A GPU B a SIMD (SIMT) machine
Lo not programmed using "SIMD First"

- · Programmed using threads (spmb)

 · A set of thread executing same instruction are dynamically grouped into a warp (wavefront) by the hardware.
 - warp = SIMO operation by the hardware (set of threads executing same into)
- · SIMT; Songlem-fruction multiple threads.

- · SIMD: A single sequential INS Stream of SIMD [VLD, VLD, VADD, VST], VLEN instr.
- SIMT . multiple INS streams of scalar instr I grouped to worp [LD, LD, ADD, ST), NumThroad.

Assume a warp = 32 threads if N=32K -> 1000 warps (Itter/thread)

· Warps can be interleaved on the same pipeline -> Fine grained multithreading of warps.

Latency hoding via Whop-Level FGMT.

ect. 22 GPU Programming	· GIPU computing offlood
Nutdia GeForce GTX 285 (2009) Nurdia-speak: 240 stream processors	CPU CPU GPU 2GPO Mem 2GPO Senal code Chost
"SIMT "execution Legeneure-speak: 30 (ores, 8 SIMD functional units percon	paullel Kernel (duvice) service de Chart
(=8 vector lanes) 32 thread -> warp -> 32 warps in FGMT Murder V100 -> 560 stream processor	- CUIA Open CL programming model.
= 80 cores w/ 64 SIMD func. 1 Specialized Functional Chies	- Bulk synchronous programming La Global (coause - grain) sync. - Host (typically CPU) allocates memory,
for machine Dearning ("tensor"-cores) (5.11 TFLOPS: single precis rus 1.2 TFLOPS: double precis	- Device (GPU) executes ternals kernals. L. Gord (NDRange)->Block (work-gray)
125 THOPS AS Deep learning (Tenor")	· Memory Hierarchy
Inherent Pavallelism > Natrices Deep lawning Those processing New programming tool	Gril (Perice) Block (0,0) Sharedmenn Reg kag Thread Thread
Bothle neck PCPU-GPU data transfer (Pate, NNINK) PRAM memory bandwideh (GODRS, LDData layout. HBM2)	Host of bal/textures @ surface mein)
CPV VS GPU L, meny in-order FSMT L-few out of order coves (control The covers) Cooker AWAW Cache Cache	

· CWDA programming - File prototypes: floats senal Function(...); -global - vord kernal ...) 1) Allocade memory - acuda Malloc 2) Pata from Host to Device -> cuda MeinSpy 3) Set #blocks & # threads 4) Kernel Call => kernel (Rexecution configuration) needed. - 5) Result from Device to Most - cudal MemCpy - Kernel 7 _global _ void kernel () 4 registers Shared memory: __shared_ Intrablack synch : _syncthroads() - Men deallocation = Cuda Free (d-in); - Explicit sync + cuda Daire Synchroize(); · image layout = @ Row-major layout in (10) L) one apu thread por pixel Grid of Blocks of Threads => grid Dim.x, blockDim.x (B) blockIdx.x, thread Idx.x L) prixel address = blockIdx. X & block Prin. X t thread Idx. X · EDGrid => gridDim.x, gridDim.y block Ind. x, block am.y.

Memory Access phalong Hooning w FGMT. D Occupancy 3 Memory Coalescing Anayof Structum (Structume of Array) @ Data reuse: tiling - shared memory. (__ shared __ Int | data[(L-SIZE+2) *(L-ZIZE+2)]; 5 Shared memory = banked (Interleaved) memo G32banks; Bank = Address 1.32 L) BankConflect -> Padding Randomized mapping Itash Atu [SIMO Utilradian] · Intra Warp drieigence Ger Vector reduction: Native Mapping 1) The Ligance free mapping [. Atomiz operations] (Alomiz conflicts
Histogram Calculation... Privatization: Per-blocksub-histograms in should memory Co Pata Transfers of synchronous (Asynchronous) 4 Druste Tota Nativectus. 4 Video processing

in apposite direction.

· Carefully Orchestrate

· Two Ormensional Spoliz Arrays & Combination of two different Spolize Array.

Advantages - principled: wt limited menory bandwith balances comp. to I/O

Specialize: efficiency, simple, high concurrency,

Downside - Specialize

more generality => multiple weights in are

+ Rata memory in PE

(Ctemp. result)

| pipeline-public Program

· The Warp Computer. The Warp Computer.

· Modern Systolic Array: TPU

Decoupled Access/Execute (DAE)

