

Presentation Round

AI POWERED SMART COMPONENT MANAGEMENT

KARUNASAGARI S D SRM TRP ENGINEER

KAVIYA R

NAVEEN RAJ K

YOGHANAARAYANAN

SRM TRP ENGINEERING COLLEG

TIRCHIRAPPALLI

MS JEYAMEDONA P (AP/CSE)

CHALLENGE

EOL Identification

Manual identification of End-of-Life components using tools, which is time-consuming and prone to errors.

FFF Replacement

Extensive manual research required to find suitable Form, Fit, and Function replacements.

Al-Based Automation

The need for an AI system to automate EOL identification and FFF replacement suggestions efficiently.

APPROACH

Automated EOL Identification

Al predicts and identifies End-of-Life components automatically using lifecycle data.

Automated FFF Replacement

Al suggests accurate Form, Fit, and Function replacements using GNNs and reinforcement learning.

AI-Based System Integration

Al integrates with existing tools to automate the entire EOL identification and replacement process.

VALUE PROPOSITION

PROS

- Automates EOL and FFF replacement processes, saving time and effort.
- Reduces errors and ensures accurate component identification.
- Predicts obsolescence early, enabling better planning and decision-making.

CONS

- Accuracy depends on the availability and quality of data.
- High initial setup costs for development and integration.
- Requires regular updates to stay accurate and effective.

TECHNICAL STACK

Technical Stack		
Frontend	React.js, HTML, CSS, Material- UI.	
Backend	Python (FastAPI/Flask), PostgreSQL/MongoDB.	
AI/ML	TensorFlow, PyTorch, Hugging Face Transformers.	
Data Sources	IHS Markit, SiliconExpert APIs.	
Integration	REST APIs, Docker, AWS/Google Cloud.	
DevOps	GitHub Actions, Jenkins, Prometheus.	

WORKFLOW

IMPLEMENTATION PLAN

Understand Requirements

Identify EOL challenges and gather data.

Build the Integrate System

Combine models, set up a database, and integrate into workflows.

Collect and Clean Data

Gather and organize data from IHS Markit, Silicon Expert.

Test with real data and validate predictions.

Develop Al Models

Build prediction models and use NLP for datasheet analysis.

Continuous Improvement

Collect feedback, refine models, and update regularly.

EXECUTION FLOW

Execution Drive Link

https://drive.google.com/file/d/1iwtOgDalZKsFl2ST_t3_TmzjcJY4Rk3i/view?usp=drivesdk

4147- PDF Drive Link

https://drive.google.com/file/d/1jMOsYWr5njm IV-ydzVUYs_yS4Jv4_a1b/view?usp=drivesdk

VALIDATION

(1) EOL Prediction→**GET**

(2) EOL Prediction→POST

(3) Datasheet Parsing→POST

COST ESTIMATE

COST ESTIMATI	ON
AI/ML Model Development	₹5,00,000 - ₹10,00,000
Frontend and Backend Development	₹4,00,000 - ₹8,00,000
Data Collection and Integration	₹3,00,000 - ₹5,00,000
Cloud Hosting (AWS, Google Cloud, Azure)	₹1,50,000 - ₹3,00,000
Licensing for APIs (IHS Markit, SiliconExpert)	₹2,00,000 - ₹5,00,000
AI/ML Libraries (TensorFlow, PyTorch)	₹1,00,000 - ₹2,00,000
Third-Party Tools (Hugging Face, PyTorch Geometric)	₹50,000 - ₹1,00,000
Server Maintenance	₹50,000 - ₹1,00,000 per year
Model Retraining and Updates	₹2,00,000 - ₹3,00,000 per year
Al Developers	₹8,00,000 - ₹12,00,000 per year
Frontend/Backend Developers	₹6,00,000 - ₹10,00,000 per year
Project Manager	₹5,00,000 - ₹8,00,000 per year
Data Scientists	₹7,00,000 - ₹12,00,000 per year
Total Estimated One-Time Development Cost	₹20,00,000 - ₹40,00,000
Annual Maintenance Cost	₹5,00,000 - ₹8,00,000

ASSUMPTIONS

Data Availability

Reliable and complete component data, including specifications and lifecycle information, is accessible from trusted sources.

Model Training

Sufficient historical data is available to train the AI models for accurate EOL predictions and FFF replacement suggestions.

System Integration

The Al system can be seamlessly integrated with existing tools and workflows without significant technical challenges.

CONCLUSION

The Al-powered solution automates EOL identification and FFF replacement, improving accuracy and reducing manual effort. By using advanced technologies like predictive analytics and natural language processing, it offers a scalable, cost-effective way to manage components. The system enhances decision-making and evolves with user feedback for continuous improvement, providing long-term benefits for industries.

REFERENCES

> Input Collection

IHS Markit for lifecycle data.

> EOL Prediction

Al and Supply Chain Management.

> Knowledge Graph

Al lifecycle management (IEEE Xplore).

Semantic Parsing

LLMs for datasheet parsing.

> FFF Recommendations

Al optimization (IEEE Xplore).

> User Interaction

Al decision support (IEEE Xplore)

Continuous Improvement

Feedback loops (IEEE Xplore).

THANK YOU!

