

# Bounding Ramsey Numbers by Search & Optimization

Dylan Hutchison Margaret Vulih 10 December 2013



## Background

- Named after Frank P. Ramsey. Inspiration/Bio: A British mathematician who published the paper *On a problem of Formal Logic* in 1928 that became the basis of Ramsey Theory.
- Popularized by Erdos and Szekeres in the paper Happy Ending Problem [1935]



Frank P. Ramsey



## **Applications**

## Graphs and Social Networks

- In a group of n people, if  $n \ge R(p,q)$ , then there is either
- a subcollection of p people who are pairwise all friends OR
- a subcollection of q people who are pairwise all not friends.

## Convex Geometry

- With n points in general position (no 3 points collinear), if  $n \ge R(5,m; r=4)$ ,
- there MUST BE a subcollection of m points that compose a convex m-gon.

## Information Theory with Dual Cores

- Goal: Find the maximum number of codes that can be transmitted down a channel without error → when 2 codes can be confused for one another.
- Nodes = codes, edges = pairs of codes confused when transmitted
- Given n codes, find  $\max_{m\geq 1} m$  such that n >= R(2, m)



# Ramsey Number: Graph Interpretation

R(p,q)

(function  $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ )

is the smallest integer such that:

Every graph G with |G| > R(p,q) nodes has, no matter how you arrange the edges,

- EITHER a complete (clique) subgraph H ⊆ G of size |H|=p
- OR an independent set subgraph H ⊆ G of size |H|=q

"Guaranteed order amidst large enough chaos"

# Example: R(3,3)=6

GraphPlot[ $\{1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4, 4 \rightarrow 5, 5 \rightarrow 1\}$ ]



5 nodes: May have no 3-clique or 3-indep subgraph

 $ln[4] = GraphPlot[\{1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4, 4 \rightarrow 5, 5 \rightarrow 1, 1 \rightarrow 6, 6 \rightarrow 3\}]$ 



6 nodes: We are guaranteed Either 3-clique or 3-indep subgraph



## STEVENS Known Ramsey #'s and Bounds

| p, q | 1 | 2  | 3     | 4      | 5       | 6        | 7        | 8        | 9         | 10        |
|------|---|----|-------|--------|---------|----------|----------|----------|-----------|-----------|
| 1    | 1 | 1  | 1     | 1      | 1       | 1        | 1        | 1        | 1         | 1         |
| 2    | 1 | 2  | 3     | 4      | 5       | 6        | 7        | 8        | 9         | 10        |
| 3    | 1 | 3  | 6     | 9      | 14      | 18       | 23       | 28       | 36        | 40-43     |
| 4    | 1 | 4  | 9     | 18     | 25      | 35-41    | 49-61    | 56-84    | 73-115    | 92-149    |
| 5    | 1 | 5  | 14    | 25     | 43-49   | 58-87    | 80-143   | 101-216  | 125-316   | 143-442   |
| 6    | 1 | 6  | 18    | 35-41  | 58-87   | 102-165  | 113-298  | 127-495  | 169-780   | 179-1171  |
| 7    | 1 | 7  | 23    | 49-61  | 80-143  | 113-298  | 205-540  | 216-1031 | 233-1713  | 298-2826  |
| 8    | 1 | 8  | 28    | 56-84  | 101-216 | 127-495  | 216-1031 | 282-1870 | 317-3583  | 317-6090  |
| 9    | 1 | 9  | 36    | 73-115 | 125-316 | 169-780  | 233-1713 | 317-3583 | 565-6588  | 580-12677 |
| 10   | 1 | 10 | 40-43 | 92-149 | 143-442 | 179-1171 | 289-2826 | 317-6090 | 580-12677 | 798-23556 |

Source: http://documents.kenyon.edu/math/BuschurKSenEx2011.pdf

#### Lower Bounds

- Parity Argument: ∀m, R(m, 3) > 2(m 1)
- Probability Argument: if ∃t ∈ [0,1] such that (<sup>n</sup><sub>p</sub>)t<sup>(p)</sup><sub>(2)</sub> + (<sup>n</sup><sub>q</sub>)(1-t)<sup>(q)</sup><sub>(2)</sub> < 1, then R(p,q) > n.
- Constructive Argument: Find a bad graph size n such that it has no p-clique or q-indep. subgraph. Then R(p,q) > n.

#### Upper Bounds

- Graph Argument:  $\forall p, q \geq 2, R(p,q) \leq R(p,q-1) + R(p-1,q)$
- Induction/Generating Functions:  $\forall p, q \ge 2$ ,  $R(p,q) \le {p+q-2 \choose p-1}$
- Brute Force: Show that every graph of size n has a p-clique or q-indep. subgraph. Then R(p,q) ≤ n.

#### Asymptotics

- Noticed  $R(p,q) = O\left(\frac{R(p,q-1)^2}{R(p,q-2)}\right)$
- $R(3,t) = \Theta\left(\frac{t^2}{logt}\right)$  in literature [Kim 1995]



## R(q,q) Search using C++

```
// set n := known number below ub
while (!found_ub) {
   gr_init(&gr, n);
   do 
      gr_search(&gr, qboth);
      gr_incr(&gr);
   } while (gr.foundki != NONE && ! gr_allzero(&gr));
   if (gr.foundki != NONE) {
      found_ub = true;
   } else {
     // n is a lower bound
   gr_free(&gr);
   n++;
```



## ENS R(4,4) Search using Matlab

- While <=10 bad graphs
  - Generate a subgraph
  - If it is not duplicate subgraph
    - Check if it is a bad graph
    - If there are more bad graphs that iterations of the while loop than iterate r.
- End
- Print out final r



## **Optimization Form**

$$\min_{G} C(G) + I(G)$$

• Minimize the totals number of nodes n that guarantees a complete subgraph or an independent subgraph.



## Results

- Using C++
- We found R(3,3) = 6
- True number is 6
- Using Matlab
- We found  $R(4,4) > 16^{17}$  (randomness)
- True number is 18



## Summary

- No analytical solutions for Large Ramsey Numbers
  - Use brute force numerical techniques.
- We systematically searched through all graphs of size n to bound the Ramsey number R(q,q)
- Partial results on random search through graphs size n
  - If n < R(q,q), random search can find a new lower bound</li>
  - If n >= R(q,q), random search fails still need to enumerate all graphs for upper bound
- Active research area new Ramsey # = new paper



# Set Interpretation

$$\forall p, q \; \exists R(p,q), \; \forall n \geq R,$$

$$\forall S, \; |S| = n, \; \forall P_2(S) = \mathcal{A}_1 \cup \mathcal{A}_2$$

$$(\exists U \subseteq S, \; |U| = p, \; P_2(U) \subseteq \mathcal{A}_1) \vee (\exists U \subseteq S, \; |U| = q, \; P_2(U) \subseteq \mathcal{A}_2)$$

Given subset numbers p, q,

there is a minimum Ramsey number R that, for any set S of size  $n \ge R$  and for any partitioning of all the  $\binom{n}{2}$  pair subsets of S into the sets of pairs

 $A_1, A_2$   $(A_1 \cap A_2 = \emptyset, \text{ but we allow } A_1 = \emptyset \text{ or } A_2 = \emptyset),$ 

there exists either a subset  $U \subseteq S$  of length p such that

all of the  $\binom{p}{2}$  pair subsets of U are contained in  $A_1$ ,

or a subset  $U \subseteq S$  of length q such that

all of the  $\binom{q}{2}$  pair subsets of U are contained in  $A_2$ .