MAT2040 Linear Algebra Midterm Exam

SSE, CUHK(SZ)

March 28, 2021

Seat No.:	Student ID:

- i. The exam contains 10 questions.
- ii. Put answers in the space after each question. Ask for additional sheets if needed.
- iii. Unless otherwise specified, be sure to give **full explanations** for your answers. The **correct reasoning** alone is worth **more credit** than the correct answer by itself.
- iv. A table of notations is given in the last page, which you can checkout before the exam.

Question	Points	Score
1	10	
2	8	
3	12	
4	10	
5	10	
6	10	

Question	Points	Score
7	10	
8	10	
9	10	
10	10	
Total:	100	

Let A and B be square $n \times n$ matrices over real numbers. Judge each of the following statements is TRUE or FALSE in general. No explanation is necessary.

- (a) (1 point) If \mathbf{A} is a product of a sequence of finite elementary matrices, then the columns of \mathbf{A} span \mathbb{R}^n .
- (b) (1 point) Let \mathcal{U} and \mathcal{V} be subspaces of \mathbb{R}^n , $\mathcal{W} = \mathcal{U} \cup \mathcal{V}$ is a vector space.
- (c) (1 point) \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
- (d) (1 point) If AB is invertible, then both A and B are invertible.
- (e) (1 point) Even if $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution, the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ may not be consistent for every \mathbf{b} .
- (f) (1 point) If \mathbf{A} is invertible, then $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$.
- (g) (1 point) For any square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\det(7\mathbf{A}) = 7^n \det(\mathbf{A})$.
- (h) (1 point) For square matrices A and B, if AB = I, then BA = I.
- (i) (1 point) For any square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\det(\mathbf{A}\mathbf{A}^T)$ can be negative.
- (j) (1 point) If $det(\mathbf{A}) = 0$, then either its two rows or columns must be the same.

Solution:

- (a) True
- (b) False
- (c) False
- (d) True
- (e) False
- (f) True
- (g) True
- (h) True
- (i) False
- (j) False

Calculate the determinant of the following matrices.

(a) (2 points)
$$\begin{bmatrix} 1 & 4 \\ 7 & 8 \end{bmatrix}$$

(b) (3 points)
$$\begin{bmatrix} 2 & 1 & 5 \\ 7 & 0 & 3 \\ 9 & 0 & 5 \end{bmatrix}$$

(c) (3 points)
$$\begin{bmatrix} 3 & 5 & 0 & 0 & 0 \\ -2 & -3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 7 & 0 & 3 \\ 0 & 0 & 9 & 0 & 5 \end{bmatrix}$$

Solution:

(a)

$$\det \left[\begin{array}{cc} 1 & 4 \\ 7 & 8 \end{array} \right] = 8 - 28 = -20$$

(b)

$$\det \begin{bmatrix} 2 & 1 & 5 \\ 7 & 0 & 3 \\ 9 & 0 & 5 \end{bmatrix} = -1 \times (35 - 27) = -8$$

(c)

$$\det \begin{bmatrix} 3 & 5 & 0 & 0 & 0 \\ -2 & -3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 7 & 0 & 3 \\ 0 & 0 & 9 & 0 & 5 \end{bmatrix} = \det \begin{bmatrix} 3 & 5 \\ -2 & -3 \end{bmatrix} \times \det \begin{bmatrix} 2 & 1 & 5 \\ 7 & 0 & 3 \\ 9 & 0 & 5 \end{bmatrix} = -8$$

Let

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 & 2 \\ -1 & 2 & 3 & 1 \\ 2 & -3 & -3 & 2 \\ 1 & 1 & 1 & 6 \end{bmatrix}.$$

- (a) (3 points) Find a basis for $Col(\mathbf{A})$.
- (b) (3 points) Find a basis for $Row(\mathbf{A})$.
- (c) (3 points) Find a basis for $\text{Null}(\boldsymbol{A})$.
- (d) (3 points) Find a basis for $\text{Null}(\mathbf{A}^T)$.

$$\begin{bmatrix} 1 & -1 & -1 & 2 \\ -1 & 2 & 3 & 1 \\ 2 & -3 & -3 & 2 \\ 1 & 1 & 1 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(a)
$$\operatorname{Col}(\boldsymbol{A}) = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ -3 \\ 1 \end{bmatrix} \right\}$$

(b)
$$\operatorname{Row}(\boldsymbol{A}) = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ -1 \\ 2 \end{bmatrix}^T, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}^T, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}^T \right\}$$

(c)
$$\operatorname{Null}(\mathbf{A}) = \operatorname{Span} \left\{ \begin{bmatrix} -4 \\ -1 \\ -1 \\ 1 \end{bmatrix} \right\}$$

(d)
$$\operatorname{Null}(\mathbf{A}^T) = \operatorname{Span} \left\{ \begin{bmatrix} -5 \\ 0 \\ 2 \\ 1 \end{bmatrix} \right\}$$

$$m{A} = \begin{bmatrix} 2 & 4 \\ 7 & 9 \end{bmatrix}, \quad m{B} = \begin{bmatrix} 13 & 26 \\ 14 & 13 \end{bmatrix}, \quad m{C} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \quad m{D} = \begin{bmatrix} 6 & 13 \\ 56 & 989 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} 2 & 13 & 1 & 6 \\ 4 & 26 & 2 & 13 \\ 7 & 14 & 1 & 56 \\ 9 & 13 & 1 & 989 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 13 & 1 & 6 \\ 0 & 0 & 0 & 1 \\ 5 & 1 & 0 & 50 \\ 7 & 0 & 0 & 983 \end{bmatrix}$$

Therefore, we have

$$\det \begin{bmatrix} 2 & 13 & 1 & 6 \\ 4 & 26 & 2 & 13 \\ 7 & 14 & 1 & 56 \\ 9 & 13 & 1 & 989 \end{bmatrix} = \det \begin{bmatrix} 2 & 13 & 1 & 6 \\ 0 & 0 & 0 & 1 \\ 5 & 1 & 0 & 50 \\ 7 & 0 & 0 & 983 \end{bmatrix} = 1(-1)^{(1+3)} \begin{vmatrix} 0 & 0 & 1 \\ 5 & 1 & 50 \\ 7 & 0 & 983 \end{vmatrix} = -7$$

Since the determinant is not equal to zero, the four matrices are linearly independent.

Consider
$$W_1 = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$$
 and $W_2 = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$.

(a) (5 points) Determine a basis for \mathcal{W} defined as

$$\mathcal{W} = \{\mathbf{w}_1 + 2\mathbf{w}_2 : \mathbf{w}_1 \in \mathcal{W}_1, \mathbf{w}_2 \in \mathcal{W}_2\}.$$

(b) (5 points) Determine a basis for $W_1 \cap W_2$.

Solution:

(a) If $\mathbf{x} \in \mathcal{W}$, then $\mathbf{x} = \mathbf{w}_1 + 2\mathbf{w}_2$, where $\mathbf{w}_1 \in W_1$, $\mathbf{w}_2 \in W_2$

Because
$$\mathbf{w}_1 \in \mathcal{W}_1$$
, \mathbf{w}_1 can be written as $a_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

Because
$$2\mathbf{w}_2 \in \mathcal{W}_2$$
, $2\mathbf{w}_2$ can be written as $a_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + a_4 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Therefore, **x** can be written as
$$a_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + a_4 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

So
$$\mathcal{W} = \operatorname{Span} \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

Put four vector in to matrix, we can get
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
.

From the matrix we know the basis of
$$\mathcal{W}$$
 can be $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$

(b) If $\mathbf{x} \in \mathcal{W}_1 \cap \mathcal{W}_2$, then $\exists a_1, a_2, a_3, a_4$ such that

$$\mathbf{x} = a_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = a_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + a_4 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Then we have
$$a_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + a_3 \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} + a_4 \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & -1 \end{bmatrix} \xrightarrow{\text{Gaussian Elimination}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

From the matrix, we know a_4 is the free variable and $a_1 = a_3 = -a_4$ and $a_2 = a_4$, which means

$$\mathbf{x} = a_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = -a_4 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_4 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = a_4 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Therefore,
$$W_1 \cap W_2 = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Let

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \qquad \mathcal{C} = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \end{bmatrix} \right\}$$

be bases of \mathbb{R}^2 . Find the coordinates of the vector $\begin{bmatrix} 4 \\ -1 \end{bmatrix}_{\mathcal{B}}$ in the standard basis and \mathcal{C} .

Solution:

$$\begin{bmatrix} 4 \\ -1 \end{bmatrix}_{\mathcal{B}} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$

and

$$\begin{bmatrix} 4 \\ -1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 7 \end{bmatrix} = \begin{bmatrix} -25 \\ 16 \end{bmatrix}_{\mathcal{C}}$$

Alternatively, the following answer is also considered correct due to the notation ambiguity.

Solution:

$$\begin{bmatrix} 4 \\ -1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} -1 \\ 1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
$$\begin{bmatrix} 1 \\ -3 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 17 \begin{bmatrix} 3 \\ 1 \end{bmatrix} - 10 \begin{bmatrix} 5 \\ 2 \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 17 \\ -10 \end{bmatrix}$$

$$4x_1 + 3x_2 - 5x_3 = 2,$$

$$-4x_1 - 5x_2 + 7x_3 = -4,$$

$$8x_1 + 6x_2 - 8x_3 = 6.$$

(a) (5 points) Use the following LU decomposition to solve the system.

$$\begin{bmatrix} 4 & 3 & -5 \\ -4 & -5 & 7 \\ 8 & 6 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & -5 \\ 0 & -2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

(b) (5 points) Use Cramer's Rule to solve x_2 and x_3 .

Solution:

(a) We rewrite the system as LUx = b by using the LU decomposition of A. Now let us treat Ux as a new variable vector y and consider the following system:

$$L \boldsymbol{y} = \boldsymbol{b} \Rightarrow egin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} egin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = egin{bmatrix} 2 \\ -4 \\ 6 \end{bmatrix}.$$

Performing the row operations in L, we solve $\mathbf{y} = (2, -2, 2)^T$. It remains to recover the solution of \mathbf{x} from \mathbf{y} , i.e.,

$$U\boldsymbol{x} = \boldsymbol{y} \Rightarrow \begin{bmatrix} 4 & 3 & -5 \\ 0 & -2 & 2 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}.$$

By means of back substitution, we obtain $\boldsymbol{x} = (1/4, 2, 1)^T$.

(b) According to Cramer's rule, we have

$$x_2 = \frac{\det(\mathbf{A}_2)}{\det(\mathbf{A})} = \det \begin{bmatrix} 4 & 2 & -5 \\ -4 & -4 & 7 \\ 8 & 6 & -8 \end{bmatrix} / \det \begin{bmatrix} 4 & 3 & -5 \\ -4 & -5 & 7 \\ 8 & 6 & -8 \end{bmatrix} = 2.$$

Likewise, we compute x_3 as

$$x_3 = \frac{\det(\mathbf{A}_2)}{\det(\mathbf{A})} = \det \begin{bmatrix} 4 & 3 & 2 \\ -4 & -5 & -4 \\ 8 & 6 & 6 \end{bmatrix} / \det \begin{bmatrix} 4 & 3 & -5 \\ -4 & -5 & 7 \\ 8 & 6 & -8 \end{bmatrix} = 1.$$

- (a) (2 points) Determine the coordinates of 1 with respect to \mathcal{B} .
- (b) (6 points) Find the transition matrix U from \mathcal{B} to \mathcal{W} and the transition matrix V from \mathcal{W} to \mathcal{B} .
- (c) (2 points) Use the results from (a) and (b) to determine the coordinates of 1 with respect to \mathcal{W} .

Solution:

- (a) Because 1 = -2(2x+1) + 1(4x+3), we have $[1]_{\mathcal{B}} = (-2,1)^T$.
- (b) We can think of it as the \mathbb{R}^n case in which $\mathcal{B} = \{(1,2)^T, (3,4)^T\}$ and $\mathcal{W} =$

 $\{(7,3)^T, (4,2)^T\}$, thus obtaining

$$U = \begin{bmatrix} 7 & 4 \\ 3 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} -3 & -5 \\ 5.5 & 9.5 \end{bmatrix}.$$

Further, we have

$$V = U^{-1} = \begin{bmatrix} -9.5 & -5 \\ 5.5 & 3 \end{bmatrix}.$$

(c)
$$[1]_{\mathcal{W}} = U[1]_{\mathcal{B}} = (1, -1.5)^T$$
.

Let $\mathbf{A} = (a_{ij})$ be an $n \times n$ matrix where $a_{ij} = i + j$, for $1 \leq i, j \leq n$.

- (a) (2 points) Compute rank(\mathbf{A}) when n=2.
- (b) (4 points) Compute $rank(\mathbf{A})$ given any n.
- (c) (4 points) Compute the dimension of $\text{Null}(\mathbf{A})$ given any n.

Solution:

(a) Address this toy case directly as

$$\operatorname{rank}\left(\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}\right) = 2.$$

(b) Carry out the following row operations on A:

$$\begin{bmatrix} 2 & 3 & \dots & n+1 \\ 3 & 4 & \dots & n+2 \\ \vdots & \vdots & & \vdots \\ n+1 & n+2 & \dots & 2n \end{bmatrix} \xrightarrow{r_j \to r_j - r_{j-1}} \begin{bmatrix} 2 & 3 & \dots & n+1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}$$

$$\xrightarrow{r_{j} \to r_{j} - r_{2}}
\begin{bmatrix}
2 & 3 & \dots & n+1 \\
1 & 1 & \dots & 1 \\
0 & 0 & \dots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \dots & 0
\end{bmatrix}.$$

Now we can readily see that

$$\operatorname{rank}\left(\begin{bmatrix} 2 & 3 & \dots & n+1 \\ 3 & 4 & \dots & n+2 \\ \vdots & \vdots & & \vdots \\ n+1 & n+2 & \dots & 2n \end{bmatrix}\right) = 2.$$

(c) From Rank-Nullity Theorem, we obtain that $\dim(\text{Null}(\mathbf{A})) = n - \text{rank}(\mathbf{A}) = n - 2$.

Given any matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$, prove the following statements

- (a) (5 points) $rank(\mathbf{A}) = rank(\mathbf{A}^{T}\mathbf{A}).$
- (b) (5 points) $\operatorname{rank}(\boldsymbol{A} + \boldsymbol{B}) \le \operatorname{rank}(\boldsymbol{A}) + \operatorname{rank}(\boldsymbol{B})$.

Solution:

- (a) First, given any solution \boldsymbol{x} to $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$, we must have $\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$, so $\mathrm{Null}(\boldsymbol{A})\subseteq\mathrm{Null}(\boldsymbol{A}^T\boldsymbol{A})$. Conversely, given any solution \boldsymbol{x} to $\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$, we must have $\boldsymbol{x}^T\boldsymbol{A}^T\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$ and thus $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$, so $\mathrm{Null}(\boldsymbol{A}^T\boldsymbol{A})\subseteq\mathrm{Null}(\boldsymbol{A})$. Combining the above results yields $\mathrm{Null}(\boldsymbol{A})=\mathrm{Null}(\boldsymbol{A}^T\boldsymbol{A})$ and thereby establishes $\mathrm{rank}(\boldsymbol{A})=\mathrm{rank}(\boldsymbol{A}^T\boldsymbol{A})$.
- (b) Suppose $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$ and $\mathbf{B} = [\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_n]$ with rank $(\mathbf{A}) = K$ and rank $(\mathbf{B}) = S$. Without loss of generality, we assume $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_K\}$ is a basis for Col(A) while $\{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_S\}$ for $\text{Col}(\mathbf{B})$.

Thus, we have

$$\operatorname{Span}\{\boldsymbol{a}_{1},\boldsymbol{a}_{2},\cdots,\boldsymbol{a}_{K}\} = \operatorname{Span}\{\boldsymbol{a}_{1},\boldsymbol{a}_{2},\cdots,\boldsymbol{a}_{n}\},$$

$$\operatorname{Span}\{\boldsymbol{b}_{1},\boldsymbol{b}_{2},\cdots,\boldsymbol{b}_{s}\} = \operatorname{Span}\{\boldsymbol{b}_{1},\boldsymbol{b}_{2},\cdots,\boldsymbol{b}_{n}\}.$$

Since $A + B = [\mathbf{a_1} + \mathbf{b_1}, \mathbf{a_2} + \mathbf{b_2}, \cdots, \mathbf{a_n} + \mathbf{b_n}]$, it is straightforward to show that

$$Col(\mathbf{A} + \mathbf{B}) = Span\{\mathbf{a}_1 + \mathbf{b}_1, \mathbf{a}_2 + \mathbf{b}_2, \cdots, \mathbf{a}_n + \mathbf{b}_n\}$$

$$\subseteq Span\{\mathbf{a}_1, \cdots, \mathbf{a}_n, \mathbf{b}_1, \cdots, \mathbf{b}_n\}$$

$$= Span\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_k, \mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_s\}.$$

Thus dim(Col($\mathbf{A}+\mathbf{B}$)) \leq dim(Span{ $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k, \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s$ }) $\leq K+S$, i.e. rank($\mathbf{A}+\mathbf{B}$) \leq rank(\mathbf{A}) + rank(\mathbf{B}).

Table 1: Table of Useful Formulae for an
$$n \times n$$
 matrix $\mathbf{A} = (a_{ij})$
The cofactor A_{ij} of a_{ij} $A_{ij} = (-1)^{i+j} \det(\mathbf{M}_{ij})$
Determinant of \mathbf{A} $\det(\mathbf{A}) = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ij} A_{ij}$
Adjoint of \mathbf{A} $\operatorname{adj} \mathbf{A} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & & & \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$
Matrix inverse $\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \operatorname{adj} \mathbf{A}$ for $\det(\mathbf{A}) \neq 0$.