Coherifying quantum channels

Kamil Korzekwa¹, Stanisław Czachórski², Zbigniew Puchała^{2,3}, Karol Życzkowski^{2,4}

³ Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 44-100 Gliwice, Poland ⁴ Center for Theoretical Physics, Polish Academy of Sciences, 02-668 Warszawa, Poland

² Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland

Classical action of a quantum channel

- distinguished orthonormal basis

$$T_{jk} = \langle j|\Phi(|k\rangle\langle k|)|j\rangle$$
 - classical action

What does T tell us about Φ ?

Motivation

Channels with fixed classical action

Questions

- 1. Is it always possible to explain random stochastic transitions as arising from the underlying deterministic quantum evolution?
- 2. If not, what is the minimal amount of randomness required by quantum theory to explain a given stochastic process?
- 3. And can there exist perfectly distinguishable quantum processes that nevertheless lead to the same classical evolution?

Setting the scene

Coherence of quantum states

 $\langle j|\rho|j\rangle$ - occupations p_j , $\langle j|\rho|k\rangle$ - coherences

Coherence measures (distance from incoherent states):

$$C_{\mathrm{e}}(\rho) := S(\rho||\mathcal{D}(\rho)) = S(\boldsymbol{p}) - S(\boldsymbol{\lambda}(\rho))$$

 $C_{2}(\rho) := ||\rho - \mathcal{D}(\rho)||_{2} = \boldsymbol{\lambda}(\rho) \cdot \boldsymbol{\lambda}(\rho) - \boldsymbol{p} \cdot \boldsymbol{p}$

 \mathcal{D} - decohering channel, $\lambda(\rho)$ - eigenvalues of ρ

Decoherence and coherification

Decohering channel \mathcal{D} : $\rho \text{ with } \langle j|\rho|j\rangle = p_j \xrightarrow{\mathcal{D}} \rho^{\mathcal{D}} = \operatorname{diag}(\boldsymbol{p})$

Coherification \mathcal{C} (non-unique inverse of \mathcal{D}): $\rho = \operatorname{diag}(\boldsymbol{p}) \xrightarrow{\mathcal{C}} \rho^{\mathcal{C}} \text{ with } \langle j | \rho | j \rangle = p_j$

One can always completely coherify p: $\operatorname{diag}(\boldsymbol{p}) \xrightarrow{\mathcal{C}} |\psi\rangle\!\langle\psi| \text{ with } |\psi\rangle = \sum_{i} \sqrt{p_{i}} e^{i\phi_{i}} |j\rangle$ $C_{\rm e}(|\psi\rangle\langle\psi|) = S(\boldsymbol{p}), \quad C_2(|\psi\rangle\langle\psi|) = 1 - \boldsymbol{p} \cdot \boldsymbol{p}$

Coherence of quantum channels

 $J_{\Phi} = \frac{1}{d}(\Phi \otimes \mathcal{I}) |\Omega\rangle\langle\Omega|$ Choi-Jamiołkowski isomorphism: $|\Omega\rangle = \sum_{j} |jj\rangle$

Classical action on diagonal: $\langle jk|J_{\Phi}|jk\rangle = \frac{1}{d}T_{jk}$

Optimising coherence of $\Phi \iff$ optimising $\lambda(J_{\Phi})$

Relating randomness of Φ with $\lambda(J_{\Phi})$:

$$|\psi\rangle \xrightarrow{\Phi} \frac{1}{\sqrt{q_j}} K_j |\psi\rangle$$
 with probability q_j ,

$$\Phi(\cdot) = \sum_{j} K_{j}(\cdot)K_{j}^{\dagger}, \quad q_{j} = \operatorname{Tr}\left(K_{j} |\psi\rangle\langle\psi|K_{j}^{\dagger}\right)$$

Path probability averaged $\langle q_j \rangle_{\psi} = \lambda_j(J_{\Phi})$ over all pure states:

Limitations on perfect coherification

Can one always completely coherify T? $T \xrightarrow{\mathcal{C}} |\psi\rangle\langle\psi| \text{ with } |\psi\rangle = \frac{1}{\sqrt{d}} \sum_{j,k} \sqrt{T_{jk}} e^{i\phi_{jk}} |jk\rangle$

No! TP condition requires $\operatorname{Tr}_1(|\psi\rangle\langle\psi|) = \frac{1}{d}$

 Φ can be competely coherified $\Leftrightarrow T$ is unistochastic

Coherification upper-bound

Coherifying quantum channels

Look for $\mu^{\succ}(T)$ s. t. $\forall J_{\Phi}: \mu^{\succ}(T) \succ \lambda(J_{\Phi})$ μ^{\succ} yields upper bounds for $C_{\rm e}(J_{\Phi})$ and $C_{\rm 2}(J_{\Phi})$ Procedure to obtain upper-bounding $\mu^{\succ}(T)$:

Coherification lower-bound

Look for $\mu^{\prec}(T)$ s. t. $\exists J_{\Phi}: \mu^{\prec}(T) \prec \lambda(J_{\Phi})$ μ^{\prec} yields lower bounds for $C_{\rm e}(J_{\Phi})$ and $C_{\rm 2}(J_{\Phi})$ Procedure to obtain lower-bounding $\mu^{\prec}(T)$:

$$T = \begin{bmatrix} 0.7 & 0.2 & 0.6 \\ 0.1 & 0.6 & 0.4 \\ 0.2 & 0.2 & 0 \end{bmatrix} \xrightarrow{\text{order}} \begin{bmatrix} 0.7 & 0.6 & 0.2 \\ 0.6 & 0.4 & 0.1 \\ 0.2 & 0.2 & 0 \end{bmatrix}$$

Example: qubit channel

Classical action:

 $|1\rangle\langle 1|$

Optimal coherification:
$$\Phi^{\mathcal{C}}(\cdot) = \Psi(U(\cdot)U^{\dagger})$$

 $|0\rangle\!\langle 0|$ U - unitary channel, Ψ - decaying channel $|-\rangle\langle -|$ Properties: Extremal channel Min output entropy=0

Quantum states

What is the number $N(\mathbf{p})$ of perfectly distinguishable states with classical version \boldsymbol{p} ?

[0, 0, 0, 1] $N(\mathbf{p}) = 1$ But things get $N(\mathbf{p}) = 2$ more complicated. $N(\mathbf{p}) = 3$ E.g. for d=4: [1, 0, 0, 0][0, 0, 1, 0][0, 1, 0, 0]

Number of distinct coherifications

What is the number N(T) of perfectly distinguishable channels with classical version T?

Quantum channels

 $1 < N(T) < d^2$ both limits achieveable

$1 \leq N(I) \leq a$, both filling achieveable		
Classical action	N(T)	Requires entanglement?
Unistochastic	d	No
Unistochastic	$d+1,\ldots,d^2$	Yes
Bistochastic	2	Yes
Circulant	d	No
S.t. $T_{ij} \leq \frac{1}{2}$	2	No

More soon on arXiv! Look for: Distinguishing classically indistinguishable states and channels