

Definizioni di Base Campionamento, Istogramma

Michele Nappi, Ph.D
Università degli Studi di Salerno
mnappi@unisa.it
089-963334

Psicofisica

- Sensazione: esperienza soggettiva di cambiamenti nel mondo fisico registrati dai nostri organi sensoriali
- Psicofisica: La scienza che definisce relazioni QUANTITATIVE tra gli eventi fisici e psicologici (cioè le sensazioni)

Le Origini della Psicofisica

- Ernst Weber (1795–1878) scoprì che il più piccolo cambiamento di uno stimolo (ad esempio il suo peso o l'intensità di luce) che può essere rilevato è una proporzione costante del livello di stimolazione — "Legge di Weber"
- JND (just noticeable difference) la differenza minima richiesta per rilevare un cambiamento nello stimolo, ad esempio per discriminare 2 stimoli con intensità diversa.
- La JND venne chiamata anche soglia differenziale.

Psicofisica (Il Mito della Caverna di Platone e Matrix)

Visual Sciences

Image Processing and Computer Vision

Image Understanding and Predictive Recognition

Image Understanding

Image Understanding (2)

Image Processing and Computer Vision: Applications

Robotics

- Object Recognition (assembly line)
- · Autonomous Vehicles Obstacle
- Avoidance

Earth Remote Sensing

- Pollution Control (River, City)
- · Landsat Image Analysis, Synthesis and Coding

Arial Photography

- Image Enhancement (espionage)
- Missile Guidance
- Geological Mapping

Astronomy

- · Astronomical Image Enhancement
- Chemical/Spectral Analysis

Medicine

- Computerized Scanners (MRI,CT,etc)
- Radiological Organ Segmentation

Chemistry

- Chemical Composition
- Molecular Imaging
- Electron Microscope

Graphics

- Image Warping
- Animation
- Texture/Image Mapping

Security and Forensic

- Biometric
- Videosurveillance

Intensity and Brightness

Image Intensity

- Light energy emitted from a unit area in the image.
- Device dependence.

Image Brightness

- The subjective appearance of a unit area in the image.
- Context dependence.
- Subjective

Image on the right is brighter than image on the left.

Intensity vs Brightness (cont.)

- All the small squares have exactly the same intensity
- But they appear progressively darker as the background becomes lighter

Quanti Punti Neri (Versione Debole)?

Quanti Punti Neri (Versione Forte)?

Intensity vs Brightness (cont.)

- Intesity on the strip is constant
- D is perceived brighter than B

Image Formation

a b c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

f(x,y) = reflectance(x,y) * illumination(x,y) Reflectance in [0,1], illumination in [0,inf]

Image Digitization

3d world around us

and sent to

Digital Image Processing System

ouput as an

Processed image

Sampling and Quantization

Sampling and Quantization

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Sampling

4x4=16

8x8=64

16x16=256

32x32=1024

64x64=4096

128x128=16384

Quantization

8bpp

7bpp

4bpp

2bpp

1bpp

Image Types

- Binary Images
 - black and white
- Gray Scale Images
 - Black, white and graylevel
- Color Images

What is an image?

- We can think of an image as a function, f, from R2 to R:
 - -f(x, y) gives the **intensity** at position (x, y)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,1]$
- A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

What is an image?

- An image: a multidimensional function of spatial coordinates.
- Spatial coordinate: (x,y) for 2D case such as photograph, (x,y,z) for 3D case such as CT scan images (x,y,t) for movies
- The function f may represent intensity (for monochrome images) or color (for color images) or other associated values.

What is an image?

Images as functions

What is a digital image?

- We usually operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to nearest integer)
- If our samples are ∆ apart, we can write this as:
- $f[i,j] = Quantize\{ f(i \Delta, j \Delta) \}$
- The image can now be represented as a matrix of integer values

	j—							
.	62	79	23	119	120	105	4	0
i	10	10	9	62	12	78	34	0
•	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Sampling + Quantization

	x = 58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
y =															
41	210	20	9 204	202	197	247	143	71	64	80	84	54	54	57	58
42	206	19	203	197	195	210	207	56	63	58	53	53	61	62	51
43	201	20	7 192	201	198	213	156	69	65	57	55	52	53	60	50
44	216	20	3 211	193	202	207	208	57	69	60	55	77	49	62	61
45	221	20	211	194	196	197	220	56	63	60	55	46	97	58	106
46	209	21	1 224	199	194	193	204	173	64	60	59	51	62	56	48
47	204	21	2 213	208	191	190	191	214	60	62	66	76	51	49	55
48	214	21	215	207	208	180	172	188	69	72	55	49	56	52	56
49	209	20	5 214	205	204	196	187	196	86	62	66	87	57	60	48
50	208	20	205	203	202	186	174	185	149	71	63	55	55	45	56
51	207	21	211	199	217	194	183	177	209	90	62	64	52	93	52
52	208	20	209	209	197	194	183	187	187	239	58	68	61	51	56
53	204	20	203	209	195	203	188	185	183	221	75	61	58	60	60
54	200	20:	3 199	236	188	197	183	190	183	196	122	63	58	64	66
55	205	21	202	203	199	197	196	181	173	186	105	62	57	64	63

Risoluzione

Spaziale:

 Definisce il numero di pixel da usare (in alternativa DPI – dot per inch: il numero di pixel al centimetro).

Temporale:

 Definisce il numero di immagini al secondo da usare. Per la visione umana si usano da 15 a 30 immagini al secondo, ma il gaming ha spostato questo limite molto più avanti

Risoluzione Spaziale: Gli effetti

256x256 pixels

128x128 pixels

64x64 pixels

32x32 pixels

tti 🤎

Risoluzione Spaziale: Gli effetti

FIGURE 2.19 A 1024×1024 , 8-bit image subsampled down to size 32×32 pixels. The number of allowable gray levels was kept at 256.

Risoluzione Spaziale: Gli effetti

Risoluzione in Pixel

Risoluzione Temporale: FPS e Hz

- FPS (Frames per Seconds): velocità con cui la GPU completa i frame
- Herz (HZ): cicli per secondi, associata al display e misura la velocità a cui il display mostra i frame completati.

Fluidità

Ghosting

(Latenza del Cambio del Colore dei Pixel)

Tearing

(Si verifica quando Display e GPU hanno velocità diverse: FPS ≠ Hz)

Image Processing

- An image processing operation typically defines a new image g in terms of an existing image f.
- We can transform either the range of f.

$$g(x,y) = t(f(x,y))$$

Or the domain of f:

$$g(x,y) = f(t_x(x,y), t_y(x,y))$$

What kinds of operations can each perform?

Weber Law's

Good Brightness Discrimination: $\Delta I(I=\text{small value})$

Poor Brightness Discrimination: $\Delta I(I= \text{large value})$

In general, ΔI needed for just noticeable difference (JND) over background I was found to satisfy:

$$\frac{\Delta I}{I}$$
 = constant

(I is intensity, ΔI is change in intensity)

Weber's Law:

Fechner Law's

- **❖** Analisi delle Ascisse: se cresce I, cresce sempre più $I + \triangle I$, cioè $\triangle I$ deve aumentare al crescere di I.
- **❖** Analisi delle Ordinate: Le distanze rimangono uguali, quindi la curva sale meno ripidamente.
- **❖** La relazione tra la Sensazione S e l'Intensità I è logaritmica:

S=clogI

Image Contrast

The contrast at an image point denotes the (relative) difference between the intensity of the point and the intensity of its neighborhood

$$C = \frac{I_p - I_n}{I_n}$$

- The contrast definition of the entire image is ambiguous.
- In general it is said that the image contrast is high if the image gray-levels fill the entire range.

Non contrast Abdominal Imaging

Contrast-enhanced Abdominal Imaging

Non contrast MR Cardiac Imaging

Contrast-enhanced MR Cardiac Imaging

03/03/2025 45

Image Histogram

- X axis shows the gray level intensities
- Y axis shows the frequency of intensities
- For 8 bpp image, we have 256 levels of gray shades

Histogram sliding

 Brightness is changed by shifting the histogram to left or right.

+50

Histogram sliding

New image.

Original image.

New Histogram.

Original Histogram.

Histogram stretching

- Contrast can be increased using:
 - 1. Histogram stretching
 - 2. Histogram equalization

 Contrast is the difference between maximum and minimum pixel intensity. Contrast = 225.

$$g(x,y) = \frac{f(x,y)-f\min}{f\max-f\min} * 2^{bpp}$$

$$g(x,y) = \frac{f(x,y)-0}{225-0} * 255$$

Low contrast image

High contrast image

- HIGH CONTRAST

LOW CONTRAST 5

- Better visual discrimination
- Improve Contrast

 Define a gray-level transformation such that:

- The histogram according to is as flat as possible.
- The order of Gray-levels is maintained.
- The histogram bars are not fragmented.

03/03/2025 52

Contrast stretching

BeforeContrast = 225

After
Contrast = 240

An unequalized image

The same image after histogram equalization 03/03/2025

Corresponding histogram (red) and cumulative histogram (black)

Corresponding histogram (red) and cumulative histogram (black)

• The shape of a histogram provides useful information for contrast enhancement.

55

03/03/2025

150

- Si tratta di rendere l'istogramma il più piatto possibile. Questo potrebbe rendere l'immagine più leggibile, anche se la cosa è opinabile (in alcuni casi).
- Supponiamo che l'immagine di partenza sia di dimensioni 512x512, ovvero che sia composta da 2¹⁸ punti.
- Questo significa che, detto H(i)
 l'istogramma, deve valere che :

$$\sum_{i=0}^{255} H(i) = 2^{18}$$

IN	OUT
0	0
1	0
2	0
3	1
4	1
5	3

• Se vogliamo rendere l'istogramma piatto significa che vogliamo che

$$H(i) = 2^{18}/256 = 2^{10} = 1024, \forall i.$$

- Naturalmente non potremo ottenere proprio l'uguaglianza, visto i limiti dell'elaborazione, ma vogliamo avvicinarci il più possibile.
- Nel primo livello di uscita vorremmo ottenere 1024: se sommiamo i primi tre livelli (0, 1 e 2) dell'ingresso otteniamo 800, se sommiamo i primi quattro 1600.
- Poiché 800 è più vicino a 1024 di 1600 scegliamo di sommare i primi tre.

IN	OUT
0	0
1	0
2	0
3	1
4	1
5	3

- Quindi scelgo di inserire i livelli 3
 e 4 dell'ingresso, visto che 800 +
 700 = 1500 è più vicino a 1248 di
 800.

- Nel terzo livello di uscita ci va ancora 1024 e la somma dei primi tre deve essere 3072. Ne ho già sistemato 800 + 1500 = 2300 e quindi ne restano 772. Poiché il primo livello da sistemare dell'ingresso (il 5) vale 1600 e 1600-772 = 828 lascio vuoto il terzo livello dell'uscita.
- Nel quarto livello di uscita devo approssimare 4096 – 2300 =1996, se inserisco il livello di ingresso 5 ne mancano 396, se inserisco 5+6 ne avanzano 2600 – 1996 = 604 quindi scelgo 5.

IN	OUT
0	0
1	0
2	0
3	1
4	1
5	3

