Machine Learning and Photonics Week 14

Ergun Simsek

University of Maryland Baltimore County simsek@umbc.edu

Optimizers and Numerical Optimization

May 9, 2023

Overview

 Gradient Methods with Fixed Learning Rate

> Gradient Descent Conjugate gradient

② Gradient Methods with Varying Learning Rate

> Momentum Nesterov Momentum Adagrad

RMSProp and Adadelta

Adam

3 Direct methods without gradient Cyclic Coordinate Search Powell's method Nelder-Mead Simplex Method Simulated Annealing Cross-Entropy Method

Covariance Matrix Adaptation

Population Methods Initialization Particle Swarm Optimization

What is optimization? Why do we care?

Optimization in engineering is the process of finding the best system design subject to a set of constraints.

A typical optimization problem is to

minimize
$$f(x)$$
 subject to $x \in X$

A design point (x) can be represented as a vector of values corresponding to different design variables.

Why is f'(x) important?

f'(x) = 0 is not a sufficient condition

Univariate:

- $f'(x^*) = 0$ and $f''(x^*) > 0$, then strong local minimum
- $f'(x^*) = 0$ and $f''(x^*) < 0$, then strong local maximum

Multivariate:

Local maximum

Saddle point

Bowl minimum

LOCAL DESCENT: A general approach to optimization

- **1** Check $f(\mathbf{x}^{(k)}) \stackrel{?}{<} \epsilon$ If it does, terminate; otherwise proceed to the next step.
- 2 Determine the descent direction \mathbf{d}_k using local information such as the gradient (or Hessian for multivariate optimization).
- **3** Determine the step size or learning rate α_k .
- 4 Compute the next design point according to: $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$
- **5** $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{d}^{(k)}$, go back to step-1!

The choice of descent direction

- So we assumed that **d** is a valid descent direction,
- Then we said that we could use the line search method to obtain a sufficient decrease.
- Repeating it for many times, we hoped to arrive at the local minimum.
- How can we find a valid descent direction?

Steepest Descent

An intuitive choice for the descent direction is the direction of steepest descent (the direction opposite the gradient ∇f)

$$\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)})$$

where $\mathbf{x}^{(k)}$ is our design point at descent iteration k.

In gradient descent, we typically normalize the direction of steepest descent

$$\mathbf{d}^{(k)} = -rac{\mathbf{g}^{(k)}}{||\mathbf{g}^{(k)}||}$$

Gradient descent

If we optimize the step size at each step, we have

$$\alpha^{(k)} = \underset{\alpha}{\arg\min} f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$$

The optimization above implies that the directional derivative equals zero. Since

$$abla f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})^T \mathbf{d}^{(k)} = \mathbf{0}$$

$$\mathbf{d}^{(k+1)} = -\frac{\nabla f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})}{||\nabla f(\mathbf{x}^{(k)} + \alpha^{(k)})||}$$

If you multiply the above equation's both side with $\mathbf{d}^{(k)}$, you can see that these two consecutive directions are orthogonal.

$$(\mathbf{d}_{k+1})^T\mathbf{d}^k=0$$

Conjugate gradient

Gradient descent can perform poorly in narrow valleys. The conjugate gradient method overcomes this issue by doing a small transformation. When minimizing the quadratic functions:

$$\underset{\alpha}{\text{minimize}}: f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} - \mathbf{b}^{T}\mathbf{x}$$

is equivalent to solving the linear equation

$$Ax = b$$

where A is $N \times N$ symmetric and positive definite, and thus f has a unique local minimum.

When solving $\mathbf{A}\mathbf{x} = \mathbf{b}$, a powerful method is to find a sequence of N conjugate directions satisfying

$$(\mathbf{d}^{(i)})^T \mathbf{A} \mathbf{d}^{(j)} = 0 \quad (i \neq j), \tag{1}$$

Ergun Simsek (UMBC) ENEE 691 MLP May 9, 2023 9/43

To find the successive conjugate directions

One can start with the direction of steepest descent

$$\mathbf{d}^{(1)} = -\mathbf{g}^{(1)} \tag{2}$$

We then use line search to find the next design point. For quadratic functions $f = \frac{1}{2}x^T Ax - b^T x$, the step factor α can be computed as

$$\frac{\partial f(\mathbf{x} + \alpha \mathbf{d})}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left[\frac{1}{2} (\mathbf{x} + \alpha \mathbf{d})^T \mathbf{A} (\mathbf{x} + \alpha \mathbf{d}) + \mathbf{b}^T (\mathbf{x} + \alpha \mathbf{d}) + c \right]
= \mathbf{d}^T \mathbf{A} (\mathbf{x} + \alpha \mathbf{d}) + \mathbf{d}^T \mathbf{b}
= \mathbf{d}^T (\mathbf{A} \mathbf{x} + \mathbf{b}) + \alpha \mathbf{d}^T \mathbf{A} \mathbf{d}$$
(3)

Let the gradient be zero,

$$\alpha = -\frac{\mathbf{d}^{T}(\mathbf{A}\mathbf{x} + \mathbf{b})}{\mathbf{d}^{T}\mathbf{A}\mathbf{d}} \tag{4}$$

Then the update is

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \alpha \mathbf{d}^{(1)} \tag{5}$$

 Ergun Simsek (UMBC)
 ENEE 691 MLP
 May 9, 2023
 10 / 43

To find the successive conjugate directions (continued)

For the next step

$$\mathbf{d}^{(k+1)} = -\mathbf{g}^{(k+1)} + \beta^{(k)} \mathbf{d}^{(k)}$$
(6)

where $\beta^{(k)}$ is a series of scalar parameters. Larger values of β indicate that the previous descent direction contributes strongly. We solve β , from the followings

$$\left(\mathbf{d}^{(k+1)}\right)^{\mathsf{T}}\mathbf{A}\mathbf{d}^{(k)} = 0 \tag{7}$$

$$(-\mathbf{g}^{(k+1)} + \beta^{(k)}\mathbf{d}^{(k)})^T \mathbf{A} \mathbf{d}^{(k)} = 0$$
 (8)

$$-\mathbf{g}^{(k+1)}\mathbf{A}\mathbf{d}^{(k)} + \beta^{(k)}(\mathbf{d}^{(k)})^{T}\mathbf{A}\mathbf{d}^{(k)} = 0$$
(9)

$$\beta^{(k)} = \frac{(\mathbf{g}^{(k+1)})^T \mathbf{A} \mathbf{d}^{(k)}}{(\mathbf{d}^{(k)})^T \mathbf{A} \mathbf{d}^{(k)}}$$
(10)

The conjugate method is exact for quadratic functions. But it can be applied to non quadratic functions as well when the quadratic function is a good approximation.

To Approximate A and β

Unfortunately, we don't know the value of **A** that best approximate f around $\mathbf{x}^{(k)}$. So we need choose a way to compute β . In literature, there are two commonly used formulas.

Fletcher-Reeves

$$\beta^k = rac{g^{(k)T}g^{(k)}}{g^{(k-1)T}g^{(k-1)}}$$

Polak-Ribiere

$$\beta^{k} = \frac{g^{(k)T}(g^{(k)} - g^{(k-1)})}{g^{(k-1)T}g^{(k-1)}}$$

Comparison between Conjugate Gradient and Steepest Descent

Summary

- Gradient descent follows the direction of steepest descent
- Two consecutive search directions in gradient descent are orthogonal
- In conjugate gradient, the search directions are conjugate with respect to an approximate hessian.
- Both SD and CG work with the line search method

Gradient Methods with Varying Learning Rate

- Momentum
- Nesterov Momentum
- Adagrad
- RMSProp
- Adadelta
- Adam

Momentum

Allow momentum to accumulate is one way to speed the progress.

$$\mathbf{v}^{(k+1)} = \beta \mathbf{v}^{(k)} + (1 - \beta) \nabla f(\mathbf{x}^{(k)})$$
(11)

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \mathbf{v}^{(k+1)}$$
 (12)

When β =0, it is gradient descent.

Ergun Simsek (UMBC) ENEE 691 MLP May 9, 2023 16/4

Nesteroy Momentum

$$\mathbf{v}^{(k+1)} = \beta \mathbf{v}^{(k)} + (1 - \beta) \nabla f(\mathbf{x}^{(k)} - \beta \mathbf{v}^{(k)})$$
(13)

(14)

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \mathbf{v}^{(k+1)}$$

Ergun Simsek (UMBC) ENEE 691 MLP May 9, 2023 17/4

Adagrad: Adaptive subgradient method

Idea: A learning rate for each one in θ

$$\mathbf{x}_i^{(k+1)} = \mathbf{x}_i^{(k)} - \frac{\alpha}{\epsilon + \sqrt{s_i^{(k)}}} \mathbf{x}^{(k)}$$

$$\mathbf{s}_i^{(k)} = \sum_{i=1}^k \left(g_i^{(j)}\right)^2$$

where ϵ is a small value on the order of 1e-8.

$$\mathbf{s}^{(k+1)} = \gamma \mathbf{s}^{(k)} + (1 - \gamma)(\mathbf{g}^{(k)} \odot \mathbf{g}^{(k)})$$
(15)

where γ is between 0 and 1, and usually is 0.9.

$$\mathbf{x}_{i}^{(k+1)} = \mathbf{x}_{i}^{(k)} - \frac{\alpha}{\epsilon + \sqrt{\mathbf{s}_{i}^{(k)}}} \mathbf{g}_{i}^{(k)}$$

$$= \mathbf{x}_{i}^{(k)} - \frac{\alpha}{\epsilon + \text{RMS}(\mathbf{g}_{i})} \mathbf{g}_{i}^{(k)}$$
(16)

While in Adadelta, an exponentially decaying average is used,

$$\mathbf{x}_{i}^{(k+1)} = \mathbf{x}_{i}^{(k)} - \frac{\text{RMS}(\nabla_{i})}{\epsilon + \text{RMS}(\mathbf{g}_{i})} \mathbf{g}_{i}^{(k)}$$
(17)

$$\mathbf{v}^{(k+1)} = \gamma_{\nu} \mathbf{v}^{(k)} + (1 - \gamma_{\nu}) \mathbf{g}^{(k)}$$

$$\mathbf{s}^{(k+1)} = \gamma_{s} \mathbf{s}^{(k)} + (1 - \gamma_{s}) \left(\mathbf{g}^{(k)} \odot \mathbf{g}^{(k)} \right)$$

$$\hat{\mathbf{v}}^{(k+1)} = \mathbf{v}^{(k+1)} / (1 - \gamma_{\nu}^{(k)})$$

$$\hat{\mathbf{s}}^{(k+1)} = \mathbf{s}^{(k+1)} / (1 - \gamma_{s}^{(k)})$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \hat{\mathbf{v}}^{(k+1)} / \left(\epsilon + \sqrt{\hat{\mathbf{s}}^{(k+1)}} \right)$$
(18)

Summary

- Descent methods with momentum build up progress in favorable directions
- A wide variety of accelerated descent methods use special techniques to speed up descent

Direct methods without gradient

Direct methods rely solely on the objective function f. They are usually called

- zero-orther
- black box
- pattern search
- derivative free

Cyclic Coordinate Search

Alternate coordinate directions for its line search.

$$\mathbf{x}^{(2)} = \underset{\mathbf{x}_1}{\operatorname{arg\,min}} f(\mathbf{x}_1, \mathbf{x}_2^{(1)}, \mathbf{x}_3^{(1)}, \cdots, \mathbf{x}_n^{(1)})$$
 (19)

Then, it moves to the next coordinate,

$$\mathbf{x}^{(3)} = \underset{\mathbf{x}_2}{\operatorname{arg\,min}} f(\mathbf{x}_1^{(2)}, \mathbf{x}_2, \mathbf{x}_3^{(2)}, \cdots, \mathbf{x}_n^{(2)})$$
 (20)

Acceleration

Powell's method

Maintain a list of search directions u^1, \dots, u^n s.

$$m{x}^{i+1} \leftarrow \text{ line search}(f, m{x}^i, m{u}^i) \text{ for all} \ \emph{iin} 1, \cdots, n$$

$$m{u}^{i+1} \leftarrow m{u}^{i+1}$$
 for all $\emph{iin} 1, \cdots, n-1$
$$m{u}^n \leftarrow m{x}^{n+1} - m{x}^n$$

Nelder-Mead Simplex Method

Use a simplex to traverse the space in search of a minimum. A simplex is a n + 1-vertices polyhedron in n-dimensional space.

- x_h , pt of highest f,
- x_s , pt of 2nd highest f,
- x_l , pt of lowest f,
- \bar{x} , mean pt excluding x_h .

- Reflection. $x_r = \bar{x} + (\bar{x} x_h)$,
- Expansion. $x_e = \bar{x} + 2(x_r \bar{x})$,
- Contraction. $x_c = \bar{x} + 0.5(x_h \bar{x})$,
- Shrinkage, halving the distance to x_l .

Nelder-Mead Simplex Algorithm

Nelder-Mead Simplex method in practice

Use Temperature to control the degree of stochasticity during the randomized search.

At every iteration, a candidate transition from \mathbf{x} to $\mathbf{x'}$ is sampled from a transition distribution T and is accepted with probability

$$\begin{cases} 1 & \text{if } \Delta y \leq 0 \\ \min(\exp(-\Delta y/t), 1) & \text{if } \Delta y > 0 \end{cases}$$

where
$$\Delta y = f(\mathbf{x}) - f(\mathbf{x'})$$

Cross-Entropy Method

$$\mu^{(k+1)} = \frac{1}{m_{\text{elite}}} \sum_{i=1}^{m_{\text{elite}}} \mathbf{x}^{(k)}$$

$$\Sigma^{(k+1)} = \frac{1}{m_{\text{elite}}} \sum_{i=1}^{m_{\text{elite}}} (\mathbf{x}^{(k)} - \mu^{(k+1)}) (\mathbf{x}^{(k)} - \mu^{(k+1)})^{T}$$
(21)

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \Sigma)$$

Sort the designs according to their objective function values, i.e., $f(x^1) \le f(x^2) \le \cdots \le f(x^m)$.

Calculate the new mean vector

$$\mu^{k+1} \leftarrow \sum_{i=1}^m w_i \boldsymbol{x}^i$$

$$\sum_{i=1}^{m} w_{i} = 1 \quad w_{1} > w_{2} > \cdots > w_{m} > 0$$

The recommended weighting is obtained by

$$w'_i = \ln \frac{m+1}{2} - \ln i \text{ for } i \in \{1, \dots, m\}$$

to obtain $\mathbf{w} = \mathbf{w}' / \sum_i w'_i$.

The step size is updated using a cumulative \boldsymbol{p}_{σ} that tracks steps over time

$$egin{aligned} oldsymbol{
ho}_{\sigma}^1 &= 0 \ oldsymbol{
ho}_{\sigma}^{k+1} &\leftarrow (1-c_{\sigma})oldsymbol{
ho}_{\sigma} + \sqrt{c_{\sigma}(2-c_{\sigma})\mu_{ ext{eff}}}(\Sigma^k)^{-1/2}\sigma_{w} \ \mu_{ ext{eff}} &= rac{1}{\sum_{i}w_{i}^2} \ \sigma_{w} &= \sum_{i=1}^{m_{ ext{elite}}}w_{i}\sigma^{i} ext{ for } \sigma^{i} &= rac{oldsymbol{x}^{i}-\mu^{k}}{\sigma^{k}} \end{aligned}$$

The new step size is

$$\sigma^{k+1} \leftarrow \sigma^{k} \exp \left(\frac{c_{\sigma}}{d_{\sigma}} \left[\frac{||\boldsymbol{p}_{\sigma}||}{\mathbb{E}||\mathcal{N}(0, \boldsymbol{I})||} - 1 \right] \right)$$

where \mathbb{E} is the expected length of a vector drawn from Gaussian distribution.

$$\mathbb{E}||\mathcal{N}(\mathbf{0}, \mathbf{I})|| = \sqrt{2} \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})} \approx \sqrt{n} \left(1 - \frac{1}{4n} + \frac{1}{21n^2}\right)$$

$$egin{aligned} c_\sigma &= (\mu_{ ext{eff}}+2)/(n+\mu_{ ext{eff}}+5) \ d_\sigma &= 1+2\max(0,\sqrt{\mu_{ ext{eff}}-1)/(n+1)}-1)+c_\sigma \end{aligned}$$

The covariance matrix is updated as follows

$$m{
ho}_{\Sigma}^1 = 0$$
 $m{
ho}_{\Sigma}^{k+1} \leftarrow (1 - c\Sigma) m{
ho}_{\Sigma}^k + h_{\sigma} \sqrt{c\Sigma(2 - c_{\Sigma})\mu_{ ext{eff}}} \sigma_{W}$

where

$$h_{\sigma} = \begin{cases} 1 & \text{if } \frac{||\boldsymbol{p}_{\Sigma}||}{(1 - c_{\sigma}^{2k+1})} < (1.4 + \frac{2}{n+1}) \mathbb{E}||\mathcal{N}(0, \boldsymbol{I})|| \\ 0 & \text{otherwise} \end{cases}$$

The update requires the adjusted weights \mathbf{w} :

$$w_i^0 = egin{cases} w_i & ext{if } w_i \geq 0 \\ rac{nw_i}{||\Sigma^{-1/2}\delta^i||^2} & ext{otherwise} \end{cases}$$

The The covariance update is then

$$\Sigma^{k+1} \leftarrow [1 + c_1 c_{\sigma} (1 - h_{\sigma})(2 - c_{\sigma}) - c_1 - c_{\mu}] \Sigma^k + c_1 \boldsymbol{p}_{\Sigma} \boldsymbol{p}_{\Sigma}^T + c_{\mu} \sum_{i=1}^{\mu} w_i^0 \delta^i (\delta^i)^T$$

The constants have the following recommended values

$$egin{aligned} c_{\Sigma} &= rac{4 + \mu_{
m eff}/n}{n + 4 + 2 \mu_{
m eff}/n} \ c_1 &= rac{2}{(n + 1.3)^2 + \mu_{
m eff}} \ c_{\mu} &= \min \left(1 - c_1, 2 rac{\mu_{
m eff} - 2 + 1/\mu_{
m eff}}{(n + 2)^2 + \mu_{
m eff}}
ight) \end{aligned}$$

Ergun Simsek (UMBC) ENEE 691 MLP May 9, 2023 36 / 43

Summary

- Stochastic methods employ random numbers during the optimization process
- Simulated annealin guses a temperature that controls random exploration and which is reduced over time to converge on a local minimum.
- The cross-entropy method and evolution strategies maintain proposal distributions from which they sample in order to inform updates.
- Covariance matrix adaptation is a robust and sample-efficient optimizer that maintains a multivariate Gaussian proposal distribution with a full covariance matrix.

Population Methods

Typical steps

- Initialization
- Encoding
- Mutation
- Crossover
- Selection

The following initialization strategies can be applied

- Uniform distribution in a bounded region
- Multivariate normal distribution centered over a region of interest.
- The Cauchy distribution has an unbounded variance and can cover a much broader space.

Selection

Selection is the process of choosing chromosomes to use as parents for the next generation. For a population with m chromosomes, a selection method will produce a list of m parental pairs for the m children of the next generation. The selected pairs may contain duplicates.

- Truncation, random one from the best *k* truncation
- Tournament, the fittest out of *k* randomly chosen
- Roulette wheel, chosen with a probability proportional to the fitness

Particle Swarm Optimization

Introduce momentum to accelerate convergence toward minima.

$$egin{aligned} oldsymbol{x}^i \leftarrow oldsymbol{x}^i + oldsymbol{v}^i \\ oldsymbol{v}^i \leftarrow oldsymbol{w} oldsymbol{v}^i + c_1 r_1 (oldsymbol{x}^i_{lbest} - oldsymbol{x}^i) + c_2 r_2 (oldsymbol{x}_{gbest} - oldsymbol{x}^i) \end{aligned}$$

where

- x_{lbest} : the current local best locations for the given population
- x_{gbest} : the global best locations
- w, c_1 , c_2 : empirical parameters
- r_1 , r_2 : random numbers drawn from U(0, 1)

Summary

- Population methods use a collection of individuals in the design space to guide progression toward an optimum.
- Genetic algorithms leverage selection, crossover, and mutations to produce better subsequent generations.
- Particle swarm optimization and the firefly algorithm include rules and mechanisms for attracting design points to the best individuals in the population while maintaining suitable state space exploration.
- Population methods can be extended with local search approaches to improve convergence.