Chapter 4: Introduction to Regression

Jonathan Roth

Mathematical Econometrics I Brown University Fall 2023

Motivation

• We showed that under conditional unconfoundedness we can learn the conditional average treatment effect (CATE) by comparing outcome means for the treatment/control group conditional on X_i :

$$CATE(x) = E[Y_i|D_i = 1, X_i = x] - E[Y_i|D_i = 0, X_i = x]$$

• When X_i is discrete and we have many observations per x-value (N_x is large), we showed how we can use the Central Limit Theorem to estimate each of these conditional means and "do inference"

Motivation

• We showed that under conditional unconfoundedness we can learn the conditional average treatment effect (CATE) by comparing outcome means for the treatment/control group conditional on X_i :

$$CATE(x) = E[Y_i|D_i = 1, X_i = x] - E[Y_i|D_i = 0, X_i = x]$$

- When X_i is discrete and we have many observations per x-value (N_x is large), we showed how we can use the Central Limit Theorem to estimate each of these conditional means and "do inference"
- But what about when X_i is continuous?

• Suppose this is our data

 We might be willing to assume that college attendance is as-good-as-random conditional on SAT score

• Say we're interested in the CATE at X=1350. Theory tells us to compare average income for Brown/URI SAT scores with X=1350.

ullet We could estimate the average at Brown using our 1 student with X=1350. But that estimate is very noisy, & we can't apply the CLT

- We could estimate the average at Brown using our 1 student with X=1350. But that estimate is very noisy, & we can't apply the CLT
- Moreover, we don't have any URI students with X = 1350!

• Clearly, we need to extrapolate from students with other SAT scores.

- Clearly, we need to extrapolate from students with other SAT scores.
- What would you do if you were eyeballing it?

- Clearly, we need to extrapolate from students with other SAT scores.
- What would you do if you were eyeballing it?
- Probably draw a line through the points to estimate the CEFs!

• With these CEF estimates in hand, we can estimate CATE(x) at any x

Outline

- 1. Population Regression
- 2. Sample Regressions (OLS)
- 3. Putting Regression into Practice

• The idea of **regression** is to formalize the process of estimating the conditional expectation function (CEF) by extrapolating across units using a particular functional form (e.g. linear, quadratic, etc.)

- The idea of regression is to formalize the process of estimating the conditional expectation function (CEF) by extrapolating across units using a particular functional form (e.g. linear, quadratic, etc.)
- There are a few outstanding questions that we need to answer:

- The idea of **regression** is to formalize the process of estimating the conditional expectation function (CEF) by extrapolating across units using a particular functional form (e.g. linear, quadratic, etc.)
- There are a few outstanding questions that we need to answer:
- How do we approximate the CEF in the sample that we have? (I.e. how to draw the lines through the data!)

- The idea of regression is to formalize the process of estimating the conditional expectation function (CEF) by extrapolating across units using a particular functional form (e.g. linear, quadratic, etc.)
- There are a few outstanding questions that we need to answer:
- How do we approximate the CEF in the sample that we have? (I.e. how to draw the lines through the data!)
- How can we construct confidence intervals / do hypothesis tests for the estimates of the CEF?

- The idea of regression is to formalize the process of estimating the conditional expectation function (CEF) by extrapolating across units using a particular functional form (e.g. linear, quadratic, etc.)
- There are a few outstanding questions that we need to answer:
- How do we approximate the CEF in the sample that we have? (I.e. how to draw the lines through the data!)
- How can we construct confidence intervals / do hypothesis tests for the estimates of the CEF?
- What happens if the real CEF doesn't take the form we've used for estimation (e.g. isn't linear)?

- The idea of regression is to formalize the process of estimating the conditional expectation function (CEF) by extrapolating across units using a particular functional form (e.g. linear, quadratic, etc.)
- There are a few outstanding questions that we need to answer:
- How do we approximate the CEF in the sample that we have? (I.e. how to draw the lines through the data!)
- How can we construct confidence intervals / do hypothesis tests for the estimates of the CEF?
- What happens if the real CEF doesn't take the form we've used for estimation (e.g. isn't linear)?
- We'll try to answer all of these questions over the next several lectures!

- What we know how to do: Estimate and test hypotheses about population means using sample means
- What we want to do: Estimate approximations to the CEF and test hypotheses about them

- What we know how to do: Estimate and test hypotheses about population means using sample means
- What we want to do: Estimate approximations to the CEF and test hypotheses about them

How can we use what know to do what we want?

- What we know how to do: Estimate and test hypotheses about population means using sample means
- What we want to do: Estimate approximations to the CEF and test hypotheses about them

How can we use what know to do what we want?

• 1) Assume the CEF takes a particular form, e.g. linear:

$$E[Y_i|X_i=x]=\alpha+x\beta$$

- What we know how to do: Estimate and test hypotheses about population means using sample means
- What we want to do: Estimate approximations to the CEF and test hypotheses about them

How can we use what know to do what we want?

• 1) Assume the CEF takes a particular form, e.g. linear:

$$E[Y_i|X_i=x]=\alpha+x\beta$$

ullet 2) Show that under this assumption, lpha and eta can be represented as functions of population means.

- What we know how to do: Estimate and test hypotheses about population means using sample means
- What we want to do: Estimate approximations to the CEF and test hypotheses about them

How can we use what know to do what we want?

• 1) Assume the CEF takes a particular form, e.g. linear:

$$E[Y_i|X_i=x]=\alpha+x\beta$$

- ullet 2) Show that under this assumption, α and β can be represented as functions of population means.
- ullet 3) Use our tools for estimating population means using sample means to estimate lpha,eta and test hypotheses about them

- What we know how to do: Estimate and test hypotheses about population means using sample means
- What we want to do: Estimate approximations to the CEF and test hypotheses about them

How can we use what know to do what we want?

• 1) Assume the CEF takes a particular form, e.g. linear:

$$E[Y_i|X_i=x]=\alpha+x\beta$$

- ullet 2) Show that under this assumption, α and β can be represented as functions of population means.
- 3) Use our tools for estimating population means using sample means to estimate α, β and test hypotheses about them
- 4) Argue that even if our assumption about the form of the CEF is wrong, the parameters α, β may provide a "good" approximation.

The "Least Squares" Problem

• Suppose X_i is scalar and the CEF is linear (we'll relax both later):

$$E[Y_i|X_i=x]=\alpha+x\beta$$

The "Least Squares" Problem

• Suppose X_i is scalar and the CEF is linear (we'll relax both later):

$$E[Y_i|X_i=x]=\alpha+x\beta$$

• A useful fact which we will exploit is that when this is true (α, β) solve the "least squares" problem:

$$(\alpha,\beta) = \arg\min_{a,b} E[(Y_i - (a+bX_i))^2]$$

The "Least Squares" Problem

• Suppose X_i is scalar and the CEF is linear (we'll relax both later):

$$E[Y_i|X_i=x]=\alpha+x\beta$$

• A useful fact which we will exploit is that when this is true (α, β) solve the "least squares" problem:

$$(\alpha,\beta) = \arg\min_{a,b} E[(Y_i - (a+bX_i))^2]$$

• Where does this come from?!

• To show that (α, β) solve a "least-squares" problem, let's first consider a simpler, related problem:

- To show that (α, β) solve a "least-squares" problem, let's first consider a simpler, related problem:
- Suppose that we want to find a constant u to minimize

$$\min_{u} E[(Y_i - u)^2]$$

- To show that (α, β) solve a "least-squares" problem, let's first consider a simpler, related problem:
- Suppose that we want to find a constant *u* to minimize

$$\min_{u} E[(Y_i - u)^2]$$

• What constant *u* should we choose?

- To show that (α, β) solve a "least-squares" problem, let's first consider a simpler, related problem:
- Suppose that we want to find a constant u to minimize

$$\min_{u} E[(Y_i - u)^2]$$

ullet What constant u should we choose? The population mean $\mu=E[Y_i]!$

- To show that (α, β) solve a "least-squares" problem, let's first consider a simpler, related problem:
- Suppose that we want to find a constant u to minimize

$$\min_{u} E[(Y_i - u)^2]$$

- ullet What constant u should we choose? The population mean $\mu=E[Y_i]!$
- Proof: The derivative of $E[(Y_i - u)^2]$ with respect to u is $E[2(Y_i - u)]$.

- To show that (α, β) solve a "least-squares" problem, let's first consider a simpler, related problem:
- Suppose that we want to find a constant u to minimize

$$\min_{u} E[(Y_i - u)^2]$$

- ullet What constant u should we choose? The population mean $\mu=E[Y_i]!$
- Proof: The derivative of $E[(Y_i - u)^2]$ with respect to u is $E[2(Y_i - u)]$. Setting the derivative to 0, we obtain

$$E[2(Y_i - \mu)] = 0 \Rightarrow 2E[Y_i] = 2u \Rightarrow u = E[Y_i].$$

Now A Slightly Harder Problem

• Now suppose we want to choose the function u(x) to minimize

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

Now A Slightly Harder Problem

• Now suppose we want to choose the function u(x) to minimize

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

• What function u(x) should we choose?

• Now suppose we want to choose the function u(x) to minimize

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

• What function u(x) should we choose? The conditional expectation u(x) = E[Y|X=x].

• Now suppose we want to choose the function u(x) to minimize

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

- What function u(x) should we choose? The conditional expectation u(x) = E[Y|X=x].
- Proof: By the law of iterated expectations,

$$E[(Y_i - u(X_i))^2] = E[E[(Y_i - u(X_i))^2 | X_i]].$$

• Now suppose we want to choose the function u(x) to minimize

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

- What function u(x) should we choose? The conditional expectation u(x) = E[Y|X=x].
- Proof: By the law of iterated expectations,

$$E[(Y_i - u(X_i))^2] = E[E[(Y_i - u(X_i))^2 | X_i]].$$

Thus, for each value of x, we want to choose u(x) to minimize

$$E[(Y_i - u(x))^2 | X_i = x].$$

• Now suppose we want to choose the function u(x) to minimize

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

- What function u(x) should we choose? The conditional expectation u(x) = E[Y|X=x].
- Proof:
 By the law of iterated expectations,

$$E[(Y_i - u(X_i))^2] = E[E[(Y_i - u(X_i))^2 | X_i]].$$

Thus, for each value of x, we want to choose u(x) to minimize

$$E[(Y_i - u(x))^2 | X_i = x].$$

However, our argument on the previous slide implies that the solution is $u(x) = E[Y_i | X_i = x]$.

• We've shown that the function $u(x) = E[Y_i | X_i = x]$ solves

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

• We've shown that the function $u(x) = E[Y_i | X_i = x]$ solves

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

• Thus, if $E[Y_i|X_i=x]=\alpha+\beta x$, then $u(x)=\alpha+\beta x$ minimizes $\min_{u(\cdot)} E[(Y_i-u(X_i))^2]$

• We've shown that the function $u(x) = E[Y_i | X_i = x]$ solves

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

• Thus, if $E[Y_i|X_i=x]=\alpha+\beta x$, then $u(x)=\alpha+\beta x$ minimizes $\min_{u(\cdot)} E[(Y_i-u(X_i))^2]$

• The minimization above was over all functions $u(\cdot)$, including linear ones of the form a+bx. Hence,

$$E[(Y_i - (\alpha + \beta X_i))^2] \le E[(Y_i - (a + bX_i))^2] \text{ for all } a, b.$$

• We've shown that the function $u(x) = E[Y_i | X_i = x]$ solves

$$\min_{u(\cdot)} E[(Y_i - u(X_i))^2]$$

• Thus, if $E[Y_i|X_i=x]=\alpha+\beta x$, then $u(x)=\alpha+\beta x$ minimizes $\min_i E[(Y_i-u(X_i))^2]$

• The minimization above was over all functions $u(\cdot)$, including linear ones of the form a+bx. Hence,

$$E[(Y_i - (\alpha + \beta X_i))^2] \le E[(Y_i - (a + bX_i))^2]$$
 for all a, b .

• This implies that (α, β) solve

$$\min_{a,b} E[(Y_i - (a + bX_i))^2],$$

as we wanted to show

• So we've shown that α, β are the solutions to

$$\min_{a,b} E[(Y_i - (a + bX_i))^2].$$

• How does this help us?

• So we've shown that α, β are the solutions to

$$\min_{a,b} E[(Y_i - (a+bX_i))^2].$$

• How does this help us? By solving the minimization problem, we can express α, β as functions of population expectations.

• So we've shown that α, β are the solutions to

$$\min_{a,b} E[(Y_i - (a+bX_i))^2].$$

- How does this help us? By solving the minimization problem, we can express α, β as functions of population expectations.
- Let's take the derivative w.r.t. a and b and set them to zero at (α, β) :

ullet So we've shown that lpha,eta are the solutions to

$$\min_{a,b} E[(Y_i - (a+bX_i))^2].$$

- How does this help us? By solving the minimization problem, we can express α, β as functions of population expectations.
- Let's take the derivative w.r.t. a and b and set them to zero at (α, β) :

$$E[-2(Y_i-(\alpha+\beta X_i))]=0$$

ullet So we've shown that lpha,eta are the solutions to

$$\min_{a,b} E[(Y_i - (a+bX_i))^2].$$

- How does this help us? By solving the minimization problem, we can express α, β as functions of population expectations.
- Let's take the derivative w.r.t. a and b and set them to zero at (α, β) :

$$E[-2(Y_i - (\alpha + \beta X_i))] = 0$$

$$E[-2X_i(Y_i - (\alpha + \beta X_i))] = 0$$

ullet So we've shown that lpha,eta are the solutions to

$$\min_{a,b} E[(Y_i - (a+bX_i))^2].$$

- How does this help us? By solving the minimization problem, we can express α, β as functions of population expectations.
- Let's take the derivative w.r.t. a and b and set them to zero at (α, β) :

$$E[-2(Y_i - (\alpha + \beta X_i))] = 0$$

$$E[-2X_i(Y_i - (\alpha + \beta X_i))] = 0$$

• We now have 2 equations with 2 unknowns, which we can use to solve for the CEF parameters (α,β)

The Least Squares Solution

• The solution to the system of equations is as follows:

$$\beta = \frac{E[(X_i - E[X_i])(Y_i - E[Y_i])]}{E[(X_i - E[X_i])^2]} = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$

$$\alpha = E[Y_i] - E[X_i]\beta$$

The Least Squares Solution

• The solution to the system of equations is as follows:

$$\beta = \frac{E[(X_i - E[X_i])(Y_i - E[Y_i])]}{E[(X_i - E[X_i])^2]} = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$

$$\alpha = E[Y_i] - E[X_i]\beta$$

These are continuous functions of population means!

The Least Squares Solution

• The solution to the system of equations is as follows:

$$\beta = \frac{E[(X_i - E[X_i])(Y_i - E[Y_i])]}{E[(X_i - E[X_i])^2]} = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$

$$\alpha = E[Y_i] - E[X_i]\beta$$

- These are continuous functions of population means!
- We can therefore use the tools from previous lectures to estimate them and test hypotheses about the CEF!

Roadmap

- What we know how to do: Estimate and test hypotheses about population means using sample means
- What we want to do: Estimate approximations to the CEF and test hypotheses about them

How can we use what know to do what we want?

• 1) Assume the CEF takes a particular form, e.g. linear:

$$E[Y_i|X_i=x]=\alpha+x\beta$$

- 2) Show that under this assumption, α and β can be represented as functions of population means. \checkmark
- ullet 3) Use our tools for estimating population means using sample means to estimate lpha,eta and test hypotheses about them
- 4) Argue that even if our assumption about the form of the CEF is wrong, the parameters α, β may provide a "good" approximation.

Outline

- 1. Population Regression ✓
- 2. Sample Regressions (OLS)
- 3. Putting Regression into Practice

• We showed that when $E[Y_i \mid X_i = x] = \alpha + \beta x$

$$\beta = \frac{E[(X_i - E[X_i])(Y_i - E[Y_i])]}{E[(X_i - E[X_i])^2]} = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$

$$\alpha = E[Y_i] - E[X_i]\beta$$

• How can we estimate α, β ?

• We showed that when $E[Y_i \mid X_i = x] = \alpha + \beta x$

$$\beta = \frac{E[(X_i - E[X_i])(Y_i - E[Y_i])]}{E[(X_i - E[X_i])^2]} = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$
$$\alpha = E[Y_i] - E[X_i]\beta$$

• We showed that when $E[Y_i \mid X_i = x] = \alpha + \beta x$

$$\beta = \frac{E[(X_i - E[X_i])(Y_i - E[Y_i])]}{E[(X_i - E[X_i])^2]} = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$

$$\alpha = E[Y_i] - E[X_i]\beta$$

$$\hat{\beta} = \frac{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2} = \frac{\widehat{Cov}(X_i, Y_i)}{\widehat{Var}(X_i)}$$

• We showed that when $E[Y_i \mid X_i = x] = \alpha + \beta x$

$$\beta = \frac{E[(X_i - E[X_i])(Y_i - E[Y_i])]}{E[(X_i - E[X_i])^2]} = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$

$$\alpha = E[Y_i] - E[X_i]\beta$$

$$\hat{\beta} = \frac{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2} = \frac{\widehat{Cov}(X_i, Y_i)}{\widehat{Var}(X_i)}$$

$$\hat{\alpha} = \bar{Y} - \bar{X}\hat{\beta}$$

• We showed that when $E[Y_i \mid X_i = x] = \alpha + \beta x$

$$\beta = \frac{E[(X_i - E[X_i])(Y_i - E[Y_i])]}{E[(X_i - E[X_i])^2]} = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$

$$\alpha = E[Y_i] - E[X_i]\beta$$

$$\hat{\beta} = \frac{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2} = \frac{\widehat{Cov}(X_i, Y_i)}{\widehat{Var}(X_i)}$$

$$\hat{\alpha} = \bar{Y} - \bar{X}\hat{\beta}$$

- ullet These \hat{lpha},\hat{eta} are called *ordinary least squares* (OLS) coefficients
 - They solve the "sample analog" problem, $\min_{a,b} \frac{1}{N} \sum_i (Y_i (a + bX_i))^2$

• What is the estimated value of $E[Y_i|D_i=1,X_i=1350]$?

• What is the estimated value of $E[Y_i|D_i=1, X_i=1350]$? $\hat{\alpha}+\hat{\beta}\cdot 1350=34947+15\cdot 1350=55197.$

• We can now use our results for (functions of) sample averages to show that $\hat{\beta}$ is consistent for β , i.e. $\hat{\beta} \rightarrow_{p} \beta$.

- We can now use our results for (functions of) sample averages to show that $\hat{\beta}$ is consistent for β , i.e. $\hat{\beta} \rightarrow_{P} \beta$.
- We have that

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

- We can now use our results for (functions of) sample averages to show that $\hat{\beta}$ is consistent for β , i.e. $\hat{\beta} \rightarrow_p \beta$.
- We have that

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} X_i^2 - \bar{X}^2\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} X_i Y_i - \bar{X} \bar{Y}\right)$$

- We can now use our results for (functions of) sample averages to show that $\hat{\beta}$ is consistent for β , i.e. $\hat{\beta} \rightarrow_p \beta$.
- We have that

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} X_i^2 - \bar{X}^2\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} X_i Y_i - \bar{X} \bar{Y}\right)$$

$$\to_{\rho} \left(E[X_i^2] - E[X_i]^2\right)^{-1} (E[X_i Y_i] - E[X_i]E[Y_i])$$

- We can now use our results for (functions of) sample averages to show that $\hat{\beta}$ is consistent for β , i.e. $\hat{\beta} \rightarrow_p \beta$.
- We have that

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} X_i^2 - \bar{X}^2\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} X_i Y_i - \bar{X} \bar{Y}\right)$$

$$\to_{p} \left(E[X_i^2] - E[X_i]^2\right)^{-1} (E[X_i Y_i] - E[X_i] E[Y_i])$$

$$= Var(X_i)^{-1} Cov(X_i, Y_i)$$

- We can now use our results for (functions of) sample averages to show that $\hat{\beta}$ is consistent for β , i.e. $\hat{\beta} \rightarrow_p \beta$.
- We have that

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} X_i^2 - \bar{X}^2\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} X_i Y_i - \bar{X} \bar{Y}\right)$$

$$\to_{p} \left(E[X_i^2] - E[X_i]^2\right)^{-1} (E[X_i Y_i] - E[X_i] E[Y_i])$$

$$= Var(X_i)^{-1} Cov(X_i, Y_i) = \beta$$

- We can now use our results for (functions of) sample averages to show that $\hat{\beta}$ is consistent for β , i.e. $\hat{\beta} \rightarrow_p \beta$.
- We have that

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} X_i^2 - \bar{X}^2\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} X_i Y_i - \bar{X} \bar{Y}\right)$$

$$\to_{\rho} \left(E[X_i^2] - E[X_i]^2\right)^{-1} (E[X_i Y_i] - E[X_i] E[Y_i])$$

$$= Var(X_i)^{-1} Cov(X_i, Y_i) = \beta$$

ullet Analogously, we can show that $\hat{lpha}
ightharpoonup_{
ho} lpha.$

Asymptotic Distribution for OLS

ullet Our OLS estimates \hat{lpha},\hat{eta} are continuous functions of sample means.

Asymptotic Distribution for OLS

- ullet Our OLS estimates \hat{lpha},\hat{eta} are continuous functions of sample means.
- We can therefore use the Central Limit Theorem and Continuous Mapping Theorem to show that they are asymptotically normally distributed

Asymptotic Distribution for OLS

- ullet Our OLS estimates \hat{lpha},\hat{eta} are continuous functions of sample means.
- We can therefore use the Central Limit Theorem and Continuous Mapping Theorem to show that they are asymptotically normally distributed
- In particular, we will show that

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow_d N(0,\sigma^2),$$

where

$$\sigma^2 = \frac{Var((X_i - E[X_i])\varepsilon_i)}{Var(X_i)^2}$$

Asymptotic Distribution for OLS

- ullet Our OLS estimates \hat{lpha},\hat{eta} are continuous functions of sample means.
- We can therefore use the Central Limit Theorem and Continuous Mapping Theorem to show that they are asymptotically normally distributed
- In particular, we will show that

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow_d N(0,\sigma^2),$$

where

$$\sigma^2 = \frac{Var((X_i - E[X_i])\varepsilon_i)}{Var(X_i)^2}$$

• This is useful because we can then form CIs for β of the form $\hat{\beta} \pm 1.96 \hat{\sigma}/\sqrt{N}$, where $\hat{\sigma}$ is our estimate of σ .

• Define the **regression residual** $\varepsilon_i = Y_i - (\alpha + X_i\beta)$, implying

$$Y_i = \alpha + X_i \beta + \varepsilon_i$$

• Define the **regression residual** $\varepsilon_i = Y_i - (\alpha + X_i\beta)$, implying

$$Y_i = \alpha + X_i \beta + \varepsilon_i$$

• The first-order conditions we derived for (α, β) imply this residual is mean-zero and **orthogonal** to the **regressor**: $E[\varepsilon_i] = E[X_i \varepsilon_i] = 0$

• Define the **regression residual** $\varepsilon_i = Y_i - (\alpha + X_i\beta)$, implying

$$Y_i = \alpha + X_i \beta + \varepsilon_i$$

- The first-order conditions we derived for (α, β) imply this residual is mean-zero and **orthogonal** to the **regressor**: $E[\varepsilon_i] = E[X_i \varepsilon_i] = 0$
- Taking means, $\bar{Y} = \alpha + \bar{X}\beta + \bar{\varepsilon}$.

• Define the **regression residual** $\varepsilon_i = Y_i - (\alpha + X_i\beta)$, implying

$$Y_i = \alpha + X_i \beta + \varepsilon_i$$

- The first-order conditions we derived for (α, β) imply this residual is mean-zero and **orthogonal** to the **regressor**: $E[\varepsilon_i] = E[X_i \varepsilon_i] = 0$
- Taking means, $\bar{Y} = \alpha + \bar{X}\beta + \bar{\epsilon}$. So $Y_i \bar{Y} = (X_i \bar{X})\beta + (\varepsilon_i \bar{\epsilon})$

- We just derived that $Y_i \bar{Y} = (X_i \bar{X})\beta + (\varepsilon_i \bar{\varepsilon})$.
- Thus,

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

20

- We just derived that $Y_i \bar{Y} = (X_i \bar{X})\beta + (\varepsilon_i \bar{\varepsilon})$.
- Thus,

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})((X_i - \bar{X})\beta + (\varepsilon_i - \bar{\varepsilon}))$$

- We just derived that $Y_i \bar{Y} = (X_i \bar{X})\beta + (\varepsilon_i \bar{\varepsilon})$.
- Thus,

$$\hat{\beta} = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})((X_i - \bar{X})\beta + (\varepsilon_i - \bar{\varepsilon}))$$

$$= \beta + \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(\varepsilon_i - \bar{\varepsilon})$$

Hence,

$$\sqrt{N}(\hat{\beta}-\beta) = \left(\frac{1}{N}\sum_{i=1}^{N}(X_i-\bar{X})^2\right)^{-1}\sqrt{N}\frac{1}{N}\sum_{i=1}^{N}(X_i-\bar{X})(\varepsilon_i-\bar{\varepsilon})$$

Hence,

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \sqrt{N} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(\varepsilon_i - \bar{\varepsilon})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \sqrt{N} \frac{1}{N} \sum_{i=1}^{N} (X_i - E[X_i])\varepsilon_i$$

$$- \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \left(\bar{\varepsilon} \sqrt{N} (\bar{X} - E[X_i])\right)$$

• By LLN and CMT, $\left(\frac{1}{N}\sum_{i=1}^{N}(X_i-\bar{X})^2\right)^{-1}\to_{p} Var(X_i)^{-1}$

Hence,

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \sqrt{N} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(\varepsilon_i - \bar{\varepsilon})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \sqrt{N} \frac{1}{N} \sum_{i=1}^{N} (X_i - E[X_i])\varepsilon_i$$

$$- \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \left(\bar{\varepsilon} \sqrt{N}(\bar{X} - E[X_i])\right)$$

- By LLN and CMT, $\left(\frac{1}{N}\sum_{i=1}^{N}(X_i-\bar{X})^2\right)^{-1}\to_p Var(X_i)^{-1}$
- By CLT, $\sqrt{N} \frac{1}{N} \sum_{i=1}^{N} (X_i E[X_i]) \varepsilon_i \rightarrow_d N(0, Var((X_i E[X_i]) \varepsilon_i)).$

Hence,

$$\sqrt{N}(\hat{\beta} - \beta) = \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \sqrt{N} \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(\varepsilon_i - \bar{\varepsilon})$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \sqrt{N} \frac{1}{N} \sum_{i=1}^{N} (X_i - E[X_i])\varepsilon_i$$

$$- \left(\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right)^{-1} \left(\bar{\varepsilon} \sqrt{N} (\bar{X} - E[X_i])\right)$$

- By LLN and CMT, $\left(\frac{1}{N}\sum_{i=1}^{N}(X_i-\bar{X})^2\right)^{-1} \rightarrow_p Var(X_i)^{-1}$
- By CLT, $\sqrt{N} \frac{1}{N} \sum_{i=1}^{N} (X_i E[X_i]) \varepsilon_i \rightarrow_d N(0, Var((X_i E[X_i]) \varepsilon_i)).$
- By LLN, CLT, and Slutsky, $\bar{\varepsilon}\sqrt{N}(\bar{X}-E[X_i]) \rightarrow_d 0 \times N(0, Var(X_i)) = 0$

Finishing the Asymptotics (!)

Putting all the pieces together, we see that

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow_d N(0,\sigma^2),$$

where

$$\sigma^2 = \frac{Var((X_i - E[X_i])\varepsilon_i)}{Var(X_i)^2}$$

ullet As before, we can estimate the variance σ^2 using sample averages,

$$\hat{\sigma}^2 = \frac{\frac{1}{N} \sum_i ((X_i - \bar{X})\hat{\varepsilon}_i)^2}{\left(\frac{1}{N} \sum_i (X_i - \bar{X})^2\right)^2}, \text{ where } \hat{\varepsilon}_i = Y_i - (\hat{\alpha} + X_i \hat{\beta})$$

Finishing the Asymptotics (!)

Putting all the pieces together, we see that

$$\sqrt{N}(\hat{\beta}-\beta) \rightarrow_d N(0,\sigma^2),$$

where

$$\sigma^2 = \frac{Var((X_i - E[X_i])\varepsilon_i)}{Var(X_i)^2}$$

ullet As before, we can estimate the variance σ^2 using sample averages,

$$\hat{\sigma}^2 = \frac{\frac{1}{N} \sum_i ((X_i - \bar{X})\hat{\varepsilon}_i)^2}{\left(\frac{1}{N} \sum_i (X_i - \bar{X})^2\right)^2}, \text{ where } \hat{\varepsilon}_i = Y_i - (\hat{\alpha} + X_i\hat{\beta})$$

• Can do similar steps to show $\hat{\alpha}$ is asymptotically normally distributed as well. (We'll show formulas later!)

ullet A CI for eta is $\hat{eta} \pm 1.96 imes SE$

• A CI for β is $\hat{\beta} \pm 1.96 \times SE \approx [5,25]$

Aside on notation/terminology

• Oftentimes people will say: consider the (population) regression

$$Y_i = \alpha + \beta D_i + \varepsilon_i \tag{1}$$

- What they mean is: "define $(\alpha, \beta) = \arg \min_{a,b} E[(Y_i (a + bX_i))^2]$ "
- (α, β) are referred to as the "population regression coefficients"

Aside on notation/terminology

• Oftentimes people will say: consider the (population) regression

$$Y_i = \alpha + \beta D_i + \varepsilon_i \tag{1}$$

- What they mean is: "define $(\alpha, \beta) = \arg \min_{a,b} E[(Y_i (a + bX_i))^2]$ "
- (α, β) are referred to as the "population regression coefficients"
- Likewise, people will say "We estimate equation (1) by OLS" to mean that they compute the sample analogs to α, β via OLS, i.e. $\hat{\alpha}, \hat{\beta}$.

Outline

- 1. Population Regression ✓
- 2. Sample Regressions (OLS)√
- 3. Putting Regression into Practice

 Recall that when we have an experiment, the average treatment effect is identified by a different in means:

$$\tau = E[Y_i(1) - Y_i(0)] = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

• Recall that when we have an experiment, the average treatment effect is identified by a different in means:

$$\tau = E[Y_i(1) - Y_i(0)] = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

Observe that we can write:

$$E[Y_i|D_i=d] = E[Y_i|D_i=0] + (E[Y_i|D_i=1] - E[Y_i|D_i=0]) \cdot d$$

 Recall that when we have an experiment, the average treatment effect is identified by a different in means:

$$\tau = E[Y_i(1) - Y_i(0)] = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

Observe that we can write:

$$E[Y_i|D_i = d] = E[Y_i|D_i = 0] + (E[Y_i|D_i = 1] - E[Y_i|D_i = 0]) \cdot d$$

= $\alpha + \beta d$

 Recall that when we have an experiment, the average treatment effect is identified by a different in means:

$$\tau = E[Y_i(1) - Y_i(0)] = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

Observe that we can write:

$$E[Y_i|D_i = d] = E[Y_i|D_i = 0] + (E[Y_i|D_i = 1] - E[Y_i|D_i = 0]) \cdot d$$

= $\alpha + \beta d$

• Thus, the CEF $E[Y_i|D_i=d]$ is linear in d, and the slope coefficient β is exactly the estimand which identifies the ATE in an experiment!

 Recall that when we have an experiment, the average treatment effect is identified by a different in means:

$$\tau = E[Y_i(1) - Y_i(0)] = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

Observe that we can write:

$$E[Y_i|D_i = d] = E[Y_i|D_i = 0] + (E[Y_i|D_i = 1] - E[Y_i|D_i = 0]) \cdot d$$

= $\alpha + \beta d$

- Thus, the CEF $E[Y_i|D_i=d]$ is linear in d, and the slope coefficient β is exactly the estimand which identifies the ATE in an experiment!
- Analogously, the OLS slope coefficient $\hat{\beta}$ is the difference in sample means which estimates the ATE: $\hat{\beta} = \bar{Y}_1 \bar{Y}_0 = \hat{\tau}$.

 Recall that when we have an experiment, the average treatment effect is identified by a different in means:

$$\tau = E[Y_i(1) - Y_i(0)] = E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

Observe that we can write:

$$E[Y_i|D_i = d] = E[Y_i|D_i = 0] + (E[Y_i|D_i = 1] - E[Y_i|D_i = 0]) \cdot d$$

= $\alpha + \beta d$

- Thus, the CEF $E[Y_i|D_i=d]$ is linear in d, and the slope coefficient β is exactly the estimand which identifies the ATE in an experiment!
- Analogously, the OLS slope coefficient $\hat{\beta}$ is the difference in sample means which estimates the ATE: $\hat{\beta} = \bar{Y}_1 \bar{Y}_0 = \hat{\tau}$.
- We can thus use OLS as a convenient tool for estimating the ATE and getting standard errors

Example - WorkAdvance

- Background: gaps between college-educated and non-college educated workers have widened over time
- Yet not everyone thrives in a traditional college background
- WorkAdvance is a job-training program intended to provide people with certifiable skills in high-wage industries (e.g. IT, healthcare manufacturing)

 MDRC conducted a randomized trial that randomized access to the training program among people who passed the initial screening

WORKADVANCE PROVIDERS AND SAMPLE COMPOSITION AT BASELINE

	PER SCHOLAS	ST. NICKS ALLIANCE	MADISON STRATEGIES GROUP	TOWARDS EMPLOYMENT
Provider characteristics				
Location	Bronx, NY	Brooklyn, NY	Tulsa, OK	Northeast Ohio
Target sector(s)	Information technology	Environmental remediation	Transportation, manufacturing	Health care, manufacturing
Approach	Training first	Training first	Training and placement first until fall 2012; then mostly training first	Training and placement first until fall 2012; then mostly training first
Sample composition				
Average age	31	35	35	35
Female (%)	13	15	16	59
Some college or more (%)	63	44	58	57
Currently/ever employed (%)	13/96	11/98	27/99	27/97

$$Y_i$$
 = $\alpha + eta$ D_i + $arepsilon$

Earnings 2-3 years later Treatment indicator

$$Y_i$$
 = $\alpha + eta$ D_i $+ arepsilon_i$ Earnings 2-3 years later Treatment indicator

	Coefficient	Estimate	SE
•	\hat{lpha}	14636	425
	$\hat{oldsymbol{eta}}$	1965	609

$$Y_i$$
 = $\alpha + eta$ D_i $+ arepsilon_i$ Earnings 2-3 years later Treatment indicator

	Coefficient	Estimate	SE
•	\hat{lpha}	14636	425
	$\hat{oldsymbol{eta}}$	1965	609

• What is the estimated treatment effect?

$$Y_i$$
 = $lpha + eta$ D_i $+ arepsilon_i$ Earnings 2-3 years later Treatment indicator

	Coefficient	Estimate	SE
•	\hat{lpha}	14636	425
	$\hat{oldsymbol{eta}}$	1965	609

- ullet What is the estimated treatment effect? $\hat{eta}=1965$
- What is a CI for the treatment effects?

$$Y_i$$
 $= lpha + eta$ D_i $+ arepsilon_i$ Earnings 2-3 years later Treatment indicator

	Coefficient	Estimate	SE
•	\hat{lpha}	14636	425
	$\hat{oldsymbol{eta}}$	1965	609

- ullet What is the estimated treatment effect? $\hat{eta}=1965$
- What is a CI for the treatment effects? $\hat{m{eta}} \pm 1.96 imes SE_{m{eta}} =$

$$Y_i$$
 $= lpha + eta$ D_i $+ arepsilon_i$ Earnings 2-3 years later Treatment indicator

Coefficient Estimate SE
$$\hat{\alpha}$$
 14636 425 $\hat{\beta}$ 1965 609

- ullet What is the estimated treatment effect? $\hat{eta}=1965$
- What is a CI for the treatment effects? $\hat{\beta} \pm 1.96 \times SE_{\beta} = 1965 \pm 1.96 \times 609$

Estimate OLS regression:

$$Y_i$$
 $= lpha + eta$ D_i $+ arepsilon_i$ Earnings 2-3 years later Treatment indicator

Coefficient Estimate SE
$$\hat{\alpha}$$
 14636 425 $\hat{\beta}$ 1965 609

- ullet What is the estimated treatment effect? $\hat{eta}=1965$
- What is a CI for the treatment effects? $\hat{\beta} \pm 1.96 \times SE_{\beta} = 1965 \pm 1.96 \times 609 = [771, 3159]$
- What is the estimated control mean?

Estimate OLS regression:

$$Y_i$$
 $= lpha + eta$ D_i $+ arepsilon_i$ Earnings 2-3 years later Treatment indicator

	Coefficient	Estimate	SE
•	\hat{lpha}	14636	425
	$\hat{oldsymbol{eta}}$	1965	609

- ullet What is the estimated treatment effect? $\hat{eta}=1965$
- What is a CI for the treatment effects? $\hat{\beta} \pm 1.96 \times SE_{\beta} = 1965 \pm 1.96 \times 609 = [771, 3159]$
- What is the estimated control mean? $\hat{\alpha} = 14636$

Roadmap

- What we know how to do: Estimate and test hypotheses about population means using sample means
- What we want to do: Estimate approximations to the CEF and test hypotheses about them

How can we use what know to do what we want?

• 1) Assume the CEF takes a particular form, e.g. linear:

$$E[Y_i|X_i=x]=\alpha+x\beta$$

- 2) Show that under this assumption, α and β can be represented as functions of population means. \checkmark
- 3) Use our tools for estimating population means using sample means to estimate α, β and test hypotheses about them. \checkmark
- 4) Argue that even if our assumption about the form of the CEF is wrong, the parameters α, β may provide a "good" approximation.

- So far we've assumed that the conditional expectation is linear: $E[Y_i|X_i=x]=\alpha+\beta x$
- What if the true CEF is not linear?!

- So far we've assumed that the conditional expectation is linear: $E[Y_i|X_i=x]=\alpha+\beta x$
- What if the true CEF is not linear?!
- Claim: if CEF is not linear, then OLS still gives us the "best linear approximation" to the CEF

- So far we've assumed that the conditional expectation is linear: $E[Y_i|X_i=x]=\alpha+\beta x$
- What if the true CEF is not linear?!
- Claim: if CEF is not linear, then OLS still gives us the "best linear approximation" to the CEF
- What we mean by this is that the α, β of OLS minimize

$$min_{\alpha,\beta}E[(E[Y|X]-(\alpha+\beta X))^2]$$

- So far we've assumed that the conditional expectation is linear: $E[Y_i|X_i=x]=\alpha+\beta x$
- What if the true CEF is not linear?!
- Claim: if CEF is not linear, then OLS still gives us the "best linear approximation" to the CEF
- ullet What we mean by this is that the lpha,eta of OLS minimize

$$min_{\alpha,\beta}E[(E[Y|X]-(\alpha+\beta X))^2]$$

That is, we get the linear function that's "closest" to the CEF in terms of mean-squared error

• We solved for the α, β to minimize $E[(Y - (\alpha + \beta X))^2]$.

- We solved for the α, β to minimize $E[(Y (\alpha + \beta X))^2]$.
- Let $\mu(x) = E[Y|X=x]$. Then we have

- We solved for the α, β to minimize $E[(Y (\alpha + \beta X))^2]$.
- Let $\mu(x)=E[Y|X=x]$. Then we have $E[(Y-(\alpha+\beta X))^2]=E[(Y-\mu(X)+\mu(X)-(\alpha+\beta X))^2]$

- We solved for the α, β to minimize $E[(Y (\alpha + \beta X))^2]$.
- Let $\mu(x) = E[Y|X = x]$. Then we have

$$E[(Y - (\alpha + \beta X))^{2}] = E[(Y - \mu(X) + \mu(X) - (\alpha + \beta X))^{2}]$$

$$= E[(Y - \mu(X))^{2}] + E[(\mu(X) - (\alpha + \beta X))^{2}]$$

$$+ 2E[(Y - \mu(X))(\mu(X) - (\alpha + \beta X))]$$

- We solved for the α, β to minimize $E[(Y (\alpha + \beta X))^2]$.
- Let $\mu(x) = E[Y|X=x]$. Then we have

$$E[(Y - (\alpha + \beta X))^{2}] = E[(Y - \mu(X) + \mu(X) - (\alpha + \beta X))^{2}]$$

$$= E[(Y - \mu(X))^{2}] + E[(\mu(X) - (\alpha + \beta X))^{2}]$$

$$+ 2E[(Y - \mu(X))(\mu(X) - (\alpha + \beta X))]$$

By the LIE,

$$E[(Y - \mu(X))(\mu(X) - (\alpha + \beta X))] =$$

- We solved for the α, β to minimize $E[(Y (\alpha + \beta X))^2]$.
- Let $\mu(x) = E[Y|X=x]$. Then we have

$$\begin{split} E[(Y - (\alpha + \beta X))^{2}] &= E[(Y - \mu(X) + \mu(X) - (\alpha + \beta X))^{2}] \\ &= E[(Y - \mu(X))^{2}] + E[(\mu(X) - (\alpha + \beta X))^{2}] \\ &+ 2E[(Y - \mu(X))(\mu(X) - (\alpha + \beta X))] \end{split}$$

By the LIE,

$$E[(Y - \mu(X))(\mu(X) - (\alpha + \beta X))] = E[E[(Y - \mu(X))(\mu(X) - (\alpha + \beta X))|X]] =$$

- We solved for the α, β to minimize $E[(Y (\alpha + \beta X))^2]$.
- Let $\mu(x) = E[Y|X=x]$. Then we have

$$E[(Y - (\alpha + \beta X))^{2}] = E[(Y - \mu(X) + \mu(X) - (\alpha + \beta X))^{2}]$$

$$= E[(Y - \mu(X))^{2}] + E[(\mu(X) - (\alpha + \beta X))^{2}]$$

$$+ 2E[(Y - \mu(X))(\mu(X) - (\alpha + \beta X))]$$

By the LIE,

$$E[(Y - \mu(X))(\mu(X) - (\alpha + \beta X))] = E[E[(Y - \mu(X))(\mu(X) - (\alpha + \beta X))|X]] = E[(\mu(X) - (\alpha + \beta X))\underbrace{E[Y - \mu(X)|X]}_{-0}] = 0$$

• Hence, $E[(Y - (\alpha + \beta X))^2] = [(Y - \mu(X))^2] + E[\mu(X) - (\alpha + \beta X))^2]$. But the first term doesn't depend on β . So minimizing $E[(Y - (\alpha + \beta X))^2]$ is the same as minimizing $E[\mu(X) - (\alpha + \beta X))^2]$

•
$$E[Y_i|D_i = 1, X_i = x] - E[Y_i|D_i = 0, X_i = x] \approx \alpha_1 + \beta_1 x - (\alpha_0 + \beta_0 x);$$

•
$$E[Y_i|D_i = 1, X_i = x] - E[Y_i|D_i = 0, X_i = x] \approx \alpha_1 + \beta_1 x - (\alpha_0 + \beta_0 x);$$

 $\hat{\alpha}_1 + \hat{\beta}_1 x - (\hat{\alpha}_0 + \hat{\beta}_0 x) = (34,947 + 15x) - (13,942 + 21x) = 21,005 - 6x$

•
$$E[Y_i|D_i = 1, X_i = x] - E[Y_i|D_i = 0, X_i = x] \approx \alpha_1 + \beta_1 x - (\alpha_0 + \beta_0 x);$$

 $\hat{\alpha}_1 + \hat{\beta}_1 x - (\hat{\alpha}_0 + \hat{\beta}_0 x) = (34,947 + 15x) - (13,942 + 21x) = 21,005 - 6x$

• So w/conditional ignorability, $ATE = E[CATE(X_i)] \approx 21,005 - 6E[X_i]$