GAL - praca domowa z dnia 25.10.2023

Gracjan Barski

October 27, 2023

Zadanie 2:

Wielomiany $P, F \in \mathbb{C}[x]$ dane są wzorami:

$$P(x) = x^{n} - 1$$

$$F(x) = x^{4} - x^{3} + x^{2} - x + 1$$

Wyznacz wszystkie liczby całkowite dodatnie n takie, że wielomian P jest podzielny przez wielomian F.

Rozwiązanie:

Wiadomo, że wielomian $P \in \mathbb{C}[x]$ jest podzielny przez wielomian $F \in \mathbb{C}[x]$, wtedy i tylko wtedy, gdy istnieje wielomian $Q \in \mathbb{C}[x]$ o stopniu większym od 0, taki że $P(x) = F(x) \cdot Q(x)$ dla każdego $x \in \mathbb{C}$. To oznacza, że zbiór pierwiastków wielomianu P(x) musi zawierać w sobie zbiór pierwiastków wielomianu F(x).

Wyznaczmy je:

Warto zauważyć, że

$$(x+1) \cdot (x^4 - x^3 + x^2 - x + 1) = x^5 + 1$$

Z tego, przy założeniu $x \neq -1$, mamy:

$$(x^4 - x^3 + x^2 - x + 1) = \frac{x^5 + 1}{x + 1}$$

Wystarczy znaleźć więc pierwiastki $\frac{x^5+1}{x+1}$, przy czym trzeba pamiętać o przypadku x=-1.

Sprawdźmy: F(-1) = 5, więc x = -1 nie jest pierwiastkiem. Zatem zbiory pierwiastków F(x) i $\frac{x^5+1}{x+1}$ są sobie równe.

Znajdźmy pierwiastki tego ułamka (nadal mając w głowie założenie $x \neq -1$):

$$\frac{x^5 + 1}{x + 1} = 0$$
$$x^5 + 1 = 0$$
$$x^5 = -1$$

Można zapisać x w postaci $m \cdot e^{i\theta}$, gdzie $\theta = \arg x$, m = |x|. Z kolei -1 zapisać jako $e^{i\pi}$. Wtedy mamy:

$$\begin{split} m\cdot(e^{i\theta})^5 &= e^{i\pi}\\ m\cdot e^{i\cdot 5\theta} &= e^{i\pi} \quad \mid m=1\\ 5\theta &= \pi+2k\pi\\ \theta &= \frac{\pi}{5}\cdot(2k+1) \end{split}$$

Gdzie $k \in \mathbb{Z}$

Jasnym jest, że m = 1, ponieważ |-1| = 1.

Zatem pierwiastki F(x) sa postaci $e^{i\theta}$, gdzie

$$\theta \in X = \left\{ \frac{\pi}{5}, \frac{3\pi}{5}, \frac{7\pi}{5}, \frac{9\pi}{5} \right\}$$

Warto zauważyć, że nie zawarłem w zbiorze X elementu $\frac{5\pi}{5}$ (pierwiastek byłby równy -1), ponieważ dla tej wartości początkowe wyrażenie było niekreślone. Jednak to nie problem, bo jak już ustaliliśmy, -1 istotnie nie jest pierwiastkiem F(x).

Warto zauważyć, że w zbiorze X są nieparzyste wielokrotności $\frac{\pi}{5}$ od 1 do 9 bez 5.

Teraz wystarczy ustalić, dla jakich $n \in \mathbb{N}$, zbi
ór pierwiastków x^n-1 zawiera w sobie zbi
ór pierwiastki F(x).

Weźmy wielomian P(x) i spróbujmy określić jego pierwiastki.

$$x^n - 1 = 0$$
$$x^n = 1$$

Tak samo jak wyżej:

$$e^{i \cdot n\alpha} = e^{i \cdot 2k\pi}$$
$$n\alpha = 2k\pi$$
$$\alpha = \frac{\pi}{n} \cdot 2k$$

Gdzie $k \in \mathbb{Z}$ Więc pierwiastki P(x) są postaci $e^{i\alpha}$, gdzie $\alpha = \frac{\pi}{n} \cdot 2k$. Oznaczmy zbiór **argumentów** tych pierwiastków jako Y_n .

Warto zauważyć, że moduł wszystkich pierwiastków jest równy 1, więc nasz cel sprowadza się do ustalenia wszystkich n, dla których $X \subseteq Y_n$.

Weźmy $n=10\cdot l$ dla $l\in\mathbb{N}_1$ Wtedy mamy: $\alpha=\frac{\pi}{5l}\cdot k$. Jeśli k jest dowolną liczbą całkowitą, to weźmy takie k, że $k=s\cdot l$, gdzie $s\in\mathbb{Z}$; innymi słowy k jest wielokrotnością l.

Wtedy $\alpha = \frac{\pi}{5} \cdot s$. Z tego wynika, że α przyjmuje za wartości wszystkie wielokrotności $\frac{\pi}{5}$, więc w szczególności przyjmuje też nieparzyste wielokrotności od 1 do 9 bez 5. Oczywiście α może przyjmować też inne wartości, ponieważ wzięliśmy tylko przypadki gdzie k jest wielokrotnością l, jednak to nie przeszkadza, bo chcemy udowodnić inkluzję zbiorów, a nie równość.

Jak widać każde n postaci $n = 10 \cdot l$ dla $l \in \mathbb{N}_1$ działa. Czy inne n mogą działać?

Nie mogą, ponieważ żeby liczby $\alpha = \frac{\pi}{n} \cdot 2k$ były postaci $\frac{\pi}{5} \cdot l$ dla $l \in \mathbb{Z}$ to musi zachodzić $5 \mid n$. Z drugiej strony, musi zachodzić $2 \mid n$, bo jeśli nie, to przez współczynnik 2k będziemy zawsze mieli parzyste wielokrotności $\frac{\pi}{5}$. (Ponieważ czynnik 2 z 2k nigdy się nie "skróci").

Jako że $(5 \mid n) \land (2 \mid n) \Longrightarrow 10 \mid n$, to wszystkie liczby n postaci $n = 10 \cdot l$, dla $l \in \mathbb{N}_1$ spełniają warunek zadania.