PadhAl: Variants of Gradient Descent

One Fourth Labs

Introducing Adagrad

How do we convert the adaptive learning rate intuition into an equation?

- 1. **Intuition**: Decay the learning rate for parameters in proportion to their update history (fewer updates, lesser decay)
- 2. The Adagrad (Adaptive Gradient) is an algorithm which satisfies the above intuition
- 3. Adagrad
 - a. $v_t = v_{t-1} + (\nabla \omega_t)^2$
 - i. This value increments based on the gradient of that particular iteration, i.e. the value of the feature is non-zero.
 - ii. In the case of dense features, it increments for most iterations, resulting in a larger v_t value
 - iii. For sparse features, does not increment much as the gradient value is often 0, leading to a lower v_t value.
 - b. $\omega_{t+1} = \omega_t \frac{\eta}{\sqrt{(\upsilon_t)} + \varepsilon} \nabla \omega_t$
 - i. The denominator term $\sqrt{(v_t)}$ serves to regulate the learning rate η
 - ii. For dense features, v_t is larger, $\sqrt{(v_t)}$ becomes larger thereby lowering η
 - iii. For sparse features, v_t is smaller, $\sqrt{(v_t)}$ becomes smaller and lowers η to a smaller extent.
 - iv. The ε term is added to the denominator $\sqrt{(v_t)} + \varepsilon$ to **prevent** a **divide-by-zero error** from occurring in the case of very sparse features i.e. where all the data points yield zero up till the measured instance.