Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>m3115</u>	К работе допущен
Студент Кочубеев Николай Сергеевич	Работа выполнена
Преподаватель: Рахманова Гульназ Раис	ровна Отчет принят

1. Цель работы.

Получить выборку (выборочную совокупность) для дискретной случайной величины и исследовать закон распределения этой случайной величины.

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Результат измерения заданного промежутка времени.

4. Метод экспериментального исследования.

Многократное измерение некоторого промежутка времени t достаточно точным цифровым секундомером.

5. Рабочие формулы и исходные данные.

Функция Гаусса:

$$\rho(t) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right).$$

Среднеарифметическое всех результатов измерений:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + ... + t_N) = \frac{1}{N} \sum_{i=1}^N t_i,$$

Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2}.$$

Вероятность попадания результата измерения в интервал [t1, t2]:

$$P\left(t_{1} < t < t_{2}\right) = \int_{t_{1}}^{t_{2}} \rho(t)dt \approx \frac{N_{12}}{N}$$

$$\rho_{\max} = \frac{1}{\sigma\sqrt{}} \quad \begin{array}{c} t \in \left[\langle t \rangle - \sigma, \langle t \rangle + \sigma\right], \quad P_{\sigma} \approxeq 0.683 \\ t \in \left[\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma\right], \quad P_{2\sigma} \approxeq 0.954 \\ t \in \left[\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma\right], \quad P_{3\sigma} \approxeq 0.997 \end{array}$$

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

Доверительный интервал для измеряемого в работе промежутка времени:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle},$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Электрический Секундомер	9-10 c	0,001 c

7. Схема установки (перечень схем, которые составляют Приложение 1)

Тык

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов). Таблица 1: Результаты прямых измерений

	Габлица 1: Резул		-
Nº	ti, c	$t_{\rm i} - \langle t \rangle N$, c	$(t_i - \langle t \rangle N)^2$, c^2
1	9,97	-0,0324	0,0010
2	9,97	-0,0324	0,0010
3	9,97	-0,0324	0,0010
4	9,97	-0,0324	0,0010
5	9,98	-0,0224	0,0005
6	9,98	-0,0224	0,0005
7	9,98	-0,0224	0,0005
8	9,98	-0,0224	0,0005
9	9,98	-0,0224	0,0005
10	9,98	-0,0224	0,0005
11	9,98	-0,0224	0,0005
12	9,98	-0,0224	0,0005
13	9,99	-0,0124	0,0002
14	9,99	-0,0124	0,0002
15	9,99	-0,0124	0,0002
16	9,99	-0,0124	0,0002
17	9,99	-0,0124	0,0002
18	9,99	-0,0124	0,0002
19	9,99	-0,0124	
20		-0,0124	0,0002
21	10,0		0,0000
22	10,0	-0,0024	0,0000
	10,0	-0,0024	0,0000
23	10,0	-0,0024	0,0000
24	10,0	-0,0024	0,0000
25	10,0	-0,0024	0,0000
26	10,0	-0,0024	0,0000
27	10,0	-0,0024	0,0000
28	10,01	0,0076	0,0001
29	10,01	0,0076	0,0001
30	10,01	0,0076	0,0001
31	10,01	0,0076	0,0001
32	10,01	0,0076	0,0001
33	10,01	0,0076	0,0001
34	10,01	0,0076	0,0001
35	10,02	0,0176	0,0003
36	10,02	0,0176	0,0003
37	10,02	0,0176	0,0003
38	10,02	0,0176	0,0003
39	10,02	0,0176	0,0003
40	10,02	0,0176	0,0003
41	10,02	0,0176	0,0003
42	10,02	0,0176	0,0003
43	10,03	0,0276	0,0008
44	10,03	0,0276	0,0008
45	10,03	0,0276	0,0008
46	10,03	0,0276	0,0008
47	10,03	0,0276	0,0008
48	10,03	0,0276	0,0008
49	10,03	0,0276	0,0008
50	10,03	0,0276	0,0008
	$\langle t \rangle_{\rm N} = 10,0024$	-	$\sigma_{\rm N} = 0.0191$
	, , , ,		$P_{\text{max}}(t) = 20,8462133$
		$0.02 \cdot \sqrt{N} - 7.07 \cdot$, ,

 t_{min} =9,97; t_{max} =10,03; \sqrt{N} = 7,07;

9. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1: Результаты прямых измерений

Границы интервалов	ΔΝ	$\Delta N/(N^*\Delta t)$	Середина интервала	P(t)
9,97				
10,00	27	0,269	9,99	20,8462128
10,01				
10,03	23	0,229	10,02	20,8462122

 $\Delta t = 2.009*0.191 = 0.383719$

10. Расчет погрешности измерений (для прямых и косвенных измерений).

	Инте	рвал, с	A NI	ΔΝ/Ν	P
	ОТ	до	ΔΝ		
$< t > N \pm \sigma_n$	9,98	10,02	38	0,76	0,683
$<$ t $>$ N $\pm 2\sigma_n$	9,96	10,04	50	1	0,954
$<$ t $>N \pm 3\sigma_n$	9,95	10,06	50	1	0,997

11. Графики (перечень графиков, которые составляют Приложение 2).

Гистограмма распределения результатов измерений:

12. Окончательные результаты.

Исходя из графика, можно выявить закономерность случайных значений. Полученные значения приблизительно описываются функцией Гаусса

13. Выводы и анализ результатов работы.

Полученные значения примерно описываются функцией Гаусса. В ходе лабораторной работы была получена выборка для дискретной случайной величины, исследован закон распределения случайной величины, вычислено среднее значение, доверительный интервал вероятности. Закон распределения случайной величины почти соответствует закону Гаусса.

Незначительные неточности и несовпадения обусловлены человеческим фактором, погрешностям в расчетах и ограничениями в расчетах.