EE230-02 RFIC II Fall 2018

Lecture 18: Phase-Locked Loops 3

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Charge-Pump PLL

- > If one of the integrators becomes lossy, the system can be stabilized.
- \succ This can be accomplished by inserting a resistor in series with C_1 . The resulting circuit is called a "Charge Pump PLL" (CPPLL)

Computation of the Transfer Function

Approximate the pulse sequence by a step of height $(I_pR_1)[\Delta\Phi_0/(2\pi)]$:

$$V_{cont}(t) = \frac{\Delta\phi_0}{2\pi} \frac{I_p}{C_1} t u(t) + \frac{\Delta\phi_0}{2\pi} I_p R_1 u(t)$$

$$\frac{V_{cont}}{\Delta\phi}(s) = \frac{I_p}{2\pi} \left(\frac{1}{C_1 s} + R_1\right)$$

$$\frac{V_{cont}}{\Delta \phi}(s) = \frac{I_p}{2\pi} \left(\frac{1}{C_1 s} + R_1\right) \qquad \Longrightarrow \qquad H(s) = \frac{\frac{I_p K_{VCO}}{2\pi C_1} (R_1 C_1 s + 1)}{s^2 + \frac{I_p}{2\pi} K_{VCO} R_1 s + \frac{I_p}{2\pi C_1} K_{VCO}}$$

Stability of Charge-Pump PLL

Write the denominator as $s^2 + 2\zeta\omega_n s + \omega_n 2$

$$\zeta = \frac{R_1}{2} \sqrt{\frac{I_p C_1 K_{VCO}}{2\pi}}$$

$$\omega_n = \sqrt{\frac{I_p K_{VCO}}{2\pi C_1}}.$$

- As C_1 increases, so does ζ --- a trend opposite to that observed in type-I PLL
- No trade-off between stability and ripple amplitude

Closed-loop poles are given by

$$\omega_{p1,2} = \left[-\zeta \pm \sqrt{\zeta^2 - 1} \right] \omega_n$$

A closed-loop zero at $-\omega_n/2\zeta$

$$\frac{V_{cont}}{\Delta \phi}(s) = \frac{I_p}{2\pi} \left(\frac{R_1 C_1 s + 1}{C_1 s} \right)$$

Frequency-Multiplying CPPLL

$$H(s) = \frac{\frac{I_{p}K_{VCO}}{2\pi C_{1}}(R_{1}C_{1}s + 1)}{s^{2} + \frac{I_{p}}{2\pi}\frac{K_{VCO}}{M}R_{1}s + \frac{I_{p}}{2\pi C_{1}}\frac{K_{VCO}}{M}}$$

$$\zeta = \frac{R_{1}}{2}\sqrt{\frac{I_{p}C_{1}K_{VCO}}{2\pi}\frac{K_{VCO}}{M}}$$

$$\omega_{n} = \sqrt{\frac{I_{p}K_{VCO}}{2\pi C_{1}M}}.$$

Division of K_{VCO} by M makes the loop less stable, requiring that I_p and/or C_1 be larger.

Higher-Order Loops: Drawback of Previous Loop Filter

- The loop filter consisting of R_1 and C_1 proves inadequate because, even in the locked condition, it does not suppress the ripple sufficiently.
- The ripple consists of positive ad negative pulses of amplitude I_pR_1 occurring every T_{in} seconds.

Addition of Second Capacitor to Loop Filter

$$PM \approx \tan^{-1}(4\zeta^2) - \tan^{-1}\left(4\zeta^2 \frac{C_{eq}}{C_1}\right)$$

We therefore choose $\zeta = 0.8$ -1 and $C_2 \approx 0.1C_1$ in typical designs.

An upper bound derived for R_1 :

$$R_1^2 \le \frac{2\pi}{I_p K_{VCO} C_{eq}}$$

Modeling of Charge-Pump PLL

$$\phi_M = \arctan\left(\frac{\omega_{ugb}}{\omega_z}\right) - \arctan\left(\frac{\omega_{ugb}}{\omega_{p3}}\right)$$

Open Loop Transfer Function

Loop Gain and Phase Margin

Linear Model of Charge-Pump PLL

$$LG(s) = K_{PD} \cdot F(s) \cdot \frac{K_{VCO}}{s}$$
$$= K_{PD} \cdot K_{VCO} \cdot \frac{s + \frac{1}{RC_1}}{C_2 s^2 \left(s + \frac{C_1 + C_2}{RC_1 C_2}\right)}$$

$$\omega_z = \frac{1}{RC_1}; \ \omega_{p1} = \omega_{p2} = 0; \omega_{p3} = \frac{C_1 + C_2}{RC_1C_2}$$

$$\phi_M = \arctan\left(\frac{\omega_{ugb}}{\omega_z}\right) - \arctan\left(\frac{\omega_{ugb}}{\omega_{p3}}\right)$$

$$\omega_{ugb} = \omega_z \sqrt{\frac{C_1}{C_2} + 1}$$

$$\phi_{M_max} = \arctan(\sqrt{\frac{C_1}{C_2} + 1}) - \arctan(\frac{1}{\sqrt{\frac{C_1}{C_2} + 1}})$$

What is arctangent?

If $C_1/C_2 = 10$, then Phase Margin is

$$\arctan(\text{sqrt}(11)) =$$
 $- \arctan(1/\text{sqrt}(11)) =$ $- 16.7786549 degree $--$ **57 degree**$

Loop Filter Design Procedure

1. Choose desired bandwidth ω_{ugb} , phase margin ϕ_M and resistor R according to specification. Then calculate the K_c from Eq. 4.6:

$$K_c = \frac{C_1}{C_2} = 2(\tan^2(\phi_M) + \tan(\phi_M \sqrt{\tan^2(\phi_M) + 1}))$$
 (4.6)

2. From Eq. 4.4 we have:

$$\omega_z = \frac{\omega_{ubg}}{\sqrt{\frac{C_1}{C_2} + 1}} \tag{4.7}$$

$$C_1 = \frac{1}{\omega_z R}; C_2 = \frac{C_1}{K_c};$$
 (4.8)

3. From aforementioned equations, we can determine the value for I_{CP} :

$$I_{CP} = \frac{2\pi C_2}{K_{VCO}} \cdot \omega_{ugb}^2 \cdot \sqrt{\frac{\omega_{p3}^2 + \omega_{ugb}^2}{\omega_z^2 + \omega_{ugb}^2}}$$
(4.9)

PFD/CP Nonidealities: Up and Down Skew and Width Mismatch

- The width of the pulse is equal to the width of the reset pulses, T_{res} (about 5 gate delays), plus ΔT .
- > The height of the pulse is equal to $\Delta T I_p/C_2$

Systematic Skew

- The delay of the inverter creates a skew between the Up and Down pulses.
- To alleviate this issue, a transmission gate can be inserted
- The quantity of interest is in fact the skew between the Up and Down current waveforms, or ultimately, the net current injected into the loop filter

Voltage Compliance

- Desirable for V_{out} to swing as close to the supply rails as possible.
- Each current source requires a minimum drain-source voltage and each switch sustains a voltage drop.
- The output compliance is equal to V_{DD} minus two overdrive voltages and two switch drops

Random Mismatch Between Up and Down Currents

The net current is zero if:

$$I_p \cdot \Delta T = \Delta I \cdot T_{res}$$

$$\Delta T = T_{res} \frac{\Delta I}{I_p}$$

The ripple amplitude is equal to:

$$\Delta T \cdot I_p/C_2 = T_{res}\Delta I/C_2.$$

Channel Length Modulation Effect

- > Different output voltages inevitably lead to opposite changes in the drainsource voltages of the current sources, thereby creating a larger mismatch.
- The maximum departure of I_X from zero, I_{max} , divided by the nominal value of I_p quantifies the effect of channel-length modulation.

Circuit Techniques to deal with Channel Length Modulation Effect

$$\frac{V_X}{I_X} = (1 + A_0)g_m r_O R_S + r_O + R_S$$

- The output impedance is raised
- Drawback stems from the finite response of the auxiliary amplifiers

Circuit Techniques to deal with Channel Length Modulation Effect – Use of Servo Loop

- A₀ need not provide a fast response
- Performance limited by random mismatches between NMOS current sources and between PMOS current sources. Also the op amp must operate with a nearly rail-to-rail input common-mode range.

Example Circuit* - PFD

*Rishi Ratan, MS Thesis, UIUC, 2014

Example Circuit - CP

Example Circuit – Loop Filter

Example Circuit – Loop Filter Resistors

- Resistance may be programmable using switches
- Parasitic switch resistance varies with control voltage
 - Usually lowest at Vctl extremes if CMOS transmission gate
 - Large Rswitch variation vs. Vctl if NMOS or PMOS only
 - Usually Rswitch < 5-10% of Rlpf
- Minimize gate leakage and noise coupling from switches
 - Coupling less of a problem if using voltage regulators
- Typical values: $500\Omega < R_{lpf} < 50k$
- Poly, Diffusion, Nwell R's most common

- MOSFET R's sometimes used if R placed "below" C1 cap
 - Constant Vgs needed

Example Circuit – Loop Filter Capacitors

- Reference capacitor to same supply as VCO V-to-I reference → makes power supply noise common mode
- Gate Leakage in MOSFET caps can be a HUGE problem
 - Exponential I_{leak} vs. V: $I_{leak} \sim V_{gate}^4$ (approximate)
 - Weak temperature dependence
 - I_{leak} vs. t_{ox} → ~2-3× per Angström
 - Use metal caps (2-10X larger) or thick-gate (IO) oxide caps to minimize leakage
 - If MOSFET caps, accumulation mode preferred flatter C_{gate} vs. V
- I_{leak} causes large refclk spurs (jitter) and static phase error
- Typical values:
 - $-5pF < C_1 < 200 pF$
 - 1% (low phase error) $< C_2/C_1 < 10\%$ (low period jitter)
 - Smaller C₁ caps are becoming more common w/ higher reference frequencies and metal cap usage

Example Circuit - VCO

- RO VCO usually consists of two circuits
 - bias generator (e.g. V_{ctl} to I_{ctl})
 - voltage or current controlled ring oscillator (RO) → □□□

- Feedback INV \rightarrow usually weaker by $> \sim 3-4 \times$
- Tune frequency by adjusting "VDD" of inverters changes delay
- "Vdd" for inverters is regulated output of VCO V2I

Example Circuit – DFF Using TSPC

Example Circuit – Divider

Example Circuit – Ibias

- $I_b \sim V_{ref} / R$
- V_{ref} generated from PVT-insensitive bandgap reference
- Con: feedback loop may oscillate
 - capacitor added to improve stability
 - resistor in series w/cap provides stabilizing zero (not shown)
- Pro: VDD-independent, mostly Temp independent
- Pro: Icp*Rlpf = constant → less PVT-sensitive loop dynamics

Example Circuit – Voltage Regulator

- Hard to stabilize over wide Iload and Cload ranges
- NMOS source-follower output stage
 - Requires more headroom
 - Faster response and easier to stabilize
- PMOS common-source output stage
 - Can handle larger current loads → larger Vgs

