

Docente

- Ingeniero Informático PUCP.
- Máster en Ing. Software UPM.
- Doctor© en Gestión Estratégica
- Consultor en gestión de procesos y gestión de proyectos de software.
- PMP, PMI-ACP, PMI-RMP, CSM
- Especialización como evaluador de procesos 15504 y auditor ISO 9001.
- Coordinador del área de Ingeniería de Software en la PUCP
- Past President PMI Lima Perú Chapter y Secretario del SCTN-GP
- Miembro del CTN-ISSI y del JTC1/SC7 de la ISO

Características en la Construcción de Software

- · La construcción de software es "human-intensive"
- Software es intangible
- Problemas de software son complejos
- El software depende del hardware y de otro software

Dificultades en el desarrollo de software

- Complejidad de la Infraestructura de Tecnologías de Información.
- · Complejidad inherente de las mismas aplicaciones.

- Proceso industrializado:
 - Reglas.
 - Estándares.

• Diseño, construcción y mantenimiento de sistemas de software grandes. PUCP

•Sólo un desarrollador	•Equipos de desarrollo •Múltiples roles
•Aplicaciones de "juguete"	•Sistemas complejos
•Uno o pocos involucrados (desarrollador=usuario)	•Múltiples involucrados
•Construido sin importar reutilización	•Reutilización para reducir costos
•Mantenimiento mínimo	•Mantenimiento es + 60% de los costos de desarrollo

Inicio de la Ing. de Software

• En la conferencia organizada en 1968 por la Comisión de Ciencias de la OTAN en Garnisch-Alemania, se determinó la necesidad de hacer de la construcción de software una ingeniería.

Principios de la Ing. de Software

- Haz de la calidad la razón de trabajar.
- Es posible el software de alta calidad
- Una buena gestión es más importante que una buena tecnología.
- Las personas y el tiempo no son intercambiables.
- Seleccionar el modelo de ciclo de vida adecuado.
- Entregar productos al usuario lo más pronto posible.
- Las técnicas son anteriores a las herramientas
- Primero hazlo correcto, después hazlo rápido.
- Introducir la mejoras con cuidado.

Costos del Software

- Los costos del software a menudo dominan al costo del sistema. El costo del software en un PC es a menudo más caro que la PC.
- Cuesta más mantener el software que desarrollarlo. Para sistemas con una larga vida, este costo se multiplica.
- La Ingeniería de Software concierne a un desarrollo efectivo en cuanto a costes del software.

Productos de Software

- Productos genéricos.
- · Productos hechos a medida.
- La mayor parte del gasto del software es en productos genéricos, pero hay más esfuerzo en el desarrollo de los sistemas hechos a medida.

Ventajas del desarrollo iterativo

- Permite enfrentar cambios en los requerimientos.
- No hay una sola integración al final del proyecto.
- Los riesgos son descubiertos y analizados en la primeras iteraciones.
- Es posible hacer cambios tácticos al proyecto.

أحسا

Ventajas del desarrollo iterativo

- · Facilita la reutilización.
- Los defectos pueden ser encontrados y corregidos a través de las iteraciones.
- · Hace mejor uso del personal del proyecto.
- Los miembros del equipo aprenden en el camino.
- El proceso de desarrollo es refinado y mejorado en el transcurso del proyecto.

Metodologías de desarrollo tradicionales

- Supuesto: Un proceso adecuado y documentación masiva puede garantizar que no hubiesen cambios durante el desarrollo.
- Desventajas:
 - Tareas tediosas para el desarrollador.
 - Participación del cliente solo al inicio y fin del proyecto.

Clasificación de metodologías Metodologías pesadas (heavyweight). Metodologías ágiles: Manifiesto de desarrollo de software ágil - 2001 (Agile Software Develoment Manifest).

¿Qué es CASE (Computer-Aided Software Engineering)?

 Sistemas de software destinados a proveer soporte automatizado para las actividades de proceso de software. Sistemas CASE a menudo son usados para apoyar al método.

Upper-CASE

 Herramientas para apoyar las actividades tempranas del proceso de requerimiento y diseño.

Lower-CASE

 Herramientas para apoyar las actividades tardías tales como programación, depuración y pruebas.

TEMEN		
YEAR	COMPANY	OUTCOME (COSTS IN US \$)
2005	Hudson Bay Co. [Canada]	Problems with inventory system contribute to \$33.3 million* loss.
2004-05	UK Inland Revenue	Software errors contribute to \$3.45 billion* tax-credit overpayment.
2004	Avis Europe PLC [UK]	Enterprise resource planning (ERP) system canceled after \$54.5 million [†] is spent.
2004	Ford Motor Co.	Purchasing system abandoned after deployment costing approximately \$400 million.
2004	J Sainsbury PLC [UK]	Supply-chain management system abandoned after deployment costing \$527 million.
2004	Hewlett-Packard Co.	Problems with ERP system contribute to \$160 million loss.
2003-04	AT&T Wireless	Customer relations management (CRM) upgrade problems lead to revenue loss of \$100 m
2002	McDonald's Corp.	The Innovate information-purchasing system canceled after \$170 million is spent.
2002	Sydney Water Corp. [Australia]	Billing system canceled after \$33.2 million [†] is spent.
2002	CIGNA Corp.	Problems with CRM system contribute to \$445 million loss.
2001	Nike Inc.	Problems with supply-chain management system contribute to \$100 million loss.
2001	Kmart Corp.	Supply-chain management system canceled after \$130 million is spent.
2000	Washington, D.C.	City payroll system abandoned after deployment costing \$25 million.
	Business Week, CEO Magaz	ine, Computerworld, InfoWeek, Fortune, The New York Times,Time, and The Wall St

He aquí que todos forman un solo pueblo y todos hablan una misma lengua, siendo este el principio de sus empresas. Nada les impedirá que lleven a cabo todo lo que se propongan.

Pues bien, descendamos y allí mismo confundamos su lenguaje de modo que no se entiendan los unos con los otros

Procesos necesarios para asegurar la elaboración, recopilación, distribución, archivo y disposición definitiva de la información del proyecto.

Gestionar los riesgos

LO QUE REALMENTE DIJO EL MARINERO DE LA TORRE DEL TITANIC

Procesos relacionados con la identificación, análisis y respuesta a los riesgos del proyecto.

