bracket

- Upload picture by

end of class today

PID Control

Robot example

error e(t) = desired - actual

Controllers

Controller overview

Simple controller

controller

If
$$(\theta > \text{threshold})$$
 then motors $\theta + 100\%$

If $(\theta < \text{threshold})$ then motors set to -100%

bang controller

Drawbacks:

- operation is not smooth
- may get oscillation

P-term

(Proportional)

P.I.O.

$$u(t) = Kp \cdot e(t)$$

$$\begin{cases} Proportional \\ Constant \end{cases}$$

-if the error is big, then the correction is big

Problems with using only K_n

D-term

(Derivative)

the rate of change of the error

$$pD$$
 $u(t) = K_p \cdot e(t) + K_d \cdot \frac{de(t)}{dt}$

$$\begin{array}{c} \text{negative} \\ \text{counteracts} \\ \text{the proportional} \\ \text{term} \end{array}$$

Computing K_d in a program

- Implement a Proportional Controller

-come up with an expression for e(t)

it is okay
to have a
hard-coded
routine for
turns and intersections

I-term
(Integral)

Problem with K_i

- Do not apply the integral term
unless the error is below a threshold

PID controller form

Tuning PID controllers