Кольца Илья С18-712: пример использования ранцевой криптосистемы в полях Галуа

Я не совсем понял, как применять ранцевую систему не в десятичной системе счисления. Я решил взять за основу поле $GF(2^4)$ по модулю $q(x)=x^4+x^3+x^2+x+1$ (не является примитивным, можно было бы взять по модулю примитивного многочлена, но мне показалось, что тогда базис получается слишком простой).

Это поле я взял из своей работы по полям Галуа.

Пусть $\lambda \in GF(2^4)$ - корень неприводимого многочлена q(x) , над которым мы строим конечное поле $GF(2^4)$, т.е. $q(\lambda) = 0$.

Попробуем построить поле, возводя в степень λ . Из того, что $q(\lambda) = 0$, получаем $\lambda^4 = \lambda^3 + \lambda^2 + \lambda + 1$.

```
\lambda^{0}=1
\lambda^{1}=\lambda
\lambda^{2}=\lambda^{2}
\lambda^{3}=\lambda^{3}
\lambda^{4}=\lambda^{3}+\lambda^{2}+\lambda+1
\lambda^{5}=\lambda^{4}+\lambda^{3}+\lambda^{2}+\lambda=\lambda^{3}+\lambda^{2}+\lambda+1+\lambda^{3}+\lambda^{2}+\lambda=2\lambda^{3}+2\lambda^{2}+2\lambda+1=1
```

Получили, что корень $\ \lambda$ порождает не все ненулевые элементы поля $\ GF(2^4)$, а только подмножество из 5 элементов.

Покажем, что элемент $\;\;\lambda+1\;\;$ порождает все поле $\;\;GF(2^4)\;\;$, не забывая, что $\;\;\lambda^4=\lambda^3+\lambda^2+\lambda+1\;\;$:

```
(\lambda+1)^0=1
(\lambda+1)^1=\lambda+1
(\lambda+1)^2 = \lambda^2+1
(\lambda+1)^3 = (\lambda+1)(\lambda^2+1) = \lambda^3+\lambda^2+\lambda+1
(\lambda + 1)^4 = \lambda^4 + 1 = \lambda^3 + \lambda^2 + \lambda + 1 + 1 = \lambda^3 + \lambda^2 + \lambda
(\lambda+1)^5 = (\lambda+1)(\lambda^3+\lambda^2+\lambda) = \lambda^4+\lambda^3+\lambda^2+\lambda^3+\lambda^2+\lambda=\lambda^4+\lambda=\lambda^3+\lambda^2+1
(\lambda + 1)^6 = \lambda^6 + \lambda^4 + \lambda^2 + 1 = \lambda + \lambda^3 + \lambda^2 + \lambda + 1 + \lambda^2 + 1 = \lambda^3
(\lambda+1)^7 = \lambda^4 + \lambda^3 = \lambda^3 + \lambda^2 + \lambda + 1 + \lambda^3 = \lambda^2 + \lambda + 1
(\lambda+1)^8 = \lambda^6 + \lambda^4 + \lambda^2 = \lambda + \lambda^3 + \lambda^2 + \lambda + 1 + \lambda^2 = \lambda^3 + 1
(\lambda+1)^9 = \lambda^4 + \lambda + \lambda^3 + 1 = \lambda^3 + \lambda^2 + \lambda + 1 + \lambda + \lambda^3 + 1 = \lambda^2
(\lambda+1)^{10} = \lambda^6 + \lambda^4 + 1 = \lambda + \lambda^3 + \lambda^2 + \lambda + 1 + 1 = \lambda^3 + \lambda^2
(\lambda+1)^{11} = \lambda^4 + \lambda^3 + \lambda^3 + \lambda^2 = \lambda^3 + \lambda + 1
(\lambda+1)^{12}=\lambda^6=\lambda
(\lambda+1)^{13}=\lambda^2+\lambda
(\lambda+1)^{14} = \lambda^3 + \lambda^2 + \lambda^2 + \lambda = \lambda^3 + \lambda
(\lambda+1)^{15} = \lambda^4 + \lambda^2 + \lambda^3 + \lambda = \lambda^3 + \lambda^2 + \lambda + 1 + \lambda^2 + \lambda^3 + \lambda = 1
```

Таким образом, поле $GF(2^4)$ построено по модулю неприводимого многочлена $q(x) = x^4 + x^3 + x^2 + x + 1$, но в степени возводился не корень этого многочлена λ , а элемент $\lambda + 1$.

Каждое число представимо в виде $b_3(\lambda+1)^3+b_2(\lambda+1)^2+b_1(\lambda+1)+b_0$, $b_i{\in}GF(2)$, $i{=}0..3$. Тогда $(\lambda+1)^3$, $(\lambda+1)^2$, $(\lambda+1)$, $(\lambda+1)^0$ возьмем в качестве базиса. Представим эти элементы в виде двоичных векторов, используя полученное выше представление через λ :

$$(\lambda+1)^{0} = (0,0,0,1)$$

$$(\lambda+1) = (0,0,1,1)$$

$$(\lambda+1)^{2} = (0,1,0,1)$$

$$(\lambda+1)^{3} = (1,1,1,1)$$

Перейдем к полю $GF(2^7)$. Я его сам не строил, нашел в интернете.

Table B.26 Table of elements of $GF(2^7)\{x^7 + x + 1\}$

-∞:0000000	31:0001011	63:0001001	95:0100101
0:0000001	32:0010110	64:0010010	96:1001010
1:0000010	33:0101100	65:0100100	97:0010111
2:0000100	34:1011000	66:1001000	98:0101110
3:0001000	35:0110011	67:0010011	99:1011100
4:0010000	36:1100110	68:0100110	100:0111011
5:0100000	37:1001111	69:1001100	101:1110110
6:1000000	38:0011101	70:0011011	102:1101111
7:0000011	39:0111010	71:0110110	103:1011101
8:0000110	40:1110100	72:1101100	104:0111001
9:0001100	41:1101011	73:1011011	105:1110010
10:0011000	42:1010101	74:0110101	106:1100111
11:0110000	43:0101001	75:1101010	107:1001101
12:1100000	44:1010010	76:1010111	108:0011001
13:1000011	45:0100111	77:0101101	109:0110010
14:0000101	46:1001110	78:1011010	110:1100100
15:0001010	47:0011111	79:0110111	111:1001011
16:0010100	48:0111110	80:1101110	112:0010101
17:0101000	49:1111100	81:1011111	113:0101010
18:1010000	50:1111011	82:0111101	114:1010100
19:0100011	51:1110101	83:1111010	115:0101011
20:1000110	52:1101001	84:1110111	116:1010110
21:0001111	53:1010001	85:1101101	117:0101111
22:0011110	54:0100001	86:1001101	118:1011110
23:0111100	55:1000010	87:0110001	119:0111111
24:1111000	56:0000111	88:1100010	120:1111110
25:1110011	57:0001110	89:1000111	121:1111111
26:1100101	58:0011100	90:0001101	122:1111101
27:1001001	58:0111000	91:0011010	123:1111001
28:0010001	60:1110000	92:0110100	124:1110001
29:0100010	61:1100011	93:1101000	125:1100001
30:1000100	62:1000101	94:1010011	126:1000001

Пусть α - корень многочлена $x^7 + x + 1$, т.е. α - примитивный элемент поля $GF(2^7)$.

Дополним наши базисные вектора до векторов длины 7 случайными битами:

$$a_0 = (1,0,|0,0,0,1|,1) = \alpha^{13}$$

$$a_1 = (0,1,|0,0,1,1|,0) = \alpha^{68}$$

$$a_2 = (0,0,|0,1,0,1|,0) = \alpha^{15}$$

$$a_3 = (1,0,|1,1,1,1|,1) = \alpha^{81}$$

В центре вертикальными чертами выделены исходные векторы $(\lambda+1)^0$, $(\lambda+1)^1$, $(\lambda+1)^2$, $(\lambda+1)^3$.

Для того, чтобы перейти от $T_{\it easy}$ к $T_{\it shuffle}$, домножим каждый вектор на какой-нибудь заранее выбранный элемент поля ${\it GF}(2^7)$, например $lpha^{75}$.

Получим:

$$b_{0} = a_{0} \alpha^{75} = \alpha^{13} \alpha^{75} = \alpha^{88} = (1, 1, 0, 0, 0, 1, 0)$$

$$b_{1} = a_{1} \alpha^{75} = \alpha^{68} \alpha^{75} = \alpha^{143\%127} = \alpha^{16} = (0, 0, 1, 0, 1, 0, 0)$$

$$b_{2} = a_{2} \alpha^{75} = \alpha^{15} \alpha^{75} = \alpha^{90} = (0, 0, 0, 1, 1, 0, 1)$$

$$b_{3} = a_{3} \alpha^{75} = \alpha^{81} \alpha^{75} = \alpha^{156\%127} = \alpha^{29} = (0, 1, 0, 0, 0, 1, 0)$$

Пусть мы хотим передать сообщение 0,1,1,0 . Для этого нам необходимо сложить вектора a_1,a_2 и следовательно b_1,b_2 .

Получаем сообщение, складывая вектора по модулю 2 (xor):

0010100

0001101

0011001

Итоговое сообщение $c = (0,0,1,1,0,0,1) = \alpha^{108}$

Отправляем сообщение 2 участнику обмена сообщениями.

Участник 2 умножает сообщение $c = (0,0,1,1,0,0,1) = \alpha^{108}$ на мультипликативный обратный элемент к элементу α^{75} , который мы использовали ранее.

$$(\alpha^{75})^{-1} = \alpha^{(127-75)} = \alpha^{52}$$

Получаем $c*\alpha^{52}=\alpha^{108}\alpha^{52}=\alpha^{(160\%27)}=\alpha^{33}=(0,1,0,1,1,0,0)$. Выбираем биты на соответствующих позициях (0,1,[0,1,1,0],0).

Получаем исходное сообщение (0,1,1,0).

Я не уверен, что была необходимость использовать поле $GF(2^4)$. Также я не уверен, что умножение в поле — криптографически стойкая арифметическая операция.