

Optimizing Class Labels For a Multi-Layer Perceptron Model For Housing Sale-Price Prediction

By Avi Hiriyanna (KSMC Data Scientist Candidate)

+ Overview

- Introduction
- **■** Summary Statistics
- Model Development
 - Methodology
 - Results
- Conclusions

Introduction

- The Ames Housing Dataset was created as an alternative to the Boston Housing Dataset due to it's age, limited samples, and outdated
- Data at First Glance

feature values

- 2930 Observations
 - Training Set: 1460
 Observations
 - Test Set: 1459 Observations
- 78 Features (excluding ID and Sale Price)

Data Descriptions: Sale Price

- **■** Exploratory Statistics:
 - Mean: \$180,921
 - Minimum: \$214,000
 - Maximum: \$755,000
- Top 3 Correlated Features
 - Overall Quality (r=0.79)
 - Above ground living area square feet (r=0.71)
 - # of Car Garages (r=0.64)
- Top 3 Anti-Correlated Features
 - Type of Foundation (r=-0.43)
 - Heating Quality and Condition (r = -0.42)
 - Basement Finish Type 1 square feet (r=-0.30)

Model Development: How to Optimize Class Labels for MLP?

- What type of labels does a simple MLP best classify to?
 - Few Options for Labels
 - Use the original sale prices
 - Cluster the data using a centroid based method, and use designated cluster as the label
 - Label sale price depending on what quartile it falls into

Model Development: Pre-Processing

- The dataset has both qualitative and quantitative features
 - In order to consolidate the qualitative features, I enumerated the unique features for each column, and came it a numerical label (n=1,2,3...etc)
 - Ex. labeledList, uniques = pd.factorize(currData)
 - The factorize function essentially takes a unique list of samples for a particular feature, and labels them sequentially, thus giving it a numerical class label.
 - Transforming qualitative features to numbers makes it infinitely easier to deal with.

■ Data Normalization

■ I utilized the StandardScaler function to normalize the features of the dataset, to optimize performance by making the data zero-mean.

Model Development: Feature Selection

- No Feature Selection Was Used in this Exercise due to the lack of time.
- Ideally it would have been beneficial to run PCA, mRMR, or another filter type method in order to minimize the featurespace to the most relevant and minimally redundant features.
- We could then ideally test a model with the entire feature set or the reduced feature set and see what works best for us.

Model Development: Class Labeling

- Method 1: Utilize the Prices As Is
 - Keep dollar value labels at a multitude of prices
 - May be non-ideal due to the large array of prices presented
 - Would need to utilize more complex methods (Recurrent Neural Networks, etc.) to get better prediction of ACTUAL prices
- Method 2: Utilize K-Means in order to generate Labels
 - Minimizes the number of labels than using just housing prices
 - May be non-ideal due to the stochastic nature of K-Means; making it hard to have matching labels with a given test set
- Method 3: Break the Prices down into Quartiles and classify the houses via Ouartile
 - Minimizes the number of labels than using just housing prices
 - Acts as an appropriate proxy label to actual housing price
 - Generated by a simple conditional statements