

AMENDMENTS TO THE SPECIFICATION

Please amend the paragraph beginning on page 1, line 19 of the Specification as follows:

Such defroster heating can be controlled e.g. by means of ice sensors, in that the defrosting process is set in motion if the recorded quantity of ice exceeds a limit value, and discontinues when no more ice is detected. Such ice sensors are however expensive and are insufficiently reliable. Also, a large number of them ~~is~~ are necessary to be able to reliably assess the total quantity of ice (the thickness whereof can vary from place to place).

Please add the following paragraph prior to the paragraph beginning on page 7, line 14:

Therefore, as a person skilled in the art will appreciate from the foregoing description, by varying the pulse-duty ratio based on the supply voltage, the fixed heating interval can be set to a length of time such that the evaporator 7 will completely defrost at a supply voltage of 160 VAC, and such that the fixed time interval is sufficient to completely defrost the evaporator 7 at substantially any supply voltage without wasting excess energy. For example, at a supply voltage of 230 VAC, wherein the supply voltage is pulsed at a 55% pulse-duty ratio (as described in the above diagram of supply voltage/duty cycle relationships), the resulting heat energy supplied to the defrost heater 8 will be equivalent to the heat energy supplied to the defrost heater 8 when the supply voltage is 160 VAC and the pulse-duty ratio is 100%. Accordingly, the fixed heating interval is sufficient to defrost the evaporator 7 when the supply voltage is 230 VAC.