SECTION 4.10 ANTIDERIVATIVES

- (families of) antiderivatives
- indefinite integrals
- initial value problems
- 1. Find the (family of) antiderivatives for the following.

(a)
$$f(x) = 4x^3$$

(b)
$$f(x) = 5\sin(x)$$

(c)
$$f(x) = \frac{e^x}{4}$$

(d)
$$f(x) = \sqrt{2}$$

(e)
$$f(x) = \frac{1}{x}$$

(f)
$$f(x) = 1 - x + e^x$$

4-10

2. Is $F(x) = x + xe^x$ is an antiderivative of $f(x) = (x+1)e^x + 1$? Show your answer is correct.

1

$$F'(x)=1+1\cdot e^{x}+xe^{x}$$

=1+(1+x)e^x
=(x+1)e^x+1

Function	Antiderivative
$x^k (k \neq -1)$	X K+1
x^{-1} for all x	Inlx
1	X
$\sin(x)$	- cos(x)
$\cos(x)$	SIN(X)

Function	Antiderivative
e^x	ex
$1/(1+x^2)$	arctan(x)
$\sec^2(x)$	Lan(x)
$\sec(x)\tan(x)$	Sec(x)
$1/\sqrt{1-x^2}$	avcSin(x)

3. Evaluate the integrals.

Evaluate the integrals.
$$\frac{32}{3} - \frac{-34}{4} + C = \frac{2}{3} \times \frac{3}{2} - \frac{4}{3} \times + C$$

(b)
$$\int (8e^x + \sec^2(x)) dx = 8e^X + \tan(x) + C$$

(c)
$$\int \frac{x^2 + x^{1/2} + 1}{x^{1/2}} dx = \int \left(\frac{3}{2} + 1 + \frac{-1}{2} \right) dx = \frac{2}{5} \times \frac{5}{2} + \times + 2 \times \frac{1}{2} + C$$

$$\int x \sec^2(x^2+1) dx = \tan(x^2+1) + C$$
 Fake

4. Is the equality in the box true or false? Explain.
$$\int x \sec^2(x^2 + 1) \, dx = \tan(x^2 + 1) + C \quad \text{Fake.}$$

$$\frac{d}{dx} \left[\tan(x^2 + 1) \right] = \left(\sec^2(x^2 + 1) \right) \left(2x \right) = 2x \sec^2(x^2 + 1) \quad \text{Not the Same}$$

5. Solve the initial value problem if $f'(x) = x + e^x$ and f(0) = 4.

$$f(x) = \frac{1}{2}x^{2} + e^{x} + C$$

$$f(0) = \frac{1}{2}0^{2} + e^{x} + C = 4$$
So $1 + c = 4$. So $C = 3$.

$$\frac{1}{f(x)} = \frac{1}{2} x + e^{x} + 3$$

6. A particle moving along the x-axis has acceleration $a(t) = 10\sin(t)$ measured in cm/s^2 . Assume the particle as initial velocity v(0) = 0 and initial position s(0) = 0, find a function that models its velocity, v(t), and its position s(t).

$$a(t) = 10 \sin(t)$$

 $v(t) = \int a(t) dt = \int 10 \sin(t) dt = -10 \cos(t) + C$
 $v(t) = -10 \cos(t) + C = 0$. So $-10 + C = 0$. So $C = 10$.
So $v(t) = -10 \cos(t) + 10$.

$$S(t) = \int v(t) dt = \int (-10 \cos(t) + 10) dt = -10 \sin(t) + 10t + C$$

 $S(0) = -10 \sin(0) + 10(0) + C = 0$. So $C = 0$.
 $S(t) = -10 \sin(t) + 10t$