离散数学

第一章 命题逻辑的基本概念

主讲教师: 纪楠

计算机科学与技术学院

离散数学

课程内容(线下+线上)

- ▶第一部分 数理逻辑
 - ・第1~5章
- ▶ 第二部分 集合论
 - 第6、7、8章
- ▶第五部分 图论
 - 第14、15、16章

第一部分 数理逻辑

- ▶ 数理逻辑: 是研究演绎推理的一门学科
- 主要研究内容是推理,着重于推理过程是否正确
- > 不注重于某个语句是否正确,而是注重于语句之间的关系
- 主要研究方法:用一套符号化体系的方法来研究数学推理和数学性质

第一部分 数理逻辑

主要内容

- 命题逻辑基本概念
- 命题逻辑等值演算
- 命题逻辑推理理论
- 一阶逻辑基本概念
- 一阶逻辑等值演算与推理

第一章 命题逻辑的基本概念

主要内容

- 命题与联结词
- 命题及其分类
- 联结词与复合命题
- 命题公式及其赋值

1.1 命题与联结词

命题与真值

命题: 判断结果惟一的陈述句

命题的真值: 判断的结果

真值的取值: 真与假

命题按取值分类:真命题与假命题

注意:

感叹句、祈使句、疑问句都不是命题

陈述句中的悖论,判断结果不惟一的不是命题

可由真推出假, 又能有假推出真

命题概念

例1下列句子中那些是命题?

- (1) $\sqrt{2}$ 是有理数.
- (2) 2 + 5 = 7.
- (3) x + 5 > 3.
- (4) 你知不知道李小龙同学是否知道这节课 要点名?
 - (5) 海南的夏天热死人!
 - (6) 最后一排那个同学把手机收起来!
 - (7) 明年中秋节与国庆节连一起放假.
- (8) 我正在说谎话

假命题

真命题

不是命题

不是命题

不是命题

不是命题

命题,但现在

不知道真值

悖论,不是命题

命题分类

命题分类:

简单命题(也称原子命题)与复合命题

简单命题(原子命题):简单陈述句构成的命题(不能被分解)

简单命题符号化

用小写英文字母 $p, q, r, ..., p_i, q_i, r_i$ ($i \ge 1$)表示简单命题

用"1"表示真,用"0"表示假

例如,令

 $p:\sqrt{2}$ 是有理数,则 p 的真值为0,

q: 2+5=7,则 q 的真值为1

命题分类

命题分类: 简单命题(原子命题)与 复合命题

复合命题:由简单命题通过联结词联结而成的陈述句。

联结词:自然语言中如"并且"、"或"、"如果·····,则·····"、"当且仅当"、"一面·····,一面"等

例如:

- 1) 如果明天天气好,我们就出去郊游
- 2) 小明一面喝茶一面看报

符号化:

- 1)设p:明天天气好,q:我们出去郊游
- 2)设p:小明喝茶, q:小明看报

半符号化!

如果p,则q p并且q

否定、合取、析取联结词

定义1.1 设 p为命题,复合命题 "非p"(或 "p的否定")称为p的否定式,记作 $\neg p$,符号 $\neg \infty$ 称作否定联结词. 规定 $\neg p$ 为真当且仅当p为假.

定义1.2 设p, q为两个命题,复合命题"p并且q"(或"p与 q")称为p与q的合取式,记作p人q,人称作合取联结词. 规定p人q为真当且仅当p与q同时为真.

定义1.3 设p, q为两个命题,复合命题"p或q"称作p与q的析取式,记作 $p \lor q$, \lor 称作析取联结词. 规定 $p \lor q$ 为假当且仅当p与q同时为假.

联结词与复合命题

定义1.1 设 p为命题,复合命题"非p"(或"p的否定") 称为 p的否定式,记作 ¬p,符号 ¬ 称作否定联结词. 规定: ¬p 为真当且仅当 p为假.

例如 p:2是奇数, $\neg p:2$ 不是奇数. p为假, $\neg p$ 为真

定义1.2 设p, q为两个命题,复合命题"p并且q"(或"p与 q") 称为p与q的合取式,记作p人q,人称作合取联结词。规定:p人q为真当且仅当p与q 同时为真。

例2 将下列命题符号化.

- (1) 吴颖既用功又聪明.
- (2) 吴颖不仅用功而且聪明.
- (3) 吴颖虽然聪明, 但不用功.
- (4) 张辉与王丽都是三好生.
- (5) 张辉与王丽是同学.

例2 将下列命题符号化.

 $\mathbf{m} \diamond p$:吴颖用功,q:吴颖聪明

(1) 吴颖既用功又聪明.

 $p \wedge q$

(2) 吴颖不仅用功而且聪明.

 $p \wedge q$

(3) 吴颖虽然聪明, 但不用功.

 $\neg p \wedge q$

 $q \wedge \neg p$

- (4) 张辉与王丽都是三好生.
- (5) 张辉与王丽是同学.

例2 将下列命题符号化.

解

(1) 吴颖既用功又聪明.

设p: 张辉是三好生,

q:王丽是三好生

(2) 吴颖不仅用功而且聪明.

(3) 吴颖虽然聪明, 但不用功.

(4) 张辉与王丽都是三好生.

 $p \wedge q$

(5) 张辉与王丽是同学.

例2 将下列命题符号化.

解

(1) 吴颖既用功又聪明.

设 p: 张辉与王丽是同学

- (2) 吴颖不仅用功而且聪明.
- (3) 吴颖虽然聪明, 但不用功.
- (4) 张辉与王丽都是三好生.
- (5) 张辉与王丽是同学.

p

例2 将下列命题符号化.

- (1) 吴颖既用功又聪明.
- (2) 吴颖不仅用功而且聪明.
- (3) 吴颖虽然聪明, 但不用功.
- (4) 张辉与王丽都是三好生.
- (5) 张辉与王丽是同学.

解 $\Diamond p$:吴颖用功, q:吴颖聪明

- (1) $p \land q$ (2) $p \land q$ (3) $\neg p \land q$ (4) 设p:张辉是三好生, q:王丽是三好生 $p \land q$ (5) p:张辉与王丽是同学
- (1)—(3) 说明描述合取式的灵活性与多样性
- (4)—(5) 要求分清 "与" 所联结的成分

联结词与复合命题(续)

定义1.3 设p,q为两个命题,复合命题"p或q"称作p与q的析取式,记作 $p \lor q$, \lor 称作析取联结词.

规定: $p \lor q$ 为假当且仅当 $p \lor q$ 同时为假.

例如 "张三和李四至少有一人会英语" 设 p:张三会英语, q:李四会英语. 符号化为: $p \lor q$

相容或 与 排斥或

例如 "这件事由张三和李四中的一人去做"

设 p:张三做这件事, q:李四做这件事

应符号化为: $(p \land \neg q) \lor (\neg p \land q)$

析取联结词的实例

例3 将下列命题符号化

- (1) 2 或 4 是素数.
- (2) 2 或 3 是素数.
- (3) 文昌鸡和东山羊,我们只能点一个.
- (4) 王小红生于 1996 年或 1997 年.

析取联结词的实例

解

- (1) 令p:2是素数, q:4是素数, $p\lor q$
- (2) 令p:2是素数, q:3是素数, $p\lor q$
- (3) 令p:我们点文昌鸡, q:我们点东山羊 $(p \land \neg q) \lor (\neg p \land q)$
- (4) p:王小红生于 1996 年, q:王小红生于1997 年, (p^¬q)~(¬p^q) 或 p~q 推荐前者
- (1)—(2) 为相容或
- (3)—(4) 为排斥或, 符号化时(4)可有两种形式, 而(3)则不能

蕴涵联结词

定义1.4 设p, q为两个命题,复合命题"如果p, 则q"称作p与q的 蕴涵式,记作 $p \rightarrow q$,并称p是蕴涵式的前件,q为蕴涵式的后件, \rightarrow 称作蕴涵联结词. 规定: $p \rightarrow q$ 为假当且仅当p为真q为假.

例如 "如果明天天气好,我们就出去郊游。" 设 p:明天天气好,q:我们出去郊游。 则符号化为 $p \rightarrow q$

规定: $p \rightarrow q$ 为假当且仅当 p为真 q为假。 当 p 为假时, $p \rightarrow q$ 恒为真,称为空证明。

例如 "如果太阳从西边出来,我就姓张。" 为永真

蕴涵联结词

定义1.4 设p, q为两个命题,复合命题"如果p, 则q''称作p与q的 蕴涵式,记作 $p \rightarrow q$,并称p是蕴涵式的前件,q为蕴涵式的后件, \to 称作蕴涵联结词. 规定: $p \rightarrow q$ 为假当且仅当p为真q为假.

注意:

常见混淆错误

(1) $p \rightarrow q$ 的逻辑关系: $p \rightarrow q$ 的充分条件, $q \rightarrow p$ 的必要条件

p为q的充分条件 意思即: 当p为真时,q必为真

q为p的必要条件 意思即: 当q为假时,p必为假

实例: "只要明天游泳池开门, 我们就去游泳。"

设 p:明天游泳池开门, q:我们去游泳. 符号化为 $p \rightarrow q$

或: ¬q → ¬ p

蕴涵联结词

定义1.4 设p, q为两个命题,复合命题"如果p, 则q''称作p与q的 蕴涵式,记作 $p \rightarrow q$,并称p是蕴涵式的前件,q为蕴涵式的后件, \rightarrow 称作蕴涵联结词. 规定: $p \rightarrow q$ 为假当且仅当p为真q为假.

- (1) $p \rightarrow q$ 的逻辑关系: $p \rightarrow q$ 的充分条件, $q \rightarrow p$ 的必要条件
- (2) "如果 p_i 则 q'' 有很多不同的表述方法:

若p, 就q p 为q 的充分条件 $p \rightarrow q$ 只要p, 就q p 仅当(必然)q q 为p 的必要条件 $p \rightarrow q$ 只有q 才说明(可能)p 除非q, d 尽则非p, … 等价于"只有q,d 不 $p \rightarrow q$

等价于"如果¬q,则p"¬ $q \rightarrow p$

另: "除非 q, 否则 p"

蕴涵联结词的实例

例4 设p:下雪,q:王丽穿羽绒服,将下列命题符号化

(1) 只要下雪,王丽就穿羽绒服. $p \rightarrow q$

(2) 因为下雪,所以王丽穿羽绒服. $p \rightarrow q$

(3) 若王丽不穿羽绒服,则天不下雪. $\neg \mathbf{q} \rightarrow \neg \mathbf{p} = \neg \mathbf{p} \rightarrow \mathbf{q}$ 等值

(4) 除非王丽穿羽绒服,否则天不下雪. $p \rightarrow q$ $(\neg q \rightarrow \neg p)$

(5) 除非下雪,王丽才穿羽绒服. $q \rightarrow p \quad (\neg p \rightarrow \neg q)$

(6)只有下雪,王丽才穿羽绒服. $q \rightarrow p$

(7) 如果天不下雪,则王丽不穿羽绒服. $q \rightarrow p \quad (\neg p \rightarrow \neg q)$

(8) 王丽穿羽绒服仅当下雪的时候. $q \rightarrow p$

(仅当下雪的时候, 王丽才穿羽绒服.)

注意: $p \rightarrow q$ 与 $\neg q \rightarrow \neg p$ 等值 (真值相同)

等价联结词

定义1.5 设 p, q为两个命题,复合命题"p当且仅当q"称作p与q的等价式,记作 $p \leftrightarrow q$, \leftrightarrow 称作等价联结词.

规定: $p \leftrightarrow q$ 为真当且仅当p = q同时为真或同时为假.

 $p \leftrightarrow q$ 的逻辑关系: p = q 互为充分必要条件

等价联结词

例5 求下列复合命题的真值 令 前者为 s , 后者为 t

$$(1)$$
 2 + 2 = 4 当且仅当 3 + 3 = 6.

$$s \leftrightarrow t$$

$$s \leftrightarrow t$$
 0

$$(3) 2 + 2 = 4$$
 当且仅当 太阳从东方升起.

$$s \leftrightarrow t$$

$$(4) 2 + 2 = 4$$
 当且仅当 美国位于非洲.

$$s \leftrightarrow t$$

$$s \leftrightarrow t$$

1

联结词的真值计算

联结词的真值计算 (P9)

p q	$\neg p$	$p \land q$	$p \lor q$	$p{ ightarrow}q$	$p \leftrightarrow q$
0 0	1	0	0	1	1
0 1	1	0	1	1	0
1 0	0	0	1	0	0
1 1	0	1	1	1	1

0: 假, 1: 真

否定式: p 为真则 $\neg p$ 为假,反之 $\neg p$ 为真

合取式: pAq为真当且仅当 p与q 同时为真, 其它均为假

析取式: pVq为假当且仅当 p与q同时为假,其它均为真

蕴含式: p→q为假当且仅当p为真q为假,其它均为真

等价式: p↔q 为真当且仅当 p与q真值相同,反之为假

联结词的真值计算

联结词的真值计算(P9)

p q	$\neg p$	$p \land q$	$p \lor q$	$p{ ightarrow}q$	$p \leftrightarrow q$
0 0	1	0	0	1	1
0 1	1	0	1	1	0
1 0	0	0	1	0	0
1 1	0	1	1	1	1,

例

设 $p:\sqrt{2}$ 是无理数, q:3是奇数,

r: 苹果是方的,s: 太阳绕地球转

求复合命题 $(p \rightarrow q) \leftrightarrow ((r \land \neg s) \lor \neg p)$ 的真值。

假

解: p: 1, q: 1, r: 0, s: 0

联结词的混合计算

- 1) (), \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- 2)对同一优先级,从左到右顺序计算例

复合命题 $(p \rightarrow q) \leftrightarrow ((r \land \neg s) \lor \neg p)$ 的简化形式

$$p \rightarrow q \leftrightarrow r \land \neg s \lor \neg p$$

为了便于直观理解,尽量加上括号!

小 结

本小节中p, q, r, ...均表示命题.

• 联结词集为 $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$, $\neg p$, $p \land q$, $p \lor q$, $p \rightarrow q$, $p \leftrightarrow q$ 为基本复合命题. 其中要特别注意理解 $p \rightarrow q$ 的涵义. 反复使用 $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ 中的联结词组成更为复杂的复合命题.

设 $p:\sqrt{2}$ 是无理数, q:3是奇数, $r:\overline{p}$ 苹果是方的, $s:\overline{p}$ 太阳绕地球转则复合命题 $(p\to q)\leftrightarrow ((r\land \neg s)\lor \neg p)$ 是假命题.

● 联结词的运算顺序: ¬, ∧, ∨, →, ↔, 同级按先出现者先运算.

1.2 命题公式及其赋值

命题变项与合式公式

- 命题变项
- 合式公式
- 合式公式的层次

公式的赋值

- 公式赋值
- 公式类型
- 真值表

命题变项与合式公式

- 命题常项:简单命题,且真值是确定的。是命题逻辑中最基本的单位。
- 命题变项(变元): 取值0(真)或1(假)的变元。
- 命题常项与变项均用 p, q, r, …, p_i , q_i , r_i , …, 等表示。
- 命题变项表示真值可以变化的陈述句(在赋值之前不是命题)
- 命题变项可被指定为任意的某个命题常项。

例

- 1) 命题变项: p, q, r, x, y, z ······
- 2) 可以为命题变项赋值,如

令p: 2是素数

令p: 3+2=6

命题变项与合式公式

命题常项:简单命题,且真值是确定的。是命题逻辑中最基本的单位。

命题变项(命题变元):取值0(真)或1(假)的变元。

常项与变项均用 $p, q, r, ..., p_i, q_i, r_i, ...$,等表示.

定义1.6 合式公式(简称公式)的递归定义:

- (1) 单个命题变项和命题常项是合式公式, 称作原子命题公式
- (2) 若A是合式公式,则 $(\neg A)$ 也是
- (3) 若A, B是合式公式,则 $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ 也是
- (4) 只有有限次地应用(1)—(3) 形成的符号串才是合式公式

合式公式的层次

定义1.7

- (1) 若公式A是单个命题变项,则称A为0层公式.
- (2) 称 *A* 是 *n*+1(*n*≥0) 层公式是指下面情况之一:
 - (a) *A*=¬*B*, *B* 是 *n* 层公式;
 - (b) *A=B∧C*, 其中*B*, *C*分别为 *i* 层和 *j* 层公式, 且 *n*=max(*i*, *j*);
 - (c) $A=B\lor C$, 其中 B,C的层次及 n 同(b);
 - (d) $A=B\rightarrow C$, 其中B,C的层次及n同(b);
 - (e) $A=B\leftrightarrow C$, 其中B,C的层次及n同(b).
- (3) 若公式A的层次为k,则称A为k层公式.

例如 公式 A=p, $B=\neg p$, $C=\neg p\rightarrow q$, $D=\neg (p\rightarrow q)\leftrightarrow r$, $E=((\neg p\land q)\rightarrow r)\leftrightarrow (\neg r \lor s)$ 分别为0层, 1层, 2层, 3层, 4层公式.

公式赋值

定义1.8 设 $p_1, p_2, ..., p_n$ 是出现在公式A中的全部命题变项,给 $p_1, p_2, ..., p_n$ 各指定一个真值,称为对A的一个赋值或解释. 若使A为1,则称这组值为A的成真赋值;若使A为0,则称这组值为A的成假赋值.

说明:

A中仅出现 p_1, p_2, \ldots, p_n (按编号顺序) ,给A赋值 $\alpha = \alpha_1 \alpha_2 \ldots \alpha_n$ 是指

 $p_1 = \alpha_1, p_2 = \alpha_2, ..., p_n = \alpha_n, \alpha_i = 0$ 或1, α_i 之间不加标点符号 A中仅出现 p, q, r, ... (按字母顺序),给A赋值 $\alpha_1\alpha_2\alpha_3...$ 是指 $p = \alpha_1, q = \alpha_2, r = \alpha_3...$

如 000, 010, 101, 110是 $\neg(p\rightarrow q)\leftrightarrow r$ 成真赋值 001, 011, 100, 111是 $\neg(p\rightarrow q)\leftrightarrow r$ 成假赋值.

公式赋值

定义1.9 将命题公式 A在所有赋值下取值的情况列成表, 称作A的真值表.

• 含n个命题变项的公式有2n个赋值.

构造真值表的步骤:

- (1) 找出公式中所含的全部命题变项 $p_1, p_2, ..., p_n$ (若无下角标则按字母顺序排列),列出 2^n 个全部赋值,从00...0开始,按二进制加法,每次加 1,直至11...1为止.
- (2) 按从低到高的顺序写出公式的各个构成层次.
- (3) 对每个赋值依次计算各层次的真值,直到最后计算出公式的真值为止.

例
$$2$$
层: $(p \lor q) \rightarrow \neg r$ 1 层: $p \lor q$ $\neg r$ 0 层: $p \to q$ r

p	q	r	$p \lor q$	$\neg r$	$(p \lor q)$ -	$\rightarrow \neg r$
0	0	0	0	1	14 may 1	ing.
0	0	1	0	0	M WE 1	I ITE
	• • •			•••		

真值表

例6 写出下列公式的真值表, 并求它们的成真赋值和成假赋值:

- $(1) (p \lor q) \rightarrow \neg r$
- $(2) (q \rightarrow p) \land q \rightarrow p$
- $(3) \neg (\neg p \lor q) \land q$

真值表1

(1)
$$A = (p \lor q) \rightarrow \neg r$$

p q	r	$p \lor q$	$\neg r$	$(p \lor q) \rightarrow \neg r$
0 0	0	0	1	1
0 0	1	0	0	1
0 1	0	1	1	1
0 1	1	1	0	0
1 0	0	1	1	1
1 0	1	1	0	0
1 1	0	1	1	1
1 1	1	1	0	0

成真赋值:000,001,010,100,110; 成假赋值:011,101,111

真值表2

(2)
$$B = (q \rightarrow p) \land q \rightarrow p$$

p q	$q \rightarrow p$	$(q\rightarrow p)\land q$	$(q \rightarrow p) \land q \rightarrow p$
0 0	1	0	1
0 1	0	0	1
1 0	1	0	1
1 1	1	1	1

成真赋值:00,01,10,11; 无成假赋值

真值表3

(3) $C = \neg (\neg p \lor q) \land q$ 的真值表

p	q	$\neg p$	$\neg p \lor q$	$\neg (\neg p \lor q)$	$\neg (\neg p \lor q) \land q$
0	0	1	1	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	1	0	1	0	0

成假赋值:00,01,10,11; 无成真赋值

定义1.10

- (1) 若A在它的任何赋值下均为真,则称A为重言式或永真式;
- (2) 若A在它的任何赋值下均为假,则称A为矛盾式或永假式;
- (3) 若A不是矛盾式,则称A是可满足式.
- > 注意: 重言式是可满足式, 但反之不真.
- 真值表的用途:求出公式的全部成真赋值与成假赋值,判断公式的类型;真值表可用来判断公式的类型:
 - (1) 若真值表最后一列全为 1, 则公式为重言式
 - (2) 若真值表最后一列全为 0, 则公式为矛盾式
 - (3) 若真值表最后一列中至少有一个为 1, 则公式为可满足式

例 用真值表判断下列公式的类型:

可满足式、非重言式

(1)
$$(p \lor q) \rightarrow \neg r$$
 (2) $(q \rightarrow p) \land q \rightarrow p$ (3) $\neg (\neg p \lor q) \land q$

p	\boldsymbol{q}	r	$p \lor q$	$\neg r$	$(p \lor q) \rightarrow \neg r$
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	THE PERSON NAMED IN STREET
1	1	1	1	0	0

例 用真值表判断下列公式的类型:

$$(1) (p \lor q) \rightarrow \neg r \quad (2) (q \rightarrow p) \land q \rightarrow p \quad (3) \neg (\neg p \lor q) \land q$$

重言式、可满足式

p q	$q \rightarrow p$	$(q\rightarrow p)\land q$	$(q \rightarrow p) \land q \rightarrow p$
0 0	1	0	1
0 1	0	0	1
1 0	1	0	1
1 1	1	1	1

例 用真值表判断下列公式的类型:

$$(1) (p \lor q) \rightarrow \neg r \quad (2) (q \rightarrow p) \land q \rightarrow p \quad (3) \neg (\neg p \lor q) \land q$$

矛盾式

p q	$\neg p$	$\neg p \lor q$	$\neg (\neg p \lor q)$	$\neg (\neg p \lor q) \land q$
0 0	1	1	0	0
0 1	1	1	0	0
1 0	0	0	1	0
1 1	0	1	0	0

哑元

- ▶ 哑元对公式A的取值无关。
 - · 例: 哑元r对公式 p v q 的取值没有任何影响
- > 在写出公式A的真值表时,哑元的真值也参与讨论。

 p	q	r	$p \lor q$
0	0	0	0]
0	0	1	
0	1	0	
0	1	1	1 月 同
1	0	0	
1	0	1	1 「相同
1	1	0	
1	1	1	1 上相

第一章小结

主要内容

- 命题、真值、简单命题与复合命题、命题符号化
- 联结词¬, ∧, ∨, →, ↔及复合命题符号化
- 命题公式及层次
- 公式的类型
- 真值表及应用

基本要求

- 深刻理解各联结词的逻辑关系, 熟练地将命题符号化
- 会求复合命题的真值
- 深刻理解合式公式及重言式、矛盾式、可满足式等概念
- ※ 熟练地求公式的真值表,并用它求公式的成真赋值与成假

第一章小结

主要内容

- 命题、真值、简单命题与复合命题、命题符号化
- 联结词¬, ∧, ∨, →, ↔及复合命题符号化
- 命题公式及层次
- 公式的类型
- 真值表及应用

基本要求

- 深刻理解各联结词的逻辑关系, 熟练地将命题符号化
- 会求复合命题的真值
- 深刻理解合式公式及重言式、矛盾式、可满足式等概念
- ※ 熟练地求公式的真值表,并用它求公式的成真赋值与成假

练习1

1. 将下列命题符号化

- (1) 豆沙包是由面粉和红小豆做成的.
- (2) 苹果树和梨树都是落叶乔木.
- (3) 王小红或李大明是物理组成员.
- (4) 王小红或李大明中的一人是物理组成员.
- (5) 由于交通阻塞, 他迟到了.
- (6) 如果交通不阻塞,他就不会迟到.
- (7) 他没迟到,所以交通没阻塞.
- (8) 除非交通阻塞,否则他不会迟到.
- (9) 他迟到当且仅当交通阻塞.

练习1解答

提示:

分清复合命题与简单命题 分清相容或与排斥或 分清必要与充分条件及充分必要条件

答案: (1) 是简单命题

- (2) 是合取式
- (3) 是析取式(相容或)(4) 是析取式(排斥或)

设 p: 交通阻塞, q: 他迟到

(5) $p \rightarrow q$,

- $(6) \neg p \rightarrow \neg q \overrightarrow{\mathbf{y}} q \rightarrow p$
- $(7) \neg q \rightarrow \neg p \ \overrightarrow{\mathfrak{p}} p \rightarrow q,$
- $(8) q \rightarrow p$ 或 $\neg p \rightarrow \neg q$
- (9) $p \leftrightarrow q$ 或 $\neg p \leftrightarrow \neg q$

可见(5)与(7), (6)与(8)相同 (等值)

练习2

1

1

0

求下面命题的真值

$$(1) (p \lor q) \rightarrow r$$

O

$$(2) (q \lor r) \rightarrow (p \rightarrow \neg r)$$

1

$$(3) (q \rightarrow r) \leftrightarrow (p \land \neg r)$$

n

$$(4) (q \rightarrow p) \rightarrow ((p \rightarrow \neg r) \rightarrow (r \rightarrow \neg q))$$

1

练习3

3. 用真值表判断下面公式的类型

- (1) $p \land r \land \neg (q \rightarrow p)$
- $(2) ((p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)) \lor r$
- $(3) (p \rightarrow q) \leftrightarrow (p \rightarrow r)$

练习3解答

 $(1) p \land r \land \neg (q \rightarrow p)$

p q r	$q \rightarrow p$	$\neg (q \rightarrow p)$	$p \land r \land \neg (q \rightarrow p)$
0 0 0	1	0	0
0 0 1	1	0	0
0 1 0	0	1	0
0 1 1	0	1	0
1 0 0	1	0	0
1 0 1	1	0	0
1 1 0	1	0	0
1 1 1	1	0	0

矛盾式

练习3解答

$$(2) ((p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)) \lor r$$

p q r	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$((p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)) \lor r$
0 0 0	1	1	1
0 0 1	1	1	1
0 1 0	1	1	1
0 1 1	1	1	1
1 0 0	0	0	1
1 0 1	0	0	1
1 1 0	1	1	1
1 1 1	1	1	

永真式 (重言式)

练习3解答

$$(3) (p \rightarrow q) \leftrightarrow (p \rightarrow r)$$

p q r	$p{ ightarrow}q$	$p \rightarrow r$	$(p \rightarrow q) \leftrightarrow (p \rightarrow r)$
0 0 0	1	1	1
0 0 1	1	1	1
0 1 0	1	1	1
0 1 1	1	1	1 /
1 0 0	0	0	1
1 0 1	0	1	0
1 1 0	1	0	0
1 1 1	1	1	

可满足式

第一章作业

习题1 (教材P14)

- ■T1、T4、T6、T8、T13
- ■T19 (①②③④⑤)、T20

調調