Homework Chapter 4.1~4.3

1.

Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator. If

$$L((2,3)^T) = (3,-2)^T$$

and

$$L((-1,1)^T) = (1,4)^T$$

find the value of $L((8,7)^T)$.

2.

For each of the following linear transformations L mapping \mathbb{R}^3 into \mathbb{R}^2 , find a matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^3 :

- (a) $L((x_1, x_2, x_3)^T) = (x_3, x_3)^T$
- **(b)** $L((x_1, x_2, x_3)^T) = (x_1 + x_2 + x_3, 0)^T$
- (c) $L((x_1, x_2, x_3)^T) = (3x_1, -2x_2)^T$

3.

Let L be the linear operator on \mathbb{R}^3 defined by

$$L(\mathbf{x}) = \begin{bmatrix} x_1 + 2x_2 - 3x_3 \\ x_2 + 2x_1 - x_3 \\ x_3 + x_2 - 2x_1 \end{bmatrix}$$

Determine the standard matrix representation A of L, and use A to find $L(\mathbf{x})$ for each of the following vectors \mathbf{x} :

(a)
$$\mathbf{x} = (1, 1, 1)^T$$

(b)
$$\mathbf{x} = (3, -2, 1)^T$$

(c)
$$\mathbf{x} = (4, 5, 1)^T$$

4.

Find the standard matrix representation for each of the following linear operators:

- (a) L is the linear operator that rotates each x in \mathbb{R}^2 by 45° in the clockwise direction.
- (b) L is the linear operator that reflects each vector \mathbf{x} in \mathbb{R}^2 about the x_1 -axis and then rotates it 90° in the counterclockwise direction.
- (c) L doubles the length of x and then rotates it 30° in the counterclockwise direction.
- (d) L reflects each vector x about the line x₂ = x₁ and then projects it onto the x₁-axis.

5.

Let L be the linear transformation on \mathbb{R}^3 defined by

$$L(\mathbf{x}) = \begin{cases} 2x_1 - x_2 - x_3 \\ 2x_2 - x_1 - x_3 \\ 2x_3 - x_1 - x_2 \end{cases}$$

and let A be the standard matrix representation of L (see Exercise 4 of Section 4.2). If $\mathbf{u}_1 = (1, 1, 0)^T$, $\mathbf{u}_2 = (1, 0, 1)^T$, and $\mathbf{u}_3 = (0, 1, 1)^T$, then $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an ordered basis for \mathbb{R}^3 and $U = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ is the transition matrix corresponding to a change of basis from $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ to the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$. Determine the matrix B representing L with respect to the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ by calculating $U^{-1}AU$.

6.

The trace of an $n \times n$ matrix A, denoted tr(A), is the sum of its diagonal entries; that is,

$$tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$$

Show that

- (a) tr(AB) = tr(BA).
- (b) if A is similar to B, then tr(A) = tr(B).