Table of Contents

AMSC 460 - HW6
Problem 1
Problem 2

AMSC 460 - HW6

```
clear all; format compact; close all; syms f(x) x y 
 Error using dbstatus 
 Error: File: C:\Users\josep\OneDrive\Documents\GitHub\Matlab\_store 
 \Courses\Amsc460\HW\HW6\HW6.m Line: 31 Column: 9 
 Incorrect use of '=' operator. To assign a value to a variable, use '='. To compare values for equality, use '=='.
```

Problem 1

Obtain the precise operation count (number of operations +,-,*,/) for computing a matrix-matrix product AB. Suppose each matrix is $n \times n$.

 $(AB)ij = \#aibkj (1 \le i \le n\&1 \le j \le n)$. For matrix B the ith component will have n multiplications, and n -1 additions. The total amout will be 2n-1 for each i.

The total count for bij in matrix B * A is $n(2n-1) = 2n^3-n$ Since B is n*n matrix , so the total operation wil be $n*n(2n-1) = 2n^3-n^2$

 $O(n^3)$

Problem 2

Suppose we have an $n \times n$ matrix. In class we discussed how the elimination step of Gaussian elimination (LU) is $O(n^3)$, while back-substitution (or forward-substitution) is only $O(n^2)$. The back-substitution steps for finding the components xi of a solution can be concisely written as xn = bn/unn, xi = 1/uii(bi ##uijxj), for i = n = 1, ..., 1.

Show that the total operation count (number of operations +, $_$, *, ') for constructing x is exactly n^2 .

```
for j = n to 1
   if uij=0 stop
   xj = bj/uij
      for i = 1 to j-1
           bi = bi-uijxj
      end
end
```

Since it is a n*n matrix, for every i, the operation will be consisted of 1 divion 1 subtraction and (n-(i+1))+1=n-i multiplications and n-i-1 addditions

Adding up all operations and sum it from i = 1 to n we can have $(2n-1=1)/2 = n^2$ So the total operation count is n^2

