UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2019/1 Prova da área IIA

1 - 5	6	7	Total

Nome:	Cartão:
Ponto extra: ()Wikipédia ()Apresentação ()N	enhum Tópico:

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Cartão:		
Tópico: _		
Identidades:		
$\operatorname{sen}(x) = \frac{e^i}{}$	$\frac{x - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$
$senh(x) = \frac{c}{2}$	$\frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$
$(a+b)^n = \sum_{j=0}^{\infty} {n \choose j} a^{n-j} b^j, {n \choose j} = \frac{n!}{j!(n-j)!}$		
sen(x+y) = sen(x)cos(y) + sen(y)cos(x)		
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$		

1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$
$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$\operatorname{senh}(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
$-1 < x < 1, m \neq 0, 1, 2, \dots$

Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$

$$\int xe^{\lambda x} \, dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} \, dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} \, dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) \, dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) \, dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

$$\int e^{\lambda x} \sin(w x) \, dx = \frac{e^{\lambda x} (\lambda \cos(w x) + w \sin(w x))}{\lambda^2 + w^2}$$

Tabela	de	transformadas	de	Laplace:

Tabel	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}\$ $\frac{1}{s}$	1
2	$\frac{1}{s^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	$\frac{t^{n-1}}{(n-1)!}$
4	1	$\frac{1}{\sqrt{\pi t}}$
5	$\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$ 1	e^{at}
8	$\frac{1}{(s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(e^{at}-e^{bt}\right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(ae^{at}-be^{bt}\right)$
13	1	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s^2 + w^2}{s}$ $\frac{s}{s^2 + w^2}$	$\cos(wt)$
15	$\frac{1}{s^2 - a^2}$	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt \cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s}{(s^2 + w^2)^2}$ $\frac{s^2}{(s^2 + w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
24	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$ $(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at) - \\ -\cos(at)\operatorname{senh}(at)]$
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^4)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$

		15-(22
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2+w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

• Questão 1 (1.0 ponto) Considere a função

$$f(t) = \begin{cases} 0, & t < 2 \\ 6 - 2t, & 2 < t < 5 \\ t - 1, & 5 < t < 6 \\ 1, & t > 6. \end{cases}$$

Assinale na primeira coluna a alternativa que representa o gráfico de f'(t) e, na segunda, a expressão para $\mathcal{L}\{f'(t)\}$.

Assinale a expressão para $\mathcal{L}\{f'(t)\}$

$$\left(\ \right) \frac{-2e^{-2s}+3e^{-5s}-e^{-6s}}{s}$$

$$(\)\ \frac{-2e^{-2s}+3e^{-5s}-e^{-6s}+se^{-2s}+se^{-5s}+se^{-6s}}{s}$$

$$\frac{-2e^{-2s} + 3e^{-5s} - e^{-6s} - 2se^{-2s} + 8se^{-5s} + 4se^{-6s}}{s}$$

(x)
$$\frac{-2e^{-2s} + 3e^{-5s} - e^{-6s} + 2se^{-2s} + 8se^{-5s} - 4se^{-6s}}{s}$$

$$(\) \frac{-2e^{-2s} + 3e^{-5s}}{s}$$

$$\left(\ \right) \frac{e^{-2s}-e^{-5s}}{s}$$

$$F(s) = \frac{-s^2 + 4s - 11}{(s^2 - 2s + 5)(s - 1)}$$

Assinale as alternativas que indicam respectivamente uma expressão equivalente para F(s) e $f(t) = \mathcal{L}^{-1}\{F(s)\}.$

()
$$F(s) = \frac{s-1}{(s-1)^2+4} - \frac{2}{s-1}$$

(x)
$$F(s) = \frac{s+1}{(s-1)^2+4} - \frac{2}{s-1}$$

()
$$F(s) = \frac{s+1}{(s-1)^2+4} + \frac{2}{s-1}$$

()
$$F(s) = \frac{s-1}{(s-1)^2+4} + \frac{2}{s-1}$$

()
$$F(s) = \frac{2s}{(s-1)^2 + 4} + \frac{2}{s-1}$$

()
$$f(t) = e^t(\cos(2t) - 2)$$

()
$$f(t) = e^t(\cos(2t) + \sin(2t) + 2)$$

()
$$f(t) = e^t(\cos(2t) + 2)$$

()
$$f(t) = e^t(2\cos(2t) + \sin(2t) + 2)$$

(x)
$$f(t) = e^t(\cos(2t) + \sin(2t) - 2)$$

• Questão 3 (1.0 ponto) Um forno encontra-se inicialmente a uma temperatura ambiente de 20^{0} C (v(0) = 20). No instante t = 1 h, um pulso de calor muito intenso e rápido eleva instantaneamente a temperatura do forno até 100^{0} C. Depois o forno resfria a uma taxa proporcional à diferença de temperatura entre o forno o ambiente, com constante de proporcionalidade 2 h^{-1} . Assinale as alternativas que indicam respectivamente um modelo para a temperatura do forno (v(t)) e a solução v(t).

$$v'(t) + 2(20 - v(t)) = 80\delta(t - 1)$$

()
$$v(t) = 20 + 80u(t-1)e^{-2t}$$

(x)
$$v'(t) + 2(v(t) - 20) = 80\delta(t - 1)$$

()
$$v(t) = 20 + 100u(t-1)e^{-2t+2}$$

()
$$v'(t) + 2(v(t) - 100) = 100\delta(t - 1)$$

(x)
$$v(t) = 20 + 80u(t-1)e^{-2t+2}$$

()
$$v'(t) + 2(20 - v(t)) = 100\delta(t - 1)$$

()
$$v(t) = 20 + 100u(t-1)e^{-2t}$$

() Nenhuma das anteriores

• Questão 4 (1.0 ponto) Assinale as alternativas que indicam as transformadas inversas das funções $F(s) = \frac{s}{(s^2 + 16)^2}$ e $G(s) = \frac{s}{((s+3)^2 + 16)^2}$ respectivamente.

$$() \frac{t}{2}\operatorname{sen}(4t)$$

(x)
$$e^{3t} \left(\frac{t}{8} \operatorname{sen}(4t) - \frac{3}{128} \operatorname{sen}(4t) - \frac{3t}{32} \cos(4t) \right)$$

$$() \frac{t}{2}\cos(4t)$$

$$() e^{3t} \left(\frac{t}{8} \operatorname{sen}(4t) \right)$$

()
$$\frac{t}{4} \left(\operatorname{sen}(4t) + 2 \cos(4t) \right)$$
 () $e^{3t} \left(\frac{t}{8} \operatorname{sen}(4t) + \frac{3}{128} \operatorname{sen}(4t) \right)$

$$(x) \frac{t}{8} \operatorname{sen}(4t)$$

()
$$e^{3t} \left(\frac{t}{8} \operatorname{sen}(4t) - \frac{3}{128} \operatorname{sen}(4t) \right)$$

$$() \ \frac{t}{8}\cos(4t)$$

()
$$e^{3t} \left(\frac{t}{8} \operatorname{sen}(4t) - \frac{t}{32} \cos(4t) \right)$$

• Questão 5 (1.0 ponto) Dada a equação $tf(t)=2\int_0^t f(\tau)d\tau$, com f(1)=2, assinale as alternativas que indicam respectivamente $F(s)=\mathcal{L}\{f(t)\}$ e f(t).

$$(\)\ F(s) = \frac{2}{s}$$

()
$$F(s) = \frac{2}{s^2 + 1}$$
 () $f(t) = 2e^{1-t}$ () $f(t) = 2\cos(t) - 2\cos(1) + 2$

$$() f(t) = 2e^{t-t}$$

(x)
$$F(s) = \frac{2}{s^2}$$

()
$$f(t) = 2\operatorname{sen}(t-1) + 2$$

()
$$F(s) = \frac{1}{s+1}$$
 (x) $f(t) = 2t$ () $f(t) = 2$

$$(\mathbf{x}) \ f(t) = 2t$$

()
$$F(s) = \frac{1}{s^2 + 1}$$

• Questão 6 (2.5 ponto) Considere o oscilador harmônico não amortecido com termo forçante descrito pelo problema de valor inicial dado por:

$$\begin{cases} y''(t) + 4y(t) = F_0 \operatorname{sen}(w_0 t) \\ y(0) = 0 \\ y'(0) = 0 \end{cases}, \tag{1}$$

Realize o que se pede mostrando os passos do desenvolvimento claramente

- a) (0.5) Calcule o valor de w_0 para que a frequência do termo forçante fique exatamente igual a frequência do oscilador (Ressonância).
- b) (1.0) Para o caso não onde o fenômeno de ressonância aparece, calcule $Y(s) = \mathcal{L}\{y(t)\}$ e $y(t) = \mathcal{L}^{-1}\{Y(s)\}$ e preencha os retângulos abaixo:

$$Y(s) =$$

c) (1.0) Para o caso não onde o fenômeno de ressonância não aparece, calcule $Y(s) = \mathcal{L}\{y(t)\}$ e $y(t) = \mathcal{L}^{-1}\{Y(s)\}$ e preencha os retângulos abaixo:

$$Y(s) =$$

$$y(t) =$$

Item a: Tomamos a transformada de Laplace da equação e obtemos:

$$s^{2}Y(s) + 4Y(s) = \frac{F_{0}w_{0}}{s^{2} + w_{0}^{2}}$$

isto é:

$$(s^2 + 2^2)Y(s) = \frac{F_0 w_0}{s^2 + w_0^2}$$

Assim a ressonância acontece quando $w_0 = 2$.

Item b:

$$Y(s) = \frac{1}{s^2 + 2^2} \frac{F_0 w_0}{s^2 + w_0^2} = \frac{F_0 w_0}{(s^2 + 2^2)^2}$$

Do item 21, temos:

$$y(t) = \frac{1}{16}(\sin(2t) - 2t\cos(2t))$$

Item c:

$$Y(s) = \frac{1}{s^2 + 2^2} \frac{F_0 w_0}{s^2 + w_0^2}$$

Do item 24, temos:

$$\mathcal{L}\left\{\frac{s}{(s^2+a^2)(s^2+b^2)}\right\} = \frac{1}{b^2-a^2}(\cos(at) - \cos(bt))$$

E, usando a propriedade da integral, temos:

$$\mathcal{L}\left\{\frac{1}{(s^2+a^2)(s^2+b^2)}\right\} = \frac{1}{ab(b^2-a^2)}(a\operatorname{sen}(bt) - b\operatorname{sen}(at))$$

Assim

$$y(t) = \frac{F_0}{2(w_0^2 - 4)} (2\operatorname{sen}(w_0 t) - w_0 \operatorname{sen}(2t))$$

- Questão 7 (2.5 pontos) Resolva os seguintes itens mostrando os passos do desenvolvimento claramente:
 - a) (0.8 ponto) Use a definição de transformada de Laplace para mostrar que $\mathcal{L}\{e^{zt}\}=\frac{1}{s-z}, z\in\mathbb{C}$.
 - b) (0.8 ponto) Use a fórmula do item a) para concluir que

$$\mathcal{L}\{e^{(a+ib)t}\} = \frac{s-a+ib}{(s-a)^2 + b^2}$$
 (2)

c) (0.9 ponto) Use a fórmula de Euler e o item b) para concluir que

$$\mathcal{L}\lbrace e^{at}\cos(bt)\rbrace = \frac{s-a}{(s-a)^2 + b^2} \tag{3}$$

е

$$\mathcal{L}\lbrace e^{at}\operatorname{sen}(bt)\rbrace = \frac{b}{(s-a)^2 + b^2} \tag{4}$$

Obs: Este é o exercício 14 do capítulo 3.

item a:

$$\mathcal{L}\lbrace e^{zt}\rbrace = \int_0^\infty e^{zt} e^{-st} dt$$

$$= \int_0^\infty e^{(z-s)t} dt$$

$$= \left. \frac{e^{(z-s)t}}{z-s} \right|_0^\infty$$

$$= 0 - \frac{1}{z-s} = \frac{1}{s-z}$$

item b:

$$\mathcal{L}\lbrace e^{(a+ib)t}\rbrace = \frac{1}{s-z} = \frac{1}{s-a-ib}$$
$$= \frac{1}{s-a-ib} \cdot \frac{s-a+ib}{s-a+ib}$$
$$= \frac{s-a+ib}{(s-a)^2 - b^2}$$

item c: Use as expressões $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$ e $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$