FEM analysis: Linear Elastic Object

Shunsuke Yoshimoto

Physical simulation

Fundamentals

Physical simulation

Demonstration

Physical simulation is an effective technology for various fields.

What is simulation?

Meaning of simulation is imitation of real-world phenomenon.

"Investigation of objective signal and profile by imitating real-world phenomenon under controllable condition to reveal the mechanism" (from WIKI)

- Prediction of phenomenon for preparation
- Costless and convenient approach requiring no real resource
- Quantitative result is available.
- It is possible to Investigate the phenomenon of difficult to monitor.

Physical simulation: Obtaining numerical solution for governing equation

$$\frac{\partial \boldsymbol{v}}{\partial t} = \boldsymbol{F} - \frac{1}{\rho} \nabla p + \nu \nabla^2 \boldsymbol{v} \qquad \nabla \cdot \boldsymbol{B} = 0$$

$$C_v \frac{\partial T}{\partial t} = -\lambda \frac{\partial^2 T}{\partial x^2} \qquad \nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

$$\frac{1}{s^2} \frac{\partial^2 u}{\partial t^2} = \nabla^2 u \qquad \nabla \cdot \boldsymbol{D} = \rho$$

$$\boldsymbol{F} = m \frac{d^2 \boldsymbol{x}}{dt^2} + c \frac{d\boldsymbol{x}}{dt} + k\boldsymbol{x} \qquad \nabla \times \boldsymbol{H} - \frac{\partial \boldsymbol{D}}{\partial t} = j$$

$$\frac{\partial \phi}{\partial t} = D \nabla^2 \phi$$

$$\int_{\boldsymbol{v}} \{\epsilon\}^{\mathrm{T}} \{\sigma\} d\boldsymbol{v} - \int_{\boldsymbol{v}} \{U\}^{\mathrm{T}} \{\bar{G}\} d\boldsymbol{v} - \int_{S_s} \{U\}^{\mathrm{T}} \{\bar{T}\} d\boldsymbol{s} = 0$$

Scalar field, vector field and derivative operator

Scalar field

Vector field

$$\nabla = \left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\}$$

Spatial derivative

 $abla imes oldsymbol{v} imes oldsymbol{v} imes oldsymbol{v} imes oldsymbol{v}_{x} \quad egin{matrix} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ v_{x} & v_{y} & v_{z} \ \end{pmatrix} = \mathrm{rot} oldsymbol{v}$

$$\nabla f = \left\{ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\} = \operatorname{grad} f$$

$$\nabla \cdot \boldsymbol{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = \text{div} \boldsymbol{v}$$
 $\Delta f = \nabla^2 f$

Solution with initial and boundary conditions

Without boundary condition

$$\frac{d\phi(x)}{dx} = -\phi(x)$$

$$\phi(x) = A \exp(-x)$$

With boundary condition

$$\frac{d\phi(x)}{dx} = -\phi(x) \quad \boxed{\phi(0) = 1}$$

$$\phi(0) = 1$$

$$\phi(x) = \exp(-x)$$

Discretization for calculation in a computer

$$f(x) \stackrel{\text{discretization}}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} f[i]$$

$$\frac{df(x)}{dx}$$
 discretization

difference

Forward
$$f[i+1]-f[i]$$
 difference Δx

difference

Central
$$f[i+1] - f[i-1]$$
 lifference $2\Delta x$

$$\begin{array}{cc} \text{Backward} & \underline{f[i]-f[i-1]} \\ \text{difference} & \underline{\Delta x} \end{array}$$

Keywords in numerical analysis

- Error, Accuracy, Stability
- Newton method, Bisection method
- Gaussian elimination, iterative method
- Polynomial interpolation, Least-squares method
- Quadrature by parts, Trapezoidal rule, Simpson's rule
- Euler method, Crank-Nicholson scheme, Runge-Kutta method
- Method of Lagrange multiplier

Representative model for deformation

- Mass spring model (1D element)
 - Spring between nodes
 - Easy to implement, difficult to select parameter

- Boundary element model (2D element)
 - Element of boundary surface
 - homogeneous and isotropic object only

- Finite element model (3D element)
 - Simulation with measurable parameters
 - Large calculation cost

Explanation of simple problem

- Physical phenomenon
 - Deformation, potential distribution, heat conduction ...
- Type of equation
 - Linear, nonlinear
- Analysis mode
 - Static (quasistatic), dynamic, frequency domain, buckling analysis

$$\{F\} = [k]\{\delta\}$$

Finite element method

Theory

Finite element method

- A method to solve partial differential equation
- Discretization of object shape to solve with a computer
- Adjustment of equation based on the above operation

$$\left. \rho \frac{\partial \boldsymbol{v}}{\partial t} \right|_{x} = \rho \boldsymbol{g} + \nabla \cdot \boldsymbol{\sigma}$$

weak form

$$\int_v \{\epsilon\}^{\mathrm{T}} \{\sigma\} dv - \int_v \{U\}^{\mathrm{T}} \{\bar{G}\} dv - \int_{S_\sigma} \{U\}^{\mathrm{T}} \{\bar{T}\} ds = 0$$

$$[K^e]\{\delta^e\} = \{F^e\}$$

Steps for deformation analysis with FEM

1. Mesh generation

- Dirichlet condition: deformation is determined
- 2. Elastic parameter setting
- Neumann condition: force is zero
- 3. Generation of stiffness equation $\{F\} = [k] \{\delta\}$

$$\{F\} = [k]\{\delta\}$$

- 4. Solving equation with boundary condition
- 5. Visualization of physical quantitiy

Generation of stiffness equation

- 1. Mechanics of elasticity
- 2. Governing equation
- 3. Formularization
- 4. Element stiffness equation
- 5. Total stiffness equation

Strain: Normalized measure of displacement

Stress: Force per unit of area

6 components for asymmetric object

Physical parameter I: Young's modulus

Object of large young's modulus is difficult to be deformed.

Physical parameter II: Poisson ratio

Object of negative Poisson ratio extends transversally according to pressing force

Governing equation: Cauchy's first law

Principle of virtual work (The law of the conservation of energy)

Formularization: Deformation field in element

How large is the deformation at this point?

$$\delta_x = \sum_{i=1}^4 N_i \delta_x^i = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 z$$

$$\delta_y = \sum_{i=1}^4 N_i \delta_y^i = \alpha_5 + \alpha_6 x + \alpha_7 y + \alpha_8 z$$

$$\delta_z = \sum_{i=1}^4 N_i \delta_z^i = \alpha_9 + \alpha_{10} x + \alpha_{11} y + \alpha_{12} z$$

Deformation at an arbitrary point can be represented by using shape function N and node deformations

Linear interpolation

$$N_i = rac{V_i}{V}$$

Function of x,y,z

Determinant and volume of tetrahedron

How to calculate coefficients α

$$\delta_x = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 z$$

Calculate coefficients by using 4 vertex coordinates

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & y_1 & z_1 \\ 1 & x_2 & y_2 & z_2 \\ 1 & x_3 & y_3 & z_3 \\ 1 & x_4 & y_4 & z_4 \end{bmatrix}^{-1} \begin{bmatrix} \delta_x^1 \\ \delta_x^2 \\ \delta_x^2 \\ \delta_x^3 \\ \delta_x^4 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ d_1 & d_2 & d_3 & d_4 \end{bmatrix} \begin{bmatrix} \delta_x^1 \\ \delta_x^2 \\ \delta_x^3 \\ \delta_x^4 \end{bmatrix}$$

Representation of shape function

$$= \sum_{i=1}^{n} N_i \delta_x^i$$

$$= \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 z$$

Assignment
$$Coefficient \\ \delta_x = \sum_{i=1}^4 N_i \delta_x^i$$
 $Coefficient \\ \sum_{i=1}^4 N_i \delta_x^i$ $Coefficient \\ \sum_{i=1}^4 N_i \delta$

Element strain

$$\epsilon_x = \frac{\partial \delta_x}{\partial x} = \sum_{i=1}^4 \frac{\partial N_i}{\partial x} \cdot \delta_x^i$$
 Deformation from original shape

$$\gamma_{xy} = \frac{\partial \delta_x}{\partial y} + \frac{\partial \delta_y}{\partial x} = \sum_{i=1}^{4} \left(\frac{\partial N_i}{\partial y} \cdot \delta_x^i + \frac{\partial N_i}{\partial x} \cdot \delta_y^i \right)$$

How to calculate spatial derivative of shape function

$$\begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix} = \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ a_4 & b_4 & c_4 & d_4 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ z \end{bmatrix}$$

Coefficients can be calculated by spatial derivative

$$\begin{bmatrix} \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ a_4 & b_4 & c_4 & d_4 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial N_1}{\partial x} & \frac{\partial N_1}{\partial y} & \frac{\partial N_1}{\partial z} \\ \frac{\partial N_2}{\partial x} & \frac{\partial N_2}{\partial y} & \frac{\partial N_2}{\partial z} \\ \frac{\partial N_3}{\partial x} & \frac{\partial N_3}{\partial z} & \frac{\partial N_3}{\partial z} \\ \frac{\partial N_4}{\partial x} & \frac{\partial N_4}{\partial y} & \frac{\partial N_4}{\partial z} \end{bmatrix} = \underbrace{\frac{1}{6V}} \begin{bmatrix} b_1 & c_1 & d_1 \\ b_2 & c_2 & d_2 \\ b_3 & c_3 & d_3 \\ b_4 & c_4 & d_4 \end{bmatrix}$$

$$\begin{bmatrix} b_1 & c_1 & d_1 \\ b_2 & c_2 & d_2 \\ b_3 & c_3 & d_3 \\ b_4 & c_4 & d_4 \end{bmatrix}$$

Strain-deformation and stress-strain relations

$$[\epsilon] = \begin{bmatrix} \epsilon_x \\ \epsilon_y \\ \epsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix} = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & 0 & \frac{\partial N_4}{\partial x} & 0 & 0 \\ 0 & \frac{\partial N_1}{\partial y} & 0 & \dots & 0 & \frac{\partial N_4}{\partial y} & 0 \\ 0 & 0 & \frac{\partial N_1}{\partial z} & 0 & 0 & \frac{\partial N_4}{\partial z} \\ \frac{\partial N_1}{\partial y} & \frac{\partial N_1}{\partial x} & 0 & \frac{\partial N_4}{\partial y} & \frac{\partial N_4}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial z} & \frac{\partial N_1}{\partial y} & \dots & 0 & \frac{\partial N_4}{\partial z} & \frac{\partial N_4}{\partial y} \\ \frac{\partial N_1}{\partial z} & 0 & \frac{\partial N_1}{\partial x} & \dots & 0 & \frac{\partial N_4}{\partial z} & \frac{\partial N_4}{\partial y} \\ \frac{\partial N_1}{\partial z} & 0 & \frac{\partial N_1}{\partial x} & \frac{\partial N_1}{\partial z} & 0 & \frac{\partial N_4}{\partial z} \end{bmatrix} \begin{bmatrix} \delta_x^1 \\ \delta_y^1 \\ \delta_z^1 \\ \vdots \\ \delta_x^4 \\ \delta_y^4 \\ \delta_z^4 \end{bmatrix} = [B][\delta]$$

$$[\sigma] = \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ & 1-\nu & \nu & 0 & 0 & 0 \\ & & 1-\nu & 0 & 0 & 0 \\ & & & \frac{1-2\nu}{2} & 0 & 0 \\ & & & & \frac{1-2\nu}{2} & 0 \\ & & & & \frac{1-2\nu}{2} \end{bmatrix} \begin{bmatrix} \epsilon_x \\ \epsilon_y \\ \epsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix} = [D][\epsilon]$$

Element stiffness equation

$$[K^e]\{\delta^e\} = \{F^e\}$$

Hooke's law

How to derive this equation?

$$\left.
ho rac{\partial oldsymbol{v}}{\partial t}
ight|_x =
ho oldsymbol{g} +
abla \cdot oldsymbol{\sigma}$$

$$\int_{v} \{\epsilon\}^{\mathrm{T}} \{\sigma\} dv - \int_{v} \{U\}^{\mathrm{T}} \{\bar{G}\} dv - \int_{S_{\sigma}} \{U\}^{\mathrm{T}} \{\bar{T}\} ds = 0$$

Internal energy

External energy

$$[\epsilon] = [B][\delta] \quad [\sigma] = [D][\epsilon] \quad [U] = [N][\delta]$$

$$[K^e] = \int_v [B]^{\mathrm{T}} [D] [B] dv \qquad \{F^e\} = \int_v [N]^{\mathrm{T}} \{\bar{G}^e\} dv + \int_{S_\sigma} [N']^{\mathrm{T}} \{\bar{T}^e\} dv$$

How to calculate element stiffness matrix

$$[K^e] = \int_v [B]^{\mathrm{T}}[D][B]dv = [B]^{\mathrm{T}}[D][B] \int_v dv$$

Incase of homogeneous object, integral calculation can be replaced with volume calculation.

$$[K^e] = V[B]^{\mathrm{T}}[D][B]$$

$$[B] = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & 0 & \frac{\partial N_4}{\partial x} & 0 & 0 \\ 0 & \frac{\partial N_1}{\partial y} & 0 & \dots & 0 & \frac{\partial N_4}{\partial y} & 0 \\ 0 & 0 & \frac{\partial N_1}{\partial z} & 0 & 0 & 0 & \frac{\partial N_4}{\partial z} \\ \frac{\partial N_1}{\partial y} & \frac{\partial N_1}{\partial z} & 0 & \frac{\partial N_4}{\partial y} & \frac{\partial N_4}{\partial z} & 0 \\ 0 & \frac{\partial N_1}{\partial z} & \frac{\partial N_1}{\partial z} & 0 & \frac{\partial N_4}{\partial z} & \frac{\partial N_4}{\partial z} & 0 \\ 0 & \frac{\partial N_1}{\partial z} & \frac{\partial N_1}{\partial z} & \dots & 0 & \frac{\partial N_4}{\partial z} & \frac{\partial N_4}{\partial z} \\ \frac{\partial N_1}{\partial z} & 0 & \frac{\partial N_1}{\partial x} & \frac{\partial N_1}{\partial z} & 0 & \frac{\partial N_4}{\partial z} & 0 \\ \end{bmatrix}$$

$$[D] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ & 1-\nu & \nu & 0 & 0 & 0 \\ & & 1-\nu & 0 & 0 & 0 \\ & & & & & \frac{1-2\nu}{2} & 0 \\ & & & & & & \frac{1-2\nu}{2} \end{bmatrix}$$

Interaction between elements (nodes) can be represented by matrix

List of node indexes belonging to each element is needed.

Shape variant (Tetrahedron in this explanation)

Extension of stiffness matrix for whole body

Superimpose all element stiffness matrix based on node index

How to solve stiffness equation

- 1. Solving simultaneous equations
- 2. Boundary condition
- 3. Analysis for deformation input
- 4. Tips for calculation

Solve stiffness equation (simultaneous equations)

$$\{F\} = [k] \{\delta\}$$

$$\{\delta\} = [k]^{-1} \{F\} \text{ Underspecified equation}$$

- Matrix calculation instead of solving partial difference equation
- Simultaneous equations of number of node × degree of freedom
- Number of equation should be more than number of unknown parameter.
- What are unknown and known parameter?

Boundary condition: Dirichlet and Neumann

Deformation analysis under forced displacement

$$\left\{ \begin{cases} F_d \\ F_n \end{cases} \right\} = \begin{bmatrix} [K_{dd}] & [K_{dn}] \\ [K_{nd}] & [K_{nn}] \end{bmatrix} \left\{ \begin{cases} \delta_d \\ \delta_n \end{cases} \right\}$$

Dirichlet condition: deformation is determined

Neumann condition: force is zero

$$\{\delta_n\} = -[K_{nn}]^{-1}[K_{nd}]\{\delta_d\}$$

$$\{F_d\} = [K_{dd}]\{\delta_d\} - [K_{dn}][K_{nn}]^{-1}[K_{nd}]\{\delta_d\}$$

Reducing calculation cost for real time simulation

Forced displacement

$$\begin{cases} \{F_f\} \\ \{F_s\} \end{cases} = \begin{bmatrix} [K_{ff}] & [K_{fs}] \\ [K_{sf}] & ([K_{ss}]) \end{bmatrix} \begin{cases} \{0\} \\ \{\delta_s\} \end{cases}$$

Fixed
$$S_f$$
 $\{F_s\} = (K_{ss})(\delta_s) + (\delta_s) \Rightarrow (L_{ss})(F_s)$

Effective when

- S_f is constant
- $dimS_f < dimS$

$$\begin{cases}
\{\delta_d\} \\
\{\delta_n\}
\end{cases} = \begin{bmatrix}
[L_{dd}] \\
[L_{nd}]
\end{bmatrix} \begin{bmatrix}
[L_{dn}] \\
\{L_{nn}\end{bmatrix}
\end{bmatrix} \begin{cases}
\{F_d\} \\
\{0\}
\end{cases}$$

$$\{\delta_n\} = -[L_{nd}][L_{dd}]^{-1} \{\delta_d\}$$

Visualization of physical quantity

Example: Von Mises stress

- Each element has value.
- Color map is useful for visualizing the spatial distribution of the stress.
- H value of HSV color space is a general representation of the color map.

Finite element method

Implementation

List of variables

- Element
 - Node index
 - Node coordinate
 - Displacement vector
 - Stiffness matrix
 - Stress strain matrix
 - Strain displacement matrix
 - Shape function
 - Poisson ratio
 - Young's modulus
 - Volume
 - von Mises stress
 - Strain vector
 - Stress vector

- Entire model
 - Number of node
 - Number of element
 - Node coordinate
 - Element
 - Node set of not Dirichlet condition
 - Node set of Dirichlet condition
 - Node set of Neumann condition
 - Flag for boundary condition
 - Force vector
 - Displacement vector
 - Stiffness matrix

List of functions

- Matrix multiplication, matrix-vector multiplication, transposed matrix, inverse matrix and determinant
- Loading a model
- Physical parameter setting for each element
- Shape function, strain, stress, von mises stress and volume calculations for each element
- Setting of strain-displacement relation matrix [Be] for each element
- Setting of stress-strain relation matrix [De] for each element
- Stiffness matrix [Ke] setting for each element
- Total stiffness matrix [K]
- Boundary condition setting and pre-calculation of inverse matrix
- Setting of load condition
- Solving stiffness equation (displacements for all node will be calculated)
- Calculation of von mises stress for each element
- Releasing displacement

.fem file format (ASCII)

nNodes number of nodes

nTetrahedra number of elements

Number of nodes

Number of elements

Number of elements

Implementation of stress-strain matrix setting

```
[D] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0\\ & 1-\nu & \nu & 0 & 0 & 0\\ & & 1-\nu & 0 & 0 & 0\\ & & & \frac{1-2\nu}{2} & 0 & 0\\ & sym. & & \frac{1-2\nu}{2} & 0\\ & & & \frac{1-2\nu}{2} \end{bmatrix}
unsigned int i;
double Dscale;
Dscale = young_modulus / ( ( 1.0 + poisson_ratio )
                                 * ( 1.0 - 2.0 * poisson ratio ) );
for( i = 0; i < 3; i ++ ){
     D[ 6 * i + i ] = Dscale * ( 1.0 - poisson_ratio );
     D[6*i+(i+1)\%3] = Dscale*poisson ratio;
     D[6*i+(i+2)\%3] = Dscale*poisson ratio;
     D[6*(i+3)+i+3] = Dscale*(1.0-2*poisson_ratio)/2;
```

Overview of total stiffness matrix generation

Decomposition of vector and matrix for boundary condition

$$\left\{F\right\} = \begin{bmatrix}k\\\delta\} \\ \{F_f\}\\ \{F_s\} \\ = \begin{bmatrix}K_{ff}\\K_{fs}\end{bmatrix} \begin{bmatrix}K_{fs}\\K_{fs}\end{bmatrix} \begin{cases}\{0\}\\ \{\delta_s\} \\ \{\delta_s\} \\ \{\delta_s\} \\ \{\delta_n\} \\ = \begin{bmatrix}L_{dd}\\K_{nd}\end{bmatrix} \begin{bmatrix}L_{dn}\\K_{nn}\end{bmatrix} \begin{bmatrix}\{F_d\\\{0\} \\ \{0\} \\ \{0\} \\ \{0\} \\ \{0\} \end{bmatrix} \end{cases}$$

$$\left\{\delta_n\} = -[L_{nd}][L_{dd}]^{-1} \{\delta_d\}$$
 List of corresponding node indexs

Physical simulation

Discussion

This is the only overview.

- Learn continuum mechanics,
 if you don't understand governing equation.
- Learn calculusinfinitesimal calculus and algebra, if you don't understand formulization.
- Learn numerical analysis,
 if you don't understand programming of simultaneous equations.
- Learn C language,
 if you don't understand implementation.
- The shortest way to learn is to ask professionals what you don't understand.

※ Difficult thing is that the description is different between the textbooks.

What you have to consider in simulation

- Explain your analysis design logically.
 - How to construct a model for the simulation.
 - Which is your analysis mode, static, dynamic, frequency, or bulking analysis?
 - What is boundary condition, input and output?
- It is possible to show the property but difficult to explain the essence.
- The investigation of validity is difficult.
- No appropriate imitation, no valid result.
- You cannot find your mistake if your model is too complicated.

References

- 京谷孝史 著, よくわかる連続体力学ノート, 森北出版, 2011年.
- William H. Press, et al., NUMERICAL RECIPES in C, 技術評論社, 1993.
- 川村哲也著,数値計算の初歩!,山海堂,2002年.
- 野村大次ら 著, 有限要素法 解析基礎と実践, 丸善出版, 2013年.
- 三好俊郎 著, 有限要素法入門, 培風館, 1994.
- 梅谷信行,有限要素法(FEM)のページ,http://ums.futene.net/