Notes on Gaussian Quadrature

Jack Deye

March 3, 2025

Introduction

Gaussian quadrature is particularly efficient for integrating polynomials and uses specially chosen points and weights to achieve high accuracy.

Brief Overview

Gaussian quadrature approximates this integral using:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} w_{i} f(x_{i})$$

where x_i are the nodes and w_i are the weights. The nodes and weights are chosen such that the method is exact for polynomials of degree 2n-1 or lower. Typically, this integral is from [-1, 1].

Motivation

Our intuition comes from the trapezoid rule, which only provide exact solutions to integrals for linear functions. But we can do better, take n nodes x_1, x_2, \dots, x_n . We can improve the trapezoid by choosing the weights such that they are exact for linear, quadratic, cubic, up to polynomials of degree n-1.

$$\int_{-1}^{1} f \approx w_1 f(x_1) + w_2 f(x_2) + \dots + w_n f(x_n)$$

$$f(x) = 1 \to \int_{-1}^{1} 1 \, dx = 2 = w_1 + w_2 + \dots + w_n$$

$$f(x) = x \to \int_{-1}^{1} x \, dx = 0 = w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

$$\vdots$$

$$f(x) = x^{n-1} \to \int_{-1}^{1} x^{n-1} \, dx = 0 = w_1 x_1^{n-1} + w_2 x_2^{n-1} + \dots + w_n x_n^{n-1}$$

Resulting in the following linear equation (with a Vandermonde Matrix):

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & \ddots & \cdots & x_n \\ \vdots & & \ddots & \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ \vdots \\ b_i \end{bmatrix}$$

In practice, this method is not feasible because Vandermonde matrices are badly ill-conditioned, as the condition number increases exponentially, (https://arxiv.org/abs/1504.02118), resulting in slight changes in b causing large changes in w_i 's.

Linear Algebra Intuition

Ultimately, this problem boils down to a linear algebra problem, and will require using polynomials as vectors, inner products, Gram-Schmidt orthogonalization. This arises because the integral is a linear operator.

Overview of Legendre Polynomials

Starting with the following basis and inner product:

$$\{1, x, x^2, \cdots, x^n\}$$
 $\langle p, q \rangle = \int_{-1}^1 p(x)q(x) dx$

Performing the Gram-Schmidt process, we get the following orthogonal polynomials known as **Legendre Polynomials**.

$$L_0(x) = 1$$

 $L_1(x) = x$
 $L_2(x) = \frac{1}{2}(3x^2 - 1)$
:

Note: they have been scaled such that $L_n(1) = 1$.

It is important to notice that $L_i(x)$ is orthogonal to all polynomials of degree less than i, meaning $\forall p \in \mathcal{P}$, $\langle L_i, p \rangle = 0$ for $\deg(p) \leq i$. Another important note is that they have exactly n roots over \mathbb{R} .

Developing Gaussian Quadrature

Given a polynomial of degree 2n-1, namely p(x), we can divide it by L_n , resulting in the following division with degrees:

$$\underbrace{p(x)}_{p(x)} = \underbrace{q(x)}_{n-1} \underbrace{L_n(x)}_{n} + \underbrace{r(x)}_{n-1} \tag{2}$$

Integrating both sides we get

$$\int_{-1}^{1} p(x) \, dx = \int_{-1}^{1} q(x) L_n(x) \, dx + \int_{-1}^{1} r(x) \, dx = 0 + \int_{-1}^{1} r(x) \, dx$$

because the orthogonality of $L_n(x)$.

Going back to quadrature, we can ensure the same behavior by picking nodes at the zeros of $L_n(x)$.

Because $\int_{-1}^{1} p(x) dx = \int_{-1}^{1} r(x) dx$, we can interpolate r(x) exactly with Lagrange polynomials, resulting in

$$\int_{-1}^{1} r(x) dx = \int_{-1}^{1} \left(\sum_{i=1}^{n} f(x_i) l_i(x) \right) dx = \sum_{i=1}^{n} f(x_i) \int_{-1}^{1} l_i(x) dx$$

meaning we choose our weights the be the integral of the Lagrange basis polynomials, or

$$w_{i} = \int_{-1}^{1} \prod_{j=1 \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

This results perfect interpolation of polynomials of degree 2n-1, with n nodes. We can actually relate Lagrange and Legendre polynomials and then use the Christoffel-Darboux formula to rewrite the definition of the weights as

$$w_i = \frac{2}{(1 - x_i^2)(L_n'(x_i))^2} \tag{3}$$

Note on the Bounds

One must change an integral over [a, b] to one over [-1, 1] before using Gaussian Quadrature. This can be done with

$$\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left(\frac{b-a}{2}x + \frac{a+b}{2}\right) \frac{b-a}{2} dx$$

Resulting in a formula of:

$$\int_{a}^{b} f(x) \approx \frac{b-a}{2} \sum_{i=1}^{n} w_{i} f\left(\frac{b-a}{2} x_{i} + \frac{a+b}{2}\right)$$

$$\tag{4}$$

Error estimate pg22. (https://www.math.umd.edu/mariakc/AMSC466/LectureNotes/quadrature.p