

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа №2 по курсу "Моделирование" по теме "Исследование функций и плотностей распределения случайных величин"

Студент: Уласик Е.А.

Группа: ИУ7-71

Вариант по списку 18

Преподаватель: Рудаков И.В.

Оглавление

1.	Формализация	3
	1.1. Равномерное распределение	
	1.2. Распределение Гаусса	
2.	Результат работы программы	
	2.1. Равномерное распределение	
	2.2. Распределение Гаусса	
	=-=- = ··· ··· ··· / · · · · · · · · ·	

1. Формализация

В данной лабораторной работе будут рассмотрены равномерное распределение и распределение Гаусса (3 вариант).

1.1. Равномерное распределение

Говорят, что случайная величина имеет равномерное распределение на отрезке [a, b], где a, b – действительные числа, если её плотность $f_X(x)$ имеет вид:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, x \in [a,b] \\ 0, x \notin [a,b] \end{cases}$$
 (1)

Проинтегрировав определённую в (1) плотность, получаем:

$$F_X(x) \equiv P(X \le x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$
 (2)

1.2. Распределение Гаусса

Распределение Гаусса, также называемое нормальным распределением или Гаусса — Лапласа — распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$
 (3)

где параметр μ — математическое ожидание (среднее значение), σ среднеквадратическое отклонение распределения.

Наиболее простой случай нормального распределения — стандартное нормальное распределение — частный случай, когда $\mu=0$ и $\sigma=1$. Его плотность вероятности равна:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{4}$$

Функция распределения стандартного нормального распределения обычно обозначается заглавной греческой буквой Φ (фи) и представляет собой интеграл

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
 (5)

2. Результат работы программы

2.1. Равномерное распределение

На рисунках 1-2 изображены графики функции равномерного распределения и функции плотности распределения с параметрами a=-10 и b=10.

Рисунок 1. График функции равномерного распределения

Рисунок 2. График функции плотности равномерного распределения

На рисунках 3-4 изображены графики функции равномерного распределения и функции плотности распределения с параметрами a=-5 и b=4.

Рисунок 3. График функции равномерного распределения

Рисунок 4. График функции плотности равномерного распределения

2.2. Распределение Гаусса

На рисунках 5-6 изображены графики стандартного нормального распределения.

Рисунок 5. График функции стандартного нормального распределения

Рисунок 6. График функции плотности стандартного нормального распределения

На рисунках 7-8 изображены графики функции распределения Гаусса и функции плотности распределения Гаусса с параметрами μ =-2 и σ = 0.5.

Рисунок 7. Функция распределения Гаусса

Рисунок 8. График функции плотности распределения Гаусса

На рисунках 9-10 изображены графики функции распределения Гаусса и функции плотности распределения Гаусса с параметрами μ =4 и σ = 10.

Рисунок 9. График функции распределения Гаусса

Рисунок 10. График функции плотности распределения Гаусса