McBride_Week_5_Assignment

November 25, 2023

1 DS Automation Assignment

Using our prepared churn data from week 2: - use pycaret to find an ML algorithm that performs best on the data - Choose a metric you think is best to use for finding the best model; by default, it is accuracy but it could be AUC, precision, recall, etc. The week 3 FTE has some information on these different metrics. - save the model to disk - create a Python script/file/module with a function that takes a pandas dataframe as an input and returns the probability of churn for each row in the dataframe - your Python file/function should print out the predictions for new data (new_churn_data.csv) - the true values for the new data are [1, 0, 0, 1, 0] if you're interested - test your Python module and function with the new data, new_churn_data.csv - write a short summary of the process and results at the end of this notebook - upload this Jupyter Notebook and Python file to a Github repository, and turn in a link to the repository in the week 5 assignment dropbox

Optional challenges: - return the probability of churn for each new prediction, and the percentile where that prediction is in the distribution of probability predictions from the training dataset (e.g. a high probability of churn like 0.78 might be at the 90th percentile) - use other autoML packages, such as TPOT, H2O, MLBox, etc, and compare performance and features with pycaret - create a class in your Python module to hold the functions that you created - accept user input to specify a file using a tool such as Python's input() function, the click package for command-line arguments, or a GUI - Use the unmodified churn data (new_unmodified_churn_data.csv) in your Python script. This will require adding the same preprocessing steps from week 2 since this data is like the original unmodified dataset from week 1.

1.1 Load Data

```
[36]: import pandas as pd

df = pd.read_csv('cleaned_churn_data.csv', index_col='customerID')
    df
```

[36]:		tenure	PhoneService	Contract	PaymentMethod	${ t Monthly Charges}$	\
	customerID						
	7590-VHVEG	1	0	0	0	29.85	
	5575-GNVDE	34	1	1	1	56.95	
	3668-QPYBK	2	1	0	1	53.85	
	7795-CFOCW	45	0	1	2	42.30	
	9237-HQITU	2	1	0	0	70.70	

2234-XADUH 72 1 1 3 10 4801-JZAZL 11 0 0 0 2 8361-LTMKD 4 1 0 1 7	84.80 03.20 29.60 74.40 05.65
4801-JZAZL 11 0 0 0 0 2 8361-LTMKD 4 1 0 1 7 3186-AJIEK 66 1 2 2 10 TotalCharges Churn Total_Charge_Validation Potential_I	29.60 74.40
8361-LTMKD	74.40
3186-AJIEK 66 1 2 2 10 TotalCharges Churn Total_Charge_Validation Potential_I	
TotalCharges Churn Total_Charge_Validation Potential_I	05.65
Customer 1D	Discount
7590-VHVEG 29.85 0 29.85	0.00
5575-GNVDE 1889.50 0 1936.30	46.80
3668-QPYBK 108.15 1 107.70	-0.45
7795-CFOCW 1840.75 0 1903.50	62.75
9237-HQITU 151.65 1 141.40	-10.25
3237 IIQ110 131.00 1 141.40	10.25
	44.70
2234-XADUH 7362.90 0 7430.40	67.50
4801-JZAZL 346.45 0 325.60	-20.85
8361-LTMKD 306.60 1 297.60	-9.00
3186-AJIEK 6844.50 0 6972.90	128.40
: # Modifying dataset to fit later parameters on the model df.drop('Total_Charge_Validation', axis=1, inplace=True) df.drop('Potential_Discount', axis=1, inplace=True) df	
tenure PhoneService Contract PaymentMethod MonthlyCha	arges \
customerID	
	29.85
7590-VHVEG 1 0 0 0	29.85 56.95
7590-VHVEG 1 0 0 0 5575-GNVDE 34 1 1 1 1	
7590-VHVEG 1 0 0 0 5575-GNVDE 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95
7590-VHVEG 1 0 0 0 5575-GNVDE 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85
7590-VHVEG 1 0 0 0 5575-GNVDE 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85 42.30 70.70
7590-VHVEG 1 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	56.95 53.85 42.30 70.70
7590-VHVEG 1 0 0 0 2 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85 42.30 70.70 84.80 03.20
7590-VHVEG 1 0 0 0 0 5 5575-GNVDE 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85 42.30 70.70 84.80 03.20 29.60
7590-VHVEG 1 0 0 0 0 5575-GNVDE 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85 42.30 70.70 84.80 03.20 29.60 74.40
7590-VHVEG 1 0 0 0 0 5575-GNVDE 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85 42.30 70.70 84.80 03.20 29.60
7590-VHVEG 1 0 0 0 0 5575-GNVDE 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85 42.30 70.70 84.80 03.20 29.60 74.40
7590-VHVEG 1 0 0 0 5 5575-GNVDE 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85 42.30 70.70 84.80 03.20 29.60 74.40
7590-VHVEG 1 0 0 0 2 2 5 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85 42.30 70.70 84.80 03.20 29.60 74.40
7590-VHVEG 1 0 0 0 2 2 5 5 7 5 - GNVDE 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.95 53.85 42.30 70.70 84.80 03.20 29.60 74.40

[37]

[37]

7795-CFOCW	1840.75	0
9237-HQITU	151.65	1
•••		
6840-RESVB	1990.50	0
2234-XADUH	7362.90	0
4801-JZAZL	346.45	0
8361-LTMKD	306.60	1
3186-AJIEK	6844.50	0

[7032 rows x 7 columns]

1.2 Initialize Pycaret

[41]: <pycaret.classification.oop.ClassificationExperiment at 0x1499b6b90>

1.3 Find the best model

```
[42]: #Using pycaret to identify which model performs best on the data
best_model = automl.compare_models()
```

<IPython.core.display.HTML object>

<pandas.io.formats.style.Styler at 0x145ff7110>

<IPython.core.display.HTML object>

The comparison here shows that if I deemed Accuracy the best metric to deterine fit then Logistic Regression would be the best model to use, yielding a 79% accuracy rate.

<IPython.core.display.HTML object>

<pandas.io.formats.style.Styler at 0x146291310>

<IPython.core.display.HTML object>

I sorted the list by Precision to find that a Ridge Classifer is the best model if precision was the primary focus.

```
[44]: # Clearing sort and setting back to default best_model = automl.compare_models()
```

<IPython.core.display.HTML object>

<pandas.io.formats.style.Styler at 0x14b85b990>

<IPython.core.display.HTML object>

```
[45]: # Identify the best model for the data set best_model
```

```
[45]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='auto', n_jobs=None, penalty='12', random_state=3546, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)
```

```
[46]: # Showcase various plots for the best model automl.evaluate_model(best_model)
```

interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=(('Pipeline Plot', 'pipelin...

```
[47]: automl.plot_model(best_model)
```

<IPython.core.display.HTML object>

1.4 Test it

[48]: automl.predict_model(best_model, df.iloc[-2:-1])

<pandas.io.formats.style.Styler at 0x14c878390>

[48]: tenure PhoneService Contract PaymentMethod MonthlyCharges \
customerID
8361-LTMKD 4 1 0 1 74.400002

TotalCharges Churn prediction_label prediction_score

 customerID

 8361-LTMKD
 306.600006
 1
 1
 0.5742

1.5 Save the model to disk

[49]: automl.save_model(best_model, 'pycaret model')

Transformation Pipeline and Model Successfully Saved

```
include=['tenure', 'PhoneService',
                                                     'Contract', 'PaymentMethod',
                                                     'MonthlyCharges', 'TotalCharges'],
      transformer=SimpleImputer(add_indicator=False,
                                                                      copy=True,
                                                                      fill_value=None,
     keep_empty_features=False,
      missing_values=nan,
                                                                      strategy='mean',
      verbose='deprecated'))),
                       ('...
     keep_empty_features=False,
     missing_values=nan,
      strategy='most_frequent',
      verbose='deprecated'))),
                       ('trained_model',
                        LogisticRegression(C=1.0, class_weight=None, dual=False,
                                            fit_intercept=True, intercept_scaling=1,
                                            11_ratio=None, max_iter=1000,
                                           multi_class='auto', n_jobs=None,
                                           penalty='12', random_state=3546,
                                            solver='lbfgs', tol=0.0001, verbose=0,
                                            warm_start=False))],
                verbose=False),
       'pycaret model.pkl')
     1.6 Test Load
[52]: new_pycaret = ClassificationExperiment()
      loaded_model = new_pycaret.load_model('pycaret model')
     Transformation Pipeline and Model Successfully Loaded
[53]: new_data = df.iloc[-2:-1]
[54]: new_pycaret.predict_model(loaded_model, new_data)
[54]:
                  tenure PhoneService Contract PaymentMethod MonthlyCharges \
      customerID
                                     1
      8361-LTMKD
                       4
                                                0
                                                                       74.400002
                  TotalCharges Churn prediction_label prediction_score
      customerID
                    306.600006
      8361-LTMKD
                                    1
                                                       1
                                                                    0.5742
```

2 Churn Probability Python Script

2.1 Load data for evaluation

```
[63]: from IPython.display import Code
      Code('predict_churn.py')
[63]: #!/usr/bin/env python
     # coding: utf-8
     # Python Script
     # In[]:
     import pandas as pd
     from pycaret.classification import ClassificationExperiment
     def load_data(filepath):
         Loads churn data into a DataFrame from a string filepath.
         df = pd.read_csv(filepath, index_col='customerID')
         return df
     def make_predictions(df):
          11 11 11
         Uses the pycaret best model to make predictions on data in the df dataframe.
         classifier = ClassificationExperiment()
         model = classifier.load_model('pycaret model')
         predictions = classifier.predict_model(model, data=df)
         return predictions
     if __name__ == "__main__":
         df = load_data('new_churn_data.csv')
         predictions = make_predictions(df)
         print('predictions:')
         print(predictions)
     Make predications on the entire dataset
[64]: %run predict_churn.py
```

Transformation Pipeline and Model Successfully Loaded

predictions:

	tenure	PhoneService	Contract	PaymentMethod	MonthlyCharges	\
customerID						
9305-CKSKC	22	1	0	2	97.400002	
1452-KNGVK	8	0	1	1	77.300003	
6723-OKKJM	28	1	0	0	28.250000	
7832-P0PKP	62	1	0	2	101.699997	
6348-TACGU	10	0	0	1	51.150002	
	TotalCh	arges charge_	per_tenure	prediction_lab	oel \	
customerID						
9305-CKSKC	811.7	00012	36.895454		0	
1452-KNGVK	1701.9	49951	212.743744		1	
6723-OKKJM	250.8	99994	8.960714		0	
7832-P0PKP	3106.5	60059	50.105808		0	
6348-TACGU	3440.9	69971	344.096985		1	
	predict					
customerID						
9305-CKSKC	0.5568					
1452-KNGVK	0.5225					
6723-OKKJM		0.8729				
7832-POPKP		0.8525				
6348-TACGU		0.7091				

3 Summary

I begin by installing pycaret within my environment (set up a virtual environment as well) and loaded my cleaned dataset from an earlier week. I set up the autoML and ran it to determine the best model, Logistic Regression. I selected a new metric for evaluation and then set the comparison back to its default before identifying the best model. Before saving my pycaret model, I made sure to test it to ensure it worked properly. Once saved, I ran a test load to double check my work. Lastly, I created a script to read a dataset (new_churn_data) and make a prediction on the entire file.