Nombre:

Código:

- 1. Empareje cada ecuación a continuación con una de las figuras presentadas.
 - a) $x^2 + 4y^2 + 9z^2 = 1$

e) $9x^2 + 4y^2 + z^2 = 1$

b) $x^2 - y^2 + z^2 = 1$

f) $-x^2 + y^2 - z^2 = 1$

c) $y = 2x^2 + z^2$

g) $y^2 = x^2 + 2z^2$

d) $x^2 + 2z^2 = 1$

h) $y = x^2 - z^2$

2. Describa geométricamente el dominio, D(f), de cada una de las siguientes funciones:

a)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2 - a^2}$$

$$b) \ f(x,y) = \sin^{-1}(xy)$$

- 3. Sea la función de dos variables z=f(x,y), con $f(x,y)=\sqrt{\frac{x}{y-5}}.$ Ilustre en el plano XY el dominio de esta función, y las curvas de nivel correspondientes a $z_0=1,2,\frac{1}{2}.$
- 4. En cada uno de los casos presentados a continuación, determine el límite indicado, o indique si no existe:

a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y}{x-y}$$

$$d) \ \lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{\cos(y)+1}{y-\sin(x)}$$

e)
$$\lim_{(x,y)\to(1,1)} \frac{xy^2-1}{y-1}$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{x^3+y^3}$$

$$f$$
) $\lim_{(x,y)\to(0,0)} \frac{xy}{|xy|}$

5. Determine si la función definida por: f(0,0)=0, y $f(x,y)=\frac{6x^2y^3}{(x^2+y^2)^2}$ en el resto del plano XY, es contínua.

- 6. Sea $f(x,y) = \sqrt{4 x^2 4y^2}$. Encuentre $f_x(1,0)$, $f_y(1,0)$ e interprete estos números como las pendientes de ciertas rectas. Ilustre sus resultados gráficamente.
- 7. Evalúe las derivadas implícitas $\partial z/\partial x$ y $\partial z/\partial y$ a partir de: $\sin{(xyz)} = x + 2y + 3z$
- 8. Encuentre la ecuación del plano tangente a la superficie $f(x,y) = 4xy^2 2x^3y$ en el punto (1,-2,20)
- 9. Una libélula se mueve en el espacio tridimensional de forma que sus coordenadas en cualquier tiempo $t \ge 0$ son: x = 4cos(t), y = 4sin(t), z = 5t. Encuentre la tasa a la cual aumenta la distancia de la libélula al origen.
- 10. Para la función f(x,y) = xy(1+x-y), encuentre todos sus máximos locales, mínimos locales, y puntos silla.
- 11. Considere la función $z = x + y^2$, y la restricción dada por $x^2 + y^2 = 25$. Encuentre los máximos y mínimos de z sobre esta circunferencia.
- 12. Se tiene una pieza plana de madera con la forma de la región R que se muestra en la figura. La densidad de esta pieza varía de punto a punto según $\rho(x,y) = \sin{(x+y)}$. Plantee las integrales dobles necesarias para calcular cada una de las cantidades a continuación. No necesita resolverlas.

- a) La masa de la lámina de madera
- b) La coordenada x de su centro de masa, \overline{x}
- c) La coordenada y de su centro de masa, \overline{y}
- d) Su momento respecto al eje X, M_x
- e) Su momento respecto al eje Y, M_y
- f) Su momento de inercia respecto al eje X, I_x
- g) Su momento de inercia respecto al eje Y, I_y