Notes on GVI in FS for Image Data

1. Gaussian Processes for Classification

Notes taken from chapter 4 from Matthews (2017).

For Gaussian process regression (GPR), a class of models is defined:

$$f \sim \mathcal{GP}(0, K(\theta))$$

where $f: X \to \mathbb{R}$, mapping to the set of real numbers \mathbb{R} and K is the covariance function $K: X \times X \to \mathbb{R}$ parameterised by θ .

For binary Gaussian process classification (GPC), a mapping is defined:

$$g: \mathbb{R} \to [0,1]$$

transforming a value on the real line to the unit interval to represent a probability. A bernoulli random variable \mathcal{B} can be defined such that:

$$f_c \sim \mathcal{B}(g(f))$$

where $f_c: X \to \{0,1\}$, the desired binary classifier.

For multiclass classification of J different classes, models are defined:

$$f^{(j)} \sim \mathcal{GP}(0, K(\theta^{(j)}))$$

where j = 1, ..., J, defining J i.i.d. Gaussian processes. Concatenating $\mathbf{f} = [f_1 \cdots f_J]^T$, the classification operation can be defined:

$$\mathbf{f}_c \sim Cat(\mathcal{S}(\mathbf{f}))$$

where $\mathbf{f}_c: X \to \{0, \dots, J\}$, the desired multiclass classifier. $\mathcal{S}: \mathbb{R}^J \to \Delta(J)$, a mapping from a J dimensional real vector to a J dimensional probability simplex. Cat is the categorical distribution (generalisation of Bernoulli distribution for Categorical Data).

There are different possible choices for S. The multiclass generalisation of the logit likelihood:

$$S_{softmax}(\mathbf{f})_i = \frac{\exp(f^{(i)})}{\sum_{j=1}^{J} \exp(f^{(j)})}$$

The robust max function:

$$S_{robust}^{(\epsilon)}(\mathbf{f})_i = \begin{cases} 1 - \epsilon, & \text{if } i = \arg\max(\mathbf{f}) \\ \epsilon, & \text{otherwise} \end{cases}$$

taking class label of the maximum value with probability of $1-\epsilon$ and probability ϵ of picking one of the other classes uniformly at random, where ϵ is chosen. This formulation provides robustness to outliers, as it only considers the ranking of the GPR models for each class.

A benefit of the robust max function is that the variational expectation is analytically tractable with respect to the normal CDF $(q(\mathbf{f}) = \mathcal{N}(\mu, C), \mathbf{f} \in \mathbb{R}^J)$ and one dimensional quadrature $(\mathcal{S}_{robust}^{(\epsilon)}(\mathbf{f})_i \in \mathbb{R})$:

$$\int_{\mathbb{R}^J} q(\mathbf{f}) \log(\mathcal{S}_{robust}^{(\epsilon)}(\mathbf{f})_y) d\mathbf{f} = \log(1 - \epsilon) S + \log\left(\frac{\epsilon}{J - 1}\right) (1 - S)$$

where S is the probability that the function value corresponding to observed class y is larger than the other function values at that point:

$$S = \mathbb{E}_{\mathbf{f}^{(y)} \sim \mathcal{N}(\mathbf{f}^{(y)}|\mu^{(y)}, C^{(y)})} \left[\prod_{i \neq y} \phi \left(\frac{\mathbf{f}^{(y)} - \mu^{(i)}}{\sqrt{C^{(i)}}} \right) \right]$$

where ϕ is the standard normal CDF. This one dimensional integral can be evaluated using Gauss-Hermite quadrature.

2. GWI for Multiclass Classification

Notes taken from A.6 from Wild et al. (2022).

2.1 Objective Function

The likelihood:

$$p(y|f_1,...,f_J) = \prod_{n=1}^{N} p(y_n|f_1,...,f_J)$$

where $p(y_n|f_1,\ldots,f_J) := h_{y_n}^{\epsilon}(f_1(x_n),\ldots,f_Jx_N)$ and $y_n \in \{1,\ldots,J\}$. $h_{y_n}^{\epsilon}$ is the robust max function $\mathcal{S}_{robust}^{(\epsilon)}$ as described in Matthews (2017). Wild et al. (2022) used $\epsilon = 1\%$.

The model consists of J independent Gaussian Random Elements such that:

$$f_j \sim P_j = \mathcal{N}(m_{\mathbb{P},j}, C_{\mathbb{P},j})$$

with the corresponding variational measures:

$$Q_j = \mathcal{N}(m_{\mathbb{Q},j}, C_{\mathbb{Q},j})$$

The objective to minimise:

$$\mathcal{L} = -\mathbb{E}_{\mathbb{Q}}\left[\log p(y_n|F_1,\dots,F_J)\right] + \sum_{j=1}^J W_2^2(P_j,Q_j)$$

The variational (posterior) approximation of the probability of $\{(F_1(x), \dots, F_J(x)) \in A\}$ will be denoted:

$$\mathbb{Q}\left((F_1(x),\ldots,F_J(x))\in A\right)$$

where $A \subset \mathbb{R}^J$. We get the expected log-likelihood:

$$\mathbb{E}_{\mathbb{Q}}\left[\log p(y_n|F_1,\ldots,F_J)\right] \approx \sum_{n=1}^N \log(1-\epsilon)S(x_n,y_n) + \log\left(\frac{\epsilon}{J-1}\right)(1-S(x_n,y_n))$$

where:

$$S(x,j) := \frac{1}{\sqrt{\pi}} \sum_{i=1}^{I} w_i \prod_{l \neq j} \phi \left(\frac{\sqrt{2r_j(x,x)}\xi_i + m_{Q,j}(x) - m_{Q,l}(x)}{\sqrt{r_l(x,x)}} \right)$$

for any $x \in \mathcal{X}$, j = 1, ..., J where $(w_i, \xi_i)_{i=1}^I$ are the weights and roots of the Hermite polynomial of order $I \in \mathbb{N}$., calculated with scipy.special.roots_hermite. ϕ is the standard normal cumulative distribution function.

The Wasserstein distance $W_2^2(P_i, Q_i)$ can be estimated in the same way as for regression:

$$\hat{W}^{2} := \frac{1}{N} \sum_{n=1}^{N} (m_{\mathbb{P}}(x_{n}) - m_{\mathbb{Q}}(x_{n}))^{2} + \frac{1}{N} \sum_{n=1}^{N} k(x_{n}, x_{n}) + \frac{1}{N} \sum_{n=1}^{N} r(x_{n}, x_{n}) - \frac{2}{\sqrt{NN_{S}}} \sum_{s=1}^{N_{S}} \sqrt{\lambda_{s}(r(X_{S}, X)k(X, X_{S}))}$$

where:

- $X_S := (x_{S,1}, \dots, x_{S,N_S})$ with $x_{S,1}, \dots, x_{S,N_S} \in \mathbb{R}^D$, a set of N_S points sub-sampled from the input data X
- $r(X_S, X) := (r(x_{S_s, x_n}))_{s,n} \in \mathbb{R}^{N_s \times N}$
- $k(X, X_S) := (k(x_{x_n, S_s}))_{n,s} \in \mathbb{R}^{N \times N_s}$
- $\lambda_s(\cdot)$ calculates the s-th eigenvalue

and $n = 1, ..., N, s = 1, ..., N_S, k$ is the kernel for \mathbb{P} , r is the kernel for \mathbb{Q}

2.2 Prediction

For an unseen point $x^* \in \mathcal{X}$, the probability that it belongs to class $j \in \{1, \ldots, J\}$:

$$\mathbb{Q}(Y^* = j) = (1 - \epsilon)S(x^*, j) + \frac{\epsilon}{J - 1}(1 - S(x^*, j))$$

where the predicted label class is the maximiser of this probability:

$$Cat(\mathbb{Q}(Y^*)) = \underset{i \in \{1, \dots, J\}}{\arg \max} \mathbb{Q}(Y^* = j)$$

References

Alexander Graeme de Garis Matthews. Scalable Gaussian process inference using variational methods. PhD thesis, University of Cambridge, 2017.

Veit D Wild, Robert Hu, and Dino Sejdinovic. Generalized variational inference in function spaces: Gaussian measures meet bayesian deep learning. arXiv preprint arXiv:2205.06342, 2022.