Numerical discretization of port-Hamiltonian plate models *

Andrea Brugnoli * Daniel Alazard * Valérie Pommier-Budinger * Denis Matignon *

* ISAE-SUPAERO, Université de Toulouse, France. 10 Avenue Edouard Belin, BP-54032, 31055 Toulouse Cedex 4. Andrea.Brugnoli@isae.fr, Daniel.Alazard@isae.fr, Valerie.Budinger@isae.fr, Denis.Matignon@isae.fr

Abstract:

Keywords: Port-Hamiltonian systems, Kirchhoff Plate, Mindlin-Reissner Plate, Mixed Finite Element Method, Numerical convergence

1. INTRODUCTION

2. PROBLEM STATEMENT

In this section the models under consideration are recalled. The details can be found in Brugnoli et al. (2019a,b).

2.1 Notations

For a scalar field $u: \mathbb{R}^d \to \mathbb{R}$ the gradient is defined as

$$\operatorname{grad}(u) = \nabla u := (\partial_{x_1} u \dots \partial_{x_d} u)^{\top}.$$

For a vector field $\boldsymbol{u}: \mathbb{R}^d \to \mathbb{R}^d$, with components u_j , the gradient is defined as

$$\operatorname{grad}(\boldsymbol{u})_{ij} := (\nabla \boldsymbol{u})_{ij} = \partial_{x_i} u_j.$$

The symmetric part of the gradient operator Grad (i. e. the deformation gradient in continuum mechanics) is given by

$$\operatorname{Grad}(\boldsymbol{u}) := \frac{1}{2} \left(\nabla \boldsymbol{u} + \nabla^{\top} \boldsymbol{u} \right).$$

The Hessian operator of u is then computed as follows

$$\operatorname{Hess}(u) = \nabla^2 u = \operatorname{Grad}(\operatorname{grad}(u)),$$

For a tensor field $U : \mathbb{R}^d \to \mathbb{R}^{d \times d}$, with components u_{ij} , the divergence is a vector, defined column-wise as

$$\operatorname{Div}(\boldsymbol{U}) = \nabla \cdot \boldsymbol{U} := \left(\sum_{i=1}^{d} \partial_{x_i} u_{ij}\right)_{j=1,\dots,d}.$$

The double divergence of a tensor field \boldsymbol{U} is then a scalar field defined as

$$\operatorname{div}(\operatorname{Div}(\boldsymbol{U})) := \sum_{i,j=1}^{d} \partial_{x_i} \partial_{x_j} u_{ij}.$$

2.2 Plate models in port-Hamiltonian form

2.2.0.1. Mindlin-Reissner plate The Mindlin model is a generalization to the 2D case of the Timoshenko beam model and is expressed by a system of three coupled PDEs (Timoshenko and Woinowsky-Krieger (1959))

$$\begin{cases}
\rho h \frac{\partial^2 w}{\partial t^2} &= \operatorname{div}(\boldsymbol{q}), \\
\frac{\rho h^3}{12} \frac{\partial^2 \boldsymbol{\theta}}{\partial t^2} &= \boldsymbol{q} + \operatorname{Div}(\boldsymbol{M}),
\end{cases} \tag{1}$$

where ρ is the mass density, h the plate thickness, w the vertical displacement, $\boldsymbol{\theta} = (\theta_x, \theta_y)^{\top}$ collects the deflection of the cross section along axes x and y respectively. Variables $\boldsymbol{M}, \boldsymbol{q}$ represent the momenta tensor and the shear stress. The Hooke law relates those to the curvature tensor and shear deformation vector

$$M := \mathcal{D}K,$$
 $K := \operatorname{Grad}(\theta),$ $q := \mathcal{C}\gamma,$ $\gamma := \operatorname{grad}(w) - \theta,$

where \mathcal{D}, \mathcal{C} are symmetric positive tensors. The kinetic and potential energy density \mathcal{K} and \mathcal{U} read

$$\mathcal{K} = \frac{1}{2} \left\{ \rho h \left(\frac{\partial w}{\partial t} \right)^2 + \frac{\rho h^3}{12} \frac{\partial \boldsymbol{\theta}}{\partial t} \cdot \frac{\partial \boldsymbol{\theta}}{\partial t} \right\},$$

$$\mathcal{U} = \frac{1}{2} \left\{ \boldsymbol{M} : \boldsymbol{K} + \boldsymbol{q} \cdot \boldsymbol{\gamma} \right\},$$
(2)

where $M:K:=\sum_{i,j}m_{ij}\kappa_{ij}$ is the tensor contraction. The Hamiltonian is easily written as

$$H = \int_{\Omega} (\mathcal{K} + \mathcal{U}) \, d\Omega. \tag{3}$$

To get a port-Hamiltonian formulation suitable energy variables must be selected. The appropriate set is the following

$$\alpha_{w} = \rho h \frac{\partial w}{\partial t}, \qquad \boldsymbol{\alpha}_{\theta} = \frac{\rho h^{3}}{12} \frac{\partial \boldsymbol{\theta}}{\partial t},$$

$$\boldsymbol{A}_{\kappa} = \boldsymbol{K}, \qquad \boldsymbol{\alpha}_{\gamma} = \boldsymbol{\gamma}.$$

$$(4)$$

The co-energy variables are found by computing the variational derivative of the Hamiltonian

^{*} This work is supported by the project ANR-16-CE92-0028, entitled Interconnected Infinite-Dimensional systems for Heterogeneous Media, INFIDHEM, financed by the French National Research Agency (ANR) and the Deutsche Forschungsgemeinschaft (DFG). Further information is available at https://websites.isae-supaero.fr/infidhem/the-project.

$$e_{w} := \frac{\delta H}{\delta \alpha_{w}} = \frac{\partial w}{\partial t}, \qquad e_{\theta} := \frac{\delta H}{\delta \alpha_{\theta}} = \frac{\partial \theta}{\partial t},$$

$$E_{\kappa} := \frac{\delta H}{\delta A_{\kappa}} = M, \qquad e_{\gamma} := \frac{\delta H}{\delta \alpha_{\gamma}} = q.$$
(5)

Energy and co-energy are relative by a positive symmetric operator $\alpha = \mathcal{Q}e$

$$Q = \operatorname{diag}(\frac{1}{\rho h}, \ \frac{12}{\rho h^3}, \ \mathcal{D}, \ \mathcal{C})$$

The port-Hamiltonian system is expressed as follows

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \boldsymbol{\alpha}_{\theta} \\ \boldsymbol{A}_{\kappa} \\ \boldsymbol{\alpha}_{\gamma} \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \text{div} \\ 0 & 0 & \text{Div } \boldsymbol{I}_{2 \times 2} \\ 0 & \text{Grad} & 0 & 0 \\ \text{grad} & -\boldsymbol{I}_{2 \times 2} & 0 & 0 \end{bmatrix}}_{I} \begin{pmatrix} e_w \\ e_{\theta} \\ \boldsymbol{E}_{\kappa} \\ e_{\gamma} \end{pmatrix}, \quad (6)$$

This system defines a Stokes-Dirac structure, therefore, the boundary values can be found by evaluating the time derivative of the Hamiltonian.

2.2.0.2. Kirchhoff plate The Kirchhoff Model is a generalization to the 2D case of the Euler-Bernoulli beam model. The classical equations for this model Timoshenko and Woinowsky-Krieger (1959) are

$$\rho h \frac{\partial^2 w}{\partial t^2} = -\text{div}(\text{Div}(\boldsymbol{M})) \tag{7}$$

The bending moment tensor and the curvature are related as in the Mindlin model M = DK. Following the Kirchhoff assumption the curvature tensor is the Hessian of the vertical displacement

$$K := Grad(grad(w)).$$

The kinetic and potential energy densities \mathcal{K} and \mathcal{U} read

$$\mathcal{K} = \frac{1}{2}\rho h \left(\frac{\partial w}{\partial t}\right)^2, \quad \mathcal{U} = \frac{1}{2}\mathbf{M} : \mathbf{K},$$
 (8)

The Hamiltonian is easily written as

$$H = \int_{\Omega} (\mathcal{K} + \mathcal{U}) \, d\Omega. \tag{9}$$

Selecting as energy variables

$$\alpha_w = \rho h \frac{\partial w}{\partial t},$$
 Linear momentum, (10)
 $\mathbf{A}_{\kappa} = \mathbf{K},$ Curvature tensor.

co-energy variables are found by computing the variational derivative of the Hamiltonian

$$e_w := \frac{\delta H}{\delta \alpha_w} = w_t,$$
 Vertical Velocity,
 $E_\kappa := \frac{\delta H}{\delta A_\kappa} = M,$ Momenta tensor, (11)

where $w_t := \frac{\partial w}{\partial t}$ for compactness. The coercive operator linking energy and co-energies reads

$$Q = \operatorname{diag}(\frac{1}{\rho h}, \mathcal{D})$$

The port-Hamiltonian system is expressed as follows

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_w \\ \mathbf{A}_{\kappa} \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & -\text{div} \circ \text{Div} \\ \text{Grad} \circ \text{grad} & 0 \end{bmatrix}}_{\mathcal{J}} \begin{pmatrix} e_w \\ \mathbf{E}_{\kappa} \end{pmatrix}, \quad (12)$$

3. CONCLUSION

ACKNOWLEDGEMENTS

The authors would like to thank Michel Salaün from ISAE-SUPAERO for the fruitful and insightful discussions.

REFERENCES

Andrea Brugnoli, Daniel Alazard, Valérie Pommier-Budinger, and Denis Matignon. Port-Hamiltonian formulation and symplectic discretization of plate models part II: Kirchhoff model for thin plates. *Applied Mathematical Modelling*, 75:961 – 981, 2019a. ISSN 0307-904X. doi: 10.1016/j.apm.2019.04.036. URL https://doi.org/10.1016/j.apm.2019.04.036.

Andrea Brugnoli, Daniel Alazard, Valérie Pommier-Budinger, and Denis Matignon. Port-Hamiltonian formulation and symplectic discretization of plate models part I: Mindlin model for thick plates. *Applied Mathematical Modelling*, 75:940 – 960, 2019b. ISSN 0307-904X. doi: 10.1016/j.apm.2019.04.035. URL https://doi.org/10.1016/j.apm.2019.04.035.

S. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells. Engineering societies monographs. McGraw-Hill, 1959.