CLAIMS:

1. A micro relay comprising:

5

10

15

20

25

a base substrate having an electromagnetic device, said base substrate having a fixed contact on one surface thereof;

an armature block including a frame secured to the surface of said base substrate, a movable plate disposed inside said frame and supported rotatably by said frame, and a movable contact base supported by said movable plate and having a movable contact, said movable plate cooperating with a magnetic material provided on a surface of said movable plate to define an armature and being driven by said electromagnetic device to switch on/off a connection between said fixed contact and said movable contact;

a cover bonded to said frame, said cover creating a space surrounded by said frame and closed between said base substrate and the cover to accommodate said armature and said fixed contact:

wherein

said base substrate has a storage recess for accommodating said electromagnetic device, said storage recess being composed of a hole extending from the one surface of said base substrate to a rear surface thereof and a thin storage recess lid fixed on the one surface of said base substrate to close said hole,

said electromagnetic device including a yoke, a coil wound around said yoke to generate a flux in response to an exciting current, and a permanent magnet secured to said yoke to generate a flux flowing through said armature and said yoke.

- 2. The micro relay as set forth in claim 1, wherein said yoke comprises a plate-shaped cross-member and a pair of leg pieces
- said permanent magnet having a height and its opposite faces in a height direction

upstanding from both ends of said cross-member,

being magnetized to opposite poles, one pole face of said permanent magnet being secured to a longitudinal center of said cross-member between said pair of leg pieces,

said coil being wound around said cross-member on both sides of said permanent magnet,

5

10

25

30

top end surfaces of said leg pieces being energized to opposite poles in response to the exciting current to said coil.

- The micro relay as set forth in claim 2, wherein said cross-member has a concave portion in which said permanent magnet is put.
 - 4. The micro relay as set forth in claim 2, wherein said cross-member has convex portions for preventing said coil from dropping.
- 5. The micro relay as set forth in claim 4, wherein said convex portions are formed at four corners on an undersurface of said cross-member.
- The micro relay as set forth in claim 2, wherein
 an exposed surface of said yoke and a surface of said permanent magnet are coated with resin.
 - 7. The micro relay as set forth in claim 6, wherein the top end surfaces of said leg pieces and a top end surface of said permanent magnet are polished to remove resin coating, the top end surfaces of said leg pieces and the top end surface of said permanent magnet being in a same plane.
 - 8. The micro relay as set forth in claim 2, wherein a cross-section area of each of said leg pieces is larger than that of said cross-member.

9. The micro relay as set forth in claim 1, wherein

5

10

15

20

25

30

said storage recess lid is made of a silicon layer which was formed by selectively removing a silicon substrate and an insulating layer from a SOI substrate which comprises the silicon substrate and the thin film silicon layer formed on the insulation layer of the silicon substrate.

10. The micro relay as set forth in claim 1, wherein

said cover is closely bonded to said frame to create a sealed space surrounded by said frame and closed between said base substrate and the cover,

said base substrate having a fixed contact through-hole extending from the one surface of the base substrate to the rear surface thereof, a fixed contact electrode formed on the rear surface of the base substrate, a fixed contact conductive layer formed on an inner surface of said fixed contact through-hole for an electrical connection between said fixed contact and said fixed contact electrode, and a thin film through-hole lid provided on the one surface of said base substrate to close said fixed contact through-hole.

11. The micro relay as set forth in claim 1, wherein

said cover is closely bonded to said frame to create a sealed space surrounded by said frame and closed between said base substrate and the cover,

said base substrate having a fixed contact through-hole extending from the one surface of the base substrate to the rear surface thereof, a fixed contact electrode formed on the rear surface of the base substrate, a fixed contact conductive layer formed on an inner surface of said fixed contact through-hole for an electrical connection between said fixed contact and said fixed contact electrode, and a metal material buried in the through-hole to close the through-hole.

12. The micro relay as set forth in claim 1, wherein

said base substrate has, on the one surface thereof, a wiring trace connected

electrically to said fixed contact and a ground trace connected to ground, said wiring trace and said ground trace running in parallel in spaced relation to each other.

13. The micro relay as set forth in claim 12, wherein

5

10

20

30

said cover is closely bonded to said frame to create a sealed space surrounded by said frame and closed between said base substrate and the cover.

said base substrate having a ground through-hole extending from the one surface of the base substrate to the rear surface thereof, a ground electrode formed on the rear surface of the base substrate for earthing,

a ground conductive layer formed on an inner surface of said ground through-hole for an electrical connection between said ground electrode and said ground trace, and a ground through-hole closing means for closing said ground through-hole.

15 14. The micro relay as set forth in claim 1, wherein

said base substrate has two pairs of the fixed contacts at both ends in a longitudinal direction of the base substrate,

one pair of the fixed contacts of the two pairs of the fixed contacts being grounded, said armature having two movable contacts corresponding to the two pairs of fixed contacts,

said movable contacts being connected electrically to each other through a conductive path.

15. The micro relay as set forth in claim 1, wherein

said movable plate is supported by said frame through a supporting spring piece having elastic deformability,

said movable contact base being supported by said movable plate through a pressure spring piece,

said frame, said movable plate, said movable contact base, said supporting spring piece, and said pressure spring piece being formed from one semiconductor

substrate.

5

10

15

20

25

- 16. The micro relay as set forth in claim 15, wherein said movable plate has, on a surface facing to said base substrate, a supporting protrusion at a longitudinal center of the movable plate, an apex of said supporting protrusion being in contact with said base substrate to allow said movable plate to make pivot motion about said apex, said movable plate further having, on the surface facing to said base substrate.
- stopper protrusions at both ends in a longitudinal direction,
 an apex of each of said stopper protrusions coming in contact with said base
 - substrate to regulate pivot motion of the movable plate when said movable plate makes the pivot motion.
 - 17. The micro relay as set forth in claim 16, wherein the apex of said supporting protrusion and the apex of each of said stopper protrusions are in a same plane.
- 18. The micro relay as set forth in claim 16, wherein the apex of said supporting protrusion, the apex of said stopper protrusions, and an apex of said movable contact base are in a same plane.
 - 19. The micro relay as set forth in claim 16, wherein a distance from said supporting protrusion to said movable contact base is longer than a distance from said supporting protrusion to a portion of said armature which is attracted to said electromagnetic device.
 - 20. The micro relay as set forth in claim 16, wherein a distance from said supporting protrusion to said movable contact base is longer than a distance from said supporting protrusion to each of said stopper protrusions.

- 21. The micro relay as set forth in claim 15, wherein said pressure spring piece has a meandering part which meanders.
- 22. The micro relay as set forth in claim 1, wherein 5 said movable plate is made of a semiconductor substrate and has a hole extending from an upper surface to a undersurface, said magnetic material being disposed on one surface of said movable plate so that it closes one end of said hole, said armature block further having a second magnetic material or a metal piece, 10 said second magnetic material or said metal piece being disposed on the other surface of said movable plate so that it closes an other end of said hole, said magnetic material and said second magnetic material or said metal piece being jointed to each other inside said hole by laser welding, said movable plate being sandwiched between said magnetic material and said 15 second magnetic material or said metal piece.