Decomposing time series into trends, seasonality, residuals

Classical timeseries decomposition (ca. 1920's)

| Assumptions                 | Additive: Y = T+S+R           |
|-----------------------------|-------------------------------|
|                             | Multiplicative: Y = TSR       |
|                             | Either way, Y = "f(t) + e(t)" |
| Basic<br>building<br>blocks | Trends, T                     |
|                             | Seasonality, S                |
|                             | Residuals, R                  |
| _                           |                               |



### We use statsmodels.tsa.seasonal



**Function:** seasonal\_decompose



**Hyperparameters** 

Model (additive/multiplicative/++)

Period (how many datapoints in each season)

## Method 1: Additive

Period = 1





## Method 1: Additive

Period = 12





# Method 2: Multiplicative

Period = 12





### Quick tips

Trends should be "smooth" and aperiodic

Seasons should definitely be periodic

Irregularities should "not have patterns"

And noise "should look random"



If a trend has periods: decompose it further



If a season looks to trend (or have an envelope): decompose it further



If the noise looks to have patterns: keep changing your model and decomposing further

# Empirical Mode Decomposition EMD

#### **EMD Overview**

- Decomposes a signal into oscillatory components
- Components known as Intrinsic mode Functions (IMF) + residual components.
- Data-Driven method, operating on nonlinear and nonstationary signals
- Assumes additive timeseries\*
- Requires no prior knowledge about the data
- Depends on <u>Sifting</u> to compute the IMF

#### Zeiler et al. (2010). Empirical Mode Decomposition - an introduction.





Andrew J. Quinn et al. (2021) EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python

## Sifting Process

(EMD cont')



Figure source: Al Mavercik



figure: Zeiler et al. (2010). Empirical Mode Decomposition - an introduction.

### Limitations

- Mode mixing
- Limited to additive models \*



### Limitations

Sensitive to boundary condition



Andrew J. Quinn et al. (2021) EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python



figure: Zeiler et al. (2010). Empirical Mode Decomposition - an introduction.

# Other Sifting Variations

 Noise Assisted sifting (ensemble EMD)







Andrew J. Quinn et al. (2021) EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python

# Other Sifting Variations

#### Masked Sifting



Andrew J. Quinn et al. (2021) EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python





### The Hilbert-Huang Transform (HHT)

- Provides a description of how the energy or power within a signal is distributed across frequency.
- The distributions are based on the instantaneous frequency and amplitude of a signal.



### Frequency based methods

- How to handle periodic signals
- Same seasonal trends over whole signal, wide sense stationarity
- Remember to remove median



### Filtering in Fourier domain



verse Fourier transform of filtered Netto power consumption DK1 January 20:



### Longer data -> better spectra





### Works in all dimensions





### Non-stationary signals

- Some time variation
- Fourier transform doesn't show time
- Wavelet transform fixes this



### Wavelet transform





### Connection with other methods



### In conclusion

- Infinite decomposition algorithms exists
- Prior and domain knowledge is key
- It is worth trying multiple methods