Farkas Gábor: Diszkrét matematika II. (előadás diák)

Lektorálta: Láng Csabáné

Felhasznált irodalom:

Járai Antal & al: Bevezetés a matematikába

ELTE Eötvös Kiadó 2005, 2006

Láng Csabáné: Bevezető fejezetek a matematikába I.

ELTE Budapest, 1997

Láng Csabáné: Bevezető fejezetek a matematikába II.

ELTE Budapest, 1998

Gonda János: Bevezető fejezetek a matematikába III.

ELTE TTK Budapest, 1998

Láng Csabáné: Testbővítések, véges testek 2008

Prezentációs anyag, ELTE IK, Digitális Könyvtár

6. SZÁMELMÉLET

6.1. Oszthatóság

Oszthatóság a természetes számok körében

Def. Legyen
$$n, m \in \mathbb{N}$$
. m osztója n -nek, ha $\exists k \in \mathbb{N}$: $n = m \cdot k$.

jelben: $m \mid n$

n többszöröse *m*-nek

 $m \neq 0$ esetén a regularitás miatt legfeljebb egy ilyen k létezik

$$m \mid n \longleftrightarrow n/m \in \mathbb{N}$$

6.1.2. Az oszthatóság tulajdonságai \mathbb{N} -ben. A természetes számok körében

- (1) ha m|n és m'|n', akkor mm'|nn';
- a nullának minden természetes szám osztója;
- a nulla csak saját magának osztója;
- (4) az 1 minden természetes számnak osztója;
- (5) ha m|n, akkor mk|nk minden $k \in \mathbb{N}$ -re;
- (6) ha $k \in \mathbb{N}^+$ és mk|nk, akkor m|n;
- (7) ha $m|n_i \text{ \'es } k_i \in \mathbb{N}, (i = 1, 2, ..., j), \text{ akkor } m|\sum_{i=1}^{j} k_i n_i;$
- (8) bármely nem nulla természetes szám bármely osztója kisebb vagy egyenlő, mint a szám;
- (9) az | reláció reflexív, tranzitív és antiszimmetrikus, azaz részben rendezés.

Megjegyezzük, hogy bár a | reláció \mathbb{N}^+ -on a \leq leszűkítése, \mathbb{N} -ben a 0 maximális elem az | relációra nézve. \square

Oszthatóság egységelemes integritási tartományban

- 6.1.5. Az oszthatóság tulajdonságai egységelemes integritási tartományban. Egy egységelemes integritási tartomány elemei körében
- (1) ha b|a 'es b'|a', akkor bb'|aa';
- a nullának minden elem osztója;
- a nulla csak saját magának osztója;
- (4) az 1 egységelem minden elemnek osztója;
- (5) ha b|a, akkor bc|ac minden $c \in R$ -re;
- (6) ha $bc|ac \ és \ c \neq 0$, akkor b|a;
- (7) ha $b|a_i \text{ \'es } c_i \in R, (i = 1, 2, ..., j), \text{ akkor } b|\sum_{i=1}^{j} c_i a_i;$
- (8) az | reláció reflexív és tranzitív. □

A továbbiakban legyen R tetszőleges egységelemes integritási tartomány.

 \pmb{Def} . Az az R -beli elem, amely minden más R -beli elemnek osztója R -beli $\pmb{egység}$. Az R -beli egységek halmaza $\pmb{U}(R)$.

Def. Ha $a, b \in R$ elemek egymás egységszeresei, akkor **asszociáltak**. Jelben $a \sim b$.

Észrevételek:

~ ekvivalencia reláció és kompatibilis az | relációval az egységek Abel-csoportot alkotnak (R egységcsoportja) 0-nak önmaga az egyetlen asszociáltja

Def. Ha $a \in R^* \setminus U(R)$: a **triviális osztói** az egységek és önmaga egységszeresei.

Az $a \in R^* \setminus U(R)$ elem **felbonthatatlan (irreducibilis)** R-ben, ha $a = bc \Rightarrow b \text{ yagy } c \text{ egység } R\text{-ben.}$ kizáró vagy

N esetén törzsszám

Def. Az $a \in R^* \setminus U(R)$ elem **prím R-ben**, ha

 $a/bc \Rightarrow a/b \lor a/c$, ahol $b, c \in \mathbb{R}$.

Az $a \in R^* \setminus U(R)$ elem **összetett**, ha nem csak triviális osztója van.

Tétel. Tetszőleges *R* egységelemes integritási tartományban minden *p* elemre:

$$p \text{ prím} \Rightarrow p \text{ felbonthatatlan}$$
.

Biz.

tfh p prím és p = bc

$$b = pq = b(cq)$$
 $\Rightarrow cq = 1$

 $\Rightarrow c$, q egység p, b asszociáltak .

Def. Legyen $a_1, ..., a_n \in R$, $L \subseteq R$ és $\forall d \in L$ -re:

$$d/a_i$$
 $(i = 1, ..., n)$,

$$d'/a_i$$
 ($i=1,...,n$) $\Rightarrow d'/d$.

Ekkor L elemei az $a_1, ..., a_n$ elemek **legnagyobb közös osztói.**

jelben:
$$lnko(a_1, ..., a_n) = (a_1, ..., a_n) = d$$

d csak asszociáltság erejéig egyértelmű!

⇒ kijelölünk egyet.

 $a_1, ..., a_n$ relatív prímek, ha d egység.

Erősebb: páronként relatív prímek

Pl.

$$(4, 8, 9) = 1$$

$$(4, 8) = 4, (4, 9) = 1, (8, 9) = 1$$

Def. Legyen $a_1, ..., a_n \in R$, $T \subseteq R$ és $\forall t \in T$ —re:

$$a_i \mid t$$
 $(i = 1, ..., n)$,

$$a_i \mid t' \ (i = 1, ..., n) \implies t \mid t'$$
.

Ekkor T elemei az $a_1, ..., a_n$ elemek legkisebb közös többszörösei.

$$lkkt(a_1, ..., a_n) = [a_1, ..., a_n] = t$$
.

t csak asszociáltság erejéig egyértelmű!

⇒ kijelölünk egyet.

Oszthatóság a egész számok körében

Észrevételek:

$$k,m\in\mathbb{Z}, \text{ akkor } |km|=|k|\cdot|m|$$
 $\pm 1 \text{ egység, mert } \forall \ a\in\mathbf{Z}: a=a\cdot 1=(-a)(-1)$
 $\text{tfh } e \text{ egység } \Rightarrow e \ / \ 1 \Rightarrow 1=eq \Rightarrow /1/=|eq/=|e|/q/$
 \downarrow
 $1\leq |e|,\ 1\leq |q|\Rightarrow |e|=1 \Rightarrow e=\pm 1$
 \downarrow
 $\mathbf{Z} \text{ -ben az egységek pontosan a } \pm 1$

Az N-beli állítások érvényben maradnak

Def. A 2-vel osztható egész számok a **páros számok**. **Páratlan** az az egész szám, amely nem páros.

Észrevételek:

$$\forall a, b \in \mathbf{Z} : a \mid b \land b \neq 0 \Rightarrow |a| \leq |b|$$
.

érvényben van a maradékos osztás tétele:

Tetszőleges a , $b(\neq 0) \in \mathbf{Z}$ számhoz egyértelműen létezik olyan q , $r \in \mathbf{Z}$, hogy

$$a = qb + r \wedge 0 \le r < |b|.$$

Elvégethető az euklidészi algoritmus!

- **6.1.11.** Bővített euklideszi algoritmus. A következő eljárás meghatározza az $a, b \in \mathbb{Z}$ egészek egy d legnagyobb közös osztóját, valamint az $x, y \in \mathbb{Z}$ egész számokat úgy, hogy d = ax + by teljesüljön. (Az eljárás során végig $ax_n + by_n = r_n, n = 0, 1, \ldots$)
- (1) [Inicializálás.] Legyen $x_0 \leftarrow 1$, $y_0 \leftarrow 0$, $r_0 \leftarrow a$, $x_1 \leftarrow 0$, $y_1 \leftarrow 1$, $r_1 \leftarrow b$, $n \leftarrow 0$.
- (2) [Vége?] Ha $r_{n+1} = 0$, akkor $x \leftarrow x_n$, $y \leftarrow y_n$, $d \leftarrow r_n$, és az eljárás véget ért.
- (3) [Ciklus.] Legyen $q_{n+1} \leftarrow \lfloor r_n/r_{n+1} \rfloor$, $r_{n+2} \leftarrow r_n \mod r_{n+1} = r_n r_{n+1}q_{n+1}$, $x_{n+2} \leftarrow x_n x_{n+1}q_{n+1}$, $y_{n+2} \leftarrow y_n y_{n+1}q_{n+1}$, $n \leftarrow n+1$ és menjünk (2)-re.

Biz. szigorú monotonitás miatt biztosan véges számú lépés lesz

 r_n közös osztó:

$$r_n/r_n \wedge r_n/r_{n-1} \Rightarrow r_n/r_{n-2}$$

$$\dots r_n/a \wedge r_n/b$$

$$ax_0 + by_0 = a \cdot 1 + b \cdot 0 = a = r_0$$

tfh n - 1-ig igaz

$$ax_n + by_n = a(x_{n-2} - q_n x_{n-1}) + b(y_{n-2} - q_n y_{n-1}) =$$

$$ax_{n-2} + by_{n-2} - q_n(ax_{n-1} + by_{n-1}) = r_{n-2} - q_n r_{n-1}$$

$$= r_n$$

6.1.14. Következmény. Bármely $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ számoknak létezik legnagyobb közös osztója és

$$lnko(a_1, a_2, ..., a_n) = lnko(lnko(a_1, a_2), a_3, a_4, ..., a_n).$$

Bizonyítás. Az a_1, a_2 számoknak létezik egy $d_{1,2}$ legnagyobb közös osztója. Az a_1, a_2 közös osztói pontosan $d_{1,2}$ osztói. Így a_1, a_2, \ldots, a_n közös osztói $d_{1,2}, a_3, a_4, \ldots, a_n$ közös osztói. \square

 $\it T\'etel$. Az egész számok körében $\it p$ akkor és csak akkor **prím**, ha felbonthatatlan.

Biz. Már láttuk, hogy prím felbonthatatlan!

Tfh *p* felbonthatatlan

Legyen
$$p / bc$$

$$p / b \qquad \Rightarrow \qquad (p, b) = 1$$

$$1 = px + by$$

$$c = pcx + bcy \implies 0 \mod p \implies p / c$$

Észrevétel:

$$(a, b) = 1 \land a \mid bc \implies a \mid c$$

A számelmélet alaptétele. Minden n nemnulla, nem egység egész szám sorrendre és asszociáltságra való tekintet nélkül egyértelműen bontható fel felbonthatatlanok szorzatára.

Biz (pozitívakra)

(egzisztencia) tfh n > 1

Teljes indukció: n = 2 kész, tfh n - 1 -ig kész

Ha *n* felbonthatatlan → kész

n nem felbonthatatlan \longrightarrow $n = ab \land a$, b nem egység!

 $a, b < n \Rightarrow \text{igaz rájuk az ind. feltétel}$

n felbontása = a felbontása szor b felbontása

(**unicitás**) tfh indirekte, hogy *n* a legkisebb olyan szám, amely felbontása nem egyértelmű.

$$n_1 = n / p_1 = p_2 \dots p_k = q_1 \dots q_{i-1} q_{i+1} \dots q_r$$

 $n_1 < n$ és van két lényegesen különböző felbontása!

6.1.18. Eukleidész tétele. Végtelen sok prímszám van.

Biz. indirekt, tfh véges sok van p_1, p_2, \dots, p_k

legyen
$$n = \prod_{j=1}^k p_j$$

számelmélet alaptétele $\Rightarrow \exists p_i : p_i \mid n+1$

$$\Rightarrow p_j | 1$$

6.1.19. Megjegyzés. Ha, hasonlóan mint az előző bizonyításban, n az összes, a p_k prímnél nem nagyobb prímek szorzata, akkor $n+2, n+3, n+4, \ldots, n+p_k$ mind összetettek, azaz a természetes számok sorozatában találtunk p_k-1 egymás utáni összetett számot. Mivel tetszőlegesen nagy prímszám létezik, akármilyen hosszú csupa összetett számot tartalmazó intervallum van.

° **6.1.20. Megjegyzés.** Megmutatható, hogy "elég sok" prímszám van, például a prímszámok reciprokainak összege végtelen. A prímszámtétel szerint

$$\lim_{x \to \infty} \frac{\sharp \{p : p \le x, \ p \text{ prímszám}\}}{\frac{x}{\ln x}} = 1.$$

Def Egy n > 1 egész

$$n = \prod_{i=1}^{r} p_i^{\alpha_i}$$

alakú felírását, ahol p_i -k különböző (pozitív) prímek és $\alpha_i > 0$, n kanonikus alakjának nevezzük. Módosított kanonikus alak, ha $\alpha_i = 0$ is megengedett.

Észrevétel (n osztói)

$$n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$$

módosított kanonikus alakú osztói

$$d = p_1^{\beta_1} \dots p_r^{\beta_r}$$

ahol
$$0 \le \beta_i \le \alpha_i$$
, $i = 1, 2, ..., r$.

Észrevétel (lnko és lkkt)

Legyen a és b módosított kan. alakja

$$a = p_1^{\alpha_1} \dots p_r^{\alpha_r} \qquad b = p_1^{\beta_1} \dots p_r^{\beta_r}$$
ekkor

$$(a,b) = p_1^{\min(\alpha_1,\beta_1)} ... p_r^{\min(\alpha_r,\beta_r)}$$

$$[a,b] = p_1^{\max(\alpha_1,\beta_1)} \dots p_r^{\max(\alpha_r,\beta_r)}$$

- **6.1.22.** Következmény. Ha $a, b, c \in \mathbb{Z}$ és a is, b is relatív prím c-hez, akkor ab is. \square
- **6.1.23. Következmény.** Tetszőleges $a,b \in \mathbb{Z}$ számoknak létezik legkisebb közös többszöröse, és $lnko(a,b) \cdot lkkt(a,b) = |ab|$. \square
 - **6.1.24.** Következmény. Ha $a, b, c \in \mathbb{Z}$, akkor

$$lkkt(ac, bc) = c \cdot lkkt(a, b)$$
. \square

6.1.25. Következmény. Tetszőleges $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ számoknak létezik legkisebb közös többszöröse, és

$$lkkt(a_1, a_2, \dots, a_n) = lkkt(lkkt(a_1, a_2), a_3, a_4, \dots, a_n). \quad \Box$$

Erathosztenész szitája

1 ② ③ 4 ⑤ 6 ⑦ 8 9 10 11

12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27

Általánosított szita

$$f_1(x), f_2(x), ..., f_n(x)$$

egész együtthatós, irreducibilis polinomok, pozitív főegyütthatóval.

$$f_k(x)$$
 h

lineáris kongruencia mod (p)

innen kezdünk p:szitáló prím 1, ..., h+qp, ..., $2^{r}-1$ $f_k(1), ..., f_k(h+qp), ..., f_k(2^r-1)$

Mennyit szitálhatunk p-vel?

$$q = 0, 1, ..., (h+qp \le 2^{r}-1)$$

6.2. Kongruenciák

Kongruenciák

$$a \equiv b \pmod{m}$$
, ha $m/a-b$

Tétel(kongruencia tulajdonságai)

- (1) ekvivalencia reláció,
- (2) $a \equiv b \pmod{m} \land c \equiv d \pmod{m}$

$$\Rightarrow a + c \equiv b + d \pmod{m}$$

(3) $a \equiv b \pmod{m} \land c \equiv d \pmod{m}$

$$\Rightarrow ac \equiv bd \pmod{m}$$

 $(4) \ a \equiv b \pmod{m} \land f(x) \in \mathbb{Z}[x]$

$$\Rightarrow f(a) \equiv f(b) \pmod{m}$$

(5) Ha (c, m) = d

$$ac \equiv bc \pmod{m} \iff a \equiv b \pmod{m/d}$$

Biz.
$$\Rightarrow$$
 defből $m / (a - b)c$

$$\Rightarrow m/d / (a-b) c/d$$

másrészt

$$(m/d, c/d) = 1$$

$$\Rightarrow m/d / (a-b)$$

$$\Rightarrow a \equiv b \pmod{m/d}$$

$$\Leftarrow$$
 Tfh $a \equiv b \pmod{m/d}$

$$\Rightarrow mq/d = (a-b)$$

$$\Rightarrow mqc/d = (a-b)c$$

$$c/d \text{ egész} \Rightarrow m / ac - bc$$

Észrevétel

$$a' \equiv a \pmod{m} \longrightarrow \operatorname{lnko}(a, m) = \operatorname{lnko}(a', m)$$

Def. $[a]_m$ az a elem által reprezentált **m szerinti maradékosztály** az a -val kongruens elemek halmaza (mod m).

Def. Teljes maradékrendszer (TMR) modulo *m* tartalmaz az összes *m* szerinti maradékosztályból pontosan egyet.

 $[a]_m$ az a elem által reprezentált m szerinti redukált maradékosztály, ha (a, m) = 1.

Redukált maradékrendszer (RMR) modulo *m* **tartalmaz** az összes *m* szerinti redukált maradékosztályból pontosan egyet.

[a] helyett szokásos jelölés még: \overline{a}

Példák

28

1. Biztosan TMR-t alkotnak a következő számhalmazok mod *m* :

$$0,1,\ldots,|m|-1$$

2. Legyen $m \in \mathbb{N}$, és vegyünk egy TMR-t mod m. Definiáljunk műveleteket a következőképpen:

$$\overline{a} + \overline{b} = \overline{a + b},$$

$$\overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

Jelöljük Z_m -nel ezt a struktúrát. A (Z_m , +, •) struktúra kommutatív, egységelemes gyűrű.

6.2.3. Tétel. Legyen m > 1 egész. Ha

$$1 < \text{lnko}(a, m) < m,$$

akkor a maradékosztálya nullosztó \mathbb{Z}_m -ben. Ha

$$lnko(a, m) = 1,$$

akkor a maradékosztályának van multiplikatív inverze \mathbb{Z}_m -ben. Speciálisan, ha m prímszám, akkor \mathbb{Z}_m test.

Biz.
$$d = \text{lnko}(a, m)$$

$$1 < d < m \longrightarrow a \cdot (m/d) = (a/d) \cdot m \equiv 0 \pmod{m}$$

$$x = m/d \longrightarrow \overline{a} \cdot \overline{x} = \overline{0}$$
, azaz \overline{a} nullosztó \mathbb{Z}_m -ben

Ha
$$d=1$$
, akkor \Rightarrow bővített euklidészi algoritmus $\Rightarrow ax+my=1$ $x,y\in\mathbb{Z}$
$$ax\equiv 1\pmod{m} \longrightarrow \overline{a}\cdot \overline{x}=\overline{1}$$

Ez azt jelenti, hogy \mathbf{Z}_m -ben \overline{a} multiplikatív inverze \overline{x}

Ha m prím, és $a \not\equiv 0 \pmod{m}$

 \Rightarrow d = 1 mindig teljesül

$$\Rightarrow$$
 Z_m test

6.2.4. Az Euler-féle φ függvény. Legyen m>0 egész szám, és jelölje $\varphi(m)$ a modulo m redukált maradékosztályok számát; φ az Euler-féle φ függvény. Nyilván $\varphi(m)$ az m-hez relatív prím számok száma a $0, 1, 2, \ldots, m-1$ számok között. Például $\varphi(1) = 1$ (sic!), $\varphi(2) = 1$, $\varphi(3) = 2$, $\varphi(4) = 2$, $\varphi(5) = 4$, $\varphi(6) = 2$, $\varphi(7) = 6$, $\varphi(8) = 4$.

Más megfogalmazásban:

Legyen $n \in \mathbb{N}^+$, ekkor $\varphi(n)$ jelenti az n – nél nem nagyobb, hozzá relatív pozitív prímek számát, azaz

$$\varphi(n) = \sum_{\substack{1 \le k \le n \\ (k,n)=1}} 1$$

Legyen m > 1 egész,

 $\{a_1, ..., a_m\}$ TMR modulo m,

 $\{b_1, ..., b_{\varphi(m)}\}$ RMR modulo m,

 $c, d \in \mathbf{Z} \text{ és } (c, m) = 1.$

Ekkor

 $\{ca_1+d,...,ca_m+d\}$ TMR modulo m,

 $\{cb_1, ..., cb_{\varphi(m)}\}$ RMR modulo m.

Biz.

tfh (indirekt) van két nem inkongruens elem

$$(c, m) = 1$$

$$ca_i + d = ca_j + d$$

$$ca_i = ca_j$$

$$a_i = a_j$$

és pontosan m db elem!

$$(c, m) = 1 \text{ \'es } (b_i, m) = 1$$

$$\Rightarrow (cb_i, m) = 1$$

6.2.6. Euler–Fermat tétel. Legyen m > 1 egész szám, a relatív prím m-hez. Ekkor $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Biz.

legyen {
$$r_1, ..., r_{\varphi(m)}$$
 } RMR modulo m ,

$$(a, m) = 1 \implies \{ar_1, ..., ar_{\varphi(m)}\}$$
 is RMR modulo m .

megfelelő párosítás $\Rightarrow r_i \equiv ar_j \pmod{m}$

összeszorozva:

rozva:
$$(r_i, m) = 1$$

$$a^{\varphi(m)} \prod_{i=1}^{\varphi(m)} r_i \equiv \prod_{i=1}^{\varphi(m)} r_i \pmod{m}$$

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

6.2.7. Következmény: Fermat-tétel. Legyen p prímszám. Ha $a \in \mathbb{Z}$ és $p \nmid a$, akkor $a^{p-1} \equiv 1 \pmod{p}$. Ha $a \in \mathbb{Z}$ tetszőleges, akkor $a^p \equiv a \pmod{p}$.

Biz.

$$\varphi(p) = p - 1 \longrightarrow \text{előző tétel miatt kész az első alak}$$

Lineáris kongruencia megoldása

$$ax \equiv b \pmod{m}$$

$$m \mid ax - b \Rightarrow ax + my = b$$

$$d = \text{lnko}(a, m)$$
 $d \mid ax + my \Rightarrow d \mid b$

$$a = a'd, b = b'd, m = m'd$$
 $a'x \equiv b' \pmod{m'}$

bővített euklidészi algoritmus ⇒

$$ax_0 + my_0 = d$$

$$a'x_0 + m'y_0 = 1$$

$$a'x_1 + m'y_1 = b'$$
 ahol $x_1 = x_0b'$ és $y_1 = y_0b'$

$$a'(x-x_1) = m'(y_1-y)$$

$$m'|x - x_1 \qquad x = x_1 + km'$$

minden $k \in \mathbb{Z}$ -re x megoldás, mert

$$ha y = y_1 - km' \qquad a'x + m'y = b'$$

Tehát minden megoldás ilyen alakú: $x \equiv x_1 \pmod{m'}$

az összes megoldás mod m: $x_1, x_1 + m', \ldots, x_1 + (d-1)m'$

Tétel (diofantikus egyenlet megoldása)

Rögzített a, b, c egész számok esetén az

$$ax + by = c$$

diofantikus egyenletnek akkor és csak akkor van megoldása, ha

$$(a, b) / c$$
.

Biz. (⇒)

Tfh x_0 , y_0 mego. \Rightarrow

 $(a, b) / a \wedge (a, b) / b \Rightarrow \text{lin. komb. tul.} \Rightarrow$

$$(a, b) / ax_0 + by_0 = c$$
.

 (\Leftarrow) tfh (a, b) / c.

$$c = (a, b)q$$

$$c = (au + bv)q$$

$$c = a(uq) + b(vq)$$

 \Rightarrow egy mego: x = uq, y = vq.

Észrevétel

$$ha \ ax + by = c$$

 $\forall t \in \mathbf{Z}$:

$$x_1 = x + bt$$
, $y_1 = y - at \implies$

$$ax_1 + by_1 = a(x + bt) + b(y - at) = ax + by$$

6.2.12. Kínai maradéktétel. Legyenek m_1, m_2, \ldots, m_n egynél nagyobb, páronként relatív prím természetes számok, $c_1, c_2, \ldots, c_n \in \mathbb{Z}$. Az $x \equiv c_j \pmod{m_j}$, $j = 1, 2, \ldots, n$ kongruenciarendszer megoldható, és bármely két megoldása kongruens modulo $m_1 m_2 \cdots m_n$.

Biz.

$$m = m_1 m_2$$

bővített euklidészi algoritmus ⇒

$$m_1 x_1 + m_2 x_2 = 1$$

Legyen
$$c_{1,2} = m_1 x_1 c_2 + m_2 x_2 c_1 \longrightarrow c_{1,2} \equiv c_j \pmod{m_j}$$

ha $x \equiv c_{1,2} \pmod{m} \Rightarrow x$ megoldása az első két kongruenciának

x megoldása az első két kongruenciának $\Rightarrow m_1, m_2 \mid x - c_{1,2}$

$$\Rightarrow m_1 m_2 \mid x - c_{1,2}$$

Kaptuk, hogy az eredeti kongr. rendszer ekvivalens a következővel:

$$x \equiv c_{1,2} \pmod{m}$$

$$x \equiv c_3 \pmod{m_3}$$

$$\cdots$$

$$x \equiv c_n \pmod{m_n}$$

indukcióval kész

RSA kódolás

Legyen $p \neq q$ két nagy prímszám és pq = n.

$$1 < e < (p-1)(q-1)$$

véletlen exponéns \longrightarrow nem jó, ha $\ln \ln (e, (p-1)(q-1)) > 1$

oldjuk meg:
$$ed \equiv 1 \pmod{(p-1)(q-1)}$$

üzenet:
$$1 < m < n$$

üzenet kódja: $c = m^e \mod n$

Az üzenet visszafejtése (dekódolás):

$$(m^e)^d = m^{k(p-1)(q-1)+1} = \left(m^{(p-1)}\right)^{k(q-1)} \cdot m \equiv m \pmod{p}$$

$$p \mid a \qquad \qquad p \nmid a$$

$$0 \equiv 0 \qquad \qquad m^{p-1} \equiv 1 \pmod{p}$$

hasonlóan $(m^e)^d \equiv m \pmod{q}$ kínai mar. tétel $\Rightarrow m = c^d \mod n$

Megjegyzés: (n, e) nyílvános kulcs, (n, d) titkos

ezt kaptuk Aliztól: $m, m^{d_A} \mod n_A$ Digitális aláírás

6.3. Számelméleti függvények

Def(számelméleti függvény)

$$f: \mathbb{N}^+ \to \mathbb{C}$$

Továbbá, ha $m, n \in \mathbb{N}^+$ és (m, n) = 1, akkor f

additív, ha

$$f(mn) = f(m) + f(n)$$

multiplikatív, ha

$$f(mn) = f(m)f(n)$$

f totálisan (teljesen) additív, illetve totálisan (teljesen) multiplikatív, ha az előbbi összefüggések $(m, n) \neq 1$ esetén is fennállnak.

Észrevételek:

ha f additív, akkor

$$f(1) = 0$$

ha f multiplikatív, akkor

$$f(1) = 1$$

ha nem azonosan 0

- **6.3.2. Tétel.** Legyen $n \in \mathbb{N}^+$ kanonikus alakja $p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ Ekkor
- (1) ha f additív számelméleti függvény, akkor

$$f(n) = f(p_1^{\alpha_1}) + \dots + f(p_k^{\alpha_k});$$

(2) ha f multiplikatív számelméleti függvény, akkor

$$f(n) = f(p_1^{\alpha_1}) \cdots f(p_k^{\alpha_k});$$

(3) ha f teljesen additív számelméleti függvény, akkor

$$f(n) = \alpha_1 f(p_1) + \dots + \alpha_k f(p_k);$$

(4) ha f teljesen multiplikatív számelméleti függvény, akkor

$$f(n) = f(p_1)^{\alpha_1} \cdots f(p_k)^{\alpha_k}.$$

Példák

1. Möbius függvény (multiplikatív)

$$\mu(n) = \begin{cases} 0, \text{ ha } n \text{ - nek van prímnégyzet osztója} \\ (-1)^k, \text{ ha } n \text{ } k \text{ db különböző prím szorzata} \end{cases}$$

2. n prímosztóinak száma: v(n) additív.

$$1. \ 2. \ \text{nem totális, mert}$$

$$0 = \mu(4) \neq \mu(2)^2 = 1$$

$$1 = \nu(4) \neq 2\nu(2) = 2$$

- 3. Totálisan additív és multiplikatív is az azonosan 0 függvény.
- **4**. Totálisan multiplikatív $n \mapsto n^a$, bármely valós a-ra.
- **5**. Totálisan additív $n \mapsto \log_a n$, bármely a > 0 valós számra.

Tétel (φ multiplikatív)

48

 φ multiplikatív.

Biz.

$$1 \qquad \qquad 2 \qquad \qquad \dots \qquad \qquad a$$

$$a+1$$
 $a+2$ $2a$

•••••

$$(b-1)a+1$$
 $(b-1)a+2$ ba

számoljuk meg, hogy a táblázatban hány relatív prím van ab -hez : ennyi lesz $\varphi(ab)$ értéke.

6.1.22. következmény \Rightarrow azokat kell számolni, amelyek a-hoz és b-hez is rel. prímek

omnibusz tétel \Rightarrow minden oszlop TMR mod b, ha (a, b) = 1

 \Rightarrow minden oszlopban $\varphi(b)$ relatív prím b -hez

minden oszlop kongruens elemeket tartalmaz mod a

minden sor egy TMR mod $a \Rightarrow$ minden sorban $\varphi(a)$ db elem relatív prím a-hoz

 $\Rightarrow \varphi(a)$ db oszlopnak rel prímek az elemei *a*-hoz

 \Rightarrow összesen $\varphi(a)\varphi(b)$ rel. prím van ab -hez

Ha $n \in \mathbb{N}^+$ kanonikus alakja $p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, akkor

$$\varphi(n) = \prod_{j=1}^{k} \left(p_j^{\alpha_j} - p_j^{\alpha_j - 1} \right) = n \prod_{j=1}^{k} \left(1 - \frac{1}{p_j} \right).$$

Biz.

 φ multiplikatív \Rightarrow

prímhatvány helyek, aztán összeszorzás

$$\varphi(p^{\alpha}) = ?$$

melyek nem relatív prímek *p* -hez ?

$$p^2$$
 -ig $p-1$ db van + maga p^2 , azaz $\varphi(p^2)=p^2-p^1$

tovább számolva

$$\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$$

7. GRÁFELMÉLET

7.1. Irányítatlan gráfok

Def. A $G = (V, E, \varphi)$ hármast (**irányítatlan**) **gráfnak** nevezzük, ha V, E halmazok, $V \neq \emptyset$, $V \cap E = \emptyset$ és $\varphi : E \to V \Delta V$.

$$V\Delta V = \{ [a, b] \mid a, b \in V \}, \text{ ahol } [a, b] = [b, a]$$

V: pont-, csúcshalmaz, V(G) G pontjai, v(G) = |V(G)| = #V

E: élhalmaz, E(G) G élei, e(G) = |E(G)| = #E

véges gráf: V(G), E(G) véges

 $e \in E$ él végpontjai (e illeszkedik a-ra és b-re):

ha
$$a, b \in V$$
 esetén $\varphi(e) = [a, b]$

hurokél: a = b

párhuzamos (többszörös) él $e, f \in E$: ha $\varphi(e) = \varphi(f)$

szomszédos él $e, f \in E$: ha $\varphi(e) = [a_1, a_2], \varphi(f) = [b_1, b_2]$ esetén $\{a_1, a_2\} \cap \{b_1, b_2\} \neq \emptyset$

szomszédos csúcsok $a_1, a_2 \in V$: ha $a_1 \neq a_2$ és $\exists e \in E$: $\varphi(e) = [a_1, a_2]$

a csúcs foka: a rá illeszkedő élek száma (huroknál 2), jelölés: d(a)

izolált csúcs a : d(a) = 0

egyszerű gráf: hurok és többszörös él nélküli gráf

A G = (V, E) gráf **reguláris**, ha d(a) értéke azonos minden $a \in V$ -re, n-reguláris, ha ekkor d(a) = n valamely a természetes számra.

Jegyzetben 7.1. ábra!

Petersen – gráf (3-reguláris)

Tétel(fokszám-élszám).

Legyen G = (V, E). Ekkor

$$\sum_{a \in V} d(a) = 2e(G).$$

Következmény: G-ben a páratlan fokú csúcsok száma páros.

Biz.

$$\sum_{a \in V} d(a) = \sum_{d(a) \equiv 0 \pmod{2}} d(a) + \sum_{d(a) \equiv 1 \pmod{2}} d(a) \equiv 0 \pmod{2},$$

amiből kapjuk, hogy

$$\sum_{d(a)\equiv 1 \pmod{2}} d(a) \equiv 0 \pmod{2}.$$

Def. A G = (V, E) és G' = (V', E') gráf **izomorf**, ha létezik $\pi: V \to V'$ és $\rho: E \to E'$ bijekció úgy, hogy $a \in V$ és $e \in E$ illeszkedik G-ben $\Leftrightarrow \pi(a)$ és $\rho(e)$ illeszkedik G'-ben.

Def. A G = (V, E) és G' = (V', E') **egyszerű** gráf **izomorf**, ha létezik $\pi : V \to V'$ bijekció úgy, hogy $a, b \in V$ szomszédos G-ben $\Leftrightarrow \pi(a)$ és $\pi(b)$ szomszédos G'-ben.

Def. A G = (V, E) egyszerű gráf **teljes gráf**, ha bármely két pontja szomszédos. \mathbf{K}_n jelöli az n pontú teljes gráfot.

Észrevételek:

ugyanannyi csúcsszámú teljes gráfok izomorfak

 K_n -nek n(n-1)/2 éle van

Def. A $G = (V, E, \varphi)$ hármast **páros gráfnak** nevezzük, ha $V = V' \cup V'', V' \cap V'' = \emptyset$ és G minden élének egyik végpontja V'-ben, másik végpontja V''-ben van.

Kuratowski – gráfok

Jegyzetben 7.2. ábra

$$A\rightarrow 1$$
, $B\rightarrow 3$, $C\rightarrow 5$, $D\rightarrow 2$, $E\rightarrow 4$, $F\rightarrow 6$

Def. A $G'=(V',\,E',\,\varphi')$ gráfot a $G=(V,\,E,\,\varphi)$ gráf részgráfjának nevezzük, ha

- 1. $V' \subseteq V$ és $E' \subseteq E$, valamint
- 2. $\varphi'(e) = \varphi(e)$ minden $e \in E'$ -re.

Def. Ha a $G' = (V', E', \varphi')$ gráf a $G = (V, E, \varphi)$ gráf részgráfja, és E' mindazon E-beli éleket tartalmazza, melyek végpontjai V'-ben vannak, akkor G'-t **telített részgráfnak** nevezzük, vagy pontosabban V' által meghatározott telített részgráfnak.

Def. Ha H részgráfja G-nek, akkor a $(V(G), E(G)\backslash E(H), \varphi|_{E\backslash E'})$ gráf H G-re vonatkozó komplementere.

Def. Az egyszerű **H gráf komplementere** az ugyanezen ponthalmazon lévő teljes gráfra vonatkozó komplementerét jelenti.

Ha csúcsokat törlünk egy gráfból, akkor az illeszkedő éleket is törölni kell!

Def. Tehát, ha $G = (V, E, \varphi)$ egy gráf és $V' \subseteq V$, akkor legyen $E' \subseteq E$ azon élek halmaza, amelyek illeszkednek valamelyik V' –beli csúcsra. A G gráfból kapott V' csúcshalmaz törlésével kapott gráf:

$$G' = (V \setminus V', E \setminus E', \varphi|_{E \setminus E'})$$

Jegyzetben 7.3. ábra

Def. Legyen k természetes szám. **k hosszú élsorozat (séta)** a_0 -ból a_k -be az $[a_0, e_1, a_1, e_2, a_2, ..., e_k, a_k]$ sorozat, ha $a_0, a_1, ..., a_k \in V(G)$, $e_1, e_2, ..., e_k \in E(G)$ és $\varphi(e_i) = [a_{i-1}, a_i]$ minden i = 1, 2, ..., k-ra.

Def. Egy élsorozat **út**, ha benne minden csúcs különböző és **vonal**, ha minden éle különböző.

Def. Egy élsorozat **zárt**, ha $a_0 = a_k$, különben **nyílt**. **Kör** az a zárt élsorozat, melyben a többi csúcs egymástól és a_0 -tól különbözik, és élei is mind különbözőek.

Észrevételek: út és kör hossza az éleinek száma

0 hosszúságú séta út

út mindig vonal

Jegyzetben 7.4. ábra

14

Tétel(út létezése)

Minden olyan nyílt élsorozat, amely az a_0 és a_n ($a_0 \neq a_n$) csúcsokat köti össze, tartalmaz részsorozatként ugyanezen csúcsokat összekötő utat.

Biz.

Ha minden i, j esetén $a_i \neq a_j$, akkor kész, különben legyen $a_i = a_j$ valamely indexekre.

$$\Rightarrow$$

$$[a_0, e_1, a_1, e_2, a_2, ..., e_i, a_i, e_{i+1}, ..., a_j, e_{j+1}, ..., e_n, a_n]$$

élsorozatból elhagyható az $a_i, e_{i+1}, ...,$ rész, ...

Véges lépésben különböző csúcsokat kapunk

7.1.8. Állítás. Bármely G gráfban egy legalább egy hosszúságú zárt vonal véges sok páronként éldiszjunkt kör egyesítése.

Biz.

Ha a vonalon csak az első és utolsó csúcs egyezik, akkor kész, mert 1 db körünk van.

Ha nem, "vágjuk le" azt a részt amely az első csúcs-ismétlődésig tart.

Tehát levágtunk egy kört és maradt egy zárt vonalunk.

Ha ez a zárt vonal kör, akkor készen vagyunk, ha nem ...

Def. Egy gráf **összefüggő**, ha benne bármely két csúcs összeköthető sétával (következésképpen úttal is).

Def. Legyen ~ a következő ekvivalenciareláció : a_1 , $a_2 \in V(G)$ esetén $a_1 \sim a_2$, ha $a_1 = a_2$ vagy a_1 és a_2 között van út.

Az azonos osztályokba eső csúcsok által meghatározott telített részgráfok a G gráf (összefüggő) komponensei, számuk c(G).

Észrevételek: kül. osztályba eső csúcsok nem szomszédosak

∀ él hozzárendelhető egy komponenshez

egy gráf összefüggő, ha egy komponense van

Def. A fa összefüggő és körmentes gráf.

- **7.1.11. Tétel.** Egy G egyszerű gráfra a következő feltételek ekvivalensek:
- (1) G fa;
- G összefüggő, de bármely él törlésével a kapott részgráf már nem összefüggő;
- (3) ha v és v' a G különböző csúcsai, akkor pontosan egy út van v-ből v'-be;
- (4) G-nek nincs köre, de bármilyen új él hozzávételével kapott gráf már tartalmaz kört.

Biz. $(1) \Rightarrow (2)$:

Tfh indirekte v, v´ közti él törlésével összefüggő marad a fa

 \Rightarrow marad egy másik út v, v' közt

ez az út + törölt él kört alkot az eredeti fában

 $(2) \Rightarrow (3)$:

Tfh indirekte v, v´ közt van két különböző út és induljunk el, v-ből v´-be

töröljük az első olyan élet, amely különbözik a két útban

ha van ilyen, akkor a másik úton eljutunk v´-be

ha nincs ilyen, akkor kör van

$$(3) \Rightarrow (1)$$
:

Tfh indirekte van kör a fában

 \Rightarrow a kör v, v' pontjai közt van két különböző út

(1) \Rightarrow (4): fa körmentes összefüggő: húzzunk be egy élt v, v' közé

(4) \Rightarrow (1): tetszőleges $v \neq v'$ csúcsokra a körmentes G gráfban

ha szomszédosak, akkor pontosan ez az egy út van, különben kör lenne ⇒ fa ha nem, húzzunk be egy élt v, v' közé $(4) \Rightarrow \text{kör ,,keletkezik''}$

ennek a körnek a "maradék" része az út \Rightarrow összefüggő \Rightarrow fa

7.1.12. Tétel. Ha egy G véges gráfban nincs kör, de van él, akkor van legalább két elsőfokú csúcs.

Biz.

válasszunk egy maximális hosszúságú u utat v, v´végpontokkal

Tfh (indirekte) v, v´ nem elsőfokú

illeszkedik rájuk él

hol van ezen élek másik végpontja?

7.1.13. Tétel. Egy G egyszerű véges gráfra n csúccsal a következő feltételek ekvivalensek:

- (1) G fa;
- (2) G-ben nincs kör és n-1 éle van;
- (3) G összefüggő és n-1 éle van.

Biz.

 $(1) \Rightarrow (2)$ pontszámra vonatkozó teljes indukció

n = 1 esetén nyilvánvaló az állítás

Legyen n > 1, és tegyük fel, hogy minden n-nél kevesebb pontú fára igaz az állítás

tekintsünk egy n pontú fát

próbáljunk kitörölni egy élt és egy pontot, úgy hogy fa maradjon

7.1.12. tétel ⇒ létezik elsőfokú pont: egyet hagyjunk el éllel együtt

⇒ marad egy körmentes összefüggő gráf ⇒ fa

továbbá ennek n-1 pontja van

érvényes rá az indukciós feltevés: n-2 éle van

$(2) \Rightarrow (3)$ pontszámra vonatkozó teljes indukció

n = 1 esetén nyilvánvaló az állítás

Legyen n > 1, és tfh \forall n-nél kevesebb pontú ilyen gráfra igaz az állítás tekintsünk egy n pontú körmentes gráfot, amelynek n-1 éle van próbáljunk kitörölni egy élt és egy pontot,

7.1.12. tétel ⇒ létezik elsőfokú pont: hagyjuk el az éllel együtt

marad egy n – 1 pontú körmentes gráf n-2 éllel

úgy hogy körmentes maradjon

Indukciós feltevés miatt ez összefüggő is

 $(3) \Rightarrow (1)$

tekintsünk egy n pontú összefüggő gráfot, amelynek n-1 éle van tfh van benne kör

körből elhagyunk egy élt, ettől még összefüggő marad

•••

végül, ha elfogytak a körök k db törlés után n pontú fát kapunk

az élek száma n-1-k

de $(1) \Rightarrow (2)$ miatt az élek száma n-1

 $\Rightarrow k = 0$

0 db kör volt az eredeti gráfban ⇒ fa

feszítőfa?

Def. Az F gráf a G gráf **feszítőfája**, ha

- 1. pontjaik halmaza megegyezik,
- 2. F a G részgráfja, és
- 3. *F* fa.

Jegyzetben 7.5. ábra

Tétel. Minden véges összefüggő G gráfnak létezik feszítőfája.

Biz.

Ha van kör, akkor elhagyjuk az egyik élt, ...

7.1.16. Állítás. Egy $G = (\varphi, E, V)$ véges összefüggő gráfban létezik legalább $\sharp(E) - \sharp(V) + 1$ kör, amelyek élhalmaza különböző.

Biz.

előző tétel \Rightarrow létezik T feszítőfa, aminek v(G) - 1 éle van

Legyen K_f az a kör ami $T \cup \{f\}$ -ben van, ahol $f \in E(G) \setminus E(T)$

 T_G komplementerben legalább e(G) - v(G) + 1 ilyen f él van

$$\Rightarrow$$
 legalább $e(G) - v(G) + 1$ különböző kör

Észrevétel

A $T \cup \{f\}$ alakú részgráfok pontosan egy kört tartalmaznak, tehát ez a rendszer egyértelműen definiált.

Def. Ha vesszük az összes K_f alakú kört, akkor G T-re vonatkozó alapkörrendszeréről beszélünk.

Jegyzetben 7.6. ábra

Def. Legyen $G = (V, E, \varphi)$ egy gráf, v, w csúcsok V-ben és $V' \subseteq V$. Ha minden v-ből w-be vezető út tartalmaz V'-beli csúcsot, akkor V' elvágja v-t és w-t.

Ha $E' \subseteq E$ és minden v-ből w-be vezető út tartalmaz E'-beli élet, akkor E' elvágja v-t és w-t.

Ha V', illetve E' egy elemű, akkor **elvágó** (**szeparáló**) **pontról**, illetve **elvágó** (**szeparáló**) **élről** beszélünk.

Def. A G = (V, E) gráfban $E' \subseteq E$ elvágó (szeparáló) élhalmaz, ha a $G' = (V, E \setminus E')$ több komponensből áll, mint G. (Azaz vannak olyan csúcsok G-ben, amelyeket E' elvág.)

Def. E' **vágás**, ha elvágó élhalmaz, de semelyik valódi részhalmaza nem az.

7.1.19. Állítás. Egy $G = (\varphi, E, V)$ véges összefüggő gráfban létezik legalább $\natural(V) - 1$ különböző vágás.

Biz.

T feszítőfa összefüggő

 $\Rightarrow T_G$ komplementer nem vágás

Ha $T_{\rm G}$ komplementerhez hozzáveszünk egy élt T-ből, akkor vágás lesz

T-nek v(G) - 1 éle van

⇒ legalább ennyi különböző vágást kapunk

Def.

A körmentes gráfot erdőnek nevezzük.

G olyan részgráfját, mely összes pontját tartalmazza, és maximálisan sok élt G-ből úgy, hogy körmentes maradjon, G feszítő erdőjének nevezzük.

A feszítő erdő minden összefüggő komponense *G* megfelelő komponensének feszítőfája.

G rangja
$$r(G) = v(G) - c(G)$$

$$G$$
 nullitása $n(G) = e(G) - v(G) + c(G)$

Königsberg polgárainak problémája.

Jegyzetben 7.7. ábra

Def. Ha egy G gráfban van olyan Z zárt élsorozat, amelyik G minden élét pontosan egyszer tartalmazza, akkor G-t **Euler-gráfnak**, Z-t pedig **Euler-vonal**-nak (**Euler-körnek**) nevezzük.

Megjegyzés.

Többszörös éleket is megengedünk!

7.1.22. Állítás. Egy véges összefüggő gráfban pontosan akkor létezik zárt Euler-vonal, ha minden csúcs páros fokú. Ha egy véges összefüggő gráf 2s páratlan fokú csúcsot tartalmaz, ahol $s \in \mathbb{N}^+$, akkor a gráf s darab páronként éldiszjunkt nyílt vonal egyesítése.

Biz.

- **1. lépés:** Legyen Z zárt Euler-vonal G gráfban. Végighaladva Z-n, minden olyan élhez, mely egy x ponthoz vezet, van egy másik, amelyiken x-et elhagyjuk. Ezért d(x) kétszer annyi, mint ahányszor x előfordul Z-ben, tehát páros szám.
- 2. lépés: Tfh minden csúcs foka páros
 - \Rightarrow létezik K_1 kör G-ben (biz. gyakorlaton)

Tekintsük most a $G \setminus K_1$ gráfot: minden csúcs foka páros, vagy izolált.

Hasonló módon kiválasztható K_2 kör, ami éldiszjunkt K_1 -gyel.

• • •

Végül csak izolált csúcsok maradnak ⇒ G éldiszjunkt körök egyesítése

3. lépés: Ha $G=K_1$, akkor készen vagyunk. Egyébként az összefüggőség miatt kell léteznie egy K_i körnek, melynek K_1 -gyel van x közös pontja.

x-en keresztül be tudjuk járni $K_1 \cup K_i$ -t úgy, hogy inden élet pontosan egyszer érintünk.

 \Rightarrow Euler - vonal.

Addig bővítjük, míg minden kört fel nem használtunk.

Tehát eddig beláttuk G összefüggő véges gráfra:

G Euler-gráf

minden pontja páros fokú

G éldiszjunkt körök egyesítése

Tfh s = 1

legyen v, v´ a két páratlan fokú pont

ha *u* egy *v*, *v*′-t összekötő max hosszú vonal, akkor

ha u minden élt tartalmaz: kész

ha nem : $\exists w$ csúcs az u vonalon amelyre illeszkedik "nem felhasznált" él

iduljunk el w csúcsból egy ilyen élen

folytassuk az utat mindig "nem felhasznált" élen

a pontokra csak páros sok "nem felhasznált" él illeszkedik

⇒ előbb – utóbb visszaérünk w-be

 \Rightarrow kaptunk egy 0-nál hosszabb k kört

Tehát u w-ig + k + u w-től hosszabb vonal v-ből v -be, mint u

 $\Rightarrow u$ minden élt tartalmaz

Tfh s > 1

választunk két különböző elsőfokú pontot és egy őket összekötő utat

töröljük ezen út éleit a gráfból

a végpontoktnak eggyel, az út többi pontjának 2-vel csökken a fokszáma

⇒ a páratlan fokszámú pontok száma pontosan 2-vel csökkent

ezt a "műveletet" megismételhetjük (pontosan még s-1-szer), mert a komponensekben párosával fordulnak elő a páratlan fokszámú pontok

végül csupa páros fokszámú csúcs marad

ekkor már nem biztos, hogy összefüggő!

s = 0 eset \Rightarrow izolált pontok, illetve éldiszjunkt körök maradhatnak

hogy jönnek ki az éldiszjunkt vonalak?

egy kört "egyesítünk" azzal a kivágott vonallal, amivel van közös pontja

egy vonalhoz több kör is csatlakozhat, attól éldiszjunktak maradnak

s db éldiszjunkt "kivágást" csináltunk

 \Rightarrow *s* db éldiszjunkt vonalat kapunk

Def. Ha van egy G gráfban olyan K kör, melyben minden V(G)-beli csúcs pontosan egyszer szerepel, akkor K-t **Hamilton-vonalnak** (**Hamilton-körnek**) nevezzük, G-t pedig **Hamilton-gráfnak**. Egy út **Hamilton-út**, ha G minden pontját pontosan egyszer tartalmazza.

Jegyzetben 7.8. ábra

Példa

Az X gráfban Hamilton-kört képeznek az

illetve az (1, 2, 3, 7, 5, 4, 6, 1) csúcsok.

Y-ban nincs Hamilton-kör.

Def. Legyen $G = (V, E, \varphi, w)$ olyan gráf, ahol w függvény egy $e \in E(G)$ élhez rendel valós számhalmazbeli értéket, amelyet e súlyának nevezzük. $X \subseteq E(G)$ esetén az X részhalmaz súlya:

$$\sum_{e \in X} w(e)$$

7.1.25. Kruskal algoritmusa. $Egy (\varphi, E, V, w)$ élsűlyözött összefüggő véges gráfban az összes csúcsot tartalmazó üres részgráfból indulva, és a már kiválasztott részgráfhoz addig adva hozzá a minimális súlyú olyan élt, amellyel a kiválasztott részgráf még nem tartalmaz kört, egy minimális súlyú feszítőfát kapunk.

Nyilvánvaló, hogy a kiválasztott élek feszítőfát adnak. Ezt jelölje *F*.

Feltétel:

Tegyük fel az állítással ellentétben, hogy F_0 minimális súlyú feszítőfa, és $w(F_0) < w(F)$.

Ha több ilyen ellenpélda is van, akkor ezek közül válasszuk F_0 -nak azt, melynek a lehető legtöbb közös éle van F-fel.

Tekintsük az $e_0 \in E(F_0) \setminus E(F)$ élt.

$$F \text{ fa} \Rightarrow$$

$$F \cup e_0$$
 tartalmaz K kört (*)

 \Longrightarrow

K kör minden $e \in E(K) \setminus \{e_0\}$ élére $w(e) \le w(e_0)$ (**)

 F_0 fa

 \Longrightarrow

 F_0 - e_0 két komponensre esik szét

 $(*) \Rightarrow$

K körnek e_0 -on kívül tartalmaznia kell e_1 élt, ami összeköti F_0 - e_0 két komponensét, mivel e_0 mindkét végpontja K-ban van, illetve az egyik F_0 - e_0 egyik, a másik F_0 - e_0 másik komponensében van.

 \Rightarrow

$$F_1 = F_0 - e_0 \cup \{e_1\}$$
 feszítőfa lesz, és

$$(**) \Rightarrow$$

$$w(e_1) \le w(e_0).$$

Két esetet kell vizsgálnunk:

1. eset: $w(e_1) < w(e_0)$

 \Longrightarrow

$$w(F_1) < w(F_0)$$

F₀ minimális

2. eset:

$$w(e_1) = w(e_0).$$

 \Rightarrow

 F_1 -nek eggyel több közös éle van F-fel, mint F_0 nak.

F₀ tartalmazza a legtöbb közös élt F-fel a minimális súlyú feszítőfák közül

Megjegyzés

nem tudunk mindig minimális súlyú élt választani

∀ lépésben a lehetséges lehetőségek közül az adott lépésben, a végcél szempontjából lehető legkedvezőbb választással élünk.

Nem biztos, hogy bejön !!!

Példa: minimális súlyú Hamilton-kört keresünk.

7.2. Irányított gráfok, síkbarajzolhatóság

Def. A $G = (V, E, \varphi)$ hármast **irányított gráfnak** nevezzük, ha V, E halmazok, $V \neq \emptyset$, $V \cap E = \emptyset$ és $\varphi : E \rightarrow V \times V$.

Def. Legyen $e \in E$. Ha $\varphi(e) = (u, v)$, akkor az e irányított él **kezdőpontja** u, **végpontja** v.

Def. Ha (h) = (u, u), akkor h hurokél.

Def. $e ext{ \'es } f ext{ (szigor\'uan) p\'arhuzamos \'elek, ha <math>\varphi(e) = (u, v) ext{ \'es}$ $\varphi(f) = (u, v).$ **Def.** Pont **kifoka**, $d^+(a)$ a kimenő élek száma,

Def. Pont **befoka**, $d^-(a)$ pedig a bemenő élek száma.

A hurokél a ki- és befok értékét is 1-gyel növeli.

Def. Forrásnak nevezzük a 0 befokú pontot, **nyelőnek** azt, amelyiknek kifoka 0.

Észrevétel: ha G véges irányított gráf, akkor

$$\sum_{a \in V(G)} d^{+}(a) = \sum_{a \in V(G)} d^{-}(a) = e(G).$$

Megjegyzés.

A $G = (V, E, \varphi)$ irányított gráfhoz **egyértelműen** hozzárendelhetjük a $G' = (V, E', \varphi')$ irányítatlant, oly módon, hogy minden $e \in E$, $\varphi(e) = (u, v)$ élhez felveszünk az E' halmazba egy e' élt, melyre $\varphi'(e') = [u, v]$.

A $G' = (V, E', \varphi')$ irányítatlan gráfhoz is hozzárendelhetünk egy $G = (V, E, \varphi)$ irányítottat úgy, hogy ha $e' \in E'$ és $\varphi'(e') = [u, v]$, akkor beveszünk az E halmazba egy e élt, amelyre $\varphi(e) = (u, v)$ vagy $\varphi(e) = (v, u)$. Ez az utóbbi hozzárendelés már nem lesz egyértelmű.

7.2.3. Irányított gráfok izomorfiája. A $G = (\psi, E, V)$ és $G' = (\psi', E', V')$ irányított gráfok izomorfak, ha van olyan az E-t E'-re képező kölcsönösen egyértelmű f és a V-t V'-re képező kölcsönösen egyértelmű g leképezés, hogy minden $e \in E$ -re egy $v \in V$ pontosan akkor kezdőpontja e-nek, ha g(v) kezdőpontja f(e)-nek és pontosan akkor végpontja e-nek, ha g(v) végpontja f(e)-nek.

Def. Legyen k természetes szám. **Irányított élsorozat** a $[v_0, e_1, v_1, ..., e_k, v_k]$ sorozat, ha $v_0, v_1, ..., v_k \in V(G)$ és $e_1, e_2, ..., e_k \in E(G)$, valamint $\varphi(e_i) = (v_{i-1}, v_i)$ minden i = 1, 2, ..., k-ra .

kapcsolódó fogalmak hasonlóan, mint irányítatlannál...

Def. A G irányított gráf **összefüggő**, ha a megfelelő G' = (V, E') irányítatlan gráf összefüggő. A G irányított gráf **komponensei** a megfelelő G' irányítatlan gráf komponenseit jelentik. A komponensek száma c(G) = c(G').

Def. A G = (V, E) gráf **erősen összefüggő**, ha minden $v_1, v_2 \in V(G)$ esetén $v_1 = v_2$, vagy v_1 -ből vezet v_2 -be irányított út, és v_2 -ből v_1 -be is.

Tétel (irányított gráf erős összefüggősége)

A G' = (V, E') összefüggő gráf akkor és csak akkor irányítható úgy, hogy a nyert G = (V, E) erősen összefüggő legyen, ha G minden **éléhez** tartozik rajta áthaladó kör.

Hasonló nem mondható el olyan gráfról, melyben minden **csúcson** halad át kör.

Def.

Legyen G = (V, E). Tekintsük a következő ekvivalenciarelációt:

 $v_1, v_2 \in V(G)$ esetén legyen $v_1 \sim v_2$, ha $v_1 = v_2$, vagy v_1 csúcsból v_2 -be és v_2 -ből v_1 -be is vezet irányított út.

Osztályok: a csúcsok diszjunkt részhalmazai.

Általuk meghatározott telített részgráfok a *G* erősen összefüggő komponensei (erős komponensek).

Példa

1. Minden csúcson halad át kör, mégsem irányítható úgy, hogy erősen összefüggő legyen.

2. Az erős komponensek diszjunktak, és tartalmazzák a gráf minden pontját, de nem feltétlenül minden élét

7.2.7. Irányított fák. Egy irányított gráfot irányított fának nevezünk, ha fa, és van olyan csúcsa, amelyből minden csúcshoz vezet irányított út. Ez a csúcs nyilván egyértelműen meghatározott, ez az irányított fa gyökere.

A gyökértől minden csúcshoz pontosan 1 út vezet

⇒ gyökéren kívüli csúcsok befoka 1

n-edik szint: azon csúcsok halmaza, amelyekhez *n* hosszúságú út vezet a gyökérből, a szintek maximuma a fa magassága.

Ha v kezdő, v´ és v´´ végpontja egy élnek, akkor v a **szülő**, v´ és v´´ a **gyerekek (testvérek).**

Irányított fa 0 kifokú csúcsa a levél.

Egy gráf akkor és csak akkor rajzolható gömbre, ha síkba rajzolható.

Egy **tartomány** a síknak azon legnagyobb része, amelynek bármely két pontja összeköthető síkbeli vonallal, amely nem tartalmazza a gráf csúcsait, illetve éleinek egyetlen pontját sem. Síkba rajzolható gráf tetszőleges belső tartománya egy másik lerajzolásban lehet külső

tartomány.

Tétel (Euler-formula)

Egy összefüggő síkbeli gráf, amelynek *t* tartománya van (a külső tartományt is beleértve), eleget tesz az **Euler-formulának**:

$$v(G) - e(G) + t = 2.$$

Bizonyítás (vázlatos)

Tekintsük a gráf egy K körét (ha van) és ennek egy a élét. A K kör a síkot két részre osztja. Mindkét részben van egy-egy tartomány, amelynek a határa.

$$a$$
-t elhagyjuk \Rightarrow

A két tartomány egyesül, a tartományok és az élek száma eggyel csökken, és így v(G) - e(G) + t értéke nem változik.

63

Ekkor a maradék gráf feszítőfa, melyre az állítás nyilvánvaló, hiszen t = 1 és e(G) = v(G) - 1.

$$\Rightarrow$$

$$v(G) - e(G) + t = v(G) - (v(G) - 1) + 1 = 2.$$

Tétel(síkgráf éleinek száma)

Ha G egyszerű, síkba rajzolható gráf, és $v(G) \ge 3$, akkor

$$e(G) \le 3v(G) - 6.$$

$$v(G) = 3$$
 -ra igaz \Rightarrow tfh $v(G) > 3$

Mivel G egyszerű \Rightarrow minden tartományát legalább 3 él határolja.

 \Rightarrow legalább 3t élet számoltunk

az elvágó éleket egyszer számoltuk, a többit kétszer ⇒

$$3t \leq 2e(G)$$
.

Euler - formula
$$\Rightarrow$$
 $3(e(G) - v(G) + 2) \le 2e(G)$

$$\Rightarrow$$
 $e(G) \le 3v(G) - 6$.

2. eset: Ha G nem összefüggő, + élek \Rightarrow 1. eset.

Tétel (síkgráf fokszámai)

(66)

Ha G egyszerű, síkba rajzolható gráf, akkor

$$\delta = \min_{a \in V(G)} d(a) \le 5.$$

Bizonyítás (indirekt)

Az általánosság megsértése nélkül feltehetjük, hogy $v(G) \ge 3$.

Feltétel: tfh $\delta \geq 6$.

$$\sum_{a \in V(G)} d(a) = 2e(G) \qquad \delta \ge 6 \Rightarrow \qquad 6v(G) \le 2e(G)$$

előző tétel
$$\Rightarrow$$
 $2e(G) \le 6v(G) - 12$

$$6v(G) \le 6v(G) - 12$$

Tétel(Kuratowski gráfok)

67

 K_5 és $K_{3,3}$ nem rajzolható síkba.

Bizonyítás (indirekt) Feltétel: K_5 és $K_{3,3}$ síkba rajzolható.

$$K_{3,3}$$
 esetén, mivel $v(G) = 6$ és $e(G) = 9$,

Euler - formula $\Rightarrow t = 5$

Viszont $K_{3,3}$ nem tartalmaz háromszöget és nincs szeparáló éle.

$$\Rightarrow$$
 $4t \le 2e(G)$ \Rightarrow $20 \le 18$

 K_5 esetén, mivel v(G) = 5 és e(G) = 10,

élszám tétel
$$\Rightarrow e(G) \le 3v(G) - 6$$

Def.

Egy gráf síkba rajzolhatóságát nem befolyásolja, hogyha egy élét helyettesítjük kettő hosszúságú úttal, illetve, ha valamelyik kétfokú csúcsra illeszkedő éleit egybeolvasztjuk, és a csúcsot elhagyjuk.

Két gráf **topologikusan izomorf**, ha az előbb említett transzformációk véges sokszori alkalmazásával izomorf gráfokba transzformálhatóak.

Tétel (Kuratowski)

Egy egyszerű véges gráf **akkor és csak akkor** rajzolható síkba, ha nem tartalmaz a Kuratowski gráfok valamelyikével topologikusan izomorf részgráfot.

Legyen a G gráfban: $V = \{v_1, ..., v_n\}$ és $E = \{e_1, ..., e_m\}$

Csúcsmátrix (szomszédsági mátrix) $B_{n\times n}$

ha irányított b_{ij} = ahány él van v_i kezdő és v_j végponttal

ha irányítatlan $b_{ij} = \begin{cases} i=j \text{ esetén ahány hurokél illeszkedik } v_i\text{-re} \\ i\neq j \text{ esetén ahány él van } v_i \text{ és } v_j \text{ közt} \end{cases}$

Illeszkedési mátrix (élmátrix) $B_{n \times m}$

ha irányított $b_{ij} = \begin{cases} 1 \text{ ha } e_j\text{-nek } v_i \text{ kezdőpontja} \\ -1 \text{ ha } e_j \text{ nem hurokél és } v_i \text{ a végpontja} \\ 0 \text{ egyébként} \end{cases}$

ha irányítatlan $b_{ij} = \begin{cases} 1 \text{ ha } e_j \text{ illeszkedik } v_i \text{ pontra} \\ 0 \text{ egyébként} \end{cases}$

Algebra: csoportelmélet

8. ALGEBRA

8.1. Csoportok

Jegyzetben 8.1. ábra

Algebrai struktúrák

Def. Legyen H tetszőleges halmaz. Egy H-beli **n-ér műveleten** egy $f: H \times H \cdots \times H \to H$ függvényt értünk. Ha $x_1, x_2, ..., x_n \in H$, akkor $f(x_1, x_2, ..., x_n)$ a művelet **eredménye**, míg $x_1, x_2, ..., x_n$ a művelet **operandusai**.

Az (A, Ω) pár **algebrai struktúra**, ha A nem üres halmaz, és Ω az A-n értelmezett véges változós műveletek halmaza. (Ha tehát $\omega \in \Omega$, akkor egyértelműen létezik olyan $n \in \mathbb{N}_0$, melyre $\omega : A^n \to A$ függvény.)

A-t tartóhalmaznak (alaphalmaz) hívjuk.

Emlékeztető

Legyen · a G, \otimes a G halmazon értelmezett binér művelet. A φ : G \to G függvényt **homomorfizmusnak** nevezzük, ha művelettartó, vagyis minden $a_1, a_2 \in G$ esetén

$$\varphi(a_1a_2) = \varphi(a_1) \otimes \varphi(a_2).$$

Epimorfizmus: szürjektív homomorfizmus

Monomorfizmus: injektív homomorfizmus

Izomorfizmus: bijektív homomorfizmus

Endomorfizmus: ha G = G'

Automorfizmus: ha G = G' és bijektív

Észrevételek

Homomorfizmusok összetétele is homomorfizmus, mert ha $\varphi': G' \to G''$ is homomorfizmus, akkor

$$(\varphi' \circ \varphi)(xy) = \varphi'(\varphi(xy)) = \varphi'(\varphi(x)\varphi(y))$$
$$= \varphi'(\varphi(x))\varphi'(\varphi(y)) = (\varphi' \circ \varphi)(x)(\varphi' \circ \varphi)(y).$$

Izomorfizmusok összetétele nyilván izomorfizmus. Izomorfizmus inverze is izomorfizmus, mert

$$\varphi^{-1}\big((\varphi(x)\varphi(y)\big) = \varphi^{-1}\big(\varphi(xy)\big) = xy = \varphi^{-1}\big(\varphi(x)\big)\varphi^{-1}\big(\varphi(y)\big).$$

Def. Legyenek (H, \cdot) és (G, \otimes) binér műveletes algebrai struktúrák. **Izomorfaknak** nevezzük őket, ha létezik $\varphi: G \to H$ izomorfizmus. Ezt a tényt $H \cong G$ -vel jelöljük. $\varphi(G)$ -t G homomorf képének nevezzük.

Példák

(1) Ha a>1, akkor az $x\mapsto a^x$ leképezés ($\mathbb{R},+$)-nak a pozitív valós számok szorzással tekintett csoportjára izomorfizmus.

(2) $(\mathbb{R}, +)$ és $(\mathbb{R} \setminus \{0\}, \cdot)$ nem izomorfak, mert a másodikban két olyan elem is van, amelynek a négyzete az egységelem.

Def.

Legyen (A,Ω) algebrai struktúra, ha Ω az n_0 , n_1 , ..., n_i , ... nullér, unér, stb. véges változós műveletek halmaza, akkor

 $(n_0, n_1, ..., n_i, ...)$ az (A, Ω) algebrai struktúra **típusa**.

A (0, 0, 1, 0, ...) típusú algebrai struktúrákat **grupoidnak** hívjuk.

(0, 0, 2, 0, ...) típusú algebrai struktúrák például a gyűrűk.

Emlékeztető

Az (G, ·) binér műveletes algebrai struktúrában a műveletet

asszociatívnak nevezzük, ha minden $a, b, c \in G$ esetén a(bc) = (ab)c

kommutatív a műveletet, ha minden $a, b \in G$ esetén ab = ba.

reguláris, ha minden $a, b, c \in G$ esetén ac = bc-ből következik, hogy a = b, valamint ca = cb-ből következik, hogy a = b.

A (G, \cdot) algebrai struktúra **félcsoport**, ha egyetlen kétváltozós műveletet tartalmaz, amely asszociatív.

Tétel (Általános asszociativitási törvény).

Ha (G, \cdot) félcsoport, akkor minden szorzat tetszőlegesen bontható zárójelekkel két részre:

$$(a_1 a_2 ... a_k)(a_{k+1} ... a_n) = a_1 a_2 ... a_n$$

minden $1 \le k < n$ esetén.

Def. A (G, \cdot) félcsoportban az $e_b \in G$ bal oldali egységelem, ha minden $a \in G$ esetén $e_b a = a$. $e_j \in G$ jobb oldali egységelem, ha minden $a \in G$ esetén $ae_j = a$. Az e egységelem, ha egyszerre bal és jobb oldali egységelem.

Példa.

$$G = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix} \middle| a, b \in \mathbf{R} \right\}$$

G félcsoport a mátrixszorzással, továbbá baloldali egységelem:

$$\begin{pmatrix} x & y \\ x & y \end{pmatrix}$$
, végtelen sok van!

ahol x + y = 1, hiszen

$$\begin{pmatrix} x & y \\ x & y \end{pmatrix} \cdot \begin{pmatrix} c & d \\ c & d \end{pmatrix} = \begin{pmatrix} (x+y) \cdot c & (x+y) \cdot d \\ (x+y) \cdot c & (x+y) \cdot d \end{pmatrix} = \begin{pmatrix} c & d \\ c & d \end{pmatrix}$$

Def.

Legyen a (G, \cdot) félcsoportban e egységelem. Az $a \in G$ elemnek $a_b \in G$ balinverze, ha

$$a_b a = e$$
,

 $a_i \in G$ jobbinverze, ha

$$aa_i = e$$
.

Inverze a-nak az a' elem, ha

$$aa' = a'a = e.$$

G a (G, \cdot) félcsoportban e_b baloldali egységelem. Az $a \in G$ elemnek $a_b \in G$ az e_b -re vonatkoztatott balinverze, ha $a_b a = e_b$, illetve az e_b -re vonatkoztatott jobbinverze, ha $aa_b = e_b$. Hasonlóan definiáható a bal- és jobbinverz fogalma jobboldali egységelemre.

Félcsoportban legfeljebb egy egységelem létezik, és minden elemnek legfeljebb egy, az egységelemre vonatkozó inverze létezik.

Biz.

Legyen (G, \cdot) félcsoport, e_b bal oldali, e_j pedig jobb oldali egységelem G-ban. Ekkor $e_b = e_i$, hiszen

$$e_b e_j = e_j$$
 és $e_b e_j = e_b$,

mert e_b bal-, e_i jobb oldali egységelem.

Asszociatív tulajdonság

Függvény egyértelmű!

Ha az $a \in G$ elemnek a_b balinverze, a_j pedig jobbinverze, akkor $a_b = a_j$:

$$a_b a a_j = a_b (a a_j) = a_b e = a_b \text{ \'es } a_b a a_j = (a_b a) a_j = e a_j = a_j.$$

Tétel(homomorf invariánsok félcsoportban)

- ha G félcsoport, akkor a homomorf képe is félcsoport;
- (2) ha G-ben e jobb oldali egységelem, bal oldali egységelem, illetve egységelem, akkor a homomorf képében e képe jobb oldali egységelem, bal oldali egységelem, illetve egységelem;
- (3) ha G-ben e egységelem, és g-nek g* jobb oldali inverze, bal oldali inverze, illetve inverze, akkor a homomorf képében g* képe a g képének jobb oldali inverze, bal oldali inverze, illetve inverze;
- (4) ha G-ben g és h felcserélhetőek, akkor a homomorf képben g és h képei felcserélhetőek.

Biz.

Legyen $a, b, c \in G$, a képelemeket jelölje ´.

(1)
$$(a'b')c' = (ab)'c' = (abc)' = a'(bc)' = a'(b'c')$$

(2) Ha G-nek e egységeleme, g tetszőleges eleme, akkor

$$g'e' = (ge)' = g'$$
 ...

(3) Ha g-nek g^* a jobb oldali inverze, akkor

$$g'g^{*\prime} = (gg^*)' = e' \quad \cdots$$

(4) Ha g és h felcserélhető, akkor

$$g'h' = (gh)' = (hg)' = h'g'$$

- A (H, \cdot) félcsoport **csoport**, ha
 - 1. létezik benne e_b bal oldali egységelem, és
 - 2. minden $a \in H$ elemnek létezik erre a bal oldali egységelemre vonatkozó a_b balinverze:

$$a_b a = e_b$$
.

Definíció II.

A (H, \cdot) félcsoport **csoport**, ha

- 1. létezik benne e egységelem, és
- 2. minden $a \in H$ elemnek létezik erre az egységelemre vonatkozó a^{-1} inverze :

$$a^{-1}a = aa^{-1} = e$$
.

A (H, \cdot) félcsoport **csoport**, ha

minden $a, b \in H$ esetén egyértelműen létezik az

$$ax = b$$
 és az $ya = b$

egyenletek megoldása H-ban.

Definíció IV.

A (H, \cdot) félcsoport **csoport**, ha a művelet **invertálható**, azaz

minden $a, b \in H$ esetén létezik az

$$ax = b$$
 és az $ya = b$

egyenletek megoldása H-ban.

A csoport definíciói ekvivalensek egymással.

Biz.

 $I. \Rightarrow II.$

Legyen $a \in H$ bal oldali egységelemre vonatkozó balinverze a_b , az a_b bal oldali egységelemre vonatkozó balinverze pedig b, ekkor egyrészt

$$ba_baa_b = (ba_b)aa_b = e_baa_b = (e_ba)a_b = aa_b$$
,

másrészt

$$ba_baa_b = b(a_ba)a_b = be_ba_b = ba_b = e_b$$
.

Tehát $aa_b = e_b$.

 \Rightarrow

 a_b az a elem kétoldali inverze e_b -re vonatkozóan: a^{-1} .

Továbbá e_b jobb oldali egységelem is, mert

$$aa^{-1}a = (aa^{-1}) a = e_b a = a$$
, és
$$aa^{-1}a = a(a^{-1}a) = ae_b$$
,
$$\Rightarrow$$

$$ae_b = e_b a = a$$
.

II. \Rightarrow III.

Belátható, hogy az ax = b egyenletnek legfeljebb egy megoldása van, legyen ugyanis x_0 egy megoldás, azaz

$$ax_0=b$$
.

Ekkor balról szorozva *a*⁻¹-nel kapjuk, hogy

$$a^{-1}ax_0 = a^{-1}b$$
,

$$ex_0 = a^{-1}b$$
$$x_0 = a^{-1}b$$

$$x_0 = a^{-1}b$$

Függvény egyértelmű!!!

Tehát az egyenlet megoldása legfeljebb az $a^{-1}b$ elem lehet, és valóban az is, mert

$$a(a^{-1}b) = (a^{-1}a)b = eb = b.$$

Az ya = b esetben hasonlóan bizonyítunk.

III. ⇒ IV. Az állítás nyílvánvaló.

IV. \Rightarrow I.

Első kérdés: létezik-e baloldali egységelem?

Tekintsünk egy tetszőleges $a \in H$ elemet és oldjuk meg az

$$ya = a$$

egyenletet. Legyen a megoldás e_b .

IV. \Rightarrow tetszőleges $b \in H$ -ra megoldható az

$$ax = b$$

egyenlet is. Legyen x_0 egy megoldás. Ekkor

$$e_b b = e_b (ax_0) = (e_b a)x_0 = ax_0 = b.$$

Második kérdés: létezik-e a baloldali egységelemre vonatkozó balinverz is *H*-ban?

Válasz: Igen, mert

tetszőleges $a \in H$ -re az $ya = e_b$ egyenlet megoldható

a megoldás lesz a bal oldali egységelemre vonatkozó balinverz.

Def. Abel-csoportnak nevezzük a kommutatív csoportokat.

Csoportban a művelet **reguláris**.

Biz.

Tegyük fel, hogy ac = bc = d.

az yc = d egyenlet megoldása egyértelmű,

a és b megoldásai az egyenletnek,

 \Rightarrow

a = b.

A másik oldali regularitás hasonlóan látható be.

Észrevétel(szorzat inverze):

$$(ab)^{-1} = b^{-1}a^{-1}$$
.

Hiszen:

$$(b^{-1}a^{-1}) ab = b^{-1}(a^{-1}a)b = b^{-1}b = e.$$

Példa

Legyen (H, \cdot) a következő algebrai struktúra:

$$H = \{a, b, c\},\$$

a műveletet pedig definiálja a következő tábla:

 $\forall a, b \in H$ -ra megoldható: ax = b (sorok) és ya = b (oszlopok) is

•	а	b	С
а	b	а	С
b	а	С	b
С	С	b	а

Invertálható, egyértelmű.

Nincs egységelem! Nincs inverz!

Hogy fordulhat ez elő?

Válasz: nem asszociatív a művelet:

$$(ab)c = ac = c$$
,

$$\neq a(bc) = ab = a$$
.

8.1.9. Példák. (1) Ha $n \in \mathbb{N}^+$, az n-edik komplex egységgyökök a szorzással Abel-csoportot alkotnak.

(2) Legyen p prímszám. Az összes p^n -edik egységgyökök halmaza, ahol $n = 1, 2, \ldots$, a szorzással szintén Abel-csoport, ez a $Z(p^{\infty})$ Prüfer-csoport.

(3) Az összes egységgyökök halmaza a szorzással (tehát az első példában szereplő csoportok egyesítése) szintén Abelcsoport.

(4) Az egységnyi abszolút értékű komplex számok a szorzással Abel-csoport.

(5) A $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ kvaterniók a kvaterniószorzással nem kommutatív csoportot alkotnak.

(6) A Klein-féle csoportot a szorzótáblájával definiáljuk:

	e	a	b	c
e	e	a	b	c
a	$a \\ b$	e	c	b
b	b	c	e	a
c	c	b	a	e

Def. Legyen (A, Ω_1) , (B, Ω_2) algebrai struktúra és $B \subseteq A$.

Ha létezik Ω_1 és Ω_2 között olyan kölcsönösen egyértelmű leképezés, hogy minden Ω_1 -beli f_1 -nek megfelelő Ω_2 -beli f_2 az f_1 B-re való megszorítása, akkor azt mondjuk, hogy

B részstruktúrája *A*-nak, jelben $B \le A$. Ha *B* valódi részhalmaza *A*-nak valódi részstruktúráról beszélünk.

Csoport tetszőleges, nem üres részhalmaza: komplexus.

Komplexus szorzás:

Legyen (H, \cdot) csoport, $P = \{ K \mid K \text{ komplexus } H\text{-ban } \}$. $K, L \in P$ esetén $KL = \{ kl \mid k \in K \text{ és } l \in L \}$.

Lemma (komplexusok félcsoportja)

Adott *H* csoport komplexusai a komplexusszorzásra egységelemes félcsoportot alkotnak.

Biz.

- 1. A komplexusszorzás zárt P-re nézve, hiszen $P^2 \rightarrow P$ alakú függvény.
- 2. A művelet asszociatív, mivel $K, L, M \in P$ esetén

$$K(LM) = \left\{k \cdot (l \cdot m) \mid k \in K, l \in L, m \in M\right\} =$$

$$= (KL)M = \left\{(k \cdot l) \cdot m \mid k \in K, l \in L, m \in M\right\}$$

3. Egységelem: $E = \{e\}$, ahol e a H-beli egységelem, mivel tetszőleges $K \in \mathbf{P}$ esetén

$$EK = \{ek \mid k \in K\} = \{k \mid k \in K\} = K,$$

$$KE = \{ke \mid k \in K\} = \{k \mid k \in K\} = K.$$

Tétel (ekvivalens állítások részcsoportokra)

Legyen (G, \cdot) csoport és H komplexus G-ben. Ekkor a következő állítások ekvivsalensek:

- (1) H részcsoport G-ben,
- (2) A · művelet H-ra való leszűkítése egy $H \times H$ -t H-ba képező leképezés, H tartalmazza G egységelemét és $H^{-1} \subseteq H$,
- (3) $HH \subseteq H \text{ és } H^{-1} \subseteq H$,
- (4) $H^{-1}H \subseteq H$.

Biz.

Feltesszük, hogy $H \le G$

- 1. Ekkor a leszűkítésnek belső műveletnek kell lennie H-n, azaz bármely két H-beli elem szorzata H-beli, különben nem lenne csoport.
- 2. H-nak van egységeleme e_H , mert csoport, így \forall H-beli k elemre

$$e_H k = k$$
,

továbbá a G-ban levő e_G egységelemre is teljesül G-ben, hogy

$$e_G k = k$$
.

regularitás
$$\Rightarrow$$
 $e_G = e_H$

3. Legyen $k \in H$ elem inverze H-ban

$$k_{H}^{-1}$$
,

G-ben pedig

$$k_G^{-1}$$
.

A következő összefüggéseknek teljesülnie kell:

$$k_G^{-1} \cdot k = e_H, \qquad k_H^{-1} \cdot k = e_H.$$

regularitás
$$\Rightarrow$$
 $k_G^{-1} = k_H^{-1}$.

 $(2) \Rightarrow (3)$:

Triviális

 $(3) \Rightarrow (4)$:

$$H^{-1} \subset H \longrightarrow H^{-1}H \subset HH \longrightarrow H^{-1}H \subseteq H$$

 $(4) \Rightarrow (1)$:

Most tegyük fel, hogy $H^{-1}H \subseteq H$.

 $1. H \neq \emptyset \Rightarrow$

 $\exists \ k \in H \Rightarrow k^{-l} \in H^{-l} \Rightarrow k^{-l}k \in H^{-l}H \subseteq H.$

 \Rightarrow

 $e \in H$.

$$2. \forall k \in H \Rightarrow$$

$$k^{-1}e \in H^{-1}H \subseteq H$$
,

tehát *H*-beli elem inverze is *H*-ban van.

$$3. k, l \in H \implies kl \in H$$
?

$$k, l \in H \Rightarrow k^{-l} \in H^{-l} \Rightarrow k^{-l} \in H$$

 \Rightarrow

$$kl = (k^{-1})^{-1}l \in H^{-1}H \subseteq H.$$

Megjegyzés

$$H \leq G \Rightarrow H^{-1}H = H \text{ \'es } HH = H$$
, mert

$$H = eH \subseteq H^{-1} H \subseteq H$$
, illetve $H = eH \subseteq HH \subseteq H$.

Következmény

Legyen G csoport, $\Gamma \neq \emptyset$ adott indexhalmaz, és minden $\gamma \in \Gamma$ esetén $H_{\gamma} \leq G$. Ekkor a részcsoportok metszete is részcsoport, vagyis

$$D = \bigcap_{\gamma \in \Gamma} H_{\gamma} \leq G.$$

Biz.

$$e \in D \Rightarrow D \neq \emptyset$$
,

tehát D komplexus G-ben, továbbá tetszőleges $\gamma \in \Gamma$ -ra:

$$D^{-1}D \subseteq H_{\gamma}^{-1}H_{\gamma} \subseteq H_{\gamma}, \quad \text{mert } H_{\gamma} \leq G$$

$$\Rightarrow D^{-1}D \subseteq \bigcap_{\gamma \in \Gamma} H_{\gamma} = D$$

Tétel
$$\Rightarrow$$
 D ≤ *G*.

Megjegyzés

Részcsoportok uniójára hasonló állítás nem mondható.

Példa (Klein-csoport)

Adott (H, \cdot) , ahol $H = \{e, a, b, c\}$, továbbá:

•	e	a	b	С
e	e	a	b	С
a	a	e	c	b
b	b	c	e	a
С	c	b	a	e

Ekkor $K = \{e, a\}$ és $L = \{e, b\}$ részcssoportjai H-nak, de

 $K \cup L = \{e, a, b\}$ nem részcsoport!

Def

Legyen G csoport és K komplexus G-ben. K generátuma

G-nek a *K* halmazt tartalmazó legszűkebb részcsoportja

$$\langle K \rangle = \bigcap_{\substack{L \le G \\ K \subseteq L}} L$$

Ha $\langle K \rangle$ = G, akkor K a G generátorrendszere.

Ha $K = \{g\}$ (egyelemű), akkor

generátor, vagy generáló elem

G az g elem által generált ciklikus csoport.

Ha K komplexusa a G csoportnak akkor

$$\langle K \rangle = \{k_1 \cdot \dots \cdot k_s \mid s \in \mathbb{N}, k_j \in K \cup K^{-1}, 1 \le j \le s\}$$

üres szorzat az egységelem!

Biz. Legyen

$$H = \{k_1 \cdot ... \cdot k_s \mid s \in \mathbb{N}, k_j \in K \cup K^{-1}, 1 \le j \le s\}$$

- **1.** Nyílvánvaló, hogy $H \subseteq \langle K \rangle$, mivel $\langle K \rangle$ részcsoport G-ben.
- **2.** *H* is részcsoport *G*-ben, mivel benne van *G* egységeleme, zárt a szorzásra és az inverzképzésre.

továbbá, minden K-beli elemet tartalmaz

$$\Rightarrow \langle K \rangle \subseteq H$$

8.1.18. Következmény. Ha $g \in G$, akkor $\langle g \rangle = \{g^n : n \in \mathbb{Z}\}$. Egy ciklikus csoport homomorf képe is ciklikus, egy generátor képe generálja a homomorf képet.

Def. Csoport rendje a csoport elemeiből álló halmaz számossága. G csoport esetén ezt |G| -vel vagy O(G)-vel jelöljük.

 $g \in G$ elem rendje a legkisebb n pozitív egész, amelyre $g^n = e$, ha nincs ilyen n, akkor ∞ .

Példák.

- **1.** Az (R^*, \cdot) csoportban +1 és -1 végesrendű elemek, a többi végtelenrendű.
- **2.** Prüfer-csoport (az összes p^n -edik egységgyök, ahol p rögzített prímszám és a művelet a közönséges szorzás)

Minden elem végesrendű, maga a csoport végtelenrendű.

8.1.20. Tétel. Végtelen ciklikus csoport izomorf az egész számok additív csoportjával, míg n elemű ciklikus csoport a modulo n maradékosztályok \mathbb{Z}_n additív csoportjával izomorf. Speciálisan, a ciklikus csoportok kommutatívak.

Biz. 1. Végtelen eset

 $(\mathbf{Z}, +)$ csoport, továbbá tekintsünk egy g elem által generált végtelen ciklikus csoportot:

$$g^0 = e, g, g^{-1}, g^2, g^{-2}, \dots$$

Izomorf leképezés hozható létre köztük:

$$\varphi(n) = g^n, \quad n \in \mathbf{Z}$$

 $n, m \in \mathbb{Z}$ esetén:

$$\varphi(n+m) = g^{n+m} = g^n g^m = \varphi(n) \varphi(m),$$

tehát lényegében egyetlen végtelen ciklikus csoport van.

2. Véges eset

Biztosan léteznek k > s egészek úgy, hogy

$$g^k = g^s \implies g^{k-s} = e$$
.

Az ilyen tulajdonságú természetes számok közül a legkisebbet jelöljük *n*-nel.

Ekkor az
$$g^0 = e, g, g^2, ..., g^{n-1}$$
 (*)

elemek egyrészt mind különbözőek, másrészt *g*-nek minden hatványa előfordul a fenti halmazban.

Miért?

A különbözőség *n* minimális voltából következik.

Legyen m tetszőleges egész, maradékos osztás n-nel egyértelmű:

$$m = qn + r$$
, ahol $0 \le r < n$

 \Rightarrow

$$g^{m} = g^{qn+r} = g^{qn}g^{r} = (g^{n})^{q}g^{r} = e^{q}g^{r} = g^{r}.$$

Mindezek alapján a (*) elemek alkotják a csoportot.

Vizsgáljuk továbbá a következő függvényt: $\varphi(x \pmod{n}) = g^x$.

 φ izomorfizmus a ($mod\ n$) maradékosztályok additív csoportja és (*) halmaz között.

Ezek szerint minden *n* természetes számhoz lényegében egyetlen *n*-edrendű ciklikus csoport van.

A ciklikus csoportok kommutatívak, hiszen

$$g^k g^s = g^{k+s} = g^s g^k$$
 minden $k, s \in \mathbb{Z}$ -re.

Észrevétel: $g \in G$ elem rendje megegyezik az elem által generált részcsoport rendjével.

Tétel (ciklikus csoport részcsoportja)

Ciklikus csoport minden részcsoportja ciklikus.

Biz.

Legyen $\langle g \rangle = G \text{ \'es } H \leq G.$

1. eset: $H = \{e\}$, ekkor kész.

2. eset: $H \neq \{e\}$, ekkor biztosan létezik g-nek pozitív kitevős hatványa H-ban.

Legyen d az a legkisebb pozitív kitevő, melyre $g^d \in H$.

$$g^d \in H \Longrightarrow \qquad \langle g^d \rangle \subseteq H$$

Most már csak azt kell bizonyítanunk, hogy H-nak tetszőleges g^m eleme g^d -nek hatványa.

Maradékos osztás *d*-vel egyértelmű:

$$m = qd + r$$
, ahol $0 \le r < d$.

$$\Rightarrow g^r = g^{m-qd} = g^m (g^d)^{-q} \in H.$$

 $0 \le r < d$ és d minimalitása \Rightarrow

$$r = 0 \Rightarrow g^r = e = g^m (g^d)^{-q} \Rightarrow$$
inverzek
$$g^m = (g^d)^q \Rightarrow \langle g^d \rangle \supseteq H.$$

8.1.23. Tétel. Legyen G egy n rendű véges ciklikus csoport, g pedig egy generátoreleme G-nek. Ha $a \in \mathbb{Z}$ és d = lnko(a, n), akkor g^a a $H = \{g^d, g^{2d}, \dots, g^{md} = e\}$ ciklikus részcsoportot generálja, ahol n = md. A G minden részcsoportja előáll így valamely d|n-re. A G-nek $\varphi(n)$ generátora van.

Biz. előző tétel bizonyításánál láttuk, hogy \exists ilyen d, méghozzá a legkisebb pozitív egész, amelyre $g^d \in H$

ez $\varphi(n)$ definíciójából következik

$$d / a \Rightarrow a = qd \Rightarrow g^a = (g^d)^q \Rightarrow \langle g^a \rangle \subseteq H$$

euklidészi alg. $\Rightarrow \exists x, y \in \mathbb{Z}$: d = ax + ny

$$g^d = g^{ax + ny} = g^{ax}g^{ny} = g^{ax}e^y = (g^a)^x$$

Mellékosztályok

Legyen G csoport, $H \le G$ és $a \sim b$, ha $ab^{-1} \in H$, valamely $a, b \in G$ -re.

Észrevétel:

~ ekvivalencia reláció

1. Reflexív?

 $\sqrt{}$

 $aa^{-1} \in H$, mert H csoport.

2. Szimmetrikus?

 $\sqrt{}$

$$ab^{-1} \in H \Rightarrow (ab^{-1})^{-1} = ba^{-1} \in H$$

3. Tranzitív?

1

$$ab^{-1} \in H \text{ \'es } bc^{-1} \in H \implies ab^{-1}bc^{-1} = ac^{-1} \in H$$

Lemma (a elem ekvivalencia osztálya)

 $a \in G$ elem ekvivalencia osztálya a Ha mellékosztály.

Biz.

Tfh $b \in Ha$

 $\Rightarrow b = ha$, valamely $h \in H$ ra.

$$ba^{-1} = h \implies$$

$$(ba^{-1})^{-1} = ab^{-1} = h^{-1} \in H$$
, azaz $a \sim b$.

Tfh $a \sim b$

$$\Rightarrow ab^{-1} = h \in H \Rightarrow ba^{-1} = h^{-1} \in H^{-1}$$

$$\Rightarrow b = h^{-1}a \in H^{-1}a \subseteq Ha$$
.

Így is bevezethetjük:

Legyen G csoport, $H \le G$ és $a \sim b$, ha $b^{-1}a \in H$, valamely $b \in G$ -re.

Def. Legyen G coport, $H \le G$, és $a \in G$.

A G csoport H részcsoportja szerinti bal oldali mellékosztálya az

$$aH = \{ak \mid k \in H\}$$
 komplexus,

Ha komplexus pedig jobb oldali mellékosztálya.

Ha minden *aH / Ha*-ból kiveszünk egy reprezentáns elemet, akkor *H*-nak **bal / jobb oldali reprezentánsrendszerét** kapjuk.

Egy csoport valamely részcsoportja szerinti mellékosztályok a csoport elemeinek osztályozását adják, így két mellékosztály vagy megegyezik, vagy diszjunkt halmaz.

Észrevétel: a

$$Ha \mapsto (Ha)^{-1} = a^{-1}H$$

leképezés bijektív leképezés jobb, illetve bal oldali mellékosztályok halmaza között ⇒

A G csoport tetszőleges részcsoportja szerinti különböző bal oldali és különböző jobb oldali mellékosztályainak a száma megegyezik.

Def. Legyen G csoport, $H \le G$. A H szerinti mellékosztályok halmazának számossága H indexe G-ben. Jelölése: |G:H|, [G:H].

lehet végtelen is

Legyen G véges csoport és $H \le G$. H rendjének és G-beli indexének a szorzata egyenlő G rendjével.

Biz.

$$|G| = \sum_{r \in R} |rH|,$$

ahol R egy bal oldali reprezentánsrendszere H-nak.

Legyen $\varphi(h) = ah \implies \varphi$ egy bijekció H és aH között, mert

szürjektív: minden $ah \in aH$ -nak az őse: $h \in H$,

injektív: tfh $ah_1 = ah_2$, valamely h_1 , $h_2 \in H$ -ra

regularitás
$$\Rightarrow h_1 = h_2$$
. $\Rightarrow |H| = |rH|$

$$\Rightarrow |G| = |H| \cdot |R| = |H| |G:H|$$

A Lagrange-tétel következményei:

50

- 1. Véges csoportban elem rendje osztója a csoport rendjének.
- 2. Prímszámrendű csoport ciklikus.

Tfh
$$|G| = p$$
, p prím.

$$\Rightarrow \exists a \ (\neq e) \in G$$

Lagrange-tétel
$$\Rightarrow$$
 $|a| |G|$

Tehát |a| csak p vagy 1 lehet, és így az a elem generálja az egész G csoportot, tehát G ciklikus.

Megjegyzés: Az egységelem kivételével bármelyik eleme generálja G-t.

Def. Triviális csoportnak nevezzük a pusztán az egységelemből álló csoportot. Minden más G csoport esetén különböző részcsoportot alkotnak az egységelem és a G maga. Ezeket triviális részcsoportoknak nevezzük.

Tétel (prímszámrendű csoport)

Egy nem egyelemű csoport akkor és csak akkor **prímszámrendű**, ha csak triviális részcsoportja van.

Biz.

⇒: Előző megjegyzés ⇒

ha G prímszámrendű, akkor ciklikus és a részcsoportok:

 $\{e\}$ és maga a G.

 \Leftarrow : Tfh G olyan csoport, amelynek pontosan két részcsoportja van, és legyen $a \in G$, $a \neq e$.

$$\Rightarrow \langle a \rangle = G$$

 \Rightarrow G ciklikus.

1. Kérdés: Lehet-e $|G| = \infty$?

Válasz: **nem**, mert akkor pl. a^n valódi részcsoportot generálna G-ben.

2. Kérdés: Lehet-e |G| = nem prím ?

Válasz: **nem**, mert ha $|G| = n_1 n_2 ... n_k$, ahol $n_i > 1$, akkor

$$\langle a^{n_i} \rangle \leq G$$
, mert $(a^{n_i})^{n_1 n_2 \dots n_{i-1} n_{i+1} \dots n_k} = e$.

Def. A G csoport N részcsoportját **invariáns** vagy **normális részcsoportnak** (**normálosztónak**) nevezzük, jelben $N \nabla G$, ha Na = aN minden $a \in G$ -re teljesül.

8.1.30. Tétel. Legyen N a G csoport részcsoportja. A következő feltételek ekvivalensek:

- (1) N normálosztó;
- (2) $a^{-1}Na = N \text{ minden } a \in G\text{-re};$
- (3) $a^{-1}Na \subset N \text{ minden } a \in G\text{-re};$

Biz.

$$(1) \Rightarrow (2)$$

 $a^{-1}Na = a^{-1}aN = N$ minden $a \in G$ -re.

$$(2) \Rightarrow (1)$$

$$Na = a(a^{-1}Na) = aN$$

$$(2) \Rightarrow (3)$$
 trivi

$$(3) \Rightarrow (2)$$

Tfh $a^{-1}Na \subseteq N$ minden $a \in G$ -re, de

 a^{-1} is eleme G-nek \Rightarrow

$$(a^{-1})^{-1} Na^{-1} \subseteq N$$

$$N = a^{-1}(aNa^{-1})a \subset a^{-1}Na \qquad \Rightarrow a^{-1}Na = N$$

Következmények

(3)-ból következik:

normálosztók metszete is normálosztó

 $\pmb{Def.}$ Ha G csoport és $a \in G$ rögzített, akkor a G-n értelmezett $x \mapsto a^{-1}xa$ leképezést **belső automorfizmusnak** nevezzük.

(2)-ből következik:

a normálosztók pontosan azok a részcsoportok, amelyeknek minden belső automorfizmus melletti képe saját maga.

- ha G félcsoport, akkor a homomorf képe is félcsoport;
- (2) ha G-ben e jobb oldali egységelem, bal oldali egységelem, illetve egységelem, akkor a homomorf képében e képe jobb oldali egységelem, bal oldali egységelem, illetve egységelem;
- (3) ha G-ben e egységelem, és g-nek g* jobb oldali inverze, bal oldali inverze, illetve inverze, akkor a homomorf képében g* képe a g képének jobb oldali inverze, bal oldali inverze, illetve inverze;
- (4) ha G-ben g és h felcserélhetőek, akkor a homomorf képben g és h képei felcserélhetőek.

csoport homomorf képe csoport

8.1.34. Tétel. Legyen G csoport. Ekkor

- (1) egy N normálosztó szerinti mellékosztályok a csoportnak a művelettel kompatibilis osztályozását alkotják;
- (2) minden, a művelettel kompatibilis osztályozás esetén az egységelem osztálya normálosztó, és az osztályozás ezen normálosztó szerinti mellékosztályokból áll;
- (3) a mellékosztályok közötti művelet megegyezik az osztályok mint halmazok komplexusszorzásával.

Biz.

(1) Tfh $a' \in Na, b' \in Nb$. Ekkor

$$Na' = Na$$
 és $Nb' = Nb$

$$a'b' \in (Na')(Nb') = (Na)(Nb) = N(aN)b$$

$$= N(Na)b = N^2ab = Nab$$

tehát $a'b' \sim ab$.

(3)
$$\{a'b': a' \in Na, b' \in Nb\} = (Na)(Nb) = Nab$$

(2) Tfh \exists a művelettel kompatibilis osztályozás és legyen N az e egységelem osztálya, ekkor

$$a \in N$$
 esetén $e = a^{-1}a \sim a^{-1}e = a^{-1}$

$$\Rightarrow N^{-1} \subset N$$

$$b \in N \implies ab \sim ee = e, \text{ fgy } NN \subset N$$

 $\Rightarrow N$ részcsoport

Ha $x \in N$ és g tetszőleges, akkor $g^{-1}xg \sim g^{-1}eg = e$

 $\Rightarrow g^{-1}Ng \subset N$, tehát N normálosztó

Mik lesznek az ekvivalencia osztályok?

Ha
$$a \sim b \implies a^{-1}ab^{-1} \sim a^{-1}bb^{-1} \implies b^{-1} \sim a^{-1} \implies e = aa^{-1} \sim ab^{-1}$$

$$\Rightarrow ab^{-1} \in N$$

és fordítva, ha $ab^{-1} \in N \Rightarrow ab^{-1} \sim e$

$$\Rightarrow a = ab^{-1}b \sim eb = b$$

azaz az osztályozás pontosan az N szerinti mellékosztályokból áll

8.1.35. Következmény. Egy G csoportnak egy N normálosztó szerinti mellékosztályai a (komplexus)szorzásra nézve csoportot alkotnak.

Biz.

Az $a\mapsto Na$ keképezés homomorf homomorf invariánsok félcsoportban tétel \Rightarrow G homomorf képe csoport kanonikus leképezés

Def. A G csoport N normálosztója szerinti mellékosztályok a komplexusszorzással G N szerinti faktorcsoportját alkotják (G/N).

8.1.38. Homomorfizmus magja. Egy G csoportnak egy G' csoportba való φ homomorfizmusánál a homomorfizmus magján a G' csoport e' egységelemének a teljes inverz képét értjük. A φ magját ker (φ) -vel jelöljük.

8.1.39. Homomorfizmustétel. Egy G csoport egy φ homomorfizmusánál a homomorfizmus magja normálosztó, és a $G/\ker(\varphi)$ faktorcsoport izomorf $G'=\varphi(G)$ -vel. A G bármely N normálosztója magja valamely homomorfizmusnak: G-nek G/N-re való kanonikus leképezése homomorfizmus, amelynek magja N.

Jegyzetben 8.3. ábra

A $\varphi^{-1}(a')$, $a' \in G'$ halmazrendszer a G egy osztályozása

Kompatibilis a szorzással?

Ha $a \in \varphi^{-1}(a')$ és $b \in \varphi^{-1}(b') \Rightarrow$

') és
$$b \in \varphi^{-1}(b') \Rightarrow$$
 szerinti
$$\varphi(ab) = \varphi(a)\varphi(b) = a'b'$$
 $\Rightarrow ab \in \varphi^{-1}(a'b')$

Előző tétel (2) pont $\Rightarrow e$ osztálya, azaz ker(φ), normálosztó \Rightarrow

Az $a' \mapsto \varphi^{-1}(a')$ leképezés G' izomorfizmusa $G/\ker(\varphi)$ -re.

Tétel második fele 8.1.35. bizonyítása alapján trivi.

Algebra: gyűrűk, testek elmélete

Def. Az $(R, +, \cdot)$ algebrai struktúra **gyűrű,** $ha + \acute{e}s \cdot R$ -en binér műveletek, valamint

I. (R, +) Abel-csoport,

II. (R, \cdot) félcsoport, és

III. teljesül mindkét oldalról a disztributivitás, vagyis

$$a(b+c) = ab + ac,$$

$$(b+c)a = ba + ca$$

minden $a, b, c \in R$ esetén.

Kommutatív a gyűrű, ha a szorzás kommutatív.

Az additív csoport egységelemét a gyűrű **nullelemének** nevezzük és 0-val jelöljük. **Egységelemes** a gyűrű, ha a szorzásra vonatkozóan van egységelem (amit e-vel jelölünk).

Nullgyűrű: egyetlen elemből áll (nullelem).

Zérógyűrű: ha tetszőleges két elem szorzata a nullelem.

Az R gyűrűben a bal oldali, b jobb oldali nullosztó, ha $a \neq 0$, $b \neq 0$ és ab = 0.

A (legalább két elemű), kommutatív, nullosztómentes gyűrűt integritási tartománynak nevezzük.

Az R gyűrű **test**, ha

- 1. R kommutatív,
- 2. (R^*, \cdot) csoport.

Észrevételek(gyűrűkben):

1. (szorzás nullelemmel): Legyen 0 az R gyűrű nulleleme. Ekkora0 = 0a = 0

minden $a \in R$ esetén.

2. (előjelszabály): Legyen R gyűrű, és $a, b \in R$. Az a elem additív inverzét jelöljük -a-val. Ekkor

$$-(ab) = (-a)b = a(-b)$$
, továbbá $(-a)(-b) = ab$.

- 3. Véges integritási tartomány test.
- 4. Testben nincs nullosztó.

Biz. (1. 3. és 4. gyakorlaton)

2. ab additív inverze létezik, mert (R, +) csoport. \Rightarrow

$$ab + (-(ab)) = 0,$$

valamint

$$ab + (-a)b = (a + (-a))b = 0b = 0,$$

 \Rightarrow

$$-(ab) = (-a)b.$$

Továbbá: (-a)(-b) + (-a)b = (-a)((-b) + b) = 0 = ab + (-a)b,

+ egyszerűsíthető
$$\Rightarrow$$
 $(-a)(-b) = ab$.

Lemma(nullosztó és regularitás)

R gyűrűben a multiplikatív művelet **akkor és csak akkor** reguláris, ha R zérusosztómentes.

Biz. 1. Tfh $a \ne 0$, a nem bal oldali nullosztó és

$$ab = ac$$
 / $-(ac)$ mindkét oldalhoz,

$$ab + (-(ac)) = 0.$$

Előjel szabály + disztri. ⇒

$$ab + (a(-c)) = a(b + (-c)) = 0.$$

feltétel ⇒

$$b + (-c) = 0 \Rightarrow$$

2. Tfh a bal oldali nullosztó, tehát $a \neq 0$ és létezik $b \neq 0$: ab = 0.

tetszőleges $c \in R$ -re

$$ac = ac$$
.

Adjuk a jobb oldalhoz az ab = 0-t.

$$ac = ac + ab$$
,

disztributivitás ⇒

$$ac = a(c+b)$$
.

mert

$$b \neq 0 \Longrightarrow$$

$$c \neq c + b$$
.

Tétel(gyűrű karakterisztikája)

Ha az R gyűrű legalább két elemű, nullosztómentes, akkor (R, +)-ban a 0-tól különböző elemek rendje megegyezik. Ez a közös rend vagy végtelen, vagy egy p prímszám.

Jelölés: Előző esetben a gyűrű nulla-karakterisztikájú, azaz char(R) = 0, az utóbbiban p-karakterisztikájú, azaz char(R) = p.

Biz. 1. Tfh
$$\exists a \in R^* : |a| = n_a \in \mathbb{N}$$

 \Rightarrow

$$n_a a = 0$$

Továbbá tetszőleges $b \in R^*$ -re:

$$n_a(ab) = ab + \dots + ab = (a + \dots + a)b = (n_a a)b = 0b = 0$$

másrészt

$$n_a(ab) = a(b+...+b) = a(n_ab)$$

$$n_a b = 0$$

$$\Rightarrow |b| \le |a| = n_a$$

$$|b| \ge |a|$$
 hasonlóan látható be \Rightarrow

$$|b| = |a| = n_a$$

2. Tfh nem létezik véges rendű elem.

 \Rightarrow

Minden elem rendje végtelen.

3. Tfh a közös rend n = 1 véges szám.

$$\Rightarrow$$

$$0 = 1a = a \implies a = 0.$$

4. Tfh a közös rend n összetett véges szám:

$$n = kl \text{ \'es } 1 < k < n, 1 < l < n,$$

$$na = (kl)a = \underbrace{a + \ldots + a}_{k \text{ db } a} + \ldots + \underbrace{a + \ldots + a}_{k \text{ db } a} = l(ka) = 0.$$

$$l\text{-szer}$$

1. eset: $ka \neq 0$. $\Rightarrow |ka| = n$ és $|ka| \leq l < n$.

2. eset: ka = 0. $\Rightarrow |a| \le k < n$ és |a| = n.

Példa.

Legyen H egy tetszőleges halmaz, és R a H részhalmazainak halmaza. Tekintsük az (R, Δ, \cap) struktúrát, ahol Δ a szimmetrikus differenciát, \cap pedig a metszetet jelöli.

Bizonyítható:

a, R gyűrű, Ø nullelemmel,

b, $\forall A \subseteq H$ -ra $A \cap A = A^2 = A$ is teljesül (Boole-gyűrű),

c, $\forall A \subseteq H$ -ra $A \Delta A = \emptyset$, \Rightarrow charR = 2,

d, R kommutatív,

e, *R* nem nullosztómentes (diszjunkt halmazokra: $A \cap B = \emptyset$),

f, c, és d, pont \forall Bool-gyűrűben igaz.

Def. Tegyük fel, hogy $(R, +, \cdot)$ gyűrű, és (R_1, \oplus, \otimes) két binér műveletes algebrai struktúra. A φ : $R \rightarrow R_1$ leképezés **homomorfizmus**, ha

$$\varphi(r+s) = \varphi(r) \oplus \varphi(s)$$
$$\varphi(r \cdot s) = \varphi(r) \otimes \varphi(s)$$

és

$$\varphi(r \cdot s) = \varphi(r) \otimes \varphi(s)$$

minden $r, s \in R$ esetén fennáll.

8.2.8. Tétel. Gyűrű homomorf képe gyűrű.

Csak a disztributivitást kell látni!

$$a'(b'+c')=a'(b+c)'=\big(a(b+c)\big)'=$$

$$(ab+ac)'=(ab)'+(ac)'=a'b'+a'c'$$
 képelemek

Def. R gyűrűben $S \subseteq R$ **részgyűrű**, ha az R-beli műveletek S-re történő leszűkítésére nézve S maga is gyűrűt alkot.

Megjegyzések:

- 1. Mivel $S \subseteq R$ teljesül, műveleti zártság esetén az asszociativitás, kommutativitás és disztributivitás is teljesülni fog.
- 2. A csoportelméletben tanultak szerint csoport valamely S részcsoport

$$\Leftrightarrow S \cdot S^{-1} \subseteq S$$

3. Tehát R-ben S komplexus részgyűrű \Leftrightarrow

$$S - S \subset S$$
 és

$$S \cdot S \subset S$$
.

Def. Legyen R gyűrű, $I \subseteq R$, $I \neq \emptyset$. I az R balideálja, ha $I - I \subseteq I$ és $R \cdot I \subseteq I$, jobbideálja, ha $I - I \subseteq I$ és $I \cdot R \subseteq I$, ideálja, ha jobb és baloldali is egyszerre.

Észrevételek:

- Bal/jobb/ideálok metszete is bal/jobb/ideál.
- Kommutatív gyűrűben bal/jobb/ideálok fogalma megegyezik.

Triviális ideál: $\{0\}$, R

Valódi ideál: R-től különböző ideál.

Egyszerű gyűrű: csak triviális ideálja van.

Def. Legyen R gyűrű és $A \subseteq R$. Az A által generált ideálon R összes, A-t tartalmazó ideáljának metszetét értjük. Jelben (A). Ha $A = \{a\}$ valamely $a \in R$ elemre, akkor az a által generált főideálról beszélünk. Jelben (a). Bal és jobboldali def. hasonlóan.

Példa: legyen R integritási tartomány, és $A = \{a_1, ..., a_n\} \subseteq R$. Ekkor

$$\langle a_1, \dots, a_n \rangle = \left\{ \sum_{i=1}^n r_i a_i \mid r_1, \dots, r_n \in R \right\}$$

ideál R-ben. A elemeinek összes véges R feletti lineáris kombinciója

Észrevétel:
$$(a) = \langle a \rangle = \{ra \mid r \in R\}$$

Tehát (a) az $a \in R$ elem összes többszöröseiből áll

Def. Egy egységelemes integritási tartomány **főideálgyűrű**, ha benne minden ideál főideál.

Def. Legyen R gyűrű és I additív részcsoprtja R-nek, továbbá ~ egy ekvivalenciareláció R-n, úgy hogy $\forall a, b \in R$ esetén $a \sim b$, ha $a - b \in I$. Ekkor $\forall a \in R$ elemre az I + a ekvivalenciaosztály R-nek egy I szerinti mellékosztálya (maradékosztálya).

8.2.15. Tétel. Egy R gyűrű egy I ideál szerinti mellékosztályai a gyűrűnek mindkét művelettel kompatibilis osztályozását alkotják. Minden, mindkét művelettel kompatibilis osztályozás esetén a nulla osztálya ideál, és az osztályozás ezen ideál szerinti mellékosztályokból áll.

Biz. (I; +) Abel csoport, tehát normálosztó R-ben

 $8.1.34 \text{ Tétel } (1) \text{ pont} \Rightarrow$

az osztályozás kompatibilis az összeadással

továbbá az osztályok összeadása a komplexusszorzás.

A multiplikatív művelet is kompatibilis az osztályozással:

$$(I+a)(I+b) = II + aI + Ib + ab \subset I + ab.$$

Most tfh \exists egy, mindkét művelettel kompatibilis osztályozás és legyen I a 0 additív egységelem osztálya, ekkor

 $8.1.34 \text{ Tétel } (2) \text{ pont} \Rightarrow I \text{ normálosztó } R\text{-ben}$

továbbá az osztályozás pont az I szerinti mellékosztályokból áll

I ideál?

$$\forall X \text{ osztályra} : 0 \in I \implies 0 \in X \cdot I \implies X \cdot I \subseteq I$$

8.2.16. Következmény. Egy R gyűrűnek egy I ideál szerinti mellékosztályai a összeadásra és a szorzásra nézve gyűrűt alkotnak.

Bizonyítás. Ha \sim a megfelelő ekvivalenciareláció, akkor $x \mapsto \tilde{x}$ mindkét műveletre nézve művelettartó. \square

Def. Legyen R gyűrű, I ideál R-ben. R-nek I szerinti **maradékosztály gyűrűje** (**faktorgyűrűje**) $R/I = \{I + r \mid r \in R\}$ a következő műveletekkel:

1.
$$(I+r)+(I+s)=I+(r+s)$$

2.
$$(I+r)\cdot (I+s) = I+r\cdot s$$

2. -ben nem a normál értelemben vett komplexus szorzásról van szó!

Legyen
$$R = \mathbb{Z}, I = 8\mathbb{Z}, a = b = 4$$
, ekkor

$$(I+a)(I+b) = (8\mathbb{Z}+4)(8\mathbb{Z}+4) = 64\mathbb{Z}^2 + 32\mathbb{Z} + 32\mathbb{Z} + 16$$

$$= 64\mathbb{Z} + 32\mathbb{Z} + 16 \subset 16\mathbb{Z},$$
mert $\mathbf{Z}\cdot\mathbf{Z}=\mathbf{Z}$

$$\forall \text{ elem osztható 16-tal}$$

$$\text{mert } \mathbf{Z}+\mathbf{Z}=\mathbf{Z}$$

 $8\mathbb{Z} + 16$ viszont 8-cal osztható elemeket tartalmaz, tehát

$$(8\mathbb{Z}+4)(8\mathbb{Z}+4) \subset 16\mathbb{Z} \subsetneq 8\mathbb{Z}+16.$$

8.2.20. Homomorfizmus magja. Egy R gyűrűnek egy R' gyűrűbe való φ homomorfizmusánál a homomorfizmus magján az R' gyűrű nullelemének a teljes inverz képét értjük. A φ magját ker (φ) -vel jelöljük.

8.2.21. Homomorfizmustétel. Egy R gyűrű egy φ homomorfizmusánál a homomorfizmus magja ideál. Ha R képe R', akkor az $R/\ker(\varphi)$ maradékosztály-gyűrű izomorf R'-vel. Az R bármely I ideálja magja valamely homomorfizmusnak, például R kanonikus leképezése R/I-re homomorfizmus, amelynek magja I.

Def. Legyen R integritási tartomány és $a, b \in R$. a **osztója** b-nek ha létezik $c \in R$, amelyre b = ac, jelben $a \mid b$. $x \in R$ **egység**, ha $x \mid r$ $\forall r \in R$ -re.

Def. Legyen R egységelemes integritási tartomány, és $a, b \in R$. Azt mondjuk, hogy a és b asszociáltak, ha létezik olyan c egység, amelyikkel a = bc. Ezt a tényt $a \sim b$ -vel jelöljük.

Észrevételek: R egységelemes integritási tartományban

- 1. az egységek halmaza jelöljük U(R)-rel —, a szorzásra csoportot alkot.
- 2. Az asszociáltság *R*-ben ekvivalenciareláció.
- 3. két elem asszociáltságához a kölcsönös oszthatóságuk szükséges és elégséges feltétel.

8.2.25. Tétel. Egy R kommutatív egységelemes gyűrűben az $a \in R$ elem által generált főideálra (a) = aR. Speciálisan a nulla által generált főideál $\{0\}$, az egységelem által generált főideál pedig R.

- **8.2.26. Állítás.** Egy R egységelemes integritási tartomány a, b elemeire
- (1) $(a) \subset (b)$ akkor és csak akkor, ha b|a;
- (2) (a) = (b) akkor és csak akkor, ha a és b asszociáltak;
- (3) (a) = R akkor és csak akkor, ha a egység. \square

Emlékeztető:

Def. Legyen R egységelemes integritási tartomány és $a, b \in R$. Azt mondjuk, hogy $d \in R$ az a és b legnagyobb közös osztója, ha

- 1. közös osztó, vagyis $d \mid a$ és $d \mid b$, valamint
- 2. $c \mid a \text{ és } c \mid b \text{ esetén } c \mid d$.

Def. Legyen R egységelemes integritási tartomány, ekkor

- **1.** $a \in R^* \setminus U(R)$ felbonthatatlan, ha $a = b \cdot c$ $(b, c \in R)$ esetén $b \in U(R)$ vagy $c \in U(R)$.
- **2.** $a \in R^* \setminus U(R)$ **prím**, ha $a \mid b \cdot c \ (b, c \in R) \Rightarrow a \mid b \text{ vagy } a \mid c$.

Később megválaszolandó kérdés: mely struktúrákban esnek egybe prímek és felbonthatatlanok?

Def. Legyen R egységelemes integritási tartomány és U(R) az egységeinek halmaza.

R Gauss-gyűrű ((Egyértelmű) faktorizációs tartomány, UFD), ha minden $r \in R^* \setminus U(R)$ felírható

$$r = p_1 p_2 \dots p_n$$

alakban, ahol n pozitív egész és a tényezők nem feltétlenül különböző felbonthatatlan elemek, és ha létezik egy $r=q_1q_2\ldots q_k$ előállítás is k felbonthatatlannal, akkor n=k és minden $1\leq i$, $j\leq n$ esetén p_i asszociáltja egy q_i -nek.

Másképp: Gauss-gyűrűben fennáll a számelmélet alaptétele.

Van egységelemes integritási tartomány, ami nem Gauss-gyűrű?

A válasz: IGEN

 $R = Z + Z\sqrt{-5}$ egységelemes integritási tartomány.

Egységelem: 1

Mik az egységek?

Legyen $c = a + b\sqrt{-5} \in R$ tetszőleges, ekkor

$$|c|^2 = a^2 + 5b^2 \equiv 0, \pm 1 \pmod{5}$$

továbbá $d \mid c \Rightarrow |d|^2 \mid |c|^2$

azaz ha $|1|^2 = 1$ osztóit keressük, akkor $a = \pm 1$ és b = 0

 $9 = 9 + 0\sqrt{-5}$ felbontása egyértelmű?

$$9 = (3 + 0\sqrt{-5})(3 + 0\sqrt{-5}) = (2 + \sqrt{-5})(2 - \sqrt{-5})$$

különböző felbontások?

Van 3-nak *d* nemtriviális osztója?

$$|3|^2 = 9 \implies |d|^2 \mid 9 \text{ és } |d|^2 \equiv 0, \pm 1 \pmod{5}$$

NINCS \Rightarrow 3 irreducibilis

 $(2+\sqrt{-5})$ és $(2-\sqrt{-5})$ is, mivel az ő hossznégyzetük is 9

 $\Rightarrow R$ nem Gauss-gyűrű!

Tehát a hierarchiában a Gauss-gyűrű az egységelemes integritási tartomány "alatt" lesz.

Tétel (felbonthatatlan és prím integritási tartományban)

R tetszőleges egységelemes integritási tartomány és $a \in R^* \setminus U(R)$.

Ha a prím R –ben \Rightarrow a felbonthatatlan R –ben.

Biz.

tfh a prím és a = bc

$$\Rightarrow 1 \cdot a = bc$$

 $\Rightarrow a / bc$

 $a \text{ prím} \Rightarrow a / b \text{ vagy } a / c$

$$\text{igy } 1 = \frac{b}{a} \cdot c \text{ vagy } 1 = b \cdot \frac{c}{a}$$

$$\in R$$

 $\Rightarrow b$ vagy c egység.

Ha a felbonthatatlan R —ben

$$\Rightarrow$$

a prím *R* –ben.

Legyen $R = Z + Z\sqrt{-5}$

$$2 = (a + b\sqrt{-5})(e + g\sqrt{-5})$$

konjugáltakkal szorozva

$$4 = (a^2 + 5b^2)(e^2 + 5g^2)$$

$$\Rightarrow a^2 + 5b^2/4$$

$$\Rightarrow a^2 + 5b^2 = 1, 2, 4$$

$$\Rightarrow$$
 $b = 0$, $a = \pm 1$, ± 2

$$\Rightarrow a + b \sqrt{-5} = \pm 1 \text{ vagy } e + g \sqrt{-5} = \pm 1$$

⇒ 2 irreducibilis, de

2 |
$$(1 + \sqrt{-5})(1 - \sqrt{-5}) = 6$$

$$2 \cancel{1} \pm \cancel{4} = 5$$
 \Rightarrow 2 nem prím.

Tétel (felbonthatatlan és prím Gauss – gyűrűben)

R tetszőleges Gauss - gyűrű és $a \in R*\setminus U(R)$.

 $a \text{ prím } R \text{ -ben} \iff a \text{ felbonthatatlan } R \text{ -ben.}$

Biz. ⇒: Előző tétel

 \Leftarrow : tfh *a* irreducibilis és *a* / *p*·*q* $\Rightarrow p \cdot q = a \cdot r$

egyértelmű felbontás ⇒

$$p = p_1 \dots p_k, \ q = q_1 \dots q_l, \ r = r_1 \dots r_t \Longrightarrow$$

$$p_1 \dots p_k \cdot q_1 \dots q_l = a \cdot r_1 \dots r_t$$

a asszociált p_i -vel, vagy q_j -vel, különben nem lenne egyértelmű a felbontás

$$\Rightarrow a/p \text{ vagy } a/q$$
.

Def. Az R egységelemes integritási tartományt **euklidészi gyűrűnek** nevezzük, ha \exists olyan φ függvény, amelyre $\varphi: R^* \to \mathbb{N}$, és

I. $\forall \alpha, \beta \in R, \beta \neq 0$ esetén létezik olyan $\gamma, \delta \in R$, hogy

$$\alpha = \beta \gamma + \delta$$
, ahol $\delta = 0$ vagy $\delta \neq 0$ és $\varphi(\delta) < \varphi(\beta)$,

II. valamint $\varphi(\alpha\beta) \ge \max(\varphi(\alpha), \varphi(\beta))$, $\forall \alpha, \beta \in R^*$ -ra.

Példa: Gauss-egészek $G = \{ a+bi \mid a, b \in \mathbb{Z} \}$

 φ : $\forall a+bi \in G$ esetén legyen

$$\varphi(a+bi) = (a+bi)(a-bi) = |a+bi|^2 = a^2 + b^2.$$

1. Kérdés: II. tulajdonság teljesül?

$$\varphi(\alpha \cdot \beta) = |\alpha \cdot \beta|^2 = |\alpha|^2 \cdot |\beta|^2 \ge \max(|\alpha|^2, |\beta|^2),$$

 $\forall \alpha, \beta \in G^*$ -ra.

- 2. Kérdés: I. tulajdonság teljesül?
- 1. eset: Legyen α , $\beta \in G$, $\beta \neq 0$ és tfh $\alpha/\beta \in G$. Ekkor

$$\gamma = \alpha/\beta$$
 és $\delta = 0$.

2. eset: Ha $\alpha/\beta \notin G$, akkor válasszuk γ -nak a számsíkon az α/β -hoz legközelebbi (egyik) rácspontot.

$$d\left(\frac{\alpha}{\beta},\gamma\right) \le \frac{\sqrt{2}}{2} \Rightarrow \left|\frac{\alpha}{\beta} - \gamma\right|^2 < 1$$

 $|\beta|^2$ -tel szorozva:

$$\left|\beta\right|^2 \left|\frac{\alpha}{\beta} - \gamma\right|^2 < \left|\beta\right|^2$$

$$\left|\alpha-\beta\gamma\right|^2<\left|\beta\right|^2,$$

tehát legyen $\delta = \alpha - \beta \gamma$.

Lemma (egységelem és egység int. tartományban)

R integritási tartományban **akkor és csak akkor** létezik egységelem, ha létezik egység. Az R egységelemes integritási tartományban $a \in R$ **akkor és csak akkor** egység, ha $a \mid e$.

Biz.

Ha van e egységelem, akkor er = r minden $r \in R$ esetén.

Ha \exists *a*∈ *R* egység, akkor tetszőleges *r*∈ *R* esetén

$$a / a \Rightarrow \exists e \in R : ae = a.$$

Ekkor *e* egységelem, mert $a / r \Rightarrow \exists s \in R : as = r$,

tehát

$$e \cdot r = e \cdot a \cdot s = (e \cdot a) \cdot s = (a \cdot e) \cdot s = a \cdot s = r.$$

8.2.30. Állítás. Euklideszi gyűrűben pontosan azok az elemek az egységek, amelyekre φ minimális értéket vesz fel. Az a,b nem nulla elemekre a|b esetén $\varphi(a) \leq \varphi(b)$ és egyenlőség pontosan akkor teljesül, ha a és b asszociáltak.

Biz.

Legyen $E = \{ r \mid r \in R^*, \varphi(r) \text{ minimális } \}$

1. Kérdés: E elemei egységek?

Legyen $a \in E$, és $b \in R$ tetszőleges. b-t oszthatjuk a-val maradékosan $\Rightarrow \exists c, d \in R$:

$$b = ac + d$$
, ahol a. $d = 0$, vagy
b. $d \neq 0$ és $\varphi(d) < \varphi(a)$.

A b. eset nem fordulhat elő φ (a) minimalitása miatt \Rightarrow

$$d = 0 \Rightarrow a / b$$
.

2. Kérdés: Minden egység *E*-ben van?

Legyen $a \in R$ egység, $b \in E$ adott $\Rightarrow a / b \Rightarrow b = ac$.

$$b \in E, b \neq 0 \Rightarrow a, c \in R^*.$$

Az euklidészi gyűrűk II. tulajdonsága ⇒

$$\varphi(b) = \varphi(a \cdot c) \ge \max (\varphi(a), \varphi(c)),$$

$$\Rightarrow \varphi(b) \ge \varphi(a).$$

 $\varphi(b)$ minimális $\Rightarrow \varphi(a)$ is minimális.

Euklidészi gyűrű II. tulajdonsága miatt $\varphi(a) \leq \varphi(b)$.

Tfh $a \mid b$ és $\varphi(a) = \varphi(b)$. Az I. tulajdonság miatt létezik $r, s \in R$:

$$a = b \cdot r + s$$
, ahol a. $s = 0$, vagy

b.
$$s \neq 0$$
 és $\varphi(s) < \varphi(b) = \varphi(a)$. (*)

$$s = a + (-(b \cdot r)) = a + b \cdot (-r)$$

$$a \mid b \Rightarrow \exists t \in R : b = a \cdot t \text{ továbbá } a = a \cdot e$$

$$s = a \cdot (e + t \cdot (-r)) \Rightarrow (e + t \cdot (-r)) \in R \Rightarrow a \mid s.$$

Ha
$$s \neq 0 \Rightarrow$$

$$\varphi(s) \ge \max \left(\varphi(a), \varphi(e + t(-r)) \right) \ge \varphi(a)$$

(*) miatt ez nem fordulhat elő $\Rightarrow s = 0$, $b \mid a$ azaz

$$a \sim b$$
.

- 8.2.32. Bővített euklideszi algoritmus. A következő eljárás egy R euklideszi gyűrűben meghatározza az $a, b \in$ R elemek egy d legnagyobb közös osztóját, valamint az $x, y \in$ R elemeket úgy, hogy d = ax + by teljesüljön. (Az eljárás során végig $ax_n + by_n = r_n, n = 0, 1, \ldots$)
- (1) [Inicializálás.] Legyen $x_0 \leftarrow e$, a gyűrű egységeleme, $y_0 \leftarrow 0, r_0 \leftarrow a, x_1 \leftarrow 0, y_1 \leftarrow e, r_1 \leftarrow b, n \leftarrow 0.$
- (2) [Vége?] Ha $r_{n+1} = 0$, akkor $x \leftarrow x_n, y \leftarrow y_n, d \leftarrow r_n$, és az eljárás véget ért.
- (3) [Ciklus.] Legyen $r_n = q_{n+1}r_{n+1} + r_{n+2}$, ahol $r_{n+2} = 0$ vagy $\varphi(r_{n+2}) < \varphi(r_{n+1})$, legyen $x_{n+2} \leftarrow x_n q_{n+1}x_{n+1}$, $y_{n+2} \leftarrow y_n q_{n+1}y_{n+1}$, $n \leftarrow n+1$, és menjünk (2)-re.

8.2.33. Tétel. Egy euklideszi gyűrű egy eleme pontosan akkor felbonthatatlan, ha prímelem.

Biz. Láttuk: ha p prím $\Rightarrow p$ felbonthatatlan

 \Leftarrow : tfh p irreducibilis és p / ab \longrightarrow p / a

Eukl. alg \Rightarrow e = px + ay

$$b = bee^{-1} = pbxe^{-1} + abye^{-1} \Rightarrow p/b$$

8.2.34. Tétel. Euklideszi gyűrűben minden nem nulla és nem egység elem sorrendtől és asszociáltságtól eltekintve egyértelműen felírható prímelemek szorzataként.

Biz.

Először megmutatjuk, hogy *R* euklidészi gyűrűben minden nullától és az egységektől különböző elemnek van felbonthatatlan osztója.

Tfh $a \in R^* \setminus U(R)$, és legyen

$$D = \{ r \mid r \in R^* \setminus U(R), r \mid a \text{ \'es, ha } s \in R^* \setminus U(R) \text{\'es } s \mid a \implies \varphi(r) \leq \varphi(s) \}.$$

Tehát D az a elem azon nem nulla, nem egység osztóit tartzalmazza, amikre a ϕ érték minimális.

$$D \neq \emptyset \Rightarrow \exists f \in D$$

Indirekte tfh f nem felbonthatatlan \Rightarrow

$$f = b \cdot c \text{ \'es } b, c \notin U(R) \Rightarrow b \mid a$$
.

 $b \mid f$ és nem asszociáltak \Rightarrow

8.2.30. Tétel
$$\Rightarrow \varphi(b) \neq \varphi(f) \Rightarrow \varphi(b) \langle \varphi(f) \rangle$$
,

mert ekkor b lenne D-ben f helyett.

tehát van a-nak felbonthatatlan osztója

Tfh $\varphi(a)$ minimális az $R^* \setminus U(R)$ -beli elemekre nézve

8.2.30. Tétel $\Rightarrow a$ felbonthatatlan.

Most legyen $a \in R^* \setminus U(R)$, $\varphi(a) = n$, és tegyük fel, hogy n-nél kisebb φ értékkel rendelkező elemek esetén az állítás igaz.

$$\exists f \text{ felbonthatatlan} : f \mid a \implies a = fh.$$

Kérdés: lehet-e $\varphi(h) = \varphi(a)$?

Ekkor
$$h \mid a \Rightarrow$$

 $a \sim h$ lenne,

de f nem egység, tehát $\varphi(h) \neq \varphi(a)$.

$$h \mid a \Rightarrow \varphi(h) < \varphi(a).$$

1. eset: Tfh h egység \Rightarrow

a felbonthatatlan.

2. eset: Tfh h nem egység \Rightarrow

indukciós feltétel \Rightarrow h-nak \exists megfelelő felbontása:

$$h = f_1 \cdot f_2 \cdot \dots \cdot f_r \Rightarrow$$

$$a = f \cdot f_1 \cdot f_2 \cdot \dots \cdot f_r.$$

Unicitás: tfh indirekte, hogy van olyan *elem*, amelynek két különböző felbontása létezik. Legyen ezek közül a olyan, hogy $\varphi(a)$ minimális.

$$a=p_1\dots p_k=q_1\dots q_r \implies p_1/a \implies p_1/q_1\dots q_r$$

$$p_1/q_i \implies \text{asszociáltak, mert irreducibilisek}$$

egyszerűsítve kapjuk a'-t, amelyre $\varphi(a') < \varphi(a)$

8.2.35. Tétel. Euklideszi gyűrűben minden ideál főideál.

Biz.

$$\operatorname{Ha} I = \{ 0 \} \Rightarrow I = \langle 0 \rangle.$$

Tfh $I \neq \{0\}$, ekkor legyen

$$S = \{ \varphi(x) \mid x \in I \text{ \'es } x \neq 0 \}$$

S legkisebb eleme $\varphi(a)$: $a \neq 0 \in I$.

Maradékosan osztjuk $b \in I$ -t a-val:

$$b = aq + r \text{ \'es } 0 \le \varphi(r) < \varphi(a)$$

$$I$$
 ideál $\Rightarrow r = b - aq \in I$

 $\varphi(a)$ minimális $\Rightarrow r = 0$.

$$b = aq \implies I = \langle a \rangle$$

Megjegyzés

$$R_{\sqrt{-19}} = \left\{ a + b \left(\frac{1 + \sqrt{-19}}{2} \right) | a, b \in Z \right\}$$

bizonyítható, hogy főideálgyűrű, de nem euklidészi

⇒ az előző tétel megfordítása nem igaz.

8.2.36. Definíció. Egy R gyűrű egy I valódi ideálját maximális ideálnak nevezzük, ha nincs nála bővebb valódi ideál, amely tartalmazza, azaz ha a valódi ideálok között a tartalmazásra nézve maximális.

Lemma (irreducibilitás és főideál kapcsolata euklidészi gyűrűben)

Legyen R tetszőleges euklidészi gyűrű és $a \in R^* \setminus U(R)$.

 $\langle a \rangle$ valódi ideál maximális R –ben

a felbonthatatlan R-ben.

Biz. \Rightarrow

Legyen R tetszőleges egységelemes integritási tartomány, $a \in R^* \setminus U(R)$

Feltétel: a felbotható

$$\exists b, c \in R*\setminus U(R) : a = bc.$$

←: Indirekt feltétel:

a felbonthatatlan, de $\langle a \rangle$ nem maximális.

∃ *I R* –beli ideál:

$$\langle a \rangle \subset I \subset R$$

R főideálgyűrű ⇒

 $\exists 0 \neq b \text{ nemegység} :$

$$I = \langle b \rangle \subset R$$

$$\langle a \rangle \subset \langle b \rangle \subset R$$

azaz a minden többszöröse b többszöröse

$$\Rightarrow a = bc$$

c nem egység, mert akkor $\langle a \rangle = \langle b \rangle$ lenne

 $\Rightarrow a$ nem felbonthatatlan

Def. Legyen R egységelemes, kommutatív gyűrű. Egy R-beli I ideált **prímideálnak** nevezünk, ha $a \cdot b \in I$ -ből $a \in I$ vagy $b \in I$ következik.

Példa. 1. 2Z prímideál Z-ben:

 $ab \in \mathbf{2Z} \Rightarrow ab \text{ páros } a \text{ vagy } b \text{ páros } \Rightarrow$

 $a \in \mathbf{2Z} \text{ vagy } b \in \mathbf{2Z}$.

2. 2Z maximális ideál is **Z**-ben :

Tfh $2\mathbb{Z} \subseteq I \subseteq \mathbb{Z}$.

Ha $\exists a \in I$ páratlan $\Rightarrow 1 \in I \Rightarrow \langle a \rangle = I = \mathbb{Z}$,

különben $I = 2\mathbb{Z}$.

3. 49Z nem maximális és nem prímideál is Z-ben:

$$49Z \subset 7Z \subset Z$$
, $7.7 = 49 \in 49Z$, de $7 \notin 49Z$.

Tétel. Legyen R kommutatív, egységelemes gyűrű és I az R-nek ideálja.

I. R/I akkor és csak akkor integritási tartomány, ha $I \neq R$ és I prímideál.

II. R/I akkor és csak akkor test, ha I maximális ideál.

Biz. I.

R/I int. tart.

 \Leftrightarrow

nincs nullosztó.

 \Leftrightarrow

 $(I+a)\cdot(I+b) = I \implies I+a = I \text{ vagy } I+b = I.$

II/1. Tfh hogy I maximális ideál R-ben, és $(I \neq) I + a \in R/I$.

$$\Rightarrow S = \{i+a\cdot x \mid i \in I, x \in R\}$$
 ideál, hiszen:

$$S-S \subseteq S : i_1 + ax_1 - i_2 - ax_2 = (i_1 - i_2) + a(x_1 - x_2) \in S.$$
 $\in I \in R$

$$RS \subseteq S : ri + rax = ri + arx \in S$$
.
 $\in I \in R$

Valamint $I \subset S$, mert $a \notin I$.

$$I$$
 maximális $\Rightarrow S = R \Rightarrow$

alkalmas $i \in I$, $x \in R$ -rel $e = i + a \cdot x \implies$

$$I + e = I + i + a \cdot x = I + a \cdot x = (I + a) \cdot (I + x)$$

R/I kommutatív egységelemes gyűrű invertálható \Rightarrow test.

II/2. Tfh R/I test, és legyen M egy olyan ideál, amely valódi módon tartalmazza I-t, azaz $\exists a \in R$ elem, amelyre $a \in M$ és $a \notin I$.

R/I test \Rightarrow

$$(I+a)\cdot (I+x) = (I+b)$$

egyenlet bármely $b \in R$ -re megoldható \Rightarrow

$$I + a \cdot x = I + b$$
.

$$I \subset M \ \text{\'es} \ a \in M \Rightarrow$$

$$I + a \cdot x \subseteq M \Rightarrow$$

$$b \in M \Rightarrow$$

$$M=R$$
.

Következmény.

Kommutatív, egységelemes gyűrűben ∀ maximális ideál prímideál.

Biz.

Legyen R kommutatív, egységelemes gyűrű.

Ha I maximális ideál R-ben \Rightarrow

 $R/I \text{ test } \Rightarrow$

R/I integritási tartomány ⇒

tétel ⇒ I prímideál

Lemma. Legalább 2 elemű kommutatív egységelemes *R* gyűrűnek, **akkor és csak akkor** vannak csupán triviális ideáljai, ha test.

Biz.

1. Tfh R nem test \Rightarrow

 $\exists a \neq 0$ elem, amelyik nem invertálható \Rightarrow

a többszörösei között nem fordul elő $e \Rightarrow$

(a) az R-nek nem triviális ideálja.

2. Tfh R test, I ideálja, és $I \neq \{0\} \Rightarrow$

 $\exists a \in I: a \neq 0.$

 $R \text{ test} \Rightarrow a\text{-nak létezik } a^{-1} \text{ inverze}$

továbbá az ideál 2. tulajdonsága ⇒

$$e = a^{-1}a \in I \Rightarrow \forall b \in R : be \in I \Rightarrow$$

tehát I = R, triviális ideál.

Def. (**Hányadostest**) Legalább 2 elemű R integritási tartomány T testbe ágyazható. Legyen $T = \{ (a, b) \mid a, b \in R, b \neq 0 \}$ és

~ ekvivalenciareláció $R \times R^*$ halmazon: $(a, b) \sim (c, d) \iff a \cdot d = b \cdot c$

A ~ által meghatározott osztályok testet alkotnak a köv. műveletekre:

$$\overline{(a,b)} + \overline{(c,d)} = \overline{(a \cdot d + b \cdot c, b \cdot d)},$$

$$\overline{(a,b)}\cdot\overline{(c,d)} = \overline{(a\cdot c,b\cdot d)}.$$

Algebra: polinomok

Def. Legyen R gyűrű. R feletti egyváltozós (egy határozatlanú) polinomoknak nevezzük az

$$(a_0, a_1, ..., a_n, ...)$$

végtelen sorozatokat, amelyekben $a_i \in R$ (i = 0, 1, ...), és csak véges sok a_i különbözik 0-tól. Az a_i elemek a polinom **együtthatói.**

Az R feletti egyváltozós polinomok halmazát R[x]-szel jelöljük.

Def. Ha n a legnagyobb olyan index, amire $a_n \neq 0$ de bármely i > n-re $a_i = 0$: a_n főegyüttható.

A továbbiakban legyen:

$$f = (a_0, a_1, ..., a_n, ...)$$
 és $g = (b_0, b_1, ..., b_m, ...) R$ feletti polinom.

$$f = g \iff \forall i : a_i = b_i$$

Műveletek R[x]-en:

1.
$$u = f + g = (c_0, ..., c_q, ...), c_i = a_i + b_i \ (i \in \mathbb{N}_0)$$

2.
$$v = f \cdot g = (d_0, ..., d_s, ...)$$
, ahol

$$d_{k} = \sum_{i=0}^{k} a_{i} \cdot b_{k-i} = a_{0} \cdot b_{k} + a_{1} \cdot b_{k-1} + \dots + a_{k} \cdot b_{0}$$

3. $a \in R$ esetén $a \cdot f = (a \cdot a_0, ..., a \cdot a_n)$.

Tétel. Ha R (egységelemes/ kommutatív/ nullosztómentes) gyűrű, akkor R[x] is (egységelemes/ kommutatív/ nullosztómentes) gyűrű.

Észrevételek:

1. Egységelem az (e, 0, ..., 0, ...) polinom, ahol e az R egységeleme.

2. Az $a \rightarrow f_a = (a, 0, ..., 0, ...)$ megfeleltetés injektív és művelettartó.

Ekkor $\forall f$ R feletti polinomra

$$a \cdot f = f_a \cdot f$$

 \Rightarrow R elemei R feletti polinomoknak tekinthetők (**konstans polinomok**)

A változó fogalma :

Legyen
$$x = (0, e, 0, ..., 0, ...)$$

Lehet, hogy $e \notin R !!!!$

2. művelet definíciója ⇒

$$x^2 = x \cdot x = (0.0 = 0, e \cdot 0 + 0.e = 0, 0.0 + e \cdot e + 0.0 = e, 0.0 + e \cdot 0 + 0.e + 0.0 = 0, ...).$$

$$\Rightarrow x^n = (0, ..., e, 0, ...), n \in \mathbb{N}.$$

n edik pozíció

Legyen továbbá $x^0 = (e, 0, ..., 0, ...)$, ekkor

$$f = (a_0, a_1, ..., a_n, ...) =$$

$$= (a_0, 0, ..., 0, ...) + ... + (0, 0, ..., a_n, ...) =$$

$$= a_0 + a_1 x + ... + a_n x^n + ...,$$

ahol az $a_i \in R$ az = $(a_i, 0, ..., 0, ...)$ polinomnak felel meg.

Def. Legyen $f = a_0 + a_1 x + ... + a_n x^n \in R[x]$, ekkor

 a_i az *i*-edfokú tag együtthatója.

A 0-adfokú tag együtthatója a polinom konstanstagja.

Ha $a_n \neq 0$, akkor a_n a polinom **főegyütthatója**, és n a polinom **foka** (**jel: deg**(f)).

Nullpolinom : $(0, 0, ...) \in R[x]$.

Nullpolinom foka −1 (−∞)

Monom : $f(x) = a_i x^i$ alakú polinom

Lineáris polinom: legfeljebb elsőfokú polinom

Főpolinom (normált polinom): a főegyütthatója R egységeleme

Ha R nullosztómentes és $f, g \in R[x]^* \implies$

$$\deg(f+g) \le \max(\deg(f), \deg(g)).$$

Ha h = fg, akkor h főegyütthatója $h_k = a_n b_m$, ahol k = n + m

tehát $deg(f \cdot g) = deg(f) + deg(g) \ge max(deg(f), deg(g)).$

Tétel (polinomok maradékos osztása)

Legyen R egységelemes integritási tartomány, $f, g \in R[x]$ és g főegyütthatója, b_k legyen R-ben egység.

Ekkor **egyértelműen léteznek** olyan $q, r \in R[x]$ polinomok, melyekkel

$$f(x) = g(x) \cdot q(x) + r(x)$$
, ahol

 $\deg(r) < \deg(g)$.

1.1. Ha f = 0, vagy $n < k \implies$

$$q(x) \equiv 0, \ r(x) = f(x)$$
.

- **1.2.** Legyen most $n \ge k$. n szerinti teljes indukció:
- **1.2.1.** Ha $n = k = 0 \Rightarrow$ akkor

$$r=0, q=a_n\cdot b_k^{-1},$$

mivel b_k egység R-ben.

1.2.2. Legyen n > 0 és tfh az n-nél kisebb fokszámok esetén igaz az állítás.

$$f_1(x) = f(x) - g(x) \cdot a_n \cdot b_k^{-1} \cdot x^{n-k}. \tag{*}$$

1.2.2.1. Ha $f_1 = 0 \implies$

$$q(x) = a_n \cdot b_k^{-1} \cdot x^{n-k}, \quad r(x) = 0.$$

1.2.2.2. Ha deg $(f_1) < \deg(f)$, ind. feltétel \Rightarrow

$$\exists \ q_1(x), \ r_1(x) \in R[x] :$$

$$f_1(x) = g(x) \cdot q_1(x) + r_1(x),$$

ahol

$$\deg(r_1) < \deg(g)$$
.

$$f(x) \Rightarrow f(x) = g(x) \cdot a_n \cdot b_k^{-1} \cdot x^{n-k} + g(x) \cdot q_1(x) + r_1(x),$$

$$f(x) = g(x) \cdot (a_n \cdot b_k^{-1} \cdot x^{n-k} + q_1(x)) + r_1(x) .$$

$$q(x)$$

$$r(x)$$

2. Unicitás.

9

Tfh
$$f = g \cdot q_1 + r_1 = g \cdot q_2 + r_2 \implies$$

$$g \cdot (q_1 - q_2) = r_2 - r_1.$$

Tegyük fel indirekte, hogy $q_1 - q_2 \neq 0 \implies$

$$\deg(r_2 - r_1) = \deg(g \cdot (q_1 - q_2)) \ge \deg(g)$$

$$r_2 - r_1 = 0$$

Következmény:

Legyen R test, és $f \in R[x]^*$ esetén $\varphi : R[x]^* \to \mathbb{N}_0$, $\varphi(f) = \deg(f)$.

Ekkor $R[x] \varphi$ -vel euklidészi gyűrűt alkot.

Def. Legyen S egységelemes integritási tartomány, R részgyűrűje S-nek, és R tartalmazza S egységelemét (e). Egy $f \in R[x]$ polinom $c \in S$ -beli **helyettesítési értéke**

$$f(c) = a_0 + a_1 c + \dots + a_n c^n$$
.

c az f gyöke, ha a helyettesítési érték 0.

Polinomfüggvény:

$$f: R \to R$$
, ahol $f(c) = a_0 + a_1 \cdot c + \ldots + a_n \cdot c^n \in R$, és $c \in R$.

f és g polinomfüggvény egyenlő, ha minden $c \in R$ esetén f(c) = g(c)

Két különböző polinom polinomfüggvénye megegyezhet! Legyen például $R = \mathbb{Z}_3$:

$$f = x^4 + x + 2 \neq g = x^3 + x^2 + 2$$
,

$$f(0) = 2 = g(0)$$
, $f(1) = 1 = g(1)$, $f(2) = 2 = g(2)$.

Legyen R egységelemes integritási tartomány, $f \in R[x]^*$, és $c \in R$ az f gyöke. Ekkor $\exists q \in R[x]^*$:

$$f(x) = (x - c) \cdot q(x).$$

Biz.

x-c polinom főegyütthatója egység \Rightarrow

maradékos osztás:

$$f(x) = (x - c) \cdot q(x) + r(x),$$

a. $r = 0 \implies \text{kész}$.

b.
$$\deg(r) < \deg(x - c) = 1 \implies$$

$$f(c) = (c - c) \cdot q(x) + r(c) = r(c) = 0.$$

Tétel. Legyen $f \in R[x]^*$, ahol R egységelemes integritási tartomány, és $\deg(f) = n \ge 0$. Ekkor f-nek legfeljebb n különböző gyöke van R-ben.

Biz. (n szerinti teljes indukció)

(12)

n = 0 esetén $f \in \mathbb{R}$: kész

Tegyük fel, hogy n > 1, és az n-nél kisebb fokúakra igaz az állítás. Legyen $c \in R$ gyöke f-nek :

$$f(x)=(x-c)\cdot g(x)$$
, ahol $\deg(g)=\deg(f)-1=n-1$

Ha *d* is gyöke *f*-nek, akkor $f(d) = 0 = (d - c) \cdot g(d) = 0$,

R nullosztómentessége $\Rightarrow d = c \text{ vagy } g(d) = 0.$

Ind. feltétel $\Rightarrow g$ különböző gyökeinek száma $\leq n-1$.

 \Rightarrow ha c nem gyöke g-nek, akkor is f-nek max. n különböző gyöke van

8.3.7. Következmény. Ha két, legfeljebb n-ed fo-kú polinom (a nulla polinomot is ideértve) n + 1 különböző helyen ugyanazt az értéket veszi fel, akkor megegyezik.

Biz.

Tfh f és g ilyen polinom, de különbözőek \Rightarrow

f-g polinom foka $\leq n$ és legalább n+1 gyöke van

8.3.8. Következmény. Ha R végtelen, akkor két különböző polinomhoz nem tartozik ugyanaz a polinomfüggvény.

Biz.

Ha így lenne f-g polinomnak végtelen sok gyöke lenne

Horner-elrendezés

$$f(c) = ?$$

n szorzással és n összeadással megkapjuk!

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$f(c) = a_0 + a_1 c + \dots + a_n c^n = a_n c^n + \dots + a_1 c + a_0 =$$

$$= (a_n c^{n-1} + \dots + a_1)c + a_0 = ((a_n c^{n-2} + \dots + a_2)c + a_1)c + a_0 =$$

$$= ((\dots (a_n c + a_{n-1})c + a_{n-2})c + \dots + a_1)c + a_0.$$

Példa.

$$f(x) = 5x^3 - 7x^2 + x - 8 = ((5x - 7)x + 1) x - 8.$$

С	5	-7	1	-8	f(c)
3		5	8	25	67

Gyökök száma?

Keressük az $f(x) = x^2 + 1$ polinom gyökeit

- 1. $\mathbf{Z}[x]$, $\mathbf{Q}[x]$, $\mathbf{R}[x]$ -ben nincs gyöke
- 2. C[x] –ben a gyökök száma kettő: i és -i

- 3. $\mathbf{Z}_2[x]$ –ben egy gyöke van:
- 4. $\mathbb{Z}_3[x]$ -ben nincs gyöke.
- 5. $\mathbb{Z}_{5}[x]$ -ben két gyöke van: 2 és 3.

Def. Legyen R egységelemes integritási tartomány, és

$$f \rightarrow f' = a_1 + 2a_2x + ... + n \ a_n x^{n-1}$$

R[x]-nek önmagába való leképezése a következő feltételekkel:

1. c' = 0, ha c konstans polinom,

$$2. (f+g)' = f'+g',$$

3.
$$(f \cdot g)' = f'g + fg'$$
,

4.
$$(e \cdot x)' = e$$
.

Az f' polinom a f (algebrai) deriváltpolinomja.

Def. Legyen R egységelemes integritási tartomány, és $f \in R[x]^*$. Azt mondjuk, hogy $c \in R$ az f(x) n-szeres gyöke $(n \in \mathbb{N})$, ha

$$(x-c)^n \mid f(x) \text{ és } (x-c)^{n+1} \not \mid f(x)$$

Jel:

$$(x-c)^n || f(x)$$

Tétel.

Legyen R egységelemes integritási tartomány, $f \in R[x], c \in R, n \in \mathbb{N}^+$

Ha c az f(x)-nek n-szeres gyöke, akkor c az f'(x)-nek legalább (n-1)-szeres gyöke, és pontosan (n-1)-szeres gyök abban az esetben, ha char $(R) \not \mid n$.

Biz.

$$= (x-c)^{n-1} \cdot ((x-c) \cdot g'(x) + ng(x)) = (x-c)^{n-1} \cdot h(x).$$

Tehát c legalább (n-1)-szeres gyöke f'(x)-nek és

$$h(c) = (c-c) \cdot g'(x) + ng(c) = ng(c) = g(c) + \dots + g(c).$$
 $n \text{ db}$

$$(x-c)^n \mid f(x) \Rightarrow g(c) \neq 0$$
.

Ha char(R) $\not\mid n \Rightarrow$ az összeg sosem 0.

Megjegyzés.

Fordítva nem igaz pl:

$$f(x) = x^n + 1$$
, $f'(x) = nx^{n-1} \Longrightarrow$

f'(x) –nek a 0 (n-1) –szeres gyöke, f(x) –nek nem .

Irreducibilis polinomok

Észrevételek:

test fölötti polinomok euklidészi gyűrűt alkotnak

 \Rightarrow

felbonthatatlanok és a prímek egybeesnek.

∀ nemnulla konstans polinom egység.

∀ elsőfokú polinomok felbonthatatlan.

Algebra alaptétele \Rightarrow

 $f \in \mathbb{C}[x]$:

$$f(x) = a_n (x - c_1)^{\alpha_1} \cdot (x - c_2)^{\alpha_2} \cdot \dots \cdot (x - c_k)^{\alpha_k}$$

ahol
$$c_j \in \mathbb{C}$$
, $c_i \neq c_j$, ha $i \neq j$ és

$$\alpha_1 + \alpha_2 + \ldots + \alpha_k = n = \deg f.$$

 \Rightarrow

C fölött az irreducibilis polinomok pontosan az elsőfokúak.

Észrevétel.

Ha $f \in \mathbf{R}[x]$, $c \in \mathbf{C}$ és f(c) = 0. Akkor

$$f(\overline{c}) = 0$$

is teljesül.

Következmény.

Legyen $c \in \mathbb{C} \setminus \mathbb{R}$ gyöke $f \in \mathbb{R}[x]$ -nek \Rightarrow

$$x - c | f(x)$$
 és $x - \overline{c} | f(x)$,

felbonthatatlanok és nem asszociáltak ⇒

$$g(x) = (x - c) \cdot (x - \overline{c}) \mid f(x)$$
.

$$g(x) = x^2 - 2Re(c)x + |c|^2 \in \mathbf{R}[x]$$
.

$$\Rightarrow \exists h(x) \in \mathbf{R}[x]$$
:

$$f(x) = g(x) \ h(x),$$

ahol
$$deg(h) = deg(f) - 2$$
.

 \Rightarrow

 $\forall f \in \mathbf{R}[x]$ legfeljebb másodfokú polinomok szorzatára bontható **R** felett.

 \Rightarrow

Azok a másodfokú polinomok felbonthatatlanok, amelyeknek nincs valós gyökük.

Racionális eset

Def. Legyen R Gauss-gyűrű. R[x] egy elemét **primitív polinomnak** nevezzük, ha együtthatóinak legnagy közös osztója az egységelem.

8.3.28. Schönemann–Eisenstein-tétel. Ha az R Gauss-gyűrű feletti legalább elsőfokú f primitív polinomhoz van olyan $p \in R$ prímelem, amely nem osztója a főegyütthatónak, de osztója minden más együtthatónak, p^2 viszont nem osztója a konstans tagnak, akkor f irreducibilis. Hasonlóan, ha az R Gauss-gyűrű feletti legalább elsőfokú f polinomhoz van olyan $p \in R$ prímelem, amely nem osztója a konstans tagnak, de osztója minden más együtthatónak, p^2 viszont nem osztója a főgyütthatónak, akkor f irreducibilis.

Legyen tehát $f = x^n + p$, ahol p prím, n pozitív egész. Ekkor

f R és hányadosteste felett is irreducibilis.

Def. Valamely K test esetén a K[x] integritási tartomány hányadostestét **racionális függvénytestnek** nevezzük és K(x)-szel jelöljük.

Gauss-tétel.

Legyen R tetszőleges Gauss – gyűrű és K a hányadosteste.

1. Ha egy $f \in R[x]$ polinom előállítható két nem konstans g, h polinom szorzataként K[x]-ben, akkor R[x]-ben is előállítható két g^* , h^* polinom szorzataként, úgy hogy

g és g^* , illetve h és h^* asszociáltak K[x]-ben.

2. R[x] is Gauss-gyűrű.

Észrevételek

$$f(x) = 6x^2 + 12x + 12 = 2 \cdot 3 \cdot (x^2 + 2x + 2)$$

 $\mathbf{Q}[x]$ -ben irreducibilis

 $\mathbf{Z}[x]$ -ben nem irreducibilis

$$f(x) = \frac{1}{3}x^2 + \frac{1}{2}x + 3$$

$$g(x) = 6 \cdot f = 2x^2 + 3x + 18$$

 $\mathbf{Q}[x]$ -beliek és $f \sim g$, $f \notin \mathbf{Z}[x]$

Z euklidészi gyűrű ⇒

Z Gauss - gyűrű ⇒

 $\mathbf{Z}[x]$ Gauss - gyűrű

$\mathbf{Z}[x]$ nem alkot euklidészi gyűrűt, különben

$$(x, 2) = 1 \Rightarrow$$

$$1 = u2 + vx$$

Z[x] nem alkot főideálgyűrűt:

$$J = \{f(x) | f(x) \in Z[x] \text{ \'es } f(0) \equiv 0 \mod(2) \} =$$

$$=\langle 2, x \rangle \subset Z[x]$$

Testbővítések, véges testek

Def. Legyen F tetszőleges test. K az F részteste, ha $K \subseteq F$ és K maga is testet alkot az F műveleteivel.

Jelölés F: K

Ekkor F a K test bővítése. Ha $K \neq F$, akkor K valódi részteste F -nek, illetve F valódi bővítése K -nak.

Észrevétel

Legyen F test és K részteste F –nek, ekkor F és K karakterisztikája megegyezik. Véges test karakterisztikája prímszám.

Def. Egy test prímtest, ha nincs valódi részteste.

Észrevétel

Résztestek metszete résztest ⇒

F test összes résztestének metszete résztest F –ben

 \Rightarrow a legszűkebb résztest F –ben

⇒ nincs valódi részteste

⇒ prímtest

Def. Ha K az F—nek a legszűkebb részteste, akkor K az F prím részteste (prímteste). (jelölés K = Fp)

Észrevételek.

- Test prím részteste prímtest.
- Ha F a K test bővítése, akkor prím résztesteik megegyeznek.

Tétel (prím résztestek)

Tetszőleges F test prím részteste izomorf

$$\mathbf{Z}p$$
 -vel, ha char $(F) = p$,

 \mathbf{Q} -val, ha char(F) = 0.

Biz.

p prímszám \Rightarrow **Z**p prímtest, továbbá 0, $e \in Fp$.

char(F) = p: (Fp, +) elemei: e^n alakúak, azaz

$$Fp = \{ 0 = e^0, e^1, ..., e^{p-1} \}$$

$$\downarrow \qquad \qquad \text{izomorfizmus}$$

$$\mathbf{Z}p = \{ 0 = 1^0, 1^1, ..., 1^{p-1} \}$$

Ha char(F) = 0, legyen

$$R = \left\{ \frac{ke}{le} \middle| k, l \neq 0 \right\} \in \mathbb{Z} \right\}$$

ahol ke = e + e + ... + e.

Tudjuk:

$$Q = \left\{ \frac{k}{l} \middle| k, l \neq 0 \right\} \in Z \right\}$$

$$\frac{k}{l} \mapsto \frac{ke}{le}$$
 Izomorfizmus **Q** és *R* között.

Tehát R is test $\Rightarrow R$ résztest F-ben.

Továbbá : $e \in Fp \implies R$ elemei Fp-ben vannak $\Rightarrow R \subseteq Fp$.

Fp a legszűkebb résztest F -ben $\Rightarrow Fp = R$

$$\Rightarrow Fp$$
 is izomorf Q -val

Észrevételek

Az előző tétel \Rightarrow minden p karakterisztikájú test $\mathbf{Z}p$ bővítése, és minden nullkarakterisztikájú test \mathbf{Q} bővítése.

Ha K részteste F-nek, akkor F K feletti vektortér, azaz teljesül:

- (1) $a \cdot (v+w) = a \cdot v + a \cdot w$, $a \in K \text{ \'es } v, w \in F$,
- (2) $(a+b)\cdot v = a\cdot v + b\cdot v$, $a,b \in K \text{ \'es } v \in F$,
- (3) $(ab) \cdot v = a \cdot (b \cdot v)$, $a,b \in K \text{ \'es } v \in F$,
- (4) $1 \cdot v = v$, minden $v \in F$,

ahol \cdot : $K \times F \to F$ egy külső művelet művelet , és $(a, v) \cdot \text{melletti képe } a \cdot v \,.$

Def. Legyen egy K részteste, M egy részhalmaza F -nek .

K(M) a K test M halmazzal való bővítése,

ha F –nek a legszűkebb részteste, mely tartalmazza K –t és M –et is.

Ha $M = \{ \alpha \}$ alakú, valamely $\alpha \in F$ —re, akkor

 $K(\alpha)$ egyszerű bővítés az α bővítő elemmel.

Legyen egy K részteste F-nek, és $\alpha \in F$,

ha α gyöke egy nem nulla K feletti polinomnak, akkor α algebrai elem K felett.

F algebrai bővítése K –nak, ha F minden eleme algebrai K felett.

Tétel (minimálpolinom egyértelmű létezése)

Tetszőleges F[x] test feletti polinomgyűrűben minden $J \neq \langle 0 \rangle$ ideálhoz egyértelműen létezik olyan $g \in F[x]$ főpolinom, amire

$$J = \langle g \rangle$$
.

Biz. 1. Egzisztencia

Legyen h minimális fokszámú polinom J-ben,

h főegyütthatója b, ekkor belátható, hogy a

$$g = b^{-1}h$$

főpolinom jó választás lesz.

Maradékos osztás tetszőleges $f \in J$ –re:

$$f = gq + r \text{ \'es } deg(r) < deg(g) = deg(h)$$

$$J$$
 ideál $\Rightarrow r = f - gq \in J$

deg(h) minimális $\Rightarrow r = 0$.

Kaptuk: tetszőleges $f \in J$ g –nek többszöröse $\Rightarrow J = \langle g \rangle$.

2. Unicitás

Tfh
$$\exists g' \in F[x] : J = \langle g' \rangle$$

$$\Rightarrow \exists c, c' \in F[x] : g = c'g' \text{ és } g' = cg$$

$$\Rightarrow g = c'cg \Rightarrow c'c$$
 az egységelem

c, c' konstans és g, g' főpolinom \Rightarrow

Def. Legyen F tetszőleges test és K egy részteste F –nek. Ha $\alpha \in F$ algebrai elem K felett, akkor

az az egyértelműen meghatározott $g \in K[x]$ főpolinom, amelyre

$$J = \{ f(x) \in K[x] \mid f(\alpha) = 0 \} = \langle g \rangle,$$

azaz, g generálja a J K[x] –beli ideált,

az α K feletti minimálpolinomja.

 α K feletti fokszámán deg(g) –t értjük.

Tétel (minimálpolinom tulajdonságai)

Legyen F tetszőleges test és K egy részteste F—nek, továbbá $\alpha \in F$ K felett algebrai elem.

Ha α K feletti minimálpolinomja g, akkor

(1) g irreducibilis K[x]-ben.

(2)
$$\forall f \in K[x] - \text{re } f(\alpha) = 0$$

 \Leftrightarrow

g osztója f – nek.

(3) g a legalacsonyabb fokszámú főpolinom K[x]-ben, amelynek α gyöke.

$$\Rightarrow \exists h_1, h_2 \in K[x]$$
:

deg(g) > 0, hiszen van gyöke \Rightarrow

$$g = h_1 h_2$$
 és $1 \le deg(h_i) < deg(g)$ $i = 1, 2$

$$0 = g(\alpha) = h_1(\alpha)h_2(\alpha)$$

$$\Rightarrow h_1 \text{ vagy } h_2 J \text{-beli \'es}$$

$$g \mid h_1 \quad \text{vagy } g \mid h_2$$

(2) a definícióból következik.

(3) Legyen $f \in K[x]$ –re $f(\alpha) = 0$

 $\Rightarrow f \in J$, azaz f a g többszöröse.

g főpolinom \Rightarrow

$$f = g$$
 vagy $deg(f) > deg(g)$.

Def. F: K esetén, ha F mint K feletti vektortér nem véges dimenziós akkor a **bővítés végtelen**, egyébként **véges bővítésről** beszélünk.

Def. Az F:K testbővítés foka az F K feletti vektortér dimenziója, jelben [F:K].

Tétel (testbővítések fokszámtétele)

Ha M:L és L:K véges testbővítés, akkor M:K véges bővítés és

$$[M:K] = [M:L][L:K]$$
.

Tétel (véges bővítés algebrai)

Tetszőleges K test véges bővítése algebrai K felett.

Tétel (egyszerű bővítés izomorfiája faktorgyűrűvel)

F:K esetén legyen $\alpha \in F$ K felett n –edfokú algebrai elem g K feletti minimálpolinommal. Ekkor

$$K(\alpha)$$
 izomorf $K[x]/\langle g \rangle$ –vel.

Tétel (egyszerű bővítés bázisa)

F:K esetén legyen $\alpha \in F$ K felett n –edfokú algebrai elem g K feletti minimálpolinommal. Ekkor

$$[K(\alpha):K]=n$$
 és hatványbázis $K(\alpha)$ K feletti bázisa $\langle 1, \alpha, ..., \alpha^{n-1} \rangle$.

Következmény

Ha $K(\alpha)$ tetszőleges egyszerű testbővítése K -nak , akkor $\forall c \in K(\alpha)$

$$c = b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1}$$

alakban írható fel, valamely $b_i \in K$ együtthatókkal, azaz

c előáll egy legfeljebb n-1 -edfokú K feletti polinom α helyen vett helyettesítési értékeként.

Tétel (egyszerű bővítés létezése)

Legyen $f \in K[x]$ irreducibilis polinom K test felett. Ekkor létezik K – nak olyan egyszerű algebrai bővítése, ahol a bővítő elem f –nek gyöke.

Biz.

$$L = K[x] / \langle f \rangle$$
 test

L elemei $[h] = h + \langle f \rangle$ maradékosztályok

$$a \in K \Rightarrow a \rightarrow [a]$$
 izomorfizmus \Rightarrow

beágyazzuk K-t L-be $\Rightarrow L:K$

Maradékosztályok műveleti szabályai szerint:

$$h(x) = a_0 + a_1 x + ... + a_m x^m \in K[x] \implies$$

$$[h] = [a_0 + a_1 x + ... + a_m x^m] =$$

$$[a_0] + [a_1][x] + ... + [a_m][x]^m =$$

$$a_0 + a_1[x] + ... + a_m[x]^m \implies$$

L minden eleme K feletti [x] határozatlanú polinom kifejezés \Rightarrow

L egyszerű algebrai bővítése K –nak az [x] bővítőelemmel.

Egy kérdés maradt:

$$[x]$$
 gyöke f -nek?

Ha
$$f(x) = a_0 + a_1 x + \dots + a_n x^n \implies$$

$$f([x]) = [a_0] + [a_1][x] + ... + [a_n][x]^n =$$

$$[a_0 + a_1 x + ... + a_n x^n] = [f] = [0] \implies$$

[x] gyöke f-nek!

$$f(x) = x^2 + x + 2 \in \mathbb{Z}_3$$

$$f(0) = -1$$
 & $f(1) = 1$ & $f(-1) = -1$

f(x) irreducibilis \mathbb{Z}_3 felett.

Legyen $u^2 + u + 2 = 0$ azaz

u gyöke f-nek \Rightarrow

u egy maradékosztály $\mathbb{Z}_3/\langle f \rangle$ -ben

legyen a tétel szerint $u = [x] = x + \langle f \rangle$.

Mivel $Z_3/\langle f \rangle = Z_3(u)$

tétel $\Rightarrow Z_3/\langle f \rangle$ bázisa : { 1, u }

$$\mathbb{Z}_3 / \langle f \rangle$$
 elemei: 0, 1, 2, u , $u+1$, $u+2$, $2u$, $2u+1$, $2u+2$

Észrevétel:

$$f$$
-nek $2u+2$ is gyöke!

$$f(2u+2) = (2u+2)^2 + (2u+2) + 2 =$$

$$4u^2 + 8u + 4 + 2u + 2 + 2 =$$

$$4(u^{2} + u + 2) + 4u - 4 + 2u + 2 + 2 = 6u = 0$$

Ha 2u+2 -vel végezzük a bővítést, algebrai szempontból ugyanazt a testet kapjuk!

Tétel (egyszerű bővítések izomorfiája)

Legyen α és β gyöke a K test felett irreducibilis $f \in K[x]$ polinomnak. Ekkor $K(\alpha)$ és $K(\beta)$ izomorf.

Az izomorfizmus α –t β –ba viszi át, K elemeit pedig fixen hagyja.

Kérdés: van olyan bővítés, ami f minden gyökét tartalmazza?

Def. Legyen K test és $f \in K[x]$, úgy, hogy deg(f) = n > 0. Ekkor K-nak az a legszűkebb bővítése, amelyben f-nek multiplicitással számolva pontosan n gyöke van, f polinom K feletti felbontási teste.

Tétel (felbontási test egzisztenciája és unicitása)

Legyen K test és $f \in K[x]$, úgy, hogy deg(f) = n > 0.

Ekkor létezik f polinom K feletti felbontási teste és bármely két ilyen izomorf, azon a leképezés mellett, amely K elemeit önmagukba, f gyökeit egymásba képezi le.

Tétel (véges test elemszáma)

Legyen F tetszőleges véges test. Ekkor $\mid F \mid = p^n$, ahol F_p az F prímteste és $[F:F_p]=n$.

Biz.

Ha F = Fp valamely p prímszámra $\Rightarrow |F| = p^1$.

Ha nem $\Rightarrow \exists K : [F : K] = n$.

F n –dimenziós vektortér K felett $\{a_1, ..., a_n\}$ bázissal.

 \Rightarrow F minden eleme felírható $a_1 k_1$, ..., $a_n k_n$ alakban K felett.

 $\forall k_i$ együttható helyébe |K| különböző értéket helyettesíthetünk.

 \Rightarrow F –nek $|K|^n$ különböző eleme van.

Speciálisan F_p az F prímteste

⇒ legszűkebb résztest

$$\Rightarrow |F| = |F_p|^n = p^n$$
.

Kérdés: mindig található megfelelő n –edfokú irreducibilis polinom tetszőleges \boldsymbol{F}_p felett?

Ha igen ⇒ minden prímhatványhoz konstruálható véges test, amelynek pont annyi az elemszáma.

Tétel(véges testben $a^q = a$)

Tetszőleges q elemszámú F véges testben minden $a \in F$ -re $a^q = a$.

Biz.

Ha a = 0 vagy a = 1 triviális.

Nem nulla elemek:

q-1 elemű csoport (test definíciója miatt).

Ha
$$n = |a| > 1$$
: $a^{|F^*|} = ?$

Lagrange tétel $\Rightarrow |a| |F^*|$

$$|F^*| = ns \implies$$

$$a^{q-1} = a^{|F^*|} = a^{ns} = (a^n)^s = 1^s = 1$$
.

Tétel $(x^q - x \text{ felbontási teste})$

Legyen tetszőleges q elemszámú F véges testben K résztest. Ekkor az $f = x^q - x \in K[x]$ polinomnak F a K feletti felbontási teste és

$$f = x^q - x = \prod_{a \in F} (x - a).$$

Biz.

Előző tétel ⇒

 $m{F}$ minden eleme gyöke $m{f}$ -nek,

 $deg(f) = q \implies f$ -nek legfeljebb q gyöke van.

⇒ *pontosan F* elemei a gyökök.

 \Rightarrow nincs szűkebb test, amif összes gyökét tartalmazná.

Tétel (véges testben $(a + b)^q = a^q + b^q$)

Tetszőleges q elemszámú F véges testben minden $a, b \in F$ -re $(a \pm b)^q = a^q \pm b^q$.

Megjegyzés: az állítás testszőleges prímkarakterisztikájú kommutatív gyűrűre érvényes.

Biz.

Legyen F karakterisztikája p

$$\Rightarrow q = p^n$$
.

Binomiális együtthatók:

$$\binom{p}{i} = \frac{p(p-1)...(p-i+1)}{i(i-1)...1} \equiv 0 \mod(p)$$

mivel nem egyszerűsíthető p –vel .

$$(a+b)^p = a^p + {p \choose 1}a^{p-1}b + \dots + {p \choose p-1}ab^{p-1} + b^p = a^p + b^p$$

n szerinti teljes indukció \Rightarrow

$$(a+b)^{p^n}=a^p+b^p,$$

$$a^{p^n} = ((a-b)+b)^{p^n} = (a-b)^{p^n} + b^{p^n},$$

$$(a-b)^{p^n}=a^{p^n}-b^{p^n}.$$

Tétel(véges testek egzisztenciája)

Tetszőleges véges test elemszáma p^n , ahol p prím és n pozitív egész, továbbá tetszőleges p prím és n pozitív egész számhoz található p^n elemszámú véges test.

Biz.

1. rész: már láttuk.

2. rész: legyen $q = p^n$ és az

 $f = x^q - x \in F_p[x]$ polinomnak F az F_p feletti felbontási teste.

Tudjuk az előző tételből:

 ${\it F}$ tartalmazza ${\it f}$ gyökeit és

f gyökei pontosan F elemei , ha F –nek q eleme van.

Van-e többszörös gyökef-nek vagy mind különböző ?

$$f' = qx^{q-1} - 1$$

$$F_p[x]$$
 -ben $q \equiv 0 \mod(p)$

$$f' = -1$$

$$\Rightarrow (f, f') = 1$$

⇒ f –nek nincs többszörös gyöke.

Legyen
$$S = \{ a \in F : a^q - a = 0 \}$$

Mit mondhatunk S –ről?

- 1. S-nek q eleme van: f gyökei.
- 2. $0, 1 \in S$.
- 3. $\forall a, b \in S$ -re:

előző tétel + S konstrukciója ⇒

$$(a-b)^q = a^q - b^q = a - b$$
.

$$\Rightarrow a-b \in S$$
.

4. $\forall a, b(\neq 0) \in S$ -re:

$$(a^{b-1})q = a^q b^{-q} = ab^{-1}$$
$$\Rightarrow ab^{-1} \in S.$$

 \Rightarrow S test, ami tartalmazza f összes gyökét

$$F$$
 a legszűkebb ilyen $\Rightarrow F = S$.

Tétel(véges testek unicitása)

Tetszőleges $q=p^n$ elemszámú véges test izomorf az $f=x^q-x$ polinom F_p feletti felbontási testével.

Biz. Legyen $F q = p^n$ elemszámú véges test

véges test elemszáma tétel ⇒

F karakterisztikája p és F: Fp.

 $x^q - x$ felbontási teste tétel \Rightarrow

F az f polinom F_p feletti felbontási teste.

felbontási test egzisztenciája és unicitása tétel ⇒

Test feletti polinom felbontási teste izomorfizmustól eltekintve egyértelműen létezik.

Tétel (véges testek résztest kritériuma)

Legyen F_q tetszőleges $q = p^n$ elemszámú véges test.

 \boldsymbol{F}_q minden részteste p^m –edrendű, ahol $m\mid n$, és

minden $m \mid n$ -hez egyértelműen létezik F_q -nak p^m -edrendű részteste.

Példa:

Tétel (véges test multiplikatív csoportja)

Tetszőleges F_q véges test F_q^* multiplikatív csoportja ciklikus.

Def. Tetszőleges F_q véges test F_q^* multiplikatív csoportjának generáló eleme F_q primitív eleme.

Tétel (bővítőelem létezése)

Legyen F_q tetszőleges véges test és F_r véges bővítése. Ekkor F_r egyszerű bővítése F_q –nak és F_r minden primitív eleme megfelelő bővítőelem F_q –ról F_r –re való bővítésnél.

Következmény

 \forall F_q véges testhez és n pozitív egészhez létezik egy n –edfokú irreducibilis polinom $F_q[x]$ –ben . Nevezetesen: $F_r = F_q(\alpha)$ esetén α $F_q[x]$ feletti minimálpolinomja .

10. ALGORITMUSELMÉLET

Def. Számítási eljárás alatt a (Q, Q_b, Q_k, f) négyest értjük, ahol Q állapotok halmaza, Q_b (bemeneti állapotok), Q_k (kimeneti állapotok) részhalmazai Q-nak, $f:Q \to Q$ átmeneti függvény, amelyre f(q) = q minden $q \in Q_k$ -ra.

 $\forall x \in Q_b$ állapot definiál egy q_0, q_1, q_2, \dots számítási sorozatot, ahol

$$q_0 = x$$
 és $q_{n+1} = f(q_n)$, ha $n \ge 0$

x bemenetre a számítási sorozat n lépésben véget ér, ha n a legkisebb pozitív egész, amelyre $q_n \in Q_k$. Ekkor az eredmény:

$$q_{\rm n} = q_{n+1} = q_{n+2} = \dots$$

Példa: az euklidészi algoritmus formalizálása.

Legyen
$$Q_k = \mathbb{Z}$$
, $Q_b = \mathbb{Z}^2$, $Q = (\mathbb{Z}^2 \times \{2, 3\}) \cup Q_b \cup Q_k$, továbbá

$$f(a) = a$$

$$f(a, b) = (a, b, 2)$$

$$f(a, b, 2) = \begin{cases} a, \text{ ha } b = 0\\ (a, b, 3) \text{ különben} \end{cases}$$

$$f(a, b, 3) = (b, a \mod b, 2)$$

$$C' = (Q', Q_b', Q_k', f')$$

számítási eljárás szimulálja a

$$C = (Q, Q_b, Q_k, f)$$

k megadja, hogy a szimulált "gép" 1 lépését a szimuláló hány lépésben hajtja végre

ha \exists olyan $g: Q_b \to Q_b$ ' (bemeneti kódolás), $h: Q' \to Q$ (állapot dekódolás) és $k: Q' \to \mathbf{N}^+$ függvény, amelyekre

- (1) ha $x \in Q$, akkor a C számítási eljárás pontosan akkor adja az y eredményt, ha van olyan $y' \in Q_k'$, hogy g(x) bemenettel a C' számítás az y' eredményt adja, és h(y') = y
- (2) ha $q' \in Q'$, akkor $f(h(q')) = h(f'^{k(q')}(q'))$, ahol $f'^{k(q')}$ az f' leképezés k(q')-edik iteráltját jelenti.

Példa: a bővített euklidészi algoritmus formalizálása.

Legyen
$$Q_k = \mathbb{Z}^3$$
, $Q_b = \mathbb{Z}^2$, $Q = (\mathbb{Z}^7 \times \{2, 3.1, 3.2\}) \cup Q_b \cup Q_k$, továbbá

$$f(a, b) = (a, 1, 0, b, 0, 1, 0, 2)$$

szimulálja az előző eljárást, de fordítva nem igaz!

$$f(a, x, y) = (a, x, y)$$

$$f(a, x, y, b, u, v, q, 2) = \begin{cases} (a, x, y), & \text{ha } b = 0 \\ (a, x, y, b, u, v, q, 3.1) & \text{különben} \end{cases}$$

$$f(a, x, y, b, u, v, q, 3.1) = (a, x, y, b, u, v, \lfloor a/b \rfloor, 3.2)$$

$$f(a, x, y, b, u, v, q, 3.2) = (b, u, v, a - qb, x - qu, y - qv, q, 2)$$

Legyen $f: \mathbf{R} \to \mathbf{N}$ egy számsorozat.

Jelölje $\mathbf{O}(f)$, vagy $\mathbf{O}(f(n))$ mindazon $g: \mathbf{R} \to \mathbf{N}$ számsorozatok halmazát, amelyekre van olyan g-től függő $C \in \mathbf{R}$ konstans és $N \in \mathbf{N}$ index, hogy

$$|g(n)| \le C \cdot |f(n)|$$
, ha $n \ge N$.

Ha f és f^* , illetve g és g^* csak véges sok tagban különböznek, akkor

$$g \in O(f) \Leftrightarrow g^* \in O(f^*),$$

így a jelölés értelmes, akkor is haf vagy g véges sok indexre nem értelmezett.

Ha pl. g egy legfeljebb k-adfokú polinom, akkor $g \in O(n^k)$.

Fordítva, ha $f \in O(g)$, akkor ez így jelöljük: $g \in \Omega(f)$.

Az O(f) és $\Omega(f)$ halmazok metszetét $\Theta(f)$ jelöli.

Turing - gépek

Egy Turing - gép $k \ge 1$ db szalagból és egy vezérlőegységből áll.

∀ mezőn az **ábécé** egy **betűje** áll, véges sok nem az **üres** jel (**szóköz**)

Def. T Turing - gép egy $T=(B,A,\varphi)$ hármas, ahol A a szalagábécé, B a belső állapotok halmaza, A, B véges, továbbá

$$\Box \in A, s, h \in B$$

és

$$\varphi: B \times A^k \to B \times A^k \times \{<,=,>\}^k$$

tetszőleges leképezés.

k a szalagok száma!

Így is szokás megadni (precízebb): $T = (k, B, A, \square, s, h, \varphi)$

egy lépés
$$\varphi:(b,a_1,\ldots,a_k)\mapsto(b',a_1',\ldots,a_k',c_1,\ldots,c_k),$$

ahol $b, b' \in B$, és ha $1 \le i \le k$, akkor $a_i, a'_i \in A, c_i \in \{<, =, >\}$

illetve
$$\varphi: (h, a_1, ..., a_k) \mapsto (h, a_1, ..., a_k, =, ..., =).$$

Turing - gép mint számítási eljárás

egy aktuális állapot:

 β_i -k: fejtől jobbra eső szavak

$$q = (b, \alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_k, \beta_k) \in B \times A^{*2k}$$

 α_i -k: fejtől balra eső szavak

Bemeneti állapotok: ahol b = s, kimeneti állapotok: ahol b = h

Induláskor $\forall \beta_i$ üres szó, azaz a fejek a bemenet jobb szélén állnak.

Bementnél feltesszük, hogy α_i -k nem tartalmaznak üres jelet.

Kimenetnél β_i -ket "szemétnek" tekintjük.

Kimenet: α_i -k leghosszabb üres jel mentes suffixei. α_i -k többi része szemét.

m < k bemeneti szó esetén azokat az első m szalagra írjuk, a többi üres.

m = 1 esetén **standard inputról** beszélünk.

Benenet **hossza** az α_i -k hosszának összege.

n < k kimeneti szó esetén azok az utolsó n szalagra kerülnek, a többi szalag tartalma szemét.

n = 1 esetén **standard outputról** beszélünk.

Kinenet hossza a kimeneti szavak hosszának összege.

Elnevezés A_0 elemszáma szerint: **unáris**, **bináris**, stb Turing-gép

- **10.1.11. Példák.** (1) Az a Turing-gép, amelynek csak az s=h belső állapota van, nem csinál semmit, kimenete a bemenet.
- (2) Az a Turing-gép, amelynek csak az $s \neq h$ belső állapotai vannak, mindig üres jelet ír és balra lép minden szalagon, és mindig az s állapotban marad, törli a szalagokat, de soha nem áll meg.
- (3) Az az egyszalagos Turing-gép, amelynek csak az $s \neq h$ belső állapotai vannak, ha nem üres jelet olvas, akkor balra lép, ha pedig üres jelet olvas, akkor jobbra lép és megáll, továbbá mindig azt írja vissza, amit olvasott, megkeresi a bemenet balszélső betűjét. Hasonlóan kereshetünk egy adott betűt.

(4) Egy egyszalagos gépen azt, hogy abrakadabra kiírathatjuk a szalagra 12 állapottal.

(5) Könnyű megadni olyan kétszalagos gépet, amely

$$a_1a_2\ldots a_n$$

bemenetre kimenetként az $a_n a_{n-1} \dots a_1$ szót adja: elmegyünk a bemenet bal széléig, majd visszafelé haladva a betűket egyenként a második szalagra másoljuk. Hasonlóan könnyű megadni olyan kétszalagos gépet, amely $a_1 a_2 \dots a_n$ bemenetre $a_1 a_2 \dots a_n a_n a_{n-1} \dots a_1$, illetve $a_1 a_1 a_2 a_2 \dots a_n a_n$ kimenetet ad.

(6) Bináris gépen {□, 0, 1} jelkészlettel, 3 szalaggal könnyen megadható olyan gép, amely kettes számrendszerben felírt számokat összead. Jelentse az s start állapot azt, hogy nincs átvitel, a c állapot pedig, hogy van átvitel. Leolvasva a két utolsó számjegyet, az összeg megfelelő számjegyét kiírjuk a harmadik szalagra, balra lépünk, és az átvitelnek megfelelő állapotba megyünk át. Ha valamelyik szalagon elfogyott a szám, akkor úgy viselkedünk, mintha onnan nullát olvasnánk. Ha mindkét szalagon elfogyott a szám, akkor átvitel esetén 1-et írunk, egyébként üres jelet, és az eredmény jobb szélére megyünk. Hasonlóan adható meg 3 vagy 4 szalaggal olyan gép, amely kettes számrendszerben felírt számokat összehasonlít, kivon (ha az eredmény negatív lenne, nullát ad vissza), szoroz, maradékosan oszt.

10.1.12. Turing-gép szimulálása csökkentett jelkészlettel. Legyen $T = (B, A, \varphi)$ egy Turing-gép, és A' egy tetszőleges véges ábécé, amelynek legalább két eleme van. Ekkor T szimulálható olyan T' Turing-géppel, amelynek ábécéje A'. Ha egy számítás során a T gép t lépést tesz, akkor a T' gép O(t) lépést tesz.

Biz.

Alkalmas n-re A üres jelének kódja A' üres jeléből álló n-es

Legyen $A = \{0, 1, 2, 3\}$ és $A' = \{u, I\}$, üres jel a 0, illetve az u, továbbá $0 \rightarrow uu$, $1 \rightarrow uI$, $2 \rightarrow Iu$, $3 \rightarrow II$.

 $\forall h \neq b \in B$ belső állapotához T-nek a T'-nek a

 $b, b_u, b_I, b_i \ (i \in A), b_{i,c} \ (i \in A \text{ \'es } c \in \{<,>\})$ belső állapotok tartoznak

T' működése: ha T' valamely b állapotban van és a bemenet jobbszélső betűjét olvassa, akkor attól függően, hogy mit olvasott, $b_{\rm u}$, vagy $b_{\rm I}$ állapotba megy át és balra lép.

Itt attól függően, hogy mit olvasott, a b_i állapot valamelyikébe megy át, jobbra lép és i' kódjának bal oldali betűjét írja ki, azaz

i=0, ha a $b_{\rm u}$ állapotban voltunk és u betűt olvastunk, i=1, ha $b_{\rm I}$ állapotban voltunk és u betűt olvastunk, i=2, ha a $b_{\rm u}$ állapotban voltunk és I betűt olvastunk, i=3, ha $b_{\rm I}$ állapotban voltunk és I betűt olvastunk és $\varphi(b,i)=(b',i',c)$.

A b_i állapotban, ha c az = jel, akkor a szalagra i' jobbszélső betűjét írjuk, átváltunk a b' állapotra és a fej marad. Ha nem =, akkor a szalagra i' jobbszélső betűjét írjuk, átváltunk a $b_{i,c}$ állapotra és a fej mozdul c szerinti irányba.

 $b_{i, c}$ állapotban azt írjuk aszalagra, ami ott van, az állapot b' lesz és a fej mozdul c szerint.

Így T' a T gép bármely lépését legfeljebb 4 lépésben szimulálja.

Például, ha $\varphi(b, 3) = (b', 1, <)$ a *T*-ben, akkor *T'*-ben:

16

Szavak kódolása számmá

Tfh A = $\{0, 1, ..., r - 1\}$ számjegyek, üres jel a 0. Egy A*-beli $\alpha = a_n a_{n-1} ... a_0$ bemeneti szó vagy üres, vagy nem 0-val kezdődik és r alapú számrendszerben:

$$|\alpha|_r = \sum_{i=0}^n a_i r^i$$
 r nincs a jegyek közt!

Az
$$\alpha \mapsto |\alpha|_r$$

leképezés kölcsönösen egyértelműen képezi le *A** nem 0-val kezdődő szavait **N**-re.

Ha csak A_0^* -beli $\alpha = a_n a_{n-1} ... a_0$ bemeneti szavakat akarunk kódolni, akkor :

$$|\alpha|_{r-1} = \sum_{i=0}^{n} a_i (r-1)^i$$
 $r-1$ a jegyek közt van!

Az
$$\alpha \mapsto |\alpha|_{r-1}$$

leképezés kölcsönösen egyértelműen képezi le A*-ot N-re.

10.1.15. Turing-gép szimulálása egy szalaggal. Legyen $T = (B, A, \varphi)$ egy Turing-gép k szalaggal. Ekkor T szimulálható olyan egyszalagos S Turing-géppel, amelynek ábécéje A. Ha egy számítás során a T gép t lépést tesz, akkor az S gép $2kt(2t+3) = O(t^2)$ lépést tesz.

Biz.

S minden mezőjét 2k db mezőből álló csoportokra bontjuk bontjuk:

 a_i -k mutatják, hogy T-ben 1., 2., ...k., fej hol állt induláskor egy mezőcsoport tartalma: $a_1a_2 \dots a_k f_1 f_2 \dots f_k$

 f_i -k mutatják, hogy a szimuláció során hol állnak T-ben 1., 2., ...k., a fejek: ha a T gép i-edik szalagján a mezőcsoportban szereplő a_i betűn áll a fej, akkor f_i a nem üres, különben az üres jel.

Kezdetben a fej egy mezőcsoport jobbszélén áll.

A tekintett mezőcsoporttól balra lévő mezőcsoportban a_i -k mutatják, hogy T-ben 1., 2., ...k., fejtől eggyel balra milyen betű volt induláskor, és így tovább...

A T egy lépésének szimulálása annak a 2k hosszú mezőcsoportnak a jobbszéléről indul, amelyben a "leginkább jobbra" lévő fej van.

S "emlékszik" arra, hogy T milyen állapotban van és arra is hogy egy mezőcsoport melyik mezőjén áll.

S balra lépkedve megkeresi minden T-beli szalagra a fej állását és megjegyzi a ott lévő betűvel együtt. (f_i -k alapján meg tudja tenni)

Ekkor S már tudja, hogy mit kell tennie.

Ha kell, akkor balra lép egy mezőcsoportot, aztán jobbra indul és a megfelelő helyeken ír a szalagra és mozgatja a fejet.

Ha eddig szimuláltunk *n* lépést, minden fej legfeljebb *n* mezőcsoporttal mozdult el balra, vagy jobbra. Tehát leghosszabb eset, ha egyik fej mindig balra, egy másik mindig jobbra mozdult T-ben (ezek 2*n* "mezőcsoportnyira" lesznek egymástól).

A következő lépés során legfeljebb 2n+1 mezőcsoportot kell balra haladva végigolvasni, hogy minden információt megtaláljunk, ami leírja a jelenlegi helyzetet.

Ezután legfeljebb 1 mezőcsoportot kell balra menni, így max 2n+3-at visszafelé

tehát az n+1-dik lépés szimulálása közben legfeljebb 2n+1+1+2n+3 = 4n+5 mezőcsoportot érintünk, amelyek 2k jel hosszúak, így összesen 2k(4n+5) lépést tesz S

Tehát a t lépés szimulálása:

$$\sum_{n=0}^{t-1} 2k(4n+5) = 2kt(2t+3)$$

