Analisis Numerik

Ahmad Rio Adriansyah

STT Terpadu - Nurul Fikri

ahmad.rio.adriansyah@gmail.com arasy@nurulfikri.ac.id

February 25, 2019

Contoh : Bagaimana menghitung nilai x yang memenuhi persamaan $x^2 + 4x - 5 = 0$?

Analitik:

- 1. Pemfaktoran
- 2. Kuadrat Sempurna
- 3. Formula Al Khawarizmi

Keuntungan solusi analitik :

- Nilai perhitungannya sejati (exact)
- Solusi dapat berbentuk angka atau fungsi matematik

Kekurangan solusi analitik :

- Memakan banyak waktu, tenaga, dan pikiran
- Solusi tidak selalu dapat ditemukan

$$\int_{-2,75}^{\pi} \sqrt[3]{\frac{20,3x^{16}}{\ln(\cos(x))} + e^{2x}} dx$$

Bagaimana mencari solusi untuk permasalahan ini secara analitik?

Metode Numerik = Teknik yang digunakan untuk memformulasikan persoalan matematik sehingga dapat dipecahkan dengan operasi aritmatika biasa (tambah, kurang, kali, bagi)

Keuntungan solusi numerik :

- Dapat diserahkan pengerjaannya ke komputer
- Dapat memecahkan persoalan yang tidak dapat dipecahkan dengan metode analitik
- Perhitungannya sederhana (hanya tambah, kurang, bagi, kali)

Kekurangan solusi numerik :

- Solusi hanya dapat berbentuk angka
- Solusi yang dihasilkan merupakan hampiran (mengandung error)
- Perhitungannya lama dan berulang-ulang

- Menyelesaikan problem matematika
 - > Sistem Persamaan Linier
 - − > Regresi Linier
 - − > Interpolasi
 - − > Integral dan Turunan
- Simulasi kejadian alam (kebakaran, tsunami)
- Desain produk
- Teknik dan rekayasa

Permasalahan dalam Analisis Numerik

- Masalah keberadaan dari solusi (Existence)
- Seberapa bagus hampiran kita? (Error Analysis)
- Seberapa efisien metode kita? (Algorithm Design, Convergence Rate)
- Apakah metode kita selalu berhasil? (Convergence)

Penyelesaian Masalah dengan Numerik

- Pemodelan
 Mengubah permasalahan dunia nyata ke dalam persamaan matematis
- Penyederhanaan Model
- Formulasi Numerik
 Menentukan metode numerik yang akan digunakan, analisis galat awal, dan menyusun algoritma
- Pemprograman
- Operasional Menguji program dengan data
- Evaluasi
 Menerjemahkan hasil yang didapat ke dalam persoalan nyata kembali

Peranan Komputer

Computers are incredibly fast, accurate, and stupid. Human beings are incredibly slow, inaccurate, and brilliant. Together they are powerful beyond imagination.

Albert Einstein

Peranan Komputer

Peranan Komputer

Komputer digunakan untuk:

- Memprogram
- Mempercepat perhitungan
- Mencoba berbagai kemungkinan solusi akibat perubahan parameter
- Meningkatkan ketelitian (mengurangi error/galat)

Galat

Berdasarkan perhitungannya, galat dibagi 2 :

- Galat pemotongan (truncation error)
- Galat pembulatan (round-off error)

Berdasarkan sumbernya, galat dibagi lagi, antara lain :

- Galat pemodelan galat akibat salah memodelkan atau penggunaan asumsi
- Galat eksperimental galat akibat kesalahan pengukuran, ketidaktelitian alat, dsb.
- Galat pemprograman kesalahan pada program yang tidak diharapkan (bug)

Deret Taylor dan Deret Maclaurin

Deret Taylor

$$f(x) = f(x_0) + \frac{(x - x_0)}{1!}f'(x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \frac{(x - x_0)^3}{3!}f'''(x_0) + \dots$$

Deret Maclaurin = Deret Taylor baku, dengan $x_0 = 0$

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots$$

Galat Pemotongan

Contoh : Nilai
$$cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \dots$$

$$cos(x) \approx \underbrace{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}}_{\text{Nilai hampiran}} + \underbrace{\left\{ \frac{x^8}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \dots \right\}}_{\text{Galat pemotongan}}$$

$$cos(x) \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \epsilon$$

Galat Pembulatan

Contoh : Nilai
$$\frac{10}{3} = 3,3333333...$$

Komputer hanya mampu merepresentasikan sejumlah digit. Bilangan real yang panjangnya melebihi jumlah digit (bit) yang dapat direpresentasikan oleh komputer dibulatkan ke bilangan terdekat.

$$\frac{10}{3} \approx \underbrace{3,3333}_{\text{Nilai hampiran}} + \underbrace{0,0000333...}_{\text{Galat pembulatan}}$$