Chapitre 7 - Variation - Extremum

minimum sudoku clues needed

1 variation - extremum

1.1 définition - propriété

fonction croissante ou décroissante

- soit 1 fonction $f: \begin{bmatrix} [a,b] & \mapsto & \mathbf{R} \\ x & \mapsto & f(x) \end{bmatrix}$ notée plus simplement y=f(x) ou $f:x\mapsto f(x)$
- f est <u>croissante</u> sur [a,b] si $\forall x < y \in [a,b]: f(x) \le f(y)$ (l'idée est qu'1 fonction croissante "monte")
- f est strictement croissante sur [a,b] si $\forall x < y \in [a,b]: f(x) < f(y)$
- f est <u>décroissante</u> sur [a,b] si $\forall x < y \in [a,b] : f(x) \ge f(y)$ (l'idée est qu'1 fonction décroissante "descend")
- f est strictement décroissante sur [a, b] si $\forall x < y \in [a, b] : f(x) > f(y)$
- 1 fonction croissante ou décroissante (attention pas les 2) est appelée fonction monotone
- M est un maximum de f sur [a,b] si :

$$\left\{ \begin{array}{ll} \exists \, a \in [a,b] & f(a) = M \\ \forall x \in [a,b] & f(x) \leq M \end{array} \right.$$

• m est un minimum de f sur [a, b] si :

$$\left\{ \begin{array}{ll} \exists\, a \in [a,b] & f(a) = m \\ \forall x \in [a,b] & f(x) \geq m \end{array} \right.$$

visualisation graphique

remarque

- 1 fonction croissante conserve le sens de l'inéquation entre abscisse et ordonnée
- 1 fonction décroissante l'inverse

1.2 tableau de variation de f

définition

ullet le tableau de variation de f regroupe les informations concernant les variations de f

$\mathbf{ex}:\mathbf{TdV}$ d'1 fonction f

- en particulier, on peut voir sur le TdV les informations suivantes :
 - $D_f = [-5; +\infty[$
 - f est croissante sur = [0; 3] (par exemple)
 - f possède un maximum de 5 atteint en 3
 - f n'admet pas de minimum
 - HP: $\lim_{x \to +\infty} f(x) = -\infty$

2 application aux fonctions de référence

2.1 droite: y = ax+b

propriété

- soit 1 fonction $f: \left| \begin{array}{ccc} \mathbf{R} & \mapsto & \mathbf{R} \\ x & \mapsto & ax+b \end{array} \right|$
- $a > 0 \Longrightarrow f$ croissante
- $a > 0 \Longrightarrow f$ est décroissante
- $a = 0 \Longrightarrow f$ est constante

ex : y = 2x + 1

• TdV de y = 2x + 1:

• a = 2 (positif): la droite monte

ex à faire : y = -2x + 1

• TdV de y = 2x + 1:

x	
variation de $f(x)$	

• a = -2 (négatif) : la droite descend

2.2 fonction carrée: $x \longrightarrow x^2$

forme algébrique et tableau de valeurs

•
$$f: \begin{bmatrix} \mathbf{R} & \longrightarrow & \mathbf{R} \\ x & \longrightarrow & x^2 \end{bmatrix}$$

• c'est une fonction paire

х	-3	-2	-1	0	1	2	3
f(x)							

x	$-\infty$	0	$+\infty$
variation de $f(x)$			

graphique

2.3 fonction inverse: $x \longrightarrow \frac{1}{x}$

forme algébrique et tableau de valeurs

$$\bullet \ f: \left| \begin{array}{ccc} \mathbf{R}^* & \longrightarrow & \mathbf{R}^* \\ x & \longrightarrow & \frac{1}{x} \end{array} \right|$$

• c'est une fonction impaire

x	-3	-2	-1	0	1	2	3
f(x)							

x	$-\infty$	0	$+\infty$
variation de $f(x)$			

graphique

6

2.4 fonction racine : $x \longrightarrow \sqrt{x}$

2.5 fonction cube : $x \longrightarrow x^3$

8