Anomaly Detection In Time Series

Keerthana K M, Sai Disha D, Sowbhagya V Kini-

Under the guidance of Prof. Sudarshan N Acharya

AIM

To detect anomalies in multivariate time series.

OBJECTIVES

- Convert multivariate to univariate time series using dimensionality reduction techniques.
- Detect anomalies in the data throughout all the features.

DATA

- The data consists of 6 features and a large number of sensor data, where each time stamp corresponds to 5 minutes.
- The data considered has only continuous columns.

continuous_cols

Cyclone_Inlet_Draft

EXPLORATORY DATA ANALYSIS (EDA)

METHODOLOGY

1. Angle between subspaces:

$$\delta_{AB} = \sqrt{1 - \lambda_{min}}$$

where,

 δ_{AB} - Angle between subspaces

 λ_{min} - Minimum most eigen value

2. PCA between matrices:

We consider the 30 min observation for anomaly detection, which gives us a 6*6 matrix for each 30 min time stamp. The PCA is measured between two 6*6 matrices, and the components defining maximum variance are considered.

RESULTS

Anomalies across features

Timestamps under which the powerplant works perfectly five plotted across six features.

CONCLUSION

The ratio of anomalies to non-anomalies may or may not vary with the change in duration consideration.