

Processing of Lunar Reconnaissance Orbiter Camera Narrow Angle Camera Image Frames with ISIS 3

featuring

How to Create NAC CDRs

What is ISIS?

Integrated Software for Imagers and Spectrometers

- USGS software to process data from NASA planetary missions
- Missions/instruments supported
 - Viking, Voyager, Mariner, Galileo, Clementine, MGS, Mars Odyssey, Cassini, Mars Pathfinder, MER, MRO HiRISE, MESSENGER/MDIS NAC & WAC, and LRO NAC & WAC cameras
- Used to make cartographic products (mosaics and maps)
 - Input is PDS-formatted raw image files => Experiment Data Records (EDRs)
- Includes visualization capability, radiometric and geometric processing, etc.
- Both ISIS 2 and ISIS 3 versions currently available
 - ISIS 3 is the correct version for LROC data
 - See http://isis.astrogeology.usgs.gov/UserDocs/index.html
 - 35-year heritage
 - ISIS3 < ISIS2 < PICS < FIPS < pre-FIPS

Supported OS Platforms

- ISIS3 runs on many Unix variants including:
 - Ubuntu, RHEL, Debian, Fedora, SUSE, MacOSX
- ISIS3 does not run on MS Windows
- ISIS requirements (depending on your needs):
 - 64-bit x86 processors (more cores is better)
 - 2GB memory (more memory is better)
 - 10GB to 180GB disk storage for ISIS installation
 - 10GB to many TB disk storage for processing images
 - Quality graphics card (one that support two monitors can be useful)

How to Get ISIS 3

- Start at the ISIS Website
 - http://isis.astrogeology.usgs.gov
 - Installing ISIS
 - http://isis.astrogeology.usgs.gov/documents/InstallGuide/index.html
- User documentation
 - http://isis.astrogeology.usgs.gov/UserDocs/index.html
- List of ISIS applications (alphabetical)
 - http://isis.astrogeology.usgs.gov/Application/alpha.html
 - Run programs from command line or using GUI interface

Where to Get Help in ISIS 3

- Start at the ISIS Support Website
 - https://isis.astrogeology.usgs.gov/lsisSupport/
- Online workshops available
 - http://isis.astrogeology.usgs.gov/IsisWorkshop/index.php/IsisWorkshop

Note: ISIS3 is not a PDS product

- If you have questions or need installation help, please contact the ISIS
 Support staff first
- If you get no timely response, contact Lisa Gaddis (<u>lgaddis@usgs.gov</u>) of the PDS Imaging Node

Cartographic Processing with ISIS

Level 0

- Ingest PDS Engineering Data Record (EDR) into ISIS
- Add SPICE (basic geometry)

Level 1

- Radiometrically calibrate
- Remove noise
- Creates Calibrated Data Records (CDRs)

• Level 2

- Improve camera pointing
- Geometrically rectify to a map projection
- Creates Reduced Data Records (RDRs)

Level 3

Photometric normalization

Level 4

- Create mosaic
- Evaluate mosaic
- **BUT** you can find LROC RDR data here:
 - http://wms.lroc.asu.edu/lr oc/rdr product select

6

 These RDRs have already been processed to high level(s)!

Pre-Processing Steps: Get NAC Data

- Find LROC NAC data
 - LROC Science Operations Center interface to PDS Archives
 - http://wms.lroc.asu.edu/lroc/
 - http://lroc.sese.asu.edu/data/
 - Image Atlas, PDS Imaging Node
 - http://pds-imaging.jpl.nasa.gov/search/search.html#QuickSearch
 - ACT-REACT QuickMap for LROC data
 - http://target.lroc.asu.edu/q3/
 - Lunar Orbital Data Explorer, PDS Geosciences Node
 - http://ode.rsl.wustl.edu/moon/
- Download LROC EDR files to local disk
 - Use single or bulk-download options at the above sites to copy the EDR files
 - Recall that NAC images are initially stored as Left and Right frames
 - Example of a "Right" frame: M102064759RE.IMG
 - You may need both for complete coverage of a site

Pre-Processing Steps

- Get ready to start processing:
 - Make sure ISIS3 is installed and running on your system
 - See slide #4
 - As part of the ISIS3 release, you will receive a lunar surface topography model (or a Digital Elevation Model, DEM) so that images will be placed accurately onto the lunar surface during processing
 - The current default DEM is the March 2011 version of the LROC LOLA DEM
 - Create a map template file
 - Used by cam2map to map-project the images
 - See next slides
 - Note: ">command" here means run in Linux at prompt

Pre-Processing: Creating a Map Template File

- Use ISIS 3 "maptemplate" GUI to create a pvl file that describes the desired map projection, spatial resolution, etc. of your products
- The same .map file can be used for all frames
 - These parameters <u>must</u> be the same for all frames to make a mosaic
- Can choose (for example):
 - Projection (Mercator, PolarStereographic, etc)
 - Planetocentric or Planetographic
 - Center Longitude
 - Pixel Resolution
- Or you can manually edit an existing .map file

Pre-Processing: Maptemplate Output

- Sample Iroc_equi.map
 - Group = Mapping
 - ProjectionName = Equirectangular
 - CenterLongitude = 180.0
 - CenterLatitude = 0.0
 - TargetName = Moon
 - EquatorialRadius = 1737400.0 <meters>
 - PolarRadius = 1737400.0 <meters>
 - LatitudeType = Planetocentric
 - LongitudeDirection = PositiveEast
 - LongitudeDomain = 360
 - PixelResolution = 3.0 <meters/pixel>
 - End_Group
 - End

<< change as needed; use lower resolution for quick-look mosaics or for smaller images

10

Level 0 Processing of LROC NAC data

- Ingest NAC EDR to ISIS 3 with "Ironac2isis"
 - Converts EDR to ISIS 3 cube file with attached label
 - >Ironac2isis from=M102064759RE.IMG to=M102064759RE lev0.cub
- Update labels with camera pointing information using "spiceinit" and the system defaults
 - >spiceinit from=M102064759RE_lev0.cub
 - Uses the default lunar shape model or DEM

Level 1 Processing of LROC NAC data

- Calibrate image to convert to I/F values using "Ironaccal"
 - >Ironaccal from= M102064759RE_lev0.cub to=M102064759RE_lev1.cub
- Remove artifacts using "Ironacecho"
 - A correction designed to remove an observed brightness "echo" across adjacent pixels in NAC frames
 - >Ironacecho from= M102064759RE_lev1.cub to=M102064759RE_lev1.echo.cub
- Result is a Calibrated Data Record (CDR)

February 2014

12

Level 2 Processing of LROC NAC data

- Map-project image using "cam2map"
 - This creates a Level 2 image, or a Reduced Data Record (RDR)
 - Sinusoidal Projection (default)
 - For more information and examples, see ISIS Map Projection Online workshop
 - http://isis.astrogeology.usgs.gov/IsisWorkshop/index.php/Working _with_Mars_Reconnaissance_Orbiter_HiRISE_Data
 - Interpolation options
 - Nearest Neighbor
 - Bilinear
 - Cubic Convolution (default)

>cam2map from=M101271375LE_lev1.echo.cub
to=M101271375LE_lev2.cub

Level 3 Processing of LROC NAC data

- Photometric correction
 - This step is not yet used routinely for correcting NAC data
 - Research is being conducted on this topic, for example:
 - Clegg et al., 2013
 - http://www.lpi.usra.edu/meetings/lpsc2013/pdf/2171.pdf
 - Boyd et al., 2012
 - http://lunarscience.nasa.gov/lsf2012/lunar-reconnaissanceorbiter-camera-narrow-angle-camera-global-photometricsolution-empirical-functi

Level 4 Processing of LROC NAC data

- Create a mosaic of NAC images using "automos"
 - >ls -1 *lev2.cub > lev2.lis
 - >automos fromlist=lev2.lis mosaic=testmos.cub

or

- >automos fromlist=lev2.lis mosaic=testmos.cub grange=user minlat=X maxlat=X minlon=X maxlon=X matchbandbin=false
- View and evaluate images or mosaic
 - >qview testmos.cub

Level 4 Processing of LROC data

- View cubes and/or mosaic
 - >qview testmos.cub

- Zoom, Pan, Stretch
- Track, Measure
- Color composite
- Link, Blink, Plot
- Save, Print

Exporting ISIS3 files

- Within ISIS3
 - Directly from qview or
 - >isis2std from=LROCfile.cub to=LROCfile.png
- GDAL: Geospatial Data Abstraction Library
 - See http://www.gdal.org/
 - Open Source library, supports PDS v3, ISIS2, and ISIS3 file formats
 - Binaries available for Mac, Windows, Linux
 - Export raw and many other image file formats
 - Maintains projection information and some metadata to output
 - Utility applications have stretching (scaling options), map projection support, clipping, resampling and mosaic capabilities
 - To output lossless geoJpeg2000
 - >gdal_translate -of JP2KAK -co quality=100 input.cub out.jp2
 - This .jp2 product retains geospatial information and can be exported directly into an Arc GIS project

Finding Help

- For ISIS 3, start at the ISIS Support Website
 - https://isis.astrogeology.usgs.gov/lsisSupport/
 - Online workshops available
 - http://isis.astrogeology.usgs.gov/IsisWorkshop/index.php/IsisWorkshop
 - Recall that ISIS3 is not a PDS product
 - If you have questions or need installation help, please contact the ISIS Support staff first
 - If you get no timely response, contact Lisa Gaddis (<u>lgaddis@usgs.gov</u>) of the PDS Imaging Node

Finding Help

- For help using LROC NAC data
 - LROC Instrument Overview (Space Science Reviews, 2010: http://link.springer.com/article/10.1007%2Fs11214-010-9634-2
 - LROC EDR/CDR PDS Product Description: http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/LROLRC 0001/DOCUMENT/LROCSIS.PDF
 - LROC RDR Product Description: http://lroc.sese.asu.edu/data/LRO-L-LROC-5-RDR-V1.0/LROLRC 2001/DOCUMENT/RDRSIS.PDF
 - For questions regarding LROC PDS products, send email to the address <u>lroc dn@ser.asu.edu</u>. For questions regarding the LROC PDS Data Node interface, send email to the address <u>lroc webmaster@asu.edu</u>.

February 2014

19