Assignment # 2

Marco Gonzalez

1.

Theorem. For all real numbers x, there is exactly one real number y for which $x = y^3 + 1$.

Proof. We prove the theorem by existence and uniqueness.

We first prove that y exists. Consider $y = \sqrt[3]{x-1}$. Since,

$$x = \sqrt[3]{x - 1}$$

$$x = x$$

there exists y satisfying the equation, $x = y^3 + 1$.

We now prove that y is unique. Suppose there are two real numbers y_1 and y_2 such that $x = y_1^3 + 1$ and $x = y_2^3 + 1$. Therefore since,

$$y_1^3 + 1 = y_2^3 + 1$$

$$y_1^3 = y_2^3$$

$$y_1 = y_2$$

y is unique.

2.

Theorem. Given a positive integer $n \ge 2$, if for all integers a and b, n|ab implies n|a or n|b, then n is prime.

Proof. We prove the theorem by contrapositive. Assume n is composite. Therefore there exists integers a and b such that $n \nmid ab$ and $n \nmid a$.

Since n is composite there exists an integer k such that 1 < k < n and k|n.

Considering k|n, there exists an integer j such that k(j) = n.

Let a = k and b = j.

Since n = kj, n|kj and therefore n|ab.

Since k < n, $n \nmid kj$ and therefore $n \nmid a$.

Since $kj = n, \ k > 1, \ j < n, \ \text{and} \ n \nmid j, \ n \nmid b.$

By contrapositive, if for all integers a and b, n|ab implies n|a or n|b, then n is prime.

3.

Theorem. For any natural number m, $3|f_{4m}$.

Proof. We prove the theorem by induction.

Base case: Assume m = 1. Since

$$3(1) = 3$$
, then $3|3$.

Therefore $3|f_{4(1)}$.

Induction: Assume $3|f_{4k}$. We want to show $3|f_{4(k+1)}$.

$$f_{4k+2} = f_{4k+3} + f_{4k+2}$$

$$= f_{4k+2} + f_{4k+1} + f_{4k+1} + f_{4k}$$

$$= f_{4k+2} + 2f_{4k+1} + f_{4k}$$

$$= f_{4k+1} + f_{4k} + 2f_{4k+1} + f_{4k}$$

$$= 2f_{4k} + 3f_{4k+1}$$

Given that $3|3f_{4k+1}$ and $3|2f_{4k}$, $3|f_{4k}$.