MỘT SỐ TÍNH CHẤT VÀ BÀI TOÁN ĐẶC BIỆT

I. Một số tính chất đặc biệt của tích phân

Tính chất 1: Cho f là hàm số liên tục trên đoạn [a;b]. Chứng minh rằng:

$$\int_{a}^{b} f(a+b-x) dx = \int_{a}^{b} f(x) dx \quad (2)$$

Đặc biệt
$$\int_{0}^{b} f(b-x) dx = \int_{0}^{a} f(x) dx$$
 (3)
Lời giả

Lời giải tổng quát

STUDY TIPS

Công thức bên thường được áp dụng nhiều với bài toán tính tích phân

dạng
$$\int_{-a}^{a} f(x) dx$$
.

Đặt t = a + b - x thì dt = -dx. Khi đó

$$\int_{a}^{b} f(a+b-x) dx = \int_{b}^{a} -f(t) dt = \int_{a}^{b} f(x) dx$$

Khi a = 0, ta nhận được công thức (3)

Mở rộng từ công thức trên, ta có

$$I = \int_{a}^{b} f(x) dx \rightarrow m.I = m. \int_{a}^{b} f(x) dx = \int_{a}^{b} m.f(x) dx$$

$$I = \int_{a}^{b} (a+b-x) dx \rightarrow n.I = n. \int_{a}^{b} f(a+b-x) dx = \int_{a}^{b} n.f(a+b-x) dx$$

$$\longrightarrow (m+n).I = \int_{a}^{b} [m.f(x) + n.f(a+b-x)] dx$$

$$N \stackrel{\text{eu}}{=} m+n \neq 0 \text{ thi}$$

$$I = \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx = \frac{1}{m+n}. \int_{a}^{b} [m.f(x) + n.f(a+b-x)] dx$$

$$I = \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx = \frac{1}{m+n} \int_{a}^{b} \left[m.f(x) + n.f(a+b-x) \right] dx$$

Ngoài ra, nếu
$$f(x).f(a+b-x)=c$$
, $(c>0)$ thì
$$\int_a^b \frac{1}{\sqrt{c}+f(x)} dx = \frac{b-a}{2\sqrt{c}}$$

Chứng minh: Ta có
$$I = \int_a^b \frac{1}{\sqrt{c} + f(x)} dx = \int_a^b \frac{1}{\sqrt{c} + f(a+b-x)} dx$$

$$\Rightarrow 2I = \int_{a}^{b} \left[\frac{1}{\sqrt{c} + f(x)} + \frac{1}{\sqrt{c} + f(a+b-x)} \right] dx$$

$$= \int_{a}^{b} \frac{2\sqrt{c} + f(x) + f(a+b-x)}{c + \sqrt{c} \cdot \left[f(x) + f(a+b-x)\right] + \underbrace{f(x) \cdot f(a+b-x)}_{=c}} dx$$

$$= \int_{a}^{b} \frac{2\sqrt{c} + f(x) + f(a+b-x)}{\sqrt{c} \cdot \left[2\sqrt{c} + f(x) + f(a+b-x)\right]} dx = \frac{1}{\sqrt{c}} \cdot \int_{a}^{b} dx = \frac{b-a}{\sqrt{c}}.$$

Ví dụ 1: Cho $\int_{0}^{4} \ln(1+\tan x) dx = \frac{\pi}{a} \cdot \ln b, (a \neq 0; b > 0)$. Khi đó tổng a+b bằng

B. 10.

C. 5.

D. 4.

Đáp án B.

Lời giải

Nhận xét: $f(x) = \ln(1 + \tan x)$ liên tục trên $\left[0; \frac{\pi}{4}\right]$, áp dụng (3) với bài toán này ta có:

$$I = \int_{0}^{\frac{\pi}{4}} \ln\left(1 + \tan\left(\frac{\pi}{4} - x\right)\right) dx = \int_{0}^{\frac{\pi}{4}} \ln\frac{2}{1 + \tan x} dx = \int_{0}^{\frac{\pi}{4}} \left(\ln 2 - \ln\left(1 + \tan x\right)\right) dx$$
$$= \int_{0}^{\frac{\pi}{4}} \ln 2 dx - I \iff 2I = \ln 2 \cdot x \begin{vmatrix} \frac{\pi}{4} \iff I = \frac{\pi}{8} \cdot \ln 2 \cdot \frac{\pi}{8} \end{vmatrix}$$

Vây a+b=10

Ví dụ 2: Cho hàm số f(x) xác định và liên tục trên \mathbb{R} , thỏa mãn $f(x)+2f(-x)=\sqrt{1-\cos x}$. Tính tích phân $I=\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f(x)\mathrm{d}x$

A.
$$I = \frac{4(\sqrt{2}-1)}{3}$$
.

B.
$$I = 4(\sqrt{2} - 1)$$
.

C.
$$I = \frac{8}{3} (\sqrt{2} - 1)$$
.

D.
$$I = 12(\sqrt{2} - 1)$$
.

Đáp án A.

Lời giải

Áp dụng công thức mở rộng với $a = -\frac{\pi}{2}, b = \frac{\pi}{2}, m = 1, n = 2$ ta có

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx = \frac{1}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[f(x) + 2f(-x) \right] dx = \frac{1}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 - \cos x} dx.$$

Dễ tính được $I = \frac{4(\sqrt{2}-1)}{3}$.

Tính chất 2: Cho f là hàm số chẵn và liên tục trên $\left[-a;a\right]$ với a>0. Khi đó ta có

$$\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(x) dx \to \int_{-a}^{a} f(x) dx = 2 \int_{-a}^{0} f(x) dx = 2 \int_{0}^{a} f(x) dx =$$

Lời giải tổng quát

*Đặt
$$x = -t \Rightarrow dx = -dt$$
. Ta có $\int_{-a}^{0} f(x) dx = -\int_{a}^{0} f(-t) dt = \int_{0}^{a} f(-t) dt = \int_{0}^{a} f(-x) dx$. Do $f(x)$ là hàm số chẵn nên $f(-x) = f(x)$ và $\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(x) dx$

Suy ra $\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx \Rightarrow \int_{-a}^{a} f(x) dx = 2 \int_{-a}^{0} f(x) dx = 2 \int_{0}^{a} f(x) dx$

$$* \int_{-b}^{0} \frac{f(x)}{a^{x} + 1} dx = \int_{b}^{0} \frac{-f(-t)}{a^{-t} + 1} dt = \int_{0}^{b} \frac{a^{t} f(t)}{a^{t} + 1} dt = \int_{0}^{b} \frac{a^{x} f(x)}{a^{x} + 1} dx.$$

$$Do \, do \int_{-b}^{b} \frac{f(x)}{a^{x} + 1} dx = \int_{-b}^{0} \frac{f(x)}{a^{x} + 1} dx + \int_{0}^{b} \frac{f(x)}{a^{x} + 1} dx = \int_{0}^{b} \frac{a^{x} f(x)}{a^{x} + 1} dx + \int_{0}^{b} \frac{f(x)}{a^{x} + 1} dx$$

$$Suy \, ra \int_{-b}^{b} \frac{f(x)}{a^{x} + 1} dx = \int_{0}^{b} f(x) dx.$$

Ví dụ 3: Cho f(x) là hàm chẵn và thỏa mãn $\int_{-\infty}^{\infty} f(x) dx = 10$. Tính tính phân

D. -20.

Áp dụng công thức $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx \text{ ta có } I = \int_{-2}^{2} f(x) dx = 2 \int_{0}^{2} f(x) dx = 20.$ **Ví dụ 4:** Tính tích phân $\int_{-2^{2018}}^{2^{2018}} \frac{x^{2}}{e^{x} + 1} dx$

A. 8^{2017} . **B.** $\frac{8^{2018}}{3}$. **C.** $\frac{3^{2018}}{3}$. **D.** $\frac{3^{2018}}{8}$.

Đáp án B.

Áp dụng công thức $\int_{a}^{b} \frac{f(x)}{a^{x} + 1} dx = \int_{a}^{b} f(x) dx \text{ ta có:}$

$$\int_{-2^{2018}}^{2^{2018}} \frac{x^2}{e^x + 1} dx = \int_{0}^{2^{2018}} x^2 dx = \frac{x^3}{3} \Big|_{0}^{2^{2018}} = \frac{\left(2^{2018}\right)^3}{3} = \frac{8^{2018}}{3}.$$

Ví dụ 5: Có bao nhiều số $a \in \left[-2017;2017\right]$ để $\int_{a}^{a} \frac{\cos x}{2018^{x}+1} dx = \frac{\sqrt{3}}{2} \left(a \in \mathbb{Z}\right)$?

Áp dụng $\int_{a}^{b} \frac{f(x)}{a^{x}+1} dx = \int_{0}^{b} f(x) dx$ ta có: $\int_{0}^{a} \frac{\cos x}{2018^{x}+1} dx = \int_{0}^{a} \cos x dx = \sin x \Big|_{0}^{a} = \sin a$.

Từ giả thiết suy ra $\sin a = \frac{\sqrt{3}}{2} \Leftrightarrow \begin{vmatrix} a = \frac{\pi}{3} + k2\pi \\ a = \frac{2\pi}{3} + k2\pi \end{vmatrix}$ $(k \in \mathbb{R}).$

* Với
$$a = \frac{\pi}{3} + k2\pi \xrightarrow{a \in [-2017; 2017]} \xrightarrow{2\pi} \frac{-2017 - \frac{\pi}{3}}{2\pi} \le k \le \frac{2017 - \frac{\pi}{3}}{2\pi}$$
.

Suy ra có 642 số nguyên k thỏa mãn.

* Với
$$a = \frac{2\pi}{3} + k2\pi \xrightarrow{a \in \left[-2017; 2017\right]} \xrightarrow{2\pi} \frac{-2017 - \frac{2\pi}{3}}{2\pi} \le k \le \frac{2017 - \frac{2\pi}{3}}{2\pi}$$
. Suy ra có 642 số nguyên k thỏa mãn.

Vậy có 642+642=1284 số a thỏa mãn bài toán.

Tính chất 3: Nếu f(x) liên tục và là hàm lẻ trên đoạn [-a;a] thì

$$\begin{cases} \int_{-a}^{0} f(x) dx = -\int_{0}^{a} f(x) dx \\ \int_{-a}^{a} f(x) dx = 0 \end{cases}$$

Lời giải tổng quát

Ta có
$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx.$$

Đặt
$$x = -t \Rightarrow dx = -dt \Rightarrow \int_{-a}^{0} f(x) dx = -\int_{a}^{0} f(-t) dt = \int_{0}^{a} f(-t) dt = \int_{0}^{a} f(-x) dx$$
. Do $f(x)$

là hàm số lẻ nên
$$f(-x) = -f(x)$$
. Suy ra
$$\int_{-a}^{0} f(x) dx = -\int_{0}^{a} f(x) dx$$

Ta có
$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx \Rightarrow \int_{-a}^{a} f(x) dx = 0.$$

Mở rộng: Nếu f(x) liên tục và f(a+b-x)=-f(x) thì $I=\int_a^b f(x)dx=0$.

Ví dụ 6: Cho f(x) là hàm lẻ và $\int_{0}^{2} f(-x) dx = 2; \int_{1}^{2} f(-2x) dx = 4.$ Tính tích phân

 $\int_{0}^{x} f(x) dx$

A. 6

B. 10

C. -10

D. -6

Đáp án C.

Lời giải

Do
$$f(x)$$
 là hàm lẻ nên $f(-x) = -f(x)$. Từ đó ta có $\int_0^2 f(-x) dx = -\int_0^2 f(x) dx = 2$

$$\Rightarrow \int_0^2 f(x) dx = -2.$$

Đặt $t = 2x \Rightarrow dt = 2dx$. Suy ra

$$\int_{1}^{2} f(-2x) dx = \frac{1}{2} \int_{2}^{4} f(-t) dt = \frac{1}{2} \int_{2}^{4} f(-x) dx = -\frac{1}{2} \int_{2}^{4} f(x) dx = 4 \Rightarrow \int_{2}^{4} f(x) dx = -8.$$

Vậy
$$\int_{0}^{4} f(x) dx = \int_{0}^{2} f(x) dx + \int_{2}^{4} f(x) dx = -2 - 8 = -10.$$

Ví dụ 7: Tính tích phân $\int_{-2018}^{2018} \sin(2018x + \sin x) dx$

A. 0

B. 1.

C. 2

D. −1.

Đáp án A.

Lời giải

Đặt $f(x) = \sin(2018x + \sin x)$.

Ta có $f(-x) = \sin(-2018x + \sin(-x)) = -\sin(2018x + \sin x) = -f(x)$ nên f(x) là

hàm số lẻ. Áp dụng bài toán 1 ta có $\int_{-2018}^{2018} \sin(2018x + \sin x) dx = 0.$

Lưu ý

- * Các hàm số $y = \sin(ax + b)$ và
- $y = \cos(ax + b)$ tuần

hoàn với chu kì

$$T = \frac{2\pi}{|a|}.$$

* Các hàm số

y = tan(ax + b) va

 $y = \cot(ax + b) \tan^2 a$

hoàn với chu kì $T = \frac{\pi}{|a|}$.

Tính chất 4: Cho f(x) là hàm tuần hoàn với chu kì T, có nghĩa là f(x+T)=f(x). Khi đó:

$$\begin{cases} \int_{0}^{T} f(x) dx = \int_{a}^{a+T} f(x) dx \\ \int_{0}^{nT} f(x) dx = n \int_{0}^{T} f(x) dx \\ \int_{a}^{b} f(x) dx = \int_{a+T}^{b+T} f(x) dx = \int_{a+nT}^{b+nT} f(x) dx \end{cases}$$

Lời giải tổng quát

* Ta có $\int_{a}^{a+T} f(x) dx = \int_{a}^{0} f(x) dx + \int_{0}^{T} f(x) dx + \int_{0}^{T} f(x) dx$. Ta cần đi chứng minh rằng

$$\int_{a}^{0} f(x) dx + \int_{T}^{a+T} f(x) dx = 0 \Leftrightarrow \int_{T}^{a+T} f(x) dx = -\int_{a}^{0} f(x) dx = \int_{0}^{a} f(x) dx \quad (1)$$

Đặt
$$x = t + T \Rightarrow dx = dt$$
 và
$$\int_{T}^{a+T} f(x) dx = \int_{0}^{a} f(t+T) dt = \int_{0}^{a} f(x+T) dx = \int_{0}^{a} f(x) dx.$$

Vậy (1) được chứng minh và $\int_{0}^{T} f(x) dx = \int_{a}^{a+T} f(x) dx$ (*)

*
$$\int_{0}^{nT} f(x) dx = \int_{0}^{T} f(x) dx + \int_{T}^{2T} f(x) dx + \int_{2T}^{3T} f(x) dx + \dots + \int_{(n-1)T}^{nT} f(x) dx = \sum_{k=0}^{n-1} \int_{kT}^{(k+1)T} f(x) dx$$

Ta cần chứng minh $\forall k = 0,1,2,...,n-1$ thì $\int_{kT}^{(k+1)T} f(x) dx = \int_{0}^{T} f(x) dx.$

Từ công thức (*) ta có $\int_{0}^{T} f(x) dx = \int_{0+kT}^{T+kT} f(x) dx = \int_{kT}^{(k+1)T} f(x) dx.$

Vậy
$$\int_{0}^{nT} f(x) dx = n \cdot \int_{0}^{T} f(x) dx$$

Ví dụ 8: Cho hàm số f(x) liên tục trên \mathbb{R} thỏa mãn $f(x+4)=f(x), \forall x$. Biết

$$\int_{0}^{4} f(x) dx = 1; \int_{1}^{2} f(3x+5) dx = 12. \text{ Tính } \int_{0}^{7} f(x) dx$$

A. 5

B. 37

C. 4

D. 36.

Đáp án B.

Lời giá

Đặt
$$3x + 5 = t \Rightarrow dt = 3dx$$
 và $\int_{1}^{2} f(3x + 5) dx = \frac{1}{3} \int_{8}^{11} f(t) dt = 12 \Rightarrow \int_{8}^{11} f(t) dt = 36.$

Từ giả thiết f(x+4)=f(x) \Rightarrow Hàm số f(x) tuần hoàn với chu kì T=4.

Áp dụng công thức
$$\int_a^b f(x) dx = \int_{a+T}^{b+T} f(x) dx$$
 ta có $\int_a^7 f(x) dx = \int_8^{11} f(x) dx$.

Vậy
$$\int_{0}^{7} f(x) dx = \int_{0}^{4} f(x) dx + \int_{4}^{7} f(x) dx = 1 + 36 = 37.$$

Tính chất 5: Cho hàm số f liên tục trên [0;1]. Chứng minh rằng:

$$\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx \quad (4)$$

Lời giải tổng quát

Đặt
$$t = \frac{\pi}{2} - x$$
 thì $dt = -dx$, khi đó
$$\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = -\int_{\frac{\pi}{2}}^{0} f(\cos t) dt = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx.$$

Ví dụ 9: Tính tích phân:
$$I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{2011} \sin x^{2011}}{\sqrt{2011} \cos x^{2011} + \sqrt{2011} \sin x^{2011}} dx$$

 $\mathbf{A}.\frac{\pi}{2}$

B. 1

 $C.\frac{\pi}{4}$

D. $\frac{\pi}{8}$

Đáp án C

Lời giải

Sử dụng công thức (4) ta có
$$I = \int_{0}^{\frac{\pi}{2}} \frac{2011\sqrt{\cos x^{2011}}}{\sqrt{\sin x^{2011}} + 2011\sqrt{\cos x^{2011}}} dx$$

Từ đây suy ra $2I = \int_{0}^{\frac{\pi}{2}} 1 dx \Rightarrow I = \frac{\pi}{4}$

** Tính chất 6: (đọc thêm) Cho f là hàm số liên tục trên a;b thỏa mãn

$$f(x) = f(a+b-x)$$
. Chứng minh rằng: $\int_{a}^{b} xf(x)dx = \frac{a+b}{2} \int_{a}^{b} f(x)dx$ (8)

Đặc biệt
$$\int_{0}^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx \quad (9)$$

Lời giải tổng quát

Thực hiện phép biến đổi x = a + b - t thì

$$\int_{a}^{b} xf(x) dx = \int_{a}^{b} (a+b-t) f(t) (-dt) = (a+b) \int_{a}^{b} f(x) dx - \int_{a}^{b} xf(x) dx$$

Từ đó suy ra (8). Chọn a = 0, $b = \pi$ ta có (9).