

PALESTRA 1

17 de outubro de 2011

Jonathan D. Mahnken, Ph.D., PStat®

- □ Tipos de estudos clínicos
 - Estudos Observacionais
 - Estudos Experimentais
 - Meta-análise

Tipos de Estudos

Observacional

- Diferentes grupos são examinados por diferenças
 - Resultados (exemplo: taxas de mortalidade, tempo de sobrevivência)
 - Exposições (exemplo: idade, raça, comportamento de saúde)

Experimental

- Envolve uma intervenção
- Os grupos são similares w.r.t. tudo exceto a intervenção (exposição)
- Selecionados vs. não-selecionados

Comentários Gerais

- □ Em ambos estudos observacionais e experimentais
 - Melhor inferência se as populações forem idênticas em todos aspectos exceto pela exposição
 - Um grupo é "substituto" viável para o outro exceto para o status de exposição
 - Ambos os grupos: amostras aleatórias da população-alvo
 - Única diferença entre os grupos sendo o status de exposição
 - Melhor resultado seria se os sujeitos pudessem voltar no tempo sob exatamente as mesmas condições exceto status de exposição w.r.t
 - Rothman e Greenland (1998) consideram isso uma experiência "contra factual"

Estudos Observacionais

□ Estudo de série de casos

- Descreve um número menor de observações
- Leva à uma hipótese testável
- Útil para se desenvolver um estudo mais eficaz
 - Pode fornecer estimativas iniciais muito brutas de associações tais como razão de prevalência, proporção de diferenças — mas frequentemente pequena demais mesmo para este.
- Exemplo: uma observação clínica de quatro pacientes com uma doença comum.

Estudos Observacionais

□ Estudo de Caso-controle

- Resultado conhecido olhe para trás para determinar se foi exposto
- Estudo Retrospectivo
- Delineamentos pareados e não-pareados
- Razão de chances
- Exemplo: Pessoas com câncer no pulmão (casos) e controles hospitalares pareados inscritos
 - Olhe para trás para ver quem fumava?

Estudos Observacionais

□ Estudo Transversal (cross-sectional)

- Ponto isolado no tempo
- Estudos de prevalência (pesquisas)
- Nenhuma inferência causal
 - A causou B ou B causou A?
- Razão de prevalência, proporção de diferenças
- Exemplo, pesquisa que recolha:
 - Status de Tabagismo atual
 - Status de doença atual

Estudos Observacionais

□ Estudos de coorte

- Exposição conhecida acompanhar para ver o resultado
- Estudo prospectivo
- Pode fornecer evidência de causalidade
- Coorte histórica
- Taxa de risco, diferença de risco
- Exemplo, identificar grupo de pessoas
 - Discernir seu status de tabagismo na linha de base
 - Follow up através do tempo para ver quem desenvolverá câncer

Estudos Observacionais

□ Estudos de Coorte

- Direção da pesquisa correta para determinar a causalidade
- **\$\$\$**

□ Estudos de caso-controle

- Mais rápidos, baratos, mais viável para resultados raros.
- Mais suscetível a viés especialmente viés de seleção.

Estudos Observacionais

- Estudos prospectivos
 - Determinam associações
 - Causalidade não pode ser provada
 - Sem intervenção
 - Entretanto fornece evidências
- Estudos de Caso
 - Exame aprofundado dos sujeitos
 - Não podem ser generalizáveis
- □ Vieses são uma grande preocupação em estudos observacionais porque auto-seleção em grupo de exposição pode confundir gravemente e inconscientemente os resultados

Department of Biostatistics

Estudos Observacionais

Ensaios Clínicos Aleatórios

- Possui grupo de controle (comparação)
- Intervenção (exposição) distribuídas aleatoriamente
 - Randomização deve equilibrar as variáveis de confusão
- Prospectivo
- Cego
 - Ensaio Cego
 - Ensaio Duplo-cego
- Taxa de risco, diferença de risco
- Exemplo: inscrever fumantes no estudo
 - Alocar aleatoriamente para condições de tratamento ou controle
 - Follow-up para verificar que proporção deixa de fumar em cada grupo © 2011 Jonathan D. Mahnken. Todos os Direitos Reservados 11

Estudos Experimentais

□ Ensaios Clínicos não-randomizados

- Possui grupo de controle (comparação)
- Intervenção (exposição) distribuída mas não aleatoriamente
 - Variáveis de confusão não podem ser balanceadas
- Prospectivo
- Taxa de risco, diferença de risco
- Exemplo: identificar grupo de pessoas
 - Discernir seu status de tabagismo na linha de base
 - Follow up através do tempo para ver quem desenvolverá câncer
 - Outros fatores, como idade, equilibrados entre fumantes e não-fumantes?

Estudos Experimentais

□ Ensaios com autocontroles

- Cada sujeito atua como seu próprio controle
 - Recebem intervenção por um período
 - Não recebem nenhuma intervenção por um período
- Estudo Cruzado
- Medidas de diferença
 - Exemplo: peso numa dieta especial vs peso numa dieta normal
- Exemplo: inscrever fumantes no estudo
 - <u>Em primeiro lugar</u>, alocar aleatoriamente para tratamento ou controle.
 - Follow-up para verificar qual a proporção de quem para de fumar em cada grupo
 - Alternar para outra condição de tratamento
 - Follow-up para verificar qual a proporção de quem para de fumar em cada grupo

Estudos Experimentais

□ Ensaios com controles externos

- Grupo de controle de outro estudo
- Controles históricos
- Outros fatores relacionados mudaram com o tempo?
- Razão de risco, diferença de risco
- Exemplo: identificar um grupo de fumantes e dar a todos um novo tratamento
 - Comparar o taxa de quem parou de fumar à taxa do estudo anterior

Estudos Experimentais

□ Estudos sem controle

- Sem controle ou grupo de comparação
- Supõe que a intervenção (tratamento ou exposição) é melhor disponível
- Similar a estudo de caso da intervenção
- Razão de prevalência, proporção de diferenças
- Similar a ensaios com controles externos mas não faz quaisquer comparações
 - Apenas descritivo

Estudos Experimentais

Ensaios Clínicos Randomizados

- Confundidores equilibrados através da randomização
- Evidência mais forte de causalidade
- **\$\$\$**
- □ Ensaios Clínicos Não Randomizados
 - Desprotegidas contra vieses na atribuição de tratamento

Estudos Experimentais

- □ Ensaios com autocontroles
 - Observações bem equilibradas w.r.t. a maior parte era confundidores
 - Deve haver um período apropriado de falha/fiasco
- Ensaios com controles externos
 - Úteis quando curas não existem (AIDS)
 - Mudanças temporais em casos contribuintes podem ter ocorrido
- □ Estudos sem controle
 - Não há uma forma de determinar se a população amostrada era "normal".

Meta-Análise

- Combina estudos
- □ Revisão de literatura quantitativa
- Útil quando a informação disponível for inconclusiva
 - Todos os estudos são de baixa potência
 - Resultados conflitantes
 - Pode apontar em direção à fatores relacionados a conflitos
- Estudos de tipos diferentes devem ser analisados separadamente.
 - Medida do resultado depende dos tipos de estudos
- □ Use com cuidado!

Resumo

- Quando feito corretamente, ensaios clínicos aleatórios criam a evidência mais forte para uma conexão causal
- □ Inferência Causal requer:
 - Substituto válido para o grupo de tratamento
 - Controle de vieses
 - Randomização é uma forma optimizada
 - Direção apropriada de averiguação

Resumo

- Como que o resultado no grupo exposto se compara com o resultado que se teria obtido se estes mesmos sujeitos pudessem reviver tudo identicamente com exceção de seu status de exposição?
 - Um substituto válido, imparcial responderá esta questão
 - Na realidade este substituto n\u00e3o existe
 - O valor da comparação feita entre indivíduos que se expuseram e os que não se expuseram dependerá da intensidade que o substituído chegará da experiência "contra factual"

- Introdução à probabilidade e inferência estatística
 - Probabilidade
 - Definições
 - Exemplos
 - Notação
 - Regras de Probabilidade
 - Tipos de probabilidades
 - Probabilidade conjunta
 - Probabilidade condicional
 - Independência estatística

- □ Populações e amostras
 - Tipos de amostras
- Parâmetros e estatísticas
- Distribuições
- Inferência Estatística
 - Estatística versus significância clínica

Probabilidade e

Inferência Estatística

- □ Propósito da estatística:
 - Para "generalizar as descobertas pelo conjunto de observações de um grupo de sujeitos com outros que são similares àqueles sujeitos" (p 64)
 - Inferência
 - População
 - Amostra

Probabilidade

Probabilid ade = $\frac{\text{Número de vezes que um resultado ocorre}}{\text{Número total de ensaios}}$

- □ Ensaio, experimento, replicação
- □ $Pr{A} \in [0, 1]$
- □ Exemplos
 - Ensaio: jogar uma moeda para o alto
 - $Pr{Cara} = 0.5$
 - Ensaio: Jogar um par de dados
 - $Pr{Soma = 3} = 2/36 \approx 0.056$

$$Pr{Soma = 3} = \frac{\{(1,2), (2,1)\}}{\{(1,1), (1,2), (1,3)...(6,5), (6,6)\}}$$

Exemplo: Jogar Um Par De Dados

Resultado A

Subconjuntos onde a soma das faces é igual a 3

Espaço Amostra S

Todas as possíveis combinações das duas faces.

Probabilidade – Dois Eventos

Department of Biostatistics

■ Mutuamente Exclusivos

- A e B não se sobrepõe (sem resultados comuns)
- $P(A \ ou \ B) = P(A \cup B) = P(A) + P(B)$
- $P(A e B) = P(A \cap B) = 0$

Probabilidade – Dois Eventos

□ A e B não são mutuamente exclusivos

- A e B se sobrepõe (há resultados comuns)
- $P(A ou B) = P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - P(A) e P(B) ambos possuem P(A ∩ B), então somá-los inclui a área de sobreposição duas vezes!
- $P(A e B) = P(A \cap B) \neq 0$

Probabilidade – Mais de Dois KU Eventos

Department of Biostatistics

- □ A e B não são mutuamente exclusivos
- □ A e C são mutuamente exclusivos
- □ B e C são mutuamente exclusivos

Regras de Probabilidade

- \square P(conjunto vazio) = P(Ø) = 0
 - Probabilidade de evento que n\u00e3o ocorre no conjunto amostra S\u00e9 zero
- $P(não A) = P(A^*) = 1 P(A)$
 - Pois a soma das probabilidades no espaço da amostra S é igual a 1
- $P(A \text{ ou } B) = P(A \cup B)$ $= P(A) + P(B) P(A \cap B)$
 - Se A,B são eventos mutuamente exclusivos, então P(A ∩ B) = 0, assim P(A ou B) = P(A) + P(B)

Probabilidade Conjunta

- □ P(A e B) = P(A ∩ B) é chamada de probabilidade "conjunta" de A e B
 - ∩ significa "e" (∪ significa "ou")
- Exemplo: jogando um dado vermelho e um dado azul
 - P(dado vermelho= 4 ∩ dado azul = 3)
- □ P(A) e P(B) são referidas como probabilidades "marginais"
- Qual a probabilidade conjunta de que alguém seja do sexo feminino e tenha tipo sanguíneo B? (Veja tabela no próximo slide.)

Tipo Sanguíneo	Probabilidades		
	Femenino	Masculino	Total
0	0,21	0,21	0,42
A	0,215	0,215	0,43
В	0,055	0,055	0,11
AB	0,02	0,02	0,04
Total (p 66)	0,5	0,5	1,00

Probabilidade Condicional

Department of Biostatistics

□ P(B|A) trata A como se fosse o espaço amostral (em vez de S)

$$P(B \mid A) = \frac{\text{Número de vezes que B ocorre dentro de A}}{\text{Número total de ensaios em A}}$$

Probabilidade Condicional

- □ Nem todos de B tem que estar contidos dentro de A
 - B não tem que ser um subconjunto de A, mas ele pode ser (como exibido no slide anterior)

Probabilidade Conjunta

□ Utilizando a relação anterior, temos

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

Portanto

$$P(A \cap B) = P(B \mid A)P(A)$$

E da mesma forma

$$P(A \cap B) = P(A \mid B)P(B)$$

Independência

Definição:

A é independente de B se P(A|B) = P(A)

- □ Em palavras, se A é independente de B, então a probabilidade de A = a₁ (por exemplo) é a mesma independente do nível de B (tal como B = b₁, b₂ or b₃)
- □ Implicações de independência
 - $P(A \cap B) = P(A)P(B)$
- Veja um exemplo de variáveis independentes no próximo slide

Tipo Sanguíneo	Probabilidades		
	Feminino	Masculino	Total
Ο	0,21	0,21	0,42
Α	0,215	0,215	0,43
В	0,055	0,055	0,11
AB	0,02	0,02	0,04
Total (p 66)	0,5	0,5	1,00

Regras de Probabilidade

- - $P(A \cap B) = 0 \Rightarrow A,B$ mutuamente exclusivos
- - $P(A|B) = P(A) \Rightarrow A,B$ independentes
 - $P(A \cap B) = P(A)P(B) \Rightarrow A,B$ independentes

Teorema de Bayes

Department of Biostatistics

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A \cap B) + P(A \cap B')}$$

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid B')P(B')}$$

 O Teorema de Bayes é útil pois "investigadores frequentemente só sabem uma das probabilidades pertinentes e devem determinar a outra." (p 68)

Teorema de Bayes

□ Probabilidade

- Exemplo
 - Paciente apresenta dor no peito
 - Causas possíveis:
 - MI (infarto do miocárdio), pneumonia, esofagite de refluxo
 - Conhecidas:
 - P(dor no peito | Infarto do miocárdio)
 - P(dor no peito | pneumonia)
 - P(dor no peito | esofagite de refluxo)
 - Problema
 - Qual é a P(Infarto do miocárdio | dor no peito)?
 - Pode-se resolver com o Teorema de Bayes se P(dor no peito)
 e P(Infarto do miocárdio) forem também conhecidas

Populações e Amostras

□ População

- Conjunto ou coleção de itens com algo em comum
- População possui sua própria distribuição

□ Amostra

- Subconjunto da população da qual é retirada
- Selecionada para ser "representativa" da população
- Descrições (estatísticas) de uma amostra representativa podem ser generalizadas à população-fonte da qual a amostra foi retirada

Razões para Amostragem

- □ Censo não pode ser possível
- Se um censo for possível, a amostragem é
 - Mais rápida
 - Mais barata
 - Mais "precisa"
 - Maiores informações podem ser obtidas a partir de cada observação
 - Útil para a inferência

Métodos de Amostragem

□ Amostragem probabilística

- Amostra aleatória simples
 - Todos na população possui a mesma probabilidade de serem selecionados na amostra
- Amostra Sistemática
 - Cada sujeito kth é selecionado
 - k = [número na população] / [tamanho estimado da amostra]
 - A primeira observação selecionada deve ser feita em aleatório.

Métodos de Amostragem

Amostragem probabilística

- Amostragem estratificada
 - População dividida em estratos (subgrupos)
 - Geralmente os subgrupos são níveis diferentes de variáveis de confusão
 - Amostra aleatória retirada de dentro de cada estrato
 - Ex. estratificar por idade e sexo
- Amostragem por Clusters
 - População dividida em grupos de temas como
 - Famílias, blocos, escolas, etc.
 - Clusters selecionados aleatoriamente
 - Requer um tamanho maior de amostra pois as observações são correlacionadas dentro do cluster

Métodos de Amostragem

Amostragem Não Probabilística

- A probabilidade de que um sujeito da população-fonte fosse selecionado na amostragem é desconhecida
- Nenhuma atribuição aleatória
 - Vieses
 - Randomização é usada para equilibrar tudo exceto a intervenção (exposição)
 - Remove todas as vieses
 - A amostra é representativa da população
 - » Resultados podem ser generalizados à população

Amostragem

- □ População-alvo
- □ População amostrada
 - Base de amostragem
- □ Amostra
- Os resultados só podem ser generalizados à população-alvo se a amostra for representativa
 - Propriedades de distribuição serão similares

KANSAS Medical Center

Parâmetros versus Estatísticas

Department of Biostatistics

- □ Parâmetros são características que descrevem uma população
 - Letras Gregas

- □ Estatísticas são características que descrevem uma amostra
 - Letras Romanas

Variáveis Aleatórias e Kariáveis Aleatórias e Distribuições de Probabilidade

- Variável Aleatória
 - Uma série de observações com uma estrutura de probabilidade correspondente a cada resultado
 - Observações podem ser numéricas ou categóricas
 - Exemplo altura dos pacientes na UTMB
- □ Distribuição de Probabilidade
 - Probabilidades que correspondem a cada resultado de uma variável aleatória
 - pdf (Função de distribuição de probabilidade)
 - Para variáveis aleatórias contínuas
 - pmf (função massa de probabilidade)
 - Para variáveis aleatórias categóricas

Distribuição Binomial

- □ Evento dicotômico (sucesso ou fracasso)
 - Ensaio de Bernoulli
 - π = probabilidade de sucesso
- \Box B(n, π)
 - n = número de ensaios
 - π = probabilidade de sucesso
 - X ~ B(n,π) então X é a soma de n ensaios independentes de Berrnoulli
 - Pmf = $P(X=x)=\{n!/[x!(n-x)!]\}\pi^x(1-\pi)^{n-x}$
 - Exemplo: X ~ B(10, 0,8)
 - $P(X=0) = 1*(0.8)^{0}(1-0.8)^{10-0}$
 - $P(X=1) = 10*(0.8)^{1}(1-0.8)^{10-1}$

Department of Biostatistics

Distribuição de Poisson

- Dados de "Contagem"
- □ Se X ~ B(n,π) e
 - $n \rightarrow \infty$ (n é grande)
 - $\pi \rightarrow 0 \ (\pi \text{ é pequeno})$
 - $n\pi \rightarrow \lambda$ (λ é a média)

então X pode ser aproximado pela Distribuição de Poisson – Poi(λ)

- Média = variância
 - Variância = λ
- $Pmf = P(X = x) = \lambda^{x}e^{-\lambda}/x!$
 - Exemplo: X ~ Poi(3,22)
 - $P(X = 0) = 3,22^0e^{-3.22}/0!$
 - $P(X = 1) = 3.22^{1}e^{-3.22}/1!$

- Variável aleatória contínua
 - Gaussiana
 - Curva em formato de sino
 - Simétrica
 - $-\infty,\infty$
- \square $N(\mu,\sigma^2)$
 - μ = média
 - σ^2 = variância
 - Normal padronizada N(0,1)
 - Distribuição z
 - Escore z (1,645, 1,96)
- Pdf
 - $f(x) = [1/(2\pi\sigma^2)^{1/2}] \exp[-(x-\mu)^2/\sigma^2]$

Distribuição Normal

- "Na verdade, poucas características são normalmente distribuídas."(p 80)
- "Inferência estatística geralmente envolve valores médios de uma população, e não os valores relacionados aos indivíduos."(p 80)
- "...se tivermos que fazer declarações de probabilidade sobre indivíduos utilizando as regras de desvio médio e de desvio padrão, a distribuição da característica de interesse deve ser aproximadamente normalmente distribuída."

(p 80)

Distribuições de Amostragem

Department of Biostatistics

- □ Distribuição de amostragem é a distribuição das médias
 - Menos variação que distribuição de indivíduos
- □ Teorema do Limite Central

Department of Biostatistics

Teoria do Limite Central

 $X = m\acute{e}dia\ amostral$

Média(
$$\overline{X}$$
) = E[\overline{X}] = μ

Variância(
$$\overline{X}$$
) = $V[\overline{X}] = \frac{\sigma^2}{\sqrt{n}}$

Para amostra grande (grande n),

$$\overline{X}^{approx} \sim N(\mu, \sigma^2/\sqrt{n})$$

Desvio Padrão versus Erro-padrão

- Desvio padrão é a medida de variabilidade entre as observações numa população
- □ Erro-padrão é a medida da variabilidade entre as estatísticas (médias) numa amostra

Inferência Estatística

- Descreve os parâmetros populacionais baseado nas estatísticas da amostra
 - Estimativa
 - Peso médio entre pessoas de 65 anos de idade é de 170 lbs. (95% Cl de 162-178 lbs.)
 - Intervalos de Confiança
 - Teste de hipótese
 - H₀: peso médio entre pessoas de 65 anos de idade é 170 lbs.
 - H₁: peso médio entre pessoas de 65 anos de idade é maior que 170 lbs.
 - Valor p
- □ Ambos possuem a mesma conclusão em qualquer nível de "confiança" dado

Inferência Estatística

- "Boa" estimativa da amostra terá as seguintes propriedades
 - Imparcial
 - Variância mínima
- O objetivo é ser capaz de descrever a população baseado nas informações obtidas a partir da amostra
 - Combine observações similares e mantenha observações diferentes separadas.

Significância

- Significância estatística é uma função de
 - Suposições do modelo
 - Tamanho da Amostra
 - Tamanho da diferença
 - Precisão
- Resultados
 estatisticamente
 significantes nem
 sempre são clinicamente
 significantes

- Significância <u>Clínica</u> é uma diferença biológica ou cientificamente importante
- Resultados clinicamente significativos nem sempre são estatisticamente significantes

Referência

□ Dawson B and Trapp RG (2001). *Basic* & *Clinical Biostatistics*, 3rd ed., McGraw Hill: New York