5. Distributed Query Processing

Chapter 7

Overview of Query Processing

Chapter 8

Query Decomposition and Data Localization

Outline

- ❖ Overview of Query Processing (查询处理)
- ❖ Query Decomposition and Localization (查询分解与定位)

Query Processing

High level user query

Low level data manipulation commands

Query Processing Components

- Query language that is used
 - SQL (Structured Query Language)
- Query execution methodology
 - The steps that the system goes through in executing high-level (declarative) user queries
- Query optimization
 - How to determine the "best" execution plan?

Query Language – Tuple Calculus

* Tuple calculus: $\{ t \mid F(t) \}$

where t is a tuple variable, and F(t) is a well formed formula

Example:

Get the numbers and names of all managers.

$$\{t(ENO, ENAME) | t \in EMP \land t(TITLE) = "MANAGER" \}$$

Query Language – Domain Calculas

❖ Domain calculus: $\{x_1, x_2, \dots, x_n \mid F(x_1, x_2, \dots, x_n)\}$ where x_i is a domain variable, and $F(x_1, x_2, \dots, x_n)$ is a well formed formula

Example:

```
\{ x, y \mid EMP(x, y, "Manager") \}
```

Variables are position sensitive!

Query Language SQL

SQL is a tuple calculus language.

```
SELECT ENO, ENAME
FROM EMP
WHERE TITLE="Programmer"
```

End user uses non-procedural (declarative) languages to express queries.

Query Processing Objectives & Problems

Query processor transforms queries into procedural operations to access data in an optimal way.

Distributed query processor has to deal with query decomposition and data localization.

Centralized Query Processing Alternatives

```
SELECT ENAME
FROM EMP E, ASG G
WHERE E.ENO=G.ENO AND TITLE="manager"
```

* Strategy 1:
$$\pi_{\mathit{ENAME}}(\sigma_{\mathit{TITLE}="manager"}, E.ENO=G.ENO}(E \times G))$$

$$\star$$
 Strategy 2: $\pi_{\mathit{ENAME}}(E \bowtie_{\mathit{ENO}} \sigma_{\mathit{TITLE}="manager"}(G))$

Which one is better?

Centralized Query Processing Alternatives (cont.)

```
SELECT ENAME
FROM EMP E, ASG G
WHERE E.ENO = G.ENO AND TITLE="manager"
```

* Strategy 1:
$$\pi_{\mathit{ENAME}}(\sigma_{\mathit{TITLE}="manager"}, E.ENO=G.ENO}(E \times G))$$

$$\star$$
 Strategy 2: $\pi_{\mathit{ENAME}}(E \bowtie_{\mathit{ENO}} \sigma_{\mathit{TITLE}="manager"}(G))$

Strategy 2 avoids Cartesian product, so is "better".

Distributed Query Processing

- Query processor must consider the communication cost and select the best site.
- The same query example, but relation G and E are fragmented and distributed.

Site4

11

Distributed Query Processing Plans

By centralized optimization,

$$\pi_{ENAME}(E\bowtie_{ENO}\sigma_{TITLE="manager"}(G))$$

Two distributed query processing plans

Distributed Query Plan I

Plan I: To transport all segments to query site 5 and execute there.

Site 5

This causes too much network traffic, very costly.

Distributed Query Plan II

Plan II (Optimized): $\pi_{ENAME}(E) = \sigma_{TITLE = "manager"}(G)$

Costs of the Two Plans

$$\pi_{\mathit{ENAME}}(\mathit{E} \bowtie_{\mathit{ENO}} \sigma_{\mathit{TITLE} = "manager"}(G))$$

Assume

- ◆ size(EMP)=400, size(ASG)=1000, 20 tuples with TITLE="manager"
- tuple access cost = 1 unit; tuple transfer cost = 10 units
- ◆ ASG and EMP are locally clustered on attribute TITLE and ENO, respectively.

Plan 1

•	Transfer EMP to site 5: 400*tuple transfer cost	4000
•	Transfer ASG to site 5: 1000*tuple transfer cost	10000
•	Produce ASG ': 1000*tuple access cost	1000
•	Join EMP and ASG ': 400*20*tuple access cost	8000
	Total cost	23,000

❖ Plan 2

♦	Produce ASG ': (10+10)*tuple access cost	20
•	Transfer ASG ' to the sites of EMP: (10+10)*tuple transfer cost	200
•	Produce EMP ': (10+10)*tuple access cost	20
•	Transfer EMP ' to result site: (10+10)*tuple transfer cost	200
	Total cost	440

Query Optimization Objectives

Minimize a cost function

I/O cost + CPU cost + communication cost

 These might have different weights in different distributed environments

Can also maximize throughout

Communication Cost

Wide area network

- Communication cost will dominate
 - Low bandwidth
 - Low speed
 - High protocol overhead
- Most algorithms ignore all other cost components

Local area network

- Communication cost not that dominate
- Total cost function should be considered

Complexity of Relational Algebra Operations

❖ Measured by cardinality n and tuples are sorted on comparison attributes

Operation	Complexity
σ , π (without duplicate elimination)	O(n)
π (with duplicate elimination), GROUP	$O(n \log n)$
Join, Semijoin, Division, –	$O(n \log n)$
Cartesian-Product X	$O(n^2)$

What is O-Notation?

- Algorithm Analysis Basics
- O-Notation:

Intuition, Definition, Manipulation, and Limitations

Algorithm Analysis Basics

- Goal: measure the efficiency of algorithms.
 - + How much time and space does an algorithm use when it processes an input?
- Question: how to characterize and measure the performance of an algorithm?
- Why not measure execution time of an algorithm?
 - Varying significantly with different computers, programming languages, and compilers

Resource Consumption Patterns

- Observation: algorithms usually take more time/ space as the size of the problem grows
 - ◆ A problem size n can be
 - the length of a list that an algorithm searches;
 - the number of nodes in a tree that an algorithm prints;
 - the number of items in an array that an algorithm sorts, etc.

Array Size n	Computer1	Computer2
125	12.5	2.8
250	49.3	11.0
500	195.8	43.4
1000	780.3	172.9
2000	3114.9	690.5

Table 1: SelectionSort algorithm running times example in milliseconds on two types of computers.

Measurement Example

Figure 1: Two curves fitting the data in Table 1.

Measurement Example Notes

- 125 250 500 1000 2000
- ❖ The quadratic functions (the highest power is 2) shown are the only good fit for the data points gathered.
- ❖ The curves differ in their coefficients, but both are quadratic in terms of the size n.
- ❖ If continuing gathering execution times using different computers, languages, and compilers, we'll discover that the amount of time the algorithm consumes is best approximated by a quadratic curve of the form f(n) = an² +bn + c.

The shape of the curve depends only on the algorithm used.

Measurement Example Generalization

- Each curve expresses an algorithm's resource consumption in terms of the problem size.
- Each algorithm is associated with a family of similarly shaped curves.
- ❖ Running times for different algorithms fall into different complexity classes, characterized by different families of curves.

Ignore coefficients and concentrate on the kind of function.

1000

Simplification of Complexity Functions

- Ignore the less terms and focus on the dominant one.
 - ◆ The dominant term is the one that grows faster when n grows

f(n) =an ² +bn+c where a=0.0001724, b=0.0004, c=0.1				
n	n f(n) an ² n-term as % of total			
125	2.8	2.7	94.7	
250	11.0	10.8	98.2	
500	43.4	43.1	99.3	
1000	172.9	172.4	99.7	
2000	690.5	689.6	99.9	

Table 2: Percentage contribution of n^2 term to the total.

Ignore the coefficient of the dominant term

Intuition O-Notation

- Two simplification rules lead to the O-notation
 - ◆ e.g., the O-notation for the quadratic function, f(n)=an²+bn+c, is O(n²).

f(n)	O(f(n))
$0.3n^2 + 20n + 512$	
$0.0001n^4 + 10000n^2$	
42log ₂ n	
7 <i>n</i> log ₁₀ <i>n</i> + 2 <i>n</i> - 12	

O-notation gives us a language to describe algorithmic complexity

Common Complexity Classes

Adjective Name	O-Notation
Constant	O(1)
Logarithmic	O(logn)
Linear	O(n)
n log n	O(n log n)
Quadratic	O(n ²)
Cubic	O(n ³)
Exponential	O(2 ⁿ)
Exponential	O(10 ⁿ)

Running Times Example

	2 (2 ¹)	16 (2 ⁴)	256 (2 ⁸)	1024 (2 ¹⁰)	1048576 (2 ²⁰)
1	1 μs	1 μs	1 μs	1 μs	1 μs
log₂n	1 μs	4 μs	8 μs	10 μs	20 μs
n	2 μs	16 μs	256 μs	1.02 ms	1.05 s
n log₂n	2 μs	64 µs	2.05 ms	10.2 ms	21 s
n ²	4 μs	25.6 μs	65.5 ms	1.05 s	1.8 wks
n ³	8 μs	4.1 ms	16.8 s	17.9 min	36559 yrs
2 ⁿ	4 μs	65.5 msec	3.7*10 ⁶³ yrs	5.7*10 ²⁹⁴ yrs	2.1*10 ³¹⁵⁶³⁹ yrs

Estimated lifetime of the sun: 5*109 yrs!

$1 \mu s = 10^{-6} s$	1 s = one second	1 wk = 604800 s
$1 \text{ ms} = 10^{-3} \text{ s}$	1 min = 60 s	1 yr = 31557600 s

Observations from Running Time Example

- ❖ For problems of small size (e.g., n ≤16), the complexity class of f(n) does not matter much.
- ❖ For problems of medium size (e.g., n=1024), algorithms that are no more complex than n² are still useful.
- ❖ For problems of large size (e.g., n=1048576), the difference between nlog₂n and n² algorithms is huge.
- ❖ Exponential algorithms (e.g. 2ⁿ) tends to take a disastrously long time for all but small problems.

Change of Observation Angle

Table 5: Size of the largest problem that an algorithm can solve if solution is computed in time \leq T at 1 microseconds per step.

T	1 min	1 hr	1 day	1 wk	1 yr
f(n)					
n	6*10 ⁷	3.6*10 ⁹	8.64*10 ¹⁰	6.05*10 ¹¹	3.15*10 ¹³
n log ₂ n	2.8*10 ⁶	1.3*10 ⁸	2.75*10 ⁹	1.77*10 ¹⁰	7.97*10 ¹¹
n ²	7.75*10 ³	6.0*10 ⁴	2.94*10 ⁵	7.78*10 ⁵	5.62*10 ⁶
n ³	3.91*10 ²	1.53*10 ³	4.42*10 ³	8.46*10 ³	3.16*10 ⁴
2 ⁿ	25	31	36	39	44
10 ⁿ	7	9	10	11	13

Algorithms of Different Complexity

Constant time algorithms O(1)

- ◆ Take no more than a *fixed* amount of time to run regardless of the problem size.
- ◆ e.g., choose and print a single random array item
 A[i] in an array A[0:n-1].

Linear time algorithms O(n)

- ◆ Run in time proportional to the problem size.
- ◆ e.g., search for occurrences of a give word in a document.

Algorithms of Different Complexity (cont.)

\bullet Exponential time algorithms $O(2^n)$

- ◆ Not practical to use for any but small problems.
- e.g., traveling salesperson problem solution, computing moves in game-playing situations.
- Quadratic and cubic time algorithms $O(n^2) / O(n^3)$
 - ◆ e.g., computation on an n*n matrix, or in 3-dimensional space.

Efficiency of List Implementation

List Operation	Sequential Representation	Linked representation
Find the length	O(1)	O(n)
Insert a new first item	O(n)	O(1)
Delete the last item	O(1)	O(n)
Replace the i th item	O(1)	O(n)
Delete the i th item	O(n)	O(n)

Best, Worst, and Average Cases

- For some algorithms, different input data of a given size requires different amounts of time.
 - ◆ e.g., to sequential search for an item s in an array
 - best case: s is the first element in the array
 - worst case: s is the last element in the array
 - average case: need to go halfway on average to find s
- While average time seems to be the fairest measure, it may be difficult to determine.
- In real-time situations, the worst case time is important.

Formal Definition of O-Notation

f(n) is O(g(n)) if and only if there exists a positive constant K and n_0 , such that $|f(n)| \le K |g(n)|$ for all $n \ge n_0$.

Figure 2: Graphical meaning of O-notation

The f(n) curve must eventually fit under the K*g(n) curve.

Formal Proof of O-Notation

The two simplification rules can be proven using the definition.

e.g.,
$$f(n) = \frac{3n(n+1)}{2}$$
 is $O(n^2)$.

Proof: Let K=3, $n_0=1$, $g(n) = n^2$.

Substitute in the formal O-notation definition, we have

$$|f(n)| \le K |g(n)|$$
 for all $n \ge n_0$, because

$$\frac{3n(n+1)}{2} \leq 3n^2 \quad (n \geq 1)$$

Practical Shortcuts for Manipulating O-Notation

- An easy way to determine the O-notation for f(n).
 - ◆ Separate f(n) into a dominant term and lesser terms:
 f(n) = (dominant term) ± (lesser terms)
 - ◆ Throw away the lesser terms:

```
O(f(n)) = O(dominant term \pm lesser terms)
= O(dominant term)
```

Ignore and drop coefficients involved.

e.g.,
$$O(6n^3 - 15n^2 + 3n\log n) = O(6n^3) = O(n^3)$$

```
O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < O(10^n)
```

Remarks on O-Notation

- When writing O-notation, never use the bases of logarithms.
 - ◆ e.g., O(logn), O(n logn), but not O(log₂n), O(n log₂n).
 - ◆ Reason: changing bases only involves multiplying by new constants (e.g., log₁₀n = 0.3010 * log₂n); and O-notation ignores constants of proportionality.
- ❖ Always use O(1) to denote the constant O-notation.
 - ◆ Reason: for an algorithm running in a number of steps f(n) which is always less than K, we have $f(n) \le K*1$, where g(n) = 1.

Remarks on O-Notation (cont.)

- When determining the O-notation for f(n), try to
 - make the bound as tight as possible;
 - e.g., if "f(n) is O(n)", it is also $O(n^2)$, $O(n^3)$, ..., but we use only the tightest upper bound.

- make the function as simple as possible.
 - Let g(n) be a single term with a coefficient of one, e.g., we say "f(n) is $O(n^2)$ ", rather than "f(n) is $O(3n^2 + n\log n)$ ".

When O-Notation Can't Be Trusted?

- Comparisons based on O-notation only apply to large problem sizes.
 - ◆ For small problem sizes, the constants in the running time equations dominate the observed running times.
 - e.g., to find an item in an ordered list,
 - sequential search, binary search, and interpolation search are O(n), O(logn), and O(log logn), respectively.
 - when tables contain items -- 1) over 500, interpolation search is the fastest; 2) between 20 and 500, binary search is the fastest;
 up to 20, sequential search is the fastest.
- The "measurement and tuning" method is useful to identify optimal solutions to small-sized problems.

Summary

- It is important to analyze the performance of algorithms and data structures.
- The problem of measurement:
 - the hard performance measures (e.g., execution time)
 vary significantly with different computers, programming languages, and compilers.
- The O-notation solution:
 - compare performance based on resource consumption patterns.
 - intuition, definition, manipulation, and limitations.

Types of Query Optimization

Exhaustive search

- Cost-based
- Optimal
- Combinatorial complexity in the number of relations
- Workable for small solution spaces

Heuristics

- Not optimal
- Re-group common sub-expressions
- Perform selection and projection (σ,π) first
- Replace a join by a series of semijoins
- Reorder operations to reduce intermediate relation size
- Optimize individual operations

Query Optimization Granularity

Single query at a time

Cannot use common intermediate results

Multiple queries at a time

- Efficient if many similar queries
- Decision space is much larger

Query Optimization Timing

♦ Static

- Do it at compilation time by using statistics, appropriate for exhaustive search, optimized once, but executed many times.
- Difficult to estimate the size of the intermediate results
- Can amortize over many executions

Dynamic

 Do it at execution time, accurate about the size of the intermediate results, repeated for every execution, expensive.

Query Optimization Timing (cont.)

Hybrid

- Compile using a static algorithm
- ◆ If the error in estimate size > threshold, re-optimize at run time

Statistics

Relation

- Cardinality
- Size of a tuple
- Fraction of tuples participating in a join with another relation

Attributes

- Cardinality of the domain
- Actual number of distinct values

Common assumptions

- Independence between different attribute values
- Uniform distribution of attribute values within their domain

Decision Sites

- For query optimization, it may be done by
 - Single site centralized approach
 - Single site determines the best schedule
 - Simple
 - Need knowledge about the entire distributed database
 - All the sites involved distributed approach
 - Cooperation among sites to determine the schedule
 - Need only local information
 - Cost of operation
 - Hybrid one site makes major decision in cooperation with other sites making local decisions
 - One site determines the global schedule
 - Each site optimizes the local subqueries

Network Topology

❖ Wide Area Network (WAN) – point-to-point

- Characteristics
 - Low bandwidth
 - Low speed
 - High protocol overhead
- Communication cost will dominate; ignore all other cost factors
- Global schedule to minimize communication cost
- Local schedules according to centralized query optimization

Network Topology (cont.)

Local Area Network (LAN)

- Communication cost not that dominate
- Total cost function should be considered
- Broadcasting can be exploited
- Special algorithms exist for star networks

Other Information to Exploit

Using replications to minimize communication costs

Using semijoins to reduce the size of operand relations to cut down communication costs when overhead is not significant.

$$R \bowtie S$$

Layers of Query Processing

Step 1 - Query Decomposition

Decompose calculus query into algebra query using global conceptual schema information.

Step 1 - Query Decomposition (cont.)

1) Normalization

 The calculus query is written in a normalized form (CNF or DNF) for subsequent manipulation

2) Analysis

 To reject normalized queries for which further processing is either impossible or unnecessary (type incorrect or semantically incorrect)

3) Simplification (elimination of redundancy)

Redundant predicates are eliminated to obtain simplified queries

4) Rewriting

- The calculus query is translated to optimal algebraic query representation
- More than one translation is possible

1) Normalization

- Lexical and syntactic analysis
 - check validity (similar to compilers)
 - check for attributes and relations
 - type checking on the qualification
- There are two possible forms of representing the predicates in query qualification
 - Conjunctive Normal Form (CNF) or Disjunctive Normal Form (DNF)
 - CNF: $(p_{11} \lor p_{12} \lor ... \lor p_{1n}) \land ... \land (p_{m1} \lor p_{m2} \lor ... \lor p_{mn})$
 - DNF: $(p_{11} \land p_{12} \land ... \land p_{1n}) \lor ... \lor (p_{m1} \land p_{m2} \land ... \land p_{mn})$
 - OR's mapped into union
 - AND's mapped into join or selection

1) Normalization (cont.)

❖ The transformation of the quantifier-free predicate is straightforward using the well-known equivalence rules for logical operations (∧ ∨ ¬)

$$P_{1} \wedge P_{2} \Leftrightarrow P_{2} \wedge P_{1}$$

$$P_{1} \vee P_{2} \Leftrightarrow P_{2} \vee P_{1}$$

$$P_{1} \wedge (P_{2} \wedge P_{3}) \Leftrightarrow (P_{1} \wedge P_{2}) \wedge P_{3}$$

$$P_{1} \vee (P_{2} \vee P_{3}) \Leftrightarrow (P_{1} \vee P_{2}) \vee P_{3}$$

$$P_{1} \wedge (P_{2} \wedge P_{3}) \Leftrightarrow (P_{1} \wedge P_{2}) \wedge P_{3}$$

$$P_{1} \wedge (P_{2} \wedge P_{3}) \Leftrightarrow (P_{1} \wedge P_{2}) \wedge P_{3}$$

$$P_{1} \vee (P_{2} \wedge P_{3}) \Leftrightarrow (P_{1} \vee P_{2}) \wedge (P_{1} \vee P_{3})$$

$$P_{1} \wedge (P_{2} \vee P_{3}) \Leftrightarrow (P_{1} \wedge P_{2}) \vee (P_{1} \wedge P_{3})$$

$$\neg (P_{1} \wedge P_{2}) \Leftrightarrow \neg P_{1} \vee \neg P_{2}$$

$$\neg (P_{1} \vee P_{2}) \Leftrightarrow \neg P_{1} \wedge \neg P_{2}$$

$$\neg (P_{1} \vee P_{2}) \Leftrightarrow \neg P_{1} \wedge \neg P_{2}$$

1) Normalization (cont.)

Example

SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO=ASG.ENO AND ASG.JNO="J1"

AND (DUR=12 OR DUR=24)

The conjunctive normal form:

EMP.ENO = ASG.ENO

 $\land ASG.JNO = "J1"$

 $\land (DUR = 12 \lor DUR = 24)$

2) Analysis

Objective

reject type incorrect or semantically incorrect queries

Type incorrect

- if any of its attribute or relation names is not defined in the global schema
- if operations are applied to attributes of the wrong type

2) Analysis (cont.)

Type incorrect example

SELECT

E#

! Undefined attribute

FROM

EMP

WHERE

ENAME>200

! Type mismatch

2) Analysis (cont.)

Semantically incorrect

- Components do not contribute in any way to the generation of the result
- For only those queries that do not use disjunction (∨) or negation (¬), semantic correctness can be determined by using *query graph*

Query Graph

Two kinds of nodes

- One node represents the result relation
- Other nodes represent operand relations

Two types of edges

- an edge to represent a join if neither of its two nodes is the result
- an edge to represent a projection if one of its node is the result node

Nodes and edges may be labeled by predicates for selection, projection, or join.

Query Graph Example

SELECT ENAME, RESP

FROM EMP, ASG, PROJ

WHERE EMP.ENO=ASG.GNO AND ASG.PNO=PROJ.PNO

AND PNAME="CAD/CAM" **AND** DUR>36

AND TITLE="Programmer"

Join Graph Example 1

A subgraph of query graph for join operation.

Tool of Analysis

A conjunctive query without negation is semantically incorrect if its query graph is NOT connected!

Analysis Example

Example 2

SELECT ENAME, RESP

FROM EMP, ASG, PROJ

WHERE EMP.ENO=ASG.GNO

AND ASG. PNO=PROJ. PNO

AND PNAME="CAD/CAM"

AND DUR>36

AND TITLE="Programmer"

Query Graph Example 2

3) Simplification

Using idempotency rules to eliminate redundant predicates from WHERE clause.

$$P \wedge P \Leftrightarrow P$$

 $P \vee P \Leftrightarrow P$
 $P \wedge true \Leftrightarrow P$
 $P \vee false \Leftrightarrow P$
 $P \wedge false \Leftrightarrow false$
 $P \vee true \Leftrightarrow true$
 $P \wedge \neg P \Leftrightarrow false$
 $P \vee \neg P \Leftrightarrow true$
 $P \wedge P \Leftrightarrow true$

Simplification Example

```
p1 = <TITLE = ``Programmer''>
p2 = <TITLE = ``Elec. Engr''>
p3 = <ENAME = ``J.Doe''>
```

```
Let the query qualification is (\neg p1 \land (p1 \lor p2) \land \neg p2) \lor p3
```

```
The disjunctive normal form of the query is
= (\neg p1 \land p1 \land \neg p2) \lor (\neg p1 \land p2 \land \neg p2) \lor p3
= (false \land \neg p2) \lor (\neg p1 \land false) \lor p3
= false \lor false \lor p3
= p3
```

Simplification Example

```
SELECT TITLE
FROM EMP
WHERE (NOT(TITLE="Programmer)
         AND (TITLE="Programmer"
         OR TITLE="Electrical Eng.")
         AND NOT(TITLE="Electrical Eng."))
         OR ENAME="J.Doe"
```

is equivalent to

```
SELECT TITLE
FROM EMP
WHERE ENAME="J.Doe"
```

4) Rewriting

- Converting a calculus query in relational algebra
 - straightforward transformation from relational calculus to relational algebra
 - restructuring relational algebra expression to improve performance
 - making use of query trees

Relational Algebra Tree

❖ A tree defined by:

- a root node representing the query result
- leaves representing database relations
- non-leaf nodes representing relations produced by operations
- edges from leaves to root representing the sequences of operations

An SQL Query and Its Query Tree

How to translate an SQL query into an algebra tree?

- Create a leaf for every relation in the FROM clause
- Create the root as a project operation involving attributes in the SELECT clause
- 3. Create the operation sequence by the predicates and operators in the WHERE clause

Rewriting -- Transformation Rules (I)

Commutativity of binary operations:

$$R \times S \Leftrightarrow S \times R$$
 $R \bowtie S \Leftrightarrow S \bowtie R$
 $R \cup S \Leftrightarrow S \cup R$

Associativity of binary operations:

$$(\mathbf{R} \times \mathbf{S}) \times \mathbf{T} \Leftrightarrow \mathbf{R} \times (\mathbf{S} \times \mathbf{T})$$
$$(\mathbf{R} \bowtie \mathbf{S}) \bowtie \mathbf{T} \Leftrightarrow \mathbf{R} \bowtie (\mathbf{S} \bowtie \mathbf{T})$$

- Idempotence of unary operations: grouping of projections and selections
 - $\Pi_{A'}(\Pi_{A''}(R)) \Leftrightarrow \Pi_{A'}(R)$ for $A' \subseteq A'' \subseteq A$
 - $\bullet \ \sigma_{p1(A1)} \ (\ \sigma_{p2(A2)}(R\)) \Leftrightarrow \sigma_{p1(A1) \ \land \ p2(A2)}(R\)$

Rewriting -- Transformation Rules (II)

Commuting selection with projection

$$\Pi_{A1, ..., An}$$
 ($\sigma_{p(Ap)}(R)$) $\Leftrightarrow \Pi_{A1, ..., An}$ ($\sigma_{p(Ap)}(\Pi_{A1, ..., An, Ap}(R))$)

Commuting selection with binary operations

$$\begin{split} \sigma_{p \, (Ai)} \, (\mathsf{R} \times \mathsf{S}) & \Leftrightarrow (\sigma_{p \, (Ai)}(\mathsf{R})) \times \mathsf{S} \\ \sigma_{p \, (Ai)} \, (\mathsf{R} \bowtie \mathsf{S}) & \Leftrightarrow (\sigma_{p \, (Ai)}(\mathsf{R})) \bowtie \mathsf{S} \\ \sigma_{p \, (Ai)} \, (\mathsf{R} \cup \mathsf{S}) & \Leftrightarrow \sigma_{p \, (Ai)}(\mathsf{R}) \cup \sigma_{p \, (Ai)}(\mathsf{S}) \end{split}$$

Commuting projection with binary operations

$$\begin{split} &\Pi_{\text{C}}\left(\mathsf{R}\times\mathsf{S}\right) \Leftrightarrow \Pi_{\text{A}}(\mathsf{R}) \times \Pi_{\text{B}}\left(\mathsf{S}\right) \quad \text{where } \mathsf{C} = \mathsf{A} \cup \mathsf{B} \\ &\Pi_{\text{C}}\left(\mathsf{R}\bowtie\;\mathsf{S}\right) \Leftrightarrow \Pi_{\text{C}}(\mathsf{R}) \bowtie \; \Pi_{\text{C}}\left(\mathsf{S}\right) \\ &\Pi_{\text{C}}\left(\mathsf{R}\cup\mathsf{S}\right) \Leftrightarrow \Pi_{\text{C}}\left(\mathsf{R}\right) \cup \Pi_{\text{C}}\left(\mathsf{S}\right) \end{split}$$

How to use transformation rules to optimize?

- Unary operations on the same relation may be grouped to access the same relation once
- Unary operations may be commuted with binary operations, so that they may be performed first to reduce the size of intermediate relations
- Binary operations may be reordered

Optimization of Previous Query Tree

Step 2 : Data Localization

Task: To translate a query on global relation into algebra queries on physical fragments, and optimize the query by reduction.

Reduction with Selection for PHF

SELECT *
FROM EMP
WHERE ENO="E5"

```
\begin{split} & \underline{EMP \, is \, fragmented \, into} \\ & EMP1 = \sigma_{ENO \leq "E3"} \, (EMP) \\ & EMP2 = \sigma_{"E3" < ENO \leq "E6"} \, (EMP) \\ & EMP3 = \sigma_{ENO > "E6"} \, (EMP) \end{split}
```

Given Relation R, $F_R = \{R_1, R_2, ..., R_n\}$ where $R_j = \sigma_{pj}(R)$ $\sigma_{pj}(R_j) = \emptyset \text{ if } \forall x \in R: \neg(p_i(x) \land p_j(x))$

Data Localization - Example

 $\pi_{_{ENAME}}$

Reduction with Join for PHF

ASG is fragmented into

$$ASG1 = \sigma_{ENO \leq "E3"}(ASG)$$

$$ASG2 = \sigma_{ENO} > "E3" (ASG)$$

$$EMP1 = \sigma_{ENO \leq "E3"}(EMP)$$

$$EMP2 = \sigma _{E3} = \sigma _{E3} = ENO \leq EO$$

$$EMP3 = \sigma_{ENO} \sim (EMP)$$

Reduction with Join for PHF (I)

Reduction with Join for PHF (II)

Given
$$R_i = \sigma_{pi}(R)$$
 and $R_j = \sigma_{pj}(R)$
 $R_i \bowtie Rj = \emptyset$ if $\forall x \in R_i$, $\forall y \in R_j$: $\neg(p_i(x) \land p_j(y))$

Reduction with join

- 1. Distribute join over union
- 2. Eliminate unnecessary work

Reduction for VF

Find useless intermediate relations

Relation R defined over attributes $A = \{A1, A2, ..., An\}$ vertically fragmented as $R_i = \Pi_{A'}(R)$ where $A' \subseteq A$ $\Pi_D(R_i)$ is useless if the set of projection attributes D is not in A'

Reduction for DHF

Distribute joins over union

Apply the join reduction for horizontal fragmentation

EMP1: σ_{TITLE="Programmer"} (EMP)

EMP2: σ_{TITLE≠"Programmer"} (EMP)

 $ASG1: ASG \bowtie_{ENO} EMP1$

 $ASG2: ASG \bowtie_{ENO} EMP2$

SELECT *
FROM EMP, ASG
WHERE ASG.ENO = EMP.ENO
AND EMP.TITLE = "Mech. Eng."

Reduction for DHF (II)

Reduction for Hybrid Fragmentation

- Combine the rules already specified
 - Remove empty relations generated by contradicting selection on horizontal fragments;
 - Remove useless relations generated by projections on vertical fragments;
 - Distribute joins over unions in order to isolate and remove useless joins.

Reduction for Hybrid Fragmentation - Example

```
EMP1 = \sigma_{ENO \leq "E4"} (\Pi_{ENO,ENAME} (EMP))
                                                                           \Pi_{	ext{ENAME}}
EMP2 = \sigma_{ENO} = (\Pi_{ENO,ENAME}(EMP))
EMP3 = \Pi_{ENO,TITLE} (EMP)
                                                                           σ<sub>ENO="E5"</sub>
QUERY:
                                                    \Pi_{	ext{ENAME}}
         SELECT ENAME
                                                                            EMP2
         FROM EMP
                                                    σ<sub>ENO="E5"</sub>
         WHERE ENO = "E5"
```

EMP2 EMP3

Question & Answer