Things You Should Know

1 Simple Set Theory

Here are words that you should have heard already. If you don't know any of these words, ask someone!

Here A, B, X, Y are sets. I is an index set, $\{A_{\alpha} : \alpha \in I\}$ and $\{B_{\alpha} : \alpha \in I\}$ are (indexed) families of sets.

- Empty set: \emptyset , the set with no elements.
- Subset: $A \subseteq B$ means " $x \in A \Rightarrow x \in B$ "
- Powerset: $\mathcal{P}(X) := \{ A : A \subseteq X \}$
- $\bullet \ \ {\rm Union} \colon A \cup B := \{\, x : x \in A \lor x \in B \,\}$
- Intersection: $A \cap B := \{ x : x \in A \land x \in B \}$
- Complement: $X \setminus A := \{ x : x \in X \land x \notin A \}$
- Indexed Union: $\bigcup_{\alpha \in I} A_{\alpha} := \{ x : \exists \alpha \in I, x \in A_{\alpha} \}$
- Indexed Intersection: $\bigcup_{\alpha \in I} A_{\alpha} := \{ x : \forall \alpha \in I, x \in A_{\alpha} \}$
- Cartesian Product: $X \times Y := \{ (x, y) : x \in X, y \in Y \}$

2 Functions

FACT: Let $f: X \longrightarrow Y$ be a function.

- X is the domain, Y is the codomain, $\{f(x): x \in X\} \subseteq Y$ is the range;
- f is an injection (or 1-1) if f(x) = f(a) implies x = a;
- f is a surjection (or onto) if the range is the entire codomain;
- f is a bijection if it is both an injection and a surjection;
- The composition of two injections is an injection;
- The composition of two surjections is a surjection;
- The composition of two bijections is a bijection;

FACT: Let $A \subseteq X$ and $B \subseteq Y$.

- The preimage of B is: $f^{-1}(B) := \{ x \in X : f(x) \in B \}.$
- If f is an injection with range Y, then the inverse function $f^{-1}: Y \longrightarrow X$ is (1) a function and (2) an injection.

3 DeMorgan's Laws and other interactions

The following are called DeMorgan's laws:

1.
$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$$

2.
$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$$

FACT: These things are true of all functions $f: X \longrightarrow Y$. Let $A, B \subseteq X$ and $C, D \subseteq Y$.

1.
$$A \subseteq B$$
 implies $f(A) \subseteq f(B)$

2.
$$C \subseteq D$$
 implies $f^{-1}(C) \subseteq f^{-1}(D)$

3.
$$f(A \cup B) = f(A) \cup f(B)$$

4.
$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$

5.
$$f(A \cap B) \subseteq f(A) \cap f(B)$$

6.
$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$

7.
$$f(A) \setminus f(B) \subseteq f(A \setminus B)$$

8.
$$f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$$

9.
$$f(X \setminus f^{-1}(Y \setminus C)) \subseteq C$$

10.
$$A \subseteq f^{-1}(f(A))$$
, (with equality if f is an injection)

11.
$$f(f^{-1}(C)) \subseteq C$$
, (with equality if f is a surjection)

12.
$$f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$$

4 Countability

Definition 1. A set A is said to be countable if there is a bijection $f: \mathbb{N} \longrightarrow A$.

The following gives equivalent conditions for being countable:

Theorem 2. For an infinite set A the following are equivalent:

- 1. A is countable;
- 2. There is an injection $f: A \longrightarrow \mathbb{N}$;
- 3. There is a surjection $g: \mathbb{N} \longrightarrow A$.

FACT: The following sets are countable:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, the algebraic numbers;
- Any infinite subset of a countable set;
- The product of two countable sets;
- The union of finitely many countable sets;
- The countable union of countable sets;
- The countable union of some countable sets and some finite sets;

FACT: The following sets are not countable:

- \mathbb{R} , the irrational numbers, the non-algebraic numbers (i.e. the transcendental numbers), \mathbb{R}^n ;
- Any superset of an uncountable set;
- The powerset of a countable set, e.g. $\mathcal{P}(\mathbb{N})$;
- The set of functions from \mathbb{N} to \mathbb{N} .

The following is a combinatorial fact about uncountable sets:

Theorem 3 (Uncountable Pigeonhole Principle). Let X be an uncountable set. If $\chi: X \longrightarrow \mathbb{N}$ is a function, then there is an $n \in \mathbb{N}$ such that $\chi^{-1}(n)$ is uncountable.

That can be restated as "If you try to put uncountably many pigeons into countably many holes, then there is a hole with uncountably many pigeons".

5 Selected Facts about $\mathbb R$

First recall: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. (For us $0 \notin \mathbb{N}$.) **FACT**: Between any two distinct real numbers:

- There is a rational number.
- There are infinitely many rational numbers.
- There is an irrational number.
- There are infinitely many irrational numbers.

FACT: Here are some useful facts from calculus:

- $\bigcup_{n \in \mathbb{N}} [\frac{1}{n}, 1] = (0, 1];$
- $\bigcup_{n\in\mathbb{N}}[0,n]=[0,+\infty);$
- $\bullet \ \sum_{n\in\mathbb{N}} 2^{-n} = 1;$