



## ສາທາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊົນລາວ ສັນຕິພາບ ເອກະລາດ ປະຊາທິປະໄຕ ເອກະພາບ ວັດທະນາຖາວອນ

ກະຊວງສຶກສາທິການ ກົມມັດທະຍົມສຶກສາ

## ຫົວບົດສອບເສັງແຂ່ງຂັນ ນັກຮູງນເກັ່ງ ມ7 ທົ່ວປະເທດ ປະຈຳສົກຮູງນ 2010-2011 ວິຊາ ຄະນິດສາດ

ໃຊ້ເວລາ: 120 ນາທີ

- 1. (1 ຄະແນນ) ຈົ່ງຊອກຂອບເຂດຂອງ  $\lim_{n \to \infty} \left( \sqrt{n^2 + n 1} + \sqrt{n^2 + 1} 2n \right)$
- 2. (1 ຄະແນນ) ຈົ່ງຊອກຜົນບວກຂອງອັນດັບລຸ່ມນີ້:

$$S = \frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots$$

- 3. (1 ຄະແນນ) ໃຫ້  $\forall x,y \in \mathbb{R}_+^*$  ທີ່ຕອບສະໜອງເງື່ອນໄຂ  $x^2+y^2=x^3+y^3=x^4+y^4=...$  ຈົ່ງຄິດໄລ່  $P=x^{2010}+y^{2011}$
- 4. (2 ຄະແນນ) ໃຫ້ຕຳລາ.  $f(x) = x^3 2ax^2 + (2+a^2)x + 2$  ຈົ່ງກຳນົດຄ່າຂອງ a ເພື່ອໃຫ້ເນື້ອທີ່ຂອງຮູບສາມແຈ ທີ່ປະກອບຈາກ ແກນນອນ x, ເສັ້ນຕິດ ແລະ ເສັ້ນຊື່ທີ່ຕັ້ງ ສາກກັບເສັ້ນຕິດ ຢູ່ທີ່ເມັດຕິດ A(a,f(a)) ມີຄ່າເທົ່າກັບ 10 (ຫົວໜ່ວຍເນື້ອທີ່).
- 5. (3 ຄະແນນ) ໃຫ້ຮູບທໍ່ສາມລຸ່ງມສະເໝີ ABC.DEF ເຊິ່ງລຸ່ງມພື້ນ ມີລວງຍາວ  $\sqrt{7}$ , ທໍ່ມີລວງສູງ 3. ກຳນົດເມັດ G ຢູ່ລຸ່ງມຂ້າງ BE ເພື່ອໃຫ້ BG =  $\frac{1}{3}$ BE. ກຳນົດເມັດ H ຢູ່ລຸ່ງມຂ້າງ CF ເພື່ອໃຫ້ CH =  $\frac{1}{2}$ CF.
  - ກ. ຈົ່ງຊອກຫາ ບໍລິມາດຂອງຮູບທໍ່.
  - ຂ. ຈົ່ງຄິດໄລ່ ເນື້ອທີ່ຂອງຮູບສາມແຈ AGH.
  - ຄ. ຈົ່ງຄິດໄລ່ cos ຂອງມູມ  $\angle GAD$  .
- 6. (2 ຄະແນນ) ໃຫ້ຮູບໜ່ວຍກົມໜຶ່ງ ແນບໃນຮູບຈວຍ. ມີຮູບທໍ່ກົມແນບນອກຮູບໜ່ວຍກົມນັ້ນ ແລະມີພື້ນລຸ່ມ ນອນຢູ່ ແຜ່ນພຸງງດງວກັບພື້ນຂອງຮູບຈວຍ. ໃຫ້  $V_1,\ V_2$  ແມ່ນບໍລິມາດຂອງຮູບຈວຍ ແລະ ຮູບທໍ່ກົມຕາມລຳດັບ.
  - ກ. ຈົ່ງພິສູດວ່າ  $V_1 \neq V_2$ .
  - ຂ. ຈົ່ງຊອກຫາຄ່ານ້ອຍສຸດຂອງອັດຕາສ່ວນ  $rac{V_{_{1}}}{V_{_{2}}}$  .





## ສາຫາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊົນລາວ

ສັນຕິພາບ ເອກະລາດ Jeanທົປະໄຕ **ເອກະພາບ** ວັດທະນາກາວອນ

\$\$\$\$\$

ກະຊວງສຶກສາທິການ ກົມມັດທະຍົມສຶກສາ

> ຂະໜານຕອບຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮຽນເກັ່ງ ຂັ້ນ ມ7 ທີ່ວປະເທດ ສົກຮຽນ 2010-2011 ວິຊາ: ຄະນິດສາດ, ໃຊ້ເວລາ: 120 ນາທີ

| No or       | ຄຳຕອບ                                                                                                                                                                  | ຄະແນນ |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|             | ເຮົາໄດ້ $\left(\sqrt{n^2+n-1}+\sqrt{n^2+1}-2n\right) = \left(\sqrt{n^2+n-1}-n\right) + \left(\sqrt{n^2+1}-n\right)$                                                    | 0,5   |
| A           | $\left(\sqrt{n^2 + n - 1} - n\right) = \frac{\left(\sqrt{n^2 + n - 1} - n\right)\left(\sqrt{n^2 + n - 1} + n\right)}{\left(\sqrt{n^2 + n - 1} + n\right)}$             |       |
|             | $= \frac{n+1}{\sqrt{n^2+n-1}+n} = \frac{1+\frac{1}{n}}{\sqrt{1+\frac{1}{n}+\frac{1}{n^2}+1}}$                                                                          |       |
| 1<br>1ຄະແນນ | $\lim_{x \to \infty} \left( \sqrt{n^2 + n + 1} - n \right) = \frac{1 + 0}{\sqrt{1 + 0 + 0} + 1} = \frac{1}{2}$                                                         |       |
|             | $\sqrt{n^2 + 1} - n = \frac{\left(\sqrt{n^2 + 1} - n\right)\left(\sqrt{n^2 + 1} + n\right)}{\left(\sqrt{n^2 + 1} + n\right)} = \frac{n^2 + 1 - n}{\sqrt{n^2 + 1} + n}$ | 0.5   |
|             | $= \frac{1}{\sqrt{n^2 + 1} + n} = \frac{\frac{1}{n}}{\sqrt{1 + \frac{1}{n^2} + 1}}$                                                                                    | 0,5   |
|             | $\lim_{x \to \infty} \left( \sqrt{n^2 + n + 1} - n \right) = \frac{0}{\sqrt{1 + 0} + 1} = 0$                                                                           |       |
|             | ດັ່ງນັ້ນ: $\lim_{x \to \infty} \left( \sqrt{n^2 + n - 1} + \sqrt{n^2 + 1} - 2n \right) = \frac{1}{2} + 0 = \frac{1}{2}$                                                |       |

| 1/            |                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|               | ໄຈົ່ງຊອກຜົນບວກຂອງອັນດັບ: $S = \frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots$ ສັງເກດ: $3.5.7 \dots$ ມີພົດຮ່ວມແມ່ນ $2n+1$ ເຮົາໄດ້ພົດຮ່ວມແມ່ນ $n$ ມີພົດຮວມແມ່ນ $(n+1)^2$ ເຮົາໄດ້ພົດຮ່ວມຂອງພົດທີ່ n ຂອງອັນດັບຜົນບວກແມ່ນ: $\frac{2n+1}{n^2(n+1)^2}$                                                                                                               | 3.5          |
| 2<br>₁ຄະແນນ   | ດັ່ງນັ້ນ: $S_n = \frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots + \frac{2n+1}{n^2 (n+1)^2}$ $= \left(\frac{1}{1^2} - \frac{1}{2^2}\right) + \left(\frac{1}{2^2} - \frac{1}{3^2}\right) + \left(\frac{1}{3^2} - \frac{1}{4^2}\right) + \dots + \left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right)$ $= \frac{1}{1^2} - \frac{1}{(n+1)^2}$ $= 1 - \frac{1}{(n+1)^2}$ | 0,5          |
| 3<br>₁ຄະແນນ   | ຈາກສົມຜົນເຮົາມີ: $x^{4} + y^{4} = (x^{3} + y^{3})(x + y) - xy(x^{2} + y^{2})$ $\Rightarrow 1 = (x + y) - xy$ $\Leftrightarrow (x - 1)(y - 1) = 0 \Rightarrow \begin{cases} x = 1 \\ y = 1 \end{cases}$ ດັ່ງນັ້ນ: $P = x^{2010} + y^{2011} = 2$                                                                                                                                                        | 0,50<br>0,50 |
| (4)<br>2ຄະແນນ | $f(x) = x^3 - 2ax^2 + (2+a^2)x + 2$ ຈາກສົມຜົນຂ້າງເຫິງ, ເຮົາໄດ້ $f'(x) = 3x^2 - 4ax + 2 + a^2$ $f(a) = a^3 - 2a^3 + (2+a^2)a + 2 = 2a + 2$ $f'(a) = 3a^2 - 4a^2 + 2 + a^2 = 2$                                                                                                                                                                                                                         | -70          |
|               | ດັ່ງນັ້ນ, ສາມາດຂຽນສົມຜົນຂອງເສັ້ນຕິດຢູ່ທີ່ເມັດ $A(a,f(a))$ ດັ່ງນີ້: $y-(2a+2)=2(x-a)$ $\therefore  y=2x+2$                                                                                                                                                                                                                                                                                             | 0,50         |
|               | ເສັ້ນຕິດຕັດແກນນອນ ຢູ່ເມັດ B ທີ່ (-1, 0)                                                                                                                                                                                                                                                                                                                                                               | 0,25         |

| 11     |                                                                                                   |                     |
|--------|---------------------------------------------------------------------------------------------------|---------------------|
|        | ສົມຜົນຂອງເສັ້ນຕັ້ງສາກກັບເສັ້ນຕິດແມ <sup>່</sup> ນ:                                                |                     |
| /      | $y - (2a + 2) = -\frac{1}{2}(x - a)$                                                              | 0,50                |
|        | $y = \frac{1}{2}x + \frac{5}{2}x + 2$                                                             |                     |
| 1      | ເສັ້ນຕັ້ງສາກກັບເສັ້ນຕິດ ຕັດແກນນອນ ຢູ່ເມັດ C ທີ່ (5a+4, 0)                                         | 0,25                |
| Ì      | ຈາກຈຸດນີ້, ເຮົາໄດ້:                                                                               |                     |
|        | $\overrightarrow{BA} = (a+1, 2a+2)$                                                               |                     |
|        | $\overline{BC} = (5a + 5, 0)$                                                                     |                     |
|        | ດັ່ງນັ້ນ, ເນື້ອທີS ຂອງຮູບສາມແຈ ABC ແມ່ນ                                                           | 0.50                |
|        | $S = \frac{1}{2}  (a+1) \times 0 - (2a+2)(5a+5)  = \frac{1}{2}  10(a+1)^2  = 5(a+1)^2$            | 0,50                |
|        | ຈາກເງື່ອນໄຂທີ່ໃຫ້ມາ                                                                               |                     |
|        | $5(a+1)^2 = 10$ $(a+1)^2 = 2$ $a+1 = \pm \sqrt{2}$                                                |                     |
|        | ສະນັ້ນ, ຄຳຂອງ a ເພື່ອໃຫ້ຮູບສາມແຈ ມີເນື້ອຫີເທົ່າ 10 ແມ່ນ $a=-1\pm\sqrt{2}$                         |                     |
| -      | ູ້ ຮູບທໍ່ສາມລ່ງມ ABC.DEົF                                                                         |                     |
|        | $AB = \sqrt{7}; AD = 3;$                                                                          |                     |
|        | ສິມມຸດ $BG = \frac{1}{3}BE$ ; $CH = \frac{1}{2}CF$                                                |                     |
|        |                                                                                                   | -   <sub>0,25</sub> |
|        | ສະຫຼຸບ ກ. V=? (ບໍລິມາດຂອງຮູບທໍ)                                                                   | 0,23                |
|        | $2. S_{\Delta ABC} = ?$                                                                           |                     |
|        | $\operatorname{cos}(\angle GAD) = ?$                                                              |                     |
|        | 7 B                                                                                               |                     |
| (5)    | ກ. ບໍລິມາດຂອງຮູບທໍ່ V ແມ <sup>່</sup> ນ                                                           |                     |
| 3ຄະແນນ | $V = \Delta ABC \times AD = \frac{\sqrt{3}}{4}\sqrt{7}^2 \times 3 = \frac{21}{4}\sqrt{3}$         | 0,25                |
|        |                                                                                                   |                     |
|        | $BG = \frac{1}{3}BE = 1$ , ຕາມຫລັກເກນປີຕາກໍ ເຮົາໄດ້                                               |                     |
|        | $AG = \sqrt{\sqrt{7}^2 + 1^2} = \sqrt{8} = 2\sqrt{2}$                                             |                     |
|        | ຈາກເມັດ G ຂີດເສັ້ນຊື່ຕັ້ງສາກກັບ CH ຢູ່ເມັດ I, ໃນສາມແຈ GIH ນຳໃຊ້ຫລັກການປີຕາກໍ ຈະໄດ້:               |                     |
|        | $GH = \sqrt{\sqrt{7}^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{29}{4}} = \frac{\sqrt{29}}{2}$ | 0,50                |
|        | $GH = \sqrt{\sqrt{7} + \left(\frac{1}{2}\right)} = \sqrt{\frac{4}{4} - \frac{1}{2}}$              |                     |
|        | จากสามแจ ACH จะได้                                                                                |                     |
|        | $HA = \sqrt{\sqrt{7}^2 + \left(\frac{3}{2}\right)^2} = \sqrt{\frac{37}{4}} = \frac{\sqrt{37}}{2}$ |                     |
|        | V (2) V4 2                                                                                        |                     |

|               | ໃນຮູບສາມແຈ AGH, ເມື່ອວາງ $\angle GAiI = lpha$ ສາມາດຄິດໄລ sin ແລະ cos ໄດ້ດັ່ງລຸ່ມນີ້                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|               | ໃນຮູບສາມແຈ AGH, ເມອິ້ວາງ $2GAH = \alpha$ ສາມາດເຂົ້າເພື່ອ $3$ ສາມາດເຂົ້າເພື່ອງຈາກ $\cos \alpha = \frac{AG^2 + AH^2 - GH^2}{2AG \cdot AH} = \frac{(2\sqrt{2})^2 + \left(\frac{\sqrt{37}}{2}\right)^2 - \left(\frac{\sqrt{29}}{2}\right)}{2 \cdot 2\sqrt{2} \cdot \frac{\sqrt{37}}{2}} = \frac{5}{\sqrt{74}}$ ເນື່ອງຈາກ $\sin \alpha > 0$ ສະນັ້ນ, $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \left(\frac{5}{\sqrt{74}}\right)^2} = \frac{7}{\sqrt{74}}$ ສຸດທາຍ, ເນື້ອທີ່ຂອງຮູບສາມແຈ AGH ແມ່ນ $S = \frac{1}{2} \cdot 2\sqrt{2} \cdot \frac{\sqrt{37}}{2} \cdot \frac{7}{\sqrt{74}} = \frac{7}{2}$ | 1,5  |  |
|               | $3 = \frac{1}{2} \cdot 2\sqrt{2} \cdot \frac{1}{2} \cdot \sqrt{74} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |
|               | ຄ. ສຳລັບສາມແຈ AGD ເຮົາໄດ້ $DG = \sqrt{\sqrt{7}^2 + 2} = \sqrt{11}$ ສະນັ້ນ, $\cos \angle GAD = \frac{AD^2 + AG^2 - DG^2}{2AD \cdot AG} = \frac{3^2 + (2\sqrt{2})^2 - \sqrt{11}^2}{2 \cdot 3 \cdot 2\sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$                                                                                                                                                                                                                                                                                                                                                | 0,5  |  |
|               | $V_1$ : ບໍລິມາດຂອງຮູບຈ່ວຍ $V_2$ : ບໍລິມາດຂອງຮູບທໍ່                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |  |
| (6)<br>2ຄະແນນ | ສະຫຼຸບ ກ. ພິສູດ $V_1 \neq V_2$ ຂ.ຊອກຄ່ານ້ອຍສຸດຂອງ $\frac{V_1}{V_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,25 |  |
|               | ໃຫ້ $BD=h$ , ລັດສະໝີພື້ນຂອງຮູບຈວຍ $DC=a$ , ມູມ ABD ແມ່ນ $lpha$ ; ລັດສະໝີຂອງໜ່ວຍມົນແມ່ນ $r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,25 |  |
|               | ກ. ເຮົານີ: $V_1 = \frac{\pi h \alpha^2}{3}$ (1), $h = OB + OD = \frac{r}{\sin \alpha} + r = \frac{r(1 + \sin \alpha)}{\sin \alpha}, a = \frac{r(1 + \sin \alpha)}{\sin \alpha} . tg\alpha = \frac{r(1 + \sin \alpha)}{\sin \alpha} \times \frac{\sin \alpha}{\cos \alpha} = \frac{r(1 + \sin \alpha)}{\cos \alpha}$                                                                                                                                                                                                                                                                                    | 0,25 |  |
|               | JHI W SHI W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |  |

| 11 |                                                                                                                                                                                                                                                                                                                      |      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1  | ແທນເຂົ້າ (1) ເຮົາໄດ້: $V_1 = \frac{\pi . r^3 (1 + \sin \alpha)^3}{3 \sin \alpha . \cos^2 \alpha} = \frac{\pi . r^3 (1 + \sin \alpha)^2}{3 \sin \alpha (1 - \sin \alpha)}$                                                                                                                                            |      |
|    | ບໍລິມາດຂອງຮູບທໍ່ກົມແມ່ນ $V_{\scriptscriptstyle 2}=2\pi r^3$ ສະນັ້ນ                                                                                                                                                                                                                                                   | 0,25 |
|    | $\frac{V_1}{V_2} = \frac{(1+\sin\alpha)^2}{6\sin\alpha(1-\sin\alpha)}$ , ເຮົາວາງ $s = \sin\alpha.0 < s < 1$                                                                                                                                                                                                          | 0,25 |
|    | ສົມມຸດໃຫ້ $\frac{V_1}{V_2} = 1$ (ໝາຍວ່າ $V_1 = V_2$ ) ເຮົາໄດ້ສົມຜົນ $7s^2 - 4s + 1 = 0$ ສົມຜົນນີ້ຖ້າແກ້ຕາມ $s$ ສົມຜົນນີ້ນໍ່ ມີໃຈຜົນ; ເງື່ອນໄຂນີ້ $s$ ບໍ່ສາມາດກຳນົດໄດ້. ສະນັ້ນສາມາດສະຫຼຸບໄດ້ວ່າ $V_1 \neq V_2$ .                                                                                                      | 0,25 |
|    | 2. ວາງ $\frac{V_1}{V_2} = k$ , ເຮົາໄດ້ສົມຜົນ $(1+6k)s^2 + 2(1-3k)s + 1 = 0$ ເພື່ອໃຫ້ສົມຜົນນີ້ມີໃຈຜົນ, ເຮົາຕ້ອງມີ. $\Delta' = (1-3k)^2 - (1+6k) \ge 0 \Leftrightarrow k \ge \frac{4}{3}$ ດັ່ງນັ້ນຄ່ານ້ອຍສຸດຂອງ $\frac{V_1}{V_2} = k$ ແມ່ນ $\frac{4}{3}$ , ຕອບສະໜອງກັບ $s = \sin \alpha = \frac{1}{3}$ ແລະ $OB = 3r$ . | 0,5  |

\*