1 Grundlagen

2 Eigenwerte

A muss regulär sein

2.1 Von-Mises Iteration

x ist zufällig gewählt, dann geht x^k gegen ein Vielfaches eines Eigenvektors u von A. z_i^{k+1} nähert sich dem größten Eigenwert für $k\to\infty$.

$$z^k := Ax^{k-1} \tag{1}$$

$$x^k := \frac{z^k}{z_{i_k}} \tag{2}$$

, wobei gilt:

$$|z_{i_k}{}^i| = \max_{i=1}^m |z|_i^k \tag{3}$$

2.2 Inverse Iteration von Wielandt

yist zufällig gewählt, dann geht x^k gegen ein Vielfaches eines Eigenvektors u von A. w_i^{k+1} nähert sich $1/\lambda_m$ für $k\to\infty.$

$$w^k := A^{-1}yk - 1 (4)$$

$$y^k := \frac{w^k}{w_{i_k}^k} \tag{5}$$

, wobei gilt:

$$|w_{i_k}{}^i| = \max_{i=1}^m |w|_i^k \tag{6}$$

 A^{-1} wird typischerweise nicht berechnet, sondern $Aw^k=y^{k-1}$ gelöst.

3 Newton-Verfahren

$$x^{k+1} = x^k - \frac{F(x^k)}{F'(x^k)} \tag{7}$$

Konvergiert im 1D Fall, wenn F in der Nähe von x* zweifach stetig diff'bar ist. Oder mehrdimensionale Schreibweise:

$$x^{k+1} = x^k - F'(x^k)^{-1}F(x^k)$$
(8)

4 Quadratur

4.1 Trapezregel

Einfache Regel:

$$\int_{a}^{b} f(x)dx = (b-a)\frac{f(a) + f(b)}{2} + R(f)$$
(9)

Zusammengesetzte Regel:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \cdot f(a) + h \cdot \sum_{i=1}^{n-1} \{f(x_i)\} + \frac{h}{2} \cdot f(b) + R_h(f)$$
 (10)

Bedingung: $h := \frac{b-a}{n}$, sowie $x_i := a + ih$

4.2 Rechteckregel

$$\int_{a}^{b} f(x)dx = h \cdot \sum_{i=0}^{n-1} f(x_i + \frac{h}{2}) + R_h(f)$$
(11)

Bedingung: $h := \frac{b-a}{n}$, sowie $x_i := a + ih$

4.3 Newton-Cotes-Formel

$$\int_{a}^{b} f(x)dx = (b-a) \cdot \sum_{i=0}^{n} a_{i}^{(n)} f(x_{i}) + R_{n}(f)$$
(12)

$$a_i^{(n)} := \frac{1}{b-a} \int_a^b l_i^{(n)}(x) dx = \frac{h}{b-a} \int_0^n \prod_{\mu=0, \mu=i}^n \frac{s-\mu}{i-\mu} ds$$
 (13)

Table 1: Koeffizienten

n	$a_0^{(n)}$	$a_1^{(n)}$	$a_2^{(n)}$	$a_3^{(n)}$
1	$\frac{1}{2}$	$\frac{1}{2}$		
2	$\frac{\overline{1}}{6}$	$\bar{4}$	$\frac{1}{6}$	
3	$\frac{1}{8}$	$\frac{\overline{6}}{3}$	$\frac{\overline{6}}{\overline{8}}$	$\frac{1}{8}$

Beispiel für n=2:

$$\int_{a}^{b} f(x)dx = \frac{(b-a)}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b)) + R_2(f)$$
(14)