UMass Lowell Computer Science 91.503 Analysis of Algorithms

Analysis of Algorithms
Prof. Giampiero Pecelli
Fall, 2009

Dynamic Programming for Rod Cutting

(excerpts)

Example: Rod Cutting (text)

- \nearrow You are given a rod of length $n \ge 0$ (n in inches)
- \nearrow A rod of length *i* inches will be sold for p_i dollars
- Cutting is free (simplifying assumption)
- **Problem**: given a table of prices p_i determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Length i	1	2	3	4	5	6	7	8	9	10
Price p_i	1	5	8	9	10	17	17	20	24	30

Step 1: Characterizing an Optimal Solution

Question: in how many different ways can we cut a rod of length *n*? For a rod of length 4:

$$2^{4-1} = 2^3 = 8$$

For a rod of length $n: 2^{n-1}$. **Exponential**: we cannot try all possibilities for n "large". The obvious exhaustive approach won't work.

Step 1: Characterizing an Optimal Solution

Question: in how many different ways can we cut a rod of length n?

Proof Details: a rod of length n can have exactly n-1 possible cut positions – choose $0 \le k \le n$ -1 actual cuts. We can choose the k cuts (without repetition) anywhere we want, so that for each such k the number of different choices is

$$\binom{n-1}{k}$$

When we sum up over all possibilities (k = 0 to k = n-1):

$$\sum_{k=0}^{n-1} {n-1 \choose k} = \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} = (1+1)^{n-1} = 2^{n-1}.$$

For a rod of length $n: 2^{n-1}$.

Characterizing an Optimal Solution

Let us find a way to solve the problem recursively (we might be able to modify the solution so that the maximum can be actually computed): assume we have cut a rod of length n into $0 \le k \le n$ pieces of length i_1, \ldots, i_k ,

$$n = i_1 + ... + i_k$$
, with revenue

 $r_n = p_{i1} + \dots + p_{ik}$

Assume further that this solution is optimal.

How can we construct it?

Advice: when you don't know what to do next, start with a simple example and hope something will occur to you...

Characterizing an Optimal Solution

Length i	1	2	3	4	5	6	7	8	9	10
Price p_i	1	5	8	9	10	17	17	20	24	30

We begin by constructing (by hand) the optimal solutions for i = 1, ..., 10:

$$r_1 = 1$$
 from sln. $1 = 1$ (no cuts)

$$r_2 = 5$$
 from sln. $2 = 2$ (no cuts)

$$r_3 = 8$$
 from sln. $3 = 3$ (no cuts)

$$r_4 = 10$$
 from sln. $4 = 2 + 2$

$$r_5 = 13$$
 from sln. $5 = 2 + 3$

$$r_6 = 17$$
 from sln. $6 = 6$ (no cuts)

$$r_7 = 18$$
 from sln. $7 = 1 + 6$ or $7 = 2 + 2 + 3$

$$r_8 = 22$$
 from sln. $8 = 2 + 6$

$$r_9 = 25$$
 from sln. $9 = 3 + 6$

$$r_{10} = 30$$
 from sln. $10 = 10$ (no cuts)

Characterizing an Optimal Solution

Notice that in some cases $r_n = p_n$, while in other cases the optimal revenue r_n is obtained by cutting the rod into smaller pieces.

In ALL cases we have the recursion

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

exhibiting optimal substructure (meaning?)

A slightly different way of stating the same recursion, which avoids repeating some computations, is

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

And this latter relation can be implemented as a simple top-down recursive

procedure: CUT-ROD(p, n)

```
1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{Cut-Rod}(p, n - i))

6 return q
```


Example: Rod Cutting Characterizing an Optimal Solution

We can also notice that all the items we choose the maximum of are optimal in their own right: each substructure (max revenue for rods of lengths 1, ..., n-1) is also optimal (again, **optimal substructure property**).

Nevertheless, we are still in trouble: computing the recursion leads to recomputing a number of values – how many?

Characterizing an Optimal Solution

Let's call Cut-Rod(p, 4), to see the effects on a simple case:

CUT-ROD
$$(p, n)$$

1 if $n == 0$

2 return 0

3 $q = -\infty$

4 for $i = 1$ to n

5 $q = \max(q, p[i] + \text{CUT-RoD}(p, n - i))$

6 return q

1 0 0 0

The number of nodes for a tree corresponding to a rod of size n is:

$$T(0)=1, T(n)=1+\sum_{j=0}^{n-1}T(j)=2^n, n\geq 1.$$

Beyond Naïve Time Complexity

We have a problem: "reasonable size" problems are not solvable in "reasonable time" (but, in this case, they are solvable in "reasonable space").

Specifically:

- Note that navigating the whole tree requires 2^n stack-frame activations.
- Note also that no more than n + 1 stack-frames are active at any one time and that no more than n + 1 different values need to be computed or used.

Can we exploit these observations?

A standard solution method involves saving the values associated with each T(j), so that we compute each value only once (called "**memoizing**" = writing yourself a memo).

Naïve Caching

We introduce two procedures:

```
MEMOIZED-CUT-ROD(p, n)
   let r[0..n] be a new array
2 for i = 0 to n
       r[i] = -\infty
4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
  if r[n] \geq 0
       return r[n]
  if n == 0
       q = 0
  else q = -\infty
       for i = 1 to n
           q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
8 r[n] = q
   return q
```

More Sophisticated Caching

We now remove some unnecessary complications:

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```


Whether we solve the problem in a top-down or bottom-up manner the asymptotic time is $\Theta(n^2)$, the major difference being recursive calls as compared to loop iterations.

Why??