Optimisation convexe — TDs

Iv	an Lejeune	
31	janvier 2025	

Table des	matières												
TD1 —	Algorithmes 1D												2

TD1 — Algorithmes 1D

Exercice 1.1 Minimisation d'une fonction par dichotomie. Soit $f \in C^0([a,b],\mathbb{R})$. On dit que f est unimodale sur l'intervalle [a,b] si il existe un point $\overline{x} \in [a,b]$ tel que f soit strictement décroissante sur $[a,\overline{x}]$ et strictement croissante sur [x,b].

Pour chercher \overline{x} , nous allons générer une suite strictement décroissante d'intervalles dont le diamètre tend vers zéro et qui encadrent le minimum cherché.

Supposons connus cinq points $a = x_1, x_2, x_3, x_4, x_5 = b$. Cinq situations sont possibles:

- (i) Si $f(x_1) < f(x_2) < f(x_3) < f(x_4) < f(x_5)$, alors $\overline{x} \in [x_1, x_2]$.
- (ii) Si $f(x_1) > f(x_2)$ et $f(x_2) < f(x_3) < f(x_4) < f(x_5)$, alors $\overline{x} \in [x_1, x_3]$.
- (iii) Si $f(x_1) > f(x_2) > f(x_3)$ et $f(x_3) < f(x_4) < f(x_5)$, alors $\overline{x} \in]x_2, x_4[$.
- (iv) Si $f(x_1) > f(x_2) > f(x_3) > f(x_4)$ et $f(x_4) < f(x_5)$, alors $\overline{x} \in]x_3, x_5[$.
- (v) Si $f(x_1) > f(x_2) > f(x_3) > f(x_4) > f(x_5)$, alors $\overline{x} \in [x_4, x_5]$.
- (a) Utiliser ces propriétés pour construire un algorithme permettant de génèrer une suite d'intervalles $([a_k, b_k])_{k \in \mathbb{N}}$ telle que
 - à chaque étape, $\overline{x} \in [a_k, b_k]$,
 - on a $b_k a_k = \frac{b_{k-1} a_{k-1}}{2}$,
 - \bullet à partir de la deuxième étape, 2 évaluations de f sont nécessaires à chaque étape.
- (b) Montrer que $a_k \to \overline{x}$ et $b_k \to \overline{x}$ lorsque $k \to \infty$.
- **Solution.** (a) Dans le cas général on prend alors $[a_k, b_k] = [x_i, x_j]$ tel que $\overline{x} \in [x_i, x_j]$. Après la première étape, on évalue f en $x_t = (a_k + b_k)/2$. Si $f(x_t) < f(x_i)$, on choisit $[a_{k+1}, b_{k+1}] = [a_k, x_t]$, sinon on choisit $[a_{k+1}, b_{k+1}] = [x_t, b_k]$. On répète ainsi de suite. On a bien $b_k a_k = \frac{b_{k-1} a_{k-1}}{2}$ et on a besoin de deux évaluations de f à chaque étape. Evidemment, on a toujours $\overline{x} \in [a_k, b_k]$.
 - Cas (i) et (ii) : $\overline{x} \in [x_1, x_3]$.
 - Cas (iii): $\overline{x} \in [x_2, x_4]$.
 - Cas (iv) et (v): $\overline{x} \in [x_3, x_5]$.

On peut reprendre 5 points x_1, x_2, x_3, x_4, x_5 comme les bords et les quartiles d'un intervalle [a, b].

(b) Comme l'intervalle $[a_k, b_k]$ est de longueur divisée par 2 à chaque étape, on a $a_k - b_k$ qui tend vers 0 lorsque $k \to \infty$. Comme $\overline{x} \in [a_k, b_k]$, on a bien $a_k \to \overline{x}$ et $b_k \to \overline{x}$ lorsque $k \to \infty$.

Exercice 1.2 Méthode de la section dorée. Nous reprenons le principe de la méthode de la dichotomie précédente mais à chaque itération, nous allons maintenant chercher à diviser l'intervalle d'approximation en 3 parties (au lieu de 4 pour la dichotomie).

Plus précisément, nous allons construire une suite décroissante d'intervalles $([a_k,b_k])_{k\in\mathbb{N}}$ qui contiennent tous le minimum \overline{x} cherché. Pour passer de $[a_k,b_k]$ à $[a_{k+1},b_{k+1}]$, on introduit deux nombres x_2^k et x_3^k tels que $a_k < x_2^k < x_3^k < b_k$. On calcule alors les valeurs de f en x_2^k et x_3^k . On a alors 2 cas:

- Si $f(x_2^k) \le f(x_3^k)$, alors $\overline{x} \in [a_k, x_3^k]$.
- Si $f(x_2^k) > f(x_3^k)$, alors $\overline{x} \in [x_2^k, b_k]$.

La question suivante se pose alors : comment choisir x_2^k et x_3^k en pratique? On privilégie deux aspects :

(i) On souhaite que le facteur de réduction γ , qui représente le ratio de la longueur du nouvel intervalle, noté L_{k+1} par rapport à la longueur du précédent, noté L_k soit constant :

$$\frac{L_{k+1}}{L_k} = \gamma.$$

- (ii) On désire, comme pour la méthode de la dichotomie, réutiliser le point qui n'a pas été choisi dans l'itération précédente afin de diminuer les coûts de calcul.
- (a) Traduire ces contraintes permettant de choisir $x_2^k, x_3^k, a_{k+1}, b_{k+1}$. Proposer un algorithme et montrer qu'il n'y a qu'une seule valeur possible pour γ .
- (b) Montrer que pour tout $k \in \mathbb{N}$, on a

$$b_k - a_k = \gamma^k (b - a).$$

Conclure.

Solution.