

Direcção Pedagógica

mostrados em (b) – (d) vão corresponder a HCl, H₂SO₄ e H₃PO₄?

representam aniões do ácido.

Considere a reacção completa de neutralização. Bolas pretas - representam

moléculas de ácido; bolas cinza – representam iões OH; bolas brancas –

Departamento de Admissão à Universidade (DAU)

Disciplina:	QUÍMICA II	Nº Questões:	40
Duração:	90 minutos	Alternativas por questão:	5
Ano:	2022		

INSTRUÇÕES

- 1. Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do círculo por cima da letra. Por exemplo, pinte assim .
- 3. A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica (de cor azul ou preta).

	primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica (de cor azul ou preta).			
L	eia o texto com atenção e responda às questões que se seguem.			
1.				
	(1) concentração dos reagentes; (2) cor dos reagentes; (3) temperatura dos reagentes; (4) presença de catalisador			
	Os que afectam a velocidade de reacção são:			
2	A. 1 e 2 B. 1 e 3 C. 1 e 4 D. 1, 3 e 4 E. Somente 4 Considere uma reacção em uma etapa entre dois reagentes gasosos. O número de colisões por segundo será aumentado por:			
2.	(a) adição de mais reagentes a volume constante; (b) aumento do volume; (c) adição de um gás inerte; (d) aumento da temperatura.			
	A. (a) e (c) B. (a) e (b) C. (a) e (d) D. (b) e (c) E. (b) e (d)			
3.	Considere a reacção de combustão do metano (CH ₄):			
	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$			
	Se o metano é queimado a uma velocidade de 0,16 mol.dm ⁻³ , a que velocidades são formados os produtos, CO ₂ e H ₂ O?			
	A. 0,16 mole/dm³ para CO ₂ ; 0,16 mole/dm³ para H ₂ O B. 0,16 mole/dm³ para CO ₂ ; 0,32 mole/dm³ para H ₂ O			
	C. 0,16 mole/dm³ para CO ₂ ; 0.08 mole/dm³ para H ₂ O D. 0,08 mole/dm³ para CO ₂ ; 0,16 mole/dm³ para H ₂ O			
	E. 0,32 mole/dm³ para CO ₂ ; 0,32 mole/dm³ para H ₂ O			
4.	PASSE PARA A PERGUNTA SEGUINTE.			
5.				
	i. $2PbS(s) + 3O_2(g) \leftrightarrows 2PbO(s) + 2SO_2(g)$ ii. $PCl_5(g) \leftrightarrows PCl_3(g) + Cl_2(g)$			
	iii. $H_2(g) + CO_2(g) \leftrightarrows H_2O(g) + CO(g)$ iv. $2NOCl(g) \leftrightarrows 2NO(g) + Cl_2(g)$			
	Qual será a direcção de cada um dos sistemas se o volume dos recipientes onde a reacção ocorre for reduzido (redução do			
	volume)? A. i – o equilíbrio desloca-se a esquerda (reagentes); ii – o equilíbrio desloca-se a direita (produtos); iii – o equilíbrio desloca-			
	se a esquerda; iv. O equilíbrio desloca-se a direita			
	B. i – o equilíbrio desloca-se a esquerda; ii – o equilíbrio desloca-se a esquerda; iii – o equilíbrio desloca-se a esquerda; iv. O			
	equilíbrio desloca-se a direita			
	C. i – o equilíbrio desloca-se a direita; ii – o equilíbrio desloca-se a direita; iii – não há alteração do equilíbrio; iv. O			
	equilíbrio desloca-se a direita			
	D. i – o equilíbrio desloca-se a direita; ii – o equilíbrio desloca-se a esquerda; iii – não há alteração do equilibrio; iv. O			
	equilíbrio desloca-se a esquerda			
	E. i – o equilíbrio desloca-se a esquerda; ii – o equilíbrio desloca-se a direita; iii – o equilíbrio desloca-se a esquerda; iv. O			
	equilíbrio desloca-se a esquerda			
6.				
	mol de SO ₃ são formados. O K _c da reacção será:			
7	A. $1,6 \text{ L/mol}$ B. $0,80 \text{ mol/L}$ C. $26,7 \text{ L/mol}$ D. $0,40 \text{ mol/L}$ E. $0,64 \text{ L/mol}$ A uma dada temperatura o K_c para a reacção $H_2(g) + I_2(g) \leftrightarrows 2 HI(g) \notin 49$. Se 1.00 mol de cada um dos gases H_2 e I_2 são colocados			
/.	num frasco de 250 mL a esta temperatura, quais serão as concentrações de HI, H_2 e I_2 no equilíbrio?			
	A. $[H_2] = [I_2] = 7.3 \text{ mol/L}$ e $[HI] = 7.0 \text{ mol/L}$ B. $[H_2] = [I_2] = 4.0 \text{ mol/L}$ e $[HI] = 7.3 \text{ mol/L}$			
	C. $[H_2] = 0.89 \text{ mol/L}; [I_2] = 4.0 \text{ mol/L}; [HI] = 3.11 \text{mol/L}$ D. $[H_2] = [I_2] = 0.89 \text{ mol/L} e [HI] = 6.22 \text{ mol/L}$			
	E. $[H_2] = [I_2] = 0.89 \text{ mol/L} \text{ e } [HI] = 3.11 \text{ mol/L}$			
8.	A figura (a) representa a mistura de NaOH e um ácido. Qual dos diagramas			

0

(d)

(a)

(b)

(c)

LA	Lagaire de admissão de Quintea 11	.a = ac
	Indique a alternativa correcta: A. (b) - H ₃ PO ₄ ; (c) - HCl; (d) - H ₂ SO ₄ B. (b) - HCl; (c) - H ₃ PO ₄ ; (d) - H ₂ SO ₄	
	C. (b) $-H_3PO_4$; (c) $-H_2SO_4$; (d) $-HCl$ D. (b) $-HCl$; (c) $-H_2SO_4$; (d) $-H_3PO_4$	
9.	E. (b) – H ₂ SO ₄ ; (c) – HCl; (d) – H ₃ PO ₄ Dadas os seguintes compostos: (a) KCl; (b) CH ₄ ; (c) H ₂ O; (d) H ₂ CO; (e) HCOOH; (f) C ₁₂ H ₂₂ O ₁₁	
9.	Pode-se afirmar que	
	A. (a), (c), (d) e (e) são electrólitos. B. (a), (c) e (e) são electrólitos.	
	C. (b), (c) e (f) não são electrólitos. D. (a), (c), (f) são electrólitos.	
10	E. (a), (c), (d) são electrólitos. O Considere as seguintes afirmações:	
	i. A água dura é aquela que contém carbonatos (CO ₃ ² -) e bicarbonatos (HCO ₃ -) dissolvidos;	
	 ii. Todo o tipo de dureza da água pode ser eliminada por aquecimento ou pela fervura da água; iii. A dureza da água é causada pela presença de sais de cálcio e de magnésio na água; 	
	iv. A dureza da água pode ser reduzida/eliminada por filtração;	
	v. A dureza da água pode ser determinada por titulação com a complexona III (EDTA – ácido etilenodiaminotetracético)	
	São correctas as afirmações: A. i, ii e v B. i e v C. iii e v D. ii, iv e v E. ii e iv	
11		to de
	sódio sólido, qual é a modificação observada no resíduo contido no recepiente?	
	A. Aumentará e depois diminuirá B. Diminuirá C. Aumentará D. Diminuirá e depois aumentará E. Permanecerá constante	
12	-	
	A. Ácida – ácida – básica B. Ácida – neutra – básica C. Neutra – básica – ácida	
	D. Neutra – ácida – básica E. Básica – ácida	
13	3 São misturados 250 ml de uma solução 0,20 M de HCl e 150 ml de outra 0,30 M de NaOH. Qual será a espécie predominan solução e a concentração final?	ite da
	A. 0,10 M de HCl B. 0,001 M de HCl C. 0,0125 M de HCl	
	D. 0,10 M de NaOH	
	4 PASSE PARA A PERGUNTA SEGUINTE.	. ~
15	O pH de uma solução de NaOH obtida pela dissolução de 0,20 g desta base em água suficiente para produzir 250 ml de sol será:	luçao
	(massas atómicas, g/mole: $H - 1$; $O - 16$; $Na - 23$) $log 2 = 0.30$	
	A. 12,30 B. 0,30 C. 13,70 D. 2,30 E. 11,70	
16	Determine o pH de uma solução 0,1 M de HCN, sabendo que o Ka deste ácido é igual a 4,9×10 ⁻¹⁰ . (log 4,9 = 0,69; log 7 = 0,8 A. 0,69 B. 0,85 C. 9,31 D. 10,31 E. 5.15	35)
17	7 Determine o pH de uma solução de NH ₄ Cl 0,2 M. Kb = 2×10^{-5} (log 2 = 0.30; log 5 = 0.70)	
18	A. $1,30$ B. $5,00$ C. $4,70$ D. $9,30$ E. $0,21$ 8 O produto de solubilidade de fosfato de chumbo $Pb_3(PO_4)_2 in 1.5 \times 10^{-32}$. Calcule a solubilidade em mol/l e em g/l.	
	(massas atómicas, g/mole): Pb – 207; P – 31; O – 16) ($\sqrt[5]{15/1.08} = 1.7$)	
	A. 1.7×10^{-7} mol/l; 1.4×10^{-4} g/l B. 1.22×10^{-16} mol/l; 9.94×10^{-14} g/l C. 5.48×10^{-17} mol/l; 4.44	1 ×
10	D. $3.02 \times 10^{-7} \text{ mol/l}$; $2.45 \times 10^{-4} \text{ g/l}$ E. $4.32 \times 10^{-7} \text{ mol/l}$; $3.50 \times 10^{-4} \text{ g/l}$ 10^{-14} g/l	
19	 Analise as seguintes afirmações: i. A ponte salina numa célula electrolítica serve para manter o balanço de cargas. Sem a ponte salina a célula não funciona; 	
	ii. Numa célula a reacção de redução ocorre no ânodo e a de oxidação no cátodo	
	iii. As espécies negativas são atraídas para ânodo e as positivas para o cátodoiv. O ânodo é negativo e o cátodo positivo.	
	São verdadeiras as afirmações	
20	A. ieii B. ieiii C. ieiv D. ii E. iv	
20	Dadas as seguintes equações de reacções: i. CaCO ₃ (s) → CaO(s) + CO ₂ ↑	
	ii. $Ba^{2+}(aq) + CO_3^{2-}(aq) \rightarrow BaCO_3 \downarrow$	
	iii. $Na_2CO_3(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(1) + CO_2 \uparrow$	
	iv. $HNO_3(aq) + H_2S(aq) \rightarrow NO^{\uparrow} + S \downarrow + H_2O(l)$ São reacções redox:	
	A. i e ii B. iv C. i, ii e iii D. ii e iv E. i e iv	
21	Das reacções seguintes	
	(a) $2\text{Na}(s) + \text{O}_2(g) \rightarrow \text{Na}_2\text{O}(S)$ (b) $Cd(s) + \text{NiO}_2(s) + 2\text{H}_2\text{O}(1) \rightarrow Cd(OH)_2(s) + \text{Ni}(OH)_2(s)$ (c) $Cl_2(aq) + 2\text{Na}I(aq) \rightarrow I_2(aq) + 2\text{Na}Cl(aq)$ (d) $2H_2O(1) + Al(s) + MnO_4(aq) \rightarrow Al(OH)_4(aq) + MnO_2(s)$	
	São oxidantes e redutores respectivamente os seguintes elementos:	
	A. São redutores – Na, Cd, I (I'), Al; são oxidantes – O, Ni, Cl, Mn	
	 B. São redutores – Na, Cd, Cl, Al; são oxidantes – O, Ni, Na, Mn C. São redutores – Na, Ni, Cl, Mn; são oxidantes – O, Cd, Na, Al 	
	D. São redutores – Na, H, Cl, Al; são oxidantes – O, Cd, I, H ₂ O	
	F São redutores O Ni Cl Mr. são ovidentes No Cd I Al	

	,
22	
	PCl ₃ ; H ₂ S ₂ O ₃ ; K ₂ P ₂ O ₇ ; Ca(ClO ₂) ₂
	A sequência correcta para os números de oxidação dos elementos nestes compostos será?
	A. +3/-1; +1/+2/-2; +1/+6/-2; +2/-1/-2 B. +3/-1; +1/+2/-2; +1/+3/-2; +2/+2/-2
	C3/+1; +1/+2/-2; +1/+6/-2; +2/+3/-2 D1/+3; +1/+2/-2; +1/+6/-2; +2/+3/-1
	E. +3/-1; +1/+2/-2; +1/+6/-2; +2/+3/-2
23	
	dicromato de potássio (solução amarela), para formar a solução sulfato de crómio (III), verde, de acordo com a seguinte equação:
	$C_2H_5OH + K_2Cr_2O_7(aq) + H_2SO_4(aq) \rightarrow CH_3COOH(aq) + Cr_2(SO_4)_3(aq) + K_2SO_4(aq) + H_2O(1)$
	Os coeficientes da equação de reacção química acertada serão respectivamente os seguintes: A. 2; 1; 3; 2; 3; 3, 3 B. 1; 1; 4; 1; 1, 4 C. 3; 2; 8; 3; 2; 2; 11
	A. 2; 1; 3; 2; 3; 3, 3 B. 1; 1; 4; 1; 1, 4 C. 3; 2; 8; 3; 2; 2; 11 D. 2; 1; 4; 2; 1; 1, 4 E. 2; 2; 7; 2; 2; 7
24	
'	A. um ΔG^0 positivo e um E^0 B. um ΔG^0 negativo e um E^0 positivo C. um ΔG^0 negativo e um E^0
	positivo negativo
	D. um ΔG^0 positivo e um E^0 E. um ΔG^0 nulo e um E^0 nulo
	negativo
2.5	PASSE PARA A PERGUNTA SEGUINTE.
	Dados os seguintes potenciais padrão de redução:
	$MnO_2(s) + H^+(aq) + 2 e^- \rightarrow Mn^{2+}(aq) + 2H_2O(1)$ $E^\circ = +1,23 \text{ V}$
	$I_2(s) + 2 e^{-} \rightarrow 2I^{-}(aq)$ $E^{\circ} = +0.53 \text{ V}$
	Assumindo que todas as espécies estão nas suas condições padrão, se o par for ligado numa célula electroquímica, podemos
	dizer que:
	A. MnO ₂ será o cátodo e nele ocorrerá oxidação B. I ₂ será o cátodo e nele ocorrerá oxidação
	C. MnO ₂ será o ânodo e nele ocorrerá a oxidação D. I ₂ será o ânodo e nele ocorrerá a oxidação
	E. I ₂ será o cátodo e nele ocorrerá a redução
27	\mathcal{E}
	 i. O valor do potencial do eléctrodo, E⁰, para (2Li⁺ + 2e⁻ → 2Li) é o dobro que para (Li⁺ + e⁻ → Li) ii. A constante de equilíbrio de uma reacção redox pode ser calculado pela equação de Nernst
	 ii. A constante de equilíbrio de uma reacção redox pode ser calculado pela equação de Nernst iii. A mudança das concentrações das espécies dissolvidas numa célula electroquímica não afecta o potencial da mesma
	iv. As condições padrão numa célula electroquímica são a concentração de 1,0 M para as espécies dissolvidas e 1 bar de
	pressão para os gases.
	São verdadeiras as afirmações
	A. i e ii B. i e iii C. i e iv D. ii e iv E. iii e iv
28	
	$2Hg^{2+}(aq) + 2e^{-} \rightarrow Hg_2^{2+}(aq)$ $E^{\circ} = +0.92 \text{ V}$
	$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$ $E^{\circ} = +0.80 \text{ V}$
	$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $E^{\circ} = -0.13 \text{ V}$
	$MnO_2(s) + H^+ (aq) + 2 e^- \rightarrow Mn^{2+} (aq) + 2H_2O(1) \qquad E^\circ = +1,23 \text{ V}$
	A. $MnO_2 < Pb^{2+} < Ag^+ < Hg^{2+}$ B. $Pb^{2+} < Ag^+ < Hg^{2+} < MnO_2$ C. $MnO_2 < Ag^+ < Pb^{2+} < Hg^{2+}$ D. $Pb^{2+} < Ag^+ < MnO_2 < Ag^+ < Hg^{2+}$ E. $Pb^{2+} < MnO_2 < Ag^+ < Hg^{2+}$
29	Uma célula galvânica é composta dos seguintes eléctrodos
29	
	$Ni^{2+}(1.0 \text{ M}) + 2e^- \rightarrow Ni(s)$ $E^{\circ} = -0.25 \text{ V}$ $Mg^{2+}(1.0 \text{ M}) + 2e^- \rightarrow Mg(s)$ $E^{\circ} = -2.37 \text{ V}$
	A força electromotriz (f.e.m.) padrão da célula será:
	A. $-2,62 \text{ V}$ B. $+2,12 \text{ V}$ C. $+2,62 \text{ V}$ D. $-2,12 \text{ V}$ E. $+1,06 \text{ V}$
30	A2,62 V B. +2,12 V C. +2,62 V D2,12 V E. +1,06 V Calcule a massa, em gramas, de alumínio em 1 h de electrólise de AlCl3 numa corrente de 10 A.
	$(F = 96\ 500\ C/mol\ de\ e^-; Massa atómica\ Al - 27\ g/mol; 3.6/9.65 = 0.38; 1.27 \times 2.7 = 3.42$
	A. 3.6 g B. 0.38 g C. 1.27 g D. 9.65 g E. 3.36 g
31	
	A. 2-etil 3,4,4- trimetil pentano B. 2,2,3,4-tetrametil pentano H ₃ C—C—C—C—CH ₂
	C. 3,4,5,5-tetrametil hexano H ₃ C————————————————————————————————————
	· · · ·
32	As fórmulas (a) C ₅ H ₁₀ , (b) C ₄ H ₆ , (c) C ₆ H ₁₄ , (d) C ₇ H ₁₄ e (e) C ₃ H ₄ representam um:
	A. (a) alcino; (b) cicloalcano; (c) cicloalcano; (d) alceno; (e) cicloalcano
	B. (a) alceno ou cicloalcano; (b) alcino; (c) alcano; (d) alceno ou cicloalcano; (e) Alceno ou alcino
	C. (a) alcano; (b) alcano; (c) alcano; (d) alcano; (e) alceno
	D. (a) cicloalcano; (b) alceno; (c) alcano; (d) alcino; (e) alcano ou cicloalcano; (e) alceno
33	E. (a) alcano ou cicloalcano; (b) alceno; (c) alcano; (d) alcano ou cicloalcano; (e) alceno Nas reacções de adição de alcenos, a adição de hidrogénio é feita no carbono mais hidrogenado. Esta regra é conhecida como:
	A. Regra de Kharash B. Regra de Saytzeff (Zaitsev) C. Regra de Kirchhoff
	D. Regra de Pauli E. Regra de Markovnikov
I	

34	A rea	acção entre metanol e sódio pode produzir:	:		
	A.	Etano e hidróxido de sódio	B. Metá	xido de sód	lio e hidrogénio
	C.	Eteno e óxido de sódio	D. Meta	nal e hidret	to de sódio
	E.	Não há reacção			
35	Um	álcool hidratado quando tratado com um d	esidratante	(cal virgem	ı, por exemplo) produz:
			cool desnatu		C. álcool anidro
	D.	um alceno E. ur	n éter		
36	Indi	que um éster entre os compostos oxigenado	s seguintes:		
	A.	CH ₃ CH ₂ OCH ₂ CH ₃ B.	CH ₃ CO ₂ CH	₂ CH ₃	C. CH ₃ CH ₂ COCH ₂ CH ₃
	D.	CH ₃ CH ₂ CO ₂ H E.	H ₂ N-CH ₂ -C	H ₂ -COOH	
37		rocesso de fermentação alcoólica é represen			- H O - MC H - O
		$C_{12}H_{22}O_{11} + H_2O \rightarrow 4C_3H_6O_3$			$+ H_2O \rightarrow 2C_6H_{12}O_6$
	С.	$C_{12}H_{22}O_{11} + 6O_2 \rightarrow 12CO_2 + 11H_2O$	D.	$C_6H_{12}O_6 \rightarrow$	• 2CO ₂ + 2C ₂ H ₅ OH
	E.	$C_2H_4 + H_2O \rightarrow C_2H_5OH$			
38	Quai	ndo os dois monómeros representados a seg	guir se unen	1:	
		НООС—	<u></u>	COOH H ₂ 1	$N \longrightarrow NH_2$
	A.	Há formação de ligações de hidrogénio e n nada	não se elimin	а В.	Eliminam-se moléculas de CO ₂ e NH ₃
	C.	Elimina-se uma molécula de H ₂ O e forma-se peptídica	e uma ligaçã	o D.	Elimina-se uma molécula de CO ₂ e forma-se uma ligação amida
	Е.	Elimina-se a molécula de NH ₃ e forma-se éster	uma ligaçã	o	
20	0	:k:1			rmula empírica C ₃ H ₄ . Foi determinado experimentalmente
39		sua massa molecular é de 120.19 uma. A su			
	-	ssa atómica $C - 12$ uma; $H - 1$ uma)	a ioi iiiuia ii	ioiccuiai sc	
	•		C. C ₄ H ₃₆	D	C_9H_{12}
		Os dados são insuficientes para a determinaç			
40					vida nos dias de hoje. Eles são classificados comoe
		produzidos a partir de			
		olha a alternativa certa para completar a fra			
		Polímeros; alcinos			; cicloalcanos
		Proteínas; aminoácidos	D.	Polímeros;	; monómeros
	E.	Polímeros; proteínas			

Fim!