CS2006: 計算機組織

Computer Arithmetic

Outline

- Constructing an arithmetic logic unit (Appendix C)
- Multiplication (Sec. 3.3, Appendix C)
- Division (Sec. 3.4)
- Floating point (Sec. 3.5)

Problem: Designing MIPS ALU

- Requirements: must support the following arithmetic and logic operations
 - add, sub: two's complement adder/subtractor with overflow detection
 - and, or, nor: logical AND, logical OR, logical NOR
 - slt (set on less than): two's complement adder with inverter, check sign bit of result

Functional Specification

|--|

0000

0001

0010

0110

0111

1100

Function

and

or

add

subtract

set-on-less-than

Arithmetic-4

Computer Organization

A Bit-slice ALU

- Design trick 1: divide and conquer
 - Break the problem into simpler problems, solve them and glue together the solution
- Design trick 2: solve part of the problem and extend

A 1-bit ALU

 Design trick 3: take pieces you know (or can imagine) and try to put them together

A 4-bit ALU

1-bit ALU

4-bit ALU

How about Subtraction?

- 2's complement: take inverse of every bit and add 1 (at c_{in} of first stage)
 - \bullet A + B' + 1 = A + (B' + 1) = A + (-B) = A B
 - Bitwise inverse of B is B'

Revised Diagram

LSB and MSB need to do a little extra

Computer Organization

Functional Specification

ALU Control (ALUop
----------------------	--------------

0000

0001

0010

0110

0111

1100

Function

and

or

add

subtract

set-on-less-than

Nor Operation

A nor B = (not A) and (not B)

Functional Specification

ALU Control (ALUop)

0000

0001

0010

0110

0111

1100

Function

and

or

add

subtract

set-on-less-than

Arithmetic-12

Computer Organization

Overflow

Decimal	Binary	Decimal	2's complement
0	0000	0	0000
1	0001	-1	1111
2	0010	-2	1110
3	0011	-3	1101
4	0100	-4	1100
5	0101	-5	1011
6	0110	-6	1010
7	0111	-7	1001
		-8	1000
Ex: 7 + 3	= 10 but	-4 - 5	5 = - 9 but
0 1	1 1 1 7	1 0	0 0 1 0 -4
+ 0	0 1 1 3 0 -6	+ 1 0	0 1 1 -5

Overflow Detection

- Overflow: result too big/small to represent
 - -8 ≤ 4-bit binary number ≤ 7
 - When adding operands with different signs, overflow will not occur!
 - Overflow occurs when adding:
 - 2 positive numbers and the sum is negative
 - 2 negative numbers and the sum is positive
 - => sign bit is set with the value of the result
 - Overflow if: <u>CarryIn of MSB ≠ CarryOut of MSB</u>

Overflow Detection Logic

Overflow = CarryIn[N-1] XOR CarryOut[N-1]

Dealing with Overflow

- Some languages (ex: C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (ex: Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Functional Specification

ALU Control (ALU	op)	١
------------------	-----	---

0000

0001

0010

0110

0111

1100

Function

and

or

add

subtract

set-on-less-than

Arithmetic-17

Computer Organization

Zero Detection Logic

 Zero Detection Logic is a one BIG NOR gate (support conditional jump)

Functional Specification

Set on Less Than (1/3)

Set on Less Than (2/3)

Bit 31 in ALU

Set on Less Than (3/3)

Is that all for set-on-less-than?

CarryOut

ALU Control and Function

Final 32-bit ALU

Ripple Carry Adder

Carry Ripple from lower-bit to the higher-bit

- Ripple computation dominates the run time
 - Higher-bit ALU must wait for carry from lower-bit ALU
 - Run time complexity: O(n)

Problems with Ripple Carry Adder

 Carry bit may have to propagate from LSB to MSB => worst case delay: N-stage delay

Design Trick: look for parallelism and throw hardware at it

Remove the Dependency

Ripple carry adder

- Carry lookahead adder
 - No carry bit propagation from LSB to MSB

Carry Lookahead: Theory (I) (Appendix C.6)

- CarryOut=(A*B)+(A*CarryIn)+(B*CarryIn)
 - Cin₂=Cout₁= (A₁ * B₁)+(A₁ * Cin₁)+(B₁ * Cin₁)
 - $Cin_1 = Cout_0 = (A_0 * B_0) + (A_0 * Cin_0) + (B_0 * Cin_0)$
- ♦ Substituting Cin₁ into Cin₂:

•
$$Cin_2 = (A_1 * B_1) + (A_1 * A_0 * B_0) + (A_1 * A_0 * Cin_0) + (A_1 * B_0 * Cin_0) + (B_1 * A_0 * B_0) + (B_1 * A_0 * Cin_0) + (B_1 * B_0 * Cin_0) + (A_1 + B_1) + (A_1 + B_1) * (A_0 * B_0) + (A_1 + B_1) * (A_0 + B_0) * Cin_0$$

Carry Lookahead: Theory (II)

- Now define two new terms:
 - Generate Carry at Bit i: $g_i = A_i * B_i$
 - Propagate Carry via Bit i: $p_i = A_i + B_i$
- We can rewrite:
 - $Cin_1=g_0+(p_0*Cin_0)$
 - $Cin_2=g_1+(p_1*g_0)+(p_1*p_0*Cin_0)$
 - $Cin_3=g_2+(p_2*g_1)+(p_2*p_1*g_0)+(p_2*p_1*p_0*Cin_0)$
 - $Cin_4=g_3+(p_3*g_2)+(p_3*p_2*g_1)+(p_3*p_2*p_1*g_0)+(p_3*p_2*p_1*p_0*Cin_0)$
- Carry going into bit 3 is 1 if
 - We generate a carry at bit 2 (g₂)
 - Or we generate a carry at bit 1 (g₁) and bit 2 allows it to propagate (p₂ * g₁)
 - Or we generate a carry at bit 0 (g₀) and bit 1 as well as bit 2 allows it to propagate ...
 - Or the carry in (Cin₀) is 1 and all three bits (bit 0 to bit 2)
 allow it to propagate Arithmetic-29

 Computer Organization

A Plumbing Analogy for Carry Lookahead (1, 2, 4 bits)

Carry Lookahead Unit

Common Carry Lookahead Adder

- Expensive to build a "full" carry lookahead adder
 - Just imagine length of the equation for Cin₃₁
- Common practices:
 - Cascaded carry look-ahead adder
 - Multiple level carry look-ahead adder

Cascaded Carry Lookahead

 Connects several N-bit lookahead adders to form a big one

Multiple Level Carry Lookahead

- View an N-bit lookahead adder as a block
- Where to get Cin of the block?

- Generate "super" P_i and G_i of the block
- Use next level carry lookahead structure to generate block C_{in}

Recap of Carry Lookahead Theory

Now define two new terms:

- Generate Carry at Bit i: $g_i = A_i * B_i$
- Propagate Carry via Bit i: $p_i = A_i + B_i$

We can rewrite:

- $Cin_1=g_0+(p_0*Cin_0)$
- $Cin_2=g_1+(p_1*g_0)+(p_1*p_0*Cin_0)$
- $Cin_3=g_2+(p_2*g_1)+(p_2*p_1*g_0)+(p_2*p_1*p_0*Cin_0)$
- $Cin_4 = g_3 + (p_3 * g_2) + (p_3 * p_2 * g_1) + (p_3 * p_2 * p_1 * g_0) + (p_3 * p_2 * p_1 * p_0 * Cin_0) = G + (P * Cin_0)$
- G: CarryOut can be generated among these 4 bits
 - $G=g_3+(p_3*g_2)+(p_3*p_2*g_1)+(p_3*p_2*p_1*g_0)$
- P: CarryOut can be propagated among these 4 bits
 - \blacksquare P=p₃*p₂*p₁*p₀

Carry Lookahead Unit

Multiple Level Carry Lookahead

A Carry Lookahead Adder

```
A B Cout
0 0 0 kill
0 1 Cin propagate
1 0 Cin propagate
1 1 1 generate
```

$$G = A * B$$

 $P = A + B$

Fig. B.6.3

Carry-select Adder

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8x8-bit, 4x16-bit, or 2x32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - Ex: clipping in audio, saturation in video

Outline

- Constructing an arithmetic logic unit (Appendix C)
- Multiplication (Sec. 3.3, Appendix C)
- Division (Sec. 3.4)
- Floating point (Sec. 3.5)

MIPS R2000 Organization

Multiplication in MIPS

```
mult $t1, $t2  # t1 * t2
```

- No destination register: product could be ~2⁶⁴; need two special registers to hold it
- 3-step process:

HI LC

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32 bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product → rd

Unsigned Multiplication

Paper and pencil example (unsigned):

```
Multiplicand 1000
Multiplier × 1001
1000
0000
0000
1000
Product 01001000
```

- m bits x n bits = m+n bit product
- Binary makes it easy:

```
0 => place 0 (0 × multiplicand)
1 => place a copy (1 × multiplicand)
```

2 versions of multiply hardware and algorithm

Unsigned Multiplier (Ver. 1)

 64-bit multiplicand register (with 32-bit multiplicand at right half), 64-bit ALU, 64-bit product register, 32-bit multiplier register

Observations: Multiplier Ver. 1

- 1 clock per cycle → ~100 clocks per multiply
 - Ratio of multiply to add 5:1 to 100:1
- → Half of the bits in multiplicand always 0
 → 64-bit adder is wasted
- 0's inserted in right of multiplicand as shifted
 least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right?
- Product register wastes space -> combine Multiplier and Product register

Unsigned Multiplier (Ver. 2)

 32-bit Multiplicand register, 32 -bit ALU, 64-bit Product register (HI & LO in MIPS), (0-bit Multiplier register)

Observations: Multiplier Ver. 2

- 2 steps per bit because multiplier and product registers combined
- MIPS registers HI and LO are left and right half of Product register
 - → this gives the MIPS instruction MultU
- What about signed multiplication?
 - The easiest solution is to make both positive and remember whether to complement product when done (leave out sign bit, run for 31 steps)
 - Apply definition of 2's complement
 - sign-extend partial products and subtract at end
 - Booth's Algorithm is an elegant way to multiply signed numbers using same hardware as before and save cycles

Signed Multiplication

Paper and pencil example (signed):

```
Multiplier

Multiplier

X 1001 (-7)

X 1001 (-7)

111111001

+ 0000000

+ 000000

- 11001

Product

1001 (-7)

00110001 (49)
```

- Rule 1: Multiplicand sign extended
- Rule 2: Sign bit (s) of Multiplier
 - 0 => 0 × multiplicand
 - 1 => -1 × multiplicand
- Why rule 2?
 - $X = s x_{n-2} x_{n-3...} x_1 x_0$ (2's complement)
 - Value(X) = -1 x s x $2^{n-1} + x_{n-2}$ x $2^{n-2} + \dots + x_0$ x_0^{20} Computer Organization

Booth's Algorithm: Motivation

◆ Example: 2 x 6 = 0010 x 0110:

```
0010

x 0110

+ 0000 shift (0 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001100
```

• Can get same result in more than one way: 6 = -2 + 8 0110 = -00010 + 01000

 Basic idea: replace a string of 1s with an initial subtract on seeing a one and add after last one

```
x 0010
x 0110
- 0000 shift (0 in multiplier)
- 0010 sub (first 1 in multiplier)
- 0000 shift (mid string of 1s)
+ 0010 add (prior step had last 1)
```

Computer Organization

Booth's Algorithm: Rationale

middle of run					
end of run		0(1 1 1 1)0 beginnii	beginning of run	
Curre	nt Bit to	Explanation	Example	Op	
bit	right				
1	0	Begins run of 1s	0000111 <u>10</u> 00	sub	
1	1	Middle run of 1s	00001 <u>11</u> 1000	none	
0	1	End of run of 1s	000 <u>01</u> 111000	add	
0	0	Middle run of 0s	0 <u>00</u> 01111000	none	
Originally for speed (when shift was faster than add)					
♦ Why it works? -10					
<u>+ 100000</u>					
011110					

Booth's Algorithm

- 1. Depending on the current and previous bits, do one of the following:
 - 00: Middle of a string of 0s, no arithmetic op.
 - 01: End of a string of 1s, so add multiplicand to the left half of the product
 - 10: Beginning of a string of 1s, so subtract multiplicand from the left half of the product
 - 11: Middle of a string of 1s, so no arithmetic op.
- 2. As in the previous algorithm, shift the Product register right (arithmetically) 1 bit

Booths Example (2×7)

```
Operation Multiplicand Product
                                     next?
0. initial value
                  0010 0000 0111 0 10 -> sub
1a. P = P - m
                  1110 +1110
                         1110 0111 0 shift P (sign ext)
                  0010 1111 0011 1 11 -> nop, shift
1b.
                  0010 1111 1001 1 11 -> nop, shift
2.
                  0010 1111 110<mark>0 1</mark> 01 -> add
3.
4a.
                  0010 + 0010
                         0001 1100 1 shift
4b.
                  0010
                         0000 1110 0 done
```

Booths Example (2×-3)

```
Operation Multiplicand Product
                                    next?
0. initial value
                        0000 1101 0 10 -> sub
                  0010
1a. P = P - m
                  1110 +1110
                         1110 1101 0 shift P (sign ext)
1b.
                  0010 1111 0110 1 01 -> add
                  0010 + 0010
                         0001 0110 1 shift P
2a.
2b.
                         0000 1011 0 10 -> sub
                  0010
                  1110 +1110
                  0010 1110 1011 0 shift
3a.
3b.
                  0010
                         1111 0101 1 11 -> nop
4a
                         1111 0101 1 shift
4b.
                         1111 1010 1 done
                  0010
```

Faster Multiplier

- A combinational multiplier
- Use multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

Wallace Tree Multiplier

Use carry save adders: three inputs and two outputs

```
10101110
00100011
10000111
00001010(sum)
10100111 (carry)
```

- 8 1-bit full adders
 - One full adder delay (no carry propagation)
- The last stage is performed by regular adder
- What is the minimum delay for 16 x 16 multiplier?

Ripple Carry Adder vs. Carry Save Adder

Outline

- Constructing an arithmetic logic unit (Appendix C)
- Multiplication (Sec. 3.3, Appendix C)
- ♦ Division (Sec. 3.4)
- Floating point (Sec. 3.5)

MIPS R2000 Organization

Division in MIPS

```
div $t1, $t2  # t1 / t2
```

Quotient stored in LO, remainder in HI
 mflo \$t3 #copy quotient to t3
 mfhi \$t4 #copy remainder to t4

3-step process

Unsigned division:

```
divu $t1, $t2  # t1 / t2
```

- Just like div, except now interpret t1, t2 as unsigned integers instead of signed
- Answers are also unsigned, use mfhi, mflo to access
- No overflow or divide-by-0 checking
 - Software must perform checks if required

Division: Paper & Pencil

- See how big a number can be subtracted, creating quotient bit on each step
- Binary
 - 0 => place 0 (0 × divisor)
 1 => place a copy (1 × divisor)
- Two versions of divide, successive refinement
- Both dividend and divisor are positive integers

Divider Hardware (Version 1)

 64-bit Divisor register (initialized with 32-bit divisor in left half), 64-bit ALU, 64-bit Remainder register (initialized with 64-bit dividend), 32-bit Quotient register

Division Algorithm (Version 1)

Observations: Divider Version 1

- Half of the bits in divisor register always 0
 - => 1/2 of 64-bit adder is wasted
 - => 1/2 of divisor is wasted
- Instead of shifting divisor to right, shift remainder to left?
- 1st step cannot produce a 1 in quotient bit (otherwise quotient is too big for the register)
 - => switch order to shift first and then subtract
 - => save 1 iteration
- Eliminate Quotient register by combining with Remainder register as shifted left

Divider Hardware (Version 2)

 32-bit Divisor register, 32 -bit ALU, 64-bit Remainder register, (0-bit Quotient register)

Fig. 3.13

Done. Shift left half of Remainder right 1 bit

Signed Division Rules

Signed Divides:

- Remember signs, make positive, complement quotient and remainder if necessary
- Let Dividend and Remainder have same sign and negate Quotient if Divisor sign & Dividend sign disagree,
- Ex: -7÷ 2 = -3, remainder = -1
 -7÷- 2 = 3, remainder = -1
- Satisfy Dividend =Quotient x Divisor + Remainder

Observations: Multiplier and Divider

- Same hardware as multiply: just need ALU to add or subtract, and 64-bit register to shift left or shift right
- HI and LO registers in MIPS combine to act as 64-bit register for multiplication and division

Multiplier/Divider Hardware

 32-bit Multiplicand/Divisor register, 32-bit ALU, 64-bit Product/Remainder register, (0-bit Multiplier/Quotient register)

MIPS Multiplication/Division Summary

Start multiply, divide

```
• MULT rs, rt HI-LO = rs \times rt // 64-bit signed
```

• MULTU rs, rt HI-LO = rs
$$\times$$
 rt // 64-bit unsigned

• DIV rs, rt LO = rs
$$\div$$
 rt; HI = rs $\%$ rt ($\%$: mod)

- DIVU rs, rt // 64-bit unsigned
- Move result from multiply, divide

- Move to HI or LO
 - MTHI rd HI = rd
 - MTLO rd LO = rd

Outline

- Constructing an arithmetic logic unit (Appendix C)
- Multiplication (Sec. 3.3, Appendix C)
- Division (Sec. 3.4)
- Floating point (Sec. 3.5)

Floating Point: Motivation

What can be represented in N bits?

Unsigned	0	to	2 ⁿ - 1
2's Complement	-2 ⁿ⁻¹	to	2 ⁿ⁻¹ - 1
1's Complement	-2 ⁿ⁻¹ +1	to	2 ⁿ⁻¹ - 1
Excess M	-M	to	2 ⁿ - M - 1

- But, what about ...
 - very large numbers?9,349,398,989,787,762,244,859,087,678
 - very small numbers?0.000000000000000000000000045691
 - rationals 2/3• irrationals $\sqrt{2}$

Floating Point: Example

Floating Point

- \bullet A = 31.48
 - 3 → 3 × 10¹
 - $\blacksquare 1 \rightarrow 1 \times 10^{0}$
 - $4 \rightarrow 4 \times 10^{-1}$
 - \blacksquare 8 → 8 × 10⁻²

Scientific notation

- $A = 3.148 \times 10^{1}$
 - $3 \rightarrow 3 \times 10^{0} \times 10^{1}$
 - 1 \rightarrow 1 × 10⁻¹ × 10¹
 - $4 \rightarrow 4 \times 10^{-2} \times 10^{1}$
 - \blacksquare 8 → 8 × 10⁻³ × 10¹

Scientific Notation: Decimal

Fraction (Mantissa) exponent Significand 3.5_{ten} x 10⁻⁹ (decimal point" radix (base)

- Normalized form: no leading 0s (exactly one digit to left of decimal point)
- Alternatives to represent 0.000000035

Normalized: 3.5 x 10⁻⁹

• Not normalized: 0.35×10^{-8} , 35.0×10^{-10}

Scientific Notation: Binary

- Computer arithmetic that supports it is called <u>floating</u> <u>point</u>, because the binary point is not fixed, as it is for integers
- Normalized form: no leading 0s (exactly one digit to left of binary point)
- ♦ Alternatives to represent 1/2°+1/2¹²

Normalized: 1.001 x 2⁻⁹

Not normalized: 0.1001 x 2⁻⁸, 10.01 x 2⁻¹⁰

FP Representation

- ♦ Normalized format: ±1.xxxxxxxxxxx_{two} × 2^{±yyyy}two
- Want to put it into multiple words: 32 bits for singleprecision and 64 bits for double-precision
- A simple single-precision representation:

31_30	23 22		<u> </u>
S Exp	onent	Fraction	
1 bit 8	bits	23 bits	

S represents sign

Exponent represents y's

Fraction represents x's

 Represent numbers as small as ~1.2 x 10⁻³⁸ to as large as ~3.4 x 10³⁸

Double Precision Representation

Next multiple of word size (64 bits)

31 30	•	20	19	0
S	Exponent		Fraction	
1 bit	11 bits		20 bits	
Fraction (cont'd)				
			32 bits	

- Double precision (vs. single precision)
 - Represent numbers almost as small as
 ~2.2 x 10⁻³⁰⁸ to almost as large as ~1.8 x 10³⁰⁸
 - But primary advantage is greater accuracy due to larger fraction

IEEE 754 Standard (1/4)

- Regarding single precision, DP similar
- Sign bit:

1 means negative0 means positive

- Fraction:
 - To pack more bits, leading 1 implicit for normalized numbers (hidden leading 1 bit)
 - 1 + 23 bits for single, 1 + 52 bits for double
 - always true: 0 ≤ Fraction < 1 (for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

IEEE 754 Standard (2/4)

- Exponent:
 - Need to represent positive and negative exponents
 - Also want to compare FP numbers as if they were integers, to help in value comparisons
 - How about using 2's complement to represent?
 Ex: 1.0 x 2⁻¹ versus 1.0 x2⁺¹ (1/2 versus 2)

If we use integer comparison for these two words, we will conclude that 1/2 > 2!!!

Biased (Excess) Notation

Biased 7

```
0000
       -7
0001
0010
0011
      -4
      -3
0100
0101
0110
       -1
0111
1000
1001
        3
1010
1011
1100
        5
1101
        6
1110
        8
1111
```

IEEE 754 Standard (3/4)

- Instead, let notation 0000 0000 be most negative, and 1111 1111 be most positive
- Called <u>biased notation</u>, where bias is the number subtracted to get the real number
 - IEEE 754 uses bias of 127 for single precision:
 Subtract 127 from Exponent field to get actual value for exponent
 - 1023 is bias for double precision

126-127=-1

128-127=1

We can use integer comparison for floating point comparison.

IEEE 754 Standard (4/4)

Summary (single precision):

 Double precision are same, except with exponent bias of 1023

Example: FP to Decimal

0 0110 1000 1 101 0101 0100 0011 0100 0010

- Sign: 0 => positive
- Exponent:
 - $0110\ 1000_{two} = 104_{ten}$
 - Bias adjustment: 104 127 = -23
- Fraction:
 - $1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22}$ = 1.0+0.666115
- Represents: $1.666115_{\text{ten}} \times 2^{-23} \approx 1.986 \times 10^{-7}$

Example 1: Decimal to FP

```
Number = -0.75
= -0.11_{two} \times 2^0 (scientific notation)
= -1.1_{two} \times 2^{-1} (normalized scientific notation)
```

- Sign: negative => 1
- Exponent:
 - Bias adjustment: -1 +127 = 126
 - $126_{ten} = 0111 \ 1110_{two}$

1 0111 1110 100 0000 0000 0000 0000 0000

Example 2: Decimal to FP

- A more difficult case: representing 1/3?
 - $= 0.33333..._{10} = 0.0101010101..._{2} \times 2^{0}$
 - $= 1.0101010101..._{2} \times 2^{-2}$
 - Sign: 0
 - Exponent = $-2 + 127 = 125_{10} = 011111101_2$
 - Fraction = 0101010101...

0 0111 1101 0101 0101 0101 0101 0101 010

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 ⇒ actual exponent = 1 127 = –126
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 111111110
 ⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001
 ⇒ actual exponent = 1 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
 ⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - All fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 15$ decimal digits of precision
- Why precision matters?
 - Moon to Earth distance: 384,400 KM
 - Apollo Guidance Computer (1966~1975)

Angles are in single precision

Distances and velocities are in double precision

Elapsed time is in triple precision

https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

Zero and Special Numbers

What have we defined so far? (single precision)

Exponent	<u>Fraction</u>	<u>Object</u>
0	0	???
0	nonzero	???
1-254	anything	+/- floating-point
255	0	<u>???</u>
255	nonzero	???

Representation for 0

- Represent 0?
 - Exponent: all zeroes
 - Fraction: all zeroes, too
 - What about sign?
 - +0: 0 00000000 000000000000000000000
 - -0: 1 00000000 000000000000000000000
- Why two zeroes?
 - Helps in some limit comparisons

Special Numbers

What have we defined so far? (single precision)

Exponent	<u>Fraction</u>	<u>Object</u>
0	0	0
0	nonzero	???
1-254	anything	+/- floating-point
255	0	???
255	nonzero	???

Range:

```
1.0 \times 2^{-126} \approx 1.2 \times 10^{-38} What if result too small? (>0, < 1.2x10<sup>-38</sup> => <u>Underflow!</u>) (2-2^{-23}) \times 2^{127} \approx 3.4 \times 10^{38} What if result too large? (> 3.4x10<sup>38</sup> => Overflow!)
```

Gradual Underflow

- Represent denormalized numbers (denorms)
 - Exponent : all zeroes
 - Fraction : non-zeroes
 - Allow a number to degrade in significance until it become 0 (gradual underflow)
 - The smallest normalized number
 - 1.0000 0000 0000 0000 0000 000 × 2⁻¹²⁶
 - The smallest de-normalized number
 - \bullet 0.0000 0000 0000 0000 0000 001 \times 2⁻¹²⁶

Special Numbers

What have we defined so far? (single precision)

Exponent	<u>Fraction</u>	<u>Object</u>
0	0	0
0	nonzero	denorm
1-254	anything	+/- floating-point
255	0	???
255	nonzero	???

Representation for +/- Infinity

- In FP, divide by zero should produce +/- infinity, not overflow
- Why?
 - OK to do further computations with infinity
 Ex: X/0 > Y may be a valid comparison
- ◆ IEEE 754 represents +/- infinity
 - Most positive exponent reserved for infinity
 - Fractions all zeroes

Special Numbers (cont'd)

What have we defined so far? (single-precision)

<u>Exponent</u>	<u>Fraction</u>	<u>Object</u>
0	0	0
0	nonzero	denom
1-254	anything	+/- fl. pt. #
255	0	+/- infinity
255	nonzero	???

Representation for Not a Number

- What do I get if I calculate sqrt(-4.0) or 0/0?
 - If infinity is not an error, these should not be either
 - They are called Not a Number (NaN)
 - Exponent = 255, fraction nonzero
- Why is this useful?
 - Hope NaNs help with debugging?
 - They contaminate: op(NaN,X) = NaN
 - OK if calculate but don't use it

Special Numbers (cont'd)

What have we defined so far? (single-precision)

<u>Exponent</u>	<u>Fraction</u>	<u>Object</u>
0	0	0
0	nonzero	denom
1-254	anything	+/- fl. pt. #
255	0	+/- infinity
255	nonzero	NaN

Range of Singe Precision Floating Point Number

Adapted from Prof. Tseng's Class Material

Decimal Addition

• A = 3.71345×10^2 , B = 1.32×10^{-4} , Perform A + B

$$3.71345 \times 10^{2}$$
+ 0.00000132×10^{2}
 3.71345132×10^{2}

• A =
$$3.71345 \times 10^2$$
 Right shift 2 – (-4) bits

$$\bullet$$
 B = $1.32 \times 10^{-4} = 0.00000132 \times 10^{2}$

$$\bullet$$
 A + B = (3.71345 + 0.00000132) \times 10²

Floating-Point Addition

Basic addition algorithm:

- (1) Align binary point :compute Ye Xe
 - right shift the smaller number, say Xm, that many positions to form Xm × 2^{Xe-Ye}
- (2) Add mantissa: compute $Xm \times 2^{Xe-Ye} + Ym$
- (3) Normalization & check for over/underflow if necessary:
 - left shift result, decrement result exponent
 - right shift result, increment result exponent
 - check overflow or underflow during the shift
- (4) Round the mantissa and renormalize if necessary

Floating-Point Addition Example

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add mantissa
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

Decimal Multiplication

• A = 3.12×10^2 , B = 1.5×10^{-4} , Perform A × B

$$\begin{array}{ccc}
3.12 \times 10^{2} \\
\times & 1.5 \times 10^{-4} \\
\hline
4.68 \times 10^{-2}
\end{array}$$

- $A = 3.12 \times 10^2$
- B = 1.5×10^{-4}
- $A \times B = (3.12 \times 1.5) \times 10^{(2+(-4))}$

Floating-Point Multiplication

Basic multiplication algorithm

(1) Add exponents of operands to get exponent of product doubly biased exponent must be corrected:

$$Xe = 7$$
 $Ye = -3$
 $Xe = 1111$
 $= 15$
 $= 7 + 8$
 $= 7 + 8$
 $= 7 + 8$
 $= 7 + 8$
 $= 7 + 8$
 $= 7 + 8$
 $= 7 + 8$
 $= 7 + 8$
 $= 8 + 8$

need extra subtraction step of the bias amount

- (2) Multiplication of operand mantissa
- (3) Normalize the product & check overflow or underflow during the shift
- (4) Round the mantissa and renormalize if necessary
- (5) Set the sign of product

Floating-Point Multiplication Example

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply operand mantissa
 - $1.000_2 \times 1.110_2 = 1.110_2 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign:
 - $-1.110_2 \times 2^{-3} = -0.21875$

MIPS R2000 Organization

MIPS Floating Point

- Separate floating point instructions:
 - Single precision: add.s, sub.s, mul.s, div.s
 - Double precision: add.d, sub.d, mul.d, div.d
- FP part of the processor:
 - contains 32 32-bit registers: \$£0, \$£1, ...
 - most registers specified in .s and .d instruction refer to this set
 - separate load and store: lwc1 and swc1
 - Double Precision: by convention, even/odd pair contain one DP FP number: \$f0/\$f1, \$f2/\$f3
 - Instructions to move data between main processor and coprocessors:
 - mfc0, mtc0, mfc1, mtc1, etc.

Interpretation of Data

The BIG Picture

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Associativity

Floating Point add, subtract associative ?

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

- Therefore, Floating Point add, subtract are not associative!
 - Why? FP result approximates real result!
 - This example: 1.5×10^{38} is so much larger than 1.0 that 1.5 x $10^{38} + 1.0$ in floating point representation is still 1.5 x 10^{38}

Associativity in Parallel Programming

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail
- Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 x 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 x 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 x 64-bit double precision
 - 4×32 -bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - 11111011₂ >> 2 = 111111110₂ = -2
 - Rounds toward –∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug, 1994
 - Recall cost: USD \$500M
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent