Polar Coordinates *

Editorial 🖰

Polar coordinates are an alternative way of representing Cartesian coordinates or Complex Numbers.

Leaderboard

A complex number **z** Capture.PNG

Problem

$$z = x + yj$$

is completely determined by its real part $m{x}$ and imaginary part $m{y}$. Here, $m{j}$ is the imaginary unit.

Submissions

A polar coordinate ($m{r}, m{arphi}$)

is completely determined by modulus $m{r}$ and phase angle $m{arphi}$.

If we convert complex number \boldsymbol{z} to its polar coordinate, we find:

- $m{r}$: Distance from $m{z}$ to origin, i.e., $\sqrt{m{x^2+y^2}}$
- $m{arphi}$: Counter clockwise angle measured from the positive $m{x}$ -axis to the line segment that joins $m{z}$ to the origin.

Python's cmath module provides access to the mathematical functions for complex numbers.

cmath.phase

This tool returns the phase of complex number $m{z}$ (also known as the argument of $m{z}$).

abs

This tool returns the modulus (absolute value) of complex number $oldsymbol{z}$.

Task

You are given a complex $oldsymbol{z}$. Your task is to convert it to polar coordinates.

Input Format

A single line containing the complex number \boldsymbol{z} . Note: complex() function can be used in python to convert the input as a complex number.

Constraints

Given number is a valid complex number

Output Format

Output two lines:

The first line should contain the value of $\boldsymbol{\tau}$.

The second line should contain the value of $\boldsymbol{\varphi}$.

Sample Input

1+2 j

Sample Output

2.23606797749979
1.1071487177940904

Note: The output should be correct up to 3 decimal places.

You have earned 10.00 points! 45/115 challenges solved.

39%

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature