

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (1) of (31)

A4

TEST REPORT Part 15 Subpart C 15.247

Equipment under test REMOVU Motor Stabilizer Remote Control

Model name REMOVU S1RM

FCC ID 2AC73-S1RM

Applicant ESSEL-T CO., LTD.

Manufacturer ESSEL-T CO., LTD.

Date of test(s) $2017.05.12 \sim 2017.05.23$

Date of issue 2017.06.05

Issued to ESSEL-T CO., LTD.

1211 kranztechno, dunchon-daero, jungwon-gu seongnam-si, gyeonggi-do, South Korea Tel: +82-70-5014-5397 / Fax: +82-31-698-3181

Issued by KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by:	Report approval by:
Kwon-se Kim	Jeff Do
Test engineer	Technical manager

KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-17T0056 Page (2) of (31)

Revision history

Revision	Date of issue	Test report No.	Description
-	2017.06.05	KES-RF-17T0056	Initial

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (3) of (31)

TABLE OF CONTENTS

1.	General in	nformation	4
	1.1.	EUT description	4
	1.2.	Test configuration	4
	1.3.	Device modifications	4
	1.4.	Information about derivative model	4
	1.5.	Frequency/channel operations	5
	1.6.	Accessory information.	5
2.	Summary	of teststs	6
3.	Test result	ts	7
	3.1.	6 dB bandwidth	7
	3.2.	Output power	9
	3.3.	Power spectral density	11
	3.4.	Radiated restricted band and emissions	13
	3.5	Conducted spurious emissions & band edge	28
Appe	endix A.	Measurement equipment	
Appe	endix B.	Test setup photos	31

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (4) of (31)

1. General information

Applicant: ESSEL-T CO., LTD.

Applicant address: 1211 kranztechno, dunchon-daero jungwon-gu

seongnam-si, gyeonggi-do, South Korea

Test site: KES Co., Ltd.

Test site address: C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

FCC rule part(s): 15.247

FCC ID: 2AC73-S1RM

Test device serial No.: Production Pre-production Engineering

1.1. EUT description

Equipment under test REMOVU Motor Stabilizer Remote Control

Frequency range 2402 Mb ~ 2480 Mb Model: REMOVU S1RM

Modulation technique GFSK Number of channels 40

Antenna type Metal antenna

Antenna gain 1.20 dBi

Power source DC 3.7 V (Rechargeable Battery)

1.2. Test configuration

The <u>ESSEL-T CO., LTD. REMOVU Motor Stabilizer Remote Control FCC ID: 2AC73-S1RM</u> was tested per the guidance of KDB 558074 D01 v04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing.

1.3. Device modifications

N/A

1.4. Information about derivative model

N/A

KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-17T0056 Page (5) of (31)

Frequency/channel operations 1.5.

Ch.	Frequency (Mbz)	Rate(Mbps)
01	2 402	1
20	2 442	1
39	2 480	1

1.6. **Accessory information**

Equipment	Manufacturer	Model	Serial No.	Power source
Battery charger	CHINA	REMOVU S1CG	-	5V DC 2000 mA - MIN

KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-17T0056 Page (6) of (31)

Summary of tests 2.

Reference	Parameter	Test results
15.247(a)(2)	6 dB bandwidth	Pass
15.247(b)(3)	Peak output power	Pass
15.247(e)	Power spectral density	Pass
15.205 15.209	Radiated restricted band and emission	Pass
15.247(d)	Conducted spurious emission and band edge	Pass

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (7) of (31)

3. Test results

3.1. 6 dB bandwidth

Test procedure

KDB 558074 D01 v04 – Section 8.1 or 8.2 Used test method is section 8.1.

Section 8.1

- 1. RBW = 100 kHz.
- 2. $VBW \ge 3 \times RBW$.
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Section 8.2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 \times RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

Limit

According to \$15.247(a)(2), systems using digital modulation techniques may operate $902 \sim 928~\text{MHz}$, $2~400 \sim 2~483.5~\text{MHz}$, and $5~725 \sim 5~850~\text{MHz}$ bands. The minimum 6 dB bandwidth shall be at least 500~kHz.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (8) of (31)

Test results

Frequency(Mbz)	6 dB bandwidth(MHz)	Limit(Mb)
2 402	0.669	
2 442	0.672	0.5
2 480	0.677	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (9) of (31)

3.2. Output power

Test procedure

KDB 558074 D01 v04 – section 9.1.1 or 9.1.3 Used test method is section 9.1.1

Section 9.1.1

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set $VBW \ge 3 \times RBW$.
- 3. Set span \geq 3 \times RBW
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level

Section 9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Limit

According to §15.247(b)(3), For systems using digital modulation in the 902~928 Mb, 2 400~2 483.5 Mb, and 5 725~5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (10) of (31)

Test results

Frequency(Mz)	Peak output power(dBm)	Limit(dBm)
2 402	-10.17	
2 442	-10.66	30
2 480	-11.07	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (11) of (31)

3.3. Power spectral density

Test procedure

KDB 558074 D01 v04- section 10.2

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz
- 4. Set the VBW \geq 3 \times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW(no less than 3 klz) and repeat.

Limit

According to §15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (12) of (31)

Test results

Frequency(Mz)	PSD (dBm)	Limit(dBm)
2 402	-17.29	
2 442	-18.21	8
2 480	-17.33	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (13) of (31)

3.4. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 Mz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (14) of (31)

Test procedure below 30 Mbz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mbz

- 1. Spectrum analyzer settings for f < 1 GHz:
 - ① Span = wide enough to fully capture the emission being measured
 - (2) RBW = 100 kHz
 - $3 \text{ VBW} \geq \text{RBW}$
 - 4 Detector = quasi peak
 - (5) Sweep time = auto
 - \bigcirc Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - ② RBW = 1 Mbz
 - \bigcirc VBW \geq 3 Mb
 - 4 Detector = peak
 - 5 Sweep time = auto
 - 6 Trace = max hold
 - Trace was allowed to stabilize

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (15) of (31)

- 3. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - \bigcirc RBW = 1 Mbz
 - \bigcirc VBW \geq 3 × RBW
 - ① Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step 5, then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step \bigcirc 5, then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40log(D_m/Ds)$ $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/Ds)$ Where:

 F_d = Distance factor in dB

 D_m = Measurement distance in meters

 D_s = Specification distance in meters

- 3. CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)
- 4. Field strength($dB\mu V/m$) = Level($dB\mu V$) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ V/m) Field strength(dB μ V/m)
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that **X orientation** was worst-case orientation; therefore, all final radiated testing was performed with the EUT in **X orientation**.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. According to exploratory test no any obvious emission were detected from 9kllz to 30Mlz. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (16) of (31)

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2400/F(kllz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72\,$ Mb, $76 \sim 88\,$ Mb, $174 \sim 216\,$ Mb or $470 \sim 806\,$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections $15.231\,$ and $15.241.\,$

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (17) of (31)

Duty cycle

Regarding to KDB 558074 D01_v04, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Ton time	Period	Duty cycle	Duty cycle	Minimum VBW	Duty cycle correction factor
(ms)	(ms)	(Linear)	(%)	(kHz)	(dB)
0.521 7	0.652 2	0.799	79.99	1.92	0.97

Duty cycle (Linear) = T_{on} time/Period Minimum VBW($\frac{1}{2}$) = $1/T_{on}$, where T is on time in second DCF(Duty cycle correction factor (dB)) = $10log(1/duty\ cycle)$

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (18) of (31)

Test results (Below 30 Mb)

Mode: BLE

Distance of measurement: 3 meter

Channel: 00 (Worst case)

Frequency	Level	Ant. Pol.	CF	$\mathbf{F}_{\mathbf{d}}$	Field strength	Limit	Margin
(MHz)	$(dB\mu V)$	(H/V)	(dB)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (19) of (31)

Test results (Below 1 000 順) – Worst case

Mode: BLE

Distance of measurement: 3 meter

Channel: 00 (Worst case)

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (20) of (31)

Test results (Above 1 000 Mb)

Mode: BLE

Distance of measurement: 3 meter

Channel: 00

- Spurious

Frequency	Level	Detect mode	Ant. Pol.	CF	DCF	Field strength	Limit	Margin
(MHz)	(dBµV)		(H/V)	(dB)	(dB)	(dBμV/m)	(dBµV/m)	(dB)
1843.70	45.54	Peak	Н	-2.62	-	42.92	74.00	31.08
2367.60	46.09	Peak	Н	-0.26	-	45.83	74.00	28.17
2428.40	47.18	Peak	Н	-0.15	-	47.03	74.00	26.97
4813.00	61.42	Peak	Н	7.66	-	69.08	74.00	4.92
4813.00	38.58	Avg	Н	7.66	0.97	47.21	54.00	6.79
7200.00	46.77	Peak	Н	11.26	-	58.03	74.00	15.97
7200.00	32.29	Avg	Н	11.26	0.97	44.52	54.00	9.48
1832.10	46.95	Peak	V	-2.74	-	44.21	74.00	29.79
2347.30	47.30	Peak	V	-0.30	-	47.00	74.00	27.00
2431.30	50.41	Peak	V	-0.14	-	50.27	74.00	23.73
4813.00	54.33	Peak	V	7.66	-	61.99	74.00	12.01
4813.00	36.73	Avg	V	7.66	0.97	45.36	54.00	8.64
7200.00	44.58	Peak	V	11.26	-	55.84	74.00	18.16
7200.00	31.86	Avg	V	11.26	0.97	44.09	54.00	9.91

- Band edge

Frequency (MLz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2345.88	45.74	Peak	Н	-0.30	-	45.44	74.00	28.56
2346.03	46.51	Peak	V	-0.30	-	46.21	74.00	27.79

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (21) of (31)

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (22) of (31)

Note.

1. Average test would be performed if the peak result were greater than the average limit.

KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-17T0056 Page (23) of (31)

Mode: BLE 3 meter Distance of measurement: Channel: 20

Spurious

- Spurious								
Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1811.90	46.65	Peak	Н	-2.95	-	43.70	74.00	30.30
2428.40	47.95	Peak	Н	-0.15	-	47.80	74.00	26.20
2489.10	46.90	Peak	Н	-0.04	-	46.86	74.00	27.14
2558.60	50.81	Peak	Н	0.20	-	51.01	74.00	22.99
4878.00	59.86	Peak	Н	8.17	-	68.03	74.00	5.97
4878.00	38.18	Avg	Н	8.17	0.97	47.32	54.00	6.68
7331.00	45.68	Peak	Н	11.82	-	57.50	74.00	16.50
7331.00	31.55	Avg	Н	11.82	0.97	44.34	54.00	9.66
1835.00	47.60	Peak	V	-2.71	-	44.89	74.00	29.11
2347.30	46.72	Peak	V	-0.30	-	46.42	74.00	27.58
2431.30	49.07	Peak	V	-0.14	-	48.93	74.00	25.07
4878.00	53.04	Peak	V	8.17	-	61.21	74.00	12.79
4878.00	35.61	Avg	V	8.17	0.97	44.75	54.00	9.25

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (24) of (31)

Note.

1. Average test would be performed if the peak result were greater than the average limit.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (25) of (31)

Mode: BLE
Distance of measurement: 3 meter
Channel: 39

- Spurious

Frequency (MHz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2428.40	47.42	Peak	Н	-0.15	-	47.27	74.00	26.73
2558.60	51.52	Peak	Н	0.20	-	51.72	74.00	22.28
4965.00	58.95	Peak	Н	8.85	-	67.80	74.00	6.20
4965.00	36.40	Avg	Н	8.85	0.97	46.22	54.00	7.78
7439.00	48.11	Peak	Н	12.29	-	60.40	74.00	13.60
7439.00	32.09	Avg	Н	12.29	0.97	45.35	54.00	8.65
1835.00	48.29	Peak	V	-2.71	-	45.58	74.00	28.42
2341.50	46.74	Peak	V	-0.31	-	46.43	74.00	27.57
4965.00	51.44	Peak	V	8.85	-	60.29	74.00	13.71
4965.00	33.62	Avg	V	8.85	0.97	43.44	54.00	10.56

- Band edge

Duna vage								
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2488.09	51.98	Peak	Н	-0.04	-	51.94	74.00	22.06
2488.09	47.01	Peak	V	-0.04	-	46.97	74.00	27.03

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (26) of (31)

Note.

1. Average test would be performed if the peak result were greater than the average limit.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (27) of (31)

Test results (18 GHz to 30 GHz) – Worst case

Mode: BLE

Distance of measurement: 3 meter

Channel: 00 (Worst case)

Note.

1. No spurious emission were detected above 18 GHz.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (28) of (31)

3.5 Conducted spurious emissions & band edge

Test procedure

Band edge

KDB 558074 D01 v04 - Section 11.3

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100 kHz
- 4. VBW = 300 kHz
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep time = auto
- 8. The trace was allowed to stabilize

Out of band emissions

KDB 558074 D01 v04 - Section 11.3

- 1. Start frequency was set to 30 MHz and stop frequency was set to 25 GHz for 2.4 GHz frequencies and 40 GHz for 5 GHz frequencies
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0056 Page (29) of (31)

Test results

KES Co., Ltd.
C-3701, 40, Simin-daero 365beon-gil,
Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No.: KES-RF-17T0056 Page (30) of (31)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	100736	1 year	2017.07.06
Spectrum Analyzer	R&S	FSV40	101002	1 year	2017.07.06
8360B Series Swept Signal Generator	НР	83630B	3844A00786	1 year	2018.01.23
Attenuator	Agilent	8493C	51401	1 year	2017.07.05
Loop Antenna	SCHWARZBECK	FMZB1513	225	2 years	2019.05.10
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-714	2 years	2018.11.28
Horn Antenna	A.H	SAS-571	414	2 years	2019.02.15
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170550	2 years	2019.02.15
High Pass Filter	WAINWRIGHT INSTRUMENT	WHJS3000-10TT	1	1 year	2017.07.04
Low Pass Filter	WEINSCHEL	WLK1.0/18G-10TT	1	1 year	2017.07.04
Preamplifier	HP	8449B	3008A00538	1 year	2017.07.05
Preamplifier	SCHWARZBECK	BBV-9718	9718-246	1 year	2017.10.14
EMI Test Receiver	R&S	ESR3	101781	1 year	2018.04.27
EMI Test Receiver	R&S	ESU26	100552	1 year	2018.04.19

Peripheral devices

T CTTPHCTUT GC (TCC)			
Device	Manufacturer	Model No.	Serial No.
Notebook Computer	Samsung Electronics Co., Ltd.	NT-RV518-AD6S	HTK99NC600207R
Test Board	N/A	N/A	N/A