Introducción Tecnologías utilizadas Desarrollo Diseño y resultados Conclusiones Referencias

WebGL Based 3D Dashboard for Tracking Software Development

Adrián Alonso Barriuso

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN Universidad Rey Juan Carlos

2016

Contenido

- Introducción
 - Descripción del problema
 - Objetivo principal
- 2 Tecnologías utilizadas
- 3 Desarrollo
- 4 Diseño y resultados
- Conclusiones
- 6 Referencias

Dashboards y seguimiento de desarrollo de software

Un dashboard es una interfaz de ususario que nos permite manejar y gestionar un tipo determinado de software o de hardware. En nuestro caso trabajamos con dashboards de visualización de datos de desarrollo de software. Algunos ejemplos de dashboards y de librerías para la visualización de datos basadas en software libre son:

- Kibana
- Freeboard
- dc

Kibana

Freeboard

Figura: Ejemplo de freeboard

Figura: ejemplo de uso de dc.js

Dashboards en 2D

Ventajas

- Simplicidad de representación.
- 2 No requieren aceleración gráfica.
- 3 Impacto mínimo en el rendimiento.

Inconvenientes

- No se pueden representar gráficos con mas de 2 dimensiones, por razones obvias.
- 2 Las posibilidades de visualización y colocación son limitadas.

Objetivo principal

Crear una librería que nos permita crear visualizaciones y filtrar datos de desarrollo de software en 3D, dentro de cualquier navegador.

Requisitos

- Conseguir una interfaz y funcionalidad tan parecidos a los de dc.js como sea posible.
- 2 Tener varios tipos de gráficas y ser capaces de filtrar.
- Outilizar un framework de webGL
- 4 Respuesta rápida de los filtros.
- O Debemos ser capaces de hacer zoom, desplazarnos y arrastrar las gráficas.
- O Debemos poder colocar gráficas tanto de forma independiente como dentro de paneles.
- Tener una estructura basada en programación orientada a objetos.

Tecnologías utilizadas

- HTML5
- Javascript
- webGL
- Three.js
- Crossfilter
- THREEx.DomEvents
- Orbit controls

- Asumimos que el fluido es *incompresible*: no se puede "comprimir" o "expandir" cuando actúan fuerzas sobre éste.
- La incompresibilidad se expresa matematicamente por medio de

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \tag{1}$$

- Asumimos que el fluido es *incompresible*: no se puede "comprimir" o "expandir" cuando actúan fuerzas sobre éste.
- La incompresibilidad se expresa matematicamente por medio de

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \tag{1}$$

• El problema presupone que conocemos cómo es el movimiento del fluido al inicio cuando t=0, i.e., $u_x(x,y,z,0)$, $u_y(x,y,z,0)$ y $u_z(x,y,z,0)$ son conocidas (condiciones iniciales).

- Asumimos que el fluido es *incompresible*: no se puede "comprimir" o "expandir" cuando actúan fuerzas sobre éste.
- La incompresibilidad se expresa matematicamente por medio de

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \tag{1}$$

- El problema presupone que conocemos cómo es el movimiento del fluido al inicio cuando t=0, i.e., $u_x(x,y,z,0)$, $u_y(x,y,z,0)$ y $u_z(x,y,z,0)$ son conocidas (condiciones iniciales).
- Estas funciones iniciales deben satisfacer ciertas hipótesis de "suavidad" o regularidad que más adelante en la sección (??) precisaremos.

- Asumimos que el fluido es *incompresible*: no se puede "comprimir" o "expandir" cuando actúan fuerzas sobre éste.
- La incompresibilidad se expresa matematicamente por medio de

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \tag{1}$$

- El problema presupone que conocemos cómo es el movimiento del fluido al inicio cuando t=0, i.e., $u_x(x,y,z,0)$, $u_y(x,y,z,0)$ y $u_z(x,y,z,0)$ son conocidas (condiciones iniciales).
- Estas funciones iniciales deben satisfacer ciertas hipótesis de "suavidad" o regularidad que más adelante en la sección (??) precisaremos.

 Al aplicar las leyes de Newton a cada punto P del fluido y la ecuación de la incompresibilidad (1) Euler obtuvo

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = f_x(x, y, z, t) - \frac{\partial p}{\partial x}$$
 (2)

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = f_y(x, y, z, t) - \frac{\partial p}{\partial y}$$
(3)

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = f_z(x, y, z, t) - \frac{\partial p}{\partial z}$$
 (4)

 Al aplicar las leyes de Newton a cada punto P del fluido y la ecuación de la incompresibilidad (1) Euler obtuvo

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = f_x(x, y, z, t) - \frac{\partial p}{\partial x}$$
 (2)

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = f_y(x, y, z, t) - \frac{\partial p}{\partial y}$$
(3)

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = f_z(x, y, z, t) - \frac{\partial p}{\partial z}$$
(4)

• Las ecuaciones diferenciales parciales (1) – (4) son conocidas como las ecuaciones de Euler para el movimiento de un fluido.

 Al aplicar las leyes de Newton a cada punto P del fluido y la ecuación de la incompresibilidad (1) Euler obtuvo

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = f_x(x, y, z, t) - \frac{\partial p}{\partial x}$$
 (2)

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = f_y(x, y, z, t) - \frac{\partial p}{\partial y}$$
(3)

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = f_z(x, y, z, t) - \frac{\partial p}{\partial z}$$
(4)

• Las ecuaciones diferenciales parciales (1) – (4) son conocidas como las ecuaciones de Euler para el movimiento de un fluido.

- Navier y Stokes modifican las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad..
- Introducen una constante positiva ν que mide las fuerzas de fricción en el interior del fluido.

- Navier y Stokes modifican las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad..
- Introducen una constante positiva ν que mide las fuerzas de fricción en el interior del fluido.
- Agregan al lado derecho de las ecuciones de Euler (2) (4) una fuerza adicional (debido a la viscosidad), dada en el caso de (2) por

$$\nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)$$

- Navier y Stokes modifican las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad..
- Introducen una constante positiva ν que mide las fuerzas de fricción en el interior del fluido.
- Agregan al lado derecho de las ecuciones de Euler (2) (4) una fuerza adicional (debido a la viscosidad), dada en el caso de (2) por

$$\nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)$$

• Para (3) y (4) el término a agregar es el mismo pero sustituyendo a u_x por u_y y u_z respectivamente.

- Navier y Stokes modifican las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad..
- Introducen una constante positiva ν que mide las fuerzas de fricción en el interior del fluido.
- Agregan al lado derecho de las ecuciones de Euler (2) (4) una fuerza adicional (debido a la viscosidad), dada en el caso de (2) por

$$\nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)$$

• Para (3) y (4) el término a agregar es el mismo pero sustituyendo a u_x por u_y y u_z respectivamente.

• Las ecuaciones que Navier y Stokes obtienen son

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = \nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)
+ f_x(x, y, z, t) - \frac{\partial p}{\partial x}$$

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = \nu \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right)
+ f_y(x, y, z, t) - \frac{\partial p}{\partial y}$$

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = \nu \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right)
+ f_z(x, y, z, t) - \frac{\partial p}{\partial z}$$

$$(5)$$

• Las ecuaciones que Navier y Stokes obtienen son

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = \nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)
+ f_x(x, y, z, t) - \frac{\partial p}{\partial x} \tag{5}$$

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = \nu \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right)
+ f_y(x, y, z, t) - \frac{\partial p}{\partial y} \tag{6}$$

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = \nu \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right)
+ f_z(x, y, z, t) - \frac{\partial p}{\partial z} \tag{7}$$

- Durante el siglo XIX los matemáticos desarrollan una notación y un método para analizar cantidades que cambian en cada dirección llamado cálculo vectorial.
- Utilizando la notación del cálculo vectorial las ecuaciones de Navier-Stokes (5)- (7) se pueden escribir de forma más compacta como

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p + \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0$$
 (8)

donde

- Durante el siglo XIX los matemáticos desarrollan una notación y un método para analizar cantidades que cambian en cada dirección llamado cálculo vectorial.
- Utilizando la notación del cálculo vectorial las ecuaciones de Navier-Stokes (5)– (7) se pueden escribir de forma más compacta como

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p + \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0$$
 (8)

donde

 $\mathbf{u}=(u_x,u_y,u_z)=\mathrm{campo}$ de velocidades del fluido $p=\mathrm{presi\acute{o}n}$ que actúa sobre el fluido $\mathbf{f}=(f_x,f_y,f_z)=\mathrm{campo}$ de fuerzas que actúan sobre el fluido

- Durante el siglo XIX los matemáticos desarrollan una notación y un método para analizar cantidades que cambian en cada dirección llamado cálculo vectorial.
- Utilizando la notación del cálculo vectorial las ecuaciones de Navier-Stokes (5)- (7) se pueden escribir de forma más compacta como

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p + \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0$$
 (8)

donde

 $\mathbf{u} = (u_x, u_y, u_z) = \text{campo de velocidades del fluido}$

p= presión que actúa sobre el fluido

 $\mathbf{f} = (f_x, f_y, f_z) = \text{campo de fuerzas que actúan sobre el fluido}$

En ausencia de fuerzas externas $(f_x = f_y = f_z = 0)$, las ecuaciones de Navier-Stokes (8) quedan así:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p, \quad \nabla \cdot \mathbf{u} = 0$$
(9)

El instituto Clay ofrece un millón de dólares a quien responda

En ausencia de fuerzas externas $(f_x = f_y = f_z = 0)$, las ecuaciones de Navier-Stokes (8) quedan así:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p, \quad \nabla \cdot \mathbf{u} = 0$$
(9)

El instituto Clay ofrece un millón de dólares a quien responda:

Problema del milenio para las ecuaciones de Navier-Stokes

¿Es posible encontrar funciones $u_x(x,y,z,t)$, $u_y(x,y,z,t)$, $u_z(x,y,z,t)$ y p(x,y,z,t) que satisfagan (9) y que se comporten lo suficientemente "bien" para corresponder con la realidad física?

En ausencia de fuerzas externas $(f_x = f_y = f_z = 0)$, las ecuaciones de Navier-Stokes (8) quedan así:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p, \quad \nabla \cdot \mathbf{u} = 0$$
(9)

El instituto Clay ofrece un millón de dólares a quien responda:

Problema del milenio para las ecuaciones de Navier-Stokes

¿Es posible encontrar funciones $u_x(x,y,z,t)$, $u_y(x,y,z,t)$, $u_z(x,y,z,t)$ y p(x,y,z,t) que satisfagan (9) y que se comporten lo suficientemente "bien" para corresponder con la realidad física?

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- \bullet El problema análogo para el caso de viscosidad nula $\nu=0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu=0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones ($\mathbf{u} = (u_x, u_y)$), el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu=0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones ($\mathbf{u} = (u_x, u_y)$), el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones
- El problema de las ecuaciones de Navier-Stokes admite solución bajo algunas restricciones.

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu=0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones ($\mathbf{u} = (u_x, u_y)$), el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones
- El problema de las ecuaciones de Navier-Stokes admite solución bajo algunas restricciones.
 - Dadas las condiciones iniciales, es posible encontrar un número T>0 tal que las ecuaciones pueden ser resueltas para todo tiempo $0 \le t \le T$

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu=0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones ($\mathbf{u} = (u_x, u_y)$), el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones
- El problema de las ecuaciones de Navier-Stokes admite solución bajo algunas restricciones.
 - Dadas las condiciones iniciales, es posible encontrar un número T>0 tal que las ecuaciones pueden ser resueltas para todo tiempo $0 \le t \le T$.
 - Esta constante T (tiempo de "blowup") es muy pequeña y por tanto dicha solución no es muy útil en aplicaciones reales.

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu=0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones ($\mathbf{u} = (u_x, u_y)$), el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones
- El problema de las ecuaciones de Navier-Stokes admite solución bajo algunas restricciones.
 - Dadas las condiciones iniciales, es posible encontrar un número T>0 tal que las ecuaciones pueden ser resueltas para todo tiempo $0 \le t \le T$.
 - Esta constante T (tiempo de "blowup") es muy pequeña y por tanto dicha solución no es muy útil en aplicaciones reales.

Desarrollo

Las ecuaciones de Euler y Navier-Stokes describen el movimiento de un fluido en \mathbb{R}^n (n=2,3). Las incógnitas del problema vienen dadas por el vector de velocidades $u(x,t)=(u_i(x,t))_{1\leq i\leq n}\in\mathbb{R}^n$ y la presión $p(x,t)\in\mathbb{R}$, definidas para toda posición $x\in\mathbb{R}^n$ y todo tiempo $t\geq 0$.

Las ecuaciones de Navier-Stokes son

$$\frac{\partial u_i}{\partial t} + \sum_{j=1}^n u_j \frac{\partial u_i}{\partial x_j} = \nu \Delta u_i - \frac{\partial p}{\partial x_i} + f_i(x, t) \qquad (x \in \mathbb{R}^n, \ t \ge 0), \tag{10}$$

$$\operatorname{div} u = \sum_{i=1}^{n} \frac{\partial u_i}{\partial x_i} = 0 \qquad (x \in \mathbb{R}^n, \ t \ge 0)$$
 (11)

con condiciones iniciales

$$u(x,0) = u^0(x) \qquad (x \in \mathbb{R}^n). \tag{12}$$

Enunciado del problema

Se asume que $u^0(x)$ es un campo de clase C^∞ y de divergencia nula en \mathbb{R}^n , $f_i(x,t)$ son las componentes de la fuerza externa aplicada (e.g. la gravedad), ν es el coeficiente de viscocidad y $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ es el laplaciano en las variables espaciales. Las ecuaciones de Euler son las ecuaciones (10), (11), (12) con $\nu=0$.

Se espera que las soluciones satisfagan ciertas propiedades de regularidad que las hagan lo suficientemente "suaves" para que sean soluciones físicamente plausibles y por tanto se establecen las siguientes restricciones sobre las condiciones iniciales y las fuerzas aplicadas:

$$|\partial_x^{\alpha} u^0(x)| < C_{\alpha K} (1+|x|)^{-K}$$
 (13)

en \mathbb{R}^n para todo α v K,

Enunciado del problema

y también

$$\left|\partial_x^{\alpha} \partial_t^m f(x,t)\right| < C_{\alpha m K} \left(1 + |x| + t\right)^{-K} \tag{14}$$

en $\mathbb{R}^n \times [0, \infty)$ para todo α, m, K . Una solución de (10), (11), (12) es físicamente plausible sólo si se satisfacen las propiedades de regularidad

$$p, u \in C^{\infty} \left(\mathbb{R}^n \times [0, \infty) \right) \tag{15}$$

у

$$\int_{\mathbb{R}^n} |u(x,t)|^2 dx < C \qquad \text{para todo } t \ge 0$$
 (16)

Enunciado del problema

El problema fundamental consiste en determinar si las ecuaciones de Navier-Stokes admiten o no soluciones suaves, físicamente plausibles:

Problema de existencia y regularidad en \mathbb{R}^3

Considere $\nu > 0$ y n = 3. Suponga que el dato inicial $u^0(x)$ es suave, de divergencia nula y satisface la propiedad de decaimiento rápido (13) y asuma f(x,t) = 0. Entonces existen funciones suaves p(x,t) y $u_i(x,t)$ definidas en $\mathbb{R}^3 \times [0,\infty)$ que satisfacen (10), (11), (12), (15), (16).

Problema de colapso de la solución en \mathbb{R}^3

Considere $\nu > 0$ y n = 3. Entonces existe un campo vectorial suave de divergencia nula $u^0(x) \in \mathbb{R}^3$ y una función suave f(x,t) en $\mathbb{R}^3 \times [0,\infty)$ que satisfacen (13), (14) para las cuales **no** existen soluciones (p,u) de (10), (11), (12), (15), (16).

Referencias

A.J. Chorin, J.E. Marsden.

A Mathematical Introduction to Fluid Mechanics Springer-Verlag, 1980.

K. Devlin.

The Millenium Problems. The Seven Greatest Unsolved Mathematical Puzzles of Our Time
Basic Books, 2002.

C. Fefferman.

 ${\it Clay\ Mathematics\ Institute,\ Millenium\ Problems.\ Official\ problem\ description.}$

http://www.claymath.org/millennium/Navier-Stokes_Equation

Wikipedia contributors

Navier-Stokes equations

Wikipedia, The Free Encyclopedia., 2008.

 $http://en.wikipedia.org/wiki/Navier-Stokes_equations$

