To be determined...

Mathis Beaudoin

To be determined

Table des matières

1 Équations maîtres			1	
	1.1	Équati	on de Schrödinger et opérateur d'évolution	1
	1.2	 1.2 Système fermé et hamiltonien statique		1
	1.3			1
		1.3.1	Les hamiltoniens commutent	2
		1.3.2	Les hamiltoniens ne commutent pas	2
		1.3.3	Écriture alternative	5
2	Oscillatory drive problem 5			
	•			
	2.1 Cas simple		5	

1 Équations maîtres

1.1 Équation de Schrödinger et opérateur d'évolution

L'évolution temporelle d'un système quantique est décrit par la célèbre équation de Schrödinger où on pose ici $\hbar=1$:

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = H(t)|\psi(t)\rangle \tag{1.1}$$

En définissant un opérateur d'évolution $U(t, t_0)$ qui amène un état du temps t_0 au temps t, c'est-à-dire que $|\psi(t)\rangle = U(t, t_0) |\psi(t_0)\rangle$, on peut l'injecter dans (1) afin d'avoir

$$i\frac{\mathrm{d}}{\mathrm{d}t}U(t,t_0)|\psi(t_0)\rangle = H(t)U(t,t_0)|\psi(t_0)\rangle \implies i\frac{\partial}{\partial t}U(t,t_0) = H(t)U(t,t_0)$$
(1.2)

Ici, la dérivée totale devient partielle par la règle de dérivation en chaîne pour les fonctions multivariables. Par ailleurs, il va de soi que $U(t,t) = \mathbb{I}$ pour tout temps t, car il n'y a alors, selon notre définition, aucune évolution qui a lieu. Dans ce cas, comme rien ne se passe, il faut que l'opérateur d'évolution soit l'identité. Aussi, on peut décomposer une évolution $U(t,t_0)$ en plusieurs évolutions une à la suite de l'autre de manière à avoir $U(t,t_0) = U(t,t_1)U(t_1,t_0)$ par exemple (il pourrait y en avoir autant qu'on veut).

1.2 Système fermé et hamiltonien statique

Pour un système fermé et dont l'hamiltonien est statique (donc indépendant du temps), (1.2) devient

$$i\frac{\partial}{\partial t}U(t,t_{0}) = HU(t,t_{0}) \implies \int_{U(t_{0},t_{0})}^{U(t,t_{0})} \frac{dU'}{U'} = -iH \int_{t_{0}}^{t} dt' \implies U(t,t_{0}) = e^{-iH(t-t_{0})}$$
 (1.3)

1.3 Système fermé et hamiltonien dynamique

Sachant la forme de l'opérateur d'évolution lorsque l'hamiltonien est constant, on peut approximer l'opérateur d'évolution dans le cas où l'hamiltonien est dynamique. En effet, pour une variation infinitésimale de temps δt , l'hamiltonien change à peine de sa forme de départ et on peut le considérer comme étant constant sur ce petit intervalle. Lorsqu'on dit constant, on veut plutôt dire que l'hamiltonien est évalué à un point fixe à quelque part dans le petit intervalle de temps et ce pour toute la durée de l'opérateur d'évolution. Ainsi,

$$U(t + \delta t, t) \approx e^{-iH(t)\delta t}$$

Ici, on évalue l'hamiltonien à t, car de toute manière $\delta t \to 0$ ce qui en fait un choix pratique. Cependant, on aimerait avoir une forme explicite pour l'opérateur d'évolution sur une plus grande période de temps. On sait qu'on peut découper l'évolution, par exemple, en N sous-intervalles égaux de temps $\epsilon = \frac{t-t_0}{N}$ pour que

$$U(t, t_0) = \prod_{k=1}^{N} U(t_0 + k\epsilon, t_0 + (k-1)\epsilon)$$

Dans la limite où $\epsilon \to 0$ (donc où $N \to \infty$), l'approximation plus haut est valide (les sous-intervalles deviennent infiniment petits) et dès lors on peut se dire que

$$U(t_0 + k\epsilon, t_0 + (k-1)\epsilon) \approx e^{-i\epsilon H(t_0 + (k-1)\epsilon)}$$

Alors,

$$U(t,t_0) = \lim_{\epsilon \to 0} \prod_{k=1}^{N} U(t_0 + k\epsilon, t_0 + (k-1)\epsilon) = \lim_{\epsilon \to 0} \prod_{k=1}^{N} e^{-i\epsilon H(t_0 + (k-1)\epsilon)} = \lim_{\epsilon \to 0} e^{-i\epsilon H(t_0)} e^{-i\epsilon H(t_0 + \epsilon)} ... e^{-i\epsilon H(t-\epsilon)}$$

On serait très tenté de combiner les exponentielles en sommant leur argument, mais on travaille avec des matrices et il faut alors faire attention. Effectivement, on peut combiner deux exponentielles contenant une matrice uniquement lorsque ces matrices commutent. Autrement, il faudrait utiliser la formule de Baker-Campbell-Hausdorff qui ne semble pas nous faire progresser avec son infinité de termes. On s'attarde alors aux deux cas possibles.

1.3.1 Les hamiltoniens commutent

D'abord, en supposant que tous les $H(t_i)$ dans les exponentielles commutent entre eux, donc que $[H(t_i), H(t_j)] = 0 \ \forall i, j$, il est possible de combiner toutes les exponentielles de la manière suivante :

$$U(t, t_0) = \lim_{\epsilon \to 0} e^{-i\sum_{k=0}^{N-1} H(t_0 + k\epsilon)\epsilon} = e^{-i\int_{t_0}^t H(t')dt'}$$
(1.4)

On voit clairement que si l'hamiltonien est constant, alors il peut être sorti de l'intégrale redonnant ainsi (1.3).

1.3.2 Les hamiltoniens ne commutent pas

Pour ce cas, on utilise une approche itérative. Depuis (1.2) et par une approche similaire à (1.3), on peut écrire

$$\int_{U(t_0,t_0)}^{U(t,t_0)} dU^{'} = -i \int_{t_0}^{t} H(t^{'}) U(t^{'},t_0) dt^{'} \implies U(t,t_0) = \mathbb{I} - i \int_{t_0}^{t} H(t^{'}) U(t^{'},t_0) dt^{'}$$

Il ne s'agit pas d'une solution, car on trouve $U(t,t_0)$ des deux côtés de l'équation. Par contre, avec ce fait, on peut remplacer l'équation dans elle-même en prenant soin de changer la notation un peu maladroite pour ce qu'on s'apprête à faire.

$$U(t,t_0) = \mathbb{I} - i \int_{t_0}^t H(t_1)U(t_1,t_0)dt_1 = \mathbb{I} - i \int_{t_0}^t H(t_1) \left(\mathbb{I} - i \int_{t_0}^{t_1} H(t_2)U(t_2,t_0)dt_2 \right) dt_1$$
$$= \mathbb{I} - i \int_{t_0}^t H(t_1)dt_1 - \int_{t_0}^t \int_{t_0}^{t_1} H(t_1)H(t_2)U(t_2,t_0)dt_2dt_1$$

On répète le processus à l'infini afin d'obtenir

$$U(t,t_0) = \mathbb{I} + \sum_{n=1}^{\infty} (-i)^n \int_{t_0}^t \int_{t_0}^{t_1} \dots \int_{t_0}^{t_{n-1}} H(t_1)H(t_2)\dots H(t_n)dt_n\dots dt_2dt_1$$

$$= \sum_{n=0}^{\infty} (-i)^n \int_{t_0}^t \int_{t_0}^{t_1} \dots \int_{t_0}^{t_{n-1}} H(t_1)H(t_2)\dots H(t_n)dt_n\dots dt_2dt_1$$

$$(1.5)$$

ce qu'on appelle une série de Dyson. Par construction, les variables d'intégration respectent $t_1 \ge t_2 \ge ... \ge t_n$ et il est aussi hautement non-trivial de montrer que (1.5) converge. De plus, la notation peut sembler être bizarre pour le terme n=0 et n=1 avec une borne d'intégration t_{-1} et une intégrale de t_0 à t_0 respectivement. En tant que tel, à cause de $\int_{t_0}^{t_1} ... \int_{t_0}^{t_{n-1}}$, on comprend implicitement que ça n'a de sens que pour $n \ge 2$. Pour le terme n=0 et n=1, on fait un abus de notation pour les inclure et avoir une équation plus propre. On rappelle ici le terme n=0 et n=1.

$$n = 0 : \mathbb{I}, \quad n = 1 : -i \int_{t_0}^t H(t_1) dt_1$$

Il peut être difficile de voir comment (1.5) se réduit à (1.4) ou à (1.3) avec un changement approprié des conditions. On introduit alors l'opérateur de produit chronologique T qui réordonne un produit matriciel de manière à ce que l'argument en temps des matrices dans le produit soit décroissant de la gauche vers la droite. Autrement dit,

$$T[H(t_1)H(t_2)...H(t_n)] = H(t_{i_1})H(t_{i_2})...H(t_{i_n}) \text{ où } t_{i_1} \ge t_{i_2} \ge ... \ge t_{i_n}$$
(1.6)

Évidemment, si tous les hamiltoniens commutent entre eux, alors T ne sert à rien. Pour clarifier l'utilisation de l'opérateur de produit chronologique, on revient à (1.5) en s'attardant à J_2 l'intégrale du terme n=2 de la somme.

$$J_2 = \int_{t_0}^t \int_{t_0}^{t_1} H(t_1)H(t_2)dt_2dt_1$$

Il est important de conserver le même ordre pour la multiplication matricielle, car par hypothèse les hamiltoniens ne commutent pas. Dans cette dernière équation, l'ordre d'intégration fait en sorte que $t_1 \ge t_2$, ce qu'on peut voir en représentant la région d'intégration (qui est la moitié de l'aire d'un carré de côté t *mettre un dessin). Ainsi, on peut directement incorporer l'opérateur de produit chronologique dans J_2 .

$$J_2 = \int_{t_0}^{t} \int_{t_0}^{t_1} H(t_1)H(t_2)dt_2dt_1 = \int_{t_0}^{t} \int_{t_0}^{t_1} T\left[H(t_1)H(t_2)\right]dt_2dt_1$$

Sans changer la valeur de J_2 , on peut changer l'ordre d'intégration de la manière suivante :

$$J_2 = \int_{t_0}^t \int_{t_2}^t H(t_1)H(t_2)dt_1dt_2$$

En représentant cette nouvelle région d'intégration, on voit qu'elle reste la même sauf que maintenant l'intégration se fait "horizontalement" au lieu de "verticalement". On peut ensuite procéder à un changement de variables (qui ne change toujours pas la valeur de J_2) où $t_1 \Leftrightarrow t_2$.

$$J_2 = \int_{t_0}^{t} \int_{t_1}^{t} H(t_2)H(t_1)dt_2dt_1$$

La région d'intégration fait alors une réflexion par rapport à l'axe de la droite $t_1 = t_2$ et correspond alors à la moitié restante de l'aire du carré de côté t. Dans ce cas, $t_2 \ge t_1$ et on écrit

$$J_2 = \int_{t_0}^{t} \int_{t_1}^{t} H(t_2)H(t_1)dt_2dt_1 = \int_{t_0}^{t} \int_{t_1}^{t} T\left[H(t_1)H(t_2)\right]dt_2dt_1$$

Au final, on vient de trouver 2 formes différentes pour J_2 .

$$J_2 = \int_{t_0}^t \int_{t_0}^{t_1} T[H(t_1)H(t_2)] dt_2 dt_1 = \int_{t_0}^t \int_{t_1}^t T[H(t_1)H(t_2)] dt_2 dt_1$$
(1.7)

On remarque qu'en sommant ensemble chacune des formes, on peut avoir une formule pour J_2 où les bornes d'intégration ne dépendent plus des t_i . On peut ensuite l'incorporer dans (1.5).

$$2J_{2} = \int_{t_{0}}^{t} \int_{t_{0}}^{t_{1}} T\left[H(t_{1})H(t_{2})\right] dt_{2} dt_{1} + \int_{t_{0}}^{t} \int_{t_{1}}^{t} T\left[H(t_{1})H(t_{2})\right] dt_{2} dt_{1} = \int_{t_{0}}^{t} \int_{t_{0}}^{t} T\left[H(t_{1})H(t_{2})\right] dt_{2} dt_{1}$$

$$\implies J_{2} = \frac{1}{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t} T\left[H(t_{1})H(t_{2})\right] dt_{2} dt_{1}$$

$$(1.8)$$

En général, pour J_n , il existera n! façons différentes de l'écrire (pour les n! façons d'organiser les n hamiltoniens qui seront présents \to les n! changements de variables possibles). Par la suite, en sommant ces n! équations, toutes les dépendances sur les t_i partiront et la somme correspondra à $n!J_n$. Finalement, on isole J_n pour obtenir

$$J_n = \frac{1}{n!} \int_{t_0}^t \int_{t_0}^t \dots \int_{t_0}^t T[H(t_1)H(t_2)...H(t_n)] dt_n...dt_2 dt_1$$
(1.9)

qu'on remplace dans (1.5) donnant ainsi

$$U(t,t_0) = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t \int_{t_0}^t \dots \int_{t_0}^t T[H(t_1)H(t_2)...H(t_n)] dt_n...dt_2 dt_1$$

De là, si les hamiltoniens commutent (donc que T ne fait rien), on voit qu'on peut retomber sur (1.4).

$$U(t,t_0) = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t \int_{t_0}^t \dots \int_{t_0}^t H(t_1)H(t_2)\dots H(t_n)dt_n\dots dt_2dt_1 = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \left(\int_{t_0}^t H(t')dt'\right)^n$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(-i\int_{t_0}^t H(t')dt'\right)^n = e^{-i\int_{t_0}^t H(t')dt'}$$

Dans les ouvrages, on utilise plutôt l'écriture

$$U(t,t_0) = Te^{-i\int_{t_0}^t H(t')dt'} = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t \int_{t_0}^t ... \int_{t_0}^t T\left[H(t_1)H(t_2)...H(t_n)\right] dt_n...dt_2 dt_1$$
(1.10)

1.3.3 Écriture alternative

Il peut être parfois plus logique d'écrire (1.5) selon l'ordre d'application des hamiltoniens sur un état (ce que certains auteurs préfèrent). On veut dire par là qu'on aimerait avoir l'indice t_1 pour l'hamiltonien le plus à droite, t_2 pour celui à sa gauche et t_n pour l'hamiltonien le plus à gauche. Autrement dit, on veut inverser l'écriture de (1.5). On part depuis

$$U(t,t_0) = \mathbb{I} - i \int_{t_0}^t H(t_1) U(t_1,t_0) dt_1$$

Auparavant, en remplaçant l'équation dans elle-même, on a

$$U(t,t_0) = \mathbb{I} - i \int_{t_0}^t H(t_1)dt_1 - \int_{t_0}^t \int_{t_0}^{t_1} H(t_1)H(t_2)U(t_2,t_0)dt_2dt_1$$

Pour respecter la nouvelle notation, on a ici seulement besoin de renommer les variables du terme tout à droite.

$$U(t,t_0) = \mathbb{I} - i \int_{t_0}^t H(t_1)dt_1 - \int_{t_0}^t \int_{t_0}^{t_2} H(t_2)H(t_1)U(t_1,t_0)dt_1dt_2$$

En continuant le processus et en renommant les variables comme il faut, on obtient une forme générale pour cette notation alternative.

$$U(t,t_0) = \sum_{n=0}^{\infty} (-i)^n \int_{t_0}^t \int_{t_0}^{t_n} \dots \int_{t_0}^{t_2} H(t_n) \dots H(t_1) dt_1 \dots dt_{n-1} dt_n$$
(1.11)

2 Oscillatory drive problem

2.1 Cas simple

On considère un hamiltonien dépendant du temps de la forme

$$H(t) = H_0 + V(t) \tag{2.1}$$

où $H_0 = \sum_k \lambda_k |k\rangle \langle k|$ dans sa base d'états propres et $V(t) = X \cos(\omega t)$ pour un certain opérateur X. En décomposant le cosinus en exponentielles complexes,

$$H(t) = H_0 + X\left(\frac{e^{i\omega t} + e^{-i\omega t}}{2}\right)$$

Pour une variation infime de temps et en utilisant la définition de (2.1), on trouve (et ce n'est pas très beau)

$$U(t + \delta t, t) = \sum_{n=0}^{\infty} (-i)^n \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} H(t_n) \dots H(t_1) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} (-i)^n \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (H_0 + V(t_n)) \dots (H_0 + V(t_1)) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} (-i)^n \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} (H_0 \dots H_0 + H_0 \dots H_0 V(t_1) + \dots + V(t_n) H_0 \dots H_0 + \dots + V(t_n) \dots V(t_1)) dt_1 \dots dt_n$$

$$= \sum_{n=0}^{\infty} (-i)^n \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} H_0 \dots H_0 dt_1 \dots dt_n + \dots + \sum_{n=0}^{\infty} (-i)^n \int_t^{t+\delta t} \int_t^{t_n} \dots \int_t^{t_2} V(t_n) \dots V(t_1) dt_1 \dots dt_n$$
(2.2)

On peut voir que la distribution des termes correspond à l'ensemble des combinaisons de n opérateurs où on choisit soit H_0 ou V(t) pour chacun d'eux. Il y a donc au total dans la longue parenthèse 2^n termes chacun n opérateurs. Certains d'entre eux ont un seul V(t) placé à différents endroits dans la chaîne de n opérateurs, d'autres en ont 2, etc...

Les V(t), selon leur positionnement, viennent briser des suites de $H_0...H_0$ en plusieurs petites chaînes. Par exemple, un des termes dans (2.2) est

$$H_0...H_0V(t_1) = (H_0)^{n-1}V(t_1)$$

et on voit alors qu'il y a une chaîne de n-1 opérateurs H_0 à gauche de $V(t_1)$. Sinon, un des termes présents

$$H_0...H_0V(t_4)H_0H_0V(t_1) = (H_0)^{n-4}V(t_4)(H_0)^2V(t_1)$$

nous dit qu'il y a d'abord $V(t_1)$, puis deux H_0 , ensuite $V(t_4)$ et finalement n-4 opérateurs H_0 . De plus, par définition, on peut remplacer les V(t) par $X\left(\frac{e^{i\omega t}+e^{-i\omega t}}{2}\right)$. Ainsi,

$$(H_0)^{n-1}V(t_1) = (H_0)^{n-1}X\left(\frac{e^{i\omega t_1} + e^{-i\omega t_1}}{2}\right) = \frac{1}{2}\left(e^{i\omega t_1} + e^{-i\omega t_1}\right)(H_0)^{n-1}X$$
$$(H_0)^{n-4}V(t_4)(H_0)^2V(t_1) = \frac{1}{2^2}\left(e^{i\omega t_1} + e^{-i\omega t_1}\right)\left(e^{i\omega t_4} + e^{-i\omega t_4}\right)(H_0)^{n-4}X(H_0)^2X$$