計量経済 II:中間試験

村澤 康友

2023年11月20日

注意:3 問とも解答すること.結果より思考過程を重視するので,途中計算等も必ず書くこと(部分点は大いに与えるが,結果のみの解答は0 点とする).

- 1. (20点) 以下で定義される時系列分析の専門用語をそれぞれ書きなさい.
 - (a) 試行の結果によって値が決まる数列
 - (b) $\{x_t\}$ を $\{\Delta x_t\}$ に変換した系列
 - (c) 任意の時点 t と時点差 s について $\mathrm{E}(Y_t)$ と $\mathrm{cov}(Y_t,Y_{t-s})$ が t に依存しない性質
 - (d) $\{\Delta y_t\}$ がホワイト・ノイズとなる $\{y_t\}$
- 2. (50 点) $\{y_t\}$ を定数項なしの $\mathrm{MA}(2)$ 過程とする. すなわち任意の t について

$$y_t = w_t - \theta_1 w_{t-1} - \theta_2 w_{t-2}$$
$$\{w_t\} \sim WN(\sigma^2)$$

- $\{y_t\}$ の自己共分散関数を $\gamma(.)$, 自己相関関数を $\rho(.)$ とする.
- (a) $E(y_t)$ を求めなさい.
- (b) $\gamma(0)$ を MA 係数と σ^2 で表しなさい.
- (c) $\gamma(1)$ を MA 係数と σ^2 で表しなさい.
- (d) $\gamma(2)$ を MA 係数と σ^2 で表しなさい.
- (e) $\rho(1), \rho(2)$ を MA 係数で表しなさい.

3. (30 点) 以下のコンピューター出力は,旧西ドイツのマクロの所得(Y_t)と消費(C_t)の季節調整済み四半期系列の対前期比変化率(対数階差),すなわち $\{\Delta \ln Y_t, \Delta \ln C_t\}$ に関する 2 変量 VAR(2) モデルの推定結果である.

m VAR モデル, ラグ次数: 2 最小二乗法 (OLS) 推定量, 観測: 1960:4-1982:4 (T=89)

方程式 1: ld_income

	係数	標準誤差	t-ratio	p 値
const	0.0115223	0.00337525	3.414	0.0010
ld_income_1	-0.101228	0.127639	-0.7931	0.4300
ld_income_2	0.0137267	0.125771	0.1091	0.9134
$ld_consumption_1$	0.343344	0.140219	2.449	0.0164
$ld_consumption_2$	0.147676	0.140464	1.051	0.2961

ゼロ制約のF検定

All lags of ld_income	F(2,84) = 0.355271	[0.7020]
All lags of ld_consumption	F(2,84) = 3.01643	[0.0543]
All vars, lag 2	F(2,84) = 0.884147	[0.4169]

方程式 2: ld_consumption

	係数	標準誤差	t-ratio	p 値
const	0.0120202	0.00295682	4.065	0.0001
ld_income_1	0.323107	0.111816	2.890	0.0049
ld_income_2	0.360738	0.110179	3.274	0.0015
$ld_consumption_1$	-0.303040	0.122836	-2.467	0.0157
$ld_consumption_2$	-0.0599492	0.123050	-0.4872	0.6274

ゼロ制約の F 検定

All lags of ld_income	F(2,84) = 7.86973	[0.0007]
All lags of ld_consumption	F(2,84) = 3.13047	[0.0488]
All vars, lag 2	F(2,84) = 6.55946	[0.0023]

この分析結果について,以下の問いに答えなさい.

- (a) 推定したモデルが正しいと仮定した場合,今期の所得が 1% 増加したら,来期の所得と消費はそれぞれ何%増加または減少すると予測されるか?
- (b) $\Delta \ln Y_t$, $\Delta \ln C_t$ それぞれの予測に役立つ説明変数を有意水準 5% の両側検定で選択しなさい(根拠となる統計量も示すこと).
- (c) 所得から消費へのグレンジャー因果検定の F 検定統計量の p 値を読み取り,有意水準 5 %の検定の結果を説明しなさい.

解答例

- 1. 時系列分析の基本用語
 - (a) 確率変数列
 - ●「離散確率過程」でも OK. 「確率過程」は 1 点減.
 - (b) 差分系列
 - ●「階差系列」でも OK.
 - (c) 共分散定常性
 - (d) ランダム・ウォーク
- 2. MA(2) 過程
 - (a) $\{w_t\}$ はホワイトノイズなので、期待値の線形性より

$$E(y_t) = E(w_t - \theta_1 w_{t-1} - \theta_2 w_{t-2})$$

$$= E(w_t) - \theta_1 E(w_{t-1}) - \theta_2 E(w_{t-2})$$

$$= E(w_t) - \theta_1 E(w_t) - \theta_2 E(w_t)$$

$$= 0$$

- $E(w_t) \theta_1 E(w_{t-1}) \theta_2 E(w_{t-2})$ で 2 点.
- $\mathrm{E}(w_t) \theta_1 \, \mathrm{E}(w_t) \theta_2 \, \mathrm{E}(w_t)$ で 5 点.
- MA(q) で解答したら 0 点.
- (b) $\{w_t\}$ は WN (σ^2) なので

$$\gamma(0) := var(y_t)
= var(w_t - \theta_1 w_{t-1} - \theta_2 w_{t-2})
= var(w_t) + \theta_1^2 var(w_{t-1}) + \theta_2^2 var(w_{t-2})
= var(w_t) + \theta_1^2 var(w_t) + \theta_2^2 var(w_t)
= (1 + \theta_1^2 + \theta_2^2) \sigma^2$$

- $\operatorname{var}(w_t) + \theta_1^2 \operatorname{var}(w_{t-1}) + \theta_2^2 \operatorname{var}(w_{t-2})$ で 2 点.
- $\operatorname{var}(w_t) + \theta_1^2 \operatorname{var}(w_t) + \theta_2^2 \operatorname{var}(w_t)$ で 5 点.
- MA(q) で解答したら 0 点.
- (c) $\{w_t\}$ は WN (σ^2) なので

$$\gamma(1) := \cos(y_t, y_{t-1})
= \cos(w_t - \theta_1 w_{t-1} - \theta_2 w_{t-2}, w_{t-1} - \theta_1 w_{t-2} - \theta_2 w_{t-3})
= \cos(-\theta_1 w_{t-1}, w_{t-1}) + \cos(-\theta_2 w_{t-2}, -\theta_1 w_{t-2})
= -\theta_1 \operatorname{var}(w_{t-1}) + \theta_2 \theta_1 \operatorname{var}(w_{t-2})
= -\theta_1 \operatorname{var}(w_t) + \theta_2 \theta_1 \operatorname{var}(w_t)
= (-\theta_1 + \theta_2 \theta_1) \sigma^2$$

- $-\theta_1 \operatorname{var}(w_{t-1}) + \theta_2 \theta_1 \operatorname{var}(w_{t-2})$ で 2点.
- $-\theta_1 \operatorname{var}(w_t) + \theta_2 \theta_1 \operatorname{var}(w_t)$ で 5 点.
- MA(q) で解答したら 0 点.

(d) $\{w_t\}$ は WN (σ^2) なので

$$\begin{split} \gamma(2) &:= \text{cov}(y_t, y_{t-2}) \\ &= \text{cov}(w_t - \theta_1 w_{t-1} - \theta_2 w_{t-2}, w_{t-2} - \theta_1 w_{t-3} - \theta_2 w_{t-4}) \\ &= \text{cov}(-\theta_2 w_{t-2}, w_{t-2}) \\ &= -\theta_2 \operatorname{var}(w_{t-2}) \\ &= -\theta_2 \operatorname{var}(w_t) \\ &= -\theta_2 \sigma^2 \end{split}$$

- $-\theta_2 \operatorname{var}(w_{t-2})$ で 2 点.
- $-\theta_2 \operatorname{var}(w_t)$ で 5 点.
- MA(q) で解答したら 0 点.
- (e) 前3問より

$$\rho(1) = \frac{\gamma(1)}{\gamma(0)}$$

$$= \frac{(-\theta_1 + \theta_2\theta_1)\sigma^2}{(1 + \theta_1^2 + \theta_2^2)\sigma^2}$$

$$= \frac{-\theta_1 + \theta_2\theta_1}{1 + \theta_1^2 + \theta_2^2}$$

$$\rho(2) = \frac{\gamma(2)}{\gamma(0)}$$

$$= \frac{-\theta_2\sigma^2}{(1 + \theta_1^2 + \theta_2^2)\sigma^2}$$

$$= \frac{-\theta_2}{1 + \theta_1^2 + \theta_2^2}$$

- 各5点.
- $\rho(1) = \gamma(1)/\gamma(0)$, $\rho(2) = \gamma(2)/\gamma(0)$ で各 1 点.
- MA(q) で解答したら 0 点.
- 3. 2 変量 VAR(2) モデル
 - (a) 来期の所得は 0.101228% 減少し、消費は 0.323107% 増加すると予測される.
 - 各5点.
 - (b) p値が.05以下の説明変数を選択する.
 - i. $\Delta \ln Y_t$ の予測に役立つ変数は $\Delta \ln C_{t-1}$ (p 値は 0.0164)
 - ii. $\Delta \ln C_t$ の予測に役立つ変数は $\Delta \ln Y_{t-1}$ (p 値は 0.0049), $\Delta \ln Y_{t-2}$ (p 値は 0.0015), $\Delta \ln C_{t-1}$ (p 値は 0.0157).
 - 各5点.
 - p値なしは各1点.
 - (c) p 値は 0.0007. p 値が有意水準 0.05 より小さいので,所得から消費へのグレンジャー因果なしの帰無仮説を棄却し、グレンジャー因果ありの対立仮説を採択する.
 - p値の誤りは0点.