Capture-Recapture Example (Tutorial)

Leah South

Our running example is about the capture and recapture of the bird species called the European Dipper (*Cinclus cinclus*). Marzolin (1988) collected the data based on the capture and recapture of this species over six years.

Below are the R packages we'll be using in this document.

```
library(MASS) # multivariate normal
library(coda) # assessing convergence and sample quality
library(psych) # bivariate plots
```

The MCMC Algorithm

We'll be looking at MALA (asymptotically un-baised) and ULA (biased) approaches for inference on our example. The focus is on post-processing and bias rather than implementation of algorithms. You can find the relevant code for MALA and ULA implementations for reference.

```
source('MCMC_fn.R')
source('ULA_fn.R')
```

The Statistical Model

The parameters for the model are ϕ_i and p_k where i = 1, ..., 6 and k = 2, ..., 7. ϕ_i represents the probability of survival from year i to year i + 1 and p_k represents the probability of being captured in year k.

The likelihood for the model is given below, and based on data D_i for the number of birds released in year i and y_{ik} for the number of animals caught in year k out of the number released in year i. Here $d_i = D_i - \sum_{k=i+1}^7 y_{ik}$ is the number released in year i that are never caught. The corresponding probability of a bird being released in year i and never being caught is $\chi_i = 1 - \sum_{k=i+1}^7 \phi_i p_k \prod_{m=i+1}^{k-1} \phi_m (1-p_m)$, which is a function of the model parameters. The likelihood is given by

$$f(y|\theta) \propto \prod_{i=1}^{6} \chi_i^{d_i} \prod_{k=i+1}^{7} \left[\phi_i p_k \prod_{m=i+1}^{k-1} \phi_m (1-p_m) \right]^{y_{ik}},$$

where $\theta = (\phi, p)$, $\phi = (\phi_1, ..., \phi_6)$, $p = (p_2, ..., p_7)$ and $y = \{y_{ik} : i = 1, ..., 6, k = 2, ..., 7\}$. Due to parameter identifiability issues, the parameters ϕ_6 and ϕ_7 are combined as $\phi_6 \phi_7$ leading to a total of eleven parameters.

The prior for each component of θ is set to be $\mathcal{U}(0,1)$, and all components are independent a priori. For the RW proposal, the j-th parameter $\theta[j]$ is transformed using $\tilde{\theta}[j] = \log(\theta[j]/(1-\theta[j]))$ for $j = 1, \ldots, 11$. The implied prior density for $\tilde{\theta}[j]$ is then $e^{\tilde{\theta}[j]}/(1+e^{\tilde{\theta}[j]})^2$, for $j = 1, \ldots, 11$.

Read in the liklihood functions and tuning parameters for algorithms

```
load("recapture_ULA_bettertuning.RData")
load("recapture_MALA_tuning.RData")

# Names of the 11 variables
varNames <- pasteO("theta",1:11) #### FIX-LATER</pre>
```

Multiple Chains

Getting the samples

Let's run 10 chains with a common starting point

```
initial < c(0.35, -0.66, -1.74, 2.5, -0.67, -0.59, 2.38, 2.52, 1.2, 5.08,
1.3)
set.seed(2)
n_reps <- 10 # number of chains</pre>
its <- 500 # number of MCMC iterations
chains_ULA <- chains_MALA <- samples_ULA <- samples_MALA <- list()</pre>
for (i in 1:n_reps){
  # Running MALA
  single_chain_mala <- MALA_fn(d = 11, initial = initial, covmala = cov_rw, h = h_mala,
                             iters = its,der_loglike = der_loglike,
                             der_logprior = der_logprior,
                             options = options, varNames = varNames)
  chains_MALA[[i]] <- single_chain_mala</pre>
  samples_MALA[[i]] <- single_chain_mala$samples</pre>
  # Running ULA
  single_chain_ula <- ULA_fn(d = 11, initial = initial, cov_ULA = cov_ula, h = h_ula,
                             iters = its,der_loglike = der_loglike,
                             der_logprior = der_logprior,
                             options = options, varNames = varNames)
  chains_ULA[[i]] <- single_chain_ula</pre>
  samples_ULA[[i]] <- single_chain_ula$samples</pre>
}
ula noburnin <- as.mcmc.list(samples ULA)</pre>
mala noburnin <- as.mcmc.list(samples MALA)</pre>
save(ula_noburnin,mala_noburnin,chains_MALA,chains_ULA, file = "ten_chains.RData") # For future reuse
```

Compare the KSD

```
Sourcing in the KSD code and load the KSD package
```

```
source('KSD.R')
library(KSD)

## Warning: package 'KSD' was built under R version 4.0.5

Evaluate the KSD on each of the chains for MALA and ULA.

KSD_MALA_gaussian <- KSD_ULA_gaussian <- rep(NaN,n_reps)

KSD_MALA_imq <- KSD_ULA_imq <- rep(NaN,n_reps)

for (i in 1:n_reps){
    ...
}

save(KSD_MALA_gaussian,KSD_ULA_gaussian,KSD_MALA_imq,KSD_ULA_imq, file = "ksd_ten_chains.RData")
boxplot(KSD_MALA_gaussian,KSD_ULA_gaussian)
boxplot(KSD_MALA_imq,KSD_ULA_imq)</pre>
```

Estimating expectations with control variates

Now we'll estimate the posterior expectation of our parameters. The parameters are transformed using $\tilde{\theta}[j] = \log(\theta[j]/(1-\theta[j]))$ for $j=1,\ldots,11$. To transform back $\tilde{\theta}[j]$ we use $e^{\tilde{\theta}[j]}/(1+e^{\tilde{\theta}[j]})^2$, for $j=1,\ldots,11$. library(ZVCV)

Vanilla_MALA <- ZV1_MALA <- CF_MALA <- SECF_MALA <- matrix(NaN,nrow=n_reps,ncol=d)

Vanilla_ULA <- ZV1_ULA <- CF_ULA <- SECF_ULA <- matrix(NaN,nrow=n_reps,ncol=d)

for (i in 1:n_reps){
 samples <- as.matrix(chains_MALA[[i]]\$samples)
 gradients <- chains_MALA[[i]]\$der_loglike + chains_MALA[[i]]\$der_logprior integrand <- 1/(1+exp(-samples))
 Vanilla_MALA[i,] <- colMeans(integrand)
 ...
} load("Recapture_goldstandard.RData")

Boxplots of the estimates

for (j in 1:11){

Investigate tuning parameter for ULA

Try increasing and decreasing the parameter h_ula and investigating the KSD.

Investigate convergence for MALA

abline(h=gold_standard[j])

}

Try alternative initialisation points you may use the following to simulate from the prior:

```
initial <- recapture_simprior(1, options)</pre>
```

Investigate the convergence using multiple chains and Gelman & Rubin's \hat{R} diagnostic. Work out a good burnin and investigate control variates on the burnin chain