

Large Scale Data Processing

Lecture 1 - Basic notation, definitions

dr hab. inż. Tomasz Kajdanowicz, Piotr Bielak, Roman Bartusiak

September 27, 2020

Overview

Big data – 5Vs

Types of processing

Flynn's taxonomy

Overview

Big data – 5Vs

Types of processing

Flynn's taxonomy

Big data - 5Vs

Big data - 5Vs

- Volume enormous volumes of data,
- Velocity data flows in time from multiple sources and with varying speed,
- ► Value data can be hard to obtain,
- Veracity (wiarygodność) biases, noise and abnormality in data,
- Variety many sources and types of data both structured and unstructured,

Sometimes this definition is extended to 7Vs:

- Validity if data correct and accurate for the intended use,
- Volatility how long is data valid and how long should it be stored,

Overview

Big data - 5Vs

Types of processing

Flynn's taxonomy

- Sequential processing
- Distributed processing
- Parallel processing
- Concurrent processing

Sequential processing

- processing that occurs in the order that it is received
- processor inevitably executes the same program

Distributed processing

- more than one computer (or processor) run an application
- memory is distributed!
- includes parallel processing in which a single computer uses more than one CPU to execute programs

- nodes run operations, that decomposes original large problem
- perations within a node are fast; communication between nodes is slow
- nodes operates on their own clocks

Parallel processing

- Programs use parallel hardwares to execute computation more quickly
- Possible hardware:
 - multi-core processors
 - symmetric multiprocessors
 - graphics processing unit (GPU)
 - ► field-programmable gate arrays (FPGAs)
 - computer clusters
- ► Parallel programming requires to think about:
 - ► How does code divide original huge problem into smaller sub-problems?
 - Which is the optimal use of parallel hardware?

CPU vs GPU vs TPU

Types of processing

► Memory Subsystem Architecture

CPU vs GPU vs TPU

Types of processing

► Compute Primitive

CPU vs GPU vs TPU

- Dimension of data:
 - CPU: 1 X 1 data unit
 - GPU: 1 X N data unit
 - ► TPU: N X N data unit
- Performance
 - CPU can handle tens of operation per cycle
 - GPU can handle tens of thousands of operation per cycle
 - ► TPU can handle upto 128000 operations per cycle
- Purpose
 - ► CPU designed to solve every computational problem in a general fashion; cache and memory optimal for any general programming problem
 - ► GPU designed to accelerate the rendering of graphics
 - ▶ TPU designed to accelerate deep learning tasks developed with TensorFlow

Concurrent processing

- concurrency is when multiple sequences of operations are run in overlapping periods of time
- task A and task B both need to happen independently of each other, and A starts running, and then B starts before A is finished
- address limits of resources
- taxonomy:
 - multitasking
 - multiprocessing
 - preemption: preemptive, cooperative

Concurrency example

Concurrent vs parallel

Overview

Big data – 5V

Types of processing

Flynn's taxonomy

Computer architecture recap

Flynn's taxonomy

	Architecture	
Criterion	(a)	(b)
Memory/Bus	one	two
Complexity	simple	complicated
Single instruction	two clock cycles	one clock cycle
Performance	low	high (pipelining)
Cost	cheap	high

Data and Instruction streams

Flynn's taxonomy

In Flynn's taxonomy we use following criteria to define system architectures:

- number of instructions stream(s) single or multiple,
- number of data stream(s) single or multiple,

Hence we get following acronyms: (S/M) I (S/M) D

Architectures

Flynn's taxonomy

- ► SISD sequential computer; von Neumann architecture; many PCs before 2010 and mainframes
- SIMD GPU; modern CPUs with vectorization
- ► MISD systolic computer; fault-tolerant systems
- ► MIMD cluster, where each processor is programmed separately; Intel Xeon Phi; multi-core superscalar processors; distributed systems

Overview

Big data – 5Vs

Types of processing

Flynn's taxonomy

Compilation process, optimizations

- we won't get into the details of the compilation process,
- programming languages:
 - interpreted (e.g., Python, JavaScript),
 - compiled (e.g., C, C++, Rust),
 - mixed (e.g., Java Bytecode+JVM, Python in some cases),
- interpreted PLs are in general slower than compiled ones (however there is JIT),
- this is caused by heavy optimizations, which are applied in the compilation process, e.g.:
 - removal of unused code if the compiler detects that some variable, function etc. is declared, but is never used, then all instructions concerning that variable are removed (can be problematic in some cases like embedded systems; see: volatile in C/C++)
 - unrolling loops into vector operations ...

Vectorization

- ▶ 32/64-bit CPUs use general purpose registers with a capacity of 32/64 bits each,
- ▶ however there are some *special registers* with a size equal to the multiple of the architecture size (multiples of 32/64 bits),
- operations on these registers take one CPU cycle,
- hence we can speed up computations

Vector registers

Vector registers

Large Scale Data Processing

Lecture 1 - Basic notation, definitions

dr hab. inż. Tomasz Kajdanowicz, Piotr Bielak, Roman Bartusiak

September 27, 2020