

Driven by Capacity or Blockage? A Millimeter Wave Blockage Analysis

Authors: Ish Kumar Jain, Rajeev Kumar, Shivendra Panwar

Presenter: Shivendra Panwar

NYU Tandon School of Engineering

QoS Requirements

NEM Summit November 23, 2016

AR/VR requirements

Data Rates	100Mbps-1Gbps
Interruptions	0.1/min
Video stall (pause)	<10 ms

(otherwise causes nausea or sickness)

Image source. https://videohive.net

Base station Model

- ❖ A typical user at Origin
- Consider the coverage range R m
- \diamond Density of BS λ_T BS/m²
- Number of BS $m_T \sim \text{Poission}(\lambda_T \pi R^2)$
- **Location of BS** (r_i, θ_i) Uniform in disc B(o,R)
- \bullet BS height h_T m. User's height h_R m

m ~ Poisson($\lambda_T \pi R^2$)

Given m, BS location ~ Uniform

Self-blockage Model

- \diamond Self-blockage zone: a sector of angle ω
- All BSs in self-blockage zone are blocked
- Number of BS N outside this zone follow

$$P_N(n) = \frac{[p\lambda_T \pi R^2]^n}{n!} e^{-p\lambda_T \pi R^2}$$

- \diamond Coverage event \mathcal{C} :
 - At least one BS not blocked by user's body
- Probability of coverage: $P(\mathcal{C}) = 1 e^{-p\lambda_T \pi R^2}$

Dynamic Blockage Model

- Moving people and vehicles (mobile blockers)
- Slocker density λ_B bl/m², height h_B m, velocity V m/s
- Effective blockage zone distance r_i^{eff}

$$r_i^{eff} = \frac{(h_B - h_R)}{(h_T - h_R)} r_i$$

Blocker Arrival Rate ~ Poisson(α_i)

$$\alpha_{i} = \frac{2}{\pi} \lambda_{B} V \frac{(h_{B} - h_{R})}{(h_{T} - h_{R})} r_{i} = C r_{i}$$

$$C \text{ (proportional to } \lambda_{B})$$

❖ Blockage duration ~ Exponential(µ)

Blockage scenarios

- Open park scenario: Focus of this paper
 - LOS analysis
 - Dynamic and self-blockage
- Urban scenario: Extension of this paper available on ArXiv*
 - Buildings may cause static blockage
 - LOS as well as NLOS paths

*Jain IK, Kumar R, Panwar S. Can Millimeter Wave Cellular Systems provide High Reliability and Low Latency? An analysis of the impact of Mobile Blockers. arXiv preprint arXiv:1807.04388. 2018 Jul 12.

Generalized Blockage Model: an approximation

❖ Approximation: No more than one blocker at a time blocking the LOS link

Explaination: For $\lambda_B < 0.2 \text{ bl/m}^2$ the Probability of having 2 or more blockers < 0.1

Simultaneous Blockage

- Blockage is defined when all BSs are simultaneously blocked
- Consider r.v. B indicating blockage of all n links

$$P(B|N, \{R_i\}) = \prod_{i=1}^{n} \frac{\alpha_i/\mu}{1 + \alpha_i/\mu} = \prod_{i=1}^{n} \frac{(C/\mu)r_i}{1 + (C/\mu)r_i}.$$

Integrate over distributions of N and R_i

Macro-Diversity

UE can quickly switch between BSs in case of blockage events.

Blockage Probability

Unconditional/Marginal Blockage Probability

$$P_B = e^{-ap\lambda_T \pi R^2}$$

where,
$$a = \frac{2\mu}{RC} - \frac{2\mu^2}{R^2C^2} \log\left(1 + \frac{RC}{\mu}\right)$$

$$a \approx 1 - \frac{2RC}{3\mu}, p = 1 - \frac{\omega}{2\pi}$$

- We know that C is proportional to blocker density
- \diamond Blockage \uparrow when $\lambda_B \uparrow$ or $\lambda_T \downarrow$ or $R \downarrow$ or $\mu \downarrow$
- Pure blockage (given Coverage) P(B|C)

$$P(B|\mathcal{C}) = \frac{e^{-ap\lambda_T \pi R^2} - e^{-p\lambda_T \pi R^2}}{1 - e^{-p\lambda_T \pi R^2}}$$

BS Density scales linearly with blocker density

Blockage Frequency

• Consider r.v. ζ_B indicating blockage of all BSs-UE link

$$\zeta_B = n\mu P(B|N, \{R_i\}) = n\mu \prod_{i=1}^n \frac{(C/\mu)r_i}{1 + (C/\mu)r_i}$$

 Expected blockage frequency given the coverage

$$\mathbb{E}\left[\zeta_B|\mathcal{C}\right] = \frac{\mu(1-a)p\lambda_T\pi R^2 e^{-ap\lambda_T\pi R^2}}{1 - e^{-p\lambda_T\pi R^2}}$$

Blockage Duration

Consider r.v. T_B indicating blockage of all BSs-UE link

$$\mathbb{E}[T_B|N] = \frac{1}{n\mu}$$

 Expected blockage duration given coverage

$$\mathbb{E}\left[T_B|\mathcal{C}\right] = \frac{e^{-p\lambda_T \pi R^2}}{\mu \left(1 - e^{-p\lambda_T \pi R^2}\right)} Ei\left[p\lambda_T \pi R^2\right].$$

$$Ei\left[p\lambda_T\pi R^2\right] = \sum_{n=1}^{\infty} \frac{[p\lambda_T\pi R^2]^n}{nn!}.$$

Simulation setup

- MATLAB Simulations
- Random way-point mobility model (blockers)

Parameters	Values
Radius R	100 m
Velocity of blockers V	1 m/s
Height of Blockers h_B	1.8 m
Height of UE h_R	1.4 m
Height of APs h_T	6 m
Expected blockage duration $1/\mu$	1/2 s

Table I: Simulation parameters

Results: Blockage Probability

For blockage probability =1e-3, and blocker density $0.1bl/m^2$, we need around >300 BS/km² (cell radius ~33m).

Capacity requirements can be satisfied with BS density of around 100 BS/km².

mmWave wireless networks may be blockage limited instead of capacity limited.

A potential solution can be fallback to LTE or Local WiFi networks.

Conditional Blockage Probability (given coverage)

Blockage Frequency

For blockage frequency ~ 0.1 interruptions per min, we need even higher BS density.

Blockage Duration

Even at high BS density, the blockage duration is ~ 50 ms.

BS density-height trade-off

Increasing BS height from 4 m to 8 m can reduce the BS density by only 20%.

Optimal BS density-height trade-off can also be obtained through closed-form expression of blockage probability.

Related Work

- Robert Heath et al. (UT Austin) [1,2,3]
 - Random shape theory: Static blockage due to buildings and permanent structures
 - Coverage and rate analysis (no reliability study)
 - Macrodiversity with correlated static blockages [3]
- MacCartney et al. (NYU Wireless) [4,5]
 - Model based on experimental measurements or ray tracing data
 - Markov model without temporal correlation
- Intel and TUT Finland group [6,7]
 - Dynamic blockage model based on $M/G/\infty$ arrival process of blockers
 - Macrodiversity is not considered due to model complexity
- Qualcomm [8]
 - Analysed self-blockage for different portrait and landscape modes of handheld devices

Related Work (References)

- 1. Bai, Tianyang, and Robert W. Heath. "Coverage and rate analysis for millimeter-wave cellular networks." *IEEE Transactions on Wireless Communications* 14.2 (2015): 1100-1114.
- 2. Bai, Tianyang, Rahul Vaze, and Robert W. Heath. "Using random shape theory to model blockage in random cellular networks." *Signal Processing and Communications (SPCOM), 2012 International Conference on*. IEEE, 2012.
- 3. Gupta, Abhishek K., Jeffrey G. Andrews, and Robert W. Heath. "Macrodiversity in cellular networks with random blockages." *IEEE Transactions on Wireless Communications* 17.2 (2018): 996-1010.
- 4. Akdeniz, Mustafa Riza, et al. "Millimeter wave channel modeling and cellular capacity evaluation." *IEEE journal on selected areas in communications* 32.6 (2014): 1164-1179.
- 5. MacCartney, George R., Theodore S. Rappaport, and Sundeep Rangan. "Rapid fading due to human blockage in pedestrian crowds at 5g millimeter-wave frequencies." *GLOBECOM 2017-2017 IEEE Global Communications Conference*. IEEE, 2017.
- 6. Gapeyenko, Margarita, et al. "On the temporal effects of mobile blockers in urban millimeter-wave cellular scenarios." *IEEE Transactions on Vehicular Technology* (2017).
- 7. Petrov, Vitaly, et al. "Dynamic multi-connectivity performance in ultra-dense urban mmWave deployments." IEEE Journal on Selected Areas in Communications 35.9 (2017): 2038-2055.
- 8. Raghavan, Vasanthan, et al. "Statistical blockage modeling and robustness of beamforming in millimeter wave systems." *arXiv preprint arXiv:1801.03346* (2018).

Summary and Extended Results (avl. on arxiv*)

- For open area: Deterministic Network (with Hexagonal Cells) require significantly lower density of BS to meet reliability requirements.
- For urban scenario:
 - Static blockage: For blockage probability 1e-3 a high BS density (350 BS/km²) is required.
 - NLOS paths: Reduces the BS density to 270 BS/km² but, still the requirement is very high.

*Jain IK, Kumar R, Panwar S. Can Millimeter Wave Cellular Systems provide High Reliability and Low Latency? An analysis of the impact of Mobile Blockers. arXiv preprint arXiv:1807.04388. 2018 Jul 12.

Thank You

Questions?

Simulation: Random Way Point Mobility

Simulation: Time Series

Both BS-1,2 blockage

blockage

Blocker Density= 0.01 bl/m²

Blocker Density= 0.1 bl/m²

