Data Science

Fraud Detection in Banking Systems

Introduction

providing a proper mechanism of detecting frauds.

Objectives

- To detect frauds in banking transactions.
- Analysing the variations in frauds based on amount spent.
- Finding out the nature of frauds based on categories of spending.

Date	Open	High	Low	Close	Adj Close	Volume
0 May 03, 2022	8.06	8.24	7.93	8.11	8.11	523500
1 May 02, 2022	7.62	8.07	7.58	8.05	8.05	347500
2 Apr 29, 2022	7.66	7.87	7.59	7.65	7.65	259800
3 Apr 28, 2022	7.52	7.71	7.37	7.68	7.68	227400
4 Apr 27, 2022	7.49	7.62	7.4	7.47	7.47	270300
5 Apr 26, 2022	7.79	7.84	7.5	7.53	7.53	303500
6 Apr 25, 2022	7.6	7.87	7.52	7.86	7.86	301900
7 Apr 22, 2022	7.89	7.89	7.64	7.69	7.69	301400
8 Apr 21, 2022	8.14	8.14	7.83	7.9	7.9	285300
9 Apr 20, 2022	8.29	8.3	7.97	7.99	7.99	163000
10 Apr 19, 2022	8.08	8.31	7.97	8.16	8.16	314100
11 Apr 18, 2022	8.3	8.32	7.92	8.01	8.01	432800
12 Apr 14, 2022	8.23	8.57	8.13	8.28	8.28	373900
13 Apr 13, 2022	7.74	8.18	7.71	8.17	8.17	559300
14 Apr 12, 2022	7.95	8.14	7.67	7.71	7.71	316500
15 Apr 11, 2022	7.79	8.04	7.69	7.86	7.86	384900
16 Apr 08, 2022	7.82	8.06	7.77	7.81	7.81	269100
17 Apr 07, 2022	8.02	8.12	7.6	7.79	7.79	503800
18 Apr 06, 2022	8.05	8.11	7.9	8.07	8.07	399000
19 Apr 05, 2022	8.38	8.45	8.12	8.21	8.21	285700
20 Apr 04, 2022	8.12	8.39	8.1	8.31	8.31	408200
21 Apr 01, 2022	8.19	8.33	8.09	8.12	8.12	430700
22 Mar 31, 2022	8.21	8.23	7.92	8.17	8.17	643400
23 Mar 30, 2022	8.62	8.64	8.15	8.18	8.18	618700
24 Mar 29, 2022	8.5	8.93	8.5	8.67	8.67	722300
25 Mar 28, 2022	8.12	8.44	8.03	8.42	8.42	664000
26 Mar 25, 2022	8.16	8.26	8.05	8.09	8.09	387500
27 Mar 24, 2022	8.21	8.24	8.08	8.16	8.16	291200
28 Mar 23, 2022	8.25	8.42	8.11	8.17	8.17	319900
29 Mar 22, 2022	8.28	8.39	8.18	8.34	8.34	582900
30 Mar 21, 2022	8.55	8.55	8.15	8.23	8.23	346400
31 Mar 18, 2022	8.47	8.72	8.4	8.59	8.59	607100
32 Mar 17, 2022	8.28	8.56	8.24	8.55	8.55	458800
33 Mar 16, 2022	8.06	8.38	8	8.3	8.3	572600
34 Mar 15, 2022	7.86	8.05	7.82	7.99	7.99	381900
35 Mar 14, 2022	8.04	8.04	7.73	7.83	7.83	426900
36 Mar 11, 2022	8.43	8.48	7.92	7.93	7.93	483200
37 Mar 10, 2022	8.48	8.65	8.35	8.41	8.41	652000

Scrapped Dataset

Scrapping

Dataset was obtained by scrapping https://finance.yahoo.com/
Scrapping tools used – Beautiful Soup, Pandas, Requests and csv

Steps involved

- 1. Generating the required url.
- 2. Generating the raw data.
- 3. Building the dataframe.
- 4. Conversion to csv.

Dataset used

https://www.kaggle.com/code/turkayavci/fraud-detection-on-bank-payments/data

The dataset used contains the following attributes:

- <u>step</u>
- <u>customer</u>
- <u>age</u>
- <u>gender</u>
- <u>zipcodeOri</u>
- merchant
- <u>zipMerchant</u>
- <u>category</u>
- amount
- fraud

Data Preprocessing

- Dropped irrelevant attributes from the dataset like zipCodeOri and zipMerchant.
- Dropped the redundant records.
- Transforming objects to categorical datatypes.
- Converting categorical datatypes into numerical.

Count of fraudulent payments in dataset.

Boxplot
Categorical distribution of amounts spent.

Heatmap showing correlation of all attributes.

Heatmap of Amount vs Fraud

Model used

Random Forest Classifier

There are two classes present in the data that are fraudulent and legitimate transactions.

We used the Random Forest Classifier to classify the data set and detect frauds.

Instance

Model used

Support Vector Classification

The SVM Algorithm finds a hyperplane in an N-dimensional space where N is the number of features that distinctly classifies the data points.

This hyperplane must have maximum distance between data points of both classes.

Performance Evaluation

• Accuracy
$$TP + TN$$
 $TP + FP + TN + FN$

• Precision
$$\frac{TP}{TP + FP}$$

• Recall
$$\frac{TP}{TP + FN}$$

• F1-Score
$$\frac{2}{\frac{1}{precision} + \frac{1}{recall}} = \frac{2 * precision * recall}{precision + recall}$$