- 1. (3 point) Et anti-aliaseringsfilter ønskes designet med fladest mulig pasbånd. Hvilket af følgende filtre opfylder bedst dette ønske?
 - ★ Butterworth lavpasfilter
 - Chebyshev lavpasfilter
 - O Butterworth højpasfilter
 - O Chebyshev højpasfilter
- 2. (3 point) Benyt Figur 1 til at bestemme filterordenen for et analog højpasfilter med afskæringsfrekvens på 2000 Hz og stopbåndsfrekvens på 1000 Hz med stopbåndsdæmpning større end 50 dB.
 - Filterordenen skal være:

Figur 1: Amplitudekarakteristik for frekvensnormeret 0,5 dB Chebyshev lavpasfilter.

3. (3 point) Er følgende diskrete overføringsfunktion stabil?

$$G(z) = \frac{z+2}{z^2 + 0.5}$$

X Ja ○ Ne

4. (3 point) Hvor ligger poler og nulpunkter for følgende diskrete overføringsfunktion

$$G(z) = \frac{z^2 + 1}{(z+2)(z-0.5)}$$

- Poler: Z =-2, Z = 6,5
- Nulpunkter: Z=1 69 Z=-1
- 5. (3 point) Betragt følgende diskrete overføringsfunktion

$$G(z) = \frac{z - 0.75}{(z - 0.5)(z + 0.5)}$$

• Hvad er DC-forstærkningen for G(z)?

11. (10 point) Betragt sekvensen $\begin{cases}
1 & \text{for } n = 0 \\
0 & \text{for } n = 1
\end{cases}$

$$x(n) = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n = 1 \\ 2 & \text{for } n = 2 \\ 0 & \text{for } n = 3 \\ 3 & \text{for } n = 4 \\ 0 & \text{for } n = 5 \\ 4 & \text{for } n = 6 \\ 0 & \text{for } n = 7 \end{cases}$$

$$(2)$$

Udregn en 8-punkts diskret Fourier transformation (DFT) af sekvensen
$$x(n)$$
. Bestem $\lim_{N \to \infty} X(1)$ og $X(4)$.

$$X(m) = \frac{1}{N} \cdot \sum_{N=\infty}^{N-1} X_N \cdot W_N = \frac{1}{N} \cdot \sum_{N=\infty}^{N-1} X_N \cdot \psi_N = \frac{1}{N} \cdot \sum_{N=$$

$$3y(n+1) - 5y(n-1) = 3x(n) + 5x(n-3) - 5x(n-5)$$
(3)

(a) (6 point) Bestem en overføringsfunktion for differensligningen (3). Overføringsfunktionen skal have positive eksponenter.

$$\Rightarrow H(z) = \frac{Y(z)}{X(z)} = \frac{3 + 5z^{-3} - 5z^{-5} \cdot z^{5}}{3z^{-5}z^{-1}} = \frac{3z^{5} + 5z^{2} - 5}{3z^{6} - 5z^{4}}$$

(b) (4 point) Bestem om overføringsfunktionen er stabil.

Overføringsfunktionen er stabil hvis alle polerne ligger inden for den imaginære enheds cirkel. Altså må nævneren KUN være 0 inden for enkedscirklen. Dette tjækker vi:

Fire nulpunkter i
$$z = 0$$

$$3z^{6} - 5z^{4} = 0$$

$$\begin{cases} z^{4} = 0 \\ z^{4} = 0 \end{cases} \Rightarrow z^{-1}\sqrt{\frac{5}{3}} \approx \pm 1,3$$

Nulpunkterne i ca. 1.3 og -1.3 er uden for den imaginære enhedscirkel og overføringsfunktionen er derfor USTABIL.

13. (15 point) Benyt invers z-transformation til at finde udgangssekvensen y(n) for følgende diskrete overføringsfunktion, når indgangsstimulus x(n) er enhedssamplen $\delta(n)$.

$$G(z) = \frac{Y(z)}{X(z)} = \frac{z^2 - 0.2z}{z^2 - 0.7z + 0.06}$$

Partialbrøkopløs (brøken skal være ægte, så jeg dividerer med z først).

$$\frac{G(z)}{z} = \frac{z-c,2}{z^2-c,7z+c,06} = \frac{z-c,2}{(z-c,6)(z-c,1)} = \frac{A}{z^2-c,6} + \frac{B}{z-c,1}$$

Ganger med venste nævner

Indsætter interessante z-værdier

$$\Rightarrow \frac{G(z)}{Z} = \frac{0.8}{Z-0.6} + \frac{0.2}{Z-0.1} \Rightarrow G(z) = \frac{0.8z}{Z-0.6} + \frac{0.2z}{Z-0.1}$$

Invers z-tranformation på led

$$\frac{z}{z-a} \rightarrow a^n$$

$$y(n) = 0.8 \cdot 0.6^n + 0.2 \cdot 0.1^n$$

Dette er også det diskrete impulsrespons for systemet. Dette er fordi:

$$Z[G(n)] = 1 \Rightarrow G(z) = \frac{Y(z)}{1} \Rightarrow G(z) = Y(z) \Rightarrow Y(n) = Z^{-1}[G(z)]$$

Altså er dette svaret den diskrete impuls respons:

$$y(n) = a_1 8 \cdot a_1 b^n + a_1 z \cdot a_1 l^n$$

			ficienterne for venser $f_{a_1} = 1$							
have 3	3 samples.		$Ja_1 = 1$	v ₀ Ja ₂	- ILLE 50		_, 00 M			
T=	= Banc 1	M=1								
<i>/</i> –	27/	$c \sim 1$	= 2500	-1 /6	1000)	7 41000	_ 4 _	2 1/	
Ca -	4 (1	ia≥ =tai/	= 2500	00.0	060 - 1600) = 230ed	Jeeo	- 25 = (5,16	
C. =	C = 5	- (sin(21 mTfaz)-5in (2m	nTfal)					
m	-w	77	142							
C ₁ = C.	₁テ <u>テ</u> ・(Sin (211 !	5000° Sca	a) - Sin(TT · SOOCE	1000)				
	= 1.(< . /π) ₌	$Sin\left(\frac{T}{2S}\right)$	≈ G14	7					
	TT \	3M(E) -	314 (25)	0,17	7					
Меа	et rekt	angulæ	rt vindue	benøve	er vi ikke	gange n	oget pa	konsta	nterne	
-,										
C _M	, = Cm									
Filte	rkonsta	ner								
a_i	= C'M-	<i>;</i>								
a	= 6 = 0	3,147								
	1	2.1/								
a,	= C ₀ = (2,16								
G.	= 6 = 6	3,147								
Ops	kriver o	verførin	igsfunktio	on						
	21	la	2							
	7-5	1	$\frac{2}{i=0} \alpha$	¿						
110	ر حر	$-u_i \cdot z$	- <u> </u>	۲.5						
	0-									
	= a	· 2° + a .:	= + az = 2							
	= 0,14	17+0,16	="+ C,14	7~~						
+										
										+