Attorney Docket 2003 UR020

RECEIVED Ons.: 10 Advisory Action dtd 12/21 200" CENTRAL FAX CENTER

JAN 1 6 2008

LISTING OF ALLOWED CLAIMS

Claims 10-13 are hereby canceled. A complete current listing of the claims follows.

- 1. (Original) A method of operating a plurality N of seismic vibrators simultaneously with continuous sweeps, and separating the seismic response for each vibrator, said method comprising the steps of:
- (a) loading each vibrator with a unique continuous sweep signal consisting of $M \ge N$ segments, the ith segment being of the same duration for each vibrator, i = 1, 2, ..., M;
- (b) activating all vibrators and using at least one detector to detect and record the combined seismic response signals from all vibrators;
- (c) selecting and recording a signature for each vibrator indicative of the motion of that vibrator;
- (d) parsing the vibrator motion record for each vibrator into M shorter records, each shorter record coinciding in time with a sweep segment, and then padding the end of each shorter record sufficiently to extend its duration by substantially one listening time;
- (e) forming an $M \times N$ matrix s whose element $s_{ij}(t)$ is the padded shorter vibrator motion record as a function of time t for the ith vibrator and jth sweep segment;
- (f) parsing the seismic data record from step (b) into M shorter records, each shorter record coinciding in time with a padded shorter record of vibrator motion from step (d);
- (g) forming a vector \vec{d} of length M whose element d_i is the i^{th} shorter data record from the preceding step;
- (h) solving for $E_j(f)$ the following system of M linear equations in N unknowns

 $S\vec{E} = \vec{D}$

- where $S_{ij}(f)$ is the Fourier transform to the frequency (f) domain of $S_{ij}(t)$ and $D_i(f)$ is the Fourier transform of $d_i(t)$, where i = 1, 2, ..., M and j = 1, 2, ..., N; and
 - (i) inverse Fourier transforming the $E_j(f)$ to yield $e_j(t)$.
- 2. (Original) The method of claim 1, wherein each sweep segment is selected from one of the following sweep-design categories: (a) linear, (b) nonlinear, and (c) pseudo-random.
- 3. (Original) The method of claim 1, wherein all of the N unique continuous sweeps are identical except for the phase of their segments.
- 4. (Original) The method of claim 3, wherein all N segments are identical except for phase, and the phase differences for the N sweeps are determined by the following steps: (a) constructing a reference sweep by starting with a preselected reference segment, then advancing the segment 360/M degrees in phase to make the second segment, then advancing the phase 360/M more degrees to make the third segment, and so on to generate a sweep of M segments; (b) constructing a first sweep by advancing the phase of the first segment of the reference sweep by 90 degrees; (c) constructing a second sweep by advancing the phase of the second segment of the reference sweep by 90 degrees; (d) and so on until N sweeps are constructed.
- 5. (Original) The method of claim 1, wherein each unique continuous sweep has a duration in time sufficiently long to collect all seismic data desired before relocating the vibrators.
- 6. (Original) The method of claim 1, wherein the vibrator signature record for each vibrator is a weighted sum or ground force record of the motion of that vibrator.
- 7. (Original) The method of claim 1, wherein M = N and the system of linear equations $S\vec{E} = \vec{D}$ is solved by matrix methods comprising the steps of deriving a separation and inversion filter $(S)^{-1}$ by inverting the matrix S, then performing the matrix multiplication $(S)^{-1}\vec{D}$.

JAN-16-2008

- (Original) The method of claim 1, wherein the system of linear equations $S\vec{E} = \vec{D}$ is solved by matrix methods and the method of least squares comprising the steps of deriving a separation and inversion filter of the form $\mathbf{F} = (\mathbf{S}^{\mathsf{T}}\mathbf{S})^{-1}\mathbf{S}^{\mathsf{T}}$, then performing the matrix multiplication $\mathbf{F}\vec{D}$.
- 9. ' (Original) The method of claim 1, wherein each segment has a duration that is at least as long as the seismic wave travel time down to and back up from the deepest reflector of interest.

10 - 13. (Cancelled)

Attorney Docket 2003UR026 Response to Advisory Action did 12 24/200°

CONCLUSION

The applicants respectfully request a Notice of Allowance for the pending claims, which are claims 1-9.

Respectfully submitted,

Date: <u>16 January 2008</u>

7. Paul Plummer Reg. No. 40,775

ExxonMobil Upstream Research Company P.O. Box 2189 (CORP-URC-SW 337)

Houston, Texas 77252-2189 Telephone: (713) 431-7360

Facsimile:

(713) 431-4664

Certification under 37 CFR §§ 1.8(a) and 1.10	
I hereby certify that, on the date shown below, this application/correspondence attached hereto is being:	
MAILING	
deposited with the United States Postal Service in an envelope addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.	
37 C.F.R. § 1.8(a)	37 C.F.R. § 1.10
with sufficient postage as first class mail.	as "Express Mail Post Office to Addressee"
Monica Stansberry	
Printed name of person mailing correspondence	Express Mail mailing number
Signature of person mailing correspondence	16 January 2008 Date of Deposit
TRANSMISSION	
transmitted by facsimile to the Patent and Trademark Office at facsimile number: 8.1.571.273.8300	