

Bases de données

1. QCM de test des connaissances

Deux relations modélisent la flotte de voitures d'un réseau de location de voitures :

AGENCE

id_agence	ville	département
1	Paris	75
2	Lyon	69
3	Marseille	13
4	Aubagne	13

VOITURES

id_voitures	marque	modèle	kilométrage	couleur	id_agence
1	Renault	Clio	12000	rouge	2
2	Peugeot	2008	22000	noir	3
3	Toyota	Yaris	33000	noir	3

Vocabulaire des bases de

dominees
La relation Voitures : ☐ comporte 3 attributs. ☐ comporte 6 attributs. ☐ comporte 3 enregistrements. ☐ comporte 6 enregistrements.
Le domaine de l'attribut id_agence dans la relation Agence est : ☐ Agences ☐ les entiers naturels ☐ les chaînes de caractères ☐ Voitures
Le schéma relationnel de la relation Agences est: ☐ (id agence, Ville, Département) ☐ (1, "Paris", 75) ☐ ((id agence : Ŋ), (Ville : Ӈ),

Analyse d'intégrité

La	relation Agences : ☐ ne comporte pas de clé primaire. ☐ a id_agence pour clé primaire. ☐ a Ville pour clé primaire. ☐ a Département pour clé primaire.						
La		ation Voitur ne compor comporte primaire.	te p		•		
		comporte primaire.	id	voiture	comme	clé	
		comporte étrangère.	id_	agence	comme	clé	

Conception de bases de données

La relatio	n Agences
------------	-----------

est	bien	modélisée.

ne	respecte	pas	les	contraintes
d'in	tégrité de	relatio	on.	

présente	des	informations
redondantes.		

La	rel	atio	n Voiture	es:			
		est	bien mo	odé	elisée.		
		ne	respec	te	pas	les	contraintes
		d'in	tégrité i	réfé	érenti	elles	S.
		prés	sente		des		informations
		red	ondante	es.			

2. Comprendre les schémas relationnels

Une sandwicherie effectuant des livraisons à domicile dispose d'une base de données dont certains extraits de tables sont reproduits ici. La table Sandwichs comporte les informations relatives aux sandwichs proposés à la vente :

SANDWICH

nom_sandwich	prix
Cheeseburger	3,90
Double Cheese	4,90
Italien	4,90
Parisien	3,20

La table Clients comporte les informations relatives aux clients :

CLIENTS

nom	prénom	adresse	numéro_client	
Bernard	Alain	9, rue Bienvenu, . 13008 MARSEILLE	42	
Bernard	Yves	2, rue Vive la Joie, 13400 AUBAGNE	51	

La table Commandes comporte les informations relatives aux commandes passées : COMMANDES

numéro_client	nom_ sandwich	quantité	numéro_commande	date
42	Italien	2	12452	2019-12-11
42	Parisien	1	12452	2019-12-11
51	Cheesburger	4	13301	2019-12-23

- **Q1. Indiquer** si une commande peut comporter plusieurs sandwichs de types différents
- Q2. Déterminer les schéma des tables Sandwichs, Clients et Commandes
- **Q3.** Indiquer si la table Sandwichs comporte un attribut qui est clé primaire ou un attribut qui est clé étrangère. Répondre à la même question pour les tables Clients et Commandes.
- **Q4. Justifier** qu'en l'absence d'un attribut clé primaire, un couple ou un triplet d'attributs peut jouer ce rôle
- **Q5. Vérifier** que cette base de données est bien modélisée. Si ce n'est pas le cas, **proposer** des modifications.

3. Normaliser une base de données

On considère dans cet exercice une base de données stockant des informations sur les élèves d'un lycée. En voici un extrait :

nom	prénom	Date_de_naissance	classe	option1	option2	option3
Alan	Michel	12/12/05	2de1	CIT	Chinois	NULL
Bergue	Sohn	13/01/06	2de1	CIT	Chinois	Latin
Zidane	Michel	12/12/05	1G2	Maths	NSI	SI
Bergue	Inès	06/04/04	T-STL	NULL	NULL	NULL

- Q1. Donner le schéma relationnel de cette base
- Q2. Indiquer si cette relation comporte une clé primaire et/ou des clés étrangères
- Q3. Décrire le défaut de conception que présente cette base de données
- Q4. Proposer un schéma relationnel alternatif qui permettrait de corriger ce problème

4. Concevoir une base de données relationnelle

On souhaite concevoir une base de données qui permette à un site Internet d'organiser la livraison de menus commandés auprès de restaurants et de gérer un système de notations et d'avis de ces restaurants.

Voici la description des différentes données à garder en mémoire et la liste des contraintes :

- x Les restaurants ont une existence physique : ils ont une adresse, des horaires d'ouvertures le midi et/ou le soir, variables selon les jours.
- x Ils peuvent disposer d'un site internet mais ce n'est pas une obligation.
- x Ils proposent des plats à la carte et peuvent proposer des menus, certains n'étant commercialisés que le midi ou le soir.
- x Les clients s'enregistrent à l'aide de leur email sur le site. Ils donnent les informations physiques nécessaires aux livraisons (adresse, code postal, numéro de téléphone).
- x Ils passent des commandes au moyen d'une application ou depuis le site internet, ces commandes sont stockées après leur exécution.
- x Les clients peuvent laisser une note à chaque restaurant après une commande et rédiger un avis sur ceux-ci (contenant du texte et éventuellement des photographies).

Modélisation simpliste

Dans un premier temps on considère un schéma simpliste proposé pour une relation restaurants :

```
RESTAURANTS = ((id_ resto : \mathcal{N}), (nom_resto : \mathcal{S}), (adresse : \mathcal{S}), (code_postal : \mathcal{S}), (site_internet : \mathcal{S}))
```

Une autre relation Menus_plats, également de conception simpliste, est proposée pour stocker les plats et menus proposés par les restaurateurs :

- Q1. Indiquer si ces relations comportent une clé primaire et/ou une clé étrangère
- Q2. Décrire la signification de l'ensemble &
- **Q3. Expliquer** pourquoi le choix de l'attribut site_internet n'est pas pertinent. **Donner** une solution alternative possible.
- **Q4. Expliquer** pourquoi le choix de l'attribut horaires n'est pas pertinent. **Proposer** une solution alternative sont possible

Conception de la base de données

- **Q5. Décrire** un codage qui permet de faire en sorte que les avis des clients puissent contenir à la fois du texte et des images.
- Q6. Proposer un schéma relationnel adapté à la situation à modéliser.