

Erik Knudsen, DTU Physics

Sources and Monitors

Sources: In general

- A source component generates Monte Carlo neutrons.
 In McStas terms this means:
 - Set the neutron state to something representative of the source we are trying to model.
 - i.e.: insert values in the neutron state vector:
 {x,y,z, vx,vy,vz, t, sx,sy,sz, p}
 drawn from appropriate distributions.
 - EXAMPLE:
 Neutrons from a uniform wavelength distribution emerging from a circular aperture.

Access the docs

IMPORTANT:

All (and more) of this information can be found in the online pdf component documentation, e.g.

https://github.com/McStasMcXtrace/McCode/raw/master/docpkg/manuals/mcstas/Component_manual.pdf

or

http://mcstas.org/download/components/doc/manuals/mcstas-components.pdf

- also distributed with your McStas installation - mcdoc -c

The component documentation along with the command:

"mcdoc <component_you_are_searching_for>"

are your best friends when using McStas

Sources: Example 1

Neutron spatial coordinates are picked from a uniform distribution on a circle with radius R.

Sources: Example 1

Length of the velocity vector encodes the wavelength

Neutron velocity vector is picked to point at a ROI.

In McStas: this is defined by the parameters: focus_xw,

focus_yh, and

dist

Sources: Example 1

TRACE

```
COMPONENT origin = Progress_bar()
AT(0,0,0) ABSOLUTE

COMPONENT src = Source_simple(
        radius=0.05, lambda0=2.5, dlambda=1.5,
        focus_xw=0.1, focus_yh=0.1, dist=5)

AT(0,0,0) RELATIVE origin
```


Monitors: in general

REALITY:

Monitors:

- Intensity probe of the beam
- ► Transparent to neutrons → Efficiency <1%</p>

Detectors:

Should detect all neutrons → Efficiency as high as possible

SIMULATIONS (McStas):

In McStas:

- We can program monitors and detectors to behave any way we like. We refer to both of those indistinguishably as 'monitors'.
- E.g. monitor with Efficiency =100% and Transparency=100%
- With exception of PSD_Detector that models a "physical" He³ detector)

Monitors: Example PSD_monitor

Monitors: Example PSD_monitor

When the simulation has been completed, the detected intensity in pixel (i,j) is:

$$I(i,j) = \sum_{\substack{x_k, y_k \in pixel(i,j) \\ = raynumber}} p_k; k$$

... during simulation, the pixels are maintained as running sums.

HighNess

McStas

DTU S FEE NEURONS ON ZERNO

2021

HighNESS

Virtual

McStas

School

. . .

TRACE

Monitors:

Example PSD_monitor and L_monitor


```
COMPONENT origin = Progress bar()
AT(0,0,0) ABSOLUTE
COMPONENT src = Source simple(
        radius=0.05, lambda0=2.5, dlambda=1.5,
        focus_xw=0.1, focus_yh=0.1, dist=5)
AT(0,0,0) RELATIVE origin
COMPONENT psd = PSD monitor(
        xwidth=0.2, yheight=0.2, filename="psd.dat")
AT (0,0,5) RELATIVE src
COMPONENT lm = L monitor(
        xwidth=0.2, yheight=0.2, filename="lm.dat",
        Lmin=0, Lmax=8)
```

AT (0,0,5+0.01) RELATIVE src

Sources: Mathematical sources

Source_simple:

- Square or circular surface emitting neutrons from either uniform or Gaussian wavelength (or energy) distribution.
- ➤ Neutrons are directed towards a square target.
- Source_div:
- Square surface emitting neutrons from either uniform or Gaussian wavelength (or energy) distribution.
- Neutrons have a divergence defined by either uniform or Gaussian distribution.

2021 HighNESS McStas school

Source_simple docs

Try "mcdoc Source_simple"

or

(in GUI) Help → mcdoc Component Reference → (In Webpage) Source_simple

Source_simple docs

Try "mcdoc Source_simple"

or

(in GUI) Help → mcdoc Component Reference → (In Webpage) Source_simple

This component replaces Source flat, Source flat lambda, Source flux and Source flux lambda.

divergence is then given by the dimensions of the target.

The neutron energy is uniformly distributed between lambda0-dlambda and

The flux unit is specified in n/cm2/s/st/energy unit (meV or Angs).

lambda0+dlambda or between E0-dE and E0+dE.

Source_simple docs

Try "mcdoc Source_simple"

Monitors: Example PSD_monitor and L_monitor

Let's do a very simple exercise on this:

Head on over to:

Exercise 1 - Sources and Monitors on github

https://github.com/McStasMcXtrace/Schools/tree/master/ESS May 2021/Wednesd ay May 5th/2 Component basics/Exercise

2021 HighNESS McStas school