ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «УФИМСКИЙ УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»

Институт информатики, математики и робототехники Кафедра математического и компьютерного моделирования

ОТЧЕТ ОБ УЧЕБНОЙ ПРАКТИКЕ

Технологическая (проектно-технологическая) практика

ОБУЧАЮЩЕГОСЯ

3 курса группы ПИ-3ИВТ221Б

Санникова Михаила Александровича

Уровень высшего образования: высшее образование – бакалавриат

Направление подготовки 09.03.03 "Прикладная информатика"

(специальность)

Направленность (профиль) Информационные и вычислительные технологии

программы

Срок проведения практики 5 семестр 2024/2025 уч. года

1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

- 1. База практики профильная организация или структурное подразделение УУНиТ.
- 2. Обучающийся физическое лицо, осваивающее образовательную программу среднего профессионального или высшего образования.
 - 3. Вид практики учебная, производственная.
 - 4. Каждый обучающийся, находящийся на практике, обязан вести отчет по практике.
- 5. Отчет по практике служит основным и необходимым материалом для составления обучающимся отчета о своей работе на базе практики.
- 6. Заполнение отчета по практике производится регулярно, аккуратно и является средством самоконтроля. Отчет можно заполнять рукописным и (или) машинописным способами.
- 7. Иллюстративный материал (чертежи, схемы, тексты и т.п.), а также выписки из инструкций, правил и других материалов могут быть выполнены на отдельных листах и приложены к отчету.
- 8. Записи в отчете о практике должны производиться в соответствии с программой по конкретному виду практики.
- 9. После окончания практики обучающийся должен подписать отчет у руководителя практики, руководителя от базы практики и сдать свой отчет по практике вместе с приложениями (при наличии) на кафедру.
 - 10. При отсутствии сведений в соответствующих строках ставится прочерк.

2. ОБЩИЕ ПОЛОЖЕНИЯ

Фамилия, инициалы, должность руководителя практики от факультета (института)	Ахметьянова А.И., к.фм.н., ст. преподаватель	
Фамилия, инициалы, должность руководителя практики от кафедры	Галеева Д.Р., ст. преподаватель	
Полное наименование базы практики	ИИМРТ	
Наименование структурного подразделения базы практики	Кафедра математического и компьютерного моделирования	
Адрес базы практики (индекс, субъект РФ, район, населенный пункт, улица, дом, офис)	450074, г. Уфа, р-н Кировский, ул. Заки Валиди, д. 32, физико-математический корпус, ауд. 505.	
Фамилия, инициалы, должность руководителя практики от профильной организации	Галеева Д.Р., ст. преподаватель	
Телефон руководителя практики от базы практики	+7(347) 229-96-65	

3. РАБОЧИЙ ГРАФИК (ПЛАН) ПРОВЕДЕНИЯ ПРАКТИКИ

Срок проведения практики: 5 семестр 2024/25 уч. года

№	Разделы (этапы) практики	Виды и содержание работ, в т.ч. самостоятельная работа обучающегося в соответствии с программой практики	График (план) проведения практики (начало – окончание)
1.	Подготовительный этап.	Прохождение инструктажа по технике безопасности и охране труда Получение индивидуального задания по практике	06.12.24 – 08.12.24
2.	Основной этап.	Разработка и реализация на языке C++ или Python проекта решения типовой математической задачи. Разработка для конкретной предметной области приложения средствами языка C++ или Python. Использование текстового процессора Місгоsoft Word для создания отчета о прохождении учебной практики.	08.12.24 – 16.12.24
3.	Заключительный этап.	Обработка результатов выполненного задания Составление отчета по практике	16.12.24 – 18.12.24

Руководитель практики от кафедры

Руководитель практики от профильной организации

faul / Галеева Д.Р.

4. ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ

Содержание задания на практику (перечень подлежащих рассмотрению вопросов, выполняемых работ, связанных с будущей профессиональной деятельностью):

- 1. Овладение методикой модульного программирования, умение работать в коллективе.
- 2. Знакомство с практическими приложениями файлов и возможностями табличного процессора (электронных таблиц) обработки данных.
- 3. Изучение основ технологии баз данных.
- 4. Подготовка и оформление отчета по учебной практике.

Руководитель практики от профильной организации

fauf / Галеева Д.Р. подпись И.О. Фамилия

Руководитель практики от кафедры

/ Галеева Д.Р. подпись И.О. Фамилия

ОЗНАКОМЛЕН: Обучающийся

/ М.А Санников иодпись И.О. Фамилия

5. ИНСТРУКТАЖ ПО ОХРАНЕ ТРУДА

Инструкция о мерах пожарной безопасности в Уфимском университете науки и технологий, утвержденная приказом УУНиТ.

Правила внутреннего трудового распорядка обучающихся в Уфимском университете науки и технологий, утвержденные приказом УУНиТ.

Перед началом практики инструктаж по ознакомлению с требованиями охраны труда, техники безопасности, пожарной безопасности, а также правилами внутреннего трудового распорядка прошел:

обучающийся

/М.А Санников

подпись

И.О.

Фамилия

Перед началом практики инструктаж обучающегося по ознакомлению с требованиями охраны труда, техники безопасности, пожарной безопасности, а также правилами внутреннего трудового распорядка провел:

_ст.преподаватель /

/ Галеева Д.Р.

должность

олпись

И.О. Фамилия

6. ДНЕВНИК РАБОТЫ СТУДЕНТА

Дата	Информация о проделанной работе, использованные источники и литература (при наличии)	
06.12.2024	Прохождение инструктажа по технике безопасности по охране труда	
06.12.2024	Получение индивидуального задания по практике	
06.12.2024 -	Выполнение индивидуального задания по практике, составление отчета по	
18.12.2024	практике	

Руководитель практики от кафедры

 Расф / Галеева Д.Р.

 подпись
 И.О. Фамилия

Руководитель практики от профильной организации

/ Галеева Д.Р. И.О. Фамилия

Sail-

7. ОТЧЕТ ОБУЧАЮЩЕГОСЯ О ПРАКТИКЕ

с "6" декабря 2024 по "18" декабря 2024

Я, Санников Михаил Александрович прошел <u>учебную</u> практику с " 6 " декабря 2024 по "18" декабря 2024.

В соответствии с программой практики и индивидуальным заданием, я выполнял следующую работу: разработка и реализация на языке Python проекта решения типовой математической задачи (нахождение корней). Разработка для конкретной предметной области приложения средствами языка Python. Использование текстового процессора Microsoft Word для создания отчета о прохождении учебной практики.

В результате прохождения практики, поставленные задачи были решены в полном объеме, профессиональные компетенции (профессиональные умения, навыки и опыт профессиональной деятельности) приобретены.

Обучающийся

/М.А Санников подпись И.О. Фамилия

8. ЗАКЛЮЧЕНИЕ РУКОВОДИТЕЛЯ ПО ПРАКТИЧЕСКОЙ ПОДГОТОВКЕ О ПРАКТИКЕ

Обучающийся <u>Санников Михаил Александрович</u> прошел <u>учебную</u> практику с «6» декабря 2024 по «18» декабря 2024.

Перед обучающимся во время прохождения практики были поставлены следующие профессиональные задачи: Получить профессиональные умения и навыки научно-исследовательской деятельности.

Краткая характеристика проделанной работы и полученных результатов: <u>разработка и реализация проекта, самостоятельное знакомство с практическими приложениями. Поставленные цели достигнуты.</u>

Во время прохождения практики обучающийся проявил себя как <u>Организованный, дисциплинированный студент с хорошим уровнем технической подготовки, недостатков не</u> выявлено.

Рекомендации (пожелания) по организации практики: <u>Продолжить развивать навыки и</u> способности.

Руководитель практики от профильной организации

<u>Ган</u> / Галеева Д.Р.

9. РЕЗУЛЬТАТ ЗАЩИТЫ ОТЧЕТА

Студент Санников Михаил Александрович прошел учебную практику с "6" декабря 2024 по "18" декабря 2024.

В результате прохождения практики поставленные задачи были решены в полном объеме, профессиональные компетенции (профессиональные умения, навыки и опыт профессиональной деятельности) приобретены.

Результат прохождения практики обучающимся оценивается на: «<u>5</u>»

Руководитель практики от кафедры

fact / <u>Галеева Д.Р.</u> ппись И.О. Фамилия

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «УФИМСКИЙ УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»

Институт информатики, математики и робототехники Кафедра математического и компьютерного моделирования

ПРИЛОЖЕНИЕ К ОТЧЕТУ ОБ УЧЕБНОЙ ПРАКТИКЕ

Технологическая (проектно-технологическая) практика

ОБУЧАЮЩЕГОСЯ

<u>3 курса группы ПИ-ЗИВТ221Б</u>

<u>Санникова Михаила Александровича</u> На тему: "Численное нахождение корней уравнений"

Уровень высшего образования: Высшее образование - бакалавриат

Специальность

(направление подготовки) 09.03.03 "Прикладная информатика"

Направленность (профиль)

Программы Информационные и вычислительные технологии Срок проведения практики с "6" декабря 2024 по "18" декабря 2024

Содержание

- 13. Введение
- 14. Задание
- 15. Реализация
- 16. Результаты
- 17. Заключение
- 18. Источники

Введение

Цель:

Необходимо написать программу, которая численно находит корни уравнения.

Содержимое задания:

- 1. Прочитать и перевести задачу согласно варианту
- 2. Задать известные параметры (самостоятельно или ввод пользователем должен быть выбор, как задавать параметры)
- 3. Определить интервал поиска корней
- 4. Расчет корней 2 методами: метод половинного деления, метод хорд
- 5. Сравнить полученные решения, сделать вывод, какой метод считает быстрее

Этапы выполнения задачи:

- Разбор методов решения.
- Реализация программы средствами языка Python.

Задание

Определение скорости оседания частиц в жидкостях имеет большое значение для многих областей техники и науки. Такие расчеты зависят от режима течения, который определяется безразмерным числом Рейнольдса.

$$\Re = \frac{\rho dv}{\mu}$$

где ρ = плотность жидкости (кг/м3), d = диаметр частиц (m), v = скорость оседания частиц (мс) и μ = динамическая вязкость жидкости (Hc·м2). В ламинарных условиях (Re < 0,1) скорость оседания сферической частицы может быть вычислена по следующей формуле, основанной на законе Стокса,

$$v = \frac{g}{18} * \left(\frac{\rho_s - p}{\mu}\right) d^2$$

где g = гравитационная постоянная (= 9,81 м·с2) и ρ_s плотность частиц (кг·м3). Для турбулентных условий (т.е. при более высоких числах Рейнольдса) можно использовать альтернативный подход, основанный на следующей формуле:

$$v = \sqrt{\frac{4g(\rho_s - \rho)d}{3C_D \rho}}$$

где C_D коэффициент лобового сопротивления, который зависит от числа Рейнольдса, как в

$$C_D = \frac{24}{\Re} + \frac{3}{\sqrt{\Re}} + 0.34$$

Объедините заданные уравнения, чтобы выразить υ как задачу нахождения корней. Представьте объединённую формулу в формате $f(\upsilon)=0$.

Решение производилось благодаря функциональным возможностям языка Python, заданным константам и формулам, а так-же с использованием метода половинного деления и хорд для нахождения корней.

Реализация программы

```
import math
from typing import Optional

# Константы
g = 9.81 # ускорение свободного падения, м/c^2
d = 200e-6 # диаметр частицы, м
rho = 1000 # плотность воды, кг/м^3
rho_s = 7874 # плотность железа, кг/м^3
mu = 0.014 # вязкость воды, Н·c/м^2
```

```
def f(v: float) -> float:
Re = (rho * d * v) / mu # число Рейнольдса
    raise ValueError('Нет интервала, в котором функция меняет знак')
Optional[float]:
             a = c
Optional[float]:
    while iter_count < max_iter:</pre>
         match input('Хотите задать параметры самостоятельно? (y/n): ').lower():
                   a = float(input('Начальное приближение для нижней границы: '))
b = float(input('Начальное приближение для верхней границы: '))
                   bisection max iter = int(input('Максимальное число итераций: '))
                   print('Введите начальные приближение для метода хорд')
```

```
v0 = 0.01
v1 = 0.1
secant_max_iter = 100
case _:
continue
break

a, b = find_interval(a, b, 0.01)
print(f'Интервал поиска корней: [{a}, {b}]')

v_bisection = bisection_method(a, b, max_iter=bisection_max_iter)
print(f'Метод половинного деления: v = {v_bisection:.8f} м/c')

v_secant = secant_method(v0, v1, max_iter=secant_max_iter)
print(f'Метод хорд: v = {v_secant:.8f} м/c')

print('Метод хорд быстрее' if v_secant < v_bisection else 'Метод половинного деления
быстрее')

if __name__ == '__main__':
main()
```

Результат работы программы

```
Хотите задать параметры самостоятельно? (y/n): n
Интервал поиска корней: [0.001, 0.011]
Метод половинного деления: v = 0.00261194 м/с
Метод хорд: v = 0.00261152 м/с
Метод хорд быстрее
```

```
Хотите задать параметры самостоятельно? (y/n): у
Введите начальные приближение для метода половинного деления
Начальное приближение для нижней границы: 0.001
Начальное приближение для верхней границы: 5
Максимальное число итераций: 100
Введите начальные приближение для метода хорд
v0: 0.001
v1: 5
Максимальное число итераций: 100
Интервал поиска корней: [0.001, 0.011]
Метод половинного деления: v = 0.00261194 м/с
Метод хорд: v = 0.00100065 м/с
Метод хорд быстрее
```

Заключение

В результате получилось найти корни уравнения с помощью метода половинного деления и метода хорд.

Источники

- 1. 1. Калиткин Н.Н. Численные методы. [Электронный ресурс] / Н.Н. Калиткин. М.: Питер, 2001. С.504.
- 2. Галеева Г.Я., Маликова Л.Е., Фазылов А.Р. Учебное пособие по численным методам. Уфа, 2013.
- 3. Численное интегрирование [Электронный ресурс] Режим доступа: http://ru.wikipedia.org/wiki/Численное_интегрирование
- 4. Семакин И.Г. Основы программирования. [Текст] / И.Г. Семакин, А.П. Шестаков. М.: Мир, 2006. С.346.
- 5. Численное интегрирование функции [Электронный ресурс] Режим доступа: https://math.semestr.ru/optim/numerical-integration