6.046/18.410 Problem Set 1

Yijun Jiang

Collaborator: Hengyun Zhou, Eric Lau

October 13, 2015

1 Problem 1-1: 6.006 Review

1.1 Part (a)

1.1.1 Suppose $f(n) = \Theta(g(n))$, then $2^{f(n)} = \Theta(2^{g(n)})$

This statement is FALSE.

Consider $f(n) = n^2$ and $g(n) = n^2 + n$. Obviously we have $f(n) = \Theta(g(n))$. But $2^{g(n)} = 2^n 2^{f(n)}$, so it is impossible to find $C_1 \ge 0$ and $n_0 \in \mathbb{N}$ such that $\forall n > n_0, C_1 \cdot 2^{g(n)} \le 2^{f(n)}$. In this case, $2^{g(n)}$ is NOT an asymptotic lower bound of $2^{f(n)}$. So the original statement is false.

1.1.2 For any constants a, b > 0, $af(n) + bg(n) = \Theta(\max(f(n), g(n)))$

This statement is TRUE.

Let $C_1 = \min(a, b)$ and $C_2 = a + b$. Clearly we have $C_1, C_2 > 0$ and

$$0 \leqslant C_1 \max(f(n), g(n)) \leqslant af(n) + bg(n) \leqslant C_2 \max(f(n), g(n))$$

which means that $af(n) + bg(n) = \Theta(\max(f(n), g(n))).$

1.1.3 Suppose f(n) = o(1), then f(n)g(n) = o(1)

This statement is FALSE.

Consider $f(n) = n^{-1}$ and g(n) = n. We have f(n) = o(1), but $f(n)g(n) = 1 \neq o(1)$.

1.1.4 Rank functions by order of growth

The ordering (growth rate from large to small, i.e. $g_k = \Omega(g_{k+1})$ for $k = 1, 2, \dots, 11$) is given below. The proof can be found after this list.

$$g_{1} = n!$$

$$g_{2} = 4^{n}$$

$$g_{3} = 2^{n}$$

$$g_{4} = 3^{\log^{2} n}$$

$$g_{5} = (\log n)^{\log n} = g_{6} = n^{\log \log n}$$

$$g_{7} = n^{10}$$

$$g_{8} = n^{3}$$

$$g_{9} = n \log n$$

$$g_{10} = \sum_{k=1}^{n} \log k$$

$$g_{11} = \log \log n$$

$$g_{12} = 100000^{100000000}$$

 $g_5 = (\log n)^{\log n}$ and $g_6 = n^{\log \log n}$ belong to the same equivalent class. In fact, they are equal. $g_9 = n \log n$ and $g_{10} = \sum_{k=1}^{n} \log k$ belong to the same equivalent class. Each of the remaining functions is partitioned into its own equivalent class.

Proof:

To compare the first 7 functions in the list, we can take log first.

$$f_1 = \log g_1 \approx n \log n - n$$
 [Stirling approx.]
 $f_2 = \log g_2 = n \log 4$
 $f_3 = \log g_3 = n \log 2$
 $f_4 = \log g_4 = \log^2 n \log 3$
 $f_5 = \log g_5 = \log n \log \log n$
 $f_6 = \log g_6 = \log n \log \log n$
 $f_7 = \log g_7 = 10 \log n$

Then it is clear that $g_1 = \Omega(g_2), \dots, g_6 = \Omega(g_7)$. Moreover, we notice that $g_5 = g_6$. The rest of the functions can be compared without taking log. The only slightly tricky one is $g_{10} = \sum_{k=1}^{n} \log k$. Notice that $\log n \leq g_{10} \leq n \log n$, then the comparisons can be made.

Finally, I will prove $g_9 = \Theta(g_{10})$. Since $y = \log x$ is concave, an integral can be used as the lower bound of the sum:

$$g_{10} \geqslant (\ln 2)^{-1} \int_{1}^{n} \ln x dx = n \log n - \frac{n-1}{\ln 2}$$

On the other hand $g_{10} \leq n \log n$. So $g_{10} = \Theta(n \log n)$, and then $g_9 = \Theta(g_{10})$.

1.2 Recurrences

1.2.1
$$T(n) = 10T(n/3) + n^2$$

$$T(n) = \Theta(n^{\log_3 10}).$$

Proof:

Use the master theorem (case 1). $a=10, b=3, \log_b a=\log_3 10>2$. So $n^2=O(n^{\log_b a-\epsilon})$ for some $\epsilon>0$. Therefore, $T(n)=\Theta(n^{\log_3 10})$.

1.2.2 $T(n) = 9T(n/3) + n^2 \log n$

$$T(n) = \Theta(n^2 \log^2 n).$$

Proof:

Use the master theorem (case 2). $a=9,\ b=3,\ \log_b a=2$. So $n^2\log n=\Theta(n^{\log_b a}\log n)$. Therefore, $T(n)=\Theta(n^2\log^2 n)$.

1.2.3 $T(n) = T(\sqrt{n}) + \log n$

$$T(n) = \Theta(\log n).$$

Proof:

$$T(n) = T(\sqrt{n}) + \log n$$

$$= T(n^{1/4}) + \log n + \frac{1}{2} \log n$$

$$= \cdots$$

$$= \Theta(1) + \left(1 + \frac{1}{2} + \frac{1}{2^2} + \cdots\right) \log n$$

$$= \Theta(\log n)$$

1.2.4 T(n) = T(n/4) + T(n/2) + n

$$T(n) = \Theta(n)$$
.

Proof:

The recurrence is linear. So the guess is $T(n) = \Theta(n)$. To prove this, use the substitution method. Suppose $C_1 n \leq T(n) \leq C_2 n$, where C_1 and C_2 are positive. Then for the lower bound we have

$$T(n) = T(n/4) + T(n/2) + n$$

$$\geqslant \left(\frac{1}{4}C_1 + \frac{1}{2}C_1 + 1\right)n$$

$$= \left(\frac{3}{4}C_1 + 1\right)n$$

$$[desired] \geqslant C_1 n$$

Obviously, if $C_1 \leq 4$, the desired inequality holds. On the other hand, for the upper bound,

$$T(n) = T(n/4) + T(n/2) + n$$

$$\leq \left(\frac{1}{4}C_2 + \frac{1}{2}C_2 + 1\right)n$$

$$= \left(\frac{3}{4}C_2 + 1\right)n$$

$$[desired] \leq C_2 n$$

Obviously, if $C_2 \ge 4$, the desired inequality holds. This completes the prove that $T(n) = \Theta(n)$.

1.2.5 $T(n) = T(2n/3) + T(n/3) + n \log n$

$$T(n) = \Theta(n \log^2 n).$$

Proof

Use the recursion tree method. The tree is shown below (only the coefficients are written out). We notice that 2/3+1/3=1, thus the coefficients in each level sum up to unity. This feature guarantees that there are $\Theta(n)$ leaves in the tree, eaching contributing constant runtime. Moreover, each level contributes $\Theta(n \log n)$

since the sum of coefficients in a level is unity. And there are $\Theta(\log n)$ levels (bounded between $\log_{3/2} n$ and $\log_3 n$). In conclusion, we have

$$T(n) = \Theta(n) + \Theta(n \log n)\Theta(\log n) = \Theta(n \log^2 n)$$

