×

Quiz 2

1/1 question correct

Excellent!

Retake

Next (/learn/approximation-algorithms-part-2/lecture/Zjfj2/geometry-of-lp-duality)

1.

Consider the following linear program.

$$\min 10x_1 + 5x_2 + 4x_3$$

s.t.

(Constraint 1)
$$x_1+x_2+x_3\geq 10$$

(Constraint 2)
$$x_1 - x_3 \geq 2$$

(Constraint 3)
$$-5x_1+x_2-2x_3\geq 4$$

(Constraint 4)
$$6x_1-x_2+x_3\geq 8$$

(Constraint 5,6,7)
$$x_1,x_2,x_3\geq 0$$

Consider the following assignments.

Assignment 1:
$$x_1 = 100, x_2 = 550, x_3 = 2$$
 , of value 3758.

Assignment 2:
$$x_1 = 12, x_2 = 64, x_3 = 0$$
, of value 440.

Assignment 3:
$$x_1=10, x_2=5, x_3=1$$
 , of value 129.

Pick all the correct statements.

2/6/2016 Quiz 2 | Coursera

	440 is an upper bound on the optimal value of the dual of the LP.
Well done!	
	3758 is an upper bound on the optimal value of the dual of the LP.
Well done!	
	129 is an upper bound on the optimal value of the dual of the LP.
Well done!	
	The optimal value of the LP is 129.
Well done!	

