Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1
Cagname	nome	\mathbf{e}	matricola:
Cognonic,	1101110	\mathbf{c}	man icoia.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Siano A, B, C lettere proposizionali e P una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

- \Box ¬P non è una tautologia.
- $\Box P \models A \lor \neg B$
- \square B \vee C $\models \neg$ P
- □ P è insoddisfacibile.
- (b) Siano Q e R formule proposizionali. Quali delle seguenti affermazioni sono corrette?

2 punti

- \square Q $\not\equiv$ R se e solo se $\models \neg(Q \rightarrow R)$
- $\square \;$ Se R è insoddisfacibile, allora $\neg R$ è soddisfacibile.
- $\Box \neg R \lor (Q \to R)$ è una tautologia.
- $\Box R \to Q \equiv \neg R \vee \neg \neg Q$

(c)	Sia A un insieme non vuoto e sia $L=\{R\}$ un linguaggio del prim'ordine con R simbolo di relazione binaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle A,R\rangle$, l'affermazione: " R è riflessiva"?	2 punti
	$\Box \ \forall x (R \to x = x)$	
	$\Box \ \ \forall x \left(R(x,x) ight)$	
	$\Box \ \forall x (R(x) = x)$	
(d)	Dati due insiemi C e D , indichiamo con C^D l'insieme delle funzioni da D in C . Sia A un insieme non vuoto di cardinalità finita. Stabilire quali delle seguenti affermazioni sono corrette.	2 punti
	\square \mathbb{N}^A è un insieme infinito numerabile.	
	\square $A^{\mathbb{N}}$ è necessariamente più che numerabile.	
	$\Box A^A$ è un insieme infinito.	
	\square A^A è certamente in biezione con $\mathcal{P}(A)$.	
(e)	Sia $L = \{S\}$ un linguaggio del prim'ordine con S simbolo di relazione	2 punti
	binario. Quali delle seguenti affermazioni sono formalizzate dalla formula	
	$\forall x \exists y S(y,x)$ relativamente alla struttura $\langle \mathbb{Q}, < \rangle$?	
	□ "Dato un numero razionale, ce n'è sempre uno più piccolo."	
	□ "C'è un numero razionale più piccolo di x." □ "C'è un numero razionale più piccolo di tutti "	
	□ "C'è un numero razionale più piccolo di tutti." □ "C'i sana puppari razionali arbitrazionante piccoli"	
(0)	"Ci sono numeri razionali arbitrariamente piccoli."	
(f)	Sia $f: \mathbb{N} \to \mathbb{N}$ definita da $f(x) = \frac{2x+10}{2} - x$ per ogni $x \in \mathbb{N}$. Stabilire quali delle seguenti affermazioni sono corrette.	2 punti
	\Box f è iniettiva.	
	$\Box f(x) = 5 \text{ per ogni } x \in \mathbb{N}.$	
	\Box f è suriettiva.	
	$\Box f(x) = 3 \text{ per qualche } x \in \mathbb{N}.$	
(g)	Siano B, C sottoinsiemi di A e sia $f: A \to A$. Stabilire quali delle seguenti affermazioni sono corrette.	2 punti
	$\square B \subseteq f^{-1}[f[B]].$	
	$\Box B \subseteq f [f[B]].$ $\Box \text{ Se } f[B] \subseteq f[C] \text{ allora si deve avere che } B \supseteq C.$	
	Se $J[D] \subseteq J[C]$ and a si deve avere the $D \supseteq C$. Se $B \neq C$ allors certamente accade the $f[B] \neq f[C]$.	
	$\Box f^{-1}[B \cap C] = f^{-1}[B] \cap f^{-1}[C].$	
	$D \cap J \cap D \cap D \cap J \cap D \cap J \cap D \cap D \cap D \cap $	

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{R, f, c\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario R, un simbolo di funzione binario f e un simbolo di costante c. Sia ϕ la formula

$$(\neg \exists y (f(y,y) = x) \to R(f(z,c),x)).$$

Consideriamo la *L*-struttura $\mathcal{N} = \langle \mathbb{N}, \leq, +, 1 \rangle$.

- 1. Dire se ϕ è un enunciato oppure no e, nel secondo caso, cerchiare le occorrenze libere di variabili.
- 2. È vero che $\mathcal{N} \models \exists y (f(y,y) = x)[x/n,y/m]$ se e solo se n è un numero naturale pari?
- 3. È vero che $\mathcal{N} \models \varphi[x/1, y/0, z/0]$?
- 4. È vero che $\mathcal{N} \models \varphi[x/2, y/1, z/0]$?
- 5. È vero che $\mathcal{N} \models \varphi[x/5, y/1, z/5]$?
- 6. È vero che $\mathcal{N} \models \forall x \, \varphi[x/0, y/0, z/0]$?
- 7. È vero che $\mathcal{N} \models \forall x \, \varphi[x/0, y/0, z/5]$?
- 8. È vero che $\mathcal{N} \models \exists z \forall x \, \varphi$?
- 9. È vero che $\mathcal{N} \models \forall z \forall x \, \varphi$?

Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia A un insieme non vuoto, siano B,C sottoinsiemi di A e sia $f\colon A\to A$ una funzione. Formalizzare relativamente alla struttura $\langle A,B,C,f\rangle$ mediante il linguaggio $L=\{B,C,f\}$ con due simboli di predicato unari ed un simbolo di funzione unario le seguenti affermazioni:

- 1. f è iniettiva
- 2. $f \circ f$ è una funzione costante
- 3. $f[B] \subseteq C$
- 4. $\operatorname{rng}(f) = C$.