# PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10284021 A

(43) Date of publication of application: 23 . 10 . 98

(51) Int. CI

H01M 2/02 H01M 6/02 H01M 6/16

H01M 10/02 H01M 10/40

(21) Application number: 09085136

(22) Date of filing: 03 . 04 . 97

(71) Applicant:

SANYO ELECTRIC CO LTD

(72) Inventor:

**SONOZAKI TSUTOMU OTA HIROMICHI MAEDA SHIORI NAKAGAWA HIROSHI** KODAMA YASUNOBU YAMAZAKI MIKIYA **NISHIMOTO YOSHIHIRO FUJII TAKANORI NAKANE IKURO TERASHI KAZUO** 

**UBUKAWA SATOSHI** 

## (54) THIN TYPE BATTERY

### (57) Abstract:

PROBLEM TO BE SOLVED: To suppress a battery characteristic from lowering even when a battery is preserved for a long time.

SOLUTION: This battery has a bag-shaped sheath 1 in which each of first and second polypropylene layers 1b/1c is fixed to both the surfaces of a metallic layer 1a. In this sheath 1, a generating element 6 constituted of both of positive and negative electrodes 3, 4 and electrolyte 5 interposed between both of these electrodes 3, 4 is internally mounted and the opening part of the body 1 is sealed. Between, the second polypropylene layer 1c existing inwardly at a battery of the first and second polypropylene layers 1b/1c and the metallic layer 1a, a denatured polypropylene layer 1e which can be adhered to the metallic layer 1a is provided. By this denatured polypropylene layer 1e, the second polypropylene layer 1c and the metallic layer 1a are fixed.

COPYRIGHT: (C)1998,JPO



# (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

# (11)特許出願公開番号

# 特開平10-284021

(43)公開日 平成10年(1998)10月23日

| <b>4-13-1</b>             |      |                |      |                   |     |          |      |     |    |       |         |
|---------------------------|------|----------------|------|-------------------|-----|----------|------|-----|----|-------|---------|
| (51) Int.Cl. <sup>6</sup> |      | 識別記号           |      | FΙ                |     |          |      |     |    |       |         |
|                           | 2/02 |                |      | H 0               | 1 M | 2/02     |      |     |    | K     |         |
|                           | 6/02 |                |      |                   |     | 6/02     |      |     |    | Z     |         |
|                           | 6/16 |                |      |                   |     | 6/16     |      |     |    | С     |         |
| 10                        | 0/02 |                |      | 10/02             |     |          |      |     |    |       |         |
| 16                        | 0/40 |                |      | 10/40             |     |          |      | Z   |    |       |         |
|                           |      |                | 審査請求 | 未請求               | 旅館  | 項の数 5    | OL   | 全   | 6  | 頁)    | 最終頁に続く  |
| (21)出願番号                  |      | 特願平9-85136     |      | (71)              | 出願人 | . 000001 | 1889 |     |    |       |         |
|                           |      |                |      |                   |     | 三洋電      | 機株式  | 会社  |    |       |         |
| (22)出顧日                   |      | 平成9年(1997)4月3日 |      | 大阪府守口市京阪本通2丁目5番5号 |     |          |      |     |    | 目5番5号 |         |
|                           |      |                |      | (72)              | 発明者 | 園崎       | 勉    |     |    |       |         |
|                           |      |                |      |                   |     | 大阪府      | 守口市  | 京阪ス | 本通 | 2丁    | 目5番5号 三 |
|                           |      |                |      |                   |     | 洋電機      | 株式会  | 社内  |    |       |         |
|                           |      |                |      | (72)              | 発明者 | 太田       | 裕道   |     |    |       |         |
|                           |      |                |      |                   |     | 大阪府      | 守口市  | 京阪z | 卢通 | 2丁    | 目5番5号 三 |
|                           |      |                |      |                   |     | 洋電機      | 株式会  | 社内  |    |       |         |
|                           |      |                | •    | (72)              | 発明者 | 前田       | 紫織   |     |    |       |         |
|                           |      |                |      |                   |     | 大阪府      | 守口市  | 京阪本 | 过  | 2丁    | 目5番5号 三 |
|                           |      | ·              |      |                   |     | 洋電機      | 株式会  | 社内  |    |       |         |
|                           |      |                | •    | (74)              | 人理人 | 弁理士      | 大前   | 要   |    |       |         |
|                           |      |                |      |                   |     |          |      |     |    |       | 最終頁に続く  |

# (54) 【発明の名称】 薄型電池

# (57)【要約】

【課題】 電池を長期間保存した場合であっても、電池 特性が低下するのを抑制することができる薄型電池の提 供を目的としている。

【解決手段】 金属層1aの両面に各々第1及び第2ポリプロピレン層1b・1cが固着された袋状の外装体1を有し、この外装体1には、正負両極3・4とこれら両極3・4間に介装された電解質5とから成る発電要素6が内装され、且つ上記外装体1の開口部が封口された薄型電池において、前記第1及び第2ポリプロピレン層1b・1cのうち電池内方に存在する第2ポリプロピレン層1cと前記金属層1aとの間には、金属層1aと接着可能な変性ポリプロピレン層1eにより第2ポリプロピレン層1cと金属層1aとが固着されることを特徴とする。



10

#### 【特許請求の範囲】

【請求項1】 金属層の両面に熱融着性樹脂層が固着さ れた袋状の外装体を有し、この外装体には、正負両極と これら両極間に介装された電解質とから成る発電要素が 内装され、且つ上記外装体の開口部が封口された薄型電 池において、前記熱融着性樹脂層のうち電池内方に存在 する熱融着性樹脂層と前記金属層との間には、金属層と 接着可能な熱融着性変性樹脂層が設けられ、この熱融着 性変性樹脂層により電池内方に存在する熱融着性樹脂層 と金属層とが固着されることを特徴とする薄型電池。

【請求項2】 前記正負両極には、金属から成る集電端 子が各々固定されており、これら集電端子が前記外装体 の開口部から電池外に延出されると共に、これら集電端 子の上記開口部に対応する位置には、金属層と接着可能 な熱融着性変性樹脂層が上記集電端子を囲むように設け られている請求項1記載の薄型電池。

【請求項3】 電池内方に存在する熱融着性樹脂層がポ リエチレンから成り、前記金属層と接着可能な熱融着性 変性樹脂層が変性ポリエチレンから成る請求項1又は2 記載の薄型電池。

【請求項4】 電池内方に存在する熱融着性樹脂層がポ リプロピレンから成り、前記金属層と接着可能な熱融着 性変性樹脂が変性ポリプロピレンから成る請求項1又は 2記載の薄型電池。

【請求項5】 前記熱融着性樹脂層のうち電池外方に存 在する熱融着性樹脂層と前記金属層との間には、接着剤 層が設けられ、この接着剤層により電池外方に存在する 熱融着性樹脂層と金属層とが固着される請求項1~4記 載の薄型電池。

#### 【発明の詳細な説明】

## [0001]

【発明の属する技術分野】本発明は薄型電池に関し、特 にラミネート外装体内に収納された発電要素が密閉され る構造の薄型電池に関する。

### [0002]

【従来の技術】リチウム電池等における従来型の薄型電 池は、図7及び図8に示すように、正負両極21・22 と電解質23とから成る電極群24が外装体25に内装 されている。この外装体25は、図9に示すように、金 属層25aの両面には、各々接着剤層25d・25eを 介して、第1ポリプロピレン層(電池外方に存在するポ リプロピレン層) 25 b と、第2ポリプロピレン層 (電 池内方に存在するポリプロピレン層) 25 c とが配置さ れる構造であり、また外装体25は第1~第3封口部2 6a~26cにより封口されている。

【0003】上記第1封口部26aからは、図10に示 すように、正負極集電端子27a・27bが延出されて おり、これら正負極集電端子27a・27bの周囲には 接着剤層28・28が形成される構造である。

# [0004]

【発明が解決しようとする課題】しかしながら、上記構 造の薄型電池では、接着剤層25e・28・28の水分 及び酸素の透過性が高いため、電池を長期間保存する と、電池の特性が低下する。具体的には、以下の通りで ある。即ち、薄型電池を長期間保存した場合、第1~第 3封口部26a~26cにおける接着剤層25eの露出 部分から水分及び酸素が入り込み、これら水分等が第2 ポリプロピレン層25cを透過して、電池内部に入り込 む。この結果、水分及び酸素と負極のリチウムとが反応 して電池特性が低下する。

【0005】また、接着剤層25e・28・28の厚み はばらつきが大きく、非常に薄い部分が生じることがあ る。したがって、正負極集電端子27a・27bと金属 層25aとが接触して電池内短絡を防止するためには、 接着剤層25e・28・28を除いて正負極集電端子2 7 a・27 bと金属層25 aとの間に存在する第2ポリ プロピレン層25cの厚みを大きくせざるをえない。こ のため、第1~第3封口部26 a~26 cにおける第2 ポリプロピレン層25cの露出部分も大きくなる。この 第2ポリプロピレン層25cは接着剤層25eよりは水 分及び酸素の透過性が低いとはいうものの、ある程度は 水分等を透過する。このため、水分等が第2ポリプロピ レン層25cから直接電池内に入り込む。加えて、接着 剤層28・28からも直接電池内に水分等が入り込む。 これらのことから、上記と同様の反応が生じて、電池特 性が低下する。

【0006】更に、電解質として電解液を用いた場合に は、接着剤層25 e・28・28の水分透過性が高いと いうこと等に起因して、電解液が電池外に漏れ易くな 30 り、この結果、電池を長期間保存すると更に電池特性が 低下する。

【0007】本発明は、斯かる知見に基づきなされたも のであって、その目的とするところは、電池を長期間保 存した場合であっても、電池特性が低下するのを抑制す ることができる薄型電池の提供を目的としている。

# [0008]

【課題を解決するための手段】前述した目的を達成する ために、本発明のうちで請求項1記載の発明は、金属層 の両面に熱融着性樹脂層が固着された袋状の外装体を有 し、この外装体には、正負両極とこれら両極間に介装さ れた電解質とから成る発電要素が内装され、且つ上記外 装体の開口部が封口された薄型電池において、前記熱融 着性樹脂層のうち電池内方に存在する熱融着性樹脂層と 前記金属層との間には、金属層と接着可能な熱融着性変 性樹脂層が設けられ、この熱融着性変性樹脂層により電 池内方に存在する熱融着性樹脂層と金属層とが固着され ることを特徴とする。

【0009】上記構成であれば、熱融着性変性樹脂層は 従来の接着剤層に比べて水分及び酸素の透過性が低いの 50 で、熱融着性変性樹脂層と熱融着性樹脂層とを介して電

池内に入り込む水分等が減少する。したがって、水分等 と負極のリチウムとが反応するのを抑えることができる ので、電池を長期間保存した場合であっても、電池特性 の低下を抑制することができる。

【0010】加えて、電解質として電解液を用いた場合には、熱融着性変性樹脂層の水分透過性が低いということ等に起因して、電解液が電池外に漏れ難くなり、この結果、電池を長期間保存した場合の電池特性の低下を一層抑制することができる。尚、本明細書では、熱融着性変性樹脂とは、熱融着性樹脂にカルボキシル基が付加されたものをいう。

【0011】また、請求項2記載の発明は請求項1記載の発明において、正負両極には、金属から成る集電端子が各々固定されており、これら集電端子が外装体の開口部から電池外に延出されると共に、これら集電端子の上記開口部に対応する位置には、金属層と接着可能な熱融着性変性樹脂層が上記集電端子を囲むように設けられていることを特徴とする。

【0012】上記構成の如く、集電端子の周囲に熱融着性変性樹脂層を形成すれば、この熱融着性変性樹脂層は厚みのばらつきが小さいということから、電池内方に存在する熱融着性樹脂層の厚みを小さくしても、集電端子と金属層とが接触することによる電池内短絡を防止することができる。したがって、封口部における電池内方に存在する熱融着性樹脂層の露出部分も小さくなり、当該熱融着性樹脂層から水分等が直接電池内に入り込む量が少なくなる。加えて、集電端子の周囲に熱融着性変性樹脂層を形成すれば、熱融着性変性樹脂層は接着剤層に比べて水分等の透過率が小さいことから、熱融着性変性樹脂層から電池内に直接水分が入り込むことを抑制できる。これらのことから、電池を長期間保存した場合の電池特性の低下を一層抑制することができる。

【0013】また、請求項3記載の発明は請求項1又は 2記載の発明において、電池内方に存在する熱融着性樹 脂層がポリエチレンから成り、金属層と接着可能な熱融 着性変性樹脂層が変性ポリエチレンから成ることを特徴 とする。ここで、変性ポリエチレンとは、ポリエチレン にカルボキシル基が付加されたものをいう。

【0014】また、請求項4記載の発明は請求項1又は2記載の発明において、電池内方に存在する熱融着性樹脂層がポリプロピレンから成り、金属層と接着可能な熱融着性変性樹脂が変性ポリプロピレンから成ることを特徴とする。ここで、変性ポリプロピレンとは、ポリプロピレンにカルボキシル基が付加されたものをいう。

【0015】また、請求項5記載の発明は請求項1~4 記載の発明において、熱融着性樹脂層のうち電池外方に 存在する熱融着性樹脂層と金属層との間には、接着剤層 が設けられ、この接着剤層により電池外方に存在する熱 融着性樹脂層と金属層とが固着されることを特徴とす る。このような構成とするのは、電池外方に存在する熱 融着性樹脂層と金属層とを熱融着性変性樹脂により接着する場合、一方の熱融着性樹脂層と金属層とを熱融着性変性樹脂により接着した後、他方の熱融着性樹脂層と金属層とを熱融着性変性樹脂により接着する際、先に形成された熱融着性変性樹脂層が融けて歪みが発生するおそれがあるからである。

#### [0016]

【発明の実施の形態】本発明の実施の形態を、図1~図5に基づいて、以下に説明する。図1に示すように、本発明の薄型電池は外装体1を有しており、この外装体1には、電池を封口するための第1~第3封口部2a~2cが形成されている。上記外装体1の内部には、図2及び図4に示すように、集電体の両面にLiCoO₂を主体とする活物質層が形成された正極3と、集電体の両面に炭素材料を主体とする活物質層が形成された負極4と、これら正負極3・4間に挟まれエチレンカーボネートにLiPF。を溶解させた溶液を含む電解質5とから構成される発電要素6が内装されている。

【0017】ここで、図3に示すように、上記外装体1 は5層構造を成し、具体的には、アルミニウムから成る 金属層1a(20 μm)の一方の面には第1ポリプロピ レン層(電池外方に存在するポリプロピレン層であっ て、厚さ20μm) 1bが配され、この金属層1aの他 方の面には第2ポリプロピレン層(電池内方に存在する ポリプロピレン層であって、厚さ60μm) 1 c が配さ れている。上記金属層1 a と第1ポリプロピレン層1 b との間にはドライラミネート接着剤層1d (厚さ5μ m) が設けられており、これによって金属層1aと第1 ポリプロピレン層1bとが接着される。一方、上記金属 層1aと第2ポリプロピレン層1cとの間にはポリプロ ピレンにカルボキシル基が付加された変性ポリプロピレ ン層1 e (厚さ5 μ mであって、金属層と接着可能) が 設けられており、これによって金属層1aと第2ポリプ ロピレン層1cとが接着される。

【0018】また、上記第1封口部2aからは、上記正極3に固定された正極集電端子7と上記負極4に固定された負極集電端子8とが突出形成されており、これら両集電端子7・8の周囲には、図5に示すように、それぞれ変性ポリプロピレン層9・10が設けられている。

尚、この薄型電池において、幅は42mm、長さは100mm、厚さは1.7mmである。

【0019】このような薄型電池を、以下のようにして作製した。先ず、金属層1aと第1及び第2ポリプロピレン層1b・1cとドライラミネート接着剤層1dと変性ポリプロピレン層1eとから成る5層構造のラミネート箔の一端と他端とを重ね合わせ(重ね合わせ部分の幅は20mm)、その重ね合わせ部分を高周波誘導加熱装置を用いて溶着し、第2封口部2bが形成された筒状のラミネート箔を作製した。次に、この筒状のラミネート箔の一方の開口端部を高周波誘導加熱装置を用いて溶着

(溶着幅は10mm) し、第3封口部2cが形成された 袋状のラミネート箔を作製した。次いで、この袋状のラ ミネート箔内に、予めアルゴン雰囲気中で組み立てた発 電要素6を収納した。この際、周囲に変性ポリプロピレ ン層9・10が形成された正負極集電端子7・8が電池 外に突出するように配置した。その後、袋状のラミネー ト箔の開口部を高周波誘導加熱装置を用いて溶着(溶着 幅は10mm)することにより薄型電池を作製した。

【0020】尚、上記発明の実施の形態では、熱融着性変性樹脂として変性ポリプロピレンを用いたが、これに 10限定するものではなく、変性ポリエチレンを用いることもできる。但し、この場合には、熱融着性樹脂としてポリエチレンを用いる必要がある。なぜなら、ポリプロピレンと変性ポリエチレンとは接着が困難であるという理由による。

【0021】上記発明の実施の形態では、第2ポリプロピレン層1 c の厚さを60  $\mu$  mとしたが、これに限定するものではなく、20~100  $\mu$  mであれば良い。また、金属層1 a の厚さを20  $\mu$  mとしているが、これに限定するものではなく、8~50  $\mu$  mであれば良い。

【0022】また、正極活物質及び電解質としては上記のものに限定されるものではなく、例えば正極活物質としては、 $LiNiO_2$ 、 $LiMnO_2$ 、 $LiFeO_2$ が例示され、また電解質としては、x チレンカーボネート、ピニレンカーボネート、プロピレンカーボネートなどの有機溶媒や、これらとジメチルカーボネート、ジエチルカーボネート、1、2ージメトキシエタン、1、2ージエトキシエタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、 $LiPF_6$ 、 $LiCIO_4$ 、 $LiCF_7$   $SO_3$  などの溶質を溶かした溶液が例示される。更に、電解質として、高分子固体電解質、又はゲル状電解質を用いることも可能である。

[0023]

#### 【実施例】

(実施例)実施例の電池としては、上記発明の実施の形態に示す電池を用いた。このようにして作製した電池を、以下、本発明電池Aと称する。

【0024】(比較例) 比較例としては、前記従来の技術で示す電池(図7~図10参照)を用いた。上記本発明電池Aとの相違点は以下の通りである。

①金属層25aと第2ポリプロピレン層25cとの間に、実施例に用いる変性ポリプロピレン層ではなく、ドライラミネート接着剤層25eを設けて、金属層25aと第2ポリプロピレン層25cとを接着する。

②正極集電端子27aと負極集電端子27bの周囲には、実施例に用いる変性ポリプロピレン層ではなく、ドライラミネート接着剤層28・28を設ける。

③金属層 2 5 a の厚みが 7 μm、ドライラミネート接着 剤層 2 5 e の厚みが 5 μm、第 1 ポリプロピレン層 2 5 b の厚みが 5 0 μm、第 2 ポリプロピレン層 2 5 c の厚 50 みが $100\mu$ mであり、また電池の厚さが1.9mmである。

このようにして作製した電池を、以下、比較電池 X と称する。

【0025】 (実験) 上記本発明電池A及び比較電池Xを60℃で保存し、保存日数と電池容量回復率との関係を調べたので、その結果を図6に示す。尚、電池容量回復率の算出式を、下記数1に示す。

[0026]

#### 【数1】

# 保存後の電池容量

#### 電池容量回復率 = -

----×100 (%)

#### 保存前の電池容量

【0027】図6から明らかなように、本発明電池Aは 比較電池Xに比べて電池容量回復率が向上しており、保 存特性に優れることが認められる。

[0028]

【発明の効果】以上説明したように本発明によれば、電 20 池内に入り込む水分及び酸素が減少するので、水分及び酸素とリチウムとが反応するのを抑えることができ、且 つ電解液が電池外に漏れ難くなる。これらのことから、電池を長期間保存した場合であっても、電池特性の低下を抑制することができるという優れた効果を奏する。

【図面の簡単な説明】

【図1】本発明の薄型電池の平面図である。

【図2】図1のA-A線矢視断面図である。

【図3】本発明の薄型電池における外装体の断面図である。

30 【図4】図1のB-B線矢視断面図である。

【図5】図1のC-C線矢視断面図である。

【図6】本発明電池Aと比較電池Xとにおける保存日数 と電池容量回復率との関係を示すグラフである。

【図7】従来の薄型電池の平面図である。

【図8】図7のD-D線矢視断面図である。

【図9】従来の薄型電池における外装体の断面図である。

【図10】図7のE-E線矢視断面図である。

【符号の説明】

40 1:外装体

1 a:金属層

1 b:第1ポリプロピレン層

1 c : 第2ポリプロピレン層

1 d:接着剤層

1 e:変性ポリプロピレン層

2 a:第1封口部

2 b:第2封口部

2 c:第3封口部

3:正極

60 4:負極

5:電解質6:発電要素

7:正極集電端子

\* 8:負極集電端子

9:変性ポリプロピレン層

\* 10:変性ポリプロピレン層





#### 【図10】



#### フロントページの続き

(51) Int. Cl. 6

識別記号

H 0 1 M 10/40

(72) 発明者 中川 弘

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 児玉 康伸

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 山崎 幹也

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 西本 好宏

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

FΙ

H 0 1 M 10/40

В

(72)発明者 藤井 孝則

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 中根 育郎

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 寺司 和生

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72) 発明者 生川 訓

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

#### PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11105939 A

(43) Date of publication of application: 20 . 04 . 99

(51) Int. CI

B65D 81/24 B32B 15/08

(21) Application number: 09286018

(22) Date of filing: 02 . 10 . 97

(71) Applicant:

SHOWA ALUM CORP

(72) Inventor:

SHINOHARA TAKESHI

# (54) PACKAGING MATERIAL EXCELLENT IN CONTENT-RESISTANCE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a costless packaging material excellent in content-resistance, which brings out a corrosion-resistance even against highly corrosive contents, by using a laminate composite material of aluminum foil applied with a substrate treatment for chemicals-resistance, using a polyamide/epoxy-based dry laminate adhesive or a low density polyethylene as an adhesive.

SOLUTION: The packaging material depends on an essencial condition that a polyamide/epoxy-based dry laminate adhesive or low density polyethylene is used as an adhesive for the packaging material, and a combined material of the adhesive and aluminum foil applied with a substrate treatment such as chlomate treatment zirconia-based treatment, or metal-coupling agent treatment, for instance, is used. This paper pipe 4 is constituted of three layers of inner face paper 1/reinforcing paper 2/outer face paper 3 as the whole body. The inner face paper 1 is constituted of a laminate composite material in which a specified adhesive and aluminum foil are used for the part of sealant film/ adhesive/aluminum foil constituting the

inner face paper 1.

COPYRIGHT: (C)1999,JPO



# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-284021

(43)Date of publication of application: 23.10.1998

(51)Int.CI.

H01M 2/02 6/02 HO1M HO1M 6/16 H01M 10/02 H01M 10/40

(21)Application number: 09-085136

(22)Date of filing:

03.04.1997

(71)Applicant: SANYO ELECTRIC CO LTD

(72)Inventor:

SONOZAKI TSUTOMU OTA HIROMICHI

MAEDA SHIORI

**NAKAGAWA HIROSHI** KODAMA YASUNOBU YAMAZAKI MIKIYA

**NISHIMOTO YOSHIHIRO** 

**FUJII TAKANORI NAKANE IKURO TERASHI KAZUO UBUKAWA SATOSHI** 

# (54) THIN TYPE BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To suppress a battery characteristic from lowering even when a battery is preserved for a long time. SOLUTION: This battery has a bag-shaped sheath 1 in which each of first and second polypropylene layers 1b/1c is fixed to both the surfaces of a metallic layer 1a. In this sheath 1, a generating element 6 constituted of both of positive and negative electrodes 3, 4 and electrolyte 5 interposed between both of these electrodes 3, 4 is internally mounted and the opening part of the body 1 is sealed. Between, the second polypropylene layer 1c existing inwardly at a battery of the first and second polypropylene layers 1b/1c and the metallic layer 1a, a denatured polypropylene layer 1e which can be adhered to the metallic layer 1a is provided. By this denatured polypropylene layer 1e, the second polypropylene layer 1c and the metallic layer 1a are fixed.



# LEGAL STATUS

[Date of request for examination]

21.05.2001

[Date of sending the examiner's decision of rejection] Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

### (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

# (11)特許出願公開番号

# 特開平10-284021

(43)公開日 平成10年(1998)10月23日

| l)Int.Cl. <sup>a</sup> | 識別記号                                    |      | FΙ   |          |       |               |             |     |     | ·       |
|------------------------|-----------------------------------------|------|------|----------|-------|---------------|-------------|-----|-----|---------|
| H 0 1 M 2/02           |                                         |      | H 0  | 1 M      | 2/02  |               |             |     | K   |         |
| 6/02                   |                                         |      |      |          | 6/02  |               |             |     | Z   |         |
| 6/16                   |                                         |      |      |          | 6/16  |               |             |     | С   |         |
| 10/02                  |                                         |      |      | 1        | 10/02 |               | Z           |     |     |         |
| 10/40                  |                                         |      |      | 1        | 10/40 |               |             |     |     |         |
|                        |                                         | 審査請求 | 未請求  | ·<br>北京館 | 項の数 5 | OL            | (全          | 6   | 頁)  | 最終頁に続く  |
| 1)出願番号                 | <b>特願平</b> 9-85136                      |      | (71) | 出願人      |       | 1889          | <b>≙</b> ≱⊦ |     |     |         |
| 2)出顧日                  | 平成9年(1997)4月3日                          |      |      |          |       |               |             | k A | 12T | 目5番5号   |
|                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      | (72) | 発明者      |       |               | ~~          |     |     | дошо,   |
|                        |                                         | •    |      |          | 大阪府   |               |             | 英   | [2丁 | 目5番5号 三 |
|                        |                                         |      | (72) | 発明者      | 太田    | 裕道            |             |     |     |         |
|                        |                                         |      |      |          |       | <br> <br> 株式会 |             | 挺   | 12丁 | 目5番5号 三 |
|                        |                                         |      | (72) | 発明者      |       |               | 京阪2         | 五   | 12丁 | 目5番5号 三 |
|                        |                                         |      |      |          | 洋電機   | 株式会           | 社内          |     |     |         |
|                        |                                         |      | (74) | 代理人      | 弁理士   | : 大前          | 要           |     |     |         |
|                        |                                         |      |      |          |       |               |             |     |     | 最終頁に続く  |

# (54) 【発明の名称】 薄型電池

# (57)【要約】

【課題】 電池を長期間保存した場合であっても、電池 特性が低下するのを抑制することができる薄型電池の提供を目的としている。

【解決手段】 金属層1aの両面に各々第1及び第2ポリプロピレン層1b・1cが固着された袋状の外装体1を有し、この外装体1には、正負両極3・4とこれら両極3・4間に介装された電解質5とから成る発電要素6が内装され、且つ上記外装体1の開口部が封口された薄型電池において、前記第1及び第2ポリプロピレン層1b・1cのうち電池内方に存在する第2ポリプロピレン層1cと前記金属層1aと接着可能な変性ポリプロピレン層1eが設けられ、この変性ポリプロピレン層1eにより第2ポリプロピレン層1cと金属層1aとが固着されることを特徴とする。



#### 【特許請求の範囲】

【請求項1】 金属層の両面に熱融着性樹脂層が固着された袋状の外装体を有し、この外装体には、正負両極とこれら両極間に介装された電解質とから成る発電要素が内装され、且つ上記外装体の開口部が封口された薄型電池において、前記熱融着性樹脂層のうち電池内方に存在する熱融着性樹脂層と前記金属層との間には、金属層と接着可能な熱融着性変性樹脂層が設けられ、この熱融着性変性樹脂層により電池内方に存在する熱融着性樹脂層と金属層とが固着されることを特徴とする薄型電池。

【請求項2】 前記正負両極には、金属から成る集電端子が各々固定されており、これら集電端子が前記外装体の開口部から電池外に延出されると共に、これら集電端子の上記開口部に対応する位置には、金属層と接着可能な熱融着性変性樹脂層が上記集電端子を囲むように設けられている請求項1記載の薄型電池。

【 請求項3 】 電池内方に存在する熱融着性樹脂層がポリエチレンから成り、前記金属層と接着可能な熱融着性変性樹脂層が変性ポリエチレンから成る請求項1又は2 記載の薄型電池。

【請求項4】 電池内方に存在する熱融着性樹脂層がポリプロビレンから成り、前記金属層と接着可能な熱融着性変性樹脂が変性ポリプロビレンから成る請求項1又は2記載の薄型電池。

【請求項5】 前記熱融着性樹脂層のうち電池外方に存在する熱融着性樹脂層と前記金属層との間には、接着剤層が設けられ、この接着剤層により電池外方に存在する熱融着性樹脂層と金属層とが固着される請求項1~4記載の薄型電池。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は薄型電池に関し、特にラミネート外装体内に収納された発電要素が密閉される構造の薄型電池に関する。

[0002]

【従来の技術】リチウム電池等における従来型の薄型電池は、図7及び図8に示すように、正負両極21・22と電解質23とから成る電極群24が外装体25に内装されている。この外装体25は、図9に示すように、金属層25aの両面には、各々接着剤層25d・25eを40介して、第1ポリプロピレン層(電池外方に存在するポリプロピレン層)25bと、第2ポリプロピレン層(電池内方に存在するポリプロピレン層)25cとが配置される構造であり、また外装体25は第1~第3封口部26a~26cにより封口されている。

【0003】上記第1封口部26aからは、図10に示すように、正負極集電端子27a・27bが延出されており、これら正負極集電端子27a・27bの周囲には接着剤層28・28が形成される構造である。

[0004]

【発明が解決しようとする課題】しかしながら、上記構造の薄型電池では、接着剤層25 e・28・28の水分及び酸素の透過性が高いため、電池を長期間保存すると、電池の特性が低下する。具体的には、以下の通りである。即ち、薄型電池を長期間保存した場合、第1~第3封口部26a~26cにおける接着剤層25eの露出部分から水分及び酸素が入り込み、これら水分等が第2ポリプロピレン層25cを透過して、電池内部に入り込む。この結果、水分及び酸素と負極のリチウムとが反応して電池特性が低下する。

【0005】また、接着剤層25e・28・28の厚み はばらつきが大きく、非常に薄い部分が生じることがあ る。したがって、正負極集電端子27a・27bと金属 層25aとが接触して電池内短絡を防止するためには、 接着剤層25e・28・28を除いて正負極集電端子2 7a・27bと金属層25aとの間に存在する第2ポリ プロビレン層25cの厚みを大きくせざるをえない。と のため、第1~第3封口部26a~26cにおける第2 ポリプロピレン層25 cの露出部分も大きくなる。この 20 第2ポリプロピレン層25cは接着剤層25eよりは水 分及び酸素の透過性が低いとはいうものの、ある程度は 水分等を透過する。とのため、水分等が第2ポリプロピ レン層25cから直接電池内に入り込む。加えて、接着 剤層28・28からも直接電池内に水分等が入り込む。 とれらのことから、上記と同様の反応が生じて、電池特 性が低下する。

【0006】更に、電解質として電解液を用いた場合には、接着剤層25e・28・28の水分透過性が高いということ等に起因して、電解液が電池外に漏れ易くな り、この結果、電池を長期間保存すると更に電池特性が低下する。

【0007】本発明は、斯かる知見に基づきなされたものであって、その目的とするところは、電池を長期間保存した場合であっても、電池特性が低下するのを抑制することができる薄型電池の提供を目的としている。

[8000]

【課題を解決するための手段】前述した目的を達成するために、本発明のうちで請求項1記載の発明は、金属層の両面に熱融着性樹脂層が固着された袋状の外装体を有し、この外装体には、正負両極とこれら両極間に介装された電解質とから成る発電要素が内装され、且つ上記外装体の開口部が封口された薄型電池において、前記熱融着性樹脂層のうち電池内方に存在する熱融着性樹脂層と前記金属層との間には、金属層と接着可能な熱融着性変性樹脂層が設けられ、この熱融着性変性樹脂層により電池内方に存在する熱融着性樹脂層と金属層とが固着されることを特徴とする。

【0009】上記構成であれば、熱融着性変性樹脂層は 従来の接着剤層に比べて水分及び酸素の透過性が低いの 50 で、熱融着性変性樹脂層と熱融着性樹脂層とを介して電

30

池内に入り込む水分等が減少する。したがって、水分等 と負極のリチウムとが反応するのを抑えることができる ので、電池を長期間保存した場合であっても、電池特性 の低下を抑制することができる。

【0010】加えて、電解質として電解液を用いた場合 には、熱融着性変性樹脂層の水分透過性が低いというと と等に起因して、電解液が電池外に漏れ難くなり、この 結果、電池を長期間保存した場合の電池特性の低下を一 層抑制することができる。尚、本明細書では、熱融着性 変性樹脂とは、熱融着性樹脂にカルボキシル基が付加さ 10 れたものをいう。

【0011】また、請求項2記載の発明は請求項1記載 の発明において、正負両極には、金属から成る集電端子 が各々固定されており、これら集電端子が外装体の開口 部から電池外に延出されると共に、これら集電端子の上 記開口部に対応する位置には、金属層と接着可能な熱融 着性変性樹脂層が上記集電端子を囲むように設けられて いることを特徴とする。

【0012】上記構成の如く、集電端子の周囲に熱融着 性変性樹脂層を形成すれば、この熱融着性変性樹脂層は 20 厚みのばらつきが小さいということから、電池内方に存 在する熱融着性樹脂層の厚みを小さくしても、集電端子 と金属層とが接触することによる電池内短絡を防止する ことができる。したがって、封口部における電池内方に 存在する熱融着性樹脂層の露出部分も小さくなり、当該 熱融着性樹脂層から水分等が直接電池内に入り込む量が 少なくなる。加えて、集電端子の周囲に熱融着性変性樹 脂層を形成すれば、熱融着性変性樹脂層は接着剤層に比 べて水分等の透過率が小さいととから、熱融着性変性樹 脂層から電池内に直接水分が入り込むことを抑制でき る。これらのことから、電池を長期間保存した場合の電 池特性の低下を一層抑制することができる。

【0013】また、請求項3記載の発明は請求項1又は 2 記載の発明において、電池内方に存在する熱融着性樹 脂層がポリエチレンから成り、金属層と接着可能な熱融 着性変性樹脂層が変性ポリエチレンから成ることを特徴 とする。ここで、変性ポリエチレンとは、ポリエチレン にカルボキシル基が付加されたものをいう。

【0014】また、請求項4記載の発明は請求項1又は 2記載の発明において、電池内方に存在する熱融着性樹 40. 脂層がポリプロピレンから成り、金属層と接着可能な熱 融着性変性樹脂が変性ポリプロピレンから成ることを特 徴とする。ことで、変性ポリプロピレンとは、ポリプロ ピレンにカルボキシル基が付加されたものをいう。

【0015】また、請求項5記載の発明は請求項1~4 記載の発明において、熱融着性樹脂層のうち電池外方に 存在する熱融着性樹脂層と金属層との間には、接着剤層 が設けられ、この接着剤層により電池外方に存在する熱 融着性樹脂層と金属層とが固着されることを特徴とす る。このような構成とするのは、電池外方に存在する熱 50 箱の一方の開口端部を高周波誘導加熱装置を用いて溶着

融着性樹脂層と金属層とを熱融着性変性樹脂により接着 する場合、一方の熱融着性樹脂層と金属層とを熱融着性 変性樹脂により接着した後、他方の熱融着性樹脂層と金 属層とを熱融着性変性樹脂により接着する際、先に形成 された熱融着性変性樹脂層が融けて歪みが発生するおそ れがあるからである。

#### [0016]

【発明の実施の形態】本発明の実施の形態を、図1~図 5に基づいて、以下に説明する。図1に示すように、本 発明の薄型電池は外装体1を有しており、この外装体1 には、電池を封口するための第1~第3封口部2a~2 cが形成されている。上記外装体1の内部には、図2及 び図4に示すように、集電体の両面にLiCoO,を主 体とする活物質層が形成された正極3と、集電体の両面 に炭素材料を主体とする活物質層が形成された負極4 と、これら正負極3・4間に挟まれエチレンカーボネー トにLiPF。を溶解させた溶液を含む電解質5とから 構成される発電要素6が内装されている。

【0017】ととで、図3に示すように、上記外装体1 は5層構造を成し、具体的には、アルミニウムから成る 金属層1a(20μm)の一方の面には第1ボリプロビ レン層(電池外方に存在するポリプロピレン層であっ て、厚さ20μm) lbが配され、この金属層laの他 方の面には第2ポリプロピレン層(電池内方に存在する ポリプロピレン層であって、厚さ60μm) 1 cが配さ れている。上記金属層 1 a と第 1 ポリプロピレン層 1 b との間にはドライラミネート接着剤層 1 d (厚さ5 μ m) が設けられており、これによって金属層 laと第1 ポリプロピレン層lbとが接着される。一方、上記金属 層1 a と第2ポリプロピレン層1 c との間にはポリプロ ピレンにカルボキシル基が付加された変性ポリプロピレ ン層 1 e (厚さ5 μ m であって、金属層と接着可能)が 設けられており、これによって金属層 1 a と第2 ポリブ ロピレン層lcとが接着される。

【0018】また、上記第1封口部2aからは、上記正 極3に固定された正極集電端子7と上記負極4に固定さ れた負極集電端子8とが突出形成されており、これら両 集電端子7・8の周囲には、図5に示すように、それぞ れ変性ポリプロピレン層9・10が設けられている。

尚、この薄型電池において、幅は42mm、長さは10 Omm、厚さは1.7mmである。

【0019】とのような薄型電池を、以下のようにして 作製した。先ず、金属層laと第1及び第2ポリプロビ レン層1 b・1 cとドライラミネート接着剤層1 dと変 性ポリプロピレン層 1 e とから成る5層構造のラミネー ト箔の一端と他端とを重ね合わせ (重ね合わせ部分の幅 は20mm)、その重ね合わせ部分を髙周波誘導加熱装 置を用いて溶着し、第2封口部2bが形成された筒状の ラミネート箔を作製した。次に、この筒状のラミネート

(溶着幅は10mm)し、第3封口部2cが形成された 袋状のラミネート箔を作製した。次いで、この袋状のラ ミネート箔内に、予めアルゴン雰囲気中で組み立てた発 電要素6を収納した。この際、周囲に変性ポリプロピレ ン層9・10が形成された正負極集電端子7・8が電池 外に突出するように配置した。その後、袋状のラミネー ト箔の開口部を髙周波誘導加熱装置を用いて溶着(溶着 幅は10mm) することにより薄型電池を作製した。

【0020】尚、上記発明の実施の形態では、熱融着性 変性樹脂として変性ポリプロピレンを用いたが、これに 10 限定するものではなく、変性ポリエチレンを用いること もできる。但し、この場合には、熱融着性樹脂としてポ リエチレンを用いる必要がある。なぜなら、ポリプロピ レンと変性ポリエチレンとは接着が困難であるという理 由による。

【0021】上記発明の実施の形態では、第2ポリプロ ピレン層1 cの厚さを60 umとしたが、これに限定す るものではなく、20~100 umであれば良い。ま た、金属層1aの厚さを20µmとしているが、これに 限定するものではなく、8~50μmであれば良い。 【0022】また、正極活物質及び電解質としては上記 のものに限定されるものではなく、例えば正極活物質と しては、LiNiO,、LiMnO,、LiFeO,が 例示され、また電解質としては、エチレンカーボネー ト、ピニレンカーボネート、プロピレンカーボネートな どの有機溶媒や、これらとジメチルカーボネート、ジエ チルカーボネート、1,2-ジメトキシエタン、1,2 -ジエトキシエタン、エトキシメトキシエタンなどの低 沸点溶媒との混合溶媒に、LiPF。、LiClO。、 LiCF,SO,などの溶質を溶かした溶液が例示され 30 る。更に、電解質として、髙分子固体電解質、又はゲル 状電解質を用いることも可能である。

[0023]

# 【実施例】

(実施例) 実施例の電池としては、上記発明の実施の形 態に示す電池を用いた。このようにして作製した電池 を、以下、本発明電池Aと称する。

【0024】(比較例)比較例としては、前記従来の技 術で示す電池(図7~図10参照)を用いた。上記本発 明電池Aとの相違点は以下の通りである。

①金属層25aと第2ポリプロピレン層25cとの間 に、実施例に用いる変性ポリプロピレン層ではなく、ド ライラミネート接着剤層25eを設けて、金属層25a と第2ポリプロピレン層25cとを接着する。

②正極集電端子27aと負極集電端子27bの周囲に は、実施例に用いる変性ポリプロピレン層ではなく、ド ライラミネート接着剤層28・28を設ける。

②金属層25aの厚みが7μm、ドライラミネート接着 剤層25eの厚みが5μm、第1ポリプロピレン層25 bの厚みが50μm、第2ポリプロピレン層25cの厚 50 4:負極

みが100μmであり、また電池の厚さが1.9mmで

とのようにして作製した電池を、以下、比較電池Xと称 する。

【0025】(実験)上記本発明電池A及び比較電池X を60℃で保存し、保存日数と電池容量回復率との関係 を調べたので、その結果を図6に示す。尚、電池容量回 復率の算出式を、下記数1に示す。

[0026]

【数1】

#### 保存後の電池容量

電油容量回復率 - ~

 $- \times 100 (\%)$ 

#### 保存前の電池容量

【0027】図6から明らかなように、本発明電池Aは 比較電池Xに比べて電池容量回復率が向上しており、保 存特性に優れることが認められる。

[0028]

【発明の効果】以上説明したように本発明によれば、電 池内に入り込む水分及び酸素が減少するので、水分及び 酸素とリチウムとが反応するのを抑えることができ、且 つ電解液が電池外に漏れ難くなる。これらのことから、 電池を長期間保存した場合であっても、電池特性の低下 を抑制することができるという優れた効果を奏する。

#### 【図面の簡単な説明】

- 【図1】本発明の薄型電池の平面図である。
- 【図2】図1のA-A線矢視断面図である。
- 【図3】本発明の薄型電池における外装体の断面図であ る。
- 【図4】図1のB-B線矢視断面図である。
  - 【図5】図1のC-C線矢視断面図である。
  - 【図6】本発明電池Aと比較電池Xとにおける保存日数 と電池容量回復率との関係を示すグラフである。
  - 【図7】従来の薄型電池の平面図である。
  - 【図8】図7のD-D線矢視断面図である。
  - 【図9】従来の薄型電池における外装体の断面図であ る。

【図10】図7のE-E線矢視断面図である。 【符号の説明】

40 1:外装体

l a:金属層

1b:第1ポリプロピレン層

1 c:第2ポリプロピレン層

l d:接着剤層

1e:変性ポリプロピレン層

2 a:第1封□部

2 b:第2封口部

2 c:第3封口部

3:正極

5:電解質

6:発電要素 7:正極集電端子 \* 8: 負極集電端子

9:変性ポリプロピレン層

10:変性ポリプロピレン層





[図10]



#### フロントページの続き

(51)Int.Cl.<sup>6</sup>

識別記号

H 0 l M 10/40

FΙ

H 0 1 M 10/40

В

(72)発明者 中川 弘

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 児玉 康伸

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 山崎 幹也

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 西本 好宏

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 藤井 孝則

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 中根 育郎

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 寺司 和生

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 生川 訓

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内