

Bring Your Own Models (BYOM)-Machine Learning as a Service

Malini Bhandaru, Soila Kavulya & Luis Daniel Castellanos Contributors: Konrad Kurdej, Weiting Chen

INTEL

#ML9SAIS

Machine Learning Everywhere!

- Autonomous Vehicles
- Genomics
- Finance
- Supply Chain

Autonomous VehiclesR&D Data Center

Big Data

1 – 20 TB/car/hour

- Weather Conditions
- Time of Day
- Road Conditions
- Location
- Edge Cases

Object Detection Models
Environment Models
Driver Models
Privacy Preservation
Models

Image credit: https://www.wowwoodys.com/our-future-autonomous-cars/

Data Center Platform

- Fungible, Dynamic, Fast,
- Resilient
- Easy to Use

Models Galore, Usages Rich

MODEL

Name, Description,
type (mega | lean)
Framework & Version
Input, Output
ImageID: Container Registry ID
Training_Sets: { S1, S2, S3}
Training_Label_Freq {L1:f1, L2:f2 ..}
Validation_Sets: {V1, V2}
Accuracy, Recall, Precision,
Speed, Size
Infrastructure:CPU/GPU/FPGA ..

Resources & API

Model

- CRUD, Validate dependencies,
- name, description, framework, version, hardware preference
- Tags (sharable, input-sensor ..)

Data Transformer

- CRUD
- Image resizer, compression, crypto, ...

Pipeline

- CRUD, Start/Stop/Pause
- · workflow specifications, language

Dataset

- CRUD
- Name, description, data location
- (s3,hdfs, local file system)

Apache Beam, Spark, Argo

Model Deployment Pipeline

BYOM Options: Monolithic

Pros

- Simple deployment
- Container life-cycle in full sync with workload
- No version tracking or mismatch concerns
- Data locality

Cons

- Larger container footprint
- Tight coupling between model and Spark engine

BYOM Options: Just-In-Time Compose

Pros

- Small container footprint
- Multi-framework friendly
- Auto scales
- Standard API

Cons

- More complex orchestration workflow
- Additional mechanisms needed for data locality, e.g., pod affinity

Deployment on K8s

Demo

https://videoportal.intel.com/media/0_70vbt74e

Future

- Support for Just-in-time-Composition
 - Tackling dependencies
- Resource scheduling, HW accelerator aware
- Hardware specific models (CPU/GPU/FPGA ..)
- Pipeline options with speed, accuracy, and resource availability projections

Conclusion

- Across domains Bring-your-own-model genuine need for both R&D and Production Systems
- System and Orchestration developers typically not Machine Learning specialists –
 - reduce the barrier to adoption

Thank You!

Kavulya, Soila P soila.p.kavulya@intel.com

Luis Daniel Castellanos (<u>luis.daniel.castellanos@intel.com</u>)

Kurdej, Konrad konrad.kurdej@intel.com

Bhandaru, Malini K malini.k.bhandaru@intel.com

Chen, Weiting < weiting.chen@intel.com>

Please join us in the BYOM effort!

References

- Autonomous Driving: https://medium.com/@andrewng/self-driving-cars-are-here-aea1752b1ad0, https://www.wired.com/story/embark-self-driving-truck-deliveries
- Docker Registry: https://docs.docker.com/registry
- Spark on Kubernetes: https://github.com/apache-spark-on-k8s/spark
- HDFS on K8: https://spark-summit.org/2017/events/hdfs-on-kubernetes-lessons-learned/
- RDD: https://www.slideshare.net/datamantra/anatomy-of-rdd
- TensorFlow Serving: https://www.tensorflow.org/serving/
- https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dynamicallocation.html
- Kubeflow: ML toolkit for Kubernetes: https://github.com/kubeflow/kubeflow,
 https://cloud.google.com/blog/big-data/2018/03/simplifying-machine-learning-on-open-hybrid-clouds-with-kubeflow
- https://beam.apache.org/documentation/pipelines/design-your-pipeline/

#ML9SAIS

16

Upstreamed: Dynamic Resource Allocation

Weiting Chen

Resources are allocated at start but applications can request change at runtime.

Dynamic resource allocation uses shuffle service container for data shuffle (instead of Docker storage)

#ML9SAIS