DC to AC Converter: Inverter

Dr. D. S. More

Department of Electrical engg

W. C. E. Sangli

E-mail => dsm.wce@gmail.com

Introduction

DC to AC conversion

- Variable voltage variable frequency output
- Devices used are MOSFET or IGBT
- Applications : UPS, AC Drives & VSC used in power systems

Types of DC Sources

- DC Voltage source
- V-I Characteristics
- Examples
- Battery

- Uncontrolled AC to DC converter
- Controlled AC to DC converter
- O/P voltage of DC shunt generators

DC Current Source

- DC current source is obtained from AC to DC converter with closed loop current control
- I_{dc} is always maintained to a set value by adjusting α of the 6 pulse converter
- Voltage of the converter
 changes as per change in
 load to maintain I_{dc} constant

Types of Inverter based on DC Source

- Voltage source Inverter (VSI)
- Input to inverter is DC voltage source.
- Battery or Large C at input dc side.
- Input DC current can rev
- DC voltage polarity cant be reversed.
- Power flow can be bi –directional.

Types of Inverter based on DC Source

- Current source Inverter (CSI)
- Input to inverter is DC current source.
- Input DC current cant be reversed.
- DC voltage polarity can be reversed.
- Power flow can be bi –directional.

How to obtain dc current source?

Types of Inverter based on topology

- Voltage source Inverter (VSI)
- Single phase
 - i) Half Bridge
 - ii) Full bridge
- Three phase Bridge Inverter
- 120⁰ mode
- 180⁰ mode
- PWM switching

- Circuit configuration
- Basic configuration : half bridge
- Switches can carry bidirectional current
- Diode antiparallel with switch
- Two quadrant operation

- Output voltage waveform
- Switching signals S1 and S2
- Are complementary
- When S1 is ON

$$V_{AB} = +V_{DC}/2$$

- When S2 is ON
- $V_{AB} = -V_{DC}/2$

- Observations
- Time for S₁/S₂ on will determine the output frequency
- If T/2 = 10 msec then F = 50 Hz
- Similarly T/2 = 100 msec then F= 5 Hz
- Steady state operation
- PQ Period => applied voltage to load = +ve
 I_L is negative (flowing from B to A
 D₁ carrying current

- Period Q R => V and I are +ve
 S1 is conducting
- Period R S => V is ve and I is +ve
 D2 is conducting
- Period ST => V and I are -ve
 S2 is conducting
- If load is RL then switch should have antiparallel diode

- Dead Time
- S1 and S2 should not on simultaneously
- DC source shortCircuited
- Avoid short circuit by using dead time
- Switch on instant is delayed by few µsec

Harmonics

- The relationship between rms current, fundamental current and harmonic current
- $| \mathbf{l}^2_{\text{rms}} = | \mathbf{l}^2_{\text{1rms}} + | \mathbf{l}^2_{\text{2rms}} + | \mathbf{l}^2_{\text{3rms}} + | \mathbf{l}^2_{\text{4rms}} + | \mathbf{l}^2_{\text{5rms}} + \cdots$
- $| |^2_{rms} = |^2_{1rms} + |^2_{hrms}$
- Where,
- Total harmonic current can be
- $||^2_{\text{hrms}}| = |^2_{\text{2rms}} + |^2_{\text{3rms}} + |^2_{\text{4rms}} + |^2_{\text{5rms}} + ----$
- For the given waveform I²_{rms} and I²_{1rms} is computed
- $%THD = (I_{hrms} / I_{1rms}) \times 100$

Harmonic spectrum of a waveform

Procedure

- Determine the RMS value of the waveform.= I
- Determine the peak amplitude of nth harmonic
- Considering quarter wave symmetry
- An= $\frac{8}{2\pi} \int_0^{\pi/2} F(\theta) \cos(n\theta) d\theta$
- Where An= peak amplitude of nth Harmonic.
- Determine peak amplitude of fundamental and the RMS value of fundamental = I_1
- $I^2 = I_1^2 + I_h^2$
- %THD = $(I_h/I_1) \times 100$

Harmonic spectrum of square wave

- Harmonic spectrum
- RMS value I=I_{dc}

$$A_n = \frac{8}{2\pi} \int_0^{\pi/2} I_{dc} \cos(n\theta) d\theta$$

- $A_n = (4/n\pi) I_{dc} \sin(n\pi/2)$
- $= A_1 = 4I_{dc}/\pi$ (Peak amplitude of fundamental)

•
$$I_1 = \frac{2\sqrt{2}}{\pi} I_{dc}$$
 and $I_h = I_{dc} \sqrt{(1 - \frac{8}{\Pi^2})}$

$$I_{h}/I_{1} = 0.482$$

- Output voltage and harmonic spectrum
- Output voltage is square wave (V_{DC}/2 amplitude)
- It contains all
- odd harmonics
- V_1 peak = 2Vdc/π
- THD is 48 %
- $Arr Vrms = V_{DC}/2$

- Disadvantages
- Input voltage = Vdc
- Output voltage V(rms) = Vdc/2
- One switch is conducting at a time
- Use full bridge inverter

1ф full bridge Inverter

- Square wave Mode
- Two devices are conducting simultaneously
- Center point of DC link is not required

1ф full bridge Inverter

- Dead Time
- (S1 and S4) OR
- (S2 &S3) should not on simultaneously
- DC source short Circuited
- Avoid short circuit by using dead time
- Switch on instant is delayed by few usec

1ф full bridge Inverter

- Output voltage and harmonic spectrum
- Output voltage is square wave (V_{DC} Amplitude)
- It contains all
- odd harmonics
- V_1 peak = $4Vdc/\pi$
- THD is 48 %
- AC o/p voltage(rms) = V_{DC}

Three Phase VSI Bridge Inverter

- It consists of 3 legs
- Devices are named as per conducting sequence
- Controlled quantities
 Voltage, frequency
 and phase sequence
- Operating modes
 180^o,120^o and PWM

1800 mode of conduction

Switching signal

1800 mode of conduction

- Each device conducts for 180^o
- One device from each leg is ON
- Three deices are on simultaneously
- Devices are named as per conducting sequence
- Dead time is required to avoid the short circuit of DC link
- Phase shift between the legs is 120°.