

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

0

NPS55-84-003

NAVAL POSTGRADUATE SCHOOL

Monterey, California

HP-41C PROGRAMS AND INSTRUCTIONS

FOR

PROBABILITY AND STATISTICS

Ъу

Peter W. Zehna

February 1984

Approved for public release; distribution unlimited.

Prepared for:

Naval Postgraduate School Monterey , California 93943

NAVAL POSTGRADUATE SCHOOL Monterey, California

Commodore R. H. Shumaker Superintendent David A. Schrady Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

Peter W. Zehna, Professor

Department of Operations Research

Reviewed by:

Alan R. Washburn, Chairman

Department of Operations Research

Released by:

Kneale T. Marshall

Dean of Information and Policy

Sciences

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
1. REPORT HUMBER 2. GOVT ACCESSION NO. NPS55-84-003	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio) HP-41C PROGRAMS AND INSTRUCTIONS FOR PROBABILITY AND STATISTICS	5. TYPE OF REPORT & PERIOD COVERED Technical
i	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*) Peter W. Zehna	S. CONTRACT OR GRANT HUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93943	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Postgraduate School	February 1984
Monterey, Ca 93943	108
14. MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
Approved for public release; distribution unlimit	
18. SUPPLEMENTARY NOTES	
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) HP Programs Probability and Statistics Calculator Programs	
19. KEY WORDS (Continue on reverse side if necessary and identify by block mamber) HP Programs Probability and Statistics	re problems typically encoun- e designed to operate
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) HP Programs Probability and Statistics Calculator Programs 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A compendium of programs and instructions to solv tered in probability and statistics. Programs ar directly on the HP-41C family of hand-held calcul	re problems typically encoun- e designed to operate

HP-41C PROGRAMS AND INSTRUCTIONS FOR PROBABILITY AND STATISTICS

by

Peter W. Zehna

INTRODUCTION

The purpose of this report is to make available a set of programs and the corresponding user instructions so that the problem material found in the writer's textbooks, Probability by Calculator and Statistics by Calculator* (hereafter referred to, respectively, as ZP and ZS) may be resolved using the HP-41C calculator. In particular, this means that courses using those textbooks, written entirely around the TI-59, need no longer be restricted to that particular machine as a prerequisite. It is almost essential, however, that the HP user have in his or her possession either the HP-41CV, or the HP-41C with the quad memory module installed, along with a card reader for recording magnetic cards. Also, as with the TI-59, it will be necessary to insert the HP applications module STAT PAC for use with the programs in ZS. No additional module is required for ZP.

The original intention was to write the HP programs in such a way that the TI user instructions could be used with little or no modification. That program was about 90% successful so that, in general, storage in various registers are identical as are the main subroutines labeled with user defined keys (with HP a,b,c, etc., replacing TI A', B', C', etc. in a natural way). There are, however, some special problems created by the differences in the two machines (RPN not being one of them, by the way) that made it impossible to be 100% successful in that endeavor. For example, the TI random number generator could not be duplicated in the HP because of the difference in accuracy of the two machines. Since the TI carries more significant figures internally than the HP, and that internal carriage is used to generate successive seeds for repeated applications, the two machines soon differ in their output. For true applications of random number generation that would be insignificant, even a desirable difference perhaps, but for tutorial purposes, which is the main intent of the books, that makes it impossible to verify answers and that is a serious drawback for the learner. Otherwise, the difference in accuracy created no special problems. The FIX 4 format is used in all of the HP output to follow and it will be found that the corresponding answers then agree to within 4 decimal places (the maximum usually presented in ZP and ZS) of the published answers given in the two books, almost without exception.

Writing the HP programs to utilize essentially the same user instructions as the TI meant not being able to take full advantage of the superior alphanumerics and prompting facility of the HP41-C. The user may well want to adjust the programs presented here to take better advantage of that option but should of course adjust the user instructions accordingly. That particular feature in itself creates some special problems with regard to the use of HP applications modules like STAT PAC. Almost all of the programs in that module contain pauses for prompts from the user. Unfortunately, when such programs are called as subroutines within a calculator program, there is no automatic return from the module program to the parent one. Much of the success of the TI programs depended on precisely this feature utilizing the canned programs available in the master module for ZP and the statistics module for ZS. This made it necessary to replace several of the programs in the HP STAT PAC that would otherwise have been used, as well as to supply several key programs, such as the t and F distributions, that were missing. Fortunately, the massive memory capability furnished by the HP quad memory made it possible to furnish these and still have enough room for the main programs of interest. For ZS then, a special program called ZSTAT has been supplied for which there

^{*}Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982

is no direct TI analogue. The reader may view this as simply an addition to the HP STAT PAC in order to bring it more in line with the TI statistics module utilized throughout ZS.

In order to follow the textbooks as closely as possible with the least amount of cross-referencing, the following format will be followed. Starting with ZP, each chapter or section for which a separate program exists will be discussed separately starting on a new page. After pointing out any general differences that may exist for that chapter or section including the illustrative examples contained therein, the HP version of the User Instructions for that program will be added, together with a set of examples for each subroutine such as presently found in the books for the TI programs. These model examples will show exactly what the user may expect to see in the display upon executing each step. In each case, the reader will find, in addition to the Register Contents as currently published in the textbooks, a set of assignments used by the program along with a listing of labels used (which may also be seen in the complete listing of the programs in the appendix).

The reader should remember to assign, record (and subsequently read) the magnetic cards in USER mode so as to preserve those assignments. In those assignments, we often use lower case versions of capital letters even when they do not, technically, exist. Thus, [i] is used for the alphanumeric [<] since the latter is located above [I] and is effected by pressing the gold shift key, then [I]. Similar remarks apply to [g] (really [%]), [h] (really [*]) and [j] (really [>]). Of course [a], [b], [c], etc. are actually listed in the alpha keyboard.

Since the [X<>Y] key is used in so many programs, and its execution is considerably slower in USER mode, it is advisable to assign the function X<>Y to this key at the start of a session. Such an assignment cannot be made permanent in the programs, but will remain in effect unless the master clear is used.

PROBABILITY BY CALCULATOR

Section 1.3: The Calculator

It is assumed here that the reader is reasonably familiar with the Owner's Handbook and Programming Guide for the HP-41C. The general remarks found in this section apply to the HP as well. It has already been remarked that a card reader will be needed to follow the program outlined here. It is possible to do without the magnetic cards for some of the programs since they may be keyed in once and the continuous memory feature of the HP will preserve them. But even that generous memory allowance will soon be used up and programs will have to be replaced to follow all of the subroutines presented in these textbooks. The magnetic cards removes the necessity of having to re-key so many separate programs. Guidelines for recording magnetic cards will be found in the Card Reader handbook and should be consulted.

Section 1.4: The Programs

Many of the remarks in this section will not apply directly to the HP calculator and, again, the Owner's Handbook should be consulted for specifics regarding the related keys. The programs will appear in print-out (see Appendix) as numbered steps with the corresponding mnemonic code (no key code as with the TI). Most are self-explanatory and the Function Index given in the back of the Handbook will be found very helpful should the reader encounter any that are not immediately recognized. Naturally, the programs should be identical with the listings given in the Appendix before any recording takes place.

Section 2.4: Counting Problems

The internal function FACT in the HP will replace the use of label C in Pgm 16 of the TI to display factorials as discussed on page 21. That function has exactly the same restriction, namely, that n must be any positive integer between 0 and 69 inclusive, displaying OUT OF RANGE for larger values. There are no internal programs to handle permutations and combinations directly so they have been programmed in the first card program labeled ZP2. You will find the instructions under Steps 7 and 8. Each scheme prompts you for an input of first N and then R to compute the corresponding values. (The HP alphanumerics do not permit lower case letters so the notation differs just slightly from the book.) With these routines, the answers to the problems in this section may be verified.

Section 2.5: Conditional Probability

para transmit interest teastes acertae parame member assesses

The rest of program ZP2 has to do with Bayes probabilities and the instructions match those for the TI exactly (with a,b,c, etc. replacing A',B',C') as previously remarked.

ZP2 (A	ssigned [e]) USER INSTRUCTIONS (HP))	SIZ	E <u>></u> 090
STEP	PROCEDURE	ENTER	PRESS	DISPLA
1.	Initialization	, xxx	[e]	0.0000
2.	<pre>Input probabilities (Repeat for j = 1,2,, k) NOTE: If Pr(C_j) = 1/k, use Step 2'</pre>	Pr(E C _j) Pr(C _j)	[A] [R/S]	j
2'.	a. Input partition size	k	[E]	1/k
	b. Input given priors	Pr(E C _j)	[R/S]	į
3.	Compute Bayes posterior probability Pr(C _i E)	i	[B]	Pr(C _i E
4.	a. Initialize for sensitivity analysis	xxx	[e]	0.0000
	b. Recall given priors	Ì	[0]	Pr(E C
	c. Input new cause probabilities (Repeat for j = 1,2,,k) NOTE: If new Pr(C _j) = 1/k, use Step 4'	New Pr(C _j)	[R/S]	j
41.	a. Initialize	xxx	[e]	0.0000
	b. Input partition size	k	[4]	k
5.	Compute Pr(E) (Law of Total Probability)	xxx	[a]	Pr(E)
6.	Birthday Problem	k	[C]	Pr(E _k)
	(E is the event that two or more among k people in a room have the same birth date.)			
7.	Calculate $P(\frac{N}{R})$		[b]	N = 3
		N	[R/S]	R = ?
		R	[R/S]	P(N/R)
8.	Calculate C(N)		[c]	N = ?
	, R	N	[R/S]	R = 3
		R	[R/S]	C(N)

00	ster Conten	<u> </u>				
	Used	10		20	Pr(E C ₁)	
01		11	Used	21	Pr(C ₁)	
02		12	Useđ	22	Pr(E C ₂)	
03	k	13	1/k	23	Pr(C ₁) Pr(E C ₂) Pr(C ₂)	
04	ΣPr(E C _j)	14	Used	24	•	
05		15		25	•	
06		16		26	•	
07		17		27		
08		18		28		
09		19		29		
				05 1 08 1 09	Cc Dd	
				11 12		

Assignments	Labels	Us	ed
ZP2 e	02	A	a
	03	В	ъ
	04	С	c
	05	D	đ
	08	E	
	09		
	10		
	11		
	12		

EXAMPLES ZF2 (1) Suppose in medical diagnostics a particular symptom (E) always occurs in conjunction with three diseases C_1 , C_2 , C_3 with respective probabilities 0.90, 0.09 and 0.009 or else occurs rarely (0.001) with no apparent reason (C_4) at all. National statistics show that most people are free of the three diseases, $Pr(C_4) = 0.99$, and disease C_1 is fairly rare, $Pr(C_1) = 0.0001$. Diseases C_2 and C_3 occur with respective probabilities 0.0045 and 0.0054.

Bayes Format:

Events	Conditional Priors	Cause Probabilities	Conditional Posteriors
C, = Disease #1	0.90	0.0001	0.0587
C ₂ = Disease #2	0.09	0.0045	0.2641
$C_3 = Disease #3$	0.009	0.0054	0.0317
C ₄ = No Disease	0.001	0.9900	0.6455

E = Symptom

Pr(E) = 0.0015

Calculator Solution:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step 1		[e]	0.0000	Initialization
Step 2	.9	[A]	1.0000	First conditional prior
•	.0001	[R/S]	1.0000	Shows one pair entered
•	.09	[A]	2.0000	Second conditional prior
•	.0045	[R/S]	2.0000	Shows two pairs entered
•	.009	[A]	3.0000	Third conditional prior
•	.0054	[R/S]	3.0000	Shows three pairs entered
•	.001	[A]	4.0000	Fourth conditional prior
*	.99	[R/S]	4.0000	Shows four pairs entered
Step 3	1	[B]	0.0587	First conditional posterior
•	2	[B]	0.2641	Second conditional posterior
•	3	[B]	0.0317	Third conditional posterior
•	4	[B]	0.6455	Fourth conditional posterior
Step 4		[a]	0.0015	Probability of E

EXAMPLES ZP2 (2) A manufacturer of hand-held calculators has three different assembly plants F, M and T. These three plants historically produce defective items with respective probabilities 0.01, 0.02 and 0.04. Plant F produces 50% of the calculators while plants M and T produce, respectively, 30% and 20%.

Original Bayes Format:

Events	Priors	Causes	Posteriors
C ₁ = Plant A	0.01	0.50	0.2632
C ₂ = Plant B	0.02	0.30	0.3158
C ₃ = Plant C	0.04	0.20	0.4211
E = Defective		P	Pr(E) = 0.0190

Calculator Solution for Changing Priors to $p_i = 1/3$ (after original entry):

_				
ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step 4a.		[e]	0.0000	Initialization
Step 4b.		[D]	0.0100	First prior displayed
Step 4c.	1/3	[R/S]	1.0000	First cause prob. changed
Step 4b.		[D]	0.0200	Second prior displayed
Step 4c.	1/3	[R/S]	2.0000	Second cause prob. changed
Step 4b.		[D]	0.0400	Third prior displayed
Step 4c.	1/3	[R/S]	3.0000	Third cause prob. changed
Step 3	1	[B]	0.1429	New Pr(E C ₁)
**	2	[B]	0.2857	New Pr(E C ₂)
**	3	[B]	0.5714	New Pr(E C3)
	Alterna	te Solution	:	•
Step 4'a.	ı	[e]	0.0000	Initialization
Step 4'b.	. 3	[d]	3.0000	Partition size entered
Step 3	1	[B]	0.1429	New Pr(E C ₁)
**	2	[B]	0.2857	New $Pr(E C_2)$
•	3	[B]	0.5714	New Pr(E C ₃)
				-

EXAMPLES ZP2 (3) Calculate $P(\frac{10}{2})$, 4! and $C(\frac{52}{5})$.

Solution:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step 7.		[b]	N=?	Prompts for entry of N
	10	[R/S]	R=?	Asks for the value of R.
	2	[R/S]	90.0000	Display $P(\frac{10}{2}) = 90$.
		[b]	N=?	Initializes permutation routine.
	4	[R/S]	R=?	Asks for the value of R.
	4	[R/S]	24.0000	Displays $4! = P(\frac{4}{\lambda})$.
		[c]	N=?	Initializes combination routine.
	52	[R/S]	R=?	Prompts for entry of R=5.
	5	[R/S]	2,598,960	Displays $C(\frac{52}{5})$, the total number
				of poker hands.

NOTE: 4! may also be computed by executing the function FACT.

Section 3.2: Moments of a Random Variable

Just as with ZP2, the HP version of ZP3.2 (denoted ZP3-2 since a period may not be used in an ALPHA label) is almost exactly the same as the TI version. In the discussion of the program on page 57, you may ignore the warnings concerning capacity limitations and repartitioning the calculator. Sizing the HP to allow for more memory registers will accomplish the same thing. In any case, such problems will never arise in the applications presented here. You might observe the use of the alternate HP form, [X<>Y], for the X exchange Y key throughout this report. This is merely a concession to ease of printing. (HP Y-register is always used in place of TI T-register)

The one place where there is serious departure from the TI-59 is in repeated application of LABS. To erase a previous application with the TI, one need only over-write the old algorithm with the new one, paying no attention to what may or may not remain when the new algorithm is finished with a RETURN instruction. But, because algorithms must be created as individual subroutines with the HP, erasing is not so simple. At Step 4f. the beginning of the old algorithm is displayed at program step 88. The steps from this point on need to be erased and this may be accomplished with the internal function DEL. Then the new algorithm may be inserted where the old one resided and the program will function for the new case. As suggested in the footnote to the user instructions that follow, you might assign DEL to a label like [g] if a lot of erasing is to be done. Unfortunately, the DEL function cannot be recorded as an instruction in program memory so this will only be helpful for given session.

On page 59, an HP version of the algorithm for g(x)=3x+19 would be

RCL 09,3,*,19,+,RTN

and g(x)=(x*x-4)/(6x+7) could be keyed in as

4,RCL 09, ENTER,*,-,CHS,RCL 09,6,*,7,+,/,RTN

Here we have taken the liberty of using the printed symbol / for the division operator and the symbol * for multiplication.

Section 3.3: Hypergeometric and Binomial Distributions

Section 3.4: Other Discrete Distributions

For both of there sections, the HP programs are practically identical with the TI programs. The basic difference is that the HP initialization step is to press [e] instead of RST. Having so used label e, label J is used for the number of trials, Y, to rth success at NB5 in program ZP3-4.

ZP3-2	(Assigned [e]) USER INSTRUCTIONS (HP))	SIZE 060		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
1.	Distribution Entry a. Initialize b. Enter (in order) x_i , p_i (Repeat for i = 1,2,,N \leq 20; $x_1 < x_2 < < X_N$)	× _i p _i	[e] [A] [R/S]	0.0000 *i i.0000	
2.	Calculate $P(x)$ $(x-code = j where x_j \le x < x_{j+1})$	x-code	[C]	P(x)	
3.	Calculate E(X), V(X) (after Step 1)		[E] [X<>Y]	E(X) V(X)	
4.	Calculate E[g(X)], V[g(X)] (after Step 1) a. Initialize NOTE: It is understood that [ALPHA] must be used for label B.		[GTO][B]	x.xxx	
	b. Enter Program Mode c. Key in g(x) where x & R ₀₉ (Avoid labels already in use, end with RTN) d. Exit Program Mode e. Calculate Moments. f. To ERASE Algorithm in [B], complete Steps a,b; then		[PRGM] [PRGM] [D] [X<>Y] [SST] [g]	87 LBL B x.xxxx E[g(X)] V[g(X)] 88 yy DEL	
	let nnn be at least as large as the number of Steps in [B] [†]		nnn [PRGM]	87 LBL B	

 $^{^{\}dagger}$ For repeated uses of this step use ASN to assign DEL to g(%).

Regi	ster Content	s	•			
00	Used	10	P(x)	20	×,	
01	x-address	11		21	P_1	
02	p-address	12		22	$\mathbf{x}_{2}^{\mathbf{r}}$	
03	N	13		23	P ₂	
04	* _i p _i	14		24	*3	
05	$x_{i}^{2}p_{i}$	15		25	P ₃	
06	Mean	16		26	•	
07	2nd Moment	17		27	•	
08	Variance	18		28	•	
09	x-value	19		29		

Assignments	Labe1	ls Used
ZP3-2 e	10	A
	02	В
	03	С
	04	D
	05	E
	0 6	
	07	

EXAMPLE ZP3-2. X = # daily sales of a morning newspaper at a local drugstore.

x: 0 1 2 3 4 5

p(x): 0.01 0.01 0.04 0.03 0.67 0.24

Solution:

Solu				
ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step la.		[e]	0.0000	Initialization
Step lb.	0	[A]	0.0000	Enter first x-value
••	.01	[R/S]	1.0000	Enter first p-value
•	1	[A]	1.0000	Enter second x-value
•	.01	[R/S]	2.0000	Enter second p-value
*	2	[A]	2.0000	Enter third x-value
•	.04	[R/S]	3.0000	Enter third p-value
•	3	[A]	3.0000	Enter fourth x-value
•	.03	[R/S]	4.0000	Enter fifth p-value
•	4	[A]	4.0000	Enter fifth x-value
•	.67	[R/S]	5.0000	Enter fifth p-value
•	5	[A]	5.0000	Enter sixth x-value
" Calc	.24 ulate P(4.5	[R/S]	6.0000 5 since x ₅ ≤ 4	Enter sixth p-value
Calc				
Step 2	ulate P(4.5) (x-code =	5 since x ₅ ≤ 4	5.5 < x ₆ = 5)
Step 2 Calc	ulate P(4.5	(x-code =	5 since x ₅ ≤ 4	5.5 < x ₆ = 5)
Step 2 Calc	ulate P(4.5	(X) and σ^2	5 since x ₅ ≤ 4 0.7600	Note that $x_1=0$ so that $x_5=4$.
Step 2 Calc Step 3	ulate P(4.5 5 ulate μ = E	(X) and σ^2 = [E] [X<>Y]	5 since x ₅ ≤ 4 0.7600 • V(X). 4.0600 0.6764	Note that $x_1=0$ so that $x_5=4$. Display $\mu = 4.06$
Step 2 Calc Step 3	ulate P(4.5 5 ulate μ = E	(X) and σ^2 = [E] [X<>Y] [and V[g(X)] [GTO]	5 since x ₅ ≤ 4 0.7600 • V(X). 4.0600 0.6764	Note that $x_1=0$ so that $x_5=4$. Display $\mu = 4.06$ Display $\sigma^2 = 0.6764$
Step 2 Calc Step 3	ulate P(4.5 5 ulate μ = E	(C) (C) (X) and σ^2 = (E) (X<>Y) (x) and V[g(X)	5 since x ₅ ≤ 4 0.7600 • V(X). 4.0600 0.6764 (Y)] where g(X)	Note that $x_1=0$ so that $x_5=4$. Display $\mu = 4.06$ Display $\sigma^2 = 0.6764$ = 25x - 50 is net daily income.
Step 2 Calc Step 3	ulate P(4.5 5 ulate μ = E	(X) and σ^2 = [E] [X<>Y] [and V[g(X)] [GTO]	5 since $x_5 \le 4$ 0.7600 • V(X). 4.0600 0.6764 (X)] where $g(x)$ GTO	Note that $x_1=0$ so that $x_5=4$. Display $\mu = 4.06$ Display $\sigma^2 = 0.6764$ = 25x - 50 is net daily income.
Step 2 Calc Step 3	ulate P(4.5 5 ulate μ = E	(X) and σ^2 = [E] [X<>Y] (and V[g(X)] [GTO] [ALPHA]	5 since $x_5 \le 4$ 0.7600 • V(X). 4.0600 0.6764 K)] where $g(x)$ GTO	Note that $x_1=0$ so that $x_5=4$. Display $\mu = 4.06$ Display $\sigma^2 = 0.6764$ = 25x - 50 is net daily income.
Calc Step 3 Calc Step 4a.	ulate P(4.5 5 ulate μ = E	(C) (C) (X) and σ^2 = (E) (X<>Y) (S) and V[g(X) (GTO) (ALPHA) (B)	5 since x ₅ \leq 4 0.7600 • V(X). 4.0600 0.6764 K)] where g(x) GTO GTO GTO GTO GTO_B_	Note that $x_1=0$ so that $x_5=4$. Display $\mu = 4.06$ Display $\sigma^2 = 0.6764$ = 25x - 50 is net daily income.
Calc Step 3 Calc Step 4a.	ulate P(4.5 5 ulate μ = E	(X) and σ^2 = [E] [X<>Y] [STO] [ALPHA] [B]	5 since x ₅ \leq 4 0.7600 • V(X). 4.0600 0.6764 (X)] where g(x) GTO GTO GTO STO X.XXXX	Note that $x_1=0$ so that $x_5=4$. Display $\mu = 4.06$ Display $\sigma^2 = 0.6764$ = 25x - 50 is net daily income.
Step 2 Calc Step 3	ulate P(4.5 5 ulate μ = E	(X) and σ^2 = [C] (X) and σ^2 = [E] [X<>Y] ()] and V[g(X) [GTO] [ALPHA] [B] [ALPHA] [PGRM]	5 since x ₅ \leq 4 0.7600 • V(X). 4.0600 0.6764 (X)] where g(x) GTO GTO GTO GTO STO GTO_B_ x.xxxx 87 LBL B	Note that $x_1=0$ so that $x_5=4$. Display $\mu = 4.06$ Display $\sigma^2 = 0.6764$ = 25x - 50 is net daily income.

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[x]	90 *	Multiplies x by 25,
		50	91 50_	and subtracts
		[-]	92 -	50.
		[RTN]	93 RTN	Ends algorithm.
Step 4d.		[PRGM]	x.xxx	Exit Program mode.
Step 4e.		[D]	51.5000	Calculates "average" daily net income as 51.5 cents.
		[Y<>X]	422.7500	Exhibits variance in cents ² .
		[USER]√x	20.5609	Shows o as 20.56 cents.
Calc	culate E[g(X	()] and V[g(X)] where g(x) i	s daily profit.
Step 4f.		[GTO]	GTO	Initialize
		[ALPHA]	GTO	
		[B]	GTO B_	
		[ALPHA]	x.xxx	
		[PGRM]	87 LBL B	Enters ZP-3.2 program at B.
		[SST]	88 yy	Locates first step of last
		[g]	DEL	algorithm Prepares to delete algorithm steps.
		010	87 LBL B	Deletes to END statement.
Step 4b.		2	88 2_	Enters 2 for comparison with x.
		[RCL]09	89 RCL 09	Retrieves x.
		[X>Y?]	90 x>y?	Asks if x>y?
		[GTO]20	91 GTO 20	Proceeds to subroutine to be constructed for evaluating g(x).
		0	92 0 _	Otherwise g(x)=0
		[RTN]	93 RTN	Ends that part of algorithm
		[LBL]20	94 LBL 20	Prepares to define subroutine.
		25	95 25	g(x) = 25x - 50,
		[x]	96 *	A return is not necessary
		50	97 50	since it is controlled by END.
		[-]	98 -	
		[PRGM]	x.xxx	Exits program mode.
Step 4c.		[D]	52.2500	Calculates and exhibits "average" daily profit of 57.25 cents.
Step 4d.		[Y<>X]	313.6875	Shows profit variance.

ZP3-3	(Assigned [e]) USER INSTRUCTIONS (HP)		SIZE 030		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
	Hypergeometric Distribution		i		
H1	Initialization		[e]	0.0000	
н2	Enter Parameters	N	[STO]14	N	
	$(n \le N \text{ and } 0 \le M \le N)$	M	[STO]15	M	
		n	[STO]13	n	
н3	Calculate $P(k) = Pr(X \leq k)$	k	[A]	P(k)	
	p(k) = Pr(X = k)		[X<>Y]	p(k)	
H4	Calculate Q(k) = Pr(X > k)	k	[a]	Q(k)	
	p(k) = Pr(X = k)		[Y<>X]	p(k)	
	NOTE: Repeat H ₃ and/or H ₄ as often as desired.				
	Binomial Distribution				
B 1	Initialization		[e]	0.0000	
B2	Enter Parameters $(M \le N)$	N	[STO]14	N	
		M	[STO]15	М	
	İ	π	[STO]13	n	
B3	Calculate $P(k) = Pr(X \le k)$	k	[B]	P(k)	
	p(k) = Pr(X = k)		[Y<>X]	p(k)	
B 4	Calculate Q(k) = Pr(X > k)	k	[b]	Q(k)	
	p(k) = Pr(X = k)		[Y<>X]	p(k)	
	NOTE: Repeat B ₃ and/or B ₄ as often as desired.				
E	Display E(X) and V(X) (following any application of H ₃ (H ₄) or B ₃ (B ₄)		[E] [X<>Y]	E(X) V(X)	

Regist	ter Contents				·
00		10	P(x)	20	Used
01 1	N/n for \	11	μ	21	1 - M/N
02 ı	r k PMTON CMBON	12	σ^2	22	M/N
03	, ormany	13	n	23	Used
04		14	N	24	N-M
05		15	M	25	
06 t	Used; p(k)	16	p(0)	26	
07 t	Used; p(k)	17		27	
08 t	Used	18		28	
09		19		29	

Assignments			Labe	ls Us	sed
ZP3-3	e		01	A	a
PMTON	i		02	В	ь
CMBON	h		03	E	
			04		
1	PMTON and	İ	05		
cmbon restorage	of n in		06		
for execusing XI			07		
(name v	. V		08		
			11		
			12		
			18		
			19		

EXAMPLES ZP3-3. An urn contains five black balls and seven white balls.

- (1) A sample of size 3 is drawn without replacement. Calculate the probability of obtaining exactly two black balls, at most two black balls and at least two black balls. Answers are, respectively, p(2)=0.32, P(2)=0.95 and O(1)=0.36. (See display below.)
- (2) Repeat (a) for a sample drawn with replacement. Answers are, respectively, p(2)=0.30, P(2)=0.93, Q(1)=0.38.
- (3) For each of (a) and (b) determine the mean and variance of X, the number of black balls in the sample.

Ans. (a) $\mu = 1.25$, $\sigma^2 = 0.60$; (b) $\mu = 1.25$, $\sigma^2 = 0.73$.

Solu	ition (1),	(3):		
ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Н1		[e] /	0.0000	Only necessary when starting a new problem.
Н2	12	[STO]14	12.0000	
	5	[STO]15	5.0000	
	3	[STO]13	3.0000	
н3	2	[A]	0.9545	Displays CDF P(2) first
		[Y<>X]	0.3182	Displays p(2).
Н4	1	[a]	0.3636	Displays Q(1). No re-initial- ization necessary.
E		[E]	1.2500	Displays mean and variance
		[Y<>X]	0.5966	
Solı	ition (2), ((3):		
ВІ		[e]	0.0000	Signals the start of a new program even though the same parameters are involved (B2 unnecessary)
В3	2	[B]	0.9277	Binomial CDF differs from Ha
		[Y<>X]	0.3038	Binomial p(2).
В4	1	[b]	0.3762	Q(1) = Pr(X > 1) = Pr(X > 2)
E		[E]	1.2500	Mean
		[Y<>X]	0.7292	Vari <i>a</i> nce

ZP3-4	(Assigned [e]) USER INSTRUCTIONS (H	SIZE 030		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
	Binomial Distribution			
bin l	Initialization	[[e]	0.0000
bin 2	Enter Parameters	n	[STO]13	n
		p	[STO]22	p
bin 3	Calculate $P(k) = Pr(X \leq k)$	k	[B]	P(k)
ļ		1	[Y<>X]	p(k)
bin 4	Calculate $Q(k) = Pr(X > k)$	k	[b]	Q(k)
			[Y<>X]	p(k)
	NOTE: Repeat 3 and 4 as often as desired			
	Poisson Distribution			
PO1	Initialization for Poisson		[e]	0.0000
PO2	Enter Parameters	t	[STO]13	t
		λ	[STO]22	λ
PO3	Calculate $P(k) = Pr(X \leq k)$	k <u>></u> 0	[C]	P(k)
		([Y<>X]	p(k)
P04	Calculate $Q(k) = Pr(X > k)$	k <u>></u> 0	[c]	0(k)
		į	[Y<>X]	p(k)
	NOTE: See Note in bin			
	Negative Binomial Distribution			
NB1	Initialization for Negative Binomial		[e]	0.0000
NB2	Enter Parameters	r	[STO]13	r
		Р	[STO]22	p
NB3	Calculate $P(k) = Pr(X \leq k)$	k <u>></u> 0	[A]	P(k)
	p(k) = Pr(X = k)		[Y<>X]	p(k)
NB4	Calculate $Q(k) = Pr(X > k)$	k <u>></u> 0	[a]	Q(k)
	p(k) = Pr(X = k)		[Y<>X]	p(k)
NB5	Calculate $P(k) = Pr(Y \leq k)$	k <u>></u> r	[1]	P(k)
	p(k) = Pr(Y = k)		[Y<>X]	p(k)
	NOTE: See Note in bin;			
	Y = X+r = # Trials	1		

ZP3-4		USER INSTI	RUC:	TION	S (HP)			
STEP	PI	ROCEDURE				ENTER	PRESS	DISPLAY
	Geometric Distribu	ition						
G1	Initialization for	Geometric					[e]	0.0000
G2	Enter Parameter					p	[STO]22	P
G3	Calculate P(k) =	$Pr(Y \leq k)$				k <u>></u> 1	[a]	P(k)
	p(k) =	Pr(Y = k)			-		[Y<>X]	p(k)
G4	Calculate Q(k) =	Pr(Y > k)				k <u>></u> 1	[4]	Q(k)
	NOTE: See note un	ider bin.					[X<>Y]	p(k)
E	Display E(X) and V the foregoing rout		ny (of			[E] [X<>Y]	E(X) V(X)
	Register Contents	:						
	00 Used	10 z	:	20	Used			
	01	11 μ	;	21	q			
	02	$12 \sigma^2$;	22	p(λ)			
	03	13 n(t,r)		23				
	04	14		24				
	05	15		25				
	06 Used (p(k))	16 p(0)		26				
	07 Used (p(k))	17		27				
	08 09	18 19		28 29				
	Assignments	Label	ទ ប៉ុ	sed				
	ZP3-4 e	05	A.	а				
		07	B 1	b				
		08	C	c				
		11 1	D (d				
		13						
			J					
		15						
		18						
		19						
		20						

EXAMPLES ZP3-4

(1) (Binomial model) The probability of hitting a target in a single trial is 0.3. Suppose 10 independent firings are made. Calculate the probability of 3 hits, no more than 4 hits, at least 6 hits and the mean and variance of the number of hits.

Solution (1), (3):

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
bin l		[e]	0.0000	Initialize program.
bin 2	10	[STO]13	10.0000	Enter parameters.
**	.3	[STO] 22.	0.3000	
bin 3	3	[B]	0.6496	Display the CDF at 3.
		[Y<>X]	0.2668	Required probability p(3).
bin 3	4	[B]	0.8497	Repeating to find P(4).
bin 4	5	[b]	0.0473	Required Q(5) = $Pr(X \ge 6)$
E		[E]	3.000	Mean value np = 3.
		[X<>X]	2.1000	Variance of X = npq.

(2) Poisson model) Telephone calls arrive at a switchboard at the rate of 10 per hour. What is the probability of at most 3 calls in the next 20 minutes? Exactly 3? The mean number of calls?

Solution:

P01		[e]	0.0000	Initialize program.
P02	0.3333	[STO]13	0.3333	Enter total time period 20 min.
•	10	[STO]22	10.0000	Enter rate $\lambda = 10$ per hour.
P03	3	[C]	0.5730	$P(3) = Pr(X \leq 3).$
		[Y<>X]	0.2202	p(3) = Pr(X = 3),
E		[E]	3.3333	Mean number of calls in 20 mins.

(3) (Negative Binomial model) A fly fisherman estimates that his probability of catching a fish on a given cast of his rod is 0.05. He decides to keep trying until he catches three fish. What is the probability that he will need to cast at least 10 times and what is the expected number of failures? What is the probability of 9 trials? The mean number of trials?

Solution:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
NB1		[e]	0.0000	Initialize program.
NB2	3	[STO]13	3.0000	Enter r parameter of 3.
10	•05	[STO]22	0.0500	Enter probability of obtaining 1.
NB4	6	[a]	0.9916	Probability that the number
				of failures is at least 7, Q(6).
		[Y<>X]	0.0026	Probability of exactly 6 failures.
E		[E]	57.0000	Mean number of failures.
NB5	9	[J]	0.0084	Probability of no more than 9 trials.
		[Y<>X]	0.0026	Probability of exactly 9 trials.

(4) Geometric model) An item has failure probability 0.005 and is cycled until it fails. What is the expected number and standard deviation of the number of cycles? What is the probability that number exceeds 10?

Solution:

Gl		[e]	0.0000	Initialize program.
G2	.0005	[STO]22	0.0005	Enter single parameter.
G3	10	[d]	0.9950	Displays CCDF at 10, Pr(Y > 10).
E		[E]	2000.0000	Mean cycles to failure.
		[Y<>X]	3,998,000	Variance.
		[USER]√x	1999.4999	Standard deviation.
		[e]	0.0000	Clears program.

Section 4.3: Normal Distribution

The user instructions for the HP version of ZP4 are practically identical to those for TI given in the book. Label [J] is used for initialization in place of RST; otherwise, pressing the same labels produces the same; results. Using the parameter choices 0 and 1 at step N1 in ZP4 replaces ML-14 in the TI master module everywhere the discussion refers to the latter starting on page 109.

Section 4.4: Uniform Family; Sampling

As previously indicated, the serious departure from the TI format occurs in the random number generator and consequently, both the instructions and the results will differ from those published in the book. The departure begins on page 121. The random number generator adopted for the HP programs is one developed by Don Malm for the HP-65 User's Library and is referred to on page 24 of the HP-41C Standard Applications manual. The algorithm used is the simple one.

$$r_{n+1} = FRC (9821*r_n + .211327)$$

It allegedly will generate one million random numbers when a seed between 0 (inclusive) and 1 is used. This random number generator is initialized by pressing [I] whereupon you are prompted for a seed which is then entered with [R/S] instead of TI [E']. For some degree of uniformity with the TI illustrations, you may use a decimal point in front of each of the seeds given in the book, such as .419 in Example 4.10 on page 121. Subroutine RNDMU, assigned to label [i], replaces [SBR] [D.MS] and outputs a random number from the unit interval. For this illustration, the output of the HP program is .2104 instead of 0.65816 as listed, and the corresponding value of x will accordingly be 15,589.

In example 4.11, ML-15 is used to generate normal deviates. Here, Step N6, programmed as label [G] of the Normal Distribution program in 2P4, may be used in its place. For the example, using a seed of .793, the output should be 56.2958. (Of course, the parameters must be suitably stored by Step N1 to begin with.)

Continuing on page 122, the subroutine [P+R] replaces the TI key [x], while [R+P] replaces [INV] [x]. In Example 4.12, the sample values will be 47,30,56,48 with a mean of 47.3 and a standard deviation of 10.4. The next successive values are 49,45,57,50,61 with a mean of 49.8 and a standard deviation of 8.5. In Example 4.15, the ten successive values will be 727,708,417, 3401,326,213,1770,686,825,2783 with running counts checked in Register 06 rather than 03. The mean will be 1147.9 rather than the published 1311. In Example 4.16, using a seed of .66, the successive values will be 0,2,4,6,2.

If you have been able to check these examples, then, while your answers will differ from the published ones whenever random number generation is called in the problems that follow, you may rely on the results nevertheless.

ZP4 (A	ssigned [J]) USER INSTRUCTIONS (HP))	SIZE (Σ REG	
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
	Exponential Distribution			
El	Initialization		[J]	0.0000
E2	Enter Parameter	λ	[STO]22	λ
E3	Compute P(x) and Q(x)	x <u>></u> 0	[E]	P(x)
•	NOTE: Ax must not exceed 228		[Y<>X]	Q(x)
E4	Calculate 100(1-0)th Percentile	α	[e]	×α
	NOTE: Repeat E_3 and E_4 at will] "
E5	Generate sample of size n			
	a. Initialize Random Number Generator		[1]	SEED?
	b. Enter Seed (0 \leq Seed \leq 1)	Seed	[R/S]	Seed
	c. Execute Step E2			λ
	d. Generate x (Repeat n times)		[B]	х
	Normal Distribution			
Nl	Enter Parameters	μ	[STO]11	μ
		σ^2	[STO]12	σ ²
N2	Compute P(x) and Q(x)	×	[C]	P(x)
			[X<>Y]	0(x)
И3	Compute $Pr(x_1 < X < x_2)$			
	a. Enter x	* ₁	[D]	P(x ₁)
	b. Enter x_2 and compute.	× ₂	[R/S]	Pr(x ₁ <x<x<sub>2)</x<x<sub>
	_	_	[X<>Y]	Pr(X <x<sub>1) + Pr(X>x₂)</x<sub>
N4	Calculate Standard 100(1-a)th Percentile	α	[c]	za
NB5	Calculate General 100(1-q)th	α	[d]	×α
	NOTE: Repeat N ₂ -N ₅ as often as desired			_
N6	Generate sample of size n			
	a. Initialize Random Number Generator		[I]	SEED?
	b. Enter Seed (0 \leq Seed $<$ 1)	Seed	[R/S]	Seed
	c. Execute Step Nl			
	d. Generate x (Repeat n times)		[G]	x

ZP4	USER INSTRUCTIONS (HP)		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
	Uniform Distribution			
U1	Initialization		[1]	0.0000
U2	Enter Parameters	a	[STO]13	
		ь	[STO]14]
U3	Compute P(x) and Q(x)	×	[A]	P(x)
			[Y<>X]	Q(x)
U4	Compute 100(100(1-a)th Percentile	α	[SF]05	xxx
			[A]	x _a
U 5	Generate sample of size n from			
	$R_{X} = \{e_{1}, e_{2}, \dots, e_{N}\}$ corresponding to LABELS 00, 01,,K.			
	a. Initialize Random Number Generator	[[1]	SEED?
	b. Enter Seed (0 < Seed < 1)	Seed	[R/S]	Seed
	c. Execute Step U2 with a = 0, b = K	}		
	d. Generate Random Label R		[a]	R
	e. Enter e-value corresponding to R. Repeat d and e for i = 1,2,,n.	× _i	[R/S]	i
	NOTE 1. Summary stats stored in R _{O1} - R _{O6} .			
	NOTE 2. To generate from {A,A+1,,B} execute steps a-d with a = A, b = B			
М	For each of the above distribu-		[b]	μ
	tions μ and σ^2 may be recovered		[Y<>X]	σ ²
	after computing any P(x).			

ZP4				USER	INS	TRUCI	lons	5
	Register	Contents:	;					
	00 Use	∍d	10	z = (x-µ	ı)/a	20	
	01 Use	∍d	11	μ			21	
			12	σ^2			22	λ
	03 (ΣRE	iG	13	z _a (z) b(K)			23	
	04 (14				24	
1	05		15	b-a			25	Used
	06 p()	c)	16				26	Used
	07 P(2		17				27	
		(1)-P(x ₂)	18				28	
	0 9 Se		19				29	
	Assignme	ents		Labe	ls	Used		
	ZP4	J						
	ZCDF	н		03	A	a		
	GEN-INI	I		07	В	ъ		
	RNDMU	i		09	C	c		
	XBAR	P+R		11	D	đ		
}	SD	R+P		12	E	e		
				15	G			
				16				
				17				

EXAMPLES ZP4

- (1) Time to failure, X, is exponential with failure rate = 0.0001.
 - a. Determine the reliability at $x_0 = 100$ and at $x_0 = 500$.
 - b. What would the failure rate have to be to achieve a reliability of 0.99 at 500 hours?
 - c. Calculate mean and median time to failure and the variance of X.

Solution (1), (3):

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
E1		[J]	0.0000	Initialize exponential subroutine.
E2	.0001	[STO]22	0.0001	Single parameter stored in R_{22} .
E3	100	[E]	0.0100	Displays P(100)
••		[X<>Y]	0.9900	Displays O(100), the reliability at 100.
E3	500	[E]	0.0488	P(500) displayed.
**		[Y<>X]	0.9512	Q(500) = reliability at 500
E2	500	[STO]22	500.0000	Treating 500 as λ temporarily for computation in b.
E5	.99	[e]	2.0101-05	Value of $\lambda = \ln(0.99)/500$
E2	.0001	[STO]22	0.0001	Restores true λ in R_{22} for the model.
M		[b]	10,000.0000	Displays mean time to failure
		[Y<>X]	100,000,000	Displays $\sigma^2 = \mu^2$ for this model
E4	0.5	[e]	6931.0000	The median time to failure
E3		[E]	0.5000	Verifies that $P(6931) = 0.50$.

(2) A standardized test is administered to incoming freshmen at a university. Scores, X, are assumed to be normally distributed and, based on thousands of past scores, it is assumed that μ = 100 and σ^2 = 245. For an incoming freshman chosen at random what is the probability that the test score will be:

a) greater than 110? b) less than 90? c) between 75 and 125? If only the top 80% of incoming freshmen are to be admitted on the basis of this test, what would the minimum passing score be?

Solutions:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
-		[J]	0.0000	Clears exponential problem.
Nl	100	[STO]11	100.0000	Enter the mean value.
••	245	[STO]12	245.0000	Enter the second parameter $\sigma^2.$
N2	110	[C]	0.7385	Displays $P(110) = Pr(X < 110)$.
		[X<>X]	0.2615	Displays Q(110), the required probability
		[RCL]10	0.6389	Shows the standardized value for $x = 110$, namely, $z = (110-100)/\sqrt{245}$
N2	9 0	[c]	0.2615	Displays P(90)
N3a	75	[D]	0.9449	Displays Q(75), of minor interest
N3b	125	[R/S]	0.8898	Calculates and displays $Pr(75 < X < 125)$
		[X<>X]	0.1102	Displays $Pr(X<75) + Pr(X>125)$.
N5	.80	[4]	86.8291	Displays the 20th percentile for X so that $Pr(X>87) = 0.80$.

- (3) The time a passenger must wait for a commuter flight on arrival at am airport is a uniform random variable over an inteval from 0 to 30 minutes.
 - a. What is the probability that the passenger will have to wait at least 10 minutes for a flight?
 - b. What waiting time corresponds to a 90% chance of catching a flight?
 - c. What is the probability that the passenger will wait between 10 and 20 minutes?
 - d. What is the mean waiting time? σ^2 and σ ?

Solutions:

U1		[1]	0.0000	Initialize program (clears all previous work).
U2	0	[STO]13	0.0000	Enters first parameter a = 0 in R ₁₃
**	30	[STO]14	30.0000	Enters second parameter b = 30 in R ₁₄
U3	10	[A]	0.3333	Displays P(0).
		[X<>X]	0.6667	Displays the required Q(10).
U4	.90	[SF]05	0.9000	Signals calculator that percentile is coming.
U4		[A]	3.0000	Displays x .90
		[A]	0.1000	Verifies that $P(3) = .10$ so that $Q(3) = .9$

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
U4	10	[ENTER]	10.0000	Enters difference between 10 and 20 min.
;	30	[+]	0.3333	Calculates and displays $Pr(10 < X < 20) = (20-10)/30$.
M		[b]	15.0000	Recalls and displays $\mu = 15$ from R_{11}
**		[Y<>X]	75.0000	Displays the variance $\sigma^2 = 30^2/12$
		[USER][√x]	8.6603	Displays the value of σ .
		[J]	0.0000	Clears the program.

Chapter 5. BIVARIATE DISTRIBUTIONS

The user instructions are practically identical to those given for the TI-59 so little has to be modified in this chapter. At Step 2 in the HP version a display of moments routine has been added which is effected by pressing [d] followed by successive presses of [R/S]. Of course, these characteristics may also be recalled manually from the respective registers just as instructed in the book.

As with ZP3-2, some modification of the routine for LABS is called for here also. The HP instructions on the matter at Step 3 are reasonably clear. As a footnote, it is advised once more that if you will be involved in a lot of erasing of old algorithms, perhaps it would be advisable to assign the delete function DEL to an unused label, like [g] for a given session. When applying LABS to various algorithms such as those found on page 142, naturally they will have to be programmed in RPN here. It is assumed that the reader is already sufficiently familiar with the HP calculator that the translation for various examples can be made without additional instruction here. Consult the OWNERS HANDBOOK AND PROGRAMMING GUIDE for any required assistance. As one example, the function g(x,y)=(x-1)(y-2) may be programmed at Step 3c as

RCL, 09, 1, -, RCL, 10, 2, -, *, RTN

Other cases can be handled in a similar fashion.

Control of the contro

ZP5 (A	ssigned [e]) USER INSTRUCTIONS (HP)	SIZE	090
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
1.	Distribution Entry			
	a. Initialize		[e]	0.0000
	b. Enter in order x_i , y_i , $p(x_i, y_i)$	x _i	[A]	i
	(Repeat for each i through N < 19)	y _i	[B]	i
	NOTE: $p(x_i, y_i)$ should be positive.	p(x ₁ ,y ₁)	[C]	i
2.	a. Compile Distribution Characteristics		(E)	ρ
	b. Display Characteristics		[d]	μ X
			[R/S]	$\sigma_{\mathbf{x}}^{2}$
			[R/S]	ν μ y
			(n/c)	2
	NOTE: To re-compile, enter N in		[R/S] [R/S]	σ_{y}^{2}
	NOTE: To re-compile, enter N in R ₀₃ after [e]		[R/S]	σ xy ρ
3.	Calculate E[g(X,Y)], V[g(X,Y)]			
	(after Step 1)			1
	a. Initialize	}	[GTO][a]	x.xxx
	NOTE: It is understood that [ALPHA] must be used for label	a é		
	b. Enter Program Mode		[PRGM]	147 LBL
	c. Key in $g(x,y)$ with $x \in R_{09}$,		-	
	y ε R ₁₀		-	
	(Avoid labels already in use; end with RTN)		-	
	d. Exit Program Mode		[PRGM]	x.xxxx
	e. Calculate Moments		[0]	E[g(X,Y)
			[Y<>X]	V[g(X,Y)
	f. To ERASE Algorithm in [a], complete Steps a, b; then (Let nnn be at least as large		[SST] [g]	148 yy DEL
	as the number of steps in [a].)		nnn	147 LBL
		1	[PRGM]	x.xxxx

For repeated applications, use ASN to assign DEL to g (%).

							
	Regi	ster Contents			-		
	00	Counter	10	last y	20	×i	
	01	xp(x,y)	11		21	y ₁	
	02	yp(x,y)	12	^μ χ σ ² χ	22	p(x ₁ ,y ₁)	
	03	N	13	°X щ.	23	x ₂	
	04	x ² p(x,y)		μ Y σ Y			
	05	y ² p(x,y)	14 15	°Y	24	y ₂	
	06	xyp(x,y)	16	σ χΥ ρ	25 26	p(x ₂ ,y ₂)	1
			17		27	•	
	08	$\Sigma \sum_{ij} = 1(g(x,y)p(x,y))$ $1astp(g^{2}(x,y)p(x,y))$	18		28	-	
1	~~	TOBUPIE (X.Y)P(X,Y))				•	
	09	last x	19	Used	29	•	
	09	gnments Labe: e	19 ls Use A B	Used ed			
	09	gnments Labe	19 1s Use A B C	Used ed		•	
	09	gnments Labe: e	19 1s Use A B C	Used ed		•	
	09	gnments Labe: e	19 1s Use A B C	Used ed		•	
	09	gnments Labe: e	19 1s Use A B C	Used ed			
	09	gnments Labe: e	19 1s Use A B C	Used ed			
	09	gnments Labe: e	19 1s Use A B C	Used ed			
	09	gnments Labe: e	19 1s Use A B C	Used ed			
	09	gnments Labe: e	19 1s Use A B C	Used ed			
	09	gnments Labe: e	19 1s Use A B C	Used ed			
	09	gnments Labe: e	19 1s Use A B C	Used ed			
	09	gnments Labe: e	19 1s Use A B C	Used ed			
	09	gnments Labe: e	19 1s Use A B C	Used ed			

Assi	gnme	ents	Labe:	ls U	sed
ZP5	1	e	01	A	а
	1		02	В	đ
			03	C	
				D	
				E	

EXAMPLES ZP5 (i) Calculate the moments μ_X , σ_X^2 , μ_Y , σ_{Y}^2 , σ_{XY} and ρ for the joint distribution of Figure 5-2 duplicated below.

3	0	.2	0	0
2	0	0	.2	0
1	.1	.2	0	.3
y/x	1	2	3	4

Solutions:

CHILD BOX COM BOX CONTROL BOX

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
Step la		[e]	0.0000	Initialize ZP-5.
Step 1b	1	[A]	1.0000	First x-value for pair (1,1) entered.
•	1	[B]	1.0000	Corresponding y-value is entered.
•	.1	[c]	1.0000	Enter p(1,1) = .1; count of 1 triplet displayed.
•	2	[A]	2.0000	Enter x-value of second pair selected, (2,1).
**	1	[B]	2.0000	Enter corresponding y-value.
	.2	[C]	2.0000	Enter p(2,1); display shows 2 triplets entered.
•	4	[A]	3.0000	Pass up cell $(3,1)$ since $p(3,1) = 0$; enter next $x = 4$.
•	1	[B]	3.0000	Complete (4,1) entry.
•	.3	[C]	3.000	Enter $p(4,1)$; record of 3 triplets shown.
10	3	[A]	4.0000	Only positive entry in second row, x=3.
**	2	[B]	4.0000	Enter y-value for pair (3,2).
14	•2	[c]	4.0000	Enter p(3,2).
•	2	[A]	5.0000	Enter $x = 2$ for only positive entry in third row
••	3	[B]	5.0000	Enter y = 3
•	.2	[C]	5.0000	Complete entry with $p(2,3) = 0.2$
н		[RCL]07	1.0000	Check on data entry to see $\Sigma p(x,y) = 1$
Step 2a		[E]	-0.2736	Displays the value of p after complete compilation and storage of moments.
Step 2b		[4]	2.7000	Displays uX
••		[R/S]	1.0100	Displays $\sigma_{\mathbf{X}}^2$
•		[R/S]	1.6000	Displays μ

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[R/S]	0.6400	Displays $\sigma_{\mathbf{y}}^{2}$.
		[R/S]	-0.2200	Displays o _{vv} .
		[R/S]	-0.2736	Verifies again that $\rho = -0.27$.
	(2) (2)	laulaka kha		want man fam g(V V) m VV

(2) Calculate the mean and the variance for g(X,Y) = XY. Verify that $\sigma_{XY} = -0.22$

Solution:

		Solution:				
Step	3 a		[GTO]	GTO _	_	Preparing for entry to subroutine a
			[ALPHA]	GTO _		in order to program $g(x,y)$ with
			[a]	GTO a	_	ж є R ₀₉ , у є R ₁₀
			[ALPHA]	x.xxx	x	
Step	3ъ		[PRGM]	147 L	BL a	Enters program mode
••			[RCL]	148 R	CL	
			09	148 R	CL 09	
••			[RCL]	149 R	CL	
••			10	149 R	CL 10	
**			[x]	150 *		Completes formula z = xy
•			[RTN]	151 R	TN	Required return statement for subroutine.
Step	3d		[PRGM]	x.xxx	x	Return to keyboard operation (ignore display).
Step	3e		[D]	4.100	0	Calculates and displays E(XY).
**			[x<>y]	3.290	0	Retrieves σ^2 from R_{07} to R_{x} .
•			[x<>y]	4.100	0	Returns E(XY) to R _X .
•			[RCL]	RCL _		Prepares to subtract $\mu_{X}^{\mu_{Y}}$ to
**			11	2.700	0	evaluate Eq. (5-4)
			[RCL]			
			13	1.600	0	Recovers μ_{X} and multiplies by μ_{X}
**			[x]	4.320	0	
•			-	-0.220	0	Calculation complete and $s_{\overline{XY}}$ verified.
Step	3f		[GTO]	GTO		Prepare to erase algorithm in a.
			[ALPHA]	GTO_		Sends pointer to subroutine a.
			[a]	GTO a	-	
			[ALPHA]	x.xxx	x	
			[PRGM]	147 L	BL a	Enters program mode.
			[SST]	148 y	уу	Forward one step to beginning of algorithm.
			[g]	DEL _		Execute delete function.
		010		147 L	BL a	Use 10 lines (more than enough)
			[PRGM]	x.xxx	x	Exit program mode. Return to calculator control.
			[e]	0.000	0	Erases program.

STATISTICS BY CALCULATOR

Section 1.3: The Calculator

This section is quite like that of ZP so that only remarks concerning the statistics module need be added here. As mentioned in the introduction, the HP module STAT PAC will be needed for some of the ZS programs. In addition, the program ZSTAT, found in the appendix, will be needed for all of the ZS programs starting in Chapter 4 since they contain the probability distributions, among other things, that are missing in STAT PAC. Most of the applications of ZSTAT occur internally within ZS programs but, occasionally, some of the subroutines are called for individually. For that reason, suggestive alphanumeric labels have been included and the program has been assigned to label [SCI] to make it convenient to access from the keyboard.

Section 2.3: Simulation

The first departure from the TI format occurs on page 16 in the digression for computing moments of discrete distributions. A subroutine called MU-SIG and assigned to label [j] has been inserted into program ZS-2 to replace the TI use of ST-03. As the reader can see from the User Instructions that follow, the pairs are entered in opposite (but more natural) order with x first, followed by p. Instead of a running count of the number of pairs being displayed at the end of each entry, the cumulated probabilities are shown; thus, the number 1 should be seen at the conclusion of all entries. A press of [i] will then output the mean, and sigma will be found in the Y-register. (It should be noted throughout that, as with ZP, the HP Y-register replaces the TI T-register always).

Of course, the random number generator output will differ here, just as was the case in ZP. The same HP user instructions apply here, however. Thus, the generator is initialized by pressing [I] as before and you are prompted for a seed. The subroutine RNDMU, assigned to [H], will replace the TI [D.MS] routine to output a number between 0 and 1. If you will use a seed of .49 instead of 49 in the example treated on page 18, the HP output will be .5014, with a second application yielding .2349. A second program, called RNDMAB (assigned to [h]) replaces Steps 4-6 of ST-02 to output a (continuous) random number between A and B, provided A and B are stored in registers 13 and 14, respectively. For the example, again on page 18, using A=10 and B=67, the respective values will be 16.0050, 59.2222, 16.6282 and 24.0426. Finally, the subroutine RNDMI, assigned to [g], will generate random labels. On page 19 using a seed of .21, successive presses of [g] will produce labels 45, 53, 11 and 20. That will take care of the problems for this section. The answers will differ from those published of course. Be sure to press [J] when you wish to return to the main programs in ZS-2.

Section 2.4: Simulating Continuous Distributions

In Example 2.3, if a seed of .635 is used, the successive values of u are: .5464, .1799, .9504, .6085, .7613, yielding x values of 791, 198, 3004, 938 and 1435, respectively. The program instructions at Step E5 should be modified according to the ones provided here.

Program ST-19 may be replaced entirely by using the N routine in ZS-2 with μ = 0 and σ = 1. (For that matter, P(z) may be found here by entering z and pressing [XEQ] 19, to mimic the TI program). Alternatively, program ENORMD in STAT PAC may be used to calculate Q(z). Try z = 2.695 as on page 24

to see that .9964 is the value of P(z). The value Q(z) = .0036 will then be found in the Y-register. Generating random samples from both the exponential and normal distributions has been automated in ZS-2 just as in the TI case and examples follow the user instructions. No further checks will be given here.

Section 2.5: Bernoulli Trials

As with ST-19, we have mimicked the TI binomial program ST-20 as subroutine 20 here. The instructions are given under the code BIN in ZS-2 and that program may be used to check all of the problems of this section. It might be noted that the standard deviation is found in the Y-register, pressing [X<>Y] after [a], rather than a separate label [B'], as with TI.

ZS-2 (A	Assigned [J]) USER INSTRUCTIONS (HP)	SIZE <u>></u> 030 Σ REG 01			
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
E	Exponential Distribution		!		
1.	Initialization		[1]	0.0000	
2.	Enter Parameter	λ	[STO]16	λ	
3.	Compute $P(x)$ and $Q(x)$	x	[E]	P(x)	
	Note: λx must not exceed 228		[Y<>X]	Q(x)	
4.	Calculate 100(1-a)th Percentile	Œ.	[e]	×α	
	Note: Repeat E_3 and E_4 at will.				
5.	Generate sample of size n			{	
	a. Initialize Random Number Generator		[1]	SEED?	
	b. Enter Seed (0 \leq Seed $<$ 1)	Seed	[R/S]	Seed	
	c. Execute Step E2		İ	Ì	
	d. Generate x (Repeat n times)		[B]	x	
N	Normal Distribution				
1.	Initialization	ļ	[1]	0.0000	
2.	Enter Parameters	μ	[STO]17	μ	
		σ	[STO]18	σ	
3.	Compute $P(x)$ and $Q(x)$	×	[c]	P(x)	
			[Y<>Y]	Q(x)	
4.	Compute $Pr(x_1 < X < x_2)$ or $1-P(x_1 < X < x_2)$) 2)	j		
	a. Enter x,	x ₁	[0]	0(x ₁)	
	b. Enter x ₂ and compute	x ₂	[R/S]	Pr(x1 <x<x2)< td=""></x<x2)<>	
	<u>-</u>	_	[Y<>X]	Pr(X <x1) +<="" td=""></x1)>	
		[}	Pr(X>x2)	
5.	Calculate Standard 100(1-a)th Percentile	α	[c]	z	
6.	Calculate General 100(1-a)th Percentile	α	[4]	×α	
	Note: Repeat N ₃ -N ₆ as often as desired				
7.	Generate sample of size n		1		
	a. Initialize Random Number Generator		[I]	SEED?	
	b. Enter Seed (0 \leq Seed $<$ 1)	Seed	[R/S]	Seed	
	c. Execute Step NI	}			
	d. Generate x (Repeat n times)	}	[P]	x	
8.	Standard Normal (TI ST-19)	z	[XEO] 19	P(z)	
		ļ	[Y<>X]	0(z)	

zs-2	USER INSTRUCTIONS								
STEP		PROCED	URE			ENTER	PRESS	DISPLAY	
BIN		al Distribution	(TI ST	r- 20)					
1.	Initia	lize					[XEQ] 20	PMTERS?	
2.	Enter	Parameters				n	[R/S]	n	
						p	[R/S]	0.0000	
3.	Calcul	ate probabilitie	s			k	[A]	p(k)	
							[R+]	P(k)	
							[R+]	Q(k)	
MU-SIG	Discre	te Moments							
1.	Initia	lize					[j]	ΣBSTG	
2.		discrete pairs				×i	[ENTER]	x _i	
	(Rep	eat i=1,,N)				P _i	[A]	Σp _i	
3.	Calcul	ate μ and σ .			}	•	[1]	μ	
							[X<>X]	σ	
мом	Reca	11 Moments					[a]	μ	
					}		[X<>X]	σ	
	Regi	ster Contents						1	
	00	Used	10	K(label)	20	z = (x-µ)/σ	1	
	01		11		21	n			
	02	Used	12		22	p			
	03	by	13	A	23	1-p			
	04	Σ+	14	В	24	Used			
1	05		15		25	Used		ĺ	
	06		16	λ	26				
	07	P(x)	17	μ	27				
	08	$P(x_1) - P(x_2)$	18	σ	28				
	0 9	Seed	19	z a	29				

Assignments			Label	s U	sed
zs-2	J		03	A	а
GEN-INI	I		06	В	Ъ
RNDMU	н		07	С	С
RNDMAB	h		08	D	đ
RNDMI	g		09	E	e
BSTG	j		11		
MU-SIG	i		12		
XBAR	P+R		19		
SD	R+P		20		
מפ	R.				

EXAMPLES ZS-2.

- 1. Let X have an exponential distribution with parameter λ = 0.001 and suppose X measures time to failure in hours.
 - (a) Calculate the probability that time to failure will exceed 1200 hours.
 - (b) Compare the mean time to failure with the median time to failure.
 - (c) How many hours may we reasonably depend upon for survival of 90% of such items?
 - (d) Generate a random sample of five times to failure.

SOLUTIONS:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
El		[J]	0.0000	Initialize the exponential subroutine
E2	0.001	[STO]16	0.0010	Single parameter λ stored in R ₁₆
E3	1200	[E]	0.6988	Displays $P(1200) = Pr(X \le 1200)$.
		[Y<>X]	0.3012	Displays $Q(1200) = Pr(X > 1200)$ which is the answer to (a).
E4	.50	[e]	693.1472	Calculates and displays the median $x_{.50}$ (in hours).
		[RCL] 17	1000.0000	Recall μ , the mean time to failure. This answers (b).
E4	.10	[e]	105.3605	Displays x.90
E5a		[I]	SEED?	Initialize the random no. generator
E5b	.635	[R/S]	0.6350	Enter Seed = 635 for illustrative purposes.
E5c	(0.001)	([STO]16)	(0.001)	Enter the parameter λ if not already entered.
E5d		[B]	790	Displays the first generated sample value, x ₁ (rounded).
		[B]	198	The second simulated time to failure.
		[B]	3003	Successive times to failure
		[B]	938	(rounded to whole hours)
		[B]	1432	for a random sample of size 5.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS

(2) A standardized test is administered to incoming freshmen at a university. Scores, X, are assumed to be normally distributed and, based on thousands of past scores, it is assumed that 1 = 100 and σ = 16. For an incoming freshman chosen at random what is the probability that the test score will be:

a) greater than 110?
b) less than 90?
c) between 75 and 125?

If only the top 80% of incoming freshmen are to be admitted on the

basis of this test, what would the minimum passing score be?

Solutions:

N1		[J]	0.0000	Initialize.
N2	100	[STO]17	100.0000	Enter the mean value.
**	16	[STO]18	16.0000	Enter the second parameter o.
N3	110	[C]	0.7340	Displays $P(110) = Pr(X \le 110)$.
		[X<>X]	0.2660	Displays Q(110), the required probability.
		[RCL]20	0.6250	Shows the standardized value for $x = 110$, namely, $z = (110-100)/16$.
N3	90	[C]	0.2660	Displays P(90).
N4a	75	[D]	0.9409	Displays Q(75), of minor interest.
N4b	125	[R/S]	0.8818	Calculates and displays Pr(75 <x<125).< td=""></x<125).<>
		[X<>Y]	0.1182	Displays $Pr(X<75) + Pr(X>125)$.
N6	.80	[d]	86.5367	Displays the 20th percentile for X , so that $Pr(X>87) = 0.80$.

	(3)	Generate a	random	sample of size 5	from a normal distribution
N7a			[1]	SEED?	Initialize random number generator.
N7b		.198	[R/S]	0.1980	Enter Seed = 198 for illustrative purposes
N7c		50	[STO]17	50.0000	Enter the normal parameters
		10	[STO]18	10.0000	and store in appropriate registers.
N7d			[b]	42.63	Displays first generated sample
					value x (rounded).
			[b]	56.34	Successive sample values
			[b]	63.21	are generated and
			[b]	72.72	displayed (rounded).
			[b]	46.84	

ENTER	PRESS	DISPLAY	COMMENTS
Find the	mean and stan	dard deviati	on of the discrete probability
distribut	ion.		
x:	4.0 3.0	2.0 1.0	0.0
p(x):	0.13 0.21	0.43 0.1	4 0.09
ION:			
	[j]	ΣBSTG	Initialize module to start program.
4	[ENTER]	4.00	Enter distribution as data
.13	[A]	0.13	pairs(x_{i}, p_{i}) i = 1,2,,n.
3	[ENTER]	3.00	See Ep accumulated in R with
.21	[A]	0.34	l indicating final data entry.
2	[ENTER]	2.00	
.43	[A]	0.77	
1	[ENTER]	1.00	
.14	[A]	0.91	
0	[ENTER]	0.00	
.09	[A]	1.00	
	[i]	2.1500	Displays µ.
	[Y<>X]	1.0989	Displays σ from $R_{\underline{Y}}$.
Example 2	-7.		
ION:			
	[XEQ] 20	PMTERS?	Initialize binomial program. Prompt is for n and p.
4	[R/S]	4.0000	
.51	[R/S]	0.0000	Parameter entry complete.
0	[A]	0.0576	Display $P = p(0) = Pr(Y=0)$.
2	[A]	0.3747	Display is p(2) so P(2) is found
	[R+]	0.6724	in R _v .
	[R+]	0.3267	Q(2) is found in R ₂ .
1	[A]	0.2400	p(l) is displayed.
	[a]	2.0400	Displays $\mu = np$
	[Y<>X]	0.9998	Displays σ = npq
	$[USER][x^2]$	0.9996	Calculates σ^2 .
	Find the distribut x: p(x): 10N: 4 .13 .3 .21 .2 .43 .1 .14 .0 .09 Example 2 ION: 4 .51 .0 .2	Find the mean and stan distribution. x: 4.0 3.0 p(x): 0.13 0.21 ION: [j] 4 [ENTER] .13 [A] 3 [ENTER] .21 [A] 2 [ENTER] .43 [A] 1 [ENTER] .14 [A] 0 [ENTER] .09 [A] [i] [X<>Y] Example 2-7. ION: [XEQ] 20 4 [R/S] .51 [R/S] 0 [A] 2 [A] [R+] [R+] 1 [A] [a] [x<>Y]	Find the mean and standard deviation. x: 4.0 3.0 2.0 1.0 p(x): 0.13 0.21 0.43 0.1 ION: [j] EBSTG 4 [ENTER] 4.00 .13 [A] 0.13 3 [ENTER] 3.00 .21 [A] 0.34 2 [ENTER] 2.00 .43 [A] 0.77 1 [ENTER] 1.00 .14 [A] 0.91 0 [ENTER] 0.00 .09 [A] 1.00 [1] 2.1500 [X<>Y] 1.0989 Example 2-7. ION: [XEQ] 20 PMTERS? 4 [R/S] 4.0000 .51 [R/S] 0.0000 0 [A] 0.0576 2 [A] 0.3747 [R+] 0.6724 [R+] 0.3267 1 [A] 0.2400 [a] 2.0400 [x<>Y] 0.9998

Chapter 3 Data Processing

This chapter is rather independent of the others and, as the name suggests, deals with the processing of numerical data to produce traditional statistical summaries as well as grouping data into different patterns. Three programs have been created for this purpose, ZS-3 and two separate ones that are revisions of corresponding TI programs ST-03, ST-07 and ST-09. The latter were created and so named in order to follow the textbook material with the least amount of revision of instructions. The three programs should be loaded simultaneously for solving the problems here. Since some partitioning (using the SIZE function) may be called for, it is advisable that all other programs be cleared from calculator memory. The labels to which the programs have been assigned make it very convenient to move from one to the other when necessary.

Section 3.1: Sample Characteristics

Picking up the discussion on page 41, the HP, like the TI, is hard wired to compute means and standard deviations when data are entered on the keyboard with the Σ + key. Consult the Owner's Handbook for details. The basic differences are that (be sure you are not in USER mode) the registers are cleared with the CLΣ key rather than using Pgm 01 and you execute the functions MEAN and SDEV instead of $[\bar{x}]$ and $[INV][\bar{x}]$, respectively. Even so, the TI program ST-03, here assigned to [I], will allow for data storage as it does in the TI module. You see from the User Instructions that follow, you must initialize by pressing [e] and then enter the data one-by-one using label [A]. At the conclusion you will find the data stored beginning in register 31. In addition, you may press [P+R] in place of TI $[\bar{x}]$ and use [R+P] instead of TI $[INV][\bar{x}]$. To find the range, press [J] to enter program ZS-03 and then press [C] as per the instructions for that program. (Do not forget to press [I] again if you wish to return to ST-03 for any reason.) The remarks regarding repartioning may be easily transferred to appropriate remarks using the SIZE function for the HP. When data have been entered using program ST-03, you may find MSD by pressing [ENG] (the key that the subroutine MSD has been assigned to). MAD is computed by pressing [J] to enter ZS-03 and then press [B]. In this way, these instructions practically follow those of the TI to the letter. Verify the solution on page 47 for Example 3.1 following these instructions.

Section 3.2: Grouping Data

SSON TOTOTOM STATEMENT TOTOTOM STATEMENT STATE

Data are grouped and recovered in cells suitable for histogram construction by means of program ST-07/9 (assigned to label [i]), a program resembling the corresponding TI programs ST-07 and ST-09 discussed in the book. The same remarks regarding conventions and parameter limitations discussed on pages 52 and 53 apply here as well.

After pressing [i] to enter the program, you initialize with [e] just as with the TI program, only here you will be prompted for the number of cells. When you enter that number with a press of [R/S] you will then be prompted for lowest class limit XMIN and, after entering that, for the width, w, of each cell. These instructions conform to the TI instructions. At this point you have two options. If data have been entered previously, either with program ST-03 or with ST-07 itself, you have merely to press [d] whereupon you are prompted for the sample size n. Entering this number and pressing [R/S] causes the program to automatically group the data into cells as per the entry

in steps P1,2,3. Otherwise, you enter the data one-by-one using [A] just as with ST-03. Once the data have been entered, the histogram is constructed by the steps under code H. After initializing with [E], the successive cell frequencies and boundaries are displayed with a STOP at the end to signal completion of the display. This replaces the discussion on pages 53 and 54 of the text.

As for computing grouped moments, the version of ST-03 presented here is initialized the same way ([e]), and pairs are entered as discussed under code G (same as the TI entry). Moments are then displayed in the X-register when XBAR ([P+R]), SD(R+P]) and MSD ([ENG]) are used. You may then proceed to ZS-3 to find MAD and the range as discussed on page 55. The last two paragraphs on that page may be safely ignored.

Section 3.3: Transformations

Messesses and Messesses (Reserved Assesses)

Step 5 of ZS-3 presented here allows for data transformations just as with the TI version. As with ZP programs, it may be advisable now and then to erase some of the algorithms used in [a] to create transformations if many applications happen to be used. Again, the DEL function will have to be used and this should be assigned to [g] if many such erasures will be taking place. You may also have to repartition your calculator with the SIZE function if there is no room for the data. For the small data sets illustrated here, that situation is not likely to arise. The answers to the problems given at the end of the section may all be verified with the program instructions on the following page.

Section 3.4: The Central Limit Theorem

The program <code>\SNORMD</code> in STAT PAC will have to be used in this section in place of ST-19, or, as remarked on page 63, you may use ZS-2 with the caution mentioned there. Since there is no binomial program in STAT PAC, the latter might be the advisable thing to do for resolving some of the problems in this section.

ZS-3 (Assigned [J]) USER INSTRUCTIONS (HP	SIZE 090 1. Σ REG 01			
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
; 1.	Calculate the range of a sample when raw data have been entered using ST-03		[c]	R	
2.	Calculate the range of a sample when data are grouped and have been entered using ST-03 (w = cell width).	w	[c]	R	
3.	Compute MAD when ungrouped data have been entered using ST-03.		[B]	MAD	
l.,	Compute MAD when grouped data have been entered using ST-03		[b]	MAD	
5.	Transform data by the transformation x' = f(x): a. Initialization. b. Enter program mode c. Enter f(x) using parentheses where necessary and always end with [INV][SBR]. Exit program mode. d. (1) Keyboard Entry (repeat for each i). (2) Original Data Stored by ST-03 (n = sample size). NOTE 1: Steps 1 and 3 apply following Step 5d. NOTE 2: To ERASE Algorithm in [a], complete Step b; then (Let nnn be at least as large as the number of steps in [a])	x ₁ n [XEQ][DEL] [†]	[e] [GTO][a] [PRGM] [PRGM] [A] [E] [SST] [g] nnn [PRGM]	0.0000 x.xxxx 160 LBL a x.xxxx i.0000 n.0000 161 yy DEL 161 LBL a	
6.	Recall transformed data. NOTE: May be repeated at any time.		[d] [D] [D]	0.0000 x' ₁ x' ₂ x' ₃	
7.	Clear Step 6		[CF]01	*.xxxx	

For repeated applications of Step 5, use ASN to assign the function DEL to label g(%) before executing this step. (DEL is not programmable and cannot be preserved in user mode by the card reader.)

ST-03	(Assigned	[1])	,	USER	INSTR	UCTIO	NS (HP))			060 -089 G 01
STEP			.]	PROCEDURE				ENT	ER	PRESS	DISPL
I	Initial	lzati	.on							[e]	0.000
ŭ	Ungrouped Data Entry Repeat i = 1,2,,n.						×i		[A]	1.000	
G	Grouped	Data	Ent	ry				f _i		[B]	fi
	Repeat	i = 1	,2,.	,n.				r _i		[A]	1.00
МОМ				mple mean tandard De	eviati	.on				[P+R] [R+P]	x
	2. Calo	culat	e MSI	D						[ENG]	MSD
REGIST	ER CONTENT	<u>rs</u> (6	roup	ed data in	n pare	nthes	es)		1		
00	Used		10	1(f _i)	20	30	Point	er			
01	$\Sigma_{\mathbf{x}}(\Sigma_{\mathbf{f}\mathbf{x}})$		11	w	21	31	x ₁ (x ₁)			
02	Σx ² (Σfx ²	²)	12	x _{min}	22	32	*2(f)			
03			13	x max	23		, ,				
04			14	Used	24	34	*4 ^{(f} 2	2)			
05			15		25	35	•				
06	n(Σf _i)		16		26	36	•				
07	$\Sigma \mathbf{x}_1 - \mathbf{x} $		17	••	27	37					
08	Used		18	Used	28	38					
0 9 	Lastx		19	xcount	29	39 					
	Assign		s		-	ls Us					
	ZS-3	J			-	-3	_	<u>:-03</u>		07/9	
	ST-03	I				Aa		Ae		Ac	
	ST-07/9 XBAR	i P+R	•		02 03	Вb Сс	02 03	В	02 03	E d	
	SD	R+P			03	Dd	03		04	e	
	MSD	ENG			05	Бe			04		
		,			12						
					13						
						44					

Assign	nments	Labels	Use	<u>d</u>				
zs-3	J	ZS-3	<u>zs-3</u>		-03	ST-07/9		
ST-03	ı	01 A	а	01	Аe	01	A	c
ST-07/9	i	02 B	ъ	02	В	02	E	đ
XBAR	P+R	03 C	c	03		03		e
SD	R+P	04 D	d			04		
MSD	ENG	05 E	e					
		12						
		13						

	'9 (Assig	gned [i		SIZE 060-089 Σ REG 01					
STEP			PROC	EDURE			ENTER	PRESS	DIS
I	Initia	alizati	.on					[i]	0.0
P	Enter	Parame	ters					[e]	CEL
1.	Enter	number	of cell	.s (<u><</u> 1	5)		Cells	[R/S]	XMI
2.	Enter	Lowest	Class I	.imit			x	[R/S]	W
3.	Enter	Interv	al Width	1			w	[R/S]	0.0
DE	Data 1	Entry a	md Compi	lation					
1.	01			Repeat	i = 1,2,	.,n)	x _i	[A]	1.0
2.	If Dat	OR: ta Are	Previous	sly Sto	red			[d]	N :
				•			n	[R/S]	n.0
н	Histor	ram Co	metructi	on (af	ter DE)		 		
1.	1	Histogram Construction (after DE) Initialization						[E]	0.0
2.	J	Display Cell Frequency						[c]	fi
3.						erval	j	[R/S]	Bi
		Display Upper Limit, B _i , of Interval (Repeat i = 1,2,,Cells)							1:1
	1		, ,				1	1	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	••••			54 - DD			42 62 - 1	
	Note:	Corre been	sponding	group	ed moments	are t	computed by XE then found in you must pres	R_{Y} if Hist	MSD in
REGIST	Note:	Corre been to ST	sponding construc	group	ed moments	are t	hen found in	R_{Y} if Hist	MSD in
00	TER CONTI	Correbeen to ST	sponding construc	group	ed moments In either	are t	hen found in	R_{Y} if Hist	ogram l
00	TER CONTI	Correbeen to ST ENTS 10	esponding construction (-07/9.	20 21	f 7	30 31	then found in you must pres	R_{Y} if Hist	MSD in
00 01 02	TER CONTI	Correbeen to ST ENTS 10 11	constructions of the construction of the const	20 21 22	f 7 f 8 f 9	30 31 32	Pointer	R_{Y} if Hist	MSD in
00 01 02 03	TER CONTY Used Ex 1 2 Ef 1 2 1 2	Correbeen to ST ENTS 10 11 12 13	constructions of the construction of the const	20 21 22 23	f 7 f 8 f 9 f 10	30 31 32 33	then found in you must pres	R_{Y} if Hist	MSD in
00 01 02 03 04	Used Exication Efixi Efixi Efixi Efixi	been to ST ENTS 10 11 12 13 14	constructions co	20 21 22 23 24	f7 f8 f9 f10 f11	30 31 32 33	Pointer	R_{Y} if Hist	MSD in
00 01 02 03 04 05	Used Exiz Exiz Efixi Used Used	ENTS 10 11 12 13 14 15	constructions co	20 21 22 23 24 25	f7 f8 f9 f10 f11 f12	30 31 32 33 34 35	Pointer	R_{Y} if Hist	MSD in
00 01 02 03 04 05	TER CONTY Used Exiz Exiz Efixi Efixi Used n	ENTS 10 11 12 13 14 15 16	used w xmin xmax f 1 f 2 f 3	20 21 22 23 24 25 26	f7 f8 f9 f10 f11 f12 f13	30 31 32 33 34 35 36	Pointer	R_{Y} if Hist	MSD in
00 01 02 03 04 05 06	TER CONTI	Deen to ST 10 11 12 13 14 15 16 17	constructions co	20 21 22 23 24 25 26 27	for a second of the second of	30 31 32 33 34 35 36 37	Pointer	R_{Y} if Hist	MSD in
00 01 02 03 04 05 06 07	ER CONTI	ENTS 10 11 12 13 14 15 16 17 18	constructions co	20 21 22 23 24 25 26 27 28	f7 f8 f9 f10 f11 f12 f13 f14 f15	30 31 32 33 34 35 36 37 38	Pointer	R_{Y} if Hist	MSD i
00 01 02 03 04 05 06	TER CONTI	Deen to ST 10 11 12 13 14 15 16 17	constructions co	20 21 22 23 24 25 26 27	for a second of the second of	30 31 32 33 34 35 36 37	Pointer	R_{Y} if Hist	MSD i

REGI	REGISTER CONTENTS										
00	Used	10	Used	20	f ₇	30	Pointer				
01	$\Sigma_{\mathbf{x_i}}$	11	W	21	f ₈	31	* 1				
02	Σx_i^{-2}	12	x min	22	f ₉	32	x ₂				
03	Σf x	13	x	23	f ₁₀	33	x ₃				
04	$\Sigma f_{\mathbf{i}}^{-2}$	14	f	24	f ₁₁	34	:				
05	Used	15	f ₂	25	f ₁₂	35	•				
06	n	16	f ₃	26	f ₁₃	36					
07	Used	17	£4	27	f ₁₄	37					
80	Used	18	f ₅	28	f ₁₅	38					
09	CELLS	19	f ₆	29	xcount	39					

EXAMPLES ZS-3

1. For the ungrouped data below, calculate \bar{x} , s, MSD, MAD and R. Then transform the data by x' = 1/x and calculate the same statistics for the transformed data.

5, 10, 6, 4, 3, 8, 12
Recall the actual values of the first three data points.

	Recall the a	actual values of	the first	three data points.
ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
ST-03		[1]	0.0000	Select ST-03
I		[e]	0.0000	Initialize for data entry.
U	5	[A]	1.0000	Enter data.
	10	[A]	2.0000	
	6	[A]	3.0000	
	4	[A]	4.0000	
	3	[A]	5.0000	
	8	[A]	6.0000	
	12	[A]	7.0000	Data Entry complete.
		[P+R]	6.8571	The value of the sample mean.
		[R+P]	3.2878	The value of the sample standard deviation.
		[ENG]	9.2653	Value of MSD.
zs-3		[J]	9.2653	Enter program ZS-03.
3.		[B]	2.6939	MAD calculated and displayed.
1.		[c]	9.0000	The range $R = 9$
5a.		[e]	0.0000	Initialize ZS-3 for data trans- formation.
5b.		[GTO][a][PRGM]	160 LBLa	Preparation for transformation.
5c.		[1/x]	161 1/x	Simple algorithm.
••		[RTN]	162 RTN	Necessary return instruction.
••		[PRGM]	x.xxx	Exit program mode for ZS-3 operation.
5d.(2)	7	(E)	7.0000	Data automatically transformed and stored in R_{31} , R_{32} ,
		[P+R]	0.1798	Value of x' rounded.
		[R+P]	0.0892	Rounded value of s'.
		[ENG]	0.0068	Rounded value of MSD'.
3.		[B]	0.0697	Rounded value of MAD'.
1.		[c]	0.2500	Value of R', the new range.
6.		[d]	0.0000	Initialize to recall transformed data.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[D]	0.2000	Recall value of $x_1' = 1/x_1$.
		[D]	0.10000	Recall value of $x'_2 = 1/x_2$.
		[D]	0.1667	Recall value of $x'_3 = 1/x_3$.
:		[CF]01	0.1667	Clear display program
2.	For the grouped	data below,	, calculate $\bar{\mathbf{x}}$,	s, MSD, MAD and the range.
	Frequency:	3 4	9	4 5
	Class Interval:	0-10 10-	-20 20-30	30-40 40-50
	SOLUTION:			
ST-03		[1]	0.0000	Select program ST-03.
I		[e]	0.0000	Initialize ST-03 for data entry.
G	3	[B]	3,0000	Enter first frequency.
	5	[A]	1.0000	Enter first midpoint; running count
	4	[B]	4.0000	displayed.
	15	[A]	2.0000	Repeat for each pair.
	9	[B]	9,0000	
	25	[A]	3,0000	
	4	[B]	4.0000	
	35	[A]	4.0000	
	5	[B]	5.0000	
	45	[A]	5.0000	Data entry concluded.
		[P+R]	26.6000	Grouped mean value x.
		[R+P]	12.8062	Rounded value of s.
		[ENG]	157.4400	Value of MSD.
zs-3		[J]	157.4400	Enter Program ZS-3
4.		[b]	10.0480	Value of MAD.
2.	10	[c]	50.0000	Value of grouped range R-based on a class width of 10.
3.	Group the follow w = 10 starting	ving data in at x _ = 1	nto a histogra	am consisting of 6 cells of width
		36 87	75 100	120 100 80
	110 10	05 95	90 100	85 95 85
	Calculate: x,	s, MSD for	both grouped a	and ungrouped data.
	SOLUTION:			
ST-07/9		[±]	0.0000	Select program ST-07-9
I		[e]	CELLS?	Initialize for parameter entry.
P1	6	[R/S]	XMIN?	Enter total number of cells.

Enter x nin, lowest data limit.

[R/S] W = ?

70

P2

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
P3	10	[R/S]	0.0000	Enter cell width.
DE	120	[A]	1.0000	Enter first data value
	86	[A]	2.0000	Enter second data value
		:	:	:
,	85	[A]	16.0000	Enter last data value
н1		[E]	0.0000	Initialize histogram display.
н2		[c]	1	First cell frequency
н3		[R/S]	80.0000	B, so Cell 1 runs from 70 to 80.
H2		[c]	5	Second cell frequency
н3		[R/S]	90.0000	B ₂ establishing interval 80 to 90.
H2		[c]	3	Third cell frequency
н3		[R/S]	100.0000	Third cell upper limit.
H2		[c]	4	Fourth cell frequency
Н3		[R/S]	110.0000	Fourth cell boundary.
H2		[c]	1	Fifth frequency for cell
н3		[R/S]	120.0000	running from 110 to 120
H2		[c]	2	Sixth frequency for last cell.
н3		[R/S]	130.0000	Upper bound on all data (not included as a possible value)
		[c]	STOP	Indicates conclusion of program.
		[P+R]	95.8125	$\bar{\mathbf{x}}$ for ungrouped data
		[Y<>X]	98.1250	f x for grouped data
		[R+P]	13.2525	s for ungrouped data
		[Y<>X]	14.9304	s for grouped data
		[ENG]	164.6523	MSD for ungrouped data
		[Y<>Y]	208.9844	MSD for grouped data
		[1]	0.0000	Ensures return to ST-07/9

Chapter 4 Estimation

Chapter 5 Hypothesis Testing

The problems in both of these chapters are covered by a single program, called ZS-4/5. This was one of the more successful translations from TI to HP so that very little needs to be added in the way of remarks. As the reader will see from the User Instructions that follow, the directions are practically identical to those published in the text. One small difference is that raw data will not be entered by ST-03, but rather by a self-contained data entry scheme (DE) which is much simpler and covers all of the cases treated. Naturally, any TI reference to the T-register should be translated to the HP Y-register, and the display register, $R_{\overline{D}}$ referred to so often, becomes the HP X-register. Another important point that is universally true of the difference between the two calculators is that $R_{\overline{D}}$ is used by the HP routines for storing sample sizes while TI used $R_{\overline{D}}$. That change should be noted throughout the instructions that follow.

As previously remarked, the program ZSTAT should be loaded into program memory for all of the ZS programs from this point on in the text. It will be convenient to assign ZSTAT to a label, say [SCI], for easy access to the programs that are referred to occasionally in these chapters.

On page 85 reference is made to the formula for the t-density in ASM. It is really not particularly instructive for the applications presented here to actually see the formula but it may be found in most standard textbooks, and a picture of the typical density is shown on page 103. In any case the value of the CDF P(t) may be found by storing degrees of freedom, ν , in R_{15} , entering t and then [XEQ][TF] in ZSTAT. On page 86 it should be noted that the subroutine ZA in ZSTAT replaces the subroutine [sin] in TI. (See also the Note in the User Instructions that follow.)

One of the few distributions provided by STAT PAC is the Chi-square, referred to on page 92. This distribution is labeled $\Sigma CHISOD$ and is discussed on page 70 of the STAT PAC handbook. It may also be found as the subroutine [CHISD] in ZSTAT (requiring, again, only that degrees of freedom be store in R_{15}). Either replaces references to [C] in TI ST-21. A typical Chi-square density is depicted in the legend to Table C on page 104, where percentiles are located. It should be observed that the footnote regarding large degrees of freedom applies verbatim to the HP program ZS-4/5.

That takes care of all of the differences in these two chapters. Following the User Instructions on the next three pages will be found the typical model problems for verifying program output.

ZS-4/5	Assigned [J]) USER INSTRUCTIONS (HP))	SIZE 050 Σ REG 01		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
DE	ORIGINAL DATA ENTRY				
1.	Enter Data]		;	
	a. Initialize		[1]	DATA?	
	b. x_i Repeat $i = 1, 2, \dots, n$		[R/S]	1.0000	
2.	Process Data for Storage		[4]	0.0000	
Ν(μ)	NORMAL MEAN - σ UNKNOWN				
1.	Enter Data using DE OR:				
	a. Enter Sample Size	n	[STO]06	n	
	b. Enter Sample Mean	x	[STO]37	x	
	c. Enter Sample Standard Deviation	s	[STO]38 ·	s	
2.	Test H ₀ : μ = μ ₀				
	a. Enter H ₁ -code*	H ₁ -code	[a]	H _l -code	
	b. Enter µ and Compute P-value	μ ₀	[R/S]	P	
3.	CI for µ				
	a. Calculate Degrees of Freedom		[A]	ν	
	b. Enter $t_{\alpha/2}$ with d.f. = v	t _{a/2}	[R/S]	e e	
	and calculate limits	., 3	[Y<>X]	u	
	NOTE: For One-sided intervals, enter t as as the case may be.	t Step 3b and	ignore l o	r u	
Ν(μ σ)	NORMAL MEAN - o KNOWN				
1.	Enter Data Using DE OR:	j		ļ	
	a. Enter Sample Size	n	[STO]06	n	
	b. Enter Sample Mean	x	[STO]37	x	
3.	Test $H_0: \mu = \mu_0$				
	a. Enter H ₁ -Code	H ₁ -code	[b]	H,-code	
	b. Enter μ_0 and Compute P-value	μ _O	[R/S]	P	
4.	Calculate 100(1-α)% CI for μ	α/2	[B]	Ł	
			[Y<>X]	u	
	Note: Enter a for one-sided intervals and	ignore & or	u as the ca	se may be.	
]		·		·	

Note: In ZSTAT (assigned [SCI]),
[XEO][ZA] displays z p if P is in R X

ZS-4/5	USER INSTRUCTIONS			
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
N(σ ²)	NORMAL VARIANCE			
1.	Enter Data Using DE OR:			
	a. Enter Sample Size	n	[STO]06	n
	b. Enter Sample Standard Deviation	s	[STO]38	s
2.	Test $H_0 : s^2 = \sigma_0^2$			
	a. Enter H ₁ -code	H ₁ -code	[c]	H ₁ -code
	b. Enter σ_0^2 and Compute P-value	$^{\rm H_1-code}_{\sigma_0^2}$	[R/S]	P
3.	CI for σ^2			
	a. Calculate Degrees of Freedom	2	[C]	v
	b. Enter Chi-square Percentiles	$\chi_{1-\alpha/2}^2$	[STO]41	$\chi^2_{1-\alpha/2}$
	(v=n-l) and Calculate Limits	$\begin{bmatrix} x_{1-\alpha/2}^2 \\ z \\ x_{\alpha/2} \end{bmatrix}$	[STO]31	$\begin{array}{c} x_{1-\alpha/2}^2 \\ x_{\alpha/2}^2 \end{array}$
		۵, 2	[R/S]	L, E
			[X<>X]	u
	NOTE: For Upper One-sided Interval, enter displayed. For Lower One-sided intervalsee & displayed.	$x_{1-\alpha}^{1-\alpha}$ in x_{41} erval, enter ;	and in R ₃₁ ar	and see und R ₄₁ see
Exp(µ)	Exponential Mean			
1.	Enter data using DE or:			
·	a. Enter Sample Size	n	[STO]06	n
	b. Enter Sample Mean	x	[STO]37	x
2.	Test $H_0: \mu = \mu_0$			
	a. Enter H ₁ -code	H ₁ -code	[e]	H ₁ -code
	b. Enter μ_0 and Compute P-value	μ ₀	[R/S]	P
3.	CI for			
	a. Calculate Degrees of Freedom		[E]	- V
	b. Enter Chi-square Percentile v=2n	$\begin{array}{c} \chi^2_{1-\alpha/2} \\ \chi^2_{\alpha/2} \end{array}$	[STO]41	$x_{1-\alpha/2}^2$
	and Calculate Limits	$\chi_{\alpha/2}^2$	[STO]31	χ _{α/2}
		4 , 4	[R/S]	2
			[Y<>X]	u
	NOTE: See Previous Note for One-Sided Into	ervals.		

`		1	10	t	20	1	30	ts	40	θ
0		ļ		1	20	1		ເຮ	40	2
)1	Σχ.		11	ĺ	21		31	$t_{\alpha/2}, \chi_{\alpha/2}^2$	41	$x_{1-\alpha/2}^2$
)2	Σx ₁ 2	1	12		22		32	SE	42	
3	_		13		23		33	Used	43	
04		<u> </u>	14	Used	24 _		34	θ _O	44	
05		Used	15	ν	25		35	J	45	
06	n	1	16		26	Used	36		46	
07			17	-	27	-	37	x	47	
80			18]	28	H,-code	38	s	48	
09		ı	19	ı	29	P(ts)	39	e(θ±e)	49	Used

Assignments	Labels Used			
ZS-4/5 J	01	A	а	
	02	В	ъ	
	03	С	с	
	04	D	d	
	05	E	e	
	06			

EXAMPLES ZS-4/5

- (1) To study the effects of a drug, nine athletes were timed in a series of physical tests and yielded an average of $\bar{x} = 10.13$ minutes. It was assumed in the study that $\sigma = 1$ and that reaction times are normally distributed.
 - a. Find a 90% CI for the mean reaction time μ .
 - b. Determine a 99% lower one-sided interval for μ .
 - c. Find a one-sided upper bound on μ having risk 15%.
- (2) Four specimens of an expensive cloth were subjected to strength tests and the breaking strengths in lbs./sq. in. were recorded as 181, 173, 176, 175. The standard deviation based on past experience is 5 lbs./sq in. Assume normality.
 - a. Find a 95% CI for μ , the mean breaking strength.
 - b. What is a lower one-sided bound for μ with confidence 90%?

	Solu	tion (1):			
ZP STE	<u>P</u>	ENTER	PRESS	DISPLAY	COMMENTS
$N(\mu \sigma)$	la.	9	[STO]06	9.0000	Places the sample size in R_{06} .
	lb.	10.13	[STO]37	10.1300	Stores the sample average in R ₃₇ .
	2.	ı	[STO]48	1.000	Stores known σ -value in R_{48} .
	4.	.05	[B]	9.5816	Enter $\alpha/2 = .10/2$; display ℓ .
			[Y<>X]	10.6784	Exchange and display u. 90% CI for μ is $(9.58, 10.68)$.
	4.	.01	[B]	9.3544	Enter $\alpha = .01$ and find $\ell = 9.35$ so confidence is 99% that $\mu > 9.35$ solving (b) (R_{ψ} is not examined)
	4.	.15	[B]	9.78	Using $\alpha = .15$, ℓ is calculated but ignored.
			[X<>Y]	10.4755	The Y-register yields required upper limit on μ , solving (c).
	Solut	tion (2):			
DE	1.		[J]	DATA?	
			[R/S]	0.0000	Initialize ZS-4 for data entry.
		181	[R/S]	1.0000	First breaking strength entered.
		173	[R/S]	2.0000	Second breaking strength entered.
		176	[R/S]	3.0000	Third breaking strength entered.
		175	[R/S]	4.0000	Fourth breaking strength entered.
DE	2.		[4]	0.0000	Data processed.
Ν(μ σ)	2.	5	[STO]48	5.0000	Stores known σ -value in R_{48} .

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
4.	.025	[B]	171.3490	Entering $\alpha/2$ for $\alpha = .05$, ℓ is displayed.
		[X<>Y]	181.1510	Y-register yields u. CI:(171.3,181.2) is reported and (a) is resolved.
4.	.10	[B]	173.0457	The 90% lower limit for (b) of 173.0 is found using $\alpha = .10$.

(3) Five specimens of coke tested for porosity showed weight gains of 2.16, 2.19, 2.31, 2.30 and 2.21, all in pounds. The variance of the process is unknown. Find a 90% C.I. for the mean weight gain. Find estimates of μ and σ and SE.

Solution:

DE	1.		[J]	DATA?	
			[R/S]	0.0000	Initialize ZS-4 Ungrouped for data entry.
		2.16	[R/S]	1.0000	First weight entered.
		2.19	[R/S]	2.0000	Successive weights entered.
		2.31	[R/S]	3.0000	
		2.30	[R/S]	4.0000	
		2.21	[R/S]	5.0000	
DE	2.		[a]	0.0000	Process data.
N(µ)	3a.		[A]	4.0000	Display $v = 4$.
	3ъ.	2.132	[R/S]	2.1698	Lower confidence limit displayed
			[Y<>X]	2.2982	Upper Limit retrieved from $R_{_{f V}}$.
			[RCL]40	2.2340	Retrieve $\hat{\mu} = \bar{x}$, the estimate of μ .
			[RCL]38	0.0673	Retrieve $\hat{\sigma}$, the estimate of σ .
			[RCL]32	0.0301	Retrieve s/\sqrt{n} , the estimate of SE.
		Report 2	.17 < μ < 2.3	0 or 90%	C.I. for μ is (2.17, 2.30).

(4) Summary data for a problem are \overline{x} = 2.268 and s = 0.225. Determine a 90% lower one-sided C.I. for μ and an upper 99% C.I. for μ .

	Solu	tion:			
Ν(μ)	la.	5	[STO]06	5.0000	Enter the sample size in R_{03} .
	1b.	2.268	[STO]37	2.2680	Enter the sample average in R_{40} .
	lc.	.225	[STO]38	0.2250	Enter the sample s.d. in R ₃₈ .
	3a.		[A]	4.0000	Display $v = 4$.
	3ъ.	1.533	[R/S]	2.1137	Lower limit is displayed; R_{γ} ignored.
	3a.		[A]	4.	-
	3ъ.	3.747	[R/S]	(1.890)	t entered and lower limit ignored;
			[Y<>X]	2.6450	R_{Y}^{vields} the upper one-sided limit.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS

- (7) Times to failure for six expensive pieces of electronic equipment were recorded in hours as 233.6, 1402.7, 3119.0, 612.9, 258.3 and 2211.2.
 - (a) Find a 95% C.I. for mean time to failure.
 - (b) Determine a point estimate and a lower one-sided 95% confidence limit on the reliability at 500 hrs.

Solution:

DE	1.		[J]	DATA?	
			[R/S]	0.0000	Initialize ZS-4 for raw data entry.
		233.6	[R/S]	1.0000	First time to failure entered.
		1402.7	[R/S]	2.0000	Succeeding times to failure
		3119	[R/S]	3.0000	entered and processed.
		612.9	[R/S]	4.0000	
		258.3	[R/S]	5.0000	
		2211.2	[R/S]	6.0000	
DE	2.		[4]	0.0000	Data processed.
Exp((μ) 3a.		[E]	12.0000	Display $v = 2n$
	3ъ.	4.4	[STO]41	4.4	Storing lower percentile in R_{41}
		23.4	[STO]31	23.3	Storing upper percentile in R ₃₁
			[R/S]	669.8889	Display &
			[Y<>X]	3562.5909	Find u so CI is (673,3563)
			[RCL]40	1306.2833	$\hat{\mu} = \bar{\mathbf{x}} = 1306$
			[U][1/x][U]	0.0008	$\hat{\lambda} = 1/\bar{x} = 0.0008$
		50 0	[x]	0.3828	Multiplying by 500 to find $500\hat{\lambda}$
			[CHS]	-0.3828	Change sign for exponentiation
			[U][e ^X]{U]	0.6820	to yield estimate of R(500).
			[E]	12.0000	Display v to start new problem.
		21.0	[STO]31	21.0000	Store required $\chi^2_{.05}$ in R_{31}
			[STO]41	1.0000	and l in R ₄₁ for one-sided limit.
			[R/S]	746.4476	Display required lower limit on μ
			[U][1/x][U]	0.0013	Upper limit on λ
		500	[x]	0.6698	Multiplying by 500 to find upper limit on -500λ
			[CHS]	-0.6698	Lower limit on -500\(\lambda\)
			[U][e ^X][U]	0.5118	Lower bound on R(500).

NOTE: [U] stands for the [USER] key.

Examples ZS-4 (Testing, Chapter 5)

(1) Seven observations of measured radiation intensity at a nuclear plant were 3.6, 4.2, 4.0, 4.1, 3.8, 3.9, 4.0. Conduct a significance test of $H_0: \mu \le 3.8$ against $H_1: \mu > 3.8$.

Solution:

ZS ST	<u>SP</u>	ENTER	PRESS	DISPLAY	COMMENTS
DE	1		[J]	DATA?	Select and initialize ZS-4
		3.6	[R/S]	1.0000]	
		4.2	[R/S]	2.0000	
		•			Enter Data
		4.0	[R/S]	7.0000	
DE	2		[d]	0.0000	Process data.
N(µ)	2a.	1	[a]	1.0000	Enter H ₁ -code (+1).
	2ъ.	3.8	[R/S]	0.0530	Enter boundary value and compute P = .053 from t-density.

- (2) A water meter has variance 14 (cu. ft)². Twenty monthly readings indicate a sample mean of 1284 cu. ft. per month.
 - (a) Test the hypothesis H $_0$: μ = 1286 against H $_1$: μ ≠ 1286, using α = .05.
 - (b) Calculate the significance level for the one sided alternative $\text{H}_{\text{1}}\text{'}$: μ < 1286.

Solution:

$N(\mu \sigma) la$	20	[STO]06	20.0000	Enter sample size.
N(μ σ)1b	1284	[STO]37	1284.0000	Enter sample average.
$N(\mu \sigma)$ lc	14	$[\sqrt{x}][ST0]48$	3.7417	Enter known σ.
Ν(μ σ)4	.025	[B]	1284.3598	L
		[Y<>X]	1285.6402	u (Since (ℓ ,u) does not contain μ_0 , H_0 is rejected.)
$N(\mu \sigma) 3a$	-1	[b]	-1.0000	H ₁ -code for part (b).
N(μ σ)3b	1286	[R/S]	0.0084	P -value (data are inconsistent with H_0).

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS

(3) The standard deviation in GRE scores nationwide has been 40 points.

The GRE scores for 86 Smith High School students this year has (sample) standard deviation 35.2. What is the significance of this result?

_	20101	10n:			
N(o ²)		86	[STO]06	86.0000	Enter sample size.
$N(\sigma^2)$		35.2	[STO]38	35.2000	Enter sample standard deviation.
$N(\sigma^2)$		0	[c]	0.0000	Enter H_1 -code for H_1 : $\sigma \neq 40$.
N(σ ²)	2b.	1600	[R/S]	0.1220	P-value. (Data are somewhat consistent with $H_0: \sigma = 40$.)

(4) Times to failure of a sample of 12 unused D-cells were (in weeks): 27, 41, 29, 33, 30, 33, 26, 37, 29, 11, 20, 29. The shelf life is claimed to be at least 35 weeks. Conduct a significance test of $H_0: \mu \leq 35 \text{ vs. } H_1: \mu > 35$.

	Solut	ion:			
DE	1		[J]	DATA?	Select and initialize ZS-4.
			[R/S]	0.0000	
		27	[R/S]	1.0000	
		41	[R/S]	2.0000	
		: 29	: [R/S]	12.0000	Enter data
DE	2		[4]	0.0000	Process data.
Ехр(µ)	2a.	1	[e]	1.0000	Enter H,-code
Exp(µ)		35	[R/S]	0.7129	P-value (data are consistent with H_0 .)

Chapter 6 Bivariate Populations

Program ZS-6 is another very successful transfer from the TI version and is assigned to [J] which also serves to initialize data entry and will ultimately replace references to ST-04. For matters discussed in Section 6.2, however, it is more convenient to use the program SBSTAT in STAT PAC. The procedure for inputting paired data is discussed on page II of the STAT PAC handbook. Output is then displayed by successive [R/S]'s, some of which are of no interest here. It should be noted that the output labeled GXY is simply the correlation coefficient referred to on page 130 of ZS. Also, in the notation of ZS, the HP output labeled SX. is RMSD for X, while SY. is RMSD for Y.

The STAT PAC program Σ BSTAT does not appear to be suitable for entering independent data of the type discussed on page 131 of ZS. Nor is any provision made for entering univariate data in any of the programs published in STAT PAC. The simplest solution is to start with the x-data and enter the data twice at Step 2 (that is, let $y_i = x_i$) in BSTAT, in which case all of the moments are X-moments and the correlation is 1; alternatively, the [ENTER] portion of Step 2 may be ignored, each x entered with [A] in which case you should ignore all X-outputs in the list and copy only those for Y and ignore GXY altogether. Then the whole process needs to be repeated for the y-data.

Section 6.3; Paired Data

For implementation of the programs in ZS-6, raw data will be entered via a self-contained subroutine, called DE in the User Instructions that follow, and replaces references to ST-04 in the rest of the chapter. That subroutine is divided into two parts depending on whether the data are paired or independent. For this section, the data are paired so that option P will be used and the user instructions make it clear how the data are to be entered. Be sure to process the data after entry by pressing [d]. Otherwise, the instructions are identical to those provided in the book for TI.

Section 6.4: Independent Data

In this section the I option of data entry DE is to be used and, at the conclusion of data entry once more [d] must be used to process the data. Please keep in mind also that R_{06} is to be used in place of TI R_{03} throughout. The rest of the instructions are identical.

Section 6.5: Equality of Variances

No F-distribution is provided by STAT PAC so that distribution has been programmed into ZSTAT. Again, no formula is provided in ZS, nor is one really needed in this context. But the subroutine FCDF in ZSTAT will output P(F), while FCCDF will output Q(F) provided v_1 is in R_{15} and v_2 is in R_{16} . For example, if v_1 = 2 and v_2 = 24, you may verify by executing FCCDF in ZSTAT that Q(2.63) = .0927; if v_1 = 20 and v_2 = 7, then P(.4) = .0510. Again, the rest of the remarks in the book apply to the HP programs verbatim.

ZS-6 (<i>I</i>	Assigned [J]) USER INSTRUCTIONS (HE	?)	SIZE 050 Σ REG 01		
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
DE	ORIGINAL DATA ENTRY				
0.	Initialize	} ;	[J]	DATA?	
1.	Enter Data			1	
	a. Paired Data		[P]	0.0000	
	(Repeat i = 1,2,,n)	×i	[ENTER]	× _i	
		y _i	[R/S]	i.0000	
	b. Independent Data	1	[I]	0.0000	
	(1) Repeat i = 1,2,,n _x	×i	[R/S]	1.0000	
		1	[j]	0.000	
	(2) Repeat j = 1,2,,n _y	y _j	[R/S]		
2.	Process Data		[d]	0.0000	
PN	Paired Data: μ - μ y				
1.	Enter Data Using DE OR:				
	a. Enter Sample Size	n	[ST0006	n	
	b. Enter Sample Means				
	(1) Original Means	x	[STO]47	₹	
	OR:	<u> </u>	[STO]37	₹	
	(2) Mean Difference	d	[STO]47	ā	
		0	[STO]37	0	
	c. Enter Sample Standard Deviation	s _d	[STO]27	s _d	
2.	Test $H_0: \mu_x - \mu_y = \theta_0$				
i	a. Enter H,-code*	H ₁ -code	[b]	H ₁ -code	
	b. Enter θ_0 and Computer P-value	θ ₀	[R/S]	P	
3.	CI for $\mu_x - \mu_y$				
	a. Calculate degrees of freedom		[B]	ν	
	b. Enter $t_{\alpha/2}$ with d.f. = v and	t a/2	[R/S]	Ł	
	Calculate Limits	4,2	[Y<>X]	u	

Note: For one-sided intervals, enter \mathbf{t}_{α} at 3b and ignore ℓ or \mathbf{u} as the case ,may be.

$${^*}_{1}\text{-code} = \begin{cases} 1 & \text{if } H : \theta > \theta \\ 0 & \text{if } H^{1} : \theta \neq \theta^{0} \\ -1 & \text{if } H^{1} : \theta < \theta^{0} \end{cases}$$

	USER INSTRUCTIONS					
STEP	PROCEDURE	ENTER	PRESS	DISPLA		
INA	Independent Data: $\mu - \mu y$					
(σ=σ _y)	Enter data Using DE OR:					
••	Clear Memory and		[J]	DATA?		
}	a. Enter Sample Sizes	n _x	[STO]13	n _x		
		n y	[STO]06	n		
	b. Enter Sample Averages	x	[STO]47	x		
		₹	[STO]37	ÿ		
	c. Enter Standard Deviation					
	(1) Pooled Estimate Available	s	[STO]33	s		
Ì	OR:	P .	<u> </u>	J		
	(2) Original S.D.'s Available	s	[STO]48	s		
		sy	[STO]38	s		
2.	Test $H_0: \mu_x - \mu_y = \theta_0$		 	 		
	······································	U	[6]	U		
	a. Enter H ₁ -Code	H ₁ -code	[c] [R/S]	H ₁ -code		
	b. Enter θ ₀ and Compute P-value	θ0	[K/3]	r		
3.	CI for $\mu_x - \mu_y$					
i	a. Calculate degrees of freedom		[C]	ν		
	b. Enter $t_{\alpha/2}$ with d.f. = v	t _{a/2}	[R/S]	l		
	and Calculate Limits	u, 2	[Y<>X]	u		
	See Previous Note for One-sided Limi	its.	<u>.l</u>			
INB	Independent Data: μ - μ v					
(σ _x ≠σ _y)	(Welch Approximate t)					
x y'	Enter Data using DE OR:					
1	a. Enter Sample Sizes	n _x	[STO]13	n _x		
		n y	[STO]06	ny		
	h Fator Cample Massa	×	[STO]47	x		
	b. Enter Sample Means	1		1 =		
		À	[STO]37	ÿ		
	c. Enter Sample Means c. Enter Sample Standard Deviations	y s x s	[STO]37 [STO]48	s x s		

ZS-6	USER INSTRUCTIONS						
STEP	PROCEDURE	ENTER	PRESS	DISPLAY			
2.	Test $H_0: \mu_x - \mu_y = \theta_0$						
Ì	a. Enter H ₁ -code	H ₁ -code	[a]	H,-code			
	b. Enter θ_0 and Compute P-value	90	[R/S]	P			
3.	CI for μ_x - μ_y						
	a. Calculate Degrees of Freedom		[A]	V			
	b. Enter $t_{\alpha/2}$ with d.f. = v and	t _{a/2}	[R/S]	l e			
	Calculate Limits	α/2	[X<>Y]	u			
	See Previous Note for One-Sided Li	mits					
LSN	LARGE SAMPLE NORMAL μ - μ y						
	OR: ox, oy known			1			
1.	Enter Summary Data Only:						
	a. Enter Sample Sizes	n _x	[STO]13	n _x			
J		ny	[STO]06	n _y			
}	b. Enter Sample Means	x x	[STO]47	x x			
1		<u> </u>	[STO]37	<u> </u>			
	c. Enter Standard Deviations	ors x	[STO]48	ors			
		σ or s	[STO]38	σ _y or s			
2.	Test $H_0: \mu - \mu_y = \theta_0$						
	a. Enter H _I -code	H _l -code	[a]	H ₁ -code			
	b. Set Flag 5	}	[SF]05	H,-code			
	c. Enter Focal and Calculate P-value	θο	[R/S]	P			
3.	CI for $\mu_x - \mu_y$						
	a. Initialize (Ignore output)		[A]	xx			
	b. Enter $z_{\alpha/2}$	$\frac{2}{\alpha/2}$	[R/S]	e.			
	and Calculate Limits	4,2	[Y<>X]	u			
	See Previous Note for One-Sided Li	mits					

ZS-6	USER INSTRUCTIONS						
STEP	PROCEDURE	ENTER	PRESS	DISPLAY			
NV	Independent Data $\sigma_{\mathbf{x}}^2/\sigma_{\mathbf{y}}^2$						
1.	Enter Data using DE <u>OR</u> :						
	a. Enter Sample Sizes	n _x	[STO]13	n x			
		n y	[STO]06	n y			
	b. Enter Sample Standard Deviations	s	[STO]48	s _x			
		s y	[STO]38	sy			
2.	Test $H_0: \sigma_x^2 = \sigma_y^2$						
1	a. Enter H ₁ -code; Set Flag 4.	H ₁ -code	[SF]04	H ₁ -code			
)	b. Calculate P-value		[D]	P			
3.	CI for $\sigma_{\mathbf{x}}^2/\sigma_{\mathbf{y}}^2$						
	a. Compute Degrees of Freedom		[0]	V ₁			
	From Accompanying Table:		[R/S]	ν ₂			
[b. Enter F-value with d.f. = (v_1, v_2)	F _{α/2}	[STO]31	F _{a/2}			
	c. Enter F-value with d.f. = (v_2, v_1)	F _{\alpha/2}	[STO]41	F _{α/2}			
	d. Calculate Limits		[R/S]	l L			
			[X<>X]	u			
	Note: a. For Lower One-Sided Interval, enter F _a at Step 3b, l at Step 3c and ignore u.						
	b. For Upper One-Sided Interval, F_{α} at Step 3c and ignore ℓ .	enter 1 at St	ep 3b,				
Ехр	Independent Exponential μ_{x}/μ_{y}		1	ı			
1.	Enter Data Using DE OR:						
	a. Enter Sample Sizes	n x	[STO]13	n _x			
		n y	[STO]06	n y			
	b. Enter Sample Means	x x	[STO]47	, x			
		ÿ	[STO]37	ÿ			
2.	Test H ₀ : μ = μ						
ļ	a. Enter H ₁ -code; Set Flag 4.	H ₁ -code	[SF]04	H ₁ -code			
	b. Calculate P-value (See Note under NV2)		[E]	P			

ZS-6		USER INSTRUCTIONS									
STEP		PI	ROCEDI	URE	E	NTER	PRESS	DIS	SPLAY		
3.	b. Enter	ute Degre Accompar r F-value	ying with with	f Freedom Table: n d.f. = (F	a/2 a/2	[E] [R/S] [STO]31 [STO]41 [R/S] [X<>Y]	F	71 72 x/2 x/2 x/2		
	Register Con 00 xxx 01 Σy		10	1	20	ded Limits	30 31	t _{α/2} , F _{α/2}	40 41	θ F _{α/2}	
,	02 Σy ² 03 Σx 04 Σx ² 05 Σxy	Used	12 13 14 15	n _x CCDF ν(ν ₁)	22 23 24 25	Used	32 33 34 35	SE Sp 60	42 43 44 45	3, 2	
,	06 n y 07 Used 08 Used 09 Used		16 17 18 19	^v 2 Used	26 27 28 29	sd H ₁ -code P(ts)	36 37 38 39	ÿ s _y e(θ±e)	46 47 48 49	х, d s	

Assignme	nts	Labe	1s	Used
ZS-6 DEP DEI OP11 X TO Y	J P I ENG	00 01 02 04 05 06 08 09 11 12	A B C D E	a b c d
		13		

Examples ZS-6

(1) Before (X) and After (Y) weights were recorded in 1bs. after two weeks of dieting. Find a 95% CI for the mean difference $\mu_{x} - \mu_{y}$ and conduct a significance test of equality test of equality of means. Test for a weight loss of at least 2 1bs.

x: 119 y: 114

Solution:

zs	STEP	ENTER	PRESS	DISPLAY	COMMENTS
DE	0.		[J]	DATA?	
	la.		[P]	0.0000	Initialize ZS-6 for paired data entry.
		119	[ENTER]	119.0000	Enter first x-value.
		114	[R/S]	1.0000	Follow with first y-value.
		122	[ENTER]	122.0000	Enter second x-value.
		119	[R/S]	2.0000	Follow with second y-value.
		136	[ENTER]	136.0000	Enter succeeding pairs.
		134	[R/S]	3.0000	
		130	[ENTER]	130.0000	
		126	[R/S]	4.0000	
		129	[ENTER]	129.0000	
		119	[R/S]	5.0000	
		136	[ENTER]	136.0000	
		137	[R/S]	6.0000	
		134	[ENTER]	134.0000	
		124	[R/S]	7.0000	
		133	[ENTER]	133.0000	
		127	[R/S]	8.0000	
		119	[ENTER]	119.0000	
		119	[R/S]	9.0000	
		115	[ENTER]	115.0000	Enter last x-value
		107	[R/S]	10.	Follow with last y-value (n = 10)
DE	2.		[d]	0.0000	ZS program processes data.
PN	3 a.		[B]	9.0000	Calculates and displays $v = 9 = d.f.$
	3b.	2.262	[R/S]	1.9389	Enter t 0.025 from t-table and display 1.94
			[Y<>X]	7.4611	Display u so CI is (1.94, 7.46).
PN	2a.	0	[b]	0.0000	Enter H -code = 0 for two-sided test.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
	0	[R/S]	0.0039	Use $\theta_0 = 0$ for this case and find $P = 0.0039$; reject at usual levels.
		[RCL] 30	3.8504	Display value of ts.
PN 2a.	1	[b]	1.0000	Use H ₁ -code of l making
	2	[R/S]	0.0271	$H_0: \mu_x - \mu_y \le 2$ the disclaimer. With $\theta_0 = 2$, P-value is enough to reject at $\alpha = 5\%$.

(2) A test of color perception was administered to a control group (X) and an experimental group (Y) with results:

x: 16.3 14.7 12.3 13.5 16.0 17.1 17.3

y: 14.0 16.5 17.7 15.9 18.0 16.3

Analyze the two groups for differences. Also test for equality of variances.

	So1	ution assumi	$ \begin{array}{ccc} \text{ng } \sigma &= \sigma : \\ x & y \end{array} $		
DE	0.		[J]	DATA?	Initialize ZS-6 for independent data entry.
	1b.	16.3	[R/S]	1.000	Enter first x-value.
		14.7	[R/S]	2.0000	Continue x-values assuming data
		12.3	[R/S]	3.0000	are independent.
		13.5	[R/S]	4.0000	
		16.0	[R/S]	5.0000	
		17.1	[R/S]	6.0000	
		17.3	[R/S]	7.0000	Last x-value entered; $n_x = 7$.
			[j]	0.0000	Prepare for y-values.
		14	[R/S]	1.0000	Begin entering y-value
		16.5	[R/S]	2.0000	(as with label B in ST-04)
		17.7	[R/S]	3.0000	
		15.9	[R/S]	4.0000	
		18	[R/S]	5.0000	
		16.3	[R/S]	6.0000	Conclude y-entries; $n_v = 6$
DE	2.		[d]	0.0000	Process data.
INA	2.	0	[c]	0.0000	Enter H,-code for two-sided test.
		0	[R/S]	0.2740	Display P-value (for $\theta_0 = 0$) of 0.27;
			[RCL]30	-1.1512	Accept H _O (ts = -1.15).
INA	3.		[C]	11.0000	Reveal d.f. = $n + n - 2 = 11$ for this case.
		2.201	[R/S]	-3.1615	Entering t $_{.025}$ = 2.201, CI runs from
			[Y<>X]	0.9900	l = -3.16 to $u = 0.99$ which does include 0.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
Solut	ion assu	ming σ ≠ σ	y :	
INB 1.			-	entered and processed.
INB 2.		[A]	10.0000	Calculates degrees of freedom for
	2.228	[R/S]	-3.1404	approximate CI based on Welch t.
		[X<>X]	.9690	Comes close to preceding solution.
INB 3.	0	[a]	0.0000	Begins Welch t-test with H ₁ -code
	0	[R/S]	0.2663	followed by $\theta_0 = 0$ to yield about
				the same P-value.
	To test	for $\sigma_{x}^{2} = \sigma$	2:	
NV 1.	Same as		y	
NV 2.	0	[SF]04	0.0000	H ₁ -code for two-sided test. Flag
				4 signals NV a test is being called for.
		[D]	.5645	Large P-value; accept $\sigma_{x}^{2} = \sigma_{y}^{2}$ with
		[RCL] 30	1.7290	ts = 1.73.
NV 3a.				To take a CI point of view
		[D]	6.0000	Displays $v_1 = n_x - 1$.
		[R/S]	5.0000	Displays $v_2 = v_1 - 1$
NV 3b.	6.98	[STO]31	6.9800	Enter $F_{.025}$ with d.f. = (6,5).
NV 3c.	5.99	[STO]41	5.9900	Enter $F_{.025}$ with reversed d.f. = (5,6).
		[R/S]	0.2477	Shows a 95% CI that includes the
		[X<>Y]	10.3565	value 1. Accept $\sigma_{\mathbf{x}}^2 = \sigma_{\mathbf{y}}^2$.
(3)	-	_		to failure averaged $\bar{x} = 1306$ hrs.
	Six ind	ependent ti	mes averaged \overline{y}	= 1247 hours. Test $H_0: \mu_x \leq \mu_y$.
Solut				·
Exp I.	60	[STO]13	60.0000	Enter Summary Data
	6	[STO]06	6.0000	
	1306	[STO]47	1,306.0000	
	1247	[STO]37	1,247.0000	Data entry concluded.
Exp 2.	1	[SF]04	1.0000	Enter H_1 -code for $H_1: \mu_x > \mu_y$ and
				set flag 4 to signal H-test.
		[E]	0.5043	P-value of 0.50 obtained; do not reject.
Exp 3a.		[E]	120.0000	$v_1 = 2n_x$ displayed.
		[R/S]	12.0000	$v_2 = 2n_y$ displayed.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
3ъ.	2.35	[STO]31	2.3500	$F_{.05}$ for $v_1 = 100$, $v_2 = 10$ entered
	1	[STO]41	1.0000	1 store in R ₄₁ to compute lower CI
		[R/S]	0.4457	Lower bound on μ_{ν}/μ_{ν} displayed.

Chapter 7 Proportions

This chapter represents the most successful transfer of programs of all. Indeed, the only remarks that need to be added to the existing programs is to remind you once more that all references to register R_{03} in TI are to be replaced with R_{06} in HP, that [X<>Y] is the HP version of [x t] (so that any reference tp TI R_T should be replaced by R_Y). Finally, since ZS-7 has been assigned to [J], you should press the latter key whenever you need to access the programs here and is the only initialization necessary.

ZS-7 (A	user Instructions (HP)) SIZE 050 Σ REG 01			
STEP	PROCEDURE	ENTER	PRESS	DISPLAY	
B(p) 0. 1.	Bernoulli Parameter Initialization (if not already in ZS-7) Data Entry		[1]	0.0000	
	a. Enter Sample Sizeb. Enter Proportion Estimate	n p	[STO]06 [STO]40	n p	
2.	Test H ₀ : p = p ₀ a. Enter H ₁ -code b. Enter p ₀ and Compute P-value OR: b'. For n Large (Normal Test)	H ₁ -code P ₀ P ₀	[b] [R/S] [c]	H ₁ -code P P	
3.	CI for p for n large Enter Risk and Calculate Limits Note: For One-sided Limits, Enter α and Ignore ℓ or u.	α/2	[c]	£ u	
4.	CI for p for n small a. Find first d.f. for F. b. Enter $F_{\alpha/2}$ with d.f. = (v_1, v_2) c. Find second d.f. for F	^F α/2	[B] [R/S] [STO]31 [R/S]	ν ₁ ν ₂ ^F α/2 ν ₁	
	d. Enter $F_{\alpha/2}$ with new d.f. e. Calculate limits	^F α/2	[R/S] [STO]41 [R/S] [X<>Y]	ν ₂ F _{α/2} 2	
	Note: For Lower One-sided Limit, enter F and Ignore u. For Upper One-sided Limit, enter l and Ignore l.	•			
B(p _x -p _y)	Two Bernoulli Parameters Data Entry a. Enter Sample Sizes	n n n	[STO]13 [STO]06	n x n	
	b. Enter Proportion Estimates	p _x	[STO]47	p _x	

 $H_{1} - code = \begin{cases} 1 & \text{if } H_{1} : \theta > \theta \\ 0 & \text{if } H^{1} : \theta \neq \theta \\ -1 & \text{if } H^{1}_{1} : \theta < \theta \\ 0 \end{cases}$

zs-7		USER INSTRUCTIONS								
STEP		PROCEDURE			ENTER	PRESS	DISPLAY			
2.	Test H ₀ : p _x Enter H ₁ -code		H ₁ -code	[a]	P					
3.	CI for p _x - p Enter Risk and	-	α/2	[A] [X<>Y]	£ u					
	Register Conte	10	20	30		40 ê				
	1				z _{α/2} , F _{α/2}					
	03	13 n _x	23 Used	32 33	SE Used	42 43				
		15	25	35	U	44 45				
	06 n(n _y) 07	16 17 Used	26 27 <u> </u>	36 37	p̂ y	46 47 p̂				
	00 h(hy) 07 08 BIN p(0) 09'	18 Used 19 Used	28 H ₁ -code 29 p(ts)	38 39	e(θ̂ +e)	48 49				

Assignments	Labe	ls	Used
zs-7 J	01	A	а
1	02	В	ь
	03	С	
	04		
	05		
	06		

ZS-7 EXAMPLES

(1) In nine independent Bernoulli trials, there were exactly four successes. Find a 95% CI for p and test H_0 : p = 0.5.

Solution:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
B(p) 1.	9.	[STO]06	9.0000	Enter sample size.
	.44	[STO]40	0.44	Enter $\hat{p} = 4/9$, the estimate of p.
4a.		[B]	12.0000	Since n is small find first pair
		[R/S]	8.0000	of $d.f. = (10,10).$
4b.	4.20	[STO]31	4.2000	Enter first F _{.025} percentile.
4c.		[R/S]	10.0000	Discover revised d.f. = (12,8).
		[R/S]	10.0000	
4d.	3.72	[STO]41	3.72	Store second F _{.025} percentile.
		[R/S]	0.1370	Lower confidence limit displayed
		[Y<>X]	0.7881	and u found in $R_{\mathbf{v}^{\bullet}}$
3.	0.	[b]	0.0000	Enter H_1 -code for H_1 : p $\neq 0.5$.
	0.5	[R/S]	1.0000	Significance level 1; accept H ₀ .

(2) A device was tested 25 times and passed 23 times. Find a lower one-sided CI on p, the probability of passing. Test H_0 : p \geq 0.95.

Solution:

50.	TUCTOII.			
B(p) 1.	25	[STO]06	25.0000	Enter data as above.
	23÷25	[STO]40	0.9200	$\hat{p} = 23/25 = 0.92$
2a.	-1	[b]	-1.0000	Enter H_1 -code for H_1 : p < 0.95.
2b.	0.95	[c]	0.2456	Comparing with large sample test.
4a.		[B]	6.0000	Initial d.f. for small n CI (to
		[R/S]	46.0000	be ignored along with v_2 .
4b.	2.29	[STO]31	2.2900	Following instructions store 1 in
4c.		[R/S]	48.0000	R_{31} . Calculate new d.f. $v_1 = 6$
		[R/S]	4.0000	and $v_2 = 46$.
4d.	1	[STO]41	1.0000	Enter $F_{.05}$ for d.f. = (6,50) and
		[R/S]	0.7700	calculate lower confidence bound.

(4) A sample of size 100 was taken from a lot with replacement and 2 defective items were found. Test the manufactures claim that p < 0.05 at $\alpha = .01$.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
Solu	tion:			
B(p) 1.	100.	[STO]06	100.0000	Enter data as usual.
	.02	[STO]40	0.0200	
2a.	-1.	[b]	-1.0000	H_1 -code for H_1 : p < .05, the null hypothesis being H_0 : p \geq .05, the disclaimer.
2b.	.05	[R/S]	0.1183	Enter p_0 and find $P = 0.12$ supporting H_0 not H_1 .
2b'.	.05	[c]	0.0843	Compare normal test.

(3) In a random sample of 500 men (X) 350 were found to favor a certain political issue. In a similar sample of 300 women (Y) 200 were so inclined. Is there any real difference between sexes on this issue?

Solu	tion: To	test H ₀ : p _x	= p _y	
$B(p_x-p_v)$ la.	500	[STO]13	500.0000	Enter first sample size.
K y	300	[STO]06	300.0000	Enter second sample size.
1b.	0.7	[STO]47	0.7000	Enter first proportion estimate \hat{p}_x .
	2/3	[STO]37	0.6667	Enter second proportion estimate \hat{p}_{y} .
2.	0.	[a]	0.3248	Enter H ₁ -code for H ₁ : p _x ÷ p _y
		[RCL] 30	.9847	and find $P = 0.32$ with ts $\approx .98$.
				Data supports H_0 .
3.	.025	[A]	-0.0335	A 95% CI for the difference u - u
		[Y<>Y]	0.1001	extends from03 to + .10; includes

Chapter 8 Analysis of Variance

The big change here is the data entry which is via STAT PAC through the Analysis of Variance routines provided there. Unfortunately, those routines are not complete enough to accomplish all of the goals set out in the text so that they too had to be supplemented with program ZS-8, whose user instructions follow.

Section 8.2: One-Way Classifications

On page 95, you may replace the reference to ST-22 with execution of FCCDF in ZSTAT. If you will consult the user instructions, you will see that the program utilizes subroutine \(\text{EAOVONE}, \) assigned to [H] for convenience, in place of the TI program ST-06, referred to on page 197. After pressing [H] and seeing the display \(\text{EAOVONE}, \) you follow Steps 3-5 for inputting data (a model example is provided following the user instructions). A press of [E] while still in \(\text{EAOVONE} \) will then output most of the AOV table. The only, but important, missing item is the prob-value and that is calculated at Step 3 in ZS-8 by exiting \(\text{EAOVONE} \) with a press of [J] followed by [A]. The Scheffe confidence intervals discussed in the very next section follow precisely the same user instructions as the TI and are duplicated in the HP User Instructions that follow.

Section 8.4: Two-Way Classifications

In this section, the program <code>\SAOVTWO</code> in STAT PAC is used for data entry in place of ST-06. This subroutine is assigned to [I] in ZS-8 and, once pressed, the instructions for data entry and output discussed on page 23 of the STAT PAC handbook should be followed. (Again, a model problem is provided at the end of the user instructions for ZS-8). This will provide for only part of the Two-Way table as displayed in this section of the text (and most other textbooks on the subject). To complete the table, you need to exit <code>SAOVTWO</code> by pressing [J] and then [C] will output the remaining items needed for the table including the all-important prob-values. Once again, the instructions for implementing the Sheffe' confidence interval formulas discussed in the next section are identical to those for the TI and are duplicated in the user instructions that follow.

ZS-8 (Assigned [J]) USER INSTRUCTIONS (HP)								SIZE 060		
STEP		PROCE	EDURE				E	NTER	PRESS	DISPLAY
AOV-1 0. 1.	INITIALIZATIO	One-Way Analysis of Variance INITIALIZATION (if not already in ZS-8) Enter Data Using SAOVONE NOTE: Record Each Row Mean							[J] [H]	xxxx SAOVONE
2.	NOTE: Record Each Row Mean Calculate AOV Table Entries NOTE: These Steps may NOT be repeated once Step 3 is executed.								[E] [R/S] [R/S] [R/S] [R/S] [R/S] [R/S] [R/S]	SS RSS ESS K-1 N-K N-1 MRSS MESS
3.	Exit ΣΟVONE a	nd comp	oute P-val	lue				F	[J] [A]	F P
4.	Confidence In (After Step 2 a. Initializ)	s for Cont	trast	s				[e]	0.0000
	b. Enter Con eac	trast I h i; ig	more any	c _i =	0)			c _i x̄ _i	[R/S] [R/S] [R/S]	c _i X _i
	c. Enter F-p	late CI	[·K),		Fa	[a] [X<>Y]	l u
	NOTE 1: Step NOTE 2: Thes			-		.f	R ₀₃ ar	1d R ₄₈	are manual	ly stored.
REGISTE 00 SS 01 RSS 02 ESS 03 K-1 04 Use 05 Use 06 M 07 Use 08 Use	12 Used 13 ed 14 ed 15 R-1 16 N-K ed 17 Used	20 21 22 23 24 25 26 27 28	FCDF					51 52	$\Sigma c_i \overline{x}_i$ Last c_i Last \overline{x} $\Sigma c_i^2/n_i$ Used	
0 9 K	19 for	29		39		49	е	59		

zs-8	USER INSTRUCTIONS			2.
STEP	PROCEDURE	ENTER	PRESS	DISPLAY
AOV-2	Two-Way Analysis of Variance			
0.	Initialize (if not in ZS-8)		[J]	x.xxxx
1.	Enter Data Using ΣΑΟΥΤΨΟ		[1]	ΣΑΟΥΤΌ
2.	Calculate Row and Column Means	ł		1
	Calculate Row Means After each Row		[R/S]	SUM
	entry (Record). Repeat i = 1,,R.	С	[÷]	x _i .
	Calculate Column Means After each		[R/S]	
	Column entry (Record). Repeat	R	{ ÷ }	₹.j
	j = 1,2,,C.			<u> </u>
3.	Calculate AOV Table Entries		[E]	RSS
	NOTE: These Steps may NOT be repeated		[R/S]	css
	once Step 4 is executed		[R/S]	SS
			[R/S]	ESS
			[R/S]	R-1
			[R/S]	C-1
			[R/S]	(R-1)(C-1)
			[R/S]	FR
ı			[R/S]	FC
4.	Exit ΣΑΟΥΤWO		[1]	Fc
5.	Complete the AOV output	F _C	[c]	MRSS
			[R/S]	MCSS
			[R/S]	MESS
			[R/S]	PR
			[R/S]	PC

zs-8	3	USER INSTRUCTIONS								3.		
STEF	,		PRO	OCEDURE	3				ENTE	R	PRESS	DISPLAY
6.	(Repeat for each i (or j)) c. CI for Row Contrast $\Sigma c_i \mu_i$. d.f. = (R-1,(R-1)(C-1)) d. CI for Column Contrast $\Sigma c_i \mu_i$. F_{α} F_{α}								[E] [R/S] [R/S] [D] [X<>Y] [d] [X<>Y]	0.0000 c ² i (or j) l u l u		
REGI	STER	CONTE	NTS:					·				
00	Used	10		20	30	ts 40			50	Σcπ		
01	R	11	(R-1)(C-1)	21	31	41			51	last	: c	
02	С	12	RSS	22	32	42				last	: x	
	RC		CSS	23	33	43			53			
	x		R-1	24	34	44				Used		
05	x		C-1	25	35	45			55	TP.		
	₹ MESS		(R-1)(C-1) Used	26 27	36 37	4 <i>6</i> 47			56 57	F R		
08	rm 33	18	useu	28	38	48		ESS		F _C R-1		:
09		19		29	39	49			59	C-1		
		Assig	nments	,		Labe	ls	Used				
		ZS-8 ΣΑΟVΟ ΣΑΟVΤ				01 02 03	A C D E	a d e				

EXAMPLES ZS-8

(1) Three types of solvents are tested on grease-soaked material and the amount of grease removed in milligrams is noted for several specimens with the following results:

Solvent A	11	12	12	
Solvent B	13	15		
Solvent C	12	10	11	11

Test the hypothesis of no differences in solvents.

Solution:

ZP STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[J]	x.xxx	
AOV-1, 1.		[H]	ΣΑΟΥΟΝΕ	Call for $\Sigma AOVONE$ in the module.
ΣAOV 2.	11	[A]	1.00	Enter data for the first row.
	12	[A]	2.00	Enter data for the first row.
	12	[A]	3.00	Row 1 data entry concluded.
ΣAOV 5.		[R/S]	11.67	First row mean \bar{x}_1 calculated. Record!
		[R/S]	0.58	s for row 1 and row sum; ignore and
		[R/S]	35.00	go on to enter data for second row.
ΣAOV 2.	13	[A]	1.00	Running count begins anew.
	15	[A]	2.00	Row 2 data entry concluded.
ΣAOV 5.	,	[R/S]	14.00	Row mean \bar{x}_2 calculated. Record!
		[R/S]	1.41	Row 2 s and sum; ignore and proceed
		[R/S]	28.00	to enter data for third row.
ΣAOV 2.	12	[A]	1.00	
	10	[A]	2.00	
	11	[A]	3.00	
	11	[A]	4.00	Row 3 data entry concluded.
ΣAOV 5.	•	[R/S]	11.00	Value of x_{3} . (Record)
		[R/S]	0.82	Value of s and sum; ignore. Data
		[R/S]	44.00	entry concluded.
ΣAOV 6.	•	[E]	16.89	Value of SS displayed for total.
		[R/S]	12.22	Value of RSS
		[R/S]	4.67	ESS displayed
		[R/S]	2.00	d.f. for RSS
		[R/S]	6.00	d.f. for ESS displayed
		[R/S]	8.00	d.f. for SS displayed
		[R/S]	6.11	Value of MRSS
		[R/S]	0.78	Value of MESS

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
		[R/S]	7.86	F-ratio = MRSS/MESS.
		[J]	7.8571	Exit SAOVONE.
		[A]	0.0211	P-value of the F-ratio.

(2) Find Scheffe 95% confidence intervals for the contrast $\mu_1^{-0.5}\mu_2^{-0.5}\mu_3$ where MESS = 105.97 and K = 3, N-k = 18; \overline{x}_1 = 103.71, \overline{x}_2 = 92, \overline{x}_3 = 89, n_1 = 7.

Solu	tion:			
AOV-1. 2.	2	[STO]14	2.0000	$v_1 = K-1 = 2$ stored in R_{14}
	105.97	[STO]48	105.9700	MESS stored in R_{48} as required.
AOV-1. 3.		[e]	0.0000	Initialize CI routine.
	1	[R/S]	1.0000	First of triple triple c_1, \bar{x}, n , entered.
	103.71	[R/S]	103.7100	Second member of triple
	7	[R/S]	1.0000	Sample size n; count of 1 (triple) displayed.
	-0.5	[K/S]	-0.5000	Beginning entry of c_2, \bar{x}_2, n_2 .
	92	[R/S]	92.0000	2 2 2
	7	[R/S]	2.0000	Running count of 2 displayed.
÷	-0.5	[R/S]	-0.5000	Entering final triple
	89	[R/S]	89.0000	
	7	[R/S]	3.0000	Entry completed.
	3.49	[a]	0.6203	$F_{.05}$ for d.f. = (2,20) entered
		[X <> X]	25.7997	and confidence limits displayed.
				Conclude contrast significantly
				different from 0.

(3) Five teachers were matched with three schools to produce the following average scores on a standardized examination after a unit of instructions

Teachers Schools	A	В	С	D	Е	₹ _i .
I	53	47	46	50	49	49
II	61	55	52	58	54	56
III	51	51	49	54	50	51
x.j	55	51	49	54	51	

ZS STE		ENTER	PRESS	DISPLAY	COMMENTS
	Const	ruct a two	-way AOV t	able and find	CI's for μ_1 , $-\mu_2$, and $\mu_{\cdot 1}$ $-\mu_{\cdot 3}$.
	Solut	ion:			
			[J]	x.xxx	
AOV-2	1.		[I]	ΣΑΟΥΤΌΟ	Call for EAOVTWO from the modu
ΣΑΟΥ	3.	53	[A]	1.00	Enter first data value from ro
		47	[A]	2.00	Continue entering data from ro
		46	[A]	3.00	•
		50	[A]	4.00	•
		49	[A]	5.00	<pre>•until all the data from row l entered</pre>
			[R/S]	245.00	
ΣΑΟΥ	5.	5	[+]	49.00	Calculate and record row mean
ΣΑΟΥ	3.	61	[A]	1.00	Go on with first value from ro
		55	[A]	2.00	and continue
		52	[A]	3.00	until all of
		58	[A]	4.90	the data from row 2
		54	[A]	5.00	have been entered.
ΣΑΟ	5.		[R/S]	280.00	Calculate and
		5	[÷}	56.00	record \bar{x}_2 .
ΣΑΟ	3.	51	[A]	1.00	Continue non-stop with data
		51	[A]	2.00	entry from the third and
		49	[A]	3.00	last row
		54	[A]	4.00	
		50	[A]	5.00	
ΣΑΟΥ	5.		[R/S]	255.00	Calculate and
		5	[÷]	51.00	record \bar{x}_3 .
ΣΑΟΫ	6.		[R/S]	COLUMN-WISE	Prepare for column computation
ΣΑΟΫ	8.	53	[A]	1.00	Enter first value from column
		61	[A]	2.00	Enter second value from colum
		51	[A]	3.00	Enter last value from column
CAOV	10.		[R/S]	165.00	Calculate $\bar{\mathbf{x}}_{\bullet 1}$.
			[÷ }	55.00	and record.
CAOV	8.	47	[A]	1.00	Repeat for column 2
		55	[A]	2.00	
		51	[A]	3.00	
$\lambda \in V$	10.		[R/S]	153.00	Calculate and
		3	[÷]	51.00	record $\bar{\mathbf{x}}_{\cdot,2}$

ZS ST	EP	ENTER	PRESS	DISPLAY	COMMENTS
ΣAOV	8.	46	[A]	46.00	Repeat for column 3
		52	[A]	52.00	
		49	[A]	49.00	
ΣΑΟΫ	10.		[R/S]	147.00	Calculate and
		3	[÷]	49.00	record $\bar{\mathbf{x}}_{\mathbf{\cdot}3}$
ΣΑΟ	8.	50	[A]	50.00	Repeat for column 4
		58	[A]	58.00	
		54	[A]	54.00	
ΣΑΟΫ	10.		[R/S]	162.00	Calculate and
		3	[÷]	54.00	record $\bar{\mathbf{x}}_{\mathbf{\cdot}4}$
ΣΑΟΫ	8.	49	[A]	49.00	Repeat for column 5.
		54	[A]	54.00	
		50	[A]	50.00	
ΣΑΟΫ	10.		[R/S]	153.00	Calculate and
		3	[÷]	51.00	record $\bar{\mathbf{x}}_{ullet 5}$
ΣΑΟΫ	11.		[E]	130.00	Data compiled and RSS displayed
			[R/S]	72.00	CSS displayed.
			[R/S]	224.00	SS total sum of squares.
			[R/S]	22.00	ESS displayed
			[R/S]	2.00	Row d.f. = $R-1$ = 2 displayed.
			[R/S]	4.00	Column d.f. = $C-1 = 4$ displayed
			[R/S]	8.00	Error d.f. = $(R-1)(C-1)$ displayed
			[R/S]	23.64	F _R displayed
			[R/S]	6.55	${ t F}_{ extsf{C}}$ displayed
			[1]	6.5455	Exit Σ AOVTWO and enter ZS-8
ZS-7	5.		[C]	65.0000	MRSS displayed
			[R/S]	18.0000	MCSS displayed
			[R/S]	2.7500	MESS displayed
			[R/S]	0.0004	P-value for F _R computed and displayed
			[R/S]	0.0122	P-value for F _C
	4.		[E]	0.0000	Initialize for Scheffe CI's
		1	[R/S]	1.0000	Enter $c_1 = 1$ to find CI for $\mu_1 = \mu_2$.
		49	[R/S]	1.0000	Enter row mean R ₁ .
		-1	[R/S]	1.0000	Enter $c_2 = -1$ for contrast $\mu_1 = \mu_2$.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
	56	[R/S]	2.0000	All non-zero c's now entered.
	4.46	[D]	-10.1324	$F_{.05} = 4.46$ for d.f. = (2,8)
		[X<>Y]	-3.8676	l is displayed followed by u.
		[RCL]49	3.1324	The value of e retrieved from R ₄₉ for further comparisons.
		[E]	0.0000	Re-initialize C.I. program.
	1	[R/S]	1.0000	Enter c, for contrast $\mu_{.1}$ - $\mu_{.3}$.
	55	[R/S]	1.0000	$\bar{x}_{\cdot 1}$, the first column mean is
				entered.
	-1	[R/S]	1.0000	Enter $c_2 = -1$
	49	[R/S]	2.0000	Enter third column mean $\bar{\mathbf{x}}_{\cdot,3}$.
	3.84	[d]	0.6934	Enter $F_{.05}$ for d.f. = $(4,8)$ and
				calculate Lower limit.
		[Y<>X]	11.3066	Upper limit retrieved from $R_{f v}$.
		[RCL]49	5.3066	Value of e found in R ₄₉ for further comparisons.

Chapter 9 Simple Linear Regression

It is rather surprising that the HP is not hard-wired for at least simple linear regression as is the TI and many lesser hand-held calculators. There is a routine in STAT PAC, but, just as with the TI statistics module, no provision is made for confidence intervals, tests of hypotheses, etc.. In order to make the HP output match the discussions given in the text, we have created a simple data entry scheme in a program called ZS-9 (assigned the label [I] for convenient access). Once that program is accessed, you have only to press [D] (for data) and enter the successive pairs of numbers as per Step 2 of the instructions. At the conclusion of entry, press [e] to compile the data whereupon the degrees of freedom will be displayed for you. At this point, you may enter a t-percentile if you like. In any event, the effect of entering data this way will force the register contents to almost agree with those of the TI entry, with a couple of notable exceptions. Referring to page 237, HP $\rm R_{06}$ as usual must replace TI $\rm R^{}_{03}$ and then the TI $\rm R^{}_{04},~R^{}_{05},~R^{}_{06}$ become HP $\rm R^{}_{03},~R^{}_{04},$ $\rm R_{05},$ respectively. As usual, the HP functions MEAN and SDEV replace TI $[\bar{x}]$ and [INV][\bar{x}] and will output the same quantities. There is a subroutine within ZS-9 called [Op] II whose execution will exactly match that of TI [Op] II as referred to in this chapter. Try this on the data in Example 9.1 to verify the results published on page 238. Similarly, there are subroutines in ZS-9 called [Op]14 and [Op]15 that will function in exactly the same way as their TI counterparts referred to in the text. In Note 2 on page 238, HP will display the message DATA ERROR if the data all have the same carrier value. Similarly, in Note 1 on page 250, HP will display the message ALL REALS to signify that the CI does not exist. Otherwise, all of the instructions for the various regression routines through Section 9.4 are identical to those given in the book for the TI. For that reason only Step 1 needs to be modified and that has been taken care of in the User Instructions that follow on the next page.

Section 9.5: Curve Fitting

The procedures in this section utilize the TI statistics module and, fortunately, most of them are duplicated in the HP STAT PAC under the same title, Curve Fitting, beginning on page 32 of the STAT PAC handbook. The only problem is that the HP notation differs slightly from that of TI. Thus, TI b is HP a and TI m is HP b. You will have to make that adjustment in order to use your HP for solving problems in this section. The output of label [E] in that program, however, will produce the right estimated equations and can be used to verify the numbers given in Example 9.9 as well as most of the exercises. The one big departure is that HP makes no allowance for creating your own user defined transformation so that examples like 9.10 on page 265 cannot be checked. Those are not too common, however, so that for the main type of transformations you are likely to run into in practice, what is provided by STAT PAC will suffice. All of the answers to the problems, with the exception of 40e, can be verified with those routines.

ZS-9 (Assigned [I]) USER INSTRUCTIONS (HP) SIZE 050 Σ REG 01						
STEP	PROCEDURE	ENTER	PRESS	DISPLAY		
I 0.	Initialization (if not already in ZS-9)		[1]	0.0000		
1.	Clear registers	!	[D]	0.0000		
2.	Enter data (repeat $1 = 1, 2,, n$)	×i	[ENTER]	x _i		
		y _i	[R/S]	i		
3.	Compile data		[e]	n-2		
4.	Enter percentile for CI's (d.f. = n-2) (may also store manually in R ₃₁ at any time)	^t α/2	[R/S]	t _{\alpha/2}		
SLOPE						
1	CI for m		[A]	l.		
		:	[Y<>X]	u		
2	Test H _O :m = m _O .		i L			
	a. Enter H _l -code.*	H _l -code	[a]	H ₁ -code		
	b. Enter hypothesized value.	m _O	[R/S]	P		
INT		1				
1	CI for b		[B]	l l		
			[Y<>X]	u		
2	Test $H_0: b = b_0$.		,,,			
	a. Enter H ₁ -code.	H _l -code	[b]	H ₁ -code		
	b. Enter hypothesized value.	ьо	[R/S]	P		
μ at x _o	CI for mx ₀ + b	x 0	[C]	L		
	DT 6		[X<>Y]	u		
i at x ₀	PI for $Y_0 = mx_0 + b + e$	* 0	[c]	l 		
DISC	CI for x*, when y* is		[X<>X]	u		
DISC	observed	y *	[d]	£.		
ı	opper ven	y	[X<>X]	u		
CORR	Test H ₀ :ρ = 0.		[
	Enter H ₁ -code.	H ₁ -code	[E]	P		
	Note: Valid whenever n=2 ER ₁₅	1				
	and r e R ₄₄					
		<u> </u>	<u> </u>	<u> </u>		

*Note: H_1 -code $\begin{cases} -1 & \text{for } H_1: \theta < \theta_0 \\ 0 & \text{for } H_1: \theta \neq \theta \\ 1 & \text{for } H_1: \theta > \theta \\ 1 & 0 \end{cases}$

REGISTER CONTENTS:

00	Used	10		20		30	ts	40	ê
01	Σy_{i}	11		21		31	t _{α/2} ,	41	Used
02	Σy_{i}^{2}	12		22	Used	32		42	d
03	$\Sigma_{\mathbf{x_i}}^{-}$	13		23	by	33	s	43	y*-ÿ
04	Σx_{i}^{2}	14	n-1	24	TCDF	34	Ф	44	r
05	Σx_{i}^{y}	15	v = n-2	25		35	S^ m	45	m
06	n	16		26 ¹		36	s ĝ	46	ъ̂
07	$\Sigma(y_i - \overline{y})^2$	17		27		37	sŷ	47	x
80	$\Sigma(\mathbf{x_i}^{-\mathbf{\bar{x}}})^2$	18		28	H ₁ -code	38	sĥx _O +ŝ	48	\vec{y}
09		19		29	P(ts)	39	e(θ̂±e)	49	

For curve fitting, consult STAT PAC p. 32.

Assignm	ents	Labe	ls l	Jsed
ZS-9	I	01	A	a
OP12	H	02	В	Ъ
OP13	P ,	03	C	С
OP14	h	04	D	đ
OP15	i	05	E	е

EXAMPLE ZS-9

The resistance of a length of wire is thought to be a linear function of the temperature of the wire. For a given temperature, errors in readings of resistance are normally distributed with mean 0 and variance σ^2 . The following readigs were made at the temperatures indicated.

Temperature	0	10	20	30	40	50
						
Resistance	22.6	25.1	29.0	29.9	33.4	34.8

- (a) Estimate the regression of resistance on temperature.
- (b) Estimate the resistance if temperature is 25.
- (c) Estimate the temperature if resistance is 30.
- (d) Find a 95% confidence interval for the slope, m.
- (e) Find a 95% confidence interval for the intercept b.
- (f) Find a 95% confidence interval for the expected resistance when temperature is 25.
- (g) Find a 95% prediction interval for the measured response when temperature is 25.
- (h) Find a 95% discrimination interval for the temperature at which a resistance of 30 is observed.
- (i) Test the hypotheses H_0 : m = 0 vs. H_1 : $m \neq 0$.
- (j) Test the hypotheses H_0 : $b \le 20$ vs. H_1 : b > 20.
- (k) Calculate the coefficient of determination.
- (1) Test $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$.

SOLUTIONS:

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
I 0.		[I]	x.xxxx	
1.		[D]	0.0000	Clear data registers
I 2.	0	[ENTER]	0.0000	Enter x,.
	22.6	[R/S]	1.0000	Enter y,, update data base; (x,y) count displayed.
	10	[ENTER]	10.0000	Enter x ₂ .
	25.1	[R/S]	2.0000	Enter y ₂ , update data base
	20	[ENTER]	20.0000	Enter x3.
	29	[R/S]	3.0000	(x,y) - count displayed.
	30	[ENTER]	30.0000	
	29.9	[R/S]	4.0000	(x,y) - count displayed.
	40	[ENTER]	40.0000	
	33.4	[R/S]	5.0000	(x,y) - count displayed.
	50	[ENTER]	50.0000	
	34.8	[R/S]	6.0000	Value of n = 6 concludes data entry.

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
I 3.		[e]	4.0000	Compile data; display d.f. = 4.
I 4.	2.776	[R/S]	2.7760	Enter t .025 for d.f. = 4.
	1	[H]	22.9333	b
		[Y<>X]	0.2480	m; $y = .248x + 22.93$ answers (a).
	25	{h}	29.1333	y for $x = 25$ answers (b).
	30	[i]	28.4946	\hat{x} for y = 30 answers (c).
SLOPE 1	•	[A]	0.1983	£
		[Y<>X]	.2977	u, so CI is $.198 < m < .298$, answering (d).
INT 1	•	[B]	21.4294	Ł
		[X<>Y]	24.4373	u, so CI is $21.4 < b < 24.4$, answering (e).
μ at x _O	25	[C]	28.2850	£
v		[X<>Y]	29.9817	u, so CI is $28.28 < 25m + b < 29.98$, answering (f).
Y at x ₀	25	[c]	26.8889	L
Ü		[Y<>X]	31.3778	u, so PI is $26.89 < Y_0 < 31.38$, answering (g)
DISC	30	[d]	19.3744	£
		[Y<>X]	37.9069	u, so CI is $19.37 < x* < 37.91$, answering (h).
SLOPE 2	a. 0	[a]	0.0000	Enter H_1 -code for H_1 : $m \neq 0$
26.	. 0	[R/S]	0.0002	Significance of test; reject H ₀ ; answers (i).
INT 2a	. 1	[b]	1.000	Enter H_1 -code for H_1 : $b > 20$
2b.	. 20	[R/S]	0.0028	Significance of test; reject H ₀ ; answers (j).
		[P]	0.9897	Calculates and displays r
		[x ²]	0.9796	$r^2 = 0.98$ is the answer to (k).
CORR	0	[U][E][U]	0.0002	Significance of test of H_0 : $\rho = 0$ (must agree with (i)).

[[]U] = [USER]

Chapter 10 Multiple Regression

Only the data entry scheme differs from the TI version of this program. The regression program EMLRXY in STAT PAC is utilized for entering the data in the HP version and partial processing takes place in that program. Further processing takes place in program ZS-10 (assigned to label [J] for easy entry from STAT PAC) so that even the register contents (with the slight modification given below) and the remaining instructions will match those given in the book.

Once ZS-10 is entered, a press of [d] will force the pointer to STAT PAC program EMLRXY. Data are then entered as follows: first, x and y are successively entered with the [ENTER] key and then the value of z with [A]. At the conclusion of data entry, pressing [E] will cause partial processing, ending with a display of the coefficient of determination. It is at this point that STAT PAC must be exited and ZS-10 entered with a press of [J]. Then, pressing [e] will cause the rest of the processing to take place. Thereafter, the user instructions for ZS-10 may be followed to the letter. For that reason, only the DE instructions need to be modified and are summarized below. The usual sample problem is presented starting on the following page.

S	Ι	ZE	-0	5	0

STEP	PROCEDURE				ENTER	PRE	SS	DISPLAY
DE	Data Entry							
0	Initializatio	on.				[J		0.0000 ΣMLRXY
1	ENTER DATA (repeat i≖i	. , ,	,n)		xi yi zi	[ENT] [ENT] [A	ER]	xi yi i
2	Compile Data Complete comp		ial)			[E [J [e]	R ² 0.0000 n-3
3	Enter t-perce (d.f. = n-3)	entile	•		t _{α/2}	[R/:	s]	t _{a/2}
Assig	mments	Labe	els U	sed		Regist	er Con	tents
2S-10 ΣMLRX) J e	01 02	A B C D E	a b c d e		40 41 42 43 44 45 46 27 48 49		

ZS-10 EXAMPLE.

The data below represent characteristics of a sample of automobiles.

Weight	3810	4220	2900	3290	3400	392 0	4350
Horsepower	255	180	16	120	100	140	150
Cost	7999	9221	8222	9010	10099	11019	11219

- (a) Regress cost on weight and horsepower.
- (b) Predict the cost of an automobile weighting 5,000 lbs. and having 160 horsepower.
- (c) Determine the significance of horsepower for predicting cost.
- (d) Find a 95% confidence interval for the coefficient of weight.
- (e) Estimate o.
- (f) Find the coeffficient of determination.

Solution:

ZS STEP	ENTER	PRESS	DISPLAY	COMMENTS
DE 0.		[J]	0.0000	Enter program ZS-10
1.		[d]	ΣMLRXY	Initialize EMLRXY for data entry.
	3810	[ENTER]	3810.00	Enter x ₁ .
	255	[ENTER]	255.00	Enter y ₁ .
	7999	[A]	1.00	Enter z completing one triple.
	4220	[ENTER]	4220.00	Enter x ₂ .
	180	[ENTER]	180.00	Enter y ₂ .
	9221	[A]	2.00	Enter z_2 completing two triples.
	2900	[ENTER]	2900.00	Enter x3.
	96	[ENTER]	96.00	Enter y3.
	8222	[A]	3.00	Enter z completing three tri es.
	3290	[ENTER]	3290.00	Enter x ₄ .
	120	[ENTER]	120.00	Enter y ₄ .
	9010	[A]	4.00	Enter z_{4} , completing four triples.
	3400	[ENTER]	3400.00	Enter x5.
	100	[ENTER]	100.00	Enter y ₅ .
	10099	[A]	5.00	Enter z_5 , completing five triplets.
	3920	[ENTER]	3920.00	Enter x ₆ .
	140	[ENTER]	140.00	Enter y ₆ .
	11019	[A]	6.00	Enter z, completing six triplets.
	4350	[ENTER]	4350.00	Enter x ₇ .
	150	[ENTER]	150.00	Enter y ₇ .
	11219	[A]	7.00	Enter z_7 , completing last triplet.

ZS	STEP	ENTER	PRESS	DISPLAY	COMMENTS
			[E]	0.80	Process data and display R ² .
			[J]	0.8050	Exit EMLRXY and enter ZS-10
I	2.		[e]	4.0000	Process trivariate data further and display $v = 4$.
I	3.	2.776	[R/S]	2.7760	Enter t .025 for CI's.
D			[D]	3361.7167	Display an.
			[R/S]	2.4657	Display a.
			[R/S]	-19.7686	Recall and display \hat{a}_2 .
		Regression	equation:	$\hat{z} = 3361.72$	+ 2.466x - 19.769y .
E		5000	[E]	0.0000	Prepare to predict Z.
		160	[R/S]	12,527.0724	Predicted cost.
С		0	[c]	0.0000	Testing H_0 : $a_2 = 0$ vs. H_1 : $a_2 \neq 0$.
		0	[R/S]	0.0318	Significance level for a_2 (ts = -3.2).
В			[B]	0.6786	Lower 95% limit for a,.
			[X<>X]	4.2527	Upper 95% limit for a.
			[RCL]33	691.7057	$\hat{\sigma} = s$.
			[RCL] 27	0.8050	Recall and display $R^2 = .80$.

APPENDIX

In the appendix that follows, you will find a complete listing of the programs discussed in the previous sets of User Instructions. These programs are named according to their ZP or ZS application by chapter and, occasionally, by section. To implement the programs, the first step is to key in each step into your calculator exactly as it appears in the listing. (Consult the Owner's Handbook for any instructions that may be unfamiliar.) Next, you should assign various subroutines using the function ASN according to the assignments listed just after the register contents in the User Instructions for each program. Then place your HP41-C in USER mode and record the program on a magnetic card for future reference.

		99 1
OI+LEL "ZP2"	51+LBL d	188 STO 14
82 EREG 81	52 STO 88	101 RCL 12
83 CLΣ	53 1/X	182 8
04 28	54 STO 13	
85 STO 87	34 310 13	183 X=Y?
86 21		184 GTO 18
07 STO 08	55+LBL 03	185 RTH
	56 RCL IND 07	
88 8	57 RCL 13	186+LEL b
89 RTH	58 XEQ 82	187 XEQ 88
_	59 DSE 00	
10+LBL A	68 CTO 83	183+LBL 89
11 STO IND 87	61 RTH	189 RCL 11
12 RCL 06	V. K	118 ST+ 14
13 1	COALDI E	
14 +	62+LPL E	111 1
15 STOP	63 1/X	112 ST- 11
16 STO IND 89	64 STO 13	113 DSE 12
17.RDH	·	114 GTO 89
	65•LEL 04	
18 X()Y	66 STOP	115+LEL 18
19 Rt	67 STO IND 07	116 RCL 14
	68 RCL 13	117 STOP
28+L6L 82	E9 XEQ 22	
21 STO IND 88	78 GTO 84	S S O A L CL
22 2+	78 410 44	118+LEL c
23 2	m I Bt. A	119 XEQ 68
24 ST+ 87	7:+LBL C	128 X>Y?
25 51+ 83	72 1	. 121 GTO 12
	73 STO 83	122 RDN
26 RCL 96	74 -	123 RCL 11
27 RTN	75 STO 88	124 X<>Y
	76, 365	125 X)Y?
28+LBL B	77 STO 81	126 GTO 12
29 2	78 STO 82	.20 0.0 12
38 *		127+LBL 11
31 18	79+LBL 85	- 128 RCL 11
32 +		TEG HOL
33 STO 89	1 98	129 ST+ 14
34 1	. 81 ST- 91 .	130 1
35 +	· 82 RCL 01	131 57- 11
36 STO 19	83 RCL 02	132 RCL 12
	84 /	133 \$7/ 14
37 RCL IND 09	. 85 ST+ 83	134 DSE 12
38 RCL IND 10	86 DSE 00	135 GTO 11
39 * -	87 CTO 85	136 GTO 18
48 RCL 85	83 1	120 410 10
41 /	. 89 RCL 03	177.101.10
42 RTN	•	137+LBL 12
•	90 -	138 8
43+LBL a	91 RTH	139 STOP
44 RCL 85		148 EHB
	92+LEL 03	
45 RTN	93 "H=?"	•
	94 PROMPT	
. 46+LEL D	95 STO 11	
47 RCL IND 87	96 •R=?•	
48 STOP	97 PROMPT	
49 STO IND 88		
58 G10 E2	98 510 12	
<u> </u>		

61+LBL *2P3-2* 62 CLRG 63 20	50 * LBL E 51 XEQ 81
94 STO 91	52+LBL 83
85 21	53 RCL IND 81
86 STO 82	54 XEQ 85
87 0	55 DSE 88
88 RTH	56 GTO 83
89+LEL R 18 STO IND 91	57+LBL 06
11 STOP	58 RCL 07 59 RCL 06
12 STO IND 82	68 X12
13 1	61 -
14 ST+ 83	62 STO 83
15 2	63 RCL 06
16 ST+ 81	64 RTH
17 ST+ 82	01 810
18 RCL 93	65+LEL D
19 RTH	66 XEQ 81
28+LSL 01	67+LBL 04
21 RCL 03	68 XEQ 02
22 STO C9	69 DSE 89
23 0	78 GTO 84
24 STO 96	.71 GTO 96
25 STO 97	
26 28	72+LBL C
27 STO 01	73 STO 88
· 28 21	74 9
29 STO 82	75 STO 18
38 RTH	76 21 ⁻
31+LBL 02	77 STO 82
32 RCL IND 81	78 +L8 L 97
33 STO 09	70 RCL IND 02
34 XEQ B	80 ST+ 10
VI 1.23 5	81 2
35+LBL 05	82 ST+ 82
36 STO 84	83 DSE 08
37 X12	84 G10 97
38 510 95	85 RCL 19
39 RCL IND 02	86 RTN
48 51* 84	
41 ST* 05	87+LBL B
42 RCL 84	88 END
43 ST+ 86	
44 RCL 95	
45 ST+ 07	
46 2	
47 ST+ 81	
48 ST+ 02	
49 RTH	

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU-OF STANDARDS-1963-A

STATES ACCORDED STATES STATES (1978)

A4.4 84 .202 7.	52 STO 16	185 RCL 28		907 801 17	
91+LBL *ZF3-3*	53 RCL 14	186 •	157+LBL 18	203 RCL 13 204 STO 11	254+LBL b
82 CF 82 83 8	54 STO 81	187 1/%	158 1	285 STO 12	255 XEQ B
e4 STOP	55 RCL 13	108 ENTERT	159 \$10 84	286 RCL 15	256 1
44 J106	56 STO 02	189 RCL 13	160 RCL 82	207 RCL 14	257 -
85+LBL A	57 XEQ -PHTON-	118 ENTERT	161 8	208 /	258 CHS
66 STO 09	58 ST/ 16	111 RCL 20	162 X=Y? 163 GTO 10	209 STO 22	259 _, RTH
87 FS? 82	59 SF 02	112 -	164 RTM	218 ST+ 11	
88 CTO 82		113 1	197 AIN	211 ST+ 12	Sebolbl E
89 RCL 14	68+LBL 82	114 +	165+LBL *PHTON*	212 1	261 RCL 12
10 STO 24	61 0	115 •	166 XEQ 18	213 -	262 RCL 11
11 1/8	62 STO 20	116 ENTERT		214 CHS	263 RTN
12 STO 22	63 RCL 16 .	117 RCL 15	167+LBL 19	215 STO 21	264 ENB
13 RCL 15	64 STO 86	118 ENTERT	168 RCL 81	216 ST+ 12	
14 ST- 24	65 STO 87	119 RCL 20	169 ST+ 84	217 RCL 13	
15 57+ 22	66 0 67 Entert	128 -	178 1	213 YtX	
16 RCL 22	68 RCL 00	121 1 122 +	171 ST- 81	219 STO 16	
17 STO 11	69 X=Y?	123 *	172 DSE 82	228 STO 06 221 STO 07	
18 STO 12 19 1	78 GTO 85	159	173 GTO 19	221 STU E7 222 SF 02	
20 -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	124+LEL 84		ZZZ SP UZ	
21 CHS	. 71+LBL 83	125 ST# 86	174•LBL 10 175 RCL 04	223+LEL 87	
22 STO 21	72 1	126 RCL 96	176 RTN	224 8	
23 ST+ 12	73 ST+ 20	127 57+ 87	110 Kin	225 STO 28	
24 RCL 13	74 RCL 20	128 DSE 09	177+LBL "CHBON"	226 RCL 16	
25 STO 88	75 ENTERT	129 GTO 83	178 XEQ 18	227 STO 66	
26 ST+ 11	76 RCL 15		179 X)Y?	228 STO 87	
27 ST* 12	77 -	130+LBL 65	188 GTO 12	229 RCL 80	
28 ENTERT	1 87 - 79	131 RCL 86 132 RCL 87	181 RDH	238 8	
29 RCL 14	88 CKS	132 RTH	182 RCL 01	231 X=Y?	
30 - 31 CHS	81 ENTERT	, 100 Kill	183 XC)Y	232 GTO 85	
32 RCL 14	82 8	134•LEL 86	184 X>Y?	233+LBL 03	
33 1	83 X()Y	135 1	185 GTO 12 ·	234 1	
34 -	84 X(=Y?	136 STO 86	186+LBL 11	235 ST+ 29	
35 /	85 CTO 84	137 RCL 15	187 RCL 01	236 RCL 28	
36 ST+ 12	86 CKS	138 STO 01	188 ST+ 04	237 RCL 13	
	87 2	139 RCL 28	189 1	238 -	
37+LBL 01	89 +	148 STO 82	198 ST- 81	239 CKS	
38 RCL 24	89 RCL 14	141 XEQ "CHBOH"	. 191 RCL 82	246 1	
39 RCL 13	98 +	: 142 STO 23	192 ST/ 84 .	241 +	
48 X(=Y?	91 RCL 13 92 -	143 RCL 14 144 STO 81	193 DSE 82	242 RCL 20	
41 GTO 89	93 ENTERT	145 RCL 13	194 GTO 11	243 /	
42 0 43 STO 16	94 0	146 STO 82	195 GTO 18	244 RCL 22 245 •	
44 SF 82	95 X()Y	147 XEQ "CHECH"	444.184.48	246 RCL 21	
45 CTO 82	96 X<=Y?	148 ST/ 23 .	196+LBL 12	247 /	
10 010 05	97. GTO 84	149 RCL 23	197 0	248 ST+ 06	
46+LBL 99	98 1	158 GTO 84	198 STOP	249 RCL 06	
47 RCL 24	99 -		199+LBL 8	258 ST+ 87	
48 STO 01	108 ENTERT	151+LBL a	200 570 00	251 BSE 88	
49 RCL 13	101 0	152 XEQ A	201 FS? 82	252 GTO 08	
58 STO 82	102 X=Y?	153 1	· 202 CTO 07	253 GTO 85	
51 XEQ -PHTON-	183 GTO 86 184 X<>Y	154			
	104 9//1	155 CHS 156 RTH			
		TAN VIII			

				205 201 00
81+LBL "ZP3-4"	52 CHS	183 -	153+LBL c	205 RCL 20
82 CF 81	53 RCL 13	164 CHS	154 XEQ C	206 / 207 RCL 21
03 CF 02	54 +	185 RTH	155 ENTERT	209 *
94 CF 83	55 1	404.184.2	156 1	289 ST+ 86
85 CF 84	56 +	196•LBL E	157 -	218 RCL 86
86 0	57 RCL 20	107 RCL 12	158 CHS	211 ST+ 87
87 STOP	58 /	193 RCL 11	159 RTH	212 DSE 88
	59 RCL 22	169 RTH	160+LBL A	213 GTO 19
88+LEL 8	68 +	118+LBL C	161 STO 88	214 GTO 05
89 570 88	61 RCL 21	111 STO 99	162 FS? 04	
18 FS? 82	62 / 63 ST* 86	112 FS? 83	163 GTO 15	215+LBL 15
11 GTO 97	64 RCL 06	113 GTO 13	164 FS? 01	216 RCL 21
12 FS? 04	65 ST+ 87	114 FS? 04	165 GTO 18	217 ST+ 11
13 GTO 11	66 DSE 00	115 GTO 11	166 RCL 22	218 CF 84
14 RCL 22	67 GTO 88	116 RCL 22	167 1/X	219 RCL 00
15 STO 11	01 010 00	117 RCL 13	168 STO 11	228 GTO A
16 STO 12	68+LEL 65	118 *	169 X12	. .
17 1	69 RCL 85	119 STO 11	170 STO 12	221+LEL a
18 -	78 RCL 87	128 STO 12	171 1/X	222 XEQ A
19 CHS	71 RTN	121 228	172 SQRT	223 ENTERT
20 STO 21 21 ST= 12		122 X<=Y?	173 1	224 1
21 51- 12 22 LH	72+LEL 11	123 GTO 11	174 -	225 -
23 RCL 13	73 RCL 88	124 X<>Y	175 CHS	226 CHS
24 ST+ 11	74 .5	125 CHS	176 STO 21	227 RTH
25 ST+ 12	75 +	126 EtX	177 ST+ 11	920 - 1 51 - 1
26 *	76 RCL 11	127 STO 16	178 ST+ 12	228+LBL J
27 CHS	77 -	128 STO 86	179 RCL 22	229 RCL 13
23 228	78 RCL 12	129 STO 87	188 RCL 13	230 - 231 XEQ A
29 X(=Y?	79 SQRT	130 SF 03	181 ST* 11	232 RCL 21
39 GTO 11	88 /		182 ST# 12	233 ST/ 11
31 RCL 21	81 STO 19	131+LBL 13	183 Y:X	234 SF 9 4
32 RCL 13	S2 XEQ "ZCDF"	132 0	184 STO 16 185 STO 86	235 RCL 96
33 YtX	83 STO 23	133 STO 20	186 STÛ U	236 RCL 87
34 STO 16	84 RCL 88	134 RCL 16	186 STO 67	237 RTN
35 STO 86	85 .5	135 STO 86	191 21 01	
36 STO 07	86 -	136 STO 97 137 RCL 99	128+LBL 18	238+LBL 3
37 SF 82	87 RCL 11	138 X=6?	189 8	239 STO 98
	88 - ee pr: 13	139 GTO 05	190 STO 20	248 FS? 02
38+LBL 07	89 RCL 12 98 SQRT	157 414 40	191 RCL 16	241 GTO 28
39 0		140+LBL 14	192 STO 86	242 RCL 22
48 STO 28	91 / 92 XEQ "ZCDF"	141 1	193 STO 07	245 1
41 RCL 16	93 RCL 23	142 ST+ 29	194 RCL 88	244 -
42 STO 06	94 -	143 RCL 28	195 X=8?	245 CHS
43 STO 87	95 CHS	144 1/X	196 GTO 85	246 STO 21
44 RCL 88	96 LASTX	145 RCL 11		247 STO 12
45 9	97 SF 84	146 +	· 197+LBL 19	248 RCL 22
46 X=Y?	98 RTH	147 ST+ 86	198 1	249 1/X
47 GTO 85	**	148 RCL 86	199 ST+ 20	250 STO 11
40ALD1 00	99+LBL b	149 ST+ 87	200 RCL 20	251 X12
48+LBL 08	100 XER B	150 DSE 00	201 RCL 13	252 ST+ 12
49 1 50 ST 20	101 ENTERT	151 GTO 14	292 +	253 SF 82
50 S1 20 51 RCL 20	162 1	152 GTO 05	293 1	
J1 766 20			284 -	

```
301 .2316419
 254+LEL 20
                                            392 *
 255 RCL 21
                                            383 +
 256 ENTERT
                                            384 1/X
  257 RCL 88
                                            385 ENTERT
  258 1
                                            306 ENTERT
 259 -
                                            307 ENTERT
 260 Y1X
                                         308 1.336274429
 261 RCL 22
                                            309 *
 262 *
 263 ENTERT
                                        310 -1.821255978
                                            311 +
 264 ENTERT
                                            312 *
 265 RCL 21
 266 RCL 88
                                         313 1.781477937
                                            314 +
 267 Y1X
                                            315 •
 268 ENTER+
                                         316 -. 356563782
 269 1
 279 -
                                            317 +
                                            318 *
 271 CHS
                                           319 .31939153
 272 RTN
                                            320 +
 273+LBL d
                                            321 *
                                            322 RCL 64
 274 XEQ B
 275 ENTERT
                                            323 •
                                            324 FS7 88
 276 1
                                            325 GTO 29
 277 -
                                            326 RTN
 278 CHS
 279 RTN
                                            327+LBL 27
288+LBL -ZCDF-
                                            328 RCL 83
                                            329 CH$
 281 STO 93
                                            338 STO 03
  282 ENTERT
                                            331 XE9 23
 263 *
                                            332 1
  284 2
                                            333 X()Y
  285 /
                                            334 -
  286 CHS
  267 EtX
                                            335+LBL 29
  288 PI
                                            336 CF 80
  289 2
                                            337 ENTERY
  290 *
  291 SORT
                                            338 ENTERY
                                            339 1
  292 / .
                                            340 -
  293 STO 04
                                            341 CHS
  294 RCL 83
                                            342 END
  295 X(8?
  296 GTO 27
  297 SF 66
  298+LBL 23
  299 1
  300 RCL 03
```

				•	•
BI+LBL "ZP4"	53+LBL 87	188+LBL 11	158 1	210 /	258+LSL B
02 CF 01	54 RCL 25	189 SF 81	159 -	211 STO 87	259 XEQ -RHDMU-
93 FIX 4	55 CHS	110 1	168 CHS	212 1	260 LH
64 0	36 \$10 25	111 -	161 RCL 07	213 -	261 RCL 22
es stop	57 XEQ 83	112 CHS	162 RTN	214 CHS	262 /
	58 1	113 RTM		215 RCL 87	263 CHS
esorbt .SCDE.	59 X()Y		163+LBL D	216 RTH	264 STO 08
07 STC 25	64 -	114+LBL 12	164 XEQ C		265 E+
08 ENTERT		115 CF 81	165 STO 88	217+LBL 15	266 RCL 99
09 •	61+LBL 09	116 STO 19	166 X()Y	218 RCL 15	267 RTH
10 2	62 CF 99	117 RTN	167 STOP	219 •	ZOI KIN
11 /	63 ENTERT		168 XEQ C	228 RCL 14	268+L8L G
12 CHS	64 ENTERT	118+LBL -RHDHU-	169 ST- 88	221 -	269 XED -RHDMU-
13 EtX	65 1	119 RCL 09	178 RCL 88	222 CHS	278 XEQ d
14 FI	66 -	128 9321	171 1	223 CF 05	271 STO 88
15 2	67 CHS	121 +	172 +	224 RTN	272 Σ+
16 * 17 SORT	68 RTH ·	122 .211377	173 RCL 08		273 RCL 00
18 /	•	123 +	174 CHS	225+LBL b	274 RTN
19 STO 26	69+LBL c	124 FRC	175 RTN	226 RCL 12	ZIT KIN
26 RCL 25	70 .5	125 STO 09		227 RCL 11	22541.01 -42000-
21 X(0?	71 X<>Y	126 RTH	176•LBL d	228 RTN	275+LEL "XBAR"
22 GTB 97	72 X)Y?		177 XEQ c		276 NEAH
23 SF 60	73 XEQ 11	127+LEL a	178 RCL 12	229+LPL E	277 RTH
23 31 BA	74 ENTERT	128 XEQ -RNDKU-	179 SERT	238 STO 68	
24+LBL 83	75 •	129 1	188 *	231 FS? 01	278+L5L 'SD'
25 1	76 1/X	138 RCL 14	181 RCL 11	232 GTO 17	279 SDEV
26 RCL 25	77 LH	131 + /	182 +	233 RCL 22	280 END
27 .2316419	78 SERT	132 *	183 RTN	234 1/X	
28 =	79 STO 88	133 RCL 13		235 STO 11	
29 +	90 .918328·	134 +	184+LBL A	236 X12	
39 1/X	81 *	135 INT	185 STO 08	237 STO 12	
31 ENTERT	82 .88 2853	136 FIX 8	166 FS? 85	238 SF 81	
32 ENTERT	83 +	137 STOP	137 GTO 15		
33 ENTERT	64 RCL 80	138 FIX 4	188 FS? 01	239+LBL 17	
34 1.330274429	85 •	139 E+	189 GTO 16	248 RCL 98	
35 •	86 2.515517	140 RTM	190 RCL 13	241 RCL 22	
36 -1.82125597	87 +	170 KIA	191 RCL 14	242 •	
37 +	88 RCL 80	141+LBL "CEN-INI"	192 +	243 CHS	
38 *	89 .861308	142 FIX 4	193 2	244 E1X	
39 1.781477937	50 •	143 TREG 81	194 /	245 ENTERT	
40 +	91 .189269	144 CLE	195 STO 11	246 ENTERT	
41 *	92 +	145 *SEE3?*	196 RCL 14	247 1	
42356563782	93 RCL 00	146 PROMPT	197 RCL 13	248 -	
43 +	94 • .	147 STB 89	198 -	249 CHS	
44 •	95 1.432788	148 RTN	199 STO 15	258 STO 67	•
45 .31938153	96 +	140 KIM	208 X12	251 RTM	
46 +	97 RCL 06	149+LBL C	201 12	ear viu	
47 •	98 •	150 RCL 11	202 /	252+LBL e	
48 RCL 26	99 1	151 -	203 STO 12	253 LN	
49 *	180 +	152 RCL 12	204 SF 01	254 RCL 22	•
58 FS? 88	101 /	153 SQRT	· 285 RCL 88	255 /	,
51 GTO 89	192 RCL 00	154 /		256 CHS	
52 RTH	183 X()Y	155 STO 18	206+LEL 16	257 RTN	
	194 -	122 210 18	287 RCL 13	LUI KIR	
	105 FS? 01	157 STO 87	288		
	186 CHS	131 310 61	209 RCL 15		
	197 GTO 12	•			
	,				

	49 RCL IND 19	· 103•LBL 03
010LEL "ZP5"	50 STO 02	194 RCL IND 19
82 TREC 01		
83 CLE	51 ST+ 06	185 STO 89
94 EREG 97	52 X12	196 1
85 CLE	53 STO 8 5	107 ST+ 19
_	54 1	168 RCL IND 19
06 EREC 13	55 ST+ 19	189 STO 18
· 87 CLI	S6 RCL IND 19	
88 29		116 1
89 STO 19	57 ST+ 01	111 ST+ 19
18 0	58 ST+ 82	112 XEQ a
•••	59 ST+ 84	. 113 STO 97
	68 ST+ 85	114 X12
11+LRL 01	61 ST+ 86	115 STO 08
12 STOP		
	62 RCL 01	116 RCL IND 19
13+LBL A	63 ST+ 11	117 ST+ 07
14 STO IND 19	64 RCL 82	118 ST+ 88
	65 ST+ 13	119 RCL 07
15 STO 89	66 RCL 84	128 ST+ 17
16 1	67 ST+ 12	
17 ST+ 19		121 RCL 03
18 ST+ 03	68 RCL 05	122 ST+ 18
19 RCL 83	69 ST+ 14	123 i
	- 78 RCL 86	124 ST+ 19
28 STOP	71 ST+ 15	125 DSE 00
	72 1	126 GTO 83
21+LEL B		
· 22 STO IND 19	73 ST+ 19	127 RCL 17
23 STO 10	74 BSE 00	123 X12
24 1	75 GTO 82	129 ST- 18
	76 RCL 11	139 RCL 18
25 ST+ 19	77 X12	131 RCL 17
26 RCL 83	78,ST- 12	
27 STOP		132 RTN
	79 RCL 13	
28+LBL C	88 X12	133+LBL d
29 STO IHB 19	81 ST- 14	134 RCL 11
	82 RCL 11	135 STOP
38 ST+ 87	83 RCL 13	136 RCL 12
31 STO 88	84 *	
32 1		. 137 STOP
· 33 ST+ 19	85 ST- 15	138 RCL 13
34 RCL 83	96 RCL 15	. 139 STOP
	87 RCL 12	140 RCL 14
35 GTO 81	- 88 SORT	141 STOP
	89 /	
36. LBL E		142 RCL 15
37 RCL 83	98 RCL 14	143 STOP
38 STO 69	91 SORT	144 RCL 16
	92 /	145 RTH
39 20	93 STO 16	146 CTO d
48 STO 19	94 RTH	• • • • • • • • • • • • • • • • • • • •
41+LBL 82		1470LBL a
42 RCL IND 19	95+LBL D	148 EHB
43 STO 61	· 96 B	•
	97 STO 17	
44 STO 86	98 STÓ 18	
45 X12		
46 STO 84	99 RCL 93	
47 1	188 STO 48	
48 ST+ 19	181 20	
70 414 17	182 STO 19 ·	

01.FBF .S2-5.	53 +	107 +	161 XEQ C	213 CHS	266 +
82 EREG 81	54 1/X	108 RCL 66	162 ST- 88	214 STO 87	267 RCL 18
93 CLE	55 ENTER+	109 •	163 RCL 88	215 RTH	268 /
04 FIX 4	56 ENTERP	110 2.515517	164 1		269 RCL 22
85 8	57 ENTERT	111 +	165 +	216•LBL e	270 •
86 STOP	58 1.338274429	112 RCL 00	166 RCL 08	217 1	271 RCL 23
es siur	59 *	113 .001308	· 167 CHS	218 -	272 /
43-154 45HEMIA	69 -1.821255978	114 •	168 RTH	219 CHS	273 ŠI• 25
B7+LBL "RNDHU"	61 +	115 .189269		228 LH	274 RCL 25
' 88 RCL 69	62 *	116 +	169+LBL d	221 RCL 16	275 ST+ 26 -
69 9821	63 1.781477937	117 RCL 88	178 XEQ c	222 /	276 BSE 09
18 *	64 +	118 •	171 RCL 18	223 CHS	277 CTO 86
11 .211377	65 *	119 1.432783	172 +	224 RTN	
12 +	66356563782	128 +	173 RCL 17	_	278+LGL 0 8
· 13 FRC	67 +	121 RCL 89	174 +	225+LBL 20	279 RCL 26
14 STO 89	68 *	122 *	175 RTN	226 *PHTERS?*	288 1
15 RTN	69 .31938153	123 1		227 PROMPT	281 -
	70 +	124 +	176 · LBL · CEH-INI ·	229 STO 21	282 CHS
16. Lel - Endhab.	71 *	125 /	177 FIX 4	229 STO 17	283 RCL 26
17 XEQ "RHCHU"	72 RCL 26	126 RCL 98	178 EREG 01	239 STOP	284 RCL 25
13 RCL 14	73 *	127 X()Y	179 CLE	231 STO 22	285 RTH
19 RCL 13	74 FS? 00	128 =	188 -SEED?-	232 ST+ 17	200
· 20 -	75 GTO 09	129 FS? 81	. 181 PROMPT	233 1	286 +LBL -HU-SIG-
21 *	76 RTM	138 CHS	182 STO 09	234 -	287 FIX 4
22 RCL 13	77.4 Pt . 47	131 GTO 12	183 RTH	235 CHS	283 RCL 87
23 +	77-4LBL 87		103 viu	236 STO 23	289 RCL 05
24 RTN	78 PCL 25	132+LBL 11	184+LBL b	237 RCL 22	298 X12
	79 CHS 88 STO 25	133 SF 81	185 XEG -KNDMU-	238 *	291 -
25+LBL "RNPHI"	81 XEQ 03	134 1	186 XEG q	239 RCL 21	292 SQRT
26 XEO -KNDHA8-	82 1	135 -	187 STO 66	248 •	293 STO 18
27 INT	63 X()Y	136 CHS	. 188 E+	241 SQRT	294 RCL 86
28 FIX 8	84 -	137 RTN	189 RCL 00	242 STO 18	295 STO 17
29 RTH	•		198 RTH .	243 8	296 RTH
	85+L5: 09	138+LBL 12		244 STOP	
30+LPL 19	86 CF 00	139 CF 81	191+LBL B		297+LBL a
31 STO 25	87 ENTERT	148 STO 19	192 XEQ RHBMU-	245+LBL A	293 RCL 18
32 ENTERT	88 ENTERT	141 RTN	193 XEQ e	246 STO 88	299 RCL 17
33	89 1		194 STO 88	247 RCL 23	300 RTH
34 2	96 -	142+LBL C	195 E+	248 RCL 21	
35 /	91 CHS	143 STO 60	196 RCL 00	249 Y1X	701-101 -0077-0
36 CHS	92 RTN	144 RCL 17	197 RTM	250 STJ 24	301+LBL "BSTG" 382 XPON "EBSTG"
37 EtX		145 -	471 404	251 STO 25	303 RTN
38 PI	93+LBL c	146 RCL 18	198+LBL E	252 STO 26	363 KIN
39 2	94 .5	147 /	199 STO 88	253 0	384+LBL "XBAR"
48 .	. 95 X()Y	148 STD 28	200 RCL 16	254 STO 18	305 MEAN
41 SORT	96 X>Y?	149 XEQ 19	201 1/%	255 RCL 00	306 PTN
42 /	97 XEG 11	150 STO 67	202 STO 17	256 X=Y?	300 KIN
43 STO 26	98 ENTERT	151 1	202 STO 18	257 670 88	307+LBL -SD-
44 RCL 25	99 +	125 -	204 RCL 00		308 SDEA
45 X(0?	100 1/X	153 CHS	285 RCL 16	258+LEL 86	309 RTN
46 610 87	181 LN	154 RCL 07	296 +	259 1	44 / 1/14
47 SF 98	182 SQRT	155 RTM	207 CHS	260 ST+ 10	310+LBL "RD" .
28.1 St 45	103 STO 00		207 CH3 208 E1X	261 RCL 18	311 RDN
48+LBL 03	104 .010328	156+LEL B	200 EIX 209 ENTERT	262 CHS	312 RTH
49 1	105 +	157 XEQ C -	210 ENTERT	263 RCL 21	313 END
50 RCL 25	196 .802953	158 STO 88	211 1	264 +	
51 .2316419	•	159 X()Y	212 -	265 1	
52 •		168 STOP			
				•	

	F1 674 14	47.1 M 64	145.161.10
01+LBL *25-3*	51 57+ 14	97+LBL 04	145+LBL 12
e2 STOP	52 ST+ 15	98 RCL IND 15	146 X12
	23 D2E 60	99 XEQ a	147 RCL 06
03+LBL C	54 GTO 82	188 XEQ 85	148 1
04 RCL 13	55 RCL 07	101 1	149 -
0 5 RCL 12	56 RCL 86	182 \$7+ 15	150 +
06 -	57 /	103 DSE 14	151 RCL 06
97 RTN	38 RTH	194 GTO 84	152 /
•		185 RCL 19	153 RTN
98+LBL B	59•LBL c	196 RTN	
89 NEAN	68 RCL 13		154+LBL "XBAR"
18 STO 88	61 +	197+LBL A	155 MEAN
11 RCL 86	62 RCL 12	108 XEQ a	156 RTN
12 STO 88	. 63 -		
. 13 31	64 RTN .	109+LBL 05	157+LBL -SD-
14 STO 30		118 STO 89	158 SBEY
15 0	65+LBL d	111 STO IND 39	159 RTN
16 STO 87	66 CF 81	112 FS? 87	
70 010 01	67 8	113 XEQ 13	160+LBL a
17+LBL 01	68 RTN	114 ST+ 01	161 END
18 RCL IND 38	55 K.II	115 RCL 89	
19 RCL 98	69+LEL P	116 *	
20 -	70 FS? 81	117 ST+ 82	
	71 GTO 8 3	118 1	
21 RES			
22 ST+ 67	72 38	119 ST+ 86	
23 1	73 STO 88	128 ST+ 19	
24 ST+ 38	7441 M 67	121 ST+ 30	
25 BSE 88	74+LSL 03	122 RCL 12	
26 CTO 81	75 1	123 RCL 89	
27 RCL 87	76 ST+ 88	124 X<=Y?	
28 RCT 86	77 RCL IND 80	125 STO 12	
29 /	78 SF 91 ·	126 RCL 13	•
38 RTH	79 RTH	127 XC)Y.	
		128 X>Y?	
31.FEF P	80+LBL e	129 STO 13	
32 MEAN	81 CF 81	130 RCL 19	. •
33 STO 88	82 EREC 97	131 RTN	
34 RCL 19	83 CLE	•	
· 35 STO 99	84 EREC 13	132+LBL 13	
36 31	es cli	133 STO 12	
37 STO 14	86 EREC 81	134 STO 13	
38 32	87 CLI	135 CF 07	
39 STO 15	88 SF 87	136 RTM .	
48 8	89 31		
41 STO 07	90 STO 15	137+LBL "HSB"	
	31 210 38	138 SDEV	
420LBL 0 2	92 8	139 STO 00	
43 RCL INB 14	93 STO 19	148 RBH	•
44 RCL 88	94 RTM	141 XEQ 12	
45 -		142 RCL 08	
46 ABS	95+LĖL E	143 XEQ 12	
47 RCL THD 15	96 STO 14		
48 •	• •		
49 ST+ 87			
50 2		•	
•- •			

		01+LBL *ST-07/9*	53 ST+ IND 00	192 RCL 11
01+LBL "ST-03"	47+LBL B	82 8	54 ST+ 06	183 RCL 88
82 8	48 STO 19	93 STOP	55 RCL 08	164 •
83 STOP	49 1	, 55 5.5.	56 ST+ 81	185 RCL 12
	50 ST+ 30	e4+LBL e	57 RCL 88	186 +
04+LBL e	51 RCL 10	es EREG 12	58 •	187 STO 85
es erec el	52 STO IND 30	96 CLE	59 ST+ 02	108 RCL 11
86 CF 86	53 !	97 EREG 18	68 RCL 29	109 2
87 CLRG	54 ST- 30	88 CLE	61 RTH	118 /
88 31	55 SF 86 56 RCL 10	89 EREG 24	40.401.04	111 -
89 STO 38	57 RTH	18 CLE	62+LBL 81	112 ST+ 97
10 1	31 KIN	11 EREG 81	63 8	113 ST# 08
11 STO 18	59+LBL 01	12 CLE-	64 /	114 ST# 98
12 SF 07	59 2	13 31	65 RTN	115 RCL 87 116 ST+ 83
13 0	68 ST+ 38	14 STO 38	66+LSL d	117 RCL 08
14 STOP	61 GTO 82	15 0	67 "N=?"	118 ST+ 04
15+LBL A	V. 210 02	16 STO 09	63 PROMPT	119 RCL 05
16 STO 18	62+LBL 83	17 °CELLS?°	69 31 ·	129 RTN
17 STO IND 30	63 STO 12	18 PROMPT	78 STO 38	120 KIN
18 FS? 8 6	64 STO 13	19 STO 89	71 +	121+LBL E
19 GTO 81	65 CF 97	20 -XMIK?"	72 STO 05	122 13
20 1	66 END	21 PROMPT	, 8 0.0 0	123 STO 18
21 ST+ 38		22 STO 12	73+LBL 02	124 8
		23 "H=?"	74 RCL IND 30	125 STO 00
22+LBL 92		24 PROMPT	75 XEQ A	126 STO 93
23 RCL 18		25 STO 11 26 RCL 09	76 RCL 85	127 STO 94
24 STO 09		27 ¢	77 RCL 30	128 END
25 FS? 07		28 RCL 12	78 X=Y?	
26 XES 93		29 +	79 GTO 83	
27 RCL 19		38 STO 13	88 GTO 82	
28 *		31 0		
29 ST+ 01		32 RTH	81+LEL 03	
38 RCL 99		-	82 RCL 29	
31 •		33+LBL A	83 RTN	
32 ST+ 82		34 STO 8 8	04484 -	
33 RCL 10 34 ST+ 86		35 STO IND 38	84+LBL c	
•		36 RCL 13	85 1 ec st. ee	
35 1 36 STA 19		37 X<=Y?	86 ST+ 88	
36 ST+ 19 37 RCL 12		38 GTO 81	87 ST+ 10 88 RCL 09	
38 RCL 89	•	39 RDH	89 RCL 88	
39 X(=T?		48 RCL 12	98 X(=Y?	
49 STO 12		41 X)Y?	91 GTO 84	
41 RCL 13		42 GTO 01	92 *STOP*	
42 X()Y		43 -	93 PROMPT	
43 X)Y?		44 RCL 11	94 STOP	
44 STO 13		45 7 46 TMT	• • • • • • • • • • • • • • • • • • • •	
45 RCL 19		46 INT	95+LBL 84	
46 RTM		47 14 48 +	% RCL IND 10	
		48 T 49 STO 88	97 STO 87	
		50 1	98 STD 98	
		51 ST+ 29	99 FIX 8	
		52 ST+ 30	100 STOP	
		46 41. 41	101 FIX 4	

```
52 STO 15
01+LEL "ZS-4/5"
                                                              100+LBL E
                             53 FS? 84
    82 *DATA?*
                                                              181 RCL 37
                             54 GTO 82
                                                             102 STO 40
    83 PROMPT
                              55 STOP
                                                              183 RCL 86
    04 EREG 01
                             56 STO 31
    OS CLE
                                                              184 2
                             57 XEQ -CI-
    86 8
                                                             185 *
                             SB STOP
                                                             106 STO 15
    87-LEL BI
                                                             187 CTO 86
                             59+LBL 82
   83 STOP
                             68 RCL 39
                                                             188+LBL 5
    89 E+
                              61 XEQ .TF.
    18 CTO 91
                                                             189 XER -HYP-
                           62 XEQ .FYRL.
                             63 STOP
   11+LBL B
                                                             110+LBL B
   12 XEQ -ZR-
                                                             111 STO 99
                             64+LBL c
   13 RCL 15
                                                             112 SF 85
                            62 XED .HIP.
                                                             113 RCL 48
   14 9
   15 .
                                                             114 STO 38
                             66+LBL C
   16 2
                                                             115 GTO A
                             67 RCL 38
   17 /
                             68 X12
   18 1/X
                                                             116+LBL 84
                             69 STO 48
                                                             117 CF 85
   19 STO 49
                             78 RCL 86
   28 SERT
                                                             118 FS? 64
                             71 1
   21 .
                                                             119 GTO 05
                             72 -
   22 RCL 49
                                                             128 RCL 83
                             73 STO 15
   23 -
                                                             121 XEQ -ZR-
   24 1
                                                             122 STO 31
                             74+LSL 06
                                                             123 XEQ -CI-
   25 +
                             75 FS? 84
   26 3
                                                             124 RTH
                             76 GTD 97
   27 Y1X
   28 RCL 15
                                                             125+LBL 95
                             77.+LEL 83
   29 1
                                                           126 XEQ "ZCDF"
                             78 STOP
   38 CTO 83
                                                           127 XEQ -PYAL-
                             79 RCL 15
                                                             128 STOP
                              88 RCL 48
   31. LEL a
                              81 *
  32 XEO -HYP-
                                                             129+LBL #
                              82 STO 88
                                                             138 MEAN
                              83 RCL 41
   33+LBL R
                                                             131 STO 37
                              84 /
   34 RCL 37
                                                             132 SBEV
                              85 RCL 88
                                                             133 STO 38
   35 STO 49
                              86 RCL 31
                                                             134 8
   36 RCL 38
                              17 /
                                                             135 RTN
   37 RCL 86
                              88 STOP
                                                             136 END
   38 SCRT
   39 /
                              89+LBL 87
   48 570 32
                              98 RCL 49
   41 1/%
                              91 +
   42 RCL 48
                              92 RCL 34
   43 RCL 34
                              93 /
    44 -
                              94 STO 38
   45 +
                           32 XEG -CHISD.
    46 STO 38
                            % XEQ . PYRL"
   47 FS? 85
                              97 STOP
    48 CTO 94
    49 RCL 86
                              98+LEL e
   58 1
                             99 XEQ -HYP"
   51 -
```

		•	•	
01+LBL *ZS-6*	44+LBL 12	98+LBL 81	145 GTO 0 5	197+L6L 6 6
62 BATA?"	45 HERH	99 STO 15	146 RCL 13	198 RCL 86
e3 PROMPT	46 STO 37	188 FS? 84	147 1	199 1
84 STOP	47 SDEV	101 GTO 83	148 -	200 -
91 3.00	48 STO 38	102 STOP	149 STO 15	
65+LBL BEP-	49 8	183 510 31	158 RCL 48	201+L6L 07
06 SF 01	56 STO 33	194 XEQ -CI-	151 X12	292 STO 16
97 11	51 RTN	185 STOP	152 •	283 FS? 84
88 CTO 88			153 STO 00	204 GTO 98
	52·LBL a	106+FBF 05	154 RCL 86	285 STOP
834FBF .DEI.	23 XEG .HAL.	107 CF 05	155 1	286 RCL 41
18 CF 81		188 RCL 30	156 - 157 ST+ 15	287 RCL 38
. 11 12	54+LBL A	109 XEQ "ZCDF"	158 RCL 38	288 • 289 Entert
	22 XEG .DH2.	118 XEQ "PYAL"	158 KCL 56 159 X12	218 ENTERT
12+LEL 09	56 RCL 48	111 STOP	169 +	211 RCL 30
13 EREG 01	57 X12		161 RCL 00	212 RCL 31
14 STO 10	58 RCL 13	112+LBL 03	162 +	213 /
15 CLE	59 /	113 RCL 39 114 XEQ "TF"	163 RCL 15	214 CF 81
16 0	68 STD 87		164 /	215 CF 02
	61 RCL +38	115 XEQ "PVAL"	165 SQRT	216 RTH
17+LBL 13	62 X12	116 STOP	166 STO 33	CIO KIN
18 STOP	63 RCL 06	117+LBL 84	100 0.0 0.	217+LEL 88
19 FS? 81	64 /	118 STO 32	167+LBL 85	218 RCL 30
28 -	65 STO 88	119 RCL 48	168 RCL 86	219 XEQ FCDF
21 2+	66 RCL 87 67 +	120 RCL 34	169 1/X	228 XEQ PYAL
22 GTO 13	68 SQRT	121 -	178 RCL 13	221 STOP
	69 XEQ 84	122 RCL 32	171 1/X	
23 · LBL ·X TO Y· 24 NEAN	78 FS? 85	123 /	172 +	222+LPL [
24 MENN 25 STO 47	71 GTO 82	124 STO 30	173 SERT	223 STO 28
26 SDEY	72 RCL 07	125 RTN	174 RCL 33	224 RCL 47
27 STO 48	73 RCL 08		175 *	225 RCL 37
28 RCL 66	74 +	126+LBL b	176 XEQ 84	226 /
29 570 13	75 RCL 97	127 XEQ -HYP-	177 RCL 13	227 STO 38
36 CLE	76 /		178 2	228 RCL 13
31 0	77 1/K	128+LBL B	. 179 -	229 2
32 GTO 13	78 STO 89	129 XEQ "DMS"	188 RCL 96	238 *
	79 CHS	138 RCL 27	181 +	231 \$70 15
33+LBL d	80 1	131 RCL 06	182 GTO 01	232 FS? 64
34 CTO IND 18	81 +	132 SORT		233 670 69
••••	82 X12	133 /	1830LBL 3	234.STOP
35+LBL 11	83 RCL 86	134 XEQ 94	184 STO 36 185 RCL 48	
36 HEAM .	84 1	135 RCL 66	186 RCL 38	235+LBL 89
37 STO 47	85 -	. 136 1		236 RCL 96
38 STEV	86 /	137 -	187 / 188 Xt2	237 2
39 STO 27	87 STO 80	138 GTO 01	189 570 38	238 * 239 GTO 0 7
40 0	88 RCL 89	1764 61 . a	198 RCL 13	248 ENB
41 STO 37	89 X12	139+LBL c 148 XEQ "HYP"	191 1	S-A CUR
42 CF 81	90 RCL 13	148 YEA UIL	192 -	
43 RTH	91 1	· 141+LBL C	193 570 15	
	92 -	142 XEO .BUS.	194 FS? 84	
•	93 /	143 RCL 33	195 GTO 66	
•	94 RCL 90 • 95 +	144 X#8?	196 STOP	
	96 1/X	944 W.A:	= · · · ·	
	97 INT			
	Z1 4M4			

	58 -	99+LBL b	144+LBL A
01+LBL -ZS-7-	SI CHS	188 STO 28	
8 2 8	52 STO 22	181 STOP	146 STO 31
B3 STOP	53 1	182 STO 34	
	54 +	183 RCL 86	148 RCL 13
94+LBL C	55 2	104 RCL 48	149 STO 88
es xee -zr-	35 £	185 +	150 RCL 47
86 STO 31		186 RND	151 XEQ 83
67 RCL 66	57 STOP 58 RCL 18	187 STO 38	152 X12
88 STO 88	35 KUL 10	188 RCL 28	153 STO 27
89 RCL 48	59 2	189 X>Y?	154 RCL 86
18 XEQ 93	44 CT0B	118 GTO 85	155 STO 88
89 RCL 48 18 XEQ 83 11 RCL 31	68 * 61 STOP 62 RCL 18 63 1 64 +	111 1	156 RCL 37
15 XEG -CI-	62 RGL 10	112 X*Y?	157 XEQ 93
13 STO 85	63 1 (/ ±	113 GTO 84	158 X12
14 X<>Y 15 STO 84	65 STO 19	114 CHS	159 RCL 27
15 STO 84	66 2	115 RCL 39	169 +
16 X()Y	67 *		161 SORT
17 X>8?		116 + 117 STO 39	162 STO 32
18 CTO 61	68 STOP	111 210 30	163 RCL 31
19 8	69 RCL 86 78 RCL 18	113+LBL 04	164 XEQ -CI-
28 STO 85		119 RCL 38	165 STOP
	71 - 72 \$10 22	158 XES -SINE-	100 0.01
21+LBL 01	72 310 22	121 XEQ -PVRL-	166+LBL a
22 RCL 64	73 2	122 STOP	167 STO 28
23 1	74 +		168 RCL 13
24 XXY?	75 STOP 76 RCL 19	123+L9L 05	169 1/%
25 GTO 02	76 RCL 17	123 1 1	179 RCL 96
26 ENTERT		125 STOP	171 1/3 .
	78 * 79 EKTER 1	123 3101	172 +
27+LBL 02	88 ENTERT		173 STO 33
28 RDH		126+LBL c 127 STO 34	174 RCL 13
29 RCL 85	81 RCL 22	128 RCL 46	175 STO 88
38 RTH	82 +	129 -	176 RCL 47
	83 / 84 STO 84	138 CHS	177 *
31 • LBL 83	85 RCL 22	131 570 23	178 ENTERT
32 ENTERT		132 RCL 96	179 RCL 86
33 ENTERT	86 1 87 +	133 STO 90	188 ST+ 88
34 1	88 RCL 31	. 134 RCL 34	181 RCL 37
35 -	89 ¢	135 XEO 03	182 *
36 CHS	90 RCL 18	136 RCL 23	183 +
37 *	91 +	137 X()Y	184 RCL 88
38 RCL 88	92 1/X	. 138 /	185 /
39 /	93 RCL 18	. 130 /	. 186 STO 99
48 SQRT	94 +	139+LBL 86	187 1
41 STO 32	95 STO 85	140 STO 39	188 -
42 RTM	96 RCL 84	141 XEQ "ZCDF"	189 CHS
	97 X()Y	. 142 XEQ "PYRL"	198 ST+ 00
43+LBL B	98 RTH	143 STOP	191 RCL 00
44 RCL 48	79 NIN	173 310	192 ST+ 33
45 RCL 86			193 XEQ -BMS-
46 +			194 RCL 33
47 RHB			195 SORT
48 STO 18			196 STO 32
49 RCL 86			197 /
			198 GTO 66
			199 END

		*
01+LBL -ZS-8-	52 +	103 51+ 53
82 FIX 4	53 LASTX	. 184 STOP
83 STOP	54 RCL 49	185 570 52
00 000	55 -	106 RCL 51
84+LBL A	56 RTH	187 •
05 STO 30	55	103 ST+ 50
86 RCL 93	57+LEL C	109 1
	58 STO 57	110 ST+ 54
97 STO 15	59 RCL 12	111 RCL 54
88 RCL 82		112 GTO 82
89 RCL 11	68 RCL 14	112 610 62
18 STO 16	61 STO 58	445.45. 5
11 /	62 STO 16	113+LPL D
12 STO 48	63 /	114 ENTERT
13 RCL 39	64 RCL 97	115 RCL 58
14 XEQ "FCCDF"	65 /	116 *
15 STO 31	66 STO 56	117 RCL 48
16 RTH	67 RCL 14	118 +
	63 RCL 12	119 RCL 53
17+LBL e	69 /	128 *
	78 1/X	121 RCL 59
18 8	71 STOP	122 1
19 STO 53		123 +
28 STO 54	72 RCL 15	
21 STO 50	73 STO 59	124 /
	74 ST+ 16	405-404-07
22+LEL 01	75 RCL 13	125+LEL 03
23 STOP	76 /	126 SORT
24 STO 51	77 1 <i>/</i> X	127 STO 49
25 STOP	78 STOP	128 RCL 58
26 STO 52	79 RCL 87	129 +
27 STOP	80 STO 48	138 Lastx
28 1/X	SI STOP	131 RCL 49
29 RCL 51	82 RCL 58	132 -
38 X12	83 STO 15	133 RTH
31 *	84 RCL 56	•
	85 XEQ *FCCDF*	134+LEL d
32 S1+ 53		135 RCL 59
33 RCL 51	86 STO 38	136 *
34 RCL 52	87 RCL 59	137 RCL 48
35 +	88 STO 15	· 138 *
36 ST+ 58	89 RCL 30	
37 1	98 STOP	139 RCL 53
38 ST+ 54	91 RCL 57	140 +
39 RCL 54	92 XEQ "FCCDF"	141 RCL 58
48 CTO 81	93 RTH	142 1
•		143 +
41+LBL a	94+LBL E	144 /
42 ENTERT	95 8	145 GTO 83
43 RCL 93	96 STO 53	
44 *	97 STO 58	146+LBL H
45 RCL 48	98 STO 54	147 XROM "ERBYOHE"
	/4 414 47	
46 \$ 42 pm 57	99+LBL 82	148+LBL I
47 RCL 53		149 XROM "EROVINO"
48 +	108 STOP	150 .END.
49 SORT	101 STO 51	100 . LIID.
50 STO 49	182 X12	
51 RCL 50		

AND AND THE STATE OF THE STATE

81+LEL *ZS-9*	53 RCL 84	186 ENTERT	155+LBL 03	287.LEL E	263 RCL 43
62 6	54 +	107 KEAH	156 RCL 31	200 570 28	264 +
83 FIX 4	55 RCL 86	183 STO 48	157 •	209 8	265 RCL 42
84 STOP	56 /	109 RDH	158 STO 39	218 STO 34	200 /
•••	57 RCL 08	118 STO 47	159 RCL 66	211 PCL 44	267 RCL 47
85+LBL B	58 /	111 •	166 XEQ "OP14"	212 ST0 40	268 +
BE TREG 81	59 SQRT	112 CHS	161 570 40	213 X 1 2	269 ST0 :48
87 CLRG	68 STO 36	113 Rt	162 GTO 82	214 1	278 GTV 82
83 8	61 RCL 33	114 +	1.27al Br. a	215 -	271+LBL 86
-	62 RCL 08	115 STO 46	163+L8L c 164 XE0 04	216 CHS 217 SQRT	272 -ALL REALS
89+LEL 81	63 SQRT	116 RCL 45	165 X12	218 1/X	273 AVIEW
18 STOP ·	64 /	117 X()Y	166 RCL 33	219 RCL 15	274 RTH
11 Σ+	65 570 35	113 RTH	167 Xt2	220 SQRT	275 ENB
12 GTO 81	66 RCL 15		168 +	221 *	210 2
	67 STOP	119+LBL *0P14*	169 SORT	222 RCL 48	
13+LEL e	68 STO 31	120 RCL 45	178 STO 37	223 *	
14 RCL 86	69 RTH	121 *	171 GTO 83	224 GTO 85	
15 1		122 RCL 46	•		
16 -	78+LBL -0713-	123 +	172+LBL 04	225•LEL d	
17 STO 14	71 RCL 85	124 RTH	173 STO 88	226 RCL 48	
18 1	72 RCL 06		174 RCL 47	227 -	
19 -	73 *	125+LBL -0P15-	175 -	228 STG 43	
28 STO 15	74 EKTERT	126 RCL 46	i76 X12	229 Xt2	
21 SLEY	75 ENTERT	127 -	177 RCL 88	230 RCL 88	
22 X12	76 RCL 81	128 RCL 45	178 /	231 /	
23 RCL 14	77 RCL 83	129 /	179 RCL 06	232 STO 00	
24 *	78 *	138 RTH	180 1/X	233 RCL 33	
25 STO 87	79 -	4-4-1-1-4	181 +	234 RCL 31	
26 RPH	89 RCL 86	131+LEL R	182 SORT	235 *	
27 X12	81 /	132 RCL 31	183 RCL 33	236 X12	
28 RCL 14	82 LRSTX	133 RCL 35	184 *	237 RCL 08	
29 *	83 1	134 *	185 ST0 38	238 /	
38 STO 83	84 -	135 STO 39	186 RTM	239 RCL 45	
31 RCL 87	25 /	136 RCL 45 137 STO 40	187+LBL a	240 X12	
32 *	86 ENTERT	131 210 40	165 XEG "HYP"	241 - 242 CHS	
33 SQRT	87 ENTERT	12041 01 02	189 RCL 45	243 STO 42	
34 ENTERT	88 SDEV	138+LBL 02 139 RCL 39	190 -	244 RCL 96	
35 XEQ "0P12"	89 RDH	143 +	191 CHS	245 /	
36 X()A	90 /	141 RCL 40	192 RCL 35	246 RCL 42	
37 RCL 44	91 Rf	142 LASTX	193 /	247 +	
38 +	92 / 87 STD 44	143 -	•••	248 RCL 98	
39 RCL 88	93 STO 44	144 STOP	194+LBL 85	249 +	
48 SQRT	94 RTN	144 2101	195 STD 38	250 0	
41 *	95+LBL -0P12-	145+LBL 8 .	196 XEQ "TF"	251 X)Y?	
42 RCL 87	96 XEQ -0P13-	146 RCL 31	197 XEQ "PYRL"	252 GTO 86	
43 SQRT	97 EHTERT	147 RCL 36	198 STOP	253 X()Y	
44 *	98 ENTERT	148 •	_	254 SQRT	
45 CHS	99 SDEY	149 570 39	1990LBL b	255 RCL 31	
46 RCL 97	100 RBH	158 RCL 46	SOO XEG -HYP.	256 *	
47 +	181 /	151 STO 48	201 RCL 46	257 PCL 33	
48 RCL 15	182 Rt	152 CTO 82	202 -	258 *	
49 /	183 *		283 CHS	259 RCL 42	
SB SQRT	184 \$70 45	153+LEL C	294 RCL 36	260 /	
51 STO 33	185 ENTERT	154 XEO 04	205 /	261 STO 39	
52 X12	100 FILLEY!	· · · ·-	296 GTO 85	262 FEL 45	

•	P4 .	. 100 610 77	454	
01+FBF .52-10.	54 +	183 STO 37	156+LBL C	285+LBL 1
02 FIX 4	55 ST- 49	189 RCL 83	157 RCL 48	200 RCL 46
. 03 CF 01	56 RCL 04	110 RCL 05	158 570 40	267 STOP
84 CF 84	57 X12	111 +	159 RCL 31	208 RCL 47
85 B	58 RCL 02	112 RCL 84	160 RCL 39	289 STOP
06 STOP	59 •	113 X12	161; *	218 RCL 48
	68 ST- 49	114 -	162 STO 39	211 STOP
87+LBL e	61 RCL 81	115 RCL 49	163 CTO 01	CII STOP
88 RCL 41	62 X12	116 /		212.LEL d
89 STO 87	63 RCL 85	117 SQRT	164+LBL a	213 XROM "ENLRXY"
16 RCL 81	64 *	118 RCL 33	165 XEQ -HYP-	214 END
11 570 46	65 ST- 49	119 *	166 RCL 46	CIY END
12 RCL 42	66 RCL 13	120 STO 38	167 -	
13 STO 11	67 STO 33	121 RCL 87	168 CHS	
	68 RCL 46	122 RCL 83	169 RCL 36	
14 RCL 02		123 /	178 /	
15 STO 47	69 ECL 87		110 /	
16 RCL 43	78 *	124 \$70 88	131.101.00	
17 STG 12	71 ST- 33	125 RCL 27	171+LBL 92	
18 RCL 03	72 RCL 47	126 STO 44	172 STO 39	
19 STO 43	73 RCL 11	127 RCL 15	173 XEQ "TF"	
28 RCL 33	74 *	123 STOP	174 XEQ "PVAL"	
21 STO 81	. 75 ST- 33	129 STO 31	175 STOP	
22 RCL 33	· 76 RCL 48	130 RTN		
23 STO 82	77 RCL 12		176•LEL b	
24 RCL 31	78 *	131+Lel a	177 XEQ "HYP"	
25 STO 83	79 ST- 33	132 RCL 46	178 RCL 47	
26 3	88 RCL 33	133 STO 48	179 -	
27 -	81 RCL 15	134 RCL 31	180 CHS	
28 STO 15	82 /	135 RCL 36	181 RCL 37	
29 RCL 32	83 SQRT	136 *	162 /	
38 STO 84	84 STO 33	137 STO 39	183 GTO 82	
31 RCL 35	85 RCL 95			
32 STO 85	86 RCL 82	138+LEL 01	184+LEL c	
	87 *	139 RCL 40	185 XEQ -HYP-	
33 RCL 36	68 RCL 06	140 +	186 RCL 48	
34 STO 86		141 ENTERT		
35 RCL 39	89 X12		187 -	
. 36 STO 13	98 -	142 ENTERT	188 CHS	
37 RCL 03	91 RCL 49	143 RCL 39	189 RCL 38	
38 RCL 85	92 /	144 2	198 /	
39 •	93 SQRT	145 •	191 GTO 82	
48 RCL 82	94 RCL 33	146 -		
41 •	95 +	147 RTN	192+LBL E	
42 570 49	96 STO 36		193 RCL 47	
43 2 ·	97 RCL 03	148+LBL B	194 •	
44 RCL 84	98 RCL 82	149 RCL 47	195 STO 00	
45 *	99 •	158 STO 48	196 8	
46 RCL 81	188 RCL 81	151 RCL 31	197 STOP	
47 •	181 X12	152 RCL 37	198 RCL 48	
48 RCL 06	102 -	153 •	199 *	
49 •	183 RCL 49	154 STO 39	200 ST+ 00	
58 ST+ 49	184 /	155 G70 81	201 RCL 46	
51 RCL 03	105 SORT	-	202 ST+ 00	
52 RCL 06	186 RCL 33		203 RCL 88	
53 X12	107 •		204 RTN	
99 VIE	101 -		EUT KIN	

		164 CHS	153 -	Said Va.
AIOLBL "ZSTAT"	52+LBL 02	105 GTO 05	154 Ytz	200 Yta
ez -ZSTAT-	53 RCL 25		155 RCL 30	207 1 20.
#3 PROMPT	54 CHS	igiolbi no	156 2	20h -
ē4 RTN	55 STO 25	107 SF 01	157	209 RCL 29
Ç. KIN	56 XEO 0!	, 198 !	158 CHS	210 +
es+LEL *ZCDF*	57 1	105 -	159 Eth	211 RGL 29
86 STO 25	58 X()Y	119 CHS	166 #	212 SUPT
67 ENTERT	59 -	111 RTN	161 2	213 /
68 a		•••	162 RCL 21	214 XEG *ZCDF*
69 2	60+LBL 63	112+LBL 85	163 Y1X	215 FTN
10 /	61 CF 00	113 CF 01	164 /	847.0 BL
11 CHS	62 ENTER+	114 RTH	165 RCL 23	216+LBL *FCCBF*
12 Etx	63 1	*** ****	166 /	217 STO 17
13 PI	64 -	115+LBL -CHISD-	167 STO 25	218 PCL 15
	65 CHS	116 STG 30	166 RCL 30	219 2
14 2	66 RTH	117 46	169 RCL 21	226 /
25 *		118 RCL 15	178 /	231 FRC
16 3997	67+LBL "ZA"	119 XXY?	171 ST# 25	222 0
17 /	šć . Š	120 GTO 10	172 2	223 xxx?
15 STO 26	69 X ()Y	121 1	173 RCL 21	224 SF #1
19 RCL 25	70 XXY?		174 #	225 RCL 16
20 X<02	71 XED 04	122 STO 23 123 XC)Y	175 ST0 26	226 2
21 GTO 02	72 ENTER!		176 1	227 /
22 SF 00	73 ☀	124 2	177 STO 24	228 FRC
	74 1/X	125 /	177 510 24	239 0
23+LBL 01	75 LH	126 STO 21	176ALS: 46	230 X#Y?
24 1	76 SQRT	127 INT	178+LBL 69	231 SF 02
23 RCL 25	77 STO 25	128 LASTX	179 RCL 30	232 F37 61
26 .2316419	78 .91 0328	129 X=Y2	188 RCL 26	233 GTO 16
27 *	79 *	130 GTO 06	181 2	234 F52 02
26 +	88 .882853	131 1	182 +	235 GTO 11
29 1/X	81 +	132 -	183 STO 26	236 RCL 15
30 ENTER+	82 RCL 25	133 FACT	184 /	237 FGL 16
SI ENTERY	63 ×	i34 STO 23	185 RCL 24	238 XC=Y?
32 entert	84 2.515517	135 GTO 66	186 *	239 GTO 17
33 1.33 8 274429	85 +		187 STD 24	
34 *	86 RCL 25	136+LBL 06	188 +	240+LBL 11
35 -1.821255978	87 .001308	137 .5	189 X*Y?	241 CF 02
36 +	88 *	138 X=Y?	190 GTG 09	242 RCL 15
37 *	89 .189269	139 GTO 87	191 RCL 25	243 STO 18
38 1.781477937	90 +	140 X<>Y	192 *	244 RCL 16
39 +	91 RCL 25	141 1	193 RTM	245 STO 19
40 *	92 *	142 -		246 STO 25
41356563782	93 1.432788	143 ST• 23	194+LBL 18	247 XEQ 15
42 +	94 +	144 GTO 86	195 9	248 STO 28
43 *	95 RCL 25		196 •	249 CHS
44 .31938153		145+L8L 8 7	197 2	250 STO 21
45 +	96 * 97 1	146 PI	198 /	FOR 310 CT
46 *	77 1 98 +	147 SQRT	199 1/X	251A: BI 12
47 RCL 26		148 ST+ 23	200 STO 29	251+LBL 12
48 •	. 99 /		201 PCL 30	252 RCL 18
45 FS? 88	160 RCL 25	149+LBL 08	202 RCL 15	253 2
50 GTO 93	191 X()Y	150 RCL 30	263 /	254 / 255 cto ee
SI RTH	102 -	151 RCL 21	204 3	255 STO 00
We THEF	163 FS? 81	152 1	265 1/X	256 1
				257 ST+ 21

				••	
450 CTO 22	383 STC 19	361 2	412 -	462 RCL 06	513 +
258 STO 22	389 STO 25	362 *	413 STO 25	463 RCL 88	514 STO 39
259 STO 23	310 XEQ 15	363 RCL 25		464 -	515 RCL 40
268 STO 24	311 STO 21	364 /	414+LBL 24	465 ST/ 35	516 +
A44.4 89 49	312 CHS	365 ST+ 23	415 2	466 2	517 ENTERT
261+LBL 13		366 RCL 23	416 ST+ 25	467 *	518 ENTERT
262 RCL 22	313 STO 20		417 ST+ 26	468 STO 16	519 RCL 39
263 RCL 00	314 1	367 ST+ 22		469 RCL 35	520 2
264 X<=Y?	315 ST+ 29	368 1	418 RCL 26		521 •
265 GTO 14	316 ST- 21	369 ST+ 24	419 RCL 15	478 1/X	522 -
266 X<>Y	317 XEQ 12	370 CTO 19	420 X(=Y?	471 RCL 34	S23 RTN
267 1/X	318 CHS		421 GTO 25	472 *	060 KIII
269 RCL 21	319 1	371+LBL 20	422 RCL 26	473 1	524+LBL -HYP-
269 •	320 +	372 RCL 20	423 1/X	474 RCL 34	
278 RCL 19	321 RTN	373 ST* 22	424 RCL 25	475 -	525 STO 28
271 •		374 RCL 22	425 *	476 /	526 STOP
272 2	322+LBL 18	375 ST+ 17	426 RCL 28	477 XEQ "FCCDF"	527 510 34
273 ST+ 19	323 CF 0 2	•	427 X12	478 RTH	523 SF 64
	324 RCL 17	376+LBL 21	428 *		529 RTN
274 /	327 RCL 15	377 1	427 ST# 27	479+LBL *TF*	
275 ST+ 23	326 *	378 STO 22	430 RCL 27	488 STO 38	530+LEL .bar.
276 1	327 RCL 16	. 379 1	431 ST+ 22	481 40	531 STO 29
277 57+ 22		380 STO 24	432 GTO 24	482 RCL 15	532 CF 04
273 RCL 23	328 /		432 610 24	483 X>Y?	533 RCL 28
279 ST+ 24	329 SERT	381 RCL 15	477ALN 96	484 GTC 28	534 X(8?
280 GTO 13	330 RAD ·	382 X=Y?	433+LEL 25	485 STO 16	535 GT0 30
	331 ATAN	383 GTO 26	434 RCL 22		536 X#8?
281+LBL 14	332 STO 17	384 RDN	435 RCL 24	486 1	537 GTO 29
282 RCL 20	333 SIN	385 RCL 16	436 •	487 STO 15	538 RDH
283 SQRT	334 STO 29	386 X=Y?	437 ST- 17	488 RCL 38	539 2
284 ENTERT	335 RCL 17	387 GTO 23		489 X12	
285 RCL 25	336 COS	388 STO 23	438+LBL 26	498 XEQ "FCCBF"	548 *
286 Y1X	337 STO 21		439 RCL 17	491 2	541 1
287 RCL 24	338 ST0 22	389+LBL 22	446 2	492 /	542 X)Y?
283 +	339 STO 23	398 1	441 •	493 STO 00	543 GTO 30
289 RTN	340 BEG	391 ST- 23	442 PI	494 RCL 16	544 RDH
ZO7 KIN	341 1	392 RCL 23	443 /	495 STO 15	545 2
600 AL St. 15	342 STO 24	393 ST+ 24	444 1	496 RCL 30	546 -
290+LBL 15	343 STO 25	394 1	445 -	497 B	547 CKS
291 RCL 15	344 RCL 16	395 ST- 23	446 CHS	498 X)Y?	548 RTN
292 RCL 16	345 X=Y?	396 RCL 23	447 RTN	499 GTO 27	
293 /		_	777 618	500 RCL 00	549+LRL 29
294 RCL 17	346 GTO 21	397 ST/ 24	4404101 455750	501 I	558 R3N
295 *	347 2	398 X=Y?	448+LBL *FCDF*	582 -	551 1
296 1	348 -	399 GTO 22	449 XEQ "FCCDF"		552 -
297 +	349 STO 14		450 1	583 CHS	553 CHS
298 1/X		488+LBL 23	451 -	584 RTN	554 RTN
299 RTM	350+LBL 19	401 RCL 21	452 CHS		307 KIN
	351 RCL 14	402 ENTERT	33 RTN	585+LBL 27	555+LBL 30
300+LBL 16	352 RCL 25	493 RCL 16		506 RCL 00	
361 CF 61	353 X=Y?	484 YTX	454+LBL BINF	587 RTM	556 RBH
302 FS? 02	354 GTO 20	405 RCL 20	455 STO 60		557 RTN
303 CTO 18	355 2	406 +	456 1	588+LBL 28	
FIG 15	356 ST+ 25	487 ST+ 24	457 +	589 RCL 38	228+FBT - 342.
2044 Pt 17	357 RCL 21	408 RCL 16	458 STO 35	518 CTO "ZCBF"	559 RCL 47
3940LBL 17	358 X12	489 I	459 2		560 RCL 37
385 RCL 16		419 STO 26	469 *	. SileLBL "CI"	561 -
306 STO 18	359 RCL 24	411 STO 27	461 STO 15	512 RCL 32	562 STO 40
387 RCL 15	360 •	411 910 27	401 310 13	400 400 40	563 END

DISTRIBUTION LIST

	NO. OF COPIES
Library, Code 0142 Naval Postgraduate School Monterey, CA 93943	4
Office of Research Administration Code 012A Naval Postgraduate School Monterey, CA 93943	1
Library, Code 55 Naval Postgraduate School Monterey, CA 93943	1
Professor P. W. Zehna Code 55Ze Naval Postgraduate School Monterey, CA 93943	10
Professor D. R. Barr Code 55Bn Naval Postgraduate School Monterey, CA 93943	1
Professor R. Shudde Code 55Su Naval Postgraduate School Monterey, CA 93943	1
Professor P. A. W. Lewis Code 55Lw Naval Postgraduate School Monterey, CA 93943	1

EILMED)

6-84

