Partial Differential Equations

IPCST Seoul National University

Partial Derivative

• Ex.)
$$f(x,y) = x^2 + xy + y^2$$
 $f_x \text{ or } f_{,x} \equiv \partial f/\partial x$ $f_{xx} \text{ or } f_{,xx} \equiv \partial^2 f/\partial x^2$ $f_{xx} \equiv \partial^2 f/\partial x^2$ $f_{xx} \equiv \partial^2 f/\partial x^2$ $f_{xx} \equiv \partial^2 f/\partial x$ $f_{xx} \equiv \partial^2 f/\partial x$ $f_{xx} \equiv \partial^2 f/\partial x$

Partial Differential Equation

- Differential equation × multivariable function(s) × partial derivatives
- Variables in PDEs
 - Continuous variables
 - Two or more independent variables
 - State variables: functions of independent variables.

参考: Partial Differential Equation

Examples

- 1-D advection equation (or flow equation)
 - $cu_x + u_t = 0$
- 1-D wave equation
 - $c^2 u_{xx} u_{tt} = 0$
- 1-D diffusion equation (heat equation)
 - $u_t = Du_{xx}$
- 2-D Poisson's equation
 - $u_{xx} + u_{yy} = f(x,y)$
- 2-D Helmholtz equation
 - $u_{xx} + u_{yy} + k^2 u = 0$

参考: Partial Differential Equation

Examples

- 1-D Klein-Gordon equation
 - ψ_{tt} ψ_{xx} + $m^2\psi$ = 0
- 1-D incompressible Navier-Stokes equation

•
$$u_t + u \cdot u_x - v^2 u_{xx} = -p_x/\rho$$

- Burgers' equation
 - $u_t + u \cdot u_x = v^2 u_{xx}$
- Inviscid Burgers' equation
 - $u_t + u \cdot u_x = 0$
- Black-Scholes equation
 - $V_t + \frac{1}{2}\sigma^2 s^2 V_{ss} + rsV_s rV = 0$

/参考: Laplace Operator (= Laplacian)

$$\Delta f = \nabla^2 f = \nabla \cdot \nabla f$$

$$\nabla f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

$$\Delta f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2}.$$

$$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}.$$

Types of 2nd order PDEs

- Elliptic equations
 - Poisson, Laplace (f = 0)

$$\triangle u = f(\vec{x})$$

- Parabolic equations
 - Heat, dispersion

$$\frac{\partial u}{\partial t} - \alpha \nabla^2 u = 0$$

- Hyperbolic equations
 - Advection(convection), wave

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$

- Mixed type
 - Euler-Tricomi

$$\frac{\partial^2 u}{\partial x^2} = x \frac{\partial^2 u}{\partial y^2}$$

Types of 2nd order PDEs

•
$$Au_{xx} + 2Bu_{xy} + Cu_{yy} = F(u_x, u_y, u,)$$

- Elliptic equations if $AC B^2 > 0$
 - $u_{xx} + u_{yy} = f(x,y)$
- Parabolic equations if $AC B^2 = 0$
 - $u_t = Du_{xx}$
- Hyperbolic equations if $AC B^2 < 0$
 - $c^2 u_{xx} u_{tt} = 0$ (= $(c \partial_x + \partial_t)(c \partial_x \partial_t)u$)
 - $cu_x + u_t = 0$

Initial Conditions of PDEs

- Elliptic equations
 - Static. Steady-state solution. No initial condition is needed.
- Parabolic or Hyperbolic equations
 - Initial-boundary-value problems (IBVPs)
 - Initial condition is defined as a function of space variables.

Boundary Conditions of PDEs

- Periodic boundary condition
 - If period = L,
 - u(x+L) = u(x)
- B. C. for elliptic or parabolic PDEs
 - Dirichlet B. C.
 - u(boundary) = value
 - Neumann B. C.
 - $\partial u(\text{boundary})/\partial x = \text{value}$
 - 2-D or 3-D: derivative normal to the boundary
 - Robin B. C.
 - · Linear combination of Dirichlet & Neumann BCs.

Boundary Conditions of PDEs

- B. C. for hyperbolic PDEs
 - Cauchy B. C.
 - Both the function and derivative
 - For the 2nd order PDE with single initial condition
 - Dirichlet or Neumann BCs are applicable, but the solution is not unique.
 - If there are double initial conditions for every position, the solution is unique even with Dirichlet or Neumann BCs.
 - Cauchy problem: the 2nd order PDE with initial state distribution u(t=0) and initial change rate distribution $\partial_t u(t=0)$

參考: Usual Modeling with PDEs

- 1. Selection of state variables from a phenomenological observation
- 2. Modeling of the interaction between the inner system (the main model) and the outer environment
- 3. Finding the equilibrium, conservation, and/or balance equations
- Constitutive or material modeling (equivalent to approximation of the interaction among individuals in microscopic modeling)
- 5. Deriving a set of equations describing the evolution of the state variable(s) in time and space

參考: Usual Modeling with PDEs

- Constitutive Relation
 - A relation between two physical quantities
 - Types of constitutive relations
 - 1) Definitions or physical laws
 - Phenomenological or empirical
 - Derived from first-principles or microscopic model calculations
- Systems may be composed by different interconnected systems. One needs different models for each sub-system and compatibility conditions (as I. C. and/or B. C.) between contiguous systems.

Dismantling a PDE into ODEs

- Methods to solve a PDE by transforming it into a system of ODEs or ODE + PDE.
 - Method of characteristics (for hyperbolic equations)
 - Separation of variables
 - Method of lines

參考: Method of Characteristics

- Characteristic: a curve of singularities characterizing a hyperbolic equation
 - Ex.) simple case advection equation
 - $cu_x + u_t = 0$ (c: constant)

```
Since c is the advection velocity,

dx/dt = c \rightarrow x = ct + x_0 \rightarrow x_0 = x - ct
du/dt = (\partial u/\partial x)(dx/dt) + (\partial u/\partial t) = cu_x + u_t = 0
\rightarrow u = f(x_0)
\therefore u = f(x - ct) : general solution
```

• Ex.)
$$\frac{\partial^2 u}{\partial t^2} = \triangle u$$
 (2-D)

Let u = T(t)V(x,y)

Then,

$$\frac{\frac{d^2}{dt^2}T(t)}{T(t)} = \frac{\nabla^2 V(x,y)}{V(x,y)} = -\lambda$$

 \checkmark $\lambda \ge 0$ for steady state solutions

$$\frac{\frac{d^2}{dt^2}T(t)}{T(t)} = -\lambda$$

- $\lambda > 0$: Let $\lambda = k^2$ $T(t) = A\cos(kt) + B\sin(kt)$
- $\lambda < 0$: Let $\lambda = -\kappa^2$ $T(t) = A \exp(-\kappa t) + B \exp(\kappa t)$

- Separation of space variables depends on the system's symmetry
 - Cuboid → Cartesian coordinates
 - V(x, y, z) = X(x) Y(y) Z(z)
 - Cylinder → cylindrical coordinates
 - $V(r, \theta, z) = R(r) \Theta(\theta) Z(z)$
 - Sphere → spherical coordinates
 - $V(r, \theta, \varphi) = R(r) \Theta(\theta) \Phi(\varphi)$
 - Irregular shape: Go numerical!

- Because the time variable part is usually easily separated, the method of variable separation can be used with other methods.
 - Time part: ODE (often analytically solvable)
 - Space part: a numerical method

Superposition Principle

- If f and g are solutions of a homogeneous PDE, u = af + bg is also a solution. (a,b): constants)
 - A PDE is a homogeneous PDE if u = 0 is its solution. Otherwise, it is an inhomogeneous PDE.
- If h is a solution of an inhomogeneous PDE, u = af + bg + h is also a solution.
- * This principle is used for separation of variables before initial conditions are applied.

Method of Lines

- 1. Discretizing space (usually by finite difference methods)
- PDE → ODEs on a grid: an ODE for each grid point → system of ODEs
 - Method of lines can be used to construct or analyze a numerical method by leaving the time variable continuous.
- 3. Solve the system of ODEs by an ODE solver

- Example: Bioreactor model
 - J. Chem. Technol. Biotechnol. **74**, 78 (1999); Automatica **28**, 873 (1992)

- A fixed bed bioreactor
- Two reactions
 - 1. Growth:substrate + biomass→ entrapped on a bed
 - 2. Death of micro-organisms
- State variables
 - X: biomass concentration
 - S: substrate concentration

Method of Lines

J. Chem. Technol. Biotechnol. 74, 78 (1999); Automatica 28, 873 (1992)

$$\partial X/\partial t = \mu(X, S)X - k_{\rm d}X$$

$$\partial S/\partial t = -(F/A)\partial S/\partial z - k_{Y}\mu(X, S)X$$

$$dX_i/dt = \mu(X_i, S_i)X_i - k_d X_i$$

$$dS_{i}/dt = -(F/A)(S_{i} - S_{i-1})/\Delta z - k_{Y} \mu(X_{i}, S_{i})X_{i}$$

$$S_i = S(z_i, t), \quad X_i = X(z_i, t), \quad z_i = i \Delta z,$$

$$S_0 = S_{\rm in}$$

F : flow

A: area of

cross-section

Numerical Methods for PDEs

- Traditional space discretization
- Finite Difference Method (FDM)
 - Numerical differentiation on a uniform mesh
- Finite Element Method (FEM)
 - Sub-domain division → Element equation over each sub-domain → Connecting solutions
- Finite Volume Method (FVM)
 - PDEs are recast in a conservative form by using the divergence theorem and are solved over discrete volumes. (Application in fluid dynamics)

Numerical Methods for PDEs

- Others
- Lattice Boltzmann Method
 - Transforming PDEs to integral equations. Matrix-free.
- Boundary Element Method
 - FEM on boundaries.
- Spectral Element Method
- Differential Quadrature Method

Simple FDM

- Example methods of applying finite differences directly
 - Euler method
 - Time derivative → Forward or Backward 2-point
 - Five-point stencil
 - 2D space Laplacian → Central 3-point
 - Leapfrog method
 - Time derivative → Central 3-point
 - Space derivative → Central 3-point

Forward Euler method

$$\frac{\partial u}{\partial t} \to \frac{u(\vec{x}, t + \delta) - u(\vec{x}, t)}{\delta}$$

• δ : time interval (Δt)

Ex.)
$$\partial_t u = \triangle u \rightarrow u(\vec{x}, t + \delta) = u(\vec{x}, t) + \delta \triangle_h u(\vec{x}, t)$$

- h: space interval (Δx)
- This method is explicit.
- However, parabolic PDEs are often too stiff to apply this method.

- Forward Euler method
 - 1-D diffusion equation

$$u_t = Du_{xx}$$

(uniform grids)

• Let
$$U_i^k = u(x_i, t_k)$$
 where $x_i = ih + x_0, t_k = k\delta + t_0$

$$u_t \to \frac{U_i^{k+1} - U_i^k}{\delta}$$

$$u_{xx} \to \frac{U_{i+1}^k - 2U_i^k + U_{i-1}^k}{h^2}$$

$$u_t = Du_{xx} \to \frac{U_i^{k+1} - U_i^k}{\delta} = D \frac{U_{i+1}^k - 2U_i^k + U_{i-1}^k}{h^2}$$

• Let
$$\gamma = D\delta/h^2$$
, then $U_i^{k+1} = \gamma U_{i+1}^k + (1-2\gamma)U_i^k + \gamma U_{i-1}^k$

1-D diffusion equation

$$u_t = Du_{xx}$$

- Let the domain = [0, L]
- Dirichlet boundary conditions

$$u(0) = c \rightarrow U_0^k = c$$

$$u(L) = c \rightarrow U_N^k = c$$

- Neumann boundary conditions
 - 1) Forward FD or Backward FD
 - 2) Ghost boundary points

- Forward Euler method
 - Discrete maximum principle

$$\max_{i} \left| U_i^{k+1} \right| \le \max_{i} \left| U_i^k \right| \quad \text{for every } k$$

→ (sufficient) Stability condition for 1-D diffusion eq.

$$\gamma \le \frac{1}{2} \to 2D\delta \le h^2$$

- Algorithm for 1-D diffusion equation
 - 1. Setting parameters
 - 2. Setting the initial condition & time-invariant Dirichlet BCs.
 - 3. Loop: applying $U_i^{k+1} = \gamma U_{i+1}^k + (1-2\gamma)U_i^k + \gamma U_{i-1}^k$ with Neumann & time-variant BCs.

Do It Yourself

Make your code to solve

$$u_t = 4u_{xx} + 1, \qquad 0 < x < 1, t > 0$$

- Initial condition: u(x,0) = 0, 0 < x < 1
- Boundary conditions: $u(t,0) = u(t,1) = 0, t \ge 0$ with the forward Euler method.
 - Wen Shen 11.5-2
 - The main formula is a little bit changed.
- Check out the results every time step.
 - [option]: numbers, graphs, animation

Five-point Stencil (2D)

5-point discrete Laplacian (2D)

$$\triangle u = u_{xx} + u_{yy}$$
- Let $U_{i,j} = u(x_i, y_j)$ where $x_i = ih, y_j = jh$

$$u_{xx, h} = (U_{i-1,j} - 2U_{i,j} + U_{i+1,j})/h^2$$

$$u_{yy, h} = (U_{i,j-1} - 2U_{i,j} + U_{i,j+1})/h^2$$

$$\triangle_h u = u_{xx, h} + u_{yy, h}$$

$$= (U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1} - 4U_{i,j})/h^2$$

Simple advection equation

$$\partial_x u + \partial_t u = 0$$

- Backward central (or BTCS)
 - Let $U_i^k = u(x_i, t_k)$ where $x_i = ih$, $t_k = k\delta$
 - Time: backward difference

•
$$\partial_{t,\delta} U_i^k = (U_i^k - U_i^{k-1})/\delta$$

Space: central difference

•
$$\partial_{x,h} U_i^k = (U_{i+1}^k - U_{i-1}^k)/(2h)$$

where $\gamma = \delta/(2h)$

Backward central (or BTCS)

$$\gamma u_{i+1}^{k+1} + u_i^{k+1} - \gamma u_{i-1}^{k+1} = u_i^{k}$$

- Matrix-vector form: $\mathbf{M}\mathbf{u}^{k+1} = \mathbf{u}^k$

$$\mathbf{M}\mathbf{u}^{k+1} = \mathbf{u}^k$$

In case of Dirichlet B. C., 0 at the ends,

$$\mathbf{M} = \begin{pmatrix} 1 & \gamma & 0 & 0 & \cdots & 0 \\ -\gamma & 1 & \gamma & 0 & \cdots & 0 \\ 0 & -\gamma & 1 & \gamma & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & -\gamma & 1 & \gamma & 0 \\ 0 & \cdots & 0 & -\gamma & 1 & \gamma \\ 0 & \cdots & 0 & 0 & -\gamma & 1 \end{pmatrix}$$

Backward central (or BTCS)

$$\gamma u_{i+1}^{k+1} + u_i^{k+1} - \gamma u_{i-1}^{k+1} = u_i^{k}$$

- Algorithm
 - 1. Setting parameters
 - 2. Setting **u**⁰ & time-invariant Dirichlet BCs.
 - 3. If BCs have no variation in time, set M under Neumann BCs before the main loop \rightarrow find M⁻¹
 - 4. Loop: solving $\mathbf{M}\mathbf{u}^{k+1} = \mathbf{u}^k$ with time-variant BCs. The different form of the PDE can change \mathbf{M} .
- Stability
 - Unconditionally stable because $\|\mathbf{M}\| > 1$

$$\partial_x u + \partial_t u = 0$$

- Leapfrog method
 - Let $U_i^k = u(x_i, t_k)$ where $x_i = ih$, $t_k = k\delta$
 - Time: central difference

•
$$\partial_{t,\delta} U_i^k = (U_i^{k+1} - U_i^{k-1})/(2\delta)$$

Space: central difference

•
$$\partial_{x,h} U_i^k = (U_{i+1}^k - U_{i-1}^k)/(2h)$$

$$\rightarrow U_i^{k+1} = U_i^{k-1} - \gamma (U_{i+1}^k - U_{i-1}^k)$$

where $\gamma = \delta/h$

FDM for 1-D Hyperbolic PDE

- Leapfrog method
 - Stability condition: $\gamma \leq 1$
 - Algorithm
 - 1. Setting parameters
 - 2. Setting the initial condition & time-invariant Dirichlet BCs.
 - Beginning with the Euler method
 - 4. Loop: applying $U_i^{k+1} = U_i^{k-1} \gamma(U_{i+1}^k U_{i-1}^k)$ with Neumann & time-variant Dirichlet BCs.

參考: Multi-Grid Technique

- Use of different scales of discretization
- Ex.) use of coarse and fine grids
 - Coarse grid: smooth function
 - Fine grid: highly oscillating function
 - A coarse grid can be used for correction of a fine-grid solution.
- This can be applied to any discretizing method (FDM, FEM,).

參考: Multi-Grid Technique

- Algorithm framework
 - 1. Smoothing: rough calculation on a fine grid
 - 2. Restriction: fine \rightarrow coarse (error transfer)
 - 3. Calculation on the coarse grid
 - 4. Interpolation or prolongation: coarse → fine
 - 5. Further calculation on the fine grid

- BVP on domain → BVPs on subdomains
 - In addition to boundary conditions, we need conditions at interfaces or in overlapping regions
- Usefulness
 - 1. Efficient parallel computing
 - 2. It is often useful to use different time steps or grids on different subdomains.
 - More often used for FEM than FDM

- Overlap conditions
 - 1. Domains overlap
 - 2. Domains do not overlap, but they are appended with buffer regions
 - 3. Without buffer regions, domains intersect only along an interface

- Simple example: FDM of 1-D heat eq.
 - $\partial_t u = \partial_x^2 u$
 - u(x, 0) = f(x); u(0, t) = u(1, t) = 0
 - Let $U_i^n \equiv u(x_i, t_n)$ where $x_i = ih$, $t_n = n\delta$
 - Assume each subdomain ranges from one interface point to the next interface point. Then,
 - $U_i^n = 0$
 - $\partial_{t,\delta} U_i^n = \partial_{x,h}^2 U_i^{n-1}$
 - $\partial_{t,\delta} U_i^n = \partial^2_{x,h} U_i^n$

at boundary points

at interface points

at interior points

Ref.) C. N. Dawson *et al.*, "A Finite Difference Domain Decomposition Algorithm for Numerical Solution of the Heat Equation", Math. Comput. **57**, 63 (1991).

Simple example: FDM of 1-D heat eq.

•
$$U_i^n = 0$$

at boundary points

•
$$\partial_{t,\delta} U_i^n = \partial_{x,h}^2 U_i^{n-1}$$

at interface points

•
$$\partial_{t,\delta} U_i^n = \partial_{x,h}^2 U_i^n$$

at interior points

where
$$\partial_{t, \delta} U_i^n = (U_i^n - U_i^{n-1})/\delta$$
,
 $\partial_{x, h}^2 U_i^n = (U_{i-1}^n - 2U_i^n + U_{i+1}^n)/h^2$

- Explicit for interface and implicit for interior
 - After computing the interface values, the interior values in each subdomain are computed.

•
$$\Omega = \Omega_1 \cup \Omega_2$$

- Schwarz iteration
 - PDE \rightarrow Au = b form
 - Supposing $\mathbf{A}\mathbf{u}_1^k = \mathbf{b} \ \& \ \mathbf{A}\mathbf{u}_2^k = \mathbf{b}$,

 Convergence depends on boundary conditions and size of the overlapping region

References

- Wikipedia
- Wen Shen,
 An Introduction to Numerical Computation
- G. B. Arfken & H. J. Weber
 Mathematical Methods for Physicists

References

- C. Moler,
 Numerical Computing with MATLAB
- E. Weinan,
 Principles of Multiscale Modeling
- G. D. Smith,
 Numerical Solution of Partial Differential
 Equations: Finite Difference Methods

References

- A. Borzì, "Introduction to Multigrid Methods"
- N. Bellomo et al., "Lecture Notes on Mathematical Modelling in Applied Sciences"

Investigation

About the Navier-Stokes equation

About the Black-Scholes equation

About the Euler-Tricomi equation

Not about numerical methods for these equations.