СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	4
введение	5
1 Характеристика студии звукового вещания	
1.1 Исходные данные:	6
1.2 Анализ требований:	6
2 Выбор и обоснование параметров студии	7
2.1 Выбор оптимальных геометрических размеров студии	7
2.2 Выбор оптимального времени реверберации	9
3 Расчет акустического оформления студии	10
4 Разработка структурной схемы электрического тракта	12
5 Мероприятия по охране труда.	16
Заключение	18
Список использованных источников	19
Приложение А. План АСБ	20
Приложение Б. Эскиз развертки студии с указанием звукопоглощающих	
материалов	21
Приложение В. Структурная схема звукового тракта	22

ВВЕДЕНИЕ

В деле записи звука важным является не только оборудование, но и помещение, в котором происходит запись. К настоящему времени найдены оптимальные способы избавится от шумов, искажений и нелинейности характеристик помещений, в которых происходит запись.

Одним из основных этапов проектирования является подбор размеров помещения, материалов для звукопоглощения и изменения параметров реверберации комнаты.

После выбора звукопоглощающих материалов приступают к непосредственным расчетам. Суть их сводится к тому, чтобы путем варьирования площадей, занимаемых выбранными материалами подобрать такой общий фонд звукопоглощения студии, при котором в ней будет обеспечен оптимум реверберации.

Важной составляющей студии также является используемое оборудование. Характерной особенностью студий подобных размеров является большое количество микрофонов и устройств воспроизведения.

Существуют стандарты по проектированию концертных студий с рядом рекомендаций. Наличие зрителей накладывает дополнительные ограничения на комнату, а также требует соблюдения ряда правил размещения зрителей.

Современные студии включают в себя, как правило, следующие помещения:

- студийное помещение, или тон-зал (для исполнения и записи музыки и речи), в котором размещаются исполнители и микрофоны;
- контрольная комната, или микшерная, где установлены основные виды аппаратуры для записи и обработки звука (микшерные пульты, контрольные агрегаты, компьютерные рабочие станции и др.) и где находится рабочее место звукорежиссера;
- техническая аппаратная, в которую выносятся некоторые виды аппаратуры, например, стойки с усилителями и др.

В студиях должны быть обеспечены все акустические характеристики концертных залов: оптимальное время реверберации в разных частотных диапазонах, однородная структура звукового поля, требуемый уровень шумов, а также другие объективные параметры, которые важны для слухового восприятия музыкальных и речевых программ.

В данной работе рассматривается проектирование большой музыкальной студии со зрителями.

1 ХАРАКТЕРИСТИКА СТУДИИ ЗВУКОВОГО ВЕЩАНИЯ.

1.1 Исходные данные:

Согласно заданному варианту №14, в курсовом проекте рассчитываются параметры большой музыкальной студии со зрителями;

- Объём: 22000м³;
- Количество исполнителей: 250;
- Количество зрителей: 500;

1.2 Анализ требований:

Для заданной большой студии необходимо рассчитать её объём с учетом требований для различных оркестров. Наиболее требовательным к пространству для исполнителей является духовой оркестр.

Классификация и основные параметры студий и помещений прослушивания установлены соответствующими нормативными документами.

Ближайшими параметрами для заданной большой музыкальной студии является:

- $l \times b = 40 \times 25$ м линейные размеры студии;
- $-S = 1000 \text{ м}^2$ площадь пола студии;
- h = 14 м высота студии;
- $-V = 13000 \text{ м}^3 \text{объём студии};$
- $n_{\text{исп}} = 250$ максимальное количество исполнителей;
- $n_{\text{зри}} = 250$ максимальное количество зрителей;
- $T_{\text{опт}} = 2.0 2.3$ с –время реверберации на частоте 1000 Гц;
- $\Delta T = \pm 0.2 \, \, \mathrm{c}$ допустимое отклонение времени реверберации, от оптимального.

Так как заданные параметры большой студии значительно больше рекомендуемой студии классификатором, полученные результаты будут значительно отличаться от рекомендуемых.

2 ВЫБОР И ОБОСНОВАНИЕ ПАРАМЕТРОВ СТУДИИ.

2.1 Выбор оптимальных геометрических размеров студии

Связь между количеством исполнителей $n_{\rm исп}$ и объемом студии задается нормами проектирования или различными эмпирическими формулами.

За оркестровую единицу G принимают объём, необходимый при той акустической мощности, которую создаёт флейта. Остальные инструменты характеризуются числами, показывающими, скольким флейтам они эквивалентны в отношении требуемого объёма.

Число приведенных оркестровых единиц, приходящееся в среднем на одного исполнителя духового оркестра G = 5;

Таким образом минимальный объём для размещения оркестра:

$$V_{\text{оркестра}} = 10 \cdot n_{\text{исп}} \cdot G = 10 \cdot 250 \cdot 5 = 12500 \,\text{м}^3$$
 (1)

Объём на одного зрителя должен составлять не менее 10 м³

$$V_{\text{зрителя}} = 10 \cdot n_{\text{зрителей}} = 10 \cdot 500 = 5000 \text{ м}^3$$
 (2)

$$V_{min} = V_{\text{оркестра}} + V_{\text{зрителя}} = 17500 \text{ м}^3$$
 (3)

Так как заданный объём 22000 м^3 больше минимального требуемого, увеличивать объём для комфортного размещения исполнителей и зрителей не требуется.

Определив объем студии, решают вопрос о её форме и линейных размерах.

Соотношение линейных размеров студии l, b и h рекомендуется брать близкими к золотому сечению:

$$\frac{l}{b} = \frac{b}{h} = \sqrt{2} \tag{4}$$

Тогда линейные размеры связаны с объёмом соотношениями:

$$l = 1.6 \cdot \sqrt[3]{V} = 28 * 16 = 44,8 \text{ M}$$

 $b = \sqrt[3]{V} = 28 \text{ M}$ (5)
 $h = 0.6 \cdot \sqrt[3]{V} = 0.6 \cdot 28 = 16.8 \text{ M}$

При проверке полученных размеров получены данные:

 $V = lbh = 48.8 \cdot 28 \cdot 16.8 = 21073 \,\mathrm{m}^3$, что отличается от исходной на - 926 $\,\mathrm{m}^3$, что значительно. Также отклонения от золотого сечения для l/b составили 13.6%, а для b/h составили 16.4%, что незначительно уходит за пределы рекомендуемых значений отклонения.

Для соответствия исходным условиям, расчет производился по следующим формулам:

$$l = \sqrt[3]{V \cdot \frac{\sqrt{2}}{4}} = 39,6268 \text{ M}$$

$$b = \frac{l}{\sqrt{2}} = 28,02 \text{ M}$$

$$h = \frac{l}{2} = 19,8 \text{ M}$$
(6)

В результате округления: l=39,6 м, b=28 м, h=19,8 м.

Отклонение объёма от исходного 45,76 м 3 , отклонения от золотого сечения для 1/b и b/h составили меньше 0,01%

Для улучшения акустических характеристик помещения рекомендуется избегать формы параллелепипеда. Также из-за наличия зрителей рекомендуется создание уклона для повышения видимости сцены с задних рядов^[4].

Преобразуя форму помещения с сохранением объёма, был добавлен искусственный уклон.

Рисунок 3.1 – Полученная новая форма студии

Для пересчета потребуются данные о желаемой длине нижней части, и высота задней части комнаты.

Относительно параллелепипеда изменяется длинна верхней части

$$l_{\text{верхн}} = \frac{(l_{\text{базовое}} \cdot h) - (l_{\text{низ}} \cdot h)}{h + h_{\text{бок}}} + l_{\text{низ}} = 42,5 \text{ м}$$
 (7)

Объём помещения при этом не изменяется.

Собственные резонансные частоты помещения в форме прямоугольного параллелепипеда связаны с его линейными размерами l, b, h соотношением:

$$f_0 = \frac{C_0}{2} \sqrt{\left(\frac{m}{l}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{p}{h}\right)^2}$$
 (8)

 C_0 – скорость звука в воздухе; m=10, n=20, p=30 – любые целые числа.

Используя ПО Matcad, был построен спектр резонансных частот комнаты. Амплитуда в данном случае отражает количество совпадений частот при вычислении резонансной частоты.

Рисунок 2.1 – Полученный спектр резонансных частот

2.2 Выбор оптимального времени реверберации

К настоящему времени установлено, что для студий и залов объёмом свыше 2000 м³ оптимальное время реверберации не зависит от объёма, однако в сильной степени зависит от стиля произведений и характера их исполнения.

Поскольку студия не предназначена для исполнения музыки какоголибо одного стиля, компромиссом является T = 1,7 с.

3 РАСЧЕТ АКУСТИЧЕСКОГО ОФОРМЛЕНИЯ СТУДИИ.

Так как студия обладает значительным размером значительно превышающим 3000 м^3 , то $T_{\text{опт}}$ принимается равным 1.7 c.

Расчёт ведётся на оптимум Бекеши Топт одинаковый для всех частот.

S - общая площадь всех внутренних ограничиваемых поверхностей студии:

$$S = 2lb + 2lh + 2bh$$

$$S = 2 \cdot 39.6 \cdot 28 + 2 \cdot 39.6 \cdot 19.8 + 2 \cdot 28 \cdot 19.8 = 4894.56 \,\mathrm{M}^2 \qquad (9)$$

Зная объём комнаты и оптимальное время реверберации находят величину $\alpha_{\rm cp}$:

$$\alpha_{\rm cp} = 1 - e^{-\frac{V}{6 \cdot T \cdot S}} = 0.35575$$
 (10)

Определим значение общего поглощения А:

$$A = \alpha_{\rm cp} \cdot Sc = 0.35575 \cdot 4894,56 = 1741,23 \tag{11}$$

Таблица 3.1 – Результаты расчета среднего и общего поглощения

F ,Гц	125	250	500	1000
T,c	1,7	1,7	1,7	1,7
a_{cp}	0.35	0.35	0.35	0.35
A	1741,23	1741,23	1741,23	1741,23

	Частота						
Материал	125 Гц	250 Гц	500 Гц	1 кГц	2 кГц	4 кГц	6 кГц
Слушатели	0,33	0,41	0,44	0,46	0,46	0,46	0,47
Стул мягкий	0,05	0,09	0,12	0,13	0,15	0,16	0,15
Пол (стена) деревянная	0,15	0,11	0,10	0,07	0,06	0,07	0,06
Стена оштука- туренная	0,04	0,05	0,06	0,08	0,04	0,06	0,06
Мрамор, гранит	0,01	0,01	0,01	0,01	0,01	0,01	0,02
Кирпичная кладка	0,15	0,19	0,29	0,28	0,38	0,46	0,45
Ковер	0,08	0,24	0,57	0,69	0,71	0,73	_
Окно	0,35	0,25	0,18	0,12	0,07	0,04	0,03
Дверь (сосновая)	0,10	0,11	0,10	0,08	0,08	0,11	0,11
Драпировка плотная	0,14	0,35	0,55	0,72	0,70	0,65	_

Рисунок 3.1 – Данные звукопоглощения различных материалов

Таблица 3.2 – Таблица расчета добавочного звукопоглощения

Наименование материалов		Частоты, Гц							
	Кол-во	125		250		500		1000	
		α(A)	A	α(A)	A	α(A)	A	α(A)	A
Слушатели	500	0,33	165	0,41	205	0,44	220	0,46	230
Стул мягкий	500	0,05	25	0,09	45	0,12	60	0,13	65
Ковер	634	0,08	88,704	0,24	266,1 12	0,57	632,0 16	0,69	765,0 72
Дверь	10	0,1	1	0,11	1,1	0,1	1	0,08	0,8
Стена оштукатур- енная	2677	0,04	107,07 84	0,05	133,8 48	0,06	160,6 176	0,08	214,1 568
Деревянный пол, потолок	1487,4	0,15	166,32	0,11	121,9 68	0,1	110,8 8	0,07	77,61 6
Итого:	4894,6		553,10 24		773,0 28		1184, 514		1352, 645
Требуемое			1741,2 3		1741, 23		1741, 23		1741, 23
Добавочное			1188,1 28		968,2 02		556,7 164		388,5 852
Щит Бекеши	1195	0,87	1174,5	0,72	972	0,4	540	0,3	405
ППГ3	0,4	160	0,6	240	0,85	340	0,82	328	0,4
Общее			1771,5		1801,		1769,		1738,
поглощение			599		1231		7386		0355
a_{cp}		0,36 1944		0,36 7984		0,361 57256		0,355 09535	
T,c		1,66 9918		1,70 6175		1,667 74584		1,631 00921	
Разница в Т		0,03		0,06		0,032		0,068	
Процент		1.76		0.26		1 907		4.059	
отклонения		1,76		-0,36		1,897		4,058	

Щиты Бекеши^[3] представляют собой деревянные рамы достаточно внушительных габаритов, закрытые с одной стороны мембраной из туго натянутого авиационного полотна, клеенкой или тонким ДВП, оргалитом и т.д. Рама крепится на стене в месте пучности низких частот. Между стеной и мембраной должно быть расстояние порядка 10-20 см. В этот промежуток устанавливается звукопоглощающий материал в виде плиты из минеральной ваты толщиной 50-100 мм.

ППГЗ успешно применяются в студиях звукозаписи, кинотеатрах (в том числе домашних), многопрофильных залах, а также в аэропортах и на вокзалах, в офисах, залах переговоров, торговых залах магазинов, больничных помещениях, гостиницах и домах отдыха.

Схема размещения щита расположена в приложении Б.

4 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ ЭЛЕКТРИЧЕСКОГО ТРАКТА.

Микрофон – Для записи концерта, и большого количества исполнителей размещают большое количество микрофонов по периметру сцены, в некоторых случаях напротив исполнителей. Одним из рекомендуемых микрофонов является микрофон вокальный класса Hi-End для сцены и записи в студии динамический суперкардиоидный AKG D7S $^{[5]}$

Рисунок 4.1 – AKG D7S

Особенности:

- динамический вокальный микрофон;
- частотный диапазон 70 Гц 20 кГц;
- чувствительность 2.6 mV/Pa
- диаграмма направленности суперкардиодида;
- разъем XLR (M);
- вес 0.32 кг.

Yamaha MGP24X^[13] — 24-канальный аналоговый микшерный пульт с 16 микрофонными предусилителями D-Pre, 24 линейными входами, 6 AUX-входами, 2 посылами эффектов, возможностью воспроизведения и управления iPod/iPhone.

Рисунок 4.2 – Yamaha MGP24X

Основные характеристики:

- Компрессия каждого канала со специальными поворотными регуляторами
 - Простое управление сложными функциями DSP
 - Гибридные стереоканалы
 - Ревербератор REV-X с 3 различными типами
 - Цифровой процессор SPX с 16 передовыми эффектами
 - 31-полосный графический эквалайзер на стерео шине
 - USB-порт для подключения iPod или iPhone
 - Прочный металлический корпус
 - Встроенный универсальный блок питания (100 240 B)

В качестве Акустической системы используется QSC K12.2.

Рисунок 4.3 – Концертная акустика QSC K12.2

- Bec колонок 17.7 кг
- Выходная мощность (HF) 225 Bт
- Количество динамиков 2
- Количество полос 2
- Линейный аудиовход 1
- Макс. звуковое давление (SPL) 132 дБ
- Размеры колонок 602 x 356 x 350 мм
- Симметричные (балансные) входы 2 (XLR)
- Усилитель встроенный
- Частотный диапазон 45 20 000 Гц

VM-1120 — профессиональный, высокопроизводительный усилительраспределитель от Kramer. Позволяет разделить два входящих аудио сигнала (стерео) на 10 или 20 (моно) одинаковых выходов. Разъемы XLR, позволяют использовать балансный сигнал, подаваемый с профессионального музыкального оборудования, что обеспечивает универсальность применения.

Рисунок 4.4 – VM-1120

Графический эквалайзер Behringer FBQ3102HD

Рисунок 4.5 – Behringer FBQ3102HD

- профессиональный 31-полосный стереоэквалайзер для концертов и студии;
 - встроенный подавитель эффекта обратной связи;
 - операционные усилители 4580 с низким уровнем шума;
 - отдельный выход на сабвуфер с регулируемой частотой кроссовера;
 - фильтры высоких и низких частот;
- светодиодный индикатор из 12 сегментов для контроля уровня входного сигнала;
 - функция работы в обход устройства при отсутствии питания;
- серво-балансные входы и выходы с разъемами TRS 1/4" и позолоченными XLR.

MDX2600 V2 - качественный двухканальный компрессор от компании Behringer

Рисунок 4.6 – MDX2600 V2

- многофункциональный двухканальный компрессор;
- встроенные Expander/Gate, Compressor/Limiter, De-Esser и Peak Limiter;
- отношение сигнал/шум: 115 дБ;
- функции Interactive Knee Adaptation, Auto Attack/Release, Interactive Gain Control;
 - деэссер с возможностью адаптации к мужским и женским голосам;
 - функция Side-Chain;

Звуковая карта Focusrite Clarett:

Рисунок 4.7 – Focusrite Clarett:

- Предусилители, позаимствованные у классической линейки ISA
- Динамический диапазон: 116dB A/D и 118dB D/A
- Новейшая технология Thunderbolt обеспечивает задержку интерфейса в 1 мс
 - Частота дискретизации 24 бит/ 192 к Γ ц

Для записи звука используются 240 микрофонов, установленных на специальных регулируемых стойках. По проводам данные передаются на режиссерский пульт в комнату контроля. Еще 10 микрофонов установлены в зале и используются ведущими.

5 МЕРОПРИЯТИЯ ПО ОХРАНЕ ТРУДА.

Важнейшим звеном в организации работы по охране труда в студии является разработка, утверждение и согласование инструкций по охране труда, которые определяют порядок и условия безопасного проведения репетиций и музыкальных занятий в студии.

Мероприятия сводятся к созданию удобных условий труда и к защите исполнителей и персонала от поражения электрическим током, от травм, вызванных падением плохо закрепленных звукопоглощающих конструкций, частей технологического оборудования, от пожарной опасности.

Обстоятельствами, ухудшающими условия труда исполнителей и работников студийных аппаратных, являются недостаточная освещенность (общее освещение должно создавать освещенность не менее 50 люкс на горизонтальных поверхностях, однако для уверенного чтения текста необходимо обеспечить освещенность не менее 75-125 люкс, а еще лучше до 200 люкс), отклонение температуры и относительной влажности воздуха в студии от комфортных, недостаточно чистый воздух. Комфортными атмосферными условиями для исполнителей и персонала обычно считают температуру воздуха летом 22-25 градусов при относительной влажности 70-50 %. Объем воздуха в студии должен сменяться 5-7 раз за один час. Эти условия обеспечиваются действием системы кондиционирования воздуха.

Для снижения уровня опасности пребывания в помещении на потолке студии установлены датчики дыма и приборы экстренного тушения возгорания. В помещении студии, а также в ее коридорах установлены дополнительные пожарные сигнализации и обеспечен быстрый и удобный доступ к огнетушителям, располагающихся на стенах помещений.

В случае возникновения чрезвычайной ситуации, вывод большого количества людей из студийного помещения обеспечивается просторными коридорами и широкими дверьми. А также, указателями направления выхода, располагающихся на стенах и схем по эвакуации из здания.

Весь служебный персонал студии должен проходить обязательный инструктаж по технике безопасности.

Все сотрудники и посетители малой музыкальной студии подвергаются воздействию вредных и опасных факторов производственной среды, таких как электромагнитное поле, статическая электроэнергия, шум, вибрация. Меры безопасности в музыкальной студии устанавливают требования к состоянию воздуха, вентиляции, освещенности, уровню шума, звукоизоляции, правила поведения в целях предотвращения возникновения возгорания, задымления, пожара, а также правила поведения в случае возникновения чрезвычайных ситуаций.

К работе звукорежиссером допускается специалист соответствующей квалификации, имеющий необходимую теоретическую и практическую подготовку, прошедший медицинский осмотр и не имеющий противопоказаний по состоянию здоровья, прошедший вводный и первичный на рабочем месте инструктажи по охране труда и обучение по специальной программе, аттестованный квалификационной комиссией и получивший допуск к самостоятельной работе.

Прежде чем приступать к работе следует проверить состояние рабочего места; если оно не убрано или загромождено, необходимо принять меры к очистке и привести его в порядок; кроме того, нужно убедиться в наличии свободного подхода к рабочему месту, а также исправности пола в рабочей зоне.

Перед включением звукотехнического оборудования в электрическую сеть звукооператору следует визуально проверить исправность розетки, вилки, а также электрических шнуров и кабелей, используемых для питания оборудования и подсоединений между собой всех устройств.

Опасные и вредные производственные факторы:

- повышенный уровень шума и вибрации;
- электрический ток, путь которого в случае замыкания, может пройти через тело человека (например, при случайном контакте с оголенными, неизолированными проводами);
 - незащищенные токоведущие части оборудования;
- перенапряжение зрительного анализатора при длительной работе за экраном монитора;
- длительное статическое напряжение мышц спины, шеи, рук и ног, что может привести к статическим перегрузкам;
- ионизирующие и неионизирующие излучения, источниками которых являются мониторы персональных компьютеров;
 - статическое электричество;

Фактором, ускоряющим утомление персонала, является просматривание частей будущей программы при повышенной по сравнению с естественной интенсивностью звука. Уровень интенсивности звука достигает 100...110 дБ, что близко к болевому порогу (120 дБ над порогом слышимости). Поэтому длительность смены ограничивается обычно 6 часами, с перерывом после трех часов работы.

Заключение

В ходе данной курсовой работы рассмотрели вопросы проектирования и расчет большой студии со зрителями. Данная студия является крупной и требует значительные меры по звукоизоляции и использованию звукопоглощающих материалов. Дополнительное поглощение представлено Щитами Бекеши. Данные щиты могут быть спроектированы для разных сценариев работы, а их размещение влияет на характеристики поглощения.

Разработали структурную схему электрического тракта. Нашли частотную зависимость времени реверберации проектируемой студии. Высчитали расчеты среднего и общего поглощения. Нашли зависимость коэффициента разных видов звукопоглощения от частоты. Рассчитали требуемые значения площади звукопоглощающих материалов. По расчетам, отклонение значения времени реверберации не превышает требуемого более чем на +-5%

Список использованных источников

- 1. Муравьев В.В., Кореневский С.А., Мищенко В.Н. Устройства СВЧ-систем телекоммуникаций (усилители, смесители, генераторы). Мн.: БГУИР, 2007. 71 с.
- 2. Ирина Алдошина., Рой Приттс., Музыкальная акустика учебник для высших учебных заведений «Композитор Санкт-Петербург» 2006 720 с.
- 3. Звукопоглощающие материалы для низких частот, щиты бекеши Часть 11 [Электронный ресурс] / http://aovox.com/creativework/550, 2018
- 4. СП 309.1325800.2017 Свод правил. Здания театрально-зрелищные. Правила проектирования / docs.cntd.ru/document/556686921, 2018
 - 5. https://musicmarket.by/product/mikrofon-akg-d7s
 - 6. https://djshop.by/behringer-a500.html
 - 7. https://www.amd.by/catalog/audiotexnika/koncertnaya-akustika/qsc-k12-2
- 8. https://musicmarket.by/product/mikshernyy-pult-dynacord-powermate-2200-3
- 9. http://audio-video.ru/catalog/kommutacionnoe-av-oborudovanie/usiliteli-raspredeliteli/vm-1120
- 10. https://musicmarket.by/product/graficheskiy-ekvalayzer-behringer-fbq3102hd
 - 11. https://www.dj-store.ru/oborudovanie/zvukovaya apparatura/krossovery/
- 12. https://musicmarket.by/product/kompressor-geyt-limiter-behringer-mdx2600-v2
- 13. https://muz.by/katalog/zvukovoe-oborudovanie/mikshernye-pulty/yamaha-mgp24x/