OPTIMIZATION WITH CONVERGENCE GUARANTEES

The optimization problem in DeepNT is as follows,

$$\mathcal{F} = \min_{\theta, \tilde{A}} g(\theta, \tilde{A}) + \alpha ||\tilde{A}||_1, \tag{11}$$

where $g(\theta, \tilde{A}) = \mathcal{L}_{GNN} + \gamma \mathcal{L}_M + \|M \odot (\tilde{A} - A)\|_F^2$. Then the proximal gradient algorithm with extrapolation algorithm is shown as follows:

```
Algorithm 2: Optimization of DeepNT
```

```
Require: S, y, \omega.

Ensure: Parameters \theta of DeepNT, inferred adjacency matrix \tilde{A}.

Initialize \tilde{A}^{-1} = \tilde{A}^0 = 0, \, \theta^{-1} = \theta^0 = 0.

while Stopping condition is not met \mathbf{do}
\overline{\theta}^k \leftarrow \theta^k + (1 - \omega)(\theta^k - \theta^{k-1})
\overline{A}^k \leftarrow \tilde{A}^k + (1 - \omega)(\tilde{A}^k - \tilde{A}^{k-1}).
\theta^{k+1} \leftarrow \overline{\theta}^k - \omega \nabla g(\overline{\theta}^k, \overline{A}^k).
\tilde{A}^{k+1} \leftarrow \arg\min_{\tilde{A}} (1/2) \|\tilde{A} - (\overline{A}^k - \omega \nabla g(\overline{\theta}^k, \overline{A}^k))\|_F^2 + \alpha \|\tilde{A}\|_1 = \operatorname{prox}_{\omega \alpha \| \cdot \|_1} (\overline{A}^k - \omega \nabla g(\overline{\theta}^k, \overline{A}^k)).
if \lambda_2(L(\tilde{A}^{k+1})) < \epsilon then
\tilde{A}^{k+1} \leftarrow \tilde{A}^{k+1} + \epsilon
end if
end while
return \theta and \tilde{A}.
```

where $\omega > 0$ is a learning rate, and $\operatorname{prox}_{\lambda\|\cdot\|_1}(f) = S_{\lambda}(f) = \arg\min_x \left(\frac{1}{2}\|x - f\|_F^2 + \lambda \|x\|_1\right)$ is the soft-thresholding operator.

Theorem 1. Assume $g(\theta, \tilde{A})$ is Lipschitz continuous with coefficient l > 0, and its gradient $\nabla g(\theta, \tilde{A})$ is Lipschitz continuous with coefficient L > 0. Let $\frac{1}{L} \leq \omega \leq \sqrt{\frac{L}{L+l}}$, and let $\{(\theta^k, \tilde{A}^k)\}$ be a sequence generated by Algorithm 2, then any of its limit point (θ^*, \tilde{A}^*) is a stationary point of equation 11.

Proof. With the chosen step size satisfying $\frac{1}{L} \le \omega \le \sqrt{\frac{L}{L+l}}$, the proximal gradient algorithm ensures:

$$\mathcal{F}(\theta^{k+1}, \tilde{A}^{k+1}) < \mathcal{F}(\theta^k, \tilde{A}^k).$$

This implies that the sequence $\{\mathcal{F}(\theta^k, \tilde{A}^k)\}$ is non-increasing. Since $\mathcal{F}(\theta, \tilde{A})$ is bounded below (due to the coercivity of the ℓ_1 -regularization term $\alpha \|\tilde{A}\|_1$), the sequence $\{\mathcal{F}(\theta^k, \tilde{A}^k)\}$ converges to a finite value.

The boundedness of $\mathcal{F}(\theta^k, \tilde{A}^k)$ ensures that the sequence $\{(\theta^k, \tilde{A}^k)\}$ is bounded, which means $\{(\theta^k, \tilde{A}^k)\}$ has at least one limit point (θ^*, \tilde{A}^*) .

Since $\|(\theta^{k+1}, \tilde{A}^{k+1}) - (\theta^k, \tilde{A}^k)\| \to 0$, and ∇g is Lipschitz continuous, it follows that:

$$\|\nabla g(\theta^{k+1},\tilde{A}^{k+1}) - \nabla g(\theta^k,\tilde{A}^k)\| \to 0.$$

Therefore, the gradients $\nabla g(\theta^k, \tilde{A}^k)$ converge to $\nabla g(\theta^*, \tilde{A}^*)$ as $k \to \infty$.

The update for θ in Algorithm 2 is:

$$\theta^{k+1} - \overline{\theta}^k = -\omega \nabla_{\theta} g(\overline{\theta}^k, \overline{A}^k).$$

As $k \to \infty$, $\overline{\theta}^k \to \theta^*$, $\theta^{k+1} - \overline{\theta}^k \to 0$ and $\nabla_{\theta} g(\overline{\theta}^k, \overline{A}^k) \to \nabla_{\theta} g(\theta^*, \tilde{A}^*)$. Then, it follows that:

$$\nabla_{\theta} g(\theta^*, \tilde{A}^*) = \mathbf{0}.$$

The update for \tilde{A} in Algorithm 2 involves solving the proximal operator:

$$\tilde{A}^{k+1} = \arg\min_{\tilde{A}} \left(\frac{1}{2} \left\| \tilde{A} - \left(\overline{A}^k - \omega \nabla_{\tilde{A}} g(\overline{\theta}^k, \overline{A}^k) \right) \right\|_F^2 + \omega \alpha \|\tilde{A}\|_1 \right).$$

This optimization is equivalent to applying the proximal mapping:

$$\tilde{A}^{k+1} = \operatorname{prox}_{\omega \alpha \|\cdot\|_1} \left(\overline{A}^k - \omega \nabla_{\tilde{A}} g(\overline{\theta}^k, \overline{A}^k) \right),$$

where $\text{prox}_{\lambda\|\cdot\|_1}(f) = S_{\lambda}(f)$ is the soft-thresholding operator. The proximal mapping satisfies the optimality condition:

$$\mathbf{0} \in \tilde{A}^{k+1} - \left(\overline{A}^k - \omega \nabla_{\tilde{A}} g(\overline{\theta}^k, \overline{A}^k)\right) + \omega \alpha \partial \|\tilde{A}^{k+1}\|_1.$$

Rearranging this condition gives:

$$\mathbf{0} \in \nabla_{\tilde{A}} g(\overline{\theta}^k, \overline{A}^k) + \frac{1}{\omega} (\tilde{A}^{k+1} - \overline{A}^k) + \alpha \partial \|\tilde{A}^{k+1}\|_1.$$

As $k\to\infty$, the extrapolated sequence $\overline{A}^k\to \tilde{A}^*$ and the proximal updates $\tilde{A}^{k+1}\to \tilde{A}^*$. Consequently, the term $(\tilde{A}^{k+1}-\overline{A}^k)/\omega\to 0$. Thus, the limit point \tilde{A}^* satisfies:

$$\mathbf{0} \in \nabla_{\tilde{A}} g(\theta^*, \tilde{A}^*) + \alpha \partial \|\tilde{A}^*\|_1.$$

We conclude that (θ^*, \tilde{A}^*) is a stationary point of the optimization problem since both optimality conditions are satisfied:

$$\mathbf{0} \in \nabla_{\theta} g(\theta^*, \tilde{A}^*), \quad \mathbf{0} \in \nabla_{\tilde{A}} g(\theta^*, \tilde{A}^*) + \alpha \partial \|\tilde{A}^*\|_1.$$

If $\lambda_2(L(\tilde{A}^{k+1})) < \epsilon$, the algorithm adjusts \tilde{A}^{k+1} to ensure connectivity. This adjustment does not violate convergence guarantees because it is a bounded perturbation that preserves the descent property.

Therefore, the sequence $\{(\theta^k, \tilde{A}^k)\}$ converges to the stationary point (θ^*, \tilde{A}^*) : $\lim_{k\to\infty} (\theta^k, \tilde{A}^k) = (\theta^*, \tilde{A}^*)$. This establishes the convergence of the algorithm and completes the proof.