NOMBRE: Matías Duhalde

SECCIÓN: 1

Nº LISTA: 34

PUNTAJE:

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 5 – Respuesta Pregunta 2

Parte 1

Sea A un conjunto infinito cualquiera y $n \in \mathbb{N}$.

Sea \sim una relación tal que $\sim=A\times A$. Tenemos que \sim cumple con las propiedades necesarias para ser una relación de equivalencia:

• Refleja: $\forall a \in A.(a,a) \in \sim$

• Simétrica: $\forall a, b \in A.(a, b) \in \sim \implies (b, a) \in \sim$

• Transitiva: $\forall a,b,c \in A.(a,b) \in \sim \land (b,c) \in \sim \implies (a,c) \in \sim$

Tenemos que $|A/\sim|$ es el conjunto cuociente de A con respecto a \sim , el cual corresponde al conjunto de las clases de equivalencia de A.

Sea n un elemento cualquiera tal que $n \in A$. Tenemos que la clase de equivalencia de n con respecto a \sim corresponde a:

$$[n]_{\sim} = \{ m \in A | n \sim m \}$$

Dado que $\sim = A \times A$, n se relaciona según la relación de equivalencia \sim con todos los elementos de A. En otras palabras, n es equivalente a cualquier otro elemento $m \in A$. Por lo tanto, su clase de equivalencia:

$$[n]_{\sim} = A$$

Usando el mismo argumento, se cumple que

$$\forall m \in A. [m]_{\sim} = A$$

Puesto que por definición, $A/\sim=\{[n]_{\sim}|n\in A\}$, y dado que todas las clases de equivalencia son iguales, tenemos que el conjunto cuociente corresponde a:

$$A/\sim=\{A\}$$

Notar que se cumple la propiedad de que A/\sim es una partición de A.

Por lo tanto, $|A/\sim|=|\{A\}|=1=n$, y se cumple que existe una relación de equivalencia $\sim\subseteq A\times A$ tal que $|A/\sim|=n$, con $n\in\mathbb{N}\setminus\{0\}$.

Parte 2

Sea A un conjunto no vacío, y \mathcal{P} una partición de A, decimos que \mathcal{P} es una partición finita numerable, si se cumple que \mathcal{P} es un conjunto numerable, y $\forall S \in \mathcal{P}$. S es un conjunto finito.

Queremos demostrar que A es numerable si, y sólo sí, existe una partición finita numerable de A.

Supongamos que A es un conjunto no vacío numerable. Queremos demostrar que existe una partición \mathcal{P} tal que esta sea partición finita numerable de A.

Dado que A es numerable, es posible formar una partición \mathcal{P} tal que $\forall S \in \mathcal{P}$. S es finito. Ahora, debemos demostrar que esta partición \mathcal{P} es también numerable.

Dado que por definición de partición, tenemos que $\bigcup \mathcal{P} = A$. Sea $\mathcal{P} = \{S_1, S_2, S_3, ...\}$, equivalentemente la expresión anterior se puede escribir como:

$$S_1 \cup S_2 \cup S_3 \cup \ldots = A$$

De esta manera, los elementos de \mathcal{P} se pueden ordenar en una secuencia:

$$S_1, S_2, S_3, \dots$$

Por lo tanto, se puede concluir que la partición \mathcal{P} es numerable, y dado que se cumple que $\forall S \in \mathcal{P}$. S es finito, \mathcal{P} corresponde a una partición finita numerable de A (es decir, existe una partición finita numerable para cualquier conjunto A numerable).

Supongamos que \mathcal{P} es una partición finita numerable de un conjunto no vacío A. Queremos demostrar que el conjunto A es numerable.

Dado que \mathcal{P} es una partición finita numerable de A, \mathcal{P} es numerable, y $\forall S \in \mathcal{P}.S$ es un conjunto finito. También, \mathcal{P} es una partición de A, por lo que es posible formar A a partir de la unión de todos los elementos de \mathcal{P} .

Tenemos que $\mathcal{P} = \{S_1, S_2, S_3, ...\}, y$:

$$S_1 \cup S_2 \cup S_3 \cup \ldots = A$$

Dado que cada uno de estos conjuntos S_i , con $i \ge 1$, es finito, estos conjuntos también son numerables. Sea $a_{i,j}$ el j-ésimo elemento del conjunto S_i , con $1 \le j \le |S_i|$, los elementos pueden ser ordenados de la siguiente manera:

$$a_{1,1}, a_{1,2}, \ \dots, \ a_{1,|S_1|}, a_{2,1}, a_{2,2}, \ \dots, \ a_{2,|S_2|}, a_{3,1} \ \dots$$

Lo que implica que la unión de los elementos de \mathcal{P} es numerable (Notar que $\forall i \geq 1$. $|S_i| \in \mathbb{N}$).

Dado que la unión de los elementos de la partición \mathcal{P} es numerable, y esta corresponde a A, el conjunto A también es numerable.