Scanner

Proseminar SS25

01.07.2024

David Knöpp

Contents

1	Problem Definition	
	1.a Result Matrix	4
	1.b Result Matrix	
	1.c Result Matrix	
	1.d Getting the input	
	1.e Getting the input	8
	1.f Getting the input	
	1.g Getting the input	
	1.h Getting the input	
	1.i Live Demo	
2	Solution	13
	2.a Tools	
	2.b Algorithm	

1 Problem Definition

Result Matrix 4 / 15

Result Matrix 5 / 15

Result Matrix 6/15

.##. .##. ###. ##..

This is our actual output

But what is our input?

2 2 3 2

2 2 3 2 0 1 3 3 2 0 0

2 2 3 2 0 1 3 3 2 0 0 2 4 3 0

The number at the top represents the number of matrices that will follow.

In our case, it's just one.

```
2 2 3 2
0 1 3 3 2 0 0
2 4 3 0
1 2 1 2 2 1 0
```

And that's our input!

Live Demo

insert picture

2 Solution

Tools 14 / 15

- Python
- Numpy

Algorithm 15 / 15

yay