Contents	8 Geometry 18
	8.1 Default Code
	8.3 External bisector
1 Basic	1 8.4 Heart
1.1 Shell script	<u> </u>
1.3 vimrc	
1.4 readchar	8.8 Intersection of polygon and circle 20
1.5 Black Magic	2 8.9 Intersection of line and circle
1.6 Texas hold'em	8.10point in circle
2 Graph	2 8.12CircleCover*
2.1 BCC Vertex*	8 133Dnoint*
2.2 Bridge*	8.14Convexhull3D*
2.3 2SAT (SCC)*	8.15DelaunayTriangulation*
2.4 MinimumMeanCycle*	8.16Triangulation Vonoroi*
2.5 Virtual Tree*	3 8.18minMaxEnclosingRectangle
2.6 Maximum Clique Dyn*	0.13 minbiscon woconvex
2.7 Minimum Steiner Tree*	01201121110113112 34111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2.8 Dominator Tree*	
2.10Vizing's theorem	=
2.11Minimum Clique Cover*	0 4 11 1 11 11 11 11 11 11 11 11 11 11 11
2.12NumberofMaximalClique*	9.2 Mo's Alogrithm On Tree
	9.3 DynamicConvexTrick*
3 Data Structure	6 9.4 DLX*
3.1 Leftist Tree	9 6 AdantiveSimpson
3.2 Heavy light Decomposition	6
3.3 Centroid Decomposition*	
3.5 KDTree	
313 100 100 100 100 100 100 100 100 100	⁷ 1 Basic
4 Flow/Matching	8
4.1 Kuhn Munkres	1.1 Shell Scribt
4.2 MincostMaxflow	•
4.3 Maximum Simple Graph Matching*	
4.4 Minimum Weight Matching (Clique version)*	gii oz sca-ciiii bboq wali wexela wshadow o gi
4.6 BoundedFlow(Dinic*)	2 \$1.CPP
4.7 Gomory Hu tree	CIIIIOU TX COIIDIIE.SII
4.8 Flow Models	
5 String 5.1 KMP	11 1.2 Default code
5.2 Z-value	
5.3 Manacher*	11
5.4 Suffix Array	# NC NOB O O O O O O O O O
5.5 SAIS*	typedef long long ll;
5.6 Aho-Corasick Automatan	typedef pair <int, int=""> pii;</int,>
5.7 Smallest Rotation	12 typedef pair(11 11) pll:
5.8 De Bruijn sequence*	I #QETINE X TIPSI
5.9 SAM	#detine Y second
5.11cyclicLCS	#define SZ(a) ((int)a.size())
3.11cyc11c1c3	#define ALL(v) v.begin(), v.end()
6 Math	₁₄ #define pb push_back
6.1 ax+by=gcd*	14
6.2 floor and ceil	
6.3 Miller Rabin*	1 2 vimne
6.4 Fraction	<u></u> -
6.6 Pollard Rho	14
6.7 Simplex Algorithm	14 "This file should be placed at ~/.vimrc"
6.7.1 Construction	se nu ai hls et ru ic is sc cul
6.8 Schreier-Sims Algorithm*	se re=1 ts=4 sts=4 sw=4 ls=2 mouse=a
6.9 chineseRemainder	syntax on
6.10QuadraticResidue	syntax on hi cursorline cterm=none ctermbg=89
6.10QuadraticResidue	syntax on hi cursorline cterm=none ctermbg=89 set bg=dark hi cursor (AENTER) (ALEET AENTER) AENTER ALIRA (TARK)
6.10QuadraticResidue	syntax on hi cursorline cterm=none ctermbg=89 set bg=dark inoremap { <enter> {}<left><enter><up><tab></tab></up></enter></left></enter>
6.10QuadraticResidue	syntax on
6.10QuadraticResidue	syntax on hi cursorline cterm=none ctermbg=89 set bg=dark inoremap { <enter> {}<left><enter><up><tab> 16 16 16</tab></up></enter></left></enter>
6.10QuadraticResidue 6.11PiCount 6.12Primes 6.13Theorem 6.13.1Kirchhoff's Theorem 6.13.2Tutte's Matrix	syntax on
6.10QuadraticResidue	syntax on
6.10QuadraticResidue 6.11PiCount 6.12Primes 6.13Theorem 6.13.1Kirchhoff's Theorem 6.13.2Tutte's Matrix 6.13.3Cayley's Formula	syntax on
6.10QuadraticResidue 6.11PiCount 6.12Primes 6.13Theorem 6.13.1Kirchhoff's Theorem 6.13.2Tutte's Matrix 6.13.3Cayley's Formula 6.13.4Erdős-Gallai theorem 6.13.5Gale-Ryser theorem 6.13.6Fulkerson-Chen-Anstee theorem	syntax on hi cursorline cterm=none ctermbg=89 set bg=dark inoremap { <enter> {}<left><enter><up><tab> 16</tab></up></enter></left></enter>
6.10QuadraticResidue 6.11PiCount 6.12Primes 6.13Theorem 6.13.1Kirchhoff's Theorem 6.13.2Tutte's Matrix 6.13.3Cayley's Formula 6.13.4Erdős-Gallai theorem 6.13.5Gale-Ryser theorem	syntax on
6.10QuadraticResidue 6.11PiCount 6.12Primes 6.13Theorem 6.13.1Kirchhoff's Theorem 6.13.2Tutte's Matrix 6.13.3Cayley's Formula 6.13.4Erdős-Gallai theorem 6.13.5Gale-Ryser theorem 6.13.6Fulkerson-Chen-Anstee theorem 6.14Euclidean Algorithms	syntax on
6.10QuadraticResidue 6.11PiCount 6.12Primes 6.13Theorem 6.13.1Kirchhoff's Theorem 6.13.2Tutte's Matrix 6.13.3Cayley's Formula 6.13.4Erdős-Gallai theorem 6.13.5Gale-Ryser theorem 6.13.6Fulkerson-Chen-Anstee theorem 6.14Euclidean Algorithms	syntax on
6.10QuadraticResidue 6.11PiCount	syntax on
6.10QuadraticResidue 6.11PiCount 6.12Primes 6.13Theorem 6.13.1Kirchhoff's Theorem 6.13.2Tutte's Matrix 6.13.3Cayley's Formula 6.13.4Erdős-Gallai theorem 6.13.5Gale-Ryser theorem 6.13.6Fulkerson-Chen-Anstee theorem 6.14Euclidean Algorithms	syntax on
6.10QuadraticResidue 6.11PiCount	<pre>syntax on hi cursorline cterm=none ctermbg=89 set bg=dark inoremap {<enter> {}<left><enter><up><tab> 1.4 readchar 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9</tab></up></enter></left></enter></pre>

1.5 Black Magic

```
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/assoc_container.hpp> //rb_tree
using namespace __gnu_pbds;
typedef __gnu_pbds::priority_queue<int> heap;
int main() {
  heap h1, h2;
  h1.push(1), h1.push(3);
  h2.push(2), h2.push(4);
  h1.join(h2);
  cout << h1.size() << h2.size() << h1.top() << endl;</pre>
      //404
  tree<11, null_type, less<11>, rb_tree_tag,
      tree_order_statistics_node_update> st;
  tree<11, 11, less<11>, rb_tree_tag,
      tree_order_statistics_node_update> mp;
  for (int x : {0, 2, 3, 4}) st.insert(x);
  cout << *st.find_by_order(2) << st.order_of_key(1) <<</pre>
        endl; //31
//__int128_t,__float128_t
```

1.6 Texas hold'em

```
char suit[4]={'C','D','H','Y'},ranks[13]={'2','3','4','
5','6','7','8','9','T','J','Q','K','A'};
int rk[256];
   for(int i=0;i<13;++i)</pre>
   rk[ranks[i]]=i;
   for(int i=0;i<4;++i)
   rk[suit[i]]=i;
struct cards{
  vector<pii> v;
  int suit_count[4],hands;
  void reset(){v.clear(),FILL(suit_count,0),hands=-1;}
  void insert(char a, char b){//suit, rank
    ++suit_count[rk[a]];
    int flag=0;
    for(auto &i:v)
       if(i.Y==rk[b])
         ++i.X,flag=1;
         break;
    if(!flag) v.pb(pii(1,rk[b]));
  void insert(string s){insert(s[0],s[1]);}
  void ready(){
    int Straight=0,Flush=(*max_element(suit_count,
         suit_count+4)==5);
     sort(ALL(v),[](ii a,ii b){return a>b;});
    if(SZ(v) == 5\&v[0].Y == v[1].Y + 1\&v[1].Y == v[2].Y + 1\&v[0]
         [2].Y==v[3].Y+1&&v[3].Y==v[4].Y+1)
       Straight=1;
    else if(SZ(v)==5&&v[0].Y==12&&v[1].Y==3&&v[2].Y
         ==2\&v[3].Y==1\&v[4].Y==0)
       v \hbox{\tt [0].Y=3,v[1].Y=2,v[2].Y=1,v[1].Y=0,v[0].Y=-1,}\\
           Straight=1;
    if(Straight&&Flush) hands=1;
    else if(v[0].X==4) hands=2;
    else if(v[0].X==3&&v[1].X==2) hands=3;
    else if(Flush) hands=4;
    else if(Straight) hands=5;
    else if(v[0].X==3) hands=6;
    else if(v[0].X==2&&v[1].X==2) hands=7;
    else if(v[0].X==2) hands=8;
    else hands=9;
  bool operator>(const cards &a)const{
    if(hands==a.hands) return v>a.v;
     return hands<a.hands;</pre>
};
```

2 Graph

2.1 BCC Vertex*

```
vector<int> G[N]; // 1-base
vector<int> nG[N], bcc[N];
int low[N], dfn[N], Time;
int bcc_id[N], bcc_cnt; // 1-base
bool is_cut[N]; // whether is av
bool cir[N];
int st[N], top;
void dfs(int u, int pa = -1) {
  int child = 0;
  low[u] = dfn[u] = ++Time;
  st[top++] = u;
  for (int v : G[u])
    if (!dfn[v]) {
      dfs(v, u), ++child;
low[u] = min(low[u], low[v]);
      if (dfn[u] <= low[v]) {</pre>
        is_cut[u] = 1;
        bcc[++bcc_cnt].clear();
        int t;
         do {
           bcc_id[t = st[--top]] = bcc_cnt;
           bcc[bcc_cnt].push_back(t);
         } while (t != v);
        bcc_id[u] = bcc_cnt;
        bcc[bcc_cnt].pb(u);
    } else if (dfn[v] < dfn[u] && v != pa)</pre>
      low[u] = min(low[u], dfn[v]);
  if (pa == -1 && child < 2) is_cut[u] = 0;</pre>
}
void bcc_init(int n) {
  Time = bcc_cnt = top = 0;
  for (int i = 1; i <= n; ++i)</pre>
    G[i].clear(), dfn[i] = bcc_id[i] = is_cut[i] = 0;
void bcc_solve(int n) {
  for (int i = 1; i <= n; ++i)</pre>
    if (!dfn[i]) dfs(i);
  // circle-square tree
  for (int i = 1; i <= n; ++i)</pre>
    if (is_cut[i])
      bcc_id[i] = ++bcc_cnt, cir[bcc_cnt] = 1;
  for (int i = 1; i <= bcc_cnt && !cir[i]; ++i)</pre>
    for (int j : bcc[i])
      if (is_cut[j])
        nG[i].pb(bcc_id[j]), nG[bcc_id[j]].pb(i);
}
```

2.2 Bridge*

```
int low[N], dfn[N], Time; // 1-base
vector<pii> G[N], edge;
vector<bool> is_bridge;

void init(int n) {
    Time = 0;
    for (int i = 1; i <= n; ++i)
        G[i].clear(), low[i] = dfn[i] = 0;
}

void add_edge(int a, int b) {
    G[a].pb(pii(b, SZ(edge))), G[b].pb(pii(a, SZ(edge)));
    edge.pb(pii(a, b));
}

void dfs(int u, int f) {
    dfn[u] = low[u] = ++Time;
    for (auto i : G[u])
        if (!dfn[i.X])
        dfs(i.X, i.Y), low[u] = min(low[u], low[i.X]);
        else if (i.Y != f) low[u] = min(low[u], dfn[i.X]);</pre>
```

```
if (low[u] == dfn[u] && f != -1) is_bridge[f] = 1;
}

void solve(int n) {
    is_bridge.resize(SZ(edge));
    for (int i = 1; i <= n; ++i)
        if (!dfn[i]) dfs(i, -1);
}</pre>
```

2.3 2SAT (SCC)*

```
struct SAT { // 0-base
  int low[N], dfn[N], bln[N], n, Time, nScc;
  bool instack[N], istrue[N];
  stack<int> st:
  vector<int> G[N], SCC[N];
  void init(int _n) {
    n = _n; // assert(n * 2 <= N);</pre>
    for (int i = 0; i < n + n; ++i) G[i].clear();</pre>
  void add_edge(int a, int b) { G[a].pb(b); }
  int rv(int a) {
    if (a > n) return a - n;
    return a + n;
  void add_clause(int a, int b) {
    add_edge(rv(a), b), add_edge(rv(b), a);
  void dfs(int u) {
    dfn[u] = low[u] = ++Time;
    instack[u] = 1, st.push(u);
for (int i : G[u])
      if (!dfn[i])
        dfs(i), low[u] = min(low[i], low[u]);
       else if (instack[i] && dfn[i] < dfn[u])</pre>
        low[u] = min(low[u], dfn[i]);
    if (low[u] == dfn[u]) {
      int tmp;
      do {
        tmp = st.top(), st.pop();
         instack[tmp] = 0, bln[tmp] = nScc;
      } while (tmp != u);
       ++nScc;
    }
  bool solve() {
    Time = nScc = 0;
    for (int i = 0; i < n + n; ++i)</pre>
      SCC[i].clear(), low[i] = dfn[i] = bln[i] = 0;
    for (int i = 0; i < n + n; ++i)</pre>
      if (!dfn[i]) dfs(i);
    for (int i = 0; i < n + n; ++i) SCC[bln[i]].pb(i);</pre>
    for (int i = 0; i < n; ++i) {</pre>
      if (bln[i] == bln[i + n]) return false;
      istrue[i] = bln[i] < bln[i + n];</pre>
      istrue[i + n] = !istrue[i];
    return true;
};
```

2.4 MinimumMeanCycle*

```
ta * (L - j) < (dp[L][i] - dp[j][i]) * tb)
    ta = dp[L][i] - dp[j][i], tb = L - j;
    if (ta == 0) continue;
    if (a == -1 || a * tb > ta * b) a = ta, b = tb;
}
if (a != -1) {
    ll g = __gcd(a, b);
    return pll(a / g, b / g);
}
return pll(-1LL, -1LL);
}
void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < n; ++j) dp[i + 2][j] = INF;
}
};</pre>
```

2.5 Virtual Tree*

```
vector<int> vG[N];
int top, st[N];
void insert(int u) {
  if (top == -1) return st[++top] = u, void();
  int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
  while (top >= 1 && dep[st[top - 1]] >= dep[p])
    vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
    vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
void reset(int u) {
 for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
  top = -1;
  sort(ALL(v),
    [&](int a, int b) { return dfn[a] < dfn[b]; });</pre>
  for (int i : v) insert(i);
  while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
  // do something
  reset(v[0]);
```

2.6 Maximum Clique Dyn*

```
const int N = 150;
struct MaxClique { // Maximum Clique
  bitset<N> a[N], cs[N];
  int ans, sol[N], q, cur[N], d[N], n;
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; i++) a[i].reset();</pre>
  void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
  void csort(vector<int> &r, vector<int> &c) {
    int mx = 1, km = max(ans - q + 1, 1), t = 0,
        m = r.size();
    cs[1].reset(), cs[2].reset();
for (int i = 0; i < m; i++) {</pre>
      int p = r[i], k = 1;
      while ((cs[k] & a[p]).count()) k++;
      if (k > mx) mx++, cs[mx + 1].reset();
      cs[k][p] = 1;
      if (k < km) r[t++] = p;
    c.resize(m);
    if (t) c[t - 1] = 0;
    for (int k = km; k <= mx; k++)</pre>
      for (int p = cs[k]._Find_first(); p < N;</pre>
            p = cs[k]._Find_next(p))
        r[t] = p, c[t] = k, t++;
  }
```

```
void dfs(vector<int> &r, vector<int> &c, int 1,
    bitset<N> mask) {
    while (!r.empty()) {
      int p = r.back();
      r.pop_back(), mask[p] = 0;
      if (q + c.back() <= ans) return;</pre>
      cur[q++] = p;
      vector<int> nr, nc;
      bitset<N> nmask = mask & a[p];
      for (int i : r)
        if (a[p][i]) nr.push_back(i);
      if (!nr.empty()) {
        if (1 < 4) {
           for (int i : nr)
            d[i] = (a[i] \& nmask).count();
           sort(nr.begin(), nr.end(),
             [&](int x, int y) { return d[x] > d[y]; });
        csort(nr, nc), dfs(nr, nc, l + 1, nmask);
      } else if (q > ans) ans = q, copy_n(cur, q, sol);
      c.pop_back(), q--;
    }
  int solve(bitset<N> mask = bitset<N>(
               string(N, '1'))) { // vertex mask
    vector<int> r, c;
    ans = q = 0;
    for (int i = 0; i < n; i++)</pre>
      if (mask[i]) r.push_back(i);
    for (int i = 0; i < n; i++)</pre>
      d[i] = (a[i] & mask).count();
    sort(r.begin(), r.end(),
    [&](int i, int j) { return d[i] > d[j]; }); csort(r, c), dfs(r, c, 1, mask);
    return ans; // sol[0 ~ ans-1]
  }
} graph;
```

2.7 Minimum Steiner Tree*

```
// Minimum Steiner Tree
// O(V 3^T + V^2 2^T)
struct SteinerTree { // 0-base
  static const int T = 10, N = 105, INF = 1e9;
  int n, dst[N][N], dp[1 << T][N], tdst[N];</pre>
  int vcost[N]; // the cost of vertexs
  void init(int _n) {
   n = _n;
for (int i = 0; i < n; ++i) {</pre>
      for (int j = 0; j < n; ++j) dst[i][j] = INF;</pre>
      dst[i][i] = vcost[i] = 0;
    }
  }
  void add_edge(int ui, int vi, int wi) {
   dst[ui][vi] = min(dst[ui][vi], wi);
  void shortest_path() {
    for (int k = 0; k < n; ++k)
      for (int i = 0; i < n; ++i)</pre>
        for (int j = 0; j < n; ++j)</pre>
          dst[i][j] =
             min(dst[i][j], dst[i][k] + dst[k][j]);
  int solve(const vector<int> &ter) {
    shortest_path();
    int t = SZ(ter);
    for (int i = 0; i < (1 << t); ++i)</pre>
      for (int j = 0; j < n; ++j) dp[i][j] = INF;</pre>
    for (int i = 0; i < n; ++i) dp[0][i] = vcost[i];</pre>
    for (int msk = 1; msk < (1 << t); ++msk) {</pre>
      if (!(msk & (msk - 1))) {
        int who = __lg(msk);
        for (int i = 0; i < n; ++i)</pre>
          dp[msk][i] =
             vcost[ter[who]] + dst[ter[who]][i];
      for (int i = 0; i < n; ++i)</pre>
        for (int submsk = (msk - 1) & msk; submsk;
              submsk = (submsk - 1) & msk)
          dp[msk][i] = min(dp[msk][i],
```

2.8 Dominator Tree*

```
struct dominator_tree { // 1-base
  vector<int> G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
  int semi[N], idom[N], best[N];
  vector<int> tree[N]; // dominator_tree
  void init(int _n) {
    n = _n;
     for (int i = 1; i <= n; ++i)</pre>
       G[i].clear(), rG[i].clear();
  void add_edge(int u, int v) {
    G[u].pb(v), rG[v].pb(u);
  void dfs(int u) {
    id[dfn[u] = ++Time] = u;
     for (auto v : G[u])
       if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
    if (y <= x) return y;
int tmp = find(pa[y], x);</pre>
     if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
     return pa[y] = tmp;
  void tarjan(int root) {
    Time = 0;
     for (int i = 1; i <= n; ++i) {</pre>
       dfn[i] = idom[i] = 0;
       tree[i].clear();
       best[i] = semi[i] = i;
     dfs(root);
     for (int i = Time; i > 1; --i) {
       int u = id[i];
       for (auto v : rG[u])
         if (v = dfn[v]) {
           find(v, i);
           semi[i] = min(semi[i], semi[best[v]]);
       tree[semi[i]].pb(i);
       for (auto v : tree[pa[i]]) {
         find(v, pa[i]);
         idom[v] =
           semi[best[v]] == pa[i] ? pa[i] : best[v];
       tree[pa[i]].clear();
     for (int i = 2; i <= Time; ++i) {</pre>
       if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
       tree[id[idom[i]]].pb(id[i]);
    }
  }
};
```

2.9 Minimum Arborescence*

```
struct zhu_liu { // O(VE)
   struct edge {
```

```
int u, v;
    11 w;
  }:
  vector<edge> E; // 0-base
  int pe[N], id[N], vis[N];
  11 in[N];
  void init() { E.clear(); }
  void add_edge(int u, int v, ll w) {
    if (u != v) E.pb(edge{u, v, w});
  ll build(int root, int n) {
    11 \text{ ans} = 0;
    for (;;) {
      fill_n(in, n, INF);
      for (int i = 0; i < SZ(E); ++i)</pre>
         if (E[i].u != E[i].v && E[i].w < in[E[i].v])</pre>
      pe[E[i].v] = i, in[E[i].v] = E[i].w;
for (int u = 0; u < n; ++u) // no solution</pre>
        if (u != root && in[u] == INF) return -INF;
       int cntnode = 0;
       fill_n(id, n, -1), fill_n(vis, n, -1);
      for (int u = 0; u < n; ++u) {
        if (u != root) ans += in[u];
        int v = u;
        while (vis[v] != u && !~id[v] && v != root)
           vis[v] = u, v = E[pe[v]].u;
        if (v != root && !~id[v]) {
           for (int x = E[pe[v]].u; x != v;
                x = E[pe[x]].u)
             id[x] = cntnode;
           id[v] = cntnode++;
        }
      if (!cntnode) break; // no cycle
      for (int u = 0; u < n; ++u)
        if (!~id[u]) id[u] = cntnode++;
       for (int i = 0; i < SZ(E); ++i) {</pre>
        int v = E[i].v;
        E[i].u = id[E[i].u], E[i].v = id[E[i].v];
        if (E[i].u != E[i].v) E[i].w -= in[v];
      n = cntnode, root = id[root];
    return ans;
};
```

2.10 Vizing's theorem

};

```
namespace vizing { // returns edge coloring in adjacent
                    // matrix G. 1 - based
int C[kN][kN], G[kN][kN];
void clear(int N) {
  for (int i = 0; i <= N; i++) {</pre>
    for (int j = 0; j \leftarrow N; j++) C[i][j] = G[i][j] = 0;
  }
void solve(vector<pair<int, int>> &E, int N, int M) {
 int X[kN] = {}, a;
  auto update = [&](int u) {
    for (X[u] = 1; C[u][X[u]]; X[u]++)
  auto color = [&](int u, int v, int c) {
   int p = G[u][v];
    G[u][v] = G[v][u] = c;
    C[u][c] = v, C[v][c] = u;
    C[u][p] = C[v][p] = 0;
    if (p) X[u] = X[v] = p;
    else update(u), update(v);
    return p;
  };
  auto flip = [&](int u, int c1, int c2) {
    int p = C[u][c1];
    swap(C[u][c1], C[u][c2]);
    if (p) G[u][p] = G[p][u] = c2;
if (!C[u][c1]) X[u] = c1;
    if (!C[u][c2]) X[u] = c2;
    return p;
```

```
for (int i = 1; i <= N; i++) X[i] = 1;
for (int t = 0; t < E.size(); t++) {</pre>
    int u = E[t].first, v0 = E[t].second, v = v0,
        c0 = X[u], c = c0, d;
    vector<pair<int, int>> L;
    int vst[kN] = {};
    while (!G[u][v0]) {
      L.emplace_back(v, d = X[v]);
      if (!C[v][c])
         for (a = (int)L.size() - 1; a >= 0; a--)
          c = color(u, L[a].first, c);
      else if (!C[u][d])
         for (a = (int)L.size() - 1; a >= 0; a--)
          color(u, L[a].first, L[a].second);
      else if (vst[d]) break;
      else vst[d] = 1, v = C[u][d];
    if (!G[u][v0]) {
      for (; v; v = flip(v, c, d), swap(c, d))
      if (C[u][c0]) {
        for (a = (int)L.size() - 2;
              a >= 0 && L[a].second != c; a--)
         for (; a >= 0; a--)
          color(u, L[a].first, L[a].second);
      } else t--;
    }
  }
} // namespace vizing
```

2.11 Minimum Clique Cover*

```
struct Clique_Cover { // 0-base, O(n2^n)
  int co[1 << N], n, E[N];</pre>
  int dp[1 << N];</pre>
  void init(int _n) {
    n = _n, fill_n(dp, 1 << n, 0);</pre>
     fill_n(E, n, 0), fill_n(co, 1 << n, 0);
  void add_edge(int u, int v) {
     E[u] = 1 << v, E[v] = 1 << u;
  int solve() {
     for (int i = 0; i < n; ++i)</pre>
       co[1 << i] = E[i] | (1 << i);
     co[0] = (1 << n) - 1;
     dp[0] = (n \& 1) * 2 - 1;
     for (int i = 1; i < (1 << n); ++i) {</pre>
       int t = i & -i;
       dp[i] = -dp[i ^ t];
       co[i] = co[i ^ t] & co[t];
     for (int i = 0; i < (1 << n); ++i)
       co[i] = (co[i] & i) == i;
     fwt(co, 1 << n);
     for (int ans = 1; ans < n; ++ans) {</pre>
       int sum = 0;
       for (int i = 0; i < (1 << n); ++i)</pre>
         sum += (dp[i] *= co[i]);
       if (sum) return ans;
     }
     return n;
  }
};
```

2.12 NumberofMaximalClique*

```
struct BronKerbosch { // 1-base
  int n, a[N], g[N][N];
  int S, all[N][N], some[N][N], none[N][N];
  void init(int _n) {
    n = _n;
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= n; ++j) g[i][j] = 0;
  }
  void add_edge(int u, int v) {</pre>
```

```
g[u][v] = g[v][u] = 1;
  void dfs(int d, int an, int sn, int nn) {
    if (S > 1000) return; // pruning
    if (sn == 0 && nn == 0) ++S;
    int u = some[d][0];
    for (int i = 0; i < sn; ++i) {</pre>
       int v = some[d][i];
       if (g[u][v]) continue;
       int tsn = 0, tnn = 0;
       copy_n(all[d], an, all[d + 1]);
all[d + 1][an] = v;
       for (int j = 0; j < sn; ++j)</pre>
         if (g[v][some[d][j]])
           some[d + 1][tsn++] = some[d][j];
       for (int j = 0; j < nn; ++j)</pre>
         if (g[v][none[d][j]])
           none[d + 1][tnn++] = none[d][j];
       dfs(d + 1, an + 1, tsn, tnn);
       some[d][i] = 0, none[d][nn++] = v;
  }
  int solve() {
    iota(some[0], some[0] + n, 1);
    S = 0, dfs(0, 0, n, 0);
     return S;
};
```

3 Data Structure

3.1 Leftist Tree

```
struct node {
 11 v, data, sz, sum;
  node *1, *r;
  node(ll k)
    : v(0), data(k), sz(1), l(0), r(0), sum(k) {}
11 sz(node *p) { return p ? p->sz : 0; }
11 V(node *p) { return p ? p->v : -1; }
11 sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a->r = merge(a->r, b);
  if (V(a->r) > V(a->1)) swap(a->r, a->1);
  a -> v = V(a -> r) + 1, a -> sz = sz(a -> 1) + sz(a -> r) + 1;
  a\rightarrow sum = sum(a\rightarrow 1) + sum(a\rightarrow r) + a\rightarrow data;
  return a:
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->1, o->r);
  delete tmp;
```

3.2 Heavy light Decomposition

```
struct Heavy_light_Decomposition { // 1-base
  int n, ulink[10005], deep[10005], mxson[10005],
    w[10005], pa[10005];
  int t, pl[10005], data[10005], dt[10005], bln[10005],
    edge[10005], et;
  vectorvpii> G[10005];
  void init(int _n) {
    n = _n, t = 0, et = 1;
    for (int i = 1; i <= n; ++i)
        G[i].clear(), mxson[i] = 0;
  }
  void add_edge(int a, int b, int w) {
    G[a].pb(pii(b, et)), G[b].pb(pii(a, et)),
        edge[et++] = w;
  }
  void dfs(int u, int f, int d) {
    w[u] = 1, pa[u] = f, deep[u] = d++;</pre>
```

```
for (auto &i : G[u])
      if (i.X != f) {
         dfs(i.X, u, d), w[u] += w[i.X];
         if (w[mxson[u]] < w[i.X]) mxson[u] = i.X;</pre>
      } else bln[i.Y] = u, dt[u] = edge[i.Y];
  void cut(int u, int link) {
    data[pl[u] = t++] = dt[u], ulink[u] = link;
    if (!mxson[u]) return;
    cut(mxson[u], link);
for (auto i : G[u])
      if (i.X != pa[u] && i.X != mxson[u])
        cut(i.X, i.X);
  void build() { dfs(1, 1, 1), cut(1, 1), /*build*/; }
  int query(int a, int b) {
    int ta = ulink[a], tb = ulink[b], re = 0;
    while (ta != tb)
      if (deep[ta] < deep[tb])</pre>
        /*query*/, tb = ulink[b = pa[tb]];
      else /*query*/, ta = ulink[a = pa[ta]];
    if (a == b) return re;
    if (pl[a] > pl[b]) swap(a, b);
    /*query*/
    return re;
  }
};
```

3.3 Centroid Decomposition*

```
struct Cent_Dec { // 1-base
  vector<pll> G[N];
  pll info[N]; // store info. of itself
  pll upinfo[N]; // store info. of climbing up
  int n, pa[N], layer[N], sz[N], done[N];
  ll dis[__lg(N) + 1][N];
  void init(int _n) {
    n = _n, layer[0] = -1;
    fill_n(pa + 1, n, 0), fill_n(done + 1, n, 0);
    for (int i = 1; i <= n; ++i) G[i].clear();</pre>
  void add_edge(int a, int b, int w) {
    G[a].pb(pll(b, w)), G[b].pb(pll(a, w));
  void get_cent(
    int u, int f, int &mx, int &c, int num) {
    int mxsz = 0;
    sz[u] = 1;
    for (pll e : G[u])
      if (!done[e.X] && e.X != f) {
        get_cent(e.X, u, mx, c, num);
        sz[u] += sz[e.X], mxsz = max(mxsz, sz[e.X]);
      }
    if (mx > max(mxsz, num - sz[u]))
      mx = max(mxsz, num - sz[u]), c = u;
  void dfs(int u, int f, ll d, int org) {
    // if required, add self info or climbing info
    dis[layer[org]][u] = d;
    for (pll e : G[u])
      if (!done[e.X] && e.X != f)
        dfs(e.X, u, d + e.Y, org);
  int cut(int u, int f, int num) {
    int mx = 1e9, c = 0, lc;
    get_cent(u, f, mx, c, num);
    done[c] = 1, pa[c] = f, layer[c] = layer[f] + 1;
    for (pll e : G[c])
      if (!done[e.X]) {
        if (sz[e.X] > sz[c])
         lc = cut(e.X, c, num - sz[c]);
        else lc = cut(e.X, c, sz[e.X]);
        upinfo[lc] = pll(), dfs(e.X, c, e.Y, c);
    return done[c] = 0, c;
  void build() { cut(1, 0, n); }
  void modify(int u) {
    for (int a = u, ly = layer[a]; a;
         a = pa[a], --ly) {
```

3.4 Link cut tree*

```
struct Splay { // xor-sum
  static Splay nil;
  Splay *ch[2], *f;
  int val, sum, rev,
                     size;
  Splay(int _val = 0)
    : val(\_val), sum(\_val), rev(0), size(1) {
    f = ch[0] = ch[1] = &nil;
  bool isr() {
    return f->ch[0] != this && f->ch[1] != this;
  int dir() { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d) {
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void push() {
    if (!rev) return;
    swap(ch[0], ch[1]);
    if (ch[0] != &nil) ch[0]->rev ^= 1;
    if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev = 0;
  void pull() {
    // take care of the nil!
    size = ch[0]->size + ch[1]->size + 1;
    sum = ch[0] \rightarrow sum ^ ch[1] \rightarrow sum ^ val;
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
  Splay *p = x \rightarrow f;
  int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
  p->setCh(x->ch[!d], d);
  x->setCh(p, !d);
  p->pull(), x->pull();
void splay(Splay *x) {
  vector<Splay *> splayVec;
  for (Splay *q = x;; q = q \rightarrow f) {
    splayVec.pb(q);
    if (q->isr()) break;
  reverse(ALL(splayVec));
  for (auto it : splayVec) it->push();
  while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir() == x->f->dir())
      rotate(x->f), rotate(x);
    else rotate(x), rotate(x);
  }
Splay *access(Splay *x) {
  Splay *q = nil;
  for (; x != nil; x = x->f)
```

```
splay(x), x \rightarrow setCh(q, 1), q = x;
  return q;
void root_path(Splay *x) { access(x), splay(x); }
void chroot(Splay *x) {
  root_path(x), x->rev ^= 1;
  x->push(), x->pull();
void split(Splay *x, Splay *y) {
  chroot(x), root_path(y);
void link(Splay *x, Splay *y) {
  root_path(x), chroot(y);
  x->setCh(y, 1);
void cut(Splay *x, Splay *y) {
  split(x, y);
  if (y->size != 5) return;
  y->push();
  y->ch[0] = y->ch[0]->f = nil;
Splay *get_root(Splay *x) {
  for (root_path(x); x->ch[0] != nil; x = x->ch[0])
   x->push();
  splav(x):
  return x;
bool conn(Splay *x, Splay *y) {
  return get_root(x) == get_root(y);
Splay *lca(Splay *x, Splay *y) {
  access(x), root_path(y);
  if (y->f == nil) return y;
  return y->f;
void change(Splay *x, int val) {
  splay(x), x->val = val, x->pull();
int query(Splay *x, Splay *y) {
  split(x, y);
  return y->sum;
```

3.5 KDTree

```
namespace kdt {
int root, lc[maxn], rc[maxn], xl[maxn], xr[maxn],
  yl[maxn], yr[maxn];
point p[maxn];
int build(int 1, int r, int dep = 0) {
  if (1 == r) return -1;
  function<bool(const point &, const point &)> f =
    [dep](const point &a, const point &b) {
      if (dep & 1) return a.x < b.x;</pre>
      else return a.y < b.y;</pre>
  int m = (1 + r) >> 1;
  nth_element(p + 1, p + m, p + r, f);
  x1[m] = xr[m] = p[m].x;
  yl[m] = yr[m] = p[m].y;
lc[m] = build(1, m, dep + 1);
  if (~lc[m]) {
    x1[m] = min(x1[m], x1[1c[m]]);
    xr[m] = max(xr[m], xr[lc[m]]);
    yl[m] = min(yl[m], yl[lc[m]]);
    yr[m] = max(yr[m], yr[lc[m]]);
  rc[m] = build(m + 1, r, dep + 1);
  if (~rc[m]) {
    x1[m] = min(x1[m], x1[rc[m]]);
    xr[m] = max(xr[m], xr[rc[m]]);
    yl[m] = min(yl[m], yl[rc[m]]);
    yr[m] = max(yr[m], yr[rc[m]]);
  return m;
bool bound(const point &q, int o, long long d) {
  double ds = sqrt(d + 1.0);
  if (q.x < xl[o] - ds || q.x > xr[o] + ds ||
    q.y < y1[o] - ds || q.y > yr[o] + ds
```

```
return false:
  return true;
long long dist(const point &a, const point &b) {
  return (a.x - b.x) * 111 * (a.x - b.x) +
    (a.y - b.y) * 111 * (a.y - b.y);
void dfs(
 const point &q, long long &d, int o, int dep = 0) {
  if (!bound(q, o, d)) return;
  long long cd = dist(p[o], q);
  if (cd != 0) d = min(d, cd);
  if ((dep & 1) && q.x < p[o].x ||</pre>
    !(dep & 1) && q.y < p[o].y) {
    if (~lc[o]) dfs(q, d, lc[o], dep + 1);
    if (~rc[o]) dfs(q, d, rc[o], dep + 1);
  } else {
    if (~rc[o]) dfs(q, d, rc[o], dep + 1);
    if (~lc[o]) dfs(q, d, lc[o], dep + 1);
 }
void init(const vector<point> &v) {
  for (int i = 0; i < v.size(); ++i) p[i] = v[i];</pre>
  root = build(0, v.size());
long long nearest(const point &q) {
 long long res = 1e18;
  dfs(q, res, root);
  return res;
} // namespace kdt
```

4 Flow/Matching

4.1 Kuhn Munkres

```
struct KM { // 0-base
 int w[MAXN][MAXN], h1[MAXN], hr[MAXN], s1k[MAXN], n;
  int fl[MAXN], fr[MAXN], pre[MAXN], qu[MAXN], ql, qr;
  bool vl[MAXN], vr[MAXN];
  void init(int _n) {
   n = _n;
for (int i = 0; i < n; ++i)</pre>
      for (int j = 0; j < n; ++j) w[i][j] = -INF;</pre>
  void add_edge(int a, int b, int wei) {
   w[a][b] = wei;
  bool Check(int x) {
    if (vl[x] = 1, ~fl[x])
      return vr[qu[qr++] = fl[x]] = 1;
    while (\sim x) swap(x, fr[fl[x] = pre[x]]);
    return 0;
  void Bfs(int s) {
   fill(slk, slk + n, INF);
    fill(vl, vl + n, 0), fill(vr, vr + n, 0);
    ql = qr = 0, qu[qr++] = s, vr[s] = 1;
    while (1) {
      int d;
      while (ql < qr)</pre>
        for (int x = 0, y = qu[ql++]; x < n; ++x)
          if (!v1[x] &&
            slk[x] >= (d = hl[x] + hr[y] - w[x][y]))
            if (pre[x] = y, d) slk[x] = d;
            else if (!Check(x)) return;
      d = INF;
      for (int x = 0; x < n; ++x)
        if (!vl[x] && d > slk[x]) d = slk[x];
      for (int x = 0; x < n; ++x) {
        if (vl[x]) hl[x] += d;
        else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x)
        if (!v1[x] && !slk[x] && !Check(x)) return;
    }
```

```
int Solve() {
    fill(f1, f1 + n, -1), fill(fr, fr + n, -1),
        fill(hr, hr + n, 0);
    for (int i = 0; i < n; ++i)
        hl[i] = *max_element(w[i], w[i] + n);
    for (int i = 0; i < n; ++i) Bfs(i);
    int res = 0;
    for (int i = 0; i < n; ++i) res += w[i][f1[i]];
    return res;
}
</pre>
```

4.2 MincostMaxflow

```
struct MCMF { // 0-base
   struct edge {
     11 from, to, cap, flow, cost, rev;
   } * past[MAXN];
   vector<edge> G[MAXN];
   bitset<MAXN> inq;
  11 dis[MAXN], up[MAXN], s, t, mx, n;
bool BellmanFord(ll &flow, ll &cost) {
     fill(dis, dis + n, INF);
     queue<ll> q;
     q.push(s), inq.reset(), inq[s] = 1;
     up[s] = mx - flow, past[s] = 0, dis[s] = 0;
     while (!q.empty()) {
       11 u = q.front();
       q.pop(), inq[u] = 0;
       if (!up[u]) continue;
       for (auto &e : G[u])
         if (e.flow != e.cap &&
           dis[e.to] > dis[u] + e.cost) {
           dis[e.to] = dis[u] + e.cost, past[e.to] = &e;
           up[e.to] = min(up[u], e.cap - e.flow);
           if (!inq[e.to]) inq[e.to] = 1, q.push(e.to);
     if (dis[t] == INF) return 0;
     flow += up[t], cost += up[t] * dis[t];
     for (ll i = t; past[i]; i = past[i]->from) {
       auto &e = *past[i];
       e.flow += up[t], G[e.to][e.rev].flow -= up[t];
     }
     return 1;
   11 MinCostMaxFlow(ll _s, ll _t, ll &cost) {
     s = _s, t = _t, cost = 0;
     11 \text{ flow = 0};
     while (BellmanFord(flow, cost))
     return flow;
   void init(ll _n, ll _mx) {
     n = n, mx = mx;
     for (int i = 0; i < n; ++i) G[i].clear();</pre>
   void add_edge(ll a, ll b, ll cap, ll cost) {
     G[a].pb(edge{a, b, cap, 0, cost, G[b].size()});
     G[b].pb(edge{b, a, 0, 0, -cost, G[a].size() - 1});
};
```

4.3 Maximum Simple Graph Matching*

```
struct GenMatch { // 1-base
  int V, pr[N];
bool el[N][N], inq[N], inp[N], inb[N];
  int st, ed, nb, bk[N], djs[N], ans;
  void init(int _V) {
    V = _V;
    for (int i = 0; i <= V; ++i) {
        for (int j = 0; j <= V; ++j) el[i][j] = 0;
        pr[i] = bk[i] = djs[i] = 0;
        inq[i] = inp[i] = inb[i] = 0;
    }
}
void add_edge(int u, int v) {</pre>
```

```
el[u][v] = el[v][u] = 1;
  int lca(int u, int v) {
    fill_n(inp, V + 1, 0);
    while (1)
      if (u = djs[u], inp[u] = true, u == st) break;
       else u = bk[pr[u]];
    while (1)
      if (v = djs[v], inp[v]) return v;
       else v = bk[pr[v]];
  }
  void upd(int u) {
    for (int v; djs[u] != nb;) {
      v = pr[u], inb[djs[u]] = inb[djs[v]] = true;
       u = bk[v];
      if (djs[u] != nb) bk[u] = v;
  void blo(int u, int v, queue<int> &qe) {
    nb = lca(u, v), fill_n(inb, V + 1, 0);
    upd(u), upd(v);
    if (djs[u] != nb) bk[u] = v;
    if (djs[v] != nb) bk[v] = u;
    for (int tu = 1; tu <= V; ++tu)</pre>
       if (inb[djs[tu]])
         if (djs[tu] = nb, !inq[tu])
          qe.push(tu), inq[tu] = 1;
  void flow() {
    fill_n(inq + 1, V, 0), fill_n(bk + 1, V, 0);
    iota(djs + 1, djs + V + 1, 1);
    queue<int> qe;
    qe.push(st), inq[st] = 1, ed = 0;
    while (!qe.empty()) {
      int u = qe.front();
       qe.pop();
       for (int v = 1; v <= V; ++v)</pre>
         if (el[u][v] && djs[u] != djs[v] &&
           pr[u] != v) {
           if ((v == st) ||
             (pr[v] > 0 \&\& bk[pr[v]] > 0))
             blo(u, v, qe);
           else if (!bk[v]) {
             if (bk[v] = u, pr[v] > 0) {
               if (!inq[pr[v]]) qe.push(pr[v]);
             } else return ed = v, void();
          }
         }
    }
  void aug() {
    for (int u = ed, v, w; u > 0;)
      v = bk[u], w = pr[v], pr[v] = u, pr[u] = v,
  int solve() {
    fill_n(pr, V + 1, 0), ans = 0;
     for (int u = 1; u <= V; ++u)</pre>
       if (!pr[u])
        if (st = u, flow(), ed > 0) aug(), ++ans;
     return ans;
  }
|};
```

4.4 Minimum Weight Matching (Clique version)*

```
struct Graph { // 0-base (Perfect Match), n is even
  int n, match[N], onstk[N], stk[N], tp;
  ll edge[N][N], dis[N];
  void init(int _n) {
    n = _n, tp = 0;
    for (int i = 0; i < n; ++i) fill_n(edge[i], n, 0);
  }
  void add_edge(int u, int v, ll w) {
    edge[u][v] = edge[v][u] = w;
  }
  bool SPFA(int u) {</pre>
```

```
stk[tp++] = u, onstk[u] = 1;
     for (int v = 0; v < n; ++v)
       if (!onstk[v] && match[u] != v) {
         int m = match[v];
         if (dis[m] >
           dis[u] - edge[v][m] + edge[u][v]) {
           dis[m] = dis[u] - edge[v][m] + edge[u][v];
           onstk[v] = 1, stk[tp++] = v;
           if (onstk[m] || SPFA(m)) return 1;
           --tp, onstk[v] = 0;
      }
     onstk[u] = 0, --tp;
    return 0;
  11 solve() { // find a match
     for (int i = 0; i < n; ++i) match[i] = i ^ 1;</pre>
     while (1) {
       int found = 0;
       fill_n(dis, n, 0);
       fill_n(onstk, n, 0);
       for (int i = 0; i < n; ++i)</pre>
         if (tp = 0, !onstk[i] \&\& SPFA(i))
           for (found = 1; tp >= 2;) {
             int u = stk[--tp];
             int v = stk[--tp];
             match[u] = v, match[v] = u;
       if (!found) break;
    11 \text{ ret = 0};
     for (int i = 0; i < n; ++i)</pre>
      ret += edge[i][match[i]];
     return ret >> 1;
};
```

4.5 SW-mincut

```
// global min cut
struct SW { // O(V^3)
   static const int MXN = 514;
   int n, vst[MXN], del[MXN];
   int edge[MXN][MXN], wei[MXN];
   void init(int _n) {
    n = _n, MEM(edge, 0), MEM(del, 0);
   void addEdge(int u, int v, int w) {
     edge[u][v] += w, edge[v][u] += w;
   void search(int &s, int &t) {
     MEM(vst, 0), MEM(wei, 0), s = t = -1;
     while (1) {
       int mx = -1, cur = 0;
       for (int i = 0; i < n; ++i)
         if (!del[i] && !vst[i] && mx < wei[i])</pre>
           cur = i, mx = wei[i];
       if (mx == -1) break;
       vst[cur] = 1, s = t, t = cur;
       for (int i = 0; i < n; ++i)</pre>
         if (!vst[i] && !del[i]) wei[i] += edge[cur][i];
   int solve() {
     int res = INF;
     for (int i = 0, x, y; i < n - 1; ++i) {
       search(x, y), res = min(res, wei[y]), del[y] = 1;
for (int j = 0; j < n; ++j)</pre>
         edge[x][j] = (edge[j][x] += edge[y][j]);
     return res;
   }
};
```

4.6 BoundedFlow(Dinic*)

```
struct BoundedFlow { // 0-base
   struct edge {
```

```
int to, cap, flow, rev;
   vector<edge> G[N];
   int n, s, t, dis[N], cur[N], cnt[N];
   void init(int _n) {
    n = _n;
for (int i = 0; i < n + 2; ++i)</pre>
       G[i].clear(), cnt[i] = 0;
  void add_edge(int u, int v, int lcap, int rcap) {
  cnt[u] -= lcap, cnt[v] += lcap;
     G[u].pb(edge{v, rcap, lcap, SZ(G[v])});
     G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
   void add_edge(int u, int v, int cap) {
     G[u].pb(edge{v, cap, 0, SZ(G[v])});
    G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
   int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
     for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
       edge &e = G[u][i];
       if (dis[e.to] == dis[u] + 1 && e.cap != e.flow) {
         int df = dfs(e.to, min(e.cap - e.flow, cap));
           e.flow += df, G[e.to][e.rev].flow -= df;
           return df;
         }
       }
     dis[u] = -1;
     return 0;
   bool bfs() {
     fill_n(dis, n + 3, -1);
     queue<int> q;
     q.push(s), dis[s] = 0;
     while (!q.empty()) {
       int u = q.front();
       q.pop();
       for (edge &e : G[u])
         if (!~dis[e.to] && e.flow != e.cap)
           q.push(e.to), dis[e.to] = dis[u] + 1;
     return dis[t] != -1;
   int maxflow(int _s, int _t) {
     s = _s, t = _t;
     int flow = 0, df;
     while (bfs()) {
       fill_n(cur, n + 3, 0);
       while ((df = dfs(s, INF))) flow += df;
     return flow;
  bool solve() {
    int sum = 0;
     for (int i = 0; i < n; ++i)</pre>
       if (cnt[i] > 0)
         add_edge(n + 1, i, cnt[i]), sum += cnt[i];
       else if (cnt[i] < 0) add_edge(i, n + 2, -cnt[i]);</pre>
     if (sum != maxflow(n + 1, n + 2)) sum = -1;
     for (int i = 0; i < n; ++i)</pre>
       if (cnt[i] > 0)
         G[n + 1].pop_back(), G[i].pop_back();
       else if (cnt[i] < 0)</pre>
         G[i].pop_back(), G[n + 2].pop_back();
     return sum != -1;
  int solve(int _s, int _t) {
    add_edge(_t, _s, INF);
if (!solve()) return -1; // invalid flow
     int x = G[_t].back().flow;
     return G[_t].pop_back(), G[_s].pop_back(), x;
};
```

4.7 Gomory Hu tree

```
struct Gomory_Hu_tree { // 0-base
```

```
MaxFlow Dinic:
  int n;
  vector<pii> G[MAXN];
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void solve(vector<int> &v) {
    if (v.size() <= 1) return;</pre>
    int s = rand() % SZ(v);
    swap(v.back(), v[s]), s = v.back();
    int t = v[rand() % (SZ(v) - 1)];
    vector<int> L, R;
    int x = (Dinic.reset(), Dinic.maxflow(s, t));
    G[s].pb(pii(t, x)), G[t].pb(pii(s, x));
    for (int i : v)
      if (~Dinic.dis[i]) L.pb(i);
      else R.pb(i);
    solve(L), solve(R);
  void build() {
    vector<int> v(n);
    for (int i = 0; i < n; ++i) v[i] = i;</pre>
    solve(v);
} ght; // test by BZOJ 4519
MaxFlow &Dinic = ght.Dinic;
```

4.8 Flow Models

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.
 - 2. For each edge (x,y,l,u), connect $x \to y$ with capacity u-l. 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v\to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer
 - To minimize, let f be the maximum flow from S to T . Connect $t \to s$ with capacity ∞ and let the flow from Sto T be f'. If $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge \boldsymbol{e} on the graph.
- ullet Construct minimum vertex cover from maximum matching M on bipartite graph (X,Y)
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise.
 - 2. DFS from unmatched vertices in X. 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- Minimum cost cyclic flow
 - 1. Consruct super source ${\cal S}$ and sink ${\cal T}$
 - 2. For each edge (x,y,c), connect $x \to y$ with (cost,cap) = (c,1)if c>0, otherwise connect $y\to x$ with (cost,cap)=(-c,1)
 - 3. For each edge with c<0, sum these cost as K, then increase d(y) by 1, decrease d(x) by 1 4. For each vertex v with d(v)>0, connect $S\to v$ with
 - (cost, cap) = (0, d(v))
 - 5. For each vertex v with d(v) < 0, connect v o T with $(\cos t, \exp) = (0, -d(v))$ 6. Flow from S to T, the answer is the cost of the flow C+K
- Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer T 2. Construct a max flow model, let K be the sum of all weights 3. Connect source $s \to v$, $v \in G$ with capacity K 4. For each edge (u,v,w) in G, connect $u \to v$ and $v \to u$ with

 - capacity \boldsymbol{w}
 - 5. For $v\in G$, connect it with sink $v\to t$ with capacity $K+2T-(\sum_{e\in E(v)}w(e))-2w(v)$
 - 6. T is a valid answer if the maximum flow f < K|V|
- Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with
 - weight w(u,v). 2. Connect v o v' with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to $v\,.$
 - 3. Find the minimum weight perfect matching on G^\prime .
- Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$.

- 2. Create edge (u,v) with capacity w with w being the cost of f 5.4 Suffix Array choosing u without choosing v.
- 3. The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x \bar{y} + x' \bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity c_y .
- 2. Create edge (x,y) with capacity c_{xy} .
- 3. Create edge (x,y) and edge (x^\prime,y^\prime) with capacity $c_{xyx^\prime y^\prime}$.

String

5.1 KMP

```
int F[MAXN];
vector<int> match(string A, string B) {
  vector<int> ans;
  F[0] = -1, F[1] = 0;
  for (int i = 1, j = 0; i < SZ(B); F[++i] = ++j) {
    if (B[i] == B[j]) F[i] = F[j]; // optimize
    while (j != -1 && B[i] != B[j]) j = F[j];
  for (int i = 0, j = 0; i < SZ(A); ++i) {</pre>
    while (j != -1 && A[i] != B[j]) j = F[j];
if (++j == SZ(B)) ans.pb(i + 1 - j), j = F[j];
  return ans;
```

5.2 Z-value

```
const int MAXn = 1e5 + 5;
int z[MAXn];
void make_z(string s) {
 int 1 = 0, r = 0;
  for (int i = 1; i < s.size(); i++) {</pre>
   for (z[i] = max(0, min(r - i + 1, z[i - 1]));
         i + z[i] < s.size() && s[i + z[i]] == s[z[i]];
         z[i]++)
   if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
```

5.3 Manacher*

```
int z[MAXN];
int Manacher(string tmp) {
  string s = "\&";
  int 1 = 0, r = 0, x, ans;
  for (char c : tmp) s.pb(c), s.pb('%');
  ans = 0, x = 0;
  for (int i = 1; i < SZ(s); ++i) {
  z[i] = r > i ? min(z[2 * 1 - i], r - i) : 1;
  while (s[i + z[i]] == s[i - z[i]]) ++z[i];
     if(z[i] + i > r) r = z[i] + i, l = i;
  for (int i = 1; i < SZ(s); ++i)
  if (s[i] == '%') x = max(x, z[i]);</pre>
  ans = x / 2 * 2, x = 0;
  for (int i = 1; i < SZ(s); ++i)
  if (s[i] != '%') x = max(x, z[i]);</pre>
  return max(ans, (x - 1) / 2 * 2 + 1);
```

```
struct suffix_array {
  int box[MAXN], tp[MAXN], m;
  bool not_equ(int a, int b, int k, int n) {
  return ra[a] != ra[b] || a + k >= n ||
      b + k >= n \mid \mid ra[a + k] != ra[b + k];
  void radix(int *key, int *it, int *ot, int n) {
    fill_n(box, m, 0);
    for (int i = 0; i < n; ++i) ++box[key[i]];</pre>
    partial_sum(box, box + m, box);
    for (int i = n - 1; i >= 0; --i)
      ot[--box[key[it[i]]]] = it[i];
  void make_sa(string s, int n) {
    int k = 1;
    for (int i = 0; i < n; ++i) ra[i] = s[i];</pre>
    do {
      iota(tp, tp + k, n - k), iota(sa + k, sa + n, 0);
       radix(ra + k, sa + k, tp + k, n - k);
      radix(ra, tp, sa, n);
      tp[sa[0]] = 0, m = 1;
       for (int i = 1; i < n; ++i) {</pre>
        m += not_equ(sa[i], sa[i - 1], k, n);
         tp[sa[i]] = m - 1;
      copy_n(tp, n, ra);
      k *= 2;
    } while (k < n && m != n);</pre>
  void make_he(string s, int n) {
    for (int j = 0, k = 0; j < n; ++j) {
      if (ra[j])
         for (; s[j + k] == s[sa[ra[j] - 1] + k]; ++k)
      he[ra[j]] = k, k = max(0, k - 1);
  int sa[MAXN], ra[MAXN], he[MAXN];
  void build(string s) {
    FILL(sa, 0), FILL(ra, 0), FILL(he, 0);
    FILL(box, 0), FILL(tp, 0), m = 256;
    make_sa(s, s.size());
    make_he(s, s.size());
};
```

5.5 SAIS*

```
class SAIS {
public:
  int *SA, *H;
  // zero based, string content MUST > 0
  // result height H[i] is LCP(SA[i - 1], SA[i])
  // string, length, |sigma|
void build(int *s, int n, int m = 128) {
    copy_n(s, n, _s);
    h[0] = s[n++] = 0;
    sais(_s, _sa, _p, _q, _t, _c, n, m);
    mkhei(n);
    SA = _sa + 1;
H = _h + 1;
private:
  bool _t[N * 2];
  int _s[N * 2], _c[N * 2], x[N], _p[N], _q[N * 2],
   r[N], _sa[N * 2], _h[N];
  void mkhei(int n) {
    for (int i = 0; i < n; i++) r[_sa[i]] = i;</pre>
    for (int i = 0; i < n; i++)</pre>
      if (r[i]) {
         int ans = i > 0? max([r[i - 1]] - 1, 0) : 0;
         while (\_s[i + ans] == \_s[\_sa[r[i] - 1] + ans])
           ans++:
         _h[r[i]] = ans;
  }
```

```
void sais(int *s, int *sa, int *p, int *q, bool *t,
    int *c, int n, int z) {
    bool uniq = t[n - 1] = 1, neq;
    int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
        lst = -1;
#define MAGIC(XD)
 fill_n(sa, n, 0);
  copy_n(c, z, x);
 XD:
  copy_n(c, z - 1, x + 1);
  for (int i = 0; i < n; i++)</pre>
    if (sa[i] && !t[sa[i] - 1])
      sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
  copy_n(c, z, x);
  for (int i = n - 1; i >= 0; i--)
    if (sa[i] && t[sa[i] - 1])
      sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
    fill_n(c, z, 0);
    for (int i = 0; i < n; i++) uniq &= ++c[s[i]] < 2;</pre>
    partial_sum(c, c + z, c);
    if (uniq) {
      for (int i = 0; i < n; i++) sa[--c[s[i]]] = i;</pre>
      return:
    for (int i = n - 2; i >= 0; i--)
      t[i] = (s[i] == s[i + 1] ? t[i + 1]
                                : s[i] < s[i + 1]);
    MAGIC(for (int i = 1; i <= n - 1;
               i++) if (t[i] && !t[i - 1])
            sa[--x[s[i]]] = p[q[i] = nn++] = i);
    for (int i = 0; i < n; i++)</pre>
      if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
        neq = (lst < 0) ||
          !equal(s + 1st,
            s + lst + p[q[sa[i]] + 1] - sa[i],
            s + sa[i]);
        ns[q[lst = sa[i]]] = nmxz += neq;
    sais(ns, nsa, p + nn, q + n, t + n, c + z, nn,
      nmxz + 1);
    MAGIC(for (int i = nn - 1; i >= 0; i--)
            sa[--x[s[p[nsa[i]]]]] = p[nsa[i]]);
  }
} sa;
```

5.6 Aho-Corasick Automatan

```
const int len = 400000, sigma = 26;
struct AC_Automatan {
 int nx[len][sigma], fl[len], cnt[len], pri[len], top;
  int newnode() {
    fill(nx[top], nx[top] + sigma, -1);
    return top++;
  void init() { top = 1, newnode(); }
  int input(
    string &s) { // return the end_node of string
    int X = 1;
    for (char c : s) {
  if (!~nx[X][c - 'a']) nx[X][c - 'a'] = newnode();
      X = nx[X][c - 'a'];
    }
    return X;
  void make_fl() {
    queue<int> q;
    q.push(1), fl[1] = 0;
    for (int t = 0; !q.empty();) {
      int R = q.front();
      q.pop(), pri[t++] = R;
      for (int i = 0; i < sigma; ++i)</pre>
        if (~nx[R][i]) {
          int X = nx[R][i], Z = f1[R];
          for (; Z && !~nx[Z][i];) Z = f1[Z];
          fl[X] = Z ? nx[Z][i] : 1, q.push(X);
    }
  }
```

```
void get_v(string &s) {
   int X = 1;
   fill(cnt, cnt + top, 0);
   for (char c : s) {
      while (X && !~nx[X][c - 'a']) X = fl[X];
      X = X ? nx[X][c - 'a'] : 1, ++cnt[X];
   }
   for (int i = top - 2; i > 0; --i)
      cnt[fl[pri[i]]] += cnt[pri[i]];
  }
};
```

5.7 Smallest Rotation

\

\

```
string mcp(string s) {
  int n = SZ(s), i = 0, j = 1;
  s += s;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && s[i + k] == s[j + k]) ++k;
    if (s[i + k] <= s[j + k]) j += k + 1;
    else i += k + 1;
    if (i == j) ++j;
  }
  int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```

5.8 De Bruijn sequence*

```
constexpr int MAXC = 10, MAXN = 1e5 + 10;
struct DBSeq {
  int C, N, K, L, buf[MAXC * MAXN]; // K <= C^N</pre>
  void dfs(int *out, int t, int p, int &ptr) {
    if (ptr >= L) return;
    if (t > N) {
      if (N % p) return;
      for (int i = 1; i <= p && ptr < L; ++i)</pre>
         out[ptr++] = buf[i];
    } else {
      buf[t] = buf[t - p], dfs(out, t + 1, p, ptr);
      for (int j = buf[t - p] + 1; j < C; ++j)</pre>
        buf[t] = j, dfs(out, t + 1, t, ptr);
    }
  }
  void solve(int _c, int _n, int _k, int *out) {
    int p = 0;
    C = _c, N = _n, K = _k, L = N + K - 1;
dfs(out, 1, 1, p);
    if (p < L) fill(out + p, out + L, 0);</pre>
} dbs;
```

5.9 SAM

```
const int MAXM = 1000010;
struct SAM {
 int tot, root, lst, mom[MAXM], mx[MAXM];
 int acc[MAXM], nxt[MAXM][33];
 int newNode() {
   int res = ++tot;
   fill(nxt[res], nxt[res] + 33, 0);
    mom[res] = mx[res] = acc[res] = 0;
   return res;
 }
 void init() {
   tot = 0;
    root = newNode();
   mom[root] = 0, mx[root] = 0;
   lst = root;
 void push(int c) {
   int p = lst;
    int np = newNode();
    mx[np] = mx[p] + 1;
    for (; p && nxt[p][c] == 0; p = mom[p])
```

```
nxt[p][c] = np;
    if (p == 0) mom[np] = root;
      int q = nxt[p][c];
      if (mx[p] + 1 == mx[q]) mom[np] = q;
      else {
        int nq = newNode();
        mx[nq] = mx[p] + 1;
        for (int i = 0; i < 33; i++)</pre>
          nxt[nq][i] = nxt[q][i];
        mom[nq] = mom[q];
        mom[q] = nq;
        mom[np] = nq;
        for (; p && nxt[p][c] == q; p = mom[p])
          nxt[p][c] = nq;
    lst = np;
  void push(char *str) {
    for (int i = 0; str[i]; i++)
      push(str[i] - 'a' + 1);
 }
} sam;
```

5.10 PalTree

```
struct palindromic_tree { // Check by APIO 2014
                           // palindrome
  struct node {
    int next[26], fail, len;
    int cnt, num; // cnt: appear times, num: number of
                   // pal. suf.
    node(int 1 = 0) : fail(0), len(1), cnt(0), num(0) {
      for (int i = 0; i < 26; ++i) next[i] = 0;</pre>
  };
  vector<node> St;
  vector<char> s;
  int last, n;
  palindromic_tree() : St(2), last(1), n(0) {
    St[0].fail = 1, St[1].len = -1, s.pb(-1);
  inline void clear() {
    St.clear(), s.clear(), last = 1, n = 0;
    St.pb(0), St.pb(-1);
    St[0].fail = 1, s.pb(-1);
  inline int get_fail(int x) {
    while (s[n - St[x].len - 1] != s[n])
      x = St[x].fail;
    return x;
  inline void add(int c) {
  s.push_back(c -= 'a'), ++n;
    int cur = get_fail(last);
    if (!St[cur].next[c]) {
      int now = SZ(St);
      St.pb(St[cur].len + 2);
      St[now].fail =
        St[get_fail(St[cur].fail)].next[c];
      St[cur].next[c] = now;
      St[now].num = St[St[now].fail].num + 1;
    last = St[cur].next[c], ++St[last].cnt;
  inline void count() { // counting cnt
    auto i = St.rbegin();
    for (; i != St.rend(); ++i) {
      St[i->fail].cnt += i->cnt;
  inline int size() { // The number of diff. pal.
    return SZ(St) - 2;
  }
};
```

```
#define LU 1
#define U 2
const int mov[3][2] = {0, -1, -1, -1, -1, 0};
int al, bl;
char a[MAXL * 2], b[MAXL * 2]; // 0-indexed
int dp[MAXL * 2][MAXL];
char pred[MAXL * 2][MAXL];
inline int lcs_length(int r) {
  int i = r + al, j = bl, l = 0;
  while (i > r) {
    char dir = pred[i][j];
    if (dir == LU) l++;
    i += mov[dir][0];
    j += mov[dir][1];
  return 1:
inline void reroot(int r) { // r = new base row
  int i = r, j = 1;
  while (j <= bl && pred[i][j] != LU) j++;</pre>
  if (j > bl) return;
  pred[i][j] = L;
while (i < 2 * al && j <= bl) {</pre>
    if (pred[i + 1][j] == U) {
       i++:
       pred[i][j] = L;
    } else if (j < bl && pred[i + 1][j + 1] == LU) {</pre>
       i++;
       j++;
       pred[i][j] = L;
    } else {
       j++;
int cyclic_lcs() {
  // a, b, al, bl should be properly filled
  // note: a WILL be altered in process
              -- concatenated after itself
  char tmp[MAXL];
  if (al > bl) {
    swap(al, bl);
    strcpy(tmp, a);
    strcpy(a, b);
    strcpy(b, tmp);
  strcpy(tmp, a);
  strcat(a, tmp);
  // basic lcs
  for (int i = 0; i <= 2 * al; i++) {</pre>
    dp[i][0] = 0;
    pred[i][0] = U;
  for (int j = 0; j <= bl; j++) {
  dp[0][j] = 0;</pre>
    pred[0][j] = L;
  for (int i = 1; i <= 2 * al; i++) {</pre>
    for (int j = 1; j <= bl; j++) {
  if (a[i - 1] == b[j - 1])</pre>
       dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
       if (dp[i][j - 1] == dp[i][j]) pred[i][j] = L;
else if (a[i - 1] == b[j - 1]) pred[i][j] = LU;
       else pred[i][j] = U;
  // do cyclic lcs
  int clcs = 0;
  for (int i = 0; i < al; i++) {</pre>
    clcs = max(clcs, lcs_length(i));
    reroot(i + 1);
  // recover a
  a[al] = ' \setminus 0';
  return clcs;
```

#define L 0

6 Math

6.1 ax+by=gcd*

```
pll exgcd(ll a, ll b) {
   if(b == 0) return pll(1, 0);
   else {
      ll p = a / b;
      pll q = exgcd(b, a % b);
      return pll(q.Y, q.X - q.Y * p);
   }
}
```

6.2 floor and ceil

```
int floor(int a,int b){
   return a/b-(a%b&&a<0^b<0);
}
int ceil(int a,int b){
   return a/b+(a%b&&a<0^b>0);
}
```

6.3 Miller Rabin*

6.4 Fraction

```
struct fraction{
  11 n,d;
  fraction(const ll \& n=0, const ll \& d=1):n(n),d(d){
    11 t=__gcd(n,d);
    n/=t,d/=t;
    if(d<0) n=-n,d=-d;
  fraction operator-()const{
    return fraction(-n,d);
  fraction operator+(const fraction &b)const{
    return fraction(n*b.d+b.n*d,d*b.d);
  fraction operator-(const fraction &b)const{
    return fraction(n*b.d-b.n*d,d*b.d);
  fraction operator*(const fraction &b)const{
    return fraction(n*b.n,d*b.d);
  fraction operator/(const fraction &b)const{
    return fraction(n*b.d,d*b.n);
  void print(){
    cout << n;</pre>
    if(d!=1) cout << "/" << d;</pre>
};
```

6.5 Simultaneous Equations

```
struct matrix { //m variables, n equations
  int n, m;
  fraction M[MAXN][MAXN + 1], sol[MAXN];
  int solve() { //-1: inconsistent, >= 0: rank
    for (int i = 0; i < n; ++i) {</pre>
      int piv = 0;
      while (piv < m && !M[i][piv].n) ++piv;</pre>
      if (piv == m) continue;
      for (int j = 0; j < n; ++j) {
        if (i == j) continue;
         fraction tmp = -M[j][piv] / M[i][piv];
         for (int k = 0; k \le m; ++k) M[j][k] = tmp * M[
             i][k] + M[j][k];
      }
    }
    int rank = 0;
    for (int i = 0; i < n; ++i) {</pre>
      int piv = 0;
      while (piv < m && !M[i][piv].n) ++piv;</pre>
      if (piv == m && M[i][m].n) return -1;
      else if (piv < m) ++rank, sol[piv] = M[i][m] / M[</pre>
           i][piv];
    }
    return rank;
};
```

6.6 Pollard Rho

```
// does not work when n is prime
ll f(ll x,ll mod){ return add(mul(x,x,mod),1,mod); }
ll pollard_rho(ll n){
   if(!(n&1)) return 2;
   while(1){
      ll y=2,x=rand()%(n-1)+1,res=1;
      for(int sz=2;res==1;y=x,sz*=2)
      for(int i=0;i<sz&&res<=1;++i)
            x=f(x,n),res=__gcd(abs(x-y),n);
   if(res!=0&&res!=n) return res;
}
}</pre>
```

6.7 Simplex Algorithm

```
const int MAXN = 111;
const int MAXM = 111;
const double eps = 1E-10;
double a[MAXN][MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];
double x[MAXM];
int ix[MAXN + MAXM]; // !!! array all indexed from 0
// max{cx} subject to {Ax<=b,x>=0}
// n: constraints, m: vars !!!
\label{eq:continuous} \parbox{0.5ex}{$//$$} x[] is the optimal solution vector \parbox{0.5ex}{$//$}
// usage :
// value = simplex(a, b, c, N, M);
double simplex(double a[MAXN][MAXM], double b[MAXN],
    double c[MAXM], int n, int m){
  ++m;
  int r = n, s = m - 1;
  memset(d, 0, sizeof(d));
  for (int i = 0; i < n + m; ++i) ix[i] = i;</pre>
  for (int i = 0; i < n; ++i) {</pre>
    for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];</pre>
    d[i][m - 1] = 1;
    d[i][m] = b[i];
    if (d[r][m] > d[i][m]) r = i;
  for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];</pre>
  d[n + 1][m - 1] = -1;
  for (double dd;; ) {
    if (r < n) {
      int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
       d[r][s] = 1.0 / d[r][s];
       for (int j = 0; j <= m; ++j)
  if (j != s) d[r][j] *= -d[r][s];</pre>
```

```
for (int i = 0; i <= n + 1; ++i) if (i != r) {
  for (int j = 0; j <= m; ++j) if (j != s)</pre>
         d[i][j] += d[r][j] * d[i][s];
      d[i][s] *= d[r][s];
 }
  r = -1; s = -1;
  for (int j = 0; j < m; ++j)</pre>
    if (s < 0 || ix[s] > ix[j]) {
      if (d[n + 1][j] > eps ||
           (d[n + 1][j] > -eps && d[n][j] > eps))
         s = i;
  if (s < 0) break;
  for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {</pre>
    if (r < 0 ||
         (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s])
             < -eps ||
         (dd < eps && ix[r + m] > ix[i + m]))
      r = i;
 if (r < 0) return -1; // not bounded</pre>
if (d[n + 1][m] < -eps) return -1; // not executable</pre>
double ans = 0:
for(int i=0; i<m; i++) x[i] = 0;</pre>
for (int i = m; i < n + m; ++i) { // the missing</pre>
    enumerated x[i] = 0
  if (ix[i] < m - 1){</pre>
    ans += d[i - m][m] * c[ix[i]];
    x[ix[i]] = d[i-m][m];
 }
return ans;
```

6.7.1 Construction

Standard form: maximize $\mathbf{c}^T\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$. Dual LP: minimize $\mathbf{b}^T\mathbf{y}$ subject to $A^T\mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq \mathbf{0}$. $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ are optimal if and only if for all $i \in [1,n]$, either $\bar{x}_i = 0$ or $\sum_{j=1}^m A_{ji}\bar{y}_j = c_i$ holds and for all $i \in [1,m]$ either $\bar{y}_i = 0$ or $\sum_{j=1}^n A_{ij}\bar{x}_j = b_j$ holds.

```
1. In case of minimization, let c_i'=-c_i
2. \sum_{1\leq i\leq n}A_{ji}x_i\geq b_j\to \sum_{1\leq i\leq n}-A_{ji}x_i\leq -b_j
3. \sum_{1\leq i\leq n}A_{ji}x_i=b_j
• \sum_{1\leq i\leq n}A_{ij}x_i\leq b_j
```

- $\sum_{1 \le i \le n} A_{ji} x_i \le b_j$ $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i'$

6.8 Schreier-Sims Algorithm*

```
namespace schreier {
int n;
vector<vector<int>>> bkts, binv;
vector<vector<int>> lk;
vector<int> operator*(const vector<int> &a, const
    vector<int> &b) {
    vector<int> res(SZ(a));
    for (int i = 0; i < SZ(a); ++i) res[i] = b[a[i]];</pre>
    return res;
vector<int> inv(const vector<int> &a) {
    vector<int> res(SZ(a));
    for (int i = 0; i < SZ(a); ++i) res[a[i]] = i;</pre>
    return res;
int filter(const vector<int> &g, bool add = true) {
   n = SZ(bkts);
    vector<int> p = g;
    for (int i = 0; i < n; ++i) {</pre>
        assert(p[i] >= 0 && p[i] < SZ(lk[i]));
        if (lk[i][p[i]] == -1) {
            if (add) {
                bkts[i].pb(p);
                binv[i].pb(inv(p));
                lk[i][p[i]] = SZ(bkts[i]) - 1;
            }
```

```
return i:
           = p * binv[i][lk[i][p[i]]];
     }
     return -1;
bool inside(const vector<int> &g) { return filter(g,
     false) == -1; }
 void solve(const vector<vector<int>> &gen, int _n) {
     n = _n;
     bkts.clear(), bkts.resize(n);
     binv.clear(), binv.resize(n);
     lk.clear(), lk.resize(n);
     vector<int> iden(n);
     iota(iden.begin(), iden.end(), 0);
     for (int i = 0; i < n; ++i) {</pre>
         lk[i].resize(n, -1);
         bkts[i].pb(iden);
         binv[i].pb(iden);
         1k[i][i] = 0;
     for (int i = 0; i < SZ(gen); ++i) filter(gen[i]);</pre>
     queue<pair<pii, pii>> upd;
for (int i = 0; i < n; ++i)</pre>
         for (int j = i; j < n; ++j)
              for (int k = 0; k < SZ(bkts[i]); ++k)</pre>
                  for (int 1 = 0; 1 < SZ(bkts[j]); ++1)</pre>
                      upd.emplace(pii(i, k), pii(j, l));
     while (!upd.empty()) {
         auto a = upd.front().X;
         auto b = upd.front().Y;
         upd.pop();
         int res = filter(bkts[a.X][a.Y] * bkts[b.X][b.Y
              ]);
         if (res == -1) continue;
         pii pr = pii(res, SZ(bkts[res]) - 1);
         for (int i = 0; i < n; ++i)</pre>
              for (int j = 0; j < SZ(bkts[i]); ++j) {</pre>
                  if (i <= res) upd.emplace(pii(i, j), pr</pre>
                  if (res <= i) upd.emplace(pr, pii(i, j)</pre>
                       );
              }
long long size() {
     long long res = 1;
     for (int i = 0; i < n; ++i) res = res * SZ(bkts[i])</pre>
     return res;
}}
```

6.9 chineseRemainder

```
LL solve(LL x1, LL m1, LL x2, LL m2) {
   LL g = __gcd(m1, m2);
   if((x2 - x1) % g) return -1;// no sol
   m1 /= g; m2 /= g;
   pair<LL,LL> p = gcd(m1, m2);
   LL lcm = m1 * m2 * g;
   LL res = p.first * (x2 - x1) * m1 + x1;
   return (res % lcm + lcm) % lcm;
}
```

6.10 QuadraticResidue

```
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
    if ((r & 1) && ((m + 2) & 4)) s = -s;
    a >>= r;
    if (a & m & 2) s = -s;
    swap(a, m);
  }
  return s;
```

```
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (;;) {
   b = rand() % p;
d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 %
           p)) % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
      g0 = tmp;
    tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)
    )) % p;
f1 = (2LL * f0 * f1) % p;
    f0 = tmp;
  return g0;
```

6.11 PiCount

return larges[0];

```
int64_t PrimeCount(int64_t n) {
 if (n <= 1) return 0;</pre>
  const int v = sqrt(n);
  vector<int> smalls(v + 1);
  for (int i = 2; i <= v; ++i) smalls[i] = (i + 1) / 2;</pre>
  int s = (v + 1) / 2;
  vector<int> roughs(s);
  for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;</pre>
  vector<int64_t> larges(s);
  for (int i = 0; i < s; ++i) larges[i] = (n / (2 * i +</pre>
       1) + 1) / 2;
  vector<bool> skip(v + 1);
  int pc = 0;
  for (int p = 3; p <= v; ++p) {</pre>
    if (smalls[p] > smalls[p - 1]) {
      int q = p * p;
      pc++;
      if (1LL * q * q > n) break;
      skip[p] = true;
      for (int i = q; i <= v; i += 2 * p) skip[i] =</pre>
           true:
      int ns = 0;
      for (int k = 0; k < s; ++k) {
        int i = roughs[k];
        if (skip[i]) continue;
        int64_t d = 1LL * i * p;
        larges[ns] = larges[k] - (d <= v ? larges[</pre>
             smalls[d] - pc] : smalls[n / d]) + pc;
        roughs[ns++] = i;
      s = ns:
      for (int j = v / p; j >= p; --j) {
        int c = smalls[j] - pc;
        for (int i = j * p, e = min(i + p, v + 1); i <</pre>
             e; ++i) smalls[i] -= c;
      }
    }
  for (int k = 1; k < s; ++k) {
    const int64_t m = n / roughs[k];
    int64_t s = larges[k] - (pc + k - 1);
    for (int l = 1; l < k; ++1) {</pre>
      int p = roughs[1];
if (1LL * p * p > m) break;
s -= smalls[m / p] - (pc + 1 - 1);
    larges[0] -= s;
```

6.12 Primes

}

```
/*
12721 13331 14341 75577 123457 222557 556679 999983
1097774749 1076767633 10010201 999997771
1001010013 1000512343 987654361 999991231
999888733 98789101 987777733 999991921
1010101333 1010102101 1000000000039
1000000000000037 2305843009213693951
4611686018427387847 9223372036854775783
18446744073709551557
*/
```

6.13 Theorem

6.13.1 Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G , where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G .

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

6.13.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ $(x_{ij}$ is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

6.13.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees. Let $T_{n,k}$ be the number of labeled forests on n vertices with
- Let $T_{n,k}$ be the number of *labeled* forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

6.13.4 Erdős-Gallai theorem

A sequence of nonnegative integers $d_1 \geq \cdots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only n

if $d_1+\cdots+d_n$ is even and $\sum_{i=1}^k d_i \le k(k-1)+\sum_{i=k+1}^n \min(d_i,k)$ holds for every $1\le k\le n$.

6.13.5 Gale-Ryser theorem

A pair of sequences of nonnegative integers $a_1 \geq \cdots \geq a_n$ and b_1, \ldots, b_n is bigraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i \leq \sum_{i=1}^n \min(b_i,k)$ holds for every $1 \leq k \leq n$.

6.13.6 Fulkerson-Chen-Anstee theorem

A sequence $(a_1,b_1),\ldots,(a_n,b_n)$ of nonnegative integer pairs with $a_1\geq\cdots\geq a_n$ is digraphic if and only if $\sum_{i=1}^n a_i=\sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i\leq\cdots\geq \sum_{i=1}^k \min(b_i,k-1)+\sum_{i=k+1}^n \min(b_i,k)$ holds for every $1\leq k\leq n$.

6.14 Euclidean Algorithms

- $m = \lfloor \frac{an+b}{c} \rfloor$
- Time complexity: $O(\log n)$

$$\begin{split} f(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)}{2} + \lfloor \frac{b}{c} \rfloor \cdot (n+1) \\ + f(a \text{ mod } c, b \text{ mod } c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ nm - f(c, c - b - 1, a, m - 1), & \text{otherwise} \end{cases} \end{split}$$

```
g(a,b,c,n) = \sum^n i \lfloor \frac{ai+b}{n}
                           \left( \left\lfloor \frac{a}{c} \right\rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \left\lfloor \frac{b}{c} \right\rfloor \cdot \frac{n(n+1)}{2} \right.
                             +g(a \mod c, b \mod c, c, n),
                                                                                                            a \geq c \vee b \geq c
                                                                                                            n<0\vee a=0
                             \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1))
                           -h(c, c-b-1, a, m-1)),
                                                                                                            otherwise
h(a,b,c,n) = \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2
                            \left( \left| \frac{a}{c} \right|^2 \cdot \frac{n(n+1)(2n+1)}{6} + \left| \frac{b}{c} \right|^2 \cdot (n+1) \right)
                             +\lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1)
                             +h(a \ \operatorname{mod} \ c, b \ \operatorname{mod} \ c, c, n)
                             +2\lfloor \tfrac{a}{c}\rfloor \cdot g(a \text{ mod } c,b \text{ mod } c,c,n)
                                                                                                            a \geq c \vee b \geq c
                             +2\lfloor \tfrac{b}{c} \rfloor \cdot f(a \!\!\!\mod c, b \!\!\!\mod c, c, n),
                             0.
                                                                                                            n < 0 \lor a = 0
                             nm(m+1) - 2g(c, c-b-1, a, m-1)
                            -2f(c, c-b-1, a, m-1) - f(a, b, c, n), otherwise
```

7 Polynomial

7.1 Fast Fourier Transform

```
template<int MAXN>
struct FFT {
    using val_t = complex<double>;
    const double PI = acos(-1);
    val_t w[MAXN];
    FFT() {
        for (int i = 0; i < MAXN; ++i) {
            double arg = 2 * PI * i / MAXN;
            w[i] = val_t(cos(arg), sin(arg));
        }
    }
    void bitrev(val_t *a, int n); // see NTT
    void trans(val_t *a, int n, bool inv = false); // see
        NTT;
    // remember to replace LL with val_t
};</pre>
```

7.2 Number Theory Transform

```
//(2^16)+1, 65537, 3
//7*17*(2^23)+1, 998244353, 3
//1255*(2^20)+1, 1315962881, 3
//51*(2^25)+1, 1711276033, 29
template<int MAXN, LL P, LL RT> //MAXN must be 2^k
struct NTT {
 LL w[MAXN];
  LL mpow(LL a, LL n);
 LL minv(LL a) { return mpow(a, P - 2); }
 NTT() {
   LL dw = mpow(RT, (P - 1) / MAXN);
    w[0] = 1;
    for (int i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw
  void bitrev(LL *a, int n) {
    int i = 0;
    for (int j = 1; j < n - 1; ++j) {</pre>
      for (int k = n >> 1; (i ^= k) < k; k >>= 1);
      if (j < i) swap(a[i], a[j]);</pre>
   }
  void operator()(LL *a, int n, bool inv = false) { //0
       \langle = a[i] \langle P
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {</pre>
        for (int j = i, x = 0; j < i + dl; ++j, x += dx
            ) {
          LL tmp = a[j + dl] * w[x] % P;
          if ((a[j + dl] = a[j] - tmp) < 0) a[j + dl]
              += P;
          if ((a[j] += tmp) >= P) a[j] -= P;
```

7.3 Fast Walsh Transform*

```
/* x: a[j], y: a[j + (L >> 1)] or: (y += x * op), and: (x += y * op)
xor: (x, y = (x + y) * op, (x - y) * op)
invop: or, and, xor = -1, -1, 1/2 */
void fwt(int *a, int n, int op) { //or
    for (int L = 2; L <= n; L <<= 1)</pre>
         for (int i = 0; i < n; i += L)</pre>
              for (int j = i; j < i + (L >> 1); ++j)
                  a[j + (L >> 1)] += a[j] * op;
const int N = 21;
int f[N][1 << N], g[N][1 << N], h[N][1 << N], ct[1 << N]
void subset_convolution(int *a, int *b, int *c, int L)
    // c_k = \sum_{i=0}^{n} \{i \mid j = k, i \& j = 0\} a_i * b_j
    int n = 1 << L;
    for (int i = 1; i < n; ++i)</pre>
         ct[i] = ct[i & (i - 1)] + 1;
    for (int i = 0; i < n; ++i)</pre>
         f[ct[i]][i] = a[i], g[ct[i]][i] = b[i];
     for (int i = 0; i <= L; ++i)</pre>
         fwt(f[i], n, 1), fwt(g[i], n, 1);
     for (int i = 0; i <= L; ++i)</pre>
         for (int j = 0; j <= i; ++j)
              for (int x = 0; x < n; ++x)
                  h[i][x] += f[j][x] * g[i - j][x];
    for (int i = 0; i <= L; ++i)</pre>
         fwt(h[i], n, -1);
    for (int i = 0; i < n; ++i)</pre>
         c[i] = h[ct[i]][i];
```

7.4 Polynomial Operation

```
#define fi(s, n) for (int i = (int)(s); i < (int)(n);
    ++i)
template < int MAXN, LL P, LL RT> // MAXN = 2^k
struct Poly : vector<LL> { // coefficients in [0, P)
  using vector<LL>::vector;
  static NTT<MAXN, P, RT> ntt;
  int n() const { return (int)size(); } // n() >= 1
  Poly(const Poly &p, int _n) : vector<LL>(_n) {
    copy_n(p.data(), min(p.n(), _n), data());
  Poly& irev() { return reverse(data(), data() + n()),
      *this; }
  Poly& isz(int _n) { return resize(_n), *this; }
  Poly& iadd(const Poly &rhs) { // n() == rhs.n()
    fi(0, n()) if (((*this)[i] += rhs[i]) >= P) (*this)
        [i] -= P;
    return *this;
  Poly& imul(LL k) {
    fi(0, n()) (*this)[i] = (*this)[i] * k % P;
    return *this;
  Poly Mul(const Poly &rhs) const {
    while (_n < n() + rhs.n() - 1) _n <<= 1;</pre>
    Poly X(*this, _n), Y(rhs, _n);
    ntt(X.data(), _n), ntt(Y.data(),
    fi(0, _n) X[i] = X[i] * Y[i] % P;
    ntt(X.data(), _n, true);
```

```
return X.isz(n() + rhs.n() - 1);
Poly Inv() const { // (*this)[0] != 0
  if (n() == 1) return {ntt.minv((*this)[0])};
  int _n = 1;
  while (_n < n() * 2) _n <<= 1;</pre>
  Poly Xi = Poly(*this, (n() + 1) / 2).Inv().isz(_n);
  Poly Y(*this, _n);
ntt(Xi.data(), _n), ntt(Y.data(), _n);
  fi(0, _n) {
	Xi[i] *= (2 - Xi[i] * Y[i]) % P;
    if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
  ntt(Xi.data(), _n, true);
  return Xi.isz(n());
Poly Sqrt() const { // Jacobi((*this)[0], P) = 1}
  if (n() == 1) return {QuadraticResidue((*this)[0],
      P)};
  Poly X = Poly(*this, (n() + 1) / 2).Sqrt().isz(n())
  return X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 +
pair<Poly, Poly> DivMod(const Poly &rhs) const { // (
    rhs.)back() != 0
  if (n() < rhs.n()) return {{0}, *this};</pre>
  const int _n = n() - rhs.n() + 1;
  Poly X(rhs); X.irev().isz(_n);
  Poly Y(*this); Y.irev().isz(_n);
  Poly Q = Y.Mul(X.Inv()).isz(_n).irev();
  X = rhs.Mul(Q), Y = *this;
  fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
return {0, Y.isz(max(1, rhs.n() - 1))};</pre>
Poly Dx() const {
  Poly ret(n() - 1);
  fi(0, ret.n()) ret[i] = (i + 1) * (*this)[i + 1] %
  return ret.isz(max(1, ret.n()));
Poly Sx() const {
  Poly ret(n() + 1);
  fi(0, n()) ret[i + 1] = ntt.minv(i + 1) * (*this)[i
      ] % P;
  return ret;
Poly _tmul(int nn, const Poly &rhs) const {
  Poly Y = Mul(rhs).isz(n() + nn - 1);
  return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<LL> _eval(const vector<LL> &x, const vector<</pre>
    Poly> &up) const {
  const int _n = (int)x.size();
  if (!_n) return {};
  vector<Poly> down(_n * 2);
  down[1] = DivMod(up[1]).second;
  fi(2, _n * 2) down[i] = down[i / 2].DivMod(up[i]).
       second;
  /* down[1] = Poly(up[1]).irev().isz(n()).Inv().irev
       ()._tmul(_n, *this);
  vector<LL> y(_n);
  fi(0, _n) y[i] = down[_n + i][0];
  return y;
static vector<Poly> _tree1(const vector<LL> &x) {
  const int _n = (int)x.size();
  vector<Poly> up(_n * 2);
  fi(0, _n) up[_n + i] = {(x[i] ? P - x[i] : 0), 1};
for (int i = _n - 1; i > 0; --i) up[i] = up[i * 2].
    Mul(up[i * 2 + 1]);
  return up;
vector<LL> Eval(const vector<LL> &x) const {
  auto up = _tree1(x); return _eval(x, up);
static Poly Interpolate(const vector<LL> &x, const
    vector<LL> &y) {
  const int _n = (int)x.size();
  vector<Poly> up = _tree1(x), down(_n * 2);
```

```
vector<LL> z = up[1].Dx()._eval(x, up);
    fi(0, _n) z[i] = y[i] * ntt.minv(z[i]) % P;
    fi(0, _n) down[_n + i] = {z[i]};
for (int i = _n - 1; i > 0; --i) down[i] = down[i *
         2].Mul(up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul
         (up[i * 2]));
    return down[1];
  Poly Ln() const { // (*this)[0] == 1
    return Dx().Mul(Inv()).Sx().isz(n());
  Poly Exp() const { // (*this)[0] == 0
    if (n() == 1) return {1};
    Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
Poly Y = X.Ln(); Y[0] = P - 1;
    fi(0, n()) if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i]
         += P:
    return X.Mul(Y).isz(n());
  Poly Pow(const string &K) const {
    int nz = 0;
    while (nz < n() && !(*this)[nz]) ++nz;</pre>
    LL nk = 0, nk2 = 0;
    for (char c : K) {
      nk = (nk * 10 + c - '0') \% P;
      nk2 = nk2 * 10 + c - '0';
      if (nk2 * nz >= n()) return Poly(n());
      nk2 %= P - 1;
    if (!nk && !nk2) return Poly(Poly {1}, n());
    Poly X(data() + nz, data() + nz + n() - nz * nk2);
    LL x0 = X[0];
    return X.imul(ntt.minv(x0)).Ln().imul(nk).Exp()
      .imul(ntt.mpow(x0, nk2)).irev().isz(n()).irev();
  static LL LinearRecursion(const vector<LL> &a, const
      vector<LL> &coef, LL n) { // a_n = \sum_{j=1}^{n} a_{j}(n-1)
      j)
    const int k = (int)a.size();
    assert((int)coef.size() == k + 1);
    Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\};
    fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
    C[k] = 1;
    while (n) {
      if (n % 2) W = W.Mul(M).DivMod(C).second;
      n /= 2, M = M.Mul(M).DivMod(C).second;
    LL ret = 0;
    fi(0, k) ret = (ret + W[i] * a[i]) % P;
    return ret;
};
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

7.5 Newton's Method

Given $F(\boldsymbol{x})$ where

$$F(x) = \sum_{i=0}^{\infty} \alpha_i (x - \beta)^i$$

for β being some constant. Polynomial P such that F(P)=0 can be found iteratively. Denote by Q_k the polynomial such that $F(Q_k)=0$ (mod x^{2^k}), then

$$Q_{k+1} = Q_k - \frac{F(Q_k)}{F'(Q_k)} \pmod{x^{2^{k+1}}}$$

8 Geometry

8.1 Default Code

```
typedef pair<double, double > pdd;
typedef pair<pdd,pdd > Line;
struct Cir{pdd 0; double R;};
const double eps=1e-8;
```

```
pdd operator+(const pdd &a, const pdd &b)
{ return pdd(a.X + b.X, a.Y + b.Y);}
pdd operator-(const pdd &a, const pdd &b)
{ return pdd(a.X - b.X, a.Y - b.Y);}
pdd operator*(const pdd &a, const double &b)
{ return pdd(a.X * b, a.Y * b);}
pdd operator/(const pdd &a, const double &b)
{ return pdd(a.X / b, a.Y / b);}
double dot(const pdd &a,const pdd &b)
{ return a.X * b.X + a.Y * b.Y;}
double cross(const pdd &a,const pdd &b)
{ return a.X * b.Y - a.Y * b.X;}
double abs2(const pdd &a)
{ return dot(a, a);}
double abs(const pdd &a)
{ return sqrt(dot(a, a));}
int sign(const double &a)
{ return fabs(a) < eps ? 0 : a > 0 ? 1 : -1;}
int ori(const pdd &a,const pdd &b,const pdd &c)
{ return sign(cross(b - a, c - a));}
bool collinearity(const pdd &p1, const pdd &p2, const
    pdd &p3)
{ return fabs(cross(p1 - p3, p2 - p3)) < eps;}
bool btw(const pdd &p1,const pdd &p2,const pdd &p3) {
  if(!collinearity(p1, p2, p3)) return 0;
  return dot(p1 - p3, p2 - p3) < eps;</pre>
bool seg_intersect(const pdd &p1,const pdd &p2,const
    pdd &p3,const pdd &p4) {
  int a123 = ori(p1, p2, p3);
  int a124 = ori(p1, p2, p4);
  int a341 = ori(p3, p4, p1);
  int a342 = ori(p3, p4, p2);
  if(a123 == 0 && a124 == 0)
    return btw(p1, p2, p3) || btw(p1, p2, p4) ||
  btw(p3, p4, p1) || btw(p3, p4, p2);
return a123 * a124 <= 0 && a341 * a342 <= 0;
pdd intersect(const pdd &p1, const pdd &p2, const pdd &
    p3, const pdd &p4) {
  double a123 = cross(p2 - p1, p3 - p1);
  double a124 = cross(p2 - p1, p4 - p1);
return (p4 * a123 - p3 * a124) / (a123 - a124);
pdd perp(const pdd &p1)
{ return pdd(-p1.Y, p1.X);}
pdd foot(const pdd &p1, const pdd &p2, const pdd &p3)
{ return intersect(p1, p2, p3, p3 + perp(p2 - p1));}
```

8.2 Convex hull*

8.3 External bisector

```
pdd external_bisector(pdd p1,pdd p2,pdd p3){//213
  pdd L1=p2-p1,L2=p3-p1;
  L2=L2*abs(L1)/abs(L2);
  return L1+L2;
}
```

8.4 Heart

```
pdd excenter(pdd p0,pdd p1,pdd p2,double &radius){
   p1=p1-p0,p2=p2-p0;
   double x1=p1.X,y1=p1.Y,x2=p2.X,y2=p2.Y;
```

```
double m=2.*(x1*y2-y1*x2);
  center.X=(x1*x1*y2-x2*x2*y1+y1*y2*(y1-y2))/m;
  center.Y=(x1*x2*(x2-x1)-y1*y1*x2+x1*y2*y2)/m;
  return radius=abs(center), center+p0;
pdd incenter(pdd p1,pdd p2,pdd p3,double &radius){
  double a=abs(p2-p1),b=abs(p3-p1),c=abs(p3-p2);
  double s=(a+b+c)/2, area=sqrt(s*(s-a)*(s-b)*(s-c));
  pdd L1=external_bisector(p1,p2,p3),L2=
      external_bisector(p2,p1,p3);
  return radius=area/s,intersect(p1,p1+L1,p2,p2+L2),
}
pdd escenter(pdd p1,pdd p2,pdd p3){//213
  pdd L1=external_bisector(p1,p2,p3),L2=
      external_bisector(p2,p2+p2-p1,p3);
  return intersect(p1,p1+L1,p2,p2+L2);
pdd barycenter(pdd p1,pdd p2,pdd p3){
 return (p1+p2+p3)/3;
pdd orthocenter(pdd p1,pdd p2,pdd p3){
  pdd L1=p3-p2,L2=p3-p1;
  swap(L1.X,L1.Y),L1.X*=-1;
  swap(L2,X,L2.Y),L2.X*=-1;
  return intersect(p1,p1+L1,p2,p2+L2);
```

8.5 Minimum Enclosing Circle*

```
pdd Minimum_Enclosing_Circle(vector<pdd> dots, double &
    r) {
  pdd cent;
  random_shuffle(ALL(dots));
  cent = dots[0], r = 0;
  for (int i = 1; i < SZ(dots); ++i)</pre>
    if (abs(dots[i] - cent) > r) {
      cent = dots[i], r = 0;
      for (int j = 0; j < i; ++j)</pre>
        if (abs(dots[j] - cent) > r) {
          cent = (dots[i] + dots[j]) / 2;
          r = abs(dots[i] - cent);
          for(int k = 0; k < j; ++k)
            if(abs(dots[k] - cent) > r)
              cent = excenter(dots[i], dots[j], dots[k
                   ], r);
        }
  return cent;
```

8.6 Polar Angle Sort*

```
pdd center;//sort base
int Quadrant(pdd a) {
  if(a.X > 0 && a.Y >= 0) return 1;
  if(a.X <= 0 && a.Y > 0) return 2;
  if(a.X < 0 && a.Y <= 0) return 3;</pre>
  if(a.X >= 0 && a.Y < 0) return 4;</pre>
bool cmp(pll a, pll b) {
  a = a - center, b = b - center;
  if (Quadrant(a) != Quadrant(b))
    return Quadrant(a) < Quadrant(b);</pre>
  if (cross(b, a) == 0) return abs2(a) < abs2(b);</pre>
  return cross(a, b) > 0;
bool cmp(pdd a, pdd b) {
  a = a - center, b = b - center;
  if(fabs(atan2(a.Y, a.X) - atan2(b.Y, b.X)) > eps)
    return atan2(a.Y, a.X) < atan2(b.Y, b.X);</pre>
  return abs(a) < abs(b);</pre>
```

8.7 Intersection of two circles*

8.8 Intersection of polygon and circle

```
// Divides into multiple triangle, and sum up
// test by HDU2892
const double PI=acos(-1);
double _area(pdd pa, pdd pb, double r){
  if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
  if(abs(pb)<eps) return 0;</pre>
  double S, h, theta;
  double a=abs(pb),b=abs(pa),c=abs(pb-pa);
  double cosB = dot(pb,pb-pa) / a / c, B = acos(cosB);
  double cosC = dot(pa,pb) / a / b, C = acos(cosC);
  if(a > r){
    S = (C/2)*r*r;
    h = a*b*sin(C)/c;
    if (h < r \&\& B < PI/2) S -= (acos(h/r)*r*r - h*sqrt
         (r*r-h*h));
  else if(b > r){
    theta = PI - B - asin(sin(B)/r*a);
    S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
  else S = .5*sin(C)*a*b;
  return S;
double area_poly_circle(const vector<pdd> poly,const
    pdd &0, const double r){
  double S=0;
  for(int i=0;i<SZ(poly);++i)</pre>
    S+=_area(poly[i]-0,poly[(i+1)%SZ(poly)]-0,r)*ori(0,
        poly[i],poly[(i+1)%SZ(poly)]);
  return fabs(S);
}
```

8.9 Intersection of line and circle

8.10 point in circle

```
// return p4 is strictly in circumcircle of tri(p1,p2,
    p3)
long long sqr(long long x) { return x * x; }
bool in_cc(const p11& p1, const p11& p2, const p11& p3,
    const p11& p4) {
    long long u11 = p1.X - p4.X; long long u12 = p1.Y -
        p4.Y;
    long long u21 = p2.X - p4.X; long long u22 = p2.Y -
        p4.Y;
```

8.11 Half plane intersection

```
bool isin( Line 10, Line 11, Line 12 ){
  // Check inter(l1, l2) in l0
  pdd p = intersect(l1.X,l1.Y,l2.X,l2.Y);
  return cross(10.Y - 10.X,p - 10.X) > eps;
/* If no solution, check: 1. ret.size() < 3</pre>
 * Or more precisely, 2. interPnt(ret[0], ret[1])
 * in all the lines. (use (l.Y - l.X) ^ (p - l.X) > 0
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> lines){
  int sz = lines.size();
  vector<double> ata(sz),ord(sz);
  for(int i=0; i<sz; ++i) {</pre>
    ord[i] = i;
    pdd d = lines[i].Y - lines[i].X;
    ata[i] = atan2(d.Y, d.X);
  sort(ord.begin(), ord.end(), [&](int i,int j){
      if( fabs(ata[i] - ata[j]) < eps )</pre>
      return (cross(lines[i].Y-lines[i].X,
            lines[j].Y-lines[i].X))<0;</pre>
      return ata[i] < ata[j];</pre>
      });
  vector<Line> fin;
  for (int i=0; i<sz; ++i)</pre>
    if (!i || fabs(ata[ord[i]] - ata[ord[i-1]]) > eps)
      fin.pb(lines[ord[i]]);
  deque<Line> dq;
  for (int i=0; i<SZ(fin); i++){</pre>
    while(SZ(dq)>=2&&!isin(fin[i],dq[SZ(dq)-2],dq.back
        ()))
      dq.pop_back();
    while(SZ(dq)>=2&&!isin(fin[i],dq[0],dq[1]))
      dq.pop_front();
    dq.push_back(fin[i]);
  while (SZ(dq) >= 3\&\&! isin(dq[0], dq[SZ(dq)-2], dq.back()))
    dq.pop_back();
  while(SZ(dq)>=3&&!isin(dq.back(), dq[0], dq[1]))
    dq.pop_front();
  vector<Line> res(ALL(dq));
  return res;
```

8.12 CircleCover*

```
{return ang < a.ang;}
  }eve[N * 2];
  // strict: x = 0, otherwise x = -1
  bool disjuct(Cir &a, Cir &b, int x)
  {return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
  bool contain(Cir &a, Cir &b, int x)
  {return sign(a.R - b.R - abs(a.O - b.O)) > x;}
  bool contain(int i, int j) {
    /* c[j] is non-strictly in c[i]. */
    return (sign(c[i].R - c[j].R) > 0 || (sign(c[i].R -
          c[j].R) == 0 \&\& i < j)) \&\& contain(c[i], c[j],
          -1);
  void solve(){
    fill_n(Area, C + 2, 0);
    for(int i = 0; i < C; ++i)</pre>
      for(int j = 0; j < C; ++j)</pre>
        overlap[i][j] = contain(i, j);
    for(int i = 0; i < C; ++i)</pre>
      for(int j = 0; j < C; ++j)</pre>
        \texttt{g[i][j] = !(overlap[i][j] || overlap[j][i] ||}
             disjuct(c[i], c[j], -1));
    for(int i = 0; i < C; ++i){</pre>
      int E = 0, cnt = 1;
      for(int j = 0; j < C; ++j)</pre>
        if(j != i && overlap[j][i])
           ++cnt;
      for(int j = 0; j < C; ++j)</pre>
        if(i != j && g[i][j]) {
          pdd aa, bb;
          CCinter(c[i], c[j], aa, bb);
           double A = atan2(aa.Y - c[i].0.Y, aa.X - c[i]
               ].O.X);
           double B = atan2(bb.Y - c[i].O.Y, bb.X - c[i
               ].O.X);
          eve[E++] = Teve(bb, B, 1), eve[E++] = Teve(aa
               , A, -1);
          if(B > A) ++cnt;
      if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
      else{
        sort(eve, eve + E);
        eve[E] = eve[0];
        for(int j = 0; j < E; ++j){</pre>
           cnt += eve[j].add;
          Area[cnt] += cross(eve[j].p, eve[j + 1].p) *
          double theta = eve[j + 1].ang - eve[j].ang;
          if (theta < 0) theta += 2. * pi;</pre>
          Area[cnt] += (theta - sin(theta)) * c[i].R *
               c[i].R * .5;
      }
    }
  }
};
```

8.13 3Dpoint*

```
struct Point {
  double x, y, z;
  Point(double _x = 0, double _y = 0, double _z = 0): x
      (_x), y(_y), z(_z){}
 Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator-(const Point &p1, const Point &p2)
{ return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z);}
Point cross(const Point &p1, const Point &p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x -
     p1.x * p2.z, p1.x * p2.y - p1.y * p2.x);}
double dot(const Point &p1, const Point &p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z;}
double abs(const Point &a)
{ return sqrt(dot(a, a));}
Point cross3(const Point &a, const Point &b, const
    Point &c)
{ return cross(b - a, c - a);}
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c));}
double volume(Point a, Point b, Point c, Point d)
```

8.14 Convexhull3D*

{return dot(cross3(a, b, c), d - a);}

```
struct CH3D {
  struct face{int a, b, c; bool ok;} F[8 * N];
  double dblcmp(Point &p,face &f)
  {return dot(cross3(P[f.a], P[f.b], P[f.c]), p - P[f.a
  int g[N][N], num, n;
  Point P[N];
  void deal(int p,int a,int b) {
    int f = g[a][b];
    face add;
    if (F[f].ok) {
      if (dblcmp(P[p],F[f]) > eps) dfs(p,f);
         add.a = b, add.b = a, add.c = p, add.ok = 1, g[
             p][b] = g[a][p] = g[b][a] = num, F[num++]=
  void dfs(int p, int now) {
    F[now].ok = 0;
    deal(p, F[now].b, F[now].a), deal(p, F[now].c, F[
         now].b), deal(p, F[now].a, F[now].c);
  bool same(int s,int t){
    Point &a = P[F[s].a];
    Point \&b = P[F[s].b];
    Point &c = P[F[s].c];
    return fabs(volume(a, b, c, P[F[t].a])) < eps &&</pre>
         fabs(volume(a, b, c, P[F[t].b])) < eps && fabs(</pre>
         volume(a, b, c, P[F[t].c])) < eps;
  void init(int _n){n = _n, num = 0;}
  void solve() {
    face add;
    num = 0:
    if(n < 4) return;</pre>
    if([&](){
        for (int i = 1; i < n; ++i)
if (abs(P[0] - P[i]) > eps)
         return swap(P[1], P[i]), 0;
         return 1:
        }() || [&](){
         for (int i = 2; i < n; ++i)
        if (abs(cross3(P[i], P[0], P[1])) > eps)
        return swap(P[2], P[i]), 0;
        return 1;
         }()[&]|| (){
         for (int i = 3; i < n; ++i)</pre>
         if (fabs(dot(cross(P[0] - P[1], P[1] - P[2]), P
             [0] - P[i])) > eps)
         return swap(P[3], P[i]), 0;
         return 1;
        }())return;
    for (int i = 0; i < 4; ++i) {
      add.a = (i + 1) % 4, add.b = (i + 2) % 4, add.c =
            (i + 3) \% 4, add.ok = true;
      if (dblcmp(P[i],add) > 0) swap(add.b, add.c);
      g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.
          a] = num;
      F[num++] = add;
    for (int i = 4; i < n; ++i)</pre>
      for (int j = 0; j < num; ++j)</pre>
        if (F[j].ok && dblcmp(P[i],F[j]) > eps) {
          dfs(i, j);
           break;
    for (int tmp = num, i = (num = 0); i < tmp; ++i)</pre>
      if (F[i].ok) F[num++] = F[i];
  double get_area() {
    double res = 0.0;
    if (n == 3)
      return abs(cross3(P[0], P[1], P[2])) / 2.0;
    for (int i = 0; i < num; ++i)
  res += area(P[F[i].a], P[F[i].b], P[F[i].c]);</pre>
```

```
return res / 2.0:
  double get_volume() {
    double res = 0.0:
    for (int i = 0; i < num; ++i)</pre>
      res += volume(Point(0, 0, 0), P[F[i].a], P[F[i].b
          ], P[F[i].c]);
    return fabs(res / 6.0);
  int triangle() {return num;}
  int polygon() {
    int res = 0;
    for (int i = 0, flag = 1; i < num; ++i, res += flag</pre>
         , flag = 1)
       for (int j = 0; j < i && flag; ++j)</pre>
        flag &= !same(i,j);
    return res:
  Point getcent(){
    Point ans(0, 0, 0), temp = P[F[0].a];
    double v = 0.0, t2;
    for (int i = 0; i < num; ++i)</pre>
      if (F[i].ok == true)
        Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].b]
             il.cl:
        t2 = volume(temp, p1, p2, p3) / 6.0;
        if (t2>0)
           ans.x += (p1.x + p2.x + p3.x + temp.x) * t2,
               ans.y += (p1.y + p2.y + p3.y + temp.y) *
               t2, ans.z += (p1.z + p2.z + p3.z + temp.z
               ) * t2, v += t2;
    ans.x /= (4 * v), ans.y /= (4 * v), ans.z /= (4 * v)
        );
    return ans;
  double pointmindis(Point p) {
    double rt = 99999999;
    for(int i = 0; i < num; ++i)</pre>
       if(F[i].ok == true) {
        Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[
             i].c];
         double a = (p2.y - p1.y) * (p3.z - p1.z) - (p2.
             z - p1.z) * (p3.y - p1.y);
         double b = (p2.z - p1.z) * (p3.x - p1.x) - (p2.
             x - p1.x) * (p3.z - p1.z);
         double c = (p2.x - p1.x) * (p3.y - p1.y) - (p2.
             y - p1.y) * (p3.x - p1.x);
         double d = 0 - (a * p1.x + b * p1.y + c * p1.z)
         double temp = fabs(a * p.x + b * p.y + c * p.z
             + d) / sqrt(a * a + b * b + c * c);
        rt = min(rt, temp);
      }
    return rt;
  }
|};
```

8.15 DelaunayTriangulation*

```
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
Voronoi diagram: for each triangle in triangulation,
the bisector of all its edges will split the region.
nearest point will belong to the triangle containing it
const 11 inf = MAXC * MAXC * 100; // Lower_bound
   unknown
struct Tri:
struct Edge {
    Tri* tri; int side;
    Edge(): tri(0), side(0){}
```

```
Edge(Tri* _tri, int _side): tri(_tri), side(_side)
};
struct Tri {
    pll p[3];
    Edge edge[3];
    Tri* chd[3];
    Tri() {}
    Tri(const pl1& p0, const pl1& p1, const pl1& p2) {
        p[0] = p0; p[1] = p1; p[2] = p2;
        chd[0] = chd[1] = chd[2] = 0;
    bool has_chd() const { return chd[0] != 0; }
    int num_chd() const {
        return !!chd[0] + !!chd[1] + !!chd[2];
    bool contains(pll const& q) const {
        for (int i = 0; i < 3; ++i)</pre>
             if (ori(p[i], p[(i + 1) % 3], q) < 0)</pre>
                 return 0;
        return 1;
    }
} pool[N * 10], *tris;
void edge(Edge a, Edge b) {
    if(a.tri) a.tri -> edge[a.side] = b;
    if(b.tri) b.tri -> edge[b.side] = a;
struct Trig { // Triangulation
    Trig() {
        the_root = // Tri should at least contain all
             new(tris++) Tri(pll(-inf, -inf), pll(inf +
                 inf, -inf), pll(-inf, inf + inf));
    Tri* find(pll p) { return find(the_root, p); }
    void add_point(const pll &p) { add_point(find(
        the_root, p), p); }
    Tri* the_root;
    static Tri* find(Tri* root, const pll &p) {
        while (1) {
            if (!root -> has_chd())
                 return root;
             for (int i = 0; i < 3 && root -> chd[i]; ++
                 i)
                 if (root -> chd[i] -> contains(p)) {
                     root = root -> chd[i];
                     break:
                 }
        assert(0); // "point not found"
    void add_point(Tri* root, pll const& p) {
        Tri* t[3];
        /* split it into three triangles */
        for (int i = 0; i < 3; ++i)
    t[i] = new(tris++) Tri(root -> p[i], root
                 -> p[(i + 1) % 3], p);
        for (int i = 0; i < 3; ++i)</pre>
             edge(Edge(t[i], 0), Edge(t[(i + 1) % 3], 1)
        for (int i = 0; i < 3; ++i)
             edge(Edge(t[i], 2), root -> edge[(i + 2) %
                 3]);
        for (int i = 0; i < 3; ++i)
            root -> chd[i] = t[i];
        for (int i = 0; i < 3; ++i)</pre>
            flip(t[i], 2);
    void flip(Tri* tri, int pi) {
        Tri* trj = tri -> edge[pi].tri;
        int pj = tri -> edge[pi].side;
        if (!trj) return;
        if (!in_cc(tri -> p[0], tri -> p[1], tri -> p
             [2], trj -> p[pj])) return;
         /* flip edge between tri,trj *,
        Tri* trk = new(tris++) Tri(tri -> p[(pi + 1) %
            3], trj -> p[pj], tri -> p[pi]);
        Tri* trl = new(tris++) Tri(trj -> p[(pj + 1) %
             3], tri -> p[pi], trj -> p[pj]);
        edge(Edge(trk, 0), Edge(trl, 0));
        edge(Edge(trk, 1), tri->edge[(pi + 2) % 3]);
edge(Edge(trk, 2), trj->edge[(pj + 1) % 3]);
```

```
edge(Edge(trl, 1), trj->edge[(pj + 2) % 3]);
edge(Edge(trl, 2), tri->edge[(pi + 1) % 3]);
         tri -> chd[0] = trk; tri -> chd[1] = trl; tri
             -> chd[2] = 0;
         trj -> chd[0] = trk; trj -> chd[1] = trl; trj
              -> chd[2] = 0;
         flip(trk, 1); flip(trk, 2);
         flip(trl, 1); flip(trl, 2);
    }
vector<Tri*> triang; // vector of all triangle
set<Tri*> vst;
void go(Tri* now) { // store all tri into triang
    if (vst.find(now) != vst.end())
         return:
    vst.insert(now);
    if (!now -> has_chd())
         return triang.push_back(now);
    for (int i = 0; i < now->num_chd(); ++i)
         go(now -> chd[i]);
void build(int n, pll* ps) { // build triangulation
    tris = pool; triang.clear(); vst.clear();
    random_shuffle(ps, ps + n);
    Trig tri; // the triangulation structure
    for (int i = 0; i < n; ++i)</pre>
         tri.add_point(ps[i]);
    go(tri.the_root);
}
```

8.16 Triangulation Vonoroi*

```
vector<Line> ls[N];
pll arr[N];
Line make_line(pdd p, Line 1) {
    pdd d = 1.Y - 1.X; d = perp(d);
    pdd m = (1.X + 1.Y) / 2;
    l = Line(m, m + d);
    if (ori(1.X, 1.Y, p) < 0)</pre>
        l = Line(m + d, m);
    return 1;
double calc_area(int id) {
   // use to calculate the area of point "strictly in
        the convex hull"
    vector<Line> hpi = halfPlaneInter(ls[id]);
    vector<pdd> ps;
    for (int i = 0; i < SZ(hpi); ++i)</pre>
        ps.pb(intersect(hpi[i].X, hpi[i].Y, hpi[(i + 1)
             % SZ(hpi)].X, hpi[(i + 1) % SZ(hpi)].Y));
    double rt = 0;
    for (int i = 0; i < SZ(ps); ++i)</pre>
        rt += cross(ps[i], ps[(i + 1) % SZ(ps)]);
    return fabs(rt) / 2;
void solve(int n, pii *oarr) {
    map<pll, int> mp;
    for (int i = 0; i < n; ++i)</pre>
        arr[i] = pll(oarr[i].X, oarr[i].Y), mp[arr[i]]
             = i;
    build(n, arr); // Triangulation
    for (auto *t : triang) {
        vector<int> p;
        for (int i = 0; i < 3; ++i)
            if (mp.find(t -> p[i]) != mp.end())
                p.pb(mp[t -> p[i]]);
        for (int i = 0; i < SZ(p); ++i)</pre>
            for (int j = i + 1; j < SZ(p); ++j) {
                 Line l(oarr[p[i]], oarr[p[j]]);
                 ls[p[i]].pb(make_line(oarr[p[i]], 1));
                 ls[p[j]].pb(make_line(oarr[p[j]], 1));
            }
    }
}
```

8.17 Tangent line of two circles

```
vector<Line> go( const Cir& c1 , const Cir& c2 , int
    sign1 ){
  // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret;
  double d_sq = norm2( c1.0 - c2.0 );
  if( d_sq < eps ) return ret;</pre>
  double d = sqrt( d_sq );
  Pt v = (c2.0 - c1.0) / d;
  double c = ( c1.R - sign1 * c2.R ) / d;
  if( c * c > 1 ) return ret;
  double h = sqrt( max( 0.0 , 1.0 - c * c ) );
for( int sign2 = 1 ; sign2 >= -1 ; sign2 -= 2 ){
    Pt n = \{ v.X * c - sign2 * h * v.Y \}
      v.Y * c + sign2 * h * v.X };
    Pt p1 = c1.0 + n * c1.R;
    Pt p2 = c2.0 + n * (c2.R * sign1);
    if( fabs( p1.X - p2.X ) < eps and
    fabs( p1.Y - p2.Y ) < eps )</pre>
       p2 = p1 + perp(c2.0 - c1.0);
    ret.push_back( { p1 , p2 } );
  return ret;
```

8.18 minMaxEnclosingRectangle

```
pdd solve(vector<pll> &dots){
  vector<pll> hull;
  const double INF=1e18,qi=acos(-1)/2*3;
  cv.dots=dots;
  hull=cv.hull();
  double Max=0,Min=INF,deg;
  11 n=hull.size();
  hull.pb(hull[0]);
  for(int i=0,u=1,r=1,l;i<n;++i){</pre>
    pll nw=hull[i+1]-hull[i];
    while(cross(nw,hull[u+1]-hull[i])>cross(nw,hull[u]-
        hull[i]))
      u=(u+1)%n;
    while(dot(nw,hull[r+1]-hull[i])>dot(nw,hull[r]-hull
        [i]))
      r=(r+1)%n;
    if(!i) l=(r+1)%n;
    while(dot(nw,hull[1+1]-hull[i])<dot(nw,hull[1]-hull</pre>
        [i]))
      l=(1+1)%n;
    Min=min(Min,(double)(dot(nw,hull[r]-hull[i])-dot(nw
        ,hull[1]-hull[i]))*cross(nw,hull[u]-hull[i])/
        abs2(nw));
    deg=acos((double)dot(hull[r]-hull[1],hull[u]-hull[i
        ])/abs(hull[r]-hull[1])/abs(hull[u]-hull[i]));
    deg=(qi-deg)/2;
    Max=max(Max,(double)abs(hull[r]-hull[l])*abs(hull[u
        ]-hull[i])*sin(deg)*sin(deg));
  return pdd(Min,Max);
```

8.19 minDistOfTwoConvex

```
// p, q is convex
double TwoConvexHullMinDist(Point P[], Point Q[], int n
      int m) {
  int YMinP = 0, YMaxQ = 0;
  double tmp, ans = 999999999;
  for (i = 0; i < n; ++i) if(P[i].y < P[YMinP].y) YMinP</pre>
  for (i = 0; i < m; ++i) if(Q[i].y > Q[YMaxQ].y) YMaxQ
       = i;
  P[n] = P[0], Q[m] = Q[0];
  for (int i = 0; i < n; ++i) {</pre>
    while (tmp = Cross(Q[YMaxQ + 1] - P[YMinP + 1], P[
        YMinP] - P[YMinP + 1]) > Cross(Q[YMaxQ] - P[
        YMinP + 1], P[YMinP] - P[YMinP + 1])) YMaxQ = (
        YMaxQ + 1) % m;
    if (tmp < 0) ans = min(ans, PointToSegDist(P[YMinP</pre>
        ], P[YMinP + 1], Q[YMaxQ]));
```

8.20 Minkowski Sum*

```
vector<pll> Minkowski(vector<pll> A, vector<pll> B) {
  hull(A), hull(B);
  vector<pll> C(1, A[0] + B[0]), s1, s2;
  for(int i = 0; i < SZ(A); ++i)
    s1.pb(A[(i + 1) % SZ(A)] - A[i]);
  for(int i = 0; i < SZ(B); i++)
    s2.pb(B[(i + 1) % SZ(B)] - B[i]);
  for(int p1 = 0, p2 = 0; p1 < SZ(A) || p2 < SZ(B);)
  if (p2 >= SZ(B) || (p1 < SZ(A) && cross(s1[p1], s2[
      p2]) >= 0))
    C.pb(C.back() + s1[p1++]);
  else
    C.pb(C.back() + s2[p2++]);
  return hull(C), C;
}
```

8.21 RotatingSweepLine

```
void rotatingSweepLine(vector<pii> &ps) {
  int n = SZ(ps);
  vector<int> id(n), pos(n);
  vector<pii> line(n * (n - 1) / 2);
  int m = 0;
  for (int i = 0; i < n; ++i)</pre>
    for (int j = i + 1; j < n; ++j)
      line[m++] = pii(i,j);
    sort(ALL(line), [&](const pii &a, const pii &b)->
        bool {
      if (ps[a.X].X == ps[a.Y].X)
        return 0;
      if (ps[b.X].X == ps[b.Y].X)
        return 1;
      return (double)(ps[a.X].Y - ps[a.Y].Y) / (ps[a.X
          ].X - ps[a.Y].X) < (double)(ps[b.X].Y - ps[b.
          Y].Y) / (ps[b.X].X - ps[b.Y].X);
  iota(id, id + n, 0);
  sort(ALL(id), [&](const int &a,const int &b){ return
      ps[a] < ps[b]; });
  for (int i = 0; i < n; ++i) pos[id[i]] = i;</pre>
    for (int i = 0; i < m; ++i) {</pre>
      auto 1 = line[i];
      tie(pos[1.X], pos[1.Y], id[pos[1.X]], id[pos[1.Y
          ]]) = make_tuple(pos[1.Y], pos[1.X], 1.Y, 1.X
          );
  }
}
```

9 Else

9.1 Mo's Alogrithm(With modification)

```
struct QUERY{//BLOCK=N^{2/3}}
int L,R,id,LBid,RBid,T;
QUERY(int l,int r,int id,int lb,int rb,int t):
    L(l),R(r),id(id),LBid(lb),RBid(rb),T(t){}
bool operator<(const QUERY &b)const{
    if(LBid!=b.LBid) return LBid<b.LBid;
    if(RBid!=b.RBid) return RBid<b.RBid;
    return T<b.T;
}
};
vector<QUERY> query;
int cur_ans,arr[MAXN],ans[MAXN];
```

```
void addTime(int L,int R,int T){}
void subTime(int L,int R,int T){}
void add(int x){}
void sub(int x){}
void solve(){
  sort(ALL(query));
  int L=0,R=0,T=-1;
  for(auto q:query){
    while(T<q.T) addTime(L,R,++T);</pre>
    while(T>q.T) subTime(L,R,T--);
    while(R<q.R) add(arr[++R]);</pre>
    while(L>q.L) add(arr[--L]);
    while(R>q.R) sub(arr[R--]);
    while(L<q.L) sub(arr[L++]);</pre>
    ans[q.id]=cur_ans;
}
```

9.2 Mo's Alogrithm On Tree

```
const int MAXN=40005;
vector<int> G[MAXN];//1-base
int n,B,arr[MAXN],ans[100005],cur_ans;
int in[MAXN],out[MAXN],dfn[MAXN*2],dft;
\label{eq:maxn} \begin{array}{ll} \textbf{int} & \texttt{deep[MAXN],sp[\_\_lg(MAXN*2)+1][MAXN*2],bln[MAXN],spt} \end{array}
bitset<MAXN> inset;
struct QUERY{
  int L,R,Lid,id,lca;
  QUERY(int 1,int r,int _id):L(1),R(r),lca(0),id(_id){}
  bool operator<(const QUERY &b){</pre>
    if(Lid!=b.Lid) return Lid<b.Lid;</pre>
    return R<b.R;</pre>
  }
};
vector<QUERY> query;
void dfs(int u,int f,int d){
  deep[u]=d,sp[0][spt]=u,bln[u]=spt++;
  dfn[dft]=u,in[u]=dft++;
  for(int v:G[u])
    if(v!=f)
      dfs(v,u,d+1),sp[0][spt]=u,bln[u]=spt++;
  dfn[dft]=u,out[u]=dft++;
int lca(int u,int v){
  if(bln[u]>bln[v]) swap(u,v);
  int t=__lg(bln[v]-bln[u]+1);
  int a=sp[t][bln[u]],b=sp[t][bln[v]-(1<<t)+1];</pre>
  if(deep[a]<deep[b]) return a;</pre>
  return b;
void sub(int x){}
void add(int x){}
void flip(int x){
  if(inset[x]) sub(arr[x]);
  else add(arr[x]);
  inset[x]=~inset[x];
void solve(){
  B=sqrt(2*n),dft=spt=cur_ans=0,dfs(1,1,0);
  for(int i=1,x=2;x<2*n;++i,x<<=1)</pre>
    for(int j=0;j+x<=2*n;++j)</pre>
      if(deep[sp[i-1][j]]<deep[sp[i-1][j+x/2]])</pre>
         sp[i][j]=sp[i-1][j];
       else sp[i][j]=sp[i-1][j+x/2];
  for(auto &q:query){
    int c=lca(q.L,q.R);
    if(c==q.L||c==q.R)
      q.L=out[c==q.L?q.R:q.L],q.R=out[c];
    else if(out[q.L]<in[q.R])</pre>
      q.lca=c,q.L=out[q.L],q.R=in[q.R];
    else q.lca=c,c=in[q.L],q.L=out[q.R],q.R=c;
    q.Lid=q.L/B;
  sort(ALL(query));
  int L=0, R=-1;
  for(auto q:query){
    while(R<q.R) flip(dfn[++R]);</pre>
    while(L>q.L) flip(dfn[--L]);
    while(R>q.R) flip(dfn[R--]);
```

```
while(L<q.L) flip(dfn[L++]);
  if(q.lca) add(arr[q.lca]);
  ans[q.id]=cur_ans;
  if(q.lca) sub(arr[q.lca]);
  }
}</pre>
```

9.3 DynamicConvexTrick*

```
// only works for integer coordinates!!
struct Line {
    mutable 11 a, b, p;
    bool operator<(const Line &rhs) const { return a <</pre>
         rhs.a; }
    bool operator<(11 x) const { return p < x; }</pre>
struct DynamicHull : multiset<Line, less<>>> {
    static const ll kInf = 1e18;
    ll Div(ll a, ll b) { return a / b - ((a ^{\circ} b) < 0 &&
          a % b); }
    bool isect(iterator x, iterator y) {
         if (y == end()) { x -> p = kInf; return 0; }
         if (x \rightarrow a == y \rightarrow a) \times y \rightarrow b \times y \rightarrow b
              ? kInf : -kInf;
         else x \rightarrow p = Div(y \rightarrow b - x \rightarrow b, x \rightarrow a - y)
              -> a);
         return x \rightarrow p >= y \rightarrow p;
    void addline(ll a, ll b) {
         auto z = insert({a, b, 0}), y = z++, x = y;
         while (isect(y, z)) z = erase(z);
         if (x != begin() \&\& isect(--x, y)) isect(x, y =
               erase(y));
         while ((y = x) != begin() \&\& (--x) -> p >= y ->
               p) isect(x, erase(y));
    11 query(ll x) {
         auto 1 = *lower_bound(x);
         return 1.a * x + 1.b;
    }
};
```

9.4 DLX*

```
#define TRAV(i, link, start) for (int i = link[start];
    i != start; i = link[i])
template <bool A, bool B = !A> // A: Exact
struct DLX {
  int lt[NN], rg[NN], up[NN], dn[NN], cl[NN], rw[NN],
      bt[NN], s[NN], head, sz, ans;
  int columns;
  bool vis[NN]:
  void remove(int c) {
    if (A) lt[rg[c]] = lt[c], rg[lt[c]] = rg[c];
    TRAV(i, dn, c) {
      if (A) {
        TRAV(j, rg, i)
          up[dn[j]] = up[j], dn[up[j]] = dn[j], --s[cl[
      } else {
        lt[rg[i]] = lt[i], rg[lt[i]] = rg[i];
      }
    }
  void restore(int c) {
    TRAV(i, up, c) {
      if (A) {
        TRAV(j, lt, i)
          ++s[cl[j]], up[dn[j]] = j, dn[up[j]] = j;
      } else +
        lt[rg[i]] = rg[lt[i]] = i;
      }
    if (A) lt[rg[c]] = c, rg[lt[c]] = c;
  }
  void init(int c) {
    columns = c;
    for (int i = 0; i < c; ++i) {</pre>
```

```
up[i] = dn[i] = bt[i] = i;
      lt[i] = i == 0 ? c : i - 1;
      rg[i] = i == c - 1 ? c : i + 1;
      s[i] = 0;
    rg[c] = 0, lt[c] = c - 1;
    up[c] = dn[c] = -1;
    head = c, sz = c + 1;
  void insert(int r, const vector<int> &col) {
    if (col.empty()) return;
    int f = sz;
    for (int i = 0; i < (int)col.size(); ++i) {</pre>
      int c = col[i], v = sz++;
      dn[bt[c]] = v;
      up[v] = bt[c], bt[c] = v;
      rg[v] = (i + 1 == (int)col.size() ? f : v + 1);
      rw[v] = r, cl[v] = c;
      ++s[c];
      if (i > 0) lt[v] = v - 1;
    lt[f] = sz - 1;
  int h() {
    int ret = 0;
    memset(vis, 0, sizeof(bool) * sz);
    TRAV(x, rg, head) {
      if (vis[x]) continue;
      vis[x] = true, ++ret;
      TRAV(i, dn, x) TRAV(j, rg, i) vis[cl[j]] = true;
    }
    return ret;
  void dfs(int dep) {
    if (dep + (A ? 0 : h()) >= ans) return;
    if (rg[head] == head) return ans = dep, void();
    if (dn[rg[head]] == rg[head]) return;
    int w = rg[head];
    TRAV(x, rg, head) if (s[x] < s[w]) w = x;
    if (A) remove(w);
    TRAV(i, dn, w) {
      if (B) remove(i);
      TRAV(j, rg, i) remove(A ? cl[j] : j);
      dfs(dep + 1);
      TRAV(j, lt, i) restore(A ? cl[j] : j);
      if (B) restore(i);
    if (A) restore(w);
  int solve() {
    for (int i = 0; i < columns; ++i)</pre>
      dn[bt[i]] = i, up[i] = bt[i];
    ans = 1e9, dfs(0);
    return ans;
  }
};
```

9.5 Matroid Intersection

```
Start from S=\emptyset. In each iteration, let  \bullet \ Y_1=\{x\not\in S\mid S\cup\{x\}\in I_1\} \\ \bullet \ Y_2=\{x\not\in S\mid S\cup\{x\}\in I_2\}  If there exists x\in Y_1\cap Y_2, insert x into S. Otherwise for each x\in S, y\not\in S, create edges  \bullet \ x\to y \ \text{if} \ S-\{x\}\cup\{y\}\in I_1. \\ \bullet \ y\to x \ \text{if} \ S-\{x\}\cup\{y\}\in I_2.
```

Find a shortest path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \notin S$. Find the path with the minimum number of edges among all minimum length paths and alternate it.

9.6 AdaptiveSimpson

```
using F_t = function<double(double)>;
pdd simpson(const F_t &f, double 1, double r,
   double f1, double fr, double fm = nan("")) {
```

```
if (isnan(fm)) fm = f((1 + r) / 2);
return {fm, (r - 1) / 6 * (f1 + 4 * fm + fr)};
double simpson_ada(const F_t &f, double 1, double r,
  double f1, double fm, double fr, double eps) {
  double m = (1 + r) / 2,
  s = simpson(f, 1, r, f1, fr, fm).second;
auto [f1m, s1] = simpson(f, 1, m, f1, fm);
  auto [fmr, sr] = simpson(f, m, r, fm, fr);
  double delta = sl + sr - s;
if (abs(delta) <= 15 * eps)</pre>
    return sl + sr + delta / 15;
  return simpson_ada(f, 1, m, f1, f1m, fm, eps / 2) +
     simpson_ada(f, m, r, fm, fmr, fr, eps / 2);
double simpson_ada(const F_t &f, double l, double r) {
  return simpson_ada(
     f, 1, r, f(1), f((1 + r) / 2), f(r), 1e-9 / 7122);
double simpson_ada2(const F_t &f, double 1, double r) {
     double h = (r - 1) / 7122, s = 0;
for (int i = 0; i < 7122; ++i, 1 += h)
         s += simpson_ada(f, 1, 1 + h);
     return s;
}
```