Задача 5. Из множества $S = \{1, 2, ..., N\}$ случайно и независимо выбираются два подмножества: **A** и **B** так, что каждый элемент из S независимо от других элементов с вероятностью p включается в подмножество **A** и с вероятностью q = 1 - p не включается.

Какова вероятность события { А и В не пересекаются}?

Множеству **A** поставим в соответствие вектор $(a_1, a_2, ..., a_N)$, где $a_i = I$ {число i включено в **A**}, т.е. $a_i = 1$, если число i вошло в **A** и $a_i = 0$, если не вошло.

В поставим в соответствие вектор $(b_1, b_2, ..., b_n)$, где $b_i = I$ {число i включено в **В**}.

Если $\exists i : a_i = b_i = 1$, то $i \in A \cap B$.

Множества не пересекаются, если
$$\forall \ i=1,2,...,N$$

$$\begin{vmatrix} a_i \neq 1 \\ b_i \neq 1 \end{vmatrix}.$$

$$\textbf{\textit{P}}\{a_i=1,b_i=1\} = \textbf{\textit{P}}\{a_i=1\} \cdot \textbf{\textit{P}}\{\ b_i=1\} = p \cdot p = p^2.$$

$$P\{A \cap B = \emptyset\} = (1 - p^2)^N$$
.

Задача 6. Из множества $S = \{1, 2, ..., N\}$ случайно и независимо выбираются r подмножеств: $A_1, ..., A_r$, по той же схеме выбора подмножеств, что и в задаче 5. Найти вероятность того, что выбранные подмножества попарно не пересекаются.

a_1^1	a_2^1	•••	•••	•••	a_N^1
0	1				
0	0				
0	0				
a_1^r	a_2^r				a_N^r

Идея та же. Множеству \mathbf{A}_i поставим в соответствие вектор $(a_1^i, a_2^i, ..., a_N^i)$, где $a_j^i = \mathbf{I}\{j$ включено в $\mathbf{A}_i\}$. Множества попарно не пересекаются, если в каждом столбце нет двух «1». Например, в **первом** столбце все нули, значит числа 1 нет ни в одном множестве (вероятность q^r).

Во втором столбце ровно одна «1», значит число 2 только в одном множестве (вероятность $p \cdot q^{r-1}$).

Для каждого элемента вероятность войти не более, чем в одно множество равна $q^r + r \cdot q^{r-1} \cdot p$.

Каждый элемент включается в множество независимо, поэтому $extbf{\emph{P}} = \left(extbf{\emph{q}}^r + extbf{\emph{r}} \cdot extbf{\emph{q}}^{r-1} \cdot extbf{\emph{p}}
ight)^N$.

Задача 7. Из множества **S** = $\{1, 2, ..., N\}$ случайно и независимо выбираются r подмножеств: $A_1, ..., A_r$, по той же схеме выбора подмножеств, что и в задаче 5. Найти: a) $P\{|A_1 \cap \cdots \cap A_r| = k\}$;

В ходе эксперимента проводится N испытаний Бернулли по включению или не включению каждого элемента из **S** в подмножества A_1, \dots, A_r . «Успехом» назовем событие, когда какой либо элемент попадает во все подмножества A_1, \dots, A_r . Вероятность «Успеха» равна p^r .

Значит вероятность того, что произойдет **ровно** k «успехов» вычисляется по формуле:

$$P\{|A_1 \cap \cdots \cap A_r| = k\} = C_N^k (p^r)^k (1-p^r)^{N-k}.$$

Задача 7. Из множества **S** = $\{1, 2, ..., N\}$ случайно и независимо выбираются r подмножеств: $A_1, ..., A_r$, по той же схеме выбора подмножеств, что и в задаче 5. Найти: б) $P\{|A_1 \cup \cdots \cup A_r| = k\}$.

Используя принцип двойственности, можно свести задачу к пункту а) следующим образом.

В объединение $A_1 \cup \cdots \cup A_r$ входит k различных элементов, значит в дополнение входит N-k

элементов. $|\overline{\cup A_m}| = |\cap \overline{A_m}| = N - k$. «Успех» = {элемент не вошел ни в одно из r множеств}.

Вероятность «Успеха» равна $P(\overline{A_1}) \cdot ... \cdot P(\overline{A_r}) = q^r$.

Значит вероятность того, что произойдет **ровно** N-k «успехов» вычисляется по формуле:

$$P\{|A_1 \cup \cdots \cup A_r| = k\} = C_N^k (q^r)^{N-k} (1 - q^r)^k.$$