DS de Maths

Durée 2 heures

Pas de document, ni calculatrice, ni téléphone portable

Les 4 exercices sont indépendants

Barème envisagé : 2 - 4 - 4 - 10

Exercice 1 : Une opération dans $\mathbb R$

Pour tous x et y dans \mathbb{R} on pose $x \star y = \sqrt[3]{x^3 + y^3}$.

Étudier les propriétés de cette opération

(commutativité, associativité, existence d'un élément neutre, existence d'un symétrique pour tout élément)

Commutative : $x \star y = \sqrt[3]{x^3 + y^3} = \sqrt[3]{y^3 + x^3} = y \star x$

Associative: $(x \star y) \star z = \sqrt[3]{(\sqrt[3]{x^3 + y^3})^3 + z^3} = \sqrt[3]{(x^3 + y^3) + z^3} = \sqrt[3]{x^3 + (y^3 + z^3)} = x \star (y \star z)$

Elément neutre 0 Symétrique de *x* : -*x*

Exercice 2: Equipotence

Soient:

C l'intérieur du carré unité : $C =]-1,+1[\times]-1,+1[$ et D l'intérieur du disque unité : $D = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 < 1\}$

1. Montrer que C et D sont équipotents (On pourra penser à la fonction $f:(x,y) \to (x,y\sqrt{1-x^2})$).

Pour tout $(x, y) \in C$, donc $f(x, y) \in D$

Réciproquement, si $(u, v) \in D$, -1 < u < 1 et $-\sqrt{1 - u^2} < v < \sqrt{1 - u^2}$ donc $\left(u, \frac{v}{\sqrt{1 - u^2}}\right) \in C$

donc f est une bijection de C sur D, de réciproque $(u,v) \rightarrow \left(u, \frac{v}{\sqrt{1-u^2}}\right)$

2. Montrer que $\Gamma = \{(x, y) \in \mathbb{R}^2 \mid x = 1 \text{ et } -1 \le y \le 1\}$ et $\gamma = \{z \in \mathbb{C} \mid |z| = 1 \text{ et } -\frac{\pi}{4} < \arg(z) \le \frac{\pi}{4}\}$ sont équipotents.

 $\varphi:(x,y) \to e^{i\frac{\pi}{4}y}$ est une bijection de Γ sur γ

3. En déduire que $\overline{C} = [-1, +1] \times [-1, +1]$ et $\overline{D} = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\}$ sont équipotents (indication : faire des figures !)

On peut définir une bijection de \overline{C} sur \overline{D} "par morceaux" voir figure ci-dessous

Exercice 3: Calcul d'une somme

On pose
$$S_1 = 1 + 2 + ... + n$$
, $S_2 = 1^2 + 2^2 + ... + n^2$, $S_3 = 1^3 + 2^3 + ... + n^3$

1. Rappeler les valeurs de S_1 et S_2 (donner une expression factorisée)

$$S_1 = \frac{n(n+1)}{2}$$
, $S_2 = \frac{n(n+1)(2n+1)}{6}$

2. Après avoir développé $(k+1)^4$ $(k+1)^4 = k^4 + 4k^3 + 6k^2 + 4k + 1$ simplifier la somme $(n+1)^4 + n^4 + ... + (k+1)^4 + ... + 2^4 + 1^4$

et en déduire que $(n+1)^4 = 1 + 4S_3 + 6S_2 + 6S_1 + n + 1$

$$(n+1)^{4} = n^{4} + 4n^{3} + 6n^{2} + 4n + 1$$

$$n^{4} = (n-1)^{4} + 4(n-1)^{3} + 6(n-1)^{2} + 4(n-1) + 1$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(k+1)^{4} = k^{4} + 4k^{3} + 6k^{2} + 4k + 1$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$2^{4} = 1^{4} + 4.1^{3} + 6.1^{2} + 4.1 + 1$$

$$1^{4} = 0^{4} + 4.0^{3} + 6.0^{2} + 4.0 + 1$$

$$(n+1)^{4} = 0 + 4S_{3} + 6S_{2} + 4S_{1} + (n+1)$$

3. Calculer S_3 (donner une expression factorisée)

$$S_{3} = \frac{\left(n+1\right)^{4} - 6S_{2} - 4S_{1} - (n+1)}{4} = \frac{\left(n+1\right)^{4} - n\left(n+1\right)\left(2n+1\right) - 2n\left(n+1\right) - (n+1)}{4}$$

$$S_{3} = (n+1)\frac{\left(n+1\right)^{3} - n\left(2n+1\right) - 2n-1}{4} = (n+1)\frac{\left(n+1\right)^{3} - \left(2n+1\right)\left(n+1\right)}{4} = (n+1)^{2}\frac{\left(n+1\right)^{2} - \left(2n+1\right)}{4} = \frac{n^{2}(n+1)^{2}}{4}$$

Exercice 4: Relations binaires

Soit *E* un ensemble

On rappelle qu'une relation binaire \mathcal{R} sur E est déterminée par son graphe G, qui est une partie de $E \times E$.

On a alors $x \mathcal{R} y \Leftrightarrow (x, y) \in G$

1) Dans cette question, $E = \{a, b\}$. Écrire $E \times E$.

Étudier <u>toutes</u> les relations binaires <u>réflexives</u> dans E:

pour chacune d'elles, on écrira le graphe

et on précisera si la relation est symétrique (S), antisymétrique (A)

Les graphes de relations sont les sous-ensembles de $\{a,b\} \times \{a,b\} = \{(a,a),(b,b),(a,b),(a,b)\}$.

Les graphes des relations réflexives doivent contenir les couples (a,a) et (b,b). Reste 4 possibilités :

$$G = \{(a,a),(b,b)\}S,A$$

$$G = \{(a,a),(b,b),(a,b)\} non S, A$$

$$G = \{(a,a),(b,b),(b,a)\} non S, A$$

$$G = \{(a,a),(b,b),(a,b),(a,b)\}\ S, non\ A$$

- 2) Dans cette question, E est un ensemble fini à n éléments
 - a) Combien existe-t-il de relations binaires dans $E ? 2^{Card(E \times E)} = 2^{n^2}$
 - b) Combien existe-t-il de relations binaires **réflexives** dans E?

 Les graphes doivent contenir les n couples (x_i, x_i) . Il reste $n^2 n$ couples qu'on peut prendre ou non.

Donc 2^{n^2-n} relations réflexives

c) Combien existe-t-il de relations binaires dans E à la fois **réflexives et symétriques** ? Les graphes doivent contenir les n couples (x_i, x_i) .

Parmi les $n^2 - n$ couples restant, si on prend un couple (x_i, x_j) , il faut forcément prendre le couple (x_j, x_i) .

Il n'y a donc plus que $\frac{n^2-n}{2}$ couples qu'on peut prendre ou non.

Donc $2^{\frac{n^2-n}{2}}$ relations à la fois réflexives et symétriques.

On rappelle que le produit de 2 relations binaires \mathcal{R} et \mathcal{S} est la relation binaire \mathcal{R} . \mathcal{S} définie par $\forall x, y \in E$, $x(\mathcal{R},\mathcal{S})y \Leftrightarrow \exists z \in E/x\mathcal{R}, z \text{ et } z\mathcal{S}, y$

3) Dans cette question, $E = \{a, b, c\}$

On définit les relations binaires \mathcal{R} , \mathcal{S} , \mathcal{E} et \mathcal{R}' par leurs diagrammes sagittaux ci-dessous :

Faire ci-dessous les diagrammes sagittaux des relations RS, SR, ER, RE, RE, RR' et R'R:

4) Dans cette question, on revient au cas général. On appelle R l'ensemble des relations binaires dans E et on étudie l'opération interne qui, à deux relations binaires \mathcal{R} et \mathcal{S} appartenant à \mathcal{E} , associe leur produit \mathcal{R} . \mathcal{S} a) Cette opération est-elle commutative? Non voir contre-exemple(s) au 3) b) Démontrer que la relation d'égalité \mathcal{E} définie par $x \mathcal{E} y \Leftrightarrow x = y$ est l'élément neutre. (on montrera que $x \mathcal{R}, y \Leftrightarrow x(\mathcal{E}.\mathcal{R}) y$ puis ...) $\forall x, z \in E$, si $x \notin z$ c'est que x = z donc $x(\notin E : R)$ $y \Rightarrow \exists z \in E / x \notin z$ et $z \notin R$, $y \Rightarrow x = z$ et $z \notin Y \Rightarrow x \notin R$, $y \Rightarrow x \in Z$ Donc $\mathcal{E}.\mathcal{R} = \mathcal{R}$. On démontre de la même manière que $\mathcal{R}.\mathcal{E} = \mathcal{R}$. Comme l'élément neutre est unique, E est l'élément neutre. c) Démontrer que cette opération est associative Soient $\mathcal{R}_{\mathcal{A}}$, $\mathcal{S}_{\mathcal{A}}$ trois relations dans E et x, y deux éléments de E. $x((\mathcal{R}.\mathcal{S}).\mathcal{T})y \Leftrightarrow \exists u \in E / x(\mathcal{R}.\mathcal{S})u \text{ et } u\mathcal{T}y \Leftrightarrow \exists u,v \in E / (x\mathcal{R}v \text{ et } v\mathcal{S}u) \text{ et } u\mathcal{T}y$ $x(\mathcal{R}.(S.\mathcal{T}))y \Leftrightarrow \exists v \in E / x\mathcal{R} v \text{ et } v(S.\mathcal{T})\mathcal{T} y \Leftrightarrow \exists u, v \in E / x\mathcal{R} v \text{ et } (vSu \text{ et } u\mathcal{T} y)$ donc $\forall x, y \in E$, $x((\mathcal{R}.\mathcal{S}).\mathcal{T})y \Leftrightarrow x(\mathcal{R}.(\mathcal{S}.\mathcal{T}))y$ et $(\mathcal{R}.\mathcal{S}).\mathcal{T} = \mathcal{R}.(\mathcal{S}.\mathcal{T})$ d) Montrer que si \mathcal{R} avait un symétrique \mathcal{R}^{-1} et si on avait $\mathcal{R}\mathcal{R}=\mathcal{R}$, alors on aurait $\mathcal{R}=\mathcal{E}$. En déduire que les éléments de *E* n'ont pas tous un symétrique. Puisque $\mathcal E$ est l'élément neutre, si $\mathcal R^{-1}$ est le symétrique de $\mathcal R$, alors $\mathcal R^{-1}.\mathcal R=\mathcal E$ Alors en utilisant l'associativité, $\mathcal{R}_{\cdot}\mathcal{R}_{\cdot} = \mathcal{R}_{\cdot} \Rightarrow \mathcal{R}_{\cdot}^{-1}\mathcal{R}_{\cdot}\mathcal{R}_{\cdot} = \mathcal{R}_{\cdot}^{-1}\mathcal{R}_{\cdot}\Rightarrow \mathcal{E}_{\cdot}\mathcal{R}_{\cdot} = \mathcal{E} \Rightarrow \mathcal{R}_{\cdot} = \mathcal{E}$ 5) On définit la relation \Box dans l'ensemble R des relations binaires dans E en posant : $\mathcal{R} \square \mathcal{S} \Leftrightarrow (\forall x, y \in E, x \mathcal{R}, y \Rightarrow x \mathcal{S}, y).$ Montrer que □ est une relation d'ordre. \Box est réflexive car $\forall x, y \in E$, $x \in \mathbb{R}$, $y \Rightarrow x \in \mathbb{R}$, $y \text{ donc } \mathbb{R}$, \Box \square est antisymétrique car si $\mathcal{R}\square$ \mathcal{S} et $\mathcal{S}\square$ \mathcal{R} , alors $\forall x, y \in E$, $(x\mathcal{R}, y \Rightarrow x\mathcal{S}, y)$ et $(x\mathcal{R}, y \Rightarrow x\mathcal{S}, y)$ donc $\forall x, y \in E, x \mathcal{R}, y \Leftrightarrow x \mathcal{S}, y \text{ et } \mathcal{R} = \mathcal{S}$

 \square est transitive car si $\mathcal{R}\square$ \mathcal{S} et $\mathcal{S}\square$ \mathcal{T} , alors $\forall x, y \in E$, $(x\mathcal{R}, y \Rightarrow x\mathcal{S}, y)$ et $(x\mathcal{S}, y \Rightarrow x\mathcal{T}, y)$

donc $\forall x, y \in E, x \mathcal{R}, y \Rightarrow x \mathcal{T}, y \text{ et } \mathcal{R} \square \mathcal{T}$