UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE INGENIERÍA MÉTODOS NUMÉRICOS

TALLER – "DERIVACIÓN E INTEGRACIÓN NUMÉRICA"

Derivación Numérica

- 1. Sea f(x)=sen (x), con x medido en radianes.
- a) Calcule aproximaciones a f'(0.8) usando la fórmula de Diferencias centradas de Orden $O(h^2)$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

		-	2h		
para los siguien	tes valores d	le h:			
h=0.1		h=0.01	,	h=0.001	
b) Compare los	valores obte		= cos(0.8)		
Error(0.1)	.	Error(0.01)		Error(0.001)	
$2. \operatorname{Sea} f(x) = e^x$					
a) Calcule aprox $O(h^4)$	ximaciones a	f'(2.3) usando l	a fórmula de	Diferencias centradas de Ora	len
	$f'(x) = \frac{-}{}$	f(x+2h)+8f	$\frac{(x+h)-8f(x)}{12h}$	(x-h) + f(x-2h)	
para los siguien	tes valores d	le h			
h=0.1	,	h=0.01	,	h=0.001	
b) Compare los	valores obte	nidos con $f'(2.3) = e^{2.3}$	³ = <u>9.9741824</u>	<u>145</u>	

3. La distancia D = D(t) recorrida por un móvil se muestra en la siguiente tabla:

Error(0.1) _____, Error(0.01) _____, Error(0.001) _____.

t	8	9	10	11	12
D(t)	17.453	21.460	25.752	30.301	35.084

a)	Determine la velocidad D'(10) mediante derivación numérica aplicando las
	formulas de diferenciación progresiva y regresiva de Orden $O(h^2)$.

$$D'(10)_{\text{Progresiva}}$$
 $D'(10)_{\text{Regresiva}}$

b) Compare las respuestas con las que se obtienen conociendo la expresión

$$D(t) = -70 + 7t + 70e^{-t/10}$$

Error_{Progresiva} ___ Error_{Regresiva}

Integración Numérica

4. Emplee el método del trapecio simple para encontrar el valor de cada una de las siguientes integrales:

a)
$$\int_{0}^{1} \sqrt{1-x^3} dx \approx$$

$$b) \int_{0}^{\frac{\pi}{4}} x \tan x \, dx \approx \underline{\qquad}$$

a)
$$\int_{0}^{1} \sqrt{1 - x^{3}} dx \approx \underline{\qquad}$$
b)
$$\int_{0}^{\frac{\pi}{4}} x \tan x dx \approx \underline{\qquad}$$
c)
$$\int_{0}^{\frac{\pi}{2}} \sqrt{sen x} dx \approx \underline{\qquad}$$

5. Use las reglas de Simpson (1/3) y Simpson (3/8) para encontrar los valores aproximados de cada una de las siguientes integrales:

$$a) \quad \int_{1}^{2} \frac{e^{-x}}{x} dx \approx \underline{\qquad}$$

$$b) \quad \int_{2}^{3} \frac{1}{\ln x} dx \approx \underline{\hspace{1cm}}$$

c)
$$\int_{1}^{2} \frac{\ln x}{1+x} dx \approx \underline{\hspace{1cm}}$$

6. Emplee la regla compuesta de Simpson para estimar el valor de f(0.7), dada la

integral
$$\int_{0}^{0.8} f(x) \cdot dx = 2$$

y la siguiente tabla:

х	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
f(x)	5	8	6	3	0	-3	-3		5

7. Encuentre las aproximaciones a la

integral
$$\int_{0}^{1} sen(\pi x) \cdot dx$$
 empleando

2^k trapezoides

k	2^k	I_k
0	1	
1	2	
2	4	

8. El resultado de aproximar la siguientes integrales

$$a) A_1 = \int_0^{\frac{\pi}{4}} \operatorname{sen} x \, dx$$

b)
$$A_2 = \int_{-2}^{4} (2 + 3x + 2x^2) dx$$

c)
$$A_3 = \int_0^5 (3+2x) dx$$

usando el método del trapecio simple es:

- a) $A_1 = 0.707106$, $A_2 = 50$, $A_3 = 16$
- b) $A_1 = 0.707106$, $A_2 = 300$, $A_3 = 80$
- c) $A_1 = 0.277680$, $A_2 = 150$, $A_3 = 40$
- d) $A_1 = 0.392699$, $A_2 = 46$, $A_3 = 14$
- 9. Emplee la regla de Boole para encontrar la aproximación a la integral

$$\int_{0}^{\pi} \frac{1}{1 + sen^2 x} dx \approx \underline{\qquad}$$

10. Emplee la regla compuesta de Simpson para encontrar la solución a la siguiente integral teniendo en cuenta que el número de subintervalos es 6:

$$\int_{1}^{2} \sqrt{\frac{\ln x}{x+1}} \, dx \approx \underline{\hspace{1cm}}$$