CSE206

Digital Logic Design Sessional

Offline 2

Comparator, Adder / Subtractor

Bangladesh University of Engineering & Technology

Group: 02

Section: B2

Md. Farhan Mahtab

Md. Sultanul Arifin

1805096

1805097

Md. Shahrukh Islam 1805098 Kamruj Jaman Sheam

Utchchhwas Singha

1805099

1805100

Level - 2, Term - 1

Department of Computer Science and Engineering

Submitted on April 03, 2021

Question NO:1

Problem specification:

We have to design using basic gates, a 2-bit comparator to compare 2-bit numbers P and Q. The circuit should provide 3 output lines to indicate P>Q, P=Q and P<Q.

Required Instruments:

- 1. NOT Gate (IC 7404)
- 2. AND Gate (IC 7408)
- 3. OR Gate (IC 7432)
- 4. Wires
- 5. Power source etc.

Truth Table:

Truth table for a 2-bit comparator to compare 2-bit numbers shown below:

P		Q		Output (Binary Code)		
P_1	P ₀	Q_1	Q_0	L(P <q)< th=""><th>E(P=Q)</th><th>G(P>Q)</th></q)<>	E(P=Q)	G(P>Q)
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Required Equations:

E Function:

$$P = Q$$
, only when $P1 = Q1$ and $P0 = Q0$

$$\mathbf{E} = \mathbf{f}(\mathbf{P} = \mathbf{Q}) = \mathbf{x}_0 \mathbf{x}_1$$

$$\mathbf{x}_0 = \overline{\mathbf{P}}_0 \overline{\mathbf{Q}}_0 + \mathbf{P}_0 \mathbf{Q}_0$$
 [\mathbf{x}_0 is true when the LSB are same]

$$\mathbf{x}_0 = \overline{\mathbf{P}}_0 \overline{\mathbf{Q}}_0 + \mathbf{P}_0 \mathbf{Q}_0$$
 [\mathbf{x}_0 is true when the LSB are same] $\mathbf{x}_1 = \overline{\mathbf{P}}_1 \overline{\mathbf{Q}}_1 + \mathbf{P}_1 \mathbf{Q}_1$ [\mathbf{x}_1 is true when the MSB are same]

G Function:

We can observe that, P > Q in either of two cases

$$\bullet \quad P1 > Q1$$

•
$$P1 = Q1$$
 and $P0 > Q0$

So,

$$\mathbf{G} = \mathbf{f}(\mathbf{P} > \mathbf{Q}) = \mathbf{P}_1 \overline{\mathbf{Q}}_1 + \mathbf{x}_1 \mathbf{P}_0 \overline{\mathbf{Q}}_0$$

$$\mathbf{x}_1 = \vec{\mathbf{P}}_1 \vec{\mathbf{Q}}_1 + \mathbf{P}_1 \mathbf{Q}_1$$
 [\mathbf{x}_1 is true when the MSB are same]

L function:

We can observe that, P < Q in either of two cases

•
$$P1 = Q1$$
 and $P0 < Q0$

So,

$$L = \mathbf{f}(\mathbf{P} < \mathbf{Q}) = \overline{\mathbf{P}}_1 \mathbf{Q}_1 + \mathbf{x}_1 \overline{\mathbf{P}}_0 \mathbf{Q}_0$$

$$\mathbf{x}_1 = \overline{\mathbf{P}}_1 \overline{\mathbf{Q}}_1 + \mathbf{P}_1 \mathbf{Q}_1$$
 [x₁ is true when the MSB are same]

Circuit Diagram:

Fig: Logic Circuit Diagram for 2-bit Comparator

Question No: 2

Problem Specification:

We are required to design a 1-bit full subtractor circuit using basic logic gates. The inputs are **D** (minuend), **E** (subtrahend), **F** (Previous Borrow) and the outputs are **R** (Difference), **B** (Output Borrow).

Required Instruments:

- 1. NOT Gate (IC 7404) Quantity: X
- 2. AND Gate (IC 7408) Quantity: X
- 3. OR Gate (IC 7432) Quantity: X
- 4. Input pins Quantity: 3
- 5. Output pins Quantity: 2
- 6. Wires, power source etc.

Truth Table:

	Input	Output		
D	E	F	R	В
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

K-map for **R**:

		00	01	11	10
		E'F'	E'F	EF	EF'
0	D'	0	1	0	1
1	D	1	0	1	0

From the K-map,

$$R = DE'F'+D'E'F+DEF+D'EF'$$

$$= (DE+D'E')F+(D'E+DE')F'$$

$$= (D XNOR E)F+(D XOR F)F'$$

$$= (D XOR E)'F+(D XOR E)F'$$

$$= (D XOR E) XOR F$$

[Commutative Law]

[Distributive Law]

 $[A'B+AB'=AXOR\ B\ and$

AB+A'B'=AXNORB

[A XNOR B = (A XOR B)']

K-map for **B**:

		00	01	11	10
		E'F'	E'F	EF	EF'
0	D'	0	1	1	1
1	D	0	0	1	0

From the K-map,

$$B = D'F + D'E + EF$$

Circuit Diagram:

Fig: Logic Circuit Diagram for 1-bit Subtractor