

## A Brief Introduction to Reconfiguration of Independent Sets and Related Problems

Hoang Anh Duc

April 16, 2019

hoanganhduc@ces.kyutech.ac.jp Research Seminar at Kyutech Algorithms Group

#### **About Me**



#### Basic Info:

- Nationality: Vietnamese
- Full Name: Hoàng Anh Đức (in publications: Duc A. Hoang)
- Email: hoanganhduc@ces.kyutech.ac.jp
- Personal Webpage: https://hoanganhduc.github.io/

#### Education:

- Bachelor in Mathematics, K53 Advanced Mathematics, VNU University of Science, Vietnam (2008–2013)
- Master in Information Science, Uehara Lab, School of Information Science, JAIST, Japan (2013–2015)
- PhD in Information Science, Uehara Lab, School of Information Science, JAIST, Japan (2015–2018)

#### Research Interests:

- Graph Algorithms
- Combinatorial Reconfiguration

#### Outline



Moving Tokens on Graphs

Reconfiguration of Independent Sets

My Work at JAIST: The  $\operatorname{SLIDING}\ \operatorname{TOKEN}$  problem

Some Open Problems



## **Moving Tokens on Graphs**

#### TOKEN RECONFIGURATION in a Graph



- A token (coin) is placed at each vertex of a vertex-subset X
  of a graph. A rule R of moving tokens is given.
  - Checking if a token-set X is obtained from another token-set Y by applying R exactly once can be done in polynomial time.
- Each set of tokens X satisfies some property P
  - Checking if X satisfies P can be done in polynomial time.

#### **Example:** 15-PUZZLE

- X: fifteen labeled tokens
- R: one can slide a token to its empty adjacent neighbor (if exists)
- P: each member of X is placed at a vertex of a  $4 \times 4$  grid



#### TOKEN RECONFIGURATION in a Graph



**Given:** two sets of tokens X, Y (both satisfy P)

Question: decide if there exists a sequence of token-sets

 $(X_1,X_2,\ldots,X_\ell)$ ,  $X_1=X$ ,  $X_\ell=Y$  (all  $X_i$  satisfy P for  $i\in\{1,2,\ldots,\ell\}$ ) between X and Y such that  $X_i$  is obtained from  $X_{i-1}$  by applying R exactly

once to the tokens in  $X_{i-1}$   $(i \in \{2, 3, \dots, \ell\})$ 

**Example:** 15-PUZZLE





#### TOKEN RECONFIGURATION in a Graph



#### TOKEN RECONFIGURATION in planning robot motion.

- GRAPH MOTION PLANNING WITH ONE ROBOT (GMP1R) [Papadimitriou et al. 1994]
  - Goal: move robot from s to t using a smallest number of steps possible.
  - It is NP-complete to decide if a solution of length k exists in a general graph.
- Multi-Robot Path Planning [Ryan 2007]
  - Robots may need to "detour away" from their shortest paths to let other robots pass.



## **Reconfiguration Problems**



- Given:
  - a description of what a configuration is
  - a reconfiguration rule that describes how to modify a configuration
- Question: Whether there is a sequence of configurations
  that transforms one given configuration into another, where
  each member of the sequence is obtained from the previous
  one by applying the reconfiguration rule exactly once.

#### **Typical Assumptions**

- Checking whether a given structure is a configuration can be done in polynomial time.
- Checking if one configuration is obtained from another configuration by applying the reconfiguration rule exactly once can be done in polynomial time.

## Some Other Reconfiguration Problems



TOKEN RECONFIGURATION is a reconfiguration problem.



(a) SLIDING-BLOCK PUZZLE



(c) Frequency Re-Assignment



(b) Rubik's Cube



(d) Rush Hour



## **Reconfiguration of Independent Sets**



#### ... is TOKEN RECONFIGURATION where

- Each token-set X forms an independent set, i.e., no two tokens in X are connected by an edge.
- The rule R can be:
  - Token Sliding (TS) [Hearn and Demaine 2005]: A token can only be moved to one of its (unoccupied) neighbors.
  - Token Addition and Removal (TAR(k)) [Ito et al. 2011]: One can either add or remove a token such that the number of remaining tokens is at least k.
  - Token Jumping (TJ) [Kamiński et al. 2012]: A token can be moved to any unoccupied vertex.















One can also form the corresponding reconfiguration graph.

- Each token-set is a node.
- Two nodes (token-sets) X,Y are adjacent if one can be obtained from the other by applying R (TS/TAR(k)/TJ) exactly once.





One can also form the corresponding reconfiguration graph.

- Each token-set is a node.
- Two nodes (token-sets) X,Y are adjacent if one can be obtained from the other by applying R (TS/TAR(k)/TJ) exactly once.





One can also form the corresponding reconfiguration graph.

- Each token-set is a node.
- Two nodes (token-sets) X,Y are adjacent if one can be obtained from the other by applying R (TS/TAR(k)/TJ) exactly once.





One can also form the corresponding reconfiguration graph.

- Each token-set is a node.
- Two nodes (token-sets) X,Y are adjacent if one can be obtained from the other by applying R (TS/TAR(k)/TJ) exactly once.

#### One may ask

- REACHABILITY: a path between two nodes of a reconfiguration graph?
- SHORTEST RECONFIGURATION: find a shortest path (if exists) between two nodes of a reconfiguration graph?
- CONNECTIVITY: a reconfiguration graph is connected?
- DIAMETER: the diameter of a reconfiguration graph is bounded?



# My Work at JAIST: The SLIDING Token problem

## The **SLIDING TOKEN** problem



#### SLIDING TOKEN [Hearn and Demaine 2005]

Given: two independent sets (token sets) I, J of a graph G,

and the Token Sliding (TS) rule

**Question:** whether there is a TS-sequence that transforms I

into J (and vice versa)



## The $\operatorname{SLIDING}$ Token problem



My co-author(s) and I want to know whether  $\operatorname{SLIDING}$  Token can be solved efficiently for some restricted graphs.



Figure 2: The complexity of  $SLIDING\ TOKEN$  for some well-known graph classes. Our contribution is marked with dashed gray boxes.



1. What happen if the input graph is only a path?





1. What happen if the input graph is only a path?



Easy. Only one way to move tokens.





1. What happen if the input graph is only a path?



Easy. Only one way to move tokens.



2. Now, what if the input graph is a caterpillar?





1. What happen if the input graph is only a path?



Easy. Only one way to move tokens.



2. Now, what if the input graph is a caterpillar?



Trouble.  $v_3$  moves before  $v_1$ , and it moves to  $v_4$ . So how to move  $v_1$ ?  $\Rightarrow$  DETOUR



1. What happen if the input graph is only a path?



Easy. Only one way to move tokens.

2. Now, what if the input graph is a caterpillar?



Trouble. Can we move red tokens to black ones?





1. What happen if the input graph is only a path?



Easy. Only one way to move tokens.



2. Now, what if the input graph is a caterpillar?



Trouble. Can we move red tokens to black ones?



- 3. Not trivial even for simple graphs like trees
  - 3.1 Whether there is any structure that forbids the transformation of one independent set into another?
  - 3.2 Whether we can handle "detour"?



For an instance (T, I, J) of SLIDING TOKEN, where T is a tree and I, J are independent sets of T.

#### Forbidden Structure: Rigid Tokens

Intuitively, a token t placed on vertex  $u \in I$  is (T,I)-rigid if it cannot be moved at all. If t is not (T,I)-rigid, we say that it is (T,I)-movable.

One can find the set  $\mathsf{R}(T,I)$  of all vertices where (T,I)-rigid tokens are placed in  $O(n^2)$  time, where n is the number of vertices of T.





#### Observation 1

If  $R(T,I) \neq R(T,J)$  then there is no reconfiguration sequence of tokenslides between I and J.



#### Observation 2

If  $\mathsf{R}(T,I) = \mathsf{R}(T,J) = \emptyset$  then there is a reconfiguration sequence of tokenslides between I and J if and only if |I| = |J|.









## **Some Open Problems**

## INDEPENDENT SET and its reconfiguration variants



■ The INDEPENDENT SET problem asks if there exists an independent set of size at least *k* in a given graph.

| Graph                | INDEPENDENT SET           | INDEPENDENT SET RE-<br>CONF. <sup>1</sup> (TS, TJ, TAR) |
|----------------------|---------------------------|---------------------------------------------------------|
| general              | NP-complete [Garey and    | PSPACE-complete [Ito et al.                             |
|                      | Johnson 1979]             | 2011]                                                   |
| perfect              | P [Grötschel et al. 1981] | PSPACE-complete                                         |
|                      |                           | [Kamiński et al. 2012]                                  |
| interval             | P [Frank 1975]            | P [Kamiński et al. 2012;                                |
|                      |                           | Bonamy and Bousquet 2017]                               |
| Unknown <sup>2</sup> | NP-hard                   | Р                                                       |

 $<sup>^1\</sup>mbox{ln}$  all problems, the  $\mbox{Reachability}$  question is considered.

<sup>&</sup>lt;sup>2</sup>This open question was first proposed in [Kamiński et al. 2012]

## Hardness with small graph parameters



#### Theorem (Wrochna 2014)

INDEPENDENT SET RECONFIGURATION remains PSPACE-complete even for graphs of bandwidth at most c, for some constant c.

• The bandwidth bw(G) of a graph G is defined as follows

$$\mathsf{bw}(G) = \min_{f} \max_{uv \in E(G)} |f(u) - f(v)|,$$

where  $f: V(G) \to \{1, 2, \dots, |V(G)|\}$  represents a way of labeling vertices of G with integers from 1 to |V(G)|.

- It is well-known that c is very large, but to the best of our knowledge, it is unknown how large c is.
- To the best of our knowledge, it is unknown if SLIDING TOKEN can be solved in polynomial time even for graphs of bandwidth 2.

#### Learn More About Reconfiguration



#### **Surveys on Reconfiguration**

Jan van den Heuvel (2013). "The Complexity of Change." In: Surveys in Combinatorics. Vol. 409. London Mathematical Society Lecture Note Series. Cambridge University Press, pp. 127–160. DOI: 10.1017/CB09781139506748.005

Naomi Nishimura (2018). "Introduction to Reconfiguration." In: *Algorithms* 11.4. (article 52). DOI: 10.3390/a11040052

#### Online Web Portal (maintained by Takehiro Ito)

http://www.ecei.tohoku.ac.jp/alg/core/



Thank you very much for your attention!

#### Bibliography i





Bonamy, Marthe and Nicolas Bousquet (2017). "Token Sliding on Chordal Graphs." In: *Proceedings of the 43rd International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2017.* Ed. by H. Bodlaender and G. Woeginger. Vol. 10520. Lecture Notes in Computer Science. Springer, pp. 136–149. DOI: 10.1007/978-3-319-68705-6 10.



Frank, András (1975). "Some polynomial algorithms for certain graphs and hypergraphs." In: *Proceedings of the 5th British Combinatorial Conference, 1975.* Utilitas Mathematica.



Garey, Michael R. and David S. Johnson (1979). *Computers and Intractability: A Guide to the Theory of NP-completeness*. W.H. Freeman & Company. ISBN: 978-0-716-71044-8.



Grötschel, M., L. Lovász, and A. Schrijver (1981). "The ellipsoid method and its consequences in combinatorial optimization." In: *Combinatorica* 1.2, pp. 169–197. DOI: 10.1007/BF02579273.

#### Bibliography ii



Hearn, Robert A. and Erik D. Demaine (2005). "PSPACE-Completeness of Sliding-Block Puzzles and Other Problems through the Nondeterministic Constraint Logic Model of Computation." In: *Theoretical Computer Science* 343.1-2, pp. 72–96. DOI: 10.1016/j.tcs.2005.05.008.



Heuvel, Jan van den (2013). "The Complexity of Change." In: *Surveys in Combinatorics*. Vol. 409. London Mathematical Society Lecture Note Series. Cambridge University Press, pp. 127–160. DOI: 10.1017/CB09781139506748.005.



Ito, Takehiro, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha Sideri, Ryuhei Uehara, and Yushi Uno (2011). "On the Complexity of Reconfiguration Problems." In: *Theoretical Computer Science* 412.12-14, pp. 1054–1065. DOI: 10.1016/j.tcs.2010.12.005.

#### Bibliography iii





Kamiński, Marcin, Paul Medvedev, and Martin Milanič (2012).

"Complexity of independent set reconfigurability problems." In: *Theoretical Computer Science* 439, pp. 9–15. DOI:

10.1016/j.tcs.2012.03.004.



Nishimura, Naomi (2018). "Introduction to Reconfiguration." In: *Algorithms* 11.4. (article 52). DOI: 10.3390/a11040052.



Papadimitriou, C. H., P. Raghavan, M. Sudan, and H. Tamaki (1994). "Motion planning on a graph." In: *Proceedings of SFCS 1994*.

pp. 511-520. DOI: 10.1109/SFCS.1994.365740.



Ryan, Malcolm R.K. (2007). "Graph Decomposition for Efficient Multi-Robot Path Planning." In: *Proceedings of IJCAI 2007*,

pp. 2003–2008. URL:

http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-323.pdf.



Wrochna, Marcin (2014). "Reconfiguration in bounded bandwidth and treedepth." In: arXiv preprint. arXiv: 1405.0847.