מתמטיקה בדידה ממן 11

שאלה 1

- א. $\{1,2\} \subseteq \{\{1\},\{2\}\}$ לא נכון
 - ב. $\{2\} \subseteq \{\{1\}, 2\}$ נכון
- ג. $\{\{1\},\{2\}\}\in \{\{\{1\},\{2\}\}\}$ גכון
 - ד. $\{\emptyset\}/\{\emptyset\} \supseteq \emptyset$: נכון
 - ה. $\{\emptyset\} \setminus \{\emptyset\} \}$ נכון
 - ו. $\{2\} \in \{\mathbb{N}\}$ לא נכון:
 - ז. $|\{1, \mathbb{N}\}| = |\{\mathbb{N}\}|$.ז
- ח. $\emptyset \neq \emptyset$: לא נכון $\{1,2\} \cap P(\{1,2\}) \neq \emptyset$.

שאלה 2

. קבוצות A, B, C

$$(A \cup B) \setminus (C \setminus B) = B \cup (A \setminus C)$$
 .א

$$(AUB) \setminus (CNB) = BU(AU).6$$

$$= (AUB) \cap (CUB^{C})^{C}$$

$$= (AUB) \cap (CUB^{C})^{C}$$

$$= (AUB) \cap (CUB^{C})^{C}$$

$$= (AUB) \cap (CUB^{C})^{C}$$

$$= (AUB) \cap (CUB^{C})$$

$$= (AUB) \cap (CUB^{C})$$

$$= (AUB) \cap (CUB^{C})$$

$$= (AUB) = (BUA) \text{ filting pin of }$$

$$= (BUA) \cap (BUC^{C})$$

$$= (AUB) \cap (AUC) = AU(BNC) \text{ filting pin of }$$

$$= (AUB) = ANB^{C} \text{ for }$$

$$= (AUB) = A$$

 $P(A \backslash B) \subseteq (P(A) \backslash P(B)) \cup \{\emptyset\}$...

 $|P(A)| = |P(A \cap B)| \cdot |P(A \setminus B)|$ ג. אם A, B קבוצות סופיות אז

1P(A) = |P(A)B) | . |P(A)B) | ye willow willow AB p AB p AB pec elements in the pec el

שאלה 3

- .U קבוצות חלקיות לקבוצה אוניברסלית A, B, C
- $|{\rm A}\Delta{\rm B}|2\geq 2$ אז ${\rm B}\cup A^{\mathcal C}\neq U$ ו- $A\cup B^{\mathcal C}\neq U$ א.

IAABI 22 SK BUA + U + AUB + U PK K AUB (AUB ED DE PROPRE IN) ENGINEER (AUB) (AUB) FØ SE, AUB \$U PE (שוניפנסןיץ לפיל באין ים וף וכן לביוד בלבוצע עבולני (AUB) = A n Bc (AUB)=ANB OD = A° NB Tim pin, BAA=BLA .DD 1BIAIZA pli XEBIA DIK AMP PI, BIAFQ - R YKZK שושל לפור על בעוול של בישור לבינות לפיק של שימוש בצפויות לואברפ B garan magal 0+8/A, igna xiar B/ABY May Neg 15/B/Al. אכין לפקביצה בן א צרות, [AΔB] = [(A\B)U(B\A)] = [(A\B)] - [(B\A)] ≥ 2 ADB = (ANB)U(BIA) BD OD

$A \cap C \subseteq B \subseteq A \cup C$ at $A \triangle B \subseteq A \triangle C$ c.

ANCEBEAUC SK AABE AAC PK .7 : Anceb -e alta nou JUN MSED OF XEC -1 XEA JE XEARC - P D X POPE MILL ADB . C (1) XEAR PLYON SK BK, XEADB BDD, X&B - C N'Y OK קבוצה חוקת לשת , צה סות את ההנחה ט- שתאשא. צוויר, ההכח לשא. Anceb , Ship - XEB POPEN XEARC BR HOM XEAUC PE NO JK XEA PK .XEB -Q D'Y ((AVB)U(B)A)-ADB @ SRESSO OR XEADB SK XEB)A SK, X&A OK XEADC - 2 P DE 1991 HORN NCII D- ADX, DOX ild DUADX. BC AUC', XEB SIERE YOUR PI

$A\Delta B = \{1,3\}$ אז $A\Delta\{1,2\} = B\Delta\{2,3\}$... אם

 $A\Delta (A\Delta \{4,3\}) = A\Delta (B\Delta \{2,3\}) \Leftrightarrow A\Delta$ $(A\Delta A)\Delta \{1,2\} = (A\Delta B)\Delta \{2,3\} \Leftrightarrow \Delta \Delta \Phi$ $(A\Delta A)\Delta \{1,2\} = (A\Delta B)\Delta \{2,3\} \Leftrightarrow \Delta \Delta \Phi$

```
\{1,2\} = (A \triangle B) \triangle \{2,3\} \neq \emptyset \triangle A = A

\{1,2\} \triangle \{2,3\} = (A \triangle B) \triangle \{2,3\} \triangle \{2,3\} \iff A \triangle A = \emptyset , f(x) = \emptyset f(x) = \emptyset
```

שאלה 4

```
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |ne|N}{2^{nk} |ne|N} |no| ken D .4
A_{k} = \frac{22^{nk} |no|N} |no|N} |no|N
A_{k} = \frac{22^{nk} |no|N} |no|N
```

- Ak C Ao PH Ao C Ω Ak 2011 , Ω Ak = Ao = {13 - 0 sloy)

- Ao C Ω Ak propor pol 1 = 20 k EAk propor for k ble propor

- XEΩ Ak - 0 W Ω Ω Ak C Ao - 0 , 20 k or now or now

 $x=2^{n,4}=12^{n,2}=2^{n,3}.$ $x=2^{n,4}=12^{n,2}=2^{n,3}$ $x=2^{n,4}=12^{n,2}=2^{n,3}$ $x=2^{n,4}=12^{n,2}=2^{n,3}$ $x=2^{n,4}=12^{n,2}=2^{n,3}$ $x=2^{n,4}=12^{n,2}=2^{n,3}$ $x=2^{n,4}=12^{n,3}=2^{n,3}$ $x=2^{n,4}=12^{n,3}=2^{n,3}=2^{n,3}$ $x=2^{n,4}=12^{n,4}=2^{n,3}=2^$

C 04 14 21 31 2	{x/8 x∈(An\A2)∩A3} 3
$\{2^{0.2}, 2^{1.4}, 2^{2.1}, 2^{3.1}, 3^{3.1}, 2^{3.2}, 2^{1.2}, 2^{1.2}, 2^{2.2}, 2^{3.2}, 3^{3.2}, 3^{3.2}, 2^{3.2}, $	V = X
$\{2^{\circ .3}, 2^{\circ .3}, 2^{\circ .3}, 2^{\circ .3}, 2^{\circ}\}$	2 @ west on young of wasp on A1 A2 marrows
20.4 21.4 22.4 23.4 3	37 Aphan 125 KD Apan D 2327 KD (An Az) 11 Az
2 2 2 ,2 }	2 le 1/25 les upons 6 -31 apr les A1 A2 remains 30 uplands 1/25 les upons 6 282p les (A1 A2) N A3 y=26k × = 26k × = 8.26k , x € 26k+3 , no. {x/g x ∈ (A1 \ A2) ∩ A3 } ⊆ A6 , y ∈ A6 -0 pon {x/g x ∈ (A1 \ A2) ∩ A3 } ⊆ A6 , y ∈ A6 -0 pon
19,2,2,2,0	8y=8.2=2 (1) plp y=26k sk y EAG pk
x=8y	3.5 bons . 82 K John of 5 to star - 3/2 K-1) E (A1/45/1) A3
- XE (An)	(Az) 1 Az 260 Y= = - Q PILIT DYNI, XE (A1) HZ/11AZ, 7MD
Bur JA S	AGC { * she (A) A2) (A3) <= y ∈ { * x ∈ (A) (A2) (A3) , nob) } { x x ∈ (A) (A2) (A3) - e Sport - 1/200 wer
trais s	18 recording to inf