

FY

RAW SEQUENCE LISTING ERROR REPORT

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) detected errors when processing the following computer readable form:

Application Serial Number: 09/673,994Source: 91/99Date Processed by STIC: 2/13/2002

THE ATTACHED PRINTOUT EXPLAINS DETECTED ERRORS.
PLEASE FORWARD THIS INFORMATION TO THE APPLICANT BY EITHER:

- 1) INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANT, WITH A NOTICE TO COMPLY or,
- 2) TELEPHONING APPLICANT AND FAXING A COPY OF THIS PRINTOUT, WITH A NOTICE TO COMPLY

FOR CRF SUBMISSION QUESTIONS, PLEASE CONTACT MARK SPENCER, 703-308-4212.

FOR SEQUENCE RULES INTERPRETATION, PLEASE CONTACT ROBERT WAX, 703-308-4216. PATENTIN 2.1 e-mail help: patin21help@uspto.gov or phone 703-306-4119 (R. Wax) PATENTIN 3.0 e-mail help: patin3help@uspto.gov or phone 703-306-4119 (R. Wax)

TO REDUCE ERRORED SEQUENCE LISTINGS, PLEASE USE THE CHECKER VERSION 3.1 PROGRAM, ACCESSIBLE THROUGH THE U.S. PATENT AND TRADEMARK OFFICE WEBSITE. SEE BELOW FOR ADDRESS:

http://www.uspto.gov/web/offices/pac/checker

Applicants submitting genetic sequence information electronically on diskette or CD-Rom should be aware that there is a possibility that the disk/CD-Rom may have been affected by treatment given to all incoming mail. Please consider using alternate methods of submission for the disk/CD-Rom or replacement disk/CD-Rom.

Any reply including a sequence listing in electronic form should NOT be sent to the 20231 zip code address for the United States Patent and Trademark Office, and instead should be sent via the following to the indicated addresses:

- 1. EFS-Bio (http://www.uspto.gov/ebc/efs/downloads/documents.htm, EFS Submission User Manual ePAVE)
- 2. U.S. Postal Service: U.S. Patent and Trademark Office, Box Sequence, P.O. Box 2327, Arlington, VA 22202
- 3. Hand Carry directly to:
 - U.S. Patent and Trademark Office, Technology Center 1600, Reception Area, 7th Floor, Examiner Name, Sequence Information, Crystal Mall One, 1911 South Clark Street, Arlington, VA 22202
 - U.S. Patent and Trademark Office, Box Sequence, Customer Window, Lobby, Room 1B03, Crystal Plaza Two, 2011 South Clark Place, Arlington, VA 22202
- 4. Federal Express, United Parcel Service, or other delivery service to: U.S. Patent and Trademark Office, Box Sequence, Room 1B03-Mailroom, Crystal Plaza Two, 2011 South Clark Place, Arlington, VA 22202

Revised 01/29/2002

`•

ERROR DETECTED	SUGGESTED CORRECTION SERIAL NUMBER: 09./6/3,994
ATTN: NEW RULES CASE:	s: Please disregard english "alpha" headers, which were inserted by PTO software
lWrapped Nucleics Wrapped Aminos	The number/text at the end of each line "wrapped" down to the next line. This may occur if your file was retrieved in a word processor after creating it. Please adjust your right margin to .3; this will prevent "wrapping."
2Invalid Line Length	The rules require that a line not exceed 72 characters in length. This includes white spaces.
3Misaligned Amino Numbering	The numbering under each 5th amino acid is misaligned. Do not use tab codes between numbers; use space characters, instead.
4Non-ASCII	The submitted file was not saved in ASCII(DOS) text, as required by the Sequence Rules. Please ensure your subsequent submission is saved in ASCII text.
5Variable Length	Sequence(s) contain n's or Xaa's representing more than one residue. Per Sequence Rules, each n or Xaa can only represent a single residue. Please present the maximum number of each residue having variable length and indicate in the <220>-<223> section that some may be missing.
6Patentin 2.0 "bug"	A "bug" in PatentIn version 2.0 has caused the <220>-<223> section to be missing from amino acid sequences(s) Normally, PatentIn would automatically generate this section from the previously coded nucleic acid sequence. Please manually copy the relevant <220>-<223> section to the subsequent amino acid sequence. This applies to the mandatory <220>-<223> sections for Artificial or Unknown sequences.
7Skipped Sequences (OLD RULES)	Sequence(s) missing. If intentional, please insert the following lines for each skipped sequence: (2) INFORMATION FOR SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) (i) SEQUENCE CHARACTERISTICS: (Do not insert any subheadings under this heading) (xi) SEQUENCE DESCRIPTION:SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) This sequence is intentionally skipped
	Please also adjust the "(ii) NUMBER OF SEQUENCES:" response to include the skipped sequences.
8Skipped Sequences (NEW RULES)	Sequence(s) missing. If Intentional, please insert the following lines for each skipped sequence. <210> sequence id number <400> sequence id number 000
9_Use of n's or Xaa's (NEW RULES)	Use of n's and/or Xaa's have been detected in the Sequence Listing. Per 1.823 of Sequence Rules, use of <220> <223> is MANDATORY if n's or Xaa's are present. In <220> to <223> section, please explain location of n or Xaa, and which residue n or Xaa represents.
10Invalid <213> Response	Per 1.823 of Sequence Hules, the only valid <213> responses are: Unknown, Artificial Sequence, or scientific name (Genus/species). <220><223> section is required when <213> response is Unknown or is Artificial Sequence
11Use of <220>	Sequence(s) missing the <220> "Feature" and associated numeric identifiers and responses. Use of <220> to <223> is MANDATORY if <213> "Organism" response is "Artificial Sequence" or "Unknown." Please explain source of genetic material in <220> to <223> section. (See "Federal Register," 06/01/1998, Vol. 63, No. 104, pp. 29631-32) (Sec. 1.823 of Sequence Rules)
Patentin 2.0 "bug"	Please do not use "Copy to Disk" function of Patentin version 2.0. This causes a corrupted file, resulting in missing mandatory numeric identifiers and responses (as indicated on raw sequence listing). Instead, please use "File Manager" or any other manual means to copy file to floppy disk.
13Misuse of n	n can only be used to represent a single nucleotide in a nucleic acid sequence. N is not used to represent any value not specifically a nucleotide.

AMC/MH - Biotechnology Systems Branch - 08/21/2001

PCT09

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/673,994

DATE: 02/13/2002 TIME: 07:45:38

PAILINI APPLICATION.

Input Set : A:\B08017197.txt

Output Set: N:\CRF3\02132002\1673994.raw

Does Not Comply
Corrected Diskette Needed

pg 1-2, 4-6

```
3 <110> APPLICANT: Chen, Yuqing E.
```

4 Tamura, Koichi

5 Horiuchi, Masatsugu

Dzau, Victor J.

307 <210> SEO ID NO: 7

- 8 <120> TITLE OF INVENTION: CNRE Binding Factors and Uses Thereof
- 10 <130> FILE REFERENCE: B0801/7197/ERG/KA
- 12 <140> CURRENT APPLICATION NUMBER: US 09/673994
- 13 <141> CURRENT FILING DATE: 2000-10-24
- 15 <150> PRIOR APPLICATION NUMBER: US 60/082,997
- 16 <151> PRIOR FILING DATE: 1998-04-24
- 18 <150> PRIOR APPLICATION NUMBER: PCT/US99/08502
- 19 <151> PRIOR FILING DATE: 1999-04-23
- 21 <160> NUMBER OF SEQ ID NOS: 23
- 23 <170> SOFTWARE: FastSEQ for Windows Version 3.0

ERRORED SEQUENCES.

	308	<211> LENGTE	H: 3847		. 🤈 .				
	309	<212> TYPE:	DNA		110				
	310	<213> ORGAN	ISM:∝Mus mus	sculus	M				
	312	<400> SEQUE	NCE: 7	(
	313	ggaggttgta	gactttattc	aatcaaagat	cagtcaacgt	gatgaaaacg	gggagcttcg	60	
E>			tccattgtgg					120	•
E>	315	aaacaganad	tttttttga	gatgtgagca	gāggttggga	gttagattca	ctgaanacaa	180	
E>	- 1						cctgggcttc)	240 /	
E>	317	agaaattnac	ngttttttt	tttgtgataa	cttgcccatt	ctttgtgtcc	tgctttcttg	300	
	318	tattagcaag	gacaagcttt	cttgtggtac	tttggttcaa	accccatggc	taaactgcct	360	
	319	taaccttttt	gtagctgctg	gatcagtgcc	tggcgccaga	cacttctggg	gatggtacag	420	_
	320	ggtgtgacaa	catgacgtgc	${\tt atcatcattt}$	gtttcaagcc	ccgaaacaca	gtagagcttc	480	
	2 2 1	2000202020	+ ~ ~ ~ ~ ~ ~ ~ ~	22244444			~~+~~~~~	EAO	

321 aggcagagag tggcaagagg aaactggagg aggcactgtc cacggagggg gctgaagaca 540
322 ccggcaacag tgacaaaaag aaggccaaga gggattagtg gtcaaccgga ccctgcccat 600
323 gtggactgtt ttctgagccc ttggacccga gactgagttt tgtccttgtc ctttagcctt 660
324 agcagtgggt atgaggtgtg cagggggctg ggtggctttc ctcagcccat tacaaagagg 720

agcagtgggt atgaggtgtg cagggggctg ggtggctttc ctcagcccat tacaaagagg 720
325 gcccccacc cccccacgc ggcagcctgg gaggctctgc tgtcctctta agcctcctta 780
326 ctctccttgg gctcatcgac tatcggttct gtgcctgtgc tctgttgtgt tggagggaag 840

327 gactggtagt tetgattitt actetgtgaa caetttatit aaggacatte tittitatig 900
328 geggetetgt gacceetage egettgeace egetetetgt tgtacaetti caagcaacae 960
329 titticagae taaggacaa acaagageta ategtgetga tagtgetga etteretga 1020

329 tttttcagac taaaggccaa acaaaagcta atcgtgctca tagtgtcatg ctttactctc 1020
330 ctaccctggc cccatatgtg gtgggcggct gttgctgcat gcttgtgtgt gtcccgagcc 1080
331 tctggagagg gggcagtgaa tgtggagcag gagctgggag tcttaactcc tgagtaaqca 1140

332 georgetgga ggecatectg egetgttege etteaggeae gaetteetag ttegtatatg 1200

RAW SEQUENCE LISTING DATE: 02/13/2002 PATENT APPLICATION: US/09/673,994 TIME: 07:45:38

Input Set : A:\B08017197.txt

Output Set: N:\CRF3\02132002\1673994.raw

```
333
          gagggggcag ggtaccacct tcctggttgg ctggttgggt tacgcgtcca gcttctgatt
                                                                                1260
     334
          ggttggctag cagcgcatca caatcacttc ctqqtcatqc tqcqactqcq ctccqqttqt
                                                                                1320
     335
          acagcccatg aactacgcat cccgtgttgc tctgcggtgg cggaagcgga agcgggtacg.
                                                                                1380
     336
          gaggtaccag ctggtcttcg gaggggggta gggggctcca tgaatggaag cggcggcgc
                                                                                1440
     337
          ggcgggagcg acctgagctg gattccgggg ccggggcagg ggctgcccag ggcccgcacc
                                                                                1500
     338
          gtgtatgggg gcggttcgtg gatcctaaga gcaaggaccg acggcagggc cgaactggga
                                                                                1560
          ggggcggggc cgggaggcct cgggccggag gcgcgtcggg ctggagccgg tcacgatgcc
     339
                                                                                1620
     340
          ccgaaggaag caaagccatc cacagcccgt gaaatgcgag ggggtcaaag gtcaggggtc
                                                                                1680
     341
          aggggccttg agccgggagg aacaggggtq qgqtcagtaq aqtqgqctca qqtcaqqqtq
                                                                                1740
     342
          gagggggact cctcagggtt aggggcggat gatctqggat cttcgctcct taccagagta
                                                                                1800
          ttaaaggaac ctgagggtca tcgagtacgg gaagtgcagt tcacaacagc tggctccttg
                                                                                1860
     344
          gttcggatta tgggtactgc ttgggaggga gattccacaa gcaccctccc ctctttagtg
                                                                                1920
     345
          gatactgaag attecttega egaaggteet ggggeeetgg tgttggagag egatttgeta
                                                                                1980
     346
          ctaggccaag atctggagtt tgaagaggaa gaggaagagg atgaaggtga cggccacaac
                                                                                2040
     347
          gaccagctca tgggctttga gagagactct gaaggagact ctcagggggc cagacctgga
                                                                                2100
     348
          cttccctatg ggctgagtga cgacgagtct gggggggcc gcgcactaag tgcggagagt
                                                                                2160
     349
          gaagttgagg aaccagccag gggtccaggg gaggccaggg gtgagaggcc aggcccagcc
                                                                                2220
     350
          tgtcagctgt gtggggggcc gacaggtgag gggccgtgtt gtggggcagg agggcggggt
                                                                                2280
     351
          ggggggcccc cgctgccccc acggttactg tactcatgcc ggctgtgcgc tttcgtgtcc
                                                                                2340
     352
          cactactcga gccacctgaa gcggcacatg cagacacaca gcggggagaa gccgttccgc
                                                                                2400
                                                                                2460 stem 9
E--> 353
          tgtggccgct gcccatacgc ntcagcccag ttcgtcaacc tgacgcgaca tacccgcacc
     354
          catactggcg agaagcccta ccgttgtccc cactgcccct ttgcctgcag cagcctqqgc
                                                                                2520
     355
          aacctgaggc ggcatcagcg cacccacaca gggcctccca ctcctccctg cccaacctgt
                                                                                2580
     356
          ggetttegat getgtgetee acqaecaace eggetteea gteecacaga geaggaggg
                                                                                2640
          acaatgcccc gacgatcaga aaatgcgctg atcctgccag acttgagtct tcatgtgcca
     357
                                                                                2700
     358
          ccaggtggtg ccagtttcct gccagactgt gggcagctgc ggggtgaagg ggagagcttg
                                                                                2760
     359
          tgtggaactg gatccgaacc actgccagag ctactgttcc cttggacctg ccgqqqctqt
                                                                                2820
     360
          ggacaggaac tggaggaggg tgagggcagc aggctgggag ctgccatgtg tgggcgctgc
                                                                                2880
     361
          atgcgaggag aggctggagg ggttgccact gggggacccc agggccctgg tgacaaaggc
                                                                                2940
     362
          tttgcctgta gtttatgccc ctttgccact cactacccca accacctqqc tcgqcacatq
                                                                                3000
     363
          aagactcaca gtggtgagaa accetteege tgtgeeeget gteeataege etetgeteat
                                                                                3060
     364
          ctggataacc tgaaacggca ccagcgcgtc cacacaggag aaaagcccta caagtgcccc
                                                                                3120
     365
          ctctgtccgt atgcctgtgg caacctggcc aacctcaagc gtcatggtcg catccactct
                                                                                3180
     366
          ggtgacaaac cttttcggtg tagcctttgc aactacagct gcaaccagag tatgaacctc
                                                                                3240
     367
          aaacgtcata tgctgcgaca cacgggcqaq aagcccttcc gctgtgccac ctgcgcctat
                                                                                3300
     368
          accacaggcc actgggacaa ctacaagcgt catcagaagg tgcatggcca tggtggagca
                                                                                3360
     369
         ggagggcctg gtctctctgc ccctgagggc tgggccccac ctcatagccc accctctgtt
                                                                                3420
     370
         ttgagcactc ggggtccagc agccctgggt gctactggta gcagggctct tcattcagac
                                                                                3480
     371
         tcaccttgaa ctaactaggt tcttttacct ggggetetag gaattagece tatgeeteet
                                                                                3540
     372
         gcattttata caaatgaact agaaaccacc tttccctttc tcccccqctq qtcaqqqqct
                                                                                3600
     373
         ccacacagac taacctaggc actatatgga ccagcctgaa tcccatggtc agggggccat
                                                                                3660
     374
          atagaccagg ggacttgtct tagctcacgt accagatgag ctaagtgatt agggccttgg
                                                                                3720
     375
          atteacegee actgeteeca gaggetatgg atgaactggt tgggagetge ceageetttt
                                                                                3780
         actgttttaa cttatttcag tgctttataa taaaggaaac actaacagaa aaaaaaaaa
     376
                                                                                3840
     377
         aaaaaaa
                                                                                3847
    379 <210> SEQ ID NO: 8
    380 <211> LENGTH: 763
    381 <212> TYPE: PRT
```

382 <213> ORGANISM: Mus musculus

RAW SEQUENCE LISTING DATE: 02/13/2002 PATENT APPLICATION: US/09/673,994 TIME: 07:45:38

!Input Set : A:\B08017197.txt
Output Set: N:\CRF3\02132002\1673994.raw

204	<400	> SE	QUEN	CE: 8	3											
385	Met	Glu	Gly	Ala	Gly	Tyr	His	Leu	Pro	Gly	Trp	Leu	Val	Gly	Leu	Arg
386	1				5					10					15	
387	Val	Gln	Leu	Leu	Ile	Gly	${\tt Trp}$	Leu	Ala	Ala	His	His	Asn	His	Phe	Leu
388				20					25					30		
389	Val	Met		Arg	Leu	Arg	Ser	Gly	Cys	Thr	Ala	His	Glu	Leu	Arg	Ile
390			35					40					45			
391	Pro	Cys	Cys	Ser	Ala	Val		Glu	Ala	Glu	Ala	Gly	Thr	Glu	Val	Pro
392		50					55		_			60			_	
393		Gly	Leu	Arg	Arg	-	Val	Gly	Gly	Ser		Asn	Gly	Ser	Gly	_
394	65	-1	- 1	_	_	70	_	_	1	_	75	_				80
395	GTĀ	Gly	GLY	Ser	-	Leu	Ser	Trp	ITe		GLY	Pro	GTA	GIn	_	Leu
396	Dwo	7	71.	N	85 mb	17-1	М	01	a 1	90			~1 ~	T	95	
397 398	PIO	Arg	Ald	100	THE	vaı	туг	GTĀ	105	GTA	ser	Trp	11e	110	Arg	Ата
399	λνα	Thr	λαn		λνα	λ1 -	Clu	T 011		C1**	λl ¬	C111	Dro		C117	T 011
400	inig	1111	115	СТУ	Alg	нта	GIU	120	СТА	GTĀ	Ата	GLY	125	GLY	СТУ	Leu
401	Glv	Pro		Δla	Arσ	Arσ.	Δla		Δla	Glv	His	Asn		Pro	Lve	Glu
402	011	130	Olu	1114	1119	mry.	135	OLY	niu	GLY	1113	140	nia	110	цуз	GIU
403	Ala	Lys	Pro	Ser	Thr	Ala		Glu	Met	Ara	Glv		Gln	Ara	Ser	Glv
404	145	-1-				150	5			9	155	021	02	9		160
405	Val	Arg	Gly	Leu	Glu	Pro	Gly	Gly	Thr	Gly	Val	Glv	Ser	Val	Glu	
406		•	-		165		•	-		170		-			175	•
407	Ala	Gln	Val	Arg	Val	Ģlu	Gly	Asp	Ser	Ser	Gly	Leu	Gly	Ala	Asp	Asp
408				180				-	185		_		_	190	_	_
409	Leu	Gly	Ser	Ser	Leu	Leu	Thr	Arg	Val	Leu	Lys	Glu	Pro	Glu	Gly	His
410			195					200					205			
411	Arg	Val	Arg	Glu	Val	Gln	Phe	Thr	Thr	Ala	Gly	Ser	Leu	Val	Arg	Ile
412		210					215					220				•
413		Gly	Thr	Ala	${\tt Trp}$		Gly	Asp	Ser	Thr		Thr	Leu	Pro	Ser	Leu
414	225					230	,	• •	_	_	235	_	_			240
415	Val	Asp	Thr	GLu		Ser	Phe	Asp	Glu		Pro	Gly	Ala	Leu		Leu
416	61.	C = ==	7	т	245	T	a 1	01	3	250	α1	D1	a 1	01	255	a 1
417 418	GIU	Ser	ASP	260	Leu	Leu	GIY	GIN	265	Leu	GIU	Pne	GLU		GIU	GIU
419	Glu	Glu	λen		Clv	λen	C1 v	Uic		λαη	Cln	TOU	Mot	270	Dho	C111
420	GIU	GIU	275	GIU	GLY	кэр	GIY	280		ren (GIII	пеп	285	СТУ	FIIC	Giu
421	Arσ	Asp		Glu	Glv	Asp	Ser			•	Arσ	Pro		T.e.ii	Pro	Tyr
422	**** 9	290	001	Olu	OL1	шър	295	0111	GLY	mu	9	300	OL Y	цси	110	111
423	Glv	Leu	Ser	Asp	Asp	Glu		Glv	Glv	Glv	Ara		Leu	Ser	Ala	Glu
424	305					310		1	1	1	315					320
425	Ser	Glu	Val	Glu	Glu	Pro	Ala	Arq	Gly	Pro	Gly	Glu	Ala	Arg	Gly	
426					325			_	•	330	-			,	335	
427	Arg	Pro	Gly	Pro	Ala	Cys	Gln	Leu	Cys	Gly	Gly	Pro	Thr	Gly	Glu	Gly
428				340					345	_	_			350		=
429	Pro	Cys	Cys	Gly	Ala	Gly	Gly	Arg	Gly	Gly	Gly	${\tt Pro}$	${\tt Pro}$	Leu	Pro	Pro
430			355					360					365			
431	Arg	Leu	Leu	Tyr.	Ser	Cys		Leu	Cys	Ala	Phe		Ser	His	\mathtt{Tyr}	Ser
432		370					375					380				

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/673,994

DATE: 02/13/2002 TIME: 07:45:38

Input Set : A:\B08017197.txt
Output Set: N:\CRF3\02132002\I673994.raw

	433		His	Leu		Arg	His	Met	Gln	Thr		Ser			Lys	Pro				see
	434	385	G	~1	3	a	390					395	D 1		3	Ŧ	400)′	Then
->	435 436	Arg	Cys	GTA	Arg	405	Pro	туг	Xaa	Ber	410			Val		ьеи 415	Thr		/	, •
	437	λκα	uio	mb r	7 × ×		His	mh~	Clu	C1							II i a			
	437	AIG	птэ	1111	420		птэ	1111	GIY	425		PIO	тАт	Ary	430	PIO	птэ			
	439	Cvc	Dro	Dho			Sor	Cor	T 011			T OU	λνα	λνα		Cln	λνα			
	440	Cys	PIO	435	нта	Cys	Ser	ser	440	СТА	ASII	ьeu	AIG	445	птъ	GIII	AIG			
	441	Пhх	ui c		C1.	Dro	Dro	mhx		Dwo	Crra	Dwo			C1	Dho	λmα			
	441	1111	450	1111	СТУ	PIO	Pro	455	PIO	PIO	Cys	PIO	460	Cys	СТУ	Pile	ALG			
	443	Cvc		7 l a	Dro	7 ~~	Dro		7 ~~	Dro	Dro	Cor		mh∽	C1.,	Cln	C1.,			
	444	465	Cys	нта	PIO	Arg	Pro 470	1111	Arg	PIO	PIO	475	PIO	1111	GIU	GIII				
	445		mh r	Mot	Dro	λνα		Cor	C1	λan	ת 1 ת		т1 о	T 011	Dro	7 an	480			
		СТУ	1111	Met	PIO		Arg	ser	GIU	ASII		теп	тте	ьeu	PIO					
	446 447	Cor	T 011	II i a	17-1	485		C1	C1	7.1 a	490	Dha	T 011	Dwo	3 00	495				
		ser	ьeu	нта			Pro	СТУ	GTA			Pne	Leu	PIO	_	Cys	GTÄ			•
	448	C1-	T	X	500		01	a 1		505		a 1	m\	01	510	a 1	D			
	449	GIII	ьeu		GIY	GIU	Gly	GIU		Leu	Cys	СТУ	THI		ser	GIU	PIO			
	450	T	D	515	T	T	Dh.	D	520	m l	·a	3	0114	525	01	a1	01			
	451	ьец		GIU	ьeu	ьeu	Phe		Trp	THE	Cys	Arg		Cys	GTY	GIn	GIU			
	452	*	530	01	ai	a 1	a 1	535		.	~1		540	34.1	~ .	~1				
	453		GIU	GIU	стА	GIU	Gly		Arg	Leu	GŦĀ		Ата	мет	Cys	GTĀ	_			
	454	545	14 - L		01	a 1	550		a 1	17- 7		555	01	a1	D	a1	560			
	455	Cys	мет	Arg	GTĀ		Ala	GIA	GTA	vaı			GIY	GLY	Pro		GLY			
	456	D	01		T	565	n1		~ -	~	570		_	5 1		575				
	457	Pro	GIY	Asp		GIY	Phe	Ата	Cys		ьeu	Cys	Pro	Pne		Thr	Hls			
	458	_	_	_	580	_		_		585	_	,		_	590	1	_			
	459	Tyr	Pro		H1S	Leu	Ala	Arg		Met	Lys	Thr	Hls		GLY	Glu	Lys			
•	460	_	-1	595	_		_	~	600	_		_		605	_	_	_			
	461	Pro		Arg	Cys	Ala	Arg			_	Ala	Ser			Leu	Asp	Asn	•		
	462		610	_	•	~ 3	_	615		· _, .	_,		620				_			
	463						Arg	Val	His	Thr	GLy		Lys	Pro	Tyr	Lys			•	
	464	625					630	_		_	_	635					640			
	465	Pro	Leu	Cys	Pro	_	Ala	Cys	GLY	Asn		Ala	Asn	Leu	Lys		His			
	466		_			645					650			_		655				
	467	GLY	Arg	Ile			Gly	Asp	Lys		Phe	Arg	Cys	Ser		Cys	Asn			
	468	_	_	_	660		_			665					670					
	469	Tyr	Ser		Asn	GIn	Ser	Met					His		Leu	Arg	His			,
	470	_	_	675			_		680		_		_	685	_	_	_		-	
	471	Thr		GLu	Lys	Pro	Phe		Cys	Ala	Thr	Cys		Tyr	Thr	Thr	Gly			
	472	_	690					695	_	_			700			_				
	473		Trp	Asp	Asn	Tyr	Lys	Arg	His	Gln	Lys		His	Gly	His	Gly	_			
	474	705			_		710	_				715					720			
	475	Ala	GLY	GLY	Pro	_	Leu	Ser	Ala	Pro		Gly	Trp	Ala	Pro		His			
	476	_	_	_	_	725		_			730	_	_	-		735	_		•	
	477	Ser	Pro	Pro		Val	Leu	Ser	Thr		Gly	Pro	Ala	Ala		Gly	Ala			
	478			_	740		_			745	_	_			750					
	479	Thr	Gly		Arg	Ala	Leu	His		Asp	Ser	Pro								
	480			755					760											

RAW SEQUENCE LISTING DATE: 02/13/2002
PATENT APPLICATION: US/09/673,994 TIME: 07:45:38

Input Set : A:\B08017197.txt

Output Set: N:\CRF3\02132002\1673994.raw

```
483 <211> LENGTH: 2289
     484 <212> TYPE: DNA
     485 <213> ORGANISM: Mus musculus
     487 <400> SEOUENCE: 9
     488
         atggaggggg cagggtacca cetteetggt tggetggttg ggttacqcgt ceaqettetg
                                                                                60
     489
         attggttggc tagcagcgca tcacaatcac ttcctggtca tgctgcgact gcgctccggt
                                                                                120
     490
         tgtacagccc atgaactacg catcccgtgt tgctctgcgg tggcggaagc ggaagcgggt
                                                                                180
     491
         acggaggtac cagctggtct tcggaggggg gtagggggct ccatgaatgg aagcggcggc
                                                                                240
     492
         ggcggcggga gcgacctgag ctggattccg gggccggggc aggggctgcc cagggcccgc
                                                                                300
         acceptgtatg ggggcggttc gtggatccta agagcaagga ccgacggcag ggccgaactg
                                                                                360
     494
         ggaggggggg ggccgggagg cctcgggccg gaggcgcgtc gggctggagc cggtcacgat
                                                                                420
     495
         gccccgaagg aagcaaagcc atccacagcc cgtgaaatgc gagggggtca aaggtcaggg
                                                                                480
     496
         540
     497
         gtggagggg actcctcagg gttaggggcg gatgatctgg gatcttcgct ccttaccaga
                                                                                600
     498
         gtattaaagg aacctgaggg tcatcgagta cgggaagtgc agttcacaac agctggctcc
                                                                                660
     499
         ttggttcgga ttatgggtac tgcttgggag ggagattcca caagcaccct cccctcttta
                                                                                720
     500
         gtggatactg aagatteett egacgaaggt eetggggeee tggtgttgga gagegatttg
                                                                                780
     501
         ctactaggcc aagatctgga gtttgaagag gaagaggaag aggatgaagg tgacggccac
                                                                                840
     502
         aacgaccagc tcatgggctt tgagagagac tctgaaggag actctcaggg qqccaqacct
                                                                                900
     503
         ggactteect atgggetgag tgacgacgag tetgggggeg geegegeact aagtgeggag
                                                                                960
     504
         agtgaagttg aggaaccagc caggggtcca ggggaggcca ggggtgagag gccaggccca
                                                                              1020
     505
         gcctgtcagc tgtgtggggg gccgacaggt gaggggccgt gttgtggggc aggagggcgg
                                                                              1080
     506
         ggtggggggc ccccgctgcc cccacggtta ctgtactcat gccqgctqtg cqctttcqtq
                                                                              1140
     507
         toccactact cgagocacct gaagoggcac atgoagacac acagogggga gaagoogtto
                                                                              1200
E--> 508
         egetgtggee getgeecata egenteagee cagttegtea acetgaegeg acataceege
                                                                              1260
     509
         acceatactg gegagaagee ctacegttgt ecceaetgee cetttgeetg eageageetg
                                                                              1320
     510
         ggcaacctga ggcggcatca gcgcacccac acagggcctc ccactcctcc ctgcccaacc
                                                                              1380
         tgtggctttc gatgctgtgc tccacgacca acccggcctc ccagtcccac agagcaggag
     511
                                                                              1440
     512
         gggacaatgc cccgacgatc agaaaatgcg ctgatcctgc cagacttgag tcttcatgtg
                                                                              1500
     513
         ccaccaggtg gtgccagttt cctgccagac tgtgggcagc tgcggggtga aggggagagc
                                                                              1560
     514
         ttgtgtggaa ctggatccga accactgcca gagctactgt tcccttggac ctgccggggc
                                                                              1620
    515
         tgtggacagg aactggagga gggtgagggc agcaggctgg gagctgccat gtgtgggcgc
                                                                              1680
     516
         tgcatgcgag gagaggctgg aggggttgcc actgggggac cccagggccc tggtgacaaa
                                                                              1740
     517
         ggetttgeet gtagtttatg eccetttgee acteactace ecaaceaect ggeteggeae
                                                                              1800
     518
         atgaagactc acagtggtga gaaacccttc cgctgtgccc gctgtccata cgcctctgct
                                                                              1860
     519
         catctggata acctgaaacg gcaccagcgc gtccacacag gagaaaagcc ctacaagtgc
                                                                              1920
     520
         cocctetgtc egtatgeetg tggcaacetg gecaacetea agegteatgg tegeateeae
                                                                              1980
     521
         totggtgaca aacottttog gtgtagoott tgcaactaca gotgcaacca gagtatgaac
                                                                              2040
    522
         ctcaaacgtc atatgctgcg acacacgggc gagaagccct tccgctgtgc cacctgcgcc
                                                                              2100
         tataccacag gccactggga caactacaag cgtcatcaga aggtgcatgg ccatggtgga
                                                                              2160
         gcaggagggc ctggtctctc tgcccctgag ggctgggccc cacctcatag cccaccctct
                                                                              2220
    525
         gttttgagca ctcggggtcc agcagccctq qqtqctactq qtaqcaqqqc tcttcattca
                                                                              2280
    526
         gactcacct
                                                                              2289
    606 <210> SEQ ID NO: 15
    607 <211> LENGTH: 581
    608 <212> TYPE: DNA
    609 <213> ORGANISM: Mus musculus
    611 <400> SEQUENCE: 15
         ggcctttagt ctgaaaaagt gttgcttgaa agtgtacaac agagagcggg tgcaagcggc
                                                                                60
```

RAW SEQUENCE LISTING DATE: 02/13/2002 PATENT APPLICATION: US/09/673,994 TIME: 07:45:38

Input Set : A:\B08017197.txt .

Output Set: N:\CRF3\02132002\1673994.raw

	613	taggggtcac agagccgcc	a ataaaaaaga	atgtccttaa	ataaagtgtt	cacagagtaa	120	
	614	aaatcagaac taccagtco	t tccctccaac	acaacagagc	acaggcacag	aaccgatagt	180	
	615	cgatgagccc aaggagagt	a aggaggctta	agaggacagc	agageeteee	aggctgccgc	240	
	616	gtggggggg tggggggc	c tctttgtaat	gggctgagga	aagccaccca	gccccctgca	300	
	617	cacctcatac ccactgcta	a ggctaaagga	caaggacaaa	actcagtctc	gggtccaagg	360	
	618	gctcagaaaa cagtccaca	t gggcagggtc	cggttgacca	ctagtccctc	ttggccttct	420	•
	619	ttttgtcact gttgccggt	g tetteagece	cctccgtgga	cagtgcctcc	tccagtttcc	480	1. 9
E>	620	tcttgccant ctctgcctg	a agctctactg	tgtttcgggg	cttgaagcaa	atgatgatgc	540	stem 9
	621	acgtcatgtt gtcacacco	t gtaccatccc	cagaagtgtc	t		581	
	623	<210> SEQ ID NO: 16						
	624	<211> LENGTH: 586						
	625	<212> TYPE: DNA						
	626	<213> ORGANISM: Mus m	usculus					
	628	<400> SEQUENCE: 16						
	629	gcttttgttt ggcctttag	t ctgaaaaagt	gttgcttgaa	agtgtacaac	agagagcggg	60	
	630	tgcaagcggc taggggtca	c agageegeea	ataaaaaaga	atgtccttaa	ataaagtgtt	120	
	631	cacagagtaa aaatcagaa	c taccagtcct	tecetecade	acaacagagc	acaggcacag	180	
	632	aaccgatagt cgatgagco	c aaggagagta	aggaggctta	agaggacagc	agagcctccc	240	
	633	aggctgccgc gtggggggg	g tggggggccc	tctttgtaat	gggctgagga	aagccaccca	300	
	634	gccccctgca cacctcata	c ccactgctaa	ggctaaagga	caaggacaaa	actcagtctc	360	٠
	635	gggtccaagg ggctcagaa	a aacagttcca	catggggcag	ggtccggttg	aaccactagt	420	~
	636	teectettgg geettettt	t tgttcactgt	tggccggtgt	cttcagcccc	ctccgtggac	480	1. 9
E>	637	agtgcctcct ccagtttcc	_		-	gtttcggggn	540	Jum !
	638	tgaagcaaat gatgatgca	c ttcatgttgt	tcacaccctg	taccat		586	

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/673,994

DATE: 02/13/2002 TIME: 07:45:39

Input Set : A:\B08017197.txt

Output Set: N:\CRF3\02132002\1673994.raw

L:314 M:340 E: (46) "n" or "Xaa" used: Feature required, for SEQ ID#:7 M:340 Repeated in SeqNo=7

L:435 M:340 E: (46) "n" or "Xaa" used: Feature required, for SEQ ID#:8

L:508 M:340 E: (46) "n" or "Xaa" used: Feature required, for SEQ ID#:9

L:620 M:340 E: (46) "n" or "Xaa" used: Feature required, for SEQ ID#:15 L:637 M:340 E: (46) "n" or "Xaa" used: Feature required, for SEQ ID#:16