MIT OpenCourseWare http://ocw.mit.edu

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.047/6.878 - Computational Biology: Genomes, Networks, Evolution

Sequence Alignment and Dynamic Programming

Challenges in Computational Biology

Reminder: Last lecture / recitation

- Schedule for the term
 - 'Foundations' till midterm
 - 'Frontiers' lead to final project
 - Duality: basic problems / fundamental techniques
- Biology introduction
 - DNA, RNA, protein, transcription, translation
 - Why <u>computational</u> biology
- Today: Comparative genomics is everywhere!
 - Problem set 1: dating vertebrate whole-genome duplication
 - Problem set 2: discover genes using their conservation properties
 - Problem set 3: discover all motifs across entire yeast genome
 - Problem set 4: reversing human/mouse genome rearrangements

Evolution preserved functional elements!

We can 'read' evolution to reveal functional elements

Today's goal:

How do we actually align two genes?

Genomes change over time

Goal of alignment: Infer edit operations

begin

?

From Bio to CS: Formalizing the problem

- Define set of evolutionary operations (insertion, deletion, mutation)
 - Symmetric operations allow time reversibility (part of design choice)

- Define optimality criterion (min number, min cost)
 - -Impossible to infer exact series of operations (Occam's razor: find min)

- Design algorithm that achieves that optimality (or approximates it)
 - -Tractability of solution depends on assumptions in the formulation

Note: Not all decisions are conflicting (some are both relevant and tractable) (e.g. Pevzner vs. Sankoff and directionality in chromosomal inversions)

Formulation 1: Longest common substring

- Given two possibly related strings S1 and S2
 - What is the longest common substring? (no gaps)

Formulation 2: Longest common subsequence

- Given two possibly related strings S1 and S2
 - What is the longest common subsequence? (gaps allowed)

Edit distance:

- Number of changes
 needed for S1→S2
- Uniform scoring function

Formulation 3: Sequence alignment

- Allow gaps (fixed penalty)
 - Insertion & deletion operations
 - Unit cost for each character inserted or deleted
- Varying penalties for edit operations
 - Transitions (Pyrimidine⇔Pyrimidine, Purine⇔Purine)
 - Transversions (Purine ⇔ Pyrimidine changes)
 - Polymerase confuses Aw/G and Cw/T more often

Scoring function:
Match(x,x) = +1
Mismatch(A,G)= $-\frac{1}{2}$
Mismatch(C,T)= $-\frac{1}{2}$
Mismatch(x,y) = -1

	Α	G	Т	С
Α	+1	-1/2	Υ-	Υ-
G	-1/2	+1	-1	-1
T	-1	1	+1	-1/2
С	-1	-1	-1/2	+1

Transitions:

A⇔G, C⇔T common (lower penalty)

Transversions:

All other operations

purine pyrimid

Etc... (e.g. varying gap penalties)

How can we compute best alignment

- Given additive scoring function:
 - Cost of mutation (AG, CT, other)
 - Cost of insertion / deletion
 - Reward of match
- Need algorithm for inferring best alignment
 - Enumeration?
 - How would you do it?
 - How many alignments are there?

Can we simply enumerate all possible alignments?

Ways to align two sequences of length m, n

$$\binom{n+m}{m} = \frac{(m+n)!}{(m!)^2} \approx \frac{2^{m+n}}{\sqrt{\pi \cdot m}}$$

For two sequences of length n

n	Enumeration	Today's lecture
10	184,756	100
20	1.40E+11	400
100	9.00E+58	10,000

Key insight: score is additive!

- Compute best alignment recursively
 - For a given aligned pair (i, j), the best alignment is:
 - Best alignment of S1[1..i] and S2[1..j]
 - + Best alignment of S1[i..n] and S2[j..m]
 - Proof: cut-and-paste argument (see 6.046)

Key insight: re-use computation

Identical sub-problems! We can reuse our work!

Solution #1 – Memoization

- Create a big dictionary, indexed by aligned seqs
 - When you encounter a new pair of sequences
 - If it is in the dictionary:
 - Look up the solution
 - If it is not in the dictionary
 - Compute the solution
 - Insert the solution in the dictionary
- Ensures that there is no duplicated work
 - Only need to compute each sub-alignment once!

Top down approach

Solution #2 – Dynamic programming

- Create a big table, indexed by (i,j)
 - Fill it in from the beginning all the way till the end
 - You know that you'll need every subpart
 - Guaranteed to explore entire search space
- Ensures that there is no duplicated work
 - Only need to compute each sub-alignment once!
- Very simple computationally!

Bottom up approach

A simple introduction to Dynamic Programming

Fibonacci numbers

Figure by MIT OpenCourseWare.

Fibonacci numbers are ubiquitous in nature

Rabbits per generation

Leaves per height

Romanesque spirals

Nautilus size

Coneflower spirals

Leaf ordering

Computing Fibonacci numbers: Top down

- Fibonacci numbers are defined recursively:
 - Python code

```
def fibonacci(n):
   if n==1 or n==2: return 1
   return fibonacci(n-1) + fibonacci(n-2)
```

- Goal: Compute nth Fibonacci number.
 - F(0)=1, F(1)=1, F(n)=F(n-1)+F(n-2)
 - 1,1,2,3,5,8,13,21,34,55,89,144,233,377,...
- Analysis:
 - $T(n) = T(n-1) + T(n-2) = (...) = O(2^n)$

Computing Fibonacci numbers: Bottom up

- Top-down approach
 - Python code

```
fib_table
F[1]
F[2]
F[3]
        2
        3
F[4]
        5
F[5]
        8
F[6]
        13
F[7]
F[8]
        21
        34
F[9]
        55
F[10]
F[11]
        89
        ?
F[12]
```

```
def fibonacci(n):
    fib_table[1] = 1
    fib_table[2] = 1
    for i in range(3,n+1):
        fib_table[i] = fib_table[i-1]+fib_table[i-2]
    return fib_table[n]
```

- Analysis: T(n) = O(n)

Lessons from iterative Fibonacci algorithm

fib_table			
F[1]	1		
F[2]	1		
F[3]	2		
F[4]	3		
F[5]	5		
F[6]	8		
F[7]	13		
F[8]	21		
F[9]	34		
F[10]	55		
F[11]	89	1	
F[12]	? •	/	

- What did the iterative solution do?
 - Reveal identical sub-problems
 - Order computation to enable result reuse
 - Systematically filled-in table of resluts
 - Expressed larger problems from their subparts
- Ordering of computations matters
 - Naïve top-down approach very slow
 - results of smaller problems not available
 - repeated work
 - Systematic bottom-up approach successful
 - Systematically solve each sub-problem
 - Fill-in table of sub-problem results in order.
 - Look up solutions instead of recomputing

Dynamic Programming in Theory

- Hallmarks of Dynamic Programming
 - Optimal substructure: Optimal solution to problem (instance) contains optimal solutions to sub-problems
 - Overlapping subproblems: Limited number of distinct subproblems, repeated many many times
- Typically for optimization problems (unlike Fib example)
 - Optimal choice made locally: max(subsolution score)
 - Score is typically added through the search space
 - Traceback common, find optimal path from indiv. choices
- Middle of the road in range of difficulty
 - Easier: greedy choice possible at each step
 - DynProg: requires a traceback to find that optimal path
 - Harder: no opt. substr., e.g. subproblem dependencies

Hallmarks of optimization problems

Greedy algorithms Dynamic Programming

1. Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

2. Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

3. Greedy choice property

Locally optimal choices lead to globally optimal solution

Greedy Choice is not possible

Globally optimal solution requires trace back through many choices

Dynamic Programming in Practice

- Setting up dynamic programming
 - 1. Find 'matrix' parameterization (# dimensions, variables)
 - 2. Make sure sub-problem space is finite! (not exponential)
 - If not all subproblems are used, better off using memoization
 - If reuse not extensive, perhaps DynProg is not right solution!
 - 3. Traversal order: sub-results ready when you need them
 - Computation order matters! (bottom-up, but not always obvious)
 - 4. Recursion formula: larger problems = F(subparts)
 - 5. Remember choices: typically F() includes min() or max()
 - Need representation for storing pointers, is this polynomial!
- Then start computing
 - 1. Systematically fill in table of results, find optimal score
 - 2. Trace-back from optimal score, find optimal solution

How do we apply dynamic programming to sequence alignment?

Key insight: score is additive!

- Compute best alignment recursively
 - For a given aligned pair (i, j), the best alignment is:
 - Best alignment of S1[1..i] and S2[1..j]
 - + Best alignment of S1[i..n] and S2[j..m]

Dynamic Programming for sequence alignment

- Setting up dynamic programming
 - 1. Find 'matrix' parameterization
 - 2. Make sure sub-problem space is finite! (not exponential)
 - 3. Traversal order: sub-results ready when you need them
 - 4. Recursion formula: larger problems = F(subparts)
 - 5. Remember choices: typically F() includes min() or max()
- Then start computing
 - 1. Systematically fill in table of results, find optimal score
 - 2. Trace-back from optimal score, find optimal solution

(1, 2, 3) Store score of aligning (i,j) in matrix M(i,j)

Duality: seq. alignment ⇔ path through the matrix

Goal:

Find best path through the matrix

(4) Filling in the dynamic programming matrix

- Local update rules:
 - Compute next alignment based on previous alignment
 - Just like Fibonacci numbers: F[i] = F[i-1] + F[i-2]
 - Table lookup!
- Compute scores for prefixes of increasing length
 - This allows a single recursion (top-left to bottom-right) instead of two recursions (middle-to-outside top-down)
 - Only three possibilities for extending by one nucleotide:
 a gap in one species, a gap in the other, a (mis)match
 - When you reach bottom right, prefix of length n is seq S
- Computing the score of a cell from its neighbors

```
F(i-1, j) - gap

-F(i,j) = max\{ F(i,j) + score \}

F(i,j-1) - gap
```

0. Setting up the scoring matrix

1. Allowing gaps in s

2. Allowing gaps in t

3. Allowing mismatches

4. Choosing optimal paths

5. Rewarding matches

What is missing? (5) Returning the actual path!

- We know how to compute the best score
 - Simply the number at the bottom right entry
- But we need to remember where it came from
 - Pointer to the choice we made at each step
- Retrace path through the matrix
 - Need to remember all the pointers

Time needed: O(m*n)

Space needed: O(m*n)

Summary

- Dynamic programming
 - Reuse of computation
 - Order sub-problems. Fill table of sub-problem results
 - Read table instead of repeating work (ex: Fibonacci)
- Sequence alignment
 - Edit distance and scoring functions
 - Dynamic programming matrix
 - Matrix traversal path ⇔ Optimal alignment
- Thursday: Variations on sequence alignment
 - Local/global alignment, affine gaps, algo speed-ups
 - Semi-numerical alignment, hashing, database lookup
- Recitation:
 - Dynamic programming applications
 - Probabilistic derivations of alignment scores

Bounded Dynamic Programming

Initialization:

F(i,0), F(0,j) undefined for i, j > k

Iteration:

For i = 1...M

For j = max(1, i - k)...min(N, i+k)

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i, j - 1) - d, & \text{if } j > i - k(N) \\ F(i - 1, j) - d, & \text{if } j < i + k(N) \end{cases}$$

Termination: same

Linear space alignment

It is easy to compute F(M, N) in linear space


```
Allocate ( column[1] )
Allocate ( column[2] )

For i = 1...M
If i > 1, then:

Free( column[i - 2] )

Allocate( column[i] )

For j = 1...N

F(i, j) = ...
```

What about the pointers?

Finding the best back-pointer for current column

 Now, using 2 columns of space, we can compute for k = 1...M, F(M/2, k), F^r(M/2, N-k)

PLUS the backpointers

Best forward-pointer for current column

- Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k)
- Also, we can trace the path exiting column M/2 from k*

Recursively find midpoint for left & right

Iterate this procedure to the left and right!

Total time cost of linear-space alignment

Total Time: cMN + cMN/2 + cMN/4 + = 2cMN = O(MN)

Total Space: O(N) for computation,
O(N+M) to store the optimal alignment

Formulation 4: Varying gap cost models (next time)

(still) Varying penalties for edit operations

Now allow gaps of varying penalty:

- 1. Linear gap penalty
 - Same as before,
- 2. Affine gap penalty
 - Big initial cost for starting or ending a gap
 - Small incremental cost for each additional character
- 3. General gap penalty
 - Any cost function
 - No longer computable using the same model
- 4. Seek duplicated regions, rearrangements, ...