

IoT internship

The project's applicability, implementation & potentials ft. personal commentary

Presenters:

Luka Čubrilo / Intern

- Use cases providing context
- Project structure
 - Arduino Firmware
 - Raspberry Pi Cloud client
 - PC Cross-platform GUI App
- Questions, discussion

Use cases - providing context

Outdoors - Local weather measurements and forecast

- You need your own measurements:
 - There are no well-known measurements nearby
 - You don't trust the lizard people's fake news
 - Maybe your surroundings are a pocket of different data

Use cases - providing context

Indoors - Monitoring and regulating a microclimate

- Maybe you're dealing with delicate processes:
 - Storing food, volatile substances, or otherwise sensitive materials
 - There is a VOC detector onboard!
 - Fermentation, dry aging, smoking, baking or other cooking processes
 - Growing sensitive crops, regulating their atmosphere
 - Scientific experiments, testing gas properties

Project structure

Three distinct pieces of software

- and how they are tied together

Arduino - Firmware

Arduino - the hardware

Key hardware components

- Arduino Board
- Click Shield
- Environment Click
- **▶** BLE Click

Arduino - the tools utilized

- Access: From PC via Serial connection
- Working environment: Arduino IDE
- Programming language: C++
- Libraries:
 - Adafruit BME680 library
 - Sandeep Mistry BLEPeripheral library

Arduino - the algorithm

Arduino - future

Which features could be added or improved upon

- Make it possible for other types of clicks to collect data
- Add LEDs which indicate current state of device
- Add LCDs to print out the data
- Advertize itself more clearly and descriptively
- Add physical switches for different units of measurements

Raspberry Pi - the hardware

Key hardware components

BLE Dongle

Ethernet Cable

Peripherals >

IIIP

Raspberry Pi - the software

Tools utilized & algorithm in broad strokes

- Access: Linux Raspberry Pi OS (formerly Raspbian)
 "Headless", from PC via SSH
- Working environment: Geany IDE
- Programming language: C++
- Libraries:
 - Psychogenic Gattlibpp
 - WolkAbout WolkConnect C++

Raspberry Pi - the algorithm

Raspberry Pi - future

Which features could be added or improved upon

- Access multiple devices (although not at once) and juggle all of them
- Figure out the inconsistencies and random bugs with BLE
- Expand from T, P, H into other types of data
- Figure out type of data received on the spot, from a previously unconnected device
- Connect to multiple Wolk virtual devices and juggle all of them

PC - GUI App

PC - Hardware

Key hardware components

GUI App - the software

Tools utilized

- Access: Windows 10
- Working environment: Qt Creator
- Programming language: C++
- Libraries:
 - Qt Company Qt
 - cURL Project libcurl

GUI App - the software

Qt's strength - Expanding on the hardware

- Qt offers the ability to build projects for all major platforms
 - Windows PC
 - Linux PC
 - Android
 - iOS
- Vastly broadens the target market with little additions

End user - Hardware

All major platforms

Qt App - the algorithm

It's best to just see it in action during the demo.

End user platform - future

Which features could be added or improved upon

- Build for all other major platforms, especially mobile ones
- Add charts
- Save charted data to files
- Other types of data
- Looking at multiple devices simultaneously
- Separating each device with its data into own GUI unit
- Add warnings/alarms for too high or too low values
 - Add additional intervals (apart from too low, ok, too high) for complexity
- Add actuators, managing them
- Being able to make and save multiple configurations (set of sensors, actuators and their mutual influences)

execom

Thank you! Questions?

EXECOM Serbia
Bulevar vojvode Stepe 50
Novi Sad 21000
+381 21 3004420
info@execom.eu

EXECOM The Netherlands PO Box 169 6860 AD Oosterbeek +31 26 3391403 nl@execom.eu EXECOM NORD Serbia Matije Korvina 17 Subotica 24000 +381 24 554222 nord@execom.eu

www.execom.eu www.execomnord.com