

레이다 (Radar) 모듈 파라미터 최적화

-로봇기반 혁신선도 전문인력 양성-

2022. 08. 12 (Fri.)

참 여 기 업 : (주) 유진MS

연구 책임자 : 김성호 교수

참여 연구원 : 신연하, 장오태, 권혁민

Advanced Visual Intelligence Laboratory 영남대 전자공학과

목차

- ▶ 프로젝트 요청 사항
- ▶ 프로젝트 내용
- ▶ 결론

1. 프로젝트 요청 사항

- ▶ 레이더 모듈 사용법 및 기능 숙지
 - ➤ Evaluation Software 활용 각종 파라미터의 개념, 설정 방법 Study
- ▶ 감지 정밀도 테스트
 - 샘플 대상물 활용하여 최대감지 거리와 각도 측정, 감지 정밀도 시험
- 센서 고정 상태에서 물체 인식
 - ▶ 감지 범위 내에서의 움직임 감지, 접근 대상물 등 인식
 - 움직임이 감지 되었을 때 선풍기, 바람 등에 미세하게 흔들리는 물체와 사람이 움직이는 것을 구분 할 수 있는 최적의 파라미터 산출
- ▶ 센서 이동 상태에서 물체 인식
 - ▶ 이동중 장애물 인식 (지게차 후방감지 시스템 등) 파라미터 최적화
 - ▶ 이동 속도에 따른 장애물 감지 파라미터 산출
 - ▶ 움직이지 않는 장애물 (물체)과 움직이는 장애물(사람)의 구분이 가능한가?

- 1. 감지 정밀도 측정
 - 1) Grid에 대상물 위치시킨 후, Radar로 대상물 측정 (log)
 - 2) 파라미터 변경하며 관측 한계 파악
 - 3) 바람 등에 대해 미세하게 흔들리는 물체 감지 실험
- 2. 센서 고정 및 이동상태에서 물체 감지
 - 1) 센서와 사람이 상대적으로 이동하는 상황에서 측정
 - 2) 고정된 장애물과 사람 구분 실험

- 1) Radar 감지 정밀도 측정을 위한 Grid 그리기
 - > Radar로 대상물 측정했을 때 도출된 파라미터와 실제 대상물의 파라미터 사이 오차 계산 필요
 - ▶ 따라서, 실제 대상물의 파라미터를 알아야 측정 시 정확도 파악 가능

- 2) 거리, 각도 별로 대상물 측정
 - ▶ 대상물을 X축 [-5,5], Y축 [0,11]에 1칸 씩 이동시키며 측정
 - ▶ 파라미터 변경하며 관측 한계 파악

- 3) Matlab을 활용하여 Log 파일 정리
 - > figure 1. radar 측정 data (Distance, Angle)

threshold	х	У	magnitude	mean_distance	std_distance	phase	mean_phase	std_phase	mean_level	accuracy
25	-100	0	100	101.0215827	14.61955591	-90	-14.028777	32.7146075	13.5611511	34.2364532
25	-100	100	141.4213562	143.4895288	9.891200537	-45	-40.981675	7.03513338	22.617801	93.8574939
25	-100	1000	1004.987562	987.3888889	5.089075831	-5.7105931	-4.1111111	3.61189031	13.7777778	4.3373494
25	-100	200	223.6067977	222.8405063	8.230337575	-26.565051	-32.734177	3.36188271	25.1822785	98.9974937
25	-100	300	316.227766	321.6410891	7.491758569	-18.434949	-18.569307	2.53563164	21.2475248	100
25	-100	400	412.3105626	416.8664987	6.905188437	-14.036243	-16.005038	3.05587277	22.4962217	100
25	-100	500	509.9019514	514.636971	9.776044231	-11.309932	-11.697105	6.1710742	18.7282851	82.5367647
25	-100	600	608.276253	615.4145658	7.355087717	-9.4623222	-10.081232	3.19261976	22.6498599	89.0274314
25	-100	700	/07.1067812	/13.03125	12.15968105	-8.1301024	-8.296875	4.21548848	14.6210938	47.8504673
25	-100	800	806.2257748	814.7677725	8.675359173	-7.1250163	-7.8222749	1.98789126	22.1611374	90.7526882
25	-100	900	905.5385138	912.2645631	9.509140515	-6.3401917	-7.815534	3.04786654	16.4296117	93.6363636
25	-200	200	282.8427125	291.3907563	11.84831339	-45	-36.155462	10.8389141	15.3403361	53.724605
25	-200	300	360.5551275	371.5139665	9.677007118	-33.690068	-29.184358	14.7935068	14.8826816	43.872549
25	-200	400	447.2135955	456.3388889	10.63049471	-26.565051	-24.044444	12.7010413	14.4444444	40.6320542
25	-200	500	538.5164807	549.5111111	10.06032311	-21.801409	-22.666667	9.43638991	13.1777778	10.6635071
25	-200	600	632.455532	644.2568306	6.747877987	-18.434949	-21.202186	3.52332278	18.8907104	87.1428571
25	-200	700	728.0109889	736.2857143	9.290057671	-15.945396	-14.678571	4.70379677	16.3535714	66.8257757
25	-200	800	824.6211251	834.1572052	9.350940616	-14.036243	-13.253275	11.3062066	13.2532751	58.2697201
25	-200	900	921.9544457	932.9772727	6.839791771	-12.528808	-12.117424	7.66785792	13.5984848	49.7175141

<figure 3. Log 파일 정리>

- ▶ figure 2. 측정 data에 threshold를 주어 감지했는지 판단하고, 감지한 데이터 만을 plot
- > accuracy = threshold안에 들어온 데이터 (in figure 3) => 평균 Accuracy 65.12%

Distance after threshold <예시 (-1,6)의 데이터> 600 350

<figure 2. Threshold(25cm) 준 후>

Advanced Visual Intelligence Lab

- 3) Matlab을 활용하여 Log 파일 정리
 - ➤ Figure 4. 5는 시간에 따라 측정된 거리, 각도 값에서
 - ▶ 평균 및 표준 편차를 구한 것이 가우시안 분포를 따른다는 것을 보여줌.
 - ▶ 평균, 표준편차로 값을 대체 할 수 있다.

0.06		Dista	ince		140
0.05 -			'	T:	- 120
0.04 -					- 100
0.03 -					- 80 - 60
0.02 -					- 40
0.01 -					- 20
0 L 500	550	600	650	700	750
200	550	000	000	, 50	, 50

<figure 5. histogram vs gaussian funtion>

<figure 3. Log 파일 정리>

로봇기반 혁신선도 전문인력 양성사업 산학프로젝트

2. 프로젝트 내용 – 감지 정밀도 측정

- ▶ 분석 결과 최대감지 거리와 각도 측정, 감지 정밀도 시험
 - ▶ 최대 감지 거리 : 약 10m
 - ▶ 최대 감지 각도 : 약 [-45,45] deg
 - ▶ 감지 정밀도 시험
 - ➤ Figure 7 : 각 위치별 오차 plot (|pred target |)
 - ➤ Table 1 : MAE와 측정 (pred == 측정, target == 정답)
 - $ightharpoonup MAE = \frac{1}{N} \sum_{i}^{N} |pred_i target_i|$

MAE				
Distance	Angle			
5.39cm	4.87[deg]			

<figure 6. 각 위치별 gt와 측정값>

<figure 7. 각 위치별 오차> (|pred - target |)

- 1) 센서 고정상태에서 물체와 사람 구분
 - 물체 : 나무판자 및 금속 corner reflector 사용
 - 분석 결과
 - 움직임이 있을 때 (사람, 물체 중 하나라도)
 - -사람과 나무판자가 함께 있으면 사람 우선 감지
 - -사람과 corner reflector가 함께 있으면 corner reflector우선 감지
 - corner reflector > 사람 > 나무판자 (반사 크기가 큰 값 우선 감지)
 - 움직임이 없을 때
 - 반사 크기 (Level) 상관 없이 감지 하지 못한다.
 - 우선 순위: 1. 물체 및 사람의 움직임

- corner reflector>

1) 센서 고정상태에서 물체와 사람 구분

=> 움직임이 있는 물체 / 사람 감지 정확도가 높음

정지해 있는 사람 - (위치 변화 X)

이동중인(접근) 사람 - (위치 변화 O)

2. 프로젝트 내용 - 센서 고정 및 이동상태에서 물체 감지 <축정 상황>

- 1) 센서 고정상태에서 물체와 사람 구분
 - 1) Radar 고정, 나무판자 측정

움직임 없다가 나무 판자가 미세 흔들릴 때 감지

=> <mark>움직임이 있는</mark> 물체 / 사람 감지 정확도가 높음

- 1) 센서 고정상태에서 물체와 사람 구분
 - 1) Radar 고정, 사람 vs 나무판자 측정

(ㄱ). 사람, 나무판자 둘 다 움직일 때

촬영 map

사람 : 30 [deg] 나무 판자 : -30[deg]

둘 다 움직일 때 사람 우선 감지 => 사람과 나무판자가 함께 있으면 사람 우선 감지

- 1) 센서 고정상태에서 물체와 사람 구분
 - 1) Radar 고정, 사람 vs 나무판자 측정

(ㄴ). 사람, 나무판자 둘 다 가만히 있을 때

촬영 map

사람 : 30 [deg] 나무 판자 : -30[deg]

둘 다 고정일 때 사람 우선 감지 => 사람은 미세하게 움직이므로 숨을 참고 가만히 있지 않는 이상 사람을 잡게 된다.

둘 다 가만히 있을 때 사람 우선 감지

- 1) 센서 고정상태에서 물체와 사람 구분
 - 2) Radar 고정, 사람 vs 나무판자 vs 금속 측정

(ㄱ). 사람 움직임 vs 나무판자, 금속 멈춤

촬영 map

사람 : 30 [deg] 금속 : -30 [deg] 나무 판자 : 0[deg]

물체 고정일 때 사람 우선 감지 => 사람은 미세하게 움직이므로 숨을 참고 가만히 있지 않는 이상 사람을 잡게 된다.

둘 다 가만히 있을 때 사람 우선 감지

- 1) 센서 고정상태에서 물체와 사람 구분
 - 2) Radar 고정, 사람 vs 나무판자 vs 금속 측정

(L). 사람 움직임 vs 나무판자, 금속 움직임

촬영 map

사람 : 30 [deg] 금속 : -30 [deg] 나무 판자 : 0[deg]

물체, 사람 모두 움직일 때

- ⇒ 신호 세기가 큰 물체를 잡는다
- ⇒ 금속의 세기가 가장 크다

-30 [deg] 위치한 금속 감지

- 2) 센서와 사람이 상대적으로 이동하는 상황에서 측정
 - 물체의 이동을 파악하기 위해서는 <u>거리와 반사 신호 세기</u>를 참고할 수 있다고 생각하여 실험 및 분석을 진행함.
 - 속도 정보를 확인할 수는 없어 이동 거리 그래프를 미분하여 속도를 구하였고, 센서의 특성상 순간적인 기울기는 다소 튀는 현상이 있어 2초 단위의 순간 기울기 평균을 계산하여 사용
 - 가정 상황
 - 멀어질 시: 카트 고정 및 걸어서 멀어짐, 카트와 보행자 동향으로 이동(보행자가 더 빠름, 보행자 뜀)
 - 접근 시: 카트 고정 및 빠른 걸음으로 접근, 카트 이동 및 접근(걸어서, 빠른 걸음으로, 뛰어서 접근), 카트만 접근 (보행자 정지)

Yeungnam University

2. 프로젝트 내용

2. 센서 고정 및 이동상태에서 물체 감지

	상태	이동거리 그래프	Power 그래프	속도 평균 [m/s]	Power 평균 [dB]	P min / max [dB]
	카트 고정 – 빠른걸음으로 접근	500 770 600 500 500 500 500 500 500 500 500 50		-2.5562 m/s	36.0171	18 / 51
	카트 이동 – 걸어서 접근	00 00 00 00 00 00 00 00 00 00 00 00 00		-1.9216 m/s	38.554	24 / 53
	카트 이동 – 빠른걸음으로 접근	00 00 00 00 00 00 00 00 00 00 00 00 00	In the state of th	-2.9818 m/s	40	21 / 61
	카트 이동 – 뛰어서 접근	000 A. A. A. O.	AHOSON H	-6.3531 m/s	39.1875	27 / 62
Advance Intellige		300	l.	-1.0344 m/s	39.8117	27 / 63

2. 센서 고정 및 이동상태에서 물체 감지

상태	이동거리 그래프	Power 그래프	속도 평균 [m/s]	Power 평균 [dB]	P min / max [dB]
카트 고정 - 걸어서 멀어짐	900 000 000 000 000 000 000 000 000 000	35 34 35 35 36 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	-2.5562 m/s	36.0171	18 / 51
카트 이동 – 같은 방향, 보 행자가 더 빠름	460 - 460 -	No. of the second secon	-1.9216 m/s	38.554	24 / 53
카트 이동 – 같은 방향, 보행자 뜀	500 - 500 -	30 30 30 30 30 30 30 30 30 30 30 30 30 3	-2.9818 m/s	40	21 / 61

- 2. 센서 고정 및 이동상태에서 물체 감지
 - 2) 센서와 사람이 상대적으로 이동하는 상황에서 측정 (멀어질 때)
 - 2초 단위로 순간 속도 평균치 계산

	평균 속도	V_min	V_max
1. 정지 시	-0.0045 m/s	0 m/s	0.8625 m/s, -1 m/s

	평균 속도	V_min	V_max
2. 카트 고정 – 걸어서 멀어짐	2.8062 m/s	2.4375 m/s	3.4625 m/s
3. 카트 이동 – 같은 방향, 보행자가 더 빠름	0.8222 m/s	0.2875 m/s	0.8375 m/s
4. 카트 이동 – 같은 방향, 보행자 뜀	2.1611 m/s	2.0375 m/s	2.4000 m/s

- 2. 센서 고정 및 이동상태에서 물체 감지
 - 2) 센서와 사람이 상대적으로 이동하는 상황에서 측정 (접근 시)

	평균 속도	V_min	V_max
1. 카트 고정 – 빠른 걸음으로 접근	-2.5562 m/s	-1.6750 m/s	-3.1875 m/s
5. 카트 이동 – 걸어서 접근	-1.9216 m/s	-0.4625 m/s	-3.9125 m/s
6. 카트 이동 – 빠른 걸음으로 접근	-2.9818 m/s	-0.7875 m/s	-7.9875 m/s
7. 카트 이동 – 뛰어서 접근	-6.3531 m/s	-4.2250 m/s	-7.0625 m/s
8. 카트만 접근 (보행자 정지)	-1.0344 m/s	-0.6125 m/s	-1.6750 m/s

(* 접근 시 최고속도는 abs)

- 2. 센서 고정 및 이동상태에서 물체 감지
 - 2) 센서와 사람이 상대적으로 이동하는 상황에서 측정 (접근 시)

정지 시	평균 속도	V_min	V_max
	-0.0045 m/s	0 m/s	0.8625 m/s, -1 m/s

	평균 속도	V_min	V_max
5. 카트 이동 – 걸어서 접근	-1.9216 m/s	-0.4625 m/s	-3.9125 m/s
8. 카트만 접근 (보행자 정지)	-1.0344 m/s	-0.6125 m/s	-1.6750 m/s

▶ 분석 결과

- 가장 느린 상황에서의 속도를 threshold 값으로 두어 속도가 -0.3 m/s 정도로 감지되어도 서로 접근 중이라고 감지하는 것이 안전할 것이라고 판단됨.

- 2. 센서 고정 및 이동상태에서 물체 감지
 - 2) 센서와 사람이 상대적으로 이동하는 상황에서 측정 (접근 시)

정지 시	평균	최대	2m	1m
	17.66dB	34.0145 dB	23.18794	34.01446

	2m	1m
1. 카트 고정 – 빠른 걸음으로 접근	43dB	45dB
5. 카트 이동 – 걸어서 접근	39dB	45.5dB
6. 카트 이동 – 빠른 걸음으로 접근	41dB	42dB
7. 카트 이동 – 뛰어서 접근	38dB	41dB
8. 카트만 접근 (보행자 정지)	36dB	44dB

EH .
ζ
중 50 이상 매우 가까움

3. 결론

- ▶ 감지 정밀도
 - ▶ 평균 거리 오차 5.39 cm, 각도 오차 4.87deg
 - ▶ 최대 감지 거리 : 약 10m
 - ▶ 최대 감지 각도 : 약 [-45,45] deg
- 센서와 사람 및 장애물이 서로 접근 중일 시 일정 거리 내에서 2초간 평균 속도가
 -0.3 m/s 정도로 감지되면 서로 접근 중이라고 감지하는 것이 안전할 것이라고 판단됨.
- 같은 거리일 때 감지의 우선순위
 - 1) 움직임이 감지되는 대상
 - 2) 움직임이 없을 시 신호 반사 세기가 강한 대상
 - 금속 -> 사람 -> 나무 판자

THANK YOU

감사합니다

