Конспект лекций по математическому анализу

Храбров Александр Игоревич

Первый курс, первый семестр 2020

Оглавление

Вве	едение
1	Арифметические свойства пределов последовательности
2	Покоординатная сходимость в \mathbb{R}^d
3	Бесконечные пределы
4	Бесконечно большие и малые последовательности
5	Арифметические действия в $\overline{\mathbb{R}}$
6	Неравенство Бернулли
7	Определение экспоненты
8	Свойства экспоненты
9	Формула для экспоненты суммы
10	Сравнение скорости возрастания последовательностей

Глава 1

Введение

1 Арифметические свойства пределов последовательности

X - нормированное пространство

$$x_n, y_n \in X \quad \lambda_n \in \mathbb{R}$$

$$\lim x_n = x_0 \quad \lim y_n = y_0 \quad \lim \lambda_n = \lambda_0$$

Теорема 1. Арифметические свойства пределов в нормированном пространстве

1.
$$lim(x_n + y_n) = x_0 + y_0$$

Доказательство.

$$||x_{n} + y_{n} - (x_{0} + y_{0})|| = ||(x_{n} - x_{0}) + (y_{n} - y_{0})|| \leq ||x_{n} - x_{0}|| + ||y_{n} - y_{0}||$$

$$\lim x_{n} = x_{0} \Rightarrow \forall \varepsilon > 0 \quad \exists N_{1} : \forall n \geq N_{1} \quad ||x_{n} - x_{0}|| < \frac{\varepsilon}{2}$$

$$\lim y_{n} = y_{0} \Rightarrow \forall \varepsilon > 0 \quad \exists N_{2} : \forall n \geq N_{2} \quad ||y_{n} - y_{0}|| < \frac{\varepsilon}{2}$$

Тогда при $n\geqslant \max\{N_1,N_2\} \quad ||x_n+y_n-(x_0+y_0)||\leqslant ||x_n-x_0||+||y_n-y_0||<\varepsilon$

2. $\lim(x_n - y_n) = x_0 - y_0$

Доказательство. Аналогично первому пункту.

3. $\lim \lambda_n x_n = \lambda_0 x_0$

Доказательство.

$$||\lambda_n x_n - \lambda_0 x_0|| = ||(\lambda_n x_n - \lambda_n x_0) + (\lambda_n x_0 - \lambda_0 x_0)|| \le$$

$$\le ||\lambda_n x_n - \lambda_n x_0|| + ||\lambda_n x_0 - \lambda_0 x_0|| = |\lambda_n| * ||x_n - x_0|| + |\lambda_n - \lambda_0| * ||x_0||$$

Так как у λ_n есть предел, она ограничена, то есть $|\lambda_n| \leqslant M$. Итого получаем:

$$||\lambda_n x_n - \lambda_0 x_0|| \le M * ||x_n - x_0|| + ||x_0|| * |\lambda_n - \lambda_0||$$

$$\lim x_n = x_0 \Rightarrow \forall \varepsilon > 0 \quad \exists N_1 : \forall n \geqslant N_1 \quad ||x_n - x_0|| < \frac{\varepsilon}{2M}$$
$$\lim \lambda_n = \lambda_0 \Rightarrow \forall \varepsilon > 0 \quad \exists N_2 : \forall n \geqslant N_2 \quad |\lambda_n - \lambda_0| < \frac{\varepsilon}{2||x_0|| + 1}$$

При $n \geqslant max\{N_1, N_2\}$

$$||\lambda_n x_n - \lambda_0 x_0|| \le M * ||x_n - x_0|| + ||x_0|| * |\lambda_n - \lambda_0|| < M * \frac{\varepsilon}{2M} + ||x_0|| * \frac{\varepsilon}{2||x_0|| + 1} < \varepsilon$$

4. $\lim ||x_n|| = ||x_0||$

Доказательство.

$$||x_n|| - ||x_0|| = ||(x_n - x_0) + x_0|| - ||x_0|| \le ||x_n - x_0|| + ||x_0|| - ||x_0|| = ||x_n - x_0|| \to 0$$

5. Если в X есть скалярное произведение, то $\lim \langle x_n, y_n \rangle = \langle x_0, y_0 \rangle$

Доказательство.

$$< x_n, y_n > - < x_0, y_0 > = < x_n, y_n > - < x_n, y_0 > + < x_n, y_0 > - < x_0, y_0 > =$$

$$= < x_n, y_n - y_0 > + < x_n - x_0, y_0 >$$

$$|< x_n, y_n > - < x_0, y_0 > | \le | < x_n, y_n - y_0 > | + | < x_n - x_0, y_0 > | \le$$

$$\le ||x_n|| * ||y_n - y_0|| + ||x_n - x_0|| * ||y_0||$$

Так как у x_n есть предел, она ограничена, то есть $||x_n|| \leq M$. Итого получаем:

$$|\langle x_n, y_n \rangle - \langle x_0, y_0 \rangle| \le M * \underbrace{||y_n - y_0||}_{\to 0} + ||y_0|| * \underbrace{||x_n - x_0||}_{\to 0}$$

Теорема 2. Арифметические свойства пределов числовых последовательностей

$$x_n, y_n \in \mathbb{R}$$
 $\lim x_n = x_0$ $\lim y_n = y_0$

1.
$$\lim(x_n \pm y_n) = x_0 \pm y_0$$

$$2. \lim(x_n y_n) = x_0 y_0$$

3.
$$\lim |x_n| = |x_0|$$

4. Если
$$y_0 \neq 0$$
 и $y_n \neq 0$ $\forall n$, то $\lim \frac{x_n}{y_n} = \frac{x_0}{y_0}$

Доказательство. Докажем, что $\lim \frac{1}{y_n} = \frac{1}{y_0}$:

$$\left|\frac{1}{y_n} - \frac{1}{y_0}\right| = \frac{|y_n - y_0|}{|y_n||y_0|}$$

Так кая $y_0 = \lim y_n$, найдется такое N_1 , что $\forall n \geqslant N_1 \quad |y_n| \in (\frac{|y_0|}{2}, \frac{3|y_0|}{2}) \Rightarrow |y_n| > \frac{|y_0|}{2}$ При $n >= N_1$ получаем, что

$$\frac{|y_n - y_0|}{|y_n||y_0|} < \frac{|y_n - y_0|}{\frac{|y_0|}{2}|y_0|}$$

$$\lim y_n = y_0 \Rightarrow \forall \varepsilon > 0 \quad \exists N_2 : \forall n \geqslant N_2 \quad |y_n - y_0| < \frac{\varepsilon * y_0^2}{2}$$

Тогда если $n\geqslant \max\{N_1,N_2\}$, то $|\frac{1}{y_n}-\frac{1}{y_0}|<\varepsilon$. Теперь, когда мы знаем, что $\lim\frac{1}{y_n}=\frac{1}{y_0}$, доказать исходное равенство легко:

$$\lim \frac{x_n}{y_n} = \lim (x_n * \frac{1}{y_n}) = \lim x_n * \lim \frac{1}{y_n} = \frac{x_0}{y_0}$$

$\mathbf{2}$ Покоординатная сходимость в \mathbb{R}^d

$$x_n = \langle x_n^{(1)}, \dots, x_n^{(d)} \rangle$$

 x_n покоординатно сходится к x_0 , если

$$\begin{cases} \lim x_n^{(1)} = x_0^{(1)} \\ \dots \\ \lim x_n^{(d)} = x_0^{(d)} \end{cases}$$

Теорема 3.

 x_n покоординатно сходится к $x_0 \Longleftrightarrow \mathbf{x}_n$ сходится к x_0 по норме в \mathbb{R}^d $||a||=\sqrt{a_1^2+\cdots+a_d^2}$ - норма

Доказательство.

$$||x_n - x_0|| = \sqrt{(x_n^{(1)} - x_0^{(1)})^2 + \dots + (x_n^{(d)} - x_0^{(d)})^2}$$

Заметим следующее:

$$\sqrt{(x_n^{(1)} - x_0^{(1)})^2 + \dots + (x_n^{(d)} - x_0^{(d)})^2} \geqslant \sqrt{(x_n^{(k)} - x_0^{(k)})^2} = |x_n^{(k)} - x_0^{(k)}|$$

$$\sqrt{(x_n^{(1)} - x_0^{(1)})^2 + \dots + (x_n^{(d)} - x_0^{(d)})^2} \leqslant |x_n^{(1)} - x_0^{(1)}| + \dots + |x_n^{(d)} - x_0^{(d)}|$$

Итого получаем

$$|x_n^{(k)} - x_0^{(k)}| \le ||x_n - x_0|| \le |x_n^{(1)} - x_0^{(1)}| + \dots + |x_n^{(d)} - x_0^{(d)}|$$

Докажем "⇒":

$$\lim x_n = x_0 \Rightarrow ||x_n - x_0|| \to 0 \Rightarrow |x_n^{(k)} - x_0^{(k)}| \to 0 \Rightarrow \lim x_n^{(k)} = x_0^{(k)}$$

Докажем " ⇐ ":

$$\lim x_n^{(k)} = x_0^{(k)} \Rightarrow |x_n^{(k)} - x_0^{(k)}| \to 0 \Rightarrow \sum_{k=1}^d |x_n^{(k)} - x_0^{(k)}| \to 0 \Rightarrow ||x_n - x_0|| \to 0 \Rightarrow \lim x_n = x_0$$

3 Бесконечные пределы

• $x_n \in \mathbb{R}$ $\lim x_n = +\infty$

Вне любого луча $(u, +\infty)$ находится лишь конечное число членов.

 $\forall u \quad \exists N : \forall n \geqslant N \quad x_n > u$

• $x_n \in \mathbb{R}$ $\lim x_n = -\infty$

Вне любого луча $(-\infty, u)$ находится лишь конечное число членов.

 $\forall u \quad \exists N : \forall n \geqslant N \quad x_n < u$

• $x_n \in \mathbb{R}$ $\lim x_n = \infty$

В любом интервале (u, v) находится лишь конечное число членов.

$$\forall u \quad \exists N : \forall n \geqslant N \quad |x_n| > u$$

<u>Замечание 1</u>: Если $\lim x_n = +\infty$ или $\lim x_n = -\infty$, то $\lim x_n = \infty$. Обратное неверно (контрпример - $x_n = (-1)^n n$).

<u>Замечание 2</u>: Если $\lim x_n = \infty$, то x_n не ограничена. Обратное неверно (контрпример - $x_n = n$ (если n четно) и $x_n = 0$ иначе).

Теорема 4. $E\partial u$ нственность предела в $\overline{\mathbb{R}}$

Если $\lim x_n = a \in \overline{\mathbb{R}}$ и $\lim x_n = b \in \overline{\mathbb{R}}$, то a = b.

Доказательство. Пусть a < b.

Если $a,\ b\in\mathbb{R},$ то a=b (должно быть доказано где-то раньше).

Если $a \in \mathbb{R}$ и $b = +\infty$, то в (a - 1, a + 1) и $(a + 1, +\infty)$ должно содержаться бесконечное число членов последовательности, но это невозможно.

Аналогично для случая $a=-\infty$ и $b\in\mathbb{R}$.

Если
$$a=\infty$$
 и $b=\infty$, то либо $a=b=+\infty$, либо $a=b=-\infty$.

Теорема 5. O стабилизации знака в $\overline{\mathbb{R}}$

Если $\lim x_n = a \in \overline{\mathbb{R}}$ и $a \neq 0$, то, начиная с некоторого номера, x_n и a одного знака.

Доказательство. Не, ну это очевидно.

Теорема 6. О предельном переходе в неравенстве в $\overline{\mathbb{R}}$

1. Если $\lim x_n = +\infty$ и $x_n \leqslant y_n \, \forall n$, то $\lim y_n = +\infty$.

Доказательство. Мы знаем что,

$$\forall u \quad \exists N : \forall n \geqslant N \quad x_n > u$$

Так как $x_n \leqslant y_n \ \forall n$, то нам подойдет тоже N:

$$\forall n \geqslant N \quad y_n \geqslant x_n > u$$

2. Если $\lim y_n = -\infty$ и $x_n \leqslant y_n \, \forall n$, то $\lim x_n = -\infty$.

Доказательство. Аналогично первому пункту.

3. Если $x_n \leqslant y_n \ \forall n \ \text{и} \ \lim x_n = a \in \overline{\mathbb{R}}, \ \lim y_n = b \in \overline{\mathbb{R}}, \ \text{то} \ a \leqslant b$

Доказательство.

- $a, b \in R$, доказано ранее
- $a=-\infty$, то $a\leqslant b$ всегда
- $a=+\infty$, то по первому пункту $b=+\infty$
- $b = +\infty$, то $a \leqslant b$ всегда
- $b=-\infty$, то по второму пункту $a=-\infty$

4 Бесконечно большие и малые последовательности

- x_n называется бесконечно большой, если $\lim x_n = \infty$
- x_n называется бесконечно малой, если $\lim x_n = 0$
- \bullet x_n называется сходящайся, если она имеет конечный предел

Теорема 7. Связь между бесконечно большими и бесконечно малыми

$$x_n \neq 0 \ \forall n$$

 x_n - б.б. $\Leftrightarrow \frac{1}{x_n}$ - б.м.

Доказательство. x_n - 6.6. $\Leftrightarrow \forall u > 0 \quad \exists N : \forall n \geqslant N \quad |x_n| > u \Leftrightarrow \Leftrightarrow \forall \varepsilon > 0 \quad \exists N : \forall n \geqslant N \quad |x_n| > \frac{1}{\varepsilon} \Leftrightarrow \frac{1}{|x_n|} < \varepsilon \Leftrightarrow \frac{1}{x_n}$ - 6.м.

Теорема 8. О действиях с бесконечно малыми

1. Сумма / разность б.м. это б.м.

Доказательство. Предел суммы / разности это сумма / разность пределов.

2. Произведение б.м. и ограниченной это б.м.

Доказательство. y_n - ограниченная $\Rightarrow |y_n| \leqslant M$ x_n - б.м. $\Rightarrow \forall \varepsilon > 0 \quad \exists N : \forall n \geqslant N \quad |x_n| < \frac{\varepsilon}{M}$ $|x_n y_n| \leqslant M|x_n| < \varepsilon$

$\mathbf 5$ Арифметические действия в $\overline{\mathbb R}$

Теорема 9. Об арифметических операциях $c \propto$

1. $x_n \to +\infty, \ y_n$ - ограниченная снизу $\Rightarrow x_n + y_n \to +\infty$

Доказательство. y_n - ограниченная снизу $\Rightarrow y_n \geqslant a$ $x_n \to +\infty \Rightarrow \forall u \quad \exists N: \forall n \geqslant N \quad x_n > u-a$ $\Rightarrow x_n + y_n > u-a+a=u$

2. $x_n \to -\infty, \ y_n$ - ограниченная сверху $\Rightarrow x_n + y_n \to -\infty$

Доказательство. Аналогично предыдущему пункту.

3. $x_n \to \infty$, y_n - ограниченная $\Rightarrow x_n \pm y_n \to \infty$

Доказательство. Аналогично первому пункту.

4. $x_n \to \pm \infty, \ y_n \geqslant c > 0 \Rightarrow x_n y_n \to \pm \infty$

Доказательство. $x_n \to +\infty \Rightarrow \forall u \quad \exists N : \forall n \geqslant N \quad x_n > \frac{u}{c}$ $y_n \geqslant c > 0 \Rightarrow x_n y_n \geqslant c x_n > u$

Случай $x_n \to -\infty$ рассматривается аналогично.

5. $x_n \to \pm \infty, \ y_n \leqslant c < 0 \Rightarrow x_n y_n \to \mp \infty$

Доказательство. Аналогично предыдущему пункту.

6. $x_n \to \infty$, $|y_n| \ge c > 0 \Rightarrow x_n y_n \to \infty$

Доказательство. Аналогично четвертому пункту.

7.
$$x_n \to a \neq 0, \ y_n \neq 0 \to 0 \Rightarrow \frac{x_n}{y_n} \to \infty$$

Доказательство.
$$\lim \frac{y_n}{x_n} = 0 \Rightarrow \frac{y_n}{x_n}$$
 - б.м. $\Rightarrow \frac{x_n}{y_n}$ - б.б. $\Rightarrow \lim \frac{x_n}{y_n} = \infty$

8. x_n - ограниченная, $y_n \to \infty \Rightarrow \frac{x_n}{y_n} \to 0$

Доказательство.
$$y_n \to \infty \Rightarrow \frac{1}{y_n}$$
 - б.м. $\Rightarrow x_n * \frac{1}{y_n}$ - б.м.

9. $x_n \to \infty, \ y_n \neq 0$ - ограниченная $\Rightarrow \frac{x_n}{y_n} \to \infty$

Доказательство. y_n - ограниченная $\Rightarrow |y_n| \leqslant M$

$$x_n \to \infty \Rightarrow \forall u > 0 \quad \exists N : \forall n \geqslant N \quad |x_n| > uM \Rightarrow |\frac{x_n}{y_n}| \geqslant |\frac{x_n}{M}| > u$$

Запрещенные операции:

- $+\infty \pm (\mp \infty)$
- $-\infty \pm (\pm \infty)$
- $\pm \infty * 0$
- \bullet $\frac{0}{9}$
- \bullet $\frac{\pm \infty}{+\infty}$

Почему эти операции запрещенные? Разберем на примере:

 $\lim x_n = \lim y_n = +\infty$

 x_n-y_n может иметь любой предел в $\overline{\mathbb{R}},$ а может его вообще не иметь:

- $x_n = n + a$, $y_n = n \Rightarrow x_n y_n = a \rightarrow a$
- $x_n = 2n, \ y_n = n \Rightarrow x_n y_n = n \to +\infty$
- $x_n = n + (-1)^n$, $y_n = n \Rightarrow x_n y_n = (-1)^n$ предела не имеет

6 Неравенство Бернулли

$$(1+x)^n \geqslant 1 + nx \quad x > -1, \ n \in \mathbb{N}$$

Доказательство. Индукция по n.

База n = 1 : (1 + x) = 1 + x

Переход
$$n \to n+1$$
: $(1+x)^{n+1} = \underbrace{(1+x)}_{>0} \underbrace{(1+x)^n}_{assumption} \geqslant (1+x)(1+nx) = 1+(n+1)x+nx^2 \geqslant$

$$1 + (n+1)x$$

<u>Замечание 1:</u> В неравенсте Бернулли почти всегда строгий знак, равенство достигается только в случаях, когда n=1 или x=0.

<u>Замечание 2:</u> $(1+x)^p\geqslant 1+px$ x>-1 верно при всех $p\geqslant 1$ и $p\leqslant 0$. Какая-то жесткая тема. Дали без доказателства.

Следствие.

1. Если a > 1, то $\lim a^n = +\infty$.

Доказательство.
$$a>1 \Rightarrow a=1+x \quad x>-1$$

$$a^n=(1+x)^n\geqslant 1+xn\to +\infty$$

2. Если |a| < 1, то $\lim a^n = 0$.

Доказательство. Считаем, что $a \neq 0$.

$$\left|\frac{1}{a}\right| > 1 \Rightarrow \lim \left|\frac{1}{a}\right|^n = +\infty \Rightarrow \left|\frac{1}{a}\right|^n$$
 - 6.6. $\Rightarrow |a^n|$ - 6.M. $\Rightarrow a^n$ - 6.M.

7 Определение экспоненты

Рассмотрим последовательность $x_n = (1 + \frac{a}{n})^n$, где $a \in \mathbb{R}$

Теорема 10. x_n монотонно возрастает, начиная $c \ n > -a \ u$ ограничена сверху

Доказательство.

1. Монотонное возрастание (если a < 0, то с номера n = -a + 1)

$$\frac{x_n}{x_{n-1}} = \frac{(1 + \frac{a}{n})^n}{(1 + \frac{a}{n-1})^{n-1}}$$

$$= \frac{\frac{(n+a)^n}{n^n}}{\frac{(n-1+a)^{n-1}}{(n-1)^{n-1}}}$$

$$= \frac{(n-1)^{n-1}}{n^n} * \frac{(n+a)^n}{(n-1+a)^{n-1}}$$

$$= \frac{(n-1)^n * (n+a)^n}{n^n * (n-1+a)^n} * \frac{n-1+a}{n-1}$$

$$= (\frac{n^2 - n + an - a}{n^2 - n + an})^n * \frac{n-1+a}{n-1}$$

$$= (1 - \frac{a}{n(n-1+a)})^n * \frac{n-1+a}{n-1}$$

$$\geqslant 1 - \frac{na}{n(n-1+a)} \text{ by Bernoulli's inequality}$$

$$\geqslant \frac{n-1}{n-1+a} * \frac{n-1+a}{a} = 1$$

2. Ограниченность сверху

 $y_n = (1 - \frac{a}{n})^n$ монотонно возрастает при n > a

$$x_n y_n = (1 + \frac{a}{n})^n * (1 - \frac{a}{n})^n = (1 - (\frac{a}{n})^2)^n \le 1$$

 $y_n\geqslant c>0$, начиная с некоторого номера $\Rightarrow 1\geqslant x_ny_n\geqslant cx_n\Rightarrow x_n\leqslant \frac{1}{c}$, начиная с некоторого номера $\Rightarrow x_n$ - ограниченная

Следствие. Существует конечный $\lim_{n \to \infty} (1 + \frac{a}{n})^n$

Определение 11.

1. $exp a := \lim_{n \to \infty} (1 + \frac{a}{n})^n$

2.
$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2,71828$$

<u>Замечание</u>: Последовательность $x_n = (1 + \frac{a}{n})^n$ при $a \neq 0$ <u>строго</u> монотонно возрастает с n > -a. В доказательстве пользовались неравенством Бернулли, при $a \neq 0$ в нем строгий знак.

Следствие. Последовательность $z_n = (1 + \frac{1}{n})^{n+1}$ строго убывает и стремиться к e

Доказательство. $z_n = \underbrace{(1+\frac{1}{n})}_{\rightarrow 1} * \underbrace{(1+\frac{1}{n})^n}_{\rightarrow e} \rightarrow e$

$$z_n = \frac{n+1}{n}^{n+1} = \frac{1}{(\frac{n}{n+1})^{n+1}} = \frac{1}{(1-\frac{1}{n+1})^{n+1}}$$

Последовательность $(1-\frac{1}{n+1})^{n+1}$ строго возрастает, следовательно, обратная к ней строго убывает.

8 Свойства экспоненты

- 1. Для любого $a \in \mathbb{R} \quad exp \, a > 0$
- 2. exp 0 = 1, exp 1 = e
- 3. Если $a\leqslant b$, то $\exp a\leqslant \exp b$

Доказательство. $0 < 1 + \frac{a}{n} \leqslant 1 + \frac{b}{n}$ при $n > -a \Rightarrow \underbrace{(1 + \frac{a}{n})^n}_{\to exp \, a} \leqslant \underbrace{(1 + \frac{b}{n})^n}_{\to exp \, b}$ при n > -a

4. $exp a \geqslant 1 + a$

Доказательство. По неравенству Бернулли:

$$\underbrace{(1+\frac{a}{n})^n}_{\to exp\,a}\geqslant 1+n*\tfrac{a}{n}=1+a\ \text{при}\ n>-a$$

5. $exp \, a * exp \, (-a) \leq 1$

Доказательство.
$$\underbrace{(1+\frac{a}{n})^n}_{\to exp\,a} * \underbrace{(1-\frac{a}{n})^n}_{\to exp\,(-a)} = (1-(\frac{a}{n})^2)^n \leqslant 1$$

6. $exp a \leqslant \frac{1}{1-a}$ при a < 1

Доказательство. С помощью двух предыдущих пунктов

$$exp \ a \leqslant \frac{1}{exp(-a)} \leqslant \frac{1}{1-a}$$

7. $(1 + \frac{1}{n})^n < e < (1 + \frac{1}{n})^{n+1}$ при всех n

Доказательство.
$$(1+\frac{1}{n})^n < (1+\frac{1}{n+1})^{n+1} \leqslant \underbrace{(1+\frac{1}{m})^m}_{\to e}$$
 при $m \geqslant n+1 \Rightarrow (1+\frac{1}{n})^n < e$

$$(1+\frac{1}{n})^{n+1} > (1+\frac{1}{n+1})^{n+2} \ge \underbrace{(1+\frac{1}{m})^{m+1}}_{\rightarrow e}$$
 при $m \ge n+1 \Rightarrow (1+\frac{1}{n})^{n+1} > e$

В частности, подставив n=1 и n=5 получаем, что 2 < e < 3

9 Формула для экспоненты суммы

Лемма. Если $\lim a_n = a \in \mathbb{R}$, то $\lim (1 + \frac{a_n}{n})^n = \exp a$

Доказательство. Последовательность a_n ограничена $\Rightarrow a_n \leqslant M, \ a \leqslant M$ и M>0

$$A:=1+\tfrac{a}{n}\leqslant 1+\tfrac{M}{n}\quad B:=1+\tfrac{a_n}{n}\leqslant 1+\tfrac{M}{n}$$

Надо доказать, что $\lim (A^n - B^n) = 0$

$$|A^{n} - B^{n}| = |A - B|(A^{n-1} + A^{n-2}B + \dots + B^{n-1})$$

$$\leq |A - B|n(1 + \frac{M}{n})^{n-1}$$

$$\leq |A - B|n(1 + \frac{M}{n})^{n}$$

$$= \frac{|a - a_{n}|}{n}n(1 + \frac{M}{n})^{n}$$

$$= |a - a_{n}|(1 + \frac{M}{n})^{n} \leq \underbrace{|a - a_{n}|}_{\to 0} *exp M$$

Teopema 12. $exp(a + b) = exp \, a * exp \, b$

Доказательство.

$$\underbrace{(1 + \frac{a}{n})^n}_{\to exp \, a} * \underbrace{(1 + \frac{b}{n})^n}_{\to exp \, b} = (1 + \frac{a+b}{n} + \frac{ab}{n^2})^n = \underbrace{(1 + \frac{a+b+\frac{ab}{n}}{n})^n}_{a+b+\frac{ab}{n}:=a_n \to a+b} = \underbrace{(1 + \frac{a_n}{n})^n}_{\to exp \, (a+b)}$$

10 Сравнение скорости возрастания последовательностей

Теорема 13. Пусть $x_n > 0$ $u \lim \frac{x_{n+1}}{x_n} < 1$. Тогда $x_n \to 0$

Доказательство.

 $l:=\lim rac{x_{n+1}}{x_n}.$ Начиная с некоторого номера m $\frac{x_{n+1}}{x_n}<\frac{1+l}{2}=:q<1$ При $n\geqslant m$

$$0 < x_n < \frac{x_n}{x_{n-1}} * \frac{x_{n-1}}{x_{n-2}} * \frac{x_{n-2}}{x_{n-3}} * \dots * \frac{x_{m+1}}{x_m} * x_m < q^{n-m} x_m = q^n * \frac{x_m}{q^m}$$

$$0 < x_n < q^n * \frac{x_m}{q^m} \to 0 \Rightarrow x_n \to 0$$

Следствие.

1. $\lim \frac{n^k}{a^n} = 0$ при a>1 (показательная функция растет быстрее полиномиальной)

Доказательство. $x_n = \frac{n^k}{a^n}$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)^k a^n}{a^{n+1} n^k} = \left(\frac{n+1}{n}\right)^k * \frac{a^n}{a^{n+1}} = \frac{1}{a} * \left(1 + \frac{1}{n}\right)^k \to \frac{1}{a} < 1 \Rightarrow x_n \to 0$$

2. $\lim \frac{a^n}{n!} = 0$ (факториал растет быстрее показательной)

Доказательство. $x_n = \frac{a^n}{n!}$

$$\frac{x_{n+1}}{x_n} = \frac{a^{n+1}n!}{(n+1)!a^n} = a\frac{n!}{(n+1)!} = \frac{a}{n+1} \to 0 < 1 \Rightarrow x_n \to 0$$

3.
$$\lim \frac{n!}{n^n} = 0$$

Доказательство. $x_n = \frac{n!}{n^n}$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)!n^n}{(n+1)^{n+1}n!} = \frac{(n+1)n^n}{(n+1)^{n+1}} = (\frac{n}{n+1})^n = \frac{1}{(\frac{n+1}{n})^n} = \frac{1}{(1+\frac{1}{n})^n} \to \frac{1}{e} < 1 \Rightarrow x_n \to 0$$