Package 'SlimR'

October 8, 2025

Version 1.0.8

Title Machine Learning-Assisted, Marker-Based Tool for Single-Cell and Spatial Transcriptomics Annotation

Description Annotates single-cell and spatial-transcriptomic (ST) data using marker datasets. Supports unified markers list ('Markers_list') creation from built-in databases (e.g., 'Cell-marker2', 'PanglaoDB', 'scIBD', 'TCellSI'), Seurat objects, or user-supplied Excel files. SlimR can predict calculate parameters by machine learning algorithms (e.g., 'Random Forest', 'Gradient Boosting', 'Support Vector Machine', 'Ensemble Learning'), and based on Markers_list, calculate gene expression of different cell types and predict annotation information and calculate corresponding AUC and annotate it, then verify it. At the same time, it can calculate gene expression corresponding to the cell type to generate a reference map for manual annotation (e.g., 'Heat Map', 'Feature Plots', 'Combined Plots'). For more details see Kabacoff (2020, ISBN:9787115420572).

License MIT + file LICENSE

```
URL https://github.com/Zhaoqing-wang/SlimR
```

BugReports https://github.com/Zhaoqing-wang/SlimR/issues

Depends R (>= 3.5)

Imports cowplot, dplyr, ggplot2, patchwork, pheatmap, readxl, scales, Seurat, tidyr, tools, tibble

Suggests crayon, caret, gbm, lattice

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Date 2025-10-08

NeedsCompilation no

Author Zhaoqing Wang [aut, cre] (ORCID:

<https://orcid.org/0000-0001-8348-7245>)

Maintainer Zhaoqing Wang <zhaoqingwang@mail.sdu.edu.cn>

Repository CRAN

Date/Publication 2025-10-08 12:00:13 UTC

Contents

	calculate_cluster_variability	2
	calculate_expression	3
	calculate_expression_skewness	4
		5
		6
	Cellmarker2_raw	6
	Cellmarker2_table	7
	Celltype_Annotation	8
	Celltype_annotation_Cellmarker2	9
	Celltype_Annotation_Combined	1
	Celltype_annotation_Excel	2
	Celltype_Annotation_Features	4
	Celltype_Annotation_Heatmap	6
	Celltype_annotation_PanglaoDB	8
	Celltype_annotation_Seurat	9
	Celltype_Calculate	1
	Celltype_Verification	3
	estimate_batch_effect	5
	extract_dataset_features	5
	generate_training_data	6
	Markers_filter_Cellmarker2	7
	Markers_filter_PanglaoDB	8
	Markers_list_scIBD	9
	Markers_list_TCellSI	0
	PanglaoDB	0
	PanglaoDB_raw	1
	PanglaoDB_table	2
	Parameter_Calculate	2
	postprocess_parameters	4
	predict_optimal_parameters	5
	Read_excel_markers	5
	Read_seurat_markers	6
	train_parameter_model	7
Index	3	9
		_
calcu	ulate_cluster_variability	
	Calculate Cluster Variability	

Description

Measures the degree of separation between different cell clusters based on expression patterns.

calculate_expression 3

Usage

```
calculate_cluster_variability(data.features, features)
```

Arguments

data. features Data frame containing expression data and cluster labels

features Feature names to include in analysis

Value

Numeric value representing cluster separation strength

See Also

```
Other Section_1_Functions_Use_in_Package: calculate_expression(), calculate_expression_skewness(), calculate_probability(), estimate_batch_effect(), extract_dataset_features(), generate_training_data(), postprocess_parameters(), predict_optimal_parameters(), train_parameter_model()
```

calculate_expression Counts average expression of gene set (Use in package)

Description

Counts average expression of gene set (Use in package)

Usage

```
calculate_expression(
  object,
  features,
  assay = NULL,
  cluster_col = NULL,
  colour_low = "white"
  colour_high = "navy"
)
```

Arguments

object	Enter a Seurat object.
features	Enter one or a set of markers.
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = $NULL$ ".
cluster_col	Enter the meta.data column in the Seurat object to be annotated, such as "seurat_cluster". Default parameters use "cluster_col = NULL".
colour_low	Color for lowest expression level. (default = "white")
colour_high	Color for highest expression level. (default = "black")

Value

Average expression genes and relatied informations in the input "Seurat" object given "cluster_col" and given "features".

See Also

Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression_skewness(calculate_probability(), estimate_batch_effect(), extract_dataset_features(), generate_training_data(), postprocess_parameters(), predict_optimal_parameters(), train_parameter_model()

calculate_expression_skewness

Calculate Expression Distribution Skewness

Description

Computes the average skewness of gene expression distributions across all features.

Usage

calculate_expression_skewness(expression_matrix)

Arguments

expression_matrix

Matrix of expression values

Value

Mean absolute skewness across all genes

See Also

Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression(), calculate_probability(), estimate_batch_effect(), extract_dataset_features(), generate_training_data(), postprocess_parameters(), predict_optimal_parameters(), train_parameter_model()

calculate_probability 5

calculate_probability Calculate gene set expression and infer probabilities with control datasets (Use in package)

Description

Calculate gene set expression and infer probabilities with control datasets (Use in package)

Usage

```
calculate_probability(
  object,
  features,
  assay = NULL,
  cluster_col = NULL,
  min_expression = 0.1,
  specificity_weight = 3
)
```

Arguments

object Enter a Seurat object.

features Enter one or a set of markers.

assay Enter the assay used by the Seurat object, such as "RNA". Default parameters

use "assay = NULL".

cluster_col Enter the meta.data column in the Seurat object to be annotated, such as "seu-

rat_cluster". Default parameters use "cluster_col = NULL".

min_expression The min_expression parameter defines a threshold value to determine whether

a cell's expression of a feature is considered "expressed" or not. It is used to filter out low-expression cells that may contribute noise to the analysis. Default

parameters use "min_expression = 0.1".

specificity_weight

The specificity_weight parameter controls how much the expression variability (standard deviation) of a feature within a cluster contributes to its "specificity score." It amplifies or suppresses the impact of variability in the final score cal-

culation.Default parameters use "specificity_weight = 3".

Value

Average expression of genes in the input "Seurat" object given "cluster_col" and given "features".

See Also

```
Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression(), calculate_expression_skewness(), estimate_batch_effect(), extract_dataset_features(), generate_training_data(), postprocess_parameters(), predict_optimal_parameters(), train_parameter_model()
```

6 Cellmarker2_raw

Cellmarker2

Cellmarker2 dataset

Description

A dataset containing marker genes for different cell types from Cellmarker2

Usage

Cellmarker2

Format

A data frame with 8 columns:

Details

This dataset is used to filter and create a standardized marker list. The dataset can be filtered based on species, tissue class, tissue type, cancer type, and cell type to generate a list of marker genes for specific cell types.

Source

```
http://117.50.127.228/CellMarker/
```

See Also

Other Section_O_Database: Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB, PanglaoDB_raw, PanglaoDB_table

Cellmarker2_raw

Cellmarker2 raw dataset

Description

A dataset containing marker genes for different cell types from Cellmarker2

Usage

Cellmarker2_raw

Format

A data frame with 20 columns contined in the Cellmarker2 database:

Cellmarker2_table 7

Details

This dataset is used to filter and create a standardized marker list. The dataset can be filtered based on species, tissue class, tissue type, cancer type, and cell type to generate a list of marker genes for specific cell types.

Source

```
http://117.50.127.228/CellMarker/
```

See Also

Other Section_0_Database: Cellmarker2, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB, PanglaoDB_raw, PanglaoDB_table

Cellmarker2_table

Cellmarker2 table

Description

A dataset containing marker genes for different cell types from Cellmarker2

Usage

Cellmarker2_table

Format

A list contain different types like species, tissue_class, tissue_type, cancer_type, cell_type

Details

This list is used to choose filters for creation of standardized marker list.

Source

```
http://117.50.127.228/CellMarker/
```

See Also

Other Section_0_Database: Cellmarker2, Cellmarker2_raw, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB, PanglaoDB_raw, PanglaoDB_table

8 Celltype_Annotation

Celltype_Annotation

Annotate Seurat Object with SlimR Cell Type Predictions

Description

This function assigns SlimR predicted cell types to a Seurat object based on cluster annotations, and stores the results in the meta.data slot.

Usage

```
Celltype_Annotation(
   seurat_obj,
   cluster_col,
   SlimR_anno_result,
   plot_UMAP = TRUE,
   annotation_col = "Cell_type_SlimR"
)
```

Arguments

seurat_obj A Seurat object containing cluster information in meta.data.

cluster_col Character string indicating the column name in meta.data that contains cluster

IDs.

SlimR_anno_result

List generated by function Celltype_Calculate() which containing a data.frame in \$Prediction_results with: 1.cluster_col (Cluster identifiers (should match cluster_col in meta.data)) 2.Predicted_cell_type (Predicted cell types for each cluster_col in meta.data)

ter).

plot_UMAP logical(1); if TRUE, plot the UMAP with cell type annotations.

annotation_col The location to write in 'meta.data' that contains the predicted cell type. (default = "Cell_type_SlimR")

Value

A Seurat object with updated meta.data containing the predicted cell types.

Note

If plot_UMAP = TRUE, this function will print a UMAP plot as a side effect.

See Also

```
Other Section_3_Automated_Annotation_Workflow: Celltype_Calculate(), Celltype_Verification(), Parameter_Calculate()
```

Examples

Celltype_annotation_Cellmarker2

Uses "marker_list" from Cellmarker2 for cell annotation

Description

Uses "marker_list" from Cellmarker2 for cell annotation

Usage

```
Celltype_annotation_Cellmarker2(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    min_counts = 1,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	Enter the standard "Marker_list" generated by the Cellmarker2 database for the SlimR package, generated by the "Markers_filter_Cellmarker2 ()" function.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".

```
Enter the assay used by the Seurat object, such as "RNA". Default parameters
assay
                  use "assay = "RNA"".
                  The output path of the cell annotation picture. Example parameters use "save_path
save_path
                  = './SlimR/Celltype_annotation_Cellmarker2/'".
min_counts
                  The minimum number of counts of genes in "Marker_list" entered. This number
                  represents the number of the same gene in the same species and the same loca-
                  tion in the Cellmarker2 database used for annotation of this cell type. Default
                  parameters use "min_counts = 1".
colour_low
                  Color for lowest expression level. (default = "white")
colour_high
                  Color for highest expression level. (default = "navy")
colour_low_mertic
                  Color for lowest mertic level. (default = "white")
colour_high_mertic
                  Color for highest mertic level. (default = "navy")
```

Value

The cell annotation picture is saved in "save_path".

See Also

 $Other Section_5_Other_Functions_Provided_by_SlimR: Celltype_annotation_Excel(), Celltype_annotation_PanglaCelltype_annotation_Seurat()$

Examples

```
## Not run:
Celltype_annotation_Cellmarker2(seurat_obj = sce,
    gene_list = Markers_list_Cellmarker2,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(),"SlimR_Celltype_annotation_Cellmarker2")
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_low_mertic = "navy",
    )

## End(Not run)
```

```
Celltype_Annotation_Combined
```

Uses "marker_list" to generate combined plot for cell annotation

Description

Uses "marker_list" to generate combined plot for cell annotation

Usage

```
Celltype_Annotation_Combined(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    colour_low = "white",
    colour_high = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	A list of cells and corresponding gene controls, the name of the list is cell type, and the first column of the list corresponds to markers. Lists can be generated using functions such as "Markers_filter_Cellmarker2 ()", "Markers_filter_PanglaoDB ()", "read_excel_markers ()", "read_seurat_markers ()", etc.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
save_path	The output path of the cell annotation picture. Example parameters use "save_path = './SlimR/Celltype_annotation_Bar/'".
colour_low	Color for lowest expression level. (default = "white")
colour_high	Color for highest expression level. (default = "navy")

Value

The cell annotation picture is saved in "save_path".

See Also

```
Other Section_4_Semi_Automated_Annotation_Workflow: Celltype_Annotation_Features(), Celltype_Annotation_Heatmap()
```

Examples

```
## Not run:
Celltype_Annotation_Combined(seurat_obj = sce,
    gene_list = Markers_list,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(),"SlimR_Celltype_Annotation_Combined"),
    colour_low = "white",
    colour_high = "navy"
    )
## End(Not run)
```

Celltype_annotation_Excel

Uses "marker_list" from Excel input for cell annotation

Description

Uses "marker_list" from Excel input for cell annotation

Usage

```
Celltype_annotation_Excel(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    metric_names = NULL,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_ligh_mertic = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	Enter the standard "Marker_list" generated by the Excel files database for the SlimR package, generated by the "read_excel_markers()" function.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = "seurat_clusters"".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
save_path	The output path of the cell annotation picture. Example parameters use "save_path = './SlimR/Celltype_annotation_Excel/'".
metric_names	Change the row name for the input mertics, not recommended unless necessary. (NULL is used as default parameter)
colour_low	Color for lowest expression level. (default = "white")
colour_high colour_low_mert	Color for highest expression level. (default = "navy")
COTOUI _TOW_IIIe1 (
colour_high_mer	Color for lowest mertic level. (default = "white")
COTOUI _IITBII_IIIEI	
	Color for highest mertic level. (default = "navy")

Value

The cell annotation picture is saved in "save_path".

See Also

```
Other Section_5_Other_Functions_Provided_by_SlimR: Celltype_annotation_Cellmarker2(), Celltype_annotation_PanglaoDB(), Celltype_annotation_Seurat()
```

Examples

```
## Not run:
Celltype_annotation_Excel(seurat_obj = sce,
    gene_list = Markers_list_Excel,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(), "SlimR_Celltype_annotation_Excel")
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_low_mertic = "navy",
    )

## End(Not run)
```

Celltype_Annotation_Features

Annotate cell types using features plot with different marker databases

Description

This function dynamically selects the appropriate annotation method based on the gene_list_type parameter. It supports marker databases from Cellmarker2, PanglaoDB, Seurat (via FindAllMarkers), or Excel files.

Usage

```
Celltype_Annotation_Features(
    seurat_obj,
    gene_list,
    gene_list_type = "Default",
    species = NULL,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    min_counts = 1,
    metric_names = NULL,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy",
    ...
)
```

Arguments

seurat_obj	A valid Seurat object with cluster annotations in meta.data.
gene_list	A list of data frames containing marker genes and metrics. Format depends on gene_list_type: - Cellmarker2: Generated by Markers_filter_Cellmarker2() PanglaoDB: Generated by Markers_filter_PanglaoDB() Seurat: Generated by read_seurat_markers() Excel: Generated by read_excel_markers().
<pre>gene_list_type</pre>	Type of marker database to use. Be one of: "Cellmarker2", "PanglaoDB", "Seurat", or "Excel".
species	Species of the dataset: "Human" or "Mouse" for gene name standardization.
cluster_col	Column name in meta.data defining clusters (default: "seurat_clusters").
assay	Assay layer in the Seurat object (default: "RNA").
save_path	Directory to save output PNGs. Must be explicitly specified.
min_counts	Minimum number of counts for Cellmarker2 annotations (default: 1).
metric_names	Optional. Change the row name for the input mertics, not recommended unless necessary. (NULL is used as default parameter; used in "Seurat"/"Excel").

```
colour_low Color for lowest expression level. (default = "white")

colour_high Color for highest expression level. (default = "navy")

colour_low_mertic

Color for lowest mertic level. (default = "white")

colour_high_mertic

Color for highest mertic level. (default = "navy")

... Additional parameters passed to the specific annotation function.
```

Value

Saves cell type annotation PNGs in save_path. Returns invisibly.

See Also

```
Other Section_4_Semi_Automated_Annotation_Workflow: Celltype_Annotation_Combined(), Celltype_Annotation_Heatmap()
```

Examples

```
## Not run:
# Example for Cellmarker2
Celltype_Annotation_Features(seurat_obj = sce,
   gene_list = Markers_list_Cellmarker2,
    species = "Human",
   cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(), "SlimR_Celltype_annotation_Cellmarker2"),
   colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy",
    )
# Example for PanglaoDB
Celltype_Annotation_Features(seurat_obj = sce,
    gene_list = Markers_list_panglaoDB,
    species = "Human",
   cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(), "SlimR_Celltype_annotation_PanglaoDB")
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy",
# Example for Seurat marker list
Celltype_Annotation_Features(seurat_obj = sce,
    gene_list = Markers_list_Seurat,
    species = "Human",
    cluster_col = "seurat_clusters",
```

```
assay = "RNA",
   save_path = file.path(tempdir(), "SlimR_Celltype_annotation_Seurat")
   colour_low = "white",
   colour_high = "navy",
   colour_low_mertic = "white",
   colour_high_mertic = "navy",
   )
# Example for Excel marker list
Celltype_Annotation_Features(seurat_obj = sce,
   gene_list = Markers_list_Excel,
   species = "Human",
   cluster_col = "seurat_clusters",
   assay = "RNA",
   save_path = file.path(tempdir(), "SlimR_Celltype_annotation_Excel")
   colour_low = "white",
   colour_high = "navy",
   colour_low_mertic = "white",
   colour_high_mertic = "navy",
## End(Not run)
```

Celltype_Annotation_Heatmap

Uses "marker_list" to generate heatmap for cell annotation

Description

Uses "marker_list" to generate heatmap for cell annotation

Usage

```
Celltype_Annotation_Heatmap(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    min_expression = 0.1,
    specificity_weight = 3,
    colour_low = "navy",
    colour_high = "firebrick3"
)
```

Arguments

	seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
	gene_list	A list of cells and corresponding gene controls, the name of the list is cell type, and the first column of the list corresponds to markers. Lists can be generated using functions such as "Markers_filter_Cellmarker2 ()", "Markers_filter_PanglaoDB ()", "read_excel_markers ()", "read_seurat_markers ()", etc.
	species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
	cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".
	assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
	min_expression	The min_expression parameter defines a threshold value to determine whether a cell's expression of a feature is considered "expressed" or not. It is used to filter out low-expression cells that may contribute noise to the analysis. Default parameters use "min_expression = 0.1 ".
specificity_weight		
		The specificity_weight parameter controls how much the expression variability (standard deviation) of a feature within a cluster contributes to its "specificity score." It amplifies or suppresses the impact of variability in the final score calculation.Default parameters use "specificity_weight = 3".
	colour_low	Color for lowest probability level in Heatmap visualization of probability matrix. (default = "navy")
	colour_high	Color for highest probability level Heatmap visualization of probability matrix. (default = "firebrick3")

Value

The heatmap of the comparison between "cluster_col" in the Seurat object and the given gene set "gene_list" needs to be annotated.

See Also

Other Section_4_Semi_Automated_Annotation_Workflow: Celltype_Annotation_Combined(), Celltype_Annotation_Features()

Examples

```
## Not run:
Celltype_Annotation_Heatmap(seurat_obj = sce,
    gene_list = Markers_list,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    min_expression = 0.1,
    specificity_weight = 3,
```

```
colour_low = "navy",
colour_high = "firebrick3"
)
## End(Not run)
```

Celltype_annotation_PanglaoDB

Uses "marker_list" from PanglaoDB for cell annotation

Description

Uses "marker_list" from PanglaoDB for cell annotation

Usage

```
Celltype_annotation_PanglaoDB(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    metric_names = NULL,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	Enter the standard "Marker_list" generated by the PanglaoDB database for the SlimR package, generated by the "Markers_filter_PanglaoDB ()" function.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
save_path	The output path of the cell annotation picture. Example parameters use "save_path = './SlimR/Celltype_annotation_PanglaoDB/'".

Value

The cell annotation picture is saved in "save_path".

See Also

```
Other Section_5_Other_Functions_Provided_by_SlimR: Celltype_annotation_Cellmarker2(), Celltype_annotation_Excel(), Celltype_annotation_Seurat()
```

Examples

```
## Not run:
Celltype_annotation_PanglaoDB(seurat_obj = sce,
    gene_list = Markers_list_panglaoDB,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(),"SlimR_Celltype_annotation_PanglaoDB")
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_low_mertic = "navy",
    )

## End(Not run)
```

```
Celltype_annotation_Seurat
```

Uses "marker_list" from Seurat object for cell annotation

Description

Uses "marker_list" from Seurat object for cell annotation

Usage

```
Celltype_annotation_Seurat(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    metric_names = NULL,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	Enter the standard "Marker_list" generated by the Seurat object database for the SlimR package, generated by the "read_seurat_markers()" function.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
save_path	The output path of the cell annotation picture. Example parameters use "save_path = './SlimR/Celltype_annotation_Seurat/'".
metric_names	Change the row name for the input mertics, not recommended unless necessary. (NULL is used as default parameter)
colour_low	Color for lowest expression level. (default = "white")
colour_high	Color for highest expression level. (default = "navy")
colour_low_mertic	
	Color for lowest mertic level. (default = "white")
colour_high_mertic	
	Color for highest mertic level. (default = "navy")

Value

The cell annotation picture is saved in "save_path".

See Also

```
Other Section_5_Other_Functions_Provided_by_SlimR: Celltype_annotation_Cellmarker2(), Celltype_annotation_Excel(), Celltype_annotation_PanglaoDB()
```

Celltype_Calculate 21

Examples

```
## Not run:
Celltype_annotation_Seurat(seurat_obj = sce,
    gene_list = Markers_list_Seurat,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(),"SlimR_Celltype_annotation_Seurat")
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_lom_high_mertic = "navy",
    )

## End(Not run)
```

Celltype_Calculate

Uses "marker_list" to calculate probability, prediction results, AUC and generate heatmap for cell annotation

Description

Uses "marker_list" to calculate probability, prediction results, AUC and generate heatmap for cell annotation

Usage

```
Celltype_Calculate(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    min_expression = 0.1,
    specificity_weight = 3,
    threshold = 0.8,
    compute_AUC = TRUE,
    plot_AUC = TRUE,
    AUC_correction = TRUE,
    colour_low = "navy",
    colour_high = "firebrick3"
)
```

Arguments

seurat_obj

Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.

22 Celltype_Calculate

gene_list A list of cells and corresponding gene controls, the name of the list is cell type, and the first column of the list corresponds to markers. Lists can be generated using functions such as "Markers_filter_Cellmarker2 ()", "Markers_filter_PanglaoDB ()", "read_excel_markers ()", "read_seurat_markers ()", etc. species This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker list". Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat cluster_col object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'". Enter the assay used by the Seurat object, such as "RNA". Default parameters assay use "assay = 'RNA'". min_expression The min_expression parameter defines a threshold value to determine whether a cell's expression of a feature is considered "expressed" or not. It is used to filter out low-expression cells that may contribute noise to the analysis. Default parameters use "min_expression = 0.1". specificity_weight The specificity_weight parameter controls how much the expression variability (standard deviation) of a feature within a cluster contributes to its "specificity score." It amplifies or suppresses the impact of variability in the final score calculation. Default parameters use "specificity weight = 3". threshold This parameter refers to the normalized similarity between the "alternative cell type" and the "predicted cell type" in the returned results. (the default parameter is 0.8) compute_AUC Logical indicating whether to calculate AUC values for predicted cell types. AUC measures how well the marker genes distinguish the cluster from others. When TRUE, adds an AUC column to the prediction results. (default: TRUE) The logic indicates whether to draw an AUC curve for the predicted cell type. plot_AUC When TRUE, add an AUC_plot to result. (default: TRUE) AUC_correction Logical value controlling AUC-based correction. (default = TRUE) When set to TRUE: 1.Computes AUC values for candidate cell types. (probability > threshold) 2. Selects the cell type with the highest AUC as the final predicted type. 3.Records the selected type's AUC value in the "AUC" column. Color for lowest probability level in Heatmap visualization of probability macolour_low trix. (default = "navy") colour_high Color for highest probability level Heatmap visualization of probability matrix. (default = "firebrick3")

Value

A list containing:

- Expression_list: List of expression matrices for each cell type
- Proportion_list: List of proportion of expression for each cell type
- Expression_scores_matrix: Matrix of expression scores
- Probability_matrix: Matrix of normalized probabilities
- Prediction_results: Data frame with cluster annotations including:

Celltype_Verification 23

- cluster_col: Cluster identifier
- Predicted_cell_type: Primary predicted cell type
- AUC: Area Under the Curve value (when compute_AUC = TRUE)
- Alternative_cell_types: Semi-colon separated alternative cell types
- Heatmap_plot: Heatmap visualization of probability matrix
- AUC_plot: AUC visualization of Predicted cell type

See Also

```
Other Section_3_Automated_Annotation_Workflow: Celltype_Annotation(), Celltype_Verification(), Parameter_Calculate()
```

Examples

```
## Not run:
SlimR_anno_result <- Celltype_Calculate(seurat_obj = sce,
    gene_list = Markers_list,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    min_expression = 0.1,
    specificity_weight = 3,
    threshold = 0.8,
    compute_AUC = TRUE,
    plot_AUC = TRUE,
    AUC_correction = TRUE,
    colour_low = "navy",
    colour_high = "firebrick3"
)

## End(Not run)</pre>
```

Celltype_Verification Perform cell type verification and generate the validation dotplot

Description

This function performs verification of predicted cell types by selecting high log2FC and high expression proportion genes and generates and generate the validation dotplot.

Usage

```
Celltype_Verification(
  seurat_obj,
  SlimR_anno_result,
  assay = "RNA",
  gene_number = 5,
```

Celltype_Verification

```
colour_low = "white",
colour_high = "navy",
annotation_col = "Cell_type_SlimR"
)
```

Arguments

seurat_obj A Seurat object containing single-cell data. SlimR_anno_result A list containing SlimR annotation results with: Expression_list - List of expression matrices for each cell type. Prediction_results - Data frame with cluster annotations. Enter the assay used by the Seurat object, such as "RNA". Default parameters assay use "assay = 'RNA'". Integer specifying number of top genes to select per cell type. gene_number colour_low Color for lowest expression level. (default = "white") Color for highest expression level. (default = "navy") colour_high annotation_col Character string specifying the column in meta.data to use for grouping.

Value

A ggplot object showing expression of top variable genes.

See Also

```
Other Section_3_Automated_Annotation_Workflow: Celltype_Annotation(), Celltype_Calculate(), Parameter_Calculate()
```

Examples

```
## Not run:
Celltype_Verification(seurat_obj = sce,
    SlimR_anno_result = SlimR_anno_result,
    assay = "RNA",
    gene_number = 5,
    colour_low = "white",
    colour_high = "navy",
    annotation_col = "Cell_type_SlimR"
    )
## End(Not run)
```

estimate_batch_effect 25

```
estimate_batch_effect Estimate Batch Effect Strength
```

Description

Roughly estimates the potential impact of batch effects using available metadata.

Usage

```
estimate_batch_effect(seurat_obj, assay)
```

Arguments

```
seurat_obj Seurat object assay Assay name
```

Value

Batch effect score (0 indicates no detectable batch effect)

See Also

```
Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression(), calculate_expression_skewness(), calculate_probability(), extract_dataset_features(), generate_training_data(), postprocess_parameters(), predict_optimal_parameters(), train_parameter_model()
```

```
extract_dataset_features
```

Extract Dataset Characteristics for Machine Learning

Description

Computes various statistical features from single-cell data that are used as input for the parameter prediction model.

Usage

```
extract_dataset_features(
  seurat_obj,
  features,
  assay = NULL,
  cluster_col = NULL
)
```

Arguments

seurat_obj Seurat object
features Features to analyze
assay Assay name

cluster_col Cluster column name

Value

List of dataset characteristics including expression statistics, variability measures, and cluster properties

See Also

```
Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression(), calculate_expression_skewness(), calculate_probability(), estimate_batch_effect(), generate_training_data(), postprocess_parameters(), predict_optimal_parameters(), train_parameter_model()
```

```
generate_training_data
```

Generate Training Data for Machine Learning Model

Description

Creates synthetic training data based on empirical rules about optimal parameter relationships with dataset characteristics.

Usage

```
generate_training_data(dataset_features, n_samples = 1000)
```

Arguments

dataset_features

List of actual dataset characteristics

n_samples Number of synthetic samples to generate

Value

Data frame with synthetic features and optimal parameter targets

See Also

```
Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression(), calculate_expression_skewness(), calculate_probability(), estimate_batch_effect(), extract_dataset_features(), postprocess_parameters(), predict_optimal_parameters(), train_parameter_model()
```

```
Markers_filter_Cellmarker2
```

Create Marker_list from the Cellmarkers2 database

Description

Create Marker_list from the Cellmarkers2 database

Usage

```
Markers_filter_Cellmarker2(
   df,
   species = NULL,
   tissue_class = NULL,
   tissue_type = NULL,
   cancer_type = NULL,
   cell_type = NULL
)
```

Arguments

df	Standardized Cellmarkers2 database. It is read as data(Cellmarkers2) in the SlimR library.
species	Species information in Cellmarkers2 database. The default input is "Human" or "Mouse".The input can be retrieved by "Cellmarkers2_table". For more information,please refer to http://117.50.127.228/CellMarker/ on Cellmarkers2's official website.
tissue_class	Tissue_class information in Cellmarkers2 database. The input can be retrieved by "Cellmarkers2_table". For more information, please refer to http://117.50.127.228/CellMarker/on Cellmarkers2's official website.
tissue_type	Tissue_type information in Cellmarkers2 database. The input can be retrieved by "Cellmarkers2_table". For more information, please refer to http://117.50.127.228/CellMarker/on Cellmarkers2's official website.
cancer_type	Cancer_type information in Cellmarkers2 database. The input can be retrieved by "Cellmarkers2_table". For more information, please refer to http://117.50.127.228/CellMarker/ on Cellmarkers2's official website.
cell_type	Cell_type information in Cellmarkers2 database. The input can be retrieved by "Cellmarkers2_table". For more information, please refer to http://117.50.127.228/CellMarker/

Value

The standardized "Marker_list" in the SlimR package

on Cellmarkers2's official website.

See Also

```
Other Section_2_Standardized_Markers_List_Input: Markers_filter_PanglaoDB(), Read_excel_markers(), Read_seurat_markers()
```

Examples

```
Cellmarker2 <- SlimR::Cellmarker2
Markers_list_Cellmarker2 <- Markers_filter_Cellmarker2(
    Cellmarker2,
    species = "Human",
    tissue_class = "Intestine",
    tissue_type = NULL,
    cancer_type = NULL,
    cell_type = NULL
)</pre>
```

Markers_filter_PanglaoDB

Create Marker_list from the PanglaoDB database

Description

Create Marker_list from the PanglaoDB database

Usage

```
Markers_filter_PanglaoDB(df, species_input, organ_input)
```

Arguments

df Standardized PanglaoDB database. It is read as data(PanglaoDB) in the SlimR

library.

"Mouse".The input can be retrieved by "PanglaoDB_table". For more information,please refer to https://panglaodb.se/ on PanglaoDB's official website.

organ_input Organ type information in the PanglaoDB database. The input can be retrieved

by "PanglaoDB_table". For more information, please refer to https://panglaodb.se/

on PanglaoDB's official website.

Value

The standardized "Marker_list" in the SlimR package

See Also

```
Other Section_2_Standardized_Markers_List_Input: Markers_filter_Cellmarker2(), Read_excel_markers(), Read_seurat_markers()
```

Markers_list_scIBD 29

Examples

```
PanglaoDB <- SlimR::PanglaoDB
Markers_list_panglaoDB <- Markers_filter_PanglaoDB(
   PanglaoDB,
   species_input = 'Human',
   organ_input = 'GI tract'
   )</pre>
```

Markers_list_scIBD

List of cell type markers in the scIBD dataset

Description

A dataset containing marker genes for different human intestine cell types from scIBD

Usage

```
Markers_list_scIBD
```

Format

A list with one hundred and one tables.

Details

This list is a table of 101 types of human intestine cell types markers obtained from scIBD. The article doi source is "https://doi.org/10.1038/s43588-023-00464-9", and the reference literature is: Nie et al. (2023) doi:10.1038/s43588-023-00464-9. Note: The 'Markers_list_scIBD' was generated using section 2.5.2 and the parameters 'sort_by = "logFC"' and 'gene_filter = 20' were set.

Source

```
doi:10.1038/s43588023004649
```

See Also

Other Section_0_Database: Cellmarker2, Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, PanglaoDB, PanglaoDB_raw, PanglaoDB_table

30 PanglaoDB

Markers_list_TCellSI List of cell type markers in the TCellSI dataset

Description

A dataset containing marker genes for different T cell types from TCellSI

Usage

Markers_list_TCellSI

Format

A list with ten tables.

Details

This list is a table of 10 types of T cell markers obtained from TCellSI. The data source is "https://github.com/GuoBioinfoLab/and the reference literature is: Yang et al. (2024) doi:10.1002/imt2.231.

Source

https://github.com/GuoBioinfoLab/TCellSI/

See Also

Other Section_0_Database: Cellmarker2, Cellmarker2_raw, Cellmarker2_table, Markers_list_scIBD, PanglaoDB, PanglaoDB_raw, PanglaoDB_table

PanglaoDB

PanglaoDB dataset

Description

A dataset containing marker genes for different cell types from PanglaoDB

Usage

PanglaoDB

Format

A data frame with 9 columns:

Details

This dataset is used to filter and create a standardized marker list.'

PanglaoDB_raw 31

Source

```
https://panglaodb.se/
```

See Also

Other Section_0_Database: Cellmarker2, Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB_raw, PanglaoDB_table

PanglaoDB_raw

PanglaoDB raw dataset

Description

A dataset containing marker genes for different cell types from PanglaoDB

Usage

PanglaoDB_raw

Format

A data frame with 14 columns contined in the PanglaoDB database:

Details

This dataset is used to filter and create a standardized marker list.'

Source

```
https://panglaodb.se/
```

See Also

Other Section_0_Database: Cellmarker2, Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB, PanglaoDB_table

32 Parameter_Calculate

PanglaoDB_table

PanglaoDB table

Description

A dataset containing marker genes for different cell types from PanglaoDB

Usage

```
PanglaoDB_table
```

Format

A list contain different types like species, organ, cell type.

Details

This list is used to choose filters for creation of standardized marker list.

Source

```
https://panglaodb.se/
```

See Also

Other Section_O_Database: Cellmarker2, Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB, PanglaoDB_raw

Parameter_Calculate

Adaptive Parameter Tuning for Single-Cell Data Annotation in SlimR

Description

This function uses machine learning to automatically determine optimal min_expression and specificity_weight parameters for single-cell data analysis based on dataset characteristics.

Usage

```
Parameter_Calculate(
   seurat_obj,
   features,
   assay = NULL,
   cluster_col = NULL,
   method = "ensemble",
   n_models = 3,
   return_model = FALSE,
   verbose = TRUE
)
```

Parameter_Calculate 33

Arguments

seurat_obj	A Seurat object containing single-cell data
features	Character vector of feature names (genes) to analyze
assay	Name of assay to use (default: default assay)
cluster_col	Column name in metadata containing cluster information
method	Machine learning method: "rf" (random forest), "gbm" (gradient boosting), "svm" (support vector machine), or "ensemble" (default)
n_models	Number of models for ensemble learning (default: 3)
return_model	Whether to return trained model (default: FALSE)
verbose	Whether to print progress messages (default: TRUE)

Value

A list containing:

- min_expression: Recommended expression threshold
- specificity_weight: Recommended specificity weight
- performance: Model performance metric (R-squared)
- dataset_features: Extracted dataset characteristics
- model: Trained model (if return_model = TRUE)

See Also

```
Other Section_3_Automated_Annotation_Workflow: Celltype_Annotation(), Celltype_Calculate(), Celltype_Verification()
```

Examples

```
## Not run:
# Basic usage
SlimR_params <- Parameter_Calculate(</pre>
  seurat_obj = sce,
  features = c("CD3E", "CD4", "CD8A"),
  assay = "RNA",
  cluster_col = "seurat_clusters",
  method = "ensemble",
 n_{models} = 3,
  return_model = FALSE,
  verbose = TRUE
# Use with custom method
SlimR_params <- Parameter_Calculate(</pre>
  seurat_obj = sce,
  features = unique(Markers_list_Cellmarker2$`B cell`$marker),
  assay = "RNA",
  cluster_col = "seurat_clusters",
```

```
method = "rf",
return_model = FALSE,
verbose = TRUE
)
## End(Not run)
```

postprocess_parameters

Post-process Predicted Parameters

Description

Applies constraints and dataset-specific adjustments to ensure predicted parameters are within reasonable ranges.

Usage

```
postprocess_parameters(predicted_params, dataset_features)
```

Arguments

```
predicted_params

List of raw predicted parameters

dataset_features

Characteristics of current dataset
```

Value

List of finalized parameters after post-processing

See Also

```
Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression(), calculate_expression_skewness(), calculate_probability(), estimate_batch_effect(), extract_dataset_features(), generate_training_data(), predict_optimal_parameters(), train_parameter_model()
```

```
predict_optimal_parameters
```

Predict Optimal Parameters Using Trained Model

Description

Applies the trained machine learning model to predict optimal parameters for the current dataset.

Usage

```
predict_optimal_parameters(model, dataset_features)
```

Arguments

model Trained machine learning model (now a list with two models) dataset_features

Extracted characteristics of current dataset

Value

List containing predicted min_expression and specificity_weight

See Also

Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression(), calculate_expression_skewness(), calculate_probability(), estimate_batch_effect(), extract_dataset_features(), generate_training_data(), postprocess_parameters(), train_parameter_model()

Read_excel_markers

Create "Marker_list" from Excel files ".xlsx"

Description

```
Create "Marker_list" from Excel files ".xlsx"
```

Usage

```
Read_excel_markers(path)
```

Arguments

path

The path information of Marker files stored in ".xlsx" format. The Sheet name in the file is filled with cell type. The first line of each Sheet is the table head, the first column is filled with markers information, and the following column is filled with mertic information.

Read_seurat_markers

Value

The standardized "Marker_list" in the SlimR package.

See Also

```
Other Section_2_Standardized_Markers_List_Input: Markers_filter_Cellmarker2(), Markers_filter_PanglaoDB(), Read_seurat_markers()
```

Examples

```
## Not run:
Markers_list_Excel <- Read_excel_markers(
    "D:/Laboratory/Marker_load.xlsx"
    )
## End(Not run)</pre>
```

Read_seurat_markers

Create "Marker_list" from Seurat object

Description

Create "Marker_list" from Seurat object

Usage

```
Read_seurat_markers(
   df,
   sources = c("Seurat", "presto"),
   sort_by = "FSS",
   gene_filter = 20
)
```

Arguments

df	Dataframe generated by "FindAllMarkers" function, recommend to use parameter "group.by = "Cell_type"" and "only.pos = TRUE".
sources	Type of markers sources to use. Be one of: "Seurat" or "presto".
sort_by	Marker sorting parameter, for Seurat sources, select "avg_log2FC" or "p_val_adj" or "FSS" (Feature Significance Score, FSS, product value of log2FC and Expression ratio). Default parameters use "sort_by = 'FSS'".for presto sources, select "logFC" or "padj" or "FSS". Default parameters use "sort_by = 'FSS'".
gene_filter	The number of markers left for each cell type based on the "sort_by" parameter's level of difference. Default parameters use "gene_fliter = 20"

Value

The standardized "Marker_list" in the SlimR package.

See Also

```
Other Section_2_Standardized_Markers_List_Input: Markers_filter_Cellmarker2(), Markers_filter_PanglaoDB(), Read_excel_markers()
```

Examples

```
## Not run:
# Example for Seurat sources markers
seurat_markers <- Seurat::FindAllMarkers(</pre>
   object = sce,
   group.by = "Cell_type",
   only.pos = TRUE)
Markers_list_Seurat <- Read_seurat_markers(seurat_markers,</pre>
    sources = "Seurat",
   sort_by = "avg_log2FC",
   gene_filter = 20
# Example for presto sources markers
seurat_markers <- dplyr::filter(</pre>
    presto::wilcoxauc(
      X = sce,
      group_by = "Cell_type",
      seurat_assay = "RNA"
      ),
    padj < 0.05, logFC > 0.5
Markers_list_Seurat <- Read_seurat_markers(seurat_markers,</pre>
    sources = "presto",
    sort_by = "logFC",
    gene_filter = 20
## End(Not run)
```

 ${\tt train_parameter_model} \ \ \textit{Train Parameter Prediction Model}$

Description

Trains machine learning models to predict optimal parameters based on dataset characteristics.

Usage

```
train_parameter_model(
  training_data,
  method = "ensemble",
  n_models = 3,
  verbose = TRUE
)
```

Arguments

training_data Data frame with features and target parameters

method Machine learning method to use

n_models Number of models for ensemble learning

verbose Whether to print training progress

Value

List containing trained model and performance metrics

See Also

```
Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression(), calculate_expression_skewness(), calculate_probability(), estimate_batch_effect(), extract_dataset_features(), generate_training_data(), postprocess_parameters(), predict_optimal_parameters()
```

Index

```
* Section_0_Database
                                                      Celltype_annotation_Cellmarker2, 9
    Cellmarker2, 6
                                                      Celltype_annotation_Excel, 12
                                                      Celltype_annotation_PanglaoDB, 18
    Cellmarker2_raw, 6
                                                      Celltype_annotation_Seurat, 19
    Cellmarker2_table, 7
                                                  * datasets
    Markers_list_scIBD, 29
                                                      Cellmarker2.6
    Markers_list_TCellSI, 30
                                                      Cellmarker2_raw, 6
    PanglaoDB, 30
                                                      Cellmarker2_table, 7
    PanglaoDB_raw, 31
                                                      Markers_list_scIBD, 29
    PanglaoDB_table, 32
                                                      Markers_list_TCellSI, 30
* Section_1_Functions_Use_in_Package
                                                      PanglaoDB, 30
    calculate_cluster_variability, 2
                                                      PanglaoDB_raw, 31
    calculate_expression, 3
                                                      PanglaoDB_table, 32
    calculate_expression_skewness, 4
    calculate_probability, 5
                                                  calculate_cluster_variability, 2, 4, 5,
    estimate_batch_effect, 25
                                                           25, 26, 34, 35, 38
    extract_dataset_features, 25
                                                  calculate_expression, 3, 3, 4, 5, 25, 26, 34,
    generate_training_data, 26
    postprocess_parameters, 34
                                                  calculate_expression_skewness, 3, 4, 4, 5,
    predict_optimal_parameters, 35
                                                           25, 26, 34, 35, 38
    train_parameter_model, 37
                                                  calculate_probability, 3, 4, 5, 25, 26, 34,
* Sec-
                                                           35, 38
        tion_2_Standardized_Markers_List_Input Cellmarker2, 6, 7, 29–32
    Markers_filter_Cellmarker2, 27
                                                  Cellmarker2_raw, 6, 6, 7, 29–32
    Markers_filter_PanglaoDB, 28
                                                  Cellmarker2_table, 6, 7, 7, 29–32
    Read_excel_markers, 35
                                                  Celltype_Annotation, 8, 23, 24, 33
    Read_seurat_markers, 36
                                                  Celltype_annotation_Cellmarker2, 9, 13,
* Sec-
                                                           19, 20
        \textbf{tion\_3\_Automated\_Annotation\_Workflow} ~~\texttt{Celltype\_Annotation\_Combined}, ~11, ~15, ~17
    Celltype_Annotation, 8
                                                  Celltype_annotation_Excel, 10, 12, 19, 20
    Celltype_Calculate, 21
                                                  Celltype_Annotation_Features, 12, 14, 17
    Celltype_Verification, 23
                                                  Celltype_Annotation_Heatmap, 12, 15, 16
    Parameter_Calculate, 32
                                                  Celltype_annotation_PanglaoDB, 10, 13,
* Sec-
        \textbf{tion\_4\_Semi\_Automated\_Annotation\_Workelow} \textbf{type\_annotation\_Seurat}, 10, 13, 19, \\
    Celltype_Annotation_Combined, 11
    Celltype_Annotation_Features, 14
                                                  Celltype_Calculate, 8, 21, 24, 33
    Celltype_Annotation_Heatmap, 16
                                                  Celltype_Verification, 8, 23, 23, 33
* Sec-
        tion_5_Other_Functions_Provided_by_SlineRtimate_batch_effect, 3-5, 25, 26, 34, 35,
```

40 INDEX

```
38
extract_dataset_features, 3-5, 25, 25, 26,
         34, 35, 38
generate_training_data, 3-5, 25, 26, 26,
         34, 35, 38
Markers_filter_Cellmarker2, 27, 28, 36,
         37
Markers_filter_PanglaoDB, 28, 28, 36, 37
Markers_list_scIBD, 6, 7, 29, 30-32
Markers_list_TCellSI, 6, 7, 29, 30, 31, 32
PanglaoDB, 6, 7, 29, 30, 30, 31, 32
PanglaoDB_raw, 6, 7, 29–31, 31, 32
PanglaoDB_table, 6, 7, 29-31, 32
Parameter_Calculate, 8, 23, 24, 32
postprocess_parameters, 3–5, 25, 26, 34,
         35, 38
predict_optimal_parameters, 3-5, 25, 26,
         34, 35, 38
Read_excel_markers, 28, 35, 37
Read_seurat_markers, 28, 36, 36
train_parameter_model, 3-5, 25, 26, 34, 35,
         37
```