

A PACKAGE FOR MANIPULATING UD TREES

Dmytro Kalpakchi and Johan Boye KTH Royal Institute of Technology Stockholm, Sweden

OFFERED FUNCTIONALITY

import udon2

The only sentence: "You should study these topics or you will fail the exam"

nodes = udon2.ConllReader.read_file("example.conll")

r = nodes.children[0] # select the root token "study"

r.select_by("upos", "NOUN") # returns nodes corresponding to "topics" and "exam"

r.select_by_deprel_chain("obj.det") # nodes corresponding to "these" and "the"

r.prune("conj") # remove the induced subtree at the end of the "conj" edge

from udon2.visual import render_dep_tree

render_dep_tree(r, "pruned.svg") # see figure to the right

from udon2.transform import to_grct

render_tree(to_grct(r), "grct.svg") # see figure to the right

udon2.ConllWriter.write to file(nodes, "pruned.conll")

UDon2 allows transforming dependency trees to include edge labels as separate nodes into trees centered around PoS-tags (PCT), grammatical relations (GRCT) or lexicals (LCT), as introduced by Croce et al. (2011)¹. UDon2 uses these to compute **convolution tree kernels**, as proposed by Moschitti (2006)², enabling use of dependency trees in machine learning applications.

BENCHMARKS

An efficient package written in C++ using Boost.Python for providing Python bindings

Average over 30 runs on 2.20GHz CPU

Package	OS	Memory (MiB)	Load (s)	Save (s)	Read (s)	Write (s)	Text (s)	Relchain (s)
pyconll	Ubuntu	1683.1	12.88	6.32	0.34	0.23	NA	0.47
	Windows	876.4	10.97	6.23	0.38	0.23	NA	0.54
conllu	Ubuntu	1208.7	16.83	4.28	0.19	0.1	NA	0.25
	Windows	707.2	19.11	5.23	0.22	0.09	NA	0.3
Udapi	Ubuntu	756.0	19.88	6.86	0.19	0.14	0.94	0.16
Python	Windows	421.6	19.09	8.51	0.2	0.11	1.01	0.15
UDon2	Ubuntu	772.0	3.27	3.34	0.75	0.42	0.24	0.14
	Windows	439.7	4.44	5.53	0.83	0.42	0.41	0.15

More information about benchmarks:

udon2.github.io/benchmarks/

INTERESTED?

Precompiled available via PyPi for Python 3.6+ on Linux and Python 3.7+ on Windows pip install udon2

Contribute on GitHub
github.com/udon2/udon2

Documentation available online udon2.github.io

ACKNOWLEDGEMENTS

This work was supported by Vinnova (Sweden's Innovation Agency) within project 2019-02997. We are also sincerely grateful to both reviewers for the incredibly useful comments (especially Reviewer 1 for the most thorough review we have ever seen). We would also like to thank Martin Popel for helpful discussions on the matter of benchmarking.

¹Croce, D., Moschitti, A., & Basili, R. (2011, July). Structured lexical similarity via convolution kernels on dependency trees. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (pp. 1034-1046).

²Moschitti, A. (2006, September). Efficient convolution kernels for dependency and constituent syntactic trees. In European Conference on Machine Learning (pp. 318-329). Springer, Berlin, Heidelberg.