ION IMPLANTING METHOD

Publication number: JP2000012481
Publication date: 2000-01-14

Publication date: 2000-01-14
Inventor: MATSUNAGA YASUHIKO: MAGEEDE ARI FOAD

Applicant: APPLIED MATERIALS INC
Classification:

- international: H01L21/265; H01L21/02; (IPC1-7): H01L21/265

- European: H01L21/265A; H01L21/265A2
Application number: JP19980159109 19980608
Priority number(s): JP19980159109 19980608

Also published as:

EP1096552 (A1)
WO9965069 (A1)
US6583018 (B1)
EP1096552 (A4)

Report a data error here

Abstract of JP2000012481

PROBLEM TO BE SOLVED: To provide an ion implanting method in which effective dosage can be controlled accurately even in the case of ion implantation with extremely low energy. SOLUTION: In the inventive ion implanting method, a semiconductor substrate is subjected to preamorphous ion implantation in an ion implanting system 10 and then an oxide film is cleaned off from the surface of the semiconductor substrate by means of a cleaner 12. Subsequently, the semiconductor substrate is subjected again to ion implantation in the ion implanting system under extremely low implantation energy in order to form a shallow junction in the semiconductor substrate. Since the effect of an oxide film formed by preamorphous ion implantation can be suppressed, effective dosage can be controlled accurately.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-12481 (P2000-12481A)

(43)公開日 平成12年1月14日(2000.1.14)

(51) Int.Cl.7		
110 1 T	21 /265	

識別記号

FΙ HO1L 21/265

テーマコード(参考)

U Q z

審查請求 有 請求項の数5 OL (全 6 頁)

(21)出願番号	特顯平10-159109	(71)出額人 390040660 アプライド マテリアルズ インコーボレ
(22)出顧日 平成10年6月	平成10年6月8日(1998.6.8)	イラッド APPLIED MATERIALS, I NCORFORATED アメリカ合衆国 カリフォルニア州 99564 サンタ クララ パウアーズ ア ベニュー 3050 (74)代理人 100088155 弁理士 最谷川 芳蘭 (外5名)

帰終百に続く

(54) 【発明の名称】 イオン往入方法

(57) 【要約】 【課題】 極低エネルギーでのイオン注入においても有

効ドーズ量を正確に制御することのできるイオン注入方 法を提供することを目的としている。 【解決手段】 本発明によるイオン注入方法は、イオン 注入装置10で半導体基板に対してプレアモルファス化 イオン注入を行った後、その半導体基板の表面を洗浄装 置12で洗浄し酸化膜を除去し、その後に、再度イオン 注入装置10において半導体基板に浅い接合を形成すべ く低注入エネルギー下でイオン注入を行うことを特徴と している。これにより、プレアモルファス化イオン注入 により形成された酸化膜の影響を抑制することができ、 有効ドーズ量を正確に制御することが可能となる。

【特許請求の範囲】

[請求項1] 半導体基板の表面をアモルファス状態と するプレアモルファス化イオン注入を行う第1ステップ と、

プレアモルファス化イオン注入が行われた前記半導体基 板の表面を洗浄し酸化膜を除去する第2ステップと、 洗浄された前記半導体基板に浅い接合を形成すべく低注 入エネルギー下でイオン注入を行う第3ステップとを含 むことを特後とするイオン注入方法。

[請求項2] 前記第2ステップにおける洗浄をフッ酸 10 により行うことを特徴とする請求項1に記載のイオン注入方法。

【請求項3】 前記第2ステップの終了時点から前記第 3ステップの開始時点までの時間を一定とすることを特 後とする請求項1又は2に記載のイオン注入方法。

【請求項4】 前配第1ステップにおけるプレアモルフ ァス化イオン注入で用いられるイオン種が、グルマニウ ム、シリコン、アルゴン及びキセノンから成る群より選 ばれた少なくとも1つであることを特徴とする請求項1 ~3のいずれか1項に記載のイオン注入方法。

【請求項5】 前記第3ステップにおけるイオン注入で 用いられるイオン種がポロンであり、注入エネルギーは 約2keV以下であることを特徴とする請求項1~4の いずれか1項に記載のイオン注入方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体デバイスの 製造プロセス等に用いられるイオン注入技術に関し、特 に浅い接合を半導体基板内に形成するための低エネルギ ー・イオン注入技術に関するものである。

[0002]

【従来の技術】近年の半導体デバイスの高振療化、微細 化の進展に伸い、イオン性五ノプロセスにおいては、浅い ソースドレインの形成や薄いゲート絶縁膜の形成、すな わち洩い接合の形成が異情されている。かかる要請に応 えるため、後状においては、イオン住入を低とエネル ギーで行う低エネルギー・イオン住入技術が幾用されて おり、近年ではひ、2 ke v という極低エネルギー下で のイオン往入り可能となってきている。

[0003] その一方で、注入エネルギーを下げた場合 には、チャネリング現象によりイオンが深く注入されて しまうため、これを防止するために、電気キャリアを作 たないイオン、例えばグルマニウムやアルゴン、シリコ ン、キセノン等のイオンを予め注入し、半導体基板の表 面をアモルファス状態にし、その後、続けて目的のイオ ンを注入するといったプレアモルファス化イオン注入技 術も最近では行われるようになっている。

[0004] しかし、極低エネルギーのイオン注入においては、イオンの投影飛程があまりに洩いためにイオンが半導体基板の中まで到達できずに、基板表面に形成さ

れた自然線化膜内でトラップされることがある。この自然酸化膜にトラップされた原子は、イオン往入プロセスに線(洗浄プロセスにおいて自然酸化膜と共に除去される。このメカニズムにより、洗浄後に半導体基板中に残されるには入イオンドーズ量(有効ド・ズ量)は、イオンとは測定されたドーズ量(計算ドーズ量)よりも少なくなってしまう。しかも、自然酸化膜の厚さはイオン注入直前のプロセスにより影響を受けて変動するため、有効ドーズ量も変動してしまう。

2

【0005】このため、従来においては、半導体基板を イオン注入装置に搬入する直前に半導体基板の表面を洗 浄して酸化膜の除去を行うこととしている。

[0006]

【発明が解決しようとする課題】しかしながら、上記プロセス、すなわち半導体基板の洗浄 (酸化原除去)を行った後にプレアモルファス化イオン注入と目的イオンの 極低エネルギー・イオン注入を連続的に行うプロセスに よっても、実際には、何らかの原因により有効ドーズ量20 が変動することがある。

【0007】そこで、本発明は、極低エネルギーでのイ オン注入においても有効ドーズ量を正確に制御すること のできるイオン注入方法を提供することを目的としてい る。

[0008]

【課題を解決するための手段】上記自的を速成するため に、本急明者は上記従来のイオン性入プロセスを観章検 対した越来、プレアモルファス化イオン性入プロセスの 際に、イオン注入強煙の内部に存在する酸素がイオンで ームにより半導体基板に打ち込まれて酸化膜が形成されることを見いだした。イオン注入装置内に存在する酸素 としては、洗浄後の解波中に半導体基板の表面に吸着し たものや、イオン准入装置の内壁面に吸着していた酸素 が、イオンと一ムによるスパック域にピームパワー等に よる加熱により解認致いは浮遊したたらの等が考えられ る。そして、このようにプレアモルファス化性入プロセ ズにおいて形変された酸素制を、自然軟化膜と即様に次 プロセスでイオンをトラップし、イオン性入後には洗浄 プロセスによって除去されるため、有効ドーズ量化影響 6 を与えることを見いだした。

[0009] 本界門は、かかる知見に基づきなされたものであり、半導体基板の表面をアモルファス状態とするプレアモルファス化イオン往入を行った後、プレアモルファス化イオン往入を行った後、プレアモルファス化イオン往入を行った後、プレアモルラッス化イオン在人を持ちに大きの後に、半導体基板に決い接合を形成サーベく低走入エネルギー下でイオン往入を行うことを特徴としている。これにより、プレアモルファス化イオン注入により形成された酸化原の影響を抑制することが可能となる。

50 【0010】半導体基板の洗浄についてはフッ酸により

行うことが有効である。

【0011】また、半導体基板の洗浄後から低エネルギ 一・イオン注入の開始までは、通常の設備を用いた場 会 半道体基板は大気に曝されるのが一般的である。従 って、洗浄後から低エネルギー・イオン注入開始主での 時間を一定とすることが有効である。かかる場合、半導 体基板に付着する酸素の量が一定となり、低エネルギー ・イオン注入により形成される酸化膜の厚さ、ひいては そこにトラップされるイオンの量がほぼ一定となるた め、有効ドーズ量の制御をより確実に行うことができる 10 る。 からである。

【0012】なお、プレアモルファス化イオン注入で用 いられるイオン種としては、ゲルマニウム、シリコン、 アルゴン又はキセノンが好ましい。また、低エネルギー ・イオン注入で用いられるイオン種はボロンとし、注入 エネルギーを約2keV以下とすることが好ましい。 [0013]

【発明の実施の形態】以下、図面と共に本発明の好適な 実施形能について詳細に説明する。

施することのできる設備の設備を示し、図中、符号10 はイオン注入装置、符号12は洗浄装置を示すものであ る。本実施形態におけるイオン注入装置10は、5ke V以下、好ましくは1ke V以下の極めて低い注入エネ ルギーでのイオン注入が可能なものであり、何えばアプ ライド・マテリアルズ・インコーポレイテッドにより

「Implant xRLEAP」の商標で製造、販売 されているイオン注入装置が好ましい。なお、「Imp lant xR LEAP」は、イオンソース13で発 で加速した後、ビームライン部14の後段で減速して注 入エネルギーを下げるデセル方式を採用しており、0. 2 Ke Vの極低エネルギーでボロンの注入が可能である ことが確認されている。

【0015】図示のイオン注入装置10におけるイオン 注入部16は、その内部に配置された基板保持ホイール 18を備えている。基板保持ホイール18は、放射状に 延びる複数本のアーム20の先端に半導体基板Wを保持 する構造となっており、ビームライン部14からのイオ ンピームIBが半導体基板Wの表面上をスキャンし得る 40 よう駆動される。

【0016】イオン注入部16の隣接位置には搬送チュ ーブ22を介してローダ部24が配置されている。搬送 チューブ22にはアイソレーションパルブ26が介設さ れており、イオン注入部16とローダ部24との間を分 離することができるようになっている。従って、イオン 注入部16及びビームライン部14の真空を維持したま す。ローダ部24のみを大気に開放し、イオン注入装置 10の外部から半導体基板Wをローダ部24に搬入する ことができる。なお、ローダ部24とイオン注入部16 10

との間での半導体基板Wの受け渡しはロボット(図示せ ず) により行われる。

【0017】洗浄装置12はイオン注入装置10の近傍 に、イオン注入装置10と同じクリーンルーム内に設置 されている。図面では明示していないが、この洗浄装置 12は、装置外部との間で半導体基板Wの受け渡しを行 うためのローダ部と、半導体基板Wの表面から酸化膜を 洗浄除去するための洗浄部と、洗浄薬液を除去するため のリンス部と、乾燥部とから構成された周知のものであ

【0018】酸化膜の除去を目的として用いられる洗浄 薬液は一般にフッ酸であり、リンス液は超純水である。 また、乾燥部は、自然酸化膜の再形成を防止するため に、例えば窒素ガスのプローにより乾燥を行うものが好 ましい。更に、洗浄装置12としては、ローダ部に搬入 された半導体基板Wが、洗浄、リンス及び乾燥の一連の プロセスを経て再度ローダ部に戻るまで、大気に一切触 れないよう構成されているものが好適である。

【0019】次に、上述したような設備を用いた本発明 【0014】図1は、本発明によるイオン注入方法を実 20 によるイオン注入方法の一実施形態について説明する。 【0020】本実施形態では、上記のイオン注入装置1 0 を用いてゲルマニウムによるプレアモルファス化イオ ン注入プロセスを行った後、ボロンによる低極エネルギ ー・イオン注入プロセスを行い、極迷い接合を半導体基 板(シリコンウェハ)Wに形成することとする。

【0021】まず、前処理として、被処理対象である半 導体基板Wを洗浄装置12の洗浄部において洗浄し、基 板表面に形成されている自然酸化膜を除去する。この洗 浄された半進体基板Wはリンス部で超額水によりリンス 生されたイオンビームIBをビームライン部14の前段 30 処理された後、敷燥部において十分に乾燥されてローダ 部に戻される。そして、半導体基板Wは洗浄装置12の ローダ部からイオン注入装置10のローダ部24に移さ れるが、この間に大気が半導体基板Wの表面に接触する

> ため、極微量ではあるが酸素が基板表面に吸着される。 【0022】半導体基板Wがイオン注入装置100p-ダ部24に搬入されたならば、ローダ部24内が減圧さ れ、搬送チューブ22のアイソレーションバルブ26が 開放される。この後、ロボットにより半導体基板Wは機 送チュープ22からイオン注入部16に搬送されて、基 板保持ホイール18の各アーム20の先端に保持され

> 【0023】次に、ゲルマニウムイオンを注入して、半 導体基板Wの表面のアモルファス化を図る。プレアモル ファス化注入プロセスは、先に説明した通り、続くボロ ンイオン注入プロセスにおけるチャネリング現象を防止 するためのものである。このプレアモルファス化注入プ ロセスにおいて、半導体基板表面の酸素は、ゲルマニウ ムイオンビームIBの照射により半導体基板Wに打ち込 まれ、極僅かであるが酸化膜を形成する。

【0024】以上の洗浄プロセス及びプレアモルファス

化注入プロセスは従来と同様にして行われる。

【0025】 本発明においては、プレアモルファス化注 入プロセスの終了後、再度、洗浄プロセスを実施するこ とを特徴としている。すなわち、半導体基板Wをローダ 部24に戻した後、搬送チューブ22のアイソレーショ ンバルプ26を閉じてローダ部24のみを大気に対して 開放し、半導体基板Wを洗浄装置12に移す。そして、 ト記の洗浄プロセスと同様にして半導体基板Wの酸化膜 を洗浄除去し、リンス及び乾燥を行う。

【0026】半導体基板Wの乾燥が終了したならば、再 10 び半導体基板Wをイオン注入装置10に戻すのである が、この際、半導体基板Wを大気に露出する時間を可能 な限り短くすると共に、その露出時間(撤送時間)を一 定にすることが好ましい。前者については、半導体基板 Wの表面に吸着される酸素の量を大幅に低減ないしは実 質的にゼロとするためであり、後者については、次のボ ロン注入プロセスにおいて形成される酸化膜の厚さを一 定にするためである。洗浄装置12の乾燥部が酸素の存 在する環境にあるならば、乾燥プロセスの開始から半道 体基板Wをイオン注入装置10のローダ部24に搬入し 20 ローダ部24の減圧が完了するまでの時間を、2時間以 内で一定とすることが望ましい。

【0027】イオン注入装置10に戻された半導体基板 Wは、上記と同じ手順を経てイオン注入部16の基板保 持ホイール18に保持され、極低エネルギーのボロン注 入プロセスが開始される。このボロン注入プロセスは、 酸化膜が基板表面に実質的に形成されていない状態で行 われるため、注入ボロンが酸素膜でトラップされるとい う事能はほぼ解消される。なお、ボロン注入プロセス中 にも、半導体基板Wの表面に吸着された酸素がイオン注 30 入によって酸化膜を形成するが、このプロセスは極低エ ネルギー (例えば2ke V以下) で行われるため、これ よりも高エネルギー(例えば約5keV)で行われるプ レアモルファス化注入プロセスの場合に比して、形成さ れる酸化膜は無視することができる程度である。

【0028】ボロン注入プロセスの終了後、一般的に は、洗浄装置12において洗浄プロセスが実施され、続 いて点欠陥による増速拡散を防止すべく、高温で秒オー ダーのアニールプロセスが行われる。洗浄プロセスにお いては、ボロン注入プロセス中及び撤送中に形成された 40 酸化膜が除去される。従って、この酸化膜にトラップさ れたポロンも除去されるため、有効ドーズ量はイオン注 入装置で実際に注入された量(計算ドーズ量)と僅かに 異なったものとなる。しかしながら、前述したように半 導体基板Wを大気に対して露出する時間を一定にすれ ば、形成される酸化膜の厚さも一定となるため、酸化膜 が除去されても有効ドーズ量と計算ドーズ量とは一定の 関係となり、有効ドーズ量をより緻密に制御することが 可能となる。

述べたが、本発明は上記実施形態に限定されることはな い。例えば、本発明の方法に用いられるイオン注入装置

や洗浄装置は図示のものに限られない。また、プレアモ ルファス化注入プロセスで注入されるイオン種もゲルマ ニウムに限られず、シリコン、アルゴン、キセノン等の 電気キャリアを作らないイオン種であってもよく、強い 接合を形成するイオンについてもボロンに限定されな W

[0030]

【実施例】次に、本発明の効果を検討するために行った 実験の結果について図2を参照して説明する。

【0031】実験では、アプライド・マテリアルズ・イ ンコーポレイテッドにより「Implant xR L EAP」の商標で製造、販売されているイオン注入装置 を用いてイオン注入を行った。

【0032】本発明についての実験(実施例1及び実施 例2) では、上記実施形態で説明した手順に従って作業 を行い、ボロン注入プロセスでは注入エネルギーを2k e Vから0.2ke Vに減速ないしはデセルするよう設 定し、計算ドース量を1. 0×10¹⁵ions/cm²に設定し

た。また、実施例1におけるゲルマニウムイオンによる プレアモルファス化注入プロセスでは、注入エルネルギ ーを5keV. 計算ドーズ量を2. 0×10¹⁴ions/cm² に設定し、実施例2におけるプレアモルファス化注入プ ロセスでは、注入エルネルギーを5keV、計算ドーズ 量を1.0×10¹⁵ions/cm²に設定した。更に。実施例 1及び実施例2において、プレアモルファス化注入プロ セスに続く洗浄プロセスが終了した後、ボロン注入が開 始されるまでの時間を2時間一定とした。

【0033】また、プレアモルファス化注入プロセス後 の洗浄プロセスを省略し、従来と同様に、プレアモルフ ァス化注入プロセスに続けてボロン注入を連続的に実施 する比較実験(比較例1及び比較例2)を行った。な お、比較例1及び比較例2は、洗浄プロセスがない点を 除き、実施例1及び実施例2の条件と同じ条件とした。 ゲルマニウムイオンによるプレアモルファス化注入プロ セスを省略し、前処理の洗浄プロセスの直後にボロン注 入プロセスを実行する比較実験(比較例3)も行った。 【0034】更に、実施例及び比較例のそれぞれにおい て、ボロン注入プロセスが終了した後、半導体基板に対

して後処理として洗浄プロセスを実行し、950℃で1 0秒間のアニールプロセスを実行した。このようにして 得られた各半導体基板についてシート抵抗値Rsを測定 し、その測定値をプロットしたグラフが図2である。 【0035】図2からは、実施例1、実施例2及び比較

例3についてはシート抵抗値はほぼ同じ値であり、プレ アモルファス化注入プロセス後の洗浄プロセスを省略し た比較例1及び比較例2の場合には、シート抵抗値が実 施例1、2に比して大きくなっていることが分かる。

【0029】以上、本発明の一実施形態について詳細に 50 【0036】シート抵抗値は、半導体基板装面に残って

いるボロンのドーズ量が少なければ大きくなる。従って、比較例1,2のシート抵抗値が大きいのは、実際に 注入したボロンの一部が半導体基板から除去されたため であり、それは酸化膜の洗浄除去に伴って生じたものと 様定することができる。

【0037】 なお、比較例2のシート抵抗値が比較例1 のものよりも大きいのは、比較例2の場合の方がゲルマ ニウムの注入量が多く、より厚い酸化膜が形成されたか らと考えられる。実際に、比較例1、2で得られた半 を基板に対して影積野に光が分析「XPS)を行い、 表面の酸化膜の厚さを測定したところ、比較例2のものは は17 ±3 まングストロームであり、比較例2のものは 21 ±3 まングストロームであった。

[0038]また、比較例3では、プレデキルファズ化 注入による酸化膜の形成がなく、従って後処理で除去さ れるボロンは塩めて微量である。よって、この比較例3 におけるシート抵抗値と実施例1,2におけるシート抵 抗値が実質的に同じであることから、本発房の方法によ れば、プレアモルファス化注入で形成された酸化膜がポ ロンをトラップするという問題が解消され。第1公安に

た有効ドーズ量が得られることが証明された。

[0039]

【発明の効果】以上述べたように、本発明のイオン性入 方法によれば、半導体基板に洗い接合を形成すべくボロ 少等を注入する場合、ボロン等の有効ドーズ量を正確に 制御することが可能となる。これは、イオン性入装置が 本来有する制御能力を十分に差標させるものであり、 た、このイオン性入方法を経て数差された半導体デバイ スで必要な高情度プロファイル制御を可能とし、その特

10 性の向上、安定化に寄与するものである。

【図面の簡単な説明】

【図1】本発明によるイオン注入方法を実施するのに適 した設備を示す概略説明図である。

【図2】本発明の実施例と比較例で得られた半導体基板のシート抵抗値を示すグラフである。

【符号の説明】

10…イオン注入装置、12…洗浄装置、14…ビーム ライン館、16…イオン注入部、18…基板保持ホイー ル、20…アーム、22…搬送テューブ、24…ローダ 館、26…アイソレーションバルブ。

[図1]

[図2]

【手統補正書】

【提出日】平成11年8月4日(1999.8.4)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の節囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 半導体基板の表面をアモルファス状態と

するプレアモルファス化イオン注入を行う第1ステップ と、

プレアモルファス化イオン注入が行われた前記半導体基板の表面を洗浄し酸化膜を除去する第2ステップと、

洗浄された前配半導体基板に浅い検合を形成すべ、低注 入エネルギー下でイオン注入を行う第3ステップとを含 むことを特徴とするイオン往入方法。

【請求項2】 前記第2ステップにおける洗浄をフッ酸

により行うことを特徴とする請求項1に記載のイオン注 入方法。

【請求項3】 前記第2ステップの終了時点から前記第 3ステップの開始時点までの時間を一定とすることを特 徴とする請求項1又は2に記載のイオン注入方法。 「請求項4】 前記第1ステップにおけるプレアモルフ ァス化イオン強入で用いられるイオン権が、ゲルマニウ ム、シリコン、アルゴン及びキセノンから成る群より選ばれた少なくとも1つであることを特徴とする詩末項1~3のいずれか1項に記載のイオン往入方法。 【請求項5】 前記第3ステップにおけるイオン注入で用いられるイオン権がボロンであり、注入エネルギーは の2keV~2keV~2keV~5あることを特徴とする請求項1~4のいずれか1項に記載のイオン推及方法。

フロントページの続き

(72)発明者 松永 保彦

千葉県成田市新泉14-3野毛平工業団地内 アプライド マテアルズ ジャパン 株 式会社内 (72) 発明者 マジード・アリ・フォアド
アメリカ合衆国 カリフォルニア州 サン
タ クララ パウアーズ アヴェニュー
3050 アプライド マテリアルズ インコ
ーポレイテッド インプラントディビジョ
ン内