Cut locus and Morse-Bott Function

Sachchidanand Prasad

Indian Institute of Science Education and Research, Kolkata, India

12th July, 2021

IINMM 2021 IISER Tirupati

Outline of the talk

Let M be a smooth manifold and $f: M \to \mathbb{R}$ be any smooth function.

Let M be a smooth manifold and $f: M \to \mathbb{R}$ be any smooth function.

1 A point $p \in M$ is a *critical point* of f if $df_p = 0$.

Let M be a smooth manifold and $f: M \to \mathbb{R}$ be any smooth function.

1 A point $p \in M$ is a *critical point* of f if $df_p = 0$. In a coordinate neighborhood $(\phi = (x_1, x_2, \dots, x_n), U)$ around p for all $j = 1, 2, \dots, n$ we have

$$\frac{\partial (f \circ \phi^{-1})}{\partial x_j}(\phi(p)) = 0.$$

Let M be a smooth manifold and $f: M \to \mathbb{R}$ be any smooth function.

• A point $p \in M$ is a *critical point* of f if $df_p = 0$. In a coordinate neighborhood $(\phi = (x_1, x_2, \dots, x_n), U)$ around p for all $j = 1, 2, \dots, n$ we have

$$\frac{\partial (f \circ \phi^{-1})}{\partial x_j}(\phi(p)) = 0.$$

A critical point p is called non-degenerate

Let M be a smooth manifold and $f: M \to \mathbb{R}$ be any smooth function.

• A point $p \in M$ is a *critical point* of f if $df_p = 0$. In a coordinate neighborhood $(\phi = (x_1, x_2, \dots, x_n), U)$ around p for all $j = 1, 2, \dots, n$ we have

$$\frac{\partial (f \circ \phi^{-1})}{\partial x_j}(\phi(p)) = 0.$$

A critical point p is called non-degenerate if determinant of the Hessian matrix

$$\operatorname{Hess}_{p}(f) := \left(\frac{\partial^{2}(f \circ \phi^{-1})}{\partial x_{i} \partial x_{j}}(\phi(p))\right)$$

is non-zero.

Let M be a smooth manifold and $f: M \to \mathbb{R}$ be any smooth function.

• A point $p \in M$ is a *critical point* of f if $df_p = 0$. In a coordinate neighborhood $(\phi = (x_1, x_2, \dots, x_n), U)$ around p for all $j = 1, 2, \dots, n$ we have

$$\frac{\partial (f \circ \phi^{-1})}{\partial x_j}(\phi(p)) = 0.$$

A critical point p is called non-degenerate if determinant of the Hessian matrix

$$\operatorname{Hess}_{p}(f) := \left(\frac{\partial^{2}(f \circ \phi^{-1})}{\partial x_{i} \partial x_{j}}(\phi(p))\right)$$

is non-zero.

The function f is said to be a Morse function if all the critical points of f are non-degenerate.

Let M be a smooth manifold and $f: M \to \mathbb{R}$ be any smooth function.

• A point $p \in M$ is a *critical point* of f if $df_p = 0$. In a coordinate neighborhood $(\phi = (x_1, x_2, \dots, x_n), U)$ around p for all $j = 1, 2, \dots, n$ we have

$$\frac{\partial (f \circ \phi^{-1})}{\partial x_i}(\phi(p)) = 0.$$

A critical point p is called non-degenerate if determinant of the Hessian matrix

$$\operatorname{Hess}_{p}(f) := \left(\frac{\partial^{2}(f \circ \phi^{-1})}{\partial x_{i} \partial x_{j}}(\phi(p))\right)$$

is non-zero.

3 The function f is said to be a *Morse function* if all the critical points of f are non-degenerate. We denote the set of all critical points of f by Cr(f).

Definition (Morse-Bott functions)

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold $N \subset M$ is said to be non-degenerate critical submanifold of f if $N \subseteq Cr(f)$

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold $N \subset M$ is said to be *non-degenerate critical submanifold* of f if $N \subseteq \operatorname{Cr}(f)$ and for any $p \in N$, $\operatorname{Hess}_p(f)$ is non-degenerate in the direction normal to N at p.

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold $N \subset M$ is said to be non-degenerate critical submanifold of f if $N \subseteq \operatorname{Cr}(f)$ and for any $p \in N$, $\operatorname{Hess}_p(f)$ is non-degenerate in the direction normal to N at p.

The $\operatorname{Hess}_p(f)$ is non-degenerate in the direction normal to N at p means for any $V \in (T_pN)^{\perp}$ there exists $W \in (T_pN)^{\perp}$ such that $\operatorname{Hess}_p(f)(V,W) \neq 0$.

Definition (Morse-Bott functions)

Let M be a Riemannian manifold. A smooth submanifold $N \subset M$ is said to be non-degenerate critical submanifold of f if $N \subseteq \operatorname{Cr}(f)$ and for any $p \in N$, $\operatorname{Hess}_p(f)$ is non-degenerate in the direction normal to N at p. The function f is said to be *Morse-Bott* if the connected components of $\operatorname{Cr}(f)$ are non-degenerate critical submanifolds.

The $\operatorname{Hess}_p(f)$ is non-degenerate in the direction normal to N at p means for any $V \in (T_pN)^{\perp}$ there exists $W \in (T_pN)^{\perp}$ such that $\operatorname{Hess}_p(f)(V,W) \neq 0$.

Example

Example

Let $M=\mathbb{R}^2$ and $N=\{(x,0):x\in\mathbb{R}\}$. Then the distance between a point $\mathbf{p}\in\mathbb{R}^2$ and N is given by

Example

Let $M = \mathbb{R}^2$ and $N = \{(x,0) : x \in \mathbb{R}\}$. Then the distance between a point $\mathbf{p} \in \mathbb{R}^2$ and N is given by

$$d(\mathbf{p}, N) := \inf_{\mathbf{q} \in N} d(\mathbf{p}, \mathbf{q}).$$

Example

Let $M = \mathbb{R}^2$ and $N = \{(x,0) : x \in \mathbb{R}\}$. Then the distance between a point $\mathbf{p} \in \mathbb{R}^2$ and N is given by

$$d(\mathbf{p}, N) := \inf_{\mathbf{q} \in N} d(\mathbf{p}, \mathbf{q}).$$

We shall denote by d^2 the square of the distance. Consider the function

$$f: M \to \mathbb{R}, (x, y) \mapsto d^2((x, y), N) = y^2.$$

Example

Let $M = \mathbb{R}^2$ and $N = \{(x,0) : x \in \mathbb{R}\}$. Then the distance between a point $\mathbf{p} \in \mathbb{R}^2$ and N is given by

$$d(\mathbf{p}, N) := \inf_{\mathbf{q} \in N} d(\mathbf{p}, \mathbf{q}).$$

We shall denote by d^2 the square of the distance. Consider the function

$$f: M \to \mathbb{R}, (x,y) \mapsto d^2((x,y), N) = y^2.$$

Thus the set of critical points is the whole x-axis

Example

Let $M = \mathbb{R}^2$ and $N = \{(x,0) : x \in \mathbb{R}\}$. Then the distance between a point $\mathbf{p} \in \mathbb{R}^2$ and N is given by

$$d(\mathbf{p}, N) := \inf_{\mathbf{q} \in N} d(\mathbf{p}, \mathbf{q}).$$

We shall denote by d^2 the square of the distance. Consider the function

$$f: M \to \mathbb{R}, (x, y) \mapsto d^2((x, y), N) = y^2.$$

Thus the set of critical points is the whole x-axis and

$$\operatorname{Hess}_{(x,0)} f = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

Example

Let $M = \mathbb{R}^2$ and $N = \{(x,0) : x \in \mathbb{R}\}$. Then the distance between a point $\mathbf{p} \in \mathbb{R}^2$ and N is given by

$$d(\mathbf{p}, N) := \inf_{\mathbf{q} \in N} d(\mathbf{p}, \mathbf{q}).$$

We shall denote by d^2 the square of the distance. Consider the function

$$f: M \to \mathbb{R}, (x, y) \mapsto d^2((x, y), N) = y^2.$$

Thus the set of critical points is the whole x-axis and

$$\operatorname{Hess}_{(x,0)} f = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

which is non-degenerate in the normal direction (y-axis).

Definition (Cut locus)

Let M be a complete Riemannian manifold and $p \in M$.

Definition (Cut locus)

Let M be a complete Riemannian manifold and $p \in M$. If Cu(p) denotes the *cut locus* of p,

Definition (Cut locus)

Let M be a complete Riemannian manifold and $p \in M$. If Cu(p) denotes the *cut locus* of p, then a point $q \in Cu(p)$

Definition (Cut locus)

Let M be a complete Riemannian manifold and $p \in M$. If Cu(p) denotes the *cut locus* of p, then a point $q \in Cu(p)$ if there exists a minimal geodesic joining p to q,

Definition (Cut locus)

Let M be a complete Riemannian manifold and $p \in M$. If Cu(p) denotes the *cut locus* of p, then a point $q \in Cu(p)$ if there exists a minimal geodesic joining p to q, any extension of which beyond q is not minimal.

Cut Locus of a Submanifold

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $I(\gamma) = d(p, N)$.

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $I(\gamma) = d(p, N)$. We will refer to such geodesics as N-geodesics.

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $I(\gamma) = d(p, N)$. We will refer to such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $I(\gamma) = d(p, N)$. We will refer to such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M.

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $I(\gamma) = d(p, N)$. We will refer to such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If Cu(N) denotes the *cut locus of* N,

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $I(\gamma) = d(p, N)$. We will refer to such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the *cut locus of* N, then we say that $q \in \mathrm{Cu}(N)$ if

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $I(\gamma) = d(p, N)$. We will refer to such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the *cut locus of* N, then we say that $q \in \mathrm{Cu}(N)$ if there exists an N-geodesic joining N to q

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $I(\gamma) = d(p, N)$. We will refer to such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the *cut locus of* N, then we say that $q \in \mathrm{Cu}(N)$ if there exists an N-geodesic joining N to q such that any extension of it beyond q is not a distance minimal geodesic.

Definition

A geodesic γ is called a *distance minimal geodesic* joining N to p if there exists $q \in N$ such that γ is a minimal geodesic joining q to p and $I(\gamma) = d(p, N)$. We will refer to such geodesics as N-geodesics.

Definition (Cut locus of a submanifold)

Let M be a Riemannian manifold and N be any non-empty subset of M. If $\mathrm{Cu}(N)$ denotes the *cut locus of* N, then we say that $q \in \mathrm{Cu}(N)$ if there exists an N-geodesic joining N to q such that any extension of it beyond q is not a distance minimal geodesic.

The cut locus of a sphere in \mathbb{R}^3 is its center.

Let $M=M(n,\mathbb{R})$, the set of $n\times n$ matrices, and $N=O(n,\mathbb{R})$, set of all orthogonal $n\times n$ matrices.

Let $M=M(n,\mathbb{R})$, the set of $n\times n$ matrices, and $N=O(n,\mathbb{R})$, set of all orthogonal $n\times n$ matrices. We fix the standard Euclidean metric on $M(n,\mathbb{R})$ by identifying it with \mathbb{R}^{n^2} .

Let $M=M(n,\mathbb{R})$, the set of $n\times n$ matrices, and $N=O(n,\mathbb{R})$, set of all orthogonal $n\times n$ matrices. We fix the standard Euclidean metric on $M(n,\mathbb{R})$ by identifying it with \mathbb{R}^{n^2} . This induces a distance function given by

$$d(A,B) := \sqrt{\operatorname{tr}((A-B)^T(A-B))}, \quad A,B \in M(n,\mathbb{R})$$

Let $M=M(n,\mathbb{R})$, the set of $n\times n$ matrices, and $N=O(n,\mathbb{R})$, set of all orthogonal $n\times n$ matrices. We fix the standard Euclidean metric on $M(n,\mathbb{R})$ by identifying it with \mathbb{R}^{n^2} . This induces a distance function given by

$$d(A,B) := \sqrt{\operatorname{tr}((A-B)^T(A-B))}, \ A,B \in M(n,\mathbb{R})$$

Consider the distance squared function

$$f: M(n,\mathbb{R}) \to \mathbb{R}, A \mapsto d^2(A, O(n,\mathbb{R})).$$

Let $M=M(n,\mathbb{R})$, the set of $n\times n$ matrices, and $N=O(n,\mathbb{R})$, set of all orthogonal $n\times n$ matrices. We fix the standard Euclidean metric on $M(n,\mathbb{R})$ by identifying it with \mathbb{R}^{n^2} . This induces a distance function given by

$$d(A,B) := \sqrt{\operatorname{tr}((A-B)^T(A-B))}, \ A,B \in M(n,\mathbb{R})$$

Consider the distance squared function

$$f: M(n,\mathbb{R}) \to \mathbb{R}, A \mapsto d^2(A, O(n,\mathbb{R})).$$

We will show that f is a Morse-Bott function with critical submanifold as $O(n, \mathbb{R})$.

The function
$$f$$
 can be explicitly expressed as
$$f(A) = n + \operatorname{tr}\left(A^TA\right) - 2\operatorname{tr}\left(\sqrt{A^TA}\right)$$

The function
$$f$$
 can be explicitly expressed as
$$f(A) = n + \operatorname{tr}\left(A^TA\right) - 2\operatorname{tr}\left(\sqrt{A^TA}\right)$$

$$f(A) = n + \operatorname{tr}(A^T A) - 2\operatorname{tr}(\sqrt{A^T A})$$

• If A is an invertible matrix, then using the linearity of trace,

$$f(A) = \operatorname{tr}\left(A^{T}A\right) + n - 2 \sup_{B \in O(n,\mathbb{R})} \operatorname{tr}\left(A^{T}B\right)$$

$$f(A) = n + \operatorname{tr}\left(A^{T}A\right) - 2\operatorname{tr}\left(\sqrt{A^{T}A}\right)$$

• If A is an invertible matrix, then using the linearity of trace,

$$f(A) = \operatorname{tr}(A^T A) + n - 2 \sup_{B \in O(n,\mathbb{R})} \operatorname{tr}(A^T B)$$

 If A is a diagonal matrix with positive entries, then the maximizer will be I.

$$f(A) = n + \operatorname{tr}(A^T A) - 2\operatorname{tr}(\sqrt{A^T A})$$

• If A is an invertible matrix, then using the linearity of trace,

$$f(A) = \operatorname{tr}(A^T A) + n - 2 \sup_{B \in O(n,\mathbb{R})} \operatorname{tr}(A^T B)$$

- If A is a diagonal matrix with positive entries, then the maximizer will be I.
- For any $A \in GL(n, \mathbb{R})$, using the SVD and the polar decomposition of A we conclude that the maximizer is $A\sqrt{A^TA}^{-1}$.

$$f(A) = n + \operatorname{tr}(A^T A) - 2\operatorname{tr}(\sqrt{A^T A})$$

• If A is an invertible matrix, then using the linearity of trace,

$$f(A) = \operatorname{tr}(A^T A) + n - 2 \sup_{B \in O(n,\mathbb{R})} \operatorname{tr}(A^T B)$$

- If A is a diagonal matrix with positive entries, then the maximizer will be I.
- For any $A \in GL(n, \mathbb{R})$, using the SVD and the polar decomposition of A we conclude that the maximizer is $A\sqrt{A^TA}^{-1}$.

Note: The maximizer is unique if and only if A is invertible.

• The map f is differentiable if and only if A is invertible.

- The map f is differentiable if and only if A is invertible.
- For any $A \in GL(n, \mathbb{R})$

$$df_A = 2A - 2A\left(\sqrt{A^TA}\right)^{-1} = -2A\left(\sqrt{A^TA}^{-1} - I\right).$$

- The map f is differentiable if and only if A is invertible.
- For any $A \in GL(n, \mathbb{R})$

$$df_A = 2A - 2A\left(\sqrt{A^TA}\right)^{-1} = -2A\left(\sqrt{A^TA}^{-1} - I\right).$$

Note that for any H

$$df_A(H) = \left\langle -2A\left(\sqrt{A^TA}^{-1} - I\right), H\right\rangle = 0 \iff A^TA = I.$$

- The map f is differentiable if and only if A is invertible.
- For any $A \in GL(n, \mathbb{R})$

$$df_A = 2A - 2A\left(\sqrt{A^TA}\right)^{-1} = -2A\left(\sqrt{A^TA}^{-1} - I\right).$$

Note that for any H

$$df_A(H) = \left\langle -2A\left(\sqrt{A^TA}^{-1} - I\right), H\right\rangle = 0 \iff A^TA = I.$$

• The critical set of f is $O(n, \mathbb{R})$.

- The map f is differentiable if and only if A is invertible.
- For any $A \in GL(n,\mathbb{R})$

$$df_A = 2A - 2A\left(\sqrt{A^TA}\right)^{-1} = -2A\left(\sqrt{A^TA}^{-1} - I\right).$$

Note that for any H

$$df_A(H) = \left\langle -2A\left(\sqrt{A^TA}^{-1} - I\right), H\right\rangle = 0 \iff A^TA = I.$$

- The critical set of f is $O(n, \mathbb{R})$.
- $B \in (T_A O(n, \mathbb{R})^{\perp})$ if B = AW for some symmetric matrix W.

- The map f is differentiable if and only if A is invertible.
- For any $A \in GL(n,\mathbb{R})$

$$df_A = 2A - 2A\left(\sqrt{A^TA}\right)^{-1} = -2A\left(\sqrt{A^TA}^{-1} - I\right).$$

Note that for any H

$$df_A(H) = \left\langle -2A\left(\sqrt{A^TA}^{-1} - I\right), H\right\rangle = 0 \iff A^TA = I.$$

- The critical set of f is $O(n, \mathbb{R})$.
- $B \in (T_A O(n, \mathbb{R})^{\perp})$ if B = AW for some symmetric matrix W.
- The Hessian matrix restricted to $(T_AO(n,\mathbb{R}))^{\perp}$ is $2I_{\frac{n(n+1)}{2}}$.

Integral curve of $-\nabla f$

• If $\gamma(t)$ is an integral curve of $-\nabla f$ initialized at A, then $\gamma(0) = A$

ullet If $\gamma(t)$ is an integral curve of abla f initialized at A, then $\gamma(0)=A$ and

$$\frac{d\gamma}{dt} = -2\gamma(t) + 2\left(\gamma(t)^{T}\right)^{-1}\sqrt{\gamma(t)^{T}\gamma(t)}.$$
 (1)

ullet If $\gamma(t)$ is an integral curve of abla f initialized at A, then $\gamma(0)=A$ and

$$\frac{d\gamma}{dt} = -2\gamma(t) + 2\left(\gamma(t)^{T}\right)^{-1}\sqrt{\gamma(t)^{T}\gamma(t)}.$$
 (1)

• The solution of (??) given by

ullet If $\gamma(t)$ is an integral curve of abla f initialized at A, then $\gamma(0)=A$ and

$$\frac{d\gamma}{dt} = -2\gamma(t) + 2\left(\gamma(t)^{T}\right)^{-1}\sqrt{\gamma(t)^{T}\gamma(t)}.$$
 (1)

• The solution of (??) given by

$$\gamma(t) = Ae^{-2t} + (1 - e^{-2t})A\left(\sqrt{A^T A}\right)^{-1}.$$
 (2)

ullet If $\gamma(t)$ is an integral curve of $-\nabla f$ initialized at A, then $\gamma(0)=A$ and

$$\frac{d\gamma}{dt} = -2\gamma(t) + 2\left(\gamma(t)^{T}\right)^{-1}\sqrt{\gamma(t)^{T}\gamma(t)}.$$
 (1)

The solution of (??) given by

$$\gamma(t) = Ae^{-2t} + (1 - e^{-2t})A\left(\sqrt{A^T A}\right)^{-1}.$$
 (2)

• Note that $\gamma(t)$ is a flow line which deforms $GL(n,\mathbb{R})$ to $O(n,\mathbb{R})$.

A modified curve

$$\eta(t) = A(1-t) + tA\left(\sqrt{A^TA}\right)^{-1}$$

A modified curve

$$\eta(t) = A(1-t) + tA\left(\sqrt{A^TA}\right)^{-1}$$

with the same image as γ , defines an actual deformation retraction of $GL(n,\mathbb{R})$ to $O(n,\mathbb{R})$.

A modified curve

$$\eta(t) = A(1-t) + tA\left(\sqrt{A^TA}\right)^{-1}$$

with the same image as γ , defines an actual deformation retraction of $GL(n,\mathbb{R})$ to $O(n,\mathbb{R})$. Apart from its origin via the distance function, this is a geometric deformation in the following sense.

A modified curve

$$\eta(t) = A(1-t) + tA\left(\sqrt{A^TA}\right)^{-1}$$

with the same image as γ , defines an actual deformation retraction of $GL(n,\mathbb{R})$ to $O(n,\mathbb{R})$. Apart from its origin via the distance function, this is a geometric deformation in the following sense. Given $A \in GL(n,\mathbb{R})$, consider its columns as an ordered basis.

A modified curve

$$\eta(t) = A(1-t) + tA\left(\sqrt{A^TA}\right)^{-1}$$

with the same image as γ , defines an actual deformation retraction of $GL(n,\mathbb{R})$ to $O(n,\mathbb{R})$. Apart from its origin via the distance function, this is a geometric deformation in the following sense. Given $A \in GL(n,\mathbb{R})$, consider its columns as an ordered basis. This deformation deforms the ordered basis according to the length of the basis vectors and mutual angles between pairs of basis vectors in a geometrically uniform manner.

A modified curve

$$\eta(t) = A(1-t) + tA\left(\sqrt{A^TA}\right)^{-1}$$

with the same image as γ , defines an actual deformation retraction of $GL(n,\mathbb{R})$ to $O(n,\mathbb{R})$. Apart from its origin via the distance function, this is a geometric deformation in the following sense. Given $A \in GL(n, \mathbb{R})$, consider its columns as an ordered basis. This deformation deforms the ordered basis according to the length of the basis vectors and mutual angles between pairs of basis vectors in a geometrically uniform manner. This is in sharp contrast with Gram-Schmidt orthogonalization, also a deformation of $GL(n,\mathbb{R})$ to $O(n,\mathbb{R})$, which is asymmetric as it never changes the direction of the first column, the modified second column only depends on the first two columns and so on.

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The *separating set*, denoted by Se(N),

Definition (Separating set)

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by Se(N), consists of all points $q \in M$ such that at least two distance minimal geodesics from N to q exist.

• Franz-Erich Wolter in 1979 proved that the closure of $\mathrm{Se}(p)$ is $\mathrm{Cu}(p)$

Definition (Separating set)

Let N be a subset of a Riemannian manifold M. The separating set, denoted by Se(N), consists of all points $q \in M$ such that at least two distance minimal geodesics from N to q exist.

• Franz-Erich Wolter in 1979 proved that the closure of Se(p) is Cu(p) and hence Cu(p) is a closed set.

Definition (Separating set)

- Franz-Erich Wolter in 1979 proved that the closure of Se(p) is Cu(p) and hence Cu(p) is a closed set.
- The same result also holds for the cut locus of a submanifold,

Definition (Separating set)

- Franz-Erich Wolter in 1979 proved that the closure of Se(p) is Cu(p) and hence Cu(p) is a closed set.
- The same result also holds for the cut locus of a submanifold, that is, the closure Se(N) is whole of Cu(N) and hence cut locus of a submanifold is closed.

Definition (Separating set)

- Franz-Erich Wolter in 1979 proved that the closure of Se(p) is Cu(p) and hence Cu(p) is a closed set.
- The same result also holds for the cut locus of a submanifold, that is, the closure Se(N) is whole of Cu(N) and hence cut locus of a submanifold is closed.
- Now recall the example of distance squared function on $M(n,\mathbb{R})$.

Definition (Separating set)

- Franz-Erich Wolter in 1979 proved that the closure of Se(p) is Cu(p) and hence Cu(p) is a closed set.
- The same result also holds for the cut locus of a submanifold, that is, the closure Se(N) is whole of Cu(N) and hence cut locus of a submanifold is closed.
- Now recall the example of distance squared function on $M(n, \mathbb{R})$. Using the last item, we can say that the $Se(O(n, \mathbb{R}))$ is the set of all singular matrices which is a closed set

Definition (Separating set)

- Franz-Erich Wolter in 1979 proved that the closure of Se(p) is Cu(p) and hence Cu(p) is a closed set.
- The same result also holds for the cut locus of a submanifold, that is, the closure Se(N) is whole of Cu(N) and hence cut locus of a submanifold is closed.
- Now recall the example of distance squared function on $M(n, \mathbb{R})$. Using the last item, we can say that the $Se(O(n, \mathbb{R}))$ is the set of all singular matrices which is a closed set and hence the cut locus will be the set of all singular matrices.

Regularity of the distance squared function

Theorem

Let M be a connected, complete Riemannian manifold and N be an embedded submanifold of M. Suppose two N-geodesics exist joining N to $q \in M$. Then $d^2(N, \cdot) : M \to \mathbb{R}$ has no directional derivative at q for vectors in direction of those two N-geodesics.

 We assume that all the geodesics are arc-length parametrized.

- We assume that all the geodesics are arc-length parametrized.
- The directional derivative from left is 21.

- We assume that all the geodesics are arc-length parametrized.
- The directional derivative from left is 21.

- We assume that all the geodesics are arc-length parametrized.
- The directional derivative from left is 21.

$$(d^2)'_{-}(q) := \lim_{\varepsilon \to 0^+} \frac{(d(N, \gamma_i(I)))^2 - (d(N, \gamma_i(I - \varepsilon)))^2}{\varepsilon}$$

- We assume that all the geodesics are arc-length parametrized.
- The directional derivative from left is 21.

$$(d^{2})'_{-}(q) := \lim_{\varepsilon \to 0^{+}} \frac{(d(N, \gamma_{i}(I)))^{2} - (d(N, \gamma_{i}(I - \varepsilon)))^{2}}{\varepsilon}$$
$$= \lim_{\varepsilon \to 0^{+}} \frac{I^{2} - (I - \varepsilon)^{2}}{\varepsilon}$$

- We assume that all the geodesics are arc-length parametrized.
- The directional derivative from left is 21.

$$(d^{2})'_{-}(q) := \lim_{\varepsilon \to 0^{+}} \frac{(d(N, \gamma_{i}(I)))^{2} - (d(N, \gamma_{i}(I - \varepsilon)))^{2}}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0^{+}} \frac{l^{2} - (l - \varepsilon)^{2}}{\varepsilon}$$

$$= 2l.$$

- We assume that all the geodesics are arc-length parametrized.
- The directional derivative from left is 21.

$$(d^{2})'_{-}(q) := \lim_{\varepsilon \to 0^{+}} \frac{(d(N, \gamma_{i}(l)))^{2} - (d(N, \gamma_{i}(l - \varepsilon)))^{2}}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0^{+}} \frac{l^{2} - (l - \varepsilon)^{2}}{\varepsilon}$$

$$= 2l.$$

- We assume that all the geodesics are arc-length parametrized.
- The directional derivative from left is 21.

$$(d^{2})'_{-}(q) := \lim_{\varepsilon \to 0^{+}} \frac{(d(N, \gamma_{i}(I)))^{2} - (d(N, \gamma_{i}(I - \varepsilon)))^{2}}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0^{+}} \frac{l^{2} - (I - \varepsilon)^{2}}{\varepsilon}$$

$$= 2I.$$

Using some version of "cosine rule" we have

$$a^2 = \varepsilon^2 + \tau^2 + 2\varepsilon\tau\cos\omega + K(\tau)\varepsilon^2\tau^2$$

- We assume that all the geodesics are arc-length parametrized.
- The directional derivative from left is 21.

$$(d^{2})'_{-}(q) := \lim_{\varepsilon \to 0^{+}} \frac{(d(N, \gamma_{i}(l)))^{2} - (d(N, \gamma_{i}(l - \varepsilon)))^{2}}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0^{+}} \frac{l^{2} - (l - \varepsilon)^{2}}{\varepsilon}$$

$$= 2l$$

Using some version of "cosine rule" we have

$$a^2 = \varepsilon^2 + \tau^2 + 2\varepsilon\tau\cos\omega + K(\tau)\varepsilon^2\tau^2$$

 Finally, we can show that the derivative from the right is strictly bounded above by 21.

The distance squared function is Morse-Bott

Proposition

Consider the distance squared function with respect to a submanifold N in M. Then this is a Morse-Bott function with N as the critical submanifold.

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Define

 $\mathbf{s}: S(\nu) \to [0,\infty], \ \mathbf{s}(\nu) := \sup\{t \in [0,\infty) \, | \, \gamma_{\nu}|_{[0,t]} \text{ is an N-geodesic}\},$ where $S(\nu)$ is the unit normal bundle of N and $[0,\infty]$ is the one-point compactification of $[0,\infty)$.

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M - \mathrm{Cu}(N)$.

Define

 $\mathbf{s}: S(\nu) \to [0,\infty], \ \mathbf{s}(\nu) := \sup\{t \in [0,\infty) \, | \, \gamma_{\nu}|_{[0,t]} \ \text{is an N-geodesic}\},$ where $S(\nu)$ is the unit normal bundle of N and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map \mathbf{s} is continuous

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of $M - \mathrm{Cu}(N)$.

Define

 $\mathbf{s}: S(\nu) \to [0,\infty], \ \mathbf{s}(\nu) := \sup\{t \in [0,\infty) \, | \, \gamma_{\nu}|_{[0,t]} \ \text{is an N-geodesic}\},$ where $S(\nu)$ is the unit normal bundle of N and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map \mathbf{s} is continuous and is finite if M is compact.

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Define

 $\mathbf{s}: S(\nu) \to [0,\infty], \ \mathbf{s}(\nu) := \sup\{t \in [0,\infty) \, | \, \gamma_{\nu}|_{[0,t]} \ \text{is an N-geodesic}\},$ where $S(\nu)$ is the unit normal bundle of N and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map \mathbf{s} is continuous and is finite if M is compact. Note that the cut locus is

$$\mathrm{Cu}(N) = \exp_{\nu} \left\{ \mathbf{s}(\nu) v : v \in \mathcal{S}(\nu) \right\},$$

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Define

$$\mathbf{s}: S(\nu) \to [0,\infty], \ \mathbf{s}(\nu) := \sup\{t \in [0,\infty) \, | \, \gamma_{\nu}|_{[0,t]} \text{ is an N-geodesic}\},$$
 where $S(\nu)$ is the unit normal bundle of N and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map \mathbf{s} is continuous and is finite if M is

compactification of $[0,\infty)$. The map ${\bf s}$ is continuous and is finite if M compact. Note that the cut locus is

$$\operatorname{Cu}(N) = \exp_{\nu} \left\{ \mathbf{s}(\nu) \nu : \nu \in \mathcal{S}(\nu) \right\},$$

where $\exp_{\nu} : \nu \to M$, $\exp_{\nu}(p, v) := \exp_{p}(v)$.

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Define

$$\mathbf{s}: S(\nu) \to [0,\infty], \ \mathbf{s}(\nu) := \sup\{t \in [0,\infty) \, | \, \gamma_{\nu}|_{[0,t]} \text{ is an N-geodesic}\},$$

where $S(\nu)$ is the unit normal bundle of N and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map ${\bf s}$ is continuous and is finite if M is compact. Note that the cut locus is

$$\mathrm{Cu}(N) = \exp_{\nu} \left\{ \mathbf{s}(\nu) \nu : \nu \in \mathcal{S}(\nu) \right\},$$

where $\exp_{\nu}: \nu \to M$, $\exp_{\nu}(p, \nu) := \exp_{p}(\nu)$. Define an open neighborhood $U_{0}(N)$ of the zero section in the normal bundle as

$$U_0(N) := \{av : 0 \le a < \mathbf{s}(v), \ v \in S(v)\}.$$

Theorem

Let M be a complete Riemannian manifold and N be compact submanifold of M. Then N is a deformation retract of M - Cu(N).

Define

$$\mathbf{s}: S(\nu) \to [0,\infty], \ \mathbf{s}(\nu) := \sup\{t \in [0,\infty) \, | \, \gamma_{\nu}|_{[0,t]} \text{ is an } N\text{-geodesic}\},$$

where $S(\nu)$ is the unit normal bundle of N and $[0,\infty]$ is the one-point compactification of $[0,\infty)$. The map ${\bf s}$ is continuous and is finite if M is compact. Note that the cut locus is

$$Cu(N) = \exp_{\nu} \left\{ \mathbf{s}(\nu) \nu : \nu \in S(\nu) \right\},\,$$

where $\exp_{\nu} : \nu \to M$, $\exp_{\nu}(p, v) := \exp_{p}(v)$. Define an open neighborhood $U_{0}(N)$ of the zero section in the normal bundle as

$$U_0(N) := \{ av : 0 \le a < \mathbf{s}(v), \ v \in S(v) \}.$$

Note that \exp_{ν} is a diffeomorphism on $U_0(N)$ and set $U(N) = \exp_{\nu}(U_0(N)) = M - \operatorname{Cu}(N)$.

The space $U_0(N)$ deforms to the zero section on the normal bundle.

The space $U_0(N)$ deforms to the zero section on the normal bundle.

$$H: U_0(N) \times [0,1] \to U_0(N), ((p,av),t) \mapsto (p,tav).$$

Now consider the following diagram:

$$egin{aligned} U_0(\mathit{N}) imes [0,1] & \stackrel{H}{\longrightarrow} U_0(\mathit{N}) \ & & \downarrow^{\exp_{
u}} \ & & \downarrow^{\exp_{
u}$$

Now consider the following diagram:

$$U_0(N) \times [0,1] \xrightarrow{H} U_0(N)$$
 $exp_{\nu}^{-1} \uparrow \qquad \downarrow exp_{\nu}$
 $U \times [0,1] \xrightarrow{F} U \cong M - Cu(N)$

The map F can be defined by taking the compositions

$$F = \exp_{\nu} \circ H \circ \exp_{\nu}^{-1}.$$

Now consider the following diagram:

$$\begin{array}{c|c} U_0(N) \times [0,1] & \xrightarrow{H} & U_0(N) \\ & & \downarrow^{\exp_{\nu}} \\ U \times [0,1] & \xrightarrow{F} U \cong M - \operatorname{Cu}(N) \end{array}$$

The map F can be defined by taking the compositions

$$F = \exp_{\nu} \circ H \circ \exp_{\nu}^{-1}.$$

We saw that for $M=M(n,\mathbb{R})$ and $N=O(n,\mathbb{R})$, the cut locus $\mathrm{Cu}(O(n,\mathbb{R}))$ is the set of all singular matrices and $M-\mathrm{Cu}(O(n,\mathbb{R}))$, which is the set of invertible matrices, deforms to $O(n,\mathbb{R})$.

References

- F.E.Wolter, Distance function and cut loci on a complete Riemannian manifold, Arch. Math. (Basel), 32 (1979), pp. 92-96.
- 2 T. Sakai, *Riemannian geometry*, vol. 149 of Translations of Mathematical Monographs, American Mathematical Society.
- 3 J.J. Hebda, *The local homology of cut loci in Riemannian manifolds*, Tohoku Math. J. (2), 35 (1983), pp. 45-52.
- Basu S. and Prasad S., A connection between cut locus, Thom space and Morse-Bott functions, 2020. available at https://arxiv.org/abs/2011.02972.