Rappels de Topologie

Exercice 1. Exemples de distances

- 1. Rappeler la définition d'une norme et d'une distance. Vérifier que toute norme sur un espace vectoriel E définit une distance sur $E \times E$. La suite donne des exemples de distances qui ne viennent pas directement de normes.
- 2. Vérifier que les applications suivantes sont bien des distances.

 $d_1: (x,y) \in \mathbb{R} \times \mathbb{R} \mapsto \min(1,|x-y|),$

 $d_2: \ (x,y) \in \mathbb{R} \times \mathbb{R} \mapsto \sqrt{|x-y|} \ \ (\text{et que se passe-t-il avec} \ (x,y) \in \mathbb{R} \times \mathbb{R} \mapsto |x-y|^2?) \,,$

 $d_3: ((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2 \mapsto \sqrt{|x_1 - y_1|} + \min(1, |x_2 - y_2|).$

3. Vérifier que les ouverts pour la distance d_1 et d_2 (resp. d_3) sont les mêmes que les ouverts pour la distance usuelle sur \mathbb{R} (resp. \mathbb{R}^2).

Exercice 2. Produit d'espaces métriques I

Soient (E_1, d_1) et (E_2, d_2) deux espaces métriques.

- 1. Proposer (au moins) une distance d sur l'espace produit $E_1 \times E_2$.
- 2. Montrer que pour toute suite $(x_k, y_k) \in (E_1 \times E_2)^{\mathbb{N}}$, et pour tout $(x, y) \in E_1 \times E_2$,

$$(x_k, y_k) \xrightarrow[k \to \infty]{} (x, y) \text{ dans } (E_1 \times E_2, d) \quad ssi \quad x_k \xrightarrow[k \to \infty]{} x \text{ dans } (E_1, d_1), \text{ et } y_k \xrightarrow[k \to \infty]{} y \text{ dans } (E_2, d_2).$$

Exercice 3. Fonction continue dans un espace métrique

Soit $f:(E_1,d_1)\to (E_2,d_2)$, et $x\in E_1$.

1. Montrer que f est continue au point x ssi pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que

$$f(B_1(x,\delta)) \subset B_2(f(x),\epsilon)$$
.

2. Montrer que f est continue au point x ssi pour toute suite $\{x_k\}$ dans E_1 qui converge vers x dans E_1 , la suite $\{f(x_k)\}$ converge vers f(x) dans E_2 .

Exercice 4. Équivalence des normes dans \mathbb{R}^n

Soit $N:\mathbb{R}^n\to\mathbb{R}^+$ une norme, et $\|\ \|$ la norme Euclidienne sur \mathbb{R}^n , définie on le rappelle par

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$
, pour $x = (x_i)_{1 \le i \le n}$.

1. Montrer qu'il existe une constante M > 0 telle que pour tout $x \in \mathbb{R}^n$,

$$N(x) \leq M||x||$$
.

2. Montrer alors que $N : \mathbb{R}^n \longrightarrow \mathbb{R}_+$ est une fonction continue. Remarque: On déduit de cette question que toute norme sur \mathbb{R}^n est une application continue.

Soit maintenant $S = \{x \in \mathbb{R}^n \mid ||x|| = 1\}.$

- 3. Montrer qu'il existe m > 0 tel que $m \le N(x)$ pour tout $x \in S$.
- 4. En déduire que pour tout $x \in \mathbb{R}^n$,

$$m||x|| \leq N(x)$$
.

5. Soient N et N' deux normes sur \mathbb{R}^n . Montrer que N et N' sont équivalentes.

Exercice 5. Caractérisation des ouverts de \mathbb{R} . Munissons \mathbb{R} de sa topologie la plus naturelle, à savoir celle qui vient de la valeur absolue $| \cdot |$.

- 1. Justifier le fait que toute réunion dénombrable d'intervalles ouverts est encore un ouvert de \mathbb{R} .
- 2. Réciproquement, on va montrer que que tout ouvert de \mathbb{R} peut s'écrire comme une réunion dénombrable d'intervalles ouverts. Considérons pour cela \mathcal{U} un ouvert de \mathbb{R} .
 - (a) Montrer que \mathcal{U} est une réunion (pas forcément dénombrable) d'intervalles ouverts.
 - (b) Utiliser la densité de \mathbb{Q} dans \mathbb{R} pour avoir une réunion dénombrable. Indication: On suppose $U \neq \mathbb{R}$. Pour $y \in \mathbb{Q} \cap U$, considérer l'intervalle $I_y = |y d(y)/2, y + d(y)/2$, où $d(y) = \text{dist}(y, \mathbb{R} \setminus U)$.

Exercice 6. (Bonus) Produit d'espaces métriques II

Soit $(E_j, d_j)_{j \ge 0}$ une famille dénombrable d'espaces métriques. Supposons que pour tout $j \ge 0$,

$$d_j(x_j, y_j) \le 1$$
 lorsque $(x_j, y_j) \in E_j \times E_j$. (1)

1. Montrer que

$$d: ((x_j), (y_j))_{j \ge 0} \in (\prod_{j \ge 0} E_j) \times (\prod_{j \ge 0} E_j) \longmapsto \sum_{j \ge 0} 2^{-j} d_j(x_j, y_j)$$

est une distance sur $\prod_{j\geq 0} E_j$.

- 2. Montrer que la suite $\{(x_j^{(k)})\}_k$ converge dans l'espace métrique produit $(\prod_j E_j, d)$ ssi chaque suite coordonnée $(x_j^{(k)})_k$ converge dans l'espace (E_j, d_j) .
- 3. Que faire si l'on n'a pas (1) d'emblée

Exercice 7. (Bonus) Caractérisation des compacts de]0,1[

1. Quels sont les sous-ensembles compacts de [0,1]? Ceux de]0,1[?