

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería

Estacionariedad débil en registros polisomnográficos de adultos mayores, como marcador de posible deterioro cognitivo

Presenta

Julio Cesar Enciso Alva

Dirección

Dra. Erika Elizabeth Rodríguez Torres Dra. Alejandra Rosales Lagarde

Mineral de la Reforma, Hidalgo, México. Abril de 2018

	Abstract

La doctora Alejandra Rosales Lagarde propuso investigar el tema del sueño en el adulto mayor en el Área Académica de Gerontología de la UAEH, institución a la cual está comisionada de acuerdo al contrato con el programa Cátedras CONACYT con el número de investigadora 1411 y el proyecto número 2162, Evaluación y diagnóstico de los aspectos biopsicosociales del adulto mayor y sus cuidadores primarios.

De manera adicional, el presente estudio fue apoyado parcialmente por las siguientes entidades: SNI-CONACYT (96080), Convenio PROMEP UAEHGO-103.5-14-10567, la Sociedad Matemática Mexicana Sofía Kovalévskaya (2014); otorgados a la doctora Erika E. Rodríguez Torres.

Agradecimientos

Antes que nada a mis padres, María Guadalupe Alva González y Nicolás Enciso Maturano, quienes además darme la vida me han soportado y apoyado en ella. Y también a mi hermano, Erick Ricardo Enciso Alva, por su apoyo incondicional. Les agradezco por su enorme paciencia conmigo.

A todos los profesores de la Licenciatura en Matemáticas Aplicadas. Los muchos conocimientos que han compartido y a mis compañeros han sido más que una inspiración, un ejemplo a seguir.

Doblemente a mis asesoras, Dra. Erika Rodríguez Torres y Dra. Alejandra Rosales Lagarde, por obligarme a superarme a mí mismo y centrarme en el trabajo.

De manera particular a la Dra. Alejandra Rosales Lagarde y a la Mtra. Génesis Vázquez Tagle por el permitirme el acceso y análisis de los registros de polisomnograma. Mi contribución con este trabajo luce pequeña en comparación.

También a los amigos que conocí durante la carrera: Alberto, Augusto, Daniel, Omar, Angie, Magali, Alejandro; por hacer la vida más llevadera.

Índice genera	al

Índice de figuras

Índice de cuadros

"Creo que el conocimiento científico tiene
propiedades fractales; que por mucho que aprendamos,
lo que queda, por pequeño que parezca,
es tan infinitamente complejo como el todo
por el que empezamos.
Ese, creo yo, es el secreto del universo."

ISAAC ASIMOV [?]

Introducción

Gracias a los avances médicos del último siglo se ha incrementado la esperanza de vida y la calidad de vida. Desafortunadamente, también ha aumentado la presencia de enfermedades no-transmisibles asociadas con la edad. En México el sector de la población con más de 60 años de edad (considerados en alto riesgo para este tipo de enfermedades) contempló a 10 millones de personas en 2010, y en 2015 dicha cifra creció a 12 millones [?, ?]. En este trabajo se destaca la demencia de entre las enfermedades asociadas con la edad.

La demencia consiste en el desarrollo de deficiencias cognoscitivas (especialmente en atención y memoria) suficientemente graves para interferir en las actividades del individuo. Se considera que la demencia es irreversible, y no se han identificado curas definitivas [?], debido a lo cual ha surgido un gran interés en definir y diagnosticar sus etapas tempranas. El deterioro cognitivo leve (DCL), una etapa temprana de la demencia, se entiende como el desarrollo de deficiencias cognoscitivas objetivas pero que no corresponden a daño físico del cerebro y no son lo suficientemente graves para calificarse como demencia.

Existen varios otros métodos alternativos para detectar —o definir— el DCL; desde la autopercepción por parte del paciente, hasta análisis genéticos, químicos y de imagenología cerebral. De entre estas técnicas se destaca a la polisomnografía (PSG), el registro conjunto de varias señales electrofisiológicas durante el sueño. En particular, se considera una PSG compuesta por registros de electroencefalograma (EEG), electrooculograma (EOG) y electromiograma (EMG) para medir, respectivamente, actividad eléctrica cerebral, tono muscular y movimientos oculares. El uso en particular de registros de PSG obedece principalmente a que (1) es una técnica relativamente barata y no invasiva, con relación al tipo de información que se obtiene, y (2) existe una cantidad moderadamente grande de marcadores para el DCL reportados usando la PSG.

Se ha encontrado, por ejemplo, correlaciones entre el DCL en adultos mayores con la *presencia* de ciertos tipos de ondas cerebrales [?, ?, ?]. Sin embargo, otros estudios sugieren que el EEG durante el sueño es un mejor predictor del DCL [buscar y citar Baryet ??].

En el presente trabajo se busca desarrollar métodos para determinar el DCL en base a registros de PSG en adultos mayores, como complemento a los resultados de pruebas neuropsicológicas. Se mantiene presente que el deterioro cognitivo (más allá del DCL) no puede reducirse exclusivamente a tales mediciones; las conclusiones obtenidas usando registros de señales electrofisiológicas deben ser contrastadas siempre con resultados de análisis complementarios.

Antecedentes

Se considera que la técnica de EEG fue inventada en la década de 1920 por el fisiólogo Hans Berger, quien descubrió que ésta es sensible a cambios en la actividad mental como la concentración o el parpadeo de voluntario. Desde entonces se estableció que hay una conexión innegable entre el funcionamiento de la mente y los fenómenos eléctricos en el cerebro. Después de casi un siglo, se ha llegado a aceptar que dicha asociación es más bien complicada.

Los fenómenos eléctricos en el cerebro que dan origen al EEG son conocidos, cuando menos en su *nivel de organización* más básico: las neuronas

Por un lado el EEG es en parte un fenómeno eléctrico, tradicionalmente se le describe en términos de ondas y frecuencias, en ocasiones como un sistema dinámico. Paralelamente el EEG es un fenómeno biológico, de modo que se le atribuyen características estocásticas pero –de alguna forma– organizadas. En su libro "Cybernetics or Control and Communication in the Animal and the Machine", el matemático Norbert Wiener comenta la posibilidad de que la actividad cerebral tenga un poco de ambas características, lo cual no lo excusa de ser estudiado formalmente (es decir, sin vageudad) como un sistema [?] cap11.

En el presente trabajo se opta por interpretar (como sinónimo informal para 'modelar') a los registros de EEG como procesos estocásticos cuyo espectro de potencias
es relevante; naturalmente, ambos términos serán definidos con detalle en el texto.

La actividad eeeg representa unn paradigma de complejidad, que no es sinónimo de complicación sino de actividad emergente. como los estados de agregación de la materia. el todo es mas que la suma de las partes [?? citar articulo dfa vs patrones locales]

la estacionariedad local y dahlhaus.

El enfoque de estacionariedad, desde la perspectiva del espectro, ha sido tomado por varios autores. Por ejemplo Kaplan, quien lo usa para definir fragmentos cuyo espectro de potencias es omogeneo.

Los fragmentos son ni portantes porque

la clase cohen y diferentes espectros cambiantes en el teimpo

Se usa la prueba propuesta por Priestley y Subba Rao. Por ejemplo Nason, quien usa la estacionairedad en vulcanologia para detectar cosas. La prueba de PSR es una de las mas rapidas porque es nlog(n)

tiempo, fft y computadoras: tiene sentido usar pruebas viejas y raras

ya se habian presentado resultados previos En un estudio reciente, EEG de una noche polisomnografía de personas mayores con y sin deterioro cognitivo según las evaluaciones con el Neuropsi analizó el porcentaje de estacionariedad. En sueño MOR el porcentaje fue menor que el del sueño NMOR y la vigilia, se obtuvo estacionariedad como un índice para comparar NMOR versus sueño MOR en ambos grupos

En 2016 Vázquez-Tagle y colaboradores estudiaron el PDCL en adultos mayores del estado de Hidalgo con el método no lineal del Análisis de Fluctuaciones sin Tendencia (DFA, por sus siglas en inglés), encontrando efectivamente que los sujetos con PDCL presentan mayor ruido browniano en varias regiones en comparación con los pacientes sin PDCL[?].

Pregunta de investigación y objetivos

Los registros de PSG en adultos mayores, modelados como procesos estocásticos, ¿pueden considerarse como débilmente estacionarios? ¿Dicha caracterización es afectada si el individuo presenta PDCL?

Objetivos

Estudiar sobre pruebas estadísticas para detectar si una realización dada proviene de un proceso estocástico débilmente estacionario. Usar tales pruebas sobre registros de PSG en adultos mayores con y sin PDCL. Investigar si hay una relación entre la presencia de PDCL y la clasificación de los proceso estocásticos referidos como débilmente estacionarios.

Sobre la estructura del texto

Debido al enfoque aplicado del presente trabajo, esta porción del texto fue estructurada pensando en dos tipos de lectores: por un lado aquellos interesados principalmente en los objetos matemáticos involucrados y sus conexiones, y por otro lado quienes ven los mismos como herramienta y esperan entenderlos mejor. Los temas fueron ordenados pensando en el primer tipo de lector. Para el segundo tipo de lector, se ha preparado en la figura ?? un mapa del texto, pero principalmente de los temas sobre matemáticas.

En el primer capítulo se abordan varios temas preliminares sin lujo de detalles, con la finalidad de presentar un texto autocontenido; la finalidad del capítulo es definir formalmente los procesos estocásticos, espacios de Hilbert y estimadores.

En el segundo capítulo se definen los procesos estocásticos débilmente estacionarios, al conjunto de éstos se les da estructura de espacio de Hilbert, y finalmente se usa dicha estructura para definir el espectro de potencias como una generalización de la transformada de Fourier. Una porción importante del capítulo trata sobre la estimación efectiva del espectro de potencias a partir de observaciones dadas de un proceso estocástico.

En el tercer capítulo se define el espectro evolutivo, una generalización del espectro de potencias para una familia de procesos que no son débilmente estacionarios. Al final se expone una aplicación aparente menor del espectro evolutivo, pero que es fundamental para el resto del presente trabajo: la prueba de Priestley Subba-Rao. Esta prueba verifica —como prueba de hipótesis— si el espectro evolutivo de un proceso puede reducirse a un espectro de potencias; en otras palabras, si un proceso es débilmente estacionario.

En el cuarto capítulo se presentan conceptos de índole *fisiológica*: psicología,

psicometría, electrofisiología. El objetivo del capítulo es describir el DCL y cómo se detecta, describir qué es el sueño y como se analiza (en este caso a partir de la polisomnografía), y mencionar la relación entre el sueño y el DCL.

En el capítulo quinto se describe cómo se utilizó la prueba de estacionariedad débil para estudiar los registros de polisomnografía. En el capítulo sexto se discuten los resultados obtenidos, y se concluye que la técnica utilizada no es un marcador diagnóstico para el DCL; se reportan algunos hallazgos incidentales.

Figura 1: Se ilustra gráficamente las *dependencias* respecto a los tópicos de matemáticas, es decir, los temas que deben discutirse antes que otros. El resto del texto (incluyendo los tópicos de fisiología) son expuesto de forma más *secuencial*, por lo que no se consideró necesario ilustrar sus dependencias.

CAPÍTULO 1

Preliminares

Este capítulo se incluye con el objetivo de lograr un texto autocontenido y accesible, para lo cual se expone una serie de temas que en lo posterior serán considerados como *conocidos*. Dentro del contexto del presente trabajo, la lectura de este capítulo es opcional, para lo cual se recomienda revisar el diagrama de relaciones entre temas (cuadro ??) como guía de lectura. La secuencia de lectura sugerida por el autor es, naturalmente, según se ha ordenado el texto de principio a fin.

Con la intención de no hacer el presente texto innecesariamente extenso, los temas del presente capítulo se exponen sin muchos detalles; se omiten comentarios importantes y demostraciones de teoremas fuertes, pero sólo en caso de que no *impacten* de manera directa a los resultados centrales del presente trabajo. Esta falla planificada es *compensada* citando material donde el lector puede encontrar dichos faltantes. Cabe destacar que los temas *centrales* en el presente texto se distribuyen entre los capítulos 2 y 3.

De manera general, el lector interesado en mayores detalles sobre teoría de la medida, probabilidad y estadística puede referirse a los libros "Probability for Statisticians" por Galen R. Shorack [?], y "Statistical Theory" por Bernard W. Lindgren [?]. Así mismo, en el contexto de procesos estocásticos, es recomendable la exposición sobre espacios de Hilbert en el libro "Stationary Stochastic Processes: Theory and Applications" por Georg Lindgren [?].

1.1. Medidas

Definición 1.1. Sea Ω un conjunto y sea \mathcal{U} una familia de subconjuntos de Ω . Se dice que \mathcal{U} es una σ -álgebra si cumple

- $\Omega \in \mathcal{U}$
- $A \in \mathcal{U} \Rightarrow A^C \in \mathcal{U}$
- $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{U}\Rightarrow \cup_{n\in\mathbb{N}}A_n\in\mathcal{U}$

Donde A^C es el complemento de A en U. Los elementos de \mathcal{U} se denominan **conjuntos medibles**.

Definición 1.2. Sea Ω un conjunto y $\mathcal{A} \subseteq \Omega$ una familia de subconjuntos. Se define a $\sigma(\mathcal{A})$, la σ -álgebra generada por \mathcal{A} , como la intersección de todas las σ -álgebras que contienen a \mathcal{A} .

Ejemplo 1.1. En el contexto de la probabilidad, es particularmente importante la σ -álgebra de Borel, \mathcal{B} , definida como

$$\mathcal{B} := \sigma\left(\left\{\left(-\infty, a\right] \subset \mathbb{R} \mid a \in \mathbb{R}\right\}\right) \tag{1.1}$$

En general pueden definirse σ -álgebras similares de forma sencilla para algún subconjunto arbitrario $A \subset \mathbb{R}$, como

$$\mathcal{B}_A := \sigma\left(\left\{(-\infty, a] \cap A \subset \mathbb{R} \mid a \in \mathbb{R}\right\}\right) \tag{1.2}$$

Definición 1.3. Sea Ω un conjunto y \mathcal{U} una σ -álgebra definida en Ω . El par (Ω, \mathcal{U}) será referido como **espacio de medida**. Por nomenclatura, Ω es referido como espacio muestral y \mathcal{U} como σ -álgebra de sucesos.

Definición 1.4. Sea (Ω, \mathcal{U}) un espacio de medida. Se dice que una función $\mu : \mathcal{U} \to \mathbb{R}_+$ es una **medida** si cumple que

- $\mu(\emptyset) = 0$
- $Si \{A_n\}_{n \in \mathbb{N}} \subseteq \mathcal{U} \text{ son tales que } A_n \cap A_m = \emptyset \Leftrightarrow m \neq n, \text{ entonces}$

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n) \tag{1.3}$$

Donde $\mathbb{R}_+ = \{x \in \mathbb{R} \mid 0 \leq x\} \cup \{\infty\} \ y \ \emptyset \ es \ el \ conjunto \ vac\(io\). La \ terna\((\Omega, \mathcal{U}, \mu)\) ser\(a\)$ referida como \(expacio\) de \(medida\).

Ejemplo 1.2. Considérese el espacio medible $(\mathbb{R}, \mathcal{B})$, con \mathcal{B} la σ -álgebra de Borel. Se define la medida de Lebesgue, μ_L , la medida en el espacio mencionado que satisface

$$\mu_L([a,b]) = b - a \tag{1.4}$$

para cualesquiera $a, b \in \mathbb{R}$ con a < b. Por simplicidad, en lo posterior se dará por entendido que el espacio de medida $(\mathbb{R}, \mathcal{B}, \mu_L)$ es usual siempre que se hable de medidas en \mathbb{R} o alguno de sus subconjuntos.

1.1.1. Integración en espacios medibles

Definición 1.5. Sea $(\Omega_1, \mathcal{U}_1)$ y $(\Omega_2, \mathcal{U}_2)$ dos espacios de medida. Se dice que una función $f: \Omega_1 \to \Omega_2$ es una **función medible** si cumple que

$$U \in \mathcal{U}_2 \Rightarrow f^{-1}(U) \in \mathcal{U}_1 \tag{1.5}$$

 $donde \ f^{-1}(U) = \{ u \in \Omega_1 \mid f(u) \in U \}.$

Definición 1.6. Sea (Ω, \mathcal{U}) un espacio de medida, sea $C \in \mathcal{U}$ un conjunto medible arbitrario, sea $n \in \mathbb{N}$. Una **partición** de C es una familia de conjuntos $\{E_1, E_2, \ldots, e_n\} \subseteq \mathcal{U}$ que satisface las siguientes condiciones:

- $\blacksquare E_i \cap E_j = \emptyset \Leftarrow i \neq j$

Definición 1.7. Sea $(\Omega, \mathcal{U}, \mu)$ un espacio de medida y sea $f : \Omega \to \mathbb{R}_+$ una función medible. Sea $A \in \mathcal{U}$ un conjunto arbitrario, y sea $\mathcal{C}_A \subset \mathcal{U}$ el conjunto de las particiones de A. Se define la **integral de f respecto a** μ **en A** como

$$\int_{A} f(x)\mu(x) := \sup_{\mathcal{C}_{A}} \left[\sum_{j=1}^{n} f(\lambda)\mu(E_{m}) \right]$$
(1.6)

donde $\{E_1, E_2, \dots, E_n\}$ es una partición arbitraria de A.

Definición 1.8. Sea $(\Omega, \mathcal{U}, \mu)$ un espacio de medida y sea $f : \Omega \to \mathbb{R}_+$ una función medible. Se definen las funciones f^+ y f^- como

$$f^{+}(x) = \max(f(x), 0)$$
$$f^{-}(x) = -\min(f(x), 0)$$

Se dice que f es **integrable en A respecto a** μ si cumple que $\int_A f^+(\lambda)d\mu(\lambda) < \infty$ y $\int_A f^-(\lambda)d\mu(\lambda) < \infty$; si así fuere, se define

$$\int_{A} f(\lambda)d\mu(\lambda) := \int_{A} f^{+}(\lambda)d\mu(\lambda) - \int_{A} f^{-}(\lambda)d\mu(\lambda) \tag{1.7}$$

Proposición 1.1. Sea $(\Omega, \mathcal{U}, \mu)$ un espacio de medida, sean $f, g : \Omega \to \mathbb{R}_+$ funciones integrables en A con respecto a μ , y sean $\alpha, \beta \in \mathbb{R}$ arbitrarios. Se cumple que la función $[\alpha f + \beta g]$ es integrable en A con respecto a μ , y

$$\int_{A} \left[\alpha f + \beta g \right](\lambda) \mu(\lambda) = \alpha \int_{A} f(\lambda) \mu(\lambda) + \beta \int_{A} g(\lambda) \mu(\lambda)$$
 (1.8)

Proposición 1.2. Sea $(\Omega, \mathcal{U}, \mu)$ un espacio de medida y sea $f : \Omega \to \mathbb{R}_+$ una función medible. La función $\mu_f : \mathcal{U} \to \mathbb{R}_+$, definida como

$$\mu_f(A) := \int_A f(\lambda)\mu(\lambda) \tag{1.9}$$

es una medida para el espacio medible (Ω, \mathcal{U}) . En tal caso, se dice que μ_f es la **medida inducida** por f.

1.2. Variables aleatorias

Si una medida μ es acotada en todo el espacio de eventos se dice que es una **medida finita**. Una medida de probabilidad puede entenderse como un caso particular de medida finita sobre \mathbb{R} .

Definición 1.9. El espacio de medida (Ω, \mathcal{U}, P) se dice un espacio de probabilidad si satisface que $P(\Omega) = 1$.

Definición 1.10. Sea (Ω, \mathcal{U}) un espacio medible y (I, \mathcal{B}_I, P) un espacio de probabi-

lidad. Una variable aleatoria es una función medible $X: \Omega \to \mathcal{B}_I$.

Definición 1.11. Una variable aleatoria real es un caso particular de variable aleatoria entre el espacio de medida $(\mathbb{R}, \mathcal{B}, \mu_L)$ con sigo mismo.

Definición 1.12. Sea X una variable aleatoria real. Su función de probabilidad acumulada, $F_X : \mathbb{R} \to [0,1]$, se define como

$$F_X(x) := P\left((-\infty, x]\right)$$

Como notación alternativa, puede escribirse como

$$Prob(X \le x) := F_X(x) \tag{1.10}$$

Proposición 1.3. Sea X una variable aleatoria real y F su función de probabilidad acumulada. F satisface las siguientes propiedades:

- Para cualesquiera $x, y \in \mathbb{R}, x < y \Rightarrow F(x) < F(y)$
- Para cualquier $x \in \mathbb{R}$, $F(x) = \lim_{x \to x^{-}} F(x) + P(\{x\})$
- $\lim_{x\to+\infty} F(x) = 1$
- $\bullet \lim_{x \to -\infty} F(x) = 0$

Definición 1.13. Sea X una variable aleatoria real y F su función de probabilidad acumulada. Si existe una función f tal que puede escribirse

$$P(x \in A) = \int_{A} f_X(\lambda) d\lambda \tag{1.11}$$

entonces se dice que f es la función de densidad de probabilidad de X.

Conviene destacar a las funciones que satisface las propiedades de una función de distribución pero que no necesariamente están asociadas a ninguna variable aleatoria real. Este tipo de funciones, referidas como funciones de distribución, merecen especial atención porque pueden inducir variables aleatorias.

Proposición 1.4. Sea $F : \mathbb{R} \to \mathbb{R}$ una función de distribución; se puede construir una medida μ_F sobre el espacio medible $(\mathbb{R}, \mathcal{B})$ tal que la función de probabilidad acumulada asociada al espacio de probabilidad $(\mathbb{R}, \mathcal{B}, \mu_F)$ es exactamente F. La medida μ_F será referida como la **medida inducida** por F.

Así entonces, es perfectamente posible definir variables aleatorias especificando su respectiva función de probabilidad acumulada, o su función de densidad de probabilidad cuando ello sea posible. Para dicho fin conviene introducir la notación $X \sim Y$ para dos variables aleatorias que tienen la misma función de probabilidad acumulada.

Ejemplo 1.3. Se dice que una variable aleatoria real X sigue una <u>distribución de Bernaulli</u> con parámetro $p \in (0,1)$, lo cual se denota por $X \sim B(p)$, si su función de probabilidad acumulada es de la forma

$$F(x) = \begin{cases} 0 & , x < 0 \\ p & , 0 \le x < 1 \\ 1 & , 1 \le x \end{cases}$$
 (1.12)

Ejemplo 1.4. Se dice que una variable aleatoria real X es <u>degenerada</u> en $z \in \mathbb{R}$, lo cual se denota por $X \sim D(z)$, si su función de probabilidad acumulada es de la forma

$$F(x) = \begin{cases} 0 & , x < 0 \\ 1 & , z \le x \end{cases}$$
 (1.13)

Ejemplo 1.5. Se dice que una variable aleatoria real X sigue una <u>distribución normal</u> con parámetros $\mu, \sigma \in \mathbb{R}$, lo cual se denota por $X \sim N(\mu, \sigma^2)$ si su función de probabilidad acumulada es de la forma

$$F(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2}} dx$$
 (1.14)

1.2.1. Convergencia de variables aleatorias

Definición 1.14. Sea $\{F_n\}_{n\in\mathbb{N}}$ una sucesión de funciones de probabilidad acumulada, correspondientes a la sucesión de variables aleatorias reales $\{X_n\}_{n\in\mathbb{N}}$. Se dice que la sucesión $\{X_n\}_{n\in\mathbb{N}}$ converge en distribución a una variable aleatoria X si, para todo $x\in\mathbb{R}$, se cumple que

$$\lim_{n \to \infty} F_n(x) = F(x) \tag{1.15}$$

 $donde\ F\ es\ la\ función\ de\ probabilidad\ acumulada\ de\ X$.

Definición 1.15. Sea $\{F_n\}_{n\in\mathbb{N}}$ una sucesión de funciones de probabilidad acumulada, correspondientes a la sucesión de variables aleatorias reales $\{X_n\}_{n\in\mathbb{N}}$. Se dice que la sucesión $\{X_n\}_{n\in\mathbb{N}}$ converge en probabilidad a una variable aleatoria X si, para todo $x \in \mathbb{R}$, se cumple que

$$\lim_{n \to \infty} P(|X_n - X| < \varepsilon) = 1 \tag{1.16}$$

donde, para cada n, P es la medida de probabilidad para el vector $[X_n, X]$.

1.2.2. Variables aleatorias continuas y discretas

Definición 1.16. Una función $F: \mathbb{R} \to \mathbb{R}$ se dice absolutamente continua si para cualquier $\varepsilon > 0$ arbitrario existe un $\delta_{\varepsilon} > 0$ y una familia de intervalos, $\{[a_n, b_n]\}_{n \in \mathbb{N}}$, tal que

$$\sum_{n\in\mathbb{N}} |b_n - a_n| < \delta_{\varepsilon} \tag{1.17}$$

$$\sum_{n\in\mathbb{N}} |F(b_n) - F(a_n)| < \varepsilon \tag{1.18}$$

Proposición 1.5. Sea X una variable aleatoria real, y sea F_X su función de densidad de probabilidad. Si F_X es absolutamente continua, entonces X admite una función de densidad de probabilidad.

Definición 1.17. Sea X una variable aleatoria real, y sea F_X su función de densidad de probabilidad. Se dice que X es una **variable aleatoria real continua** si su F_X es absolutamente continua; por simplicidad se dirá simplemente que X es continua.

Definición 1.18. Sea X una variable aleatoria real, y sea P_X su medida asociada. Su **soporte** es el conjunto de puntos individuales con medida positiva, es decir

$$\mathcal{D}_X = \{ x \in \mathbb{R} \mid P(\{x\}) > 0 \}$$

$$\tag{1.19}$$

Si ocurre que $P(\mathcal{D}_X) = 1$, entonces se dice que X es una variable aleatoria real discreta; por simplicidad se dirá simplemente que X es discreta.

Proposición 1.6. Sea X una variable aleatoria discreta y F_X su función de probabilidad acumulada. Entonces F_X es discontinua en el conjunto $Q_X = \{q_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$;

en consecuencia, F_X puede escribirse como

$$F_X(x) = \sum_{n \le x} q_n F(q_n) \tag{1.20}$$

Es posible construir una función de densidad de probabilidad para F como

$$f(x) = \begin{cases} F(x) & , x \in Q_F \\ 0 & , otro \ caso \end{cases}$$
 (1.21)

Ejemplo 1.6. Usando los ejemplos previos sobre variables aleatorias:

- $X \sim B(p)$ es una variable aleatoria discreta con $\mathcal{D}_X = \{0, 1\}$
- $X \sim D(z)$ es una variable aleatoria discreta con $\mathcal{D}_X = \{z\}$
- $X \sim N(\mu, \sigma^2)$ es una variable aleatoria continua

Ejemplo 1.7. Naturalmente, es posible que existan variables aleatorias que no son ni continuas ni discretas. A continuación se construirá una variable aleatoria de este tipo usando a la función de Cantor, la cual es continua pero no es absolutamente continua.

La función de Cantor, K, puede construirse iterativamente definiendo a $K_0(x) = x$ y para n > 0

$$K_{n+1}(x) = \begin{cases} 0 & , x < 0 \\ \frac{1}{2}K_n(3x) & , 0 \le x \le \frac{1}{3} \\ \frac{1}{2} & , \frac{1}{3} \le x \le \frac{2}{3} \\ \frac{1}{2}K_n(3x - 2) + \frac{1}{2} & , \frac{2}{3} \le x \le 1 \\ 1 & , 1 < x \end{cases}$$
(1.22)

finalmente, se define $K := \lim_{n \to \infty} K_n$. Este proceso se ilustra esquemáticamente en la figura ??, la cual da una idea intuitiva de las propiedades de esta función.

Para fines de este ejemplo, conviene notar que la función de Cantor cumple las condiciones de una función de distribución, de modo que puede construirse una variable aleatoria cuya función de probabilidad acumulada sea precisamente K. Tal variable aleatoria no es discreta porque K es continua (y en consecuencia su soporte es el conjunto vacío), y no es continua porque K no es uniformemente continua.

./img_mas_ejemplos/cantor.pdf

Figura 1.1: Algunos pasos en la construcción iterativa de la función de Cantor, que es creciente, acotada y continua pero no absolutamente continua. En el texto, la función de Cantor es usado para construir medidas con propiedades patológicas.

Para fines del presente trabajo, siempre que se usen variables aleatorias para modelar algún fenómeno físico, se supondrá que son continuas o discretas; ésto bajo el argumento de que los comportamientos patológico similares a los mostrados en este ejemplo son poco probables en el mundo real.

1.2.3. Valor esperado

Definición 1.19. Sea X una variable aleatoria real. Si P es integrable en \mathbb{R} , entonces se define el **valor esperado** de X como

$$E[X] := \int_{\omega} X(\lambda) dP(\lambda)$$
 (1.23)

Proposición 1.7. Sea X una variable aleatoria real, y sea g una función medible en el espacio medible $(\mathbb{R}, \mathcal{B}, P_X)$. Entonces g(X) es una variable aleatoria cuyo valor esperado es

$$E[g(x)] = \int_{\Omega} [g(X)](\lambda)dP(\lambda) = \int_{R} g(x)dP(x)$$
 (1.24)

Definición 1.20. Sea X una variable aleatoria real. Si las siguientes cantidades

están bien definidas

$$\mu_X := \mathbf{E}[X] \tag{1.25}$$

$$\sigma_X^2 := \mathbb{E}\left[(X - \mu_X)^2 \right] \tag{1.26}$$

entonces se dice que μ_X es la **media**¹ de X, y σ^2 es su **varianza**.

Ejemplo 1.8. Usando los ejemplos previos sobre variables aleatorias:

- $X \sim B(p) \Rightarrow \mu_X = p \ y \ \sigma_X^2 = p(1-p)$
- $X \sim D(z) \Rightarrow \mu_X = z \ y \ \sigma_X^2 = 0$
- $\qquad \qquad X \sim \mathit{N}(\mu, \sigma^2) \Rightarrow \mu_X = \mu \ \mathit{y} \ \sigma_X^2 = \sigma^2$

Ejemplo 1.9. Se dice entonces que una variable aleatoria real X sigue una <u>distribución de Cauchy si su función de distribución de probabilidad es de la forma</u>

$$F(x) = \frac{1}{\pi}\arctan(x) + \frac{1}{2}$$
 (1.27)

Es relativamente fácil verificar que la cantidad $\int_{-\infty}^{\infty} x dF(x)$ no converge a un número real, y entonces se dice que la media de X no está bien definida.

Definición 1.21. Sean X, Y dos variables aleatorias. Se define su covarianza como

$$\operatorname{Cov}(X,Y) := \operatorname{E}[XY] = \int_{\mathbb{R}^2} xy dP_{(X,Y)}(x,y) = \int_{\mathbb{R}} \int_{\mathbb{R}} xy dP_X(x) dP_Y(y) \qquad (1.28)$$

1.2.4. Vectores aleatorios

El concepto de variable aleatoria real (definición?) puede extenderse trivialmente a conjuntos más generales basados en \mathbb{R} , como \mathbb{R}^n para algún entero n; dicha generalización puede formalizarse fácilmente como otro caso particular.

Definición 1.22. Se llama **vector aleatorio** a una variable aleatoria sobre el espacio de probabilidad ($\mathbb{R}^n, \mathcal{B}^n, P$), para algún $n \in \mathbb{N}$. Se define a \mathcal{B}^n , la σ -álgebra de

¹Naturalmente la notación μ_X únicamente es usada cuando no hay confusión con la notación para medidas.

Borel n-dimensional, como

$$\mathcal{B}^n := \sigma\left(\left\{(-\infty, a_1] \times (-\infty, a_2] \times \dots \times (-\infty, a_n] \mid a_1, \dots, a_n \in \mathbb{R}\right\}\right)$$
 (1.29)

Por notación, el vector aleatorio n-dimensional X será referido como

$$\boldsymbol{X} = [X_1, X_2, \dots, X_n] \tag{1.30}$$

esta notación de vectores con *símbolos gruesos* será usada durante el texto, extendida igualmente para realizaciones y otros vectores similares.

Ejemplo 1.10. Se dice que un vector aleatorio $\mathbf{X} = [X_1, X_2, \cdots, X_d]$ sigue una distribución multinormal si su función de probabilidad acumulada conjunta tiene la forma

$$F_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d |C|}} \exp\left(-\frac{\mathbf{x}C^{-1}\mathbf{x}^{\mathsf{T}}}{2}\right)$$
(1.31)

donde $\mathbf{x} = (x_1, x_2, \dots, x_d)$. El vector $\mu \in \mathbb{R}^d$ será referido como vector de medias, y la matriz $C \in \mathbb{R}^{d \times d}$ como matriz de covarianza.

1.3. Procesos estocásticos

Los procesos estocásticos se definen formalmente como variables aleatorias cuyo espacio muestral es un espacio de funciones. Intuitivamente es posible definir los procesos estocásticos como una concatenación de variables aleatorias, es decir, un conjunto de variables aleatorias indexadas sobre algún conjunto arbitrario. Sin embargo, indexar un conjunto infinito de variables aleatorias representa un problema técnico en el cuanto a definir al proceso estocástico como espacio de probabilidad, especialmente al definir la medida de probabilidad asociada.

Debido a las limitaciones del presente trabajo, el tema se expone de manera parcial bajo un enfoque formal; la exposición se basa en aquella presentada por [Kolmogorov?], de modo que el lector interesado debe dirigirse a dicho texto.

Primeramente se define a $\mathbb{R}^{\mathcal{T}}$, el conjunto de funciones con dominio en \mathcal{T} y codominio en \mathbb{R} , el cual será usado como espacio de eventos². A modo de *intervalos*

 $^{^2 \}mathrm{Se}$ puede definir análogamente a $\mathbb{C}^{\mathcal{T}},$ o espacios más generales

generalizados se definen los conjuntos de la forma

$$I([t_1, a_1, b_1], \dots, [t_N, a_N, b_N]) = \{ f \in \mathbb{R}^T \mid f(t_i) \in (a_i, b_i], i = 1, \dots, N \}$$
 (1.32)

Es relativamente fácil extender la familia de estos intervalos por uniones e intersecciones finitas. Es un tanto más interesante definir una σ -álgebra generada por éstos conjuntos, pero tal parte se omite en el presente trabajo. En el texto por Kolmogorov se explora con mayor detalle la existencia de dicha σ -álgebra –y por tanto, la existencia de procesos estocásticos.

Definición 1.23. Un proceso estocástico $\{X(t)\}_{t\in\mathcal{T}}$ es una colección de variables aleatorias indexadas por el símbolo $t\in\mathcal{T}$.

Definición 1.24. Se dice que un proceso estocástico $\{X(t)\}_{t\in\mathcal{T}}$ es un proceso estocástico en \mathbb{R} si cumple que $\mathcal{T}\subseteq\mathbb{R}$. Por notación, el índice t es referido como tiempo, mientras que \mathcal{T} es el conjunto de tiempos admisibles.

Por simplicidad, durante el presente trabajo sólo se usarán dos familias de procesos estocásticos en \mathbb{R} : si \mathcal{T} es un intervalo, o si es parte de una malla. La primera familia se reserva para modelar las señales electrofisiológicas, mientras que la segunda se usará para modelar los registros de estas mismas señales. La distinción consiste en que las señales electrofisiológicas sólo pueden ser registradas digitalmente en un conjunto finito de puntos en el tiempo; la atención del texto recae en ambos grupos de procesos, en espera que sus características sean similares de algún modo.

Definición 1.25. Se dice que un proceso estocástico en \mathbb{R} es **a tiempo continuo** si existen $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ tales que

$$\mathcal{T} = (a, b) \tag{1.33}$$

Así mismo, se dice que un proceso estocástico en \mathbb{R} es **a tiempo discreto** si existen $t_0, \Delta_X \in \mathbb{R} \cup \{-\infty, \infty\}$ tales que

$$\mathcal{T} = \{ t_0 + t \in \mathbb{R} \mid t \cdot \Delta_X \in \mathbb{Z} \}$$
 (1.34)

Por notación, Δ_X es referida como frecuencia de muestreo.

Conviene destacar que el nombre frecuencia de muestreo hace referencia al proceso de registro, que algunos textos es referido como muestreo; esta terminología entra claramente en conflicto con las muestras de una variable aleatoria. En lo siguiente se evita llamar muestreo al proceso de registro, pero se conservará el término frecuencia de muestro.

Cabe mencionar que hay un conflicto similar con los términos tiempo continuo y tiempo discreto; estos términos no guardan ninguna analogía con las variables aleatorias discretas y continuas, ni con los espectro de potencias puramente continuos o puramente discretos (ver el capítulo siguiente). Estos términos se usan porque se encuentran muy extendidos en la literatura sobre análisis de señales.

Para facilitar la referencia de procesos estocásticos, los elementos que lo componen

	$\{X(t)\}_{t\in\mathcal{T}}$	Todo el proceso
son denotados como:	X(t)	Variable aleatoria en el proceso, para el tiempo \boldsymbol{t}
	x(t)	Una realización de $X(t)$
	$F_{X(t)}$	Función de probabilidad acumulada para $\boldsymbol{X}(t)$

1.3.1. Estacionariedad débil

De forma general, la estacionariedad significa que *algunas* propiedades de un proceso sean *invariantes* en el tiempo; la decisión sobre qué características deben ser invariantes, y en qué sentido, conlleva a diferentes definiciones. Por ejemplo, en la definición ?? se pide que todas las variables que integra al proceso sigan una distribución común, así como todas variables conjuntas con algunas características.

Definición 1.26. Un proceso $\{X(t)\}_{t\in\mathcal{T}}$ se dice **fuertemente estacionario** si para cualesquiera $t_1, t_2, \ldots, t_n \in \mathcal{T}$ y cualquier τ tal que $t_i + \tau \in \mathcal{T}$, se cumple que

$$F_{[X(t_1),X(t_2),\dots,X(t_n)]} \equiv F_{[X(t_1+\tau),X(t_2+\tau),\dots,X(t_n+\tau)]}$$

 $con\ F_{[v_1,v_2,\dots,v_N]}$ es la función de probabilidad acumulada para el vector $[v_1,v_2,\dots,v_N]$.

En el contexto del presente trabajo la estacionariedad fuerte se considera innecesariamente fuerte, en cuanto a que es difícil de verificar y porque se usarán hipótesis más débiles. Se decidió conveniente una definición que garantice que los momentos puedan ser estimados, para lo cual deben ser constantes en el tiempo. La motivación principal para ello es el siguiente: si se modela una señal como proceso estocástico, entonces los momentos están asociados con variables físicas relevantes. En particular, el segundo momento está asociado con la *energía* (ver ??).

Definición 1.27. Un proceso $\{X(t)\}_{t\in\mathcal{T}}$ se dice estacionario de orden m si, para cualesquiera $t_1, t_2, \ldots, t_n \in \mathcal{T}$ y cualquier τ tal que $t_i + \tau \in \mathcal{T}$, se cumple que

$$E[X^{m_1}(t_1)X^{m_2}(t_2)\cdots X^{m_n}(t_n)] = E[X^{m_1}(t_1+\tau)X^{m_2}(t_2+\tau)\cdots X^{m_n}(t_n+\tau)]$$

para cualesquiera enteros m_1, m_2, \ldots, m_n tales que $m_1 + m_2 + \cdots + m_n \leq m$.

La definición ?? es conveniente tomando en cuenta que para estudiar la energía de un proceso (asociada al segundo momento) requerirá poner condiciones adicionales; por ejemplo, para estimar la varianza de la energía en un proceso, a partir de observaciones, se requiere que el proceso sea estacionario de orden 4. En el otro sentido, siempre que sea posible se usará la menor cantidad de hipótesis, para lo cual se presenta una definición más particular y débil de estacionariedad.

Definición 1.28. Un proceso $\{X(t)\}_{t\in\mathcal{T}}$ se dice **débilmente estacionario** si existen constantes $\mu, \sigma \in \mathbb{R}$ y una función $R : \mathcal{T} \to \mathbb{R} \cup \{\pm \infty\}$ tales que, para cualesquiera $t, s \in T$ se cumple

- $E[X(t)] = \mu$
- $\operatorname{Var}(X(t)) = \sigma^2$
- Cov(X(t), X(s)) = R(|s t|)

Proposición 1.8. Para que un proceso estocástico $\{X(t)\}_{t\in\mathcal{T}}$ sea débilmente estacionario es suficiente y necesario que sea estacionario de orden 2.

El que un proceso sea débilmente estacionario implica la existencia de una media y varianza características del proceso, es decir, que son comunes a todas las variables aleatorias que lo componen. Además, se implica la existencia de una función referida como *autocovarianza*.

Definición 1.29. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso estocástico sobre \mathbb{R} . Su función de autocovarianza es una función $R:\mathbb{R}^2\to\mathbb{R}$ tal que

$$R(t,s) = E\left[(X(t) - E[X(t)]) \overline{(X(s) - E[X(s)])} \right]$$
(1.35)

para cualesquiera tiempos admisibles $s, t \in \mathcal{T}$.

Como las señales electrofisiológicas son modeladas como procesos estocásticos, conviene traducir algunas de sus características en propiedades para los procesos estocásticos. Por ejemplo, se sabe que las señales representan variaciones en campos eléctricos, y entonces se puede afirmar sin duda que dicha cantidad es finita en todo momento; lo mismo se puede afirmar sobre la energía. En base a ello, los procesos estocásticos que modelan señales electrofisiológicas deben tener energía y varianza finitas en todo momento. Más aún, la actividad eléctrica cerebral y muscular presentan durante el reposo una actividad característica, referida como actividad basal o línea base, que es relativamente cercana a una constante en todo momento (ver figura ??). El fenómeno de línea base entra en el modelado como el supuesto de que las señales son procesos estacionarias de orden 1; por simplicidad, se puede considerar que la media de estos procesos es 0.

Una segunda característica de las señales que se traduce es la continuidad: las señales representan fenómenos eléctricos que cambian de manera *suave* en el tiempo. El aspecto de los registros con *picos* se explica porque el cambio es suave, pero es muy rápido respecto a la tasa de registro.

Proposición 1.9. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso débilmente estacionario y R su función de autocovarianza. Si R es continua en 0 entonces es continua en todo \mathbb{R} .

Demostración. Supóngase que R es continua en 0. Tómese a $t_0 \in \mathcal{T}$ arbitrario para verificar que R es continua en t_0 , y tómense s, h tales que $s, s+t, s+t+h \in \mathcal{T}$. Usando la desigualdad de Schwarz, puede escribirse que

$$[R(t_0 + h) - R(t_0)]^2 = (E[X(s + t_0 + h)X(s)] - E[X(s + t_0)X(s)])^2$$

$$= (E[X(s)[X(s + t_0 + h) - X(s + t_0)]])^2$$

$$\leq E[(X(s))^2] E[(X(s + t_0 + h) - X(s + t_0))^2]$$

$$\leq 2\sigma_X^2 [\sigma_X^2 - R(h)]$$

Entonces, puede afirmarse que

$$|R(t_0 + h) - R(t_0)| \le \sqrt{2\sigma_X^2} \sqrt{R(0) - R(h)}$$

Figura 1.2: Ejemplos de procesos débilmente estacionarios. **A.** Proceso oscilante, del cual se grafican tres realizaciones diferentes. **B.** Proceso Ruido Blanco. **C.** Proceso de medias móviles (MA). **D.** Proceso tipo alfa.

Como R es continua en 0, entonces

$$\lim_{h \to 0} (R(0) - R(h)) = 0 \Rightarrow \lim_{h \to 0} (R(t_0 + h) - R(t_0)) = 0$$

de donde se concluye que R es continua en t_0 , para cualquier $t_0 \in \mathcal{T}$.

Definición 1.30. Un proceso a tiempo continuo $\{X(t)\}_{t\in\mathcal{T}}$ se dice **estocástica**mente continuo, en el sentido de media cuadrática, en el tiempo $t_0 \in \mathcal{T}$ si

$$\lim_{t \to t_0} \mathbb{E}\left[\left(X(t) - X(t_0) \right)^2 \right] = 0$$

Por simplicidad, y porque es la única definición de su tipo usada en el presente trabajo, la continuidad estocástica en media cuadrática será referida simplemente como continuidad estocástica.

Proposición 1.10. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso a tiempo continuo, débilmente estacionario y de media cero, y sea R su función de autocovarianza. El proceso es estocásticamente continuo en $t_0 \in \mathcal{T}$ si y sólo si R es continua en 0.

Demostración. Para cualquier $t \in \mathcal{T}$, puede escribirse

$$E[(X(t) - X(t_0))^2] = Var(X(t)) + Var(X(t_0)) - 2Cov(X(t), X(t_0))$$
$$= 2(\sigma_X^2 - R(t - t_0))$$
$$= 2(R(0) - R(t - t_0))$$

Así entonces, la condición para continuidad estocástica puede reescribirse como

$$\lim_{t \to t_0} \mathbb{E}\left[(X(t) - X(t_0))^2 \right] = 0 \Leftrightarrow \lim_{t \to t_0} \left(R(0) - R(t - t_0) \right) = 0$$
$$\Leftrightarrow \lim_{\tau \to 0} R(\tau) = R(0)$$

Definición 1.31. Se dice que una función $f : \mathbb{R} \to \mathbb{R}$ es **definida positiva** si para cualesquiera $x_{1,2}, \cdots, x_N \in \mathbb{R}$, $z_1, z_2, \cdots, z_N \in \mathbb{R}$ se cumple que

$$\sum_{n=1}^{N} \sum_{m=1}^{N} z_n z_m f(x_m - x_n) \le 0$$
(1.36)

Proposición 1.11. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso débilmente estacionario y R su función de autocorrelación. Se cumple que R es una función positiva definida.

Demostración. Sean $t_1, t_2, \dots, t_N \in \mathcal{T}, z_1, z_2, \dots, z_N \in \mathbb{R}$ arbitrarios. Se construye la variable aleatoria W como

$$W = \sum_{n=1}^{N} z_n X(t_n)$$
 (1.37)

Ahora, nótese que

$$0 \le \operatorname{Var}(W)$$

$$= \sum_{m=1}^{N} \sum_{n=1}^{N} z_m z_n \operatorname{Cov}(X(t_m), X(t_n))$$

$$= \sum_{m=1}^{N} \sum_{n=1}^{N} z_m z_n R(t_m - t_n)$$

1.4. Estimación de parámetros

Hasta ahora se ha hablado de las variables aleatorias y procesos estocásticos únicamente como objetos definidos formalmente. En el contexto del presente trabajo, dichos objetos son usados para modelar fenómenos físicos, es decir que se espera que ciertos fenómenos presenten comportamientos similares a cierto tipo de variables aleatorias. En esta sección se aborda el problema formal de recuperar información sobre estos objetos en base a las observaciones obtenidas del fenómeno estudiado, las cuales son interpretadas como huellas de estos objetos aleatorios.

Considérese a X, una variable aleatoria entre los espacios medibles $(\Omega_1, \mathcal{U}_1)$ y $(\Omega_2, \mathcal{U}_2)$. Para poder conectar a X con el fenómeno estudiado, Ω_1 debe incluir todas los estados posibles del sistema bajo las condiciones de estudio; mientras, Ω_2 es típicamente un conjunto basado en \mathbb{R} suficientemente general para cuantificar adecuadamente a las mediciones hechas sobre el sistema. Con un conjunto basado en \mathbb{R} se engloba informalmente al mismo \mathbb{R} , alguno de sus subconjuntos, a \mathbb{C} , a \mathbb{R}^n para algún $n \in \mathbb{N}$, o incluso a $\mathbb{R}^{\mathcal{T}}$, entre otros.

En concreto, se considera el problema en que la variable aleatoria modelo, X, admite una función de probabilidad acumulada $F(\bullet; \theta)$ que depende de un parámetro $\theta \in \Theta$, donde Θ es referido como **espacio de parámetros**. El objetivo es deducir el valor de θ a partir de las observaciones recabadas.

Definición 1.32. Sea X una variable aleatoria real. Una muestra de X de tamaño N es una colección de variables aleatorias $\{X_1, X_2, \ldots, X_N\}$ tales que son independientes y comparten la misma distribución que X. Mientras no se indique lo contrario, las variables aleatorias en la muestra no están ordenadas.

Proposición 1.12. Sea X una variable aleatoria continua, sea f_X su función de densidad de probabilidad, y sea $\{X_1, \ldots, X_N\}$ una muestra de tamaño N. La función de densidad de probabilidad conjunta para el vector $\mathbf{X} = [X_1, X_2, \ldots, X_N]$ es

$$f_{\mathbf{X}}(x_1, \dots, x_N) = \prod_{j=1}^{N} f(x_j)$$
 (1.38)

Definición 1.33. Sea X una variable aleatoria y sea $\{X_1, \ldots, X_N\}$ una muestra de tamaño N. Un **estadístico** es una función $\widehat{\theta} : \mathbb{R}^n \to \mathbb{R}$ evaluada en la muestra.

Si se pretende que el valor del estadístico sea parecido a un parámetro θ , entonces se dice que el estadístico $\widehat{\theta}$ es un **estimador** de θ .

Definición 1.34. Sea X una variable aleatoria que depende de un parámetro θ , y sea $\{X_1, \ldots, X_N\}$ una muestra de tamaño N. Se dice que un estimador $\widehat{\theta}$ es **insesgado** si cumple que

$$E\left[\widehat{\theta}(X_1, X_2, \dots, X_N)\right] = \theta \tag{1.39}$$

Definición 1.35. Sea X una variable aleatoria que depende de un parámetro θ , sea $\{X_1, \ldots\}$ una muestra de tamaño infinito. Considérese a $\{\widehat{\theta}_N\}_{N\in\mathbb{N}}$, una familia de estimadores definidos para muestras de tamaño arbitrario. Dicha familia de estimadores se dice **consistente** si para cualquier $\varepsilon > 0$ se cumple que

$$\lim_{n \to \infty} P\left(\left| \widehat{\theta}_N(X_1, X_2, \dots, X_N) - \theta \right| > \varepsilon \right) = 0$$
 (1.40)

Definición 1.36. Considérese a $\{\widehat{\theta}_N\}_{N\in\mathbb{N}}$, una familia de estimadores como en la definición anterior. Se dice que dicha familia de estimadores converge en media

cuadrática si cumplen que

$$\lim_{n \to \infty} \mathbf{E}\left[\left(\widehat{\theta}_N(X_1, X_2, \dots, X_N) - \theta\right)^2\right] = 0 \tag{1.41}$$

Si esto se cumple, se dice que la familia de estimadores es consistente en media cuadrática

Proposición 1.13. $Si\left\{\widehat{\theta}_N\right\}_{N\in\mathbb{N}}$ es una familia de estimadores consistente en media cuadrática, entonces es consistente.

Corolario 1.14. Una condición suficiente para para que una familia sea consistente en en media cuadrática es

$$\lim_{N \to \infty} E\left[\widehat{\theta}_N(X_1, X_2, \dots, X_N)\right] = \theta \tag{1.42}$$

$$\lim_{N \to \infty} \operatorname{Var}\left(\widehat{\theta}_N(X_1, X_2, \dots, X_N)\right) = 0 \tag{1.43}$$

Ejemplo 1.11. Sea $X \sim N(\mu, 1)$, y sea $\{X_1, X_2, \dots, X_N\}$ una muestra de tamaño N. El estadístico \overline{X}_N , definido como

$$\overline{X}_N(X_1, X_2, \dots, X_N) = \frac{1}{N} \sum_{i=1}^N X_i$$
 (1.44)

será usado como estimador para el parámetro μ . De forma relativamente fácil puede verificarse que

- $\bullet \ \mathrm{E}\left[\overline{X}_N(X_1, X_2, \dots, X_N)\right] = \mu$

Entonces \overline{X}_N es un estimador insesgado que satisface $\lim_{N\to\infty} \operatorname{Var}\left(\overline{X}_N\right) = 0$; se deduce que es consistente en media cuadrática.

En base a la proposición ??, se puede deducir que $\overline{X}_N \sim N\left(\mu, \frac{1}{N}\right)$

Teorema 1.15 (Límite central). Sea $\{X_1, \dots, X_N\}$ una muestra de tamaño N de una variable aleatoria con distribución normal, $X \sim N(\mu, \sigma^2)$. Defínase la variable aleatoria Y_N como

$$Y_N = \frac{\sum_{i=1}^{N} X_i - N\mu}{\sqrt{N\sigma^2}}$$
 (1.45)

Entonces $\{Y_N\}_{N\in\mathbb{N}}$ converge en probabilidad a una distribución normal N(0,1).

1.5. Pruebas de hipótesis

Una hipótesis es una afirmación sobre algún aspecto desconocido. Es tarea común en la estadística el decidir si alguna afirmación puede sostenerse a partir de la información proporcionada por un conjunto de observaciones. A partir de la aplicación masiva de pruebas neuropsicológicas a un grupo de adultos mayores uno puede preguntarse, por ejemplo, si hombres y mujeres tienden a obtener puntajes diferentes en las pruebas, o si la edad de los participantes está correlacionada con su desempeño en tareas de memoria. En la tabla ... se muestran los datos sobre una simulación (artificial) de dicho escenario.

Una herramienta de uso común para producir estas decisiones es la **pruebas** de hipótesis, la cual consiste en dos afirmaciones complementarias, es decir, tales que exactamente una de ellas es verdadera; tales afirmaciones son referidas como hipótesis, y deben elegirse de forma que sean equivalentes a la decisión que se busca. Usualmente la primera de las hipótesis (hipótesis nula, H_0) representa la afirmación más general o que se cree verdadera por omisión, mientras que la segunda hipótesis (hipótesis alternativa, H_A) se tomará como verdadera si existe suficiente información para rechazar la veracidad de la primera. El enfoque de prueba de significancia es tomar un estadístico $\hat{\theta}$ y evaluarlo sobre los datos, posteriormente se analiza qué tan diferente es el valor observado del típico cuando la hipótesis nula es verdadera.

Los estadísticos de prueba suele ser un estadístico construido para tener una distribución conocida salvo unos pocos parámetros fáciles de estimar. La interpretación usual es que, si H_0 es verdadera entonces $\hat{\theta}$ puede no tener el valor predicho debido a factores ajenos al fenómeno estudiado, en consecuencia se suele hablar de una región de rechazo en el espacio de estados (ver más adelante). Bajo esta interpretación, un valor de $\hat{\theta}$ dentro de la región de rechazo significa que los datos representan evidencia para rechazar H_0 ; un no-rechazo no significa precisamente que H_0 sea verdadera, sino que las observaciones no representan evidencia suficiente para rechazar H_0 .

Definición 1.37. En una prueba de hipótesis, rechazar H_0 cuando es verdadero es un error del tipo I. Así mismo, aceptar H_0 cuando es falsa es un error del tipo II.

La naturaleza e interpretación de los estadísticos de prueba suelen ser muy particulares de las situaciones bajo las cuales son definidos. Una forma típica de normalizar los diferentes estadísticos es a través del p-valor, definido como la probabilidad de que ocurra un valor extremo del estadístico de prueba; el p-valor suele interpretarse como la fuerza de la evidencia contra H_0 .

Definición 1.38. Sea $\widehat{\theta}$ un estadístico de prueba. El **p-valor** asociado al $\widehat{\theta} = \theta_0$ es la probabilidad $P\left(\widehat{\theta} \middle| \theta_0\right)$

Una **prueba de significancia** se entiende como una pruebas de hipótesis para algunos p-valores predefinidos, usualmente 0.05, 0.01, 0.005, entre otros. Un error común, pero muy extendido, es interpretar al p-valor como la probabilidad de obtener H_0 .

Definición 1.39. Dada una muestra poblacional y dos afirmaciones complementarias H_0 y H_A , una **prueba de hipótesis** es una regla de decisión que asigna a cada punto del espacio de estados una acción del conjunto Aceptar H_0 , rechazar H_A , Rechazar H_0 , aceptar H_A .

Al conjunto del espacio muestral sonde se rechaza H_0 se le denomina **región** crítica.

Una propiedad deseable para un estadístico de prueba es poder acotar los errores de tipo I y de tipo II; para ello, para alguna región crítica arbitraria \mathcal{C} se define el **nivel de significancia** de la prueba como

$$\alpha := \sup_{\theta \in H_0} p(\mathcal{C}|\theta) \tag{1.46}$$

Ejemplo: Retomando los datos de la tabla ..., considérese la pregunta ¿Los hombres y mujeres tienden a obtener puntajes diferentes en las pruebas neuropsicológicas?. En este ejemplo se supone que los puntajes de los hombres en la prueba siguen una distribución normal con media μ_H y varianza 1, y similarmente para las mujeres con media μ_M y varianza 1. Como hipótesis nula se elige la posibilidad de que en promedio ambos grupos (hombre y mujeres) obtengan el mismo puntaje en la prueba, es decir

$$H_0: \mu_H = \mu_M$$
 (1.47)

y como hipótesis alternativa está la posibilidad de que los puntajes sean diferentes

$$H_A: \mu_H \neq \mu_M \tag{1.48}$$

1.6. Espacios de Hilbert

A grosso modo, un espacios de Hilbert es un conjunto de *vectores* en donde se ha definido un producto de vectores, el cual induce una métrica según la cual todas las sucesiones de vectores convergen. Es una estructura tan general que puede ser *inducida* sobre una gran variedad de conjuntos, tal como se hace en el siguiente capítulo.

Para poder definir adecuadamente estos objetos hay que definir, en ese orden, los siguientes conceptos: campo, espacio vectorial, producto interno, norma, métrica. Debido a los fines de este trabajo, se da una clara preferencia a algunos casos particulares en detrimento de una exploración completa del tema.

Definición 1.40. Sea un conjunto \mathcal{R} , y sean $+: \mathcal{R}^2 \to \mathcal{R}$, $\times: \mathcal{R}^2 \to \mathcal{R}$ dos operaciones binarias. Se dice que la tupla $(\mathcal{R}, +, \times)$ un **campo** si cumple la siguientes propiedades:

• Las operaciones son commutativas: para cualesquiera $x, y \in \mathcal{R}$ se cumple que

$$+(x,y) = +(y,x)$$
 $\times (x,y) = \times (y,x)$

 \blacksquare Las operaciones son <u>asociativas</u>: para cualesquiera $x,y,z\in\mathcal{R}$ se cumple que

$$+(x, +(y, z)) = +(+(x, y), z) \times (x, \times (y, z)) = \times (\times (x, y), z)$$

• Existen $0, 1 \in \mathcal{R}$ tales que, para cualquier $x \in \mathcal{R}$, se cumple que

$$+(x,\mathbf{0}) = x \qquad \times (x,\mathbf{1}) = x$$

■ Para cualesquiera $x, y \in \mathcal{R}, y \neq 0$, existen $-x, 1/y \in \mathcal{R}$ tales que

$$+(x,-x) = 0$$
 $\times (y, 1/y) = 1$

■ Para cualesquiera $x, y, z \in \mathcal{R}$ se cumple que

$$\times (x, +(y, z)) = +(\times (x, y), +(x, z))$$

Por comodidad, se procede a escribir x + y := +(x, y), y análogamente para \times .

Naturalmente las tuplas $(\mathbb{R}, +, \cdot)$ y $(\mathbb{C}, +, \cdot)$, usando la suma y multiplicación usuales, son campos; en el presente trabajo, estos serán los únicos campos considerados.

Definición 1.41. Sean un conjunto V, un campo $(\mathcal{R}, +_{\mathcal{R}}, \times_{\mathcal{R}})$, y dos operaciones $+_{\mathcal{V}}: \mathcal{V}^2 \to \mathcal{V}, \times_{\mathcal{V}}: \mathcal{R} \times \mathcal{V} \to \mathcal{V}$. Se dice que la tupla $(\mathcal{V}, \mathcal{R}, \cdot)$ es un **espacio vectorial** si cumple las siguientes características:

■ La operación $+_{\mathcal{V}}$ es conmutativa y asociativa: para cualesquiera $u, v, w \in \mathcal{V}$ se cumple que

$$u +_{\mathcal{V}} v = v +_{\mathcal{V}} u$$
 $u +_{\mathcal{V}} (v +_{\mathcal{V}} w) = (u +_{\mathcal{V}} v) +_{\mathcal{V}} w$

• Existe $e \in \mathcal{V}$ tal que, para cualquier $u \in \mathcal{V}$ se cumple que

$$u +_{\mathcal{V}} \mathbf{e} = u$$

■ Para cualquier $u \in \mathcal{V}$ existe $un - u \in \mathcal{V}$ tal que

$$u +_{\mathcal{V}} - u = e$$

■ La operación $\times_{\mathcal{R}}$ es asociativa con $\times_{\mathcal{V}}$: para cualesquiera $x, y \in \mathcal{R}$, $u \in \mathcal{V}$ se cumple que

$$x \times_{\mathcal{V}} (y \times_{\mathcal{V}} u) = (x \times_{\mathcal{R}} y) \times_{\mathcal{V}} u$$

■ El neutro de $\times_{\mathcal{R}}$, 1, también es neutro para $\times_{\mathcal{V}}$: para cualquier $u \in \mathcal{V}$ se cumple que

$$1 \times_{\mathcal{V}} u = u$$

■ Las operaciones $\times_{\mathcal{R}}$, $\times_{\mathcal{V}}$ son mutuamente distributivas: para cualesquiera $x, y \in$ \mathbb{R} , $u, v \in \mathcal{V}$ se cumple que

$$x \times_{\mathcal{V}} (u +_{\mathcal{V}} v) = (x \times_{\mathcal{V}} v) +_{\mathcal{V}} (x \times_{\mathcal{V}} v)$$
$$(x +_{\mathcal{R}} y) \times_{\mathcal{V}} u = (x \times_{\mathcal{V}} u) +_{\mathcal{V}} (y +_{\mathcal{R}} u)$$

Por simplicidad de notación, de aquí en adelante se omitirán los subíndices en las operaciones cuando se hable de espacios vectoriales; bajo esta línea de pensamiento, se usará un mismo símbolo para sumas y multiplicaciones definidas en diferentes conjuntos, pero sólo si se sobreentiende que las operaciones están correctamente definidas.

Ejemplo 1.12. Primeramente se define a L^2 , el conjunto de las funciones cuadradointegrables, como

$$L^{2} := \left\{ S : \mathbb{R} \to \mathbb{C} \mid \int_{-\infty}^{\infty} |S(t)|^{2} dt < \infty \right\}$$
 (1.49)

El conjunto L^2 admite una suma y producto por escalar definidas como

$$[S+Z](t) = S(t) + Z(t)$$
 (1.50)

$$[x \cdot S](t) = xS(t) \tag{1.51}$$

para cualesquiera $S, Z \in L^2, x \in \mathbb{C}, t \in \mathbb{R}$. Entonces la tupla $(L^2, \mathbb{C}, +, \cdot)$ es un espacio vectorial.

Para verificarlo, conviene notar que la suma y producto por escalar definidos para L^2 comparten propiedades con la suma y multiplicación de \mathbb{C} ; sin embargo, hay que verificar que efectivamente son operaciones bien definidas en L^2 . Con ese fin, sean $S, Z \in L^2, x \in \mathbb{C}$ arbitrarios, entonces

$$\int_{-\infty}^{\infty} |[xS + Z](t)|^2 dt = \int_{-\infty}^{\infty} |xS(t) + Z(z)|^2 dt$$

$$\leq \int_{-\infty}^{\infty} [|xS(t)| + |Z(z)|]^2 dt$$

$$\leq |x|^2 \int_{-\infty}^{\infty} |S(t)|^2 dt + \int_{-\infty}^{\infty} |Z(t)|^2 dt$$

$$+ 2 \int_{-\infty}^{\infty} |\max\{S(t), Z(t)\}|^2 dt < \infty$$

Es fácil verificar que puede definirse un neutro aditivo para L^2 como $\mathbf{0}(t) = 0$.

Definición 1.42. Sea $(\mathcal{V}, \mathbb{R}, +, \times)$ un espacio vectorial. Una función $\|\bullet\| : \mathcal{V} \to \mathbb{R}_+$ se dice una **norma** si satisface las siguientes condiciones:

$$\|u\| = 0 \Leftrightarrow u = e$$

- ||xu|| = |x| ||u|| para cualesquiera $x \in \mathbb{R}$, $u \in \mathcal{V}$
- $\|u+v\| \le \|u\| + \|v\|$ para cualesquiera $u, v \in \mathcal{V}$

Si así fuere, se dice que la tupla $(\mathcal{V}, \mathbb{R}, +, \times, ||\bullet||)$ es un **espacio normado**.

Ejemplo 1.13. Se puede definir una norma para L^2 , el conjunto de las funciones cuadrado-integrables, de la siguiente manera:

$$||S|| = \int_{-\infty}^{\infty} |S(t)|^2 dt$$
 (1.52)

para cualquier $S \in L^2$. Entonces la tupla $(L^2, \mathbb{C}, +, \cdot, || \bullet ||)$ es un espacio normado.

Para fines del trabajo, conviene destacar que una norma puede ser utilizada para definir una métrica en un espacio normado.

Definición 1.43. Sea \mathcal{X} un conjunto arbitrario. Se dice que una función $d: \mathcal{X}^2 \to \mathbb{R}_+$ es una **métrica** si satisface las siguientes condiciones:

- d(x,y) = d(y,x) para cualesquiera $x,y \in \mathcal{X}$
- $d(x,y) = 0 \Leftrightarrow x = y$
- $d(x,y) \leq d(x,z) + d(z,y)$ para cualesquiera $x,y,z \in \mathcal{X}$

Si así fuere, se dice que la tupla (\mathcal{X}, d) es un **espacio métrico**.

Proposición 1.16. Sea $(\mathcal{V}, \mathbb{R}, +, \times, \| \bullet \|)$ un espacio normado. Defínase la función $d: \mathcal{V}^2 \to \mathbb{R}$ como

$$d(u, v) = ||u - v|| \tag{1.53}$$

Entonces d es una métrica, que será referida como la **métrica inducida**.

Ejemplo 1.14. La norma exhibida en el ejemplo $\ref{eq:proposition}$ induce una siguiente métrica para L^2 de la siguiente manera:

$$d(S,Z) = \int_{-\infty}^{\infty} |S(t) - Z(z)|^2 dt$$
 (1.54)

Como ejemplo, puede definirse una métrica alternativa para L^2 como

$$d_A(S, Z) = \max_{t \in \mathbb{R}} |S(t) - Z(z)| \tag{1.55}$$

Definición 1.44. Sea $(\mathcal{V}, \mathbb{C}, +, \times)$ un espacio vectorial. Una función $\langle \bullet, \bullet \rangle : \mathcal{V}^2 \to \mathbb{C}$ se dice un **producto interno** si satisface las siguientes propiedades:

- $\langle u, v \rangle = \overline{\langle v, u \rangle}$ para cualesquiera $u, v \in \mathcal{V}$
- $\langle xu + v, w \rangle = x \langle u, w \rangle + \langle v, w \rangle$ para cualesquiera $u, v, w \in \mathcal{V}$
- $\langle u, u \rangle \in \mathbb{R}_+$ para cualquier $u \in \mathcal{V}$

Si así fuere, se dice que la tupla $(\mathcal{V}, \mathbb{R}, +, \times, \langle \bullet, \bullet \rangle)$ es un **espacio con producto** interno.

Proposición 1.17. Sea $(\mathcal{V}, \mathbb{R}, +, \times, \langle \bullet, \bullet \rangle)$ un espacio con producto interno. Defínase la función $\| \bullet \| : \mathcal{V} \to \mathbb{R}$ como

$$||u|| = \sqrt{\langle u, u \rangle} \tag{1.56}$$

Entonces $\|\bullet\|$ es una norma, que será referida como la **norma inducida**.

Ejemplo 1.15. La norma exhibida en el ejemplo $\ref{eq:producto}$ es inducida por el producto interno para L^2 definido de la siguiente manera:

$$\langle S, Z \rangle = \int_{-\infty}^{\infty} S(t) \overline{Z(t)} dt$$
 (1.57)

como ejemplo, un segundo producto interno puede ser definido como

$$\langle S, Z \rangle_A = \int_{-\infty}^{\infty} e^{-|t|} S(t) \overline{Z(t)} dt$$
 (1.58)

Puede notarse inmediatamente que si en un espacio con producto interno se induce una norma, entonces esa misma norma puede usarse para inducir una métrica. Tal concatenación de construcciones es favorable para algunos fines, ya que la métrica resultante tiene una buena conexión con el producto interno.

Como se dijo, el objetivo de definir métricas es poder hablar de convergencia en espacios vectoriales, motivo por el cual se define un tipo de convergencia.

Definición 1.45. Sea (\mathcal{X}, d) un espacio métrico. Se dice que una sucesión $\{x_n\}_{n\in\mathbb{N}}\subseteq \mathcal{X}$ es una sucesión de Cauchy si para cada $\varepsilon > 0$ existe un $N \in \mathbb{N}$ tal que

$$m, n > N \Rightarrow d(x_m, x_n) < \varepsilon$$
 (1.59)

Definición 1.46. Se dice que el espacio con producto interno $(\mathcal{V}, \mathbb{R}, +, \times, \langle \bullet, \bullet \rangle)$ es un **espacio de Hilbert** si, para cualquier sucesión de Cauchy $\{u_n\}_{n \in \mathbb{N}} \subseteq \mathcal{V}$, se cumple que

$$\lim_{n \to \infty} u_n \in \mathcal{V} \tag{1.60}$$

Las sucesiones de Cauchy se definen respecto a la métrica inducida por el producto interno.

1.6.1. Transformada de Fourier

En los ejemplos anteriores se definió a L^2 , el conjunto de las funciones cuadradointegrables, y se le definió un producto interno para darle estructura como espacio de Hilbert. De manera completamente análoga, a continuación se definen al conjuntos ℓ^2 de las series cuadrado-sumables:

$$\ell^p := \left\{ s : \mathbb{Z} \to \mathbb{C} \, \left| \, \sum_{n = -\infty}^{\infty} |s(n)|^2 < \infty \right. \right\}$$
 (1.61)

el cual admite el producto interno definido como

$$\langle s, z \rangle = \sum_{n = -\infty}^{\infty} s(n) \overline{z(n)}$$
 (1.62)

De manera similar se define al conjunto L_T^2 de las funciones cuadrado-integrables y periódicas con periodo 2T:

$$L_T^p := \left\{ S : [-T, T] \to \mathbb{C} \mid \forall t \in \mathbb{R}, S(t) = S(t + 2T); \int_{-T}^T |S(t)|^2 dt < \infty \right\}$$
 (1.63)

el cual admite el producto interno definido como

$$\langle S, Z \rangle = \int_{I} S(t) \overline{Z(t)} dt$$
 (1.64)

Una vez definidos estos espacios, es perfectamente posible definir la transformada de Fourier (en su *versión clásica*). La interpretación asociada y su contexto serán descritos posteriormente.

Definición 1.47. La transformada de Fourier es una función $\mathcal{F}_T: L_T^2 \to \ell^2$ tal que, para cualesquiera $S \in L_T^2$, $n \in \mathbb{Z}$, satisface

$$\mathcal{F}_{T}[S](n) = \frac{1}{2T} \int_{-T}^{T} S(t)e^{-i|n|t/2T} dt$$
 (1.65)

La serie $\mathcal{F}_T[S]$ es referida como los **coeficientes de Fourier** para S.

De la definición anterior puede decirse que claramente \mathcal{F}_T depende de T, lo cual se discutirá posteriormente. También destaca que es una **función lineal**, es decir, para cualesquiera $S, Z \in L_T^2$, $x \in \mathbb{C}$ se cumple que

$$\mathcal{F}_T[xS + Z] = x\mathcal{F}_T[S] + \mathcal{F}_T[Z] \tag{1.66}$$

además de que la función idénticamente cero es mapeada a la sucesión idénticamente cero ($\mathcal{F}_T[\mathbf{0}] = \mathbf{0}$). A la luz del comentario anterior, conviene investigar al **núcleo** de \mathcal{F}_T , el conjunto de elementos que son mapeados a la sucesión idénticamente cero.

núcleo(
$$\mathcal{F}_T$$
) = $\left\{ N \in L_T^2 \mid \mathcal{F}_T[N] = \mathbf{0} \right\}$ (1.67)

$$= \left\{ N \in L_T^2 \, \middle| \, \int_{-T}^T |N(t)|^2 \, dt = 0 \right\} \tag{1.68}$$

Así entonces, es evidente que el operador \mathcal{F}_T no es invertible. Se puede definir, sin embargo, al operador pseudo-inverso $\mathcal{F}_T^{\text{inv}}: \ell^2 \to L_T^2$ como

$$\mathcal{F}_T^{\text{inv}}(t) = \sum_{n=-\infty}^{\infty} A(n)e^{i|n|t/2T}$$
(1.69)

Una vez descrito el núcleo de \mathcal{F}_T es perfectamente posible buscar subconjuntos de L_T^2 donde la restricción de \mathcal{F}_T sí sea invertible. Para los fines del presente texto, sólo se aborda un caso muy particular: cuando hay una cantidad finita de coeficientes de Fourier diferentes de cero.

El arquetipo para una función en L_T^2 son las funciones de la forma

$$\phi_n(t) = A_n \operatorname{sen}(\pi n t / 2T) + B_n \cos(\pi n t / 2T) = \sqrt{A^2 + B^2}$$
(1.70)

[completar??]

Se puede interpretar a $\mathcal{F}_T[f]$, los coeficientes de Fourier para f, como las instrucciones para armar a f a partir de funciones senoidales con periodo 2T. En otras palabras, se ha usado al conjunto de funciones $\left\{e^{int/2T}\right\}_{n\in\mathbb{N}}$, referido como la **base de Fourier**, como una base para L_T^2 . En el presente trabajo no se hablará más sobre el tema en un sentido formal, de forma que el lector interesado debe dirigirse a [??Friedman].

En un sentido más laxo, lo descrito anteriormente suele interpretarse como que las funciones periódicas (señales) pueden obtenerse como confluencia de señales cosenoidales. Escribir una señal dada como una suma de *componentes de frecuencia* ayuda a estudiar cómo se distribuye su *energía*.

Definición 1.48. Sean $a, b \in \mathbb{R}$ arbitrarios con a < b, y sea $f : \mathbb{R} \to \mathbb{R}$ una función integrable en [a, b]. La **energía disipada** por la función f en el intervalo de tiempo [a, b] es

$$energia_{[a,b]}[f] = \int_{a}^{b} |f(t)|^{2} dt$$
 (1.71)

Similarmente, la **potencia** de la función f en el intervalo de tiempo [a,b] es

$$potencia_{[a,b]}[f] = \frac{1}{b-a} \int_{a}^{b} |f(t)|^{2} dt$$
 (1.72)

Como corolario de la definición anterior, para cualquier $s \in L^2$ puede escribirse energía $_{[-T,T]}[S] = ||S||$. Esta conexión puede usarse para caracterizar a la energía disipada de un función usando su transformada de Fourier.

Teorema 1.18 (Parseval). Sea $S \in L_T^2$, y sea $A = \mathcal{F}_T[S]$. Se cumple que

$$\int_{-T}^{T} |S(t)|^2 dt = \sum_{n = -\infty}^{\infty} |A(n)|^2$$

El teorema de Parseval puede interpretarse como que $||S|| = ||\mathcal{F}_T[S]||$. Se puede

construir una interpretación más atrayente entendiendo a las funciones como señales: la energía disipada por una señal es la suma de la energía disipada por cada uno de sus componentes de frecuencia, es decir, los elementos de la base de Fourier en los que puede ser descompuesta la señal. Dentro de esta interpretación, tiene sentido preguntarse si algunos componentes de frecuencia son más importantes que otros, en el sentido que tengan asociada una mayor energía disipada.

Antes de pasar a otro tema conviene hablar sobre la convolución (representada como *), una tercera operación binaria definida en L_T^2 como

$$[S*Z](\tau) = \int_{-T}^{T} S(t)\overline{Z(\tau - t)}d\tau$$
 (1.73)

esta misma construcción puede repetirse³ para ℓ^2 como

$$[s*z](\tau) = \sum_{n=-\infty}^{\infty} s(n)\overline{z(\tau-n)}$$
 (1.74)

La convolución toma interés en este contexto por su interesante relación con \mathcal{F}_T .

Teorema 1.19. Sean $f, g \in L^2_T$. Entonces, se cumple que

$$\mathcal{F}_T[f * g] = (\mathcal{F}_T[f]) \overline{(\mathcal{F}_T[\overline{g}])}$$
(1.75)

³Más aún, la convolución puede construirse de manera *parecida* para muchos otros conjuntos de funciones, razón por la cual no se le encuadra formalmente como una única definición.

Demostración. Nótese que, para cualquier $n \in \mathbb{Z}$ puede escribirse

$$\mathcal{F}_{T}[f * g](n) = \int_{-T}^{T} [f * g](t)e^{-i|n|t/2T}dt$$

$$= \int_{-T}^{T} \left[\int_{-T}^{T} f(u)g(u-t)du \right] e^{-i|n|t/2T}dt$$

$$= \int_{-T}^{T} \int_{-T}^{T} f(u)g(u-t)e^{-i|n|t/2T}dtdu$$

$$= \int_{-T}^{T} f(u) \left[\int_{-T}^{T} g(u-t)e^{i|n|(u-t)/2T}dt \right] e^{-i|n|u/2T}du$$

$$= \int_{-T}^{T} f(u) \left[\int_{-T}^{T} \overline{g(u-t)}e^{-i|n|(u-t)/2T}dt \right] e^{-i|n|u/2T}du$$

$$= \int_{-T}^{T} f(u) \overline{\left[\mathcal{F}_{T}[\overline{g}](n)\right]}e^{-i|n|u/2T}du$$

$$= \overline{\left[\mathcal{F}_{T}[\overline{g}](n)\right]} \int_{-T}^{T} f(u)e^{-i|n|u/2T}du$$

$$= \overline{\left[\mathcal{F}_{T}[\overline{g}](n)\right]} \mathcal{F}_{T}[f](n)$$

Teorema 1.20. Sean $f, g \in L^2_T$. Entonces, se cumple que

$$\mathcal{F}_T[f\,\overline{g}] = (\mathcal{F}_T[f]) * (\mathcal{F}_T[g]) \tag{1.76}$$

Demostración. Nótese que, para cualquier $n \in \mathbb{Z}$ puede escribirse

$$[(\mathcal{F}_T[f]) * (\mathcal{F}_T[g])] (n) = \sum_{k=-\infty}^{\infty} \mathcal{F}_T[f](k) \overline{\mathcal{F}_T[g](k-n)}$$

$$= \sum_{k=-\infty}^{\infty} \left[\int_{-T}^{T} f(u) e^{-i|n|u/2T} du \right] \overline{\left[\int_{-T}^{T} g(u) e^{-i|k-n|u/2T} du \right]}$$

$$= 5$$

Corolario 1.21. Sean $f, g \in L^2_T$. Entonces, se cumple que

$$|\mathcal{F}_T[f * g]|^2 = |\mathcal{F}_T[f]|^2 |\mathcal{F}_T[\overline{g}]|^2$$
(1.77)

$$|\mathcal{F}_T[f\,\overline{g}]|^2 = |(\mathcal{F}_T[f]) * (\mathcal{F}_T[g])|^2$$
(1.78)

El teorema ?? es una motivación para teoremas parecidos, los cuales son usados extensamente en los capítulos siguientes para construir estimadores consistentes para el espectro de potencias; ver las secciones ?? y ??.

1.6.2. Transformada de Fourier-Stieltjes

Una vez descrita la terminología sobre espacios de Hilbert, y habiendo definido la transformada de Fourier dentro de este contexto, es relativamente sencillo definir algunos otros espacios de funciones que admiten generalizaciones de la transformada de Fourier. Por ejemplo, retomando al conjunto L^2 (las funciones cuadrado-integrables sobre \mathbb{R}) puede definirse el operador $\mathcal{F}_{\mathbb{R}}$ como

$$\mathcal{F}_{\mathbb{R}}[S](\omega) = \int_{-\infty}^{\infty} S(t)e^{-i\omega t}dt$$
 (1.79)

para cualesquiera $S \in L^2, \omega \in \mathbb{R}$. El operador $\mathcal{F}_{\mathbb{R}}$ será referido como la **transformada de Fourier generalizada**.

Como un segundo ejemplo puede considerarse al conjunto ℓ_T^2 de las sucesiones periódicas con periodo 2T y cuadrado-sumables, definido como

$$\ell_T^p := \left\{ s : \mathbb{Z} \to \mathbb{C} \mid \forall t \in \mathbb{Z}, s(t) = s(t+2T); \sum_{n=-T}^T |s(n)|^2 < \infty \right\}$$
 (1.80)

El espacio ℓ_T^2 admite como productos internos a aquél definido para ℓ^2 , si se restringe apropiadamente. Para ℓ_T^2 puede definirse al operador \mathcal{F}_T^d como

$$\mathcal{F}_T^{d}[s](n) = \sum_{k=-T}^{T} s(k)e^{-i|n|k/2T}$$
(1.81)

para cualesquiera $s \in \ell^2_T, n \in \mathbb{Z}$. El operador $\mathcal{F}^{\mathrm{d}}_T$ es referido como la **transformada**

discreta de Fourier.

Como se dijo, es posible listar una gran cantidad de espacios con productos internos, que admiten la estructura de espacio de Hilbert y alguna generalización de la transformada de Fourier que satisfaga los teoremas descritos anteriormente. Por fines de concretitud, sólo se expondrá a fondo una versión *suficientemente general* para los fines del presente trabajo, y que es usada ampliamente en los siguientes capítulos: la transformada de Fourier-Stieltjes.

Primeramente se define a $L_{\mathbb{R}}^2$, el conjunto de las funciones que son periódicas o son cuadrado integrables, como

$$L_{\mathbb{R}}^2 = L^2 \cup \left[\bigcup_{T \in \mathbb{R}_+} L_T^2 \right] \tag{1.82}$$

Por cómo se definió, para función en $f \in L^2_{\mathbb{R}}$ existe una función $F : \mathbb{R} \to \mathbb{C}$ tal que la siguiente igualdad se cumple casi en todas partes

$$f(t) = \int_{-\infty}^{\infty} e^{-i\omega t} dF(\omega)$$
 (1.83)

con la integral definida en el sentido de Stieltjes. Naturalmente, el par f y F cumplirá un papel similar a la transformada de Fourier, aunque falta decir algunos comentarios antes. La expresión $\ref{eq:section}$ es claramente cierta porque:

• si $f \in L^2$, entonces puede usarse

$$F(\omega) = \int_0^\omega \mathcal{F}_{\mathbb{R}}[f](\lambda) d\lambda$$

 \bullet si $f\in L^2_T$ para algún T, entonces puede usarse F

$$F(\omega) = \operatorname{sgn}(\omega) \sum_{n=0}^{\lfloor |\omega|/2T \rfloor} \mathcal{F}_T[f](n)$$

donde $sgn(\omega)$ es el signo de ω : +1, -1, 0.

Notablemente $L^2_{\mathbb{R}}$ no es un espacio de Hilbert pues no es *cerrado ante sumas*, es decir, porque no hay garantía de que la suma de dos elementos arbitrarios de $L^2_{\mathbb{R}}$ sea un elemento de $L^2_{\mathbb{R}}$. Además, hay que definirle un producto interno.

La primera tarea es sencilla, pues puede usarse a S^2 como el conjunto más pequeño que es cerrado ante sumas y que contiene a $L^2_{\mathbb{R}}$ –similar a las σ -álgebras generadas por conjuntos arbitrarios.

?? TERMINAR DEFINIENDO FORMALMENTE A LA TR
 DE FOURIERSTIELTJES, SIN TANTO RODEO

CAPÍTULO 2

Espectro de potencias

Existe una larga tradición para entender y modelar las señales electrofisiológicas en términos de ondas y frecuencias, ya que fundamentalmente son fenómenos eléctricos [?]. En este capítulo se expone el enfoque usual en cuanto a modelar las señales electrofisiológicas como procesos estocásticos a los cuales se puede definir un espectro de potencias. El espectro de potencias es entendido como una generalización para el módulo de la transformada de Fourier; conserva algunas de sus propiedades, como el ser una norma inducida por un producto interno, así como la interpretación asociada como distribución de energía.

En la sección ?? se define el espectro de potencias para procesos estocásticos débilmente estacionarios y se establecen condiciones de existencia; la discusión sobre unicidad se ubica en la sección ??, donde se define una forma de representar al proceso en términos de su espectro. Finalmente, la sección ?? trata sobre la estimación del espectro de un proceso a partir de una realización del mismo; se aborda el enfoque de obtener una versión suavizada del espectro en aras de que los estimadores sean consistentes.

Un hecho que conviene reiterar es que todos los temas son expuestos dos veces: para procesos estocásticos a tiempo continuo y para aquellos a tiempo discreto; Cabe mencionar que en este capítulo se trata únicamente el caso de procesos estocásticos débilmente estacionarios, mientras que en el siguiente se explora una familia más

general de procesos estocásticos. Dentro del contexto global del presente trabajo, el capítulo entero pudiera etiquetarse como el estudio de un caso particular salvo por simplicidad expositiva.

2.1. Espacios de variables aleatorias

Proposición 2.1. Sea \mathcal{R} el conjunto de variables aleatorias con media cero y varianza finita. Se define un producto interno entre dos variables aleatorias arbitrarias, U y V, como

$$\langle U, V \rangle := \mathbb{E}\left[U, \overline{V}\right]$$
 (2.1)

Usando la suma y productos usuales de variables aleatorias, junto al producto interno descrito, el espacio \mathcal{R} tiene la estructura de espacio de Hilbert.

Teorema 2.2 (Bochner). Sea f una función real arbitraria. Una condición suficiente y necesaria para que f sea definida positiva es que exista una función real F monótonamente creciente, continua por la derecha y acotada tal que puede escribirse

$$f(t) = \int_{-\infty}^{\infty} e^{i\omega t} dF(\omega)$$
 (2.2)

Corolario 2.3. Usando $f \equiv g$ en el teorema anterior

$$|F(\omega)|^2 = \int_{-\infty}^{\infty} e^{-i\omega t} k(t) dt \tag{2.3}$$

donde

$$k(t) = \int_{-\infty}^{\infty} f(u)f(u-t)du$$
 (2.4)

2.2. Función de densidad espectral

La forma más natural de definir un espectro de potencias para un proceso estacionario es a través de la transformada de Fourier de sus realizaciones. Tal enfoque no funciona en general, pues no se puede garantizar que las realizaciones arbitrarias admitan una transformada de Fourier (ni aún de Fourier-Stieltjes). Se define entonces el espectro en base a un límite de subcolecciones de la realización, de modo que éstas sí admitan una transformada de Fourier.

Definición 2.1 (Función de densidad espectral, tiempo continuo). Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso estacionario a tiempo continuo. Se define su función de densidad espectral como

$$h(\omega) = \frac{1}{2\pi} \lim_{T \to \infty} E\left[\frac{1}{2T} \left| \int_{-T}^{T} X(t) e^{-i\omega t} dt \right|^{2} \right]$$
 (2.5)

[? ejemplos: ruido rosa esta bien definido, proceso oscilatorio no esta definido, ruido blanco no esta definido]

Definición 2.2 (Función de densidad espectral, tiempo discreto). Sea $\{X(t)\}_{t/\Delta_t \in \mathbb{Z}}$ un proceso estacionario a tiempo discreto. Se define su función de densidad espectral como

$$h(\omega) = \frac{1}{2\pi} \lim_{N \to \infty} E \left[\frac{1}{2N} \left| \sum_{n=-N}^{N} X(n\Delta_t) e^{-i\omega n\Delta_t} \right|^2 \right]$$
 (2.6)

2.3. Representación espectral

Teorema 2.4. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso continuo de media cero, débilmente estacionario, y que admite una función de densidad espectral h, sea R su función de autocovarianza. Entonces

$$h(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega\tau} R(\tau) d\tau$$
 (2.7)

Demostración. Usando que $h = \lim_{T\to\infty} G_T$, nótese que

$$|G_T(\omega)|^2 = \int_{-\infty}^{\infty} e^{i\omega t} \left[\left(\frac{1}{\sqrt{2\pi}} \right)^2 \int_{-\infty}^{\infty} X_T(u) X_T(u - \tau) du \right] d\tau$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \left[\int_{-\infty}^{\infty} X_T(u) X_T(u - \tau) du \right] d\tau$$

Esta integral puede verse como la transformada de Fourier de la función de autoco-

rrelación de la serie truncada, \widehat{R}_T

$$\widehat{R}_{T}(\tau) = \frac{1}{2T} \int_{-\infty}^{\infty} X_{T}(u) X_{T}(u - \tau) du$$

$$= \begin{cases} \frac{1}{2T} \int_{-T + |\tau|}^{T} X(u) X(u - |\tau|) du &, |\tau| \leq T \\ 0 &, \text{otro caso} \end{cases}$$

Así entonces

$$h(\omega) = \lim_{T \to \infty} \mathbf{E} \left[\frac{1}{2T} |G_T(\omega)|^2 \right]$$
$$= \lim_{T \to \infty} \mathbf{E} \left[\frac{2T}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \widehat{R}_T(\tau) d\tau \right]$$
$$= \frac{1}{2\pi} \lim_{T \to \infty} 2T \int_{-\infty}^{\infty} e^{i\omega t} \mathbf{E} \left[\widehat{R}_T(\tau) \right] d\tau$$

Para esto, si $|\tau| \le 2T$

$$E\left[\widehat{R}_{T}(\tau)\right] = E\left[\frac{1}{2T} \int_{-\infty}^{\infty} X_{T}(u) X_{T}(u-\tau) du\right]$$

$$= E\left[\frac{1}{2T} \int_{-T+|\tau|}^{T} X(u) X(u-\tau) du\right]$$

$$= \frac{1}{2T} \int_{-T+|\tau|}^{T} E\left[X(u) X(u-\tau)\right] du$$

$$= \frac{1}{2T} \int_{-T+|\tau|}^{T} R(\tau) du$$

$$= \frac{1}{2T} \left(1 - \frac{|\tau|}{2T}\right) R(\tau)$$

pero si $|\tau| > 2T$ entonces $\widehat{R}_T = 0$. Luego entonces

$$h(\omega) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^{T} e^{i\omega t} \left(1 - \frac{|\tau|}{2T} \right) R(\tau) d\tau$$
$$= \frac{1}{2\pi} \lim_{T \to \infty} \int_{-\infty}^{\infty} e^{i\omega t} g_T(t) R(\tau) d\tau$$

con

$$g_T = \begin{cases} 1 - |\tau|/2T &, |\tau| \le 2T \\ 0 &, \text{otro caso} \end{cases}$$
 (2.8)

Para establecer el límite anterior nótese que para cualesquiera τ, T se cumple que $0 \le g_\tau \le 1$, entonces

$$\int_{-\infty}^{\infty} e^{i\omega t} g_T(t) R(\tau) d\tau \le \left| \int_{-\infty}^{\infty} e^{i\omega t} g_T(t) R(\tau) d\tau \right|$$
$$\le \int_{-\infty}^{\infty} |g_T(\tau)| |R(\tau)| d\tau$$
$$\le \int_{-\infty}^{\infty} |R(\tau)| d\tau$$

Para cada ω , el módulo de $\int_{-T}^{T}e^{i\omega t}g_{\tau}(t)R(\tau)d\tau$ es monótonamente creciente y acotado, luego entonces, por el teorema de convergencia dominada de Lebesgue, se tiene que

$$h(\omega) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-\infty}^{\infty} e^{i\omega t} g_T(t) R(\tau) d\tau$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \left[\lim_{T \to \infty} g_T(t) \right] R(\tau) d\tau$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} R(\tau) d\tau$$

Es posible definir una función de espectro integrado, H, como

$$H(\omega_2) - H(\omega_1) = \frac{1}{2\pi} \int_{\omega_1}^{\omega_2} h(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\omega_2\tau} - e^{i\omega_1\tau}}{i\tau} R(\tau) d\tau \tag{2.9}$$

Usando que h es una función simétrica tal que $\int_{-\infty}^{\infty}h(\omega)d\omega=\sigma_X^2$, entonces puede escribirse

$$H(\omega) = \frac{\sigma_X^2}{2} + \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\omega_1\tau} - 1}{i\tau} R(\tau) d\tau = \frac{\sigma_X^2}{2} + \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\sin(\omega\tau)}{\tau} R(\tau) d\tau \quad (2.10)$$

Conviene remarcar que el teorema $\ref{eq:constraint}$ sólo aplica si el proceso admite una función de densidad espectral, y en consecuencia no es claro si el espectro integrado queda bien definido para procesos que no admiten una densidad espectral. Por ejemplo, considérese el proceso P definido como

El siguiente teorema permite establecer condiciones generales para las cuales se puede definir un espectro de potencias para un proceso estacionario.

Teorema 2.5 (Wiener-Khintchine). Una condición suficiente y necesaria para que ρ sea una función de autocorrelación de algún proceso estocástico a tiempo continuo $\{X(t)\}_{t\in\mathcal{T}}$ débilmente estacionario y estocásticamente continuo, es que exista una función F que tenga las siguientes propiedades

- Monótonamente creciente
- $F(-\infty) = 0$
- $F(+\infty) = 1$

y tal que para todo $\tau \in \mathbb{R}$ se cumple que

$$\rho(\tau) = \int_{-\infty}^{\infty} e^{i\omega\tau} dF(\omega)$$

Como notación, el factor dF será referido como la función de espectro integrado normalizado para el proceso.

Una vez definido y probada la existencia de la función de espectro integrado normalizado dF, se define la función de espectro integrado dH (sin el adjetivo normalizado) como $dH := \sigma_X^2 dF$.

Una vez establecidas las condiciones de existencia para el espectro de potencias de un proceso débilmente estacionario, una pregunta muy natural es sobre la unicidad. Cuando se discutió la transformada de Fourier para funciones en L^2 , se dejó en claro que es un operador invertible salvo por su núcleo (definición ?).

Se mostró que la transformada de Fourier puede ser parameterizada en módulo y argumento, siendo el primero es equivalente (salvo una función invertible) al espectro.

El espectro de un proceso estacionario fue definido como

$$h(\omega) = \lim_{T \to \infty} \operatorname{E}\left[|G_T(\omega)|^2\right]$$
$$G_T(\omega) = \int_{-T}^T e_{i\omega t} X(t) dt$$

la componente G_T cumple intuitivamente el papel de la transformada de Fourier, pero es omitida para demostrar más fácilmente la existencia del espectro h. Contemplando la parametrización de la transformada de Fourier, ¿puede definirse algo equivalente al argumento para un proceso estacionario? [? mejorar redacción]

Teorema 2.6. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso a tiempo continuo, débilmente estacionario, de media 0 y estocásticamente continuo en el sentido de media cuadrática. Existe un proceso ortogonal $\{Z(\omega)\}$ tal que, para todo tiempo ω admisible, se puede escribir

$$X(t) = \int_{-\infty}^{\infty} e^{it\omega} dZ(\omega)$$

Donde el proceso $\{Z(t)\}$ tiene las siguientes propiedades para todo ω

- $E[dZ(\omega)] = 0$
- $\quad \quad \square \quad \operatorname{Cov} \left(dZ(\omega), dZ(\lambda) \right) = dH(\omega) \delta(\omega, \lambda)$

Donde $dH(\omega)$ el espectro integrado de $\{X(t)\}_{t\in\mathcal{T}}$

Demostración. Se mostró anteriormente que \mathcal{R} , el conjunto de variables aleatorias con media cero y varianza finita, tiene la estructura de espacio de Hilbert con el producto interno

$$\langle U, V \rangle := \operatorname{Cov}(U, V) = \operatorname{E}\left[U, \overline{V}\right]$$
 (2.11)

Ahora bien, un proceso débilmente estacionario $\{X(t)\}_{t\in\mathcal{T}}$ puede verse como una curva en \mathcal{R} indexada por $t\in\mathcal{T}$. Por el teorema de Winer-Khintchine, existe un proceso ortogonal dH tal que puede escribirse

$$\langle X(t), X(s) \rangle = R(t-s) = \int_{-\infty}^{\infty} e^{i\omega(t-s)} dH(\omega)$$
 (2.12)

De manera más general, puede hablarse de una familia de funciones $\{\phi_t\}_{t\in\mathcal{T}}$ (ante-

riormente se usó $\phi_t(\omega)=e^{i\omega t})$ y escribir

$$\langle X(t), X(s) \rangle = \int_{-\infty}^{\infty} \phi_t(\omega) \overline{\phi_s(\omega)} dH(\omega)$$
 (2.13)

Usando la familia de funciones $\{\phi_t\}_{t\in\mathcal{T}}$ puede construirse un segundo espacio de Hilbert, \mathcal{H}_{ϕ} , como las combinaciones lineales de estas funciones. A este segundo espacio se le define el producto interno

$$\langle \phi_1, \phi_2 \rangle_H := \int_{-\infty}^{\infty} \phi_1(\omega) \overline{\phi_2(\omega)} dH(\omega)$$
 (2.14)

Posteriormente se define un mapeo $M: \mathcal{H}_{\phi} \to \mathcal{R}$ como

$$M[\phi_t] := X(t) \tag{2.15}$$

el cual se extiende linealmente para cualesquiera coeficientes $c_1, c_2, \dots \in \mathbb{R}$ y tiempos admisibles $t_1, t_2, \dots \in \mathcal{T}$

$$M\left[\sum_{i} c_{i} \phi_{t_{i}}\right] = \sum_{i} c_{i} M\left[\phi_{t_{i}}\right]$$
(2.16)

Trivialmente, M conserva productos internos; basta notar que

$$\langle X(t), X(s) \rangle = \int_{-\infty}^{\infty} \phi_1(\omega) \overline{\phi_2(\omega)} dH(\omega) = \langle \phi_1, \phi_2 \rangle_H$$
 (2.17)

Ahora, para trabajar con las funciones ϕ conviene descomponerlas en una base más sencilla, como límite de funciones simples. Para ello, se define una función indicadora

$$I(\omega; \omega_0, \omega_f) := \begin{cases} 1 &, \omega_0 \le \omega < \omega_f \\ 0 &, \text{otro caso} \end{cases}$$
 (2.18)

Luego, sea $\{\omega_0, \omega_1, \cdots, \omega_N\}$ una partición del intervalo [-n, n], con n >> N. Entonces, en virtud del teorema de convergencia dominada de Lebesgue

$$\phi_t(\omega) = \lim_{n \to \infty} \sum_{i=1}^N I(\omega; \omega_{i-1}, \omega_i) \left[\inf_{\omega \in [\omega_{i-1}, \omega_i]} \phi_t(\omega_i) \right]$$
 (2.19)

Usando tal representación para las funciones ϕ 's, se define a Z como

$$Z(\omega_f) - Z(\omega_0) = M\left[I(\omega; \omega_f, \omega_0)\right]$$
(2.20)

Luego entonces, aplicando M a ambos lados de la expresión ?? se obtiene

$$M \left[\phi_t(\omega) \right] = M \left[\lim_{n \to \infty} \sum_{i=1}^N I(\omega; \omega_{i-1}, \omega_i) \left[\inf_{\omega \in [\omega_{i-1}, \omega_i]} \phi_t(\omega_i) \right] \right]$$

$$= \lim_{n \to \infty} \sum_{i=1}^N M \left[I(\omega; \omega_{i-1}, \omega_i) \right] \left[\inf_{\omega \in [\omega_{i-1}, \omega_i]} \phi_t(\omega_i) \right]$$

$$= \lim_{n \to \infty} \sum_{i=1}^N \left(Z(\omega_i) - Z(\omega_{i-1}) \right) \left[\inf_{\omega \in [\omega_{i-1}, \omega_i]} \phi_t(\omega_i) \right]$$

$$= \int_{-\infty}^\infty \phi_t(\omega) dZ(\omega)$$

El resultado que se busca queda establecido porque $M[\phi_t] = X(t)$

$$X(t) = \int_{-\infty}^{\infty} \phi_t(\omega) dZ(\omega)$$
 (2.21)

2.3.1. Representación de procesos a tiempo discreto

La existencia de espectros para procesos a tiempo discreto es dada por el teorema

Teorema 2.7 (Wold). Una condición suficiente y necesaria para que ρ sea una función de autocorrelación de algún proceso estocástico a tiempo discreto $\{X(t)\}_{t\in\mathcal{T}}$ débilmente estacionario es que exista una función F con las siguientes propiedades

- Monótonamente creciente
- $F(-\pi) = 0$
- $F(+\pi) = 1$

y tal que para todo $\tau \in \mathbb{R}$ se cumple que

$$\rho(\tau) = \int_{-\pi}^{\pi} e^{i\omega\tau} dF(\omega)$$

Demostración. Por simplicidad, supóngase que $\Delta_X = 1$. A tiempo discreto, la función de autocovarianza adquiere la forma de una secuencia $\{R(\tau)\}_{\tau \in \mathbb{Z}}$. Se define una función R_C que es igual a R pero cuyo dominio es \mathbb{R} , de la forma

$$R_C(\tau) = (1 - \tau + \lfloor \tau \rfloor) R(\lfloor \tau \rfloor) + (s - \lfloor \tau \rfloor) R(\lfloor \tau \rfloor + 1)$$
(2.22)

Se demuestra en Priestley 1963 [?] que existe un proceso estacionario cuya función de autovarianza es R_C , luego entonces por el teorema ?? existe una función de distribución Q tal que

$$R_C(\tau) = \int_{-\infty}^{\infty} e^{i\omega\tau} dQ(\omega)$$
 (2.23)

Dado que R y R_C son iguales cuando τ es entero, se puede considerar la siguiente manipulación con $\tau \in \mathbb{Z}$.

$$R(\tau) = \int_{-\infty}^{\infty} e^{i\omega\tau} dQ(\omega)$$

$$= \sum_{s=-\infty}^{\infty} \int_{(2s-1)\pi}^{2s+1\pi} e^{i\omega\tau} Q(\omega)$$

$$= \sum_{s=-\infty}^{\infty} \int_{-\pi}^{\pi} e^{i(\omega+2\pi s)\tau} Q(\omega+2\pi s)$$

$$= \sum_{s=-\infty}^{\infty} \int_{-\pi}^{\pi} e^{i\omega\tau} Q(\omega+2\pi s)$$

$$= \int_{-\pi}^{\pi} e^{i\omega\tau} \left[\sum_{s=-\infty}^{\infty} Q(\omega+2\pi s) \right]$$

Finalmente se puede definir a F, la función de densidad descrita por el teorema, usando

$$dF(\omega) = \sum_{s=-\infty}^{\infty} Q(\omega + 2\pi s)$$
 (2.24)

El que F sea monótonamente se deduce de que Q lo es. Como dQ es simétrica, puede

definirse convenientemente que $F(-\pi) = 0$ y $F(\pi) = 1$ con base a que

$$F(\pi) = \int_{-\pi}^{\pi} \left[\sum_{s=-\infty}^{\infty} Q(\omega + 2\pi s) \right] = \int_{-\infty}^{\infty} dQ(\omega) = 1$$
 (2.25)

En virtud del teorema de Wold, se puede obtener una variante del teorema ?? para procesos a tiempo discreto cambiando el intervalo de integración.

Teorema 2.8. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso a tiempo discreto, débilmente estacionario y de media 0. Existe un proceso ortogonal $\{Z(\omega)\}$ tal que, para todo tiempo ω admisible, se puede escribir

$$X(t) = \int_{-\pi}^{\pi} e^{it\omega} dZ(\omega)$$

Donde el proceso $\{Z(t)\}$ tiene las siguientes propiedades para todo ω

- $E[dZ(\omega)] = 0$
- $\operatorname{Cov}(dZ(\omega), dZ(\lambda)) = dH(\omega)\delta(\omega, \lambda)$

Donde $dH(\omega)$ el espectro integrado de $\{X(t)\}_{t\in\mathcal{T}}$

La demostración es completamente análoga, reemplazando el teorema de Winer-Khintchine por el de Wold. Como notación, las representaciones en los teoremas ?? y ?? son referidas como representaciones de Wold-Cramér.

2.4. Efecto alias

Hasta ahora se han tratado por separado los procesos a tiempo discreto y a tiempo continuo. Una vez expuestos algunos resultados importantes, se procede a explorar la familia de los procesos a tiempo discreto generados como subcolección de algún proceso a tiempo continuo. Dicha familia se vuelve importante porque se ha decidido modelar a las señales electrofisiológicas como procesos a tiempo continuo, pero sólo se pueden obtener registros de ellas a tiempo discreto.

Este tópico es relevante desde el punto de vista práctico, ya que existe una amplia variedad de condiciones técnicas bajo las cuales se suelen efectuar los registros. La AASM establece un mínimo de 128 puntos por segundo (Hz) para registrar el polisomnograma, pero la frecuencia de muestreo usualmente es decidida dependiendo del fenómeno a observar y las características del aparato de registro a usarse. Siguiendo esta idea, conviene hablar del posible efecto de obtener registros con una mayor o menor cantidad de puntos por unidad de tiempo

Considérese un proceso a tiempo continuo y débilmente estacionario, $\{X(t)\}_{t\in\mathcal{T}}$, y sea $\Delta_t \in \mathbb{R}$ arbitrario. Se construye al proceso $\{Y(n)\}_{n\in\mathbb{N}}$ como

$$Y(n) = X(n\Delta_t) \tag{2.26}$$

En virtud del teorema ??, $\{X(t)\}_{t\in\mathcal{T}}$ admite una representación de la forma

$$X(t) = \int_{-\infty}^{\infty} e^{i\omega t} dZ_X(\omega)$$
 (2.27)

Luego entonces puede reescribirse

$$Y(n) = \int_{-\infty}^{\infty} e^{i\omega n\Delta_t} dZ_X(\omega)$$

$$= \sum_{k \in \mathbb{N}} \int_{(2k-1)\pi/\Delta_t}^{(2k+1)\pi/\Delta_t} e^{i\omega n\Delta_t} dZ_X(\omega)$$

$$= \sum_{k \in \mathbb{N}} \int_{-\pi/\Delta_t}^{\pi/\Delta_t} e^{i\left(\omega + \frac{2k\pi}{\Delta_t}\right)n\Delta_t} dZ_X(\omega + \frac{2k\pi}{\Delta_t})$$

$$= \sum_{k \in \mathbb{N}} \int_{-\pi/\Delta_t}^{\pi/\Delta_t} e^{i\omega n\Delta_t} dZ_X(\omega + \frac{2k\pi}{\Delta_t})$$
(2.28)

Con base a lo anterior, puede definirse para $\omega \in [-\pi/\Delta_t, \pi/\Delta_t]$

$$dZ_Y(\omega) := \sum_{k \in \mathbb{N}} dZ_X \left(\omega + \frac{2k\pi}{\Delta_t} \right)$$
 (2.29)

En base al teorema ??, se define para $|\omega| \leq \pi/\Delta_t$

$$dH_{Y}(\omega) = \mathbb{E}\left[\left|dZ_{Y}(\omega)\right|^{2}\right]$$

$$= \mathbb{E}\left[\left|\sum_{k\in\mathbb{N}}dZ_{X}\left(\omega + \frac{2k\pi}{\Delta_{t}}\right)\right|^{2}\right]$$

$$= \sum_{k\in\mathbb{N}}\mathbb{E}\left[\left|dZ_{X}\left(\omega + \frac{2k\pi}{\Delta_{t}}\right)\right|^{2}\right]$$

$$= \sum_{k\in\mathbb{N}}dH_{X}\left(\omega + \frac{2k\pi}{\Delta_{t}}\right)$$
(2.30)

En el segundo paso se usa que $\{dZ_X\}$ es un proceso ortogonal de media cero. Antes de poder declara que dH_Y es el espectro integrado del proceso discretizado, conviene hacer el cambio de variable $\omega^* := \omega \Delta_t$

$$dH_Y(\omega^*) = dH_Y(\omega \Delta_t) \frac{d\omega^*}{d\omega}$$
$$= \frac{1}{\Delta_t} dH_Y(\omega \Delta_t)$$

donde $|\omega^*| \leq \pi$. Si $\{X(t)\}_{t \in \mathcal{T}}$ posee un espectro puramente continuo –de manera equivalentemente, si dH_X es absolutamente continua– entonces puede escribirse

$$h_Y(\omega^*) = \frac{1}{\Delta_t} \sum_{k \in \mathbb{N}} h_X \left(\omega + \frac{2k\pi}{\Delta_t} \right)$$
 (2.31)

con $|\omega| \leq \pi$. Así entonces h_Y puede entenderse como una versión colapsada de h_X , fenómeno conocido como **efecto alias**.

2.5. Filtros lineales

Definición 2.3. Se dice que un operador $\mathcal{L}_g: L^2 \to L^2$ es un filtro lineal si puede escribirse de la forma

$$\mathcal{L}_g[f] = \int_{-\infty}^{\infty} g(u)f(t-u)du$$
 (2.32)

para alguna función $g \in L^2$ que es referida como función de respuesta.

Naturalmente, los filtros lineales son funciones lineales. Son continuos en la iden-

tidad aditiva de L^2 , y por tanto son continuos en todo L^2 . Como los filtros lineales son funciones lineales y continuas, entonces son funciones medibles bajo la medida de Lebesgue. Se puede hablar de la composición de un filtro lineal \mathcal{L}_g con un proceso estocástico $\{X(t)\}_{t\in\mathcal{T}}$, es decir, definir un proceso de la forma

$$Y(t) = \mathcal{L}_g[X](t) = \int_{-\infty}^{\infty} g(u)X(t-u)du$$
 (2.33)

Los procesos generados como en ??, usualmente referidos como procesos filtrados, son comunes en el análisis de señales. En este trabajo serán usados para construir estimadores consistentes para el espectro de potencias. Para ello, conviene describir la relación entre el espectro de un proceso y el de su versión filtrada.

Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso a tiempo continuo, débilmente estacionario. Usando el teorema de representación espectral [?], puede escribirse

$$X(t) = \int_{-\infty}^{\infty} e^{i\omega t} dZ_X(\omega)$$
 (2.34)

Ahora bien, escribiendo al proceso $\{Y(t)\}_{n\in\mathbb{N}}$

$$Y(t) = \int_{-\infty}^{\infty} g(u)X(t-u)du$$

$$= \int_{-\infty}^{\infty} g(u) \left[\int_{-\infty}^{\infty} e^{i\omega(t-u)} dZ_X(\omega) \right] du$$

$$= \int_{-\infty}^{\infty} e^{i\omega t} \left[\int_{-\infty}^{\infty} g(u)e^{i\omega-u} du \right] dZ_X(\omega)$$

$$= \int_{-\infty}^{\infty} e^{i\omega t} \Gamma(\omega) dZ_X(\omega)$$

donde $\Gamma(\omega) = \int_{-\infty}^{\infty} g(u)e^{i\omega-u}du$ será referida como la función de transferencia asociada al filtro. Luego entonces

$$dH_Y(\omega) = \mathbb{E}\left[|dZ_Y(\omega)|^2\right]$$
$$= \mathbb{E}\left[|\Gamma(\omega)dZ_X(\omega)|^2\right]$$
$$= |\Gamma(\omega)|^2 dH_X(\omega)$$

Se concluye que si ambos procesos tengan FDE bien definidas, se cumple que

$$h_Y(\omega) = |\Gamma(\omega)|^2 h_X(\omega) \tag{2.35}$$

Conviene notar que la relación ?? era de esperarse como una generalización del teorema [fourier ?].

2.5.1. Filtros de banda

Como se mencionó, los filtros lineales tienen múltiples aplicaciones en el análisis de señales, además de la estimación del espectro de potencias. Conviene destacar, aún como comentario, la familia de filtros lineales cuya función de transferencia es de la forma

$$\Gamma_{\omega_0}^{\star}(\omega) = \begin{cases} 1 &, |\omega| \le \omega_0 \\ 0 &, \text{otro caso} \end{cases}$$
 (2.36)

este tipo de filtros son referidos como filtros pasa bajas. Análogamente, un filtro pasa altas tiene una la misma forma cambiando la condición por $|\omega| \ge \omega_0$.

Cuando se aplica un filtro pasa bajas a un proceso, el efecto producido suele interpretarse como la eliminación de los componentes de frecuencia mayores a ω_0 . Tal efecto es deseable si, por ejemplo, se desea estudiar la actividad alfa en el lóbulo frontal (7–12 Hz) pero se espera la interferencia de actividad muscular en el rostro (típicamente > 100 Hz); bastaría construir un filtro pasabajas con $\omega_0 = 100$ Hz.

[?] escribir la forma que debería tener g

Este tipo de pre-procesamiento garantiza, por ejemplo, que en los registros no hay ruido inducido por la corriente eléctrica (120 Hz); en general, el uso de filtros pasa bajas y pasa bajas garantiza heurísticamente la eliminación de una variedad de ruidos comunes. En el presente texto no se exploran con más detalles este tipo de filtros y sus efectos, el lector interesado puede dirigirse al libro "Medical Instrumentation. Applications and Design" por John G. Webster [?].

2.6. Estimadores

El objetivo de esta sección es calcular el espectro de potencias de un proceso a partir de una realización del mismo; en el contexto del presente trabajo, las palabras observación y registro serán usadas como sinónimos. Con vista en la expresión ??, un estimador natural para el espectro sería el periodograma.

Definición 2.4. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso débilmente estacionario a tiempo discreto, cuyo espectro es puramente continuo y cuya frecuencia de muestreo es $\Delta_X = 1$. Sea $\{x_t\}_{t=0,\dots,N}$ una realización de longitud N. El **periodograma**, I_N , es un estimador definido como

$$I_N(\omega) = \frac{1}{N} \left| \sum_{t=0}^N e^{i\omega t} x(t) \right|^2$$
 (2.37)

Proposición 2.9. El periodograma (I_N) es un estimador insesgado para el espectro de potencias (h), es decir

$$E[I_N(\omega)] = h(\omega) \tag{2.38}$$

Proposición 2.10. La familia de estimadores $\{I_N\}_{N\in\mathbb{N}}$ satisface que

$$\lim_{N \to \infty} \operatorname{Var}(I_N(\omega)) = [h(\omega)]^2 \tag{2.39}$$

Se puede demostrar que $E[I_N(\omega)] = h(\omega)$, de modo que es un estimador insesgado. Sin embargo, también se demuestra que

$$\lim_{N \to \infty} \operatorname{Var} \left(I_N(\omega) \right) = \left(h(\omega) \right)^2$$

de modo que es un estimador **inconsistente**, lo cual lo descalifica para usarse en la práctica. Para entender por qué el periodograma es inconsistente, conviene escribirlo como

$$I_N(\omega) = 2\sum_{\tau = -(N-1)}^{N-1} \widehat{R}^*(\tau)\cos(\omega\tau)$$
 (2.40)

donde \widehat{R}^{\star} es un estimador para la función de autocovarianza, R, definido como

$$\widehat{R}^{\star}(\tau) = \frac{1}{N} \sum_{t=1}^{N-|\tau|} x(t)x(t+|\tau|)$$
(2.41)

Así mismo, la misma expresión puede interpretarse como que el periodograma es una suma ponderada de los valores de \widehat{R}^* ; mientras más grande es τ , menos parejas

de puntos cuya distancia es τ , y entonces \widehat{R}^{\star} tiene mayor varianza cuanto mayor sea τ .

Dado que la inconsistencia del periodograma es porque el periodograma es construido usando estimadores con varianza elevada, la solución natural es evitar tales componentes. Para ello, escójase una función de pesos, $g: \mathbb{R} \to \mathbb{R}$, defínase

$$\widehat{h}(\omega) = \frac{1}{2\pi} \sum_{\tau = -(N-1)}^{N-1} g(\tau) \widehat{R}^{\star}(\tau) e^{i\omega\tau}$$
(2.42)

Resulta ilustrativo reescribir a \hat{h} en términos del periodograma

$$\widehat{h}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} I_N(\theta) \Gamma(\omega - \theta) d\theta$$

donde $\Gamma(\omega) = \int_{-\infty}^{\infty} g(u)e^{i\omega-u}du$. Se puede demostrar que este tipo de estimadores son asintóticamente insesgado y consistentes.

Cuadro 2.	Cuadro 2.1: Ejemplos de funciones ventana (función de respuesta)	ana (funcion de respuesta)
Nombre	$k(u), u \le \pi$	Bosquejo
Bartlett		./img_ventanas/ventana_bartlett.pdf
Fejer	1- u	./img_ventanas/ventana_fejer.pdf
Daniell	$\frac{\operatorname{sen}\left(\pi u\right)}{\pi u}$./img_ventanas/ventana_daniell.pdf
Bartlett-Priestley	$\frac{3}{(\pi u)^2} \left[\frac{\sin(\pi u)}{\pi u} - \cos(\pi u) \right]$./img_ventanas/ventana_bartlet_priestle
Cosenoidal		./img_ventanas/ventana_cosenoidal.pdf

./img_ventanas/ventana_2_bartlet_priestley.pdf ./img_ventanas/ventana_2_bartlett.pdf ./img_ventanas/ventana_2_bartlett.pdf ./img_ventanas/ventana_2_daniell.pdf ./img_ventanas/ventana_2_fejer.pdf Cuadro 2.2: Ejemplos de funciones ventana (función de transferencia) Bosquejo $\frac{3}{4\pi} \left[1 - (\theta/\pi) \right], \text{ si } |\theta| \le \pi$ $\frac{1}{2\pi} \left[\frac{\sin\left(\theta/2\right)}{\theta/2} \right]^2$ $1/2\pi$, si $|\theta| \le \pi$ $\frac{1}{\pi} \frac{\mathrm{sen}\left(\theta\right)}{\theta}$ $K(\theta)$ qBartlett-Priestley Cosenoidal Nombre Bartlett Daniell Fejer

CAPÍTULO 3

Espectro evolutivo

En esta sección se introduce el espectro evolutivo, una generalización del espectro de potencias para procesos no-estacionarios cuya estructura cambia lentamente en el tiempo. Esta definición en particular fue presentada por Maurice Priestley en 1965 [?]; la información del presente capítulo puede revisarse con mayor detalle en su libro "Spectral Analysis and Time Series" [?], particularmente en el capítulo 11.

Es importante mencionar que la sección ?? representa la parte central de este capítulo, describiendo un objeto matemático bien definido que lidia con un problema que roza la vaguedad; es por ello que viene acompañado de una discusión que podría ser omitida dentro del contexto global del trabajo, pero que tiene repercusiones importantes en el uso práctico del espectro evolutivo. Por ejemplo, en la sección ?? se discute sobre las condiciones bajo las cuales es *posible* estimar el espectro evolutivo del proceso, mientras que la sección ?? parte de tales condiciones para describir cómo efectuar la estimación.

Finalmente, en la sección ?? se describe una aplicación aparentemente menor del espectro evolutivo, pero que constituye una parte central en el presente trabajo: la detección de estacionariedad débil a partir del espectro evolutivo.

3.1. Definición del espectro evolutivo

Considérese un proceso estocástico a tiempo continuo $\{X(t)\}_{t\in\mathbb{R}}$ que, por simplicidad, tiene media cero y varianza finita en todo momento, es decir

$$E[X(t)] = 0$$
, $Var(X^2(t)) < \infty$

Se define el núcleo de covarianza para el proceso como

$$R(s,t) := \mathbb{E}\left[\overline{X(t)}X(s)\right]$$
 (3.1)

Conviene recordar el caso de un proceso estacionario, en el cual el núcleo de covarianza R(t,s) puede verse como función de la variable |t-s|, y en virtud del teorema de Winer-Khintchine acepta una representación de la forma

$$R(s,t) = \int_{-\infty}^{\infty} e^{i\omega(t-s)} dH(\omega)$$
 (3.2)

donde H es el espectro integrado del proceso y tiene las propiedades de una función de distribución sobre \mathbb{R} . Como consecuencia, $\{X(t)\}_{t\in\mathbb{R}}$ admite una representación de la forma

$$X(t) = \int_{-\infty}^{\infty} e^{i\omega t} dZ(\omega)$$
 (3.3)

donde Z es un proceso estocástico que satisface

$$Cov (dZ(\omega_1), dZ(\omega_2)) = dH(\omega_1)\delta(\omega_1, \omega_2)$$
(3.4)

En general, se espera tener una generalización que conserve las propiedades anteriores. Con vista a la ecuación ??, puede restringirse la atención a procesos noestacionarios que acepten una representación de la forma

$$R(s,t) = \int_{-\infty}^{\infty} \overline{\phi(\omega;s)} \phi(\omega;t) d\mu(\omega)$$
 (3.5)

Para alguna medida μ definida en \mathbb{R} y alguna familia de funciones $\mathbf{F} = \{\phi : \mathbb{R} \times \mathcal{T} \to \mathbb{C}\};$ debido a la interpretación que se le va a dar a este tipo de funciones, la variable $t \in \mathbf{F}$ será referida como un índice. Una condición a satisfacer es que $\operatorname{Var}(X^2(t)) = R(t,t) < \infty$, para lo cual cada $\phi \in \mathbf{F}$ debe ser cuadrado integrable con respecto a μ , es decir

$$\int_{-\infty}^{\infty} \phi^2(\omega; t) d\mu(\omega) < \infty \tag{3.6}$$

Se puede demostrar t(4.11.12) que bajo estas condiciones el proceso $\{X(t)\}_{t\in\mathcal{T}}$ acepta una representación de la forma

$$X(t) = \int_{-\infty}^{\infty} \phi(\omega; t) dZ(\omega)$$
 (3.7)

donde el proceso Z satisface que

$$Cov (dZ(\omega_1), dZ(\omega_2)) = \mu(\omega_1)\delta(\omega_1, \omega_2)$$
(3.8)

Se puede demostrar p(parzen 1959) que si un proceso admite una representación de la forma $\ref{fig:parten}$ para alguna familia de funciones \mathbf{F} , entonces tiene admite múltiples representaciones usando diferentes familias de funciones.

Para dar a estas representaciones la interpretación de espectro, conviene usar una familia de funciones que conserve algunas propiedades de los senos y cosenos; por ejemplo, las funciones oscilatorias

Definición 3.1. Una función $\phi : \mathbb{R} \to \mathbb{C}$ se dice **oscilatoria** si admite una representación de la forma

$$\phi(t) = A(t)e^{i\omega t} \tag{3.9}$$

donde A es de la forma

$$A(t) = \int_{-\infty}^{\infty} e^{i\omega t} dK(\omega)$$
 (3.10)

y donde $|dK(\omega)|$ tiene un único máximo global en $\omega = 0$

Si una función ϕ es oscilatoria como en la definición ??, entonces puede entenderse como una función senoidal modulada por una función A; no se permite que la función A sea predominantemente periódica.

Como se mencionó, las expresiones ?? y ?? pueden ser interpretadas como espectro si se usa una familia F de funciones oscilatorias.

$$R(s,t) = \int_{-\infty}^{\infty} \overline{A(\omega;s)} A(\omega;t) e^{i\omega(t-s)} d\mu(\omega)$$
 (3.11)

$$X(t) = \int_{-\infty}^{\infty} A(\omega; t)e^{i\omega t}dZ(\omega)$$
(3.12)

Definición 3.2. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso oscilatorio y \mathbf{F} una familia de funciones oscilatorias de la forma $\phi(\omega;t) = A(\omega;t)e^{i\omega t}$. Sea μ tal que satisface las condiciones anteriores. Se define al **espectro evolutivo** del proceso respecto a la familia \mathbf{F} como

$$dH(t,\omega) := |A(\omega;t)|^2 d\mu(\omega) \tag{3.13}$$

Proposición 3.1. Si un proceso $\{X(t)\}_{t\in\mathcal{T}}$ es débilmente estacionario, entonces su espectro de potencias h y su espectro evolutivo h^{*} satisfacen, para todo $t\in\mathcal{T}$, que

$$h^{\star}(\omega, t) = h(\omega) \tag{3.14}$$

3.2. Estimación del espectro evolutivo

En el capítulo anterior se mostró un estimador consistente para el espectro de potencias de un proceso estacionario; dicho estimador usaba la transformada de Fourier discreta, suavizada por un filtro lineal (también referido como función ventana). El objetivo de esta sección es aclarar algunos teoremas que permitan usar una técnica similar, la cual requiere imponer algunas condiciones más fuertes que ser oscilatorios.

3.2.1. Filtros lineales sobre procesos oscilatorios

Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso oscilatorio, no necesariamente estacionario, y sea $g\in L^2_I$; se construye al proceso $\{Y(t)\}_{t\in\mathcal{T}}$ como¹

$$Y(t) = \int_{-\infty}^{\infty} g(u)X(t-u)du$$
 (3.15)

¹En el texto de Priestley se considera un filtro de la forma $Y(t) = \int_{-\infty}^{\infty} g(u)X(t-u)e^{-i\omega_0(t-u)}du$ para algún ω_0 constante. Por simplicidad se considera únicamente el caso $\omega_0 = 0$

Entonces puede escribirse

$$Y(t) = \int_{-\infty}^{\infty} \Gamma_t(\omega) e^{i\omega t} dZ(\omega)$$
 (3.16)

donde Γ_{\bullet} es la función de transferencia generalizada para g con respecto a la familia \mathbf{F} , y que es definida como

$$\Gamma_t(\omega) := \int_{-\infty}^{\infty} g(u) A(\omega; t - u) e^{i\omega u} du$$
 (3.17)

Un caso particular muy interesante ocurre cuando A, como función de ω , varía lentamente en comparación de g, la cual decae rápidamente a 0; en tal caso podría decirse que $\Gamma_{\bullet} \approx \Gamma$

Definición 3.3. Una familia de funciones \mathbf{F} se dice **semi-estacionaria** si, para todo $\omega \in \mathbb{R}$, se cumple que

$$\int_{-\infty}^{\infty} |\omega| |dK(\omega)| < \infty \tag{3.18}$$

En cuyo caso se define su ancho de banda característico

$$B_{\mathbf{F}} := \left[\sup_{\omega} \int_{-\infty}^{\infty} |\omega| \, |dK(\omega)| \right]^{-1} \tag{3.19}$$

Definición 3.4. Un proceso $\{X(t)\}_{t\in\mathcal{T}}$ se dice **semi-estacionario** si admite una representación de la forma ?? para alguna familia semi-estacionaria

Definición 3.5. Se dice que una función u es **pseudo-\delta de orden** ε con respecto a la función v si, para cualquier k existe un $\varepsilon << 1$ tal que

$$\left| \int_{-\infty}^{\infty} u(x)v(x+k)dx - v(k) \int_{-\infty}^{\infty} u(x) \right| < \varepsilon \tag{3.20}$$

De manera similar, se define el **ancho de banda** para q como

$$B_g := \int_{-\infty}^{\infty} |u| |g(u)| du \tag{3.21}$$

Supóngase que g está normalizada de modo que

$$2\pi \int_{-\infty}^{\infty} |g(u)|^2 du = \int_{-\infty}^{\infty} |\Gamma(\omega)| d\omega = 1$$
 (3.22)

con Γ la función de respuesta para g.

Teorema 3.2. Sea \mathbf{F} una familia semi-estacionaria con ancho de banda característico $B_{\mathbf{F}}$, y sea g una función normalizada como en $\mathbf{??}$ y cuyo ancho de banda es B_g .

Entonces, para cualesquiera $t, \omega \in \mathbb{R}$ se cumple que $e^{i\omega t}dK(\omega)$ es una función pseudo- δ de orden $B_g/B_{\mathbf{F}}$ con respecto a g

Demostración. Suponiendo que Γ sea una vez derivable, su expansión de Taylor alrededor de k es

$$\int_{-\infty}^{\infty} e^{i\theta t} \Gamma(\theta + k) dK(\omega) = \Gamma(k) \int_{-\infty}^{\infty} e^{i\theta t} dK(\omega) + \int_{-\infty}^{\infty} e^{i\theta t} \theta \Gamma'(k + \nu) dK(\omega)$$

para algún $\nu \in (0, \theta)$. Respecto al segundo sumando, puede observarse que

$$\int_{-\infty}^{\infty} e^{i\theta t} \theta \Gamma'(k+\nu) dK(\omega) \le \left| \int_{-\infty}^{\infty} e^{i\theta t} \theta \Gamma'(k+\nu) dK(\omega) \right|$$

$$\le \int_{-\infty}^{\infty} |\theta| \left| \Gamma'(k+\nu) \right| \left| dK(\omega) \right|$$

$$\le \int_{-\infty}^{\infty} |\theta| \left[\sup_{\omega} |\Gamma'(\omega)| \right] \left| dK(\omega) \right|$$

$$\le \left[\sup_{\omega} |\Gamma'(\omega)| \right] \left[\sup_{\omega} \int_{-\infty}^{\infty} |\theta| \left| dK(\omega) \right| \right]$$

Usando la conexión entre g y Γ

$$\Gamma'(\omega) = \frac{d}{d\omega} \left(\int_{-\infty}^{\infty} e^{i\omega u} g(u) du \right)$$
$$= \int_{-\infty}^{\infty} \left(\frac{d}{d\omega} e^{i\omega u} g(u) \right) du$$
$$= i \int_{-\infty}^{\infty} u e^{i\omega u} g(u) du$$

Luego entonces

$$\begin{split} \int_{-\infty}^{\infty} e^{i\theta t} \theta \Gamma'(k+\nu) dK(\omega) &\leq \left[\sup_{\omega} |\Gamma'(\omega)| \right] \left[\sup_{\omega} \int_{-\infty}^{\infty} |\theta| \, |dK(\omega)| \right] \\ &\leq \left[\sup_{\omega} \left| \int_{-\infty}^{\infty} iu e^{i\omega u} g(u) du \right| \right] B_{\mathbf{F}}^{-1} \\ &\leq B_{\mathbf{F}}^{-1} \left[\sup_{\omega} \int_{-\infty}^{\infty} |u| \, |g(u)| \, du \right] \\ &\leq B_{\mathbf{F}}^{-1} B_{g} \end{split}$$

Con el teorema anterior a la mano se puede declarar formalmente la idea de que A varía más lentamente que g

Teorema 3.3. Sea \mathbf{F} una familia semi-estacionaria con ancho de banda característico $B_{\mathbf{F}}$, sea $\varepsilon > 0$ arbitrario, y sea g un filtro normalizado como en ?? y cuya función
de transferencia generalizada con respecto a \mathbf{F} es Γ_{\bullet} . Si g es elegida de tal modo que $B_g/B_{\mathbf{F}} < \varepsilon$, entonces para cualesquiera t, ω se cumple que

$$|\Gamma_t(\omega) - A(\omega; t)\Gamma(\omega)| < \varepsilon \tag{3.23}$$

Demostración. Por la mera definición de Γ_{\bullet} (expresión ??) se sabe que

$$\Gamma_t(\omega) = \int_{-\infty}^{\infty} g(u) A(\omega; t - u) e^{i\omega u} du$$

Si se sustituye a A en términos de dK (ver definición ??)

$$\Gamma_{t}(\omega) = \int_{-\infty}^{\infty} g(u)A(\omega; t - u)e^{i\omega u}du$$

$$= \int_{-\infty}^{\infty} g(u) \left[\int_{-\infty}^{\infty} e^{i\theta(t-u)}dK(\theta) \right] e^{i\omega u}du$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u)e^{i\theta t}e^{i(\omega-\theta)u}dK(\theta)du$$

$$= \int_{-\infty}^{\infty} e^{i\theta t} \left[\int_{-\infty}^{\infty} g(u)e^{i(\omega-\theta)u}du \right] dK(\theta)$$

$$= \int_{-\infty}^{\infty} e^{i\theta t}\Gamma(\omega - \theta)dK(\theta)$$

Usando el lema ?? junto al hecho que $B_g/B_F < \varepsilon$, se puede escribir que

$$\varepsilon > \left| \int_{-\infty}^{\infty} e^{i\theta t} \Gamma(\omega - \theta) dK(\theta) - \Gamma(\omega) \int_{-\infty}^{\infty} e^{i\theta t} dK(\theta) \right|$$

$$= \left| \Gamma_t(\omega) - \Gamma(\omega) \int_{-\infty}^{\infty} e^{i\theta t} dK(\theta) \right|$$

$$= \left| \Gamma_t(\omega) - \Gamma(\omega) A(\omega; t) \right|$$

En el último renglón se ha reemplazado nuevamente a A en términos de dK

Teorema 3.4. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso semi-estacionario con ancho de banda característico B_X , sea g un filtro normalizado como en $\ref{eq:total_tota$

Sea \mathbf{F}^* una familia semi-estacionaria cuyo ancho de banda característico es B_X o es muy parecido a B_X (lo cual es posible por cómo se definió B_X). Se cumple que

$$E[|Y(t)|^{2}] = \int_{-\infty}^{\infty} |\Gamma(\omega)|^{2} dH^{*}(\omega; t) + \mathcal{O}(\epsilon)$$
(3.24)

donde H^* es el espectro integrado respecto a la familia \mathbf{F}^* y $\mathcal{O}(\epsilon)$ es un término que puede hacerse arbitrariamente pequeño si B_g es suficientemente pequeño respecto a B_X

Demostración. Usando la expresión ?? para este caso particular, puede escribirse

$$Y(t) = \int_{-\infty}^{\infty} \Gamma_t^*(\omega; t) A^*(\omega; t) e^{i\omega t} dZ^*(\omega)$$
 (3.25)

donde ω_{\bullet}^* , A^* y Z^* están definidos respecto a la familia \mathbf{F}^* . Nótese que, debido a que los dZ's son ortogonales

$$E[|Y(t)|^{2}] = E\left[\int_{-\infty}^{\infty} \Gamma_{t}^{*}(\omega;t)e^{i\omega t}dZ^{*}(\omega)\int_{-\infty}^{\infty} \Gamma_{t}^{*}(\omega;t)e^{i\omega t}dZ^{*}(\omega)\right]$$

$$= \dots$$

$$= \int_{-\infty}^{\infty} |\Gamma_{t}^{*}(\omega;t)|^{2} d\mu^{*}(\omega)$$

Si se elige a g de modo que $\frac{B_g}{B_X} < \varepsilon$, en virtud del teorema ?? puede escribirse

$$\Gamma_t^*(\omega;t) = A^*(\omega;t)\Gamma(\omega) + R(\omega;t)$$
(3.26)

con $|R(\omega, t)| < \varepsilon$. Luego entonces

$$\begin{split} \mathbf{E}\left[|Y(t)|^{2}\right] &= \int_{-\infty}^{\infty} |\Gamma_{t}^{*}(\omega;t)|^{2} d\mu^{*}(\omega) \\ &= \int_{-\infty}^{\infty} |A^{*}(\omega;t)\Gamma(\omega) + R(\omega;t)|^{2} d\mu^{*}(\omega) \\ &= \int_{-\infty}^{\infty} |A^{*}(\omega;t)\Gamma(\omega)|^{2} d\mu^{*}(\omega) + \\ &\int_{-\infty}^{\infty} \overline{A^{*}(\omega;t)\Gamma(\omega)} R(\omega;t) d\mu^{*}(\omega) + \\ &\int_{-\infty}^{\infty} A^{*}(\omega;t)\Gamma(\omega) \overline{R(\omega;t)} d\mu^{*}(\omega) + \\ &\int_{-\infty}^{\infty} |R(\omega;t)|^{2} d\mu^{*}(\omega) \end{split}$$

El cuarto sumando satisface claramente que

$$\int_{-\infty}^{\infty} |R(\omega;t)|^2 d\mu^*(\omega) < \varepsilon^2 \int_{-\infty}^{\infty} d\mu^*(\omega) = \mathcal{O}\left(\varepsilon^2\right)$$
 (3.27)

Respecto al segundo sumando, nótese que

$$\int_{-\infty}^{\infty} \overline{A^*(\omega;t)\Gamma(\omega)} R(\omega;t) d\mu^*(\omega) < \int_{-\infty}^{\infty} |A^*(\omega;t)| |\Gamma(\omega)| |R(\omega;t)| d\mu^*(\omega)$$
$$< \varepsilon \int_{-\infty}^{\infty} |A^*(\omega;t)| |\Gamma(\omega)| d\mu^*(\omega)$$

Una cota similar puede hallarse para el tercer sumando. Falta demostrar que la cota permanece finita cuando $B_g \to 0$, lo cual debería lograrse definicendo el conjunto

$$\Omega = \{ \omega \in \mathbb{R} | |\Gamma(\omega)| |A^*(\omega;t)| \le 1 \}$$
(3.28)

y luego, claramente

$$\int_{-\infty}^{\infty} |A^*(\omega;t)| |\Gamma(\omega)| d\mu^*(\omega) = \int_{\Omega} \mu^*(\omega) + \int_{\Omega^C} |A^*(\omega;t)| |\Gamma(\omega)| d\mu^*(\omega)$$
 (3.29)

el primer sumando es clarametne finito y no depende de g, mientras que el segundo debería ser finito [?] ya que Γ está normalizada.

3.3. Estimador de doble ventana

Para esta sección se considera un proceso a tiempo continuo $\{X(t)\}_{t\in\mathbb{R}}$ y una muestra del mismo de longitud T (o equivalentemente un proceso $\{X(t)\}_{t\in[t,\mathcal{T}]}$), suficientemente larga. El objetivo en esta sección es construir un estimador para el espectro evolutivo $dH(\omega;t)$. Por simplicidad, se supondrá que la medida μ es absolutamente continua respecto a la medida de Lebesgue, y entonces puede escribirse

$$h(\omega, t) := dH(\omega; t) \tag{3.30}$$

Para efectuar la estimación del espectro se hará uso del teorema ??, para lo cual se necesita un filtro g normalizado según ?? y cuyo anho de banda, B_g , satisface

$$B_g << B_X << T \tag{3.31}$$

Se construye entonces a U, una versión filtrada de X usando a g

$$U(t) = \int_{t-T}^{t} g(u)X(t-u)du$$
 (3.32)

Bajo la condición ??, la integral que define a U puede extenderse a todo \mathbb{R} sin cambiar mucho su valor (excepto cerca de 0 y T), e incluso se llega a ser exacta si g es 0 fuera de un intervalo pequeño alrededor de 0. Entonces, en virtud del teorema ?? aplica de manera aproximada, y entonces se cumple que

$$E\left[\left|U(\omega;t)\right|^{2}\right] = \int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{2} h(\omega,t) d\omega + \mathcal{O}\left(\frac{B_{g}}{B_{X}}\right)$$
(3.33)

El teorema de Isserlis es una identidad relativamente poco conocida sobre los cuartos momentos de una distribución multinormal; el caso particular de cuatro variables será usado para calcular la covarianza de algunos estimadores del espectro de potencias.

Teorema 3.5 (Isserlis). Sea $[X_1, X_2, X_3, X_4]$ un vector aleatorio siguiendo una distribución multinormal con media cero y matriz de covarianza finita. Se cumple que

$$E[X_1 X_2 X_3 X_4] = E[X_1 X_2] E[X_3 X_4] + E[X_1 X_3] E[X_2 X_4] + E[X_1 X_4] E[X_2 X_3]$$
(3.34)

Proposición 3.6. Dadas las condiciones, y si $\{X(t)\}_{t\in\mathcal{T}}$ es un proceso normal cuyo que admite un espectro evolutivo uniformemente continuo, se tiene que

$$\operatorname{Var}\left(\left|U(\omega;t)\right|^{2}\right) = \left[\int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{2} h(\omega,t) d\omega\right]^{2} + \mathcal{O}\left(\frac{B_{g}}{B_{X}}\right)$$
(3.35)

Demostración. Por conveniencia se obtendrá una expresión aproximada para la covarianza de U, a partir de la cual se deducirá su varianza. Para ello, por definición puede escribirse para $t, s \in \mathcal{T}$ y $\omega, \lambda \in \mathbb{R}$

$$\operatorname{Cov}\left(\left|U(\omega;t)\right|^{2},\left|U(\lambda;s)\right|^{2}\right) = \operatorname{E}\left[\left|U(\omega;t)\right|^{2}\left|U(\lambda;s)\right|^{2}\right] - \operatorname{E}\left[\left|U(\omega;t)\right|^{2}\right] \operatorname{E}\left[\left|U(\lambda;s)\right|^{2}\right]$$

$$\mathbb{E}\left[\left|U(\omega;t)\right|^{2}\left|U(\lambda;s)\right|^{2}\right] = \iiint_{\mathbb{R}^{4}} g(u)g(v)g(w)g(z)e^{iu\omega}e^{iv\omega}e^{iv\omega}e^{iw\lambda}e^{iz\lambda}$$

$$\times \mathbb{E}\left[X(t-u)X(t-v)X(s-w)X(s-z)\right]dudvdwdz \quad (3.36)$$

Si para cada t X(t) sigue una distribución normal, entonces en virtud del teorema ?? puede escribirse

$$\begin{split} \mathrm{E}\left[X(t-u)X(t-v)X(t-w)X(t-z)\right] &= R(t-u,t-v)R(s-w,s-z) \\ &\quad + R(t-u,s-z)R(t-v,s-w) \\ &\quad + R(t-u,s-w)R(t-v,s-z) \end{split}$$

Reemplazando sobre la expresión anterior, puede escribirse

$$E\left[|U(\omega;t)|^2 |U(\lambda;s)|^2\right] = E\left[|U(\omega;t)|^2\right] E\left[|U(\lambda;s)|^2\right] + S_1 + S_2$$
(3.37)

donde

$$S_{1} = \iiint_{\mathbb{R}^{4}} g(u)g(v)g(w)g(z)e^{iu\omega}e^{iv\omega}e^{iv\omega}e^{iw\lambda}e^{iz\lambda}$$

$$\times R(t-u,s-z)R(t-v,s-w)dudvdwdz$$

Se define a S_2 de manera similar, intercambiando w y z. Estas expresiones, de apariencia innecesariamente complicada, pueden interpretarse como la *interferencias* de la covarianza entre los puntos (ω, t) y (λ, s) . Para ello, nótese que

Cov
$$(|U(\omega;t)|^2, |U(\lambda;s)|^2) = S_1 + S_2 + \mathcal{O}(B_g/B_X)$$
 (3.38)

Cabe mencionar que es conveniente que las cantidades S_1 y S_2 sean pequeñas.

Sea ha elegido a g de forma que $B_g \ll B_X$ con el objetivo de que U tenga un sesgo pequeño, en virtud del teorema [?]. Este teorema puede ser usado nuevamente si S_1 y S_2 son reescritas en cierta forma adecuada, para lo cual la autocovarainza debe ser vista como

$$R(p,q) = \int_{-\infty}^{\infty} e^{i\omega(p-q)} A(\omega; p) \overline{A(\omega; q)} d\mu(\omega)$$
 (3.39)

Así pues, reemplazando esta expresión sobre (?) se obtiene

$$\begin{split} S_1 &= \iiint_{\mathbb{R}^4} g(u)g(v)g(w)g(z)e^{iu\omega}e^{iv\omega}e^{iw\lambda}e^{iz\lambda} \\ &\times R(t-u,s-z)R(t-v,s-w)dudvdwdz \\ &= \iiint_{\mathbb{R}^4} g(u)g(v)g(w)g(z)e^{iu\omega}e^{iv\omega}e^{iw\lambda}e^{iz\lambda} \\ &\times \left(\iint_{\mathbb{R}^2} \left[e^{-i\theta(s-z-t+u)}A(\theta;t-u)\overline{A(\theta;s-z)}\right] \right. \\ &\left.\left[e^{-i\phi(s-w-t+u)}A(\phi;t-v)\overline{A(\theta;s-w)}\right]d\theta d\phi\right)dudvdwdz \\ &= \iint_{\mathbb{R}^2} \Gamma_*(\theta+\omega;t,\theta)\overline{\Gamma_*(\phi+\omega;t,\phi)}\Gamma_*(\phi+\lambda;s,\phi)\overline{\Gamma_*(\theta+\lambda;s,\theta)} \\ &\times \left[A(\theta;t)\overline{A(\phi;t)}A(\phi;s)\overline{A(\theta;t)}\right]d\theta d\phi \\ &= \left[\int_{-\infty}^{\infty} \overline{\Gamma_*(\phi+\omega;t,\phi)}\Gamma_*(\phi+\lambda;s,\phi)\overline{A(\phi;t)}A(\phi;s)d\phi\right] \\ &\times \left[\int_{\mathbb{R}^2} \Gamma_*(\theta+\omega;t,\theta)\overline{\Gamma_*(\theta+\lambda;s,\theta)}A(\theta;t)\overline{A(\theta;t)}d\theta\right] \end{split}$$

Donde Γ_* es la función de transferencia generalizada

$$\Gamma_*(\kappa; t, \omega) = \int_{-\infty}^{\infty} g(u) \frac{A(\omega; t - u)}{A(\omega; t)} e^{-iu\kappa} du$$
 (3.40)

Usando el teorema [?], se puede decir que $|\Gamma(\bullet;t,\lambda) - \Gamma(\bullet)| \leq \frac{B_g}{B_X}$. Así entonces

$$|S_{1}| = \left| \int_{-\infty}^{\infty} \overline{\Gamma_{*}(\phi + \omega; t, \phi)} \Gamma_{*}(\phi + \lambda; s, \phi) \overline{A(\phi; t)} A(\phi; s) d\phi \right|$$

$$\times \left| \int_{\mathbb{R}^{2}} \Gamma_{*}(\theta + \omega; t, \theta) \overline{\Gamma_{*}(\theta + \lambda; s, \theta)} A(\theta; t) \overline{A(\theta; t)} d\theta \right|$$

$$\leq \left[\int_{-\infty}^{\infty} |\Gamma_{*}(\phi + \omega; t, \phi)| |\Gamma_{*}(\phi + \lambda; s, \phi)| |A(\phi; t) A(\phi; s)| d\phi \right]$$

$$\times \left[\int_{\mathbb{R}^{2}} |\Gamma_{*}(\theta + \omega; t, \theta)| |\Gamma_{*}(\theta + \lambda; s, \theta)| |A(\theta; t) A(\theta; t)| d\theta \right]$$

$$\leq \left[\int_{-\infty}^{\infty} |\Gamma(\phi + \omega)| |\Gamma(\phi + \lambda)| |A(\phi; t) A(\phi; s)| d\phi \right]^{2} + \mathcal{O}(B_{g/B_{X}})$$

La misma cota puede hallarse para S_2 . En lo inmediato, conviene analizar el caso

 $\omega = \lambda$ y t = s, de donde se obtiene

$$\operatorname{Var}\left(\left|U(\omega;t)\right|^{2}\right) = \operatorname{Cov}\left(\left|U(\omega;t)\right|^{2}, \left|U(\omega;t)\right|^{2}\right) = S_{1} + S_{2} + \mathcal{O}\left(\frac{B_{g}}{B_{X}}\right)$$

pero en este caso particular, la cota obtenida puede reducirse a

$$|S_{1}| \leq \left[\int_{-\infty}^{\infty} |\Gamma(\phi + \omega)|^{2} |A(\phi; t)|^{2} d\phi \right]^{2} + \mathcal{O}(B_{g}/B_{X})$$

$$= \left[\int_{-\infty}^{\infty} |\Gamma(\phi + \omega)|^{2} h(\phi, t) d\phi \right]^{2} + \mathcal{O}(B_{g}/B_{X})$$

En el teorema anterior puede interpretarse que $\int_{-\infty}^{\infty} |\Gamma(\phi + \omega)|^2 h(\phi, t) d\phi$ es una versión suavizada de h. Bajo este comentario, el resultado obtenido es muy análogo a la estimación del espectro en un proceso estacionario (teorema ??). Siguiendo dicha analogía, se sabe que U puede modificarse para generar estimadores consistentes; para lo cual se usa una segunda función de ventana w_{τ} . Por estética y comodidad, las condiciones sobre w_{τ} serán presentadas junto a las propiedades de la ventana g; todas ellas en la definición

Definición 3.6. El estimador de doble ventana es un estimador para h definido como

$$\widehat{h}(\omega,t) = \int_{T-t}^{t} w_{\tau}(u) |U(\omega,t-u)|^2 du$$
(3.41)

donde la función q satisface

- \blacksquare $B_q << B_X << T$
- $g(t) \rightarrow 0$ cuando $|t| \rightarrow \infty$

$$2\pi \int_{-\infty}^{\infty} |g(u)|^2 du = \int_{-\infty}^{\infty} |\Gamma(\omega)|^2 d\omega = 1$$

con $\Gamma(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t} g(t) d\lambda$. Así mismo, la función w_{τ} satisface

- $w_{\tau}(t) > 0$ para cualesquiera t, τ
- $w_{\tau}(t) \to 0$ cuando $|t| \to \infty$, para todo τ

$$\int_{-\infty}^{\infty} (w_{\tau}(t))^2 dt < \infty \text{ para todo } \tau$$

$$\blacksquare \exists C \in \mathbb{R} \ tal \ que \ \lim_{\tau \to \infty} \tau \int_{-\infty}^{\infty} |W_{\tau}(\lambda)|^2 \, d\lambda = C$$

donde
$$W_{\tau}(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t} w_{\tau}(t) d\lambda$$
.

El supuesto sobre que w_{τ} decaiga rápidamente lejos de 0 permite reemplazar el intervalo de integración que define a \hat{h} por \mathbb{R} (excepto cerca de 0).

Proposición 3.7. El estimador de doble ventana satisface

$$\operatorname{E}\left[\widehat{h}(\omega,t)\right] = \int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{2} \overline{h}(\omega,t) d\omega du + \mathcal{O}\left(\frac{B_{g}}{B_{X}}\right)$$
(3.42)

donde

$$\overline{h}(\omega, t) = \int_{-\infty}^{\infty} w_{\tau}(u)h(\omega, t - u)du$$
(3.43)

Demostración. De manera relativamente sencilla puede verificarse que

$$\begin{split} & \operatorname{E}\left[\widehat{h}(\omega,t)\right] = \operatorname{E}\left[\int_{-\infty}^{\infty} w_{\tau}(u) \left|U(t-u)\right|^{2} du\right] \\ & = \int_{T-t}^{t} w_{\tau}(u) \operatorname{E}\left[\left|U(t-u)\right|^{2}\right] du \\ & = \int_{-\infty}^{\infty} w_{\tau}(u) \left[\int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{2} h(\omega,t-u) d\omega + \mathcal{O}\left({}^{B_{g}}/{}^{B_{X}}\right)\right] du \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w_{\tau}(u) \left|\Gamma(\omega)\right|^{2} h(\omega,t-u) d\omega du + \mathcal{O}\left({}^{B_{g}}/{}^{B_{X}}\right) \int_{-\infty}^{\infty} w_{\tau}(u) du \\ & = \int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{2} \left[\int_{-\infty}^{\infty} w_{\tau}(u) h(\omega,t-u) du\right] d\omega du + \mathcal{O}\left({}^{B_{g}}/{}^{B_{X}}\right) \\ & = \int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{2} \overline{h}(\omega,t) d\omega du + \mathcal{O}\left({}^{B_{g}}/{}^{B_{X}}\right) \end{split}$$

A diferencia de U, el estimador de doble ventana no es consistente salvo en caso que \overline{h} sea parecido a h; como \overline{h} es una versión suavizada, que el estimador sea sesgado depende de que $B_{w_{\tau}}$ sea pequeño en comparación a B_X .

Proposición 3.8. El estimador de doble ventana satisface

$$\operatorname{Var}\left(V(t)\right) \approx \widetilde{h}^{2}(\omega_{0}, t) \left[\int_{-\infty}^{\infty} \left|W_{\tau}(\omega)\right|^{2} d\omega \right] \left[\int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{4} \right] \left(1 + \delta(0, \omega_{0})\right)$$
(3.44)

donde

$$\widetilde{h}^{2} = \frac{\int_{-\infty}^{\infty} h^{2}(\omega_{0}, t) (w_{\tau}(u))^{2}}{\int_{-\infty}^{\infty} (w_{\tau}(u)) du}$$
(3.45)

Demostración. Como en el caso del estimador U, será conveniente calcular la covarianza de \hat{h} y posteriormente deducir la varianza. Se escribe para $t, s \in \mathcal{T}$ y $\omega, \lambda \in \mathbb{R}$

$$\operatorname{Cov}\left(\widehat{h}(\omega,t),\widehat{h}(\lambda,s)\right) = \operatorname{E}\left[\widehat{h}(\omega,t)\widehat{h}(\lambda,s)\right] - \operatorname{E}\left[\widehat{h}(\omega,t)\right] \operatorname{E}\left[\widehat{h}(\lambda,s)\right]$$
(3.46)

Hecho el trabajo previo, es claro que

$$\operatorname{Cov}\left(\widehat{h}(\omega,t),\widehat{h}(\lambda,s)\right) = \iint_{\mathbb{R}^2} w_{\tau}(u)w_{\tau}(v)\operatorname{Cov}\left(\left|U(\omega;t-u)\right|^2,\left|U(\lambda;s-v)\right|^2\right)dudv$$
$$= \iint_{\mathbb{R}^2} w_{\tau}(u)w_{\tau}(v)\left[S_1+S_2\right]dudv + \mathcal{O}\left(\frac{B_g}{B_X}\right)$$
$$= T_1 + T_2$$

usando, por comodidad

$$T_{1} = \iint_{\mathbb{R}^{2}} w_{\tau}(u)w_{\tau}(v) [S_{1}] dudv$$
 (3.47)

y similarmente para T_2 ; S_1 es como en la expresión (?), evaluado en los puntos $(t-u,\omega), (s-v,\lambda)$

$$S_{1} = \left[\int_{-\infty}^{\infty} \overline{\Gamma_{*}(\phi + \omega; t - u, \phi)} \Gamma_{*}(\phi + \lambda; s - v, \phi) \overline{A(\phi; t - u)} A(\phi; s - v) d\phi \right] \times \left[\int_{-\infty}^{\infty} \Gamma_{*}(\theta + \omega; t - u, \theta) \overline{\Gamma_{*}(\theta + \lambda; s - v, \theta)} A(\theta; t - u) \overline{A(\theta; s - v)} d\theta \right]$$

con Γ_* es la función de transferencia generalizada; S_2 se define de manera similar. Se

usará el teorema (?) para acotar la covarianza, comenzando por el primer sumando

$$T_{1} = \iint_{\mathbb{R}^{2}} w_{\tau}(u)w_{\tau}(v) [S_{1}] du dv$$

$$\leq \iint_{\mathbb{R}^{2}} w_{\tau}(u)w_{\tau}(v) |S_{1}| du dv$$

$$\leq \iint_{\mathbb{R}^{2}} w_{\tau}(u)w_{\tau}(v)$$

$$\times \left[\int_{-\infty}^{\infty} |\Gamma(\phi + \omega)| |\Gamma(\phi + \lambda)| |A(\phi; t - u)A(\phi; s - v)| d\phi \right]^{2} du dv + \mathcal{O}(B_{g}/B_{X})$$

$$\leq \iint_{\mathbb{R}^{2}} |\Gamma(\phi + \omega)| |\Gamma(\phi + \lambda)| |\Gamma(\theta + \omega)| |\Gamma(\theta + \lambda)|$$

$$\times \left[\iint_{\mathbb{R}^{2}} w_{\tau}(u)w_{\tau}(v) |A(\phi; t - u)A(\phi; s - v)| du dv \right] d\phi d\theta + \mathcal{O}(B_{g}/B_{X})$$

Aún más, si se usa la propiedad de en el límite de τW_{τ} se puede escribir

$$\operatorname{Var}(V(t)) \approx \widetilde{h}^{2}(\omega_{0}, t) \frac{C}{\tau} \left[\int_{-\infty}^{\infty} |\Gamma(\omega)|^{4} \right] (1 + \delta(0, \omega_{0}))$$
 (3.48)

Una aproximación muy similar puede hacerse respecto al segundo término, de modo que $\tilde{h} \approx h$ y $\overline{h}^2 \approx h^2$. Tales aproximaciones serán mejores en tanto las ventanas w_{τ} y W_{τ} sean más cercanas a funciones tipo δ de Dirac. Dicho esto, se pueden hacer las siguientes aproximaciones, un poco más arriesgadas:

•
$$\mathrm{E}\left[\widehat{h}(t,\omega)\right] \approx h(t,\omega)$$

•
$$\operatorname{Var}\left(\widehat{h}(t,\omega)\right) \approx \frac{C}{\tau} h^2(t,\omega) \int_{-\infty}^{\infty} |\Gamma_{\kappa}(\theta)|^4 d\theta$$

3.4. Prueba de Priestley-Subba Rao

Proposición 3.9. Sea g una función cuando menos dos veces derivable cuyo dominio es \mathcal{D}_g , y sea X una variable aleatoria real tal que $P(X \notin \mathcal{D}) = 0$. Pueden usarse las

siguientes aproximaciones

$$E[g(X)] \approx g(E[X]) \tag{3.49}$$

$$\operatorname{Var}(g(X)) \approx \operatorname{Var}(X) \left[g'(\operatorname{E}[X]) \right]^{-2}$$
(3.50)

Demostraci'on. Usando polinomio de Taylor de grado 2 para g, alrededor de E[X]y evaluada en X

$$g(X) = g(E[X]) + (X - E[X])g'(E[X]) + \frac{(X - E[X])^2}{2}g''(\xi)$$
(3.51)

donde la variable aleatoria ξ satisface $|X - \xi| \le |X - \operatorname{E}[X]|$. La aproximación, con una obvia pérdida, consiste en considerar que $\frac{1}{2}(X - \operatorname{E}[X])^2 g''(\xi) \approx 0$.

$$g(X) \approx g\left(\mathbb{E}\left[X\right]\right) + \left(X - \mathbb{E}\left[X\right]\right)g'\left(\mathbb{E}\left[X\right]\right) \tag{3.52}$$

Si se toma el valor esperado de ambos lados

$$E[g(X)] \approx E[g(E[X])] + E[(X - E[X])]g'(E[X]) = g(E[X])$$
(3.53)

Lo cual confirma la primera parte del resultado. Para verificar la segunda parte del mismo, se elevan ambos lados al cuadrado

$$[g(X)]^{2} \approx [g(E[X])]^{2} + 2g(E[X])(X - E[X])g'(E[X]) + (X - E[X])^{2}[g'(E[X]])^{2}$$
(3.54)

Posteriormente se toma el valor esperado de ambos lados

$$E[[g(X)]^{2}] \approx E[[g(E[X])]^{2}] + 2g(E[X]) E[X - E[X]] g'(E[X])$$

$$+ E[(X - E[X])^{2}] [g'(E[X])]^{2}$$

$$= [g(E[X])]^{2} + Var(X) [g'(E[X]])^{2}$$

entonces

$$Var(g(X)) = E[[g(X)]^2] - [g(E[X])]^2 \approx Var(X)[g'(E[X]])^2$$
 (3.55)

de donde se obtiene la segunda parte del resultado.

Antes de concluir la demostración, conviene discutir bajo qué condiciones la aproximación es eficiente. La forma completa de la expresión ?? contempla el término

$$\frac{(X - \mathrm{E}[X])^2}{2} g''(\xi) \tag{3.56}$$

Como
$$|\xi|$$
 <

Corolario 3.10. Si se usa el teorema anterior con $g = \log$ se obtiene

$$E[\log(X)] \approx \log(E[X]) \tag{3.57}$$

$$\operatorname{Var}\left(\log(X)\right) \approx \frac{\operatorname{Var}\left(X\right)}{\left(\operatorname{E}\left[X\right]\right)^{2}}$$
 (3.58)

La prueba de estacionariedad propuesta por Priestley y Subba Rao [?] consiste en probar si el espectro evolutivo de un proceso dado puede reducirse a un espectro de potencias; en otras palabras, se prueba la hipótesis de que el espectro evolutivo efectivamente cambia en el tiempo. Naturalmente, la prueba debe construirse sobre una única realización del proceso.

El procedimiento consiste en estimar el espectro evolutivo del proceso para algunos tiempos y frecuencias, usando en particular el estimador de doble ventana; dichos puntos deben ser tales que los estimadores sean aproximadamente nocorrelacionados. Posteriormente se calcula el logaritmo de la estimación obtenida con el fin de estabilizar la varianza. Finalmente, como parte central, se efectúa un ANOVA de dos vías para verificar si se puede afirmar que el espectro estimado tiene—estadísticamente— el mismo valor en los diferentes puntos a través del tiempo. Cabe destacar que este último paso tiene una interpretación poco convencional, y es que los estimadores tienen (por diseño) ciertas propiedades

Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso semi-estacionario y sea $\{x_t\}_{t=0,\dots,N}$ un conjunto de observaciones, cuya frecuencia de muestreo es $\Delta_t=1$ por simplicidad. Usando esta información se construye el estimador de doble ventana, \hat{h} ; para ello se eligen las funciones ventana g_{κ} y w_{τ} que, por simplicidad, son ventanas de escalamiento con parámetros κ y τ . Sus funciones de transferencia serán Γ_{κ} y W_{τ} , respectivamente.

Bajo las condiciones descritas en la sección anterior, se satisface que

$$\operatorname{E}\left[\widehat{h}(t,\omega)\right] \approx h(t,\omega)$$

$$\operatorname{Var}\left(\widehat{h}(t,\omega)\right) \approx \frac{C}{N}h^{2}(t,\omega) \int_{-\infty}^{\infty} \left|\Gamma^{4}(\theta)\right| d\theta$$

donde $C = \lim_{T \to \infty} \tau \int_{-\infty}^{\infty} |W_{\tau}(\lambda)| d\lambda$. Como se mencionó, se propone la cantidad

$$Y(t,\omega) = \log\left(\widehat{h}(t,\omega)\right) \tag{3.59}$$

en virtud de la proposición (?), se cumple que

$$E[Y(t,\omega)] \approx \log(h(t,\omega))$$
 (3.60)

$$\operatorname{Var}\left(Y(t,\omega)\right) \approx \frac{C}{T} \int_{-\infty}^{\infty} \left|\Gamma_{\kappa}(\theta)\right|^{4} d\theta \tag{3.61}$$

(3.62)

Cabe destacar que la varianza de Y no es independiente de h en el sentido formal, sino que sólo es aproximadamente independiente pues depende en mayor medida de la forma de \hat{h} que del mismo h. Esto era de esperarse, ya que el estimador de doble ventana fue diseñado para exagerar el peso de la información local al grado de obtener versiones suavizadas del espectro evolutivo. Adicionalmente, se suele decir intuitivamente que el logaritmo estabiliza la varianza. En otra dirección, la varianza aproximadamente constante de Y sugiere que puede escribirse como

$$Y(t,\omega) = \log(h(t,\omega)) + \varepsilon(t,\omega)$$
(3.63)

Debido a la naturaleza naturalmente discreta de los datos, conviene construir una malla de puntos en el tiempo y las frecuencias, equiespaciado en el tiempo por Δ_t y en las frecuencias por Δ_{ω} . Si dichas distancias son suficientemente grandes como para que se cumplan las condiciones en ??, entonces los valores de Y sobre la cuadrícula

serán aproximadamente no-correlacionados.

$$\int_{-\infty}^{\infty} |\Gamma_{\kappa}(\theta)|^{2} |\Gamma_{\kappa}(\theta + \Delta_{\omega})|^{2} d\theta \approx 0$$

$$\frac{1}{\Delta_{t}} \int_{-\infty}^{\infty} |t| |w_{\tau}(t)| dt \approx 0$$

$$\Rightarrow \operatorname{Cov}(Y(t, \omega), Y(t + \Delta_{t}, \omega + \Delta_{\omega})) \approx 0$$
(3.64)

Así entonces, sea $\{(t_i, \omega_j) \in \mathcal{T} \times [-\pi, \pi] | i = 1, \dots, I; j = 1, \dots, J\}$ la cuadrícula descrita, con $|t_i - t_{i+1}| = \Delta_t$ y $|\omega_j - \omega_{j+1}| = \Delta_\omega$. Se define el estimador

$$Y_{i,j} = \log\left(\widehat{h}(t_i, \omega_j)\right) \tag{3.65}$$

el cual puede escribirse como

$$Y_{i,j} \approx \log(h(t_i, \omega_j)) + \varepsilon_{i,j}$$
 (3.66)

donde

$$\mathbf{E}\left[\varepsilon_{i,j}\right] \approx 0 \tag{3.67}$$

$$\operatorname{Cov}\left(\varepsilon_{i,j}\right) \approx \frac{C}{T} \int_{-\infty}^{\infty} \left|\Gamma_{\kappa}(\theta)\right|^{4} d\theta \left[\delta(i, i_{0})\delta(j, j_{0})\right]$$
(3.68)

Una vez definido a Y, un estimador adecuado para detectar la estacionariedad débil, conviene escribir explícitamente las condiciones para tal detección. Con base a la proposición (?), si el proceso $\{X(t)\}_{t\in\mathcal{T}}$ es débilmente estacionario **entonces**

$$h(t_0, \omega_j) = h(t_1, \omega_j) = \dots = h(t_I, \omega_j)$$
, para $j = 1, 2, \dots, J$ (3.69)

condición que puede reescribirse en términos de Y como

$$E[Y_{0,j}] = E[Y_{1,j}] = \dots = E[Y_{I,j}]$$
, para $j = 1, 2, \dots, J$ (3.70)

la cual, a su vez, puede reescribirse como

$$\mathrm{E}\left[\varepsilon_{0,j}\right] = \mathrm{E}\left[\varepsilon_{1,j}\right] = \dots = \mathrm{E}\left[\varepsilon_{I,j}\right] , \, \mathrm{para} \, j = 1, 2, \dots, J$$
 (3.71)

Sin embargo, la expresión en ?? puede deducirse directamente de las propiedades

de Y en caso de que la expresión en ?? es cierta. En consecuencia, rechazar ?? implica rechazar ??, lo cual aporta evidencia para rechazar ??; si se rechaza ?? entonces puede rechazarse que el proceso sea estacionario, pero un no-rechazo no garantiza que elproceso sea estacionario.

El objetivo de la prueba puede fijarse en decidir si puede rechazarse la condición en ??, en cuyo caso se podrá concluir que el proceso **no** es débilmente estacionario. Con base a la expresión en ??, la prueba puede formularse en términos de un ANOVA de dos factores, el cual parte de un modelo general

$$H_0: Y_{i,j} = \mu + \alpha_i + \beta_j + \gamma_{i,j} + \varepsilon_{i,j}$$
(3.72)

donde ε es como en la expresión ??. Dentro del contexto, las cantidades involucradas pueden interpretarse como

- μ Promedio de h sobre tiempo y frecuencia
- α Efecto al variar el tiempo
- β Efecto al variar la frecuencia
- γ Efecto no lineal de tiempo y frecuencia (interacción)

La diferencia entre γ y ε consiste en que (por diseño) se conocen la media y varianza de ε ; en contraparte, no se ha supuesto nada sobre γ .

Ahora bien, la expresión ?? uede formularse como hipótesis para contrastarse contra H_0 , de la forma

$$H_A: \quad Y_{i,j} = \mu + \alpha_i + \varepsilon_{i,j} \tag{3.73}$$

Por simplicidad, conviene considerar, como paso intermedio, una prueba de hipótesis encadenada

$$H_{A_0}: Y_{i,j} = \mu + \alpha_i + \beta_j + \varepsilon_{i,j}$$
(3.74)

Como es usual con los ANOVA, se definen las sumas de cuadrados dentro de los grupos y entre los grupos (cuadro ??), las cuales siguen distribuciones χ^2 . Al probar H_0 contra H_{inter} se usa el estadístico de prueba S_{I+R}/σ^2 , mientras que al probar H_{inter} contra H_A se usa S_T/σ^2 .

Cuadro 3.1: Estadísticos involucrados en la prueba PSR

Descripción	Estadístico	Gr. de libertad
Efecto tiempo	$S_T = J \sum_{i=1}^{I} (Y_{i,\bullet} - Y_{\bullet,\bullet})^2$	I-1
Efecto frecuencia	$S_F = I \sum_{i=1}^{J} (Y_{\bullet,j} - Y_{\bullet,\bullet})^2$	J-1
Interacción	$S_{I+R} = \sum_{i=1}^{J} \sum_{j=1}^{J} (Y_{i,j} - Y_{i,\bullet} - Y_{\bullet,j} + Y_{\bullet,\bullet})^2$	(I-1)(J-1)
Total	$S_0 = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} - Y_{\bullet,\bullet})^2$	IJ-1
Prom. tiempo	$Y_{i,\bullet} = \frac{1}{J} \sum_{j=1}^{J} Y_{i,j}$ $Y_{\bullet,j} = \frac{1}{I} \sum_{i=1}^{I} Y_{i,j}$	
Prom. frecuencia	$Y_{ullet,j} = rac{1}{I} \sum_{i=1}^{T} Y_{i,j}$	
Prom. general	$Y_{\bullet,\bullet} = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} Y_{i,j}$	

```
Algoritmo 1: Prueba de Priestley-Subba Rao
     Datos: X = (x_1, x_2, \cdots, x_N)
     Resultado: p-valores para S_{I+R}, S_T, S_F
 1 X \leftarrow (x_1, x_2, \cdots, x_N)

2 para i = 1, \cdots; j = 1, \cdots hacer

3 \bigcup U[i, j] \leftarrow \sum_{u=t-T}^{T} g(u) X[t-u] \exp(-i\omega_j i)
 4 para i=1,\cdots; j=1,\cdots hacer
5 \left[ \hat{h}[i,j] \leftarrow \sum_{u=t-T}^{T} w_{\tau}(u) \left| U[i-u,j] \right|^{2} \right]
  6 Y \leftarrow \log \hat{h}
 7 para i=1,\cdots,I hacer
8 V_{i,\bullet}=\frac{1}{J}\sum_{j=1}^{J}Y_{i,j}
 9 para j = 1, \cdots, J hacer
10 Y_{\bullet,j} = \frac{1}{I} \sum_{i=1}^{I} Y_{i,j}
11 Y_{\bullet,\bullet} = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} Y_{i,j}
12 si S_{I+R} > 0 entonces
           Aceptar H_0
           devolver
15 si S_T > 0 entonces
           Aceptar H_1
           devolver
18 Aceptar H_2
```

3.5. Estacionariedad local

Una práctica común en el análisis de señales electrofisiológicas es el suponer que una serie de tiempo *suficientemente* corta pueda considerarse estacionaria, cuando menos en el sentido débil; anteriormente se ha señalado que se trata de un efecto de muestras pequeñas [?], y paralelamente se han incorporado a los diseños experimentales motivos para mantener este supuesto[?].

En base a resultados previos usando esta técnica, se espera que el comportamiento de los patrones visuales obedezca al fenómeno de **estacionariedad local**; esta característica, descrita por Dahlhaus [?], implica que un proceso puede ser aproximado a trozos *ensamblando* procesos estacionarios. Esta caracterización del EEG ha sido usada anteriormente de manera fructífera pero problemática[?, ?]. Dentro del modelo para registros de PSG, la estacionariedad local significa que el PSG no es formalmente homogéneo *pero* puede entenderse como varios segmentos homógeneos. En un sentido más general, es coherente pensar que el PSG se componga tanto de segmentos homógeneos como de *eventos puntuales* y artefactos.

En la figura ?? se muestra esquemáticamente cómo el tamaño de las ventanas puede influir para su clasificación como estacionarias/homogéneas.

En otro ámbito, se replicó la metodología usada por McEwen [?] para contrastar la afirmación de que las series de tiempo suficiente cortas son estacionarias. Este procedimiento consistió en repetir la clasificación de épocas variando el tamaño de ventana; los tamaños de ventana se tomaron de la forma 30×2^n segundos, para comparar con el tamaño de época recomendado por la AASM.

Figura 3.1: Efecto del tamaño de ventana sobre la clasificación de estacionariedad.

CAPÍTULO 4

Deterioro cognitivo y sueño

En este capítulo se exponen varios temas para poder entender adecuadamente al sujeto de estudio (registros de PSG en adultos mayores), así como el contexto y la motivación para su estudio (el PDCL en adultos mayores). Se responde, de manera muy breve, las siguientes preguntas:

- ¿Qué es el Deterioro Cognitivo Leve y cómo se diagnostica?
- Clínicamente, ¿qué es el sueño y cómo se estudia?
- ¿Cómo se relacionan el Deterioro Cognitivo Leve y el sueño?

Para simplificar la exposición, se considera al EEG como la técnica principal para el estudio de la actividad cerebral. El lector interesado en una exposición más amplia sobre técnicas para el estudio del cerebro, puede referirse al libro "Medical Instrumentation. Applications and Design" [?]. Con la misma intención de facilitar la lectura, se describe el sueño (desde el punto de vista clínico) antes de mostrar su posible utilidad como marcador para el DCL.

Si se desea revisar mayor información sobre los tópicos expuestos, pueden consultarse los libros "Guía para el diagnóstico neuropsicológico" [?] por Ardila y Ostrosky, y "Electroencephalography: Basic Principles, Clinical Applications, and Related Fields" por Niedermeyer [?]. Si se desean consultarse en mayor detalle los

protocolos para registrar la PSG, o aquellos para clasificar las etapas de sueño, debe consultarse el Manual de la AASM [?]. Para consultar con mayor detalle el proceso del sueño en sí, así como los procesos fisiológicos y psicológicos asociados, puede consultarse *Psicofisiología del sueño* por Corsi-Cabrera [?].

4.1. Deterioro Cognitivo Leve

El envejecimiento es determinado por una serie de procesos moleculares, celulares, fisiológicos y psicológicos que conducen directamente al deterioro de funciones cognitivas, específicamente atención y memoria [?]. Como consecuencia, los adultos mayores son especialmente propensos al deterioro cognitivo; por precisión, en lo siguiente se usará el término adulto mayor para referirse a individuos con 60 o más de edad años. Cabe destacar que la funcionalidad del adulto mayor no depende meramente de la edad, sino que está relacionada con el estilo de vida, los factores de riesgo, el acceso a la educación y las acciones para el cuidado de la salud realizadas en edades más tempranas [?].

La **demencia**, considerada como el estado más grave del deterioro cognitivo, es definida en el el Manual Diagnóstico y Estadístico de Trastornos Mentales (DSM-V, por sus siglas en inglés y la versión consultada) como sigue:

"Un síndrome que consiste en el desarrollo de déficit cognoscitivos suficientemente graves como para interferir significativamente en las actividades laborales y sociales, respecto al nivel de actividad previo.

Los sujetos con demencia tienen una baja capacidad para aprender información nueva y suelen olvidar lo aprendido anteriormente, siendo éste el síntoma más prominente."[?]

Se considera que la demencia es irreversible, y no se han identificado curas definitivas [?]. Debido a ello, ha surgido un gran interés en definir y diagnosticar sus etapas tempranas. El diagnóstico temprano es importante para un tratamiento adecuado que revierta o desacelere el avance de este síndrome [?].

Bajo esta línea de pensamiento se considera al **Deterioro Cognitivo Leve** (DCL) como una etapa precursora de la demencia, y que es definida como sigue:

"Una alteración adquirida y prolongada de una o varias funciones cognitivas, que no corresponde a un síndrome focal y no cumple criterios suficientes de gravedad para ser calificada como demencia."[?]

Para fines de la definición anterior, se entiende por *síndrome focal* al daño en una estructura nerviosa específica, cuya causa es conocida (como una hemorragia o una embolia) y cuyo inicio sea inmediato y evidente.

El DCL puede detectarse por medio de diversos métodos, que pueden ser complementarios entre sí. La forma de detección más simple es la percepción de fallas en la memoria por parte del individuo u de otro. La percepción subjetiva del deterioro cognitivo *esperado* por el envejecimiento provoca que esta forma de detección sea poco fiable. Una alternativa más formal consiste en la entrevista clínica de un especialista, la aplicación de cuestionarios sobre dificultades en la memoria, o incluso al uso de pruebas neuropsicológicas.

En psicología, los instrumentos de medición comunes son las **pruebas neuropsicológicas**, entendidas como muestras de alguna conducta de interés a las que se asignan puntajes para comparar cuantitativamente a los sujetos [?]. Se considera que a través de estas herramientas es posible declarar objetivamente las deficiencias cognitivas o conductuales de los individuos, así como su severidad y características.

De forma auxiliar para el diagnóstico del DCL, se pueden efectuar análisis genéticos, químicos, de imágenes cerebral, entre otros que estudien el sistema nervioso central. Se espera que dichas técnicas, en combinación con las pruebas neuropsicológicas, permitirán diagnosticar más acertadamente el DCL y desentrañar los fenómenos neurobiológicos subyacentes.

Un referente ampliamente usado para el diagnóstico del DCL son los criterios para Alzheimer de la NINCDS-ADRDA, propuestos por el National Institute of Neurological and Communicative Disorders and Stroke y la Alzheimer's Disease and Related Disorders Association [?, ?]. Dichos criterios proporcionan protocolos para diagnosticar el Alzheimer y algunas enfermedades relacionadas (entre ellas el DCL), así como afecciones que generan síntomas similares. Desafortunadamente, las pruebas neuropsicológicas contempladas por los criterios de la NINCDS-ADRDA todavía no han sido validadas en México, es decir que su efectividad para generar diagnósticos acertados no ha sido verificada para la población mexicana.

Otra prueba neuropsicológica ampliamente extendida es el Mini-Mental State Examination (MMSE), propuesta por Folstein en 1975 [?] [citar mas, quiza??]. Sin embargo se ha reportado que, en la población mexicana, la prueba MMSE tiene baja

sensibilidad para el diagnóstico de DCL en general, y baja especificidad para individuos con escolaridad muy baja o muy alta [?]. Para fines del comentario anterior, se entiende por sensibilidad a la probabilidad de obtener verdaderos positivos, y por especificidad a la probabilidad de obtener verdaderos negativos.

Una tercera opción, a la cual se ha dado gran peso en el presente trabajo, es la prueba neuropsicológica Neuropsi, desarrollada por Ostrosky y ?? en la Universidad Autónoma de México (UNAM) [?]. La prueba Neuropsi ha sido validada para diversos grupos poblacionales en México, y se ha confirmado su utilidad para distinguir individuos con diverso grado de deterioro cognitivo.

En el contexto de la detección del DCL, es muy importante mencionar la **pseudo-demencia depresiva**, una afección que no está relacionada con el deterioro cognitivo pero que puede generar un diagnóstico positivo para DCL. De acuerdo al manual DSM-V, pseudodemencia depresiva se define como "un trastorno del afecto y que produce un aparente deterioro cognitivo" [?]. Bajo esta línea de pensamiento resulta conveniente decir que, como parte del diseño experimental, se han omitido participantes con síndromes focales, retraso mental, bipolaridad, esquizofrenia, entre otros trastornos de atención y memoria ajenos al deterioro cognitivo. Con base a ello, se omite una discusión más extensa de dicho tipo de afecciones; el lector interesado puede referirse al Manual DSM-V [?].

4.1.1. Probable Deterioro Cognitivo Leve

En el presente trabajo se delimita al DCL por fines de precisión, usando para ello las pruebas neuropsicológicas. Se define operativamente el **Posible Deterioro** Cognitivo Leve (PDCL) como sigue:

"Una disminución significativa de las funciones cognitivas del sujeto con respecto las típicas de su edad y nivel de educación."

Para fines de la definición anterior, el desempeño de las funciones cognoscitivas en un individuo es medido usando la prueba Neuropsi [?]; se considera que hay un déficit cognoscitivo significativo si la puntuación obtenida es menor al umbral predefinido para su grupo de edad y nivel de escolaridad. El umbral recomendado para la prueba Neuropsi debe calcularse como la media menos 3 desviaciones estándar de los puntajes típicos para individuos de cada grupo de edad y nivel de escolaridad;

estos parámetros fueron estimados para la población mexicana por Ostrosky-Solís y colaboradores [?]. En el cuadro ??, bajo la etiqueta *Deterioro cognitivo* se recaban los *puntajes de corte* usados para declarar el PDCL.

La palabra 'probable' en el PDCL hace alusión a que no constituye un diagnóstico irrefutable del DCL. En este sentido, el PDCL puede interpretarse como una condición necesaria pero no suficiente para el DCL.

4.1.2. Pruebas neuropsicológicas utilizadas

Dentro del contexto del presente trabajo, conviene describir las pruebas que fueron usadas para detectar el PDCL en adultos mayores. Según la descripción que se dio del DCL, para efectuar su diagnóstico debe verificarse que el individuo cumpla las siguientes características:

- 1. Que presente un déficit en una o varias funciones cognitivas, pero que éste no cumpla los criterios suficientes para demencia.
- 2. Que los déficits cognoscitivos detectados no correspondan a síndromes focales,
- 3. Que el individuo no presente una afección que, sin estar relacionada con el deterioro cognitivo, genere síntomas similares.

La condición 2 fue investigada mediante entrevistas con los participantes, constituyéndose como un criterio de exclusión. Debido a la ausencia de excepciones, la condición 3 se limitó únicamente a detectar la pseudodemencia depresiva. En conjunto, fueron usadas las siguientes pruebas:

- Short Anxiety Screening Test (SAST)
 Evaluación corta para detectar trastornos depresivos y ansiosos. [?]
- Geriatric Depression Scale (GDS)
 Evaluación corta para detectar cuadros depresivos en adultos mayores. [?]
- Mini-Mental State Examination (MMSE)
 Evaluación escrita relativamente rápida. Permite detectar el deterioro cognitivo, pero no proporciona muchos detalles al respecto [?].
- Evaluación Neuropsicológica (Neuropsi)
 Evaluación extensiva sobre múltiples dominios. [?]

Escala sobre las actividades cotidianas de la vida diaria (KATZ)
 Evaluación de la independencia del individuo para realizar tareas básicas de la vida diaria.
 [?]

4.2. Estudio clínico del sueño

El sueño en el ser humano se considera como un estado de actividad, con propiedades características, y que influye de manera importante en la vigilia. De manera operativa, puede caracterizarse según la siguientes propiedades [?]:

- 1. Disminución de conciencia y reactividad a estímulos externos.
- 2. Fácilmente reversible, a diferencia de estados patológicos como estupor y coma
- 3. Inmovilidad y relajación muscular.
- 4. Periodicidad típica circadiana (diaria).
- 5. Los individuos adquieren una postura estereotipada.
- 6. La privación induce alteraciones conductuales y fisiológicas, las cuales se *acumulan* en tanto persista la privación de sueño.

La duración del sueño es determinada en gran parte por la edad; el recién nacido duerme entre 14 y 18 horas, el lactante entre 12 y 14 horas, el niño en etapa escolar entre 11 y 12 horas y en la edad adulta, la mayoría duerme entre 7 y 8 horas [?].

En 1953 Asierinsky y Kleitman reportaron que existen patrones de actividad cerebral marcadamente diferentes durante el sueño, para lo cual usaron la técnica de electroencefalografía (EEG) [?]. Con base a ello, el sueño se divide tradicionalmente en las etapas N y R, también referidas como NMOR y MOR; dichas etapas se distinguen en cuanto cómo se ve el EEG registrado en dichas etapas, así como los procesos fisiológicos que se llevan a cabo en el cerebro. Por simplicidad expositiva, se describen primeramente las características de las fases de sueño según los criterios de y posteriormente se describe el EEG en sí. Las características descritas corresponden, muy a grosso modo, a los criterios establecidos por la American Society of Sleep Medicine (AASM) [?]; en el cuadro ?? puede encontrarse una exposición más concreta y apegada al Manual de la AASM.

Cuadro 4.1: Criterios para la clasificación de etapas de sueño según la AASM

Eta	pa de sueño	Características del EEG	Movimientos oculares	Tono muscular
W	Vigilia	Ritmo alfa en $> 50\%$ de la época en la región occipital	No	Alto
N1	NMOR 1	Cambio de alfa por AABFM, atenuación del ritmo dominante. Ondas agudas	Lentos	<w< td=""></w<>
N2	NMOR 2	Husos de sueño y complejos K en la primera mitad de la época. AABFM	No	<w,>R</w,>
N3	NMOR 3	Ondas lentas (0.5–2 Hz, $> 75~\mu V$) en $> 20~\%$ de la época. Husos de sueño	No	$<$ N2, \approx R
R	MOR	Actividad baja amplitud y frecuencias mixtas. Ondas agudas	Rápidos	Bajo

AABFM=Actividad de Amplitud Baja y Frecuencias Mixtas.

Durante la fase R el tono muscular disminuye, excepto para los músculos respiratorios y los esfínteres; por tono muscular se entiende a la contracción pasiva de los músculos durante el reposo, la cual permite una respuesta voluntaria rápida. En esta fase de sueño las frecuencias cardíaca y respiratoria se vuelven irregulares. El individuo exhibe Movimientos Oculares Rápidos (MOR), en base a lo cual la fase R es conocida como sueño MOR. En el EEG, aparecen ondas rápidas de bajo voltaje, irregulares, y que recuerdan la actividad durante al estado de alerta. Estos patrones de actividad cerebral no interrumpen el sueño sino que, contrariamente, incrementan el umbral para estímulos externos (qué tan fuerte debe ser un estímulo para afectar al individuo), motivo por el cual esta fase también es referida como sueño paradójico. Cabe mencionar que durante la fase R se producen la mayoría de las ensoñaciones (referidas coloquialmente como sueños), y que la mayoría de los pacientes que despiertan durante esta fase suelen recordar vívidamente el contenido de sus ensoñaciones [?].

La fase N, se caracteriza por movimientos oculares lentos, tono muscular que decrece constantemente, actividad cerebral que recuerda al reposo, y la presencia de husos de sueño y complejos K. En base a la mayor o menor presencia de estas características, se definen las sub-fases N1, N2, N3. Tradicionalmente se le refiere como sueño no-MOR (o NMOR).

4.2.1. Electroencefalografía

La técnica de electroencefalografía (EEG) consiste en medir la actividad postisináptica (transmisión de impulsos) entre neuronas en la corteza cerebral, lo cual se logra mediante electrodos colocados en el cuero cabelludo. La corteza cerebral es la capa más exterior del cerebro, está formada por una fina capa de neuronas piramidales (denominadas así por su forma) altamente conectadas entre sí. Típicamente se asocia a la corteza cerebral con las funciones cognitivas superiores [?]. Conviene enfatizar que el término EEG usualmente se usa para referirse a registros hechos mientras el paciente realiza alguna actividad o se encuentra despierto y en reposo; el registro del EEG durante el sueño, adicional al registro de otras señales, es referido como polisomnografía.

Usualmente los registros de EEG muestran una actividad oscilatoria continua y cambiante, su frecuencia se considera entre 0.5 y 100 Hz. Su composición está fuertemente relacionada con el grado de actividad mental, mostrando diferencias claras durante vigilia y sueño, o durante quietud y concentración [?]. Aunque el EEG es irregular la mayor parte del tiempo, suele mostrar patrones relativamente organizados, conocidos como **ondas cerebrales**; de forma tradicional, éstos se dividen en cinco grupos (referidos como **bandas**) según sufrecuencia:

- Delta, 0.5–3.5 Hz
- Theta, 3.5–7 Hz
- Alfa, 7–12 Hz
- Beta, 12–30 Hz
- Gamma, 30–100 Hz

Conviene destacar que diferentes autores han usado límites ligeramente diferentes para las bandas; de la misma forma algunos autores han incluido o excluido bandas, así como subdivisiones de éstas.

Adicionalmente a las ondas cerebrales, en el EEG pueden encontrarse eventos visiblemente diferentes de su entorno, conuna duración corta (< 1 s) y formas características. Dos ejemplos importantes son los husos de sueño y los complejos K, definidos de manera visual y por su contexto fisiológico [?]; ambos tipos de ondas

Figura 4.1: Ejemplos de ondas cerebrales encontradas en el EEG durante el sueño. Imagen tomada de Encyclopædia Britannica, versión en línea [?].

son típicos del sueño profundo y son usados para distinguirlo, aunque no se consideran ritmos ni pertenecen a las *bandas* descritas anteriormente. En la figura ?? se representa un arquetipo visual de cada una de las bandas, incluyendo los husos de sueño y complejos K.

Para realizar el registro del EEG en una forma estandarizada y comparable, deben indicarse los lugares donde se colocan los electrodos y la forma en que éstos están conectados. En el contexto del presente trabajo, los electrodos fueron ubicados usado las coordenadas del **Sistema 10–20** [?]. En dicho sistema los sitios se ubican en una cuadrícula de distancias relativas (medidas en porcentajes), construida respecto puntos del cráneo relativamente fiables entre individuos:

- El *inion*, un abultamiento en la región posterior del cráneo.
- El nasión, la unión del hueso frontal y los huesos nasales del cráneo.
- El punto preauricular, arriba del cartílago traqus que protege el canal auditivo.

Aunque es perfectamente posible describir textualmente la construcción de las coordenadas en el sistema 10–20, se consideró que es más sencillo mostrarlos gráficamente en la figura ??. En la misma imagen se muestran, de forma esquemática, los lóbulos de la corteza cerebral que dan nombre a las locaciones en el sistema: FP=fronotpolar, F=frontal, T=temporal, P=parietal, O=occipital. Si bien no existe un lóbulo central, los electrodos 'C' se suelen asociar al surco central; de forma similar, los electrodos 'A' corresponden a los lóbulos auriculares, los cuales no tienen una actividad eléctrica importante y suelen usarse como referencia neutral. Los electrodos se etiquetan con números pares en el lado izquierdo, números pares en el derecho y 'Z' en el eje central.

Para hablar sobre la forma en que se conectan lo electrodos entre sí, se denota a un par de electrodos como una **derivación** (también referida como *canal*), mientras que el conjunto de derivaciones es un **montaje**. En el contexto del presente trabajo se utilizó un montaje *monopolar* (o también llamado *referencial*) en cual se forman las derivaciones conectando en paralelo a cada electrodo con su respectivo electrodo auricular.

Es importante mencionar que las neuronas en la corteza cerebral tienen orientaciones muy diversas y que disparan de manera asíncrona, de modo que un periodo de gran actividad cerebral bien puede ser visto en el EEG como una actividad desorganizada y de baja amplitud. En otra perspectiva, el cerebro se encuentra cubierto por las capas meninges, por el líquido encefalorraquídeo, el cráneo y el cuero cabelludo; en suma, los campos eléctricos generados en la corteza cerebral son *víctimas* de una gran difusión espacial. Es por ello que las señales captadas por los electrodos deben ser amplificadas analógicamente antes de ser registradas digitalmente.

Un efecto colateral de amplificar la señal es la inclusión de **ruido**, entendiendo con ello a las señales que son registradas de manera no deseada.

Por ejemplo, los músculos faciales generan campos eléctricos con una frecuencia aproximada de 100 Hz; este tipo de ruidos persistentes (referido como ruido de fondo) son eliminados usando filtros de banda. En contraparte, los ruidos esporádicos de corta duración, típicamente son señalados a mano y provocan que el segmento de registro sea invalidado; por ejemplo, el deslizamiento de un electrodo en el curo cabelludo.

Como comentario, cabe mencionar que es posible usar electrodos colocados en otras zonas del cerebro, lo cual conlleva a técnicas similares con nombres diferentes;

Figura 4.2: Colocación de electrodos según el sistema 10–20. A. Los electrodos se colocan en una malla de longitudes relativas (medidas en porcentajes) respecto a tres puntos de referencia: inion, nasion, punto preauricular. B. División de la corteza cerebral en lóbulos, mostrando a grosso modo qué regiones son registradas usando el EEG. Los electrodos del sistema son referidos según los lóbulos cerebrales que representan: Frontal, Temporal, Parietal, Occipital. Adicionalmente se registra cerca del surco Central, y los lóbulos Auriculares que son usado como puntos con actividad eléctrica negligible.

por ejemplo el electrocorticograma obtenido directamente de la corteza cerebral. Así mismo, se menciona que el término EEG suele usarse independientemente de la cantidad y posición de electrodos usados para el registro: se pueden usar sólo algunas derivaciones del sistema 10–20, se pueden hacer cambios como el uso de la nariz como referencia neutral, o se pueden añadir más electrodos como en el sistema 10–10 [?].

4.2.2. Polisomnografía

La técnica de polisomnografía (PSG) consiste en el registro simultáneo durante el sueño de múltiples variables variables fisiológicas como respiración, ritmo cardíaco, temperatura, entre otros. La decisión sobre las señales que componen la PSG depende del problema específico que será estudiado. Para ayudar en la clasificación de etapas de sueño, en el contexto del presente trabajo se usó una PSG con registros de actividad ocular, tono muscular y actividad cerebral (EEG).

La actividad ocular es registrada usando la electrooculografía (EOG), una técnica que explota el comportamiento dipolar del ojo con polos en la retina y la pupila; los movimientos del ojo producen variaciones en los campos eléctricos que pasa por él. El registro del EOG incluye una derivación para cada ojo, LOG y ROG, cada cual formada por un electrodo y el electrodo auricular de referencia común. Así como con el EEG, la ubicación de los electrodos para EOG se indican en la figura ??. Cabe mencionar que el registro de EOG debe ser interpretado como el movimiento del ojo, proyectado sobre el eje formado por los electrodos de registro.

El tono muscular es vigilado usando la técnica de electromiografía (EMG), la cual observa la actividad eléctrica producida por las fibras musculares. Su registro contempla una derivación (EMG) con tres electrodos que actúan eléctricamente como tierra, fase y neutro; la ubicación de estos electrodos se indica en la figura ??. En el contexto del presente trabajo, más que analizarse la actividad muscular, se espera observar la desaparición del mismo durante el sueño MOR.

A modo de comentario, en la figura ?? se muestra parte de un registro de PSG durante sueño MOR exhibiendo las características descritas previamente.

Figura 4.4: Registro de PSG durante sueño MOR. En el margen izquierdo se indica la derivación representada; aunque la mayoría corresponden al EEG, en la porción inferior se contempla al EOG y EMG. Para más detalles sobre la ubicación de las derivaciones, ver el texto y la figura ??. Marca de calibración: vertical, 10 μV, horizontal, 1 segundo.

4.3. Relación entre deterioro cognitivo y sueño

Varios autores han reportado correlaciones, a nivel poblacional, entre el DCL y trastornos del sueño en adultos mayores [?, ?, ?, ?].

El sueño MOR se ha asociado durante mucho tiempo con las funciones cognitivas [?]. El sueño MOR desempeña un papel en la consolidación de la memoria [?, ?, ?, ?, ?, ?, ?, ?, ?]. Después de tareas complejas, hay reactivaciones de circuitos neuronales durante el sueño MOR [?]. El sueño MOR mejora la memoria y los procesos de atención mediante las entradas colinérgicas [?] a través de la vía pontina [?] y las estructuras del basales del cerebro anterior [?]. Durante el envejecimiento normal y especialmente durante el envejecimiento patológico, los procesos de atención y memoria se vuelven más vulnerables, y las neuronas colinérgicas son las más afectadas [?].

Se ha encontrado, por ejemplo, correlaciones entre el DCL en adultos mayores con la *presencia* de ciertos tipos de ondas cerebrales [?, ?, ?].

Los procesos de atención y memoria dependen de circuitos colinérgicos (grupos de neuronas cuyo principal transmisor es la acetilcolina); estos circuitos son propensos a degradación estructural durante el envejecimiento, y en mayor medida si es un envejecimiento patológico [?]. Cabe destacar que los circuitos colinérgicos son activados de forma importante durante el sueño, particularmente en la fase deniminada MOR [?].

Se ha reportado una mayor potencia absoluta y relativa en frecuencias lentas para regiones laterales [?] y una menor atonía muscular [?] para adultos mayores con DCL, respecto a individuos sanos.

CAPÍTULO 5

Metodología y resultados

El presente trabajo surge de una colaboración con el Laboratorio de Sueño, Emoción y Cognición, dependiente del Instituto de Ciencias de la Salud de la UAEH y a cargo de la Dra. Alejandra Rosales Lagarde. La colaboración incluye acceso a los registros obtenidos en un estudio por Vázquez-Tagle en 2016 [?]. Dicho estudio se centró en la epidemiología de los trastornos del sueño en adultos mayores dentro del estado de Hidalgo, y consideró registros de PSG para evaluar parámetros relacionados al sueño MOR. El presente trabajo tiene como objetivo particular analizar con mayor detalle dichos registros.

En este capítulo se describe primeramente la metodología seguida para obtener los registros de PSG. Posteriormente se describe la metodología usada para analizar los registros de PSG, usando las herramientas descritas en el capítulo ??.

Los registros de PSG fueron segmentados en ventanas de 30 segundos, referidas como **épocas**. El análisis de los registros de PSG se llevó a cabo a tres niveles:

- Dentro de cada época.
- Entre las diferentes épocas en un registro.
- Entre los diferentes participantes.

El análisis a nivel de época contempla su clasificación según etapa de sueño (limitada a MOR y NMOR), y su clasificación como estacionarias (usando la prueba de PSR). El uso de épocas como unidades de estudio se justifica por la gran heterogeneidad del sueño nocturno; paralelamente, destaca el supuesto fisiológico de que las etapas de sueño son *comunes* entre los humanos. En suma, los registros de PSG para un sólo individuo pueden interpretarse como una población de épocas.

El análisis a nivel de registro surge de considerar la heterogeneidad del sueño pero usando al registro entero como unidad de estudio. El tomar las épocas junto con su estructura temporal reveló algunos patrones interesantes de actividad.

Para el análisis entre participantes (divididos en grupos), varias de las características descritas fueron *colapsadas* para constituir características *simples*. Debido a las características de la muestra (ver más adelante), los resultados obtenidos no pueden extrapolarse a la población en general. Los resultados obtenidos, entonces, se presentan como *indicios*.

5.1. Características de los participantes

Los participantes fueron elegidos usando un muestreo no probabilístico por conveniencia bajo los siguientes criterios de inclusión:

- Edad entre 60 y 85 años
- Diestros (mano derecha dominante)
- Sin ansiedad, depresión ni síndromes focales
- No usar medicamentos o sustancias para dormir
- Firma de consentimiento informado
- Voluntario para el registro de PSG

Un total de 16 adultos mayores cumplieron los criterios de inclusión. Con el fin de detectar el DCL en estos pacientes, éstos fueron sometidos a una batería de pruebas neuropsicológicas para determinar su estado cognoscitivo general (Neuropsi, MM-SE), detectar cambios en su vida cotidiana (KATZ) y descartar cuadros depresivos (SAST, GDS); para más detalles ver capítulo anterior, sección ??. En la tabla ?? se

Cuadro 5.1: Datos generales de los participantes

	Sexo	Edad	Escol.	Neuropsi	MMSE	SAST	KATZ	GDS
Grupo CTRL								
MJH	\mathbf{F}	72	9	113	30	18	0	0
$_{ m JAE}$	\mathbf{F}	78	5	102	28	19	0	5
MGG	\mathbf{F}	61	9	114	28	29	1	14
EMT	\mathbf{F}	50	22	117	30	15	0	4
$\widehat{\mu}$		65.3	11.3	111.5	29.0	20.3	0.3	5.8
$\widehat{\sigma}$		12.4	7.4	6.6	1.2	6.1	0.5	5.9
Grupo PDCL								
CLO	\mathbf{F}	68	5	81	28	22	1	6
RLO	\mathbf{F}	63	9	90	29	20	0	3
$_{ m JGZ}$	\mathbf{M}	65	11	87	25	20	0	1
AEFP	\mathbf{M}	73	8	96	29		0	2
PCM	M	71	9	111	28	20	0	10
$\widehat{\mu}$		68.0	8.4	93.0	27.8	20.5	0.2	4.4
$\widehat{\sigma}$		4.1	2.2	11.4	1.6	1.0	0.4	3.6

reportan los puntajes obtenidos por los participantes en dichas pruebas; estos datos deben ser interpretados según los puntajes de corte de cada prueba, que se incluyen en el apéndice ??. Se determinó que 11 de los voluntarios no padecen depresión o ansiedad, ni presentan afectaciones significativas en la vida diaria; el participante MGG presenta un cuadro depresivo, pero fue incluido en ausencia de afecciones cognitivas objetivas. Debido a motivos técnicos, sólo 9 participantes fueron considerados para el presente trabajo; se reportan únicamente los datos relativos a esos participantes.

En base al diagnóstico de Posible Deterioro Cognitivo Leve, los 9 participantes fueron divididos en dos grupos: PDCL y CTRL. Es importante mencionar que, bajo las condiciones muestrales, el grupo CTRL no puede fungir satisfactoriamente como grupo control; una descripción más adecuada sería grupo sin PDCL.

5.1.1. Registro del polisomnograma

Para efectuar el registro de la PSG, los participantes acudieron a las instalaciones del Laboratorio de Sueño, Emoción y Cognición. Los participantes recibieron instrucciones de realizar una rutina normal de actividades durante la semana que precedió

al estudio, y se les recomendó no ingerir bebidas alcohólicas o energizantes (como café o refresco) durante las 24 horas previas al experimento, y que no durmieran siesta ese día. Bajo estas condiciones experimentales se garantiza que los registros son representativos del sueño nocturno de cada participante.

El registro per se fue efectuado usando un polisomnógrafo Medicid 5 (Neuronic Mexicana). El protocolo de la PSG incluye los siguientes electrodos¹:

- 19 electrodos de EEG colocadas según el Sistema Internacional 10–20.
- 2 electrodos de EOG para movimientos oculares.
- 2 electrodos de EMG para tono muscular en los músculos submentonianos.

Los electrodos para EEG fueron conectados en paralelo usando como referencia común los lóbulos de las orejas; se mantuvo por debajo de $50\,\mu\Omega$. Las señales fueron amplificadas analógicamente usando amplificadores de alta ganancia en cadena, y adicionalmente fueron pasado filtros analógicos pasa bandas: 0.1–100 Hz para EEG, 3–20 Hz para EOG. Los registros fueron digitalizados con una frecuencia de muestreo de 512 puntos por segundos (Hz), y posteriormente almacenados en formato de texto bajo la codificación ASCII.

Como se mencionó anteriormente, los registros fueron segmentados en segmentos de 30 segundos, referidas como **épocas**; en lo posterior se usará la palabra 'época' como un caso particular de ventana. Cada una de las épocas fue clasificada como MOR o NMOR; la clasificación fue llevada a cabo por dos expertos de ICSA, y bajo los estándares de la AASM.

Por simplicidad técnica, los registros fueron truncados para poder considerar épocas completas; algunos datos al final de cada registro fueron omitidos, aunque representan una cantidad negligible de tiempo. Cabe mencionar que cada época de 30 segundos, a una frecuencia de 512 Hz, representa un total de 15,360 puntos.

En la tabla ?? se describe la duración de los registros, así como la cantidad de tiempo del registro clasificado como sueño MOR. La cantidad de tiempo en vigilia registrado es negligible (< 5 minutos por cada participante), de modo que ésta no es reportada; con una pérdida mínima de generalidad, se puede afirmar que los registros fuera del sueño MOR corresponden a sueño NMOR.

¹Para más detalles ver el capítulo anterior, particularmente la sección ??

Cuadro 5.2: Datos generales sobre los registros de PSG

		Total		MOR*		
		Épocas	Tiempo	 Épocas	Tiempo	%
Grupo	o CTL					
	MJH	1032	8:36:00	127	1:03:30	12.31
	JAE	904	7:32:00	171	1:25:30	18.92
	MGG	1024	8:32:00	166	1:23:00	16.21
	EMT	552	4:36:00	47	0:23:00	8.51
	$\widehat{\mu}$	878.0	7:19:00	128.0	1:03:53	13.99
	$\widehat{\sigma}$	225.1	1:52:32	57.3	0:28:39	4.55
Grupo	PDC					
	CLO	944	7:52:00	132	1:06:00	13.98
	RLO	840	7:00:00	99	0:49:30	11.79
	JGZ	1200	10:00:00	34	0:17:00	2.83
	AEFP	952	7:56:00	41	0:20:00	4.31
	PCM	752	6:16:00	59	0:29:30	7.85
	$\widehat{\mu}$	937.6	7:48:48	73.0	0:36:30	8.15
	$\widehat{\sigma}$	168.1	1:24:04	41.5	0:20:46	4.75

^{*}El sueño MOR aparece fragmentado, se reporta la suma de tales tiempos

5.2. Características muestrales

Previo a los análisis de los registros de PSG, se corroboró si los dos grupos de participantes efectivamente se comportan como grupos estadísticamente diferentes. Con dicho objetivo, se aplicaron pruebas U de Wilcoxon-Mann-Whithney (WMW) entre los dos grupos, para todas las variables consideradas. De lo anterior se exceptúa al puntaje de la prueba KATZ, ya que es un parámetro cualitativo. Se concluye que las mediciones son parecidas en ambos grupos para todas las variables observadas, excepto para el puntaje en la prueba Neuropsi; ello era de esperarse ya que el puntaje en Neuropsi fue usado para designar a los participantes en los grupos. Los resultados de estas pruebas se reportan en la tabla $\ref{totalpha}$?

Se verificó si hay correlaciones entre las variables consideradas, lo cual podría afectar la interpretación de los resultados posteriores. Para ello se aplicó la prueba de correlación de Spearman a cada par de variables; para la prueba de Spearman estima de la correlación entre variables, y se prueba la hipótesis de que la correlación es diferente de cero. Estos resultados se reportan en el cuadro ??.

Sólo se encontraron correlaciones significativas entre dos pares de variables: edad y escolaridad, y tiempo en MOR *medido* en segundos y en porcentaje.

La primera relación, no muy fuerte, puede explicarse como un efecto generacional: la educación superior ha aumentado su cobertura durante las últimas décadas, y entonces los grupos poblacionales más jóvenes tienen en promedio más años de escolaridad. Una segunda hipótesis para esta correlación es la contribución del participante EMT, quien tiene una edad menor y un nivel de educación mayor al resto de los participantes. Para contrastar la segunda hipótesis se calculó nuevamente la prueba de Spearman pero retirando los datos de EMT: se halló una correlación estimada de 0.179 con un p-valor asociado de 0.672, que no permite rechazar el que la correlación sea diferente de cero.

Se descarta entonces la hipótesis del efecto generacional, cuando menos para el grupo de participantes considerados, y se acepta que la correlación es debida a valores atípicos. Se concluye que, usando los datos recabados, no se pueden obtener información relevante sobre el efecto del nivel de educación ni la edad sobre el PDCL, ni con los marcadores del PSG que se describirán más adelante.

Intuitivamente era de esperarse la correlación entre el tiempo en MOR y el porcentaje de sueño que es MOR. Sin embargo, la hipótesis de que el sueño tenga una

Cuadro 5.3: Variables independientes entre grupos

	Grupo (CTRL	Grupo I	PDCL	Prueba o	de WMW
	Media	(DE)	Media	(DE)	\overline{p}	\overline{W}
Edad	65.3	12.4	68.0	4.1	0.905	9.0
Escolaridad	11.3	7.4	8.4	2.2	0.797	11.5
Neuropsi	111.5	6.6	93.0	11.4	0.032	19.0
MMSE	29.0	1.2	27.8	1.6	0.366	14.0
SATS	20.3	6.1	20.5	1.0	0.301	4.0
GDS	5.8	5.9	4.4	3.6	0.905	11.0
Sueño [s]	7:19:00	1:52:32	7:48:48	1:24:04	1.000	10.0
MOR[s]	1:03:52	0:28:39	0:36:30	0:20:46	0.190	16.0
MOR [%]	14.0%	4.5%	8.2%	4.8%	0.111	17.0

DE=Desviación Estándar, WMW=Wilcoxon-Mann-Whitney

Cuadro 5.4: Prueba de correlación de Spearman (estimación y p-valor)

	Escolaridad	Neuropsi	$\overline{ ext{MMSE}}$	SAST	GDS	Sueño [s]	MOR [s]	MOR [%]
Edad	-0.699 (0.04)	-0.267 (0.49)	-0.079 (0.84)	-0.171 (0.69)	-0.233 (0.55)	0.200 (0.61)	0.183 (0.64)	0.100 (0.81)
Escol.		0.437 (0.24)	0.194 (0.62)	-0.366 (0.37)	-0.254 (0.51)	-0.044 (0.91)	-0.586 (0.10)	-0.525 (0.15)
Neuropsi			0.501 (0.17)	-0.415 (0.31)	0.200 (0.61)	-0.267 (0.49)	0.150 (0.71)	0.200 (0.61)
MMSE				-0.628 (0.09)	-0.378 (0.32)	-0.316 (0.41)	-0.070 (0.86)	0.018 (0.96)
SATS				,	0.610 (0.11)	0.317 (0.44)	0.293 (0.48)	0.195 (0.64)
GDS						-0.433 (0.25)	0.517 (0.16)	0.467 (0.21)
Sueño [s]						()	-0.050 (0.91)	-0.067 (0.88)
MOR [s]							(0.0-)	0.983 (0.00)

estructura característica —y por tanto, que las etapas de sueño aparezcan en proporciones similares en varios individuos— es ajena a los supuestos estadísticos. Con base a este resultado, en adelante se usará el porcentaje de MOR como sustituto del tiempo real de MOR porque (1) dichas variables están fuertemente correlacionadas, y (2) porque el porcentaje permite comparar intuitivamente a características de registros con duraciones muy diferentes.

5.3. Análisis a nivel de época

Como se mencionó anteriormente, los registros fueron fragmentados en ventanas de 30 segundos, referidas como épocas, para su clasificación en etapa de sueño. De manera independiente, cada una de estas épocas fue sometida a la prueba de estacionariedad de Prietley–Subba Rao (PSR) para investigar si es estacionaria en el sentido de homogeneidad espectral; para más detalles ver la sección ??.

En base a la prueba de PSR, cada una de las épocas consideradas fue clasificada como estacionaria si fue rechazada la hipótesis de no-estacionariedad con un nivel de significancia p < 0.05. La aplicación per se de la prueba de PSR fue efectuada usando el software estadístico R; en particular, se utilizó la implementación incluida en el paquete fractal bajo la función stationarity [?].

Con cada época clasificada según etapa de sueño (MOR o NMOR) y según estacionariedad, se procedió primeramente a revisar cómo están relacionadas ambas características. Para ello se planteó la hipótesis de que la cantidad de épocas estacionarias es diferente en MOR y NMOR. Debido a que la cantidad de épocas en NMOR es considerablemente mayor a las épocas en MOR, y en base a las observaciones de la sección anterior, se usaron proporciones en lugar del total de épocas; para simplificar la referencia, las proporciones de épocas clasificadas como estacionarias en MOR y NMOR serán referidas como p_{MOR} y p_{NMOR} , respectivamente. Dado que ambas clasificaciones son dicotómicas, la hipótesis $p_{MOR} \neq p_{NMOR}$ fue probada usando la prueba χ^2 de Pearson para cada sujeto en todas las derivaciones consideradas.

Los resultados obtenidos se reportan en el apéndice ??, y en la figura ?? se muestra de forma esquemáticamente en qué derivaciones se encontraron diferencias significativas. No se encontraron patrones claros que pudieran relacionar el PDCL –ni otros factores considerados– con las regiones con diferencias significativas.

Con base a la hipótesis sobre estacionariedad local, discutida en la sección ??,

Figura 5.1: Representación minimalista de los electrodos considerados en el registro de PSG; para más detalles ver las secciones ?? y ??. Esta forma de ordenar las gráficas será usado en gráficos posteriores.

Figura 5.2: Derivaciones para las cuales la proporción de épocas clasificadas como estacionarias fue significativamente diferente en MOR y NMOR. En la parte superior se representa al grupo CTRL y en la parte inferior al grupo PDCL. Para esta figura se usaron épocas de 30 segundos de duración. La posición de los círculos representan a las derivaciones, en correspondencia con la figura ??.

se procedió a repetir la clasificación de estacionariedad pero usando ventanas de diferentes tamaños. Por fines de comparabilidad y por motivos técnicos, los tamaños de ventana se eligieron de la forma 30×2^n segundos. El tamaño de ventana más pequeño fue de 30/32 segundos para poder utilizar la prueba de PSR de forma confiable, mientras que el tamaño más grande fue de 120 segundos tomando en cuenta que las ventanas más grandes serían demasiado heterogéneos para considerarse como unidades de estudio fiables.

En la figura ?? se muestra únicamente las proporciones estimadas de épocas estacionarias para MOR y NMOR (p_{MOR} y p_{NMOR}) para un participante; los gráficos construidos para todos los participantes puede encontrarse en el apéndice ??. Usando épocas de mayor duración, se encuentra que una proporción menor de estas son clasificadas como estacionarias; sin embargo, usando épocas de menor duración no se garantiza el efecto contrario. Dicho fenómeno apoya a la hipótesis de estacionariedad local en los registros de PSG en adultos mayores, aunque no representa evidencia suficiente para relacionarlo con el PDCL.

En resumen, no se pudo identificar una conexión clara entre el PDCL y las características de las épocas como unidades autónomas. Debido a ello se consideran otros niveles de organización sobre los registros: los registros como un conjunto de épocas distribuidas en el tiempo con *cierta estructura*, y al individuo como unidad en la variabilidad de dichas estructuras. En particular sobre el último, si se supone que las cantidades descritas en esta sección son características *representativas* de cada participante, entonces tiene sentido intentar verificar similitudes con otros participantes o correlaciones con otras observaciones.

Figura 5.3: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura ??. Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

5.4. Análisis a nivel de registro

Como se mencionó en la sección ??, se ha reportado cambios en la estructura del sueño en adultos mayores con deterioro cognitivo, respecto a adultos mayores saludables. El objetivo de esta subsección es intentar detectar estos *cambios de estructura* usando los métodos descritos y bajo las condiciones descritas.

Con el fin de explorar cómo se relacionan las épocas estacionarias con la estructura del sueño, se procedió a graficar la estacionariedad. Para efectuar lo anterior se consideró una cuadrícula, con una fila por cada derivación y una columna por cada época analizada (se registró el mismo número de épocas para cada derivación); sobre la cuadrícula el espacio correspondiente a cada época fue coloreado a según la clasificación de la época como estacionaria. Se procedió similarmente para ilustrar la clasificación según etapa de sueño. En la figura ?? se ejemplifica este tipo de gráficos, además de otros detalles a mencionarse.

Los gráficos obtenidos mediante este procedimiento mostraron algunas regularidades que merecen especial atención: bloques emergentes de épocas que comparten clasificación como estacionarias (o como no-estacionarias). Estos bloques identificados visualmente se extienden entre diversas derivaciones; puede verse un ejemplo de ello en la figura ??. Debido a la forma en que se efectuó la clasificación de estacionariedad (usando la prueba de PSR) puede garantizarse que estos patrones emergentes no son producidos por la clasificación per se. Se hipotetiza que estos patrones de estacionariedad corresponden a las diferentes etapas de sueño. Posteriormente se discutirá con más detalle al respecto.

El procedimiento de graficación se repitió para las clasificaciones de estacionariedad obtenidas usando diferentes tamaños de ventana, con el fin de verificar si la presencia de los bloques podría atribuirse al tamaño de ventana usado. Se encontró que los patrones aparecen con mayor o menor *nitidez* en los gráficos obtenidos usando diferentes tamaños de ventana, tal como se ilustra en la figura ??.

Dentro del contexto del PDCL en adultos mayores, estos patrones de estacionariedad no serán definidos formalmente ni estudiados detalladamente; se presentan como un hallazgo incidental y como verificación empírica de las capacidades de la técnica descrita para distinguir características que varían en el tiempo. Esta decisión fue tomada considerando la naturaleza fuertemente cualitativa de dichos patrones.

Figura 5.4: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

5.5. Análisis a nivel de grupo

Para fines de esta subsección, se ha supuesto que las proporciones de épocas estacionarias durante MOR y NMOR (p_{MOR} y p_{NMOR}) son características intrínsecas de cada individuo. En otras palabras, si se repite el registro de PSG para el mismo individuo y bajo condiciones similares, y se realiza el mismo procedimiento de segmentación y clasificación de épocas, entonces se espera que las cantidades p_{MOR} y p_{NMOR} serán las mismas. Este supuesto se basa en que las fases de sueño son casi indistinguibles entre diferentes individuos con características similares, y más aún entre diferentes jornadas de sueño para el mismo individuo.

Con base a los resultados de la subsección anterior, se puede afirmar intuitivamente que la metodología descrita percibe parte de algunas fases (o subfases) de sueño, las cuales son comunes entre individuos. Sin embargo, aun si tales observaciones fueran verificadas rigurosamente, el supuesto de que p_{MOR} y p_{NMOR} son características individuales debería ser verificado por separado. Debido a las limitaciones del presente trabajo –especialmente el tamaño muestral reducido y la limitación de un registro por participante— el supuesto será usado como tal, y no se verificará debido a la falta de datos. En consecuencia, los resultados en la presente subsección se presentan como indicios, con la idea de explorarlos en trabajos futuros.

Entonces bien, las cantidades p_{MOR} y p_{NMOR} , calculadas por separado para todos los participante y todas las derivaciones consideradas, fueron tratados como características que se distribuyen de forma aproximadamente normal sobre las poblaciones que representan los grupos CTRL y PDCL. Se efectuó un ANOVA de dos vías para observar los cambios sobre p_{MOR} y p_{NMOR} debidos al grupo y la etapa de sueño, cuyos resultados se muestran en el cuadro ??. Se encontró que no hay interacciones significativas entre los factores de etapa y grupo para ninguna derivación; así mismo se encontró que hay diferencias significativas para las derivaciones Fp2, F7, LOG y ROG que pueden ser explicadas por el *efecto* de la etapa se sueño, y de forma similar para las derivaciones LOG y ROG con el efecto de grupo.

Las diferencias para LOG y ROG debido, debidas al efecto de 'etapa de sueño', puede explicarse perfectamente por la presencia característica de movimientos oculares rápidos en el sueño MOR; en cierto sentido, este resultado era de esperarse. Las diferencias en Fp2 y F7 requieren una explicación más cautelosa, ya que el efecto es significativo en la región frontal, la cual típicamente es asociada con la toma de

decisiones; sin embargo, la significancia es débil y no es consistente sobre la región frontal. Para explorar más a fondo los resultados de la ANOVA, en la figura $\ref{eq:constraint}$ se han graficado (como diagramas de caja) los valores p_{MOR} y p_{NMOR} muestrales; se observa que intuitivamente las cantidades p_{MOR} y p_{NMOR} entre grupos y entre etapas, pero no resultan significativas debido a la gran variablidad dentro de las categrorías. En principio es posible justificar dicha falla por una muestra muy pequeña.

Con respecto a las diferencias entre grupos para las derivaciones LOG y ROG, puede decirse que recientemente se ha sugerido que es posible detectar diferencias entre sujetos con y sin DCL usando registros de –entre otras derivaciones– movimientos oculares [articulo??].

Cuadro 5.5: ANOVA para los efectos Grupo y Etapa de sueño sobre las cantidades p_{MOR} y P_{NMOR}.

	CTRL	Γ			PDCL				ANOVA	VA				
	NMOR)R	MOR	دما	NMOR	R	MOR		Grupo	0	Etapa		$G \times E$	
	M	DE	M	DE	M	DE	M	DE	ഥ	d	됴	d	ഥ	d
Fp2	.172	.040	.063	.058	.106	.084	.037	070.	2.08	.171	7.51	.016	.40	.537
Fp1	.175		.091	.115	.108	.105	.045	220.	1.53	.237	2.48	.138	.05	.829
F8	.193		.147	.133	.125	820.	680.	.140	1.43	.252	09.	.453	.01	.918
F7	.190		220.	920.	.126	960:	.055	.106	1.09	.314	4.81	.046	.25	.621
F4	.200		.162	.145	.144	.125	.152	.151	.30	.595	.04	.836	.14	.716
F3	.199		.144	660.	.151	.138	.171	.230	.02	890	.03	.858	.27	.610
T4	.224		.212	.171	.162	.078	.262	.190	.01	.926	.57	.461	.71	.414
T3	.272		.281	.148	.187	095	.245	.207	.79	.390	.28	.603	.13	.726
C4	.294		.232	.159	.169	.124	.256	.188	.53	.481	60.	.772	1.15	.301
C3	.255		.248	.115	.188	.122	.250	.180	.28	.604	.27	.614	.31	.585
9L	.315		.241	.151	.170	.093	.250	.210	.94	.349	.03	.871	1.20	.292
12	.294		.337	.231	.222	.149	.320	.178	.27	.612	.74	.403	.10	.755
P4	.258		.201	.134	.158	.100	.227	.194	.33	.576	.04	.843	.95	.345
P3	.256		.227	.138	.187	.101	.286	.190	.01	.939	.42	.526	.93	.350
02	.272		.243	.181	.183	.112	.255	.210	.26	.615	.13	.721	.47	909.
01	.278		.291	.209	.175	.117	.253	.206	.81	.383	.40	.539	.17	.685
FZ	.234		.242	.109	.168	.139	.215	.178	.55	.469	.24	.634	.10	.758
CZ	.225		.187	.111	.164	.120	.178	.127	.46	.510	.03	365	.24	.633
PZ	.229		.176	.100	.160	.119	.230	.177	.02	.904	.07	762.	1.06	.321
LOG	.505		.229	.132	.343	680.	.094	960.	9.10	600.	28.19	000.	.08	.786
ROG	.542		.305	.173	.342	.171	.143	.133	5.89	.029	8.53	.011	.07	800
EMG	.151		.162	.094	890.	.074	.139	.166	66.	.337	89.	.423	.31	.588
,	;	1	9			(,	ţ				

M=media muestral; SD=Desviación estándar; G×E=interacción Grupo y Etapa

Figura 5.5: Proporciones de épocas estacionarias, durante sueño MOR y NMOR y para todas las derivaciones. Los puntos representan valores *atípicos*, según su definición para diagramas de caja (ver sección ??). La posición de cada gráfico se corresponden con aquellos de la figura ??.

CAPÍTULO 6

Discusión y Conclusiones

Considerar a las épocas, fragmentos de registros electrofisiológicos, como unidades de estudio es equivalente a considerar como unidades de estudio a las sub-capas que componen a la corteza cerebral.

Al comparar sujetos de los grupo CTRL y PDCL, no se observaron cambios estadísticamente significativos en las cantidades p_{MOR} y p_{NMOR} , que respectivamente representan las proporciones de tiempo durante las cuales los registros de PSG se comportan como débilmente estacionario durante MOR y NMOR. En base a estos resultados, puede concluirse que los cambios en la corteza cerebral durante el PDCL no inducen cambios significativos en su *comportamiento* como estacionarios; en otras palabras, con el PDCL la actividad mantiene una parte importante de su *estructura* y es false que se vuelve más *simple*.

Comparando grupalmente la cantidad de épocas estacionarias durante MOR y NMOR, se encontró que en el grupo CTRL había diferencias significativas en sitios de la región frontal y que no eran presentes en el grupo PDCL; para poder establecer una relación con el PDC haría falta un mayor grupo muestral, o bien nuevos registros de PSG para los mismos sujetos, o incluso analizar registros de EEG durante otro tipo de actividades y confirmar las diferencias encontradas.

Cabe destacar que la evidencia aportada indica que el PSG es un conjunto de señales que se comportan como no-estacionarias durante la mayor parte del sueño,

lo cual confirma el supuesto usual de que las señales de origen biológico son por naturaleza no-estacionarias.

6.1. Conclusiones

Se ha reportado que los cambios debidos al DCL están asociados con cambios en la estructura del sueño, y en particular en la etapa MOR. Los resultados obtenidos indican que la clasificación de fragmentos de PSG como estacionarios responde a los cambios entre etapas de sueño, en particular al MOR. Sin embargo, no se pudo establecer una relación clara entre el PDCL (una forma *concreta* del DCL) y los cambios detectados usando la clasificación de estacionariedad.

Se concluye que la metodología descrita no puede usarse directamente como un marcador para el diagnóstico del PDCL. Sin embargo, tampoco puede descartarse su utilidad para dicho fin, ya que muestra diferencias significativas para los patrones de actividad cerebral en regiones fisiológicamente relevantes: ??.

Respecto a la hipótesis de estacionariedad local (presentada en la sección ??), la información recabada sugiere que dicha hipótesis se verifica para registros de PSG en adultos mayores. En otras palabras, es posible que existan fragmentos arbitrariamente cortos de registros de PSG, los cuales no corresponden a procesos estocásticos débilmente estacionarios. Paralelamente, los resultados obtenidos sugieren que la presencia de dichos fragmentos se ve influida por la etapa de sueño –o quizá en general por el estado de actividad del cerebro. Se hipotetiza que éste fenómeno explica los resultados favorables en dirección a la detección del PDCL usando la estacionariedad; en consecuencia, un mejor entendimiento de dicho fenómeno podría usarse para mejorar la metodología respecto a la detección el PDCL.

El hallazgo incidental de patrones emergentes de estacionariedad (ver sección ??) sugiere que, en principio, es posible usar la clasificación de estacionariedad en registros de EEG para caracterizar estados de actividad cerebral. Esta posibilidad es interesante, pero va más allá de los objetivos del presente trabajo.

6.2. Trabajo a futuro

Los resultados obtenidos son prometedores, pero no son suficientes para declarar marcadores clínicos para el PDCL basados en la metodología descrita. En el contexto de la colaboración con el Laboratorio de Sueño, Emoción y Cognición, la metodología será automatizada para poder analizar el total de registros obtenidos en el estudio por Vázquez Tagle y colaboradores. En base a los resultados obtenidos con un número mayor de participantes, se decidirá si se inicia un nuevo estudio para validar la metodología descrita, o si debería descartarse.

De manera general, el uso de marcadores basados en registros de PSG aporta una base objetivo al diagnóstico del deterioro cognitivo, y complementa los resultados más subjetivos de pruebas neuropsicológicas; esta afirmación permanece válida para una gran variedad de señales electrofisiológicas y de trastornos mentales. Conviene destacar que las técnicas basadas en el EEG son relativamente poco *invasivas*, de bajo costo y fácil acceso, con relación a la calidad de la información obtenida y en comparación con otras técnicas para la observación del sistema nervioso central. Entonces generar marcadores diagnósticos tempranos basados en el EEG facilita su acceso para el público en general, en especial para detectar etapas tempranas del deterioro cognitivo.

En otro ámbito, los patrones emergentes de estacionariedad serán explorados en trabajos futuros.

APÉNDICE A

Puntajes para pruebas neuropsicológicas

En psicología los instrumentos de medición comunes son las pruebas neuropsicológicas, entendidas como muestras de alguna conducta de interés a las que se asignan puntajes para comparar cuantitativamente a los sujetos [?]. Para fines del presente trabajo, fueron usadas varias pruebas neuropsicológicas con el fin de identificar el PDCL (posible deterioro cognitivo leve) en adultos mayores, además de otras afecciones que relacionadas al diagnostico del PDCL. Concretamente, fueron usadas las siguientes pruebas:

- Short Anxiety Screening Test (SAST)
- Geriatric Depression Scale (GDS)
- Mini–Mental State Examination (MMSE)
- Evaluación Neuropsicológica (Neuropsi)
- Escala sobre las actividades cotidianas de la vida diaria (KATZ)

Para más información, ver sección ??. A continuación se presentan únicamente los *puntajes de corte*, puntajes para los cuales la evidencia aportada por las pruebas es indicativa de alguna característica. Este material fue retirado del texto principal para facilitar su lectura.

Cuadro A.1: Puntajes de corte para las pruebas SAST y GDS

Prueba	Puntaje	Indicación
SAST	> 24 $22 - 24$ < 22	Positivo para ansiedad No es conclusivo Negativo para ansiedad
GDS	0-4 $5-8$ $9-11$ $12-15$	Normal Depresión leve Depresión moderada Depresión severa

Fuente: Yesavage [?], Sinoff [?]

Cuadro A.2: Puntuación para la prueba KATZ

Ac	etividad	Descripción
1	Baño	Se baña completamente, o necesita ayuda sólo para jabonarse ciertas regiones (espalda, o una extremidad dañada).
2	Vestido	Saca la ropa del closet, se viste y desviste. Se excluye el anudar los cordones.
3	Uso del toilet	Llega al baño, se sienta y para del toilet, se arregla la ropa y se limpia (puede usar su propia chata en la noche y usar soportes mecánicos).
4	Movilidad	Entra y sale de la cama independientemente, se sienta y para de la silla (puede usar soporte mecánico).
5	Continencia	Controla totalmente esfinter anal y vesical.
6	Alimentación	Lleva la comida del plato a la boca (se excluye el cortar la carne o preparar la comida).

Fuente: Katz [?]. Se puntúa la dependencia para cada actividad.

Cuadro A.3: Puntajes de corte para la prueba Neuropsi

		Sano]	Deter	ioro cognitiv	0
Edad	Escolaridad	Alto	Normal]	Leve	Moderado	Severo
31 - 50	Nula	95	68		54	41	28
	1-4	105	81		69	58	46
	5 - 9	118	106		101	90	79
	10 - 24	113	102		97	88	78
51 - 65	Nula	91	59		44	28	13
	1-4	98	77		67	57	47
	5 - 9	111	98		91	79	67
	10 - 24	102	93		88	80	72
66 - 85	Nula	76	48		34	20	6
	1-4	90	61		46	32	18
	5 - 9	97	80		72	56	39
	10 - 24	92	78		72	59	46

Fuente: Ardila y Ostrosky [?]

Cuadro A.4: Puntajes de corte para la prueba MMSE

Edad	Nivel de estudios	Máximo	Deterioro
45 - 49	Elemental	23	18
	Primario	26	20
	Medio	28	22
	Superior	29	23
50 - 54	Elemental	23	18
	Primario	27	21
	Medio	28	22
	Superior	29	23
55 - 59	Elemental	22	17
	Primario	26	20
	Medio	28	22
	Superior	29	23
60 - 64	Elemental	23	18
	Primario	26	20
	Medio	28	22
	Superior	29	23
65 - 69	Elemental	22	17
	Primario	26	20
	Medio	28	22
	Superior	29	23
70 - 74	Elemental	22	17
	Primario	25	20
	Medio	27	21
	Superior	28	22
75 - 79	Elemental	21	16
	Primario	25	20
	Medio	27	21
	Superior	28	22
80 - 84	Elemental	20	16
	Primario	25	20
	Medio	25	20
	Superior	27	21

Fuente: Folstein [?]

APÉNDICE B

Cuadros y figuras adicionales

En este apéndice se muestran mayores detalles sobre los resultados obtenidas durante los análisis descritos en el capítulo ??. Este material fue excluido del texto principal con el fin de agilizar su lectura y enfatizar la interpretación de los resultados en el contexto del PDCL, más que la forma en que fueron calculados.

B.1. Total de épocas estacionarias

En esta subsección se reporta el total de segmentos de PSG clasificados como estacionarios, usando la prueba de PSR. La clasificación se efectuó de manera independiente para todas las derivaciones, y que la misma clasificación se repitió usando diferentes tamaños de ventana; se reportan todos los valores obtenidos.

Adicionalmente se reporta los resultados de aplicar la prueba χ^2 de Pearson para proporciones, usada para verificar si las proporciones de épocas estacionarias durante MOR y NMOR (p_{MOR} y p_{NMOR}) son diferentes.

Cuadro B.1: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante MJH (1/2)

	E=0.9	9375 s		E = 1.875	875 s		E = 3.75	s 22		E=7.5	5 s	
	N+W	\mathbf{R}	d	N+W	\mathbf{R}	d	N+W	\mathbf{R}	d	N+W	\mathbf{R}	d
Fp2	19401	2495	* * * *	10125	1249	* * * *	4664	559	* * * *	1710	209	*
Fp1	19529	2451	* * * *	10308	1229	* * *	4593	551	* * *	1626	201	
F8	19241	2762		10434	1396	*	4930	644	*	1844	266	
F7	18978	2679		10580	1406	* * *	5075	653	* * *	1900	258	
F4	18211	2609		10331	1539	* * *	4970	755	* * *	1908	333	* * * *
F3	18546	2665		10494	1553	* * * *	5093	908	* * *	1983	334	* * * *
T4	19982	2935	* * * *	10866	1594	* * *	5212	778	* *	1981	314	* *
T3	18556	2628		10457	1501		5190	790	* * *	2057	342	* * * *
C4	18566	2735	* * * *	10709	1605	* * * *	5284	814	* * *	2100	342	* * * *
C3	18236	2575		10553	1522		5194	798	* * *	2083	333	* * *
9L	18521	2696	* *	10815	1581	* *	5362	827	* * *	2138	364	* * * *
T_{5}	18274	2372	* * * *	10160	1332	* * * *	5297	790	*	2205	368	* * * *
P4	18330	2709	* * * *	10811	1599	* * * *	5228	819	* * * *	2087	336	* * *
P3	18336	2558		10665	1519		5260	962	* * * *	2107	334	* * *
02	16418	2228		10371	1469		5313	808	* * * *	2192	371	* * * *
01	17477	2402		10431	1407	*	5519	822	* * *	2326	376	* * * *
FZ	17630	2349	* * *	10375	1515	*	5070	804	* * * *	1998	352	* * * *
CZ	17430	2271	* * * *	10255	1467		5144	922	* * *	2041	344	* * * *
PZ	17775	2559		10683	1551	*	5359	800	* * *	2176	343	* * *
Γ OG	13116	1524	* * * *	8658	1122	* * * *	5146	809	* * * *	2495	292	* * * *
ROG	17253	2493		10092	1400		5650	734	* * * *	2544	313	* * * *
EMG	18803	1533	* * * *	8600	269	* * * *	3743	293	* * * *	1551	204	
Total	28987	4055		14493	2031		7246	1016		3623	208	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.2: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante MJH (2/2)

	CI = I	∞		E = 30	∞		E=60	s		E = 120	s 0
	N+W	R	d	N+M	ద	d	N+M	ద	d	N+W	띰
Fp2	531	29		139	12		31	2		33	⊣
Fp1	521	28		135	11		34	4		3	0
F8	623	88		187	22		48	7		6	2
F7	029	84		209	23		56	ಬ		11	3
F4	640	124	* * * *	196	32		58	12		13	\vdash
F3	681	118	*	206	37		56	10		16	П
T4	662	121	* * *	203	34		48	11		10	3
T3	292	131	*	245	49	*	72	14		17	ಬ
C4	726	128	*	225	29		62	6		15	2
C3	741	132	* * *	226	35		61	16		17	2
^{9}L	754	138	* * * *	240	40		92	16		20	4
T5	818	143	* * *	239	48	*	54	12		ಬ	2
P4	727	113		222	31		59	11		14	2
P3	756	123		242	38		74	13		13	က
02	833	139	*	248	20	*	81	17		20	က
01	860	151	* * *	251	45		73	10		10	2
FZ	732	129	* *	211	38		56	13		10	П
CZ	710	121	*	211	34		63	11		15	4
PZ	892	119		231	31		09	6		12	က
Γ OG	1045	118	* * *	373	44		137	18		39	6
ROG	1015	114	* * *	342	37		105	16		34	ಬ
EMG	564	94		192	31		54	14		19	2
Total	1811	254		902	127		436	80	0	225	33

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ***=0.001

Cuadro B.3: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante JAE (1/2)

	E=0.9	.9375 s		E = 1.875 s	875 s		E = 3.75	. s 2		E = 7.5	s	
	N+W	R	d	N+W	R	d	N+W	R	d	N+W	R	d
Fp2	14507	4093	* * * *	7993	1821		3721	902	* * * *	1303	192	* * * *
Fp1	14347	4030	* * *	7442	1742		3310	695	* * *	1120	193	* * * *
F8	14793	3322	*	8005	1959	* * *	3566	932	* * * *	1155	322	* * *
F7	14992	3985	* * *	8525	1850	* * * *	4065	785	* * * *	1539	232	* * * *
F4	14058	4133	* * *	8343	1899		3940	772	* * * *	1392	227	* * * *
F3	14529	4344	* * *	8358	2026	*	4011	875	*	1523	326	
T4	15261	4044	* * * *	8889	1908	* * * *	4134	892	* * * *	1492	227	* * * *
T3	14658	4145	* * * *	8701	2109	* * *	4065	945		1447	323	
C4	13674	3913	* * *	8764	1996		4343	937	* * *	1614	308	* * * *
C3	14129	3998	* * *	9059	2105		4431	946	* * * *	1666	336	* * *
9L	15741	4147	* * * *	9437	2189		4544	903	* * * *	1726	566	* * * *
T5	13785	3086	*	6334	994	* * * *	1968	26	* * * *	582	4	* * * *
P4	14443	3902	* * *	9373	2162		4610	986	* * * *	1750	340	* * * *
P3	15044	4011	* * * *	9208	2018	* * * *	4131	263	* * * *	1383	208	* * * *
02	13915	3499	* * * *	9107	2000	* * * *	4439	787	* * * *	1653	261	* * * *
01	14540	3799	* * *	9201	2099		4449	774	* * * *	1580	239	* * * *
FZ	15750	3093	* * * *	9103	1969	* * * *	4321	086		1618	369	
CZ	11678	3203	* * * *	8483	1916		4324	606	* * * *	1594	318	* * *
PZ	13278	3705	* * * *	9006	2084		4470	955	* * * *	1694	330	* * * *
Γ OG	10156	3057	* * * *	6989	1665	*	3924	856	*	1981	348	* * * *
ROG	10691	3127	* * * *	7337	1799	* * *	4214	892	* * * *	2096	387	* * * *
EMG	17994	1947	* * * *	8299	922	* * * *	3362	268	* * * *	1126	100	* * * *
Total	23583	5472		11791	2736		5895	1368		2947	684	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.4: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante JAE (2/2)

		E = 30	ω		E = 60	∞		E = 120 s	s 03	
	d	N+W	R	d	N+W	Ξ	d	N+W	\mathbb{R}	d
	* * * *	91	4	* * *	13	0		2	0	
	* * * *	43	2	*	6	0		П	0	
		64	14		13	3		0	0	
-V-	* * *	131	ಬ	* * *	35	0	*	3	П	
×	* * * *	88	7	*	20	0		3	0	
	*	119	13	*	29	2		2	0	
×	* * * *	93	7	* *	18	0		\vdash	0	
.,	*	132	12	* * *	38	9		7	0	
*	* * * *	151		* * * *	44	\vdash	*	9	Η	
×	* * *	152	18	*	42	2	*	4	2	
*	* * * *	147	10	* * * *	38	П	*	7	0	
*	* * * *	52	0	* * *	17	0		0	П	
*	* * * *	160	∞	* * * *	34	0	*	5	0	
X	* * * *	109	5	* * * *	38	4		7	2	
*	* * * *	119	12	*	30	3		5	П	
*	* * * *	110	13	*	31	3		4	Η	
		140	32		33	2		4	0	
~	* *	111	14		30	ಬ		2	0	
	*	125	12	*	23	33		2	0	
ŵ	* * * *	313	22	* * * *	102	33	* * * *	17	_	*
Ŷ	* * * *	334	29	* * * *	88	4	* * * *	13	ಬ	
	*	36	ರ		2	\vdash		0	0	
		736	171		365	88		201	25	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.5: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante MGG (1/2)

	E=0.3	9375 s		E = 1.875	875 s		E = 3.75	s 22		E=7.5	5	
	N+W	R	d	N+W	R	d	N+W	R	d	N+W	R	d
Fp2	17468	3349		9647	1329	* * * *	4789	477	* * * *	1860	105	* * * *
Fp1	18103	3206	* * * *	9605	1322	* * * *	4848	459	* * * *	1931	66	* * * *
F8	18312	3500		9964	1396	* * * *	4720	483	* * * *	1794	114	* * * *
F7	19079	3635		10101	1511	* * * *	4983	561	* * *	1918	150	* * * *
F4	17576	3784	* * * *	9832	1670	* * * *	4918	694	* * * *	1952	209	* * * *
F3	16864	3669	* * * *	9486	1865		4859	887	*	1892	341	
T4	18998	4037	* * * *	10424	1836	* * * *	4828	734	* * * *	1964	250	* * * *
Т3	19841	4439	* * * *	10457	2144	* * * *	5048	1003		2013	427	*
C4	17911	4024	* * * *	10511	2036		5360	939	* * * *	2318	367	* * * *
C3	17949	4036	* * * *	10240	2102	* * * *	5329	962	* * *	2248	400	
9L	18922	4132	* * * *	10985	2049	*	5398	206	* * * *	2361	355	* * * *
T5	19424	4383	* * * *	10963	2237	* * * *	5593	1105		2463	475	
P4	17529	4023	* * * *	10926	2096		5527	961	* * * *	2360	381	* * * *
P3	17439	4114	* * * *	10757	2161	* * * *	5592	1014	* * *	2368	419	*
02	15931	3801	* * * *	10453	2013		5319	954	* * * *	2278	351	* * * *
01	15395	3933	* * * *	10166	2043	* * *	5300	975	*	2212	405	
FZ	15899	3496	* * * *	9307	1856	*	4980	858	* * * *	2063	321	* * * *
CZ	15967	3479	* * * *	9763	1930		5237	935	* * * *	2261	372	* * * *
PZ	15911	3830	* * * *	10377	2062	*	5427	926	* * * *	2237	359	* * * *
LOG	11207	2626	* * * *	7443	1240	* * *	4887	616	* * * *	2523	257	* * * *
ROG	13404	2993	* * * *	8920	1513	* * * *	5376	758	* * * *	2755	326	* * * *
EMG	14694	1424	* * * *	7664	811	* * * *	3585	392	* * * *	1549	196	* * * *
Total	27669	5312		13834	2656		6917	1328		3458	664	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.6: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante MGG (2/2)

	E = 15	\mathbf{x}		E=30	\mathbf{x}		E = 60	\mathbf{x}		E = 120 s	s 07	
	N+W	R	d	N+W	R	d	N+M	꿈	d	N+M	띰	d
Fp2	633	13	* * * *	182	_	* * * *	59	0	* * *	14	ಸು	
Fp1	672	12	* * * *	214	2	* * * *	89	0	* * * *	12	9	*
F8	617	18	* * * *	184	2	* * * *	09	0	* * *	17	ಬ	
F7	699	31	* * * *	197	2	* * * *	53	0	* * *	3	4	*
F4	663	40	* * * *	190	9	* * * *	20	2	* * *	13	4	
F3	651	97	*	206	17	* * * *	57	ರ		12	2	
T4	792	69	* * * *	270	19	* * * *	104	3	* * * *	36	ಬ	
T3	761	148		264	47		98	17		22	7	
C4	944	139	* * * *	317	31	* * * *	110	ಬ	* * * *	25	7	
C3	875	145		286	38	*	66	ည	* * *	16	4	
$^{9}\mathrm{L}$	986	127	* * * *	379	31	* * * *	143	14	* *	44	10	
T5	1053	201		397	80		159	23		57	12	
P4	906	115	* * * *	298	25	* * * *	112	3	* * * *	28	က	
P3	951	152	*	329	40	* * *	118	6	* * *	29	4	
02	833	120	* * * *	280	17	* * * *	105	<u>~</u>	* * *	22	7	
01	830	122	* * *	269	30	* * *	85	10		22	4	
FZ	745	86	* * * *	219	20	* * *	20	4		10	9	*
CZ	839	118	* * * *	260	17	* * * *	74	4	*	15	က	
PZ	833	115	* * * *	243	19	* * * *	71	9		21	4	
Γ OG	1244	87	* * * *	535	17	* * * *	208	3	* * *	89	12	
ROG	1314	121	* * * *	581	34	* * * *	219	2	* * * *	89	14	
EMG	623	83	* * *	193	34		52	~		10	0	
Total	1729	332		864	166		425	90		230	27	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.7: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante EMT (1/2)

E = 0.9375 s	E=0.9	9375 s		E = 1.875	s 228		E = 3.75	s 92		E=7.5	s	
	N+M	R	d	N+W	R	d	N+W	R	d	N+W	R	d
Fp2	2066	1022	* * * *	5300	497		2660	232		1046	91	
Fp1	11327	1079		5800	512		2824	249		1152	100	
F8	11237	1223	* * * *	6026	609	* * * *	2914	299	* * *	1156	127	*
F7	9250	831		4370	333	* * * *	1843	125	* * * *	989	46	*
F4	9364	1124	* * * *	5386	601	* * *	2677	312	* * * *	1054	143	* * * *
F3	9019	791		4753	358	* * *	2186	139	* * * *	835	49	* * * *
T4	0866	1109	* * * *	5856	623	* * *	3058	325	* * *	1241	150	* * * *
T3	11214	1242	* * * *	8909	622	* * *	2935	307	* * * *	1203	145	* * * *
C4	11399	1217	* * * *	6298	631	* * *	3136	308		1278	134	*
C3	9992	1064	* * * *	5991	592	* *	3158	304		1292	138	*
^{9}L	10723	1175	* * * *	6340	632	* * *	3173	305		1306	134	
T5	11933	1228	* * * *	8699	661	* * * *	3388	333	*	1442	149	*
P4	9854	1123	* * * *	6075	627	* * * *	3136	320	* * *	1280	152	* * * *
P3	9921	1126	* * * *	5959	627	* * * *	3088	330	* * * *	1264	148	* * * *
02	8671	1007	* * * *	5871	575	*	3183	291		1411	139	
01	10137	1193	* * * *	6408	647	* * * *	3385	330	*	1446	155	* * *
FZ	9317	1012	* * * *	5741	009	* * * *	3072	314	* * *	1291	156	* * * *
CZ	8893	1002	* * * *	5582	594	* * * *	3029	321	* * * *	1260	152	* * * *
PZ	9278	1078	* * * *	5864	634	* * * *	3074	329	* * * *	1215	145	* * * *
Γ OG	6619	640		4368	357	* * *	2739	188	* * * *	1405	88	* * * *
ROG	8338	812		5366	446	* * *	3234	247	* * * *	1640	125	* * * *
EMG	11837	418	* * * *	5634	238	* * * *	2375	124	* * * *	817	47	* * * *
Total	16287	1504		8143	752		4071	376		2035	188	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.8: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante EMT (2/2)

	다 	ß		E=30	ω		E = 60	S		E = 120	s 0.	
	N+W	R	d	N+M	R	d	N+W	R	d	N+M	씸	p
Fp2	333	26		101	9		20	0	4	2		
Fp1	419	39		124	12		29	2	П	2	*	
F8	421	49		135	15		36	7	7	3		
F7	215	15		63	4		17	П	7	Η		
F4	397	54	* * *	123	15		39	9	10	Π		
F3	272	18		85	ಬ		23	П	4	Η		
T4	431	62	* * * *	119	20	*	35	သ	∞	Π		
T3	454	59	* * *	168	18		49	7	16	4		
C4	503	52		180	21		59	10	12	3		
C3	436	53	*	118	18		35	က	9	3	*	
9L	511	53		182	19		54	∞	16	3		
T5	557	62		192	23		55	6	10	2		
P4	413	22	* * * *	113	17		28	4	2			
P3	402	228	* * * *	115	16		32	4	33	Τ		
02	260	52		167	19		55	4	14	2		
01	583	89	*	190	26	*	59	∞	14	2		
FZ	469	54		131	17		34	7	9	Η		
CZ	420	54	* *	109	14		25	4	6	Π		
ΡZ	411	52	*	106	13		29	က	4	2		
Γ OG	929	41	* * * *	287	16	*	88	9	27	ರ		
ROG	790	99		337	26		136	6	52	7		
EMG	227	22		61	∞		17	2	2	Τ		
Total	1017	94		508	47	0	250	27	128	10		

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ***=0.001

Cuadro B.9: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante CLO (1/2)

	E=0.	9375 s		E = 1.875	s 228		E=3.75	s 92		E=7.5	s	
	N+M	R	d	N+W	R	d	N+W	R	d	N+W	R	d
Fp2	17357	1892	* * * *	8651	751	* * * *	3319	265	* * * *	1048	79	* * * *
Fp1	15920	1629	* * *	7791	645	* * *	2900	232	* * * *	926	09	* * * *
F1	15130	2343	* * *	7737	1112	* * *	2813	417	*	923	151	
F7	15694	1727	* * * *	7955	720	* * * *	3204	275	* * *	1132	91	* * * *
F4	14774	2381		8313	1215	* * * *	3481	530		1142	189	
F3	14965	2679	* * * *	8494	1393		3789	989	* * *	1401	268	*
T4	15644	2680	* * *	7792	1270		2716	511	* * * *	937	195	* * *
T3	15835	2834	* * *	7904	1359	* *	3709	902	* * * *	1364	302	* * * *
C4	14687	2784	* * *	7914	1353	*	3512	615	*	1215	239	* * *
C3	13715	2758	* * * *	7845	1495	* * *	3792	750	* * * *	1411	321	* * * *
9L	15214	2852	* * * *	8077	1321		3154	531		1074	189	
T_{2}	16147	2987	* * * *	7701	1281		3513	625	* *	1260	258	* * * *
P4	15131	3007	* * * *	2268	1424		3772	638		1271	220	
P3	16256	3029	* * * *	9283	1412	* * * *	4449	089	*	1643	266	
02	15902	2938	* * * *	8225	1202	* * * *	3062	542	*	1035	217	* * * *
01	13673	2602	* * * *	8306	1232	* * * *	3718	546	* * *	1233	188	
FZ	14825	2631	* * * *	8455	1462	* * *	3834	717	* * * *	1404	308	* * * *
CZ	14449	2663	* * * *	8681	1423		3983	029		1436	242	
PZ	14720	2729	* * * *	9110	1366	* * * *	4242	625	* * *	1482	228	
Γ OG	4506	829		4192	444	* * * *	2846	227	* * * *	1472	96	* * * *
ROG	2731	481		3045	430	*	2211	297	* * *	1311	140	* * * *
EMG	19223	3308	* * * *	8211	1503	* * * *	2861	662	* * * *	794	273	* * * *
Total	26004	4224		13002	2112		6501	1056		3250	528	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.10: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante CLO (2/2)

	E = 15	w		E=30	s		E=60	w		E = 120 s	20 s	
	N+W	R R	d	N+M	R	d	N+W	R	d	N+M	R	d
Fp2	301	22	* * * *	69		* *	16	0		3	0	
Fp1	249	19	* * *	63	0	* * *	18	0		2	0	
F8	263	38		69	9		24	Τ		4	0	
F7	342	32	* * *	87	4	*	25	0		4	0	
F4	338	53		88	10		20	П		4	0	
F3	416	79		94	14		18	0		3	0	
T4	308	59		94	7		27	П		7	0	
T3	491	133	* * * *	155	34		38	13		10	0	
C4	359	89		93	11		30	П		7	0	
C3	454	115	* * * *	107	20		24	0		5	0	
^{9}L	341	49		84	9		26	0		9	0	
T5	444	102	* * *	148	20		42	2		10	0	
P4	330	58		70	7		20	П		9	0	
P3	537	78		121	12		33	2		3	0	
02	288	55		61	9		16	0		3	0	
01	312	40		89	ಬ		15	0		2	0	
FZ	446	06		106	17		29	П		3	0	
CZ	417	64		102	10		29	П		2	0	
PZ	378	55		98	10		14	П		4	0	
Γ OG	624	31	* * * *	214	9	* * * *	61	0	* * *	16	0	
ROG	586	55	* * * *	176	11	* * *	99	3	*	19	\vdash	
EMG	174	92	* * * *	41	29	* * * *	7	4		0	0	
Total	1625	264		812	132		402	20		215	21	
		,										

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.11: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante RLO (1/2)

	E=0.9	0.9375 s		E = 1.875	875 s		E = 3.75	22 s		E = 7.5	S S	
	N+W	\mathbf{R}	d	N+W	\mathbf{R}	d	N+W	\mathbf{R}	d	N+W	\mathbf{R}	d
Fp2	14496	2338	* * * *	8048	1123	*	3951	544		1515	225	*
Fp1	14532	2304	* * * *	8182	1146	* *	4110	549		1693	238	
F8	15475	2491	* * * *	8224	1220	* * * *	3748	605	* * * *	1331	253	* * * *
F7	15459	2351	* * * *	8462	1187	* * *	4083	579	*	1622	248	* *
F4	14238	2400	* * * *	8317	1214	* * * *	4294	653	* * * *	1756	292	* * * *
F3	14011	2374	* * * *	8380	1290	* * * *	4395	675	* * * *	1889	319	* * * *
T4	16055	2480	* * *	8614	1296	* * *	4120	640	* * * *	1613	315	* * * *
T3	16686	2539	* * * *	8807	1328	* * *	4037	645	* * * *	1574	297	* * * *
C4	14199	2361	* * *	8507	1270	* * * *	4465	672	* * * *	1913	308	* * * *
C3	14241	2339	* * *	8547	1294	* * *	4481	099	* * * *	1883	309	* * * *
9L	15273	2408	* * * *	8380	1276	* * * *	3746	611	* * * *	1519	281	* * * *
T5	15350	2504	* * * *	8709	1291	* * * *	4286	659	* * * *	1751	298	* * * *
P4	13969	2291	* * * *	8631	1277	* * * *	4337	644	* * * *	1750	288	* * * *
P3	14937	2368	* * * *	8873	1297	* * * *	4456	646	* * * *	1837	305	* * * *
02	13686	2227	* * * *	8540	1286	* * * *	4228	642	* * * *	1737	292	* * * *
01	13952	2260	* * * *	8513	1234	* * * *	4182	593	*	1633	292	* * * *
FZ	13600	2294	* * * *	8184	1248	* * * *	4441	674	* * * *	1925	319	* * * *
CZ	12993	2136	* * * *	8017	1207	* * * *	4278	639	* * * *	1846	301	* * * *
PZ	13530	2255	* * * *	8998	1309	* * * *	4556	664	* * * *	1913	307	* * * *
LOG	10095	1515	* * * *	8269	894		4211	451	* * * *	1991	202	* * * *
ROG	10899	1540	* * *	7280	919		4021	462	* * * *	1929	208	* * * *
EMG	19511	1848	* * * *	9193	066	* * *	3893	505		1485	239	* * * *
Total	23904	3165		11952	1584		5976	792		2988	396	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.12: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante RLO (2/2)

	E = 15	S		E=30	SO.		E=60	s (E = 120	s 03	
	N+W	R	d	N+W	씸	d	N+W	R	d	N+M	R	d
Fp2	530	74		181	16		75	4		20	2	
Fp1	605	79		218	18		86	7		16	П	
F8	470	95	* * * *	177	33		75	∞		16	П	
F7	557	95	*	211	24		79	10		18	3	
F4	029	122	* * * *	256	39		86	7		27	3	
F3	758	141	* * * *	286	22	* * *	121	15		30	3	
T4	268	132	* * * *	211	55	* * * *	94	17		25	3	
T3	629	138	* * * *	258	58	* * * *	115	21		35	ರ	
C4	750	132	* * * *	266	53	* * *	117	15		37	4	
C3	755	117		287	49		117	13		39	2	
9L	584	127	* * * *	231	41		118	6		46	3	
T5	902	137	* * * *	339	51		164	20		59	ಬ	
P4	929	116	* * * *	239	41		107	13		34	4	
P3	869	130	* * * *	254	55	* * * *	122	13		37	4	
02	229	128	* * * *	264	20	*	117	12		32	3	
01	591	116	* * * *	248	46	*	124	12		36	33	
FZ	788	136	* * * *	291	48		122	10		38	4	
CZ	711	107		252	36		100	ಬ	*	36	4	
PZ	747	120	*	258	46		113	13		35	4	
LOG	845	92	* * * *	345	17	* * * *	131	9	* * *	42	ಬ	
ROG	856	75	* * * *	335	25	* * *	143	_	* * *	48	33	
EMG	202	107	* * * *	148	39	* * * *	48	_		9	0	
Total	1494	198		747	66		371	52		193	18	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.13: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante JGZ (1/2)

	E=0.9	9375 s		E = 1.875	875 s		E = 3.75	S 22		E=7.5	s	
	N+W R	\mathbf{R}	d	N+W	R	d	N+W	\mathbf{R}	d	N+W	R	d
Fp2	22473	405	* * * *	11187	144	* * * *	4544	28	* * * *	1476	ಬ	* * * *
Fp1	24354	516	* * *	12138	207	* * *	5128	22	* * *	1607	19	* * * *
F8	25292	618	* * *	12276	211	* * *	5030	63	* * *	1623	13	* * * *
F7	26345	654	* * * *	12931	258	* * * *	5999	06	* * * *	1842	21	* * * *
F4	24272	735	* * *	11966	340		5072	156		1728	59	
F3	24912	848	* * * *	13264	433	* * *	6015	192	* *	2061	28	* * *
T4	26346	803	* * *	13146	356		5574	124	* * * *	1933	41	*
T3	28557	822		14248	373	* *	6156	157		2252	99	
C4	25019	774	* * * *	13174	404	* * *	2960	183		2119	92	*
C3	25606	826	* * *	13414	413	* * *	6016	205	* * * *	2127	85	* * * *
9L	26967	784		13737	370		5998	156		2051	48	
T5	27302	814	* * *	13630	407	*	5777	177		1960	89	*
P4	25865	815	* * * *	13757	397		9209	173		2066	69	
P3	26275	841	* * * *	13948	424	* * *	6221	204	* * * *	2234	80	* *
02	26688	814	* * * *	14283	416		6345	181		2271	64	
01	25686	785	* * * *	14384	388		6616	188		2401	22	
FZ	24179	771	* * * *	13192	406	* * *	6186	192	*	2229	84	* * * *
CZ	23969	969		13019	387		6021	184		2197	74	*
PZ	24627	780	* * * *	13491	398		6127	182		2093	65	
Γ OG	19899	467	* * * *	11246	237	* * *	2809	107	* * * *	2741	39	* * * *
ROG	20365	445	* * * *	11923	235	* * *	9209	114	* * * *	2740	42	* * * *
EMG	26396	535	* * * *	11252	179	* * *	4224	38	* * * *	1327	10	* * * *
Total	37598	1056		18799	528		9399	264		4699	132	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.14: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante JGZ (2/2)

	E = 15	SO.		E = 30	∞		E = 60	s		E = 120 s	s 0
	N+W	ద	d	N+M	R	d	N+W	跖	d	N+W	R p
Fp2	356	0	* * *	64	0		12	0			0
Fp1	376	\vdash	* * *	89	0		15	0		2	0
F8	454	П	* * * *	105	0		19	П		5	0
F7	513	4	* * *	109	0		22	Η		9	0
F4	455	∞		87	2		20	0		4	0
F3	554	22		114	3		26	0		3	0
T4	551	∞		138	ಬ		36	\vdash		10	0
T3	670	14		156	7		40	\vdash		10	0
C4	562	27	* * *	111	9		28	0		10	0
C3	260	27	* * *	114	9		21	0		10	0
9L	568	13		129	Τ		41	П		∞	0
T5	554	18		108	9		26	2		4	0
P4	525	14		115	Τ		30	0		∞	0
P3	582	19		138	9		34	0		10	0
02	599	15		152	4		46	2		14	0
01	629	23		147	2		36	\vdash		10	0
FZ	674	30	*	126	∞	*	23	Η		ರ	0
CZ	591	18		105	4		20	0		9	0
ΡZ	510	15		100	3		23	0		9	0
LOG	1089	10	* * * *	339	0	* * * *	85	2		18	0
ROG	1094	13	* * * *	356	\vdash	* * *	105	က		28	0
EMG	335	7		20	П		13	2		2	0
Total	2349	99		1174	33		570	33		291	10

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.15: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sue $\tilde{n}o$; participante AEFP(1/2)

	E = 0.9	9375 s		E = 1.875	875 s		E = 3.75	s 22		E = 7.5	s	
	N+W R	R	d	N+W	R	d	N+W	R	d	N+W	R	d
Fp2	20416	750	* * * *	9428	287	* * * *	3523	84	* * * *	939	22	* * * *
	20488	824	* * *	9702	329	* * *	3737	90	* * * *	953	20	* * * *
	18772	764	* * * *	7984	303	* * *	2016	69	*	448	14	
	20445	782	* * *	8978	260	* * *	2702	34	* * *	531	11	*
	19954	985	* * *	9462	407		3694	163		1048	37	
	17686	816		8794	298	* * *	2999	22	* * * *	625	10	* * * *
	19624	296	* * *	8973	478	* * *	3052	199	* * * *	947	73	* * * *
	19229	661	* * * *	8645	199	* * *	2546	39	* * * *	695	∞	* * * *
	20106	1029	* * * *	10274	504	* * * *	4562	228	*	1538	89	
	18638	887	* * *	9939	455		4522	211		1495	72	
	20968	1026	* * * *	10827	517	* *	4569	228	*	1584	81	
	19390	718	* * * *	8929	241	* * * *	3134	78	* * *	1028	28	* * *
	19538	890		10430	502	* * *	4628	224		1528	80	
	19538	890		10430	502	* * *	4628	224		1528	80	
	19851	957	* * * *	10709	461		4662	186	*	1683	74	
	19210	808	*	9794	366	* * * *	3729	108	* * * *	1209	42	
	19506	950	* * * *	9540	400	*	3878	129	* * * *	1024	29	* *
	19109	1006	* * * *	9747	438		4377	195		1426	55	
	19592	1005	* * * *	10574	492		4643	202		1601	20	* * *
	16723	614	* * * *	101111	349	* * * *	5374	175	* * * *	2519	78	* * * *
	8949	274	* * * *	4844	155	* * * *	2058	63	* * * *	752	25	
	19759	709	* * * *	2002	187	* * * *	1828	40	* * * *	435	11	
	29332	1309		14666	929		7333	328		3666	164	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.16: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante AEFP (2/2)

	E = 15	ß		E=30	w		E=60	s		E = 120 s	s 0	
	N+W	R	d	N+W	R	d	N+W	~	d	N+W	씸	d
Fp2	189	ಬ		24	0		2	0		0	0	
Fp1	177	2		24	П		11	0		0	П	
F8	130	2		39	0		26	0		3	П	
F7	110	3		21	0		14	0		2	0	
F4	172	11		18	Н		∞	\vdash		0	0	
F3	80	4		13	0		8	0		0	0	
T4	344	29	* * * *	87	10	* *	35	9		9	0	
T3	324	\mathcal{D}	*	92	2		99	2		22	П	
C4	313	17		45	ಬ		18	3		9	П	
C3	332	15		06	2		42	3		6	0	
^{9}L	437	26		96	11	* *	48	3		9	0	
T5	381	21		96	10	*	53	ಬ		6	ಬ	* * * *
P4	379	24		98	∞		42	∞	*	10	0	
P3	379	24		98	∞		42	∞	*	10	0	
02	462	26		111	9		45	7	*	12	0	
01	314	23	*	63	10	* * * *	30	က		9	П	
FZ	148	3		16	0		8	2		\vdash	0	
CZ	233	10		35	က		17	Н		\vdash	0	
PZ	329	19		49	9	*	22	\vdash		33	0	
Γ OG	1045	31	* * *	378	6	*	117	4		35	2	
ROG	1243	40	* * * *	531	13	* * *	246	4	* * * *	92	6	
EMG	109	ಬ		21	2		2	0		0	0	
Total	1833	82		916	41		450	28		225	14	
				;								

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.17: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante PCM (1/2)

	E=0.9	9375 s		E = 1.875	875 s		E = 3.75	S 22		E=7.5	s	
	N+W R	R	d	N+W	R	d	N+W	R	d	N+W	R	d
Fp2	14507	1145	* * * *	7286	501	* * * *	3478	185	* * * *	1322	09	* * * *
Fp1	14717	1132	* * *	7329	452	* * *	3366	166	* * *	1172	51	* * * *
F8	14988	1311		7838	597	* * *	3831	256	* * *	1529	96	* * * *
F7	14883	1166	* * *	7319	436	* * *	3201	167	* * * *	1188	45	* * * *
F4	14008	1417	* * * *	7691	701	* * *	3840	326		1556	132	
F3	14376	1383	* * * *	7719	644		3708	279	* * *	1462	106	*
T4	15465	1430	* * *	8244	7111		4054	358		1673	160	*
T3	14723	1278		6948	495	* * *	2955	195	* * *	1104	89	
C4	13990	1534	* * *	2908	804	* * *	4183	408	* * *	1771	189	* * * *
C3	14195	1560	* * *	7912	222	* * *	3924	383	* * *	1626	175	* * * *
9L	14937	1510	* * *	8361	789	* * *	4174	392	* * *	1732	181	* * * *
T5	13468	1180		6220	441	* * *	2184	120	* * * *	824	29	
P4	13909	1589	* * * *	8219	812	* * * *	4203	395	* * * *	1723	184	* * * *
P3	14063	1535	* * * *	7761	757	* * * *	3652	358	* * * *	1497	174	* * * *
02	14000	1489	* * * *	8081	992	* * * *	4018	381	* * * *	1691	164	*
01	13245	1342	* * * *	7269	643		3082	263		1261	126	*
FZ	13292	1431	* * * *	7682	725	* * * *	3913	359	*	1573	157	*
CZ	13508	1517	* * * *	8005	783	* * * *	4097	403	* * * *	1709	173	* * *
PZ	13407	1598	* * * *	8168	814	* * * *	4204	404	* * * *	1744	186	* * * *
Γ OG	8803	671	* * *	5397	319	* * * *	2895	141	* * * *	1302	22	* * * *
ROG	7731	715	*	4778	344	* * * *	2385	106	* * * *	1026	31	* * * *
EMG	14417	36	* * * *	6803	21	* * * *	2836	10	* * * *	876	2	* * * *
Total	22218	1887		11109	944		5554	472		2777	236	

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

Cuadro B.18: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante PCM (2/2)

N+W R p N+W R 417 11 **** 84 1 324 11 *** 59 1 425 11 *** 59 1 425 10 *** 118 4 531 48 *** 101 5 590 69 *** 101 5 600 70 *** 161 21 600 70 *** 162 24 624 83 **** 162 24 620 85 **** 162 24 620 85 **** 162 24 633 83 **** 162 27 600 63 *** 159 15 600 81 **** 169 2 83 **** 160 2 2 600 82 **** 159 <	ਸੂ ਜ	30 s		E = 60 s		E = 120 s	∞
417 11 **** 84 1 324 11 *** 59 1 425 10 *** 118 4 425 10 *** 118 4 531 48 122 12 501 27 ** 101 5 600 69 *** 139 18 600 70 *** 157 22 624 83 **** 153 29 616 81 **** 153 30 620 85 **** 162 24 620 85 **** 162 24 633 83 **** 164 27 633 83 **** 159 15 600 69 *** 159 15 600 81 **** 159 2 376 5 **** 199 2 376 5 **** 113 2 4 5 <th></th> <th></th> <th>d</th> <th>N+W R</th> <th>d</th> <th>N+W</th> <th>R p</th>			d	N+W R	d	N+W	R p
324 11 *** 59 1 425 25 *** 118 4 425 10 **** 118 4 531 48 122 12 12 501 27 ** 101 5 633 81 *** 139 18 624 83 **** 157 22 626 83 **** 157 22 620 81 **** 153 30 620 85 **** 162 24 633 83 **** 162 24 633 83 **** 162 27 600 69 *** 169 15 600 81 **** 159 15 600 81 **** 169 2 7 *** 169 2 83 *** 184 27 80 *** 160 13 80 *** 160 1		-	*	0 6		2	0
527 25 *** 118 4 425 10 **** 87 0 531 48 122 12 501 27 ** 101 5 474 35 115 7 600 70 *** 161 21 624 83 **** 153 29 616 81 *** 153 20 620 74 **** 162 24 620 85 **** 162 24 633 83 **** 164 27 638 83 **** 164 27 600 69 *** 164 27 600 81 **** 159 15 600 81 **** 169 2 600 81 **** 169 2 83 **** 169 2 2 84 17 *** 147 22 85 13 ***				3 0		0	0
425 10 **** 87 0 531 48 122 12 501 27 ** 101 5 474 35 115 7 600 70 *** 161 21 600 70 *** 157 22 616 81 *** 153 29 620 85 **** 162 24 633 83 **** 162 24 633 83 **** 184 27 600 69 *** 159 15 600 81 **** 159 15 600 81 **** 169 2 83 **** 160 2 83 **** 160 2 80 81 **** 159 15 80 81 **** 160 2 80 81 **** 160 2 80 82 **** 160 2<		4		15 0		П	0
531 48 122 12 501 27 ** 101 5 590 69 *** 139 18 474 35 115 7 600 70 *** 161 21 624 83 **** 153 29 616 81 *** 193 30 620 74 **** 162 24 620 85 **** 162 24 633 83 **** 184 27 600 69 *** 159 15 600 81 **** 159 15 609 81 **** 169 2 376 376 5 **** 139 2 376 376 5 **** 139 2		0	*	17 0		\vdash	0
501 27 *** 101 5 590 69 **** 139 18 474 35 115 7 633 81 **** 161 21 600 70 *** 157 22 616 81 **** 193 30 620 85 **** 162 24 620 85 **** 162 24 633 83 **** 184 27 600 69 **** 159 15 600 81 **** 169 2 547 54 *** 162 24 600 89 **** 169 15 600 81 **** 169 2 546 13 **** 169 2 547 5 *** 169 2 600 82 *** 169 2 600 81 *** 169 2 7 <td< td=""><td>122</td><td>12</td><td></td><td>18 1</td><td></td><td>2</td><td>0</td></td<>	122	12		18 1		2	0
590 69 *** 139 18 474 35 115 7 633 81 **** 161 21 600 70 *** 157 22 616 81 **** 153 29 616 81 **** 193 30 620 74 **** 162 24 648 72 ** 164 27 633 83 **** 184 27 600 69 *** 159 15 600 81 **** 147 22 3 586 13 **** 199 2 3 586 13 **** 113 2		ಬ		19 0		\vdash	0
474 35 115 7 633 81 **** 161 21 600 70 *** 157 22 616 81 **** 153 29 616 81 **** 193 30 620 74 **** 162 24 648 72 ** 164 27 633 83 **** 184 27 600 69 *** 159 15 609 81 **** 147 22 376 13 **** 199 2 376 13 **** 113 2		18		20 5		3	0
633 81 **** 161 21 600 70 **** 157 22 624 83 **** 153 29 616 81 **** 193 30 596 74 **** 162 24 620 85 **** 162 24 648 72 ** 184 27 633 83 **** 184 27 600 69 *** 159 15 609 81 **** 147 22 376 13 *** 199 2 376 5 **** 113 2	115	7		29 0		3	0
600 70 *** 157 22 616 81 **** 153 29 616 81 **** 193 30 620 74 **** 162 24 648 72 ** 164 27 633 83 **** 184 27 600 69 *** 159 15 609 81 **** 147 22 376 13 **** 199 2 376 5 **** 113 2		21		33 5		∞	П
624 83 **** 153 29 616 81 **** 193 30 596 74 **** 134 26 620 85 **** 162 24 648 72 ** 164 27 633 83 **** 184 27 600 69 *** 159 15 609 81 **** 147 22 376 13 **** 199 2 376 5 **** 113 2		22	*	30 4		4	П
616 81 **** 193 30 596 74 **** 134 26 620 85 **** 162 24 648 72 ** 164 27 633 83 **** 184 27 547 54 134 13 13 600 69 *** 159 15 609 81 **** 147 22 376 13 **** 199 2 376 5 **** 113 2			* * * *	29 6		6	0
596 74 **** 134 26 620 85 **** 162 24 648 72 ** 164 27 633 83 **** 184 27 547 54 134 13 600 69 *** 159 15 609 81 **** 147 22 376 13 **** 199 2 376 5 **** 113 2		30	* * *	57 16	* * * *	15	П
620 85 **** 162 24 648 72 ** 164 27 633 83 **** 184 27 547 54 134 13 600 69 *** 159 15 609 81 **** 147 22 3 586 13 **** 199 2 3 376 5 **** 113 2			* * * *	35 5		9	0
648 72 ** 164 27 633 83 **** 184 27 547 54 134 13 600 69 *** 159 15 609 81 **** 147 22 3 586 13 **** 199 2 3 376 5 **** 113 2			*	40 6		∞	П
633 83 **** 184 27 547 54 13 134 13 600 69 *** 159 15 609 81 **** 147 22 3 586 13 **** 199 2 3 376 5 **** 113 2		27	* * *	36 7		4	П
547 54 134 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 <		27	* *	55 12	*	6	\vdash
600 69 *** 159 15 609 81 *** 147 22 3 586 13 *** 199 2 3 376 5 **** 113 2	134	13		27 0		3	0
609 81 **** 147 22 586 13 **** 199 2 376 5 **** 113 2		15		32 4		4	2
586 13 **** 199 2 376 5 **** 113 2		22	*	29 3		ಬ	П
376 5 **** 113 2		2	* * * *	51 0		7	П
	****	2	*	26 0		10	0
EMG 162 0 **** 18 0		0		2 0		0	0
Total 1388 118 694 59	694			346 30		178	10

E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W y R: *=0.05, **=0.01, ***=0.005, ****=0.001

B.2. Efecto del tamaño de ventana

En la sección ?? se planteó la idea de que las proporciones de épocas estacionarias durante MOR y NMOR (p_{MOR} y p_{NMOR}) pueden depender del tamaño de ventana utilizado. Esta idea nace de la hipótesis de estacionariedad local, descrita en la sección ??, según la cual los registros de PSG son efectivamente heterogéneos pero pueden verse como una colección de pequeños fragmentos homogéneos. Bajo la hipótesis de estacionariedad local, el algoritmo descrito debería ser afectado por el tamaño de ventana considerado.

En la figura $\ref{eq:posterior}$ se representa el cambio en las cantidades p_{MOR} y p_{NMOR} debido al cambio en el tamaño de ventana. Dicha figura fue calculada para un participante en particular, y en esta sección se muestra la misma figura para todos los participantes.

En la figura ?? se representan las épocas estacionarias en el tiempo, según la derivación a la cual corresponden. Durante la parte final del texto, se mencionó repetidamente que la apariencia de estos gráficos indican intuitivamente que la metodología descrita es sensible a algún tipo de actividad cerebral estructurada. Esta afirmación se basa particularmente en las gráficas de todos los sujetos en conjunto; dichos gráficos se muestran en la presente subsección. Conviene mencionar que estos gráficos fueron retirados del texto principal por ser muy espaciosos.

Figura B.1: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura ??. Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

Figura B.2: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura ??. Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

Figura B.3: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura ??. Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

Figura B.4: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura ??. Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

Figura B.5: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura **??**. Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

Figura B.6: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura ??. Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

Figura B.7: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura **??.** Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

Figura B.8: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura ??. Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

Figura B.9: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura **??**. Sea abrevia W = vigilia, recordando que la cantidad tiempo de los registros clasificada como vigilia es negligible.

Figura B.10: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.11: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.12: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.13: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.14: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.15: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.16: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.17: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.18: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.19: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.20: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.21: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.22: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.23: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.24: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.25: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.26: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura B.27: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.