CS 70 Discrete Mathematics and Probability Theory Spring 2017 Satish Rao DIS

1. Polya suggests: learning is better with friends!

Solver.

- (a) Prepare: comfortable position, pencil, paper, etc.
- (b) Read hints, suggestions, discuss with partner.
- (c) Read the problem aloud.
- (d) Solve on own. You speak, you solve, parter listens.
- (e) Speak! No need to choose words.
- (f) Go back over problem; "I'm stuck. I better start over." "No that won't work." "Let's see... hmmm."
- (g) Try to solve even trivial problems!

Listener.

- (a) Listener not a critic. "Please elaborate." "What are you thinking now?" "Can you check that?"
- (b) Role: (a) Demand that PS keep talking but don't interrupt. (b) Make sure that PS follows the strategy and doesn't skip any of the steps. (c) Help PS improve his/her accuracy. (d) Help reflect the mental process PS is following. (e) Make sure you understand each step.
- (c) Do not turn away from PS and start to work on problem!!!!!
- (d) Do not let PS continue if:
 - i. You don't understand. "I don't understand." or "I don't follow that."
 - ii. When there is a mistake. "Maybe check that." or "Does that sound right?"
- (e) No hints! Point out errors, but no correction.

Solution:

2. Pigeonhole Principle

Prove that if you put n + 1 apples into n boxes, any way you like, then at least one box must contain at least 2 apples. This is known as the *pigeonhole principle*.

Solution:

Suppose this is not the case. Then all the boxes would contain at most 1 apple. Then the maximum number of apples we could have would be n, but this is a contradiction since we have n+1 apples.

3. Contraposition

Prove that if a + b < c + d, then a < c or b < d.

Solution: Assume $a \ge c$ and $b \ge d$ (note that this is the negation of $a < c \lor b < d$). Then, $a+b \ge c+b \ge c+d$, which is the negation of a+b < c+d.

4. Proof by?

- (a) Prove that if $x, y \in \mathbb{Z}$, if 10 does not divide xy, then 10 does not divide x and 10 does not divide y. In notation: $(\forall x, y \in \mathbb{Z})$ $10 \nmid xy \implies (10 \nmid x \land 10 \nmid y)$. What proof technique did you use?
- (b) Prove or disprove the contrapositive.
- (c) Prove or disprove the converse.

Solution:

(a) We will use proof by contraposition. For any arbitrary given x and y, the statement $10 \nmid xy \implies (10 \nmid x \land 10 \nmid y)$ is equivalent using contraposition to $\neg (10 \nmid x \land 10 \nmid y) \implies \neg (10 \nmid xy)$. Moving the negations inside, this becomes equivalent to $(10 \mid x \lor 10 \mid y) \implies 10 \mid xy$.

Now for this part, we give a proof by cases. Assuming that $10 \mid x \lor 10 \mid y$, one of the two cases must be true.

- i. $10 \mid x$: in this case x = 10k for some $k \in \mathbb{Z}$. Therefore xy = 10ky which is a multiple of 10. So $10 \mid xy$.
- ii. $10 \mid y$: in this case y = 10k for some $k \in \mathbb{Z}$. Therefore xy = 10kx which is a multiple of 10. So $10 \mid xy$.

Therefore assuming $10 \mid x \vee 10 \mid y$ we proved $10 \mid xy$.

We used proof by cases and proof by contraposition.

- (b) We proved the statement. The contrapositive of a statement has logically equivalent to the statement. So we are done.
- (c) Its not true! The converse is that if 10 does not divide x and does not divide y then 10 does not divide xy. We can choose x = 2 and y = 5 and see a counterexample to the statement.

5. Perfect Square

A perfect square is an integer n of the form $n = m^2$ for some integer m. Prove that every odd perfect square is of the form 8k + 1 for some integer k.

Solution:

Let $n = m^2$ for some integer m. Since n is odd, m is also odd, i.e., of the form m = 2l + 1 for some integer l. Then, $m^2 = 4l^2 + 4l + 1 = 4l(l+1) + 1$. Since one of l and l+1 must be even, l(l+1) is of the form 2k and $n = m^2 = 8k + 1$.

6. Fermat's Contradiction

Prove that $2^{1/n}$ is not rational for any integer n > 3. (*Hint*: Use Fermat's Last Theorem.)

Solution:

If not, then there exists an integer n > 3 such that $2^{1/n} = \frac{p}{q}$ where p, q are positive integers. Thus, $2q^n = p^n$, and this implies

$$q^n + q^n = p^n$$
,

which is a contradiction to the Fermat's Last Theorem.