Model Extrapolation Expedites Alignment 方法的复现与扩展技术报告

臧一赫

2025年10月

目录

1	背景与目标	2
2	复现设计与结果	2
	2.1 模型与数据	2
	2.2 参数与方法	2
	2.3 复现结果	2
3	扩展方法: Layerwise Extrapolation	2
	3.1 方法描述	3
	3.2 实验结果	3
4	多模态扩展	3
	4.1 实验设置	3
	4.2 训练逻辑	3
	4.3 问题与现状	4
5	评估与限制	4
6	结论	5

1 背景与目标

CoAI 团队在论文《Model Extrapolation Expedites Alignment》中提出了**Model Extrapolation (ExPO)**,本实验复现原论文的方法,在 DPO 模型为 5% 训练量时验证效果(原文使用 0.1, 0.2, 0.4, 1.0 训练量);提出新的 **Layerwise Extrapolation** 扩展方法;尝试进行多模态扩展,应用在 RLHF-V 数据集上以降低模型幻觉。代码与结果见 github.com/assassinlike/ExPO-reproduction-and-extension。

2 复现设计与结果

2.1 模型与数据

- SFT 模型: 与论文相同的监督微调模型 zephyr-7b-sft-full;
- Aligned 模型 (DPO): 训练了 5% 数据的模型 chujiezheng/zephyr_0.05;
- 评测集: AlpacaEval;
- 硬件环境: 阿里云 GPU 实例 (NVIDIA A10)。

2.2 参数与方法

项目	描述
α 选择内存控制	论文中: $10\% \rightarrow 8.5$, $20\% \rightarrow 2.0$; 本文使用 $\alpha = 12$ 对应 5% 训练使用分块加载防止 OOM

2.3 复现结果

在 AlpacaEval 数据集上, ExPO 模型表现出如下特征:

- 模型倾向于在输出中复述指令后再回答问题;
- 复述指令后的回答质量正常;
- 在部分样本中仅出现复述(未作答);

3 扩展方法: Layerwise Extrapolation

为改善直接外推的不稳定性,本文提出 Layerwise Extrapolation:

3.1 方法描述

将 Transformer 拆分为三个大层组,对每个层组使用不同外推系数 α :

层级	范围	α值
Early Layers	前 1/3 层	5
Middle Layers	中间 1/3 层	10
Late Layers	后 1/3 层	15

3.2 实验结果

- 稳定性提升: 未再出现"仅复述不回答"的样本;
- 回答质量提高:内容更自然、逻辑性更强;
- 仍存在复述指令的现象。

4 多模态扩展

RLHF-V 是一种用于降低多模态模型幻觉的对齐方法,本节将 ExPO 应用到这种方法,训练只使用 20% 数据的模型作为 aligned model,应用 ExPO。

4.1 实验设置

选取 clip-vit-base-patch16 作为视觉编码器,open_llama_3b_v2 作为大语言模型。使用线性层将 CLIP 的输出向量映射到隐藏层维度,连同 prompt 的特征向量一起作为 LLM 的输入。在进行训练之前,已使用 init_infer.py 进行测试,确保模型具有 MLLM 的推断能力,能输出一定质量的回答。参数选择见表1。

4.2 训练逻辑

train_ddpo.py 实现了完整的端到端训练逻辑:

- 1. 加载 HuggingFace 格式的数据集,选取 20% 数据;
- 2. 通过 CLIP 提取图像 embedding, 并使用线性层映射到 LLM 隐藏维度;
- 3. 拼接图像 prefix embedding 与文本 embedding;
- 4. 分别计算 chosen/rejected 样本的 log 概率;

参数	值	说明
学习率	2×10^{-6}	
epoch	3	
global_batch_size	8	有效批大小
micro_batch	2	每步显存可承载的 batch
$gradient_accumulation_steps$	4	梯度累计次数
weight_decay	0.01	
warmup_ratio	0.03	学习率热身比例
eta	0.1	DPO 损失温度系数
γ	2.0	corrected segment 权重
\max_length_prompt	256	prompt 最大长度
$max_length_response$	256	response 最大长度

表 1: 多模态训练主要参数

- 5. 使用带 γ 加权的 segment 平均 log π ;
- 6. 基于 DPO 损失更新 LoRA 参数;
- 7. 使用 AMP + 梯度累积与 OOM 恢复机制,确保显存稳定;
- 8. 每个 epoch 保存 LoRA adapter 权重与 tokenizer。

4.3 问题与现状

由于多处代码细节处理不当,训练未能正常进行,出现了具体如混合精度缩放失败、张量尺寸不匹配等问题。不过多模态输入逻辑(CLIP \rightarrow prefix embedding)已在推理阶段 <code>init_infer.py</code> 成功验证,实现了"图像 + prompt"双模态条件输入。

5 评估与限制

• 评估限制: 由于支付账户注册限制,未能使用 GPT-4-turbo 进行自动评估,也即缺失win rate;

• 后续工作:

- 使用开源评测模型进行客观对齐评估;
- 在 Layerwise Extrapolation 中进一步细化层级划分;
- 尝试通过正则化或提示修正减少复述问题;

在多模态扩展方面:

- 修改多模态扩展的代码问题,完成 20% 数据量的 DDPO 模型训练;
- 得到"部分对齐"的模型后,应用 ExPO 方法。

6 结论

- 1. 成功复现了 CoAI 团队的 ExPO 方法;
- 2. 验证了在仅 5% 训练步数下仍可通过大 α 获得合理的对齐效果;
- 3. 提出了 Layerwise Extrapolation 扩展,提升生成稳定性;
- 4. 实现了多模态 DDPO 训练框架,确认 LLM 实际接收了图像与文本双输入;