Building a Mega Constellation for Solar Energy Harvesting: To harvest the Sun's energy in immense quantities, planning for construction of a Dyson ring (a smaller version of a Dyson sphere) is underway. To acquire the material to build such a mega structure, many near-Earth asteroids will be transferred to 12 "building stations." Figure 1 depicts a schematic of the overall mission, which consists of sending a number of mother-ships to visit certain clusters of asteroids, rendezvous with some asteroids, and deploy a mechanism that is capable of transferring the asteroids to the 12 stations using advanced low-thrust electric propulsion systems. The 12 stations will move on a circular orbit around the Sun on a representative Dyson ring. The propellant required for performing the time-optimal maneuvers are generated in-situ from the asteroid material itself, and thus the delivered asteroid mass is dependent on the time of transfer. Fortunately, a group of mission designers have already solved a major part of the problem in which they have designed many time-optimal continuous-thrust transfers from a list of 1000 asteroids to all the 12 stations.

Figure 1: Illustration of the Dyson ring and asteroid trajectories to the 12 stations.

You are a member of an optimization team. Your colleagues are struggling with a problem, however, they recall that you have taken an *Advanced Trajectory Optimization* course at Auburn University. At this moment, you realize that you are in a big big trouble! ©

Objective: To distribute the resources equally among all stations, the following cost is considered:

$$J = 10^{-10} M_{\min} [kg],$$

where M_{\min} is mass of the station with the minimum total asteroid mass. Your task is to develop a code to maximize the value of J, which is equivalent to maximizing M_{\min} . We currently don't know the ID of the station with the least amount of mass, but your algorithm will determine the ID of the station and the optimal cost, J^* .

Asteroid Data: Mission designers have provided a data file (AsteroidDataFile.txt). The first row denotes station ID, the first column denotes asteroid ID, and the rest denotes the mass (in kilograms) of an asteroid delivered to all stations.

Final Report: Your report should be typeset in Overleaf and submit it as one pdf. Upload your code as a zip file with its main function named as 'MainAsteroidAllocation-YourName.m'. Consider these items: **Item 1:** Summarize the key steps in formulating the problem. **Item 2:** Include a bar chart that shows the total sum of the asteroid mass in each station. **Item 3: Conclusion/Summary:** Summarize what you learned from this project and if you encountered any challenges. Report the total number of hours spent on this project.