

Blandede modeller:

- både kontinuerte og kategoriske forklarende variable

Anders Tolver Institut for Matematiske Fag

Statistisk Dataanalyse 1, Kursusuge 6, onsdag Dias 1/24

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Overblik

Vi skal have "udfyldt" følgende skema over modeller (rækker) og statistiske begreber (søjler):

	Intro	Model	$Est. {+} SE$	ΚI	Test	Kontrol	Præd.
En stikprøve	✓	✓	√	✓	✓	✓	✓
Ensidet ANOVA	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lineær regr.	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
To stikprøver	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Multipel regr.	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Tosidet ANOVA	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Blandede modeller	nu	nu	nu	nu	nu	nu	nu

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Dagens program

Dagens forelæsning:

• Blandede modeller:

både kategoriske og kvantitative forklarende variable

- Eksempel: løbetider på DHL-stafetten
- Måske: hængepartier / repetition

Opsamlingsvideoer:

- Lineære modeller
 - Eksempel: lungefunktionsmålinger (FEV)
- Gennemgang af Quiz til Kursusuge 6
- Hængepartier

Afleveringsopgave 3:

Lige på trapperne: på Absalon i løbet af dagen.

Statistisk Dataanalyse 1, Kursusuge 6, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Blandede modeller

Statistisk Dataanalyse 1, Kursusuge 6, onsdag Dias 4/24

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hvad er blandede modeller?

Modeller der både indeholder kategoriske og kvantitative forklarende variable; stadig kontinuert respons.

- Respons *y*
- Kontinuert variabel x, kategorisk variabel grp

Statistisk model svarende til flere parallelle linier:

$$y_i = \alpha_{grp_i} + \beta \cdot x_i + e_i, \quad e_1, \dots e_n \text{ iid. } N(0, \sigma^2)$$

Additiv model = model uden vekselvirkning.

Vekselvirkning, dvs. at effekten af den x afhænger af grp, svarer til ikke-parellelle linier. Det ser vi kun en lille smule på.

Statistisk Dataanalyse 1, Kursusuge 6, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Analyse

R-syntaks:

$$lm(y ~ x + grp, data=...)$$

Vi kan allerede det hele: Estimation, modelkontrol, hypotesetest, konfidens- og prædiktionsintervaller fra uge 3–4.

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Eksempel: DHL-stafet

Data fra DHL-stafetten i 2006:

- Der blev løbet mandag-torsdag, 5000 hold hver dag.
- Hvert hold består af fem personer, frit sammensat af mænd og kvinder. Der kan altså være 0–5 kvinder på et hold.
- Alle personer løber 5 km; altså 25 km for hvert hold

Data ligger som **dhl** i *isdals*. Variable: day, men, women, hours, minutes, seconds.

Spørgsmål: Hvor meget langsommere løber kvinder end mænd? Er der forskel på dagene?

Statistisk Dataanalyse 1, Kursusuge 6, onsdag Dias 8/24

De første overvejelser:

- Hvordan laver vi en fornuftig responsvariabel?
- Hvad skal vi bruge som forklarende variable? Hvilke typer?
- Hvilken figur kunne vi tænke os at lave?

Analyse:

- Statistisk model, modelkontrol
- Estimér hvor meget langsommere kvinder løber per km
- Hvilken dag var hurtigst/langsomst? Er der signifikant forskel på dagene?

Resultater:

• Kortfattede slides i dag - se i stedet dagens R program

Statistisk Dataanalyse 1, Kursusuge 6, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

DHL: Konklusion

Vi brugte tid som respons, antal kvinder (kvantitativ) og dag (kategorisk) som forklarende variable.

- Kvinders pace (kilometertid) estimeres til at være 0.81 minutter langsommere end mænds. 95% KI: (0.74, 0.88).
- Der var signifikant forskel på dagene (p = 0.000013). Nærmere undersøgelser viste at der ikke var forskel mellem mandag og tirsdag, og mellem onsdag og torsdag (p = 0.62).
- Undersøgelser viste desuden ingen tegn på ikke-parellelitet (p=0.88) ikke-linearitet (p=0.07).

Flere sjove spørgsmål

- 1. Ruten blev ændret mellem tirsdag og onsdag pga. kraftig regn.
 - Undersøg om tiderne er ens mandag og tirsdag (en rute) og ens onsdag+torsdag (den anden rute)
 - Bestem ét estimat for forskellen i løbstid mellem de to ruter
- **2.** Vi har antaget at den forventede løbstid vokser lineært med antal kvinder på holdet. Kan vi undersøge om det faktisk er OK?
- **3.** Vi har antaget hældningerne er ens de fire dage. Kan vi undersøge om det faktisk er OK?

Statistisk Dataanalyse 1, Kursusuge 6, onsdag

KØBENHAVNS UNIVERSITET

Statistisk Dataanalyse 1, Kursusuge 6, onsdag

DET NATURVIDENSKABELIGE FAKULTET

Lineære modeller

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Modeller

Vi har diskuteret dataanalyser med følgende karakteristika:

- 0/1/2 forklarende variable. Kategoriske/kontinuerte, med/uden vekselvirkning
- Kontinuert responsvariabel der antages at være normalfordelt givet den/de forklarende variable
- Uafhængige

Klassen af modeller kan udvides til flere forklarende variable og evt. vekselvirkninger mellem ≥ 2 variable.

Uafhængighed + normalfordeling + visse antagelser om middelværdierne \rightarrow lineær normal model

Statistisk Dataanalyse 1, Kursusuge 6, onsdag Dias 13/24

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Eksempel: Case 7 side 440

Data fra 654 børn.

- Respons: Lungefunktionsmåling (FEV)
- Forklarende variable: Alder (Age), Højde i tommer (Ht), Køn (Gender), rygning i hjemmet (0/1, Smoke)

Særligt interesseret i hvordan rygning i hjemmet påvirker lungefunktionen.

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Modelovervejelser

Er de forklarende variable kategoriske eller kvantitative?

Lægefaglige overvejelser:

- Det er tænkeligt at rygning i hjemmet påvirker FEV forskelligt for drenge og piger.
- Man mener at FEV vokser med alderen, men at effekten muligvis aftager med alderen
- Man mener at barnets fysiske størrelse muligvis har en effekt på FEV, også selvom man tager alderen i betragtning

Hvordan kan/bør/skal de forklarende variable indgå i modellen?

Forslag til model

Forslag til modelformel:

FEV ~ Age + I(Age^2) + Ht + GenderFac + SmokeFac + SmokeFac*GenderFac

- Modelkontrol
- Estimater for effekt af rygning i hjemmet, hvert køn for sig
- Fælles estimat for effekt af rygning i hjemmet
- Er der signifikant effekt af rygning (sammenlign analyserne)

Kortfattede slides i dag - se i stedet dagens R program!

Statistisk Dataanalyse 1, Kursusuge 6, onsdag Dias 17/24

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET

Hvad kan vi?

	Intro	Model	$Est. {+} SE$	ΚI	Test	Kontrol	Præd.
En stikprøve	✓	✓	✓	✓	✓	✓	✓
Ensidet ANOVA	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lineær regr.	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
To stikprøver	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Multipel regr.	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Tosidet ANOVA	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Blandede modeller	\	✓	\checkmark	√	√	\checkmark	\checkmark

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hvad kan vi (ikke)?

Statistisk Dataanalyse 1, Kursusuge 6, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hvad kan vi, og hvad kan vi ikke?

Hvad har vi gjort:

- Har kun beskæftiget os med kontinuerte responsvariable, og kun modeller baseret på normalfordelingen
- Har kun beskæftiget os med uafhængige data
- De statistiske begreber er de samme uanset datatyperne

Sidste uge af kurset: Lidt om kategoriske responsvariable, men slet ikke så avancerede modeller som for kontinuerte data.

Snakker slet ikke om data med afhængighed; fx blokforsøg, tidsrækker og gentagne målinger \rightarrow kommer på StatData2

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET

Tosidet ANOVA (repetition)

Statistisk Dataanalyse 1, Kursusuge 6, onsdag

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET

Samme model - forskellige parametriseringer

Tosidet ANOVA med vekselvirkning:

Der er forskellige måder at afrapportere estimaterne på ...

```
twoway.int <- lm(hojde ~ studie + kon + studie*kon, data=useData2)
```

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	167.7647	1.0921	153.6144	0.0000
##	studieJordbrugsøkonomi	-0.4570	2.0766	-0.2201	0.8262
##	studieNaturressourcer	1.6639	2.0222	0.8228	0.4125
##	konMand	15.6353	1.9739	7.9211	0.0000
##	studieJordbrugsøkonomi:konMand	-0.6489	3.0661	-0.2116	0.8328
##	studieNaturressourcer:konMand	-3.0639	3.0296	-1.0113	0.3142

twoway.int2 <- lm(hojde ~ studie:kon - 1, data=useData2)

##		Estimate	Std. Error	t value	Pr(> t)
##	studieBiologi-Bioteknologi:konKvinde	167.7647	1.0921	153.6144	0
##	studieJordbrugsøkonomi:konKvinde	167.3077	1.7662	94.7283	0
##	studieNaturressourcer:konKvinde	169.4286	1.7019	99.5503	0
##	studieBiologi-Bioteknologi:konMand	183.4000	1.6442	111.5416	0
##	studieJordbrugsøkonomi:konMand	182.2941	1.5445	118.0291	0
##	studieNaturressourcer:konMand	182.0000	1.5445	117.8387	0

Statistisk Dataanalyse 1, Kursusuge 6, onsdag Dias 23/24

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hvornår og hvordan?

Kontinuert respons og to kategoriske forklarende variable.

Vekselvirkning: Effekten af den ene variabel afhænger af den anden variabel, og vice versa.

Typisk work flow:

- Fit model med vekselvirkning hvis det giver faglig mening og hvis der er gentagelser
- Modelkontrol (skal der fx transformeres?)
- Test for vekselvirkning
- Hvis vekselvirkning ikke er signifikant: Test for hovedeffekter
- Afrapportering af estimater og konfidensintervaller: Fra model med/uden vekselvirkning afhængig af konklusionen af testet.

Statistisk Dataanalyse 1, Kursusuge 6, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Den additive model

Test for vekselvirkning

```
twoway.add2 <- lm(hojde ~ studie + kon, data = useData2)
anova(twoway.add2, twoway.int)

## Analysis of Variance Table
##
## Model 1: hojde ~ studie + kon
## Model 2: hojde ~ studie + kon + studie * kon
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 106 4261.1
## 2 104 4217.4 2 43.7 0.5388 0.5851
```

Estimater fra den tosidede ANOVA uden vekselvirkning

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	168.10511	0.98408	170.82536	0.00000
##	studieJordbrugsøkonomi	-0.53498	1.50585	-0.35527	0.72309
##	studieNaturressourcer	0.25308	1.48656	0.17024	0.86514
##	konMand	14.52331	1.25674	11.55629	0.00000

Fortolkning af estimater? Hvorfor kun 4 parametre?

Statistisk Dataanalyse 1, Kursusuge 6, onsdag Dias 24/24

