Structural Equation Models (Confirmatory Factor Analysis)

Statistics 407, ISU

A model is specified, describing the expected associations between variables. For example,

 X_1 causes X_2 causes X_3 , X_4 cause X_5 which causes X_2 but nothing else is related.

This forms a hypothesis, that is tested by fitting a model, based on the associations between variables.

A model is specified, describing the expected associations between variables. For example,

 X_1 causes X_2 causes X_3 , X_4 cause X_5 which causes X_2 but nothing else is related.

This forms a hypothesis, that is tested by fitting a model, based on the associations between variables.

A model is specified, describing the expected associations between variables. For example,

 X_1 causes X_2 causes X_3 , X_4 cause X_5 which causes X_2 but nothing else is related.

This forms a hypothesis, that is tested by fitting a model, based on the associations between variables.

A model is specified, describing the expected associations between variables. For example,

 X_1 causes X_2 causes X_3 , X_4 cause X_5 which causes X_2 but nothing else is related.

This forms a hypothesis, that is tested by fitting a model, based on the associations between variables.

A model is specified, describing the expected associations between variables. For example,

 X_1 causes X_2 causes X_3 , X_4 cause X_5 which causes X_2 but nothing else is related.

This forms a hypothesis, that is tested by fitting a model, based on the associations between variables.

A model is specified, describing the expected associations between variables. For example,

 X_1 causes X_2 causes X_3 , X_4 cause X_5 which causes X_2 but nothing else is related.

This forms a hypothesis, that is tested by fitting a model, based on the associations between variables.

A model is specified, describing the expected associations between variables. For example,

 X_1 causes X_2 causes X_3 , X_4 cause X_5 which causes X_2 but nothing else is related.

This forms a hypothesis, that is tested by fitting a model, based on the associations between variables.

A model is specified, describing the expected associations between variables. For example,

 X_1 causes X_2 causes X_3 , X_4 cause X_5 which causes

X₂ but nothing else is related.

This forms a hypothesis, that is tested by fitting a model, based on the associations between variables.

A model is specified, describing the expected associations between variables. For example,

 (X_1) causes (X_2) causes (X_3) , (X_4) cause (X_5) which causes

X₂ but nothing else is related.

This forms a hypothesis, that is tested by fitting a model, based on the associations between variables.

Exogenous variables, don't depend on any other variables

Endogenous variables, depend on others

Path diagram

$$X_3 = \alpha_1 X_2, X_2 = \alpha_2 X_1 + \alpha_3 X_5, X_5 = \alpha_4 X_4$$

Association

$$\begin{bmatrix}
x_1 & x_2 & x_3 & x_4 & x_5 \\
x_1 & + & + & 0 & 0 \\
x_2 & 0 & + & 0 & 0 \\
x_3 & 0 & 0 & & 0 & 0 \\
x_4 & 0 & + & + & + \\
x_5 & 0 & + & + & 0
\end{bmatrix}$$

Model specification corresponds to expecting these relationships between the variables

Modeling

- Begins with the covariance or correlation matrix or similarity matrix.
- Fitting is done using Maximum Likelihood (like factor analysis) needing a distribution assumption on the exogenous variables usually normality.
- Models are compared using chisquare difference tests, information criteria, or mean square of residuals.

Example

- One factor, synthetic data (used in factor analysis notes)
- Replicating Spearman's example, students tested on classics, french, english, math.

```
classics = 0.80f + \varepsilon_{classics}, \varepsilon_{classics} \sim N(0, 10)
french = 0.70f + \varepsilon_{french}, \varepsilon_{classics} \sim N(0, 15)
english = 0.76f + \varepsilon_{english}, \varepsilon_{classics} \sim N(0, 9)
math = 0.9f + \varepsilon_{math}, \varepsilon_{classics} \sim N(0, 5)
```

 f is simulated from standard normal and scaled to be between 0-100

All variables strongly related

Means

classics	french	english	math
43.39	37.89	43.63	49.88

Correlation

	classics	french	english	math
classics	1.00	0.63	0.70	0.82
french	0.63	1.00	0.60	0.66
english	0.70	0.60	1.00	0.82
math	0.82	0.66	0.82	1.00

Covariance

	classics	french	english	math
classics	345.08	247.92	217.56	295.84
french	247.92	448.60	211.97	270.07
english	217.56	211.97	279.70	266.74
math	295.84	270.07	266.74	375.49

All relationships are significant

```
Estimate Std Error z value Pr(>|z|)
```

```
a2 0.92917 0.115989 8.0108 1.1102e-15 french <--- intell
```

```
e2 232.97400 35.518036 6.5593 5.4055e-11 french <--> french
```

e4 25.85219 13.235897 1.9532 5.0797e-02 math <--> math

p1 249.75715 48.125783 5.1897 2.1066e-07 intell <--> intell

a3 0.89840 0.082237 10.9245 0.0000e+00 english <--- intell

a4 1.18318 0.089522 13.2168 0.0000e+00 math <--- intell

e1 95.32458 16.605810 5.7404 9.4434e-09 classics <--> classics

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6 Goodness-of-fit index = 0.9889 Adjusted goodness-of-fit index = 0.94452 RMSEA index = 0.039616 90% CI: (NA, 0.20758) Bentler-Bonnett NFI = 0.99192 Tucker-Lewis NNFI = 0.99667 Bentler CFI = 0.9989 SRMR = 0.015293 BIC = -6.8996
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6 Goodness-of-fit index = 0.9889 Adjusted goodness-of-fit index = 0.94452 RMSEA index = 0.039616 90% CI: (NA, 0.20758) Bentler-Bonnett NFI = 0.99192 Tucker-Lewis NNFI = 0.99667 Bentler CFI = 0.9989 SRMR = 0.015293 BIC = -6.8996
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6

Goodness-of-fit index = 0.9889

Adjusted goodness-of-fit index = 0.94452

RMSEA index = 0.039616 90% CI: (NA, 0.20758)

Bentler-Bonnett NFI = 0.99192

Tucker-Lewis NNFI = 0.99667

Bentler CFI = 0.9989

SRMR = 0.015293 Close to 0, not much

BIC = -6.8996 error remaining GOOD
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6 Goodness-of-fit index = 0.9889 Adjusted goodness-of-fit index = 0.94452 RMSEA index = 0.039616 90% CI: (NA, 0.20758) Bentler-Bonnett NFI = 0.99192 Tucker-Lewis NNFI = 0.99667 Bentler CFI = 0.9989 SRMR = 0.015293 Close to 0, not much BIC = -6.8996 error remaining GOOD
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6

Goodness-of-fit index = 0.9889

Adjusted goodness-of-fit index = 0.94452

RMSEA index = 0.039616 90% CI: (NA, 0.20758)

Bentler-Bonnett NFI = 0.99192

Tucker-Lewis NNFI = 0.99667

Bentler CFI = 0.9989

SRMR = 0.015293 Close to 0, not much

BIC = -6.8996

error remaining GOOD
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6 Goodness-of-fit index = 0.9889 Adjusted goodness-of-fit index = 0.94452 RMSEA index = 0.039616 90% CI: (NA, 0.20758) Bentler-Bonnett NFI = 0.99192 Tucker-Lewis NNFI = 0.99667 Bentler CFI = 0.9989 SRMR = 0.015293 Close to 0, not much BIC = -6.8996 error remaining GOOD
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6 Goodness-of-fit index = 0.9889 Adjusted goodness-of-fit index = 0.94452 RMSEA index = 0.039616 90% CI: (NA, 0.20758) Bentler-Bonnett NFI = 0.99192 Tucker-Lewis NNFI = 0.99667 Bentler CFI = 0.9989 SRMR = 0.015293 Close to 0, not much BIC = -6.8996 error remaining GOOD
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6

Goodness-of-fit index = 0.9889

Adjusted goodness-of-fit index = 0.94452

RMSEA index = 0.039616 90% CI: (NA, 0.20758)

Bentler-Bonnett NFI = 0.99192

Tucker-Lewis NNFI = 0.99667

Bentler CFI = 0.9989

SRMR = 0.015293 Close to 0, not much

BIC = -6.8996

error remaining GOOD
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6

Goodness-of-fit index = 0.9889

Adjusted goodness-of-fit index = 0.94452

RMSEA index = 0.039616 90% CI: (NA, 0.20758)

Bentler-Bonnett NFI = 0.99192

Tucker-Lewis NNFI = 0.99667

Bentler CFI = 0.9989

SRMR = 0.015293 Close to 0, not much

BIC = -6.8996

error remaining GOOD
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6

Goodness-of-fit index = 0.9889

Adjusted goodness-of-fit index = 0.94452

RMSEA index = 0.039616 90% CI: (NA, 0.20758)

Bentler-Bonnett NFI = 0.99192

Tucker-Lewis NNFI = 0.99667

Bentler CFI = 0.9989

SRMR = 0.015293 Close to 0, not much

BIC = -6.8996

error remaining GOOD
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494 Chisquare (null model) = 285.98 Df = 6

Goodness-of-fit index = 0.9889

Adjusted goodness-of-fit index = 0.94452

RMSEA index = 0.039616 90% CI: (NA, 0.20758)

Bentler-Bonnett NFI = 0.99192

Tucker-Lewis NNFI = 0.99667

Bentler CFI = 0.9989

SRMR = 0.015293 Close to 0, not much

BIC = -6.8996

error remaining GOOD
```

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494
Chisquare (null model) = 285.98 Df = 6
Goodness-of-fit index = 0.9889
Adjusted goodness-of-fit index = 0.94452
RMSEA index = 0.039616 90% CI: (NA, 0.20758)
Bentler-Bonnett NFI = 0.99192
Tucker-Lewis NNFI = 0.99667
Bentler CFI = 0.9989
SRMR = 0.015293 Close to 0, not much
BIC = -6.8996

error remaining GOOD
```

? BAD ?

```
Model Chisquare = 2.3108 Df = 2 Pr(>Chisq) = 0.31494
Chisquare (null model) = 285.98 Df = 6
Goodness-of-fit index = 0.9889
Adjusted goodness-of-fit index = 0.94452
RMSEA index = 0.039616 90% CI: (NA, 0.20758)
Bentler-Bonnett NFI = 0.99192
Tucker-Lewis NNFI = 0.99667
Bentler CFI = 0.9989
SRMR = 0.015293 Close to 0, not much
BIC = -6.8996

error remaining GOOD
```

Observed Covariance

	classics	french	english	math
classics	345.08	247.92	217.56	295.84
french	247.92	448.60	211.97	270.07
english	217.56	211.97	279.70	266.74
math	295.84	270.07	266.74	375.49

Residuals

	classics	french	english	math
classics	-0.00	15.85	-6.82	0.33
french	15.85	0.00	3.49	-4.51
english	-6.82	3.49	-0.00	1.26
math	0.33	-4.51	1.26	-0.00

Estimated Covariance

	classics	french	english	math
classics	345.08	232.07	224.38	295.51
french	232.07	448.60	208.49	274.58
english	224.38	208.49	279.70	265.48
math	295.51	274.58	265.48	375.49

Observed Covariance

	classics	french	english	math
classics	345.08	247.92	217.56	295.84
french	247.92	448.60	211.97	270.07
english	217.56	211.97	279.70	266.74
math	295.84	270.07	266.74	375.49

Residuals

	classics	french	english	math
classics	-0.00	15.85	-6.82	0.33
french	15.85	0.00	3.49	-4.51
english	-6.82	3.49	-0.00	1.26
$\overline{\text{math}}$	0.33	-4.51	1.26	-0.00

Estimated Covariance

	classics	french	english	math
classics	345.08	232.07	224.38	295.51
french	232.07	448.60	208.49	274.58
english	224.38	208.49	279.70	265.48
math	295.51	274.58	265.48	375.49

Observed Covariance

	classics	french	english	math
classics	345.08	247.92	217.56	295.84
french	247.92	448.60	211.97	270.07
english	217.56	211.97	279.70	266.74
math	295.84	270.07	266.74	375.49

Residuals

	classics	french	english	math
classics	-0.00	15.85	-6.82	0.33
french	15.85	0.00	3.49	-4.51
english	-6.82	3.49	-0.00	1.26
$\overline{\text{math}}$	0.33	-4.51	1.26	-0.00

Estimated Covariance

	classics	french	english	math
classics	345.08	232.07	224.38	295.51
french	232.07	448.60	208.49	274.58
english	224.38	208.49	279.70	265.48
math	295.51	274.58	265.48	375.49

Observed Covariance

	classics	french	english	math
classics	345.08	247.92	217.56	295.84
french	247.92	448.60	211.97	270.07
english	217.56	211.97	279.70	266.74
math	295.84	270.07	266.74	375.49

Residuals

	classics	french	english	math
classics	-0.00	15.85	-6.82	0.33
french	(15.85)	0.00	3.49	-4.51
english	-6.82	3.49	-0.00	1.26
math	0.33	-4.51	1.26	-0.00

	classics	french	english	math
classics	345.08	232.07	224.38	295.51
french	232.07	448.60	208.49	274.58
english	224.38	208.49	279.70	265.48
math	295.51	274.58	265.48	375.49

Observed Covariance

	classics	french	english	math
classics	345.08	247.92	217.56	295.84
french	247.92	448.60	211.97	270.07
english	217.56	211.97	279.70	266.74
math	295.84	270.07	266.74	375.49

Residuals

	classics	french	english	math
classics	-0.00	15.85	-6.82	0.33
french	(15.85)	0.00	3.49	-4.51
english	-6.82	3.49	-0.00	1.26
math	0.33	-4.51	1.26	-0.00

	classics	french	english	math
classics	345.08	232.07	224.38	295.51
french	232.07	448.60	208.49	274.58
english	224.38	208.49	279.70	265.48
math	295.51	274.58	265.48	375.49

Observations

- Strict distributional assumptions need to be checked - but most people start with correlation or covariance matrix.
- The raw data should be investigated for problems such as outliers, clustering, that invalidate the use of correlation/covariance as the summary of the relationship.

Example

Duncan, Haller, and Portes's general structural equation model for peer influences on aspirations.

Correlation Matrix - Input

	<i>y</i> ₁	y_2	<i>y</i> ₃	<i>y</i> ₄	<i>X</i> ₁	X_2	X_3	X_4	<i>X</i> ₅	<i>x</i> ₆
	ROccAsp	REdAsp	FOccAsp	FEdAsp	RParAsp	RIQ	RSES	FSES	FIQ	FParAsp
ROccAsp	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
REdAsp	0.62	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FOccAsp	0.33	0.37	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FEdAsp	0.42	0.33	0.64	1.00	0.00	0.00	0.00	0.00	0.00	0.00
RParAsp	0.21	0.27	0.11	0.08	1.00	0.00	0.00	0.00	0.00	0.00
RIQ	0.41	0.40	0.29	0.26	0.18	1.00	0.00	0.00	0.00	0.00
RSES	0.32	0.40	0.31	0.28	0.05	0.22	1.00	0.00	0.00	0.00
FSES	0.29	0.24	0.41	0.36	0.02	0.19	0.27	1.00	0.00	0.00
FIQ	0.30	0.29	0.52	0.50	0.08	0.34	0.23	0.29	1.00	0.00
FParAsp	0.08	0.07	0.28	0.20	0.11	0.10	0.09	-0.04	0.21	1.00

	Estimate	Std Error	z value	$\Pr(> z)$	
$\overline{\text{gam}11}$	0.16	0.04	4.19	0.00	RGenAsp <— RParAsp
$\operatorname{gam} 12$	0.25	0.04	5.60	0.00	RGenAsp <— RIQ
gam13	0.22	0.04	5.02	0.00	RGenAsp <— RSES
gam14	0.07	0.05	1.43	0.15	RGenAsp <— FSES
$\operatorname{gam}23$	0.06	0.05	1.20	0.23	FGenAsp <— RSES
gam 24	0.23	0.04	5.14	0.00	FGenAsp <— FSES
gam25	0.35	0.04	7.83	0.00	FGenAsp <— FIQ
gam26	0.16	0.04	3.98	0.00	FGenAsp <— FParAsp
beta12	0.18	0.10	1.91	0.06	RGenAsp <— FGenAsp
beta21	0.24	0.12	1.97	0.05	FGenAsp <— RGenAsp
lam21	1.06	0.09	11.55	0.00	REdAsp <— RGenAsp
lam42	0.93	0.07	13.07	0.00	FEdAsp <— FGenAsp
ps11	0.28	0.05	6.07	0.00	RGenAsp <-> RGenAsp
ps22	0.26	0.04	5.88	0.00	FGenAsp <-> FGenAsp
ps12	-0.02	0.05	-0.44	0.66	FGenAsp <-> RGenAsp
theta1	0.41	0.05	7.89	0.00	ROccAsp <-> ROccAsp
theta2	0.34	0.05	6.30	0.00	REdAsp <-> REdAsp
theta3	0.31	0.05	6.67	0.00	FOccAsp <-> FOccAsp
theta4	0.40	0.05	8.66	0.00	FEdAsp <-> FEdAsp

	Estimate	Std Error	z value	$\Pr(> z)$	
$\overline{\text{gam}11}$	0.16	0.04	4.19	0.00	RGenAsp <— RParAsp
gam 12	0.25	0.04	5.60	0.00	RGenAsp <— RIQ
gam 13	0.22	0.04	5.02	0.00	$RGenAsp \leftarrow RSES$
gam14	0.07	0.05	1.43	0.15	$RGenAsp \leftarrow FSES$
gam23	0.06	0.05	1.20	0.23	$FGenAsp \leftarrow RSES$
gam24	0.23	0.04	5.14	0.00	$FGenAsp \leftarrow FSES$
gam25	0.35	0.04	7.83	0.00	$FGenAsp \leftarrow FIQ$
gam26	0.16	0.04	3.98	0.00	$FGenAsp \leftarrow FParAsp$
beta12	0.18	0.10	1.91	0.06	$RGenAsp \leftarrow FGenAsp$
beta21	0.24	0.12	1.97	0.05	$FGenAsp \leftarrow RGenAsp$
lam21	1.06	0.09	11.55	0.00	$REdAsp \leftarrow RGenAsp$
lam42	0.93	0.07	13.07	0.00	$FEdAsp \leftarrow FGenAsp$
ps11	0.28	0.05	6.07	0.00	RGenAsp <-> RGenAsp
ps22	0.26	0.04	5.88	0.00	FGenAsp <-> FGenAsp
ps12	-0.02	0.05	-0.44	0.66	FGenAsp <-> RGenAsp
theta1	0.41	0.05	7.89	0.00	ROccAsp < -> ROccAsp
theta2	0.34	0.05	6.30	0.00	REdAsp <-> REdAsp
theta3	0.31	0.05	6.67	0.00	FOccAsp < -> FOccAsp
theta4	0.40	0.05	8.66	0.00	FEdAsp <-> FEdAsp

-	Estimate	Std Error	z value	$\Pr(> z)$	
gam11	0.16	0.04	4.19	0.00	RGenAsp <— RParAsp
gam12	0.25	0.04	5.60	0.00	$RGenAsp \leftarrow RIQ$
gam13	0.22	0.04	5.02	0.00	$RGenAsp \leftarrow RSES$
gam14	0.07	0.05	1.43	0.15	$RGenAsp \leftarrow FSES$
gam23	0.06	0.05	1.20	0.23	$FGenAsp \leftarrow RSES$
gam24	0.23	0.04	5.14	0.00	$FGenAsp \leftarrow FSES$
gam25	0.35	0.04	7.83	0.00	$FGenAsp \leftarrow FIQ$
gam26	0.16	0.04	3.98	0.00	$FGenAsp \leftarrow FParAsp$
beta12	0.18	0.10	1.91	0.06	$RGenAsp \leftarrow FGenAsp$
beta21	0.24	0.12	1.97	0.05	$FGenAsp \leftarrow RGenAsp$
lam21	1.06	0.09	11.55	0.00	$REdAsp \leftarrow RGenAsp$
lam42	0.93	0.07	13.07	0.00	$FEdAsp \leftarrow FGenAsp$
ps11	0.28	0.05	6.07	0.00	RGenAsp <-> RGenAsp
ps22	0.26	0.04	5.88	0.00	FGenAsp <-> FGenAsp
ps12	-0.02	0.05	-0.44	0.66	FGenAsp <-> RGenAsp
theta1	0.41	0.05	7.89	0.00	ROccAsp < -> ROccAsp
theta2	0.34	0.05	6.30	0.00	REdAsp <-> REdAsp
theta3	0.31	0.05	6.67	0.00	FOccAsp < -> FOccAsp
theta4	0.40	0.05	8.66	0.00	FEdAsp <-> FEdAsp

-	Estimate	Std Error	z value	$\Pr(> z)$	
gam11	0.16	0.04	4.19	0.00	RGenAsp <— RParAsp
gam12	0.25	0.04	5.60	0.00	$RGenAsp \leftarrow RIQ$
gam13	0.22	0.04	5.02	0.00	$RGenAsp \leftarrow RSES$
gam14	0.07	0.05	1.43	0.15	$RGenAsp \leftarrow FSES$
gam23	0.06	0.05	1.20	0.23	$FGenAsp \leftarrow RSES$
gam24	0.23	0.04	5.14	0.00	$FGenAsp \leftarrow FSES$
gam25	0.35	0.04	7.83	0.00	$FGenAsp \leftarrow FIQ$
gam26	0.16	0.04	3.98	0.00	$FGenAsp \leftarrow FParAsp$
beta12	0.18	0.10	1.91	0.06	$RGenAsp \leftarrow FGenAsp$
beta21	0.24	0.12	1.97	0.05	$FGenAsp \leftarrow RGenAsp$
lam21	1.06	0.09	11.55	0.00	$REdAsp \leftarrow RGenAsp$
lam42	0.93	0.07	13.07	0.00	$FEdAsp \leftarrow FGenAsp$
ps11	0.28	0.05	6.07	0.00	RGenAsp <-> RGenAsp
ps22	0.26	0.04	5.88	0.00	FGenAsp <-> FGenAsp
ps12	-0.02	0.05	-0.44	0.66	FGenAsp <-> RGenAsp
theta1	0.41	0.05	7.89	0.00	ROccAsp < -> ROccAsp
theta2	0.34	0.05	6.30	0.00	REdAsp <-> REdAsp
theta3	0.31	0.05	6.67	0.00	FOccAsp < -> FOccAsp
theta4	0.40	0.05	8.66	0.00	FEdAsp <-> FEdAsp

Model Fit

```
Model Chisquare = 26.697   Df = 15 Pr(>Chisq) = 0.031302   Chisquare (null model) = 872   Df = 45   Goodness-of-fit index = 0.98439   Adjusted goodness-of-fit index = 0.94275   RMSEA index = 0.048759   90% CI: (0.014517, 0.07831)   Bentler-Bonnett NFI = 0.96938   Tucker-Lewis NNFI = 0.95757   Bentler CFI = 0.98586   SRMR = 0.020204   BIC = -60.244
```

Residuals

	ROccAsp	REdAsp	FOccAsp	FEdAsp	RParAsp	RIQ	RSES	FSES	FIQ	FParAsp
ROccAsp	-0.00	0.00	-0.03	0.09	-0.03	0.02	-0.03	0.04	0.03	-0.03
REdAsp	0.00	0.00	-0.01	-0.02	0.02	-0.01	0.03	-0.03	0.00	-0.04
FOccAsp	-0.03	-0.01	0.00	0.00	0.00	0.01	0.00	0.01	-0.01	0.02
FEdAsp	0.09	-0.02	0.00	-0.00	-0.02	-0.00	-0.00	-0.01	0.01	-0.04
RParAsp	-0.03	0.02	0.00	-0.02	0.00	0.00	0.00	0.00	0.00	0.00
RIQ	0.02	-0.01	0.01	-0.00	0.00	0.00	0.00	0.00	0.00	0.00
RSES	-0.03	0.03	0.00	-0.00	0.00	0.00	0.00	0.00	0.00	0.00
FSES	0.04	-0.03	0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00
FIQ	0.03	0.00	-0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
FParAsp	-0.03	-0.04	0.02	-0.04	0.00	0.00	0.00	0.00	0.00	0.00

Must be magic!

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.