Relatório do Projeto III

Introdução

Este projeto consiste em uma análise de dados que tem como objetivo prever se um projeto de lei proposto por um deputado estadual na câmara, será aprovado ou não; para isso, utilizar-se-á um meio de treinamento e *machine learning*, através do uso do Python e dos recursos disponíveis na biblioteca *scikit learn*.

Para fazer tal análise, será levado em conta algumas vertentes de dados, retirados dos dados abertos da câmara dos deputados, baseando-se na própria ementa do projeto (pode-se ver uma descrição completa dos dados no dicionário de dados) Essa análise será feita com dados desde a virada do milênio, em 2000, passando por 5 mudanças na composição da câmara, nas eleições de 2002, 2006, 2010 e 2014, analisando em duas vertentes: a primeira na qual a proposta é arquivada (não vira de fato uma lei) e a segunda na qual a proposta é transformada em norma jurídica.

Métodos

O primeiro problema enfrentado foi o de que o número de propostas arquivadas é cerca de 10 vezes maior que o número de propostas transformadas em norma jurídica. Para a resolução, foi montado um data frame auxiliar para classificação, com cerca de 2600 projetos de lei, distribuídos igualmente entre arquivados e aprovados, como uma forma de não viciar o classificador. A seguir, montamos o código, da seguinte forma:

Primeiramente, todas as planilhas foram unificadas, montando um DF único. A seguir, foram selecionadas as colunas que serão relevantes à análise de dados, fazendo o mesmo para a proposição: apenas projetos de lei criado por deputados foram selecionados. A seguir, foi utilizado o método descrito, de criar um data frame artificial para obter maior precisão. A seguir, esse data frame foi separado em duas vertentes: uma de treinamento e outra de teste. Feito isso, o classificador em si foi configurado. Para fazer esse classificador, fizemos testes com dois tipos diferentes de Vetorizadores e quatro tipos de classificadores: Count Vectorizer e TF IDF Vectorizer, Multinomial NB, Decision Tree Classifier, Random Forest Classifier e AdaBoost Classifier, e compararmos a acurácia de cada combinação possível de Vectorizer + Classifier. Para melhorar a iteração, utilizou-se um Voting classifier, que para cada uma das combinações, estabelece a melhor possível combinando várias delas. Para isso, estabelecemos um peso para cada um deles de acordo com a confiabilidade que o classifier nos dá, dando peso 2 para Multinomial, 1 para Decision Tree e Random Forest e 3 para o AdaBoost. Os valores observados de acurácia para cada uma das combinações estão apresentados na tabela a seguir:

Método	Count Vectorizer	TF IDF Vectorizer
Multinomial NB.	72,82%	72,82%
Decision Tree	71,73%	71,01%
	,	74,09%
Random Forest	74,27%	,
AdaBoost	74,81%	73,01%
Voting Classifier	75,91%	

Conclusão

Apresentando essa acurácia relativamente alta, podemos dizer que o modelo pode classificar, com certa confiabilidade se um projeto de lei será aprovado ou reprovado utilizando-se apenas de sua ementa, apresentando, porém, alguns pequenos erros, pois provavelmente o número de variáveis consideradas é muito pequeno, uma vez que a aprovação de leis é um processo que leva muito tempo para ser concluído e depende de vários fatores que também são altamente variáveis.

Como melhorar?

Para melhorar o modelo, deve-se colocar mais variáveis a serem consideradas, como por exemplo, o partido de quem propõe a lei, o tamanho da bancada e o governo que estava vigente no momento em que a lei foi votada, além da criação de um sistema padrão para a ementa da lei, estabelecendo uma variável que considera a ordenação mais comum pra cada projeto de lei, melhorando assim os fatores para a classificação, a confiabilidade do projeto e muito possivelmente, a acurácia.