

Politécnico de Coimbra

Sistemas Digitais

CTeSP Tecnologias e Programação de Sistemas de Informação (Cantanhede)

Professor: João Leal

joao.leal@isec.pt

Revisão...

- Os circuitos básicos de memória podem ser classificados em:
 - Latches
 - Flip-flops.

• Os **latches** mudam as saídas imediatamente após uma variação nas entradas (diz-se que as saídas são transparentes).

 Os flip-flops mudam as saídas apenas quando há uma variação do relógio.

Revisão...

 Se as entradas de um latch mudam enquanto o relógio está a 1, o seu estado muda imediatamente. Esta mudança pode implicar novas mudanças de estado noutros latches, o que pode originar uma sequência imprevisível de mudanças de estado no circuito.

Exemplo: $(S1=0, R1=0) \rightarrow (S1=1, R1=0)$:

A ordem de SET (S1=1, R1=0) propaga-se no mesmo ciclo de relógio ao 2º latch!

Revisão...

Politécnico de Coimbra

Simbologia:

Circuitos Sequenciais

Linhas das variáveis de estado

Modelo Geral dos Circuitos Sequenciais

Um circuito sequencial é constituído por uma componente de memória e por uma componente combinacional:

Modelo Geral dos Circuitos Sequenciais

 A componente de memória designa-se por Unidade de Memória, e é constituída por um conjunto de Flip-Flops (células de memória).

 O conjunto das saídas de todas as células de memória constitui o estado de um circuito sequencial.

Modelo Geral dos Circuitos Seguenciais

- O número de estados depende do número de Flip-Flops que o circuito contém:
 - Como cada Flip-Flop tem dois estados possíveis (Q=0 ou Q=1), o número total de estados é 2ⁿ, sendo n o número de Flip-Flops do circuito.

 Designam-se por variáveis de estado, as saídas da Unidade de Memória (uma variável por cada saída de um Flip-Flop).

Modelo Geral dos Circuitos Seguenciais

No modelo geral de um circuito sequencial, define-se:

 Descodificador de Saída - é o circuito combinacional que gera as saídas externas do circuito sequencial;

 Descodificador de Estado Seguinte - é o circuito combinacional que gera as entradas para o bloco Unidade de Memória (estas são tais que, aplicadas aos Flip-Flops, resultarão numa combinação de variáveis de estado igual ao estado seguinte pretendido).

Análise/ Síntese de Circuitos Seguenciais

Análise de um circuito: é o processo que permite obter uma descrição sobre o funcionamento do circuito, através do exame do seu diagrama lógico.

Síntese de um circuito: é o processo que, a partir da descrição do funcionamento pretendido para o circuito, permite chegar ao diagrama lógico que traduz esse funcionamento.

- O funcionamento de um circuito sequencial pode ser representado por:
 - um Diagrama de Estados
 - uma Tabela de Transição de estados

 O significado de ambas as representações é o mesmo, mas o primeiro é visualmente mais claro.

 Com efeito, num processo de análise o Diagrama de Estados é uma das últimas representações que se obtêm, uma vez que explica claramente o funcionamento do circuito.

Diagrama de Estados

- O Diagrama de Estados representa de forma clara a sequência de estados pelos quais o circuito passa em função das entradas, e as saídas que vai gerando.
- Neste diagrama:
 - os estados designam-se por letras (ou códigos binários) dentro de ovais;
 - as entradas são apresentadas em etiquetas junto aos arcos que ligam os estados;
 - as saídas aparecem ao lado das entradas, separadas destas últimas por uma barra ('/').

Considere-se um circuito sequencial com uma única entrada **E** (para além da entrada de relógio), cujo funcionamento é o seguinte:

- Enquanto E=1, o circuito percorre a sequência de estados
 A,B,C,D,A,...
- Enquanto E=0, o circuito mantém-se no mesmo estado
- As saídas X e Y, são produzidas de acordo com a tabela seguinte:

Estado	1 ×	Y
A	0	0
В	0	1
С	1	0
D	1	1

O diagrama de estados é o seguinte:

- Se a entrada for 1, o circuito passa sempre ao estado seguinte (quando ocorrer a próxima vertente ativa do relógio);
- Se a entrada for 0, o circuito permanece no estado atual;
- As saídas dependem apenas do estado presente.

Considere-se um circuito com dois estados **A** e **B**, uma entrada **E** e uma saída **S**, cujo funcionamento é o seguinte:

- No estado A, a saída é igual à entrada. Neste caso é necessário usar duas etiquetas para o mesmo estado: se entrada=0 → saída=0; se entrada=1 → saída=1.
- No estado **B**, qualquer que seja a entrada, a saída é **1**.
- A transição entre os estados não depende da entrada
 E. (A transição dá-se quando ocorrer a vertente ativa do relógio.)

Clock

Sequencial

Tabela de Transição

Como foi anteriormente referido, a **Tabela de Transição** é outra das formas de representar o funcionamento de um circuito sequencial. Esta é composta por 2 grupos de colunas:

Estado Presente e Entradas

		•		
Estado presente	Entradas	Estado seguinte	Sa X	ídas Y
A	B	R	0	0
A -	1	В	0	0
В	0	В	0	t
B	1	E	B	1
c	0	С	1	0
C	1	D.	1.	0
0	B	0	1	1
D	t	A	1	_1]

Estado Seguinte e Saídas

Tabela de Excitação

 A Tabela de Excitação é outra ferramenta utilizada quer na análise quer na síntese de circuitos sequenciais.

 É semelhante à Tabela de Transição mas substitui o Estado Seguinte pelas entradas a aplicar aos Flip-Flops para se alcançar esse Estado Seguinte.

A sua obtenção encontra-se ilustrada nos exemplos seguintes.

Exemplo 1

Considere-se o circuito da figura

seguinte:

- Como funciona?
- O que faz?

1º Passo: Obter as Funções de Excitação dos Flip-Flops

Para tal basta ler do diagrama lógico, as funções lógicas que estão aplicadas às entradas dos *Flip-Flops*.

$$J_A = \overline{Q}_B.S$$

 $J_B = Q_A.S$

$$K_A = 1$$

 $K_B = 1$

2º Passo: Obter a Tabela de Excitação

Aplicar as funções obtidas acima, para cada combinação de (QA, QB, S), e ver quais são as entradas JA, KA, JB e KB.

K_A = 1 | Sempre 1 Estado $K_B = 1$ presente 0_B ΚВ Só é 1 com Q_B=0 e S=1 ٥ 0 O 1 0 0 ٥ Só é 1 com O. ŀ Q_A=1 e S=1 0 ٥ 1 0 0 1 0

3º Passo: Obter a Tabela de Transição

O objetivo da Tabela de Transição é obter o estado que se segue ao estado presente. Como a Tabela de Excitação dá os estados presentes e as entradas dos *Flip-Flops*, atendendo às tabelas destes últimos, podemos deduzir os estados seguintes.

A Tabela de Transição completa é a seguinte:

Esta							Estado seguinte		
OB (n)	Ο _A ^(Π)	S		JB	Κ _B	JA	KA	Q _B	1) O (n+1)
0	0)	0		D	1	0	1 7	9	0
0	0)	1	Ì	0	1	1	1	0	1
0	1	0		0	1	0	1	0	0
0	1	1		1	1	1	1	1	0)
1	<u>o_</u>	0		0	1	0	1	. D	0
1	<u> </u>	1		D	1	0	1	0	0
1	1	0		0	1	0	1 /	0	0
1	1	1		1	1	0	, 1	0	0

4º Passo: Desenhar o Diagrama de Estados

- Se Estado=00 e S=0, Estado Seguinte=00
 (mantém-se); se S=1, Estado
 Seguinte=01
- Se Estado=01 e S=0, Estado Seguinte=00; se S=1, Estado Seguinte=10
- Se Estado=10, qualquer que seja S,
 Estado Seguinte=00
- Se Estado=11, qualquer que seja S, Estado Seguinte=00

	sedo sente						Estado seguinte		
OB (n)		[و ل	Κ _B	٨٢	KA	o _B (n+	1) a (n+1)	
0	0	0	0	1	0	1	0	0	
0	٥	1	0	1	1	1	0	1	
0	٦	0	a	1	0	1	0 '	0	
٥	1	1	1	1	1	٦	1	0	
1	Œ.	0	ū	1	0	1	۰ ۵	0	
1	0	1	0	1	0	1	Đ.	a	
1	1	- G	0	1	٥	1	0	0	
1	1	1 ;	1	1	0	1	0	0	

5º Passo: Descrição verbal

Considere-se que o circuito parte do estado **00**. Quando a entrada **S=1**, o circuito transita para o estado **01**, depois para o **10** e finalmente regressa ao estado **00**.

Quando a entrada **S=0**, o circuito regressa ao estado **00**, independentemente de qual for o estado atual.

O estado **11** não faz parte da sequência principal.

A entrada **S** controla o avanço na sequência principal.

Exemplo 2

Considere-se o circuito da figura seguinte:

APAGA é um sinal assíncrono que, quando ativado, coloca a saída dos Flip-Flops a **0**.

1º Passo: Obter as Funções de Excitação

(a partir do diagrama lógico)

$$\begin{aligned}
\gamma^{C} &= 0^{B} \\
\gamma^{B} &= 0^{B} \\
\gamma^{H} &= \underline{0}^{C}
\end{aligned}$$

$$K_{C} = \vec{Q}_{B}$$
 $K_{B} = \vec{Q}_{C}$

2º Passo: Obter a Tabela de Excitação

(usando as funções de excitação, obter os J e os K)

$$\begin{array}{l}

 Q = QB \\
 QB = QB \\
 QB = QC
\end{array}$$

$$\kappa_{\mathbf{R}} = \mathbf{Q}_{\mathbf{C}}$$

$$\kappa_{\mathbf{B}} = \mathbf{\bar{Q}}_{\mathbf{B}}$$

$$\kappa_{\mathbf{C}} = \mathbf{\bar{Q}}_{\mathbf{B}}$$
Por exemplo:

D	D DB (U)	၀ (S) ၀ ၀	JA	KA	JB	κ _B	Jc	
	D	.0				-	1.6	К¢
		٠ ١	1	0	Ð	1	0	1
D.	٥	1	0	1	0	1	0	1
Ò	1	0	1	0	D	1	1	0
Ď	1	1	0	1	Ð	1	1	ا د
1	0	0	1	0	· 1	D	D	រ
1	0	1	0	1	1	D	0	1
1	1	٥	1	D	1	0	1	0
1	1	1	0	١	1	0	1	0
		0 1 1 0	D 1 1 1 1 1 0 D 1	D 1 1 B 1 D 1 D 1 D 1 D 1 D 1 D D 1 D D D D	D 1 1 D 1 D 1 D 1 D 1 D D D D D D D D D	0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1	D 1 1 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D	D 1 1 B 1 D 1 D D D 1 1 D D 1 D D 1 D D D D

3º Passo: Obter a Tabela de Transição

(partindo da tabela anterior e da tabela funcional dos FFs)

4º Passo: Desenhar o Diagrama de Estados

(por leitura da Tabela de Transição)

- O circuito não tem entradas (para além da de relógio)
- Os estados 101 e 010 não fazem parte da sequência principal

5º Passo: Descrição verbal

Pode dizer-se que o circuito funciona como um **registo de deslocamento de 3 bits** com negação no último: o bit em **C** "entra" em **A** no clock seguinte (embora negado) e os restantes "deslocam-se para a direita". Este tipo de funcionamento corresponde aos **Twisted-ring Counters** ou **Contadores de Moebius**.

Circuitos de MOORE e MEALY

Modelo de Moore: Circuito no qual as saídas são função directa do estado.

Modelo de Mealy: Circuito no qual as saídas são função do estado e das entradas.

