Math 206

Fall 2015

8/26

Definitions

```
A norm on a vector space X (over \mathbb{F}) is a function ||| : X \to \mathbb{R}^+ such that ||x|| = 0 iff x = 0 ||\alpha x|| = |\alpha| ||x|| (for \alpha \in F) ||x + y|| \le ||x|| + ||y|| An algebra \mathscr{A} over \mathbb{F} is a vector space with distributive \cdot satisfying cx \cdot y = c(x \cdot y) x \cdot cy = c(x \cdot y) for all c \in F A normed algebra over \mathbb{R} or \mathbb{C} is an algebra \mathscr{A} equipped with (vector space) norm satisfying ||ab|| \le ||a|| ||b|| for all a, b \in \mathscr{A} A norm on \mathscr{A} induces a metric d(a,b) = ||a - b|| on \mathscr{A} and therefore a topology if \mathscr{A} is complete for this norm, it is a Banach algebra
```

To figure out (use https://www.math.ksu.edu/ nagy/real-an/2-05-b-alg.pdf)

```
Supposing \mathscr{A} is not necessarily complete
```

 $||ab|| \le ||a|| ||b||$ gives uniform continuity on the product

hence the norm can be extended to the completion $\bar{\mathscr{A}}$ to form a Banach algebra A metric space M is complete if all Cauchy sequences converge to an element of M The completion M is all equivalence classes of Cauchy sequences where

$${a_n} \sim {b_n}$$
 iff $\lim_{x\to\infty} d(a_n - b_n) = 0$

Examples

```
For M a compact space, C(M) the set of continuous \mathbb{R}/\mathbb{C}-valued functions on M pointwise operations \|f\|_{\infty} = \sup\{|f(x)| : x \in M\} For M locally compact, C_{\infty}(M)
```

the set of continuous \mathbb{R}/\mathbb{C} -valued functions on M vanishing at ∞ vanishing at ∞ : $\forall \epsilon \exists$ a compact subset of M, outside of which $f < \epsilon$ note that this is non-unital (lacks an identity)

For $\mathscr{O} \subset \mathbb{C}^n$ open

 $H^{\infty}(\mathscr{O})$ the set of all bounded holomorphic functions on \mathscr{O}

(M, d) metric space and $f \in C(M)$

Lipschitz constant (which can be $+\infty$) $L_d(f) = \sup\{\frac{|f(x) - f(y)|}{d(x,y)} : x, y \in M, x \neq y\}$

The Lipschitz functions $\mathcal{L}_d(M,d) = \{f : L(f) < \infty\}$

These form a dense subalgebra of C(M) and are in fact a *-subalgebra

 $||f||_d := ||f||_{\infty} + L_d(f)$, can be shown as a normed-algebra norm

 $L_d(M,d)$ is complete for this norm

so $L_d(M,d)$ is a Banach algebra

 L_d is a seminorm on $\mathcal{L}_d(M,d)$ since it takes value 0 on the constant functions can recover d from L_d

M a differentiable manifold (e.g. $T = \mathbb{R}/\mathbb{Z}$ the circle)

 $C(M) \supseteq C^{(1)}(M)$ the singly-differentiable functions

$$f \in C^{(2)}(T) \to Df: T_xM \to \mathbb{R}, \mathbb{C}$$

with Df the derivative and T_x the tangent space

If we put on a Riemmannian metric, define $||f||^{(1)} = ||f||_{\infty} + ||Df||_{\infty}$

If
$$f \in C^{(1)}(T) : ||f||^{(1)} = ||f||_{\infty} + ||f'||_{\infty}$$

Banach algebra norm, for which this space of functions is complete

For the circle,
$$C^{(2)}(T) \to ||f||^{(2)} = ||f||_{\infty} + ||f'||_{\infty} + \frac{1}{2}||f''||_{\infty}$$

the factor $\frac{1}{2}$ ensures that this satisfies the normed algebra condition

$$C^{(n)}(T) = \sum_{k=0}^{n} \frac{1}{k!} ||f^{(k)}||_{\infty}$$

For $C^{\infty}(T)$ using the collection of norms $\{\|\|^{(n)}\}_{n=1}^{\infty}$ yields a Fréchet algebra A Fréchet algebra has a topology defined by a countable family of seminorms that respect the algebra structure and is complete **(clarify)**

non-commutative algebras

X a Banach space

 $\mathscr{B}(X)$ the algebra of bounded operators on X

 $\|\|$ operator norm \rightarrow Banach algebra

Any closed subalgebra of $\mathcal{B}(X)$ is a Banach algebra

8/28

Sketch of the course

X a Banach space, B(X) bounded functions on the space

 \mathscr{H} a Hilbert space, $\mathscr{B}(\mathscr{H})$ bounded operators on the space

for
$$T \in \mathcal{B}(\mathcal{H}) \exists$$
 adjoint operator $T^* \in \mathcal{B}(\mathcal{H})$

$$< T\xi, \eta > = < \eta, T^*\xi > \text{for } \xi, \eta \in \mathcal{H}$$

adjoint is additive, conjugate linear, $T^{**} = T$, $(ST)^* = T^*S^*$

An algebra A over $\mathbb R$ or $\mathbb C$ is a *-algebra if it has a * : $A \to A$ satisfying

```
certain properties (look up)
A *-normal algebra is a normal *-algebra such that
    (\forall a \in A) ||a^*|| = ||a||
A Banach *-algebra is a *-normal algebra that is a Banach algebra.
For any T \in \mathcal{B}(\mathcal{H}), have ||T^*T|| = ||T||^2 (check: parse through defns)
For M a locally compact space, A = C_{\infty}(M, \mathbb{C}), f^* := \bar{f} is a Banach *-algebra
    Also have ||f^*f|| = ||f||^2 (verify: should be easier than the other)
Little Gelfand-Naimark theorem:
   Let A be a commutative Banach *-algebra satisfying ||a^*a|| = ||a||^2.
   Then A \cong C_{\infty}(M) for some locally compact M.
One view of the "spectral theorem"
   Let T \in \mathcal{B}(\mathcal{H}) with T^* = T
   Let A be the closed subalgebra of \mathscr{B}(\mathscr{H}) generated by T and I (i.e. p(T) := \Sigma \alpha_k T^K)
   Polynomials closed or stable under *
   If S \in A then S^* \in A (i.e. A is a *-subalgebra of \mathscr{B}(\mathscr{H})
   So A is a Banach *-suubalgebra satisfying ||S^*S|| = ||S||^2
   Moreover, A is commutative. (unital, since generated by I)
   Then by the Little Gelfand-Naimark theorem, A \cong C(M)
   Indeed M \subset \mathbb{R}, the spectrum of T
   If \mathcal{H} is finite dimensional, then M is the set of eigenvalues of T
   T is normal if TT^* = T^*T
A C*-algebra is a Banach *-algebra over C satisfying
    ||a^*a|| = ||a||^2
Theorem: A commutative C*-algebra is \cong C_{\infty}(M).
Big Gelfand-Naimark Theorem: (Math 208, C*-algebras)
   Any C*-algebra is \cong to a closed *-subalgebra of \mathscr{B}(\mathscr{H}) for some Hilbert space \mathscr{H}.
Tangent
    algebraic topology, differential geometry, Riemann manifolds, "non-commutative ge-
ometry" (Connes)
A von-Neumann algebra is a *-subalgebra of \mathscr{B}(\mathscr{H})
   which is closed under the strong operator topology.
    Every commutative von-Neumann algebra is \cong L^{\infty}(X, S, \mu) (measure spaces) acting
on L^2(X, S, \mu) by positive sldkjfalksdjf
For group G, \alpha : G \to Auto(X) \subseteq \mathcal{B}(X)
    Auto(X) a Banach space
   Look at subalgebra of \mathcal{B}(X) generated by \alpha(G).
   Leads to considering l'(G) with product (f \star g)(x) = \sum f(y)g(y^{-1}x) convolution
    f^*(x) = f(x^{-1})
   Banach *-algebra, G commutative \rightarrow Fourier transform
```

8/31

K a field, X a set, $\mathscr{F}(X,K)$ the set of all K-valued functions on X with pointwise operations Given $f \in \mathscr{F}(X,K)$.

```
Let \lambda \in K. Then \lambda \in \text{range}(f) exactly if (f - \lambda 1) is not invertible.
```

For any $a \in A$, the *spectrum* of a is $\{\lambda \in K : a - \lambda 1_A \text{ is not invertible in A}\}$.

The spectrum depends on the containing algebra

Assuming that this algebra A (over the field K) has an identity 1_A

Example: Let A = C([0, 1]), and B = polynomials, viewed as a dense subalgebra of A.

Let p be a polynomial of degree ≥ 2 . Then

$$\sigma_a(p) = p([0,1]).$$

 $\sigma_B(p) = \mathbb{R}, \mathbb{C}$

Let A be a Banach algebra with 1 (||1|| = 1), and $a \in A$.

If
$$||a|| < 1$$
, then 1 - a is invertible, and $||(1-a)^{-1}|| \le \frac{1}{1-||a||}$

Proof:

$$\frac{1}{1-a} = \sum_{n=0}^{\infty} a^n \ (a^0 := 1_A)$$

For any n > 0, let $s_n = \sum_{k=0}^n a^k$.

Show that $\{s_n\}$ is a Cauchy sequence.

If
$$n > m$$
, $||s_n - s_m|| = ||\sum_{k=m+1}^n a^k|| \le \sum_{k=m+1}^n ||a||^k$.

Given $\epsilon > 0 \exists N$ such that if $m, n \geq N$ then $\sum_{k=m+1}^{n} ||a||^k \leq \epsilon$

So $\{s_n\}$ is a Cauchy sequence.

By completeness there is a $b \in A$ with $s_n \to b$ as $n \to \infty$.

Want to show $b = (1 - a)^{-1}$.

$$b(1-a) = \lim_{n \to \infty} (s_n(1-a))$$

$$= \lim_{n\to\infty} (1 + a + a^2 + a^3 + \dots + a^n - (a + a^2 + a^3 + \dots + a^{n+1}))$$

= $\lim_{n\to\infty} (1 - a^{n+1}) = 1$

Then 1 - (1 - a) is invertible, i.e. a is invertible.

$$\|(1-a)^{-1}\| = \lim \|s_n\| \le \lim \sum_{k=0}^n \|a^k\| = \frac{1}{1-\|a\|} (\|1\| = 1)$$

 $||ab|| \le ||a|| ||b||$: can very easily check that multiplication is cts (do this?)

Corollary: If
$$a \in A$$
 and $||1-a|| < 1$ then a is invertible, and $||a^{-1}|| \le \frac{1}{1-||1-a||}$

I.e. the open unit ball about 1 consists of invertible elements.

Let $a \in A$. Let L_a , R_a be the operators of left and right multiplication by a on A.

 $a o L_a$ is an algebra homomorphism of A into $\mathscr{L}(A)$ (linear operators on A)

$$L_aL_b = L_{ab}$$
, $R_aR_b = R_{ba}$ (R is an antihomomorphism)

 $1 \in A$

If a is invertible, then so is L_a , $L_aL_{a-1} = I_a$

Then if A is a normed algebra, $||L_a|| = ||a||$

$$||L_{ab}|| = ||ab|| \le ||a|| ||b||$$

$$||L_a 1_a|| = ||a||$$

so if $a \in A$ is invertible, then L_a is a homeomorphism of A onto itself.

Thus if *A* is a Banach algebra, with 1, and a is invertible:

 $\{L_a b: ||1-b|| < 1\}$ is an open neighborhood of a consisting of invertible elements

Let GL(A) be the set of invertible elements of A. (general linear group)

Then (for A a unital Banach algebra) GL(A) is an open subset of A.

(Fails for Poly \subseteq C([0, 1]))

Two Fréchet algebras, for one, GL(A) is an open subset, for another it isn't.

ask about this?: not sure what he was talking about

$$C^{\infty}(T)$$
, $||f^{(n)}||$

```
\mathbb{C}(\mathbb{R}) cont fns on \mathbb{R} (or \mathbb{C}) maybe unbounded
```

For each n let $||f||_n = \sup\{|f(t)| : |t| \le n\}$

Corollary: For A a Banach algebra with 1 and $a \in A$, $\sigma(a)$ is a closed subset of $\mathbb C$

9/2

Proposition: Let A be a unital Banach algebra and $a \in A$.

Then $\sigma(a)$ is a closed subset of $\mathbb C$ or $\mathbb R$. If $\lambda \in \sigma(a)$ then $\|\lambda\| \leq \|a\|$.

Proof: $\sigma(a) = \{\lambda : (a - \lambda) \text{ is not invertible}\}\$

Its complement, the *resolvant set*, of a is $\{\lambda : (a - \lambda) \in GL(A)\}$, is open.

If $|\lambda| > ||a||$ then $(\lambda - a) = \lambda(1 - \frac{a}{\lambda})$, $||a/\lambda|| < 1$

so $(\lambda - a)$ is invertible, ie $\lambda \in \sigma(a)$.

Over \mathbb{R} , can have $\sigma(a) = \emptyset$, e.g. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

"If $a \in GL(A)$ and b is close to a then b^{-1} is not much bigger than a^{-1} ".

Let $\mathcal{O} = \{c : ||1 - c|| < 1/2\}$

So c is invertible, and $||c^{-1}|| \le \frac{1}{1 - ||1 - c||} \le 2$

Let $b \in a\mathcal{O}$, so b = ac for $c \in \mathcal{O}$, then $||b^{-1}|| = ||c^{-1}a^{-1}|| \le 2||a^{-1}||$.

For $a, b \in GL(A)$.

 $b^{-1} - a^{-1} = b^{-1}(a - b)a^{-1}$

Thus $||b^{-1} - a^{-1}|| < ||b^{-1}|| ||a - b|| ||a^{-1}||$.

So $b \to b^{-1}$ is continuous for the norm.

So GL(A) is a topological group for topology from norm.

$$b^{-1} = (1 + b^{-1}(a - b))a^{-1}$$

On $\rho(a)$ (the resolvant set, complement of the spectrum) define the resolvant of a This is the function $R(a, \lambda) = (\lambda - a)^{-1}$

 $R(a,\lambda)$ is an analytic function on $\rho(a)$.

Proof: Let f(z) = R(a, z).

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \frac{(z+h-a)^{-1} - (z-a)^{-1}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} (z+h-a)^{-1} ((z-a) - (z+h-a)) (z-a)^{-1}$$

$$= \lim_{h \to 0} -(z+h-a)^{-1} (z-a)^{-1} = -(z-a)^{-2}$$

$$f'' = +z(z-a)^{-3}$$

$$f'' = +z(z-a)^{-3}$$

Given $z_0 \in \rho(a)$

Will use $b^{-1} = (1 + b^{-1}(a - b))a^{-1}$ and $f(z) = (z - a)^{-1} = \sum c_n(z - z_0)^n$ $f(z) = (z - a)^{-1}$

 $b \rightarrow z - a$

$$f(z) = (1 + (z - a)^{-1}((z_0 - a) - (z - a))(z_0 - a)^{-1}$$

 $=(1+(z-a)^{-1}(z_0-z))(z_0-a)^{-1}$

where $(z - a)^{-1}(z_0 - z) \le 1$ then the above

$$= \sum_{n=0}^{\infty} (-1)^n (z-a)^{-n} (z-z_0)^n = \sum_{n=0}^{\infty} (-1)^n (z-a)^{-n-1} (z-z_0)^n$$

a proper power series expansion.

Examine R(a,z) at ∞ .

$$R(a,z^{-1}) = (z^{-1}-a)^{-1} = \frac{1}{z^{-1}-a}$$

 $= z(1-za)^{-1}$ (for small z, ie ||za|| < 1)

 $R(a,z^{-1})$ approaches 0 as $z \to 0$.

defn $R(a,0^{-1}) = 0$, see R(a,z) is analytic at ∞.

Theorem: For a Banach algebra over \mathbb{C} with 1, and for any $a \in A$,

 $\sigma(a) \neq \emptyset$, that is, the spectrum is non-empty.

Proof: Suppose that $\sigma(a) = \emptyset$.

Then R(a,z) is defined on all of \mathbb{C} and is bounded.

By Liouville's, R(a,z) is constant, = 0, $(a-z)^{-1} = 0 \ \forall z$

Why can we use Liouville's in this Banach space case?

Let A' be the dual Banach space to A.

For $\varphi \in A'$, $z \mapsto \varphi(R(a,z))$ is a \mathbb{C} -valued analytic function.

So set $\varphi(R(a,z)) = 0 \ \forall z, \forall \varphi$

so R(a,z) = 0.

Knowing that there is anything in here is the Hahn-Banach Theorem, depending on the axiom of choice.

Theorem (Gelfand-Mazer)

Let A be a unital Banach algebra over C.

If every nonzero element is invertible, then $z \to z1_A$ is an isomorphism from $\mathbb C$ onto A. Proof:

Given $a \in A$ let $z \in \sigma(a) \neq \emptyset$.

So (z - a) is not invertible so z - a = 0.

Fails over \mathbb{R} since have \mathbb{R} , \mathbb{C} , quaternions

9/4

Let A be an algebra or ring. Ideals *I*, left, right, 2-sided.

A/I, for a left ideal get a left A-module, right ideal get a right A-module

Two-sided get an algebra or ring.

Let A be a normed algebra, and if I is an ideal in A.

Then *I* (the closure) is again an ideal in A.

 $\{a_n\} \subset I$, $a_n \to c \in A$ then $ba_n \to bc$

Proposition: If A is a unital Banach algebra and if I is an proper ideal in A.

Then \overline{I} is proper.

Proof:

Use GL(A) is open. The original ideal cannot contain any invertible elements.

The complement of the invertible elements is going to be closed.

The ideal is in its closure; the closure is in the complement of the invertible elements.

So the closure will not contain any invertible elements.

Counter-example: C locally compact, $C_c(\mathbb{R}) \subset C_\infty(\mathbb{R})$

In fact $C_c(\mathbb{R})$ is the minimal dense ideal in $C_{\infty}(\mathbb{R})$

Lack of identity element.

Counter-example: Look at A the polynomials viewed as a subset of C([0,1])

Using the sup-norm.

Lack of completeness.

Let $I = \{p : p(2) = 0\}$ is an ideal, in fact a maximal proper ideal.

This ideal of polynomials will be dense inside A and dense inside all polynomials.

Counter-example: $A = C(\mathbb{R})$, including unbounded, $I = C_C(\mathbb{R})$, compact open topology.

Corollary: Let A be a unital Banach algebra.

Then every maximal ideal is closed.

Taking ideals to form quotients.

Recall that if X is a normed vector space and if Y is a vector subspace of X:

Then we can form the quotient vector space X/Y.

Have the evident $\pi: X \to X/Y$ by $\pi(x) = x + Y$.

Set $\|\pi(x)\| = \inf\{\|x - y\| : y \in Y\}$ i.e. the distance from x to the subspace Y.

It is easily seen that this is a seminorm.

Problem: if Y is not closed, then it is not a norm, since $||\pi(y)|| = 0$ for $y \in \overline{Y}$.

Therefore, if Y is closed, then $\|\|_{X/Y}$ is a norm.

(Should know from 202*B*) If X is a Banach space and Y is a closed subspace.

Then X/Y with the norm defined above is a Banach space.

Trickier to prove, but a true statement.

Proposition: Let A be a normed algebra and let I be a closed ideal in A.

(can be left or right or two-sided)

Then if I is a two-sided ideal, then A/I with $\|\|_{A/I}$ is a normed algebra.

That is $\|\pi(a)\pi(b)\| \le \|\pi(a)\| \|\pi(b)\|$.

Then if I is a left ideal, so that A/I with $\| \|_{A/I}$ is a left A-module.

 $||a\pi(b)||_{A/I} \le ||a||_A ||\pi(b)||_{A/I}$

And if I is a right ideal, so that A/I with $\|\|_{A/I}$ is a right A-module, similar.

Proof:

For I a two-sided ideal.

If $c,d \in I$, then $\|\pi(a)\pi(b)\|_{A/I} \le \|(a-c)(b-d)\| = \|(ab-(cb+ad-cd)\|$ where $cb+ad-cd \in I$.

Take inf over $c, d \in I$.

$$\leq \|a - c\| \|b - d\|$$

Proposition: If a is a Banach algebra and I is a closed 2-sided ideal, then A/I is a Banach algebra.

An algebra or ring is *simple* if it contains no proper 2-sided ideals.

e.g. $M_n(\mathbb{R})$, $M_n(\mathbb{C})$, $M_n(K)$ for K a field.

Proposition: Let A be an algebra or ring and let I be a maximal 2-sided ideal in A.

The A/I is a simple algebra/ring.

Corollary: If A is a Banach algebra and if I is a maximal closed 2-sided ideal.

Then A/I is a simple Banach algebra.

Let A be a commutative algebra/ring with 1.

If $a \in A$ and a is not invertible, then Aa is a two-sided ideal.

And $1 \notin Aa$ (else it would be invertible).

Thus Aa is a proper ideal.

Corollary: If A is a commutative algebra/ring with 1 and if A is simple, then A is a field.

A is simple: every nonzero element is invertible.

Since if one weren't we would have a proper ideal.

```
Theorem: Let A be a commutative Banach algebra with 1.
```

Let I be a maximal ideal in A (which of course is necessarily closed).

Then $A/I \cong$ either \mathbb{C} (isomorphic in every sense).

Proof:

Banach-Mazer theorem applied to the previous discussion.

 $c \in A/I$, $z \in \sigma(c)$, $c - z1_A$ is noninvertible by def'n spectrum.

Since it is a field, $c - z1_A = 0$.

From a maximal ideal, I, get a homomorphism $\phi: A \to \mathbb{C}$, unital

 $(\phi(1) = 1)$ such that $I = ker(\phi)$

Let A be a Banach algebra with 1 and let $\phi : A \to \mathbb{C}$ be a homomorphism.

Then ϕ is continuous and $ker(\phi)$ is a maximal 2-sided ideal in A.

 $\|\phi\| = 1$

Lemma: For any given $a \in A$, $\phi(a) \in \sigma(a)$

Proof: $\phi(a - \phi(a)1_A) = 0$ so $a - \phi(a)1$ is not invertible.

so $\phi(a) \in \sigma(a)$

Then $\|\phi(a)\| \le \|a\|$, so $\|phi\| \le 1$ but $\phi(1) = 1$.

9/9

9/11

X a compact (hausd) space and A = C(X). What is \hat{A} ? (the maximal ideal space)

Each $x \in X$, $\phi_x(f) = f(x)$. Multiplicative linear functional.

Get map $X \to \hat{A}$, $x \mapsto \phi_x$. Question: is this onto?

Proposition: Let I be a proper ideal in A = C(X).

There is at least one $x \in X$ such that f(x) = 0 for all $f \in I$.

Proof:

Suppose no such x exists. (Goal: show that I = A.)

Then for each $x \in X$ is $f_x \in I$ with $f_x(x) \neq 0$.

Multiply it by $\overline{f_x}$, then we have $\overline{f_x}f_x$ non-negative and real.

Let $U_x = \{y : f_x(y) > 0\}$ open, $x \in U_x$.

The U_x 's cover X, so there is a finite subcover, corresponding to $\{x_1, \dots, x_n\}$

Then let $f = \sum_{i=1}^{n} f_{x_i}$. Then f(x) > 0 all $x \in X$.

Certainly $f \in I$. In A, f is invertible. Hence I = A.

We can conclude that $X \to \overline{A}$ is onto, one-to-one, continuous (easy to see).

Compact space to a Hausdorff space this is a homeomorphism.

Proposition: $\overline{\overline{A}}$ "=" X.

A commutative Banach algebra with 1.

Have the Gelfand transform: $A \to C(\hat{A})$, where $a \mapsto \hat{a}$.

If a is nilpotent, $a^n = 0$, for any $\phi \in \hat{A}$:

 $0 = \phi(a^n) = (\phi(a))^n$, so $\phi(a) = 0$. Thus $\hat{a} \equiv 0$. (0 on all elements)

A comm. Banach, $1 \in A$. (\mathbb{C})

We have seen that $a \in A$, range(\hat{a}) $\subset \sigma(a)$.

Is the converse true? Yes, observe:

If $\lambda \in \sigma(a)$, then $\lambda 1_a - a$ is not invertible so $(\lambda - a)A$ is a proper ideal (2-sided).

From algebra: every ideal is contained in a maximal ideal; call it *M*.

So there is $\phi \in \hat{A}$ having this maximal ideal as its kernel.

Then $\phi(\lambda - a) = 0$ and $\phi(a) = \lambda$.

Proposition: range(\hat{a}) = $\sigma_a(a)$.

Let $A = C_b(\mathbb{Z}^-)$ be the algebra of all bounded \mathbb{C} -valued sequences $\|\cdot\|_{\infty}$.

Let $I = C_{\infty}(\mathbb{Z}^+)$ an ideal. (proper, norm-closed)

Then *I* is contained in a maximal ideal of A, so there is a $\phi \in \hat{A}$ with $\phi(I) = \{0\}$.

Such maximal ideals are "not constructive". (logician term)

Consequence of the use of Zorn's Lemma to say that a maximal ideal exists.

Let R be any unital ring, e.g. finite field, and $\mathscr{R} = \prod_{n=1}^{\infty} R$, $I = \bigoplus_{n=1}^{\infty} \mathscr{R}$.

Then exists maximal ideal of R containing I, same difficulty/situation.

I.e. does not have anything to do with Banach algebras.

 $\hat{A} = \beta \mathbb{Z}^+$ the Stone-Cech compactification of the positive integers

The *expected radius* of a is $\max\{|\lambda| : \lambda \in \sigma(a)\}$

Because of range(\hat{a}) = $\sigma(a)$ this is the same as $\|\hat{a}\|_{\infty}$.

This definition works also for a non-commutative algebra A.

But consequence applies only to commutative algebras. (Gelfand transform def'd)

For A commutative Banach algebra with 1 and any $a,b \in A$.

$$r(ab) \le r(a)r(b)$$
 and $r(a+b) \le r(a) + r(b)$. $(ab \ne ba \rightarrow can fail)$

Proof:

$$r(ab) = \|(\hat{ab})\|_{\infty} = \|\hat{ab}\|_{\infty} \le \|\hat{a}\|_{\infty} \|\hat{b}\|_{\infty} = r(a)r(b).$$

Note: the spectral radius is independent of the containing algebra.

First form of "holomorphic functional calculus".

Given $a \in A$ Banach algebra with 1.

Let f be a function holomorphic on an open subset of \mathbb{C} containing $\{z:|z|\leq \|a\|\}$.

Thus f has a power series expansion $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$ that converges absolutely and uniformly on $\{z : |z| \leq ||a||\}$.

Thus can define $f(a) := \sum_{n=0}^{\infty} \alpha_n a^n$.

Proposition (proof next time): If $\lambda \in \sigma(a)$, then $f(\lambda) \in \sigma(f(a))$.

9/14

Let A be unital Banach algebra, let $a \in A$.

Proposition: let f be analytic function with power series expansion that converges on some open subset of $\mathbb C$ that contains $\{z:|z|\leq \|a\|\}$. Then $f(a)=\sum \alpha_n a^n\in A$ and if $\lambda\in\sigma(a)$ then $f(\lambda)\in\sigma(f(a))$.

Proof:

$$f(\lambda) = f(a) = \sum_{n=0}^{\infty} \alpha_n \lambda^n - \sum_{n=0}^{\infty} \alpha_n a^n = \sum_{n=1}^{\infty} \alpha_n (\lambda^n - a^n)$$
$$= \sum_{n=1}^{\infty} \alpha_n (\lambda - a) (\lambda^{n-1} + \lambda^{n-2} a + \dots + \lambda a^{n-2} + a^{n-1})$$

Call the telescoping sum $P_n(\lambda, a)$.

Then $||P_n(\lambda, a)|| < n||a||^{n-1}$

Continue, equals $(\lambda - a) \sum \alpha_n P_n(\lambda, a)$

 $f'(z) = \sum_{n=1}^{\infty} \alpha_n n z^{n-1}$, converges absolutely uniformly for $|z| \leq ||a||$.

 $\sum_{n=1}^{\infty} \alpha_n P_n(\lambda, a) = b \in A.$

So $f(\lambda) - f(a) = (\lambda - a)b$

If $(f(\lambda) - f(a))$ has inverse c, then $1 = (\lambda - a)bc$, so $\lambda - a$ is invertible.

Thus since $\lambda \in \sigma(a)$, $f(\lambda) = f(a)$ is not invertible so $f(\lambda) \in \sigma(f(a))$.

This proof above is the beginnings of the spectral mapping theorem.

Consider $f(z) = z^n$.

Then if $\lambda \in \sigma(a)$ then $\lambda^n \in \sigma(a^n)$.

Thus $|\lambda^n| \le ||a^n||$, so $|\lambda| \le ||a^n||^{1/n}$. Thus $|\lambda| \le \inf_n \{||a^n||^{1/n}\}$.

Corollary: $r(a) \leq \inf_n \{ \|a^n\|^{1/n} \}.$

This expression doesn't depend on the containing algebra.

Consider the resolvant of a, at ∞ .

$$R(a,z^{-1})\frac{1}{z-a} = z(1-az)^{-1} = z\sum_{n=0}^{\infty} a^n z^n$$
 converges for $||az|| < 1$ i.e. $|z| < ||a||^{-1}$

However since R(a,z) is analytic for |z| > r(a), $R(a,z^{-1})$ is analytic for $|z| < r(a)^{-1}$.

Power series converges in the largest circle in which it's analytic.

Should converge in the larger circle. Note we are in Banach-algebra-valued functions.

Right now we assume we don't know that, so use method from before.

Composing with linear operators on the algebra.

For any $\varphi \in A'$ the dual space of the algebra, $f_{\varphi}(z) = \varphi(z(1-az)^{-1})$.

Then f_{φ} is an ordinary holomorphic function, holomorphic in $\{z: |z| < r(a)^{-1}\}$.

So the power series expansion of f_{φ} about 0 converges for $|z| < r(a)^{-1}$.

But the power series for f_{φ} is $z \sum_{n=0}^{\infty} \varphi(a^n) z^n$.

This will converge for $|z| < r(a)^{-1}$

Thus for any r > r(a), $z \sum_{n=0}^{\infty} \varphi(a^n) z^n$ will converge absolutely and uniformly for $|z| \le$

So there is M_{φ} such that $|\phi(a^n)||z^n| \leq M_{\varphi} \forall n, \forall z \text{ with } |z| \leq r^{-1}$.

So $|\varphi(a^n)r^{-n}| \leq M_{\varphi}$ for all n.

For each n define $F_n \in A''$ by $F_n(\varphi) = \varphi(a^n)r^{-n}$.

Thus $|F_n(\varphi)| \leq M_{\varphi}$ for all φ .

Recall the uniform boundedness theorem (consequence of the Baire category theorem).

Says here that $\exists M$ such that $||F_n|| \leq M \ \forall n$.

But it is clear that $||F_n|| = ||a^n|| r^{-n}$. Thus $||a^n|| r^{-n} \le M$ i.e. $||a^n|| \le M r^n \to ||a^n||^{1/n} \le M^{1/n} r$ As $n \to \infty$, $M^{1/n} \to 1$.

So the $\limsup_{n\to\infty}\|a^n\|^{1/n} \le r \ \forall r > r(a)$ (Box it!) Thus $\limsup_{n\to\infty}\|a^n\|^{1/n} \le r(a)$.

And we have $r(a) \leq \inf_{n \in \mathbb{N}} \{\|a^n\|^{1/n}\}.$

Thus, Theorem: $r(a) = \lim \|a^n\|^{1/n}$. In particular, this limit exists.

(Gelfand's spectral radius formula).

Just needed a unital Banach algebra over C.

Corollary: r(a) does not depend on the containing algebra.

Corollary: Let A be a commutative Banach algebra with 1 over \mathbb{C} .

Then the Gelfand transform $a \mapsto \hat{a}$ from \bar{A} to $C(\hat{A})$ is isometric exactly if $||a^2|| = ||a||^2$ for all $a \in A$.

9/16