DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

Svako distribuiranje celog ili delova ovih slajdova ZABRANJENO je i predstavlja povredu autorskog prava.

- Ojlerov graf
- Hamiltonov graf
- Oovoljni uslovi
- Potrebni uslovi

Tema 1

Ojlerov graf

Ojlerov graf

Definicija

Ojlerova tura u multigrafu G (bez petlji) je zatvorena staza oblika

$$(v_0, e_1, v_1, \dots, v_{m-1}, e_m, v_0)$$

koja sadrži sve čvorove i sve grane, pri čemu se svaka grana grafa pojavljuje tačno jedanput.

Za graf koji poseduje Ojlerovu turu kažemo da je Ojlerov.

Teorema

$\operatorname{Graf} G = (V, E)$ je Ojlerov akko je povezan i svaki čvor je parnog stepena.

 (\Rightarrow) Ako je G Ojlerov, onda je on i povezan, zato što se svaka dva čvora pojavljuju u Ojlerovoj turi. Neka je

$$(v_0, e_1, v_1, e_2, \dots, e_{m-1}, v_{m-1}, e_m, v_0)$$
 $i \neq j \Rightarrow e_i \neq e_j$

Ojlerova tura grafa G.

Za proizvoljan čvor v koji e pojavljuje l puta u turi važi

$$d(v) = 2l.$$

Potreban i dovoljan uslov

Teorema

 $\operatorname{Graf} G = (V, E)$ je Ojlerov akko je povezan i svaki čvor je parnog stepena.

(⇐) Posmatrajmo u G stazu najveće dužine:

$$u_1e_1u_2e_2\ldots u_ne_nu_{n+1}$$

Pokazaćemo da su prvi i poslednji čvor isti, kao i da se svi čvorovi i grane grafa pojavljuju u toj stazi.

(i) $u_1=u_{n+1}$: Ako pretpostavimo suprotno, da je $u_1\neq u_{n+1}$, onda je u toj konturi neparan broj grana incidentan sa u_1 u toj stazi. Kako je stepen čvora u_1 paran, postoji grana $e\in E(G)$ koja nije sadržana u posmatranoj stazi. U tom slučaju bismo mogli kreirati dužu stazu od posmatrane, što dovodi do kontradikcije.

Potreban i dovoljan uslov

(ii)
$$\{u_1, \ldots, u_n\} = V(G)$$
:

Pretpostavimo suprotno, da postoje čvorovi koji nisu na posmatranoj stazi. Kako je G povezan, postoji grana $\{u_i,v\}, i\in\{1,\ldots,n\}$, sa osobinom $v\not\in\{u_1,\ldots,u_n\}$. U tom slučaju možemo konstruisati stazu veće dužine od posmatrane.

Potreban i dovoljan uslov

(iii)
$$\{e_1, \ldots, e_n\} = E(G)$$
:

Ako pretpostavimo suprotno, da postoji grana koja nije na toj konturi, onda bismo ponovo mogli konstruisati dužu stazu od posmatrane.

Zadatak

- Za koje vrednost n je K_n Ojlerov?
- Za koje vrednosti m, n je $K_{n,m}$ Ojlerov?

Polu Ojlerov graf

Definicija

Ojlerov put u grafu G je staza

$$(v_0, e_1, v_1, \dots, v_{m-1}, e_m, v_m)$$

koja sadrži sve čvorove i sve grane, pri čemu se svaka grana pojavljuje tačno jedanput.

Za graf koji poseduje Ojlerov put, kažemo da je polu Ojlerov.

Teorema

Neka je $G=(V,E),\,|V|\geq 3,\,$ graf koji nije Ojlerov. G je polu Ojlerov akko je povezan i ima tačno dva čvora neparnog stepena.

Tema 2

Hamiltonov graf

Hamiltonova kontura

Definicija

Hamiltonov put u grafu G je put koji sadrži svaki čvor grafa tačno jednom.

Za graf koji sadrži Hamiltonov put kažemo da je polu Hamiltonov graf.

Definicija

Hamiltonova kontura u grafu G je kontura koji prolazi kroz svaki čvor grafa tačno jednom i vraća se u početni čvor.

Za graf koji sadrži Hamiltonovu konturu kažemo da je Hamiltonov graf.

Zadatak

• Da li je K_n Hamiltonov graf?

Neka su čvorovi grafa $V = \{v_1, \dots, v_n\}, n \geq 3$. Jedna Hamiltonova kontura je

$$v_1 \ v_2 \ \dots v_n \ v_1.$$

Primer

Hamiltonov put G_1 : je dacbhkfiejg, Hamiltonova kontura u G_2 . dacbhkfiejg

Tema 3

Dovoljni uslovi

HAMILTONOV GRAF ← DOVOLJNI USLOVI

Lemma

Neka je G prost graf sa $n, n \geq 3$ čvorova u kojem postoje nesusedni čvorovi $u, v \in V(G)$ sa osobinom

$$d_G(u) + d_G(v) \ge n$$

Tada je G Hamiltonov ako i samo ako je $G + \{u, v\}$ Hamiltonov.

 (\Rightarrow)

Ako je G kompletan graf, tvrđenje sledi direktno.

U suprotnom, pretpostavimo da je je $E(K_n) \setminus E(G) = \{e_1, \dots, e_l\}.$

Primetimo da se dodavanjem grana grafu G ne može promeniti uslov da je zbir stepena nesusednih čvorova bar n.

Uzastopnom primenom prethodne leme, u l koraka zaključujemo da G ima Hamiltonovu konturu ako i samo ako kompletan graf K_n ima Hamiltonovu konturu.

 (\Leftarrow) Ako je C Hamiltonova kontura u $G+\{u,v\}$, a nije Hamiltonova kontura u G, onda su u i v susedni čvorovi u toj konturi. Tada postoji Hamiltonov uv-put u G:

$$uu_1 \dots u_{i-1}u_i \dots u_n v.$$

Ako postoji grana uu_i onda ne postoji grana $u_{i-1}v$. Ako bi postojala ta grana, onda bi postojala Hamiltonova kontura u G:

$$uu_1 \dots u_{i-1}vu_n \dots u_i u$$

To znači da svaka grana koja izlazi iz čvora u isključuje jednu granu koja izlazi iz čvora v. U tom slučaju važi sledeće:

$$d_G(v) \le n - 1 - d_G(u) \Leftrightarrow d_G(u) + d_G(v) \le n - 1 \Leftrightarrow d_G(u) + d_G(v) < n$$

što je u kontradikciji sa pretpostavkom.

Teorema (Ore, 1960)

Ako je G prost graf sa $n \geq 3$ čvorova i važi $d_G(u) + d_G(v) \geq n$ za svaki par nesusednih čvorova $u, v \in G$, onda G ima Hamiltonovu konturu.

Ako je *G* kompletan graf, tvrđenje sledi direktno.

U suprotnom, pretpostavimo da je je $E(K_n) \setminus E(G) = \{e_1, \dots, e_l\}.$

Primetimo da se dodavanjem grana grafu G ne može promeniti uslov da je zbir stepena nesusednih čvorova bar n.

Uzastopnom primenom prethodne leme, u l koraka zaključujemo da G ima Hamiltonovu konturu ako i samo ako kompletan graf K_n ima Hamiltonovu konturu.

Primer

Crvenom bojom je označena jedna Hamiltionova kontura grafa.

Teorema (Dirac, 1952)

Ako je G prost graf sa $n, n \geq 3$, čvorova, u kojem je stepen svakog čvora bar $\frac{n}{2}$, onda G ima Hamiltonovu konturu.

Ako je stepen svakog čvora bar $\frac{n}{2}$, onda za svaka dva nesusedna čvora u, v važi

$$d_G(u) + d_G(v) \ge \frac{n}{2} + \frac{n}{2} = n.$$

Odatle je graf Hamiltonov na osnovu tvrđenja Orea.

Zadatak

• Da li je $K_{n,n}$ Hamiltonov graf?

Kompletan bipartitan graf $K_{n,n}$, $n \ge 2$ ima Hamiltonovu konturu, zato što je stepen svakog čvora n, a to je polovina od ukupnog broja od 2n čvorova.

Teorema (Ore)

Ako je G prost graf sa $n \geq 3$ čvorova i važi $d_G(u) + d_G(v) \geq n - 1$ za svaki par nesusednih čvorova $u, v \in G$, onda je G polu Hamiltonov graf.

Teorema (Dirac)

Ako je G prost graf sa $n, n \geq 3$, čvorova, u kojem je stepen svakog čvora bar $\frac{n-1}{2}$, onda je G polu Hamiltonov graf.

Primer

Sledeći primeri se ne ispunjavaju dovoljne uslov Orea ili Diraca!

Tema 4

Potrebni uslovi

HAMILTONOV GRAF | ⇒ POTREBNI USLOVI

Teorema

Ako je G Hamiltonov graf, onda za svaki neprazan podskup čvorova $S \subset V(G)$ važi

$$\omega(G-S) \le |S|.$$

Neka je

$$v_1v_2\ldots v_mv_1$$

Hamiltonova kontura.

Ako je |S| = l onda je $\omega(C - S) \le l$.

Kako je $C \subset G$, to je $C - S \subseteq G - S$ i odatle je $\omega(G - S) \leq \omega(C - S)$.

Znači

$$\omega(G-S) \le \omega(C-S) \le |S|.$$

Zadatak

- Da li je $K_{2,3}$ Hamiltonov?
- Da li je $K_{2,3}$ polu Hamiltonov?

Teorema

Ako je G polu Hamiltonov graf, onda za svaki neprazan podskup čvorova $S\subset V(G)$ važi

$$\omega(G-S) \le |S| + 1.$$

Neka je

$$v_1v_2\dots v_m$$

Hamiltonov put.

Tada je

$$\omega(G - S) \le \omega(C - S) \le |S| + 1.$$