

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Álgebra Elementar — Avaliação P2 Prof. Adriano Barbosa

Matemática	30/11/2018
Matematica	30/11/2010

1	
2	
3	
4	
5	
Nota	

Aluno(a):....

Todas as respostas devem ser justificadas.

- 1. Dê um exemplo de conjuntos A, B e C tais que:
 - (a) $A \subset B$, $B \not\subset C$ e $A \subset C$
 - (b) $A \not\subset B$, $B \not\subset C$ e $A \subset C$
 - (c) $A \in B, B \notin C \in A \notin C$
- 2. Mostre que $(A \cup B)^C = A^C \cap B^C$.
- 3. Use o princípio de indução para mostrar que:

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

- 4. Sejam $A = \{x \in \mathbb{R} \mid 0 \le x \le 5\}, B = (2,5] \in C = (3,6)$. Determine os conjuntos:
 - (a) A B
 - (b) $A \cap B$
 - (c) A-C
 - (d) $A \cup C$
- 5. Dados os conjuntos $A = \{2, 6, 12\}$ e $B = \{2, 3, 4\}$:
 - (a) Determine os elementos do conjunto $A \times B$.
 - (b) Determine os elementos da relação $R = \{(x, y) \in A \times B \mid y \text{ divide } x\}.$

- (1) a) Tomando $B=\{1,2\}$, $C=\{2,3\}$ & $A=\{2\}$, temos ACB_1ACC & $B\not\in C$, pois $1\in B$ & $1\not\in C$.
 - b) Tomando $A = \{a\}$, $C = \{a, c\} \in B = \{b\}$, temos $A \subset C$, $A \not\in B$, pois $a \in A \in a \not\in B$, $e \in B \not\in C$, pois $b \in B \in b \not\in C$.
 - c) Tomando $A = \{0, 0\}$, $B = \{0, 0\}$, $\{0\}$ e $C = \{0\}$, temos $A \in B$, $B \notin C$, pois $\{0\} \notin B$ e $\{0\} \notin C$, e $A \notin C$.
- (2) Seja $x \in (AUB)^c$, temos que: $x \notin AUB \Rightarrow x \notin A = x \notin B \Rightarrow x \in A^c = x \in B^c \Rightarrow x \in A^c \cap B^c$. Assim, todo elemento de $(AUB)^c$ também é elemento de $A^c \cap B^c$, ou seja, $(AUB)^c \subset A^c \cap B^c$.

Reciprocamente, se xEACABC, entas:

 $x \in A' \ \ x \in B' \ \Rightarrow \ x \notin A \ \ \ x \notin B \ \Rightarrow \ x \notin A \cup B \ \Rightarrow \ x \in (A \cup B)^c.$

Logo, A'NB'C (AUB).

Portanto, (AUB) = A n B.

- 3 Usando indução sobre n, observe que:
 - λ) Para $n = \lambda$: $\lambda^2 = \lambda = \frac{\lambda(\lambda + \lambda)(2 \cdot \lambda + \lambda)}{6}$
- 2) Supondo $1^{2}+2^{2}+\dots+n^{2}=\frac{n(n+1)(2n+1)}{6}$, temos: $1^{2}+2^{2}+\dots+n^{2}+(n+1)^{2}=\frac{n(n+1)(2n+1)}{6}+(n+1)^{2}=\frac{(n^{2}+n)(2n+1)}{6}+n^{2}+2n+1$ $=\frac{2n^{3}+n^{2}+2n^{2}+n+6n^{2}+12n+6}{6}=\frac{2n^{3}+9n^{2}+13n+6}{6}$ [I)

Por outro lado,

$$\frac{(n+1)[(n+1)+1][2(n+1)+1]}{6} = \frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n^2+2n+n+2)(2n+3)}{6}$$

$$= \frac{2n^3+3n^2+4n^2+6n+2n^2+3n+4n+6}{6}$$

$$= \frac{2n^3+9n^2+13n+6}{6} \quad \text{(II)}$$

Como (I) =(II), segue-se, telo princípio de indução, que a formulo é válido.

$$A = \underbrace{\begin{array}{c} 2 & 3 & 5 \\ B = \underbrace{\begin{array}{c} 2 & 3 & 5 \\ C = & 2 & 5 \end{array}} = \begin{bmatrix} 2 & 5 \\ C = & 3 & 6 \\ C = & 2 & 5 \\ C = & 2 & 5 \\ C = & 2 & 2 & 5 \\ C = & 2 & 2 & 5 \\ C = & 2 & 2 & 2 \\ C = &$$

$$(5)$$
 $A = \{2,6,12\}$ & $B = \{2,3,4\}$

a)
$$4$$
 (2.4) (6.4) $(1.2,14)$

3 $(2,3)$ $(6,3)$ $(1.2,3)$

2 (2.2) (6.2) $(1.2,12)$

2 (6.2) $(1.2,12)$

$$A \times B = \left\{ (2,2), (2,3), (2,4), (6,2), (6,3), (6,4), (42,2), (42,4) \right\}$$

b)
$$\mathcal{R} = \{(x,y) \in A \times B \mid y \text{ divide } x\} = \{(2,2), (6,2), (6,3), (42,2), (42,3), (42,4)\}$$
.