Exercise Set 1

Due: 21/02/2017

Instructions:

- 1. When you plot the required figures please include them in your report giving them a title that includes your name, surname and the timestamp. For example: plot(a10)
 - title(main=paste("Name Surname, Timestamp:",Sys.time()),cex.main=0.8)
 - using Sys.time() will give you the time and date.
- **2.** Please include the code that created your figure or in general the code that you used to answer a question in your report.

Exercise 1:

For each of the following series, make a graph of the data with forecasts using the most appropriate of the four benchmark methods: mean, naive, seasonal naive or drift

- (a) Price of chicken (1924-1993). Data set chicken.
- (b) Monthly total of accidental deaths in United States (January 1973-December 1978). Data set *usdeaths*.

In each case, do you think the forecasts are reasonable? If not, how could they be improved?

Exercise 2:

Consider the daily IBM stock prices (data set ibmclose).

- (a) Produce some plots of the data in order to become familiar with it.
- (b) Split the data into a training set of 300 observations and a test set of 69 observations.
- (c) Try various benchmark methods to forecast the training set and compare the results on the test set. Which method did best?
- (d) For the best method, compute the residuals and plot them. What do the plots tell you?

Exercise 3: The data below represent the monthly sales (in thousands) of product A for a plastics manufacturer for years 1 through 5 (data set plastics).

	1	2	3	4	5
Jan	742	741	896	951	1030
Feb	697	700	793	861	1032
Mar	776	774	885	938	1126
Apr	898	932	1055	1109	1285
Мау	1030	1099	1204	1274	1468
Jun	1107	1223	1326	1422	1637
Jul	1165	1290	1303	1486	1611
Aug	1216	1349	1436	1555	1608
Sep	1208	1341	1473	1604	1528
Oct	1131	1296	1453	1600	1420
Nov	971	1066	1170	1403	1119
Dec	783	901	1023	1209	1013

Due: 21/02/2017

- (a) Plot the time series of sales of product A. Can you identify the seasonal fluctuations and/or a trend?
- (b) Use an STL decomposition to calculate the trend-cycle and seasonal indices. (Experiment with having fixed or changing seasonality).
- (c) Do the results support the graphical interpretation form part (a)?
- (d) Compute and plot the seasonally adjusted data.
- (e) Use a random walk to produce forecasts of the seasonally adjusted data.
- (f) Reseasonilize the results to give forecasts on the original scale.

[Hint: you can use the stlf function with method="naive".]