Name: Caleb McWhorter — Solutions
MATH 308
Fall 2022
HW 7: Due 09/29

"'Obvious' is the most dangerous word in mathematics."

-E.T. Bell

Problem 1. (10pt) Determine whether each of the following relations is a function. If the relation is a function, determine its image.

- (a) $\{(x,y)\colon x,y\in\mathbb{Z},y=x^2+5\}$ as a relation from \mathbb{Z} to \mathbb{Z}
- (b) $\{(x,y)\colon x,y\in\mathbb{R},y=x^2\}$ as a relation from \mathbb{R} to \mathbb{R}
- (c) $\{(x,y)\colon x,y\in\mathbb{Z},y^2=x\}$ as a relation from \mathbb{R} to \mathbb{R}
- (d) $\{(x,y)\colon x,y\in\mathbb{Z},y=2x+3\}$ as a relation from \mathbb{Z} to \mathbb{Z}
- (e) $\{(x,y): x,y \in \mathbb{Z}, x^2 + y^2 = 4\}$ as a relation from \mathbb{R} to \mathbb{R}

Solution.

(a) im

Problem 2. (10pt) Define $A=\{3,6,9\}$ and $B=\{3x\colon x\in\mathbb{Z}\}-\{x\in\mathbb{Z}\colon x\le 0,x>10\}$. Let $f:A\to\mathbb{Z}$ be given by f(x)=2x+1 and $g:B\to\mathbb{Z}$ be defined by $g(x)=x^3-18x^2+101x-161$. Show that f=g.

Problem 3. (10pt) Let $f: \mathbb{N} \to \mathbb{R}$ be given by f(n) = 1 - n and $g: \mathbb{N} \to \mathbb{R}$ be given by $g(n) = \frac{n}{n+1}$. For each of the following, either find a rule for the given function or evaluate the given function:

- (a) (fg)(1)
- (b) (f+g)(n)
- (c) $(g \circ f)(5)$
- (d) (6f)(-3)
- (e) $\left(\frac{f}{g}\right)(n)$

Problem 4. (10pt) Let $f: A \to \mathbb{R}$ be given by f(x) = |x+1|, where $|\cdot|$ denotes the absolute value. For each of the following, find the image of A under f—no justification is necessary:

- (a) A = [1, 6]
- (b) A = (-3, 4]
- (c) $A = \mathbb{N}$
- (d) $A = \mathbb{Z}$
- (e) $A = \mathbb{R}$