Office europé n des brevets

EP 0 827 030 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

04.03.1998 Bulletin 1998/10

(51) Int Cl.6: G03F 7/038

(11)

(21) Application number: 97306207.8

(22) Date of filing: 15.08.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 29.08.1996 US 697761

(71) Applicant: XEROX CORPORATION Rochester New York 14644 (US)

(72) Inventors:

Fuller, Timothy J.
 Pittsford, NY 14534-4023 (US)

Narang, Ram S.
 Macedon, NY 14502-9323 (US)

Smith, Thomas W.
 Penfield, NY 14526 (US)

Luca, David J.
 Rochester, NY 14609 (US)

 Crandall, Raymond K. Pittsford, NY 14534 (US)

(74) Representative: Plke, Christopher Gerard et al

Rank Xerox Ltd., Patent Department,

Parkway

Marlow, Buckinghamshire SL7 1YL (GB)

- (54) Process for direct substitution of high performance polymers with unsaturated ester groups
- (57) Disclosed is a process which comprises reacting a polymer of the general formula

or

wherein x is an integer of 0 or 1; and A and B are specified groups, and n is an integer representing the number of rep ating monomer units, with (i) a formaldehyde sourc , and (ii) an unsaturated acid in the pres nce of an acid catalyst, thereby forming a curable polymer with unsaturated ester groups. Also disclosed is a process for pr paring an ink jet printhead with the above polymer.

D s ription

5

10

15

20

25

30

35

40

50

The present invention is directed to a process for preparing curable polymers and to photoresists and thermal inkerial jet printheads prepared with the sepolymers. More specifically, the present invention is directed to a process for the direct substitution of high performance polymers with unsaturated ester groups.

In micro lectronics applications, there is a greatine of for low dielectric constant, high glass transition temperature, thermally stable, photopatternable polymers for use as interlayer dielectric layers and as passivation layers which protect microelectronic circuitry. Poly(imides) are widely used to satisfy these needs; these materials, however, have disadvantageous characteristics such as relatively high water sorption and hydrolytic instability. There is thus a need for high performance polymers which can be effectively photopatterned and developed at high resolution.

One particular application for such materials is the fabrication of ink jet printheads.

Other microelectronics applications include printed circuit boards, lithographic printing processes, and interlayer dielectrics.

Copending application U.S. Serial No. 08/705,375 discloses an improved composition comprising a defined photopatternable polymer containing at least some monomer repeat units with photosensitivity-imparting substituents.

Copending application U.S. Serial No. 08/705,365 discloses a composition which comprises (a) a defined polymer containing at least some monomer repeat units with photosensitivity-imparting substituents which enable crosslinking or chain extension of the polymer upon exposure to actinic radiation, (b) at least one member selected from the group consisting of photoinitiators and sensitizers; and (c) an optional solvent.

Copending application U.S. Serial No. 08/705,488 discloses a composition comprising a defined polymer with a weight average molecular weight of from about 1,000 to about 65,000, said polymer containing at least some monomer repeat units with a first, photosensitivity-imparting substituent which enables crosslinking or chain extension of the polymer upon exposure to actinic radiation, said polymer also containing a second, thermal sensitivity-imparting substituent which enables further polymerization of the polymer upon exposure to temperatures of about 140°C and higher.

Copending application U.S. Serial No. 08/705,463 discloses a process which comprises reacting a defined polymer with an acetyl halide and dimethoxymethane in the presence of a halogen-containing Lewis acid catalyst and methanol, thereby forming a haloalkylated polymer.

Copending application U.S. Serial No. 08/705,479 discloses a process which comprises reacting a haloalkylated aromatic polymer with a material selected from the group consisting of unsaturated ester salts, alkoxide salts, alkyl-carboxylate salts, and mixtures thereof, thereby forming a curable polymer having functional groups corresponding to the selected salt.

Copending application U.S. Serial No. 08/705,376 discloses a composition which comprises a mixture of (A) a first component comprising a defined polymer, at least some of the monomer repeat units of which have at least one photosensitivity-imparting group thereon, said polymer having a first degree of photosensitivity-imparting group substitution and (B) a second component which comprises either (1) a polymer having a second degree of photosensitivity-imparting group substitution or (2) a reactive diluent having at least one photosensitivity-imparting group per molecule and having a fourth degree of photosensitivity-imparting group substitution.

Copending application U.S. Serial No. 08/705,372 discloses a composition which comprises a defined polymer containing at least some monomer repeat units with photosensitivity-imparting substituents which enable crosslinking or chain extension of the polymer upon exposure to actinic radiation, wherein said photosensitivity-imparting substituents are allyl ether groups, epoxy groups, or mixtures thereof.

Copending application U.S. Serial No. 08/697,760 discloses a composition which comprises a defined polymer containing at least some monomer repeat units with water-solubility-imparting substituents and at least some monomer repeat units with photosensitivity-imparting substituents which enable crosslinking or chain extension of the polymer upon exposure to actinic radiation.

While known compositions and processes are suitable for their intended purposes, a need remains for improved materials suitable for microelectronics applications. A need also remains for improved ink jet printheads. Further, there is a need for photopatternable polymeric materials which are heat stable, electrically insulating, and mechanically robust. Additionally, there is a need for photopatternable polymeric materials which are chemically inert with respect to the materials that might be employed in ink jet ink compositions. There is also a need for photopatternable polymeric materials which exhibit low shrinkage during post-cure steps in microelectronic device fabrication processes. In addition, a need remains for photopatternable polymeric materials which exhibit a relatively long shelf life. Further, there is a need for photopatternable polymeric materials which, in the cured form, exhibit good solvent resistanc. There is also a need for photopatternable polymeric materials which, in the cured form, exhibit good solvent resistanc. The is also a need for photopatternable polymeric materials which, when applied to microelectronic devices by spin casting techniques and cured, exhibit reduced edge bead and no apparent lips and dips. In addition, there remains a need for processes for preparing photopatternable polymeric materials with high aspect ratios at

high r solutions by the incorporation of polymerizable groups and/or cross-linking sites pendant to the polym rs. Additionally, there is a need for processes for preparing photopatternable polymers having unsaturated ester functional groups pendant to the polymer chains. A need also remains for photopatternable polymeric materials which exhibit high temperature stability and relatively low di lectric constants. Further, there is a need for photopatternable polymeric materials which exhibit reduced water sorption. Additionally, a need remains for photopatternable polymeric materials which exhibit improved hydrolytic stability, especially upon exposur to alkaline solutions. There is also a need for photopatternable polymeric materials which either have high glass transition temperatures or are sufficiently crosslinked that there are no low temperature phase transitions subsequent to photoexposure. Further, a need remains for photopatternable polymeric materials with low coefficients of thermal expansion. There is a need for polymers which are thermally stable, patternable as thick films of about 30 microns or more, exhibit low T_g prior to photoexposure, have low dielectric constants, are low in water absorption, have low coefficients of expansion, have desirable mechanical and adhesive characteristics, and are generally desirable for interlayer dielectric applications, including those at high temperatures, which are also photopatternable. There is also a need for photoresist compositions with good to excellent processing characteristics.

According to one aspect of the present invention, there is provided a composition comprising a polymer containing at least some monomer repeat units with photosensitivity-imparting substituents which enable crosslinking or chain extension of the polymer upon exposure to actinic radiation, said polymer being of the formula

wherein x is an integer of 0 or 1, A is

10

5

35

45

50 or mixtures thereof, B is

-O-,

-C(CH₃)₂-,

wherein v is an integer of from 1 to about 20,

50

55

wherein z is an integer of from 2 to about 20,

wherein u is an integer of from 1 to about 20,

5

10

20

30

50

15 CH.

25

wherein w is an integer of from 1 to about 20,

55 CH₃

20

25

30

35

40

45

50

or mixtures thereof, and n is an integer representing the number of repeating monomer units, wherein said photosensitivity-imparting substituents are unsaturated ester groups.

According to a further aspect of the present invention, there is provided a process for forming an ink jet printhead comprising the steps of: (a) depositing a layer comprising a polymer-containing composition onto a lower substrate in which one surface thereof has an array of heating elements and addressing electrodes having terminal ends formed thereon; (b) exposing the layer to actinic radiation in an imagewise pattern such that the polymer in exposed areas becomes crosslinked or chain extended and the polymer in unexposed areas does not become crosslinked or chain extended, wherein the unexposed areas correspond to areas of the lower substrate having thereon the heating elements and the terminal ends of the addressing electrodes; (c) removing the polymer from the unexposed areas, thereby forming recesses in the layer, said recesses exposing the heating elements and the terminal ends of the addressing electrodes; (d) providing an upper substrate with a set of parallel grooves for subsequent use as ink channels and a recess for subsequent use as a manifold, the grooves being open at one end for serving as droplet emitting nozzles; and (e) aligning, mating, and bonding the upper and lower substrates together to form a printhead with the grooves in the upper substrate being aligned with the heating elements in the lower substrate to form droplet emitting nozzles, thereby forming a thermal ink jet printhead.

Figure 1 is an enlarged schematic isometric view of an example of a printhead mounted on a daughter board showing the droplet emitting nozzles.

Figure 2 is an enlarged cross-sectional view of Figure 1 as viewed along the line 2-2 thereof and showing the electrode passivation and ink flow path between the manifold and the ink channels.

Figure 3 is an enlarged cross-sectional view of an alternate embodiment of the printhead in Figure 1 as viewed along the line 2-2 thereof.

The present invention is directed to a process for preparing polymeric materials having unsaturated ester functional groups. The polymers to be substituted are of the following formula:

or

wherein x is an integer of 0 or 1, A is

-O-,

or mixtures thereof, B is

wherein v is an integer of from 1 to about 20, and preferably from 1 to about 10,

$$-\bigcirc$$

wherein z is an integer of from 2 to about 20, and preferably from 2 to about 10,

wherein u is an integer of from 1 to about 20, and preferably from 1 to about 10,

5 CH₃

wherein w is an integer of from 1 to about 20, and preferably from 1 to about 10,

10

15

20

25

30

35

40

45

55

other similar bisphenol derivatives, or mixtures thereof, and n is an integer representing the number of repeating monomer units. The value of n is such that the weight average molecular weight of the material typically is from about 1,000 to about 100,000, preferably from about 1,000 to about 65,000, more preferably from about 1,000 to about 40,000, and even more preferably from about 3,000 to about 25,000, although the weight average molecular weight can be outside these ranges. Preferably, n is an integer of from about 2 to about 70, more preferably from about 5 to about 70, and even more preferably from about 8 to about 50, although the value of n can be outside these ranges. The phenyl groups and the A and/or B groups may also be substituted, although the presence of two or more substituents on the B group ortho to the oxygen groups can render substitution difficult. Substituents can be present on the polymer either prior to or subsequent to the placement of photosensitivity-imparting functional groups thereon. Substituents can also be placed on the polymer during the process of placement of photosensitivity-imparting functional groups thereon. Examples of suitable substituents include (but are not limited to) alkyl groups, including saturated, unsaturated, and cyclic alkyl groups, preferably with from 1 to about 6 carbon atoms, substituted alkyl groups, including saturated, unsaturated, and cyclic substituted alkyl groups, preferably with from 1 to about 6 carbon atoms, aryl groups, preferably with from 6 to about 24 carbon atoms, substituted aryl groups, preferably with from 6 to about 24 carbon atoms, arylalkyl groups, preferably with from 7 to about 30 carbon atoms, substituted arylalkyl groups, preferably with from 7 to about 30 carbon atoms, alkoxy groups, preferably with from 1 to about 6 carbon atoms, substituted alkoxy groups, preferably with from 1 to about 6 carbon atoms, aryloxy groups, preferably with from 6 to about 24 carbon atoms, substituted aryloxy groups, preferably with from 6 to about 24 carbon atoms, arylalkyloxy groups, preferably with from 7 to about 30 carbon atoms, substituted arylalkyloxy groups, preferably with from 7 to about 30 carbon atoms, hydroxy groups, amine groups, imine groups, ammonium groups, pyridine groups, pyridinium groups, ether groups, ester groups, amide groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfonate groups, sulfide groups, sulfoxide groups, phosphine groups, phosphonium groups, phosphate groups, mercapto groups, nitroso groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, and the like, wherein the substituents on the substituted alkyl groups, substituted aryl groups, substituted arylalkyl groups, substituted alkoxy groups, substituted aryloxy groups, and substituted aryla-Ikyloxy groups can be (but are not limited to) hydroxy groups, amine groups, imine groups, ammonium groups, pyridine groups, pyridinium groups, ether groups, aldehyde groups, ketone groups, ester groups, amide groups, carboxylic acid groups, carbonyl groups, thiocarbonyl groups, sulfate groups, sulfionat groups, sulfide groups, sulfoxid groups, phosphin groups, phosphonium groups, phosphat groups, cyano groups, nitrile groups, m reapto groups, nitroso groups, halogen atoms, nitro groups, sulfone groups, acyl groups, acid anhydride groups, azide groups, mixtures thereof, and the lik, wherein two or more substituents can be joined together to form a ring. Process is for the preparation of these materials are known, and disclosed in, for example, P. M. Hergenrother, J. Macromol. Sci. Rev. Macromol. Chem., C19

(1), 1-34 (1980); P. M. Hergenrother, B. J. Jens n, and S. J. Havens, *Polymer*, 29, 358 (1988); B. J. Jensen and P.M. Hergenrother, "High Performance Polymers," Vol. 1, No. 1) page 31 (1989), "Effect of Molecular Weight on Poly(arylene ether ketone) Properties"; V. Percec and B. C. Auman, Makromol. Chem. 185, 2319 (1984); "High Molecular Weight Polymers by Nickel Coupling of Aryl Polychlorides, "I. Colon, G. T. Kwaiatkowski, J. of Polymer Science, Part A, Polymer Chemistry, 28, 367 (1990); M. Ueda and T. Ito, Polymer J., 23 (4), 297 (1991); "Ethynyl-Terminated Polyarylates: Synthesis and Characterization, S. J. Havens and P. M. Herg nrother, J. of Polymer Science: Polymer Chemistry Edition, 22, 3011 (1984); "Ethynyl-Terminated Polysulfones: Synthesis and Characterization," P. M. Hergenrother, J. of Polymer Science: Polymer Chemistry Edition, 20, 3131 (1982); K. E. Dukes, M. D. Forbes, A. S. Jeevarajan, A. M. Belu, J. M. DeDimone, R. W. Linton, and V. V. Sheares, Macromolecules, 29, 3081 (1996); G. Hougham, G. Tesoro, and J. Shaw, Polym. Mater. Sci. Eng., 61, 369 (1989); V. Percec and B. C. Auman, Makromol. Chem, 185, 617 (1984); "Synthesis and characterization of New Fluorescent Poly(arylene ethers)," S. Matsuo, N. Yakoh, S. Chino, M. Mitani, and S. Tagami, Journal of Polymer Science: Part A: Polymer Chemistry, 32, 1071 (1994); "Synthesis of a Novel Naphthalene-Based Poly(arylene ether ketone) with High Solubility and Thermal Stability," Mami Ohno, Toshikazu Takata, and Takeshi Endo, Macromolecules, 27, 3447 (1994); "Synthesis and Characterization of New Aromatic Poly(ether ketones)," F. W. Mercer, M. T. Mckenzie, G. Merlino, and M. M. Fone, J. of Applied Polymer Science, 56, 1397 (1995); H. C. Zhang, T. L. Chen, Y. G. Yuan, Chinese Patent CN 85108751 (1991); "Static and laser light scattering study of novel thermoplastics. 1. Phenolphthalein poly(aryl ether ketone), C. Wu, S. Bo, M. Siddig, G. Yang and T. Chen, Macromolecules, 29, 2989 (1996); "Synthesis of t-Butyl-Substituted Poly(ether ketone) by Nickel-Catalyzed Coupling Polymerization of Aromatic Dichloride", M. Ueda, Y. Seino, Y. Haneda, M. Yoneda, and J.-I. Sugiyama, Journal of Polymer Science: Part A: Polymer Chemistry, 32, 675 (1994); "Reaction Mechanisms: Comb-Like Polymers and Graft Copolymers from Macromers 2. Synthesis, Characterzation and Homopolymerization of a Styrene Macromer of Poly(2,6-dimethyl-1,4-phenylene Oxide), V. Percec, P. L. Rinaldi, and B. C. Auman, Polymer Bulletin, 10, 397 (1983); Handbook of Polymer Synthesis Part A, Hans R. Kricheldorf, ed., Marcel Dekker, Inc., New York-Basel-Hong Kong (1992); and *Introduction of Carboxyl Groups into Crosslinked Polystyrene, C. R. Harrison, P. Hodge, J. Kemp, and G. M. Perry, Die Makromolekulare Chemie, 176, 267 (1975).

10

25

30

45

50

55

For applications wherein the photopatternable polymer is to be used as a layer in a thermal ink jet printhead, the photofunctionalized polymer preferably has a weight average molecular weight of from about 3,000 to about 20,000, and more preferably has a number average molecular weight of from about 3,000 to about 10,000, and even more preferably has a number average molecular weight of from about 5,000 to about 8,000, although the molecular weight can be outside these ranges.

The substitution of the polymer is accomplished by reacting the polymer in solution with (a) the appropriate unsaturated acid (such as acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, ethacrylic acid, oleic acid, linoleic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, phenylmaleic acid, 3-hexene-1,6-dicarboxylic acid, or the like), and (b) a formaldehyde source (i.e., either formaldehyde or a material which, under the conditions of the reaction, generates formaldehyde; examples of formaldehyde sources in addition to formaldehyde include paraformaldehyde, trioxane, methylal, dimethoxymethane, and the like). The reaction is direct acid catalyzed; the polymer is dissolved in a suitable solvent, such as 1,1,2,2-tetrachloroethane or the like, and is allowed to react with the formaldehyde source at about 105°C in the presence of catalytic amounts of a catalyst such as paratoluenesulfonic acid. Examples of solvents suitable for the reaction include 1,1,2,2-tetrachloroethane, as well as methylene chloride, provided a suitable pressure r actor is used. Typically, the reactants are present in relative amounts with respect to each other (by weight) of about 10 parts polymer, about 5 parts formaldehyde source, about 1 part paratoluenesulfonic acid, about 15.8 parts of the appropriate acid (i.e., acrylic acid, methacrylic acid, or the like), about 0.2 parts hydroquinone methyl ether, and about 162 parts 1,1,2,2-tetrachloroethane.

The general reaction scheme, illustrated below for the reaction with acrylic acid, is as follows:

or

15

35

40

45

The resulting material is of the general formula

20
$$\begin{pmatrix}
O \\
C-CH=CH_2
\end{pmatrix}
b
\begin{pmatrix}
O \\
H_2C-O
\end{pmatrix}
c$$

$$\begin{pmatrix}
C-CH=CH_2
\end{pmatrix}
c
\begin{pmatrix}
C-CH=CH_2
\end{pmatrix}
c$$

wherein a, b, c, and d are each integers of 0, 1, 2, 3, or 4, provided that at least one of a, b, c, and d is equal to or greater than 1 in at least some of the monomer repeat units of the polymer, and n is an integer representing the number of repeating monomer units. When methacrylic acid is used, the reaction proceeds as shown above except that the

50 groups shown above are replaced with

groups. When cinnamic acid is used, the reaction proceeds as shown above except that the

 H_2C H C-C=C-H

groups shown above are replaced with

5

10

15

20

25

30

35

45

50

 H_2C C C C C C

groups. Substitution is generally random, although the substituent may show a preference for the B group, and any given monomer repeat unit may have no substituents, one substituent, or two or more substituents. The most likely result of the reaction is that a monomer repeat unit will have 0 or 1 substituents.

Typical reaction temperatures are from about 25 to about 145°C, and preferably at about 105°C, although the temperature can be outside this range. Typical reaction times are from about 1 to about 6 hours, and preferably from about 2 to about 4 hours, although the time can be outside these ranges. Longer reaction times generally result in higher degrees of substitution. Higher degrees of substitution generally lead to greater photosensitivity of the polymer, and different degrees of substitution may be desirable for different applications. Too high a degree of substitution may lead to excessive sensitivity, resulting in crosslinking or chain extension of both exposed and unexposed polymer material when the material is exposed imagewise to activating radiation. Too low a degree of substitution may be undesirable because of resulting unnecessarily long exposure times or unnecessarily high exposure energies. For applications wherein the photopatternable polymer is to be used as a layer in a thermal ink jet printhead, the degree of substitution (i.e., the average number of unsaturated ester groups per monomer repeat unit) preferably is from about 0.25 to about 1.2, and more preferably from about 0.65 to about 0.8, although the degree of substitution can be outside these ranges for ink jet printhead applications. This degree of substitution generally corresponds to from about 0.5 to about 1.3 milliequivalents of unsaturated ester groups per gram of resin.

In some instances, the terminal groups on the polymer can be selected by the stoichiometry of the polymer synth sis. For example, whin a polymer is prepared by the reaction of 4,4'-dichlorobenzophenon and bis-phenol A in the prisence of potassium carbonate in N,N-dimethylacetamide, if the bis-phenol A is present in about 7.5 to 8 mol percent in access, the resulting polymer generally is bis-phenol A-terminated (where in the bis-phenol A moiety may or may not have one or more hydroxy groups thereon), and the resulting polymer typically has a polydispersity (M_w/M_n) of from about 2 to about 3.5. When the bis-phenol A-terminated polymer is subjected to further reactions to place

functional groups thereon, such as haloalkyl groups, and/or to convert one kind of functional group, such as a haloalkyl group, to another kind of functional group, such as an unsaturated ester group, the polydispersity of the polymer can rise to the range of from about 4 to about 6. In contrast, if the 4,4'-dichlorobenzophenone is present in about 7.5 to 8 mole percent excess, the reaction time is approximately half that required for the bis-phenol A excess reaction, the resulting polymer generally is benzophenone-terminated (wherein the benzophenone moiety may or may not have one or mor chlorine atoms thereon), and the resulting polymer typically has a polydispersity of from about 2 to about 3.5. When the benzophenone-terminated polymer is subjected to further reactions to place functional groups thereon, such as unsaturated ester groups, and/or to convert one kind of functional group, such as a haloalkyl group, to another kind of functional group, such as an unsaturated ester group, the polydispersity of the polymer typically remains in the range of from about 2 to about 3.5. Similarly, when a polymer is prepared by the reaction of 4,4'-difluorobenzophenone with either 9,9'-bis(4-hydroxyphenyl)fluorene or bis-phenol A in the presence of potassium carbonate in N,N-dimethylacetamide, if the 4,4'-diffuorobenzophenone reactant is present in excess, the resulting polymer generally has benzophenone t rminal groups (which may or may not have one or more fluorine atoms thereon). The well-known Carothers equation can be employed to calculate the stoichiometric offset required to obtain the desired molecular weight. (See, for example, William H. Carothers, "An Introduction to the General Theory of Condensation Polymers," Chem. Rev., 8, 353 (1931) and J. Amer. Chem. Soc., 51, 2548 (1929); see also P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York (1953). More generally speaking, during the preparation of polymers of the formula

5

10

15

20

25

30

35

50

55

the stoichiometry of the polymer synthesis reaction can be adjusted so that the end groups of the polymer are derived from the "A" groups or derived from the "B" groups. Specific functional groups can also be present on these terminal "A" groups or "B" groups, such as ethynyl groups or other thermally sensitive groups, hydroxy groups which are attached to the aromatic ring on an "A" or "B" group to form a phenolic moiety, halogen atoms which are attached to the "A" or "B" group.

Polymers with end groups derived from the "A" group, such as benzophenone groups or halogenated benzophenone groups, may be preferred for some applications because both the syntheses and some of the reactions of these materials to place substituents thereon may be easier to control and may yield better results with respect to, for example, cost, molecular weight, molecular weight range, and polydispersity (M_w/M_n) compared to polymers with end groups derived from the "B" group, such as bis-phenol A groups (having one or more hydroxy groups on the aromatic rings thereof) or other phenolic groups. While not being limited to any particular theory, it is believed that the haloalkylation r action in particular proceeds most rapidly on the phenolic tails when the polymer is bis-phenol A terminated. Moreover, it is believed that halomethylated groups on phenolic-terminated polymers may be particularly reactive to subsequent crosslinking or chain extension. In contrast, it is generally believed that halomethylation does not take place on the terminal aromatic groups with electron withdrawing substituents, such as benzophenone, halogenated benzophenone, or the like. The "A" group terminated materials may also function as an adhesive, and in applications such as thermal ink jet printheads, the use of the crosslinked "A" group terminated polymer may reduce or eliminate the need for an epoxy adhesive to bond the heater plate to the channel plate.

The photopatternable polymer can be cured by uniform exposure to actinic radiation at wavelengths and/or energy levels capable of causing crosslinking or chain extension of the polymer through the photosensitivity-imparting groups. Alternatively, the photopatternable polymer is developed by imagewise exposure of the material to radiation at a wavelength and/or at an energy level to which the photosensitivity-imparting groups are sensitive. Typically, a photoresist composition will contain the photopatternable polymer, an optional solvent for the photopatternable polymer, an optional sensitizer, and an optional photoinitiator. Solvents may be particularly desirable when the uncrosslinked photopatternable polymer has a high T_g. The solvent and photopatternable polymer typically are present in relative amounts of from 0 to about 99 percent by weight solvent and from about 1 to 100 percent polymer, preferably are present in relative amounts of from about 40 to about 80 percent by weight polymer, and more preferably are present in relative amounts of from about 40 to about 60 percent by weight solvent and from about 40 to about 60 percent by weight polymer, although the relative amounts can be outside these ranges.

Sensitizers absorb light energy and facilitat the transfer of energy to unsaturat d bonds which can then react to crosslink or chain ext ind the resin. Sensitizers frequently expand the us ful inergy wavel ingth range for photoexposure, and typically are aromatic light absorbing chromophores. Sensitizers can also lead to the formation of photoinitiators, which can be free radical or ionic. When present, the optional sensitizer and the photopatternable polyming

typically ar present in relative amounts of from about 0.1 to about 20 percent by weight sensitizer and from about 80 to about 99.9 percent by weight photopatternable polymer, and preferably are present in relative amounts of from about 1 to about 10 p reent by weight s nsitiz r and from about 90 to about 99 percent by weight photopatt rnable polymer, although the relative amounts can be outside these ranges.

Photoinitiators generally generate ions or free radicals which initiate polymerization upon exposure to actinic radiation. When present, the optional photoinitiator and the photopatternable polymer typically are present in relative amounts of from about 0.1 to about 20 percent by weight photoinitiator and from about 80 to about 99.9 percent by weight photopatternable polymer, and preferably are present in relative amounts of from about 1 to about 10 percent by weight photoinitiator and from about 90 to about 99 percent by weight photopatternable polymer, although the relative amounts can be outside these ranges.

A single material can also function as both a sensitizer and a photoinitiator.

Examples of specific sensitizers and photoinitiators include Michler's ketone (Aldrich Chemical Co.), Darocure 1173, Darocure 4265, Irgacure 184, Irgacure 261, and Irgacure 907 (available from Ciba-Geigy, Ardsley, New York), and mixtures thereof. Further background material on initiators is disclosed in, for example, Ober et al., *J.M.S. - Pure Appl. Chem.*, **A30** (12), 877-897 (1993); G. E. Green, B. P. Stark, and S. A. Zahir, "Photocrosslinkable Resin Systems," *J. Macro. Sci. -- Revs. Macro. Chem.*, C21(2), 187 (1981); H. F. Gruber, "Photoinitiators for Free Radical Polymerization," *Prog. Polym. Sci.*, Vol. 17, 953 (1992); Johann G. Kloosterboer, "Network Formation by Chain Crosslinking Photopolymerization and Its Applications in Electronics," *Advances in Polymer Science*, <u>89</u>, Springer-Verlag Berlin Heidelberg (1988); and "Diaryliodonium Salts as Thermal Initiators of Cationic Polymerization," J. V. Crivello, T.P. Lockhart, and J. L. Lee, *J. of Polymer Science: Polymer Chemistry Edition*, <u>21</u>, 97 (1983). Sensitizers are available from, for example, Aldrich Chemical Co., Milwaukee, WI, and Pfaltz and Bauer, Waterberry, CT. Benzophenone and its derivatives can function as photosensitizers. Triphenylsulfonium and diphenyl iodonium salts are examples of typical cationic photoinitiators.

Inhibitors may also optionally be present in the photoresist containing the photopatternable polymer. Examples of suitable inhibitors include MEHQ, a methyl ether of hydroquinone, of the formula

t-butylcatechol, of the formula

5

10

15

20

25

30

35

40

50

55

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3

hydroquinone, of the formula

and the like, the inhibitor typically present in an amount of from about 500 to about 1,500 parts per million by weight of a photoresist solution containing about 40 percent by weight polymer solids, although the amount can be outside this range. While not being limited to any particular theory, it is believed that exposure to, for example, ultraviolet radiation generally opens the ethylenic linkage in the acryloyl groups and leads to crosslinking or chain extension at the "long" bond sites as shown below:

Many of the photosensitivity-imparting groups which are indicated above as being capable of enabling crosslinking or chain extension of the polymer upon exposure to actinic radiation can also enable crosslinking or chain extension of the polymer upon exposure to elevated temperatures; thus the polymers of the present invention can also, if desired, be used in applications wherein thermal curing is employed.

In all of the above reactions and substitutions illustrated above for the polymer of the formula

40 it is to be understood that analogous reactions and substitutions will occur for the polymer of the formula

30

35

Photopattemable polymers prepared by the process of the present invention can be used as components in ink jet printheads. The printheads of the present invention can be of any suitable configuration. An example of a suitable

configuration, suitable in this instance for thermal ink jet printing, is illustrated sch matically in Figure 1, which depicts an enlarged, schematic isometric view of the front face 29 of a printhead 10 showing the array of droplet emitting nozzles 27. Referring also to Figure 2, discussed later, the lower electrically insulating substrate or heating element plat 28 has the heating elements 34 and addressing electrodes 33 patterned on surface 30 thereof, while the upper substrate or channel plate 31 has parallel grooves 20 which extend in one direction and penetrate through the upper substrate front face edge 29. The other end of grooves 20 terminate at slanted wall 21, the floor 41 of the internal recess 24 which is used as the ink supply manifold for the capillary filled ink channels 20, has an opening 25 therethrough for use as an ink fill hole. The surface of the channel plate with the grooves are aligned and bonded to the heater plate 28, so that a respective one of the plurality of heating elements 34 is positioned in each channel, formed by the grooves and the lower substrate or heater plate. Ink enters the manifold formed by the recess 24 and the lower substrate 28 through the fill hole 25 and by capillary action, fills the channels 20 by flowing through an elongated recess 38 formed in the thick film insulative layer 18. The ink at each nozzle forms a meniscus, the surface tension of which prevents the ink from weeping therefrom. The addressing electrodes 33 on the lower substrate or channel plate 28 terminate at terminals 32. The upper substrate or channel plate 31 is smaller than that of the lower substrate in order that the electrode terminals 32 are exposed and available for wire bonding to the electrodes on the daughter board 19, on which the printhead 10 is permanently mounted. Layer 18 is a thick film passivation layer, discussed later, sandwiched between the upper and lower substrates. This layer is etched to expose the heating elements, thus placing them in a pit, and is etched to form the elongated recess to enable ink flow between the manifold 24 and the ink channels 20. In addition, the thick film insulative layer is etched to expose the electrode terminals.

10

20

25

35

40

A cross sectional view of Figure 1 is taken along view line 2-2 through one channel and shown as Figure 2 to show how the ink flows from the manifold 24 and around the end 21 of the groove 20 as depicted by arrow 23. As is disclosed in U.S. Patent 4,638,337, U.S. Patent 4,601,777, and U.S. Patent Re. 32,572, a plurality of sets of bubble generating heating elements 34 and their addressing electrodes 33 can be patterned on the polished surface of a single side polished (100) silicon wafer. Prior to patterning, the multiple sets of printhead electrodes 33, the resistive material that serves as the heating elements 34, and the common return 35, the polished surface of the wafer is coated with an underglaze layer 39 such as silicon dioxide, having a typical thickness of from about 500nm (5,000 Angstroms) to about 2 micrometers (microns), although the thickness can be outside this range. The resistive material can be a doped polycrystalline silicon, which can be deposited by chemical vapor deposition (CVD) or any other well known resistive material such as zirconium boride (ZrB₂). The common return and the addressing electrodes are typically aluminum leads deposited on the underglaze and over the edges of the heating elements. The common return ends or terminals 37 and addressing electrode terminals 32 are positioned at predetermined locations to allow clearance for wire bonding to the electrodes (not shown) of the daughter board 19, after the channel plate 31 is attached to make a printhead. The common return 35 and the addressing electrodes 33 are deposited to a thickness typically of from about 0.5 to about 3 micrometers (microns), although the thickness can be outside this range, with the preferred thickness being 1.5 micrometers (microns).

If polysilicon heating elements are used, they may be subsequently oxidized in steam or oxygen at a relatively high temperature, typically about 1,100°C although the temperature can be above or below this value, for a period of time typically of from about 50 to about 80 minutes, although the time period can be outside this range, prior to the deposition of the aluminum leads, in order to convert a small portion of the polysilicon to SiO₂. In such cases, the heating elements are thermally oxidized to achieve an overglaze (not shown) of SiO₂ with a thickness typically of from about 50nm (500 Angstroms) to about 1 micrometers (microns), although the thickness can be outside this range, which has good integrity with substantially no pinholes.

In one embodiment, polysilicon heating elements are used and an optional silicon dioxide thermal oxide layer 17 is grown from the polysilicon in high temperature steam. The thermal oxide layer is typically grown to a thickness of from about 0.5 to about 1 micrometers (microns), although the thickness can be outside this range, to protect and insulate the heating elements from the conductive ink. The thermal oxide is removed at the edges of the polysilicon heating elements for attachment of the addressing electrodes and common return, which are then patterned and deposited. If a resistive material such as zirconium boride is used for the heating elements, then other suitable well known insulative materials can be used for the protective layer thereover. Before electrode passivation, a tantalum (Ta) layer (not shown) can be optionally deposited, typically to a thickness of about 1 micron, although the thickness can be above or below this value, on the heating element protective layer 17 for added protection thereof against the cavitational forces generated by the collapsing ink vapor bubbles during printhead operation. The tantalum layer is etched off all but the protective layer 17 directly over the heating elements using, for example, CF_4/O_2 plasma etching. For polysilicon heating elements, the aluminum common return and addressing electrod s typically are deposited on the underglaze layer and over the opposing edges of the polysilicon heating elements which have been cl. ared of oxide for the attachment of the common return and electrodes.

For electrode passivation, a film 16 is deposited over the entire wafer surface, including the plurality of sets of heating elements and addressing electrodes. The passivation film 16 provides an ion barrier which will protect the

exposed lectrodes from the ink. Examples of suitable ion barrier materials for passivation film 16 include polyimid plasma nitride, phosphorous doped silicon dioxide, materials disclosed hereinafter as being suitable for insulative layer 18, and the like, as well as any combinations the reof. An effective ion barrier layer is generally achieved when its thickness is from about 100nm (1000 Angstroms) to about 10 micrometers (microns), although the thickness can be outside this range. In 300 dpi printheads, passivation layer 16 preferably has a thickness of about 3 micrometers (microns), although the thickness can be above or below this value. In 600 dpi printheads, the thickness of passivation layer 16 preferably is such that the combined thickness of layer 16 and layer 18 is about 25 micrometers (microns), although the thickness can be above or below this value. The passivation film or layer 16 is etched off of the terminal ends of the common return and addressing electrodes for wire bonding later with the daughter board electrodes. This etching of the silicon dioxide film can be by either the wet or dry etching method. Alternatively, the electrode passivation can be by plasma deposited silicon nitride (Si₃N₄).

5

15

20

25

30

40

50

55

Next, a thick film type insulative layer 18, of a polymeric material discussed in further detail herein, is formed on the passivation layer 16, typically having a thickness of from about 10 to about 100 micrometers (microns) and preferably in the range of from about 25 to about 50 micrometers (microns), although the thickness can be outside these ranges. Even more preferably, in 300 dpi printheads, layer 18 preferably has a thickness of about 30 micrometers (microns), and in 600 dpi printheads, layer 18 preferably has a thickness of from about 20 to about 22 micrometers (microns), although other thicknesses can be employed. The insulative layer 18 is photolithographically processed to enable etching and removal of those portions of the layer 18 over each heating element (forming recesses 26), the elongated recess 38 for providing ink passage from the manifold 24 to the ink channels 20, and over each electrode terminal 32, 37. The elongated recess 38 is formed by the removal of this portion of the thick film layer 18. Thus, the passivation layer 16 alone protects the electrodes 33 from exposure to the ink in this elongated recess 38. Optionally, if desired, insulative layer 18 can be applied as a series of thin layers of either similar or different composition. Typically, a thin layer is deposited, photoexposed, partially cured, followed by deposition of the next thin layer, photoexposure, partial curing, and the like. The thin layers constituting thick film insulative layer 18 contain a polymer of the formula indicated hereinabove. In one embodiment of the present invention, a first thin layer is applied to contact layer 16, said first thin layer containing a mixture of a polymer of the formula indicated hereinabove and an epoxy polymer, followed by photoexposure, partial curing, and subsequent application of one or more successive thin layers containing a polymer of the formula indicated hereinabove.

Figure 3 is a similar view to that of Figure 2 with a shallow anisotropically etched groove 40 in the heater plate, which is silicon, prior to formation of the underglaze 39 and patterning of the heating elements 34, electrodes 33 and common return 35. This recess 40 permits the use of only the thick film insulative layer 18 and eliminates the need for the usual electrode passivating layer 16. Since the thick film layer 18 is impervious to water and relatively thick (typically from about 20 to about 40 microns, although the thickness can be outside this range), contamination introduced into the circuitry will be much less than with only the relatively thin passivation layer 16 well known in the art. The heater plate is a fairly hostile environment for integrated circuits. Commercial ink generally entails a low attention to purity. As a result, the active part of the heater plate will be at elevated temperature adjacent to a contaminated aqueous ink solution which undoubtedly abounds with mobile ions. In addition, it is generally desirable to run the heater plate at a voltage of from about 30 to about 50 volts, so that there will be a substantial field present. Thus, the thick film insulative layer 18 provides improved protection for the active devices and provides improved protection, resulting in longer operating lifetime for the heater plate.

When a plurality of lower substrates 28 are produced from a single silicon wafer, at a convenient point after the underglaze is deposited, at least two alignment markings (not shown) preferably are photolithographically produced at predetermined locations on the lower substrates 28 which make up the silicon wafer. These alignment markings are used for alignment of the plurality of upper substrates 31 containing the ink channels. The surface of the single sided wafer containing the plurality of sets of heating elements is bonded to the surface of the wafer containing the plurality of ink channel containing upper substrates subsequent to alignment.

As disclosed in U.S. Patent 4,601,777 and U.S. Patent 4,638,337, the channel plate is formed from a two side polished, (100) silicon wafer to produce a plurality of upper substrates 31 for the printhead. After the wafer is chemically cleaned, a pyrolytic CVD silicon nitride layer (not shown) is deposited on both sides. Using conventional photolithography, a via for fill hole 25 for each of the plurality of channel plates 31 and at least two vias for alignment openings (not shown) at predetermined locations are printed on one wafer side. The silicon nitride is plasma etched off of the patterned vias representing the fill holes and alignment openings. A potassium hydroxide (KOH) anisotropic etch can be used to etch the fill holes and alignment openings. In this case, the [111] planes of the (100) wafer typically make an angle of about 54.7 degrees with the surface of the wafer. The fill holes are small square surface patterns, generally of about 20 mils (500 microns) per side, although the dimensions can be above or below this value, and the alignment openings are from about 60 to about 80 mils (1.5 to 3 millimeters) square, although the dimensions can be outside this range. Thus, the alignment openings are etched entirely through the 20 mil (0.5 millimeter) thick wafer, while the fill holes are etched to a terminating apex at about halfway through to three-quarters through the wafer. The relatively

small square fill hole is invariant to furth r siz increas with continued tching so that the etching of the alignment openings and fill holes are not significantly time constrained.

N xt, the opposit side of the wafer is photolithographically patt rned, using the previously etched alignm in tholes as a reference to form the relatively large rectangular recesses 24 and sets of elongated, parallel channel recesses that will eventually become the ink manifolds and channels of the printheads. The surface 22 of the wafer containing the manifold and channel r cesses are portions of the original wafer surface (cover d by a silicon nitride layer) on which an adhesive, such as a thermosetting epoxy, will be applied later for bonding it to the substrate containing the plurality of sets of heating elements. The adhesive is applied in a manner such that it does not run or spread into the grooves or other recesses. The alignment markings can be used with, for example, a vacuum chuck mask aligner to align the channel wafer on the heating element and addressing electrode wafer. The two wafers are accurately mated and can be tacked together by partial curing of the adhesive. Alternatively, the heating element and channel wafers can be given precisely diced edges and then manually or automatically aligned in a precision jig. Alignment can also be performed with an infrared aligner-bonder, with an infrared microscope using infrared opaque markings on each wafer to be aligned, or the like. The two wafers can then be cured in an oven or laminator to bond them together permanently. The channel wafer can then be milled to produce individual upper substrates. A final dicing cut, which produces end face 29, opens one end of the elongated groove 20 producing nozzles 27. The other ends of the channel groove 20 remain closed by end 21. However, the alignment and bonding of the channel plate to the heater plate places the ends 21 of channels 20 directly over elongated recess 38 in the thick film insulative layer 18 as shown in Figure 2 or directly above the recess 40 as shown in Figure 3 enabling the flow of ink into the channels from the manifold as depicted by arrows 23. The plurality of individual printheads produced by the final dicing are bonded to the daughter board and the printhead electrode terminals are wire bonded to the daughter board electrodes.

10

25

40

45

55

In one embodiment, a heater wafer with a phosphosilicate glass layer is spin coated with a solution of Z6020 adhesion promoter (0.1 weight percent in 95 parts methanol and 5 parts water, Dow Corning) at 3000 revolutions per minute for 10 seconds and dried at 100°C for between 2 and 10 minutes. The wafer is then allowed to cool at 25°C for 5 minutes before spin coating the photoresist containing the photopatternable polymer onto the wafer at between 1,000 and 3,000 revolutions per minute for between 30 and 60 seconds. The photoresist solution is made by dissolving polyarylene ether ketone with 0.25 acryloylmethyl groups per repeat unit and a weight average molecular weight of 20,000 in N-methylpyrrolidinone at 37 weight percent solids with Michler's ketone (1.2 parts ketone per every 40 parts of 40 weight percent solids polymer solution). The film is heated (soft baked) in an oven for between 10 and 15 minutes at 70°C. After cooling to 25°C over 5 minutes, the film is covered with a mask and exposed to radiation at 365 nanometers and 2,500 milliJoules per cm2. The exposed wafer is then heated at 70°C for 2 minutes post exposure bake, followed by cooling to 25°C over 5 minutes. The film is developed with 60:40 chloroform/cyclohexanone developer, washed with 90:10 hexanes/cyclohexanone, and then dried at 70°C for 2 minutes. A second developer/wash cycle is carried out if necessary to obtain a wafer with clean features. The processed wafer is transferred to an oven at 25°C, and the oven temperature is raised from 25 to 90°C at 2°C per minute. The temperature is maintained at 90°C for 2 hours, and then increased to 260°C at 2°C per minute. The oven temperature is maintained at 260°C for 2 hours and then the oven is turned off and the temperature is allowed to cool gradually to 25°C. When thermal cure of the photoresist films is carried out under inert atmosphere, such as nitrogen or one of the noble gases, such as argon, neon, krypton, xenon, or the like, there is markedly reduced oxidation of the developed film and improved thermal and hydrolytic stability of the resultant devices. Moreover, adhesion of developed photoresist film is improved to the underlying substrate. If a second layer is spin coated over the first layer, the heat cure of the first developed layer can be stopped between 80 and 260°C before the second layer is spin coated onto the first layer. A second thicker layer is deposited by repeating the above procedure a second time. This process is intended to be a guide in that procedures can be outside the specified conditions depending on film thickness and photoresist molecular weight. Films at 25 micrometers (microns) have been developed with clean features at 600 dots per inch.

For best results with respect to well-resolved features and high aspect ratios, photoresist compositions of the present invention are free of particulates prior to coating onto substrates. In one preferred embodiment, the photoresist composition containing the photopatternable polymer is subjected to filtration through a 2 micrometers (microns) nylon filter cloth (available from Tetko). The photoresist solution is filtered through the cloth under yellow light or in the dark as a solution containing from about 30 to about 60 percent by weight solids using compressed air (up to about 60 psi) and a pressure filtration funnel. No dilution of the photoresist solution is required, and concentrations of an inhibitor (such as, for example, MEHQ) can be as low as, for example, 500 parts per million or less by weight without affecting shelf life. No build in molecular weight of the photopatternable polymer is observed during this filtration process. While not being limit d to any particular theory, it is beli ved that when unsaturat d st r groups are pr s nt on the photopolym rizable polymer, compressed air yields r sults superior to those obtainable with in rt atmosphere because oxygen in the compressed air acts as an effectiv inhibitor for the free radical polymerization of unsaturated est r groups such as acrylates and methacrylates.

The present invention also encompasses printing process s with printheads according to the pres nt invention.

One embodiment of the present invention is dir cted to an ink jet printing proc ss which comprises (1) preparing an ink jet printhead comprising a plurality of channels, wherein the channels are capable of being filled with ink from an ink supply and wherein the channels terminate in nozzles on one surfac of the printhead, said preparation being according to the process of the present invention; (2) filling the channels with an ink; and (3) causing droplets of ink to be expelled from the nozzles onto a receiver sheet in an image pattern. A specific embodiment of this process is directed to a thermal ink jet printing process, wherein the droplets of ink are caused to be expelled from the nozzles by heating selected channels in an image pattern. The droplets can be expelled onto any suitable receiver sheet, such as fabric, plain paper such as Xerox® 4024 or 4010, coated papers, or transparency materials.

EXAMPLE I

10

25

30

35

40

45

50

A polyarylene ether ketone of the formula

wherein n is between about 6 and about 30 (hereinafter referred to as poly(4-CPK-BPA)) was prepared as follows. A 1 liter, 3-neck round-bottom flask equipped with a Dean-Stark (Barrett) trap, condenser, mechanical stirrer, argon inlet, and stopper was situated in a silicone oil bath. 4,4'-Dichlorobenzophenone (Aldrich 11,370, Aldrich Chemical Co., Milwaukee, WI, 50 grams), bis-phenol A (Aldrich 23,965-8, 48.96 grams), potassium carbonate (65.56 grams), anhydrous *N,N*-dimethylacetamide (300 milliliters), and toluene (55 milliliters) were added to the flask and heated to 175°C (oil bath temperature) while the volatile toluene component was collected and removed. After 24 hours of heating at 175°C with continuous stirring, an aliquot of the reaction product that had been precipitated into methanol was analyzed by gel permeation chromatography (gpc) (elution solvent was tetrahydrofuran) with the following results: M_n 4464, M_{peak} 7583, M_w 7927, M_z 12,331, and M_{z+1} 16,980. After 48 hours at 175°C with continuous stirring, the reaction mixture was filtered to remove potassium carbonate and precipitated into methanol (2 gallons). The polymer (poly (4-CPK-BPA)) was isolated in 86% yield after filtration and drying *in vacuo*. GPC analysis was as follows: M_n 5347, M_{peak} 16,126, M_w 15,596, M_z 29,209, and M_{z+1} 42,710. The glass transition temperature of the polymer was 120±10°C as determined using differential scanning calorimetry at a heating rate of 20°C per minute. Solution cast films from methylene chloride were clear, tough, and flexible. As a result of the stoichiometries used in the reaction, it is believed that this polymer had end groups derived from bis-phenol A.

The poly(4-CPK-BPA) prepared as described above (10 grams) in 1,1,2,2-tetrachloroethane (100 milliliters, 161.9 grams), paraformaldehyde (5 grams), p-toluene-sulfonic acid monohydrate (1 gram), acrylic acid (15.8 grams), and crushed 4-methoxy-phenol (MEHQ, 0.2 gram) were charged in a 6.5 fluid ounce beverage bottle equipped with a magnetic stirrer. The bottle was stoppered with a rubber septum and was then heated to 105°C in a silicone oil bath under argon using a needle inlet. The argon needle inlet was removed when the oil bath achieved 90°C. Heating at 105°C was continued with constant magnetic stirring for 1.5 hours. More MEHQ (0.2 grams) in 1 milliliter of 1,1,2,2-tetrachloroethane was then added by syringe, and heating at 105°C with stirring was continued for 1.5 hours longer. The reaction mixture was initially a cloudy suspension which became clear on heating. The reaction vessel was immersed as much as possible in the hot oil bath to prevent condensation of paraformaldehyde onto cooler surfaces of the reaction vessel. The reaction mixture was allowed to return to 25°C and was then filtered through a 25 to 50 micron sintered glass Buchner funnel. The reaction solution was added to methanol (1 gallon) to precipitate the polymer designated poly(acryloylmethyl-4-CPK-BPA), of the formula

wherein n is between about 6 and about 50. ¹H NMR spectrometry was used to identify approximately 1 acryloylmethyl group for every four monomers (4-CPK-BPA) repeat units (i.e., a degree of acryloylation of 0.25). The poly(acryloylmethyl-4-CPK-BPA) was then dissolved in methylene chloride and reprecipitated into methanol (1 gallon) to yield 10 grams of fluffy white solid. The polymer was soluble in chlorinated solvents and polar aprotic solvents, but insoluble in acetone and alcohols. Films of the polymer were thermally ramp cured at 0.2°C per minute until 250°C was achieved, and then maintained at 250°C for 3 hours longer before the films were allowed to cool to 25°C. The crosslinked films

Photoactive compositions were made by preparing a 50 weight percent solids solution in N-methyl pyrrolidone using excess methylene chloride as a volatile diluent (to facilitate filtration of the solution through a 10 micron filter) which was later removed. Michler's ketone, of the formula

was added to the formulation at between 0.5 and 1 weight percent of the resin solids. The solution was filtered and the methylene chloride was removed using a rotary evaporator. Solutions at approximately 37 weight percent solids were used to cast 30 micron dried films of the polymer onto silicon wafers which had previously been treated with a silane adhesion promoter and heated at 70°C for 10 minutes. The wet films were dried at 80°C for 20 minutes before exposure to ultraviolet light. Ideal exposure conditions were about 2,500 milliJoules/cm². After exposure, the films were heated to 80°C for 5 minutes before development with 1:1 N-methylpyrrolidinone and cyclohexanone using a spin developer followed by a methanol wash. Thick 20 micron films could be developed at 300 dots per inch resolution. The heat cured films were resistant to typical thermal ink jet ink solvents such as sulfolane and ethylene glycol.

EXAMPLE II

5

10

15

20

25

30

35

40

45

A polymer of the formula

were resistant to all the thermal ink jet inks tested.

wherein n represents the number of repeating monomer units was prepared as follows. A 500 milliliter, 3-neck round-bottom flask equipped with a Dean-Stark (Barrett) trap, condenser, mechanical stirrer, argon inlet, and stopper was

situated in a silicone oil bath. 4,4'-Dichlorobenzophenone (Aldrich 11,370, Aldrich Chemical Co., Milwaukee, WI, 16.32 grams, 0.065 mol), bis(4-hydroxyphenyl)methane (Aldrich, 14.02 grams, 0.07 mol), potassium carbonate (21.41 grams), anhydrous *N*,*N*-dimethylacetamide (100 milliliters), and toluene (100 milliliters) were added to the flask and heat d to 175°C (oil bath temperature) while the volatile toluene component was collected and removed. After 48 hours of heating at 175°C with continuous stirring, the reaction mixture was filtered and added to methanol to precipitate the polymer, which was collected by filtration, washed with water, and then washed with methanol. The yield of vacuum dried product, poly(4-CPK-BPM), was 24 grams. The polymer dissolved on heating in *N*-methylpyrrolidinone, *N*,*N*-dimethylacetamide, and 1,1,2,2-tetrachloroethane. The polymer remained soluble after the solution had cooled to 25°C.

The polymer poly(4-CPK-BPM) so prepared was acryloylated with paraformaldehyde by the process described in Example I. Similar results were obtained.

EXAMPLE III

10

15

20

35

40

45

50

A polymer of the formula

CF₃ CF₃

wherein n represents the number of repeating monomer units was prepared as follows. A 500 milliliter, 3-neck round-bottom flask equipped with a Dean-Stark (Barrett) trap, condenser, mechanical stirrer, argon inlet, and stopper was situated in a silicone oil bath. 4,4'-Dichlorobenzophenone (Aldrich 11,370, Aldrich Chemical Co., Milwaukee, WI, 16.32 grams, 0.065 mol), hexafluorobisphenol A (Aldrich, 23.52 grams, 0.07 mol), potassium carbonate (21.41 grams), an-hydrous N,N-dimethylacetamide (100 milliliters), and toluene (100 milliliters) were added to the flask and heated to 175°C (oil bath temperature) while the volatile toluene component was collected and removed. After 48 hours of heating at 175°C with continuous stirring, the reaction mixture was filtered and added to methanol to precipitate the polymer, which was collected by filtration, washed with water, and then washed with methanol. The yield of vacuum dried product, poly(4-CPK-HFBPA), was 20 grams. The polymer was analyzed by gel permeation chromatography (gpc) (elution solvent was tetrahydrofuran) with the following results: Mn 1,975, Mpeak 2,281, Mw 3,588, and Mz+1 8,918.

The polymer poly(4-CPK-HFBPA) so prepared was acryloylated with paraformaldehyde by the process described in Example I. Similar results were obtained.

Claims

 A composition comprising a polymer containing at least some monomer repeat units with photosensitivity-imparting substituents which enable crosslinking or chain extension of the polymer upon exposure to actinic radiation, said polymer being of the formula

or

wherein x is an integer of 0 or 1, A is

35 O S

O II

50 N

-O-,

or mixtures thereof, B is

15

10

25

35

45

_____(CH₂)v

wherein v is an integer of from 1 to about 20,

30 H

wherein z is an integer of from 2 to about 20,

wherein u is an integer of from 1 to about 20,

50 CH₃

wherein w is an integer of from 1 to about 20,

10

or mixtures thereof, and n is an integer representing the number of repeating monomer units, wherein said photosensitivity-imparting substituents are unsaturated ester groups.

- 2. A composition according to claim 1 further containing an additional component selected from the group consisting of a sensitizer, a photoinitiator, a solvent, and any mixtures thereof.
- 3. A composition which comprises a crosslinked or chain extended polymer of the formula

or

wherein x is an integer of 0 or 1, A is

-O-,

-C(CH₃)₂-,

or mixtures thereof, B is

wherein v is an integer of from 1 to about 20,

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

EP 0 827 030 A2

wherein z is an integer of from 2 to about 20,

wherein u is an integer of from 1 to about 20,

20 CH₃

30

CH3 CH3 CH3 CH3 CH3

45 CH₃ (CH₂)w

wherein w is an integer of from 1 to about 20,

55

40

or mixtures thereof, and n is an integer representing the number of repeating monomer units, said crosslinking or chain extension occurring through photosensitivity-imparting substituents contained on at least some of the monomer repeat units of the polymer which form crosslinks or chain extensions in the polymer upon exposure to actinic radiation, wherein the photosensitivity-imparting substituents are unsaturated ester groups.

- 4. A composition according to any of claims 1 to 3 wherein the polymer has end groups derived from the "A" groups of the polymer.
- 5. A composition according to any of claims 1 to 3 wherein the polymer has end groups derived from the "B" groups of the polymer.
- 6. A composition according to any of claims 1 to 5 wherein A is

C

and B is

wherein z is an integer of from 2 to about 20, or a mixture thereof. 7. A process which comprises reacting a polymer of the formula

15 B O F

wherein x is an integer of 0 or 1, A is

25

55

50

-C(CH₃)₂-,

40 or mixtures thereof, B is

wherein v is an integer of from 1 to about 20,

wherein z is an integer of from 2 to about 20,

(CH₂)√

wherein u is an integer of from 1 to about 20,

wherein w is an integer of from 1 to about 20,

20

25

30

35

40

45

50

or mixtures thereof, and n is an integer representing the number of repeating monomer units, with (i) a formaldehyde source, and (ii) an unsaturated acid in the presence of an acid catalyst, thereby forming a photopatternable polymer with unsaturated ester groups.

- 8. A process according to claim 7 wherein crosslinking or chain extension is effected either by heating the polymer to a temperature sufficient to enable the photosensitivity-imparting groups to form crosslinks or chain extensions in the polymer, or by exposing the polymer to actinic radiation such that the polymer in exposed areas becomes crosslinked or chain extended.
- 9. A process for forming an ink jet printhead comprising the steps of:
 - (a) depositing a layer (18) comprising a polymer-containing composition according to any of claims 1 to 6 onto a lower substrate (28) in which one surface thereof has an array of heating elements (34) and addressing electrodes (33) having terminal ends (32) formed thereon;
 - (b) exposing the layer (18) to actinic radiation in an imagewise pattern such that the polymer in exposed areas becomes crosslinked or chain extended and the polymer in unexposed areas does not become crosslinked or chain extended, wherein the unexposed areas correspond to areas of the lower substrate (28) having thereon the heating elements (34) and the terminal ends (32) of the addressing electrodes (33);
 - (c) removing the polymer from the unexposed areas, thereby forming recesses in the layer (18), said recesses exposing the heating elements (34) and the terminal ends (32) of the addressing electrodes (33);
 - (d) providing an upper substrate (31) with a set of parallel grooves (20) for subsequent use as ink channels and a recess (24) for subsequent use as a manifold, the grooves (20) being open at one end for serving as droplet emitting nozzles; and
 - (e) aligning, mating, and bonding the upper (31) and lower (28) substrates together to form a printhead (10) with the grooves (20) in the upper substrate (31) being aligned with the heating elements (34) in the lower substrate (28) to form droplet emitting nozzles, thereby forming a thermal ink jet printhead.
- 10. An ink jet printhead which comprises (i) an upper substrate (31) with a set of parallel grooves (20) for subsequent use as ink channels and a recess (24) for subsequent use as a manifold, the grooves (20) being open at one end for serving as droplet emitting nozzles, (ii) a lower substrate (28) in which one surface thereof has an array of heating elements (34) and addressing electrodes (33) formed thereon, and (iii) a layer (18) deposited on the surface

EP 0 827 030 A2

of the lower substrate (28) and over the heating elements (34) and addressing electrodes (33) and patt rned to form recesses therethrough to expose the heating elements (34) and terminal ends (32) of the addressing electrodes (33), the upp r (31) and lower (28) substrates being aligned, mated, and bonded together to form the printhead (10) with the grooves (20) in the upper substrate (31) being aligned with the heating elements (34) in the lower substrate (28) to form droplet emitting nozzles, said layer (18) comprising a crosslinked or chain extended polymer-containing composition according to any of claims 3 to 6.

FIG. 1

(11) EP 0 827 030 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 17.06.1998 Builetin 1998/25

(51) Int Cl.6: **G03F 7/038**, B41J 2/16

(43) Date of publication A2: 04.03.1998 Bulletin 1998/10

(21) Application number: 97306207.8

(22) Date of filing: 15.08.1997

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

(30) Priority: 29.08.1996 US 697761

(71) Applicant: XEROX CORPORATION Rochester, New York 14644 (US)

(72) Inventors:

Fuller, Timothy J.
 Pittsford, NY 14534-4023 (US)

Narang, Ram S.
 Macedon, NY 14502-9323 (US)

• Smith, Thomas W. Penfield, NY 14526 (US)

Luca, David J.
 Rochester, NY 14609 (US)

 Crandall, Raymond K. Pittsford, NY 14534 (US)

(74) Representative: Pike, Christopher Gerard et al Rank Xerox Ltd., Patent Department, Parkway Marlow, Buckinghamshire SL7 1YL (GB)

(54) Process for direct substitution of high performance polymers with unsaturated ester groups

(57) Disclosed is a process which comprises reacting a polymer of the general formula

or

EP 0 827 030 A3

wherein x is an int ger of 0 or 1; and A and B are sp cified groups, and n is an integer representing the number of repeating monomer units, with (i) a formaldehyde source, and (ii) an unsaturated acid in the presence of an acid catalyst, th reby forming a curable polymer with unsaturated ester groups. Also disclosed is a process for preparing an ink jet printhead with the above polymer.

EUROPEAN SEARCH REPORT

Application Number EP 97 30 6207

	DOCUMENTS CONSIDE		Relevant	CLASSIFICATION OF THE
Category	Citation of document with inc of relevant passa		to claim	APPLICATION (InLCI.6)
X	EP 0 281 808 A (SIEM AKTIENGESELLSCHAFT) * page 3, line 3 - 1		1-5,8	G03F7/038 B41J2/16
X	DATABASE WPI Section Ch, Week 812 Derwent Publications Class A26, AN 81-465 XP002063306 & JP 56 050 928 A (1981 * abstract *	s Ltd., London, GB; 539D	1-5,8	
X	US 4 086 209 A (S. HARA ET AL.) * column 24, line 30 - line 50 * * column 35, line 29 - line 40 * * column 27, line 25 - line 40 * * column 28, line 19 - line 21 *		1-5,8	
A,D	US 4 601 777 A (W.G * claims *	. HAWKINS ET AL.)	9,10	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
				B41J
	The present search report has	been drawn up for all claims		
	Place of search	Date of completion of the sea	i	Examiner
	THE HAGUE	24 April 1998	Du	part, JM.
X:pa Y:pa do A:te	CATEGORY OF CITED DOCUMENTS irticularly relevant it taken alone urticularly relevant it combined with and current of the same category chnological background on-written disclosure termediate document	E : eafler pate after the fit ther D : document L : document	orinciple underlying the ent document, but put ling date cited in the application cited for other reason of the same patent fan	blished on, or on s