Let's make it real: mineral wool insulation as use-case

We use Knauf Insulation's EPD to illustrate the different steps of an LCA

Mineral wool is an insulation product manufactured from a **mix of stone & silica**

The materials are first heated to a high temperature until molten

The molten stone is then spun and formed into a **fibrous mat**, which is then **compressed** into finished insulation slabs

https://www.youtube.com/watch?v=1kCMiZNIW1Y

EPD (Environmental Product Declaration) is a standardized document describing an LCA study, that follows given reporting guidelines

- An EPD is defined by ISO 14025, which sets out the principles and procedures for developing Type III environmental declarations
- An EPD follows the methodology based on ISO 14040, using the appropriate Product Category Rules (PCRs), to ensure consistency and comparability
- The EPD is delivered as a document or report following a series of third-party verification reviews before registration and publication

Confidential - @ BrightWolves - empowered by Quanteus Group

Goal and scope definition for Knauf Rock Mineral Wool PTN

What are the intended application & audience? What do I include in my study? Which data is needed?

Decision items Knauf Rock Mineral Wool PTN Goal Goal and audience Inform the stakeholders in Belgium about the product's environmental impacts through an EPD 1 m² of uncoated slab **Function Functional unit Insulate** a building (R-value of 1.14 m² K/W) Cradle to grave **Product system & boundaries** Raw materials Manufacturing Installation End-of-life Recycling Transport Usage Data **Temporal & Data quality** Year 2018 >90% specific data, <10% generic data geographic scope requirements Single plant in Slovakia Calculation & reporting **Environmental impact assessment method** EN15084+A2 impact assessment method Type & format of the **Critical review EPD** document **Reviewed** by an independent third-party following the EN15084+A2 guidelines report considerations

Instructions for the life-cycle inventory

Assignment

- Using the production flowchart and the corresponding data points, model the life-cycle inventory of the mineral wool insulation slab
- · Calculate all the intermediate flow quantities for each process and scale them to the functional unit

Method

- Select one process in the flowchart from where we take the functional unit as a reference, then calculate backward and forward the quantities of each raw material, input and outputs needed
- Use a pen a paper! Rounding up is done to 1 decimal

Functional unit

1 m² of uncoated slab (R-value of 1.14 m² K/W)

Scope

Cradle-to-gate

(from extraction of raw materials to construction site)

The production stage (1/2)

Production process of Rock Mineral Wool PTN, TP and transport to construction site

Simplified production process

Data inputs

Raw material	Relative weight / FU	Ecoinvent database
Basalt	55%	"Market for basalt basalt GLO"
Dolomite	15%	"Market for dolomite dolomite Cutoff, U- RER"
Slags	25%	"Market for blast furnace slag GLO"
Resin binder	5%	"Market for polyester- complexed starch biopolymer GLO"

How many kg of coke needed to fuel the process of 1 kg of melted slab?

$$C + O_2 \rightarrow CO_2 + energy$$

- C (= coke): 12 g/mol
- O_2 : 16 g/mol
- Caloric value of coke: 28,6 MJ/kg

(ecoinvent source for CO2)

"On average, we burn **96 kilograms of coke** and use **5,76 m³ of compressed air** (600 kPa) in **one day**"

The production stage (2/2)

Production process of Rock Mineral Wool PTN, TP and transport to construction site

Simplified production process

Data inputs

Electricity consumption	
"We spin 12 m ² per hour, and our total electricity consumption/day (+/- 8 hours) is 192 kWh."	
Hint: the plant uses medium voltage	

Packaging material		
Polyethylene film: 0,030 kg/m² (2 layers)		
Wooden pallet: EUR – flat pallet → Assume: 0,85 m x 1,2 m → Weight of the pallet is 5 kg → Max height of piling is 70 cm		

Transportation parameter	Value
Average transport distance	600 km
Type of vehicle	EURO 6 Truck (28 – 32 t)
Truck payload capacity	22 tonnes
Number of pallets in truck	20-25 units