Homework 1: Quiz format for True/False and Multiple Choice

Started: May 25 at 8:50pm

Quiz Instructions

Due: May 29 at 11:59 p.m. Eastern

Attention: You only have ONE attempt to answer the True/False and Multiple Choice questions.

Question 1	1.5 pts
[1.2 Estimation Method] The estimated simple linear regression coefficient, preasures the strength of a linear relationship between the predicting and revariables.	_
○ True	
○ False	

Question 2	1.5 pts
[1.2 Estimation Method] In simple linear regression models, we lose three degreedom when estimating the variance of the error terms because of the estimating the three model parameters $eta_0,\ eta_1,\sigma^2$.	•
○ True	
○ False	

Question 3 1.5 pts

[1.2 Estimation Method] In simple linear regression, the sampling distribution for variance estimator is χ^2 (chi-squared) regardless of whether the assumptions model hold or not.	
○ True	
○ False	
Question 4	1.5 pts
[1.2 Estimation Method] In simple linear regression, a negative value of eta_1 is consistent with an inverse relationship between the predicting variable and the response variable.	
○ True	
○ False	
Question 5	1.5 pts
[1.4 Statistical Inference] In simple linear regression, $\hat{m{eta}}_1$ is an unbiased estima $m{eta}_0$.	ator for
○ True	
○ False	
Question 6	1.5 pts

[1.4 Statistical Inference] If the assumptions of a simple linear regression model hold, then the estimator for the variance of the error terms, $\hat{\sigma}^2$, is a random variable.	
○ True	
○ False	
Question 7	1.5 pts
[1.4 Statistical Inference] Under the normality assumption, the estimated simple regression coefficient, $\hat{m{\beta_1}}$, is a linear combination of normally distributed rand variables.	
○ True	
○ False	
Question 8	1.5 pts
[1.5 Statistical Inference Data Example] The p-value of a hypothesis test is interpreted as the probability of rejecting the null hypothesis.	
○ True	
○ False	

Question 9 1.5 pts

[1.7 Regression Line: Estimation & Prediction Examples] In simple linear regression, the prediction interval of one member of the population will always be wider than the

corresponding confidence interval of the mean response for all population when using the same predicting value.	members of the
○ True	
○ False	
Question 10	1.5 pts
[1.8 Diagnostics] In simple linear regression, the normality assu response variable is normally distributed.	
○ True	
○ False	
Question 11	1.5 pts
[1.8 Diagnostics] With the Box-Cox transformation, we do not travariable when $\lambda=~0$.	ansform the response
○ True	
○ False	
Question 12	1.5 pts
[1.10 Diagnostics and Model Evaluation Examples] In simple lin assess the constant variance assumption by plotting the responditted values.	•

○ True	
○ False	
Question 13	1.5 pts
[2.2 Estimation Method] An ANOVA model with a qualitati containing $m{k}$ groups will have $m{k}+m{1}$ parameters to estima	
○ True	
○ False	
Overtion 44	4.5.040
Question 14	1.5 pts
[2.2. Estimation Method] In ANOVA, the linearity assumpt	
[2.2. Estimation Method] In ANOVA, the linearity assumpt	
[2.2. Estimation Method] In ANOVA, the linearity assumpt plot of the residuals.	
[2.2. Estimation Method] In ANOVA, the linearity assumpt plot of the residuals.	
[2.2. Estimation Method] In ANOVA, the linearity assumpt plot of the residuals. True False	ion is assessed using a QQ
[2.2. Estimation Method] In ANOVA, the linearity assumpt plot of the residuals. True False Question 15 [2.4 Test for Equal Means] In ANOVA, the mean sum of second seco	ion is assessed using a QQ
[2.2. Estimation Method] In ANOVA, the linearity assumpt plot of the residuals.	ion is assessed using a QQ-

Question 16	1.5 pts
[2.6. Model Fit Assessment] The quantile-quantile normal only tool available for assessing the normality assumption	•
○ True	
○ False	
Question 17	1.5 pts
[2.8 Data Example] In ANOVA, if the constant variance a statistical inference on the equality of the means will not	·
○ True	
○ False	
Question 18	1.5 pts
[2.8 Data Example] In ANOVA, if the pairwise compariso does not include zero, we conclude that the two means a	
does not include zero, we conclude that the two means a	
does not include zero, we conclude that the two means a	

Question 19	1.5 pts
[1.4 Statistical Inference] In simple linear regression, given that the variance error terms (σ^2) is unknown, the sampling distribution of \hat{eta}_0 is a	of the
○ chi-squared distribution	
○ t-distribution	
○ normal distribution	
○ None of the above	

Question 20		2 pts
[1.4 Statistical Inference] To test if a regress	sion coefficient is less	than a critical value,
$oldsymbol{c}$, we conduct a one-sided test on the	tail of a	distribution.
○ left, t		
○ left, Chi-squared		
○ right, normal		
○ right, t		
○ None of the above		

Question 21	1.5 pts
[1.9 Outliers and Model Evaluation] A data point far from the mean of boy's is always:	oth the x's and
○ an influential point and an outlier	

○ a leverage point and an influential point	
○ an outlier and a leverage point	
○ None of the above	

Question 22	2 pts
[2.4 Test for Equal Means] In ANOVA, when testing for equal means across gr the alternative hypothesis can be stated as,	oups,
○ the means of all pairs of groups are different	
○ the means of all groups are equal	
○ the means of at least one pair of groups is different	
○ None of the above	

Question 23	2 pts
[2.4 Test for Equal Means] The F-test for equal means is a t and degrees of freedom, where ${\pmb k}$ is the number of grouthe total sample size.	
○ one, k-1, N-k	
○ one, k, N-k	
○ two, k-1, N-k	
○ two, k, N-1	
○ None of the above	

The following output was captured from the summary output of a simple linear regression model that relates the duration of an eruption with the waiting time since the previous eruption.

Question 24	2 pts
[1.4 Statistical Inference] Using the table above, what is the standard error of intercept, labeled A , and rounded to three decimal places?	the
○ 2.336	
O.808	
O.806	
○ -0.806	
○ None of the above	

Question 25	2 pts
[1.4 Statistical Inference] Using the table above, what is the t-value of the coefor waiting, labeled B , and rounded to three decimal places?	fficient
○ 3.939	

Not saved

Submit Quiz