Chapter 13

Homework 21935004 谭焱

Problem 13.1. Suppose $k \in \{0, 1, ...\}, 0 < \gamma \le 1$. Prove $C^{k, \gamma}(\bar{U})$ is a Banach space.

Solution.

• Real linear space

If $u_1, u_2 \in C^{k,\gamma}(\bar{U})$. So $u = u_1 + u_2$ fill that $u \in C^k(\bar{U})$, since $u_1, u_2 \in C^k(\bar{U})$. And

$$\begin{aligned} \|u\|_{C^{k,\gamma}(\bar{U})} &= \sum_{|\alpha| \le k} \|D^{\alpha}u\|_{C(\bar{U})} + \sum_{|\alpha| = k} \left[D^{\alpha}u\right]_{C^{0,\gamma}(\bar{U})} \\ &\le \sum_{|\alpha| \le k} \|D^{\alpha}u_1\|_{C(\bar{U})} + \sum_{|\alpha| = k} \left[D^{\alpha}u_1\right]_{C^{0,\gamma}(\bar{U})} + \sum_{|\alpha| \le k} \|D^{\alpha}u_2\|_{C(\bar{U})} + \sum_{|\alpha| = k} \left[D^{\alpha}u_2\right]_{C^{0,\gamma}(\bar{U})}. \end{aligned}$$

So $u \in C^{k,\gamma}(\bar{U})$.

- $\|\cdot\|$ is a norm
 - (i) $||u+v|| \le ||u|| + ||v||$ for all $u, v \in C^{k,\gamma}(\bar{U})$ can be got from above.
 - (ii) $\|\lambda u\| = |\lambda| \|u\|$ for all $u \in C^{k,\gamma}(\bar{U}), \lambda \in \mathbb{R}$.

$$\begin{split} \|\lambda u\| &= \sum_{|\alpha| \le k} \|\lambda D^{\alpha} u\|_{C(\bar{U})} + \sum_{|\alpha| = k} [\lambda D^{\alpha} u]_{C^{0,\gamma}(\bar{U})} \\ &= |\lambda| \left(\sum_{|\alpha| \le k} \|D^{\alpha} u\|_{C(\bar{U})} + \sum_{|\alpha| = k} [D^{\alpha} u]_{C^{0,\gamma}(\bar{U})} \right) \\ &= |\lambda| \|u\| \end{split}$$

(iii) ||u|| = 0 if and only if u = 0.

Since ||u|| = 0 is equal to

$$\begin{cases} \|D^{\alpha}u\|_{C(\bar{U})} & |\alpha| \le k \\ [D^{\alpha}u]_{C^{0,\gamma}(\bar{U})} & |\alpha| = k. \end{cases}$$

From definition of $\|\cdot\|_{C(\bar{U})}$, $[\cdot]_{C^{0,\gamma}(\bar{U})}$ know that $D^{\alpha}u = 0, \forall |\alpha| \leq k$. Take $|\alpha| = 0$ get u = 0. While u = 0, it's clear that ||u|| = 0.

• Complete

We already know that $C(\bar{U}), C^{0,\gamma}(\bar{U})$ is complete. And For each Cauchy sequence $\{u_k\}_{k=1}^{\infty}$, from the definition of $C^{k,\gamma}(\bar{U})$ know that $\{D^{\alpha}u_k\}_{k=1}^{\infty}$ also is a Cauchy sequence in $C(\bar{U})$. So they will converge to $u^{\alpha} \in C(\bar{U})$ respectively. Exspecially, Let u denote u^0 . Then prove that $u \in C^{k,\gamma}(\bar{U})$. Since $D^{\alpha}u = D^{\alpha} \lim_{k=1}^{\infty} u_k = \lim_{k=1}^{\infty} D^{\alpha}u_k = u^{\alpha}$. Therefore $u \in C^{k\gamma}(\bar{U})$.

Problem 13.2. Denote by U the open square $\{x \in \mathbb{R}^2 | |x_1| < 1, |x_2| < 1\}$. Define

$$u(x) = \begin{cases} 1 - x_1 & \text{if } x_1 > 0, & |x_2| < x_1 \\ 1 + x_1 & \text{if } x_1 < 0, & |x_2| < -x_1 \\ 1 - x_2 & \text{if } x_2 > 0, & |x_1| < x_2 \\ 1 + x_2 & \text{if } x_2 < 0, & |x_1| < -x_2 \end{cases}$$

For which $1 \leq p \leq \infty$ does u belong to $W^{1,p}(U)$?

Solution. Define v as

$$v(x) = \begin{cases} -1 & \text{if } x_1 > 0, & |x_2| < x_1 \\ 1 & \text{if } x_1 < 0, & |x_2| < -x_1 \\ -1 & \text{if } x_2 > 0, & |x_1| < x_2 \\ 1 & \text{if } x_2 < 0, & |x_1| < -x_2 \end{cases}$$

Denote U_1, U_2, U_3, U_4 as the four part of U divide by two line $x_1 = x_2, x_1 = -x_2$. So that $\forall \phi \in C_c^{\infty}(U)$,

$$\int_{U} uD\phi + v\phi dx = \int_{U_{1}} uD\phi + v\phi dx + \int_{U_{2}} uD\phi - v\phi dx + \int_{U_{3}} uD\phi + v\phi dx + \int_{U_{4}} uD\phi + v\phi dx
= \int_{\partial U_{1}} u\phi \nu dS + \int_{\partial U_{2}} u\phi \nu dS + \int_{\partial U_{3}} u\phi \nu dS + \int_{\partial U_{4}} u\phi \nu dS
= \int_{\partial U} u\phi \nu dS
= 0.$$

That's mean v is weak derivative of u. And it's easy to see that $u, v \in L^p(U), 1 \le p < \infty$. Therefore, u belong to $W^{1,p}(U)$.

Problem 13.3. Assume n=1 and $u \in W^{1,p}(0,1)$ for some $1 \le p < \infty$

- (a) Show that u is equal a.e. to an absolutely continuous function and u' (which exists a.e.) belongs to $L^p(0,1)$
- (b) Prove that if 1 , then

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'|^p dt \right)^{1/p}$$

for a.e. $x, y \in [0, 1]$

Solution.

(a) Assume v is the weak derivative of u. So $u, v \in L^p(0,1)$ and

$$\int_0^1 u D\phi dx = -\int_0^1 v \phi dx \qquad \forall \phi \in C_c^{\infty}(0,1).$$

Let $\phi = 1$ know that $w(x) = \int_0^x v dz$ exist and is absolutely continuous in (0,1). Then

$$\int_{0}^{1} (w - u) D\phi dx = \int_{0}^{1} \int_{0}^{x} v(z) dz D\phi(x) dx - \int_{0}^{1} u(x) D\phi(x) dx$$

$$= \int_{0}^{1} \int_{z}^{1} D\phi(x) dx v(z) dz - \int_{0}^{1} u(x) D\phi(x) dx$$

$$= -\int_{0}^{1} \phi(z) v(z) dz - \int_{0}^{1} u(x) D\phi(x) dx$$

$$= \int_{0}^{1} u(x) D\phi dx - \int_{0}^{1} u(x) D\phi(x) dx$$

$$= 0.$$

From the arbitrary of ϕ know u = w + C. Therefore, u is absolutely continuous and $u' = v \in L^p(0,1)$.

(b)

$$|x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'|^p dt \right)^{1/p}$$

$$\geq \left(\int_x^y 1^{\frac{p}{p-1}} dz \right)^{1 - \frac{1}{p}} \left(\int_x^y |u'|^p dz \right)^{\frac{1}{p}}$$

$$\geq \int_x^y |u'| dz$$

$$\geq |u(x) - u(y)|.$$

Problem 13.4. Let U, V be open sets, with $V \subset\subset U$. Show there exists a smooth function ζ such that $\zeta \equiv 1$ on $V, \zeta = 0$ near ∂U . (Hint: Take $V \subset\subset W \subset\subset U$ and mollify χ_w .)

Solution. Since $V \subset\subset U$, assume a closure fill $V \subset\subset W \subset\subset U$.

First, choose a function u maintain that $\forall x \in W, u(x) = 1, u(x) = 0$, otherwise. Take $\varepsilon = \frac{1}{3} \min \{ \operatorname{dist}(\bar{V}, W), \operatorname{dist}(W, \bar{U}) \}$. Then use the standard mollifier η_{ε} define $u^{\varepsilon} := \eta_{\varepsilon} * u$. It's follows that u^{ε} is smooth, $u^{\varepsilon}(x) = 1, \forall x \in V$ and $u^{\varepsilon}(x) = 0, \forall x \in \partial U$.

Problem 13.5. Assume U is bounded and $U \subset \subset \bigcup_{i=1}^N V_i$. Show there exist C^{∞} functions $\zeta_i (i=1,\ldots,N)$ such that

$$\begin{cases} 0 \le \zeta_i \le 1, \operatorname{spt} \zeta_i \subset V_i (i = 1, \dots, N) \\ \sum_{i=1}^N \zeta_i = 1 \quad \text{on } U \end{cases}$$

The functions $\{\zeta_i\}_{i=1}^N$ form a partition of unity.

Solution. Without loss of generality, we may assume that the V_i are open, for if they are not, we can replace V_i by V_i^c . We note that, since U is bounded, \bar{U} is compact. Each $x \in U$ has a compact neighbourhood N_x contained in V_i for some i. Then $\{N_x^c\}$ is an open cover of the \bar{U} , which then has a finite subcover $N_{x_1}^c, \ldots, N_{x_k}$. We now let F_i be the union of the N_{x_i} contained in V_i . F_i is the compact since it is the finite union of compact sets. Therefore, F_i, V_i fill (Problem 13.4) since $U \subset \bigcup_{i=1}^N V_i$, so there are smooth function $\{\xi_i \mid \xi_i = 1 \text{ on } F_i, \operatorname{spt} \xi \subset V_i\}$. Since F_i cover $U, U \subset \{x \mid \sum_{i=1}^n \xi_i(x) > 0\}$ and we can use result of (Problem 13.4) again know exist $\omega(x) = 1, \forall x \in \bar{U}$ and $\operatorname{spt} \omega \subset \{x \mid \sum_{i=1}^n \xi_i(x) > 0\}$. Now, we let $\xi_{N+1} = 1 - \omega$, so $\sum_{i=1}^{N+1} \xi_i > 0$ everywhere. We then take

$$\zeta_i = \frac{\xi_i}{\sum_{j=1}^{N+1} \xi_j}$$

as our partiation of unity. Therefore spt $\zeta_i = \operatorname{spt} \xi_i \subset V_i, \forall y \in \bar{U}, \sum_{i=1}^N \zeta_i = \frac{\sum_{j=1}^{N+1} \xi_j - \xi_{N+1}}{\sum_{j=1}^{N+1} \xi_j} = 1$ and $\zeta_i \in [0,1]$.

Problem 13.6. Assume that U is bounded and there exists a smooth vector field $\boldsymbol{\alpha}$ such that $\boldsymbol{\alpha} \cdot \boldsymbol{\nu} \geq 1$ along ∂U , where $\boldsymbol{\nu}$ as usual denotes the outward unit normal. Assume $1 \leq p < \infty$ Apply the Gauss-Green Theorem to $\int_{\partial U} |u|^p \boldsymbol{\alpha} \cdot \boldsymbol{\nu} dS$, to derive a new proof of the trace inequality

$$\int_{\partial U} |u|^p dS \le C \int_U |Du|^p + |u|^p dx$$

for all $u \in C^1(\bar{U})$

Solution. Since α is smooth and U is bounded, $\exists M \in \mathbb{R}, s.t. \operatorname{div} \alpha < M, |\alpha| < M$.

$$\int_{\partial U} |u|^p dS$$

$$\leq \int_{\partial U} |u|^p \alpha \cdot \nu dS$$

$$= \int_{U} D |u|^p \cdot \alpha + |u|^p \operatorname{div} \alpha dx$$

$$\leq \int_{U} Mp |u|^{p-1} |Du| + M |u|^p dx$$

$$\leq \int_{U} M((p-1) |u|^p + |Du|^p) + M |u|^p dx$$

$$\leq Mp \int_{U} |Du|^p + |u|^p dx.$$

Take C = Mp gives the trace inequality.