Классификация вероятностных распределений

С.Е. Володин

МФТИ

Выборка

- lacksquare Вероятностные распределения $\{f_k(x)\colon \mathbb{R} o \mathbb{R}\}_{k=1}^K$
- $oldsymbol{0}$ Выбирается $k \in \overline{1,K}$
- $oldsymbol{3}$ Выбираются $[a,b]\subseteq \mathbb{R}$
- $oldsymbol{0}$ [a,b] разбивается на 101 часть: $[a,b] = \coprod_{s=0}^{100} \Delta_s$,

$$|\Delta_0| = |\Delta_{100}| = \frac{\Delta_s}{2}$$

- \odot Генерируются $t_z \sim f_k$
- $oldsymbol{\circ}$ Вычисляется количество объектов в Δ_s : $x_s^i = \sum\limits_z [t_z \in \Delta_s]$
 - \Rightarrow Получен объект выборки $\{x_s\}\in\mathfrak{D}$

Выборка

Ответы: $y_i = [k = \hat{k}]$ для фиксированного \hat{k} .

$$f_{\hat{k}} = ax^{a-1} \big[x \in [0,1] \big]$$

Рис.: 1. Обучающая выборка, $v_i = 0$

Рис.: 2. Обучающая выборка, $y_i = 1$

Решение

Идея: снижение размерности

① Аппроксимация многочленом $\sum |P_n(s)-x_s|^2 o \min$

② Использование коэффициентов $\mathrm{coeff}(P_n)$ как признаков объекта $\{x_s^i\}\in\mathfrak{D}$

Выбор степени

Ответ: $n^* = 3$

Результаты

Результаты

# Δ2d Team Name	Score 🔞
1 -	0.99450
2 –	0.99412
3 -	0.98403
4 – SergeyVolodin	0.97144

Спасибо за внимание. Вопросы?