

Fair Resource Allocation under Uncertainty

Fair & Explainable Decision-Making (FED) Lab

UMassAmherst

College of Information & Computer Sciences

Can we ensure fairness and efficiency when preferences are uncertain?

Resource Allocation under Uncertainty (RAU)

Given n agents N, partitioned into groups G, with m goods MAdditive, unknown utilities $U^* \in \mathcal{U}$ w.h.p.

Select allocation $A \in \mathcal{A}(\{0,1\}^{m \times n} + \text{additional constraints})$ such that welfare $W(A, U^*)$ is maximized

Objectives

Utilitarian Social Welfare (USW)

Robust USW

 $\max_{A \in \mathcal{A}} \min_{U \in \mathcal{U}}$

Group Egalitarian Social Welfare (G-ESW)

 $\max_{A \in \mathcal{A}} \min_{g \in G}$

Robust G-ESW

 $\max_{A \in \mathcal{A}} \min_{U \in \mathcal{U}} \min_{g \in G}$

Constructing Uncertainty Sets

Solving RAU

RAU is NP-hard for USW under finite convex combinations of linear half-spaces (reduction from max egalitarian reviewer assignment)

Robust Resource Allocation (RRA)

Relax discrete allocations → continuous

 $\mathcal{A} \subseteq \{0,1\}^{m \times n} \rightarrow \tilde{\mathcal{A}} \subseteq [0,1]^{m \times n}$

Projected subgradient-ascent optimization

Solve $\max_{\tilde{A} \in \tilde{\mathcal{A}}} \min_{U \in \mathcal{U}} W(\tilde{A}, U)$ by stepping in $\partial_{\tilde{A}} \min_{U \in \mathcal{U}} W(\tilde{A}, U)$ and projecting back to $\tilde{\mathcal{A}}$

Randomized rounding for discrete solution

Round $\tilde{A} \in \tilde{\mathcal{A}}$ to $A \in \mathcal{A}$

Although RRA may have to round significantly, we obtain high probability lower bounds on $W(A, U^*)$

RRA has strong worst-case USW on recent ICLR's

Case Study: Reviewer Assignment

RRA also improves "true" USW and G-ESW for ICLR

noisily-estimated papers/reviewers, RRA performs better on hidden "true" USW

Read it on arxiv!

