数学クォータ科目「数学」第4回(1/3)

1変数関数の積分

佐藤 弘康 / 日本工業大学 共通教育学群

不定積分

- 関数 f(x) に対し、F'(x) = f(x) を満たす関数 F(x) のことを「f(x) の原始関数」という.
- F(x) が f(x) の原始関数ならば、任意の定数 C を加えた関数 F(x) + C も f(x) の原始関数である.
 - o なぜなら、定数関数の微分は 0 だから、F'(x) = f(x) ならば、(F(x) + C)' = F'(x) + (C)' = f(x) である.
 - \circ つまり, f(x) の原始関数は一意には決まらず, 無数に存在する.
- F(x) + C のことを「f(x) の不定積分」とよび、 $\int f(x) dx$ と書く;

$$\int f(x) dx = F(x) + C \qquad (C を積分定数とよぶ)$$

● 不定積分とは「f(x) の原始関数全体を表すもの」と解釈できる.

定積分

• $a \le x \le b$ で定義された関数 f(x) に対し, $\int_a^b f(x) dx$ を

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

と定める(ただし, F(x) は f(x) の原始関数).

- o 右辺の F(b) F(a) を $[F(x)]_a^b$ と表す.
- $\circ f(x)$ の原始関数は無数にあるが, $[F(x)]_a^b$ の値は一意的に定まる.
- $\int_a^b f(x) dx$ を「関数 f(x) の x = a から x = b までの定積分」という.
- 厳密には「リーマン和の極限」として定義される。

• 区間 $a \le x \le b$ で定義された有界な関数 f(x) を考える. (つまり, |f(x)| < K を満たす)

- 区間 $a \le x \le b$ を n 個の小区間に分割. つまり、
 - 区間内に (n-1) 個の分点を選ぶ; $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$
 - このような大小関係をもつ点を「区間の分割」とよぶ(△と表す).

- 各小区間 $x_{i-1} \le x \le x_i$ から ξ_i を適当に選ぶ($x_{i-1} \le \xi_i \le x_i$).
- 以上により定まる $R(\Delta; \{\xi_1, \xi_2, \dots, \xi_n\}) := \left| \sum_{i=1}^n f(\xi_i) (x_i x_{i-1}) \right|$ を

リーマン和とよぶ.

- リーマン和 $R(\Delta; \{\xi_1, \xi_2, \dots, \xi_n\}) := \sum_{i=1}^n f(\xi_i)$ $(x_i x_{i-1})$ の意味は?
 - \circ は小区間の幅なので、右辺 Σ 記号の中身は、小区間を底辺とし、高さが $f(\xi_i)$ の長方形の面積と解釈できる.

- リーマン和 $R(\Delta; \{\xi_1, \xi_2, \dots, \xi_n\}) := \sum_{i=1}^n f(\xi_i)$ $(x_i x_{i-1})$ の意味は?
 - o つまり、関数 y = f(x) のグラフと x 軸、直線 x = a, x = b で囲まれた 図形の面積を長方形の面積の和で近似したものである.

- この分割を細かくし、さらに分割の各小区間の横幅が 0 に近づくよう極限をとる(これを $||\Delta|| \to 0$ と表す).
- ここで、分割 Δ における小区間の幅の最大値 $\max_i(x_i x_{i-1})$ を、分割のノルムといい、 $\|\Delta\|$ と表す.

リーマン和の極限としての定積分

- リーマン和の極限 $\lim_{\|\Delta\|\to 0} R(\Delta; \{\xi_1, \xi_2, \dots, \xi_n\})$ が分割 Δ と点 $\xi_1, \xi_2, \dots, \xi_n$ の選び方に依らずに一定値 I に収束するとする.
- このとき, I を「f(x) の [a,b] における定積分」とよび, $I = \int_a^b f(x) dx$ と書く.

§4.1「1変数関数の積分」

数学クォータ科目「数学」(担当:佐藤 弘康) 9/12

リーマン和の極限としての定積分

• $f(x) \ge 0$ かつ連続関数ならば、定積分 $\int_a^b f(x) dx$ は、関数 y = f(x) のグラフと x 軸、直線 x = a, x = b で囲まれた図形の面積と解釈できる.

問 なぜ,
$$\int_a^b f(x) dx = [F(x)]_a^b$$
 と計算できるのか?

微分積分学の基本定理

定理

$$S(x) = \int_a^x f(t) dt$$
 とおく. このとき、 $S'(x) = f(x)$ が成り立つ.

(証明の概略) ※ものすごく大雑把

● 導関数とリーマン和の定義より、

$$S'(x) = \lim_{h \to 0} \frac{S(x+h) - S(x)}{h}$$
$$= \lim_{h \to 0} \frac{f(\xi)h}{h} = \lim_{h \to 0} f(\xi) = f(x).$$

※ 厳密には中間値の定理を用いて証明する.

定積分と不定積分の関係

• 微分積分学の基本定理 $S'(x) = \frac{d}{dx} \int_a^x f(t) dt = f(x)$ から、

S(x) は f(x) の原始関数のひとつであることがわかる.

- つまり, f(x) の原始関数 F(x) を用いて, S(x) = F(x) + C と書ける.
- S(a) = 0 と定めると, C = -F(a) である. したがって,

$$\int_{a}^{b} f(x) dx = S(b) = F(b) + \underline{C} = F(b) - \underline{F(a)}$$

となる.

• $\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b}$