### 组合数学习题课-期中

## HWI

2, 4, 6, 8, 10

## Let Q(x, y) denote the statement "x is the capital of y." What are these truth values?

- Q("Hangzhou (杭州)", "Zhejiang (浙江)")
- Q("Shenzhen (深圳)", "Guangdong (广东)") F, 广东的省会是广州
- Q("Qingdao (青岛)", "Shandong (山东)")
- Q("Yinchuan (银川)", "Ningxia (宁夏)")

F, 山东的省会是济南

4 Use truth tables to verify these equivalences. i. p∧T ≡p

| р | p∧T |
|---|-----|
| Т | Т   |
| F | F   |

4 Use truth tables to verify these equivalences. ii.  $p \lor F \equiv p$ 

| р | p∨F |
|---|-----|
| Т | Т   |
| F | F   |

4 Use truth tables to verify these equivalences. iii.  $p \land F \equiv F$ 

| р | p∧F |
|---|-----|
| Т | F   |
| F | F   |

4 Use truth tables to verify these equivalences. iv. p∨T ≡T

| р | p∨T |
|---|-----|
| Т | Т   |
| F | Т   |

4 Use truth tables to verify these equivalences. v. p∨p≡p

| р | p∨p |
|---|-----|
| Т | Т   |
| F | F   |

4 Use truth tables to verify these equivalences. vi. p∧p≡p

| р | p∧p |
|---|-----|
| Т | Т   |
| F | F   |

6 Use truth tables to verify the commutative laws i. p∧q≡q∧p

| р | q | p∧q | q∧p |
|---|---|-----|-----|
| T | T | T   | T   |
| T | F | F   | F   |
| F | Т | F   | F   |
| F | F | F   | F   |

6 Use truth tables to verify the commutative laws ii. p∨q≡q∨p

| р | q | p∨q | q∨p |
|---|---|-----|-----|
| T | T | Т   | T   |
| Т | F | Т   | Т   |
| F | Т | Т   | Т   |
| F | F | F   | F   |

8
Use a truth table to verify the distributive law  $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ 

| р | q | r | (p ∧ q) | (p ∧ r) | (q ∨ r) | <b>p</b> ∧ <b>(q</b> ∨ <b>r)</b> | $(p \land q) \lor (p \land r)$ |
|---|---|---|---------|---------|---------|----------------------------------|--------------------------------|
| T | T | Т | T       | T       | T       | Т                                | T                              |
| Т | Т | F | Т       | F       | Т       | Т                                | Т                              |
| Т | F | Т | F       | Т       | Т       | Т                                | Т                              |
| Т | F | F | F       | F       | F       | F                                | F                              |
| F | Т | Т | F       | F       | Т       | F                                | F                              |
| F | Т | F | F       | F       | Т       | F                                | F                              |
| F | F | Т | F       | F       | Т       | F                                | F                              |
| F | F | F | F       | F       | F       | F                                | F                              |

Show that each of these implications is a tautology by using truth tables.

i.  $(p \land q) \rightarrow p$ 

| р | q | (p ∧ q) | (p ∧ q) →p |
|---|---|---------|------------|
| Т | T | Т       | T          |
| Т | F | F       | Т          |
| F | Т | F       | Т          |
| F | F | F       | Т          |

Show that each of these implications is a tautology by using truth tables.

ii.  $p \rightarrow (p \lor q)$ 

| р | q | (p ∨ q) | p→(p∨q) |
|---|---|---------|---------|
| Т | T | Т       | Т       |
| Т | F | Т       | Т       |
| F | Т | Т       | Т       |
| F | F | F       | Т       |

Show that each of these implications is a tautology by using truth tables.

| р | q | ٦р | (p→q) | ¬p→(p→q) |
|---|---|----|-------|----------|
| Т | T | F  | T     | Т        |
| Т | F | F  | F     | Т        |
| F | Т | Т  | Т     | Т        |
| F | F | Т  | Т     | Т        |

Show that each of these implications is a tautology by using truth tables.

iv. 
$$(p \land q) \rightarrow (p \rightarrow q)$$

| р | q | (p ∧q) | (p→q) | (p ∧q) →(p→q) |
|---|---|--------|-------|---------------|
| T | T | T      | T     | Т             |
| Т | F | F      | F     | Т             |
| F | Т | F      | Т     | Т             |
| F | F | F      | Т     | Т             |

Show that each of these implications is a tautology by using truth tables.

v. 
$$\neg(p \rightarrow q) \rightarrow p$$

| р | q | (p→q) | ¬(p→q) | ¬(p→q) →p |
|---|---|-------|--------|-----------|
| Т | T | T     | F      | Т         |
| Т | F | F     | Т      | Т         |
| F | Т | Т     | F      | Т         |
| F | F | Т     | F      | Т         |

Show that each of these implications is a tautology by using truth tables.

vi. 
$$\neg(p \rightarrow q) \rightarrow \neg q$$

| р | q | (p→q) | ¬(p→q) | ¬q | ¬(p→q) →¬q |
|---|---|-------|--------|----|------------|
| Т | T | T     | F      | F  | Т          |
| Т | F | F     | Т      | Т  | Т          |
| F | Т | Т     | F      | F  | Т          |
| F | F | Т     | F      | Т  | Т          |

# HW2

18, 20, 22, 24, 26

Let P(x) be the statement "x can speak Russian" and let Q(x) be the statement "x knows the computer language C++". Express each of these sentences in terms of P(x), Q(x), quantifiers, and logical connectives. The universe of discourse for quantifiers consists of all students at your school.

P(x): x can speak Russian,

Q(x): x knows the computer language C++

i. There is a student at your school who can speak Russian and who knows C++.

$$\exists x (P(x) \land Q(x))$$

ii. There is a student at your school who can speak Russian but who doesn't know C++.

$$\exists x (P(x) \land \neg Q(x))$$

iii. Every student at your school either can speak Russian or knows C++

$$\forall x (P(x) \lor Q(x))$$

iv. No student at your school can speak Russian or knows C++

$$\forall x (\neg P(x) \land \neg Q(x))$$

$$\forall x \neg (P(x) \lor Q(x))$$

$$\neg \exists x (P(x) \lor Q(x))$$

What rule of inference is used in each of these arguments?

- i. Alice is a mathematics major. Therefore, Alice is either a mathematics major or a computer science major.
- ii. Jerry is a mathematics major and a computer science major. Therefore, Jerry is a mathematics major.
- iii. If it is rainy, then the pool will be closed. It is rainy. Therefore, the pool is closed.
- iv. If it snows today, the university will close. The university is not closed today. Therefore, it did not snow today.
- v. If I go swimming, then I will stay in the sun too long. If I stay in the sun too long, then I will sunburn. Therefore, If I go swimming, then I will sunburn

| Rule of inference                                | Tautology                                                   | Name                   |  |
|--------------------------------------------------|-------------------------------------------------------------|------------------------|--|
| ${ \qquad \qquad } \frac{p}{p \vee q}$           | p 	o (p ee q)                                               | Addition               |  |
| $p \wedge q$ $p \wedge q$                        | $(p \wedge q) 	o p$                                         | Simplification         |  |
| р                                                | $((p) \land (q)) \to (p \land q)$                           | Conjunction            |  |
| $\frac{q}{p \wedge q}$                           |                                                             |                        |  |
| $egin{array}{c} p \ p  ightarrow q \end{array}$  | $[p \land (p \to q)] \to q$                                 | Modus ponens           |  |
| ∴ <u>q</u>                                       |                                                             | Modus tollens          |  |
|                                                  | $[ eg q \wedge (p 	o q)] 	o  eg p$                          | iviodus tolleris       |  |
|                                                  | $[(p \to q) \land (q \to r)] \to (p \to r)$                 | Hypothetical syllogism |  |
| $\therefore \frac{q \to r}{p \to r}$             |                                                             |                        |  |
| $egin{array}{c} p ee q \  eg p \end{array}$      | $[(p \lor q) \land \neg p] \to q$                           | Disjunctive syllogism  |  |
| ∴ <u>q</u>                                       | $[(n)/(n) \wedge (-n)/(n)] \wedge (n)/(n)$                  | Resolution             |  |
| $egin{array}{c} pee q \ \lnot pee r \end{array}$ | $[(p \lor q) \land (\neg p \lor r)] \rightarrow (q \lor r)$ | resolution             |  |
| ∴ q∨r                                            |                                                             |                        |  |

- i. Alice is a mathematics major. Therefore, Alice is either a mathematics major or a computer science major.
  - $p \rightarrow (p \lor q)$

Addition (附加规则)

- ii. Jerry is a mathematics major and a computer science major. Therefore, Jerry is a mathematics major.

 $(p \land q) \rightarrow p$  Simplification (化简规则)

- iii. If it is rainy, then the pool will be closed. It is rainy. Therefore, the pool is closed.

[p ∧ (p → q)] → q Modus ponens (假言推理)

- iv. If it snows today, the university will close. The university is not closed today. Therefore, it did not snow today.
  - $[\neg q \land (p \rightarrow q)] \rightarrow \neg p$  Modus tollens (拒取式)
- v. If I go swimming, then I will stay in the sun too long. If I stay in the sun too long, then I will sunburn. Therefore, If I go swimming, then I will sunburn
  - $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$  Hypothetical syllogism (假言三段论)

Let A, B, and C be sets. Show that

- I.  $A \cup (B \cup C) = (A \cup B) \cup C$ .
- II.  $A \cap (B \cap C) = (A \cap B) \cap C$ .
- III.  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ .
- I.  $x \in A \cup (B \cup C) \equiv x \in A \lor x \in (B \cup C)$   $\equiv x \in A \lor (x \in B \lor x \in C)$   $\equiv x \in A \lor x \in B \lor x \in C$   $\equiv (x \in A \lor x \in B) \lor x \in C$   $\equiv x \in (A \cup B) \lor x \in C$  $\equiv x \in (A \cup B) \cup C$

Let A, B, and C be sets. Show that

- I.  $A \cup (B \cup C) = (A \cup B) \cup C$ .
- II.  $A \cap (B \cap C) = (A \cap B) \cap C$ .
- III.  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ .
- II.  $x \in A \cap (B \cap C) \equiv x \in A \land x \in (B \cap C)$   $\equiv x \in A \land (x \in B \land x \in C)$   $\equiv x \in A \land x \in B \land x \in C$   $\equiv (x \in A \land x \in B) \land x \in C$   $\equiv x \in (A \cap B) \land x \in C$  $\equiv x \in (A \cap B) \cap C$

Let A, B, and C be sets. Show that

- I.  $A \cup (B \cup C) = (A \cup B) \cup C$ .
- II.  $A \cap (B \cap C) = (A \cap B) \cap C$ .
- III.  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ .

```
III. x \in A \cup (B \cap C) \equiv x \in A \lor x \in (B \cap C)

\equiv x \in A \lor (x \in B \land x \in C)

\equiv (x \in A \lor x \in B) \land (x \in A \lor x \in C)

\equiv (x \in A \cup B) \land (x \in A \cup C)

\equiv x \in (A \cup B) \cap (A \cup C)
```

#### Determine whether the function $f: Z \times Z \to Z$ is onto of

i. 
$$f(m, n) = m + n$$

ii. 
$$f(m, n) = m^2 + n^2$$

iii. 
$$f(m, n) = m$$

iv. 
$$f(m, n) = |n|$$

**v.** 
$$f(m, n) = m - n$$

#### **Definition**

A function f from A to B is called onto, or surjective, if and only if for every element  $b \in B$  there is an element  $a \in A$  with f(a) = b.

- I. onto,对任意整数x,可以由f(x,0)=x得到
- II. not onto,不存在两个整数平方数之和小于0
- III. onto,对任意整数x,可以由f(x,y)=x得到
- IV. not onto,不存在整数的绝对值小于0
- V. onto,对任意整数x,可以由f(x,0)=x得到

(I) 
$$\sum_{k=1}^{5} (k+1) = 5 + \sum_{k=1}^{5} k = 5 + \frac{(1+5)*5}{2} = 20$$

(2) 
$$\sum_{j=0}^{4} (-2)^j = \frac{1-(-2)^5}{1-(-2)} = 11$$

(3) 
$$\sum_{i=1}^{10} 3 = 30$$

(4) 
$$\sum_{j=0}^{8} (2^{j+1} - 2^j) = -2^0 + 2^1 - 2^1 + \dots + 2^9 = -2^0 + 2^9 = 511$$

# HW3

31、41、52、54、57

Find the number of different perfect covers of a 3-by-4 chessboard by dominoes.

设f(n)为3 \* n的完美覆盖个数



1. 可以完美切开一个3\*2

2. 不可以完美切开一个3\*2

Find the number of different perfect covers of a 3-by-4 chessboard by dominoes.

设f(n)为3 \* n的完美覆盖个数



Find the number of different perfect covers of a 3-by-4 chessboard by dominoes.

设 f(n)为3 \* n的完美覆盖个数, f(4) = 3 \* 3 + 2 = 11



Find the number of different perfect covers of a 3-by-4 chessboard by dominoes.

设 f(n)为3 \* n的完美覆盖个数, f(0) = 1

$$f(n) = 3f(2) + 2\sum_{i=2}^{\frac{n}{2}} f(n-2i)$$

Show that a magic square of order 3 must have a 5 in the middle position. Deduce that there are exactly 8 magic squares of order 3.



Show that a magic square of order 3 must have a 5 in the middle position. Deduce that there are exactly 8 magic squares of order 3.

接下来研究 I 的位置,假设 I 的位置为a,则 i=9 且 b + c = d + g = I 4 因为b, c, d, g 互不相等且不为9,可得此时无解。 因为对称,I 的位置不能为a, c, g, i

| a | b | С |
|---|---|---|
| d | 5 | f |
| g | h | i |

| ı   | b | С |  |  |
|-----|---|---|--|--|
| d   | 5 | f |  |  |
| g   | h | 9 |  |  |
| (2) |   |   |  |  |

Show that a magic square of order 3 must have a 5 in the middle position. Deduce that there are exactly 8 magic squares of order 3.

假设I的位置为b,则 h=9 且 a + c = I4

因为a, c互不相等且不为9,可得 a=6或8

可得图(3)和图(4)两种结果

因为对称, I的位置可以是b, d, f, h, 每种位置两个解法, 所以一种有8种

| a | b | С |
|---|---|---|
| d | 5 | f |
| g | h | i |

| a   | I | С |  |  |
|-----|---|---|--|--|
| d   | 5 | f |  |  |
| g   | 9 | i |  |  |
| (2) |   |   |  |  |

| 6   | I | 8 |  |  |
|-----|---|---|--|--|
| 7   | 5 | 3 |  |  |
| 2   | 9 | 4 |  |  |
| (3) |   |   |  |  |

| 8   | ı | 6 |  |  |
|-----|---|---|--|--|
| 3   | 5 | 7 |  |  |
| 4   | 9 | 2 |  |  |
| (4) |   |   |  |  |

A 6-by-6 chessboard is perfectly covered with 18 dominoes. Prove that it is possible to cut it either horizontally or vertically into two nonempty pieces without cutting through a domino; that is, prove that there must be a fault-line.

反证法:假设不存在一条线,能在不切割骨牌的情况下分割棋盘。 即每条分割线至少分割一个骨牌,又因为分开的两个部分均为偶数, 所以每条分割线至少分割两个骨牌。

在6\*6的棋盘中有5+5条分割线,则至少有10\*2个骨牌,这与18个骨牌的事实矛盾!

所以一定存在一条线,在不切割骨牌的情况下分割棋盘

Determine all shortest routes from A to B in the system of intersections and streets (graph) in the figure shown. The numbers on the streets represent the lengths of the streets measured in terms of some unit.

#### 最短路径为5,共有5条

(I) 
$$A \rightarrow C \rightarrow D \rightarrow E \rightarrow B$$

(2) 
$$A \rightarrow C \rightarrow D \rightarrow F \rightarrow B$$

(3) 
$$A \rightarrow D \rightarrow E \rightarrow B$$

(4) 
$$A \rightarrow D \rightarrow F \rightarrow B$$

(5) 
$$A \rightarrow F \rightarrow B$$



57

Consider 5-pile Nim with heaps of sizes 10, 20, 30, 40, and 50. Is this game balanced? Determine a first move for player I.

|    | 2 <sup>5</sup> | $2^4$ | $2^3$ | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |
|----|----------------|-------|-------|----------------|----------------|----------------|
| 10 |                |       | 1     |                | 1              |                |
| 20 |                | 1     |       | 1              |                |                |
| 30 |                | 1     | 1     | 1              | 1              |                |
| 40 | 1              |       | 1     |                |                |                |
| 50 | 1              | 1     |       |                | 1              |                |
|    | 2              | 3     | 3     | 2              | 3              |                |

不全为偶数,是不公平的。最大的非平衡位为24

57

Consider 5-pile Nim with heaps of sizes 10, 20, 30, 40, and 50. Is this game balanced? Determine a first move for player I.

|    | 2 <sup>5</sup> | $2^4$ | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |
|----|----------------|-------|----------------|----------------|----------------|----------------|
| 10 |                |       | 1              |                | 1              |                |
| 20 |                | 1     |                | 1              |                |                |
| 30 |                | 0     | 0              | 1              | 0              |                |
| 40 | 1              |       | 1              |                |                |                |
| 50 | 1              | 1     |                |                | 1              |                |
|    | 2              | 2     | 2              | 2              | 2              |                |

最大的非平衡位为 $2^4$ ,所以要从30的堆里取走 $2^4 + 2^3 + 2^1$ (26)个让其平衡。

# HW4

74、83、86、101、122

Use the pigeonhole principle to prove that the decimal expansion of a rational number m/n eventually is repeating. For example,

34, 478/99, 900 = .34512512512...

$$egin{aligned} rac{m}{n} &= a_0 + rac{b_0}{n} \ rac{b_0}{n} &= rac{1}{10} * (rac{10 * b_0}{n}) = rac{1}{10} * (a_1 + rac{b_1}{n}) \ rac{b_1}{n} &= rac{1}{10} * (rac{10 * b_1}{n}) = rac{1}{10} * (a_2 + rac{b_2}{n}) \ \dots \ rac{b_i}{n} &= rac{1}{10} * (rac{10 * b_i}{n}) = rac{1}{10} * (a_{i+1} + rac{b_{i+1}}{n}) \end{aligned}$$

$$egin{aligned} rac{m}{n} &= a_0 + rac{b_0}{n} \ rac{b_0}{n} &= rac{1}{10} * (rac{10 * b_0}{n}) = rac{1}{10} * (a_1 + rac{b_1}{n}) \ rac{b_1}{n} &= rac{1}{10} * (rac{10 * b_1}{n}) = rac{1}{10} * (a_2 + rac{b_2}{n}) \ \dots \ rac{b_i}{n} &= rac{1}{10} * (rac{10 * b_i}{n}) = rac{1}{10} * (a_{i+1} + rac{b_{i+1}}{n}) \end{aligned}$$

 $a_0,a_1,a_2,\ldots,a_i$ 就是 $\frac{m}{n}$ 的每一位数字的十进制表示,即 $\frac{m}{n}=a_0.a_1a_2a_3\ldots a_i\ldots$ 

 $b_0, b_1, b_2, \dots, b_i (0 < b_i < n)$ 则是运算过程中产生的余数。那么对序列b使用鸽笼原理,必存在i, j使得 $b_i = b_j$ . 为什么开始循环:因为每个 $b_i$ 可以确定性的计算出 $a_{i+1}$ 和 $b_{i+1}$ ,一旦相同,则说明之后也一定相同。

There are 100 people at a party. Each person has an even number (possibly zero) of acquaintances. Prove that there are three people at the party with the same number of acquaintances.

每个人认识的人的数量的取值范围为0,2,4,...,98(共50个数)。

由鸽巢原理可知,有着相同的熟人数量的人的数量,至少为2。

如果有相同的熟人数量最多为2,那么必有两个人,认识的人的数量为0,这也就意味着对于任意一个人,其认识的人的数量最多为97(除去自身)。

这与一开始的结论相矛盾,所以至少有三个人,有相同的熟人数量。

#### Prove that $r(3, 3, 3) \le 17$

The Ramsey's number r(m, n) is the smallest integer p such that  $K_p \to K_m$ ,  $K_n$ .

只需证明 $K_{17} \rightarrow K_3, K_3, K_3$ 

用三种颜色对 $K_{17}$ 进行着色,则 $K_{17}$ 内部要么有一个红色的 $K_3$ ,要么有一个黄色 $K_3$ ,要么有个蓝色 $K_3$ .

任选一个顶点,记作 $v_1$ ,有16条边与其相连,这16条边着三种颜色之一。由鸽巢原理可知,至少由6条边着同一个颜色 ,不妨设为红色。相应的顶点记作 $v_2$ 到 $v_7$ 。

1)如果v2~v7这六个顶点之间存在i,j满足ei是一条红边,那么v1,vi,vi构成一个红色K3



- 2) 如果 $v_2$ ~ $v_7$ 六个顶点之间不存在红边,那么 $v_2$ ~ $v_7$ 构成的 $K_6$ ,只有两种颜色着色。 选择 $v_2$ ,与其相连的五条边,至少由三条是同一种颜色,不妨设为黄色。相应的点不妨设为 $v_3$ ~ $v_5$ 。
- 2.1) 如果 $v_3 \sim v_5$ 之间存在黄边,则会和 $v_2$ 一起构成一个黄色 $K_3$ 。
- 2.2)  $v_3 \sim v_5$ 之间不存在黄边,即 $v_3 \sim v_5$ 之间全部由蓝色相连,那么 $v_3 \sim v_5$ 构成一个蓝色 $K_3$



Determine the number of poker hands of the following types,

- I. full houses (3 cards of one rank and 2 of a different rank).
- II. straights (5 consecutive ranks).
- III. flushes (5 cards of the same suit).
- IV. straight flushes (5 consecutive cards of the same suit).
- V. exactly two pairs (2 cards of one rank, 2 cards of another rank, and 1 card of a third rank).
- VI. exactly one pair (2 cards of one rank, and 3 cards of three other and different ranks).

I. full houses (3 cards of one rank and 2 of a different rank).

13 x 
$$\binom{4}{3}$$
 x 12 x  $\binom{4}{2}$  = 3744

II. straights (5 consecutive ranks).

$$10(9) \times 4^5$$

III. flushes (5 cards of the same suit).

$$\binom{13}{5}$$
 x 4=5148

IV. straight flushes (5 consecutive cards of the same suit).

V. exactly two pairs (2 cards of one rank, 2 cards of another rank, and 1 card of a third rank).

$$\binom{13}{2} \times \binom{4}{2} \times \binom{4}{2} \times \binom{4}{1} \times \binom{4}{1} = 123552$$

VI. exactly one pair (2 cards of one rank, and 3 cards of three other and different ranks).

$$\binom{13}{1} \times \binom{4}{2} \times \binom{12}{3} \times \binom{4}{1} \times \binom{4}{1} \times \binom{4}{1} \times \binom{4}{1} = 1098240$$

A secretary works in a building located 9 blocks east and 8 blocks north of his home. Every day he walks 17 blocks to work (the map shown).

- i. How many different routes are possible for him?
- ii. How many different routes if the street in the easterly direction, which begins 4 blocks east and 3 blocks north of his home, is under water (and he cant swim)? (Hint: Count the routes that use the block under water.)
- 1. 一共经过17个街区,向东街区9个,向北街区8个,组合。 $\binom{17}{9}$ =24310
- 2. 如题意,图中蓝色部分街区被淹没,减去需要经过蓝色街区的路径。 从家到蓝色街区(左端点)(<sup>7</sup><sub>4</sub>)种走法,

从蓝色街区(右端点)到公司 $\binom{9}{4}$ 种走法,

故总方法数为 $\binom{17}{9}$ - $\binom{7}{4}\binom{9}{4}$ =19900

## HW5

127、132、149、152、156、164

Determine the number of 10-permutations of the multiset  $S = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$ .

S一共12个元素, 共选10个元素, 每次会有2个元素未被选择, 一共6种情况: {a, a} {a, b} {a, c} {b, b} {b, c} {c, c}。对应的排列数有:

$$\{1 \cdot a, 4 \cdot b, 5 \cdot c\}: \frac{10!}{1!4!5!} \\
 \{2 \cdot a, 3 \cdot b, 5 \cdot c\}: \frac{10!}{2!3!5!} \\
 \{2 \cdot a, 4 \cdot b, 4 \cdot c\}: \frac{10!}{2!4!4!} \\
 \{3 \cdot a, 2 \cdot b, 5 \cdot c\}: \frac{10!}{3!2!5!} \\
 \{3 \cdot a, 3 \cdot b, 4 \cdot c\}: \frac{10!}{3!3!4!} \\
 \{3 \cdot a, 4 \cdot b, 3 \cdot c\}: \frac{10!}{3!4!3!} \\$$

How many integral solutions of x1 + x2 + x3 + x4 = 30 satisfy x1  $\geq$ 2, x2  $\geq$ 0, x3  $\geq$ -5, and x4  $\geq$ 8 设 yl = xl - 2, y2 = x2, y3 = x3 + 5, y4 = x4 - 8 得 yl + y2 + y3 + y4 = 25 且 yl, y2, y3, y4  $\geq$  0 由公式可得( $^{25+4-1}$ ) = ( $^{28}_{25}$ )

How many permutations are there of the letters in the word PNEUMONOULTRAMICROSCOPICSILICOVOLCANOCONIOSIS? This word is, by some accounts, the longest word in the English language.

```
一共45个字母,统计其成分: 75 98 22 {A:2, C:6, E:1, I:6, L:3, M:2, N:4, O:9, P:2, R:2, S:4, T:1, U:2, V:1} 带入公式可得其排列数为:
```

```
45!
2!6!1!6!3!2!4!9!2!2!4!1!2!1!
```

Use the algorithm of Section 4.1 to generate the permutations 12345 , starting with  $\frac{1}{1}$   $\frac{1}{2}$   $\frac{1}{3}$   $\frac{1}{4}$   $\frac{1}{5}$ 

| 1 2 0                                                                                                                                     | $ \begin{array}{c} \rightarrow \leftarrow \leftarrow \leftarrow \leftarrow \\ 45132\\ \leftarrow \rightarrow \leftarrow \leftarrow \leftarrow\\ 54132 \end{array} $                               | $ \begin{array}{c} \leftarrow \leftarrow \leftarrow \rightarrow \leftarrow \\ 3 \ 1 \ 4 \ 5 \ 2 \\ \leftarrow \leftarrow \leftarrow \leftarrow \rightarrow \\ 3 \ 1 \ 4 \ 2 \ 5 \end{array} $ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $ \begin{array}{c} \leftarrow \leftarrow \rightarrow \rightarrow \leftarrow \\ 4 \ 2 \ 3 \ 5 \ 1 \end{array} $ $ \leftarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \rightarrow $                |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             | 54125<br>54155                                                                                                                                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $\overrightarrow{4} \ \overrightarrow{2} \ \overrightarrow{1} \ \overrightarrow{3} \ \overrightarrow{5}$ $\overrightarrow{4} \ \overrightarrow{2} \ \overrightarrow{1} \ \overrightarrow{3} \ \overrightarrow{5}$ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $ \begin{array}{c} \leftarrow \rightarrow \rightarrow \leftarrow \leftarrow \\ 1 \ 4 \ 5 \ 3 \ 2 \end{array} $                                                                                    | $\leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow 3 \ 4 \ 5 \ 1 \ 2$                                                                                   | $\overrightarrow{3} \overset{\leftarrow}{2} \overset{\leftarrow}{5} \overset{\leftarrow}{1} \overset{\rightarrow}{4}$                                                                                                             | $\overrightarrow{4} \ \overrightarrow{2} \ \overrightarrow{1} \ \overrightarrow{5} \ \overrightarrow{3}$                                                                                                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $\leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow 1 \ 4 \ 3 \ 5 \ 2$                                                                                               | $\leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow 35412$                                                                                                          | $\overrightarrow{3} \overset{\leftarrow}{2} \overset{\leftarrow}{1} \overset{\rightarrow}{5} \overset{\rightarrow}{4}$                                                                                                            | $\overset{\rightarrow}{4}\overset{\leftarrow}{2}\overset{\leftarrow}{5}\overset{\leftarrow}{1}\overset{\rightarrow}{3}$                                                                                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $\begin{array}{c} \leftarrow \rightarrow \leftarrow \leftarrow \rightarrow \\ 1 \ 4 \ 3 \ 2 \ 5 \end{array}$                                                                                      | 53412                                                                                                                                                                                         | $\overrightarrow{3} \overset{\leftarrow}{2} \overset{\leftarrow}{1} \overset{\rightarrow}{4} \overset{\rightarrow}{5}$                                                                                                            | $\overrightarrow{4} \ \overrightarrow{5} \ \overrightarrow{2} \ \overrightarrow{1} \ \overrightarrow{3}$                                                                                                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $\begin{array}{c} \leftarrow \leftarrow \rightarrow \leftarrow \leftarrow \\ 1\ 3\ 4\ 2\ 5 \end{array}$                                                                                           | $\stackrel{ ightarrow}{5} \stackrel{\leftarrow}{4} \stackrel{\leftarrow}{3} \stackrel{\leftarrow}{1} \stackrel{\leftarrow}{2}$                                                                | $\stackrel{\leftarrow}{2} \stackrel{\rightarrow}{3} \stackrel{\leftarrow}{1} \stackrel{\leftarrow}{4} \stackrel{\leftarrow}{5}$                                                                                                   | $\stackrel{\leftarrow}{5} \stackrel{\rightarrow}{4} \stackrel{\leftarrow}{2} \stackrel{\leftarrow}{1} \stackrel{\rightarrow}{3}$                                                                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $\begin{array}{c} \leftarrow \leftarrow \rightarrow \leftarrow \leftarrow \\ 1\ 3\ 4\ 5\ 2 \end{array}$                                                                                           | $ \overset{\leftarrow}{4} \overset{\rightarrow}{5} \overset{\leftarrow}{3} \overset{\leftarrow}{1} \overset{\leftarrow}{2} $                                                                  | $ \overset{\leftarrow}{2} \overset{\rightarrow}{3} \overset{\leftarrow}{1} \overset{\leftarrow}{5} \overset{\leftarrow}{4} $                                                                                                      | $\stackrel{\rightarrow}{5}\stackrel{\leftarrow}{2}\stackrel{\rightarrow}{4}\stackrel{\leftarrow}{1}\stackrel{\rightarrow}{3}$                                                                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $\stackrel{\leftarrow}{1} \stackrel{\leftarrow}{3} \stackrel{\leftarrow}{5} \stackrel{\rightarrow}{4} \stackrel{\leftarrow}{2}$                                                                   | $\stackrel{\leftarrow}{4}\stackrel{\leftarrow}{3}\stackrel{\rightarrow}{5}\stackrel{\leftarrow}{1}\stackrel{\leftarrow}{2}$                                                                   | $\stackrel{\leftarrow}{2} \stackrel{\rightarrow}{3} \stackrel{\leftarrow}{5} \stackrel{\leftarrow}{1} \stackrel{\leftarrow}{4}$                                                                                                   | $\stackrel{\leftarrow}{2} \stackrel{\rightarrow}{5} \stackrel{\rightarrow}{4} \stackrel{\leftarrow}{1} \stackrel{\rightarrow}{3}$                                                                                 |
| $ \begin{array}{ccccc} 1 & 2 & 4 & 5 & 3 \\  & \leftarrow \leftarrow \leftarrow \leftarrow \rightarrow \\ 1 & 2 & 4 & 3 & 5 \end{array} $ | $\begin{array}{c} \leftarrow \leftarrow \leftarrow \rightarrow \leftarrow \\ 1\ 5\ 3\ 4\ 2 \end{array}$                                                                                           | $\stackrel{\leftarrow}{4} \stackrel{\leftarrow}{3} \stackrel{\leftarrow}{1} \stackrel{\rightarrow}{5} \stackrel{\leftarrow}{2}$                                                               | $ \overset{\leftarrow}{2} \overset{\leftarrow}{5} \overset{\rightarrow}{3} \overset{\leftarrow}{1} \overset{\leftarrow}{4} $                                                                                                      | $\stackrel{\leftarrow}{2} \stackrel{\rightarrow}{4} \stackrel{\rightarrow}{5} \stackrel{\leftarrow}{1} \stackrel{\rightarrow}{3}$                                                                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $ \begin{smallmatrix} \leftarrow & \leftarrow & \leftarrow & \rightarrow & \leftarrow \\ 5 & 1 & 3 & 4 & 2 \end{smallmatrix} $                                                                    | $ \overset{\leftarrow}{4} \overset{\leftarrow}{3} \overset{\leftarrow}{1} \overset{\leftarrow}{2} \overset{\rightarrow}{5} $                                                                  | $\stackrel{\leftarrow}{5}\stackrel{\leftarrow}{2}\stackrel{\rightarrow}{3}\stackrel{\leftarrow}{1}\stackrel{\leftarrow}{4}$                                                                                                       | $ \begin{array}{c} \leftarrow \rightarrow \leftarrow \rightarrow \rightarrow \rightarrow \\ 2 \ 4 \ 1 \ 5 \ 3 \end{array} $                                                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $\overrightarrow{5}$ $\overrightarrow{1}$ $\overrightarrow{3}$ $\overrightarrow{2}$ $\overrightarrow{4}$                                                                                          | $\overrightarrow{4} \overrightarrow{3} \overrightarrow{2} \overrightarrow{1} \overrightarrow{5}$                                                                                              | $\overrightarrow{5} \overset{\leftarrow}{2} \overset{\leftarrow}{3} \overset{\leftarrow}{4} \overset{\leftarrow}{1}$                                                                                                              | $ \begin{array}{ccccc} 2 & 4 & 1 & 3 & 3 \\  & \rightarrow & \leftarrow & \rightarrow & \rightarrow \\ 2 & 4 & 1 & 3 & 5 \end{array} $                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             | $\overrightarrow{4} \overrightarrow{3} \xrightarrow{\leftarrow} \overleftarrow{5} \xrightarrow{\leftarrow} \overrightarrow{1}$                                                                | $\stackrel{\leftarrow}{2} \stackrel{\rightarrow}{5} \stackrel{\rightarrow}{3} \stackrel{\leftarrow}{4} \stackrel{\leftarrow}{1}$                                                                                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             | $\overrightarrow{4} \overrightarrow{3} \overrightarrow{5} \overrightarrow{2} \overrightarrow{1}$                                                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             |                                                                                                                                                                                                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             | $\overrightarrow{4} \ \overrightarrow{5} \ \overrightarrow{3} \ \overrightarrow{2} \ \overrightarrow{1}$                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                             |
| $ 5 1 4 2 3 $ $ \rightarrow \leftarrow \leftarrow \leftarrow \leftarrow $ $ 5 4 1 2 3 $                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             | $5\overrightarrow{4}\overrightarrow{3}\overrightarrow{2}\overrightarrow{1}$                                                                                                                   | $ \stackrel{\leftarrow}{2} \stackrel{\rightarrow}{3} \stackrel{\leftarrow}{4} \stackrel{\leftarrow}{1} \stackrel{\rightarrow}{5} $                                                                                                | $\stackrel{\leftarrow}{2}\stackrel{\leftarrow}{1}\stackrel{\leftarrow}{5}\stackrel{\rightarrow}{4}\stackrel{\rightarrow}{3}$                                                                                      |
| $ 5 4 1 2 3 $ $ \leftarrow \rightarrow \leftarrow \leftarrow \leftarrow $ $ 4 5 1 2 3 $                                                   | 31245                                                                                                                                                                                             | $\overrightarrow{5} \overrightarrow{3} \overrightarrow{4} \overrightarrow{2} \overrightarrow{1}$                                                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $\stackrel{\leftarrow}{2} \stackrel{\leftarrow}{5} \stackrel{\leftarrow}{1} \stackrel{\rightarrow}{4} \stackrel{\rightarrow}{3}$                                                                                  |
| $\begin{array}{c} 4 \ 5 \ 1 \ 2 \ 3 \\ \leftarrow \leftarrow \rightarrow \leftarrow \leftarrow \\ 4 \ 1 \ 5 \ 2 \ 3 \end{array}$          | $\begin{array}{c} \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \\ 3\ 1\ 2\ 5\ 4 \end{array}$                                                                      | $\overrightarrow{3} \ \overrightarrow{5} \ \overrightarrow{4} \ \overrightarrow{2} \ \overrightarrow{1}$                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $\overset{\leftarrow}{5} \overset{\leftarrow}{2} \overset{\leftarrow}{1} \overset{\rightarrow}{4} \overset{\rightarrow}{3}$                                                                                       |
| $\begin{array}{c} 4 \ 1 \ 5 \ 2 \ 3 \\ \leftarrow \leftarrow \leftarrow \rightarrow \leftarrow \\ 4 \ 1 \ 2 \ 5 \ 3 \end{array}$          | $\begin{array}{c} \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \\ 3\ 1\ 5\ 2\ 4 \\ \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \end{array}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $\stackrel{\rightarrow}{5}\stackrel{\leftarrow}{2}\stackrel{\leftarrow}{1}\stackrel{\rightarrow}{3}\stackrel{\rightarrow}{4}$                                                                                     |
| $\begin{array}{c} 4 \ 1 \ 2 \ 5 \ 3 \\ \leftarrow \leftarrow \leftarrow \leftarrow \rightarrow \\ 4 \ 1 \ 2 \ 3 \ 5 \end{array}$          | $\begin{array}{c} \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \\ 3\ 5\ 1\ 2\ 4 \\ \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \end{array}$                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $\stackrel{\leftarrow}{2} \stackrel{\rightarrow}{5} \stackrel{\leftarrow}{1} \stackrel{\rightarrow}{3} \stackrel{\rightarrow}{4}$                                                                                 |
| $\begin{array}{c} 4 \ 1 \ 2 \ 3 \ 5 \\ \rightarrow \leftarrow \leftarrow \leftarrow \leftarrow \\ 4 \ 1 \ 3 \ 2 \ 5 \end{array}$          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $\stackrel{\leftarrow}{2}\stackrel{\leftarrow}{1}\stackrel{\rightarrow}{5}\stackrel{\rightarrow}{3}\stackrel{\rightarrow}{4}$                                                                                     |
| $\begin{array}{c} 4 \ 1 \ 3 \ 2 \ 5 \\                                  $                                                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             | $ \overrightarrow{3} \ \overrightarrow{2} \ \overrightarrow{4} \ \overrightarrow{1} \ \overrightarrow{5} \\ \rightarrow \leftarrow \rightarrow \leftarrow \leftarrow $                        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                             |
| $\begin{array}{c} 4 \ 1 \ 3 \ 5 \ 2 \\                                  $                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                         | $ \begin{array}{c} \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow \\ 4 \ 5 \ 2 \ 3 \ 1 \\ \leftarrow \leftarrow \rightarrow \rightarrow \leftarrow \leftarrow \\ 4 \ 2 \ 5 \ 3 \ 1 \end{array} $ | $\begin{array}{c} 2 & 1 & 3 & 5 & 4 \\ \leftarrow \leftarrow \rightarrow \rightarrow \rightarrow \rightarrow \\ 2 & 1 & 3 & 4 & 5 \end{array}$                                                                    |
| $4\ 1\ 5\ 3\ 2$                                                                                                                           | 3 1 5 4 2                                                                                                                                                                                         | 3 2 5 4 1                                                                                                                                                                                     | 4 2 5 3 1                                                                                                                                                                                                                         | 2 1 3 4 5                                                                                                                                                                                                         |

i.

Construct the permutations of {1, 2, ..., 8} whose inversion sequences are

```
i. 2, 5, 5, 0, 2, 1, 1, 0ii. 6, 6, 1, 4, 2, 1, 0, 0
```

```
第八个数为0,代表8左侧有0个比8大的数字,先将8加入排列,{8}
第七个数为1,代表7左侧有1个比7大的数字,只有8大于7,所以7在8右侧,{8,7};
第六个数为1,代表6左侧有1个比6大的数字,只有7,8大于6,所以6在8和7中间,{8,6,7};
第五个数为2,代表5左侧有2个比5大的数字,所以5在已有排列第三位,{8,6,5,7};
第四个数为0,代表4左侧有0个比4大的数字,所以4在已有排列第一位,{4,8,6,5,7};
第三个数为5,代表3左侧有5个比3大的数字,所以3在已有排列第六位,{4,8,6,5,7,3};
第二个数为5,代表2左侧有5个比2大的数字,所以2在已有排列第六位,{4,8,6,5,7,2,3};
```

Construct the permutations of {1, 2, ..., 8} whose inversion sequences are

```
i. 2, 5, 5, 0, 2, 1, 1, 0ii. 6, 6, 1, 4, 2, 1, 0, 0
```

ii.

```
第八个数为0,代表8左侧有0个比8大的数字,先将8加入排列,{8}
第七个数为1,代表7左侧有0个比7大的数字,只有8大于7,所以7在8左侧,{7,8};
第六个数为1,代表6左侧有1个比6大的数字,只有7,8大于6,所以6在8和7中间,{7,6,8};
第五个数为2,代表5左侧有2个比5大的数字,所以5在已有排列第三位,{7,6,5,8};
第四个数为4,代表4左侧有4个比4大的数字,所以4在已有排列第五位,{7,6,5,8,4};
第三个数为1,代表3左侧有1个比3大的数字,所以3在已有排列第二位,{7,3,6,5,8,4};
第二个数为6,代表2左侧有6个比2大的数字,所以2在已有排列第七位,{7,3,6,5,8,4,2};
```

For each of the following combinations of {x7, x6, ..., x1, x0}, determine the combination that immediately follows it by using the base 2 arithmetic generating scheme,

```
i. {x4, x1, x0}ii. {x7, x5, x3}iii. {x7, x5, x4, x3, x2, x1, x0}iv. {x0}
```

- i. {x4, x1, x0}对应00010011,下一个为00010100,对应{x4, x2}
- ii. {x7, x5, x3}对应10101000,下一个为10101001,对应{x7, x5, x3, x0}
- iii. {x7, x5, x4, x3, x2, x1, x0}对应10111111,下一个为11000000,对应 {x7, x6}
- iv. {x0}对应00000001,下一个为00000010,对应{x1}

## HW6

172、192、199、220、235、254

Determine the immediate successors of the following 9-tuples in the reflected Gray code of order 9

#### 反射格雷码的生成规则:

- (1) 若1的个数为偶数,则改变最右边的位元
- (2) 若1的个数为奇数,改变右起第一个为1的位元的左边位元

```
i. 010100110, 1的个数为4,用规则(1),为010100111
```

- ii. 110001100, 1的个数为4, 用规则(1), 为110001101
- iii. 1111111111 , 1的个数为9 , 用规则(2) , 为111111101

Let X = {a, b, c, d, e, f} and let the relation R on X be defined by aRb, bRc, cRd, aRe, eRf, fRd. Verify that R is the cover relation of a partially ordered set, and determine all the linear extensions of this partial order.

偏序集可以用几何的方法表示。为了叙述几何表示方法,需要定义偏序集 $(X, \leq)$ 的覆盖关系。令 a 和 b 是 X 中的元素。如果 a < b 并且没有元素 c 能够夹在 a 和 b 之间,那么 a 就被 b 覆盖 (也说成 b 覆盖 a),记为 a < b; 就是说,不存在元素 c,使得 a < c 和 c < b 同时成立。如果 X 是一个有限集,则由传递性可知,偏序 $\leq$  被它的覆盖关系唯一确定。因此,覆盖关系是描述偏序的有效方法。由定理 4.5.1 可知,如果 $(X, \leq)$  是全序集,则 X 的元素可以列成  $x_1$  , $x_2$  ,…,  $x_n$  ,使得  $x_1 < c x_2 < c \cdots < c x_n$  。正是由于这种原因,全序集也叫做线性有序集。

Let X = {a, b, c, d, e, f} and let the relation R on X be defined by aRb, bRc, cRd, aRe, eRf, fRd. Verify that R is the cover relation of a partially ordered set, and determine all the linear extensions of this partial order.



#### 所有的线性扩展为:

abcefd abecfd abefcd aefbcd aebfcd

Consider the partially ordered set (X,⊆) of subsets of the set X= {a,b,c}of 3 elements. How many linear extensions are there?



无论怎么排序,第一位永远是Ø,最后一位都是{a,b,c} (1)若只按集合元素个数来排,则有  $A_3^{3^2}=36$ 种 (2) {a}/ {b}/ {c} 其中一个排列在{a,b}/{a,c}/{b,c}中 比如 {b}{c}{b,c}{a}{a,b}{a,c},其中{b}{c}和{a,b}{a,c} 可以调换顺序,则一共有3\*2\*2=12种 综上所示,一共有36+12=48种

#### Prove, that for every integer n > 1,

$$\binom{n}{1}$$
-2  $\binom{n}{2}$ +3  $\binom{n}{3}$ +...+(-1)<sup>n-1</sup>n  $\binom{n}{n}$ =0

根据二项式定理:  $(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$ 

同时对等式两边取x的倒数,得到: $n(x+1)^{n-1} = \sum_{k=1}^{n} {n \choose k} kx^{k-1}$ 

令x=-1,即可得到: $0=\sum_{k=1}^{n}\binom{n}{k}k(-1)^{k-1}$ ,展开,即可得到等式

#### Prove, that for every integer n > 1,

$$\binom{n}{1}$$
-2  $\binom{n}{2}$ +3  $\binom{n}{3}$ +...+(-1)<sup>n-1</sup>n  $\binom{n}{n}$ =0

$$k\binom{n}{k} = k \frac{n!}{k!(n-k)!} = n \frac{(n-1)!}{(k-1)!(n-k)!} = n \binom{n-1}{k-1}$$
等式变为: 
$$n\binom{n-1}{0} - n \binom{n-1}{1} + n \binom{n-1}{2} + \dots + (-1)^{n-1} n \binom{n-1}{n-1}$$

$$= n [\binom{n-1}{0} - \binom{n-1}{1} + \binom{n-1}{2} + \dots + (-1)^{n-1} \binom{n-1}{n-1}]$$

$$= n * 0 = 0$$

Find and prove a formula for  $\sum_{\substack{r,s,t\geq 0\\r+s+t=n}}\binom{m_1}{r}\binom{m_2}{s}\binom{m_3}{t}$  where the summation extends over all nonnegative integers r, s and t with sum r+ s+ t= n.

组合意义:从总共  $(m_1+m_2+m_3)$  个物品中选取n个,总的方法数为  $\binom{m_1+m_2+m_3}{n}$ 。

其也等价于从m<sub>1</sub>个物品中选取r个,m<sub>2</sub>个物品中选取s个,m<sub>3</sub>个物品中选取t个,并且r+s+t=n

Consider the partially ordered set (X, |) on the set  $X = \{1, 2, \dots, 12\}$  of the first 12 positive integers, partially ordered by "is divisible by."

i. Determine a chain of largest size and a partition of X into the smallest number of antichains.

```
最长链为{1, 2, 4, 8}。
可以划分为:
{1}
{2, 3, 5, 7, 11}
{4, 6, 9, 10}
{8, 12}
```



Consider the partially ordered set (X, |) on the set  $X = \{1, 2, \dots, 12\}$  of the first 12 positive integers, partially ordered by "is divisible by."

ii. Determine an antichain of largest size and a partition of X into the smallest number of chains.

```
最长反链为{7, 8, 9, 10, 11, 12}。
可以划分为:
{1, 2, 4, 8}
{3, 6, 12}
{9,}
{5, 10}
{7}
{11}
```



### 组合数学习题课-作业7

256, 258, 262, 270, 272, 279.

### HW7

256、258、262、270、272、279

Find the number of integers between 1 and 10,000 inclusive that are not divisible by 4, 5, or 6.

设 $A_1$ 为能被4整除的数, $A_2$ 为能被5整除的数, $A_3$ 为能被4整除的数,根据容斥原理: $\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} = S - (A_1 + A_2 + A_3) + (A_1 \cap A_2) + (A_1 \cap A_3) + (A_2 \cap A_3) - (A_1 \cap A_2 \cap A_3) = 10000 - (2500 + 2000 + 1666) + 500 + 833 + 333 - 166 = 5334$ 

Find the number of integers between 1 and 10,000 that are neither perfect squares nor perfect cubes.

```
设A<sub>1</sub>为完全平方数, A<sub>2</sub>为完全立方数,根据容斥原理:\overline{A_1}\cap\overline{A_2}=S-(A_1+A_2)+(A_1\cap A_2)\\=10000-(\left\lfloor\sqrt[2]{10000}\right\rfloor+\left\lfloor\sqrt[3]{10000}\right\rfloor)+\left\lfloor\sqrt[6]{10000}\right\rfloor\\=10000-(100+21)+4\\=9883
```

Determine the number of solutions of the equation x1 + x2 + x3 + x4 = 14 in nonnegative integers x1, x2, x3, and x4 not exceeding 8.

若无x4的限制,则有公式可得解法数目为:

$$\binom{14+4-1}{14} = 680$$

现在先求x4超过8的情况,设y4 = x4-9,则有 x1+x2+x3+y4 = 5,且均非负,由公式可得解法数目为:

$$\binom{5+4-1}{5}$$
=224

则x4不超过8的解数为:680-224 = 456

At a party seven gentlemen check their hats. In how many ways can their hats be returned so that

- i. no gentleman receives his own hat?
- ii. at least one of the gentlemen receives his own hat?
- iii. at least two of the gentlemen receive their own hats?
- (1) 7个的错排:D<sub>7</sub>
- (2) 全集减去完全错排: 7! D<sub>7</sub>
- (3) 全集减去完全错排和一个人帽子对的情况:  $7! D_7 7D_6$

Determine the number of permutations of the multiset  $S = \{3 \cdot a, 4 \cdot b, 2 \cdot c\}$ , where, for each type of letter, the letters of the same type do not appear consecutively. (Thus abbbbcaca is not allowed, but abbbacacb is.)

设
$$A_1$$
为出现 aaa,  $A_2$ 为出现 bbbb,  $A_3$ 为出现 cc, 根据容斥原理: 
$$A_1 \cap \overline{A_2} \cap \overline{A_3} = S - (A_1 + A_2 + A_3) \\ + (A_1 \cap A_2 + A_1 \cap A_3 + A_2 \cap A_3) - (A_1 \cap A_2 \cap A_3) \\ = \frac{9!}{3!4!2!} - \left(\frac{7!}{1!4!2!} + \frac{6!}{3!1!2!} + \frac{8!}{3!4!1!}\right) + \left(\frac{4!}{1!1!2!} + \frac{6!}{1!4!1!} + \frac{5!}{3!1!1!}\right) - \frac{3!}{1!1!1!}$$
 = 871

# What is the number of ways to place six nonattacking rooks on the 6-by-6 boards with forbidden positions as shown?







Figure in Question 279

#### 如何解决棋盘上有禁止模式的排列问题?

定理 6.4.1 将 n 个非攻击型不可区分的车放到带有禁止放置位置的 n 行 n 列棋盘上的放置方法数等于

$$n! - r_1(n-1)! + r_2(n-2)! - \cdots + (-1)^k r_k(n-k)! + \cdots + (-1)^n r_n$$

 $r_k$  是把 k 个非攻击型车放到 n 行 n 列棋盘上的这样一种方法数,其中这 k 个车中的每个都处在禁止放置的位置上  $(k=1, 2, \dots, n)$ 。

$$r_1 = 6$$
,  $r_2 = 3 \times 2 \times 2 = 12$   
 $r_3 = 2 \times 2 \times 2 = 8$ ,  $r_4 = r_5 = r_6 = 0$   
所以总的放置的方法数是:  
 $6! - 6 \times 5! + 12 \times 4! - 8 \times 3! = 240$ 



r2和r3的计算需要仔细分析,有没有更简便的方法?

引理 4.4.1 如果棋盘 B 分解成两个不相交的子棋盘  $B_1$  和  $B_2$ ,则

$$r_k(B) = \sum_{i=0}^k r_i(B_1) r_{k-i}(B_2).$$

对于棋盘 B,定义棋子多项式 R(x,B) 为数列 $\{r_0(B),r_1(B),\cdots\}$  的生成函数,即

$$R(x,B) = \sum_{i=0}^{\infty} r_i(B)x^i,$$

引理 4.4.2 若  $B_1, B_2$  是棋盘 B 的两个不相交的子棋盘,则

$$R(x,B) = R(x,B_1) \cdot R(x,B_2).$$

$$R(x, B) = R(x, B_1) \times R(x, B_2) \times R(x, B_3)$$

$$= (1 + 2x) \times (1 + 2x) \times (1 + 2x)$$

$$= 1 + 6x + 12x^2 + 8x^3$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$r_1 \qquad r_2 \qquad r_3$$



R(x, B) = R(x, B<sub>1</sub>) × R(x, B<sub>2</sub>) × R(x, B<sub>3</sub>)  
= 
$$(1 + 4x + 2x^2)^3$$
  
=  $1+12x+54x^2+112x^3+108x^4+48x^5+8x^6$ 

排列数为:6!-12×5!+54×4!-112×3!+108×2!-48+8=80



R(x, B) = R(x, B<sub>1</sub>) × R(x, B<sub>2</sub>)  
= 
$$(1+5x+6x^2+x^3)$$
× $(1+3x+x^2)$   
=  $1+8x+22x^2+24x^3+9x^4+x^5$ 

排列数为:6!-8×5!+22×4!-24×3!+9×2!-1=161

