Internship Presentation

Mario Marhuenda Beltrán, Rafaël del Pino, Thomas Prest

September 6, 2022

1 Studied problem: Introduction to MPCiTH schemes

What did work

Signatures that only rely on symmetric crypto are more secure. Currently there are only two serious families of schemes:

Signatures that only rely on symmetric crypto are more secure. Currently there are only two serious families of schemes:

- Hash-based signatures: Sphincs.
 - Size: From 8KB (slow) to 30KB (fast) (L1).

Signatures that only rely on symmetric crypto are more secure. Currently there are only two serious families of schemes:

- Hash-based signatures: Sphincs.
 - Size: From 8KB (slow) to 30KB (fast) (L1).
- MPC in the head (MPCitH) schemes.

Signatures that only rely on symmetric crypto are more secure. Currently there are only two serious families of schemes:

- Hash-based signatures: Sphincs.
 - Size: From 8KB (slow) to 30KB (fast) (L1).
- MPC in the head (MPCitH) schemes.

Confidence in assumptions

Figure: Comparison of the MPCiTH schemes

MPCitH: Original idea.

Input

- witness w
- Public key y
- Public function f
- Protocol Π that is t -private.

MPCitH: Original idea.

Input

- witness w
- Public key y
- Public function f
- Protocol Π that is t -private.

Construction of the signature:

$$y = f(x)$$
, f One Way Function (OWF)

MPCitH: Original idea.

Input

- witness w
- Public key y
- Public function f
- Protocol Π that is t -private.

Construction of the signature:

$$y = f(x)$$
, f One Way Function (OWF)

Honest Verifier Zero Knowledge Argument of Knowledge (HVZKAoK)

- Completeness: Accept if *x* is known.
- Soundness: Usually reject if x is unknown.
- Zero knowledge: Verifier learns nothing about x.

Prover Verifier

Prover Verifier

Simulates

 $\Pi_f(x, w_1, \ldots, w_n).$

Prover Verifier

Simulates

$$\Pi_f(x, w_1, \ldots, w_n).$$

$$\xrightarrow{(View_i)_{i=1}^n}$$

Prover Verifier

Simulates

$$\Pi_f(x, w_1, \ldots, w_n).$$

$$\xrightarrow{\text{(View_i)}_{i=1}^n}$$

Chooses $T \subset [n]$, |T| = t, uniformly at random.

Prover Verifier

Simulates

$$\Pi_f(x, w_1, \ldots, w_n).$$

$$\xrightarrow{(View_i)_{i=1}^n}$$

T

Chooses $T \subset [n]$, |T| = t, uniformly at random.

Prover Verifier

Simulates

 $\Pi_f(x, w_1, \ldots, w_n).$

$$\xrightarrow{(View_i)_{i=1}^n}$$

Chooses $T \subset [n]$, |T| = t, uniformly at random.

Opens the views of $\{P_i\}_{i\in\mathcal{T}}$.

Prover Verifier

Simulates $\Pi_f(x, w_1, \dots, w_n)$.

$$(View_i)_{i=1}^n$$

Chooses $T \subset [n]$, |T| = t, uniformly at random.

Opens the views of $\{P_i\}_{i\in\mathcal{T}}$.

$$(View_i)_{i\in T}$$

Verifier's last step

Verifier accepts if all of the below conditions are met:

The prover successfully opened the commits of the requested parties.

Verifier's last step

Verifier accepts if all of the below conditions are met:

- The prover successfully opened the commits of the requested parties.
- **1** The opened parties output x.

Verifier's last step

Verifier accepts if all of the below conditions are met:

- The prover successfully opened the commits of the requested parties.
- **b** The opened parties output x.
- The opened parties' views are all consistent with each other.

Simple IKOS

Soundness error: 1 - t/n. Repeat O(n) times:

$$(1-t/n)^{O(n)}=O(2^{-n})$$

Simple IKOS

Soundness error: 1 - t/n. **Repeat** O(n) times:

$$(1-t/n)^{O(n)}=O(2^{-n})$$

Robust IKOS

The same algorithm can be used in the case where Π_f is t_p private and t_r robust, then the soundness is:

$$(1-t_p/n)^{t_r}$$

In this case is possible to achieve negligible soundness in O(1) rounds.

Removing interaction

Fiat-Shamir

- Signature schemes are non interactive!
- Fiat-Shamir transform.

Removing interaction

Fiat-Shamir

- Signature schemes are non interactive!
- Fiat-Shamir transform.

Signature from OWF

- Signature:
 - Public key: x.
 - Private key: y.
 - Signature: HVZKAoK that y = f(x).

Removing interaction

Fiat-Shamir

- Signature schemes are non interactive!
- Fiat-Shamir transform.

Signature from OWF

- Signature:
 - Public key: x.
 - Private key: y.
 - Signature: HVZKAoK that y = f(x).

Signature from AES

- Particular example:
 - Public key: (m, c).
 - Private key: k.
 - Signature: HVZKAoK that $c = AES_k(m)$.

Better protocols: Using correlated randomness.

- Goal: Use correlated randomness.
- Beaver triples
- Summary: Communication of 2 elements/mult gate.

Prover Verifier

Prover Verifier

Generates enough triples to run *M* executions of the protocols. And commits to them.

Prover Verifier

Generates enough triples to run *M* executions of the protocols. And commits to them.

<u>commit</u>

Prover Verifier

Generates enough triples to run *M* executions of the protocols. And commits to them.

 $\xrightarrow{\mathsf{commit}}$

Asks to open $M-\tau$

Verifier Prover Generates enough triples to run M executions of the protocols. And commits to them. commit Asks to open $M-\tau$ $M - \tau$ requested triples Verifies they are correct

Verifier Prover Generates enough triples to run M executions of the protocols. And commits to them. commit Asks to open $M-\tau$ $M - \tau$ requested triples Verifies they are correct

What is the chance that a dishonest prover fools the verifier?

Prover Verifier

Prover Verifier

Runs preprocessing

Prover		Verifier
	Runs preprocessing	

Runs au execution

commit

views

Prover		Verifier
	Runs preprocessing	
Runs $ au$ execution		
	commit	
	views	
	,	Challenges every execution

Prover		Verifier
	Runs preprocessing	
Runs $ au$ execution		
	commit	
	views	
	·	Challenges every exe-
		cution
	$(\bar{i}_e)_{e \in \tau}$	

Cut and choose: Keeping the prover honest

Prover		Verifier
	Runs preprocessing	
Runs $ au$ execution		
	commit	
	views	
	,	Challenges every exe-
		cution
	$(\overline{\dot{l}_e})_{e \in au}$	

Opens all parties but

$$P_{\bar{i}_e e \in \tau}$$

Answers

Cut and choose: Keeping the prover honest

Prover		Verifier
	Runs preprocessing	
Runs $ au$ execution		
	commit	
	views	
	,	Challenges every exe-
		cution
	$(\overline{\dot{l}_e})_{e \in au}$	

Opens all parties but

$$P_{\bar{i}_e e \in \tau}$$

Answers

Description KKW

Circuit size	1000 mult gates	10000 mult gates
	Signature size (KB)	Signature size (KB)
n = 64	37	136
n = 32	39	159
n = 16	44	190
n = 8	50	245

Another paradigm

One Beaver triple can verify another.

Another paradigm

One Beaver triple can verify another.

 Prover inserts the views of the parties, and then runs a protocol that checks that it was honest

Another paradigm

One Beaver triple can verify another.

- Prover inserts the views of the parties, and then runs a protocol that checks that it was honest
- Verifier issues a challenge, and prover runs check.

Circuit specific constructions

Adapt MPC protocol to particular OWF.

Circuit specific constructions

Adapt MPC protocol to particular OWF.

Before:

- Addition gates: Locally.
- Multiplication gates: Two elements of communication.

Circuit specific constructions

Adapt MPC protocol to particular OWF.

- Before:
 - Addition gates: Locally.
 - Multiplication gates: Two elements of communication.
- Now:
 - Addition gates: Locally.
 - 'Inversion' gates: At most three elements of communication.

BBQ and Banquet

- **BBQ**: Computation of the inverse gate. Parties share triples, and $r \in \mathbb{F}_{2^8} \{0\}$.
 - \bigcirc P_i has input x_i .
 - 2 The parties open $r \cdot x = (\sum r_i)(\sum x_i)$.
 - **3** P_i sets its output as: $r_i \cdot (r \cdot x)^{-1}$.

BBQ and Banquet

- **BBQ**: Computation of the inverse gate. Parties share triples, and $r \in \mathbb{F}_{2^8} \{0\}$.
 - \bigcirc P_i has input x_i .
 - 2 The parties open $r \cdot x = (\sum r_i)(\sum x_i)$.
 - 3 P_i sets its output as: $r_i \cdot (r \cdot x)^{-1}$.
- Banquet: Computation of the inverse gate. Suppose there are Ω gates:
 - Prover shares the outputs.
 - ② For the k-th inversion gate, P_i sets $S^{(i)}(k-1) = s_k^{(i)}$.
 - **3** To preserve zk, they set $S^{(i)}(\Omega)$ and $T^{(i)}(\Omega)$ at random.
 - 4 Prover computes and shares: $P = S \cdot R$.
 - **5** Then the verifier chooses $v \leftarrow \mathbb{F} \{ \text{ points already used for interpolation } \}$ and the parties open P(v), R(v), S(v).
 - **6** Verifier checks that $P(v) \stackrel{?}{=} R(v) \cdot S(v)$

It is possible to construct ciphers that are MPCiTH friendly:

LowMC: Picnic scheme.

- LowMC: Picnic scheme.
- Variants of Rijndael: AES is a particular parameter selection of Rijndael, we can change the size of the S-boxes.

- LowMC: Picnic scheme.
- Variants of Rijndael: AES is a particular parameter selection of Rijndael, we can change the size of the S-boxes.
- SAES: Rainier scheme.
 - Simplified variant of Rijndael with a linearized key scheduled.

- LowMC: Picnic scheme.
- Variants of Rijndael: AES is a particular parameter selection of Rijndael, we can change the size of the S-boxes.
- LSAES: Rainier scheme.
 - Simplified variant of Rijndael with a linearized key scheduled.
- Rain: Rainier scheme.

- LowMC: Picnic scheme.
- Variants of Rijndael: AES is a particular parameter selection of Rijndael, we can change the size of the S-boxes.
- LSAES: Rainier scheme.
 - Simplified variant of Rijndael with a linearized key scheduled.
- Rain: Rainier scheme.
 - Cipher based on the Even-Mansour construction.
- LegRoast: PRG using Legendre function.

- LowMC: Picnic scheme.
- Variants of Rijndael: AES is a particular parameter selection of Rijndael, we can change the size of the S-boxes.
- 3 LSAES: Rainier scheme.
 - Simplified variant of Rijndael with a linearized key scheduled.
- Rain: Rainier scheme.
 - Cipher based on the Even-Mansour construction.
- LegRoast: PRG using Legendre function.

Scheme	pk (bytes)	sig (bytes)	Sign	Verify
Banquet-AES-128	32	13284	47.31	43.03
Banquet-EM-AES-128	32	11940	41.05	36.88
Banquet-EM-LSAES-128	32	10496	20.99	18.91
Rainier-128	32	4880	28.28	28.16

Use a random polynomial of degree 2, \mathcal{F} , as a OWF.

$$G(x,y) = \mathcal{F}(x+y) - \mathcal{F}(x) - \mathcal{F}(y)$$

Use a random polynomial of degree 2, \mathcal{F} , as a OWF.

$$G(x,y) = \mathcal{F}(x+y) - \mathcal{F}(x) - \mathcal{F}(y)$$

Change of Beaver triples: (u,v) so that $v = \mathcal{F}$.

Use a random polynomial of degree 2, \mathcal{F} , as a OWF.

$$G(x, y) = \mathcal{F}(x + y) - \mathcal{F}(x) - \mathcal{F}(y)$$

Change of Beaver triples: (u,v) so that $v = \mathcal{F}$.

• Step 1: Each P_i masks its inputs with u: $x_i - u_i$. Open $x - u = \sum_{i=1}^{n} x_i - u_i$.

Use a random polynomial of degree 2, \mathcal{F} , as a OWF.

$$G(x, y) = \mathcal{F}(x + y) - \mathcal{F}(x) - \mathcal{F}(y)$$

Change of Beaver triples: (u,v) so that $v = \mathcal{F}$.

- Step 1: Each P_i masks its inputs with u: $x_i u_i$. Open $x u = \sum_{i=1}^{n} x_i u_i$.
- **2** Step 2: Then P_i locally computes $o_i = G(u_i, x u) + v_i$.

Use a random polynomial of degree 2, \mathcal{F} , as a OWF.

$$G(x,y) = \mathcal{F}(x+y) - \mathcal{F}(x) - \mathcal{F}(y)$$

Change of Beaver triples: (u,v) so that $v = \mathcal{F}$.

- Step 1: Each P_i masks its inputs with u: $x_i u_i$. Open $x u = \sum_{i=1}^{n} x_i u_i$.
- **2** Step 2: Then P_i locally computes $o_i = G(u_i, x u) + v_i$.
- Step 3: Parties open

$$G(u, x - u) + F(u) = F(x) - F(x - u)$$

Improvements on Mesquite There are number of improvements presented in Banquet that are directly applicable to Mesquite

Improvements on Mesquite There are number of improvements presented in Banquet that are directly applicable to Mesquite

• Removing the output broadcast:

Improvements on Mesquite There are number of improvements presented in Banquet that are directly applicable to Mesquite

- Removing the output broadcast:
- ② Better commitments

Improvements on Mesquite There are number of improvements presented in Banquet that are directly applicable to Mesquite

- Removing the output broadcast:
- Better commitments
- Amortizing party seeds.

Improvements on Mesquite There are number of improvements presented in Banquet that are directly applicable to Mesquite

- Removing the output broadcast:
- Better commitments
- Amortizing party seeds.

Mesquite formula

$$2\kappa + 3\kappa\tau \left[\log\frac{M}{\tau}\right] + \tau \left(\kappa \left[\log N\right] + \kappa + (n+m)\log q\right)$$

Improvements on Mesquite There are number of improvements presented in Banquet that are directly applicable to Mesquite

- Removing the output broadcast:
- 2 Better commitments
- Amortizing party seeds.

Mesquite formula

$$2\kappa + 3\kappa\tau \left[\log \frac{M}{\tau}\right] + \tau \left(\kappa \left[\log N\right] + \kappa + (n+m)\log q\right)$$

New formula

$$4\kappa + 2\kappa\tau \left\lceil \log \frac{M}{\tau} \right\rceil + \tau \left(\kappa \left\lceil \log N \right\rceil + \kappa + n\log q \right)$$

Formula comparison

Improvements on Merkle tree

			Tree cost (KB)	
N	М	τ	Before	After
8	176	51	4.34	2.31
16	232	37	4.625	2.42

Formula comparison

Improvements on Merkle tree

		Tree cost (KE		st (KB)
N	М	au	Before	After
8	176	51	4.34	2.31
16	232	37	4.625	2.42

Improvements on general scheme

			Sig size (KB)		
N	М	au	Mesquite	Updated	
8	176	51	10.51	7.42	
16	232	37	9.68	6.77	

Prove: Prove F(x) = y, $y \in \mathbb{F}_q^M$ public $x \in \mathbb{F}_q^N$ secret.

Prove: Prove F(x) = y, $y \in \mathbb{F}_q^M$ public $x \in \mathbb{F}_q^N$ secret.

It turns out we can adapt Banquet's proof.

Prove: Prove F(x) = y, $y \in \mathbb{F}_q^M$ public $x \in \mathbb{F}_q^N$ secret.

It turns out we can adapt Banquet's proof.

Soundness: Can be bounded by Schwartz-Zippel lemma $\frac{2}{a^n-3}$.

Prove: Prove F(x) = y, $y \in \mathbb{F}_q^M$ public $x \in \mathbb{F}_q^N$ secret.

It turns out we can adapt Banquet's proof.

Soundness: Can be bounded by Schwartz-Zippel lemma $\frac{2}{q^n-3}$.

Compute soundness for parameters

•
$$P_1(\tau, \tau_1) = PMF(B(\tau, \tau_1, p)) = \sum_{k=\tau_1}^{\tau} {\tau \choose k} p^k (1-p)^{\tau-k}$$

Prove: Prove F(x) = y, $y \in \mathbb{F}_q^M$ public $x \in \mathbb{F}_q^N$ secret.

It turns out we can adapt Banquet's proof.

Soundness: Can be bounded by Schwartz-Zippel lemma $\frac{2}{q^n-3}$.

Compute soundness for parameters

- $P_1(\tau, \tau_1) = PMF(B(\tau, \tau_1, p)) = \sum_{k=\tau_1}^{\tau} {\tau \choose k} p^k (1-p)^{\tau-k}$
- $P_2(\tau, \tau_1) = N^{\tau \tau_1}$

Prove: Prove F(x) = y, $y \in \mathbb{F}_q^M$ public $x \in \mathbb{F}_q^N$ secret.

It turns out we can adapt Banquet's proof.

Soundness: Can be bounded by Schwartz-Zippel lemma $\frac{2}{q^n-3}$.

Compute soundness for parameters

- $P_1(\tau, \tau_1) = PMF(B(\tau, \tau_1, p)) = \sum_{k=\tau_1}^{\tau} {\tau \choose k} p^k (1-p)^{\tau-k}$
- $P_2(\tau, \tau_1) = N^{\tau \tau_1}$
- $\min 1/P_1 + 1/P_2$

Choosing the right parameters

Analysis soundness. We want to find:

- **2** τ
- n

Size formula:

$$6\kappa + \tau\kappa \cdot \lceil \log N \rceil + \tau \cdot (2\kappa + (2m + n)\log q)$$

Size formula:

$$6\kappa + \tau \kappa \cdot \lceil \log N \rceil + \tau \cdot (2\kappa + (2m + n) \log q)$$

N	τ	$ au_1$	$ au_2$	security level	signature size
8	43	0	32	128.0	6.45KB
16	32	0	26	128.0	5.31KB
32	26	0	26	130.0	4.73KB
64	22	0	22	132.0	4.36KB
128	19	0	19	133.0	4.07KB
1024	13	0	13	130.0	3.41KB
65536	8	0	8	128.0	2.8KB

Size formula:

$$6\kappa + \tau \kappa \cdot \lceil \log N \rceil + \tau \cdot (2\kappa + (2m + n) \log q)$$

N	au	$ au_1$	$ au_2$	security level	signature size
8	43	0	32	128.0	6.45KB
16	32	0	26	128.0	5.31KB
32	26	0	26	130.0	4.73KB
64	22	0	22	132.0	4.36KB
128	19	0	19	133.0	4.07KB
1024	13	0	13	130.0	3.41KB
65536	8	0	8	128.0	2.8KB

Asymptotic limit: 2.2KB.

Can we actually use robust protocols?

Can we actually use robust protocols?

In particular, we take:

$$C = \{(p(1), \dots, p(n) : p \in \mathbb{F}_p[x], \deg(p) < k\}$$

Can we actually use robust protocols?

In particular, we take:

$$C = \{(p(1), \dots, p(n) : p \in \mathbb{F}_p[x], \deg(p) < k\}$$

Soundness error

$$\left(1-\frac{k}{n}\right)^{d-1}$$

Smart ways compute the S-box.

- Smart ways compute the S-box.
 - Masked tables.
 - Special gates.

- Smart ways compute the S-box.
 - Masked tables.
 - Special gates.
 - Homomorphic hashing: Relies on CVP.
 - Vector commitments?

- Smart ways compute the S-box.
 - Masked tables.
 - Special gates.
 - Homomorphic hashing: Relies on CVP.
 - Vector commitments?
- 2 Amortizing repetition.

- Smart ways compute the S-box.
 - Masked tables.
 - Special gates.
 - Homomorphic hashing: Relies on CVP.
 - Vector commitments?
- 2 Amortizing repetition.
- VSS

- Smart ways compute the S-box.
 - Masked tables.
 - Special gates.
 - Homomorphic hashing: Relies on CVP.
 - Vector commitments?
- Amortizing repetition.
- VSS
- Other 'standard' symmetric ciphers.

Summary and future work

Summary

- MPCiTH
- Multivariate sacrificing

Summary and future work

Summary

- MPCiTH
- Multivariate sacrificing

Future work

- Implementation of Multivariate Sacrificing (Cranberry). (How high can n be?).
- Proof of security.
- Rescue some ideas.