Problem. (Sylvester's problem)

Let a_1, a_2, \ldots, a_m be the points in \mathbb{R}^d . Given these points we need to find an spheroid, that contains all points with the minimum volume (or equivalently, with the minimum radius)

Solution:

In other words we need to find solution of the minimization task:

$$\varphi(x) = \max_{i=\overline{1,m}} (\|a_i - x\|) \to \min, \ x \in \mathbb{R}^d$$

Note that $\varphi(x)$ is point-wise maximum of m convex function it means that we can use subdifferential calculus for searching the extremum point of $\varphi(x)$.

We will use the following theorems from subdifferential calculus:

Theorem 1. (Dubovitsky - Milutin)

Let $f_i(x)$, $i = \overline{1,n}$ is convex functions $S \to \mathbb{R}^d$ (where S is open and convex set) and all of these functions are continuous at a point $x_0 \in S$ and $f(x) = \max_{i=\overline{1,n}} (f_i(x))$, then

$$\partial f(x_0) = ch\left(\bigcup_{j \in I} \partial f_j(x_0)\right),$$

where $I = \{j : f_j(x_0) = f(x_0)\}$ – set of active indexes, ch is convex hull.

Theorem 2. (Fermat Lemma in subdifferential calculus)

 x_0 is point of extremum of f(x) if and only if $0 \in \partial f(x_0)$, where f(x) is convex function.

proposition 1.

$$\partial (\|a - x\|) (x_0) = \begin{cases} B_1(0), & \text{if } x_0 = a \\ \frac{a - x}{\|a - x\|}, & \text{if } x_0 \neq a \end{cases},$$

where $B_1(0) = \{x \in \mathbb{R}^d : ||x|| \le 1\}^1$

proposition 2.

Let \hat{x} is a point of extremum $\varphi(x)$ (we consider that m > 1), then |I| > 1 where I is set of active indexes (see theorem 1)

 \triangleright

Indeed, if |I| = 1 (let $I = \{j^*\}$) then only a_{j^*} belongs to the boundary of the spheroid, but according to Fermat Lemma (theorem 2) and proposition $1 \ x = a_{j^*}$, it means r = 0 which is

¹In general, we we have a case of dual space, but in this article the case of \mathbb{R}^d with standard metric is considered, so $(\mathbb{R}^d)^* = \mathbb{R}^d$

not possible in the case of m > 1.

 \triangleleft

Let's first consider the case of \mathbb{R}^2 . A circle can be defined by two points on the diameter or by three points belonging to it. If two points belong to a circle, then it is easy to see that the theorem 1 holds, but we need to check that all other points belong to this circle. Consider three arbitrary points of the set a_1, a_2, a_3 (these points do not belong to one line). Let the circle built on them has a center c and the radius r. If this circle contains all the other points of the set then we have to check the fulfillment of the theorem 1:

$$0 \in \triangle ABC = \operatorname{ch}\left\{\frac{a_i - c}{\|a_i - c\|}, \ i = 1, 2, 3\right\}$$

The following is an algorithm for checking whether a point belongs to a triangle. Point O belongs $\triangle ABC$ if and only if $S_{ABC} = S_{ABO} + S_{ACO} + S_{BCO}$.

The square of the triangle can be calculated through the determinant of the matrix formed by the vectors of the sides of the triangle:

$$S_{ABC} = \frac{1}{2} \left| \det \begin{pmatrix} r_1 & r_2 \end{pmatrix} \right|, S_{ABO} = \frac{1}{2} \left| \det \begin{pmatrix} r_1 & r_3 \end{pmatrix} \right|$$

the remaining squares can be expressed similarly.

Thus, we present a complete solution algorithm in case \mathbb{R}^2

- 2. Iterate through all possible triples of points. Build a circle on each such triple (if these points do not lie on the same straight line).
 - (a) Check whether the constructed circle contains all points of the set
 - (b) If the previous paragraph is fulfilled, check the fulfillment of the condition of the theorem 1

The presented algorithm is generalized in an understandable way to the case \mathbb{R}^d , d>2

