Homework 1

Problem 1. Calculate the following:

- $(a) \binom{10}{8};$
- (b) The inverse of 1, 2, 3, 4, 5, 6 in \mathbb{Z}_7 , i.e. for each $1 \le i \le 6$, find $j = i^{-1}$ such that $ij \equiv 1 \mod 7$;
- (c) The rightmost digit in the decimal $\binom{449}{137}$, i.e. $\binom{449}{137}$ mod 10.

Problem 2. Find the number of ordered pairs (A, B) such that $A, B \subseteq [n]$ and $A \cap B = \emptyset$.

Problem 3. Prove

$$\sum_{r=0}^{n} r^{2} \binom{n}{r} = n(n+1)2^{n-2}.$$

For extra challenge, find a combinatorial proof.

Problem 4. Consider 20 blue segments (0,i)-(9,i) and (i,0)-(i,9) for i=0,1,...,9. They form a matrix of 9×9 unit squares. A square is blue if it has four blue edges.

- (a) How many blue squares can you find in such a picture?
- (b) How many pairs of blue squares (A, B) can you find such that A and B are disjoint? (Two squares are disjoint if they do not share any interior points.)

Problem 5. Use the 9×9 unit squares again. If each unit square is filled with a distinct number from [81], prove that there are always two neighboring squares (vertically or horizontally adjacent) with difference at least 9.