Scribed Notes - 12

Number of ways of going along a grid by a shortest path.

Definition: To find the shortest path from point A to reach point B.

- \rightarrow If there are n numbers of path from (0, 0) & (2, 1)
- → If we want to go from (0,0) to (2, 1) then the shortest path will consist of 3 points. $((0,0) \rightarrow (1,0) \rightarrow (2,0) \rightarrow (2,1)$).
- → Similarly, If we want to go from (0, 0) to (6,4) then the shortest path will be 10 points.

Important Terminology

- Computational Problem: It is a mathematical function from a domain of legal inputs to a co-domain of corresponding expected outputs
- Algorithm: An algorithm is a systematic step-by-step procedure to solve a computational problem
- Problem instance: A specific point in the domain of definition of the problem

Example:

- \rightarrow f(x) = 2^x \rightarrow This is a problem
- \rightarrow f(5) = 32 \rightarrow This is a problem instance
- \rightarrow f(8) = 256

Sorting Example:

A => 11, 33, 18, 16, 51, 54, 25

В	1	2	3	4	5	6	7
=>							

If:

Then ⇔ B is Sorted.

Then ⇔ B is Sorted.

Recurrence relation:

If m,
$$n > 0 \implies \#(m, n) = \#((m-1), n) + \#(m, (n-1))$$

Terminating Condition:

If
$$m * n = 0 => \#(m, n) = 1$$

Example:

Find the number of shortest path from (0, 0) to $(m, n) \rightarrow$ This is a problem

Given that $m = 6 \& n = 4 \rightarrow This$ is a problem instance

#(6, 4) = #(5, 4) + #(6, 3)
$$\rightarrow$$
 Recurrence relation => #(m, n) = #((m-1), n) + #(m, (n-1))
= #(5, 3) + #(4, 4) + #(5, 3) + #(6, 2)
= 2 #(5, 3) + #(4, 4) + #(6, 2)

$$\#(6, 2) = \#(5, 2) + \#(6, 1)$$

$$\#(6, 1) = \#(5, 1) + \#(6, 0)$$

 $\#(6, 0) = 1 \text{ Path} \rightarrow \text{Terminating Condition} => (m * n = 0)$

Pseudocode for Grid Shortest Path

- 1. If (m * n) = 0
- 2. Then return 1
- 3. Else
- 4. Horizontal ← Grid Shortest Path (m-1, n)
- 5. Vertical ← Grid Shortest Path (m, n-1)
- 6. Return (Horizontal + Vertical)

Continuation to finding the shortest path in the grid, we have a grid of 4 rows and 6 columns. So if we want to go from (0, 0) to (6,4) then the shortest path will be 10 points. We can represent the path using 0s and 1s. For example, we can say 0 for going straight to the next point and 1 for going up.

So if the 10 points are: 0111001000, then the path will be as below:

