Induction

Strong Induction & Weak Induction

Shehabul Islam Sawraz

Computer Science & Engineering, Bangladesh University of Engineering & Technology

August 29, 2022

What is Induction?

Proof technique

What is Induction?

- Proof technique
- Simple yet efficient method

What is Induction?

- Proof technique
- Simple yet efficient method
- Proves a statement for a set of numbers

Steps & Types

Steps

- Base Step
- Inductive Step

Steps & Types

Steps

- Base Step
- Inductive Step

Types

- Weak Induction (Regular Induction)
- Inductive Step

Principles of Weak Induction

1 Base Step: verify $P(1) \implies P(0)$

Principles of Weak Induction

- **1** Base Step: verify $P(1) \implies P(0)$
- **2** Inductive Step: prove $P(n) \implies P(n+1)$

Principles of Strong Induction

- **1** Base Step: verify $P(1) \implies P(0)$
- **2** Inductive Step: prove $\forall k \in \mathbb{N} : k \leq n, P(k) \implies P(n+1)$

Equivalence of Weak & Strong Induction

- If a statement can be proven by Weak Induction, it can be proven by Strong Induction
- If a statement can be proven by Strong Induction, it can be proven by Weak Induction
- First one is left for exercise.

Equivalence of Weak & Strong Induction

- If a statement can be proven by Weak Induction, it can be proven by Strong Induction
- If a statement can be proven by **Strong Induction**, it can be proven by **Weak Induction**
- First one is left for exercise.

Equivalence of Weak & Strong Induction

- If a statement can be proven by Weak Induction, it can be proven by Strong Induction
- If a statement can be proven by **Strong Induction**, it can be proven by **Weak Induction**
- First one is left for exercise.

If provable by Strong, can be proven by Weak

Let, a statement be P. $\forall n \in N, P(n)$ If P can be proven by **Strong Induction**

- P(1) is true
- ② $\forall k \in \mathbb{N} : k \leq P(k) \implies P(n+1)$ We are to prove, P can be proven using *Weak Induction*

If provable by Strong, can be proven by Weak

Define,

$$Q(n) = \forall k, n \in \mathbb{N} : k \le n, P(k)$$

= $P(1) \land P(2) \land P(3) \dots P(n)$

It is Obvious, Q(1) is true, as Q(1) = P(1)Rewriting we get, $\forall n \in N, Q(n) \Longrightarrow P(n+1)$ As, $(A \Longrightarrow B) \land (A \Longrightarrow C) \Longrightarrow (A \Longrightarrow (B \land C))$ So, we get,

$$Q(n) \implies Q(n) \land P(n+1)$$

$$\implies P(1) \land P(2) \dots P(n) \land P(n+1)$$

$$Q(n) \implies Q(n+1)$$

If provable by Strong, can be proven by Weak

Now,

$$Q(1) \land (\forall n \in N, Q(n) \implies Q(n+1)) \implies \forall n \in N, Q(n)$$

which is the weak inductive principle

From our assumption, Q(n) can never be true without P(n)

So,
$$Q(n) \implies P(n)$$

Therefore, the statement P(n) for all n is just proved by using weak induction.

