Modelowanie procesów biznesowych W4

dr inż. Janusz Granat

Plan wykładu

- Zaawansowane elementy BPMN
- Narzędzia do modelowania
- Powiązania z modelami analitycznymi

Typy diagramów

- Diagramy procesów
- Diagramy współpracy (baseny, przepływy wiadomości)
- Diagramy konwersacji (baseny, konwersacje i linki konwersacji)

Artefakty – pomocnicze informacje dotyczące procesów

- Opisy tekstowe
- Grupowanie
- Obiekty danych (bazy, dane wejściowe, dany wyjściowe)

 Asocjacja jest wykorzystana do połączenia pomiędzy artefaktami a obiektami BPMN

Artefakty - przykład

Proces biznesowy prywatny

Proces wewnętrzny w organizacji nie jest dostępny dla aktorów zewnętrznych. Modelowany jest w ramach jednego basenu (partycji). W organizacji modelujemy wiele procesów wewnętrznych.

https://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf

Przykładowa mapa procesów wewnętrznych

Procesy HR

ARIS

Proces poszukiwania kandydatów (proces wewnętrzny)

Proces biznesowy (publiczny)

Proces publiczny pokazuje interakcję między procesem wewnętrznym a innym procesem lub aktorem (uczestnikiem)

https://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf

Interakcja i przepływ wiadomości

Proces współpraca

Proces współpracy pokazuje współpracę pomiędzy procesami. Występuję co najmniej 2 baseny.

Proces współpraca - przykład

Diagram choreografii

W diagramie choreografii aktywności są interakcjami wymiany wiadomości. Pozwala na modelowanie współpracy, które swoim zakresem wychodzą poza granice organizacji.

https://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf

Konwersacja

Diagram konwersacji pokazuje wysokopoziomowy logiczny model wymiany wiadomości

https://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf

Modelowanie a procesy biznesowe

- Symulacje
- Proces mining
- Optymalizacja

Symulacja

https://bimp.cs.ut.ee/simulator

Madis Abel. "Lightning fast business process simulator", Master's Thesis, University of Tartu, 2011.

Komponenty symulacji

Pufahl, Luise & Wong, Tsun & Weske, Mathias. (2018). Design of an Extensible BPMN Process Simulator. 10.1007/978-3-319-74030-0_62.

BIMP – narzędzie do symulacji

Scenariusze symulacji

WSYZ 2024Z, Politechnika Warszawska

Analiza scenariuszy

Scenariusz	pracownik	manager	wnioski	koszt(EUR)	Czas (day)
1	1	1	40	1453.7	4,2
2	3	3	40	1674.8	1,1

Proces mining

Dane

Case ID	Activity name	Activity start	Activity end	Executed by
Order_100000	Create Purchase Requisition	01.01.2019 00:23	01.01.2019 01:11	Requester
Order_100000	Review Purchase Requisition	02.01.2019 13:46	02.01.2019 14:09	Budget Holder
Order_100000	Create Purchase Order	03.01.2019 07:49	03.01.2019 08:42	Purchaser
Order_100000	Receive Invoice	04.01.2019 03:20	04.01.2019 04:10	Invoice Processor
Order_100000	Perform Goods Receipt or Service Entry	13.01.2019 20:55	13.01.2019 21:30	Receiver
Order_100000	Process Invoice	16.01.2019 07:32	16.01.2019 09:59	Invoice Processor
Order_100000	Initiate Approval Workflow	18.01.2019 15:45	18.01.2019 16:11	Invoice Processor
Order_100000	Review and Approve Invoice	20.01.2019 11:25	20.01.2019 11:56	Budget Holder
Order_100000	Post Invoice	21.01.2019 06:09	21.01.2019 07:10	Accounts Payable Clerk
Order_100000	Pay Invoice	21.01.2019 23:40	22.01.2019 01:38	Senior Accounts Payable Clerk
Order_100001	Create Purchase Requisition	01.01.2019 02:12	01.01.2019 02:47	Requester
Order_100001	Review Purchase Requisition	01.01.2019 07:28	01.01.2019 07:44	Budget Holder
Order_100001	Create Purchase Order	03.01.2019 22:31	03.01.2019 23:00	Purchaser
Order_100001	Perform Commercial Review	04.01.2019 04:50	04.01.2019 05:09	Budget Holder
Order_100001	Receive Invoice	07.01.2019 03:32	07.01.2019 04:16	Invoice Processor
Order_100001	Perform Goods Receipt or Service Entry	16.01.2019 23:00	16.01.2019 23:59	Receiver

Odtworzenie procesu

Process mining

Optymalizacja i BPMN

Zadania optymalizacji i BPMN - przykład

Przykład procesu bez optymalizacji

Business process optimization by workflow analyzis Ahmad Shraideh, Hervé Camus, Pascal Yim

Optymalizacja

Business process optimization by workflow analyzis
Ahmad Shraideh, Hervé Camus, Pascal Yim

Model optymalizacji – minimalizacja czasu realizacji zadań

$$Min \sum_{i=1}^{N+L} \sum_{j=1}^{J} X_{ij} * T_{ij} + \sum_{j=1}^{J} X_{ij} \times T_{ij} + \sum_{k=1, K}^{K} C_{ik} \times (a_{ik} \times Tnew_{ik} + \sum_{l=1, l \neq i}^{I} a_{lk} \times Told_{lk}) \leq Ca_{I}$$

$$\begin{split} \sum_{k=1,}^{K} C_{ik} \times \left(a_{ik} \times Tnew_{ik} + \sum_{l=1,l \neq i}^{I} a_{lk} \times Told_{lk}\right) \\ + \sum_{j=1}^{J} X_{ij} \times T_{ij} &\leq Cap_{i}(t) \times U_{i}(t), \forall i \in \{1,2,..,I\} \\ \sum_{i=1}^{I} X_{ij} &= QT_{j}(t), \qquad \forall j \in \{1,2,..,J\} \\ \sum_{k=1}^{K} C_{ik} &= K, \forall i \in \{1,2,..,I\} \\ U_{i}(t) &= 0, \qquad \forall U_{it} \in Abs_{t} \end{split}$$

Business process optimization by workflow analyzis Ahmad Shraideh, Hervé Camus, Pascal Yim

$$\sum_{i=1}^{N} U_i(t) = |Prs_t|$$

Dostawcy narzędzi do modelowania procesów biznesowych

Magic Quadrant for Enterprise Architecture modelling (Gartner, 2020)

Narzędzia do modelowania

- BizAgi
- Aris
- Enterprise architect

BizAgi

Aris – wiele widoków

Aris

Enterprise Architect

