Quiz-4

1. Question 1. 4 points

Suppose f(x) is continuous at x = c. Which of the following is always continuous at x = c?

- (A) $f(x)^2$
- (B) $\frac{1}{1+|f(x)|}$
- (C) f(x) + 2
- (D) $\sqrt{f(x)}$

Mark only one oval per row.

	Yes	No
Α		
В		
С	\bigcirc	
D		\checkmark

(A) $f(x)^2 = f(x) f(x) - product of two cont. frs. atc.$

hence cont.

(B) |+|f(x)| is cont. and nonvanishing at x=c.

Thus, $\frac{1}{1+|f(x)|}$ is cont. at x=c.

(c) f(x) + 2 sum of 2 cont. firs. at x = c

(D) $\sqrt{f(x)}$ is cont. at x=c (=) $f(c) \ge 0$ In particular, if f(c) < 0, then $\sqrt{f(x)}$ is not cont. at x=c. 2. Question 2. 4 points

Let f(x) be a function defined at x = c. Pick the correct statement.

- (A) $f(x)^2$ is continuous at $x = c \implies f(x)$ is continuous at x = c
- (B) 1/f(x) is continuous at $x=c \implies f(x)$ is continuous at x=c
- (C) f(x) + 2 is continuous at $x = c \implies f(x)$ is continuous at x = c
- (D) $e^{f(x)}$ is continuous at $x = c \implies f(x)$ is continuous at x = cMark only one oval per row.

	Yes	No
Α		\sim
В		
С	\bigcirc	
D	\checkmark	

- $(A) f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \notin \mathbb{Q} \end{cases}$ Then f is nowhere cont. But $f(x)^2 = 1$, a constant. In. hence cont.
 - (B) $\frac{1}{f(a)}$ (ont. at $c \Rightarrow \frac{1}{f(c)} \neq 0$ $\Rightarrow f(x) = /(/f(x)) \text{ is cont. at c.}$ (c) f(x) = (f(x) + 2) - 2 hence cont. at c.
- (D) Explanation given at the end.

3. Question 3.

Evaluate: $\lim_{x \to 1} \frac{x + x^2 + x^3 + \dots + x^{20} - 20}{x - 1}$. 210 (Easy!)

4. Question 4. 4 points

Evaluate: $\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right)$. $= \frac{\sqrt{1+\sqrt{\frac{1}{2}+\frac{1}{2}}}}{\sqrt{1+\sqrt{\frac{1}{2}+\frac{1}{2}}}} \longrightarrow \frac{1}{2} \quad \text{as} \quad 2 \to \infty.$

5. Question 5. 4 points

Which of the following functions is continuous everywhere on \mathbb{R} ?

- (A) $\ln(1+x)$
- (B) $\ln(1+|x|)$
- (C) $\frac{1}{2 + \sin x}$
- (D) $\frac{1}{1 + \sin x}$

Mark only one oval per row.

	Yes	No
А		
В		
С	\checkmark	
D		\checkmark

- (A) Not Define D for X <- 1
- (B) I+IxI ≥1 and cont. on IR, and In is cont. on [1,00).
- (c) 2+sinx >0 and cont. at all x + IR, hence \frac{1}{2+sinx} is cont. on IR.
- (D) Not Define D at $x = (4n-1)\frac{\pi}{2}$, $n \in \mathbb{N}$.

6. Question 6.

4 points

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous everywhere. If $f(x) = \sin x$ for all $x \in \mathbb{Q}$, then $f(\pi) =$

Since
$$f$$
-cont. at π , $f(\pi) = \lim_{n \to \infty} f(x_n)$ for any $x_n \to \pi$.

I a stational sequence $\{x_n\}_n$ with $x_n \to \pi$.

Thus by cont. of f and sine, we have $f(\pi) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x_n)$

7. Question 7. 4 points

Suppose f + g is continuous on \mathbb{R} . Pick the correct statement.

- (A) If f(x) is continuous at x = c, then so is g(x)
- (B) If f(x) is discontinuous at x = c, then so is g(x)
- (C) It is possible that f(x) is continuous at x = c but g(x) is not
- (D) It is possible that both f(x) and g(x) are discontinuous at x = c.

 Mark only one oval per row.

	Yes	No
Α		
В	\bigcirc	
С		
D	\checkmark	

(A)	9(7)	= (f(x) + g(x)) - f(x)
		hence cont. at c.

(B)	If	9(2)	is	cont.	at c	, then contrate
	bj	(A)	f(z) is	ollo	contrato

	(c)	obvious ly	not,	by	(A)
--	-----	------------	------	----	-----

(D) f be the Dis	nich let's fn.
Then fond g	f (2)
Then fand g	ore not cont.
but f(x) +9(x) =0,	4 points

8. Question 8.

Let I be an interval, and $f:[0,1] \to I$ be continuous. Which I among the following ensures that f(x)

always has a fixed point?

(A)
$$I = [0, 1]$$

(B)
$$I = (0, 1)$$

(C)
$$I = [0,1)$$

(D)
$$I = (0, 1]$$

Mark only one oval per row.

	Yes	No
Α		
В		
С		
D		

set
$$g(x) = f(x) - x$$

$$\hat{Q}(o) = f(o) > 0$$

and g(1) = f(1) - 1 < 0= f(1) = f(1) = 1= f(1) = f(1) = 1

$$\begin{cases}
c \\ c
\end{cases} = 0$$

$$f(c) = c.$$

(c) If f(0) = 0, then done, else proceed as in (B).

27/12/2021, 13:38 Quiz-4

9. Question 9. 4 points

Which of the following sets can be the continuous image of a closed interval [a, b]?

- (A) {1} < constant function.
- (B) $\{0,1\} \leftarrow \text{Impossible by the IVP.}$
- (C) $[1,\infty) \leftarrow Impossible since not bounded above$
- (D) [1,3] < Always possible.

Mark only one oval per row.

	Yes	No
Α		
В		\bigcirc
С		\bigcirc
D		

10. Question 10. 4 points

Quiz-4

Define the function $f:[1,\infty)\to\mathbb{R}$ by

$$f(x) = \sum_{1 \le n \le x} \frac{1}{n^2}.$$

For instance, f(1) = 1, f(1.5) = 1, $f(3.5) = 1 + \frac{1}{4} + \frac{1}{6} = \frac{49}{26}$ etc.

Pick the correct statement.

- (A) f(x) is continuous at x = 100
- (B) f(x) is continuous at 130.5
- (C) f(x) is bounded on $[\cup \infty)$
- (D) $\lim_{x\to\infty} f(x)$ exists

Mark only one oval per row.

- (A) $\lim_{x \to 100^{-}} f(x) = 1 + \frac{1}{4} + \dots + \frac{1}{99^{2}}$ $\lim_{X \to 100t} f(x) = 1 + \frac{1}{4} + \dots + \frac{1}{100^2}$ hence not cont. at 100.
 - (B) f(z) is constant on a small nbhl. of 130.5, say (130.25, 130.75) On this nbh., $f(x) = 1 + \frac{1}{4} + \dots + \frac{1}{130^2}$
 - (c) Let S= 1+1+...+ 1/2+... < 0. Then 0 < f(x) < S + x(D) See explanation below.

This content is neither created nor endorsed by Google.

Google Forms

10. (D) We show that $Q_{im} f(x) = S$. Let Sn denote the nth partial sum of S.

Then given E>O, I no s.t. ISn-SI<E + n≥no. We show that if x ≥ no, then If(x)-8/< which will prove our result.
By Arch Prop. B nEW s.t. NEXENTI. Then $f(z) = S_n$

Explanation for 2.(D).

If c>0, then $Q_n \times is$ cont. at c.

To see this, $Q_n (c+h) - Q_n c = Q_n (i+h)$ $Now, |Q_n (i+x)| = |x-x^2+x^3-\cdots|, for |x|<1$ $\leq |x| (i+|x|+|x|^2+\cdots)$ $\leq |x| (i+|x|+\cdots)$ $= |x| < \varepsilon$

 $= \frac{|x|}{|-|x|} < \varepsilon$ if $|x| < \varepsilon$ if $|x| < \varepsilon$ its

Take |h| < c,
so that $|\ln(c)| < \varepsilon$ provided

Thus, setting S = CE,
we have

1h1<8 => 12n (cth) - 2nc <E, bottoving

Thus, if g(x) is contate 2g(c) > 0, then 2n g(x) is cont. at x=c.

Now, it is given that $e^{f(x)}$ is cont. at $e^{f(x)}$ and we know that $e^{f(x)} > 0$ for any $e^{f(x)}$.

Hence $f(x) = e^{f(x)}$ is cont. at $e^{f(x)}$.