

Welcome

to Advanced Topics in Algorithms

Introduction

Dr.-Ing. Jens Otto
Group leader
Fraunhofer IOSB-INA
Campusallee 1
32657 Lemgo, Germany

- B.Sc. and M.Sc. degrees in cognitive computer science and intelligent systems from the University of Bielefeld, Germany, in 2008 and 2010 respectively
- PhD degree at the Institute of Automation and Information Systems, Technical University of Munich, Garching, Germany in 2022
- "Command Signal Configuration for Control Strategies of Discrete Production Systems"

Research domains

Analysis

Programming by Optimization

Introduction

Publications

- ..
- Henning, Steffen; Otto, Jens; Niggemann, Oliver; Schriegel, Sebastian: A Descriptive Engineering Approach for Cyber-Physical Systems. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) Barcelona, Spain, Sep 2014.
- Otto, Jens; Henning, Steffen; Niggemann, Oliver: Why cyber-physical production systems need a descriptive engineering approach a case study in plug & produce. In: 2nd International Conference on System-integrated Intelligence (SysInt) Bremen, Germany, Jul 2014.
- Dürkop, Lars; Trsek, Henning; Otto, Jens; Jasperneite, Jürgen: **A field level architecture for reconfigurable real-time automation systems.** In: 10th IEEE Workshop on Factory Communication Systems Toulouse, May 2014.
- Otto, Jens; Niggemann, Oliver: **Automatic Parameterization of Automation Software for Plug-and-Produce.** In: AAAI-15 Workshop on Algorithm Configuration (AlgoConf) Austin, Texas, USA, Jan 2015.
- Niggemann, Oliver; Henning, Steffen; Schriegel, Sebastian; Otto, Jens; Anis, Anas: Models for Adaptable Automation Software An Overview of Plug-and-Produce in Industrial Automation. In: Modellbasierte Entwicklung eingebetteter Systeme (MBEES) S.: 73-82, Dagstuhl, Germany, Mar 2015.
- Otto, Jens; Vogel-Heuser, Birgit; Niggemann, Oliver: Optimizing modular and reconfigurable cyber-physical production systems by determining parameters automatically. In: IEEE 14th International Conference on Industrial Informatics (INDIN) S.: 1100-1105, Jul 2016
- Otto, Jens, Birgit Vogel-Heuser, and Oliver Niggemann: Automatic parameter estimation for reusable software components of modular and reconfigurable cyber-physical production systems in the domain of discrete manufacturing. In: IEEE Transactions on Industrial Informatics 14.1 (2018): 275-282.
- Otto, Jens; Vogel-Heuser, Birgit; Niggemann, Oliver: Online Parameter Estimation for Cyber-Physical Production Systems. In: at -Automatisierungstechnik at - Automatisierungstechnik, Aug 2018.
- **...**

Introduction: Fraunhofer IOSB-INA

- Fraunhofer Institute of Optronics,
 System Technologies and Image
 Exploitation IOSB
- Industrial Automation branch INA of Fraunhofer IOSB
- Part of the Fraunhofer Society
- New building 2019

Introduction: SmartFactoryOWL

- Research factory for intelligent automation
- Joint institution of the University of Applied Sciences and Arts and Fraunhofer IOSB-INA

https://smartfactory-owl.de/?lang=en

Introduction

- Please present yourself shortly:
 - Name
 - Background
 - Previous university
 - Topic of bachelor thesis
 - Main interest
- Your expectations for this module?

Members of this Lecture

Motivation: Use Case Production Systems

Motivation: Use Case Production Systems

Plant 1

Plant 2

Plant 3

Motivation: Use Case Production Systems

Production module 1

Production module 2

Production module 3

Deep Neural Network (DNN):

- Given is a DNN: $F(x, \theta) = Y$
- DNN classifies input x as class Y, using a parameter set θ

Adversarial Example (AE):

- AE **x′** deviates minimally from the original **x**
- \blacksquare x' is generated by applying a perturbation \triangle_x
- x' is incorrectly classified by the DNN: $F(x', \theta) \neq Y$

(1) Process data

Time	Х	
09:59	0	
10:00	81.16	
10:01	42.33	
10:02	123.49	:
10:03	124.65	
10:04	50.81	
10:05	123.97	
10:06	0	

(2) CyberProtect

- (1) Select process data attributes
- (2) Select perturbation
- (3) Apply perturbation

(3) Adversarial Examples

Objective: Prevent misclassification caused by adversarial example attacks

- Secom dataset recorded from semi-conductor manufacturing process
 - 590 variables from sensor signal
 - 1567 manufacturing cycles
 - Labeled as normal or anomaly production cycle
- Implementation based on python libraries *Tensorflow* and *Cleverhans*

DNN Architecture:

- 590 input neurons
- 4 hidden layers
- ReLU as activation

CyberProtect prevents misclassification caused by AE attacks

Motivation: Research Project HAIP

Fusion model consisting of behavior model and attack patterns:

- (1) Analysis of data packets (deep packet inspection)
- (2) Attack detection through pattern analysis of communication data
- (3) Learning a behavior model from process data (process mining)
- (4) Recommended action for the plant operator
 - (1) Insulation of the production module
 - (2) Shutdown of the production plant

TH TOWL

Overview: Advanced Topics in Algorithms

TH TOWL

Overview: Practical Part

Scipy

NetworkX

NumPy

Matplotlib

Keras

gplearn

PM4Py

Pandas

Implementation

Documentation

LaTeX

TikZ

...

TH **T**

Algorithm Design

It's not rocket science

Algorithm Design: Example A*

cost of the path from the start node

$$f(n) = g(n) + h(n)$$
next node

next	end	Euclidean distance
(1, 0)	(2, 2)	2.2360
(0, 1)	(2, 2)	2.2360
(0, 0)	(2, 2)	2.8284
(1, 1)	(2, 2)	1.4142
(0, 2)	(2, 2)	2.0
(2, 0)	(2, 2)	2.0
(1, 2)	(2, 2)	1.0
(2, 1)	(2, 2)	1.0
(2, 2)	(2, 2)	0.0

Algorithm Design: (1) Problem Description

The shortest path of a directed graph should be calculated.

Textual description of the problem

https://networkx.org

TH VOWL

Algorithm Design: (2) Formalization

TH VOWL

Algorithm Design: (3) Algorithm

Algorithm 1: The A^* ...

Input: Directed graph D

Output: *n*-tuple of point tuple

// Step 1: (Calculate shortest path):

 $1 P \leftarrow A^*(D)$

 $\mathbf{2}$ return P

Algorithm Design: (3) Algorithm

Input: Directed graph *D*

Output: *n*-tuple of point tuple

// Step 1: (Calculate shortest path):

 $P \leftarrow A^*(D)$

 $\mathbf{2}$ return P

Algorithm Design: (4) Implementation

TH TOWL

Excurse: Pandas Data Frame

Merge, join, concatenate and compare

Test environment

(1) Constructing a directed graph from network packets

Source	Destination	Protocol	Process data	Time stamp	Attack
PLC	Ю	Profinet	Engine On (1)	16:00:00	?
10	PLC	Profinet	Sensor Off (2)	16:00:10	?

7 test scenarios

No.	Name	Anomaly
0	normal	false
1	dos_icmp_io_device	true
2	pn_replay_io_device	true
3	pn_scan	true
4	tcp_syn_scan	true
5	manipulated_plc_software	true
6	arp_cache_poisoning	true

Test environment

Normal

ARP CP

Thank you!