DAYTON UNIV OH RESEARCH INST F/G 11/3 A STUDY TO DETERMINE THE EFFECT OF GLASS COMPOSITIONAL VARIATIO——TC(U) MAY 80 G A GRAVES, C CANNON, B KUMAR F33615-76-C-5137 LOR-TR-80-27 AFWAL-TR-80-4061 NL AD-A089 499 UNCLASSIFIED 1 or 2 AS 9439

AFWAL-TR-80-4061

A STUDY TO DETERMINE THE EFFECT OF GLASS COMPOSITIONAL VARIATIONS ON VIBRATION DAMPING PROPERTIES

AD A 089499

George A. Graves, Jr.
Charles Cannon
Binod Kumar
University of Dayton Research Institute
300 College Park Avenue
Dayton, Ohio 45469

May 1980
TECHNICAL REPORT AFWAL-TR-80-4061
Final Report for Period 15 January 1976 - 31 March 1980

Approved for public release; distribution unlimited.

C FILE COPY

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

Α

80 9 23 048

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (IO) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Dr. David I. G. Jones Project Engineer

MIX

NATHAN G. TUPPER

Chief, Metals and Behavior Branch

Metals and Ceramics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longed employed by your organization please notify AFWAL/MLLN, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/26 August 1980 - 430

Unclassified

(PEPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFWAL TR-8/-4061 AT -10894	9 N.A.
TITLE (en Sautito)	5. TYPE OF REPORT & PERIOD COVERED
A STUDY TO DETERMINE THE EFFECT OF GLASS COMPOSITIONAL VARIATIONS ON VIBRATION	1-15-76 to 3-31-80
DAMPING PROPERTIES.	UDR-TR-80-27
George A. /Graves, Jr.	F33615-76-C-5137
Charles/Cannon Binod/Kumar	
PERFORMING ORGANIZATION NAME AND ADDRESS University of Dayton Research Institute	10. PROGRAM ELEMENT, PROJECT, TASK AREA NORK UNIT NUMBERS
	7351 06 88
Dayton, Ohio 45469	(17)
11. CONTROLLING OFFICE NAME AND ADDRESS	May Soo
Materials Laboratory Air Force Systems Command	May 180
Wright-Patterson AFB, Ohio 45433	161
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office	I .
151	Unclassified
(12) 174	15. DECLASSIFICATION/DOWNGRADING SCHEDULE N.A.
16. DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
18. SUPPLEMENTARY NOTES	
19 KEY WORDS (Continue on reverse side if necessary and identify by block num	ber)
19. KEY WORDS (Continue on reverse side if necessary and identify by block number Vibration Glass	Glass-former
Vibration Glass Damping Enamel	Glass-former Activation energy
Vibration Glass	Glass-former Activation energy
Vibration Glass Damping Enamel Loss factor Enamel-disordered netw Complex modulus Enamel-modifier	Glass-former Activation energy work Composition additives Oberst beam
Vibration Glass Damping Enamel Loss factor Enamel-disordered network Complex modulus Enamel-modifier 20. ABSTRACT (Continue on reverse side if necessary and identify by block numb This report describes the results of gation to determine the effects certain the damping properties of a commerical of composition (Corning 0010) whose damping been characterized. One of the aims of determine the effect the oxide additions	Glass-former Activation energy work Composition additives Oberst beam of an experimental investioxide additions have on glass (enamel) of known g properties had previously this investigation was to had on the temperature at
Vibration Glass Damping Enamel Loss factor Enamel-disordered netwood Complex modulus Enamel-modifier 20. ABSTRACT (Continue on reverse side if necessary and identify by block number of the results of the damping properties of a commercial of composition (Corning 0010) whose damping been characterized. One of the aims of	Glass-former Activation energy work Composition additives Oberst beam of an experimental investi- oxide additions have on glass (enamel) of known g properties had previously this investigation was to had on the temperature at in combination. Past

105 400

Jun

20.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

related to the viscosity of the glass. The results of this investigation indicated the temperature at which peak damping occurs (peak in the loss modulus curve) is related to the viscosity of the glass. Additions which made the glass more refractory (increased the viscosity of the glass) increased the temperature at which peak damping occurred. Additions which made the glass less refractory (lowered the viscosity of the glass) lowered the temperature at which peak damping occurred. The results of the investigation are presented in tabular and graphical form.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

FOREWORD

This report describes the results of an experimental investigation to determine the effects certain oxide additions have on the damping properties of a commercial glass (enamel) of known composition (Corning 0010) whose damping properties had previously been characterized. One of the aims of this investigation was to determine the effect the oxide additions had on the temperature at which peak damping occurred, singly and in combination. Past experience indicated the temperature of peak damping to be related to the viscosity of the glass. The results of this investigation indicated the temperature at which peak damping occurs (peak in the loss modulus curve) is related to the viscosity of the glass. Additions which made the glass more refractory (increased the viscosity of the glass) increased the temperature at which peak damping occurred. Additions which made the glass less refractory (lowered the viscosity of the glass) lowered the temperature at which peak damping occurred. The results of the investigation are presented in tabular and graphical form.

Accession For NTIS CI Discussion Un	2
Pintering	7
Dist Availand/or Special	

TABLE OF CONTENTS

SECTION				PAGE
I	INTR	ODUCTION		1
	1.1	Glass D	efinition and Structure	2
	1.2	Damping	Properties of Inorganic Glass	8
II	EXPE	RIMENTAL	DESIGN	10
	2.1	Special	Experimental Apparatus	13
III	TECHI	NICAL PRO	CEDURES	15
	3.1	Experim	ental	15
		3.1.1	Glass Preparation	15
		3.1.2	Method of Coating Application	15
		3.1.3	Vibration Damping Measurements	15
	3.2	Calcula	tion of Damping Properties	20
IV	PRES	ENTATION	OF RESULTS	24
	4.1	Discuss	ion	144
		4.1.1	Loss Factor Peak Temperature Versus T	145
		4.1.2	Loss Factor Peak Height	148
		4.1.3	Activation Energy for the Relaxation Process	151
		4.1.4	Thermal Expansion	152
APPENDIX A	A	Testing	Procedure	153
APPENDIX 1	В	Curve F	itting Parameters	157
REFERENCE	s			160

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Specific Volume-Temperature Relations for Liquid, Glass, and Crystal.	3
2	Specific Volume-Temperature Relations for Glasses Formed at Different Cooling Rates.	3
3	Representation of (a) Crystalline Silica, and (b) Random Network Glassy Silica.	5
4	Structure of Sodium-Silicate Glass.	7
5	Typical Cantilever Beam Specimen for High Temperature Damping Material Evaluation.	16
6	High Temperature Damping Test Apparatus.	17
7	Schematic of High Temperature Damping Drive Transducer Power Supply and Data Recording System.	18
8	Schematic of High Temperature Damping Test Apparatus Cooling System.	19
9	Coated Oberst Test Beam.	21
10	Modal Loss Factor Versus Temperature for Haynes 188 Alloy.	25
11	Specimen M30 Reduced Frequency and Temperature Nomograph.	81
12	Specimen M30 Reduced Frequency and Temperature Nomograph.	82
13	Specimen Ml Reduced Frequency and Temperature Nomograph.	83
14	Specimen Ml Reduced Frequency and Temperature Nomograph.	84
15	Specimen M36 Reduced Frequency and Temperature Nomograph.	85
16	Specimen M36 Reduced Frequency and Temperature Nomograph.	86

FIGURE		PAGE
17	Specimen M2 Reduduced Frequency and Temperature Nomograph.	87
18	Specimen M2 Reduced Frequency and Temperature Nomograph.	88
19	Specimen M19 Reduced Frequency and Temperature Nomograph.	89
20	Specimen M19 Reduced Frequency and Temperature Nomograph.	90
21	Specimen M17 Reduced Frequency and Temperature Nomograph.	91
22	Specimen M17 Reduced Frequency and Temperature Nomograph.	92
23	Specimen M29 Reduced Frequency and Temperature Nomograph.	93
24	Specimen M29 Reduced Frequency and Temperature Nomograph.	94
25	Specimen M49 Reduced Frequency and Temperature Nomograph.	95
26	Specimen M49 Reduced Frequency and Temperature Nomograph.	96
27	Specimen M32 Reduced Frequency and Temperature Nomograph.	97
28	Specimen M32 Reduced Frequency and Temperature Nomograph.	98
29	Specimen M26 Reduced Frequency and Temperature Nomograph.	99
30	Specimen M26 Reduced Frequency and Temperature Nomograph.	100
31	Specimen M12 Reduced Frequency and Temperature Nomograph.	101
32	Specimen M12 Reduced Frequency and Temperature Nomograph.	102

FIGURE		PAGE
33	Specimen M21 Reduced Frequency and Temperature Nomograph.	103
34	Specimen M21 Reduced Frequency and Temperature Nomograph.	104
35	Specimen M35 Reduced Frequency and Temperature Nomograph.	105
36	Specimen M35 Reduced Frequency and Temperature Nomograph.	1 06
37	Specimen M24 Reduced Frequency and Temperature Nomograph.	107
38	Specimen M24 Reduced Frequency and Temperature Nomograph.	108
39	Specimen Mll Reduced Frequency and Temperature Nomograph.	109
40	Specimen Mll Reduced Frequency and Temperature Nomograph.	110
41	Specimen M22 Reduced Frequency and Temperature Nomograph.	111
42	Specimen M22 Reduced Frequency and Temperature Nomograph.	112
43	Specimen M14 Reduced Frequency and Temperature Nomograph.	113
44	Specimen M14 Reduced Frequency and Temperature Nomograph.	114
45	Specimen M48 Reduced Frequency and Temperature Nomograph.	115
46	Specimen M48 Reduced Frequency and Temperature Nomograph.	116
47	Specimen M5 Reduced Frequency and Temperature Nomograph.	117
48	Specimen M5 Reduced Frequency and Temperature Nomograph.	118

FIGURE		PAGE
49	Specimen M27 Reduced Frequency and Temperature Nomograph.	119
50	Specimen M27 Reduced Frequency and Temperature Nomograph.	120
51	Specimen M41 Reduced Frequency and Temperature Nomograph.	121
52	Specimen M41 Reduced Frequency and Temperature Nomograph.	122
53	Specimen M31 Reduced Frequency and Temperature Nomograph.	123
54	Specimen M31 Reduced Frequency and Temperature Nomograph.	124
55	Specimen M4 Reduced Frequency and Temperature Nomograph.	125
56	Specimen M4 Reduced Frequency and Temperature Nomograph.	126
57	Specimen M45 Reduced Frequence and Temperature Nomograph.	127
58	Specimen M45 Reduced Frequency and Temperature Nomograph.	128
59	Specimen M46 Reduced Frequency and Temperature Nomograph.	129
60	Specimen M46 Reduced Frequency and Temperature Nomograph.	130
61	Specimen M6 Reduced Frequency and Temperature Nomograph.	131
62	Specimen M6 Reduced Frequency and Temperature Nomograph.	132
63	Specimen M7 Reduced Frequency and Temperature Nomograph.	133
64	Specimen M7 Reduced Frequency and Temperature Nomograph.	134

FIGURE		PAGE
65	Maximum Loss Modulus Versus Al_2O_3 and Na_2O Additions to Corning 0010 Glass with 0 w/o Co_2O_3 .	13 5
66	Maximum Loss Modulus Versus Al_2O_3 and Na_2O Additions to Corning 0010 Glass with 1.0 w/o Co_2O_3 .	136
67	Maximum Loss Modulus Versus ${\rm Al_2O_3}$ and ${\rm Na_2O}$ Additions to Corning 0010 Glass with 2.0 w/o ${\rm Co_2O_3}$.	137
68	Maximum Loss Factor Versus Al_2O_3 and Na_2O Additions to Corning 0010 Glass with 0 w/o Co_2O_3 .	138
69	Maximum Loss Factor Versus Al_2O_3 and Na_2O Additions to Corning 0010 Glass with 1 w/o Co_2O_3 .	139
70	Maximum Loss Factor Versus Al_2O_3 and Na_2O Additions to Corning 0010 Glass with 2 w/o Co_2O_3 .	140
71	Variation of Temperature of Maximum Loss Factor with Additions of Al_2O_3 and Na_2O to Corning 0010 Glass with 0 w/o Co_2O_3 (at 100 and 1000 Hz).	141
72	Variation of Temperature of Maximum Loss Factor with Additions of Al_2O_3 and Na_2O to Corning 0010 Glass with 1 w/o Co_2O_3 (at 100 and 1000 Hz).	142
73	Variation of Temperature of Maximum Loss Factor with Additions of Al_2O_3 and Na_2O to Corning 0010 Glass with 2 w/o Co_2O_3 (at 100 and 1000 Hz).	143
74	Loss Factor Peak Temperature Versus Glass Transition Temperature for Corning 0010 with Various Additions.	146
75	Viscosity Versus Temperature for Corning 0010 Glass.	147
76	Effect of Al ₂ O ₃ Additions on the Glass Transition Temperature of Corning 0010 Glass.	149
77	Effect of Al ₂ O ₃ Additions on the Loss Factor Peak Height of Corning 0010 Glass.	150

· , ·

LIST OF TABLES

TABLE		PAGE
1	CLASSIFICATION OF GLASS-FORMING MATERIALS BY THE TYPE OF BONDING	4
2	ACTUAL OXIDE COMPOSITION OF EACH GLASS AFTER Al $_2$ O $_3$ AND Na $_2$ O ADDITIONS TO CORNING 0010 BASE GLASS	11
3	SPECIMEN NUMBER DESIGNATION AND CORRESPONDING WEIGHT PERCENT ADDITIONS TO CORNING 0010 GLASS	12
4	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M30	27
5	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M1	29
6	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M36	31
7	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M19	32
8	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M17	34
9	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M29	36
10	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M49	38
11	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M32	40
12	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M26	42
13	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M12	45
14	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M21	47
15	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M35	49
16	EXPERIMENTAL MEASUREMENTS AND MATERIAL	51

LIST OF TABLES, continued

TABLE		PAGE
17	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M11	53
18	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M22	55
19	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M14	57
20	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M48	59
21	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M5	61
22	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M27	63
23	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M31	65
24	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M4	68
25	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M45	70
26	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M46	72
27	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M6	74
28	EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M7	76
29	VALUES AND TEMPERATURES OF MAXIMUM LOSS MODULUS AND LOSS FACTOR OF TEST MATRIX COATINGS	78
30	GLASS TRANSITION TEMPERATURES (Tg) AND ACTIVATION ENERGIES (Δ H) OF TEST MATRIX GLASS COMPOSITIONS	80

SECTION I INTRODUCTION

The ability of inorganic glasses to effectively damp metallic substrates subjected to cyclic stresses has been known for some time. Laboratory tests have shown that virtually any commercial glass that can be applied successfully to a metallic substrate will exhibit a "damping peak" at a temperature in the vicinity of the glass transformation temperature.

For several years the University of Dayton, under contracts funded by the Air Force Materials Laboratory, Wright-Patterson Air Force Base, has been investigating the vibration damping behavior of inorganic glass compositions. Nashiff, (1,2) using a commercial glass composition, showed the ability of inorganic glasses to provide damping to metal structures when the glass was operating in its transition range. Over the course of several years investigators have documented similar behavior for numerous commercial glass compositions. However, as this technique for providing vibration damping gained acceptance it became obvious that commercial glass and enamel frit compositions were not available to provide adequate damping over the entire temperature range required by the Air Force.

The primary purpose of the study reported here was to determine the effects of various oxide additions on the vibration damping characteristics of a base glass composition (Corning 0010). With the successful completion of the investigation sufficient information would be provided to guide future investigators in developing glass compositions tailored for specific Air Force needs in areas where high temperature, high cycle and fatigue problems exist.

The experimental design was influenced by basic glass structure compositional theories. These theories and other basic glass concepts will now be discussed.

The reasons for the damping phenomenon in inorganic glasses are, at this time, not well understood. However, the effect would appear to be directly related to the viscosity-temperature relationship of a particular glass. The viscosity versus temperature varies with glass composition and atomic structure of the glass. Glasses, when applied to metallic substrates, have been traditionally called porcelain or vitreous enamels. To properly discuss enamels it is necessary to define glass and discuss glass structure.

1.1 GLASS DEFINITION AND STRUCTURE

Many definitions of glass can be found in the literature. Some consider only those products prepared from inorganic materials. Others encompass both inorganic and organic compositions. Some state that a glass must be obtained as a result of supercooling a liquid. Still others regard glasses as amorphous materials that can be prepared in measurable quantities. For the purposes of this discussion we will define a glass as "an amorphous solid with no regularity in the arrangement of its constituents."

Glasses are generally formed by solidification from the melt. The distinguishing feature between a crystalline and glassy material is that a glass structure is independent of temperature. A plot of the specific volume of a crystal, liquid, and glass, is shown in Figure 1. On cooling the liquid there is a discontinuous change in volume at the melting point (T_{mp}) if the liquid crystallizes. If crystallization does not occur, the volume of the liquid will change at nearly the same rate as before until the transformation range is reached. At some point (glass transition temperature, T_{α}) the expansion coefficient will decrease. The glass transition temperature is defined as the temperature of the intersection of the curve for the glassy state and that for the supercooled liquid. Below $\mathbf{T}_{\mathbf{q}}$ the glass structure does not relax at the cooling rate used. The expansion coefficient for the glassy state is usually about the same as that for the crystal. If slower cooling rates are used, the supercooled liquid range will extend to a lower temperature as shown in Figure 2.

λ,

Figure 1. Specific Volume-Temperature Relations for Liquid, Glass, and Crystal.

Figure 2. Specific Volume-Temperature Relations for Glasses Formed at Different Cooling Rates.

All substances of various chemical compositions, existing in the vitreous state, possess certain common properties which distinguish them from crystalline materials.

- Glasses do not have a periodic crystalline lattice.
 The crystalline lattice is characterized by a periodic arrangement of repeating atomic units in certain directions at constant distances.
 - The absence of an ordered crystalline lattice in glasses can be shown by x-ray diffraction analysis. A curve of intensity versus diffraction angle is similar to a liquid but exhibits a diffuse maximum. This suggests a certain "short range" order in glass systems.
- 2. Glasses possess excess internal energy compared with a crystalline material. Thermodynamically, glass is a metastable, non-equilibrium, system which suggests it would tend to crystallize with the evolution of heat. However, due to the excessively high viscosity of the cooled glass this does not occur.
- 3. Glasses have no melting point, i.e., they have no definite temperature at which the change from solid to liquid, and vice versa, takes place.

Individuals who are familiar and comfortable with crystalline materials tend to have difficulty with the structure of vitreous (glassy) solids. The task is simplified somewhat if it is understood that there are a number of different classes of glassforming materials as shown in Table 1. [4]

TABLE 1
CLASSIFICATION OF GLASS-FORMING
MATERIALS BY THE TYPE OF BONDING

Bond Type	Examples		
Covalent	Oxides (silicates, borates, phosphates, etc.) Chalcogenides Organic polymers		
Ionic	Halides, nitrates, carbonates, sulfates		
Hydrated ionic	Aqueous solutions of salts		
Molecular	Organic liquids		
Metallic	Splat-cooled alloys		

Enamels normally consist of alkaline silicate or alkaline borosilicate glasses of complex composition. Therefore, before examining the properties of enamels, it is convenient to discuss the covalently bonded silicate class of materials. An especially important role is played by silica glass which has received a great deal of research consideration, primarily because of its versatility and commercial importance.

Silicate glasses have no definite chemical composition like compounds. Rather, they can have their compositions varied continuously over a wide range, similar to metal alloys. It is believed that the main structure of the silicate glass (the Si-O network) is constant, but portions can be replaced or altered by

adding other oxides. Pure SiO₂, upon heating to a temperature where the material has a viscosity of approximately 10⁴ poise, will polymerize to form a random chainlike network of Si and O atoms. When the temperature is dropped, supercooling of the melt occurs, crystallization cannot take place, and an amorphous solid results.

Zacharieson(5) in 1932 proposed the hypothesis of the disordered network to explain the structure of silicate and borate glasses. Glass, according to this hypothesis, consists of a continuous network similar to a continuous crystalline lattice. The network is built up of the same structural elements as in the lattice of the corresponding crystalline substance. In silicate glasses, such structural elements are tetrahedra [SiO₄] 4- The structural elements in the continuous network of the glass are irregularly arranged, and the angles between the neighboring tetrahedra do not have constant values. Figure 3 shows the arrangement of the structure for quartz glass and crystalline quartz.

Figure 3. Representation of (a) Crystalline Silica, and (b) Random Network Glassy Silica.

Zacharieson formulated a number of conditions which must be obeyed for the oxide to exist in the glassy state: (1) The free energy of the glassy oxide $A_m O_n$ should not be much greater than the crystalline oxide, (2) The atom of 0 in the structural network cannot be connected to more than two atoms of A, (3) The coordination number of the atom A should be low, and (4) With the formation of the network, the structural polyhedra can have common angles (the polyhedra should be connected by not less than three corners to adjacent polyhedra) but have no common faces or edges.

These conditions are satisfied by oxides of certain elements in groups III, IV, and V in the Periodic System: B_2O_3 , SiO_2 , GeO_2 , P_2O_5 , As_2O_5 , etc. Normally these oxides are called glassforming oxides. They can exist independently in the glassy state and also in combination with other oxides which are added to the glass, thus changing its properties. With the addition of other oxides to simple silicate glass, the oxygen from these oxides enters the network, and the cations of the added oxide find themselves in the gaps (holes). Under these conditions, ions of oxygen appear in the structure, associated only with one ion—a glass-former, the so-called non-bridged ions of oxygen. Figure 4 illustrates the structure of sodium-silicate glass, according to Zacharieson. Another oxide can be added until the conditions under which a continuous network exists are upset.

The cations easily conferring oxygen to the network of the glass have a large volume and a low charge (Li⁺, Na⁺, K⁺, Ca²⁺, and Ba²⁺). These cations, called <u>modifiers</u> of the lattice, are distributed in the cavities of the network in a disordered manner. The cations having a high charge and low radius in some cases may enter the structural network of the glass together with the main glass formers.

Another group of oxides, called intermediates, can replace the network formers to a limited extent. Aluminum oxide (Al_2O_3) is commonly used to replace Si in the glass structure. The use of intermediates usually results in a more viscous (high damping temperature) and chemically durable glass.

Figure 4. Structure of Sodium-Silicate Glass.

The possible combinations of oxide additions to glasses are virtually limitless. However, many of the additions are used only in very small amounts to provide subtle changes in electrical, optical, color, or adherence properties.

The Zacharieson hypothesis was subsequently further developed by many scientists (6-8). On the basis of the investigations of the physicochemical properties of glasses of varying compositions, these workers considered in greater detail the conditions of glass formation, the connection between various phenomena, and the change in coordination numbers of the ions in the glass. Further discussion of glass structure is beyond the scope of this investigation. However, the investigators were continually aware of the importance of glass structural considerations and the necessity for correlating them with the observed vibration damping properties of the materials studied.

1.2 DAMPING PROPERTIES OF INORGANIC GLASS

A limited amount of theoretical work has been reported concerning structure versus relaxation processes in glass systems (6). Most of the experimental work has been concerned with the near-room-temperature alkali ion relaxation processes in silicate glasses at low frequencies. However, it is known that large-scale relaxations of the whole glass structure occur in the transformation range. These relaxations are attributed to noninstantaneous volume changes and the release of stresses. It has been suggested that viscous flow is the primary relaxation mechanism operating in the transition region (9,10). The theories used to try to explain this behavior have been grouped into two general types: (a) the modified Arrhenius theories, and (b) the free volume theories (6,11-13). The modified Arrhenius treatments are all similar and consist of an expression of the type:

$$\eta_s = Ae^{B/T} + Ce^{D/T}$$

where B is the energy barrier for the flow process, while D contains both B and an activation energy for configurational change.

These treatments generally try to take into account the change in size of a flowing unit or to install another activation process in order that the data can be fitted to other than a straight line in the glass transition region.

Several investigators have proposed free volume theories in an attempt to provide a satisfactory fit to the experimental data. Doolittle(14) proposed an expression for the viscosity of the type

 $\eta = e^{(V-V_0)/kT}$

where Vo = initial free volume
V = free volume

and, because it led to the WLF equation (15) that is used extensively in the analysis of our vibration data, it is mentioned here.

Until adequate theories are devised to explain the experimental data it seems proper to assume that the explanation of the glass damping behavior is related to the viscoelastic behavior of a glass in its transition region and is further complicated by the changes in free volume of the glass in this temperature interval.

SECTION II EXPERIMENTAL DESIGN

Enamels are quite simply glass coatings on metal substrates. In the classical sense they also contain finely dispersed crystalline phases that give the material opacity, reflectance, and in some cases color. The crystalline phase is not a requirement for enamels and may or may not be beneficial when enamels are used as a vibration damping material.

The choice of enamel compositions for vibration damping requires consideration of many factors. The properties of major importance are: (1) the temperature-viscosity relation, (2) metal-glass interface chemistry, (3) the thermal expansion coefficient, (4) the elastic modulus, and (5) the chemical and structural durability.

Of these, the temperature-viscosity relation is of primary importance in determining the temperature at which maximum damping is achieved, or alternatively, the degree of damping which may be achieved at a given temperature.

In practical applications the thermal expansion and chemical bonding match between the metal substrate and the enamel are of equal importance. These two factors control the strength of the interfacial bond (adherence).

Virtually all commercial glasses, regardless of composition, exhibit the same temperature-viscosity relationship. The difference between glasses is the particular temperature at which a given viscosity is obtained. The value of viscosity required to achieve maximum damping is not known, but is suspected to be above the "transformation range" of the glass. A complicating factor in determining the temperature of maximum damping is the temperature shift with frequency. Although this is a well known phenomenon, the magnitude of the shift is dependent on glass composition and this dependence is not well understood.

Therefore, a glass composition must be designed which has physical properties that match those of the substrate and at the same time has a temperature range for maximum damping that straddles the desired operating temperature. Past experience has shown that the temperature for maximum damping can be systematically controlled via judicious compositional modification of commercially available glasses. Also, the adherence can be modified to optimize the chemical and thermal durability.

The base glass composition chosen for this study was Corning 0010. Previous damping studies had provided sufficient data to confirm that this particular commercial glass possessed peak damping intermediate in the temperature range 300~900°C (600-1,600°F) of interest for Air Force engine applications. Also, the composition of the 0010 glass was such that various oxides could be added, within limits, without causing devitrification. The adjusted compositions of the Corning 0010, after additions of ${\rm Al}_2{\rm O}_3$ and ${\rm Na}_2{\rm O}$, are shown in Table 2. Due to the small amount (1 and 2 weight percent) of ${\rm Co}_2{\rm O}_3$ added, the adjusted composition for the glasses containing these additions was not determined.

TABLE 2

ACTUAL OXIDE COMPOSITION OF EACH GLASS AFTER

Al₂O₃ AND Na₂O ADDITIONS TO CORNING 0010 BASE GLASS

Glass and Weight % Addition	SiO ₂	A1203	Na ₂ O	к ₂ о	PbO
0010	63	1 -	- 7.	7	22
$0010 + 7.5 \text{ Al}_20_3$	59	8	7	7	20
0010 + 15% Al ₂ O ₃	55	14	6	6	19
0010 + 3 Na ₂ 0	61	1	10	7	21
0010 + 6 Na ₂ O	59	1	12	7	21
0010 + 7.5 Al ₂ O ₃ + 3 Na ₂ O	57	8	9	6	.5.2
0010 + 15 Al ₂ O ₃ + 3 Na ₂ O	53	14	8	6	19
0010 + 7.5 Al ₂ O ₃ + 6 Na ₂ O	56	7	11	6	19
0010 + 15 Al ₂ O ₃ + 6 Na ₂ O	52	13	11	6	18

Three oxides, Al₂O₃, Na₂O, and Co₂O₃, were chosen as compositional additives to the base glass for the purpose of altering its vibrational damping properties. The specimen designations and weight percent additions for all the test specimens are shown in Table 3.

TABLE 3

SPECIMEN NUMBER DESIGNATION AND CORRESPONDING WEIGHT PERCENT ADDITIONS TO CORNING 0010 GLASS

Specimen Number	Al ₂ O ₃ (Wt. %)	Additions Na ₂ O (Wt. %)	CO ₂ O ₃ (Wt. %)
M30	0	0	0
MI	7.5	0	0
M36	15.0	0	0
M2	0	3.0	0
M19	0	6.0	0
M1 7	7.5	3.0	0
M29	15.0	3.0	0
M4 9	7.5	6.0	0
M32	15.0	6.0	0
M26	0	0	1.0
M12	7.5	0	1.0
M21	15.0	0	1.0
M35	7.5	3.0	1.0
M24	15.0	3.0	1.0
Mll	7.5	6.0	1.0
M22	15.0	6.0	1.0
M14	0	3.0	1.0
M48	0	6.0	1.0
M5	0	0	2.0
M27	7.5	0	2.0
M41	15,0	0	2.0

TABLE 3 (CONTINUED)

Specimen Number	Additions			
	Al ₂ O ₃ (Wt. %)	Na ₂ O (Wt. %)	CO ₂ O ₃ (Wt. %)	
M31	7.5	3.0	2.0	
- M4	15.0	3.0	2.0	
M45	7.5	6.0	2.0	
M46	15.0	6.0	2.0	
м6	0	3.0	2.0	
M7	0	6.0	2.0	

Aluminum oxide was chosen because of its known ability to act as an intermediate oxide. Also, its valance of three causes it to introduce 1.5 oxygens per network-forming ion, causing non-bridging oxygens to be tied up and converted to bridging ions. This results in a more tightly bonded structure with more chemical durability, high viscosity, and lower thermal expansion. Therefore, Al₂O₃ was expected to increase the temperature of maximum damping at a particular frequency.

The network modifier, Na₂O, was added to reduce the temperature of maximum damping because of its ability to lower the viscosity of a glass with respect to temperature.

The additions of Co₂O₃ were made due to the known positive effect Co has on the adherence of many commercial enamels. Its effect on the damping behavior of the Corning 0010 glass was anticipated to be intermediate compared to Al₂O₃ and Na₂O.

The actual oxide compositions after additions of the oxides to the 0010 glass are also shown in Table 2.

2.1 SPECIAL EXPERIMENTAL APPARATUS

Experiments to measure the dynamic response of specimens at elevated temperature are difficult and require sophisticated techniques, especially when making measurements using the

resonant dwell technique. Devices such as accelerometers to measure the vibrational response are usually large, costly, and in some cases require external cooling apparatus. Also, the large accelerometers influence the dynamic response of the specimen. Strain gages can be used, but are effective only for measuring one or two modes of vibration, because the surface strains of the higher modes of vibration tend to be small. Due to these difficulties, it is usually best if the response can be measured by a device capable of measuring the response over a wide frequency range, mounted outside the furnace in which the specimen is being tested. Also, exciting the specimen into resonance at elevated temperatures is difficult to accomplish.

1

A unique apparatus was required to measure the dynamic response of glass-coated beams at elevated temperatures. The apparatus was designed and fabricated to determine the response of five to six modes of a cantilever beam over a temperature range of 25 to 1,000°C and a frequency range from 100 to 1,500 Hz.

SECTION III TECHNICAL PROCEDURES

3.1 EXPERIMENTAL

3.1.1 Glass Preparation

The 0010 base glass was purchased from Corning* in fritted (powdered) form. The required amounts of glass and oxide additions were weighed-out on a pan balance. The weighed powders were then mechanically mixed in a V-blender for approximately one hour. The batch sizes were 450 grams each. The mixed material was then contained in a platinum crucible, heated to 1,538°C (2,800°F) for 48 hours, and quenched by pouring into a container of cold water. The quenched glass was then dry ball milled, using Al₂O₃ grinding media, for 24 hours. The milled powder was then screened to obtain various particle size splits. For the test beams prepared for the test matrix the distribution of particle sizes was obtained by passing the powder through a 100-mesh screen and using what remained on a 150-mesh screen.

3.1.2 Method of Coating Application

Prior to spraying, the metal substrate was sandblasted using 36-mesh silicon carbide grit and an air pressure of 75 psi. The powder material was applied to the metal substrate by plasma spraying. A Meteo 3MB plasma spray apparatus was operated at 400 amps DC, 75 volts DC at 30,000 watts setting with a gas flow of 15 scfh $\rm H_2$ and 80 scfh Ar. A gas mixture of 84.2% Ar and 15.7% $\rm H_2$ was used. The coated beam was then fired in a resistance-heated furnace for approximately three minutes or until the surface appeared to be smooth.

3.1.3 Vibration Damping Measurements

An apparatus and technique was developed to accurately and reliably excite and measure the response of a beam specimen at temperatures exceeding 1,000°C.

^{*}Corning Glass Company, Corning, New York.

Typical Cantilever Beam Specimen for High Temperature Damping Material Evaluation. Figure 5.

γ,

Figure 6. High Temperature Damping Test Apparatus.

Schematic of High Temperature Damping Drive Transducer Power Supply and Data Recording System. Figure 7.

Ί,

(REFRIGERANT IS R-12)

Schematic of High Temperature Damping Test Apparatus Cooling System. Figure 8.

1,

The specimen used was a cantilever beam coated on one side with an enamel or glass. A typical specimen is illustrated in Figure 5. The specimen was clamped in the fixture as illustrated in Figure 6. The air cylinder insured that a constant clamping pressure was maintained on the root section of the specimen over the entire temperature range. This fixture also allowed for thermal expansion of the fixture and high temperature creep of the clamping bolts.

The force gage, mounted in line with the clamping bolt and the air cylinder, was used to measure the response of the specimen. The force gage was well removed from the high temperature environment.

An electromagnetic transducer was used to excite the specimen. This transducer was specially designed to operate from room temperature to at least 1,000°C. The design used a closed loop cooling system incorporating a modified room air conditioner. A block diagram of the apparatus and complete measuring system is shown in Figure 7, and Figure 8 is a schematic of the transducer cooling system.

The specimen and fixture were placed in the furnace and heated to the desired temperature, usually above the annealing temperature of the enamel. The cantilever beam specimen was excited at its free end by a sinusoidally varying magnetic force induced by the electromagnetic transducer. A high Curie temperature cobalt disc was attached to the end of the beam to allow for excitation of the nonmagnetic specimens. The frequency of oscillation was varied until a resonance was detected. At resonance the shear force in the beam reached a maximum and was measured by the dynamic force gage. The force gage measured the variation of the shear force at the root of the cantilever beam specimen.

3.2 CALCULATION OF DAMPING PROPERTIES

The damping characteristics of the coatings were determined by measuring the vibration response of a composite cantilever beam at varying temperatures over the viscoelastic range. It is assumed that the enamel is a viscoelastic material; that is, the modulus of the enamel can be treated as a complex quantity

$$E_D^* = E_D^! + iE_D^" = E_D^! (1 + itan\delta)$$

$$\eta_2 = tan\delta = E_D^" / E_D^!$$

where E_D^* is the storage or Young's Modulus of the enamel and $\tan\delta$ is the ratio of the dissipative modulus, E_D^* , to the storage modulus.

Consider the metal beam with an enamel coating on one side as shown in Figure 9.

Figure 9. Coated Oberst Test Beam.

The formulas developed by Oberst (16) and used by many other investigators were used to determine the damping properties of the enamel as a function of frequency and temperature. These formulas are:

$$(\omega_{n}/\omega_{1n})^{2} (1+h_{D}\rho_{D}/h_{1}\rho_{1}) = \frac{1 + 2(E_{D}/E_{1})(h_{D}/h_{1})A + (E_{D}/E_{1})^{2}(h_{D}/h_{1})^{4}}{1 + (E_{D}/E_{1})(h_{D}/h_{1})} (1)$$

and

$$\frac{n}{n_2} = \frac{(E_D/E_1) (h_D/h_1) [2A+2 (E_D/E_1) (h_D/h_1)^3 + (E_D/E_1)^2 (h_D/h_1)^4 -1]}{[1+(E_D/E_1) (h_D/h_1)] [1+2A (E_D/E_1) (h_D/h_1) + (E_D/E_1)^2 (h_D/h_1)^4]}$$
(2)

where:

$$A = 2 + 3(h_D/h_1) + 2(h_D/h_1)^2.$$
 (3)

 $\omega_{\rm n}$ = natural frequency of the nth mode of the composite beam, $2\pi f_{\rm n}$, rad/sec

 $\omega_{ln} = \text{natural frequency of the nth mode of the metal beam,}$ $2\pi f_{in}$, rad/sec

 $h_{D}^{}$ = thickness of enamel coating applied to composite beam

 h_1 = thickness of metal beam

 $\boldsymbol{\rho}_{D}$ = density of enamel coating

 ρ_1 = density of metal beam

 $\mathbf{E}_{\mathbf{D}}$ = real part of the modulus of enamel coating

 E_1 = Young's modulus of metal beam

tan δ_{e} = effective loss factor of composite beam (= η)

tan δ = loss factor of enamel coating (= η_2)

The quantities of h_D,h_1 , ρ_D , and ρ_1 are known and are assumed to remain constant with temperature. The parameters ω_n , ω_{1n} , and η are experimentally measured. The value of η is determined from

$$\eta = \tan \delta_e = \frac{\Delta \omega_n}{\omega_n} = \frac{\Delta f_n}{f_n}$$
 (4)

where Δf_n is the bandwidth at the half-power points of the response peak for the nth mode. The value of E_1 can be determined from the measured response of the uncoated metal beam using

$$\xi_n^4 = \mu_1 \omega_{1n}^2 L^4 / E_1 I_1$$
 (5)

where:

 ξ_n^4 = the eigen value corresponding to the nth mode and is a constant, determined by the boundary conditions μ_1 = $\rho_1 b h_1$ = the mass per unit length of the metal beam L = the length of the beam

 $I = \frac{1}{12} bh_1^3$ = the second moment of area of the metal beam about its centerline.

The values of ξ_n^4 for beam with classical boundary conditions are well known and can be found in reference 17. Thus, from the measured resonant frequencies of the coated and bare beams and the measured composite loss factor, tan δ_e , the damping properties of the enamel can be determined as a function of temperature and frequency.

The resonant frequencies and modal damping of five to six modes of the coated beam, covering a frequency range of 100 Hz to 1,500 Hz, can usually be measured for each temperature. Thus, the damping properties of the vitreous coating over a decade of frequency at a given temperature can be easily and quickly determined.

SECTION IV

PRESENTATION OF RESULTS

The modal damping and resonant frequencies versus temperature for each beam were determined before the beam was coated by measuring the half-power bandwidth of the resonance. calculated properties for the coating depend on accurate measurements of the resonant frequencies and damping of the uncoated and coated beams. Usually, the damping of the uncoated metal beams is insignificant, but experiments have shown for the type of metal alloy (Haynes 188) used in this study the damping of the metal beams starts to become significant at temperatures above 650°C (1,200°F). The damping versus temperature for modes 2, 3, 4, 5, and 6 for Haynes 188 is illustrated in Figure 10. shown, the damping starts to peak at 950°C (1,750°C). especially noticeable for the second mode. Other authors have attributed this behavior to fixture damping (18). These results indicate the metal behaves as a viscoelastic material and the modal damping is related to the creep behavior of the material.

To account for the damping of the metal at temperatures above 650°C (1,200°F), the loss factor of the bare metal was subtracted from the measured loss factor of the coated beam for each mode. Sridharan (19) has shown, for thin coatings, the damping due to the coating is $\eta_C = \eta_S - \eta_B$, where η_S is the measured specimen damping and η_B is the damping measured for the uncoated beam.

The maximum values of η_D and E_D^* and the temperature at which this occurs for 100 Hz and 1,000 Hz for the coatings are summarized in Table 29. The actual experimental data and the calculated damping properties of the individual coatings are presented in Tables 4 through 28.

To present the results in a form that represents both the temperature and frequency dependence of the damping properties

Figure 10. Modal Loss Factor Versus Temperature for Haynes 188 Alloy.

of the coatings, a nomograph developed by Jones (20) is used. A computer program has been developed by King (21), using the technique of Nashif and Rogers (22) to plot the properties on the Jones-nomograph. Figures 11 through 64 illustrate the properties of the different coatings versus reduced frequency and temperature. There are two graphs for each coating. One plot is the storage and loss modulus versus reduced frequency, and the other is the storage modulus and loss factor versus reduced frequency. These plots readily illustrate the variation of the damping properties of the coating with frequency and temperature.

The plot is read by choosing the temperature of interest and following the oblique temperature isotherm until it intersects with the frequency of interest (on the right-hand side of the plot), and then reading vertically the properties at the specified temperature and frequency.

From these graphs the maximum values of the loss modulus and loss factor were determined for each coating and these values were plotted versus the additions of Al₂O₃ and Na₂O for each of the Co₂O₃ additions. Figures 65 through 67 are plots of the change in maximum loss modulus versus Al₂O₃ and Na₂O additions for zero percent, one percent, and two percent additions of Co₂O₃. Figures 68 through 70 are plots of the maximum loss factor versus Al₂O₃ and Na₂O additions for zero, one, and two percent additions of Co,O, to the Corning 0010 Glass. The temperatures at which the maximum loss factor and loss modulus occurred at 100 Hz and 1,000 Hz for each of the coatings were also determined. The effect of the Al₂O₃ and Na₂O additions for zero, one, and two percent Co₂O₃ weight additions on the temperature which the maximum loss modulus occurs at 100 Hz and 1,000 Hz is illustrated in Figures 71 through 73. The results are summarized in Table 29.

It is evident from these figures that increasingly larger additions of ${\rm Al}_2{\rm O}_3$ result in a corresponding increase in temperature at which peak damping occurs. Conversely, increasing

TABLE 4
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M30

			Experi	MENTAL MEASI	REMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PS1 × 10 ⁻⁷	E _{DR} PS1 × 10 ⁻⁴	E _D ,PS1 * 10 ⁻³	D.
1500	2	86.93	84.75	84.35	85.18	0.83	.00979	.0057	2.33	0.54	1.047	.1880
	3	243.40	238.20	237.39	239.10	1.70	.00715	.00507	2.41	0.699	0.942	.1350
	4	478.00	468.20	466.24	470.08	3.80	.00819	.00676	2.41	0.735	1.263	.1720
	5	793.80	776.30	771.96	779.91	7.95	.0102	.00867				
	6	1186.40	1155.40	1155.00	1168.63	13.60	.0118	.0108	2.44	0.545	1.869	.341
1450	2	87.65	85.65	85.33	85.98	0.65	.00754	.00439	2.37	0.633	1.129	.1730
	3	245.20	240.30	239.33	241.36	2.03	.00846	.0069	2.44	0.762	1.250	.1640
	4	481.50	472.30	469.88	474.68	4.80	.0102	.00905	2.45	0.798	2.233	.2150
	5	797.60	783.20	776.82	788.02	11.20	.0143	.0130				
	6	1195.00	1174.10	1164.96	1182.17	17.21	.01466	.0138	2.48	0.852	3.179	.3720
1400	2	88.37	86.44	86.14	86.93	0.79	.00918	.00654	2.41	0.664	1,253	.1830
	3	247.10	242.40	241.24	243.74	2.49	.0103	.00908	2.48	0.812	1.755	.2160
	4		476.70	473.08	479.89	6.81	.0143	.0134				
	5		799.90	803.20	796.60	6.60	.0160	.0149				
	6	1203.50	1184.40	1163.20	1199.30	36.10	.0305	.0300	2.51	0.968	5.488	.5650
1350	2	89.08	86.97	86.57	87.49	0.92	.0106	.00837	2.45	0.685	1.630	.2300
	3		244.70	242.94	246.65	3.70	.0151	.0142				
	4	498,50	481.10	475.08	486.45	11.40	.0236	.0229	2.63	0.208		
	5		796.00	788.46	807.04	18.60	.0233	.0224				
	6	1212.20	1201.50	1173.31	1225.20	51.93	.0432	.0426	2.55	1.23	8.90	.7190
1300	2	89.77	87.91	87.34	88.61	1.27	.0144	.0125	2,49	0.746	2.482	.3220
	3	250.80	247.70	244.52	250.98	6.46	.0261	0252	2.56	1.10	5.184	. 4680
	4	492.00	487.80	482.65	492.49	9.84	.0393	. 0387	2,56	1.51	8.139	.5380
	5	815.20	800.30	796.20	811.50	15.20	.0371	.0364				
	6	1221.00	1224.50	1187.14	1258.24	71.10	.0580	.0574	2.59	1.78	12.309	.6890
1250	2	90.41	88.86	87.33	90.23	2.40	.0269	.0252	2.52	0.90	5.127	.5510
	3	252.55	252,60	259.31	247.69	11.60	.0460	.0467	2.59	1.65	10,389	.6290
	4	495.60	505.10	502.77	511.12	8.35	.0322	.0316	2.56	2.58	11.804	4600
	5		803.30	799.68	810.90	11.20	.0272	.0265				
	6	1230.00	1262.70	1222.50	1295.30	72.84	.0577	.0571	2.63	2.84	13,307	.4670
1200	2	91.04	91.46	89.27	93.54	4.30	.0467	.0451	2.56	1,91	11.937	.6060
	3	254.35	260.60	253.87	270.31	16.44	.0631	.0624	2.63	2.91	15.672	.5380
	4	499.00	512.80	508.21	520.40	12.22	.0465	.0459	2.63	3.66	12.031	. 3280
	5		805.70	802.44	811.75	9.31	.0225	.0218				
	6	1238.80	1300.40	1266.90	1325.00	58.10	.0447	.0441	2.66	3.97	11.130	.2800
1150	2	91.47	95.71	94.04	98.49	4.46	.0908	.0894				
	3	256.10	270.80	253.62	265.04	11.42	.0422	.0415	2.67	4.34	14.172	. 3270
	4	502.60	531.24	517.39	526.62	9.23	.0339	.0333	2.67	4.33	8,522	.1970
	5	833.00	889.20	880.36	898.47	18.10	.0204	.0197	2.68	4.82	5.067	.1050
	6	1247 . 50	1331.90	1322.90	1344.99	22.00	.0166	.0159	2.69	4.84	7.821	.1610

7. . . .

TABLE 4 (Continued)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M30

			Experim	ENTAL MEASU	REMENTS				М	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _m PSI * 10-'	E _{DR} PSI × 10~	E _{D1} PS1	^{r,} D
1100	2	92.25	98.11	96.96	100.43	3.47	.0689	.0676	2.62	4.61	18.184	. 3820
	3	257.70	275,90	273.64	278.65	5.02	.0355	.0349	2.70	5.0€	9.214	.183û
	4	505.80	536.40	533.76	539.14	5.38	.0196	.0190	2.70	4.56	5,019	.1106
	5	838.00	900.80	889.92	908.51	18.60	.0206	.0200	2.72	5.38	3.136	.0582
	6	1255.50	1349.90	1344.40	1365.38	30.98	.0230	.0223	2.73	5.35	5.055	.0939
1050	2	92.83	99.86	98.67	103.27	4.60	.0461	.044:5	2.66	5,30	12.63	.2310
	3	259.30	280.00	277.67	283.09	5.42	.0193	.0188	2.73	5.60	5.294	.0946
	4	509.00					.0131	.0127				
	5		912.60	906.21	917.77	11.56	.0127	.0120				
	6	1263.00	1367.60	1359.20	1375.93	16.73	.0122	.0115				
1000	2	93.30	101.00	100.68	101.50	0.84	.0161	.0151	2.69	5.60	4.346	.6751
	3	260.70	283,20	281.83	284.75	2.93	.0103	.00977	2.76	6.00	2,833	.0472
	4	508.90	558.80	556.27	561.55	5.30	.00945	,0089				
	5	847.50	922.70	919.37	925.93	6.55	.00710	.00642	2.78	6.15	1,998	.0324
	6	1270.00	1382.20	1378.55	1388.31	9.76	.00706	.00631	2.80	6.19	1.928	.0310
950	2											
	3											
	Ł,											
	5	852.00	935.00				.0048	.0045	2.81	6.71	1.326	.0204
	6											
500	2	94.21	102.86	102.63	103.17	0.54	.00525	.0043				
	3	263.20	288.30	287.21	229.00	1.30	.0045	.0039				
	14	516.70	568.10	566.54	569,48	2.90	.00517	,00457				
	5	865.50	938.40	936.60	940.30	3.70	.00394	.00324				
	6	1280.00	1404.50	1401.70	1407.80	6.10	.00436	.00356				

TABLE 5
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING MI

TEMP.	Mode			ITAL MEASUR		^-				ATERIAL PE		
°F	: IODE	F _M Hz	F _C Hz	F _L Hz	F _R Hz		ⁿ s	ⁿ c	E _M PSI × 10 ⁻⁷	E _{DR} PSI * 10 ⁻⁴	E _{D1} PS1 × 10 ⁻⁵	^ח ם
1600	3	246.00	243.70				.0085		2.34	1.14	2.879	.1610
	4	483.00	478.50				.0134		2.34	1.15	4.557	.2530
	5	801.00	792.50				.0160		2.36	1.10	2.454	.3160
	6	1199.00	1187.50				.0230		2.36	1.14	7.927	. 4380
1550	2	87.50	87.28				.0090		2.24	1.38	3.087	.1370
	3	247.90	245.90				.0128		2.37	1.21	4,420	.2310
	4	486.70	482.40				.0230		2.38	1.18	7.954	.4270
	5	807.00	801.00				.0245		2.39	1.25	8.569	. 4340
	6	1207.70	1205.50				.0320		2.40	1.51	11.460	.4790
1500	2	88.28	85.32				.0217		2.28	0.11		3.8500
	3	249.80	248.80				.0207		2.41	1.42	7,348	.3300
	4	490.40	488.30				.0380		2.42	1.41	13.530	.6100
	5	813.00	813.00				.0353		2.43	1.61	12,800	.5040
	6	1217.00	1225.00				.0430		2.44	1.92	16.030	.5260
1450	2	89.80	87.23				.0065		2.36	0.321		.4160
	3	251. <i>7</i> 5	252.80				.0320		2.45	1.82	12.050	.4210
	4	494.00	496.20				.0490		2.45	1.83		.6280
	5	819.00	828.90				.0440		2.47	2.21	16.790	.4820
	6	1226.00	1250.00				.0490	_	2.47	2.57	19.280	.4720
1400	2	90.53	87.34				.00195		2.40	C:0434	_	.9220
	3	253.60	257.90				.0420		2.48	2.46	16.379	. 4220
	4	497.70	506.50				.0500		2.49	2.50		. 4960
	5	825.10	849.70				.0470		2.50	3.12	19.200	.3900
	6	1235.00	1280.00				.0440		2.51	3.46	18.480	.3360
1350	2	91.30	87.40				.0027					
	3	255.40	263.70				.0450		2.52	3.26	18 600	. 3610
	4	501,40	518.30				.0390		2.53	3.34	16,270	.3080
	5	831.10	870.90				.0412		2.54	4.10	18.030	. 2780
	6	1244.00	1304.00				.0288		2.55	4.13	12.720	.1940
1300	2											
	3	257.35	269.60				.0376		2.56	4.11	16,540	. 2540
	4	505.00	530.70				.0260		2.56	4.29	11.590	.1700
	5	837.10	886.00				.0290		2,58	4.73	13.290	.1770
	6	1253.00	1323.80	····			.0175		2,58	4.63	8,036	.1090
1250	2											
	3	259.25	275.00				.0240		2.60	4.89	11,150	.1440
	4	508.70	541.00				.0162		2.60	5.05	7,607	.0950
	5	843.10	896.30				.0145		2.61	5.05	13,780	.0852
	6											
1200	2											
	3	261.10	279.60				,0134		2.63	5.53	6.508	.0740
	4	501.40	545.10				.0125		2.62	5.34	5,080	. 07 07 ⁽
	5	849.00	905.50				.0067		2.65	5.32	3,236	.0383
	F	1270.40	1354.70				.C060		2.65	5.32	2.917	. 0344

TABLE 5 (CONTINUED)

EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M1

			Experime	NTAL MEASUR	EMENTS				M	ATERIAL F	ROPERTIE	s
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	^п с	E _M PSI × 10⁻'	E _{DR} PS1 × 10 ⁻⁴	E _{D1} PS1 * 10 ⁻⁴	
1150	2											
	3	262.90	282.80				.0074		2.67	5.89	3.697	.0395
	4	513.80	551.70				.0074		2.65	5.74	3.656	.0401 (2)
	5	855.00	914.00				.0037		2.69	5.54	1.826	.0208
	6											
1100	2		,									
	3	264.65	285.40				.0041		2.71	6.13	2,092	.0215
	4	517.40	556.80				.0044		2.69	5.96	2.200	.0234 (3)
	5	860.80	921.70				.00245		2.72	5.72	1.232	.0136
	6	1287.40	1377.20				.00245		2.73	5.66	1.236	.0137
1050	2											
	3	266.30	287.50				.00245		2.74	6.28	1.271	.0127
	4	520.30	561.20				.00275		2.72	6.17	1.414	.0144 (4)
	5	£66.30	928.00				.00178		2.76	5.82	0.908	.00178
	6	1295.00	1386.30				.00178		2.76	5.77	0.911	.00987
1000	2											
	3											
	4	524.20	565.00				.00175		2.76	6.22	0.911	.0092 (5)
	5											
	6											
900	2	96.70	104.04				.00053		2.74		0.281	

^{(1) &}amp; 1225 °F

⁽²⁾ a 1175 °F

⁽³⁾ a 1125 °F

⁽⁴⁾ a 1075 °F

⁽⁵⁾ a 1025 °F

TABLE 6
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M36

			Experie	IENTAL MEASI	JREMENTS				<u> </u>	ATERIAL P	ROPERTIES	
TEMP. °F	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Kz	ΔF	ⁿ s	ⁿ c	E _m psi * 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁶	E _{D1} PSI × 10 ⁻⁵	ď
1750	2		91.88	91.34	92.41	1.08	.0117	.0076	2.14	2.90	4.30	. 1480
	3		256.30	255.20	257.90	2.65	.0103	.00463				.0932
	4		505.20	502.60	507.80	5.20	.0103					
	5		838.20	833.54	842.60	9.06	.0108					
	6		1255.20	1249.40	1260.90	11.50	.00916					
1700	2	91.88	92.40	91.63	92.88	1.24	.01345	.00705	2.19	2.47	4.02	.1620
	3	256.60	258.90	257.35	260.39	3.02	.0117	.00535	2.25	2.43	3.17	.1080
	4	505.10	509.10	506.60	512.20	5.55	.01091	.00551	2.27	2.83	3.27	.1160
	5	838.10	844.20	839.80	848.80	9.05	.0107	.00607	2.28	2.77	3.63	.1310
	6	1254.80	1265.30	1259.90	1271.00	11.00	.00873	.00493	2.30	2.92	2.97	.1010
1650	2	92.60	93.08	92.54	93.58	1.04	.01116	.00376	2.22	2.46	2.17	.0884
	3	258.90	261.51	260.25	262.94	2.70	.01031	.00471	2.29	3.11	2.85	.0915
	4	509.30	514.72	512.30	517.22	4.66	.00905	.00500	2.30	3.20	3.05	.0950
	5	844.90	853.50	849.40	856,60	7.20	.00844	.00504	2.32	3.17	3.09	.0974
	6	1264.90	1277.10	1272.90	1282.10	9.14	.00716	.00451	2.33	3.12	2.76	.0889
1600	2	93.50	94.18	93.65	94.69	1.04	.0110	.00422	2.26	2.75	2.50	.0910
	3	261.20	264.60	263.46	265.75	2.28	.00863	.00433	2.33	3.53	2.69	.0762
	4	513.60	520.16	518.27	522.30	4.03	.00775	.0052	2.34	3.52	3.24	.0922
	5	852.00	862.30	859.18	864.90	5.72	.00664	.00459	2.36	3.46	2.88	.0831
	6	1275.40	1290.30	1286.50	1294.10	7.50	.00581	.00416	2.37	3.43	2.62	.0764
1550	2	94.32	95.38	94.89	95.78	0.89	.0093	.00379	2.31	3.28	2.32	.0706
	3	263.50	267.20	266.45	268.17	1.71	.00642	.00347	2.37	3.72	2.20	.0591
	4	517.80	525.40	523.83	526.84	3.01	.00573	.00405	2.38	3.82	2.58	.0677
	5	859.00	£70.80	860,43	872. 98	4.55	.00522	.00382	2.40	3.73	2.45	.0657
	ε	1285.40	1303.00	1300.10	1306.00	5,94	.00456	.00342	2.41	3.74	2.20	.0589
1500	2	95.16	95.95	95.60	96.28	0.68	.0071	.00325	2.35	2.98	2.00	.0673
	3	265.70	269.50	268.74	270.16	1.42	.0052&	.00328	2.41	3.82	2.12	.0554
	L	521.90	529.90	528.57	531.04	2.47	.00466	.00354	2.42	3.9€	2.30	.0580
	5	865.70	878.00	876.12	879.82	3.70	.00421	.00319	2,44	3.84	2.08	.0541
	6	1295.10	1313.50	1311.10	131€.00	4.80	.00368	.00284	2.45	3.86	1.86	.0481
1400	2	9€.75	97.99	97.71	98.24	0.53	.00539	.00335	2.42	3.65	2.16	.0593
	3	270.10	274.00	273.51	274.51	1.009	.00367	.00245	2.49	3.96	1.63	.6412
	4	530.00	538.50	537.58	539.32	1.74	.00323	.00259	2.49	4.12	1.74	.0416
	5	892.3C	879.00	890.87	893.81	2.94	.00330	.00256	2.51	4.09	1.72	.0422
	ε	1315.60	1734.40	1332.80	1335.80	3.03	.00227	.00171	2.52	3,99	1.1€	.0289
1300	2	98.19	99.50	99.30	99.68	0.38	.00383	.00225	2.50	3.83	1.50	.0392
	3	278,40	274.20	278.09	278.70	0.01	.0022	.00134	2.57	4.20	0.924	,2200
	4	538.00	546.80	546.30	547.35	1.05	.00191	.00137	2.57	4.35	0.948	.0218
	5	892.00	905.70	904.90	906.€2	1.72	.00190	.00123	2.59	4.24	8.54	.0202
	3	1334.80	1354.30	1353,20	1355.00	1.83	.001354	.00085	2.60	4.1€	5.92	.0142

TABLE 7
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M19

			Experim	IENTAL MEASU	REMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M	Fc	FL	F _R	ΔF	n _s	"c	E _m PS1	E _{DR} PS1	EDIPSI	ηD
•F		Hz	Hz	Hz	Hz				× 10-7	× 10 ⁻⁴	× 10-'	
1500	1		13.68	13.48	13.83	0.349	.0255	.01450	-			
	2		83.84	83.08	84.68	1.60	.0141	.01560				
	3	246.94	242.30	241.79	242.77	0.98	.00405	.00240	2.43	0.634	6.499	.1030
	4	485.80	475.70	474.79	476.62	1.86	.0034	.00230	2.44	0.510	0.708	.1270
	5	804.20	787.90	786.47	789.36	2.89	.0037	.00279	2.45	0.561	0.832	.1370
	6	1204.00	1180.90	1178.55	1183.15	4.60	.0039	.00302	2.46	0.623	0.863	.1380
1400	1		13.84	13.65	14.04	0.39	.0280	.01900				
	2	89.42	87.51	87.69	88.05	0.36	.0041	.00204				
	3	250.70	246.10	245.68	246.55	88.0	.00356	.00253	2.50	0.642	0.786	.1230
	4	493.00	483.10	482.11	484.14	2.03	.0042	.00300	2.51	0.568	0.950	. 1540
	5	816.20	800.00	798.28	801.92	3.65	.00456	.00390	2.52	0.559	3.366	. 2250
	6	1222.00	1198.80	1195.81	1202.34	6.57	.0055	.00494	2.53	0.659	1.483	.2240
1350	1											
	2											
	3	252.50	247.90					.00340	2.54	0.697	1.006	.1440
	4	822.20	806.00					.00600	2.56	0.613		.2960
	5	1230.00	1209.50					.00730	2.56	0.799	1.932	.2910
	6	1230.00	1209.50					.00730	2,56	0.799	2.208	.2740
1300	1		14.23	14.12	14.32	0.20	.0141	,00760				
1,000	2	90.69										
	3	254.25	250.00	249.30	250.69	1.36	.00545	.00466	2.57	0.775	1.445	.1870
	4	500,00	491.00	489.05	493.02	3.98	.00810	.00711	2.59	0.724	2.307	.4380
	5	828.00	813.21	808.87	817.53	8.66	.0107	.01020	2.60	0.735	3.195	.4040
	6	1238.80	1222.30	1217.88	1229.56	11.68	.0186	.01820	2.60	1.001	3 .715	.3680
1250	1											
	2											
	3		252.30	251.70	253.54	2.37	.0094	.00870				
	4	503.50	496.10	492.59	499.7 8	7.20	.0145	.01350	2.62	0.954	4,431	.4380
	5	R33.70	822,50	814.40	830.22	15.80	.0192	.0187	2.63	1.02	5,593	.5170
	6	1247.80	1244.90	1232.89	1258.65	25.80	.0207	.02030	2.64	1.54	6.758	.4370
1200	1											
	2	91.98										
	3	257.80	255.30	253.16	257.45	4.30	.3168	.01620	2.64	1.27	5,126	.4050
	4	507.00	503.20	500.20	506.15	5.95	.0231	.02220	2.66	1.39	8,266	.5750
	5	839.30	835.40	829.05	841.61	12.60	.0294	.02900	2.67	1.59	10,578	.6520
	6	1256.20	1265.20	1250.86	1305.65	54.80	.0433	.04300	2.67	2.40	13.554	.5600
1150	1		15.23	14.91	15.14	0.23	.0151	.01450				
	2	250 66	91.03	90.26	91.78	1.52	.0166	.01540	2.52	1 01	10 007	F000
	3	259.60	259.70	255.71	263.82	8.05	.0310	.03040	2.68	1.91	10,067	.5280
	4	510.20	518.60	506.20	534.93	28.90	.0557	.05490	2.69	3.06		.6150
	5	844.60	852.70	837.03	868.43	31.40	.0547	.05430	2.70	2.60	(7.070	.7240
	66	1265.00	1294.20	1279.10	1311.48	32.40	.0488	.04850	2.71	3.53	17,832	.5010

TABLE 7 (Continued)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M19

			Experi	MENTAL MEAS	UREMENTS				M	ATERIAL P	ROPERTIES	3
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	۵F	ⁿ s	ⁿ c	E _M PS1 × 10 ⁻⁷	E _{DR} PSI	E _{Di} psi × 10 ⁻¹	ⁿ D
1100	1		16.26	16.12	1£.50	0.38	.0234	.01790				
	2											
	3	261.20	265.60	261.28	270.75	9.47	.0356	.03510	2.71	3.01	12,261	.4080
	4	513.40	528.60	519.64	537.84	18.20	.0512	.05040	2.73	3.99		.4600
	5	850.00	873.20	880.45	865.95	14.50	.0324	.03200	2.74	3.79		.3270
	6	1273.00	1319.20	1300.22	1343.54	43.30	.0328	.03250	2.75	4.44	12,097	.2710
1050	1		15.90	15.58	1.623	0.64	.0404	.03540				
	2											
	3	262.76	270.86	267,40	274.84	7.44	.0275	.02690	2.75	4.16	10.027	.2410
	4	516.50	535.20	541.30	530.00	11.30	.0211	.02190	2.76	4.59		.1830
	5	855.00	887.70	883.00	893.02	10.00	.0113	.01090	2.77	4.70		.1100
	6	1280.50	1328.40	1319.96	1340.30	20.35	.0153	.01500	2.78	4.68	5.781	.1230
1000	1	14.24	15.68	16.18	15.17	1.01	.0642	.06400				
	2	94.32										
	3	264.30	275, 50	273.13	277.88	4.70	.0171	.01660	2.78	5.07	6.419	.1270
	4	519.50	542.00	538.71	545.23	6.52	.0120	.01130	2.79	5.11		.0860
	5	860.00	898.00	892.14	902.53	10.40	.01157	.01120	2.74	3.79		.0658
	6	1288.00	1341.90	1336,90	1348.25	11.35	.00846	.00820	2.78	4.68	3,473	.0680
950	1		18.73	19.05	18.42	0.63	.0337	.03320				
	2		101.10	100.16	102.54	2.38	.0235	.02250				
	3	265.83	279.20	277.91	280. 54	2.63	.00941	.00890	2.81	5.68	3.577	.0630
	4	522.40	548.50	546.63	550.7 5	4.12	.00752	.00684	2.82	5.67		.0490
	5	865.50	908.40	905.20	911.20	5.94	.00654	.00622	2.84	5.68		.0456
	6	1294.20	1354.10	1348.10	1358.10	10.07	.00744	.00719	2.84	5.40	2.559	.0470
900	1	14.68										
	2	95.30										
	3	266.97	281.85					.00520	2.84	6.15	2.142	.0350
	4	525.00	555.00					.00520	2.85	6.29		.0340
	5	869.00	916.00					.00500	2.86	6.07		.0340
	6	1300.50	1366.00					.00500	2.87	5.80		.0350

TABLE 8
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M17

			EXPERIM	IENTAL MEASU	REMENTS				M.	ATERIAL PE	ROPERTIES	
TEMP. °F	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ηс	E _M PS1 × 10 ⁻⁷	E _{DR} PSI × 10-	E _{D1} PS1 × 10 ⁻⁵	ⁿ D
1600	1	14.06	13.68	13.58	13.79	0.214	.0156	.0018	2.33			
	2	88.51	86.37	85.84	86.75	0.91	.0104					
	3	244.10	241.70	240.26	243.40	3.15	.0130	.00853	2.37	0.572		.0895
	4	487.70	477.10	475.38	478.72	3.35	.0070	.00437	2.38	0.298	0.728	. 2440
	5	807.50	791.00	788.02	793.97	5.94	.00751	.00570	2.38	0.388		. 4590
	6	1209.00	1184.20	1179.20	1189.48	10.24	.00865	.00720	2.40	0.394	2.44	.6190
1500	1	14.35	14.00	13.90	14.11	0.207	.0148	.00230	2.43	0.143		.4720
	2		88.20	87.40	88.60	0.701	.00795					
	3	252.60	243.90	242.41	247.89	5.48	.0225	.02080	2.45	0.663		. 2850
	4	495.70	485.90	483.49	487.80	4.32	.00888	.00745	2.46	0.440	2.24	.5090
	5	821.00	805.50	800.70	811.40	10.70	.0133	.01230	2.46	0.572		.7070
	6	1228.70	1208.60	1198.04	1219.21	21.18	.0175	.01660	2.47	0.689	2.78	. 4040
1450	1	14.48	14.12	14.04	14.22	0.189	.0134	.00240				
	2	90.92	89.12	88.65	89.45	0.793	.0089					
	3	254.60	248.20	246.22	250.23	4.01	.0162	.01500				
	4	499.68	489.30	485.11	492.44	7.30	.0150	.01400				
	5	827.40	815.80	807.62	823.18	15.56	.01410	.01830				
	6	1238.20	1226.70	1208.90	1242.70	33.80	.0276	.02690	2,55	1.46	8.20	. 5530
1400	1	14.62	14.24	14.15	14.32	0.17	.0120	.00290	2.52	0.0391		.2760
	2		89.70	89.16	90.17	1.01	.0113					
	3	256.60	251.70	250.43	252.42	1.99	.0154	.01450	2,53	1.17		.5780
	4	503.50	497.80	494.68	501.30	6.62	.0260	.02530	2.53	1.13	6.64	.5880
	5	834.00	824.90	814.66	836.19	21.50	.0261	.02550	2.54	1.12		.8010
	6	1248.00	1242.10	1230.77	1245.33	14.60	.0117	.00111	2.52	2.26	8.40	.3730
1350	1		14.38	14.29	14.47	0.184	.0128	.00620				
	2		90.40	89.33	91.00	1.67	.0185					
	3	258.50	253.40	255.28	251.81	3.47	.0137	.01290	2.56	1.86		. 6070
	4	507.40	505.40	498.03	513.80	15.76	.0312	.03060	2.57	1.74	10.20	.5870
	5	840.50	842.70	825.42	854.77	29.35	.0348	.03430	2.58	1.66		.7430
	6	1257.40	1262.00	1257.50	1270.49	12.94	.0103	.00980	2.60	2.45	11.70	. 4780
1300	1	14.88	14.59	14.46	14.71	0.253	.0173	.01120	2.61	5.02		.8650
	2		90.46	87.63	91.63	4.00	.0440					
	3	260.50	255.10	253.61	257.00	3.39	.0133	.01260	2.60	2.78		.5280
	4	511.20	515.40	506.70	526.04	19.35	.0315	.03710	2.60	2.50	12.50	.5060
	5	846.80	858.50	844.59	812.07	27.50	.0321	.02270	2.66	4.21		.4310
	6	1366.80	1390.70	1273.89	1312.85	38.97	.0301	.02820	3.06	3.81	13.00	.3400
1250	$\frac{-\frac{\iota}{1}}{1}$	14.99	15.04	14.83	15.31	0.479	.0319	.0264	2.65	1.45		.6750
	2	93.73				- 7		- -		<u>.</u>		
	3	262.40	275.70	255.24	259.24	4.00	.01555	.01490	2.64	3.89		.3550
	4	515.50	525.10	530.70	510.26	20.40	.03894	,03850	2.65	3.34	10.90	, 3270
	5	852.80	878.40	870.55	889.36	18.80	.0214	.02110	2.66	4.21		.2150
	6	1275.50	1312.70	1297.86	1325.56	27.70	.0211	.02070	00			

TABLE 8 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M17

			Experi	MENTAL MEAS	SUREMENTS					ATERIAL	ROPERTIE	S
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	· ΔF	ⁿ s	ⁿ c	E _M PSI × 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁶	E _{DI} PSI × 10 ⁻⁴	η _D
1200	1	15.10	15.32	15.04	15.77	0.728	.04753	.04240	2.69	3.01		.5560
	2											
	3	264.20	259.20	257.43	260.51	3.08	.0119	.01130	2.68	4.91		.2080
	4	518.60	531.20	525.02	534.56	9.54	.0180	.01760	2.69	4.32	7.53	.1740
	5	858.70	890.20					.01360	2.69	4.90		.1190
	6	1276.00	1330.00	1320.00	1338.40	18.40	.0138	.0135 0	2.67	4.18	4.96	
1150	1	15.22	15.80	16.27	0.793	0.0502	.0454	.04500	2.73	4.87		.4000
	2											
	3		261.40	260.47	262.29	1.82	.00695	.00640				
	4		542.10	538.91	544.74	5.83	.0107	.01040				
	5		898.90	895.42	903.26	7.85	.00873	.00846				
	6		1345.60	1340.50	1350.40	10.00	.0074	.00708				
1100	1	15.32	16.34	16.14	17.10	0.955	.0583	.0538	2.77	6.26		.2200
	2	95.67										
	3	267.80	263.40	262.80	264.00	1.19	.04504	.00400	2.75	6.09		.0612
	4	525.50	548.00	546.12	549.70	3.57	.00651	.00616	2.76	5.46	2.49	.0460
	5	870.00	908.10	905.88	910.17	4.29	.00472	.00448	2.76	5.58		.0378
	6	1301.60	1358.60	1355.40	1361.47	6.09	.00448	.00419	2.78	5.50	2.70	.0310
1000	1	16.49	16.69	16.60	16.80	0.204	.0122	.00850	2.84	7.53		.0453
	2											
	3	270.90	266.90	266.50	267.31	0.812	.00304	.00257	2.82	6.64		.0185
	4	531.70	556.90	556.08	557.51	1.43	.00256	.00224	2.83	5.93	1.06	.0180
	5	880.20	921.60	920.64	922.51	1.87	.00203	.00182	2.83	5.90		.0140
	6	1316.80	1378.20	1376.65	1379.69	3.04	.00221	.00193	2.84	5.90	0.925	.0160
900	1	16.70	16.67	16.63	16.71	0.083	.0050	.00130	2.91	7.76		.0103
	2	103.20	103.10	103.30	0.227	0.022	.00152					
	3	288.50	288.23	288.74	0.516	0.00179	.00135	.00120				
	4	563.00	562.52	563.51	0.983	0.00175	.00144					
	5	931.80	931.10	932.49	1.39	0.00149	.00130					
	6	1393.10	1391.40	1394.62	3.20	0.00204						

TABLE 9
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING 1129

			Experim	ENTAL MEASL	REMENTS				И	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M	F _C	FL	FR	ΔF	n _s	ⁿ c	Ĺ _M PSI	EDRPSI	EDILERI	n _D
*F		Hz	Hz	Hz	Hz				× 10 ⁻⁷	× 10-	× 10 ⁻⁵	
1700	2	92.32										
	3	257 .9 0	241.10	238.44	242.87	4.43	.0184	.0122				
	4	507.50	509.10	506.82	514.46	7.64	.0150	.0097			6.01	
	5	841.50										
	6	1260.40										
1650	2	93.00	92.75	91.94	93.22	1,29	.01386	.00536	2.20	1.55	3.18	.2050
	3	260.40	259.80	258.73	260.47	1.74	.01305	.00905	2.27	1.65	5.55	.3370
	4	511.80	511.80	509.26	514.69	5.44	.01063	.00663	2.28	1.95	4.11	.2120
	5	849.00	848.80	842.96	852.59	9.63	.0113	.0085	2.30	1.92	5.31	. 2760
	6	1271.00	1271.60	1264.86	1277.14	12.30	.00965	.00735	2.31	2.02	4.63	.2290
1600	2	93.75	93.64	92.43	94.17	1.74	.1086	.0129	2.24	1.82	6.61	. 3630
	3	262.80	262.71	259.80	263.92	4.12	.0157	.0076	2.32	1.92	8.11	. 4220
	4	516.00	517.30	514.77	520.17	5,38	.0104	.0100	2.32	2.29	4.83	.2110
	5	856.00	857.10	850.92	861.10	10.20	.0119	.0100	2.34	2.15	6.38	.2970
	6											
1575	2	94.10	94,66	94.01	96.39	2.37	.0251	.0185	2.25	2.64	11.50	. 4360
	3	263.90	264.50	262.41	265.55	3.14	.0119	.00846	2.34	2.27	5.41	.2380
	4	518,20	520.90	518.56	523.30	4.75	.00912	.00679	2.34	2.65	4.39	.1660
	5	859.50	864.30	860.44	868.28	7.84	.00908	.0075	2.36	2.72	4.89	. 1800
	6	1286.70	1294,70	1289.30	1299.90	10,60	.00816	.00676	2.37	2.82	4.40	.1580
1525	2	94.85	98.71	96.91	100.51	3,60	.0365	.0320	2.29	7.23	22.60	.3130
	3	266.00	267.10	265.75	268.33	2.58	.00966	.00746	2.37	2.55	4.87	.1910
	4	522.40	525.30	522.93	527.62	4.69	.00892	.00724	2.38	2.74	4.76	.1740
	5	866.30	871.40	867.53	874.97	7.44	.0085	.00735	2.39	2.80	4.87	.1740
	6	1296.70	1305.50	1300.70	1310.10	9.40	.00718	.00611	2.41	2.94	4.08	. 1390
1450	2	95.90	96.82	96.56	97.13	0.57	.0115	.00872	2.34	3.22	5.71	.1780
	3	269.10	271.40	270.25	272.45	2.20	.00811	.0068	2.43	3,20	4.61	.1440
	4	528.50	533.30	531.49	535,19	3.70	.00693	.0058	2.44	3.28	3.95	.1200
	5	876.30	884.40	881.7€	886.92	5.20	.00584	.00507	2.45	3.32	3.48	.1050
	6	1311.50	1324.00	1320.66	1327.67	7.00	.0053	.00457	2.46	3.37	3.15	.0930
1400	2	96.60	97.83	97.48	98.59	1.10	.0113	.0092	2.38	3.68	6.18	.1680
	3	271.10	273.90	272.73	274.66	1.93	.00703	.00602	2.46	3.49	4.16	.1190
	4	532.40	538.30	536.97	539.90	2.93	.00543	.00449	2.47	3,60	3.12	.0870
	5	882.80	892.30	890.31	894.45	4.14	.00464	.00401	2.49	3,58	2.80	.0780
	6	1321.50	1335.60	1332.98	1338.51	5.53	.00414	.00354	2.50	3.59	2.49	.0690
1350	2	97.30	98.54	98.21	98.91	0.70	.0071	.0053	2.41	3.73	3.61	.0970
	3	273.10	276.50	275.79	277.18	1.40	.00506	.00423	2.50	3.84	3.00	. 0780
	4	536.30	542.90	541.86	544.07	2.21	.00407	.00317	2,51	3.83	2.24	.0590
	5	889.00	899.80	898.31	901.47	3.16	.00351	.00298	2.52	3.83	2.72	.0550
	6	1331.00	1346.40	1344.60	1348.60	4.00	.00296	.00246	2.54	3.77	1.76	.0470

TABLE 9 (CONTINUED)

EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M29

			Expert	MENTAL MEAS	UREMENTS					ATERIAL F	ROPERTIE	:S
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _m psi × 10~7	E _{DR} PS1 * 10 ⁻¹	E _{DI} PSI * 10 ⁻¹	_
1300	2	97.30	98.54	98.21	98.91	0.70	.0071	.0053	2.41	3.73	3.61	.0970
	3	275.00	278.60	277.99	279.13	1.14	.00409	.00339	2.54	3.98	2.43	.0610
	4	540.00	547.10	546.27	547.92	1.65	.00301	.0022	2.54	4.00	1.58	.0400
	5	895.50	906.50	905.22	907.69	2.46	.00272	.0022	2.56	3.90	1.59	.0410
	6	1340.00	1356.10	1354.60	1357.80	3.10	.00231	.00186	2.57	3.88	1.35	.0350
1200	2	99.30	100.97	100.83	101.14	0.31	.00307	.00172	2.51	4.46	1.24	.0280
	3	278.90	283.20	282.91	283.45	0.54	.0019	.00132	2.61	4.44	0.982	.0220
	4	547.50	555.60	555.12	555.96	0.83	.0015	.00084	2.61	4.35	6.25	.0140
	5	908.00	920.10	919.46	920.73	1.27	.0014	.0010	2.63	4.16	7.45	.0180
	6	1359.00	1376.50	1375.70	1377.22	1.50	.0011	.00069	2.64	4.12	5.16	.0120
1100	2	100.60	102.30	162.23	102.42	0.19	.00187	.00067	2.58	4.59	4.94	.0110
	3	282.60	287.20	287.08	287.37	0.29	.0010	.00048	2.68	4.68	3.68	.0078
	4	555.00	563.40	563.22	563.63	0.41	.00073	.00008	2.69	4.52	0.0612	.0014
	5	920.00	933.18	932.84	933.62	0.78	.00084	.00044	2.70	4.43	0.338	.0076
	6	1377.00	1395.50	1349.09	1396.00	0.92	.00066	.00028	2.72	4.32	0.215	.0050

TABLE 10
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M49

			Experie	MENTAL MEASI	IREMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	Mode	FM	F _C	FL	FR	۵F	ηs	n _C	Empsi	EDRPSI	E _{D1} PSI	n _D
°F		Hz	Hz	Hz	Hz				* ^{''} 10 ⁻ '	× 10 ⁻⁶	× 10 ⁻⁵	
1600	2	94.03	92.09	91.67	92.49	0.82	.0089	.0030	2.29	0.546	0.742	.1360
	3	263.12	257.80	256.84	258.66	1.81	.0070	.0032	2.37	0.585	0.818	.1400
	4	516.69	507.20	505.48	509.16	3.68	.0072	.0046	2.37	0.684	1.18	.1720
	5	857.03	841.60	838.93	844.81	5.88	.0070	.0050	2.39	0. <i>7</i> 08	1.30	.1840
	6	1282.30	1262.00	1257.55	1266.46	8.92	.0071	،0056	2.40	0.827	1.46	.1770
1500	2	95.68	93.80	93.42	94.15	0.73	.0078	.0042	2.37	0.617	1.08	.1750
	3	267.44	262.47	261.73	263.40	1.68	.0064	.0044	2.45	0.693	1.17	.1690
	<i>t</i> į	524.80	517.00	514.64	518.86	4.22	.0082	.0070	2.45	0.896	1.88	.2100
	5	870.50	856.50	850.77	860.96	10.13	.0119	.0108	2.47	0.835	2.91	. 3490
	6	1303.20										
1450	2	96.40	94.67	94.30	94.98	0.67	.0071	.0043	2.41	0.717	1.13	.1570
	3	269.60	264.80	263.39	265.93	2.54	.0096	،0082	2.49	0.747	2.22	.2970
	4	529.00	522.40	519.00	525.35	6.35	.0122	.0113	2.49	1.04	3.11	.2980
	5	877.50	865.60	859.07	872.14	13.07	.0151	.0142	2.51	0.99	3.92	.3960
	6	1313.70										
1400	2	97.12	96.03	95.61	96.47	0.86	.0089	.0071	2.45	1.09	1.93	.1760
	3	271.64	267.80	265.91	269.50	3,59	.0134	.0125	2.52	0.964	3.47	. 3600
	4	533.10	528.50	523.56	532.54	8.98	.0170	.0162	2.53	1.28	4.58	.3580
	5	884.10	875.90	863.70	887.71	24.00	.0274	.0268	2.54	1.25	7.60	.6090
	6											
1350	2	97.80	97.05	06.43	97.71	1.28	.0132	.0114	2.48	1.31	3.17	.2420
	3	273.60	271.20	268.66	273.73	5.46	.0201	.0192	2.56	1.29	5,49	. 4260
	4	536.90	535.70	529.27	541.36	12.10	.0226	.0220	2.56	1.67	6.42	.3850
	5	890.60	890.30	879.89	900.01	20.10	.0226	.0218	2.58	1.79	6.45	.3600
	6	1333.20	1332.60	1313.54	1353.73	40.20	.0302	.0297	2.60	1.79	8.83	.4920
1300	2	98.52	98.34	97.36	99.30	1.94	.0198	.0183	2.52	1.66	5.26	.3160
	3	275.63	275.20	271.28	277.69	6.41	.0233	.0225	2.60	1.73	6.67	. 3860
	4	540.90	545.10	538.74	550.99	12.26	.0225	.0220	2.60	2.29	6.71	.2930
	5	897.00	905.10	888.81	914.95	26.15	.0289	.0282				
	6	1342.60							_			
1275	2	98.89	98.60	97.43	99.74	2.31	.0235	.0221	2.54	1.61	6.37	.3960
	3	276.60	276.60	272.87	279.55	6.68	.0242	.0234	2.62	1.84	7.02	.3820
	.4	542.70	549.80	543.89	555.43	11.54	.0210	.0205	2.62	2.63	6.40	.2430
	5	900.20	918.20	901.31	926.35	25.05	.0273	.0266	2.64	3.08	8.53	.2770
	6	1347.20	1375.10	1361.66	1391.98	30.30	.0221	.0216	2.65	3.15	6.98	.2220
1225	2	99.59	100.32	99.06	101.59	2.53	.0252	.0241	2.57	2.24	7.27	.3240
	3											
	4	546.60	557.60	553.40	561.50	8.10	.0145	.0141	2.66	3,11	4.56	.1460
	5	906.70	728.16	921.32	934.14	12.80	.0138	.0131	2.68	3.36	4.31	.1280
	6	1356.50	1392.20	1384.85	1403.31	18.50	.0133	.0129	2.69	3,55	4.30	.1210

TABLE 10 (CONTINUED)

EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M49

			Experi	MENTAL MEAS	UREMENTS				P	ATERIAL F	ROPERTIE	s
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _m PS1 × 10 ⁻⁷	E _{DR} PS1 × 10 ⁻⁶	E _{D1} PS (× 10 ⁻⁶	ⁿ p
1175	2	100.30	102.16	101.18	103.20	2.02	.0198	.0188	2.61	2.96	5.94	.2010
	3	280.50	287.60	285.70	289.70	3.98	.0138	.0132	2.69	3.49	4.39	.1260
	4	550.40	564.30	561.80	566.70	4.90	.0087	.0083	2.69	3.49	2.76	.0790
	5	912.90	939.60	935.37	943.13	7.76	.0083	.0076	2.71	3.78	2.58	.0680
	6	1365.80	1406.70	1402.13	1411.83	9.70	.0069	.0073	2.72	3.84	2.49	.0650
1125	2	101.00	103.64	103.06	104.21	1.15	.01114	.0101	2.65	3.49	3.31	.0950
	3	282.45	290.90	289.84	292.00	2.17	.00745	.00682	2.73	3.84	2.33	.0610
	4	554.20	269.96	568.57	571.30	2.73	.00478	.00437	2.73	3.75	1.49	.0400
	5	919.00	948.70	946.43	950.93	4.50	.00474	.00407	2.75	4.03	1.41	.0350
	6	1375.50	14:19.50	1416.80	1422.50	5.64	.00398	.00354	2.76	4.03	1.23	.0306
1050	2	101.95	105.04	104.78	105.28	0.50	.00479	.0047	2.70	3.82	1.59	.0420
	3	285.20	294.60	294.12	295.09	0.97	.0033	.0027	2.78	4.12	0.949	.0230
	4	559.50	576.50	575.80	577.20	1.40	.0024	.0020	2.78	3.95	6.98	.0177
	5	927.60	959.80	958.59	960.89	2.30	.0024	.0017	2.80	4.27	6.05	.0142
	6	1388.50	1435.10	1433.70	1436.80	3.09	.0022	.0017	2.82	4.22	6.06	.0144

TABLE 11
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M32

			Experim	IENTAL MEAS	JREMENTS				ti	ATERIAL P	ROPERTIES	
TEMP.	MODE	F _M	F _C	FL	FR	ΔF	'ns	n _C	E _M PS1	EDRPSI	EDIPSI	n _D
*F		Hz	Hz	Hz	Hz				× 10-7	× 10-	× 10~5	
1650	3	240.00	235.30	233.92	236.71	2.79	.0119	. 0064	2.33	0.553	1.76	.3180
	4	471.00	463.90	461.23	466.53	5.29	.0114	.0075	2.33	0.808	2.09	. 2590
	5	781.50	768.80	761.09	774.83	13.70			2.35	0.747	3.92	.5250
	6	1169.50	1152.10	1139.86	1160.50	20.60	.0179	.0157	2.36	0.830	4.44	.5350
1600	2	86.75	85.26	84.89	86.06	1.17	.0137		2.31	0.682		
	3	242.10	238.30	236.71	239.93	3.22	.0135	.0095	2.37	0.785	2.69	. 3420
	4	475.00	468.80	466.09	472.12	6.03	.0129	.0102	2.37	0.939	2.91	.3100
	5	788.00	778.60	767.75	785.30	17.50			2.39	1.01	5.19	.5140
	6	1179.00	1166.90	1150.28	1177.30	27.00	.02315	.0216	2.40	1.13	6.29	.5650
1550	2	87.55	86.34	85.79	86.58	1.19	.0138	.0058	2.35	8.86	1.64	.1850
	3	244.10	240.90	238.87	242.78	3.91	.0162	.0136	2.41	9.50	3.94	.4150
	4	479.00	473.60	468.45	477.90	9.45	.01995	.0181	2.41	1.06	5.28	.4990
	5	794.50	785.90	773.46	796.43	22.98		.0204	2.43	1.09	6.00	.5490
	6	1188.50	1185.50	1170.60	1197.75	27.16	.0229	.0219	2.44	1.60	6.63	.4150
1500	2	88.30	86.98	86.36	87.73	1.37	.0158	.0104	2.39	0.836	2.98	.3560
	3	246.20	244.50	242.09	246.83	1.74	.0194	.0177	2.45	1.34	5.32	.3970
	4	483.00	479,90	476.44	483.44	7.00	.0218	.0205	2.45	1.37	6.17	. 4500
	5	800.50	798.00	784.50	809.52	25.00		.0240	2.46	1.58	7.33	.4650
	6	1198.00	1200.90	1186.10	1214.77	28.70	.0239	.0232	2.48	1.93	7.24	.3750
1450	2	89.00	88.71	87.99	89.67	1.68	.0187	.0152	2.43	1.55	4.58	.2960
	3	248.20	247.70	244.95	250.43	5.48	.0221	.0208	2.49	1.66	6.44	.3870
	4	486.70	487.90	480.33	492.65	12.33	.0253	.0243	2.49	1.94	7.63	. 3930
	5	806.50	812.90	799.76	820.95	21.19	.0261	.0242	2.50	2.28	7.76	. 3380
	6	1207.00	1218.50	1201.49	1229.71	28.20	.0232	.0226	2.31	2.41	7.32	.3030
1400	2	89.70	89.28	88.31	90.41	2.10	.0235	.0207	2.47	1.48	€.30	, 4250
	3	250.10	251.70	248.89	254.51	5.61	.0223	.0213	2.52	2.22	6.87	.3090
	4	490.60	495.70	490.27	500.05	9.78	.0197	.0190	2.53	2.48	6.20	.2500
	5	812.50	824.90	815.53	831.88	16.35	.0198	.0183	2.54	2.81	6.09	.2170
	6	1216.00	1236.90	1225.19	1246.42	21.10	.0172	.0167	2.55	2.95	5.61	.1900
1350	2	90.40	90.46	89.49	91.48	2.00	.0221	.0200	2.50	1.84	6.28	.3410
	3	252.10	254.90	252.50	257.21	4.72	.0185	.0177	2.57	2.57	5.88	.2290
	4	494.50	501.70	497.78	505.36	7.60	.0151	.0145	2.57	2.80	4.87	.1740
	5	818.50	835.00	828.23	840.41	12.20	.0146	.0140	2.57	3.18	4.79	.1510
	6	1225.00	1251.30	1243.20	1258.20	15.00	.0120	.0116	2.59	3.28	4.01	.1220
1300	2	91.00	92.07	91.21	92.90	1.69	.0184	.0167	2.54	2.58	5.50	.2130
	3	253.90	258.40	256.52	260.17	3.65	.0141	.0134	2.60	3.05	4.60	. 1510
	Ü	498.00	507.80	505.08	510.36	5.31	.0105	.0100	2.60	3.18	3.46	.1090
	5	824.50	844.50	840.19	844.50	8.27	.00979	.00922	2.61	3.50	3.24	.0920
	6	1234.00	1264.70	1259.40	1269.52	10.10	.00796	.00761	2.63	3.57	2.70	.0760

TABLE 11 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M32

			Experi	MENTAL MEAS	UREMENTS				M	ATERIAL P	ROPERTIES	s
lemp. °F	Mode	F _M Hz	F _C	F _L Hz	F _R Hz	ΛF	n S	"(E _M PSI , 10-7	E _{DR} PS1	E _{D1} PSI	ⁿ D
1250	2	91.70	92.88	92.23	95.53	1.29	.0139	.0124	2.68	2.69	4.16	.1540
	3	255.80	261.60	259.92	262.41	2.49	.00944	.00278	2.64	3.43	3.11	.0910
	4	501.50	512.80	511.09	514.64	3.60	.0069	.00645	2.64	3.42	2.28	.0670
	5	830.00	852,90	850.05	855.40	5.40	.0063	.0058	2.65	3.78	2.09	.0550
	6	1242.50	1276.50	1272.99	1279.75	6.76	.0053	.0050	2.66	3.79	1.81	.0480
1200	2	92.30	93.86	93.41	94.28	0.86	.0092	.0079	2.61	3.00	2.72	.0900
	3	257.60	263.80	262.95	264,75	1.60	.00609	.00548	2.68	3.58	1.98	. 0550
	4	505.00	517.70	516.53	518.73	2.20	.00424	.00383	2.€8	3.66	1.38	.0380
	5	836.00	860.70	858.89	362.29	3.40	.00396	.00344	2.69	3.98	1.26	.0320
	6	1251.00	1287.80	1285.50	1289.70	4.10	.0322	.002 ∴	2.70	3.99	1.07	.0270
1150	2	92.90	94.90	94.64	95.17	0.53	.00560	.00445	2.64	3.36	1.57	.0470
	3	259.20	266.20	265.69	266.65	0.96	.00362	.00306	2.71	3.84	1.13	.0290
	4	508.50	522.10	521.43	522.77	1.34	.00256	.00216		3.82	7.95	.0210
	5	842.00	867.90	866.85	868.9€	2.11	.00243	.00192	2.	4.12	7.18	.0170
	6	1259.00	1298.40	1296.80	1299.70	2.90	.00211	.00190	2.73	4.18	7.14	.0170
1050	2	94.05	96.47	96.32	96.58	0.26	.00270	.0016	2.71	3.74	5.86	.0160
	3	262.40	270.20	269.93	270.36	0.42	.00157	.00109	2.78	4.13	4.15	.0100
	4	514,50	529.50	529.21	529.86	0.64	.00122	.00084	2.78	4.09	3.19	.0080
	5	852.60	880.10	879.82	880.10	0.77	.00088	.00040	2.79	4.34	1.54	.0035
	6	1275.00	1316.50	1315.80	1317.20	1.40	.00105	.0008	2. 0	4.38	3.09	.0071
950	2	95.20	97.91									
	3	265.30	273.42									
	4	520.20	535.60									
	5	862.60	890.00									
	6	1290.00	1331.10									

TABLE 12
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M26

			EXPERI	MENTAL MEAS	IREMENTS				M	ATERIAL PE	OPERTIES	
TEMP. °F	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	nc	E _m PS1 * 10-7	E _{DR} PSI × 10 ⁻⁶	E _{DI} PS1 * 10 ⁻⁵	rı D
1400	1		13.96									
	2											
	3	254.20	245.70	244.91	246.54	1.€3	.00663	,00540	2.52	0.231	1,031	. 4460
	4		483.10	480.52	485.55	5.04	.0104	.00805				
	5	806.00							2.54	0.5879	0.1975	.0340
	6		1193.70	1178.40	1204.67	26.30	.0220	.02130				
1300	1	14.63	14.14	14.08	14.21	0.128	.00905	.00880	2.10	0.352	0.421	.0950
	2		91.89	90.63	92.67	2.04	.0222					
	3	258.50	250.20	248.00	253.33	5.30	.0213		2.61	0.294		1.4200
	4		494.95	487.69	504.24	16.50	.0334	.03140				
	5	825.00	781.90	778.88	786.10	7.22	.0092		2.63	0.276	2.08	.2370
	6											,
1250	1	14.75	14.35	14.27	14.45	0.182	.0127	.0071	2.14	0.434	1.428	.2650
	2		91.90	90.62	92.72	2.10	.0228					
	3	260.60	253.90	249.59	259.15	9.55	.0376		2.65	0.486		1.6160
	4		505.30	493.75	516.32	22.60	.0447	.00428				
	5	846.70	858.80	854.04	863.82	9.78	.0114	.01100	2.67	1.682	3.562	.2120 ⁽⁾
	6											
1200	1	14.88	14.55	14.41	14.72	0.312	.0214	.0180	2.17	0.657	3,99 <u>8</u>	.4610
	2											
	3	262.60	262.20	255.19	270.25	15.10	.0575	.0570	2.20	1.430	1.279	.7240
	4		556.80	540.72	563.41	22.70	.0408	.03890				
	5	878.00							2.712	3.059	4.472	.1460
	6			·								
1175	1	14.94	15.05	14.83	15.27	0.444	.0295		2.19	0.852		, 5250
	2											5000
	3	263.60	266.50	259.78	275.32	15.50	.0583	.0570	2.71	2.310	1.337	.5800
	4		564.70	560.10	567.67	7.57	.0263	01670		7 666	h 65h	1000
	5	891.00	835.00	829.05	842.96	13.91	.0167	.01630	2.73	3.644	4.654	.1280
1150	6	15.00	1332.40	1352.80	1393.50	40.70	.0306	.03020	2 21	1 100	7.917	.5690
1150	1	15.00	14.83	14.54	15.15	0.605	.0408	,0360	2.21	1.120	7.917	. 2090
	2 3	264 50	92.96	90.72	93.48	3.27	. 0351	04:00	2 77	2.84	11.944	.4210
		264.50	271.02	264.50	278.72	14.20	.0524	.0490	2.73	2.04	11.344	.4210
	4	002.00	540.50	534.93	551.02	16.09	.0581	.05600	2 75	h 197	4.60	.1110
	5	902.00	833.70	827.54	844.10	16.56	.0199	.01960	2.75	4.127	4.00	.1110
1125	6	· 15 06	1345.55	1340.10	1351.90	11.78	.0171	.01670	2.23	1.47	11.614	.6370
1173		. 15.06	14.96	14.54	15.36	0.808	.0540	מוכניי	2.23	1.4/	11,014	,0760
	2 3	265.50	275.07	267.20	281.14	11.94	.0434	.0380	2.75	3.44	9.658	. 2810
) 4	203,30	565.30	558.97	568.30	9,34	.0322	10° CU	2113	2177	3,000	12010
	5	911.10	911.70	907.80	915.60	7.80	.0168	.01650	2.769	4.502	4.424	03 20 .
		311.10		JU/ 10U	313,00	7.60	.0100	,010,00	21/03	71,702	7,747	,0300
	6		1366.30									

TABLE 12 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M26

			Experi	MENTAL MEAS	UREMENTS					ATERIAL F	ROPERTIE	\$
TEMP. °F	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	٨۴	ⁿ s	'nc	E _M FSI * 10-'	E _{DR} PSI	E _{DI} PSI × 10 ⁻¹	ם"
1100	1	15.11	15.34	14.74	15.80	1.05	.0685		2.24	1.95		.6290
	2		102.24	101.91	102.76	0.85	.00833					
	3	266.40	277.90	273.42	282.53	9.11	.0328	.0285	2.77	3.83	7.448	.1940
	4		546.90	544.84	548.61	3.77	.00689	.00490				
	5	918.00	923.20	918.30	927.70	8.43	.00913	.08810	2.79	4.737	4.011	.0850
	6		1369.90	1363.90	1377.22	13.30	.00974					
1075	1	15.16	15.53	14.99	16.04	1.05	.0678	.0640	2.26	2.50	15.932	.5300
	2		102.75	102.26	103.15	0.89	.00863					
	3	267.30	280.34	277.00	283.95	6.95	.0248	.0235	2.79	4.21	5.779	.1370
	4		547.70	546.00	549.45	3.42	.00624					
	5	923.50	922.90	920.30	926.10	5.80	.0122		2.808	4.938	3.566	.0720
	6		1374.50	1382.20	1369.20	12.90	.0094					
1050	1	15.21	15.87	15.86	16.30	0.939	.0592		2.27	3.17		.3743
	2											
	3	268.20	282.70	280.19	285.31	5.12	.0181	.0162	2.81	4.52	4.446	.0983
	4											
	5	928.00	925.30	921.32	930.58	9.30	.0100		2.827	5.052	3.038	.0600
	6		1382.00	1375.70	1389.50	13.76	.00996	.00960				
1000	1	15.31	16.31	15.99	16.57	0.58	.0356	.0315	2.30	4.24	8.987	.1708
	2											
	3	269,90	286.20	284.68	287.67	3.00	.0104	,9096	2.84	4.99	2.728	.0546
	4		562.20	560.10	565.20	5.13	.00913	.00673				
	5	936.00	923.50	928.94	937.03	8.10	.00867	.00840	2.865	5.232	2.171	.0410
	6		1396.10	1391.20	1400.95	9.75	.0070					
950	1	15.40	16.57	16.42	16.71	0.29	.0176	.0140	2.33	4.62	4.127	.0720
	2		103.10	102.70	103.56	0.86	.00836					
	3	271,50	289.20	288.24	290.09	1.85	.0064	,0060	2.88	5.31	1.749	.0329
	4		566.80	565.26	568.47	3.21	.00567					
	5	942.50	942.77	939.67	945.09	5.42	.00575		2.899	5.354	1.616	.0300
	6		1409.00	1405.48	1412.03	6,50	.00465	.00430				
850	1	15.68						,0010	2.41	4.61	0.302	.00529
	2											
	3	274.60						.0032	2.94	5.62	0.963	.0171
	4											
	5	955.00							2.964	5.602	1.028	.0180
	6											
800	1				-							
	2		105.80	105.60	105.95	0.35	.00331	.00257				
	3		295. 80	295.45	296.37	0.42	.00311					
	4		579.20	578.03	580.28	2.25	.00388	.0017 0				
	5		962.90	961.35	961.41	3.06	.00318	.00290				
	6		1438.20	1436.37	1440.51	4.14	.00288					

TABLE 12 (CONTINUED) EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M26

			Experie	IENTAL MEASL	REMENTS				М	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PS1 * 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁴	E _{DI} PSI × 10 ⁻⁵	ⁿ D
600	1		17.36	17.33	17.42	0.083	.00478					
000	2		107.90	107.76	108.07	0.309	.00286					
	3		301.80	301.50	302.25	0.75	.00248					
	4		592.80	591. 9 6	593.61	1.65	.00279					
	5		982.90	981.84	984.16	2.32	.00236	.00210				
	6		1468.00	1466.47	1469.55	3.08	.0021	.00180				

 $f_{C} + n_{C} = 1255^{\circ}$ (2) APPROXIMATE

TABLE 13
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M12

				IENTAL MEASI						ATERIAL P		
TEMP.	HODE	F _M	F _C	۶ _۲ ۲	F _R	ΔF	ⁿ s	ⁿ c	E _M PS I	E _{DR} PS1	E _{D1} PS1	^ח ם
*F		Hz	Hz	Hz	Hz				× 10 ⁻⁷	× 10-4	× 10 ⁻¹	
1600	1	14.06	13.76	13.66	13.87	0.208	.0151	.00210				
	2	87.56	87.44	87.03	88.21	1.17	.0134	.00680				
	3	245.50	245.30	243.72	246.62	2.90	.0118	.00600				
	4	482.70	489.30	486.85	492.13	5.30	.0108	.00610				
	5	800.80	800.80	789.20	806.20	17.00	.0212	.01550				
	6	1199.00	1197.70	1179.50	1208.50	28.90	.0242	.02100				
1500	1	14.27	14.01	13.89	14.12	0.23	.0162	.00820	2.38	1.28	1.21	.2060
	2		89.01	88.51	89.92	1.31	.0147	.00660				
	3	250.30	250.40	247.98	252.39	4.42	.0176	.01490	2.39	1.87	5.26	.2820
	4	491.30	490.20	486 .8 5	493.00	6.14	.0125	.01070	2.39	2.78	5.30	.1910
	5	815.80	786.20	781.98	794.66	12.68	.0161	.01330	2.41	2.54	5.38	.2110
	6	1222.00	1248.60	1244.86	1252.50	7.61	.0061	.00490	2,43	2.54	2.03	.0800
1450	1	14:.18	14.19	14.08	14.30	0.22	.0158	.00111				
	2	90.17	90.00	91.10	89.33	1.7€	.0196	.01210				
	3	252.19	253.10	250.47	255.70	5.23	.0207	.01870				
	Ų		499.50	499.58	504.85	5.47	.0107	.00936				
	5	823.30	825.80	816.59	832.57	16.00	.0193	.01720				
	6	1232.30	1243.50	1239.77	1251.78	12.00	.00966	.00886				
1400	1	14.53	14.51	14.35	14.62	0.271	.0187	.00650	2,47	1.68	2.66	.1590
1400	2		89.70	92.65	89.05	3.61	.0402					
	3	255.00	255.40	252.26	258.72	6.46	.0253	.02450	2,47	2.89	10.50	.3630
	4	500.00	503.90	496.23	510.57	14.30	.0285	.02000	2,47	3.60	08.3	.2450
	5	830.60	835.40	825.46	842.39	16.93	.0203	.01870	2.43	3.54	5.75	.1630
	6	1270.00	1241.30	1235.94	1266.87	30.90	.0249	.02440	2,53	3.66	6.71	.1830
1350	1	14.63	14.51	14.35	14.66	0.309	.0213	.01700	2,52	1.71	4.76	.2780
	2	•	92.89	91.57	93.61	2.04	.0220	.01860	_,_,			
	3	262.00	260.10	263.94	256.61	7.32	.0280	.02690	2.52	3.48	12.00	.346
	Ų	517.40	513.40	509.53	517.09	7.56	.0287	.0279	2.52	4.22	8.57	.2030
	5	858.20	848.00	842.89	855.14	12.30	.0145	.01320	2,54	4.08	5.50	.1350
	G	1288.00	1286.80	1270.00	1298.50	28.50	.0220	.02160	2.57	4.2€	9.26	.2180
1300	1	14.80	14.68	14.48	14.88	0.405	.0276	.01800	2,56	1.98	7.72	.3910
	2		93.24	92.66	93.95	1.29	.0138					
	3	266.00	264.20	260.88	267.49	6.61	.0250	.02480	2,56	4.14	11.45	.2770
	4	508.30	520.00	525.57	515.56	10.00	.0193	.01500	2,56	4.88	7.07	.1450
	5	846.30	863.04	859.36	869.34	9.97	.0116	.01060	2.59	3.54	5.75	.1630
	6	1305.00	1295.80	1285.35	1306.51	21.16	.0163	.01600	2.61	4.77	7.65	.1600
1250	1	15.04	14.94	14.70	15.15	0.45	.0301	.02350	2,63	2.66	10.49	.3940
	2	93.44	93.62	93.16	94.76	1.60	.0171	.02350				10
	3	269.90	268.60	265.67	271.08	5.42	.0202	.01850	2,6]	4.76	8.85	.1860
	4	531.50	527.30	530.36	523.40	6.97	.0132	.01100	2,60	5.35	5.35	.1010
	5	880.40	875.40	880.28	862.37	18.00	.0205	.01960	2,63	5.06	3.45	.0680
	6	1320.00	1312.60	1304.97	1320.04	15.10	.0115	.01130	4. , 1	3.25	3.46	.1533

TABLE 13 (CONTINUED)

EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M12

			Expert	MENTAL MEAS	UREMENTS				r	ATERIAL	PROPERTIES	š
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PS1 × 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁶	E _{DI} PS1 × 10 ⁻⁴	ηD
1200	1	15.29	15.22	15.90	15.44	0.442	.0290	.02400	2.64	3.54	11.20	.3160
	2		93.62	93.08	94.83	1.75						
	3	273.40	271.70	270.04	273.37	3.33	.0123	.01150	2.65	5.31	5.68	.1070
	4	516.60	535.60	533.73	538.24	4.50	.00842	.00750	2.64	5.76	3.75	.0650
	5	859.00	885.20	381.13	888.34	7.20	.00814	.00736	2.67	5.44	2.45	.0450
	6	1286.00	1325.70	1323.60	1328.02	4.40	.0065	.00630	2.70	5.55	2.36	.0430
1150	1	15.16	15.45	15.28	15.61	0.33	.0214	.01770	2,69	4.14	8.53	.2060
	2	95.26	98.00	98.43	97.12	1.31	.0134					
	3	266.10	274.90	273.92	275.91	2.00	.00724	.00640	2.69	5.77	3.25	.0560
	4	520.50	539.80	538.16	541.65	3,50	.00648	.00500	2.68	6.12	2,56	.0420
	5	865.80	894.60	892.54	896.46	3.90	.00429	.00330	2.72	5.74	1.94	.0340
	6	1296.00	1338.50	1336.00	1341.74	5 .70	.00428	.00290	2.74	5.84	1.49	.0260
1100	1	15.27	15.71	15.59	15.81	0.21	.0340	.01060	2.73	4.81	5.28	.1100
	2		99.03	98.68	99.31	0.64	.00643					
	3	268.00	277,20	276.64	277.81	1.20	.00423	.00350		6.09	1.81	.0300
	4	524.50	544.20	543.18	545.29	2.10	.00386	.00340	2.72	6.30	1.78	.0280
	5	872.20	901.55	900.09	902.69	2.60	.00288	.00223	2.76	5.96	1.14	.0190
	6	1305.20	1349.20	1347.16	1351.17	4.00	.00297	.00282	2.78	6.03	1.15	.0190
1000	1	15.46	16.02	15.98	16.08	0.095	.00593	.00470	2.80	5.67	2.46	.0430
	2	97.28	100.50	100.41	100.67	0.258	.00256					
	3	271.40	281.10	280.89	281.40	0.52	.00184	.00140	2,80	6.27	0.745	.0120
	4	531.50	551.40	550.87	552.06	1.19	.00215	.00178	2.80	6.49	0.952	.0150
	5	883.50	913.30	912.66	914.24	1.59	.00174	.00111	2.83	6.19	0.510	.0190
	6	1322.50	1366.70	1365.37	1367.80	2.43	.00178	.00167	2.85	6.18	0.805	.0130
900	1	15.64	16.21	16.18	16.24	0.068	.00422	.0029	2,86	5.83	0.155	.0270
	2	97.86	101.70	101.59	101.77	0.177	.00174					
	3	274.40	284.40	284.19	284.55	0.364	.00128	.00085	2.86	6.36	0.462	.0070
	4	537.60	557.60	557.13	558.16	1.03	.00184	.00120	2.86	6.41	0.652	.0100
	5	893.20	923.90	923.28	924.56	1.28	.00139	.00054	2.89	6.21	0.270	.0040
	6	1337.30	1382.30	1381.43	1383.20	1.78	.00129	.00121	2.93	2.91	0.704	,0011

TAPLE 14
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M21

			Experie	ENTAL PEASE	REMENTS				<u>[1</u>	ATERIAL P	ROPERTIES	
TEMP.	MODE	FM	Fc	FL	FR	۵F	ns	ⁿ c	E _m psi	E _{DR} PS1	E ^{D1} b21	סמ
*F		۲z	Hz.	Hz_	6z				* 1C-7	× 10_2	× 10-s	
1600	2	93.72	94.06	93.07	95.70	2.64	.0220	.02200	2.27	1.49	3.36	.2340
	3	262.80	265.70	26L.49	272.08	10.60	.0400	.01412	2.35	1.84	3.85	.2090
	4	515.80	523.80	516.72	532.00	15.30	.0292	.02660	2.36	1.96	4.71	. 2400
	5	₹56.00	879.20	866.78	889.44	22.70	.0258	.02380	2.37	2.13	4.09	. 1920
	6	1281.30	1311.00	1296.18	1324.50	28.30	.0216	.02010	2.39	2.26	3,67	.1620
1550	2	94.51	95.43	94.35	96.49	2.14	.0224	.01780	2.31	1.76	3.59	.2050
	3		269.50	266.16	272.50	6.40	.0237	.02100				
	4		532.10	526.04	538.04	12.00	.0226	.02080				
	5		884.90	877.19	892.22	15.03	.0170	.01560				
	6		1327.80	1316.66	1336.90	20.20	.0153	.01480				
1500	2	95.31	96.83	95.95	98.08	2.13	.0220	.08140	2.34	2.00	3.22	.1610
	3	267.10	272,59	268.93	274.95	6.02	.0221	.02010	2.43	2.26	3.16	.1400
	4	524.30	538.90	534.22	543.32	9.10	.0169	.01570	2.44	2.50	2.98	.1190
	5	869.70	894.90	887.86	900.66	12.80	.0143	.01320	2.45	2.54	2.43	.0958
	6	1301.30	1342.20	1333.90	1349.50	15.63	.0116	.10800	2.46	2.64	1.99	.0757
1450	2	96,10	98.21	97,47	99.21	1.74	.0177	.01490	2.38	2.21	2.70	.1220
	3	269,20	276.00	272.94	277.65	4.71	0171،	.01570	2.47	2.43	2.44	.1010
	4	528,40	544 .51	541.18	547.71	6.52	.0120	.01110	2.48	2.64	2.16	.0817
	5		903.80	899.04	907.50	ε.49	.0094	.00850				
	6		1354.30	1348.80	1359.43	10.60	.0079	.00730				
1400	2	98.88	99.35	98.78	100.07	1.29	.0129	.01026	2.42	2.38	2.01	.0843
	3	271.30	279,10	277.59	280.35	2.76	.0099	.00880	2.50	2.58	1.70	.0660
	4	532.50	550.10	547.77	552.21	4.45	.0081	.00740	2.51	2.74	1.51	.0549
	5	883.20	912.20	908.51	915.58	7.07	.0078	.00700	2.53	2.75	1.30	.0471
	6	1321.10	1366.30	1362.53	1370.05	7.52	.0055	.00500	2.54	2.80	1.04	.0369
1350	2	97.63	100.19	99.71	100.68	0.97	.0097	.00790	2.46	2.49	1.47	.0592
	3	273.40	281.70	280.69	282.65	1.97	.0070	.00610	2.54	2.69	1.20	. 0446
	4	536,50	554.66	553.07	556.24	3.17	.0057	.00510	2.55	2.83	1.01	.0356
	5		920.00	917.77	922.51	4.74	.0052	.00450				
	6		1376.50	1374.00	1380.07	6.07	.0044	.00390				
1300	2	98.38	101.25	100.91	101.60	0.69	.0068	.00530	2.50	2.59	1.07	.0415
	3	275.45	284.20	283.43	284.84	1.41	.0050	.00420	2.57	2.78	0.834	.0300
	4	540.50	559.22	558.38	560.41	2.03	.0036	.00310	2.58	2.90	0.677	.0233
	5	896.20	927.30	925.55	929.02	3.47	.0037	.00300	2.60	2.93	0.682	.0232
	6	1340.50	1387.30	1385.43	1389.66	4.24	.0031	.00270	2.61	2.94	0.571	.0194
1250	2	99.07					· · · · · · · · · · · · · · · · · · ·		2.53	2.69	7.96	.0296
11.70	3	277.45							2.62	2.86	3.93	.0137
	4	544.40							2.62	2.97	5.01	.0169
	5	902.50							2.64	3.00	4.94	.0165
	€	1350.00							2.65	3.01	4.34	.0144
1200	2	99.72	102.93	102.71	103.13	0.41	.0040	.00300	2.57	2.78	6.07	.0218
	3	279.45	288.80	288.38	289.22	0.83	.0029	.00220	2.66	2.93	4.63	.0158
	и	548.30	568.10	567.31	568.80	1.48	.0026	.00220	2.66	3.04	4.45	.0146
	5	941.70	941.50	940.38	942.77	2.39	.00254	.00190				- /-
	-			1407.26		2.78	.00197	.00160				

TABLE 14 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M21

			EXPERI	MENTAL MEAS	UREMENTS				M	ATERIAL P	ROPERTIES	i
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ηs	ⁿ c	E _m ps; × 10 ⁻⁷	E _{DR} PS1 × 10 ⁻⁴	E _{D1} PS1 × 10~*	a ⁿ
1400	2	96.45	99,42	99,00	99,91	0.91	.0092	, nn <i>7</i> n				
	3	270.30	279,40	278,43	280.42	1.99	,0071	,0060				
	4	530.7 5	550,00	548.16	551.82	3.66	,0067	,0060	2.51	4.61	2,44	.0530
	5	879.40	910.80	907.77	913,08	5. 3 0	.0058	.0050				
	6	1317.00	1362.20	1358.51	1365.37	6.86	,nn5n	,0044				
1350	2	97.20	97.90	97.77	98,01	0.24	.0024	,00065	2,45	2.35	2.37	.0101
	3	272.10	273,90	273.69	274.10	0.41	,0015	,0006				
	Ą	530.80	537.50	537.29	537.87	0.58	.0011	, ეიე49				
	5	886.40	891.20	890.71	891.70	0.79	.0011	.00031				
	6	1326.50	1333.50	1332.80	1334,04	1.24	,00093	,00043	2,57	2.32	3.54	.0153
1300	2	97.94	98.65	98,54	98.75	0.204	.00207	.00067				
	3	274.50	276.00	275,82	276.14	0.32	.00116	.00037				
	4	538.80	541.60	541.39	541.89	0.50	,00092	.00036	2.58	4.91	1.52	,0310
	5	893.20	897,80	897,50	898.15	0.64	.00072					
	6	1336.80	1343.40	1342.73	1343,40	0,99	.00074	,00024				

TABLE 15
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M35

			Experim	ENTAL MEASU	REMENTS				м	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PS1 × 10-7	E _{DR} PSI	E _{D1} PS1 × 10 ⁻⁵	ηD
L600	2	83.97	84.85	83.28	86.10	2.82	.0332	.0262				
	3	235.00	239.10	235.63	242.49	6.90	.0287	.0245				
	4	461.40	468.70	460.96	476.53	15.60	.0332	.0305				
	5	764.90	772.90	764.53	779.67	15.10	.0195					
	6	1134.90	1177.30	1159.30	1193.50	34.20	.0291					
550	2	84.54	83.53	83.15	84.08	0.93	.0111	.00533	2.35	1.01	1.43	.1420
	3	236.80	233.00	231.79	234.16	2.37	.0102	.0075	2.43	0.764	2.05	.2680
	4	464.90	455,20	451.16	460.02	8.86	.0195	.0178	2.43	0.545	1.79	. 3240
	5	771.00	758. 60	750.98	764.00	13.00	.0172	.0157	2.45	0.816	4.34	.5320
	6	1153.50	1134.80	1124.50	1144.00	19.60	.0172	.0163	2.46	0.798	4.44	.5560
500	2	85.14	83.89	83.49	84.20	0.70	.00838	.00408	2.38	0.870	1.10	.1270
	3	238.80	234.40	233.40	235.42	2.00	.0086	.0068	2.47	0.690	1.18	. 2730
	4	468.70	461.00	458.23	463.65	5.41	.0118	.0106	2.47	0.804	2.96	. 3680
	5	777.00	764.30	756.70	770.20	13.50	.0176	.0165	2.49	0.814	4.63	. 5690
	6	1162.50	1144.60	1132.00	1156.30	24.30	.0213	.0206	2.50	0.891	5.94	. 6670
450	2	85.87	84.61	84.22	85.02	0.80	.00948	.00628	2.42	0.885	1.72	-1950
	3	240.60	236.70	235.18	238.18	3.00	.0127	.0114	2.51	0.828	3.22	. 3900
	4	472.40	466.10	462.02	470.32	8.30	.0178	.0169	2.51	0.996	4.83	. 4850
	5	783.00	773.30	760.23	781.77	21.50	.0279	.0270	2,53	1.06	7.78	.7370
	6	1171.00	1161.20	1141.70	1177.02	35.30	.0304	.0299	2.54	1.31	8.79	. 6700
400	2	86.52	85.46	84.89	86.07	1.18	.0139	.0114	2.46	1.04	3.20	. 3090
	3	242.45	239.40	237.08	241.77	4.70	.0196	.0186	2.54	1.05	5.40	.5130
	4	475.90	472.80	466.70	479.20	12.50	.0264	.0257	2.55	1.41	7.61	. 5380
	5	789.00	786.00	767.81	796.24	28.40	. 0362	.0354	2.56	1.59	10.60	. 6700
	6	1180.00	1183.20	1160.80	1204.80	44.10	.0372	.0368	2.57	2.00	11.40	.5680
350	2	87.19	86.45	85.49	87.40	1.91	.0221	.0201	2.50	1.27	5.80	. 4560
	3	244.50	243.00	239.56	246.46	6.91	.0284	.0276	2.59	1.46	8.31	. 5690
	4	479.30	481.40	473.89	489.00	15.10	.0314	.0308	2.59	2.10	9.55	. 4550
	5	794.50	799,20	782.04	810.64	28.60	.0358	.0351	2.60	2.21	11.00	.4980
	6	1188.50	1207.60	1189.50	1235.90	46.50	.0385	.0381	2.61	2.88	12.30	.4280
300	2	87.90	87.97	86.57	89.60	3.04	.0345	.0328	2.54	1.85	9.88	. 5360
	3	246.00	247.50	243.67	251.71	8.04	.0325	.0317	2.62	2.24	10.00	. 4480
	4	482.90	490.70	483.75	497.93	14.20	.0289	.0284	2.63	2.88	9.26	. 3220
	5	800.20	819.40	809.91	828.78	18.90	.0230	.0225	2.64	3.40	7.54	.2220
	6	1197.00	1230.00	1216.70	1251.60	34.90	.0284	.0280	2.65	3.62	9.52	.2620
250	2	88.58	89.85	88.30	91.72	3.42	.0380	.0365	2.58	2.71	11.60	.4290
	3	247.70	252.60	249.20	255.91	6.70	.0265	.0259	2.66	3.13	8.63	.2760
	4	486.40	498.90	493.63	504.18	10.60	.0212	.0206	2.66	3.55	7.01	.1980
	5	806.00	829.30	822.17	836.40	14.20	.0172	.0166	2.68	3.78	5.73	.1520
	6	1205.50	1245.20	1236.71	1256.91	20.21	.0162	.0159	2.69	4.11	5.621	.1370

TABLE 15 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M35

			Experi	MENTAL MEAS	UREMENTS				M	ATERIAL P	ROPERTIE	S
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PS1 × 10 ⁻¹	E _{DR} PS1 × 10 ⁻⁴	E _{D1} PS1 × 10 ⁻⁶	ⁿ D
1200	2	89.29	92.00	90.73	93.63	2.91	.0316	.0302	2.62	3.79	1.02	.2700
	3	249.60	256.90	254.58	259.11	4.53	.0176	.0170	2.70	3.83	5.92	. 1550
	4	489.80	505.70	502.44	508.96	6.50	.0129	.0124	2.70	4.06	4.36	.1080
	5	811.50	840.20	835.28	844.45	9.17	.0109	.0104	2.71	4.17	3.71	.0870
	6	1214.00	1259.00	1253.90	1265.20	11.30	.0090	.00865	2.72	4.47	3.10	.0690
1150	2											
	3	251.30	260.30				.0090		2.73	4.34	3.24	.0747
	4	493.20	511.60				.0068		2.74	4.45	2.46	.0550
	5	817.00	849.30				.0059		2.75	4.63	2.16	.0470
	6	1222.00	1272.30				.0045		2.76	4.76	1.66	.0350
1100	2	90.54	94.69	94.24	95.15	0.897	.0095	.0083	2.69	4.97	3.03	.0610
	3	253.00	262.90	262.17	263.58	1.41	.0054	.0049	2.77	4.63	1.81	،0390
	4	496.40	516.10	515.01	517.09	2.08	.0040	.0036	2.77	4.68	1.33	.0280
	5	822.40	857.00	855.29	858.66	3.38	.0039	.0035	2.79	4.87	1.31	.0270
	6	1230.00	1282.40	1280.41	1284.36	3.95	.0031	.0027	2.80	4.93	1.01	.0210
1050	2											
	3											
	4	499.50	520.00				.0022		2.81	4.83	0.826	.0170
	5											
	6	1238.00	1292.00				.0019	·	2.83	5.06	0.725	.0140
1000	2	91.73	96.26	96.06	96.40	0.32	.0033	.0022	2.76	5 .3 5	0.833	.0156
	3	255.50	266.90	266.59	267.14	0.55	.0021	.0016	2.83	4.87	0.793	.0163(2)
	4	501.20	523.60	523.18	524.11	0.93	.0018	.0014	2.83	4.87	0.662	.0140 (2)
	5	830.30	869.30	868.43	870.17	1.74	.0020	.0016	2.84	5.05	0.745	·0150 (2)
	6		1300.60	1299.50	1301.70	2.22	.0017	.0014				

⁽¹⁾ SLIGHT INTERFERENCE WITH BAFFLE.

⁽²⁾ E_D + n_D & 1025 °F

TABLE 16
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M24

			EXPERIM	ENTAL MEASU	IREMENTS					ATERIAL P	ROPERTIES	
EMP.	MODE	F _H	F _C	FL	FR	ΔF	n _s	ⁿ c	E _M PSI	E _{DR} PS I	E _{D1} PS1	ηD
*F		Hz	Hz	Hz	Hz				× 10-'	× 10-4	× 10-5	
1650	1		236.60	234.59	238.54	3.96	.0167	.0107				
	2		236.60	234.59	238.54	3.96	.0167	.0107	2.36	0.634		. 4420
	3		449.30	444.95	454.03	9.08	.02021	.0167	2.36	0.635	2.801	.4423
	5		777.00	764.18	785.79	21.62	.0278	.0244	2.39	1.05	6.458	.6130
	6		1165.60	1133.53	1178.00	44.50	.03815	.0364				
1600	1	13.57							·····			
	2	86.55										
	3	243.10	239.80				.0195	.0108	2.40	0.921	5,231	.5680
	4	477.70										
	5	792.60	789.00	766.05	801.55	35.50	.0450	.0426	2.43	1.46	8,937	.0320
	6	1186.50	1187.00	1157.01	1205.98	48.98	.0413	.0400	2.43	1.74	7,999	.4570
1550	1	14.03	14.88	14.73	15.01	0.274	.0184					
	2	87.57										
	3	245.20	242.66	239.57	244.08	4.51	.0363	.0337	2.44	1.33	8.014	.6040
	4	481.50	453.20	450.53	456.45	5.92	.0131					
	5	798.70	803.00					.0375	2.46	2.03	10.948	.5390
	6	1195.60	1550.00					.0300	2.47	2.47	9,026	.3620
1500	1	14.45	13.97	13.63	14.17	0.54	.0386	.0216				
	2	88.32										
	3	247.20	248.00	242.78	251.66	8.88	.0358	.0340	2.49	1.96	9,922	. 5070
	4	485.40										
	5	805.10	819.40	798.72	830.29	31.60	.0385	.0372	2.50	2.72	4,959	.4050
	6	1205.30	1232.50					.0270	2.51	3.13	8,500	.2700
1450	1		14.25	13.96	14.51	0.54	.0379	.0264				<u></u>
	2		89.77	88.67	91.25	2.58	.0288	.0260				
	3	249.10	252.60	247.61	256.50	8.90	.0352	.0339	2.52	2.61	10.400	. 3980
	4		496.00	488.50	503.50	15.00	.0303	.0293				
	5	811.50	832.80	820.20	841.89	21.70	.02604	.0250	2.54	3.37	9.288	.2760
	6	1214.50	1250.90	1237.00	1265.18	28.20	.0225	.0219	2.55	3.66	7.065	.1920
1400	1	15.61	14.83	14.58	15.11	0.54	.0361	.0264				
	2	89.97	91.32	90.06	93.40	3.34	.0366	.0342				
	3	251.23	257.00	252.92	260.55	7.61	.0296	.0286	2.56	3.26	9.118	. 2800
	4	493.14	506.10	502.01	509.32	7.30	.0282	.0275				
	5	817.80	843.70	834.24	852.73	18.50	.0219	.0210	2.58	3.88	3,324	.1710
	6	1224.30	1267.70	1257.40	1276.98	19.60	.0155	.0150				
1350	1											
	2											
	3	253.00	261.60	258.83	263.98	5.15	.0197	.0189	2.60	3.86	6.661	.1730
	4		514.70	509.80	517.90	8.07	.0157	.0151				
	5	824.00	856.40	850.92	861.70	10.80	.0126	.0118	2.62	4.35	4.296	.0980
	6	1233.00	1282.20	1275.20	1288.70	13.50	.0105	.0102	2.63	4.38	3,569	.0810

TABLE 16 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M24

	_		EXPERI	MATERIAL PROPERTIES								
F.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ns	⁴ c	E _M PSI × 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁴	E _{DI} PSI × 10 ⁻¹	ם ^ח
1300	1	15.42										
	2	91.18										
	3	254.80	264.80	263.01	266.53	3.53	.0133	.0126	2.64	4.32	4.339	.1060
	4	500.20	520.40	517.73	523.07	5.33	.0103	.0097				
	5	829.40	865.00	861.18	868.51	7.33	.00847	.0078	2.66	4.64	2.819	.0600
	6	1241.50	1294. <i>7</i> 0	1289.49	1299.04	9.50	.0074	.00709				
1200	1	15.85								_		
	2	92.35										
	3	258.60	270.30	269.56	271.05	1.50	.0055	.0050	2.71	4.27	1.653	.0390
	4	507.60	530.20	529.10	531.32	2.22	.0042	.00372				
	5	841.70	880.10	878.35	881.68	3.33	.0378	.00323	2.74	4.94	1.142	.0230
	6	1259.90	1316.30	1314.41	1318.57	4.20	.00316	.00291				
1100	1	15.55										
	2	93.80	98.16	98.08	98.25	0.17	.00338	.00233				
	3	262.29	274.50	274.10	274.82	0.71	.00258	.00209	2.79	5.16	4.259	.0130
	4	514.80	538.00	537.43	538.50	1.07	.00199	.00154				
	5	853.50	892.90	892.06	893.66	1.60	.00179	.00129	2.81	5.16	5.117	.0100
	6	1277.50	1335.10	1334.00	1336.00	1.96	.00147	.00124				
1050	1											
	2											
	3	264.00	276.40				.0011		2.83	5.24	0.416	.0080
	4											
	5	858.70	898.70				.0010		2.85	5.25	0.0362	.0070
	6											
1000	1	15.39										
	2	94.88	99.35	99.25	99.43	0.19	.00189	.00084				
	3	265.40	278.30	278.14	278.47	0.33	.0012	.00072				
	4	520.90	545.20	544.87	545.55	0.68	.00125	.00089				
	5	863.70	904.80	904.32	905.31	0.98	.00109	.00069				
	6	1292.60	1352.80	1352.10	1353.45	1.40	.00101	.00078				

⁽¹⁾ $\eta_{bb} = .02+$

TABLE 17 EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M11

			Experim	IENTAL MEASL	IREMENTS	MATERIAL PROPERTIES						
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M esi × 10"	E _{DR} PSI × 10-4	E _{D1} PS1 × 10 ⁻⁵	ם"
1450	2	88.71	86.88	87.18	86.69	0.50	.00574	.0030	2.41	5.83	0.7971	.1320
	3	248.00	242.20	242.96	241.48	1.48	.00613	.00485	2.49	0.452	1.274	.2820
	4		480.10	481.30	478.54	2.76	.0092	.0103				
	5	806.60	789.20	793.90	784.13	9.80	.0124	.0116	2.50	5,40	3,193	. 5910
	6	1207.10	1181.61	1190.90	1170.96	19.90	.01688	.0162	2.51	5.78	4.324	.7430
1400	2	89.42	87.54	87.86	87.30	0.56	.0064	.00417	2.45	5.71	1,133	.1920
	3	249.90	244.20	245.34	243.07	2.27	.00928	.00833	2.52	0.49	2.218	. 4530
	4		484.60	485.93	482.51	3.42	.0138	.0130	2.54	0.679		
	5	812.60	796.90	804.57	788.33	16.24	.0204	.0198			4.977	.7320
	6	1216.10	1194.20	1206.42	1174.95	31.50	.0264	.0259			6.050	.8000
1350	2	90.12	88.39	88.89	88.04	0.845	.00956	.00746	2.49	0.679	2,065	.2940
	3	251.84	246.85	248.67	245.07	3.60	.0146	.0138	2.56	.0.664	3,778	.5690
	4		489.80	493.41	482.37	11.04	.0225	.0218				
	5		806.00	816.70	794.50	22.20	.0275	.0269				
	6	1224.80	1212.00	1221.00	1202.90	18.10	.0291	.0286	2,58	1.20	8.560	.7110
1300	2	90.79	89.27	90.16	88.72	1.44	.0161	.0141	2.53	0.825	3.970	.4160
	3	253.70	249.70	252.72	247.15	5.58	.0223	.0216	2.60	0.905	6.102	.6750
	4											
	5	824.40	820.00	831.81	801.15	30.65	.0374	.0368	2.61	1.44	11.050	.7650
	6	1253.50	1233.20	1253.30	1202.50	50.79	.0412	.0408	2.10	0.906		1.3210
1250	2	91.44	90.68	91.44	90.15	1.29	.0277	.0257	2.56	1.32	7.466	.5500
	3	255.53	253.90	258.40	250.20	8.20	.0323	.0316	2.54	1.47	9.122	.6220
	4											
	5	830.20	836.10	850.56	812.35	38.20	.0457	.0452	2.65	2.28	13.810	.6060
	6	1242.20	1260,20	1286.70	1228.20	58.47	.0464	.0461	2.66	2.73	14.5 3 0	. 5280
1200	2	92.06	91.85					.0380	2.60	1.68	11,480	,6600
	3	257.30	259.70	264.70	255.08	9.61	.0370	.0363	2.68	2.44	11,300	.4630
	4	505.10	513.35	521.24	515.44	15.80	. 0308	.0303	2.68	2.88	9.891	. 3430
	5	836.00	854.70	867.83	836.54	31.30	.03601	.0361	2.69	3.29	11.900	.3610
	6	1250.90	1291.00	1317.00	1269.20	47.80	.03703	.0367	2.69	3.91	12.320	.3130
1150	2	92.66	93.82					.0450	2.63	2.60	14,390	. 5360
	3	259.00	266.25	270.45	261.63	8.82	.0331	.0320	2.71	3.60	10.970	.3050
	4	507.50	524.30	530.08	516.48	13.61	.02595	.0250	2.71	3.99	8,327	.2080
	5		872.60	881.29	861.40	19.90	.0228	.0222				
	6	1275.00	1312.00	1325.38	1299.55	25.80	.0197	.0193	2.80	5, 33	6,688	. 1440
1100	2	93.24	96.05					.0410	2.67	3.74		.3620
	3	260.60	270.40	273.69	267.36	6.33	.0234	.0228	2.75	4.35	7.953	.1830
	4		532.70	536.45	528.54	7.91	.0149	.0144				
	5	847.10	885.20	889.44	879.43	10.00	.0113	.0108	2.76	4.85	3,928	.0808
	6	1267.40	1326.60	1333.30	1319.80	13.50	.0102	.0099	2.76	5.01	3.619	.0717

TABLE 17 (CONTINUED) EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M11

			Experi	MATERIAL PROPERTIES								
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	"c	E _M PS1 × 10"	E _{DR} PSI * 10-4	E _{D1} PS1 * 10 ⁻³	n _D
1050	2	93.79	97.94	98.40	97.18	1.21	.02418	.0230	2.70	4.68	8.26117	.1710
	3	262.20	274.56	276.33	272.94	3.39	.0123	.0118	2.78	5.05	μ.266	.0844
	4	513.40	538.50	540.77	536.22	4.55	.00845	.00795	2.77	4.78	3.714	.0775 (1)
	5		894.90	898.10	891.50	6.64	.00743	.0069				
	6	1275.00	1339.40	1343.73	1334.94	8.79	.00656	,00627	2.80	5.33	2.210	.0414
1000	2	94.33	99,44	99.84	98.78	1.05	.01061	.0096	2.73	5.34	3,580	.0650
	3	262.93	277.62	278.53	276.67	1.86	.00669	.00619	2.79	5.42	3.176	،0585 ⁽²
	4	516.40	543.50	544.78	542.18	2.60	.00478	.00428	2.80	5.13	2.085	.0406 ⁽²
	5	854.90	903.10	905.22	900.98	4.24	.0047	.0043	2.81	5.45	1.894	.0347 (2
	6		1351.40	1354.32	1348.51	5.81	.0043	.00406				
900	2		101.17	101.33	100.97	0.357	.00353	.00265				
	3		282.00	282.41	281.63	0.78	.00276	.00236				
	4		551.60	552.27	550.90	1.37	.00248	.00192				
	5		916.30	917.43	915.16	2.27	.00247	.00213				
	6		1371.00	1372.57	1369.36	3.21	.00234	.00211				

⁽¹⁾ $E_D + n_D = 1075 \text{ °F}$ (2) $E_D + n_D = 1025 \text{ °F}$

TABLE 18
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M22

			Experie	IENTAL MEASL	IREMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M	Fc	FL	FR	ΔF	n _s	ⁿ c	E _m ps i	E _{DR} PS1	EDIPSI	'nD
°F		Hz	Hz	Hz	Kz				× 10-7	× 10~	× 10 ⁻⁶	
1600	1		13.40	13.20	13.61	0.41	.0307	.0167				
	2		91.51	90.74	92.61	1.87	. 0204					
	3	244.70	238.70	236.78	240.32	3.54	.0148	.0107	2.41	0.363	2.924	.080€
	4	475.50	470.10	467.62	472.30	4.68	.0194	.0∟59	2.37	1.06	4.342	.4190
	5	793.50	782.00	773.40	789.83	16.43	.0210	.0175	2.41	0.692	7.401	.8280
	6	1185.00	1183.60	1173.57	1189.34	15.77	.0133	.0120	2.41	1.64	3.433	.2080
1500	1		13.90	13.70	14.14	0.44	.0319	.0179				
	2											
	3	247.60	244.40	240.38	246.66	6.27	.0257	.0242	2.47	1.00	6.753	.6740
	4	486.50	482.00	485.89	477.26	8.63	.0349	.0290	2.48	1.24	7.016	.5650
	5	806.00	804.46	789.08	815.59	26.50	.0330	.0298	2.49	1.69	8.826	.5210
	6		1196.30	1187.65	1201.35	13.70	.0223	.0216				
1450	1		14.06	13.89	14.29	0.397	.0282	.0152				_
	2				,							
	3		247.90	242.55	250.85	8.30	.0335	.0324				
	4		491.50	486.26	494.73	8.47	.0336	.0256				
	5	812.00	818.60	801.90	829.39	28.30	.0346	.0317	2.53	2.24	9.273	.4380
	6		1200.60	1188.78	1209.19	20.40	.0170	.0166				
1400	1											
	2											
	3	251.40	252.10	245.97	255.25	9.30	.0368	.0358	2.54	1.97	10.800	.5470
	4	495.00	499.80	495.02	503.27	8.25	.0322	.0242	2.57	2.44	7.840	.3210
	5	818.50	832.00	816.26	842.53	26.30	.0316	.0288	2.57	2.84	9.802	.3260
	6		1205.70	1194.74	1215.66	20.90	.0173	.0170				
1350	1		14.47	14.25	14.74	0.49	.0338	.0228				
	2											
	3	254.40	256.60	250.76	259.46	8.69	.0339	.0329	2.61	2.38	10.451	.4380
	4	499.00	508.10	500.15	513.66	13.50	.0266	.0216	2.61	3.03	6.867	.2261
	5	824.50	846.10	833,40	853.83	20.40	.0241	.0216	2.61	3.50	7.176	.2050
	6		1210.20	1199.04	1221.45	22.40	.0185	.0182				
1300	1		14.71	14.34	15.07	0.73	.0497	.0400				
	2											
	3	255,20	261.24	257.22	263.78	6.56	.0250	.0243	2.62	3.38	8.335	.2470
	4	502.60	516.30	511.12	520.37	9.26	.0179	.0140	2.64	3.63	5,101	.1400
	5	830.70	858.40	851.21	864.28	13.17	.0153	.0130	2.64	4.04	4.501	.1110
	6		1213.90	1200.05	1228.65	28.60	.0236	.0233				
1250	1		15.00	14.73	15.38	0.64	.0430	.0343				
	2											
	3	257.10	265.60	262.78	267.33	4.55	.0171	.0164	2.66	4.04	5,562	.1380
	4	506.20	522.90	519.40	525.90	6.50	.0124	.00853	2.68	4.08	2,948	.0720
	5	836.80	868.40	863,63	872.52	90.ه	.01024	.00824	2.68	4.64	2.675	.0600
	6		1299.50	1293.50	1304.80	11.30	.0087	.00845				

TABLE 18 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M22

			Experim	MATERIAL PROPERTIES								
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PS1 × 10"7	E _{DR} PSI × 10 ⁻⁶	E _{D1} PS1 × 10 ⁻⁶	D
1200	1		15.34	15.14	15.65	0.50	.0327	.0272				
	2											
	3	258,90	269.30	267.81	270.45	2.63	.00979	.0090	2.70	4.53	2.873	.0710
	4	509.60	529.10	527.29	531.07	3.78	.00714	.0028	2.72	4.47	1.083	.0240
	5	842.50	878.30	875.66	880.75	5.10	.0058	.0041	2.72	4.76	1.498	.0314
	6	1256.30	1313.20	1310.10	1316.14	6.03	.00459	.0042	2.71	4.95	1.549	.0310
1150	1		15.62	15.49	15.81	0.32	.0204	.0137				
	2											
	3	260.60	271.96	271.16	272.70	1.54	.00568	.00493	2.74	4.90	1.806	.0370
	4	513.00	533.70	532.59	534.87	2.28	.00427	.00077	2.76	4.71	0.310	.0066
	5	848.20	885.30	883.70	887.08	3.37	.00381	.00234	2.76	4.95	0.819	.0165
	6	1272.00	1323.20	1321.18	1325.20	4.00	.00304	.00279	2.77	4.72	1.039	.0220
1100	1											
	2											
	3	262.30							2.77	5.10	1.033	.G2 Q 2
	4	516.10							2.79	4.90	0.161	.0033
	5	853.50							2.79	5.10	0.416	.0082
	6											
1050	1		15.99	15.90	16.06	0.16	.00974	.00374				
	2											
	3	263.90	276.30	<i>27</i> 5.99	276.59	0.60	.00218	.00159	2.80	5.28	0.0611	.0116
	4	519.00	541.60	541.10	542.06	0.97	.00179	.00287	2.82	5.04	0.0110	.0022
	5	858.50	898.20	897.42	898.96	1.53	.00170	.0005	2.83	5.22	0.0211	.0040
	6		1341.60	1340.66	1342.64	1.98	.00148	.00128				
1000	1			_								
	2											
	3	265.40							2.84	5.41	0.0426	.0079
	4	5 22.00							2.85	5.10	0.0886	.0017
	5	863.50							2.86	5.31	0.214	.0023
	6											

TABLE 19
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M14

			Experim	IENTAL MEASU	REMENTS			MATERIAL PROPERTIES						
TEMP.	MODE	FM	F _L	FR	FR	ΔF	ns	ⁿ c	Eppsi	E _{DR} PS1	EDIPSI	n _D		
•F		Hz	Hz	Hz	Hz				× 10 ⁻⁷	× 10-6	× 10"			
1500	1	13.97	12.04	11.86	12.23	0.374	.03105	.01680						
	2	87.50	85.37	85.13	85.59	0.46	.00538	.00140	2.33	4.90	0.358	. 0593		
	3	245.20	239.71	239.30	240.14	0.839	.00350	.00186	2.41	0.593	0 ' ri8ri	.0685		
	4	480.30	471.70	470.89	472.57	1.68	.00356	.00159						
	5	807.70	781.10	779.48	782.72	3.23	.00414	.00318	2.49	0.136		. 5090		
	6	1193.70	1168.60	1165.90	1171.10	5.20	.00445	.00378	2.43	0.66	1.024	. 1300		
1450	1		13.01	12.85	13.20	0.356	.02740	.01640						
	2		86.25	86.05	86.43	0.38	.00440	.00100						
	3	246.95	241.70	241.28	242.15	0.871	.00360	.00250	2.44	0.652	0.632	.0812		
	4	803.20	475.50	474.59	476.49	1.90	.00399	.00301						
	5		787.30	785.18	789.17	4.00	.00508	.00421	2,48	0,645	1.1/1	.1320		
	6	1202.70	1177.60	1173.97	1181.03	7.06	.00599	.00539	2.51	0.592	1,441	.1780		
1400	1		13.31	13.21	13.47	0.35	.02616	.01580						
	2	88.90	86.94	86.74	87.11	0.37	.00426	.00186	2.40	0.607	0.494	.0661		
	3	246.95	243.60	243.07	244.09	1.02	.00419	.00319	2.48	0.679	0.879	.1090		
	4		479.40	480.61	478.01	2.60	.00542	.00302						
	5	803.20	793.50	790.51	796.31	5.79	.00730	.00653	2.50	0.763	1.726	.1900		
	6	1202.70	1187.90	1181.60	1192.60	11.00	.00925	.00868	2.54	0,669	2.365	.2650		
1350	1		12.65	12.51	12.80	0.291	.02300	.01500						
	2	89.62	87.52	87.28	87.70	0.413	.00472	.00242	2.44	0.555	0.651	.0953		
	3	248.80	245.60	244.83	246.24	1.40	.00572	.00484	2.52	0.715	1.31)	.1540		
	4		483.30	481.28	485.15	3.88	.00802	.00542						
	5	809.00	800.20	795.23	804.57	9.34	.01170	.01100	2.53	0.821	2.966	.3030		
	6	1211.70	1198.00	1188.30	1206.85	18.57	.01550	.01500	2.54	0.815	4.152	. 4250		
1300	1	14.48	12.59	12.46	12.76	0.304	.02410	.0163						
	2	90.30	88.17	87.85	88.40	0.55	.00625	.00365	2.48	0.556	0.996	.1450		
	3	252.60	247.59	246.43	248.57	2.14	.00866	.00788	2.56	0.750	2.176	. 2430		
	4	494.00	487.64	484.10	490.82	6.72	.01380	.01060						
	5	821.10	808.10	799.04	814.86	15.82	.01960	.01900	2.57	0.944	5,332	. 4730		
	6	1229.30	1211.20	1193.64	1226.75	33.10	.02733	.0268	2.62	0.971	7.665	.6380		
1250	1		14.21	14.09	14.33	0.239	.02520	.01755						
	2	90.97	89.11	88.85	89.31	0.46	.01010	.00777	2.52	0.709	2.181	.2500		
	3	254.50	250.00	247.90	251.91	4.01	.01604	.01530	2.60	0.864	4.305	.4180		
	4		492.80	486.48	498.63	12.15	.02460	.02120						
	5	827.80	818.13	801.15	830.15	29.00	.03540	.03490	2.61	1.16	10.108	.7280		
	6	1237.90	1234.10	1205.20	1254.26	49.10	.03977	.03930	2.62	1.59	11.621	.6090		
1200	1		14.60	14.48	14.74	0.254	.01740	.01010				-		
	2	91.60	89.87	89.37	90.29	0.938	.02010	.01800	2.55	0.793	5.126	.5250		
	3	256.40	253.17	248.56	256.56	8.00	.03160	.03090	2.64	1.13	8.959	.6670		
	4		502.20	491.21	510.15	18.90	.03770	.03370						
	5	834.00	834.70	809.39	849.91	40.52	.04850	.00481	2.65	1.81	14.601	.6700		
	6	1247.00	1261.70	1237.50	1284.03	46.60	.03690	.03650	2.69	2,61	11.847	.4160		

TABLE 19 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M14

			EXPERI	MENTAL MEAS	UREMENTS				M	ATERIAL	PROPERTIES	3
TEMP.	Mode	F _M Hz	F _L Hz	F _R Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E PSI × 10~'	E _{DR} PSI × 10 ⁻⁴	E _{D1} PS1 × 10 ⁻⁴	ⁿ D
1150	1		16.21	16.05	16.30	0.31	.01410	.01290				
	2											
	3	258.10	258.90	252.39	263.55	11.15	.04310	.04240	2.67	1.94	13.049	.5650
	4	510.00	514.48	504.31	522.47	18.15	.03530	.03100	2.71	2.26	10.183	.3760
	5	839.80	859.00	844.38	870.47	26.10	.03040	.03000	2.69	2.29	11.585	.3210
	6	1255.60	1289.30	1269.20	.306.93	37:70	.02927	.02880	2.73	3.62	9.710	.2520
1100	1	14.84	15.84	16.07	15.60	0.47	.02980	.02390				
	2	92.89										
	3	259.90	265.90	260.68	269.86	9.18	.03450	.03390	2.71	3.03	11.221	.3110
	4	512.60	525.50	518.30	531.70	13.36	.02540	.02040	2.74	3.17	6.916	.1820
	5	845.00	873.10	862.22	880.82	18.61	.02130	.02090	2.72	3.60	7.215	.1670
	6	1264.00	1311.00	1298.50	1322.40	23.90	.01820	.01780	2.76	3.83	6.296	.1370
1050	1		15.81	15.48	16.14	0.67	.04240	.03690				
	2											
	3	261.50	271.40	268.36	274.16	5.80	.02140	.02080	2.74	3.89	7.279	.1570
	4	515.20	533.70	529.72	537.52	7.80	.01460	.00962	2.77	3.81	3,377	.0740
	5	849.80	886.10	879.74	891.50	11.76	.01330	.01280	2.76	4.18	4.216	.0842
	6	1271.90	1327.30	1320.13	1334.20	14.10	.01061	.01020	2.76	4.24	3,681	.0722
1000	1	15.01	16.86	16.59	17.23	0.64	.03780	.03260				
	2	94.00	98,50	97.79	99.46	1.61	.01633	.00593	2.69	4.37	2.556	.0470
	3	263.00	275,50	273.95	277.13	3.18	.01150	.01100	2.77	4.49	4.006	.07 50
	4	517.20	540.20	538.07	542.53	4.47	.00827	.00327	2.79	4.33	1,454	.0280
	5	854.80	896.00	892.54	899.04	6.50	.00725	,00685	2.79	4.55	2,535	.0465
	6	1278.90	1341.60	1337.10	1346.10	9.00	.00671	.00630	2.79	4.61	2.336	.0421
950	1		16.03	15.85	16.28	0.43	.02690	.02210	· · · · · · · · · · · · · · · · · · ·			
	2		99.35	98.96	99.85	0.89	.00895	.00800				
	3		278.40	277.45	279.30	1.85	.00665	.00600				
	4		545.30	543.69	546.93	3.24	.00594					
	5		903.90	901.71	906.21	4.50	.00497	.00450				
	6		1353.50	1350.60	1356.90	6.23	.00460	.00430				

TABLE 20 EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M48

			EXPERIM	IENTAL MEASU	REMENTS				M	ATERIAL P	ROPERTIES	_
TEMP.	Mode	F _M	F _C	FL	FR	ΔF	n _s	ⁿ c	E _M PS1	EDRPSI	E _{D1} PS1	n _D
*F		Hz	Hz	Hz	Hz				× 10-'	× 10 ⁻⁴	× 10-1	
1500	2	95.15	92.70	92.47	92.96	0.49	.00529	.00169	2.36	0.419	0.363	.0866
	3	266.50	260.20	259.76	260.66	0.90	.00350	.0015	2.44	0.530	0.335	.0633
	4	523.50	514.77	513.61	515.97	2.36	.00458	.00338	2.45	0.854	0.774	. 0907
	5	868.00	846.50	845.02	848.10	3.08	.00364	.0026	2.47	0.483	0.585	.1210
	6	1299.50	1268.30	1265.76	1270.33	4.57	.0036	.0029	2.48	0.521	0.658	.1260
1450	2	95.92	93.48	93.31	93.69	0.38	.00411	.00131	2.40	0.440	0.286	.0651
	3	268.70	262.20	261.76	262.66	0.90	.00344	.0020	2.48	0.513	0.454	.0889
	4	527.50	518.24	517.14	519.53	2.39	.00461	.00374	2.49	0.826	0.867	. 1050
	5	875.00	853.00	851.21	854.77	3.57	.00418	.00328	2.51	0.473	0.749	. 1580
	6	1309.50	1277.80	1274.96	1280.39	5.44	.00425	.00365	2.52	0.520	0.840	. 1620
1400	2	96.69	94.24	94.07	94.42	0.346	.00368	.00143	2.44	0.452	0.318	.0704
	3	270.85	264.24	263.75	264.76	1.01	.00383	.00263	2.52	0.510	0.606	.1190
	4	531.60	522.30	520,991	523.70	2.70	.00517	.00460	2.53	0.841	0.108	.1290
	5	881.60	859.77	857.19	862.07	4.88	.00567	.00487	2.54	0.499	0.113	.2270
	6											
1350	2	97.40	94.99	94.78	95.18	0.406	.00427	.0025	4.00	0.485	0.565	.1160
	3	272.90	266.30	265.73	266.94	1.20	.00453	.00363	2.56	0.53	0.85	.1600
	4	535,70	526.80	524.88	528.82	3.94	.00748	.00692	2.56	0.897	0.166	.1850
	5	888.00	866.85	836.11	870.40	7.29	.00841	.00766	2.58	0.551	0.181	.3280
	6	1329.00	1298.80	1291.26	1304.77	13.50	.0104	.00995	2.59	0.607	2.37	.3900
1300	2	98.20	95.98	95.74	96.24	0.50	.00518	.0037	2.51	0.595	0.855	.1440
	3	275,00	268.67	267.73	269.59	1.85	.0069	.00611	2.60	0.595	0.146	. 2450
	4	539.80	531.50	528.88	534.36	5.48	.0103	.00983	2.60	0.972	0.240	.2470
	5	894.70	874.70	868.36	880.75	12.40	.0142	.0134	2.62	0.632	0.332	.5110
	6	1339.00	1309.80	1295.09	1320.85	25.76	.0197	.0193	2.63	0.662	4.68	.7070
1250	2	98.90	96.59	96.25	96.96	0.71	.00734	.00614	2.55	0.567	1.44	.2530
	3	277.00	271.10	269.56	272.62	3.06	.0113	.0106	2.64	0.689	2.58	.3740
	4	543,60	537.10	532.79	541.83	9.03	.0168	.0164	2.64	1.66	4.11	.3540
	5	901.00	884.70	873.82	893.73	19.91	.0225	.0218	2.66	0.854	5 .39	.6310
	6	1348.90	1324.90	1315.65	1333.71	18.06	.0266	.0262	2.67	0.875	6.52	.7460
1200	2	99.65	97.65	96.99	98.31	1.32	.0135	.0125	2.59	0.736	3.00	.4070
	3	279.00	274.50	271.51	277.39	5.88	.0214	.0208	2.68	0.961	5.21	.5430
	4	547.50	546.20	538.88	554.82	15.94	.0292	.0287	2.68	1.67	7.50	.4480
	5	907.80	899.50	880.20	913.74	33.54	.0373	.0366	2.70	1.38	9.43	.7100
	6	1358.90	1346.30	1330.21	1362.40	32.19	.0466	.0461	2.71	1.33	11.90	. 8980
1150	2	100.38	99.87	97.63	100.12	2.49	.0252	.0243	2.63	1.50	6.18	.4110
	3	281.00	279.40	274.62	284.26	9.64	.0345	.0339	2.71	1.52	8.88	.5850
	4	551.30	558.70	549 .54	570.03	20.49	.0367	.0363	2.72	2.55	10.10	. 3950
	5	914.00	926.40	906.18	946.10	39.30	.0424	.0420	2.73	2.57	11.70	.4600
	6											

TABLE 20 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M48

			Experi	MENTAL MEAS	SUREMENTS				•	ATERIAL	PROPERTIE	s
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	٥F	ηs	ⁿ c	E _M PSI × 10-7	E _{DR} PSI × 10-6	E _{D1} PS1 × 10 ⁻⁴	ⁿ D
1100	2	101.20	100.99	98.71	102.98	4.27	.0423	.0413	2.67	1.68	10.80	.6390
	3	283,00	28 6.45	281.41	291.48	10.07	.0351	.0345	2.75	2.51	9.66	.3840
	4	555.20	570.70	563.13	580.48	17.40	.0304	.0300	2.76	3.40	8.80	.2590
	5 6	920.40	946.20	937.38	956.66	19.28	.0204	.0197	2.77	3.43	5.82	.1700
1050	2	101.80	104.11	102.16	106.06	3.91	.0375	,0365	2.70	3.04	10.40	.3400
	3	284.90	292.89	289.30	296.50	7.20	.0246	.0240	2.79	3.45	0.713	.2070
	4	558.80	580.60	575.47	586.27	10.80	.0186	.0182	2.79	4.09	5.59	1370
	5	926.30	958.90	950.57	965.00	15.43	.0161	.0154	2.81	3.89	4.70	.1210
	6	1387.00	1439.50	1434.39	1444.69	10.22	.0138	.0133	2.82	4.07	4.12	.1011

TABLE 21
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M5

			Experim	IENTAL MEASL	IREMENTS				E	ATERIAL PR	ROPERTIES	
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PS1 × 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁶	E _{DI} PS1 * 10 ⁻⁵	ⁿ D
1500	2	89.99	87.20	87.14	87.61	0.47	.000542	.00082	2.34	0.147		. 1240
	3	251.50	245.10	204.65	245.62	0.973	.00397	.00207	2.41	C.46		.1160
	4	493.70	479.00	478.27	481.39	3.12	.00442	.00262	2.41	0.21		.2900
	5	818.30	795.80	793.46	798.02	4.56	.0057	.00483	2.43	0.157		.7120
	6		1190.80	1186.24	1194.74	8.50	.0071	.00€2				
1450	2	90.70	88.03	87.83	88.21	0.387	.0044	.0013	2,45	1.08	0.304	.0281
	3	253.50	246.87	246.39	247.45	1.06	.00429	.00301				
	4	497.50	483.98	482.67	485.44	2.76	.00571	.00441				
	5	824.80	801.86	798.47	805.15	6.69	.00834	.00748				
	6	1234.30	1200.80	1193.30	1206.30	13.00	.0018	.0101				
1400	2	91.38	88.12	87.92	88.34	0.416	.00472	.00207	2.41	0.0862	0.592	.6640 (1
	3	255.50	247.33	246.74	247.91	1.17	.00475	.00364	2.48	0.199	1.105	5550 ⁽¹
	4	501.30	484.90	483.28	486.57	3.30	.00679	.00551	2.49	0.239	1.838	.7680 (1
	5	831.0C	£03.50	799.49	807.36	7.87	.0098	.00893	2.50	0.239	2.928	1.2300 (1
	6	1243.40	1201.90	1192.90	1210.67	17.20	.0143	.0137	2.51	0.283	4,193	1.4700(1
1350	1	14.68	14.34	14.29	14.39	0.105	.00731	.00031	2.52	0.551	0.740	.0130
	2	9 2.07	89.22	88.95	89.50	0.55	.00610	.00396	2.45	0.162	0.965	.5770
	3	257. 40	250.30	249.19	251.43	2.24	.00896	.00811	2.71	0.252	1.385	.7320
	4	50 5.00	#91.20	487.52	495.10	7.58	.0154	.0140	2.52	0.333	3.483	1.0460
	5	837.20	813.50	804.44	822.57	18.13	.0223	.0214	2.54	0.385	5,282	1.3700
	6	1252.60	1223.10	1200.90	1245.33	44.24	.0363	.0358	2.54	0.385	6,986	1.3050
1300	1	14.72	14.45	14.38	14.52	0.138	.00953	.00313	2.53	0.799		.0765
	2	92.75	90.08	89.66	90.52	0.860	.00955	.00725	2.48	0.265	1.797	.6560
	3	259.20	252.90	250. 9 9	255.00	4.00	.0159	.01514	2.56	0.383	3.731	. 9750
	4	50 8.70	497.90	491.76	505.41	13.60	.0274	.0259	2.56	0.699	6,063	.9230
	5	843.60	826.20	809.13	839.42	30.30	.0367	.0358	2.58	0.621	8,974	1.4400
	6	1262.00	1253.10	1227.70	1278.50	50.80	.0405	.0401	2.58	1.40	11,434	.3090
1250	1	14.80	14.56	14.63	14.47	0.152	.01047	.00467	2.56	0.918	1.151	.1250
	2	93.46	91.00	90.24	91.91	1.68	.0184	.0162	2.52	€.36€	3.775	.9990
	3	261.10	256.40	252.68	260.13	7.45	.0291	.0284	2.59	0.756	6.013	.9146
	4	512.30	509.30	498.45	520.21	21.76	.0427	.0412	2.60	1.47	11.217	.7610
	5	849.80	840.13	819.27	860.55	41.30	.0491	.0483	2.62	1.25	12,984	1.0400
	6	1271.00	1303.80	1277.10	1377.90	40.70	.0609	.0605	2.62	3.18	16.566	.5180
1200	1	14.95	14.65	14.54	14.76	0.213	.0145	.00911	2.61	0.733	7,483	.3160
	2	94.16	93.41	91.59	94.55	2.96	.03173	.0293	2.5€	0.528	7.321	.1340
	3	263.00	262.00	256.70	267.53	10.80	.0413	.0408	2.63	0.161	11.155	.6910
	4	515.90	525.70	512.27	539.23	27.40	.05128	.0499	2.63	0.283	17,439	.6150
	5	856.00	866.40	844.24	883.55	39.30	.0454	.0447	2.65	0.249	13,509	.5410
	6	1279.80	1319.30	1292.30	1346.10	53.80	.0408		2.65	0.377	12,639	.3330

TABLE 21 (CONTINUED)

EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M5

			Experie	IENTAL MEASI	UREMENTS				M	ATERIAL Í	ROPERTIE	s
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _m ps; × 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁶	E _{D1} PS1 × 10 ⁻¹	
1150	1	15.13	14.84	14.65	15.10	0.456	.0307	.0256	2.68	0.80		.8270
	2	94.84	94.12	93.25	95.02	1.77	.01883	.0166	2.60	0.808	11.420	1.3700
	3	264.90	269.40	263.58	274.93	11.35	.04211	.0369	2.67	0.283	11.160	.3940
	4	519.50	535.60	525.98	547.98	22.00	.04107	.0398	2.67	0.368	12.271	.3330
	5	862.00	888.80					.0290	2.69	0.367	8.946	.2440
	6	1288.80	1340.30	1324.15	1352.08	27.90	.0208	.0205	2.69	0.419	6.521	1550
1100	1	15.34	15.12	14.78	15.63	0.857	.05668	. 0520	2.75	1.09	14.368	1.3100
	2	95.53	94.65	93.64	95.67	2.00	.02139	.0193	2.64	1.18	10.717	.8800
	3	266,70	275.50	271.43	279.43	8.00	.02903	.0285	2.71	3.82	8,298	.2170
	4	522.90	544.30	537.63	551.45	13.82	.0254	.0243	2.71	4.36	9.692	.1760
	5	867.80	902.70	895.74	911.33	15.60	.02727	.0169	2.73	4.34	5,459	.1260
	6	1297.00	1352.10	1344.45	1362.21	_17.80	.01314	.0128	2.73	4.54	16.914	.0929
1050	1	15.53	15.85	15.42	16.27	0.849	.0535	.0492	2.82	3.31		.4660
	2	96.15	96.81	95.69	98.47	2.78	.02872	.0269	2.67	2.17	6.303	.2810
	3	268.40	280.30	278.00	282.59	4.59	.01637	.0120	2.74	4.55	4.926	.1080
	4	526.20	552.00	547.65	556.42	8.78	.0159	.0149	2.74	5.00	5.268	.1050
	5	873.30	915.60	909.92	920.30	10.40	.01134	.01105	2.76	4.84	3.597	.0742
	6	1305.00	1369.50	1363.90	1376.80	13.00	.00946	.00919	2.76	4.90	2.952	.0598
1000	1	15.66	16.22	15.98	16.51	0.53	.0327	.0287	2.87	4.20	9.338	.2220
	2	96.73	101.62	100.92	102.31	1.39	.0137	.01206	2.70	4.86	4,057	.0828
	3	270.00	283.50	282.02	284.81	2.79	.00983	.00941	2.77	4.99	3.024	.0606
	4		557.40	554.20	561.07	6.87	.01233	.01136				
	5	878.20	924.30	921.06	927.13	6.06	.00656	.0063				
	6		1382.60	1378.40	1387.50	9.18	.00664	.0064				

 $_{\rm C}$ + $_{\rm C}$ a 1425 °F

TABLE 22
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M27

			Experin	MENTAL MEASI	IREMENTS				M	ATERIAL P	ROPERTIES	
TEMF *F	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	۵F	ⁿ s	ⁿ c	E _M PS1 × 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁶	E _{DI} PS1 × 10 ^{-s}	ⁿ D
1550	2		86.59	85.98	87.41	1.43	.0165	.0117				
	3	241.40	241.10	238.91	243.39	4.48	.0186	.0159	2.33	1.73	6.94	4000
	4	474.00	475.20	470.06	480.31	10.30	.0216	.0197	2.34	2.07	8.53	.4120
	5	786.00	786.25	774.29	796.24	21.90	.02792	.0252	2.35	1.89	1.13	.5960
	6	1175.20	1186.20	1163.50	1204.50	41.06	.0346	.02337	2.36	2.54	1.04	.4080
1500	2	87.00	87.12	86.42	87.83	1.40	.0161	.0126	2.30	1.72	5.48	.3190
	3	243.20	244.10	241.45	246.73	5.28	.0216	.0198	2.36	2.30	8.93	4060
	4	475.50	481.40	475.08	487.00	11.92	.0248	.0234	2.35	2.96	11.10	.3760
	5		797.30	774.23	808.87	34.60	.0434	.0411				
	6		1203.40	1169.70	1222.70	52.90	.0440	.0431				
1450	2	87.80	87.99	87.05	65.88	1.83	.0208	.0182	2.34	2.05	8.05	.3930
	3	245.00	247.70	244.21	251.08	6.87	.0277	.0264	2.40	2.90	12.10	.4160
	4	481.00	489.60	486.03	493.34	7.31	.0291	.0281	2.40	3.54	13.30	.3760
	5		812.70	823,59	801.79	21.80	.0268	.0247				
	6	1193.20	1226.40	1216.50	1235.33	18.80	.0299	.0292	2.43	4,52	14.30	.3170
1400	2	88.48	89.26	87.99	90.35	2.36	.0265	.0243	2.37	2.81	11.10	.3960
	3	246.72	251.80	248.02	255.50	7.48	.0297	.0287	2.43	3.87	13.30	.3440
	4	484.50	499.20	492.13	505.41	13.28	.0266	.0257	2.44	4.78	13.00	.2720
	5		826.70	820.08	831.88	11.80	.0278	.0259				
	6	1202.00	1244.70	1229.90	1259.40	29.58	.0238	.0232	2.47	5.35	11.60	.2160
1350	2	89.13	91.07	89.66	92.29	2.63	.0289	.0271	2.41	3.73	12.70	.3400
	3	248.50	256,80	253.49	260.02	6.53	.0254	.0245	2.47	5.06	12.30	.2440
	4		517.00	501.23	511.61	10.40	.0201	.0194				
	5	808.90	841.02	832.15	847.39	15.23	.01811	.0163	2.49	5.89	8.10	.1380
	6	1210.20	1262.90	1253.60	1272.20	18.55	.0147	.0142	2.50	6.09	7.54	.1240
1300	2	89.76	92.33	91.17	93.42	2.26	.0244	.0229	2.44	4.59	11.50	.2490
	3	250.22	260.50	258.08	262.90	4.82	0185ء	.0177	2,50	€.00	9.28	.1550
	4	491.50	512.77	509.35	516.26	6,92	.0135	.0129	2.51	5.23	6.85	.1100
	5	814.30	850.70	845.52	855.21	9.69	.0114	.00961	2.52	6.41	5.19	.0809
	6	1218.80	1275.70	1269.80	1281.70	11.88	.00931	.00892	2.54	6.65	4.86	. 073 0
1250	2	90.38	93.54	92.71	94.38	1.66	.0178	.0163	2.48	5.32	8.50	.1600
	3	252.00	263,50	261.97	265.03	3.07	.0116	.0109	2.54	6.57	5.89	.0900
	4	495.00	518.00	515.97	520.18	4.21	.00814	.00758	2.55	6.65	4.17	.0630
	5	819.70	859.40	856.31	862.14	5.83	.00679	.00509	2.56	6.89	2.82	.0410
	6	1227.00	1287.70	1284.11	1291.49	7.40	.00573	.00537	2.57	7.03	3.07	.0440
1200	2	90.98	99.14	98.59	100.15	1.56	.0158		2.51	5.99	5.42	.0905
	3	253.65	266.30	265.46	267.29	1.84	.0069	.00609	2.57	7.06	3.47	.0490
	4	497.70	522.90	521.57	524.19	2,62	.00502	.00445	2.57	7.17	2.55	.0360
	5	825.00	866.80	864.83	868.66	3.83	.00442	.0028	2.59	7.22	1.50	.0207
	6	1235.00	1297.90	1295.80	1300.90	5.06	.0039	.00357	2.60	7.35	1.94	.0260

TABLE 22 (CONTINUED)

EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M27

			Experi	MENTAL MEAS	SUREMENTS					ATERIAL !	ROPERTIE	s
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PSI × 10 ⁻⁷	E _{DR} PS1 × 10 ⁻⁴	E _{D1} PS1 × 10 ⁻⁵	
1150	2	91.54	95.81	95.49	96.14	0.65	.0068	.0054	2.54	6.57	2.95	.0449
	3	255.40	268.60	268.02	269.24	1.22	.00454	.00364	2.61	7.38	2.00	.0270
	4	501.40	527.30	526.48	528.18	1.70	.00322	.00276	2.61	7.39	1.54	.0209
	5	830.50	874.10	872.91	875.35	2.45	.00280	.0013	2.62	7.51	0.748	.00996
	6	1243.00	1309.20	1307.80	1311.00	3,20	.00245	.00215	2.64	7.63	1.22	.0160
1100	2	92.10	96,60					.00252	2.57	6.98	1.41	.0202
	3	257.00						.0019				
	4											
	5	835.70						.00066				
	6	1250.50						.00138				
1050	2	92.64	97.33	97.21	97.48	0.27	.0028	.00122	2.60	7.25	0.692	.0096
	3	258.55	272.70	272.39	272.99	0.59	.00218	.00096	2.67	7.90	0.566	.0072
	4		535.00	534.64	535.36	0.72	.00134	.00095				
	5	840.70	886.50	885.98	887.23	1.26	.00142	.000219	2.69	7.92	0.131	.00165
	6	1258.00	1327.70	1326.96	1328.55	1.59	.00120	.00093	2.70	8.06	0.556	.0069
950	2		98.47	98.37	98.66	0.29	.00294	.00094				
	3		276.00	275.81	276.23	0.42	.00152					
	4		541.01	540.77	541.33	0.56	.00103	.0007				
	5		896.40	895.82	896.86	1.04	.00117	.00039				
	6		1342.10	1341.20	1342.60	1.44	.00107	.00082				

TABLE 23
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M31

			EXPERIM	MENTAL MEAS	JREMENTS				_ M	ATERIAL P	ROPERTIES	;
TEMP.	Mode	F _M	F _C	FL	FR	ΔF	rs	[®] c	E _M PSI	E _{DR} PSI	EDIPSI	
<u>•</u> F		Hz	Hz	Hz	Hz				× 10-7	· 10 ⁻	· 10 ⁻	
1650	2	82.60	80.59	80.38	80.84	0.46	.0112	.0022	2.22	0.355	0.692	.1950
	3	232.40	226.30	225.80	226.84	1.04	.00895	.00295	2.31	0.274	0.717	.2620
	4	457.00	446.40	44.76	448.55	3.79	.00849	.00349	2,33	0.430	0.864	.2010
	5	758.00	739.40	736.27	742.39	6.12	.00828	.00403	2.34	0.364	0.990	.2720
	6	1134.50	1106.90	1101.26	1111.51	10.30	.00926	.0066	2.35	0.377	1.64	. 4360
1600	2	83.35	81.34					.0035	2.26	0.372	0.836	. 2250
	3	234.50	228.70					.0039	2.36	0.356	0.970	.2720
	4	460.90	448.50					.0059	2.37	0.247	1.46	1.5930
	5	1143.80						.0108				
	6											
1550	2	84.08	82.05	81.67	82. 52	0.85	.0103	.00435	2.30	0.407	1.06	.2610
	3	236.40	230.90	229.82	231.74	1.92	.0083	.0058	2.39	0.438	1.45	.3300
	4	464.50	454.10	448.31	457.64	9.34	.0206	.0182	2.40	0.228	2.52	1.1030
	5	767.50	753.40	748.22	758.32	10.10	.0134	.0119	2.40	0.396	2.31	.5840 (1
	6		1127.70	1116.20	1137.00	20.80	.01843	.0174				
1500	2	84.78	82.88	82.54	83.34	0.80	.00963	.00573	2.34	0.489	1.42	.2900
	3		232.80	231.62	233.92	2.30	.00989	.00809				
	4		457.80	454.57	462.80	8.20	.0180	.0168				
	5	773.60	760.70	753.98	767.99	14.01	.01842	.0175	2.44	0.474	4.07	.8580 ⁽²
	6	1161.80	1449.50	1435.10	1446.30	31.14	.0215	.0207	2.47	0.774	7.73	.9990
1450	2	85.46	83.79	83.35	84.30	0.96	.0114	.0083	2.37	0.603	2.16	.3580
	3	240.10	235.40	233.35	237.14	3.79	.0161	.0148	2.47	0.628	3.91	.6230
	4	471.80	464.40	459.45	471.23	11.78	.0254	.0244	2.48	0.865	7.37	.8520
	5	779.60	771.50	758.55	783. 58	25.00	.0324	.0316	2.48	0.748	6.94	.9280 ⁽³
	6		1473.80	1454.97	1493.31	37.30	.0253	.0247				
1400	2	86.13	84.55	83.92	85.46	1.53	.0182	.0157	2.41	0.737	4.11	.5570
	3		238.10	234.86	241.10	6.24	.0262	.0251				
	4		472.20	464.51	483.30	18.80	.0398	.0389				
	5	785.50	785.40	763.50	800.13	36.60	.0466	.0458	2.52	0.124	10.50	.8180 (4
	6		1296.80	1283.20	1311.80	28.62	.0221	.0215				
1350	2	86.81	85.86	84.81	87.75	2.94	.0342	.0318	2.45	0.114	8.63	.7590
	3	243.75	241.80	237.03	245.9 2	8.89	.0368	.0360	2.55	1.32	10.30	.7800
	4	478.90	483.70	473.89	495.69	21.80	.0451	.0443	2 .5 5	2.31	13.10	.5670
	5	791.40	804.20	811.82	794.60	17.22	.0418	.0410	2.55	2.05	12.20	5940 ⁽⁵
	6		1298.40	1291.82	1306.17	14.34	.0215	.0210				
1325	2		86.82	85.50	88.82	3.32	.0382	.0350				•
	3		243.90	238.82	248.66	9.84	.0403	.0396				
	4		487.80	481.05	502.06	21.00	.0431	.0423				
	5	797.30	812.10	796.24	827.7 5	31.50	.0388	.0380	2.59	2.97	11.80	.4000
	6		1328.70	1314.50	1343.00	28.50	.0419	.0414				

TABLE 23 (CONTINUED)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M31

			Experi	MENTAL MEAS	SUREMENTS				P	ATERIAL	PROPERTIE	s
TEMP. °F	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ns	ⁿ c	E _M PSI × 10 ⁻ '	E _{DR} PSI × 10 ⁻⁴	E _{D1} PS1 × 10 ⁻⁶	n _D
1300	2		87.67	86.28	89.55	3.27	.0373	.0350				
	3	245.50	245.80	240.12	251.46	11.35	.0462	.0455	2.58	1.90	13.30	.6970
	4	482.50	494.10	486.78	505.51	18.73	.0379	.0372	2.59	3.23	12.00	.3720
	5		821.30	807.62	834.58	26 .96	.0328	.0322	2,77	3123	22.00	13720
	6											
1250	2	88.13	89.65	88.09	91.20	3.11	.0347	.0325	2.52	2.87	12.70	. 4430
	3	247.30	254.60	251.26	257.10	5.85	.0448	.0442	2.62	3.64	14.00	.3830
	4	485.80	503.20	497.24	510.67	13.40	.0267	.0260	2.63	4.03	8.62	.2140
	5	803.50	835.90	827.06	845.02	18.00	.0215	.02101	2.63	3.78	8.86	.2340 (6
	6											
1200	2	88.78	91.63	89.99	92.87	2.87	.0314	.0294	2.56	3.77	9.46	.2510
	3	249.05	259.40	256.77	262.94	6.17	.0238	.0232	2.66	4.45	7.50	.1690
	4	489.20	510.40	506.48	514.59	8.11	.0159	.0153	2.66	4.62	5.16	.1120
	5	808.50	847.30	841.90	852.90	11.00	.0130	0125ء	2.66	4.48	5.54	.1240 (7
	6	1213.70	1271.30	1265.70	1278.10	12.50	.0098	.0094	2.70	5.00	3.42	.0689
1150	2	89.40	93.15	92.29	94.01	1.73	.0185	.0167	2.60	4,44	5.52	.1250
	3	250.80	262.70	261.19	264.23	3.04	.0116	.0111	2.69	4.90	3.87	.0790
	4	492.40	516. 7 2	513.87	519.00	5.12	.0099	.0093	2.70	5.07	2.95	.0580
	5	814.00	856.86	853.53	859.77	6.24	.0073	.0069	2.70	4.94	3.28	.0660 ^{(B}
	6		1284.40	1280.08	1288.00	7.91	.0062	.0059				
1100	2	90.00	94.29	93.79	94.74	0.95	.0101	.0086	2.63	4.84	2.96	.0612
	3	252.40	265.30	264.48	266.18	1.70	.0064	.0059	2.73	5.26	2.09	.0400
	4	495.60	521.65	520.40	522.90	2.50	.0048	.0042	2.74	5.36	1.65	.0310
	5	819.40	864.50	862.52	866.33	3.81	.0044	.0040	2.74	5.26	1.92	.0360 (9)
	6	1226.00	1295.30	1292.82	1297.70	4.87	.0038	.0035	2.75	5.35	1.57	.0293 (1
1050	2	90.60	95.13	94.84	95.41	0.57	.0060	.0046	2.67	4.96	1.64	.0332
	3	254.00	267.80	267.27	268.26	1.00	.0037	.0032	2.76	5.54	1.20	.0220
	4	498.60	526.20	525. 38	526.98	1.61	.0031	.0025	2.77	5.62	0.926	.0160
	5	824.50	872.00	870.63	873.13	2.51	.0029	.0025	2.77	5.50	1.16	.0210 (13
	6	1233.80	1306.20	1304.46	1307.70	3.24	.0025	.0022	2.79	5.59	1.00	.01:0
1000	2	91.50						.00295				
	3	255.60	270.15					.0014	2.80	5.79	5.26	.0090
	4	5 00 .10	528 .3 0					.0019	2.78	5.73	7.10	.0120
	5	829.80	875.00					.00215	2.81	5.63	8.05	.0143 (13
	6							.0019				
950	2		96.44	96.30	96.60	0.30	.0031	.0021				
	3		271.60	271.37	271.85	0.48	.0018	.0014				
	4		533.50	533.05	533.90	0.85	.0016	.0010				
	5		882.92	881.91	883.86	1.87	.0021	.0017				
	6		1322.40	1321.35	1323.63	2.27	.0017	.0015				

TABLE 23 (CONTINUED)

EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M31

			Experimen	ITAL MEASUR	EMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	۵F	''s	"·c	E _m PS1 - 10-7	E _{DR} PS1	E _{DI} PSI	Ď
850	2		97.94									
	3		274.62									
	4		539.03									
	5		892.90									
	6		1337.10									

- $E_{D} + n_{D} = 1275 \text{ °F}$
- (2) E_D + n_D a 1225 °F
- (3) $E_D + n_D$ a 1175 °F
- (4) $E_D + n_D a 1125 *F$
- (5) $E_D + n_D$ a 1125 °F
- $E_D + n_D \approx 1075 \text{ °F}$
- (7) $E_D + n_D$ a 1075 °F
- (8) E_D + n_D a 1575 °F
- (9) E_D + n_D a 1525 °F
- (10) E_D n_D a 1475 °F
- (11) ξ_D + n_D a 1425 °F
- (12) $E_D + n_D$ a 1375 °F
- (13) E_D n_D a 1025 °F

7,

TABLE 24
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M4

			EXPERIM	IENTAL MEASI	IREMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PS1	E _{DR} PSI × 10-6	E _{D1} PS1 × 10 ⁻¹	ď
1600	1	14.12	13.85	13.74	13.96	0.221		.00290	2.36			
	2	88.10	88.43	89.03	87.77	1.27	.0143	.00332	2.27	2.28	1.858	. 0790
	3	246.90	250.20	248.27	252.05	3.79	.0151	.01100	2.35	3.49	6,399	.1830
	4	485.20	491.70	485.74	494.83	9.09	.0185	.01580	2.36	3.48	9.238	. 2050
	5		815.50	809.52	821.49	12.00	.0147	.01230				
	6											
1550	1	14.24	14.09		-			.00610	2.41	8.30	3.374	. 4050
	2	88.84	89.40					.00720	2.31	2.64	4.159	. 1530
	3	249.08	253.30					.01270	2.40	3.97		.1920
	4	497.50	489.20					.01670	2.40	3.98		.2520
	5											
	6											
1500	1	36	14.30	14.16	14.45	0.288	.0202	.00917	2.45	1.57	5.221	. 3320
	2	89.00	90.54	89.85	91.28	1.44	.0159	.01160	2,35	3.11	7.490	.2330
	3	251.10	256.40	254.42	258.32	3.90	.0152	.01340	2.43	4.55	8,200	.1800
	4	493.00	503.90	497.74	506.94	9.21	.0183	.01670	2.44	4.69	10.310	.2190
	5	817.60	835.30	832.29	839.21	6.91	.00828	.00680	2.46	4.72	4.312	.0913
	6	1223.50	1246.30	1241.46	1252.02	10.60	.00848	.00734	2.46	4.29	4.607	.1070
1450	1	14.57	14.51	14.37	14.66	0,289	.0199	.01050	2.49	2.25	6.190	.2760
	2	90.32	91.64	90.92	92.47	1.55	.01695	.01360			2.330	
	3	253.00	259. 50	257.73	261.12	3.40	.0131	.01170	2.47	5.17	7.742	.1500
	4	496.80	510.52	506.89	515,19	8.30	.01627	.01490	2.48	5.39	9.609	.1780
	5	823.80	847.00	844.67	849.83	5.20	.0061	.00498	2.49	5.54	5.107	.0921
	6	1231.50	1262.00	1256.28	1267.75	11.50	.0091	.00823	2.49	5.05	5.266	.1040
1400	1	14.58	14.68	14.54	14.83	0.288	.0196	.01170	2.52	2.94	7.100	. 2410
	2	91.05	92.95	92.17	93,66	1.48	.0160	.01330	2.43	4.36	8.098	.1800
	3	254.90	262.30	260.89	263.76	2.90	.01105	.01000	2.51	5.67	6.509	.1150
	4	500.50	515.80	513.48	520.37	6.89	.0134	.01230	2.90	2.14	7.940	.1360
	5	830.00	853.60	849.83	856.82	6.99	.0082	.00720	2.53	5.75	4.673	.0810
	6	1242.00	1278.90	1275.02	1285.35	10.30	.0081	.00140	2.54	5.42	t.799	0880.
1350	1	14.69	14.86	14.72	15.00	0.28	.01887	.01200	2.56	3.57	7.567	.2110
	2	91.76	94.00	93.45	94.54	1.09	.0116	.00921	2.47	5.04	6.526	. 1250
	3		264.90	263.85	266.08	2.24	.00845	.00760				
	4		520.60	518.48	523.42	4.90	.0095	.00859				
	5	836.00	861.80	859.18	864.01	4.80	.0056	.00461	2.57	6.00	3.083	.0514
	6	1251.00	1287.80	1284.52	1291.49	6.97	.0054	.00490			3,433	.0580
1300	1	14.79	15.04					.01000	2.59	4.29		.1510
	2	92.48	95.00					.00700	2.50	5.43	4,676	.0833
	3	258.70	267.30					.00560	2.58	6.39	3,804	.0600
	4	507.80	524.80					.00670	2.59	6.43	4,570	.0710
	5	841.50	868.80					.00310	2.60	6.30	2.117	.0336
	6	1260.00	1300.40					.00350	2.61	6.30	2,409	.0380

TABLE 24 (Continued)

EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M4

			Experi	MENTAL MEAS	UREMENTS				M	ATERIAL P	ROPERTIES	3
TEMP.	MODE	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	^η s	^п с	E _M PS1 × 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁶	E _{DI} PS1 × 10 ⁻¹	n _D
1250	1		15.21	15.12	15.31	0.19	.0125	.00678				
	2		95.82	95.52	96.15	0.633	.00661	.00476				
	3		269.70	269.01	270.33	1.32	.00491	.00405				
	4		529.20	527.65	530.81	3.20	.00598	.00530				
	5		867.10	874.70	877.58	2.90	.00329	.00224				
	6		1309.80	1307.87	1311.65	3.77	.00288	.00247				
1200	1	15.00	15.38					.00440	2.67	5.53	3.019	.0540
	2	93.85	96.65					.03230	2.58	5.93	2.240	.0365
	3	262.23	271.94					.00288	2.66	7.08	2.034	.0287
	4	515.00	533.60					.00345	2.66	6.97	2.440	.0350
	5	853.70	883.10					.00163	2.68	6.78	1.153	.0170
	6	1278.00	1320.00					.00160	2.69	6.59	1.136	.0171
1150		15.10	15.51					.00275	2.70	5.85	1.923	.0330
	2	94.51	97.46					.00220	2.62	6.20	1.554	.0243
	3	264.30	274.07					.00200	2.70	7.18	1,435	.0200
	4	518.50	537.60					.00245	2.70	7.17		.0245
	5	859.40	890.00					.00121	2.71	7.04	0,870	.0124
	6	1287.00	1324.60					.00110	2.72	6.71	0,792	.0117
1100	1		15.61	15.55	15.65	0.0998	.0064	.00170				
	2		98.21	98.08	98.36	0.28	.00285	.00150				
	3	266.13	276.10	275.83	276.36	0.526	.00191	.00138	2.73	7.35	1.020	.0139
	4	522.20	541.40	540.77	542.03	1.26	.00233	.00155	2.74	7.31	1,276	.0174
	5	865.10	896.00	895.42	896.54	1.12	.00125	.00018	2.75	7.15	0.657	.00918
	6	1296.00	1338.30	1338.30	1339.76	1.43	.00107	.00078			0,585	
1050	1											
	2	95.73	98.98					.00110	2.68	6.73	0.840	.0116
	3	267.84	278.07					.00098	2.77	7.55	0.725	.0096
	4	525.50	544.80					.00120	2.77	7.35		.0120
	5											
	6											

TABLE 25
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M45

			EXPERIM	IENTAL MEASI	JREMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	MODE	F _M	Fc	FL	FR	۵F	ⁿ s	ⁿ c	EMPSI	EDRPSI	E _{di} psi	n _D
<u>*F</u>		Hz	Hz	Hz	Hz		· - - · · · · - · · ·		× 10~7	× 10~6	× 10 ⁻⁵	
1450	1		15.17	15.06	15.2€	0.20	.01303					
	2	96.80	94.96	94.63	95.24	0.60	.10636	.00336	2.42	0.575	1.01	.1750
	3	270.70	265.70	264.58	266.77	2.19	.00824	.00654	2.49	0.627	1.88	.2990
	4	529.00	522.40	519.32	525.29	5.97	.01144	.0105	2.47	1.00	3.29	. 3290
	5	879.00	867.70	860.73	873.59	12.90	.01482	.0139	2.50	0.987	4.40	. 4450
	6	1323.00	1298.90	1283.70	1309.10	25.40	.0195	.0172	2.54	0.656	5.44	. 8290
1400	1		15.36	15.27	15.44	0.17	.0109	.0027				
	2	97.55	95.70	95.31	96.08	0.77	00804	.00548	2.46	0.587	1.67	.2840
	3	277.70	268.20	266.51	269.85	3.34	.01244	.0112	2.53	0.763	3.54	. 4640
	4	533.50	528.20	523.26	532.31	9.05	.01710	.0163	2.52	1.18	5.23	. 4430
	5	886.00	877.40	866.55	888.18	21.60	.0246	.0238	2,54	1.21	7.72	.6390
1350	1		15.52	15.43	15.61	0.176	.0113	.0039				
	2	98.30	96.53	95.88	97.03	1.15	.0120	.0097	2.49	0.657	3.01	. 4580
	3	274.70	271.10	268.63	273.67	5.04	.0186	.0176	2.57	0.996	5.71	.573
	4	538.00	534,70	527.79	540.34	12.55	.0235	.0228	2.56	1.45	7.53	.5180
	5	893.00	889.70	880.05	901.96	21.91	.0246	.0239	2.58	1.63	8.02	. 4920
	6	1342.50	1336.00	1313.37	1355.70	42.40	.0317	.0297	2.62	1.58	10.01	.6390
1300	2	99.00	97.54	96.43	98.28	1.85	.0189	.0169	2.53	0.876	5.37	.6140
	3	276.70	275.00	271.57	278.70	7.10	.0259	.0251	2.60	1.48	8.43	.5700
	4	542.50	542.80	535.16	550.80	15.60	.0287	.0281	2.60	1.93	9.63	.4980
	5	900.00	904.60	892.70	915.33	22.60	.0250	.0244	2.62	2.26	8.54	.3770
	6		1348.80	1331.91	1361.66	29.70	.0221	.0200				
1250	2	99.75	98.99	97.29	100.19	2.90	.0293	.0275	2.57	1.36	9.07	.6670
	3	278.70	280.60	276.53	285.14	8.60	.0307	.0299	2.64	2.40	10.60	.4410
	4	546.50	554.14	546.36	561.96	15.60	.0281	.0275	2.64	2.91	9.95	. 3420
	5	906.20	924.70	916.55	933.53	17.00	.0184	.0178	2.66	3.39	6.61	.1950
	6		1345.00	1328.02	1358.70	30.70	.0228	.0207				
1200	2		105.13	104.12	106.31	2.19	.0208	.0186				
	3	280.60	286.50	282.96	290.26	7.30	.0255	.0247	2.69	3.46	9.25	.2670
	4	550.50	564.50	558.91	570.13	11.22	.0199	.0193	2.68	3.79	7.33	.1940
	5	913.00	938.30	931.45	944.91	13.47	.0144	.0138	2.70	3.99	5.31	.1330
	6	1370.00	1405.50	1396.41	1415.03	18.60	.0132	.0110	2.73	3.89	4.26	.1100
1150	2		105.13	103.92	106.26	2.35	.0223	.0203 •				
	3	282,60	291.10	288.86	293.67	4.81	.0165	.0158	2.72	4.19	6.17	.1470
	4	554.50	572.30	568.80	575.67	€.81	.0199	.0114	2.72	4.35	4.48	.1030
	-	919.50	948.90	944.11	953.11	9.00	.00948	.00896	2.74	4.37	3.54	.0810
		1378.50	1420.70	1415.63	1426.33	10.70	.00753	.00523	2.76	4.30	2.08	.0480
			105.28	104.56	106.30	1.75	.0166					
		1 (1)	294,84	293.43	296.17	2.75	.0093	.00856	2.76	4.71	3.45	.0730
		2 1	579,20	576.40	580.21	3.81	.0066	.00609	2.76	4.70	2.45	.0520
			1. 1.	955.5 7	960.71	5.14	.00537	.00487	2.77	4.69	1.97	. 0420
			7.4	1431.02	1427.40	6.37	.00445	.00195	2,79	4.63	0.793	.0170

TABLE 25 (Continued)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M45

			Experim	IENTAL MEASI	JREMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _m esi * 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁶	E _{D1} PS1 × 10 ⁻⁶	ⁿ D
1050	3	286.40	297.70	297.03	298.46	1.44	.00482	.0040	2.79	5.04	1.65	.0330
	4	560.70	583.60	582.51	584.69	2.18	.00373	.00325	2.78	5.13	1.34	.0260
	5	931.00	966.70	965.06	968.15	3.08	.00319	.0027	2.81	4.98	1.12	.0220
	6	1395.00	1446.30	1444.46	1448.44	4.02	.00275		2.83	4.89		
1000	2		106.96	106.77	107.19	0.42	.0039	.0027				
	3	288.00	300.00	299.57	0.90	.0030	,0021		2.82	5.28	8.81	.0170
	4	564,50	587.80	587.10	588.51	1.42	.0024	.0019	2.82	5.24	7.96	.0150
	5	936.00	973.30	972.29	974.47	2.18	.00224	.0018	2.84	5.16	7.55	.0150
	6	1402.50	1456.20	1454.76	1457.73	3.00	.0020					
900	2		108.31									
	3		303.70									
	4		594.80									
	5		984.80									
	6		1473.20									

TABLE 26
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M46

			EXPERIM	ENTAL MEASU	IREMENTS						ROPERTIES	
TEMP.	Mode	FM	F _C	FL	FR	ΔF	ⁿ s	'nс	E _m psi	E _{DR} PS1	E _{d1} Ps1	ס
*F		Hz	Hz	Hz	Hz				× 10 ⁻⁷	× 10 ⁻⁶	× 10 ⁻⁶	
1650	2	92.68	92.68									
	3	260.00	256.80	254.89	258.98	4.09	.0159	.0106	2.32	0.988	3.89	. 3930
	4	510.70	506.20	501.48	511.30	9.82	.0194	.0156	2.33	1.167	3.87	.3315
	5	847.20	838.20	824.88	848.03	23.15	.0276	.0247			4,005	
	6	1268.70	1261.40	1251.88	1270.65	18.00	.0290	.0269				
1600	3	262.05	259.50	256.92	251.96	5.04	.0194	.0154	2.35	1.13	3.85	. 3400
	4	514.90	512.60	506.36	519.18	12.83	.0250	.0224			5.730	
	5	860.70	849.90	829.81	862.29	32.49	.0382	.0362				
	6	1288.80	1286.70	1274.05	1301.24	27.20	.0412	.0398				
1550	3	264.20	262.30	258.80	265.46	6.66	. 0254	.0222	2.39	1.28	5.69	. 4430
	4	519.00	521.50	513.19	529.83	15.64	.0319	. 0300	2.92	7.01	7.780	.4170
	5	860.70	865.10	840.97	882.30	41.30	.0478	.0465				
	7		1846.40	1819.27	1879.31	60.04	.0325	.0320				
1500	3	266.30	267.90	262.14	273.61	11.47	.0428	.0403	2.43	2.00	10.80	.5400
	4	523.10	531.30	522.52	539.49	16.97	.0319	.0305			8.530	
	5		882.80									
	6		1348.10	1324.57	1378.44	53.86	.0400	.0393				
1450	3	268.35	273.40	268.43	277.82	9.40	.0344	.0324	2.47	2.74	9.24	.3370
	4	517.20	540.80	533.65	548.70	15.10	.0278	.0267	2,387	1.52	7.970	.1920
	5		899.70	881.60	909.67	28.07	.0312	.0304				
	6		1364.30	1348.62	1385.43	36.81	.0270	.00191				
1400	2	96.38	101.29	100.15	102.30	2.15	.0212	.00191				
	3	270.44	278.50	274.12	282.36	8.24	.0296	.0282	2.51	3.42	8.44	.2470
	4	531.20	549.30	543.63	555.28	11.65	.0212	.0203	2.52	3,68	6,179	.1677
	5	880.60	917.10	924.62	903.42	21.20	.0231	.0224				
	6	1318.20	1377.20	1367.07	1388.29	21.22	.0154	.0149				
1350	2		101.40	100.45	102.29	1.84	.0182	.0164				
	3	272.50	283.20	280.06	285.84	5.78	.0204	.0193	2.54	4.03	6.04	.1490
	4	535.10	556.50	552.46	560,51	8.05	.0145	.0138	2.55	4.09	4.33	.1060
	5	887.20	926.60	920.39	932.05	11.67	.0126	.0120	2.57	4.38	3.84	.0880
	6		1391.00	1383.50	1398.01	14.51	.0104	.0100				
1300	2		102.25	101.68	102.97	1.29	.0127	.0112			-	
	3	274.54	286.70	284.77	288.58	3.81	.0133	.0124	2.58	4.40	3.99	.0906
	4	539.20	562.50	564.97	559.94	5.03	.00894	.00844	2.59	4.35	2.72	.0624
	5	893.90	937.10	933.01	941.18	8.17	.00872	.00822	2.61	4.69	2.70	. 0575
	6		1404.30	1398.31	1409.05	10.64	.00758	.00712				
	7		1962.70	1957.10	1968.40	11.33	.00577	.00537				
1250	2	98.69	103.30	102.82	103.91	1.10	.0106	.0094				
	3	276.60	290.00	288.87	291.20	2.33	.00803	.0073	2.62	4.75	2.42	.0510
	4	543.00	568.10	566.60	569.77	3.17	.00557	.00508	2.63	4.60	1.67	. 0360
	5	900.50	946.40	944.11	949.31	5.20	.00549	.0050	2.64	4.93	1.68	.0341
	6	1347.80	1417.60	1420.62	1413.65	6.97	.00492	.00444				
	7		1980.60	1976.56	1984.13	7.57	.00382	.00332				

TABLE 26 (Continued)
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M46

_			Experi	MENTAL MEAS	UREMENTS				M	ATERIAL F	ROPERTIE	s
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _M PS1 × 10-7	E _{DR} PSI × 10°	E _{D1} PS1 × 10 ⁻⁶	ŋ
1200	2		104.39	104.01	104.78	0.77	.00741	.00641				
	3	278.60	292.80	292.09	293.48	1.39	.00474	.00417	2.66	4.96	1.41	.0284
	4	546.80	573.10	572.08	574.09	2.00	.00350	.00311	2.66	4.78	1.04	.0218
	5	907.00	954.40	952.74	956.02	3.28	.00344	.00303	2.68	5.09	1.04	.0204
	6		1429.60	1426.94	1431.48	4.53	.00317	.00268				
	7		1996.10	1993.98	1998.64	4.66	.00234	.00180				
1100	2		106.15	106.00	106.33	0.33	.00312	.00212				
	3	282.50	297.50	297.23	297.77	0.54	.00182	.00122	2.73	5.24	4.26	.0081
	4	554.60	581.84	581.33	582.28	0.95	.00163	.00133	2.74	4.99	4.60	.0092
	5	919.80	968.90	968.05	969.74	1.69	.00174	.00137	2.76	5.31	4.84	.0091
	6		1450.80	1449.88	1451.93	2.04	.00141	.00083				
	7		2025.70	2024.09	2026.55	2.46	.00122	.0006				
76	2		116.26									
	3		325.41									
	4		635.60									
	5		1057.90									
	6											
	7											

TABLE 27
EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M6

			Experin	MENTAL MEASL	IREMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	Mode	F _M	F _C	FL	FR	ΔF	n _s	ⁿ c	EMPSI	E _{DR} PS1	E _{DI} PSI	r _i D
*F		Hz	Hz	Hz	Hz				× 10 ⁻ '	× 10"	× 10 ⁻⁵	
1400	1	14.76	14.12	14.04	14.20	0.162	.01144	.00424				
	2	91.38	89.25	89.02	89.49	0.466	.00522	.00262	2.43	0.30	0.849	.2730
	3	255.90	250.20	249.56	250.91	1.35	.00538	.00438	2.52	0.376	1.409	. 3750
	4		490.50	488.88	492.37	3.49	.00715	.00582	2.52	.0492	2,695	.5470
	5	830.80	813.74	809.78	817.19	7.41	.00911	.00830	2.53	0.548	3.704	.6720
	6	1243.00	1218.50	1211.39	1225.99	14.60	.01194	.01130				
1350	1		14.21	14.40	14.28	0.141	.00995	.00315	2.47	0.265		.5930
	2	92.10	89.95	89.58	90.21	0.63	.00707	.0050	2.55	0.390	1.625	.6200
	3	257.80	252.09	251. 12	153.13	2.00	.00797	.00715	2.50	ŋ <u>.389</u>	2.416	.6181
	4		531.90	527.98	534.62	6.63	.0125	.01105				
	5		819.90	813.87	825.49	11.62	.01418	.0134				
	6		1230.30	1219.20	1240.70	21.50	.01744	.0170				
1300	1	14.76	14.51	14.45	14.58	0.132	.00914	.00314	2.59	5.68	1,948	. 1800
	2		90.65	90.17	91.02	0.85	.00937	.00687				
	3	259.60	254.60	252.95	256.03	3.08	.0121	.0114	2,59	5.91	4,908	.6780
	4		4997,90	495,98	505.15	9.17	.0183	.0170				
	5	843.80	829.30	817.33	837.52	20.19	.0244	.0237	2.60	7.37	7.782	1.0540
	6	1261.00	1246.80	1229.71	1262.80	33.10	.0265	.0260	2.60	1.15	8,996	.7800
1250	1		14.68	14.63	14.78	0.149	.01016	.00416				
	2	73.45	91.46	90.38	91.98	1.60	.0175	.0151	2.55	4.74	5,065	1.034
	3	261.40	257,71	254.98	260.42	5.43	.02109	0204	2.63	9.57	7.016	.7330
	4		535.60	531.29	538.74	7.44	.0139	.0125				
	5	849.70	844.00	821.42	854.70	33.28	.0394	.0387	2.64	1.49	13,704	.9210
	6	1319.00	1272.30	1251.20	1294.20	43.00	.0338	.0334	3,10	2.71	14.596	,5395
1200	1		14.78	14.68	14.89	0.20	.01375	.00835				
	2		98.30	97.76	98.99	1.23	.0125	.0102				
	3		262.30	258.02	266.65	8.63	.0329	.0323				
	4		535.30	530.87	539. 75	8.90	.01663	.0153				
	5	853.00	861.40	838.15	873.97	35.82	.0416	.0418	2.66	2.08	1,609	.7710 ⁽¹⁾
	6		1298.90	1278.12	1317.90	39.80	.0306	.0301				
1150	1	15.14	14.80	14.65	14.95	0.304	.0206	.0154	2.71	3.91	5.370	.1370
	2		93.85	90.31	95.17	4.90	.0517	.0492				
	3	266.10	268.56	263.74	272.996	9.30	.0345	.0340	2.72	4.42	13,500	.3230
	4		538.07	527.82	541.89	14.07	.0262	.0250				
	5	860.40	877.90	866.10	887.47	21.37	.0243	.0236	2.71	3.56	9.452	.2650
	6	1353,20	1319.60	1307.19	1332.80	25.60	.01941	.0188	3.02	6.59	8,139	.1240
1100	1	15.19	15.38	15.14	15.65	0.505	.03281	.0279	2.72	2.97	10,633	.3640
	2		97.37	97.00	97.82	0.816	.01648	.01458				
	3	264.60	274.50	271.04	277.87	6.83	.02488	.0242	2.69	3.16	9.243	.2920
	4		527.29	524.74	530.42	5.71	.01082	.00964				
	5	865.40	894.90	888.02	901.47	13.45	.01503	101410	2.74	4.63	5.273	.1210
	6	1369.00	1330.30	1330.50	1345.90	15.40	.0115	.0111	3.02	8.92	5,508	.00687

TABLE 27 (CONTINUED) EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M6

			Experie	IENTAL MEAS	UREMENTS				M	ATERIAL P	ROPERTIE	s
TEMP. *F	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	'nс	E _M PS1 × 10 ⁻⁷	E _{DR} PSI × 10 ⁻⁴	E _{DI} PSI × 10 ⁻⁶	n _D
1050	1	15.22	15.63	15.35	15.91	0.568	.0363	.0316	2.74	3.64	13.163	.3610 (2
	3	267.60	278.29	276.21	280.32	4.11	.0148	.0142	2.75	5.24	5,097	.0972
	4		546.60	544.40	548.10	3.70	.00677	.00561				
	5	870.10	904.60	900.41	908.47	8.06	.00891	.00811	2.77	5.32	3.514	.0660
	6	1308.70	1351.50	1346.40	1356.30	9.86	.0073	.0070	2.80	4.67	2.975	.0633
850	1		16.40	16.34	16.44	0.107	.00655	.00285				
	2		102.99	102.85	103.13	0.287	.00279	.00188				
	3		288.13	287.79	288.51	0.714	.00248	.00204				
	4		565.20	564.65	565 .9 9	1.34	.00237	.00146				
	5		933.40	932.44	934.58	2.139	.0023	.00188				
	6		1392.40	1391.00	1393.70	2.71	.00195	.00175			_	
600	1		16.63								-	
	2		105.64									
	3		295.70	295.41	295.95	0.542	.00183	.00143				

⁽¹⁾ $E_D + n_D$ a 1220 °F (2) $E_D + n_D$ a 1070 °F

TABLE 28 EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M7

			Experim	ENTAL MEASI	REMENTS				M	ATERIAL P	ROPERTIES	
TEMP.	MODE	FM	Fc	F	FR	ΔF	n _s	ⁿ c	E _M PS1	EDRPSI	EDIPSI	n _D
<u>•F</u>		Hz	Hz	Hz	Hz				× 10 ⁻ ′	× 10 ⁻¹	× 10-1	
1450	1		13.65	13.53	13.78	0.25	.0182	.0057				
	2	87.50	85.95	86.29	85.76	0.53	.0052	.0034	2.48	0.663		. 1700
	3	245.20	240.90	240.36	241.49	1.13	.0047	.00342	2.57	0.916	1.081	.2010
	4	481.00	475.80	474.50	477.55	3.06	.00643	.00533	2.57	0.109	1.710	.1090
	5	785.8 0	784.20	782.23	788.84	4.62	.00589	.0049	2.29	1.559	1.564	.1003
	6	1176.90	1173.80	1170.69	1176.89	6.20	.00528	.0046	2.31	1.539	1.479	.0961
1400	1	14.04	14.13	14.11	14.26	0.153	.0108	.00994				
	2	88.87	87.43	87.21	87.63	0.43	.0049	.0026	2.56	0.749		,1190
	3	248.90	244.70	243.96	245.33	1.56	.00639	.00565	2.65	0.755		.2670
	4	487.70	481.37	479.73	482.91	3.17	.00659	.0057	2.64	0.103		.1950
	5		797.00	793.21	800.32	7.11	.00892	.00337				
	6		1192.60	1187.37	1199.04	11.70	.00979	.00929				
1300	1	14.18	14.23	14.20	14.35	0.145	.0102	.0974				
	2	89.53	88.16	88.05	88.31	0.257	.00568	.00358				
	3	250.70	246.96	246.05	247.86	1.81	.00731	.00664	2.69	0.892		.3690
	4	488.30	486.00	483.47	488.26	4.80	.00986	.00906	2.41	1.470	3,028	.2054
	5	815.30	804.80	799.11	810.18	11.10	.0138	.0130	2.70	1.050	4.351	.3080
	6	1219.70	1204.30	1193.32	1214.48	21.20	.0176	.0172	2.46	1,250	5.788	.3170
1250	1	14.38	14.15	14.03	14.20	0.171	.0121	.0047				, 1018
	2	90.20	88.93	88.64	89.39	0.75	.00846	.0065	2.64	0.917	2.189	. 2520
	3	252.50	249.40	248.10	251.01	2.91	.0117	.0111	2.73	1.09	3,745	.5010
	4	491.60	491.20	487.30	495.54	8.21	.0167	.0160	2.69	1.93	5,440	.2150
	5	821.00	814.70	805.61	821.56	15.95	.0196	.0188	2.74	1.38	6,437	.5120
	6	1228.70	1220.00	1204.40	1234.70	30.30	.0249	.0245	2.75	1.48	8.431	.4850
1200	1	14.35	14.24	14.13	14.2b	0.129	.00906	.00186	2.43	1.71	0,633	.0371
	2	90.85	89.63	89.18	90.49	1.31	.0146	.0128	2.49	1,96	4.506	.2303
	3	254.30	251.83	249.83	254.26	4.43	.0176	.0170	2.76	1.29		.6430
	4	498.55	497.30	491.71	502.89	11.20	.0225	.0219	2,56	1.11	7.614	.6889
	5	826.80	824.70	811.29	833.96	22.70	.0275	.0267	2.57	1.11	9.342	,8399
	6	1237.70	1239.90	1217.60	1256.10	38.50	.03108	.0306	2.63	1,00	10.866	. 4720
1150	1	14.51	14.40	14.32	14.51	0.187	.0130	.0063				
	2	91.50	91.00					.0210	2.71	1.55		.5060
	3	256.10	256.00	253.34	259.65	6.40	.0250	.0243	2.80	2.05		.5600
	4	502.00	506.10	498.00	513.00	15.00	.0297	.0291	2.80	2.71	10.454	.3600
	5	829.60	840.30	826.58	849.40	22.80	.0272	.0264	2.80	2.33	9.593	. 4600 ⁽
	6	1242.10	1264.10	1280.75	1245.49	34.80	.0275	.0270	2,58	3.01	10,249	.4050
1100	1	14.98	14.55	14.69	14.42	0.273	.0188	.0128	2,58	1.23	0,511	.3680
	2	92.15	94.80	95.96	94.02	1.54	.0162	.0148	2.75	2.76	5,647	.3940
	3	257.70	260.90	264.96	257.82	7.10	.0274	.0264	2.84	3.14	9,661	.3170
	4	503.60	515.40	521.24	508.72	12.50	.0243	.0237	2.82	3.24	8.849	.3420 (
	5	837.80	854.80	862.96	843.88	19.10	.0223	.0216	2.86	3.82	8.133	.2170
	6	1254.80	1284.00	1295.20	1272.30	22.90	.01784	.0173	2.79	1,40	6,616	.1790

TABLE 28 (CONTINUED) EXPERIMENTAL MEASUREMENTS AND MATERIAL PROPERTIES FOR COATING M7

			EXPERIM	IENTAL MEASI	JREMENTS	_			M	ATERIAL Í	ROPERTIES	;
TEMP.	Mode	F _M Hz	F _C Hz	F _L Hz	F _R Hz	ΔF	ⁿ s	ⁿ c	E _m esi × 10"'	E _{DR} PS! × 10~	E _{D1} PS1 × 10 ⁻⁴	ⁿ D
1050	1	15.12	14.74	14.98	14.48	0.49	.0334	.0278	2.79	1.40	9,991	.4740
	2	92.75	94.00	95.10	93.40	1.70	.0181	.0169	2.79	3.94	6.317	.2780
	3	259.40	2 6 6.60	269.54	264.19	5.30	.0200	.0194	2.88	4.34	7.099	.1390
	4	508.60	523.90	527.90	520.50	7.40	.0141	.0135	2.87	4.65	5.227	.1850
	5	843.00	868.40	873.13	862.89	10.20	.0118	.0111	2.89	4.62	4.331	.1090
	6	1262.80	1302.40	1294.30	1294.30	14.60	.0112	.0106	2.90	4.78	4,186	.0937
1000	1	15.19	15.09	15.36	14.83	0.533	.0353	.0300	2.82	7.19	11.245	
	2	93.34	96.22	97.08	95.32	1.76	.0183	.0172	2.82	4.78	6. <i>7</i> 55	.1590
	3	261.07	269.50	271.30	268.07	3.23	.0120	.0110	2.91	4.94	4.332	.1010
	4	531.90	529.50	531.91	527.23	4.68	.00884	.0082	2.86	1.76	3,253	.1851
	5	848.75	877.70	881.45	874.58	6.86	,00782	.0072	2.88	1.79	2.873	.1606
	6	1270.70	1315.10	1319.40	1310.60	8.82	.00671	.0060	2.91	1.88	2.420	.0532
950	1	15.71	15.51	15.70	15.33	0.373	.02404	.0186	2.05	1.19	7.430	.6228
	2	93.88	97.57	97.33	97.90	0.562	.0112	.0102	2.86	5.43	4.166	.0850
	3	262.50	272.20	273.39	271.41	1.98	.00728	.0067	2.95	5.36	2.698	.0414
	4	514.80	534.20	535.70	532.79	2.91	.00545	.0048				
	5	850.60	884.80	886.84	882.46	4.38	.00495	.00447	2.94	5.31		.0490 (4
	6	1277.80	1325.70	1328.90	1322.80	6.15	.00464	.00404	2.97	5.47		.0342
800	1		16.03	16.08	15.98	0.104	.00649	.0015				
	2		99.87	100.06	99.76	0.30	.0030	.0021				
	3		278.40	278.76	278.09	0.667	.00239	≃.002				
	4		545.90	546.30	545.08	1.22	.00224	.0014				
	5		903.90	904.90	902.69	2.20	.00244	.00201				
	6		1354.10	1357.70	1352.60	3.12	.0023	.00196				

⁽¹⁾ $E_{D} + n_{D} a 1175 *F$

⁽²⁾ $E_D = n_D$ a 1175 °F

⁽³⁾ $E_D + n_D$ a 1125 °F (4) $E_D + n_D$ a 975 °F

TABLE 29
VALUES AND TEMPERATURES OF MAXIMUM LOSS MODULUS AND
LOSS FACTOR OF TEST MATRIX COATINGS

0 0 0.64 9.0 620 670 7.5 0 0 0.48 7.6 710 765 15.0 0 0 0.1 2.1 850 920 0 3.0 0 0.3 7.6 615 690 7.5 3.0 0 0.42 8.3 565 620 15.0 3.0 0 0.42 8.3 565 620 15.0 3.0 0 0.42 8.3 565 620 15.0 0 0.42 8.3 565 620 15.0 0 0.47 4.8 735 810 15.0 0 0.47 4.8 735 810 15.0 0 0.47 4.8 735 810 15.0 0 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06	Specimen Number	$^{1}_{12^{0_{3}}}$	Additions $\mathrm{Na_2^O}$ (Wt. %)	s Co ₂ o ₃ (Wt. %)	Maximum ⁿ D	Maximum E _D ×10 ⁻⁹ N/M ²	-	Temperature E" °C Dmax °C 00 Hz 1000 Hz	Temper ⁿ Dmax 100 Hz	Temperature ⁿ Dmax °C 00 Hz 1000 Hz
7.5 0 0.48 7.6 710 15.0 0 0.1 2.1 850 0 3.0 0 0.3 7.6 615 0 6.0 0 0.42 8.3 565 7.5 3.0 0 0.6 9.0 670 15.0 3.0 0 0.42 8.0 670 15.0 6.0 0 0.42 5.0 730 15.0 6.0 0 0.47 4.8 735 0 1.0 0.47 4.8 735 15.0 0 1.0 0.47 4.8 736 15.0 0 1.0 0.6 6.9 730 15.0 0 1.0 0.22 2.9 820 15.0 3.0 1.0 0.5 6.2 690 15.0 3.0 1.0 0.5 6.2 690 15.0 3.0 1.0 0.6 6.2 690 15.0 6.0 1.0 0.35 6.0	M30	0	0	0	0.64	0.6	620		650	720
15.0 0 0.1 2.1 850 0 3.0 0 0.3 7.6 615 0 6.0 0 0.42 8.3 565 15.0 3.0 0 0.6 9.0 670 15.0 3.0 0 0.42 5.0 670 15.0 6.0 0 0.47 4.8 735 15.0 6.0 0 0.47 4.8 735 15.0 0 1.0 0.47 4.8 735 15.0 0 1.0 0.47 4.8 736 15.0 0 1.0 0.47 4.8 736 15.0 0 1.0 0.6 6.9 730 15.0 1.0 0.22 2.9 820 7.5 3.0 1.0 0.6 6.2 690 15.0 3.0 1.0 0.5 6.0 720 15.0 4.1 0.35 9.0 620 15.0 6.0 1.0 0.35 6.0<	Ml	7.5	0	0	0.48	7.6	710	765	750	805
0 3.0 0 0.3 7.6 615 0 6.0 0 0.42 8.3 565 7.5 3.0 0 0.6 9.0 670 15.0 3.0 0 0.3 4.1 850 15.0 6.0 0 0.47 4.8 735 15.0 6.0 0 0.47 4.8 735 15.0 0 1.0 0.6 6.9 730 15.0 0 1.0 0.36 6.9 730 15.0 3.0 1.0 0.5 6.9 750 15.0 3.0 1.0 0.58 6.8 750 15.0 6.0 1.0 0.35 9.0 620 15.0 6.0 1.0 0.57 6.0 720 15.0 6.0 1.0 0.64 6.9 595	M36	15.0	0	0	0.1	2.1	850	920	860	096
7.5 3.0 0.6 9.0 670 15.0 3.0 0.6 9.0 670 15.0 3.0 0.3 4.1 850 7.5 6.0 0 0.42 5.0 730 15.0 6.0 0 0.47 4.8 735 0 1.0 0.6 6.9 730 15.0 0 1.0 0.22 2.9 820 15.0 3.0 1.0 0.6 6.2 690 15.0 3.0 1.0 0.58 6.8 750 15.0 6.0 1.0 0.35 9.0 620 15.0 3.0 1.0 0.57 6.0 720 15.0 6.0 1.0 0.64 6.9 720 15.0 1.0 0.57 6.0 720 15.0 1.0 0.64 6.9 720 15.0 1.0 0.57 6.0 720 15.0 1.0 0.64 6.9 720 10 1.0 </th <th>M2</th> <th>0</th> <th>3.0</th> <th>0</th> <th>0.3</th> <th>7.6</th> <th>615</th> <th>069</th> <th>615</th> <th>069</th>	M2	0	3.0	0	0.3	7.6	615	069	615	069
7.5 3.0 0 0.6 9.0 670 15.0 3.0 0 0.3 4.1 850 7.5 6.0 0 0.42 5.0 730 15.0 6.0 0 0.47 4.8 735 0 1.0 0.6 6.9 735 15.0 0 1.0 0.22 2.9 820 15.0 1.0 0.22 2.9 820 15.0 3.0 1.0 0.58 6.8 750 15.0 6.0 1.0 0.57 6.0 720 15.0 3.0 1.0 0.57 6.0 720 15.0 6.0 1.0 0.64 6.9 565	M19	0	0.9	0	0.42	8.3	265	620	290	096
15.0 3.0 0 0.3 4.1 850 7.5 6.0 0 0.42 5.0 730 15.0 6.0 0 0.47 4.8 735 0 0 1.0 0.6 6.9 735 15.0 0 1.0 0.22 2.9 820 15.0 0 1.0 0.58 6.8 750 15.0 3.0 1.0 0.35 6.0 720 15.0 6.0 1.0 0.35 6.0 720 0 3.0 1.0 0.57 6.0 720 0 6.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 6.9 565	M17	7.5	3.0	0	9.0	0.6	670	715	700	770
7.5 6.0 0 0.42 5.0 730 15.0 6.0 0 0.47 4.8 735 0 0 1.0 0.6 7.6 610 7.5 0 1.0 0.36 6.9 730 15.0 0 1.0 0.22 2.9 820 7.5 3.0 1.0 0.6 6.2 690 15.0 3.0 1.0 0.58 6.8 750 15.0 6.0 1.0 0.35 9.0 620 15.0 6.0 1.0 0.57 6.0 720 0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 6.9 560	M29	15.0	3.0	0	0.3	4.1	850	930	875	066
15.0 6.0 0 0.47 4.8 735 0 0 1.0 0.6 7.6 610 7.5 0 1.0 0.36 6.9 730 15.0 0 1.0 0.22 2.9 820 7.5 3.0 1.0 0.6 6.2 690 15.0 3.0 1.0 0.58 6.8 750 15.0 6.0 1.0 0.35 9.0 620 15.0 6.0 1.0 0.57 6.0 720 0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 6.9 560	M49	7.5	0.9	0	0.42	5.0	730	810	069	750
0 0 1.0 0.6 7.6 610 7.5 0 1.0 0.36 6.9 730 15.0 0 1.0 0.22 2.9 820 7.5 3.0 1.0 0.6 6.2 690 15.0 3.0 1.0 0.58 6.8 750 15.0 6.0 1.0 0.35 9.0 620 15.0 6.0 1.0 0.57 6.0 720 0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 7.6 595	M32	15.0	0.9	0	0.47	4.8	735	810	775	098
7.5 0 1.0 0.36 6.9 730 15.0 0 1.0 0.22 2.9 820 7.5 3.0 1.0 0.6 6.2 690 15.0 3.0 1.0 0.58 6.8 750 15.0 6.0 1.0 0.35 9.0 620 15.0 6.0 1.0 0.57 6.0 720 0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 7.6 595	M26	0	0	1.0	9.0	7.6	610	670	650	725
15.0 0 1.0 0.22 2.9 820 7.5 3.0 1.0 0.6 6.2 690 15.0 3.0 1.0 0.58 6.8 750 7.5 6.0 1.0 0.35 9.0 620 15.0 6.0 1.0 0.57 6.0 720 0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 7.6 595	M12	7.5	0	1.0	0.36	6.9	730	790	750	860
7.5 3.0 1.0 0.6 6.2 690 15.0 3.0 1.0 0.58 6.8 750 7.5 6.0 1.0 0.35 9.0 620 15.0 6.0 1.0 0.57 6.0 720 0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 7.6 595	M21	15.0	0	1.0	0.22	2.9	820	915	850	1000
15.0 3.0 1.0 0.58 6.8 750 7.5 6.0 1.0 0.35 9.0 620 15.0 6.0 1.0 0.57 6.0 720 0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 7.6 595	M35	7.5	3.0	1.0	9.0	6.2	069	745	720	<u>(</u>
7.5 6.0 1.0 0.35 9.0 620 15.0 6.0 1.0 0.57 6.0 720 0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 7.6 595	M24	15.0	3.0	1.0	0.58	8.9	750	820	190	910
15.0 6.0 1.0 0.57 6.0 720 0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 7.6 595	M11	7.5	0.9	1.0	0.35	0.6	620	665	680	740
0 3.0 1.0 0.64 6.9 560 0 6.0 1.0 0.64 7.6 595	M22	15.0	0.9	1.0	0.57	0.9	720	800	770	098
0 6.0 1.0 0.64 7.6 595	M14	0	3.0	1.0	0.64	6.9	260	650	620	670
	M48	0	6.0		0.64	•	595	620	650	815

TABLE 29 (CONTINUED)

VALUES AND TEMPERATURES OF MAXIMUM LOSS MODULUS AND LOSS FACTOR OF TEST MATRIX COATINGS

ure °C 00 Hz	730	860			096	160	870	720	029
ratu 100	7.	86	1	1	96	76	8,	72	9
Temperature ⁿ Dmax °C 100 Hz 1000 Hz	675	770	870	730	845	089	780	099	620
Temperature E" Dmax °C 100 Hz 1000 Hz	665	815	096	745	885	710	845	999	625
Temper E"Dmax 100 Hz	620	730	840	069	800	650	760	522	585
Maximum E _D "×10 ⁻⁹ N/M ²	7.2	7.6	3.0	7.6	6.2	7.3	5.5	11.0	7.2
Co ₂ O ₃ Maximum Wt. %) ⁿ D	1.05	0.4	0.18	6.0	0.27	9.0	0.44	0.85	0.56
\sim	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Additions Na ₂ O (Wt. %)	0	0	0	3.0	3.0	0.9	0.9	3.0	0.9
Al ₂ 0 ₃ (Wt. %)	0	7.5	15.0	7.5	15.0	7.5	15.0	Ö	0
Specimen Number	M5	M27	M41	M31	M4	M45	M46	We	L W

TABLE 30 GLASS TRANSITION TEMPERATURES (Tg) AND ACTIVATION ENERGIES (Δ H) OF TEST MATRIX GLASS COMPOSITIONS

Specimen Number	Tg (°F)	ΔH (K. Cal. mole ⁻¹)
м30	805	60.0
Ml	990	91.5
M36	1113	63.7
M2	826	52.0
M19	767	52.5
M17	915	66.1
M29	1081	57.5
M49	887	74.9
M32	1054	63.7
M26	825	56.0
M12	925	48.0
M21	1224	43.5
M35	870	-
M24	921	47.8
Mll	913	73.4
M22	952	59.9
M14	837	76.8
M48	789	84.0
M5	852	78.8
M27	900	59.9
M41	1005	-
M31	871	-
M4	1094	54.7
M45	916	56.1
M46	1048	61.0
M6	836	70.4
M7	807	76.8

· ,)

Specimen M30 reduced frequency and temperature nomograph. Figure 11.

, Y

Specimen M30 reduced frequency and temperature nomograph. Figure 12.

7. . . .

Specimen Ml reduced frequency and temperature nomograph. Figure 13.

Specimen Ml reduced frequency and temperature nomograph. Figure 14.

Specimen M36 reduced frequency and temperature nomograph. Figure 15.

Ί,

Specimen M36 reduced frequency and temperature nomograph. Figure 16.

7,

Specimen M2 reduced frequency and temperature nomograph. Figure 17.

Specimen M2 reduced frequency and temperature nomograph. Figure 18.

7,

Specimen M19 reduced frequency and temperature nomograph. Figure 19.

Specimen M19 reduced frequency and temperature nomograph. Figure 20.

Specimen M17 reduced frequency and temperature nomograph. Figure 21.

Specimen M17 reduced frequency and temperature nomograph. Figure 22.

*

The second second

Specimen M29 reduced frequency and temperature nomograph. Figure 23.

Specimen M29 reduced frequency and temperature nomograph. Figure 24.

· · · · ·

Specimen M49 reduced frequency and temperature nomograph. Figure 25.

Έ.

Specimen M49 reduced frequency and temperature nomograph. Figure 26.

Specimen M32 reduced frequency and temperature nomograph. Figure 27.

Specimen M32 reduced frequency and temperature nomograph. Figure 28.

Specimen M26 reduced frequency and temperature nomograph. Figure 29.

7.

Specimen M26 reduced frequency and temperature nomograph. Figure 30.

7.

Specimen M12 reduced frequency and temperature nomograph. Figure 31.

Specimen M12 reduced frequency and temperature nomograph. Figure 32.

Specimen M21 reduced frequency and temperature nomograph. Figure 33.

Specimen M21 reduced frequency and temperature nomograph Figure 34.

Specimen M35 reduced frequency and temperature nomograph. Figure 35.

7.

Specimen M35 reduced frequency and temperature nomograph. Figure 36.

γ.

Specimen M24 reduced frequency and temperature nomograph. Figure 37.

Specimen M24 reduced frequency and temperature nomograph. Figure 38.

Specimen Mll reduced frequency and temperature nomograph. Figure 39.

Specimen Mll reduced frequency and temperature nomograph. Figure 40.

ή,

Specimen M22 reduced frequency and temperature nomograph. Figure 41.

, Y

Specimen M22 reduced frequency and temperature nomograph. Figure 42.

· , , ,

Specimen M14 reduced frequency and temperature nomograph. Figure 43.

Specimen M14 reduced frequency and temperature nomograph. Figure 44.

Specimen M48 reduced frequency and temperature nomograph. Figure 45.

Specimen M48 reduced frequency and temperature nomograph. Figure 46.

Specimen M5 reduced frequency and temperature nomograph. Figure 47.

Specimen M5 reduced frequency and temperature nomograph. Figure 48.

Specimen M27 reduced frequency and temperature nomograph. Figure 49.

Specimen M27 reduced frequency and temperature nomograph.

7.

Specimen M41 reduced frequency and temperature nomograph. Figure 51.

Specimen M41 reduced frequency and temperature nomograph. Figure 52.

Specimen M31 reduced frequency and temperature nomograph, Figure 53.

Spocimen M31 reduced frequency and temperature nomograph. Figure 54.

Specimen M4 reduced frequency and temperature nomograph. Figure 55.

Ί,

Specimen M4 reduced frequency and temperature nomograph. Figure 56.

Ί,

Specimen M45 reduced frequency and temperature nomograph. Figure 57.

7.

Specimen M45 reduced frequency and temperature nomograph. Figure 58.

1.

Specimen M46 reduced frequency and temperature nomograph. Figure 59.

Specimen M46 reduced frequency and temperature nomograph. Figure 60.

7,

Specimen M6 reduced frequency and temperature nomograph. Figure 61.

Specimen M6 reduced frequency and temperature nomograph. Figure 62.

7,

Specimen M7 reduced frequency and temperature nomograph. Figure 63.

Specimen M7 reduced frequency and temperature nomograph. Figure 64.

7, .

Maximum Loss Modulus Versus ${\rm Al}_2{\rm O}_3$ and ${\rm Na}_2{\rm O}$ Additions to Corning 0010 Glass with 0 w/o ${\rm Co}_2{\rm O}_3$. Figure 65.

7.

Maximum Loss Modulus Versus ${\rm Al_2}{\rm O_3}$ and ${\rm Na_2}{\rm O}$ Additions to Corning 0010 Glass with 1.0 w/o ${\rm Co_2}{\rm O_3}$. Figure 66.

Maximum Loss Modulus Versus ${\rm Al}_2{\rm O}_3$ and ${\rm Na}_2{\rm O}$ Additions to Corning 0010 Glass with 2.0 w/o ${\rm Co}_2{\rm O}_3$. Figure 67.

7,

Maximum Loss Factor Versus ${\rm Al}_2{\rm O}_3$ and ${\rm Na}_2{\rm O}$ Additions to Corning 0010 Glass with 0 w/o ${\rm Co}_2{\rm O}_3$. Figure 68.

Maximum Loss Factor Versus ${\rm Al_2O_3}$ and ${\rm Na_2O}$ Additions to Corning 0010 Glass with 1 w/o ${\rm Co_2O_3}$. Figure 69.

7

Maximum Loss Factor Versus ${\rm Al_2^{O_3}}$ and ${\rm Na_2^{O}}$ Additions to Corning 0010 Glass with 2 w/o ${\rm Co_2^{O_3}}$. Figure 70.

Variation of Temperature of Maximum Loss Factor with Additions of Al 00 and Na 20 to Corning 0010 Glass with 0 w/o 20 (at 100 and 1000 3 Hz).

Variation of Temperature of Maximum Loss Factor with Additions of Al $_2$ O and Na $_2$ O to Corning 0010 Glass with 1 w/o $\cos _2$ O (at 100 and 1000 Hz). Figure 72.

Variation of Temperature of Maximum Loss Factor with Additions of Al $_2$ O $_3$ and Na $_2$ O to Corning 0010 Glass with 2 w/o Co $_2$ O $_3$ (at 100 and 1000 Hz). Figure 73.

additions of Na₂O lower the temperature of peak damping. The addition of Co₂O₃ increased the temperature of peak loss factor. The magnitude of the loss modulus decreased with increasing percent addition whereas the loss factor first decreased and then increased.

In general, the additions of the three oxides affected the vibration damping properties in the manner expected. The addition of Al₂O₂, and its intermediate, is known to increase the temperature at which a silicate glass will reach a specified viscosity. If, as assumed, the peak damping occurs above the glass transition temperature range, one would expect an addition that increased the viscosity of the glass would also increase the temperature of peak damping. Conversely, the addition of a modifier like Na₂O would be expected to decrease the temperature of peak damping. However, the effect of adding a heavy metal ion like Co is difficult to ascertain. The Co is believed to react with the metal substrate surface, causing a reduction of the metal in the passivating oxide film. The reduced metal ion (e.g., Fe), then migrates into the glass structure and the Co forms a CoO layer at the interface. Therefore, the composition of the enamel may not be in equilibrium until some later time. This may cause the damping properties of the glass to change slightly during repeated testing at high temperatures. all of the Co will not be consumed at the interface, causing the remaining Co to act as a modified ion, resulting in the lower loss modulus observed with increasing Co20, additions.

4.1 DISCUSSION

Glass structural considerations and factors influencing performance of the vibration damping glass coating led to an experimental design in which amounts of Al_2O_3 , Na_2O and Co_2O_3 were varied. Major factors of consideration influencing the glass coating were: (1) the viscosity-temperature relationship, (2) the metal-glass interface chemistry, (3) the thermal

expansion coefficient, (4) the elastic modulus, and (5) the chemical durability. The experiment was intended to determine the effects of the compositional variation on the five major factors. Results of the experiment are presented in the graphic form from Figure 65 to 75 and in the tabular form in Table 30. In this section an attempt will be made to explain and account for the variation in the glass coating's damping properties, with particular emphasis on the loss factor (n) as it is directly related to the vibration energy dissipated.

4.1.1 Loss Factor Peak Temperature versus Tg

Figure 74 shows a relationship between the loss factor peak temperature at 100 Hz and the glass transition temperature (Tg). The glass transition temperature represents the temperature at which extrapolated low and high temperature linear portions of the thermal expansion curve intersect. obvious from the figure that increasing Tg increases the peak temperature. This suggests that the loss factor peak temperature is determined by the viscosity of the glass because Tg corresponds to a given viscosity (approximately $\eta=10^{13}$ poise). An estimation of the viscosity corresponding to the peak temperature can be made. The viscosity data for Corning 0010 glass are available and are shown in Figure 75. The loss factor peak temperature for the Corning 0010 glass at 100 Hz is 650°C (Table 29) which corresponds to a viscosity of 10⁷ poise. Similarly, for 1,000 Hz, the loss factor peak corresponds to 10^{6.5} poise. It is, therefore, noted that the observed damping occurs when the glass temperature is near the softening point $(\eta=10^{7.6})$.

In regard to the effect of compositional variation on Tg, it is noted that: (i) increasing ${\rm Al_2O_3}$ in the glass increases its glass transition temperature, (ii) increasing ${\rm Na_2O}$ decreases the glass transition temperature, and (iii) variations in ${\rm Co_2O_3}$ do not show a significant effect on the Tg. The effects of ${\rm Al_2O_3}$ and ${\rm Na_2O}$ are consistent with the glass structural theory described earlier in this report. Classified as an intermediate,

Loss Factor Peak Temperature Versus Glass Transition Temperature for Corning 0010 with Various Additions. Figure 74.

7.

Figure 75. Viscosity Versus Temperature for Corning 0010 Glass.

Al₂O₃ provides 1.5 oxygen per aluminum ion. By virtue of its ability to participate in the network and being a source of oxygen, it converts the non-bridging oxygens to bridging oxygen in the glass structure. This process makes the structure rigid and increases the viscosity over the entire temperature range. The increase in the glass transition temperature with increasing Al₂O₃ reflects this rigid nature of the glass structure. The effect of increasing Al₂O₃ on Tg is shown in Figure 76. The sodium oxide provides 0.5 oxygen per sodium ion and therefore helps in increasing the concentration of non-bridging oxygen in the glass structure. This is evidenced by a decrease in the Tg. In general, the effect of Na₂O is to decrease the viscosity over the entire temperature range for most glasses.

4.1.2 Loss Factor Peak Height

Addition of Al,O, also progressively decreases the loss factor peak height as shown in Figure 77. This can be explained on the basis of structural changes caused by the Al₂O₂. There are two factors which determine height of the damping peak, namely: (i) the concentration of the relaxation units and, (ii) temperature distribution of the relaxation periods. The Al₂O₃ addition decreases the number of relaxation units by converting the non-bridging oxygens to the bridging oxygen. is believed that non-bridging oxygen is one of the contributors to the relaxation process. Progressive addition of Na₂O increases the damping peak height. This is expected in view of the explanation provided for the effect of Al₂O₃. Na₂O, being a modifier, generated more non-bridging oxygen and also provides a very mobile species, Na, in the glass. These two i.e. increased concentrations of non-bridging oxygen and sodium are expected to increase the number of relaxation units. effect of cobalt oxide on the loss factor peak height is insignificant.

Effect of $\mathrm{Al}_2\mathrm{O}_3$ Additions on the Glass Transition Temperature of Corning 0010 Glass. Figure 76.

Effect of $\mathrm{Al}_2\mathrm{O}_3$ Additions on the Loss Factor Peak Height of Corning 0010 Glass. Figure 77.

7,

4.1.3 Activation Energy for the Relaxation Process

An estimation of the activation energy for the relaxation process can be made using the relationship as expressed by the equation (6).

$$\omega_1^{\tau_1} = \omega_2^{\tau_2} \tag{6}$$

or,
$$\frac{\omega_2}{\omega_1} = \frac{\tau_1}{\tau_2} = \frac{\tau_0 e^{\Delta H/RT} 1}{\tau_0 e^{\Delta H/RT} 2}$$
 (7)

$$= e \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$
 (8)

or,
$$\ln \frac{\omega_2}{\omega_1} = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$
 (9)

Where: ω_1 & ω_2 = natural frequencies at 100 Hz and 1,000 Hz

 τ_1 & τ_2 = relaxation times at frequencies 100 Hz and 1,000 Hz

 T_1 & T_2 = temperatures corresponding to peaks for 100 Hz and 1,000 Hz

 ΔH = activation energy for the relaxation process

R = gas constant.

Provided for each composition in Table 29 are maximum loss factors (n_D) for temperatures corresponding to frequencies of 100 Hz and 1,000 Hz. This information can be used in equation (9) to determine the activation energy for the relaxation process. Activation energies obtained for each composition are shown in Table 30. The activation energy for the process ranges from 43.5 to 91.5 kcal/mole. This activation energy is similar to the activation energy required for the viscous flow in glasses.

It is conceivable that the structural units which determine and control the viscous flow also participate in the relaxation or damping process.

4.1.4 Thermal Expansion

The coefficient of thermal expansion remains relatively unaffected by the variation in the ${\rm Al}_2{\rm O}_3$ concentration. Progressive addition of ${\rm Na}_2{\rm O}$ increases the thermal expansion significantly. Variations in the coefficient of thermal expansion for the glass compositions studied were from 7.9 x 10^{-6} to 11.0×10^{-6} per degree C. Such a variation in the thermal expansion has not caused any noticeable glass-to-metal adhesion problems. The effect of ${\rm Co}_2{\rm O}_3$ variation on the thermal expansion is insignificant.

APPENDIX A

TESTING PROCEDURE

The cantilever beam test specimen was placed in the damping apparatus illustrated in Figure 5. As mentioned previously, this apparatus compensates for the thermal expansion and high temperature creep of the fixture and damping bolts and insures a constant clamping pressure over the entire temperature range for which the measurements are obtained. The frequency response and modal damping as a function of temperature for each test beam was measured before a damping coating was applied. This was done to obtain accurate resonant frequency measurements of the uncoated beam. Accurate measurements of the resonant frequencies are necessary because the material damping properties calculated from experimental measurements are very sensitive to errors in the ratio of the coated beam resonant frequency to the uncoated resonant frequency (f_{1n}/f_{n}), especially for thin coatings.

The environmental chamber used for these tests was a threezone furnace capable of heating the test beams to 950°C Individual temperature control of each of the zones insured a good temperature distribution over the specimen. Proportional temperature controllers were used which supply energy to the individual zones to balance the heat loss in each zone. The temperature difference over the specimen was maintained at + 5°F at each temperature. A control thermocouple was placed in each zone and four measuring thermocouples placed at different locations along the beam: one at the root of the beam; two in the middle zone; and one at the end zone. These measuring thermocouples were in contact with the beam and the control settings of the individual temperature controllers were adjusted until the temperature distribution along the beam was within + 3°C. measuring thermocouples, except for the one in the root of the beam, were lifted off the beam before the dynamic response measurements were made.

For the uncoated beams, each beam was stabilized at the highest expected test temperature (usually about 1,000°C) and the resonant frequency and modal damping of the second through sixth modes were measured. The temperature was then reduced in approximately 100°C increments, stabilized, and the response measurements repeated. This procedure was continued to approximately 300°C. The resonant frequency and modal damping versus temperature for each of the modes were then plotted. The resonant frequency versus temperature curve for each of the modes of the uncoated specimens tested was a smooth curve, and accurate resonant frequencies could be picked from this curve for any temperature of interest. The modal damping was determined by measuring the half-power bandwidth of each of the modes ($\eta = \Delta f_p/f_p$).

Experience showed it was necessary to heat the specimen to the highest temperature and measure the response of the specimen The resonant frequencies measured on cooling as it was cooled. from the highest temperature were higher than the resonant frequencies measured upon heating from room temperature to the highest temperature of interest. Once the specimen was heated to the highest temperature and cooled, the differences in the resonant frequencies measured going up in temperature and those measured coming down in temperature were the same, within experimental error, as long as the specimen was not removed from the fixture. Other investigators (14) have also noticed this behavior. believed to be caused by the beam "setting in" the fixture and the relief of surface stresses in the beam introduced during fabrication. It is not due to the beam material being annealed. The annealing temperature of the beam material used (Haynes Alloy 188) is greater than 1,100°C.

After the uncoated specimen response was measured the beam was then coated on one side with a glass. A different beam was used for each of the glass compositions tested. If the same glass composition had to be retested, the coating was removed from the beam, the bare beam was retested, and the same coating

was reapplied to the beam. The coated beam, for these tests, was heated to approximately 750°C (1,400°F) and the resonant frequencies and modal damping of the second through sixth modes were measured. The temperature was then reduced in steps of 25°C and the response was again measured. If the modal damping decreased upon cooling, the temperature of the specimen was increased in 25°C increments until the modal damping decreased for two successive increases in temperature. The specimen was then cooled in 25°C steps and the measurements made again.

The measurements made upon heating were not used to calculate the damping properties of the coating for the reasons previously mentioned. Another reason was the fact that a glass is sensitive to its previous thermal history, in particular to the rate at which it is cooled from its firing temperature. The specimens tested were fired at approximately 1,050°C for five minutes and then air quenched. This rapid cooling may have caused large residual stresses and some non-equilibrium structure to be frozen in. Heating the glass above its softening temperature and slowly cooling allowed the residual stresses to be relieved and the glass to maintain equilibrium.

The loss factor of the uncoated beam was subtracted from the measured loss factor of the coated beam to obtain a "corrected" modal damping coefficient. Sridharan (15) has shown that for small modeled damping,

$$\eta_c = \eta_s - \eta_b$$

where

 n_h = modal damping of the uncoated beam

 n_s = measured modal damping of the coated specimen

n_c = modal damping that would have been observed if the
uncoated beam damping were zero.

This correction is usually only necessary for temperatures greater than 650°C (1,200°F).

The data recorded for each of the modes and temperatures are:

- T the temperature of the specimen
- f, the resonant frequency of the specimen for the nth mode
- Δf the half-power bandwidth of the nth mode
- ns/b modal damping of the nth mode of the coated/uncoated
 specimen at the length, thickness of the bare beam,
 average thickness of the coated beam, and the densities of the beam and coating.

APPENDIX B

CURVE FITTING PARAMETERS

The following equations (1-4) were used to fit curves to the vibration damping data versus temperature and frequency. Table 1 contains the values for the parameters of these equations.

$$Log(M) = Log(ML) + \frac{2 Log(\frac{MROM}{ML})}{1 + (\frac{FROM}{FR})^{N}}$$
(1)

$$A = \frac{Log(FR) - Log(FROL)}{C}$$
 (2)

$$Log(ETA) = Log(ETAFROL) + [(S_L + S_H)A + (S_L - S_H)(1-1+A^2)] \frac{C}{2}$$
 (3)

$$Log(FR) = Log(F) - \frac{12(T - T_o)}{\frac{525}{1.8} + T - T_o}$$
(4)

where:

M is the Young's Modulus E'_D $\label{eq:ETA} \mbox{ ETA is the Material Loss Factor η_D} \mbox{FR is the Reduced Frequency $f\alpha_m$}$

TABLE 1-B VALUES OF PARAMETERS FOR EQUATIONS 1 THROUGH 4

Matrix Number	E40	FROM × 10 ⁴	MROM × 10 ⁻⁹	Z	ML × 10 ⁻⁸	ETA FROL	.i.	SH	FROL × 10 ³	U
Н	600	150.0	14.85	0.61	56.6	0.48	0.45	-0.4	10.0	9.0
2	450	108.9	31.4	1.28	217.0	0.308	0.567	-0.374	3.73	0.124
4	550	0.13	8.4	0.539	15.5	0.27	3.0	-0.325	0.08	0.8
5	550	480.54	5.0144	0.683	7.6632	1.05	0.43	-0.33	20.846	0.25
9	200	85.00	7.0	0.63	13.0	0.85	0.32	-0.46	7.0	0.58
7	200	803.8	14.3	0.727	55.05	0.561	0.363	-0.339	31.0	0.425
11	500	80.0	7.6	0.74	26.0	0.35	2.2	-0.56	0.36	1.271
12	450	0.89	18.0	0.54	70.0	0.36	0.42	-0.5	60.0	9.0
14	500	515.6	11.2	0.687	39.4	0.64	0.53	-0.45	30.0	0.3
17	550	28.0	6.5	0.58	10.0	9.0	0.4	-0.44	0.9	6.0
19	440	63.0	11.0	0.92	34.0	0.53	0.46	-0.60	10.0	0.55
21	650	17.0	12.0	0.73	75.0	0.24	0.37	-0.33	1.2	0.40
22	200	1.1	5.0	0.62	7.3	0.58	0.62	-0.62	0.2	0.64
24	500	0.7	7.0	0.77	14.0	0.58	0.58	-0.54	0.097	0.30
* 27	540	1.3	10.0	0.48	19.0	0.40	0.50	-0.58	9.0	06.0
29	009	3,15	13.1	0.447	57.0	0.30	0.83	-0.33	0.07	0.655
30	200	105.32	13.0	0.748	41.342	0.64	0.40	-0.37	0.6	0.224

7.

TABLE 1-B (Continued)
VALUES OF PARAMETERS FOR EQUATIONS 1 THROUGH 4

Number	E10	FROM × 10 ⁴	MROM × 10 ⁻⁹	Z	ML × 10 ⁻⁸	FROL	S	SH	FROL × 103	ပ
31 55	550	34.0	7.4	0.68	15.0	06.0	0.43	-0.42	2.5	0.230
32 54	540	4.1	7.8	0.63	22.0	0.47	0.49	-0.47	0.505	0.43
35 55	550	63.0	10.1	0.72	32.0	0.63	0.52	-0.43	3.9	0.24
36 60	009	8.0	22.0	0.68	170.0	0.10	0.35	-0.275	0.21	0.50
41 55	550	1.0	18.2	0.63	94.2	0.18	0.40	-0.41	0.041	0.59
45 50	200	38.911	10.78	0.745	33.602	0.59	0.72	-0.52	1.8	0.510
46 55	550	8.0	13.5	06.0	56.0	0.44	0.48	-0.52	0.5	0.370
48 55	50 6	550 6,500.0	8.6	0.55	33.0	0.642	0.363	0.363 -0.357 642.29	642.29	0.561
49 55	550	83.6	10.0	0.55	34.7	0.42	0.42	-0.42	11.8	0.52
*26 50	500	97.694	9.6895	0.582	2,5663	99.0	0.5	9.0-	10.0	1.00

REFERENCES

- 1. A. D. Nashif, Ceramics Bulletin, 53, 12 (1974).
- D. I. G. Jones, A. D. Nashif, H. Stargardter, paper presented at ASME Gas Turbine Conference, Switzerland, April 1974, ASME paper 74-GT-95 (also J. Engineering for Power, 111, January 1975).
- D. I. G. Jones and C. M. Cannon, Journal of Aircraft, 12, 4, 226 (1975).
- 4. R. H. Doremus, Glass Science, John Wiley & Sons, Inc., New York, 1973.
- 5. W. H. Zachariesen, J. Am. Chem. Soc., 54, 3841 (1932).
- 6. R. W. Douglas, J. Soc. Glass Technol., 31, 50T (1947).
- M. L. Huggins, K. H. Sun, and A. Silverman, J. Am. Ceram. Soc., 26, 393 (1943).
- 8. J. D. Mackenzie, ed., Modern Aspects of the Vitreous State 'I' (1960).
- 9. J. W. Marx and J. M. Sivertsen, J. Appl. Phys., 24, 81 (1953).
- 10. P. L. Kirby, J. Soc Glass Technol., 34, 383 (1954).
- 11. G. J. Dienes, J. Appl. Phys., 24, 779 (1953).
- 12. S. M. Cox, J. Soc. Glass Technol., 32, 192 (1948).
- 13. C. R. Kurkjian, Phys. and Chem. Glasses, 4, 128 (1963).
- 14. A. K. Doolittle, J. Appl. Phys., 22, 1471 (1951).
- M. L. Williams, R. F. Landel, and J. D. Terry, J. Am. Chem. Soc., <u>77</u>, 3701 (1955).
- 16. H. Oberst, Acoustica (Akustiche Berhefte), 4, 181 (1952).
- 17. R. E. D. Bishop and D. C. Johnson, The Mechanics of Vibration, Cambridge . Press, (1960).
- 18. R. Plunket and R. V. Johnson, Final Report USAF Contract No. F33615-72-C-1315 (1974).
- 19. Prabha I. Sridharan, AFML-TR-74-191, Wright-Patterson AFB, Ohio (1976).

7.

- 20. D. I. G. Jones, The Shock and Vibration Bulletin, Part 2 (1978).
- 21. C. S. King, Jr., AFML-TR-79-4099, Wright Patterson AFB, Ohio (1979).
- 22. A. D. Nashif and L. C. Rogers, Shock and Vibration, 45 (1975).
- 23. A. S. Nowick and B. S. Berry, IBM Journal of Research and Development, 297 (1961).

