Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP2004/007730

International filing date:

13 July 2004 (13.07.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: DE

Number:

103 36 554.0

Filing date:

05 August 2003 (05.08.2003)

Date of receipt at the International Bureau: 24 August 2004 (24.08.2004)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung DE 103 36 554.0 über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 36 554.0

Anmeldetag:

05. August 2003

Anmelder/Inhaber:

Rosenberger AG, 99510 Apolda/DE

Bezeichnung:

Verfahren zum Biegen von Werkstücken

IPC:

B 21 D 43/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 4. September 2006

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Kahle

A 9161 03/00 EDV-L

10

30

5

Rosenberger AG Beim Weidige 21 DE-99510 Apolda

Verfahren zum Biegen von Werkstücken

Die Erfindung betrifft ein Verfahren zum Biegen von Werkstücken, insbesondere von Rohren, Drähten, Stangenmaterialien, Halbzeugen, Blechen od. dgl. mit zumindest einer Biegeeinrichtung.

Bei herkömmlichen Verfahren zum Biegen von Werkstücken wird mittels einer Zuführeinrichtung beispielsweise mittels eines Kreuzschlittens das zu verformende Werkstück einem Biegekopf einer Biegemaschine zugeführt. Dabei wird das Werkstück mittels einer Spanneinrichtung, beispielsweise einer Spannzange aufgenommen und mittels des Kreuzschlittens dem Biegekopf zugeführt. Nachteilig hierbei ist, dass ein Einlegen des Werkstückes, ein Einrichten des Werkstückes auf die Biegeeinrichtung zeitaufwendig ist.

Ferner ist nachteilig, dass bei einem herkömmlichen Verfahren zum Biegen von Werkstücken ein manuelles Einlegen in die Biegeeinrichtung bzw. Biegemaschine erforderlich ist. Auch ein Entnehmen und ein Zuführen der Werkstücke einer Endkontrolle folgt meistens in manueller Weise.

Zudem müssen die Werkstücke in einer Biegemaschine gebogen bzw. umgeformt werden. Sollten andere Biege- und Umformprozesse erforderlich sein, so wird das Werkstück einer weiteren Biegeeinrichtung zum weiteren Bearbeiten zugeführt. Dabei erfolgt keine exakte Endkontrolle des Biegezustandes im Prozess.

10

15

20

30

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Biegen von Werkstücken, insbesondere von Rohren, Drähten, Stangenmaterialien, Halbzeugen od. dgl. zu schaffen, welches die genannten Nachteile beseitigt und mit welchem zeit- und kostengünstig Werkstücke in einem Arbeitsgang umgeformt oder gebogen werden und ggf. eine Endkontrolle unmittelbar nach dem Biegen optimiert erfolgt.

Zur Lösung dieser Aufgabe führt, dass zumindest ein Roboter das zu verformende Werkstück aufnimmt und der zumindest einen Biegeeinrichtung zum Verformen, insbesondere zum Biegen zuführt.

Bei der vorliegenden Erfindung hat sich als besonders vorteilhaft erwiesen, mittels eines Roboters ein Werkstück aufzunehmen und dieses einer Biegeeinheit, bestehend aus zumindest einer Biegeeinrichtung zuzuführen. In der Biegeeinrichtung wird dann das Werkstück unter permanenter oder schubweiser Zufuhr mittels des Roboters verformt bzw. gebogen.

Dabei wird das Werkstück mittels des Roboters aus einem Vorratsbehältnis entnommen und der Biegeeinheit bzw. der zumindest einen Biegeeinrichtung zum Verformen oder Biegen zugeführt. Nach dem Biegen kann das gebogene Werkstück einer Ablage zugeführt werden. Der Roboter greift dann ein neues zu verformendes oder zu biegendes Werkstück aus dem Vorratsbehältnis und führt dieses permanent oder schubweise wieder der zumindest einen Biegeeinrichtung zu. Dabei kann der Roboterarm, insbesondere dessen Greifeinrichtung ein permanentes Zuführen und radiales Verdrehen des Werkstückes während des Biegeprozesses in der Biegeeinheit übernehmen.

Als Biegeeinrichtungen können Rollbiegeköpfe, Rechts-/Linksbiegeköpfe, Abkanteinrichtungen od. dgl. in einer 15 Biegeeinheit zusammengefasst sein, welche stationär gegenüber einem Untergrund angeordnet sind.

10

20

30

Als Vorratsbehältnis kann kein Fliessband, ein Aufnahmebehältnis, eine Maschine, wie beispielsweise eine Ablängmaschine oder ein Übergaberoboter dienen, der das Werkstück zum Verformen dem Roboter übergibt oder zur Verfügung stellt.

Nach dem Verformen oder Biegen des Werkstückes übergibt dann der Roboter das fertiggestellte Werkstück einer Ablage, die ein Fliessband, ein Vorratsbehältnis, eine Maschine zur weiteren Bearbeitung oder ein Übergaberoboter sein kann, um das fertiggestellte Werkstück einer weitere Verarbeitung zuzuführen. Hierauf sei die Erfindung nicht beschränkt.

In einem erweiterten Ausführungsbeispiel der vorliegenden Erfindung kann nach dem Fertigstellen des Werkstückes der Roboter das Werkstück einer Messeinrichtung zuführen bzw. das fertiggestellte Werkstück entlang der Messeinrichtung

führen, dass die vollständige Kontur des fertiggestellten Werkstückes in drei Ebenen als Ist-Wert aufgenommen und mit einem hinterlegten Soll-Wert verglichen wird. Hierdurch erfolgt automatisch nach dem Biegen und Umformen des Werkstückes eine Endkontrolle. Sollte das Werkstück nicht dem Soll-Wert oder dessen Toleranzbereich entsprechen, so kann ein Nachbiegen erfolgen, in dem der Roboter das Werkstück zum Nachbiegen der Biegeeinheit erneut zuführt. Erst nach erneuter positiver Kontrolle in der Messeinrichtung wird dann das Werkstück der Ablage zur weiteren Verarbeitung oder Bearbeitung übergeben.

Bei der vorliegenden Erfindung hat sich als besonders vorteilhaft erwiesen, dass auf sehr schnelle Weise ein 15 Werkstück vollautomatisiert in einen Fertigungsprozess eingebunden von einem Vorratsbehältnis entnommen werden in der Biegeeinheit bzw. zumindest der einen Biegeeinrichtung umgeformt oder gebogen werden kann und dann ggf. nach erfolgter Zwischenkontrolle einer Ablage 20 zugeführt werden kann. Hierdurch können erhebliche Fertigungskosten sowie auch Herstellungskosten der Anlage zum Verformen und Biegen von Werkstücken eingespart werden.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in

5

Figur 1 eine schematisch dargestellte Draufsicht auf eine . Anlage zum Biegen von Werkstücken;

Figur 2 eine schematisch dargestellte Ansicht der Anlage 10 gemäss Figur 1 als weiteres Ausführungsbeispiel.

15

Gemäss Figur 1 weist eine erfindungsgemässe Anlage R_1 zum Biegen von beliebigen Werkstücken 1 ein Vorratsbehältnis 2 auf, in welchem eine Mehrzahl von Werkstücken 1 gelagert sind. Unter dem Vorratsbehältnis 2 kann auch ein Fliessband, welches beispielsweise eine Mehrzahl von Werkstücken, die ggf. vorbearbeitet wurden, verstanden werden.

20 Das Vorratsbehältnis 2 kann auch ein Roboter od. dgl. Fördereinrichtung sein, welches die zu verformenden oder zu biegenden Werkstücke 1 der Anlage R_1 zur Verfügung stellen.

30

Wesentlich ist bei der vorliegenden Erfindung, Anlage R_1 zumindest ein Roboter 3 zugeordnet ist. Roboter weist einen in mehreren Teilstücke untergliederter Roboterarm 4 mit einer endseitigen Greifeinrichtung 5 auf. Mit der Greifeinrichtung 5 ergreift der Roboter 3 das zu verformende bzw. zu biegende Werkstück und führt dieses nach dem Entnehmen Vorratsbehältnis 2 der zumindest einen Biegeeinrichtung 6 zu.

Es können mehrere Biegeeinrichtung 6 unterschiedlicher Art, 35 je nach Anforderung des zu biegenden Werkstückes, als Biegeeinheit 7 zusammengefasst sein. Dabei können die einzelnen Biegeeinrichtungen als beispielsweise Rollbiegeköpfe, Rechts- und/oder Linksbiegeköpfe, Abkanteinrichtungen od. dgl. ausgebildet sein, um ein Werkstück auf unterschiedliche Weise zu verformen.

Wichtig ist dabei, dass die Zufuhr in angedeuteter X-Richtung sowie das Verdrehen des Werkstückes 1 um die Werkstückachse in dargestellter Doppelpfeilrichtung Y mittels des Roboters 3, insbesondere des Roboterarmes 4 und dessen endseits angeordneter Greifeinrichtung 5 erfolgt. Das Werkstück 1 wird mittels des Roboters 3 der zumindest einen Biegeeinrichtung 6 der Biegeeinheit 7 zugeführt, dort gebogen, nach dem Biegen weiter in X-Richtung für eine erneute Biegung der zumindest einen Biegeeinrichtung 6 zugeführt. Dabei folgt permanent ein Vorschub in X-Richtung und/oder eine radiale Verdrehung des Werkstückes 1 mittels des Roboters 3 um das Werkstück 1 umzuformen bzw. zu verbiegen in Y-Richtung.

20

30

35

15

10

Bevorzugt übernimmt der Roboter lediglich die Vorschubfunktion in dargestellter X-Richtung sowie das radiale Verdrehen des Werkstückes 1 in dargestellter Y-Richtung. Auf diese Weise kann ein Werkstück 1 in drei Ebenen verformt, insbesondere verbogen werden.

Ggf. kann während eines Biegeprozesses bzw. während das Werkstück 1 in Biegeeinrichtung 6 eingespannt ist, der Roboter 3 bzw. dessen Greifeinrichtung 5 das Werkstück 1 an einer anderen Stelle wieder aufnehmen, um den Biegeprozess, wie oben beschrieben, fortzuführen.

Nach dem Biegen wird das fertiggestellte Werkstück 1 mittels des Roboters 3 einer Ablage 8 zugeführt und dort abgelegt. Als Ablage 8 kann ein Fliessband, ein

Übernahmeroboter, Vorratsbehältnis od. dgl. dienen. Hierauf sei die Erfindung nicht beschränkt.

In einem Ausführungsbeispiel der vorliegenden Erfindung gemäss Figur 2 ist eine Anlage R_2 beschrieben, die in etwa der Anlage R_1 entspricht. Unterschiedlich ist hier, dass zwischen der Biegeeinheit 7 und der Ablage Messeinrichtung 9 zwischengeschaltet ist. gebogene oder verformte Werkstück 1 wird mittels Roboters 3 nach dem Umformen bzw. nach dem Biegen aus der Biegeeinheit 7 entnommen und entlang der Messeinrichtung 9 geführt, wobei die gebogene Kontur des Werkstückes 1 über die Messeinrichtung 9 verfahren wird. Hierdurch wird ein Sollzustand des gebogenen Werkstückes 1 ermittelt und mit einem hinterlegten Ist-Wert und/oder Toleranzfeld verglichen. Weicht der Ist-Wert vom Soll-Wert unzulässig ab, so kann das Werkstück 1 mittels des Roboters 3 wieder der Biegeeinheit 7 zum Nachbiegen und Korrekturbiegen zugeführt werden. Anschliessend erfolgt eine 20 Kontrolle des gebogenen bzw. verformten Werkstückes 1 in der Messeinrichtung 9. Erst nach Übereinstimmung von Soll-Wert zum Ist-Wert wird dann das verformte bzw. gebogene Werkstück 1 der Ablage 8 zugeführt bzw. an diese übergeben.

10

PATENTANSPRÜCHE

- 5 1. Verfahren zum Biegen von Werkstücken (1), insbesondere von Rohren, Drähten, Stangenmaterialien, Halbzeugen, Blechen od. dgl. mit zumindest einer Biegeeinrichtung (6),
- 10 dadurch gekennzeichnet,

15

- dass zumindest ein Roboter (3) das zu verformende Werkstück (1) aufnimmt und der zumindest einen Biegeeinrichtung (6) zum Verformen, insbesondere zum Biegen zuführt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Roboter (3) permanent das Werkstück (1) der zumindest einen Biegeeinrichtung (6) zuführt.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Roboter (3) das Werkstück (1) während dem Zuführen in die zumindest Biegeeinrichtung (6) während des Biegens festhält und zum weiteren Biegen der zumindest Biegeeinrichtung (6) weiter zuführt und ggf. Werkstück (1) radial verdreht.
- 4. Verfahren nach wenigstens einem der Ansprüche 1 bis 3,
 dadurch gekennzeichnet, dass ein Roboterarm (4),
 insbesondere dessen Greifeinrichtung (5) des zumindest
 einen Roboters (2) das Werkstück (1) aufnimmt und der
 zumindest einen Biegeeinrichtung (6) zuführt.

- Verfahren nach wenigstens einem der Ansprüche 1 bis 4, 5. dadurch gekennzeichnet, dass der Roboterarm (4) das Werkstück (1) schubweise der zumindest einen Biegeeinrichtung (6) zuführt und an entsprechenden 5 Biegestellen die Biegeeinrichtung (6) das Werkstück (1) verformt, wobei während des Verformens ggf. der Roboterarm (4), insbesondere die Greifeinrichtung (5) durch Umgreifen das Werkstück (1) an einer anderen beliebigen Stelle ggf. im fertiggestellten auch 10 Bereich zum weiteren Zuführen des Werkstückes (1) in die zumindest eine Biegeinrichtung (6) aufnimmt.
- Verfahren nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass 15 der zumindest eine Roboter (3), insbesondere die zumindest eine Greifeinrichtung (5) des Roboterarmes (5) das Werkstück (1)aufnimmt und zum Verformen von unterschiedlichen Radien, Mäander, Winkel etc. einer Mehrzahl von Biegeeinrichtungen (6) zuführt. 20
 - 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Biegeeinrichtungen (6), Rollbiegeköpfe, Rechts-/Linksbiegeköpfe, Abkanteinrichtungen od. dgl. verwendet werden.
 - Verfahren nach wenigstens einem der Ansprüche 1 bis 7, 8. dadurch gekennzeichnet, dass die zumindest eine Biegeeinrichtung (6) ortsfest gegenüber einem Untergrund angeordnet ist und der zumindest eine Roboterarm (4) das Werkstück (1) der zumindest einen Biegeeinrichtung (6) bzw. dessen Biegeköpfen permanent oder schubweise zum Verformen, insbesondere zum Biegen zuführt.

9. Verfahren nach wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der zumindest eine Roboter (3), insbesondere Roboterarm (4) das Werkstück (1) aus einem Vorratsbehältnis (2) entnimmt, der Biegeeinrichtung (6) zum Verformen oder Biegen zuführt und nach dem Biegen zur weiteren Bearbeitung einer Ablage (8) zuführt, wobei dieser danach erneut aus dem Vorratsbehältnis (2) ein zu verformendes oder zu biegendes Werkstück (1) entnimmt.

10

15

20

30

- Verfahren nach wenigstens einem der Ansprüche 1 bis 9, 10. der zumindest dass dadurch gekennzeichnet, Roboter (3) nach dem Verformen oder Biegen eines Werkstückes (1) dieses entlang einer Messeinrichtung (9) führt, um die Verformungen oder Biegungen als Soll-Wert zu erfassen, wobei bei einem Vergleich mit einem hinterlegten und ausgewählten Soll-Wert eine Fertigungskontrolle durchgeführt wird und ggf. ein Nachverformen oder Nachbiegen in der zumindest einen Zurückführen des durch Biegeeinrichtung (6) Werkstückes (1) mittels des Roboters (3) zur zumindest einen Biegeeinrichtung (6) erfolgt.
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass nach einem Nachbiegen oder Nachverformen das Werkstück (1) mittels des Roboters (3) erneut der Messeinrichtung (9) zugeführt wird und erst nach Übereinstimmung zwischen Soll-Wert und Ist-Wert bzw. mit den vorgegebenen Toleranzbereichen, das Werkstück (1) der Ablage (8) oder einer Weiterbearbeitung zugeführt wird.
- 12. Vorrichtung nach wenigstens einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass als Ablage (8) bzw. 35 zur Weiterbearbeitung das Werkstück (1) auch einem

weiteren Roboter, einem Fliessband, einer Maschine, einem Vorratsbehältnis od. dgl. übergeben wird.

ZUSAMMENFASSUNG

Bei einem Verfahren zum Biegen von Werkstücken (1), insbesondere von Rohren, Drähten, Stangenmaterialien, Halbzeugen, Blechen od. dgl. mit zumindest einer Biegeeinrichtung (6), soll zumindest ein Roboter (3) das zu verformende Werkstück (1) aufnehmen und der zumindest einer Biegeeinrichtung (6) zum Verformen, insbesondere zum Biegen zuführen.

(Figur 2)

DR. PETER WEISS & DIPL.-ING. A. BRECHT Patentanwälte European Patent Attorney

5

Aktenzeichen: P 3044/DE

Datum: 05.08.2003

B/HU

Positionszahlenliste

1	Werkstück	34		67	T .
2	Vorratsbehältnis	35		68	
3	Roboter	36		69	
4	Roboterarm	37		70	
5	Greifeinrichtung	38		71	
6	Biegevorrichtung	39		72	
7	Biegeeinheit	40		73	
8	Ablage	41		74	
9	Messeinrichtung	42		75	
10	·	43.		6	
11		44		7	
12		45		8	
13		46		9	
14		47			
15		48			
16		49	R	, . 	Anlage
17		50	R	-	Anlage
18		51		-	1
19		52	Х		Richtung
20		53	Y		Richtung
21		54			
22		55			· · · · · · · · · · · · · · · · · · ·
23		56			
24		57	·		
25		58		_	
26		59			
27	<u>·</u>	60		\dashv	
28		61		$\neg +$	· · · · · · · · · · · · · · · · · · ·
29		62		\dashv	
30		63		\neg	
31	·	64			
32		65		_	
33		66		+	

