Github Link: https://github.com/GarvKathuria/MinorProject

Code:

1. Code for Sentiment analysis

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
# Load the dataset
df = pd.read csv('tweet emotions.csv')
# Data preprocessing
X = df['content']
y = df['sentiment']
# Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y, test size=0.6, random state=42)
# Text vectorization using TF-IDF with custom preprocessing
tfidf vectorizer = TfidfVectorizer(
  max features=5000,
  lowercase=True,
  stop words='english', #Remove common English stopwords
  token pattern=r'\b[^\d\W]+\b', # Allow words with only letters
X train tfidf = tfidf vectorizer.fit transform(X train)
X test tfidf = tfidf vectorizer.transform(X test)
# Train a sentiment analysis model (Linear Support Vector Classifier)
model = LinearSVC()
model.fit(X train tfidf, y train)
# Make predictions on the test set
y pred = model.predict(X test tfidf)
# Now, prompt the user for input and predict the sentiment
user input = input("Enter a text: ")
user input tfidf = tfidf vectorizer.transform([user input])
user sentiment = model.predict(user input tfidf)
print("Predicted Sentiment:", user sentiment[0])
from sklearn.metrics import accuracy score, classification report, confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns
accuracy = accuracy score(y test, y pred)
report = classification report(y test, y pred)
confusion = confusion matrix(y test, y pred)
# Display the results
print("Accuracy:", accuracy)
print("Classification Report:\n", report)
# Create a heatmap for the confusion matrix with color-coding based on accuracy
plt.figure(figsize=(8, 6))
sns.heatmap(confusion, annot=True, fmt="d", cmap="Blues", cbar=False)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
```

```
# Display the plot
plt.show()
```

Code Snippet:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC

# Load the dataset
df = pd.read_csv('tweet_emotions.csv')
```

Fig 1. Importing the required libraries and loading the dataset

```
# Data preprocessing
X = df['content']
y = df['sentiment']

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.6, random_state=42)
```

Fig 2. Data Preprocessing and splitting the dataset

```
# Text vectorization using TF-IDF with custom preprocessing
tfidf_vectorizer = TfidfVectorizer(
    max_features=5000,
    lowercase=True,
    stop_words='english', # Remove common English stopwords
    token_pattern=r'\b[^\d\W]+\b', # Allow words with only letters
)
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
```

Fig 3. Text vectorization using TF-IDF

```
# Text vectorization using TF-IDF with custom preprocessing
tfidf_vectorizer = TfidfVectorizer(
    max_features=5000,
    lowercase=True,
    stop_words='english', # Remove common English stopwords
    token_pattern=r'\b[^\d\W]+\b', # Allow words with only letters
)
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
```

Fig 4. Training the sentiment analysis model

```
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
confusion = confusion_matrix(y_test, y_pred)
# Display the results
print("Accuracy:", accuracy)
print("Classification Report:\n", report)
# Create a heatmap for the confusion matrix with color-coding based on accuracy
plt.figure(figsize=(8, 6))
sns.heatmap(confusion, annot=True, fmt="d", cmap="Blues", cbar=False)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
# Display the plot
plt.show()
```

Fig 5. Implementation of Confusion Matrix

Output:

	tweet_id	sentiment	content
0	1956967341	empty	@tiffanylue i know i was listenin to bad habi
1	1956967666	sadness	Layin n bed with a headache ughhhhwaitin o
2	1956967696	sadness	Funeral ceremonygloomy friday
3	1956967789	enthusiasm	wants to hang out with friends SOON!
4	1956968416	neutral	@dannycastillo We want to trade with someone w

conte	sentiment	tweet_id	
@tiffanylue i know i was listenin to bad hab	empty	1956967341	0
Layin n bed with a headache ughhhhwaitin o	sadness	1956967666	1
Funeral ceremonygloomy friday	sadness	1956967696	2
wants to hang out with friends SOO	enthusiasm	1956967789	3
@dannycastillo We want to trade with someone w	neutral	1956968416	4
@JohnLloydTayl	neutral	1753918954	39995
Happy Mothers Day All my lo	love	1753919001	39996
Happy Mother's Day to all the mommies out the	love	1753919005	39997
@niariley WASSUP BEAUTIFUL!!! FOLLOW ME!! PEE	happiness	1753919043	39998
@mopedronin bullet train from tokyo the gf	love	1753919049	39999

Fig 6. Dataset Used

C:\Users\This Pc\anaconda3\envs\Python\lib\site-packages\sklearn\svm_classes.py:32: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning. warnings.warn(

Enter a text: I am happy Predicted Sentiment: love

Fig 7. Inputted I am happy

Predicted Sentiment: love

C:\Users\This Pc\anaconda3\envs\Python\lib\site-packages\sklearn\svm_classes.py:32: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

Enter a text: I am sad Predicted Sentiment: sadness

Fig 8. Inputted I am sad

Predicted Sentiment: sadness

C:\Anaconda\envs\Python\lib\site-packages\sklearn\svm_classes.py:32: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning.

warnings.warn(

Enter a text: My grandfather is dead Predicted Sentiment: worry

Fig 9. Inputted My grandfather is no more

Predicted Sentiment: worry

We have used the dataset(tweet_emotions.csv) in which we have over 35000+ tweets which shows some emotions. On the basis of that we will input some text asked by our code and after analyzing the dataset it will predict the sentiment.

- In the first output, we have inputted "I am happy". According to the dataset it representing love and it has predicted love too.
- In the second output, we have inputted "I am sad". According to the dataset it representing sadness and it has predicted sadness too.
- In the third output, we have inputted "My grandfather is dead". According to the dataset it representing sadness but it has predicted worry which also depict the sadness.
- Likewise, there are other sentiment too and it can predict that through the prompted text. For example "I am excited" it will predict the excitement and the happiness and it will predict that too. In our dataset there are various sentiments stored through the tweets. Above figures represents some of them.

			Ad	Accuracy: 0.304125										
			C.	lassifi	ication	Repor								
				preci	sion	reca.	ll f1	-score	supp	ort				
		anger		0.00		0.00		0.00		66				
	boredom		0.08		0.04		0.05	103						
	empty		0.05		0.01		0.02	4	487					
	enthusiasm			0.05		0.01		0.02	4	476				
	fun			0.11		0.06		0.08	1032					
				happi	iness	0	.29	0.33	1	0.30	31	60		
					hate	0	.27	0.19	9	0.22	7	84		
		love neutral			0.37 0.33		0.37 0.44		0.37	2249 5174				
									0.38					
			relief			0.11		0.04		0.06 0.28	945 3106			
				sadness			0.28		0.27					
				surprise		0.10		0.05		0.07	1298			
		worry		0.33		0.39		0.36	51	5120				
		accuracy							0.30	240	00			
			macro avg		•	0.18		0.17		0.17	24000			
			We	eighted	_		.28	0.30	9	0.29	240	00		
	Confusion Matrix													
	0 -	0	0	1	0	4	6	1	1	24	1	7	2	19
	0 -	U	0	1	U	4	0	_	1	24	1	,	2	19
	- 1	0	4	3	1	2	4	6	4	26	0	20	2	31
	- 2	0	11	7	1	12	47	11	12	210	8	47	18	103
	m -	0	1	0	6	9	78	9	24	141	10	53	20	125
	4 -	0	0	3	3	62	232	16	88	285	18	85	42	198
	ი -	1	2	16	15	127	982	18	412	809	56	192	70	460
Actual	9 -	0	2	5	8	10	37	148	20	147	10	138	23	236
⋖	۲ -	0	1	12	8	47	439	19	841	394	34	154	42	258
	∞ -	2	12	37	18	132	551	75	287	2301	84	452	152	1071
	ი -	0	0	7	6	19	175	8	85	287	42	79	17	220
	연 -	0	9	22	15	51	203	95	121	625	23	854	73	1015
	11 -	1	2	7	11	21	188	24	109	392	16	150	67	310
	12	2	7	25	18	76	393	125	240	1233	66	836	114	1985
		Ó	í	2	3	4	5	6	, [†]	8	9	10	11	12

Fig 10. Confusion Matrix

Predicted

The above figure is the confusion matrix of whether the model is able to predict the correct intent or not