An exhaust gas purifying device for an internal combustion engine wherein a secondary air supply system communicates with an exhaust port 6 of an internal combustion engine E, reed valve devices L_1 through L_4 are disposed in the secondary air supply system, and the reed valve devices L1 through L4 are controlled so as to be opened and closed while the internal combustion engine E is in operation to supply exhaust gas purifying secondary air to the exhaust port 6, characterized in that said reed valve devices L1 through L4 are housed in a valve casing B separate from the internal combustion engine E, the valve casing B is fixed to a side of a cylinder block 1 of the internal combustion engine E, an air passage gap 42, which is open upwardly and downwardly, is defined between the side of the cylinder block 1 and a side of the valve casing B, which confronts the side of the cylinder block 1, and a number of vertically extending cooling fins 35 project from another side of the valve casing B, which is opposite to said cylinder block 1.

⑩ 日本国特許庁(JP)

①実用新案出願公告

200公告 昭和61年(1986)2月7日

⑫実用新案公報(Y2)

願 昭56(1981)1月23日

昭61-4022

@Int_Cl_1 3/34 F 01 N 1/06 01 // F 02 F 1/06

識別記号 庁内整理番号

Z - 7031 - 3G Z - 7515 - 3G 7137 - 3G

(全7頁)

図考案の名称

個代 理

内燃機関の排気浄化装置

23出

②実 願 昭56-8841 69% 開 昭57-121722

郵昭57(1982)7月29日

72)考 案 者 池ノ谷 保 男

川越市豊田新田3

⑫考 案 者 石 田 洋 新座市新座3-4-11-404 東京都港区南青山2丁目1番1号

の出 願 X 本田技研工業株式会社

> 弁理士 落 合 健 髙 橋 実 美

審査 官 公害防止関連技術

96参考文献 実開 昭52-121512(JP,U)

実公 昭54-31206 (JP, Y2)

砂実用新案登録請求の範囲

内燃機関Eの排気ポート 6 に二次空気供給系を 連通し、この二次空気供給系の途中にリード弁装 置L,~L,を介装し、内燃機関Eの運転時に前記 リード弁装置し~し、を開閉制御し、排気浄化用 5 (3) 考案が解決しようとする問題点 二次空気を排気ポート6に供給するようにした、 内燃機関における排気浄化装置において、前記リ ード弁装置L1~L4を、内燃機関Eと別体に形成 される弁函B内に収容し、その弁函Bを内燃機関 Eのシリンダブロック 1 側面に固着すると共に、10 どの利点を有するが、その反面、リード弁装置 該シリンダブロック1側面と、それに対向する該 弁函Bー側面との間に上下開放の空気流通空隙 4 2を形成し、前記弁函Bの、前記シリンダブロツ ク1と反対側の他側面には、上下方向にのびる多 数の冷却フィン35を突設したことを特徴とす 15 単体では行い得ないなど、全体として作業が面倒 る、内燃機関の排気浄化装置。

考案の詳細な説明

A 考案の目的

(1) 産業上の利用分野

本考案は、内燃機関の排気ポートに、リード弁 20 B 考案の構成 装置を介装した二次空気系を連通し、前記リード 弁装置の開閉制御により、前記排気ポートに排気 浄化用二次空気を供給し、そこに混入するHC, CO等の未燃有害成分を燃焼するようにした排気 浄化装置に関する。

(2) 従来の技術

前記内燃機関において、二次空気供給系に介装 されるリード弁装置の弁函本体を、該機関のシリ ンダブロツク側面に一体に形成したものは従来公 知である(特開昭54-76714号公報参照)。

上記従来のものでは、プラグ交換、タペット調 整等のメンテナンスをリード弁装置に邪魔されず に行うことができて作業性が向上する他、リード 弁装置と排気ポート間の配管構造を簡素化するな が、機関運転中高温となるシリンダブロツクから 直接加熱され易いという問題がある。さらにリー ド弁装置は、それ自身の組立と機関本体への組付 けとを同時に行わねばならず、組立検査も弁装置

本考案は上記に鑑み提案されたもので、従来の ものの上記問題をすべて解消し得る、内燃機関の 排気浄化装置を提供することを目的とする。

(1) 問題点を解消するための手段

上記目的を達成するために本考案は、リード弁 装置を、内燃機関と別体に形成される弁面内に収 容し、その弁函を内燃機関のシリンダブロック側 25 面に固着すると共に、該シリンダブロック側面 と、それに対向する該弁函一側面との間に上下開

放の空気流通空隙を形成し、前記弁函の、前記シ リングブロツクと反対側の他側面には、上下方向 にのびる多数の冷却フィンを突設したことを特徴 とする。

(2) 作 用

前記空気流通空隙の特設によつて、リード弁装 置の弁函がシリンタブロツクから直接加熱されに くくなることは勿論、その弁函一側面とシリンダ ブロツクとの間に冷却風を上下に流通させること にのびる前記冷却フィンによつて、該弁函他側面 近傍に冷却風を上下にスムーズに流通させること ができ、従つて特に車両停止時のように内燃機関 が移動しない状態にあつても、該機関の加熱によ 流通空隙を通つて、また同弁函の他側面において は上記冷却フィンに整流案内されてそれぞれ該弁 函の両外側面に沿つてスムーズに流動し、これに より弁函の放熱効果を高めることができる。

ックと別体に形成されることから、リード弁装置 自身の組立作業や組立後の検査作業を、該リード 弁装置をシリングブロックに組込む前に子め別の 専門ラインで簡便に済ませておくことができる。 (3) 実施例

以下、図面により本考案装置を自動二輪車に塔 載されるOHC型直列4気筒内燃機関Eに実施し た場合の1実施例について説明する。

第1図において自動二輪車Vhの車体フレーム その前、後には前、後車輪Wf,Wrが支承されて おり、それらによつて囲まれる空間内において、 車体フレームFには後車輪Wrの駆動用の前記内 燃機関Eが搭載されている。

リンダブロツク1には、4個の気筒C₁, C₂およ びC3, C4が中央のカム軸伝動機構収容部D(第 4図)を挟んで直列に配置され、各気筒内には、 それぞれピストン3が指動自在に嵌合される。シ スケット Gを介して重合固着され、そのシリング ヘッド2上には各ピストン3上において燃焼室4 が形成される。

シリンダヘツド2の後側には、各燃焼室4にそ

れぞれ連通する吸気ポート5が配列され、またシ リンダヘツド 2 の前側には、各燃焼室 4 にそれぞ れ運通する排気ポート 6 が配列される。

前記各吸気ポート5は、内燃機関Eの後面に開 5 口し、また各排気ポート 6 は、内燃機関Eの前面 に開口している。第1図に示すように吸気ポート 5には内燃機関Eの後方に配設されるキャブレタ 7、エアクリーナ8等の吸気系が接続され、また 前記排気ポート6には排気管9、マフラー10等 ができ、一方、該弁函他側面に突設した上下方向 10 の排気系が接続され、マフラー10の途中には排 気浄化用触媒コンバータ11が介装されている。 またシリングヘッド2には通常のように吸、排気 ポート5,6の、燃焼室4側開口端を開閉する、 吸、排気弁12,13が設けられ、それらは弁ば る上昇気流は、弁函の一側面においては上記空気 15 ね14と動弁カム15の回転との協働によつて開 閉作動される。また前記吸、排気弁12,13間 において、シリンダヘッド2に点火プラグ(図示 せず)を螺着し、その電極を燃焼室に臨ませる。 前記シリンダヘッド2の上部にはパツキン16 また前記リード弁装置の弁函は、シリンダブロ 20 を介してシリンダ ヘツドカバー 1 7 が被着され

> 前記シリンダブロツク1の前面、すなわち自動 二輪車の前方側には、前記四つの気筒C₁, C₂, C3, C4に対応して四つのリード弁装置占, L2, 25 La, Lが設けられる。

前記リード弁装置L1, L2, L3, L,は、第8, 9 図に示すようにあらかじめユニット体ひとして 構成されたものを、シリンダブロツク1の前部側 面に外方に突出して形成した取付座面18,,1 F上部には燃料タンクTおよびシートSが、また 30 82 … (第7図) に複数個の取付ボルト20,2 0…によつて取付られる。

次に前記リード弁装置し、~し、のユニット体し の構成について説明すると、これは、弁函Bを構 成する弁カバー21と弁ケース22間に四個のリ 第2~4図において直列4気筒内燃機関Eのシ 35 -ド弁23,23…を挟持固定して構成される。 弁カバー21には凹所24,24…が形成され、 それらの凹所 2 4 , 2 4 …にリード弁 2 3 , 2 3 …がそれぞれ嵌着されてその上に弁ケース22が 重合され、弁カバー21と弁ケース22とはそれ リンダブロック1上には、シリンダヘッド2がガ 40 らを貫通する固着ボルト25(第9図)によつて 一体に固着される。前記リード弁23は、中央部 に弁口26を穿設した弁座体27の一面に、その 弁口26を開閉するリード28およびそのリード 28の開度を規制するリードストッパ29を重合

のボルト孔37,38…に螺着することにより、 前記ユニット体Uはシリンダブロック1に固着さ れ、ユニット体リの弁函B内のリード弁装置し ~L,の各下流室 b の出口通路 4 1, 4 1 … はそ 7の弁口 2 6 は上流室 a と下流室 b とを連通す 5 れぞれ前記二次空気供給路 3 6, 3 6…に連通さ れる。

してそれらの基端を止めねじ30により弁座体2 7に止着して構成される。前記リード弁23はユ ニット体U内に形成される四つのリード弁内をそ れぞれ上流室aと下流室bとに区画し、弁座体2 る。前記弁カバー21内には四つの上流室a, a …を互いに連通する分配路31(第2,9図)が 形成され、また弁カバー21の中央部には、その 分配路31に通じる入口通路32 (第2,9図) ト33が接続され、この接続ジョイント33に は、後述する可撓性二次空気導入管34が接続さ れる。また弁函Bの一部を構成する弁ケース22 の内面には複数個の平坦な被取付座面19」 (第 被取付座面19,,…には各下流室bに連通する 出口通路 4 1, 4 1…(第 4 図)が穿設される。 また弁函Bの他の一部を構成する前記弁カバー2 1の前面には、上下方向にのびる多数の冷却フィ ン35が横方向に間隔をおいて突設されており、20吸気系内の吸気負圧に応動して開閉制御される。 これらの冷却フィン35は弁函Bを有効に冷却す

シリンダブロック1の前部側面と、それに対向 する弁函Bの内側面との間には、上、下に開放さ れる空気流通空隙 42 が形成され、さらに弁函B が開口され、この入口通路32には接続ジョイン 10 の中央部にはその前後に開口される流通孔44, 4.4が形成される。

前記シリングブロツク1の前部側面には前述の ようにリード弁装置Li~Liのユニット体Uを取 付けるための平坦な取付座面181,182 … 25 の作用について説明する。 (第7図)が突設形成され、一方の各取付座面1 8, にはそれぞれ二次空気供給路36の一端が開 口されている。各二次空気供給路36はシリンダ ブロック1およびシリンダヘッド2とに亘つて形 に連通されている。そして二次空気供給路36 の、シリンダブロック1とシリンダヘッド2とに 跨る部分は前記ガスケット Gにより気密にシール される。また前記取付座面 181, 182 …には 座面19,,192 には、それらのボルト孔3 7, 38に一致するボルト挿通孔40が穿設され

弁函Bの上方中央部に接続される接続ジョイン ト33にはゴム管、合成樹脂管等の可撓性二次空 気導入管34の下端が接続されており、この導入 4 図), 192 (第6図) …が形成され、一方の 15 管34は、内燃機関E本体の前方を上方にのびた 後、その上面を縦走して後方に延長され、その途 中に空気制御弁V(第1図)を介してエアクリー ナ8の空気清浄室内に連通される。前記空気制御 弁Vは従来公知のもので、内燃機関Eの運転時に

ている。 而して前述のリード弁装置し、~よのユニット , 19。は、〇リング39を介して、シリンダ ブロック1前部側面の取付座面18,,182 に 接合され、前記ボルト挿通孔40,40…を通し て取付ボルト20,20…をシリングブロツク1

前記可撓性二次空気導入管 3 4 の外周は螺旋状 のワイヤ43が網着されこれによつて保護されて

次に上記のように構成される本考案の1実施例

いま内燃機関Eが運転されると、各排気ポート 6 内に排気脈動圧が発生し、この脈動圧は二次空 気供給路36を通つて各リード弁23に達してそ れを開閉し、さらに内燃機関Eの運転による空気 成され、その他端は燃焼室4近傍の排気ポート6 30 制御弁Vの開弁状態でエアクリーナ8内の清浄内 気の一部は、可撓性二次空気導入管34を通つて ユニット体Uの弁函B内に流入する。該弁函B内 に入つた二次空気は分配通路31を通つて四つの 上流室 a 内に分流し、各リード弁23の弁口26 ボルト孔37,38が穿設され、また前記被取付 35 を通つて下流室bに流入しそこより、シリンダブ ロック1およびシリンダヘッド2の二次空気供給 路36を通つて各排気ポート6内に流入する。排 気ポート 6 内の導入二次空気は排気内に混入し、 排気ポート 6 および排気管 9 内において排気中に 体U、すなわち弁ケース22の被取付座面19 40 混在するHC, CO等の未燃有害成分を酸化させ る。さらに二次空気の混入した排気はマフラー1 0 内に流入し、そこに内蔵される触媒コンバータ 11の反応を促進しその中の未燃有害成分を最終 的に浄化した後大気に放出される。

ところで内燃機関の運転により自動二輪車が走 行すると、その走行気流の一部は第4,5図に実 線矢印で示すようにリード弁装置L,~L,のユニ ツト体Uの弁函B前面に当つた後、上下に分れて 空隙42を通つて前記リード弁装置占〜L4を冷 却した後、シリンダブロツク1内に形成される間 隙を通つてその後方へ流れる。また走行気流の他 の一部はユニツト体Uの中央部に形成した流通孔 間隙を通つてその後方へと流れる。

7

また自動二輪車Vの停車中における内燃機関E のアイドル運転時にも、該機関Eの加熱による上 昇気流は第5図点線矢印で示すように弁函Bの 数の冷却フィン35は前記上昇気流を弁函Bの外 面に沿つて流れるように案内してその冷却フィン 35による放熱効果を高める。

ところで二次空気供給系の途中に介装されるり ード弁装置を内燃機関の側面に固着することによ 20 りそのリード弁装置L,~L,のメンテナンスがよ いほかに該リード弁装置し、〜Lの存在によつて 点火ブラグ交替、タペツト調整等の、内燃機関の メンテナンスが何ら阻害されず、またリード弁装 L,~L,からの二次空気を低抗少なく円滑に排気 ポートに供給して排気の浄化能率を高めることが でき、さらにリード弁装置と排気ポート間の配管 が不要になる等の諸効を達成できるものである。 C 考案の効果

以上のように本考案によれば、リード弁装置 Li~Liを、内燃機関Eと別体に形成される弁函 B内に収容し、その弁函Bを内燃機関Eのシリン グブロック1側面に固着すると共に、該シリング 面との間に上下開放の空気流通空隙42を形成し たので、機関運転中髙温となるシリンダブロツク 1の側面にリード弁装置し、~し、を直接取付けた にも拘らず、上記空気流通空隙 4 2 の特設によつ ック1から直接加熱されにくくなり、しかもその 弁函B―側面とシリングブロック1側面との間に は、該空隙42を通して冷却風を上下に流通させ

ることができるから、シリンダブロツク1の放熱 性が弁函Bによつて特別に阻害されることもな い。さらに前記弁函Bの、前記シリンダブロツク 1と反対側の他側面には、上下方向にのびる多数 その上下面に沿つて流れユニット体f U背面の流通 f s の冷却フィンf 3 f 5 を突設したので、それら冷却フ イン35によつて、該弁函B他側面近傍に冷却風 を上下にスムーズに流通させることができる。以 上の結果、特に車両停止時のように内燃機関Eが 移動しない状態にあつても、該機関Eの加熱によ 44,44を通過した後、シリンダブロック1の 10 る上昇気流は、弁函Bの一側面においては上記空 気流通空隙 4 2 を通つて、また同弁函Bの他側面 においては上記冷却フィン35に整流案内されて それぞれ弁函Bの両外側面に沿つてスムーズに流 動することができ、これにより弁函Bの放熱効果 前、後面を上方へと流れ、その際前記縦方向の多 15 を高めることができるから、前述の如く該弁函B がシリンダブロツク1から直接加熱されにくいこ とと相俟つてリード弁装置L ~L4の過熱防止に 極めて効果的であり、その信頼性、耐久性の向上 に寄与し得る。

8

また特にリード弁装置Li~Liの弁函Bはシリ ンダブロツク1とは別体に形成されて同ブロツク 1に固着されることから、リード弁装置片 ~レ。 自身の組立作業や組立後の検査作業を、該リード 弁装置をシリンダブロツク1に組込む前に予め別 置と排気ポート間の距離を短くしてリード弁装置 25 の専門ラインで簡便に済ませておくことができ、 従つてリード弁装置L,~L,の機関本体への組付 けを簡単且つ的確に行うことができる。 図面の簡単な説明

第1図は、本考案装置を装備した内燃機関を塔 30 載した自動二輪車の側面図、第2図は、前記内燃 機関の一部を破断した部分正面図、第3図は、前 記内燃機関の頭部の縦断側面図、第4図は、第2 図Ⅳ−Ⅳ線断面図、第5図は、第2図Ⅴ−Ⅴ線断 面図、第6図は、第2図Ⅵ-Ⅵ線断面図、第7図 ブロツク1側面と、それに対向する該弁函Bー側 35 はシリンダブロツクの正面図、第8図はリード弁 装置のユニット体の正面図、第9図は第8図以一 IX線断面図である。

B……弁函、E……内燃機関、L,~L,……リ ード弁装置、1……シリンダブロツク、6……排 てリード弁装置L,~L,の弁函Bがシリンダブロ 40 気ポート、32……入口通路、34……可撓性二 次空気導入管、35……冷却フイン、36……二 次空気供給路、41……出口通路、42……空気 流通空隙。

(5)

第3図

第4図

