Explorative Studie zum Zusammenhang zwischen neuronalen Oszillationen und Elektrodenposition bei Tiefer Hirnstimulation von Parkinson

Christian Neumann – stu203277@mail.uni-kiel.de

Sörensenstraße 26, 24143 Kiel

Betreuer: Julian Keil & Julius Welzel

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

UNIVERSITÄTSKLINIKUM Schleswig-Holstein

Theoretischer Hintergrund

Christian Neumann – stu203277@mail.uni-kiel.de Sörensenstraße 26, 24143 Kiel

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

Parkinson

- Motorische Symptome
 - Ruhetremor
 - Rigor
 - Bradykinesie
 - Instabilität der Körperhaltung

Pathophysiologie

Abbildung 1. Veränderungen der Verschaltungen des motorischen Kortex bei Morbus Parkinson. Aus Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J. et al. (2017). Parkinson disease. *Nature reviews Disease primers*, 3(1), 1-21.

 Tiefe Hirnstimulation (DBS) des STN führt zu einer Verringerung der Symptome

Probleme der DBS

- Nebenwirkungen bei ungenauer Positionierung der Elektrode
- Hohe Komplexität und Aufwand der Behandlung
- Exakte Position des STN ist im MRT meist nicht gut zu erkennen
 - Rechnerische Modelle sollen optimale Einstellungen vorhersagen
 - Experimente mit Closed-Loop DBS

Spike-Aktivität

Abbildung 2. Rohsignal von der Elektrode innerhalb des STN (oben) und außerhalb (unten).

Fragestellung

- Spike-Aktivität bisher einziges Maß für die Genauigkeit der Elektrodenposition
 - Gute Hinweise für Beta (13 bis 35 Hz) und Theta (4 bis 7 Hz)
- Welche periodischen und aperiodischen Komponenten im LFP von Patient*innen, die mit DBS behandelt werden, hängen mit der Position der Elektrode zusammen?

Preprocessing

Christian Neumann – stu203277@mail.uni-kiel.de Sörensenstraße 26, 24143 Kiel

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

Einlesen der Daten

Daten von 30 Patient*innen

Aus dem Dateinamen:

Tiefe der Elektrode (Entfernung zum Zielpunkt im STN in mm)

Seite (Links oder Rechts)

Trajekt (zentral, anterior, posterior, medial oder lateral)

Abbildung 3. Darstellung der Positionen der Trajekte

Erster Schritt: Runtersampling auf 512 Hz (Daten meist 5 bis 10 Sekunden lang)

Bereinigung der Daten

- Bereinigen der Daten anhand von
 - Varianz (zu klein oder zu groß)
 - Anzahl der Samplepunkte (zu wenige)
- → 554 von 3971 Kanälen fliegen raus

Abbildung 4. Histogramm aller berechneten Varianzen in den unbereinigten und in vier Teile gesplitteten Daten.

FFT

- Filtern:
 - Demean
 - o.5 Hz high-pass Filter
 - 45 Hz low-pass Filter
- TFR mit Hanning Tapern
 - Errechnen der Powerspektren

frequency

Abbildung 5. Darstellung einer Sinusfunktion (oben) und der entsprechenden

FFT (unten). Aus LDS (2003). Understanding FFT Windows.

https://www.egr.msu.edu/classes/me451/me451_labs/Fall_2014/Understanding_FFT_Windows.pdf

FOOOF

 Algorithmus, um die aperiodischen Komponenten von den periodischen zu trennen

Abbildung 6. Darstellung der aperiodischen Komponente in einem Powerspektrum. Aus VoytekLab 2018 – 2021. *o1: Model Description.* https://fooof-tools.github.io/fooof/auto_tutorials/plot_o1-ModelDescription.html#sphx-glr-auto-tutorials-plot-o1-modeldescription-py

Zusammenfassung der Variablen

Christian Neumann – stu203277@mail.uni-kiel.de Sörensenstraße 26, 24143 Kiel

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

Daten nochmal säubern

- Was macht der Algorithmus?
 - Schätzung der aperiodischen Komponente anhand des Power-Spektrums
 - Diese Schätzung vom Power-Spektrum abziehen
 - Peaks heraussuchen
 - Peak-fit vom Original-Spektrum abziehen, um die aperiodische Komponente besser zu schätzen
 - Rekonstruktion eines finalen Fits um Güte zu berechnen.
- Algorithmus nicht perfekt
 - Schlechte Übereinstimmungen zwischen Schätzung und originalen Daten werden rausgeworfen (großer Abstand oder extrem negative Werte)
 - 1587 Kanäle fliegen hier raus

Extrahieren der Variablen

- Exponent der aperiodischen Komponente und root mean square Abspeichern
- Aperiodische Komponente vom Power-Spektrum abziehen
- Mittelwert der Power zwischen
 - 5 bis 7 Hz für Theta
 - 7 bis 13 Hz für Alpha
 - 13 bis 35 Hz für Beta
- Weitere Kanäle aussortieren
 - Kanäle bei denen eine negative Power herausgekommen ist (324)
 - Kanäle bei der Tiefe 10.00 (23)
 - Kanäle mit ungewöhnlich großem root mean square
 - Insgesamt 1561 Kanäle übrig geblieben von ursprünglich 3971

Regressionstabelle

	1	2	3	4	5	6	7	8	9	10
	ID	SIDE	DEPTH	CHANNEL	SAMPLES	AP_EXPONENT	THETA_POWER	ALPHA_POWER	BETA_POWER	root_mean_square
1	1'L'		'-0.242'	'CRAW_02	2564	1.6948	0.0516	0.0741	0.1367	4.5973
2	1	T.	'-0.492'	'CRAW_02	2529	1.4316	0.2958	0.0184	0.1133	4.1817
3	1	T.	'-0.743'	'CRAW_02	2615	0.9430	0.0198	0.2100	0.0241	4.4603
4	1	T.	'-0.995'	'CRAW_01	2552	1.3456	0.0693	0.2547	0.1311	12.7234
5	1	T.	'-0.995'	'CRAW_02	2552	1.2659	0.3407	0.1389	0.1154	4.2453
6	1	T.	'-1.245'	'CRAW_02	2600	1.4956	0.1834	0.1483	0.0742	4.5437
7	1	T.	'-1.497'	'CRAW_02	2639	1.4934	0.0510	0.1220	0.1024	4.8990
8	1	T.	'-1.748'	'CRAW_02	2563	1.3072	0.0456	0.1955	0.0578	5.5174
9	1	ľ	'-2.001'	'CRAW_02	2605	1.5603	0.1003	0.0971	0.1619	4.1917
10	1 'L'		'-2.754'	'CRAW_01	2574	1.3759	0.3709	0.0625	0.0277	11.4484
11	1	ľ	'-3.004'	'CRAW_01	2602	1.3382	0.5460	0.1125	0.3505	4.5577
12	1	T.	'-3.004'	'CRAW_02	2602	0.7514	0.5407	0.0410	0.3283	4.3444
13	1 'L'		'-3.005'	'CRAW_01	2528	1.2942	0.0762	0.1281	0.0743	9.1110
14	1 'L'		'-3.005'	'CRAW_02	2528	1.2623	0.2017	0.2756	0.0857	3.8495
15	1 'L'		'-3.256'	'CRAW_02	2552	2.2471	0.0995	0.0093	0.0204	4.5614
16	1 'L'		'-3.758'	'CRAW_01	2557	1.7020	0.0138	0.0843	0.1056	5.9029
17	1 'L'		'-5.091'	'CRAW_01	2620	-0.0800	0.2586	0.0289	0.0656	21.6739
18	1 'L'		'-5.091'	'CRAW_02	2620	0.3209	0.3825	0.1045	0.1095	20.3052
19	1 'L'		'-5.510'	'CRAW_02	2585	0.5222	0.0450	0.2151	0.0697	20.2592
20	1 'L'		'0.008'	'CRAW_02	2574	1.7762	0.1280	0.1559	0.1766	4.3277
21	1	T.	'0.513'	'CRAW_02	2673	1.6091	0.1055	0.1103	0.0669	4.7009
22	1	T.	'1.015'	'CRAW_02	2532	1.3062	0.0805	0.1347	0.1220	4.6334

Abbildung 7. Darstellung der Regressionstabelle.

Auswertung

Christian Neumann – stu203277@mail.uni-kiel.de Sörensenstraße 26, 24143 Kiel

Christian-Albrechts-Universität zu Kiel

Philosophische Fakultät

T-Tests für abhängige Stichproben

- Gibt es für die Variablen signifikante Unterschiede zwischen der Tiefe o (Ziel) und der Tiefe 10 (größte Entfernung vom Ziel)
- Annahme der Normalverteilung kann beibehalten werden (Shapiro-Wilk Tests)
- Nur root mean square ist signifikant
- Deskriptiv: Beta und Theta sind in der Nähe von o um einiges KLEINER als bei 10
 - Bei zusätzlicher Differenzierung zwisch low Beta (13-20 Hz) und high Beta (20-35 Hz) ist ersichtlich, dass low Beta bei o deutlich kleiner ist als bei 10, während high Beta bei o größer ist als bei 10

Korrelationen

- Tiefe, aber auch absolute Entfernung zum Ziel punkt in eine Korrelationstabelle mit dem aperiodischen Exponenten, theta, alpha, beta und root mean square
- Einzige Korrelationen größer als o.1:
 - root mean square mit Tiefe und Distanz
 - Aperiodischer Exponent mit Tiefe

Punktwolken

Abbildung 8. Punktwolke für die Entfernung zum Zielpunkt (in mm) und dem dazugehörigen root mean square (in μ V) aller Kanäle.

Punktwolken

Abbildung 9. Punktwolke für die Tiefe der Elektrode (in mm) und dem dazugehörigen root mean square (in μV) aller Kanäle.

Punktwolken

Abbildung 10. Punktwolke für die Tiefe der Elektrode (in mm) und dem dazugehörigen Exponenten der aperiodischen Komponente aller Kanäle.

Quellen

- Jankovic, J. (2008). Parkinson's disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry, 79(4), 368-376.
- Opri, E., Cernera, S., Molina, R., Eisinger, R. S., Cagle, J. N., Almeida, L. et al. (2020). Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor. Science Translational Medicine, 12(572).
- Telkes, I., Sabourin, S., Durphy, J., Adam, O., Sukul, V., Raviv, N. et al. (2020). Functional use of directional local field potentials in the subthalamic nucleus deep brain stimulation. Frontiers in human neuroscience, 14, 145.