3° de Secundaria Unidad 2 2024-2025

Última revisión del documento: 17 de febrero de 2025

Practica la Unidad 2

Nombre del alumno: Fecha:

Aprendizajes:

- Deduce información acerca de la estructura atómica a partir de dat experimentales sobre propiedades atómicas periódicas.
- Representa y diferencia mediante esquemas, modelos y simbología q mica, elementos y compuestos, así como átomos y moléculas.
- Explica y predice propiedades físicas de los materiales con base modelos submicroscópicos sobre la estructura de átomos, moléculas iones, y sus interacciones electrostáticas.

Puntuacion:														
Pregunta 1 2 3 4 5 6 7 8 9														
Puntos	5	5	5	5	5	5	5	5	10					
${ m Obtenidos}$														
Pregunta	10	11	12	13	14	15	16		Total					
Puntos	10	5	5	5	10	10	5		100					
Obtenidos														

Ejemplo 1

Identifica en las siguientes reacciones cuáles son de combinación, de descomposición, de desplazamiento o desplazamiento doble.

- \bigcirc 3 $O_2 + \text{energia} \uparrow \longrightarrow 2 O_3$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - \bigcirc Doble desplazamiento
- $b Ba(NO_3)_2 + K_2SO_4 \longrightarrow BaSO_4 + KNO_3$
 - A Descomposición
 - B Combinación
 - \bigcirc Desplazamiento
 - Doble desplazamiento

- c CaCO₃(s) \longrightarrow CaO(s) + CO₂
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento
- d $C_6H_{12}O_6(ac) \longrightarrow 2C_2H_5OH(ac) + 2CO_2(g)$
 - A Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejercicio 1

de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 H_2 O(l) \longrightarrow 2 H_2(g) + O_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

- - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- d $4 \text{ Al(s)} + 3 \text{ O}_2(\text{g}) \longrightarrow 2 \text{ Al}_2 \text{O}_3(\text{s})$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejercicio 2

_ de 5 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - A Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- **b** $2 \operatorname{Al}(s) + 3 \operatorname{S}(s) \longrightarrow \operatorname{Al}_2 \operatorname{S}_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- $\mathsf{c} \mid \mathrm{Mg}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_2(\mathrm{s})$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d $Al + H_2SO_4 \longrightarrow Al_2(SO_4)_3 + H_2$
 - A Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

Ejemplo 2

Balancea la siguiente ecuación química:

$$H_2O + \longrightarrow H_2 O_2$$
 \bigcirc

Si representamos la ecuación química con átomos de distintos colores para cada elemento, tenemos:

$$H_2O + \longrightarrow H_2 O_2$$
 \bigcirc

Hay 2 O en los productos y 1 O en los reactivos, por lo que hay que multiplicar por 2 al H_2O .

Ahora, hay 4 H en los reactivos y 2 H en los productos, por lo que hay que multiplicar por 2 al H_2 .

Por lo tanto, la ecuación química balanceada es:

$$2\,H_2O \longrightarrow 2\,H_2 + O_2$$

Ejemplo 3

Balancea la siguiente ecuación química:

Si representamos la ecuación química con átomos de distintos colores para cada elemento, tenemos:

Hay 4 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 2 al H₂O.

Ahora hay 4 O en los productos y 2 en los reactivos, por lo que hay que multiplicar por 2 al O_2 . Y la ecuación balanceada es:

Por lo tanto, la ecuación química balanceada es:

$$\mathrm{CH_4} + 2\,\mathrm{O_2} \longrightarrow \mathrm{CO_2} + 2\,\mathrm{H_2O}$$

Ciencias y Tecnología: Química

Ejercicio 3	de 5 puntos
Balancea la siguiente ecuación química:	
$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$	
Ejercicio 4	de 5 puntos
Balancea la siguiente ecuación química:	
$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$	
Ejercicio 5	de 5 puntos
Balancea la siguiente ecuación química:	
$Mg(OH)_2 + HCl \longrightarrow MgCl_2 + H_2O$	

Ejercicio 6	de 5 puntos
Balancea la siguiente ecuación química:	
$N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$	
2 422	
Fiercicio 7	de 5 ountos
Ejercicio 7	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos
Balancea la siguiente ecuación química:	de 5 puntos

Ión positivo de

Silicio

Ejercicio 9	de 10 puntos
Relaciona cada elemento	con las características que le corresponden.
a Titanio	A Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
b Oro	$egin{array}{c} egin{array}{c} egin{array}$
c Helio	© Elemento metaloide, ubicado en el tercer período de la tabla periódica.
d Boro	D Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
e Radón	E Elemento con 22 protones y 22 electrones.
fYodo	Elemento de la familia de los Halógenos con 74 neutrones.
9 Bismuto	© Elemento de la familia de metales alcalino-terreos con 138 neutrones.
h Radio	igoplus Elemento no metálico con Z = 83.
i Galio	(I) Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
j Silicio	Metal brillante utilizado en joyería.

Ejercicio 10 de 10 puntos Relaciona la especie química con la cantidad de protones y electrones de valencia. 20 protones y 2 electrones de valencia. (A) Ión oxígeno (O^-) **b** _____ 9 protones y 8 electrones de valencia. (B) Nitrógeno (N) c _____ 15 protones y 5 electrones de valencia. C Silicio (Si) **d** ______ 8 protones y 7 electrones de valencia. **e** _____ 34 protones y 6 electrones de valencia. (D) Calcio (Ca) f _____ 14 protones y 4 electrones de valencia. (E) Ión Fluor (F−) 9 _____ 7 protones y 5 electrones de valencia. (F) Oxígeno (O) h _____ 3 protones y 2 electrones de valencia. (G) Neón (Ne) i _____ 8 protones y 6 electrones de valencia. (H) Ión Litio (Li⁺) j _____ 10 protones y 8 electrones de valencia. (I) Fósforo (P) J Selenio (Se)

Ejercicio 11 de 5 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

(A) Ión de Aluminio (Al³⁺)

(B) Ión de Nitrógeno (N³⁻)

(C) Ión de Flúor (F⁻)

(D) Litio (Li)

(E) Ión de Potasio (K⁺)

F Ión de Berilio (Be⁻)

 \bigcirc Ión de Azúfre (S²⁺)

(H) Ión de Cloro (Cl⁻)

(I) Ión de Hierro (Fe³⁺)

(I) Fósforo (P)

- 13 protones y 8 electrones de valencia.
- b _____ 17 protones y 8 electrones de valencia.
- c _____ 9 protones y 8 electrones de valencia.
- d _____ 4 protones y 3 electrones de valencia.
- e _____ 16 protones y 4 electrones de valencia.

- f _____ 15 protones y 5 electrones de valencia.
- 9 _____ 26 protones y 2 electrones de valencia.
- h _____ 7 protones y 8 electrones de valencia.
- i _____ 3 protones y 1 electrón de valencia.
- j _____ 19 protones y 8 electrones de valencia.

Ejercicio 12 de 5 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - (E) Ninguna de las anteriores
- b ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - B El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - D Potencial de ionización y electronegatividad
 - (E) Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - (C) Izquierda y hacia arriba
 - (D) Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - (A) Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - D Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - (B) Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 13 ____ de 5 puntos

Relaciona cada concepto con su definición.

- (A) Las sustancias se representan sólo con símbolos atómicos.
- B Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- (D) Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

- O ____ Diagrama de esferas.
- **b** ____ Fórmula estructural.
- c ____ Fórmula condensada.
- d ____ Diagrama de esferas y barras.

de 10 puntos

Ejercicio 15

Ejercicio 14	de 10 puntos
Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta. © Explica bajo qué condiciones el número atómico permite deducir el número de electro átomo.	ones presentes en un
En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que m¿cuál sería el radio del átomo en metros?	=

Escribe el grupo, subgrupo, período y clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla periódica que se muestra abajo.

Elemento	Grupo	Subgrupo	Período	Tipo												
Oro								_	_	_	_	_	_			
Potasio					\vdash		\dashv	\dashv	\dashv	\dashv	\dashv	_				
Paladio								\Box		\dashv						
Yodo					L											L
Samario																

Ejercicio 16	de 5 puntos											
Señala en cada uno de los enunciados si la sentencia es falsa o verdadera.												
La tabla periódica se encuentra constituida por filas (períodos) y columnas (grupos).	k Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.											
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso											
b Los electrones de valencia se encuentran siempre en el último nivel de energía.	l El símbolo Cl ⁻ indica que el átomo de cloro ha tenido una reducción o pérdida de electrones.											
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso											
c El oxígeno y el nitrógeno son dos gases nobles de gran importancia.	m Una fórmula química sólo expresa la composición cualitativa de una sustancia.											
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso											
d El mercurio es un elemento líquido.	n En una fórmula química, los coeficientes indican el número de											
☐ Verdadero ☐ Falso	moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.											
e Los metales se ubican a la derecha y al centro de la tabla periódica.	☐ Verdadero ☐ Falso											
☐ Verdadero ☐ Falso	El neutrón es una partícula subatómica que se encuentra gi- rando alrededor del núcleo atómico.											
f Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad.	☐ Verdadero ☐ Falso											
☐ Verdadero ☐ Falso	O La masa de un neutrón es similar a la del protón.											
${f g}$ La fórmula ${ m H}_2{ m O}$ expresa que la molécula de agua está cons-	☐ Verdadero ☐ Falso											
tituida por dos átomos de oxígeno y uno de hidrógeno.	ρ Las únicas partículas elementales en el núcleo, son los protones y neutrones.											
☐ Verdadero ☐ Falso	□ Verdadero □ Falso											
h En la fórmula de la Taurina, 4C ₂ H ₇ NO ₃ S, el número 4 indica que hay 4 átomos de carbono.	Q El número de masa representa la suma de protones y neu-											
☐ Verdadero ☐ Falso	trones.											
i Al número entero positivo, negativo o cero que se asigna a	☐ Verdadero ☐ Falso											
cada elemento en un compuesto, se denomina número de oxi- dación.	r El número total de electrones en un átomo lo determina el grupo al que pertenece.											
☐ Verdadero ☐ Falso	□ Verdadero □ Falso											
j En la construcción de una fórmula química se escribe primero la parte positiva y enseguida la negativa.	S Los protones y neutrones son partículas constituidas por quarks.											
☐ Verdadero ☐ Falso	☐ Verdadero ☐ Falso											

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{2}{H}\overset{4.0025}{e}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}{\overset{N}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\stackrel{18}{A}_{\Gamma}^{39.948}$	$\overset{36}{K}\overset{83.8}{\Gamma}$ Kriptón	$\sum_{Xen\'on}^{54}$	$\mathop{Radon}\limits^{86}$	$0 \\ \frac{118}{O} \\ \frac{294}{S}$	$\overset{71}{\mathbf{L}}\overset{174.97}{\mathbf{U}}$	$\frac{103}{L}$ 262	
	17 VIIA	9 18.998 Fluor	17 35.453 Cloro	$\overset{35}{B}\overset{79.904}{\Gamma}$	53 126.9 T Yodo	$\mathop{\mathrm{At}}_{\mathop{\mathrm{Astato}}}^{210}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70} \sum_{\text{TS:04}}^{173.04}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{S}\overset{32.065}{S}$	$\overset{34}{S}\overset{78.96}{e}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po}\overset{209}{O}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	69 168.93 Tulio	$\overset{\text{101}}{\text{Mondelevio}}$	
	15 VA	$\sum_{\text{Nitrógeno}}^{7}$	$\overset{\text{15}}{P}\overset{30.974}{\text{Posforo}}$	${\overset{33}{\mathrm{AS}}}_{\mathrm{Arsenico}}^{74.922}$	$\overset{51}{\mathbf{S}}\overset{121.76}{\mathbf{b}}$ Antimonio	$\overset{83}{\mathbf{Bismuto}}$	${\stackrel{115}{M}}_{\text{Moscovio}}$	$\stackrel{\textbf{68}}{\textbf{Erbio}}_{\textbf{r}}$	100 257 Fmn Fermio	
	14 IVA	$\bigcup_{\text{Carbono}}^{\textbf{6}}$	$\overset{14}{S}\overset{28.086}{\text{Silicio}}$	$\overset{32}{\text{Germanio}}$	$\overset{50}{S}\overset{118.71}{n}$	$\overset{82}{Pb}_{\text{Pbmo}}^{207.2}$	114 289 Flerovio	$\displaystyle \stackrel{67}{H}_{0}^{164.93}$	99 252 Einsteinio	
	13 IIIA	5 Boro	$\prod_{\text{Aluminio}}^{13} 26.982$	$\overset{31}{\mathbf{Galio}}$	$\prod_{\text{Indo}}^{49 114.82}$	81 204.38 Talio	$\sum_{\text{Nihonio}}^{113} \sum_{\text{284}}^{284}$	$\bigcup_{\text{Disprosio}}^{66}$	$\bigcup_{\text{Californio}}^{98}$	
			12 IIB	$\overset{30}{ ext{Zn}}$	$\overset{48}{C}\overset{112.41}{d}$	$\overset{80}{H}\overset{200.59}{S}$	$\overset{\text{112}}{C}\overset{285}{n}$	\prod_{Terbio}^{65}	$\frac{97}{B}$ Brkelio	
			11 18	$\overset{29}{\overset{63.546}{U}}$	${}^{47}_{}{}^{107.87}_{}$	${\overset{79}{\mathrm{Au}}}_{\overset{196.97}{\mathrm{oro}}}$	Roentgenio	$\overset{64}{\text{Gadolinio}}$	$\overset{96}{C}\overset{247}{m}$	
			10 VIIIB	$\overset{28}{\mathbf{Niquel}}$	$\underset{\text{Paladio}}{\overset{46}{\text{Pol}}}$	$\Pr_{Platino}^{78}$	$\overset{110}{\text{DS}}\overset{281}{\text{S}}$	$\overset{\textbf{63}}{\textbf{Europio}} \overset{151.96}{\textbf{Lu}}$	95 243 243 Am	
			9 VIIIB	27 58.933 CO Cobalto	$\mathop{Rh}\limits^{45 102.91}_{\text{Rodio}}$	$\frac{77}{L}$	109 268 IME	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}\overset{244}{\text{Plutonio}}$	
		10	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\mathop{Rut}\limits^{44}$ 101.07	$\overset{76}{\text{Osmio}}$	$\overset{\text{108}}{\text{Hassio}}$	$\underset{\text{Prometio}}{\overset{61}{P}} \overset{145}{D}$	$\frac{93}{\text{NN}}$	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{N}\overset{54.938}{\text{Manganeso}}$	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Re}_{\text{Renio}}^{75~186.21}$	$\underset{\text{Bohrio}}{\underline{\text{107}}}$	60 144.24 Neodimio	$\bigcup_{\text{Uranio}}^{92 238.03}$	
	Simbología:	Negro: I Gris: Si	6 VIB	$\overset{ extbf{24}}{\overset{ ext{51.996}}{\text{Cromo}}}$	${\overset{42}{\mathrm{Molybdeno}}}^{95.94}$	74 183.84 W	106 266 S8 Seaborgio	$\sum_{\mathbf{Praseodymio}}^{59} 140.91$	$\overset{\mathfrak{g}_{1}}{P}\overset{231.04}{a}$	
	Sin	$\sum_{\text{S'imbolo}}^{\mathbf{Z}} A_r$	5 VB	23 $ 50.942 $ Vanadio	$\overset{41}{N}\overset{92.906}{\text{Niobio}}$	$\overset{73}{ ext{Tantalo}}$	$\bigcup_{\text{Dubnio}}^{105}$	$\overset{58}{\overset{140.12}{Cerio}}$	$\prod_{Torio}^{90-232.04}$	
			4 IVB	$\prod_{\text{Titanio}}^{22}$	$\sum_{ ext{Circonio}}^{40}$	$\overset{72}{\mathrm{Hafnio}}^{178.49}$	$\underset{\text{Rutherfordio}}{\text{Rutherfordio}}$	$\overset{57}{La}$	$\overset{89}{A}^{227}_{\mathbf{C}}$	
			3 IIIA	$\overset{21}{S}\overset{44.956}{c}$ Escandio	$\sum_{\text{ltrio}}^{39} 88.906$	57-71	: 89-103 : * * 	erreos		iidos
	2 IIA	$\mathop{Berilio}_{\text{Berilio}}^{4}$	$\overline{\mathrm{Mg}}^{22.305}_{\mathrm{Magnesio}}$	$\overset{20}{\overset{40.078}{\mathbf{a}}}$	$\overset{38}{\mathrm{Sr}}$ 87.62 Stroncio	$\overset{56}{\mathrm{Bario}}$	\mathop{Radio}^{88}	Metales Alcalinos Metales Alcalino-terreos Metal	le 1	Gases Nobles Lantánidos/Actínidos
1 IA	$\prod_{\text{Hidrógeno}}^{1 - 1.0079}$	$\sum_{\text{Litio}}^{3} \frac{6.941}{1}$	$\overset{\scriptscriptstyle{11}}{\overset{\scriptscriptstyle{22.990}}{\overset{\scriptscriptstyle{22.990}}{\overset{\scriptscriptstyle{12}}{\overset{\scriptscriptstyle{11}}{\overset{\scriptscriptstyle{12}}{\overset{\scriptscriptstyle{11}}{\overset{\scriptscriptstyle{1}}}{\overset{\scriptscriptstyle{1}}}{\overset{\scriptscriptstyle{1}}}{\overset{\scriptscriptstyle{1}}}}}}}}}}$	$\sum_{\text{Potasio}}^{19 39.098}$	$\mathop{Rbidio}\limits^{37-85.468}$	$\sum_{\text{Cesio}}^{55} \mathbf{S}$	$\frac{87}{F_1}$	Metales Metales Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/A
	П	8	ĸ	4	Ŋ	9	2			