1. NoSQL baze podataka

Tuesday, 27 October 2020 11:18

Predavanje:

OO DB

omogucavale da cuvate kompleksne objekte I ponasanje za objekte. Kao Objekat I metode.

Nisu uspele da se standardizuju.

Relacioni model

2d cuvanje podataka, efikasno je Imale su upite, pise se upit I dobijaju se informacije uzivo na osnovu tih upita

NoSQL baze

Specificni zahtevi za web, mobilne I cloud aplikacije Distribuiranost Skalabilnost

NewSQL baze

RDBMS (Relational Database Management System) - programski jezik koji se koristi da se komunicira sa podacima koji se nalaze u bazi (SQL) Prednosti RDBMS:

Efikasno skladistenje podataka Podrska za ACID transakcije Podrska za kompleksne SQL upite Ogromna tehnoloska baza (razliciti DBMS alati, programski interfejsi itd.)

ACID***

Atomicity (Atomicnost) - Sve ili nista. Cela transakcija da se izvrsi ili nijedna. Ako ima greske cela transakcija se ponistava. Transfer novca u banci, ili se izvrsi cela transakcija ili se ukida cela

<u>Consistency</u> (Konzistentnost) - Mora sva ogranicenja I pravila da se postuju.

Ako je nesto not null ne moze da je null, nesto je broj a mi zelimo da pisemo tekst itd.

<u>Isolation</u> (izolacija) - Nijedna transakcija nema pristup nekoj drugoj transakciji koja nije zavrsena Transakcije su vidljive samo u toj ne u drugim transakcijama sve dok se ne komituje. Svaka transakcija je nezavisna za sebe.

<u>Durability (trajnost) - kad se transakcija zavrsi, izmene transakcije su trajne ne mogu da se izgube.</u>

Cak I da padne sistem ti podaci posle transakcije su zapisani

Sistem je sve ispuni ili nista (razlika od CAP dalje)

Transakcije definicija

Niz naredbi za manipulaciju podacima povezanih u jednu logicku celinu Primer: Transakcija u banci, prebacivanje novca sa racuna na racun Naredba je skidanje novca sa racuna 1 l dodavanje novca na racun 2 Ove dve naredbe cine smislenu celinu pa je zato dobra logicka celina

Podaci na webu

Cetiri osnovne karakteristike podataka na Web-u:

Velika kolicina podataka Povezanost podataka (relacije) Polustruktuiranost podataka Arhitektura aplikacija koje koriste podatke

Velika kolicina podataka

Povezanost podataka (relacije)

The Explosion of Data

Polustruktuiranost podataka

Crveno je nestruktuirano (greska u slici) to su podaci ljudi na socijalnim mrezama Arhitektura aplikacija koje koriste podatke

Danas jedan app ima vise nanoservisa koji svaki ima svoju bazu

Kada koristiti relacione baze - kad je nesto prostije kao upis I transakcija plate (primer Salary list)

Web aplikacije zahtevaju:

Ekstremno veliki broj transakcija u jedinici vremena

Amazon transakcije - veliki br ljudi kupuje uvek

Dinamička analiza velikih količina podataka

Amazon recommend - sistem gde se analizira korisnik da se predloze proizvodi na osnovu pogledanog

Kratko i predvidivo vreme odziva (latency)

Brz odaziv sadrzaja, skoro instantno

Skalabilnost (po niskoj ceni)

Dodavati resurse kako rastemo al jeftino

Visok nivo dostupnosti (high availability)

Uvek dostupno 24h/7 (kao facebook, goodle itd)

Fleksibilnu šemu / polustruktuirane podatke

Fleksibilna sema - moze lako da se menja (kad se update radi ili menja app menja se I baza)

Kod relacionih nije laka izmena baze pa je to bio problem

Ima podrsku za struktuirane I nestruktuirane podatke

Geografska distribuiranost (veći broj čvorova u kojima se podaci obrađuju, mreža kao problem)

Serveri globalni sto blizi korisniku da se smanji odaziv sajta

Skalabilnost - sposobnost sistema da nastavi da radi kad se dodaju novi resursi u cilju resavanja problema

- Povecan br korisnika/zahteva
- Povecan kolicina podataka
- Povecan br funkcijonalnosti I kompleksnosti koje se nude korisnicima

Scalink up

Dodavanje resursa (dodavanje cpu, memorije, brzina konekcije ...)

Prednost

Brzo I jednostavno

Aplikacija se automatski skalira

Nedostaci

Prevazidje se kapacitet najaceg sistema - npr popunimo memoriju u racunaru, nema jaci cpu itd

Cena - ne mozemo da biramo resenje nego resenje koje se uklapa u konfiguraciju koju imamo

Zavisnost od samo jednog proizvodjaca - Ako imamo brend racunara I moramo njihovu memoriju da kupimo a skuplja je da bi scale up Single point of failure SPOF - sve ide na jedan racunar I ako taj padne sve pada

Scaling out

Nastoji da resi probleme Scaling up-a

Availability (dostupnost sistema)

Definiše se kao sposobnost korisnika da komuniciraju sa sistemom (slanje, ažuriranje ili preuzimanje podataka)

Downtime – period kada sistem nije dostupan

Planirani – održavanje i nadogradnje sistema

Neplanirani – otkazi usled hardverskih i softverskih grešaka

High availability = 24x7x365

U praksi nastoji se da se minimizira downtime sistema i aplikacija (teži se 0)

NINES

Availability %	Downtime per Year	Downtime per Month	Downtime per Week	Downtime per Day
90%	36.5 days	72 hours	16.8 hours	2.4 hours
99%	3.65 days	7.20 hours	1.68 hours	14.4 minutes
99.9%	8.76 hours	43.8 minutes	10.1 minutes	1.44 minutes
99.99%	52.56 minutes	4.38 minutes	1.01 minutes	8.66 seconds
99.999%	5.26 minutes	25.9 seconds	6.05 seconds	864.3 milliseconds

Gleda se 3 ili 4 devetke da se nadje kod provajdera, 5 je najbolje al retko se nudi

High availability principi

Redundantnost (Redundancy) - dizajn da sistem moze da nastavi da radi neometano cak I ako se desi otkaz nekog dela

Nema Single point of failure

Redundantnost je I softverska I hardverska

Detekcija grešaka (Fault detection) -

Oporavak (Repair/Recovery)

Automatizovani i nenadgledani sisgtemi (Automated & Unattended)

RPO (recovery point objective) – količina podataka čiji se gubitak može tolerisati

RTO (recovery time objective) – downtime koji se može tolerisati

DB redundansa – softver i procesi

Vertikalna skalabilnost

Jedan cvor za naplacivanje, jedan cvor za dodavanje u korpu itd

Horizontalna skalabilnost

Svaki cvor radi istu stvar

Distribuirane baze podataka

Više čvorova (servera) ponasaju se kao jedna baza podataka

Fragmentacija - podaci su podeljeni po cvorovma

Vertikalna - izdvajaju se kolone

Svaka kolona ima primarni kljuc

PROJECT da podelimo tabelu

JOIN da spojimo tabelu

Horizontralna

Filtriramo redove na neki nacin

RESTRICT odvajamo redove

UNION spajamo redove

Mesano vertikalna I horizontalna

Vertical and Horizontal Fragmentation

Customers in Manchester and their Payment Type

Horizontalna za ljude iz Manchester-a

Vertikalna za Name I PaymentType

Replikacija - svaki podatak se moze javiti u vise kopija

Da bi se napravila kopija ili azurirale sve kopije treba mnogo vremena pogotovo ako su geografski udaljeni serveri

Share everything - sve na isto mesto u istoj bazi na istom disku

Share disk - vise database na jedan disk (kao kod kuce kad napravimo servere0

Share nothing - svaka baza ima svoj disk al treba da omogucimo adekvatno azuriranje podatka

Skalabilnost

Performanse

High availability

Otpornost na greške

Sa stanovišta korisnika ponaša se kao centralizovana baza podataka (jedna baza)

Prednosti:

Bolja kontrola

Bolje performanse

Povećana dostupnost sistema

Lakše skaliranje sistema

Nedostaci:

Kompleksnost

Cena

Sigurnost - ne username I password nego pristup da odredjene adrese

Otežana kontrola integriteta

Zahtevi koje moraju da ispune distribuirane baze podataka (CAP teorema)

Consistency - konzistentniost podataka posle svake operacije, svi vide iste podatke

Availability - uvek dostupan sistem, tolerancija na promene I otkaze

Partition tolerance - sistem nastavlja da radi cak I ako deo otkaze

CAP teorema: Sistem moze da ispuni 2 od 3 nije kao ACID sve ili nista

Zadovoljice se 2 pravila oko treceg se nalazi kompromis

Moze sva 3 al je preskupo da se zadovolji

CA: Consistency & Availability

Kompromis oko Partition tolerance, radi se kod single site cluster resenja

Primer dvofazni comit (2PC)

- 1. kordinator prima comit I kordinise sve cvorove da komituju
- 2. I kad svi se jave da su komitovali obavestava da je zavrseno komitovanje
 - a) Ako jedan nije uspeo salje kordinator rollback svima da poniste transakciju

CP: Consistency & Partitioning

Kompromis oko Availavility, Pojedinim podacima privremeno moze pristup biti ogranicen ili onemogucen

AP: Availability & Partitioning

Kompromis kod Consistency, najcesce koriscen

Podaci mogu biti temporarily not up to date, zahteva conflict resolution jer ponekad su info razliciti pa koj podatak prihvatiti Primer:

DNS kad zakupimo URL upisuje setaj URL u DNS server I treba vreme da se svima u svetu updatuje da je zakupljen

CAE trade-off (Amazon verzija CAP teoreme)

Cost-efficiency
High Availability

Elasticity

Biraju se bilo koja dva (C, A, E)

Klijent čeka kada je sistem opterećen (C i E)

Ukoliko je moguće predvideti opterećenje, moguće je obezbediti A i C rezervisanjem resursa unapred

Nepotrebni resursi (over-provisioning) - A i E

BASE - CAP varijanta ACID svojstava

Basically Available - sistem odgovara na svaki zahtev, moze da se desi greska ili los podatak al vraca uvek odgovor Soft State - Stanje sistema se menja tokom vremena čak i kada nema ulaznih podataka zahvaljujući svojstvu eventual consistency Eventually Consistent - Sistem će dostići konzistentnost u određenom trenutku nakon što prestane da prima nove ulazne podatke

ACID forsira konzistentnost podataka dok BASE prihvata da će se konflikti desiti. Bitno je Soft State funkcija

NoSQL baze podataka (video 3)

NoSQL = Not Only SQL (sve nerelacione baze)

NoSQL su pokusaj da se poprave nedostaci relacionih baza podataka Problemi koji se popravljaju:

Velika kolicina podataka Veliki br transakcija u jedinici vremena Transakcije su proste Potreba za promenom baze podataka Itd

Google pravi 2006 Bigtable whitepaper kao resenje nedostatka relacionih baza za potrebe indeksiranja internet pretraga Spada u wide column baze podataka

Dynamo whitepapare je Amazonovo resenje 2007 spada u key value bazu podataka Cassandra je 2008 Facebook napravio kao mix Googlovog I amazonovog resenja al je odustao od projekta Voldemort je 2009 LinkedIn-ovo resenje

Postoje:

relacione baze podataka NoSgl - nerelacione baze podataka

Tipicna primena NoSQL baza

Velika kolici na podataka - koristi se distribuirana arhitektura (mnogo servera) Veliki br upita - prosti upiti, redudantnost je potrebna kako bi se spojebi obezbedili Shema evolution - obezbedi lako menjanje seme podataka

Prednosti:

Fleksibilnost

Skalabilnost - distribuirani sistemi koji se lako skaliraju

Eventualy consistent - CAP teorema, sistem uvek dostupan, ako particija padne ne pada sve

Jeftine - potrebno je uloziti mnogo ali je jeftino u celini

Prilagodjene potrebama Web aplikacija

Lose strane:

Nije stabilna - jer je nova tehnologija

Nema zajednickih standarda - svaki program je drugaciji

Losa podrska za transakcije - jer se ne skaliraju lako ili nemaju podrsku za transakcije

Losa podrska za pretrazivanje podataka - pretrazujes po kljucu, za komplikovane pretrage je problem

Zahteva promenu nacina razmisljanja - unapred se razmislja o upitima pa onda strukturu podesiti po upitima

Tesko naci dva identicna scenarija primene - svaka baza ima specifican usecase, razmisljaj o arhitekturi sistema

Taksonomija/ tipovi NoSQL baza

Key/value stores - pretraga je po kljucu, brzo je, a podaci su sta god (blob) baza ne zna strukturu blood-a samo vracaju ceo blob, Redis Pretraga ne moze po sadrzaju

Column stores (Extensible records/ WhideColumn Stores) - Google big table - vise kolona ima, Cassandra

imamo kljuc I niz kolona sa podacima umesto bloob

Dve vrste ne moraju da imaju iste kolone

Document stores - kljuc dokument par, baza zna strukturu dokumenta I moze da ga obradjuje, moze pretraga I po sadrzaju dokumenta MongoDB

Graph databases - ima cvorove I poteze, graf je, Neo4J

