Kurs K1 (Wprowadzenie do eksploracji danych) – Laboratorium 5

Identyfikacja i usuwanie punktów oddalonych

Wczytujemy dane ze zbioru iris:

```
> path = "C:/R/dm"  ## scieżka dostępu do plików
> setwd(path)  ## ustawienie ścieżki
> library(datasets)
> data(iris)
> View(iris)
```

^	Sepal.Length +	Sepal.Width +	Petal.Length +	Petal.Width	Species [‡]
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa

Szukamy obserwacji oddalonych (np. według zmiennych Sepal.Length i Sepal.Width) Sprawdzamy zakresy zmiennych

```
> range(iris$Sepal.Length)
[1] 4.3 7.9
> range(iris$Sepal.Width)
[1] 2.0 4.4
```

Tworzymy wykres rozrzutu dla zmiennych "Sepal.Length" i "Sepal.Width", żeby sprawdzić punkty oddalone

Wykres z punktami oddalonymi

Wykres wskazuje na brak ewidentnych punktów oddalonych dla rozważanych zmiennych.

Dla celów ilustracyjnych utworzymy zbiór "iris2" z wyraźnym punktem oddalonym.

Tworzymy tabelę z jednym punktem (o nietypowej wartości pod względem długości i szerokości płatka):

```
> iris_outliers<-data.frame(Sepal.Length=c(20), Sepal.Width=c(7),
   Petal.Length=c(1.5), Petal.Width=c(0.3), Species=("setosa"))
> View(iris_outliers)
```

•	Sepal.Length [‡]	Sepal.Width [‡]	Petal.Length [‡]	Petal.Width [‡]	Species [‡]
1	20	7	1.5	0.3	setosa

Tworzymy tabelę łączącą tabele "iris" i "iris_outliers":

- > iris2<-rbind(iris, iris_outliers)</pre>
- > View(iris2)

^	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width [‡]	Species [‡]
147	6.3	2.5	5.0	1.9	virginica
148	6.5	3.0	5.2	2.0	virginica
149	6.2	3.4	5.4	2.3	virginica
150	5.9	3.0	5.1	1.8	virginica
151	20.0	7.0	1.5	0.3	setosa

Ponownie tworzymy wykres rozrzutu, żeby sprawdzić punkty oddalone - tym razem dla tabeli "iris2" (zauważ, że zakres wartości na osi x i y zostały zwiększony):

Na wykresie widać punkt oddalony (wiersz numer 151): Wykres z punktami oddalonymi

Usuniemy punkt oddalony (wiersz 151 tabeli "iris2") **metodą rozstępu międzykwartylowego** biorąc pod uwagę zmienną "Sepal.Length"

(przypomnienie: metoda była omawiana na konwersatorium – zob. moodle, plik "_WED_K02_GS", slajd 25-26)

Możemy sprawdzić kwantyle zmiennej:

```
> quantile(iris2$Sepal.Length)
  0% 25% 50% 75% 100%
4.3 5.1 5.8 6.4 20.0
```

Kwantyle Q1 i Q3 możemy też otrzymać następująco:

Możemy też obliczyć rozstęp międzykwartylowy,czyli IQR(iris2\$Sepal.Length) = 6.4 - 5.1 = 1.3:

```
> IQR(iris2$Sepal.Length)
[1] 1.3
```

Usuwamy z tabeli iris2 punkty oddalone (uwzględniając zmienną "Sepal.Length")

1) Wyznaczamy Q1 and Q3:

```
> qnt = quantile(iris2$Sepal.Length, probs=c(.25, .75))
> qnt
25% 75%
5.1 6.4
```

2) Zastępujemy wartości oddalone zmiennej wartościami brakującymi ("NA"):

```
> iris2$Sepal.Length[iris2$Sepal.Length < qnt[1] - 1.5 *
    IQR(iris2$Sepal.Length)] <- NA
> iris2$Sepal.Length[iris2$Sepal.Length > qnt[2] + 1.5 *
    IQR(iris2$Sepal.Length)] <- NA</pre>
```

^	Sepal.Length +	Sepal.Width +	Petal.Length +	Petal.Width +	Species [‡]	ld
147	6.3	2.5	5.0	1.9	virginica	14
148	6.5	3.0	5.2	2.0	virginica	14
149	6.2	3.4	5.4	2.3	virginica	14
150	5.9	3.0	5.1	1.8	virginica	15
151	NA	7.0	1.5	0.3	setosa	15

3) Usuwamy z tabeli iris2 punkty z brakującymi wartościami (elementy NA):

> iris2 <- iris2 [complete.cases(iris2),]
> View(iris2)

^	Sepal.Length +	Sepal.Width +	Petal.Length [‡]	Petal.Width	Species [‡]	ld
146	6.7	3.0	5.2	2.3	virginica	140
147	6.3	2.5	5.0	1.9	virginica	147
148	6.5	3.0	5.2	2.0	virginica	148
149	6.2	3.4	5.4	2.3	virginica	14
150	5.9	3.0	5.1	1.8	virginica	15

Ponownie tworzymy wykres rozrzutu dla tabeli "iris2" - nie ma już punktu oddalonego:

Wykres z punktami oddalonymi

Zadania do wykonania

- 1. Sprawdź na zbiorze "iris" działanie kodu R przedstawionego w niniejszym opracowaniu.
- 2. Następnie wykonaj poniższe instrukcje **dla zbioru danych wine**. W pliku tekstowym przygotuj odpowiednie informacje (wklej polecenia i wyniki/rysunki):
 - a) Sprawdź metodą rozstępu międzykwartylowego (dla wszystkich zmiennych numerycznych), czy w zbiorze są jakieś obserwacje oddalone (napisz, ile było punktów oddalonych dla każdej zmiennej); napisz pętlę.
 (Jeżeli w zbiorze nie ma punktów oddalonych, to dodaj "sztucznie" co najmniej jeden taki punkt.)
 - b) Zilustruj punkty oddalone (dla odpowiednich zmiennych) na wykresie rozrzutu lub histogramie (w przypadku dużej liczby cech proszę zrobić to dla maksymalnie 4 zmiennych).
 - c) Usuń punkty oddalone ze zbioru danych (w pętli). Podsumuj, ile punktów ostatecznie usunięto, a ile zostało.
 - d) Sporządź analogiczne wykresy jak w punkcie b po usunięciu punktów oddalonych.
 - e) Zapisz nowy zbiór danych (bez punktów oddalonych) do pliku. Załącz wynik polecenia View

Przyślij mailem plik z odpowiedziami, a także plik wygenerowany w punkcie 2e.