Задача 18 (4 балла)

Тензор диэлектрической проницаемости электронного газа во внешнем магнитном поле $\boldsymbol{B}\parallel z$ имеет вид $\epsilon_{\alpha\beta}=\delta_{\alpha\beta}+4\pi \mathrm{i}\sigma_{\alpha\beta}/\omega$, где

$$\sigma = \frac{ne^2\tau}{m} \begin{pmatrix} \frac{1-\mathrm{i}\omega\tau}{(1-\mathrm{i}\omega\tau)^2 + \omega_c^2\tau^2} & \frac{\omega_c\tau}{(1-\mathrm{i}\omega\tau)^2 + \omega_c^2\tau^2} & 0\\ -\frac{\omega_c\tau}{(1-\mathrm{i}\omega\tau)^2 + \omega_c^2\tau^2} & \frac{1-\mathrm{i}\omega\tau}{(1-\mathrm{i}\omega\tau)^2 + \omega_c^2\tau^2} & 0\\ 0 & 0 & \frac{1}{1-\mathrm{i}\omega\tau} \end{pmatrix}$$

– тензор проводимости (см. задачу 5), $\omega_c = eB_z/(mc)$ – циклотронная частота.

Определите показатели преломления и закон дисперсии плоских электромагнитных волн, распространяющихся в направлении оси z. Постройте зависимости $\operatorname{Re}\omega(k_z)/\omega_p$ и $\operatorname{Im}\omega(k_z)/\omega_p$ при $\omega_c=0.2\omega_p,\,\omega_p\tau=10,$ где $\omega_p=\sqrt{4\pi ne^2/m}.$

Решение: Для попечерных волн имеем

$$\begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} \\ \epsilon_{yx} & \epsilon_{yy} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \end{bmatrix} = n^2 \begin{bmatrix} E_x \\ E_y \end{bmatrix}, \tag{1}$$

где n^2 - показатель преломления. Из решения характеристического уравнения получаем

$$n_{\pm}^2 = 1 + \frac{i\omega_p^2 \tau}{\omega (1 - i(\omega \pm \omega_c)\tau)},\tag{2}$$

где собственным числам n_{\pm} соответствуют собственные вектора $\begin{bmatrix} 1 & i \end{bmatrix}^t$ и $\begin{bmatrix} 1 & -i \end{bmatrix}^t$ - σ^+ и σ^- поляризованный свет, соответственно.

Законы дисперсии можно найти из уравнений $n_{\pm}=k/(\omega_{\pm}/c)$

$$k^{2} = \left(\frac{\omega_{\pm}}{c}\right)^{2} + \left(\frac{\omega_{\pm}}{c}\right)^{2} \frac{i\omega_{p}^{2}\tau}{\omega_{\pm}(1 - i(\omega_{\pm} \pm \omega_{c})\tau)}.$$
 (3)

Проанализируем случай k = 0. Тогда из уравнения (3) получим

$$\omega_{\pm} = \frac{\mp \omega_c \tau + \sqrt{4\omega_p^2 \tau^2 - (1 + i\omega_c \tau)^2}}{2\tau} - \frac{i}{2\tau}, \qquad \omega_{\pm} = 0$$
 (4)

При $au o \infty$ и $\omega_c \ll \omega_p$

$$\omega_{\pm} = \omega_p \mp \frac{\omega_c}{2}.\tag{5}$$

Это можно использовать как начальное предположение при численном решении.

Решение при k=0 дающее $\omega_{\pm}=0$ при $k\neq0$ больше нуля для σ^- поляризованного света. Эта волна с частотой меньшей ω_c (см. рис.) и для $\omega_c\approx1$ МНz, что характерно для электронов в ионосфере, входит в аудиодиапазон, а значит может быть услышана.

Рис. 1: Зависимости ${\rm Re}\,\omega(k_z)/\omega_p$ и ${\rm Im}\,\omega(k_z)/\omega_p$ при $\omega_c=0.2\omega_p,\,\omega_p\tau=10$