

SRN							

PES University, Bengaluru

(Established Under Karnataka Act 16 of 2013)

UE21PH141B

JULY 2022: END SEMESTER ASSESSMENT (ESA) B.Tech. II SEMESTER UE21PH141B: ENGINEERING PHYSICS

Time: 3 Hours Answer all questions Max Marks:100

Useful constants:									
1.	a)	Show that the electric and magnetic field vectors of the electromagnetic waves are normal to each other as well as to the direction of propagation of the radiation.							
	b)	State de-Broglie's hypothesis. Evaluate the condition under which the group velocity of a wave packet is half the phase velocity.	5						
	c)	State the characteristics of a well behaved wave function. Normalize the wave function given by .							
	F	State two illustrations of Heisenberg's uncertainty principle.							
	d)	If the average time period that elapses between the excitation of an atom and the time it radiates energy is , then calculate the uncertainty in the energy of emitted photon and the limit of accuracy with which the frequency of the emitted radiation can be determined.	5 (2+3)						
2.	a)	Starting from Schrödinger's time dependent wave equation set up time independent Schrödinger's equation for a particle.	5						
	b)	A particle travelling with energy 'E' along -axis has in its path a rectangular potential barrier of height $V_0 > E$ and a width 'L'. Discuss the possible wave functions of the particle in the different regions. Evaluate the zero-point energy Eigen value of a quantum linear harmonic oscillator with period of 2 pico-second.	6 (4+2)						
	c)	Derive the expression of energy values using the admissible solutions for a particle in an infinite potential well of the form, and	6						
	d)	Illustrate with an example what is meant by degeneracy of energy states in quantum systems.	3						
	a)		6						

3.		On the basis of classical free electron model, obtain an expression for electrical conductivity in metals.	(3+3)
		Calculate the drift velocity and thermal velocity of conduction electrons in copper at a temperature of 300 K, when a copper wire of length 2 m and resistance 0.04 Ω carries a current of 16 A. Given the mobility of free electrons in copper is 4.2 x 10 ⁻³ m ² /Vs.	
	b)	Using the expression of density of states show that at 0K, the average energy of the valence electrons is $(3/5)^{th}$ of the Fermi energy.	4
	c)	Describe the nature of potential experienced by valence electrons according to Kronig-Penney model. Elaborate with suitable schematic the dependence of effective mass of electrons on the curvature of the E-k plot.	6 (3+3)
	d)	Briefly highlight the conceptual features of the BCS theory of superconductivity.	4
4.	a)	Explain how population inversion is achieved in a He-Ne laser.	4
	b)	What are the essential requisites of a laser system? Calculate the threshold gain factor of a laser system, which has loss factor of 0.05 m ⁻¹ , with tube length of 50 cm having one mirror 99% reflecting and the output coupler 90% reflecting.	6 (3+3)
	c)	Explain briefly the following: (i) Stimulated emission (ii) Temporal coherence (iii) Possible laser transitions in CO ₂ laser	6 (2+2 +2)
	d)	Explain the factors 'carrier confinement' and 'photon confinement' with reference to double heterojunction devices.	4
5.	a)	What is Larmor precession? Obtain an expression for induced magnetic moment of a precessing charge in terms of Larmor frequency.	5
	b)	Briefly describe the functionality of a GMR device and mention its important applications.	5
	c)	What are the components of the electric fields that prevail in a dielectric? An elemental dielectric has 7 x 10 ²⁸ atoms per unit volume and a dielectric constant of 9. Calculate the atomic polarizability of the material.	5 (2+3)
	d)	Compare the phenomenon of ferroelectricity and piezoelectricity.	5
