Unidad 1. CONCEPTOS BÁSICOS DE SEÑALES Y SISTEMAS

- 1.1. Introducción al procesado de señales
- 1.2. Transformaciones de la variable dependiente
- 1.3. Señales exponenciales y sinusoidales
- 1.4. Señales elementales
- 1.5. Sistemas continuos y discretos
- 1.6. Propiedades básicas de los sistemas

1.1. Introducción al procesado de señales

Comunicación: transmisión de información entre dos o más puntos. Intervienen:

- Señal: transporta información

- Sistema: actúa sobre la señal, modificándola

Concepto de señal: representación matemática (analítica) o gráfica de alguna magnitud

física o dato.

Información: almacenada en M componentes (señales)
dependientes de N variables independientes
Ejemplos: tensión, corriente, audio, vídeo...

Concepto de sistema: proceso que realiza una transformación sobre la señal.

Ejemplos: medio, transmisor, receptor, filtro, compresor, encriptador...

Clasificación de las señales (I)

- a) Por el número de variables independientes:
 - Unidimensionales: 1 variable (ej.: audio)
 - Multidimensionales: más de 1 variable (ej.: imagen o vídeo)

b) Por su evolución o distribución:

- Deterministas: determinadas por un modelo matemático. Se pueden predecir.
- Aleatorias: no se pueden definir o predecir de forma exacta. Sí se pueden extraer características de la señal.

Clasificación de las señales (II)

- c) Por el tipo de sus variables independientes:
 - Variable continua: definida para t, con $t \in \mathbb{R}$
 - Variable discreta: definida en un conjunto discreto de instantes $n, \operatorname{con} n \in \mathbb{Z}$
- d) <u>Por el tipo de número que evalúan</u>:
 - Señal real: $x(t), x[n] \in \mathbb{R}$
 - Señal compleja: $x(t), x[n] \in \mathbb{C}$

- Parte real e imaginaria:

$$x(t) = \text{Re}[x(t)] + j\text{Im}[x(t)] \rightarrow \begin{cases} \text{Re}[x(t)] = \frac{x(t) + x^*(t)}{2} \\ \text{Im}[x(t)] = \frac{x(t) - x^*(t)}{2} \end{cases}$$

- Módulo y fase:

$$x(t) = |x(t)|e^{j\varphi(x(t))} = |x(t)|\left[\cos\left(\varphi(x(t))\right) + j\sin\left(\varphi(x(t))\right)\right]$$

$$|x(t)| = \sqrt{x(t)x^*(t)} = \sqrt{\operatorname{Re}^2[x(t)] + \operatorname{Im}^2[x(t)]} \qquad \varphi(x(t)) = \operatorname{atan}\frac{\operatorname{Im}[x(t)]}{\operatorname{Re}[x(t)]}$$

Señales periódicas

Si $x(t) = x(t+T) \ \forall t \implies$ señal periódica de periodo $T \in \mathbb{R}$

Si $x[n] = x[n+N] \forall n \implies$ señal periódica de periodo $N \in \mathbb{Z}$

Seña periódica con T (o N) también lo es con mT (o mN), con $m \in \mathbb{N}$

Periodo fundamental: valor positivo menor para el que se cumple x(t) = x(t+T) o x[n] = x[n+N]

Señales par e impar

Señal par:
$$x(t) = x(-t) \ \forall t$$
, $x[n] = x[-n] \ \forall n$

Señal impar:
$$x(t) = -x(-t) \ \forall t$$
, $x[n] = -x[-n] \ \forall n$

Ejemplos:

Cualquier señal se puede obtener como la suma de una señal par y una impar:

$$x(t) = x_e(t) + x_o(t)$$

Parte par:
$$x_e(t) = \frac{x(t) + x(-t)}{2}$$

Parte par:
$$x_e(t) = \frac{x(t) + x(-t)}{2}$$

Parte impar: $x_o(t) = \frac{x(t) - x(-t)}{2}$

$$x(t) = 2x^2 + 3x + 1$$

$$x_e(t) = 2x^2 + 1$$
$$x_o(t) = 3x$$

Energía y potencia de una señal (I)

En circuitos eléctricos: $p(t) = v(t)i(t) = \frac{v^2(t)}{R} = i^2(t)R$

Con señales se normaliza R=1 y se define la <u>potencia instantánea</u> de la señal como: $p(t)=x^2(t)$

O, en general, para señales complejas: $p(t) = |x(t)|^2$ $p[n] = |x[n]|^2$

Energía de la señal en un intervalo

$$[t_1, t_2]: E = \int_{t_1}^{t_2} p(t) dt = \int_{t_1}^{t_2} |x(t)|^2 dt \qquad [n_1, n_2]: E = \sum_{n=n_1}^{n_2} p[n] = \sum_{n=n_1}^{n_2} |x[n]|^2$$

Potencia media en un intervalo: $P_m = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p(t) dt \qquad P_m = \frac{1}{n_2 - n_1} \sum_{n=n_1}^{n_2} p[n]$

Energía total:

$$E_T = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt \qquad E_T = \lim_{N \to \infty} \sum_{n=-N}^{N} |x[n]|^2 = \sum_{n=-\infty}^{\infty} |x[n]|^2$$

Potencia media:
$$P_m = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \qquad P_m = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

Energía y potencia de una señal (II)

$$P_m = \frac{1}{T} \int_T |x(t)|^2 dt$$

$$P_m = \frac{1}{T} \int_T |x(t)|^2 dt \qquad P_m = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$$

- Señales acotadas en el tiempo o que decaen exponencialmente en $\pm \infty \Rightarrow$ energía finita, potencia nula ⇒ señales definidas en energía

- Señales periódicas ⇒ energía infinita, potencia finita ⇒ señales definidas en potencia

- Señales no periódicas no acotadas en el tiempo ⇒ energía infinita, potencia infinita

1.2. Transformaciones de la variable independiente (I)

Transformaciones sobre el argumento de la señal: t, n

- Desplazamiento: $x(t-t_0)$, $x[n-n_0]$
- - Ejemplo en tiempo continuo:

$$t_0 = 2$$

Retrasada si $t_0 > 0$, $n_0 > 0$ Adelantada si $t_0 < 0$, $n_0 < 0$

- Ejemplo en tiempo discreto: $n_0 = 2$

1.2. Transformaciones de la variable independiente (II)

- Reflexión o inversión en el tiempo: x(-t), x[-n]
 - Ejemplo en tiempo continuo:

- Escalado en tiempo discreto:

1.2. Transformaciones de la variable independiente (III)

- Escalado en el tiempo: x(at), x[an]
 - Si $a > 1 \rightarrow$ compresión
 - Si $a > 1 \rightarrow$ expansión
 - Si $a = -1 \rightarrow$ inversión
 - Si -1 < a < 0 → inversión y expansión
 - Si a < -1 \rightarrow inversión y compresión
 - Ejemplo en tiempo continuo:
 - Ejemplo en tiempo discreto:

x[an+b]

1.2. Ejemplo de transformaciones en v. independiente

-1 -2/3

2/3

0

2

-2

1 4/3

2/3

0

-2

-1

1.3. Señales exponenciales y sinusoidales (I)

En general, señales complejas: $x(t)=Ce^{at}$ $C,a,\alpha\in\mathbb{C}$ $x[n]=C\alpha^n$ Misma expresión, ya que $\alpha=e^a$

a) Exponencial real: $C y a \in \mathbb{R}$

1.3. Señales exponenciales y sinusoidales (II)

b) Exponencial periódica (sinusoidal): $C \in \mathbb{C}$, $a = j\omega_0 \in \mathbb{I} \to |e^{j\omega_0}| = 1$

Tiempo continuo:

$$x(t) = Ce^{j\omega_0 t} \rightarrow |x(t)| = |C||e^{j\omega_0 t}| = |C|$$

Recordatorio:
$$e^{j\omega_0 t} = \cos(\omega_0 t) + j \sin(\omega_0 t)$$

$$x(t) = Ce^{j\omega_0 t} \to |x(t)| = |C| |e^{j\omega_0 t}| = |C| \cos(\omega_0 t) = \frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2}, \sin(\omega_0 t) = \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j}$$

Sólo cambia la fase (periódicamente)

¿Periodo?

La fase se repite cada $2\pi k, k \in \mathbb{N}$

$$\omega_0 t = 2\pi k \to T = \frac{2\pi}{\omega_0} \equiv \text{per. fundamental}$$

Tiempo discreto: $x[n] = C\alpha^n = Ce^{j\omega_0 n}$

1.3. Señales exponenciales y sinusoidales (III)

c) Exponencial general:

Tiempo continuo:
$$x(t) = Ce^{at}$$
, C y $a \in \mathbb{C} \to C = |C|e^{j\varphi}$, $a = \sigma + j\omega_0$

$$x(t) = |C|e^{j\varphi}e^{(\sigma+j\omega_0)t} = |C|e^{\sigma t}e^{j(\omega_0t+\varphi)} = |C|e^{\sigma t}[\cos(\omega_0t+\varphi) + j\sin(\omega_0t+\varphi)]$$
cte. \(\psi \) exp. periódica exp. real

 $\sigma > 0 \rightarrow$ exponencial creciente + cambio de fase

 $\sigma < 0 \rightarrow$ exponencial decreciente + cambio de fase

 $\sigma = 0 \rightarrow$ exponencial periódica

<u>Tiempo discreto</u>: $x[n] = C\alpha^n$, $C y \alpha \in \mathbb{C} \to C = |C|e^{j\varphi}$, $\alpha = |\alpha|e^{j\omega_0}$

$$x[n] = |C|e^{j\varphi}|\alpha|^n e^{j\omega_0 n} = |C||\alpha|^n e^{j(\omega_0 n + \varphi)} = |C||\alpha|^n [\cos(\omega_0 n + \varphi) + j \sin(\omega_0 n + \varphi)]$$

$$\text{cte.} \downarrow \text{exp. periódica}$$

$$\text{exp. real}$$

 $|\alpha| > 1 \rightarrow$ exponencial creciente + cambio de fase

 $|\alpha| < 1 \rightarrow$ exponencial decreciente + cambio de fase

 $|\alpha| = 1 \rightarrow$ exponencial periódica

Ejemplo 1.5

$$x(t) = e^{j2t} + e^{j3t}$$

Periodicidad de exponenciales complejas discretas (I)

En tiempo continuo se comprueba que:

- 1) Si $\omega_0 \uparrow \Longrightarrow \uparrow$ la velocidad de oscilación de la señal $\Longrightarrow \downarrow T = \frac{2\pi}{\omega_0}$ 2) $e^{j\omega_0 t}$ es periódica para cualquier valor de $\omega_0 \to \exists T = \frac{2\pi}{\omega_0}$ Esto **no es cierto**, en general, **para tiempo discreto**.
- 1) $T=\omega_0 \to \omega_0 + 2\pi \Longrightarrow e^{j(\omega_0+2\pi)n}=e^{j\omega_0n}e^{j2\pi n}=e^{j\omega_0n}\Longrightarrow$ misma señal

 $e^{j\omega_0 n}$ no tiene un incremento continuo de velocidad de oscilación al aumentar ω_0 . El comportamiento se repite cada 2π :

$$0 < \omega_0 < 2\pi$$
 ó $-\pi < \omega_0 < \pi$

 ω_0 cerca de $\pm 2k\pi$, $k=0,1,2... \rightarrow$ variación lenta

 ω_0 cerca de $\pm (2k+1)\pi$, $k=0,1,2... \rightarrow$ variación rápida

Periodicidad de exponenciales complejas discretas (II)

Periodicidad de exponenciales complejas discretas (III)

2) Para que la exponencial compleja en TD sea periódica:

$$e^{j\omega_0(n+N)}=e^{j\omega_0n}\rightarrow e^{j\omega_0N}=1\rightarrow \omega_0N=2\pi m, m\in\mathbb{N}$$

N solo existirá si existe $m \in \mathbb{N}$ tal que $\frac{2\pi m}{\omega_0} \in \mathbb{N}$

Es decir, $\frac{m}{N} = \frac{\omega_0}{2\pi} \in \mathbb{Q} \to \frac{\omega_0}{2\pi}$ debe ser un número racional para que sea periódica.

Periodo fundamental: $N=mrac{2\pi}{\omega_0}$ (donde m y N no tienen factores comunes).

Frecuencia fundamental: $\frac{\omega_0}{m} = \frac{2\pi}{N}$

Resumen:

TC: $e^{j\omega_0 t}$	TD: $e^{j\omega_0 n}$
Señales distintas para distintas ω_0	Señales iguales para $\omega_0+2\pi k,\ k\in\mathbb{N}$
Periódica para cualquier ω_0	Periódica solo si $\omega_0=rac{2\pi m}{N}$, $m,N\in\mathbb{N}$
Frecuencia fundamental: ω_0	Frecuencia fundamental: $\frac{\omega_0}{m}$
Periodo fundamental: $\omega_0=0$ $ ightarrow$ indefinido	Periodo fundamental: $\omega_0=0$ $ ightarrow$ indefinido
$\omega_0 \neq 0 \to T = \frac{2\pi}{\omega_0}$	$\omega_0 \neq 0 \to N = m \frac{2\pi}{\omega_0}$

Periodicidad de exponenciales complejas discretas (IV)

En TC: $T = \frac{31}{4}$

$$-x[n] = \cos\left(\frac{n}{6}\right)$$
$$\omega_0 = \frac{1}{6} \to N = m2\pi6$$

 $\nexists m$ que produzca un $N \in \mathbb{N}$ Señal aperiódica

En TC:
$$T=12\pi$$

Ejemplo 1.6

Determinar el periodo fundamental de la señal $x[n]=e^{j\frac{2\pi}{3}n}+e^{j\frac{3\pi}{4}n}$

1.4. Señales elementales. Tiempo continuo (I)

- F.
$$\underline{\operatorname{escal\acute{o}n}}$$
: $u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$

$$u(t - t_0) = \begin{cases} 1, & t > t_0 \\ 0, & t < t_0 \end{cases}$$

$$\operatorname{Matlab: heaviside}(t)$$
- F. $\underline{\operatorname{signo}}$:
$$\operatorname{sgn}(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}$$

$$\operatorname{Matlab: sign}(t)$$

$$\operatorname{Matlab: sign}(t)$$

- F. pulso rectangular:
$$\Pi\left(\frac{t}{\tau}\right) = \begin{cases} 1, & |t| < \frac{\tau}{2} \\ 0, & |t| > \frac{\tau}{2} \end{cases}$$

Definición mediante el escalón: $\prod \left(\frac{t}{\tau}\right) = u\left(t + \frac{\tau}{2}\right) - u\left(t - \frac{\tau}{2}\right)$

1.4. Señales elementales. Tiempo continuo (II)

Desplazado a
$$t_0$$
: $\Lambda\left(\frac{t-t_0}{\tau}\right)$

Entre t_1 y t_2 : $\Lambda\left(\frac{t-\frac{t_1+t_2}{2}}{\frac{t_2-t_1}{2}}\right)$

$$t_1 = 1$$

$$t_2 = 5$$

$$t_0 = 3$$
$$\tau = 4$$

Matlab: triangularPulse(t1,t2,t)

- F.
$$\underline{\operatorname{sinc}}$$
: $\operatorname{sinc}(t) = \frac{\operatorname{sen}(\pi t)}{\pi t}$

- Función par
- Cruces por cero en números enteros (salvo 0) $\operatorname{sen}(\pi t) = 0 \to t = \pm k, k \in \mathbb{N}$
- $\lim_{t \to 0} \frac{\sin(\pi t)}{\pi t} = \lim_{t \to 0} \frac{\pi \cos(\pi t)}{\pi} = \frac{\pi}{\pi} = 1$ - Valor máximo en t = 0:
- La envolvente decrece como $\frac{1}{t}$ cuando $t \to \infty$

1.4. Señales elementales. Tiempo continuo (III)

- F. impulso o delta de Dirac:
$$\delta(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \prod \left(\frac{t}{\varepsilon}\right)$$

Propiedades de $\delta(t)$:

- Es la derivada del escalón: $\delta(t) = \frac{du(t)}{dt}$
- Par: $\delta(t) = \delta(-t)$
- El área bajo la función es 1: $\int_{-\infty}^{\infty} \delta(t) = 1$, $\int_{-\infty}^{\infty} \delta(t-t_0) = 1$
- Propiedad de muestreo: $x(t)\delta(t) = x(0)\delta(t)$ $x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$

Integrando:
$$\int_{-\infty}^{\infty} x(t)\delta(t)dt = x(0) \qquad \int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0)$$

Por tanto:
$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$

Se puede obtener u(t) a partir de $\delta(t)$:

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau \qquad \qquad u(t) = \int_{0}^{\infty} \delta(t - \tau) d\tau$$

1.4. Señales elementales. Tiempo discreto (I)

- F.
$$\underline{\operatorname{escal\acute{o}n}}$$
: $u[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}$

$$u[n - n_0] = \begin{cases} 1, & n \geq n_0 \\ 0, & n < n_0 \end{cases}$$
- F. $\underline{\operatorname{signo}}$:
$$\operatorname{sgn}[n] = \begin{cases} 1, & n > 0 \\ 0, & n = 0 \\ -1, & n < 0 \end{cases}$$

$$\operatorname{sgn}(t) = u[n - 1] - u[-n - 1]$$

- F. pulso rectangular:

$$\Pi\left(\frac{n}{2M+1}\right) = \begin{cases} 1, & |n| \le M, M \in \mathbb{N} \\ 0, & |n| > M \end{cases}$$

Definición mediante el escalón: $\prod \left(\frac{n}{2M+1}\right) = u[n+M] - u[n-M-1]$

1.4. Señales elementales. Tiempo discreto (II)

$$|n| \le L, L \in \mathbb{N}$$
$$|n| > L$$

Desplazado a
$$n_0$$
: $\Lambda\left(rac{n-n_0}{L}
ight)$

Entre
$$t_1$$
 y t_2 : $\Lambda \left(\frac{n - \frac{n_1 + n_2}{2}}{\frac{n_2 - n_1}{2}} \right)$

Desplazado a
$$n_0$$
: $\Lambda\left(\frac{n-n_0}{L}\right)$ Entre t_1 y t_2 : $\Lambda\left(\frac{n-\frac{n_1+n_2}{2}}{\frac{n_2-n_1}{2}}\right)$ $\frac{\sqrt{n_1+n_2}}{\sqrt{n_2-n_1}}$ $\frac{\sqrt{n_1+n_2}}{\sqrt{n_2-n_1}}$ $\frac{\sqrt{n_1+n_2}}{\sqrt{n_2-n_1}}$ $\frac{\sqrt{n_1+n_2}}{\sqrt{n_2-n_1}}$ $\frac{\sqrt{n_1+n_2}}{\sqrt{n_2-n_1}}$

$$n_1 = 1$$
 $n_0 = 3$
 $n_2 = 5$ $L = 4$

- F.
$$\underline{\operatorname{sinc}}$$
: TC: $\operatorname{sinc}(t) = \frac{\operatorname{sen}(\pi t)}{\pi t}$

1.4. Señales elementales. Tiempo discreto (III)

- F. impulso o delta de Kronecker: $\delta[n] = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$

Propiedades:

- Par: $\delta[n] = \delta[-n]$ - El área bajo la función es 1: $\sum_{n=0}^{\infty} \delta[n] = 1$
- $\delta[n] = u[n] u[n-1]$ (similar a $\delta(t) = \frac{du(t)}{dt}$)
- $u[n] = \sum_{k=-\infty}^n \delta[k]$ (similar a $u(t) = \int_{-\infty}^t \delta(\tau) d\tau$)
- $u[n] = \sum_{k=0}^{\infty} \delta[n-k]$ (similar a $u(t) = \int_{0}^{\infty} \delta(t-\tau) d\tau$

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0] \to \sum_{n=-\infty}^{\infty} x[n]\delta[n-n_0] = x[n_0]$$

Por tanto:
$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

Ejercicios

- -3.a)-f)
- 4. a) y c)
- 5. a) y c)
- 6. a) b) y c)
- -9.a)-d)
- 10.
- 14. a) f)
- 15. c) y d)

1.5. Sistemas continuos y discretos (I)

Sistema continuo: transforma señales continuas en señales continuas

$$x(t)$$
 S. continuo $y(t) = T\{x(t)\}$ señal modificada

Ejemplo 2:

1.5. Sistemas continuos y discretos (II)

Sistema discreto: transforma señales discretas en señales discretas

Cuenta bancaria
$$y[n] = 1.01y[n-1] + x[n]$$

$$y[n] - 1.01y[n-1] = x[n] \equiv \text{ec. } en \text{ diferencias}$$

Saldo mensual $\equiv y[n]$

Balance neto (ingresos - gastos) $\equiv x[n]$

Interés de la cuenta: 1%

Interconexión de sistemas

Serie o cascada:

Con realimentación:

Ejemplos: control de velocidad, piloto automático

1.6. Propiedades básicas de los sistemas (I)

Memoria

Si la señal de salida en un instante depende únicamente de la señal de entrada en ese instante \rightarrow sistema **sin memoria**.

En caso contrario \rightarrow sistema con memoria.

Ejemplos:

$$y(t) = \alpha x(t) \rightarrow \sin \text{memoria}$$

$$y(t) = x(t) + \alpha x(t - t_0) \rightarrow \cos \text{memoria}$$

$$y(t) = \frac{1}{C} \int_{-\infty}^{t} x(\tau) d\tau \rightarrow \cos \text{memoria}$$

$$y[n] = (2x[n] + x^2[n])^2 \rightarrow \sin \text{memoria}$$

$$y[n] = \sum_{k=-\infty}^{n} x[k] = \sum_{k=-\infty}^{n-1} x[k] + x[n] = y[n-1] + x[n] \rightarrow \cos \text{memoria}$$

Memoria relacionada con almacenamiento de energía.

El concepto de memoria no es sólo de pasado, sino también de futuro.

1.6. Propiedades básicas de los sistemas (II)

Causalidad

Si la señal de salida en un instante depende únicamente de la señal de entrada en ese instante y/o instantes anteriores → sistema causal. En caso contrario → sistema no causal.

Ejemplos:

$$y(t) = \alpha x(t-2) + x^2(t-1) \rightarrow \text{causal}$$

$$y(t) = x(t+1) \rightarrow \text{no causal}$$

$$y[n] = x[n] + x[n-1] \rightarrow \text{causal}$$

$$y[n] = \sum_{k=-\infty}^{n+1} x[k] = \sum_{k=-\infty}^{n} x[k] + x[n+1] = y[n-1] + x[n+1] \rightarrow \text{no causal}$$

Aplicaciones donde los sistemas no causales son de interés. Por ejemplo, tratamiento de datos grabados previamente. Ejemplo: filtrado en el tiempo centrado en t_0 :

$$y[n] = \frac{1}{2M+1} \sum_{k=-M}^{M} x[n-k]$$

1.6. Propiedades básicas de los sistemas (III)

Invertibilidad

Si entradas distintas producen salidas distintas \rightarrow sistema **invertible** \rightarrow existe un sistema inverso S_{inv} tal que:

Si existen 2 o más entradas que producen la mismas salidas \rightarrow no invertible.

Ejemplos:

$$y(t) = 2x(t) \rightarrow \text{invertible} \rightarrow \text{sist.inverso}; w(t) = 2y(t)$$

$$y(t) = x^2(t) \rightarrow \text{no invertible (se pierde el signo)}$$

$$y[n] = \sum_{k=-\infty}^{n} x[k] = y[n-1] + x[n] \rightarrow \text{invertible} \rightarrow \text{s. inverso: } w[n] = y[n] - y[n-1]$$

- Codificador o encriptador: la información debe ser recuperable \rightarrow invertible
- Compresor de imagen: permite perder calidad \rightarrow no invertible

1.6. Propiedades básicas de los sistemas (IV)

Estabilidad

Si entradas acotadas producen salidas acotadas \rightarrow sistema **estable**

$$|x(t)| < A < \infty \ \forall t \implies |y(t)| < B < \infty \ \forall t$$

 $|x[n]| < A < \infty \ \forall n \implies |y[n]| < B < \infty \ \forall n$

Ejemplos:

$$y(t) = e^{x(t)} |x(t)| < A \to e^{-A} < y(t) < e^{A} \to |y(t)| < \max(e^{-A}, e^{A}) \to \text{estable}$$

$$y(t) = tx(t) |x(t)| < A \to |y(t)| < tA \to \lim_{t \to \infty} (tA) = \infty \to \text{inestable}$$

$$y[n] = \frac{1}{2M+1} \sum_{k=-M}^{M} x[n-k] |x[n]| < A \to |y[n]| < \frac{1}{2M+1} \sum_{k=-M}^{M} A = A \to \text{estable}$$

$$y[n] = \sum_{k=-\infty}^{n} x[k] |x[n]| < A \to |y[n]| < \sum_{k=-\infty}^{n} A = \infty \to \text{inestable}$$

Estabilidad ↔ disipación de energía

Sistema realizable: si es estable y causal

1.6. Propiedades básicas de los sistemas (V)

<u>Invarianza en el tiempo</u>

Un sistema es **invariante** si sus características y comportamiento no cambian con el tiempo. Esto se traduce en que un desplazamiento en la entrada da lugar al mismo desplazamiento en la salida.

Si
$$x(t) \to y(t) \Longrightarrow x(t - t_0) \to y(t - t_0)$$

Si $x[n] \to y[n] \Longrightarrow x[n - n_0] \to y[n - n_0]$

Ejemplos:

$$y(t) = \operatorname{sen}(x(t))$$

$$x_1(t) = x(t - t_0) \to y_1(t) = \operatorname{sen}(x(t - t_0))$$

$$y(t - t_0) = \operatorname{sen}(x(t - t_0))$$
invariante

$$y(t) = x(2t)$$

$$x_1(t) = x(t - t_0) \rightarrow y_1(t) = x(2t - t_0)$$

$$y(t - t_0) = x(2(t - t_0)) = x(2t - 2t_0)$$
 variante

$$y[n] = nx[n]$$
 $x_1[n] = x[n-n_0] \rightarrow y_1[n] = nx[n-n_0]$ variante $y[n-n_0] = (n-n_0)x[n-n_0]$

1.6. Propiedades básicas de los sistemas (VI)

<u>Linealidad</u>

Un sistema es **lineal** si cumple las propiedad de superposición (aditividad y homogeneidad), es decir, si una combinación lineal de entradas da lugar a la misma combinación lineal de salidas:

Sea
$$y_1(t)$$
 la respuesta a $x_1(t)$
Sea $y_2(t)$ la respuesta a $x_2(t)$ $ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$
Sea $y_1[n]$ la respuesta a $x_1[n]$
Sea $y_2[n]$ la respuesta a $x_2[n]$ $ax_1[n] + bx_2[n] \rightarrow ay_1[n] + by_2[n]$

Ejemplos:

$$y(t) = tx(t) \qquad ax_1(t) + bx_2(t) \to t(ax_1(t) + bx_2(t)) \\ ay_1(t) + by_2(t) = atx_1(t) + btx_2(t) \end{cases} \text{ lineal}$$

$$y(t) = x^2(t) \qquad ax_1(t) + bx_2(t) \to (ax_1(t) + bx_2(t))^2 \\ ay_1(t) + by_2(t) = ax_1^2(t) + x_2^2(t) \end{cases} \text{ no lineal}$$

$$y[n] = 2x[n] + 3 \qquad ax_1[n] + bx_2[n] \to 2(ax_1[n] + bx_2[n]) + 3 \\ ay_1[n] + by_2[n] = a(2x_1[n] + 3) + b(2x_2[n] + 3) \end{cases} \text{ no lineal}$$

Ejercicios

- 37 - 38
- 39
- 40. a), b), c) y d)
- 41