ÉQUATION FONCTIONNELLE

Soit $n \ge 1$ un entier et p un nombre premier. Dans la suite, on notera G = $GL_n(\mathbb{Q}_p)$, dq une mesure de Haar sur G et (π, V) une représentation admissible irréductible de G.

Les coefficients de π sont les fonctions de la forme $g \in G \mapsto \langle \pi(g)\nu, \tilde{\nu} \rangle$, où $v \in V \text{ et } \tilde{v} \in \tilde{V}.$

On note M_n l'ensemble des matrices $n \times n$ à coefficients dans \mathbb{Q}_p et S l'ensemble des fonctions $\varphi:M_n\to\mathbb{C}$ localement constantes à support compact.

Si f est un coefficient de π , $\phi \in S$ et $s \in \mathbb{C}$, on pose

(1)
$$\zeta(f, \phi, s) = \int_{G} \phi(g) f(g) |\det g|_{p}^{s} dg.$$

On fixe un caractère ψ de \mathbb{Q}_p^{\times} et on pose

(2)
$$\hat{\phi}(y) = \int_{M_n} \phi(x) \psi(\mathsf{Tr}(xy)) dx,$$

où dx est une mesure de Haar sur M_n .

On veut montrer l'équation fonctionnelle suivante

(3)
$$\zeta(f, \phi, s) = \gamma(s)\zeta(\check{f}, \hat{\phi}, 1 - s),$$

où γ est une fonction rationnelle en \mathfrak{p}^s et $\check{\mathsf{f}}(g) = \mathsf{f}(g^{-1})$.

Pour montrer cette équation fonctionnelle, on va utiliser la

Propriété 1. Les opérateurs $\zeta(.,.,s)$ et $\zeta(\check{\cdot},\hat{\cdot},1-s)$ sont des opérateurs d'entrelacements, éléments de $\mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes S, |\det|_{\mathfrak{p}}^{\mathsf{s}}\boxtimes |\det|_{\mathfrak{p}}^{-\mathsf{s}}).$

On précise que l'action de $G \times G$ sur S est $(g_1, g_2).\phi(x) = \phi(g_1^{-1}xg_2)$. De plus, on identifie l'ensemble des coefficients de π avec l'espace $V\otimes \tilde{V}$; l'action de $G\times G$ sur $\pi \boxtimes \tilde{\pi}$ est $(g_1, g_2).f(g) = f(g_1^{-1}gg_2)$

Démonstration. L'action de $G \times G$ sur $\zeta(f, \phi, s)$ donne

(4)
$$\int_{G} \Phi(g_{1}^{-1}gg_{2}) f(g_{1}^{-1}gg_{2}) |\det g|_{p}^{s} dg.$$

On effectue le changement de variable $g \mapsto g_1 g g_2^{-1}$, le groupe G étant unimodulaire l'intégrale devient

(5)
$$|\det g_1 g_2^{-1}|^s \int_G \phi(g) f(g) |\det g|_p^s dg.$$

D'autre part, l'action de $G \times G$ sur $\zeta(\check{f}, \hat{\varphi}, 1-s)$ donne

(6)
$$\int_{G} \hat{\phi_{g_1,g_2}}(g) f_{g_1,g_2}(g) |\det g|_p^{1-s} dg,$$

où l'on a noté $\phi_{g_1,g_2}(x)=\phi(g_1^{-1}xg_2)$ et $f_{g_1,g_2}(g)=f(g_1^{-1}gg_2)$. Un calcul immédiat, montre que $f_{g_1,g_2}(g)=\check{f}(g_2^{-1}gg_1)$. De plus,

(7)
$$\varphi_{g_1,g_2}(g) = \int_{M_\pi} \varphi(g_1^{-1}xg_2) \psi(\text{Tr}(xg)) dx.$$

Après le changement de variable $x \mapsto g_1 x g_2^{-1}$ l'intégrale devient

(8)
$$|\det g_1^{-1}g_2|_p \int_{M_n} \phi(x) \psi(\text{Tr}(xg_2^{-1}gg_1)) dx,$$

qui n'est autre que $|\det g_1g_2^{-1}|\hat{\varphi}(g_2^{-1}gg_1)$. L'intégrale (6) devient donc, après le changement de variable $g\mapsto g_2gg_1^{-1}$,

(9)
$$|\det g_1^{-1}g_2|_p |\det g_2g_1^{-1}|_p^{1-s} \int_G \hat{\varphi}(g)\check{f}(g) |\det g|_p^{1-s} dg.$$

Dans le but de comprendre l'espace $\operatorname{\mathsf{Hom}}_{G\times G}((\pi\boxtimes\tilde{\pi})\otimes\mathcal{S},|\det|_p^s\boxtimes|\det|_p^{-s}),$ on va décomposer \mathcal{S} selon le rang des matrices. Soit r un entier compris entier 1 et n, on note S_r l'espace des matrices $n\times n$ de rang r et $S^{(r)}$ l'espace des matrices $n\times n$ de rang r et r.

Si X est un espace localement compact totalement discontinu, on note $C_c^\infty(X)$ l'espace des fonctions $f:X\to\mathbb{C}$ localement constantes à support compact. L'espace S est donc égal à $C_c^\infty(M_n)$.

Le groupe G est un ouvert de M_n et $M_n\setminus G=S^{(n)}.$ Cette décomposition donne la suite exacte

$$(10) 0 \to C_c^{\infty}(\mathsf{G}) \to C_c^{\infty}(\mathsf{M}_n) \to C_c^{\infty}(\mathsf{S}^{(n)}) \to 0,$$

où l'inclusion de $C_c^\infty(G)$ dans $C_c^\infty(M_n)$ se fait par extension par 0 et l'application $C_c^\infty(M_n) \to C_c^\infty(S^{(n)})$ est l'application de restriction.

Cette suite exacte commute avec l'action de $G \times G$, on la voit donc comme une suite exacte de représentations de $G \times G$. On applique le foncteur $\text{Hom}_{G \times G}(., (\pi \boxtimes \tilde{\pi}) \otimes (|\det|_p^s \boxtimes |\det|_p^{-s}))$, qui est exact à gauche, on en déduit alors l'inégalité suivante :

(11)
$$\dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes\mathcal{S},|.|_p^s)\leqslant \dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes C_c^\infty(\mathsf{G}),|.|_p^s) \\ +\dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes C_c^\infty(\mathsf{S}^{(n)}),|.|_p^s),$$

où l'on a abrégé $|.|_p^s = |\det|_p^s \boxtimes |\det|_p^{-s}$.

On décompose ensuite $S^{(n)}$ selon le rang r, ce qui donne, en utilisant le même raisonnement, que

$$(12) \ \dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes \mathcal{S},|.|_{p}^{s})\leqslant \sum_{r=0}^{n}\dim \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes C_{c}^{\infty}(\mathcal{S}_{r}),|.|_{p}^{s}).$$

Il ne nous reste plus qu'à calculer la dimension de ces différents espaces, pour cela on dispose de la

Proposition 1. Pour r = n $(S_r = G)$, on a

(13)
$$\dim \operatorname{\mathsf{Hom}}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes\mathsf{C}^\infty_\mathsf{c}(\mathsf{G}),|.|^{\mathsf{s}}_{\mathfrak{p}})=1;$$

 $\mathit{et\ pour\ r} < n,\ \mathit{on\ a}$

(14)
$$\operatorname{\mathsf{Hom}}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes\mathsf{C}_{\mathsf{c}}^{\infty}(\mathsf{S}_{\mathsf{r}}),|.|_{\mathsf{p}}^{\mathsf{s}})=0$$

sauf pour un nombre fini de valeurs de s modulo $\frac{2i\pi}{(n-r)\log p}\mathbb{Z}.$

 $D\acute{e}monstration$. Commençons par le cas r = n,

$$(15) \qquad \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes C^{\infty}_{\mathsf{c}}(\mathsf{G}),|.|^{\mathsf{s}}_{\mathfrak{p}})\simeq \mathsf{Hom}_{\mathsf{G}\times\mathsf{G}}((\pi\boxtimes\tilde{\pi})\otimes|.|^{-\mathsf{s}}_{\mathfrak{p}},C^{\infty}(\mathsf{G}))$$

$$(16) \simeq \operatorname{Hom}_{\mathsf{H}}((\pi \boxtimes \tilde{\pi}) \otimes |.|_{\mathfrak{p}}^{-s}, \mathbb{C})$$

(17)
$$\simeq \operatorname{Hom}_{\mathsf{G}}(\pi,\pi);$$

où le groupe H désigne la diagonale de $G\times G$. Ce dernier espace est bien de dimension 1 d'après le lemme de Schur.

Le premier isomorphisme provient de la dualité entre $C_c^\infty(G)$ et $C^\infty(G)$. Le deuxième isomorphisme est une application de la réciprocité de Frobenius avec l'identification $C^\infty(G) = \operatorname{Ind}_H^{G \times G}(1)$. Pour finir, le dernier isomorphisme provient du fait que l'action diagonale de H sur $\pi \boxtimes \tilde{\pi}$ correspond à l'action de G sur $\pi \otimes \tilde{\pi}$ et que $|.|_p^{-s}$ est trivial sur H.

Passons au cas r < n, S_r est l'orbite de $\begin{pmatrix} 1_r & 0 \\ 0 & 0 \end{pmatrix}$ sous l'action de $G \times G$ par translation à gauche du premier facteur et translation à droite de l'inverse sur le second facteur. On calcule le stabilisateur,

$$(18) \hspace{1cm} \mathsf{H} = \mathsf{Stab}_{\mathsf{G} \times \mathsf{G}} \begin{pmatrix} \mathbf{1}_{\mathsf{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \left\{ \begin{pmatrix} \begin{pmatrix} \mathfrak{a} & \mathfrak{b} \\ \mathbf{0} & \mathfrak{c} \end{pmatrix}, \begin{pmatrix} \mathfrak{a} & \mathbf{0} \\ \mathfrak{d} & \mathfrak{e} \end{pmatrix} \right\} \right\} \subset \mathsf{G} \times \mathsf{G},$$

où a décrit $GL_r(\mathbb{Q}_p)$; c,e décrivent $GL_{n-r}(\mathbb{Q}_p)$; b décrit $M_{r,n-r}(\mathbb{Q}_p)$ et d décrit $M_{n-r,r}(\mathbb{Q}_p)$.

On note P=MN le sous-groupe parabolique de G des matrices de la forme $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ et $\bar{P}=M\bar{N}$ le groupe parabolique opposé, alors $H\subset P\times \bar{P}$.

(10)

$$\mathsf{Hom}((\pi \boxtimes \tilde{\pi}) \otimes C^{\infty}_{c}(S_{r}), |.|_{p}^{s}) \simeq \mathsf{Hom}_{G \times G}((\pi \boxtimes \tilde{\pi}) \otimes |.|_{p}^{-s}, \mathsf{Ind}_{H}^{G \times G}(\delta_{H}))$$

$$(20) \qquad \qquad \simeq \operatorname{Hom}_{\mathsf{M}\times\mathsf{M}}((\pi\boxtimes\tilde{\pi})_{\mathsf{N}\times\bar{\mathsf{N}}}\otimes|.|_{\mathfrak{p}}^{-s},\operatorname{Ind}_{(\mathsf{M}\times\mathsf{M})\cap\mathsf{H}}^{\mathsf{M}\times\mathsf{M}}(\delta_{\mathsf{H}}))$$

$$(21) \qquad \simeq \operatorname{Hom}_{(M \times M) \cap H} ((\pi \boxtimes \tilde{\pi})_{N \times \bar{N}}, \delta_{H} \otimes |.|_{\mathfrak{p}}^{s}),$$

où δ_H est le caractère modulaire de H.

Le premier isomorphisme provient de l'identification de $C_c^\infty(S_r) = c - Ind_H^{G \times G}(1)$ et de la dualité entre $c - Ind_H^{G \times G}(1)$ et $Ind_H^{G \times G}(\delta_H)$. Pour le deuxième isomorphisme, on utilise la transitivité de l'induction, $H \subset P \times \bar{P} \subset G \times G$, et l'adjonction entre $Ind_{P \times \bar{P}}^{G \times G}$ et le foncteur de Jacquet ; en remarquant, que $N \times \bar{N}$ agit trivialement sur $|.|_p^{-s}$. Le dernier isomorphisme n'est autre que la réciprocité de Frobenius.

On utilise le fait que $(\pi \boxtimes \tilde{\pi})_{N \times \tilde{N}}$ est de longueur finie; en effet le foncteur de Jacquet préserve la longueur finie. Il existe donc des représentations admissibles V_i de $M \times M$ telles que

$$(22) 0 = V_0 \subset V_1 \subset ... \subset V_l = (\pi \boxtimes \tilde{\pi})_{N \times \tilde{N}},$$

avec V_i/V_{i-1} irréductibles.

En reprenant un raisonnement que l'on a déjà fait, la suite exacte de représentations de $M\times M$

$$(23) 0 \rightarrow V_{i-1} \rightarrow V_i \rightarrow V_i/V_{i-1} \rightarrow 0$$

permet d'obtenir l'inégalité suivante : (24)

$$\dim \mathsf{Hom}_{(M\times M)\cap H}((\pi\boxtimes\tilde{\pi})_{N\times \bar{N}},|.|_p^s\delta_H)\leqslant \sum_{i=1}^l\dim \mathsf{Hom}_{(M\times M)\cap H}(V_i/V_{i-1},|.|_p^s\delta_H).$$

Il nous suffit donc de montrer que ces derniers espaces sont nuls sauf pour au plus une valeur de s modulo $\frac{2i\pi}{(n-r)\log p}\mathbb{Z}.$

En tant que représentation irréductible de $M \times M \simeq GL^2_r(\mathbb{Q}_p) \times GL^2_{n-r}(\mathbb{Q}_p)$, on peut décomposer $V_i/V_{i-1} \otimes \delta_H^{-1}$ sous la forme $\sigma^{(i)} \boxtimes (\tau_1^{(i)} \boxtimes \tau_2^{(i)})$, où $\sigma^{(i)}$ est une représentation irréductible de $GL^2_r(\mathbb{Q}_p)$ et $\tau_1^{(i)}, \tau_2^{(i)}$ sont des représentations irréductibles de $GL_{n-r}(\mathbb{Q}_p)$.

D'après le lemme de Schur, la représentation $\tau_2^{(i)}$ admet un caractère central $\omega^{(i)}$. On en déduit que

$$(25) \qquad \qquad \mathsf{Hom}_{(\mathsf{M}\times\mathsf{M})\cap\mathsf{H}}(V_i/V_{i-1},|.|_{\mathfrak{p}}^s\delta_\mathsf{H}) = 0,$$

sauf si $\omega^{(i)} = |.|_p^{-(n-r)s}$ sur \mathbb{Q}_p^{\times} . Cette dernière équation ne peut être vérifiée que pour au plus une valeur de s modulo $\frac{2i\pi}{(n-r)\log p}\mathbb{Z}$.

Terminons la preuve de l'équation fonctionnelle. Rappelons que les opérateurs $\zeta(.,.,s)$ et $\zeta(\check{.},\hat{.},1-s)$ sont des éléments de $\text{Hom}_{G\times G}((\pi\boxtimes\tilde{\pi})\otimes\mathcal{S},|\det|_p^s\boxtimes|\det|_p^{-s}),$ qui est de dimension 1 sauf pour un nombre fini de valeurs de s modulo $\sum_{r=0}^{n-1}\frac{2i\pi}{(n-r)\log p}\mathbb{Z}$.

Autrement dit, pour s en dehors de cet ensemble de valeurs exceptionnelles, il existe $\gamma(s) \in \mathbb{C}$ tel que

(26)
$$\zeta(.,.,s) = \gamma(s)\zeta(\check{\cdot},\hat{\cdot},1-s).$$

Les fonctions zêta étant des fonctions rationnelles en p^s et l'ensemble des valeurs de s pour lesquelles γ est ainsi défini est dense pour la topologie de Zariski, on en déduit que l'on peut étendre γ en une fonction rationnelle en p^s pour laquelle l'équation (26) est vérifiée comme égalité de fonctions rationnelles en p^s .