

《人工智能数学原理与算法》

第2章:机器学习基础

2.5 逻辑回归

王翔

xiangwang@ustc.edu.cn

回顾: 机器学习中的回归问题 (Regression)

$$x \longrightarrow \boxed{f} \longrightarrow y \in \mathbb{R}$$
 响应 (response)

贫困地图:

卫星图像

资产财富指数

房价估计: 房屋信息(位置,面积)

房价

到达时间:

目的地,天气,时间

到达时间

回顾: 机器学习中的分类问题 (Classification)

欺诈检测:

信用卡交易信息

是否欺诈

评论检测:

评论信息

是否有害

粒子对撞:

测量到的粒子对撞信息

粒子衰变还是背景噪音

扩展: 多分类问题 $y \in \{1, \ldots, K\}$

问: 分类和回归之间的关键区别是什么?

- 分类有离散的输出
- 回归有连续的输出

回顾:线性回归(Linear Regression)

模型向量表示: $f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$ $\mathbf{w} = [\mathbf{w_1}, \mathbf{w_2}]$ $\phi(x) = [1, x]$

$$\mathbf{w} = [w_1, w_2]$$

$$\phi(x) = [1, x]$$

参数向量/模型参数 特征提取器 特征向量

假设类:

$$\mathcal{F} = \{ f_{\mathbf{w}} : \mathbf{w} \in \mathbb{R}^2 \}$$
 (预测器 f 的集合)

损失函数:

$$Loss(x, y, \mathbf{w}) = (f_{\mathbf{w}}(x) - y)^2$$
 平方损失 (squared loss)

$$\mathsf{TrainLoss}(\mathbf{w}) = \frac{1}{|\mathcal{D}_{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}_{\mathsf{train}}} \mathsf{Loss}(x,y,\mathbf{w})$$
 均方误差(MSE, mean squared error)

$$\underset{\mathbf{w}}{\arg\max} \ln p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \underset{\mathbf{w}}{\arg\min} \sum_{(x,y) \in \mathcal{D}} (y - \phi(x)\mathbf{w})^2$$

高斯假设下的最大似然估计 = 最小化平方误差

回顾:线性回归 (Linear Regression)

优化算法: min_w TrainLoss(w)

Definition: gradient-

The gradient $\nabla_{\mathbf{w}} \mathsf{TrainLoss}(\mathbf{w})$ is the direction that increases the training loss the most.

Algorithm: gradient descent lnitialize
$$\mathbf{w} = [0, \dots, 0]$$
 For $t = 1, \dots, T$: epochs
$$\mathbf{w} \leftarrow \mathbf{w} - \underbrace{\eta}_{\text{step size}} \underbrace{\nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w})}_{\text{gradient}}$$

01 分类问题

02 逻辑回归

03 优化算法

目录

01 分类问题

02 逻辑回归

03 优化算法

课程安排

二分类问题: 贷款违约检测

模型预测结果

分类器: 简单线性分类器

分类器: 简单线性分类器

- □ 一个简单的例子
 - 假设每个特征的系数已知

特征	系数
年收入	1.0
贷款金额	-0.8
贷款利率	-3.3

输入*x*:

贷款人年收入4.5万 贷款金额4万 贷款利率13.76%

Score(
$$x$$
) = 1.0 * 4.5 - 0.8 * 4 - 3.3 * 0.1376 > 0 \hat{y} = +1

线性分类器: 建模

$$\hat{y} = \operatorname{sign}(\operatorname{Score}(x))$$

Score(
$$x$$
) = $w_0 \cdot \phi(x)_0 + w_1 \cdot \phi(x)_1 + ... + w_d \cdot \phi(x)_d$
= $\sum_i w_i \cdot \phi(x)_i = \mathbf{w}^{\mathsf{T}} \phi(x)$

特征提取器 ϕ :

特征1=
$$\phi(x)_0$$
 (e.g., 1)
特征2= $\phi(x)_1$ (e.g., $x[1]$ =年收入)
特征3= $\phi(x)_2$ (e.g., $x[2]$ =贷款金额
or $\log(x[2])$
or $\log(x[2]/x[1])$)
特征d= $\phi(x)_d$ (其他关于 x 的函数)

□ 假设只有两个特征具有非零系数

特征	系数	值	
	w_0	0.0	→ Score(x) = 1.0 * 贷款金额 - 1.5 * 年收入
贷款金额	w_1	1.0	
年收入	w_2	-1.5	

□ 假设只有两个特征具有非零系数

特征	系数	值	
	w_0	0.0	→Score(x) = 1.0 * 贷款金额 - 1.5 * 年收入
贷款金额	w_1	1.0	
年收入	W_2	-1.5	

□ 对于更多线性特征

 $Score(x) = w_0 + w_1 * 贷款金额 + w_2 * 年收入 + w_3 * 贷款利率$

□ 对于更一般的特征...

01 分类问题

02 逻辑回归

03 优化算法

对预测有多确定呢?

- □ 一个简单分类器可以获得+1或-1的预测
 - 但对于这个预测到底有多确定呢?

在分类中使用概率

□ 在分类中使用概率

目标: 从训练数据中学习条件概率

 \square 训练数据: \mathbb{N} 个 观测值 $\{(x,y)\}$

贷款金额	年收入	y = 是否违约
317.96k	635k	-1
866.1k	305k	+1
136.08k	45k	+1
95.21k	100k	-1
•••	•••	•••

在训练数据上学习 (拟合训练数据分布)

通过寻找最优参数¹⁰, 确定最佳模型², 可用来预测ŷ

使用概率估计做预测

- 口 使用概率估计做预测可以提升可解释性:
 - 预测 ŷ,并提供有多确定

Score(
$$\mathbf{x}$$
) = $\mathbf{w}_0 \cdot \phi(\mathbf{x})_0 + \dots + \mathbf{w}_d \cdot \phi(\mathbf{x})_d$
= $\sum_i \mathbf{w}_i \cdot \phi(\mathbf{x})_i = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x})$

如何将 Score(x)与 $\hat{P}(y|x)$ 关联起来呢?

如何理解Score(x)?

$$Score(x) = w^{\mathsf{T}}\phi(x)$$

$$-\infty$$

$$\hat{y} = -1$$

$$\hat{y} = +1$$
非常确定
$$\hat{y} = -1$$

$$\hat{y} = -1$$

$$\hat{y} = -1$$

$$\hat{y} = +1$$

$$\hat{y} = +1$$

$$\hat{p}(y = +1|x)$$

什么不直接使用回归来构建分类器?

逻辑回归:逻辑函数

口 逻辑函数 (Logistic, 也称sigmoid, logit)

$$sigmoid(Score) = \frac{1}{1 + e^{-Score}}$$

Score	-∞	-2	0.0	+2	+∞
Sigmoid (Score)	0	0.12	0.5	0.88	1

逻辑回归

$$\widehat{P}(y = +1|x) = \text{sigmoid}(\text{Score}(x)) = \frac{1}{1 + e^{-w^{T}\phi(x)}}$$

Score(x)	P(y=+1 x,w)
0	0.5
-2	0.12
2	0.88
4	0.98

逻辑回归:线性决策边界

逻辑回归: 模型参数的影响

□ 逻辑回归模型系数的影响

$$Score(x) = w_0 + w_1 * 贷款金额 + w_2 * 年收入 = \mathbf{w}^\mathsf{T} \phi(x)$$

w_0	-2
W_1	+1
W_2	-1

w_0	0
w_1	+1
W_2	-1

w_0	0
w_1	+3
W_2	-3

#贷款金额 - #年收入

逻辑回归: 与回归模型的不同

• 具有高斯误差的线性回归

$$y = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(x) + \epsilon, \, \epsilon \sim N(0, \sigma^2)$$

$$\rightarrow$$
 $\mathbf{p}(y|x,\mathbf{w}) = N(y; \mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(x), \sigma^2)$

• 逻辑回归

$$P(y|x,w) = \begin{cases} \frac{1}{1 + e^{-w^{T}}\phi(x)} & y = +1 \\ \frac{e^{-w^{T}}\phi(x)}{1 + e^{-w^{T}}\phi(x)} & y = -1 \end{cases}$$

01 分类问题

02 逻辑回归

03 优化算法

课程安排

回顾: (高斯)线性回归模型

- *E*:
 - 基础假设: $E(\epsilon) = 0$
 - 进一步假设: $\epsilon \sim N(0, \sigma^2)$
- **y**:
 - $y = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(x) + \epsilon$
 - $y|x, w \sim N(\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(x), \sigma^2)$

回顾:最大似然估计

Maximum likelihood estimate w.r.t. w: 最大似然估计

$$\underset{\mathbf{w}}{\operatorname{arg\,max}} p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \underset{\mathbf{w}}{\operatorname{arg\,max}} \ln p(\mathbf{y}|\mathbf{x}, \mathbf{w})$$

Maximize log-likelihood estimate w.r.t. w: 对数似然

$$\arg \max_{\mathbf{w}} \ln p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \arg \max_{\mathbf{w}} \ln \prod_{(x,y) \in \mathcal{D}} p(y|x, \mathbf{w})$$

$$= \arg \max_{\mathbf{w}} \ln \prod_{(x,y) \in \mathcal{D}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y - \phi(x)\mathbf{w})^2}$$

$$= \arg \min_{\mathbf{w}} \sum_{(x,y) \in \mathcal{D}} (y - \phi(x)\mathbf{w})^2$$

高斯假设下的最大似然估计 = 最小化平方误差

逻辑回归: 需要寻找最佳参数

贷款金额	年收入	y = 是否违约
317.96k	635k	-1
866.1k	305k	+1
136.08k	45k	+1
95.21k	100k	-1
•••	•••	•••

逻辑回归:需要寻找最佳参数

贷款金额	年收入	y = 是否违约
866.1k	305k	+1
136.08k	45k	+1
•••	•••	•••

贷款金额	年收入	y = 是否违约
317.96k	635k	-1
95.21k	100k	-1
•••	•••	•••

逻辑回归: 利用最大似然估计学习逻辑回归

数据点

 x_1, y_1 x_2, y_2 x_3, y_3 x_4, y_4

贷款金额	年收入	y = 是否违约
317.96k	635k	-1
866.1k	305k	+1
136.08k	45k	+1
95.21k	100k	-1
•••	•••	•••

$$\ell(\mathbf{w}) = P(y_1|\mathbf{x}_1,\mathbf{w}) \qquad P(y_2|\mathbf{x}_2,\mathbf{w}) \qquad P(y_3|\mathbf{x}_3,\mathbf{w}) \qquad P(y_4|\mathbf{x}_4,\mathbf{w})$$

$$\prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

逻辑回归: 根据最大似然估计确定"最佳"分类器

对于所有可能的wo,w1,w2, 选择似然性最大的

$$\ell(\mathbf{w}) = \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$
 $\ell(w_0=0, w_1=1, w_2=-1.5) = 10^{-6}$
 $\ell(w_0=1, w_1=1, w_2=-1.5) = 10^{-5}$
最佳模型:
最大化似然函数 $\ell(\mathbf{w})$
 $\mathbf{w} = (w_1=1, w_1=0.5, w_2=-1.5)$
 $\ell(w_0=1, w_1=0.5, w_2=-1.5) = 10^{-4}$

课程安排

逻辑回归:梯度上升优化MLE

□ 最大化似然估计

逻辑回归: 对数似然估计

$$P(y = +1|x) = sigmoid(Score(x)) = \sigma(w^{T}\phi(x)) = \frac{1}{1 + e^{-w^{T}\phi(x)}}$$

对于包含 N 个样本的数据集,即 $\{(x_i, y_i)\}_{i=1}^N$,似然 (likelihood)估计为:

$$\max_{w} l(w) = \prod_{i=1}^{N} P(y_i | \boldsymbol{x}_i, w)$$

重写为对数似然(log-likelihood)估计:

$$\begin{aligned} \max_{w} ll(w) &= \sum_{i=1}^{N} \log(P(y_{i}|x_{i}, w)) \\ ll(w) &= \frac{1}{2} \sum_{i=1}^{N} (1 + y_{i}) \cdot \log(P(y_{i} = +1|x_{i}, w)) + (1 - y_{i}) \cdot \\ \log(P(y_{i} = -1|x_{i}, w)) \\ &= \frac{1}{2} \sum_{i=1}^{N} (1 + y_{i}) \cdot \log(\sigma(w^{\mathsf{T}} \phi(x))) + (1 - y_{i}) \cdot \log(1 - \sigma(w^{\mathsf{T}} \phi(x))) \end{aligned}$$

逻辑回归:逻辑对数似然的梯度

$$\frac{\partial ll(w)}{\partial w} = \frac{1}{2} \sum_{i=1}^{N} \phi(x) (1 + y_i - 2\sigma(w^{\mathsf{T}} \phi(x)))$$

$$= \sum_{i=1}^{N} \phi(x) \frac{1}{2} (1 + y_i - 2P(y_i = +1 | x_i, w))$$

$$P(y=+1 | x_i, w) \approx 1 \qquad P(y=+1 | x_i, w) \approx 0$$

$$y_i=+1 \qquad \Delta_i \approx 0, \qquad \Delta_i \approx 1 \Rightarrow w \text{ if } m \qquad P(y=+1 | x_i, w)$$

逻辑回归:梯度上升优化MLE

□ 逻辑回归的梯度上升


```
init \mathbf{w}^{(1)} = 0, t = 1

while \|\nabla \ell(\mathbf{w}^{(t)})\| > \epsilon

for j = 0,...,D

partial[j] = \sum_{i=1}^{N} h_j(\mathbf{x}_i) \left(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)})\right)

\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} + \mathbf{\eta} \text{ partial}[j]

\mathbf{t} \leftarrow \mathbf{t} + \mathbf{1}
```

逻辑回归:梯度上升优化MLE

初始化
$$w^{(1)} = 0$$
 (或者随机初始化) 初始化 $t = 1$ While $\|\nabla l(w^{(t)})\| > \epsilon$:
$$w^{(t+1)} \leftarrow w^{(t)} + \eta \cdot \frac{\partial ll(w)}{\partial w}$$
 $t \leftarrow t+1$

逻辑回归

□ 每一种智能行为X都对应着一种人工X智能,行为X与环境需要进行交互

	贷款违约预测	
input	申请人的信息,共47种特征,包含了如贷款金额、贷款年限、贷款利率、年收入、工作年限等	
output	申请人贷款是否违约	
feedback	正确与否	

逻辑回归四要素与数据形态

- 1. 算法/模型: f(及部分 θ)
- 2. 计算: f_{θ} /input/output/feedback转换
- 3. 数据: <input, output, feedback>
- 4. 知识: θ (及部分f)

- ightharpoonup表示:逻辑回归模型长什么样? 机器编码 $f_{ heta}$ 、 input、output、feedback。
- ho推理:逻辑回归模型怎么用来解决问题? 给定input,机器实现 $f_{ heta}$ 计算output。
- ightharpoonup学习:逻辑回归模型怎么来的? 基于数据<input, output, feedback>集, 给定f 更新计算 θ 。
- ▶数据: <input, output, feedback> <申请人的信息,是否违约,模型判断正确 与否>

逻辑回归

线性分类器和逻辑回归的总结 (以线性分类器为例)

逻辑回归

- 描述决策边界与线性分类器
- 使用类别概率表达预测结果的置信度
- 定义逻辑回归模型
- 将逻辑回归输出结果解释为类别概率
- 分析系数取值对逻辑回归输出的影响
- 使用似然函数衡量分类器质量
- 通过梯度下降法优化负对数似然损失函数来训练逻辑回归模型