Math 461: Probability Theory

Lanxiao Hermite Bai October 20, 2016

Contents

1	Combinatorial Analysis 4						
	1.1	Introduction	4				
	1.2	The Basic Principle of Counting	4				
	1.3	Permutations	4				
	1.4	Combinations	4				
	1.5	Mutinomial Coefficient	5				
	1.6	The number of Interger Solutions of Equations	5				
2	Axioms of Probability Theory						
	2.1	Sample Space and Events	5				
	2.2	Axioms of Probability	7				
	2.3	Probability As A Continuous Set Function	7				
3	Conditional Probability and Independence 8						
	3.1	Bayes's Formula	8				
	3.2	Independent Events	8				
4	Random Variables						
	4.1	Random Variable	9				
	4.2	Discrete Random Variables	9				
	4.3	Expected Value	9				
	4.4	Exceptation of A Function of A Random Variable	9				
	4.5	Variance	10				
	4.6	The Bernoulli And Binomial Random Variables	10				
		4.6.1 Properties of Binomial Random Variables	10				
		4.6.2 Computing the Binomial Distribution Function	11				
	4.7	The Poisson Random Variable	11				
	4.8	Other Distributions	12				
		4.8.1 Geometric Random Variable	12				
		4.8.2 Negative Binomial Random Variable	12				
		4.8.3 Hypergeometric Random Variable	12				
		4.8.4 The Zeta (or Zipf) Distribution	13				
5	Cor	ntinuous Random Variables	13				
	5.1	Introduction	13				
	5.2		13				

Math 461	Note	Lanxiao Ba
Math 401	note	панхіао ра

5.3	The Uniform Random Variable	14
5.4	Normal Random Variables	14
	5.4.1 The Normal Approximation to the Binomial Distribution	15
5.5	Exponetial Random Variable	15
5.6	Other Continuous Distributions	16
	5.6.1 The Gamma Distribution	16
	5.6.2 The Weibull Distribution	16
	5.6.3 The Cauchy Distribution	17
	5.6.4 The Beta Distribution	17

1 Combinatorial Analysis

1.1 Introduction

Combinatorial Analysis The mathematical theory of counting is formally known as combinatorial analysis.

1.2 The Basic Principle of Counting

Proposition 1.2.1 (Product Rule) Suppose a procedure can be broken down into a sequence of k parts for each the number of possible results denoted as n_k , the number of the possible outcomes of the procedure

$$N = \prod_{i=1}^{k} n_i$$

1.3 Permutations

Proposition 1.3.1 (Permutations)

$$P(n) = n! = n \cdot (n-1) \cdots 1 \tag{1}$$

1.4 Combinations

Definition 1.4.1 We define $\binom{n}{r}$, for $r \leq n$, by

$$\begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{(n-r!)r!} \tag{2}$$

and say that $\binom{n}{r}$ represents the number of possible combinations of n objects taken r at a time.

Proposition 1.4.1 (The Binomial Theorem)

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
 (3)

1.5 Mutinomial Coefficient

Notation If $n = \sum_{i=1}^{r} n_i$, we define $\binom{n}{n_1, n_2, \dots, n_r}$ by $\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \dots n_r!}$ (4)

Thus, $\binom{n}{n_1, n_2, \dots, n_r}$ represents the number of possible divisions of n distinct objects into r distinct groups of respective sizes n_1, n_2, \dots, n_r .

Proposition 1.5.1 (The Multinomial Theorem)

$$\left(\sum_{i=1}^{r} x_{r}\right)^{n} = \sum_{(n_{1}, \dots, n_{r}) : n = \sum_{i=1}^{r} n_{i}} \binom{n}{n_{1}, n_{2}, \dots, n_{r}} \prod_{j=1}^{r} x_{j}^{n_{j}}$$
(5)

1.6 The number of Interger Solutions of Equations

Proposition 1.6.1 There are $\binom{n-1}{r-1}$ distinct nonnegative integer-value vectors (x_1, x_2, \dots, x_r) satisfying the equation

$$n = \sum_{i=1}^{r} n_i, x_i > 0, i = 1, \dots, r$$
 (6)

Proposition 1.6.2 There are $\binom{n+r-1}{r-1}$ distinct nonnegative integer-value vectors (x_1, x_2, \dots, x_r) satisfying the equation

$$n = \sum_{i=1}^{r} n_i \tag{7}$$

2 Axioms of Probability Theory

2.1 Sample Space and Events

Sample Space The set of possible outcomes of an experiment is the **sample space** of the experiment and is denoted by S.

Any subset $E \subseteq S$ is known as an event.

Event $E \cap F$ is called the **union** of E and F. Union of events of E_1, E_2, \dots is denoted by

$$\bigcup_{n=1}^{\infty} E_n$$

Intersection Event EF is called **Intersection** of E and F. Intersection of events of $E_1, E_2, ...$ is denoted by

$$\bigcap_{n=1}^{\infty} E_n$$

Complement Complement of E is denoted by E^C .

Contain Contained relationship is denoted by $E \subset F$. If $E \subset F$ and $F \subset E$, then E = F.

Rules

- 1. Commutative Laws $E \cup F = F \cup E$ and EF = FE
- 2. Associative Laws $(E \cap F) \cap G = F \cap (F \cap G)$ and (EF)G = E(FG)
- 3. Distributive Laws $(E \cap F)G = EG \cap FG$ and $EF \cap G = (E \cap G)(F \cap G)$
- 4. De Morgan's Laws

$$\left(\bigcup_{i=1}^{n} E_{i}\right)^{c} = \bigcap_{i=1}^{n} E_{i}^{c}$$
$$\left(\bigcap_{i=1}^{n} E_{i}\right)^{c} = \bigcup_{i=1}^{n} E_{i}^{c}$$

$$(\bigcap_{i=1}^{n} E_i)^c = \bigcup_{i=1}^{n} E_i^c$$

2.2 Axioms of Probability

Definition 2.2.1 For each event E of the sample space S, we define n(E) to be the number of times in the first n reptitions of the experiment that event E occurs. Then probability is defined as

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \tag{8}$$

Axiom 2.2.1

$$0 \le P(E) \le 1$$

Axiom 2.2.2

$$P(S) = 1$$

Axiom 2.2.3 For any sequence of mutually exclusive events

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

Proposition 2.2.1

$$P(E^C) = 1 - P(E)$$

Proposition 2.2.2 *If* $E \subset F$, then $P(E) \leq P(F)$.

Proposition 2.2.3

$$P(E \cup F) = P(E) + P(F) - P(EF)$$

Proposition 2.2.4

$$P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{r} (-1)^{r+1} \sum_{i_1 < \dots < i_r} P(\bigcap_{j=1}^{r} E_{i_j})$$

2.3 Probability As A Continuous Set Function

Proposition 2.3.1 If $E_n, n \ge 1$ is either an increasing or a decreasing sequence of events, then

$$\lim_{n\to\infty} P(E_n) = P(\lim_{n\to\infty} E_n)$$

3 Conditional Probability and Independence

Definition 3.0.1 (Conditional Probability) If P(F) > 0, then

$$P(E|F) = \frac{P(EF)}{P(F)}$$

Proposition 3.0.1

$$P(E_1E_2E_3\cdots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_2E_1)\cdots P(E_n|E_1\cdots E_{n-1})$$

3.1 Bayes's Formula

Proposition 3.1.1

$$P(E) = P(E|F)P(F) + P(E|F^{C})[1 - P(F)]$$

Proposition 3.1.2 (Bayes's Theorem)

$$P(E|F) = \frac{P(F|E)P(E)}{P(F)}$$

Definition 3.1.1 (Odd) The odds of an event A are defined by

$$\frac{P(A)}{P(A^C)} = \frac{P(A)}{1 - P(A)}$$

That is, the odds of an event A tell how much more likely it is that the event A occurs than it is that it does not occur.

3.2 Independent Events

Definition 3.2.1 Two events E and F are said to be independent if Equation

$$P(EF) = P(E)P(F)$$

holds. Two events E and F that are not independent are said to be dependent.

Proposition 3.2.1 If E and F are independent, then so are E and F^C .

4 Random Variables

4.1 Random Variable

Definition 4.1.1 (Random Variable) Real-valued functions defined on the sample space, are known as random variables.

Proposition 4.1.1

$$1 = P(\bigcup_{i=0}^{n} \{Y = i\}) = \sum_{i=0}^{n} P\{Y = i\}$$

4.2 Discrete Random Variables

Definition 4.2.1 (Probability mass function)

$$p(a) = P(X = a)$$

Proposition 4.2.1

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

Definition 4.2.2 Commutative distribute function

$$F(a) = \sum_{\text{all } x \le a} p(x)$$

4.3 Expected Value

Definition 4.3.1 (Expected Value)

$$E[x] = \sum_{x:p(x)>0} xp(x)$$

4.4 Exceptation of A Function of A Random Variable

Proposition 4.4.1

$$E[g(X)] = \sum_{i} g(x_i)p(x_i)$$

Corollary 4.4.1

$$E[aX + b] = aE[X] + b$$

4.5 Variance

Definition 4.5.1 (Variance) If X is a random variable with mean μ , then the **variance** of X is

$$Var(X) = E[(X - \mu)^2] = E[X^2] - (E[x])^2$$

Proposition 4.5.1

$$Var(aX + b) = a^2 Var(X)$$

Definition 4.5.2 (Standard Deviation)

$$SD(X) = \sqrt{Var(X)}$$

4.6 The Bernoulli And Binomial Random Variables

Definition 4.6.1 (Bernoulli Random Variable) A random variable X is said to be a Bernoulli random variable if its probability mass function is given by Equations

$$p(0) = P\{X = 0\} = 1 - p$$
$$p(1) = P\{X = 1\} = p$$

for some $p \in (0,1)$.

Definition 4.6.2 (Binomial Random Variables) Suppose now that n independent trials, each of which results in a success with probability p and in a failure with probability p are to be performed. If X represents the number of successes that occur in the p trials, then p is said to be a binomial random variable with parameters p in p.

$$p(i) = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n.$$

4.6.1 Properties of Binomial Random Variables

Proposition 4.6.1 For the Binomial Random Variables,

1.
$$E[X^k] = npE[(Y+1)^{k-1}], Y = \binom{n-1}{i} p^i (1-p)^{n-1-i}.$$

2.
$$Var(X) = np(1-p)$$
.

Proposition 4.6.2 If X is a binomial random variable with parameters (n, p), where 0 , then as k goes from 0 to n, <math>PX = k first increases monotonically and then decreases monotonically, reaching its largest value when k is the largest integer less than or equal to (n + 1)p.

4.6.2 Computing the Binomial Distribution Function

Proposition 4.6.3

$$P\{x \le i\} = \sum_{k=0}^{i} \binom{n}{i} p^{k} (1-p)^{n-k}$$

Corollary 4.6.1

$$P\{X = k+1\} = \frac{p}{1-p} \frac{n-k}{k+1} P\{X = k\}$$

4.7 The Poisson Random Variable

Definition 4.7.1 (Poisson Random Variable)

$$p(i) = e^{-\lambda} \frac{\lambda^i}{i!}, \lambda \ge 0 (\lambda = np)$$

Proposition 4.7.1

$$\frac{P\{X=i+1\}}{P\{X=i\}} = \frac{\lambda}{i+1}$$

Proposition 4.7.2

$$Var(X) = E[X] = \lambda$$

Proposition 4.7.3 Under the following conditions:

- In a time interval of arbitrary length h, $o(h) = \lim_{h\to 0}/h = 0, p = \lambda h + o(h)$
- p(x=2) = o(h) in a time interval of arbitrary length.

• For any integers n, j_1, j_2, \dots, j_n and any set of n nonoverlapping intervals, if we define E_i to be the event that exactly j_i of the events under consideration occur in the ith of these intervals, then events $E1, E2, \dots, En$ are independent.

The the number of events occurring in any interval of length t is a Poisson random variable with parameter λt .

4.8 Other Distributions

4.8.1 Geometric Random Variable

Definition 4.8.1

$$P\{X = n\} = (1 - p)^{n-1}p$$

Proposition 4.8.1

$$E[X] = \frac{1}{p}$$
$$Var(X) = \frac{1-p}{p^2}$$

4.8.2 Negative Binomial Random Variable

Definition 4.8.2

$$P{X = n} = {n-1 \choose r-1} p^r (1-p)^{n-r}$$

4.8.3 Hypergeometric Random Variable

Definition 4.8.3 Suppose that a sample of size n is to be chosen randomly (without replacement) from an urn containing N balls, of which m are white and N m are black. If we let X denote the number of white balls selected, then

$$P\{X=i\} = \frac{\binom{m}{1}\binom{N-m}{n-i}}{\binom{N}{n}}$$

4.8.4 The Zeta (or Zipf) Distribution

Definition 4.8.4

$$P\{X=k\} = \frac{C}{k^{\alpha+1}}$$

while,

$$C = \left[\sum_{k=1}^{\infty} (\frac{1}{k})^{\alpha+1}\right]^{-1}$$

and

$$\zeta(s) = \sum_{k=1}^{\infty} (\frac{1}{k})^s$$

5 Continuous Random Variables

5.1 Introduction

Definition 5.1.1 (Continuous Random Variable) We say that X is a continuous random variable if there exists a nonnegative function f, defined for all real $x \in (\infty, \infty)$, having the property that, for any set B of real number,

$$P\{X \in B\} = \int_{B} f(x)dx^{1}$$

Proposition 5.1.1

$$1 = P\{X \in (-\infty, \infty)\} = \int_{-\infty}^{\infty} f(x)dx$$

5.2 Expectation and Variance of Continuous Random Variables

Definition 5.2.1 (Expectation)

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

 $^{^{1}}f(x)$ is called the **probability density function**.

Proposition 5.2.1

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Corollary 5.2.1

$$E[aX + b] = aE[X] + b$$

Definition 5.2.2 (Variance)

$$Var(X) = E[(X - \mu)^{2}] = E[X^{2}] - (E[X])^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx - (\int_{-\infty}^{\infty} f(x) dx)^{2}$$

5.3 The Uniform Random Variable

Definition 5.3.1 (Uniform Distribution) A random variable is said to be uniformly distributed over the interval (0, 1) if its probability density function is given by,

$$f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & otherwise \end{cases}$$

Similarly, a random variable is said to be uniformly distributed over the interval (α, β) if its probability density function is given by,

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha < x < \beta \\ 0 & otherwise \end{cases}$$

Proposition 5.3.1

$$P(a \le X \le b) = \int_a^b f(x)dx = b - a$$

5.4 Normal Random Variables

Definition 5.4.1 (Normal Random Variable) We say that X is a normal random variable, or simply that X is normally distributed, with parameters and 2 if the density of X is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < +\infty.$$

Proposition 5.4.1 For a random variable with parameters μ and σ^2 ,

- 1. Expectation: $E[X] = \mu$
- 2. Variance: $Var[X] = \sigma^2$

3.
$$P\{Z \le -x\} = P\{Z > x\}, -\infty < x < \infty$$

If we denote the **cumulative distribution function** of a standard normal random variable by

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$$

We have $\Phi(-x) = 1 - \Phi(x), -\infty < x < \infty$.

And

$$F_X(X \le a) = P(\frac{X - \mu}{\sigma} \le \frac{a - \mu}{\sigma}) = \Phi(\frac{a - \mu}{\sigma})$$

5.4.1 The Normal Approximation to the Binomial Distribution

Theorem 5.4.1 (The DeMoivre-Laplace Limit Theorem) When n is large, a binomial random variable with parameters n and p will have approximately the same distribution as a normal random variable with the same mean and variance as the binomial.

If S_n denotes the number of successes that occur when n independent trials, each resulting in a success with probability p, are performed, then, for any a < b,

$$P\{a \le \frac{S_n - np}{\sqrt{np(1-p)}} \le b\} \to \Phi(b) - \Phi(a)$$

as $n \to \infty$.

5.5 Exponetial Random Variable

Definition 5.5.1 A continuous random variable whose probability density function is given, for some $\lambda > 0$, by

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

is said to be an **exponential random variable** (or, more simply, is said to be exponentially distributed) with parameter λ .

Proposition 5.5.1 Let X be an exponential random variable with parameter λ .

1.
$$E[X^n] = \frac{n}{\lambda} E[x^{n-1}]$$

$$E[X] = \frac{1}{\lambda}$$

3.
$$Var(X) = \frac{1}{\lambda^2}$$

5.6 Other Continuous Distributions

5.6.1 The Gamma Distribution

Definition 5.6.1 (Gamma Distribution) A random variable is said to have a **gamma distribution** with parameters $(\alpha, \lambda), \lambda > 0, \alpha > 0$, if its density function is given by

$$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)} & x \ge 0\\ 0 & x < 0 \end{cases}$$

where

$$\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha - 1} dy.^2$$

Proposition 5.6.1 Let X a gamma distribution with parameters $(\alpha, \lambda), \lambda > 0, \alpha > 0$.

1.
$$E[X] = \frac{\alpha}{\lambda}$$

$$Var(X) = \frac{\alpha}{\lambda^2}$$

5.6.2 The Weibull Distribution

Definition 5.6.2 (The Weibull Distribution) A random variable whose cumulative distribution function is said to be a Weibull random variable with parameters ν , α , and β if

$$f(x) = \begin{cases} 0 & x \le v \\ \frac{\beta}{\alpha} \left(\frac{x-v}{\alpha}\right)^{\beta-1} \exp\left\{-\left(\frac{x-v}{\alpha}\right)^{\beta}\right\} & x > v \end{cases}$$

$$\frac{{}^{2}\Gamma(\alpha) = (\alpha-1)\Gamma(\alpha-1) = (n-1)!}{}$$

5.6.3 The Cauchy Distribution

Definition 5.6.3 (The Cauchy Distribution) A random variable is said to have a Cauchy distribution with parameter θ , $-\infty < \theta < \infty$, if its density is given by

$$f(x) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}, -\infty < \theta < \infty$$

5.6.4 The Beta Distribution

Definition 5.6.4 (The Beta Distribution) A random variable is said to have a Beta distribution if its density is given by

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}, 0 < x < 1$$

where

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$

Proposition 5.6.2

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Proposition 5.6.3 Let X a beta distribution

1.

$$E[X] = \frac{a}{a+b}$$

2.

$$Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$