```
NAME :MV.SRINIVAS
REG NO :21BCE8067
EMAIL ID :srinivas.21bce8067@vitapstudent.ac.in
PHONE NO:8555060243
CAMPUS:VIT-AP
```

▼ NumPy Exercises

Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions.

▼ Import NumPy as np

```
import numpy as np
```

Create an array of 10 zeros

```
arr = np.zeros(10)
arr

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
```

▼ Create an array of 10 ones

```
arr = np.ones(10)
arr

array([1., 1., 1., 1., 1., 1., 1., 1., 1.])
```

▼ Create an array of 10 fives

```
array=np.ones(10)*5
array
array([5., 5., 5., 5., 5., 5., 5., 5., 5., 5.])
```

▼ Create an array of the integers from 10 to 50

▼ Create an array of all the even integers from 10 to 50

```
arr = np.arange(10,51,2)
arr
array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
44, 46, 48, 50])
```

▼ Create a 3x3 matrix with values ranging from 0 to 8

▼ Create a 3x3 identity matrix

▼ Use NumPy to generate a random number between 0 and 1

```
random_number = np.random.rand()
random_number
array([ 0.42829726])
```

▼ Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

Create the following matrix:

▼ Create an array of 20 linearly spaced points between 0 and 1:

Numpy Indexing and Selection

Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:

```
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat1 = mat[2:,1:]
mat1
     array([[12, 13, 14, 15],
            [17, 18, 19, 20],
            [22, 23, 24, 25]])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat[-2,-1]
     0.9
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat2 = mat[:3,1:2]
mat2
     array([[0.02],
            [0.12]
            [0.22]])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat3 = mat[4,:]
mat3
     array([0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5])
# WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
# BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
# BE ABLE TO SEE THE OUTPUT ANY MORE
mat4 = mat[3:,:]
mat4
     array([[0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4],
             [0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5],
            [0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6],
             [0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7],
            [0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8],
            [0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9], [0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1. ]])
```

- ▼ Now do the following
- ▼ Get the sum of all the values in mat

```
sum = np.sum(mat)
sum
50.5
```

▼ Get the standard deviation of the values in mat

```
sd = np.std(mat)
sd
```

0.2886607004772212

▼ Get the sum of all the columns in mat

```
col_sum =np.sum(mat, axis=0)
col_sum
array([4.6, 4.7, 4.8, 4.9, 5. , 5.1, 5.2, 5.3, 5.4, 5.5])
```

Double-click (or enter) to edit

✓ 0s completed at 3:32 PM