

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Disciplina: Lab. de Eletrotécnica

Prática: Nº 02 - Leis de Ohm e de Kirchhoff

Mama	Mot.
Nome:	 . Mat.:

1. OBJETIVOS

- Verificação da lei de Ohm via simulação;
- Verificação das leis de Kirchhoff via simulação;
- Familiarização com o comportamento de cargas não lineares.

2. MATERIAL UTILIZADO

- Simuladores Electric Circuit Studio (ECS) ou Multisim Live.

3. PROCEDIMENTOS LABORATORIAIS.

3.1- Lei de Ohm - Carga ôhmica

Com base na **Figura 3.1 ou 3.2**, escolha um resistor qualquer $(4,7 \Omega, 15 \Omega)$ ou 20 $(4,7 \Omega, 15 \Omega)$, uma tensão qualquer no secundário do transformador (6 V) ou 12 $(4,7 \Omega, 15 \Omega)$, e preencha a **Tabela 3.1** fazendo primeiro os cálculos teóricos e, depois, a verificação através da medição realizada na simulação (obs: insira o *print* da tela). Deve ser aplicada uma tensão eficaz de 220 V no primário do transformador. Verifique a Lei de Ohm e a potência dissipada no resistor. A lei de Ohm foi comprovada com os resultados obtidos? Comente.

Figura 3.1

Figura 3.2

Tabela 3.1

		Vs (V)		
	Resistência	(Tensão no	Corrente	Potência
	(Ω)	secundário)	(A)	dissipada (W)
Valores				
Nominais				
Valores				
Medidos				

Insira aqui os prints que achar necessário.

Comentários:

3.2- Lei de Ohm - Carga não-ôhmica

Com base na **Figura 3.3 ou 3.4**, escolha uma potência qualquer para a lâmpada (no caso: 60 W, 100 W ou 150 W), anote a potência nominal.

Figura 3.3

Figura 3.4

Potência da lâmpada escolhida:

Monte o circuito no simulador utilizando a lâmpada com a potência escolhida e ajuste a tensão da fonte para cada uma das tensões eficazes: 80 V; 110 V; 150 V; 220V. Calcule para cada uma destas tensões a resistência da lâmpada, onde deve ser considerado que a potência da lâmpada é proporcional à tensão aplicada (ex: para

220 V, a proporção da potência escolhida é igual a 1, ou seja, P = 1 x potência escolhida).

Obs1: R_d : resistência de operação da lâmpada, $R_d = (V_T)^2/P$, onde V_T e P são os valores para cada tensão e potência proporcional da lâmpada).

Obs2: No simulador ECS é necessário inserir a resistência da lâmpada calculada, selecionando a lâmpada e depois indo em PROPERTIES para alterar a resistência.

Obs3: No simulador Multisim Live insira em "Maximum rated voltage" e "Burnout voltage" 311 V.

Obs4: Para cada simulação, insira o print da tela.

Após esses passos, preencha a **Tabela 3.2**. Plote uma curva "tensão x corrente". Há uma relação linear? Comente os resultados obtidos.

Tabela 3.2

Tensão eficaz da	Valores	Corrente na	Valores	$R_d(\Omega)$
fonte	simulados	lâmpada	simulados	calculado
$V_1(V)$		I ₁ (A)		
V ₂ (V)		I ₂ (A)		
V ₃ (V)		I ₃ (A)		
V ₄ (V)		I ₄ (A)		

Prints:

Insira aqui os prints que achar necessário.

Comentários:

3.3- Lei de Kirchhoff - Associação série

Monte o circuito da **Figura 3.5 ou 3.6** para uma tensão eficaz na fonte de tensão de 12 V, preencha a **Tabela 3.3** com os valores nominais calculados determinando a resistência equivalente, corrente do circuito e queda de tensão em cada resistor. Depois, simule o circuito preenchendo a **Tabela 3.3** com os valores simulados. Insira os *prints* necessários. Qual Lei de Kirchhoff pode ser comprovada com os resultados obtidos?

Figura 3.6

Tabela 3.3

	V _s (V)					
	(Tensão no	$V_{R1}(V)$	$V_{R2}(V)$	$V_{R3}(V)$	$I_{T}(A)$	$R_{eq}(\Omega)$
	secundário					
	do transformador)					
Nominal						
Simulado						

Insira aqui os prints que achar necessário.

Comentários:

3.4- Lei de Kirchhoff - Associação paralelo

A partir do circuito da **Figura 3.7 ou 3.8**, para uma tensão eficaz na fonte de tensão de 6 V, preencha a **Tabela 3.4** com os valores nominais calculados determinando a resistência equivalente, as correntes do circuito e as quedas de tensão em cada resistor. Depois, simule o circuito preenchendo a **Tabela 3.4** com os valores simulados. Insira os *prints* necessários. Qual Lei de Kirchhoff pode ser comprovada com os resultados obtidos?

Figura 3.7

Figura 3.8

Tabela 3.4

	V _s (V) (Tensão no secundário	I ₁ (A)	I ₂ (A)	I ₃ (A)	V _{R1} (V)	$V_{R2}(V)$	$R_{eq}(\Omega)$
	do transformador)						
Nominal							
Simulado							

Insira aqui os prints que achar necessário.

Comentários:

3.5- Lei de Kirchhoff - Associação mista

A partir do circuito da **Figura 3.9 ou 3.10**, para uma tensão eficaz na fonte de tensão de 12 V, preencha a **Tabela 3.5** com os valores nominais calculados determinando a resistência equivalente, as correntes do circuito e as quedas de tensão em cada resistor. Depois, simule o circuito preenchendo a **Tabela 3.5** com os valores simulados. Insira os *prints* necessários. Qual(is) Lei(s) de Kirchhoff pode(m) ser comprovada(s) com os resultados obtidos?

Figura 3.10

Tabela 3.5

	V _s (V) (Tensão no secundário do transformador)	I ₁ (A)	I ₂ (A)	I ₃ (A)	V ₁ (V)	V ₂ (V)	$R_{\rm eq} \left(\Omega \right)$
Nominal							
Simulado							

Insira aqui os prints que achar necessário.

Comentários: