Cours de Convergence, Intégration, Probabilités

Transformée de Fourier et fonctions caractéristiques. Vecteurs aléatoires gaussiens

Séance 9 - Transformée de Fourier Fonctions caractéristiques de variables aléatoires

CentraleSupélec - Cursus ingénieur

22 octobre 2019

Amphis CIP 6, 7, 8 et 9

Hervé MOUTARDE
 Institut de recherche sur les lois fondamentales de l'univers (IRFU), CEA, Université Paris-Saclay
 Orme des Merisiers, Bât. 703
 herve.moutarde@cea.fr

Des questions?

• daskit.com/cip19-20 puis section "Amphi 9".

Support

- Support amphi 9 en version vierge disponible dès à présent sur edunao.
- Support amphi 9 en version annotée disponible ultérieurement.

Quelques éléments des CM et TD précédents

- Changement de variables (th. VII.2.3).
- Ordre d'intégration dans les intégrales multiples et fonctions sommables (th. VII.2.4 et th. VII.2.5).
- Produit de convolution sur L^1 (th.VIII.1.1) et L^2 (prop. VIII.1.2).
- Suite régularisante (def. VIII.1.3, prop. VIII.1.4).
- Indépendance de variables aléatoires (def. VIII.3.2, th.VIII.3.3).
- Fonction caractéristique (def. VII.2.6).
- Indépendance de variables aléatoires : expression en termes de fonctions caractéristiques (VII.2.7).
- Lemme de Riemann-Lebesgue (TD Ex. VII.3).

Programme

- $lue{1}$ Transformation de Fourier dans L^1
 - Définition dans L¹
 - Inversion de la transformation de Fourier dans L^1
- 2 Transformation de Fourier dans L^2
 - Espace de Schwartz
 - Définition dans L²
- Fonctions caractéristiques
 - Définition et propriétés
 - Fonctions caractéristiques et indépendance
 - Fonctions caractéristiques et moments

Objectifs de la séance

- Je connais la définition et les propriétés de la transformée de Fourier d'une fonction intégrable.
- Je connais la transformée de Fourier d'une gaussienne.
- Je comprends la construction de la transformation de Fourier dans L² et je connais la formule d'inversion.
- Je sais exprimer le fait que la transformation de Fourier dans L^2 est une **isométrie** (Parseval).
- Je connais le lien entre transformée de Fourier et dérivation, ainsi qu'entre transformée de Fourier et convolution.
- Je suis capable de déterminer la fonction caractéristique d'une variable aléatoire.

Rappel: Convergence dans L^1 , convergence dans L^2

Convergence dans L^1 : Pour $(\varphi_n)_{n\in\mathbb{N}}$ et f dans $L^1(\mathbb{R},\mu)$, on dit que $(\varphi_n)_{n\in\mathbb{N}}$ converge vers f dans L^1 si

$$\int_{\mathbb{R}} |\varphi_n(x) - f(x)| \ \mu(dx) \longrightarrow 0 \quad \text{lorsque } n \to \infty.$$

Rappel: Convergence dans L^1 , convergence dans L^2

Convergence dans L^1 : Pour $(\varphi_n)_{n\in\mathbb{N}}$ et f dans $L^1(\mathbb{R},\mu)$, on dit que $(\varphi_n)_{n\in\mathbb{N}}$ converge vers f dans L^1 si

$$\int_{\mathbb{R}} |\varphi_n(x) - f(x)| \ \mu(dx) \longrightarrow 0 \quad \text{lorsque } n \to \infty.$$

Convergence dans L^2 : Pour $(\varphi_n)_{n\in\mathbb{N}}$ et f dans $L^2(\mathbb{R},\mu)$, on dit que $(\varphi_n)_{n\in\mathbb{N}}$ converge vers f dans L^2 si

$$\int_{\mathbb{R}} |\varphi_n(x) - f(x)|^2 \ \mu(dx) \longrightarrow 0 \quad \text{lorsque } n \to \infty.$$

La convergence dans L^1 ou L^2 de $(\varphi_n)_{n\in\mathbb{N}}$ n'est **pas équivalente** à la convergence simple !!!

Rappel: Convergence dans L^1 , convergence dans L^2

Convergence dans L^1 : Pour $(\varphi_n)_{n\in\mathbb{N}}$ et f dans $L^1(\mathbb{R},\mu)$, on dit que $(\varphi_n)_{n\in\mathbb{N}}$ converge vers f dans L^1 si

$$\int_{\mathbb{R}} |\varphi_n(x) - f(x)| \ \mu(dx) \longrightarrow 0 \quad \text{lorsque } n \to \infty.$$

Convergence dans L^2 : Pour $(\varphi_n)_{n\in\mathbb{N}}$ et f dans $L^2(\mathbb{R},\mu)$, on dit que $(\varphi_n)_{n\in\mathbb{N}}$ converge vers f dans L^2 si

$$\int_{\mathbb{R}} |\varphi_n(x) - f(x)|^2 \ \mu(dx) \longrightarrow 0 \quad \text{lorsque } n \to \infty.$$

La convergence dans L^1 ou L^2 de $(\varphi_n)_{n\in\mathbb{N}}$ n'est **pas équivalente** à la convergence simple !!!

(Admis)

Soient $p \ge 1$ et $(f_n)_{n \in \mathbb{N}}$ une suite convergeant vers f dans L^p . Il existe alors une sous-suite (f_{k_n}) qui converge p.p. vers f.

Rappel (CM2) : Séries de Fourier dans L^2

Soit $\mathcal{H}=L^2_{\mathbb{C}}\left([0,2\pi],\mathcal{B}([0,2\pi]),\frac{1}{2\pi}\lambda\right)$. On note : $\forall n\in\mathbb{Z},\textit{N}\in\mathbb{N}$,

$$e_n: x \mapsto e^{inx} \in \mathcal{H}, \qquad c_n(f) = \langle f, e_n \rangle = \frac{1}{2\pi} \int_{[0,2\pi]} f(x) e^{-inx} \lambda(dx),$$

$$S_N(f) = \sum_{n=-N}^{N} c_n(f)e_n.$$

Théorème (Parseval)

- $\{e_n\}_{n\in\mathbb{Z}}$ est une base hilbertienne de \mathcal{H} .
- Pour tout $f \in \mathcal{H}$, la série $S_N(f)$ converge et

$$f = \sum_{n \in \mathbb{Z}} c_n(f) e_n = \sum_{n \in \mathbb{Z}} \langle f, e_n \rangle e_n.$$

En particulier,
$$\lim_{N\to+\infty}\int_{[0,2\pi]}|f(x)-S_N(f)(x)|^2\lambda(dx)=0.$$

Première définition : cas de $L^1(\mathbb{R})$

Définition IX.1.1

La transformée de Fourier d'une fonction $f: \mathbb{R} \to \mathbb{C}$ dans $L^1(\mathbb{R}, \lambda)$ est la fonction $\mathcal{F} f: \mathbb{R} \to \mathbb{C}$ définie par :

$$\forall y \in \mathbb{R}, \quad \mathcal{F} f(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-ixy} \lambda(dx).$$

Première définition : cas de $L^1(\mathbb{R})$

Définition IX.1.1

La transformée de Fourier d'une fonction $f: \mathbb{R} \to \mathbb{C}$ dans $L^1(\mathbb{R}, \lambda)$ est la fonction $\mathcal{F} f: \mathbb{R} \to \mathbb{C}$ définie par :

$$\forall y \in \mathbb{R}, \quad \mathcal{F} f(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-ixy} \lambda(dx).$$

• Il existe d'autres définitions basées sur des expressions proches (sans $1/\sqrt{2\pi}$, $e^{-2\pi i x y}$, dans \mathbb{R}^N , ...).

Par exemple,
$$\hat{f}(y) = \int_{\mathbb{R}} f(x) e^{-2\pi i x y} \lambda(dx)$$
.

• Vérifier les conventions dans chaque discipline!

Proposition IX.1.2

La transformée de Fourier $\mathcal{F}f$ d'une fonction $f \in L^1(\mathbb{R})$ est continue et bornée sur \mathbb{R} , $\|\mathcal{F}f\|_{\infty} \leq \frac{1}{\sqrt{2\pi}} \|f\|_1$. De plus, $\mathcal{F}f$ tend vers 0 en $\pm \infty$.

Proposition IX.1.2

La transformée de Fourier $\mathcal{F}f$ d'une fonction $f \in L^1(\mathbb{R})$ est continue et bornée sur \mathbb{R} , $\|\mathcal{F}f\|_{\infty} \leq \frac{1}{\sqrt{2\pi}} \|f\|_1$. De plus, $\mathcal{F}f$ tend vers 0 en $\pm \infty$.

Preuve : Existence : $\forall x, y \mid f(x) e^{-ixy} = |f(x)| \text{ et } f \in L^1(\mathbb{R}, \lambda).$

Proposition IX.1.2

La transformée de Fourier $\mathcal{F}f$ d'une fonction $f \in L^1(\mathbb{R})$ est continue et bornée sur \mathbb{R} , $\|\mathcal{F}f\|_{\infty} \leq \frac{1}{\sqrt{2\pi}} \|f\|_1$. De plus, $\mathcal{F}f$ tend vers 0 en $\pm \infty$.

Preuve : Existence : $\forall x, y \mid |f(x)| = |f(x)| = |f(x)| = |f(x)|$

- Continuité : $\mathcal{F} f(y) \to \mathcal{F} f(y_0)$, lorsque $y \to y_0$ car :
 - On domine $|f(x)|e^{-ixy}|$ par |f(x)|, qui est intégrable.
 - On a f(x) $e^{-ixy} o f(x)$ e^{-ixy_0} , lorsque $y o y_0$.

Proposition IX.1.2

La transformée de Fourier $\mathcal{F}f$ d'une fonction $f \in L^1(\mathbb{R})$ est continue et bornée sur \mathbb{R} , $\|\mathcal{F}f\|_{\infty} \leq \frac{1}{\sqrt{2\pi}} \|f\|_1$. De plus, $\mathcal{F}f$ tend vers 0 en $\pm \infty$.

Preuve : Existence : $\forall x, y \mid f(x) e^{-ixy} = |f(x)| \text{ et } f \in L^1(\mathbb{R}, \lambda).$

Continuité : $\mathcal{F} f(y) \to \mathcal{F} f(y_0)$, lorsque $y \to y_0$ car :

- On domine $|f(x)|e^{-ixy}|$ par |f(x)|, qui est intégrable.
- On a f(x) $e^{-ixy} o f(x)$ e^{-ixy_0} , lorsque $y o y_0$.

Borne : $\|\mathcal{F}f(y)\|_{\infty} \leq \frac{1}{\sqrt{2\pi}}\|f\|_1$ car :

$$\left| \int_{\mathbb{R}} f(x) e^{-ixy} \lambda(dx) \right| \leq \int_{\mathbb{R}} |f(x)| e^{-ixy} |\lambda(dx)| \leq \int_{\mathbb{R}} |f(x)| |\lambda(dx)| = ||f||_1.$$

Proposition IX.1.2

La transformée de Fourier $\mathcal{F}f$ d'une fonction $f \in L^1(\mathbb{R})$ est continue et bornée sur \mathbb{R} , $\|\mathcal{F}f\|_{\infty} \leq \frac{1}{\sqrt{2\pi}} \|f\|_1$. De plus, $\mathcal{F}f$ tend vers 0 en $\pm \infty$.

Preuve : Existence : $\forall x, y \mid f(x) e^{-ixy} = |f(x)| \text{ et } f \in L^1(\mathbb{R}, \lambda).$

Continuité : $\mathcal{F} f(y) \to \mathcal{F} f(y_0)$, lorsque $y \to y_0$ car :

- On domine $|f(x)|e^{-ixy}|$ par |f(x)|, qui est intégrable.
- On a f(x) $e^{-ixy} o f(x)$ e^{-ixy_0} , lorsque $y o y_0$.

Borne : $\|\mathcal{F}f(y)\|_{\infty} \leq \frac{1}{\sqrt{2\pi}}\|f\|_1$ car :

$$\left| \int_{\mathbb{R}} f(x) e^{-ixy} \lambda(dx) \right| \leq \int_{\mathbb{R}} |f(x)| e^{-ixy} |\lambda(dx)| \leq \int_{\mathbb{R}} |f(x)| \lambda(dx) = ||f||_1.$$

Limites: Voir lemme de Riemann-Lebesgue.

Pour $f, g \in L^1(\mathbb{R})$ et $\alpha, \beta \in \mathbb{C}$,

(i)
$$\mathcal{F}(\alpha f + \beta g) = \alpha \mathcal{F} f + \beta \mathcal{F} g$$

(ii) Si
$$\alpha \neq 0$$
, pour tout $y \in \mathbb{R}$, $\mathcal{F}(x \mapsto f(\alpha x))(y) = \frac{1}{|\alpha|} \mathcal{F}f(\frac{y}{\alpha})$.

(iii) Pour tout
$$y \in \mathbb{R}$$
, $\mathcal{F}(x \mapsto f(x - x_0)) = e^{-ix_0y} \mathcal{F} f(y)$.

(iv)
$$\mathcal{F}(f*g) = \sqrt{2\pi} \ \mathcal{F}f.\mathcal{F}g.$$

Pour $f, g \in L^1(\mathbb{R})$ et $\alpha, \beta \in \mathbb{C}$,

- (i) $\mathcal{F}(\alpha f + \beta g) = \alpha \mathcal{F} f + \beta \mathcal{F} g$
- (ii) Si $\alpha \neq 0$, pour tout $y \in \mathbb{R}$, $\mathcal{F}(x \mapsto f(\alpha x))(y) = \frac{1}{|\alpha|} \mathcal{F}f(\frac{y}{\alpha})$.
- (iii) Pour tout $y \in \mathbb{R}$, $\mathcal{F}(x \mapsto f(x x_0)) = e^{-ix_0y} \mathcal{F} f(y)$.
- (iv) $\mathcal{F}(f*g) = \sqrt{2\pi} \ \mathcal{F}f.\mathcal{F}g.$

Preuve:

- (i) Linéarité de l'intégrale.
- (ii) Changement de variable : $u = \alpha x$.
- (iii) Changement de variable : $v = x x_0$.

Preuve:

(iv) Pour $f,g \in L^1$, f*g est bien défini et $f*g \in L^1$:

$$\forall x \in \mathbb{R}, \quad f * g(x) = \int_{\mathbb{R}} f(x - u)g(u) \ \lambda(du)$$

Preuve:

(iv) Pour $f, g \in L^1$, f * g est bien défini et $f * g \in L^1$:

$$\forall x \in \mathbb{R}, \quad f * g(x) = \int_{\mathbb{R}} f(x - u)g(u) \ \lambda(du)$$

On a donc
$$\mathcal{F}(f*g)(y) = \frac{1}{\sqrt{2\pi}} \int_R f*g(x) e^{-ixy} \lambda(dx).$$

$$\int_{\mathbb{R}} f * g(x) e^{-ixy} \lambda(dx) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x - u)g(u) e^{-ixy} \lambda(du) \lambda(dx)$$
$$= \int_{\mathbb{R}^2} f(x - u)g(u) e^{-ixy} \lambda^{(2)}(du, dx).$$

Preuve:

(iv) Pour $f, g \in L^1$, f * g est bien défini et $f * g \in L^1$:

$$\forall x \in \mathbb{R}, \quad f * g(x) = \int_{\mathbb{R}} f(x - u)g(u) \ \lambda(du)$$

On a donc
$$\mathcal{F}(f*g)(y) = \frac{1}{\sqrt{2\pi}} \int_R f*g(x) e^{-ixy} \lambda(dx).$$

$$\int_{\mathbb{R}} f * g(x) e^{-ixy} \lambda(dx) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x - u)g(u) e^{-ixy} \lambda(du) \lambda(dx)$$
$$= \int_{\mathbb{R}^2} f(x - u)g(u) e^{-ixy} \lambda^{(2)}(du, dx).$$

On réalise le chgt de variables $(u, x) \mapsto (x, z = x - u)$ de jacobien 1.

Preuve:

(iv) Pour $f, g \in L^1$, f * g est bien défini et $f * g \in L^1$:

$$\forall x \in \mathbb{R}, \quad f * g(x) = \int_{\mathbb{R}} f(x - u)g(u) \ \lambda(du)$$

On a donc
$$\mathcal{F}(f*g)(y) = \frac{1}{\sqrt{2\pi}} \int_R f*g(x) e^{-ixy} \lambda(dx).$$

$$\int_{\mathbb{R}} f * g(x) e^{-ixy} \lambda(dx) = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x - u)g(u) e^{-ixy} \lambda(du) \lambda(dx)$$
$$= \int_{\mathbb{R}^2} f(x - u)g(u) e^{-ixy} \lambda^{(2)}(du, dx).$$

On réalise le chgt de variables $(u, x) \mapsto (x, z = x - u)$ de jacobien 1.

$$\int_{\mathbb{R}} f * g(x) e^{-ixy} \lambda(dx) = \int_{\mathbb{R}^2} f(z)g(u) e^{-i(z+u)y} \lambda^{(2)}(du, dz)$$
$$= \left(\int_{\mathbb{R}^2} f(z) e^{-izy} \lambda(dz)\right) \left(\int_{\mathbb{R}^2} g(u) e^{-iuy} \lambda(du)\right) du$$

Proposition IX.1.4

Si les fonctions f et $x \mapsto xf(x)$ sont dans $L^1(\mathbb{R})$, alors $\mathcal{F}f \in C^1(\mathbb{R})$ et $(\mathcal{F}f)' = \mathcal{F}(x \mapsto -ix f(x))$.

Proposition IX.1.4

Si les fonctions f et $x \mapsto xf(x)$ sont dans $L^1(\mathbb{R})$, alors $\mathcal{F}f \in C^1(\mathbb{R})$ et $(\mathcal{F}f)' = \mathcal{F}(x \mapsto -ix f(x))$.

Preuve:

• Pour tout $y \in \mathbb{R}$, l'application $x \mapsto f(x) e^{-ixy}$ est dans L^1 ,

Proposition IX.1.4

Si les fonctions f et $x \mapsto xf(x)$ sont dans $L^1(\mathbb{R})$, alors $\mathcal{F}f \in C^1(\mathbb{R})$ et $(\mathcal{F}f)' = \mathcal{F}(x \mapsto -ix f(x))$.

Preuve:

- Pour tout $y \in \mathbb{R}$, l'application $x \mapsto f(x) e^{-ixy}$ est dans L^1 ,
- Pour tout $x \in \mathbb{R}$, $y \mapsto f(x) e^{-ixy}$ est dérivable

Proposition IX.1.4

Si les fonctions f et $x \mapsto xf(x)$ sont dans $L^1(\mathbb{R})$, alors $\mathcal{F}f \in C^1(\mathbb{R})$ et $(\mathcal{F}f)' = \mathcal{F}(x \mapsto -ix f(x))$.

Preuve:

- Pour tout $y \in \mathbb{R}$, l'application $x \mapsto f(x) e^{-ixy}$ est dans L^1 ,
- Pour tout $x \in \mathbb{R}$, $y \mapsto f(x) e^{-ixy}$ est dérivable
- et pour tout $x \in \mathbb{R}$, sa dérivée est majorée par |xf(x)|, où $x \mapsto |xf(x)|$ est intégrable.

Proposition IX.1.4

Si les fonctions f et $x \mapsto xf(x)$ sont dans $L^1(\mathbb{R})$, alors $\mathcal{F}f \in C^1(\mathbb{R})$ et $(\mathcal{F}f)' = \mathcal{F}(x \mapsto -ix \ f(x))$.

Preuve:

- Pour tout $y \in \mathbb{R}$, l'application $x \mapsto f(x) e^{-ixy}$ est dans L^1 ,
- Pour tout $x \in \mathbb{R}$, $y \mapsto f(x) e^{-ixy}$ est dérivable
- et pour tout $x \in \mathbb{R}$, sa dérivée est majorée par |xf(x)|, où $x \mapsto |xf(x)|$ est intégrable.

Les conditions du Théorème de dérivabilité des intégrales à paramètres sont vérifées. \Box

Si
$$f \in L^1(\mathbb{R})$$
, $f \in C^1(\mathbb{R})$ et $f \in L^1(\mathbb{R})$, alors pour tout $y \in \mathbb{R}$, $\mathcal{F}(f)(y) = iy \mathcal{F}f(y)$.

Si
$$f \in L^1(\mathbb{R})$$
, $f \in C^1(\mathbb{R})$ et $f \in L^1(\mathbb{R})$, alors pour tout $y \in \mathbb{R}$, $\mathcal{F}(f)(y) = iy \mathcal{F}f(y)$.

Preuve: $\mathcal{F}f$ est bien définie puisque $f \in L^1$.

Si $f \in L^1(\mathbb{R})$, $f \in C^1(\mathbb{R})$ et $f \in L^1(\mathbb{R})$, alors pour tout $y \in \mathbb{R}$, $\mathcal{F}(f)(y) = iy \mathcal{F}f(y)$.

Preuve: $\mathcal{F}f$ est bien définie puisque $f \in L^1$. Pour tout A > 0,

$$\frac{1}{\sqrt{2\pi}} \int_{[-A,A]} f'(x) e^{-ixy} \lambda(dx) = \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} f'(x) e^{-ixy} dx
= \frac{1}{\sqrt{2\pi}} \left[f(x) e^{-ixy} \right]_{-A}^{A} + \frac{iy}{\sqrt{2\pi}} \int_{-A}^{A} f(x) e^{-ixy} dx$$

Si $f \in L^1(\mathbb{R})$, $f \in C^1(\mathbb{R})$ et $f \in L^1(\mathbb{R})$, alors pour tout $y \in \mathbb{R}$, $\mathcal{F}(f)(y) = iy \mathcal{F}f(y)$.

Preuve: $\mathcal{F}f$ est bien définie puisque $f \in L^1$. Pour tout A > 0,

$$\begin{split} \frac{1}{\sqrt{2\pi}} \int_{[-A,A]} f'(x) \ e^{-ixy} \ \lambda(dx) &= \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} f'(x) e^{-ixy} dx \\ &= \frac{1}{\sqrt{2\pi}} \left[f(x) e^{-ixy} \right]_{-A}^{A} + \frac{iy}{\sqrt{2\pi}} \int_{-A}^{A} f(x) e^{-ixy} dx \end{split}$$

Comme
$$f(x) = f(0) + \int_0^x f'(u) du$$
,

Si $f \in L^1(\mathbb{R})$, $f \in C^1(\mathbb{R})$ et $f \in L^1(\mathbb{R})$, alors pour tout $y \in \mathbb{R}$, $\mathcal{F}(f)(y) = iy \mathcal{F}f(y)$.

Preuve: $\mathcal{F}f$ est bien définie puisque $f \in L^1$. Pour tout A > 0,

$$\begin{split} \frac{1}{\sqrt{2\pi}} \int_{[-A,A]} f'(x) \ e^{-ixy} \ \lambda(dx) &= \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} f'(x) e^{-ixy} dx \\ &= \frac{1}{\sqrt{2\pi}} \left[f(x) e^{-ixy} \right]_{-A}^{A} + \frac{iy}{\sqrt{2\pi}} \int_{-A}^{A} f(x) e^{-ixy} dx \end{split}$$

Comme $f(x)=f(0)+\int_0^x f'(u)du$, l'intégrabilité de f' montre que f admet des limites lorsque $A\to\pm\infty$.

Si $f \in L^1(\mathbb{R})$, $f \in C^1(\mathbb{R})$ et $f \in L^1(\mathbb{R})$, alors pour tout $y \in \mathbb{R}$, $\mathcal{F}(f)(y) = iy \mathcal{F}f(y)$.

Preuve: $\mathcal{F}f$ est bien définie puisque $f \in L^1$. Pour tout A > 0,

$$\frac{1}{\sqrt{2\pi}} \int_{[-A,A]} f'(x) e^{-ixy} \lambda(dx) = \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} f'(x) e^{-ixy} dx
= \frac{1}{\sqrt{2\pi}} \left[f(x) e^{-ixy} \right]_{-A}^{A} + \frac{iy}{\sqrt{2\pi}} \int_{-A}^{A} f(x) e^{-ixy} dx$$

Comme $f(x) = f(0) + \int_0^x f'(u)du$, l'intégrabilité de f' montre que f admet des limites lorsque $A \to \pm \infty$. Ces limites sont nécessairement nulles (sinon $f \notin L^1$). On fait donc tendre A vers $+\infty$:

$$\mathcal{F}f'(y) = \frac{iy}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-ixy} \lambda(dx). \quad \Box$$

Résolution des EDP linéaires à coefficients constants

Dérivée d'une transformée de Fourier

Si les fonctions f et $x \mapsto xf(x)$ sont dans $L^1(\mathbb{R})$, alors $\mathcal{F}f \in C^1(\mathbb{R})$ et $(\mathcal{F}f)' = \mathcal{F}(x \mapsto -ix \ f(x))$.

Transformée de Fourier d'une dérivée

Si $f \in L^1(\mathbb{R})$, $f \in C^1(\mathbb{R})$ et $f \in L^1(\mathbb{R})$, alors pour tout $y \in \mathbb{R}$, $\mathcal{F}(f)(y) = iy \mathcal{F}f(y)$.

- On a transformé un problème différentiel en problème algébrique!
- Généralisation facile aux fonctions de plusieurs variables.
- Résoudre une EDP revient essentiellement à calculer la transformée de Fourier inverse d'une fraction rationnelle!

Inversion de la transformation de Fourier

On définit pour $F \in L^1(\mathbb{R})$,

$$\forall x \in \mathbb{R}, \quad \overline{\mathcal{F}}F(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} F(y) \ e^{+ixy} \ \lambda(dy).$$

Théorème IX.1.6 (d'inversion de Fourier)

Soit $f \in L^1(\mathbb{R})$ telle que $\mathcal{F} f \in L^1(\mathbb{R})$.

Alors, on a presque partout sur \mathbb{R} ,

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}} \mathcal{F} f(x).$$

Soit $f \in L^1(\mathbb{R})$ telle que $\mathcal{F}f \in L^1(\mathbb{R})$. Alors, on a presque partout sur \mathbb{R} .

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F}f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}}\mathcal{F}f(x).$$

Preuve : Pour $x \in \mathbb{R}$, on a

$$\overline{\mathcal{F}}\mathcal{F}f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{+ixy} \left(\int_{R} f(u) e^{-iuy} \lambda(du) \right) \lambda(dy),$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F}f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}}\mathcal{F}f(x).$$

Preuve : Pour $x \in \mathbb{R}$, on a

$$\overline{\mathcal{F}}\mathcal{F}f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{+ixy} \left(\int_{R} f(u) e^{-iuy} \lambda(du) \right) \lambda(dy),$$

mais on ne peut pas appliquer le Théorème de Fubini car la fonction n'est pas dans $\mathcal{L}^1(\mathbb{R} \times \mathbb{R})$.

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F}f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}}\mathcal{F}f(x).$$

Preuve : Pour $x \in \mathbb{R}$, on a

$$\overline{\mathcal{F}}\mathcal{F}f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{+ixy} \left(\int_{R} f(u) e^{-iuy} \lambda(du) \right) \lambda(dy),$$

mais on ne peut pas appliquer le Théorème de Fubini car la fonction n'est pas dans $\mathcal{L}^1(\mathbb{R}\times\mathbb{R})$.

Stratégie : multiplication par $e^{-\epsilon^2 y^2/2}$, qui tend vers 1 lorsque $\epsilon \to 0$.

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F}f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}}\mathcal{F}f(x).$$

Preuve : Pour $x \in \mathbb{R}$, on a

$$\overline{\mathcal{F}}\mathcal{F}f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{+ixy} \left(\int_{R} f(u) e^{-iuy} \lambda(du) \right) \lambda(dy),$$

mais on ne peut pas appliquer le Théorème de Fubini car la fonction n'est pas dans $\mathcal{L}^1(\mathbb{R} \times \mathbb{R})$.

Stratégie : multiplication par $e^{-\epsilon^2 y^2/2}$, qui tend vers 1 lorsque $\epsilon \to 0$. On considère alors

$$I_{\epsilon}(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} f(u)e^{i(x-u)y}e^{-\epsilon^2 y^2/2}\lambda^{(2)}(du, dy).$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F}f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}}\mathcal{F}f(x).$$

Preuve : [1ère étape] En intégrant, dans l'expression $I_{\epsilon}(x)$, d'abord par rapport à u, on obtient

$$I_{\epsilon}(\mathbf{x}) = rac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} \mathit{f}(\mathbf{y}) e^{i\mathbf{x}\mathbf{y}} e^{-\epsilon^2 \mathbf{y}^2/2} \lambda(d\mathbf{y}).$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F}f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}}\mathcal{F}f(x).$$

Preuve : [1ère étape] En intégrant, dans l'expression $I_{\epsilon}(x)$, d'abord par rapport à u, on obtient

$$I_{\epsilon}(x) = rac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} \mathit{f}(y) e^{ixy} e^{-\epsilon^2 y^2/2} \lambda(\mathit{d}y).$$

Par convergence dominée, $I_{\epsilon}(x) \to \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} f(y) e^{ixy} \lambda(dy)$, lorsque $\epsilon \to 0$.

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} f(y) \ e^{+ixy} \ \lambda(dy) = \overline{\mathcal{F}} \mathcal{F} f(x).$$

Preuve : [2ème étape] En intégrant, dans l'expression $I_{\epsilon}(x)$, d'abord par rapport à y, on obtient

$$\begin{split} I_{\epsilon}(\mathbf{x}) &= \frac{1}{2\pi} \int_{\mathbb{R}} \mathbf{f}(\mathbf{u}) \int_{\mathbb{R}} \mathbf{e}^{\mathbf{i}(\mathbf{x} - \mathbf{u})\mathbf{y}} \mathbf{e}^{-\epsilon^2 \mathbf{y}^2/2} \lambda(\mathbf{d}\mathbf{y}) \ \lambda(\mathbf{d}\mathbf{u}) \\ &= \frac{1}{2\pi\epsilon} \int_{\mathbb{R}} \mathbf{f}(\mathbf{u}) \int_{\mathbb{R}} \mathbf{e}^{\mathbf{i}(\mathbf{x} - \mathbf{u})\mathbf{y}} \mathbf{e}^{-\epsilon^2 \mathbf{y}^2/2} \ \epsilon \lambda(\mathbf{d}\mathbf{y}) \ \lambda(\mathbf{d}\mathbf{u}) \\ &= \frac{1}{2\pi\epsilon} \int_{\mathbb{R}} \mathbf{f}(\mathbf{u}) \int_{\mathbb{R}} \mathbf{e}^{\mathbf{i}(\mathbf{x} - \mathbf{u})\mathbf{v}/\epsilon} \mathbf{e}^{-\mathbf{v}^2/2} \ \lambda(\mathbf{d}\mathbf{v}) \ \lambda(\mathbf{d}\mathbf{u}). \end{split}$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F}f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}}\mathcal{F}f(x).$$

Preuve : [2ème étape] En intégrant, dans l'expression $I_{\epsilon}(x)$, d'abord par rapport à y, on obtient

$$\begin{split} I_{\epsilon}(x) &= \frac{1}{2\pi} \int_{\mathbb{R}} f(u) \int_{\mathbb{R}} e^{i(x-u)y} e^{-\epsilon^2 y^2/2} \lambda(dy) \ \lambda(du) \\ &= \frac{1}{2\pi\epsilon} \int_{\mathbb{R}} f(u) \int_{\mathbb{R}} e^{i(x-u)y} e^{-\epsilon^2 y^2/2} \ \epsilon \lambda(dy) \ \lambda(du) \\ &= \frac{1}{2\pi\epsilon} \int_{\mathbb{R}} f(u) \int_{\mathbb{R}} e^{i(x-u)v/\epsilon} e^{-v^2/2} \ \lambda(dv) \ \lambda(du). \end{split}$$

Or

$$\begin{split} \int_{\mathbb{R}} e^{i(x-u)v/\epsilon} e^{-v^2/2} \ \lambda(dv) &= \sqrt{2\pi} \ \mathcal{F}(v \mapsto e^{-v^2/2}) \left(\frac{x-u}{-\epsilon}\right) \\ &= \sqrt{2\pi} \ e^{-(x-u)^2/(2\epsilon^2)}. \end{split}$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}} \mathcal{F} f(x).$$

Preuve: [2ème étape]

On trouve donc

$$I_{\epsilon}(x) = \frac{1}{\sqrt{2\pi\epsilon}} \int_{\mathbb{R}} f(u) e^{-(x-u)^2/(2\epsilon^2)} \lambda(du).$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}} \mathcal{F} f(x).$$

Preuve: [2ème étape]

On trouve donc

$$I_{\epsilon}(x) = \frac{1}{\sqrt{2\pi}\epsilon} \int_{\mathbb{R}} f(u) e^{-(x-u)^2/(2\epsilon^2)} \lambda(du).$$

On pose alors
$$\rho(\mathbf{z}) = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\mathbf{z}^2/2}$$
 et $\rho_{\epsilon}(\mathbf{z}) = \frac{1}{\epsilon} \rho(\frac{\mathbf{z}}{\epsilon})$.

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}} \mathcal{F} f(x).$$

Preuve: [2ème étape]

On trouve donc

$$I_{\epsilon}(x) = \frac{1}{\sqrt{2\pi}\epsilon} \int_{\mathbb{R}} f(u) e^{-(x-u)^2/(2\epsilon^2)} \lambda(du).$$

On pose alors
$$\rho(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$
 et $\rho_{\epsilon}(z) = \frac{1}{\epsilon} \rho(\frac{z}{\epsilon})$.

On remarque que $(\rho_{\epsilon})_{\epsilon>0}$ est une approximation de la mesure de Dirac

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}} \mathcal{F} f(x).$$

Preuve: [2ème étape]

On trouve donc

$$I_{\epsilon}(x) = \frac{1}{\sqrt{2\pi}\epsilon} \int_{\mathbb{R}} f(u) e^{-(x-u)^2/(2\epsilon^2)} \lambda(du).$$

On pose alors $\rho(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$ et $\rho_{\epsilon}(z) = \frac{1}{\epsilon} \rho(\frac{z}{\epsilon})$.

On remarque que $(\rho_{\epsilon})_{\epsilon>0}$ est une approximation de la mesure de Dirac et $I_{\epsilon}(x)=\rho_{\epsilon}*f(x)$.

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}} \mathcal{F} f(x).$$

Preuve : [2ème étape]

On trouve donc

$$I_{\epsilon}(x) = \frac{1}{\sqrt{2\pi}\epsilon} \int_{\mathbb{R}} f(u) e^{-(x-u)^2/(2\epsilon^2)} \lambda(du).$$

On pose alors $\rho(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$ et $\rho_{\epsilon}(z) = \frac{1}{\epsilon} \rho(\frac{z}{\epsilon})$.

On remarque que $(\rho_{\epsilon})_{\epsilon>0}$ est une approximation de la mesure de Dirac et $I_{\epsilon}(x)=\rho_{\epsilon}*f(x)$.

On a alors $I_{\epsilon}(x) \to f(x)$ dans L^1 , lorsque $\epsilon \to 0$.

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathcal{F} f(y) e^{+ixy} \lambda(dy) = \overline{\mathcal{F}} \mathcal{F} f(x).$$

Preuve: [2ème étape]

On trouve donc

$$I_{\epsilon}(x) = \frac{1}{\sqrt{2\pi}\epsilon} \int_{\mathbb{R}} f(u) e^{-(x-u)^2/(2\epsilon^2)} \lambda(du).$$

On pose alors $\rho(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$ et $\rho_{\epsilon}(z) = \frac{1}{\epsilon} \rho(\frac{z}{\epsilon})$.

On remarque que $(\rho_{\epsilon})_{\epsilon>0}$ est une approximation de la mesure de Dirac et $I_{\epsilon}(x) = \rho_{\epsilon} * f(x)$.

On a alors $I_{\epsilon}(x) \to f(x)$ dans L^1 , lorsque $\epsilon \to 0$.

Donc il existe une suite $(\epsilon_n)_n$ décroissante telle que $I_{\epsilon_n}(x) \to f(x)$ p.p., lorsque $n \to \infty$. \square

Ondes gravitationnelles : Fourier par la pratique!

- $s(t, \theta)$: réponse instrument à 1 OG (paramètres θ) à la date t,
- n(t): réalisation du bruit de l'instrument à la date t,
- $E(t) = s(t, \theta) + n(t)$: mesure à la date t.

Signal en temps sans bruit

Signal en fréquence sans bruit

Séance 9 - Transformée de Fourier

Signal en temps avec bruit

Signal en fréquence avec bruit

Espace de Schwartz

Introduit par L. Schwartz dans sa théorie des distributions...

Définition IX.2.1

L'espace de Schwartz $\mathcal{S}(\mathbb{R})$ est l'ensemble des fonctions $\varphi \in C^{\infty}(\mathbb{R})$ qui sont à décroissance rapide, c'est-à-dire telles que : $\forall p,q \in \mathbb{N}, \exists M>0: \forall x \in \mathbb{R}, (1+x^2)^p | \varphi^{(q)}(x)| \leq M.$

Espace de Schwartz

Introduit par L. Schwartz dans sa théorie des distributions...

Définition IX.2.1

L'espace de Schwartz $\mathcal{S}(\mathbb{R})$ est l'ensemble des fonctions $\varphi \in C^{\infty}(\mathbb{R})$ qui sont à décroissance rapide, c'est-à-dire telles que : $\forall p,q \in \mathbb{N}, \exists M>0: \forall x \in \mathbb{R}, (1+x^2)^p | \varphi^{(q)}(x)| \leq M.$

On peut écrire cette condition sous la forme :

$$\forall p \in \mathbb{N}, \exists C_p > 0: \sup_{\alpha \leq p, \beta \leq p} \|x^{\alpha} \varphi^{(\beta)}(x)\|_{\infty} \leq C_p.$$

Espace de Schwartz

Introduit par L. Schwartz dans sa théorie des distributions...

Définition IX.2.1

L'espace de Schwartz $\mathcal{S}(\mathbb{R})$ est l'ensemble des fonctions $\varphi \in C^{\infty}(\mathbb{R})$ qui sont à décroissance rapide, c'est-à-dire telles que : $\forall p,q \in \mathbb{N}, \exists M>0: \forall x \in \mathbb{R}, (1+x^2)^p | \varphi^{(q)}(x)| \leq M.$

On peut écrire cette condition sous la forme :

$$\forall p \in \mathbb{N}, \exists C_p > 0: \sup_{\alpha \leq p, \beta \leq p} \|x^{\alpha} \varphi^{(\beta)}(x)\|_{\infty} \leq C_p.$$

Proposition IX.2.2

L'espace $\mathcal{S}(\mathbb{R})$ est stable par dérivation et par multiplication par les polynômes.

Proposition IX.2.3 (Admis)

L'espace $C_c^{\infty}(\mathbb{R})$ est dense dans $\mathcal{S}(\mathbb{R})$.

Proposition IX.2.3 (Admis)

L'espace $C_c^{\infty}(\mathbb{R})$ est dense dans $\mathcal{S}(\mathbb{R})$.

Preuve : Quelle topologie considérer sur $\mathcal{S}(\mathbb{R})$?

Proposition IX.2.3 (Admis)

L'espace $C_c^{\infty}(\mathbb{R})$ est dense dans $\mathcal{S}(\mathbb{R})$.

Preuve : Quelle topologie considérer sur $\mathcal{S}(\mathbb{R})$?

• On a $\mathcal{S}(\mathbb{R}) \subset L^p(\mathbb{R})$ pour tout $p \geq 1$, car : pour $\varphi \in \mathcal{S}(\mathbb{R})$, on a $|\varphi(x)| \leq \frac{M}{1+x^2}$ pour tout $x \in \mathbb{R}$, ce qui implique $\varphi \in L^p(\mathbb{R})$ pour tout $p \geq 1$.

Proposition IX.2.3 (Admis)

L'espace $C_c^{\infty}(\mathbb{R})$ est dense dans $\mathcal{S}(\mathbb{R})$.

Preuve : Quelle topologie considérer sur $\mathcal{S}(\mathbb{R})$?

- On a $\mathcal{S}(\mathbb{R}) \subset L^p(\mathbb{R})$ pour tout $p \geq 1$, car : pour $\varphi \in \mathcal{S}(\mathbb{R})$, on a $|\varphi(x)| \leq \frac{M}{1+x^2}$ pour tout $x \in \mathbb{R}$, ce qui implique $\varphi \in L^p(\mathbb{R})$ pour tout $p \geq 1$.
- La topologie de $\mathcal{S}(\mathbb{R})$ est définie par une famille de *semi-normes* (*i.e.* la semi-norme d'un vecteur non nul peut être nulle) $(\|.\|_{\alpha,\beta})_{\alpha,\beta\in\mathbb{N}}$, où $\|f\|_{\alpha,\beta} := \|x^{\alpha} f^{(\beta)}\|_{\infty}$.

Proposition IX.2.3 (Admis)

L'espace $C_c^{\infty}(\mathbb{R})$ est dense dans $\mathcal{S}(\mathbb{R})$.

Preuve : Quelle topologie considérer sur $\mathcal{S}(\mathbb{R})$?

- On a $\mathcal{S}(\mathbb{R}) \subset L^p(\mathbb{R})$ pour tout $p \geq 1$, car : pour $\varphi \in \mathcal{S}(\mathbb{R})$, on a $|\varphi(x)| \leq \frac{M}{1+x^2}$ pour tout $x \in \mathbb{R}$, ce qui implique $\varphi \in L^p(\mathbb{R})$ pour tout $p \geq 1$.
- La topologie de $\mathcal{S}(\mathbb{R})$ est définie par une famille de *semi-normes* (*i.e.* la semi-norme d'un vecteur non nul peut être nulle) $(\|.\|_{\alpha,\beta})_{\alpha,\beta\in\mathbb{N}}$, où $\|f\|_{\alpha,\beta}:=\|x^{\alpha}f^{(\beta)}\|_{\infty}$.

On définit la convergence d'une suite $(\varphi_n)_{n\in\mathbb{N}}$ dans $\mathcal{S}(\mathbb{R})$ par :

$$\forall p \in \mathbb{N}, \quad \lim_{n \to \infty} N_p(\varphi_n - \varphi) = 0,$$

où
$$N_p(.) = \sum_{\alpha,\beta \leq p} ||.||_{\alpha,\beta}.$$

Corollaire IX.2.4

Pour tout $p \ge 1$, toute fonction de $L^p(\mathbb{R})$ est limite, au sens de la norme L^p , d'une suite de fonctions dans $\mathcal{S}(\mathbb{R})$.

Corollaire IX.2.4

Pour tout $p \ge 1$, toute fonction de $L^p(\mathbb{R})$ est limite, au sens de la norme L^p , d'une suite de fonctions dans $\mathcal{S}(\mathbb{R})$.

Preuve : On a $\mathit{C}_{c}^{\infty}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R})$

Corollaire IX.2.4

Pour tout $p \ge 1$, toute fonction de $L^p(\mathbb{R})$ est limite, au sens de la norme L^p , d'une suite de fonctions dans $\mathcal{S}(\mathbb{R})$.

Preuve : On a $C_c^{\infty}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R})$ et $C_c^{\infty}(\mathbb{R})$ est dense dans $L^p(\mathbb{R})$. \square

Théorème IX.2.5

La transformation de Fourier \mathcal{F} est un isomorphisme de $\mathcal{S}(\mathbb{R})$ sur lui-même, d'inverse $\overline{\mathcal{F}}$.

Théorème IX.2.5

La transformation de Fourier \mathcal{F} est un isomorphisme de $\mathcal{S}(\mathbb{R})$ sur lui-même, d'inverse $\overline{\mathcal{F}}$.

Preuve (stabilité) : Pour tout $\varphi \in \mathcal{S}(\mathbb{R})$, les fonctions φ et $x \mapsto x\varphi(x)$ sont dans L^1 . Donc $\mathcal{F}\varphi \in C^1$ et $(\mathcal{F}\varphi)' = \mathcal{F}(x \mapsto -ix\varphi(x))$.

Théorème IX.2.5

La transformation de Fourier \mathcal{F} est un isomorphisme de $\mathcal{S}(\mathbb{R})$ sur lui-même, d'inverse $\overline{\mathcal{F}}$.

Preuve (stabilité) : Pour tout $\varphi \in \mathcal{S}(\mathbb{R})$, les fonctions φ et $x \mapsto x\varphi(x)$ sont dans L^1 . Donc $\mathcal{F}\varphi \in C^1$ et $(\mathcal{F}\varphi)' = \mathcal{F}(x \mapsto -ix\varphi(x))$. Par récurrence, on en déduit : $\forall \beta \geq 1$, $(\mathcal{F}\varphi)^{(\beta)} = (-i)^{\beta}\mathcal{F}(x \mapsto x^{\beta}\varphi(x))$.

Théorème IX.2.5

La transformation de Fourier \mathcal{F} est un isomorphisme de $\mathcal{S}(\mathbb{R})$ sur lui-même, d'inverse $\overline{\mathcal{F}}$.

Preuve (stabilité) : Pour tout $\varphi \in \mathcal{S}(\mathbb{R})$, les fonctions φ et $x \mapsto x\varphi(x)$ sont dans L^1 . Donc $\mathcal{F}\varphi \in C^1$ et $(\mathcal{F}\varphi)' = \mathcal{F}(x \mapsto -ix\varphi(x))$. Par récurrence, on en déduit : $\forall \beta \geq 1$, $(\mathcal{F}\varphi)^{(\beta)} = (-i)^{\beta}\mathcal{F}(x \mapsto x^{\beta}\varphi(x))$.

De plus, comme φ est intégrable et dans C^1 , et comme φ' est intégrable, on a $\mathcal{F}(\varphi')(y)=iy\mathcal{F}\varphi(y)$ pour tout $y\in\mathbb{R}$.

Théorème IX.2.5

La transformation de Fourier \mathcal{F} est un isomorphisme de $\mathcal{S}(\mathbb{R})$ sur lui-même, d'inverse $\overline{\mathcal{F}}$.

Preuve (stabilité) : Pour tout $\varphi \in \mathcal{S}(\mathbb{R})$, les fonctions φ et $x \mapsto x\varphi(x)$ sont dans L^1 . Donc $\mathcal{F}\varphi \in C^1$ et $(\mathcal{F}\varphi)' = \mathcal{F}(x \mapsto -ix\varphi(x))$. Par récurrence, on en déduit : $\forall \beta \geq 1$, $(\mathcal{F}\varphi)^{(\beta)} = (-i)^{\beta}\mathcal{F}(x \mapsto x^{\beta}\varphi(x))$.

De plus, comme φ est intégrable et dans C^1 , et comme φ' est intégrable, on a $\mathcal{F}(\varphi')(y) = iy\mathcal{F}\varphi(y)$ pour tout $y \in \mathbb{R}$.

Par récurrence, $\forall \beta \geq 1$, on a $\mathcal{F}(\varphi^{(\beta)})(y) = (iy)^{\beta} \mathcal{F} \varphi(y)$, $\forall y \in \mathbb{R}$.

Théorème IX.2.5

La transformation de Fourier \mathcal{F} est un isomorphisme de $\mathcal{S}(\mathbb{R})$ sur lui-même, d'inverse $\overline{\mathcal{F}}$.

Preuve (stabilité) : Pour tout $\varphi \in \mathcal{S}(\mathbb{R})$, les fonctions φ et $x \mapsto x\varphi(x)$ sont dans L^1 . Donc $\mathcal{F}\varphi \in C^1$ et $(\mathcal{F}\varphi)' = \mathcal{F}(x \mapsto -ix\varphi(x))$. Par récurrence, on en déduit : $\forall \beta \geq 1$, $(\mathcal{F}\varphi)^{(\beta)} = (-i)^{\beta}\mathcal{F}(x \mapsto x^{\beta}\varphi(x))$.

De plus, comme φ est intégrable et dans C^1 , et comme φ' est intégrable, on a $\mathcal{F}(\varphi')(y) = iy\mathcal{F}\varphi(y)$ pour tout $y \in \mathbb{R}$.

Par récurrence, $\forall \beta \geq 1$, on a $\mathcal{F}(\varphi^{(\beta)})(y) = (iy)^{\beta} \mathcal{F} \varphi(y)$, $\forall y \in \mathbb{R}$.

$$\forall \alpha \in [1, \mathbf{p}], \forall \beta \in [1, \mathbf{p}] \quad \mathbf{y}^{\alpha} \underbrace{(\mathcal{F}\varphi)^{(\beta)}}_{(-i)^{\beta}\mathcal{F}(\mathbf{x}^{\beta}\varphi)} = (-i)^{\alpha+\beta} \underbrace{\mathcal{F}\big((\mathbf{x}^{\beta}\varphi)^{(\alpha)}\big)}_{(i\mathbf{y})^{\alpha}\mathcal{F}(\mathbf{x}^{\beta}\varphi)},$$

Théorème IX.2.5

La transformation de Fourier \mathcal{F} est un isomorphisme de $\mathcal{S}(\mathbb{R})$ sur lui-même, d'inverse $\overline{\mathcal{F}}$.

Preuve (stabilité) : Pour tout $\varphi \in \mathcal{S}(\mathbb{R})$, les fonctions φ et $x \mapsto x\varphi(x)$ sont dans L^1 . Donc $\mathcal{F}\varphi \in C^1$ et $(\mathcal{F}\varphi)' = \mathcal{F}(x \mapsto -ix\varphi(x))$. Par récurrence, on en déduit : $\forall \beta \geq 1$, $(\mathcal{F}\varphi)^{(\beta)} = (-i)^{\beta}\mathcal{F}(x \mapsto x^{\beta}\varphi(x))$.

De plus, comme φ est intégrable et dans C^1 , et comme φ' est intégrable, on a $\mathcal{F}(\varphi')(y) = iy\mathcal{F}\varphi(y)$ pour tout $y \in \mathbb{R}$.

Par récurrence, $\forall \beta \geq 1$, on a $\mathcal{F}(\varphi^{(\beta)})(y) = (iy)^{\beta} \mathcal{F} \varphi(y)$, $\forall y \in \mathbb{R}$.

$$\forall \alpha \in [1, \mathbf{p}], \forall \beta \in [1, \mathbf{p}] \quad \mathbf{y}^{\alpha} \underbrace{(\mathcal{F}\varphi)^{(\beta)}}_{(-i)^{\beta}\mathcal{F}(\mathbf{x}^{\beta}\varphi)} = (-i)^{\alpha+\beta} \underbrace{\mathcal{F}((\mathbf{x}^{\beta}\varphi)^{(\alpha)})}_{(i\mathbf{y})^{\alpha}\mathcal{F}(\mathbf{x}^{\beta}\varphi)},$$

en utilisant le fait que pour tout $y \in \mathbb{R}$,

$$(x \mapsto x^{\beta} \varphi(x))^{(\alpha)}(y) = \sum_{k=0}^{\alpha} {\alpha \choose k} (x \mapsto x^{\beta})^{(k)} \varphi^{(\alpha-k)}(y) \Rightarrow (x \mapsto x^{\beta} \varphi(x))^{(\alpha)} \in L^{1}_{24/39}$$

La transformation de Fourier \mathcal{F} est un isomorphisme de $\mathcal{S}(\mathbb{R})$ sur lui-même, d'inverse $\overline{\mathcal{F}}$.

Preuve (inversion):

Ainsi, pour tous $\alpha, \beta \in \mathbb{N}$, la fonction $y \mapsto y^{\alpha}(\mathcal{F}\varphi)^{(\beta)}(y)$ est bornée, puis $\mathcal{F}\varphi \in \mathcal{S}(\mathbb{R})$.

La transformation de Fourier $\mathcal F$ est un isomorphisme de $\mathcal S(\mathbb R)$ sur lui-même, d'inverse $\overline{\mathcal F}$.

Preuve (inversion):

Ainsi, pour tous $\alpha, \beta \in \mathbb{N}$, la fonction $y \mapsto y^{\alpha}(\mathcal{F}\varphi)^{(\beta)}(y)$ est bornée, puis $\mathcal{F}\varphi \in \mathcal{S}(\mathbb{R})$.

On peut donc appliquer le Théorème d'inversion de Fourier, puisque φ et $\mathcal{F}\varphi$ sont dans L^1 .

On trouve donc $\varphi = \overline{\mathcal{F}}\mathcal{F}\varphi = \mathcal{F}\overline{\mathcal{F}}\varphi$ p.p. \square

Corollaire IX.2.6 (Formule de Plancherel)

Pour tous φ et ψ dans $S(\mathbb{R})$, on a $(\mathcal{F}\varphi, \mathcal{F}\psi)_{L^2} = (\varphi, \psi)_{L^2}$.

Remarque : On a également, pour tous $\varphi, \psi \in \mathcal{S}(\mathbb{R})$,

$$(\mathcal{F}\varphi,\psi)_{L^2}=(\varphi,\overline{\mathcal{F}}\psi)_{L^2}.$$

Ainsi, $\overline{\mathcal{F}}$ est l'opérateur adjoint de \mathcal{F} .

Corollaire IX.2.6 (Formule de Plancherel)

Pour tous φ et ψ dans $S(\mathbb{R})$, on a $(\mathcal{F}\varphi, \mathcal{F}\psi)_{L^2} = (\varphi, \psi)_{L^2}$.

Remarque : On a également, pour tous $\varphi, \psi \in \mathcal{S}(\mathbb{R})$,

$$(\mathcal{F}\varphi,\psi)_{\mathsf{L}^2}=(\varphi,\overline{\mathcal{F}}\psi)_{\mathsf{L}^2}.$$

Ainsi, $\overline{\mathcal{F}}$ est l'opérateur adjoint de \mathcal{F} .

Preuve:

$$(\varphi,\psi)_{L^{2}} = \int_{\mathbb{R}} \overline{\varphi(x)} \psi(x) \lambda(dx) = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathcal{F} \varphi(y) e^{+ixy} \lambda(dy) \frac{\psi(x)}{\sqrt{2\pi}} \lambda(dx).$$

Corollaire IX.2.6 (Formule de Plancherel)

Pour tous φ et ψ dans $S(\mathbb{R})$, on a $(\mathcal{F}\varphi, \mathcal{F}\psi)_{L^2} = (\varphi, \psi)_{L^2}$.

Remarque : On a également, pour tous $\varphi, \psi \in \mathcal{S}(\mathbb{R})$,

$$(\mathcal{F}\varphi,\psi)_{\mathsf{L}^2}=(\varphi,\overline{\mathcal{F}}\psi)_{\mathsf{L}^2}.$$

Ainsi, $\overline{\mathcal{F}}$ est l'opérateur adjoint de \mathcal{F} .

Preuve:

$$(\varphi,\psi)_{L^{2}} = \int_{\mathbb{R}} \overline{\varphi(x)} \psi(x) \lambda(dx) = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathcal{F} \varphi(y) e^{+ixy} \lambda(dy) \frac{\psi(x)}{\sqrt{2\pi}} \lambda(dx).$$

On applique le Théorème de Fubini à $(x,y)\mapsto \overline{\mathcal{F}\varphi(y)}\psi(x)\in L^1(\mathbb{R}^2)$,

Corollaire IX.2.6 (Formule de Plancherel)

Pour tous φ et ψ dans $S(\mathbb{R})$, on a $(\mathcal{F}\varphi, \mathcal{F}\psi)_{L^2} = (\varphi, \psi)_{L^2}$.

Remarque : On a également, pour tous $\varphi, \psi \in \mathcal{S}(\mathbb{R})$,

$$(\mathcal{F}\varphi,\psi)_{\mathsf{L}^2}=(\varphi,\overline{\mathcal{F}}\psi)_{\mathsf{L}^2}.$$

Ainsi, $\overline{\mathcal{F}}$ est l'opérateur adjoint de \mathcal{F} .

Preuve:

$$(\varphi,\psi)_{L^{2}} = \int_{\mathbb{R}} \overline{\varphi(x)} \psi(x) \lambda(dx) = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathcal{F} \varphi(y) e^{+ixy} \lambda(dy) \frac{\psi(x)}{\sqrt{2\pi}} \lambda(dx).$$

On applique le Théorème de Fubini à $(x,y)\mapsto \overline{\mathcal{F}\varphi(y)}\psi(x)\in L^1(\mathbb{R}^2)$,

$$\begin{split} (\varphi,\psi)_{L^2} &= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-ixy} \overline{\mathcal{F}\varphi(y)} \psi(x) \ \lambda(dx) \lambda(dy) \\ &= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \overline{\mathcal{F}\varphi(y)} \left(\int_{\mathbb{R}} \psi(x) e^{-ixy} \ \lambda(dx) \right) \lambda(dy) \\ &= \int_{\mathbb{R}} \overline{\mathcal{F}\varphi(y)} \mathcal{F}\psi(y) \ \lambda(dy). \quad \Box \end{split}$$

Passage de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$: Transformée de Fourier-Plancherel

Définition IX.2.7

La transformation de Fourier sur $\mathcal{S}(\mathbb{R})$ se prolonge de manière unique en une isométrie $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$.

Passage de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$: Transformée de Fourier-Plancherel

Définition IX.2.7

La transformation de Fourier sur $\mathcal{S}(\mathbb{R})$ se prolonge de manière unique en une isométrie $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$.

Remarque: La transformation de Fourier sur $L^2(\mathbb{R})$ peut également être définie à partir de $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, qui est dense dans $L^2(\mathbb{R})$ (voir T.D.). La transformation obtenue $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ coincide avec celle de la def. IX.2.7.

Passage de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$: Transformée de Fourier-Plancherel

Définition IX.2.7

La transformation de Fourier sur $\mathcal{S}(\mathbb{R})$ se prolonge de manière unique en une isométrie $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$.

Remarque: La transformation de Fourier sur $L^2(\mathbb{R})$ peut également être définie à partir de $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, qui est dense dans $L^2(\mathbb{R})$ (voir T.D.). La transformation obtenue $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ coincide avec celle de la def. IX.2.7.

Preuve : Hypothèses du Théorème de prolongement (CM2) :

Passage de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$: Transformée de Fourier-Plancherel

Définition IX.2.7

La transformation de Fourier sur $\mathcal{S}(\mathbb{R})$ se prolonge de manière unique en une isométrie $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$.

Remarque: La transformation de Fourier sur $L^2(\mathbb{R})$ peut également être définie à partir de $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, qui est dense dans $L^2(\mathbb{R})$ (voir T.D.). La transformation obtenue $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ coincide avec celle de la def. IX.2.7.

Preuve : Hypothèses du Théorème de prolongement (CM2) :

• $L^2(\mathbb{R})$ est un espace de Banach;

Passage de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$: Transformée de Fourier-Plancherel

Définition IX.2.7

La transformation de Fourier sur $\mathcal{S}(\mathbb{R})$ se prolonge de manière unique en une isométrie $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$.

Remarque: La transformation de Fourier sur $L^2(\mathbb{R})$ peut également être définie à partir de $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, qui est dense dans $L^2(\mathbb{R})$ (voir T.D.). La transformation obtenue $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ coincide avec celle de la def. IX.2.7.

Preuve : Hypothèses du Théorème de prolongement (CM2) :

- $L^2(\mathbb{R})$ est un espace de Banach;
- $\mathcal{S}(\mathbb{R})$ est dense dans $L^2(\mathbb{R})$;

Passage de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$: Transformée de Fourier-Plancherel

Définition IX.2.7

La transformation de Fourier sur $\mathcal{S}(\mathbb{R})$ se prolonge de manière unique en une isométrie $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$.

Remarque: La transformation de Fourier sur $L^2(\mathbb{R})$ peut également être définie à partir de $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, qui est dense dans $L^2(\mathbb{R})$ (voir T.D.). La transformation obtenue $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ coincide avec celle de la def. IX.2.7.

Preuve : Hypothèses du Théorème de prolongement (CM2) :

- $L^2(\mathbb{R})$ est un espace de Banach;
- $\mathcal{S}(\mathbb{R})$ est dense dans $L^2(\mathbb{R})$;
- $\mathcal{F}: \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$ est une isométrie (pour la norme L^2).

Passage de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$: Transformée de Fourier-Plancherel

Définition IX.2.7

La transformation de Fourier sur $\mathcal{S}(\mathbb{R})$ se prolonge de manière unique en une isométrie $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$.

Remarque: La transformation de Fourier sur $L^2(\mathbb{R})$ peut également être définie à partir de $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, qui est dense dans $L^2(\mathbb{R})$ (voir T.D.). La transformation obtenue $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ coincide avec celle de la def. IX.2.7.

Preuve : Hypothèses du Théorème de prolongement (CM2) :

- $L^2(\mathbb{R})$ est un espace de Banach;
- $\mathcal{S}(\mathbb{R})$ est dense dans $L^2(\mathbb{R})$;
- $\mathcal{F}: \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$ est une isométrie (pour la norme L^2).

Donc \mathcal{F} se prolonge de manière unique en une isométrie $L^2(\mathbb{R}) \to L^2(\mathbb{R})$.

Propriétés de $\mathcal{F}:L^2(\mathbb{R})\to L^2(\mathbb{R})$

Proposition IX.2.8 (Admis, voir TD)

Pour tout $f \in L^2(\mathbb{R})$, les égalités de fonctions de y dans $L^2(\mathbb{R})$ suivantes sont vérifiées :

$$\mathcal{F} f(y) = \frac{1}{\sqrt{2\pi}} \lim_{a \to -\infty, b \to +\infty} \int_{[a,b]} f(x) e^{-ixy} \lambda(dx)$$

$$\mathcal{F}f(y) = \frac{1}{\sqrt{2\pi}} \frac{d}{dy} \int_{\mathbb{R}} f(x) \frac{1 - e^{-ixy}}{ix} \lambda(dx).$$

Propriétés de $\mathcal{F}:L^2(\mathbb{R}) o L^2(\mathbb{R})$

Proposition IX.2.8 (Admis, voir TD)

Pour tout $f \in L^2(\mathbb{R})$, les égalités de fonctions de y dans $L^2(\mathbb{R})$ suivantes sont vérifiées :

$$\mathcal{F}\mathit{f}(\mathit{y}) = \frac{1}{\sqrt{2\pi}} \lim_{a \to -\infty, b \to +\infty} \int_{[a,b]} \mathit{f}(\mathit{x}) \ e^{-\mathit{i}\mathit{x}\mathit{y}} \ \lambda(\mathit{d}\mathit{x})$$

$$\mathcal{F}f(y) = \frac{1}{\sqrt{2\pi}} \frac{d}{dy} \int_{\mathbb{R}} f(x) \ \frac{1 - e^{-ixy}}{ix} \ \lambda(dx).$$

Proposition IX.2.9 (Isométrie, norme)

Pour tout $f \in L^2(\mathbb{R})$, on a $\mathcal{F}f \in L^2(\mathbb{R})$ et $||f||_{L^2} = ||\mathcal{F}f||_{L^2}$.

Proposition IX.2.10 (Isométrie, produit scalaire)

Pour tout $f,g \in L^2(\mathbb{R})$, on a $(f,g)_{L^2} = (\mathcal{F}f,\mathcal{F}g)_{L^2}$.

Proposition IX.2.11

Le prolongement de $\overline{\mathcal{F}}$, de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$, est la réciproque de \mathcal{F} : $f = \overline{\mathcal{F}}\mathcal{F}f = \mathcal{F}\overline{\mathcal{F}}f$.

Proposition IX.2.11

Le prolongement de $\overline{\mathcal{F}}$, de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$, est la réciproque de \mathcal{F} : $f = \overline{\mathcal{F}}\mathcal{F}f = \mathcal{F}\overline{\mathcal{F}}f$.

Preuve : On note toujours par $\overline{\mathcal{F}}$ le prolongement à $L^2(\mathbb{R})$ de $\overline{\mathcal{F}}$ défini sur $\mathcal{S}(\mathbb{R})$.

Proposition IX.2.11

Le prolongement de $\overline{\mathcal{F}}$, de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$, est la réciproque de \mathcal{F} : $f = \overline{\mathcal{F}}\mathcal{F}f = \mathcal{F}\overline{\mathcal{F}}f$.

Preuve : On note toujours par $\overline{\mathcal{F}}$ le prolongement à $L^2(\mathbb{R})$ de $\overline{\mathcal{F}}$ défini sur $\mathcal{S}(\mathbb{R})$.

Soit $f \in L^2(\mathbb{R})$ et $(\varphi_n)_{n \in \mathbb{N}}$ une suite de $\mathcal{S}(\mathbb{R})$ qui converge vers f dans $L^2(\mathbb{R})$.

Proposition IX.2.11

Le prolongement de $\overline{\mathcal{F}}$, de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$, est la réciproque de \mathcal{F} : $f = \overline{\mathcal{F}}\mathcal{F}f = \mathcal{F}\overline{\mathcal{F}}f$.

Preuve : On note toujours par $\overline{\mathcal{F}}$ le prolongement à $L^2(\mathbb{R})$ de $\overline{\mathcal{F}}$ défini sur $\mathcal{S}(\mathbb{R})$.

Soit $f \in L^2(\mathbb{R})$ et $(\varphi_n)_{n \in \mathbb{N}}$ une suite de $\mathcal{S}(\mathbb{R})$ qui converge vers f dans $L^2(\mathbb{R})$.

Par continuité de ${\mathcal F}$ et $\overline{{\mathcal F}}$ $(L^2 o L^2)$, on a

$$\overline{\mathcal{F}}\mathcal{F}f = \overline{\mathcal{F}}\mathcal{F}\lim \varphi_n = \lim \overline{\mathcal{F}}\mathcal{F}\varphi_n = \lim \varphi_n = f.$$

Proposition IX.2.11

Le prolongement de $\overline{\mathcal{F}}$, de $\mathcal{S}(\mathbb{R})$ à $L^2(\mathbb{R})$, est la réciproque de \mathcal{F} : $f = \overline{\mathcal{F}}\mathcal{F}f = \mathcal{F}\overline{\mathcal{F}}f$.

Preuve : On note toujours par $\overline{\mathcal{F}}$ le prolongement à $L^2(\mathbb{R})$ de $\overline{\mathcal{F}}$ défini sur $\mathcal{S}(\mathbb{R})$.

Soit $f \in L^2(\mathbb{R})$ et $(\varphi_n)_{n \in \mathbb{N}}$ une suite de $\mathcal{S}(\mathbb{R})$ qui converge vers f dans $L^2(\mathbb{R})$.

Par continuité de ${\mathcal F}$ et $\overline{{\mathcal F}}$ $(L^2 o L^2)$, on a

$$\overline{\mathcal{F}}\mathcal{F}f = \overline{\mathcal{F}}\mathcal{F}\lim \varphi_n = \lim \overline{\mathcal{F}}\mathcal{F}\varphi_n = \lim \varphi_n = f.$$

De même pour $\mathcal{F}\overline{\mathcal{F}}f = f$. \square

Proposition IX.2.12

Si
$$f \in L^2(\mathbb{R})$$
 et si $f \in C^1(\mathbb{R})$ et $f \in L^2(\mathbb{R})$, alors $\mathcal{F}(f) = iy \mathcal{F}f$.

Preuve:

On montre le résultat pour $(\varphi_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{S}(\mathbb{R})$ qui converge vers f dans $L^2(\mathbb{R})$. \square

Définition VII.2.6 (Rappel, fonction caractéristique)

On appelle **fonction caractéristique** d'une variable aléatoire X à valeurs dans \mathbb{R}^N l'application $\varphi_X : \mathbb{R}^N \to \mathbb{C}$ définie par

$$t \mapsto \varphi_X(t) = \mathbf{E}\left[e^{i\langle t, X \rangle}\right] = \int_{\mathbb{R}^N} e^{i\langle t, x \rangle} P_X(dx)$$

Définition et propriétés Fonctions caractéristiques et indépendance Fonctions caractéristiques et moments

$$t \mapsto \varphi_X(t) = \mathbf{E}\left[e^{i\langle t, X\rangle}\right] = \int_{\mathbb{R}^N} e^{i\langle t, x\rangle} P_X(dx)$$

Proposition IX.3.1

- $\varphi_X(0) = 1$ et pour tout $t \in \mathbb{R}^N$, $|\varphi_X(t)| \le 1$.
- Pour tout $\lambda \in \mathbb{R}$ et tout $a \in \mathbb{R}^N$, $\varphi_{\lambda X+a}(t) = e^{iat}\varphi_X(\lambda t)$.
- φ_X est une fonction semi-positive, i.e. pour tous $n \geq 1$ et tous $t_1, \ldots, t_n \in \mathbb{R}^N$, on a

$$\forall z_1,\ldots,z_n\in\mathbb{C},\quad \sum_{1\leq j,k\leq n}z_j\,\varphi_X(t_j-t_k)\;\overline{z_k}\geq 0.$$

Définition et propriétés

Fonctions caractéristiques et indépendanc

Fonctions caractéristiques et moments

Proposition IX.3.2

La fonction caractéristique d'une v.a. X à valeurs dans \mathbb{R}^N est continue sur \mathbb{R}^N .

Proposition IX.3.3

Si la loi de X admet une densité de probabilité, alors

$$\lim_{|t|\to\infty}\varphi_X(t)=0.$$

Théorème IX.3.4 (Admis, théorème d'inversion)

Si la fonction caractéristique φ_X d'une v.a. X est dans $\mathbf{L}^1(\mathbb{R})$, alors X admet la densité $f_X : \mathbb{R}^N \to \mathbb{R}_+$ définie par

$$\forall x \in \mathbb{R}^N$$
, $f_X(x) = \frac{1}{(2\pi)^N} \int_{\mathbb{R}^N} e^{-i\langle t, x \rangle} \varphi_X(t) \ \lambda(dt)$.

Théorème IX.3.4 (Admis, théorème d'inversion)

Si la fonction caractéristique φ_X d'une v.a. X est dans $L^1(\mathbb{R})$, alors X admet la densité $f_X : \mathbb{R}^N \to \mathbb{R}_+$ définie par

$$\forall x \in \mathbb{R}^N$$
, $f_X(x) = \frac{1}{(2\pi)^N} \int_{\mathbb{R}^N} e^{-i\langle t, x \rangle} \varphi_X(t) \ \lambda(dt)$.

Théorème IX.3.5 (Théorème d'unicité)

Deux variables aléatoires X et Y ont même loi si et seulement si $\varphi_X = \varphi_Y$.

Théorème VII.2.7 (Rappel)

Les v.a. réelles X_1, \ldots, X_N sont indépendantes si et seulement si leurs fonctions caractéristiques vérifient

$$\forall t \in \mathbb{R}^N, \quad \varphi_X(t) = \prod_{k=1}^N \varphi_{X_k}(t_k)$$

où
$$X = (X_1, ..., X_N)$$
.

Proposition IX.3.6

Soient X_1, \ldots, X_n des vecteurs aléatoires **indépendants** à valeurs dans \mathbb{R}^N , de lois respectives P_{X_1}, \ldots, P_{X_n} . La loi de $X_1 + \cdots + X_n$ est le produit de convolution $P_{X_1} * \cdots * P_{X_n}$

et a pour fonction caractéristique
$$\varphi_{X_1+\cdots+X_n} = \prod_{j=1}^n \varphi_{X_j}$$
.

Proposition IX.3.7

Soit X une v.a. à valeurs réelles dans $\mathbf{L}^n(\Omega, \mathcal{F}, \mathbf{P})$ ($n \ge 1$). Alors, sa fonction caractéristique φ_X est de classe C^n et

$$\forall t \in \mathbb{R}, \quad \varphi_X^{(n)}(t) = i^n \mathbf{E}[X^n e^{itX}].$$

En particulier, $\mathbf{E}[X^n] = i^{-n} \varphi_X^{(n)}(0)$.

Objectifs de la séance

- Je connais la définition (def. IX.1.1) et les propriétés (prop. IX.1.2-prop. IX.1.5) de la transformée de Fourier d'une fonction intégrable.
- Je connais la transformée de Fourier d'une gaussienne (TD Ex. IX.1).
- Je comprends la **construction** de la transformation de Fourier dans L^2 et je connais la formule d'inversion (**th. IX.2.5**).
- Je sais exprimer le fait que la transformation de Fourier dans L² est une isométrie (Parseval) (prop. IX.2.9, prop. IX.2.10).
- Je connais le lien entre transformée de Fourier et dérivation (prop. IX.1.4, prop. IX.1.5), ainsi qu'entre transformée de Fourier et convolution (prop. IX.1.3).
- Je suis capable de déterminer la fonction caractéristique d'une variable aléatoire (def. VII.2.6).

Références bibliographiques

- T. Gallouët, R. Herbin. Mesure, intégration, probabilités.
 https://www.i2m.univ-amu.fr/perso/thierry.gallouet/licence.d/mes-int-pro.pdf
- F. Golse. Distributions, analyse de Fourier, équations aux dérivées partielles. Polycopié de l'Ecole Polytechnique. 2012.
 - $\verb|http://www.cmls.polytechnique.fr/perso/golse/MAT431-10/POLY431.pdf| \\$
- W. Rudin. Real and Complex Analysis. McGraw-Hill.
- L. Saint-Raymond. Analyse fonctionnelle. Polycopié de l'Ecole Normale Supérieure de Paris. 2013.