全国青少年信息学奥林匹克竞赛

CCF NOI 2018

第二试

时间: 2018 年 7 月 20 日 08:00 ~ 13:00

题目名称	屠龙勇士	情报中心	多边形
题目类型	传统型	传统型	传统型
目录	dragon	center	polygon
可执行文件名	dragon	center	polygon
输入文件名	dragon.in	center.in	polygon.in
输出文件名	dragon.out	center.out	polygon.out
每个测试点时限	2.0 秒	8.0 秒	10.0 秒
上 <i>七四</i> 41	710 MD	×40.34D	
内存限制	512 MB	512 MB	512 MB
测试点/包数目	512 MB 20	512 MB 20	512 MB 20

提交源程序文件名

对于 C++ 语言	于 C++ 语言 dragon.cpp		polygon.cpp	
对于 C 语言	dragon.c	center.c	polygon.c	
对于 Pascal 语言	dragon.pas	center.pas	polygon.pas	

编译选项

对于 C++ 语言	-O2 -1m
对于 C 语言	-O2 -1m
对于 Pascal 语言	-02

注意事项:

- 1、提交的源文件必须存放在已建立好的下发样例的文件夹中(该文件夹与试题同名)。
- 2、文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3、结果比较方式为忽略行末空格、文末回车后的全文比较。
- 4、C/C++ 中函数 main() 的返回值类型必须是 int, 值为 0。
- 5、对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。

屠龙勇士 (dragon)

【题目描述】

小 D 最近在网上发现了一款小游戏。游戏的规则如下:

- 游戏的目标是按照编号 $1\sim n$ 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命 值 a_i 。同时每条巨龙拥有恢复能力,当其使用恢复能力时,它的生命值就会每 次增加 p_i ,直至生命值非负。只有在**攻击结束后**且当生命值**恰好**为 0 时它才会 死去。
- 游戏开始时玩家拥有 m 把攻击力已知的剑,每次面对巨龙时,玩家只能选择一 把剑,当杀死巨龙后这把剑就会消失,但作为奖励,玩家会获得全新的一把剑。

小 D 觉得这款游戏十分无聊,但最快通关的玩家可以获得 ION2018 的参赛资格, 于是小 D 决定写一个笨笨的机器人帮她通关这款游戏,她写的机器人遵循以下规则:

- 每次面对巨龙时,机器人会选择当前拥有的,攻击力不高于巨龙初始生命值中攻击力最大的一把剑作为武器。如果没有这样的剑,则选择攻击力最低的一把剑作为武器。
- 机器人面对每条巨龙,它都会使用上一步中选择的剑攻击巨龙**固定的** x 次,使巨龙的生命值减少 $x \times ATK$ 。
- 之后,巨龙会不断使用恢复能力,每次恢复 p_i 生命值。若在使用恢复能力前或某一次恢复后其生命值为 0 ,则巨龙死亡,玩家通过本关。

那么显然机器人的**攻击次数**是决定能否最快通关这款游戏的关键。小 D 现在得知了每条巨龙的所有属性,她想考考你,你知道应该将机器人的攻击次数 x 设置为多少,才能用最少的攻击次数通关游戏吗?

当然如果无论设置成多少都无法通关游戏,输出-1即可。

【输入格式】

从文件 dragon.in 中读入数据。

第一行一个整数 T ,代表数据组数。

接下来 T 组数据,每组数据包含 5 行。

- 每组数据的第一行包含两个整数, n 和 m , 代表巨龙的数量和初始剑的数量:
- 接下来一行包含 n 个正整数, 第 i 个数表示第 i 条巨龙的初始生命值 a_i ;
- 接下来一行包含 n 个正整数, 第 i 个数表示第 i 条巨龙的恢复能力 p_i ;
- 接下来一行包含 n 个正整数,第 i 个数表示杀死第 i 条巨龙后奖励的剑的攻击力;
- 接下来一行包含 m 个正整数,表示初始拥有的 m 把剑的攻击力。

【输出格式】

输出到文件 dragon.out 中。

一共T行。

第 i 行一个整数,表示对于第 i 组数据,能够使得机器人通关游戏的最小攻击次数 x ,如果答案不存在,输出**-1**。

【样例1输入】

2

3 3

3 5 7

4 6 10

7 3 9

1 9 1000

3 2

3 5 6

4 8 7

1 1 1

1 1

【样例1输出】

59

-1

【样例1解释】

第一组数据:

- 开始时拥有的剑的攻击力为 {1,9,10}, 第 1 条龙生命值为 3, 故选择攻击力为 1 的剑,攻击 59 次,造成 59 点伤害,此时龙的生命值为-56,恢复 14 次后生命值恰好为 0,死亡。
- 攻击力为 1 的剑消失,拾取一把攻击力为 7 的剑,此时拥有的剑的攻击力为 {7,9,10},第 2 条龙生命值为 5,故选择攻击力为 7 的剑,攻击 59 次,造成 413 点伤害,此时龙的生命值为-408,恢复 68 次后生命值恰好为 0,死亡。
- 此时拥有的剑的攻击力为 {3,9,10}, 第 3 条龙生命值为 7, 故选择攻击力为 3 的 剑,攻击 59 次,造成 177 点伤害,此时龙的生命值为-170,恢复 17 次后生命值 恰好为 0,死亡。
- 没有比 59 次更少的通关方法, 故答案为 59。

第二组数据:

• 不存在既能杀死第一条龙又能杀死第二条龙的方法,故无法通关,输出-1。

【样例 2】

见选手目录下的 dragon/dragon2.in 与 dragon/dragon2.ans。

【子任务】

测试点编号	n	m	p_i	\mathbf{a}_i	攻击力	其他限制	
1					= 1		
2	$\leq 10^5$	= 1	= 1		$\leq 10^{5}$	 	
3		_ 1	_ 1			76	
4				$\leq 10^{5}$			
5							
6	$\leq 10^{3}$	$\leq 10^{3}$	$\leq 10^{5}$			特性1、特性2	
7							
8							
9				8	n8	特性 1	
10	=1	= 1	$\leq 10^{8}$				
11	= 1	= 1	≥ 10	Z 108			
12				$\leq 10^8$	≤ 10°		
13							
14	$= 10^5$	$=10^{5}$	= 1			$\leq 10^{6}$	无特殊限制
15	_ 10	_ 10	— 1			7640 % PK IPO	
16			所有 <i>p_i</i> 是质数				
17			p_i 足灰剱	$\leq 10^{12}$	$\leq 10^{12}$		
18	$\leq 10^5$	$\leq 10^{5}$				特性 1	
19			无特殊限制				
20							

特性 1 是指:对于任意的 i, $a_i \leq p_i$ 。

特性 2 是指: $LCM(p_i) \le 10^6$ 即所有 p_i 的最小公倍数不大于 10^6 。

对于所有的测试点, $T \le 5$,所有武器的攻击力 $\le 10^6$,所有 p_i 的最小公倍数 $\le 10^{12}$ 。

【提示】

你所用到的中间结果可能很大,注意保存中间结果的变量类型。

情报中心 (center)

【题目描述】

C 国和 D 国近年来战火纷飞。

最近,C 国成功地渗透进入了 D 国的一个城市。这个城市可以抽象成一张有 n 个节点,节点之间由 n-1 条双向的边连接的无向图,使得任意两个点之间可以互相到达,也就是说这张无向图实际上是一棵树。

经过侦查,C 国情报部部长 GGB 惊讶地发现,这座看起来不起眼的城市竟然是 D 国的军事中心。因此 GGB 决定在这个城市内设立情报机构。情报专家 TAC 在侦查后,安排了 m 种设立情报机构的方案。这些方案中,第 i 种方案是在节点 x_i 到节点 y_i 的最短路径的所有边上安排情报人员收集情报,这种方案需要花费 v_i 元的代价。

但是,由于人手不足,GGB 只能安排上述 m 种方案中的两种进行实施。同时 TAC 指出,为了让这两个情报机构可以更好的合作,它们收集情报的范围应至少有一条公共的边。为了评估一种方案的性能,GGB 和 TAC 对所有的边进行了勘察,给每一条边制定了一个情报价值 c_i ,表示收集这条边上的情报能够带来 c_i 元的收益。注意,情报是唯一的,因此当一条边的情报被两个情报机构收集时,也同样只会有 c_i 的收益。

现在,请你帮 GGB 选出两种合法的设立情报机构的方案进行实施,使得这两种方案收集情报的范围至少有一条公共的边,并且在此基础上总收益减去总代价的差最大。注意,这个值可能是负的,但仍然是合法的。如果无法找到这样的两种方案,请输出 F。

【输入格式】

从文件 center.in 中读入数据。

本题包含多组测试数据。

输入文件的第一行包含一个整数 T,表示数据组数;

每组数据包含 (n+m+1) 行:

第 1 行包含一个整数 n,表示城市的点数;

第 2 到第 n 行中,第 (i+1) 行包含三个整数 a_i, b_i, c_i ,表示城市中一条连接节点 a_i 和 b_i 、情报价值为 c_i 的双向边,保证 $a_i < b_i$ 且 b_i 互不相同;

第 (n+1) 行包含一个整数 m,表示 TAC 设立的 m 种设立情报机构的方案;

第 (n+2) 到 (n+m+1) 行中,第 (n+i+1) 行包含三个整数 x_i, y_i, v_i ,表示第 i 种设立情报机构的方案是在节点 x_i 到节点 y_i 的最短路径上的所有边上安排情报人员收集情报,并且需要花费 v_i 元的代价。

【输出格式】

输出到文件 center.out 中。

输出文件包含 T 行;

对于每组数据,输出一行:如果存在合法的方案,则输出一个整数表示最大的总收益减去总代价的差;否则输出 F。

【样例1输入】

2

5

1 2 1

2 3 3

3 4 2

1 5 8

2

1 4 5

3 5 8

5

1 2 1

2 3 3

3 4 3

1 5 9

2

1 5 5

2 3 8

【样例1输出】

1

F

【样例1解释】

这个样例中包含两组数据。这两组数据的城市相同,只是在情报的价值和情报机构的方案上有所不同。城市地图如下:

• 对于第一组数据,方案一中的节点 1 到节点 4 的最短路径为 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$,方案二中的节点 3 到节点 5 的最短路径为 $3 \rightarrow 2 \rightarrow 1 \rightarrow 5$ 。选择这两种方案需要花

费 5+8=13 的代价,并且每一条边的情报都被收集从而得到 1+3+2+8=14 的收益,因此总收益减去总代价为 14-13=1。

• 对于第二组数据,方案一中的节点 1 到节点 5 的最短路径为 $1 \to 5$,方案二中的节点 2 到节点 3 的最短路径为 $2 \to 3$ 。这两种方案收集情报的范围没有公共的边,因此非法,所以这组数据不存在合法方案,应输出 F。

【样例 2】

见选手目录下的 *center/center2.in* 与 *center/center2.ans*。

这个样例只包含一组数据。这一数据中,最优方案为选择第2种和第3种方案。

这组数据的城市地图如下,其中加粗的边表示被情报中心收集情报的边,<mark>红色</mark>的边表示只被第 2 种方案的情报中心收集情报的边,蓝色的边表示只被第 3 种方案的情报中心收集情报的边,紫色的边表示同时被两个情报中心收集情报的边。

【样例 3】

见选手目录下的 *center/center3.in* 与 *center/center3.ans*。 这个样例和第 4 个测试点的性质相同。每个测试点的性质见下文的表格。

【样例 4】

见选手目录下的 *center/center4.in* 与 *center/center4.ans*。

这个样例包含了经过特殊构造的 $n \le 100, m \le 200$ 的测试数据,涵盖了测试点中所有出现性质的组合。你可以合理利用这个测试点,对自己的程序进行全面的检查。

【子任务】

各测试点的数据规模和性质如下表:

测试点	<i>n</i> ≤	<i>m</i> ≤	$T \le 50$	特殊性质	
1	2	3			
2	10	30		无	
3	200	300			
4	10^{3}	2,000			
5	10^{4}	3×10^{4}	保证	$a_i = b_i - 1$	
6	5×10^4	10^{5}			
7	10^{4}	3×10^{4}			
8	5 ×10 ⁴	10^{5}		$c_i = 0$	
9	9 X10	10			
10	10^{4}			S_1	
11	5 ×10 ⁴	n	不保证		
12	9 X10				
13	10^{4}	3×10^{4}	保证		
14	10	9 X10	不ய	C	
15	5 ×10 ⁴	10^{5}	不保证	S_{2}	
16	9 X10	10			
17	10^{4}	3×10^{4}	保证		
18				无	
19	5×10^4	10^{5}	不保证		
20					

表格中的特殊性质如下:

- 特殊性质 S_1 : 对于任意 i, j,保证 x_i 到 y_i 的最短路径所经过的编号最小的节点 不同于 x_i 到 y_i 的最短路径所经过的编号最小的节点;
- 特殊性质 S_2 : 对于任意 i,保证 x_i 到 y_i 的最短路径所经过的编号最小的节点为节点 1。

对于所有的数据, $1 \le n \le 5 \times 10^4$, $0 \le m \le 10^5$, $0 \le c_i \le 10^9$, $0 \le v_i \le 10^{10} \times n$ 。每个测试点中,所有 n 的和不会超过 1,000,233,所有 m 的和不会超过 2,000,233。

多边形 (polygon)

【题目描述】

久莲是一个喜欢出题的女孩子。

在今年的 World Final 结束以后,久莲特别喜欢计算几何,于是她打算在 NOI 的 考场上也出一个计算几何:这是一道只有题目名字和计算几何相关的题目。

首先,久莲给出了一棵 $n(n \ge 2)$ 个节点的有根树 T,根节点编号为 1。定义叶子节点为除了根以外所有度数恰好为 1 的节点。下图是一个树 T 的例子,其中叶子节点集合为 $\{3,4,5\}$ 。

接着通过这棵树, 久莲构造了一个序列 A:

- 从根节点开始深度优先遍历整棵树,遍历时按照编号从小到大的顺序来访问孩子,这样可以得到一个树T的 DFS 序。
- 接着按照在 DFS 序中的出现顺序从前往后,久莲把所有叶子节点排成一排得到了一个序列 *A*。

更进一步地,通过序列 A,久莲定义了两个叶子节点 u,v 的距离 d(u,v): 假设 u 在 A 中是第 i 个元素,v 是第 j 个元素,则 $d(u,v) = \min(|i-j|,|A|-|i-j|)$ 。其中 |A| 为序列的长度,即 T 的叶子个数,i, j 指的是出现的位置,从 1 开始计数。

上面的例子中,序列 A 为 [4,5,3],其中 d(3,5)=d(3,4)=d(4,5)=1, 3,4,5 的出现位置分别为 3,1,2。

最后,久莲给出了一个参数 K,利用这棵有根树 T 和序列 A,我们可以构造一张 n 个点的**无重边无自环**的无向图 G:两个不同的点 u,v 之间有边当且仅当它们满足下列条件中的至少一个:

- 在树 T 中存在连接 u,v 的边。
- 在树 T 中 u,v 都是叶子节点且 $d(u,v) \leq K$ 。

当 K=1 或 2 时,上面的例子得到的图 G 都如下图所示:

现在久莲想让你来计算一下 G 中不同的哈密尔顿回路数量有多少条,答案可能很大,请对 998244353 取模后输出。

下面是一些补充定义:

- 无重边无自环的无向图 G 的一条哈密尔顿回路 H 是 G 中边的一个子集,其中每一个点恰好有两条不同的相邻边在 H 中,且任意两个点都可以通过 H 中的边直接或间接到达。
- 无重边无自环的无向图 G 的两条哈密尔顿回路 H_1, H_2 是不同的当且仅当存在一条边 e 使得 e 在 H_1 中且不在 H_2 中。

【输入格式】

从文件 polygon.in 中读入数据。

第一行输入两个整数 n, K,表示树 T 的点数以及久莲选定的参数 K。

第二行输入 n-1 个整数 $f_i(1 \le f_i \le i)$, 其中 f_i 表示树 T 上存在边 $(f_i, i+1)$ 。

【输出格式】

输出到文件 polygon.out 中。

输出一行一个整数,表示哈密尔顿回路数量对998244353取模后的结果。

【样例1输入】

5 1

1 1 2 2

【样例1输出】

2

【样例1解释】

该样例和题面中的例子完全相同。两条哈密尔顿回路经过节点的顺序分别为 (1,2,4,5,3) 和 (1,2,5,4,3)。

【子任务】

各测试点的数据规模和性质如下表:

编号	n	K	特殊性质		编号	n	K	特殊性质
1	≤ 5				11			
2	≤ 10	≤ 3	无		12			A
3	≤ 15	<u> </u>			13		≤ 2	
4	≤ 20				14		<u> </u>	
5					15	≤ 1000		无
6			A		16	≤ 1000		
7	1000	1000 = 1			17		≤ 3	A
8	1 \(\) 1000		无		18			
9					19			无
10					20			

其中性质 A 为保证树上所有节点至多有两个孩子。 对于所有的数据,保证 $1 \le f_i \le i, 2 \le n \le 1000$ 。