

Инструкция по рецензированию Файлы решения

KNN.ipynb (/solution_file/16557/KNN.ipynb)

Рецензии

1.2. Чем отличаются поверхности, полученные при числе соседей 1 и 10? Объясните, чем вызваны данные отличия.

2.0 балла
Показано и дано объяснение, почему большее число соседей в среднем дает более гладкие границы

1.0 балл
Отмечено, что при 10 соседях граница более гладкая. Доказательства и рассуждения не приведены

0.0 баллов
Нет верного ответа

1.3. Объясните, почему наблюдается сильное отклонение разделяющей поверхности от прямой *x*=0 при значениях *y*<−10 и *y*>10. Дайте строгое математическое обоснование наблюдаемого явления

3.0 балла

Доказано, что при разном масштабе признаков различна их степень влияния на ответ алгоритма. Например, рассмотрена Евклидова метрика и показано, что если масштаб одного признака больше в K раз масштаба другого, то этот признак будет в K2 раз иметь больший вес при классификации

Рецензия №3

1.5 балла

Даны рассуждения про масштаб признаков, но нет четкого доказательства

0.0 баллов

Нет верного ответа

Рецензия №1

Рецензия №2

1.4. Начертите разделяющие поверхности для *KNN*, обученного на нормализованных признаках. Используйте функцию plot_knn_bound

1.0 балл

Граница начерчена для обоих нормализаторов

Рецензия №1

Рецензия №2

Рецензия №3

0.0 баллов

Хотя бы одна граница не начерчена

1.5. Пусть дано произвольное число точек на плоскости. Представим, что каждая точка - это отдельный класс. Пусть на данной выборке был обучен 1-NN классификатор. Чем с геометрической точки зрения являются разделяющие поверхности этого классификатора? Требуется математически строго, однозначно и с полным обоснованием определить геометрическое место точек разделяющих поверхностей.

4.0 балла

Для произвольного числа точек доказано, что разделяющими поверхностями будут являться пересечения срединных перпендикуляров между каждой парой точек. Можно начать доказательство с пары точек, для которых утверждение очевидно, и далее обобщить по индукции для произвольного числа точек

Рецензия №3

3.0 балла

Доказательство приведено, но содержит незначительные неточности

1.0 балл

Сказано про срединные перпендикуляры и/или Диаграмму Вороного и/или Триангуляцию Делоне, но не приведено строгое/корректное доказательство

Рецензия №2

0.0 баллов

Нет верного ответа

Рецензия №1

2.2. Разбейте выборку на обучающую (75%) и тестовую (25%) с помощью функции *train_test_split*. Используйте параметр random_state=42! Не забудьте перемешать данные перед разбиением (см. параметры функции). Запустите кросс-валидацию на 3 фолдах с помощью реализованных вами функций *kfold_split*, *knn_cv_score*. В качестве метрики используйте *r2_score*.

1.0 балл

Все пункты задания выполнены верно

Рецензия №1

Рецензия №2

Рецензия №3

0.0 баллов

Задание выполнено не полностью и/или с ошибками

2.3. Какой наибольший *r2_score* удалось достичь на валидации? Какие закономерности вы видите? Обучите модель с наилучшими параметрами на всей обучающей выборке, измерьте *r2_score* на тестовой выборке.

3.0 балла

1) Получена метрика вблизи значения 0.7. 2) Отмечено, что нормализация значительно увеличивает качество. 3) Модель обучена на всей обучающей выборке и оценена на тестовой

Рецензия №1

Рецензия №2

Рецензия №3

2.0 балла

Один из пунктов не выполнен или выполнен неверно

1.0 балл

Два пункта не выполнены или выполнены неверно

3.1. Найдите оптимальные параметры обучения модели. Осуществлять перебор параметров следует по заданной ниже сетке. Используйте реализованные вами функции <i>kfold_split</i> , <i>knn_cv_score</i> . В качестве метрики используйте <i>accuracy_score</i>			
2.0 балла		Рецензия N	
Найдены оптимальные параметры. Качество на кросс-валидации порядка 0.76-	-0.76	Рецензия N	
		Рецензия N	
0.0 баллов Иначе			
3.2. Какой метод предобработки данных в среднем дает наилучший результат? Почему?			
2.0 балла		Рецензия №1	
TfidfVectorizer дает лучшее качество в среднем. Если токен встречается в боль числе документов, то он менее информативен для определения класса конкре		Рецензия №2	
документа и, наоборот. TF_IDF учитывает это, CountVectorizer - нет.		Рецензия N	
L.0 балл Показано, что TfidfVectorizer дает лучшее качество в среднем, но не сказано почему.			
).0 баллов Иначе			
3.3. Какая метрика близости позволяет в среднем достичь наилучшее качество? Почему?			
2.0 балла Косинусная близость в среднем лучше. Приведены рассуждения о том, что сонаправленность векторов встречаемости токенов важнее чем разность их величин	Рецензия №1		
	Рецензия №2		
	Рецензия №3		
L.0 балл Показано, что косинусная близость в среднем лучше, но не сказано почему.			

0.0 баллов

Три пункта не выполнены или выполнены неверно

Оцените, насколько понятным для вас было оформление ноутбука автора в целом

Рецензия №3

Топ

0.0 баллов Все понятно	Рецензия №1 Рецензия №2 Рецензия №3
0.0 баллов В целом понятно, были неясные места	
0.0 баллов Есть, куда расти	
Комментарии	
Рецензия №1	
Рецензия №2	