Mirkovic-Vilonen cycles and polytopes

Satake isomorphism

Let $\mathcal{O} = \mathbb{C}[|t|]$ be a ring of formal power series, G be a connected, reductive algebraic group over $\mathcal{K} = \operatorname{Frac}(\mathcal{O})$ and K a maximal compact subgroup (for instance, $K = G(\mathcal{O})$).

The Hecke ring $\mathcal{H} = \mathcal{H}(G, K)$ is by definition the ring of all locally constant, compactly supported functions $f: G \to \mathbb{Z}$ which are K-biinvariant:

$$f(kx) = f(xk') = f(x)$$

for all $k, k' \in K$. The multiplication in \mathcal{H} is via convolution

$$f \star g(z) = \int_{G} f(x)g(x^{-1}z)dx$$

where dx is the unique Haar measure on G, s.t. K has volume 1.

Remark. Each function $f \in \mathcal{H}$ is constant on double cosets KxK, since it is also compactly supported, it is a finite linear combination of the characteristic functions char(KxK) of double cosets. Hence these characteristic functions give a \mathbb{Z} -basis for \mathcal{H} .

Theorem. There is an isomorphism of rings

$$(\mathcal{H}, \star) \simeq (Rep(G^{\vee}) \otimes \mathbb{C}, \otimes).$$

Example. Let $G = \mathbb{C}^*$. The Cartan decomposition gives

$$G(\mathcal{K}) = \mathcal{K}^* = \bigsqcup_{m \in \mathbb{Z}} \mathcal{O}^* t^m \mathcal{O}^*$$

with
$$Gr_G \simeq \mathbb{Z} = \bigcup_{n \geq 0} ([-n, n] \cap \mathbb{Z})$$
 and $K = \mathcal{O}^*$.

We have $\mathcal{H}(G(\mathcal{K}), K)) = \mathcal{H}(\mathcal{K}^*, \mathcal{O}) = \operatorname{Fun}_{\mathcal{O}^* \times \mathcal{O}^*}^c(\mathcal{K}^*, \mathbb{C}) = \operatorname{Fun}^c(\mathbb{Z}, \mathbb{C})$. Next notice that $G^{\vee} = G = \mathbb{C}^*$ and there is a ring isomorphism

$$\varphi: \operatorname{Fun}^c(\mathbb{Z}, \mathbb{C}) \to (\operatorname{Rep}(\mathbb{C}^*) \otimes \mathbb{C}, \otimes).$$

If the range of $\psi \in \operatorname{Fun}^c(\mathbb{Z}, \mathbb{C})$ is a subset of $\mathbb{Z}_{\geq 0}$, then $\varphi(\psi) = \bigotimes_{i \in \mathbb{Z}} V_i^{\oplus \psi(i)}$,

where V_i is the one-dimensional representation of \mathbb{C}^* (the action of $1 \in \mathbb{C}^*$ on V_i is via *i*th primitive root of unity). For instance, let $\chi_i \in \mathcal{H}$ be the characteristic function of $i \in \mathbb{Z}$, i.e. $\chi_i(k) = \delta_{i,k}$. Hence

$$\chi_i \star \chi_j(a) = \sum_{s \in \mathbb{Z}} \chi_i(s) \chi_j(a-s) = \delta_{i+j,a} = \chi_{i+j}(a).$$

On the other hand, $V_i \otimes V_j = V_{i+j}$, so $\varphi(\chi_i \star \chi_j) = \varphi(\chi_{i+j}) = \varphi(\chi_i) \otimes \varphi(\chi_j)$.

Geometric Satake isomorphism

There is an isomorphism of tensor categories

$$\operatorname{Perv}_{G(\mathcal{O})}(Gr_G, \mathbb{k}) \simeq \operatorname{Rep}(G^{\vee}),$$

where \mathbb{k} is a Noetherian commutative ring with unit and of finite global dimension ($\mathbb{k} = \mathbb{C}, \mathbb{Z}, \overline{\mathbb{F}}_q, \ldots$)

Recall that for a smooth manifold M of dimension n, the cohomology of M satisfies the Poincare duality, i.e.

$$H^i(M,\mathbb{C}) \simeq H^{n-i}(M,\mathbb{C}).$$

Moreover, there is a 'sheaf way' to get the cohomology of M. Let $\underline{\mathbb{C}}_M$ be the sheaf of locally constant functions on M: for any open connected $U \subset M$ one has $\underline{\mathbb{C}}_M(U) = \mathbb{C}$. Then there is an isomorphism of graded algebras

$$H^*(M, \underline{\mathbb{C}}_M) \simeq H^*(M, \mathbb{C}).$$

Question. What if the manifold X is not smooth?

In case X admits a 'good enough' stratification, Goresky and Macpherson found the 'right' version of homology that satisfies Poincare duality. They called it intersection homology and following a request of Deligne 'sheafified' it to get IC sheaves. Analogously to the case of smooth manifolds, there is an isomorphism

$$IH^*(X) \simeq \mathbb{H}^*(X, IC(X)).$$

The sheaves $IC(\overline{X}_{\lambda})$ for affine Schubert cells $X_{\lambda} = G(\mathcal{O})t^{\lambda}$ play a fundamental role in the geometric Satake correspondence, namely, $IC(\overline{X}_{\lambda})$ corresponds to the irreducible highest weight representation of G^{\vee} given by the coweight λ .

Mirkovic-Vilonen cycles

Fix $T \subset B \subset G$ and let $N \subset B$ be the unipotent radical with $N(\mathcal{K}) \subset G(\mathcal{K})$. If $G = GL_n$ and B consists of upper-triangular matrices, then

$$N(\mathcal{K}) = \begin{pmatrix} 1 & * & \dots & * \\ 0 & 1 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

with each * being an element of \mathcal{K} . Let $\mathcal{S}_{\lambda} := N(\mathcal{K})t^{\lambda}$.

Remark. S_{λ} is neither of finite dimension nor of finite codimension in Gr_G .

Theorem. The intersection $S_{\nu} \cap X_{\lambda} \neq \emptyset$ if and only if $t^{\nu} \in \overline{X}_{\lambda}$, in which case $dim(S_{\nu} \cap X_{\lambda}) = \rho(\nu + \lambda)$.

For any $n \in N(\mathcal{K})$ we have $\lim_{s\to 0} 2\rho(s)n = I$ (the action is via conjugation and all elements above diagonal have positive s-weights). It follows that \mathcal{S}_{ν} can be alternatively defined as

$$S_{\nu} = \{ x \in Gr_G \mid \lim_{s \to 0} 2 \overset{\vee}{\rho}(s) x = t^{\nu} \}.$$

Theorem. For each λ we have a decomposition

$$IH_*(\overline{X}_{\lambda}) = \bigoplus_{\nu \prec \lambda} H_{top}(\overline{X}_{\lambda} \cap \mathcal{S}_{\nu}).$$

Definition. The Mirkovic-Vilonen cycles are the irreducible components of $X_{\lambda} \cap S_{\nu}$.

Theorem. Mirkovic-Vilonen cycles give a basis of $H_{top}(\overline{X}_{\lambda} \cap \mathcal{S}_{\nu})$.

Example. Consider $G = GL_n$ and the minuscule weight $\lambda_k = (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{n-k})$.

Recall that $\overline{X}_{\lambda_k} = X_{\lambda_k} \simeq Gr(n-k,n)$ and there is the Plucker embedding

$$\mathcal{P}: Gr(n-k,n) \hookrightarrow \mathbb{P}^{\binom{n}{n-k}-1},$$

given by $\mathcal{P}(W) = w_1 \wedge w_2 \wedge \ldots \wedge w_{n-k}$ for any $W = span(w_1, w_2, \ldots, w_{n-k}) \in Gr(n-k,n)$. Next we find the fixed points for the action of the one-parameter subgroup $\lambda : \mathbb{C}^* \to T$ with $\lambda(s) = diag(s^{n-1}, s^{n-2}, \ldots, s, 1)$ (this subgroup contracts $N(\mathcal{K})$ to a point and can be used instead of 2p). This group naturally acts on V giving rise to an action on $\Lambda^{n-k}(V)$ and, hence, on $\mathbb{P}^{\binom{n}{n-k}-1} = \mathbb{P}(\Lambda^{n-k}(V))$. There are $\binom{n}{n-k}$ fixed points corresponding to the 'coordinate wedges' $e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_{n-k}}$ with $1 \leq i_1 < i_2 < \ldots < i_{n-k} \leq n$. Such a fixed point, in turn, corresponds to the point

$$diag(1,\ldots,1,\underbrace{t}_{i_1},1,\ldots,1,\underbrace{t}_{i_2},1,\ldots,1,\underbrace{t}_{i_{n-k}},1,\ldots,1) \in X_{\lambda_k} \cap \mathcal{S}_{\nu_{i_1 i_2 \dots i_{n-k}}}$$

with
$$\nu_{i_1 i_2 \dots i_{n-k}} = (0, \dots, 0, \underbrace{1}_{i_1}, 0, \dots, 0, \underbrace{1}_{i_2}, 0, \dots, 0, \underbrace{1}_{i_{n-k}}, 0, \dots, 0) \prec \lambda_k$$
.

Boris Tsvelikhovskiy

As one of the descriptions of the Schubert cells (in the usual Grassmannian) is via attracting loci w.r.t. the one-parameter subgroup λ -action, we conclude that the MV cycles $X_{\lambda} \cap \mathcal{S}_{\nu_{i_1 i_2 \dots i_{n-k}}}$ are exactly the Schubert cells. Moreover, there is a natural one-to-one correspondence between these cells and the basis of $\Lambda^{n-k}(V)$, an irreducible representation of GL_n , via

$$(X_{\lambda_k} \cap \mathcal{S}_{\nu_{i_1 i_2 \dots i_{n-k}}}) \leftrightarrow e_{i_1} \wedge e_{i_2} \wedge \dots \wedge e_{i_{n-k}}.$$

One more example.

Example. Let
$$G = SL_2$$
 and consider the dominant weights $\lambda = m$ and $\nu_k = k \leq m$. For $n = \begin{pmatrix} 1 & f(t, t^{-1}) \\ 0 & 1 \end{pmatrix} \in N(\mathcal{K})$ we compute $n \cdot \begin{pmatrix} t^k & 0 \\ 0 & t^{-k} \end{pmatrix} = \begin{pmatrix} t^k & t^{-k}f(t, t^{-1}) \\ 0 & t^{-k} \end{pmatrix}$, while $\begin{pmatrix} g_{11}(t) & g_{12}(t) \\ g_{21}(t) & g_{22}(t) \end{pmatrix} \cdot \begin{pmatrix} t^m & 0 \\ 0 & t^{-m} \end{pmatrix} = \begin{pmatrix} t^m g_{11}(t) & t^{-m} g_{12}(t) \\ t^m g_{21}(t) & t^{-m} g_{22}(t) \end{pmatrix}$ for $g = \begin{pmatrix} g_{11}(t) & g_{12}(t) \\ g_{21}(t) & g_{22}(t) \end{pmatrix} \in SL_2(\mathcal{O})$. It follows that (up to right $SL_2(\mathcal{O})$ -action)

$$\overline{X}_{\lambda} \cap \mathcal{S}_{\nu_k} = \left\{ \begin{pmatrix} t^k & t^{-k} f(t, t^{-1}) \\ 0 & t^{-k} \end{pmatrix} \mid f(t, t^{-1}) = \sum_{i \ge k - m} a_i t^i \right\}.$$

$$\operatorname{As}\left(\begin{array}{cc} t^{k} & t^{-k}f(t,t^{-1}) \\ 0 & t^{-k} \end{array}\right) \cdot \left(\begin{array}{cc} g_{11}(t) & g_{12}(t) \\ g_{21}(t) & g_{22}(t) \end{array}\right) = \left(\begin{array}{cc} t^{k}g_{11}(t) + t^{-k}g_{21}(t)f(t,t^{-1}) & t^{k}g_{12}(t) + t^{-k}g_{22}(t)f(t,t^{-1}) \\ t^{-k}g_{21}(t) & t^{-k}g_{22}(t) \end{array}\right),$$

we see that the elements of MV cycle $\overline{X}_{\lambda} \cap \mathcal{S}_{\nu_k}$ are given by Laurent polyno-

mials
$$f(t, t^{-1}) = \sum_{i=k-m}^{2k} a_i t^i$$
. In particular, $\dim(\overline{X}_{\lambda} \cap \mathcal{S}_{\nu_k}) = m - k + 2k = m + k$,

which checks out to be equal to $\rho(\lambda + \nu_k) = 0.5(1 \cdot (k+m) + (-1) \cdot (-k-m)) = k+m$. Moreover, it is clear that these varieties are irreducible. So, each weight ν_k with $0 \le k \le m$ corresponds to a unique MV cycle.

Awakeness test. Which irreducible representation of $PGL_2 = SL_2^{\vee}$ did we just get?

Answer.
$$S^m(\mathbb{C}^2) = \mathbb{C}\langle x^m, x^{m-1}y, \dots, y^m \rangle = \Gamma(\mathbb{P}^1, \mathcal{O}(m)).$$

Mirkovic-Vilonen polytopes

Fact. There exists a very ample line bundle \mathcal{L} on Gr giving an embedding

$$\varphi: Gr \hookrightarrow \mathbb{P}(\Gamma(Gr, \mathcal{L})^*)$$

$$via \ \varphi(x) = \{ s \in \Gamma(Gr, \mathcal{L}) \mid s(x) = 0 \}^*.$$

Henceforth we will identify Gr with its image $\varphi(Gr)$ and denote $W := \Gamma(Gr, \mathcal{L})^*$.

Let $T \subset G$ be a maximal torus and $T_K \subset T$ a maximal compact subtorus (for $G = GL_n$, we have $T = (\mathbb{C}^*)^n$ and $T_K = (S^1)^{\times n}$). The torus T_K acts on Gr by conjugation and, hence, on W as well. One can choose an inner product on W invariant under T_K . Better said, an invariant symplectic form on $W_{\mathbb{R}}$ given by

$$\omega(v_1, v_2) := (v_1, iv_2),$$

where (\cdot, \cdot) stands for the chosen inner product.

The action of T_K on W gives rise to a weight decomposition $W = \bigoplus W_{\nu}$. The moment map for $T_K \curvearrowright Gr$, i.e. $\mu: Gr \to \mathfrak{t}_{\mathbb{R}}^* \simeq \mathfrak{t}_{\mathbb{R}}$ (the last identification is via the Killing form) induced by the action of T_K on Gr is given by

$$\mu(x) = \sum_{\nu} \frac{|v_{\nu}|^2}{|v|^2},$$

where (the image under φ of) x is $x = \sum_{\nu} v_{\nu}$.

Definition. The image of a MV cycle under the moment map above is called a Mirkovic-Vilonen polytope.

- **Remark.** 1. The vertices of the MV polytope for MV cycle $S_{\nu} \cap \overline{X}_{\lambda}$ are the points $\mu(t^{\eta})$ for coweights $t^{\eta} \in S_{\nu} \cap \overline{X}_{\lambda}$ (the fixed points for T-action). This easily follows from contractability of $N(\mathcal{K})$ by 2ρ -action.
 - 2. $\mu(\overline{X}_{\lambda}) = conv(W \cdot \lambda)$ as the points $t^{W \cdot \lambda}$ are fixed and the images of other fixed points are contained in $conv(W \cdot \lambda)$ (as $X_{\eta} \subset \overline{X}_{\lambda} \Leftrightarrow \eta \prec \lambda$).

The following results are due to Anderson.

- **Theorem.** 1. If V_{λ} is an irreducible representation of G. The multiplicity of a ν -weight space is equal to the number of MV polytopes $P_{\nu-\lambda}$ with $P + \lambda \subseteq conv(W \cdot \lambda)$.
 - 2. Let V_{λ}, V_{μ} be irreducible representations of G and ν a dominant weight. The multiplicity of V_{ν} in $V_{\lambda} \otimes V_{\mu}$ is equal to the number of MV polytopes $P_{\nu-\lambda-\mu}$ with $P + \lambda \subseteq conv(W \cdot \lambda) \cap conv(W \cdot (-\mu) + \nu)$.

Example. $G = SL_2$ Let $\lambda = n, \mu = m$ with $m \ge n$ and $\nu = k = n + m - 2\ell \ge 0$. We compute $conv(W \cdot \lambda) = conv(n, s \cdot n) = conv(n, s(n + 1/2) - 1/2) = conv(n, -n - 1) = [-n - 1, n]$.

$$conv(W \cdot \lambda) = [-n - 1, n].$$

Similarly,

$$conv(W \cdot (-\mu) + \nu) = [k - m, m - 1 + k].$$

The MV polytope P is the interval [k-n-m,0], which, shifted by $\lambda=n$, becomes the interval

$$P_{\nu} = [k - m, n].$$

The containment in part (2) of the Theorem is equivalent to satisfaction of the inequalities $-n-1 \le k-m \le n \Leftrightarrow m-n-1 \le k \le n+m \Leftrightarrow 0 \le \ell \le n$. This recovers the Clebsch-Gordan rule:

$$V_m \otimes V_n \simeq \bigoplus_{0 \le \ell \le n} V_{m+n-2\ell}.$$

