# **BLM1612 - Circuit Theory**

#### The Instructors:

```
Dr. Öğretim Üyesi Erkan Uslu <a href="mailto:euslu@yildiz.edu.tr">euslu@yildiz.edu.tr</a>
```

Dr. Öğretim Üyesi Hamza Osman İlhan hoilhan yildiz.edu.tr

#### Lab Assistants:

```
Arş. Gör. Hasan Burak Avcı <a href="http://avesis.yildiz.edu.tr/hbavci/">http://avesis.yildiz.edu.tr/hbavci/</a>
```

Arş. Gör. Kübra Adalı <a href="http://avesis.yildiz.edu.tr/adalik/">http://avesis.yildiz.edu.tr/adalik/</a>

Arş. Gör. Alper Eğitmen <a href="http://avesis.yildiz.edu.tr/aegitmen/">http://avesis.yildiz.edu.tr/aegitmen/</a>

# Units of Measurement Basic Terminologies in Circuits Circuit Components Ohm's Law

- As engineers, we deal with measurable quantities.
- Measurement must be communicated in a standard language.
- The International System of Units (SI),
  - adopted by the General Conference on Weights and Measures in 1960.
- In SI, there are seven principal units from which the units of all other physical quantities can be derived.

• Six basic SI units and one derived unit relevant to this text.

| Quantity                  | Basic unit | Symbol |
|---------------------------|------------|--------|
| Length                    | meter      | m      |
| Mass                      | kilogram   | kg     |
| Time                      | second     | S      |
| Electric current          | ampere     | A      |
| Thermodynamic temperature | kelvin     | K      |
| Luminous intensity        | candela    | cd     |
| Charge                    | coulomb    | C      |

- One great advantage of the SI unit is that it uses prefixes based on the power of 10 to relate larger and smaller units to the basic unit.
- For example, the following are expressions of the same distance in meters (m):
  - 600 000 000 mm
  - 600 000 m
  - -600 km

The SI prefixes.

| Multiplier       | Prefix | Symbol |
|------------------|--------|--------|
| 10 <sup>18</sup> | exa    | Е      |
| $10^{15}$        | peta   | P      |
| $10^{12}$        | tera   | T      |
| $10^{9}$         | giga   | G      |
| $10^{6}$         | mega   | M      |
| $10^{3}$         | kilo   | k      |
| $10^{2}$         | hecto  | h      |
| 10               | deka   | da     |
| $10^{-1}$        | deci   | d      |
| $10^{-2}$        | centi  | c      |
| $10^{-3}$        | milli  | m      |
| $10^{-6}$        | micro  | $\mu$  |
| $10^{-9}$        | nano   | n      |
| $10^{-12}$       | pico   | p      |
| $10^{-15}$       | femto  | f      |
| $10^{-18}$       | atto   | a      |

- The numerical value substituted into an equation must have the unit of measurement specified by the equation.
- For example,
  - consider the equation for the velocity v = d / t.
    - v: velocity, d: distantance, t: time
  - Assume that the following data are obtained for a moving object: d = 4000 m, t = 1 min and v is desired in km per hour.
  - Incorrect answer:
    - v = 4000 / 1 = 4000 kmh
  - Correct answer:
    - $v = 4000 \times 10^{-3} / (1/60) = 240 \text{ kmh}$

- Before substituting numerical values into an equation, be absolutely sure of the following:
  - Each quantity has the proper unit of measurement as defined by the equation.
  - The proper magnitude of each quantity as determined by the defining equation is substituted.
  - Each quantity is in the same system of units (or as defined by the equation).
  - The magnitude of the result is of a reasonable nature when compared to the level of the substituted quantities.
  - The proper unit of measurement is applied to the result.

# **Systems of Units**

• Comparison of the English and metric systems of units.

| English MKS                                       | Metric                                    |                                                                |                          |  |
|---------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|--------------------------|--|
|                                                   | MKS                                       | CGS                                                            | SI                       |  |
| Length:                                           | Meter (m)                                 | Centimeter (cm)                                                | Meter (m)                |  |
| Yard (yd)                                         | (39.37 in.)                               | (2.54  cm = 1  in.)                                            |                          |  |
| (0.914 m)                                         | (100 cm)                                  |                                                                |                          |  |
| Mass:                                             |                                           |                                                                |                          |  |
| Slug                                              | Kilogram (kg)                             | Gram (g)                                                       | Kilogram (kg)            |  |
| (14.6 kg)                                         | (1000 g)                                  |                                                                |                          |  |
| Force:                                            |                                           |                                                                |                          |  |
| Pound (lb)                                        | Newton (N)                                | Dyne                                                           | Newton (N)               |  |
| (4.45 N)                                          | (100,000 dynes)                           |                                                                |                          |  |
| Temperature:                                      | 2.1.1                                     | 2010/01/2020                                                   |                          |  |
| Fahrenheit (°F)                                   | Celsius or                                | Centigrade (°C)                                                | Kelvin (K)               |  |
| $\left(=\frac{9}{5} ^{\circ}\text{C} + 32\right)$ | Centigrade (°C)                           |                                                                | $K = 273.15 + ^{\circ}C$ |  |
| ( )                                               | $\left(=\frac{5}{9}(^{\circ}F-32)\right)$ |                                                                |                          |  |
| r                                                 | ( 9                                       |                                                                |                          |  |
| Energy:                                           | Nauton mater (N m)                        | Divino apartimatos os osos                                     | Joule (J)                |  |
| Foot-pound (ft-lb)                                | Newton-meter (N•m)                        | Dyne-centimeter or erg $(1 \text{ joule} = 10^7 \text{ ergs})$ | Joule (J)                |  |
| (1.356 joules)                                    | or joule (J)<br>(0.7376 ft-lb)            | (1 Joule – 10 eigs)                                            |                          |  |
| Time:                                             | (0.7570 R-10)                             |                                                                |                          |  |
| Second (s)                                        | Second (s)                                | Second (s)                                                     | Second (s)               |  |

# Comparison of units of the various systems of units

#### Length:





#### Mass:





#### Force:



#### **Temperature:**





#### Standards of some units

- The meter is defined with reference to the speed of light in a vacuum, which is **299**792**458** m/s.
  - It was originally defined in 1790 to be 1/10000000 the distance between the equator and either pole at sea level, a length preserved on a platinum-iridium bar at the International Bureau of Weights and Measures at Sèvres, France.
- The kilogram is defined as a mass equal to 1000 times the mass of one cubic centimeter of pure water at 4°C.
  - This standard is preserved in the form of a platinumiridium cylinder in Sèvres.

#### Standards of some units

- The second is redefined in 1967 as 9192631770 periods of the electromagnetic radiation emitted by a particular transition of cesium atom.
  - It was originally defined as 1/86400 of the mean solar day.
  - However, Earth's rotation is slowing down by almost 1 second every 10 years.

# Significant Figures, Accuracy, Round off

- Two types of numbers:
  - Exact
    - For example 12 apples
  - Approximate
    - Any reading obtained in the laboratory should be considered approximate
- The precision of a reading can be determined by the number of significant figures (digits) present.
- Accuracy refers to the closeness of a measured value to a standard or known value
- For approximate numbers, there is often a need to round off the result
  - that is, you must decide on the appropriate level of accuracy and alter the result accordingly.
    - For example,  $3.186 \cong 3.19 \cong 3.2$

#### Powers of ten

- To express very large and very small numbers
- The notation used to represent numbers that are integer powers of ten is as follows:

$$1 = 10^{0}$$
  $1/10 = 0.1 = 10^{-1}$   
 $10 = 10^{1}$   $1/100 = 0.01 = 10^{-2}$   
 $100 = 10^{2}$   $1/1000 = 0.001 = 10^{-3}$   
 $1000 = 10^{3}$   $1/10,000 = 0.0001 = 10^{-4}$ 

#### Powers of ten

• Some important mathematical equations and relationships pertaining to powers of ten:

$$\frac{1}{10^n} = 10^{-n} \qquad \frac{1}{10^{-n}} = 10^n$$

$$(10^n)(10^m) = (10)^{(n+m)}$$

$$\frac{10^n}{10^m} = 10^{(n-m)}$$

$$(10^n)^m = 10^{nm}$$

# Powers of ten

Addition and subtraction

$$A \times 10^n \pm B \times 10^n = (A \pm B) \times 10^n$$

Multiplication

$$(A \times 10^n)(B \times 10^m) = (A)(B) \times 10^{n+m}$$

Division

$$\frac{A \times 10^n}{B \times 10^m} = \frac{A}{B} \times 10^{n-m}$$

Power

$$(A \times 10^n)^m = A^m \times 10^{nm}$$

# Scientific notation vs. Engineering notation

- Scientific notation and engineering notation make use of powers of ten, with restrictions on the mantissa (multiplier) or scale factor (power of ten).
  - Scientific notation requires that the decimal point appear directly after the first digit greater than or equal to 1 but less than 10.
  - Engineering notation specifies that all powers of ten must be multiples of 3, and the mantissa must be greater than or equal to 1 but less than 1000.

# Scientific notation vs. Engineering notation

• Scientific notation example:

• Engineering notation example:

$$\frac{1}{3} = 333.3333333333E - 3$$
  $\frac{1}{16} = 62.5E - 3$   $\frac{2300}{2} = 1.15E3$ 

$$\frac{1}{3} = 333.33E - 3$$
  $\frac{1}{16} = 62.50E - 3$   $\frac{2300}{2} = 1.15E3$ 

# Electricity

• Electricity is a result from the flow of electrons.



 Electricity flows in the opposite direction of electron flow.

#### Electric Current vs. Electron Current







## Electric current

- We cannot see electric current.
- We need a metaphor.
- Which thing has similar property with electricity??



Water

#### Electric current

- Electricity is similar to water flow.
  - Water flows from high level to low level.
  - Electricity flows from high voltage to low voltage.



# Measurement of Electricity

- Since we use electricity to do work for us, how can we measure its energy?
- How can we measure the water power?
  - Think about a water gun.



- strong (fast, high kinetic energy)
- amount of water

Voltage

Current

# Measurement of Electricity

• Imagine the water power at the outlet



#### **Electric Potential**

 Which water drop has more impact force at the ground?



• Potential Energy-Height



• Kinetic Energy-Velocity

 Electric potential can be compared with the height of the water drop from the reference ground

# **Ground: Reference Point**

- Normally, we measure height compared to the sea level.
- Also, electric potential at a point can be measured compared to the electric potential at the ground.

- Electric potential, or voltage has a unit volt(V).
- Ground always has 0 volts.

# Voltage

• Voltage is a difference of electric potential between 2 points



Unit: Volt

Compare to the height of 2 water drops

# **Electric Current**



# **Circuit Components**

- Active elements
  - Independent power sources
    - voltage, current
  - Dependent power sources
    - voltage, current
- Passive Elements
  - Resistors
  - Capacitors
  - Inductors

- Measurement Devices
  - Ampermeters:
    - measure current
  - Voltmeters:
    - measure voltage
- Ground
  - reference point
- Electric Wire
- Switches
- Protective devices
  - Fuse

# **Independent Power Sources**

• Independent voltage source outputs a voltage, either dc or time varying, to the circuit no matter how much current is required.



• Independent current source outputs a dc or ac current to the circuit no matter how much voltage is required.



# **Independent Power Sources**

• Current can flow in and out of an independent voltage source, but the polarity of the voltage is determined by the voltage source.

• There is always a voltage drop across the independent current source and the direction of positive current is determined by the current source.

• 1V is dropped across some element (in red) and the wires to that element are connected directly to the independent current source.



- This means that 1V is also dropped across the independent current source. Therefore, the current source is generated 1 V(3 A) = 3 Wof power.
- Passive sign convention: When current leaves the + side of a voltage drop across the independent current source, the power associated with the current source is: p = -3 A(1 V) = -3 W



$$p = -3 \text{ A}(1 \text{ V}) = -3 \text{ W}$$



 Conservation of energy means that the other element in red must be dissipating 3 W of power.

$$\sum p = p_{current \, source} + p_{red \, element} = 0$$

$$p_{current \, source} = -3 \, \text{W}; \, \text{therefore}, \, p_{red \, element} = 3 \, \text{W}$$

• Passive sign convention: When current enters the + side of a voltage drop across the element in red, the power associated with this element is:

$$p = 3 A(1 V) = 3 W$$



 Suppose the red element was an independent voltage source.

- This means that the independent current source happens to be supplying power to the independent voltage source, which is dissipating power.
- This happens when you are charging a battery, which is considered to be an independent voltage source.

# **Dependent Power Sources**

- Voltage controlled voltage source
  - -(VCVS)
- Current controlled voltage source
  - -(CCVS)



- Voltage controlled current source
  - (VCCS)
- Current controlled current source
  - (CCCS)



#### **Passive Elements**

- The magnitude of the voltage drop and current flowing through passive devices depends on the voltage and current sources that are present and/or recently attached to the circuit.
  - These components can dissipate power immediately or store power temporarily and later release the stored power back into the circuit.

### **Passive Components**



#### Other Basic Circuit Elements

• Electric wire



Symbol

Ground



earth











Switch









• Fuse

#### **Switches**

- Switches are used to control whether a complete path is formed from an end of at least one power supply to the other end of the same power supply (closed circuit).
  - Current will only flow when there is a closed circuit.
- Switches can be mechanical, as are used on light switches in your home, or are electronic switches, which are semiconductor based.
- Electronic switches are used in TV sets, for example, to turn on the TV when an infrared optical signal from the remote control is detected.

### **Protective Devices**

- Circuits that have carry dangerous levels of current and voltages are required to include fuses, circuit breakers, or ground fault detectors by federal and state electrical safety codes.
  - These protective devices are designed to create an open circuit, or a break in the round trip path in the circuit, when a malfunction of a component or other abnormal condition occurs.
  - The speed of response of the protective device, fastacting or time-delay (slow-blow) is determine by the engineer, based upon the expected type of malfunction.

#### Wires

- Wires are assumed to have zero resistance; i.e., they are ideal conductors or short circuits.
  - The current carrying capability of a wire is determined by its diameter or cross-sectional area.
  - AWG, American wire gauge, is the standard followed in the US and is used to rate how much current a wire can safely carry.
  - The larger the gauge wire, the smaller its current carrying capability is.
    - The AWG standard includes copper, aluminum and other wire materials.
    - Typical household copper wiring is AWG number 12 or 14.
    - Telephone wire is usually 22, 24, or 26.
    - The higher the gauge number, the smaller the diameter and the thinner the wire.

# AWG to square mm cross sectional area

| American<br>Wire Gauge<br>(#AWG) | Diameter (inches) | Diameter (mm) | Cross Sectional Area (mm²) |
|----------------------------------|-------------------|---------------|----------------------------|
| 0000 (4/0)                       | 0.460             | 11.7          | 107                        |
| 000 (3/0)                        | 0.410             | 10.4          | 85.0                       |
| 00 (2/0)                         | 0.365             | 9.27          | 67.4                       |
| 0 (1/0)                          | 0.325             | 8.25          | 53.5                       |
| 1                                | 0.289             | 7.35          | 42.4                       |
| 2                                | 0.258             | 6.54          | 33.6                       |
| 3                                | 0.229             | 5.83          | 26.7                       |
| 4                                | 0.204             | 5.19          | 21.1                       |
| 5                                | 0.182             | 4.62          | 16.8                       |
| 6                                | 0.162             | 4.11          | 13.3                       |
| 7                                | 0.144             | 3.67          | 10.6                       |
| 8                                | 0.129             | 3.26          | 8.36                       |
| 9                                | 0.114             | 2.91          | 6.63                       |
| 10                               | 0.102             | 2.59          | 5.26                       |

| American<br>Wire Gauge<br>(#AWG) | Diameter (inches) | Diameter (mm) | Cross Sectional Area (mm²) |  |  |  |
|----------------------------------|-------------------|---------------|----------------------------|--|--|--|
| 11                               | 0.0907            | 2.30          | 4.17                       |  |  |  |
| 12                               | 0.0808            | 2.05          | 3.31                       |  |  |  |
| 13                               | 0.0720            | 1.83          | 2.63                       |  |  |  |
| 14                               | 0.0641            | 1.63          | 2.08                       |  |  |  |
| 15                               | 0.0571            | 1.45          | 1.65                       |  |  |  |
| 16                               | 0.0508            | 1.29          | 1.31                       |  |  |  |
| 17                               | 0.0453            | 1.15          | 1.04                       |  |  |  |
| 18                               | 0.0403            | 1.02          | 0.82                       |  |  |  |
| 19                               | 0.0359            | 0.91          | 0.65                       |  |  |  |
| 20                               | 0.0320            | 0.81          | 0.52                       |  |  |  |
| 21                               | 0.0285            | 0.72          | 0.41                       |  |  |  |
| 22                               | 0.0254            | 0.65          | 0.33                       |  |  |  |
| 23                               | 0.0226            | 0.57          | 0.26                       |  |  |  |
| 24                               | 0.0201            | 0.51          | 0.20                       |  |  |  |
| 25                               | 0.0179            | 0.45          | 0.16                       |  |  |  |
| 26                               | 0.0159            | 0.40          | 0.13                       |  |  |  |

### AWG to ohm/meter

#### Approximate resistance of copper wire [6]:27

| AWG | mΩ/ft | mΩ/m | AWG | $m\Omega/\text{ft}$ | mΩ/m | AWG | mΩ/ft | mΩ/m | AWG | mΩ/ft | mΩ/m |
|-----|-------|------|-----|---------------------|------|-----|-------|------|-----|-------|------|
| 0   | 0.1   | 0.32 | 10  | 1                   | 3.2  | 20  | 10    | 32   | 30  | 100   | 320  |
| 1   | 0.125 | 0.4  | 11  | 1.25                | 4    | 21  | 12.5  | 40   | 31  | 125   | 400  |
| 2   | 0.16  | 0.5  | 12  | 1.6                 | 5    | 22  | 16    | 50   | 32  | 160   | 500  |
| 3   | 0.2   | 0.64 | 13  | 2                   | 6.4  | 23  | 20    | 64   | 33  | 200   | 640  |
| 4   | 0.25  | 0.8  | 14  | 2.5                 | 8    | 24  | 25    | 80   | 34  | 250   | 800  |
| 5   | 0.32  | 1    | 15  | 3.2                 | 10   | 25  | 32    | 100  | 35  | 320   | 1000 |
| 6   | 0.4   | 1.25 | 16  | 4                   | 12.5 | 26  | 40    | 125  | 36  | 400   | 1250 |
| 7   | 0.5   | 1.6  | 17  | 5                   | 16   | 27  | 50    | 160  | 37  | 500   | 1600 |
| 8   | 0.64  | 2    | 18  | 6.4                 | 20   | 28  | 64    | 200  | 38  | 640   | 2000 |
| 9   | 0.8   | 2.5  | 19  | 8                   | 25   | 29  | 80    | 250  | 39  | 800   | 2500 |

#### Ground

- Earth ground is a ground that is physically connected to the earth, itself.
  - All homes have an earth ground
    - a wire connected to a metal pipe that is driven into the ground immediately next to the house.
    - Wires that have a green jacket or are bare copper are connected to this pipe.
- Reference ground or common is used in a circuit to indicate a point where the voltage in the circuit is equal to zero.

#### **General Rules**

- All points on a same electric wire have the same voltage.
- A voltage source always have voltage difference of its pins equal to its value.
- A current source always have current pass through it equal to its value.
- Ground always has zero voltage. (0 volts)

#### **Electric Flow Rule**

- Electric current flows from high voltage to low voltage when there is a path.
- Electric current can freely pass through electric wire.
- Electric current can flow through a resistor with the amount according to Ohm's law.
- Electric current can flow through a voltage source with the amount depended on other components in the circuit.
- Electric current can flow pass a current source according to its value.

## Charge

- Electrical property of atomic particles
  - Electrons are negatively charged
  - Protons are positivity charged
- The absolute value of the charge on an electron is 1.6x10<sup>-19</sup> C
- The symbol used is Q or q
  - Uppercase is used to denote a steady-state or constant value
  - Lowercase is used to denote an instantaneous value or time-varying quantity

#### **Current**

- The flow of charge through a cross-sectional area as a function of time or the time rate of charge of charge
- Symbol used is *I* or *i*

$$i = \frac{aq}{dt}$$

$$Q = \int_{t}^{t_2} i \, dt$$

#### DC vs. AC

- DC (or dc) is the acronym for direct current.
  - The current remains constant with time.
    - Uppercase variables are used when calculating dc values.
- AC (or ac) is the acronym for alternating current.
  - Specifically, AC current varies sinusoidally with time and the average value of the current over one period of the sinusoid is zero.
    - Lowercase variables are used when calculating ac values.
  - Other time-varying currents exist, but there isn't an acronym defined for them.

## Voltage (Potential Difference)

- The electromotive force (emf) that causes charge to move.
- 1 Volt = 1 Joule/1 Coulomb

$$\mathbf{v} = \frac{d\mathbf{w}}{dq}$$

#### **Power**

• The change in energy as a function of time is power, which is measured in watts (W).

$$p = \frac{dw}{dt} = \frac{dw}{dq} \frac{dq}{dt} = vi$$

### Energy

• Energy is the capacity to do work.

$$w = \int_{t_1}^{t_2} p \, dt = \int_{t_1}^{t_2} \mathbf{v} \, i \, dt$$

• Units for energy are kW-hr, which is what the electric company measures on your electric meter.

1 kW-hr = 3.6 MJ.

## Positive vs. Negative Power

Power consumed/dissipated by a component is positive power

$$P = + 1W$$



### Positive vs. Negative Power

• Generated power has a negative sign

$$P = -1W$$



# **Conservation of Energy**

• All power instantaneously consumed by components must be instantly generated by other components within the circuit.

$$\sum p = 0$$

### Example

- There are 4 electrical components in the circuit shown to the right.
- Component #1 is generating 2 W of power and supplying this power to the circuit.
- Components #2 and #3 are consuming power.
- Component #2 is dissipating 3 W of power while Component #3 is dissipating 5 W of power.
- Component #4 must be generating 6 W of power in order to maintain the Conservation of Energy.



# Simple DC Circuit



# Metaphor



#### Ohm's Law

$$V = IR$$

for using with a resistor only

Voltage (Volts) = current (Amperes) x resistance (Ohms)



Note: (Theoretically) Electric wire has a resistance of 0 ohms

### **Electric Current**



Every point in the circuit has current = 1A

# Electric Voltage



### Ground

Ground = reference point always have voltage = 0 volts



# Electric Voltage (2)



# Electric Voltage (3)



# **Negative Voltage and Current**



Same as





Same as



### **Power**

Symbol P has a unit of Watt



### **Passive Sign Convention**

Absorb power: Power has a sign +

Generate power: Power has a sign -

## Example



DC source generates power = 10V \* -2.5mA = -25mW

Resistor absorbs power = 10V \* 2.5mA = 25mW

Note: Resistors always absorb power but DC source can either generate or absorb power

### Direction of Voltage & Current on Resistors



- Resistor always absorb power.
- Therefore, it always have current flow through it from high voltage pin to low voltage pin.