Claims

[c1]

		method comprising:
		parsing a portion of the compressed bitstream before motion compensation on
		video data included in the portion;
		obtaining motion information related to the video data, the motion information
		comprising a set of motion vectors;
		storing a reference sub-region identified by the motion information in a first
		memory before performing motion compensation using the set of motion
		vectors; and
		performing motion compensation on the video data using the reference sub-
FT.		region stored on the first memory.
well first the time that will that the	[c2]	2.The method of claim 1 wherein the first memory source is an on-chip memory
The Am		source.
South Thom	[c3]	3.The method of claim 1 wherein storing the reference sub-region in the first
2 2		memory comprises performing a direct memory access based on the motion
500 500 500 500		vector.
Fr. Tough Minn. Hinn. Tough Mark	[c4]	4.The method of claim 3 wherein the second memory source is an off-chip
744 244 244		memory source and the direct memory access includes accessing the second
aris		memory source.
	[c5]	5.The method of claim 1 further comprising storing the motion information in
		the first memory.
	[c6]	6.The method of claim 1 wherein obtaining motion information comprises
	= 	extracting and decoding the set of motion vectors from the compressed

7. The method of claim 1 wherein the time that the reference sub-region is

set of motion vectors comprises the time required for to complete a direct

memory access to store the reference sub-region in the first memory.

stored in the first memory before performing motion compensation using the

bitstream.

[c7]

1.A method for processing a compressed bitstream comprising video data, the

parsing a portion of the compressed bitstream before motion compensation on

method comprising:

[c19]

[c20]

[c21]

video data included in the portion;

obtaining motion information related to the video data, the motion information comprising a set of motion vectors;

storing a set of reference window sub-regions included in a reference window in a first memory before motion compensation using the motion information, wherein the set of motion vectors references a reference window sub-region in the set of reference window sub-regions; and performing motion compensation on the video data using the reference sub-region stored on the first memory.

[c18] 18. The method of claim 17 further comprising:

creating the reference window comprising the set of reference window sub-regions, the set of reference window sub-regions including the reference sub-regions identified by the motion information; and storing the set of reference window sub-regions in the first memory source.

19.The method of claim 17 wherein the reference window has a trapezoidal

array of reference window sub-regions.

20.The method of claim 17 the reference sub-region identified by the motion information is the upper left reference window sub-region in the reference

window.

21.A system for processing a compressed bitstream comprising video data, the

system comprising:

means for parsing a portion of the compressed bitstream before motion compensation on video data included in the portion;

means for obtaining motion information related to the video data, the motion information comprising a set of motion vectors;

means for storing a reference sub-region identified by the motion information in a first memory before performing motion compensation using the set of motion vectors; and

means for performing motion compensation on the video data using the reference sub-region stored on the first memory.

- [c22] 22.The method of claim 21 further comprising means for extracting and decoding the motion information from the compressed bitstream.
- [c23] 23.The method of claim 21 further comprising means for creating a reference window comprising the set of reference window sub-regions, the set of reference window sub-regions including the reference sub-region identified by the motion information.
- [c24] 24.A computer readable medium including instructions for processing a compressed bitstream comprising video data, the instructions comprising: instructions for parsing a portion of the compressed bitstream before motion compensation on video data included in the portion; instructions for obtaining motion information related to the video data, the motion information comprising a set of motion vectors; instructions for storing a reference sub-region identified by the motion information in a first memory before performing motion compensation using the set of motion vectors; and instructions for performing motion compensation on the video data using the reference sub-region stored on the first memory.