Normal Forms. BCNF and 3NF Decompositions

CS430/630
Lecture 17

Slides based on "Database Management Systems" 3rd ed, Ramakrishnan and Gehrke

Decomposition of a Relation Schema

- A <u>decomposition</u> of R replaces it by two or more relations
 - Each new relation schema contains a subset of the attributes of R
 - Every attribute of R appears in one of the new relations
 - E.g., SNLRWH decomposed into SNLRH and RW
- Decompositions should be used only when needed
 - ▶ Cost of join will be incurred at query time
- ▶ Problems may arise with (improper) decompositions
- ▶ Reconstruction of initial relation may not be possible
- Dependencies cannot be checked on smaller tables

•

Condition for Lossless-join

- ▶ The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:
 - $X \cap Y \xrightarrow{f} X$, or
 - \rightarrow X \cap Y \rightarrow Y
- ▶ In particular, the decomposition of R into UV and R V is lossless-join if $U \rightarrow V$ holds over R.

Dependency Preserving Decomposition

- ightharpoonup Consider CSJDPQV, C is key, JP ightharpoonup C and SD ightharpoonup P.
 - Consider decomposition: CSIDQV and SDP
- ▶ Problem: Checking JP → C requires a join!
- Dependency preserving decomposition (Intuitive):
 - $\,\,$ If R is decomposed into X and Y, and we enforce the FDs that hold on X, Y then all FDs that were given to hold on R must also hold
- Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X (denoted F_X) is the set of $FDs \ U \rightarrow V$ in F^* (closure of F) such that U,V are in X.

•

Dependency Preserving Decompositions

- Decomposition of R into X and Y is dependency preserving if $(F_X \cup F_Y)^+ = F^+$
- Dependencies that can be checked in X without considering Y, and in Y without considering X, together represent all dependencies in F +
- ▶ Dependency preserving does not imply lossless join:
- ABC, A→ B, decomposed into AB and BC.

Normal Forms

- If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized.
- ▶ Role of FDs in detecting redundancy:
- Consider a relation R with attributes AB
 - No FDs hold: There is no redundancy
 - - ☐ Several tuples could have the same A value
 - ☐ If so, they'll all have the same B value!

decompose R into R-Y and XY.

Repeated application of this idea will give us a collection of relations

ess join decomposition, and guaranteed to

that are in BCNE lossless join decomposition, and guern nate (S, P) of the e.g., (S, P) of (S, P

▶ To deal with SD→ P, decompose into SDP, CSJDQV.

Lifecompysicionin to 24 Boyce-Cod Normal Gorn (F) ET) t Consider relation R with FDs F. If X violates BCNF.

- Relation R with FDs F is in BCNF if, for all X \rightarrow A in F^+
- \rightarrow A \subseteq X (called a trivial FD), or
- X contains a key for R

The only non-trivial FDs allowed are leg

▶ BCNF guarantees no anomalies occur

To deal with J → S, decompose CSJDQV into JS and CJDQV Add WeChat powcoder

Decomposition into BCNF **CSIDPQV** $SD \rightarrow P$ **CSIDQV** SDP $i \rightarrow s$ CJDQV JS

In general, several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF
 - \rightarrow e.g., <u>AB</u>C, AB \rightarrow C, C \rightarrow A
- Can't decompose while preserving first FD; not in BCNF

Third Normal Form (3NF)

- ▶ Relation R with FDs F is in 3NF if, for all X \rightarrow A in F^+
 - A ∈ X (called a trivial FD), or
 - X contains a key for R, or
 - A is part of some key for R (A here is a single attribute)
- Minimality of a key is crucial in third condition above!
- If R is in BCNF, it is also in 3NF.
- If R is in 3NF, some redundancy is possible
 - compromise used when BCNF not achievable
 - e.g., no ``good' decomposition, or performance considerations
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

•

Decomposition into 3NF

- Lossless join decomposition algorithm also applies to 3NF
- ▶ To ensure dependency preservation, one idea:
 - \rightarrow If X \rightarrow Y is not preserved, add relation XY
 - Refinement: Instead of the given set of FDs F, use a *minimal* cover for F
- ► Example: \underline{C} SJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
 - Choose SD→ P, result is SDP and CSJDQV
 - Choose J→S, result is JS and CJDQV, all 3NF
 - Add CJP relation

1

Summar Assignment Project Exam Help

- ▶ BCNF: relation is free of FD redundancies
 - ▶ Having only BCNF relations is desirable
 - If relation is not in BCNF, it can be decomposed to BCNF
 - Lossless join property guarantee
 - But some FD may be lost

nttps://powcoder.com

- > 3NF is a relaxation of BCNF
 - ▶ Guarantees both lossless join and FD preservation
- Decompositions may lead to performance loss
- performance requirements must be Annisid red when we composition And the week that powcoder

Þ