## Exercice 1 / 6 points

## 1. Modélisation sous forme de graphe potentiel tâches :

Les contraintes sous forme d'inéquations (0.5)

 $t_3$ - $t_1$ ≥7

 $t_4$ - $t_1$ ≥7

 $t_4$ - $t_3$  $\ge 2$ 

 $t_5$ - $t_3$ ≥2

 $t_5$ - $t_4$  $\geq$ 4

 $t_6$ - $t_3$ ≥2

 $t_6$ - $t_4$  $\ge$ 4

On rajoute deux tâches fictives de début de projet ( $\alpha$ ) et de fin de projet ( $\beta$ )

 $t_{\alpha}$ - $t_1 \ge 0$ 

 $t_{\alpha}$ - $t_2 \ge 0$ 

 $\forall i \in \{1, ..., 6\} t_i - t_{\beta} \ge dur\acute{e}_i$ 

Afin d'optimiser le graphe, on ne prend que celles qui ne sont pas redondantes :

 $t_2$ - $t_\beta$  $\geq$ 8

 $t_5$ - $t_\beta \ge 3$ 

 $t_6$ - $t_\beta$  $\geq$ 1

Le graphe : (1.5)



## 2. Dates au plus tôt (voir le tableau ci-dessous): (1.5)

| Tâche            | 1 | 2 | 3 | 4 | 5  | 6  |
|------------------|---|---|---|---|----|----|
| Date au plus tôt | 0 | 0 | 7 | 9 | 13 | 13 |

La durée optimale du projet est 16 (0.5)

## 3. Dates au plus tard (voir le tableau ci-dessous): (1.5)

| Tâche             | 1 | 2 | 3 | 4 | 5  | 6  |
|-------------------|---|---|---|---|----|----|
| Date au plus tard | 0 | 8 | 7 | 9 | 13 | 15 |

Les tâches critiques sont : 1, 3, 4 et 5 (0.5)