Digital Audio/Image/Video Representation

Prof. Dr. Uluğ Bayazıt

Outline

- Digital audio representation
 - Quantization
 - Sampling
- Digital Image Representation
 - Color System
 - Chrominance Subsampling
- Digital Video Representation
- Hardware Requirements

Digital Audio Representation

Sound

- due to vibration of matter (i.e., air molecules).
- continuous wave that travels through air.
 - Amplitude: measure of the displacement of air pressure wave from its mean or quiescent state (in decibels (dB))
 - Peak amplitude, peak-to-peak amplitude
 - Period is the length of one full cycle
 - Frequency represents the number of periods in a second (in hertz, Hz, cycles/second).
 - the reciprocal value of the period

Digital audio representation

Processing steps:

- Transducer (inside a microphone) converts pressure to voltage levels.
- A/D converter converts analog (voltage, current) signal into a digital stream by discrete sampling.
 - Discretization in time
 - Discretization in amplitude (quantization).
- In a computer,
 - these values are sampled at intervals to yield a vector of values (samples).

Sampling

Quantization

Sampling Rate & Nyquist Theorem

- Direct relationship between sampling rate, sound quality (fidelity) and storage space.
- Q:How often do you need to sample a signal to avoid losing information?
 - Sampling rate is not playback rate!
- A: It depends on how fast the signal is changing. In reality, more than twice per cycle (a.k.a. *Nyquist sampling theorem*).
 - If a signal f(t) is sampled at regular intervals of time and at a rate higher than twice the highest significant signal frequency, then the samples contain all the information of the original signal.
- Human hearing
 - Perceptible frequency (audio) range: 20Hz 20kHz (voice is between 500Hz-2KHz).
 - Discard frequencies above 20KHz (22.05 kHz for CD's) by low pass filtering.
 - Sample at twice the maximum frequency (44.1kHz for CD's)

Quantization

- Sample precision the resolution of a sample value.
- Quantization is an approximation (rounding)
 - Approximation quality depends on the number of bits used to represent the height of the waveform.
- Sony CD 16 bits, Philips D/A converter 14 bits
- Audio formats are described by sample rate and quantization
 - Voice quality (Pulse code modulation)- 8 bits quantization, 8,000 Hz mono (64 Kbps)
 - CD quality 16 bits quantization, 44,100 Hz linear stereo (705.6 Kbps for mono, 1.411 Mbps for stereo (left and right channels))

Scalar quantization

- Y = Q(X) where Q(.) is a staircase function
 - Decision boundaries b_k
 - Reconstruction (quant.) levels y_k

$$D_0 = -\infty, D_K = \infty$$

$$Q(x) = y_k \text{ if } x \in B_k = \begin{bmatrix} b_{k-1}, b_k \end{bmatrix}$$

$$D_0 = -\infty, b_K = \infty$$

$$y_5$$

$$y_5$$

$$y_6$$

$$y_5$$

$$y_6$$

$$y_5$$

$$y_6$$

$$y_5$$

$$y_6$$

$$y_5$$

$$y_6$$

$$y_5$$

$$y_6$$

$$y_7$$

$$y_8$$

$$y_9$$

$$y_9$$

$$y_9$$

$$y_9$$

$$y_1$$

Uniform scalar quantization

All granular bins are of same size

$$b_k - b_{k-1} = \Delta$$
 for $k = 2, ..., K-1$

• If $f_X(x) = 0$ for $x > x_{\text{max}}, x < -x_{\text{max}}$ $\Delta = \frac{2x_{\text{max}}}{K}$

- Within each bin distribution is approx. uniform Assume $f_X(x \mid x \in B_k) \approx \frac{1}{4}$, $(k-1) < x \le k\Delta$
 - Quantization levels $y_k = \frac{b_k + b_{k-1}}{2}$ are then optimal

MSE distortion approximation

Uniform quantizer MSE distortion

$$D_{Q,MSE} = D_{G,MSE}(B_k) \cong \int_{-\Delta/2}^{\Delta/2} x^2 f_X(x \mid x \in B_k) dx$$

$$= \int_{-\Delta/2}^{\Delta/2} x^2 \frac{1}{\Delta} dx = \frac{\Delta^2}{12}$$

Assume fixed length coding of quantization indices with n bits

$$K = 2^{n}, \Delta = 2\frac{x_{\text{max}}}{2^{n}}$$

$$SNR(dB) = 10\log_{10}\left(\frac{\sigma_{X}^{2}}{D_{Q,MSE}}\right) = 10\log_{10}\left(\frac{\sigma_{X}^{2}.12}{\Delta^{2}}\right)$$

$$= 10\log_{10}\left(\frac{\sigma_{X}^{2}.12.2^{2n}}{4x_{\text{max}}^{2}}\right) = 10\log_{10}\left(\frac{\sigma_{X}^{2}.12}{4x_{\text{max}}^{2}}\right) + 20\log_{10}2^{n}$$

$$= C + 6.02ndB \qquad \text{with every bit SNR increases by 6dB}$$

Signal-to-Noise Ratio

- A measure of the quality of the signal. Let P_{signal} and P_{noise} be the signal power and noise power (variances), respectively
- SNR = 10 $\log 10 (P_{signal} / P_{noise})$
- Assuming quantization error is uniform, and the variance of signal is not too large compared to the maximum signal value x_{max} , then each bit adds about 6 dB of resolution!
 - Assume fixed length coding of quantization indices with n bits $K=2^n, \Delta=2\frac{x_{\max}}{2^n}$

$$SNR(dB) = 10\log_{10}\left(\frac{\sigma_X^2}{D_{Q,MSE}}\right) = 10\log_{10}\left(\frac{\sigma_X^2.12}{\Delta^2}\right)$$
$$= 10\log_{10}\left(\frac{\sigma_X^2.12.2^{2n}}{4x_{\text{max}}^2}\right) = 10\log_{10}\left(\frac{\sigma_X^2.12}{4x_{\text{max}}^2}\right) + 20\log_{10}2^n$$
$$= C + 6.02ndB$$

Pulse Code Modulation (PCM)

- The two step process of sampling and quantization is known as *Pulse Code Modulation*.
 - Based on the Nyquist sampling theorem.
 - Used in speech and CD encoding.

Representation of Audio Samples

- Audio samples are represented as formats characterized by four parameters:
 - Sample rate: Sampling frequency
 - *Precision:* Number of bits used to store audio samples
 - Encoding: Audio data representation (compression)
 - Channel: Multiple channels of audio may be interleaved at sample boundaries.
- Raw speech data
 - PCM-encoded speech (64 Kbps)
 - Music (1.411 Mbps for stereo)
 - strains the bandwidth of cellular networks/Internet => compression is needed!

Audio compression basics

- Audio samples are encoded (compressed) based on
 - Non-uniform quantization humans are more sensitive to changes in "quiet" sounds than "loud" sounds:
 - Companding (compress- uniform quantize expand) | μ -law and A law companders
 - High correlation between adjacent samples
 - Difference encoding
 - Psychoacoustic Principles humans do not hear all frequencies the same way due to Auditory Masking:
 - Simultaneous masking
 - Temporal masking
- These approaches are used in MPEG-1 Layer 3, known as MP3.
 - Reduces bit rate for CD quality music down to 128 or 112 Kbps.

Digital Image Representation

- An image is a collection of picture elements or pixels on a nxm grid.
 - Pixel representation can be bi-level, gray-scale, or color.
 - Resolution specifies the distance between points akin to sample rate.

Pixels

- Images are made up of dots called pixels for picture elements
 - The number of pixels affects the resolution of the monitor
 - The higher the resolution, the better the image quality
 - at a given viewing distance

Color

- The amount of information per pixel is known as the color depth
 - Monochrome (1 bit per pixel)
 - Gray-scale (8 bits per pixel)
 - Color (8 /16 /18 bits per pixel)
 - 8-bit indexes to a color palette
 - 16 bits
 - 5 bits for each RGB + 1 bit Alpha (16 bits)
 - 4 bits for each RGB ,Alpha
 - 5 bits for each RB+ 6 bits for G
 - 18 bits
 - 6 bits for each RGB (cheap LCD displays)
 - True color (24 or 32 bits per pixel)
 - RGB (sRGB 24 bits): 2²⁴ color variation of which 2/3rd can be discriminated
 - RGB + Alpha (RGBA 32 bits)
 - Deep color (30/36/48 bits per pixel)
 - More recent (HEVC(H.265-High Efficiency Video Coding), HDMI 1.3)
 - More info than can be displayed all at once

Example of color depth

24 bits 8 bits 4 bits 1 bit

Color spaces

- A method by which we can specify, create, and visualize color.
 - Color model: specifies the abstract model describing the way colors can be represented as tuples of numbers (color components) specifies coordinate system
 - Mapping function associates to a color space for color interpretation => a gamut
 - Gamut/Color space: abstract three dimensional region within which we can plot points that represent a (visible) color recently carries the notion of color model as well
- Why more than one color space? Different color spaces are better for different applications.
 - Humans => Hue, Saturation, Lightness or Brightness (HSL or HSB)
 - CRT monitors => Red Green Blue (RGB)
 - Printers => Cyan Magenta Yellow Black (CMYK)
 - Compression => Luminance and Chrominance (YIQ, YUV, YCbCr)

CIE (International Commission on Illumination) XYZ and RGB spaces

• Color matching functions ($M(\lambda)$ spectral power distribution)

$$\frac{\overline{x}(\lambda)}{\overline{y}(\lambda)} \quad X = \int_{380}^{780} M(\lambda) \, \overline{x}(\lambda) \, d\lambda \quad x = \frac{X}{X + Y + Z}$$

$$Y = \int_{380}^{780} M(\lambda) \, \overline{y}(\lambda) \, d\lambda \quad y = \frac{Y}{X + Y + Z}$$

$$Z = \int_{380}^{780} M(\lambda) \,\overline{z}(\lambda) \,d\lambda \quad z = \frac{Z}{X + Y + Z} = 1 - x - y$$

$$R = \int_{0}^{\infty} M(\lambda) \, \overline{r}(\lambda) \, d\lambda \qquad r = \frac{R}{R + G + B}, \quad 2.0$$

$$G = \int_{0}^{\infty} M(\lambda) \, \overline{g}(\lambda) \, d\lambda \qquad g = \frac{G}{R + G + B}. \quad 1.5$$

$$B = \int_{0}^{\infty} M(\lambda) \, \overline{b}(\lambda) \, d\lambda$$

Visible spectrum/Sensitivity

- three kinds of cone cells, which sense light, with spectral sensitivity peaks in
 - short (*S*, 420–440 nm),
 - middle (M, 530–540 nm),
 - long (*L*, 560–580 nm) wavelengths
- three parameters, corresponding to levels of stimulus of the three types of cone cells, can in principle describe any color sensation
 - LMS color space

HSB

Hue: Color in pure form

Saturation: Purity – degree to which hue

differs from neutral gray with same

brightness

Brightness: Level of illumination (intensity of

light)

RGB

- RGB (Red-Green-Blue) is the most widely used color system.
- Represents each pixel as a color triplet in the form (R, G, B), e.g., for 24-bit color, each numerical values are 8 bits (varies from 0 to 255).
 - (0, 0, 0) = black
 - (255, 255, 255) = white
 - (255, 0, 0) = red
 - (0, 255, 255) = cyan
 - (65, 65, 65) = a shade of gray
- RGB is an additive model.
 - No beam => no light
 - 3 beams => white

CMYK (Cyan, Magenta, Yellow, Key(black)) color system

- For printing, there is no light source. We see light reflected from the surface of the paper.
- CMYK is a subtractive color model

YUV color system

- PAL (Phase Alternating Line) standard.
 - Humans are more sensitive to luminance (brightness) fidelity than color fidelity.
 - Luminance (Y) Encodes the brightness or intensity.
 - Chrominance (U and V) -Encodes the color information.
- Compatible with black/white
- Reduced bandwidth for chrominance components
 - YUV420 uses 1 byte for luminance component, and 4 bits for each chrominance components.
 - Requires only 2/3 of the space (RGB = 24 bits), so better compression! This coding ratio is called 4:2:2 subsampling.
- RGB => YUV

YUV => RBG

YCrCb color system

- Closely related to YUV. It is a scaled and shifted YUV.
 - Cb (blue) and Cr (red) chrominance.
 - Used in JPEG and MPEG.
- YCbCr => RGB

RGB => YCbCr

B=1.164Y+2.017Cb-276.836

$$Y \in [16,235]$$

 $Cb \in [16,240]$
 $Cr \in [16,240]$

YIQ color system

- Used in NTSC color TV broadcasting. B/W TV if only Y is used.
- YIQ signal
 - similar to YUV

$$Y = 0.299R + 0.587G + 0.114B$$

I = 0.596R - 0.275G - 0.321B

Q = 0.212R - 0.528G + 0.311B

- Composite signal
 - All information is composed into one signal.
 - To decode, need modulation methods for eliminating interference b/w luminance and chrominance components.

Color decomposition

Chrominance Subsampling

- Cut chrominance bandwidth in half/quarter?
 - Use 4-bits/2bits per pixel.
- Human eye less sensitive to variations in color than in brightness.
- Compression achieved with little loss in perceptual quality.
- 4:2:2 Subsampling
 - For every 4 luminance samples, take 2 chrominance samples (subsampling by 2:1 horizontally only).
 - Chrominance planes just as tall, half as wide.
 - Reduces bandwidth by 1/3
 - Used in professional editing (high-end digital video formats)

Chrominance subsampling

4:1:1 Subsampling

- For every 4 luminance samples, take 1 chrominance sample (subsampling by 4:1 horizontally only).
- Used in digital video.

4:2:0 Subsampling

- For every 4 luminance samples, take 1 chrominance sample (subsampling by 2:1 both horizontally and vertically).
- Chrominance halved in both directions.
- Most commonly used.
- Three varieties:

Image compression motivation

- A single digitized image of 1024 pixels x 1024 pixels, 24 bits per pixels requires
 - ~25 Mbits of storage
 - ~7 minutes to send over a 64 Kbps modem!
 - ~3-25 seconds to send over a 1-8 Mbps ADSL!
 - Think of downloading a document with several such images.
 - Some form of compression is needed!

Image compression basics

- Lossless no information is lost:
 - Exploits redundancy / probability distribution
 - Most probable data encoded with fewer bits
- Lossy approximation of original image
 - Looks for how pixel values change
 - Human eye more sensitive to luminance than chrominance.
 - Human eye less sensitive to subtle feature of the image.
 - Give priority to low-pass image signal wrt high pass image signal
- JPEG uses both techniques

Digital Video Representation

- Can be thought of as a sequence of moving images (or frames).
- Important parameters in video:
 - Frame (image) resolution (e.g., nxm pixels)
 - Quantization (e.g., k-bits per pixel)
 - Frame rate (p frames per second, i.e., fps)
- Continuity of motion is achieved at
 - a minimal 15 fps
 - is good at 30 fps
 - HDTV recommends 60 fps!

Standard Video Data Formats

- National Television System Committee (NTSC)
 - Set the standard for transmission of analog color pictures back in 1953!
 - Used in the US and Japan.
 - 525 lines (480 visible) per frame.
 - Resolution? Not digital, but equivalent to the quality produced by a digital image of 720x486 pixels.
 - 30 fps (i.e., delay between frames = 33.3 ms).
 - Video aspect ratio of 4:3 (e.g., 12 in. wide, 9 in. high)
 - Two interlaced fields per frame at 262.5 lines at 60 fields per second
 - Matches 60 Hz power line frequency
 - Increases vertical resolution (to which eye is sensitive)

Standard Video formats

- PAL (Phase Alternating Line):
 - Used in parts of Western Europe.
 - 625 lines (576 visible) per frame.
 - 25 fps (i.e., delay between frames = 40 ms).
 - Two interlaced fields per frame at 312.5 lines at 50 fields per second
 - Matches 50 Hz power line frequency
 - Increases vertical resolution (to which eye is sensitive)
- SECAM: French Standard

SDTV/HDTV/UHDTV

- Technical Societies
 - Advanced Television Systems Committee (ATSC)
 - MPEG (Motion Pictures Experts Group)
 - SMPTE (Society of Motion Pictures & Television Engineers)
- 60fps+
- SDTV
 - Resolutions of 720x480, 720x576 pixels
- HDTV
 - Resolutions of 1280x720, 1920x1080 pixels
- Ultra HDTV
 - Resolutions of 3840x2160 (4K), 7680x4320 (8K) pixels
- Video aspect ratio of 16:9 (wide screen)
- MPEG-2/MPEG-4 H.264/H.265 for video compression
- Both interlaced and progressive (except for H.265 which does not support interlaced)
- AC-3 (Dolby Audio Coding-3)/AAC (MPEG-2, MPEG-4) for audio compression

Course Overview Multimedia Computing

Prof. Dr. Uluğ Bayazıt

Outline

- Definition of multimedia
- Purpose of multimedia
- Applications of multimedia
- Technical challenges of multimedia
- Course outline
- Course administration information

Definition of multimedia

- Development, integration, and delivery of any combination of text, graphics, animations, sound, or video through a computer.
 - refers to <u>content</u> that uses a combination of different <u>content forms</u>
 - <u>text</u>, <u>audio</u>, <u>still images</u>, <u>animation</u>, <u>video</u>, or <u>interactive</u> content forms
 - as opposed to media that use only rudimentary computer displays such as text-only or traditional forms of printed or hand-produced material
- Convergence of multiple disciplines
 - graphics, visualization, HCI, computer vision, data compression, graph theory, networking, database systems
 - keynote interactivity

Purpose of multimedia

- Better representation of information by using audio/video/animation rather than by only using text, images and graphics.
- Collaboration and virtual environments.
 - Geographically based, real-time augmented-reality, massively multiplayer online video games
- Potential for improving our lives (e.g., learning, entertainment, and work).
 - Cooperative education environments that allow schoolchildren to share a single educational game using two mice at once that pass control back and forth
- High Market Demand!
 - Major driver of Computer Technology

Research areas

- Multimedia processing and coding. (compression, content based analysis, content based retrival, security)
- Multimedia system support and networking. (protocols, operating systems, servers, clients, databases, storage media)
- Multimedia tools, end systems, and applications. (hypermedia systems, user interfaces, multimodal interaction and integration, education, collaborative learning and design, virtual environments)

Evolution of basic forms of multimedia

Audio

- -phonautograph (1850's)
- -phonograph cylinder (1870's)
- -gramaphone disc (1880's-1980's)
- -magnetic tape (invented 1930's)
- -cassette, 8-track cartridge (1960's)
- -CD (1982)

- 1. Three electron guns (for red, green, and blue phosphor dots)
- 2. Electron beams
- **3.** Focusing coils
- 4. Deflection coils
- 5. Anode connection
- 6. Mask for separating beams for red, green, and blue part of displayed image
- 7. Phosphor layer with red, green, and blue zones
- 8. Close-up of the phosphor-coated inner side of the screen

- -Nipkow's disk (1884)
- -Baird's video scanning/transmission system (1925)
- -Electronic TV (deflecting cathode rays) J.J. Thompson 1897, Rosing 1907
- -Color TV (Le Blanc 1880, Adamian 1907)
- -Digital TV (1990's)
- -Smart TV (connected TV, patented 1994)

Linear medium versus hyper medium

- Book vs. hypertext
 - Links allow nonlinear traversal over hypertext
- Hypermedia
 - includes a wide array of media such as graphics, images and especially continuous media like sound and video and links them together
 - WWW: founded by approval from CERN
 - HTML: human readable format/language for pages that identify structure and elements, based on ASCII
 - Uses tags to describe document elements
 - HTTP

XML

- Tags (structure) and their relationship to each other defined in one place, data defined in another place, rendering of tags defined in yet another document
- Global DTD (document type definition) rules for type of data
- Server side script abides by DTD rules to generate XML
- XML looks best on different devices on client side.
- XML protocol is used to exchange information between processes, like HTTP
- XML Schema more structured, uses XML tags for type definitions

- Enabling Technologies: Embedded system, RTOS, 802.11, 802.16, UWB, UMTS/CDMA, Bluetooth, MPEG
- Mobile

• Games

• Wearable computers (CybergLog, GoogleGlass, iWatch)

Residential Services

Education

• Commerce

Multimedia conference

Business services

Training

Multimedia conferencing

Remote monitoring

Remote presence

Medical supervision

Virtual immersive environments

As if there (entertainment)

• As if there (design-collaboration)

Other multimedia applications

- Science and Technology
 - Computational visualization and prototyping.
 - Astronomy, environmental science: efficient access to large number of satellite images.
- Medicine
 - Diagnosis and treatment e.g., multimedia databases that provide support for queries on scanned images, X-rays, assessments, response, etc.

Challenges

- Process high volumes of data
 - Speedy, realtime
- Combine traditional media (text, images) as well as continuous media (audio/video) in the same context
- Interact with content
- Communicate data across networks that makes no QOS guarantees about
 - End-to-end delay,
 - Jitter (Variation of packet delay within a packet stream)
 - Bandwidth.
 - Packet loss
- Key technologies to develop for computation, communication, and storage.

Volume of data for different media

	Characteristics	BW Required
Speech	8000 samples/s, 1 byte/sample	8 Kbytes/s or 64 Kbps
CD Audio	44,100 samples/s, 2 bytes/sample, stereo	176.4 Kbytes/s or 1.41 Mbps
Satellite Imagery	180×180 km² 30 m² resolution	600 Mbytes/image (60 MB, compressed)
NTSC Video	30 fps, 640×480 pixels, 3 bytes/pixel	27.6 Mbytes/s or 221.2 Mbps (2-8 Mbps, compressed)
HD video	60 fps, 1920×1080 pixels, 3 bytes/pixel	373.2 Mbytes/s or 2.99 Gbps (15-30 Mbps, compressed)

Course Outline (Mostly coding/compression oriented)

- Introduction
- Audio/Image/Video Representation
- Basic Coding & Compression Techniques
- Image compression
- Video compression
- Audio compression
- Multimedia Networking
- Content based retrieval

Course information

- Administration web site
 - http://ninova.itu.edu.tr
- Textbook:
 - Fundamentals of Multimedia, by Li and Drew, 2014, 2nd edition, Springer International Publishing.
- Reference book:
 - Computer Networking: A Top-Down Approach Featuring the Internet, 4th Edition, by Kurose and Ross, 2008, Addison Wesley.
 - Internetworking Multimedia, by Crowcroft, Handley, and Wakeman, 1999, Morgan Kaufmann Publishers

Course information

- Office Hours: MW 9:00-10:00 and by appointment.
- Grading Policy:
- Short exams (10%)
- 1 midterm, 1 final (25%+40%)
- Final project and presentation (25%)

Final Project and Presentation

- Work in groups of 2.
 - Start early! Doing background work is more than half the work.
- 25% of the grade!
- Types of projects:
 - Implementation/Demo
- Project Proposal to be submitted by latest 5th week (no proposals accepted afterwards)
- Presentation will be done in the last 2 week(s) of class. (20 minutes each group)
- All group members must be involved in the presentation.
- Final report due during finals week.