

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE E TECNOLOGIE

Corso di Laurea Magistrale in Fisica

A STUDY FOR THE MEASUREMENT OF THE Λ BARYON ELECTROMAGNETIC DIPOLE MOMENTS IN LHCb

Relatore: Prof. Nicola NERI

Correlatore: Dott.ssa Elisabetta SPADARO NORELLA

Tesi di Laurea di: Alessandro DE GENNARO Matricola 933289

Codice P.A.C.S.: 14.20.-c

Anno Accademico 2020-2021

Introduction

Electric and magnetic dipole moments of particles are sensitive to physics within and beyond the Standard Model. In this thesis, sensitivity studies for the measurement of the Lambda baryon electromagnetic dipole moments based on pseudo experiments will be performed. In addition, the possibility of a first measurement using data collected with the LHCb detector will be explored.

<u>iv</u> Introduction

Contents

Introduction						
Contents						
List of Figures List of Tables						
						1
	1.1	The S	Standard Model of Particle Physics	. 1		
		1.1.1	Elementary particles	. 2		
		1.1.2	Flavour physics	. 5		
	1.2	Discre	ete symmetries and CP violation	6		
		1.2.1	Parity inversion	6		
		1.2.2	Charge conjugation	. 7		
		1.2.3	Time reversal	. 8		
		1.2.4	CP symmetry and violation	. 8		
	1.3	Electr	comagnetic dipole moments	10		
		1.3.1	EDMs			
		1.3.2	MDMs	. 11		
		1.3.3	Measurement of EDMs and MDMs	12		
	1.4	_	osal of a measurement of the Λ^0 electromagnetic dipole			
		mome	ents with the LHCb detector			
		1.4.1	Previous measurements of the Λ^0 dipole moments			
		1.4.2	Proposal overview			
		1.4.3	Polarization measurements			
		1.4.4	Closing remarks	. 18		
2	The	LHC	b experiment	19		
	2.1	The L	Large Hadron Collider	. 19		
	2.2	LHCb)	19		

vi

3	Λ_{b}^{0} a	and Λ^0 decay vertex reconstruction	21		
	U	Vertex reconstruction algorithms at LHCb	21		
		3.1.1 Vertex Fitter algorithm			
		3.1.2 Decay Tree Fitter algorithm			
	3.2	Reconstruction efficiency of the Λ_b^0 and Λ^0 decays			
	3.3	Characterization of non-converged events			
	3.4	Uncertainty-based algorithms for the recovery of non-converged			
		events	26		
4	Signal event selection				
	4.1	Prefiltering	27		
	4.2	HBDT classifier			
		4.2.1 Training data			
		4.2.2 Hyperparameter optimization and performance test			
		4.2.3 Threshold optimization			
	4.3	Physical background veto			
\mathbf{A}	Ang	$\Lambda^0 o p \pi^- ext{ decay products}$	29		
		Helicity formalism	29		
		Computation of the angular distribution			
Bi	Bibliography				

List of Figures

1.1	Currently known Standard Model elementary particles	2
1.2	Frames of reference for the $\Lambda_b^0 \to J/\psi (\to \mu^+\mu^-) \Lambda^0 (\to p\pi^-)$	
	decay	17
1.3	Diagram of Λ_b^0 and Λ^0 production at LHCb	17
3.1	A	26

viii List of Figures

List of Tables

x List of Tables

Chapter 1

Flavour physics and CP symmetry violation

This chapter explores the theoretical framework for the rest of the thesis. Section 1.1 will provide a basic introduction to the Standard Model of Particle Physics and flavour physics in particular; Section 1.2 will delve into the inner workings of discrete symmetries in quantum physics; Section 1.3 will discuss the relevance of electromagnetic dipole moments of elementary particles as a test for CP violation and CPT symmetry; finally, Section 1.4 will introduce the main topic of the thesis, the study of dipole moments of the Λ^0 baryon.

1.1 The Standard Model of Particle Physics

Ever since Democritus' philosophy of atomism, one of the driving desires behind mankind's advancements in the fields of natural science has been to reduce reality to its basic components. While one can convincingly argue that we may never fully understand what has come to be known as the quantum world, the Standard Model of Particle Physics (Standard Model, or SM, for short) [1] is as close as physics has to offer to a comprehensive theory of the building blocks of matter and energy.

In addition to predicting a number of then-unknown particles discovered in later years, the Standard Model has shown remarkable consistency against high precision tests, especially in the better known electroweak sector [2]. Despite this, it would be a serious mistake to call it *complete*, even if only for the three fundamental forces it covers. Many experimental evidences, some of which will be discussed in the following pages, have already opened cracks in the model, and many more may emerge in the future; one of the recurring topics of this chapter will thus be the need for physics Beyond the Standard Model (BSM).

Standard Model of Elementary Particles 1 Ш Ш H u С t g charm top gluon higgs up d S b down strange bottom photon Z е μ τ electron Z boson EPTONS ν_{μ} W muon W boson neutrino neutrino

Figure 1.1: The seventeen currently known elementary particles of the Standard Model. Antiparticles are not depicted.

1.1.1 Elementary particles

Intuitively, a particle is said to be *elementary* when no substructure can be probed. A century of efforts in the fields of nuclear, quantum, and high energy physics has whittled down the spectrum of matter to just seventeen unique fundamental particles, colloquially known as the *particle zoo* and depicted in Figure 1.1.

Each particle is joined by an antimatter particle (antiparticle for short), a companion of opposite charge identified by the prefix anti-, e.g. antimuon for the muon; the only exception to this naming convention is the electron, whose antiparticle, for historical reasons, is known as positron. While often omitted for the sake of brevity, antiparticles are elementary particles in every respect, distinct from their partners (bar neutral gauge bosons and the Higgs boson, which are their own antiparticles) and related to them through the transformation of charge conjugation (see Section 1.2.2).

Leptons

Leptons are fermions (half-integer spin particles) not sensitive to the strong nuclear interaction. There are currently six *flavours* of leptons grouped in three generations: each generation comprises a *charged* lepton (electron, muon, tauon) and a *neutral* lepton (electron neutrino, muon neutrino, tauon neutrino).

All charged leptons have a charge of -e, where e is defined as the *elemen*-

tary positive charge, and their mass ranges from $\approx 0.5 \,\mathrm{MeV}$ for the electron to over 1.7 GeV for the tauon [3]. By contrast, as the names suggest, all neutrinos are electrically neutral and are assumed massless in the Standard Model¹; this implies that their only meaningful interactions happen through the weak nuclear force, which grants them their characteristic evasiveness to most particle detectors.

Quarks

Much like leptons, quarks are also fermions existing in three generations. The main difference from the former category is that quarks, besides interacting through weak and electromagnetic forces, are also susceptible to the strong nuclear forces; this allows them to bind together in composite states known as hadrons, which are classified as baryons (states of three quarks) and mesons (states of one quark and one antiquark)².

Quarks can be classified as up-type (up, charm and top quarks) and down-type (down, strange and bottom quarks): up-type quarks have a fractionary charge of $+\frac{2}{3}e$, whereas down-type quarks have a charge of $-\frac{1}{3}e$. All quarks also have one of three color charges (red, green or blue), while antiquarks similarly have one of three anti-color charges (antired, antigreen or antiblue). A combination of all three colors/anti-colors or a combination of a color and its matching anticolor produces colorless particles, a property of all observed quark composite states.

Unlike leptons, quarks are impossible to observe directly: according to the phenomenon of *color confinement*, the energy of the interaction field between two color charges being pulled apart increases with their distance until it becomes high enough to create a quark-antiquark pair. This process of *fragmentation* develops many times over in such a way that the final observable state is entirely composed of colorless particles. For this reason, high energy physics experiments such as LHCb do not detect free quarks, instead observing cone-shaped streams of hadrons known as *hadronic jets*.

Gauge bosons and fundamental interactions

In quantum field theory, the interaction between two fields is implemented through the exchange of an intermediary particle known as *force carrier*. In the Standard Model all force carriers are vector (spin 1) bosons known as *gauge bosons*. The name is owed to the *gauge principle* used to introduce them: the

¹The observation of flavour oscillation in solar neutrinos shows that neutrinos do in fact have non-zero, albeit very small, mass [4].

²As recently as 2003, evidence has surfaced for the existence of exotic hadrons composed of four (tetraquarks) [5] and five quarks (pentaquarks) [6].

localization of a global continuous symmetry group provides the free fermion Lagrangians with interaction terms with the proviso that one or more bosonic fields are introduced.

The gauge principle accounts for the implementation of three fundamental interactions along with their gauge bosons: the *strong nuclear force* with its massless gluon, responsible for the binding of both quarks inside baryons and nucleons inside atomic nuclei; the *electromagnetic force* mediated by the massless photon, the importance of which should be known from everyday life; and the *weak nuclear force* with two massive W^{\pm} and Z bosons, the source of many subnuclear processes such as β radioactivity.

The latter two forces share a unified description in the Glashow-Weinberg-Salam theory as a single electroweak interaction and are introduced via localization of a $\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$ symmetry group, the first related to the conservation of weak isospin in left-handed chirality states and the second to the conservation of hypercharge. Quantum chromodynamics (QCD), the theory of the strong nuclear force, is based on a separate $\mathrm{SU}(3)_C$ symmetry acting on the three-dimensional space of color charges.

There are no gauge bosons nor gauge theories associated to the fourth known fundamental force, gravity. Since every attempt to reconcile the general theory of relativity with quantum mechanics has failed so far, gravity is presently excluded from the Standard Model; this doesn't affect SM predictions at the subatomic level on account of the remarkably low intensity of said force, over 30 orders of magnitude lower than the weak interaction.

The Higgs boson

The Higgs boson is one of the latest additions to the Standard Model, being proposed in 1964 [7] and observed in 2012 by the ATLAS [8] and CMS [9] collaborations. Its introduction solved perhaps the most insidious SM shortcoming at the time: gauge theories, which the model was built on, only worked under the assumption that all particles involved were massless, whereas the local invariance would fall apart (gauge breaking) when adding a free mass term.

By contrast, the Higgs field accounts for mass generation of the weak bosons W^{\pm} and Z via the Brout-Englert-Higgs mechanism resulting from the spontaneous electroweak symmetry breaking; elementary fermions also gain mass through a distinct, Yukawa-like interaction with the field.

1.1.2 Flavour physics

A reader unfamiliar with SM terminology may find amusing the use of the word *flavour* to refer to what have been so far presented as different kinds of particles altogether. However quirky, the lexical choice highlights a defining feature: flavour, much like the degree of sweetness in a recipe, can change [10].

As often happens in particle physics, the rules are somewhat easier for leptons. For a given generation $\ell = (e, \mu, \tau)$, one can define a *lepton family number* L_{ℓ} as the difference between the number of particles and antiparticles of said generation, charged leptons and neutrinos alike:

$$L_{\ell} := n(\ell^{-}) - n(\ell^{+}) + n(\nu_{\ell}) - n(\bar{\nu}_{\ell}). \tag{1.1}$$

For all three generations, L_{ℓ} is conserved in every interaction except neutrino oscillations.

Quarks are not as straightforward. A similarly defined quark flavour number, such as the so-called *topness* (or *truth*)

$$T := n(t) - n(\bar{t}), \tag{1.2}$$

is preserved through EM and strong interactions, but can change when the state undergoes a weak charged interaction, i.e. a weak interaction mediated by the charged gauge bosons W^{\pm} . In fact, one finds that weak interactions for quarks can be accurately described if we assume that the weak eigenstates (d', s', b') of down-type quarks, i.e. the weak isospin doublet partners to uptype quarks, are related to the free mass eigenstates (d, s, b) through a rotation:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}. \tag{1.3}$$

In this notation, the probability for a quark of flavour i to change into a quark of flavour j as a result of a weak charged interaction is proportional to $|V_{ij}|^2$.

The unitary rotation matrix is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix V_{CKM} . The moduli of its components up to the third decimal place, according to the most recent estimates [3], are

$$\begin{pmatrix}
|V_{ud}| & |V_{us}| & |V_{ub}| \\
|V_{cd}| & |V_{cs}| & |V_{cb}| \\
|V_{td}| & |V_{ts}| & |V_{tb}|
\end{pmatrix} \approx \begin{pmatrix}
0.974 & 0.224 & 0.004 \\
0.221 & 0.987 & 0.041 \\
0.008 & 0.039 & 1.013
\end{pmatrix}.$$
(1.4)

A full definition of the CKM matrix requires four independent parameters. Particularly useful for the following sections is the standard parameterization with three angles θ_{12} , θ_{23} , θ_{13} , expressing the mixing between different quark

generations, and a complex phase δ_{13} . Defining $s_{ik} := \sin \theta_{ik}$ and $c_{ik} := \cos \theta_{ik}$, V_{CKM} can be written as

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$
(1.5)

The phase δ_{13} is known as the CP-violating phase. To fully understand what it means and its role in particle physics, however, a digression into discrete symmetries is needed.

1.2 Discrete symmetries and CP violation

In quantum mechanics, a system described by a Hamiltonian $\hat{\mathcal{H}}$ is symmetric under a transformation \hat{S} if the two operators commute, i.e.

$$\left[\hat{\mathcal{H}}, \hat{S}\right] = 0. \tag{1.6}$$

Symmetries are of great relevance in physics on account of Noether's theorem, which establishes a relationship between the *continuous* symmetry of a system and a corresponding conservation law; the emphasis is on the requirement of continuity, meaning the related transformation changes the system «in a smooth way», much like a rotation does. An example of this principle has already been presented earlier in this thesis: the three symmetry groups employed in SM gauge theories all imply the conservation of a specific charge, be it weak isospin, hypercharge, or color.

By contrast, this section will delve into *discrete* symmetries [11], which do not share said «smoothness» property. The absence of a Noether-like theorem for this class of transformations does not detract from their importance in physics: as will be shown, the three symmetries we'll focus on have a remarkable influence on many fields of study.

1.2.1 Parity inversion

By definition, the *parity inversion* (or simply *parity*) transformation \hat{P} flips the sign of the three spatial coordinates:

$$\hat{P}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}. \tag{1.7}$$

Its action on a quantum $|\psi(\vec{x},t)\rangle$ is therefore

$$\hat{P} |\psi(\vec{x}, t)\rangle = |\psi(-\vec{x}, t)\rangle. \tag{1.8}$$

More interestingly, for parity eigenstates (known as parity-defined states) a parity quantum number can be introduced; such states may have a P-parity eigenvalue $\eta_P = +1$ (parity-even states) or $\eta_P = -1$ (parity-odd states). Since by definition $\hat{P}^2 = 1$, where 1 is the identity operator, these are the only two allowed P-parity values.

A similarly dichotomous behaviour is observed on both scalar and vector quantities commonly used in classical physics, such as momenta and electromagnetic fields. Parity-even scalar quantities are called *true scalars* or just scalars (e.g. energy), whereas parity-odd ones are called pseudoscalars (e.g. helicity). The same distinction is present for vector quantities, which are either polar vectors (e.g. angular momentum) or axial vectors (e.g. linear momentum).

As far as is currently known, gravity, electromagnetic and strong nuclear interactions conserve parity. The same cannot be said for the weak interaction, the P-violating properties of which were first proven in the 1956 Wu experiment on the 60 Co β^- decay [12].

1.2.2 Charge conjugation

The transformation of *charge conjugation* \hat{C} changes the sign of all electric charges:

$$\hat{C}: q \to -q. \tag{1.9}$$

It should be readily apparent that \hat{C} has close ties with the concept of antimatter. In fact, the action of charge conjugation turns a quantum state into its antimatter partner, inverting the sign of all flavour quantum numbers in the process:

$$\hat{C} |\psi\rangle = |\bar{\psi}\rangle. \tag{1.10}$$

For single-particle systems, the only possible \hat{C} eigenstates are particles that are their own antiparticle, like the photon, for which a C-parity $\eta_C = \pm 1$ is defined by analogy with the P-parity eigenvalue.

Unlike in the case of parity, there isn't a single breakthrough experiment credited for showing that the weak interaction is not C-symmetric: it was known from theory that parity violation in a weak process, when observed under certain conditions, would also imply a violation of charge conjugation, with such a violation being confirmed shortly after Wu's results [13]. As for the other three fundamental interactions, no evidence of C symmetry violation has surfaced so far.

1.2.3 Time reversal

Perhaps the most intuitively named of the three discrete symmetries discussed here, time reversal \hat{T} does exactly what it promises:

$$\hat{T}: t \to -t. \tag{1.11}$$

The action of time reversal on a quantum state is represented by an *antiunitary* (unitary and antilinear) operator, which implies a complex conjugation on top of the time reversal itself:

$$\hat{T} |\psi(\vec{x}, t)\rangle = |\psi^*(\vec{x}, -t)\rangle \tag{1.12}$$

There are a number of arguments for the antiunitarity of \hat{T} , the most straightforward being that it prevents final states with negative energy.

Once more, gravity, strong and electromagnetic forces are T-symmetric, whereas the weak nuclear force isn't. However, as will be explained shortly, this knowledge isn't the result of a direct experiment, instead exploiting a side effect of the CPT theorem.

1.2.4 CP symmetry and violation

The sequential combination of C, P and T transformations, commonly designated as CPT symmetry, plays a key role in the foundations of quantum physics. As well as being the only combination of said transformations still observed to be a symmetry of physical laws, the *CPT theorem* states that any Lorentz-invariant local quantum field theory must be CPT-symmetric. Because a violation of the CPT symmetry would imply the collapse of the modern quantum physics framework, it is generally accepted that a T-violating process must also be a CP-violating process. This bears an important consequence on the study of discrete symmetry violations: because of the self-evident hindrances in building a time-reversed experimental setup outside of trivial cases, every test of T violation becomes by necessity a test of CP violation.

Setting this notion aside, CP symmetry is an interesting field of study in and of itself [14]. For one thing, while C and P symmetries are maximally violated by the weak interaction, CP isn't; this is readily seen with the chirally left-handed neutrino, which possesses a CP-partner (the right-handed antineutrino) despite lacking both a P-partner (the right-handed neutrino) and a C-partner (the left-handed antineutrino). The subject of CP violation is also closely tied to another long-standing dilemma in both particle physics and cosmology: the observed asymmetry between matter and antimatter in our Universe. A perfectly CP-symmetric system would produce a roughly equal number of particles and antiparticles, which would annihilate one another and

yield an empty Universe; our very existence implies a primordial imbalance that resulted in baryogenesis and therefore some degree of CP violation.

Since gravity, EM and strong interactions all individually conserve parity and charge conjugation, it stands to reason that they are also CP-symmetric, leaving the weak nuclear interaction as the only possible CP-violating fundamental force. Experiments conducted over the last 50 years have found that, despite CP still being preserved in most weak processes, some select interactions show evidence of CP violation.

The first indirect discovery came in 1964 by Christenson et al. [15], who observed the long-lived neutral kaon two-pion decay $K_L^0 \to \pi^+\pi^-$ with a branching ratio of $\approx 10^{-3}$ over all charged modes. This result could only be explained by assuming that the K_L^0 weak eigenstate is a mixture of both $\eta_{CP} = \pm 1$ eigenstates, with the ability to oscillate between the two. A more direct evidence was found in 1999 by the KTeV collaboration at Fermilab [16] via the observation of differing decay rates in $K_{L/S}^0 \to \pi^+\pi^-$ against $K_{L/S}^0 \to \pi^0\pi^0$ channels, and CP violation in weak processes was definitely established in the early 2000s via studies on B mesons decays conducted in so-called «B-factories» such as BaBar at SLAC [17] and Belle at KEK [18].

Despite the significant number of experimental evidences collected ever since, the extent of known CP-violating processes is several orders of magnitude below what is expected from cosmological estimates. The matter-antimatter imbalance at the time when the Universe cooled below the pair production threshold temperature can be quantified through the baryon asymmetry parameter [19], computed as the difference between the densities of baryons and antibaryons divided by their sum:

$$\eta \coloneqq \frac{n_B - n_{\bar{B}}}{n_B + n_{\bar{B}}}.\tag{1.13}$$

While this parameter cannot be directly measured at the present time, we can approximate it by noting that almost no antimatter currently exists in the Universe $(n_{\bar{B}} \approx 0)$ and almost all of the original matter will have annihilated into photons $(n_B + n_{\bar{B}} \approx n_{\gamma})$:

$$\eta \approx \frac{n_B}{n_\gamma}.\tag{1.14}$$

Both of these quantities can be probed by studying the intergalactic medium and the cosmic microwave background, finding $\eta_{\rm obs} \approx 10^{-10}$ [20]. As for the Standard Model prediction, all SM sources of CP violation arise from quark mixing, and more specifically from the δ_{13} complex phase mentioned in the parameterization (1.5) of the CKM matrix. Computing the baryon asymmetry parameter with this knowledge leads to a much lower $\eta_{\rm SM} \approx 10^{-20}$ [19].

New sources of CP violation are therefore required to match the observed value, with a promising field being the search for intrinsic electromagnetic dipole moments [14].

1.3 Electromagnetic dipole moments

1.3.1 EDMs

The electric dipole moment (EDM) $\vec{\delta}$ is the measure of a system's *polarity*, i.e. the spatial separation of positive and negative charges within the system. For the simplest of the relevant charge configurations, a dipole of point charges $\pm q$ separated by a distance r, the EDM is expressed as

$$\vec{\delta} = q\vec{r},\tag{1.15}$$

where the displacement vector \vec{r} points from the negative charge to the positive one.

It's hardly a feat of imagination to theorize that a composite particle like the neutron could acquire an EDM, even if the three quarks inside it cannot be thought of as a system of charges in the classical sense. It may be less intuitive that elementary, point-like particles such as electrons and quarks could also gain one, due to quantum effects resulting in the creation and destruction of virtual particles (so-called *loops* in higher order Feynman diagrams).

For a spin- $\frac{1}{2}$ particle, its EDM is written in Gaussian units as [21]

$$\vec{\delta} = d\frac{\mu_B}{2}\vec{s},\tag{1.16}$$

where d is a dimensionless quantity referred to as gyroelectric factor,

$$\mu_B = \frac{e\hbar}{2mc},\tag{1.17}$$

is the particle magneton, c is the speed of light in a vacuum, m is the particle mass and

$$\vec{s} = 2 \frac{\langle \vec{S} \rangle}{\hbar} \tag{1.18}$$

is the spin polarization vector, related to the average value of the spin \vec{S} divided by the reduced Planck constant \hbar .

When the particle crosses an external electric field \vec{E} , its EDM will polarize by changing the direction of the spin. This introduces an energy term in the system's Hamiltonian with the form

$$H_{\rm EDM} = -\vec{\delta} \cdot \vec{E}. \tag{1.19}$$

One can now check how the term (1.19) behaves when acted upon by some of the discrete transformations outlined in Section 1.2. The behaviour of spin \vec{S} , and therefore of the spin-related EDM $\vec{\delta}$, can easily be shown to be that of polar vectors, i.e. parity-even. By contrast, the electric field \vec{E} is an axial vector, i.e. parity-odd, which makes $H_{\rm EDM}$ a parity-odd pseudoscalar:

$$H_{\rm EDM} \xrightarrow{\hat{P}} -H_{\rm EDM}.$$
 (1.20)

When considering time reversal \hat{T} , the situation is specular: the EDM $\vec{\delta}$ flips its sign, whereas the electric field \vec{E} remains unchanged, implying

$$H_{\rm EDM} \xrightarrow{\hat{T}} -H_{\rm EDM}.$$
 (1.21)

The above result in particular contains a crucial piece of information: assuming the validity of the CPT theorem, a Hamiltonian containing the EDM's interaction term (1.19) can only be CP-symmetric if the average (or *permanent*) EDM of the particle is zero.

It follows that, for a particle to have a permanent EDM, CP symmetry must be violated in some measure³. As explained in Section 1.2.4, the only known source of CP violation within the Standard Model is the complex phase δ_{13} in quark mixing, which may give a small contribution to the EDMs of point-like particles such as electrons ($\delta \lesssim 10^{-40} e \,\mathrm{cm}$ [22]) and quarks ($\delta \lesssim 10^{-34} e \,\mathrm{cm}$ [23]) via beyond-tree-level diagrams. Composite particles such as baryons are accorded some leeway on account of their finite size: the weak interaction between quarks inside the neutron, for instance, contributes to a possible EDM up to $\delta \lesssim 10^{-31} e \,\mathrm{cm}$ [24].

In all cases, the predicted SM contributions are orders of magnitudes below the sensitivity reached by current generation experiments. For all intents and purposes, the observation of a non-zero permanent EDM in a baryon would imply the discovery of a BSM source of CP violation.

1.3.2 MDMs

The magnetic dipole moment (MDM) $\vec{\mu}$ of a system can be interpreted as the measure of how intense a torque the system experiences when crossing a magnetic field \vec{B} :

$$\vec{\tau} = \vec{\mu} \times \vec{B}. \tag{1.22}$$

³This line of reasoning only applies to systems that are parity eigenstates. Water molecules are notoriously polar, but their EDMs do not violate any fundamental symmetry because the molecule's ground state is a superposition of parity-even and parity-odd eigenstates.

Unlike the case of EDMs, the extension of MDMs from classical to quantum physics is less extreme, as long as one acknowledges the affinity between angular momentum and a particle's intrinsic spin. A classical rotating body with charge q, mass m and angular momentum \vec{L} gains an MDM in the form

$$\vec{\mu} = \frac{q}{2m}\vec{L},\tag{1.23}$$

assuming charge and mass are identically distributed. A very similar relation holds for a non-classical, point-like spin- $\frac{1}{2}$ particle [21]:

$$\vec{\mu} = g \frac{\mu_B}{2} \vec{s} \tag{1.24}$$

Here g is the dimensionless gyromagnetic factor accounting for the transition from classical to quantum physics, whereas μ_B and \vec{s} are the same particle magneton and spin polarization vector defined in equations (1.17) and (1.18) respectively.

Similary to EDMs, MDMs also induce a spin rotation when subjected to a magnetic field \vec{B} , introducing a Hamiltonian term

$$H_{\text{MDM}} = -\vec{\mu} \cdot \vec{B}. \tag{1.25}$$

Under parity and time reversal transformations, the MDM $\vec{\mu}$ behaves in the same way as the EDM $\vec{\delta}$, both being dependent on the particle's spin \vec{S} (odd under \hat{P} , even under \hat{T}). In contrast with \vec{E} , however, the magnetic field \vec{B} behaves in the *same* way as $\vec{\mu}$, effectively cancelling out their signs when the Hamiltonian (1.25) is acted upon:

$$H_{\text{MDM}} \xrightarrow{\hat{P}} H_{\text{MDM}},$$
 (1.26)

$$H_{\text{MDM}} \xrightarrow{\hat{T}} H_{\text{MDM}}.$$
 (1.27)

Factoring in the CPT theorem, this result entails that a non-zero intrinsic MDM for fundamental particles does not imply CP violation. For this reason, measurements of MDMs are instead used as *precision tests* of the CPT theorem, since their values should not change between a particle and its antimatter partner.

1.3.3 Measurement of EDMs and MDMs

For the purposes of this thesis, the measurement of EDMs and MDMs of a particle is performed by exploiting the precession of spin in an electromagnetic field [25]. In the laboratory frame, a neutral particle flying with velocity $\vec{\beta}$

through homogeneous electromagnetic fields \vec{E} and \vec{B} experiences a precession of the non-relativistic spin polarization vector \vec{s} described by the equation

$$\frac{d\vec{s}}{dt} = \vec{s} \times \vec{\Omega}, \qquad \vec{\Omega} := \vec{\Omega}_{\text{EDM}} + \vec{\Omega}_{\text{MDM}}.$$
 (1.28)

The angular velocity vector $\hat{\Omega}$ is itself the sum of two contributions due to the respective intrinsic dipole moments of the particle:

$$\vec{\Omega}_{\text{EDM}} = \frac{d\mu_B}{\hbar} \left(\vec{E} - \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{E}) \vec{\beta} + \vec{\beta} \times \vec{B}) \right), \tag{1.29}$$

$$\vec{\Omega}_{\text{MDM}} = \frac{g\mu_B}{\hbar} \left(\vec{B} - \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \vec{\beta} \times \vec{E}) \right). \tag{1.30}$$

Assuming $\vec{E} = 0$, as will be the case in the experimental setup employed in this work, the angular velocity simplifies to

$$\vec{\Omega} = \frac{\mu_B}{\hbar} \left[d\vec{\beta} \times \vec{B} + g \left(\vec{B} - \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right) \right]. \tag{1.31}$$

An analytical solution of the above system of equations is possible under the approximation that the precession of the particle spin depends only on the integrated value of the magnetic field \vec{B} along the particle's flight path l. In the absence of field gradients, dictated by the homogeneity requirement, such integrated field \vec{D} can be written as

$$\vec{D} := \int_0^l dl' \vec{B}(\vec{r}_0 + \hat{\beta}l') \approx \langle \vec{B} \rangle l, \qquad (1.32)$$

where $\hat{\beta}$ is the normalized vector of $\vec{\beta}$. Defining $\hat{\Omega}$ in the same way, the time evolution of the spin polarization vector \vec{s} ($\vec{s}(0) = \vec{s}_0$) is

$$\vec{s}(l) = (\vec{s}_0 \cdot \hat{\Omega}) \hat{\Omega} + [\vec{s}_0 - (\vec{s}_0 \cdot \hat{\Omega}) \hat{\Omega}] \cos(|\vec{\Omega}| t) + (\vec{s}_0 \times \hat{\Omega}) \sin(|\vec{\Omega}| t). \quad (1.33)$$

From an experimental point of view, measurement of time isn't trivial; instead, one can efficiently measure the flight length of an unstable particle $l = \beta ct$ during its lifetime. The equation describing the spin precession as a function of l has a very similar form to (1.33):

$$\vec{s}(l) = (\vec{s}_0 \cdot \hat{\Phi}) \hat{\Phi} + [\vec{s}_0 - (\vec{s}_0 \cdot \hat{\Phi}) \hat{\Phi}] \cos |\vec{\Phi}| + (\vec{s}_0 \times \hat{\Phi}) \sin |\vec{\Phi}|, \qquad (1.34)$$

with

$$\vec{\Phi} = \frac{\mu_B}{|\vec{\beta}|\hbar c} \left[d\vec{\beta} \times \vec{D} + g \left(\vec{D} - \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{D}) \vec{\beta} \right) \right]$$
(1.35)

and \vec{D} defined as in (1.32).

Equation (1.34) therefore provides a way to measure the values of EDMs and MDMs for neutral particles by studying the change in polarization after their flight through a magnetic field. For unstable particles, the polarization at the time of decay can be inferred in a fairly straightforward way from the angular distribution of their products. Conversely, theoretical knowledge or measurement of the original spin polarization \vec{s}_0 of the particle are both far from easy tasks in a general setting. Thankfully, in certain instances such as the one covered in this thesis, \vec{s}_0 can be known by exploiting the same parity violation of weak interactions discovered in 1956 by Wu and her collaborators.

1.4 Proposal of a measurement of the Λ^0 electromagnetic dipole moments with the LHCb detector

The Λ^0 baryon, also historically known as the Λ^0 hyperon⁴ and sometimes labelled only as Λ , is a spin- $\frac{1}{2}$ baryon with (u,d,s) valence quarks. As the first identified baryon beyond the two nucleons, it played a key role in the discovery and christening of the strange quark: its mass of $\approx 1116\,\mathrm{MeV}/c$ [3], the lightest among s-bearing baryons, meant its only viable decay channels were mediated by the flavour-changing weak interaction, giving the Λ^0 a much longer half-life than expected; this property was dubbed strangeness, a name later inherited by the new quark that indirectly caused it.

The Λ^0 baryon is also a prime candidate to probe CP violation. Unlike in the case of the prospective discovery of a neutron EDM⁵, a non-zero Λ^0 baryon EDM could not be explained by any phenomena within the Standard Model and would therefore imply the existence of BSM physics.

1.4.1 Previous measurements of the Λ^0 dipole moments

[Misure precedenti.]

⁴A *hyperon* is a baryon with one or more strange quarks, but no heavier quarks. The nomenclature emerged in the period following the discovery of the strange quark, when no further quarks besides the first three were known; nowadays, the term is rarely used.

⁵Quantum chromodynamics allows for a CP-violating term proportional to the QCD vacuum angle θ . Current measurements of the neutron EDM [26] constrain $\theta \lesssim 10^{-10}$, a fine-tuning suppression known as the *strong CP problem*; nevertheless, experimental discovery of a non-zero neutron EDM could be traced back to this term and would not necessarily require the introduction of new physics.

1.4.2 Proposal overview

My work in this thesis aims to exploit the spin precession technique outlined in Section 1.3.3 to perform a measurement of the Λ^0 baryon electromagnetic dipole moments with the LHCb detector at the Large Hadron Collider (see Chapter 2). Specifically, the unique features of the LHCb experimental setup and a careful selection of the Λ^0 production channel will allow for significant simplifications of the general equation (1.34) for neutral unstable particles.

The LHCb detector is equipped with a suitable [quanti tesla] magnetic field directed along the laboratory frame y axis. Gradient field effects for the \vec{B} field within the detector acceptance are negligible, being estimated at [25]

$$\frac{\hbar}{2mc} \frac{\beta \gamma}{\gamma + 1} \frac{|\nabla B|}{B} \approx 7.4 \times 10^{-16},\tag{1.36}$$

with $B := |\vec{B}|$. The Λ^0 baryon's average mean life of $\approx 2.6 \times 10^{-10} \,\mathrm{s}$ [3] allows a sizeable number of them to traverse the full LHCb magnetic field region [regione in z] before decaying, making it possible to measure both the initial and final polarizations to infer spin precession.

1.4.3 Polarization measurements

The problem concerning the measurement of the Λ^0 initial polarization is circumvented by selecting Λ^0 produced through the weak decay of the bottom baryon Λ_b^0

$$\Lambda_b^0 \to J/\psi \,(\to \mu^+\mu^-)\,\Lambda^0 \,(\to p\pi^-),$$
 (1.37)

as well as its charge-conjugate⁶

$$\bar{\Lambda}_b^0 \to J/\psi \, (\to \mu^+ \mu^-) \, \bar{\Lambda}^0 \, (\to \bar{p}\pi^+).$$
 (1.38)

Parity violation in this decay produces Λ^0 with almost 100% longitudinal polarization [27], meaning that the original polarization can be computed from the Λ^0 reconstructed momentum.

The nature of LHCb as a forward detector implies that Λ^0 baryons will mostly fly along the laboratory frame z axis, and therefore the initial polarization can be written as $\vec{s_0} = (0, 0, s_0)$. Equation (1.34) for the Λ^0 spin precession after the magnetic field region can thus be simplified assuming a field $\vec{B} = (0, B_y, 0)$:

$$\vec{s} = \begin{cases} s_x = -s_0 \sin \Phi \\ s_y = -s_0 \frac{d\beta}{g} \sin \Phi \\ s_z = s_0 \cos \Phi \end{cases}$$
 (1.39)

⁶For the sake of brevity, charge-conjugate notation will be omitted in the rest of this thesis except where relevant to the topic at hand.

with

$$\Phi = \frac{D_y \mu_B}{\beta \hbar c} \sqrt{d^2 \beta^2 + g^2} \approx \frac{g D_y \mu_B}{\beta \hbar c}, \tag{1.40}$$

$$\beta \coloneqq \left| \vec{\beta} \right|$$
 and

$$D_y := D_y(l) = \int_0^l dl' B_y. \tag{1.41}$$

Note from equation (1.39) that a non-vanishing intrinsic EDM introduces a s_y component to the final polarization, the MDM precession of which would otherwise be confined to the xz plane.

The polarization after the magnetic field can be probed by studying the angular distribution of the $\Lambda^0 \to p\pi^-$ decay products. It can be shown (see Appendix A) that the expected angular distribution for said decay is

$$\frac{dN}{d\Omega'} = 1 + \alpha \vec{s} \cdot \hat{k},\tag{1.42}$$

where $\Omega' := (\theta', \phi')$ is the solid angle in the Λ^0 helicity frame (see Figure 1.2) corresponding to the momentum direction of the proton, pointing in the direction of the unit vector

$$\hat{k} = \begin{pmatrix} \sin \theta' \cos \phi' \\ \sin \theta' \sin \phi' \\ \cos \theta' \end{pmatrix}, \tag{1.43}$$

and $\alpha \approx 0.732$ [3] is the decay asymmetry parameter. The combined measurements of the initial polarization (from the momenta of Λ^0 produced via decays (1.37) and (1.38)) and the final polarization (from angular distribution (1.42)) allow for a study of both Λ^0 dipole moments based on the single components of the precession (1.39).

Deviations from this simplified treatment ought to be considered when taking into account the different relevant frames of reference, three of which are sketched in Figure 1.2:

- the laboratory frame S_L , with the z axis along the proton beam and the y axis along the vertical coordinate;
- the heavy baryon Λ_b^0 helicity frame S_H , with the z axis given by the Λ_b^0 momentum in S_L and the x axis parallel to the normal to its production plane;
- the two Λ^0 helicity frames S_{Λ} and $S_{\Lambda L}$. These are functionally the same frame of reference, the key difference being that the z axis is defined in the direction of the Λ^0 momentum in S_H and S_L respectively.

Figure 1.2: Frames of reference for the $\Lambda_b^0 \to J/\psi \, (\to \mu^+ \mu^-) \, \Lambda^0 \, (\to p \pi^-)$ decay: on the *left* the Λ^0 helicity frame $S_{\Lambda L}$, on the *right* the laboratory frame S_L . \vec{p}_H is the Λ_b^0 momentum, \vec{p}_p is the proton momentum (corresponding to a solid angle (θ', ϕ') in the $S_{\Lambda L}$ frame), \vec{p}_{beam} is the proton beam momentum, while \vec{n}_{Λ} and \vec{n}_H are the normals to the Λ^0 and Λ_b^0 production planes respectively.

Figure 1.3: Ioboh.

The polarization given by the equation of motion derived in Section 1.3.3 refers to the comoving rest frame of the Λ^0 (also known as the *canonical frame*), related to the S_L frame by a Lorent boost. By contrast, equation (1.42) for the angular distribution is computed with the solid angle Ω' in the particle helicity frame $S_{\Lambda L}$. Canonical and helicity frames are related by a rotation angle, meaning that $\vec{s_0}$ is not fixed to be perpendicular to \vec{B} , as assumed in the resolution of the system (1.31). This effect arises in the case of Λ^0 not directed along the S_L z axis and is expected to be negligible for the purposes of this thesis.

More significant is the Wick rotation, owing to the orientation discrepancy between S_{Λ} frame (where the Λ^0 has the maximal longitudinal polarization) and $S_{\Lambda L}$ (where the angular distribution of Λ^0 decay products is measured).

This phenomenon introduces a dilution effect to the precession measurement: a Λ^0 with polarization $\vec{s_0} = s_0 \hat{z}_{\Lambda}$ in the S_{Λ} frame gains in the $S_{\Lambda L}$ frame a transverse component of magnitude $s_0 \sin \alpha$, where [28]

$$\sin \alpha = \frac{m_{\Lambda}}{m_H} \frac{\left| \vec{p}_H^{(L)} \right|}{\left| \vec{p}_{\Lambda}^{(L)} \right|} \tag{1.44}$$

and θ is the Λ^0 helicity angle, i.e. the angle formed by the Λ^0 momentum in S_H with respect to the frame z_H axis.

[Rotazione di Wick]

1.4.4 Closing remarks

The LHCb tracking dipole magnet provides an integrated field $D_y \approx \pm 4 \,\mathrm{T}\,\mathrm{m}$ [29], allowing for a maximum precession angle of $\Phi_{\mathrm{max}} \approx \pm \frac{\pi}{4}$ for Λ^0 baryons traversing the entire region and reaching about 70% of the maximum s_y component in equation (1.39). With the 8 fb⁻¹...

Chapter 2

The LHCb experiment

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC for short) is the largest and most powerful particle collider in the world.

2.2 LHCb

LHCb (the b stands for $beauty^1$) is one of the four main experiments at the LHC.

¹Before settling on the names *top* and *bottom* for the third generation of quarks, the names *truth* and *beauty* were among those proposed. While they never gained enough momentum in the scientific community, echoes of the failed nomenclature are still present in heavy quark vocabulary, for instance in the alternative name *truth* for the *topness* flavour number mentioned in Section 1.1.2, as well as in the official name for the LHCb experiment.

Chapter 3

Λ_b^0 and Λ^0 decay vertex reconstruction

3.1 Vertex reconstruction algorithms at LHCb

3.1.1 Vertex Fitter algorithm

The Vertex Fitter (VF), implemented as part of the LoKi analysis toolkit, is the main vertexing algorithm used for the reconstruction of the Λ_h^0 decay.

Under VF formalism, each daughter particle is represented by a 7-dimensional vector

$$\vec{p} = \begin{pmatrix} \vec{x} \\ \vec{q} \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ p_x \\ p_y \\ p_z \\ E \end{pmatrix}, \tag{3.1}$$

combining the position \vec{x} of the estimated origin vertex of the track (known as reference point) with the 4-momentum \vec{q} of the track constrained to originate in \vec{x} . At the end of the fitting process, \vec{x} will coincide with the common vertex chosen for all daughter particles. Parameter vector (3.1) has an associated covariance matrix V, which can be written in block structure as

$$\begin{pmatrix} V_x & V_{xp} \\ V_{xp}^T & V_p \end{pmatrix}. \tag{3.2}$$

It is also convenient to identify its formal inverse matrix $G := V^{-1}$, which has

an analogous block form:

$$\begin{pmatrix} G_x & G_{xp} \\ G_{xp}^T & G_p \end{pmatrix} = \begin{pmatrix} V_x & V_{xp} \\ V_{xp}^T & V_p \end{pmatrix}^{-1}$$
(3.3)

The Vertex Fitter builds the decay tree from the bottom-up via a «leaf-by-leaf» approach, fitting one vertex at a time (e.g. $J/\psi \to \mu^+\mu^-$, $\Lambda^0 \to p\pi^-$) and then moving upwards (e.g. $\Lambda_b^0 \to J/\psi\Lambda^0$). This process is blind to the downstream leaves and only considers kinematic information of the immediate daughter particles, without accounting for momenta and mass constraints.

Step

The VF algorithm proceeds by steps, with each step k coinciding with the addition of the k-th daughter particle.

$$C_k^{-1} = C_{k-1}^{-1} + A_k^T G_k^B A_k (3.4)$$

$$E_k = -F_k C_k \tag{3.5}$$

$$D_k = W_k - E_k F_k^T (3.6)$$

$$W_k = \left(B_k^T G_k B_k\right)^{-1} \tag{3.7}$$

$$G_k^B = G_k - G_k B_k W_k B_k^T G_k (3.8)$$

$$F_k = W_k B_k^T G_k A_k (3.9)$$

$$\vec{x}_k = C_k \left[C_{k-1}^{-1} \vec{x}_{k-1} + A_k^T G_k^B \left(\vec{p}_k - c_k^0 \right) \right]$$
(3.10)

$$\vec{q}_k = W_k B_k^T G_k \left[\vec{p}_k - c_k^0 - A_k \vec{x}_k \right] \tag{3.11}$$

$$\chi_k^2 = \chi_{k-1}^2
+ \left[\vec{p} - c_k^0 - A_k \vec{x}_k - B_k \vec{q}_k \right]^T G_k \left[\vec{p} - c_k^0 - A_k \vec{x}_k - B_k \vec{q}_k \right]
+ \left[\vec{x}_k - \vec{x}_{k-1} \right] C_{k-1}^{-1} \left[\vec{x}_k - \vec{x}_{k-1} \right]$$
(3.12)

$$\vec{x}_k^n = \vec{x}_n \tag{3.13}$$

$$\vec{q}_k^n = W_k B_k^T G_k [\vec{p}_k - A_k \vec{x}_n] \tag{3.14}$$

$$C_k^n = C_n \tag{3.15}$$

$$D_k^n = W_k - E_k^n F_k^T (3.16)$$

$$E_k^n = -F_k C_n (3.17)$$

$$\operatorname{corr}\left(\vec{q}_{k}^{n}, \vec{q}_{l}^{n}\right) = F_{k} C_{n} F_{l}^{T} \tag{3.18}$$

$$A_k = A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad B_k = B = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{3.19}$$

$$G_k = \begin{pmatrix} G_x & G_{xp} \\ G_{xp}^T & G_p \end{pmatrix} \tag{3.20}$$

$$W_k = G_p^{-1} (3.21)$$

$$G_k^B = \begin{pmatrix} G_x - G_{xp}G_p^{-1}G_{xp}^T & 0\\ 0 & 0 \end{pmatrix}$$
 (3.22)

$$F_k = G_p^{-1} G_{xp}^T (3.23)$$

$$C_k^{-1} = C_{k-1}^{-1} + \left[G_x - G_{xp} G_p^{-1} G_{xp}^T \right]$$
 (3.24)

$$E_k = -G_p^{-1} G_{xp}^T C_k (3.25)$$

$$D_k = G_p^{-1} + G_p^{-1} G_{xp}^T C_k G_{xp} G_p^{-1}$$
(3.26)

$$\vec{x}_k = C_k \left[C_{k-1}^{-1} \vec{x}_{k-1} + \left(G_x - G_{xp} G_p^{-1} G_{xp}^T \quad 0 \right) \left(\vec{p}_k - c_k^0 \right) \right]$$
(3.27)

$$\vec{q}_k = (G_p^{-1} G_{xp}^T \quad 0) [\vec{p}_k - c_k^0 - A \vec{x}_k]$$
 (3.28)

$$\begin{pmatrix} G_x & G_{xp} \\ G_{xp}^T & G_p \end{pmatrix} = \begin{pmatrix} V_x & V_{xp} \\ V_{xp}^T & V_p \end{pmatrix}^{-1}$$
(3.29)

$$G_x - G_{xp}G_p^{-1}G_{xp} = V_x^{-1} (3.30a)$$

$$G_p^{-1} = V_p - V_{xp}^T V_x^{-1} V_{xp} (3.30b)$$

$$G_p^{-1} = V_p - V_{xp}^T V_x^{-1} V_{xp}$$

$$G_p^{-1} G_{xp}^T = -V_{xp}^T V_x^{-1}$$
(3.30b)
$$(3.30c)$$

When all particles have been added, i.e. all steps have been performed, the algorithm concludes an *iteration*. The process is then repeated until either a convergence condition is satisfied (see later) or the fit reaches the set number of allowed iterations, 10 by default.

Seeding

As one can observe, the procedure described above requires, at each step, both a previous estimated vertex position \vec{x}_{k-1} and an associated inverse covariance matrix C_{k-1}^{-1} . In particular, step k=1 demands the existence of \vec{x}_0 and C_0^{-1} .

For iterations i > 1, such roles are handily filled by the final vertex computed during the previous iteration. For the purpose of providing the first step of the first iteration with these values, at the beginning the algorithm tries to extract a vertex seed, a first estimate of the decay vertex position, through a dedicated procedure depending on decay topology and properties of particles involved.

In the case of interest of the $\Lambda^0 \to p\pi^-$ two-body decay, said procedure is a simplified step of the Kalman filter:

$$C_0^{-1} = V_{x_1}^{-1} + V_{x_2}^{-1} (3.31a)$$

$$\vec{x}_0 = C_0 \left(V_{x_1}^{-1} \vec{x}_1 + V_{x_2}^{-1} \vec{x}_2 \right) \tag{3.31b}$$

Subscripts 1 and 2 as used above refer to the two daughter particles in the decay (i.e. proton and pion).

Termination and smoothing

3.1.2Decay Tree Fitter algorithm

[[@todo: Qui io darei una descrizione generale + FixJPsi + Lambda + reference, non serve per la discussione. Però ci starebbe un bel test in cui confronti la distribuzione dei vertici VF e DTF per mostrare che sono uguali (lo sono, vero??). Devi estrarli via Kinematic, immagino, perché nel rootfile non ci sono.]]

3.2 Reconstruction efficiency of the Λ_b^0 and Λ^0 decays

To compute the vertex reconstruction efficiency for the Λ_b^0 decay chain, it is useful to conceptualize our event selection as a five step process:

- 1. reconstruction of associated tracks for all charged daughter particles;
- 2. reconstruction of the three decay vertices $(\Lambda^0, J/\psi \text{ and } \Lambda_b^0)$;
- 3. preliminary selections based on kinematic variables to filter out most background (see Section 4.1);
- 4. Decay Tree Fitter refit with appropriate mass constraints for the analysis at hand (usually J/ψ and Λ^0);
- 5. further selections applied to events passing all previous steps. Detailed in Chapter 4, these include a physical background veto and signal selection via a trained non-linear classifier.

For the purposes of this section, we are interested in the first two steps (track and vertex reconstruction).

Efficiencies are computed with respect to reconstructible particles, a flag attributed during the simulation process based on the number of hits (charged clusters with defined positions) in specific modules of the LHCb detector. A track is said to be reconstructible as VELO track with hits in ≥ 3 VELO modules, while it's reconstructible as T track with ≥ 1 hits in both the x and stereo layers of each T station. If these conditions are satisfied simultaneously, the track qualifies for reconstructibility as Long track [30].

At Monte Carlo level, a track is deemed to be reconstructed if it can be successfully matched to at least one MC particle; for T and Long tracks, this is true if at least 70% of the hits from the respective relevant detectors for reconstructibility are shared between reconstructed and true track. For Λ_b^0 events with a true $z_{\text{vtx}}^{\Lambda} \in [6.0\,\text{m}, 7.6\,\text{m}]$, this results in a track reconstruction efficiency in the 60% to 80% range.

When considering how many of these reconstructed charged particles pass the vertex reconstruction (vertexing) process, the computed efficiency is much lower. Figure 3.1 plots the resulting Λ_b^0 vertexing efficiency through the whole true z_{vtx}^{Λ} spectrum, showing that said efficiency never manages to get past the 50% threshold. This means that over half of our candidate signal events is lost during the second step of the five step selection process.

Figure 3.1: Reconstruction efficiency of simulated $\Lambda_b^0 \to J/\psi \ (\to \mu^+\mu^-) \ \Lambda^0 \ (\to p\pi^-)$ events as function of the z component of the true Λ^0 decay vertex. Assuming a $\approx 100\%$ reconstruction rate for the J/ψ decay, the low efficiency is attributed to failure in reconstructing Λ^0 and Λ_b^0 decay vertices.

While available information does not distinguish between the three individual vertexing phases $(J/\psi, \Lambda^0 \text{ and } \Lambda_b^0)$, we can make some reasonable assumptions. Being Long tracks, muons and antimuons have well reconstructed momentum with constraints across the LHCb detector; for this reason their influence on the vertexing efficiency dip is considered negligible. Furthermore, the rare usage of T tracks for physics analysis in LHCb suggests that problems are likelier to arise in the $\Lambda^0 \to p\pi^-$ vertexing and then cascade into the $\Lambda_b^0 \to J/\psi \Lambda^0$ reconstruction.

For the above reasons, in the following sections I'll focus on the Λ^0 decay to search for issues and solutions, with the goal of improving our signal statistic.

3.3 Characterization of non-converged events

Qui devi dire: protone momento basso in z, interpolateOnlyLongTracks, ...

3.4 Uncertainty-based algorithms for the recovery of non-converged events

Chapter 4

Signal event selection

- 4.1 Prefiltering
- 4.2 HBDT classifier
- 4.2.1 Training data
- 4.2.2 Hyperparameter optimization and performance test
- 4.2.3 Threshold optimization
- 4.3 Physical background veto

Appendix A

Angular distribution of $\Lambda^0 \to p\pi^-$ decay products

A.1 Helicity formalism

[Il Richman.]

A.2 Computation of the angular distribution

Bibliography

- [1] I. J. R. Aitchinson and A. J.G. Hey. Gauge Theories in Particle Physics: A Practical Introduction. Volume 1: From Relativistic Quantum Mechanics to QED. CRC Press, 2013.
- [2] J. Erler and M. Schott. Electroweak precision tests of the Standard Model after the discovery of the Higgs boson. *Progress in Particle and Nuclear Physics*, 106:68–119, May 2019.
- [3] P. A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.
- [4] A. B. McDonald. Sudbury Neutrino Observatory results. *Physica Scripta*, T121:29–32, Jan 2005.
- [5] S.-K. Choi et al. (Belle Collaboration). Observation of a narrow charmonium-like state in exclusive $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}J/\psi$ decays. *Physical Review Letters*, 91(26), Dec 2003.
- [6] T. Nakano et al. (LEPS Collaboration). Evidence for a narrow S=+1 baryon resonance in photoproduction from the neutron. *Phys. Rev. Lett.*, 91:012002, Jul 2003.
- [7] P. W. Higgs. Broken symmetries and the masses of gauge bosons. *Phys. Rev. Lett.*, 13:508–509, Oct 1964.
- [8] G. Aad et al. (ATLAS Collaboration). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. *Physics Letters B*, 716(1):1–29, Sep 2012.
- [9] S. Chatrchyan et al. (CMS Collaboration). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. *Physics Letters B*, 716(1):30–61, Sep 2012.
- [10] J. Zupan. Introduction to flavour physics. arXiv e-prints, 2019.

32 BIBLIOGRAPHY

[11] M. S. Sozzi. Discrete symmetries and CP violation: from experiment to theory. Oxford University Press, 2013.

- [12] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson. Experimental test of parity conservation in beta decay. *Phys. Rev.*, 105:1413–1415, Feb 1957.
- [13] R. L. Garwin, L. M. Lederman, and M. Weinrich. Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. *Phys. Rev.*, 105:1415–1417, Feb 1957.
- [14] I. B. Khriplovich and S. K. Lamoreaux. *CP Violation Without Strangeness. Electric Dipole Moments of Particles, Atoms, and Molecules.* Springer, 1997.
- [15] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay. Evidence for the 2π decay of the K_2^0 meson. *Phys. Rev. Lett.*, 13:138–140, Jul 1964.
- [16] A. Alavi-Harati et al. (KTeV Collaboration). Observation of direct CP violation in $K_{S,L} \to \pi\pi$ decays. Physical Review Letters, 83(1):22–27, Jul 1999.
- [17] B. Aubert et al. (BaBar Collaboration). Measurement of CP-violating asymmetries in B^0 decays to CP eigenstates. *Physical Review Letters*, 86(12):2515-2522, Mar 2001.
- [18] K. Abe et al. (Belle Collaboration). Observation of large CP violation in the neutral B meson system. Physical Review Letters, 87(9), Aug 2001.
- [19] L. Canetti, M. Drewes, and M. Shaposhnikov. Matter and antimatter in the Universe. *New Journal of Physics*, 14(9):095012, Sep 2012.
- [20] G. Steigman. Primordial nucleosynthesis in the precision cosmology era. *Annual Review of Nuclear and Particle Science*, 57(1):463–491, Nov 2007.
- [21] Henry, L. and Marangotto, D. and Merli, A. and Neri, N. and Ruiz, J. and Martinez Vidal, F. Search for new physics via baryon EDM at LHC. 2020.
- [22] M. E. Pospelov and I. B. Khriplovich. Electric dipole moment of the W boson and the electron in the Kobayashi-Maskawa model. Sov. J. Nucl. Phys., 53:638-640, 1991.

BIBLIOGRAPHY 33

[23] I. B. Khriplovich. Quark electric dipole moment and induced θ term in the Kobayashi-Maskawa model. *Phys. Lett. B*, 173:193–196, 1986.

- [24] I. B. Khriplovich and A. R. Zhitnitsky. What is the value of the neutron electric dipole moment in the Kobayashi-Maskawa model? *Phys. Lett. B*, 109:490–492, 1982.
- [25] F. J. Botella, L. M. Garcia Martin, D. Marangotto, F. Martinez Vidal, A. Merli, N. Neri, A. Oyanguren, and J. Ruiz Vidal. On the search for the electric dipole moment of strange and charm baryons at LHC. *The European Physical Journal C*, 77(3), Mar 2017.
- [26] J. M. Pendlebury et al. Revised experimental upper limit on the electric dipole moment of the neutron. *Phys. Rev. D*, 92:092003, Nov 2015.
- [27] G. Aad et al. (ATLAS Collaboration). Measurement of the parity-violating asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda_b^0 \to J/\psi \Lambda^0$ with the ATLAS detector. *Phys. Rev. D*, 89:092009, May 2014.
- [28] E. Leader. Spin in Particle Physics. Cambridge University Press, 2001.
- [29] R. Aaij et al. (LHCb Collaboration). LHCb detector performance. *International Journal of Modern Physics A*, 30(07):1530022, Mar 2015.
- [30] P. Li, E. Rodrigues, and S. Stahl. Tracking definitions and conventions for Run 3 and beyond. Technical report, CERN, Geneva, Feb 2021.