1 point You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- · Accuracy = (true positives + true negatives) / (total examples)
- · Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's F_1 score (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.157

1 point Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which are the two?

	We train a model that does not use regularization.
	We train a learning algorithm with a
	small number of parameters (that is thus unlikely to
	overfit).
	We train a learning algorithm with a

large number of parameters (that is able to

learn/represent fairly complex functions).

lacksquare The features $oldsymbol{x}$ contain sufficient

information to predict \boldsymbol{y} accurately. (For example, one

way to verify this is if a human expert on the domain

can confidently predict y when given only x).

1 point	3.	Suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.
		Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x) < \text{threshold}$, where currently the threshold is set to 0.5.
		Suppose you increase the threshold to 0.9. Which of the following are true? Check all that apply.
		The classifier is likely to now have lower precision.
		The classifier is likely to now have lower recall.
		The classifier is likely to have unchanged precision and recall, but
		higher accuracy.
		The classifier is likely to have unchanged precision and recall, but
		lower accuracy.
1 point	5.	Which of the following statements are true? Check all that apply.
		If your model is underfitting the
		training set, then obtaining more data is likely to
		help.
		It is a good idea to spend a lot of time
		collecting a large amount of data before building
		your first version of a learning algorithm.
		After training a logistic regression
		classifier, you must use 0.5 as your threshold
		for predicting whether an example is positive or
		negative.
		Using a very large training set
		makes it unlikely for model to overfit the training
		data.
		On skewed datasets (e.g., when there are
		more positive examples than negative examples), accuracy
		is not a good measure of performance and you should

instead use $F_{\mathbf{1}}$ score based on the

precision and recall.