ICS 202 Assignment 3

Loay Shqair, 202365030

May 15, 2025

Question 1

Question 1 (30 points): For all parts below, show all intermediate steps. Redraw if there is a need to "erase".

- a) (15 points): Draw the tree after inserting integers/keys: 15, 5, 30, 12, 40, 3, 18, 7, 20, 6, 22 into an initially empty
 - i. Binary search tree.
 - ii. AVL tree.
 - iii. B-tree of order 3.
- b) (7.5 points) Draw the tree after deleting
 - i. 15 from the Binary search tree generated in part a) by copying.
 - ii. 3 from the AVL tree generated in part a).
 - iii. 3 from the B-tree generated in part a).
- c) (7.5 points) Draw the tree after inserting 50 into
 - i. Binary search tree generated in part a).
 - ii. AVL tree generated in part a).
 - iii. B-tree generated in part a).

a)

i.

ii.

b)

i.

15 deleted, successor convention used

ii.

3 deleted, applied single left rotation

iii.

3 deleted, underflow

c)

i.

50 added

ii.

50 added

iii.

oo added

Question 2

Question 2 (20 points): Use the hash function $h(x) = x \mod 11$ to load the following values 25, 14, 36, 47 using each of following to resolve collisions into the hash table. Make sure you show all your work:

index	0	1	2	3	4	5	6	7	8	9	10
	33										21
a) c	$\overline{(i)} = i$										

index	0	1	2	3	4	5	6	7	8	9	10
	33										21
1-1	(:) 1:										

b)
$$c(i) = \pm i$$

index	0	1	2	3	4	5	6	7	8	9	10
	33										21

c)
$$c(i) = i * h_p(x)$$
 where $h_p(x) = 1 + x \mod 10$

a)

$$25 \mod 11 = 3$$
 empty

$$14 \mod 11 = 3$$
 collision

$$(14+1) \mod 11 = 4 \text{ empty}$$

$$36 \mod 11 = 3$$
 collision

$$(36+1) \mod 11 = 4$$
 collision

$$(36+2) \mod 11 = 5$$
 empty

$$47 \mod 11 = 3$$
 collision

$$(47+1) \mod 11 = 4$$
 collision

$$(47+2) \mod 11 = 5$$
 collision

$$(47+3) \mod 11 = 6 \text{ empty}$$

index

0	1						
33		25	14	36	47		21

b)

$$25 \mod 11 = 3$$
 empty
 $14 \mod 11 = 3$ collision
 $(14+1) \mod 11 = 4$ **empty**
 $36 \mod 11 = 3$ collision
 $(36+1) \mod 11 = 4$ collision
 $(36-1) \mod 11 = 2$ **empty**
 $47 \mod 11 = 3$ collision
 $(47+1) \mod 11 = 4$ collision
 $(47+1) \mod 11 = 2$ collision
 $(47+2) \mod 11 = 5$ **empty**

index

0	1	2	3	4	5	6	7	8	9	10
33		36	25	14	47					21

 $\mathbf{c})$

$$25 \mod 11 = 3$$
 empty $14 \mod 11 = 3$ collision $h_p(14) = 1 + 14 \mod 10 = 5$ $(14 + 1 \cdot 5) \mod 11 = 8$ **empty** $36 \mod 11 = 3$ collision $h_p(36) = 1 + 36 \mod 10 = 7$ $(36 + 1 \cdot 7) \mod 11 = 10$ collision $(36 + 2 \cdot 7) \mod 11 = 6$ **empty** $47 \mod 11 = 3$ collision $h_p(47) = 1 + 47 \mod 10 = 8$ $(47 + 1 \cdot 8) \mod 11 = 0$ collision $(47 + 2 \cdot 8) \mod 11 = 8$ collision $(47 + 3 \cdot 8) \mod 11 = 5$ **empty**

index

0	1	2	3	4	5	6	7	8	9	10
33			25		47	36		14		21

Question 3

Question 3 (20 points): Given the following search pattern: ABXABYABXZ

- a) (5 points) Create the KMP lps array.
- b) (15 points) Using that search pattern and the array you created, perform a search on the following block of text by filling the following table: ABXABYABXABYABXZABC

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	#comparisons
A	В	X	A	В	Y	A	В	X	A	В	Y	A	В	X	Z	A	В	C	

a)

 $next\ array = [-1, 0, 0, 0, 1, 2, 0, 1, 2, 3]$

b)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	#comparisons
A	В	X	A	В	Y	A	В	X	A	В	Y	A	В	X	Z	A	В	С	
A	В	X	A	В	Y	A	В	X	\mathbf{Z}										10
						A	В	X	A	В	Y	A	В	X	Z				7, match

4

Question 4 (60 points): Given the following graph, answer the following questions. Make sure to process vertices or adjacent vertices in alphabetical order.

- a) (9 points) List the vertices in the order they are visited using pre-order depth-first traversal starting from vertex A.
- b) (9 points) List the vertices in the order they are visited using post-order depth-first traversal starting from vertex A.
- c) (9 points) List the vertices in the order they are visited using breadth-first traversal starting from vertex
 A.
- d) (9 points) List the vertices in the order they are visited using Topological order traversal.
- e) (24 points) Trace the execution of Dijkstra's algorithm, filling the table below, as it solves the shortest path problem starting from **vertex B**. Draw the resulting vertex-weighted graph.

Pass	initially	1	2	3	4	5	6	7	8	9	we	Pre
Active Vertex											weight	Predecessor
A												
В												
С												
D												
Е												
F												
G												
Н												
I												

a)

pre-order traversal: A, C, E, F, H, I, B, D, G

b)

post-order traversal: C, E, I, H, F, A, G, D, B

c)

 $BFS:\,A,\,C,\,E,\,F,\,H,\,I,\,B,\,D,\,G$

d)

Topological sort: B, D, A, F, G, H, E, C, I

e)

Pass	Active cell	1	2	3	4	5	6	7	8	9	. 1.	1
Active cell	initially	В	D	E	G	С	A	Н	I	F	weight	predecessor
A	∞	∞	7	7	7	7	7	7	7	7	7	D
В	0	0	0	0	0	0	0	0	0	0	0	0
С	∞	∞	∞	6	6	6	6	6	6	6	6	E
D	∞	1	1	1	1	1	1	1	1	1	1	В
Е	∞	2	2	2	2	2	2	2	2	2	2	В
F	∞	∞	∞	∞	∞	∞	12	12	12	12	12	A
G	∞	∞	5	5	5	5	5	5	5	5	5	D
Н	∞	∞	10	10	7	7	7	7	7	7	7	G
I	∞	∞	∞	∞	∞	∞	∞	8	8	8	8	Н

