Алгоритм классификации «Дерево решений»

Отправив своего ассистента в очередную экспедицию в Африку для исследования поведения шимпанзе, профессор Буковски осознал, что без помощника ему трудно справляться со своими обязанностями. И он решил подыскать себе ассистентку. Профессор нашел на сайте по трудоустройству несколько заинтересовавших его резюме. Для каждой кандидатки он выделил следующие параметры: коэффициент IQ, количество научных

публикаций, наличие высшего образования, соотношение рост/вес. Эти данные профессор Буковски занес в таблицу, которая приведена ниже.

№ кандидатки	Коэффициент IQ	Научных публикаций	Высшее образование	Соотношение рост/вес	Подходит?
шкала	числовая	категориальная	категориальная	числовая	
1	110	1	да	2.8	2
2	95	2	да	2.2	2
3	135	1	да	2.9	2
4	115	1	нет	2.0	2
5	100	2	нет	2.9	1
6	90	1	нет	3.5	2
7	75	1	да	3.1	2
8	85	2	да	3.1	1
9	65	0	да	2.1	1
10	70	1	нет	3.0	1

В столбце «Подходит» значение $\bf 2$ означает, что ассистентка может быть принята на работу, $\bf 1$ — не может быть принята.

Основной скрипт, с которого начитается работа — run.py. В нем задается исходное обучающее множество, которое приведено в таблице выше. Функция $decision_tree$ запускает рекурсивную процедуру построения дерева решений на основании алгоритма ID3. В нее передается обучающее множество (переменные X и Y), тип шкалы по каждому признаку (числовая — 0, категориальная — 1), исходный уровень дерева (изначально ноль — начинаем с нулевого корневого узла). Далее в скрипте run.py приведен код запуска классификатора, реализующего логику дерева решений, а в конце скрипта код (пока закомментированный), который нужен для классификации себя на роль ассистентки профессора 3.

Скрипт **decision_tree.py** реализует функциональность построения дерева решений. Скрипт **classify.py** будет содержать код классификатора, реализованного на основании дерева решений.

Порядок выполнения работы

Открыть для редактирования скрипт **decision_tree.py**. Задать в нем условие выхода из рекурсии. Условием выхода является то, что все примеры множества **X** принадлежат одному классу, то есть вектор **Y** будет содержать только одно уникальное значение. Для определения количества уникальных значений воспользуйтесь конструкцией **len(np.unique(Y))**.

Найдите в этом же файле функцию **Info** (ее прототип: **def Info(set)**) и реализуйте код вычисления информационной энтропии множества **T**. Результат запишите в переменную **info**, которая будет возвращаться из функции. Для вычисления информационной энтропии используйте формулу:

$$Info(T) = -\sum_{i=1}^{n} p(i)log_2p(i).$$

Здесь T – множество, для которого считается энтропия (оно передается в функцию как параметр). P(i) – вероятность i-го класса в множестве T. Например, если множество T = [A A B B B], то p(A) = 2/5, а p(B) = 3/5. При вычислении энтропии следует принять, что логарифм от нуля равен нулю.

Найти в функции **decision_tree** код вычисления информационного выигрыша для i-го категориального признака. Воспользоваться для расчета выигрыша формулой:

$$Gain(S) = Info(T) - Info_S(T).$$

Значение Info(T) уже посчитано и сохранено в переменной **info**. Вам необходимо вычислить $Info_S(T)$, а затем и Gain(S). Формула для вычисления $Info_S(T)$:

$$Info_{S}(T) = \sum_{i=1}^{n} \frac{|T_{i}|}{|T|} * Info(T_{i}).$$

Здесь ${\bf n}$ – количество подмножеств, на которое разбивается исходное множество. Например, множество ${\bf T}=[{\bf A}\ {\bf A}\ {\bf B}\ {\bf C}\ {\bf C}]$ состоит из трех подмножеств. $|T_i|$ – количество элементов для ${\bf i}$ -го подмножества. Например, для ${\bf A}$ оно равно ${\bf 2}$, для ${\bf C}-{\bf 3}$. |T| – количество элементов в множестве ${\bf T}$ (в данном примере ${\bf -6}$). $Info(T_i)$ – энтропия ${\bf i}$ -го подмножества, считается по формуле, приведенной выше. Обратите внимание, что энтропия считается по столбцу ${\bf Y}$.

На этом реализация функции **decision_tree** завершена. Нужно запустить скрипт в файле **run.py**. Он должен вывести на экран дерево, построенное по заданной обучающей выборке. Кроме того, он выведет строчку **classification fail...**: (, которая означает, что классификатор на основе дерева решений пока не работает.

Чтобы заставить его работать, откройте для редактирования файл **classify.py**. С помощью обычных условий **if-elif-else** запишите логику полученного дерева решений в этом файле.

Снова запустите **run.py**. Если все сделано правильно, Вы увидите строку **classification success!**, которая означает, что описанный вами классификатор точно классифицирует все примеры из обучающей выборки (что естественно, ведь дерево по ней и строилось).

В заключение, раскомментируйте строчки в нижней части скрипта **run.py**, запустите скрипт и проверьте себя на роль ассистентки профессора Буковски ©. Продемонстрируйте результаты.