正規分布を使った ベイズ的モデリング

正田 備也 masada@rikkyo.ac.jp

Contents

正規分布の復習

正規分布を使ったベイズ的モデリング

指数型分布族と共役事前分布

正規ガンマ分布の応用

单变量正規分布

- ightharpoons 単変量正規分布は、 $\mathbb{R}=(-\infty,\infty)$ 上に定義される
- ightharpoons 単変量正規分布のパラメータは、平均 μ と標準偏差 σ
 - lacktriangle 平均 μ 、標準偏差 σ の単変量正規分布を、以下、 $\mathcal{N}(\mu,\sigma^2)$ と書く
 - ▶ 確率変数 x が $\mathcal{N}(\mu, \sigma^2)$ に従うことを、以下、 $x \sim \mathcal{N}(\mu, \sigma^2)$ と書く
- lackbox 単変量正規分布 $x \sim \mathcal{N}(\mu, \sigma^2)$ の確率密度関数:

$$p(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \tag{1}$$

多変量正規分布

▶ パラメータ:

ト 平均ベクトル
$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_d \end{bmatrix}$$

$$egin{bmatrix} egin{bmatrix} \mu_d \ \end{pmatrix}$$
 $lacktriangle$ 分散共分散行列 $oldsymbol{\Sigma} = egin{bmatrix} \sigma_{11} & \cdots & \sigma_{1d} \ dots & \ddots & dots \ \sigma_{1d} & \cdots & \sigma_{dd} \ \end{pmatrix}$ (ただし $oldsymbol{\Sigma}$ は正定値行列)。確率密度関数(ただし $oldsymbol{\Sigma}$):

$$ightharpoonup$$
 確率密度関数(ただし $|\Sigma| \equiv \det \Sigma$)

$$lackbox$$
 確率密度関数(ただし $|oldsymbol{\Sigma}| \equiv \mathsf{det}oldsymbol{\Sigma}$):

$$p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}{2}\right\}$$

多変量正規分布の実際

- ▶ 実際には共分散行列を対角行列と仮定することも多い
 - ▶ ∑の逆行列の計算が、しばしば数値計算的に難しい
 - ▶ 例えば、変分オートエンコーダ variational autoencoder や拡散確率モデル diffusion probabilistic model でも共分散行列が対角行列だと仮定する
- ▶ このとき密度関数は単変量正規分布の密度関数の積となる:

$$p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}{2}\right\}$$
$$= \prod_{j=1}^d \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right) \tag{3}$$

単変量正規分布に従う観測データの尤度

- ▶ 与えられている観測データを $\mathcal{D} = \{x_1, \dots, x_N\}$ とする ▶ 各 x_i は、 $-\infty < x_i < \infty$ を満たす実数値とする
- ト 各観測データ x_i を、同じ正規分布 $\mathcal{N}(\mu, \sigma)$ に独立にしたが うものとしてモデル化することにする(つまりi.i.d. を仮定)
- ト このとき、データセットDの尤度は以下のように μ と σ の 関数として書くことができる:

$$p(\mathcal{D}; \mu, \sigma) = \prod_{i=1}^{N} p(x_i; \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

(4) 6 / 2

5/32

単変量正規分布の最尤推定

ト 式 (4) より、観測データ $\mathcal{D} = \{x_1, \ldots, x_N\}$ の対数尤度は

$$\ln p(\mathcal{D}; \mu, \sigma) = -\frac{N}{2} \ln(2\pi\sigma^2) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$
 (5)

ightharpoonup この対数尤度を最大化する μ と σ を求めると

$$\hat{\mu} = \frac{\sum_{i} x_{i}}{N} = \bar{x} , \quad \hat{\sigma}^{2} = \frac{\sum_{i} (x_{i} - \bar{x})^{2}}{N}$$
 (6)

多変量正規分布の最尤推定 (1/2)

ightharpoonup 観測データ $\mathcal{D}=\{oldsymbol{x}_1,\ldots,oldsymbol{x}_N\},oldsymbol{x}_i\in\mathbb{R}^d$ の対数尤度は

$$p(\mathcal{D}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{N} \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} \exp\left[-\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu})\right]$$
(7

ightharpoonup この対数尤度を最大化する μ と Σ を求めると

$$\hat{m{\mu}} = rac{\sum_i m{x}_i}{N} = ar{m{x}}$$
 , $\hat{m{\Sigma}} = rac{1}{N} \sum_i (m{x}_i - m{\mu}) (m{x}_i - m{\mu})^{\intercal}$

8/32

多変量正規分布の最尤推定 (2/2)

- ▶ 共分散行列が対角行列だと仮定する
- $lacksymbol{\blacktriangleright}$ 観測データ $\mathcal{D}=\{oldsymbol{x}_1,\ldots,oldsymbol{x}_N\},oldsymbol{x}_i\in\mathbb{R}^d$ の対数尤度は

$$\ln p(\mathcal{D}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{N}{2} \sum_{i=1}^{d} \ln(2\pi\sigma_j^2) - \sum_{i=1}^{N} \sum_{j=1}^{d} \frac{(x_{i,j} - \mu_j)^2}{2\sigma_j^2}$$
(9)

ightharpoonup この対数尤度を最大化する μ と Σ を求めると

$$\hat{\mu}_j = rac{\sum_i x_{i,j}}{N} = ar{x}_j$$
 , $\hat{\sigma}_j^2 = rac{\sum_i (x_{i,j} - ar{x}_j)^2}{N}$

9 / 32

(10)

Contents

正規分布の復習

正規分布を使ったベイズ的モデリング

指数型分布族と共役事前分布

正規ガンマ分布の応用

ベイズ的なモデリングとは

- ▶ 統計モデルは観測データの不確かさ uncertainty を表現する
- ► だが、ベイズ的な統計モデリングでは、観測データをもとに して統計モデルのパラメータを決めること自体にも不確か さ uncertainty があると考える
- ▶ そこで、パラメータも確率変数とみなし、パラメータも確率 分布にしたがっているものとしてモデリングする
- ▶ そこで導入されるのが事前分布である
- ▶ 事前分布はパラメータがしたがう確率分布として導入される

単変量正規分布を使うベイズ的モデリング(1)

- ▶ 観測データ $\mathcal{D} = \{x_1, \dots, x_N\}$ の尤度は $p(\mathcal{D}|\mu, \sigma)$
 - ▶ 事前分布を使わないときは $p(\mathcal{D}; \mu, \sigma)$ と書いていた
 - ightharpoonup ベイズ的モデリングでは、 $p(\mathcal{D}|\mu,\sigma)$ と、条件付き確率として書く
 - ▶ 観測変数 x_i だけでなく、 μ と σ も確率変数となるからである
- ightharpoonup まず、 μ についてだけ、それがしたがう事前分布を導入する
 - ightharpoonup つまり、ho は自由パラメータのままとする
- ▶ このとき、正規分布が共役事前分布となる
 - ▶ このことを次の2枚のスライドで示す
- \blacktriangleright μ の事前分布を $\mathcal{N}(\mu_0, \sigma_0)$ とする

共役事前分布としての正規分布

$$p(\mathcal{D}|\mu,\sigma)p(\mu;\mu_{0},\sigma_{0}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}\right] \times \frac{1}{\sqrt{2\pi}\sigma_{0}} \exp\left[-\frac{(\mu-\mu_{0})^{2}}{2\sigma^{2}}\right]$$

$$= \frac{1}{(\sqrt{2\pi})^{N}\sigma^{N}} \exp\left[-\frac{\sum_{i}(x_{i}-\mu)^{2}}{2\sigma^{2}}\right] \times \frac{1}{\sqrt{2\pi}\sigma_{0}} \exp\left[-\frac{(\mu-\mu_{0})^{2}}{2\sigma^{2}}\right]$$

$$= \frac{1}{(\sqrt{2\pi})^{N}\sigma^{N}} \exp\left[-\frac{N\mu^{2}-2\sum_{i}x_{i}\mu+\sum_{i}x_{i}^{2}}{2\sigma^{2}}\right] \times \frac{1}{\sqrt{2\pi}\sigma_{0}} \exp\left[-\frac{\mu^{2}-2\mu_{0}\mu+\mu_{0}^{2}}{2\sigma_{0}^{2}}\right]$$

$$= \frac{1}{(\sqrt{2\pi})^{N}\sigma^{N}\sigma_{0}} \exp\left[-\left(\frac{N}{2\sigma^{2}}+\frac{1}{2\sigma_{0}^{2}}\right)\mu^{2}+2\left(\frac{\sum_{i}x_{i}}{2\sigma^{2}}+\frac{\mu_{0}}{2\sigma_{0}^{2}}\right)\mu-\frac{\sum_{i}x_{i}^{2}}{2\sigma^{2}}-\frac{\mu_{0}^{2}}{2\sigma_{0}^{2}}\right]$$
(11)

よって

$$p(\mu|\mathcal{D};\mu_0,\sigma_0) \propto \exp\left[-\left(\frac{N}{2\sigma^2} + \frac{1}{2\sigma_0^2}\right)\mu^2 + 2\left(\frac{\sum_i x_i}{2\sigma^2} + \frac{\mu_0}{2\sigma_0^2}\right)\mu\right]$$
(12)

指数関数の中身に注目すると・・・

$$\left(\frac{N}{2\sigma^2} + \frac{1}{2\sigma_0^2}\right)\mu^2 - 2\left(\frac{\sum_i x_i}{2\sigma^2} + \frac{\mu_0}{2\sigma_0^2}\right)\mu = \frac{N\sigma_0^2 + \sigma^2}{2\sigma^2\sigma_0^2}\left(\mu^2 - 2\frac{N\sigma_0^2\bar{x} + \sigma^2\mu_0}{N\sigma_0^2 + \sigma^2}\mu\right)
= \frac{N\sigma_0^2 + \sigma^2}{2\sigma^2\sigma_0^2}\left(\mu - \frac{N\sigma_0^2\bar{x} + \sigma^2\mu_0}{N\sigma_0^2 + \sigma^2}\right)^2 + const.$$
(13)

以上より、

$$p(\mu|\mathcal{D};\mu_0,\sigma_0) \propto \exp\left[-\frac{N\sigma_0^2 + \sigma^2}{2\sigma^2\sigma_0^2} \left(\mu - \frac{N\sigma_0^2\bar{x} + \sigma^2\mu_0}{N\sigma_0^2 + \sigma^2}\right)^2\right]$$
(14)

よって、事後分布 $p(\mu|\mathcal{D};\mu_0,\sigma_0)$ は、平均が $\frac{N\sigma_0^2\bar{x}+\sigma^2\mu_0}{N\sigma_0^2+\sigma^2}$ 、分散が $\frac{\sigma^2\sigma_0^2}{N\sigma_0^2+\sigma^2}$ の正規分布であることが分かる。

- lackbreak 平均 $rac{N\sigma_0^2ar{x}+\sigma^2\mu_0}{N\sigma_0^2+\sigma^2}$ は、標本平均と事前分布の平均 μ_0 を $rac{N}{\sigma^2}$ 対 $rac{1}{\sigma_0^2}$ の割合で混ぜたもの
- ▶ 分散 $\frac{\sigma^2 \sigma_0^2}{N \sigma_0^2 + \sigma^2}$ の逆数は、 $\frac{N}{\sigma^2}$ と $\frac{1}{\sigma_0^2}$ の和になっている
- ▶ なお、分散の逆数を精度 precision という

単変量正規分布を使うベイズ的モデリング(2)

- ▶ 観測データ $\mathcal{D} = \{x_1, \dots, x_N\}$ の尤度は $p(\mathcal{D}|\mu, \sigma)$
- ightharpoonup 今度は、 μ と σ^2 の両方について事前分布を導入する
- ト ただし、分散 σ^2 については、その逆数である精度 precision $\tau \equiv \sigma^{-2}$ がしたがう事前分布を導入する
- ▶ このとき、正規ガンマ分布 normal-gamma distribution が共役事前分布となる
- ▶ 正規ガンマ分布の確率密度関数は

$$p(\mu, \tau; \mu_0, \lambda_0, \alpha, \beta) = \frac{\beta^{\alpha} \sqrt{\lambda_0}}{\Gamma(\alpha) \sqrt{2\pi}} \tau^{\alpha - \frac{1}{2}} e^{-\beta \tau} e^{-\frac{\lambda_0 \tau (\mu - \mu_0)^2}{2}}$$
(15)

ガンマ分布

- ▶ ガンマ分布は非負実数 [0,∞)上に定義される確率分布
- ▶ パラメータ
 - ト shape パラメータ α
 - ightharpoonup rate パラメータ β
- ▶ ガンマ分布の確率密度関数は

$$p(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
 (16)

正規ガンマ分布の密度関数の見方

 μ を周辺化する(積分消去する)と

$$p(\tau; \mu_0, \lambda_0, \alpha, \beta) = \int_{-\infty}^{\infty} p(\mu, \tau; \mu_0, \lambda_0, \alpha, \beta) d\mu = \frac{\beta^{\alpha} \sqrt{\lambda_0}}{\Gamma(\alpha) \sqrt{2\pi}} \tau^{\alpha - \frac{1}{2}} e^{-\beta \tau} \int_{-\infty}^{\infty} e^{-\frac{\lambda_0 \tau (\mu - \mu_0)^2}{2}} d\mu$$
$$= \frac{\beta^{\alpha} \sqrt{\lambda_0}}{\Gamma(\alpha) \sqrt{2\pi}} \tau^{\alpha - \frac{1}{2}} e^{-\beta \tau} \sqrt{\frac{2\pi}{\lambda_0 \tau}} = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \tau^{\alpha - 1} e^{-\beta \tau}$$
(17)

ガンマ分布を得る。よって、条件付き密度関数 $p(\mu|\tau;\mu_0,\lambda_0,\alpha,\beta)$ は

$$p(\mu|\tau;\mu_{0},\lambda_{0},\alpha,\beta) = \frac{p(\mu,\tau;\mu_{0},\lambda_{0},\alpha,\beta)}{p(\tau;\mu_{0},\lambda_{0},\alpha,\beta)}$$

$$= \frac{\frac{\beta^{\alpha}\sqrt{\lambda_{0}}}{\Gamma(\alpha)\sqrt{2\pi}}\tau^{\alpha-\frac{1}{2}}e^{-\beta\tau}e^{-\frac{\lambda_{0}\tau(\mu-\mu_{0})^{2}}{2}}}{\frac{\beta^{\alpha}}{\Gamma(\alpha)}\tau^{\alpha-1}e^{-\beta\tau}} = \sqrt{\frac{\lambda_{0}\tau}{2\pi}}\exp\left(-\frac{\lambda_{0}\tau(\mu-\mu_{0})^{2}}{2}\right)$$
(18)

と、正規分布になる。つまり、正規分布とガンマ分布の密度関数の積になっている。

共役事前分布としての正規ガンマ分布

以下、事後分布 $p(\mu, \tau | \mathcal{D}; \mu_0, \lambda_0, \alpha, \beta)$ も正規ガンマ分布であることを示す。ベイズ則より $p(\mu, \tau | \mathcal{D}; \mu_0, \lambda_0, \alpha, \beta) \propto p(\mathcal{D} | \mu, \tau) p(\mu, \tau; \mu_0, \lambda_0, \alpha, \beta)$ である。右辺は、

$$p(\mathcal{D}|\mu,\tau)p(\mu,\tau;\mu_{0},\lambda_{0},\alpha,\beta)$$

$$= \prod_{i=1}^{N} \sqrt{\frac{\tau}{2\pi}} e^{-\frac{\tau(x_{i}-\mu)^{2}}{2}} \times \frac{\beta^{\alpha}\sqrt{\lambda_{0}}}{\Gamma(\alpha)\sqrt{2\pi}} \tau^{\alpha-\frac{1}{2}} e^{-\beta\tau} e^{-\frac{\lambda_{0}\tau(\mu-\mu_{0})^{2}}{2}}$$

$$\propto \tau^{\alpha+\frac{N}{2}-\frac{1}{2}} e^{-\beta\tau} e^{-\frac{\tau}{2}(\sum_{i=1}^{N}(x_{i}-\mu)^{2}+\lambda_{0}(\mu-\mu_{0})^{2})}$$

$$= \tau^{\alpha+\frac{N}{2}-\frac{1}{2}} e^{-\beta\tau} e^{-\frac{\tau}{2}\{(\lambda_{0}+N)\mu^{2}-2(\lambda_{0}\mu_{0}+\sum_{i}x_{i})\mu+\lambda_{0}\mu_{0}^{2}+\sum_{i}x_{i}^{2}\}}$$

$$\propto \tau^{\alpha+\frac{N}{2}-\frac{1}{2}} \exp\left[-\tau\left(\beta+\frac{(\lambda_{0}\mu_{0}^{2}+\sum_{i}x_{i}^{2})(\lambda_{0}+N)-(\lambda_{0}\mu_{0}+N\bar{x})^{2}}{2(\lambda_{0}+N)}\right)\right]$$

$$\times \exp\left[-\frac{\tau}{2}(\lambda_{0}+N)\left(\mu-\frac{\lambda_{0}\mu_{0}+N\bar{x}}{\lambda_{0}+N}\right)^{2}\right]$$
(19)

ここで標本分散をsとおくと、 $s=rac{\sum_i x_i^2}{N} - ar{x}^2$ となるから、

$$(\lambda_0 \mu_0^2 + \sum_i x_i^2)(\lambda_0 + N) - (\lambda_0 \mu_0 + N\bar{x})^2$$

$$= \lambda_0 \sum_i x_i^2 + N\lambda_0 \mu_0^2 + N \sum_i x_i^2 - 2\lambda_0 \mu_0 N\bar{x} - N^2 \bar{x}^2$$

$$= \lambda_0 N(s + \bar{x}^2) + N\lambda_0 \mu_0^2 - 2\lambda_0 \mu_0 N\bar{x} + N^2 s$$

$$= \lambda_0 N(\bar{x} - \mu_0)^2 + Ns(\lambda_0 + N)$$
(20)

よって

$$p(\mu, \tau | \mathcal{D}; \mu_0, \lambda_0, \alpha, \beta) \propto p(\mathcal{D} | \mu, \tau) p(\mu, \tau; \mu_0, \lambda_0, \alpha, \beta)$$

$$\propto \tau^{\alpha + \frac{N}{2} - \frac{1}{2}} \exp \left[-\tau \left(\beta + \frac{Ns}{2} + \frac{\lambda_0 N(\bar{x} - \mu_0)^2}{2(\lambda_0 + N)} \right) \right] \exp \left[-\frac{\tau}{2} (\lambda_0 + N) \left(\mu - \frac{\lambda_0 \mu_0 + N\bar{x}}{\lambda_0 + N} \right)^2 \right]$$
(21)

この式は、事後分布も正規ガンマ分布であることを示している。

多変量正規分布を使ったベイズ的モデリング

- ▶ 多変量正規分布 $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ の場合も、平均パラメータ $\boldsymbol{\mu}$ については正規分布 $\mathcal{N}(\boldsymbol{\mu}_0, (\beta \boldsymbol{\Lambda})^{-1})$ を事前分布として使う
- ▶ 精度行列 Λ については、次のような密度関数を持つウィシャート分布を事前分布としてつかう

シャート分布を事前分布としてつかう
$$\mathcal{W}(\mathbf{W}, \nu) = B|\mathbf{\Lambda}|^{(\nu-D-1)/2} \exp\left(-\frac{1}{2}\mathsf{Tr}(\mathbf{W}^{-1}\mathbf{\Lambda})\right)$$
 (22)

$$ightharpoonup B$$
 は規格化定数で、以下のような $oldsymbol{W}$ と u の関数である

$$B(\boldsymbol{W},
u) = |\boldsymbol{W}|^{-
u/2} \left(2^{
u d/2} \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma\left(\frac{
u+1-i}{2} \right) \right)^{-1}$$

共役事前分布としての正規ウィシャート分布

- ▶ 正規ウィシャート分布が多変量正規分布の共役事前分布に なっていることの証明は割愛する
- ► Christopher M. Bishop, *Pattern Recognition and Machine Learning* の Exercise 2.45 参照

Contents

正規分布の復習

正規分布を使ったベイズ的モデリング

指数型分布族と共役事前分布

正規ガンマ分布の応用

指数型分布族

▶ 以下のような形の密度関数を持つ確率分布を、まとめて指数型分布族と呼ぶ

$$p(\boldsymbol{x}|\boldsymbol{\eta}) = h(\boldsymbol{x})g(\boldsymbol{\eta})\exp(\boldsymbol{\eta}^{\mathsf{T}}\boldsymbol{u}(\boldsymbol{x})) \tag{24}$$

- $m{\eta}$ は分布のパラメータだが、指数型分布族については特に、 自然パラメータ natural parameter と呼ばれる
- $ightharpoonup g(\eta)$ は、規格化のために導入されている係数とみなせる
- ightharpoonup 確率変数xがとる値は、スカラーでもベクトルでもよいし、 離散値でも連続値でもよい。

例:ベルヌーイ分布

$$p(x|\phi) = \phi^x (1 - \phi)^{1-x}$$

$$= \exp(x \ln \phi + (1 - x) \ln(1 - \phi))$$

$$= (1 - \phi) \exp\left(\ln\left(\frac{\phi}{1 - \phi}\right)x\right)$$

$$ightharpoonup \eta = \ln\left(rac{\phi}{1-\phi}
ight)$$
とすればよい

▶ すると
$$g(\eta) = 1 - \phi = \frac{1}{1 + e^{\eta}} = \sigma(-\eta)$$
 となる

(25)

共役事前分布

▶ 式(24)のような密度関数を持つどの確率分布に対しても、 以下の形の密度関数を持つ共役事前分布が存在する

$$p(\boldsymbol{\eta}; \boldsymbol{\chi}, \nu) = f(\boldsymbol{\chi}, \nu) g(\boldsymbol{\eta})^{\nu} \exp(\nu \boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{\chi})$$
 (26)

- ▶ つまり、式(26)の形の密度関数を持つ確率分布を事前分布 とすると、事後分布が事前分布と同じ形の密度関数を持つ
- $ightharpoonup f(\chi, \nu)$ は、規格化のために導入されている係数とみなせる

例:ベルヌーイ分布の共役事前分布

$$ightharpoonup \eta = \ln\left(rac{\phi}{1-\phi}
ight)$$
および $g(\eta) = 1 - \phi$ だったので

$$p(\eta; \chi, \nu) \propto (1 - \phi)^{\nu} \exp\left(\nu \ln\left(\frac{\phi}{1 - \phi}\right)\chi\right)$$
$$= (1 - \phi)^{\nu} \phi^{\nu\chi} (1 - \phi)^{-\nu\chi}$$
$$= \phi^{\nu\chi} (1 - \phi)^{\nu(1 - \chi)}$$

▶ この式の形は、ベータ分布の密度関数の式の形と、同じ

$$u = \alpha + \beta$$
 および $\chi = \frac{\alpha}{\alpha + \beta}$ と置き換えればよい

(27)

共役事前分布を用いたときの事後分布

- ▶ 式(24)の密度関数を持つ確率分布に対して・・・
- ▶ 式(26)の事前分布を使うと・・・
- ▶ 観測データ $\mathcal{D} = \{x_1, \dots, x_n\}$ が所与のときの事後分布は、以下のようになる

$$p(\boldsymbol{\eta}|\mathcal{D}, \boldsymbol{\chi}, \nu) \propto g(\boldsymbol{\eta})^{\nu+n} \exp\left(\boldsymbol{\eta}^{\mathsf{T}} \left(\sum_{i=1}^{n} \boldsymbol{u}(\boldsymbol{x}_{i}) + \nu \boldsymbol{\chi}\right)\right)$$
 (28)

▶ 問:このことを示せ(cf. PRML, Sec. 2.4.2)

Contents

正規分布の復習

正規分布を使ったベイズ的モデリング

指数型分布族と共役事前分布

正規ガンマ分布の応用

Rosenthal and Jacobson (1968)の実験

- ▶ IQ スコアの変化の分析
 - ▶ この例は、STA 360/602: Bayesian Methods and Modern Statistics @ Duke University の Module 4 から取った
 - ▶ いわゆる「ピグマリオン効果」を明らかにした実験らしい
- ▶ 実験の設定
 - ▶ 先生の期待は学生の学修に影響するかを調べたい。まず、年度初めにIQテストを実施。そして、各クラスから2割の学生を無作為に選び、先生に「この学生は伸びる学生spurterだ」と告げる。年度終わりにまたIQテストを実施。IQスコアの変化を調べる。

データ例

```
#spurters
x < -c(18, 40, 15, 17, 20, 44, 38)
#controls
v \leftarrow c(-4, 0, -19, 24, 19, 10, 5, 10,
      29. 13. -9. -8. 20. -1. 12. 21.
      -7. 14. 13. 20. 11. 16. 15. 27.
      23. \ 36. \ -33. \ 34. \ 13. \ 11. \ -19. \ 21.
      6. 25. 30.22. -28. 15. 26. -1. -2.
      43. 23. 22. 25. 16. 10. 29)
igData <- data.frame(Treatment =
      c(rep("Spurters", length(x)).
      rep("Controls". length(v))).
      Gain = \mathbf{c}(x, y)
```

分析の方法

- ▶ 知りたいのは、spurters の平均スコア μ_S と、controls の平均スコア μ_C とについて、 $\mu_S > \mu_C$ となる確率
- ▶ サンプル数が少ないため、spurters と controls それぞれの分 散をちゃんと推定できなさそう
- ► そこで、spurters と controls それぞれの平均と分散の両方に、 別々の正規ガンマ分布を事前分布として使う
- ▶ 観測データをもとに事後分布を計算、その事後分布から 10 万のサンプル対を draw し、spurters の事後分布からのサンプルのほうが大きかった割合を求める
 - ▶ 分布からのサンプリングについては「統計モデリング2」で 31/32

課題6

- ▶ 適当に指数型分布族から分布を選ぼう
- ▶ その分布の共役事前分布を、式(26)をもとに求めてみよう