Series Resonance - Summary

General Series R-L-C Circuit

TABLE 21.1
Important equations related to series resonant circuits.

At Resonance

Additional Equations

$$X_{L} = X_{C}$$

$$Z_{T_{S}} = R$$

$$f_{S} = \frac{1}{2\pi\sqrt{LC}}$$

$$V_{L_{S}} = V_{C_{S}} = Q_{S}E$$

$$F_{P_{S}} = 1$$

$$Q_{S} = \frac{X_{L}}{R} = \frac{1}{R}\sqrt{\frac{L}{C}}$$

$$P_{HPF} = \frac{1}{2}P_{max}$$

$$f_{2} = \frac{1}{2\pi} \left[\frac{R}{2L} + \frac{1}{2}\sqrt{\left(\frac{R}{L}\right)^{2} + \frac{4}{LC}}\right]$$

$$f_{1} = \frac{1}{2\pi} \left[-\frac{R}{2L} + \frac{1}{2}\sqrt{\left(\frac{R}{L}\right)^{2} + \frac{4}{LC}}\right]$$

$$BW = f_{2} - f_{1} = \frac{R}{2\pi L}$$

$$f_{S} = \sqrt{f_{1}f_{2}}$$

$$BW = fs/Qs$$

Series Resonance – In Class problem

Problem 9 – A Team HW Problem

- *9. a. Design a series resonant circuit with an input voltage of
 - 5 Vok-0° to have the following specifications:
 - —Peak current of 500 mA at resonance
 - -Bandwidth of 120 Hz
 - -Resonant frequency of 8400 Hz
 - b. Find the value of L and C and the cutoff frequencies.

Approach:

- Draw the circuit
- List the knowns
- List the unknowns (to solve for)
- Develop a strategy