Molecular Dynamics

January 2, 2010

Molecular dynamics is a technique for simulating the atom-by-atom behavior of molecules and deriving macroscopic properties from these atomistic motions. It has application to biological molecules such as proteins and nucleic acids, as well as natural and synthetic molecules in materials science and nanotechnology. Molecular dynamics falls in the category of particle methods, which includes N-body problems in celestial mechanics and astrophysics, and many of the ideas presented here will carry over to these other fields. In addition, there are special cases of molecular dynamics including ab initio molecular dynamics where electrons are treated quantum mechanically and thus chemical reactions can be modeled. We will not treat these special cases, but will instead concentrate on *classical* molecular dynamics.

The idea behind molecular dynamics is very simple: a set of particles interact according to Newton's law of motion, F = ma. Given the initial particle positions and velocities, the particle masses and other parameters, as well as a model of the forces that act between particles, Newton's law of motion can be integrated numerically to give a trajectory for each of the particles for all future (and past) time. Commonly, the particles reside in a computational box with periodic boundary conditions.

A molecular dynamics time step is thus composed of two parts:

- 1: compute forces on all particles
- 2: update positions (integration).

The computation of the forces is the expensive part. State-of-the-art molecular dynamics simulations are performed on parallel computers because the force computation is costly and a vast number of time steps are required for reasonable simulation lengths. In many cases, molecular dynamics is applied to simulations on molecules with a very large number of atoms as well, e.g., up to a million for biological molecules and long time scales, and up to billions for other molecules and shorter time scales.

Numerical integration techniques are also of interest in molecular dynamics. For simulations that take a large number of time steps and for which the preservation of quantities such as energy is more important than order of accuracy, the solvers that must be used are different than the traditional ODE solvers presented in Chapter 4.

In the following, we will introduce force fields used for biomolecular simulations and discuss fast methods for computing these forces. Then we devote sections to the parallelization of molecular dynamics for short-range forces and the parallelization of the 3-D FFT used in fast computations of long-range forces. We end with a section introducing the class of integration techniques that are suitable for molecular dynamics simulations. Our treatment of the subject of molecular dynamics in this chapter is meant to be introductory and practical; for more information, the text [1] is recommended.

1 Force Computation

1.1 Force Fields

In classical molecular dynamics, the model of potential energy and of the forces that act between atoms is called a *force field*. The force field is a tractable but approximate model of quantum mechanical effects which are computationally too expensive to determine for large molecules. Different force fields are used for different types of molecules, as well as for the same molecule by different researchers, and none are ideal.

In biochemical systems, commonly-used force fields model the potential energy function as the sum of bonded, van der Waals, and electrostatic (Coulomb) energy:

$$E = E_{\text{bonded}} + E_{\text{Coul}} + E_{\text{vdW}}$$
.

The potential is a function of the positions of all the atoms in the simulation. The force on an atom is the negative gradient of this potential at the position of the atom.

The bonded energy is due to covalent bonds in a molecule,

$$E_{\text{bonded}} = \sum_{\text{bonds}} k_i (r_i - r_{i,0})^2 + \sum_{\text{angles}} k_i (\theta_i - \theta_{i,0})^2 + \sum_{\text{torsions}} V_n (1 + \cos(n\omega - \gamma))$$

where the three terms are, respectively, sums are over all covalent bonds, sums over all angles formed by two bonds, and sums over all dihedral angles formed by three bonds. The fixed parameters k_i , $r_{i,0}$, etc. depend on the types of atoms involved, and may differ for different force fields. Additional terms or terms with different functional forms are also commonly used.

The remaining two terms for the potential energy E are collectively called the nonbonded terms. Computationally, they form the bulk of the force calculation. The electrostatic energy is due to atomic charges and is modeled by the familiar

$$E_{\text{Coul}} = \sum_{i} \sum_{j>i} \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}}$$

where the sum is over all pairs of atoms, q_i and q_j are the charges on atoms i and j, and r_{ij} is the distance between atoms i and j. Finally, the van der Waals energy approximates the remaining attractive and repulsive effects, and is commonly modeled by the Lennard-Jones function

$$E_{\text{vdW}} = \sum_{i} \sum_{j>i} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$$

where ε_{ij} and σ_{ij} are force field parameters depending on atom types. At short distances, the repulsive (r^{12}) term is in effect, while at long distances, the dispersive (attractive, $-r^6$) term is in effect.

Parallelization of the molecular dynamics force calculation depends on parallelization each of these individual types of force calculations. The bonded forces are local computations in the sense that for a given atom, only nearby atom positions and data are needed. The van der Waals forces are also local and are termed short-range because they are negligible for large atom separations. The electrostatic forces are long-range, and various techniques have been developed to speed up these calculations. In the next two subsections, we separately discuss the computation of short-range and long-range nonbonded forces.

1.2 Computing Short-Range Nonbonded Forces

The computation of short-range nonbonded forces for a particle can be truncated beyond a cutoff radius, r_c , of that particle. The naive approach to perform this computation for a particle i is by examining all other particles and computing their distance to particle i. For n particles, the complexity of this approach is $O(n^2)$, which is equivalent to computing forces between all pairs of particles. There are two data structures, *cell lists* and *Verlet neighbor lists*, that can be used independently for speeding up this calculation, as well as an approach that combines the two.

Figure 1: Computing nonbonded forces within a cutoff, r_c . To compute forces involving the high-lighted particle, only particles in the shaded regions are considered.

Cell Lists

The idea of cell lists appears often in problems where a set of points that are nearby a given point is sought. Referring to Fig. 1(a), where we illustrate the idea with a 2-D example, a grid is laid over the set of particles. If the grid spacing is no less than r_c , then to compute the forces on particle i, only the particles in the cell containing i and the 8 adjacent cells need to be considered. One sweep through all the particles is used to construct a list of particles for each cell. These cell lists are used to compute the forces for all particles. At the next time step, since the particles have moved, the cell lists must be regenerated or updated. The complexity of this approach is O(n) for computing the data structure and $O(n \times n_c)$ for the force computation, where n_c is the average number of particles in 9 cells (27 cells in 3-D). The storage required for the cell list data structure is O(n).

Verlet Neighbor Lists

The cell list structure is somewhat inefficient because, for each particle i, n_c particles are considered, but this is much more than the number of particles within the cutoff r_c . A Verlet neighbor list is a list of particles within the cutoff for a particle i. Each particle has its own list, and thus the storage required is $O(n \times n_v)$ where n_v is the average number of particles within the cutoff. Once these lists are constructed, computing the forces is then very fast, requiring the minimal complexity $O(n \times n_v)$. Constructing the list is more expensive, requiring examining all the particles for each particle, i.e., no less than the original complexity of $O(n^2)$. The advantage, however, is that the neighbor lists

can be reused for many time steps if an expanded cutoff, r_v is used. Referring to a 2-D example in Fig. 1(b), the neighbor list can be reused as long as no particle from outside the two circles moves inside the inner circle. If the maximum speed of the particles can be estimated or bounded, then one can determine a number of time steps for which it is safe to reuse the neighbor lists. (Alternatively, it may be possible to signal when any particle crosses to a position within the cutoff.) Technically, the Verlet neighbor list is the list of particles within the expanded cutoff, r_v .

Using Cell and Neighbor Lists Together

The hybrid approach is simply to use Verlet neighbor lists but to use cell lists to construct the neighbor lists. This reduces the high cost when neighbor lists need to be regenerated. This hybrid approach is very effective and is often the approach used in state-of-the-art molecular dynamics software.

Both cell lists and Verlet neighbor lists can be modified to exploit the fact that the force f_{ij} on particle i due to particle j is equal to $-f_{ji}$ (Newton's third law) and only needs to be computed once. For example, for cell lists, only 4 of the 8 cells (in 2-D) need to be considered.

1.3 Computing Long-Range Forces

Electrostatic forces are challenging to compute because they are long-range: each particle feels a non-negligible electrostatic force from all other particles in the simulation. An approximation that is sometimes used is to truncate the force calculation for a particle after a certain cutoff radius (as is done for short-range van der Waals forces). This generally produces unacceptable artifacts in the results, however.

There are several more accurate methods for speeding up the computation of electrostatic forces, avoiding the $O(n^2)$ sum over all pairs of n particles. We briefly outline some of these methods here.

Hierarchical N-body Methods

Hierarchical N-body methods, including the Barnes-Hut method and the fast multipole method, are popular for astrophysical particle simulations, but are typically too costly for the accuracy required in biomolecular simulations. In the Barnes-Hut method, space is recursively divided into 8 equal cells (in 3-D) until each cell contains zero or one particles. Forces between nearby particles are computed individually, as normal, but for distant particles, forces are computed between one particle and a set of distant particles within a cell. An accuracy measure is used to determine if the force can be computed using a distant cell or must be computed by individually considering its children cells. The Barnes-Hut method has complexity $O(n \log n)$. The fast multipole method has complexity O(n); this method calculates the potential and does not calculate forces directly.

Particle-Mesh Methods

In particle-mesh methods, we exploit the Poisson equation

$$abla^2\phi = -rac{1}{\epsilon}
ho$$

which relates the potential ϕ to the charge density ρ , where $1/\epsilon$ is a constant of proportionality. To utilize this equation, we discretize space using a mesh, assign charges to the mesh points, solve

Poisson's equation on the mesh to arrive at the potential on the mesh. The force is the negative gradient of the potential (for conservative forces such as electrostatic forces). A number of techniques have been developed for distributing point charges in space to a set of mesh points and also for numerically interpolating the force on the point charges due to the potentials at the mesh points. Many fast methods are available for solving the Poisson equation, including multigrid methods and fast Fourier transforms. With respect to terminology, particle-mesh methods are in contrast to the naive *particle-particle* method where forces are computed between all pairs of particles.

It turns out that particle-mesh methods are not very accurate, and a more accurate alternative is to split each force into a short-range, rapidly-varying part and a long-range, slowly-varying part:

$$f_{ij} = f_{ij}^{sr} + f_{ij}^{lr}.$$

One way to accomplish this easily is to weight f by a function h(r), which emphasizes the short-range part (small r) and by 1 - h(r) which emphasizes the long-range part (large r). The short-range part is computed by computing the interaction of all pairs of particles within a cutoff (a particle-particle method) and the long-range part is computed using the particle-mesh method. The resulting method, called particle-particle-particle-mesh (PPPM, or P^3M) is due to Hockney and Eastwood, in a series of papers beginning in 1973.

Ewald Method

The Ewald method is the most popular of the methods described so far for electrostatic forces in biomolecular simulations and was developed for the case of periodic boundary conditions. The structure of the method is similar to PPPM in that the force is split between short-range and long-range parts. Again, the short-range part is computed using particle-particle methods, and the long-range part is computed using Fourier transforms. Variants of the Ewald method are very similar to PPPM in that the long-range part uses a mesh, and fast Fourier transforms are used to solve the Poisson equation on the mesh. For additional details, see, for example [1]. In Section 3, we describe the parallelization of the 3-D FFT to solve the 3-D Poisson equation.

2 Parallel Decompositions

We now discuss the parallel computation of forces. Plimpton [2] created a very useful categorization of molecular dynamics parallelization methods, identifying *atom*, *force*, and *spatial* decomposition methods. Here, we closely follow his description of these methods. We also add a fourth category which has come to be recognized as differing from the earlier categories, called *neutral territory* methods, a name coined by Shaw [3]. Neutral territory methods are currently used by many state-of-the-art molecular dynamics codes. Spatial decompositions and neutral territory methods are particularly advantageous for parallelizing cutoff-based calculations.

2.1 Atom Decompositions

In an atom decomposition, each particle is assigned to one processor, and that processor is responsible for computing the particle's forces and updating its position for the entire simulation. For the computation to be roughly balanced, each processor is assigned approximately the same number of particles (a random distribution works well). An important point of atom decompositions is that

Figure 2: Atom decomposition, showing a force matrix of 16 particles distributed among 8 processors. A dot represents a nonzero entry in the force matrix. On the left, the matrix is symmetric; on the right, only one element of a pair of skew-symmetric elements is computed, to take advantage of Newton's third law.

each processor generally needs to communicate with all other processors to share updated particle positions.

An atom decomposition is illustrated by the *force matrix* in Fig. 2(a). For n particles, the force matrix is an n-by-n matrix; the rows and columns are numbered by particle indices. A nonzero entry f_{ij} in the matrix denotes a nonzero force on particle i due to particle j which must be computed. This force may be a nonbonded and/or a bonded force. When cutoffs are used, the matrix is sparse, as in this example. The matrix is dense if forces are computed between all pairs of particles. The matrix is skew-symmetric because of Newton's third law, $f_{ij} = -f_{ji}$. The lines in Fig. 2(a) show how the particles are partitioned. In the figure, 16 particles are partitioned among 8 processors.

Algorithm 1 shows one time step from the point of view of one processor. At the beginning of the time step, each processor holds the positions of particles assigned to it.

Algorithm 1 Atom decomposition time step

- 1: send/receive particle positions to/from all other processors
- 2: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
- 3: compute forces for particles assigned to this processor
- 4: update positions (integration) for particles assigned to this processor

An optimization is to halve the amount of computation, which is possible because the force matrix is skew-symmetric. To do this, we choose exactly one of f_{ij} or f_{ji} for all skew-symmetric pairs such that each processor is responsible for computing approximately the same number of forces. Choosing the upper or lower triangular part of the force matrix is a bad choice because the computational load is unbalanced. A better choice is to compute f_{ij} if i + j is even in the upper triangle, or if i + j is odd in the lower triangle, as shown in Fig. 2(b). There are many other options.

When taking advantage of skew-symmetry in the force matrix, all the forces on a particle owned by a processor are no longer computed by that processor. For example, in Fig. 2(b), the forces on particle 1 are no longer computed only by the first processor. To complete the force calculation, processors must communicate to send forces that are needed by other processors and receive forces that are computed by other processors. The above algorithm must now be modified by adding a communication step (step 4) as shown in Algorithm 2.

Algorithm 2 Atom decomposition time step, without redundant calculations

- 1: send/receive particle positions to/from all other processors
- 2: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
- 3: compute partial forces for particles assigned to this processor
- 4: send particle forces needed by other processors and receive particle forces needed by this processor
- 5: update positions (integration) for particles assigned to this processor

This algorithm is advantageous if the extra communication is outweighed by the savings in computation. Note that the amount of communication doubles in general.

2.2 Force Decompositions

In a force decomposition, the forces are distributed among the processors for computation. A straightforward way to do this is to partition the force matrix into blocks and to assign each block to a processor. Fig. 3(a) illustrates this for the case of 16 particles and 16 processors. Particles also need to be assigned to processors (as in atom decompositions) for the purpose of having processors assigned to update particle positions. In the example of the Figure, processor i is assigned to update the positions of particle i; in practical problems, a processor would be assigned to update the positions of many particles. Note that, again, we first consider the case of a skew-symmetric force matrix.

We now examine the communication required in a time step for a force decomposition. Consider processor 3, which computes partial forces for particles 0, 1, 2, 3, and needs positions from particles 0, 1, 2, 3, and also 12, 13, 14, 15. Thus processor 3 needs to perform communication with processors 0, 1, 2, 3, and processors 12, 13, 14, 15. After forces have been computed by all processors, processor 3 needs to collect forces on particle 3 computed by other processors. Thus processor 2 needs to perform communication again with processors 0, 1, 2, 3.

Algorithm 3 shows what is performed in one time step, from the point-of-view of one processor. At the beginning of the time step, each processor holds the positions of all the particles assigned to it.

In general, if there are p processors (and p is square, for simplicity), then the the force matrix is partitioned into \sqrt{p} by \sqrt{p} blocks. The force decomposition just described requires a processor to communicate in three steps, with \sqrt{p} processors in each step. This is much more efficient than atom decompositions which require communications among all p processors.

We can also exploit Newton's third law in force decompositions. Like for atom decompositions, we first choose a modified force matrix where only one of f_{ij} and f_{ji} is computed. The forces on particle i are computed by a row of processors and now also by a column of processors. Thus an extra step of communication is needed by each processor to collect forces from a column of processors for particles assigned to it. Whereas there were three communication steps, there are

Figure 3: Force decomposition, showing a force matrix of 16 particles and forces partitioned among 16 processors.

Algorithm 3 Force decomposition time step

- 1: send positions of my assigned particles which are needed by other processors; receive *row* particle positions needed by my processor (this communication is between processors in the same processor row, e.g., processor 3 communicates with processors 0, 1, 2, 3)
- 2: receive *column* particle positions needed by my processor (this communication is generally with processors in another processor row, e.g., processor 3 communicates with processors 12, 13, 14, 15)
- 3: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
- 4: compute forces for my assigned particles
- 5: send forces needed by other processors; receive forces needed for my assigned particles (this communication is between processors in the same processor row, e.g., processor 3 communicates with processors 0, 1, 2, 3)
- 6: update positions (integration) for my assigned particles

now four communication steps when Newton's third law is exploited (the communication is not doubled in this case as in atom decompositions).

A modification to the force decomposition saves some communication. In Fig. 4, the columns are reordered using a *block-cyclic* ordering. Consider again processor 3, which computes partial forces for particles 0, 1, 2, 3. It needs positions from particles 0, 1, 2, 3, as before, but now also with processors 3, 7, 11, 15. The latter are processors in the same processor column as processor 3. Thus all communications are within the same processor row or processor column, which may be advantageous on mesh-based network architectures. The modified method is shown as Algorithm 4.

Figure 4: Force decomposition, with permuted columns in the force matrix. Note that columns 3, 7, 11, 15 are now in the block column corresponding to processors 3, 7, 11, 15 (the same indices), etc.

Algorithm 4 Force decomposition time step, with permuted columns of force matrix

- 1: send positions of my assigned particles which are needed by other processors; receive *row* particle positions needed by my processor (this communication is between processors in the same processor row, e.g., processor 3 communicates with processors 0, 1, 2, 3)
- 2: receive *column* particle positions needed by my processor (this communication is generally with processors the same processor column, e.g., processor 3 communicates with processors 3, 7, 11, 15)
- 3: (if nonbonded cutoffs are used) determine which nonbonded forces need to be computed
- 4: compute forces for my assigned particles
- 5: send forces needed by other processors; receive forces needed for my assigned particles (this communication is between processors in the same processor row, e.g., processor 3 communicates with processors 0, 1, 2, 3)
- 6: update positions (integration) for my assigned particles

2.3 Spatial Decompositions

In a spatial decomposition, space is decomposed into cells. Each cell is assigned to a processor which is responsible for computing the forces on particles that lie inside the cell. Fig. 5(a) illustrates a spatial decomposition into 64 cells for the case of a 2-D simulation. (This is a decomposition of space and is not to be confused with a force matrix.) Typically, the number of cells is chosen to be equal to the number of processors. Since particles move during the simulation, the assignment of particles to cells changes as well. This is in contrast to atom and force decompositions.

Fig. 5(b) shows one cell (center square) and the region of space (shaded) that contains particles that are potentially within the cutoff radius, r_c , with particles in the given cell. The shaded region is often called the *import region*, since the given cell must import positions of particles lying in this region to perform its force calculation. Note that not all particles in the given cell must interact with all particles in the import region, especially if the import region is large compared to the cutoff radius.

(a) Decomposition into 64 cells.

(b) Import region for one cell.

Figure 5: Spatial decomposition, showing particles in a 2-D computational box, (a) partitioned into 64 cells, (b) import region for one cell.

Algorithm 5 shows what each processor performs in one time step. We assume that at the beginning of the time step, each processor holds the positions of the particles in its cell.

Algorithm 5 Spatial decomposition time step

- 1: send positions needed by other processors for particles in their import regions; receive positions for particles in my import region
- 2: compute forces for my assigned particles
- 3: update positions (integration) for my assigned particles

To exploit Newton's third law, the shape of the import region can be halved. Now each processor only computes a partial force on particles in its cell, and needs to receive forces from other processors to compute the total force on these particles. Thus an extra step of communication is involved. We leave it as an exercise to the reader to work out the details of the modified import

region and the pseudocode for this case.

In the implementation of a spatial decomposition method, each cell is associated with a list of particles in its import region, similar to a Verlet neighbor list. Like a Verlet neighbor list, it is not necessary to update this list at every time step, if the import region is expanded slightly. This allows the import region list to be reused for several time steps, corresponding to the amount of time it takes a particle to traverse the width of the expanded region. This is exactly analogous to Verlet neighbor lists.

In summary, the main advantage of spatial decomposition methods is that they only require communication between processors corresponding to nearby particles. A disadvantage of spatial decomposition methods is that, for very large numbers of processors, the import region is large compared to the number of particles contained inside each cell.

2.4 Neutral Territory Methods

Our description of neutral territory methods follows closely that of Shaw [3]. A neutral territory method can be viewed as combining aspects of spatial decompositions and force decompositions. To parallelize the integration step, particles are assigned to processors according to a partitioning of space. To parallelize the force computation, each processor computes the forces between two sets of particles, but these particles may be unrelated to the particles that have been assigned to the processor for integration. As a result of this additional flexibility, neutral territory methods may require much less communication than spatial decomposition methods.

An example of a neutral territory method is shown in Fig. 6 for the case of a 2-D simulation. In the method shown in the Figure, the given processor is assigned the computation of forces between particles lying in the horizontal bar with particles lying in the vertical bar. These two regions thus form the import region for this method. By comparing to Fig. 6(b), the import region for this neutral territory method is much smaller than that for the corresponding spatial decomposition method. The advantage is greater when the size of the cells corresponding to each processor is small compared to the cutoff radius.

Figure 6: Neutral territory method, showing particles in a 2-D computational box and the import region (shaded) for one cell (center square). This Figure can be compared directly to the spatial decomposition case of Fig. 5(b). See Shaw [3] for additional details.

After the forces are computed, the given processor sends the forces it has computed to the processors that need these forces for integration. We thus have Algorithm 6.

Algorithm 6 Neutral territory method time step

- 1: send and receive particle positions corresponding to import regions
- 2: compute forces assigned to this processor
- 3: send and receive forces required for integration
- 4: update positions (integration) for particles assigned to this processor

Like other methods, the import region of the neutral territory method can be modified to take advantage of Newton's third law. We refer to Shaw [3] for additional details and for illustrations of neutral territory methods in 3-D simulations.

3 Parallel Fast Fourier Transform

A common component of many methods for computing long-range forces is the 3-D FFT for solving the Poisson equation on a 3-D mesh. The Fourier transform diagonalizes the Poisson operator (called the Laplacian) and one forward and one inverse FFT transformation are required in the solution. Consider the discrete Laplacian operator L (with periodic boundary conditions) and the solution of ϕ in $-L\phi = \rho$. Let F denote the Fourier transform. The original problem is equivalent to

$$-(FLF^{-1})F\phi = F\rho$$

 $\phi = -F^{-1}(FLF^{-1})^{-1}F\rho.$

The matrix FLF^{-1} is diagonal. The forward Fourier transform F is applied to ρ , then the Fourier-space components are scaled by the inverse of the diagonal matrix, and finally, the inverse Fourier transform F^{-1} is applied to obtain the solution ϕ .

For realistic protein sizes, a mesh spacing of approximately 1 Ångstrom is typically used, leading to a 3-D mesh that is quite small by many standards: $64 \times 64 \times 64$, or $128 \times 128 \times 128$. Parallel computation would often not be applied to a problem of this size, but parallel computation must be used because the data ρ is already distributed among the parallel processors (assuming a spatial decomposition is used).

A 3-D FFT is computed by computing 1-D FFTs in sequence along each of the three dimensions. For the $64 \times 64 \times 64$ mesh size, this is 4096 1-D FFTs of dimension 64. The parallel FFT calculation is typically bound by communication. The best parallelization of the FFT depends on the size of the transforms and the architecture of the computer network. Below, we first describe some concepts for parallel 1-D FFTs and then describe some concepts for parallel 3-D FFTs. For current software and research dedicated to the parallelization and efficient computation (using SIMD operations) of large 1-D transforms, we refer to the SPIRAL and FFTW packages. These packages use autotuning to generate FFT codes that are efficient for the user's computer architecture.

3.1 Parallel 1-D FFT

1-D FFT without Transpose

Fig. 7 shows the data dependencies (data flow diagram) between the inputs (left) and outputs (right) for the 16-point radix-2 decimation-in-frequency FFT algorithm. (Not shown is a bit-reversal permutation that may be necessary in the computation.) The Figure also shows a partitioning of the

computation among four processors. In this parallelization, the initial data is not moved among processors, but communication occurs during the computation. In the example shown in the Figure, communication occurs in the first two FFT stages; the final two stages do not involve communication. When communication does occur, every processor communicates with exactly one other processor.

1-D FFT with Transpose

Use of transposes is common to parallelize FFT computations. Fig. 8(a) shows the same data flow diagram as in Fig. 7, but horizontal lines have been removed and additional index labels have been added for clarity. As before, the first two FFT stages are performed without communication. The data is then transposed among the processors. With this transposed data layout, the last two FFT stages can be performed without communication. The final data is not in the original order; an additional transpose may be needed, or the data may be used in this transposed order. Fig. 8(b) shows how the indices are partitioned among four processors before and after the transpose. From these two Figures, notice that the first two stages have data dependencies that only involve indices in the same partition. The same is true for the second two stages for the partitioning after the transpose. Observe also that the structure of the computations before and after the transpose are identical.

Figure 7: Data flow diagram for 1-D FFT for 16 points. The shaded regions show a decomposition for 4 processors (one processor per region). In this parallelization, the first two FFT stages have no communication; the last two FFT stages do have communication.

(a) Data flow diagram (shown without horizontal lines for clarity) for 1-D FFT for 16 points.

(b) Partitioning of the indices before (left) and after (right) the transpose.

Figure 8: 1-D FFT with transpose. The first two stages do not involve communication. The data is then transposed among the processors. As a result, the second two stages also do not involve communication.

3.2 Parallel 3-D FFT

3-D FFT with Block Decomposition

Fig. 9(a) shows a block decomposition of the FFT input data when a spatial decomposition is used for a mesh of size $8 \times 8 \times 8$ distributed across 64 processors arranged in a $4 \times 4 \times 4$ topology. The parallel 1-D FFT algorithms can be applied in each of the dimensions. For the example shown in the Figure, each 1-D FFT computation involves 4 processors. Each processor performs multiple 1-D FFTs simultaneously (four in this example). Within each processor, data is ordered contiguously if traversing one of the dimensions, and thus data access is strided for computation in the other two dimensions. Strided data access can be slow, and thus it may be worthwhile to reorder the data within each processor when computing the FFT for each of the dimensions.

3-D FFT with Slab Decomposition

The slab decomposition is shown in Fig. 9(b) for the case of 4 processors. Each processor holds one or more planes of the input data. This decomposition is used if the input data is already distributed in slabs, or if it can be easily redistributed this way. The two 1-D FFTs in the plane of the slabs require no communication. The remaining 1-D FFTs require communication and could use one of the two approaches for parallel 1-D FFTs described above. A disadvantage of the slab decomposition is that for large numbers of processors, the number of processors may exceed the number of points in the 3-D FFT along any one dimension. An alternative is the pencil decomposition below.

3-D FFT with Pencil Decomposition

The pencil decomposition is shown in Fig. 9(c) for the case of 16 processors. Each processor holds one or more pencils of the input data. If the original input data is distributed in blocks as in Fig. 9(a), then communication among a row of processors (in a 3-D processor mesh) can distribute the data into the pencil decomposition. The 1-D FFTs can then be performed with no communication. To perform the 1-D FFT in another dimension, the data needs to be redistributed into pencils in another dimension. In total, four communication stages are needed for the entire 3-D FFT computation.

Figure 9: Three data decompositions for 3-D FFTs.

4 Integration for Molecular Dynamics

To numerically integrate the system of ordinary differential equations in molecular dynamics, special methods are required, different than the traditional ODE solvers that were studied in Chapter 4. These special methods, called symplectic methods, are better than other methods at producing solutions that have constant energy, for example, for systems that are called Hamiltonian (which include systems from molecular dynamics). When Hamiltonian systems are integrated with many time steps over a long time interval, preservation of structure such as total energy is often more important than the order of accuracy of the method. In this section, we motivate some ideas and give some details of the Störmer-Verlet method, which is sufficient for simple molecular dynamics simulations.

Hamiltonian systems are a class of dynamical systems which conserve energy and which can be written in a form called Hamilton's equations. Consider, for symplicity, the *simple harmonic oscillator*

$$u'' = -u$$

where u is the displacement of a single particle from an equilibrium point. This equation could model a particle with unit mass on a spring with unit spring constant. The force on a particle at position u is -u. This system does not look like a molecular dyanamics system but is useful for illustrating several ideas.

The above second order equation can be written as a system of first order equations

$$\begin{array}{rcl}
q' & = & p \\
p' & = & -q
\end{array}$$

where q = u and p = u' which is common notation used in classical mechanics. The general solution is

$$\left(\begin{array}{c} q \\ p \end{array}\right) = \left(\begin{array}{cc} \cos t & \sin t \\ -\sin t & \cos t \end{array}\right) \left(\begin{array}{c} q \\ p \end{array}\right).$$

The kinetic energy of the simple harmonic oscillator is $p^2/2$ and the potential energy is $q^2/2$ (the negative gradient of potential energy is the force, -q). Thus the total energy is proportional to $q^2 + p^2$.

Now consider the solution of the system of first order equations by three methods, explicit Euler, implicit Euler, and a method called the Störmer-Verlet method. The initial condition is (q,p) = (1,0). We use a time step of h = 0.05 and take 500 steps. We plot q and p on the horizontal and vertical axes, respectively (called a *phase plot*). The exact solution, as given above, is a unit circle centered at the origin.

Figure 10 shows the solutions. For explicit Euler, the solution spirals outward, meaning the displacement and momentum of the solution increases over time. The opposite is true for the implicit Euler method. A plot of the total energy would show the energy increasing and decreasing for the two cases, respectively. The solutions are better when smaller time steps are taken or when higher order methods are used, but these methods are not at all appropriate for integration of symplectic systems over long periods of time. Figure 10(c) shows the solution using a symplectic method called the Störmer-Verlet method. The solution shows that $q^2 + p^2$ is preserved much better than in the other two methods.

Figure 10: Phase plot of the solution of the simple harmonic oscillator for three methods with initial value (1,0), time step 0.05, and 500 steps. For explicit Euler, the solution spirals outward; for implicit Euler, the solution spirals inward; the total energy is best preserved with the Störmer-Verlet method.

The Störmer-Verlet method is derived very easily. We derive it for the second order equation

$$u'' = f(t, u)$$

by simply replacing the left-hand side with a finite difference approximation

$$\frac{u_{k+1} - 2u_k + u_{k-1}}{h^2} = f(t_k, u_k)$$

which can be rearranged to obtain the method

$$u_{k+1} = 2u_k - u_{k-1} + h^2 f(t_k, u_k).$$

The formula can equivalently be derived from Taylor series. The method is similar to linear multistep methods in that some other technique is needed to supply the initial step of the method. The method is also time-reversible, because the formula is the same if k + 1 and k - 1 are swapped. To explain why this method is symplectic, unfortunately, is beyond the scope of this introduction.

The method as written above has a number of disadvantages, the most severe being that the addition of the small h^2 term is subject to catastrophic cancellation. Thus this formula should not be used in this form, and a number of mathematically equivalent formulas (which can be derived from the formula above) have been developed.

One alternative formula is the *leap-frog* method:

$$u_{k+1} = u_k + hv_{k+1/2}$$

 $v_{k+1/2} = v_{k-1/2} + hf(t_k, u_k)$

where v is the first derivative (velocity) which is offset from the displacement u by a half step. This formula does not suffer from the same roundoff problems and also makes available the velocities, although they need to be re-centered with displacements in order to calculate total energy at a given step. The second of this pair of equations is basically a finite difference formula.

A third form of the Störmer-Verlet method is the velocity Verlet variant:

$$u_{k+1} = u_k + hv_k + \frac{h^2}{2}f(t_k, u_k)$$

$$v_{k+1} = v_k + \frac{h^2}{2}(f(t_k, u_k) + f(t_{k+1}, u_{k+1}))$$

where now the velocities are computed at the same points as the displacements. Each of these algorithms can be implemented such that only two sets of quantities need to be stored (two previous positions, or a position and a velocity). These variants of the Störmer-Verlet method are popular because of their simplicity, requiring only one costly force evaluation per step. Higher-order methods have generally not been practical.

The velocity Verlet scheme is also the basis of multiple time step algorithms for molecular dynamics. In these algorithms, the slowly-varying (typically long-range) forces are evaluated less frequently and update the positions less frequently than the quickly-varying (typically short-range) forces. Finally, many state-of-the-art molecular dynamics integrate a Hamiltonian system that has been modified in order to control the simulation temperature and pressure. Much more complicated symplectic methods have been developed for these systems.

References

- [1] D. Frenkel and B. Smit, *Understanding Molecular Simulations: From Algorithms to Applications*, 2nd edition, Academic Press, 2002.
- [2] S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics," *J. Comput. Phys.*, 117, 1–19, 1995.
- [3] D. E. Shaw, "A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions," *J. Comput. Chem.*, 26, 1318–1328, 2005. pp.