ARM ASSIGNMENT

Pavan Srinivas Marri marripavan65@gmail.com FWC22138 IITH - Future Wireless Communications

Contents

1	Problem	1
2	Components	1
3	Implementation 3.1 Solution	1 1
4	Hardware 4.1 Vaman to LCD connections 4.2 Procedure 4.3 LCD output	2 2 2 2
5	Software	3
6	Conclusion	3

1 Problem

(GATE2020-QP-EE)

Q.54 An 8085 microprocessor acesses two memory locations (2001H) and (2002H), that contains 8-bit numbers 98H and B1H, respectively. the following program is executed:

LXI H,2001H

MVIA,21H

INX H

ADD M

INX H

MOV M,A

HLT

At the end of this program , the memory location 2003H contains the number in decimal (base 10) form

2 Components

Components	Value	Quantity
Breadboard	-	1
Jumper Wires	-	20
LCD	16x2	1
Vaman	-	1

Table 1: Components

3 Implementation

3.1 Solution

LXI H, 2001H; H = 20 H, L = 01 H

MVI A, 21H; A = 21 H

INX H; HL + 1 \rightarrow H = 20 H \rightarrow HL = 2002 H

ADD M; [A] + Reference data of HL pair = $21 \text{ H} + \text{B1 H} = \text{D2H} \rightarrow [\text{A}]$

INX H; [HL] + 1 \rightarrow 2002 H + 1 H \rightarrow 2003H

MOV M, A; [A] to Memory, reference of HL pair, 2003 H [D2] β [D2] = A

HLT; Stop Therefore, content in the 2003 H is D2H

Converting in decimal

 $D \times 16^{1} + 2 \times 16^{0} \rightarrow 13 \times 16 + 2 = (210)_{10}$

4 Hardware

4.1 Vaman to LCD connections

Pygmy	LCD pins	LCD pin label	LCD pin Description
GND	1	GND	
5V	2	Vec	
GND	3	Vee	Contrast
10	4	RS	Register Select
GND	5	R/W	read/write
9	6	EN	Enable
14	11	DB4	Serial connection
13	12	DB5	Serial connection
12	13	DB6	Serial connection
11	14	DB7	Serial connection
5V	15	LED+	Backlight
GND	16	LED-	Backlight

Table 2: Vaman to LCD

Figure 1: LCD pins

4.2 Procedure

- 1. Make the connection to the vaman and LCD as in the table above.
- 2. Refer fig:1 for the reference of LCD pins.
- 3. Connect the Vaman to the PC via USB and dump your code into vaman.

4.3 LCD output

Figure 2: Output

5 Software

Execute the code which is available in the below path and upload it to the Vaman. $\boxed{\text{https://github.com/Pavan2k01/Digital-Design/blob/main/ARM/main.c}}$

6 Conclusion

Hence, We have executed the above code using Vaman in ARM environment.