

W= 3000 x 20 x 60 W= 36000007 DATE

MARKERER	SULLARY	SUMMARY

- O Scientific notation → 0-10 × 10 2 = any number
- ② Engineering notation → 0-1000 × 10²¹ € multiple of 3
- (3) Change Q, & conit -> Columb (C) Coulomb (C) resistivity (2m)

PAV= TQ (C)

OV=IR 6hms law 8 P=IV, P=I2R, P= 5

VαI

Chp 6. parallel circuit. 1012 tera 109 G gigo M 100 mega kilo 14 103

h 102 recto

da dera lo 10-1 9 deci C centi

m

milli

10-3 10-3

10-6 μ Micro 10-9 nano N 10-12 pico

why? R, 11 R2 11 R3?

VR = VR2 = VR2 = VS

① $R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_3}} + \frac{1}{R_3}$

R. Rz

RO IKI = IT (RT)

0

(3) KCL (kirchoff's Eurrent Law) Elin = Elout

 $I \longrightarrow \stackrel{A}{\longrightarrow} I_3$ PIA

I,+ Iz = I3 + I4

KVL (Kirchoff's voltage Law).

Vs - V1 - V2 - V3 = O. ← All sum are equal to zero.

Vs = V1 + V2 + Vs + Vn = # The sum of all the voltage drops is equal to the sun of all the voltage rise.

$$I_{1} = \left(\frac{R_{1}}{R_{1}}\right) I_{T} = \left(\frac{R_{1}R_{2}}{R_{1}+R_{2}}\right) I_{T} \quad I_{2} = \left(\frac{R_{1}}{R_{2}}\right) I_{T} = \left(\frac{R_{2}R_{2}}{R_{2}+R_{2}}\right) I_{T}$$

$$I_{1} = \begin{pmatrix} R_{T} \\ R_{2} \end{pmatrix} \quad I_{T} = \begin{pmatrix} R_{A}R_{2} \\ \hline R_{2} + \hat{v}_{2} \end{pmatrix} I_{T}$$

$$\therefore I_{2} = \begin{pmatrix} R_{A} \\ R_{1} + \hat{v}_{2} \end{pmatrix} I_{T}.$$

$$I = \frac{V_S}{R_T}$$

0000

0

•

•

•

0

$$V_4 = (I) R_1 = \left(\frac{V_5}{R_7}\right) R_1 = \left(\frac{R_2}{R_7}\right) V_5$$

$$V_2 = (I) R_2 = \left(\frac{V_S}{R_T}\right) R_2 = \left(\frac{R^2}{R_T}\right) V_S$$

$$V_3 = (I)R_3 = \left(\frac{V_3}{R_7}\right)R_3 = \left(\frac{R_3}{R_7}\right)V_5$$

Kirchhoff's Junction Rule.

The sum of the currents flowing into a Junction is equal to the sum of the currents flowing out of said junction.

MATHEMATICALLY,

•

The In = I out

DIAGRAMMATICALLY

JR (ji) = I, = Iz+I3

Kirchhoff's Loop Rool

Fator any closed loop the sum of the voltage "lifts" is equal to the sum of the voltage "drop".

MATHEMATICALLY,

Vret = 0

DIAGRAMMATICALLY,

LR(A) = Vs - VR =0

Conventions for KR:

The travel through a bottery (while summing voltages) from LOW TO HIGH Chegative to positive) the voltage of is positive ("LIFT"); HIGH TO LOW (positive to regative) the voltage is negative ("DROP").

If we #-follow current (while summing voltages) through a resistor, then V=-IR ("DROP"); If we oppose current through a resistor, then V=+IR ("LIFT")

no preference in direction.

DATE

* Typically we'll use one more loop than the number of junction.

T Sum & current into a junction is equal to going out. In Ji → Io going in attite, and
the output is going 2
ways, I, (going straight)
and Iz(going down)

C) EXT B

To =0.0375+0.015

Io=1-0.0225A VIOOR = (0.015)(1002)

V100-2 = 1.5V

V2002 = (0.0375)(200)

=7.5**V**

PIOD = IV = (0.015)(1.5)

= 0.0225W

P2002 = IV = (0.0375)(7.5) = 0.28125W

Loop Rule A = - I2 (100 2) + 1.5V = 0.

- IR-Cuoltage drop Frank v= Ir) $I_2 = 0.015A$

Loop Rule \$B = -9V - II (2002) + Iz (1002)=0

voltage lift.

-9-200I, + (0.015)(100)=0.

-2001, 404 = 7.5

I, =0.0375A

direction is wrong (the opposide way).

Unit 8.

A The ideal voltage source has:

- O internal resistance.

- Provides a constant voltage across its terminal A and B.

- VAB = Vs regardless of the load resistance.

- Huhen the a look is connected across the ideal voltage source:

-The voltage across termals AB remains the same.

WE VAB = VRL = Vs

But an in reality, no voltage is ideal. A practical voltage source can be represented by a resistor in series with an ideal voltage source

Its terminal voltage value is higher than the source e.m.f.

To neglect the effect of a voltage source, the terminals across the source are preparet short circuited or preplaced by a wire.

A practical source current source is one that has an extremely large internal resistance.

To reglect the effect of a current source to a circuit, the terminals across the source one open circuited.

Attractive force.

Cho 9.

Variable	con- Magnetic Flux.	6 Flux Density.
Unit.		Tesla (T).
Symbol .	@ (B :
Definition.	The line of force in	The amount of flux
	a magnetic field.	passing perpendid
	-The higher the quanity,	perpendicularly thro
	the stronger the magnetic	a unit area in a
	field is	magnetic field.
	THA A	β = Φ
		0.00
	4/////	(where A is area 90° to the flux).

Area #A, 90° to the flux.

Electromagnet properties.

O These are related to the establishment of an electromagnetic field:

- Blacked Permeability of the core material selected (# 14)
- Ne Reluctance of the flux path 48mm (Rm)
- -Magnetomotive force /MMF (Fm)

These parameters determine the field strength of an electromagnet, ease to establish flux flow and the force needed to establish the field.

CHOICELEAN LIEDO Tomo + Thomas PREDICTIONS

& Electromyret. Wire coil around a magnetised core material, if current is applied in the coil, magnetic field is produced around it. The 0 intensity of the way magnetic field can be controlled by the 0 amount of current. If The pole can be reversed by changing connent flow direction into its coil.

& Magnetic field and flux. \supset -Notice of magnetic field have flux flow across the air gar. -Smaller gap between the poles lead to lesser rejuctance.

-Phar Magnetic permeability of air 1990 of the poles is the poles which tower than 15 the poles is the poles in the poles is the poles in the In the magnetic body, it are lett to the high magnetic resistance air-gaps. - (relationer) of the core gap. L - (neother mont is required to overcome reluctance of air gap. -Basically the magnetic Alan er field can be easily established with smaller air gap because the reluctance is lessen

0

Properties of electromagnet. \bigcirc -Flux Density (B) can be enhanced by: 1) The Increase the number of coil turns. @ Increase a the amount of current, I

(3) diecreasing length of the coil, Mil. 1 Increasing permeability, M.

-MMF also depends on the number of turns (IV), the strength Of the current (I) as well as the length (R) of material - Reluctance (Rm) is inversly proportional. to the magnetic

permeability.

A Faradays law.

- Definition \$18 how it works:
 - · When the suitch is furned off and on, there is a deflection in the meter.
- · The stationing suitching action produced voltage and current. - Faradays Low
 - · It conduct concluded that the change of magnetic O flux (SQ) induces electricity.

· This phenomenon is called electromagnetic induction.

no. of turns.

N do whange in magnetic flux current R. dt d= a (delta).

Vemf = -N de => Vind = -N de

Hospital Magnitude of induced emf (Vind) in a coil is the rate of charge in magnetic flux (24) through the coil multiplied by by the number of turns (N).

& Lenz's Law.

- The direction of made induced current is such as to oppose the change that produced it. An induced current in a closed. conducting toop will appear in such direction -Both Fouraday's and Lenz's that it opposes the change that produced Law work together in I direction l explaining the magnitude and

polarity of the included voltage. and direction of the induced current

de to the induced

Generating at set voltage & current.
The effective rate of cutting flux lines depends on the instantane
position of the coil conductor.
is moving in parallel to the plux NITS DINGE
Lind Could have - Ills - (Could)
- If the will is positioned at an angle 7 19 15 / NIGO IS IN
tilted to the flux lines the cutting To F.
rate is between zero 2 maximum \$ 55 5 = 5 If the coil is positioned horizontally, the conductor is moving vertically to the flux lines and will have the maximum cutting involve.
> If the coil is positioned horizontally, the conductor is moving
vertically to the flux lines and will hope the maximum
cutting rate.
At-First finger is the magnetic field, indirection is from north to south
- Thumb points along with the motion direction of the anductor.
-Thumb points along with the motion direction of the conductorThen second finger tells the direction of the current in the
conductor.
- Induced current flowing towards you when the conductor bar
- Induced current flowing towards you when the conductor bar cuts across the magnetic field. field (1 motion
across the magnetic relation
auts across the magnetic field. Step N field Thomason with the Current.
mains 1

Frequency f and rotational speed n - One revolution of conductor through magnetic field: > ore cycle of induced sinuspidal voltage. - Conductor's rotational speed determines time to complete of one cycle. - Frequency of a periodic waveform, f = number of cycles per seconds. -The unit of frequency is hertz (Hz) - Faster conductor's relational speed. -> Higher frequency of induced nottage.

ment

ore en cycle 601

PEEE Chp10.
Frequency f and Rotational speed n.
- Frequency of the ac voltage can also be increased by: \frequency of induced voltage transfer of increased by: \frequency frequency of the number of magnetic foles Frequency f= pxn. Where p = number of pole pairs. I one pole pair > a set of N and S poles S English n= rotational speed, in number of revolutions S English per seconds (pprps or rev/s) I revolution
C Frequency of and notational speed notation of denie that the peak induced voltage, VP X NN. - where n is the notational speed , and -N is the number of turns of the coil. At However, increasing n will increase the frequency of the sirewave, which is undestructed. I = n * x p. * The frequency of electricity supply is usually fixed at 50Hz or 60H. * Hence, we can generate high AC voltage by increasing the number of
Coil N.
Example: *The conductor loop (rotor) of a simple two-pole generater rotates at a C rate of 50 news/s, what is the frequency of the output voltage
p= 1 pole pair = 2 poles (N and s)
** In order to produce a 400Hz simuoidal voltage, at what speed must a four-pole generator be approache? Rotational speed $h = \frac{f}{P} = \frac{400}{2} = 200 \text{ new/s}$. P = 2 pole pairs = 4 poles.
ACKUYO LOOSELEAF - MERTER-S

Unit 10 PEEE.
Values associated with sinosoidal waveform.
Vacv = 2 / V(t) dt. continul equation.
where v(+) = Vp sin (2004) or regative.
The average value over a positive horlf cycle of a sinusoidal wave is Var = 7 Vp #
average value (Vav)
peak value (-Vp).
C Vav = - = Vp
RMS.
Root wear square (rms) voltage.
VM-ms= \frac{1}{T}\int_0^T v(t)^2 dt, where v(t) = Vp sin (270ft)
Vrms = $\frac{Vp}{Jz}$ peak verbe rms value (Vrms)
Circuit Laws 2 rules in AC circuits.
O-All circuit Laws 2 rules apply to ACE circuits in the some way they apply to them. DC circuits
-For an AC circuit, all AC voltage & & currents are assumed to be
Tms values unless to otherwise specified.
Example: All yoltage & current are in rms value Ovs ZR
● All yoltage & current are in rms value
No Re 1 Rr = 1 k 12 + 560 12 = 1.56 k 12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Voltage drop R = V = I x R = 147.4 mA x 1 k R = 147.4 V
● Voltage drop Rz = Vz = Ix Rz = 147.4m Ax 0.56 ks=82.5v

Capacitors.	
A Hors the ability to stare electric * Made of 2 parallel conductive pl material called dielectric - H	ates separated by an insulating meeting conductive plate
1 / 1 1 5 5 5 1	giross being stored arge is
	The absolute rememberly C & d The absolute rememberly C & d Tim vacceum.
odepart \Rightarrow It is directly producedly produced \Rightarrow It is directly produced \Rightarrow It is	

● Unit \$82PEEE	
	lue needs to be adjustable either manually unners.
	ed by adjusting plate overlap area. He Symbol.
Changing: > When connected - Upper plate: Caver plate plate, through and the source, to the life Caver plate loss electrons -> Lower plate gains electrons.	to a Voltage source. Electron removed of Electrons maked Electron deposited. If I from the to -he. Is, electrons flows parallel plate capacitar. The connecting leads over plate. DODDDDDDDDDDD charged.
	ectric, voltage builds up across plates. Electric field across capacitor at equals source voltage, Vs. is produce
→ The external source of the control of the external source of the control o	disconnected from source it can notain the
RC charging circuit.	Time Constant & changing Curves. Time is required for a conjunction to charge or discharged fully.
Vs + I C ++ 1+9 (c)	-) Amount of time required depends on the time constant T (tau) of the circuit.
• #÷	T=RC
	tire constant
	(S) Resistance (S) KONUYO LOCALIEN - 4-1378-5
	(CAC) KONUYO LOOSELEAT 7-8378-5

		100
	Unit 13 PEEE	
•	Inductors: -A length of wire the is formed to a coil inductor. -Store energy in it's magnetic field.	
•	Inductance is the property of a wire coil that opposes any change in current going through the coil. A coil used in this way is called -> ar inductor / a choice.	
	Atta Factors that determine inductance: - The number of coil turns, N. - The length of of the coil, I. - The crosse sectional area of the coil, A. - The type of moterial in it's core, M. Lan **Formula that relates the factors	
_=	- A & M Kat is indirectly proportional of to length, I	
•	1 - N2MA ARM DE	1
0		5
-	Ly Air has same permeability as vacuum. Ly Auhile all ferromagnetic cone materials have higher permeability Mr -> relative permeability Ly the rotto of absolute permeability to permeability of a vacuum called relative permeability of a moderial. The core inductors (Mr = M) / (M = Mr Mo) -> For air - core inductors	¥9.
C	Self inductances an induced voltage, Ve as a result of Mr = 1	
-	Judge tance is I'm when current changing out of note of Its, flow	ws
•	into a coil and induces 20 across the coil. VL = LX di Inductance (H) VL = LX di Kvate of change of the current in the inductor (A)	10
0	Induced voltage across an inductor (V)	F
	Evergy stored	
	An inductor stores every in the magnetic field created by the curre $W = \frac{1}{2}LI^2$ Inductance (H)	nT.
	W= ZLI	
0	7 current (A)	
_	energy (J)	41=

Spees. Fixed = 1000 air core = 1000 territe core = 10000 Variable = 1000 Inoncore = 10000 Washing The polarity of the induced voltage is in a direction that opposes the change in current. The winding resistance (winding apacitana, fixed & variable industriana are some applications of inductors. Example. Determine the ope inductance of the coil assuming N=350, l=1.5cm, the radius of the cylindrical care material, r=52000 0.25 cm, and the core is 0.25 × 10-3 H/m A = Tr = Tr (0.25 × 10-1) 2 = 1.96 × 10-5 m 2. Convert to motec.					
Although this resistance occurs disease along the whole length of wire Hom be represented as an Rw in series with L. Now min has R along it length the Bythvolent circuit. Rw bythvolent circuit. Rw bythvolent circuit. Rw is usually small > can be ignored > so coil is considered as an ideal inductor. The wire has resistance a granulation circuit. Re with his thigh frequency, it can be important. Yess. Fixed > 1000 / 100					
Althoury, this resistance occurs disage along the whole length of wire it can be represented as an Rw in series with L. The North Rw Bydvalent circuit. Rw Bydvalent circuit. Rw Cw = winding capacitance. The wire has resistance a general so no significant effect. But is inight frequency, it can be important. Your all a property of the induced voltage is in a direction that opposes the change in current. The Winding resistance (winding aspacitance, fixed & variable inductors. The planty of the induced voltage is in a direction that opposes the change in current. The Winding resistance (winding aspacitance, fixed & variable inductors are some applications of inductors. Example. Determine the object inductors are waterial, r = 82000, l=1.5cm, and fl = 1.5cm = 0.015 m. A = $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$. Content, to wreter	Coil is mode is present.	of a wire, an	interit resistance	e called winds	ing Resistance Ru
has R along it look be ignored to so coil is considered as an ideal inductor. For is usually small -> can be ignored -> so coil is considered as an ideal inductor. The wire has resistance a grange equivalent circuit. But is high frequency, it can be important. The priority of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the inductors of inductors. Frample. Determine the op inductance of the coil assuming N=350, l=1.5cm, the radius of the cylindrical care material, r=5200 0.25 cm, and A : Ter? = Tr(0.25 × 10-3 H/m) A : Ter? = Tr(0.25 × 10-1) 2 = 1.96 × 10-5 m Z. Connert to meter	Although this	resistance occur	s 61600 along +	he whole length	frie No
Rw is usually small -> can be ignored -> so coil is considered as an ideal inductor. The wire has resistance a graph and circuit. The wire has resistance and so no significant effect. But is inight frequency, it can be important. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The winding resistance (winding appacitional, fixed & variable inductors are come applications of inductors. Example. Determine the open inductance of the coil assuming N=350, l=1.5cm, the radius of the cylindrical cone material, r=52000 0.25 cm, and Al=1.5cm=0.015 m. A= Tr ² = Tr(0.25 × 10 ⁻²) ² = 1.96 × 10 ⁻⁵ m ² . Convert to meter	be represent	d as an Rw	in series uit	th L.	ar cure ricom
Rw is usually small -> can be ignored -> so coil is considered as an ideal inductor. The wire has resistance a graph and circuit. The wire has resistance and so no significant effect. But is inight frequency, it can be important. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The polarity of the induced voltage is in a direction that opposes the change in current. The winding resistance (winding appacitional, fixed & variable inductors are come applications of inductors. Example. Determine the open inductance of the coil assuming N=350, l=1.5cm, the radius of the cylindrical cone material, r=52000 0.25 cm, and Al=1.5cm=0.015 m. A= Tr ² = Tr(0.25 × 10 ⁻²) ² = 1.96 × 10 ⁻⁵ m ² . Convert to meter	has R	along it's long to	M Band	voilent circuit	
The wire has resistance & PW m capacitance. Which will be a comparable of the control of the co	Rw is usua	k small → can b	2 icensed		
The wire has resistance & PW m capacitance. Which will be a comparable of the control of the co	100	Small - Zear Z	cignore -> so c	oil is considered	as an ideal (
The wire has resistance & PW m capacitance. Which will be a comparable of the control of the co	<15	47	Cw		inductor.
Les Comples by typically very small so no significant effect. but 1's high frequency, it can be important. yes. Fixed > 1000 / air core > 1000 / territe core > 10000 / transcore > 100000 / transcore > 100000 / transcore > 100000 / transcore > 1000000 / transcore > 100000 / transcore > 100000 / transcore > 1000000 / transcore > 1000000 / transcore > 1000000 / transcore > 10000000 / transcore > 1000000000 / transcore > 10000000000 / transcore > 100000000000000000000000000000000000	-78	2	Tou L	7 CW=	winding
Les Comples by typically very small so no significant effect. but 1's high frequency, it can be important. yes. Fixed > 1000 / air core > 1000 / territe core > 10000 / transcore > 100000 / transcore > 100000 / transcore > 100000 / transcore > 1000000 / transcore > 100000 / transcore > 100000 / transcore > 1000000 / transcore > 1000000 / transcore > 1000000 / transcore > 10000000 / transcore > 1000000000 / transcore > 10000000000 / transcore > 100000000000000000000000000000000000	50.00	o -o. istana 0	Two w	nL_	capacitana -
Les Comples by typically very small so no significant effect. but 1's high frequency, it can be important. yes. Fixed > 1000 / air core > 1000 / territe core > 10000 / transcore > 100000 / transcore > 100000 / transcore > 100000 / transcore > 1000000 / transcore > 100000 / transcore > 100000 / transcore > 1000000 / transcore > 1000000 / transcore > 1000000 / transcore > 10000000 / transcore > 1000000000 / transcore > 10000000000 / transcore > 100000000000000000000000000000000000	The aire	tributed "	e equivalent o	circuit.	
Fixed > / air core > territe core >	Q13	t-120tif a	²⁴ 2.		- 6
Fixed > / air core > territe core >	las Cw -	> typically very	Small so no si	anton L effe	
Fixed > 1000 / air core > 1000 territe core > 10000 Variable > 1000 Transcore > 10000 William The polarity of the induced voltage is in a direction that opposes the change in current. The Winding resistance (winding apacitana, fixed & variable inductors are some applications of inductors. Example. Determine the op inductance of the coil assuming N=350, l=1.5cm, the radius of the cylindrical care material, r=5200 0.25 cm, and M of core is 0.25 × 10-3 H/m A = Tr2 = T(0.25 × 10-2) 2 = 1.96 × 10-5 m 2. Connect to meter		but is it	6 freque :+	Con to incident	O7.
Fixed > 1000 / air core > 1000 territe core > 10000 Variable > 1000 Transcore > 10000 William The polarity of the induced voltage is in a direction that opposes the change in current. The Winding resistance (winding apacitana, fixed & variable inductors are some applications of inductors. Example. Determine the op inductance of the coil assuming N=350, l=1.5cm, the radius of the cylindrical care material, r=5200 0.25 cm, and M of core is 0.25 × 10-3 H/m A = Tr2 = T(0.25 × 10-2) 2 = 1.96 × 10-5 m 2. Connect to meter		119	" long,	Car se impo	<i>in</i> 4.
Variable > 1000 / air core > 1000 / ferrite core > 10000 / variable variable	ispes.				
The polarity of the induced voltage is in a direction that opposes the change in current: The Winding resistance (winding aspacitance, fixed & variable industrance applications of inductors. Example. Determine the prinductance of the coil assuming N=350, l=1.5cm, the radius of the cylindrical care material, r=\$2000 0.25 cm, 2000 M fore is 0.25 × 10-3 H/m A = Tr2 = Tr(0.25 × 10-1) 2 = 1.96 × 10-5 m 2. Convert to meter	30.00	000 1	~	n L temite	COOP -> 00000 -
The polarity of the induced voltage is in a direction that opposes the change in current: The winding resistance (winding aspacitance, fixed & variable industrance are some applications of inductors. Example. Determine the ope inductance of the coil assuming N=350, l=1.5cm, the radius of the cylindrical care material, r=82000 0.25 cm, 2000 M of care is 0.25 × 10-3 H/m A = Tr2 = T(0.25 × 10-1) 2 = 1.96 × 10-5 m 2. Convert to meter		7 8107	air core > 111		core will
The polarity of the induced voltage is in a direction that opposes the change in current: The winding resistance (winding aspacitance, fixed & variable industrance are some applications of inductors. Example. Determine the ope inductance of the coil assuming N=350, l=1.5cm, the radius of the cylindrical care material, r=82000 0.25 cm, 2000 M of care is 0.25 × 10-3 H/m A = Tr2 = T(0.25 × 10-1) 2 = 1.96 × 10-5 m 2. Convert to meter	Variable ->	some 1	inon core -> -47	John _ 10000	
We Winding resistance (winding capacitand, fixed & variable inductors are some applications of inductors. Example. Determine the ope inductance of the coil assuming $N=350$, $l=1.5cm$, the radius of the cylindrical core material, $r=8200$ 0.25 cm, and $M = 1.5cm = 0.015 m$. A: $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$. Convert to meter			150	ORIA-	
The Winding resistance (winding apacitana, fixed & variable inductors are some applications of inductors. Example. Determine the ope inductance of the coil assuming $N=350$, $l=1.5cm$, the radius of the cylindrical care material, $r=820a$ 0.25 cm, and M core is 0.25×10^{-3} H/m Al= 1.5cm = 0.019 m. A= $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} \text{m}^2$.	WAS NOW	5,			
We Winding resistance (winding apacitana, fixed & variable inductors are some applications of inductors. Example. Determine the ope inductance of the coil assuming $N=350$, $l=1.5cm$, the radius of the cylindrical care material, $r=820a$ 0.25 cm, and M core is 0.25×10^{-3} H/m $M = 1.5cm = 0.019m$ $A = \pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$. Convert to meter		70			
We Winding resistance (winding capacitand, fixed & variable inductors are some applications of inductors. Example. Determine the ope inductance of the coil assuming $N=350$, $l=1.5cm$, the radius of the cylindrical core material, $r=8200$ 0.25 cm, and $M = 1.5cm = 0.015 m$. A: $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$. Convert to meter	the polarity	of the induced	voltage it in a	direction that o	proses the
Example. Determine the prinductance of the coil assuming $N=350$, $l=1.5cm$, the radius of the cylindrical care material, $r=822400.25cm$, and M core is 0.25×10^{-3} H/m A $l=1.5cm=0.015m$. A = $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.					
Example. Determine the prinductance of the coil assuming $N=350$, $l=1.5cm$, the radius of the cylindrical care material, $r=822400.25cm$, and M core is 0.25×10^{-3} H/m A $l=1.5cm=0.015m$. A = $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.	The Winding	resistance (w	inding apacita	na, fixed &	variable indus
Example. Determine the prinductance of the coil assuming $N=350$, $l=1.5cm$, the radius of the cylindrical care material, $r=822400.25cm$, and M core is 0.25×10^{-3} H/m A $l=1.5cm=0.015m$. A = $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.	are some	applications o	f inductors		2
Determine the m inductance of the coil assuming $N=350$, $l=1.5cm$, the radius of the cylindrical core material, $r=82240.25cm$, and M core is $0.25 \times 10^{-3} H/m$ and $Al=1.5cm=0.015m$. $A=\pi r^2=\pi(0.25\times 10^{-2})^2=1.96\times 10^{-5}m^2$.					
Determine the prinductance of the coil assuming $N=350$, $l=1.5cm$, the radius of the cylindrical care material, $r=82240.25cm$, and $M = 1.5cm = 0.25 \times 10^{-3} H/m$ Al= 1.5cm = 0.015m. A= $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.	- 10				
M of core is $0.25 \times 10^{-3} H/m$ A) = 1.5cm = 0.015m A = $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.	trample.				
M of core is $0.25 \times 10^{-3} H/m$ Al = 1.5cm = 0.015m A = $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.	Dota	the ota in the	0 11 11		
M of core is $0.25 \times 10^{-3} H/m$ Al = 1.5cm = 0.015m A = $\pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.	H. I	The wor manerand	e at the coil a	ssuming 10= 3	50, 1=1.5cm,
$A = \pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.	The radius of	- the cylindrica	I care material	1 - 520 C	225 cm. 04 6
$A = \pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.	n ot core	15 0.25 VIN	3 H/L		and
$A = \pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$.	1 /	1 10	- IIIM		
$A = \pi r^2 = \pi (0.25 \times 10^{-2})^2 = 1.96 \times 10^{-5} m^2$	AL= 1.50	n = 0.019n			
to meter	1 - 7	T/			- 6
to meter	A= Ter	- 10 CO.25 X10	-1) = 1.96 x	10-3m2	
		Contend		Avi a To	
		to ma	recs		
L= No MA = 3502 (0. 25×10-3)(1.96×100) = 40mH.	2			C	
= 40mH.	1 - No M	350° (p. 21	5×10-3)/1.96>	(D#) /	
LW ACT DAY	L,	=		= = 41	DmH _u

Unit 14 PEEE .	
Mutual Indictance	
• Wen the magnetic flux from 1 coil cuts an adjacen a voltage is induced in the second coil. This is due presence of mutual inductance between the 2 coils.	t coil, to the
A transformer works on the principle of Mutual Inductance.	
A transformer has 2 coils: - Primary coil - Secondary coil	
• Magnetic Flux from the first coil cuts the adjacent one.	
O REAGY: O Mustual Inductance (LM) & Expanse, cotapse Ocil (L, & Lz) expans (6.eff of coupling (K) between them. primary excandary	s a rease
The secondary coil (\$1-2) to the total flux produced by Formula & for coefficient of coupling:	ks 6 ed (ø,)
\mathcal{B}	
Formula for Mutual Inductance: LM = K JL, LZ	
Coefficient of coupling	
k deppends on: -> The physical closeness of the coils	
The type of core moderial used.	
Tonstruction exact shape of the core. A Perfect coupling happens when $k=1$.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ما
- rate of change primary air	Chirs.

