§ 3.4 迈克尔逊干涉仪 (教材3.5)

1. 迈克耳孙干涉仪的结构及原理

Albert Abraham Michelson 1852 - 1931

BS和C是两块材料相同厚薄均匀、几何形状完全相同的光学平晶。 BS一侧镀有半透半反的薄银层。与水平方向成45°角放置;C 称为补偿板。

§ 3.4 迈克尔逊干涉仪

2. 迈克耳孙干涉仪的干涉条纹

一束光在BS处分振幅形成的两束光1和2的光程差,就相当于由 M_1 '和 M_2 形成的空气膜上下两个面反射光的光程差。

它们干涉的结果是薄膜干涉条纹。调节 M_1 就有可能得到 d=0, d=常数, $d\neq$ 常数(如劈尖)对应的薄膜等倾或等厚干涉条纹。

$$\Delta d = N \cdot \frac{\lambda}{2}$$

一涉仪的干涉条

等 倾

干涉条纹

 $\mathbf{M}'_{1} \sqsubseteq \mathbf{M}_{2}$ \mathbf{M}_{1}^{\prime} 重合

等厚干

 \mathbf{M}_{2} \mathbf{M}_{1}^{\prime}

M	, 1
M	2

 \mathbf{M}_{1}^{\prime} \mathbf{M}_{2}

The Michelson interferometer: application

▲精确测量微小位移

若 M_2 平移 Δd 时, 干涉条移过N条, 则有:

$$\Delta d = N \cdot \frac{\lambda}{2}$$

仪中的内 M_2 反射镜移动一段距离,这时数得干涉条纹移动了 79.2条,试求 M_2 所移过的距离。

解:

$$d = N \frac{\lambda}{2} = 79.2 \times \frac{632.8 nm}{2} = 25 \mu \text{m}$$
.

The Michelson interferometer: application

▲高精度测量折射率:

例: 在迈克耳孙干涉仪的两等 臂中分别引入10厘米长的玻璃 管A、B,其中一个抽成真空, 另一个在充以一个大气压空气的 过程中观察到107.2条条纹移动, 所用波长为546nm。求空气的折射率?

解:设空气的折射率为n,则光程差为: $\Delta L = 2nl - 2l = 2l(n-1)$

$$2l(n-1) = 107.2 \times \lambda$$

$$2l(n-1) = 107.2 \times \lambda \qquad \qquad n = \frac{107.2 \times \lambda}{2l} + 1 = 1.0002927$$

The Michelson interferometer: application

▲精确测量电磁波长

例:迈克耳孙干涉仪可用来测量单色光的波长,当M₂移动距离*d*=0.3220mm时,测得某单色光的干涉条纹移过N=1204条,试求该单色光的波长。

解:

$$2d = N\lambda$$

$$\lambda = \frac{2d}{N} = \frac{0.32 \times 2 \times 10^{-3}}{1024} = 534.8 \text{ (nm)}$$

Homework wk 10 (submit on May 4)

• 教材 P161 习题3-22, 3-24