פתרון מטלה -08 אנליזה על יריעות,

2025 במאי 21

שאלה 1

. בלתי תלויה־לינארית. $\{
abla arphi_1(p),\ldots,
abla arphi_n(p)\}$ וכן וכן $\{ arphi_2(p),\ldots,
abla arphi_n(p)\}$ בלתי תלויה־לינארית. בלתי תהינה ועריה על היינה ועריה פרא בלתי תלויה־לינארית.

'סעיף א

נראה שקיימת סביבה U של סביבת שקיימת נראה

$$M = \{x \in U \mid \varphi_1(x) = \dots = \varphi_k(x) = 0\}$$

pב $T_p M$ את ונחשב את מימדית, מימדית (n-k) היא יריעה

, אנו יודעים ממשפט אנו ההפוכה אנו יודעים אנו $T_p M$ נעבור לחישוב

$$T_pM = \ker df_p = \{x \in \mathbb{R}^n \mid (\nabla \varphi_1(p), \dots, \nabla \varphi_k(p)) \cdot x = 0\} = \mathbb{R}^n \setminus \operatorname{Sp}\{\varphi_1(p), \dots, \varphi_k(p)\}$$

'סעיף ב

 $.
abla f(p)\perp T_pM$ העתקה ש' $x\in M$ לכל לכל $f(x)\geq f(p)$ ער כך שלקה הלקה העתקה העתקה $f:\mathbb{R}^n o\mathbb{R}$

 $abla f(p) \perp$ ש שיבות מהגדרה, כלומר נובע בישר עבור $D_u f = 0$ עבור שיב פרט שים לכל u וקטור כיוון ביM וקטור כיוון ביM ולכן נובע בפרט שרבינו.

'סעיף ג

. Sp $\{
abla arphi_1(p), \dots,
abla arphi_k(p)\}$ הוא T_pM של של האורתוגונלי שהמשלים נראה

הוכחה. ישירות כמסקנה ממשפט התמונה ההפוכה ואורתוגונליות תמונה וגרעין העתקה לינארית,

$$T_pM = \ker\{\nabla\varphi_1(p), \dots, \varphi_k(p)\} \perp \operatorname{Sp}\{\nabla\varphi_1(p), \dots, \varphi_k(p)\}$$

והטענה נובעת ישירות.

'סעיף ד

נסיק את נוסחת כופלי לגרנז'.

הוכחה. נבחין כי אם x מינימום מקומי של f אז היא במשלים האורתוגונלי של $T_v M$ ולכן בלתי תלויה־לינארית בה.

שאלה 2

נראה שכל יריעה היא תמונה הפוכה של העתקה רגולרית, ונסיק שחיתוך רוחבי של תת־יריעות הוא יריעה.

'סעיף א

קה כך $f:U o \mathbb{R}^l$ ו $p\in U\subseteq N$ פתוחה סביבה פתוחה $p\in Z$ הראה שלכל N נראה של N תהייעה ונניח ער יריעה ונניח $U=\dim N-\dim Z$ כאשר ער כאשר $U\cap Z=f^{-1}(\{0\})$

סעיף ב׳

. $\dim Y + \dim X = \dim N$ אילו היריעות זרות אז $X \cap Y$ היא יריעה באופן מנוון, ולכן היא 0-מימדית, ומרוחביות אכן $X \cap Y$ היא יריעה איריעה $X \cap Y$ היא יריעה $Y = X \cap Y$ נניח שי $Y = X \cap Y$ נניח שי $Y = X \cap Y$ נניח שילון. נבחין כי $Y = X \cap Y$ ולכן $Y = X \cap Y$ היא יריעה $Y = X \cap Y$ נניח שיפט מהתרגול.

שאלה 3

'סעיף א

היא $M=\{x\in\mathbb{R}^n\mid f(x)\geq a\}$ נניח ש־ $f^{-1}(\{a\})
eq\emptyset$ ערך רגולרי של $a\in\mathbb{R}$ שרך העתקה חלקה ונניח ש $a\in\mathbb{R}$ היא $a\in\mathbb{R}^n$ וניח ש- $a\in\mathbb{R}^n$ העתקה חלקה ונניח ש $a\in\mathbb{R}^n$ וניח ש- $a\in\mathbb{R}^n$ היא השפה ונניח ש- $a\in\mathbb{R}^n$ וניח ש- $a\in\mathbb$

מספיק שנראה לכן מספיק (בפרט רציפה). לכן פרטה פתוחה של קבוצה פתוחה של קבוצה הירעה איריעה $\{x\in\mathbb{R}^n\mid f(x)>a\}$ כי בכחין כי $\{x\in\mathbb{R}^n\mid f(x)>a\}$ היא יריעה שלכל שלכל שלכל שפרטריזציה מקומית (עם שפה) ונוכל להסיק ש־M היא יריעה מימדית.

אז ניקח את ההעתקה אז ניקח הוא תל \mathbb{R}^n אז אז בילורי, כלומר ערך רגולרי, של מהגדרת אז ניקח היא נקודה היא מהגדרת ערך רגולרי, ערך רגולרי, של מהגדרת של היא ניקח אז ניקח או מהעתקה אז p

נעיר כי בהוכחה התבססנו על הטענה כי כל יריעה ללא שפה היא יריעה עם שפה.