Лекции курса «Алгебра», лектор Р. С. Авдеев

 Φ КН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2015/2016 учебный год

Лекция 2

Следствия из теоремы Лагранжа. Нормальные подгруппы. Факторгруппы и теорема о гомоморфизме. Прямое произведение групп. Разложение конечной циклической группы.

Рассмотрим некоторые следствия из теоремы Лагранжа.

Следствие 1. Пусть G — конечная группа и $H \subseteq G$ — подгруппа. Тогда |H| делит |G|.

Следствие 2. Пусть G — конечная группа $u g \in G$. Тогда $\operatorname{ord}(g)$ делит |G|.

Доказательство. Это вытекает из следствия 1 и предложения 2 прошлой лекции.

Следствие 3. Пусть G — конечная группа u $g \in G$. Тогда $g^{|G|} = e$.

 \mathcal{A} оказательство. Согласно следствию 2, мы имеем $|G| = \operatorname{ord}(g) \cdot s$, откуда $g^{|G|} = (g^{\operatorname{ord}(g)})^s = e^s = e$.

Следствие 4. Пусть G — группа. Предположим, что |G| — простое число. Тогда G — циклическая группа, порождаемая любым своим неединичным элементом.

Доказательство. Пусть $g \in G$ — произвольный неединичный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$. \square

Наряду с левым смежным классом можно определить npasuй смежный класс элемента g группы G по подгруппе H:

$$Hg = \{hg \mid h \in H\}.$$

Повторяя доказательство теоремы Лагранжа для правых смежных классов, мы получим, что для конечной группы G число правых смежных классов по подгруппе H равно числу левых смежных классов и равно |G|/|H|. В то же время равенство gH=Hg выполнено не всегда. Разумеется, оно выполнено, если группа G абелева. Подгруппы H (неабелевых) групп G, для которых gH=Hg выполнено для любого $g\in G$, будут изучаться в следующей лекции.

Определение 1. Подгруппа H группы G называется *нормальной*, если gH = Hg для любого $g \in G$.

Предложение 1. Для подгруппы $H \subseteq G$ следующие условия эквивалентны:

- (1) H нормальна;
- (2) $gHg^{-1} \subseteq H$ для любого $g \in G$;
- (3) $gHg^{-1} = H$ для любого $g \in G$.

Доказательство. (1) \Rightarrow (2) Пусть $h \in H$ и $g \in G$. Поскольку gH = Hg, имеем gh = h'g для некоторого $h' \in H$. Тогда $ghg^{-1} = h'gg^{-1} = h' \in H$.

- (2) \Rightarrow (3) Так как $gHg^{-1}\subseteq H$, остаётся проверить обратное включение. Для $h\in H$ имеем $h=gg^{-1}hgg^{-1}=g(g^{-1}hg)g^{-1}\subseteq gHg^{-1}$, поскольку $g^{-1}hg\in H$ в силу пункта (2), где вместо g взято g^{-1} .
- $(3)\Rightarrow (1)$ Для произвольного $g\in G$ в силу (3) имеем $gH=gHg^{-1}g\subseteq Hg$, так что $gH\subseteq Hg$. Аналогично проверяется обратное включение.

Условие (2) в этом предложении кажется излишним, но именно его удобно проверять при доказательстве нормальности подгруппы H.

Обозначим через G/H множество (левых) смежных классов группы G по нормальной подгруппе H. На G/H можно определить бинарную операцию следующим образом:

$$(g_1H)(g_2H) := g_1g_2H.$$

Зачем здесь нужна нормальность подгруппы H? Для проверки корректности: заменим g_1 и g_2 другими представителями g_1h_1 и g_2h_2 тех же смежных классов. Нужно проверить, что $g_1g_2H=g_1h_1g_2h_2H$. Это следует из того, что $g_1h_1g_2h_2=g_1g_2(g_2^{-1}h_1g_2)h_2$ и $g_2^{-1}h_1g_2$ лежит в H.

Ясно, что указанная операция на множестве G/H ассоциативна, обладает нейтральным элементом eH и для каждого элемента gH есть обратный элемент $g^{-1}H$.

Определение 2. Множество G/H с указанной операцией называется ϕ акторгруппой группы G по нормальной подгруппе H.

 Π ример 1. Если $G=(\mathbb{Z},+)$ и $H=n\mathbb{Z},$ то G/H — это в точности группа вычетов $(\mathbb{Z}_n,+)$.

Как представлять себе факторгруппу? В этом помогает теорема о гомоморфизме. Но прежде чем её сформулировать, обсудим ещё несколько понятий.

Определение 3. Пусть G и F — группы. Отображение $\varphi \colon G \to F$ называется гомоморфизмом, если $\varphi(ab) = \varphi(a)\varphi(b)$ для любых $a,b \in G$.

Замечание 1. Подчеркнём, что в этом определении произведение ab берётся в группе G, в то время как произведение $\varphi(a)\varphi(b)$ — в группе F.

Лемма 1. Пусть $\varphi \colon G \to F$ — гомоморфизм групп, и пусть e_G и e_F — нейтральные элементы групп G и F соответственно. Тогда:

- (a) $\varphi(e_G) = e_F$;
- (б) $\varphi(a^{-1}) = \varphi(a)^{-1}$ для любого $a \in G$.

Доказательство. (а) Имеем $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G)$. Теперь умножая крайние части этого равенства на $\varphi(e_G)^{-1}$ (например, слева), получим $e_F = \varphi(e_G)$.

(б) Имеем
$$\varphi(a^{-1})\varphi(a) = \varphi(a^{-1}a) = \varphi(e_G) = e_F$$
, откуда $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Определение 4. Гомоморфизм групп $\varphi \colon G \to F$ называется *изоморфизмом*, если отображение φ биективно

Упражение 1. Пусть $\varphi \colon G \to F$ — изоморфизм групп. Проверьте, что обратное отображение $\varphi^{-1} \colon F \to G$ также является изоморфизмом.

Определение 5. Группы G и F называют *изоморфными*, если между ними существует изоморфизм. Обозначение: $G \cong F$ (или $G \simeq F$).

В алгебре группы рассматривают с точностью до изоморфизма: изоморфные группы считаются «одинаковыми».

Определение 6. С каждым гомоморфизмом групп $\varphi \colon G \to F$ связаны его ядро

$$Ker(\varphi) = \{g \in G \mid \varphi(g) = e_F\}$$

и образ

$$Im(\varphi) = \{ a \in F \mid \exists g \in G : \varphi(g) = a \}.$$

Ясно, что $\operatorname{Ker}(\varphi) \subseteq G$ и $\operatorname{Im}(\varphi) \subseteq F$ — подгруппы.

Пемма 2. Гомоморфизм групп $\varphi \colon G \to F$ инъективен тогда и только тогда, когда $\mathrm{Ker}(\varphi) = \{e_G\}.$

Доказательство. Ясно, что если φ инъективен, то $\operatorname{Ker}(\varphi) = \{e_G\}$. Обратно, пусть $g_1, g_2 \in G$ и $\varphi(g_1) = \varphi(g_2)$. Тогда $g_1^{-1}g_2 \in \operatorname{Ker}(\varphi)$, поскольку $\varphi(g_1^{-1}g_2) = \varphi(g_1^{-1})\varphi(g_2) = \varphi(g_1)^{-1}\varphi(g_2) = e_F$. Отсюда $g_1^{-1}g_2 = e_G$ и $g_1 = g_2$.

Следствие 5. Гомоморфизм групп $\varphi \colon G \to F$ является изоморфизмом тогда и только тогда, когда $\operatorname{Ker}(\varphi) = \{e_G\}$ и $\operatorname{Im}(\varphi) = F$.

Предложение 2. Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда подгруппа $\mathrm{Ker}(\varphi)$ нормальна в G.

Доказательство. Достаточно проверить, что $g^{-1}hg \in \mathrm{Ker}(\varphi)$ для любых $g \in G$ и $h \in \mathrm{Ker}(\varphi)$. Это следует из цепочки равенств

$$\varphi(g^{-1}hg)=\varphi(g^{-1})\varphi(h)\varphi(g)=\varphi(g^{-1})e_F\varphi(g)=\varphi(g^{-1})\varphi(g)=\varphi(g)^{-1}\varphi(g)=e_F.$$

Теорема о гомоморфизме. Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда группа $\operatorname{Im}(\varphi)$ изоморфна факторгруппе $G/\operatorname{Ker}(\varphi)$.

Доказательство. Рассмотрим отображение $\psi \colon G/\mathrm{Ker}(\varphi) \to F$, заданное формулой $\psi(g\mathrm{Ker}(\varphi)) = \varphi(g)$. Проверка корректности: равенство $\varphi(gh_1) = \varphi(gh_2)$ для любых $h_1, h_2 \in \mathrm{Ker}(\varphi)$ следует из цепочки

$$\varphi(gh_1) = \varphi(g)\varphi(h_1) = \varphi(g) = \varphi(g)\varphi(h_2) = \varphi(gh_2).$$

Отображение ψ сюръективно по построению и инъективно в силу того, что $\varphi(g) = e_F$ тогда и только тогда, когда $g \in \text{Ker}(\varphi)$ (т. е. $g\text{Ker}(\varphi) = \text{Ker}(\varphi)$). Остаётся проверить, что ψ — гомоморфизм:

$$\psi((g\mathrm{Ker}(\varphi))(g'\mathrm{Ker}(\varphi))) = \psi(gg'\mathrm{Ker}(\varphi)) = \varphi(gg') = \varphi(g)\varphi(g') = \psi(g\mathrm{Ker}(\varphi))\psi(g'\mathrm{Ker}(\varphi)).$$

Тем самым, чтобы удобно реализовать факторгруппу G/H, можно найти такой гомоморфизм $\varphi \colon G \to F$ в некоторую группу F, что $H = \mathrm{Ker}(\varphi)$, и тогда $G/H \cong \mathrm{Im}(\varphi)$.

Пример 2. Пусть $G=(\mathbb{R},+)$ и $H=(\mathbb{Z},+)$. Рассмотрим группу $F=(\mathbb{C}\setminus\{0\},\times)$ и гомоморфизм $\varphi\colon G\to F,\quad a\mapsto e^{2\pi\imath a}=\cos(2\pi a)+i\sin(2\pi a).$

Тогда $\operatorname{Ker}(\varphi) = H$ и факторгруппа G/H изоморфна окружности S^1 , рассматриваемой как подгруппа в F, состоящая из комплексных чисел с модулем 1.

Определим ещё одну важную конструкцию, позволяющую строить новые группы из имеющихся.

Определение 7. Прямым произведением групп G_1, \ldots, G_m называется множество

$$G_1 \times \ldots \times G_m = \{(g_1, \ldots, g_m) \mid g_1 \in G_1, \ldots, g_m \in G_m\}$$

с операцией $(g_1, \ldots, g_m)(g'_1, \ldots, g'_m) = (g_1 g'_1, \ldots, g_m g'_m).$

Ясно, что эта операция ассоциативна, обладает нейтральным элементом (e_{G_1},\ldots,e_{G_m}) и для каждого элемента (g_1,\ldots,g_m) есть обратный элемент $(g_1^{-1},\ldots,g_m^{-1})$.

Замечание 2. Группа $G_1 \times \ldots \times G_m$ коммутативна в точности тогда, когда коммутативна каждая из групп G_1, \ldots, G_m .

Замечание 3. Если все группы G_1, \ldots, G_m конечны, то $|G_1 \times \ldots \times G_m| = |G_1| \cdot \ldots \cdot |G_m|$.

Определение 8. Группа G раскладывается в прямое произведение своих подгрупп H_1, \ldots, H_m , если отображение $H_1 \times \ldots \times H_M \to G$, $(h_1, \ldots, h_m) \mapsto h_1 \cdot \ldots \cdot h_m$ является изоморфизмом.

Список литературы

- [1] Э. Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 4, § 6 и глава 10, § 1)
- [2] А.И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994 (глава 4, § 2)
- [3] А. И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава $1, \S 4$)
- [4] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 13, § 58, 60)