Sistemi Elettronici, Tecnologie e Misure Appello del 30/1/2019

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
c						
d						

- 1. In un amplificatore invertente basato su operazionale ideale, il resistore che collega il morsetto invertente all'uscita è sostituito da un diodo, con anodo collegato al morsetto invertente e catodo collegato all'uscita. Per $v_{\rm in}>0$ il circuito che si ottiene si comporta come
 - (a) amplificatore esponenziale invertente
 - (b) amplificatore esponenziale non invertente
 - (c) amplificatore logaritmico invertente
 - (d) amplificatore logaritmico non invertente
- 2. La transconduttanza di piccolo segnale $g_{
 m m}$ di un transistore nMOS in regione di saturazione può essere espressa in funzione delle grandezze nel punto di lavoro Q come:

(a)
$$g_{\rm m} = \frac{2I_{\rm D}}{V_{\rm GS} - V_{\rm TH}}$$
 (b) $g_{\rm m} = \sqrt{\frac{\beta}{I_{\rm D}}}$ (c) $g_{\rm m} = \lambda I_{\rm D}$ (d) $g_{\rm m} = \frac{I_{\rm D}}{(V_{\rm GS} - V_{\rm TH})^2}$

- 3. Un amplificatore differenziale fornisce in uscita una tensione $v_{\text{out}} = 200v^+ 200v^-$. L'amplificazione differenziale dello stadio vale:
 - (a) 23dB
 - (b) 46dB
 - (c) 200dB
 - (d) 26dB
- 4. In un comparatore di tensione invertente con isteresi, realizzato a partire da un amplificatore operazionale:
 - (a) il segnale d'ingresso è applicato al morsetto non invertente dell'operazionale
 - (b) il morsetto invertente dell'operazionale è collegato all'uscita
 - (c) la tensione differenziale in ingresso è sempre uguale a zero
 - (d) in condizioni statiche, la tensione d'uscita può assumere solo i valori $V_{\rm OH}$ o $V_{\rm OL}$
- 5. Un amplificatore di transconduttanza è ottenuto collegando in cascata un amplificatore di tensione descritto dai parametri $A_{v,1}$, $R_{in,1}$, $R_{out,1}$, (tutti finiti e non nulli) ed un amplificatore di transconduttanza descritto dai parametri $G_{m,2}$, $R_{in,2}$, $R_{out,2}$ (tutti finiti e non nulli). La transconduttanza complessiva G_m della cascata dei due stadi è data
 - (a) $A_{v,1}G_{m,2}$
 - (b) $A_{\text{v},1}G_{\text{m},2} \frac{R_{\text{in},2}}{R_{\text{in},2} + R_{\text{out},1}}$ (c) $A_{\text{v},1}G_{\text{m},2} \frac{R_{\text{out},1}}{R_{\text{in},2} + R_{\text{out},1}}$
- 6. In un amplificatore di tensione non invertente realizzato utilizzando un amplificatore operazionale con amplificazione differenziale $A_{
 m d}$ finita, rispetto allo stesso circuito contenente un operazionale ideale :
 - (a) la resistenza d'ingresso è maggiore
 - (b) la resistenza d'uscita è maggiore o uguale
 - (c) la tensione differenziale dell'operazionale è sempre nulla nei due casi
 - (d) l'amplificazione di tensione è sempre pari al guadagno d'anello

Esercizio 1.

Con riferimento allo stadio in figura

- 1. verificare la regione di funzionamento di MN_1 e MN_2 e determinarne i parametri dei rispettivi modelli per il piccolo segnale;
- 2. Determinare $A_{\rm v}=v_{\rm out}/v_{\rm in}$, la resistenza di ingresso $R_{\rm in}$ e la resistenza di uscita $R_{\rm out}$ (sono richieste le espressioni simboliche ed i valori numerici) considerando il comportamento del condensatore C_1 approssimabile ad un circuito aperto e $C_{\rm in}$ approssimabile ad un corto circuito. Si dia una rappresentazione dello stadio in termini di *amplificatore di tensione*;
- 3. Determinare $A_{\rm v}(s) = V_{\rm out}(s)/V_{\rm in}(s)$ per $C_1 = 10$ nF e $C_{\rm in}$ approximabile ad un corto circuito. Disegnarne il diagramma di Bode (modulo e fase).

Esercizio 2.

Nel circuito in figura, $V_{\rm B}=1{\rm V},$ $R_1=R_2=R_3=R_4=R_5=R=10{\rm k}\Omega,$ $R_{\rm L}=100\Omega,$ la dinamica del segnale v_1 è (-1V,1V) e la dinamica del segnale i_2 è (0,100 μ A). Determinare:

- 1. l'espressione della tensione d'uscita $v_{\rm OUT}$, assumendo che gli amplificatori operazionali siano ideali;
- 2. la minima dinamica della tensione d'uscita $(V_{\rm OUT,min}, V_{\rm OUT,max})$ di OP1 e di OP2 compatibile con i segnali in ingresso assegnati;
- 3. la minima dinamica della corrente d'uscita $(I_{\text{OUT,min}}, I_{\text{OUT,max}})$ di OP1 e di OP2 compatibile con i segnali in ingresso assegnati;
- 4. la banda passante del circuito, considerando che OP1 sia ideale e che OP2 presenti $R_{\rm in,d} \to \infty, R_{\rm in,cm} \to \infty, R_{\rm out} = 0$ ed $f_{\rm T} = 1 \rm MHz$.