

Redes de Computadores

Licenciatura em Engenharia Electrotécnica e Computadores Licenciatura em Engenharia Informática

Objectivos, Programa, Avaliação e Bibliografia

ESTSetúbal, Outubro de 2021

Objectivos e Programa

Objectivos

O objectivo fundamental da Unidade Curricular Redes de Computadores é a dotação dos Alunos de conhecimentos de base na área das Redes de Computadores.

Os aspectos tratados passam pelos fundamentos teóricos, e pelo projecto, instalação e manutenção de Redes Locais de Computadores. Numa fase final são abordados aspectos para aumentar a segurança da rede.

Objectivos e Programa

Programa

Conceitos de Redes de Computadores

Modelos OSI e TCP/IP

Nível Físico

Nível de Ligação de dados

VLANs

Nível de rede

Routing

Nível de Transporte

Nível de Aplicação

Projecto de Redes Estruturadas

Segurança em Redes de Computadores

Método de Avaliação

Cálculo da Classificação Final

A nota final será obtida com base na fórmula

NF = 0.5 ET + 0.25 MTL + 0.25 PRJ

onde

- ET Exame Teórico ou média de dois testes
- MTL Média da Nota dos Trabalhos de Laboratório
- PRJ Projecto Final

A nota mínima no Exame Teórico ou de ambos os testes é de 9.5 (nove ponto cinco) valores; todas as restantes componentes têm a nota mínima de 10 (dez) valores.

Método de Ensino

Ano Lectivo 2020/21

Aulas Teóricas em modo EAD

Aulas Laboratório em modo EAD usando simulador de redes

Projecto em modo EAD, sobre simulador

Avaliação presencial ou em EAD

Bibliografia Oficial

Computer Networking: A Top-Down

Approach 6rd Edition

James F. Kurose

Keith W. Ross

Pearson, 2012

ISBN 10: 0132856204

ISBN 13: 9780132856201

Computer Networks

Andrew S. Tanenbaum

Prentice Hall

5th Edition

ISBN-10: 0132126958

Engenharia de Redes Informáticas Edmundo Monteiro / Fernando Boavida FCA - Editora Informática

10ª edição

ISBN-978-972-722-694-8

Redes CISCO para Profissionais

Mário Vestias

FCA - Editora Informática

4ª edição

2009

ISBN-13: 978-972-722-506-4

Network Security Essentials: Applications and Standards

William Stallings

Prentice Hall

3rd Edition

2006

ISBN-10: 0132380331

Site de Apoio da Unidade Curricular

Área no Moodle

https://moodle.ips.pt/2122/course/view.php?id=301

Redes de Computadores - LEEC-LEI

Painel do utilizador / As minhas disciplinas / RC-LEEC-LEI

Redes de Computadores

Internet: interligação de redes

Endereços: MAC, IP, Port

Endereços: IP

- Os endereços IP (v4 ou v6) permitem identificar um dispositivo na Internet.
 - Os endereços IPv4
 - São inteiros de 32 bits:
 - São únicos e universais;
 - O espaço de endereçamento é de 2³² ou 4 292 967 296 endereços IPv4;
 - São representados em formato decimal pontuado.

Conversão de binário para decimal

Convertendo um IPv4 de Notação Binária para Notação Decimal Pontuada

Endereço IPv4 binário 1010110000010000000010000010100

- Estão divididos em duas partes
 - Prefixo da rede (Net ID)
 - Identifica uma rede na Internet.
 - Endereço do dispositivo (Host ID)
 - Identifica um dispositivo (host) dentro da rede.

Host ID 2

- Endereçamento baseado em classes (classful)
 - As redes estão divididas em classes com dimensões fixas.

Classe	Bits iniciais	Nº de bits do Net ID	Nº de bits do Host ID	Nº de redes	Nº de endereços por rede	Endereço inicial	Endereço final
A	0	8	24	128 (27)	16 777 216 (2 ²⁴)	0.0.0.0	127.255.255.255
В	10	16	16	16 536 (214)	65 536 (216)	128.0.0.0	191.255.255.255
C	110	24	8	2 097 152 (221)	256 (28)	192.0.0.0	223.255.255.255
D (Multicast)	1110					224.0.0.0	239.255.255.255
E (Reservado)	1111					240.0.0.0	255.255.255.255

- Endereçamento sem classes
 - Classless Inter-Domain Routing (CIDR)
 - Notações

```
* 192.168.0.0 e Net Mask = 255.255.255.0
```

- ***** 192.168.0.0/24
 - Representam uma rede com 24 bits para o NET ID e 8 bits para o Host ID.
 - → A rede suporta 254 (28-2) dispositivos na rede.

```
* 192.168.0.0 e Net Mask = 255.255.252.0
```

- ***** 192.168.0.0/22
 - Representam uma rede com 22 bits para o NET ID e 10 bits para o Host ID.
 - → A rede suporta 1022 (2¹⁰-2) dispositivos na rede.

- Endereçamento sem classes
 - Classless Inter-Domain Routing (CIDR)
 - Exemplo de uma rede classe C
 - Em formato decimal pontuado
 - **→ Endereço IPv4** 192.168. 37.35
 - Máscara de rede 255.255.255.0
 - → Endereço da rede 192.168. 37.0
 - * Em binário
 - → Endereço IPv4 11000000 10101000 00100101 00100011

32 bits

- Máscara de rede 11111111 11111111 11111111 00000000
- → Endereço da rede 00010001 01111001 10000000 00000000

AND

32 bits

32 bits

Comunicação

 O tráfego de entrada e saída de uma rede passa pelo gateway da rede.

Os dispositivos de modo a poderem comunicar com o exterior da

rede têm de conhecer o endereço do gateway.

<#>

Comunicação

- O tráfego com destino a um dispositivo da rede não passa pelo gateway.
 - End. IP de destino → 192.168.3.103
 - Máscara de rede → 255.255.255.0

```
11000000 10101000 00000011 01100111
```

AND 11111111 11111111 11111111 00000000

```
11000000 10101000 00000011 00000000 = 192.168.3.0
```

- End. IP de destino AND Máscara de rede = 192.168.3.0
 - O resultado é igual ao endereço da rede onde está o host
 - A mensagem é enviada diretamente ao destinatário sem passar pelo gateway.

Comunicação

- O tráfego com destino a um dispositivo fora da rede tem de passar pelo gateway.
 - End. IP de destino → 74.125.230.55
 - Máscara de rede → 255.255.255.0

```
01001010 01111101 11100110 00110111
```

AND 11111111 11111111 11111111 00000000

- End. IP de destino AND Máscara de rede = 74.125.230.0
 - O resultado é diferente do endereço da rede onde está o host
 - A mensagem é enviada para o gateway.