Zusammenfassung Stochastik 3

© FY Tim Baumann, http://timbaumann.info/uni-spicker

Modell. Gegeben sei ein Parametrisches Modell, d. h.eine Zufallsgröße X, deren Verteilungsfunktion $P_X \in \{P_{\vartheta} \mid \vartheta \in \Theta \subset \mathbb{R}^n\}$ von einem Parameter ϑ abhängt.

Problem. Anhand einer Stichprobe $x_1, \ldots, x_n \in \mathbb{R}^1$ von X (d. h. x_1, \ldots, x_n sind Realisierung von iid ZGen $X_1, \ldots, X_n \sim P_X$) ist zu entscheiden, ob die sogenannte Nullhypothese $H_0: \vartheta \in \Theta_0 \subset \Theta$ oder eine Gegenhypothese $H_1: \vartheta \in \Theta_1 = \Theta \setminus \Theta_0$ angenommen oder abgelehnt werden soll.

Def. Der Stichprobenraum ist $(\mathbb{R}^n, \mathfrak{B}(\mathbb{R}^n), P_{\vartheta} \times \ldots \times P_{\vartheta})$

Terminologie. Die Hypothese H_i heißt **einfach**, falls $|H_i| = 1$, andernfalls **zusammengesetzt**.

Def. Ein (nichtrandomisierter) **Test** für H_0 gegen H_1 ist eine Entscheidungsregel über die Annahme von H_0 basierend auf einer Stichprobe, die durch eine messbare Abbildung $\varphi: \mathbb{R}^n \to \{0,1\}$ augedrückt wird und zwar durch

$$\varphi(x_1, \dots, x_n) = \begin{cases} 0 & \text{bei Annahme von } H_0, \\ 1 & \text{bei Ablehung von } H_0. \end{cases}$$

Def. Der Ablehungsbereich oder kritische Bereich von φ ist

$$K_n := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \varphi(x_1, \dots, x_n) = 1\}.$$

Bem. Es gilt $\varphi = \mathbb{1}_{K_n}$.

Def. Ein Fehler 1. Art ist eine Ablehnung der Nullhypothese H_0 , obwohl H_0 richtig ist; ein Fehler 2. Art ist eine Annahme von H_0 , obwohl H_0 falsch ist.

Def. Die Güte- oder Machtfunktion des Tests φ ist

$$m_{\varphi}: \Theta \to [0,1], m_{\varphi}(\vartheta) := \mathbb{E}_{\vartheta}\varphi(X_1, \dots, X_n)$$

= $\mathbb{P}_{\vartheta}((X_1, \dots, X_n) \in K_n)$
= $(P_{\vartheta} \times \dots \times P_{\vartheta})(K_n)$

Die Gegenwsk. $(1-m_{\omega}(\vartheta))$ heißt **Operationscharakteristik** von φ . Für $\alpha=0,5$ gilt beispielsweise $z_{1-\alpha/2}\approx 1,96$.

Bem. Es gilt

$$\mathbb{P}_{\vartheta}(\text{Fehler 1. Art}) = m_{\varphi}(\vartheta) \qquad \text{für } \vartheta \in \Theta_0,$$

$$\mathbb{P}_{\vartheta}(\text{Fehler 2. Art}) = 1 - m_{\varphi}(\vartheta) \quad \text{für } \vartheta \in \Theta_1.$$

Def. Ein Test $\varphi: \mathbb{R}^n \to \{0,1\}$ mit

$$\sup_{\vartheta\in\Theta_0} m_{\varphi}(\vartheta) \le$$

heißt α -Test o. Signifikanztest zum Signifikanzniveau $\alpha \in (0,1)$. Ein α -Test φ heißt unverfälscht (erwartungstreu, unbiased), falls

$$\inf_{\vartheta \in \Theta_1} m_{\varphi}(\vartheta) \ge \alpha.$$

Situation. Sei nun eine Stichprobenfunktion oder Teststatistik $T:\mathbb{R}^n\to\mathbb{R}^1$ gegeben. Wir wollen einen Test der einfachen Nullhypothese $H_0: \vartheta \in \Theta_0 = \{\vartheta_0\}$ entwickeln.

Def. $K_n^T \subset \mathbb{R}^1$ heißt kritischer Bereich der Teststatistik, falls

$$K_n = T^{-1}(K_n^T).$$

Bem. Es gilt

$$\begin{split} m_{\varphi}(\vartheta_0) &= \mathbb{P}_{\vartheta_0} \left((X_1, \dots, X_n) \in K_n \right) &= \\ &= \mathbb{P}_{\vartheta_0} \left((T(X_1), \dots, T(X_n)) \in K_n^T \right) = \int\limits_{K_n^T} f_T(x) \, \mathrm{d}x \leq \alpha, \end{split}$$

wobei f_T die Dichte von $T(X_1, \ldots, X_n)$ unter H_0 ist.

Bsp. Sei $X \sim \mathcal{N}(\mu, \sigma^2)$, σ bekannt und $\alpha \in (0, 1)$ vorgegeben. Zum Test der Nullhypothese $H_0: \mu = \mu_0$ wählen wir als Statistik

$$T(X_1, \dots, X_n) := \frac{\sqrt{n}}{\sigma} (\overline{X_n} - \mu_0) \text{ mit } \overline{X_n} := \frac{1}{n} (X_1 + \dots + X_n).$$

Unter Annahme von H_0 gilt $T(X_1, \ldots, X_n) \sim \mathcal{N}(0, 1)$. Der Ablehnungsbereich der Statistik ist

$$K_n^T = \{t \in \mathbb{R}^1 \, | \, |t| > z_{1-\alpha/2}\} \quad \text{mit} \quad z_{1-\alpha/2} \coloneqq \Phi^{-1}(1-\alpha/2).$$

Bem. Es gilt

$$\begin{split} t \in (K_n^T)^c &\iff |t| \le z_{1-\alpha/2} &\iff |\overline{X_n} - \mu_0| \le \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \\ &\iff \mu_0 \in \left[\overline{X_n} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \overline{X_n} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right]. \end{split}$$

Letzteres Intervall wird Konfidenzintervall für μ_0 zum Konfidenzniveau $1 - \alpha$ genannt.

Bsp. Sei wieder $X \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 aber diesmal unbekannt.

$$\hat{T}(X_1, \dots, X_n) = \frac{\sqrt{n}}{S_n} (\overline{X_n} - \mu_0), \quad S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2$$

Dabei ist S_n die (korrigierte) Stichprobenvarianz. Man kann zeigen, dass $\hat{T}(X_1,\ldots,X_n) \sim t_{n-1}$. Dabei ist t_m die Student'sche t-Verteilung mit m Freiheitsgraden. Der Ablehnungsbereich ist

$$K_n^T = \{ t \in \mathbb{R}^1 \mid |t| > t_{n-1,1-\alpha/2} \}.$$

Bem. S_n^2 und $\overline{X_n}$ sind unabhängig für n > 2.

Diskussion. • Je kleiner α ist, desto "nullhypothesenfreundlicher" ist der Test. Häufig verwendet wird $\alpha \in \{10\%, 5\%, 1\%, 0, 5\%\}$.

• Einseitige Tests: Die Gegenhypothese zu $H_0: \mu = \mu_0$ ist $H_1: \mu > \mu_0$. Die Nullhypothese wird nur abgelehnt, falls zu große Stichprobenmittelwerte $\overline{x_n}$ vorliegen. Es ist dann $K_n^T = (z_{1-\alpha}, \infty)$.

Def. Es seien $X_1, \ldots, X_n \sim \mathcal{N}(0, 1)$. Dann heißt die Summe $X_1^2 + \ldots + X_n^2 \sim \chi_n^2$ Chi-Quadrat-verteilt mit n Freiheitsgraden.

Def. Falls $X \sim \mathcal{N}(0,1)$ und $Y_n \sim \chi_n^2$ unabhängig sind, so heißt

$$\frac{X}{\sqrt{\frac{Y_n}{n}}} \sim t_n$$

t-verteilt mit n-Freiheitsgraden

Lem.
$$\frac{n-1}{\sigma^2} S_n^2 \sim \chi_{n-1}^2$$

Kor. \hat{T} aus dem zweiten obigen Bsp ist tatsächlich t-verteilt.

Def. Seien $Y_{n_i} \sim \chi_{n_i}^2$, i = 1, 2 zwei unabhängige ZGen. Dann heißt

$$\frac{Y_{n_1}/n_1}{Y_{n_2}/n_2} \sim F_{n_1,n_2}$$

F-verteilt (wie Fisher) mit (n_1, n_2) Freiheitsgraden.