Dynamical systems

 ${\bf Martin~Azpillaga}$

 $March\ 3,\ 2014$

unit name

Contents

Ι	Definitions	5
1	Discrete dynamical systems	5
	Dynamical system	6
	Dimension	6
	Discrete & Continuous	6
	Defined by a function	7
	Orbit	7
	Periodicity	8
	Stability	8
	Attractive & Repulsive	9
	Fixed point character	10
	Attraction set	11
	Multiplier	11
	Feeble point	12
	Sarkovskii's order	12
	Chaos	13
	Topological equivalence	13
	Bifurcation	14
	Saddle-node bifurcation	14
	Pitchfork bifurcation	15
	Period doubling bifurcation	16
	-	
IJ	Propositions	17
1	One-dimensional discrete dynamical systems	19
_	Fixed points theorem	

4 0 unit name

Attractiveness of periodic points does not involve the chosen	
point	22
Partition of attraction set	23
Homeomorphisms are monotonous	24
Homeomorphisms and n-periodic points	25
Sarkovskii's theorem	26
Characterization of sella-node bifurcation points	27
Pitchfork bifurcation	28
Characterization of Pitchfork bifurcations	28
III Examples	30
1 One-dimensional discrete dynamical systems	31
	3 3
Analysis of logistic dynamical systems	34
Quadratic function bifurcations	34
IV Problems	34
1 One-dimensional discrete dynamical system	37
Decreasing function orbits	39
9. Periodic points	39
10. Global orbit analysis	40
V Laboratory	41
v	
1 Orbit analysis	43
Martin Azpillaga	44
2 Fixed points cardinality	48
Martin Azpillaga	48

I Definitions 5

Block I

Definitions

1. Discrete dynamical systems

Dynamical system

Let:

- $\cdot\,M$ manifold
- $\cdot T$ monoid

$$\cdot \phi : M \times T \to M$$

Then, (M, T, ϕ) is a dynamical system if:

$$\forall \ x \in X :$$

$$\phi(x,0) = 0$$

$$\forall \ t_1,t_2 \in T :$$

$$\phi(\phi(x,t_1),t_2) = \phi(x,t_1+t_2)$$

Dimension

Let:

 $\cdot \left(M,T,\phi \right)$ dynamical system

We name dimension of (M, T, ϕ) to:

$$\cdot \dim(M)$$

We denote:

$$\cdot dim(M) = n : (M, T, \phi) \text{ n-D}$$

I Definitions 7

Discrete & Continuous

Let:

 $\cdot (M, T, \phi)$ dynamical system

Then, (M, T, ϕ) is discrete if:

$$T \stackrel{\subseteq}{\sim} \mathbb{N}$$

Then, (M, T, ϕ) is continuous if:

$$\cdot \, T \subset \mathbb{R}$$

 $\cdot T$ open

Defined by a function

Let:

 $\cdot \left(M,T,\phi \right)$ dynamical system

$$\cdot f : M \to M$$

Then, (M, T, ϕ) is a dynamical system defined by f if:

$$\cdot T = \mathbb{N}$$

$$\begin{array}{cccc} & \phi : M \times \mathbb{N} & \longrightarrow & M \\ & (x,n) & \longmapsto & f^n(x) \end{array}$$

We denote:

 (M, T, ϕ) dynamical system defined by $f: (M, \mathbb{N}, f)$

$$f \in \mathcal{C}^n(M) : (M, \mathbb{N}, f) \mathcal{C}^n$$

\mathbf{Orbit}

Let:

 (M, \mathbb{N}, f) functional dynamical system

$$\cdot x \in M$$

We name orbit of x to:

$$\{f^n(x)\}_{n\in\mathbb{N}}$$

We denote:

$$\cdot o(x)$$

Periodicity

Let:

 $\cdot (M, \mathbb{N}, f)$ dynamical system

$$\cdot x \in M$$

$$\cdot m \in \mathbb{N}$$

Then, x is a m-periodic point if:

$$f^m(x) = x$$

We denote:

$$\cdot \{x \in M \mid f(x) = x\} : \operatorname{Fix}(f)$$

I Definitions 9

Stability

Let:

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

 $p \in \mathbb{R}^n$ m-periodic point

Then, p is stable if:

$$\ \, \forall \, \varepsilon \in \mathbb{R}^+ : \\ \\ \exists \, \delta \in \mathbb{R}^+ : \\ \\ \forall \, x \in B(p, \delta) : \\ \\ \forall \, n \in \mathbb{N} : \\ \\ f^{nm}(x) \in B(p, \varepsilon)$$

Then, p is unstable if:

 $\cdot\,p$ not stable

Attractive & Repulsive

Let:

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

 $\cdot \, p \in \mathbb{R}^n$ m-periodic point

Then, p is attractive if:

$$\cdot p$$
 stable

$$\cdot \exists \varepsilon \in \mathbb{R}^+$$
:

$$\forall x \in B(p, \varepsilon)$$
:

$$f^{nm}(x) \xrightarrow{n} p$$

Then, p is repulsive if:

$$\cdot p$$
 attractive by f^{-1}

$$\cdot \forall \mathcal{U} \subset M \quad \mathcal{U} \text{ open } \wedge x \in \mathcal{U} :$$

$$\forall x' \in \mathcal{U} \mid_{\Pi} x' \neq x :$$

$$\exists N \in \mathbb{N}$$
:

$$\forall n \in \mathbb{N} \quad n \geq N$$
:

$$f^{nm}(x') \notin \mathcal{U}$$

I Definitions 11

Fixed point character

Let:

 (M, \mathbb{N}, f) functional dynamical system

We name Fixed point character to:

$$f: \operatorname{Fix}(f) \longrightarrow \{-1, 0, 1\}$$

$$x \longmapsto \begin{cases} +1 & x \text{ repulsive} \\ -1 & x \text{ attractive} \\ 0 & x \text{ no attractive no repulsive} \end{cases}$$

We denote:

$$\cdot f : \chi_f$$

Attraction set

Let:

 (M, \mathbb{N}, f) dynamical system

 $\cdot x \in M$ attractive m-periodic point

 $\cdot o(x)$ orbit of x

We name attraction set of x to:

$$\{y \in M \mid \exists x' \in o(x) : f^{nm}(y) \xrightarrow{n} x'\}$$

We denote:

$$\cdot A(x)$$

Multiplier

Let:

$$\cdot (M, \mathbb{N}, f) \mathcal{C}^1$$
 dynamical system

$$\cdot x \in M$$

We name multiplier of x to:

$$\cdot f'(x)$$

We denote:

$$\cdot m(x)$$

$$|m(x)| = 1 : x \text{ neutral point}$$

Feeble point

Let:

$$\cdot (M, \mathbb{N}, f) \mathcal{C}^3$$
 dynamical system

$$\cdot x \in M$$

Then, x is feeble point if:

$$\cdot x$$
 neutral point

$$f''(x) = 0$$

I Definitions 13

Sarkovskii's order

We name Sarkovskii's order to:

$$a = 2^{n}a', b = 2^{m}b'$$

$$a' = b' = 1$$

$$a' = 1, b' \neq 1$$

$$a' < b' \quad a' = b' \neq 1$$

$$a' < b' \quad a' = b' \neq 1$$

$$a < m \quad 1 \neq a' \neq b'$$

Chaos

Let:

 $\cdot \left(\mathbb{R}, \mathbb{N}, f \right)$ dynamical system

Then, $(\mathbb{R}, \mathbb{N}, f)$ is chaotic if:

- · Fix(f) dense in \mathbb{R}
- $\cdot \exists x \in \mathbb{R}$:

o(x) dense in \mathbb{R}

 $\cdot \ \forall \ x \in \mathbb{R}$:

 $\exists \varepsilon \in \mathbb{R}^+$:

 $\forall \ \delta \in \mathbb{R}^+$:

$$\exists \ \tilde{x} \in B(x,\delta) :$$

$$\lim_{n} o(\tilde{x}) \notin B(x, \varepsilon)$$

Topological equivalence

Let:

$$(M, \mathbb{N}, f_1), (M, \mathbb{N}, f'_2)$$
 dynamical systems

Then, (M, \mathbb{N}, f_1) is topologically equivalent to (M, \mathbb{N}, f_2) if:

·
$$Fix(f) = Fix(f')$$

$$\cdot \forall x \in \text{Fix}(f)$$
:

$$\chi_{f_1}(x) = \chi_{f_2}(x)$$

We denote:

$$\cdot (M, \mathbb{N}, f) \sim (M, \mathbb{N}, f')$$

Bifurcation

Let:

$$\cdot \: \Lambda \subset M$$

 $\cdot \, (M, \mathbb{N}, f_{\lambda})_{\lambda \in \Lambda}$ dynamical systems parametrized by Λ

$$\lambda_0 \in \Lambda$$

Then, λ_0 is a bifurcation value if:

$$\forall \ \varepsilon \in \mathbb{R}^+ :$$

$$\exists \ \lambda_1, \lambda_2 \in B(\lambda_0, \varepsilon) :$$

$$(M, \mathbb{N}, f_{\lambda_1}) \not\vdash (M, \mathbb{N}, f_{\lambda_2})$$

I Definitions 15

Saddle-node bifurcation

Let:

$$\cdot \: \Lambda \subset M$$

 $(M, \mathbb{N}, f_{\lambda})_{{\lambda} \in \Lambda}$ dynamical systems parametrized by Λ

$$\cdot\;\lambda_0\in\Lambda$$

$$x_0 \in M$$

Then, λ_0 is a saddle-node bifurcation value at x_0 if:

$$x_0 \in \operatorname{Fix}(f_{\lambda_0})$$

 $\cdot x_0$ neutral point of f_{λ_0}

$$\cdot \partial_{\lambda} f_{\lambda}(x_0) \neq 0$$

$$\cdot \partial_{xx} f_{\lambda}(x_0) \neq 0$$

16 0 unit name

Pitchfork bifurcation

Let:

$$\cdot \: \Lambda \subset M$$

 $(M, \mathbb{N}, f_{\lambda})_{{\lambda} \in \Lambda}$ dynamical systems parametrized by Λ

$$\cdot \lambda_0 \in \Lambda$$

$$x_0 \in M$$

Then, λ_0 is Pitchfork bifurcation value at x_0 if:

$$x_0 \in \operatorname{Fix}(f_{\lambda_0})$$

 $\cdot x_0$ neutral point of f_{λ_0}

$$\cdot \partial_{\lambda} f_{\lambda}(x_0, \lambda_0) = 0$$

$$\partial_{x^2} f_{\lambda}(x_0, \lambda_0) = 0$$

$$\cdot \partial_{\lambda x} f_{\lambda}(x_0, \lambda_0) \neq 0$$

$$\cdot \, \partial_{x^3} f_{\lambda}(x_0, \lambda_0) \neq 0$$

Period doubling bifurcation

Let:

$$\cdot \: \Lambda \subset M$$

 $\cdot\,(M,\mathbb{N},f_{\lambda})_{\lambda\in\Lambda}$ dynamical systems parametrized by Λ

$$\cdot \; \lambda_0 \in \Lambda$$

$$x_0 \in M$$

Then, λ_0 is Period doubling bifurcation value at x_0 if:

 $\cdot\,\lambda_0$ Pitchfork bifurcation value at x_0 of f^2

18 0 unit name

Block II

Propositions

1. One-dimensional discrete dynamical systems

introduction

Fixed points theorem

Let:

$$\cdot I \subset \mathbb{R}$$
 open

$$\cdot f : I \to I$$
 differentiable

$$\cdot x \in I$$

Then, holds:

$$|f'(x)| < 1 \rightarrow x \text{ attractive}$$

$$|f'(x)| > 1 \to x$$
 repulsive

Demonstration:

demonstration

Attractiveness of periodic points does not involve the chosen point

Let:

 (M, \mathbb{N}, f) functional dynamical system

 $\cdot \, x \in M$ n-periodic point

$$\{x_i\}_{i=1}^r$$
 orbit of x

Then, holds:

$$\cdot x \text{ attractive } \leftrightarrow \forall x' \in o(x) :$$

$$x'$$
 attractive

Demonstration:

$$\forall x' \in o(x) :$$

$$f^{n'}(x') = \prod_{i=1}^{r} f'(x_i) = f^{n'}(x)$$

Partition of attraction set

Let:

- $\cdot \left(M,\mathbb{N},f\right)$ functional dynamical system
- $\cdot\,x$ n-periodic point
- $\cdot o(x)$ orbit of x

Then, holds:

$$\cdot \forall x' \in o(x)$$
:

 $\exists \mathcal{U} \subset M \text{ open } :$

 $\forall y \in \mathcal{U}$:

$$f^n(y) \xrightarrow{n} x'$$

Demonstration:

demonstration

Homeomorphisms are monotonous

Let:

 $f: \mathbb{R} \to \mathbb{R}$ homeomorphism

Then, holds:

 $\cdot f$ monotonous

Demonstration:

no demonstration

Homeomorphisms and n-periodic points

Let:

 $\cdot \, f \, : \, \mathbb{R} \to \mathbb{R}$ homeomorphism (M,T,ϕ) dynamical system defined

by f

Then, holds:

 $\cdot \ \forall \ n \in \mathbb{N} :$

 $\nexists x \in M$, x n-periodic point

Demonstration:

graphically

Sarkovskii's theorem

Let:

$$f:I \to I$$

$$\cdot (M, T, \phi)$$
 dynamical system

Then, holds:

$$\cdot \exists x \in M$$
:

$$o(x)$$
 k-period

$$\cdot \rightarrow \forall l \in \mathbb{N} \mid l > k$$
:

$$\exists x' \in M$$
:

$$x'$$
 l-period

Characterization of sella-node bifurcation points

Let:

$$I \subset \mathbb{R}\{f_{\lambda} : I \to I\}_{\lambda \in \Lambda}$$

$$\cdot x \in I$$

Then, holds:

$$\cdot x$$
 SN bifurcation point $\leftrightarrow f(x) = x, f'(x) = 1$

$$\cdot \partial_{\lambda} f \neq 0$$

$$f''(x) \neq 0$$

Demonstration:

demonstration

Pitchfork bifurcation

Let:

- $\cdot (M, T, f_{\lambda})$ dynamical system family
- $\cdot x \in M$

Then, x is pitchfork bifurcation if:

- $\cdot x$ fixed point
- · born of 2 fixed points

.

Characterization of Pitchfork bifurcations

Let:

- $\cdot (M, T, f_{\lambda})$ dynamical system family
- $\cdot x \in M$

Then, holds:

- $\cdot x$ Pitchfork \leftrightarrow
- $\cdot f(x) = x$
- f'(x) = 1
- $\partial_{x^2} f = 0$
- $\cdot \partial_{\lambda} f = 0$

Demonstration:

no demonstration

30 0 unit name

III Examples 31

Block III

Examples

1. One-dimensional discrete dynamical systems

 $\label{lem:examples} Examples of what are and what are not one-dimensional dynamical systems$

III Examples 33

Analysis of logistic dynamical systems

Let:

 (M, T, ϕ) logistical dynamical system defined by f

Then, holds:

$$\cdot Fix(f) = \{0, \frac{a-1}{a}\}$$

$$\cdot Per_2(f) =$$

Demonstration:

demonstration

34 0 unit name

Quadratic function bifurcations

Let:

$$\begin{array}{ccc}
\cdot & f : \mathbb{R} & \longrightarrow & \mathbb{R} \\
& x & \longmapsto & a - x^2
\end{array}$$

 (M, T, f_c) dynamical system family

Then, f is bifurcates in -1/4:

$$f_{-\frac{1}{4}}(x) = x \leftrightarrow x = -\frac{1}{2}$$

$$f'_{-\frac{1}{4}}(x) = -2x$$

$$f'_{-\frac{1}{4}}(-\frac{1}{2}) = 1$$

$$\partial_a f = 1 \neq 0$$

$$\partial_{x^2} f = -2 \neq 0$$

$$sgn(1*-2) = - \rightarrow -\frac{1}{2}$$
 SN

IV Problems 35

Block IV

Problems

MODELS I SISTEMES DINÀMICS

Llista 1: Aplicacions unidimensionals

- B.1. Trobeu els punts fixos i les òrbites de període 2 de les següents funcions. En el cas que apareixin paràmetres, feu-ho en funció d'aquests.
 - (a) * f(x) = 2x(1-x), on $x \in \mathbb{R}$.
- (c) $f(x) = x^2 + 1$, on $x \in \mathbb{R}$.
- (b) * $f_c(x) = x^2 + c$, on $x, c \in \mathbb{R}$ (només (d) $f_{a,b}(x) = ax + b$, on $a, b, x \in \mathbb{R}$. punts fixos).
 - (e) $f(x) = 2x^2 5x$, on $x \in \mathbb{R}$.
- B.2. Fent servir anàlisi gràfic, dibuixeu el retrat de fases de
 - (a) $f(x) = x^2$, $x \in \mathbb{R}$.

- (c) $f_a(x) = ax$, $x \in \mathbb{R}$, pels differents valors de $a \in \mathbb{R}$.
- (b) $f(x) = x(1-x), x \in \mathbb{R}$.
- B.3. * Trobeu els punts fixos atractors i les seves conques d'atracció per a la funció $f(x) = \frac{3x - x^3}{2}$, per $|x| \le \sqrt{3}$.
- **B.4.** Per a la funció logística $f_a(x) = ax(1-x)$, calculeu els punts fixos i els cicles de període 2 en funció del paràmetre, i determineu-ne l'estabilitat.
- 1. Estudieu el comportament asimptòtic de la successió $\{x_n\}_{n\in\mathbb{N}}$, pels diferents valors de x_0 indicats.
 - (a) * $x_{n+1} = \frac{\sqrt{x_n}}{2}$, $x_0 \ge 0$.
- (b) $x_{n+1} = \frac{x_n}{2} + \frac{2}{x_n}, x_0 \ge 2$.
- **2.** Donada la successió $x_{n+1} = \frac{x_n+2}{x_n+1}$,
 - (a) Trobeu el límit $L = \lim_{n \to \infty} x_n$ per a $x_0 \ge 0$.
 - (b) Descriviu el conjunt dels $x_0 < 0$ pels quals el límit $\lim_{n \to \infty} x_n$ existeix i no és igual a L, o bé no existeix. (Per exemple $x_0 = -1$).
- 3. (Examen 2011) Considereu el sistema dinàmic real definit per $x_{n+1} = \frac{x_n}{4} + x_n^3$. Trobeu el comportament asimptòtic de les òrbites per a tota condició inicial $x_0 \in \mathbb{R}$. Justifiqueu rigorosament les vostres afirmacions.
- 4. Demostreu rigurosament que $f(x) = \sin(x)$ té x = 0 com atractor global.
- **5.** Demostreu que si $f: \mathbb{R} \to \mathbb{R}$ és derivable, x_0 és un punt fix i $|f'(x_0)| > 1$ llavors x_0 és un punt fix repulsor.
- **6.** Sigui $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^{∞} i sigui x_0 un punt fix tal que $f'(x_0) = 1$. Doneu criteris sobre les derivades d'ordre superior, per determinar el retrat de fase local al voltant de x_0 . Apliqueu-ho a determinar l'estabilitat dels punts fixos de $x^3 - x$.

IV Problems 37

1. One-dimensional discrete dynamical system

introduction

IV Problems 39

Decreasing function orbits

Let:

 $\cdot \, declarations$

.

Show that:

 $\cdot statements \\$

.

Demonstration:

 \boldsymbol{f} corta en un punto

f decreasing $\rightarrow f^2$ increasing

 $f^{2n} \stackrel{n}{\longrightarrow}$ fixed point of f

40 0 unit name

9. Periodic points

Let:

$$f: \mathbb{R} \times \mathbb{R}^+ \longrightarrow \mathbb{R}$$

$$(x,r) \longmapsto r \frac{x}{1+x^2}$$

Study:

 \cdot Periodic points of f

Demonstration:

 $Graphical\ analysis:$

f odd

f has 2 extrema in ± 1

$$f \xrightarrow{n} 0$$

Fixed points:

$$f(x) = x \leftrightarrow x = \pm \sqrt{r-1}$$

$$f'(\pm\sqrt{r-1}) = \frac{2-r}{r}$$

n-periodic points:

$$f^n(x) = x$$

10. Global orbit analysis

Let:

$$f: \mathbb{R}^+ \to \mathbb{R}^+ \in \mathbb{C}^{\infty}$$

$$f(0) = 0$$

$$p \in \mathbb{R}^+ \setminus \{0\} \quad \text{"} \quad f'(p) \ge 0$$

$$f' \text{ decreasing}$$

Show that:

$$\cdot \forall x \in \mathbb{R}^+ \setminus \{0\} :$$

$$f^n(x) \xrightarrow{n} p$$

Demonstration:

$$f'$$
 decreasing $\to f'' < 0 \to f$ concave f positive $\to f$ has no extrema $\to f' > 0 \to f$ increasing f has only one fixed point
$$\text{Suppose 2 fixed points} : p, p'$$

$$IVT \to \exists c \in (0, p')$$
:

$$f'(c) = 1$$

 $f'(p) < 1 \rightarrow p$ attractive $IVT \rightarrow$ dont exist more fixed points

$$\rightarrow f'(c') = 1 \nleq 1$$

$$\forall x \in (0,p)$$
:

 $\forall x \in \mathbb{R} \mid x > p$:

$$f(x) < x 41$$

 $f \text{ increasing } \rightarrow f([0, p]) = [0, p]$

42 0 unit name

Block V

Laboratory

1. Orbit analysis

Martin Azpillaga

Let:

$$\begin{array}{ccc} \cdot & f : \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^3 + \frac{1}{4}x \end{array}$$

Study:

 \cdot Orbit behavior of the real dynamical system defined by f

Demonstration:

Formalization:

Consider (M, T, ϕ) where:

$$M = \mathbb{R}$$

$$T = \mathbb{N}$$

$$\phi : \mathbb{R} \times \mathbb{N} \longrightarrow \mathbb{R}$$

$$(x,n) \longmapsto f^n(x)$$

Study the orbits of $(\mathbb{R}, \mathbb{N}, \phi)$

We will denote $f^n(x)$ as x_n

Fixed points:

$$\forall x \in \mathbb{R}$$
:

$$f(x) = x \leftrightarrow x^3 + \frac{1}{4}x - x = 0 \leftrightarrow x^3 - \frac{3}{4}x = 0$$

$$\leftrightarrow x = 0 \lor x^2 - \frac{3}{4} = 0$$

$$x \text{ fixed point } \leftrightarrow x \in \{0, \pm \frac{\sqrt{3}}{2}\}$$

Graphic analysis:

Parity:

 $\forall x \in \mathbb{R}$:

$$f(-x) = (-x)^3 + \frac{(-x)}{4} = -(x^3 + \frac{x}{4}) = -f(x)$$

f is odd

Monotonicity:

 $\forall x \in \mathbb{R}$:

$$f'(x) = 3x^2 + \frac{1}{4} > 0$$

f is increasing over $\mathbb R$

Convexity:

 $\forall x \in \mathbb{R}^-$:

$$f''(x) = 6x \le 0$$

 $\forall x \in \mathbb{R}^+$:

$$f''(x) = 6x \ge 0$$

f is concave over \mathbb{R}^- and convex over \mathbb{R}^+

Graphic representation:

$$\underline{\mathrm{I}} \forall \ x \in (-\infty, -\frac{\sqrt{3}}{2}) :$$

Induction over n:

$$f \text{ incresing } \rightarrow f(x_n) < f(-\frac{\sqrt{3}}{2})$$

 $x_{n+1} \in (-\infty, -\frac{\sqrt{3}}{2})$

$$\therefore$$
) $o(x)$ is enclosed in $(-\infty, -\frac{\sqrt{3}}{2})$

Induction over n:

$$x_n^2 > \frac{3}{4} \to \left(x_n^2 - \frac{3}{4}\right) > 0$$

$$x_{n+1} - x_n = x_n^3 - \frac{3}{4}x_n = x_n\left(x_n^2 - \frac{3}{4}\right) < 0$$

 \therefore) o(x) decreasing

$$\nexists x < -\frac{\sqrt{3}}{2}$$
 , $x \text{ fixed point } \to o(x) \xrightarrow{n} -\infty$

$$\underline{\mathrm{II}} \forall \ x \in \left(-\frac{\sqrt{3}}{2}, 0\right) :$$

Induction over n:

$$f$$
 increasing $\rightarrow f(-\frac{\sqrt{3}}{2}) < f(x_n) < f(0)$
 $x_{n+1} \in (-\frac{\sqrt{3}}{2}, 0)$

$$\therefore$$
) $o(x)$ is enclosed in $(-\frac{\sqrt{3}}{2},0)$

Induction over n:

$$x_n^2 < \frac{3}{4} \to (x_n^2 - \frac{3}{4}) < 0$$

$$x_{n+1} - x_n = x_n^3 - \frac{3}{4}x_n = x_n(x_n^2 - \frac{3}{4}) > 0$$

 \therefore) o(x) increasing

$$o(x)$$
 convergent $\wedge 0$ fixed point $\rightarrow o(x) \xrightarrow{n} 0$

III
$$\forall x \in (0, \frac{\sqrt{3}}{2})$$
:

Induction over n:

$$-x_n \in \left(-\frac{\sqrt{3}}{2}, 0\right)$$

$$\underline{\Pi} \to f(-x_n) \in \left(-\frac{\sqrt{3}}{2}, 0\right) \land f(-x_n) > -x_n$$

$$f \text{ odd } \to f(x_n) = -f(-x_n) \in \left(0, \frac{\sqrt{3}}{2}\right)$$

$$f \text{ odd } \to f(x_n) = -f(-x_n) < x_n$$

 \therefore) o(x) is enclosed in $(0, \frac{\sqrt{3}}{2}) \wedge o(x)$ decreasing

$$o(x)$$
 convergent $\wedge 0$ fixed point $\rightarrow o(x) \xrightarrow{n} 0$

IV
$$\forall x \in \mathbb{R} \mid_{\Pi} x > \frac{\sqrt{3}}{2}$$
:

Induction over n:

$$-x_n \in \left(\frac{\sqrt{3}}{2}, \infty\right)$$

$$\underline{I} \to f(-x_n) \in \left(\frac{\sqrt{3}}{2}, \infty\right) \land f(-x_n) < -x_n$$

$$f \text{ odd } \to f(x_n) = -f(-x_n) \in \left(\frac{\sqrt{3}}{2}, \infty\right)$$

$$f \text{ odd } \to f(x_n) = -f(-x_n) > x_n$$

 \therefore) o(x) is inf bounded by in $\frac{\sqrt{3}}{2} \wedge o(x)$ increasing o(x) convergent

$$\nexists x > \frac{\sqrt{3}}{2}$$
 " $x \text{ fixed point } \rightarrow o(x) \xrightarrow{n} +\infty$

2. Fixed points cardinality

Martin Azpillaga

Let:

$$f: [0,1] \to [0,1] \in C^2([0,1])$$

 $f(1) < 1$
 $f'' > 0 \in [0,1]$

Show that:

$$\cdot \# \{x \in [0,1] \mid f(x) = x\} = 1$$

Demonstration:

$$\{x \in [0,1] \mid f(x) = x\} \ge 1$$
:

Case $f(0) = 0$:

0 fixed point

Case $f(0) > 0$:

 $g: [0,1] \longrightarrow [-1,1]$
 $x \longmapsto f(x) - x \in \mathcal{C}^2([0,1])$
 $g(0) = f(0) - 0 > 0$
 $g(1) = f(1) - 1 < 0$

Bolzano's theorem:

 $\exists x \in (0,1):$
 $g(x) = 0$

f(x) = x

$$\{x \in [0,1] \mid f(x) = x\} \le 1$$
:
 $q'' > 0 \text{ over } [0,1]$

Rolle's theorem:

$$\# \{x \in (0,1) \mid g'(x) = 0\} \le 1$$

$$\# \{x \in (0,1) \mid g(x) = 0\} \le 2$$

$$\# \{x \in (0,1) \mid f(x) = x\} \le 2$$

$$f'' > 0$$
 over $[0, 1]$

Monotonicity test:

f' increasing in [0,1]

$$\forall \ a < b \in [0,1) \ , \ f(a) = a, f(b) = b :$$

Mean Value Theorem:

$$\exists c \in (a,b)$$
:

$$f'(c) = \frac{f(b) - f(a)}{b - a} = 1$$

$$\exists d \in (b,1)$$
:

$$f'(d) = \frac{f(1) - f(b)}{1 - b} < 1$$

$$f'$$
 increasing $\rightarrow f'(c) < f'(b) < f'(d)$

$$1 < f'(b) < 1$$
 absurd

$$\therefore$$
) # { $x \in [0,1] | f(x) = x$ } = 1