82

Pre-Training Datasets

- The pre-training dataset is another essential part of training, alongside the pre-training objective.
- There exists various large-scale unlabeled datasets. More data being produced each month.
- C4

- WebText-Like (C4 Reddit) Toronto Book Corpus
- RealNews-like (C4 news) Wikipedia

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ C4	745GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	6.1TB	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia	16GB	81.85	19.31	81.29	68.01	26.94	39.69	27.67
Wikipedia + TBC	20GB	83.65	19.28	82.08	73.24	26.77	39.63	27.57

• Main takeaway is that **pre-training on in-domain** unlabeled data can improve performance on downstream tasks.

Pre-Training Datasets

• Influence of repeating data - Tested using the C4 dataset truncated at different sizes.

Number of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Full dataset	0 64	83.28 82.87	19.24 19.19	80.88 80.97	71.36 72.03	26.98 26.83	$39.82 \\ 39.74$	27.65 27.63
2^{27}	256	82.62	19.20	79.78	69.97	27.02	39.71	27.33
2^{25} 2^{23}	$\frac{1,024}{4,096}$	$79.55 \\ 76.34$	18.57 18.33	76.27 70.92	64.76 59.29	$26.38 \\ 26.37$	$39.56 \\ 38.84$	$26.80 \\ 25.81$

- **Performance** generally **degrades** as the **size** of the dataset **decreases**.
- When the dataset is repeated 64 times it surpasses the full dataset in some tasks showing that some amount of repetition might not be harmful.

Training strategies

Fine-tuning methods

- Adapter Layers¹ dense ReLU blocks added after each existing FFN in each block of the Transformer. Only the adapter layers and layer normalization parameters are updated. d is the inner dimensionality of the feed-forward network, which changes the number of parameters of the model.
- **Gradual Unfreezing**² more parameters finetuned over time. The "unfreezing" starts at the top layer.

Fine-tuning method	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ All parameters	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Adapter layers, $d = 32$	80.52	15.08	79.32	60.40	13.84	17.88	15.54
Adapter layers, $d = 128$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Adapter layers, $d = 512$	81.54	17.78	79.18	64.30	23.45	33.98	25.81
Adapter layers, $d = 2048$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Gradual unfreezing	82.50	18.95	79.17	70.79	26.71	39.02	26.93

¹Houlsby et al. "Parameter-efficient transfer learning for NLP"

²Universal language model fine-tuning for text classification

Training strategies

- **Multi-task learning** train the model at multiple tasks at a time. In T5 this only corresponds to mixing datasets.
- Multiple ways of mixing the datasets:
 - **Proportional mixing** proportional to the size of each dataset but using an artificial limit K on the size of each dataset.
 - Temperature-scaled mixing using a "temperature" T to control the mixing rate
 - **Equal mixing** equal probability to every dataset (probably not a good idea)

Mixing strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline (pre-train/fine-tine)	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Equal	76.13	19.02	76.51	63.37	23.89	34.31	26.78
Examples-proportional, $K = 2^{16}$	80.45	19.04	77.25	69.95	24.35	34.99	27.10
Examples-proportional, $K = 2^{17}$	81.56	19.12	77.00	67.91	24.36	35.00	27.25
Examples-proportional, $K = 2^{18}$	81.67	19.07	78.17	67.94	24.57	35.19	27.39
Examples-proportional, $K = 2^{19}$	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Examples-proportional, $K = 2^{20}$	80.80	19.24	80.36	67.38	25.66	36.93	27.68
Examples-proportional, $K = 2^{21}$	79.83	18.79	79.50	65.10	25.82	37.22	27.13
Temperature-scaled, $T=2$	81.90	19.28	79.42	69.92	25.42	36.72	27.20
Temperature-scaled, $T = 4$	80.56	19.22	77.99	69.54	25.04	35.82	27.45
Temperature-scaled, $T = 8$	77.21	19.10	77.14	66.07	24.55	35.35	27.17

Training strategies

- Combining multi-task learning with finetuning model is pre-trained on all tasks but only fine-tuned on some tasks:
 - Pre-train the model on the mixture of datasets and fine-tuning it on each task
 - Pre-train the model on the mixture of datasets and "leave one out" to be fine-tuned on that task.
 - Pre-training on all datasets

Training strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Unsupervised pre-training + fine-tuning	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Multi-task training	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Multi-task pre-training + fine-tuning	83.11	19.12	80.26	71.03	27.08	39.80	28.07
Leave-one-out multi-task training	81.98	19.05	79.97	71.68	26.93	39.79	27.87
Supervised multi-task pre-training	79.93	18.96	77.38	65.36	26.81	40.13	28.04

- Finetuning after pre-training is comparable to the baseline.
- Supervised pre-training performs worse except for the translation tasks

Scaling

- Possibility to scale in various ways:
 - Using a larger model
 - Increasing batch size

- Training for more steps
- Ensembling (combination of models)

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
$1 \times \text{size}, 4 \times \text{training steps}$	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times$ size, $4 \times$ batch size	84.60	19.42	82.52	74.64	27.07	40.60	27.84
$2 \times$ size, $2 \times$ training steps	86.18	19.66	84.18	77.18	27.52	41.03	28.19
$4 \times$ size, $1 \times$ training steps	85.91	19.73	83.86	78.04	27.47	40.71	28.10
$4\times$ ensembled	84.77	20.10	83.09	71.74	28.05	40.53	28.57
$4\times$ ensembled, fine-tune only	84.05	19.57	82.36	71.55	27.55	40.22	28.09

- Increasing both model size and training steps improves the results.
- Increasing only batch size or training steps are equally beneficial.
- Ensembling proves to be a way of improving performance without increasing model size or training time.

Scaling – Model Size

Model Name	# Parameters	Hidden Size	# Attention Heads	# Total Layers
Small	60 Million	512	8	12
Base	220 Million	768	12	24
Large	770 Million	1024	16	24
3B	2.8 Billion	1024	32	48
11B	11 Billion	1024	128	48

Conclusion

- **Text-to-text** simple and easily understandable format, that can be adapted to various tasks.
- **Architectures** the best architecture for a text-to-text format is the encoder-decoder, that although having twice as many parameters as "encoder-only" (BERT) it has a similar computational cost.
- **Unsupervised objectives** denoising objectives performed better. Changes in the typical algorithm can provide more efficient training.
- **Datasets** performance degrades when a dataset is repeated many times during pre-training.
- **Training strategies** updating all weights performed best. But there are methods that can perform similarly in terms of results but faster during training, thanks to only updating part of the parameters.
- Scaling various ways of scaling up to improve performance.

Research Opportunities

- **Model are very large** invest in ways of reducing the size of the existing models or create new cheaper models.
- More efficient knowledge extraction new pre-training objectives that can leverage the text in a more efficient way, not being necessary to use such a large amount of data.
- Measure similarity between pre-training and downstream tasks.
- Language Agnostic models develop models that achieve good performance regardless on the text's language.

A Simple Coding Example

- Following this <u>tutorial</u>, we can use Google's free TPU's available in Colab to train a T5 model for QA.
- Basic pipeline for using T5:
 - Use Colab and a Google Cloud Storage Account (300\$ free credit)
 - Install the T5 library
 - Pre-process the data
 - Create the necessary datasets (training, validation, test)
 - Create a task or mixture
 - Define model
 - Finetune on the task
 - Save model
 - Evaluate
- You can also play a trivia question game with the model <u>here</u>.

Thank You!