BLG456E Robotics Robot Software Architectures & Planning

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
- Examples
 - Shakey Example.
 - ROS Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/

Considerably adapted from work by Dr. Sanem Sariel-Talay

What is a Robot Architecture

The organisation of a robot (software) control system.

E.g.:

- How components coordinate (e.g. localisation and navigation).
- Conceptual approach to achieving tasks.

Temporal decomposition of robot architectures

- Coarse division of control
- Layering can be loosely synchronous

Sample Mobile Platform Decomposition

BLG456E Robotics Robot Software Architectures & Planning

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
- Examples
 - Shakey Example.
 - ROS Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/

Considerably adapted from work by Dr. Sanem Sariel-Talay

Control Architecture Types (Intro)

- Deliberative
- Reactive
- Behaviour-based
- Hybrid

Deliberative Architecture

- Maps, lots of state
- Look-ahead

Reactive Architecture

- No maps, no state
- No look ahead
- Could be implemented by a look-up table

Parallel Decomposition - Behavioural

BLG456E Robotics Robot Software Architectures & Planning

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
- Examples
 - Shakey Example.
 - ROS Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/

Considerably adapted from work by Dr. Sanem Sariel-Talay

Control Decomposition: Sense-Plan-Act

Deliberative Architecture

- Maps, lots of state
- Look-ahead

World Modelling from Perception

on(B,A) on(A,Table) gripped(C)

High-level planning: Planning problems

Example high-level planning problem:

Initial state:

on(B,A), on(A, Table), gripped(C)

Goal state description:

on (A,B), on (B,C)

Also need a domain description with:

- Possible actions.
 - Action <u>preconditions</u>.
 - · Action effects.

Example plan

```
1 STATE: on (B, A), on (A, Table), gripped (C)
  ACTION: put(C, Table)
2 STATE: on(B,A),on(A,Table),on(C,Table)
  ACTION: take(B,A)
3 STATE: on(A, Table), on(C, Table), gripped(B)
  ACTION: put(B,C)
4 STATE: on(A, Table), on(C, Table), on(B, C)
  ACTION: take(A, Table)
5 STATE: on(C, Table), on(B, C), gripped(A)
  ACTION: put(A,B)
6 STATE: on(C, Table), on(B, C), on(A, B)
  DONE
```

Domain Modelling for Action

put (X,Y):

preconditions:
 -on(Z,Y)
 gripped(X)

effects:
 -gripped(X)
 on(X,Y)

Domain Modelling for Action

take(X,Y):

preconditions:
 on(X,Y)
 -on(Z,X)

-gripped(V)

effects:
 gripped(X)
 -on(X,Y)

Finding plans

- Given:
 - Domain description (available actions).
 - Goal description and initial state.
- Find:
 - Sequence of actions.
- Sample Approaches:
 - First-order logic & theorem-proving.
 - → SEARCH
 - General purpose planners.
 - → SEARCH (like A*)

Example state subgraph

Making planning work (I)

- Connect with lower-levels.
- Supervisory mechanisms.

Making planning work (II)

- Quick planning.
 - → Online planning.
- Respond to changes.
 - → Online planning.
 - → Plan repair.
- Low level detail.
 - → Human effort.
 - → Semantic attachment?
 - → Learning?

Making planning work (III)

- Implement the actions.
 - → Human effort.
 - → Learning?
- Implement the perception.
 - → Human effort.
 - → Learning?
- Match model to world.
 - → Human effort.
 - → Learning!!

BLG456E Robotics Robot Software Architectures & Planning

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
- Examples
 - Shakey Example.
 - ROS Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/

Considerably adapted from work by Dr. Sanem Sariel-Talay

Reactive Architecture

- No maps, no state
- No look ahead
- Could be implemented by a look-up table

Braitenberg Car

- By default, motors turn.
- Sensor inhibits same-side motor.

- Goes toward light.
- Speeds up in dark.
- Slows down in light.

• Spends more time in light.

Braitenberg Car

- Appears to have goals
- No states (current velocities).
- "loves light".

BLG456E Robotics Robot Software Architectures & Planning

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
- Examples
 - Shakey Example.
 - ROS Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/

Considerably adapted from work by Dr. Sanem Sariel-Talay

Parallel Decomposition Behavioural

Behaviour-based Architecture

- Combine reactive "behavioural" modules.
- Behavioural modules can have <u>internal</u> state.
- Behavioural modules might deliberate <u>independently</u>.

Combining modules does not give any guarantees of correctness (not easy to formally model)

Layered (incremental) control: Subsumption architecture

- Higher level layers subsume roles of lower layers (take control).
- Layers below any level form an operational control system.

Mobile robot example

- Level 0: Avoid objects.
- Level 1: Wander aimlessly (without hitting).
- Level 2: "Explore": head towards distant places.
- Level 3: Build map, plan routes.
- Level 4: Notice changes in map.
- Level 5: Reason about objects and tasks.
- Level 6: Formulate plans.
- Level 7: Reason about object dynamics.

Mobile robot example

^{*}Figure courtesy of Handbook of Robotics, Springer, 2008

Mobile robot example

- sonar: Vector of sonar readings → robot-centered map of obstacles.
- collide: Map → detects objects ahead → halt signal.
- feelforce: Obstacle map → repulsive force.
- runaway: Repulsive force → heading.
- turn and forward: Feedback control from encoders.
- wander: Random movement generation.
- avoid: Reactive avoidance: Combine feelforce and wander.

Subsumption Modules

- Input and output lines: "wires".
- 1-message buffer.
- Suppression of inputs or inhibition of outputs.
- Can be reset.

Augmented Finite State Machines

Message arrival/timer expiration \rightarrow trigger a change in the state of FSM.

Alternative behavioural approach:

Robot Schemas

BLG456E Robotics Robot Software Architectures & Planning

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
- Examples
 - Shakey Example.
 - ROS Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/

Considerably adapted from work by Dr. Sanem Sariel-Talay

Hybrid Architectures

- State.
- Look ahead but react.
- Combine long and short time-scales.

- Interleaves deliberation (planning) with reactive control e.g. moving obstacle avoidance.
- Very common nowadays.

Hybrid Architectures

BLG456E Robotics Robot Software Architectures & Planning

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
- Examples
 - Shakey Example.
 - ROS Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/

Considerably adapted from work by Dr. Sanem Sariel-Talay

Early robots - Shakey

Shakey (SRI), 1960's

- -Sensors:
 - VidiconTV camera
 - Optical range finder
 - Whisker bump sensors
- Environment: Office with specially colored and shaped objects
- STRIPS planner: developed for this system

Shakey the robot

To controlling computer

Shakey outline

PLANEX
Plan Executor (& monitor).

STRIPS
Planner.

ILAs
Intermediate Level Actions.

LUAS
Hardware

- Central representation (world model)
- Logic based representation.

- Components communicate via world model.
- Error recovery at several levels (e.g. plan executor, low level actions).