ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук
Магистерская программа
«Исследования и предпринимательство
в искусственном интеллекте»

УТВЕРЖДАЮ							
Академический руководитель образовательной программы «Исследования и предпринимательство в искусственном интеллекте»							
Д. С. Лялин «»2025 г.							
ая работа ектная) й текстовой стратегической игры на ных языковых моделей							
Ірикладная математика и информатика»							
ВЫПОЛНИЛ							
студент группы ИПИИ образовательной программы							

Реферат

Работа посвящена разработке мультиагентной текстовой стратегической игры на основе оркестрируемых языковых моделей и исследованию применимости современных LLM в качестве автоматизированного мастера игры в жанре военно-политических игр (ВПИ).

В работе рассмотрен полный цикл создания подобной системы, включая проектирование архитектуры мультиагентной среды, оркестрацию языковых моделей для выполнения различных игровых функций, а также анализ результатов пилотного запуска с реальными пользователями. Особое внимание уделяется методам преодоления типичных проблем языковых моделей в контексте игрового процесса: галлюцинации, сохранение долгосрочного контекста и вычислительные ограничения.

Результаты исследования демонстрируют потенциал современных LLM для автоматизации роли вердера в текстовых стратегических играх, выявляют ключевые технические и игровые ограничения существующих подходов, а также предлагают набор технических решений для повышения качества игрового опыта, включая применение систем на основе RAG и локальных моделей для снижения стоимости эксплуатации игровой системы.

Данная работа состоит из 15 страниц, 5 глав, 5 листингов, 1 таблицы, 2 приложений. Использовано 9 источников.

Ключевые слова: мультиагентная система; языковые модели; оркестрация LLM; текстовые стратегические игры; искусственный интеллект в играх; RAG; автоматизация игрового мастера.

Abstract

This paper is dedicated to developing a multi-agent text-based strategy game using orchestrated large language models, and investigating the applicability of modern LLMs as automated game masters in the military-political games (WPG) genre.

The work covers the complete cycle of creating such a system, including designing the architecture of a multi-agent environment, orchestrating language models to perform various game functions, and analyzing the results of a pilot launch with real users. Special attention is paid to methods for overcoming typical language model problems in the gaming context: hallucinations, maintaining long-term context, and computational limitations.

The research results demonstrate the potential of modern LLMs for automating the role of game arbiter in text-based strategy games, identify key technical and gameplay limitations of existing approaches, and propose a set of technical solutions to enhance gaming experience, including the application of RAG-based systems and local models to reduce the operational costs of the game system.

The paper contains 15 pages, 5 chapters, 5 listings, 1 table, 2 appendices. 9 sources are used.

Keywords: multi-agent system; large language models; LLM orchestration; text-based strategy games; artificial intelligence in games; RAG; automated game mastering.

Содержание

Рефер	ат					•	 •	•		 •	 •	•		•		2
Abstra	act											•				3
Испол	ьзуемі	ые опре,	деления	я и теј	рминь	I					 •			•		5
Введе	ние .															7
Глава	1 Обз	ор лите	ратуры													8
1.1	Какая	н-то подг	лава													8
	1.1.1	Какая-т	го подпо	дглава												8
		1.1.1.1	Какой-	-то пар	аграф											8
		1.1.1.2	Какой-	-то пар	аграф											8
		1.1.1.3	Какой-	-то пар	аграф											8
		1.1.1.4	Какой-	-то пар	аграф											8
	1.1.2	Какая-т	го подпо	дглава												8
		1.1.2.1	Какой-	-то пар	аграф											8
		1.1.2.2	Какой-	-то пар	аграф											8
		1.1.2.3	Какой-	-то пар	аграф											8
		1.1.2.4	Какой-	-то пар	аграф											9
Выя	воды по	главе .														9
Глава	2 Mer	годологи	ія иссл	едован	кин									•		10
Глава	3 Пер	вичный	протоп	гип си	стемы	. 1				 •		•				11
Глава	4 Фин	альная	версия	систе	мы						 •			•		12
Глава	5 Обс	уждени	е резул	ьтатон	3								 •			13
Заклю	эчение															14
Списо	к испо	льзован	иных ис	точни	ков .						 •			•		15
Прило	жение	e A														16
Прилс	жение	. Б														19

Используемые определения и термины

RAG (Retrieval-Augmented Generation) – метод улучшения генерации текста языковыми моделями путем предварительного извлечения релевантной информации из внешних источников.

Большая языковая модель (Large Language Model, LLM) – языковая модель значительного размера, способная генерировать когерентный текст и выполнять различные языковые задачи.

Верд (вердикт) – текстовое описание результатов выполнения приказов игроков, составляемое вердером.

Виртуальное государство – поджанр ВПИ, концентрирующийся на отыгрыше политики в рамках одного государства с детализацией механик принятия государственных решений.

Военно-политические игры (ВПИ, Military-Political Games, WPG) — жанр текстовых стратегических игр, в которых игроки управляют государствами, политическими фракциями или организациями, взаимодействуя посредством письменных приказов и получая ответные вердикты от мастера игры.

Галлюцинации LLM – явление, при котором языковая модель генерирует фактически неверную информацию, представляя её как достоверную.

Калькулятор – принцип организации игровой механики, при котором взаимодействие с миром осуществляется через численные переменные и формулы, обеспечивающие определенный уровень автоматизации.

Классическая ВПИ – проект, где в рамках игровой механики предусмотрен отыгрыш правителя государства с возможностью действий во всех сферах государственной политики.

Командно-штабная игра (КШИ) – разновидность ВПИ с акцентом на военной составляющей, где игроки делятся на команды, отыгрывающие офицерский состав заранее определенных армий.

Мультиагентная система – система, состоящая из нескольких взаимодействующих интеллектуальных агентов, каждый из которых выполняет определенную функцию.

Оркестрация языковых моделей – процесс координации нескольких языковых моделей или компонентов для последовательного выполнения сложных задач.

Приказ – сформулированная в текстовой форме воля игрока, использующая находящиеся под контролем игрока силы для преобразования внешнего мира в рамках установленных игрой правил.

Рестарт – перезапуск проекта и смена игровой сессии.

Ролеплей (РП) – принцип организации игровой механики, при котором взаимодействие с игровой реальностью осуществляется через прямое текстовое взаимодействие игрока и судьи.

Сессия – игровой процесс, проходящий в рамках одной «игровой реальности», непрерывный процесс отыгрыша в определённой вселенной без удаления игроков и обнуления прогресса.

Сеттинг – совокупность особенностей среды, в рамках которой протекает игра, включая историю мира, технологический уровень, географию и культурные особенности.

Судья (вердер) — человек, наделенный полномочиями определять реакцию внешнего мира на действия игрока и описывать в текстовом формате итоги приказов, аналог гейм-мастера.

Языковая модель (Language Model, LM) – алгоритмическая система, обученная предсказывать и генерировать текст на естественном языке.

Введение

Современные достижения в области искусственного интеллекта и, в частности, больших языковых моделей (LLM) открывают новые перспективы для традиционных интерактивных развлечений [1; 2]. Одной из областей, где применение искусственного интеллекта имеет значительный потенциал, являются текстовые стратегические игры, такие как военно-политические игры (ВПИ) — жанр, сочетающий элементы стратегии, ролевой игры и коллективного сторителлинга [3].

ВПИ представляют собой текстовые игры, в которых игроки управляют сложными структурами (государствами, военными силами, политическими организациями) путем написания приказов, а судья (или вердер) оценивает эти приказы и формирует вердикты — текстовые описания результатов действий [4]. Этот процесс требует от судьи глубокого понимания игрового мира, механик, а также способности генерировать связные и логичные повествования, что делает эту роль одной из самых трудоемких в организации игры. Кроме того, традиционно судья ограничен в скорости обработки приказов, что создает естественный «потолок» для темпа игры и количества участников.

Большие языковые модели, такие как GPT-4, демонстрируют впечатляющие способности к пониманию контекста, следованию инструкциям и генерации связных текстов [5]. Эти характеристики потенциально позволяют им выполнять роль судьи в ВПИ, автоматизируя процесс создания вердиктов и значительно ускоряя игровой процесс. Однако использование LLM в таком качестве сопряжено с рядом технических и методологических вызовов, включая проблему галлюцинаций, ограничения контекстного окна и сложности в поддержании долговременной согласованности [6; 7].

В данной работе представлена разработка мультиагентной текстовой стратегической игры на основе оркестрируемых языковых моделей — системы, использующей несколько специализированных LLM-агентов для выполнения различных функций судьи в ВПИ. Исследование включает как теоретическое обоснование подхода, так и практическую реализацию в виде работающего прототипа, протестированного реальными игроками. Особое внимание уделяется механизмам обеспечения целостности игрового мира, преодоления ограничений LLM и создания интуитивно понятного пользовательского опыта.

Работа основывается на междисциплинарном подходе, объединяющем методы искусственного интеллекта, игрового дизайна и нарративных исследований [8; 9]. Представленная система не только демонстрирует практическое применение современных LLM в новой предметной области, но и открывает перспективы для создания более масштабных и динамичных текстовых игр, доступных широкой аудитории.

Глава 1. Обзор литературы

Текст главы 1

1.1. Какая-то подглава

Текст подглавы

1.1.1. Какая-то подподглава

Текст подподглавы

1.1.1.1. Какой-то параграф

Текст параграфа

1.1.1.2. Какой-то параграф

Текст параграфа

1.1.1.3. Какой-то параграф

Текст параграфа

1.1.1.4. Какой-то параграф

Текст параграфа

1.1.2. Какая-то подподглава

Текст подподглавы

1.1.2.1. Какой-то параграф

Текст параграфа

1.1.2.2. Какой-то параграф

Текст параграфа

1.1.2.3. Какой-то параграф

Текст параграфа

1.1.2.4. Какой-то параграф

Текст параграфа

Выводы по главе

Текст Текст Текст Текст Текст Текст

Глава 2. Методология исследования

Текст главы 2

Глава 3. Первичный прототип системы

Глава 4. Финальная версия системы

Глава 5. Обсуждение результатов

Заключение

Текст заключения

Список использованных источников

- 1. Language Models are Few-Shot Learners / T. B. Brown [и др.] // Advances in Neural Information Processing Systems. 2020. Т. 33. С. 1877—1901.
- 2. Training language models to follow instructions with human feedback / L. Ouyang $[\mu \ дp.]$ // Advances in Neural Information Processing Systems. 2022. T. 35. C. 27730—27744.
- 3. Каталог ВПИ [Электронный ресурс] : Сообщество военно-политических игр. URL: https://vk.com/catalogwpg (дата обр. 15.10.2023).
- 4. Что такое военно-политические игры (ВПИ)? [Электронный ресурс] : Введение в жанр текстовых стратегических игр. URL: https://dtf.ru/id417564/853668-chto-takoe-voenno-politicheskie-igry-vpi (дата обр. 04.05.2025).
- 5. OpenAI. GPT-4 Technical Report : тех. отч. / OpenAI. 2023.
- 6. Sparks of Artificial General Intelligence: Early experiments with GPT-4 / S. Bubeck $[\mu \text{ gp.}]$ // arXiv preprint arXiv:2303.12712. 2023.
- 7. Liu S., Ogren P., Peng N. Evaluating the Factual Consistency of Large Language Models Through News Summarization // Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. 2023. C. 10574—10587.
- 8. Wordcraft: Story Writing With Large Language Models / A. Yuan [и др.] // 27th International Conference on Intelligent User Interfaces. ACM. 2022. C. 841—852.
- 9. Generative Agents: Interactive Simulacra of Human Behavior / J. S. Park [μ μ] // Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology. 2023.

Пример приложения

Пример приложения. Какой-то текст. Какой-то текст.

Ссылка на приложение Б.

Тут ссылка на листинг 1.

А тут ссылка на листинг 3.

```
ODeprecated("Reason")
fun findScriptDefinition(project: Project, script: SourceCode): ScriptDefinition?
    {
    val scriptDefinitionProvider = ScriptDefinitionProvider.getInstance(project) ?:
        return null
    ?: throw IllegalStateException("Unable to get script definition: ...")
    return scriptDefinitionProvider.findDefinition(script) ?:
        scriptDefinitionProvider.getDefaultDefinition() // Comment
}
```

Листинг $1 - \Pi$ ример какого-то кода на Kotlin

```
class Main {
 2
     public static ScriptDefinition findScriptDefinition(Project project, SourceCode
         script) {
 3
       ScriptDefinitionProvider scriptDefinitionProvider = ScriptDefinitionProvider.
           getInstance(project);
       if (scriptDefinitionProvider == null) {
 4
 5
         if (null == null) {
 6
           throw IllegalStateException("Unable to get script definition: ...");
 7
         } else {
 8
           return null;
 9
         }
10
11
12
       ScriptDefinition definition = scriptDefinitionProvider.findDefinition(script);
13
       if (definition == null) {
14
         return scriptDefinitionProvider.getDefaultDefinition(); // Comment
15
       } else {
16
         return definition;
17
       }
18
19|| }
```

Листинг 2 — Пример какого-то кода на Java

```
13
   aload_2
   dup
14
   ifnonnull
15
   new
18
                #17 // NullPointerException
21
   dup
22
                #19 // String null cannot be cast to non-null String
24
   invokespecial #23 // NullPointerException."<init>"(String)
27
   athrow
   aload_2
46
47
   dup
48
   ifnonnull
51
                #17 // NullPointerException
54
   dup
55
   ldc
                #19 // String null cannot be cast to non-null String
   invokespecial #23 // NullPointerException."<init>"(String)
57
60 athrow
```

Листинг 3 — Пример JVM-байткода

```
13: aload_2
14: dup
15: ifnonnull
18: new
                #17 // NullPointerException
21: dup
                #19 // String null cannot be cast to non-null String
24: invokespecial #23 // NullPointerException."<init>"(String)
27: athrow
46: aload_2
47: dup
48: ifnonnull
                61
51: new
                #17 // NullPointerException
54: dup
55: 1dc
                #19 // String null cannot be cast to non-null String
57: invokespecial #23 // NullPointerException."<init>"(String)
60: athrow
. . .
```

Листинг 4 — Пример JVM-байткода 2

А тут ссылка на таблицу 1.

Таблица 1 — Пример таблицы

Col1	Col2	Col2	Col3
1	6	87837	787
2	7	78	5415
3	545	778	7507
4	545	18744	7560
5	88	788	6344

```
\verb"procedure RUN" (packages, hashes")
 2
         queue[svace.parallel\_max]
 3
         \texttt{for } item \in zip(packages, hashes)
 4
             ps = create(item) \\
 5
             if !queue.full()
 6
                  queue.put(ps)
             else
 8
                  first = queue.get()
 9
                  first.wait()
10
              end if
         end for
12 end procedure
```

Листинг 5 — Привер псевдокода на алгоритмическом языке

приложение Б

Ещё один пример приложения

Пример приложения