

# Newton's Academy MATHEMATICS AND STATISTICS

Time: 3 Hrs. Max. Marks: 80

#### General instructions:

The question paper is divided into **FOUR** sections.

- (1) **Section A:** Q. 1 contains **Eight** multiple choice type of questions, each carrying **Two** marks. Q. 2 contains **Four** very short answer type questions, each carrying **one** mark.
- (2) **Section B:** Q. 3 to Q. 14 contain **Twelve** short answer type questions, each carrying **Two** marks. (Attempt any **Eight**)
- (3) **Section C:** Q. 15 to Q. 26 contain **Twelve** short answer type questions, each carrying **Three** marks. (Attempt any **Eight**)
- (4) **Section D:** Q. 27 to Q. 34 contain **Eight** long answer type questions, each carrying **Four** marks. (Attempt any **Five**)
- (5) Use of log table is allowed. Use of calculator is not allowed.
- (6) Figures to the right indicate full marks.
- (7) Use of graph paper is <u>not</u> necessary. Only rough sketch of graph is expected.
- (8) For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabet, e.g., (a)....... / (b)....... / (c)....... / (d)......, etc. No marks shall be given, if ONLY the correct answer or the alphabet of correct answer is written. Only the first attempt will be considered for evaluation.
- (9) Start answer to each section on a new page.

# SECTION - A

| Q.1. | Select and write th                              | e correct answer for the              | following multiple choice                    | type of questions:               | [16] |  |  |  |  |  |
|------|--------------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------|------|--|--|--|--|--|
| i.   | The dual of stateme                              | ent $p \land \sim q$ is equivalent to |                                              |                                  |      |  |  |  |  |  |
|      | (a) $\sim p \wedge q$                            | (b) $p \leftrightarrow q$             | (c) $\sim p \vee q$                          | (d) $\sim p \rightarrow \sim q$  | (2)  |  |  |  |  |  |
| ii.  | If $ \overline{a}  = 3$ , $ \overline{b}  = 4$ , | then a value of λ for whi             | ch a + $\lambda \bar{b}$ is perpendicular to | o $\bar{a} - \lambda \bar{b}$ is |      |  |  |  |  |  |
|      | (a) $\frac{9}{16}$                               | (b) $\frac{3}{4}$                     | (c) $\frac{3}{2}$                            | (d) $\frac{4}{3}$                | (2)  |  |  |  |  |  |

- iii. The acute angle between the lines  $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{2}$  and  $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{1}$  is \_\_\_\_\_.
  - (a) 60°
- (b) 30°
- (c) 45°
- (d) 90°
- (2)
- iv. The vector equation of the plane passing through point  $A(\bar{a})$  and parallel to  $\bar{b}$  and  $\bar{c}$  is \_\_\_\_\_\_.
  - (a)  $(\bar{r} \bar{a}) \times (\bar{b} \times \bar{c}) = \bar{0}$

(b)  $(\overline{r} - \overline{a}) \cdot (\overline{b} + \overline{c}) = 0$ 

(c)  $(\overline{r} - \overline{a}) \cdot (\overline{b} \times \overline{c}) = 0$ 

(d)  $(\overline{r} - \overline{a}) \times (\overline{b} - \overline{c}) = \overline{0}$ 

(2)

- v. If  $x = at^4$ ,  $y = 2at^2$ , then  $\frac{dy}{dx} = ____.$ 
  - (a)  $\frac{1}{t^2}$
- (b)  $t^2$
- $(c) 2t^2$
- $(d) \quad -\frac{1}{t^2}$
- (2)
- vi. The area bounded by the curve y = 2x, the Y-axis, the X-axis and x = 3 is \_\_\_\_\_.
  - (a) 3 sq. units
- (b) 6 sq. units
- (c) 9 sq. units
- (d) 12 sq. units
- (2)



| vii. | The differential equation $y \frac{dy}{dx} + x = 0$ represents family of |  |
|------|--------------------------------------------------------------------------|--|
|------|--------------------------------------------------------------------------|--|

- (a) circle
- (b) parabola
- (c) ellipse
- hyperbola (d)
- (2)

(2)

viii. If 
$$f(x) = kx^2(1-x)$$
, for  $0 < x < 1$ 

, otherwise, is the probability distribution function of a random variable X, then the value of k is

- (a)
- 10
- (c)
- -12

# Q.2. Answer the following questions:

[4] Write the domain of inverse secant function. (1)

Find the value of k, if lines represented by  $kx^2 + 4xy - 4y^2 = 0$  are perpendicular to each other. ii. (1)

Evaluate:  $\int \frac{1}{x\sqrt{\log x}} dx$ iii. (1)

Obtain the differential equation by eliminating the arbitrary constant from the equation  $y^2 = 4ax$ . (1) iv.

#### SECTION - B

## Attempt any EIGHT of the following questions:

[16]

**Q.3.** Write the following compound statements symbolically:

- Nagpur is in Maharashtra and Chennai is in Tamilnadu.
- If  $\triangle$ ABC is right angled at B, then  $m\angle$ A +  $m\angle$ C = 90° (ii)

(2)

**Q.4.** Find the co-factors of the elements  $a_{11}$  and  $a_{21}$  of matrix A (2)

**Q.5.** Find the solution of  $\cos\theta = \frac{1}{2}$ , where  $0 \le \theta < 2\pi$ . (2)

**Q.6.** Find the joint equation of lines passing through the origin having slopes, 2 and 3. (2)

Q.7. If the vectors  $-3\hat{i}+4\hat{j}-2\hat{k}$ ,  $\hat{i}+2\hat{k}$  and  $\hat{i}-p\hat{j}$  are coplanar, then find the value of p. (2)

**Q.8.** Find the direction cosines of the vector  $2\hat{i} + 2\hat{j} - \hat{k}$ . (2)

**Q.9.** Find the equation of tangent to the curve  $y = x^2 + 2e^x + 2$  at the point (0, 4). (2)

**Q.10.** Evaluate:  $\int \frac{3^{x} - 4^{x}}{5^{x}} dx$ (2)

**Q.11.** Evaluate:  $\int \cos x \, dx$ (2)

**Q.12.** Find the area of the region bounded by the curve  $y = x^2$ , the X-axis and the lines x = 1, x = 3. (2)

Q.13. Find the integrating factor (I. F.) of the differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + y = \mathrm{e}^{-x} \tag{2}$$

**Q.14.** Given that  $X \sim B$  (n, p).

If 
$$p = 0.6$$
 and  $E(X) = 6$ , find n and  $Var(x)$ . (2)

# SECTION - C

### Attempt any EIGHT of the following questions:

[24]

**Q.15.** Prove that  $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$ 

(3)

**Q.16.** If one of the lines given by  $ax^2 + 2hxy + by^2 = 0$  bisects an angle between the co-ordinate axes then show that  $(a + b)^2 = 4h^2$ (3)





- Q.17. Let  $A(\bar{a})$  and  $B(\bar{b})$  be any two points in the space and  $R(\bar{r})$  be the third point on the line AB dividing the segment AB externally in the ratio m: n. Then prove that  $\bar{r} = \frac{m\bar{b} n\bar{a}}{m-n}$  (3)
- **Q.18.** Find the position vector of point P such that OP is inclined to X axis at  $45^{\circ}$  and to Y axis at  $60^{\circ}$  and OP = 12 units.
- **Q.19.** Find the vector equation of the line passing through the point having position vector  $2\hat{i} + \hat{j} 3\hat{k}$  and perpendicular to vectors  $\hat{i} + \hat{j} + \hat{k}$  and  $\hat{i} + 2\hat{j} \hat{k}$ . (3)
- **Q.20.** The foot of perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane. (3)
- **Q.21.** If  $\log_{10} \left( \frac{x^3 y^3}{x^3 + y^3} \right) = 2$ , show that  $\frac{dy}{dx} = \frac{-99x^2}{101y^2}$  (3)
- Q.22. A wire of length 36 meters is bent in the form of rectangle. Find its dimensions if the area of the rectangle is maximum. (3)
- **Q.23.** Evaluate:  $\int \frac{e^x}{1 + e^{-x}} dx$  (3)
- **Q.24.** Solve the differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (4x + y + 1)^2 \tag{3}$$

**Q.25.** The probability distribution of X is as follows:

| X        | 0   | 1 | 2  | 3  | 4 |
|----------|-----|---|----|----|---|
| P(X = x) | 0.1 | K | 2K | 2K | K |

Find: (i) K

- ii) P(X < 2)
- (iii)  $P(X \ge 3)$
- Q.26. Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs.

  Find the probability that there is at least one defective egg.

  (3)

#### SECTION - D

#### Attempt any FIVE of the following questions:

- **Q.27.** Construct the truth table for the statement pattern  $(p \to q) \land [(q \to r) \to (p \to r)]$  and interpret your result. (4)
- **Q.28.** Solve the following equations by using method of inversion:

$$x - y + z = 4$$
,  $2x + y - 3z = 0$ ,  $x + y + z = 2$  (4)

**Q.29.** Prove that, in  $\triangle ABC$ ,

$$\tan\left(\frac{A-B}{2}\right) = \left(\frac{a-b}{a+b}\right)\cot\left(\frac{c}{2}\right) \tag{4}$$

**Q.30.** Solve the linear programming problem by graphical method:

Maximize: z = 3x + 5y

Subject to:  $x + 4y \le 24$ 

$$3x + y \le 21$$

$$x + y \le 9$$
 and  $x \ge 0$ ,  $y \ge 0$ 

Also find maximum value of z. (4)

(3)

[20]



**Q.31.** If y = f(x) is a differentiable function of x on an interval 1 and y is one-one, onto and  $\frac{dy}{dx} \neq 0$  on 1,

then prove that 
$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$
.

where 
$$\frac{dy}{dx} \neq 0$$
. Hence prove that  $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$  (4)

- Q.32. The volume of the spherical ball is increasing at the rate of  $4\pi$  cc/sec. Find the rate at which the radius and the surface area are changing when the volume is  $288\pi$  cc. (4)
- Q.33. Prove that:  $\int \frac{1}{x^2 a^2} dx = \frac{1}{2a} \log \left| \frac{x a}{x + a} \right| + c$

Hence evaluate: 
$$\int \frac{1}{x^2 - 3} dx$$
 (4)

**Q.34.** Evaluate: 
$$\int_{0}^{\frac{\pi}{2}} \cos^3 x dx$$
 (4)