PREDIKSI INDEKS HARGA KONSUMEN KOMODITAS MAKANAN BERBASIS CLOUD COMPUTING MENGGUNAKAN MULTILAYER PERCEPTRON

abstrak	pendahuluan	metode	hasil	Kesimpulan
Menjelaskan	Menjelaskan	pengambilan data	hasil terbaik RMSE =	Prediksi IHK dengan
pembangunan model	pentingnya prediksi	(web crawling	3,380 pada	multi variabel
prediksi IHK berbasis	ekonomi, khususnya	Siskaperbapo, BPS),	konfigurasi 2 hidden	menggunakan MLP
multi variabel (28	IHK, serta peran data	pengolahan (scaling	layer × 10 neuron,	berbasis cloud
jenis harga bahan	mining. Tinjauan	min-max, pelabelan	1000 epoch. Hasil	berhasil dilakukan.
pokok harian di	pustaka	variabel X1-X29),	lain menunjukkan	Konfigurasi terbaik
Surabaya 2014–	membandingkan	pembangunan model	bahwa penambahan	adalah 2 hidden layer
2018) menggunakan	metode NN, ARIMA,	MLP di AWS DLAMI	hidden layer/neuron	× 10 neuron, 1000
Multilayer	SARIMA, SVR, dan	(Python, TensorFlow,	tidak selalu	epoch.
Perceptron (MLP) di	penelitian MLP	Keras),	meningkatkan	
lingkungan AWS	sebelumnya.		akurasi.	
Cloud.	Menyoroti gap:			

Sitasi (APA):

Syahroni, M., dkk. (2020). *Prediksi Indeks Harga Konsumen Komoditas Makanan Berbasis Cloud Computing Menggunakan Multilayer Perceptron*. Jurnal JOINTECS, 6(2), 121–130.

Latar belakang & Tujuan:

Indeks Harga Konsumen (IHK) merupakan indikator penting dalam analisis ekonomi dan kebijakan pemerintah. Sebagian besar penelitian prediksi IHK sebelumnya hanya menggunakan satu variabel input.

Metode:

- Data: harga 28 komoditas bahan pokok harian di Surabaya (2014–2018), sumber dari Siskaperbapo & BPS.
- Pengolahan: scaling min-max, pelabelan variabel X1–X29.
- Model: Multilayer Perceptron (MLP) dengan variasi jumlah hidden layer, neuron, dan epoch.

Hasil:

- Dari 39 skenario pengujian, hasil terbaik RMSE = 3,380 pada konfigurasi 2 hidden layer × 10 neuron dengan 1000 epoch.
- Model menunjukkan bahwa peningkatan hidden layer/neuron tidak selalu meningkatkan akurasi.

Kontribusi & Keterbatasan:

- Kontribusi: Memberikan pendekatan prediksi IHK multi variabel berbasis cloud, memanfaatkan data bahan pokok harian yang lebih kaya daripada penelitian sebelumnya.
- Keterbatasan: Dataset kecil (hanya 60 data), rawan overfitting, prediksi tidak stabil, dan evaluasi terbatas hanya pada MLP tanpa pembandingan dengan metode lain.

Takeaway:

MLP berbasis cloud dapat digunakan untuk prediksi IHK dengan konfigurasi tertentu yang optimal, tetapi hasilnya belum konsisten. Diperlukan dataset yang lebih besar, validasi model yang lebih ketat, dan perbandingan dengan metode lain (misalnya hybrid atau ensemble) agar hasil lebih andal.