Table 1
The analogy and comparison between heat and electric conductions.

Physical quantities, transport laws and equations	Electric conduction	Heat conduction
Transferred non- dissipative quantity	Electric charge, Qe	Heat, Q _h
Potential	Electric potential (voltage), V	Thermal potential (temperature), T
Resistance	Electric resistance, Re	Thermal resistance, R
Flow	Electric current, i	Heat flow, q
Conduction coefficient	Electric conductivity, σ	Thermal conductivity, k
Capacity	Electric capacity, ce	Heat capacity, ch
Transferred dissipative quantity	Electric potential energy, $E_e = \frac{1}{2}Q_eV$	Entransy, $G = \frac{1}{2}Q_hT$
Transport law	Ohm's law, $i = -\sigma \nabla V$	Fourier's law, $q = -k\nabla T$
One-dimensional transport equation	$\dot{Q}_e = \frac{\Delta V}{R_e}$	$\dot{Q}_{\rm h} = \frac{\Delta T}{R_{\rm h}}$