# Thema09\_Log

#### Marcel Setz

# Contents

| Introduction              | 1  |
|---------------------------|----|
| Smoker epigenetic dataset | 1  |
| Research Question         | 1  |
| EDA                       | 2  |
| Codebook                  | 2  |
| Data exploration          | 3  |
| Visualization             | 3  |
| Plotting the data         | 7  |
| Results                   | 11 |
| Conclusion and Discussion | 13 |

# Introduction

# Smoker epigenetic dataset

A CpG island or CpG site is a part of the DNA where the GC content is greater than 50%. In this dataset methylation values of certain CpG sites are displayed with also the age, gender and smoking status for 671 people.

# Research Question

Is it possible to identify a person's gender, age or status of smoking given their CpG values?

#### EDA

#### Codebook

```
myData <- read.csv("data/Smoker_Epigenetic_df.csv")
myData <- myData %>% drop_na()

columns = colnames(myData[1:4])
columns <- append(columns, "Columns 5-24")
names <- c("Sample Accessions numbers", "Smoking status", "Gender", "Age", "CG Island")
type <- c("chr", "chr", "chr", "int", "num")
unit <- c(NA, "current/never", "f/m", NA, NA)
descriptions = c("GSM identifier testsubject", "Wether the person is smoking or not", "Gender", "Age",
codebook <- data.frame(columns, names, type, descriptions)
write.csv(codebook, "Codebook.csv", row.names = FALSE)
knitr::kable(codebook)</pre>
```

| columns        | names                     | type | descriptions                        |
|----------------|---------------------------|------|-------------------------------------|
| GSM            | Sample Accessions numbers | chr  | GSM identifier testsubject          |
| Smoking.Status | Smoking status            | chr  | Wether the person is smoking or not |
| Gender         | Gender                    | chr  | Gender                              |
| Age            | Age                       | int  | Age                                 |
| Columns 5-24   | CG Island                 | num  | Methylation Rate of CG Island       |

# Data exploration

#### Visualization

```
subsetdata <- head(myData)
dataset <- subsetdata[1:7]
knitr::kable(dataset) %>%
  row_spec(0, bold = TRUE) %>%
  column_spec(1, bold = TRUE)
```

| GSM        | Smoking.Status | Gender | Age | cg00050873 | cg00212031 | cg00213748 |
|------------|----------------|--------|-----|------------|------------|------------|
| GSM1051525 | current        | f      | 67  | 0.6075634  | 0.4228427  | 0.3724549  |
| GSM1051526 | current        | f      | 49  | 0.3450542  | 0.5686615  | 0.5005995  |
| GSM1051527 | current        | f      | 53  | 0.3213497  | 0.3609091  | 0.3527315  |
| GSM1051528 | current        | f      | 62  | 0.2772675  | 0.3044371  | 0.4752352  |
| GSM1051529 | never          | f      | 33  | 0.4135991  | 0.1312511  | 0.3675446  |
| GSM1051530 | current        | f      | 59  | 0.6228599  | 0.5016849  | 0.2632270  |

```
dataset <- subsetdata[c(1, 8:13)]
knitr::kable(dataset) %>%
  row_spec(0, bold = TRUE) %>%
  column_spec(1, bold = TRUE)
```

| GSM        | cg00214611 | cg00455876 | cg01707559 | cg02004872 | cg02011394 | cg02050847 |
|------------|------------|------------|------------|------------|------------|------------|
| GSM1051525 | 0.6215619  | 0.2907773  | 0.2671431  | 0.1791439  | 0.4802517  | 0.3276078  |
| GSM1051526 | 0.4986067  | 0.3745909  | 0.1902743  | 0.1559775  | 0.4180809  | 0.3464627  |
| GSM1051527 | 0.3738240  | 0.2306740  | 0.3147052  | 0.1057448  | 0.6151030  | 0.2375392  |
| GSM1051528 | 0.4862581  | 0.2951815  | 0.2957931  | 0.1112862  | 0.3010196  | 0.3045353  |
| GSM1051529 | 0.7611667  | 0.2357703  | 0.2505265  | 0.1691084  | 0.3929746  | 0.3062257  |
| GSM1051530 | 0.4157459  | 0.4751891  | 0.2539041  | 0.2607587  | 0.5097921  | 0.4052457  |

```
dataset <- subsetdata[c(1, 14:19)]
knitr::kable(dataset) %>%
  row_spec(0, bold = TRUE) %>%
  column_spec(1, bold = TRUE)
```

| $\mathbf{GSM}$ | cg02233190 | cg02494853 | cg02839557 | cg02842889 | cg03052502 | m cg03155755 |
|----------------|------------|------------|------------|------------|------------|--------------|
| GSM1051525     | 0.2411204  | 0.0670696  | 0.2469934  | 0.4692396  | 0.4002466  | 0.4150313    |
| GSM1051526     | 0.1754907  | 0.0469389  | 0.2367423  | 0.3074666  | 0.3770313  | 0.3973715    |
| GSM1051527     | 0.2464092  | 0.0382371  | 0.2446117  | 0.3577526  | 0.3050442  | 0.5212775    |
| GSM1051528     | 0.1770279  | 0.0267163  | 0.0016414  | 0.4457390  | 0.2714746  | 0.4344920    |
| GSM1051529     | 0.3017014  | 0.0370164  | 0.3343197  | 0.3950396  | 0.3265530  | 0.4300966    |
| GSM1051530     | 0.3852716  | 0.0258346  | 0.3092102  | 0.3218573  | 0.5333670  | 0.5715522    |

```
dataset <- subsetdata[c(1, 20:24)]
knitr::kable(dataset) %>%
  row_spec(0, bold = TRUE) %>%
  column_spec(1, bold = TRUE)
```

| GSM        | cg03244189 | cg03443143 | cg03683899 | cg03695421 | cg03706273 |
|------------|------------|------------|------------|------------|------------|
| GSM1051525 | 0.2214331  | 0.4758258  | 0.2077242  | 0.2091974  | 0.1299826  |
| GSM1051526 | 0.2171221  | 0.5444690  | 0.1844462  | 0.1937732  | 0.0985327  |
| GSM1051527 | 0.1850495  | 0.5370600  | 0.3931231  | 0.2680030  | 0.0402481  |
| GSM1051528 | 0.1654187  | 0.5079167  | 0.2812089  | 0.2178572  | 0.1015163  |
| GSM1051529 | 0.1811352  | 0.4054791  | 0.3107944  | 0.2800708  | 0.0778571  |
| GSM1051530 | 0.2109749  | 0.3778239  | 0.4693609  | 0.3433317  | 0.0457791  |

| ## | GSM              | Smoking.Status   | Gender           | Age               |
|----|------------------|------------------|------------------|-------------------|
| ## | Length:621       | Length:621       | . 0              | Min. :18.00       |
| ## | Class :character | Class :character | r Class :charact | ter 1st Qu.:46.00 |
| ## | Mode :character  | Mode :character  | r Mode :charact  | ter Median:54.00  |
| ## |                  |                  |                  | Mean :52.59       |
| ## |                  |                  |                  | 3rd Qu.:61.00     |
| ## |                  |                  |                  | Max. :70.00       |
| ## | cg00050873       | cg00212031       | cg00213748       | cg00214611        |
| ## | Min. :0.1186     | Min. :0.006949   | Min. :0.0000     | Min. :0.01247     |
| ## | 1st Qu.:0.4131   | 1st Qu.:0.063172 | 1st Qu.:0.3635   | 1st Qu.:0.06946   |
| ## | Median :0.5052   | Median :0.365545 | Median :0.4713   | Median :0.41575   |
| ## | Mean :0.5600     | Mean :0.309601   | Mean :0.5191     | Mean :0.34106     |
| ## | 3rd Qu.:0.8144   | 3rd Qu.:0.459813 | 3rd Qu.:0.7278   | 3rd Qu.:0.49745   |
| ## | Max. :0.8989     | Max. :0.709992   | Max. :0.9236     | Max. :0.80606     |
| ## | cg00455876       | cg01707559       | cg02004872       | cg02011394        |
| ## | Min. :0.05917    | Min. :0.04333    | Min. :0.002616   | S Min. :0.0000    |
| ## | 1st Qu.:0.29300  | 1st Qu.:0.11080  | 1st Qu.:0.042835 | 1st Qu.:0.4261    |
| ## | Median :0.37968  | Median :0.23873  | Median :0.149332 | Median :0.5157    |
| ## | Mean :0.44718    | Mean :0.21435    | Mean :0.155417   | Mean :0.6058      |
| ## | 3rd Qu.:0.66283  | 3rd Qu.:0.28061  | 3rd Qu.:0.242627 | 7 3rd Qu.:0.9412  |
| ## | Max. :0.85443    | Max. :0.46999    | Max. :0.473844   | Max. :0.9792      |
| ## | cg02050847       | cg02233190       | cg02494853       | cg02839557        |
| ## | Min. :0.05234    | Min. :0.008632   | Min. :0.01162    | 2 Min. :0.00000   |
| ## | 1st Qu.:0.33963  | 1st Qu.:0.088375 | 1st Qu.:0.02865  | 1st Qu.:0.06384   |
| ## | Median :0.42754  | Median :0.259817 | Median :0.03695  | Median :0.35042   |
| ## | Mean :0.54369    | Mean :0.232498   | Mean :0.04077    |                   |
| ## | 3rd Qu.:0.95558  | 3rd Qu.:0.337023 | 3rd Qu.:0.04677  | 7 3rd Qu.:0.45786 |
| ## | Max. :0.98320    | Max. :0.511730   | Max. :0.28947    | Max. :0.82739     |
| ## | cg02842889       | cg03052502       | cg03155755       | cg03244189        |
| ## | Min. :0.01346    | Min. :0.0000     | Min. :0.2020     | Min. :0.02972     |
| ## | 1st Qu.:0.05483  | 1st Qu.:0.4025   | 1st Qu.:0.4245   | 1st Qu.:0.11976   |
| ## | Median :0.39757  | Median :0.4940   | Median :0.4962   | Median :0.20397   |
| ## | Mean :0.32362    | Mean :0.5907     | Mean :0.5895     | Mean :0.19552     |
| ## | 3rd Qu.:0.47385  | 3rd Qu.:0.9631   | 3rd Qu.:0.8988   | 3rd Qu.:0.24921   |
| ## | Max. :0.85625    | Max. :0.9902     | Max. :0.9696     | Max. :0.54074     |
| ## | cg03443143       | cg03683899       | cg03695421       | cg03706273        |
| ## | Min. :0.06496    | Min. :0.00788    | Min. :0.0949     | Min. :0.01120     |
| ## | 1st Qu.:0.40963  | 1st Qu.:0.06159  | 1st Qu.:0.2566   | 1st Qu.:0.03413   |
| ## | Median :0.48314  | Median :0.34422  | Median :0.3208   | Median :0.04961   |
| ## | Mean :0.56841    | Mean :0.28442    | Mean :0.3978     | Mean :0.05769     |
| ## | 3rd Qu.:0.85436  | 3rd Qu.:0.41866  | 3rd Qu.:0.5965   | 3rd Qu.:0.06916   |
| ## | Max. :0.93589    | Max. :0.65925    | Max. :0.8433     | Max. :0.34380     |
|    |                  |                  |                  |                   |

Below there are some histograms which visualizes the distribution of smoking status, age and gender.

```
ggplot(myData, aes(x=Smoking.Status)) +
  geom_histogram(stat="count", fill = c("pink", "lightblue"), col = "black") +
  ylim(0, 600) +
  labs(caption = "Figure 1: Number of people who are smoking") +
  theme(plot.caption = element_text(size=16)) +
  theme(plot.caption = element_text(size=16, face="italic")) +
  theme(axis.text = element_text(size = 20)) +
  theme(axis.title = element_text(size = 20, face="bold"))
```



Figure 1: Number of people who are smoking

```
ggplot(myData, aes(x=Gender)) +
  geom_histogram(stat="count", fill = c("pink", "lightblue"), col = "black") +
  ylim(0, 600) +
  labs(caption = "Figure 2: Gender distribution") +
  theme(plot.caption = element_text(size=16)) +
  theme(plot.caption = element_text(size=16, face="italic")) +
  theme(axis.text = element_text(size = 20)) +
  theme(axis.title = element_text(size = 20, face="bold"))
```



Figure 2: Gender distribution

```
ggplot(myData, aes(x=Age)) +
  geom_histogram(fill = "lightgrey", col = "black") +
  labs(caption = "Figure 3: Age distribution") +
  theme(plot.caption = element_text(size=16, face="italic")) +
  theme(axis.text = element_text(size = 20)) +
  theme(axis.title = element_text(size = 20, face="bold"))
```



Figure 3: Age distribution

#### Plotting the data

These are all the CpG sites plotted against age, with smokin status as color groups and gender as shape groups. A few of the CpG islands have been removed, becaused they looked very similar. What stands out here is that you see two groups in almost every graph, one of men and one of women, so apparently the cg methylation rate is different between men and women.

```
plotfunction <- function(cg){
    ggplot(data = myData, mapping = aes_string(x = "Age", y = cg)) +
        geom_point(aes(shape = factor(Gender), color = factor(Smoking.Status))) +
        labs(caption = paste(cg, ": Scatterplot visualizing the methylation rate on this CpG island of diff
        theme(plot.caption = element_text(size=14, face="italic")) +
        theme(axis.text = element_text(size = 20)) +
        theme(axis.title = element_text(size = 20, face="bold")) +
        theme(legend.text = element_text(size = 16)) +
        theme(legend.title = element_text(size=16)) +
        ylab(paste("CpG Island: ", cg))
}
lapply(names(myData[c(5, 6, 7, 9, 10, 15, 20)]), plotfunction)</pre>
```



cg00050873 : Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.



cg00212031: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.



cg00213748: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.



cg00455876: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.



cg01707559: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.



cg02494853 : Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.



cg03244189: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

With the age distribution in mind, let's try to plot 2 methylation rates with the age factored as groups.



cg00050873: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

```
ggplot(data = myData, mapping = aes(x = ClassAge, y = cg03706273, fill = Smoking.Status)) +
    geom_boxplot() +
    labs(caption = paste("cg03706273: Scatterplot visualizing the methylation rate on this CpG island on
```

```
theme(plot.caption = element_text(size=14, face="italic")) +
theme(axis.text = element_text(size = 20)) +
theme(axis.title = element_text(size = 20, face="bold")) +
theme(legend.text = element_text(size = 16)) +
theme(legend.title = element_text(size=16)) +
ylab(paste("CpG Island: cg03706273")) +
xlab("Age")
```



cg03706273: Scatterplot visualizing the methylation rate on this CpG island of different ages and genders.

#### Results

These PCA plots show quite the same thing as previous graphs. But there is a slight difference in smoking status where the current smoking group is slightly to the left. This can also be, because there is a huge different in the number of current smokers and non-smokers. In the age graph, all males are left and all females are right with no exceptions. The graph is a bit scaled to make it more readable.

```
## Importance of components:
##
                             PC1
                                     PC2
                                              PC3
                                                      PC4
                                                              PC5
                                                                      PC6
                                                                               PC7
## Standard deviation
                          0.7601 0.14718 0.10089 0.09257 0.09146 0.08919 0.08813
  Proportion of Variance 0.8360 0.03135 0.01473 0.01240 0.01210 0.01151 0.01124
##
  Cumulative Proportion
                          0.8360 0.86739 0.88212 0.89452 0.90662 0.91813 0.92937
                                       PC9
                                              PC10
                                                      PC11
                                                              PC12
                                                                      PC13
                              PC8
                                                                               PC14
##
  Standard deviation
                          0.08618 0.08128 0.07387 0.07271 0.07201 0.06779 0.06360
## Proportion of Variance 0.01075 0.00956 0.00790 0.00765 0.00750 0.00665 0.00585
## Cumulative Proportion
                          0.94012 0.94968 0.95758 0.96523 0.97273 0.97938 0.98524
##
                             PC15
                                     PC16
                                              PC17
                                                      PC18
                                                              PC19
                                                                      PC20
## Standard deviation
                          0.05677 0.04934 0.04035 0.03801 0.03522 0.01522
## Proportion of Variance 0.00466 0.00352 0.00236 0.00209 0.00179 0.00034
## Cumulative Proportion 0.98990 0.99342 0.99578 0.99787 0.99966 1.00000
```



Figure 4: PCA graph displaying smoking status as different groups



Figure 5: PCA graph displaying gender as different groups

### Conclusion and Discussion

The data shows that there are significant differences in methylation on most CpG islands between males and females. Underlying relations between smoking or age are not significant enough. However the smoking data shows a slight difference between current and never smokers in the PCA plot. There are no weird outliers or other weird points in the data. The data is not suitable enough to partition in classes, because age isn't really influencing the methylation rate. Even when the data is factored, there is no significant pattern in the plot. So there is probably no relation between age and methylation rate. So to refer to the research question: Using the methylation rate of certain CpG islands, you can say that it is independent from age and somewhat dependant on smoking status and extremely dependant on gender.