Photogrammetry & Robotics Lab Machine Learning for Robotics and Computer Vision Tutorial

More on Ensembles and Metrics

Jens Behley

Recap: Ensembles

- Discussed ensemble methods:
 - Bagging
 - Random Forests
 - Boosting: AdaBoost and Gradient Tree Boosting
- Powerful off-the-shelf methods

Recap: Bagging

- Ensemble Prediction: $P(y|\mathbf{x}) = T^{-1} \sum_{j=1}^{T} P_j(y|\mathbf{x})$
- Combined predictions can be more accurate

Recap: Random Forest

- Use T Decision Trees as weak learners
- Each Decision Tree is randomized by:
 - 1. Selecting subset of features and split functions
 - 2. Bagging for each Decision Tree
- Randomization of split functions reduces correlation of individual trees

Recap: Gradient Boosting

- 1. $H_0(\mathbf{x}) = 0$
- 2. For m=1 to M:

(a)
$$\tilde{y}_i = -\left[\frac{\partial \ell(y_i, H(\mathbf{x}_i))}{\partial H(\mathbf{x}_i)}\right]_{H(\mathbf{x}) = H_{m-1}(\mathbf{x})}, i = 1, \dots, N$$

(b) $h_m = \arg\min_h \sum_i \left[\tilde{y}_i - h(\mathbf{x}_i)\right]^2$

(c)
$$H_m(\mathbf{x}) = H_{m-1}(\mathbf{x}) + \nu h_m(\mathbf{x})$$

- As long as we perform a step in the right direction (given by the gradient), we are fine with doing a small step by $\nu \in \mathbb{R}$
- $\nu \in \mathbb{R}$ is the learning rate

Recap: Regression Tree

- Same algorithm, but now targets $y_i \in \mathbb{R}$
- Leaves return estimate for region
- Training objective: $\sum_{(\mathbf{x}_i, y_i) \in \mathcal{X}_{train}} (y_i H(\mathbf{x}_i))^2$
- Split functions still threshold function:

$$h(\mathbf{x}|d,\tau) = \begin{cases} x_d < \tau, & 0 \\ x_d \ge \tau, & 1 \end{cases}$$

Recap: Building Regression Tree

- Same as before: Recursively split examples via split functions at inner nodes.
- Estimated value of examples reaching leaf:

$$\bar{y} = \frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{S}} y_i$$

• To determine quality of split $Q(\mathcal{S}_L, \mathcal{S}_R)$, we can use the square loss with respect to the average \bar{y} :

$$Q(S_L, S_R) = \sum_{(\mathbf{x}, y) \in S_L} (y - \bar{y})^2 + \sum_{(\mathbf{x}, y) \in S_R} (y - \bar{y})^2$$

Evaluation Metrics

Evaluation Metrics

- Evaluation metrics measure performance of algorithms
- Enable comparison of different approaches

 Here, we concentrate on commonly used metrics for classification. But different tasks have also more task specific metrics...

 Example: Let's say we examples, K = 3 (horse, cat, dog) and 6 test images.

- Sidenote: CIFAR-10 images, 32x32 color images with 10 classes
- We train our classifier, we apply it and get the following predictions:

Our classifier results

		MAL			376	1
horse	0.98	0.20	0.01	0.20	0.30	0.02
cat	0.00	0.02	0.83	0.73	0.67	0.45
dog	0.20	0.78	0.16	0.07	0.03	0.53

$$\hat{y} = \arg\max_{y} P(y|\mathbf{x})$$

Our classifier results

 Confusion matrix counts number of ground truth (gt) vs. predicted.

True/False Positive/Negative

 For a specific class K, we can now defined TP, FP, TN & FN

- True positive (TP): Predicted K and is K
- False positive (FP): Classified as K, but actually a different class (not K)
- True negative (TN): Predicted not K and is not K
- False negative (FN): Predicted not K and is not K

4	GT	•		
Prediction		horse	cat	dog
	horse	1	0	0
	cat	0	2	1
	dog	1	0	1

Which entries correspond to TP, FP, TN, FN?

False positive False negative

Accuracy

- Accuracy: Sum over true positives / number of all examples → 3/6 = 0.5 or 50%
- Accuracy affected by class distribution!

Precision and Recall

Precision =
$$\frac{\text{\#Correct}}{\text{\#Predictions}} = \frac{\text{TP}}{\text{TP + FP}}$$

Recall =
$$\frac{\text{#Correct}}{\text{#Ground Truth}} = \frac{\text{TP}}{\text{TP + FN}}$$

- Precision: How many of the predictions are correct?
- Recall: How many of ground truth have been found?

Example: Precision and Recall

•			_		
Prediction		horse	cat	dog	
	horse	1	0	0	
	cat	0	2	1	
	dog	1	0	1	

• What is the precision, recall for each class?

•	GT			_	
Prediction		horse	cat	dog	Precision
	horse	1	0	0	1
'	cat	0	2	1	2/3
	dog	1	0	1	1/2
Re	ecall	1/2	2/2	1/2	

F1 score

- Usually one wants to have single metric
- F₁ score combines precision recall

$$F_1 = \frac{2 \text{ Precision} \cdot \text{ Recall}}{\text{Precision} + \text{ Recall}}$$

For multiple classes: Average over class F1 scores.

Precision Recall Curve

Add Precision/Recall for a single class

Interpolated PR Curve

 Interpolated PR-Curve: take maximum precision at higher recalls

Mean Average Precision (mAP)

$$\mathsf{AP} = \frac{1}{N} \sum_{i} \operatorname{Precision} \left(\frac{i}{N} \right)$$

Typical values:

- N = 11, 40 (KITTI)
- N = 101 (COCO)

- Average Precision: Area under PR Curve
- mAP = mean over all class APs
- COCO: mean mAP at multiple IoU levels $\theta_{IoU_{25}}$

Questions?

See you next week!