24GHZ FIXED POINT ANTENNA

Presented by Peter Adam Pawelski

University of Massachusetts Amherst BE REVOLUTIONARY

1. TARGET APPLICATION

Starry Inc 24GHz Fixed Point Wireless Antenna

[1]

2. APPLICATION REQUIREMENTS TO **ANTENNA SPECIFICATIONS**

Goal of around 11-14dB directivity Typically, between 8-20dB of gain [3]

HPBW Horizontal ~30/25deg HPBW Vertical ~80/75deg

Aiming for at least 500 MHz Bandwidth Using VSWR \leq 2 or return loss \leq -10dB [3]

[4]

3. CHOSEN ANTENNA TYPE

Linear Probe Fed Patch Antenna Linear Array

4. DESIGNING SIZE, SHAPE, MATERIAL, AND FEEDING DETAILS

SINGLE ELEMENT PATCH DIMENSIONS

Variable	Formula
W	$\frac{c}{2f_0\sqrt{\frac{\varepsilon_r+1}{2}}}$
ϵ_{eff}	$\frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + 12 \frac{h}{W} \right]^{-\frac{1}{2}}$
ΔL	$0.412h \frac{(\varepsilon_{eff} + 0.3) \left(\frac{W}{h} + 0.264\right)}{(\varepsilon_{eff} - 0.258) \left(\frac{W}{h} + 0.8\right)}$
L_{eff}	$rac{c}{2f_0\sqrt{\epsilon_{eff}}}$
L	$L_{eff}-2\Delta L$

[6]

FEED DETAILS

FINAL SINGLE ELEMENT

Dimension	Value [mm]	
Patch Length	4.7	
Patch Width	3.9	
Substrate Length (λ/2)	6	
Substrate Width (λ/2)	6	
Substrate Permittivity (RT/duroid® 5880) [F/m]	2.2	
Substrate Thickness (0.0015λ)	0.18	
SMA Pin Diameter	0.25	
SMA Dielectric Diameter	2.4	
SMA Dielectric Permittivity (Air) [F/m]	1.0006	
Probe Feed X (from center)	0	
Probe Feed Y (from center)	1.4	
Feed Length	5	

ARRAY DETAILS

Goal of around 11-14dB directivity

HPBW Horizontal ~30/25deg

HPBW Vertical ~80/75deg

5. INVESTIGATING THE IMPEDANCE AND RADIATION CHARACTERISTICS USING & # SIMULATION

SINGLE ELEMENT IMPEDANCE MATCH

SINGLE ELEMENT IMPEDANCE MATCH

Bandwidth ~650MHz (24.21-24.86 GHz)

SINGLE ELEMENT GAIN AND DIRECTIVITY

Directivity ≈ 7 dB Gain ≈ 7 dB HPBW Vertical and Horizontal ≈ 84deg

SINGLE ELEMENT 3D GAIN VISUALIZATION

4X1 LINEAR ARRAY DESIGN + PORT

MATCHES/ISOLATIONS

Bandwidth ~565MHz (23.97-24.54 GHz)

4X1 LINEAR ARRAY GAIN AND DIRECTIVITY

Name	Theta [deg]	Ang	Mag
m1	0	4.9738E-13	11.9620
m2	-180	-180.0000	-0.5659
m4	50	50.0000	-3.3749
m6	40	40.0000	8.5492

Directivity ≈ 12 dB Gain ≈ 12 dB HPBW Vertical ≈ 76deg HPBW Horizontal ≈ 26deg

4X1 ARRAY 3D GAIN VISUALIZATION

1X4 LINEAR ARRAY DESIGN + PORT MATCHES/ISOLATIONS

Bandwidth ~670MHz (23.93-24.51 GHz)

1X4 LINEAR ARRAY GAIN AND DIRECTIVITY

Name	Theta [deg]	Ang	Mag
m1	0	4.9738E-13	11.8992
m2	10	10.0000	9.9555
m3	50	50.0000	-2.6308
m4	-50	-50.0000	-1.2892
m7	180	180.0000	-5.9995
m8	40	40.0000	9.2519

Directivity ≈ 12 dB Gain ≈ 12 dB HPBW Vertical ≈ 84deg HPBW Horizontal ≈ 26deg

1X4 ARRAY 3D GAIN VISUALIZATION

FINAL CHOICE AND SPEC CHECK

Reasoning:

Directivity ≈ 12 dB Gain ≈ 12 dB **HPBW Vertical** ≈ 84deg (+8 deg diff) **HPBW Horizontal** ≈ 26deg Bandwidth ≈ 670 MHz (+105MHz diff) More consistent matching and isolation

Goal of around 11-14dB directivity

Typically, between 8-20dB of gain

HPBW Horizontal ~30deg

HPBW Vertical ~75deg

Aiming for at least 500 MHz Bandwidth

1x4 Linear Array

6. HONORABLE MENTIONS

REFERENCES

- [1] https://starry.com/technology
- [2] https://support.starry.com/hc/en-us/articles
- [3] https://web.wpi.edu/Pubs/E-project/Available/E-project-042811-161838/unrestricted/ChuckFungFinalMQPpaper2.pdf
- [4] https://www.fcc.gov/sites/default/files/wireless/auctions/data/bandplans/24band.pdf
- [5] DIRECTIONAL PATCH ANTENNA ARRAY DESIGN FOR DESKTOP WIRELESS INTERNET
- [6] Typical Array Geometries and Basic Beam Steering Methods 2.1 Introduction

