

**Amendments to the Claims:**

This listing of claims will replace all prior versions, and listings, of claims in the application.

**We claim:**

1. (original) A compound of the following formula:



or a pharmaceutically acceptable salt thereof, wherein

R¹ is phenyl or thien-2-yl, each optionally substituted;

L is a covalent bond, -CH₂O-, -C(O)-, or -C(=N-OCH₃)-; and

R⁵ is -halo or -OR¹⁰ wherein R¹⁰ is phenyl, pyridinyl, or quinolinyl, each optionally substituted,

provided that when L is -CH₂O-, R⁵ is not -F or p-nitrophenyl.

2. (original) The compound according to claim 1 wherein the substituents are independently selected from -NO₂, -CO₂H, and halo.
3. (original) The compound according to claim 1 wherein R¹ is unsubstituted.
4. (original) The compound according to claim 1 wherein R⁵ is selected from:

|   |  |  |     |  |     |
|---|--|--|-----|--|-----|
| F |  |  |     |  |     |
|   |  |  |     |  |     |
|   |  |  |     |  |     |
|   |  |  | and |  | -H. |

5. (original) The compound according to claim 1 wherein R¹-L and R⁵ are selected from the following combinations:

| <b>R<sup>1</sup>-L-</b>                  | <b>R<sup>5</sup></b>          |
|------------------------------------------|-------------------------------|
| <chem>c1ccccc1-CH2-O-</chem>             | PNP                           |
| <chem>c1ccccc1-CH2-O-</chem>             | <chem>O=c1ccncc1</chem>       |
| <chem>c1ccccc1-CH2-O-</chem>             | <chem>O=c1ccc2ccncc2c1</chem> |
| <chem>C=C1S=C(C=C1)C(=O)O</chem>         | PNP                           |
| <chem>C=C1S=C(C=C1)C(=O)Oc2ccccc2</chem> | <chem>O=c1ccncc1</chem>       |
| <chem>C=C1S=C(C=C1)C(=O)Oc2ccccc2</chem> | <chem>Oc1ccccc1</chem>        |
| <chem>C=C1S=C(C=C1)C(=O)Oc2ccccc2</chem> | <chem>Oc1cc(F)ccccc1</chem>   |
| <chem>C=C1S=C(C=C1)C(=O)Oc2ccccc2</chem> | PNP                           |
| <chem>c1ccccc1-CH2-O-</chem>             | <chem>S-c1ccccc1F</chem>      |
| <chem>c1ccccc1-CH2-O-</chem>             | <chem>Oc1ccc2c(c1)ncn2</chem> |
| <chem>C=C1S=C(C=C1)C(=O)O</chem>         | PNP                           |

| <b>R<sup>1</sup>-L-</b>                                                              | <b>R<sup>5</sup></b>                                                                  |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|    |    |
|    |    |
|    |    |
|    |    |
|    |    |
|   |   |
| and                                                                                  |                                                                                       |
|  |  |

6. (original) The compound according to claim 1 wherein the phosphonate moiety is replaced with a thiophosphonate moiety, provided that when R<sup>1</sup>-L- is benzyloxy, R<sup>5</sup> is not -O-PNP.

7. (original) A compound of formula:



or a pharmaceutically acceptable salt thereof, wherein

$\mathbb{R}^1$  is



$R^3$  is -H or  $-CO_2R^9$ , wherein  $R^9$  is  $-C_1-C_3$ -alkyl;

$R^6$  is  $-L^1-A-(L^2-B)_s$ , wherein

$L^1$  is  $C_0-C_3$ -alkyl optionally mono- to per-halogenated;

A is  $C_3-C_6$ -cycloalkyl, aryl, or heteroaryl;

$L^2$  is a covalent bond or  $(C_0-C_3\text{-hydrocarbyl})-X^1-(C_0-C_3\text{-hydrocarbyl})$ , wherein  $X^1$  is -  
 $C(O)-$ ,  $-NH-$ ,  $-NH-C(O)-$ ,  $-C(O)-NH-$ , or heteroaryl;

B is -H,  $C_3-C_6$ -cycloalkyl, aryl, or heteroaryl; and

s is 0 or 1;

wherein when s is 0,  $(L^2-B)_s$  is -H or halo, and A and B are independently optionally substituted with 1-3 moieties independently selected from the group consisting of halo,  $-NO_2$ ,  $-CO_2H$ ,  $-CN$ ,  $-C(O)-NH_2$ ,  $-SO_2-NH_2$ , or  $-C_0-C_3\text{-hydrocarbyl}-Y-(C_1-C_3\text{-hydrocarbyl})$  wherein Y is a covalent bond,  $-O-C(O)-$ ,  $-C(O)-$ ,  $-O-$ ,  $-S-$ ,  $-SO_2-$ ,  $-C(O)-NH-$ , or  $-NH-C(O)-$ ; and each alkyl moiety is optionally mono- to per-halogenated.

8. (original) The compound according to claim 7 wherein  $R^3$  is H and  $R^1$  is



9. (original) The compound according to claim 7 wherein  $R^3$  is  $-CO_2Et$  and  $R^1$  is



10. (original) The compound according to claim 7 wherein  $L^1$  is -O- and A is phenyl or pyridinyl, each optionally substituted,  $R^3$  is H and  $R^1$  is



11. (original) The compound according to claim 10 wherein A is pyridin-3-yl.
12. (original) The compound according to claim 11 wherein s is 0.
13. (original) The compound according to claim 11 wherein s is 1 and L<sup>2</sup> is -C(O)-, -C(O)NH-, -NH-, 1,2,4-oxadiazolyl, or 1,3,4-oxadiazolyl and B is phenyl, pyridinyl, cyclopropyl, or thienyl, wherein B is optionally substituted.
14. (original) The compound according to claim 13 wherein the substituents on the A and B rings are independently selected from -F, -Cl, -Br, -CO<sub>2</sub>H, -C(O)O-CH<sub>3</sub>, -CF<sub>3</sub>, -OCH<sub>3</sub>, -OCF<sub>3</sub>, -CH<sub>3</sub>, -CN, -C(O)NH<sub>2</sub>, -S-CF<sub>3</sub>, -SO<sub>2</sub>CH<sub>3</sub>, -NO<sub>2</sub>, -CF<sub>3</sub>CF<sub>3</sub>, -SO<sub>2</sub>CF<sub>3</sub>CF<sub>3</sub>, and -SO<sub>2</sub>NH<sub>2</sub>.
15. (original) The compound according to claim 8 wherein one or both of the following are true:
  - a. A is selected from phenyl and pyridinyl;
  - b. B is selected from phenyl, tetraazolyl, cyclopropyl, pyridinyl, and thienyl.
16. (original) The compound according to claim 9, wherein R<sup>6</sup> is phenyl or p-nitro phenyl.
17. (original) The compound according to claim 8 selected from those in which -O-R<sup>6</sup> is







18. (original) A compound of formula:



or a pharmaceutically acceptable salt thereof, wherein

$\text{R}^1$  is



optionally substituted with 1-3 moieties independently selected from the group consisting of -F, -Cl, -Br, -CO<sub>2</sub>H, -C(O)O-CH<sub>3</sub>, -CF<sub>3</sub>, -OCH<sub>3</sub>, -OCF<sub>3</sub>, -C<sub>1</sub>-C<sub>6</sub> alkyl, -CN, -C(O)NH<sub>2</sub>, -S-CF<sub>3</sub>, -SO<sub>2</sub>CH<sub>3</sub>, -NO<sub>2</sub>, -CF<sub>3</sub>CF<sub>3</sub>, -SO<sub>2</sub>CF<sub>3</sub>, -SO<sub>2</sub>CF<sub>3</sub>CF<sub>3</sub>, and -SO<sub>2</sub>NH<sub>2</sub>;

$\text{R}^6$  is  $-\text{L}^1-\text{A}-(\text{L}^2-\text{B})_s$ , wherein

$\text{L}^1$  is C<sub>0</sub>-C<sub>3</sub>-alkyl optionally mono- to per-halogenated;

A is C<sub>3</sub>-C<sub>6</sub>-cycloalkyl, aryl, or heteroaryl;

$\text{L}^2$  is a covalent bond or (C<sub>0</sub>-C<sub>3</sub>-hydrocarbyl)-X<sup>1</sup>-(C<sub>0</sub>-C<sub>3</sub>-hydrocarbyl), wherein X<sup>1</sup> is -C(O)-, -NH-, -NH-C(O)-, -C(O)-NH-, or heteroaryl;

B is -H, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl, aryl, or heteroaryl; and

s is 0 or 1;

wherein when s is 0, (L<sup>2</sup>-B)<sub>s</sub> is -H or halo, and A and B are independently optionally substituted with 1-3 moieties independently selected from the group consisting of halo, -CF<sub>3</sub>, -NO<sub>2</sub>, -CO<sub>2</sub>H, -CN, -C(O)-NH<sub>2</sub>, -SO<sub>2</sub>NH<sub>2</sub>, or -C<sub>0</sub>-C<sub>3</sub>-hydrocarbyl-Y-(C<sub>1</sub>-C<sub>3</sub>-hydrocarbyl) wherein Y is a covalent bond, -O-C(O)-, -C(O)-, -O-, -S-, -SO<sub>2</sub>-, -C(O)-NH-, or -NH-C(O)-; and each alkyl moiety is optionally mono- to per-halogenated.

19. (original) The compound according to claim 18 wherein R<sup>6</sup> is phenyl optionally substituted with 1-3 moieties independently selected from the group consisting of halo, -CF<sub>3</sub>, -NO<sub>2</sub>, -CO<sub>2</sub>H, -CN, -C(O)-NH<sub>2</sub>, -SO<sub>2</sub>-NH<sub>2</sub>, or -C<sub>0</sub>-C<sub>3</sub>-hydrocarbyl-Y-(C<sub>1</sub>-C<sub>3</sub>-hydrocarbyl), wherein Y is a covalent bond, -O-C(O)-, -C(O)-, -O-, -S-, -SO<sub>2</sub>-, -C(O)-NH-, or -NH-C(O)-, and each alkyl moiety is optionally mono- to per-halogenated.
20. (original) The compound according to claim 19 wherein R<sup>1</sup> is optionally substituted with 1 or 2 moieties independently selected from the group consisting of F, Cl, Br and C<sub>1</sub>-C<sub>6</sub> alkyl.
21. (original) The compound according to claim 20 wherein R<sup>1</sup> is



22. (original) The compound according to claim 19 wherein R<sup>6</sup> is phenyl optionally substituted with 1 or 2 moieties independently selected from the group consisting of halo, -CF<sub>3</sub>, and CN.
23. (original) The compound according to claim 22 wherein the compound is selected from those in which -O-R<sup>6</sup> is;



24. (original) The compound according to claim 18 having the structure:



25. (original) The compound according to claim 18 having the structure:



26. (original) The compound according to claim 18 having the structure:



27. (original) The compound according to claim 18 having the structure:



28. (original) The compound according to claim 18 having the structure:



29. (original) The compound according to claim 18 having the structure:



30. (original) The compound according to claim 18 having the structure:



31. (currently amended) A composition comprising the compound according to ~~any one of claims 1 to 30~~ and a pharmaceutically acceptable carrier or diluent.

32. (currently amended) A method of inhibiting  $\beta$ -lactamase, the method comprising contacting a cell with a compound according to ~~any one of claims 1 to 30~~.