Signale und Systeme 2

FS 24 Prof. Dr. Heinz Mathis

Autoren:

Simone Stitz, Laurin Heitzer

Version:

1.0.20240507

 $\underline{https:/\!/github.com/P4ntomime/signale-und-systeme-2}$

Inhaltsverzeichnis

l LT	I-Systeme (S. 171)	2	5	Stabilität im Bodediagramm
1.1	Zusammenhänge zwischen den Grössen (S. 174-176)	2		5.1 Amplitudenrand und Phasenrand
1.2		2		5.2 Amplitudenrand und Phasenrand im Bodediagramm
1.3		2		
1.4		2	6	Ortskurve (Nyquist-Diagramm) (S. 240)
1.5	8 (2		6.1 Nyquistdiagramme mit MatLab
1.6		2		
1.7	Verzerrungsfreie Übertragung von Signalen (S. 190)	2	7	Stabilität im Nyquist-Diagramm
1.8	Übertragung stochastischer Signale (S. 193-194)	3		7.1 Offener und geschlossener Regelkreis
2 Dä	mpfung, Verstärkung, Dezibel	3		7.2 Vereinfachtes Nyquist-Kriterium
2.1	Dämpfungsfaktor D (S. 206)	3		7.3 Amplitudenrand und Phasenrand (Verstärkungsreserve) 6
2.2	1 6	3		7.4 Amplitudenrand und Phasenrand im Nyquist-Diagramm
2.3	1 6	3		
2.4	Spannungsverstärkungsfaktor (S. 209)	3	8	Zustandsraumdarstellung (ZRD)
2.5		3		8.1 Vorteile der ZRD (S. 253-254)
2.6	Relativer und Absoluter Pegel (S. 210)	3		8.2 Zustandsraumdarstellung (ZRD) im Zeitbereich (S. 255)
	I I I I I I I I I I I I I I I I I I I			8.3 Zustandsraumdarstellung (ZRD) im Laplace-Bereich (S. 264)
	equnzverhalten analoger LTI-Systeme	3		8.4 Ordnung eines Systems (S. 256)
3.1	Zusammenhang Frequenzgang – UTF (S. 211)	4 4		8.5 ZRD mit Matlab
3.3		4		8.6 Äquivalente Zustandsraumdarstellung (ZRD) (S. 257)
3.4		4		8.7 Matrix bmA diagonalisieren
3.5		4		8.8 Einschub – Lineare Algebra: 2x2 Matrix invertieren
3.6		4		8.9 Lösung der ZRD im Zeitbereich (S. 259-260)
3.7	Vorgehen Frequenzgang aus Pol-NS-Diagramm ermitteln	5		8.10 Fundamentalmatrix (S. 260-263)
3.8		5		8.11 Lösung der ZRD im Zeitbereich – SISO-Systeme (S. 263)
3.9	1	5		
				8.12 Stabilität von ZRDs (S. 275)
4 Bo	dediagramm	5		8.13 Beobachtbarkeit und Steuerbarkeit – Begriffe (S. 277)
4.1	Bodediagramme mit Matlab	5		8.14 Steuerbarkeit (S. 277)
4.2	Approximationen im Bodediagramm (S. 230)	5		8.15 Beobachtbarkeit (S. 278)
4.3	Ergänzung: Konjugiert-komplexe Pole und Nullstellen (S. 228)	6		8.16 Standardformen der ZRD (S. 267)

1 LTI-Systeme (s. 171)

x(t)	Eingangssignal
v(t)	Ausgangssignal

 $\delta(t)$ Dirac-Stoss

h(t)Impulsantwort (Antwort auf Dirac-Stoss)

 $H(j\omega)$ Frequenzgang $|H(j\omega)|$ Amplitudengang $\theta(j\omega)$

Phasengang $H(s) = \frac{Y(s)}{X(s)}$ Übertragungsfunktion (UTF) H(s)

1.1 Zusammenhänge zwischen den Grössen (S. 174-176)

Die Impulsantwort h(t) und der Frequenzgang $H(j\omega)$ sind ein

Fourier-Transformationspaar:

Die Impulsantwort h(t) und die Übertragungsfunktion H(s) sind ein Laplace-Transformationspaar:

$$h(t) \circ --- H(s)$$

Das Ausgangssignal berechnet sich als:

$$y(t) = h(t) * x(t) \circ - Y(s) = H(s) \cdot X(s)$$

1.1.1 Zusammenhang Impulsantwort - Einheitssprungantwort

Impulsantwort

Einheitssprungantwort g(t)

$$h(t) = \frac{dg(t)}{dt} \quad \Leftrightarrow \quad g(t) = \int_{-\infty}^{t} h(\tau) d\tau$$

$$H(s) = s \cdot G(s) \quad \Leftrightarrow \quad G(s) = \frac{1}{s}H(s)$$

$$H(s) = s \cdot G(s) \quad \Leftrightarrow \quad G(s) = \frac{1}{s}H(s)$$

1.1.2 Zusammenhang Impulsantwort & Kausalität LTI-System

Damit ein LTI-System kausal ist, muss dessen Impulsantwort h(t) für alle t < 0gleich Null sein.

1.2 Phasenlaufzeit $\tau_P(\omega)$ (S. 183)

Die Phasenlaufzeit ist nur für reine Sinus-Schwingungen exakt bestimmbar! Das System ist beschrieben durch:

$$x(t) = A \cdot \sin(\omega_0 t + \gamma)$$

$$H(j\omega) = \alpha \cdot e^{-j\omega t_0} \circ -\!\!\!\!\!- h(t) = \alpha \cdot \delta(t-t_0)$$

Das Ausgangssignal y(t) = x(t) * h(t) ist gegenüber dem Eingangssignal x(t) mit Faktor α gewichtet und um die Zeit to verzögert.

⇒ Diese Verzögerung wird Phasenlaufzeit genannt

$$\tau_P(\omega) = \frac{-\theta(\omega)}{\omega}$$

 $\theta(\omega)$ entspricht dem Phasengang des Systems

Beispiel: Phasenlaufzeit

1.2.1 Negative Phasenlaufzeit

Eine negative Phasenlaufzeit bedeutet nicht, dass ein System akausal ist!

1.3 Gruppenlaufzeit $\tau_G(\omega)$ (S. 182)

Definiert für Signale mit mehreren Frequenzanteilen

Bei amplitudenmodulierten Signalen bestimmt die Gruppenlaufzeit $\tau_G(\omega)$ die Verzögerung der Hüllkurve der AM.

$$\tau_G(\omega) = \frac{-\,\mathrm{d}\theta(\omega)}{\,\mathrm{d}\omega}$$

 $\theta(\omega)$ entspricht dem Phasengang des Systems

Die Gruppenlaufzeit kann nur dann als Laufzeit des Signals interpretiert werden, wenn im Frequenzbereich des Signales die Gruppenlaufzeit und auch die Dämpfung ungefähr konstant sind.

1.3.1 Negative Gruppenlaufzeit

Bei Vierpolen mit konzentrierten Elementen ist in bestimmten Frequenzbereichen eine negative Gruppenlaufzeit möglich, insbesondere in Frequenzbereichen wo die Dämpfung stark ändert. (z.B. Nullstellen der UTF)

Bei negativer Gruppenlaufzeit erscheint die Wirkung nicht vor der Ursache!

⇒ Das System ist **nicht** akausal!

Das Maximum der Hüllkurve am Ausgang kann aber früher als am Eingang auftreten.

1.4 Phasenlaufzeit / Gruppenlaufzeit identisch (S. 186)

Die Signalverzögernug, Phasenlaufzeit $\tau_P(\omega)$ und Gruppenlaufzeit $\tau_G(\omega)$ sind identisch, wenn

$$\theta(\omega) = -\omega \cdot t_0$$

und der Amplitudengang ebenfalls konstant ist, d.h. $H(j\omega) = \alpha \cdot e^{-j\omega t_0}$ Die Signalverzögerung beträgt für **alle Frequenzen** t_0 (= $\tau_P = \tau_G$)

1.5 Verzerrungen (S. 187-188)

Stimmt der zeitliche Verlauf einer Schwingung auf der Empfängerseite nicht mehr mit der Senderseite überein, arbeitet das Übertragungssystem nicht verzerrungsfrei.

1.5.1 Lineare Verzerrung

Eine Dämpfung eines Signals (z.B. durch einen Tiefpassfilter) entspricht einer linearen Verzerrung

1.5.2 Nichtlineare Verzerrung

Nichtlineare Verzerrungen werden durch Übersteuerung des Systems (Kanal) oder dessen **nichtlineare Kennlinie** hervorgerufen werden.

Durch nichtlineare Verzerrungen treten neue, im Ursprungssignal nicht enthaltene Schwingungen auf.

Ein Mass für nichtlineare Verzerrungen ist der Klirrfaktor

1.6 Klirrfaktor (S. 189)

Verhältnis des Effektivwerts der neu am Ausgang eines Systems entstandenen Harmonischen zum Effektivwert des gesamten Signals

$$k = \sqrt{\frac{U_2^2 + U_3^2 + \dots + U_n^2}{U_1^2 + U_2^2 + \dots + U_n^2}}$$

 U_1 entspricht der Grundharmonischen

 \Rightarrow Es gilt: $1 > k \ge 0$

1.6.1 Klirrdämpfungsmass

$$a_k = 20 \cdot \log_{10} \left(\frac{1}{k}\right)$$

1.6.2 Total Harmonic Disortion (THD)

Wird vor allem im englisch-sprachigen Raum verwendet

THD =
$$\sqrt{\frac{U_2^2 + U_3^2 + \dots + U_n^2}{U_1^2}}$$
 U_1 entspricht der Grundharmonischen \Rightarrow Es gilt: $\infty > \text{THD} \ge 0$

geringe Verzerrungen: THD $\approx k$ allgemein: THD > k

1.7 Verzerrungsfreie Übertragung von Signalen (s. 190)

Frequenzgang $H(j\omega)$ und Impulsantwort h(t) eines verzerrungsfreien Signals:

Damit ein Signal verzerrungsfrei übertragen wird, müssen folgende Bedingungen erfüllt

- **1. Amplitude** konstant (unabhängig von der Frequenz) $\Leftrightarrow |H(j\omega)| = \text{konstant} = \alpha \neq 0$ → Keine Amplitudenverzerrung vorhanden
- **2. Phase** proportional zur Frequenz $\Leftrightarrow \theta(\omega) = -\omega t_0$ (äquivalenz zu Abschnitt 1.4) → Keine Phasenverzerrung vorhanden

1.8 Übertragung stochastischer Signale (s. 193-194)

Wird ein stochastisches Signal x(t) (schwach stationär) durch ein LTI-System mit Impulsantowort h(t) übertragen, so berechnet sich das Ausgangssignal y(t) gemäss Abschnitt 1.1 aus:

$$y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau \circ - \Phi Y(s) = H(s) \cdot X(s)$$

1.8.1 Linearer Mittelwert

Der lineare Mittelwert Y_0 des Ausgangssignals y(t) bei der Frequenz $\omega = 0$ entspricht

$$Y(j0) = X(j0) \cdot H(j0) \Rightarrow Y_0 = X_0 \cdot H(j0)$$

 $H(j\omega)$ = Frequenzgang und X_0 = linearer Mittelwert von x(t)

1.8.2 Autokorrelationsfunktion (AKF) des Ausgangssignals

Da $\varphi_{vv}(\tau)$ und Y_0 nicht von t abhängen, ist auch y(t) schwach stationär.

$$\varphi_{yy}(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\alpha) h(\beta) \varphi_{xx}(\tau + \alpha - \beta) d\alpha d\beta = h(-\tau) * h(\tau) * \varphi_{xx}(\tau)$$

Es gelten folgende Zusammenhänge für die Fourier-Transformationspaare:

1.8.3 Leistungsdichtespektrum (PSD)

Die AKF und das PSD sind ein Fourier-Transformationspaar

Daraus folgt der Zusammenhang der Leistungsdichtespektren $\Phi(j\omega)$

$$\Phi_{yy}(j\omega) = |H(j\omega)|^2 \Phi_{xx}(j\omega)$$

Für die AKF des Ausgangssignals y(t) gilt

$$\varphi_{yy}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(j\omega)|^2 \, \Phi_{xx}(j\omega) \, e^{j\omega\tau} \, d\omega$$

Die Leistung Y^2 des Ausgangssignals y(t) berechnet sich beim Zeitpunkt $\tau = 0$ als

$$Y^{2} = \varphi_{yy}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(j\omega)|^{2} \Phi_{xx}(j\omega) d\omega$$

1.8.4 Kreuzkorrelationen

Die Kreuzkorrelationsfunktionen $\varphi_{xy}(\tau)$ und $\varphi_{yx}(\tau)$ des stochastischen, reellen Eingangssignals x(t) (Klasse 2b) und des stochastischen Ausgangssignals y(t) eines LTI-Systems hängen folgendermassen zusammen:

$$\varphi_{xy}(\tau) = h(\tau) * \varphi_{xx}(\tau) \circ - \Phi_{xy}(j\omega) = H(j\omega) \cdot \Phi_{xx}(j\omega)$$

$$\varphi_{yx}(\tau) = h(-\tau) * \varphi_{xx}(\tau) \circ - \Phi_{yx}(j\omega) = H^*(j\omega) \cdot \Phi_{xx}(j\omega)$$

Somit gilt:

$$\varphi_{yx}(\tau) = \varphi_{xy}(-\tau) \circ - \Phi_{yx}(j\omega) = \Phi_{xy}(-j\omega) = \Phi_{xy}^*(j\omega)$$

2 Dämpfung, Verstärkung, Dezibel

Hinweis: Neben Dezibel gibt es ein weiteres Dämpfungs-/ bzw. Verstärkungsmass: Neper Np Auf dieses Mass wird allerdings nicht genauer eingegangen. Skript: S.207

2.1 Dämpfungsfaktor D (S. 206)

Das Verhältnis zwischen Eingangs- und Ausgangssignal wird als Dämpfungsfaktor D bezeichnet

$$D_P = \frac{P_1}{P_2}$$

$$D_U = \frac{U_1}{U_2}$$

$$D_I = \frac{I_1}{I_2}$$

Die Indizes U, P, I stehen für die Effektivwerte von Spannung, Leistung und Strom.

2.2 Dämpfungsmass *a* in Dezibel (8. 206)

Durch ${\bf logarithmieren}$ des Dämpfungsfaktors Derhält man das Dämpfungsmass a

$$a_P = 10 \cdot \log_{10} \left(\frac{P_1}{P_2} \right)$$

$$a_U = 20 \cdot \log_{10} \left(\frac{U_1}{U_2} \right)$$

$$a_I = 20 \cdot \log_{10} \left(\frac{I_1}{I_2} \right)$$

2.2.1 Umrechnung Verstärkungsfaktor – Dezibel

$$dB = 10 \cdot \log_{10}(v) \iff v = 10^{\frac{dB}{10}}$$

2.3 Rechenregeln mit Dezibel

- Faktoren multiplizieren → Dezibel-Werte addieren
- Faktoren dividieren → Dezibel-Werte subtrahieren

2.4 Spannungsverstärkungsfaktor (S. 209)

Hält man sich strikt an die Definition des Verstärkungsfaktors bzw. die Definition der Dezibel, so würde man für Dämpfungen positive Dezibel-Werte erhalten und für Verstärkungen entspreched negative Dezibel-Werte. Dies ist gegen die Intuition des Ingenieurs. Somit wurde der **Spannungsverstärkungsfaktor** T_U definiert. Analog zum Dämpfungs-

$$T_U = \frac{U_2}{U_1}$$

$$g_U = 20 \cdot \log_{10} \left(\frac{U_2}{U_1} \right)$$

Aus dieser Definition folgt für die Dezibel-Werte:

mass a wird ein **Verstärkungsmass** g_U definiert.

- Verstärkung: $(U_2 > U_1) \Rightarrow$ positive Dezibel-Zahl
- **Dämpfung:** $(U_2 < U_1) \Rightarrow$ negative Dezibel-Zahl

Beispiel: Kaskadiertes System (8. 209) Verstärker Modulator Filter

$$= \frac{10}{1} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{10}{1} = 50$$

$$a_{U_{tot}} = -20 \text{dB} + 3 \text{dB} + 3 \text{dB} + -20 \text{dB} = -34 \text{dB}$$

Formuliert mit dem Verstärkungsmass g ergeben sich umgekehrte Vorzeichen:

$$g_{U_{tot}} = -20 \,\mathrm{dB} + 3 \,\mathrm{dB} + 3 \,\mathrm{dB} - 20 \,\mathrm{dB} = -34 \,\mathrm{dB}$$

2.5 Umrechnungs-Tabelle Dezibel - Faktor

Vorgehen: Gesuchten dB-Wert als Summe / Differenz von bekannten Werten darstellen → Summanden in Faktoren 'transferieren' und multiplizieren / dividieren

Vorgehen: Gesuchten Faktor als Produkt / Quotent von bekannten Werten darstellen

→ Faktoren in Summanden 'transferieren' und addieren / subtrahieren

Dezibel	Faktor
20 = 10 + 10	$100 = 10 \cdot 10$
12	$16 = 2 \cdot 2 \cdot 2 \cdot 2$
10	10
9 = 3 + 3 + 3	$8 = 2 \cdot 2 \cdot 2$
8 = 5 - 3	$6.4 = 3.2 \cdot 2$
7 = 10 - 3	$5 = \frac{10}{2}$
6 = 3 + 3	$4 = 2 \cdot 2$
5 = 15 - 10	$3.2 = \frac{32}{10} \approx \sqrt{10}$
4 = 10 - 6 = 10 - 3 - 3	$2.5 = \frac{10}{2 \cdot 2}$
3	2
2 = 12 - 10 = 5 - 3	$1.6 = \frac{16}{10}$ $1.25 = \frac{10}{2 \cdot 2 \cdot 2} = \frac{5}{4}$
1 = 10 - 3 - 3 - 3	$1.25 = \frac{10}{2 \cdot 2 \cdot 2} = \frac{5}{4}$
0	1
-1	$0.8 = \frac{4}{5}$

2.6 Relativer und Absoluter Pegel (S. 210)

Bei den bisher ausgeführten Pegeln handelt es sich um **relative Pegel**. Im Gegensatz dazu beziehen sich **absolute Pegelangaben** immer auf eine Referenzgrösser (erzeugt von einem Normengenerator, siehe Skript).

$$(L_{U})_{\text{rel}} = 20 \cdot \log_{10} \left(\frac{U_{2}}{U_{1}} \right)$$

$$(L_{U})_{\text{abs}} = 20 \cdot \log_{10} \left(\frac{U_{2}}{774.6 \,\text{mV}} \right)$$

$$(L_{I})_{\text{rel}} = 20 \cdot \log_{10} \left(\frac{I_{2}}{I_{1}} \right)$$

$$(L_{I})_{\text{abs}} = 20 \cdot \log_{10} \left(\frac{I_{2}}{1.291 \,\text{mA}} \right)$$

$$(L_{P})_{\text{rel}} = 10 \cdot \log_{10} \left(\frac{P_{2}}{P_{1}} \right)$$

$$(L_{P})_{\text{abs}} = 10 \cdot \log_{10} \left(\frac{P_{2}}{1.000 \,\text{mW}} \right)$$

2.6.1 Kennzeichnung absoluter Pegel

Notation	Bezugsgrösse	Notation	Bezugsgrösse
dBW	1 W	dBm	$1 \mathrm{mW}$
dBV	1 V	dΒμV	1 μW

3 Frequnzverhalten analoger LTI-Systeme

3.1 Zusammenhang Frequenzgang - UTF (s. 211)

Alle LTI-Systeme lassen sich mit einer Differntialfleichung der folgenden Form beschrei-

$$a_n \frac{\mathrm{d}^n y}{\mathrm{d}t^n} + a_{n-1} \frac{\mathrm{d}^{n-1} y}{\mathrm{d}t^{n-1}} + \dots + a_1 \frac{\mathrm{d}y}{\mathrm{d}t} + a_0 y = b_m \frac{\mathrm{d}^m x}{\mathrm{d}t^m} + b_{m-1} \frac{\mathrm{d}^{m-1} x}{\mathrm{d}t^{m-1}} + \dots + b_1 \frac{\mathrm{d}x}{\mathrm{d}t} + b_0 x$$

Die Laplace-Transformierte der DGL hat die Form

$$H(s) = \frac{Y(s)}{X(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{N(s)}{D(s)}$$

N(s)Zählerpolynom mit konstanten, reelen Koeffizienten

D(s)Nennerpolynom mit konstanten, reelen Koeffizienten

x(t)Eingangssignal

y(t)Ausgangssignal

Die Wurzeln der Gleichung N(s) = 0 ergeben m endliche Nullstellen; die Wurzeln von D(s) = 0 ergeben n Pole des Systems. Aus Stabilitätsgründen müssen alle Pole in der linken Halbebene (LHE) liegen!

3.1.1 Praktische Schreibweise für Pol-/Nullstellen

Um die Pole bzw. Nullstellen des Systems direkt ablesen zu können, wird H(s) faktorisiert. \rightarrow Die UTF H(s) ist durch die Pole, Nullstellen und den Faktor K vollständig bestimmt!

$$H(s) = \underbrace{\frac{b_m}{a_m}}_{K} \cdot \underbrace{\prod_{i=1}^{m} (s - z_i)}_{j=1}^{n} (s - p_j)$$

Da die Wurzeln von Polynomen mit reellen Koeffizienten entweder reell oder konjugiertkomplexe Paare auftreten, ist es meistens sinnvoll, die Systemfunktionen als Produkt von Faktoren 1. und 2. Ordnung mit reelen Koeffizienten darzustellen.

$$H(s) = \underbrace{\frac{b_m}{a_m}}_{K} \cdot \underbrace{\frac{\prod\limits_{i=1}^{r}(s^2 + 2\sigma_{zi}s + \omega_{zi}^2)\prod\limits_{i=2r+1}^{m}(s - z_i)}{\prod\limits_{j=1}^{t}(s^2 + 2\sigma_{pj}s + \omega_{pj}^2)\prod\limits_{j=2t+1}^{n}(s - p_j)}$$

Legende:

- Beschreibt komplex-konjugierte Nullstellen in der LHE
- Beschreibt reelle Nullstellen in der LHE
- Beschreibt komplex-konjugierte Polein der LHE
- Beschreibt reelle Pole in der LHE

Alternativ kann H(s) mittels **Polfrequenzen** und **Polgüten** beschrieben werden:

$$H(s) = \underbrace{\frac{b_m}{a_m}}_{K} \cdot \underbrace{\prod_{\substack{i=1\\i=1}}^{r} (s^2 + \frac{\omega_{zi}}{q_{zi}} s + \omega_{zi}^2) \prod_{\substack{i=2r+1\\i=2r+1}}^{m} (s - z_i)}_{p_i}$$

Polstellenfrequenzen ω_{zi} Polstellengüten

Nullstellenfrequenzen Nullstellengüten

3.2 Pol- und Nullstellendiagramme (S. 212)

Werden die Pole und Nullstellen in der komplexen Zahlenebene dargestellt, so spricht man von einem Pol-/Nullstellen-Diagramm.

In Matlab erzeugt der Befehl pzmap einen solchen Plot Pole Kreuze

Kreise

3.3 Stabilitätsbetrachtung im Pol- Nullstellendiagramm

Für Grenzstabilität gilt eine UND-Verknüpfung der aufgeführten Punkte. Für Stabilität und Instabilität gilt eine ODER-Verknüpfung der aufgeführten Punkte.

- Stabil:
 - Alle Polstellen in linker Halbebene (LHE)
 - Keine Polstellen vorhanden
- Asymptotisch stabil:
 - Polstellen nur in der linken Halbebene (LHE)
- Grenzstabil:
 - Keine Polstellen in der rechten Halbebene (RHE)
 - Mindestens eine einfache Polstelle auf imaginärer Achse
 - Keine doppelten Polstellen auf der imaginären Achse
- Instabil:
 - Mindestens eine Polstelle in der rechten Halbebene (RHE)
 - Mindestens eine mehrfache Polstelle auf der imaginären Achse

3.4 Pole in der komplexen Zahlenebene (S. 214)

Beispiel: Polynom 2. Ordnung mit komplex-konjugierten Polen

Polfrequenz → Entspricht Abstand des Pols vom Ursprun ω_p q_p

Grenzfälle

Doppelpol auf neg. reeller Achse $\sigma_p = \omega_p$ $\sigma_p = 0$ Polpar auf imaginärer Achse

3.4.1 Reelle Pole

$$\omega_p = \sqrt{\sigma_{p1} \cdot \sigma_{p2}}$$

$$q_p = \frac{\sqrt{\sigma_{p1} \cdot \sigma_{p2}}}{\sigma_{p1} + \sigma_{p2}} \le \frac{1}{2}$$

- Für einzelne (reelle) Pole ist ist die Güte q_p nicht definiert
- \Rightarrow Die Polfrequenz ω_p entspricht dem Abstand zum Ursprung.

Identische Werte

$$\overline{\sigma_{p1} = \sigma_{p2}} \qquad |q_p| = \frac{1}{2}$$

3.4.2 Verallgemeinerung des Beispiels (S. 214)

Hinweise

- · Pole sind als rote Kreuze dargestellt
- Für die NS (Nullstellenfrequenzen, Nullstellengüten) gelten die gleichen geometrischen Beziehungen wie für die Polstellen

3.5 Bestimmung Frequenzgang aus UTF (S. 216)

Um den Frequenzgang zu erhalten, kann $s = j\omega$ eingesetzt werden.

$$H(j\omega) = H(s)\Big|_{s=j\omega} = |H(j\omega)| \cdot e^{j\theta(\omega)}$$

Übertragungsfunktion (UTF) H(s) $H(j\omega)$ Frequenzgang

 $|H(j\omega)|$ Amplitudengang $\theta(\omega)$ Phasengang

Der Frequenzgang bzw. Amplitudengang und Phasengang werden folgendermassen dargestellt:

• Nyquist-Diagramm

 $H(j\omega)$ wird in Polarkoordinaten mit ω als Parameter aufgezeichnet

Bode-Diagramm

 $\alpha_{\rm dB}(\omega)$ und $\theta(\omega)$ werden je in Funktion von $\log_{10}(\omega)$ aufgezeichnet

3.6 Bestimmung Frequenzgang aus Pol- / Nullstellendiagramm

Durch einsetzen einer beliebigen Auswertungsfrequenz $j\omega_0$ in die Übertragungsfunktion H(s) ergibt sich der Frequenzgang $H(j\omega_0)$ als:

$$H(j\omega_0) = K \cdot \frac{(j\omega_0 - z_1)(j\omega_0 - z_2)\cdots(j\omega_0 - z_m)}{(j\omega_0 - p_1)(j\omega_0 - p_2)\cdots(j\omega_0 - p_n)} = |H(j\omega_0)| \cdot e^{j\theta(\omega_0)}$$

Die einzelnen Faktoren in Zähler und Nenner können in Betrag und Phase aufgeteilt werden, beispielsweise folgendermassen:

$$(j\omega_0 - p_1) = |j\omega_0 - z_1| \cdot e^{j\theta_{z1}} = A_{z1} \cdot e^{j\theta_{z1}}$$

Angewendet auf alle Faktoren kann der Frequenzgang $H(j\omega_0)$ in den Amplitudengang $|H(j\omega)|$ und den Phasengang $\theta(\omega)$ separiert werden:

$$H(j\omega_0) = K \cdot \frac{A_{z1} \cdot A_{z2} \cdots A_{zm} \cdot e^{j(\theta_{z1} + \cdots + \theta_{zm})}}{A_{p1} \cdot A_{p2} \cdots A_{pm} \cdot e^{j(\theta_{p1} + \cdots + \theta_{pm})}}$$

$$|H(j\omega_0)| = K \cdot \frac{\prod_{i=1}^m A_{zi}}{\prod_{i=1}^n A_{pj}}$$

Phase
$$\theta(\omega_0) = \underbrace{\text{Phase von } K}_{\text{meistens } 0} + \sum_{i=1}^m \theta_{zi} - \sum_{j=1}^m \theta_{pj}$$

3.6.1 Zusammenhang mit Pol-/Nullstellendiagramm

Die Auswertungsfrequenz $j\omega$ ist variabel und 'wandert' auf der imaginären Achse. 4.2.1 Pol im Ursprung Für ein bestimmte Auswertungsfrequenz $j\omega_0$ können die Faktoren von $H(j\omega_0)$ als Abstand und Phase zu den Pol- bzw Nullstellen interpretiert werden. Somit kann grafisch aus dem Pol- Nullstellendiagramm ein Rückschluss auf den Amplitudengang gezogen werden.

$$H(j\omega_0) = K \cdot \frac{A_{z1} \cdot A_{z2} \cdot e^{j(\theta_{z1} + \theta_{z2})}}{A_{p1} \cdot A_{p2} \cdot e^{j(\theta_{p1} + \theta_{p2})}}$$

3.7 Vorgehen Frequenzgang aus Pol-NS-Diagramm ermitteln

- (Schluss-Steigung = Anzahl Nullstellen Anzahl Polstellen) · 20 dB/Dek
- Sind im Ursprung **keine** Pole / Nullstellen, so ist die Steigung für tiefe Frequenzen = 0
- Befinden sich am gleichen Ort eine Polstelle und eine Nullstelle, so heben sie sich auf 4.2.3 Reeller Pol
- Einfache reelle Nullstelle: Ab dieser Frequenz Steigung von +20 dB/Dek
- Einfacher reeler Pol: Ab dieser Frequenz Steigung von -20 dB/Dek
- Sind im Pol-NS-Diagramm komplex-konjugierte Polstellen vorhanden, so enthält der Amplitudengang Überschwinger
- Sind im Pol-NS-Diagramm komplex-konjugierte Nullstellen vorhanden, so enthält der Amplitudengang Senken
- Pole bzw. Nullstellen mit kleinstem Abstand zum Ursprung haben am meisten Ein-

3.8 Allpassnetzwerk (S. 220)

Ein Allpass ist ein Netzwerk, bei dem der Amplitudengang für alle Kreisfrequenzen ω konstant ist

$$|H(j\omega)| = \text{const} \neq 0$$

 \Rightarrow Im Pol-Nullstellen-Diagramm ist ein Allpass dargestellt durch eine zur j ω -Achse symmetrische Pol-Nullstellenkonfiguration

UTF Allpass:
$$H_A(s) = K \cdot \frac{Q(-s)}{Q(s)}$$

Für einen Allpass gilt:

- Ein stabiler Allpass besitzt einen streng monoton abfallenden Phasengang
- Jede beliebige (realisierbare) UTF H(S) kann **immer** in ein allpassfreies Netzwerk $H_M(s)$ und einen Allpass $H_A(s)$ **zerlegt** werden (\Rightarrow siehe Beispiel Abschnitt 3.9)

$$H(s) = H_M(s) \cdot H_A(s)$$

3.9 Minimalphasige- und nicht-minimalphasige Systeme (S. 221)

- Minimalphasennetzwerke:
 - besitzen keine Nullstellen in der rechten Halbebene (RHE)
 - entweder ein frei wählbarer Amplituden- oder Phasengang
- Nicht-Minimalphasennetzwerke
 - Amplituden- und Phasengang unabhängig voneinander wählbar

Beispiel: Zerlegung nicht-minimalphasiges System

Ein nicht-minimalphasiges System kann in ein minimalphasiges System und einen Allpass zerlegt werden (→ Multiplikation!).

4 Bodediagramm

Beispiele verschiedener Bodediagramme und zugehötiger Pol-Nullstellen-Diagramme siehe Skript, Kapitel 5.4.3 (S. 222)

4.1 Bodediagramme mit Matlab

- s = tf('s');
- $_{2} G = 1 + 0.1 *s;$
- % UTF des Systems 3 bode(G)
- 4 bodemag(G)
- % Bode-Plot des Systems % Amplitudengang des Systems

4.2 Approximationen im Bodediagramm (S. 230)

- $H(s) = \frac{\alpha}{s} = \frac{2}{s}$
 - Betrag = Gerade mit Steigung -20 dB/Dek, Schnittpunkt mit $0 \, dB$ -Linie bei $\omega = \alpha$
 - Phase $-\frac{\pi}{2}$ = const

- $H(s) = \frac{\alpha}{s+\alpha} = \frac{1}{\frac{s}{\alpha}+1} = \frac{4}{s+4}$
 - Betrag = Konstante mit Wert 0 dB von $\omega = 0$ bis $\omega = \alpha$; für $\omega > \alpha$ Gerade mit Steigung -20 dB/Dek durch Punkt mit Amplitude 0 dB und $\omega = \alpha$
 - Phase = Konstante mit Wert 0 bis $\omega < \frac{\alpha}{10}$; für $\omega > 10\alpha$ Konstante mit Wert $-\frac{\pi}{2}$; dazwischen eine Gerade (bei $\omega = \alpha$ beträgt Phase $-\frac{\pi}{4}$)

4.2.5 Konj.-komplexe Pole

Voraussetzung: $|q_p| > \frac{1}{2}$

•
$$H(s) = \frac{\omega_p^2}{s^2 + s \frac{\omega_p}{q_p} + \omega_p^2} = \frac{2^2}{s^2 + s \frac{2}{3} + 2^2}$$

- Betrag = Konstante mit Wert 0 dB

- von 0 bis $\frac{\omega_p}{2}$; für $\omega > 2\omega_p$ eine Gerade mit Steiung -40 dB/Dek; Überhöhung bei $\omega = \omega_p$ mit Maximalwert $20 \cdot \log_{10}(q_p)$; Approximation der Überhöhung von mit weiteren Geraden
- Phase = Konstante mit Wert 0 bis $\omega < \frac{\omega_p}{10^{\frac{1}{2q_p}}}$; für $\omega > \omega_p \cdot 10^{\frac{1}{2q_p}}$ Konstante mit Wert $-\pi$;

dazwischen eine Gerade (bei $\omega = \omega_p$ beträgt Phase $-\frac{\pi}{2}$)

4.2.2 Nullstelle im Ursprung

- $H(s) = \alpha \cdot s = 3 \cdot s$
 - Betrag = Gerade mit Steigung +20 dB/Dek, Schnittpunkt mit $0 \, \mathrm{dB}$ -Linie bei $\omega = \frac{1}{\alpha}$
 - Phase $+\frac{\pi}{2} = \text{const}$

4.2.4 Reelle Nullstelle

- $H(s) = \frac{s+\alpha}{\alpha} = \frac{s}{\alpha} + 1 = \frac{s+5}{5}$
 - Betrag = Konstante mit Wert 0 dB von $\omega = 0$ bis $\omega = \alpha$; für $\omega > \alpha$ Gerade mit Steigung +20 dB/Dek durch Punkt mit Amplitude 0 dB und $\omega = \alpha$
 - Phase = Konstante mit Wert 0 bis $\omega < \frac{\alpha}{10}$; für $\omega > 10\alpha$ Konstante mit Wert $+\frac{\pi}{2}$; dazwischen eine Gerade (bei $\omega = \alpha$ beträgt Phase $+\frac{\pi}{4}$)

4.2.6 Konj.-komplexe NS

Voraussetzung: $|q_z| > \frac{1}{2}$

- $H(s) = \frac{s^2 + s\frac{\omega_z}{q_z} + \omega_z^2}{\omega_z^2} = \frac{s^2 + s\frac{2}{3} + 2^2}{2^2}$
 - Betrag = Konstante mit Wert 0 dB von 0 bis $\frac{\omega_p}{2}$; für $\omega > 2\omega_p$ eine Gerade mit Steiung +40 dB/Dek; Senke bei $\omega = \omega_p$ mit Minimalwert $-20 \cdot \log_{10}(q_p)$; Approximation der Senke mit weiteren Geraden
 - Phase = Konstante mit Wert 0 bis $\omega < \frac{\omega_p}{10^{\frac{1}{2q_p}}}$; für $\omega > \omega_p \cdot 10^{\frac{1}{2q_p}}$ Konstante mit Wert $+\pi$; dazwischen eine Gerade (bei $\omega = \omega_p$ beträgt Phase $+\frac{\pi}{2}$)

Hinweis: Berechnungs-Tabelle aus Skript, Seite 235

q_p	0.5	1	1.5	2	3	4	5	6	8	10	20	50	100
$10^{\frac{1}{2q_p}}$	10	3.16	2.15	1.78	1.47	1.33	1.26	1.21	1.15	1.12	1.06	1.02	1.01
$10^{-\frac{1}{2q_p}}$	0.1	0.316	0.464	0.562	0.681	0.750	0.794	0.825	0.866	0.891	0.944	0.977	0.989

4.2.7 Konstanter Faktor

- $H(s) = \alpha \cdot e^{j\beta} = 3 \cdot e^{j\frac{\pi}{2}}$
 - Betrag = $20 \cdot \log_{10}(\alpha)$ = const
 - Phase = β = const

4.2.8 Weitere Bemerkungen

- Inverser Frequenzgang:
 - Amplitudengang an 0 dB-Linie spiegeln
 - Phasengang an 0 rad- bzw. 0°-Linie spiegeln
- Serieschaltung von mehreren Teilsystemen
 - Erfolgt durch grafische Addition der einzelnen Systeme
- · Bei Knickpunkten ist Approximationsfehler am grössten

4.3 Ergänzung: Konjugiert-komplexe Pole und Nullstellen (S. 228)

Ein Tiefpass 2. Ordnung enthält eine Überhöhung und somit ein absolutes Maximum.

UTF Tiefpass 2. Ordnung:
$$H(s) = \frac{\omega_p^2}{s^2 + s\frac{\omega_p}{q_p} + \omega_p^2}$$

Frequenz beim Maximum:
$$\omega_{max} = \omega_p \cdot \sqrt{1 - \frac{1}{2q_p^2}} = \sqrt{\omega_p^2 - 2\sigma_p^2}$$

Höhe des Maximums:
$$|H(\omega_{max})| = \frac{q_p}{\sqrt{1 - \frac{1}{4q_p^2}}}$$

⇒Es gilt: $ω_{max} ≤ ω_p$

4.3.1 Spezialfall q = 1

Frequenz:
$$\omega_{max} = \omega_p \cdot \sqrt{1 - \frac{1}{2}} = \frac{\omega_p}{\sqrt{2}}$$

Höhe: $|H(\omega_{max})| = \frac{1}{\sqrt{1 - \frac{1}{4}}} = 1.15$

4.3.2 Spezialfall $q = \frac{1}{2}$

Frequenz:
$$\omega_{max} = \omega_p \cdot \sqrt{1 - \frac{1}{2(\frac{1}{2})^2}}$$

= $\omega_p \cdot \sqrt{1 - 2} \in \mathbb{C}$

Höhe: $|H(\omega_{max})| = \infty$

4.3.3 Spezialfall $q = \frac{1}{\sqrt{2}}$

Frequenz: $\omega_{max} = 0$

Höhe: $|H(\omega_{max})| = q_p = \frac{1}{\sqrt{2}} \implies 3 \text{ dB}$

5 Stabilität im Bodediagramm

Es gilt, dass wenn der **offene** Regelkreis H(s) nur Pole in der linken s-Halbebene hat (und höchstens zwei Pole im Ursprung bei s=0), der **geschlossene** Regelkreis genau dann **asymptotisch stabil** ist, wenn $H(j\omega)$ für die **Durchgangsfrequenz** ω_D bei der die Amplitude $20 \cdot \log_{10}(|H(j\omega_D)|) = 0$ dB ist, und eine Phase $> -\pi$ hat.

→ Amplitudenrand und Phasenrand müssen > 0 sein, damit das System stabil ist!

5.1 Amplitudenrand und Phasenrand

- Amplitudenrand (Verstärkungsreserve)
 - Abstand des Amplitudengangs zur 0 dB-Linie bei der Kreisfrequenz ω , bei der die Phase gleich $-\pi$ bzw. -180° ist.
- Phasenrand (Phasenreserve)
 - Abstand des Phasengangs zur $-\pi$ -Linie bei der Kreisfrequenz ω , bei der die Amplitude gleich 0 dB ist.

5.2 Amplitudenrand und Phasenrand im Bodediagramm

Das System ist **stabil**, da sowohl Amplitudenrand als auch Phasenrand > 0 sind.

6 Ortskurve (Nyquist-Diagramm) (S. 240)

Bei der Ortskurve werden alle komplexen Werte des Frequenzganges in Abhängigkeit der Frequenz f (aufsteigende Werte von f) in der **komplexen Ebene** eingetragen. Ortskurven werden vor allem in der Regelungstechnik dazu verendet, um die **Stabilität** eines geschlossenen Regelkreises abzuschätzen.

Auf die Konstruktion von Ortskurven wird im Modul Regelungstechnik 2 im Detail eingegangen. Darum soll hier nur auf die Beschreibung im Skirpt (S. 240 - 242) verwiesen werden

6.1 Nyquistdiagramme mit MatLab

7 Stabilität im Nyquist-Diagramm

Die Idee des Nyquist-Kriteriums ist es, anhand der Ortskurve H(s) (offener Regelkreis) einen Aussage über Die Stabilität des (geschlossenen Regelkreises) zu machen. Ausserdem kann mittels Amplitudenrand und Phasenrand eine relative Aussage über die Stabilität des Systems gemacht werden.

7.1 Offener und geschlossener Regelkreis

7.2 Vereinfachtes Nyquist-Kriterium

Ist der **offene** Regelkreis H(s) **asymptotisch stabil** (alle Pole in der LHE), so ist der **geschlossene** Regelkreis $\frac{H(s)}{1+H(s)}$ asymptotisch stabil, wenn die **Ortskurve** des **offenen** Regelkreises den kritischen Punkt (-1, j0) mit wachsender Frequenz weder umkreist noch durchläuft, sondern '**links** liegen lässt'.

7.3 Amplitudenrand und Phasenrand (Verstärkungsreserve)

Mit dem Amplitudenrand und dem Phasenrand kann ausgesagt werden, um wieviel entweder die **Verstäkung** oder die **Phase** erhöht werden kann, bis der geschlossene Regelkreis **instabil** (bzw. **grenzstabil**) wird.

- Amplitudenrand (Verstärkungsreserve)
 - Frequenz, bei welche die **negative** relle Achse geschnitten wird: ω_{π}
 - Bei ω_{π} : $\frac{1}{\text{Amplitudenrand}}$ = Abstand zum Ursprung
- Phasenrand (Phasenreserve)
 - Frequenz, bei welche Eintritt in den Einheitskreis erfolgt: ω_D
 - Bei ω_D : Winkel bis zu 180 °

7.4 Amplitudenrand und Phasenrand im Nyquist-Diagramm

Das System ist **stabil**, da der kritische Punkt (-1, j0) '**links** liegen gelassen' wird, wenn man sich mit aufsteigender Frequenz auf der Ortskurve bewegt.

Es kann auch argumentiert werden, dass das System stabil ist, da sowohl Amplitudenrand als auch Phasenrand > 0 sind.

8 Zustandsraumdarstellung (ZRD)

Grundidee: Differentialgleichung n. Ordnung eines Systems durch ein **Differentialgleichungssystem** von n Gleichungen 1. Ordnung darzustellen.

8.1 Vorteile der ZRD (S. 253-254)

- Innere Systemstabilitäten können erkannt werden, die bei der Untersuchung der UTF nicht festgestellt werden können → Einblick in den inneren Aufbau eines Systems
- Wichtig in der Regelungstechnik
- ZRD hat Vorteile bei der **numerischen** Behandlung von Systemen
- Beschreibung durch Energiespeicher, in der Elektrotechnik L und C
- Nur Integratoren werden verwendet, keine Differentiatoren

8.2 Zustandsraumdarstellung (ZRD) im Zeitbereich (S. 255)

- obere Gleichung: Zustandsgleichung
- untere Gleichung: Ausgangsgleichung
- A Systemmatrix (n × n-Matrix)

Sie bestimmt das Verhalten des **ungestörten Systems** ($\underline{u}(t) = 0$) und bestimmt z.B. die innere Stabilität des gesamten Systems.

- **B** Eingangsmatrix (Steuermatrix) $(n \times m\text{-Matrix})$
- Sie bestimmt die Wirkung der **Steuergrössen** u(t) auf die **Zustandsgrössen** x(t)
- C Ausgangsmatrix (Beobachtungsmatrix) (k×n-Matrix)
 Sie kennzeichnet die Abhängigkeit des Zustandes x(t) von der beobachtbaren Ausgangsgrösse y(t)
- **D** Durchgangsmatrix $(k \times m\text{-Matrix})$

Sie bestimmt die unmittelbare Wirkung der Eingangsgrösse u(t) auf den Ausgang y(t)

Beispiel: ZRD aus Schaltung aufstellen

• DGL Induktivität:
$$\frac{di_L(t)}{dt} = \frac{u_L(t)}{L}$$

 $\Rightarrow u_L(t) = L \cdot \frac{di_L(t)}{dt}$

• DGL Kapazität:
$$\frac{du_C(t)}{dt} = \frac{i_C(t)}{C}$$

$$\Rightarrow u_C(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$

Maschen:
$$L \cdot \frac{\partial i(t)}{\partial t} + y(t) = x(t)$$

Knoten: $\frac{1}{C} \int_{-\infty}^{t} \left(i(\tau) - \frac{y(\tau)}{R} \right) d\tau = y(t)$

Beide Gleichungen in ihre differentielle Form bringen (zweite Gleichung ableiten)

$$L \cdot i'(t) + y(t) = x(t)$$

$$i(t) - \frac{y}{R} = C \cdot y'(t)$$

Gleichungen umformen, sodass die ZRD aufgestellt werden kann

$$i'(t) = -\frac{1}{L}y(t) + \frac{1}{L}x(t)$$

Zustände:
$$i(t)$$
, $y(t)$
Eingang: $x(t)$
Ausgang: $\tilde{y}(t) = y(t)$

$$y'(t) = \frac{1}{C}i(t) - \frac{1}{RC}y(t)$$

$$\frac{-RC}{RC}^{y(t)}$$

$$\frac{P'(t)}{P'(t)} \begin{bmatrix} 0 & -\frac{1}{T} \end{bmatrix} \begin{bmatrix} i(t) \end{bmatrix} \begin{bmatrix} \frac{1}{T} \end{bmatrix}$$

$$\begin{bmatrix} i'(t) \\ y'(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{RC} \end{bmatrix}}_{A} \cdot \underbrace{\begin{bmatrix} i(t) \\ y(t) \end{bmatrix}}_{B} + \underbrace{\begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix}}_{B} \cdot x(t)$$

$$\tilde{y}(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ C \end{bmatrix}}_{C} \cdot \underbrace{\begin{bmatrix} i(t) \\ y(t) \end{bmatrix}}_{D} + \underbrace{\begin{bmatrix} 0 \\ D \end{bmatrix}}_{D} \cdot x(t)$$

Beispiel: ZRD aus Signalflussdiagramm aufstellen

Das ZRD zu folgendem System soll aufgestellt werden. Dazu müssen die Matritzen A, B, C und D gefunden werden.

Zustandsvektor:
$$\underline{q}(t) = \begin{pmatrix} q_1(t) \\ q_2(t) \\ q_3(t) \end{pmatrix}$$
 und dessen Ableitung $\underline{\dot{q}}(t) = \begin{pmatrix} \dot{q}_1(t) \\ \dot{q}_2(t) \\ \dot{q}_3(t) \end{pmatrix}$

$$\underbrace{\begin{pmatrix} \dot{q}_1(t) \\ \dot{q}_2(t) \\ \dot{q}_3(t) \end{pmatrix}}_{\underline{\dot{q}}(t)} = \underbrace{\begin{bmatrix} 2 & -3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} q_1(t) \\ q_2(t) \\ q_3(t) \end{pmatrix}}_{\underline{\dot{q}}(t)} + \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}_{B} \cdot x(t)$$

$$y(t) = \underbrace{\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}}_{C} \cdot \underbrace{\begin{pmatrix} q_1(t) \\ q_2(t) \\ q_3(t) \end{pmatrix}}_{\underline{\dot{q}}(t)} + \underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}}_{D} \cdot x(t)$$

8.3 Zustandsraumdarstellung (ZRD) im Laplace-Bereich (S. 264)

$$s\underline{X}(s) - x(0) = \underline{A}\underline{X}(s) + \underline{B}\underline{U}(s)$$
$$\underline{Y}(s) = \underline{C}\underline{X}(s) + \underline{D}\underline{U}(s)$$

Eingangsvektor (m Zeilen) X(s)Zustandsvektor (n Zeilen)

 $\underline{Y}(s)$ Ausgangsvektor (k Zeilen)

Einheitsmatrix

H(s)Übertragungsmatrix $(k \times m)$

$$\underline{\underline{Y}}(s) = \underline{C}(s\underline{I} - \underline{A})^{-1}\underline{\underline{x}}(0) + \underbrace{(\underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + \underline{D})}_{\underline{H}(s)}\underline{\underline{U}}(s)$$

Mit Anfangsbedingungen x(0) = 0 ergibt sich folgender Zusammenhang, was der Übertragungsfunktion (UTF) entspricht, aber im allgemeinen Fall eine Matrix ist.

$$\underline{\underline{Y}(s) = \underbrace{(\underline{C}(s\underline{I} - \underline{A})^{-1}\underline{B} + \underline{D})}_{\underline{H}(s)}\underline{\underline{U}}(s)}$$

Hinweis: Aus einem Signalflussdiagramm (SFD) ist es meist sehr einfach, die gesuchten Grössen der ZRD zu finden.

8.3.1 Übertragungsmatrix und Übertragungsfunktion (S. 266)

Übertragungsmatrix

· Beschreibung in Matritzenform

Übertragungsfunktion

• MIMO-Systeme

- SISO-Systeme
- Matrix-Form wird zu 'normaler' Gleichung

$$Y(s) = H(s) \cdot U(s)$$

• *H*(*s*) hat gleiche Grösse (Dimensionen) wie Durchgangsmatrix D

8.4 Ordnung eines Systems (S. 256)

 $Y(s) = \mathbf{H}(s) \cdot U(s)$

Die Ordnung eines Systems definiert die kleinste Anzahl von Zustandsgrössen x(t). Äquivalent dazu kann die Ordnung eines Systems auch als die Anzahl der unabhängigen Energiespeicher definiert werden.

8.5 ZRD mit Matlab

$$H(s) = \frac{b_i s^i + b_{i-1} s^{i-1} \cdots b_1 s^1 + b_0}{a_i s^i + a_{i-1} s^{i-1} \cdots a_1 s^1 + a_0}$$

[b, a] = ss2tf(A,B,C,D)

% H(s) aus Matritzen berechnen 2 (A,B,C,D) = tf2ss(b, a) % Matritzen aus H(s) berechnen

8.6 Äquivalente Zustandsraumdarstellung (ZRD) (S. 257)

Mit einer Transformationsmatrix T ($n \times n$ -Matrix, nicht singulär, $TT^{-1} = I = T^{-1}T$) kann man verschiedenste Zustandsgrössen und Zustandsraumdarstellungen erhalten, die aber alle ein identisches Systemverhalten aufweisen.

Die obige ZRD ist **äquivalent** zur ZRD aus Abschnitt 8.2 bezüglich y(t) und u(t). Die bedeutet, dass die **Zustandsgrössen** $\xi(t)$ und x(t) willkürlich gewählt werden können, solange T nicht singulär ist (Determinante von $T \neq 0$)

Physikalisch sinnvolle Zustandsgrössen sind:

- Spannungen über Kapazitäten
- · Ströme durch Induktivitäten

8.7 Matrix A diagonalisieren

Oft wird die **Systemmatrix** A diagonalisiert, um **entkoppelte Zustände** zu erhalten. Anstelle der Matrix $\hat{A} = TAT^{-1}$ wird dann üblicherweise A_{diag} verwenet.

Eigenwerte der Matrix A Eigenvektoren der Matrix A \vec{v}_i Matrix mit Eigenvektoren von A

Diagonalisierte Matix A mit Eigenwerten λ_i auf Diagonale

Transformationsmatrix

$$A_{diag} = \Lambda = V^{-1} \cdot A \cdot V$$

$$T = V^{-1}$$
$$T^{-1} = V$$

8.7.1 Vorgehen Matrix diagonalisieren

- Ansatz: $A \cdot \vec{v} = \lambda \cdot \vec{v} \implies (A \lambda I) \cdot \vec{v} = \vec{0}$ bzw. $(\lambda I A) \cdot \vec{v} = \vec{0}$
- Determinante des charakteristischen Polynoms Null setzen: $|\lambda I A| = 0$ \Rightarrow Eigenwerte λ_i
- Für jeden gefundenen Eigenwert müssen Eigenvektoren \vec{v}_i gefunden werden:
 - Eigenwert λ_i in Gleichungssystem $(\lambda_i \mathbf{I} \mathbf{A}) \cdot \vec{v}_i = \vec{0}$ einsetzen
 - Einen Wert von $\vec{v}_i = 1$ wählen und Eigenvektor \vec{v}_i als Spaltenvektor schreiben
- Matrix V aus Eigenvektoren 'zusammenbauen'
- Matrix Λ 'zusammenbauen', indem man Eigenwerte λ_i auf Diagonale schreibt

8.7.2 Entkoppeltes vs. nicht-entkoppeltes System

Nicht-entkoppeltes System

Entkoppeltes System

8.8 Einschub – Lineare Algebra: 2x2 Matrix invertieren

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \qquad \mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \quad \text{mit } \det(\mathbf{A}) = ad - bc$$

Beispiel: Matrix-Diagonalisierung (s. 25

$$A = \begin{bmatrix} -2 & 7 \\ -1 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 7 \\ -1 & 6 \end{bmatrix} \qquad |\lambda I - A| = \begin{vmatrix} \lambda + 2 & -7 \\ 1 & \lambda - 6 \end{vmatrix} = (\lambda + 2) \cdot (\lambda - 6) - 7 \cdot (-1) = 0$$

$$\Rightarrow \text{ Mitternachtsformel liefert die Eigenwerte } \lambda_1 = -1 \text{ und } \lambda_2 = 5$$

Ersten Eigenwert $\lambda_1 = -1$ in $(\lambda_1 \mathbf{I} - \mathbf{A}) \cdot \vec{\mathbf{v}}_1 = \vec{\mathbf{0}}$

$$1 \cdot v_{11} - 7 \cdot v_{21} = 0$$
$$1 \cdot v_{11} - 7 \cdot v_{21} = 0$$

Wähle $v_{21}=1$ \Rightarrow $\vec{v}_1=\begin{bmatrix} 7\\1 \end{bmatrix}$ Gleichen Vorgehen für zweiten Eigenvektor \vec{v}_2 $\Lambda = \begin{bmatrix} \lambda_1 & 0\\0 & \lambda_2 \end{bmatrix}$ $\pmb{V} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12}\\v_{21} & v_{22} \end{bmatrix}$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$\boldsymbol{V} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix}$$

8.9 Lösung der ZRD im Zeitbereich (S. 259-260)

Die Zustandsgleichung $\underline{\dot{x}}(t) = A\underline{x}(t) + B\underline{u}(t)$ ist eine Differentialgleichung. Sie soll mit dem Ansatz einer Exponentialfunktion gelöst werden. Für Systeme mit nur einem Zustand würde man den Ansatz $x(t) = e^{at}$ wählen.

Da im Allgemeinen Systeme mit mehreren Zuständen betrachtet werden, wird der folgende Ansatz gewählt:

$$e^{At} = I + At + \frac{A^2}{2!}t^2 + \dots + \frac{A^k}{k!}t^k + \dots = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$$

Der Ansatz ist beschrieben als desser Taylor-Reihe.

Durch einsetzen des Ansatzes in die Zustandsgleichung ergibt sich für den Ausgangsvektor y(t) die folgende Lösung der ZRD im Zeitbereich

$$\underline{\underline{y}(t) = \mathbf{C} \, \mathbf{\Phi}(t) \, \underline{x}(0) + \int_{0}^{t} \mathbf{C} \, \mathbf{\Phi}(t-\tau) \, \mathbf{B} \, \underline{u}(t) \, d\tau + \mathbf{D} \, \underline{u}(t)}$$

Hinweis: $\Phi(t) = e^{At}$ heisst **Fundamentalmatrix**

8.10 Fundamentalmatrix (S. 260-263)

Die Fundamentalmatrix (auch Transitionsmatrix genannt) ist definiert als

$$e^{A \cdot t} = \mathbf{\Phi}(t)$$

Sie wird benötigt, um die Zustandsraumdarstellung im Zeitbereich zu lösen. Es gibt mehrere Methoden, die quadratische $(n \times n)$ Fundamentalmatrix zu bestimmen

8.10.1 Methode 1 – Inverse Laplace-Transformation

$$\mathbf{\Phi}(t) = \mathcal{L}^{-1} \left\{ (s\mathbf{I} - \mathbf{A}^{-1}) \right\}$$

Beispiel: Methode 1 - Inverse Laplace-Transformation

Mit der **Systemmatrix**
$$A = \begin{bmatrix} -1 & 0 \\ 1 & -2 \end{bmatrix}$$
 ergibt sich $(sI - A) = \begin{bmatrix} s+1 & 0 \\ -1 & s+2 \end{bmatrix}$
Somit ist $(sI - A)^{-1} = \frac{\begin{bmatrix} s+1 & 0 \\ -1 & s+2 \end{bmatrix}}{(s+1)(s+2)}$ $\bigcirc \longrightarrow \begin{bmatrix} e^{-t} & 0 \\ e^{-t} - e^{-2t} & e^{-2t} \end{bmatrix} = \mathbf{\Phi}(t)$

8.10.2 Methode 2 – Diagonalisierung von $\Phi(t)$

$$\mathbf{\Phi}(t) = e^{\mathbf{A} \cdot t} = \begin{bmatrix} e^{\lambda_1 t} & \cdots & 0 \\ & e^{\lambda_2 t} & \vdots \\ \vdots & & \ddots \\ 0 & \cdots & & e^{\lambda_n t} \end{bmatrix} \cdot V^{-1}$$
 Wenn $A_{diag} = V^{-1} \cdot A \cdot V$ ist und λ_i die Eigenwerte von A sind

8.10.3 Methode 3 – Spektrale Zerlegung

→ Nicht in Vorlesung behandelt

8.10.4 Methode 4 - Satz von Cayley-Hamilton

→ Nicht in Vorlesung behandelt

Parameteren a und c

8.10.5 Methode 5 – Definition der Reihenentwicklung

Die Matrix A sei definiert als eine Dreiecksmatrix mit

$$\mathbf{A} = \begin{bmatrix} a & 0 \\ 1 & c \end{bmatrix}$$

Die Potenz der Matrix wird berechnet aus

$$A^{k} = \begin{bmatrix} a & 0 \\ 1 & c \end{bmatrix}^{k} = \begin{bmatrix} a^{k} & 0 \\ \sum_{l=0}^{k-1} a^{k-l-1} & c^{k} \end{bmatrix}$$

8.10.6 Eigenschaften der Fundamentalmatrix $\Phi(t)$

$\Phi(0) = I$	$e^{\boldsymbol{A}\cdot\boldsymbol{0}}=\boldsymbol{I}$
$\mathbf{\Phi}^{-1}(t) = \mathbf{\Phi}(-t)$	$(e^{\mathbf{A}\cdot t})^{-1} = e^{-\mathbf{A}\cdot t}$
$\mathbf{\Phi}^k(t) = \mathbf{\Phi}(kt)$	$(e^{A \cdot t})^k = e^{A \cdot k \cdot t}$
$\mathbf{\Phi}(t_1) \cdot \mathbf{\Phi}(t_2) = \mathbf{\Phi}(t_1 + t_2)$	$e^{\mathbf{A}\cdot t_1}\cdot e^{\mathbf{A}\cdot t_2} = e^{\mathbf{A}(t_1+t_2)}$
$\mathbf{\Phi}(t_2 - t_1) \cdot \mathbf{\Phi}(t_1 - t_0) = \mathbf{\Phi}(t_2 - t_0)$	$e^{A(t_2-t_1)} \cdot e^{A(t_1-t_0)} = e^{A(t_2-t_0)}$

Hinweis: ($\Phi(t)$ ist stets invertierbar)

8.10.7 Fundamentalmatrix in Matlab

A = [0 6; 1 5];

% Matrix A

s expm(A*t)

% Fundamentalmatrix

8.11 Lösung der ZRD im Zeitbereich – SISO-Systeme (S. 263)

Die Impulsantwort h(t) eines SISO-Systems ist gegeben durch

$$y(t) = C\mathbf{\Phi}(t)\mathbf{B} * u(t) + \mathbf{D}u(t) = h(t) * u(t)$$
$$h(t) = C\mathbf{\Phi}(t)\mathbf{B} + \mathbf{D}\delta(t)$$

8.12 Stabilität von ZRDs (S. 275)

Ein LTI-System ist asymptotisch stabil, wenn alle Pole in der linken Halbebene liegen (bzw. einen negativen Realteil haben).

Unter Betrachtung der ZRD wird diese Bedingung interpretiert als: Wenn alle Eigenwerte der Systemmatrix A einen negativen Realteil besitzen, ist das System asymptotisch stabil.

$$|\lambda \mathbf{I} - \mathbf{A}| = 0 \quad \rightarrow \forall \lambda \quad \text{Re} \{\lambda\} < 0$$

Achtung: Umgekehrt gilt diese Aussage nicht! Ein asymptotisch stabiles LTI-System bedeutet nicht, dass alle Eigenwerte der Systemmatrix A des Systems einen negativen Realteil besitzen.

→ Pol-/Nullstellenkürzungen

8.13 Beobachtbarkeit und Steuerbarkeit – Begriffe (s. 277)

Beobachtbarkeit der Zustände

- Ein System ist **beobachtbar**, wenn wir, gegeben das Eingangssignal $\underline{u}(t)$ und das Ausgangssignal y(t), über eine endliche Zeitspanne $0 \ge t \ge t_1$ die Zustände x(t) eindeutig bestimmen können.
- Ein System ist **nicht beobachtbar**, wenn es Zustände $\underline{x}(t)$ gibt, die **keinen** Einfluss auf die Ausgänge y(t) haben.
- \rightarrow Man kann aus dem Verhalten von y(t) nicht auf die Zustände $\underline{x}(t)$ schliessen.

Steuerbarkeit der Zustände

- ullet Ein System ist **steuerbar**, wenn es für jeden Anfangszustand \underline{x}_0 und jeden Endzustand \underline{x}_1 eine Steuerfunktion $\underline{u}(t)$ gibt, die das System in einer endlichen Zeitspanne $0 \ge t \ge t_1 \text{ von } \underline{x}_0 \text{ zu } \underline{x}_1 \text{ bringt, d.h. } \underline{x}(t_1) = \underline{x}_1.$
- Ein System ist **nicht steuerbar**, wenn es Zustände $\underline{x}(t)$ gibt, die nicht von den Eingängen $\underline{u}(t)$ beeinflusst werden.

Bemerkungen:

- System (A, B, C, D) ist bekannt
- Äquivalent reicht es, wenn wir x(0) bestimmen können

8.14 Steuerbarkeit (S. 277)

Gemäss der äquivalenten ZRD-Darstellung (siehe Abschnitt 8.6) werden die Matritzen \hat{A} , \hat{B} , \hat{C} und \hat{D} mit einer Matrix V diagonalisert, sodass $\hat{A} = A_{\text{diag}} = V^{-1}AV$, $\hat{B} = V^{-1}B$, $\hat{C} = CV$ und $\hat{D} = D$

Ein SISO-System mit einfachen Eigenwerten ist genau dann vollständig steuerbar, wenn nach der Transformation auf **Diagonalform** bzw. Parallelform ($A_{\text{diag}} = \hat{A} =$ $V^{-1}AV$), alle Elemente von $\hat{B} = V^{-1}B$ ungleich Null sind.

Ein MIMO-System (m > 1) mit einfachen Eigenwerten ist genau dann vollständig steuerbar, wenn nach der Transformation auf Parallelform ($A_{\text{diag}} = \hat{A} = V^{-1}AV$), in jeder Zeile von $\hat{B} = V^{-1}B$ mindestens ein Element ungleich Null ist.

8.14.1 Steuerbarkeitsmatrix

Ein System ist vollständig steuerbar, wenn

- Der Rang der Steuerbarkeitsmatrix gleich der Ordnung n des Systems
- Falls nur ein Eingang (m = 1): Die Determinante von $Q_{\text{Steuerbarkeit}}$ ungleich Null ist

Dimension: $n \times n \cdot m$ $Q_{\text{Steuerbarkeit}} = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$ Systemmatrix $(n \times n)$ Zustände Eingangsmatrix $(n \times m)$ Eingänge

Steuerbarkeitsmatrix in Matlab

ctrb(A, B); % Steuerbarkeitsmatrix

8.15 Beobachtbarkeit (S. 278)

Gemäss der äquivalenten ZRD-Darstellung (siehe Abschnitt 8.6) werden die Matritzen \hat{A} , \hat{B} , \hat{C} und \hat{D} mit einer Matrix V diagonalisert, sodass $\hat{A} = A_{\text{diag}} = V^{-1}AV$, $\hat{B} = V^{-1}B$, $\hat{C} = CV$ und $\hat{D} = D$

Ein SISO-System mit einfachen Eigenwerten ist genau dann vollständig beobachtbar, wenn nach der Transformation auf Diagonalform bzw. Parallelform $(A_{\text{diag}} = \hat{A} = V^{-1}AV)$, alle Elemente von $\hat{C} = CV$ ungleich Null sind.

Ein MIMO-System (m > 1) mit einfachen Eigenwerten ist genau dann vollständig beobachtbar, wenn nach der Transformation auf Parallelform $(A_{\text{diag}} = \hat{A} = V^{-1}AV)$, in jeder Spalte von $\hat{C} = CV$ mindestens ein Element ungleich Null ist.

8.15.1 Beobachtbarkeitsmatrix

Ein System ist vollständig beobachtbar, wenn

- Der Rang der Beobachtbarkeitsmatrix gleich der Ordnung n des Systems
- Falls nur ein Eingang (m=1): Die Determinante von $Q_{\text{Beobachtbarkeit}}$ ungleich Null ist

Beobachtbarkeitsmatrix in Matlab

- obsv(A, C);
- % Beobachtbarkeitsmatrix
- rank(obsv(A, C))
- % Rang der Beobachtbarkeitsmatrix

8.16 Standardformen der ZRD (S. 267)

Die allgemeine Differentialgleichung von SISO-Systemen der Form

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^m u}{dt^m} + b_{m-1} \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_1 \frac{du}{dt} + b_0 u$$

ergibt mit der Laplace-Transformation und mit $m \le n$

$$H(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

Diese UTF H(s) kann mit verschiedenen ZRDs (**Normalformen**) abgebildet werden. **Wichtig:** Für alle folgenden Normalformen werden die Zustände x_i im blockdiagramm **unmittelbar nach den Integratoren** verwendet.

8.16.1 Regelungsnormalform (S. 267-268)

Die Regelungsnormalform kann **direkt aus der UTF** H(s) aufgestellt werden. Für m = n gilt sieht die Regelungsnormalform folgendermassen aus:

$$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_{n}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1} \end{bmatrix} \cdot \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n-1}(t) \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \cdot u(t)$$

$$y(t) = \begin{bmatrix} b_{0} - a_{0}b_{n} & b_{1} - a_{1}b_{n} & \cdots & b_{n-1} - a_{n-1}b_{n} \end{bmatrix} \cdot \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n-1}(t) \\ \vdots \\ x_{n-1}(t) \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} b_{n} \end{bmatrix} \cdot u(t)$$

In den meisten Fällen ist m < n und die **Ausgangsgleichung** vereinfacht sich zu:

$$y(t) = \begin{bmatrix} b_0 & b_1 & \cdots & b_m & 0 & \cdots & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \cdot u(t)$$

8.16.2 Beobachtungsnormalform (S. 269-270)

Ein System, welches in Beobachtungsnormalform dargestellt werden kann, ist **beobachtbar!** ür m = n gilt sieht die Regelungsnormalform folgendermassen aus:

$$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_{n}(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \cdots & -a_{0} \\ 1 & 0 & 0 & \cdots & -a_{1} \\ 0 & 1 & 0 & \cdots & -a_{2} \\ \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix} \cdot \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n-1}(t) \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} b_{0} - a_{0}b_{n} \\ b_{1} - a_{1}b_{n} \\ b_{2} - a_{2}b_{n} \\ \vdots \\ b_{n-1} - a_{n-1}b_{n} \end{bmatrix} \cdot u(t)$$

$$y(t) = \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix} \cdot \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n-1}(t) \\ x_{n}(t) \end{bmatrix} + \begin{bmatrix} b_{1} - a_{1}b_{n} \\ b_{2} - a_{2}b_{n} \\ \vdots \\ b_{n-1} - a_{n-1}b_{n} \end{bmatrix} \cdot u(t)$$

In den meisten Fällen ist m < n und die **Zustandsgleichung** vereinfacht sich zu:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \cdots & -a_0 \\ 1 & 0 & 0 & \cdots & -a_1 \\ 0 & 1 & 0 & \cdots & -a_2 \\ \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{bmatrix} \cdot u(t)$$

8.16.3 Zusammenhang Regelungsnormalform - Beobachtungsnormal

Die beiden Formen sind dual und weisen folgende Zusammenhänge auf:

- A ist an der Hauptdiagonalen gespiegelt
- **B** und **C** sind vertauscht
- **D** bleibt gleich

8.16.4 Diagonalform und Jordan-Normalform (S. 271-273)

TO BE DONE LATER