University of California, Los Angeles

EE219: Classification

Project Report

Abdullah-Al-Zubaer Imran

Curtis Crawford

Introduction

Clustering alogrithms find groups of data points that have similar representations in a proper space, in unsupervised way. Clustering differs from classification in that without having any prior labelling of the data points. K-means clustering is a clustering technique that interatively groups data points into regions characterized by a set of cluster centroids. Data representation is very crucial for any clustering algorithm like K-means. In this project, we have figured out proper representations of the data points so that we can get efficient and reasonable results from the clustering. Then we performed K-means clutering on the dataset and evaluated performance using different performance measures. Moreover, different preprocess techniques were performed for possible increase in performance of the clustering.

Dataset

For this project, we have used "20 Newsgroups" dataset which is a collection of approximately 20,000 documents, partitioned evenly across 20 different newsgroups, each corresponding to a different topic. And each topic is viewed as a class. Since we performed clustering on this dataset, we pretended that the class labels are not available in the dataset.

Wroking Procedures Results

Data Representation

In order to find a good representation of the data, the documents were transformed into TF-IDF vectors using $min_df = 3$. The Tf-IDF matrix dimension: (7882, 27768)

Clustering

Then we applied K-means clustering with k=2 to determine the groups or classes the data points belong to, without providing any prior label. For evaluation purpose, we re-labeled data with either 0 for comp-tech or 1 for rec. And compared the clustering results with the known labels.

The Contigency Matrix

Contigency:

Performance Measures

In addition to this, we examined several measures to make a concrete comparison of the clustering results.

Results from different measures are reported in the following table:

Measures	Scores
Homogeneity score:	0.791324640919
Completeness score:	0.79150685559
V-measure:	0.791415737766
Adjusted Rand score:	0.872390054996
Adjusted Mutual info score:	0.79130553663

Data Preprocessing

As we observe from the clustering result, TF-IDF vector did not yield a good result for K-means clustering. Therefore, we tried with better representations of the data. We performed two dimensionality reduction techniques as the preprocess for K-means clustering.

Figure 1: Plot of the Percent of variance retained in PCA vs. r.

Dimensionality Reduction

We have used Latent Semantic Indexing (LSI) and Non-negative Matrix Factorization (NMF) for dimensionality reduction. We determined the effective dimension of the data through inspection of the top singular values of the TF-IDF matrix and noticed how many of them are significant in reconstructing the matrix with the truncated SVD representation. We checked what ratio of the variance of the original data is retained after dimensionality reduction. Figure 1 shows the plot of the percent of variance the top r principle components can retain vs. r, for r = 1 to 1000.

For dimensionality reduction, we used LSI and NMF methods. We swept over the parameters for each method (LSI and NMF) to determine the one yielding better results in terms of clustering metrics. All five performance metrics for clustering with different r-values are reported below.

 $\underline{r=1}$

 \mathbf{NMF}

Contigency:

Homogeneity:	0.000311084586659
completeness:	0.00031474279897
V-measure:	0.000312903000955
RAND score:	0.000349910576703
Mutual Info:	0.000219562406476

SVD

$$\begin{bmatrix} 2160 & 1743 \\ 2284 & 1695 \end{bmatrix}$$

Homogeneity:	0.000310977615107
completeness:	0.000314664424341
V-measure:	0.000312810156833
RAND score:	0.000349914958924
Mutual Info:	0.000219455422027

 $\underline{r=2}$

\mathbf{NMF}

Contingency:

Homogeneity:	0.592844515412
completeness:	0.608067163036
V-measure:	0.600359358773
RAND score:	0.648591716894
Mutual Info:	0.592807239875

\mathbf{SVD}

Contingency:

Homogeneity:	0.608223241581
Completeness:	0.608333021975
V-measure:	0.608278126825
RAND score:	0.713926529273
Mutual Info:	0.608187374307

 $\underline{r=3}$

 \mathbf{NMF}

Contingency:

Homogeneity:	0.237561424862
Completeness:	0.317099662339
V-measure:	0.271627663619
RAND score:	0.16950318518
Mutual Info:	0.237491614778

SVD

Contingency:

$$\begin{bmatrix} 3635 & 268 \\ 3979 & 0 \end{bmatrix}$$

Homogeneity:	0.0353596802034
Completeness:	0.165160546781
V-measure:	0.0582487283625
RAND score:	0.00593193880668
Mutual Info:	0.0352712181601

r = 5

 \mathbf{NMF}

Homogeneity:	0.125884883543
Completeness:	0.127229904183
V-measure:	0.126553820227
RAND score:	0.165339719484
Mutual Info:	0.125804857758

SVD

Contingency:

Homogeneity:	0.138545661957
Completeness:	0.154488808534
V-measure:	0.146083525309
RAND score:	0.15259281864
Mutual Info:	0.13846679232

 $\underline{r} = 10$

\mathbf{NMF}

$$\begin{bmatrix} 1226 & 2677 \\ 3975 & 4 \end{bmatrix}$$

Homogeneity:	0.474595160933
Completeness:	0.513066612395
V-measure:	0.4930816157
RAND score:	0.473136537245
Mutual Info:	0.474547058583

Contingency:

Homogeneity:	0.231788794819
Completeness:	0.319083600677
V-measure:	0.268519547729
RAND score:	0.154588731327
Mutual Info:	0.23171845505

 $\underline{r} = 20$

\mathbf{NMF}

Homogeneity:	0.103775132137
Completeness:	0.213011153692
V-measure:	0.139559454496
RAND score:	0.0388697375327
Mutual Info:	0.103693048241

Contingency:

Homogeneity:	0.233028131747
Completeness:	0.320016548166
V-measure:	0.269681134475
RAND score:	0.155989148922
Mutual Info:	0.232957905546

 $\underline{r = 50}$

\mathbf{NMF}

Homogeneity:	0.0667025153879
Completeness:	0.186835673058
V-measure:	0.0983079466928
RAND score:	0.0152959218258
Mutual Info:	0.0666170072715

Contingency:

Homogeneity:	0.774707930719
Completeness:	0.775648956185
V-measure:	0.775178157863
RAND score:	0.856346285004
Mutual Info:	0.774687305158

r = 100

\mathbf{NMF}

Homogeneity:	2.21983210362e-07
Completeness:	6.94847451879e-06
V-measure:	4.30222097127e-07
RAND score:	-4.45905813813e-07
Mutual Info:	-9.31724050412e-05

Contingency:

$$\begin{bmatrix} 3900 & 3 \\ 2310 & 1669 \end{bmatrix}$$

Homogeneity:	0.245732969386
Completeness:	0.329585259245
V-measure:	0.281548403613
RAND score:	0.170550013258
Mutual Info:	0.245663907331

 $\underline{r = 300}$

\mathbf{NMF}

$$\begin{bmatrix} 3871 & 32 \\ 3889 & 90 \end{bmatrix}$$

Homogeneity:	0.00256529809666
Completeness:	0.0222595262258
V-measure:	0.00460042089466
RAND score:	-6.92914675877e-05
Mutual Info:	0.00247362159362

SVD

Contingency:

Homogeneity:	0.241189275662
Completeness:	0.302600706133
V-measure:	0.268427325146
RAND score:	0.197762294913
Mutual Info:	0.24111979987

Performance Visualization Improvement

By projecting final data vectors onto 2-dimensional plane and color-coding the classes, the best clustering results from previous part for both SVD and NMF have been visualized in ??fig:svd1 and 3 figures.

Figure 2: Clustering result for SVD with the best r-value

Figure 3: Clustering result for NMF with the best r-value