Ime in Priimek:	1. Kolokvij iz Analize I – teorija
Vpisna številka:	30. november 2018
Smer:	
1. za MA+MEF . Kako smo definirali urejene pare (a, b) ? produkt $A \times B$ prazna množica in kdaj je $A \times B = B \times A$ za slušatelje ostalih smeri . Zapiši osnovno lastnost u natanko je kartezični produkt $A \times B$ prazna množica in kd	. urejenih parov (a,b) . Zapiši tudi kdaj
natanko je karteziem produkt 11 × D prazna mnozica in ke	$\text{adj jc } A \wedge B = B \wedge A. \text{ (6 tock)}$
2. Kdaj je število z zgornja meja množice Ω ? Kdaj pa	je njen supremum? Kako preverimo,
da je dano število a supremum ali ne? Kakšna pa je razli množice?	

3. Kako smo definirali decimalni za binarni zapis? Ali je binarni zapis en	apis realnega števila? ioličen?	Ali je enoličen?	Kako pa definiramo (9 točk)

Name and family name:	1. Midterm exam Analysis I – theory
	30. November 2018

Study programm:

1. **MA+MEF**. What is the definition of an ordered pair (a,b)? Write the conditions under which the cartesian product $A \times B$ is an empty set and under which $A \times B = B \times A$. **students of other program**. Write the fundamental property of ordered pair (a,b). Write the conditions under which the cartesian product $A \times B$ is an empty set and under which $A \times B = B \times A$. (8 points)

2. When is the number z an upper bound of the set Ω ? What is its supremum? How do we check that the number a is indeed a supremum? What is the difference between the suprema and maxima of the set. (8 points)

