Applied Macroeconometrics - Memo Formulas

Use growth rates to express variable of interest

Denote Y_t the output at time t, G_t the government consumption at time t and π_t the inflation at time t.

The steady state value of a variable X at time t is denoted X_t^{SS} .

Let $g_{X,t}$ denote the growth rate of the variable X_t , and g_X^{SS} denote the steady state growth rate of X_t^{SS} .

Assume there is shock at time t=1. Assume we are at steady state at time t=0.

Response to a shock at time t=1

For any variable X, one can express the deviation of the variable X_t to it steady state value X_t^{SS} as a function of the $g_{X,t}$'s, g_X^{SS} and X_0^{SS} :

$$egin{aligned} X_t - X_t^{SS} &= \prod_{ au=1}^t (1+g_{X, au}) X_0 - \prod_{ au=1}^t (1+g_X^{SS}) X_0^{SS} \ &= \Big[\prod_{ au=1}^t (1+g_{X, au}) - \prod_{ au=1}^t (1+g_X^{SS}) \Big] X_0^{SS}. \end{aligned}$$

Using only the growth rates, we have the following:

$$rac{X_t - X_t^{SS}}{X_t^{SS}} = \Big[\prod_{ au=1}^t (1 + g_{X, au}) - \prod_{ au=1}^t (1 + g_X^{SS})\Big].$$

Fiscal multiplier at time t

The formula for the $\underline{\text{period fiscal multiplier}}$ at time t is the following:

$$egin{aligned} fm_t &= rac{Y_t - Y_t^{SS}}{G_t - G_t^{SS}} \ &= rac{\prod_{ au=1}^t (1 + g_{Y, au}) - \prod_{ au=1}^t (1 + g_Y^{SS})}{\prod_{ au=1}^t (1 + g_{G, au}) - \prod_{ au=1}^t (1 + g_G^{SS})} * rac{1}{GSN^{SS}}, \end{aligned}$$

where $GSN^{SS}=rac{G^{SS}}{Y^{SS}}$ denotes the steady state level of government consumption as a share of output.

Cumulative fiscal multiplier at time t

The formula for the cumulative fiscal multiplier at time t is the following:

$$egin{aligned} FM_t &= rac{\sum_{ au=1}^t Y_ au - Y_ au^{SS}}{\sum_{ au=1}^t G_ au - G_ au^{SS}} \ &= rac{\sum_{ au=1}^t \left\{ \prod_{ au=1}^t (1+g_{Y, au}) - \prod_{ au=1}^t (1+g_Y^{SS})
ight\}}{\sum_{ au=1}^t \left\{ \prod_{ au=1}^t (1+g_{G, au}) - \prod_{ au=1}^t (1+g_G^{SS})
ight\}} * rac{1}{GSN^{SS}}. \end{aligned}$$

Use Matlab IRFs to express the fiscal multipliers

After using stoch_simul, Matlab stores the IRF of variable var_name to a shock shock_name in the variable called var_name_shock_name.

In our code, all the variables are expressed in growth rate. In terms of notation, we have the following correspondence between the maths and the code:

Maths	Code
g_X	GX
g_X^{SS}	GX0

It is important to notice that **GX** is equal to **GX_shock_name+GX0**.

Consider $GX0_{vec} = ones(1,T)' * GX0$, a vector of the steady state growth rate for variable X where $T = length(GX_{shock_name})$.

Therefore, the following relationships follows:

Maths	Code
$igg(\prod_{ au=1}^t (1+g_{X, au})igg)_{t\in[1:T]}$	cumprod(1+GX_shock_name+GX0)
$\left(\prod_{ au=1}^t (1+g_X^{SS}) ight)_{t\in[1:T]}$	cumprod(1+GX0_vec)

The formulas for the fiscal multipliers can be retrieved from the previous relationships.