Hengrui Zhang

Education

Northwestern University, Evanston, IL, USA

9/2020-6/2025

Ph.D., Mechanical Engineering, Topic: AI for materials design

Committee: Wei Chen, James Rondinelli, Daniel Apley, Edward Sargent

Shanghai Jiao Tong University, Shanghai, China

9/2016-6/2020

B.S. (Hons.), Materials Science & Engineering, Computer Science

Visiting Student, University of Oxford (2018), Northwestern University (2019)

Research Experiences

Northwestern University - McCormick School of Engineering

9/2021-Present

Graduate Researcher, Advisors: Wei Chen & James Rondinelli

- Physics-based structure representation and machine learning for complex materials systems.
- Co-design of microelectronic materials and devices using first-principles calculations and informatics.

Mitsubishi Electric Research Labs, Cambridge, MA, USA

6/2023-9/2023

Research Intern, Host: Bingnan Wang

O Machine learning-based electric motor design and fault diagnosis.

Shanghai Jiao Tong University - Materials Genome Initiative Center

3/2018-6/2020

Undergraduate Researcher, Advisor: Hong Wang

Phase diagram construction using high-throughput experiments and machine learning.

Northwestern University - Mechanical Engineering

7/2019-9/2019

Visiting Scholar, Advisor: Wei Chen

Statistical representation of microstructures and MaterialsMine data platform development.

University of Oxford - Department of Materials

7/2018–9/2018

Visiting Scholar, Advisors: Peter Wilshaw & Sebastian Bonilla

O Physics-based modeling and simulation for the charge transport in Si solar cell surface and interfaces.

Publications

- 1. **Zhang, H.**, Huang, R., Chen, J., Rondinelli, J. & Chen, W. Graph representation of local environments for learning high-entropy alloy properties. *Machine Learning: Science and Technology* **6**, 025005 (2025).
- 2. **Zhang, H.**, Georgescu, A., Yerramilli, S., Karpovich, C., Apley, D., Olivetti, E., Rondinelli, J. & Chen, W. Emerging microelectronic materials by design: Navigating combinatorial design space with scarce and dispersed data. arXiv:2412.17283 (2024).
- 3. Chen, J., Ou, P., Chang, Y., **Zhang, H.**, *et al.* Adaptive catalyst discovery using multicriteria Bayesian optimization with representation learning. arXiv:2404.12445 (2024).
- 4. **Zhang, H.**, Lai, T., Chen, J., Manthiram, A., Rondinelli, J. & Chen, W. Learning molecular mixture property using chemistry-aware graph neural network. *PRX Energy* **3**, 023006 (2024).
- 5. Chang, Y., Benlolo, I., Bai, Y., Reimer, C., Zhou, D., **Zhang, H.**, *et al.* High-entropy alloy electrocatalysts screened using machine learning informed by quantum-inspired similarity analysis. *Matter* **7**, 4099–4113 (2024).

- 6. Chaney, L., van Beek, A., Downing, J., Zhang, J., Zhang, H., et al. Bayesian optimization of environmentally sustainable graphene inks produced by wet jet milling. *Small* **20**, 2309579 (2024).
- 7. **Zhang, H.**, Chen, W., Rondinelli, J. & Chen, W. ET-AL: Entropy-targeted active learning for bias mitigation in materials data. *Applied Physics Reviews* **10**, 021403 (2023).
- 8. Chen, J., **Zhang, H.**, Wahl, C., *et al.* Automated crystal system identification from electron diffraction patterns using multiview opinion fusion machine learning. *PNAS* **120**, e2309240120 (2023).
- 9. **Zhang, H.**, Chen, W., Iyer, A., Apley, D. & Chen, W. Uncertainty-aware mixed-variable machine learning for materials design. *Scientific Reports* **12**, 19760 (2022).
- 10. Hui, J., Hu, Q., **Zhang, H.**, *et al.* High-throughput investigation of structural evolution upon solid-state in Cu–Cr–Co combinatorial multilayer thin-film. *Materials & Design* **215**, 110455 (2022).
- 11. **Zhang, H.** Demand-driven materials design (commissioned). *Journal of SJTU* **55,** 93 (2021).
- 12. Hui, J., **Zhang, H.**, Hu, Q., *et al.* Investigation of synchrotron X-ray induced oxidation of Ag–Cu thin-film. *Materials Letters* **272**, 127843 (2020).
- 13. Hui, J., Ma, H., Wu, Z., Zhang, Z., Ren, Y., **Zhang, H.**, *et al.* High-throughput investigation of crystal-to-glass transformation of Ti–Ni–Cu ternary alloy. *Scientific Reports* **9**, 19932 (2019).
- 14. **Zhang, H.** & Wang, B. Supervised contrastive learning for electric motor bearing fault detection in International Conference on Electrical Machines (2024).

Selected Presentations

- [Oral] "Investigating insulator–metal transitions in Ti₂O₃/MnTiO₃ superlattices," *MRS Spring Meeting*, Seattle, WA, USA (2025).
- [Poster] "Do graph neural networks work for high entropy alloys?" NeurIPS AI for Materials Workshop, Vancouver, BC, Canada (2024).
- [Oral] "MolSets: Molecular graph deep sets learning for mixture property modeling," APS March Meeting, Minneapolis, MN, USA (2024).
- [Poster] "Mitigating bias in scientific data: a materials science case study," NeurIPS AI for Science Workshop, New Orleans, LA, USA (2023).
- o [Oral] "Mitigating bias in materials data," Semiconductor Research Corporation, Austin, TX, USA (2023).
- [Oral] "ET-AL: Entropy-targeted active learning for bias mitigation in materials data," MRS Spring Meeting, San Francisco, CA, USA (2023).
- o [Invited] "Adaptive discovery and mixed-variable optimization for next-generation synthesizable microelectronic materials," *TMS Annual Meeting*, San Diego, CA, USA (2023).
- [Poster] "Autonomous phase diagram construction guided by active learning," Forum of Materials Genome Engineering (best poster award), Mianyang, Sichuan, China (2020).

Grant Writing

Proposal "Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)" won **NSF DMREF** award (PIs: James Rondinelli & Wei Chen, Amount: \$798K), 2023.

• Conceived challenges and breakthroughs with PIs; drafted the AI/informatics-related content.

Proposal "Adaptive Sampling and High Throughput Data Analysis for Nanostructure Mega-Libraries" won NU Center for Nanocombinatorics fund (PIs: Wei Chen & Daniel Apley, Amount: \$140K), 2023.

Teaching & Services

Teaching Assistant, MSE 358: Materials Modeling and Simulation (Northwestern), 2023.

Reviewer, [Journals] EPJ B, Mach Learn: Sci Technol, Neural Comput Appl, MRS Adv, ISA Trans, J Open Source Softw, MethodsX; [Conferences] NeurIPS (top reviewer), ICLR, ICML, IDETC, AI4Mat, ICEM

Co-organizer, Northwestern Institute on Complex Systems (NICO) Reading Group, 2022–23.

Volunteer, Baxter Symposium for Science Education, 2024.

Honors & Awards

MRS Graduate Student Award	2025
Ryan Fellows Best Paper Prize	2024
Ryan Fellowship (Northwestern) [about]	2023–25
Predictive Science and Engineering Design Fellowship [about]	2021–22
Walter P. Murphy Fellowship (Northwestern)	2020–21
Zhiyuan Outstanding Student (Top 1% SJTU graduates)	2020
Fung Scholarship (Oxford) [about]	2018
China National Scholarship, Fan Hsu-chi Scholarship (SJTU)	2017–19

Technical Skills

Programming: Python (proficient in PyTorch), MATLAB, R, C/C++, JavaScript

Simulation: ASE; DFT (VASP, GPAW, QE); MD (LAMMPS); KMC; FEA (Abaqus)

References

Dr. Wei Chen

Chair and Professor of Mechanical Engineering

Northwestern University

☑ weichen@northwestern.edu

**** (+1) 847-491-7019

Dr. James M. Rondinelli

Professor of Materials Science & Engineering

Northwestern University

☑ jrondinelli@northwestern.edu

(+1) 847-491-3198

Dr. Edward H. Sargent

Professor of Chemistry and Electrical & Computer Engineering

Northwestern University

☑ ted.sargent@northwestern.edu

\((+1) 847-467-4076