第二讲半群、幺半群与群

陈建文

September 21, 2022

定义1. 设 "。"为非空集合S上的一个二元代数运算。如果 $\forall a, b, c \in S$,

$$(a \circ b) \circ c = a \circ (b \circ c)$$

则称集合S对 "。"运算形成一个半群(semigroup),并记为 (S, \circ) 。

例. 正整数集合 Z_+ 对"+"运算构成一个半群。

$$\forall a, b, c \in Z_+(a+b) + c = a + (b+c)$$

定义2. 如果一个半群中的二元代数运算满足交换律,则称此半群为交换半群。

例. 设S为一切形如

$$\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}, a, b \in N$$

的2×2矩阵之集,则S对矩阵的乘法构成一个不可交换的半群。

 $\forall d \in N, 2 \times 2$ 矩阵

$$\begin{bmatrix} 1 & d \\ 0 & 0 \end{bmatrix}$$

为左单位元素。于是,(S,*)有无穷多个左单位元素,然而它却没有右单位元素。

定理1. 如果半群(S, \circ)中既有左单位元素又有右单位元素,则左单位元素与右单位元素相等,从而有单位元素且单位元素是唯一的。

定义3. 有单位元素的半群称为独异点(monoid),或称为幺半群。

例. 自然数集合N对加法运算"+"构成幺半群,单位元为0。正整数集合 Z_+ 对乘法运算"×"构成幺半群,单位元为1。

例. 设S为任意一个非空集合,则 $(2^S, \cup, \phi)$ 和 $(2^S, \cap, S)$ 都为幺半群。

定义4. 如果一个幺半群中的二元代数运算满足交换律,则称此幺半群为交换幺半群。

例. 设S为非空集合, $M(S) = \{f | f : S \to S\}$,则M(S)对映射的合成构成了一个以 I_S 为单位元的幺半群(M(S), \circ , I_S),它是不可交换幺半群。

例. 设 M_n 为所有 $n \times n$ 实矩阵构成的集合,则 M_n 对矩阵的乘法构成了一个以 I_n 为单位元的幺半群 $(M_n, *, I_n)$ 。

定义5. 设 (S, \circ, e) 为一个幺半群, $a \in S$ 。如果存在 $a_l \in S$ 使得 $a_l \circ a = e$,则称 a_l 为a的左逆元素;如果存在 $a_r \in S$ 使得 $a \circ a_r = e$,则称 a_r 为a的右逆元素;如果存在 $b \in S$ 使得 $b \circ a = a \circ b = e$,则称b为a的逆元素。

定理2. 如果幺半群 (S, \circ, e) 中的元素a既有左逆元素 a_l ,又有右逆元素 a_r ,则 $a_l = a_r \circ$ 于是,a有逆元素且a的逆元素是唯一的,记为 $a^{-1} \circ$

定义6. 每个元素都有逆元素的幺半群称为群。

例. 全体整数集合Z,全体有理数集合Q, 全体实数集合R, 全体复数集合C对通常的加法运算构成群; 全体非零有理数集合 Q^* , 全体非零实数集合 R^* , 全体非零复数集合 C^* 对通常的乘法运算构成群。

定义7. 如果一个群中的二元代数运算满足交换律,则称此群为交换群,又称为Abel群。

例. 设S为一个非空集合,从S到S的所有双射构成的集合对映射的合成构成一个群,称为S上的对称群,记为Sym(S)。当 $S=\{1,2,\cdots,n\}$ 时, $Sym(S)=S_n$ 。

例. 设 M_n 为所有可逆 $n \times n$ 实矩阵构成的集合,则 M_n 对矩阵的乘法构成了一个以 I_n 为单位元的群 $(M_n, *, I_n)$ 。

定义8. 群 (G, \circ) 称为有限群,如果G为有限集。G的基数称为群G的阶。如果G含有无穷多个元素,则称G为无限群。

课后作业题:

练习1. 给出一个半群,它有无穷多个右单位元素。

练习2. 设 (S, \circ) 为一个半群, $a \in S$ 称为左消去元素,如果 $\forall x, y \in S$,有 $a \circ x = a \circ y$,则一定有 $x = y \circ$ 试证:如果a和b均为左消去元,则 $a \circ b$ 也是左消去元。

练习3. 设Z为整数集合, $M = Z \times Z$ 。在M上定义二元运算。如下:

 $\forall (x_1, x_2), (y_1, y_2) \in M, (x_1, x_2) \circ (y_1, y_2) = (x_1y_1 + 2x_2y_2, x_1y_2 + x_2y_1)$ 试证:

- (1)M对上述定义的代数运算构成一个幺半群。
- (2)如果 $(x_1,x_2) \neq (0,0)$,则 (x_1,x_2) 是左消去元。
- (3)运算"。"满足交换率。

练习4. 证明:有限半群中一定有一个元素a使得 $a \circ a = a \circ$

练习5. 设R为实数集合, $S = \{(a,b)|a \neq 0, a,b \in R\}$ 。在S上利用通常的加法和乘法定义二元运算"o"如下:

$$(a,b) \circ (c,d) = (ac,ad+b)$$

验证 (S, \circ) 为群。

练习6. n次方程 $x^n=1$ 的根称为n次单位根,所有n次单位根之集记为 U_n 。证明: U_n 对通常的复数乘法构成一个群。

练习7. 令

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

试证: G对矩阵乘法构成一个群。