

Ethereum and EVM

Dr. Nguyễn Kim Trọng Kyber Research

Table of Contents Ethereum vs Bitcoin Account-based vs UTXO-based Smart-contract vs script EVM vs Bitcoin's scripting language Hard-fork culture vs soft-fork culture Ethereum overview EOA and nonce Smart-contract and call Block and transaction Storage and historical data Node and miner/validator **EVM** Opcodes and precompiled smart-contracts Gas Fee **Execution clients** From PoW to PoS Beacon-chain Consensus clients The Merge Post-Merge Ethereum's vision Blockchain's trilemma Decentralization end-game

Ethereum vs Bitcoin

- Account-based vs UTXO-based
- Smart-contract vs Script
- EVM vs Bitcoin's scripting language
- Hard-fork culture vs soft-fork culture

Account-based

VS

UTXO-based

- Bank account as an analogue
- **Account** is the basic unit
- Transactions updates accounts' state
- World state includes accounts
- More efficient memory usage
- Better fungibility.
- Enable Smart-contract and complex logic

- Cash as an analogue
- **Unspent Transaction Output** is the basic unit
- Transactions spend old UTXO and create new UTXO
- World state includes **UTXOs**
- Harder to link transactions

Smart-contract

VS

Script

- Store "in" the smart-contract account
- Complex logic
- Divers functionalities
- Storage (state)
- Call among smart-contract

- Store "in" each **UTXO**
- Simple logic
- Use for ownership and spending conditions verification
- Stateless
- No interactions among script

EVM vs Bitcoin's scripting language

- Computational model.
- Complex for parallelization (no for actual)
- Access to storage (world state)
- Turing complete

- Verification model
- Simple in parallelization
- Stateless
- Turing incomplete

Hard-fork culture

VS

Soft-fork culture

- Non-upgrade nodes don't accept any upgraded blocks
- -> Non-upgrade nodes will definitively form separated networks
- A success hard-fork requires the "social consensus" of the majority of nodes

- Non-upgrade nodes accept every upgraded blocks
- -> Non-upgrade nodes can still stay inside the same network with upgraded nodes
- A success soft-fork requires the "social consensus" of the majority of miners.
 Nodes can gradually upgrade later.

Ethereum overview

- EOA and nonce
- Smart-contract and call
- Block and transaction
- Storage and historical data
- Node and miner/validator

EOA and nonce

EOA (Externally Owned Account)

- Controlled by ECDSA signing key pair (pk,sk).
- sk: signing key known only to account owner

Nonce

- = (#Tx sent) + (#accounts created)
- Anti-replay mechanism

Smart-contract and call

Smart-contract

- Controlled by code
- Code set at account creation time
- Immutable

Call/Message

- Trigger a method in the contract with ETH & data
- A transaction can be a call from an EOA to a smart-contract
- Composability: Smart-contracts can call each other many times in a transaction (internal calls)
 - contract → EOA: contract sends funds to user
 - contract → contract: one program calls another (and sends funds)

Smart-contract vs EOA

(#Tx sent) + (#accounts created): anti-replay mechanism			
nonce:	nonce	nonce	
balance (in Wei):	balance	balance (10 ¹⁸ Wei = 1 ETH)	
storage root (state):	Τ	StorageRoot	
code:	Τ	CodeHash	
address (computed):	H(pk)	H(CreatorAddr, CreatorNonce	
Account data	<u>Owned</u>	<u>Contracts</u>	

Block and transaction

Transaction types

- EOA → EOA: transfer ETH between users
- EOA → smart-contract: call contract with ETH & data

Transaction's content

- **To**: 32-byte address of target (0 → create new account)
- From, [Signature]: initiator's address (calculated from signature on Tx)
- **Value**: # Wei being sent with Tx
- **Tx fees**: gasLimit, maxFee, (maxPriorityFee after EIP 1559)
- If **To** = 0: create new contract code = (init, body)
- If **To** ≠ 0: data (what function to call & arguments)
- Nonce: must match current nonce of sender (prevents Tx replay)

Ethereum overview

Block and transaction

⁶ d8c36118	Transfer	12268168	774 days 2 hrs ago	0xFdddf8E916aEf9 🗘	0x3f5b5A0a911db9 🗗	0.00274119 ETH	0.0021
51984549f	Transfer	12268168	774 days 2 hrs ago	0x10D45067144С55 🖰	0x3f5b5A0a911db9 🗗	0.00274119 ETH	0.0021
:1ec099c8	Transfer	12268168	774 days 2 hrs ago	0xB620a15d1A8165 C	0x3f5b5A0a911db9 🗗	0.00274119 ETH	0.0021
'9e8475ca	Transfer	12268168	774 days 2 hrs ago	0xbACED17837c1aF (0x3f5b5A0a911db9 🗗	0.00274119 ETH	0.0021
63eea369	Swap	12268168	774 days 2 hrs ago	0х983376916f3bC8 🗗	E MEV Bot: 0x0009d2 €	0 ETH	0.0044749
892ac381	Passive Inco	12268168	774 days 2 hrs ago	0x21F179880Cf49e 🗗	■ MEV Bot: 0x000f56 🗗	0 ETH	0.00297531
3788899a	Vote	12268168	774 days 2 hrs ago	0xb2db7f3481BD7e [ା Kyber: DAO 🗗	0 ETH	0.0256947

Etherscan

Block and transaction

Block

- Includes n Txns
- Execute state change of Txn_i sequentially by EVM
- Record updated world state in block

Block header data

- Consensus data: proposer ID, parent hash, votes, etc.
- address of gas beneficiary: where Tx fees will go
- world state root: updated world state
 - > Merkle Patricia Tree hash of all accounts in the system
- **Tx root**: Merkle hash of all Tx processed in block
- **Tx receipt root**: Merkle hash of log messages generated in block
- **Gas used**: used to adjust gas price (target 15M gas per block)

Storage and historical data

Stanford cs251

Storage and historical data

Storage

- Persistent storage that every full-node must maintain and keep forever (pre state/history expiry)
- Accessible to future state calculations (EVM)

Historical data

- Txns' data, receipt logs
- Appear in the blockchain (full-node will keep only the most recent 128 blocks), and are accessible to light clients, but that are not accessible to future state calculations.

Others

- Execution data: execution trace of a transaction, gas profile, ...
- "Off-chain data": Mempool, smart-contract high level code,...

Node and miner/validator

Node

- Execution client: EVM executes each txns and updates the storage (world state)
- Consensus client: Verify the validity of blocks and their components
- Full node, archive node

Miner/validator (consensus node)

- Need to include/connect to a node for block's data
- Miner: Create block by solving the PoW puzzle (from a block's proposal)
- Validator: Participate in block creation by validating a block's proposal for PoS

EVM

- - Opcodes and precompiled smart-contracts

- Gas
- Fee
- **Execution clients**

Overview

Stack machine

- With JUMP -> loop, call
- max stack depth = 1024
- program aborts if stack size exceeded; block proposer keeps gas
- contract can create or call another contract

Two types of zero initialized memory

- Persistent storage (on blockchain): SLOAD, SSTORE (expensive)
- Volatile memory (for single Tx): MLOAD, MSTORE (cheap)
- LOG0(data): write data to log (historical data)

Opcodes and precompiled smart-contracts

Opcodes

- Solidity (or Vyper, Yul) -> Bytecode -> Opcode
- Length: 1 byte (256 opcode slots)
- 140 slots used for now

Precompiled smart-contracts

- "Solving the problem of allowing complex cryptographic computations to be usable in the EVM without having to deal with EVM overhead" (Vitalik)
- In the accessed addresses, and no accessed storage
- 9 pre-compiled contracts
- Complex execution, more inputs

Gas

Gas

- Txns in Ethereum are different in how much resources they cost -> gas concept
- Every instruction costs gas
- Tx fees (gas) prevents submitting Tx that runs for many steps
- Standard for Txns fee calculation
- Gas used for each opcodes is correspond to
 - Resources used in average case
 - Resources used in worst scenario (anti-DoS)
- Txns' gasLimit -> control how much gas can be used in the Txns
 - Quick balance check for node
 - > If txn execution runs out of gas -> txn reverts but gas is still used (anti DoS)
 - > Txns' gasUsed -> the actual amount of gas used in a Txn
- Blocks' size -> the maximum total of gas that one block can consume
 - Anti DoS + cap the maximum resource required for a full-node
 - Fairness for consensus node

Fee

Pre-EIP1559

- Every Tx contains a **gasPrice** ``bid" (gas → Wei conversion price)
- Producer chooses Tx with highest gasPrice (max sum(gasPrice×gasLimit))
 - \Rightarrow not an efficient auction mechanism (first price auction)

EIP-1559

Every block has a "baseFee": the minimum gasPrice for all Tx in the block

interpolate in between

baseFee is computed from total gas in earlier blocks:

- earlier blocks at gas limit (30M gas) ⇒ base fee goes up 12.5%
- earlier blocks empty ⇒ base fee decreases by 12.5%

If earlier blocks at "target size" (15M gas) \Rightarrow base fee does not change

Fee

EIP1559

- EIP1559 Tx specifies three parameters:
 - gasLimit: max total gas allowed for Tx
 - ➤ maxFee: maximum allowed gas price (max gas → Wei conversion)
 - maxPriorityFee: additional "tip" to be paid to block proposer
 - Computed gasPrice bid: gasPrice ← min(maxFee, baseFee + maxPriorityFee)
- Max Tx fee: gasLimit × gasPrice
- BURN gasUsed× baseFee
- Send gasUsed×(gasPrice baseFee) to block produce

Execution clients

Client	Language	Operating systems	Networks	Sync strategies	State prunir
Geth ↗	Go	Linux, Windows, macOS	Mainnet, Sepolia, Goerli	Snap, Full	Archive, Pruned
Nethermind 7	C#, .NET	Linux, Windows, macOS	Mainnet, Sepolia, Goerli, and more	Snap (without serving), Fast, Full	Archive, Pruned
Besu ↗	Java	Linux, Windows, macOS	Mainnet, Sepolia, Goerli, and more	Snap, Fast, Full	Archive, Pruned
Erigon 7	Go	Linux, Windows, macOS	Mainnet, Sepolia, Goerli, and more	Full	Archive, Pruned

From PoW to PoS

- Beacon-chain
- Consensus clients
- The Merge
- Post-Merge

Beacon chain

PoS validator

- To become a validator: stake (lock up) 32 ETH
 - sign blocks to express correctness (finalized once enough sigs)
 - occasionally act as block proposer (chosen at random)
 - ➤ correct behavior ⇒ issued new ETH every epoch (32 slots)
 - > incorrect behavior ⇒ slashed

PoS epoch

- 32 slots (can have empty slot) -> 12 *32 = 384s
- Committee of 128 validators
- The first block in each epoch is a checkpoint
- If a pair of checkpoints attracts votes representing at least two-thirds of the total staked ETH, the checkpoints are upgraded.
- Fork choice: Fork that has the greatest weight of attestations in its history

From PoW to PoS

Beacon chain

Beaconcha.in

Consensus clients

Client	Language	Operating systems	Networks
Lighthouse 7	Rust	Linux, Windows,	Beacon Chain, Goerli, Pyrmont,
		macOS	Sepolia, Ropsten, and more
<u>Lodestar</u> [↗]	TypeScript	Linux, Windows,	Beacon Chain, Goerli, Sepolia,
		macOS	Ropsten, and more
Nimbus 7	Nim	Linux, Windows,	Beacon Chain, Goerli, Sepolia,
		macOS	Ropsten, and more
<u>Prysm</u> ↗	Go	Linux, Windows, macOS	Beacon Chain, Gnosis, Goerli,
			Pyrmont, Sepolia, Ropsten, and
			more
<u>Teku</u> ↗	Java	Linux, Windows,	Beacon Chain, Gnosis, Goerli,
		macOS	Sepolia, Ropsten, and more

The Merge

From PoW to PoS

The Merge

Post Merge

<u>Vitalik</u>

Ethereum's vision

- Blockchain's trilemma
- Decentralization end-game

Blockchain's trilemma

Blockchain's trilemma

What is "decentralized"

- Block production -> Focus on consensus nodes
- Block verification -> Focus on general Nodes
- Anti-censorship

Decentralization end-game

Decentralization end-game

At the end of Ethereum Roadmap

- Weak decentralized in Block production
- Strong decentralized block verification
- Strong Anti-censorship

Ethereum roadmap

Ethereum roadmap

A&9