DBMS LAB EXAM

Date:15,May,2021

Name: KRISHNA SAI ROHITH VADLA

Reg no.: 19BCS061

1.Retrieve the details of all the employee who have a dependent with the same last name and sex as the employee.

Sol)

SELECT Emp.Lname

FROM Employee AS Emp

WHERE Emp.SSN IN (SELECT Emp.SSN

FROM Dependent

WHERE Emp.LNAME = Dep_name **AND** Emp.Sex=Sex);

2. For each project on which more than 2 employees word, retrieve the project number, the project name, and the number of employees who work on the project.

Sol)

SELECT Pnumber, Pname, Count(*)

FROM Project, Works_on

WHERE Pnumber=Pno
GROUP BY Pnumber,Pname
HAVING COUNT(*)>2;

3. For each department that has more than 3 employees, retrieve the department number and the number of employees who are making more than Rs50,000

sol)

SELECT Dnumber, Count(*) **FROM** Department, Employee

WHERE Dnumber=Dno AND Salary >50000 AND

Dno IN (SELECT DNO

FROM Employee

GROUP BY Dno

HAVING Count(*)>3)

GROUP BY Dnumber:

4. Retrieve details of all the employees and their dependents who has been managers with department more than once and has more than 10 employees.

Sol:

SELECT * from Employee E

WHERE E.Eno in (**SELECT** Eno **FROM** Dependent **WHERE** Relation =

'Manager' **GROUP BY** relation **HAVING** count()>1);

GROUP BY Eno

HAVING count()>10;

5. Retrieve the department details with more than one project, where these projects are located in multiple locations.

SELECT *

FROM Department ,Project

WHERE Department.Dno=Project.Dnum

GROUP BY Pno

HAVING Count(Pno)>1 **AND** Count(Plocation)>1

Normalization:

1. Convert the table into 1nf, 2nf, 3nf

Solution 1:

Based on the closure of given functional dependencies, we arrive at a result of two candidate keys possible. They are:

♦ {PropertyId}

♦ {CountryName, Plot}

Prime Attributes: PropertyId, CountryName, Plot

Non-prime attributes: Area, Price, TaxRate

Since, the minimal amongst candidate keys is the primary key, {PropertyId} is the primary key of the table PLOT.

1NF Normalization:

The table PLOT is already in 1NF. Thus, the 1NF Normalized form shall be:

PropertyId CountryName	Plot	Area	Price	TaxRate
------------------------	------	------	-------	---------

The table PLOT is not in 2NF because of the functional dependency CountryName → TaxRate. Thus, TaxRate is partially dependent on the candidate key {CountryName, Plot}.

The 2NF Normal form shall be:

PLOT_Table1				
PropertId (primary key)	CountryName	Plot	Area	Price

The other table shall be:

PLOT_Table2		
CountryName (primary key)	TaxRate	

3NF Normalization:

The table PLOT_Table1 is not in 3NF because of the existence of transitive dependency due to Area → Price. Area is not a superkey and Price is not a prime attribute. Thus, PLOT_Table1 should be divided into PLOT_Table1A and PLOT Table1B.

PLOT_Table1A			
PropertId (primary key)	CountryName	Plot	Area

The other table shall be:

PLOT_Table1B

Area (primary key)	Price	
--------------------	-------	--