Bielliptic Shimura curves $X_0^D(N)$ with nontrivial level

Freddy Saia (UIC)

Joint work with Oana Padurariu (MPIM Bonn)

ANTS XVI, 2024

1/17

Infinitude of degree *d* points

Let F be a number field and X a nice curve over F of genus g.

Theorem (Faltings 1983)

If X(F) is infinite, then $g \leq 1$.

Infinitude of degree d points

Let F be a number field and X a nice curve over F of genus g.

Theorem (Faltings 1983)

If X(F) is infinite, then $g \leq 1$.

What if we range over all number fields of specified degree?

Definition

The arithmetic degree of irrationality of X over F is the positive integer

$$\operatorname{a.irr}_F(X) := \min \left\{ d : \left(\bigcup_{[L:F]=d} X(L) \right) \text{ is infinite} \right\}.$$

Modular curves

The classical modular curves $X_1(N)$ and $X_0(N)$ over \mathbb{Q} parameterize elliptic curves with extra torsion structure.

Complete lists of levels N for which these curves have arithmetic degree of irrationality d are known for low values of d:

degree d	$\operatorname{a.irr}_{\mathbb{Q}}(X_1(N)) = d$	$\operatorname{a.irr}_{\mathbb{Q}}(X_0(N))=d$
2	Jeon-Kim 2004	Bars 1999
3	Jeon-Kim-Schweizer 2004	Jeon 2021
4	Jeon-Kim-Park 2006	Hwang-Jeon 2024
		Derickx–Orlić 2024
5,6	Derickx–Sutherland 2017	

Shimura curves

Fix B/\mathbb{Q} an indefinite quaternion algebra, determined by its discriminant $D = \operatorname{Disc}(B)$. Let \mathcal{O}_N be an Eichler order of level N in B.

An $\mathcal{O}_{\mathbb{N}}$ -QM abelian surface over F is a pair (A, ι) consisting of:

- A, an abelian surface over F, and
- $\iota : \mathcal{O}_N \hookrightarrow \operatorname{End}(A)$, a QM-structure over F.

Shimura curves are generalizations of modular curves, which parameterize QM abelian surfaces with extra structure. The D=1 case of $B=M_2(\mathbb{Q})$ recovers the modular curve setting.

Modular curves $X_0(N)$	Shimura curves $X_0^D(N)$, $D>1$	
Parameterize elliptic curves with a cyclic order <i>N</i> subgroup	Parameterize \mathcal{O}_{N} -QM abelian surfaces	
Have a canonical model over $\mathbb Q$	Have a canonical model over $\mathbb Q$	
Have rational cuspidal points; $X_0(N)(\mathbb{Q}) \neq \emptyset$	Have no cusps, in fact $X_0^D(N)(\mathbb{R}) = \emptyset$	

Another point of contrast: our knowledge of explicit equations for $X_0^D(N)$ is relatively limited for D>1 compared to the D=1 case.

Infinitude of quadratic points

Theorem (Padurariu-S.)

a.irr₀ $(X_0^D(N)) = 2$ with D > 1 and gcd(D, N) = 1 if and only if (D, N) is in the following set of 73 pairs:

```
\{(6,1),(6,5),(6,7),(6,11),(6,13),(6,17),(6,19),(6,23),(6,29),(6,31),
(6,37), (6,41), (6,71), (10,1), (10,3), (10,7), (10,11), (10,13), (10,17),
(10, 23), (10, 29), (14, 1), (14, 5), (15, 1), (15, 2), (21, 1), (22, 1), (22, 3),
(22,5), (22,7), (22,17), (26,1), (33,1), (34,1), (35,1), (38,1), (39,1),
(39, 2), (46, 1), (51, 1), (55, 1), (57, 1), (58, 1), (62, 1), (65, 1), (69, 1),
(74, 1), (77, 1), (82, 1), (86, 1), (87, 1), (94, 1), (95, 1), (106, 1), (111, 1),
(118, 1), (119, 1), (122, 1), (129, 1), (134, 1), (143, 1), (146, 1), (159, 1)
(166, 1), (194, 1), (206, 1), (210, 1), (215, 1), (314, 1), (330, 1), (390, 1)
(510, 1), (546, 1)}.
```

If C(F) is infinite and $\pi: X \to C$ is a degree 2 map, then $\pi^{-1}(C(\mathbb{Q}))$ contains infinitely many degree 2 points.

If C(F) is infinite and $\pi: X \to C$ is a degree 2 map, then $\pi^{-1}(C(\mathbb{Q}))$ contains infinitely many degree 2 points.

We call the curve X/F

- hyperelliptic (over F) if X admits a degree 2 map to \mathbb{P}^1_F
- **geometrically hyperelliptic** if X is hyperelliptic over $\overline{\mathbb{Q}}$
- bielliptic (over F) if X admits a degree 2 map to an elliptic curve E over F
- ullet geometrically bielliptic if it is bielliptic over $\overline{\mathbb{Q}}$

Theorem (Harris-Silverman 1991)

If X/F has infinitely many quadratic points and $g(X) \ge 2$, then either

- X is hyperelliptic, or
- X is bielliptic and admits a degree 2 map to an elliptic curve of positive rank over F.

Prior work

The curves $X_0^D(N)$ with D > 1 of genus 0 and 1 were listed by Voight.

The hyperelliptic curves $X_0^D(N)$ with D>1 were determined by work of Ogg and of Guo-Yang.

The bielliptic Shimura curves $X_0^D(1)$, and those with infinitely many quadratic points, were determined by Rotger.

Proof outline

First, we work to determine which curves $X_0^D(N)$ are geometrically bielliptic.

Next, for each geometrically bielliptic curve we ask:

- Is it bielliptic over \mathbb{Q} ?
- ullet If so, is a bielliptic quotient an elliptic curve of positive rank over \mathbb{Q} ?

Geometrically bielliptic $X_0^D(N)$

Theorem (Padurariu-S.)

There are exactly 41 pairs (D, N) with D, N > 1 and gcd(D, N) = 1 for which $X_0^D(N)$ is geometrically bielliptic.

For these 41 pairs, we determine all of the bielliptic involutions, which are Atkin–Lehner involutions, **except possibly for** the two genus 5 curves with

$$(\textit{D},\textit{N}) \in \{(6,25),(10,9)\}.$$

Generating candidates

If X is bielliptic, then geometrically $X_{\overline{\mathbb{Q}}}$ has a degree 4 map to $\mathbb{P}^1_{\overline{\mathbb{Q}}}$. So X has geometric **gonality** $\mathrm{gon}_{\mathbb{C}}(X) \leq 4$.

Theorem (Abramovich 1996)

For a Shimura curve $X_0^D(N)$, we have

$$g(X_0^D(N)) \leq \frac{200}{21} gon_{\mathbb{C}}(X_0^D(N)) + 1.$$

With D > 1, using an explicit bound on the genus we get

$$\operatorname{gon}_{\mathbb{C}}(X_0^D(N)) \leq 4 \Longrightarrow g(X_0^D(N)) \leq 39,$$

from which we can reduce to finitely many "bielliptic candidate pairs" (D, N).

Atkin-Lehner involutions

There is a natural source of involutions on $X_0^D(N)$, the **Atkin–Lehner** involutions, $W_0(D, N) \leq \operatorname{Aut}(X_0^D(N))$, with

$$W_0(D,N) = \{w_m \mid m \parallel DN\} \cong (\mathbb{Z}/2\mathbb{Z})^{\omega(DN)}.$$

We can calculate the genus of an Atkin–Lehner quotient $X_0^D(N)/\langle w_m\rangle$ using fixed point counts due to Ogg. So, we list all geometrically bielliptic quotients by Atkin–Lehner involutions.

The hope is that these are *all* the geometrically bielliptic involutions.

We prove that there are no geometrically bielliptic involutions on $X_0^D(N)$ other than w_m for $m \parallel DN$ through various means, including:

- ullet results of Kontogeorgis–Rotger on $\operatorname{Aut}(X_0^D(N))$ for N squarefree
- Castelnuovo–Severi arguments: e.g., if $g(X) \ge 6$ then X has at most one bielliptic involution
- various other geometric results on bielliptic curves, such as restrictions on fixed point counts
- Ribet's isogeny and explicit isogeny decompositions of Jacobians of modular curves

We fail only for the genus 5 curves $X_0^6(25)$ and $X_0^{10}(9)$ which each have one bielliptic Atkin–Lehner involution.

Bielliptics over $\mathbb Q$

Knowing all geometrically bielliptic quotients $X_0^D(N)/\langle w_m \rangle$, we then ask: which are elliptic curves (have a \mathbb{Q} -rational point).

In some cases, we do have explicit models to help answer this question, by work of Guo–Yang, Nualart Riera, and Padurariu–Schembri.

Otherwise...

- Answering positively: existence of Q-rational CM points
- ullet Answering negatively: non-existence of points over $\mathbb R$ or $\mathbb Q_p$ (results of Ogg and Clark)

Ranks

By work of Ribet and others, we know that the Jacobian of $X_n^D(N)$ is isogenous to an abelian subvariety of the Jacobian of a modular curve:

$$\operatorname{\mathsf{Jac}}(X_0^D(N)) \sim \operatorname{\mathsf{Jac}}(X_0(DN))^{D-\mathsf{new}}.$$

If $X_0^D(N)/\langle w_m \rangle$ is an elliptic curve over \mathbb{Q} , then it is isogenous to an elliptic curve in $Jac(X_0(DN))^{D-\text{new}}$.

We use explicit isogeny decompositions of $Jac(X_0(DN))^{D-\text{new}}$ and rank computations of elliptic curves in Magma to determine when bielliptic quotients have positive rank.

Sporadic points on $X_0^D(N)$

A point x on X/\mathbb{Q} is called **sporadic** if $deg(x) < a.irr_{\mathbb{Q}}(X)$.

Theorem (Padurariu-S.)

For all but at most 129 explicit pairs (D, N) with D > 1, the Shimura curve $X_0^D(N)_{/\mathbb{Q}}$ has a sporadic CM point.

For at least 73 of these pairs, $X_0^D(N)_{/\mathbb{Q}}$ has no sporadic points.

There are 56 explicit pairs (D, N) with D > 1 for which we remain uncertain about the existence of a sporadic point on $X_0^D(N)$