General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA

Technical Memorandum 86044

(NASA-TM-86044) STATISTICAL CORRELATION OF STRUCTURAL MODE SHAPES FROM TEST MEASUREMENTS AND NASTRAN ANALYTICAL VALUES (NASA) 122 p HC AOb/MF AO1 CSCL 20K

N84-26054

Unclas G3/39 19472

STATISTICAL CORRELATION OF STRUCTURAL MODE SHAPES FROM TEST MEASUREMENTS AND NASTRAN ANALYTICAL VALUES

L. Purves, R. Strang, M.P. Dube, P. Alea, N. Ferragut, and D. Hershfeld

NOVEMBER 1983

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

STATISTICAL CORRELATION OF STRUCTURAL MODE SHAPES FROM TEST MEASUREMENTS AND NASTRAN ANALYTICAL VALUES

L. Purves, R. Strang, M. P. Dube, P. Alea, N. Ferragut, and D. Hershfeld

November 1983

National Aeronautics and Space Administration

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20771

STATISTICAL CORRELATION OF STRUCTURAL MODE SHAPES FROM TEST MEASUREMENTS AND NASTRAN ANALYTICAL VALUES

L. Purves, R. Strang, M. P. Dube, P. Alea, N. Ferragut, and D. Hershfeld

ABSTRACT

This document describes the software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical test results from modal surveys. Topics discussed include a brief mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data.

PRECEDING PAGE BLANK NOT FILMED

ACKNOWLEDGEMENT

The development effort that is reported in this Technical Memorandum is the result of work by a number of people.

Lloyd Purves of the Goddard Computer Aided Design Section initiated this effort with the objective of developing a more automated and complete method of comparing the results from structural testing with design predictions. Thomas Butler, formerly with Goddard and now with Butler Analyses, Inc., selected the mathematical and statistical techniques that are used in this correlation process. He also designed the approach for extracting the predicted data from the NASTRAN finite element program. Don Hershfeld of the Goddard Structural Dynamics and Electromagnetic Test Section defined the procedures and formats for recording the test data. Robert Strang of Computer Sciences Corporation designed and wrote the software for performing the statistical correlation, and for extracting and reformatting the test and predicted data. Together, Butler, Hershfeld, and Strang used this software to successfully correlate the mode shapes of a simple plate as predicted by NASTRAN and as measured by tests.

Following this initial application, the system was applied to a more complex case, that of correlating the mode shapes for a space flight experiment package, the SPARTAN-1 payload, which is expected to be carried into orbit on the Space Shuttle. This Technical Memorandum covers the results of performing that correlation. Nelson Ferragut of the Flight Section within the Goddard Special Payloads Division developed the NASTRAN model for the SPARTAN experiment; Peter Alea of the Goddard Structural Dynamics and Electromagnetic Test Section designed and managed the testing of SPARTAN payload; and Maurice Dube of Systems and Applied Sciences Corporation extended the software to handle this more complex application. M. Dube also carried out all of the computer runs to obtain the correlation coefficients, and he performed the bulk of the work in putting together this Technical Memorandum.

CONTENTS

		Page
Section 1 -	INTRODUCTION AND OVERVIEW]
Section 2 -	THEORY OF STATISTICAL CORRELATION	2-1
Section 3 -	USER'S GUIDE	3-1
Section 4 -	DESCRIPTION AND ORGANIZATION OF DATA	4-1
Section 5 -	EXAMPLES - THE SPARTAN-I MODEL	5-1
Appendix A	- LISTING OF THE NASTRAN INPUT DATA (WITH DIAG 21 AND 22) OF THE SPARTAN-1 MODEL	A-1
Appendix B	- PARTIAL NASTRAN PRINT FILE LISTING WITH DIAG 21 AND 22	B-1
Appendix C	- EXAMPLE OF A STATISTICAL CORRELATION REPORT	C-1
Appendix D	- FORTRAN SOURCE CODE LISTING (TESETDMI,FOR)	D-1
Appendix E	- FORTRAN SOURCE CODE LISTING (LAMA.FOR)	E-1
Appendix F	- FORTRAN SOURCE CODE LISTING (UNPACKDMLFOR)	F-1
Appendix G	- FORTRAN SOURCE CODE LISTING (GRDPTLST.FOR)	G-1
Appendix H	- FORTRAN SOURCE CODE LISTING (STATCORR.FOR)	H-I
	LIST OF ILLUSTRATIONS	
Figure		Page
ı	Data-Set Interface Between NASTRAN, the Pre-Processing Programs and STATCORR	1-4
2	Example of a User's Command Procedure File for Assigning Files in a NASTRAN Restart Run	3-2
3	Example of a User's Command Procedure File for Assigning and Concatenating a Print File During a NASTRAN Run	3-5
4	Example of a User's Command Procedure File for Assigning and Concatenating Both a Print File and a Punch File	3-5

LIST OF ILLUSTRATIONS (Continued)

	Page
Example of a User's Command Procedure File to Run NASTRAN, the Pre-Processing Programs, and STATCORR as a Batch Job	3-7
Example of a User's Command Procedure File to Compile and Link a Computer Program	4-3
Flowchart Showing Sequence of Steps from Initial Input Data to the Statistical Correlation Report	4-5
The SPARTAN-1 Model	5-1
Modal Survey Model with Drive and Response Points	5-4
Phase I of the SPARTAN-I Model	5-6
Phase II of the SPARTAN-II Model	5-7
Phase III of the SPARTAN-1 Model	5-8
Analytical Versus Emperical Mode Shapes	5-9
External Gridpoint Listing in Field-Free Format	510
Listing of the TESET Matrix in DMI Format; Called TESET.DMI	5-11
Partial Listing of the LAMA Table	5-12
The Final External Gridpoint Listing to be Entered into the STATCORR Program	5-13
Example of an Input File Containing Experimental Data	5-16
	the Pre-Processing Programs, and STATCORR as a Batch Job Example of a User's Command Procedure File to Compile and Link a Computer Program Flowchart Showing Sequence of Steps from Initial Input Data to the Statistical Correlation Report The SPARTAN-1 Model Modal Survey Model with Drive and Response Points Phase I of the SPARTAN-1 Model Phase II of the SPARTAN-1 Model Phase III of the SPARTAN-1 Model Analytical Versus Emperical Mode Shapes External Gridpoint Listing in Field-Free Format Listing of the TESET Matrix in DMI Format; Called TESET.DMI Partial Listing of the LAMA Table The Final External Gridpoint Listing to be Entered into the STATCORR Program

STATISTICAL CORRELATION OF STRUCTURAL MODE SHAPES FROM

TEST MEASUREMENTS AND NASTRAN ANALYTICAL VALUES

Section 1

INTRODUCTION AND OVERVIEW

In recent years there has been a large improvement in the design of mechanical structures.

The digital computer has significantly contributed to this improvement. Computer implementations of the finite element technique, in programs such as NASTRAN (NASA STRuctural ANalysis), have made it possible to predict accurately and in great detail the behavior of complex structures.

Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) have lowered the costs of creating complex and sophisticated structures. Computer Aided Testing (CAT) has allowed much more extensive testing to be performed on structures. It has appeared that relatively less attention has been paid to the computerized comparisons between analytical and test data. Since many million bits of analytical and test data can be easily created with computer techniques, it is not practical to do complete comparisons manually. The use of appropriate computer methods, some of which can be based on statistical analyses, can increase the speed and completeness with which comparisons between test and analytical data can be made.

Potentially, automated techniques can help identify whether disagreement is due to faulty test procedures or faulty modeling. Another promising long range benefit of the automated correlation of analytical and test data is that structural design can be further improved. There is presently no widely accepted and effective way of validating analytical results on real problems. Statistical comparisons with equivalent test data appear to provide an acceptable means for this validation. If this technique becomes widely used and improved, then it could gradually lead to improved analytical techniques, thus, leading in turn, to improved designs and eventually to improved structures.

The purpose of this document is to describe some recent developments, based on statistical correlation, of comparing two given sets of data. With the techniques described below, NASTRAN and several pre-processing programs place analytical results in a format in which they can be statistically compared with the test results. The STATCORR program has been developed to compile a statistical correlation report in which the engineer can easily interpret and make necessary decisions based on the statistical comparisons of the two sets of data.

In aerospace structures, it is necessary to compare structural vibration properties obtained from testing with those obtained from analysis. The most meaningful comparisons of data are those based on like vibrational modes. A test mode and an analytical mode are alike if the amplitude of the standing wave pattern is "exactly" the same at all sample points, or more realistically, if the pair of modes correlate closely.

The limited amount of experimental data and the limited access in which to install sensors at interior points are factors that constrain the points at which comparisons can be made. There is a disproportionately large number of points at which analytical data is available for comparison. The objective is to draw useful comparisons within the constraints of available data. The intent is to be able to identify the mode shapes from both of the sources; to analyze the relationship of any two mode shapes; to delineate at which frequencies the test mode and the analytical mode of a closely related pair appear; to give the locations at which two modes diverge beyond a threshold; and to isolate the greatest divergence.

The chart in Figure 1 provides a pictorial overview of the NASTRAN software system and the statistical correlation software on the GSFC Code 750 VAX-11/780 computer.

Section 2 of this document provides a brief mathematical description of the more essential quantities used in statistical analyses of data and in the STATCORR program.

Section 3 is a user's guide covering the execution of NASTRAN and the statistical correlation utility programs.

Section 4 is a programmer's guide describing the organization and functions of individual programs leading to the statistical correlation report.

Section 5 contains a set of examples, including a description of the Spartan-1 model. Also provided are complete listings of some of the input and output data.

The Appendix contains the NASTRAN input data of the SPARTAN-1 model, and an example of a statistical correlation report. Also included are the FORTRAN source code listings of STATCORR and the other preprocessing programs.

The Statistical Correlation software is part of the NEXUS CAD/CAM system at GSFC, and it is available from COSMIC. The files exists in the NEXUS_LIB: [NEXUS.NASTRAN.STATCORR] directory, with the programs in the [.PROGRAMS] subdirectory and the demonstration files in the [.DEMO] subdirectory. The demonstrations are based on the SPARTAN-1 model (described in detail in section 5), and can be run with the help of the STATCORR.COM command procedure file. The analytical NASTRAN input data files are called: FRE.NID, FXT.NID, and ETUPLT.NID; the experimental input data files are called: FMS...

Figure 1. Data-Set Interface between NASTRAN, the Preprocessing Programs and STATCORR

Section 2

THEORY OF STATISTICAL CORRELATION

Static and dynamic characteristics of mechanical structures are determined both analytically and experimentally. In either case, the results of such determinations are subject to random variation. For example, analytical modes of a structure will vary because of differences in interpretation of drawings, and representations of elastic relations and mass properties. Similarly, experimental results will vary because of instrumentation errors, data recording noise, and data processing techniques. Despite these variations, it is hoped that both the analytical and experimental results will tend to correlate.

Analysis and testing results can be systematically compared, using well-established principles of statistics, particularly, the correlation coefficient. (See Freund, "Mathematical Statistics.") The criterion for deciding whether two mode shapes describe the same mode will be how close their correlation coefficient is to unity.

Some of the more important quantities used in statistical analyses are described below. The mean is defined as the first moment of a distribution about the origin. That is,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \cdot f(x_i) = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 (1)

where for the purpose of this analysis, the quantity x_i is the amplitude of a vibration mode at a particular point "i". Function f(x) is the probability function for the amplitude x_i . With the probability that a vibration mode exists at each point at the time of the sample measurement, then the probability function reduces to one at each point, $f(x_i) = 1$. The symbol n is the total number of points in the sample where a measurement is made.

The variance is defined as the second moment of a distribution about its mean. That is,

$$\sigma_{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x}) \cdot f(x_{i}) = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})$$
 (2)

For the purposes of this application, the RMS (root mean square) of a distribution is defined as:

RMS = standard deviation = SQRT(variance) =
$$\sigma_{x}$$
 (3)

Covariance is defined as the first product moment of two separate distributions about their respective means. That is,

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})$$
 (4)

A quantity closely related to the covariance is the correlation coefficient, ρ . It is defined as:

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_{x} \cdot \sigma_{y}} \tag{5}$$

The correlation coefficient is independent of any scaling of the mode shapes, and thus frees both the analyst and the experimentalist to scale data in the manner of their choice. Each set of data is scaled to its own standard deviation and both are placed on equal footing regardless of how the modal data was originally obtained. All modes in both sets are compared with each other, and the correlation coefficient is computed for every combination.

It is instructive to determine where and by how much mode shapes differ from one another. However, because of scaling, the difference between the amplitudes of two mode shapes is not significant. One method to obtain significant differences is to rescale the mode by their respective RMS values. This rescaling puts all mode shapes on an equal basis. The relative difference between the amplitudes of two mode shapes at a point is then

Relative Difference =
$$\frac{x_i}{\sigma_x} - \frac{y_i}{\sigma_y}$$
 (6)

Another method rescales one of two mode shapes to be compared so that the mean squared difference between the two mode shapes is minimized. The scaling factor for this method is:

$$C = \sum_{i=1}^{n} x_i y_i$$

$$\sum_{n=1}^{n} x_i$$
(7)

If the x mode shape is multiplied by this scaling factor, the mean squared difference between the x and y mode shapes will equal:

$$S = \frac{1}{n} \left(\sum_{i=1}^{n} y_i^2 - C^2 \cdot \sum_{i=1}^{n} x_i^2 \right)$$
 (8)

The square root of the mean squared difference is called the standard difference. S. The difference between the amplitudes of the two mode shapes can now be compared to the standard difference to detect any significant variations between mode shapes. The scaled difference is defined as:

Scaled Difference =
$$(Cx_i - y_j)/S$$
 (9)

Most of the above quantities are used in the statistical correlation report, and an example of such a report is given in Appendix C. The variances, correlation coefficients, and RMS values are computed in the CORRMS subroutine of the STATCORR program. The relative and scaled differences are computed in the RMSDIFF subroutine. Further discussion on the theory of statistical correlation will be found in a future Technical Memorandum called "Statistical Correlation Analysis For Comparing Vibration Data From Test and Analysis," by L. P. Purves, D. J. Hershfeld, T. G. Butler, and R. F. Strong.

*TM 86081

Section 3

USER'S GUIDE

The following is a guide to aid the user in the execution of NASTRAN and the statistical correlation utility programs. The STATCORR utility program generates a statistical correlation report from results of analytical NASTRAN data and experimental test data. Also needed as input to STATCORR is an external gridpoint list, that is, a set of gridpoints governing the location and orientation of the test sensors.

The data that is entered as input into the STATCORR program must be entered according to a specific format. There are several preprocessing programs which are used to properly format this data, and they are described below.

First, one needs to process the NASTRAN analytical data. The NASTRAN input data file usually contains an Executive Control Deck, a Case Control Deck, and also a Bulk Data Deck. This file may reside on a disk or a magnetic tape. The tape may contain data from a previous NASTRAN run, and if this is the case, then the necessary files are copied from the tape to the user's disk. This tape should include the following files: a print file (EXLPRT;1, for example), a command procedure file (EXLCOM;1), a "new problem tape" file (EXLPTP;1), and a NASTRAN input data file (EXLNID;1). The file, EXLPTP;1, is the "new problem tape" of a previous NASTRAN run, but becomes an "old problem tape" for the next NASTRAN restart run.

Figure 2 shows the command procedure for assigning files in a NASTRAN restart run. The default must first be set to the user's directory in each of the following command procedure files. The first assignment is the NASTRAN print file. In the VAX system, data written to Logical Unit 6, FOR006, goes to the log file for the batch job, by default. The procedure assigns a filename to FOR006, and the NASTRAN print output is written to the assigned file rather than the batch job log file. In the next assignment, the NASTRAN old problem tape file is assigned to the Logical

Unit 8, FOR008. In the last assignment, NASTRAN writes the Bulk Data from the previous NASTRAN run to the punch file, the Logical Unit 77, FOR077. The punch file becomes the Bulk Data Deck for the NASTRAN input data of the next NASTRAN run. (This is described in more detail below.) The last step in the command file results in the execution of the NASTRANX procedure. The "EXEC" command is a global symbol defined for users of the Code 750 VAX-11/780 computer system for executing commands in the DRAO:[USRLIB.COM] directory. The following definition is used:

EXEC: = = "@DRA0:[USRLIB.COM]COMC"

The COMC.COM command procedure contains the following DCL command:

\$ @DRA0:[USRLIB.COM] 'P1' 'P2' 'P3' 'P4' 'P5' 'P6' 'P7' 'P8'

NASTRANX is a command procedure which may contain up to five input parameters, P1, P2, P3, P4, and P5. If any particular parameter is to be used, all the preceding parameters must also be defined by the user, but following parameters may be ignored. P1 is the user's NASTRAN input file name; in this example it would be, EX1.NID. P3 is the maximum number of NASTRAN links to execute (default = 100,000,000). In order to generate the punch file only the first link is needed. Since P3 was specified, P2, the NASTRAN executable assignment file name

(default = @DRA0: [USRLIB.COM] NSASSIGN),

must also. By specifying P2 with the word "DUMMY", the default is used.

EX1.COM; 1

\$ SET DEF []

\$ ASSIGN EX1.PRT FOR006

\$ ASSIGN EX1.PTP FOR008

\$ ASSIGN EX1.DIC FOR077

\$ EXEC NASTRANX EX1.NID DUMMY 1

\$ DEASSIGN FORO06

\$ DEASSIGN FOROO8

\$ DEASSIGN FOR077

B EXIT

Figure 2. Example of a User's Command Procedure for Assigning Files in a NASTRAN Restart Run

For user's of the GSFC Code 750 VAX-11/780 computer system, the submit command for running batch jobs is given by:

\$ SUBMIT/QUEUE=NASTRAN EX1.COM

The NASTRAN input data file should contain a NASTRAN card, and it is the first card in the NASTRAN data deck. (An example of a NASTRAN input data deck is given in Appendix A.) The Restart deck follows the NASTRAN and ID cards, and then followed in order by the Executive Control Deck, the Case Control Deck, and the Bulk Data Deck. In this case, the Bulk Data is empty, but one will be generated from this run as a punch file. The only modification to be made to the NASTRAN input data file prior to the run is the ECHO card in the Case Control Deck, and this should be changed to:

ECHO = PUNCH

The job is then submitted to batch, and the resulting punch file, EX1.DIC, is appended to the NASTRAN input data, EX1.NID, as the NASTRAN Bulk Data Deck. The ENDDATA card is then shifted to the last card of the deck. The following modifications to NASTRAN Input Data file are made: the NASTRAN card along with all of the Restart cards are deleted; in the Executive Control Deck, the CHKPNT YES card is deleted, the DIAG 14 card is changed to DIAG 14,21,22, and the following alter cards are added:

ALTER 41 EXIT \$ ENDALTER

In the Case Control Deck, the ECHO card is modified to read:

ECHO - NONE

The command procedure file is also modified, and Figure 3 shows how the command procedure file should read. Several print files are generated during the NASTRAN run, and the \$EXEC CONCAT procedure concatenates different versions of files with the same filename, as in this case, EX1.PRT;1, EX1.PRT;2,

This job is then submitted to batch, and a concatenated print file is generated. A grid point list file must also be obtained or constructed, and it may be called GRDPT.LIS. This file is in a free-field format, and it contains a list of all of the grid points in which test sensors were located during the test. Next, the preprocessing programs are run. First, the TESETDMI program is run; it is designed to be run interactively, and it asks for the name of the NASTRAN print file and the name of the gridpoint list. A sample TESETDMI dialog is given as:

```
S RUN TESETDMI
FILENAME OF NASTRAN PRINT FILE WITH DIAG 21: EX1.PRT
FILENAME OF MODAL SURVEY GRIDPOINT LIST: GRDPT.LIS
FILENAME FOR TESET DMI BULK DATA RECORDS: TESET.DMI
WARNING - NO INTERNAL DOF FOR GRID POINT
                                                 382-1
WARNING - NO INTERNAL DOF FOR GRID POINT
                                                 382-2
WARNING - NO INTERNAL DOF FOR GRID POINT
                                                 382 - 3
WARNING - NO INTERNAL DOF FOR GRID POINT
                                                 407-1
WARNING - NO INTERNAL DOF FOR GRID POINT
                                                 407-2
WARNING - NO INTERNAL DOF FOR GRID POINT
                                                 407-3
                                                 412-1
WARNING - NO INTERNAL DOF FOR GRID POINT
WARNING - NO INTERNAL DOF FOR GRID POINT
                                                 412 - 2
WARNING - NO INTERNAL DOF FOR GRID POINT
                                                 412 - 3
FORTRAN STOP - PROCESSING COMPLETED
```

An output file, called TESET.DMI, is generated, and this file is appended to the NASTRAN input data file. The file, TESET.DMI, contains the same list of grid points as the original file, GRDPT.LIS, but in the proper DMI format to be inserted into the NASTRAN Bulk Data Deck. The card ENDDATA is then shifted to the last card in the deck, and EX1.NID is modified: the DIAG 14,21,22 card is changed to DIAG 14, and the alter cards changed as follows:

ALTER 74
TABPCH LAMA, , , ,//FM \$
ALTER 78
PARTN PHIG, ,TESET/,PHITE, ,/+1/1/2/2 \$
OUTPUT3 PHITE,TESET/ /-1/N1=VCT/N2=DOF \$
EXIT \$
ENDALTER

The command procedure file is also modified, and Figure 4 shows how the file should read.

This job is then submitted to batch, and a concatenated print file and punch file are generated. However, the user must first delete the old print files, otherwise they will be concatenated with the new ones.

EX1,COM;1

EX1.COM; 3

```
$ SET DEF [ ]
$ ASSIGN EX1,PRT FOR006
$ EXEC NASTRANX EX1,NID
$ EXEC CONCAT EX1,PRT
$ DEASSIGN FOR006
$ EXIT
```

Figure 3. Example of a User's Command Procedure for Assigning and Concatenating a Print File

\$ SET DEF [] \$ ASSIGN EX1.PRT FOR006 \$ ASSIGN EX1.PCH FOR077 \$ EXEC NASTRANX EX1.NID \$ EXEC CONCAT EX1.PRT \$ EXEC CONCAT EX1.PCH

- S DEASSIGN FOROOG
- \$ DEASSIGN FOR077
- \$ EXIT

Figure 4. Example of a User's Command Procedure for Assigning and Concatenating a Print File and a Punch File

The following programs are then run interactively. The UNPACKDMI program asks for the name of the concatenated punch file, EX1,PCH, and also the names of two matrices, TESET and PHITE. A sample UNPACKDMI dialog is as follows:

```
S RUN UNPACKDMI
ENTER NAME OF NEXT DMI FILE: EXI.PCII
ENTER MATRIX NAME. ("*ALL" FOR ALL MATRICES): TESET
MATRIX FILE WRITTEN WITH MROWS, NCOLS:
TESET
        .MTX
                    1656
DO YOU WANT ANOTHER MATRIX IN THIS FILE? (Y OR N): Y
ENTER MATRIX NAME. ("*ALL" FOR ALL MATRICES): PHITE
MATRIX FILE WRITTEN WITH MROWS, NCOLS:
PHITE
        .MTX
                      135
                                   56
DO YOU WANT ANOTHER MATRIX IN THIS FILE? (Y OR N): N
DO YOU WANT ANOTHER FILE? (Y OR N): N
NO MORE FILES REQUESTED
                S
```

Two output files are generated, TESET.MTX and PHITE.MTX. The file, PHITE.MTX, contains the mode shape displacements and it will later be an input file into the STATCORR program. The file,

TESET.MTX, is another file containing a list of test grid points, but in the wrong format. However, the GRDPTLST program is run and asks for the name of the grid point ID file, TESET.MTX, and generates the grid point list in the correct format. A sample GRDPTLST dialog is given as:

```
$ RUN GRDPTLST

ENTER GRID POINT ID MATRIX FILENAME: TESET.MTX

ENTER GRID POINT ID OUTPUT LIST FILENAME: GRDPTF.LIS

135 ENTRIES WRITTEN TO GRID POINT LIST

FORTRAN STOP
$
```

The output file is called GRDPTF, LIS, and it will also be an input file to the STATCORR program. Finally the LAMA program is run, and it asks for the name of the punch file, and the name of the LAMA table. A sample LAMA dialog is given as:

```
$ RUN LAMA
ENTER INPUT PUNCH FILE NAME: EX1,PCH
ENTER NAME OF LAMA TABLE: LAMA
PLANE 1 SYMMETRY NOT SPECIFIED
PLANE 2 SYMMETRY NOT SPECIFIED
PLANE 3 SYMMETRY NOT SPECIFIED
ENTER OUTPUT MATRIX FILENAME: LAMA.TBL
FORTRAN STOP
S
```

An output file is generated, called LAMA.TBL, and this file contains the modal frequencies, masses, and stiffnesses, and it is another input entered into the STATCORR program. Therefore, the three files, LAMA.TBL, GRDPTF.LIS, and PHITE.MTX, contain all the necessary information (analytical NASTRAN data) in the proper format, and they are all entered as input into the STATCORR program.

Before the statistical correlation program can be run, the experimental data files are needed. These experimental data files usually exist on floppy disks, and the necessary files are copied to the user's disk with the help of the FLX utility of the VAX-11/780 computer system.

Finally, the STATCORR program is run. This program is designed to run interactively, as with the other preprocessing utility programs, and a sample STATCORR dialog is given on page C-1 of Appendix C. All the programs may also be run as a batch job with the help of a command procedure file. An example of a command procedure file used to run all the necessary programs from the initial input to the final output is shown in Figure 5.

```
STATCORR.COM; 1
$ SET DEF [NASCAT]
$ ASSIGN NEW,PRT FORO06
$ EXEC NASTRANX NEW.NID
$ EXEC CONCAT NEW.PRT
$ RUN [NASCAT.UTILITY.STATCORR] TESETDMI
NEW.PRT
GRDPT.LIS
TESET.DMI
$ EDIT NEW.NID
T "DIAG 14,21,22"
DEL
INSERT ; DIAG 14
T "ALTER 41"
DEL
INSERT ; ALTER 74
INSERT ; TABPCH LAMA, , , , //FM $
INSERT ; ALTER 78
INSERT ; PARTN PHIG, , TESET/, PHITE, ,/+1/1/2/2 $
INSERT ; OUTPUT3 PHITE, TESET / /-1/N1=VCT/N2=DOF $
T "ENDATA"
DEL
EXIT
$ EDIT ENDDATA.DAT
INSERT ; ENDDATA
EXIT
$ APPEND ENDDATA.DAT TESET.DMI
$ APPEND TESET.DMI NEW.NID
$ DEL ENDDATA.DAT;
$ ASSIGN NEW,PCH FOR077
$ EXEC NASTRANX NEW.NID
$ EXEC CONCAT NEW.PCH
$ EXEC CONCAT NEW.PRT
$ RUN [NASCAT, UTILITY, STATCORR] UNPACKDMI
NEW.PCH
TESET
Υ
PHITE
Ν
Ν
$
```

Figure 5. Example of a User's Command Procedure to Run NASTRAN, the Pre-Processing Programs, and STATCORR as a Batch Job (Page 1 of 2)

```
$ RUN [NASCAT.UTILITY.STATCORR] LAMA
NEW.PCH
LAMA
LAMA, TBL
$ RUN [NASCAT,UTILITY.STATCORR] GRDPTLST
TESET.MTX
GRDPTF.LIS
$ ASSIGN AC2.PRT SYS$OUTPUT
$ RUN [NASCAT, UTILITY, STATCORR] STATCORR
LAMA.TBL
PHITE.MTX
GRDPTF.LIS
[NASCAT.EXPDATA] FMS001.AC2
[NASCAT.EXPDATA] FMS002.AC2
[NASCAT.EXPDATA] FMS003.AC2
[NASCAT.EXPDATA] FMS004.AC2
[NASCAT.EXPDATA] FMS005.AC2
[NASCAT.EXPDATA] FMS006.AC2
[NASCAT.EXPDATA] FMS007.AC2
[NASCAT.EXPDATA] FMS008.AC2
NONE
Ν
Ν
Ν
0.01
$ DELETE AC2,PRT;
$ PRA AC2.PRT
$ DEASSIGN SYS$OUTPUT
S DEASSIGN FORO06
$ DEASSIGN FOR077
$ EXIT
```

ų)

Figure 5. (Page 2 of 2)

Section 4

DESCRIPTION AND ORGANIZATION OF DATA

The following section describes the organization and functions of individual data sets and programs leading to the statistical correlation report. Consideration has been given to analytical and test data coming from various sources. The STATCORR program is operated on data independent of its source, as long as it is entered according to a specific format. During this development, the analysis was done using NASTRAN, and the tests were performed by the GSFC Environmental Test and Integration Branch.

At the outset, comparisons must be based on data gathered from identical sources. Liaison between test and analysis personnel prior to either the generation of the NASTRAN model or the instrumentation of the test article must first establish the points and component directions at which data is to be sampled. This set of locations (referred to as the TESET vector) governs the location and orientation of test sensors as well as the entries in the analytical partitioning vector.

Equally important as matching data points is matching boundary conditions. The most difficult experimental boundary to enforce is clamped; the easiest to enact is free-free. Liaison between the test engineer and the analyst helps to uncover any disparity between the test set-up and the analytical boundary conditions.

First, a list is obtained which contains the gridpoint ID's and their associated DOF components. From this list, an external gridpoint and DOF file is created by the user with all entries in list-directed (free-field) format. Entries are inserted in grid, DOF pairs, one pair for each gridpoint and DOF-component which is instrumented in the modal survey.

The internal sequencing of the gridpoints used by NASTRAN for matrix operations can be different from the analyst's original gridpoint sequencing. The partitioning vector, i.e., the TESET vector, must be organized according to internal sequencing, so therefore a correspondence between

internal and external sequencing is necessary. This is accomplished by inserting DIAG 21 and 22 cards in the Executive Control Deck, and an ALTER eard to EXIT after the GP4 module. When DIAG 21 and 22 are activated, the detailed correspondence between the internal and external sequencing for the various sets is printed.

A program called TESETDMI. FOR will generate the TESET matrix in the proper DMI format, called TESET.DMI. Inputs to this program are the external gridpoint list file in free-field format and the NASTRAN print file with the DIAG 21 output. TESET.DMI is constructed in ordered pairs, the first member of which is a NASTRAN internal sequence number which corresponds to a component of a test point. The second member of the pair is a Grid Point ID number belonging to the test point. TESET.DMI is then inserted into the NASTRAN Bulk Data for use in partitioning the PHIC matrix and obtain the PHITE matrix. The PHIC matrix is the original total set of eigenvectors of order G, which is to be partitioned (reduced), to the PHITE matrix. The PHITE matrix is the reduced set of eigenvectors pertaining only to the test set of gridpoints.

In order to transfer the NASTRAN eigenvalue results into STATCORR, a set of DMAP ALTERS has to be included in the NASTRAN input deck before running the program. The DMAP module, TABPCH, delivers the modal frequencies, masses, and stiffnesses as part of the LAMA table in DTI format. The module PARTN does the partitioning of the PHIG matrix by the TESET vector, and OUTPUT3 delivers the resulting partitioned mode shapes a single matrix called the PHITE matrix. Both the LAMA table and the PHITE matrix together with the TESET vector are printed out in a punch file.

Before inserting the LAMA table, the PHITE matrix, and the external gridpoint list file into STATCORR, they must first be extracted from the punch file and put into the proper format. A set of three preprocessing programs does this task. The LAMA program, with the name LAMA and the name of the punch file as input, searches the punch file for the LAMA table in DTI format.

Once found, the LAMA table is printed in a separate file, usually called LAMA.TBL. The

UNPACKDMI program, with the names PHITE and TESET, and the name of the punch file as input, searches the punch file for the matrices PHITE and TESET in DMI format, and prints them in two separate files, usually called PHITE.MTX and TESET.MTX. The third program, GRDPTLST.FOR, with TESET.MTX as input, prints in a proper format the external gridpoint list in a file usually called GRDPTF.LIS. The three files, LAMA.TBL, PHITE.MTX, and GRDPTF.LIS are the three input files containing all the necessary analytical NASTRAN data in proper formats to be used in STATCORR.

The STATCORR program, as well as the other preprocessing programs, may be run interactively, or with the help of a user's command procedure file, they may also be run as a batch job, as shown in Figure 5. In order to compile and link all the necessary programs, one may use a command procedure file called COMPLINK.COM; 1, shown in Figure 6.

COMPLINK.COM; 1

\$ FOR 'P1'

\$ LINK 'P1

\$ DEL 'P1'.OBJ:

\$ PURGE 'P1'.EXE

Figure 6. Example of a User's Command Procedure to Compile and Link a Computer Program

There exists a number of options to be run with the STATCORR program. The first is a request for a separate output print file. This print file, called the statistical correlation report, is printed by default to the system SYSSOUTPUT file. Therefore, in order to obtain a hard copy, the user must assign the SYSSOUTPUT file to a user's disk file with the help of the ASSIGN command. An example of this is given in Figure 5 at the start of the STATCORR program.

The first page of the statistical correlation report summarizes the interactive dialog. Part 2 on the following page contains a list of frequencies, masses, stiffnesses, and symmetries for the analytical modes, which were obtained from the LAMA table. However, only the first 200 modes are processed and listed, along with only the first 1000 DOFs. Next is a list of frequencies, dampings, and symmetries for the experimental modes. Note that the symmetry factors ϵ e not considered in

this document, but they will be discussed in detail in a future T.M. (See bottom of page 2-3). With this set of data, STATCORR computes the correlation coefficients and RMS values for all possible analytical/experimental pairs.

Part 3 of the statistical correlation report contains all the correlation coefficients for analytical versus experimental comparisons. Next, STATCORR determines the best experimental mode-shape match (highest correlation coefficient) for each analytical mode-shape, and also determines the best analytical mode-shape match for each experimental mode-shape. STATCORR also computes relative deviations greater than threshold for each mode. The desired threshold is a parameter which the user chooses with the default given by the value of 0.050.

Part 4 contains the analytical mode shapes and their best experimental matches. Also listed are the relative deviations greater than threshold, and scaled differences greater than threshold. Part 5 contains the experimental mode shapes and their lest analytical matches.

The user may also request to have the analytical versus experimental symmetries to be considered for each mode. Finally, another option available to the user concerns the printing of the analytical and experimental mode-shape vectors.

A flowchart showing the sequence of steps from the initial NASTRAN input data to the statistical correlation report is given in Figure 7. Source code listings for the five programs are given in Appendices D to 11. The NASTRAN input deck (with DIAG 21 and 22) for the SPARTAN-1 model (See Section 5 for a detailed description) is shown in Appendix A; the external gridpoint list file for this example is given in Figure 14; a partial listing of the NASTRAN print file (with DIAG 21 and 22) is shown in Appendix B; a listing of the TESET matrix in DMI tormat is shown in Figure 15; a partial listing of the LAMA table is shown in Figure 16; the final external gridpoint listing, after it has been processed by the preprocessing programs, is shown in Figure 17; an example of an input file containing experimental data is shown in Figure 18; and an example of a statistical correlation report is shown in Appendix C.

Figure 7. Flowchart Showing Sequence of Steps from the Initial Input Data to the Statistical Correlation Report

Section 5

EXAMPLES THE SPARTAN-1 MODEL

In order to better understand the above sequence of steps in Figure 7, an example involving a realistic model will be given. The model, known as SPARTAN-1, is described in detail below. The NASTRAN Input Data listing of SPARTAN-1, with free boundary conditions and no mass mockups, is given in Appendix A. Included in the figures given below are complete listings of some of the input and output data to STATCORR and the other pre-processing programs. The Fortran source codes listings for these programs are given in the Appendices. Also given is an example of a statistical correlation report. Figure 8 shows a plot of the SPARTAN-1 model without the grid voints.

Figure 8. The Spartan-I Model

There exists a need to verify the accuracy of dynamic finite element models derived from structures scheduled to fly on the Space Shuttle. The SPARTAN-1 payload is the first of the SPARTAN shuttle series. These SPARTAN payloads have evolved from the Sounding Rocket Experiments and can use the Shuttle environment to improve old experimental results or obtain new data not available with Sounding Rocket Technology.

The payload consists of box-like structures in which half of the volume is occupied by support equipment: electronics, the attitude control system, the tape recorder, and batteries. The other half of the volume is occupied by the experiment, which is kinematically mounted to minimize distortion.

A finite model of the structure was developed using NASTRAN. The model was built with enough details to simulate the mounting scheme of the experiment and batteries pack, and subsequently allow stress analysis of joint subassemblies. One of the requirements for payload flight certification on the shuttle is a coupled-loads analysis using modal synthesis. It is important that the finite element model be verified to provide credibility to the load analysis results.

The verification test extracted modal information from the structural test model in order to show the degree of correlation between the empirical and analytical models. This modal information includes natural frequencies, damping, and real mode shapes.

The modal survey of the structural test model was performed in three configurations:

- Phase I. Flight SPARTAN frame with no mass mockups in a free boundary condition.
- Phase II. Flight SPARTAN frame with no mass mockups in a fixed boundary condition.
- Phase III. Engineering test unit with mass mockups in a fixed boundary condition.

The above test sequence was chosen to minimize potential errors due to boundary condition effects. The free boundary condition specified in Phase I was achieved by suspending the test item from a facility crane with shock cord. The mass mockups used in Phase III were only to simulate

the approximate weights and locations of the flight subassemblies. The modal survey consisted of exciting the structure independently at three different points and measuring the response at thirty-five locations. The approximate location of the drive and response points is shown in Figure 9. Typical test setups for Phases I, II, and III are shown in Figures 10, 11, and 12, respectively. Baseband frequency response functions (FRF) from (0-500 Hz) were calculated from the measured reference and response points. The modal information was then extracted.

Each phase of the modal survey resulted in about 15-26 real modes. A statistical correlation was performed on these mode shapes using the STATCORR program. As an example of the results, consider the first mode of vibration for each Phase (see Figure 13). It can be seen from the results shown in the figure that there is a high degree of correlation between the analytical and empirical mode shapes. Note that the correlation coefficient for Phases II and III is negative which indicates a 180-degree phase reversal for these mode shapes. Also observe the fact that even though the variations in the natural frequencies occur, such as a 20% frequency shift in the Phase II mode, the mode shapes are still well correlated.

In general, for this series of tests, the lower-order modes correlate to a higher degree than the high-order modes. This could possibly be attributed to modal density observed and thus poor modal information.

In the NEXUS_LIB:[NEXUS.NASTRAN.STATCORR.DEMO] directory of NEXUS, there exists the demonstrations files using the SPARTAN-1 model as the prime example. Included are NASTRAN input data files and experimental data files for the SPARTAN-1, along with the STATCORR.COM command procedure file to run the statistical correlation demonstration.

ORIGINAL PAGE W OF POOR QUALITY

Figure 9. Modal Survey Model with Drive and Response Points (Page 1 of 2)

ORIGINAL PAGE 19 OF POOR QUALITY

Figure 9. Modal Survey Model with Drive and Response Points (Page 2 of 2)

ORIGINAL PAGE 19 OF POOR QUALITY

Figure 10. Phase I of the Spartan-1 Model

Figure 11. Phase II of the Spartan-1 Model

Figure 12. Phase III of the Spartan-1 Model

ORIGINAL PAGE THE OF POOR QUALITY

Figure 13. Analytical Versus Empirical Mode Shapes

GRDPT.LIS;1

105,1 105,2 105,3 12,2 12,1 12,3 212,1 212,2 212,3 181,1 181,2 181,3 106,1 106,2 106,3 148,1 148,2 148,3 102,1 102,2 102,3 66,1 66,2 66,3 231,1 231,2 231,3 382,1 382,2 382,3 412,1 412,2 412,3 44,1 44,2 44,3 150,1 150,2 150,3 9,1 9,2 9,3 145,1 145,2 145,3 192,1 192,2 192,3 114,1 114,2 114,3 407,1 407,2 407,3 108,1 108,2 108,3 100,1 100,2 100,3 7,1 7,2 7,3 216,1 216,2 216,3 177,1 177,2 177,3 152,1 152,2 152,3 110,1 110,2 110,3 97,1 97,2 97,3 62,2 62,1 62,3 264,1 264,2 264,3 40,1 40,2 40,3 261,1 261,2 261,3 272,1 272,2 272,3 269,1 269,2 269,3 141,1 141,2 141,3 123,1 123,2 123,3 153,1 153,2 153,3 111,1 111,2 111,3 4,2 4,1 4,3 94,1 94,2 94,3 1,1 1,2 1,3 154,1 154,2 154,3 112,1 112,2 112,3 237,1 237,2 237,3 234,1 234,2 234,3 245,1 245,2 245,3 244,1 244,2 244,3 257,1 257,2 257,3 255,1 255,2 255,3 155,1 155,2 155,3

Figure 14. External Gridpoint Listing in Field-Free Format

THE REPORT OF THE PARTY OF THE

ORIGINAL PART IN OF POOR QUALITY

1.2+TE0000 2.3+TE0000 2.3+TE0000 0.1+TE0000 1.2+TE0000 0.1+TE0000 0.1+TE0000 2.3+TE0000 2.3+TE0001 1.2+TE0001	177.3+TE00013 154.1+TE00014 153.2+TE00015 152.3+TE00016 244.1+TE00017 234.2+TE00019 155.3+TE00020 245.1+TE00020 212.2+TE00022 264.1+TE00022 264.1+TE00023 4.2+TE00023 7.1+TE00025 7.1+TE00025	5.1+TE0002 0.2+TE0003 2.3+TE0003 0.1+TE0003 4.2+TE0003 6.3
<u> </u>	477 512 512 525 717 717 717 891 1028 1041 1221	លើលីលីលីក
4.8.6.4.4.4.2.9.4.4.4		94. 62. 02. 66.
004040400000	476 511 524 524 729 729 865 1027 1040 1071	WW 10 4 4 10
4 m w v v o u v o v v v v		94. 05. 02. 00.
こうよこ ゆりょうりりょご	4475 501 523 715 728 777 777 1039 1070 1070	るよびないの
0000 0000 0000 0000 0000 0000 0000 0000	245.2 234.2 234.2 234.2 234.2 261.1 261.1 261.1 261.1 261.1 261.1 27.2	400004
	453 513 513 529 727 727 937 1069 1069	864313
000000000000000000000000000000000000000	+TE00012 +TE00013 +TE00014 +TE00015 +TE00016 +TE00019 +TE00021 +TE00023 +TE00023 +TE00024 +TE00025 +TE00025	

Figure 15. Listing of the TESET Matrix in DMI Format

TESET. DMI;1

ORIGINAL PAGE IS OF POOR QUALITY

LAMA.TBL;1

LAMA	193	6
0.000000		J
0.000000		
0.000000		
0.000000		
0.000000		
0.000000		
4.096200		
8.679813		
8.906851		
9.942058		
1.277560		
1.349079		
1.425727		
1.500339		
1.512564 1.629378		
1.669100		
1.713956		
1.746705		
2.126373		
2.153164		
2.251232		
2.306115		
2.329083	56E+02	
2.337315		
2.399178		
2.440695		
2.558301		
2.659588		
2.767834		
2.784705		
2.8740183 2.9521124		
3.088314		
3.221500		
3.324676		
3.404029		
3.501250		
3.609490		
3.948792		
4.017375	18E+02	
•		

Figure 16. Partial Listing of the LAMA Table

(+)

ORIGINAL PAGE IS OF POOR QUALITY

GRDPTF.LIS;1

U

114-3 114-3 1088-3-12 1088-3-12 1066-12 1122-3 1106-12 1111-3 111-3 111-3 111-3 111-3 111-3 111-3 111-3 11-3 11-3 11-3 11-3 11-3 11-3 11-3 11-	12390178999015677899901111111222334456712378956712378999999999999999999999999999999999999
272-2	392
272-3	393
255-1	397
255-2	398
255-3	399
257-1	409
257-2	410

Figure 17. The Final External Gridpoint Listing to be Entered into the STATCORR Program (Page 1 of 3)

DRICHAL PASS IS OF POOR QUALITY

264-1 264-2 264-3 4-1 4-2 4-3 12-1 12-2 12-3 9-1 9-2 9-3 7-1	955 956 957 1027 1029 1039 1040 1041 1069 1071
7-2 7-3	1075 1076 1077 1189
97-1 97-2 97-3 237-1 237-2 237-3	1189 1190 1191 1219 1220 1221 1231 1232 1233 1315 1316 1317 1333
94-1 94-2 94-3	1221 1231 1232 1233
105-1	1315
105-2	1316
105-3	1317
40-1	1333
40-2	1334
40-3	1335
62-1	1351
62-2	1352
62-3	1353
102-1	1447
102-2	1448
102-3	1449
100-1	1453
100-2	1454
100-3	1455
44-1 44-2 44-3 66-1 66-2	1549 1550 1551 1651
66-2	1652
66-3	1653

Figure 17. (Page 2 of 3)

ORIGINAL PAGE IS OF POOR QUALITY

U

181-1 451 181-2 452 181-3 453 177-1 475 177-2 476 177-3 477 148-1 493 148-2 494 148-3 495 154-1 499 154-2 500 153-1 511 153-1 511 153-2 512 153-3 513 152-1 523 152-2 524 152-3 525 231-1 529 231-2 530 231-3 531 244-1 589 244-2 590 244-3 591 234-3 603 155-1 715
177-2 476 177-3 477 148-1 493 148-2 494 148-3 495 154-1 499 154-2 500 154-3 501 153-1 511 153-2 512 153-3 513 152-1 523 152-2 524 152-3 525 231-1 529 231-2 530 231-3 531 244-1 589 244-2 590 244-3 591 234-2 602 234-3 603
148-1 493 148-2 494 148-3 495 154-1 499 154-2 500 154-3 501 153-1 511 153-2 512 153-3 513 152-1 523 152-2 524 152-3 525 231-1 529 231-2 530 231-3 531 244-1 589 244-2 590 244-3 591 234-2 602 234-3 603
148-3 495 154-1 499 154-2 500 154-3 501 153-1 511 153-2 512 153-3 513 152-1 523 152-2 524 152-3 525 231-1 529 231-2 530 231-3 531 244-1 589 244-3 591 234-1 601 234-2 602 234-3 603
231-1 529 231-2 530 231-3 531 244-1 589 244-2 590 244-3 591 234-1 601 234-2 602 234-3 603
231-1 529 231-2 530 231-3 531 244-1 589 244-2 590 244-3 591 234-1 601 234-2 602 234-3 603
231-1 529 231-2 530 231-3 531 244-1 589 244-2 590 244-3 591 234-1 601 234-2 602 234-3 603
231-1 529 231-2 530 231-3 531 244-1 589 244-2 590 244-3 591 234-1 601 234-2 602 234-3 603
231-1 529 231-2 530 231-3 531 244-1 589 244-2 590 244-3 591 234-1 601 234-2 602 234-3 603
231-3 531 244-1 589 244-2 590 244-3 591 234-1 601 234-2 602 234-3 603
244-2 590 244-3 591 234-1 601 234-2 602 234-3 603
234-2 602 234-3 603
234-3 603
155-2 716 155-3 717
1-1 727 1-2 728 1-3 729
155-1 715 155-2 716 155-3 717 1-1 727 1-2 728 1-3 729 245-1 775
245-2 776 245-3 777
212-1 865 212-2 866
216-1 889
216-2 890 216-3 891 261-1 937
261-2 938 261-3 939

Figure 17. (Page 3 of 3)

ORIGINAL PASS IS OF POOR QUALITY

FMS001.AC2;1

Ç

```
69.11099
1.1128000E-02
0 0 0
236 1 -3.6037002E-02
234 1 -3.8017001E-02
245 1 -6.5154999E-02
244 1 -5.7073999E-02
257 1 -2.9363001E-02
255 1 -2.5717000E-02
```

Figure 18. Example of an Input File Containing Experimental Data

ORIGINAL PAGE IS

APPENDIX A. LISTING OF THE NASTRAN INPUT DATA (WITH DIAG 21 AND 22) FOR THE SPARTAN-1 MODEL

U

ID DSPPLT, FREE APP DISP SOL 3,0 TIME 1500 DIAG 14,21,22 ALTER 41 EXIT \$ ENDALTER CEND TITLE = ----- DSP ANALYSIS -----SUBTITLE = FREE-FREE MODES SPC = 1500 METHOD = 100 ECHO = NONE OUTPUT MAXLINES = 1000000 LINE = 60VECTOR = ALL BEGIN BULK 245 255 257 ASET1 234 236 244 1 158 174 175 176 183 185 156 ASET1 2 ASET1 2 177 179 217 218 219 226 228 ASET1 2 199 201 ASET1 2 214 216 3 40 42 44 ASET1 ASET1 3 62 64 66 119 121 ASET1 3 139 ASET1 3 137 9 12 15 19 ASET1 123 1 4 37 47 ASET1 123 21 28 59 69 ASET1 123 51 55 94 97 100 73 84 68 90 ASET1 123 108 110 111 ASET1 123 102 105 106 125 ASET1 123 112 116 117 123 147 143 135 141 ASET1 123 132 154 150 152 153 173 ASET1 148 123 220 261 264 ASET1 123 181 123 269 272 376 377 ASET1 +1 0.0 -1. 1 CBAR 101 1 2 1 0. -.6212 .6212 -.6212 .6212 0. +1 101 2 3 0.0 -1. 1. 1 +2 **CBAR** 2 -.6212 .6212 .6212 0. +2 0. -.6212 -1. 1. +3 1 4 0.0 CBAR 3 101 3 0. -.6212 .6212 -.6212 .6212 +3 0. 5 0.0 -1. l. +4 1 CBAR 101 4 0. -.6212 .6212 0. -.6212 .6212 +4 +5 CBAR 101 5 6 0.0 -1. 1. 1 .6212 0. .6212 0. -.6212 -.6212 +5

ORIGINAL PAGE IT OF POOR QUALITY

CBA	R 6	101	. 6					
+6 CBA	R 7	101	Õ,	7 6	0.0 212 .62			1 +6
+7 CBA1	R 8	101	o.	8 6:	0.0	~i.	1.	1 47
+8 CBAI	₹ 9	101	8 0.	9 ~.6:	0.0	~1.	1.	212 .6212 1 +8
+9 CBAR			9 0.	10 62	0.0		6° 1.	21.2 .6212
+10 CEAR		101	10 0.	11 62	0.0	-1.	62 1.	212 .6212
+11		101	11 0.	12	0.0	- i	62 1.	212 6212
CBAR +12	- 2	101	21	62 36	12 .621 1.	2 0.	-,62	
CBAR +13	13	101	.6212 36	47	.621; 1.	2 .621 0.0		1 +12 .6212
CBAR +14	14	101	.6212 47	58	.621: 1.	2 .621	• •	1 .6212 +13
CBAR +15	15	101	.6212 58	0. 69	.6212 1.			1 +14 .6212
CBAR +16	16	101	.6212 69	0. 81	-6212			1 .6212 +15
CHAR +17	17	101	.6212 81	0. 90	1. :6212		1.	1 +16 .6212
CBAR +18	18	101	.6212 105	0. 104	1. .6212		1. 0.	1 +17 .6212
CBAR +19	19	101	0. 104	.6212 103	0.0 .6212	1. 0.	1. .6212	ם בי
CBAR +20	20	101	0. 103	.6212	0.0 .6212	1. 0.	1. .6212	1 +19
CBAR	21	101	0. 102	102 .6212	0.0 .6212	1. 0.	i. .6212	1 +20
+21 CBAR	22	101	0. 101	101 .6212	0.0 .6212	1. 0.	1. .6212	.6212 1 +21
+22 CBAR	23	101	0. 100	100 .6212	0.0 .6212	1. 0.	1.	.6212 1 +22
+23 CBAR	24	101	0. 99	99 .6212	0.0 .6212	1. 0.	l.	.6212 1 +23
+24 CBAR	25	101	0.	98 .6212	0.0 .6212	1.	.6212 1.	.6212 1 +24
+25 CBAR	26	101	98 0.	97 .6212	0.0 .6212	1.	.6212 1.	.6212 1 425
+26 CBAR	27		97 0.	96 .6212	0.0	0. 1.	.6212 1.	.6212 1 +26
+27 CBAR	28	101	96 0.	95 .6212	0.0	0.	.6212 1.	.6212 1 +27
+28 CBAR		101	95 0.	94 .6212	0.0	0. 1.	.6212 1.	6212
+29	29	101	84 ~.6212	70	.6212 -1.	0. 0.0	.6212 1.	6212
CBAR +30	30	101	70 ~.6212	0. 59	.6212 -1.	6212 0.0	0. 1.	1 +29 .6212
CBAR +31	31	101	59	0. 48	.6212 -1.	6212 0.0	0. 1.	1 +30 .6212
			• 0212	0.	.6212	6212	ô.	1 +31 .6212

ORIGINAL PAGE 13' OF FOOR QUALITY

CBAR +32	32	101	48	37	1				
CBAR +33	33	101	621 37	2 0.	-1. .621 -1.		212 0.	1 .6212	+32
CBAR +34	34	101	621 15	2 O.	.621 -1.			1 .6212	433
CBAR +35	35	102	621; 37	2 0. 38	.621: 0.0	0.0 262 0.0		1 6212	+34
CBAR +36	36	102	0. 38	0. 39	.590	5 0. 0.0	1. 0. 1.	1 •5906	+35
CBAR +37	37	102	0. 39 0.	0. 40	.5906 0.0	5 0. 0.0	0. 1.	1 5906	+36
CBAR +38	38	102	40 0.	0. 41	.5906 0.0	0. 0.0	0. 1.	1 .5906 1	+37
CBAR +39	39	102	41 0.	0. 42	.5906 0.0	0.0	0. 1.	5906 1	+38
CBAR +40 CBAR	40	102	42 0.	0. 43 0.	.5906 0.0	0.0	0. 1.	.5906 1	+39 +40
+41 CBAR	41 42	102	43 0.	44 0.	.5906 0.0 .5906	0.0	0. 1.	.5906 1	+41
+42 CBAR	43	102	44 0.	45 0.	0.0 .5906	0. 0.0 0.	0. 1.	.5906 1	+42
+43 CBAR	44	102 102	45 0.	46 0.	0.0	0.0	0. 1.	.5906 1	+43
+44 CBAR	45	102	46 0. 59	47 0.	0.0 ,5906	0.0	0, 1. 0.	.5906 1	+44
+45 CBAR	46	102	0. 60	60 0.	0.0 .5906	0.0	1. 0.	.5906 1 .5906	+45
+46 CBAR +47	47	102	0. 61	61 0. 62	0.0 .5906	0.0 0.	1.	.5906 .5906	+46
CBAR +48	48	102	0. 62	0. 63	0.0 .5906 0.0	0.0	0.	1 .5906	+47
CBAR +49	49	102	0. 63	0. 64	.5906 0.0	0.0 0. 0.0	1. 0.	1 .5906	+48
CBAR +50	50	102	0. 64	0. 65	.5906 0.0	0.	1. 0. 1.	1 •5906	+49
CBAR +51	51	102	0. 65 0.	0. 66	.5906 0.0	0.0	0. 1.	1 5906	+50
CBAR +52	52	102	66	0. 67	.5906 0.0	0. 0.0	0. 1.	1 .5906 1	+51
CBAR +53 CBAR	53	102	67	0. 68 0.	.5906 0.0	0.	0. 1.	.5906 1	+52 +53
+54 CBAR	54 55	102	68	69 0.	.5906 0.0 .5906	0.0	0. 1.	.5906 1	+54
+55 CBAR	56	102	4 0.	16 0.	0.0 .5906	0. 0.0 0.	0. 1.	.5906 1	+55
+56	57	102	16	28).	0.0 .5906	0.0	0.	.5906 1	+56
+57	- ,	102		10	0.0 .5906	0.0	0. 1. 0.	5906	+57

ORIGINAL PAGE 15 OF POOR QUALITY

CBA	AR 58	102	? 40					
+56 CBA		102	o.	51 0.	0.0 .59		- 1	1_ +58
+59 CBA	1		o.	62 0.	0.0	0.0	0.	5906
+60 CBA	_	102	ŏ.	73	.59 0.0	0.0	0.	5906
+61		102	73 0.	0. 85	.590 0.0	06 0. 0.0	õ.	1 .5906 +60
CBA: +62	0.0	102	85	0. 97	.590 0.0	6 0.	õ.	1 •5906 +61
CBAI +63	₹ 63	102	0. 7	0. 19	.590 0.0		1. 0.	1 •5906
CBAF +64	64	102	0. 19	0. 31	.590		1. 0.	i +63
CBAR +65	65	102	0. 31	0. 42	0.0 .590		1.	.5906 1 +64 .5906
CBAR +66	66	102	0. 42	0. 53	0.0 .590		1.	1 +65
CBAR +67	67	102	0. 53	0. 64	0.0 .5906	~ .	1. 0.	.5906 1 +66
CBAR +68	68	102	0. 64	0. 76	0.0 .5906	0.0	1. 0.	.5906 1 +67
CBAR +69	69	102	0. 76	0. 88	0.0 .5906	0.0	1. 0.	.5906 1 +68
CBAR +70	70	102	0. 88	0. 100	0.0 .5906	0.0 0.	1.	.5906 1 +69
CBAR +71	71	102	0. 9	0. 22	0.0 .5906	0.0 0.	1. 0.	.5906 1 +70
CBAR +72	72	102	0. 22	0. 33	0.0 .5906	0.0 0,	1. 0.	.5906 1 +71
CBAR +73	73	102	0. 33	0, 44	0.0 -5906	0.0 0.	1. 0.	.5906 1 +72
CBAR +74	74	102	0. 44	0. 55	0.0 .5906	0.0 0,	1. 0.	.5906 1 +73
CBAR +75	75	102	0, 55	0. 66	0.0 .5906	0.0 0.	1. 0.	.5906 1 +74
CBAR +76	76	102	0. 66	0.	0.0 .5906	0.0	1. 0.	.5906 1+75
CBAR	77	102	0. 78	78 0.	0.0 .5906	0.0	1.	.5906 1_ +76
+77 CBAR	78	102	0. 91	91 0.	0.0 .5906	0.0	0. 1.	.5906 1 +77
+78 CBAR	79	101	0. 25	102 0.	0.0 .5906	0.0 0.	0. 1.	.5906 1 ₊₇₈
+79 CBAR	80	103	~.6212 15	15 0.	-1.0 .6212	0.0 6212	0. 1.	.5906 1 479
+80 CBAR	82	103	0.	16 0.	0.0 -1.627	0.0	0. -1.	.6212 1 +80
+82 CBAR	84	103	16 0.	19 0.	0.0 -1.627	0.0	0. -1.	-1.627 1 +82
+84 CBAR	85		19	22 0.	0.0 -1.627	0.0	0. -1.	-1.627
+85		103	22 0.	21 0.	0.0	0.0	0. -1.	-1.627
				-	-1.627	0.	0.	+85

ORIGINAL PAGE 17 OF POOR QUALITY

CBAR	86	101	12	21	,	_			
+86 CBAR	87	202	.621	2 ő.	1. 0.62	0.0 12 .621	1.	1	+86
+87		101	94 623	84	-1.	0.0	1.	0.621 1	
CBAR +88	88	103	84	12 0. 88	.6213 0.0	2 -,62 0.0	13 0.	.6212	+87
CBAR	90	103	0. 85	0. 88	-1.62	27 0.	-1. 0.	1 -1.62	, +88
+90 CBAR	92		0.	0.	0.0 -1.62	0.0	-1.	1	+90
+92		103	88 0.	91	0.0	0.0	0. -1.	-1.62°	
CBAR +93	93	103	91	0. 90	-1.62 0.0	7 0. 0.0	٥.	-1.62	+92 7
CBAR +94	94	101	0. 90	0. 105	-1.62 1.	7 0.	-1. 0. 1.	1 ~1.627	
CBAR +95	95	101	.6212 106	0. 107	.6212 0.0	.6212	0. -1.	6212	+94
CBAR +96	96	101	0. 107	621; 108	2621; 0.0	20.	6212	1 36212	+95 !
CBAR +97	97	101	0. 108	6217 109	2621; 0.0	2 0. -1.	-1. - <u>.</u> 6212	1 6212	+96
CBAR +98	98	101	0. 109	6212 110	7.6212 0.0	2 0.	-1. 6212		+97
CBAR +99	99	101	0. 110	6212 111	6212 0.0	0.	-1. 6212	1 6212	+98
CBAR	100	101	0. 111	6212	6212	-1. : 0.	-1. 6212	1 6212	+99
+100 CBAR	101		0.	112 6212	0.0 6212	-1. 0.	-1.	1	+100
+101	101	101	112	125	-1.	0.0	6212 -1.	6212 1	
CBAR +102	102	101	6212 125	0. 134	6212 -1.		0.	6212	+101
CBAR	103	101	6212	0.	6212	0.0 6212	-1. 0.	1 - 6919	+102
+103 CBAR			1.34 6212	143 0.	-1.	0.0	-1.	6212 1	+103
+104	104	101	143	154	6212 -1.	6212 0.0	0. -1.	~.6212	
CBAR +105	105	101	6212 154	0. 153	6212	6212	0.	1 ~.6212	+104
CBAR	106	101	ο,	.6212	0.0 6212	1. 0.	-1. .6212	I	+105
+106 CBAR			153 0.	152 .6212	0.0	1.	-1.	~.6212 1	+106
+107	107	101	152	151	6212 0.0	0. 1.	.6212 -1.	7.6212	
CBAR	108	101	0. 151	.6212 150	6212	0.	.6212	1 ~.6212	+107
+108 CBAR	109	101	0.	.6212	0.0 6212	1. 0.	-1. .6212	1	+108
+109			150 0.	149 .6212	0.0	1.	-1.	6212 1	+109
CBAR +110	110	101	149	148	6212 0.0	0. 1.	.6212 -1.	6212	
CBAR +111	111	101	0, 148	.6212 135	6212 1.	0.	.6212	1 ~.6212	+110
CBAR	112	101	.6212	0.	6212	0.0 .6212		1	+111
+112 CBAR			135 .6212	126 0.	1. 6212	0.0	-1.	6212 1	+112
+113	113	101	126	117	1.	.6212 0.0	0. -1.	6212	
			.6212	0.	6212	.6212	_ `	6212	+113

ORIGINAL PAGE FOR OF POOR QUALITY

CBAR	114	101						
+114		101	117	106	1.	0.0	_	
CBAR	115	100	.621	.2 0.	62	77 60		1 +114
+115	443	102	117	118	0.0			6212
CBAR		3.05	ο.	0.	59	0.0	-1.	1 +115
+116	110	102	118	119	0.0	~ ,	0.	5906
CBAR	770	_	Ο,	0.		0.0	-1.	1 +116
+117	117	102	119	120	59 0.0	- •	0.	5906
CBAR	110		0.	ō.		0.0	-1.	•
+118	118	102	120	121	590 0.0	• • •	0.	+117 5906
CBAR	110		0.	ō.	59	0,0	-l.	1 +118
+119	119	102	121	122		• •	٥,	5906
CBAR	3.5.4		٥.	õ.	0.0	0.0	-1.	_
+120	120	102	122	123	590	- ,	0.	1 +119 5906
T120			ō.	0.	0.0	0.0	-1.	_
CBAR	121	102	123	124	590	6 0.	0.	1 -,5906
+121			o.		0.0	0.0	-i.	_
CBAR	122	102	124	0. 125	590	60.	ο.	
+122			õ.		0.0	0.0	-i.	5906
CBAR	123	102	135	0. 136	590	60.	ο.	1 +122
+123			õ.	736	0.0	0.0	-1.	- 5906
CBAR	124	102	136	0.	7.590	5 O.	ο.	1 +123
+124			Õ.	137	0.0	0.0	-1,	-,5906
CBAR	125	102	ĭ37	0.	5906	5 U.	0.	1 +124
+125			0.	138	0.0	0.0	-i.	5906
CBAR	126	102	138	0.	5906	o.	0.	1 +125
+126			0.	139	0.0	0.0	-i.	5906
CBAR	127	102	139	0.	5906	0.	o. ·	1 +126
+127			0,	140	0.0	0.0	-i,	5906
CBAR	128	102	140	0.	5906	0.	0.	1 +127
+128			0.	141	0.0	0.0	-i.	~.5906
CBAR	129	102	141	0.	5906	0.	0.	1 +128
+129			0.	142	0.0	0.0	-1.	5906
CBAR	130	102	142	0.	5906	o.	0.	1 +129
+130				143	0.0	0.0	-1.	- 5906
CBAR	131	102	0.	0.	5906	0.		1 _ +130
+131		-02	108	114	0.0	0.0	0.	7.5906
CBAR	132	102	0.	0.	- 5906	0.	-1.	1 +131
+132		102	114	119	0.0	0.0	0.	5906
CBAR	133	102	0.	0.	5906	0.	-1.	+132
+133	-05	102	119	128	0.0	0.0	0.	5906
CBAR	134	100	0.	0.	5906	0.0	-1.	1 +133
+134	# W.Z	102	128	137	0.0	0.0	0.	~.5906
CBAR	135	3.4-	0.	0.	5906		-1.	1 +134
+135	133	102	137	145	0.0	0.	0.	5906
CBAR	136		0,	o.	5906	0.0	-1.	1 +135
+136	130	102	145	150		0.	0.	~.5906
CHAR	3.50	_	0.	õ.	0.0	0.0	-1.	1 +136
+137	137	102	110	121	5906	0.	0.	~.5906
CBAR	* * * *		0.	0.	0.0	0.0	-1.	•
+138	138	102	121	130	5906	0.	0.	+137 5906
	200		0.	0.	0.0	0.0	-1.	
CBAR	139	102	130	139		0.	0.	1 +138 5906
+139			0.		0.0	0.0	-i.	~
			~ •	0.	-,5906	0.	0.	
								~.5906

ORIGINAL PAGE 13 OF POOR QUALITY

CBAR	140	_							
+140		102	139	152	0.0	0.0	•	_	
CBAR		102	0.	0.	590	6 Q.	-1. 0.		+140
+141		102	111 0.	116	0.0	0.0	-1.		5906
CBAR	142	102	116	0. 123	590	- •	0.	1	+141
+142 CBAR	145		0.	0.	0.0 5906	0.0	-1.	1	+142
+143	143	102	123	132	0.0	0.0	0.		.5906
CBAR	144	102	0. 132	0.	5906	ō.	-1. 0.	1	・ルマン
+144		~02	0,	141 0.	0.0	0.0	-i.	ī	.5906 +144
CBAR +145	145	102	141	147	5906 0,0		0.		.5906
CBAR	146	100	0.	ō.	-,5906	0.0	-1.	1	+145
+146	7.40	102	147	153	0.0	0.0	0. -1.		.5906
CBAR	147	101	0. 12	0.	5906	o.	0.	1	+146 5906
+147 CBAR	2.4		.6212	163 6212	1.	-1.	0.0	1	+147
+148	148	101	163	172	? 0. 1.	.6212	621	2 0.	7147
CBAR	149	101	.6212	6212	e ō.	-1, .6212	0.0	1	+148
+149	-12	101	172 .6212	181	1.	-1.	6212 0.0	2 0. 1	
CBAR	150	101	181	6212 190		.6212	6212	ì ō.	+149
+150 CBAR	151	• • •	.6212	6212	1. 0.	-1.	0.0	ì	+150
+151	121	101	190	106	ĭ.	.6212 -1.	6212		, 250
CBAR	152	101	.6212 112	6212	0.	.6212	0.0 6212	1 0.	+151
+152			6212	182 6212	-1.	-1.	0.0	1	1150
CBAR +153	153	101	182	173	0. -1.	6212		ō.	+152
CBAR	154	103	6212	6212	0.	-1. 6212	0.0	1	+153
+154	*04	101	173	164	⊶i.	-1,	6212 0.0	0.	
CBAR	155	101	6212 164	6212	0.	6212	6212	1 0.	+154
4155 CRAD			6212	155 6212	-1.	-1.	0.0	ì.	+155
CBAR +156	156	101	155	1	0. -1.	6212	6212	õ.	7155
CBAR	157	102	6212	6212	0.	-1. 6212	0.0	1	+156
+157	10,	102	7 0.	159	0.0	-1.	6212 0.0	0.	
CBAR	158	102	159	5906 168	0.	0.	~.5906	1 0.	+157
+158 CBAR	7.50	_	ō.	5906	0.0 0.	-1.	0.0	ĭ	+158
+159	159	102	168	177	0.0	0. -1.	5906	ο.	+136
CBAR	160	102	0.	5906	_	0.	0.0 ~.5906	1	+159
+160			177 0.	186	0.0	-i.	0.0	0. 1	. = =
CBAR +161	161	102	Ĭ86	5906 110		0.	5906	ō.	+160
CBAR	162	3.00	0.	5906		-1.	0.0	1	+161
+162	102	102	9	161		0. -1.	~.5906	0.	
CBAR	163	102	0. 161	5906	0.	0.	0.0 ~.5906	1 0.	+162
+163			0.	170 5906		-1.	0.0	1	4.165
CBAR +164	164	102	170	3 55 6	0.0).	~.5906	ō.	+163
CBAR	165	100	0.		_	-1.).	0.0	1	+164
+165	-05	102	179	188	0.0	·1.		0.	
			0.	5906) <u>.</u>		1 0.	+165
								· .	

original legal of of poor quality

C1 +1	BAR 1	66 10	2 188	19	2				
CE		67 10	Δ.	-,	5906 Õ	• (.0 1	+166
	AR 16	58 10:	0.	10.	5906 ŏ.	. 0	(1. 0)	·5906 0,	+167
CB. +10	AR 16	9 10:	Ô.	176	5906 n.	· ·	1. 0		
CB) +17	AR 17	0 102	0.		906 0	0 2	1. o.		+168
CBA	IR 17		õ.	180 5	906 g.	0 _;	· o.	5906 O.	+169
+17 CBA	IR 179		ō.	181 5	Λ /		i. oʻ	5906 o.	+170
+17 CBA	R 173		94 621	702	-1	- •	ດໍ <i>ໄ</i>	5906 o.	+171
+17; CBAI	3 R 174	401	202 621	211	-i.	I,	6212 .62	212 o.	+172
+1 <i>74</i> CBAF	9 ? 175	~01	211 621	220	-i.	1.	6212 .62	12 0.	+173
+175 CBAR	176	707	220 621	220	~i.	1.	5212 .62 0.0	12 0.	+174
+176 CBAR	ı	101	229 6212	154	-i.		212 .62	•	+175
+177 CBAR	178	101	148 .6212	221 .6212	i.	~.6 1.	212 .62]	- • •	+176
+178 CBAR	179	101	221 .6212	212	1.	.62 1.		- •	+177
+179 CBAR	180	101	212 .6212	203	1.	.62: 1.	,023,		+178
+180 CBAR		101	203 .6212	.6212 194	0. 1.	.62]	.027	2 0.	+179
+181 CBAR	181	101	194 .6212	.6212 105	0. 1.	.621 1.		2 0.	+180
+182 CBAR	182	102	102	.6212 196	0. 0.0	.621 1.		Ť	+181
+183 CBAR	183	105	196 0.	.5906 205	0.0	ō. 1.	0.0 .5906	า	+182
+184 CBAR	184	102	205	.5906 214	0.0	0.	0.0 .5906	1 0.	+183
+185	185	102	0. 214	.5906 223	0.	0.	0.0 .5906	i 0.	+184
CBAR +186	186	102	0. 223	.5906 231	0.	0.	0.0 .5906	1 0.	+185
CBAR +187	187	102	0. 231	.5906 150	0.	0.	0.0 .5906	0.	+186
CBAR +188	188	102	100	.5906 198	0.0	1. 0.	0,0 •5906	1	+187
CHAR +189	189	102	0. 198	5906 207	0.	1. 0.	0.0 •5906	0.	+188
CBAR +190	190	102	0. 207 2	5906 16	0.0	1. 0.	0.0 •5906	0. 1	+189
CBAR +191	191	102	0. 216 2	5906	0.0	1. 0.	0.0 •5906	0. I	+190
			0.	~ ~ ~	0.0 0.	0.	0.0 .5906	0. 1 0.	+191

CBAR	192	102	225	152	0.0	1.	0.0	1	+192
+192			Ο.	.5906	0.	ō.	.5906	ō.	T. 2.4
CBAR	193	102	212	213	0.0	1.	0.0	1	+193
+193			0. 213	.5906	0.	o.	.5906	õ.	, 200
CBAR	194	102		214	0.0	1.	0.0	ĭ	+194
+194			0.	.5906	0.	0.	.5906	õ.	, 20.
CBAR	195	102	214	215	0.0	1.	0.0	1	+195
+195			0.	.5906	0.	0.	.5906	ō.	
CBAR	196	102	215	216	0.0	1.	0.0	ì	+196
+196			0.	, 5906	0.	ō.	.5906	ō.	1130
CBAR	205	102	40	259	1.	0.0	0.0	ĭ	+205
CBAR	206	102	259	261	1.	0.0	ŏ.ŏ	ī	+206
CBAR	207	102	261	265	1.	0.0	0.0	ĩ	+207
CBAR	208	102	265	267	ī.	0.0	ŏ.ŏ	ī	+208
CBAR	209	102	267	269	ĩ.	0.0	ŏ.ŏ	ń	+209
CBAR	210	102	269	273	ī.	0.0	0.0	7	
CBAR	211	102	273	123	ī.	0.0	0.0	Ť	+210
CBAR	212	102	62	260	ĩ.	0.0	0.0	1 1 1 1 1	+211
CBAR	213	102	260	264	î.	0.0	0.0	7	+212
CBAR	214	102	264	266	ĩ.	0.0	0.0	÷	+213
CBAR	215	102	266	268	î.	0.0	0.0	Ť	+214
CBAR	216	102	268	272	ī.	0.0	0.0	1	+215
CBAR	217	102	272	274	ī.	0.0	0.0	1	+216
CBAR	218	102	274	141	ī.	0.0	0.0	1	+217
CBAR	219	102	261	262	i.			1	+218
CBAR	220	102	262	263	i.	0.0	0.0	1	+219
CBAR	221	102	263	264	i.	0.0	0.0	1	+220
CBAR	222	102	269	270	1.	0.0	0.0	Ţ	+221
CBAR	223	102	270	271	1.	0.0	0.0	1 1 1	+222
CBAR	224	102	271	272	i.	0.0	0.0	Ţ	+223
CBAR	267	102	177	376		0.0	0.0	1	+224
+267	20,	102	ō.	0.	1.	0.0	0.0	1	+267
CBAR	268	102	376	377	0.	0.	0.	0.	
+268	200	102	0,		1.	0.0	0.0	1	+268
CBAR	269	102	377	0.	0.	0.	0.	0.	
+269	205	102		216	1.	0.0	0.0	1	+269
CQUAD1	401	401	0. 25	0.	0.	0.	0.	0.	
CQUADI	402	401	25 37	37	38	26			
CQUAD1	403	401		48	49	38			
CQUADI	404	401	48	59 50	60	49			
CQUADI	407	401	59	70	71	60			
CQUAD1	408		26	38	39	27			
CQUADI	409	401	38	49	50	39			
CQUADI	410	401 401	49	60	61	50			
CQUADI	427		60	71	72	61			
COUADI	428	401	41	. 52	53	42			
CQUADI	433	401 401	52	63	64	53			
CQUADI	434		42	53	54	43			
CQUADI	447	401	53	64	65	54			
CQUADI		401	34	45	46	35			
	448	401	45	56	57	46			
CQUAD1	449	401	56	67	68	57			
CQUAD1	450	401	67	79	80	68			

CQUAD1 CQUAD1 CQUAD1 CQUAD1 CQUAD1 CQUAD1 CQUAD1 CQUAD1 CQUAD1	453 454 455 456 457 458 459 460 461	401 401 401 402 402 402 402 402	35 46 57 68 117 126 113 118	46 57 68 80 126 135 118 127 136	47 58 69 81 127 136 119 128	36 47 58 69 118 127 114 119
COUAD1 COUAD1	463 464	402 402	114 119	119 128	120 129	115 120
CQUAD1	465	402	128	137	138	129
CQUAD1	466	402	137	145	146	138
CQUAD1 CQUAD1	467 468	402 402	120 129	129	130	121
CQUAD1	473	402	159	138 160	139 169	130 168
CQUAD1	474	402	160	161	170	169
CQUAD1	475	402	161	162	171	170
CQUAD1 CQUAD1	476 481	402 402	162 168	163 169	172	171
COUADI	482	402	169	170	178 179	177 178
CÕUAD1	483	402	170	171	180	179
CQUAD1	484	402	171	172	181	180
CQUAD1 CQUAD1	491 492	402	179	180	189	188
COUADI	494	402 402	180 188	181 189	190 193	189 192
CQUADI	495	402	194	195	204	203
CQUAD1	496	402	195	196	205	204
CQUAD1	497	402	196	197	206	205
CQUAD1 CQUAD1	498 503	402	197	198	207	206
CQUADI	504	402 402	203 204	204 205	213 214	212 213
CQUAD1	505	402	205	205	214	213 214
CQUAD1	506	402	206	207	216	215
CQUAD1	511	402	212	213	222	221
CQUAD1 CQUAD1	512 519	402 402	213 222	214 223	223	222
CQUAD1	523	401	155	233	231 238	230 164
CQUAD1	524	401	234	235	240	239
CQUAD1	525	401	235	236	241	240
CQUAD1	526	401	237	202	211	242
CQUAD1 CQUAD1	527 528	401 401	164 238	238 239	243	173
CQUADI	529	401	241	239 242	244 246	243 245
CQUADI	530	401	242	211	220	246
CQUAD1	531	401	173	243	249	182
CQUAD1	532	401	243	244	250	249
CQUAD1 CQUAD1	533 534	401	245	246	253	252
CQUADI CQUAD2	405	401 404	246 2	220 13	229 14	253 3
CQUAD2	406	404	13	26	27	14
CQUAD2	411	404	71	82	83	72

CQUAD2 413 404 3 14 16 4 6	CQUAD2	412	404	82	95	96	83
CQUAD2 415 404 72 83 85 73 85 73 CQUAD2 416 404 83 96 97 85 CQUAD2 417 404 4 16 17 5 CQUAD2 418 404 16 28 29 17 CQUAD2 419 404 73 85 86 74 CQUAD2 420 404 85 97 98 86 CQUAD2 421 404 5 17 18 6 CQUAD2 421 404 5 17 18 6 CQUAD2 422 404 17 29 30 18 CQUAD2 422 404 17 29 30 18 CQUAD2 424 404 86 98 99 87 CQUAD2 425 404 6 18 19 7 CQUAD2 425 404 6 18 19 7 CQUAD2 426 404 18 30 31 19 CQUAD2 429 404 75 87 88 76 CQUAD2 429 404 75 87 88 76 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 431 404 7 19 20 8 CQUAD2 432 404 19 31 32 20 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 77 89 91 78 CQUAD2 439 404 77 89 91 78 CQUAD2 443 404 404 89 101 102 91 CQUAD2 444 404 404 89 101 102 91 CQUAD2 445 404 404 89 101 102 91 CQUAD2 441 404 92 23 33 42 30 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 404 89 101 102 91 CQUAD2 445 404 78 91 92 79 CQUAD2 446 404 404 89 101 102 91 102 91 CQUAD2 447 404 404 22 33 34 35 24 11 CQUAD2 446 404 92 103 104 93 CQUAD2 451 404 70 92 103 104 93 CQUAD2 452 404 92 103 104 93 CQUAD2 451 404 70 403 156 157 166 165 164 CQUAD2 470 403 156 167 168 177 176 CQUAD2 480 403 167 168 177 176 185 184 183 CQUAD2 480 403 167 168 177 176 185 184 183 CQUAD2 488 403 176 177 178 187 186 185 CQUAD2 489 403 177 178 187 188 187 CQUAD2 489 403 178 179 188 187 CQUAD2 499 403 178 179 188 199 208 207 CQUAD2 499 403		413		3	14	16	4
CQUAD2 416 404 83 96 97 85 CQUAD2 417 404 4 16 17 5 CQUAD2 419 404 16 28 29 17 CQUAD2 419 404 73 85 86 74 CQUAD2 420 404 85 97 98 86 CQUAD2 421 404 5 17 18 6 CQUAD2 422 404 17 29 30 18 CQUAD2 423 404 74 86 87 75 CQUAD2 425 404 6 18 19 7 CQUAD2 425 404 6 18 19 7 CQUAD2 426 404 18 30 31 19 CQUAD2 427 404 87 99 100 88 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 431 404 7 19 20 8 CQUAD2 431 404 76 88 89 77 CQUAD2 432 404 19 31 32 20 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 438 404 20 32 33 22 CQUAD2 438 404 77 89 91 78 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 404 99 101 102 91 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 99 101 102 91 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 22 33 34 23 CQUAD2 447 404 99 101 102 91 CQUAD2 446 404 99 101 102 91 CQUAD2 447 404 99 101 102 103 92 CQUAD2 448 404 79 92 93 80 CQUAD2 449 404 79 92 93 80 CQUAD2 440 404 91 102 103 92 CQUAD2 441 404 99 101 102 91 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 11 CQUAD2 447 403 156 157 166 165 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 156 157 166 165 CQUAD2 472 403 158 159 168 167 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 156 157 168 177 CQUAD2 488 403 176 177 CQUAD2 489 403 177 178 187 CQUAD2 480 403 178 179 188 187 CQUAD2 480 403 178 179 188 187 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 192 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 192 CQUAD2 490 403 178 179 188 199 CQUAD2 500 403 199 200 209 208							
CQUAD2 417 404 4 16 17 5 CQUAD2 418 404 16 28 29 17 CQUAD2 419 404 73 85 86 74 CQUAD2 420 404 85 97 98 86 CQUAD2 421 404 5 17 18 6 CQUAD2 421 404 5 17 18 6 CQUAD2 423 404 17 29 30 18 CQUAD2 423 404 74 86 87 75 CQUAD2 424 404 86 98 99 87 CQUAD2 425 404 18 30 31 19 CQUAD2 429 404 75 87 88 76 CQUAD2 429 404 75 87 88 76 CQUAD2 431 404 7 19 20 8 CQUAD2 431 404 7 19 20 8 CQUAD2 431 404 7 19 20 8 CQUAD2 432 404 19 31 32 20 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 77 89 91 78 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 30 34 23 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 99 102 103 92 CQUAD2 444 404 404 89 101 102 91 CQUAD2 445 404 78 91 92 79 CQUAD2 446 404 78 91 92 79 CQUAD2 447 404 89 101 102 91 CQUAD2 447 404 9 22 23 10 CQUAD2 447 404 9 22 23 10 CQUAD2 447 404 9 22 23 10 CQUAD2 447 404 9 29 93 80 CQUAD2 447 404 10 23 24 11 CQUAD2 446 404 78 91 92 79 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 453 404 10 23 24 11 CQUAD2 454 404 10 23 24 11 CQUAD2 456 403 136 144 145 137 CQUAD2 457 403 158 159 166 165 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 156 157 166 165 CQUAD2 472 403 158 159 166 175 174 CQUAD2 478 403 156 157 166 165 CQUAD2 478 403 156 157 166 165 CQUAD2 478 403 165 166 175 174 CQUAD2 488 403 175 176 185 184 CQUAD2 488 403 176 177 178 186 185 CQUAD2 488 403 176 177 178 187 CQUAD2 488 403 176 177 178 187 CQUAD2 489 403 178 179 188 187 CQUAD2 499 403 187 188 199 208 207 CQUAD2 499 403 189 199 200 209 208	COUAD2					85	73
CQUAD2 418 404 16 28 29 17 CQUAD2 419 404 73 85 86 CQUAD2 420 404 85 97 98 86 CQUAD2 421 404 5 17 18 6 CQUAD2 422 404 17 29 30 18 CQUAD2 423 404 77 29 30 18 CQUAD2 424 404 86 98 99 87 CQUAD2 425 404 6 18 19 7 CQUAD2 426 404 18 30 31 19 CQUAD2 426 404 87 99 100 88 CQUAD2 431 404 75 87 88 76 CQUAD2 431 404 75 87 88 76 CQUAD2 431 404 76 88 89 77 CQUAD2 431 404 76 88 89 77 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 20 32 33 22 CQUAD2 439 404 77 89 91 78 CQUAD2 439 404 77 89 91 78 CQUAD2 439 404 77 89 91 78 CQUAD2 441 404 9 22 23 10 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 29 32 33 34 23 CQUAD2 443 404 79 91 102 103 92 CQUAD2 444 404 91 102 31 32 20 CQUAD2 445 404 77 89 91 78 CQUAD2 445 404 79 92 93 80 CQUAD2 445 404 10 23 24 11 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 469 403 156 157 166 165 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 156 157 166 165 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 470 403 156 167 176 175 CQUAD2 470 403 156 167 176 175 CQUAD2 471 403 157 158 167 166 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 486 403 175 176 185 184 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 178 187 188 CQUAD2 489 403 175 176 185 184 CQUAD2 489 403 175 176 185 184 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 197 CQUAD2 500 403 199 200 209 209							
CQUAD2 419 404 73 85 86 74 CQUAD2 420 404 85 97 98 86 CQUAD2 421 404 5 17 18 6 CQUAD2 422 404 17 29 30 18 CQUAD2 423 404 74 86 87 75 CQUAD2 424 404 86 98 99 87 CQUAD2 425 404 6 18 19 7 CQUAD2 426 404 18 30 31 19 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 431 404 7 19 20 8 CQUAD2 435 404 40 19 31 32 20 CQUAD2 436 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td>							5
CQUAD2 420 404 85 97 98 86 CQUAD2 421 404 5 17 18 6 CQUAD2 421 404 5 17 18 6 CQUAD2 422 404 17 29 30 18 CQUAD2 423 404 74 86 87 75 CQUAD2 424 404 86 98 99 87 CQUAD2 425 404 6 18 19 7 CQUAD2 426 404 18 30 31 19 CQUAD2 429 404 75 87 88 76 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 431 404 7 19 20 8 CQUAD2 432 404 19 31 32 20 CQUAD2 435 404 88 100 101 89 CQUAD2 437 404 8 81 00 101 89 CQUAD2 437 404 88 100 101 89 CQUAD2 438 404 77 89 91 78 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 99 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 79 92 93 80 CQUAD2 445 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 460 404 89 101 102 91 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 464 404 27 89 91 104 93 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 166 167 175 174 CQUAD2 480 403 174 175 184 183 CQUAD2 480 403 177 178 186 185 CQUAD2 480 403 177 178 186 187 CQUAD2 489 403 177 178 188 192 191 CQUAD2 499 403 199 200 209							
CQUAD2 421 404 5 17 18 6 CQUAD2 422 404 17 29 30 18 CQUAD2 423 404 74 86 87 75 CQUAD2 424 404 86 98 99 87 CQUAD2 425 404 6 18 19 7 CQUAD2 426 404 18 30 31 19 CQUAD2 429 404 75 87 88 76 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 431 404 76 88 89 77 CQUAD2 435 404 88 100 101 89 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 820 22 9 CQUAD2 438 404 20 32 33 22 CQUAD2 439 404 77 89 91 78 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 400 404 89 101 102 91 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 78 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 451 400 409 91 102 103 92 CQUAD2 452 404 92 103 104 93 CQUAD2 451 400 92 103 104 93 CQUAD2 452 404 92 103 104 93 CQUAD2 451 400 92 103 104 93 CQUAD2 452 404 92 103 104 93 CQUAD2 451 400 92 103 104 93 CQUAD2 452 404 92 103 104 93 CQUAD2 451 400 92 103 104 93 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 156 167 176 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 156 167 176 CQUAD2 488 403 175 176 185 184 CQUAD2 480 403 175 176 185 184 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 177 178 186 CQUAD2 489 403 177 178 187 186 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209							
CQUAD2 422 404 17 29 30 18 CQUAD2 423 404 74 86 87 75 CQUAD2 424 404 86 98 99 87 CQUAD2 425 404 6 18 19 7 CQUAD2 426 404 18 30 31 19 CQUAD2 429 404 75 87 88 76 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 432 404 19 31 32 20 CQUAD2 435 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 439 404 77 89 91 78 CQUAD2 441 4							
CQUAD2 423 404 74 86 87 75 CQUAD2 424 404 86 98 99 87 CQUAD2 425 404 6 18 19 7 CQUAD2 425 404 18 30 31 19 CQUAD2 429 404 75 87 88 76 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 435 404 76 88 89 77 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 20 32 33 22 CQUAD2 438 404 77 89 91 78 CQUAD2 441 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 CQUAD2 444 404 99 1 102 103 92 CQUAD2 445 404 78 91 92 79 CQUAD2 446 404 91 102 23 24 11 CQUAD2 445 404 10 23 24 11 CQUAD2 455 404 79 92 93 CQUAD2 455 404 79 92 93 CQUAD2 464 404 79 92 93 CQUAD2 474 404 79 92 93 CQUAD2 465 404 10 23 24 11 CQUAD2 466 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 477 403 164 165 177 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 486 403 173 174 183 182 CQUAD2 486 403 175 176 185 184 CQUAD2 486 403 175 176 185 184 CQUAD2 486 403 175 176 185 184 CQUAD2 489 403 175 176 185 184 CQUAD2 489 403 175 176 185 184 CQUAD2 489 403 177 178 186 185 CQUAD2 489 403 177 178 186 185 CQUAD2 499 403 198 199 200 209 208							
CQUAD2 424 404 86 98 99 87 CQUAD2 425 404 6 18 19 7 CQUAD2 426 404 18 30 31 19 CQUAD2 429 404 75 87 88 76 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 432 404 19 31 32 20 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 20 32 33 22 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 441 404 9 22 23 10 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 445 404 10 23 24 11 CQUAD2 445 404 10 23 24 11 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 466 403 156 157 166 165 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 158 159 168 167 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 158 159 168 167 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 158 159 168 167 CQUAD2 470 403 158 159 168 167 CQUAD2 485 403 173 174 183 162 CQUAD2 486 403 174 175 184 183 CQUAD2 488 403 176 177 178 185 186 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 178 179 188 187 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 200 209 208				17			
CQUAD2 425 404 6 18 19 7 CQUAD2 426 404 18 30 31 19 CQUAD2 429 404 75 87 88 76 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 432 404 19 31 32 20 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 77 89 91 78 CQUAD2 439 404 77 89 91 78 CQUAD2 441 404 9 22 23 10 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 78 91 92 79 CQUAD2 446 404 91 102 103 92 CQUAD2 446 404 23 34 35 24 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 471 403 156 157 166 165 CQUAD2 477 403 164 165 174 173 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 158 159 168 167 CQUAD2 479 403 166 167 176 CQUAD2 485 403 173 174 183 182 CQUAD2 470 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 470 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 470 403 175 176 185 184 CQUAD2 470 403 173 174 183 182 CQUAD2 470 403 175 176 185 184 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 177 178 187 186 CQUAD2 488 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 178 179 188 187 CQUAD2 490 403 198 199 200 209							
CQUAD2 429 404 75 87 88 76 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 77 89 91 78 CQUAD2 438 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 444 404 99 22 23 10 CQUAD2 445 404 78 91 92 79 CQUAD2 446 404 91 102 103 92 CQUAD2 446 404 91 102 103 92 CQUAD2 446 404 91 102 103 92 CQUAD2 447 404 91 102 103 92 CQUAD2 446 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 156 157 166 165 CQUAD2 478 403 158 159 168 167 CQUAD2 479 403 158 159 168 167 CQUAD2 478 403 158 159 168 167 CQUAD2 488 403 173 174 183 182 CQUAD2 486 403 173 174 183 182 CQUAD2 487 403 166 167 176 CQUAD2 488 403 173 174 183 182 CQUAD2 488 403 175 176 188 187 CQUAD2 489 403 175 176 188 187 CQUAD2 488 403 177 178 187 186 CQUAD2 488 403 176 177 178 187 CQUAD2 489 403 177 178 187 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207	COUNTS						
CQUAD2 429 404 75 87 88 76 CQUAD2 430 404 87 99 100 88 CQUAD2 431 404 7 19 20 8 CQUAD2 432 404 19 31 32 20 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 20 32 33 22 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 34 20 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 11 CQUAD2 446 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 156 157 166 165 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 156 157 158 167 166 CQUAD2 470 403 156 157 158 167 168 CQUAD2 470 403 156 157 158 167 166 CQUAD2 480 403 175 176 185 184 CQUAD2 480 403 177 178 188 187 CQUAD2 480 403 175 176 185 187 CQUAD2 490 403 198 199 208 207 CQUAD2 490 403 198 199 208 207						73	
CQUAD2 431 404 7 19 20 8 CQUAD2 431 404 7 19 20 8 CQUAD2 432 404 19 31 32 20 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 77 89 91 102 CQUAD2 439 404 77 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 91 102 103 92 CQUAD2 445 404 10 23 34 35 24 CQUAD2 446 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 462 403 136 144 145 137 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 479 403 166 167 176 165 CQUAD2 479 403 166 167 176 175 CQUAD2 478 403 165 166 177 176 CQUAD2 480 403 173 174 183 183 CQUAD2 480 403 174 175 188 187 CQUAD2 488 403 176 177 186 185 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 178 179 188 187 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207						31	19
CQUAD2 431 404 7 19 31 32 20 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 77 89 91 78 CQUAD2 439 404 77 89 91 78 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 79 92 93 80 CQUAD2 462 403 136 144 145 137 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 479 403 156 157 166 165 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 173 174 183 162 CQUAD2 480 403 175 176 185 184 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 175 176 185 184 CQUAD2 489 403 175 176 185 184 CQUAD2 489 403 177 178 187 186 CQUAD2 499 403 177 178 188 187 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209	COUADZ	430					
CQUAD2 432 404 19 31 32 20 CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 20 32 33 22 CQUAD2 439 404 77 89 91 78 CQUAD2 441 404 9 22 23 10 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 445 404 10 23 24 11 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 92 103 104 93 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 158 159 168 167 CQUAD2 470 403 158 159 168 167 CQUAD2 470 403 164 165 174 173 CQUAD2 480 403 167 168 177 176 CQUAD2 486 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 176 177 186 185 CQUAD2 490 403 178 179 188 199 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207	COHADA						
CQUAD2 435 404 76 88 89 77 CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 22 9 CQUAD2 438 404 20 32 33 22 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 173 174 183 162 CQUAD2 486 403 173 174 183 162 CQUAD2 486 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 176 177 186 185 CQUAD2 489 403 176 177 188 187 186 CQUAD2 499 403 178 179 188 187 CQUAD2 499 403 187 188 199 208 207 CQUAD2 499 403 198 199 208 207		432					
CQUAD2 436 404 88 100 101 89 CQUAD2 437 404 8 20 32 33 22 CQUAD2 438 404 20 32 33 22 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 469 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 156 157 166 165 CQUAD2 472 403 158 159 168 167 CQUAD2 470 403 156 157 166 165 CQUAD2 470 403 156 157 168 167 166 CQUAD2 470 403 156 157 168 167 166 CQUAD2 470 403 156 167 174 173 CQUAD2 470 403 164 165 174 173 CQUAD2 470 403 166 167 176 175 CQUAD2 480 403 174 175 184 183 CQUAD2 480 403 174 175 184 183 CQUAD2 487 403 176 177 186 185 CQUAD2 488 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 187 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209 208		435					
CQUAD2 437 404 8 20 32 33 22 CQUAD2 438 404 20 32 33 22 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 478 403 165 166 175 174 CQUAD2 478 403 165 166 175 174 CQUAD2 480 403 173 174 183 182 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 175 176 185 184 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 179 188 197 CQUAD2 500 403 198 199 208 207 CQUAD2 500 403 199 200 209		436					
CQUAD2 438 404 20 32 33 22 CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 156 157 166 165 CQUAD2 471 403 158 159 168 167 CQUAD2 472 403 158 159 168 167 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 CQUAD2 479 403 166 167 176 CQUAD2 480 403 173 174 183 182 CQUAD2 485 403 175 176 185 184 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 174 175 184 183 CQUAD2 489 403 175 176 185 184 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 187 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209							
CQUAD2 439 404 77 89 91 78 CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 478 403 155 156 165 174 CQUAD2 479 403 166 167 176 CQUAD2 479 403 166 167 176 CQUAD2 480 403 173 174 183 182 CQUAD2 480 403 173 174 183 182 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 178 179 188 187 CQUAD2 490 403 198 199 208 207 CQUAD2 499 403 198 199 208 207		438					22
CQUAD2 440 404 89 101 102 91 CQUAD2 441 404 9 22 23 10 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 79 92 93 80 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 173 174 183 182 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 175 176 185 184 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 175 176 185 184 CQUAD2 489 403 177 178 187 CQUAD2 489 403 177 178 187 CQUAD2 490 403 177 178 187 CQUAD2 490 403 187 188 199 208 207 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207							
CQUAD2 441 404 9 22 33 34 23 CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 155 156 165 166 CQUAD2 471 403 157 158 167 166 165 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 480 403 173 174 183 182 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 175 176 185 184 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 187 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209	CQUAD2	440				102	
CQUAD2 442 404 22 33 34 23 CQUAD2 443 404 78 91 92 79 CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 175 176 185 184 CQUAD2 488 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208		441	404				
CQUAD2 444 404 78 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 471 403 158 159 168 167 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 173 174 183 182 CQUAD2 486 403 175 176 185 184 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 176 177 186 185 CQUAD2 489 403 176 177 186 185 CQUAD2 490 403 178 179 188 187 CQUAD2 490 403 178 179 188 187 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 198 199 208 207	CQUAD2	442	404				
CQUAD2 444 404 91 102 103 92 CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 480 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 178 179 188 187 CQUAD2 490 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209			404				
CQUAD2 445 404 10 23 24 11 CQUAD2 446 404 23 34 35 24 CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 176 177 186 185 CQUAD2 489 403 178 179 188 187 CQUAD2 490 403 187 188 199 208 207 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207				91	102		
CQUAD2 451 404 79 92 93 80 CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 198 199 208 207 CQUAD2 499 403 198 199 208 207				10	23		
CQUAD2 452 404 92 103 104 93 CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 178 179 188 187 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 198 199 208 207 CQUAD2 499 403 198 199 208 207	CQUAD2			23	34		24
CQUAD2 462 403 136 144 145 137 CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 176 177 186 185 CQUAD2 489 403 178 179 188 187 CQUAD2 490 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209	CQUAD2						
CQUAD2 469 403 155 156 165 164 CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 178 179 188 187 CQUAD2 490 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207							
CQUAD2 470 403 156 157 166 165 CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 178 179 188 187 CQUAD2 490 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209							
CQUAD2 471 403 157 158 167 166 CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 488 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209							
CQUAD2 472 403 158 159 168 167 CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 488 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209							
CQUAD2 477 403 164 165 174 173 CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 488 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209		4/1					
CQUAD2 478 403 165 166 175 174 CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209							
CQUAD2 479 403 166 167 176 175 CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 182 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209		4//					
CQUAD2 480 403 167 168 177 176 CQUAD2 485 403 173 174 183 162 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209							
CQUAD2 485 403 173 174 183 162 CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209							
CQUAD2 486 403 174 175 184 183 CQUAD2 487 403 175 176 185 184 CQUAD2 488 403 176 177 186 185 CQUAD2 489 403 177 178 187 186 CQUAD2 490 403 178 179 188 187 CQUAD2 493 403 187 188 192 191 CQUAD2 499 403 198 199 208 207 CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209							176
COUAD2 487 403 175 176 185 184 COUAD2 488 403 176 177 186 185 COUAD2 489 403 177 178 187 186 COUAD2 490 403 178 179 188 187 COUAD2 493 403 187 188 192 191 COUAD2 499 403 198 199 208 207 COUAD2 499 403 198 199 208 207 COUAD2 500 403 199 200 209						184	
COUAD2 488 403 176 177 186 185 COUAD2 489 403 177 178 187 186 COUAD2 490 403 178 179 188 187 COUAD2 493 403 187 188 192 191 COUAD2 499 403 198 199 208 207 COUAD2 500 403 199 200 209 208							
COUAD2 489 403 177 178 187 186 COUAD2 490 403 178 179 188 187 COUAD2 493 403 187 188 192 191 COUAD2 499 403 198 199 208 207 COUAD2 500 403 199 200 209 208				176	177		
COUAD2 490 403 178 179 188 187 COUAD2 493 403 187 188 192 191 COUAD2 499 403 198 199 208 207 COUAD2 500 403 199 200 209 208							
COUAD2 493 403 187 188 192 191 COUAD2 499 403 198 199 208 207 COUAD2 500 403 199 200 209 208							
CQUAD2 499 403 198 199 208 207 CQUAD2 500 403 199 200 209 208							
CQUAD2 500 403 199 200 209 208	CQUAD2				199		
matter many many many many many many many many	CQUAD2						
	CQUAD2	501					

CQUAD2	502	403	201	202	211	210
CQUAD2	507	403	207	20B	217	216
CÕUADZ	50B	403	208	209	218	217
CQUAD2	509	403	209	210	219	218
CQUAD2	510	403	210	211	220	219
CQUAD2	513	403	214	215	224	223
		403				
COUAD2	514		215	216	225	224
CQUAD2	515	403	216	217	226	225
CQUAD2	516	403	217	218	227	226
CQUAD2	517	403	218	219	228	227
CQUAD2	518	403	219	220	229	228
CQUAD2	520	403	223	224	232	231
CRIGD2	1055	55	54	45		
CTRIAL	607	301	40	28	27	
CTRIAL	608	301	27	39	40	
CTRIAL	609	301	39	50	40	
CTRIAL	610	301	51	40	50	
CTRIAL	611	301	62	51	50	
CTRIAL	612	301	50	61	62	
CTRIA1	613	301	61	72	62	
CTRIAL	614	301	73	62	72	
CTRIAL	615	301	28	40	29	
CTRIA1	616	301	40	41	29	
CTRIAL	617	301	52	41	40	
CTRIA1	618	301	40	51	52	
CTRIA1	619	301	51	62	52	
CTRIAL	620	301	63	52	62	
CTRIAL	621	301	63	62	74	
CTRIAL	622	301	62	73	74	
CTRIAL	623	301	30	29	41	
CTRIAL	624	301	41	42	30	
CTRIAL	625	301	42	31	30	
CTRIAL	626	301	74	75	63	
CTRIAL	627	301	64	63	75	
CTRIAL	628	301	75	76	64	
CTRIAL	629	301	31	42	32	
CTRIAL	630	301	42	43	32	
CTRIAL	631	301	65	64	77	
CTRIAL	632	301	64	76	77	
CTRIAL	633	301	33	32	43	
CTRIAL	634	301	44	33	43	
CTRIAL	639	301	78	55 66	45 65	
CTRIAL	640	301				
CTRIAL	641	301	77 45	78 24	65	
			45	34	33	
CTRIAL	642	301	33	44	45 45	
CTRIAL	643	301	44	55 45	45	
CTRIAL	644	301	56	45	55	
CTRIAL	645	301	67	56	55	
CTRIAL	646	301	55	66	67	
CTRIAL	647	301	66	78	67	
CTRIAL	648	301	79	67	78	
CTRIAL	655	302	113	107	106	

CTRIAL	656	302	106	117	113
CTRIAL	657	302	118	113	117
CTRIA1	658	302	144	136	135
CTRIAL	659	302	135	148	144
CTRIA1	660	302	149	144	148
CTRIA1	661	302	107	113	108
CTRIAL	662	302	114	108	113
CTRIAL	663	302	150	145	114
CTRIA1	664	302	144	149	150
CTRIAL	669	302	109	115	110
CTRIAL	670	302	121	110	115
CTRIAL	671	302	115	120	121
CTRIAL	672	302	138	146	139
CTRIAL	673	302			
			152	139	146
CTRIAL	674	302	146	151	152
CTRIAL	675	302	110	121	122
CTRIA1	676	302	110	122	116
CTRIAL	677	302	116	111	110
CTRIAL	678	302	123	116	122
CTRIAL	679	302	131	122	121
CTRIAL	680	302	121	130	131
CTRIAL	681	302	130	139	131
CTRIA1	682	302	140	131	139
CTRIA1	683	302	122	131	123
CTRIAL	684	302	132	123	131
CTRIAL	685	302	141	132	131
CTRIAL	686	302	131	140	141
CTRIA1	687	302	147	141	140
CTRIAL	688	302	139	152	140
CTRIAL	689	302	140	152	147
CTRIAL	690	302	153	147	152
CTRIAL	691	302	111	116	112
CTRIAL	692	302	116	123	124
CTRIAL	693	302	112	116	124
CTRIAL	694	302	125	112	124
CTRIAL	695	302	133	124	123
CTRIAL	696	302	123	132	133
CTRIAL	697	302	132	141	133
CTRIAL	698	302	142	133	141
CTRIAL	699	302	124	133	125
CTRIA1	700	302	134	125	133
CTRIAL	701	302	143	134	133
CTRIAL	702	302	133	142	143
CTRIAL	703	302	154	143	142
CTRIA1	704	302	141	147	142
CTRIAL	705	302	147	154	142
CTRIA1	706	302	147	153	154
CTRIA1	717	302	7	8	159
CTRIAL	718	302	160	159	8
CTRIA1	719	302	161	160	8
CTRIAL	720	302	8	9	161
CTRIAL	721	302	9	īo	161
		- 			

CTRIAL	722	302	162	161	10
CTRIAL	723	302	10	11	162
CTRIAL	724	302	163	162	11
CTRIAL	725	302	11	12	163
CTRIAL	737	302	192	193	108
CTRIAL	738	302	107	108	193
CTRIAL	739	302	106	107	193
CTRIAL	740	302	190	106	193
CTRIAL	741	302	189	190	193
CTRIAL	742	302	105	104	194
CTRIAL	743	302	195	194	104
CTRIAL	744	302	104	103	195
CTRIAL	745	302	196	195	103
CTRIAL	746	302	103	102	196
CTRIAL	747	302	102	101	196
CTRIAL	748	302	197	196	301
CTRIAL	749	302	198	197	101
CTRIAL	750	302	101	100	198
CTRIAL	761	302	221	222	230
CTRIAL	762	302	148	221	230
CTRIAL	763	302	149	148	230
CTRIAL	764	302	150	149	230
CTRIAL	765	302	230	231	150
CTRIAL	777	301	239	2,3/2	2.34
CTRIAL	778	301	238	2.17	234
CTRIAL	779	301	233	25	234
CTRIAL	780	301	25	37	234
CTRIAL	781	301	37	48	234
CTRIAL	782	301	235	234	48
CTRIAL	783	301	236	235	48
CTRIAL	784	301	48	59	236
CTRIAL	785	301	59	70	237
CTRIAL	786	301	236	59	237
CTRIAL	787	301	237	242	236
CTRIAL	788	301	242	241	236
CTRIAL	789	301	239	240	244
CTRIAL	790	301	245	244	240
CTRIAL	791	301	240	241	245
CTRIAL	792	301	251	250	244
CTRIAL	793	301	244	245	251
CTRIAL	794	301	252	251	245
CTRIAL	795	301	112	182	254
CTRIAL	796	301	182	249	254
CTRIAL	797	301	254	249	255
CTRIAL	798	301	249	250	255
CTRIAL	799	301	250	251	255
CTRIAL	800	301	256	255	251
CTRIAL	801	301	257	256	251
CTRIAL	802	301	251	252	257
CTRIAL	803	301	252	253	257
CTRIAL	804	301	253	258	257
CTRIAL	805	301	253	229	258

CTRIAL	806	301	229	154	258
CTRIA1	807	301	125	112	254
CTRIAL	808	301	255	125	254
CTRIAL	809	301	134	125	255
CTRIA1	810	301	255	256	134
CTRIAL	811	301	256	257	134
CTRIAL	812	301	143	134	257
CTRIAL	813	301	143	257	258
CTRIAL	814	301	154	143	258
CTRIAL	951	301	i	15	155
CTRIAL	952	301	233	155	15
CTRIAL	953	301	15	25	233
CTRIAL	954	301	70	84	237
CTRIAL	955	301	202	237	84
CTRIA1	956	301	84	94	202
CTRIA2	601	304	13	2	1
CTRIA2	602	304	1	15	13
CTRIA2	603	304	26	13	25
CTRIA2	604	304	82	71	70
CTRIA2	605	304	70	84	82
CTRIA2	606	304	95	82	94
CTRIAZ	635	304	55	44	43
CTRIA2	636	304	43	54	55
CTRIA2	637	304	54	65	55
CTRIA2	638	304	66	55	65
CTRIA2	649	304	11	24	12
CTRIA2	650	304	36	21	24
CTRIA2	651	304	24	35	36
CTRIA2	652	304	80	93	81
CTRIA2	653	304	90	81	93
CTRIA2	654	304	93	104	105
CTRIA2	665	304	115	109	108
CTRIA2	666	304	108	114	115
CTRIA2	667	304	145	150	146
CTRIA2	668	304	151	146	150
CTRIA2	707	303	156	155	1
CTRIA2	708	303	1	2	156
CTRIA2	709	303	2	3	156
CTRIA2	710	303	157	156	3
CTRIA2	711	303	3	4	157
CTRIA2	712	303	4	5	157
CTRIA2	713	303	158	157	5
CTRIA2	714	303	5	6	158
CTRIA2	715	303	159	158	6
CTRIA2	716	303	6	7	159
CTRIA2	726	303	182	183	112
CTRIA2	727	303	111	112	183
CTRIA2	728	303	183	184	111
CTRIA2	729	303	184	185	111
CTRIA2	730	303	110	111	185
CTRIA2	731	303	185	186	110
CTRIA2	732	303	186	187	191

The results of the second of t

```
CTRIA2
           733
                      303
                                  110
                                             186
                                                         191
                      303
                                             110
                                  109
                                                         191
CTRIA2
           734
                                                         1191
108
                                  108
                                             109
                       303
CTRIA2
           735
                                             192
99
                      303
303
303
303
                                  1191
CTRIA2
           736
                                                         198
99
           751
752
753
                                  100
CTRIA2
                                  199
                                             198
CTRIA2
                                                         199
CTRIA2
                                  99
                                             98
                       303
                                  206
                                             199
                                                         98
           754
CTRIA2
                       303
                                  98
                                             97
                                                         200
           755
CTRIA2
                       303
                                                         200
CTRIA2
           756
                                  97
                                             96
                       303
                                  201
                                             200
CTRIA2
           757
                                                         96
                       303
                                             95
                                                         201
CTRIA2
           758
                                  96
           759
                       303
                                  202
                                             201
                                                         95
CTRIA2
CTRIA2
           760
                       303
                                  95
                                             94
                                                         202
CTRIA2
CTRIA2
CTRIA2
                                  231
151
152
                                                         150
1232
232
           766
                       303
                                             1232
                      303
303
           767
768
                                             150
151
CTRIA2
                                  225
                                                         232
           769
                       303
                                             152
CTRIA2
CTRIA2
           770
771
                                  224
225
                                             225
226
                                                         232
152
                       303
                       303
                                             152
227
228
153
           772
773
                                                         226
153
CTRIA2
                       303
                                  153
                                  226
227
CTRIA2
                       303
CTRIA2
CTRIA2
                                                         153
228
           774
                       303
           775
                                  154
                       303
                                             229
CTRIA2
           776
                       303
                                  228
                                                         154
                                  15
                                             25
                                                         13
CTRIA2
           957
                       304
                                                         82
           958
                       304
                                  84
                                             94
CTRIA2
                                                         24
                       304
                                  21
                                             12
CTRIA2
           959
CTRIA2
           960
                       304
                                  105
                                             90
                                                         93
EIGR
           100
                       GIV
                                  2.0
                                             600.
                                                         50
                                                                                           .1
                                                                                                     +EIGR
                                                                    56
                                                                                6
+EIGR
            XAM
GRID
                                  51.00
                                             21.00
                                                         -21.00
           1
2
3
GRID
                                  44.30
                                             21.00
                                                         -21.00
                                  41.00
37.250
GRID
                                             21.00
                                                         -21.00
           4
GRID
                                             21.00
                                                         -21.00
           5
GRID
                                  33.16
                                             21.00
                                                         -21.00
           6
7
                                  29.08
GRID
                                             21.00
                                                         -21.00
GRID
                                  25.00
                                             21.00
                                                         -21.00
                                 19.625
13.625
10.20
6.70
           8
GRID
                                             21.00
                                                         -21.00
GRID
           9
                                             21.00
                                                         -21.00
                                             21.00
                                                         -21.00
GRID
           10
                                             21.00
           11
                                                         -21.00
GRID
GRID
           12
                                             21.00
                                                         -21.00
                                  44.30
GRIL
           13
                                             17.125
                                                         -21.00
                                                                               6
                                  41.00
51.00
37.25
           14
15
16
GRID
                                             17.125
                                                         -21.00
                                                                                6
                                             17.125
17.125
17.125
17.125
17.125
GRID
                                                         -21.
                                                         -21.00
GRID
                                  33.16
29.08
25.00
           17
GRID
                                                         -21.00
                                                                                6
                                                         -21.00
-21.00
GRID
           18
                                                                                6
           19
GRID
                                             17.125
17.125
                                  19.625
                                                                                6
           20
                                                         -21.00
GRID
GRID
           21
                                  0.0
                                                         -21.
```

GRID 22 13.625 17.125 -21.00 GRID 23 10.20 17.125 -21.00 GRID 24 6.70 17.125 -21.00 GRID 25 51.00 13.10 -21.00 GRID 26 44.30 13.10 -21.00 GRID 27 41.00 13.10 -21.00 GRID 28 37.25 13.38 -21.00 GRID 29 33.16 13.10 -21.00 GRID 30 29.08 13.10 -21.00 GRID 31 25.00 13.10 -21.00 GRID 32 19.625 13.10 -21.00 GRID 33 13.625 13.10 -21.00	6 6 6 6 6
GRID 24 6.70 17.125 -21.00 GRID 25 51.00 13.10 -21.00 GRID 26 44.30 13.10 -21.00 GRID 27 41.00 13.10 -21.00 GRID 28 37.25 13.38 -21.00 GRID 29 33.16 13.10 -21.00 GRID 30 29.08 13.10 -21.00 GRID 31 25.00 13.10 -21.00 GRID 32 19.625 13.10 -21.00	6 6 6 6
GRID 25 51.00 13.10 -21.00 GRID 26 44.30 13.10 -21.00 GRID 27 41.00 13.10 -21.00 GRID 28 37.25 13.38 -21.00 GRID 29 33.16 13.10 -21.00 GRID 30 29.08 13.10 -21.00 GRID 31 25.00 13.10 -21.00 GRID 32 19.625 13.10 -21.00	6 6 6
GRID 26 44.30 13.10 -21.00 GRID 27 41.00 13.10 -21.00 GRID 28 37.25 13.38 -21.00 GRID 29 33.16 13.10 -21.00 GRID 30 29.08 13.10 -21.00 GRID 31 25.00 13.10 -21.00 GRID 32 19.625 13.10 -21.00	6 6 6
GRID 27 41.00 13.10 -21.00 GRID 28 37.25 13.38 -21.00 GRID 29 33.16 13.10 -21.00 GRID 30 29.08 13.10 -21.00 GRID 31 25.00 13.10 -21.00 GRID 32 19.625 13.10 -21.00	6 6 6
GRID 28 37.25 13.38 -21.00 GRID 29 33.16 13.10 -21.00 GRID 30 29.08 13.10 -21.00 GRID 31 25.00 13.10 -21.00 GRID 32 19.625 13.10 -21.00	6 6
GRID 29 33.16 13.10 -21.00 GRID 30 29.08 13.10 -21.00 GRID 31 25.00 13.10 -21.00 GRID 32 19.625 13.10 -21.00	6 6
GRID 30 29.08 13.10 -21.00 GRID 31 25.00 13.10 -21.00 GRID 32 19.625 13.10 -21.00	6 6
GRID 31 25.00 13.10 -21.00 GRID 32 19.625 13.10 -21.00	6
GRID 32 19.625 13.10 -21.00	
	6
GRID 34 10.20 13.10 -21.00	
GRID 35 6.70 13.10 -21.00	6
	0
GRID 37 51.00 7.00 -21.00	
GRID 38 44.30 7.00 -21.00	
GRID 39 41.00 7.00 -21.00	
GRID 40 37.25 7.00 -21.00	
GRID 41 31.20 7.00 -21.00	
GRID 42 25.00 7.00 -21.00	
GRID 43 20.425 7.00 -21.00	
GRID 44 13.625 7.00 -21.00	
GRID 45 10.20 7.00 -21.00	
GRID 46 6.70 7.00 -21.00	
GRID 47 .00 7.00 -21.00	
GRID 48 51.00 .00 -21.00	
GRID 49 44.30 .00 -21.00	6
GRID 50 41.00 .00 -21.00	6
GRID 51 37.25 .00 -21.00	
GRID 52 31.20 .00 -21.00	6
GRID 53 25.00 .00 -21.00	
GRID 54 20.425 .00 -21.00	6
GRID 55 13.625 .00 -21.00	
GRID 56 10.20 .00 -21.00	6
GRID 57 6.70 .00 -21.00	6
GRID 58 .00 .00 -21.00	
GRID 59 51.00 -7.00 -21.00	
GRID 60 44.30 -7.00 -21.00	
GRID 61 41.00 -7.00 -21.00	
GRID 62 37.25 -7.00 -21.00	
GRID 63 31.20 -7.00 -21.00	
GRID 64 25.00 -7.00 -21.00	
GRID 65 20.425 -7.00 -21.00	
GRID 66 13.625 -7.00 -21.00	
GRID 67 10.20 -7.00 -21.00	
GRID 68 6.70 -7.00 -21.00	
GRID 69 .00 -7.00 -21.00	
GRID 70 51.00 -13.10 -21.00	
GRID 71 44.30 -13.10 -21.00	6
GRID 72 41.00 -13.10 -21.00	6
GRID 73 37.25 -13.38 -21.00	

~	

GRID	74	33.16	-13.10	-21.00	6
GRID	75	29.08	-13.10	-21.00	6
GRID	76	25.00	-13.10	-21.00	
GRID	77	19.625	-13.10	-21.00	6
GRID	78	13.625	-13.10	-21.00	
GRID	79	10.20	-13.10	-21.00	6
GRID	80	6.70	-13.10	-21.00	6
GRID	81	.00	-13.10	-21.00	
GRID	82	44.30		-21.00	6
GRID	83	41.00	-17.125		6
GRID	84	51.		-21.	
GRID	85	37.25		-21.00	
GRID	86	33.16		-21.00	6
GRID	87	29.08	-17.125		6
GRID	88	25.00		-21.00	
GRID	89	19,625		-21.00	6
GRID	90	0.0		-21.	
GRID	91	13.625	-17.125	-21.00	_
GRID	92	10.20	~17.125	-21.00	6 6
GRID GRID	93	6.70	-17.125	~21.00	ь
GRID	94 95	51.00 44.30	-21.00 -21.00	-21.00	
GRID	96	41.00	-21.00	-21.00	
GRID	97	37.25	-21.00	-21.00	
GRID	98	33.16	-21.00	-21.00	
GRID	99	29.08	-21.00	-21.00	
GRID	100	25.00	-21.00	-21.00	
GRID	101	19.625	-21.00	-21.00	
GRID	102	13.625	-21.00	-21.00	
GRID	103	10.20	-21.00	-21.00	
GRID	104	6.70	-21.00	-21.00	
GRID	105	.00	-21.00	-21.00	
GRID	106	.00	21.00	21.00	
GRID	107	6.812	21.00	21.00	
GRID	108	13.625	21.00	21.00	
GRID	109	19.312	21.00	21.00	
GRID	110	25.00	21.00	21.00	
GRID	111	37.25	21.00	21.00	
GRID	112	51.00	21.00	21.00	
GRID	113	6.812	15.00	21.00	6
GRID	114	13.625	15.00	21.00	
GRID	115	19.312	15.00	21.00	6
GRID	116	37,25	13.38	21.00	
GRID	117	.00	7.00	21.00	
GRID	118	6.812	7.00	21.00	
GRID	119	13.625	7.00	21.00	
GRID	120	19.312	7.00	21.00	
GRID	121	25.00	7.00	21.00	
GRID	122	31.125	7.00	21.00	
GRID	123	37.25	7.00	21.00	
GRID	124	44.125	7.00	21.00	
GRID	125	51.00	7.00	21.00	

GRID GRID	126 127	.00 6.812	.00	21.00 21.00	6
GRID	128	13.625	.00	21.00	,
GRID GRID	129 130	19.312 25.00	.00	21.00 21.00	6
GRID	131	31.125	.00	21.00	6
GRID GRID	132 133	37.25 44.125	.00	21.00 21.00	6
GRID	134	51.00	.00	21.00	Ū
GRID	135	.00	-7.00	21.00	
GRID GRID	136 137	6.812 13.625	-7.00 -7.00	21.00 21.00	
GRID	138	19.312	-7.00	21.00	
GRID	139	25.00	-7.00	21.00	
GRID GRID	140 141	31.125 37.25	-7.00 -7.00	21.00 21.00	
GRID	142	44.125	-7.00	21.00	
GRID GRID	143 144	51.00 6.812	-7.00 -35.00	21.00 21.00	6
GRID	145	13.625	-15.00 -15.00	21.00	ь
GRID	146	19.312	-15.00	21.00	6
GRID GRID	147 148	37.25 .00	-13.38 -21.00	21.00 21.00	
GRID	149	6.812	-21.00	21.00	
GRID	150	13.625	-21.00	21.00	
GRID GRID	151 152	19.312 25.00	-21.00 -21.00	21.00 21.00	
GRID	153	37.25	-21.00	21.00	
GRID	154	51.00	-21.00	21.00	
GRID GRID	155 156	51.00 44.30	21.00 21.00	-14.00 -14.00	_
GRID	157	37.25	21.00	-14.00	5 5
GRID	158	31.125	21.00	-14.00	5
GRID GRID	159 160	25.00 19.625	21.00	-14.00	5
GRID	161	13.625	21.00 21.00	-14.00 -14.00	5
GRID	162	6.70	21.00	-14.00	5
GRID	163 164	.00	21.00	-14.00	
GRID GRID	165	51.00 44.30	21.00 21.00	-7.00 -7.00	5
GRID	166	37.25	21.00	-7.00	5 5
GRID	167	31.125	21.00	-7.00	5
GRID GRID	168 169	25.00 19.625	21.00 21.00	-7.00 -7.00	5
GRID	170	13.625	21.00	-7.00	
GRID	171	6.70	21.00	-7.00	5
GRID GRID	172 173	.00 51.00	21.00 21.00	-7.00 .00	
GRID	174	44.30	21.00	.00	5
CRID	175	37.25	21.00	.00	5
GRID GRID	176 177	31.125 25.00	21.00 21.00	.00	5
CIVID	4//	25.00	21.00	.00	

GRID	178	19.625	21.00	.00	
GRID	179	13.625	21.00	.00	
GRID	180	6.70	21.00	.00	
GRID	181	.00	21.00	.00	
GRID	182	51.00	21.00	10.50	
GRID	183	44.30	21.00	10.50	5 5 5
GRID	184	37.25	21.00	10.50	5
GRID	185	31.125	21.00	10.50	5
GRID	186	25.00	21.00	10.50	
GRID	187	19.625	21.00	10.50	5
GRID	188	13.625	21.00	10.50	_
GRID	189	6.70	21.00	10.50	5
GRID	190	.00	21.00	10.50	_
GRID	191	19.625	21.00	15.00	5
GRID	192	13.625	21.00	15.00	_
GRID	193	6.70	21.00	15.00	5
GRID	194	.00	-21.00	-14.00	~
GRID	195	6.70	-21.00	-14.00	5
GRID GRID	196 197	13.625 19.625	-21.00 -21.00	-14.00 -14.00	5
GRID	198	25.00	-21.00	-14.00	5
GRID	199	31.125	-21.00	-14.00	5
GRID	200	37.25	-21.00	-14.00	5 5
GRID	201	44.30	-21.00	-14.00	5
GRID	202	51.00	-21.00	-14.00	
GRID	203	.00	-21.00	-7.00	
GRID	204	6.70	-21.00	-7.00	5
GRID	205	13.625	-21.00	-7.00	_
GRID	206	19.625	-21.00	-7.00	5
GRID	207	25.00	-21.00	-7.00	
GRID	208	31.125	-21.00	-7.00	5
GRID	209	37.25	-21.00	-7.00	5 5 5
GRID	210	44.30	-21.00	~7.00	5
GRID	211	51.00	-21.00	-7.00	
GRID	212	.00	-21.00	.00	
GRID	213	6.70	-21.00	.00	
GRID	214	13.625	-21.00	.00	
GRID	215	19.625	-21.00	.00	
GRID	216	25.00	-21.00	.00	
GRID	217	31.125	-21.00	.00	5
GRID	218	37.25	-21.00	.00	5
GRID	219	44.30	-21.00	.00	5
GRID	220	51.00	-21.00	.00	
GRID	221	.00	-21.00	10.50	_
GRID	222	6.70	-21.00	10.50	5
GRID	223	13.625	-21.00	10.50	_
GRID	224	19.625	-21.00	10.50	5
GRID	225	25.00	-21.00	10.50	_
GRID	226	31.125	-21.00	10.50	5
GRID	227	37.25	-21.00	10.50	5
GRID	228	44.30	-21.00	10.50	5
GRID	229	51.00	-21.00	10.50	

ij

THE REPORT OF THE PROPERTY OF

GRID GRID GRID GRID GRID GRID GRID GRID	230 231 232 233 234 235 236 237 238 239 240		6.70 13.625 19.625 51.00 51.00 51.00 51.00 51.00 51.00	-21.00 -21.00 -21.00 13.10 7.50 1.125 -5.25 -13.10 13.10 7.50 1.125	15.00 15.00 -14.00 -11.00 -11.00 -14.00 -7.00 -7.00	5 4 4 4 4	
GRID GRID GRID GRID GRID GRID GRID GRID	241 242 243 244 245 246 249 250		51.00 51.00 51.00 51.00 51.00 51.00 51.00	-5.25 -13.10 13.10 7.50 -5.25 -13.10 13.10 7.50	-7.00 -7.00 .00 .00 .00 .00 10.50	4 4 4 4 4 4	
GRID GRID GRID GRID GRID GRID GRID GRID	251 252 253 254 255 256 257 258		51.00 51.00 51.00 51.00 51.00 51.00 51.00	1.125 -5.25 -13.10 13.10 7.50 1.125 -5.25 -13.10	10.50 10.50 10.50 16.00 13.50 13.50 13.50	4 4 4 4	
GRID GRID GRID GRID GRID GRID GRID GRID	259 260 261 262 263 264 265 266		37.25 37.25 37.25 37.25 37.25 37.25 37.25 37.25	7.00 -7.00 7.00 3.00 -3.00 -7.00 7.00	-11.97 -11.97 -7.75 -7.75 -7.75 -7.75 -3.97		
GRID GRID GRID GRID GRID GRID GRID	267 268 269 270 271 272 273		37.25 37.25 37.25 37.25 37.25 37.25 37.25	7.00 -7.00 7.00 3.00 -3.00 -7.00 7.00	3.97 3.97 7.75 7.75 7.75 7.75 11.97		
GRID GRID GRID GRID GRID MAT1 +6061T6 MAT1	274 376 377 1191 1232 100 35000.	10.0+6 34000.	37.25 25.00 25.00 19.625 19.625 3.8+6 24000.	-7.00 7.00 -7.00 21. -21.	11.97 .00 .00 15. 15.	5 5	+606
HATI +DUMMY MATI	56000. 200	10.3+6 56000.	39000. 60.+3	.33			+DUM +HC

+HC MAT1 +4130 MAT1 +BOTTLE PARAM		20000. 29.+6 145000. 29.+6 145000.	20000. 11.+6 95000. 11.+6 95000.		.283				+413 +BOT
PARAM PBAR +P101A +P101B	WTMASS 101 .6949 .5	100 .9723	.8464 .6949	.29362 9723	.35875 -1.0607	.26999 0.			+P10 +P10
PBAR +P102A +P102B	102 1.2094	100 0.	1.00265 1656	.33208 -1.375	.54104 9156	.27325 0.	1656	1.375	+P10 +P10
PBAR +P103A +P103B	103 2.673	300 0. .5	3.25 -1.327	5.0485 -1.5	1.1615 -1.327	.2708 1.5			+P10 +P10
PBAR +P104A +P104B	104 5.75 .5	400 0. .5	5.348 0.	86.142 -5.75	86.142 -5.75	172.28 0.	2.0691	5.75	+P10 +P10
PBAR +P105A +P105B	105 1.5 .5	100 .375 .5	2.25 1.5	1.6875 375	.1055 -1.5	.4219 375	-1.5	.375	+P10 +P10
PBAR +P106A +P106B	106 5.15 .5	107 .182 .5	3.7492 5.15	33.146 182	.0414 -5.15	.1656 182	3.2437 -5.15	.182	+P10 +P10
PBAR +P107A +P107B	107 4.00 .5	107 .268 .5	4.288 4.00	22.869 268	.1027 -4-00	.4106 268	1.9563 -4.00	.268	+P10 +P10
PQUAD1 +P401	401 300	100 .300	.080	100	.006272	200	.520	.002407	+P40
PQUAD1 +P402 PQUAD2 PQUAD2 PQUAD2 PQUAD2	402 280 403 404 405 406	100 .280 100 100 107 107	.040 .250 .600 .3759 .3151	100	.002916	200	.520	.002407	+P40
PTRIA1 +P301	301 300	100 .300	.080	100	.006272	200	.520	.002407	+P30
PTRIA1 +P302 PTRIA2 PTRIA2 PTRIA2 PTRIA2	302 280 303 304 305 306	100 .280 100 100 107	.040 .250 .600 .3759	100	.002916	200	.520	.002407	+P30
SEQGP SEQGP SEQGP SEQGP SEQGP SEQGP SEQGP SEQGP	3 7 11 13 20 22 23 24 29	152 180 177 154 214 212 213 210 222	4 8 12 14 32 33 34 35 86	172 178 174 155 236 237 235 234 225	5 9 21 27 89 78 92 56 74	173 179 187 189 262 273 261 267 227	6 10 36 50 77 91 79 57	175 176 221 193 270 260 266 263 209	

SEQGP SEQGP	30 31	232 233	87 53	231 268	75 76	252 255	52 88	251 254
SEQGP	38	158	39	191	40	223	41	254 250
SEOGP	42 46	256 249	43 60	258 167	44	259	45	257
SEQGP SEQGP	47	244	58	245	61 69	194 246	62 81	226 247
SEQGP	48	137	37	127	25	126	15	153
SEOGP	51	224	73	200	85	228	19	211
SEQGP SEQGP	55 63	272 253	54 64	271 269	1 65	1.22 275	2 66	123 276
SEQGP	67	274	68	264	16	188	28	190
SEQGP	72	197	82	203	83	196	17	208
SEQGP	80	265 238	93 105	248	127	26	113	2
SEQGP SEQGP	90 94	206	84	220 230	104 70	240 205	103 59	239 169
SEQGP	98	207	97	199	96	198	95	170
SEQGP	102	242	101	241	100	243	99	229
SEQGP SEQGP	106 110	19 24	107 111	3 25	108 112	4 20	109	7 41
SEQGP	118	9	119	11	120	13	125 121	14
SEQGP	122	15	123	17	124	18	136	27
SEQGP SEQGP	134 137	42 30	143 138	55 32	154	84	153	86
SEQGP	141	35	142	56	139 114	59 1	140 128	61 12
SEQGP	144	53	115	6	129	31	146	58
SEQGP	145	36	130	33	116	8	132	16
SEQGP SEQGP	147 148	60 83	163 135	141 54	172 126	104 28	181 117	76 10
SEQGP	152	88	151	64	150	62	149	57
SEQGP	155	120	159	144	168	109	177	80
SEQGP	156	119	165	102	157	138	166	103
SEQGP SEQGP	158 162	139 140	167 171	108 105	160 174	142 75	169 175	107 79
SEQGP	176	82	183	47	184	52	185	51
SEQGP	186	50	161	143	170	106	179	78
SEQGP SEQGP	187 188	49 48	189 192	46 22	191 178	23 81	193 180	21 77
SEQGP	190	45	182	44	173	74	164	91
SEQGP	195	215	204	182	197	217	206	185
SEQGP SEQGP	196 199	218 201	205 208	183 184	214 200	148 171	223 209	116 161
SEQGP	201	163	210	162	217	150	218	147
SEOGP	202	202	211	165	220	133	229	98
SEQGP SEQGP	219 221	132 110	222 212	112 145	224 203	118 181	226 194	114 216
SEQGP	225	117	213	146	215	151	259	192
SEÕGP	227	115	228	111	230	87	232	90
SEQGP SEQGP	231 233	89 121	198 238	219 92	207 234	186 101	216	149
SEQGP	237	204	242	164	243	73	235 244	136 99
SEQGP	240	134	239	100	236	166	241	135
SEQGP	246	131	245	130	249	71	250	72

SEQGP	253	97	252	96	131	34	133	29
SEQGP	255	67	256	68	257	69	258	70
SEQGP	261	157	265	125	267	93	269	65
SEQGP	263	128	270	37	271	39	376	85
SEQGP	268	94	272	66	274	40	262	124
SEQGP	273	38	260	195	264	160	266	129
SEQGP	377	113	26	156	49	159	71	168
SEQGP	1191	5	1232	63	251	95	254	43
SPCI	1500	4	234	235	236			
SPC1	1500	4	255	256	257			
SUPORT	12	123456						
ENDDATA								

APPENDIX B. Partial NASTRAN Print File Listing with DIAG 21 and 22

FREE-FREE MODES ANALYSIS ------ AUGUST 24, 1983

*** USER INFORMATION MESSAGE 2118, SUBROUTINE GP4PRT - DIAG 21 SET-DOF VS. DISP SETS FOLLOWS.

INT DOF	EXT GP. DOF	SB	SG	L	A	F	N	G	R	0	8
1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	114 - 1 114 - 2 114 - 3 114 - 4 114 - 5 114 - 6 113 - 1 113 - 2 113 - 3 113 - 4 113 - 5 113 - 6 107 - 1 107 - 2 107 - 3 107 - 4 107 - 5 108 - 1 108 - 2 108 - 3		1	1 2 3	1 2 3	1234567890112234567890112134567890	123456789011234567890112345678901	1 23 45 67 89 11 13 145 167 189 20 21		123456789011 12345167	1
22 23 24 25 26 27 28 29 31 32 33 34 35 37	108 - 4 108 - 5 108 - 6 1191 - 1 1191 - 2 1191 - 3 1191 - 4 1191 - 6 115 - 1 115 - 2 115 - 3 115 - 3 115 - 5 115 - 6 109 - 1		2			21 22 23 24 25 26 27 28 29 30 31 32 33	22 23 24 25 26 27 28 29 31 33 34 35 36 37	22 234 255 267 289 312 334 3567 367		18 19 20 21 22 23 24 25 26 27 28 30 31	2

----- DSP ANALYSIS ------ AUGUST 24, 1983 FREE-FREE MODES

ڮ

The state of the s

INT DOF	EXT GP. DOF	SB	sc	L	Α	F	N	G	R	0 s
•	,					•	•			
•	•					•	•			
1620	77 - 6		101			•	1620	1620		107
1621	54 - 1					1514	1621	1621		1325
1622	54 - 2					1515	1622	1622		1326
1623	54 - 3					1516	1623	1623		1327
1624	54 - 4							1624		
1625 1626	54 - 5 54 - 6		102				1624	1625 1626		108
1627	55 - 1		102	184	190	1517	1625	1627		108
1628	55 - 2			185	191	1518	1626	1628		
1629	55 - 3			186	192	1519	1627	1629		
1630	55 - 4					1520	1628	1630		1328
1631	55 - 5					1521	1629	1631		1329
1632	55 - 6					1522	1630	1632		1330
1633	78 - 1					1523	1631	1633		1331
1634 1635	78 - 2 78 - 3					1524 1525	1632 1633	1634 1635		1332 1333
1636	78 - 4					1525	1634	1636		1334
1637	78 - S					1527	1635	1637		1335
1638	7B - 6					1528	1636	1638		1336
1639	67 - 1					1529	1637	1639		1337
1640	67 - 2					1530	1638	1640		1338
1641	67 - 3					1531	1639	1641		1339
1642	67 - 4					1532	1640	1642		1340
1643	67 - 5 67 - 6					1533 1534	1641	1643		1341
1644 1645	67 - 6 65 - 1					1534	1642 1643	1644 1645		1342 1343
1646	65 - 2					1535	1644	1646		1344
1647	65 - 3					1537	1645	1647		1345
1648	65 - 4					1538	1646	1648		1346
1649	65 - 5					1539	1647	1649		1347
1650	65 - 6					1540	1648	1650		1348
1651	66 - 1					1541	1649	1651		1349
1652	66 - 2			107	100	1542	1650	1652		1350
1653 1654	66 - 3 66 - 4			187	193	1543 1544	1651 1652	1653 1654		1351
1655	66 - 5					1545	1652	1655		1352
1656	66 - 6					1546	1654	1656		1353
COLUMI	N TOTALS	6 3	102	187	193	1546	1654	1656	6	1353

DSP ANALYSIS	AUGUST	24, 1983	
FREE-FREE MODES			

MPC DISPLACEMENT SET

	··1-	-2-	-3-	-4-	-5-	-6-	-7-	-8-
1	84-4	54-5						

SPC DISPLACEMENT SET

	-1-	-2-	-3-	-4-	-5-	-6-	-7-	-8-
1= 11= 21= 31= 41= 51= 61= 71= 81=	113-6 189-5 257-4 238-4 169-5 246-4 217-5 71-6 82-6 89-6	1191-5 183-5 258-4 251-4 167-5 219-5 13-6 200-5 237-4 74-6 89-6	115-6 187-5 249-4 252-4 228-5 240-4 14-6 204-5 17-6 87-6 57-6	193-5 185-5 250-4 253-4 222-5 241-4 26-6 208-5 18-6 30-6 80-6	191-5 184-5 243-4 244-4 226-5 235-4 49-6 206-5 24-6 35-6 79-6	127-6 144-6 174-5 239-4 227-5 157-5 209-5 27-6 23-6 34-6 56-6	133-6 146-6 175-5 234-4 224-5 158-5 210-5 50-6 20-6 32-6 77-6	129-6 1232-5 176-5 165-5 162-5 201-5 83-6 195-5 93-6 54-6

FREE-FREE MODES ANALYSIS --------- AUGUST 24, 1983

OMIT DISPLACEMENT SET

	-1-	-2-	-3-	-4-	-5-	-6-	-7-	-8-
1=	114-1	114-2	114-3	114-4	114-5	114-6	113-1	113-2
11=	113-5	107-1	107-2	107-3	107-4	107-5	107-6	108-4
21=	1191-1	1191-2	1191-3	1191-4	1191-6	115-1	115-2	115-3
31=	109-1	109-2	109-3	109-4	109-5	109-6	116-4	116-5
41=	118-2	118-3	118-4	118-5	118-6	117-4	117-5	117-6
ร์โ=	119-4	119-5	119-6	128-1	128-2	128-3	128-4	128-5
51 <i>=</i>	120-2	120-3	120-4	120-5	120-6	121-1	121-2	121-4
71=	122-1	122-2	122-3	122-4	122-5	122-6	132-4	132-5
81=	123-5	123-6	124-1	124-2	124-3	124-4	124-5	124-6
91=	106-6	112-4	112-5	112-6	193-1	193-2	193-3	193-4
101=	192-2	192-3	192-4	192-5	192-6	191-1	191-2	191-3
111=	110~4	110-5	110-6	111-4	111-5	111-6	127-1	1.27-2
121=	127-5	136-1	136-2	136-3	136-4	136-5	136-6	126-1
131=	126-4	126-5	126-6	133-1	133-2	133-3	133-4	133-5
141=	137-4	137-5	137-6	129-1	129-2	129-3	129-4	129-5
151=	138-3	138-4	138-5	138-6	130-1	130-2	130-3	130-4
161=	131-1	131-2	131-3	131-4	131-5	141-4	141~5	141-6
171=	145-3	145-4	145-5	145-6	270-1	270-2	270-3	270-4
181=	273-1	273-2	273-3	273-4	273-5	273-6	271-1	271-2
191=	271-5	271-6	274-1	274-2	274-3	274-4	274-5	274~6
201=	125-6	134-1	134~2	134-3	134-4	134-5	134-6	254-1
211=	254-5	254-6	182-1	182-2	182-3	182-4	182-5	182-6
221=	190-3	190-4	190-5	1906	189-1	189-2	189~3	189-4
231=	183-3	183-4	183-6	188-1	188-2	188-3	188-4	188-5
241=	187-2	187-3	187-4	187-6	186-1	186-2	186-3	186-4
251=	185-1	185-3	185-4	185-6	184-1	184-2	184~3	184-4
261=	144-2	144-3	144-4	144-5	135-4	135-5	135~6	143-4
271=	142-1	142-2	142-3	142-4	142-5	142-6	149-1	149-2
281=	149-5	149-6	146-1	146-2	146-3	146-4	146-5	139-1
291=	139~5	139-6	147-4	147-5	147-6	140-1	140-2	140~3
301=	140-6	150-4	150-5	150-6	1232-1	1232-2	1232-3	1232-4
311=	151-2	151-3	151-4	151-5	151-6	269-4	269-5	269-6
321=	272-6	255-2	255-3	255-5	255-6	256-1	256-2	256-3
331=	257-2	257-3	257-5	257-6	258-1	258-2	258-3	258-5
341=	249-2	249-3	249-5	249-6	250-1	250-2	250-3	250~5
351=	243-2	243-3	243-5	243-6	173-4	173-5	173-6	174-1
361=	174-6	181-4	181-5	181-6	180-1	180-2	180-3	180-4
371=	179-1	179-3	179-4	179-5	179-6	175-1	175-3	175-4
381=	177-3	177-4	177-5	1.77-6	178-1	178-2	178-3	178-4
391=	176-1	176-3	176-4	176-6	148-4	148-5	148-6	154 🐇

	FREE-FREE MODES								
			ANALYSIS	DISPLACE	MENT SET				
	-1-	-2-	-3-	-4-	-5-	-6.	-7-	-8-	
1= 21= 31= 41= 51= 61= 71= 81= 101= 121 131= 141= 151= 171= 181= 191=	108-1 121-3 112-1 141-1 135-3 150-3 173-2 148-1 153-2 377-3 219-2 15-2 59-1 12-5 21-3 199-2 40-3 90-3 69-1 55-2	108-2 132-1 112-2 141-2 143-1 269-1 173-3 148-2 153-3 226-2 220-1 15-3 59-2 12-6 28-1 94-1 102-1 69-2 55-3	108-3 132-2 112-3 141-3 143-2 269-2 174-2 148-3 152-1 156-2 220-1 59-3 94-2 94-2 102-3 66-3	116-1 132-3 110-1 125-1 143-3 269-3 181-1 154-1 152-2 1-1 220-3 261-2 4-1 9-2 28-3 94-3 51-3 102-3 88-1	116-2 123-1 110-2 125-2 139-3 272-1 181-2 154-2 152-3 1-2 158-2 261-3 4-2 9-3 97-1 19-1 62-3 100-1 88-2	116-3 123-2 110-3 125-3 147-1 272-2 181-3 154-3 244-1 1-3 218-2 264-1 4-3 7-1 97-2 19-2 84-1 100-2 88-3	117-1 123-3 111-1 183-2 147-2 272-3 179-2 376-1 234-1 214-2 264-2 12-1 7-2 97-3 19-3 84-2 100-3 42-3	117-2 106-1 111-2 185-2 147-3 255-1 175-2 376-2 228-2 37-2 216-2 264-3 12-2 73-1 105-1 84-3 47-1 44-3	

	,	DSP AM FREE-1'RE	VALYSIS EE MODES		77 III 96 PR 15 PR 16 S		AUGUST	24, 1983
			PERM SPC	DISCALT	MENT SET			
	-1-	-2-	-3-	-4-	-5-	-6-	-7-	-8-
1= 11= 21= 31= 41= 51= 61= 71= 81= 91= 101=	113-6 189-5 250-4 253-4 226-5 157-5 209-5 50-6 32-6 77-6	1191-5 183-5 243-4 244-4 227-5 158-5 210-5 83-6 195-5 93-6 54-6	115-6 187-5 174-5 239-4 224-5 162-5 201-5 72-6 197-5 52-6	193-5 185-5 175-5 165-5 156-5 160-5 242-4 199-5 29-6 75-6	191-5 184-5 176-5 166-5 233-4 218-5 71-6 82-6 86-6 92-6	127-6 144-6 230-5 171-5 245-4 217-5 200-5 237-4 74-6 89-6	133-6 146-6 232-5 169-5 246-4 13-6 204-5 17-6 57-6	1232-5 238-4 167-5 219-5 14-6 208-5 18-6 30-6
		_		DISPLACE				
	-1-	-2-	-3-	-4-	-5-	-6-	-7-	-8-

234-4

235-4

236-4

257-4

256-4

THE PROPERTY OF THE PROPERTY O

1=

255-4

APPENDIX C. EXAMPLE OF A STATISTICAL CORRELATION REPORT

NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL CORRELATION 21-NOV-83

1. INTERACTIVE DIALOG:

IS A SEPARATE OUTPUT LISTING FILE TO BE PRINTED?(Y OR N): Y

ENTER ANALYTICAL LAMA MATRIX FILENAME: LAMA.TBL
ENTER ANALYTICAL MODE-SHAPE MATRIX FILENAME: PHITE.MTX
ENTER ANALYTICAL GRID POINT LIST FILENAME: GRDPTF.LIS

**** NARNING: UNEQUAL NUMBER OF FREQUENCIES AND MODE SHAPES.

NUMBER OF FREQUENCIES: 190

NUMBER OF MODE SHAPES: 48

ONLY THE FIRST 48 WILL BE USED.

ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ("NONE" IF NO MORE): FMS001.AC2
ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ("NONE" IF NO MORE): FMS002.AC2
ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ("NONE" IF NO MORE): FMS003.AC2
ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ("NONE" IF NO MORE): FMS004.AC2
ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ("NONE" IF NO MORE): FMS005.AC2
ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ("NONE" IF NO MORE): FMS006.AC2
ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ("NONE" IF NO MORE): FMS007.AC2
ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ("NONE" IF NO MORE): FMS008.AC2
ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME. ("NONE" IF NO MORE): FMS008.AC2

IS ANALYTICAL VS. EXPERIMENTAL SYMMETRY TO BE CONSIDERED? (Y OR N): N

PRINT ANALYTICAL MODE-SHAPE VECTORS? (Y OR N): N PRINT EXPERIMENTAL MODE-SHAPE VECTORS? (Y OR N): N

RELATIVE DEVIATIONS GREATER THAN A THRESHOLD VALUE WILL BE PRINTED. THE DEFAULT THRESHOLD IS 0.050 ENTER DESIRED THRESHOLD. "," FOR DEFAULT: 0.100

RELATIVE DEVIATIONS GREATER THAN 10.00 % WILL BE PRINTED.

ORIGINAL PROTES

NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL CORRELATION 21-NOV-83

2. SUMMARY OF FREQUENCY, MASS, STIFFNESS, DAMPING, AND SYMMETRY:

ANALYTICAL MODES:

MODE	FREQUENCY	MASS	STIFFNESS	SYMMETRY
1	4.78003426E+01	1.0000000E+00	9.02031563E+04	0 0 0
2	8.52370071E+01	9.99999881E-01	2.86824438E+05	0 0 0
3	8.92746735E+01	9.99999821E-01	3,14641656E+05	0 0 0
4	9.36831284E+01	9.99999940E-01	3.46483469E+05	0 0 0
5	1.14596474E+02	1.00000000E+00	5.18444500E+05	0 0 0
6	1.29791458E+02	1.0000000E+00	6.65046375E+05	0 0 0
7	1.42888336E+02	1.00000012E+00	8.06034125E+05	0 0 0
8 9	1.49144562E+02	1.0000000E+00	8.78161875E+05	0 0 0
10	1.51106857E+02 1.61486435E+02	1.00000000E+00 1.0000000E+00	9.01422000E+05 1.02951300E+06	0 0 0
11	1.66986420E+02	1.0000000E+00	1.10083463E+06	0 0 0
12	1.76361176E+02	1.00000012E+00	1.22790788E+06	ŏŏŏŏ
13	1.86912598E+02	1.0000000E+00	1.37923075E+06	0 0 0
14	2.03151978E+02	9.99999940E-01	1.62930288E+06	0 0 0
15	2.13227921E+02	1.00000000E+00	1.79493163E+06	0 0 0
16	2.15393066E+02	1.00000012E+00	1.83156913E+06	0 0 0
17	2.20526611E+02	1.00000024E+00	1.91991450E+06	0 0 0
18	2.25210617E+02	9.99999821E-01	2.00233788E+06	0 0 0
19	2.28891800E+02	1.00000000E+00	2.06833200E+06	0 0 0
20	2.37163879E+02	9.99999940E-01	2.22053100E+06	0 0 0
21	2.41989059E+02	9.99999881E-01	2.31180500E+06	0 0 0
22 23	2.44966827E+02	1.00000000E+00	2.36905050E+06 2.39757125E+06	0 0 0
24 24	2.46436966E+02 2.59525421E+02	1.00000012E+00 9.99999881E-01	2.65900725E+06	0 0 0
25	2.67757904E+02	1.00000000E+00	2.83037750E+06	0 0 0
26	2.76532684E+02	9.99999762E-01	3.01892675E+06	0 0 0
27	2.77095856E+02	1.0000000E+00	3.03123675E+06	0 0 0
28	2.87656219E+02	1.00000012E+00	3.26668575E+06	0 0 0
29	2.98013702E+02	1.0000000E+00	3.50616400E+06	0 0 0
30	3.28465637E+02	9.9999940E-01	4.25931300E+06	0 0 0
31	3.31687805E+02	9.99999702E-01	4.34328750E+06	0 0 0
32	3.38717804E+02	9.99999881E-01	4.52934850E+06	0 0 0
33	3.46994293E+02	1.00000000E+00	4.75340050E+06	0 0 0
34 35	3.55755737E+02 3.83082672E+02	9.99999940E-01 1.00000024E+00	4.99647250E+06 5.79355150E+06	$\begin{smallmatrix}0&0&0\\0&0&0\end{smallmatrix}$
36	3.94640564E+02	1.0000000E+00	6.14841500E+06	0 0 0
37	4.00549103E+02	1.000000012E+00	6.33390250E+06	0 0 0
38	4.01798157E+02	9.99999821E-01	6.37346400E+06	0 0 0
39	4.11575165E+02	1.0000000E+00	6.68741200E+06	0 0 0
40	4.23178680E+02	9.99999940E-01	7.06980300E+06	0 0 0
41	4.62407135E+02	9.99999702E-01	8.44128800E+06	0 0 0
42	4.66884094E+02	1.00000000E+00	8.60553500E+06	0 0 0
43	4.73970062E+02	1.0000000E+00	8.86873200E+06	0 0 0
44	4.76452454E+02	1.00000024E+00	8.96187800E+06	0 0 0
45	4.87654266E+02	9.99999940E-01	9.38823100E+06	0 0 0
46	4.94913330E+02	1.0000000E+00	9.66981300E+06	0 0 0
47 48	5.04736725E+02 5.08807892E+02	1.00000000E+00 1.00000012E+00	1.00574890E+07	0 0 0
40	J. V00V/034ETUZ	1.00000012E+00	1.02203900E+07	0 0 0

EXPERIMENTAL MODES:

MODE	FREQUENCY	DAMPING	SYMMETRY			
	~~=~~					_
1.	6.911E+01	1.113E-02	0	0	0	
2	7.811E+01	4.992E-03	0	0	0	
3	9.535E+01	1.076E-02	0	0	0	
4	1.130E+02	1.075E-02	0	Q	0	
5	1.645E+02	4.948E-03	0	0	0	
6	2.258E+02	3.984E-03	0	0	0	
7	2.280E+02	2.466E-03	0	0	0	
8	3.617E+02	1.475E-03	0	0	0	

ORIGINAL PARE TH' OF POOR QUALITY

NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL CORRELATION 21-NOV-83

3. CORRELATION COEFFICIENTS FOR ANALYTICAL VS. EXPERIMENTAL COMPARISONS:

ANALYTICAL		
MODES	1 2 3 4 5 6 7	8
1	-0.506 -0.521 -0.473 -0.375 -0.201 0.248 0.327	0.716
2	-0.283 -0.294 -0.224 -0.106 0.049 0.324 0.452	0.515
3	-0.984 -0.841 -0.930 -0.982 -0.923 -0.016 0.016	0.172
4	-0.958 -0.989 -0.991 -0.920 -0.692 0.293 0.338	0.088
5	-0.952 -0.988 -0.984 -0.906 -0.670 0.325 0.372	0.095
6	-0.462 -0.413 -0.382 -0.304 -0.178 0.272 0.404	0.377
7	-0.996 -0.885 -0.957 -0.985 -0.889 0.041 0.078	0.167
8	-0.994 -0.905 -0.964 -0.971 -0.850 0.124 0.166	0.128
9	-0.942 -0.833 -0.913 -0.962 -0.889 -0.126 -0.109	0.341
10	-0.917 -0.754 -0.869 -0.961 -0.959 -0.041 -0.055	
11	0.971 0.803 0.901 0.966 0.929 0.045 0.011	
12	0.40\$ 0.498 0.523 0.526 0.431 -0.076 0.007	0.451
13	0.186 0.408 0.260 0.029 -0.274 -0.919 -0.962	0.091
14		-0.596
15	0.106 0.186 0.219 0.253 0.238 0.026 0.135	0.575
16	0.109 0.189 0.222 0.257 0.242 0.063 0.169	0.534
17	0.722 0.451 0.618 0.803 0.941 0.561 0.545	-0.173
18		-0.192
19	0.961 0.839 0.898 0.910 0.808 -0.043 -0.118 -	-0.294
20	-0.862 -0.606 -0.749 -0.887 -0.963 -0.267 -0.238	0.159
21	-0.182 -0.178 -0.254 -0.348 -0.402 -0.289 -0.396	-0.312
22	0.078 0.117 0.028 -0.105 -0.246 -0.466 -0.576 -	-0.316
23	0.227 0.495 0.396 0.231 -0.038 -0.715 -0.647	0.506
24	0.142 0.198 0.243 0.295 0.297 0.153 0.264	0.364
25	-0.135 -0.167 -0.224 -0.296 -0.324 -0.224 -0.334 -	-0.337
26	-0.248 -0.389 -0.275 -0.088 0.154 0.871 0.912 -	-0.037
27	0.536 0.754 0.668 0.499 0.195 -0.753 -0.727	0.341
28	-0.109 -0.137 -0.197 -0.272 -0.310 -0.215 -0.327 -	-0.400
29	-0.212 -0.490 -0.343 -0.109 0.220 0.961 0.958 -	-0.326
30	-0.214 -0.471 -0.324 -0.092 0.228 0.969 0.979 -	-0.257
31	-0.230 -0.516 -0.359 -0.111 0.238 0.945 0.964 -	-0.255
32	0.306 0.427 0.431 0.410 0.304 -0.210 -0.101	0.397
33	0.120 0.025 0.008 -0.029 -0.043 -0.188 -0.306 -	
34	0.054 0.290 0.206 0.070 -0.131 -0.722 -0.649	0.815
35		-0.336
36	-0.426 -0.420 -0.426 -0.416 -0.333 -0.152 -0.149	0.756
37	0.176 0.409 0.271 0.051 -0.241 -0.986 -0.997	0.359
38	-0.916 -0.958 -0.939 -0.841 -0.592 0.380 0.455	0.070
39		-0.511
40		-0.957
41	-0.236 -0.182 -0.200 -0.224 -0.211 -0.470 -0.423	0.943
42		-0.870
43		-0.950
44		-0.795
45	-0.202 -0.177 -0.179 -0.185 -0.146 -0.498 -0.433	0.946
46	-0.204 -0.178 -0.178 -0.181 -0.139 -0.496 -0.424	0.957
47	0.090 0.321 0.193 0.019 -0.254 0.002 -0.085 -	
48	CIOSO CIURE CIESO CIOES CIOCE CIOCE CIOCE	J . J . J

NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL CORRELATION 21-NOV-83

4. ANALYTICAL MODE SHAPES AND THEIR BEST EXPERIMENTAL MATCHES:

NASTRAN MODE	NASTRAN FREQUENCY	TEST MODE	TEST FREQUENCY	OF GP'S COMPARED			GRID POINT
1	47.80034	8	361.69601	5	0.716	1.007E+00	234
234-1	CATIVE DEVIA: 1/-1.007E+00 1/ 6.611E-01		/RMSA-XE/RM 6.232E-01			GRID ID/DEVI 255-1/ 8.	
234-1	ALED DIFFEREN 1/-1.435E+00 1/-1.582E+00		(A-XE)/S) > 8.821E-01				
2	85.23701	8	361.69601	5	0.515	1.507E+00	234
	CATIVE DEVIA: L/-1.507E+00		/RMSA-XE/RM '-2.875E-01		0.00% : (().712E-01		
	ALED DIFFEREN L/-1.273E+00						
3	89.27467	1	69.11099	5	-0.984	2.612E-01	257
	CATIVE DEVIATION 1.297E-01		/RMSA-XE/RM -2.471E-01		0.00% : ((2.612E-01	GRID ID/DEVI	ATION)
	ALED DIFFEREN L/ 1.253E+02		(A-XE)/S) > ' 2.709E+01			ID/DIFFEREN	CE)
4	93.68313	3	95.35100	5	-0.991	2.363E-01	234
	LATIVE DEVIA 1/-2.363E-01		A/RMSA-XE/RM 1.033E-01).00% ; (0	GRID ID/DEVI	ATION)
	ALED DIFFEREN L/ 1.430E+01		XA-XE)/S) > ' 2.584E+01	THRESHOLD 257-1/ 2		ID/DIFFEREN	CE)
5	114.59647	2	78.10699	5	-0.988	1.978E-01	234
	LATIVE DEVIA: 1/-1.978E-01		A/RMSA-XE/RM ' 1.382E-01).00% ; () 853E-01	GRID ID/DEVI 255-1/-1.	

```
SCALED DIFFERENCES ( (XA-XE)/S ) > THRESHOLD : (GRID ID/DIFFERENCE)
                   244-1/ 3.846E+01 245-1/ 3.990E+01 255-1/ 3.214E+01
  234-1/ 1.738E+01
                                         5
       129.79146
                            69.11099
                                                         1.871E+00
                                                -0.462
    RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) >
                                             10.00% : (GRID ID/DEVIATION)
  234-1/-1.192E+00
                     244-1/-1.871E+00 245-1/ 5.432E-01 255-1/-3.838E-01
  257-1/ 1.195E-01
    SCALED DIFFERENCES ( (XA-XE)/S ) > THRESHOLD : (GRID ID/DIFFERENCE)
  234-1/-3.145E+00
                     244-1/-5.217E+00
                                        245-1/ 1.041E+01
                                                           255-1/ 4.545E-01
  257-1/ 3.925E+00
       142.88834
 7
                            69.11099
                                         5
                                                -0.996
                                                         1.320E-01
                                                                      257
    RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) >
                                             10.00% : (GRID ID/DEVIATION)
  255-1/-1.081E-01
                    257-1/-1.320E-01
    SCALED DIFFERENCES ( (XA-XE)/S ) > THRESHOLD : (GRID ID/DIFFERENCE)
  255-1/ 6.456E+02
                   257-1/ 7.248E+02
 R
       149.14456
                     1
                            69.11099
                                        5
                                                -0.994
                                                         2.007E-01
                                                                      234
    RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) >
                                             10.00% : (GRID ID/DEVIATION)
  234-1/-2.007E-01
    SCALED DIFFERENCES ( (XA-XE)/S ) > THRESHOLD : (GRID ID/DIFFERENCE)
  234-1/ 1.003E+02
       151.10686
                           112.99900
                                        5
                                                -0.962
                                                         4.537E-01
                                                                     255
    RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION)
  234-1/ 1.278E-01
                   245-1/·1.950E-01 255-1/-4.537E-01 257-1/ 3.481E-01
    SCALED DIFFERENCES ( (XA-XE)/S ) > THRESHOLD : (GRID ID/DIFFERENCE)
  234-1/-3.247E+00
                    245-1/-4,100E+00
                                       255-1/-1.771E+00 257-1/-1.181E+00
10
       161.48643
                           112.99900
                                        5
                                               -0.961
                                                        3.907E-01
                                                                     257
   RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) >
                                             10.00% : (GRID ID/DEVIATION)
                    244-1/ 3.064E-01 255-1/-1.722E-01 257-1/-3.907E-01
  234-1/-3.256E-01
    SCALED DIFFERENCES ( (XA-XE)/S ) > THRESHOLD : (GRID ID/DIFFERENCE)
  234-1/-3.297E+00
                    244-1/-4.434E+00
                                       255-1/-1.618E+00
                                                          257-1/~1.434E+00
```

0.971

3.647E-01

255

69.11099

THE RESERVE THE PARTY OF THE PA

11

166.98642

- RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/1.162E-01 245-1/-1.864E-01 255-1/3.647E-01 257-1/3.218E-01
- SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-7.006E+01 245-1/-1.597E+02 255-1/-1.795E+01 257-1/-3.023E+01
- 12 176.36118 4 112.99900 5 0.526 2.016E+00 245
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 2.151E-01 244-1/-1.592E-01 245-1/ 2.016E+00 255-1/-5.754E-01 257-1/ 5.240E-01
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 1.046E+00 244-1/ 1.452E+00 245-1/ 1.564E+00 255-1/ 4.019E-01 257-1/ 4.853E-01
- 13 186.91260 7 228.02299 5 -0.962 3.708E-01 257
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/-1.529E-01 244-1/ 1.779E-01 245-1/-2.851E-01 255-1/ 3.233E-01 257-1/-3.708E-01
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-4.837E+00 244-1/ 6.055E-02 245-1/ 6.729E-01 255-1/ 4.525E+00 257-1/ 3.404E+00
- 14 203.15198 8 361.69601 5 -0.596 1.464E+00 234
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 1.464E+00 244-1/ 7.515E-01 245-1/-7.987E-01 255-1/-5.376E-01 257-1/ 6.349E-01
- 15 213.22792 8 361.69601 5 0.575 1.626E+00 234
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%: (GRID ID/DEVIATION) 234-1/-1.626E+00 244-1/-7.567E-01 245-1/6.682E-01 255-1/4.587E-01 257-1/-6.136E-01
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-1.616E+00 244-1/-1.088E-01 245-1/ 6.512E-02 255-1/ 1.080E+00 257-1/-1.111E+00
- 16 215.39307 8 361.69601 5 0.534 1.726E+00 234

- RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%; (GRID ID/DEVIATION) 234-1/-1.726E+00 244-1/-7.268E-01 245-1/6.917E-01 255-1/5.012E-01 257-1/-6.491E-01
- SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-1.431E+00 244-1/ 2.724E-01 245-1/-2.675E-01 255-1/ 1.293E+00 257-1/-1.250E+00
- 17 220.52661 5 164.46001 5 0.941 4.653E-01 244
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/-3.993E-01 244-1/ 4.653E-01 257-1/ 4.484E-01
- 18 225.21062 1 69.11099 5 0.993 1.503E-01 244
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 1.279E-01 244-1/-1.503E-01 255-1/ 1.382E-01
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-8.470E+01 244-1/-1.720E+02 255-1/-5.054E+01
- 19 228.89180 1 69.11099 5 0.961 4.079E-01 245
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 1.846E-01 244-1/ 3.802E-01 245-1/-4.079E-01 255-1/ 2.142E-01
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-3.699E+01 244-1/-4.916E+01 245-1/-1.082E+02 255-1/-1.950E+01
- 20 237.16388 5 164.46001 5 -0.963 4.412E-01 245
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/-1.440E-01 244-1/-3.758E-01 245-1/ 4.412E-01
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 7.447E+00 244-1/ 1.071E+01 245-1/ 1.850E+01
- 21 241.98906 5 164.46001 5 -0.402 2.383E+00 245
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%: (GRID ID/DEVIATION) 234-1/1.136E-01 245-1/-2.383E+00 255-1/4.441E-01 257-1/-2.900E-01

22 244.96683 7 228.02299 5 -0.576 1.290E+00 255 RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%; (GRID ID/DEVIATION) 244-1/ 1.069E+00 234-1/-4.072E-01 245-1/-1.123E+00 255-1/ 1.290E+00 SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 245-1/ 1.399E-02 255-1/ 1.615E+00 234-1/-1.553E+00 244-1/ 2.123E-01 225.84801 5 -0.715 23 246.43697 1.142E+00 234 RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 244-1/-8.476E-01 245-1/ 8.765E-01 255-1/-2.123E-01 234-1/-1.142E+00 257-1/ 1.1/5E-01 SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 244-1/-1.216E-01 245-1/ 3.905E-01 255-1/ 1.124E+00 234-1/-2.057E+00 257-1/ 1.002E+00 24 259.52542 8 361.69601 S 0.364 1.895E+00 234 RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/-1.895E+00 244-1/-8.343E-01 245-1/ 7.344E-01 255-1/ 8.610E-01 257-1/-8.887E-01 SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234~1/-1.635E+00 244-1/-2.462E-01 245-1/ 1.926E-01 255-1/ 1.135E+00 257-1/-1.103E+00 25 267.75790 361.69601 R 5 -0.337 1.970E+00 234 RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 1.970E+00 244-1/ 8.220E-01 245-1/-7.023E-01 255-1/-9.740E-01 257-1/ 7.927E-01 SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 2.781E+00 244-1/ 1.894E+00 245-1/-1.668E+00 255-1/-7.808E-01 257-1/ 5.379E-01 26 228.02299 276.53268 7 5 0.912 6.383E-01 245 RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 257-1/ 2.610E-01 245-1/ 6.383E-01 255-1/~6.327E-01 SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 245-1/-4.325E-01 255-1/-3.131E+00 257-1/-2,387E+00

5

0.754

1.107E+00

234

78.10699

27

277.09586

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 245-1/ 1.035E+00 234-1/ 1.107E+00

255-1/-3.451E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 4.357E+00 244-1/-9.549E+00 245-1/ 1.981E+00 255-1/-1.196E+01

28 287.65622 361.69601 5 -0.400 Я 1.903E+00 234

244-1/-1.991E-01

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%; (GRID ID/DEVIATION) 234-1/ 1.903E+00 244-1/ 8.008E-01 245-1/-6.998E-01 255-1/-9.072E-01 257-1/ 6.519E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 4.232E+00 244-1/ 4.260E+00 245-1/-3.861E+00 255-1/ 2.393E-02 257-1/-6.488E-01

29 298.01370 225.84801 5 0.961 6 4.744E-01 234

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 244-1/ 1.119E-01 255-1/ 1.538E-01 234-1/ 4.744E-01 257-1/ 3.453E-01

SCALED PIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 255-1/ 5.829E-01 234-1/ 1.703E+00 244-1/ 4.127E-01 257-1/ 1.277E+00

30 228.02299 0.979 328.46564 7 5 3.031E-01 257

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 244-1/ 2.321E-01 257-1/ 3.031E-01 234-1/ 2.192E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 2.075E+00 244-1/ 9.637E-01 257-1/ 3.996E-01

31 331.68781 228.02299 0.964 4.343E-01 234

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 4.343E-01 244-1/ 1.634E-01 245-1/-1.717E-01 255-1/ 1.011E-01 257-1/ 3.285E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 4.766E+00 244-1/ 1.005E-01 245-1/-8,296E-01 255-1/-4.088E+00 257-1/-3.117E+00

32 338.71780 3 95.35100 0.431 2.228E+00 5 245

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 4.634E-01 244-1/-4.797E-01 245-1/ 2.228E+00 255-1/ 1.077E-01 257-1/ 5.222E-01

7 X (1., X ? X .) J . 383 Y . .

- SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-5.728E-02 244-1/-2.912E+00 245-1/ 4.001E+00 255-1/-9.730E-01 257-1/ 1.745E-01
- 33 346.99429 7 228.02299 5 -0.306 1.561E+00 245
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%; (GRID ID/DEVIATION) 234-1/-6.545E-01 244-1/1.064E+00 245-1/-1.561E+00 255-1/1.459E+00 257-1/9.013E-01
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-1.449E+00 244-1/ 8.258E-02 245-1/ 1.038E-01 255-1/ 1.403E+00 257-1/ 1.101E+00
- 34 355.75574 8 361.69601 5 0.815 1.242E+00 257
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%; (GRID ID/DEVIATION) 234-1/-2.168E-01 244-1/-2.589E-01 245-1/ 2.124E-01 255-1/-3.909E-01 257-1/-1.242E+00
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GR.D ID/DIFFERENCE) 234-1/-1.312E+00 244-1/ 5.981E-01 245-1/-5.989E-01 255-1/ 1.383E+00 257-1/-2.116E+00
- 35 383.08267 7 228.02299 5 0.431 1.747E+00 257
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%; (GRID ID/DEVIATION) 234-1/3.683E-01 244-1/-1.352E+00 245-1/6.752E-01 255-1/-4.676E-01 257-1/-1.747E+00
- 36 394.6-1056 8 361.69601 5 0.756 1.308E+00 244
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%; (GRID ID/DEVIATION) 234-1/-1.235E-01 244-1/ 1.308E+00 245-1/-5.998E-01 255-1/ 3.757E-01 257-1/ 4.632E-01
- 37 400.54910 7 228.02299 5 -0.997 1.568E-01 244

 RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION)

(4)

244-1/-1.5681-01

SCALED DIFFERENCES ((XA-XE)/S) > "THRESHOLD : (GRID ID/DIFFERENCE) 244-1/-1.598E-01

- 38 401.79816 2 78.10699 9 -0.958 4.568E-01 245
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEWIATION) 234-1/-3.745E-01 244-1/-2.143E-01 245-1/ 4.568E-01 257-1/-1.688E-02
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GLID ID/DIFFERENCE) 234-1/-2.346E-01 244-1/ 1.404E+00 245-1/ 5.543E+00 257-1/ 1.9343+00
- 39 411.57516 8 361.69601 \$ -0.511 1.362E+00 245

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%: (GRID ID/DEVIATION) 234-1/-6.936E-01 244-1/-1.345E+00 245-1/ 1.362E+00 255-1/-7.729E-01 257-1/ 3.877E-01

- 40 423.17868 8 361.69601 5 -0.957 5.475E-01 234
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/5.475E-01 244-1/2.781E-01 245-1/-2.173E-01
- 41. 462.40714 8 361.69601. 5 0.943 5.112F:01 244

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRAD ID/DEVIATION) 234-1/ 2.562E-01 244-1/ 5.118E-01 245-1/-4.861E-01

42 466.88409 8 361.69601 5 -0.870 9.348E-01 245

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/-4.404E-01 244-1/-4.085E-01 245-1/ 9.348E-01 255-1/-2.553E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-9.477E-01 244-1/-8.201E-01 245-1/ 1.908E+00 255-1/-4.763E-01

(

43 473.97006 8 361.69601 5 -0.950 5.011E-01 244

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 244-1/ 5.011E-01 245-1/-2.250E-01 255-1/-3.669E-01 257-1/ 2.301E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 244-1/-1.464E-02 245-1/ 4.715E-01 255-1/-2.585E+00 257-1/ 2.183E+00

44 476.45245 8 361.69601 5 -0.795 1.302E+00 244

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 1.234E-01 244-1/-1.302E+00 245-1/ 5.608E-01 255-1/ 1.600E-01

45 487.65427 8 361.69601 5 0.946 5.167E-01 245

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 4.123E-01 244-1/ 2.499E-01 245-1/-5.167E-01 255-1/ 2.058E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 2.616E+00 244-1/ 4.199E-01 245-1/-1.514E+00 255-1/-4.404E-01

46 494.91333 8 361.69601 5 0.957 4.386E-01 245

RELATIVE FIVIATIONS (XA/RMSA-XE/RMSE) > 10.00%; (GRID ID/DEVIATION) 234-1/4.023E-01 244-1/1.726E-01 245-1/-4.386E-01 255-1/2.224E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 1.448E+01 244-1/-3.542E+00 245-1/-3.938E-02 255-1/-9.586E+00

47 504.73672 8 361.69601 5 -0.660 1.438E+00 255

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 244-1/ 1.999E-01 245-1/ 1.002E+00 255-1/-1.438E+00 257-1/-5.369E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 244-1/-3.375E-01 245-1/ 1.033E+00 255-1/-1.835E+00 257-1/ 5.864E-01

48 508.80789 8 361.69601 5 0.547 1.649F+00 255

RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION) 234-1/ 3.762E-01 244-1/-8.422E-01 245-1/-9.169E-01 255-1/ 1.649E+00 257-1/-3.427E-01

8CALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-8.649E-01 244-1/ 3.842E-01 245-1/-7.889E-01 255-1/ 1.667E+00 257-1/-1.247E+00

NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL CORRELATION 21-NOV-83

5. EXPERIMENTAL MODE SHAPES AND THEIR BEST ANALYTICAL MATCHES:

TEST MODE	TEST FREQUENCY		NASTRAN FREQUENCY			MAX REL DIFFERENC	GRID POINT
ı	69.11099	7	142.88834	5	-0.996	1.320E-01	257
255-	ELATIVE DEVI -1/-1.081E-0	ATIONS (X 1 257-1	A/RMSA-XE/R /-1.320E-01	MSE) > 1	LO.00% : (GRID ID/DEV	IATION)
	CALED DIFFER -1/ 6.456E+0				LD : (GRID	ID/DIFFERE	NCE)
2	78.10699	4	93.68313	5	-0.989	1.799E-01	244
234	ELATIVE DEVI -1/-1.252E-0 -1/-1.226E-0	1 244-1					
234	CALED DIFFER -1/ 3.614E+0 -1/ 5.509E+0	1 244-1					
3	95.35100	4	93.68313	5	-0.991	2.363E-01	234
	ELATIVE DEVI -1/-2.363E-0		A/RMSA-XE/R / 1.033E-01			GRID ID/DEV	IATION)
	CALED DIFFER -1/ 1.430E+0						NCE)
4	112.99900	7	142.88834	5	-0.985	2.519E-01	245
	ELATIVE DEVI -1/-2.369E-0						
	CALED DIFFER -1/ 2.785E+0						
5	164.46001	20	237.16388	5	-0.963	4.412E-01	245
	ELATIVE DEVI						(MOTEM)

234-1/-1.440E-01 244-1/-3.758E-01 245-1/ 4.412E-01

SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/ 7.447E+00 244-1/ 1.071E+01 245-1/ 1.850E+01

A STATE OF THE PROPERTY OF THE PARTY OF THE

- 6 225.84801 37 400.54910 5 -0.986 2.857E-01 245
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%: (GRID ID/DEVIATION) 234-1/-1.719E-01 244-1/ 1.032E-01 245-1/-2.857E-01 257-1/-1.082E-01
 - SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 234-1/-8.159E+00 244-1/ 1.411E+00 245-1/-2.381E-01 257-1/ 4.829E+00
- 7 228.02299 37 400.54910 5 -0.997 1.568E-01 244
- RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00% : (GRID ID/DEVIATION)
 244-1/-1.568E-01
- SCALED DIFFERENCES ((XA-XE)/S) > THRESHOLD : (GRID ID/DIFFERENCE) 244-1/-1.598E-01
- 8 361.69601 40 423.17868 5 -0.957 5.475E-01 234
 - RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > 10.00%: (GRID ID/DEVIATION) 234-1/5.475E-01 244-1/2.781E-01 245-1/-2.173E-01

APPENDIX D. FORTRAN SOURCE CODE LISTING (TESETDMI.FOR)

```
PROGRAM TESETDMI
 THIS PROGRAM WILL GENERATE THE TESET MATRIX DMI INPUT TO INSERT INTO
 THE NASTRAN BULK DATA, FOR USE IN PARTITIONING THE PHIG MATRIX TO
 OBTAIN THE PHITE MATRIX.
 INPUT FILES:
        EXTERNAL GRIDPOINT AND DOF FILE - CONTAINS THE GRIDPOINT ID'S
        AND THEIR ASSOCIATED DOF COMPONENTS. CREATED BY THE USER WITH
        ALL ENTRIES IN LIST-DIRECTED (FREE-FIELD) FORMAT.
        ENTRIES ARE INSERTED IN GPID, DOF PAIRS, ONE PAIR FOR EACH
        GRIDPOINT AND DOF-COMPONENT WHICH IS INSTRUMENTED IN THE
        MODAL SURVEY.
        NASTRAN PRINT FILE WITH DIAG 21 OUTPUT.
PARAMETER (MAXMSDOF=1000) !MAXIMUM NO. OF MODAL SURVEY GPID-DOF'S
 INTEGER GPLIST(MAXMSDOF), GPDOF(MAXMSDOF), INTDOF(MAXMSDOF)
 INTEGER IDOF, EGP, EDOF, G
 CHARACTER REC*120, MSG2118*52, ENDOF21*37
CHARACTER*40 D21FILE, MSGPFILE, DMIFILE
DATA MSG2118 / '*** USER INFORMATION MESSAGE 2118, SUBROUTINE GP4PRT'/
DATA ENDOF21 /' ---- C O L U M N
                                     TOTALS ----'/
C GET NASTRAN DIAG 21 PRINT FILE
 TYPE 1000, 'FILENAME OF NASTRAN PRINT FILE WITH DIAG 21:'
ACCEPT 2000, D21FILE
 OPEN(UNIT=2,NAME=D21FILE,TYPE='OLD',READONLY)
C GET MODAL SURVEY GRID-POINT LIST FILE
 TYPE 1000, 'FILENAME OF MODAL SURVEY GRIDPOINT LIST:'
ACCEPT 2000, MSGPFILE
 OPEN(UNIT=1,NAME=MSGPFILE,TYPE='OLD',READONLY)
C GET TESET DMI FILENAME
 TYPE 1000, 'FILENAME FOR TESET DMI BULK DATA RECORDS:'
 ACCEPT 2000, DMIFILE
C READ MODAL SURVEY GPID-DOF LIST
READ(1,*,END=10) (GPLIST(I),GPDOF(I),I=1,MAXMSDOF)
         CLOSE(UNIT=1)
C COUNT AND PACK MODAL SURVEY GPID-DOF'S
 I = 1
 DO WHILE (GPLIST(I) .NE. 0)
    GPLIST(I) = 10*GPLIST(I) + GPDOF(I)
     I = I+1
     IF (I .GT. MAXMSDOF) GOTO 20
```

```
END DO
20
          NDOFS = I-1
C SORT GPID-DOF LIST
DO 100 I=1,NDOFS-1
 DO 100 J=I+1,NDOFS
     IF (GPLIST(J) .LT. GPLIST(I))
          CALL SWAP(GPLIST(I), GPLIST(J))
 1
          END DO
100
C FIND DIAG 21 IN PRINT FILE
DO WHILE (REC(1:52) .NE. MSG2118)
     READ(2,3000,END=910) REC
END DO
C MATCH INTERNAL DOF'S (FROM DIAG 21) WITH MODAL SURVEY GPID-DOF'S
DO 300 WHILE (REC(1:37) .NE. ENDOF21)
READ(2,3000,END=920) REC
     IF (REC(35:35) .NE. '-')
                                  GOTO 300
     READ(REC, 4000, ERR=300) IDOF, EGP, EDOF
     G = IDOF
     EGP = 10 \times EGP + EDOF
                              IPACK G.P. AND DOF
              CHECK FOR EGP IN MODAL SURVEY LIST
C
          CALL BINSRCH( EGP, GPLIST, NDOFS, LOC )
          IF (LOC .NE. 0) INTDOF(LOC) = IDOF
300
          END DO
CLOSE(UNIT=2)
C SORT LISTS ON INTERNAL DOF VALUE
DO 400 I=1,NDOFS-1
DO 400 J=I+1,NDOFS
     IF (INTDOF(J) .LT. INTDOF(I)) THEN
    CALL SWAP( INTDOF(I) , INTDOF(J) )
    CALL SWAP( GPLIST(I) , GPLIST(J) )
     END IF
          END DO
400
C UNPACK GPID-DOF'S
DO N=1,NDOFS
     GPDOF(N) = MOD(GPLIST(N), 10)
     GPLIST(N) = GPLIST(N) / 10
END DO
C CHECK FOR G.P.'S WITHOUT INTERNAL DOF MATCH
N = 1
DO WHILE ((INTDOF(N) .EQ. 0) .AND. (N .LE. NDOFS))
     TYPE 5000, GPLIST(N), GPDOF(N)
     N = N+1
     IF (N .GT. MAXMSDOF)
                              GOTO 500
END DO
500
          IF (N .GT. NDOFS)
                               THEN
     TYPE *, 'ERROR - NO INTERNAL DOF FOR ANY MODAL SURVEY POINT'
```

```
STOP 'FORTRAN STOP -- EXECUTION ABORTED'
 END IF
 NSTART = N
C WRITE DMI BULK DATA RECORDS
 OPEN(UNIT=3,NAME=DMIFILE,TYPE='NEW',CARRIAGECONTROL='LIST')
 WRITE(3,6000) 0,2,1,1,G,1
 ISE0 = 1
 IF (NDOFS .GT. NSTART+2) THEN
      WRITE(3,7000) 1,
           (INTDOF(N), GPLIST(N), GPDOF(N), N=NSTART, NSTART+2), ISEO
 ELSE
      NT = NDOFS - NSTART + 1
      WRITE(3,8000) 1,(INTDOF(N),GPLIST(N),GPDOF(N),N=NSTART,NDOF)
 END IF
 I = NSTART + 3
 DO WHILE (I .LE. NDOFS)
      IF (NDOFS .GT. I+3)
                               THEN
          WRITE(3,9000) ISEQ,
               (INTDOF(N), GPLIST(N), GPDCF(N), N=I, I+3), ISEO+1
 1
           ISEO = ISEO + 1
      ELSE
          NT = NDOFS - I + I
          WRITE(3,10000) ISEQ,
 1
                (INTDOF(N), GPLIST(N), GPDOF(N), N=I, NDOFS)
      END IF
      I = I + 4
 END DO
 CLOSE(UNIT=3)
 STOP 'FORTRAN STOP -- PROCESSING COMPLETED'
C
910
          TYPE *, 'NO DIAG 21 OUTPUT FOUND IN NASTRAN PRINT FILE.'
 STOP 'FORTRAN STOP -- EXECUTION ABORTED'
          TYPE *, 'END-OF-FILE WHILE READING NASTRAN DIAG 21 OUTPUT'
 STOP 'FORTRAN STOP -- EXECUTION ABORTED'
1000
          FORMAT(1X,A,'',$)
2000
          FORMAT(A)
          FORMAT(1X,A120)
3000
          FORMAT(122,111,2X,12)
4000
5000
          FORMAT(' WARNING - NO INTERNAL DOF FOR GRID POINT', 19,'-',11)
          FORMAT('DMI',5X,'TESET',3X,418,8X,218)
FORMAT('DMI',5X,'TESET',3X,18,3(18,16,'.',11),'+TE',15.5)
FORMAT('DMI',5X,'TESET',3X,18,<NT>(18,16,'.',11))
FORMAT('+TE',15.5,4(18,16,'.',11),'+TE',15.5)
FORMAT('+TE',15.5,<NT>(18,16,'.',11))
6000
7000
8000
9000
10000
 END
```

```
SUBROUTINE BINSRCH(IV,LIST,L,LOC)
PERFORM BINARY SEARCH FOR VALUE IV IN LIST.
LIST MUST LE IN ASCENDING SORT.
LOCATION OF IV IS RETURNED IN LOC. IF IV IS NOT FOUND, LOC=0 IS RETURNED.
DIMENSION LIST(*)
LOC = 0
IF (L .LT. 1) RETURN
LBTM = 1
LTOP = L
DO WHILE (LTOP-LBTM .GT. 1)
    LMID = (LBTM+LTOP) / 2
IF (IV .LT. LIST(LMID))
ETOP = LMID
                                  THEN
    ELSE IF (IV .GT. LIST(LMID))
         LBTM = LMID
    ELSE
         LOC = LMID
         RETURN
    END IF
END DO
IF (IV .EQ. LIST(LBTM))
    LOC = LBTM
ELSE IF (IV .EQ. LIST(LTOP))
                                   THEN
    LOC = LTOP
END IF
RETURN
END
```

```
SUBROUTINE SWAP(I,J)

C
K=I
I=J
J=K
RETURN
END
```

Control of the Contro

APPENDIX E. FORTRAN SOURCE CODE LISTING (LAMA.FOR)

```
PROGRAM LAMATABLE
C
      PARAMETER (MAXEIG = 300)
C
      CHARACTER LAMA*8
      REAL FREQ(MAXEIG), GMASS(MAXEIG), STIFF(MAXEIG), SYMM(3)
      REAL REC2(7*MAXEIG)
C
      DATA LUNP, LUNM /1 , 2/ !! PUNCH AND MATRIX FILE LOG UNIT
C
      POSITION PUNCH FILE TO 1ST CARD OF RECORD 2 OF LAMA TABLE
C
   CALL FINDREC2(LUNP, LAMA)
C
      READ RECORD 2 OF LAMA TABLE INTO ARRAY REC2
   CALL READREC2(REC2, NVALUES, LUNP, MAXEIG)
EXTRACT FREQUENCY, MASS, AND STIFFNESS VECTORS FROM REC2
   NEIGENS = NVALUES/7
   DO 100 I=1, NEIGENS
       FREQ(I) = REC2(7*I-2)
       GMASS(I) = REC2(7*I-1)
       STIFF(I) = REC2(7*I)
2.00
                CONTINUE
      DO ASCENDING SORT OF FREQ VECTOR; SLAVE SORT MASS AND STIFF VECTORS
   CALL SORT(NEIGENS, FREQ, GMASS, STIFF)
C
      CHECK PUNCH FILE FOR SYMMETRY PARAMETERS
   CALL READSYM(SYMM, LUNP)
      CLOSE PUNCH FILE
C
   CLOSE(UNIT=LUNP)
      WRITE MATRIX FILE
   CALL WRITEMTX(NEIGENS, FREQ, GMASS, STIFF, SYMM, LUNM, LAMA)
      STOP
      END
```

```
SUBROUTINE FINDREC2(LUNP, LAMA)
C
       CHARACTER PFILE *80, LAMA *8, LINE *80
       OPEN PUNCH FILE
                          'ENTER INPUT PUNCH FILE NAME:'
10
            TYPE 1000,
   ACCEPT 2000, PFILE
   OPEN(UNIT=LUNP, NAME=PFILE, TYPE='OLD', READONLY, ERR=10)
C
       POSITION FILE TO LAMA TABLE
   TYPE 1000, 'ENTER NAME OF LAMA TABLE:'
   ACCEPT 3000, LAMA
DO 100 I=1,1000000
READ(LUNP,2000,END=125) LINE
        IF ((LINE(1:4).EQ.'DTI*') .AND. (LINE(9:16).EQ.LAMA))
GOTO 150 | | LAMA TABLE FOUND
                 CONTINUE
100
C
             TABLE NOT FOUND; START OVER
125
                 TYPE *, '*** LAMA TABLE NOT FOUND'
        CLOSE(UNIT=LUNP)
        GOTO 10
       POSITION PUNCH FILE TO RECORD 2 OF LAMA TABLE
150
            DO 200 I=1,1000000
        READ(LUNP, 4000, END=225) LINE(1:24), IREC
        IF ((LINE(1:4).EQ.'DTI*') .AND. (LINE(9:16).EQ.LAMA) .AND. (IREC.EQ.2)) GOTO 250 | | RECORD
                                                           11 RECORD 2 FOUND
200
                 CONTINUE
            RECORD 2 NOT FOUND; START OVER
TYPE *, '**** RECORD 2 OF LAMA TABLE NOT FOUND'
225
        CLOSE(UNIT=LUNP)
        GOTO 10
            POSITION FILE TO REREAD 1ST CARD OF RECORD 2
250
                 BACKSPACE LUNP
       RETURN
1000
      FORMAT(1X,A30,1X,$)
2000
      FORMAT(A80)
3000
      FORMAT(A8)
4000
      FORMAT(A24, 116)
       END
```

```
SUBROUTINE READREC2(IREC2, NVALUES, LUNP, MAXEIG)
C
      INTEGER IREC2(7*MAXEIG), ITEMP(4)
      CHARACTER*6 CTEMP(4)
      READ 1ST CARD OF LAMA TABLE RECORD 2
   READ(LUNP, 1000) IREC2(1), IREC2(2)
   NVALUES = 2
      READ REMAINING CARDS UNTIL 'ENDREC' FOUND
   DO 200 I=1,1000000
       READ(LUNP, 2000, END=225) (CTEMP(J), ITEMP(J), J=1,4)
       DO 100 J=1,4
            IF (CTEMP(J) .EQ. 'ENDREC') GOTO 250
           NVALUES = NVALUES + 1
            IREC2(NVALUES) = ITEMP(J)
            IF (CTEMP(J)(6:6) .EQ. '..')
                        IREC2(NVALUES) = -IREC2(NVALUES)
            IF (NVALUES .EQ. 7*MAXEIG) GOTO 225
100
                    CONTINUE
200
                CONTINUE
           END OF RECORD 2 OF LAMA TABLE NOT FOUND
225
                TYPE 3000, NVALUES
       PAUSE 'TYPE "CONTINUE" OR "STOP"'
      CHECK TO SEE IF
                         OF RECORD 2 ENTRIES IS DIVISIBLE BY 7
250
           IF (MOD(NVALUES,7) .NE. 0) TYPE 4000, NVALUES
      RETURN
1000
      FORMAT(40X,2116)
      FORMAT(8X,4(A6,110))
2000
     FORMAT(1X,'*** WARNING: END OF RECORD 2 NOT REACHED.',

'1X,' NUMBER OF ENTRIES READ: ',14)
                               NUMBER OF ENTRIES READ: ',14)
     FORMAT(1X,'*** WARNING:
4000
                                  OF RECORD 2 ENTRIES', 14,
                 ' NOT DIVISIBLE BY 7')
      END
```

```
(
```

```
SUBROUTINE READSYM(SYMM,LUNP)
C
       CHARACTER*80 RECORD
       REAL SYMM(3)
       LOGICAL LSYM1, LSYM2, LSYM3
C
       REWIND LUNP
                       ISTART SEARCH FROM TOP OF FILE
       SET SYMMETRY DEFAULTS
C
   SYMM(1) = 0.0
   SYMM(2) = 0.0
   SYMM(3) = 0.0
       SEARCH PUNCH FILE FOR SYMMETRY DEFINITION RECORDS
   DO 100 I=1,1000000
        READ(LUNP, 1000, END=150) RECORD
        IF (RECORD(21:28) .EQ. 'SYM1PLAN')
             LSYM1 = .TRUE.
DECODE(2,2000,RECORD(47:48)) SYMM(1)
        TYPE *, 'PLANE 1 SYMMETRY:', SYMM(1)
ELSF IF (RECORD(21:28) .EQ. 'SYM2PLAN')
             LSYM2 = .TRUE.
             DECODE(2,2000,RECORD(47:48)) SYMM(2)
TYPE *, 'PLANE 2 SYMMETRY:', SYMM(2)
        ELSE IF (RECORD(21:28) .EQ. 'SYM3PLAN')
             LSYM3 = .TRUE.
             DECODE(2,2000,RECORD(47:48)) SYMM(3)
             TYPE *, 'PLANE 3 SYMMETRY:', SYMM(3)
        END IF
100
                  CONTINUE
C
       REPORT NON-DEFINED SYMMETRY
   IF (.NOT. LSYM1) TYPE 3000, '1'
IF (.NOT. LSYM2) TYPE 3000, '2'
IF (.NOT. LSYM3) TYPE 3000, '3'
150
       RETURN
      FORMAT(A80)
1000
      FORMAT(F2.0)
2000
3000
      FORMAT(1X,'PLANE ',A1,' SYMMETRY NOT SPECIFIED')
```

```
active and a second and an experience are supported as the second and a second and the second and the second as th
```

```
SUBROUTINE SORT(N, FREQ, GMASS, STIFF)
C
      REAL FREQ(N), GMASS(N), STIFF(N)
CCCC
      PERFORM ASCENDING SORT OF FREO VECTOR
      SLAVE SORT GMASS AND STIFF VECTORS
      IF (N .EQ. 1) RETURN
C
      DO 100 I=1,N-1
DO 100 K=I+1,N
   IF (FREQ(K) .LT. FREQ(I))
          TEMP = FREO(I)
          FREO(I) = FREO(K)
          FREO(K) = TEMP
          TEMP = GMASS(I)
          GMASS(I) = GMASS(K)
          GMASS(K) = TEMP
          TEMP = STIFF(I)
          STIFF(I) = STIFF(K)
          STIFF(K) = TEMP
          END IF
100
            CONTINUE
      RETURN
      END
      SUBROUTINE WRITEMTX(N, FREQ, GMASS, STIFF, SYMM, LUNM, LAMA)
C
      CHARACTER MFILE*40, LAMA*8
      REAL FREQ(N), GMASS(N), STIFF(N), SYMM(3)
C
C
      OPEN MATRIX FILE
           TYPE 1000, 'ENTER OUTPUT MATRIX FILENAME:'
   ACCEPT 2000, MFILE
   OPEN(UNIT=LUNM, NAME=MFILE, TYPE='NEW',
                  CARRIAGECONTROL='LIST')
C
      WRITE MATRIX FILE HEADER
   IROWS = N
   JCOLS = 6
   WRITE(LUNM, 3000) LAMA, IROWS, JCOLS
      WRITE VECTORS AS THREE COLUMNS OF MATRIX
                               II COLUMN 1
   WRITE(LUNM, 4000) FREQ
   WRITE(LUNM, 4000) GMASS | COLUMN 2
WRITE(LUNM, 4000) STIFF | COLUMN 3
WRITE(LUNM, 4000) (SYMM(1), I=1, N) | COLUMN 4
                                        II COLUMN 5
   WRITE(LUNM, 4000) (SYMM(2), I=1, N)
   WRITE(LUNM, 4000) (SYMM(3), I=1, N)
                                        II COLUMN 6
      CLOSE(UNIT=LUNM)
      RETURN
1000 FORMAT(1X,A30,1X,$)
2000 FORMAT(A40)
3000 FORMAT(A8,218)
4000 FORMAT(1PE16.8)
      END
```

APPENDIX F. FORTRAN SOURCE CODE LISTING (UNPACKDMI.FOR)

```
PROGRAM UNPACKDMI
C
      PARAMETER (MAXMTXSIZ = 100000)
      CHARACTER MATNAM*8, FLAG*1, CONTID*3
      REAL ARRAY(MAXMTXSIZ)
      LOGICAL ALL, EOF
      DATA LUN / 10 /
C
      DO 500 NFILE=1,1000000
            GET NEXT FILENAME
C
        CALL GETFIL(LUN, *499)
           ALL = .FALSE.
   EOF = .FALSE.
DO 400 NMATRX=1,1000000
                 GET NEXT MATRIX NAME
C
            IF (.NOT. ALL) THEN TYPE 1000
                 ACCEPT 2000, MATNAM
                 IF (MATNAM .EQ. '*ALL
                                             ') ALL = .TRUE.
                 END IF
C
                 SEARCH FILE FOR MATRIX AND GET DIMENSIONS
            CALL FNDMTX(MATNAM, MROWS, NCOLS, CONTID, LUN, ALL, EOF)
            IF (EOF) GOTO 399
             IF (MROWS+NCOLS .GT. MAXMTXSIZ) THEN
                 TYPE *,'MATRIX IS TOO LARGE', MATNAM, MROWS, NCOLS
                 TYPE *, 'INCREASE PARAMETER MAXMIXSIZ IN UNPACKDMI'
                 GOTO 399
                 ENDIF
                 UNPACK MATRIX INTO ARRAY
C
            CALL UNPACK(ARRAY, MROWS, NCOLS, CONTID, LUN, ALL, EOF)
REDUCE SQUARE DIAGONAL MATRIX TO VECTOR ?
C
            IF (MROWS .EQ. NCOLS)
TYPE 6000, MATNAM
                                      THEN
                 ACCEPT 4000, FLAG
                 IF (FLAG .EQ. 'Y')
                               CALL REDUCE(MATNAM, ARRAY, MROWS, NCOLS)
                 END IF
C
                 WRITE UNPACKED MATRIX TO NEW FILE
             CALL WRIMIX (MAINAM, ARRAY, MROWS, NCOLS)
                 IS ANOTHER MATRIX IN THIS FILE DESIRED ?
C
                      IF (ALL .AND. EOF) GOTO 450
399
             IF (.NOT. ALL)
TYPE 3000
                              THE V
                 ACCEPT 4000, FLAG
                 IF (FLAG .NE. 'Y') GOTO 450
                 END IF
400
                 CONTINUE
             NO MORE MATRICES DESIRED FROM THIS FILE
С
                 CLOSE (UNIT=LUN)
450
```

```
IS ANOTHER FILE DESIRED ?
499
               TYPE 5000
       ACCEPT 4000, FLAG
       IF (FLAG .NE. 'Y')
                           GOTO 550
500
           CONTINUE
550
      STOP 'NO MORE FILES REQUESTED.'
1000
     FORMAT(' ENTER MATRIX NAME. ("*ALL" FOR ALL MATRICES): ',$)
3000
     FORMAT(A8)
     FORMAT(' DO YOU WANT ANOTHER MATRIX IN THIS FILE ? (Y OR N): ',$)
3000
4000
     FORMAT(A1)
     FORMAT(' DO YOU WANT ANOTHER FILE ? (Y OR N): ',$)
5000
     FORMAT(' REDUCE DIAG MATRIX ',A8,' TO A VECTOR ? (' OR N): ',$)
6000
     END
```

```
SUBROUTINE FNDMTX(MATNAM, MROWS, NCOLS, CONTID, LUN, ALL, EOF)
C
      CHARACTER MATNAM*8, RECORD*80, FLD1T03*24, CONTID*3
      LOGICAL ALL, EOF
C
      IF (.NOT. ALL)
                      THEN
          RÉWIND LUN
   EOF = .FALSE.
   END IF
      SEARCH FOR DESIRED MATRIX AND GET DIMENSIONS
   FLD1T03 = 'DMI
                      '//MATNAM//'
                                          0'
   DO 100 I=1,1000000
       READ(LUN,1000,END=199) RECORD
       IF (ALL) FLD1T03(9:16) = RECORD(9:16)
       IF (RECORD(1:24) .EQ. FLD1T03) THEN
           IF (ALL) MATNAM = RECORD(9:16)
           READ(RECORD, 2000) MROWS, NCOLS, CONTID
           CONTID(1:1) = '*'
           GOTO 150
       ENDIF
100
               CONTINUE
150
           RETURN
C
C
     END OF FILE; NEXT MATRIX NOT FOUND
199
          EOF = .TRUE.
   IF (ALL) TYPE *, 'END OF FILE REACHED'
   IF (.NOT. ALL) TYPE *, MATNAM, 'MATRIX HEADER CARD NOT FOUND'
  RETURN
1000
     FORMAT(A80)
2000
     FORMAT(56X,218,A3)
     END
```

```
SUBROUTINE GETFIL(LUN, *)
C
      CHARACTER FILNAM*40
C
      CET NEXT FILENAME
   TYPE 1000
ACCEPT 2000, FILNAM
      OPEN FILE
   OPEN(UNIT=LUN,NAME=FILNAM,TYPE='OLD',READONLY,ERR=199)
   RETURN
C
C
      NEW DMI FILE NOT FOUND
199
           TYPE *, FILNAM, 'FILE NOT FOUND'
1000
      FORMAT(' ENTER NAME OF NEXT DMI FILE: ',$)
      FORMAT(A40)
2000
      END
```

```
SUBROUTINE REDUCE(MATNAM, MATRIX, MROWS, NCOLS)
C
      CHARACTER*8 MATNAM
      REAL MATRIX(MROWS, NCOLS)
C
      CHECK FOR SQUARE MATRIX
   IF (MROWS .NE. NCOLS) THEN
       TYPE *, MATNAM, 'NOT A SQUARE MATRIX. NO REDUCTION DONE.'
       RETURN
       ENDIF
      REDUCE TO (1 X NCOL) ROW VECTOR USING DIAGONAL VALUES
   DO 100 N=1,NCOLS
       MATRIX(N,1) = MATRIX(N,N)
               CONTINUE
100
   MROWS = 1
   RETURN
      END
```

```
SUBROUTINE UNPACK(MATRIX, MROWS, NCOLS, CONTID, LUN, ALL, EOF)
C
      CHARACTER*72 RECORD
      CHARACTER*16 FLDID(2:5), CARDID*8, CONTID*3
      EQUIVALENCE ( RECORD(1:1), CARDID(1:1) )
      EQUIVALENCE ( RECORD(9:9), FLDID(2)(1:1) ) CHARACTER*6 FMT(6), REAL, INTGR, BLANK
      REAL MATRIX(MROWS, NCOLS)
      LOGICAL ALL, EOF
      DIMENSION VALUE(4), IVALUE(4)
      EQUIVALENCE (VALUE(1), IVALUE(1))
      DATA FMT(1)/'(8X,'/ , FMT(6)/'8X)'/
      DATA REAL/'E16.8,'/ ,
                               INTCR/'I16,'/ , BLANK/'A16,'/
      ZERO THE MATRIX
   DO 100 I=1,MROWS
   DO 100 J=1,NCOLS
       MATRIX(I,J) = 0.0
100
                CONTINUE
C
      PROCESS THE DMI CARDS FOR THIS MATRIX
   DO 400 K=1,1000000
       READ(LUN, 1000, END=425) CARDID, FLDID
                                 ') THEN
       IF (CARDID .EQ. 'DMI
                    THIS IS HEADER CARD OF NEXT MATRIX; THIS MATRIX DONE.
C
            IF (ALL)
                     BACKSPACE LUN
            GOTO 450
       ELSE IF (CARDID .EQ. 'DMI*
                                       ′)
                                          THEN
C
                    THIS IS A COLUMN IDENTIFIER CARD
            READ(RECORD, 2000) JCOL, IROW, VALUE(1)
           MATRIX(IROW, JCOL) = VALUE(1)
            IROW = IROW + 1
       ELSE IF (CARDID(1:3) .EO. CONTID) THEN
                    THIS IS A ROW/VALUE CARD
                    DETERMINE TYPE OF CONTENTS IN FIELDS 2:5
                DO 200 L=2,5
                    IF (FLDID(L)(13:13) .EQ. 'E') THEN
                        FMT(L) = REAL
                    ELSE IF (FLDID(L)(16:16) .EQ. '') THEN
                        FMT(L) = BLANK
                    ELSE
                        FMT(L) = INTGR
                    ENDIF
200
                            CONTINUE
                    READ CARD IN APPROPRIATE FORMAT
               READ(RECORD, FMT, ERR=201) VALUE
                    PROCESS FIELDS 2:5
201
                        DO 300 L=2,5
                    IF (FMT(L) .EQ. REAL) THEN
                        MATRIX(IROW, JCOL) = VALUE(L-1)
                        IROW = IROW + 1
                    ELSE IF (FMT(L) .EQ. INTGR)
                                                  THEN
```

ORIGINAL PAGE 19

IROW = IVALUE(L-1) ELSE IF (FMT(L) .EQ. BLANK) THEN CONTINUE ENDIF 300 CONTINUE ELSE C THIS IS A NON-DMI CARD; THIS MATRIX DONE READ(RECORD, 1000) CARDID, FLDID GOTO 450 ENDIF 400 CONTINUE END OF FILE 425 EOF = .TRUE. END OF MATRIX C RETURN 450 1000 FORMAT(A8,4A16) 2000 FORMAT(24X,2116,E16.8) END

O

```
SUBROUTINE WRTMTX(MATNAM, MATRIX, MROWS, NCOLS)
      CHARACTER MATNAM*8, NAME*12
      REAL MATRIX(MROWS, NCOLS)
Ç
      NAME = MATNAM//'.MTX'
      OPEN(UNIT=50, NAME=NAME, TYPE='NEW', CARRIAGECONTROL='LIST')
C
      WRITE HEADER RECORD TO ASCII FILE
   WRITE(50,1000) MATNAM, MROWS, NCOLS
Ç
      WRITE MATRIX TO ASCII FILE ( 1 VALUE PER RECORD )
   WRITE(50,2000) MATRIX
      CLOSE (UNIT=50)
      TYPE *, 'MATRIX FILE WRITTEN WITH MROWS, NCOLS:'
      TYPE +, NAME, MROWS, NCOLS
      RETURN
1000
      FORMAT(A8,218)
2000 FORMAT(1PE16.8)
      END
```

APPENDIX G. FORTRAN SOURCE CODE LISTING (GRDPTLST.FOR)

```
PROGRAM GRDPTLST
C
      THIS PROGRAM WILL READ THE TESET (DOF ID VS. GRID POINT ID)
      MATRIX FILE OBTAINED FROM THE NASTRAN PUNCH FILE AND GENERATE
      A GRID POINT ID LIST FILE, USING THE NON-ZERO ENTRIES OF THE
      TESET MATRIX.
      CHARACTER*35 MTXFIL, GPFIL, MTXNAME*8
C
      GET TESET MATRIX FILENAME
           TYPE 1000, 'ENTER GRID POINT ID MATRIX FILENAME:'
10
   ACCEPT 2000, MTXFIL
   OPEN(UNIT=1, NAME=MIXFIL, TYPE='OLD', READONLY, ERR=10)
   READ(1,3000) MTXNAME, MROWS, NCOLS
   IF (NCOLS .NE. 1) STOP 'ERROR: SHOULD BE ONLY ONE COLUMN'
      GET CRID POINT LIST FILENAME
   TYPE 1000, 'ENTER GRID POINT ID OUTPUT LIST FILENAME:'
   ACCEPT 2000, GPFIL
   OPEN(UNIT=2,NAME=GPFIL,TYPE='NEW',CARRIAGECONTROL='LIST')
      GENERATE LIST FILE FROM NON-ZERO MATRIX ENTRIES
   DO 100 MDOF=1,MROWS
       READ(1,5000) GRDPT
       IF (GRDPT .NE. 0.0)
                            THEN
           IGRDPT = INT(GRDPT)
           COMP = GRDPT - FLOAT(IGRDPT)
           ICOMP = NINT(10.0 \star COMP)
           IF (ICOMP .GT. 6) THEN
               IGRDPT = IGRDPT + 1
               ICOMP = 0
               END IF
           WRITE(2,6000) IGRDPT, ICOMP, MDOF
           NIDS = NIDS + 1
           END IF
100
               CONTINUE
      CLOSE(UNIT=1)
      CLOSE(UNIT=2)
      TYPE *, NIDS, 'ENTRIES WRITTEN TO GRID POINT LIST'
1000 FORMAT(1X,A44,1X,$)
2000 FORMAT(A35)
3000 FORMAT(A8,218)
4000 FORMAT(1X,A8,' IS A ',18,' ROW BY ',18,' COLUMN MATRIX')
5000
    FORMAT(E16.8)
6000
    FORMAT(18,'-',11,112)
      END
```

APPENDIX H. FORTRAN SOURCE CODE LISTING (STATCORR.FOR)

```
PROGRAM STATCORR
        PARAMETER (MAXMODE= 200)
        PARAMETER (MAXDOF = 1000)
        COMMON /LIMITS/ MXMD, MXDF
        DATA MXMD/MAXMODE/, MXDF/MAXDOF/
        REAL FREQAN(MAXMODE), FREQEX(MAXMODE)
        REAL DISPAN(MAXDOF, MAXMODE), DISPEX(MAXDOF, MAXMODE)
        REAL MASS(MAXMODE), STIFF(MAXMODE), DAMP(MAXMODE)
        REAL CORREL(MAXMODE, MAXMODE), C(MAXMODE, MAXMODE)
        REAL S(MAXMODE, MAXMODE)
       REAL RMSA(MAXMODE, MAXMODE), RMSE(MAXMODE, MAXMODE)
REAL AVECT(MAXDOF), EVECT(MAXDOF), DIFF(MAXDOF), DIFABS(MAXDOF)
        INTEGER IDDOFA (MAXDOF, MAXMODE), IDDOFE (MAXDOF, MAXMODE)
        INTEGER ICOMPA(MAXDOF, MAXMODE), ICOMPE(MAXDOF, MAXMODE)
        INTEGER NDOFA(MAXMODE), NDOFE(MAXMODE)
INTEGER IDDOFI(MAXDOF), ICOMPI(MAXDOF)
        INTEGER NAFIT(MAXMODE), MEFIT(MAXMODE)
        INTEGER ASYMM(3,MAXMODE),ESYMM(3,MAXMODE)
        CHARACTER*10 AHEADER(4), EHEADER(4), HEADER(32)
        CHARACTER*9 CDATE
        CHARACTER*1 YESNO
        LOGICAL PRTAN, PRTEX, LSYMM, LPRINT
C
        COMMON /WHEN/ CDATE
       DATA PRTAN, PRTEX, LSYMM, LPRINT/4*. FALSE./
       DATA PRTAN, PRTEX, LSYMM, LPRINT/4*. FALSE./
DATA AHEADER/2*' NASTRAN', 2*' TEST'/
DATA EHEADER/2*' TEST', 2*' NASTRAN'/
DATA HEADER/' OF GP''S', ' CORREL', 2*' ', 2*' RMS',

'MAX REL', ' GRID', ' MODE', 'FREQUENCY',

'MODE', 'FREQUENCY', ' COMPARED', ' COEFF',

'CA', 'S', '(NASTRAN)', ' (TEST)',

'DIFFERENCE', 'POINT', 12*'____'/
       PRINT SECTION 1 HEADER
    CALL DATE(CDATE)
    PRINT 8000, CDATE
    PRINT 4000
       CHECK FOR SEPARATE PRINT FILE
   TYPE 5000
ACCEPT 7000, YESNO
    IF (YESNO .EQ. 'Y') LPRINT = .TRUE.
    IF (LPRINT) PRINT 5500, YESNO
       GET ANALYTICAL FREQ, MASS, STIFFNESS, MODE-SHAPE, AND DOF LISTS
    CALL GETAN (FREQAN, MASS, STIFF, ASYMM, DISPAN, NAN,
                                                       IDDOFA, ICOMPA, NDOFA, LPRINT)
C
       GET EXPERIMENTAL FREQ, DAMPING, MODE-SHAPE, AND DOF LISTS
```

```
CALL GETEXP(FREQEX, DAMP, ESYMM, DISPEX, MEX, IDDOFE, ICOMPE,
                                                              NDOFE, LPRINT)
   DETERMINE SYMMETRY, MODE-SHAPE DUMP, AND THRESHOLD OPTIONS CALL OPTIONS(LSYMM, PRTAN, PRTEX, RTHRESH, LPRINT)
      PRINT INPUT SUMMARY
   CALL INPSUM(NAN, FREQAN, MASS, STIFF, ASYMM, MEX, FREQEX, DAMP, ESYMM)
      SORT DOF LISTS AND MODE SHAPE MATRICES (BASED ON DOF SORT)
   CALL DOFSORT(IDDOFA, ICOMPA, NDOFA, DISPAN, NAN)
   CALL DOFSORT(IDDOFE, ICOMPE, NDOFE, DISPEX, MEX)
      COMPUTE CORRELATION COEFFICIENTS AND RMS VALUES FOR ALL
                           POSSIBLE ANALYTICAL/EXPERIMENTAL PAIRS
   DO 100 N=1,NAN
   DO 100 M=1,MEX
                GET VECTORS TO BE COMPARED AND THEIR DOF INTERSECTION SET
            CALL GETVEC(DISPAN(1,N),NDOFA(N),AVECT)
            CALL GETVEC(DISPEX(1,M),NDOFE(M),EVECT)
            CALL INTERSECT(AVECT, EVECT, IDDOFA(1,N), IDDOFE(1,M),
                                     ICOMPA(1,N),ICOMPE(1,M),
     ¥
                                     NDOFA(N), NDOFE(M), IDDOFI, ICOMPI, NDOFI,
     ¥
                                     ASYMM(1,N),ESYMM(1,M),LSYMM)
                COMPUTE CORR COEFFS AND RMS VALUES FOR THIS PAIR
C
            CALL CORRMS(AVECT, EVECT, NDOFI, CORREL(N,M),
                                 C(N,M), S(N,M), RMSA(N,M), RMSE(N,M))
                CONTINUE
100
      PRINT CORRELATION COEFFICIENT TABLE
   CALL CORRTBL(CORREL, NAN, MEX)
      DETERMINE BEST MATCH FOR EACH EXPERIMENTAL AND ANALYTICAL MODE
   CALL MATCH(CORREL, NAN, MEX, NAFIT, MEFIT)
      FOR EACH MATCHED PAIR, GET X/RMS DIFFERENCES AND PRINT SUMMARY
C
            PRINT ANALYTICAL MODE SHAPE HEADER
       PRINT 8000, CDATE
PRINT 1000, AHEADER, HEADER
   DO 200 N=1,NAN
       M = NAFIT(N)
C
                GET VECTORS TO BE COMPARED AND THEIR DOF INTERSECTION SET
            CALL GETVEC(DISPAN(1,N),NDOFA(N),AVECT)
            CALL GETVEC(DISPEX(1,M),NDOFE(M),EVECT)
            CALL INTERSECT(AVECT, EVECT, IDDOFA(1,N), IDDOFE(1,M),
                                     ICOMPA(1,N),ICOMPE(1,M),
                                     NDOFA(N), NDOFE(M), IDDOFI, ICOMPI, NDOFI,
                                     ASYMM(1,N),ESYMM(1,M),LSYMM)
C
                CALCULATE INDIVIDUAL DIFFERENCES
            CALL RMSDIFF(AVECT, EVECT, NDOFI, RMSA(N, M), RMSE(N, M),
                                 CORREL(N,M),S(N,M),DIFF,DIFABS)
                PRINT SUMMARY FOR THIS PAIR, WITH MAX DIFF AND > THRESHOLD
C
            CALL PRINT(N,FREQAN(N),M,FREQEX(M),NDOFI,CORREL(N,M),
                               C(N,M), S(N,M), RMSA(N,M), RMSE(N,M),
                                DIFF, DIFABS, IDDOFI, ICOMPI, RTHRESH)
200
                CONTINUE
           PRINT EXPERIMENTAL MODE SHAPE HEADER
       PRINT 8000, CDATE
       PRINT 3000, EHEADER, HEADER
```

O

```
DO 300 M=1,MEX
       N = MEFIT(M)
C
               GET VECTORS TO BE COMPARED AND THEIR DOF INTERSECTION SET
           CALL GETVEC(DISPEX(1,M),NDOFE(M),EVECT)
           CALL GETVEC(DISPAN(1,N),NDOFA(N),AVECT)
           CALL INTERSECT(AVECT, EVECT, IDDOFA(1,N), IDDOFE(1,M),
     \star
                                    ICOMPA(1,N),ICOMPE(1,M),
     \star
                                    NDOFA(N), NDOFE(M), IDDOFI, ICOMPI, NDOFI,
     ¥
                                    ASYMM(1,N),ESYMM(1,M),LSYMM)
C
                CALCULATE COMBINED RMS AND INDIVIDUAL DIFFERENCES
           CALL RMSDIFF(AVECT, EVECT, NDOFI, RMSA(N, M), RMSE(N, M)
                                CORREL(N,M),S(N,M),DIFF,DIFABS)
C
                PRINT SUMMARY FOR THIS PAIR, WITH MAX DIFF _> THRESHOLD
           CALL PRINT(M,FREQEX(M),N,FREQAN(N),NDOFI,CORREL(N,M),
     ×
                              C(N,M), S(N,M), RMSA(N,M), RMSE(N,M),
                               DIFF, DIFABS, IDDOFI, ICOMPI, RTHRESH)
300
              CONTINUE
      PRINT ANALYTICAL AND/OR EXPERIMENTAL MODE-SHAPE VECTORS
   CALL PRINTPHI(NAN, NDOFA, IDDOFA, ICOMPA, DISPAN, PRTAN,
                          MEX, NDOFE, IDDOFE, ICOMPE, DISPEX, PRTEX)
      STOP 'FORTRAN STOP -- PROCESSING COMPLETED'
1000
     FORMAT(1H0,'4. ANALYTICAL MODE SHAPES AND THEIR BEST',
              ' EXPERIMENTAL MATCHES:',/'0',12(A10,1X),2(/12(1X,A10)))
3000 FORMAT(1H0, '5. EXPERIMENTAL MODE SHAPES AND THEIR BEST'
             ' ANALYTICAL MATCHES:',/'0',12(A10,1X),2(/12(1X,A10)))
4000 FORMAT(1H0,' 1. INTERACTIVE DIALOG:')
5000 FORMAT(/,' IS A SEPARATE OUTPUT LISTING FILE TO BE PRINTED?',
                '(Y OR N): ',$)
     FORMAT(/,' IS A SEPARATE OUTPUT LISTING FILE TO BE PRINTED?',

'(Y OR N): ',A1)
7000
    FORMAT(A1)
8000 FORMAT(1H1, 'NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL',
             ' CORRELATION', /1X,A9)
      END
```

```
SUBROUTINE CORRMS(AVECT, EVECT, NDOFI, CORREL, CA, S, RMSA, RMSL)
       COMPUTE CORRELATION COEFFICIENTS AND RMS VALUES
       REAL AVECT(*), EVECT(*)
       INITIALIZE RMS'S AND CORR COEFFS
   RMSA = 0.0
   RMSE = 0.0
   CORREL = 0.0
   CA = 0.0
   S = 0.0
       IF (NDOFI .EQ. 0) RETURN
       COMPUTE VARIANCES OF ANALYTICAL AND EXPERIMENTAL VECTORS
       NOTE: THE FINAL VALUES COMPUTED HERE FOR THE "VARIANCES,"
       ARE NOT TRUE VARIANCES. TO OBTAIN VARIANCES, THE VALUES
       VARA, VARE, AND VARAE SHOULD BE EACH MULTIPLIED BY 1/NDOFI.
THESE VALUES ARE NOT REPORTED, BUT ARE USED ONLY TO
CALCULATE CORREL, CA, S, RMSA, AND RMSE. THE 1/NDOFI FACTOR
IS NOT INCLUDED, SINCE IT APPEARS IN BOTH THE NUMERATOR AND
DENOMINATOR OF CORREL AND CA; THE EXTRA ARITHMETIC OPERATIONS
       WOULD SIMPLY INTRODUCE UNNECESSARY ERROR IN THE RESULTS.
       THE 1/NDOFI FACTOR IS INCLUDED IN THE CALCULATIONS OF
       S, RMSA, AND RMSE.
   VARA = 0.0
   VARE = 0.0
   VARAE = 0.0
   DO 100 N=1,NDOFI
        VARA = VARA + AVECT(N) *AVECT(N)
        VARE = VARE + EVECT(N) *EVECT(N)
        VARAE = VARAE + AVECT(N) *EVECT(N)
100
                  CONTINUE:
       COMPUTE CORRELATION COEFFICIENT FOR THIS PAIR OF VECTORS
   IF (VARAE .NE. 0.0) CORREL = VARAE/SORT(VARA*VARE)
       COMPUTE CORREL COEFF (REFERENCED TO ANALYTICAL VECTOR)
Ç
   IF (VARA .NE. 0.0) CA = VARAE/VARA
C
       COMPUTE ROOT OF MEAN SQUARE DIFFERENCE
   S = SQRT( ABS(VARE-CA*CA*VARA)/NDOFI )
C
       COMPUTE RMS VALUES
       NOTE: FOR THIS APPLICATION, RMS = STD.DEV. = SORT(VARIANCE) .
   RMSA = SQRT(VARA/NDOFI)
   RMSE = SQRT(VARE/NDOFI)
       RETURN
```

END

ORIGINAL PAGE IS

```
SUBROUTINE CORRTBL(CORREL, NAN, MEX)
C
C
       PRINT AN NAN X MEX TABLE OF THE ANALYTICAL VS. EXPERIMENTAL
C
       CORRELATION COEFFICIENTS.
       COMMON /LIMITS/ MAXMODE, MAXDOF
       COMMON /WHEN/ CDATE
       MEAL CORREL (MAXMODE, MAXMODE)
       CHARACTER CDATE*9
C
      DO 200 MFIRST=1, MEX, 16
      DO 200 NFIRST=1,NAN,50
   MLAST = MIN( MEX, MFIRST+15 )
   NLAST = MIN( NAN, NFIRST+49 )
PRINT HEADER FOR ONE PAGE OF THE TABLE
        PRINT 1000, CDATE
   PRINT 2000
PRINT 3000, (M,M=MFIRST,MLAST)
DO 100 N=NFIRST,NLAST
        PRINT 4000, N, (CORREL(N,M), M=MFIRST, MLAST)
            END DO
100
200
      END DO
C
      RETURN
1000 FORMAT(1H1,'NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL',
               'CORRELATION', /1X,A9,
               /1HO, '3. CORRELATION COEFFICIENTS FOR ANALYTICAL VS. ',
               'EXPERIMENTAL COMPARISONS:')
2000 FORMAT('OANALYTICAL',24X,'EXPERIMENTAL MODES')
3000 FORMAT(3X,'MODES',3X,15,1517)
4000 FORMAT(1X,16,4X,16(1X,F6.3))
```



```
SUBROUTINE DOFSORT(IDDOF, ICOMP, NDOF, DISP, NMODES)
0000
      PUT DOF LIST FOR EACH MODE INTO ASCENDING SORT,
      AND SLAVE-SORT THE CORRESPONDING MODE-SHAPE VECTORS.
      COMMON /LIMITS/ MAXMODE, MAXDOF
      REAL DISP(MAXDOF, MAXMODE)
      INTEGER IDDOF(MAXMODE), ICOMP(MAXDOF, MAXMODE), NOOF(MAXMODE)
      DO 200 J=1,NMODES
IF (NDOF(J) .EQ, 1) GOTO 200
   DO 100 I=1,NDOF(J)-1
   DO 100 K=I+1,NDOF(J)
       IF (IDDOF(K,J) .LT. IDDOF(I,J)) THEN
            CALL SWAP( IDDOF(I,J), IDDOF(K,J) )
            CALL SWAP( ICOMP(I,J), ICOMP(K,J) )
       ) THEN
            CALL SWAP( IDDOF(I,J), IDDOF(K,J) )
CALL SWAP( ICOMP(I,J), ICOMP(K,J) )
CALL SWAP( DISP(I,J), DISP(K,J) )
       END IF
                CONTINUE
100
200
            CONTINUE
      RETURN
      END
```

```
SUBROUTINE GETAN (FREOS, MASS, STIFF, ASYMM, SHAPES, NMODES,
                                             IDDOF.ICOMPA.NDOFS.LPRINT)
C
C
      GET FREQUENCY, MASS, STIFFNESS AND SYMMETRY VECTORS;
C
      MODE-SHAPE MATRIX; AND GRID POINT LIST.
      COMMON /LIMITS/ MAXMODE, MAXDOF
C
      REAL FREQS(MAXMODE), MASS(MAXMODE), STIFF(MAXMODE)
      REAL SHAPES (MAXDOF, MAXMODE)
      INTEGER ASYMM(3, MAXMODE)
      INTEGER IDDOF(MAXDOF, MAXMODE), ICOMPA(MAXDOF, MAXMODE)
      INTEGER NDOFS (MAXMODE)
      CHARACTER*35 FRQFIL, SHPFIL, DOFFIL
      CHARACTER*8 FROMTX, SHPMTX
      LOGICAL LPRINT
C
      GET FILE NAMES
10
            TYPE 1000
   ACCEPT 2000, FRQFIL
   OPEN(UNIT=1, NAME=FRQFIL, TYPE='OLD', READONLY, ERR=10)
   IF (LPRINT) PRINT 1500, FROFIL
            TYPE 3000
   ACCEPT 2000, SHPFIL
   OPEN(UNIT-2, NAME=SHPFIL, TYPE='OLD', READONLY, ERR=20)
   IF (LPRINT) PRINT 3500, SHPFIL
            TYPE 4000
   ACCEPT 2000, DOFFIL
   OPEN(UNIT=3,NAME=DOFFIL,TYPE='OLD',READONLY,ERR=30)
   IF (LPRINT) PRINT 4500, DOFFIL
      READ FREQUENCY FILE
   READ(1,7000) FROMTX,NFREQS,NCOLS
   IF (NCOLS .NE. 6) THEN
                TYPE 5000, FRQMTX, NCOLS
       IF (LPRINT) PRINT 5000, FROMTX, NCOLS
       CLOSE(UNIT=1)
       CLOSE(UNIT=2)
       CLOSE(UNIT=3)
       STOP
       END IF
   IF (NFREOS .GT. MAXMODE) PRINT 6000, NFREOS, MAXMODE
   NMODES = MIN(NFREQS, MAXMODE)
   DO 100 I=1,6
   DO 100 J=1,NFREQS
       IF (J .GT. MAXMODE) THEN
           READ(1,8000) DUMMY
       ELSE IF (I .EQ. 1) THEN ! GET FREQUENCY READ(1,8000) FREQS(J) ELSE IF (I .EQ. 2) THEN ! GET MASS LIST
                                  ! GET FREQUENCY LIST
           READ(1,8000) MASS(J)
       ELSE IF (I .EQ. 3) THEN | GET STIFFNESS LIST READ(1,8000) STIFF(J)
```

```
(*)
```

```
ELSE IF (I .EQ. 4) THEN
                                I GET PLANE 1 SYMMETRY LIST
           READ(1,8000) SYMM
           (MMYE)TRIR = (L, L)MMYEA
       ELSE IF (I .EQ. 5) THEN | GET PLAME 2 SYMMETRY LIST
           READ(1,8000) SYMM
           ASYMM(2,J) = NINT(SYMM)
       ELSE IF (I .EQ. 6) THEN | GET PLANE 3 SYMMETRY LIST
           READ(1,8000) SYMM
           ASYMM(3,J) = NINT(SYMM)
       END IF
100
               CONTINUE
      READ MODE-SHAPE FILE
   READ(2,7000) SHPMTX, NDISPS, NSHAPES
   IF (NSHAPES .NE. NFREQS)
                              THEN
       NMODES = MIN( NFREOS, NSHAPES, NMODES )
       TYPE 9000, NEREOS, NSHAPES, NMODES
       IF (LPRINT) PRINT 9000, NFREQS, NSHAPES, NMODES
       END IF
   IF (NDISPS .GT. MAXDOF) PRINT 10000, NDISPS, MAXDOF
   DO 200 J=1,NMODES
   DO 200 I=1,NDISPS
IF (I .LE. MAXDOF)
                            READ(2,8000) SHAPES(I,J)
       IF (I .GT. MAXDOF)
                            READ(2,8000) DUMMY
200
               CONTINUE
      READ DOF ID FILE
   NDOFS(1) = 0
   DO 300 I=1,1000000
       IF (I .LE. MAXDOF)
                   READ(3,11000,END=350) IDDOF(I,1),ICOMPA(I,1)
       IF (I .GT. MAXDOF) READ(3,11000,END=350) IDUMMY.IDUMMC
       NDOFS(1) = NDOFS(1) + 1
300
               CONTINUE
350
           IF (NDOFS(1) .NE. NDISPS)
                                       THEN
       TYPE 12000, NDISPS, NDOFS(1)
       IF (LPRINT)
                    PRINT 12000, NDISPS, NDOFS(1)
       CLOSE(UNIT=1)
       CLOSE(UNIT=2)
       CLOSE(UNIT=3)
       STOP
       ENDIF
   NDOFS(1) = MIN(NDOFS(1), MAXDOF)
   IF (NMODES .EQ. 1)
                       RETURN
   DO 500 J=2,NMODES
       NDOFS(J) = NDOFS(1)
       DO 400 I=1,NDOFS(J)
           IDDOF(I,J) = IDDOF(I,1)
           ICOMPA(I,J) = ICOMPA(I,1)
400
                   CONTINUE
               CONTINUE
500
      CLOSE(UNIT=1)
      CLOSE(UNIT=2)
      CLOSE(UNIT=3)
```

Ü

```
RETURN
C
1000 FORMAT(/, 'ENTER ANALYTICAL LAMA MATRIX FILENAME: ',$)
1500 FORMAT(/, 'ENTER ANALYTICAL LAMA MATRIX FILENAME: ',A35)
2000 FORMAT(A35)
3000 FORMAT(' ENTER ANALYTICAL MODE-SHAPE MATRIX FILENAME: ',$)
3500 FORMAT(' ENTER ANALYTICAL MODE-SHAPE MATRIX FILENAME: ',A35)
4000 FORMAT(' ENTER ANALYTICAL GRID POINT LIST FILENAME: ',$)
4500 FORMAT(' ENTER ANALYTICAL GRID FOINT LIST FILENAME: ',A35)
5000 FORMAT(' FREQUENCY MATRIX ',A8,' HAS ',I6,' COLUMNS.'

* ' SHOULD BE 6 COLUMNS.')
6000 FORMAT(' *** WARNING: FREQUENCY VECTOR HAS ',I3,' ENTRIES.',

* /15X,'ONLY THE FIRST',I5,' WILL BE USED.')
7000 FORMAT(AB,218)
8000 FORMAT(E16.8)
9000 FORMAT( **** WARNING: UNEQUAL NUMBER OF FREQUENCIES AND '
                     'MODE SHAPES. ',
/15X,'NUMBER OF FREQUENCIES:',16,
/15X,'NUMBER OF MODE SHAPES:',16,
        ×
/15X,'ONLY THE FIRST', I5,' WILL BE USED.')

10000 FORMAT(' **** WARNING: MODE-SHAPE VECTORS HAVE ', I3,' ENTRIES.',

/15X,'ONLY THE FIRST', I6,' WILL BE USED.')

11000 FORMAT(I8,1X,I1)
12000 FORMAT(' *** ERROR: UNEQUAL NUMBER OF MODE-SHAPE POINTS AND ',
                      'D.O.F. ID''S. ', I6,' _', I6)
          END
```

```
SUBROUTINE GETEXP(FREQE .DAMP, ESYMM, DISPEX, MEX,
                                          IDDOFE, ICOMP, NDOFE, LPRINT)
      GET EXPERIMENTAL FREQUENCY _DAMPING LISTS, MODE-SHAPE MATRIX,
      AND D.O.F. LIST.
      COMMON /LIMITS/ MAXMODE, MAXDOF
C
      REAL FREQEX(MAXMODE), DAMP(MAXMODE), DISPEX(MAXDOF, MAXMODE)
      REAL DUMMY(5)
      INTEGER ESYMM(3, MAXMODE)
      INTEGER IDDOFE(MAXDOF, MAXMODE), ICOMP(MAXDOF, MAXMODE)
      INTEGER NDOFE (MAXMODE)
      CHARACTER*35 MSFILE
      LOGICAL LPRINT
      PROCESS MODE-SHAPE FILES
   TYPE *, ' ' I SKIP A LINE
   IF (LPRINT) PRINT *, ' '
   MEX = 0
   DO 200 J=1,MAXMODE
              GET NEXT EXPERIMENTAL MODE-SHAPE FILE
10
                   TYPE 1000
           ACCEPT 2000, MSFILE
           IF (MSFILE .EQ. 'NONE') GOTO 250
           OPEN(UNIT=10, NAME=MSFILE, TYPE='OLD', READONLY, ERR=10)
           IF (LPRINT) PRINT 1500, MSFILE
               GET FREQUENCY, DAMPING AND SYMMETRY FOR THIS MODE-SHAPE
C
           READ(10,*) FREQEX(J)
           READ(10,*) DAMP(J)
           READ(10,*) (ESYMM(K,J),K=1,3)
C
               GET MODE-SHAPE DISPLACEMENTS AND D.O.F.'S
           DO 100 I=1.MAXDOF
               READ(10,*,END=150)
                                  IDDOFE(I,J),ICOMP(I,J),DISPEX(I,J)
               NDOFE(J) = I
100
                       CONTINUE
           PRINT 5000, MAXDOF, MAXDOF
150
               MEX = J
       CLOSE(UNIT=10)
200
               CONTINUE
   TYPE 6000, MAXMODE
   IF (LPRINT) PRINT 6000, MAXMODE
      IF (LPRINT .AND. (MSFILE .EQ. 'NONE')) PRINT 1500, MSFILE
250
      IF (MEX .EQ. 0) THEN
   TYPE *,' **** ERROR: NO EXPERIMENTAL MODE-SHAPE REQUESTS'
   IF (LPRINT) PRINT *,
                  ' *** ERROR: NO EXPERIMENTAL MODE-SHAPE REQUESTS'
   STOP
   END IF
      RETURN
C
```

```
1000 FORMAT('ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME.',

'("NONE" IF NO MORE);',$)

1500 FORMAT('ENTER NEXT EXPERIMENTAL MODE-SHAPE FILENAME.',

'("NONE" IF NO MORE);',A35)

2000 FORMAT(A35)

5000 FORMAT('**** WARNING: MODE-SHAPE VECTOR HAS',16,' OR MORE',

'ENTRIES.',/13X,'ONLY THE FIRST',16,' WILL BE USED.')

6000 FORMAT('**** NO MORE EXPERIMENTAL MODE-SHAPE FILES PERMITTED.'

'MAXIMUM IS',14)

END
```

```
SUBROUTINE GETVEC(DISP,NDOF,VECT)

C COPY VECTOR OF LENGTH NDOF FROM PERMANENT VECTOR TO WORKING VECTOR.

C REAL DISP(*),VECT(*)

C IF (NDOF .EQ. 0) RETURN DO 100 I=1,NDOF VECT(I) = DISP(I)

100 CONTINUE RETURN END
```

```
SUBROUTINE INPSUM(NAN, FREQAN, MASS, STIFF, ASYMM,
                          MEX, FREOLX, DAMP,
C
      PRINT A SUMMARY OF THE ANALYTICAL AND EXPERIMENTAL FREQUENCIES,
č
      MASS, STIFFNESS, DAMPING, AND SYMMETRY VECTORS.
      REAL FREQAN(*), MASS(*), STIFF(*)
      REAL FREQEX(*), DAMP(*)
      INTEGER ASYMM(3,*), ESYMM(3,*)
      LOGICAL NOSYMA(3), YESYMA(3), NOSYME(3), YESYME(3), FIRST
      CHARACTER CDATE*9
      COMMON /WHEN/ CDATE
      DATA NOSYMA, YESYMA, NOSYME, YE%YME/12*.FALSE./, FIRST/.TRUE./
      PRINT HEADER
   PRINT 8000, CDATE
   PRINT 1000
      PRINT ANALYTICAL SUMMARY
C
           PRINT ANALYTICAL HEADER
       PRINT 2000
           PRINT SUMMARY DATA
C
       PRINT 3000, (I,FREQAN(I), MASS(I), STIFF(I),
                                      (ASYMM(J,I),J=1,3), I=1,NAN)
           CHECK FOR INCONSISTENT ANALYTICAL "UNDEFINED" SYMMETRY
C
       DO 200 IAXS=1,3
           DO 100 MODE=1,NAN
                IF (ASYMM(IAXS, MODE).EQ.0) NOSYMA(IAXS)=.TRUE.
                IF (ASYMM(IAXS, MODE).NE.O) YESYMA(IAXS) = .TRUE.
100
                        CONTINUE
           IF (NOSYMA(IAXS).AND.YESYMA(IAXS)) PRINT 6000, IAXS
200
                    CONTINUE
      PRINT EXPERIMENTAL SUMMARY
C
           PRINT EXPERIMENTAL HEADER
       PRINT 4000
C
           PRINT SUMMARY DATA
       PRINT 5000, (I,FREQEX(I),DAMP(I),
           (ESYMM(J,I),J=1,3), I=1,MEX)
CHECK FOR INCONSISTENT EXPERIMENTAL "UNDEFINED" SYMMETRY
C
       DO 400 IAXS=1,3
           DO 300 MODE=1,MEX
                IF (ESYMM(IAXS,MODE).EQ.0) NOSYME(IAXS)=.TRUE.
                IF (ESYMM(IAXS,MODE).NE.0)
                                             YESYME(IAXS)=.TRUE.
300
                        CONTINUE
           IF (NOSYME(IAXS), AND. YESYME(IAXS)) PRINT 6000, IAXS
400
                    CONTINUE
      CHECK FOR INCONSISTENT ANA VS. EXP "UNDEFINED" SYMMETRY
   DO 500 IAXS=1,3
       IF ( (NOSYMA(IAXS).AND.YESYME(IAXS)) .OR.
                     (YESYMA(IAXS).AND.NOSYME(IAXS))
                                                               THEN
           IF (FIRST) PRINT 7000
           FIRST = .FALSE.
           PRINT 6000, IAXS
```

END IF 500 CONTINUE RETURN 1000 FORMAT(1H0,'2. SUMMARY OF FREQUENCY, MASS, STIFFNESS,',

* DAMPING, AND SYMMETRY:') FORMAT(//,5X,'ANALYTICAL MODES:' /1H0,4X,'MODE ',' FREQUENCY MASS STIFFNESS SYMMETRY # /,5X,'_',4(1X,'__'))
3000 FORMAT((NAN)(/5X,I3,1X,3(1PE16.8),3X,3I3),/) 4000 FORMAT(//,5X,'EXPERIMENTAL MODES:',

* /1H0,4X,'MODE FREQUENCY DAMPING

* /,5X,'_',3(1X,'_'))

5000 FORMAT(<MEX)(/5X,I3,IX,2(1PE11.3),1X,3I3),/) SYMMETRY', 6000 FORMAT(10X, '***WARNING: INCONSISTENT UNDEFINED SYMMETRY', * 'FOR PLANE', 12)

7000 FORMAT(//,5X,'ANALYTICAL VS. EXPERIMENTAL SYMMETRY:')

8000 FORMAT(1H1,'NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL ', 'CORRELATION', /1X,A9) END

ORIGINAL FARE IE

٣

```
SUBROUTINE INTERSECT(AVECT, EVECT, IDDOFA, IDDOFE, ICOMPA, ICOMPE,
       ×
                                         NDOFA, NDOFE, IDDOFI, ICOMPI, NDOFI,
       ×
                                          ASYMM, ESYMM, LSYMM)
        COPY INTERSECTION SET OF VECTORS IDDOFA AND IDDOFE TO VECTOR IDDOFI. NDOFI IS THE LENGTH OF THE INTERSECTION SET. REDUCE AVECT AND EVECT VECTORS TO CONTAIN ONLY THE CORRESPONDING INTERSECTION SET OF TERMS, I.A.W. THE MASTER SET IDDOFI. IF THE INTERSECTION SET IS NULL (NO EQUIVALENT D.O.F ID'S), THE VALUE RETURNED FOR NDOFI IS 0.
CC
CCCC
         IF SYMMETRY IS TO BE CONSIDERED, AND ANALYTICAL AND EXPERIMENTAL
C
         SYMMETRY ARE NOT THE SAME, THE VALUE RETURNED FOR NDOFI IS 0 .
         REAL AVECT(*), EVECT(*)
         INTEGER IDDOFA(*),IDDOFE(*),IDDOFI(*)
         INTEGER ICOMPA(*),ICOMPE(*),ICOMPI(*)
         INTEGER ASYMM(3),ESYMM(3)
         LOGICAL LSYMM
C
         IA = 1
         IE = 1
         NDOFI = 0
         IF (LSYMM)
          SYMMETRY IS TO BE CONSIDERED:

IF A AND E ARE UNLIKE, LEAVE INTERSECTION SET AS NULL

IF (ASYMM(1) .NE. ESYMM(1)) RETURN

IF (ASYMM(2) .NE. ESYMM(2)) RETURN

IF (ASYMM(3) .NE. ESYMM(3)) RETURN
    END IF
         DO 100 I=1,NDOFA+NDOFE
    IF ((IA.GT.NDOFA) .OR. (IE.GT.NDOFE)) GOTO 150 IF ((IDDOFA(IA) .EQ. IDDOFE(IE)) .AND.
                     (ICOMPA(IA) .EQ. ICOMPE(IE))
                                                                          ) THEN
          NDOFI = NDOFI + 1
          IDDOFI(NDOFI) = IDDOFA(IA)
          ICOMPI(NDOFI) = ICOMPA(IA)
          AVECT(NDOFI) = AVECT(IA)
          EVECT(NDOFI) = EVECT(IE)
          IA = IA + 1
          IE = IE + 1
    ELSE IF (IDDOFA(IA) .LT. IDDOFE(IE))
          IA = IA + 1
    ELSE IF (IDDOFE(IE) .LT. IDDOFA(IA))
          IE = IE + 1
    END IF
100
              CONTINUE
        RETURN
150
         END
```

```
(4)
```

```
SUBROUTINE MATCH(CORREL, NAN, MEX, NAFIT, MEFIT)
C
      COMMON /LIMITS/ MAXMODE, MAXDOF
C
      DIMENSION CORREL(MAXMODE, MAXMODE), NAFIT(MAXMODE), MEFIT(MAXMODE)
C
C
      DETERMINE BEST EXPERIMENTAL MODE-SHAPE MATCH (HIGHEST
Ċ
      CORRELATION COEFFICIENT) FOR EACH ANALYTICAL MODE-SHAPE.
   DO 200 N=1,NAN
       BEST = -1.0
       DO 100 M=1,MEX
           IF (ABS(CORREL(N,M)) .GT. BEST)
                                              THEN
               BEST = ABS(CORREL(N,M))
               NAFIT(N) = M
               END IF
100
                   CONTINUE
200
C
               CONTINUE
Č
      DETERMINE BEST ANALYTICAL MODE-SHAPE MATCH (HIGHEST
Č
      CORRELATION COEFFICIENT) FOR EACH EXPERIMENTAL MODE-SHAPE.
   DO 400 M=1,MEX
       BEST = -1.0
       DO 300 N=1,NAN
           IF (ABS(CORREL(N,M)) .GT. BEST)
               BEST = ABS(CORREL(N,M))
               MEFIT(M) = N
               END IF
300
                   CONTINUE
400
               CONTINUE
      RETURN
      END
```

O


```
SUBROUTINE OPTIONS(LSYMM, PRTAN, PRTEX, RTHRESH, LPRINT)
C
      DETERMINE SYMMETRY, MODE-SHAPE DUMP, AND THRESHOLD OPTIONS
C
      LOGICAL LSYMM, PRTAN, PRTEX, LPRINT
      CHARACTER*1 YESNO
      DETERMINE IF SYMMETRY IS TO BE CONSIDERED
   TYPE 1000
   ACCEPT 2000, YESNO
   IF (YESNO .EQ. 'Y') LSYMM = .TRUE.
   IF (LPRINT) PRINT 1500, YESNO
C
      DETERMINE IF ANALYTICAL AND/OR EXPERIMENTAL MODE-SHAPE
                                             VECTORS ARE TO BE PRINTED
   TYPE *.
                    ISKIP A LINE
   IF (LPRINT) PRINT *, ' '
   TYPE 3000, 'ANALYTICAL'
   ACCEPT 2000, YESNO
   IF (YESNO .EQ. 'Y')
                          PRTAN = .TRUE.
   IF (LPRINT) PRINT 3500, 'ANALYTICAL', YESNO
   TYPE 3000, 'EXPERIMENTAL'
   ACCEPT 2000, YESNO
   IF (YESNO .EQ. 'Y') PRTEX = .TRUE.
   IF (LPRINT) PRINT 3500, 'EXPERIMENTAL', YESNO
      GET RELATIVE DEVIATION THRESHOLD. DEFAULT IS 5.0 %
   RTHRESH = .05
   TYPE 4000, RTHRESH
   ACCEPT *, RTHRESH
   TYPE 5000, RTHRESH
   IF (LPRINT) THEN
       PRINT 4500, .05, RTHRESH PRINT 5000, RTHRESH
       END IF
      RETURN
1000 FORMAT(/,' IS ANALYTICAL VS. EXPERIMENTAL SYMMETRY TO BE ',
                 'CONSIDERED? (Y OR N): ',$)
1500 FORMAT(/,' IS ANALYTICAL VS. EXPERIMENTAL SYMMETRY TO BE ',
                 'CONSIDERED? (Y OR N): ',Al)
2000 FORMAT(A1)
     FORMAT(' PRINT ',A12,' MODE-SHAPE VECTORS? (Y OR N): ',$)
FORMAT(' PRINT ',A12,' MODE-SHAPE VECTORS? (Y OR N): ',A1)
3000
3500
     FORMAT(//' RELATIVE DEVIATIONS GREATER THAN A THRESHOLD',
4000
               VALUE WILL BE PRINTED.
              /' THE DEFAULT THRESHOLD IS ',F6.3,
/' ENTER DESIRED THRESHOLD. "," FOR DEFAULT: ',$)
     FORMAT(//' RELATIVE DEVIATIONS GREATER THAN A THRESHOLD',
4500
              ' VALUE WILL BE PRINTED.'
              /' THE DEFAULT THRESHOLD IS ',F6.3,
/' ENTER DESIRED THRESHOLD. "," FOR DEFAULT: ',F6.3)
     ¥
     FORMAT ('ORELATIVE DEVIATIONS GREATER THAN ', 2PF7.2,
5000
              ' % WILL BE PRINTED.')
     ¥
      END
```

```
SUBROUTINE PRINT(N1,FREQ1,N2,FREQ2,NDOF,CORREL,C,S,RMSA,RMSE,
                         DIFF, DIFABS, IDDOF, ICOMP, RTHRESH)
CCC
      PRINT CORRELATION INFORMATION FOR MODES N1.N2 COMPARISON
      DIMENSION DIFF(*),DIFABS(*),IDDOF(*),ICOMP(*)
      DIMENSION ID(30000)
      DETERMINE MAXIMUM DIFFERENCE AND DIFFS > THRESHOLD
   DIFMAX = 0.0
   IDMAX = 0
   NDIFF = 0
   IF (NDOF .GT. 0) THEN
       DIFMAX = ABS(DIFF(1))
        IDMAX = IDDOF(1)
       DO 100 N=1,NDOF
            IF (ABS(DIFF(N)) .GT. DIFMAX)
                                              THEN
                DIFMAX = ABS(DIFF(N))
                IDMAX = IDDOF(N)
                END IF
            IF (ABS(DIFF(N)) .GT. RTHRESH)
    NDIFF = NDIFF + 1
                ID(NDIFF) = N
                END IF
100
                     CONTINUE
       END IF
      PRINT SUMMARY LINE FOR THIS MATCHED PAIR
   PRINT 1000, N1, FREQ1, N2, FREQ2, NDOF, CORREL, C, S,
                        RMSA, RMSE, DIFMAX, IDMAX
                      RETURN
   IF (NDOF .EQ. 0)
C
      PRINT ALL DIFFS > THRESHOLD , DEFAULT IS
                                                    5%
   IF (NDIFF .GT. 0) THEN
                PRINT 2000, RTHRESH, (IDDOF(ID(N)), ICOMP(ID(N)),
                                      DIFF(ID(N)), N=1,NDIFF)
                PRINT 3000, (IDDOF(ID(N)), ICOMP(ID(N)), DIFABS(ID(N)),
                              N=1,NDIFF)
       END IF
      RETURN
      FORMAT('0',16,2(F15.6,17),4X,F9.3,2X,5(1PE11.3),19)
1000
2000
     FORMAT(21X, 'RELATIVE DEVIATIONS (XA/RMSA-XE/RMSE) > ',
              2PF7.2,'% : (GRID ID/DEVIATION)'
      * 20(/21X,5(19,'-',11,'/',1PE10.3)))
FORMAT(21X,'SCALED DIFFERENCES ( (XA-XE)/S ) > THRESHOLD :',
3000
                      (GRID ID/DIFFERENCE)'
              20(/21X,5(I9,'-',I1,'/',1PE10.3)))
      END
```

```
SUBROUTINE PRINTPHI(NAN, NDOFA, IDDOFA, ICOMPA, DISPAN, PRTAN,
                            MEX, NDOFE, IDDOFE, ICOMPE, DISPEX, PRTEX)
C
      COMMON /LIMITS/ MAXMODE, MAXDOF
      COMMON /WHEN/ CDATE
C
      REAL DISPAN(MAXDOF, MAXMODE), DISPEX(MAXDOF, MAXMODE)
      INTEGER IDDOFA(MAXDOF, MAXMODE), IDDOFE(MAXDOF, MAXMODE)
      INTEGER ICOMPA(MAXDOF, MAXMODE), ICOMPE(MAXDOF, MAXMODE)
      INTEGER NDOFA(MAXMODE), NDOFE(MAXMODE)
      LOGICAL PRTAN, PRTEX
      CHARACTER CDATE*9
C
      IF (PRTAN)
                   THEN
                         ! PRINT ANALYTICAL MODE-SHAPE VECTORS
C
          PRINT HEADER
       PRINT 5000, CDATE
       PRINT 1000
           PRINT ALL VECTORS
C
       DO 100 I=1,NAN
            PRINT 2000, I, (IDDOFA(J,I), ICOMPA(J,I), DISPAN(J,I),
                                     J=1,NDOFA(I))
100
                    CONTINUE
   END IF
C
      IF (PRTEX)
                   THEN I PRINT EXPERIMENTAL MODE-SHAPE VECTORS
C
            PRINT HEADER
       PRINT 5000, CDATE
       PRINT 3000
C
            PRINT ALL VECTORS
       DO 200 I=1,MEX
            PRINT 4000, I, (IDDOFE(J,I), ICOMPE(J,I), DISPEX(J,I),
                                     J=1.NDOFE(I))
200
                    CONTINUE
   END IF
      RETURN
      FORMAT(1H0, '6. ANALYTICAL MODE-SHAPE VECTORS '
                  '(GRID PT/DISPLACEMENT)')
      FORMAT(1H0,'ANALYTICAL MODE', 14, 200(/5X,5(19,'-'.11,'/',1PE10.3)))
2000
      FORMAT(1H0,'7. EXPERIMENTAL MODE-SHAPE VECTORS ',
3000
                   '(GRID PT/DISPLACEMENT)')
      FORMAT(1H0, 'EXPERIMENTAL MODE', 14,
* 200(/5X,5(19,'-',11,'/',1PE10.3)))
4000
      FORMAT(1H1, 'NASTRAN MODAL ANALYSIS - MODAL SURVEY STATISTICAL ',
5000
              'CORRELATION', /1X,A9)
      END
```

```
SUBROUTINE RMSDIFF(AVECT, EVECT, NDOFI, RMSA, RMSE, CORREL,
                           S, DIFF, DIFABS)
C
      CALCULATE RELATIVE (TO RMS) DIFFERENCE BETWEEN ANALYTICAL AND
C
      EXPERIMENTAL DISPLACEMENT FOR EACH GRID POINT.
C
      CALCULATE ABSOLUTE DIFFERENCE SCALED TO ANALYTICAL.
      REAL AVECT(*), EVECT(*), DIFF(*), DIFABS(*)
      IF (NDOFI .EQ. 0)
DO 100 I=1,NDOFI
                          RETURN
   IF (CORREL .GE. 0.0)
       DIFF(I) = 0.0
       IF ( (RMSA .NE. 0.0)
                              .AND.
                                      (RMSE .NE. 0.0) )
                   DIFF(I) = AVECT(I)/RMSA - EVECT(I)/RMSE
       DIFABS(I) = 0.0
       IF (S .NE. 0.0)
                    DIFABS(I) = (AVECT(I) - EVECT(I)) / S
   ELSE IF (CORREL .LT. 0.0) THEN
C
               CORRECT FOR 180-DEGREE PHASE SHIFT
       DIFF(I) = 0.0
       IF ( (RMSA .NE. 0.0) .AND. (RMSE .NE. 0.0) )
                    DIFF(I) = AVECT(I)/RMSA + EVECT(I)/RMSE
       DIFABS(I) = 0.0
       IF (S .NE. 0.0)
                    DIFABS(I) = (AVECT(I) + EVECT(I)) / S
   END IF
100
           CONTINUE
      RETURN
      END
```

```
SUBROUTINE SWAP(I,J)

C
C
INTERCHANGE THE VALUES IN TWO 4-BYTE VARIABLES

C
ITEMP = I
I = J
J = ITEMP

RETURN

END
```

100年刊第一