Jackie Diep CSC 413 Algorithms Assignment #4 4/11/2021

-Chapter 15

1. [10 pts] Page 396:15.4-1

2. [20 pts] Dynamic Programming: Determine a Longest Common Subsequence (LCS) for the following two strings using dynamic programming approach. You need to illustrate the step-by-step procedure based on a table.

'ncaa tournament' and 'north carolina'

```
 \begin{split} &\text{if (i == 0 \&\& j == 0)} \\ &\{ & LCS[i][j] = 0; \\ &\text{else if(x[i] == y[j])} \\ &\{ & LCS[i][j] = 1 + LCS[i-1][j-1]; \\ &\text{else} \\ &\{ & LCS[i][j] = max(LCS[i-1][j]I, LCS[i][j-1]; \\ &\} \end{split}
```


-Chapter 23

1. [25 pts] Finding the Minimum Spanning Trees (MST) of following graphs.

(a) Prim's algorithm

(b) Kruskal's algorithm

(c) Compare and comment on your results obtained in (a) and (b)

Both algorithms provide the same Minimum Spanning Trees. Differences could come from selecting a different option between $b \to d$ or $a \to c$ as both have the same cost, but that is not due to the algorithms.

-Chapter 22

1. P592-593: 22.1-2 (10 pts): Give an adjacency-list representation for a complete binary tree on 7 vertices. Give an equivalent adjacency-matrix representation. Assume that vertices are numbered

from 1 to 7 as in a binary heap.

0	1	2	3	4	5	6	7
1	0	1	1	0	0	0	0
2	0	0	0	1	1	0	0
3	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0

2. P601-602: 22.2-1 (10 pts): Show the d and π values that result from running breadth-first search on the directed graph of Figure 22.2(a), using vertex 3 as the source.

	22.2-1						
Start:	9 5 65						
	JINIC QUELLE-3						
	5 3 Queue=5,6 6 3						
	4 5 2 Queue=6,4						
	Premove 6 from queue as it loops to a visited node (itself)						
	2 4 3 Queue = 2						
FINAL	hemove 2 from queue as it returns to a visited node (5) I remains undefined as there is no path to it						
	Vertex of d						
	3 NIL 0						
	4 5 2 5 3 1						
	6 3 1						