

What Is Claimed Is:

- 1 1. A method for performing a minimum computation for an interval
2 operation, comprising:
3 receiving at least four floating-point numbers, including a first floating-
4 point number, a second floating-point number, a third floating-point number and a
5 fourth floating-point number; and
6 computing a minimum of the at least four floating-point numbers;
7 wherein if the at least four floating-point numbers include one or two
8 default NaN (not-a-number) values and the remaining values are not default NaN
9 values, the default NaN values are ignored in computing the minimum.
- 1 2. The method of claim 1,
2 wherein the minimum is a left endpoint of a resulting interval of the
3 interval operation;
4 wherein the first floating-point number is the result of an operation
5 between the left endpoint of a first interval and the left endpoint of a second
6 interval;
7 wherein the second floating-point number is the result of the operation
8 between the left endpoint of the first interval and the right endpoint of the second
9 interval;
10 wherein the third floating-point number is the result of the operation
11 between the right endpoint of the first interval and the left endpoint of the second
12 interval; and
13 wherein the fourth floating-point number is the result of the operation
14 between the right endpoint of the first interval and the right endpoint of the second
15 interval.

1 3. The method of claim 1, wherein computing the minimum involves
2 setting the minimum to a value representing the empty interval, if any of the at
3 least four floating-point numbers contain the value representing the empty
4 interval.

1 4. The method of claim 3, wherein the value representing the empty
2 interval is a non-default NaN value.

1 5. The method of claim 2, wherein computing the minimum involves
2 setting the minimum to negative infinity if the first floating-point number is a
3 default NaN value and the fourth floating-point number is the default NaN value.

1 6. The method of claim 2, wherein computing the minimum involves
2 setting the minimum to negative infinity if the second floating-point number is a
3 default NaN value and the third floating-point number is the default NaN value.

1 7. The method of claim 1, wherein if none of the at least four
2 floating-point numbers is a default NaN value or a value representing the empty
3 interval, computing the minimum involves selecting the minimum of the at least
4 four floating-point numbers.

1 8. The method of claim 2, wherein the operation can include one of a
2 multiplication operation and a division operation.

1 9. A method for performing a maximum computation for an interval
2 operation, comprising:

3 receiving at least four floating-point numbers, including a first floating-
4 point number, a second floating-point number, a third floating-point number and a
5 fourth floating-point number; and
6 computing a maximum of the at least four floating-point numbers;
7 wherein if the at least four floating-point numbers include one or two
8 default NaN (not-a-number) values and the remaining values are not default NaN
9 values, the default NaN values are ignored in computing the maximum.

1 10. The method of claim 9,
2 wherein the maximum is a right endpoint of a resulting interval of the
3 interval operation;
4 wherein the first floating-point number is the result of an operation
5 between the left endpoint of a first interval and the left endpoint of a second
6 interval;
7 wherein the second floating-point number is the result of the operation
8 between the left endpoint of the first interval and the right endpoint of the second
9 interval;
10 wherein the third floating-point number is the result of the operation
11 between the right endpoint of the first interval and the left endpoint of the second
12 interval; and
13 wherein the fourth floating-point number is the result of the operation
14 between the right endpoint of the first interval and the right endpoint of the second
15 interval.

1 11. The method of claim 9, wherein computing the maximum involves
2 setting the maximum to a value representing the empty interval, if any of the at

3 least four floating-point numbers contain the value representing the empty
4 interval.

1 12. The method of claim 11, wherein the value representing the empty
2 interval is a non-default NaN value.

1 13. The method of claim 10, wherein computing the maximum
2 involves setting the maximum to positive infinity if the first floating-point number
3 is a default NaN value and the fourth floating-point number is the default NaN
4 value.

1 14. The method of claim 10, wherein computing the maximum
2 involves setting the maximum to positive infinity if the second floating-point
3 number is a default NaN value and the third floating-point number is the default
4 NaN value.

1 15. The method of claim 9, wherein if none of the at least four
2 floating-point numbers is a default NaN value or a value representing the empty
3 interval, computing the maximum involves selecting the maximum of the at least
4 four floating-point numbers.

1 16. The method of claim 10, wherein the operation can include one of
2 a multiplication operation and a division operation.

1 17. A computer-readable storage medium storing instructions that
2 when executed by a computer cause the computer to perform a method for

3 performing a minimum computation for an interval operation, the method
4 comprising:
5 receiving at least four floating-point numbers, including a first floating-
6 point number, a second floating-point number, a third floating-point number and a
7 fourth floating-point number; and
8 computing a minimum of the at least four floating-point numbers;
9 wherein if the at least four floating-point numbers include one or two
10 default NaN (not-a-number) values and the remaining values are not default NaN
11 values, the default NaN values are ignored in computing the minimum.

1 18. The computer-readable storage medium of claim 17,
2 wherein the minimum is a left endpoint of a resulting interval of the
3 interval operation;
4 wherein the first floating-point number is the result of an operation
5 between the left endpoint of a first interval and the left endpoint of a second
6 interval;
7 wherein the second floating-point number is the result of the operation
8 between the left endpoint of the first interval and the right endpoint of the second
9 interval;
10 wherein the third floating-point number is the result of the operation
11 between the right endpoint of the first interval and the left endpoint of the second
12 interval; and
13 wherein the fourth floating-point number is the result of the operation
14 between the right endpoint of the first interval and the right endpoint of the second
15 interval.

1 19. The computer-readable storage medium of claim 17, wherein
2 computing the minimum involves setting the minimum to a value representing the
3 empty interval, if any of the at least four floating-point numbers contain the value
4 representing the empty interval.

1 20. The computer-readable storage medium of claim 19, wherein the
2 value representing the empty interval is a non-default NaN value.

1 21. The computer-readable storage medium of claim 18, wherein
2 computing the minimum involves setting the minimum to negative infinity if the
3 first floating-point number is a default NaN value and the fourth floating-point
4 number is the default NaN value.

1 22. The computer-readable storage medium of claim 18, wherein
2 computing the minimum involves setting the minimum to negative infinity if the
3 second floating-point number is a default NaN value and the third floating-point
4 number is the default NaN value.

1 23. The computer-readable storage medium of claim 17, wherein if
2 none of the at least four floating-point numbers is a default NaN value or a value
3 representing the empty interval, computing the minimum involves selecting the
4 minimum of the at least four floating-point numbers.

1 24. The computer-readable storage medium of claim 18, wherein the
2 operation can include one of a multiplication operation and a division operation.

1 25. A computer-readable storage medium storing instructions that
2 when executed by a computer cause the computer to perform a method for
3 performing a maximum computation for an interval operation, the method
4 comprising:

5 receiving at least four floating-point numbers, including a first floating-
6 point number, a second floating-point number, a third floating-point number and a
7 fourth floating-point number; and

8 computing a maximum of the at least four floating-point numbers;

9 wherein if the at least four floating-point numbers include one or two
10 default NaN (not-a-number) values and the remaining values are not default NaN
11 values, the default NaN values are ignored in computing the maximum.

1 26. The computer-readable storage medium of claim 25,
2 wherein the maximum is a right endpoint of a resulting interval of the
3 interval operation;

4 wherein the first floating-point number is the result of an operation
5 between the left endpoint of a first interval and the left endpoint of a second
6 interval;

7 wherein the second floating-point number is the result of the operation
8 between the left endpoint of the first interval and the right endpoint of the second
9 interval;

10 wherein the third floating-point number is the result of the operation
11 between the right endpoint of the first interval and the left endpoint of the second
12 interval; and

13 wherein the fourth floating-point number is the result of the operation
14 between the right endpoint of the first interval and the right endpoint of the second
15 interval.

1 27. The computer-readable storage medium of claim 25, wherein
2 computing the maximum involves setting the maximum to a value representing
3 the empty interval, if any of the at least four floating-point numbers contain the
4 value representing the empty interval.

1 28. The computer-readable storage medium of claim 27, wherein the
2 value representing the empty interval is a non-default NaN value.

1 29. The computer-readable storage medium of claim 26, wherein
2 computing the maximum involves setting the maximum to positive infinity if the
3 first floating-point number is a default NaN value and the fourth floating-point
4 number is the default NaN value.

1 30. The computer-readable storage medium of claim 26, wherein
2 computing the maximum involves setting the maximum to positive infinity if the
3 second floating-point number is a default NaN value and the third floating-point
4 number is the default NaN value.

1 31. The computer-readable storage medium of claim 25, wherein if
2 none of the at least four floating-point numbers is a default NaN value or a value
3 representing the empty interval, computing the maximum involves selecting the
4 maximum of the at least four floating-point numbers.

1 32. The computer-readable storage medium of claim 26, wherein the
2 operation can include one of a multiplication operation and a division operation.

1 33. An apparatus that performs a minimum computation for an interval
2 operation, comprising:
3 an input that is configured to receive at least four floating-point numbers,
4 including a first floating-point number, a second floating-point number, a third
5 floating-point number and a fourth floating-point number; and
6 a computing mechanism that is configured to compute a minimum of the
7 at least four floating-point numbers;
8 wherein if the at least four floating-point numbers include one or two
9 default NaN (not-a-number) values and the remaining values are not default NaN
10 values, the default NaN values are ignored in computing the minimum.

1 34. The apparatus of claim 33,
2 wherein the minimum is a left endpoint of a resulting interval of the
3 interval operation;
4 wherein the first floating-point number is the result of an operation
5 between the left endpoint of a first interval and the left endpoint of a second
6 interval;
7 wherein the second floating-point number is the result of the operation
8 between the left endpoint of the first interval and the right endpoint of the second
9 interval;
10 wherein the third floating-point number is the result of the operation
11 between the right endpoint of the first interval and the left endpoint of the second
12 interval; and
13 wherein the fourth floating-point number is the result of the operation
14 between the right endpoint of the first interval and the right endpoint of the second
15 interval.

1 35. The apparatus of claim 33, wherein the computing mechanism is
2 configured to set the minimum to a value representing the empty interval, if any of
3 the at least four floating-point numbers contain the value representing the empty
4 interval.

1 36. The apparatus of claim 25, wherein the value representing the
2 empty interval is a non-default NaN value.

1 37. The apparatus of claim 34, wherein the computing mechanism is
2 configured to set the minimum to negative infinity if the first floating-point
3 number is a default NaN value and the fourth floating-point number is the default
4 NaN value.

1 38. The apparatus of claim 34, wherein the computing mechanism is
2 configured to set the minimum to negative infinity if the second floating-point
3 number is a default NaN value and the third floating-point number is the default
4 NaN value.

1 39. The apparatus of claim 33, wherein if none of the at least four
2 floating-point numbers is a default NaN value or a value representing the empty
3 interval, the computing mechanism is configured to select the minimum of the at
4 least four floating-point numbers.

1 40. The apparatus of claim 34, wherein the operation can include one
2 of a multiplication operation and a division operation.

1 41. An apparatus that performs a maximum computation for an
2 interval operation, comprising:
3 an input that is configured to receive at least four floating-point numbers,
4 including a first floating-point number, a second floating-point number, a third
5 floating-point number and a fourth floating-point number; and
6 a computing mechanism that is configured to compute a maximum of the
7 at least four floating-point numbers;
8 wherein if the at least four floating-point numbers include one or two
9 default NaN (not-a-number) values and the remaining values are not default NaN
10 values, the default NaN values are ignored in computing the maximum.

1 42. The apparatus of claim 41,
2 wherein the maximum is a right endpoint of a resulting interval of the
3 interval operation;
4 wherein the first floating-point number is the result of an operation
5 between the left endpoint of a first interval and the left endpoint of a second
6 interval;
7 wherein the second floating-point number is the result of the operation
8 between the left endpoint of the first interval and the right endpoint of the second
9 interval;
10 wherein the third floating-point number is the result of the operation
11 between the right endpoint of the first interval and the left endpoint of the second
12 interval; and
13 wherein the fourth floating-point number is the result of the operation
14 between the right endpoint of the first interval and the right endpoint of the second
15 interval.

1 43. The apparatus of claim 41, wherein the computing mechanism is
2 configured to set the maximum to a value representing the empty interval, if any
3 of the at least four floating-point numbers contain the value representing the
4 empty interval.

1 44. The apparatus of claim 43, wherein the value representing the
2 empty interval is a non-default NaN value.

1 45. The apparatus of claim 42, wherein the computing mechanism is
2 configured to set the maximum to positive infinity if the first floating-point
3 number is a default NaN value and the fourth floating-point number is the default
4 NaN value.

1 46. The apparatus of claim 42, wherein the computing mechanism is
2 configured to set the maximum to positive infinity if the second floating-point
3 number is a default NaN value and the third floating-point number is the default
4 NaN value.

1 47. The apparatus of claim 41, wherein if none of the at least four
2 floating-point numbers is a default NaN value or a value representing the empty
3 interval, the computing mechanism is configured to select the maximum of the at
4 least four floating-point numbers.

1 48. The apparatus of claim 42, wherein the operation can include one
2 of a multiplication operation and a division operation.