A Supplementary Figures and Tables

Lemma 1. If A and B are the adjacency matrices of simple graphs that are isomorphic to one another, then the minimum of rQAP is equal to the minimum of QAP.

Proof. Because any feasible solution to GM is also a feasible solution to rQAP, we must only show that the optimal objective function value to rQAP can be no better than the optimal objective function value of QAP. Let $A = PBP^\mathsf{T}$, so that $\langle A, PBP^\mathsf{T} \rangle = 2m$, where m is the number of edges in A. If rQAP could achieve a lower objective value, then it must be that there exists a $D \in \mathcal{D}$ such that $\langle A, DBD^\mathsf{T} \rangle > \langle A, PBP^\mathsf{T} \rangle = 2m$ (remember that we are minimizing the negative Euclidean inner product). For that to be the case, it must be that $(DBD^\mathsf{T})_{uv} \geq 1$ for some (u,v). That this is not so may be seen by the submultiplicativity of the norm induced by the ℓ_∞ norm: $\|Dx\|_\infty \leq \|D\|_{\infty,\infty} \|x\|_\infty$. Applying this twice (once for each doubly stochastic matrix multiplication) yields our result.

Linear Assignment Problems The standard way of writing a Linear Assignment Problem (LAP) is

$$\begin{array}{ll} \text{minimize} & \sum_{u,v \in [n]} a_{u\pi(v)} b_{uv} \\ \text{subject to} & P \in \mathcal{P}. \end{array}$$

The LAP objective function, like the QAP objective function, enjoys a number of equivalent formulations, including

(LAP) minimize
$$\langle P, AB^{\mathsf{T}} \rangle$$
 subject to $P \in \mathcal{P}$. (11)

The binary constraints of LAP—like those of QAP—make solving even this problem computationally tricky. Nonetheless, in the last several decades, there has been much progress in accelerating algorithms for solving LAPs, starting with exponential time, all the way down to $\mathcal{O}(n^3)$ for general LAPs, and even faster for certain special cases (e.g., sparse matrices) [24, 12].

To see that Eq. (7) is identical to Eq. (12), simply let $A = \nabla_P^{(i)}$ and B = I (the $n \times n$ identity matrix).

To solve a LAP, consider a continuous relaxation of LAP, specifically, relaxing the permutation matrix constraint to a doubly stochastic matrix constraint:

(rLAP)
$$\begin{array}{ll} \text{minimize} & \langle P, AB^{\mathsf{T}} \rangle \\ \text{subject to} & P \in \mathcal{D}. \end{array}$$
 (12)

As it turns out, the minima of LAP and rLAP are equal to one anther [12]. This relaxation motivates our approach to approximating QAP.

Pseudocode 1 FAQ for finding a local optimum of rQAP

Input: graphs A and B as well as stopping criteria

Output: \widehat{P} , an estimated permutation matrix

- 1: Choose an initialization, $P^{(0)} = \mathbf{1}\mathbf{1}^{\mathsf{T}}/n$
- 2: while stopping criteria not met do
- 3: Compute the gradient of f at the current point via Eq. (6)
- 4: Compute the direction $Q^{(i)}$ by solving Eq. (7) via the Hungarian algorithm
- 5: Compute the step size $\alpha^{(i)}$ by solving Eq. (8)
- 6: Update $P^{(i)}$ according to Eq. (9)
- 7: end while
- 8: Obtain P by solving Eq. (10) via the Hungarian algorithm.

Table 1: Comparison of FAQ with optimal objective function value and previous state-of-the-art for directed graphs. The best (lowest) value is in **bold**. Asterisks indicate achievement of the global minimum. The number of vertices for each problem is the number in its name (second column).

#	Problem	Optimal	FAQ	ЕРАТН	GRAD
1	lipa20a	3683	3791	3885	3909
2	lipa20b	27076	27076*	32081	27076*
3	lipa30a	13178	13571	13577	13668
4	lipa30b	151426	151426*	151426*	151426*
5	lipa40a	31538	32109	32247	32590
6	lipa40b	476581	476581*	476581*	476581*
7	lipa50a	62093	62962	63339	63730
8	lipa50b	1210244	1210244*	1210244*	1210244*
9	lipa60a	107218	108488	109168	109809
10	lipa60b	2520135	2520135*	2520135*	2520135*
11	lipa70a	169755	171820	172200	173172
12	lipa70b	4603200	4603200*	4603200*	4603200*
13	lipa80a	253195	256073	256601	258218
14	lipa80b	7763962	7763962*	7763962*	7763962*
15	lipa90a	360630	363937	365233	366743
16	lipa90b	12490441	12490441*	12490441*	12490441*

Table 2: Comparison of FAQ with optimal objective function value and the best result on the undirected benchmarks. Note that FAQ restarted 100 times finds the optimal objective function value in 3 of 16 benchmarks, and that FAQ restarted 3 times finds a minimum better than the previous state-of-the-art on all 16 particularly difficult benchmarks.

#	Problem	Optimal	FAQ ₁₀₀	FAQ3	previous min
1	chr12c	11156	12176	13072	13072
2	chr15a	9896	9896*	17272	19086
3	chr15c	9504	10960	14274	16206
4	chr20b	2298	2786	3068	3068
5	chr22b	6194	7218	7876	8482
6	esc16b	292	292*	294	296
7	rou12	235528	235528*	238134	253684
8	rou15	354210	356654	371458	371458
9	rou20	725522	730614	743884	743884
10	tai 10a	135028	135828	148970	152534
11	tai15a	388214	391522	397376	397376
12	tai17a	491812	496598	511574	529134
13	tai20a	703482	711840	721540	734276
14	tai30a	1818146	1844636	1890738	1894640
15	tai35a	2422002	2454292	2460940	2460940
16	tai40a	3139370	3187738	3194826	3227612