Gases

Unidades

• Temperatura: Kelvin (K)

• Pressão: atm, Torr, mmHg, Pa

• Volume: L, m³

• Sistema Internacional: Volume (m³), Pressão (Pa), Temperatura (K)

FATORES PARA CONVERSÃO DE UNIDADES

Grandeza	Valores Equivalentes
Massa	1 kg = 1000 g = 0,001 tonelada métrica = 2,20462 lb _m = 35,27392 oz $11b_m = 16$ oz = 5×10^{-4} t = 453,593 g = 0,453593 kg
Comprimento	1 m = 100 cm = 1000 mm = 10^6 mícrons (μ m) = 10^{10} angstroms (Å) = 39,37 in = 3,2808 ft = 1,0936 yd = 0,0006214 milha 1 ft = 12 in = $1/3$ yd = 0,3048 m = 30,48 cm
Volume	1 m ³ = 1000 L = 10 ⁶ cm ³ = 10 ⁶ mL = 35,3145 ft ³ = 220,83 galões imperiais = 264,17 gal = 1056,68 qt 1 ft ³ = 1728 in ³ = 7,4805 gal = 0,028317 m ³ = 28,317 L = 28.317 cm ³
Força	1 N = 1 kg·m/s ² = 10 ⁵ dinas = 10 ⁵ g·cm/s ² = 0,22481 lb _f 1 lb _f = 32,174 lb _m ·ft/s ² = 4,4482 N = 4,4482 × 10 ⁵ dinas
Pressão	1 atm = $1,01325 \times 10^{6}$ N/m² (Pa) = $101,325$ kPa = $1,01325$ bar = $1,01325 \times 10^{6}$ dinas/cm² = 760 mm Hg a 0°C (torr) = $10,333$ m H ₂ O a 4°C = $14,696$ lb ₁ /in² (psi) = $33,9$ ft H ₂ O a 4°C = $29,921$ in Hg a 0°C
Energia	1 J = $1 \text{ N} \cdot \text{m} = 10^7 \text{ ergs} = 10^7 \text{ dina} \cdot \text{cm}$ = $2,778 \times 10^{-7} \text{ kW} \cdot \text{h} = 0,23901 \text{ cal}$ = $0,7376 \text{ ft-lb}_f = 9,486 \times 10^{-4} \text{ Btu}$
Potência	1 W = 1 J/s = 0,23901 cal/s = 0,7376 ft·lb _y /s = 9,486 × 10^{-4} Btu/s = 1,341 × 10^{-3} hp

Exemplo: O fator para converter gramas em $lb_m \notin \left(\frac{2,20462 \ lb_m}{1000 \ g}\right)$

Gases Ideais

 É desprezado a interação entre moléculas do gás, assim como seu volume próprio

Equação de Gás Ideal (Clapeyron):

• Condições Práticas da Equação: Altas Pressões e Baixas Temperaturas

$P \cdot V = n \cdot R \cdot T$

- em que:
- P = Pressão (atm)
- V = Volume (L)
- n = número de mols (mol)
- T = Temperatura (K)
- R = Constante geral dos gases

OBS: Para 1 mol de gás ideal, PV/RT = 1 (Para qualquer Pressão e Temperatura)

Desvios da Idealidade:

 Pressão: Com o aumento da Pressão → Aproximação das moléculas gasosas, diminuição da distância intermolecular, diminuição do espaço disponível, aumento da chance de interação

 Pressão Interna (P_i): É a pressão gerada pelo impacto dado entre as moléculas e as paredes do recipiente.

OBS: Se não houvesse interação entre as moléculas, a pressão ideal seria calculada pela equação: $P_{ldeal} = P_{lida} + P_i$

- Concentração: Com o aumento da concentração, maior é a interação entre moléculas ao centro do recipiente com as moléculas aos extremos do mesmo
- <u>Temperatura:</u> Com o aumento da temperatura, as moléculas se encontram com maior cinética, fazendo com que seja diminuído as forças de interação (Portanto, quanto maior a temperatura, mais próximo de o gás ter comportamento ideal)

Equação de Van der Waals:

- Correção de volume das moléculas
- Correção de atrações intermoleculares

$$P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2}$$

- Coeficientes de Van der Waals: "a" e "b" (Empíricos)
 - a = Constante em virtude das interações de atração (Pressão)
 - b = Constante em virtude do tamanho da partícula (Volume)

OBS: Quanto mais próximo de zero os valores de "a" e "b", mais próximo do comportamento ideal dos gases (Gás Ideal \rightarrow a, b = 0)

Fator de Compressibilidade (Z):

• Uma das formas de mesurar quanto o gás desvia do ideal

$$Z = \frac{P v}{R T}$$
 or $Z = \frac{v_{Real}}{v_{ideal}}$

- Gás Ideal: V_{Real} = V_{Ideal} → Z = 1
- V_{Real} < V_{Ideal} → Z < 1: O Gás ocupa menor volume que o esperado, predominando as forças de interação
- $V_{Real} > V_{Ideal} \rightarrow Z > 1$: O Gás ocupa maior volume que o esperado,

Fator de compressibilidade Z de diferentes gases:

$Z = \frac{PV}{nRT}$ O_{2} N_{3} CH_{4} CO_{2} P

Fator de compressibilidade Z de um gás a diferentes T:

predominando as forças de repulsão