Math 221 Final Exam

Kansas State University Spring 2014

Last name
First name
WID
Recitation Section
Fmail

1. (8 pts) Integrate: $\int \frac{4+x}{x(x-2)^2} dx$

2. (8 pts) Evaluate: $\int_1^{e^2} \ln t \, dt$

3. (8 pts) Integrate: $\int \frac{\sqrt{x^2 - 25}}{x} dx$

4. (10 pts)

- a) Find the degree two Maclaurin polynomial T_2 for the function $f(x) = \sqrt{x+4}$.
- b) Find a bound for the error when T_2 is used to approximate $\sqrt{5}$.

- 5. (8 pts)
 - a) Evaluate the limit. $\lim_{x\to\infty} (1+3x)^{1/x}$

b) Determine whether the series converges: $\sum_{n=1}^{\infty} (1+3n)^{1/n}$

6. (10 pts) If the series converges, evaluate it (determine what it equals). If it diverges, explain why.

a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{(2n)!}$$

b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{5^n}{2^{3n}}$$

$$c) \sum_{n=0}^{\infty} (-1)^n$$

7. (10 pts) Determine the radius and interval of convergence of the power series: $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n(n+1)} (x-5)^n.$

8. (10 pts)

- a) Graph the polar curve $r = 4\sin\theta$, $0 \le \theta \le 2\pi$.
- b) Find the area in the first quadrant bounded by the curve, the y-axis, and the line $\theta=\pi/4$.

9. (10 pts) Find the Maclaurin series for the function

$$f(x) = \int_0^x e^{-t^2} \, \mathrm{d}t.$$

10. (10 pts) Determine whether the series converges and justify your answer.

a)
$$\sum_{n=1}^{\infty} \frac{2n^3 - n}{n^7 - 1}$$

 $b) \sum_{n=1}^{\infty} \frac{n!}{(2n)!}$

11. (10 pts)

- a) Determine whether the integral converges or diverges: $\int_2^\infty \frac{\mathrm{d}x}{x \ln x}$.
- b) Determine whether the series converges absolutely, converges conditionally, or diverges: $\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln n}.$

12. (12 pts) Consider the parameterized curve $x = t^2$, $y = t^3$, $0 \le t \le 2$.

- a) Find the length of the curve.
- b) Write an integral to express the surface area of the surface obtained by rotating the curve about the **y**-axis.
- c) Find an equation for the tangent line at t = 1.
- d) Find the value of the second derivative $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ at t=1.