An Example of mi Usage

Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman

06/16/2014

There are several steps in an analysis of missing data. Initially, users must get their data into R. There are several ways to do so, including the read.table, read.csv, read.fwf functions plus several functions in the foreign package. All of these functions will generate a data.frame, which is a bit like a spreadsheet of data. http://cran.r-project.org/doc/manuals/R-data.html for more information.

```
options(width = 65)
suppressMessages(library(mi))
data(nlsyV, package = "mi")
```

From there, the first step is to convert the data.frame to a missing_data.frame, which is an enhanced version of a data.frame that includes metadata about the variables that is essential in a missing data context.

```
mdf <- missing_data.frame(nlsyV)</pre>
```

```
## NOTE: In the following pairs of variables, the missingness pattern of the first is a subset of the s
## Please verify whether they are in fact logically distinct variables.
## [,1] [,2]
## [1,] "b.marr" "income"
```

The missing_data.frame constructor function creates a missing_data.frame called mdf, which in turn contains seven missing_variables, one for each column of the nlsyV dataset.

The most important aspect of a missing_variable is its class, such as continuous, binary, and count among many others (see the table in the Slots section of the help page for missing_variable-class. The missing_data.frame constructor function will try to guess the appropriate class for each missing_variable, but rarely will it correspond perfectly to the user's intent. Thus, it is very important to call the show method on a missing data.frame to see the initial guesses

```
show(mdf) # momrace is guessed to be ordered
```

```
## Object of class missing_data.frame with 400 observations on 7 variables
##
## There are 20 missing data patterns
## Append '@patterns' to this missing_data.frame to access the corresponding pattern for every observat
##
##
                           type missing method model
## ppvtr.36
                                      75
                     continuous
                                            ppd linear
## first
                                       0
                                           <NA>
                                                  <NA>
                         binary
## b.marr
                         binary
                                      12
                                            ppd logit
## income
                                      82
                     continuous
                                            ppd linear
## momage
                                       0
                                           <NA>
                                                  <NA>
                     continuous
```

40

117

momed

ordered-categorical

momrace ordered-categorical

ppd ologit

ppd ologit

```
##
##
                  family
                              link transformation
## ppvtr.36
                gaussian identity
                                      standardize
## first
                              <NA>
                                              <NA>
                    <NA>
## b.marr
                binomial
                            logit
                                              <NA>
## income
                gaussian identity
                                      standardize
## momage
                    <NA>
                              <NA>
                                      standardize
## momed
            multinomial
                            logit
                                              <NA>
## momrace
            multinomial
                            logit
                                              <NA>
```

[1,] "b.marr" "income"

mdf <- change(mdf, y = c("income", "momrace"), what = "type",</pre>

and to modify them, if necessary, using the change function, which can be used to change many things about amissing_variable, so see its help page for more details. In the example below, we change the class of the momrace (race of the mother) variable from the initial guess of ordered-categorical to a more appropriate unordered-categorical and change the income nonnegative-continuous.

```
to = c("non", "un"))

## NOTE: In the following pairs of variables, the missingness pattern of the first is a subset of the s
## Please verify whether they are in fact logically distinct variables.
## [,1] [,2]
```

```
show(mdf)
```

```
## Object of class missing_data.frame with 400 observations on 7 variables
##
## There are 20 missing data patterns
##
## Append '@patterns' to this missing_data.frame to access the corresponding pattern for every observat
##
                                     type missing method model
## ppvtr.36
                               continuous
                                                75
                                                      ppd linear
## first
                                   binary
                                                 0
                                                     <NA>
                                                             <NA>
## b.marr
                                                12
                                   binary
                                                      ppd logit
## income
                  nonnegative-continuous
                                                82
                                                      ppd linear
## income:is_zero
                                                82
                                   binary
                                                      ppd logit
## momage
                               continuous
                                                 0
                                                      <NA>
                                                             <NA>
## momed
                                                40
                      ordered-categorical
                                                      ppd ologit
## momrace
                   unordered-categorical
                                                      ppd mlogit
                                               117
##
##
                        family
                                   link transformation
## ppvtr.36
                      gaussian identity
                                            standardize
## first
                          <NA>
                                   <NA>
                                                   <NA>
## b.marr
                      binomial
                                  logit
                                                   <NA>
## income
                      gaussian identity
                                               logshift
## income:is_zero
                      binomial
                                  logit
                                                   <NA>
## momage
                          <NA>
                                   <NA>
                                            standardize
## momed
                  multinomial
                                  logit
                                                   <NA>
## momrace
                  multinomial
                                  logit
                                                   <NA>
```

Once all of the missing_variables are set appropriately, it is useful to get a sense of the raw data, which can be accomplished by looking at the summary, image, and / or hist of a missing_data.frame

summary(mdf)

```
ppvtr.36
##
                           first
                                             b.marr
##
            : 41.00
                              :0.000
                                        Min.
                                                :0.0000
                       Min.
                                        1st Qu.:0.0000
    1st Qu.: 74.00
                       1st Qu.:0.000
    Median : 87.00
                       Median :0.000
                                        Median :1.0000
##
##
    Mean
           : 85.94
                       Mean
                              :0.435
                                        Mean
                                                :0.7062
##
    3rd Qu.: 99.00
                       3rd Qu.:1.000
                                        3rd Qu.:1.0000
##
    Max.
            :132.00
                       Max.
                              :1.000
                                        Max.
                                                :1.0000
    NA's
            :75
                                        NA's
##
                                                :12
##
        income
                                              momed
                            momage
                                                           momrace
##
                   0
                       Min.
                                :16.00
    Min.
                                         Min.
                                                 :1.000
                                                           1
                                                               : 55
                                         1st Qu.:1.000
##
    1st Qu.:
                8590
                        1st Qu.:22.00
                                                               : 80
##
    {\tt Median} :
               17906
                       Median :24.00
                                         Median :2.000
                                                               :148
               32041
                                :23.75
                                         Mean
                                                 :2.042
##
    Mean
                       Mean
                                                           NA's:117
##
    3rd Qu.:
               31228
                        3rd Qu.:26.00
                                         3rd Qu.:3.000
            :1057448
                                :32.00
                                                 :4.000
##
    Max.
                        Max.
                                         Max.
##
    NA's
            :82
                                         NA's
                                                 :40
```

image(mdf)

Dark represents missing data

Standardized Variable Clustered by missingness

hist(mdf)

Next we

use the mi function to do the actual imputation, which has several extra arguments that, for example, govern how many independent chains to utilize, how many iterations to conduct, and the maximum amount of time the user is willing to wait for all the iterations of all the chains to finish. The imputation step can be quite time consuming, particularly if there are many missing_variables and if many of them are categorical. One important way in which the computation time can be reduced is by imputing in parallel, which is highly recommended and is implemented in the mi function by default on non-Windows machines. If users encounter problems running mi with parallel processing, the problems are likely due to the machine exceeding available RAM. Sequential processing can be used instead for mi by using the parallel=FALSE option.

```
rm(nlsyV)  # good to remove large unnecessary objects to save RAM
options(mc.cores = 2)
imputations <- mi(mdf, n.iter = 30, n.chains = 4, max.minutes = 20)
show(imputations)</pre>
```

Object of class mi with 4 chains, each with 30 iterations.

Each chain is the evolution of an object of missing_data.frame class with 400 observations on 7 vari

The next step is very important and essentially verifies whether enough iterations were conducted. We want the mean of each completed variable to be roughly the same for each of the 4 chains.

```
round(mipply(imputations, mean, to.matrix = TRUE), 3)
```

```
##
                      chain:1
                              chain:2 chain:3 chain:4
## ppvtr.36
                       -0.009
                               -0.006
                                         0.000
                                                 -0.005
## first
                        1.435
                                1.435
                                         1.435
                                                  1.435
## b.marr
                        1.685
                                1.685
                                         1.688
                                                  1.690
## income
                        9.501
                                9.508
                                         9.545
                                                  9.532
                                         0.000
## momage
                        0.000
                                0.000
                                                  0.000
```

```
## momed
                       2.042
                               2.053
                                        2.022
                                                 2.025
## momrace
                       2.270
                               2.275
                                        2.283
                                                 2.308
                                                 0.188
## missing_ppvtr.36
                       0.188
                               0.188
                                        0.188
## missing_b.marr
                       0.030
                               0.030
                                        0.030
                                                0.030
## missing_income
                       0.205
                               0.205
                                        0.205
                                                0.205
## missing momed
                       0.100
                               0.100
                                        0.100
                                                 0.100
## missing momrace
                       0.292
                               0.292
                                        0.292
                                                 0.292
```

Rhats(imputations)

```
##
  mean_ppvtr.36
                    mean_b.marr
                                   mean_income
                                                   mean_momed
##
       0.9911648
                      1.0047919
                                     1.0280528
                                                    0.9917420
##
    mean_momrace
                    sd_ppvtr.36
                                     sd_b.marr
                                                    sd_income
##
       1.0098098
                      0.9892022
                                     1.0034345
                                                     1.0526953
##
        sd_{momed}
                     sd_momrace
##
       0.9876510
                      1.0311420
```

If so — and when it does in the example depends on the pseudo-random number seed — we can procede to diagnosing other problems. For the sake of example, we continue our 4 chains for another 5 iterations by calling

```
imputations <- mi(imputations, n.iter = 5)</pre>
```

to illustrate that this process can be continued until convergence is reached.

Next, the plot of an object produced by mi displays, for all missing_variables (or some subset thereof), a histogram of the observed, imputed, and completed data, a comparison of the completed data to the fitted values implied by the model for the completed data, and a plot of the associated binned residuals. There will be one set of plots on a page for the first three chains, so that the user can get some sense of the sampling variability of the imputations. The hist function yields the same histograms as plot, but groups the histograms for all variables (within a chain) on the same plot. The imagefunction gives a sense of the missingness patterns in the data.

plot(imputations)

hist(imputations)

image(imputations) summary(imputations)

```
## $ppvtr.36
## $ppvtr.36$is_missing
## missing
## FALSE TRUE
##
     325
            75
##
## $ppvtr.36$imputed
##
       Min.
             1st Qu.
                          Median
                                      Mean
                                             3rd Qu.
  -1.527000 -0.366500 -0.002527 -0.020190 0.310700 1.370000
##
## $ppvtr.36$observed
       Min. 1st Qu.
                       Median
                                  Mean 3rd Qu.
                                                    Max.
## -1.20200 -0.31920 0.02848 0.00000 0.34940 1.23200
##
##
## $first
## $first$is_missing
## [1] "all values observed"
##
## $first$observed
##
##
     1
         2
## 226 174
##
```

```
##
## $b.marr
## $b.marr$crosstab
##
##
       observed imputed
##
           456
##
           1096
##
##
## $income
## $income$is_missing
## missing
## FALSE TRUE
     318
##
            82
##
## $income$imputed
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                              Max.
     2.973 8.285
                    9.470
                             8.894 10.170 12.720
##
##
## $income$observed
##
     Min. 1st Qu. Median
                            Mean 3rd Qu.
                                              Max.
##
     5.323 9.079 9.804
                             9.699 10.360 13.870
##
##
## $momage
## $momage$is_missing
## [1] "all values observed"
## $momage$observed
       Min. 1st Qu.
                     Median
                                  Mean 3rd Qu.
                                                    Max.
## -1.21400 -0.27470 0.03835 0.00000 0.35140 1.29000
##
##
## $momed
## $momed$crosstab
##
##
       observed imputed
##
     1
            472
                     60
            540
##
     2
                     39
##
     3
            324
                     42
##
            104
                     19
##
##
## $momrace
## $momrace$crosstab
##
##
       observed imputed
##
            220
                    136
     1
##
            320
                    130
     2
##
     3
            592
                    202
```


Finally, we pool over m=5 imputed datasets – pulled from across the 4 chains – in order to estimate a descriptive linear regression of test scores (ppvtr.36) at 36 months on a variety of demographic variables pertaining to the mother of the child.

```
## bayesglm(formula = ppvtr.36 ~ first + b.marr + income + momage +
##
       momed + momrace, data = imputations, m = 5)
##
               coef.est coef.se
##
   (Intercept) 79.45
                          8.69
##
  first1
                4.24
                          2.18
                5.27
                          3.13
## b.marr1
## income
                0.00
                          0.00
  momage
               -0.05
                          0.36
               10.38
                          3.34
##
  momed.L
  momed.Q
                0.95
                          2.42
                0.08
                          1.76
## momed.C
  momrace2
               -6.08
                          3.22
## momrace3
               11.56
                          3.44
## n = 390, k = 10
## residual deviance = 92334.9, null deviance = 139537.8 (difference = 47202.9)
## overdispersion parameter = 236.8
## residual sd is sqrt(overdispersion) = 15.39
```

The rest is optional and only necessary if you want to perform some operation that is not supported by the **mi** package, perhaps outside of R. Here we create a list of **data.frames**, which can be saved to the hard disk

and / or exported in a variety of formats with the **foreign** package. Imputed data can be exported to Stata by using the mi2stata function instead of complete.

dfs <- complete(imputations, m = 2)</pre>