Плоские потенциальные течения идеальной жидкости. Обтекание тел.

Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики ФФ НГУ

11 декабря 2018 г.

Аннотация

Основная задача обтекания тела

Математическая постановка задачи обтекания тела потенциальным потоком идельной жидкости

Требуется найти аналитический комплексный потенциал

$$w(z) = \varphi(x, y) + i\psi(x, y), \quad z = x + iy,$$

определённый в рассматриваемой бесконечной области, и такой что

$$\Delta\psi(x,y)=0,$$

связанный соответствующими условиями на бесконечности и границе с телом.

Замечание

Так как потенциал φ связан с функцией тока ψ соотношениями Коши-Римана, то функция тока находится автоматически. Можно, наоборот, искать потенциал φ , а ψ выражать через соотношения Коши-Римана.

Плоское покоящееся течение на бесконечности

Условия на бесконечности

$$\frac{\partial \psi}{\partial x} = 0, \quad \frac{\partial \psi}{\partial y} = 0$$

для бесконечно удалённых точек пространства, т.к. скорость на бесконечности равна 0.

Условие «непротекания» на границе с телом

Условие на границе с телом Нормальная составляющая (относительно границы тела) скорость течения должна совпадать с нормальной составляющей скорости тела.

$$v_n = v_x \cos(\vec{n}, x) + v_y \cos(\vec{n}, y) = v_x \sin \theta - v_y \cos \theta =$$

$$= v_x \frac{dy}{ds} - v_y \frac{dx}{ds} = \frac{\partial \psi}{\partial v} \frac{dy}{ds} + \frac{\partial \psi}{\partial x} \frac{dx}{ds} = \frac{\partial \psi}{\partial s},$$

где x(s), y(s) — параметризованная граница тела в окрестности рассматриваемой точки.

Условие для движения абсолютно твёрдого тела

Пусть тело совершает поступательное движение со скоростью (U,V) и вращательное с угловой скоростью ω , тогда скорости точек тела будут иметь вид

$$u_x = U - \omega y, \quad u_y = V + \omega x,$$

где (x,y) — координаты точек тела во вращающейся системе координат, жёстко связанной с телом.

Условие для движения абсолютно твёрдого тела

Пусть тело совершает поступательное движение со скоростью (U,V) и вращательное с угловой скоростью ω , тогда скорости точек тела будут иметь вид

$$u_x = U - \omega y, \quad u_y = V + \omega x,$$

где (x,y) — координаты точек тела во вращающейся системе координат, жёстко связанной с телом.

Условие на границе с телом

$$\frac{\partial \psi}{\partial s} = u_x \cos(\vec{n}, y) + u_y \cos(\vec{n}, y) = u_x \frac{dy}{ds} - u_y \frac{dx}{ds} =$$
$$= (U - \omega y) \frac{dy}{ds} - (V + \omega x) \frac{dx}{ds}.$$

Отсюда,

$$\psi = Uy - Vx - \frac{1}{2}\omega(x^2 + y^2) + c.$$

Частный случай набегающего потока на покоящееся тело

Условие на границе тела В случае покоящегося тела $U=V=0,\,\omega=0$ условие на границе тела будет

$$\psi(x,y) = const.$$

Условие на бесконечности В случае набегающего потока с параметрами на бесконечности равными

$$v_x = v_\infty \quad v_y = 0,$$

то для бесконечно удалённых точек

$$\psi(x,y) = v_{\infty}y + const.$$

Задача обтекание тела

Таким образом, задача обтекания тела плоским потенциальным потоком идеальной жидкости сводится к решению задачи Дирихле, т.к. внутри исследуемой области решается уравнение Лапласа

$$\Delta \psi = 0$$
,

а на бесконечности и границе обтекаемого тела заданы значения функции ψ в зависимости от условий обтекания.

Литература

• Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидромеханика. М.:Гос. издат. физ.-мат. лит., 1963.