Licht

Licht

Licht ist sowohl eine elektromagnetische Welle, als auch ein Teilchen, genannt Photon. Es breitet sich mit Lichtgeschwindigkeit c=299792458 m/s aus. Die Energie eines Photons ist durch $E=h\cdot f$, wobei h das konstante Planksche Wirkungsquantum und f die Frequenz der Welle ist.

Farbwahrnehmung

Trifft ein Photon mit passender Energie auf das Retinal-Molekül, so ändert es seine räumliche Struktur. Diese Strukturveränderung wird als primäre photochemische Reaktion bezeichnet. Sie dauert etwa $2 \cdot 10^{-14} \mathrm{s}$ und löst mehrere nachgeordnete Prozesse in der Sinneszelle aus, die das Signal erheblich verstärken und schließlich in einer Veränderung ihres Membranpotentials münden, welches dann eine nervliche Signalkette auslöst.

Farbwahrnehmung

Das sichtbare Licht liegt zwischen 380 nm und 780 nm.

Photodioden

Photodioden werden aus Elementhalbleitern hergestellt. Treffen Photonen ausreichender Energie auf das Material der Diode, so werden Ladungsträger (Elektron-Loch-Paare) erzeugt. In der Raumladungszone driften die Ladungsträger schnell entgegen der Diffusionsspannung in die gleichartig dotierten Zonen und führen zu einem Strom.

Strahldichte

Durch einen Kanal K bewegen sich Teilchen mit gleichförmiger Geschwindigkeit L (Lichtgeschwindigkeit) und Dichte η . Die Anzahl der Teilchen N, die die Fläche A bezüglich eines Zeitintervalles [0,t] passieren, ist gegeben durch

$$N_A([0,t]) := \eta * ||L|| * \mathsf{Flächeninhalt}(A) * t$$
 (1)

Strahldichte

Betrachtet man die allgemeinere Situation eines Flächenstückes ${\cal B}$, so ist die Anzahl gegeben durch

$$N_B([0, t]) := \eta * ||L|| * \cos(\theta) * Flächeninhalt(B) * t$$
 (2)

Strahldichte

Bezeichnen wir mit

$$L(B) = \frac{d}{dt \cdot \cos(\theta)} N_B([0, t]) = \eta * ||L|| * Flächeninhalt(B)$$
,

so erhalten wir die Strahldichte als Grenzwert

$$L(x,n) := \lim_{B \to \infty} L(B)$$

bei dem die Fläche B zu einem Punkt x zusammengezogen wird. Die Strahlungsleistung aus einer Richtung n am Punkt x berechnet sich demnach durch $I(x,n)=L(x,n)\cdot\cos(\theta)$, was auch als Lambertsches Cosinusgesetz bezeichnet wird.

Strahlungsleistung

Die Strahlungsleistung $\phi = \frac{dQ}{dt}$ ist die von einem Photonenstrom übertragenen Energie Q pro Zeit. Für monochromes Licht mit der Frequenz f und Teilchenstrom $\frac{dN}{dt}$ ergibt sich mit obigen Überlegungen $\phi = h \cdot \frac{dN}{dt} \cdot f$.

Fläche

Ein Fläche (Parametrisierung) ist eine Abbildung

$$s: U \subset \mathbb{R}^2 \to \mathbb{R}^3$$

$$s(u,v) := \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$$

bei der die Abbildungen $x,y,z:U\subset\mathbb{R}^2\to\mathbb{R}$ stetig sind. Sie heißt differenzierbar, falls die partiellen Ableitungen

$$\frac{\partial}{\partial u}s(u,v) = \begin{pmatrix} \frac{\partial}{\partial u}x(u,v) \\ \frac{\partial}{\partial u}y(u,v) \\ \frac{\partial}{\partial u}z(u,v) \end{pmatrix}, \ \frac{\partial}{\partial v}s(u,v) = \begin{pmatrix} \frac{\partial}{\partial v}x(u,v) \\ \frac{\partial}{\partial v}y(u,v) \\ \frac{\partial}{\partial v}z(u,v) \end{pmatrix}$$

existieren.

Tangentialraum

Die Ebene

$$T_{s}(u,v) := \{s(u,v) + \lambda \cdot \frac{\partial}{\partial u}s(u,v) + \mu \cdot \frac{\partial}{\partial v} \mid \lambda, \mu \in \mathbb{R}\}$$

heißt Tangentialebene am Punkt (u, v) und der Vektor

$$n(u,v) := \frac{\partial}{\partial u} s(u,v) \times \frac{\partial}{\partial v} s(u,v) ,$$

welcher Senkrecht auf dieser Ebene steht, die Normale.

Oberflächenintegral

Das OberflächenIntegral ist definiert durch

$$\int_{\mathcal{S}} d\omega := \int_{U} ||n(u,v)|| \ dU \ .$$

und analog

$$\int_{S} f \ d\omega := \int_{U} f(s(u,v)) \cdot ||n(u,v)|| \ dU \ .$$

für eine Funktion $f: S \to \mathbb{R}$. Man nennt $d\omega$ beziehungsweise ||n(u,v)|| das infinitessimale Flächenelement.

Fubini

Ist $U=U_1 imes U_2 \in \mathbb{R}^2$ und $f:U \to \mathbb{R}$ eine integrierbare Funktion, so gilt

$$\int_U f \ d(U_1 \times U_2) = \int_{U_1} \int_{U_2} f \ dU_2 dU_1 = \int_{U_1} \int_{U_2} f \ dU_1 dU_2 \ .$$

Die Sphäre S^2

$$s: [0, \pi) \times [0, 2\pi) \to \mathbb{R}^{3}, \ s(u, v) := \begin{pmatrix} \sin(u)\cos(v) \\ \sin(u)\sin(v) \\ \cos(u) \end{pmatrix}$$

$$\frac{\partial}{\partial u}s(u, v) = \begin{pmatrix} \cos(u)\cos(v) \\ \cos(u)\sin(v) \\ -\sin(u) \end{pmatrix}, \frac{\partial}{\partial v}s(u, v) = \begin{pmatrix} -\sin(u)\sin(v) \\ \sin(u)\cos(v) \\ 0 \end{pmatrix}$$

$$||\frac{\partial}{\partial u}s(u, v) \times \frac{\partial}{\partial v}s(u, v)|| = \sin(u)$$

$$\int_{S^2} d\omega = \int_{[0,\pi)\times[0,2\pi)} \sin(u)d(u\times v) = \int_{[0,2\pi)} \int_{[0,\pi)} \sin(u)dudv$$
$$= 4\pi$$

Photometrisches Grundgesetz

Die Strahlungsleistung $\phi:=\frac{\partial Q}{\partial t}$, die von einer abstrahlenden Fläche A_2 auf eine Fläche A_1 übertragen wird, berechnet sich durch

$$\phi = \int_{A_1} \int_{\pi_s(A_2)} L(x, \omega) \cdot \cos(\beta_1) d\omega dA_1 , \qquad (3)$$

wobei β_1 der Winkel zwischen der Flächennormale am Punkt x und der Richtung ω ist und $\pi_s(A_2)$ das sphärische Bild von A_2 ist.

Transformationsformel

$$d\omega = \frac{1}{r^2} \cdot \cos(\theta) dA, \ \pi(x) := \frac{x}{||x||} \tag{4}$$

$$V(x,y) := \begin{cases} 1 \text{ falls } \overline{xy} \cap (A - \{x,y\}) = \emptyset \\ 0 \text{ sonst} \end{cases}$$
 (5)

$$\int_{\pi(A)} f \cdot d\omega = \int_{A} f \cdot \frac{1}{r^{2}} \cdot \cos(\theta) \cdot V(a, 0) \ dA \ , \tag{6}$$

Reflektionsgesetz

$$\underbrace{L_r(x,\omega_r)}_{\text{Reflektierte Strahlung in Richtungen }\omega_r} = \int_{H^2} \underbrace{f_r(x,\omega,\omega_r)}_{\text{Reflektionseigenschaft}} \cdot \underbrace{L_i(x,\omega) \cdot \cos(\theta)}_{\text{aus Richtung }\omega} d\omega$$

Summation über alle eingehenden Richtungen ω

Rendergleichung

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{H^2} f_r(x,\omega,\omega_0) \cdot L_i(x,\omega) \cdot \cos(\theta) d\omega ,$$
(7)

Ausgehend (out) = Emission (emission) + Reflektion

Rendergleichung 2-te Form

 Ω Menge aller Flächen in der Szene.

$$\begin{split} V(x,y) &:= \begin{cases} 1 \text{ falls } \overline{xy} \cap \left(\Omega - \{x,y\}\right) = \emptyset \\ 0 \text{ sonst} \end{cases} \\ L_i(x,\omega_y) &= V(x,y) \cdot L_o(y,\omega_x) \text{ (Energieerhaltung)} \\ d\omega &= \frac{1}{||x-y||^2} \cdot \cos(\theta_y) dA_y \\ G(x,y) &:= V(x,y) \frac{\cos(\theta_x) \cdot \cos(\theta_y)}{||x-y||^2} \\ L_o(x,\omega_o) &= L_e(x,\omega_o) + \int_{\Omega} f_r(x,\overline{xy},\omega_o) \cdot L_o(y,\overline{xy}) \cdot G(x,y) \cdot dA_y \;. \end{split}$$

Pfadformulierung

$$(T \circ L)(x,\omega) := \int_{H^2} f_r(x,\omega,\omega_0) \cdot L(x,\omega) \cdot \cos(\theta) d\omega ,$$

$$L_e = (id - T) \circ L .$$

$$L = (id - T)^{-1} \circ L_e$$

$$(id - T)^{-1} = \sum_{i=0}^{\infty} T^i .$$

Monte Carlo Integration

Wahrscheinlichkeitsraum

- Menge $\Omega \subset \mathbb{R}^n$ deren Teilmengen Ereignisse genannt werden.
- Funktion $\rho:\Omega\to\mathbb{R}$ mit $\int_\Omega \rho(\omega)d\omega=1$ welche auch Wahrscheinlichkeitsdichte genannt wird.
- Eine Abbildung $X : \Omega \to \mathbb{R}$ wird Zufallsvariable genannt.

Ist $X:\Omega \to \mathbb{R}$ eine Zufallsvariable, dann heißt

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) \cdot \rho(\omega) d\omega \tag{8}$$

Erwartungswert.

Monte Carlo Integration

Gesetz der großen Zahlen

Ist $X:\Omega\to\mathbb{R}$ eine Zufallsvariable mit Wahrscheinlichkeitsdichte $\rho:\Omega\to[0,1]$ und $\{\omega_1,\cdots,\omega_N\}$ eine Stichprobe für ρ , so gilt:

$$\frac{1}{N} \sum_{i=0}^{N} X(\omega_i) \xrightarrow{N \to \infty} \mathbb{E}[X] \text{ (in Wahrscheinlichkeit)}$$
 (9)

Monte Carlo Integration

Stochastische Integration

Ist $f:S\subset\Omega\to\mathbb{R}$ eine Funktion, so gilt für eine beliebige Wahrscheinlichkeitsdichte $\rho:\Omega\to[0,1]$ und eine Stichprobe $\{\omega_1,\cdots,\omega_N\}$

$$\frac{1}{N} \sum_{i=0}^{N} \frac{f(\omega_i)}{\rho(\omega_i)} \xrightarrow{N \to \infty} \int_{\Omega} f(\omega) d\omega \text{ (in Wahrscheinlichkeit)}. \tag{10}$$

Stochastische Integration

Das Problem der Integration reduziert sich im Wesentlichen darauf viele Stichproben ω aus einer komplizierten Verteilung ρ zu ziehen.

Rejectionsampling

Pathtracing

Die Anwendung der Monte Carlo Integration auf die Pfadformulierung der Rendergleichung wird Pathtracing genannt.

Wenige und viele samples im Vergleich

