Einführung in die Programmierung

Teil 2: Mathematische Grundlagen

Prof. Dr. Peer Kröger, Florian Richter, Michael Fromm Wintersemester 2018/2019

Übersicht

1. Mengen

2. Relationen und Abbildungen

3. Boolsche Algebra

4. Induktion und Rekursion

Kapitel 1: Mengen

- 1. Mengen
- Relationen und Abbildungen
- 3. Boolsche Algebra
- 4. Induktion und Rekursion

Mengen: Begriff

Die Charakterisierung von Daten in der Vorlesung setzt den Mengen-Begriff voraus. Als informelle Definition genügt uns folgende:

Definition (Menge)

Eine Menge M ist eine Zusammenfassung von verschiedenen Objekten, den Elementen der Menge. Die Notation $a \in M$ bedeutet: a ist ein Element der Menge M

- Um anzuzeigen, dass a kein Element der Menge M ist, schreiben wir entsprechend a ∉ M.
- Eine Menge kann beliebig viele Elemente enthalten, also z.B. auch gar keine. In diesem Fall spricht man von der leeren Menge, geschrieben Ø oder {}.

Beispiele

Mengen, die wir im Laufe der Vorlesung verwenden werden:

- N: Menge der natürlichen Zahlen: 1, 2, 3, . . .
- \mathbb{N}_0 : Menge der natürlichen Zahlen einschließlich 0
- \mathbb{Z} : Menge der ganzen Zahlen: ..., -3, -2, -1, 0, 1, 2, 3, ...
- R: Menge der reellen Zahlen
- $\mathbb{B} = \{TRUE, FALSE\}$: Menge der Wahrheitswerte

Für diese Mengen gilt z.B.:

$$23 \in \mathbb{N}, \quad 0 \not \in \mathbb{N}, \quad 0 \in \mathbb{N}_0, \quad 0 \not \in \mathbb{B}, \quad 0 \not \in \emptyset$$

Beschreibung von Mengen

- Eine Menge kann z.B. extensional durch Aufzählung der Elemente angegeben werden; die Reihenfolge der Elemente spielt dabei keine Rolle.
- Man kann eine Menge aber auch intensional "beschreiben", d.h. durch Angabe einer Bedingung, die alle Elemente und nur die Elemente der Menge erfüllen.

Eigenschaften von Mengen

Beispiele

- Menge M der Quadratzahlen, die kleiner als 30 sind Extensional: $M=\{1,4,9,16,25\}=\{4,1,9,25,16\}$ Intensional: $M=\{a\,|\,a\in\mathbb{N},a\text{ ist Quadratzahl und }a<30\}$
- leere Menge Extensional: $M = \{\}$ Intensional: $M = \{a \mid a \in \mathbb{N}, a < 2 \text{ und } a > 1\}$

Die Schreibweise $\{a \mid e(a)\}$ bedeuted: alle Elemente a, die die Eigenschaft e(a) erfüllen.

Eigenschaften von Mengen

• Es gelten folgende wichtige Eigenschaften von Mengen und Beziehungen zwischen Mengen:

Bezeichnung	Notation	Bedeutung
M ist Teilmenge von N	$M \subseteq N$	aus $a \in M$ folgt $a \in N$
M ist echte Teilmenge von N	$M \subset N$	es gilt $M \subseteq N$ und $M \neq N$
Vereinigung von M und N	$M \cup N$	$\{x \mid x \in M \text{ oder } x \in N\}$
Schnittmenge von N und M	$M \cap N$	$\{x \mid x \in M \text{ und } x \in N\}$
Differenz M ohne N	$M \setminus N$	$\{x \mid x \in M \text{ und } x \notin N\}$
M und N sind disjunkt	$M \cap N = \emptyset$	$\it M$ und $\it N$ haben keine gemeinsamen Elemente
Kardinalität einer Menge M	<i>M</i>	Anzahl der Elemente von M

Eigenschaften von Mengen

- · Alle Elemente einer Menge sind verschieden.
- Man könnte zwar eine Menge {1,2,2,3} angeben, dies wäre aber redundant. Die gleiche Menge wird durch {1,2,3} definiert.
- Mit dem Konzept einer Menge kann man also nicht mehrfaches Vorkommen eines gleichen Elementes modellieren.
- Hierzu dient z.B. das Konzept der Multimengen, die wie Mengen geschrieben werden, aber teilweise andere Eigenschaften und Rechenregeln haben.
- Soll auch die Reihenfolge der Elemente eine Rolle spielen,benötigt man andere Konstrukte (siehe später: Folgen).

Definition (Multimenge)

Eine Multimenge ist eine Zusammenfassung von Elementen, bei denen Elemente auch mehrfach auftreten können.

Beispiel

Die Menge der in dem Wort MATHEMATIK vorkommenden Buchstaben ist

- Als Menge: $M = \{A, E, H, I, K, M, T\}$
- Als Multimenge unter Berücksichtigung der Häufigkeit:
 MM = {A, A, E, H, I, K, M, M, T, T}

Mengen und Multimengen

- Die für Mengen bekannten Begriffe lassen sich leicht auf Multimengen übertragen (andersherum gibt es einige Begriffe für Multimengen, die sich nicht direkt auf Mengen übertragen lassen).
- Jede Multimenge kann nämlich durch Auflistung der Elemente unter Berücksichtigung ihres Vorkommens als Menge geschrieben werden (dadurch werden eigentlich gleiche Elemente künstlich unterschieden).

Mengen und Multimengen

Beispiel

Die Multimenge

$$MM = \{A, A, E, H, I, K, M, M, T, T\}$$

kann aufgeschrieben werden als Menge

$$MM' = \{A^{(1)}, A^{(2)}, E, H, I, K, M^{(1)}, M^{(2)}, T^{(1)}, T^{(2)}\}$$

Von der Menge zur Potenzmenge

- Viele Objekte werden selbst durch Mengen von (anderen)
 Objekten beschrieben, z.B. ist ein Wechselgeld(-Objekt)
 eine Menge von Münzen(-Objekten).
- Eine Datenmenge solcher Objekte ist dann eine Menge, die Mengen enthält.
 Eine Menge von einzelnen Wechselgeld-Objekten enthält als Elemente Mengen von Münzen.
- Eine spezielle Form solcher Mengen von Mengen ist die Potenzmenge:

Definition (Potenzmenge)

Die Potenzmenge einer Grundmenge U ist die Menge aller Teilmengen von U, geschrieben $\mathfrak{P}(U)$, formal:

$$\mathcal{P}(U) = \{ U' \mid U' \subseteq U \}$$

Beispiel

$$U = \{d, f, s\}$$

$$\mathcal{P}(U) = \{\emptyset, \{d\}, \{f\}, \{s\}, \{d, f\}, \{d, s\}, \{f, s\}, \{d, f, s\}\}$$

Tupel, kartesisches Produkt

- Die Elemente einer Menge k\u00f6nnen auch zusammengesetzt sein aus verschiedenen Mengen.
- Beispiel: Eine Spielkarte hat eine Farbe und ein Symbol: (Karo,Bube), (Herz,Dame), . . .
- Solch ein Konstrukt nennt man ein geordnetes Paar (Tupel).
- Ein geordnetes Paar (x, y) besteht aus zwei Elementen x ∈ M und y ∈ N, wobei x die erste und y die zweite Komponente ist.
- x und y müssen dabei nicht aus der selben Menge stammen, d.h. es kann M ≠ N sein.

- Natürlich ist man bei der Bildung von geordneten Tupeln nicht auf zwei Elemente beschränkt.
- Man kann dieses Konzept auf eine beliebige Anzahl n von Mengen verallgemeinern:

Definition (kartesisches Produkt)

Das kartesische Produkt (Kreuzprodukt) über n Mengen ist die Menge aller geordneter n-Tupel mit den Komponenten aus diesen Mengen:

$$M_1 \times M_2 \times \ldots \times M_n :=$$

$$\{(a_1, a_2, \ldots, a_n) | a_1 \in M_1 \text{ und } a_2 \in M_2 \ldots \text{ und } a_n \in M_n\}.$$

Tupel, kartesisches Produkt

- Sind alle Mengen identisch ($M_i = M_j$ für alle $1 \le i, j \le n$), schreibt man für $M \times M \times ... \times M$ häufig auch M^n .
- Die einzelnen a_i, (i = 1,...,n) heißen "Komponenten" oder "Attribute" von (a₁,..., a_n).
- Offensichtlich ist die Reihenfolge der Elemente in einem Tupel relevant.
- Es gilt: $n \in \mathbb{N}_0$, d.h. theoretisch ist auch das "leere" Kreuzprodukt (mit leeren Tupeln ()) möglich.

Beispiele

- $\mathbb{B} \times \mathbb{B} = \mathbb{B}^2 = \{ (TRUE, FALSE), (TRUE, TRUE), (FALSE, FALSE), (FALSE, TRUE) \}$
- Für S = {7,8,9,10, Bube, Dame, Koenig, Ass} und
 F = {Kreuz, Pik, Herz, Karo}, können wir ein Kartenspiel als die Menge F × S definieren.

Hier sieht man gut die Relevanz der Reihenfolge: (7, Pik) und (Pik, 7) mögen zwar auf den ersten Blick die "gleichen" Karten sein, aber tatsächlich sind es Elemente aus unterschiedlichen kartesischen Produkten.

Tupel, kartesisches Produkt


```
• \mathbb{N} \times \mathbb{N}_0 \times \mathbb{B} =
           (1,0,TRUE),(1,1,TRUE),...
           (1, 0, FALSE), (1, 1, FALSE), \dots
           (2, 0, TRUE), (2, 1, TRUE), \dots
           (2, 0, FALSE), (2, 1, FALSE), . . .
           (3, 0, TRUE), (3, 1, TRUE), \dots
           (3, 0, FALSE), (3, 1, FALSE), . . .
```

Kapitel 2: Relationen und Abbildungen

- 1. Mengen
- 2. Relationen und Abbildungen
- 3. Boolsche Algebra
- 4. Induktion und Rekursion

Definition (Relation)

Eine (n-stellige) Relation R ist eine Menge von n-Tupeln, d.h. $R \subseteq M_1 \times \ldots \times M_n$ bzw. $R \in \mathcal{P}(M_1 \times \ldots \times M_n)$.

- Eine Relation ist also eine Teilmenge eines kartesischen Produkts.
- Der Begriff "Relation" ist ein wichtiges Konzept in der Informatik.
- Mit Relationen lassen sich spezielle Beziehungen zwischen verschiedenen Elementen der Mengen ausdrücken.

Beispiel

Die "kleiner"-Relation (a < b). Wir können also z.B. schreiben: $<\subseteq \mathbb{N} \times \mathbb{N}$ (definiert "<" als Teilmenge von $\mathbb{N} \times \mathbb{N}$) und es gilt z.B. $(1,2) \in <$ und $(2,1) \notin <$.

- Eine (n-stellige) Relation R ist erfüllt (oder wahr) für alle n-Tupel a mit a ∈ R und nur für diese Tupel. Man schreibt auch: Ra.
- Für zweistellige Relationen schreibt man auch xRy (z.B.: x < y).

Eigenschaften zweistelliger Relationen

Sei $R \subseteq M \times M$ (d.h. $R \in \mathcal{P}(M \times M)$) eine **zweistellige** Relation.

- R ist *reflexiv*, wenn für alle $x \in M$ gilt: xRx.
- R ist symmetrisch, wenn für alle x, y ∈ M gilt: aus xRy folgt yRx.
- R ist antisymmetrisch, wenn f
 ür alle x, y ∈ M gilt: aus xRy und yRx folgt x = y.
- R ist transitiv, wenn f
 ür alle x, y, z ∈ M gilt: aus xRy und yRz folgt xRz.
- R ist alternativ, wenn für alle $x, y \in M$ gilt: xRy oder yRx.

Äquivalenzrelation

Bestimmte Kombinationen von Eigenschaften qualifizieren eine Relation zur \ddot{A} quivalenzrelation, durch die man definieren kann, welche Elemente einer beliebigen Menge M "gleich" (äquivalent) sind:

Definition (Äquivalenzrelation)

Sei $R \in \mathcal{P}(M \times M)$. R ist eine Äquivalenzrelation, wenn R reflexiv, symmetrisch und transitiv ist.

Äquivalenzrelation

Beispiele

 Das Gleichheitszeichen "=" definiert eine Aguivalenzrelation auf N bzw. N_0 (und natürlich auch auf \mathbb{Z} bzw. \mathbb{R}), denn es gilt Reflexiv: für alle $n \in \mathbb{N}$ gilt n = nSymmetrisch: für alle $n_1, n_2 \in \mathbb{N}$ gilt: aus $n_1 = n_2$ folgt $n_2 = n_1$ Transitiv: für alle $n_1, n_2, n_3 \in \mathbb{N}$ gilt: aus $n_1 = n_2$ und $n_2 = n_3$ folgt $n_1 = n_3$ Formal ist = $\subseteq \mathbb{N} \times \mathbb{N}$ und es gilt: = = {(1, 1), (2, 2), (3, 3), ...}

Äquivalenzrelation

Wenn für ein Kartenspiel F x S mit
 S = {7,8,9,10, Bube, Dame, Koenig, Ass} und
 F = {Kreuz, Pik, Herz, Karo} beim Vergleich zweier Karten die Farbe (F) keine Rolle spielt, sondern zwei Karten mit dem gleichen Symbol (S) als gleich gelten, ist die entsprechende Äquivalenzrelation:

$$\{((f_1, s_1), (f_2, s_2)) \mid f_1 \in F, f_2 \in F, s_1 \in S, s_2 \in S, s_1 = s_2\}$$

(Dabei ist eine entsprechende Äquivalenzrelation auf *S* angenommen, die wiederum mit "=" bezeichnet wird).

Ordnungsrelationen

Bestimmte Kombinationen von Eigenschaften qualifizieren eine Relation zur *Ordnungsrelation*, durch deren Anwendung man beispielsweise eine Menge (oder auch Multimenge) sortieren könnte:

Definition (Ordnungsrelation) Sei $R \in \mathcal{P}(M \times M)$.

- R ist eine partielle Ordnung, wenn R reflexiv, antisymmetrisch und transitiv ist.
- R ist eine totale Ordnung, wenn R eine alternative partielle Ordnung ist.

Ordnungsrelationen

(Wenn eine Ordnung $R \in \mathcal{P}(M \times M)$ nicht total ist, dann gibt es Elemente $x, y \in M$, sodass das Paar (x, y) nicht in R ist; man sagt: x und y sind nicht vergleichbar.)

Beispiele

- Auf den ganzen Zahlen gibt es die (totale) Ordnungsrelation $\leq \in \mathcal{P}(\mathbb{Z} \times \mathbb{Z})$ ("kleiner-gleich"). Im Übrigen ist "<" keine Ordnungsrelation (weder partiell noch total), da nicht reflexiv.
- Sei $M = \{1, 2, 3\}$, dann ist $R_p = \{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3)\}$ eine partielle Ordnungsrelation (denn das Paar aus den Elementen 2 und 3 ist in R_p enthalten).

- Funktionen sind ein zentrales Konzept der Programmierung, denn sie ermöglichen z.B. die Abstraktion von (Teil-)Problemen.
- Eine Funktion ist eine Abbildung von einer Menge D auf eine Menge B, wobei D = B gelten darf aber nicht muss.
- Bei D darf es sich auch um ein kartesisches Produkt aus n Mengen handeln, in diesem Fall sprechen wir von einer n-stelligen Funktion (der Spezialfall n = 1 ist uns vermutlich aus der Schule vertraut).

Formal lassen sich Funktionen als spezielle Relationen definieren:

Definition (Funktion)

Sei $D = D_1 \times ... \times D_n$. Eine Funktion f ist eine 2-stellige Relation $f \subseteq D \times B$, für die gilt: Aus $(x, y) \in f$ und $(x, z) \in f$ folgt y = z, d.h. einem Element x^1 aus D ist höchstens ein Element aus B eindeutig zugeordnet.

Die Menge D heißt Definitionsbereich von f.

Die Menge B heißt Bildbereich von f.

¹Vorsicht: x ist ein n-Tupel, also eigentlich $(x_1, ..., x_n)$

Nochmal zum Verständnis:

- Wir haben f als spezielle Teilmenge von D × B definiert, wobei D ein (beliebiges) Kreuzprodukt aus n Mengen sein kann.
- Die Elemente aus f haben formal die Form
 ((x₁,...,x_n), y)
 d.h. es handelt sich um zwei "geschachtelte"
 Kreuzprodukte:
 - Die erste Komponente von $D \times B$, $(x_1, ..., x_n)$ stammt aus $D = D_1 \times ... \times D_n$, ist also ein n-Tupel.
 - Die zweite Komponente stammt aus B².

²für *B* könnte man i.Ü. theoretisch auch ein Kreuzprodukt zulassen

- Funktionen sind also Relationen mit speziellen
 Eigenschaften: sie stellen eine rechtseindeutige Beziehung
 zwischen Definitionsbereich und Bildbereich dar.
- Als Schreibweisen sind gebräuchlich (wir verwenden wieder x anstelle von (x₁,...,x_n) für ein Element aus D):
 - $(x,y) \in f$
 - y = f(x)
 - f(x) = y
 - $f: x \mapsto y$
- $x \in D$ heißt auch *Urbild*.
- $y \in B$ heißt auch *Bild*.

Signatur von Funktionen

Da Funktionen spezielle Relationen sind, stammen sie aus Wertebereichen, die Teilmengen der Wertebereiche entsprechend strukturierter Relationen sind:

- Die Menge D → B ist die Menge aller Funktionen, die D
 als Definitionsbereich und B als Bildbereich haben. D → B
 enthält als Elemente alle Mengen von Tupeln
 (d, b) ∈ (D × B), die Funktionen sind.
- Es gilt: $D \to B \subseteq \mathcal{P}(D \times B)$.
- Für eine Funktion $f \in D \rightarrow B$ gilt: $f \subseteq D \times B$.
- Man schreibt: $f: D \rightarrow B$, d.h. f hat die Signatur $D \rightarrow B$.
- "Signatur" ist ein zentrales Konzept in der Spezifikation von Programmen (und beinhaltet neben Definitions- und Bildbereich auch den Namen der Funktion).

Eigenschaften von Funktionen

- Eine Funktion $f: D \rightarrow B$ ist
 - total, wenn es für jedes x ∈ D ein Paar (x, y) ∈ f gibt (andernfalls ist f partiell);
 - surjektiv, wenn es zu jedem y ∈ B mindestens ein Paar (x, y) ∈ f gibt (jedes Bild hat mindestens ein Urbild);
 - injektiv, wenn es zu jedem y ∈ B höchstens ein Paar (x, y) ∈ f gibt (jedes Bild hat höchstens ein Urbild);
 - *bijektiv* (*eindeutig*), wenn *f* zugleich surjektiv und injektiv ist (jedes Bild hat genau ein Urbild).

Eigenschaften von Funktionen

 Vorsicht: Wenn ein Mathematiker nicht angibt, ob eine Funktion total oder partiell ist, meint er in der Regel eine totale Funktion. Für einen Informatiker ist die partielle Funktion der Normalfall.

Stelligkeit von Funktionen

- Die Stelligkeit einer Funktion ergibt sich aus dem Aufbau ihres Definitionsbereichs D
- Eine Funktion mit der Signatur $f: D_1 \times ... \times D_n \rightarrow B$ ist n-stellig.
- Dabei ist n∈ N₀, d.h. auch n = 0 ist zulässig (in diesem Fall ist die Signatur f : ∅ → B).
- 0-stellige Funktionen sind konstante Funktionen, kurz
 Konstanten, für jeweils einen Wert aus B, d.h. jeder Wert b
 aus B (b ∈ B) kann als 0-stellige Funktion b : ∅ → B
 aufgefasst werden.

Beispiele

- Die Funktion 1 : ∅ → N die das leere Tupel auf 1 ∈ N abbildet, d.h. () → 1, ist eine Konstante und kann als das Element 1 ∈ N "interpretiert" werden.
 (Analoges gilt für alle Elemente in N, N₀, Z, etc.).
- Also kann auch TRUE : ∅ → B als das Element TRUE ∈ B interpretiert werden und FALSE : ∅ → B entsprechend für das Element FALSE ∈ B.

Funktionen

- Die Funktion $ID: M \to M$ mit $x \mapsto x \ (x \in M)$ heißt *Identitätsabbildung*.
 - Z.B. für $M = \{a, b\}$ gilt $a \mapsto a$ und $b \mapsto b$, d.h. in "Relationenschreibweise" wäre $ID_{\{a,b\}} = \{(a,a),(b,b)\}$ bzw. in "Funktionsschreibweise" wäre ID(a) = a und ID(b) = b.
- Die Funktion + : N₀ × N₀ → N₀ definiert die Addition zweier Elemente (Zahlen) aus N₀.
 Z.B. gilt (12,44) → 56 und (27,33) → 60.

Funktionen

- Die Funktion abs : $\mathbb{Z} \to \mathbb{N}_0$ definiert den Absolutbetrag einer ganzen Zahl.
 - Z.B. gilt $-12 \mapsto 12$ und $12 \mapsto 12$.
- Die Funktion $ggt: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ "berechnet" den kleinsten gemeinsamen Teiler zweier natürlicher Zahlen.
 - Z.B. gilt $(12,44) \mapsto 4 \text{ und } (27,33) \mapsto 3.$
- Die Quadratwurzel-Operation $\sqrt{\mathbb{R}} \to \mathbb{R}$ ist ein Beispiel für eine partielle Funktion, denn die Funktion ist nur für reelle Zahlen x > 0 definiert.
 - Z.B. gilt (25.0) \mapsto 5.0 aber für -13.0 gibt es kein Bild, d.h. $\sqrt{-13.0}$ ist *undefiniert*.

Funktionen

• Die Funktion $\textit{summe}: \mathbb{N}_0 \to \mathbb{N}$ ist definiert als

$$n \mapsto 0 + 1 + 2 + \ldots + n$$
.

Wir schreiben auch $\sum_{i=0}^{n} i$ oder $\sum_{i=0}^{n} i$ anstatt summe(n).

Es gilt z.B.

- $summe(0) = \sum_{i=0}^{n} i = 0$
- $summe(1) = \sum_{i=0}^{n} i = 0 + 1 = 1$
- $summe(5) = \sum_{i=0}^{n} i = 0 + 1 + 2 + 3 + 4 + 5 = 15$

Gegeben seien totale³ Abbildungen

$$f_1: M_1 \to N_1, \dots, f_n: M_n \to N_n \quad \text{mit } n \in \mathbb{N}$$

$$g: N_1 \times \dots \times N_n \to N.$$

- Für $x_1 \in M_1, ..., x_n \in M_n$ gilt $f_1(x_1) \in N_1, ..., f_n(x_n) \in N_n$.
- Diese Werte k\u00f6nnen als Argumente in g eingesetzt werden und man erh\u00e4lt die Komposition

$$g(f_1(x_1),\ldots,f_n(x_n))$$

³Es ginge auch mit partiellen Abb., ist aber etwas komplizierter

· Die dadurch beschriebene Zuordnung

$$(x_1,\ldots,x_n)\mapsto g(f_1(x_1),\ldots,f_n(x_n))$$

definiert somit eine totale Abbildung $M_1 \times \ldots \times M_n \to N$.

- Die Komposition erlaubt uns, überall dort, wo ein Element der Menge M in der Signatur einer Funktion g "gefordert" wird, stattdessen die Anwendung einer Funktion f zu "verwenden", solange f den Bildbereich M hat.
- Offenbar kann man mittels Komposition beliebig viele Funktionen verschachteln.

Beispiele

• In der Addition auf den ganzen Zahlen $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ kann an der ersten Stelle statt eines Elements aus \mathbb{Z} z.B. wiederum eine Addition stehen. Man erhält eine Abbildung $(\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z} \to \mathbb{Z}$ mit

$$(x, y, z) \mapsto (x + y) + z$$

• Durch die Komposition der oben genannten Funktionen $abs: \mathbb{Z} \to \mathbb{N}$ und $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ kann man z.B. ein Funktion $absSum: \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$ erhalten mit

$$(x, y) \mapsto abs(x) + abs(y)$$

- Man kann i.Ü. auch den "Term" "1 + 2" als Komposition von folgenden Funktionen auffassen:
 - $1:\emptyset \rightarrow \mathbb{N}$
 - $2:\emptyset \rightarrow \mathbb{N}$
 - $\bullet \ + : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

denn 1 + 2 steht ja für: +(1,2) und 1 sowie 2 sind Funktionen ohne Argumente (Konstanten). Diesen "Kniff" werden wir uns später noch zu Nutze machen.

Nocheinmal: Schreibweisen

- Die Notation f(x₁,...,x_n), die die "Anwendung" von f auf die Argumente x₁,...,x_n beschreibt, nennen wir Funktionsschreibweise.
- Bei 2-stelligen Funktionen verwendet man häufig auch die Infixschreibweise x₁fx₂.

Beispiel: 17 + 8 statt +(17, 8) für die Addition.

- Bei 1-stelligen Funktionen verwendet man gerne die Präfixschreibweise fx₁.
 - Beispiel: log 13 statt log(13) für die Logarithmusfunktion.
- Manchmal ist jedoch auch die Postfixschreibweise x₁...x_nf gebräuchlich.
 - Beispiel: 21! statt !(21) für die Fakultätsfunktion.

Nocheinmal: Schreibweisen

Bemerkung: In der Mathematik gibt es Schreibweisen, die sich nicht direkt einer dieser Schreibweisen unterordnen lassen, z.B.

- \sqrt{x} (Quadratwurzel)
- x^y (Potenzierung)
- $\frac{x}{y}$ (Division)
- . . .

Definition (Prädikat)

Ein Prädikat ist eine Funktion aus $D \to \mathbb{B}$.

- Jede Relation $R \subseteq D = M_1 \times ... \times M_n$ kann als Prädikat $D \to \mathbb{B}$ aufgefasst werden, mit $(x_1, ..., x_n) \mapsto TRUE$ genau dann wenn $(x_1, ..., x_n) \in R$.
- So ist z.B. die Äquivalenzrelation = : $\mathbb{Z} \times \mathbb{Z}$ das Gleichheits-Prädikat = : $\mathbb{Z} \times \mathbb{Z} \to \mathbb{B}$ und es gilt z.B. = $(-321, -321) \mapsto TRUE$ und = $(-321, 3) \mapsto FALSE$
- Wir lassen als Schreibweise "= TRUE" meist weg und verwenden bei 2-stelligen Prädikaten die Infixschreibweise, also z.B. –321 = –321.

Beispiele

 Die Ordnungs- und Äquivalenzrelationen von oben können wie erwähnt alle als Prädikate aufgefasst werden, z.B.

$$\begin{array}{l} =: \ \textit{M} \times \textit{M} \rightarrow \mathbb{B} \ \text{mit} \ \textit{M} \in \{\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{R}, \ldots\} \\ \text{z.B.} \ (2,2) \mapsto \textit{TRUE}, \ \text{d.h.} \ 2 = 2 \ \text{und} \ (2,3) \mapsto \textit{FALSE} \\ \leq: \ \textit{M} \times \textit{M} \rightarrow \mathbb{B} \ \text{mit} \ \textit{M} \in \{\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{R}, \ldots\} \\ \text{und} \ \text{z.B.} \ (2,3) \mapsto \textit{TRUE}, \ \text{d.h.} \ 2 \leq 3 \ \text{und} \ (2,2) \mapsto \textit{FALSE} \\ \ldots \end{aligned}$$

· Ungleichheitsprädikat:

```
\neq\colon \textit{M}\times\textit{M}\to\mathbb{B} \text{ mit } \textit{M}\in\{\mathbb{N},\mathbb{N}_0,\mathbb{Z},\mathbb{R},\ldots\} z.B. (3,2)\mapsto\textit{TRUE}, d.h. 3\neq 2 und (2,2)\mapsto\textit{FALSE}
```


Das Prädikat "teilt" | : N × N₀ → B mit (x, y) → TRUE genau dann wenn y (ganzzahlig) teilbar durch x ist.
 Oder etwas formaler und in Infixschreibweise:

x|y genau dann wenn es ein $z \in \mathbb{N}_0$ gibt mit $y = x \cdot z$.

Z.B. gilt $3|6 \mapsto TRUE$ (es gibt ein $k \in \mathbb{N}_0$ mit $6 = k \cdot 3$, nämlich k = 2)

und $3|0\mapsto TRUE$ (es gibt ein $k\in\mathbb{N}_0$ mit $0=k\cdot 3$, nämlich k=0).

Dagegen 7|8 \mapsto *FALSE* (es gibt kein $k \in \mathbb{N}_0$ mit 8 = $k \cdot 7$).

Folgen

- Bei Mengen und Multimengen spielt wie besprochen die Reihenfolge der Elemente keine Rolle.
- Wenn aber die Reihenfolge wichtig ist, benötigt man andere Konzepte, wie z.B. das der Folgen, die eine sequentielle Reihenfolge von Elementen modelliert (mehrfaches Auftreten eines Elements spielt dabei auch ein Rolle, d.h. Folgen sind spezielle Multimengen).

Definition (Folge)

Eine Folge $(x_1, ..., x_n)$ der Länge n über die Elemente einer Menge M $(d.h. x_i \in M)$ ist ein n-Tupel von Werten aus M, d.h.

$$(x_1,\ldots,x_n)\in M^n$$
.

Eine Folge $x \in M^0$ der Länge n = 0 wird leere Folge genannt.

Beispiele

- Sei $M_1 = \{1, 2\}$. Es gilt
 - $x_{11} = (1)$ ist eine Folge über M_1
 - $x_{12} = (1, 1, 1, 1, 2, 2, 1, 2, 1)$ ist eine Folge über M_1
 - $x_{13} = ()$ ist eine Folge über M_1 (die leere Folge)
- Sei $M_2 = \{A, B, C, ..., X, Y, Z\}$. Es gilt
 - $x_{21} = (M, A, T, H, E, M, A, T, I, K)$ ist eine Folge über M_2
 - $x_{22} = (B)$ ist eine Folge über M_2
 - $x_{23} = ()$ ist eine Folge über M_2 (die leere Folge)

• Die Menge aller nicht-leeren Folgen über M wird meist mit

$$M^+ = M^1 \cup M^2 \cup M^3 \cup \dots$$

bezeichnet.

Die Menge aller Folgen (auch leerer) über M ist dann

$$M^*=M^0\cup M^+.$$

- Die *Länge* einer Folge x wird auch mit |x| bezeichnet.
- Ist x eine Folge über M, so wird M auch als Grundmenge von x bezeichnet.

Beispiele von vorher:

- Sei wiederum $M_1 = \{1, 2\}$. Es gilt
 - $x_{11} = (1) \in (M_1)^1$, also $|x_{11}| = 1$
 - $x_{12} = (1, 1, 1, 1, 2, 2, 1, 2, 1) \in (M_1)^9$, also $|x_{12}| = 9$
 - $x_{13} = () \in (M_1)^0$ (die leere Folge mit $|x_{13}| = 0$)
- Sei wiederum $M_2 = \{A, B, C, \dots, X, Y, Z\}$. Es gilt
 - $X_{21} = (M, A, T, H, E, M, A, T, I, K) \in (M_2)^{10}$
 - $X_{22} = (B, C, A) \in (M_2)^3$
 - $x_{23} = () \in (M_2)^0$ (die leere Folge)

Definition (Projektion)

Die Projektion

$$\pi: M^n \times I_n \to M$$
.

bildet eine Folge $x=(x_1,\ldots,x_n)$ der Länge n und ein i $(1 \le i \le n)$ auf die i-te Komponente x_i der Folge ab. Die Menge $I_n=I_{|x|}=\{i|i\in\mathbb{N} \text{ und } 1\le i\le n\}$ heißt Indexmenge (von x).

Beispiel

Sei
$$M = \mathbb{N}_0$$
 und $x = (4, 5, 6)$. Damit ist $I_{|x|} = I_3 = \{1, 2, 3\}$

$$\pi(x, 1) = 4$$
, $\pi(x, 2) = 5$, $\pi(x, 3) = 6$.

- Offensichtlich ist auch $x = (\pi(x, 1), \dots, \pi(x, |x|))$ eine alternative Schreibweise für eine Folge x.
- Diese Schreibweise ist zwar auf den ersten Blick vielleicht etwas umständlich, wir können damit aber eine weitere nützliche Operation auf Folgen definieren: die Konkatenation, die zwei Folgen zu einer "großen" Folge verschmelzt.

Definition (Konkatenation)

Die Konkatenation \circ : $M^n \times M^m \to M^{n+m}$ konkateniert zwei Folgen beliebiger Länge (aber selber Grundmenge M) miteinander:

$$x \circ y = (\pi(x, 1), \dots, \pi(x, |x|), \pi(y, 1), \dots, \pi(y, |y|)),$$

oder anders ausgedrückt:

$$\pi((x \circ y), i) = \begin{cases} \pi(x, i) & \text{für } 1 \le i \le |x| \\ \pi(y, i - |x|) & \text{für } |x| + 1 \le i \le |x| + |y| \end{cases}$$

Es gilt:
$$I_{|x \circ y|} = I_{|x|+|y|}$$
.

Beispiel

Sei $M = \mathbb{N}_0$ und x = (7, 0, 3, 18), y = (21, 3, 7), dann ist

$$x \circ y = (\pi(x,1), \pi(x,2), \pi(x,3), \pi(x,4),$$

$$\pi(y,5-4), \pi(y,6-4), \pi(y,7-4))$$

$$= (7,0,3,18,21,3,7).$$