

Спецкурс: системы и средства параллельного программирования

Отчёт № 2 Подсчет количества cache miss для блочного матричного умножения со сбором информации с аппаратных счетчиков с помощью системы PAPI

Работу выполнила **Кислов Е.В.**

Постановка задачи и формат данных

Задача

Реализовать последовательный алгоритм блочного матричного умножения и оценить влияние кэша на время выполнения программы. Дополнить отчёт результатами сбора информации с аппаратных счётчиков, используя систему PAPI.

Формула определения оптимального блока: 3*b*b=mL, b - размер блока в элементах, mL - размер кэша.

Снимать необходимо информацию о промахах кэша (1 и 2 уровней), числе процессорных тактов, числе FLOP-ов и TLB, в зависимости от размеров блока (фиксированный или по формуле) и двух порядков индексов, для 5 квадратных матриц.

Формат командной строки

<имя файла матрицы A><имя файла матрицы B><имя файла матрицы C><размер блока для умножения
><режим, порядок индексов>.

Режимы: 1 - ijk, 2 - ikj.

Формат файла-матрицы

Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
Число типа size_t	N – натуральное число	Число строк матрицы
Число типа size_t	М – натуральное число	Число столбцов матрицы
Массив чисел типа float	$N \times M$ элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Результаты

Число процессорный тактов(рис.1)

Число промахов кэша L1(рис.2)

Число промахов кэша L2(рис.3)

Число промахов TLB(рис.4)

Число операций FLOPS(рис.5)

Основные выводы.

- 1. Показатели количества тактов и промахов кэшей были наименьшими при порядке обхода ikj и оптимальном размере блока
- 2. Показатели числа промахов TLB и FLOPS одинаковы для трех случаев