

METODO ASINTÓTICO APLICADO A FUNCIONES DE 2º GRADO

Supondremos en primer lugar que tenemos una función de segundo grado genérica en el numerador de nuestra función de transferencia $F_{(P)}$ del tipo :

$$F_{(P)} = A * P^2 + B * P + C$$

Para continuar nuestro análisis debemos adecuar la función del siguiente modo:

$$F_{(P)} = A * \left(P^2 + \frac{B}{A} * P + \frac{C}{A} \right)$$

Pasando el término A a formar parte de la constante total del sistema, similar a cuando analizamos polos y ceros fuera del origen y normalizábamos haciendo:

$$F_{(P)} = P + \alpha = \alpha * \left(\frac{P}{\alpha} + 1\right)$$

Una vez realizada esta operación nuestra función de 2° grado tendrá el siguiente formato:

$$F_{(P)} = P^2 + b * P + c$$

Recordando temas ya estudiados sobre circuitos RLC serie, tenemos :

Donde:

 ξ = factor de amortiguamiento. Relación entre la resistencia del circuito y la resistencia crítica del mismo. $\xi = \frac{R}{Rc}$

$$\mathbf{\omega}_0$$
 = pulsación natural o de resonancia. Se obtiene de la relación : $\omega_0 = \sqrt{\frac{1}{L \bullet C}}$

De este modo de la función de 2° grado adecuada obtenemos el valor de la frecuencia natural y del factor de amortiguamiento haciendo :

$$F_{(P)} = P^2 + b * P + c$$

$$\omega_O = \sqrt{c} \qquad y \qquad \xi = \frac{b}{2 * \omega_O} = \frac{b}{2 * \sqrt{c}}$$

Analizando el valor del factor de amortiguamiento ξ obtenemos los cuatro casos posibles :

بخ	< 1 ⇒ raíces complejas conjugadas se llama caso Subamortiguado
	= 1 ⇒ raíces reales e iguales se llama caso de Amortiguamiento Crìtico
	> 1 ⇒ raíces reales y distintas se llama caso Sobreamortiguado
	$=0$ si $R=0$ \Rightarrow raíces imaginarias puras se llama caso Oscilatorio

Una vez obtenido el valor del factor de amortiguamiento, realizamos una de las acciones siguientes para trazar el diagrama de Bode :

Para el caso especial de que el factor de amortiguamiento sea menor que uno (ξ <1) deberemos trazar la asíntota de 2° grado y corregir la gráfica, utilizando las tablas o las curvas de corrección. Se aclara que esto es obligatorio para valores de ξ iguales o inferiores a 0,3, ya que los errores que se cometen son considerables. Para 0,4< ξ <1, los errores son tolerables. Ver *Nota* en pag. 6.

OBTENCIÓN DE CURVAS Y TABLAS DE CORRECCIÓN DE FUNCIONES DE 2° GRADO

Partimos de la siguiente expresión :

$$F_{(P)} = P^{2} + b * P + c$$

$$F_{(P)} = P^{2} + 2 * \xi * \omega_{O} * P + \omega_{O}^{2}$$

Recordando que:

Adecuamos la función para nomalizar :

$$F_{(P)} = \omega_0^2 * \left(\frac{P^2}{\omega_0^2} + \frac{2 * \xi * \omega_0}{\omega_0^2} * P + 1 \right)$$

El término ${\omega_0}^2$ pasará a formar parte de la constante total al trazar el diagrama de Bode de módulo. Nuestra función de transferencia nos queda :

$$F_{(P)} = \frac{P^2}{\omega_O^2} + \frac{2 * \xi * \omega_O}{\omega_O^2} * P + 1$$

Cambiando P \rightarrow j ω tenemos :

 $F_{(j\omega)} = \frac{(j\omega)^2}{\omega_0^2} + \frac{2 * \xi * \omega_0}{\omega_0^2} * j\omega + 1$ $F_{(j\omega)} = \frac{-\omega^2}{\omega_0^2} + \frac{2 * \xi}{\omega_0} * j\omega + 1 = 1 - \frac{\omega^2}{\omega_0^2} + j * 2 * \xi * \frac{\omega}{\omega_0}$

ordenando:

Llamando \boldsymbol{u} (pulsación normalizada) a la relación ω/ω_{O} tendremos:

$$F_{(iu)} = 1 - u^2 + j * 2 * \xi * u$$

Este procedimiento se realiza para normalizar la función e independizarnos del valor de la pulsación.

Para obtener el valor del módulo en dB hacemos:

$$F|_{(ju)}|_{dB} = 20 * \log_{10} \sqrt{\text{Re}^2 + \text{Im}^2} = 20 * \log_{10} \sqrt{(1 - u^2)^2 + (2 * \xi * u)^2}$$

Operamos dentro de la raíz el término $(1-u^2)^2$ y el término $(2\xi u)^2$:

$$F_{(ju)}|_{dB} = 20 * \log_{10} \sqrt{(1 - 2 * u^2 + u^4) + (4 * \xi^2 * u^2)}$$

En esta última expresión, si $\xi = 0.7$ tendremos :

$$F|_{(ju)}|_{dB} = 20 * \log_{10} \sqrt{(1+u^4)}$$

Para distintos valores de **u** tendremos :

$$\begin{array}{llll} u = 0.01 \rightarrow & \omega = 0.01 \; \omega_O \rightarrow & \left| F_{(j\omega)} \right| = 0 \; \left[dB \right] \\ u = 0.1 \rightarrow & \omega = 0.1 \; \omega_O \rightarrow & \left| F_{(j\omega)} \right| = 0 \; \left[dB \right] \\ u = 1 \rightarrow & \omega = \omega_O \rightarrow & \left| F_{(j\omega)} \right| = 0 \; \left[dB \right] \\ u = 10 \rightarrow & \omega = 10 \; \omega_O \rightarrow & \left| F_{(j\omega)} \right| = 40 \; \left[dB \right] \\ u = 100 \rightarrow & \omega = 1000 \; \omega_O \rightarrow & \left| F_{(j\omega)} \right| = 80 \; \left[dB \right] \\ u = 1000 \rightarrow & \omega = 1000 \; \omega_O \rightarrow & \left| F_{(j\omega)} \right| = 120 \; \left[dB \right] \end{array}$$

Similar al resultado obtenido para una función de 2° grado del tipo $(P+\alpha)^2$. Por lo que en el diagrama de Bode de módulo trazaremos a partir del valor de ω_O una asíntota con pendiente de $+40 \, [dB/dec]$.

Para distintos valores del factor de amortiguamiento, se obtienen las siguientes curvas de corrección de módulo:

Si la función de segundo grado hubiera estado en el denominador llegaríamos a similares conclusiones :

$$F_{(P)} = \frac{1}{P^2 + b * P + c} \to F_{(j\omega)} = \frac{1}{1 - \frac{-\omega^2}{\omega_0^2} + j * 2 * \xi * \frac{\omega}{\omega_0}}$$

De donde:

$$F|_{(ju)}|_{dR} = -20 * \log_{10} \sqrt{\text{Re}^2 + \text{Im}^2} = -20 * \log_{10} \sqrt{(1 - u^2)^2 + (2 * \xi * u)^2}$$

Operamos dentro de la raíz el término $(1-u^2)^2$ y el término $(2\xi u)^2$:

$$F|_{(ju)}|_{dR} = -20 * \log_{10} \sqrt{(1 - 2 * u^2 + u^4) + (4 * \xi^2 * u^2)}$$

En esta última expresión, si ξ =0,7 tendremos :

$$F|_{(ju)}|_{dR} = -20 * \log_{10} \sqrt{(1+u^4)}$$

Para distintos valores de *u* tendremos :

$$\begin{array}{llll} u = 0.01 \rightarrow & \omega = 0.01 \, \omega_O \rightarrow & \left| F_{(j\omega)} \right| = 0 \, \left[dB \right] \\ u = 0.1 \rightarrow & \omega = 0.1 \, \omega_O \rightarrow & \left| F_{(j\omega)} \right| = 0 \, \left[dB \right] \\ u = 1 \rightarrow & \omega = \omega_O \rightarrow & \left| F_{(j\omega)} \right| = 0 \, \left[dB \right] \\ u = 10 \rightarrow & \omega = 10 \, \omega_O \rightarrow & \left| F_{(j\omega)} \right| = -40 \, \left[dB \right] \\ u = 100 \rightarrow & \omega = 1000 \, \omega_O \rightarrow & \left| F_{(j\omega)} \right| = -80 \, \left[dB \right] \\ u = 1000 \rightarrow & \omega = 1000 \, \omega_O \rightarrow & \left| F_{(j\omega)} \right| = -120 \, \left[dB \right] \end{array}$$

Similar al resultado obtenido para una función de 2° grado del tipo $(P+\alpha)^{-2}$. Por lo que en el diagrama de Bode de módulo trazaremos a partir del valor de ω_0 una asíntota con pendiente de -40 [dB/dec].

HIPÓTESIS SIMPLIFICADA DE ANÁLISIS

Partimos de :
$$F|_{(ju)}|_{dR} = -20 * \log_{10} \sqrt{(1-2 * u^2 + u^4) + (4 * \xi^2 * u^2)}$$

operando:
$$F|_{(ju)}|_{dB} = -10 * \log_{10} \left[\left(1 - 2 * u^2 + u^4 \right) + \left(4 * \xi^2 * u^2 \right) \right]$$

Para bajas frecuencias ($\mathbf{u} << 1$):

$$F|_{(ju)}|_{dR} = -10 * \log_{10} 1 = 0$$
 (Asíntota de baja frecuencia)

Para altas frecuencias ($\mathbf{u} >> 1$):

$$F|_{(ju)}|_{dR} = -10 * \log_{10} u^4 = -40 * \log_{10} u \rightarrow \text{ (Asíntota de alta frecuencia)}$$

la pendiente estará dada por :

$$\frac{d}{d(\log_{10} u)} \left(-40 * \log_{10} u\right) = -40 \, dB \, / \, dec = -12 \, dB \, / \, oct$$

Para determinar la pulsación de ruptura que es donde convergen la asíntota de baja frecuencia con la asíntota de alta frecuencia partimos de la expresión :

$$F|_{(ju)}|_{dR} = -10 * \log_{10} \left[\left(1 - 2 * u^2 + u^4 \right) + \left(4 * \xi^2 * u^2 \right) \right]$$

Haciendo $\mathbf{u} = 1$ tendremos :

$$F|_{(ju)}|_{dB} = -10 * \log_{10}(4 * \xi^2) = -20 * \log_{10}(2 * \xi)[dB]$$

A partir de esta expresión hacemos una tabla que será de utilidad a la hora de construir los diagramas de Bode de Módulo para saber el valor del mismo, para la pulsación normalizada $\mathbf{u} = 1$ o lo que es lo mismo para $\omega = \omega_{\rm O}$.

ξ	-20 Log ₁₀ 2 ξ [dB]	-20 Log ₁₀ 2 ξ [dB]			
	(Valor exácto)	(Valor aproximado)			
0	∞	∞			
0,05	20	20			
0,1	13,97	14			
0,2	7,95	8			
0,3	4,43	4,5			
0,4	1,93	2			
0,5	0	0			
0,6	-1,58	-1,5			
0,707	-3	-3			
1	-6,02	-6			

Finalmente dando valores a la pulsación normalizada \boldsymbol{u} y a ξ en la expresión :

$$F|_{(ju)}|_{dB} = -10 * \log_{10} \left[\left(1 - 2 * u^2 + u^4 \right) + \left(4 * \xi^2 * u^2 \right) \right]$$

se obtienen las siguientes curvas de corrección de módulo:

La siguiente tabla indica para cada valor de ξ y en cada valor de la pulsación normalizada \boldsymbol{u} la diferencia entre la <u>curva asintótica</u> de 2° grado de módulo y la <u>curva real</u>.

	Corrección de Módulo (en dB)								
w/w _n §	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0,1	0,08552402	0,08021209	0,071373286	0,059029104	0,043209395	0,023952125	0,001303079	-0,0246845	-0,05395032
0,2	0,347042042	0,324520238	0,287241513	0,235583106	0,170055453	0,091285952	0	-0,10299957	-0,21685352
0,3	0,800332985	0,744300905	0,652491253	0,527133553	0,371100126	0,187705126	-0,01949941	-0,24690862	-0,49101678
0,4	1,475200064	1,359638173	1,173616383	0,925886392	0,626827522	0,287241513	-0,08259415	-0,47352761	-0,87781418
0,5	2,42224509	2,200429488	1,85419484	1,411621486	0,901766303	0,350336252	-0,22222105	-0,80085085	-1,37512353
0,6	3,726341434	3,304971659	2,682501165	1,93820026	1,13734941	0,324520238	-0,47352761	-1,24243309	-1,97556213
0,7	5,533075336	4,70441327	3,60015752	2,413151501	1,248808345	0,151577686	-0,86537784	-1,80269278	-2,66631459
0,8	8,091082831	6,345120151	4,436974992	2,682501165	1,13734941	-0,21685352	-1,4113609	-2,47482261	-3,43053923
0,9	11,64309429	7,806774916	4,845235586	2,560984495	0,725783049	-0,80085085	-2,10505791	-3,24220703	-4,24963263
1	13,97940009	7,958800173	4,436974992	1,93820026	0	-1,58362492	-2,92256071	-4,08239965	-5,1054501
2	2,42224509	2,200429488	1,85419484	1,411621486	0,901766303	0,350336252	-0,22222105	-0,80085085	-1,37512353
3	0,998689835	0,926417282	0,808573141	0,64878547	0,451621588	0,222199598	-0,03417977	-0,31233863	-0,60744461
4	0,548238743	0,511440402	0,45079435	0,367287946	0,262229227	0,137182426	-0,00610298	-0,16576359	-0,33988875
5	0,347042042	0,324520238	0,287241513	0,235583106	0,170055453	0,091285952	0	-0,10299957	-0,21685352
6	0,239586951	0,224316284	0,198983892	0,163764967	0,11889915	0,06468522	0,001474707	-0,07033532	-0,15030996
7	0,175403905	0,164343863	0,145972824	0,120383227	0,087702329	0,048090123	0,001736802	-0,05114018	-0,11029931
8	0,1339882	0,125598144	0,111650637	0,092199075	0,06731726	0,03709848	0,001654366	-0,03888644	-0,0843798

NOTA:

De las curvas y la tabla de corrección, se observa que para valores de ξ entre 0,4 y 1, están muy próximos al valor de la asíntota de 2° grado por lo que no será necesario realizar corrección entre estos valores. Pero si ξ es inferior o igual a 0,3, deberá realizarse la corrección empleando las curvas o las tablas de corrección pues los errores que se cometen son exagerados.

Analizando las curvas de una función de 2° grado, se observa que el valor del pico para cada valor de ξ no coincide plenamente con el valor de $\boldsymbol{u} = 1$ o $\omega = \omega_0$. (Ver curva ampliada)

Determinaremos el valor de la pulsación en la que aparece la cresta de las curvas para cada valor de ξ .

Partiendo de la expresión :

$$F|_{(ju)}|_{dB} = -10 * \log_{10} \underbrace{\left[\left(1 - 2 * u^2 + u^4 \right) + \left(4 * \xi^2 * u^2 \right) \right]}_{A}$$

Si derivamos el término entre corchetes "A" con respecto a la pulsación normalizada \boldsymbol{u} e igualamos a cero, obtendremos el valor de la pulsación normalizada \boldsymbol{u} , en el cual la $F(j\omega)$ es máxima para cada valor de ξ .

maxima para cada valor de
$$\xi$$
.

$$A = \left[\left(1 - 2 * u^2 + u^4 \right) + \left(4 * \xi^2 * u^2 \right) \right]$$

$$\frac{d}{du} = \frac{d}{du} \left[\left(1 - 2 * u^2 + u^4 \right) + \left(4 * \xi^2 * u^2 \right) \right] = 0$$
Dividiendo por $\mathbf{4} \mathbf{u} \rightarrow \frac{d}{du} = -4 * u + 4 * u^3 + 4 * \xi^2 * 2 * u = 0$

nos queda
$$\rightarrow \frac{d}{du} = -1 + u^2 + 2 * \xi^2 = 0$$
Finalmente despejando $\mathbf{u} \rightarrow \frac{d}{du} = 1 - 2 * \xi^2 \qquad \therefore \qquad \mathbf{u} = \sqrt{1 - 2 * \xi^2}$

La siguiente tabla indica el valor de la pulsación normalizada \boldsymbol{u} en que se produce, para cada valor de ξ la cresta de la curva correspondiente, aplicando la última expresión :

ξ	$u = \sqrt{1 - 2 \xi^2}$
0	1
0,05	0,997
0,1	0,989
0,2	0,959
0,3	0,905
0,4	0,824
0,5	0,707
0,6	0,529
0,707	0

Página 7 de 11

Finalmente recordando que la pulsación normalizada ${\it u}=\omega/\omega_{\rm O}$, podemos determinar para casos particulares el valor de la pulsación en la cual se produce la cresta de la curva de módulo para cada valor de ξ haciendo :

$$u = \sqrt{1 - 2 * \xi^2}$$
 \therefore $\omega = \omega_O \sqrt{1 - 2 * \xi^2}$

Finalmente podemos obtener el valor de la cresta de la $F(j\omega)$ para cada valor de ξ si en la expresión :

$$F_{(ju)}|_{dB} = -10 * \log_{10} \left[(1 - 2 * u^2 + u^4) + (4 * \xi^2 * u^2) \right]$$

$$F_{(ju)}|_{dB} = -10 * \log_{10} \left[(1 - u^2)^2 + (4 * \xi^2 * u^2) \right]$$

Reemplazamos la pulsación normalizada \boldsymbol{u} por $u = \sqrt{1 - 2 * \xi^2}$

$$F \Big|_{(ju)}\Big|_{dB} = -10 * \log_{10} \left[\left\{ 1 - \left[\sqrt{(1 - 2\xi^{2})} \right]^{2} \right\}^{2} + \left(4 * \xi^{2} * \left[\sqrt{(1 - 2\xi^{2})} \right]^{2} \right) \right]$$

$$F \Big|_{(ju)}\Big|_{dB} = -10 * \log_{10} \left(1 - 1 + 2\xi^{2} \right)^{2} + 4 * \xi^{2} * (1 - 2\xi^{2})$$

$$F \Big|_{(ju)}\Big|_{dB} = -10 * \log_{10} \left(4\xi^{4} + 4 * \xi^{2} - 8 * \xi^{4} \right) = -10 * \log_{10} \left(4 * \xi^{2} - 4 * \xi^{4} \right)$$

$$F \Big|_{(ju)}\Big|_{dB} = -20 * \log_{10} \sqrt{\left(4 * \xi^{2} - 4 * \xi^{4} \right)}$$

$$F \left|_{(ju)}\right|_{dB} = -20 * \log_{10} \left[2 * \xi * \sqrt{(1 - \xi^2)} \right]$$

Aplicando la última expresión, obtenemos los valores de cresta de la $F(j\omega)$ para cada valor de ξ en la pulsación normalizada, en la cual se produce la misma.

ξ	$u = \sqrt{1 - 2 \xi^2}$	Valor de la cresta
0	1	∞
0,05	0,997	20,01
0,1	0,989	14,02
0,2	0,959	8,13
0,3	0,905	4,84
0,4	0,824	2,69
0,5	0,707	1,249
0,6	0,529	0,354
0,7	0,141	1,73 *10 ⁻³

<u>DETERMINACIÓN DE LAS CURVAS ASINTÓTICAS DE FASE DE UNA FUNCIÓN DE 2º GRADO</u>

Supondremos en primer lugar que la función de 2° grado está en el numerador de la $F(j\omega)$ y una vez acondicionada tiene el siguiente formato :

$$F_{(ju)} = 1 - u^2 + j * 2 * \xi * u$$

La fase estará dada por :

$$\varphi_{F_{(ju)}} = tg^{-1} \left(\frac{\text{Im}_{F_{(j\omega)}}}{\text{Re}_{F_{(j\omega)}}} \right) = tg^{-1} \left(\frac{2 * \xi * u}{1 - u^2} \right)$$

Si suponemos para un análisis simplificado que $\xi = 0.5$ tendremos :

$$\varphi_{F_{(ju)}} = tg^{-1} \left(\frac{u}{1 - u^2} \right)$$

Dando valores a *u* tendremos :

$$\begin{array}{lllll} u=0.01 & & \omega=0.01 \ \omega_O & & & \varphi_{F_{(j\omega)}}=0 \ \ [^\circ] \\ u=0.1 & & \omega=0.1 \ \omega_O & & & \varphi_{F_{(j\omega)}}=0 \ \ [^\circ] & Error \rightarrow 5.76[^\circ] \\ u=1 & & \omega=\omega_O & & \varphi_{F_{(j\omega)}}=90 \ \ [^\circ] \\ u=10 & & \omega=10 \ \omega_O & & \varphi_{F_{(j\omega)}}=180 \ \ [^\circ] & Error \rightarrow 174.26[^\circ] \\ u=100 & & \omega=100 \ \omega_O & & \varphi_{F_{(j\omega)}}=180 \ \ [^\circ] \\ u=1000 & & \omega=1000 \ \omega_O & & \varphi_{F_{(j\omega)}}=180 \ \ [^\circ] \end{array}$$

Similar al resultado obtenido para una función de 2° grado del tipo $(P+\alpha)^2$. Por lo que en el diagrama de Bode de fase trazaremos a partir del valor de 0,1 ω_O una asíntota con pendiente de +90 [°/dec] que finalizará en 10 ω_O en 180°.

Para distintos valores del factor de amortiguamiento ξ , se obtienen las siguientes curvas de corrección de fase :

Página 9 de 11

Para el caso de que la función de 2° grado estuviera en el denominador de la $F(j\omega)$, como polos tendremos :

$$F_{(ju)} = (1 - u^2 + j * 2 * \xi * u)^{-1}$$

La fase estará dada por :

$$\varphi_{F_{(ju)}} = -tg^{-1} \left(\frac{\text{Im}_{F_{(j\omega)}}}{\text{Re}_{F_{(j\omega)}}} \right) = -tg^{-1} \left(\frac{2 * \xi * u}{1 - u^2} \right)$$

Si suponemos para un análisis simplificado que $\xi = 0.5$ tendremos :

$$\varphi_{F_{(ju)}} = -tg^{-1} \left(\frac{u}{1 - u^2} \right)$$

Dando valores a *u* tendremos:

$$\begin{array}{lllll} u=0.01 & & \omega=0.01 \ \omega_O & & & \varphi_{F_{(j\omega)}}=0 \ \ [^\circ] \\ u=0.1 & & \omega=0.1 \ \omega_O & & & \varphi_{F_{(j\omega)}}=0 \ \ [^\circ] \\ u=1 & & \omega=\omega_O & & & \varphi_{F_{(j\omega)}}=-90 \ \ [^\circ] \\ u=10 & & \omega=10 \ \omega_O & & & \varphi_{F_{(j\omega)}}=-180 \ \ [^\circ] \end{array} \quad \begin{array}{lll} Error & \rightarrow -5.76 \ \ [^\circ] \\ w=100 & & \omega=100 \ \omega_O & & \varphi_{F_{(j\omega)}}=-180 \ \ [^\circ] \end{array}$$

$$\begin{array}{lll} u=100 & & \omega=1000 \ \omega_O & & \varphi_{F_{(j\omega)}}=-180 \ \ [^\circ] \end{array}$$

$$\begin{array}{lll} u=1000 & & \omega=1000 \ \omega_O & & \varphi_{F_{(j\omega)}}=-180 \ \ [^\circ] \end{array}$$

Similar al resultado obtenido para una función de 2° grado del tipo $(P+\alpha)^{-2}$. Por lo que en el diagrama de Bode de fase trazaremos a partir del valor de $0,1~\omega_{O}$ una asíntota con pendiente de $-90~[^{\circ}/\text{dec}]$ que finalizará en $10~\omega_{O}$ en -180° .

Para distintos valores del factor de amortiguamiento ξ , se obtienen las siguientes curvas de corrección de fase :

La siguiente tabla indica para cada valor de ξ y en cada valor de la pulsación normalizada \boldsymbol{u} la diferencia entre la <u>curva asintótica</u> de 2° grado de fase y la <u>curva real</u>.

INGENIERÍA EN ELECTRÓNICA CÁTEDRA: TEORÍA DE LOS CIRCUITOS II

	Corrección de Fase (en grados sexagesimales)								
w/wn S	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0,1	-1,15733307	-2,3137225	-3,46822926	-4,61992348	-5,7678889	-6,91122712	-8,0490617	-9,18054196	-10,3048465
0,2	24,7067556	22,3290579	19,9676833	17,6303774	15,3244107	13,0564561	10,8324949	8,65775079	6,53665439
0,3	39,1686293	35,4287688	31,752113	28,1663626	24,6950584	21,3569437	18,1657724	15,1304975	12,2557398
0,4	48,7450672	43,4011014	38,2400033	33,3309412	28,7220542	24,4405179	20,4953317	16,8814509	13,5841046
0,5	55,312657	47,9758832	41,1058909	34,8348135	29,2172329	24,2474921	19,8822344	16,0596901	12,7128715
0,6	59,4139573	49,4775673	40,675859	33,1637149	26,8812228	21,6671519	17,3375608	13,7236801	10,6842805
0,7	60,7086871	47,2911743	36,5863638	28,3833969	22,1348352	17,3225553	13,5516606	10,5413095	8,09505054
0,8	57,3156099	39,6445595	28,1479965	20,6358524	15,5058441	11,834144	9,09698774	6,98673666	5,3143423
0,9	42,4299835	23,7059222	15,2663415	10,6645519	7,80256439	5,85953847	4,45705849	3,39826757	2,57114125
1	0	0	0	0	0	0	0	0	0
2	-55,312657	-47,9758832	-41,1058909	-34,8348135	-29,2172329	-24,2474921	-19,8822344	-16,0596901	-12,7128715
3	-42,7699337	-38,5283215	-34,3787036	-30,3598428	-26,5030419	-22,8313418	-19,3596143	-16,0953305	-13,0397371
4	-32,7617183	-29,7260726	-26,7243239	-23,7720256	-20,8831836	-18,0699292	-15,3423213	-12,7082739	-10,173595
5	-24,7067556	-22,3290579	-19,9676833	-17,6303774	-15,3244107	-13,0564561	-10,8324949	-8,65775079	-6,53665439
6	-18,0027299	-16,0436746	-14,0937592	-12,157395	-10,2388089	-8,34199174	-6,47065418	-4,62819132	-2,81765627
7	-12,2705231	-10,6027059	-8,9405318	-7,28675135	-5,64403143	-4,01493089	-2,40187854	-0,80715409	0,7671275
8	-7,26708299	-5,81413831	-4,36492616	-2,92127703	-1,48497914	-0,05776574	1,35869682	2,76281959	4,15310039

NOTA:

De las curvas y la tabla de corrección, se observa que para valores de ξ entre 0,4 y 1, están muy próximos al valor de la asíntota de 2° grado de la fase, por lo que no será necesario realizar corrección entre estos valores. Pero si ξ es inferior o igual a 0,3, deberá realizarse la corrección empleando las curvas o las tablas de corrección pues los errores que se cometen son exagerados.