- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
 - Asymptotic consistency

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
 - Asymptotic consistency
 - Unbiasedness
 - not that important in Bayesian inference, small error more important

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
 - Asymptotic consistency
 - Unbiasedness
 - not that important in Bayesian inference, small error more important
 - Efficiency
 - small squared error
 - other utility/cost functions possible

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
 - Asymptotic consistency
 - Unbiasedness
 - not that important in Bayesian inference, small error more important
 - Efficiency
 - small squared error
 - other utility/cost functions possible
 - Calibration
 - α %-posterior interval has the true value in α % cases
 - α %-predictive interval has the true future values in α % cases
 - approximate calibration with shorter intervals for likely true values more important than exact calibration with bad intervals for all possible values.

- Frequentist statistics accepts only aleatory probabilities
 - Estimates are based on data
 - Uncertainty of estimates are based on all possible data sets which could have been generated by the data generating mechanism

- Frequentist statistics accepts only aleatory probabilities
 - Estimates are based on data
 - Uncertainty of estimates are based on all possible data sets which could have been generated by the data generating mechanism
 - inference is based also on data we did not observe

- Frequentist statistics accepts only aleatory probabilities
 - Estimates are based on data
 - Uncertainty of estimates are based on all possible data sets which could have been generated by the data generating mechanism
 - inference is based also on data we did not observe
- Estimates are derived to fullfil frequency properties
 - Maximum likelihood fullfills just asymptotic frequency properties
 - Common desiderata are 1) unbiasedness, 2) minimum variance, 3) calibration of confidence interval

- Estimates are derived to fullfil frequency properties
 - Maximum likelihood fullfills just asymptotic frequency properties
 - Common desiderata are 1) unbiasedness, 2) minimum variance, 3) calibration of confidence interval
- Requirement of unbiasedness may lead to higher variance or silly estimates
 - unbiased estimate for strictly positive parameter can be negative

- Estimates are derived to fullfil frequency properties
 - Maximum likelihood fullfills just asymptotic frequency properties
 - Common desiderata are 1) unbiasedness, 2) minimum variance, 3) calibration of confidence interval
- Requirement of unbiasedness may lead to higher variance or silly estimates
 - unbiased estimate for strictly positive parameter can be negative
- Confidence interval is defined to have true value inside the interval in $\alpha\%$ cases of repeated data generation from the data generating mechanism
 - doesn't say how likely the true value is inside the interval given the observed data
 - doesn't need be useful to have perfect calibration

Frequentist vs Bayes vs others

- There is a great amount of very useful frequentist statistics
 - also for simple models and lot's of data there is not much difference

Frequentist vs Bayes vs others

- There is a great amount of very useful frequentist statistics
 - also for simple models and lot's of data there is not much difference
- Bayesian inference
 - easier for complex, e.g. hierarchical, models
 - easier when model changes
 - a consistent way to add prior information

Frequentist vs Bayes vs others

- There is a great amount of very useful frequentist statistics
 - also for simple models and lot's of data there is not much difference
- Bayesian inference
 - easier for complex, e.g. hierarchical, models
 - easier when model changes
 - a consistent way to add prior information
- Lot of machine learning is not pure frequentist or Bayesian

 Frequentist approach can be used to to make estimates and confidence intervals, but for some reason null hypothesis testing has a very big role

- Frequentist approach can be used to to make estimates and confidence intervals, but for some reason null hypothesis testing has a very big role
 - reporting just the null hypothesis testing result throws away lot of useful information

- Frequentist approach can be used to to make estimates and confidence intervals, but for some reason null hypothesis testing has a very big role
 - reporting just the null hypothesis testing result throws away lot of useful information
 - some Bayesians are also into null hypothesis testing

- Frequentist approach can be used to to make estimates and confidence intervals, but for some reason null hypothesis testing has a very big role
 - reporting just the null hypothesis testing result throws away lot of useful information
 - some Bayesians are also into null hypothesis testing
- Frequentist null hypothesis testing
 - asks what if data is generated from the smaller model
 - doesn't tell whether the more complex model is good enough

- Instead of hypothesis testing, report full posterior and
 - compare to expert information
 - combine with utility/cost function

- Instead of hypothesis testing, report full posterior
 - for continuous posterior there is zero probability that e.g. treatment effect is exactly zero

- Instead of hypothesis testing, report full posterior
 - for continuous posterior we could compute the probability that we know the sign of the effect

- Instead of hypothesis testing, report full posterior
 - for continuous posterior some people compare whether posterior interval includes null case

- Equivalence testing (region of practical equivalence)
 - what is the probability that the effect is closer than ϵ to null, where ϵ is based on what is practically useful effect size

- Equivalence testing (region of practical equivalence)
 - some people combine posterior interval and region of practical equivalence

- Instead of hypothesis testing, report full posterior
 - for continuous posterior there is zero probability that e.g. treatment effect is exactly zero

- Instead of hypothesis testing, report full posterior
 - for continuous posterior we could compute the probability that we know the sign of the effect

- Instead of hypothesis testing, report full posterior
 - for continuous posterior some people compare whether posterior interval includes null case

- Instead of hypothesis testing, report full posterior
 - region of practical equivalence (ROPE)

- Instead of hypothesis testing, report full posterior
 - region of practical equivalence (ROPE)

- Instead of hypothesis testing, report full posterior
 - for continuous posterior there is zero probability that e.g. treatment effect is exactly zero

- Instead of hypothesis testing, report full posterior
 - for continuous posterior we could compute the probability that we know the sign of the effect

- Instead of hypothesis testing, report full posterior
 - for continuous posterior some people compare whether posterior interval includes null case

- Instead of hypothesis testing, report full posterior
 - region of practical equivalence (ROPE)

- Instead of hypothesis testing, report full posterior
 - region of practical equivalence (ROPE)

- Bayes factor
 - null model has, e.g., the treatment effect fixed to 0
 - assumes that there is non-zero probability that the treatment effect can be exactly zero
 - requires posterior inference for the null model, too

with bridgesampling package, see also BDA3 13.10

- Bayes factor
 - null model has, e.g., the treatment effect fixed to 0
 - assumes that there is non-zero probability that the treatment effect can be exactly zero
 - requires posterior inference for the null model, too

with bridgesampling package, see also BDA3 13.10

- Bayes factor
 - null model has, e.g., the treatment effect fixed to 0
 - assumes that there is non-zero probability that the treatment effect can be exactly zero
 - requires posterior inference for the null model, too

with bridgesampling package, see also BDA3 13.10

Bayesian hypothesis testing

- Predictive performance
 - is there difference in predictive performance with, e.g., treatment effect fixed to zero or unknown treatment effect
 - requires posterior inference for the null model or projection from the full to null
 - looking at the posterior is better if parameters are independent

Bayesian hypothesis testing

- Predictive performance
 - is there difference in predictive performance with, e.g., treatment effect fixed to zero or unknown treatment effect
 - requires posterior inference for the null model or projection from the full to null
 - looking at the posterior is better if parameters are independent

In the beta blockers example

- Leave-one-group-out is not sensible as there are only two groups
- Leave-one-person-out works, but is less efficient than looking at the posterior (see https://avehtari.github.io/modelselection/betablockers.html)

Simulation experiment

Simulation experiment

Simulation experiment

Hypothesis testing and posterior dependencies

Looking at the marginal posterior(s) can be misleading when there are many parameters

Marginal posteriors of coefficients

Hypothesis testing and posterior dependencies

Looking at the marginal posterior(s) can be misleading when there are many parameters

Bivariate marginal of weight and height

Hypothesis testing and posterior dependencies

In bodyfat example, starting from full model

- BF in favor of removing weight (p=0.92)
- LOO in favor of removing weight (p=0.99)

In bodyfat example, starting from model y \sim abdomen

- BF in favor of adding weight (p=1.0)
- LOO in favor of adding weight (p=1.0)

Variable selection

More elaborate approaches are needed for variable selection See Lecture 9.3 on projection predictive variable selection

Common statistical tests as Bayesian models

Most common statistical tests are linear models

. . .

Common statistical tests as Bayesian models

Most common statistical tests are linear models

```
t-test
                mean of data
                             stan_qlm(y ~ 1)
paired t-test mean of diffs
                             stan_qlm((y1 - y2) \sim 1)
Pearson correl. linear model
                             stan_glm(y ^ 1 + x)
two-sample t-test group means
                             stan_glm(y ^ 1 + gid)
ANOVA
                hier, model
                             stan_glm(y ~1 + (1 | gid))
```

. . .

possible to extend, e.g., with group specific variances and and different distributions such t- or Poisson distribution

Common statistical tests as Bayesian models

Most common statistical tests are linear models

. . .

possible to extend, e.g., with group specific variances and and different distributions such *t*- or Poisson distribution

See longer list and illustrations (with lm) at https://lindeloev.github.io/tests-as-linear/ and in the forthcoming *Regression and other stories* book

Chapter 8: Modelling accounting for data collection

Highly recommended to read. Very informative, but also dense chapter.

- We need to model the data collection unless it is ignorable
- We need to know when data collection is ignorable

Chapter 8: Modelling accounting for data collection

Highly recommended to read. Very informative, but also dense chapter.

- We need to model the data collection unless it is ignorable
- We need to know when data collection is ignorable
- Data collection
 - Sample surveys
 - Designed experiments
 - Randomization
 - Observational studies
 - Censoring and truncation

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \dot{\phi}) = p(y|x, \theta)(x|\phi)$ we can model just $p(y|x, \theta)$

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \phi) = p(y|x, \theta)(x|\phi)$ we can model just $p(y|x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \phi) = p(y|x, \theta)(x|\phi)$ we can model just $p(y|x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \phi) = p(y|x, \theta)(x|\phi)$ we can model just $p(y|x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed
- Bit on causal analysis (see much more in ROS)

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \phi) = p(y|x, \theta)(x|\phi)$ we can model just $p(y|x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed
- Bit on causal analysis (see much more in ROS)
- Assembling matrix of explanatory variables
 - identifiability, collinearity, nonlinear relations, indicator and categorical variables, interactions
 - variable selection is not much discussed (see lectures 9.2,9.3)

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \phi) = p(y|x, \theta)(x|\phi)$ we can model just $p(y|x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed
- Bit on causal analysis (see much more in ROS)
- Assembling matrix of explanatory variables
 - identifiability, collinearity, nonlinear relations, indicator and categorical variables, interactions
 - variable selection is not much discussed (see lectures 9.2,9.3)
- Regularization
 - not much discussed (see more in lecture 9.3 and e.g. https://betanalpha.github.io/assets/case_studies/bayes_ sparse_regression.html)

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \phi) = p(y|x, \theta)(x|\phi)$ we can model just $p(y|x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed
- Bit on causal analysis (see much more in ROS)
- Assembling matrix of explanatory variables
 - identifiability, collinearity, nonlinear relations, indicator and categorical variables, interactions
 - variable selection is not much discussed (see lectures 9.2,9.3)
- Regularization
 - not much discussed (see more in lecture 9.3 and e.g. https://betanalpha.github.io/assets/case_studies/bayes_ sparse_regression.html)
- Unequal variances and correlations

 Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is inreased, marginal modes of weak effects go to zero first

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is inreased, marginal modes of weak effects go to zero first
 - when the amount of penalty is inreased, also the relevant coefficients are shrunk towards zero

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is inreased, marginal modes of weak effects go to zero first
 - when the amount of penalty is inreased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is inreased, marginal modes of weak effects go to zero first
 - when the amount of penalty is inreased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated
- Bayesian lasso uses Laplace distribution as prior
 - Laplace prior is equivalent to L1 penalty

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is inreased, marginal modes of weak effects go to zero first
 - when the amount of penalty is inreased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated
- Bayesian lasso uses Laplace distribution as prior
 - Laplace prior is equivalent to L1 penalty
 - but the Bayesian inference includes distribution for parameters and that distribution doesn't shrink to a point at zero, even if the mode would be at zero

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is inreased, marginal modes of weak effects go to zero first
 - when the amount of penalty is inreased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated
- Bayesian lasso uses Laplace distribution as prior
 - Laplace prior is equivalent to L1 penalty
 - but the Bayesian inference includes distribution for parameters and that distribution doesn't shrink to a point at zero, even if the mode would be at zero
 - empirically better results obtained with more sparse priors

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is inreased, marginal modes of weak effects go to zero first
 - when the amount of penalty is inreased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated
- Bayesian lasso uses Laplace distribution as prior
 - Laplace prior is equivalent to L1 penalty
 - but the Bayesian inference includes distribution for parameters and that distribution doesn't shrink to a point at zero, even if the mode would be at zero
 - empirically better results obtained with more sparse priors
 - it's best to separate selection of sensible prior, good posterior inference, and the decision analysis of which variables are important

Sparse priors

from Carvalho, Polson, Scott (2009).

Regularized horseshoe

for more see

- Piironen and Vehtari (2017). Sparsity information and regularization in the horseshoe and other shrinkage priors. In Electronic Journal of Statistics, 11(2):5018-5051. Online
- https://betanalpha.github.io/assets/case_studies/bayes_ sparse_regression.html

See projpred in lecture 9.3

Same simulated regression data as in lecture 9,3, n = 50, p = 500, $p_{rel} = 150$, $\rho = 0.5$

See projpred in lecture 9.3

Same simulated regression data as in lecture 9,3, n = 50, p = 500, $p_{rel} = 150$, $\rho = 0.5$

See projpred in lecture 9.3

Same simulated regression data as in lecture 9,3, n = 50, p = 500, $p_{rel} = 150$, $\rho = 0.5$

See projpred in lecture 9.3

Same simulated regression data as in lecture 9,3,

$$n = 50, p = 500, p_{rel} = 150, \rho = 0.5$$

Chapter 15: Hierarchical linear models

- Since you know hierarchical models, theory is easy
- With probabilistic programming computation is also easy
 - BDA3 dicusses some other computational issues
 - section on transformations for HMC is relevant (see also Stan user guide 21.7 Reparameterization)

Chapter 15: Hierarchical linear models

- Since you know hierarchical models, theory is easy
- With probabilistic programming computation is also easy
 - BDA3 dicusses some other computational issues
 - section on transformations for HMC is relevant (see also Stan user guide 21.7 Reparameterization)
- Fixed, random, and mixed effects models
 - we don't recommend using these terms, but they are so popular that it's useful to know them

Chapter 15: Hierarchical linear models

- Since you know hierarchical models, theory is easy
- With probabilistic programming computation is also easy
 - BDA3 dicusses some other computational issues
 - section on transformations for HMC is relevant (see also Stan user guide 21.7 Reparameterization)
- Fixed, random, and mixed effects models
 - we don't recommend using these terms, but they are so popular that it's useful to know them

ANOVA in section 15.6 (see also stan_aov)

Bioassay model is an example of GLM

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - ullet the distribution can also depend on dispersion parameter ϕ

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - ullet the distribution can also depend on dispersion parameter ϕ
 - originally just exponential family distributions (e.g. Poisson, binomial, negative-binomial), which all have natural location-dispersion parameterization

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - ullet the distribution can also depend on dispersion parameter ϕ
 - originally just exponential family distributions (e.g. Poisson, binomial, negative-binomial), which all have natural location-dispersion parameterization
 - after MCMC made computation easy, GLM can refer to models where outcome distribution is not part of exponential family and dispersion parameter may have its own latent linear predictor

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - ullet the distribution can also depend on dispersion parameter ϕ
 - originally just exponential family distributions (e.g. Poisson, binomial, negative-binomial), which all have natural location-dispersion parameterization
 - after MCMC made computation easy, GLM can refer to models where outcome distribution is not part of exponential family and dispersion parameter may have its own latent linear predictor
 - Hierarchical GLM natural extension

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - ullet the distribution can also depend on dispersion parameter ϕ
 - originally just exponential family distributions (e.g. Poisson, binomial, negative-binomial), which all have natural location-dispersion parameterization
 - after MCMC made computation easy, GLM can refer to models where outcome distribution is not part of exponential family and dispersion parameter may have its own latent linear predictor
 - Hierarchical GLM natural extension
 - 16.3 Weakly informative priors section is excellent although the recommendation on using Cauchy has changed (see https://github.com/stan-dev/stan/wiki/ Prior-Choice-Recommendations)

Chapter 17: Models for robust inference

For example

normal \rightarrow *t*-distribution

Poisson \rightarrow negative-binomial

binomial \rightarrow beta-binomial

 $probit \qquad \rightarrow \quad logistic \ / \ robit$

Chapter 17: Models for robust inference

For example

normal \rightarrow *t*-distribution

Poisson \rightarrow negative-binomial

binomial \rightarrow beta-binomial

probit \rightarrow logistic / robit

- Computation with MCMC easy
 - posterior can be multimodal

Chapter 17: Models for robust inference

For example

normal \rightarrow *t*-distribution

Poisson \rightarrow negative-binomial

binomial \rightarrow beta-binomial

probit \rightarrow logistic / robit

- Computation with MCMC easy
 - posterior can be multimodal
 - rstanarm doesn't have t-distribution for outcome, but brms has

- Extends the data collection modelling from Chapter 8
- Useful terms

- Extends the data collection modelling from Chapter 8
- Useful terms
 - Missing completely at random (MCAR)
 missingness does not depend on missing values or other
 observed values (including covariates)

- Extends the data collection modelling from Chapter 8
- Useful terms
 - Missing completely at random (MCAR)
 missingness does not depend on missing values or other
 observed values (including covariates)
 - Missing at random (MAR)
 missingness does not depend on missing values but may
 depend on other observed values (including covariates)

- Extends the data collection modelling from Chapter 8
- Useful terms
 - Missing completely at random (MCAR)
 missingness does not depend on missing values or other
 observed values (including covariates)
 - Missing at random (MAR)
 missingness does not depend on missing values but may
 depend on other observed values (including covariates)
 - Missing not at random (MNAR) missingness depends on missing values

- Extends the data collection modelling from Chapter 8
- Useful terms
 - Missing completely at random (MCAR)
 missingness does not depend on missing values or other
 observed values (including covariates)
 - Missing at random (MAR)
 missingness does not depend on missing values but may
 depend on other observed values (including covariates)
 - Missing not at random (MNAR) missingness depends on missing values
- Multiple imputation
 - 1. make a model predicting missing data
 - sample repeatedly from the missing data model to generate multiple imputed data sets
 - make usual inference for each imputed data set
 - 4. combine results

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim N(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n))$

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim N(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n))$
- Often a priori $\mu = 0$

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim N(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n))$
- Often a priori $\mu = 0$
- Prior for smooth non-linear functions, e.g. with $k(x, x') = \tau^2 \exp\left(-\frac{|x-x'|^2}{2l^2}\right)$

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim N(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n))$
- Often a priori $\mu = 0$
- Prior for smooth non-linear functions, e.g. with

$$k(x, x') = \tau^2 \exp\left(-\frac{|x - x'|^2}{2l^2}\right)$$

τ=1/2, I=2

τ=1/4, **l**=1/2

 $\tau = 1/2, I = 1/2$

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim N(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n))$
- Often a priori $\mu = 0$
- Prior for smooth non-linear functions, e.g. with

$$k(x, x') = \tau^2 \exp\left(-\frac{|x - x'|^2}{2l^2}\right)$$

τ=1/2, l=2

Х

т(X)

EX EX

 $\tau = 1/4$, I = 1/2

τ=1/2, l=1/2

- Conditional on covariance function parameter the posterior is just multivariate normal
 - need to make inference for covariance function parameters given the marginal likelihood
 - the excat computation of the marginal likelihood scales $O(N^3)$

Easy to make additive models

$$y_t(t) = f_1(t) + f_2(t) + f_3(t) + f_4(t) + f_5(t) + \epsilon_t$$

- For non-Gaussian outcome models similar extension as GLMs
- Survival model example:

GPs in Stan

- GP specific software (e.g. GPy, GPflow, GPyTorch) scale computationally better for GPs than Stan
- Stan has some built-in covariance functions (and soon GPU support)
- In case of non-Gaussian outcome models, sampling of latent variables can be slow (Laplace integration over the latents coming)

GPs in Stan

- GP specific software (e.g. GPy, GPflow, GPyTorch) scale computationally better for GPs than Stan
- Stan has some built-in covariance functions (and soon GPU support)
- In case of non-Gaussian outcome models, sampling of latent variables can be slow (Laplace integration over the latents coming)
- Instead of covariance matrix based approach, for low dimensional cases faster to use basis function representation
 - e.g. stan_glm(y \sim s(x, bs="gp"))