Testskjema

PID FUNKSJONSBLOKK FOR GRUPPE 6 (P2106)

Introduksjon

1.1 Hensikt

Sikre at alle kravene til den utviklede PID funkjsonsblokken er tilfredsstilt ved testing og dokumentering av alle funksjonaliteter.

1.2 Utstyrsliste

For å gjennomføre testen av PID-funksjonsblokka, må følgende utstyr være tilgjengelig:

- 1. Mitsubishi Melsec FX2N PLS
- 2. Arduino Uno med prosesskjold (utviklet på ITK) og tilhørende kodebibliotek
- 3. PC med programmene GX Works 2 og Arduino IDE
- 4. PID funksjonslokk laget i GX Works 2
- 5. USB 2.0 A-til-B-kabel (til Arduinoen)
- 6. USB 2.0 (til PLS-en)

1.3 Oppsett

1. Start med å koble prosesskjoldet (se bilde 1 og 2) til Arduino Uno-en, og koble USB-kabelen fra Uno-en til PC-en. Koble så den andre USB-kabelen fra PLS-en til PC-en Nå skal det være to kabler tilkoblet PC-en.

Bilde 1 – Prosesskjold og Arduino Uno som skal sammenkobles

Bilde 2 – Prosesskjoldet koblet til Arduino Uno-en

- 2. Vær sikker på at ProcessShield.h-biblioteket er inkludert i «Libraries»-mappa i Arduino IDE, slik at IDE-en har tilgang til funksjonene som er utviklet til bruk på skjoldet.
- 3. Last opp Arduino C-koden til Uno-en som skal simulere den fysiske tankriggen. Sjekk at riktig korttype og COM-port er valgt under Tools -> Board: -> Arduino Uno og Tools -> Port -> COM#. Tips: Riktig COM-port finner man i Device Manager i Windows. Koden lastes til slutt opp ved å trykke Upload i IDE-en. Alt skal kunne lastes opp uten feilkoder (error).
- 4. Last opp PLS-koden fra GX Works 2 til PLS-en. Dette gjøres ved å åpne den riktige .gxw-filen som inneholder funksjonsblokkoden, og kompilere denne ved å trykke på knappen «Rebuild All» (her må den riktige POU-en ligge i mappen Execution Program-mappa). Sjekk at riktig COM-port er valgt under Connection Destination -> Connection1 -> Serial USB -> COM Port. Tips: Riktig COM-port finner man i Device Manager i Windows. Koden lastes til slutt opp ved å trykke Write to PLC-knappen. Alt skal kunne lastes opp uten feilkoder (error).
- 5. Koble til Arduino Uno-en med prosesskjoldet til PLS-en. Dette gjøres i samsvar med bilde 3.

Bilde 3 – Oppkobling mellom prosesskjoldet og PLS-en.

- 6. Se til at laskene på prosesskjoldet er koblet riktig i samsvar med ønsket prosessmodell.
- 7. Sett PLS-en i RUN.
- 8. Trykk på Start Monitoring i GX Works 2 for å visualisere data i variablene på PLS-en.

Visst alt er gjort i samsvar med oppsettet, skal PLS-en nå regulere den teoretiske prosessmodellen som prosesskjoldet representerer. Settpunkt og parametere kan nå endres i GX Works 2.

Testskjema

Teknisk informasjon før igangsetting:

Testskjema oppsett godkjent: (Marker med kryss)	Godkjent:	Ikke godkjent:
Hva som skal testes:	Egenutviklet PID-funksjonsblokk for bruk på tankregulering	
Demonstrasjonsansvarlig:	Khuong Huynh	
Kunde/tester:	Torleif Anstensrud	
Andre tilstedeværende:	Prosjektmedarbeidere: Camilla Tran Håvard Olai Kopperstad Julie Klingenberg Martin Kristoffer Gløsmyr Sacit Ali Senkaya Veiledere: Torleif Anstensrud	
Dato og sted:	Uke 16, Microsoft Teams	
Testoppsummering:	Testen skal stegvis ta for seg hver enkeltdel av PID-funksjonsblokken og være en funksjonstest og verifikasjon på at alle delene av funksjonsblokken tilfredsstiller kundens krav.	
Kriterier for godkjenning:	 Forskjellige regulatorer Innstillinger av regulatorparameter Reguleringsegenskaper Veksling mellom auto- og manuell modus 	
Resultat: (Marker med kryss)	Godkjent:	Ikke godkjent:

Dato: Uke 16	Sted: Microsoft Teams
Testansvarlig:	
	Khuong Huynh
Kunde:	
	Torleif Anstensrud

Testutførelse:

Veksling mellom regulatorer med gitt		
referanse og sprang	Forventet resultat	Godkjennelse
Beskrivelse:		
Testen skal verifisere at funksjonsblokken kan veksle mellom de ulike regulatortypene P-, PI-, PD-		
og PID-regulator, og ved et sprang i refera	ansen vise hvordan innsvingningsforl	øpet vil se ut.
	Prosessverdien nærmer seg	
	referanseverdien, men får et	
1. Test av P-regulator	stasjonært avvik fra referansen.	
	Får en prosessverdi som har null	
	stasjonært avvik, altså at	
	prosessverdien stasjonerer seg på	
2. Test av PI-regulator	samme nivå som referanseverdien.	
	Får en hurtig innsvingning til	
	stasjonær verdi, men denne	
	prosessverdien vil ligge med et	
3. Test av PD-regulator	avvik fra referanseverdien.	
	Et innsvingingsforløp som ikke har	
	oversving eller stasjonært avvik, og	
4. Test av PID-regulator	som når referanseverdien hurtig.	

Kommentar:

Skal kunne se at PID-regulator er den beste regulatoren for prosessen. Man vil kunne se at avhengig av om man har integralvirkning eller derivatvirkning, så vil dette endre på innsvingningsforløp og -hastighet og om prosessverdien får et stasjonært avvik.

Endring av regulatorparametere	Forventet resultat	Godkjennelse		
Beskrivelse:				
Testen skal verifisere at ved endring av regulatorparametere vil det også oppstå en endring i				
innsvingingsforløpet. Parameterne kan	innsvingingsforløpet. Parameterne kan justeres for å endre innsvingningsforløpet og hindre			
ustabilitet.				
	Brattere kurve på			
	prosessverdiplottet ved sprang i			
	referanseverdien. For stor økning i			
	Kp-verdien vil føre til ustabilitet			
	(økende svingninger på			
1. Øke Kp-verdien	prosessverdien).			
	Lengre tid før prosessverdien har			
	null stasjonært avvik. For lav Ti-			
2. Øke Ti-verdien	verdi vil gi ustabilt system.			
	For stor Td-verdi vil gi ustabilt			
	system. En økning som fortsatt gir			
	et stabilt system, vil gi et raskere			
3. Øke Td-verdien	system.			
	En økning i n-verdien vil gi et			
	tregere system. Vil ha samme			
	funksjon som å redusere Td-			
4. Øke verdien på n	verdien.			
	For stor Tt-verdi vil gi lav			
	forsterkning på trackingbidraget.			
	Dette vil si at trackingfunksjonen			
	faller bort og vi får rykk i			
	overgangen mellom auto og			

Kommentar:

5. Øke Tt-verdien

Ved plotting av de forskjellige deltestene vil man for eksempel se at en økning av Kp gir en brattere kurve på innsvingingsforløpet. Alle endringer av parameterne har innvirkning på innsvingingsforløpet til prosessverdien.

manuell modus.

Verifisere reguleringsegenskaper for PID- regulator med optimale		
regulatorparametere	Forventet resultat	Godkjennelse
Beskrivelse:		
Testen skal verifisere at PID-regulatoren m	ed optimale regulatorparametere	regulerer tilstrekkelig
etter kundens krav. Plott av reguleringen vil bli fremstilt i seriellmonitoren i Arduino IDE.		
	Prosessverdien vil nå	
	referanseverdien etter en viss	
1. Øke nominelt pådrag fra 40 % til 60	tid, og innsvingningsforløpet er	
%	uten oversving.	
	Med foroverkoplinga innkoblet	
	blir prosessverdien stabil på	
	referanseverdien tidligere enn	
2. Inn-/utkobling av foroverkoblinga	uten foroverkoblingen utkoblet.	
	Ved bytting av modus vil	
3. Veksling mellom direkte/reversert	pådragsorganet gå feil veil, og	
regulering	systemet blir ustabilt.	

Kommentar:

I plottet av prosessreguleringen skal man se at prosessverdien har glatte og fine kurver som går mot den satte referanseverdien. Regulatoren vil fungere optimalt etter kundens ønske ved de gitte parameterne som kunde får fra utviklere.

Veksling mellom regulatormoduser	Forventet resultat	Godkjennelse	
Beskrivelse:			
Testen skal verifisere at man får rykkfrie overganger i prosessverdien når man endrer fra			
automodus med PID-regulator til manuell modus, og omvendt.			
	Vil få stasjonært avvik dersom		
	prosessen ikke har nådd		
1. Veksle fra auto til manuell	stasjonær verdi ved veksling .		
	PID-regulatoren vil begynne å		
	regulere, og da vil stasjonært		
2. Veksle fra manuell til auto	avvik vil forsvinne.		
	Regulatoren vil gi ut pådrag		
	som ikke overskrider de gitte		
	grensene både i manuell og		
3. Endring av min/max pådrag	automodus.		

Kommentar:

I plottet av prosessverdien skal man se at det ikke dukker opp sprang og oversving i prosessverdien. Ved for lav maksimalverdi på pådraget kan man risikere at man får et stasjonært avvik, og for høy minimalverdi kan man risikere at man får et stasjonært avvik som ligger over referanseverdien.