Tác giả: TS. Võ Văn Tuấn Dũng

GIÁO TRÌNH TOÁN BỞI RẠC

NHÀ XUẤT BẢN THỐNG KÊ

CuuDuongThanCong.com

https://fb.com/tailieudientucnt

Tác giả: TS. Võ Văn Tuấn Dũng

cuu duong than cong . com

GIÁO TRÌNH TOÁN RÒI RẠC

NHÀ XUẤT BẢN THỐNG KÊ

LỜI NÓI ĐẦU

Giáo trình được tác giả biên soạn dựa trên kinh nghiệm giảng dạy môn học "*Toán rời rạc*" trong nhiều năm cho sinh viên ngành Công nghệ Thông tin của một số trường Đại học ở Thành phố Hồ Chí Minh với thời lượng 3 đơn vị học trình (45 tiết).

Tác giả biên soạn giáo trình theo hướng: sắp xếp nội dung tinh giản, hợp lý, đồng thời bảo đảm khối kiến thức tối thiểu về cơ sở Toán cho Tin học để sinh viên có điều kiện tiếp thu tốt các môn chuyên ngành trong chương trình đào tạo kỹ sư Công nghệ Thông tin. Tuy nhiên, giáo trình có thể sử dụng như một tài liệu tham khảo cho sinh viên ngành Toán - Tin học.

Giáo trình được chia thành 5 chương. Chương 1 trình bày những vấn đề cơ bản nhất của logic học bao gồm: mệnh đề; các quy luật logic; vị từ và lượng từ; suy luận toán học. Chương 2 trình bày các vấn đề cơ bản trong phép đếm và trong giải tích tổ hợp; nguyên lý Dirichlet dùng để chứng minh sự tồn tại của cấu hình tổ hợp thoả mãn điều kiện cho trước. Chương 3 trình bày khái niệm thuật toán; giới thiệu một số thuật toán tiêu biểu; độ phức tạp của thuật toán. Chương 4 trình bày khái niệm quan hệ, cách biểu diễn một quan hệ bằng một ma trận; quan hệ tương đương; quan hệ thứ tự và biểu đồ Hasse của tập sắp thứ tự hữu hạn. Chương 5 trình bày các vấn đề cơ bản về hàm Boole, biểu thức Boole, đại số Boole và nguyên lý đối ngẫu; vấn đề tổ hợp các cổng logic theo biểu thức Boole cho trước; vấn đề tối thiểu hoá hàm Boole bằng phương pháp biến đổi đại số, phương pháp Karnaugh, phương pháp Quine - Mc. Cluskey.

Trong quá trình biên soạn, do nhiều lý do khách quan và chủ quan, giáo trình chắc chắn sẽ không tránh khỏi những sai sót. Tác giả rất mong nhận được các ý kiến đóng góp để giáo trình được hoàn thiện hơn.

TP. Hồ Chí Minh, tháng 9 năm 2007

Tác giả

Chuong 1:

CƠ SỞ LÔGIC

1.1. Mênh đề

1.1.1. Định nghĩa

Mệnh đề là một khẳng định có giá trị chân lý xác định (đúng hoặc sai nhưng không thể vừa đúng vừa sai). Ta thường ký hiệu các mệnh đề bởi các chữ Latinh hoa P, Q, R,...

Nếu P là mệnh đề đúng, ta nói P nhận giá trị đúng và viết P = 1 hay P = T.

Nếu Q là mệnh đề sai, ta nói Q nhận giá trị sai và viết Q = 0 hay Q = F.

Ví dụ

- P: "6 là số chẵn" \rightarrow P = 1.
- Q: "Paris là thủ đô nước Anh" → Q = 0.
- R: "1 có phải là số hữu tỷ không ?" Không phải mệnh đề
- S: "Hôm nay trời đẹp làm sao!"
- T: "x+2 < 7" \rightarrow không phải mệnh đề. $\begin{cases} x = 3 \Rightarrow T = 1. \\ x = 8 \Rightarrow T = 0. \end{cases}$ T là hàm mệnh đề.

Chú ý

Các câu hỏi, các khẳng định dưới dạng tán thán hoặc mệnh lệnh không phải là mệnh đề vì nó không có chân trị nhất định.

1.1.2. Các phép toán trên mệnh đề

Từ một hay nhiều mệnh đề, có thể xây dựng những mệnh đề mới ngày càng phức tạp hơn nhờ các phép toán lôgic phủ định, hội và tuyển sau đây:

1. Phép phủ định

Phủ định của mệnh đề P được ký hiệu bởi ¬P hay P (đọc: "không P" hay "không phải P"), là một mệnh đề có giá trị được xác định bởi bảng chân trị sau:

P	¬Р
0	1
1	0

Ví dụ

P: "Trái đất quay".

¬P: "Không phải trái đất quay", "Trái đất không quay".

Ta có P = 1, do đó $\neg P = 0$.

2. Phép hội

Hội của hai mệnh đề P, Q được ký hiệu bởi $P \land Q$ (đọc: "P và Q") là một mệnh đề có giá trị được xác định bởi bảng sau:

P	Q	P∧Q	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Vậy mệnh đề P∧Q chi đúng khi cả P và Q đều đúng, còn sai trong các trường hợp còn lại.

Ví dụ 1

P: "2 là số nguyên tố"

O: "2 là số chẵn".

P∧Q: "2 là số nguyên tố và 2 là số chẵn".

Ta có P = Q = 1, do đó $P \wedge Q = 1$.

Ví du 2

P: "Hôm nay là thứ Hai"

Q: "Hôm nay trời mưa"

Mệnh đề P∧Q là đúng vào hôm thứ Hai trời mưa, và là sai vào bất kỳ ngày nào không phải ngày thứ Hai và vào ngày thứ Hai nhưng trời lại không mưa.

Chú ý

• Khi nối hai mệnh đề bởi từ và để diễn đạt phép hội, thường ta bỏ bớt một số từ trùng lặp hoặc sửa đổi chút ít câu văn. Chẳng hạn, trong các mệnh đề sau đây, các từ trong dấu ngoặc được lược bỏ:

"Dây đồng (dẫn điện) và dây chì dẫn điện".

"An rất say mê Toán và (An rất say mê) văn học".

Trong những điều kiện nhất định, phép hội còn được diễn đạt bởi những liên từ khác như: đồng thời, nhưng, v.v... hoặc chỉ bằng một dấu phẩy. Ví du:

"Hùng yếu Anh văn nhưng giỏi Toán"

"Lan vừa vếu Toán vừa vếu Anh văn"

"Chồng cày, vợ cấy, con trâu đi bừa" (Ca dao)

Mặt khác, không phải bao giờ từ và cũng có ý nghĩa của phép hội. Ví du:

"Nói và làm đì đôi với nhau"

"Hùng có 12 cây bút màu xanh và màu vàng"

3. Phép tuyến

Tuyến của hai mệnh đề P, Q được ký hiệu bởi PVO (đọc: "P hoặc O") là một mệnh đề có giá được xác định bởi bảng sau:

P	Q	P∨Q
0	0	0
0	1	1
1	0	1
10	10	1

Vậy mệnh đề P√Q chỉ sai khi cả P và Q đều sai, và đúng trong các trường hợp còn lại.

Ví dụ

P: "Hùng đang đọc báo".

Q: "Hùng đang xem tivi".

Ta có tuyển của P và Q là P∨Q : "Hùng đang đọc báo hoặc xem tỉ vi". P∨Q là mệnh đề đúng nếu lúc này Hùng đọc báo, xem ti vi hay vừa đọc báo vừa xem ti vi (!). Ngược lại nếu cả hai việc trên đều không xảy ra, chẳng hạn như Hùng đang làm việc thì mệnh đề PVQ là sai.

Chú ý

Trong ngôn ngữ tự nhiên, liên từ hoặc thường được dùng theo hai nghĩa. Ví du với mênh đề:

"Cô Lan đi đến Huế hoặc Nha Trang"

người ta có thể hiểu theo hai cách khác nhau:

Cô Lan đi đến Huế hoặc Nha Trang và có thể đến cả hai nơi đó.

Cô Lan đi đến Huế hoặc Nha trang và chỉ đến một trong hai nơi đó.

Để chính xác, khi cần thiết, người ta dùng:

- P và/hoặc Q: để chỉ P hoặc Q và có thể cả P lẫn Q, và dùng kí hiệu
 v, gọi là phép tuyển không chặt.
- hoặc P hoặc Q: để chi P hoặc Q nhưng không thể cả P lẫn Q, và dùng kí hiệu y, gọi là phép tuyển chặt.

Bảng chân trị của P∨Q là:

Р	Q	P⊻Q
0	0	0
0	1	1
1	0	1
1	1	0

Ví dụ

- Thuốc này có thể gây phản ứng sốt và/hoặc nhức đầu.
- Cô Lan đi đến Huế và/hoặc Nha Trang.
- · Cô Lan đi đến hoặc Huế hoặc Nha Trang.

Trong giáo trình này, khi nói phép tuyển thì ta luôn hiểu đó là phép tuyển không chặt.

1.1.3 Mệnh đề có điều kiện và sự tương đương lôgic

1. Mệnh đề có điều kiện (còn gọi là phép suy diễn hay phép kéo theo)

Mệnh đề P kéo theo mệnh đề Q được ký hiệu bởi $P \Rightarrow Q$ là một mệnh đề có giá trị được xác định bởi bảng sau:

P	Q	P⇒Q
0	0	1
0	i	1
1	0	0
1	1	1

Vậy mệnh đề $P\Rightarrow Q$ chỉ sai khi P đúng và Q sai, còn đúng trong mọi trường hợp còn lại.

Trong mệnh đề $P \Rightarrow Q$ thì P được gọi là giả thiết (hay nguyên nhân), còn Q được gọi là kết luận (hay kết quả). Thường ta còn có những cách đọc mệnh đề $P \Rightarrow Q$ như sau:

"P kéo theo Q";

"Nếu P thì Q";

"Q chi nếu P"

Kết luận Q biểu thị điều kiện cần của P, còn giả thiết P biểu thị điều kiện đủ của Q.

Ví dụ

- a/b = c ⇒ a = bc (ngược lại chưa chắc đúng). Vậy a/b = c là điều kiên đủ của a = bc.
- Khỏe mạnh là điều kiện cần nhưng không đủ để giới các môn thể thao.

Chú ý

Định nghĩa của phép kéo theo trên là tổng quát hơn với từ kéo theo trong ngôn ngữ thông thường. Ví dụ xem các phép phép kéo theo sau:

- a. "Nếu hôm nay trời nắng thì chúng tôi sẽ đi xem ca nhạc"
- b. "Nếu hôm nay tôi ở nhà thì số 25 chia hết cho 5"
- c. "Nếu hôm nay là thứ Năm thì số 25 là số nguyên tố"

Ở đây ta thấy: Phép kéo theo a) được dùng trong ngôn ngữ thông thường, vì ở đây có mối quan hệ giữa giả thiết và kết luận. Phép kéo theo này được xem là đúng trừ phi hôm nay trời nắng, nhưng chúng tôi không đi xem ca nhạc. Phép kéo theo b) luôn đúng theo định nghĩa của phép kéo theo, vì kết luận là đúng (khi đó chân trị của giả thiết là không quan trọng). Phép kéo theo c) là đúng với mọi ngày trừ thứ Năm.

Trong ngôn ngữ tự nhiên, chúng ta thường không dùng hai phép kéo theo b) và c) vì không có mối quan hệ giữa giả thiết và kết luận trong hai phép kéo theo đó. Trong suy luận toán học chúng ta xét các phép kéo theo thuộc loại tổng quát hơn trong ngôn ngữ thông thường. Khái niệm toán học về phép kéo theo độc lập với mối quan hệ nhân - quả giữa giả thiết và kết luận.

2. Phép tương đương

Mệnh đề P tương đương với mệnh đề Q, được ký hiệu bởi $P \Leftrightarrow Q$ là một mệnh đề xác định bởi $(P \Rightarrow Q) \land (Q \Rightarrow P)$. Từ đó ta có bảng chân trị sau:

P	Q	$P \Leftrightarrow Q$
0	0	1
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	0
1	0	0
1	1	1

Chú ý

Thường ta còn đọc mệnh đề $P \Leftrightarrow Q$ là "P khi và chi khi Q"; "P nếu và chi nếu Q"; "P là cần và đủ đối với Q" hay "Nếu P thì Q và ngược lại".

Ví dụ

"Một số chia hết cho 3 khi và chỉ khi nó có tổng các chữ số chia hết cho 3".

3. Mệnh đề phức hợp và tương đương lôgic

Định nghĩa 1:

Các mệnh đề được xây dựng từ một số mệnh đề ban đầu nhờ liên kết chúng lại bằng các phép toán lôgic (hội, tuyển, phủ định, suy diễn và tương đương) gọi là *mệnh đề phức hợp* hay *công thức*. Các mệnh đề không được xây dựng từ các mệnh đề khác qua các phép toán lôgic gọi là *mệnh đề sơ cấp*.

Định nghĩa 2:

- a) Một mệnh đề phức hợp luôn luôn có giá trị đúng được gọi là một hằng đúng hay định lí (đôi khi còn gọi là luật).
- b) Một mệnh đề phức hợp luôn luôn có giá trị sai được gọi là một hàng sai hay mâu thuẫn.

Ví dụ

Xét công thức: $P \Rightarrow Q \Leftrightarrow \overline{P} \vee Q$.

Ta thành lập bảng chân trị của mệnh để phức hợp này.

P	Q	¬P	$P \Rightarrow Q$	$\neg P \lor Q$	$P \Rightarrow Q \Leftrightarrow \overline{P} \vee Q$	
0	b	1	1	1	1	
0	1	1	1	1	1	
1	0	0	0-	0	ig than con	
1	1	0	1	1	1	

Nhìn trong bảng ta thấy mệnh đề trên luôn nhận giá trị đúng với mọi giá trị khác nhau của các mệnh đề sơ cấp P, Q nên nó chính là một định lí.

Định nghĩa 3:

- a) Hai mệnh đề E và F gọi là *tương đương lôgic* nếu chúng có cùng chân trị. Khi đó ta viết E≡F hay E = F.
- b) Mệnh đề F gọi là hệ quả lôgic của mệnh đề E nếu E ⇒ F là một hằng đúng.

Chú ý

- Mệnh đề phức họp E và F tương đương lôgic khi và chỉ khi E ⇔ F là hằng đúng.
- Trong phép tính mệnh đề, ta thường không phân biệt các mệnh đề
 tương đương lôgic. Tức là trong mệnh đề phức hợp E, nếu ta thay
 biểu thức con F bởi một mệnh đề tương đương lôgic thì mệnh đề thu
 được vẫn tương đương lôgic với E.

Ví dụ

$$P \lor (Q \Rightarrow R) = P \lor (\overline{Q} \lor R)$$

 $\{vi \ \text{biểu thức con} \ Q \Longrightarrow R \ \text{ tương đương lôgic với } \ \overline{Q} \lor R \ \}$

4. Độ ưu tiên của các phép toán

Tương tự như đối với các phép toán số học, để tránh phải dùng nhiều dấu ngoặc trong các biểu thức lôgic, người ta đã đưa ra một thứ tự ưu tiên trong việc tính toán như sau:

Cấp ưu tiên	Thực hiện
1	Các phép toán trong ngoặc
2	Phép phủ định (¬)
	Phép hội (∧)

	
3	Phép tuyển (v)
4	Phép suy diễn và tương đương (⇒,
5	⇔)

Trong các phép toán có cùng cấp ưu tiên, phép toán nào đứng trước được thực hiện trước.

Ví dụ

- $\overline{P} \lor Q \Rightarrow R \land S$ có nghĩa là $(\overline{P} \lor Q) \Rightarrow (R \land S)$
- $\overline{P \wedge Q} \vee R \wedge S$ có nghĩa là $(\overline{P \wedge Q}) \vee (R \wedge S)$

1.2. Các qui luật lôgic

Định lý sau đây sẽ liệt kê một số qui luật lôgic thường được sử dụng trong lập luận và chứng minh.

Định lí

Với P, Q, R là các mệnh đề bất kỳ. Khi đó ta có:

- 1. Luật phủ định của phủ định: $\overline{(\overline{P})} = P$
- 2. Các luật De Morgan: $\overline{P \wedge Q} = \overline{P} \vee \overline{Q} \quad \overline{P \vee Q} = \overline{P} \wedge \overline{Q}$
- 3. Luật giao hoán: $P \wedge Q = Q \wedge P$; $P \vee Q = Q \vee P$
- 4. Luật kết hợp: $P \wedge (Q \wedge R) = (P \wedge Q) \wedge R$
- 5. Luật phân bố: $P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$

$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

- 6. Luật luỹ đẳng: $P \wedge P = P$; $P \vee P = P$
- 7. Luật luỹ đẳng: $P \wedge P = P$; $P \vee P = P$
- 8. Luật về phần tử bù: $P \wedge \overline{P} = 0$: $P \vee \overline{P} = 1$
- 9. Luật thống trị: $P \wedge 0 = 0$; $P \vee 1 = 1$
- 10. Luật hấp thụ: $P \wedge (P \vee Q) = P$; $P \vee (P \wedge Q) = P$
- 11. Luật chứng minh phản chứng thứ nhất: $P \Rightarrow Q = \overline{Q} \Rightarrow \overline{P}$
- 12. Luật chứng minh phản chứng thứ hai: $\overline{P \Rightarrow Q} = P \land \overline{Q}$

Chứng minh

12 luật trên có thể kiểm tra dễ dàng bằng cách lập bảng chân trị 2 vế của tương đương lôgic.

Ví dụ 1

Chứng minh
$$((P \land Q) \Rightarrow R) = (P \Rightarrow (Q \Rightarrow R))$$

Giải.

Chúng ta có thể dùng bảng chân trị để chứng minh sự tương đương lôgic của các mệnh để trên. Tuy nhiên, thay vì thế, ta sẽ phát triển một chuỗi các tương đương lôgic. Ta có

$$(P \land Q) \Rightarrow R = \overline{P \land Q} \lor R$$

$$= (\overline{P} \lor \overline{Q}) \lor R$$

$$= \overline{P} \lor (\overline{Q} \lor R)$$

$$= \overline{P} \lor (Q \Rightarrow R)$$

$$= P \Rightarrow (Q \Rightarrow R) \square$$

Ví dụ 2

Chứng minh mệnh đề sau là một mệnh đề hằng đúng:

$$((P \Rightarrow Q) \land P) \Rightarrow Q$$

Giải.

Ta có

$$((P \Rightarrow Q) \land P) \Rightarrow Q = \overline{(P \Rightarrow Q) \land P} \lor Q$$

$$= (\overline{P \Rightarrow Q} \lor \overline{P}) \lor Q$$

$$= (\overline{P \Rightarrow Q} \lor (\overline{P} \lor Q)$$

$$= (\overline{P \Rightarrow Q} \lor (P \Rightarrow Q)$$

$$= 1 \square$$

1.3. Vị từ và lượng tử

1.3.1. Hàm mệnh đề

Ở trên ta đã xét các mệnh đề mà giá trị của chúng có thể xác định ngay đúng hoặc sai. Trong mục này ta xét loại mệnh đề mà giá trị của nó phụ thuộc vào các giá trị khác nhau lấy từ một tập nào đó. Ví dụ, các khẳng định có liên quan đến các biến như:

"
$$x < 3$$
" và " $x = y - 2$ "

rất thường gặp trong các khẳng định toán học và trong các chương trình máy tính. Các câu này không đúng cũng không sai khi mà các biển còn chưa được cho những giá trị xác định.

Khẳng định "x nhỏ hơn 3" có hai bộ phận. Bộ phận thứ nhất là biến x, chủ ngữ của câu. Bộ phận thứ hai "nhỏ hơn 3" là vị ngữ, nó cho biết tính chất mà chủ ngữ có thể có. Ta có thể kí hiệu khẳng định "x nhỏ hơn 3" là P(x), với P kí hiệu vị ngữ "nhỏ hơn 3" và x là biến. Người ta cũng nói P(x) là giá trị của hàm mệnh đề P tại x. Một khi biến x được gán cho một giá trị, thì khẳng định P(x) sẽ có giá trị chân lý. Chẳng hạn P(2) - tức là khẳng định "2 nhỏ hơn 3" là đúng. Tuy nhiên P(5) - tức khẳng định "5 nhỏ hơn 3" là sai.

Tương tự, với khẳng định có hai biến như Q(x,y) = "x = y - 2", trong đó x, y là các biến. Khi các biến x và y được gán cho 1 giá trị xác định, khẳng định Q(x,y) sẽ có giá trị chân lý.

Định nghĩa.

Hàm mệnh để là một khẳng định P(x, y,...) trong đó có chứa một số biến x, y, ... lấy giá trị trong những tập hợp cho trước A, B,... sao cho:

- Bản thân P(x, y,...) không phải là mệnh đề.
- Nếu thay x, y,... bởi các giá trị cụ thể a ∈ A, b ∈ B,... ta sẽ được một mệnh đề.

Ví dụ 1

P(n) = "n là một số nguyên tố" là hàm mệnh đề theo biến $n \in \mathbb{N}$.

Với n = 2, 7 ta được các mệnh đề đúng P(2), P(7); còn với n = 4, 6, 9 ta được các mệnh đề sai P(4), P(6), P(9).

Ví dụ 2

Q(x, y) = "x = y + 3" là một hàm mệnh đề theo 2 biến $x, y \in \mathbb{R}$. Xác định chân trị của các mệnh đề Q(1, 2) và Q(3, 0).

Giải.

Ta có

Q(1, 2) = "1 = 2 + 3" là mệnh đề có giá trị sai.

Q(3, 0) = "3 = 0 + 3" là mệnh đề có giá trị đúng.

1.3.2. Vị từ và lượng tử

Khi tất cả các biến trong một hàm mệnh đề đều được gán cho giá trị xác định, thì mệnh đề tạo thành sẽ có giá trị chân lý. Tuy nhiên, còn có một cách quan trọng khác để biến các hàm mệnh đề để thành các mệnh đề, mà người ta gọi là sự lượng hóa, đó là lượng tử chung (cũng quen gọi là lượng tử "với mọi") và lượng tử riêng (cũng quen gọi là lượng tử "tồn tại").

Định nghĩa:

Giả sử P(x) là một hàm mệnh đề theo biến $x \in A$.

- ∀x∈A, P(x) (đọc: "với mọi x∈A, P(x)") là một mệnh đề, nó nhận giá trị đúng khi và chỉ khi với phần tử bất kỳ a ∈ A ta có P(a) = 1.
- ∃x∈A, P(x) (đọc: "tồn tại x∈A, P(x)") là một mệnh đề, nó nhận giá trị đúng khi và chỉ khi tồn tại a ∈ A để P(a) = 1.

Các toán từ \forall , \exists được gọi là các *lượng tử*. \forall được gọi là *lượng tử* chung (hay lượng tử với mọi), \exists được gọi là *lượng tử riêng* (hay lượng tử tồn tại). Mệnh đề có chứa các lượng tử được gọi là vị từ.

Nếu A là một tập hợp hữu hạn n phần tử: $A = \{a_1, a_2, ..., a_n\}$ thì

 $\forall x \in A, P(x)$ tương đương với mệnh đề $P(a_1) \land P(a_2) \land ... \land P(a_n)$.

 $\exists x\!\in\! A,\, p(x) \ \text{ tương đương với mệnh để } P(a_1) \vee P(a_2) \vee \ldots \vee P(a_n).$

Ví dụ 1

Mệnh đề "với mọi số nguyên n ta có 2n + 1 là một số lẻ" có thể viết:

$$\forall n \in \mathbb{Z}, 2n+1$$
 lė

và mệnh đề này có giá trị đúng.

Chương 1: Cơ sở Lôgic

Ví dụ 2

Mệnh đề "tồn tại số thực x để $ln(x^2-3)=0$ " có thể viết:

$$\exists x \in \mathbb{R}, \ln(x^2 - 3) = 0$$

và mệnh đề này có giá trị đúng.

Định li (sự hoán vị các lượng tử)

Nếu P(x, y) là một hàm mệnh đề theo hai biến $x \in A$, $y \in B$ thì các mệnh đề sau là hằng đúng:

- a) $[\forall x \in A, \forall y \in B, P(x,y)] \Leftrightarrow [\forall y \in B, \forall x \in A, P(x,y)]$
- b) $[\exists x \in A, \exists y \in B, P(x,y)] \Leftrightarrow [\exists y \in B, \exists x \in A, P(x,y)]$
- c) $[\exists x \in A, \forall y \in B, P(x,y)] \Rightarrow [\forall y \in B, \exists x \in A, P(x,y)]$

Từ định lý trên ta có kết quả sau: Trong vị từ của hàm mệnh đề nếu ta hoán vị hai lượng từ đứng cạnh nhau thì:

- Mệnh đề mới vẫn còn tương đương lôgic với mệnh đề cũ nếu hai lượng từ này cùng loại.
- Mệnh đề mới sẽ là một hệ quả lôgic của mệnh đề cũ nếu hai lượng từ trước khi hoán vị có dạng ∃∀.

Chú ý

Mệnh đề đảo của c) không nhất thiết đúng trong trường hợp tổng quát. Thật vậy, ta hãy xem một ví dụ: Gọi P(x,y) = "x + y = 1" (x, y là hai biến thực).

Nếu thay $y = b \in R$ tuỳ ý thì ta có thể chọn x = 1 - b để x + b = 1 nên mệnh đề " $\exists x \in R$: x + b = 1" là đúng. Điều này chứng tỏ mệnh đề " $\forall y \in R$, $\exists x \in R$, x + y = 1" là đúng.

Ngược lại, nếu thay x = a tuỳ ý, ta có thể chọn y = -a để $a + y = 0 \neq 1$ nên mệnh đề " $\forall y \in R$, a + y = 1" là sai. Điều này chứng tỏ mệnh đề " $\exists x \in R$, $\forall y \in R$, x + y = 1" là sai.

1.3.3. Phủ định của vị từ

Ðjnh lí

Nếu P(x) là hàm mệnh đề xác định trên tập A, ta có:

a)
$$\forall x \in A, P(x) = \exists x \in A, \overline{P(x)}$$
.

b) $\exists x \in A, P(x) = \forall x \in A, \overline{P(x)}$.

Chứng minh

a) Mệnh đề $\forall x \in A, P(x)$ nhận giá trị đúng $\equiv \forall x \in A, P(x)$ nhận giá trị sai

$$=$$
 tổn tại $x = a \in A$ để $P(a)$ sai $= \exists x \in A, \overline{P(x)}$ đúng.

Vậy a) là mệnh đề hằng đúng □

Khẳng định b) chứng minh tương tự.

Ví dụ

Phủ định của mệnh đề " $\exists x \in \mathbb{R}, x^2 \le 0$ " là mệnh đề " $\forall x \in \mathbb{R}, x^2 \ge 0$ ".

Chú ý

Từ định lí ở (1.3.3), ta có thể tổng quát hóa cho hàm mệnh đề $P(x_1, x_2,..., x_n)$ theo n biến $x_1, x_2,..., x_n$ (n > 1): Phủ định của vị từ nhận được bằng cách thay thế lượng tử \forall bởi lượng tử \exists , lượng tử \exists bởi lượng tử \forall , và hàm mệnh đề $P(x_1, x_2,..., x_n)$ thành phủ định của nó $\overline{P(x_1, x_2,..., x_n)}$.

Hệ quả

a)
$$\overline{\forall x, (P(x) \Rightarrow Q(x))} = \exists x, (P(x) \land \overline{Q(x)}).$$

b)
$$\overline{\exists x, (P(x) \Rightarrow Q(x))} = \forall x, (P(x) \land \overline{Q(x)}).$$

Ví dụ :

Một hàm thực liên tục tại $x_0 \in \mathbb{R}$ được định nghĩa bởi:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R}, (|x - x_0| < \delta) \Rightarrow (|f(x) - f(x_0)| < \varepsilon)$$

Lấy phủ định ta sẽ được định nghĩa của hàm không liên tục tại x₀:

$$\exists \epsilon > 0, \forall \delta > 0, \exists x \in \mathbb{R}, (|x - x_0| < \delta) \land (|f(x) - f(x_0)| \ge \epsilon).$$

1.4. Suy luận toán học

1.4.1. Suy luận và quy tắc suy diễn

Suy luận là rút ra mệnh đề mới từ một hay nhiều mệnh đề đã có. Mệnh đề đã có được gọi là giả thiết hay tiền đề, mệnh đề mới được gọi là kết luận.

Ví dụ

Bạn đang đi xe máy dọc đường. Bỗng nhiên xe đứng máy. Bạn xuống xe kiểm tra thấy xăng vẫn còn nhiều. Bạn dắt xe vào một tiệm sửa xe máy, chắc bị trục trặc ở một bộ phận nào của xe máy. Hành động đó của bạn dựa trên một suy luận như sau:

Xe hết xăng hoặc một bộ phận nào đó của xe bị hỏng.

Nhưng xe vẫn còn xăng.

Vậy: Một bộ phận nào đó của xe bị hòng.

Trên đây là một ví dụ về suy luận diễn dịch (hay suy diễn), là suy luận theo những qui tắc tổng quát, xác định rằng nếu các tiền đề là đúng thì kết luận rút ra cũng phải đúng.

Trong một chứng minh toán học, xuất phát từ một số khẳng định đúng $P_1, P_2, ..., P_n$ gọi là *giả thiết*, các qui tắc suy diễn được áp dụng để suy ra chân lý của một khẳng định Q là hệ quả lôgic của $P_1 \wedge P_2 \wedge ... \wedge P_n$, hay nói cách khác công thức

$$P_1 \wedge P_2 \wedge ... \wedge P_n \Rightarrow O$$

là một hằng đúng.

Ta thường mô hình hoá phép suy diễn trên thành sơ đồ sau:

 $\begin{array}{c} P_1 \\ P_2 \\ \vdots \\ P_n \\ \hline \therefore Q \end{array}$

Khi dùng kí hiệu này ta muốn nhấn mạnh đến các khía cạnh của lập luận: Giả thiết P_1 , P_2 ,..., P_n được viết trên gạch ngang; dưới dấu gạch ngang viết kết luận Q, kí hiệu \therefore thay cho "vậy thi" trong lập luận.

Sau đây là một số qui tắc suy diễn thường dùng mà chân trị có thể kiểm tra dễ dàng bằng cách lập bảng chân trị.

1. Qui tắc Modus Ponens (phương pháp khẳng định)

Qui tắc này được thể hiện bởi hằng đúng

$$[(P \Rightarrow Q) \land P] \Rightarrow Q$$

hoặc dưới dạng sơ đồ

$$P \Rightarrow Q$$

$$P$$

Trong cuộc sống hàng ngày, ta thường hay sử dụng qui tắc suy diễn này.

Ví dụ 1

Tục ngữ của Việt Nam có câu:

Trăng quầng trời hạn, trăng tán trời mưa.

Vì vậy khi thấy trăng tán người ta nghĩ ngay đến dấu hiệu của trời mưa, tức là đã suy luận theo qui tắc modus ponens như sau:

	Neu trắng tán thị trời mưa	$P \Rightarrow Q$	
	mà trăng tán	P	
	Kết luận: Trời mưa		
Ví dụ 2			
Nếu Lan lươ	ời học thì sẽ không đạt môn Toán rời rạc	$P \Rightarrow Q$	
mà Lan lườ	i học	P	

Lưu ý

Trong suy luận, người ta có thể đảo thứ thự của hai tiền đề. Chẳng hạn, ở ví dụ 2, ta thường nói:

Kết luận: Lan không đạt môn Toán rời rac

∴Q

Chương 1: Cơ sở Lôgic

Lan lười học.

Mà nếu Lan lười học thì sẽ không đạt môn Toán rời rạc.

Vậy Lan không đạt môn Toán rời rạc.

2. Qui tắc Modus Tollens (phương pháp phủ định)

Qui tắc này được thể hiện bởi hằng đúng

$$[(P \Rightarrow Q) \land \overline{Q}] \Rightarrow \overline{P}$$

hoặc dưới dạng sơ đồ

$$P \Rightarrow Q$$

$$\overline{Q}$$

$$\therefore \overline{P}$$

Ví dụ

Nếu Hùng chăm học thì Hùng đạt môn Toán rời rạc

 $P \Rightarrow Q$

Hùng không đạt môn Toán rời rạc

Q

Kết luận: Hùng không chăm học

 $\therefore \overline{P}$

3. Tam đoạn luận (Syllogism)

Qui tắc này được thể hiện bởi hằng đúng

$$[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$$

hoặc dưới dạng sơ đồ

$$P \Rightarrow Q$$

$$Q \Rightarrow R$$

$$\therefore P \Rightarrow R$$

Ví dụ 1

Nếu chúng ta đoàn kết thì chúng ta mạnh

 $P \Rightarrow Q$

Nếu chúng ta mạnh thì chúng ta đánh thắng mọi kẻ thù

 $Q \Rightarrow R$

Kết luận:

Nếu chúng ta đoàn kết thì chúng ta đánh thắng mọi kẻ thù $\therefore P \Rightarrow R$

21

Ví dụ 2

Một xe máy rẻ thì khó kiếm

Cái gì khó kiếm thì đắt

Kết luận: Một xe máy rẻ thì đắt

Tam đoạn luận trên hoàn toàn hợp lôgic. Tuy nhiên kết luận mâu thuẫn là do dựa trên một tiền đề sai (!).

4. Qui tắc mâu thuẫn (chứng minh bằng phản chứng)

Qui tắc này được thể hiện bởi tương đương lôgic

$$P \Rightarrow Q = [(P \land \overline{Q}) \Rightarrow 0]$$

Qui tắc này cho phép ta chứng minh $(P \wedge \overline{Q}) \Rightarrow 0$ thay cho $P \Rightarrow Q$. Nói cách khác nếu thêm giả thiết phụ \overline{Q} vào giả thiết P cho trước mà dẫn đến một mâu thuẫn thì Q là hệ quả lôgic của P.

Ví dụ

Hãy sử dụng phương pháp phản chứng cho chứng minh sau:

$$P \Rightarrow R$$

$$\overline{P} \Rightarrow Q$$

$$Q \Rightarrow S$$

$$\overline{R} \Rightarrow S$$

Phủ định của kết luận sẽ tương đương với:

$$\overline{R \vee S} \Leftrightarrow \overline{R} \wedge \overline{S}$$

Do đó, ta thêm vào các tiền đề hai giả thiết phụ \overline{R} , \overline{S} và sẽ đi chứng minh suy luận sau là đúng:

$$P \Rightarrow R$$

$$\overline{P} \Rightarrow Q$$

$$Q \Rightarrow S$$

$$\overline{R}$$

$$\overline{S}$$

Ta có các bước sau đây:

$$\overline{P} \Rightarrow Q$$

UU $Q \Rightarrow S$ than cong

 $\therefore \overline{P} \Rightarrow S$ (tam đoạn luận)

 \overline{S}
 $\therefore (\overline{P})$ (qui tắc Modus Tollens)

hay tương đương

P

mà

mà

Kết luận R cùng với giả thiết phụ R cho ta:

$$R \wedge \overline{R} \Leftrightarrow 0$$

Vậy ta có điều phải chứng minh.

1.4.2. Một số phương pháp chứng minh toán học

Các phương pháp chứng minh trong toán học là các trường hợp riêng của việc áp dụng các qui tắc lôgic vào quá trình suy luận toán.

1. Phương pháp chứng mình trực tiếp

Để chứng minh mệnh đề đúng có dạng

$$E \Rightarrow F$$

......

ta xây dựng một dãy các hệ quả lôgic sau:

$$E \Rightarrow E_1, E_1 \Rightarrow E_2, ..., E_{n-1} \Rightarrow E_n, E_n \Rightarrow F.$$

Áp dụng qui tắc Modus Ponens ta có

$$E, E \Rightarrow E_1$$
 đúng thì E_1 đúng

$$E_1, E_1 \Rightarrow E_2$$
 đúng thì E_2 đúng

 $E_n, E_n \Rightarrow F$ đúng thì F đúng

Tức là từ E đúng, suy ra F đúng.

Ví dụ 1

Chứng minh rằng nếu n chia hết cho 3 thì n² chia hết cho 9.

Giải:

Giả sử n chia hết cho $3 \Rightarrow n = 3k$, $k \in \mathbb{Z} \Rightarrow n^2 = 9k^2 \Rightarrow n^2$ chia hết cho 9.

Vi du 2

Chứng minh rằng nếu n là số nguyên tố lớn hơn 5 thì $n^2 - 1$ chia hết cho 24.

Giải:

Xây dựng chứng minh:

- 1. n là nguyên tố và $n > 5 \Rightarrow n-1$, n+1 là các số chẵn
- 2. n-1 và n+1 là hai số chẵn liên tiếp ⇒ (n-1)(n+1) chia hết cho 8
- 3. n, n-1, n+1 là ba số tự nhiên liên tiếp \Rightarrow n(n-1)(n+1) chia hết cho 3
- 4. n là nguyên tố lớn hơn 5 ⇒ n không chia hết cho 3
- 5. Từ (3) và (4) ta có (n-1)(n+1) chia hết cho 3
- 6. n nguyên tố và $n > 5 \Rightarrow (n-1)(n+1)$ chia hết cho 3 và chia hết cho 8
- 7. Số 3 và 8 là hai số nguyên tố cùng nhau
- 8. Từ $(7) \Rightarrow (n-1)(n+1)$ chia hết cho 8x3=24
- 9. n là nguyên tố và $n > 5 \Rightarrow n^2 1$ chia hết cho 24.

2. Phương pháp chứng minh gián tiếp

Để chứng minh mệnh đề đúng có dạng

$$P \Rightarrow Q$$

ta có thể chứng minh $\overline{Q} \Rightarrow \overline{P}$ đúng, vì

$$P \Rightarrow Q = \overline{Q} \Rightarrow \overline{P}$$
.

Phương pháp chứng minh này gọi là chứng minh gián tiếp.

Ví dụ 1

Chứng minh rằng nếu 3n+1 ($n \in \mathbb{Z}$) là số chẵn thì n lẻ.

Chương 1: Cơ sở Lôgic

Giải.

Giả sử n là số chẵn \Rightarrow n = 2k, k \in **Z** \Rightarrow 3n+1 = 3(2k) + 1 = 6k + 1 là số lẻ \square

Ví dụ 2

Chứng minh rằng nếu p² là bội số của 3 thì p là bội số của 3.

Giải.

Giả sử p không phải là bội số của $3 \Rightarrow p = bs3 \pm 1$

$$\Rightarrow$$
 p² = (bs3 ± 1)² = bs3 + 1 \Rightarrow p² không phải là bội số của 3 \Box

3. Phương pháp chứng minh phản chứng

Phương pháp phản chứng dựa trên qui tắc mâu thuẫn:

$$(P \Rightarrow Q) = (P \land \overline{Q} \Rightarrow 0)$$

Như vậy, để chứng minh mệnh đề đúng có dạng

$$P \Rightarrow Q$$

ta có thể chứng minh bằng phản chứng rằng giả sử P đúng nhưng Q lại sai, khi đó ta sẽ nhận được mâu thuẫn.

Ví dụ

Chứng minh rằng nếu n là số nguyên tố lớn hơn 5 thì $n^2 - 1$ chia hết cho 24.

Giài.

Các bước lập luận sẽ là:

- 1. Giả thiết n là số nguyên tố > 5, $n^2 1$ không chia hết cho 24.
- 2. $n^2 1 = (n-1)(n+1)$.
- 3. n-1, n+1 là 2 số chẵn liên tiếp nên tích (n-1)(n+1) chia hết cho 4.
- 4. n²-1 không chia hết cho 24 nên n²-1 không chia hết cho 6.
- 5. Suy ra n² -1 không chia hết cho 2 hoặc không chia hết cho 3.
- 6. Xét hai trường hợp:
- Nếu n² 1 không chia hết cho 2 thì n-1 và n+1 là hai số lẻ suy ra n là số chẵn. Vậy n không là số nguyên tổ lớn hơn 5.

- Nếu n² 1 không chia hết cho 3 thì n phải chia hết cho 3, vì (n-1)n(n+1) chia hết cho 3 (ba số tự nhiên liên tiếp). Vậy n không là số nguyên tố lớn hơn 5.
 - Từ (6) suy ra n không là số nguyên tố lớn hơn 5. Điều này mâu thuẫn với giả thiết □

4. Phương pháp quy nạp

Phương pháp quy nạp có vai trò rất quan trọng trong toán học, và thường được sử dụng để chứng minh đối với những mệnh để toán học có liên hệ chặt chẽ với tập hợp các số tự nhiên.

Nguyên lý qui nạp:

Mệnh đề ∀n ∈ N, P(n) là hệ quả của mệnh đề

$$P(0) \land [\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)]$$

Phương pháp chứng minh bằng qui nap:

Theo nguyên lý trên để chứng minh P(n) đúng với $n \in \mathbb{N}$ tuỳ ý, ta thực hiện 2 bước:

- Bước 1 (cơ sở): kiểm chứng để khẳng định P(0) đúng.
- Bước 2 (qui nạp): giả sử với n ∈ N tuỳ ý, P(n) đúng. Ta chứng minh P(n+1) đúng.

Nguyên lý qui nạp trên có thể bắt đầu từ $n_0 \in \mathbb{N}$: nghĩa là :

$$[P(n_0) \wedge [\forall n \geq n_0, P(n) \Rightarrow P(n+1)]] \Rightarrow [\forall n \geq n_0, P(n)]$$

Chú ý

Trong quá trình qui nạp nếu không thực hiện đầy đủ cả hai bước cơ sở và quy nạp, thì có thể dân đến kết luận sai lầm. Chẳng hạn, do bỏ qua khâu quy nạp nên nhà toán học Pháp P. Fermat (1601 - 1665) đã cho rằng các số dạng $2^{2^n} + 1$ đều là số nguyên tố.

P. Fermat xét 5 số đầu tiên:

- Với n = 0 cho $2^{2^0} + 1 = 2^1 + 1 = 3$ là số nguyên tố.
- Với n = 1 cho $2^{2^1} + 1 = 2^2 + 1 = 5$ là số nguyên tố.
- Với n = 2 cho $2^{2^2} + 1 = 2^4 + 1 = 17$ là số nguyên tố.
- Với n = 3 cho $2^{2^3} + 1 = 2^8 + 1 = 257$ là số nguyên tố.

• Với n = 4 cho $2^{2^4} + 1 = 2^{16} + 1 = 65537$ là số nguyên tố.

Nhưng vào thế kỷ 18, Euler đã phát hiện với n = 5 khẳng định trên không đúng, bởi vì:

$$2^{2^5} + 1 = 2^{32} + 1 = 4294967297 = 641x6700417$$
.

Ví dụ 1

Chứng minh $\forall n \in \mathbb{N}$ ta có:

$$0+1+...+n=\frac{n(n+1)}{2}$$
.

Giải:

Xét P(n):
$$0 + 1 + ... + n = \frac{n(n+1)}{2}$$
.

Bước cơ sở: Khi n = 0 thì P(0) là mệnh đề: $0 = \frac{0x1}{2}$. Vế phải của đẳng thức trong mệnh đề tính ra bằng 0, nên P(0) đúng.

Bước qui nạp: Giả sử P(n) đúng với $n \in N$ tuỳ ý:

$$0+1+...+n=\frac{n(n+1)}{2}$$

Khi ấy

$$0+1+...+n+(n+1)=\frac{n(n+1)}{2}+n+1=\frac{(n+1)(n+2)}{2}$$

nghĩa là P(n+1) đúng.

Do đó theo nguyên lý qui nạp ta có điều phải chứng minh.

Ví dụ 2

Cô Lan cầm một tờ giấy và lấy kéo cắt thành 7 mảnh, sau đó nhặt một trong những mảnh giấy đã cắt và lại cắt thành 7 mảnh. Và cô Lan cứ tiếp tục cắt giấy như vậy. Sau một hồi cô Lan thu tất cả các mẫu giấy đã cắt và đếm được 122 mảnh. Hỏi xem cô Lan đếm đúng hay sai?

Giải:

Với mỗi lần cắt 1 mành giấy thành 7 mảnh, tức là tạo thêm 6 mảnh. Do đó công thức tính số mảnh giấy sau n bước thực hiện cắt 1 mảnh thành 7 mảnh có dạng:

$$S(n) = 6n + 1.$$

Ta khẳng định tính đúng đắn của công thức S(n) bằng qui nạp theo n.

Bước cơ sở: Khi n = 1 thì S(1) = 6.1 + 1 = 6 + 1 = 7. Trong trường hợp này cô Lan cắt mành giấy có trong tay thành 7 mảnh nên S(1) đúng.

Bước qui nạp: Giả sử sau k bước cô Lan đã nhận được số mảnh giấy là:

$$S(k) = 6k + 1.$$

Sang bước k + 1, cô Lan lấy một trong những mảnh giấy nhận được trong k bước trước và cắt thành 7 mảnh, tức là cô Lan đã lấy đi một trong S(k) mảnh và thay vào đó 7 mảnh được cắt ra, do đó:

$$S(k+1) = S(k) - 1 + 7 = 6k + 1 - 1 + 7 = 6k + 7$$

$$= 6k + 6 + 1 = 6(k+1) + 1.$$

nghĩa là S(k+1) đúng.

Vây số mảnh giấy cô Lan nhân được sau n bước cắt là S(n).

Do $S(n) = 6n + 1 \equiv 1 \pmod{6}$, nhưng $122 = 6.20 + 2 \equiv 2 \pmod{6}$. Vậy cô Lan đã đếm sai.

1.4.3. Đệ quy và ứng dụng

Đôi khi chúng ta rất khó định nghĩa một đối tượng một cách tường minh, nhưng có thể định nghĩa đối tượng này qua chính nó. Kỹ thuật này được gọi là đệ quy. Chẳng hạn, trong thực tế chúng ta thường gặp những trường hợp phải định nghĩa một dãy vô hạn các phần tử. Thay vì phải viết tất cả các phần tử này ra, người ta có thể chỉ ra một quy luật xác định phần tử bất kỳ của dãy này.

Ví dụ, n! là tích của n số tự nhiên đầu tiên. Chúng ta không thể viết hết được, thâm chí các giai thừa của 100 số đầu.

Nhưng chúng ta lại có thể định nghĩa F(n) = n! như sau:

$$\mathbf{F}(\mathbf{0}) = \mathbf{1}$$

$$F(n+1) = (n+1)F(n)$$

Rõ ràng khi áp dụng nhiều lần ta sẽ có:

$$F(n+1) = (n+1)F(n) = (n+1)nF(n-1) = ... = (n+1)n...2.1 = (n+1)!$$

Như vậy, ta có thể nói một đối tượng là đệ quy nếu nó bao gồm chính nó như một bộ phận hoặc nó được định nghĩa dưới dạng của chính nó.

Ta có thể sử dụng đệ quy để định nghĩa các dãy số, hàm số và tập hợp. Chẳng hạn, để định nghĩa một hàm xác định trên tập các số nguyên không âm, chúng ta cho:

- 1. Giá trị của hàm tại n = 0,
- 2. Công thức tính giá trị của nó tại số nguyên n từ các giá trị của nó tại các số nguyên nhỏ hơn.

Định nghĩa như trên được gọi là định nghĩa đệ quy.

Ví dụ 1

Giả sử hàm f được định nghĩa đệ quy như sau:

$$F(0) = 3$$
, $f(n+1) = 2f(n) + 3$.

Hãy tìm f(1), f(2) và f(3).

Giải.

Từ định nghĩa đệ quy ta có:

$$f(1) = 2f(0) + 3 = 2.3 + 3 = 9.$$

$$f(2) = 2f(1) + 3 = 2.9 + 3 = 21.$$

$$f(3) = 2f(2) + 3 = 2.21 + 3 = 45.$$

Ví dụ 2

Hãy cho định nghĩa dệ quy của hàm $F(n) = a^n$, trong đó a là một số thực khác không và n là nguyên không âm.

Giải.

Ta có $a^0 = 1$ và $a^{n+1} = a_n a^n$.

Do đó ta có thể đưa ra định nghĩa đệ quy của hàm $F(n) = a^n$ như sau:

- 1. F(0) = 1,
- 2. F(n+1) = a.F(n).

Ví dụ 3

Giả sử tập A được định nghĩa đệ quy như sau:

- 1. $3 \in A$
- 2. $x + y \in A$ nếu $x \in A$ và $y \in A$.

Chứng minh rằng A là tập các số nguyên dương chia hết cho 3.

Giải.

Gọi B là tập các số nguyên dương chia hết cho 3. Để chứng minh A = B ta sẽ chứng minh $A \subset B$ và $B \subset A$.

Chứng minh $B \subset A$: Gọi P(n) là mệnh đề " $3n \in A$ ".

Ta có P(1) đúng, vì theo định nghĩa đệ quy của A.

Giả sử P(n) đúng, tức là $3n \in A$, ta chứng minh P(n+1) đúng. Thật vậy, vì $3 \in A$ và $3n \in A$ nên theo định nghĩa ta có $3 + 3n = 3(n+1) \in A \Rightarrow$ P(n+1) đúng.

Theo quy nạp toán học mọi số có dạng 3n, với n nguyên dương, thuộc A, hay nói cách khác $B \subset A$.

Chứng minh $A \subset B$: Ta có $3 \in A$, hiển nhiên 3 chia hết cho 3 nên $3 \in B$. Tiếp theo ta chứng minh mọi phần tử của A được sinh ra theo quy tắc thứ hai của định nghĩa cũng thuộc B. Giả sử x, y là hai phần tử của A, cũng là hai phần tử của B. Theo định nghĩa của A thì $x + y \in A$ và vì x và y đều chia hết cho 3 nên x + y cũng chia hết cho $3 \Rightarrow x + y \in B \Rightarrow A \subset B$. \square

Chương 1: Cơ sở Lôgic

BÀI TẬP CHƯƠNG 1 (CƠ SỞ LÔGIC)

Bài 1 Trong các khẳng định sau, cho biết khẳng định nào là mệnh đề :

- a) 6 là một số nguyên tố.
- b) Cô ta rất thông minh.
- c) Tam giác cân có hai cạnh bằng nhau.
- d) Hãy làm bài tập Toán cao cấp đi!
- e) Nếu bạn đến trễ thì tôi sẽ đi học trước.
- f) x là một số lẻ.
- g) Bạn có thích xem bóng đá không?

Bài 2 Gọi P, Q là các mệnh đề:

P: "Hùng thích bóng đá"

Q: "Hùng ghét nấu ăn"

Hãy viết lại các mệnh đề sau dưới dạng hình thức trong đó sử dụng các phép nối.

- a) Hùng không thích bóng đã lẫn nấu ăn.
- b) Hùng thích bóng đá nhưng ghét nấu ăn.
- c) Hùng thích bóng đá hay Hùng vừa thích nấu ăn vừa ghét bóng đá.
- d) Hùng thích bóng đá và nấu ăn hay Hùng ghét bóng đá nhưng thích nấu ăn.

Bài 3 Xét chân trị các mệnh đề sau:

a)
$$(\sqrt{2} < 1) \land (1 < 3)$$

b)
$$(2+4=6) \lor (\log_2 1 < 0)$$

c)
$$(1 > 5) \rightarrow (5 + 4 < 6)$$

Bài 4 Hãy lấy phủ định các mệnh đề sau:

- a) Nếu x² là một số nguyên thì x là một số nguyên.
- b) Nếu ngày mai thứ tư thì hôm nay phải thứ hai.

- c) Tôi không thể ngủ nếu tôi đói bụng.
- d) Nếu Lan đậy sớm ngày mai và đi học thì Lan đã không ngủ hôm qua.
- e) Mọi tam giác đều có các góc bằng 60° .
- f) Tuổi của Tuấn khoảng từ 15 đến 20.

Bài 5 Xác định chân trị của các mênh đề sau ;

- a) Nếu 2 + 5 = 6 thì 2 + 4 = 10
- b) Nếu $2 \times 4 = 8 \text{ thì } 5 2 = 3$
- c) Nếu 1+2=3 thì 1+3=5

Bài 6 Lập bảng chân trị cho các mệnh để phức hợp sau :

- a) $\vec{P} \Rightarrow (P \lor Q)$
- b) $\overline{P} \Rightarrow (\overline{Q} \vee R)$
- c) $P \vee (Q \wedge R)$
- d) $(P \lor Q) \land R$
- e) $(P \land Q) \Leftrightarrow (Q \land R) \land (\overline{Q})$

Bài 7 Hãy chỉ ra các hằng đúng trong các công thức sau:

- a) $(P \lor Q) \Rightarrow (P \land Q)$
- b) $(P \land Q) \Rightarrow (P \lor Q)$
- c) $P \Rightarrow (\overline{Q} \Rightarrow P)$
- d) $P \Rightarrow (P \Rightarrow Q)$
- e) $(P \Rightarrow Q) \Rightarrow [(Q \Rightarrow R) \Rightarrow (P \Rightarrow R)]$

Bài 8 Chứng minh các tương đương lôgic sau :

- a) $(P \Rightarrow (Q \Rightarrow P)) = (R \lor \overline{R})$
- b) $(P \land Q) \lor \overline{Q} = P \lor \overline{Q}$
- c) $(P \Rightarrow Q) = (\overline{Q} \Rightarrow \overline{P})$

Chương 1: Cơ sở Lôgic

d) $((P \land O) \Rightarrow R) = (P \Rightarrow (Q \Rightarrow R))$

Bài 9 Chứng minh mệnh đề phức hợp sau là hằng đúng

$$[(R \Rightarrow S) \land [(R \Rightarrow S) \Rightarrow (\overline{T} \lor U)]] \Rightarrow (\overline{T} \lor U)$$

Bài 10 Ba sinh viên A, B, C bị nghi là đã gian lận trong bài thi. Khi bị thầy hỏi thì họ khai như sau:

A: "B đã chép bài và C vô tội"

B: "Nếu A có tội thì C cũng có tội"

C: "Tôi vô tôi"

Hãy trả lời các câu hỏi sau:

- a) Nếu A đã nói thật và B nói láo thì ai vô tội và ai đã chép bài ?
- b) Nếu mọi người vô tội thì ai đã nói thật và ai nói láo?
- c) Nếu A nói láo và B, C nói thật thì ai có tội ?

Bài 11 Các cặp mệnh đề sau đây có phải là phủ định của nhau không:

- a) 2 > 3; 3 > 2.
- b) x là số âm; x là số đương.
- c) phương trình x + 5 = 2 có nghiệm; phương trình x + 5 = 2 vô nghiệm.
- d) có một số là ước của 15; có một số không phải là ước của 15.
- Bài 12 Cho biết suy luận nào trong các suy luận dưới đây là đúng và qui tắc suy diễn nào đã được sử dụng?
 - a) Điều kiện đủ để đội bóng chuyển Việt Nam thắng trận là đối thủ đừng gỡ lại vào phút cuối
 - b) Mà đội bóng chuyển Việt Nam đã thắng trận
 - vậy đối thủ của đội bóng chuyền Việt Nam không gỡ lại vào phút cuối.
 - d) Nếu An siêng học thì An được xếp loại giỏi
 - e) Mà An không được xếp loại giỏi
 - f) Vậy An không siêng học

g) Nếu Hùng thi đỗ đại học thì Hùng sẽ được thưởng một xe máy Nếu được thưởng xe máy Hùng sẽ đi Vũng Tàu Do đó nếu thi đỗ đại học Hùng sẽ đi Vũng Tàu.

Bài 13 Dùng các qui tắc suy diễn để suy ra khẳng định sau là đúng:

$$P \wedge Q \Rightarrow P \vee Q$$
.

Bài 14 Xét các mệnh đề phức hợp sau:

$$E = [P \land (Q \land R)] \lor \neg [P \lor (Q \land R)]$$

$$F = [P \land (Q \lor R)] \lor \neg [P \lor (Q \lor R)]$$

Khẳng định $E \Rightarrow F$ đúng hay sai?

Bài 15 Xét hàm mệnh đề $P(x) = "x^2 - 3x + 2 = 0"$. Cho biết chân trị của các mênh đề sau:

- a) P(0)
- b) P(1)
- c) P(2) d) $\exists x, P(x)$ e) $\forall x, P(x)$

Bài 16 Xét các hàm mệnh đề theo biến thực x:

$$P(x): x^2 - 5x + 6 = 0$$

$$Q(x): x^2 - 4x - 5 = 0$$

Hãy xác định chân trị của các mệnh đề sau:

- a) $\forall x, P(x) \Rightarrow R(x)$;
- b) $\forall x, Q(x) \Rightarrow \neg R(x)$;
- c) $\exists x, O(x) \Rightarrow R(x)$;
- d) $\exists x, P(x) \Rightarrow \neg R(x)$;

Bài 17 Với mỗi mệnh đề dưới đây, cho biết chân trị. Phủ định kèm theo có đúng không? Nếu không hãy thay bằng phủ định đúng.

a) Với mọi số thực x, y nếu $x^2 > y^2$ thì x > y.

Phủ định: tồn tại số thực x, y sao cho $x^2 > y^2$ nhưng $x \le y$.

b) Tồn tại hai số nguyên lẻ có tích là số lẻ.

Phủ định: tích của hai số lẻ bất kỳ là số lẻ.

c) Bình phương của mọi số hữu ti là số hữu ti.

Phủ định: tồn tại số thực x sao cho nếu x vô tỉ thì x² vô tỉ.

Bài 18 Lấy phủ định của các mệnh đề-sau:

- a) Các sinh viên khoa Tin học đều có máy tính tại nhà.
- b) Với mọi số nguyên n, nếu n² chia hết cho 4 thì n chia hết cho 4.
- c) Nếu x là một số thực sao cho $x^2 > 4$ thì x < -2 hay x > 2.
- d) Với mọi số thực x, nếu |x-1| < 4 thì -2 < x < 6.

Bài 19 Viết mệnh đề phủ định của các mệnh đề dưới đây:

- a) $\forall x \in \mathbb{R} : x \neq x^5$
- b) $\exists y \in Z : y = \sin y$
- c) $\exists x \in \mathbb{R}, \exists y \in \mathbb{R} : y < 3^x 2$

Bài 20 Gọi P(x) và Q(x) là hai vị từ theo một biến, hãy lấy phủ định và đơn giản các mệnh để sau:

- a) $\exists x, P(x) \lor Q(x)$
- b) $\forall x, P(x) \land \overline{Q(x)}$
- c) $\exists x, [P(x) \lor Q(x)] \Rightarrow P(x)$

Bài 21 Trên tập hợp số thực cho 3 hàm mệnh đề:

- a) P(a) = "phương trình $x + \frac{1}{x} = a$ không có nghiệm".
- b) $Q(a) = \text{``Dang thức } \sqrt{a^2 6a + 9} = 3 a dùng''.$
- c) $R(a) = \text{``Bat'} dang thức } \frac{x^2 + ax 2}{x^2 x + 1} > -3 dúng với mọi x''.$

Tìm những giá trị của a sao cho chi có hai trong ba hàm mệnh đề trên đúng?

Bài 22 Phát biểu các định lý sau, sử dụng khái niệm "điều kiện đủ".

- a) Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau.
- b) Trong mặt phẳng, nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng ấy song song.
- c) Nếu một số tự nhiên tận cùng bằng chứ số 0 thì nó chia hết cho 2.

Bài 23 Phát biểu các định lý sau, sử dụng khái niệm "điều kiện cần".

- a) Nếu $a = b thì a^2 = b^2$
- b) Nếu hai tam giác bằng nhau thì chúng có các góc tương ứng bằng nhau.
- c) Nếu tứ giác T là một hình vuông thì nó có 4 cạnh bằng nhau.

Bài 24 Hãy sửa lại (nếu cần) các mệnh đề sau đây để được mệnh đề đúng:

- a) Để ab > 0 đều kiện cần là cả hai số a và b đều dương.
- b) Điều kiện cần và đủ để một số chia hết cho 3 là tổng các chữ số của nó chia hết cho 3.
- c) Để hai tam giác bằng nhau, điều kiện cần và đủ là chúng có diện tích bằng nhau.

Bài 25 Chứng minh rằng không có hai số nguyên dương m và n sao cho

$$\frac{m}{n} = \sqrt{2}$$

Bài 26 Chứng minh với mọi số nguyên dương n ta có:

a)
$$1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(b)
$$1^3 + 2^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$$

- c) $n^3 + 11n$ chia hết cho 6.
- Bài 27 Chứng minh rằng trên mặt phẳng n đường thẳng khác nhau cùng đi qua một điểm, chia mặt phẳng thành 2n phần khác nhau.
- **Bài 28** Chứng minh rằng nếu $x + \frac{1}{x}$ là số nguyên thì $x^n + \frac{1}{x^n}$ cũng là số nguyên với mọi số tự nhiên n.
- **Bài 29** Với mọi số nguyên $k \ge 2$, hãy tìm chữ số tận cùng của số $a_k = 2^{2^k} + 1$.

Bài 30 Dãy Fibonacci:

Chương 1: Cơ sở Lôgic

Dãy số f_0 , f_1 , f_2 ,... được định nghĩa bằng đệ quy như sau: $f_0=0$, $f_1=1$, và $f_n=f_{n-1}+f_{n-2}$, trong đó n=2,3,4,...

Hãy tính các số hạng f2, f3, f4, f5.

Bài 31 Cho định nghĩa đệ quy của:

- a) Tập các số nguyên lẻ.
- b) Tập các lũy thừa nguyên dương của 3.

Tập các đa thức với hệ số nguyên.

Chương 2:

PHÉP ĐẾM

2.1. Nhắc lại lý thuyết tập hợp và ánh xạ

2.1.1. Tập hợp

- 1. Khái niệm về tập hợp
 - a) Tập hợp và phần tử: Tập hợp là một trong những khái niệm cơ bản (nguyên thuỷ) của toán học, không được định nghĩa, mà làm cơ sở để định nghĩa các khái niệm khác. Nó đồng nghĩa với các từ họ, hệ, lớp, ... Ta có thể hiểu khái niệm tập hợp theo nghĩa trực quan: đó là những đối tượng được nhóm lại theo một tính chất nào đó.

Ví dụ

- Tập hợp các bài thơ của Hàn Mặc Tử
- Tập hợp các nghiệm số thực của phương trình $x^2+3x-4=0$
- Họ các đường tròn đồng tâm
- · Lớp các hàm đa thức
- Hệ các phương trình tuyến tính

Những yếu tố tạo thành một tập hợp gọi là *phần tử* (hay *điểm*) của tập hợp.

Nếu a là một phần tử của tập hợp A, ta viết a∈A (đọc: "a thuộc A"). Trong trường hợp ngược lại, ta viết a∉A (đọc: "a không thuộc A").

b) Diễn tả tập hợp: Để diễn tả tập hợp ta thường dùng hai cách sau:

<u>Cách 1</u>: Nêu ra tính chất đặc trưng của các phần tử tạo thành tập hợp. "Tính chất" ở đây thường được biểu hiện bởi một vị từ p(x) theo một biến $x \in U$. Khi ấy tập hợp tất cả các phần tử $x \in U$ sao cho p(x) đúng được kí hiệu bởi

$$A = \{ x \in U \mid p(x) \}$$

U được gọi là tập hợp vũ trụ. Nếu U hiểu ngầm thì A có thể viết:

Chương 2: Phép đếm

$$A = \{ x \mid p(x) \}.$$

Ví dụ

- 1. $A = \{x \in N \mid x \text{ là số nguyên tố}\}$
- 2. $A = \{x \in R \mid x^2 1 = 0\};$

Cách 2: Liệt kê ra tất cả các phần tử.

- Các phần tử của tập hợp được viết trong hai dấu ngoặc nhọn { }, cách nhau bởi dấu ";" (nếu có phần tử là số) hoặc dấu ",".
- Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tuỳ ý.

Trong ví dụ 2, ta có thể chỉ ra tất cả các phần tử của A: -1, 1. Ta viết

$$A = \{-1; 1\}$$

Với phương pháp mô tả bằng cách liệt kê các phần từ, một tập hợp có thể là:

$$B = \{-2; 5; 71; 102\}$$

Khi này không nhất thiết các phần tử được nhóm lại theo một tính chất cụ thể nào.

c) Các tập hợp số:

 $N = \{0; 1; 2; 3; ... \}$: Tập hợp các số tự nhiên,

 $N^* = \{1; 2; 3; \dots \}$: Tập hợp các số tự nhiên khác 0,

 $Z = \{...; -2; -1; 0; 1; 2; ...\}$: Tập hợp các số nguyên,

$$\mathbf{Q} = \left\{ \frac{p}{q} \middle| p, q \in Z \text{ và } q \neq 0 \right\} : \text{Tập hợp các số hữu tỷ,}$$

R: Tập hợp các số thực,

C: Tập hợp các số phức.

d) Phân loại:

- Nếu tập hợp A có n phần từ thì ta nói A là tập hợp hữu hạn và viết |A| = n.
- Nếu tập hợp A có vô số phần từ thì ta nói A là tập hợp vô hạn và viết [A] = +∞.

e) **Tập hợp rỗng:** Tập hợp không có phần tử nào gọi là tập hợp rỗng, kí hiệu là Ø.

Như vậy $|\emptyset| = 0$.

Ví du

- $E = \{x \in R \mid x^2 = -2\} = \emptyset$
- Tập hợp các số lẻ chia hết cho 2 là tập hợp rỗng
- Tập hợp các cầu thủ bóng đá Việt Nam đã đoạt giải Olympic năm 1996 là tập hợp rỗng
 - f) Tập hợp con: Nếu mọi phần từ của tập hợp A đều là phần từ của tập hợp B thì ta nói A là tập hợp con của B (hay A được bao hàm trong B, hay B bao hàm A), kí hiệu là A

 B hay B

 A.

Định nghĩa trên có thể viết dưới dạng kí hiệu như sau:

$$A \subset B \iff (\forall x: x \in A \Rightarrow x \in B).$$

Ví dụ

Cho A = $\{1, 2\}$. Các tập con của A là : $\{1\}$, $\{2\}$, $\{1, 2\}$, \emptyset .

Từ định nghĩa tập con ta có:

- Ø ⊂ A (Ø là tập con của mọi tập hợp),
- A ⊂ A (mọi tập hợp là tập con của chính nó).
- Nếu A ⊂ B và B ⊂ A ta nói A bằng B và viết A = B,
- Nếu A ≠ B thì A ⊄ B hay B ⊄ A.

Tập con của A khác A và khác Ø được gọi là tập con thật sự của A.

Ví dụ

A là tập hợp gồm 2 số 1 và 3, và B là tập hợp các số lẻ đương bé hơn 4. Ta có A = B.

g) Biểu đổ Venn: Để dễ hình dung một số quan hệ giữa các tập hợp người ta còn biểu diễn tập hợp bởi một đường cong kín gọi là biểu đồ Venn, mỗi phần tử của tập hợp được đặc trưng bởi một điểm nằm trong đường cong ấy.

Ví dụ, quan hệ A ⊂ B được biểu diễn ở hình bên.

Chương 2: Phép đếm

Các phép toán trên tập hợp Định nghĩa:

Giả sử A, B là 2 tập con của tập hợp vũ trụ U.

Nếu $A \cap B = \emptyset$ thì ta nói hai tập A và B rời nhau.

Ví dụ

Với
$$A = \{a, b, c\}, B = \{a, \{b\}, d\}$$
 thì $A \cap B = \{a\}$.

 $A \cup B$

 $A \cap B$

Ví dụ

Với A =
$$\{1, 2, a, \{a, b\}\}, B = \{2, \{a\}, \{a, b\}\} \text{ thì}$$

A \cup B = $\{1, 2, a, \{a\}, \{a, b\}\}.$

A gọi là phần bù của A (trong U).

3. Tính chất của các phép toán

Định lí

Với A, B, C là các tập con tuỳ ý của U, ta có:

1. Tính giao hoán:

$$A \cap B = B \cap A,$$

$$A \cup B = B \cup A.$$

2. Ţính kết hợp:

$$(A \cap B) \cap C = A \cap (B \cap C),$$

 $(A \cup B) \cup C = A \cup (B \cup C).$

3. Tính phân phối:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

4. Công thức De Morgan:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

5. Phần tử trung hoà:

$$A \cup \emptyset = A$$

 $A \cap U = A$

6. Phần bù:

$$\mathbf{A} \cup \overline{\mathbf{A}} = \mathbf{U}$$
$$\mathbf{A} \cap \overline{\mathbf{A}} = \emptyset$$

7. Tính thống trị:

$$A \cup U = U$$

 $A \cap \emptyset = \emptyset$

Ghi chú

Do tính kết hợp ta có thể dùng $A \cup B \cup C$ để chi $A \cup (B \cup C)$ hay $(A \cup B) \cup C$. Cũng thế, cho trước n tập hợp $A_1, A_2, ..., A_n$ thì hợp $A_1 \cup A_2 \cup ... \cup A_n$ không phụ thuộc vào thứ tự đặt dấu ngoặc.

Ta cũng viết
$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup ... \cup A_n$$
.

Turong tw
$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap ... \cap A_n.$$

4. Tích Descartes của các tập hợp

Tích **Descartes** của hai tập hợp A và B, kí hiệu AxB, là tập các cặp có thứ tự (a, b), trong đó $a \in A$ và $b \in B$.

$$AxB = \{(a,b) \mid a \in A \ vab \in B\}$$

Ví dụ

Nếu A =
$$\{a, b\}$$
, B = $\{c, d, e\}$ thì
A x B = $\{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)\}$.

Lưu ý

 $A \times B \neq B \times A \text{ n\'eu } A \neq B.$

Tổng quát: Tích Descartes của n tập A_1 , A_2 , ..., A_n , kí hiệu A_1 x A_2 x ... x A_n , là tập mọi dãy có thứ tự $(a_1, a_2, ..., a_n)$, trong đó $a_i \in A_i$ (i = 1, ..., n).

Nếu $A_i = A \text{ với } i = 1, 2, ..., n$; thì ta viết $A_1 \times A_2 \times ... \times A_n = A^n$.

Định lí

Cho các tập hợp hữu hạn A, B, A₁, A₂,..., A_n.

a)
$$|AxB| = |A| \cdot |B|$$

b)
$$|A_1xA_2x...xA_n| = |A_1|.|A_2|....|A_n|$$

Ví dụ

Với $A = \{1; 2\}, B = \{a, b, c\}$ ta có:

$$AxB = \{(1;a), (1;b), (1;c), (2;a), (2;b), (2;c)\}, |AxB| = |A|.|B| = 2.3 = 6.$$

2.1.2. Ánh xạ

1. Các định nghĩa

Định nghĩa 1

i. Một ánh xạ f từ tập hợp X vào tập hợp Y, kí hiệu f: X → Y, là phép tương ứng liên kết mỗi phần tử x∈X với một phần tử duy nhất y∈Y.

Khi ấy ta viết

$$f: X \to Y$$

$$x \mapsto y = f(x)$$

- X gọi là tập nguồn (hay miền xác định của f), Y gọi là tập đích,
- Phần tử y = f(x)∈Y gọi là ảnh của x,
- $f(X) := \{y \in Y \mid \exists x \in X, y = f(x)\}$ gọi là miền giá trị của f.
 - ii. Hai ánh xạ f, g từ X vào Y được gọi là bằng nhau nếu:

$$\forall x \in X, f(x) = g(x)$$

Ví dụ

1. Phép tương ứng

$$f: \mathbf{R} \to \mathbf{R}$$

$$x \mapsto y = 2x + 1$$

là một ánh xạ từ \mathbf{R} vào \mathbf{R} , vì với mỗi $x \in \mathbf{R}$ có đúng một $y \in \mathbf{R}$ xác định bởi y = 2x+1.

2. Phép tương ứng $f: \mathbf{R} \to \mathbf{R}$

$$x \mapsto y = \frac{2}{x-5}$$

không phải là ánh xạ từ R vào R, vì với $x = 5 \in \mathbb{R}$ nhưng $\exists y \in \mathbb{R}$ để y = f(x).

Trong toán học, từ "ánh xạ" cũng thường được thay bằng từ "hàm" hoặc "toán tử".

Định nghĩa 2

i. Nếu A là một tập con của X thì ảnh của A bởi f là tập hợp:

$$f(A) = \{ y \in Y \mid \exists x \in A, y = f(x) \}$$

Ta cũng viết:

$$f(A) = \{f(x) \mid x \in A\}$$

ii. Nếu B là một tập con của Y thì nghịch ảnh (tạo ảnh) của B là tập hợp:

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\}.$$

Khi B = $\{b\}$, thì thay cho kí hiệu $f^{1}(\{b\})$, người ta thường viết tắt $f^{1}(b)$.

$$f^{l}(b) = \{x \in X \mid f(x) = b\}.$$

Định nghĩa 3 (các loại ánh xạ):

Xét ánh xạ $f: X \to Y$.

- i. f được gọi là đơn ánh nếu ∀x₁, x₂ ∈ X, x₁ ≠ x₂ ⇒ f(x₁) ≠ f(x₂) (tức là mỗi y∈Y hoặc không có nghịch ảnh hoặc là ảnh của nhiều nhất một phần tử ∈ X)
- ii. f được gọi là toàn ánh nếu f(X) = Y (tức là mỗi $y \in Y$ đều là ảnh của một hay nhiều phần tử $x \in X$).
- iii. f được gọi là song ánh nếu nó đồng thời là đơn ánh và toàn ánh.

Chú ý

Nếu f là một song ánh từ X vào Y, ta viết:

$$f: X \leftrightarrow Y$$

Khi ấy

$$\forall y \in Y, \exists ! x \in X : f(x) = y,$$

trong đó kí hiệu ∃!x để chỉ tồn tại duy nhất x.

Do đó tương ứng $y \mapsto x$ là một ánh xạ từ Y vào X, và gọi là ánh xạ ngược của f, kí hiệu f^{-1} .

Vậy
$$f^{-1}: Y \to X$$

 $y \mapsto f^{-1}(y) = x$

 $v\acute{o}i f(x) = y.$

Ta có
$$f(f^{-1}(y)) = y$$
, $\forall y \in Y$
 $f^{-1}(f(x)) = x$, $\forall x \in X$

Ví dụ

1. Cho $f: \mathbb{Z} \to \mathbb{Q}$ sao cho f(x) = x/2.

f đơn ánh nhưng không toàn ánh vì 1/3 chẳng hạn không là ảnh của phần tử nào của **Z**.

2. Cho $f: \mathbb{R}^+ \to \mathbb{R}^+$ sao cho $f(x) = x^2$.

 $\forall y \in \mathbb{R}^+$ phương trình $x^2 = y$ có nghiệm duy nhất $x = \sqrt{y} \in \mathbb{R}^+$ nên f là song ánh.

3. $f: \mathbf{R} \to \mathbf{R}, f(x) = 2x+1$.

 $\forall y \in \mathbf{R}$ phương trình 2x + 1 = y có nghiệm duy nhất $x = \frac{y-1}{2} \in \mathbf{R}$ nên f là song ánh. Do đó tồn tại ánh xạ ngược f^{-1} xác định như sau :

$$f^{-1}: \mathbf{R} \to \mathbf{R}$$

$$y \mapsto x = f^{-1}(y) = \frac{y-1}{2}$$
.

Định nghĩa 4 (ánh xạ hợp):

Cho hai ánh xạ

$$f: X \to Y \text{ và } g: Y \to Z$$

45 🕮°

Ánh xạ hợp h là ánh xạ từ X vào Z xác định bởi

$$h: X \to Z$$

$$x \mapsto h(x) = g(f(x))$$
Ta viết $h = g_0 f: X \to Y \to Z$

$$x \mapsto f(x) \mapsto h(x) = g(f(x))$$

Chú ý

- Tổn tại f₀g thì nói chung chưa kết luận được tổn tại g₀f.
- Nếu tồn tại g₀f và f₀g thì nói chung chưa kết luận được g₀f = f₀g.
- Kí hiệu id_X là ánh xạ $X \rightarrow X$ sao cho $id_X(x) = x$, $\forall x \in X$.

Ta nói id_X là ánh xạ đồng nhất của X.

Ví dụ

Cho
$$f: \mathbf{R} \to \mathbf{R}$$
 xác định bởi $f(\mathbf{x}) = \cos \mathbf{x}$

và
$$g: \mathbf{R} \to \mathbf{R}$$
 xác định bởi $g(x) = x^3 + 1$.

Ta có
$$g_0 f: \mathbf{R} \to \mathbf{R}$$
 xác định bởi $(g_0 f)(\mathbf{x}) = g(f(\mathbf{x})) = g(\cos \mathbf{x}) = \cos^3 \mathbf{x} + 1$.

Định lí

Giả sử f là một ánh xạ từ X vào Y, A_1 và A_2 là hai tập con tuỳ ý của X, B_1 và B_2 là hai tập con tuỳ ý của Y. Ta có :

a)
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

b)
$$f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$$

c)
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

d)
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

2.2. Phép đếm

Bài toán đếm thường dùng để giải rất nhiều dạng bài toán khác nhau. Ví dụ, chúng ta cần tính tất cả các số điện thoại có thể có ở Việt Nam, số mật khẩu cho phép truy nhập vào hệ máy tính, số phép toán phải làm trong một thuật toán để nghiên cứu độ phức tạp của nó, liệt kê các thứ tự về đích khác nhau của các vận động viên có thể xảy ra trong cuộc chạy thi ...

Chương 2: Phép đểm

2.2.1. Những nguyên lý đếm cơ bản

1. Nguyên lý cộng:

Giả sử một công việc được phân thành n trường hợp riêng biệt: trường hợp l có m_l cách, trường hợp 2 có m_2 cách, ..., trường hợp n có m_n cách. Khi đó số cách chọn thực hiện công việc là $m_1 + m_2 + ... + m_n$.

Vi du 1

Cho tập hợp $A = \{1; 2; 3\}$. Hỏi có bao nhiều cách chọn ra một tập con B của A.

Giải.

Để chọn ra một tập con B của A ta có các trường hợp sau:

- Trường hợp 1 : Chọn tập B không chứa phần tử nào cả: có 1 cách chọn (B = Ø).
- Trường hợp 2 : Chọn tập B chứa một phần tử: có 3 cách chọn (B={1}, B={2}, B={3}).
- Trường hợp 3: Chọn tập B chứa hai phần tử: có 3 cách chọn (B = {1; 2}, B = {1; 3}, B = {2; 3}).
- Trường hợp 4 : Chọn tập B chứa ba phần tử: có 1 cách chọn (B = A).

Vậy theo nguyên lý cộng ta có tất cả 1 + 3 + 3 + 1 = 8 cách chọn tập con B.

Ví dụ 2

Giả trị của biến k bằng bao nhiều sau khi đoạn chương trình Pascal sau được thực hiện?

```
k := 0;
for i_1 := 1 to n_1 do
 k = k + 1;
for i_2 := 1 to n_2 do
 k := k + 1;
•
•
•
for i_m := 1 to n_m do
 k := k + 1;
```

47 🕰 **°**

Giải.

Giá trị khởi tạo của k bằng 0. Đoạn chương trình này gồm m vòng lặp riêng biệt (không có hai vòng lặp nào có thể làm đồng thời). Sau mỗi bước lặp của từng vòng lặp giá trị của k được tăng lên một đơn vị. Theo nguyên lý cộng, sau khi đoạn chương trình được thực hiện, $k=n_1+n_2+...+n_m$.

Chú ý

Nguyên lý cộng có thể phát biểu đưới dạng của ngôn ngữ tập hợp như sau:

Cho A₁, A₂,..., A_n là các tập hợp rời nhau, ta có

$$|A_1 \cup A_2 \cup ... A_n| = |A_1| + |A_2| + ... + |A_n|$$

Ví dụ 3

Một trường PTTH có 250 học sinh lớp 10, 200 học sinh lớp 11 và 150 học sinh lớp 12. Hỏi số học sinh tổng cộng của Trường là bao nhiều?

Giải,

Số học sinh tổng cộng của trường là : 250 + 200 + 150 = 600.

2. Nguyên lý nhân:

Ví dụ 1

Trong một lớp học gồm 30 người. Có bao nhiều cách cử một ban đại diện gồm một lớp trưởng, một lớp phó và một thủ quỹ?

Giải.

Việc cử ra một ban đại diện gồm 3 bước :

- Bước 1 : Cử lớp trưởng. Có 30 cách (có thể chọn một trong 30 người của lớp làm lớp trưởng).
- Bước 2: Cử lớp phó (sau khí đã chọn lớp trưởng). Có 29 cách.
- Bước 3 : Cử thủ quỹ (sau khi đã chọn lớp trưởng và lớp phó). Có 28 cách.

Vậy theo nguyên lý nhân ta có số cách cừ ban đại diện là: 30.29.28 = 24360.

Ví dụ 2

Có bao nhiều số tự nhiên gồm 5 chữ số đôi một khác nhau chia hết cho 10?

Giải.

Gọi $x = \overline{a_1 a_2 a_3 a_4 a_5}$ là số thoả mãn yêu cầu bài toán.

Chọn lần lượt các chữ số ở các vị trí a_5 , a_4 , ..., a_1 : a_5 có 1 cách chọn (vì x chia hết cho 10 nên a_5 = 0), a_4 có 9 cách chọn, a_3 có 8 cách chọn, a_2 có 7 cách chọn, a_1 có 6 cách chọn. Theo nguyên lý nhân có 1.9.8.7.6 = 3024 số thoả mãn yêu cầu.

Ví dụ 3

Có bao nhiệu dãy nhị phân có độ dài bằng 7?

Giải.

Mỗi một trong 7 bit của dãy nhị phân có thể chọn bằng hai cách (vì mỗi bit bằng 0 hoặc bằng 1). Theo nguyên lý nhân có $2^7 = 128$ dãy nhị phân có độ dài 7.

Ví dụ 4

Có thể tạo được bao nhiều ánh xạ từ một tập A có m phần tử vào tập B có n phần tử ?

Giài.

Theo định nghĩa, một ánh xạ từ A vào B, là phép tương ứng liên kết mỗi phần tử $x \in A$ với một phần tử duy nhất $y \in B$. Do đó, sau khi đã chọn được ảnh của i -1 phần tử đầu, để chọn ảnh của phần tử thứ i của A ta có n cách. Theo nguyên lý nhân có n^m ánh xạ thoả mãn bài toán.

Ví dụ 5

Một hệ thống máy tính, có mật khẩu của người sử dụng muốn truy nhập dài từ sáu đến tám ký tự, trong đó mỗi ký tự là một chữ cái hoa hoặc chữ số. Mỗi mật khẩu phải chứa ít nhất một chữ số. Hỏi có bao nhiều mật khẩu?

Giải.

Gọi P là tổng số mật khẩu cần tìm và P_6 , P_7 , P_8 tương ứng là số mật khẩu dài 6, 7, 8 ký tự. Theo nguyên lý cộng ta có : $P = P_6 + P_7 + P_8$.

Ta tính P_6 bằng gián tiếp, tức là tính số các xâu dài 6 ký tự là các chữ cái hoa hoặc chữ số, rồi bót đi số các xâu dài 6 ký tự là các chữ cái hoa và không chứa chữ số nào. Theo nguyên lý nhân ta có $P_6 = 36^6 - 26^6 = 2176782336 - 308015776 = 1867866560$ (có 26 ký tự hoa và 10 chữ số).

Tương tự ta có:

$$P_7 = 36^7 - 26^7 = 70332353920, P_8 = 36^8 - 26^8 = 2612282842880.$$

$$Vay P = P_6 + P_7 + P_8 = 2684483063360.$$

Chú ý

Nguyên lý nhân có thể phát biểu dưới dạng của ngôn ngữ tập hợp như sau: Cho $A_1, A_2, ..., A_n$ là các tập hợp hữu hạn, ta có

$$|A_1x A_2x ...x A_n| = |A_1| ... |A_2| ... |A_n|$$

2.2.2. Nguyên lý bù trừ

Khi hai công việc có thể được làm đồng thời, chúng ta không thể dùng quy tắc cộng để tính số cách thực hiện nhiệm vụ gồm cả hai việc, vì cộng số cách làm mỗi việc sẽ dẫn đến sự trùng lặp, do những cách làm cả hai việc sẽ được tính hai lần. Để tính đúng số cách thực hiện nhiệm vụ này, ta tính số cách làm mỗi một trong hai việc rồi trừ đi số cách làm đồng thời cả hai việc.

Ví dụ 1

Có bao nhiều dãy nhị phân độ dài 8 bit hoặc được bắt đầu bằng bit 1 hoặc kết thúc bằng hai bit 00?

Giài.

- Việc thứ nhất, xây dựng dãy nhị phân độ dài 8 bit được bắt đầu bằng bit 1: có 2⁷ = 128 cách (vì bit đầu chỉ có thể chọn bằng một cách, mỗi một trong 7 bit sau có thể chọn bằng hai cách).
- Việc thứ hai, xây dựng dãy nhị phân độ dài 8 bit kết thúc bằng hai bit 00 : có 2⁶ = 64 cách.
- Có thể làm cả hai việc đồng thời, xây dựng dãy nhị phân độ dài 8 bit được bắt đầu bằng bit 1 và kết thúc bằng hai bit 00 : có 2⁵ = 32 cách.

Kết luận: số dãy nhị phân thoả mãn yệu cầu là: 128 + 64 - 32 = 160.

Nguyên lý trên có thể phát biểu dưới dạng của ngôn ngữ tập hợp như sau:

Định lí (Nguyên lý bù trừ)

Giả sử A_{I_1} , A_{I_2} , ..., A_{I_n} là các tập hợp hữu hạn. Khi đó

$$\left|A_1 \cup A_2 \cup ... \cup A_n\right| = \sum_{1 \leq i \leq n} \left|A_i\right| - \sum_{1 \leq i < j \leq n} \left|A_i \cap A_j\right| + \sum_{1 \leq i < j < k \leq n} \left|A_i \cap A_j \cap A_k\right| - ... + (-1)^{n+1} \left|A_1 \cap A_2 \cap ... \cap A_n\right|$$

Chú ý Áp dụng định if trên với

Hai tập họp A_1 , A_2 ta có:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

Ba tập hợp A₁, A₂, A₃ ta có:

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

Ví dụ 2

Trong một lớp học có 180 sinh viên. Trong số này có 55 sinh viên chọn môn Anh văn, 45 sinh viên chọn môn Pháp văn và 15 sinh viên chọn học cả Anh văn và Pháp văn. Hỏi có bao nhiều sinh viên không theo học Anh văn cũng không học Pháp văn?

Giải.

Số sinh viên không theo học Anh văn cũng không học Pháp văn bằng tổng số sinh viên trừ đi số sinh viên theo học Anh văn và/hoặc Pháp văn. Gọi A, B lần lượt là tập các sinh viên theo học Anh văn và Pháp văn.

Khi đó ta có:

$$|A| = 55, |B| = 45 \text{ và } |A \cap B| = 15.$$

Số sinh viên theo học Anh văn hoặc Pháp văn là:

$$|A \cup B| = |A| + |B| - |A \cap B| = 55 + 45 - 15 = 85$$
.

Vậy số sinh viên cần tìm là:

$$180 - 85 = 95$$
.

Ví dụ 3

Giả sử có 1200 sinh viên học tiếng Anh, 850 sinh viên học tiếng Pháp và 100 sinh viên học tiếng Đức, 90 sinh viên học cả tiếng Anh và tiếng Pháp, 15 sinh viên học cả tiếng Anh và tiếng Đức, 10 sinh viên học cả tiếng Pháp và tiếng Đức. Nếu tất cả 2050 sinh viên đều học ít nhất một ngoại ngữ, thì có bao nhiêu sinh viên học cả ba thứ tiếng?

Giải.

Gọi A, B, C lần lượt là tập các sinh viên học tiếng Anh, tiếng Pháp và tiếng Đức. Khi đó:

$$|A| = 1200$$
, $|B| = 850$, $|C| = 100$, $|A \cap B| = 90$, $|A \cap C| = 15$, $|B \cap C| = 10$
và $|A \cup B \cup C| = 2050$.

Thay vào công thức:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Ta được

$$2050 = 1200 + 850 + 100 - 90 - 15 - 10 + |A \cap B \cap C|$$

Giải ta có kết quả:

$$|A \cap B \cap C| = 15.$$

Bây giờ ta đồng nhất tập A_k với tính chất A_k cho trên một tập X nào đó và đểm xem có bao nhiều phần tử của X không thoả mãn bất cứ một tính chất A_k nào cả.

Gọi N là số cần đếm ta có:

$$N = |X| - |A_1 \cup A_2 \cup ... \cup A_n|$$
.

Ví dụ 4

Hỏi trong tập $X = \{1, 2, ..., 10000\}$ có bao nhiều số không chia hết cho bất cứ số nào trong các số 3, 4, 7?

Giài.

Gọi
$$A_i = \{x \in X \mid x \text{ chia hết cho i}\}, I = 3, 4, 7.$$

Chương 2: Phép đếm

Khi đó $A_3 \cup A_4 \cup A_7$ là tập các số trong X chia hết cho ít nhất một trong ba số 3, 4, 7. Do đó, số lượng các số cần đếm là

$$N = |X| - |A_3 \cup A_4 \cup A_7| = 10000 - |A_3 \cup A_4 \cup A_7|$$

$$=1000 + A_3 + A_4 + A_5 + A_$$

$$[10000/(3x7)] + [10000/(4x7)] - [10000/(3x4x7)]$$

$$= 1000 - 3333 - 2500 - 1428 + 833 + 476 + 357 - 119 = 4286.$$

{Ở đây ký hiệu [x] để chỉ số nguyên lớn nhất không lớn hơn x}.

2.3. Giải tích tổ hợp

2.3.1. Hoán vị

Định nghĩa:

Một hoán vị của n phần tử là một nhóm có thứ tự gồm đủ mặt n phần tứ đã cho.

Như vậy các hoán vị của n phần tử chỉ khác nhau bởi thứ tự sắp xếp giữa các phần từ mà thôi.

Ví dụ

Với M = {1; 2; 3}, ta có tất cả các hoán vị sau đây của M:

Định lí

Số hoán vị của n phần tử là : $P_n = n!$

Ví dụ 1

Thầy giáo muốn tặng 5 quyển sách khác nhau cho 5 học sinh (mỗi học sinh chỉ nhận một cuốn). Hòi có bao nhiều cách tặng?

Giải.

Số cách tặng là : $P_5 = 5! = 120$.

Ví du 2

Người ta xếp ngẫu nhiên 5 lá phiếu có ghi số thứ tự từ 1 đến 5 cạnh nhau.

- a) Có bao nhiều cách xếp để các phiếu số chẵn luôn ở cạnh nhau?
- b) Có bao nhiều cách xếp để các phiếu phân thành hai nhóm chẵn lẻ riêng biệt (chẳng hạn 2, 4, 1, 3, 5)?

Giải.

 a) Có thể xếp các phiếu số chẵn vào các vị trí có dấu * , các phiếu số lẻ vào vị trí còn lại. Ta có các trường họp sau :

Mỗi trường hợp có 2!3! = 12 cách xếp. Vậy có $4 \times 12 = 48$ cách sắp xếp.

b) Có thể xếp các phiếu số chẵn vào các vị trí có dấu * . Ta có các trường hợp :

Mỗi trường hợp có 2!3! = 12 cách xếp. Vậy có 2 x 12 = 24 cách sắp xếp.

2.3.2. Tổ hợp và chỉnh hợp :

Định nghĩa

- i. Một chỉnh hợp chập k từ n phần tử (1 ≤ k ≤ n) là một bộ có thứ tự gồm k phần tử lấy từ n phần tử đã cho, mỗi phần tử không được lấy lặp lại.
- ii. Một tổ hợp chập k từ n phần tử (0 ≤ k ≤ n) là một bộ gồm k phần tử không phân biệt thứ tự lấy từ n phần tử đã cho, mỗi phần tử không được lấy lặp lại. Cũng có thể nói, một tổ hợp chập k là tập con gồm k phần tử của tập n phần tử đã cho.

Chú ý

Cho tập M gồm n phần từ.

- Có đúng một tổ hợp chập 0 của M : đó là tập rỗng.
- Có đúng một tổ hợp chập n của M: đó là tập M.
- M có 2ⁿ tập hợp con.

Định lí

a) Số chinh hợp chập k của tập n phần tử là:

$$A_n^k = \frac{n!}{(n-k)!} = n(n-1)...(n-k+1).$$

(Vế phải là tích của k số nguyên dương liên tiếp : số đầu tiên là n, mỗi số đi sau bằng số đi ngay trước nó giảm đi một đơn vị).

Đặc biệt: khi k = n thì $A_n^n = P_n = n!$

b) Số tổ hợp chập k của tập n phần tử là:

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$

Ví dụ 1

Một lớp phải học 10 môn, mỗi ngày học hai môn. Hỏi có bao nhiều cách sắp xếp thời khoá biểu trong một ngày?

Giải

Mỗi cách sắp xếp thời khoá biểu trong ngày là việc ghép hai môn trong số 10 môn, các cách này khác nhau do có ít nhất một môn khác nhau hoặc chỉ do thứ tự sắp xếp trước sau giữa hai môn. Vì vậy, mỗi cách xếp ứng với một chỉnh hợp chập 2 từ 10 phần từ. Do đó, số cách xếp thời khoá biểu là : $A_{10}^2 = 10.9 = 90$.

Ví dụ 2

Một tổ gồm 8 nam và 6 nữ. Có bao nhiều cách chọn một nhóm 5 người mà trong đó có đúng 2 nữ ?

Giài

- Số cách chọn 2 nữ trong số 6 nữ là $C_6^2 = \frac{6!}{2! \, 4!} = 15$.
- Số cách chọn 3 nam trong số 8 nam là $C_8^3 = \frac{8!}{3!5!} = 56$.
 - ⇒ số cách chọn 5 ban theo yêu cầu là : 15.56 = 840.

55 A

Ví dụ 3

Một lớp học có 20 sinh viên, trong đó có 2 cán bộ lớp. Hòi có bao nhiều cách cử 3 người đi dự hội nghị sinh viên của trường sao cho trong 3 người đó có ít nhất một cán bộ lớp.

Giải.

- Cử 3 sinh viên tuỳ ý : có C³₂₀ cách.
- Cừ 3 sinh viên không có ai là cán bộ lớp : có C₁₈ cách.
 - \Rightarrow số cách chọn thoả mãn bài toán : $C_{20}^3 C_{18}^3 = 1140 816 = 324$.

Ví du 4

Trong một lớp học có 30 học sinh. Có bao nhiều cách bầu một ban chấp hành lớp gồm ba người : một lớp trưởng, một lớp phó học tập và một lớp phó kỷ luật?

Giải.

Mỗi cách bầu ban chấp hành là một cách một cách chọn ra 3 phần tử từ 30 phần tử (có phân biệt thứ tự các phần tử), nên mỗi cách bầu ứng với một chỉnh hợp chập 3 từ 30 phần tử. Vậy số cách bầu là : $A_{30}^3 = 30.29.28 = 24360$.

Ví du 5

Cho 7 chữ số 1, 2, 3, 4, 5, 6, 7.

- a) Từ 7 chữ số trên, có thể lập được bao nhiều số gồm 5 chữ số khác nhau từng đôi một?
- b) Trong các số nói ở a), có bao nhiều số chẵn?

Giải.

- a) Mỗi số thoả mãn bài toán ứng với một chính hợp chập 5 từ 7 phần từ. Vậy số các số thoả mãn yêu cầu bài toán là: A⁵₇=7.6.5.4.3 = 2520.
- b) Số cần xác định có dạng $x = \overline{a_1 a_2 a_3 a_4 a_5}$. Để x là số chẵn, phải chọn
 - + $a_5 \in \{2, 4, 6\}$: có 3 cách chọn.

- + với mỗi cách chọn a₅ có A₆⁴ cách chọn a₁a₂a₃a₄.
- \Rightarrow số các số phải tìm là : 3 x A_6^4 = 3 x 360 = 1080.

Lựu ý

- Với 1 ≤ k ≤ n. Số cách xếp k vật khác nhau vào n vị trí khác nhau sao cho mỗi vị trí có không quá 1 vật là A_n^k.
- Tất cả các bài toán đếm sử dụng đến chính hợp chập k đều có thể giải bằng cách sử dụng nguyên lý nhân cho n bước, tuy nhiên sử dụng chính hợp thì ngắn gọn hơn.

Định lí

Cho các số nguyên n và k thoả $n \ge 1$ và $0 \le k \le n$. Khi đó :

- a) $C_n^k = C_n^{n-k}$
- b) $C_n^0 = C_n^n = 1$, $C_n^1 = C_n^{n-1} = n$
- c) $C_{n+1}^k = C_n^k + C_n^{k-1} \text{ n\'eu } k \ge 1.$

2.3.3. Tổ hợp và chỉnh hợp lặp:

Định nghĩa

- i. Một chính hợp lặp chập k từ n phần tử là một bộ có thứ tự gồm k phần từ lấy từ n phần từ đã cho, trong đó mỗi phần từ có thể được lấy lặp lại.
- ii. Một tổ hợp lặp chập k từ n phần tử là một bộ gồm k phần từ không phân biệt thứ tự, mỗi phần từ có thể được lấy lặp lại từ n phần từ đã cho.

Lưu ý

Vì mỗi phần tử có thể xuất hiện nhiều lần trong một chỉnh hợp lặp hoặc một tổ hợp lặp, nên ở đây có thể k > n.

Ví dụ

Chẳng hạn, cho 3 phần từ 2, 3, 5. Ta có

- Các chính hợp lặp chập 2 là:

$$(2; 2)$$
 $(2; 3)$ $(2; 5)$

$$(3; 2)$$
 $(3; 3)$ $(3; 5)$

$$(5; 2)$$
 $(5; 3)$ $(5; 5)$

- Các tổ hợp lặp chập 2 là:

$$(2; 2)$$
 $(2; 3)$ $(2; 5)$

$$(3;3)$$
 $(3;5)$ $(5;5)$

Định lí

- a) Số chính hợp lặp chập k từ n phần từ là : $\overline{A}_n^k = n^k$.
- b) Số tổ hợp lặp chập k từ n phần tử là : $\tilde{C}_n^k = C_{n+k-1}^k$.

Ví dụ 1

Hãy tìm số các dãy nhị phân có độ dài k.

Giải.

Mỗi dãy nhị phân độ dài k tương ứng là một chính hợp lặp chặp k từ 2 phần từ 0 và 1. Vậy số các dãy nhị phân có độ dài k là 2^k .

Ví dụ 2

Để đăng ký một loại máy mới, người ta dùng 3 chữ số trong 9 chữ số: 1, 2, 3, ..., 9. Hỏi có thể đánh số được bao nhiều máy?

Giải.

Mỗi số của máy là một chỉnh hợp lặp chập 3 từ 9 phần tử đã cho. Vậy có thể đánh số được: $\overline{A_9} = 9^3 = 729$ máy.

Ví dụ 3

Có 4 loại bút bi: xanh, đỏ, vàng, tím và mỗi loại có ít nhất 6 cây bút (các bút cùng loại là giống nhau). Có bao nhiều cách khác nhau để mua 6 cây?

Giải.

Mỗi bộ 6 cây được mua từ 4 loại bút là một tổ hợp lặp chập 6 từ 4 phần từ. Vậy số cách khác nhau để mua là : $\tilde{C}_4^6 = C_9^6 = 84$.

Định lí (Định lý nhị thức):

Cho các số thực a, b và số nguyên n ≥ 1. Ta có:

Chương 2: Phép đếm

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k = a^n + C_n^l a^{n-l} b + C_n^2 a^{n-2} b^2 + ... + C_n^{n-l} a b^{n-l} + b^n.$$

Công thức trên còn gọi là khai triển nhị thức Newton.

Ghi chú

- Vế phải của (*) có n+1 số hạng; số mũ của a giảm dần từ n đến 0, còn số mũ của b tăng dần từ 0 đến n; tổng các số mũ của a và b trong một số hạng luôn luôn bằng n.
- Số hạng thứ k+1 trong khai triển của (a + b)ⁿ là C_n^ka^{n-k}b^k.
- Vì $C_n^r = C_n^{n-r}$ nên các số hạng ở vế phải của (*) có tính đối xứng.

Ví dụ 1

$$(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
.

Vi du 2

Tính hệ số của $x^{12}y^{13}$ trong khai triển của $(x + y)^{25}$.

Giải.

Theo công thức nhị thức hệ số này bằng:
$$C_{25}^{13} = \frac{25!}{13!12!} = 5 \ 200 \ 300$$
.

2.3.4. Tam giác Pascal

Viết riêng các hệ số của đa thức trong công thức nhị thức Newton, ta được:

Các số trên lập thành một tam giác, gọi là tam giác Pascal.

59

Hệ quả

Cho số nguyên n ≥ 1. Khi đó:

a)
$$C_n^0 + C_n^1 + C_n^2 + ... + C_n^{n-1} + C_n^n = 2^n$$

b)
$$(-1)^0 C_n^0 + (-1)^1 C_n^1 + (-1)^2 C_n^2 + ... + (-1)^n C_n^n = 0$$

Ví dụ

Tìm giá trị bé nhất của n trong sự khai triển của $(a + b)^n$ để cho tỉ số hai hệ số kề nhau bằng $\frac{5}{8}$.

Giải.

Theo giả thiết, ta có:

$$\frac{C_n^k}{C_n^{k+1}} = \frac{5}{8} \Longleftrightarrow \frac{k+1}{n-k} = \frac{5}{8} \Longleftrightarrow n = \frac{13k+8}{5} \Longleftrightarrow n = 2k+1 + \frac{3(k+1)}{5} \; .$$

n là số tự nhiên bé nhất \Leftrightarrow k là số tự nhiên bé nhất để 3(k+1) chia hết cho $5 \Leftrightarrow$ k = 4.

Vậy giá trị n cần tìm là : n = 8 + 1 + 3 = 12.

2.4. Nguyên lý Dirichlet (nguyên lý chuồng bồ câu)

Trong rất nhiều bài toán tổ hợp, để chứng minh sự tồn tại của một cấu hình với những tính chất cho trước, người ta sử dụng nguyên lý đơn giản sau, gọi là nguyên lý Dirichlet, do nhà toán học nổi tiếng người Đức là Dirichlet đề xuất từ thế kỷ 19.

Nguyên lý Dirichlet

Nguyên lý này được phát triển từ một mệnh đề rất đơn giản gọi là nguyên lý "chuồng chim bồ câu": Giả sử có một đàn chim bồ câu bay vào chuồng. Nếu số chim nhiều hơn số ngăn chuồng thì chắc chắn có ít nhất một ngăn có nhiều hơn một con chim.

6 con chim và 4 ngăn chuồng

Một cách tổng quát, nguyên lý Dirichlet được phát biểu như sau:

Nếu xếp nhiều hơn n đối tượng vào n cái hộp thì tồn tại ít nhất một hộp chứa không ít hơn 2 đối tượng.

Nguyên lý này có thể chứng minh bằng phản chứng như sau: Giả sử không hộp nào chứa nhiều hơn một đối tượng, thì chỉ có nhiều nhất là n đối tượng được xếp trong các hộp, trái với giả thiết là số đối tượng lớn hơn n.

Ví du 1

Trong số 367 người bất kỳ bao giờ cũng tìm được hai người có ngày sinh nhật giống nhau, bởi vì chỉ có tất cả 366 ngày sinh nhật khác nhau.

Ví dụ 2

Trong kỳ thi học sinh giỏi Toán, điểm bài thi được đánh giá bởi một số nguyên trong khoảng từ 0 đến 100. Hỏi rằng ít nhất phải có bao nhiều học sinh dự thi để chắc chắn tìm được hai học sinh có điểm kết quả như nhau?

Giải.

Vì ta có 101 kết quả điểm khác nhau, nên theo nguyên lý Dirichlet, số học sinh cần tìm là 102.

2.4.2. Nguyên lý Dirichlet tổng quát

Nếu đem xếp n đối tượng vào k cái hộp, thì tồn tại ít nhất một hộp chứa không ít hơn [n/k] đối tượng (ký hiệu [x] là số nguyên nhỏ nhất không nhỏ hơn x).

Ví dụ 1

Trong 100 người. Hỏi có ít nhất bao nhiều người sinh cùng một tháng? Giải.

Xếp những người cùng sinh một tháng vào một nhóm. Có 12 tháng tất cả, nên có 12 nhóm. Vậy theo nguyên lý Dirichlet, tồn tại ít nhất một nhóm có không ít hơn

$$[100/12] = [8,3...] = 9$$
 người.

Ví dụ 2

Trong lớp có 30 học sinh. Khi viết chính tả em Hùng phạm 13 lỗi, còn các em khác ít hơn. Chứng minh rằng trong lớp có ít nhất 3 em học sinh

mắc số lỗi như nhau khi viết chính tả (kể cả những em không mắc lỗi nào).

Giải.

Xếp những học sinh có số lỗi chính tả bằng nhau vào cùng một nhóm.

Ta lập 14 nhóm được đánh số từ 0 đến 13.

Nhóm số 0 gồm các em viết chính tả phạm 0 lỗi.

Nhóm số 1 gồm các em viết chính tả phạm 1 lỗi.

Nhóm số i $(0 \le i \le 13)$ gồm các em viết chính tả phạm i lỗi.

Chỉ có em Hùng phạm 13 lỗi khi viết chính tả, nên nhóm số 13 chỉ có một mình em Hùng, 29 em còn lại xếp vào nhóm từ 0 đến 12, tức là 29 em được xếp vào 13 nhóm, nên phải có ít nhất một nhóm chứa từ 3 em trở lên. Chẳng hạn nhóm i $(0 \le i \le 12)$ có ít nhất 3 em. Khi đó 3 em ở nhóm i cùng phạm i lỗi khi viết chính tả. Vậy ta có điều phải chứng minh.

BÀI TẬP CHƯƠNG 2 (PHÉP ĐẾM)

Bài 1 Cho A, B là hai tập con của U. Chứng minh:

- a) $A \subset B \Leftrightarrow \overline{B} \subset \overline{A}$
- b) $A \subset B \Leftrightarrow \overline{A} \cup B = U$
- c) $A \cap B = \emptyset \Leftrightarrow B \subset \overline{A}$
- d) $A \cap B = \emptyset \Leftrightarrow \overline{A} \cup \overline{B} = U$
- Bài 2 Kí hiệu P(E) là tập hợp gồm tất cả tập con của của E.
 - a) Cho $E = \{a, b, c\}$. Xác định P(E).
 - b) Chứng minh $A \subset B \Leftrightarrow P(A) \subset P(B)$.
- Bài 3 Cho A = {1; 2; 3}, B = {2; 3; 4}. Hãy viết ra tất cả các phần từ của A x B.
- **Bài 4** Cho A = $[1; 2] := \{x \in \mathbb{R} : 1 \le x \le 2\},$ B = $[2; 3] := \{x \in \mathbb{R} : 2 \le x \le 3\}.$

Hãy biểu diễn hình học tập tích A x B trên mặt phẳng tọa độ.

- Bài 5 Các ánh xạ f : A → B sau là đơn ánh, toàn ánh, song ánh ? Xác định ánh xạ ngược nếu cỏ :
 - a) A = R, B = R, f(x) = x + 7;
 - b) A = R, B = R, $f(x) = x^2 + 2x 3$;
 - c) $A = [4, 9], B = [21, 96], f(x) = x^2 + 2x 3;$
 - d) A = R, B = R, f(x) = 3x 2|x|;
 - e) $A = \mathbf{R}, B = \mathbf{R}, f(x) = \frac{1}{2} (e^x e^{-x}).$
- **Bài 6** Cho ánh xạ $f: \mathbf{R} \to \mathbf{R}$ xác định bởi

$$f(x) = \frac{x}{1 + |x|}$$

- a) Tìm ảnh f(R).
- b) Khảo sát tính chất của f.

Bài 7 Cho ánh xạ f: E → F. Chứng minh:

f đơn ánh
$$\Leftrightarrow$$
 $f(A \cap B) = f(A) \cap f(B)$; với mọi A, B \subseteq E.

Qui ước: $f(\emptyset) = \emptyset$.

Bài 8 Cho ánh xạ f:
$$\mathbb{R} \to \mathbb{R}$$
 xác định bởi $f(x) = \frac{2x}{1+x^2}$

- a) Khảo sát các tính chất của f và tìm f(R).
- b) Cho ánh xạ $g: \mathbb{R}^* \to \mathbb{R}$ xác định bởi $g(x) = \frac{1}{x}$, (trong đó $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$)

Tìm ảnh f₀g.

Bài 9 Cho $f: E \to F$ và $g: F \to G$. Đặt $h = g_0 f$. Chứng minh :

- a) h toàn ánh \imp g toàn ánh;
- b) h đơn ánh \Rightarrow f đơn ánh.
- Bài 10 Có 18 đội bóng chuyển tham gia thi đấu. Hỏi có bao nhiều cách phân phân phối ba huy chương vàng, bạc, đồng. Biết rằng mỗi đội chỉ có thể nhận một huy chương là cùng?
- Bài 11 Cho 10 chữ số 0,1,2,3,4,5,6,7,8,9. Có bao nhiều số lẻ có 6 chữ số khác nhau nhỏ hơn 600000 được xây dựng từ 10 chữ số trên?

Bài 12 Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được

- a) bao nhiều số lẻ gồm 4 chữ số đôi một khác nhau?
- b) bao nhiều số chẵn gồm 4 chữ số đôi một khác nhau?
- c) bao nhiều số gồm 4 chữ số đôi một khác nhau?
- Bài 13 Cho 100000 chiếc vé xổ số được đánh số từ 00000 đến 99999. Hỏi số vé gồm 5 chữ số khác nhau là bao nhiều?
- Bài 14 Có bao nhiều số có 5 chữ số, trong đó các chữ số cách đều chữ số giữa giống nhau ?

- Bài 15 Cho các chữ số 1, 2, 3, 4, 5. Từ các chữ số đã cho
 - a) Có thể lập được bao nhiều số chẵn có ba chữ số khác nhau?
 - b) Có thể lập được bao nhiều số có ba chữ số khác nhau bé hơn hay bằng 345?
- Bài 16 Một người có 6 cái áo, trong đó có 3 áo sọc và 3 áo trắng; có 5 cái quần, trong đó có 2 quần đen; và có 3 đôi giày, trong đó có 2 đôi giày đen. Hỏi người đó có bao nhiều cách chọn mặc áo quần và mang giày, nếu:
 - a) Chọn áo, quần và giày nào cũng được.
 - b) Nếu chọn áo sọc thì với quần nào và giày nào cũng được; còn nếu chọn áo trắng thì chỉ mặc với quần đen và đi giày đen.

Bài 17

- a) Có bao nhiều số tự nhiên gồm 4 chữ số mà các chữ số đều > 5 và đôi một khác nhau.
- b) Tính tổng các số đó.
- Bài 18 Có bao nhiều cách sắp xếp năm bạn học sinh A, B, C, D, E vào một chiếc ghế dài sao cho:
 - a) Bạn C ngồi chính giữa.
 - b) Hai bạn A và E ngồi ở hai đầu ghế.
- Bài 19 Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy gồm 4 ghế. Người ta muốn xếp chỗ ngồi cho 4 học sinh trường A và 4 học sinh trường B vào bàn nói trên. Hỏi có bao nhiều cách xếp sao cho bất cứ 2 học sinh nào ngồi cạnh nhau hoặc đối diện nhau thì khác trường với nhau.
- Bài 20 Trên giá sách có 10 quyển sách, trong đó có 7 quyến có tác giả khác nhau, và 3 quyển có cùng một tác giả. Hỏi có bao nhiều cách sắp xếp các sách ấy, sao cho các sách của cùng một tác giả đứng cạnh nhau?
- Bài 21 Cho các số 1, 2, 5, 7, 8. Có bao nhiều cách lập ra một số gồm ba chữ số khác nhau từ 5 số trên sao cho:

- a) Số tạo thành là số chẵn?
- b) Số tạo thành là một số không có chữ số 7?
- c) Số tạo thành nhỏ hơn 278?
- Bài 22 Hỏi từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiều số gồm 6 chữ số khác nhau, sao cho trong các chữ số đó có mặt chữ số 0 và số 1.
- Bài 23 Từ các chữ số 1,2,3,4,5,6,7,8,9 người ta lập tất cả các số có 4 chữ số khác nhau. Tính tổng của tất cả số này?
- Bài 24 Một lớp có 40 học sinh gồm 25 nam và 15 nữ. Thầy chủ nhiệm muốn chọn 3 học sinh để tham gia tổ chức lễ khai giảng. Hỏi có bao nhiều cách:
 - a) Chọn ra 3 học sinh gồm 1 nam và 2 nữ?
 - b) Chọn ra 3 học sinh trong đó có ít nhất 1 nam?
- Bài 25 Cần lập một uỷ ban có ít nhất 4 người và nhiều nhất 10 người được chọn ra từ 5 nam và 7 nữ, với điều kiện phải có ít nhất 2 nam và số nữ ít nhất là phải gấp đôi số nam. Vậy có bao nhiều cách chọn uỷ ban?
- Bài 26 Một thầy giáo có 12 cuốn sách đôi một khác nhau trong đó có 5 cuốn sách văn học, 4 cuốn sách âm nhạc và 3 cuốn sách hội hoạ. Ông lấy ra 6 cuốn và đem tặng cho 6 học sinh A, B, C, D, E, F mỗi người một cuốn.
 - a) Giả sử thầy giáo chỉ muốn tặng cho các học sinh trên những cuốn sách thuộc hai loại sách văn học và âm nhạc. Hỏi có bao nhiều cách tặng?
 - b) Giả sử thầy giáo muốn rằng sau khi tặng sách xong, mỗi một trong ba thể loại văn học, âm nhạc và hội hoạ đều còn lại ít nhất một cuốn. Hỏi có bao nhiều cách tặng?
- Bài 27 Một buổi liên hoan có 10 nam và 6 nữ. Có bao nhiều cách chọn ra 3 cặp nhảy? (mỗi cặp gồm 1 nam và 1 nữ).
- Bài 28 Một hộp đựng 4 viên bi đỏ, 5 viên bi trắng và 6 viên bi vàng. Người ta chọn ra 4 viên bi từ hộp đó. Hỏi có bao nhiều cách chọn để trong số bi lấy ra không có đủ cả 3 màu?

- Bài 29 Có 9 viên bi xanh, 5 viên bi đỏ, 4 viên bi vàng có kích thước đôi một khác nhau.
 - a) Có bao nhiều cách chọn ra 6 viên bi, trong đó có đúng 2 viên bi đỏ?
 - b) Có bao nhiều cách chọn ra 6 viên bi, trong đó số bi xanh bằng số bi đỏ?
- Bài 30 Có bao nhiều cách chọn ra 8 cái mũ từ những cái mũ giống hệt nhau với 3 màu : xanh, trắng, đen ?
- Bài 31 Có bao nhiều biển số xe khác nhau gồm 4 chữ số.
- **Bài 32** Tìm số tự nhiên k sao cho các số C_{14}^k , C_{14}^{k+1} , C_{14}^{k+2} lập thành một cấp số cộng.
- Bài 33 Với những giá trị nào của x, số hạng thứ ba trong khai triển của $\left(\frac{1}{\sqrt[7]{x^2}} + x^{\lg \sqrt{x}}\right)^9$ bằng 3600?
- **Bài 34** Tìm số hạng không chứa x trong khai triển Newton $\operatorname{của}\left(x + \frac{1}{x}\right)^{12}$.
- **Bài 35** Cho $(x-2)^{100} = a_0 + a_1x + a_2x^2 + ... + a_{100}x^{100}$.
 - a) Tính hệ số a₉₇.
 - b) Tinh tổng $S = a_0 + a_1 + a_2 + ... + a_{100}$
 - c) Tính tổng $M = a_1 + 2a_2 + 3a_3 + ... + 100a_{100}$
- Bài 36 Chứng minh rằng:

$$C_{2n}^0 + C_{2n}^2 + C_{2n}^4 + ... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + ... + C_{2n}^{2n-1}$$

- Bài 37 Biết tổng tất cả các hệ số của khai triển nhị thức $(x^2 + 1)^n$ bằng 1024, hãy tìm hệ số a (a là số tự nhiên) của số hạng ax 12 trong khai triển đó.
- Bài 38 Áp dụng công thức khai triển nhị thức Newton, chứng minh các công thức sau:

Chương 2: Phép đếm

67 A

a)
$$C_n^0 - C_n^1 + C_n^2 - ... + (-1)^n C_n^n = 0.$$
 (1)

b)
$$1+2C_n^1+2^2C_n^2+...+2^nC_n^n=3^n$$
. (2)

c)
$$C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n = n \cdot 2^{n-1}$$
. (3)

d)
$$C_n^0 + \frac{1}{2}C_n^1 + \frac{1}{3}C_n^2 + ... + \frac{1}{n+1}C_n^n = \frac{2^{n+1}-1}{n+1}$$
. (4)

- Bài 39 Trong kỳ thi học sinh giỏi điểm bài thi được đánh giá bởi một số nguyên trong khoảng từ 0 đến 100. Hỏi rằng ít nhất phải có bao nhiều học sinh dự thi để cho chắc chắn tìm được hai học sinh có kết quả thi như nhau?
- Bài 40 Xét một cơ sở dữ liệu có 500.000 bản tin (record). Hỏi có thể sử dụng một vùng (thuộc tính) với nhiều nhất 4 kí tự là các mẫu tự làm khoá chính hay không? ở đây một vùng được nói là một khoá chính nếu giá trị của nó xác định bản tin một cách duy nhất.
- Bài 41 Chứng minh rằng trong n (n ≥ 2) người tuỳ ý luôn luôn có ít nhất hai người có số người quen (trong số họ) bằng nhau.

Chương 3:

THUẬT TOÁN

3.1. Thuật toán

3.1.1. Khái niệm thuật toán

Khi thiết kế và cài đặt một phần mềm tin học cho một vấn đề nào đó, chúng ta cần phải đưa ra phương pháp giải quyết mà thực chất đó là thuật toán giải quyết vấn đề này. Điều nhiên nhiên rằng, nếu không tìm được một phương pháp giải quyết thì không thể lập trình được. Khái niệm thuật toán đã được biết từ rất lâu. Thuật ngữ thuật toán (Algorithm) là biến tướng của tên nhà toán học Ả Rập: Abu Ja'fa Mohammed ibn Musa al-Khowarizmi (thường gọi là al-Khowarizmi), ông là tác giả một cuốn sách về số học, trong đó ông đã dùng phương pháp mô tả rất rõ ràng, mạch lạc cách giải những bài toán. Từ algorithm ra đời dựa theo cách phiên âm tên của ông.

Về mặt lịch sử, trong những năm 30 của thế kỷ này, khi khoa học và công nghệ phát triển nhân loại đã nêu ra nhiều bài toán mà không tìm thấy lời giải. Có nghĩa rằng, không tìm được thuật toán để giải chúng. Người ta đã phải tìm cách định nghĩa chính xác khái niệm thuật toán. Năm 1936, A. Turing đã đưa ra một công cụ rất tốt để mô tả thuật toán mà ngày nay người ta gọi là máy Turing. Để ghi nhớ công lao này, hội tin học Mỹ (ACM) đã đặt ra giải thưởng Turing trong tin học. Tiếp theo Turing, một số nhà toán học khác đã đưa ra các công cụ chính xác hoá khái niệm thuật toán như hàm đệ qui, thuật toán Marcop, văn phạm sinh của N.Chomsky ... Trong phạm vi giáo trình này thuật toán có thể hiểu một cách trực quan qua định nghĩa sau.

Định nghĩa: *Thuật toán* giải bài toán đặt ra là một thủ tục xác định bao gồm một dãy hữu hạn các bước cần thực hiện để thu được lời giải của bài toán.

Các đặc trưng của thuật toán: Thuật toán có các đặc trưng sau đây:

 Đầu vào và đầu ra (input/output): Mọi thuật toán, dù đơn giản đến mấy cũng phải nhận dữ liệu đầu vào, xử lý nó và cho ra kết quả cuối cùng.

- Tính xác định (definiteness): Các bước trong một thuật toán phải được xác định chính xác và rõ ràng, không thể gây nên sự nhập nhằng, lẫn lộn. Nói cách khác là trong cùng một điều kiện, hai bộ xử lý (người hoặc máy) thực hiện cùng một bước của thuật toán thì phải cho cùng một kết quả.
- Tính hữu hạn (finiteness): Một thuật toán phải cho ra lời giải đúng (hay kết quả) sau một số hữu hạn bước với mọi đầu vào.
- Tính đơn trị (uniqueness): Các kết quả trung gian của từng bước thực hiện một thuật toán được xác định một cách đơn trị và chỉ phụ thuộc vào đầu vào và các kết quả của các bước trước.
- Tính hiệu quả (effectiveness): Một bài toán có thể có nhiều thuật toán khác nhau. Tính hiệu quả của một thuật toán được đánh giá dựa trên một số tiêu chuẩn như: số phép tính cần thực hiện, dung lượng bộ nhớ và thời gian khi thuật toán được thi hành ...
- Tính tổng quát (generalliness): Một thuật toán có tính tổng quát là thuật toán phải áp dụng được cho mọi trường hợp của bài toán chứ không phải chỉ áp dụng được cho một số trường hợp riêng lẻ nào đó. Tuy nhiên, không phải thuật toán nào cũng đảm bảo được tính tổng quát. Trong thực tế, có lúc người ta chỉ xây dựng thuật toán cho một dạng đặc trưng của bài toán

Ví dụ 1

Cho 3 số nguyên a, b, c. Mô tả thuật toán tìm số lớn nhất trong ba số đã cho.

Giải.

- 1. Input: Yêu cầu cho biết giá trị của a, b, c.
- 2. Đặt x := a
- 3. Nếu b > x thì đặt x := b

- 4. Nếu c > x thì đặt x :=c
- 5. Output: Số lớn nhất là x

Tư tưởng của thuật toán là duyệt lần lượt giá trị của từng số và giữ lại giá trị lớn nhất vào biến x. Kết thúc thuật toán x cho số nguyên lớn nhất trong ba số đã cho.

Ký hiệu y := z trong mô tả thuật toán ở trên có nghĩa là thay thế giá trị đang có của y bởi giá trị của z. Ta gọi := là toán từ gán.

Ví du 2

Thuật toán giải phương trình bậc hai $ax^2 + bx + c = 0$ (a \neq 0).

- 1. Yêu cầu cho biết giá trị của a, b và c.
- 2. Nếu a = 0 thì
 - 2.1. Yêu cầu đầu vào không đảm bảo
 - 2.2. Kết thúc thuật toán
- 3. Trường hợp $a \neq 0$ thì
 - 3.1. Tính giá trị $\Delta = b^2 4ac$
 - 3.2. Nếu $\Delta > 0$ thì
 - 3.2.1. Phương trình có hai nghiệm phân biệt

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
, $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- 3.2.2. Kết thúc thuật toán
- 3.3. Nếu $\Delta = 0$ thì
 - 3.3.1. Phương trình có nghiệm kép

$$\mathbf{x}_0 = -\frac{\mathbf{b}}{2\mathbf{a}}$$

- 3.3.2. Kết thúc thuật toán
- 3.4. Nếu Δ < 0 thì
 - 3.4.1. Phương trình vô nghiệm
 - 3.4.2. Kết thúc thuật toán thuật toán

3.1.1. Biểu diễn thuật toán

Để có thể truyền đạt thuật toán cho người khác hay chuyển thuật toán thành chương trình máy tính, ta phải có phương pháp biểu diễn thuật toán. Có ba phương pháp thường đùng để biểu diễn thuật toán:

- Dùng ngôn ngữ tự nhiên,
- Dùng lưu đồ (sơ dồ khối)
- Dùng mã giả.

1. Ngôn ngữ tự nhiên

Hai ví dụ 1 và 2 ở (3.1.1) diễn tả thuật toán theo ngôn ngữ tự nhiên. Cách biểu diễn này thường dài dòng, không thể hiện rõ cấu trúc của thuật toán, đôi lúc gây hiểu lầm hoặc khó hiểu cho người đọc. Gần như không có một quy tắc cố định nào trong việc thể hiện thuật toán bằng ngôn ngữ tự nhiên.

2. Lưu đồ

Lưu đồ là một công cụ giúp ta diễn tả thuật toán một cách trực quan. Biểu diễn thuật toán bằng lưu đồ giúp cho người đọc theo dõi được sự phân cấp các trường hợp và quá trình xử lý của thuật toán, và đôi lúc tránh được những đoạn giải thích bằng lời có thể dẫn đến sự nhập nhằng về ngữ nghĩa.

Lưu đồ là một hệ thống những nút có hình dạng khác nhau, thể hiện các chức năng khác nhau và được nối với nhau bởi các cung. Cụ thể, chúng được tạo bởi bốn thành phần chủ yếu sau:

a) Nút giới hạn. Biểu diễn bởi hình ôvan, trong đó có ghi chữ bắt đầu/begin hoặc kết thúc/end. Chúng còn được gọi là nút đầu và nút cuối của lưu đồ.

Bắt đầu Kết thúc

b) Nút thao tác chọn lựa. Biểu diễn bởi hình thoi, bên trong chứa biểu thức điều kiện. Trong các cung nối với nút này có hai cung đi ra chỉ hướng đi theo hai trường hợp: điều kiện đúng và điều kiện sai.

c) Nút thao tác xử lý. Biểu diễn bởi hình chữ nhật, bên trong chứa nội dung xử lý.

$$\Delta = b^2 - 4ac$$

d) Cung. Là các đường nổi từ nút này đến nút khác của lưu đồ.

Ví dụ

Lưu đồ thuật toán phương trình bậc hai $ax^2 + bx + c = 0$ ($a \neq 0$).

3. Mã giả

Việc sử dụng lưu đồ sẽ rất cồng kềnh đối với các thuật toán phức tạp. Hơn nữa, lưu đồ chi phân biệt hai thao tác là rẽ nhánh (chọn lựa có điều kiện) và xử lý mà trong thực tế, các thuật toán còn có thêm các thao tác khác như thao tác lặp. Vì vậy người ta còn viết các thuật giải theo một ngôn ngữ tựa ngôn ngữ lập trình được gọi là mã giả. Trong mã giả, ta sử

dụng các cú pháp có cấu trúc chuẩn hoá của một ngôn ngữ lập trình nào đó (*như Pascal*, C ...) và vẫn dùng ngôn ngữ tự nhiên. Cách viết thuật toán bằng mã giả tỏ ra tiện lợi, gọn, đơn giản và tận dụng được các khái niệm trong ngôn ngữ lập trình.

Ví dụ

Sau đây là một đoạn mã giả của thuật toán giải phương trình bậc hai $ax^2 + bx + c = 0$ ($a \ne 0$).

```
if delta > 0 then

begin

x<sub>1</sub> := (-b+sqrt(delta))/(2*a)

x<sub>2</sub> := (-b-sqrt(delta))/(2*a)

xuất kết quả: phương trình có hai nghiệm là

x<sub>1</sub> và x<sub>2</sub>

end

else

if delta = 0 then

xuất kết quả: phương trình có nghiệm kép là
-b/(2*a)

else {trường hợp delta < 0}

xuất kết quả: phương trình vô nghiệm
```

Chú ý

Các từ in đậm trong đoạn mã giả trên là các từ khóa của ngôn ngữ Pascal.

Dưới đây sẽ liệt kê một số câu lệnh chính được sử dụng trong mã giả dựa theo ngôn ngữ lập trình Pascal (còn gọi là *ngôn ngữ phỏng Pascal*) để mô tả thuật toán.

Lệnh Procedure (function)

Mô tả thuật toán trong ngôn ngữ phỏng Pascal được bắt đầu từ câu lệnh **procedure (function)**, sau đó ta đặt tên cho thuật toán và mô tả danh sách biến của thuật toán.

Ví dụ

Câu lệnh

procedure max(a,b,c);

cho biết tên thuật toán được mô tả là max và ba biến là a, b, c.

2. Câu lệnh

function nguyen_to(m);

cho biết tên thuật toán được mô tả là nguyen_to và biến là m.

Các bước của thuật toán được mô tả trong thân procedure (function) được bắt đầu bởi begin và kết thúc bởi end.

Ví dụ

Function nguyen to(m);

Begin

(thân function)

End;

Procedure max(a,b,c);

Begin

(thân procedure)

End;

Chú ý

Nếu mô tả thuật toán bởi lệnh function, khi thực hiện và kết thúc câu lệnh, thuật toán sẽ đưa ra giá trị và được ghi nhận trong tên function. Vì vậy trong thân function phải có mặt câu lệnh gán giá trị cho function.

Lệnh gán (assignment statement)

Lệnh gán dùng để gán giá trị của một biểu thức cho một biến. Cách viết câu lệnh gán

Tên_biến := biểu_thức;

Chương 3: Thuật toán

Chú ý

Vế trái của phép gán chỉ và chỉ có thể là một biến mà thôi. Chẳng hạn, viết

$$x + y := 7$$

là sai, vì vế trái là một biểu thức chứ không phải là một biến.

Khối câu lệnh

Các câu lệnh có thể nhóm lại thành một khối. Để mô tả khối câu lệnh ta sử dụng **begin** và **end**. Dạng khối câu lệnh

Begin

câu lệnh 1;

câu lệnh 2;

•••

câu lệnh n;

End;

Các câu lệnh trong khối được thực hiện tuần tự. Dưới đây, thuật ngữ *câu lệnh* được dùng để chi chung *một câu lệnh* cũng như *một khối câu lệnh*.

Ví dụ

Begin

t := x;

x := y;

y := t;

End;

Khối câu lệnh này nhằm trao đổi giá trị hai biến x và y, dùng biến t như một chỗ cất trung gian.

Lệnh điều kiện

Có hai dạng:

Dạng 1 (đạng không đầy đủ)

IF biểu_thức_logic THEN lệnh_P;

Cách thức hoạt động của lệnh: Khi gặp lệnh này, nếu biểu_thức_logic có giá trị TRUE thì máy thực hiện lệnh_P rồi chuyển sang lệnh kế tiếp ở phía dưới. Nếu biểu_thức_logic có giá trị FALSE thì máy không thực hiện lệnh_P mà chuyển ngay sang lệnh kế tiếp.

Dang 2 (dang đầy đủ)

IF biểu_thức_logic THEN lệnh_1 ELSE lệnh_2;

Chú ý Trước từ khoá ELSE không có dấu chấm phẩy.

Cách thức hoạt động của lệnh: Khi gặp lệnh này, tuỳ theo kết quả của biểu_thức_logic mà máy thực hiện lệnh_1 hoặc lệnh_2.

- Nếu biểu_thức_logic có giá trị TRUE thì máy thực hiện lệnh_1, không thực hiện lệnh_2, mà chuyển ngay sang thực hiện lệnh kế tiếp ở sau lệnh_2.
- Ngược lại, Nếu biểu_thức_logic có giá trị FALSE thì máy không thực hiện lệnh_1, mà thực hiện lệnh_2, mà chuyển ngay sang lệnh kế tiếp ở sau lệnh 2.

Chương 3: Thuật toán

Các lệnh lặp

Ta có các loại lệnh lặp sau đây:

(1) Lệnh FOR: Dạng câu lệnh

FOR biến := giá trị đầu TO giá trị cuối DO lệnh P;

Chú ý

- Biến phải có kiểu dữ liệu là vô hướng đếm được.
- giá_tri_đầu và giá_tri_cuối là các biểu thức có cùng kiểu đữ liệu với biển.
- Biến trong cấu trúc FOR gọi là biến điều khiển

Cách thức hoạt động của lệnh

Bước 1: Gán giá trị biến := giá_tri_đầu;

Bước 2:

- Nếu biến ≤ giá_trị_cuối thì thực hiện lệnh_P, rồi sang bước 3;
- Nếu biến > giá_tri_cuối thì không thực hiện lệnh P mà chuyển sang lệnh kế tiếp phía dưới.

Bước 3: Tăng giá trị của biến lên một giá trị: biến := succ(biến). Quay lại bước 2.

Tóm lại, lệnh P sẽ được thực hiện nhiều lần, bắt đầu khi biến = giá_tri_đầu, và kết thúc khi biến = giá_tri_cuối + I, cá thảy là giá_tri_cuối - giá_tri_đầu + I lần. Vì thế, người ta gọi FOR là vòng lặp có số lần lặp biết trước.

(2) Lệnh REPEAT. Dùng để lặp đi lặp lại một số công việc cho đến khi một điều kiện đã cho được thoả mãn. Dạng câu lệnh

REPEAT

lệnh 1;

lệnh_2;

lệnh N;

UNTIL biểu_thức_logic;

Cách thức hoạt động của REPEAT: Máy thực hiện lệnh_1, lệnh_2, ..., lệnh_n; rồi kiểm tra biểu_thức_logic. Nếu biểu_thức_logic có giá trị true thì chuyển sang lệnh tiếp theo ở phía dưới, ngược lại, nếu biểu_thức_logic có giá trị false thì lặp lại thực hiện dãy lệnh trên.

Chú ý

- Các lệnh giữa REPEAT và UNTIL không cần phải đặt trong khối begin và end.
- Nếu biểu_thức_logic không bao giờ có giá trị true, thì dãy các lệnh giữa REPEAT và UNTIL sẽ phải thực hiện hoài, lúc đó ta có vòng lặp vô hạn.
- Để tránh các vòng lặp vô hạn, trong thân của lệnh REPEAT cần có it nhất một lệnh có tác dụng làm biến đổi các đại lượng tham gia

trong biểu_thức_logic để đến một lúc nào đó thì biểu_thức_logic sẽ có giá trị true và do đó vòng lặp sẽ kết thúc.

(3) Lệnh WHILE. Dùng để lặp đi lặp lại một công việc trong khi một điều kiện còn được thoả mãn. Dạng câu lệnh

WHILE biểu_thức_logic DO lệnh_P;

Chú ý

- Nếu biểu_thức_logic không bao giờ có giá trị faise, thì lệnh_P sẽ phải thực hiện hoài, lúc đó ta có vòng lặp vô hạn.
- Để tránh các vòng lặp vô hạn, trong thân của vòng WHILE, cần có it nhất một lệnh có tác dụng làm biến đổi các đại lượng tham gia trong biểu_thức_logic để đến một lúc nào đó thì biểu_thức_logic sẽ có giá trị false và do đó vòng lặp sẽ kết thúc.

3.2. Một số thuật toán xử lý số

3.2.1. Thuật toán kiểm tra số nguyên tố

Vấn đề: Cho một số nguyên dương m. Kiểm tra m có phải là số nguyên tố hay không?

Theo định nghĩa: số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.

Do ước số nguyên tố của số nguyên dương m bao giờ cũng không vượt quá \sqrt{m} , nên m sẽ là số nguyên tố nếu như nó không có ước số nào trong các số nguyên dương từ 2 đến $\lfloor \sqrt{m} \rfloor$ (ký hiệu $\lfloor x \rfloor$ chỉ số nguyên lớn nhất nhỏ hơn hay bằng x).

Từ đó ta có ngôn ngữ phỏng Pascal của thuật toán như sau:

- Input: Số nguyên dương m.
- Output: true n\u00e9u m l\u00e0 s\u00f3 nguy\u00e9n t\u00f3, false n\u00e9u ngu\u00f3\u00e9c lai.

Function Nguyen to(m);

Begin

$$i := 2;$$

While
$$(i \le \sqrt{m})$$
 and $(m \mod i = 0)$ do $i := i + 1$;

Nguyen_to :=
$$i > \sqrt{m}$$
;

End;

Từ thuật toán trên, ta có thuật toán tìm và in ra các số nguyên tố nhỏ hơn số nguyên dương n cho trước.

- Input: Số nguyên dương n.
- Output: Các số nguyên tố nhỏ hơn n.

Procedure List_nguyen_to(n);

Begin

For
$$i := 2$$
 to $n-1$ do

End;

3.2.2. Thuật toán tìm ước chung lớn nhất của hai số tự nhiên

Vấn đề: Cho a và b là hai số tự nhiên. Tìm ước chung lớn nhất của a và b?

Theo định nghĩa: ước chung lơn nhất (UCLN) của 2 số tự nhiên a và b là số tự nhiên d lớn nhất trong tập các ước chung của a và b, tức là:

$$d = \max\{c \mid a:c,b:c\}.$$

Chú ý

Với mọi số tự nhiên a, ta có:

$$UCLN(a, 1) = 1$$
; $UCLN(a, 0) = a$.

Qui ước

$$UCLN(0,0)=0$$

Theo tính chất Euclide ước chung lớn nhất của hai số sẽ không thay đổi nếu ta thay số lớn trong hai số đó bằng hiệu của nó với số thứ hai.

$$UCLN(a, b) = UCLN(a-b, b) n\acute{e}u \ a \ge b.$$

Từ đó ta có ngôn ngữ phỏng Pascal của thuật toán như sau:

- Input: a và b là hai số tự nhiên.
- Output: Ước chung lớn nhất của a và b.

Function UCLN(a, b);

Begin

While $(a \ge 0)$ and $(b \ge 0)$ do

If $a \ge b$ then a := a - b

else b := b - a;

UCLN := a+b;

End;

Chú ý

Phép tìm dư (a MOD b) tương đương với phép trừ liên tiếp khi hiệu a – b vẫn là một số tự nhiên. Khi đó tính chất Euclide được phát biểu như sau:

$$UCLN(a, b) = UCLN(a MOD b, b)$$

Để ý rằng $0 \le a$ MOD b < b, do đó thuật toán được viết lại như sau:

- Input: a và b là hai số tự nhiên.
- Output: Ước chung lớn nhất của a và b.

Function UCLN(a, b);

Begin

While (b > 0) do

Begin

r := a MOD b; {khai báo thêm biến r chứa số d} a := b;

cb:≅r; duong than co

. . .

End;

UCLN := a;

End;

3.2.3. Thuật toán tìm số lớn nhất trong dãy hữu hạn số

Vấn đề: Cho một dãy gồm n số

 $a_1, a_2, ..., a_n$.

Tìm số lớn nhất trong dãy?

Chúng ta có nhiều phương pháp để giải bài toán này. Sau đây là một phương pháp thường được sử dụng để tìm số lớn nhất trong một dãy hữu hạn số cho trước:

Bước 1: Đặt số lớn nhất tạm thời bằng số đầu tiên.

Bước 2: So sánh số kế tiếp trong dãy với số lớn nhất tạm thời, và nếu nó lớn hơn số lớn nhất tạm thời thì đặt cho số lớn nhất tạm thời bằng số này.

Bước 3: Lặp lại bước 2 nếu còn số trong dãy chưa được xét tới.

Bước 4: Dừng nếu không còn số nào trong dãy chưa được xét tới. Số lớn nhất tạm thời lúc này chính là số lớn nhất trong dãy số.

Ngôn ngữ phỏng Pascal của thuật toán như sau:

- Input: Dãy gồm n số a₁, a₂, ..., a_n.
- Output: Large là số lớn nhất trong dãy đã cho.

Procedure Find_Large(a, n, Large);

Begin

Large := a_1 ;

For i = 2 to n do

{Nếu a_i > Large thì gán lại Large}

Chương 3: Thuật toán

If $a_i > Large$ then $Large := a_i$;

End;

3.2.4. Thuật toán sắp xếp

Vấn đề: Giả sử có một dãy số gồm n phần tử

$$a_1, a_2, ..., a_n$$

Hãy thực hiện việc sắp xếp để được một dãy số tăng dần.

Hiện nay có khá nhiều thuật toán sắp xếp: thuật toán sắp xếp chèn (insertion sort), thuật toán sắp xếp nổi bọt (bubble sort), thuật toán quick sort ...

Ở đây sẽ trình bày thuật toán sắp xếp nổi bọt, là một trong những thuật toán khá tự nhiên và đơn giản. Ý tưởng của thuật toán như sau:

Ta coi các số cần sắp là trọng lượng của các bọt khí trong nước. Bọt khí nào nhẹ sẽ nổi lên trước, những bọt nào nặng sẽ nổi lên sau nhưng không thể nổi lên cao quá bọt khí nhẹ hơn nó. Một cách hình ảnh ta có ví dụ minh hoa sau:

Sắp xếp tăng dần dãy: 44 55 12 42 94 18 6 67

Bước	0	iU	d 211	3	4 h a	5	6	_7 -
	44 r	≯ 6	6	6	6	6	6	6
	55	44	→ 12	12	12	12	12	12
	12	55	44	→ 18	18	18	18	18
	42	12 *	55	44 _	4 2	42	42	42
	94	42 _	18*	55	44	44	44	44
	18	94	42	42 *	55	55	55	55
	6 *	18 *	94_	→ 67	67	67	67	67
	67	67	67 *	94	94	94	94	94

- Input: Dãy số a₁, a₂, ..., a_n (tuỳ ý).
- Output: Dãy số a₁, a₂, ..., a_n (đã được xếp tăng dần).

Procedure Bubble_sort(a1, a2, ..., an);

Begin

```
For i := 1 to n-1 do

For j := 1 to n-i do

If a_j > a_{j+1} then d\hat{o}i ch\hat{o} a_j v a_{j+1}

End;
```

Ta nhận thấy rằng thuật toán sắp xếp nổi bọt dùng quá nhiều phép so sánh, vì nó tiếp tục cả khi danh sách đã được sắp hoàn toàn tại một bước trung gian nào đó. Ta có thể sửa lại thuật toán như sau để nó dừng khi không cần sự đổi chỗ nào nữa.

```
Procedure Bubble_sort(a₁, a₂, ..., aₙ);

Begin

i := 1; done := false;

While (i < n) and (done = false) do

Begin

done := true;

For j := 1 to n-1 do

If aj > aj+1 then

Begin

dôi chỗ aj và aj+1

done := false;

End;

i := i + 1;

End;

End;
```

3.2.5. Thuật toán tìm kiếm

Vấn đề: Giả sử có một dãy số gồm n phần tử

$$a_1, a_2, \dots, a_n$$

và một phần từ x.

Hãy xác định xem phần tử x có trong dãy trên hay không? Lời giải của bài toán này là giá trị chi vị trí (hay chỉ số) của một phần tử trong dãy bằng phần tử x, hoặc là n+1 nếu x không có trong dãy.

Thuật toán tìm kiếm tuyến tính (hay tìm kiếm tuần tự)

Một thuật toán đơn giản để giải bài toán này là thuật toán tìm kiếm tuyến tính. Thuật toán bắt đầu bắt đầu bằng việc so sánh x với a_1 . Khi $x=a_1$, kết quả là vị trí của a_1 , tức là 1. Khi $x\neq a_1$, ta so sánh x với a_2 . Nếu $x=a_2$, kết quả là vị trí của a_2 , tức là 2. Tiếp tục quá trình này bằng cách tuần tự so sánh x với mỗi một phần từ của dãy cho tới khi tìm được số hạng bằng x, khi đó kết quả là vị trí của số hạng đó. Nếu tất cả các phần từ của dãy đã được kiểm tra mà không xác định được vị trí của x, thì kết quả là n+1.

Ngôn ngữ phỏng Pascal của thuật toán như sau:

- Input: Dãy a gồm n phần từ a₁, a₂, ..., a_n và phần từ x.
- Output: Vị trí của x trong dãy (chỉ số của phần từ trong dãy bằng x), hoặc là n + 1 nếu không tìm thấy.

```
Function Linear_search(a, n, x);
```

Begin

```
i := 0;
```

Repeat

```
i := i + 1;
```

Until (i > n) or $(x = a_i)$;

Linear search := i;

End;

Thuật toán tìm kiếm nhị phân (Binary Search)

Trong trường hợp dãy $a_1, a_2, ..., a_n$ có các số hạng được sắp theo thứ tự tăng dần thì ta có thể tìm kiếm theo thuật toán tìm kiếm nhị phân.

Thuật toán được thực hiện như sau:

Bước 1: Phạm vi tìm kiếm là trong toàn bộ mảng.

Bước 2: Lấy phần từ giữa của phạm vi cần tìm kiếm $(gọi \ la \ a_j)$ và so sánh với x.

- Nếu $x = a_i$ thì giải thuật kết thúc và thông báo đã tìm thấy.
- Nếu $x < a_j$ thì phạm vi tìm kiếm mới là các phần tử nằm trước a_j .
- Nếu $x > a_i$ thì phạm vi tìm kiếm mới là các phần tử nằm sau a_i .

Bước 3: Nếu tồn tại phạm vi tìm kiếm thì lặp lại bước 2, ngược lại thông báo không tìm thấy, thuật toán kết thúc không thành công.

Sau đây là ví dụ minh hoạ ý tưởng của giải thuật :

Cần tìm phần tử x = 4 trong mảng: 1 3 4 5 7 10 12 15

Ngôn ngữ phỏng Pascal của thuật toán như sau:..

- Input: Dãy a gồm n phần tử a₁, a₂, ..., a_n có thứ tự tăng dần và phần tử x.
- Output: Vị trí của x trong dãy (chỉ số của phần tử trong dãy bằng x), hoặc n+1.

Function Binary_search(a, n, x);

Begin

1 := 1; {1 là điểm mút trái của khoảng tìm kiếm}

r := n; {r là điểm mút phải của khoảng tìm kiếm}

Repeat

$$j := (1 + r) \text{ div } 2;$$

If
$$x \le a_i$$
 then $r := j-1$

Else
$$l := j + 1;$$

Until
$$(x = a_i)$$
 or $(1 > r)$;

If
$$x = a_j$$
 then binary_search := j

Else binary search :=
$$n + 1$$
;

End;

3.3. Độ phức tạp của thuật toán

3.3.1. Khái niệm về độ phức tạp của thuật toán

Một khái niệm quan trọng liên quan trực tiếp đến thuật toán là độ phức tạp của thuật toán. Nhờ có khái niệm này chúng ta có thể đánh giá và so sánh được các thuật toán với nhau.

Một chương trình máy tính thường được cài đặt dựa trên một thuật toán đúng để giải bài toán hay vấn đề đặt ra. Tuy nhiên, ngay ca khi thuật toán đúng, chương trình vẫn có thể không sử dụng được đối với một số dữ liệu nhập nào đó, bởi vì thời gian cần thiết để chạy chương trình hay vùng nhớ cần thiết để lưu trữ dữ liệu (như các biến trong chương trình, các file lưu trữ, ...) quá lớn. Để lựa chọn một thuật toán tốt cho lời giải bài toán cần giải quyết, thông thường chúng ta có hai loại đánh giá: Một là độ phức tạp về thời gian thực hiện thuật toán, hai là độ phức tạp về phạm vi bộ nhớ dùng cho thuật toán.

Độ phức tạp tính toán của một thuật toán là lượng thời gian và bộ nhớ cần thiết để thực hiện thuật toán. Trong phạm vi giáo trình này chỉ trình bày việc đánh giá thời gian cần thiết để thực hiện thuật toán và gọi là thời gian tính của thuật toán. Đó là độ phức tạp thường được đề cập nhiều nhất.

Thời gian tính của thuật toán là hàm của dữ liệu đầu vào. Thông thường khó có thể xây dựng công thức dưới dạng hiện cho hàm này, vì thế ta đặt vấn đề đơn giản hơn. Thay vì làm việc với dữ liệu đầu vào, ta sẽ làm việc với một đặc trung quan trọng của dữ liệu đầu vào, đó là kích thước của nó. Chúng ta sẽ quan tâm đến:

- Thời gian tính tốt nhất của thuật toán với đầu vào kích thước n, đó là thời gian tối thiểu cần thiết để thực hiện thuật toán với mọi bộ dữ liêu đầu vào kích thước n.
- Thời gian tính tồi nhất của thuật toán với đầu vào kích thước n, đó là thời gian nhiều nhất cần thiết để thực hiện thuật toán với mọi bộ dữ liệu đầu vào kích thước n.
- Thời gian tính trung bình của thuật toán với đầu vào kích thước n, đó là thời gian trung bình cần thiết để thực hiện thuật toán với mọi bộ dữ liệu đầu vào kích thước n.

Để đo thời gian tính của thuật toán ta sẽ đếm số câu lệnh mà nó thực hiện, hoặc trong một số trường hợp có thể đếm cụ thể số phép tính số

học, so sánh, gán, ... mà thuật toán đòi hỏi thực hiện. Rõ ràng các thông số này không phụ thuộc vào người lập trình và ngôn ngữ lập trình được chọn để cài đặt thuật toán cũng như loại máy tính thực hiện. Vì thế nó là tiêu chuẩn khách quan để đánh giá hiệu qua của thuật toán.

Sở dĩ ở đây ta không quan tâm đến thời gian tuyệt đối (chạy thuật toán mất thời gian bao nhiều giây, phút, ...) để thực hiện thuật toán vì yếu tố này phụ thuộc vào tốc độ của máy tính, mà các máy tính khác nhau thì có tốc độ rất khác nhau.

Ví dụ

Xét thuật toán tìm số lớn nhất trong dãy gồm n số a_1 , a_2 , ..., a_n ở (3.2.3).

- Có thể coi kích thước nhập dữ liệu là số lượng phần tử của dãy số, tức là n.
- Vòng lặp trong thuật toán luôn thực hiện đúng n 1 lần, do đó thời gian tính tốt nhất, tồi nhất và trung bình của thuật toán đều bằng n - 1.

3.3.2. Đánh giá thời gian tính tốt nhất, tồi nhất và trung bình của một thuật toán

Mặc dù thời gian tính tốt nhất, tồi nhất và trung binh của thuật toán có thể nói lên nhiều điều, nhưng vẫn chưa đưa ra được một hình dung tốt nhất về độ phức tạp của thuật toán. Thông thường trong các ứng dụng thực tế thời gian chính xác mà thuật toán đời hỏi để thực hiện nó ít được quan tâm hơn so với việc xác định mức độ tăng lên của thời gian thực hiện thuật toán khi kích thước của dữ liệu đầu vào tăng lên. Chẳng hạn, một thuật toán đang được xem xét nào đó có thời gian tính trong trường hợp tồi nhất là:

$$t(n) = 30n^2 + 6n + 6$$

với đầu vào có kích thước n.

n	$t(n) = 30n^2 + 6n + 6$	$30 n^2$
10	3066	3000
100	300606	300000
1000	30006006	30000000
10000	3000060006	300000000

Khi n lớn thì ta có thể xấp xi t(n) với $30n^2$. Trong trường hợp này t(n) có tốc độ tăng giống như $30n^2$.

Mặt khác, khi mô tả tốc độ tăng của thời gian tính của thuật toán khi kích thước đầu vào tăng, không những chúng ta chỉ cần quan tâm đến số hạng trội $(30n^2)$, mà có thể bỏ qua các hằng số. Với giả thiết như vậy, thời gian tính t(n) tăng giống như n^2 khi n tăng, và ta nói t(n) có bậc là n^2 , ký hiệu

$$t(n) = \Theta(n^2)$$

Tư tưởng cơ bản ở đây là ta thay thế biểu thức $t(n) = 30n^2 + 6n + 6$ bởi biểu thức đơn giản hơn là n^2 có cùng tốc độ tăng với t(n).

Định nghĩa 1:

Giả sử f và g là hai hàm đối số nguyên dương.

- i. f(n) có bậc cao nhất là g(n), ký hiệu f(n) = O(g(n)), nếu tồn tại hằng số dương C_I và N_I sao cho: $|f(n)| \le C_1 |g(n)|$, $\forall n \ge N_I$.
 - ii. f(n) có bậc thấp nhất là g(n), ký hiệu $f(n) = \Omega(g(n))$, nếu tồn tại hằng số dương C_2 và N_2 sao cho: $|f(n)| \ge C_2 |g(n)|$, $\forall n \ge N_2$.
 - iii. f(n) có bậc là g(n), ký hiệu $f(n) = \Theta(g(n))$, nếu f(n) = O(g(n)) và $f(n) = \Omega(g(n))$.

Chú ý

Các ký hiệu O, Ω và Θ lần lượt đọc là ô lớn, ômêga và têta.

Ví dụ 1

Xét hàm
$$f(n) = \frac{n(n+1)}{2}$$

Do
$$\frac{n(n+1)}{2} \le n^2$$
 với $n \ge 5$ $(C_I = 1, N_I = 5)$ nên $f(n) = O(n^2)$.

Do
$$\frac{n(n+1)}{2} \ge \frac{1}{2} n^2 \text{ v\'oi } n \ge 1 \ (C_2 = 1/2, N_2 = 1) \text{ n\'en } f(n) = \Omega(n^2).$$

Từ đó ta có

$$f(n) = \Theta(n^2).$$

Phương pháp chứng minh trong ví dụ trên có thể sử dụng để chỉ ra rằng mọi đa thức bậc k với hệ số dương có bậc là n^k, tức là:

$$P_k(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0 = \Theta(n^k)$$

Ví dụ 2

Chứng minh với k là số nguyên dương, ta có

$$I^{k} + 2^{k} + ... + n^{k} = \Theta(n^{k+1})$$

Giài.

Ta có

$$1^{k} + 2^{k} + \dots + n^{k} \le n^{k} + n^{k} + \dots + n^{k} = n \cdot n^{k} = n^{k+1} \text{ khi } n \ge 1$$

do đó

$$1^k + 2^k + \dots + n^k = O(n^{k+1})$$

Mặt khác, ta có

$$I^{k} + 2^{k} + \dots + n^{k} \ge (n/2)^{k} + \dots + (n-1)^{k} + n^{k}$$

$$\ge (n/2)^{k} + \dots + (n/2)^{k}$$

$$\ge (n/2)(n/2)^{k} = n^{k+1}/2^{k+1}.$$

nên

$$1^{k} + 2^{k} + ... + n^{k} = \Omega(n^{k+1}),$$

Vậy

$$1^{k} + 2^{k} + ... + n^{k} = \Theta(n^{k+1})$$
.

Định nghĩa 2:

 Nếu thuật toán đòi hỏi thời gian tính tốt nhất là t(n) với độ dài đầu vào n và

$$t(n) = O(g(n))$$

ta nói thời gian tính tốt nhất của thuật toán có bậc cao nhất là g(n) hay thời gian tính tốt nhất của thuật toán là O(g(n)).

 ii) Nếu thuật toán đòi hỏi thời gian tính tồi nhất là t(n) với độ dài đầu vào n và

$$t(n) = O(g(n))$$

ta nói thời gian tính tồi nhất của thuật toán có bậc cao nhất là g(n) hay thời gian tính tồi nhất của thuật toán là O(g(n)).

iii) Nếu thuật toán đòi hỏi thời gian tính trung bình là t(n) với độ dài đầu vào n và

$$t(n) = O(g(n))$$

ta nói thời gian tính trung bình của thuật toán có bậc cao nhất là g(n) hay thời gian tính trung bình của thuật toán là O(g(n)).

Trong định nghĩa trên, nếu thay O bởi Ω và "cao nhất" bởi "thấp nhất" ta có được định nghĩa bậc thấp nhất của thời gian tính tốt nhất, tồi nhất và trung bình của thuật toán. Nếu thời gian tính tốt nhất của thuật toán vừa là O(g(n)) vừa là $\Omega(g(n))$, ta nói thời gian tính tốt nhất của thuật toán là O(g(n)).

Ví dụ

Đánh giá thời gian tính tốt nhất, tồi nhất và trung bình của thuật toán tìm kiếm tuyến tính ở (3.2.5).

Giải.

Ta sẽ đánh giá số lần thực hiện câu lệnh i := i + l trong thân vòng lặp repeat, với độ dài đầu vào n.

- Thời gian tính tốt nhất?
 Nếu x = a₁: câu lệnh i := i + l thực hiện 1 lần. Do đó thời gian tính tốt nhất của thuật toán là Θ(1).
- Thời gian tính tồi nhất?
 Nếu x không có trong dãy: câu lệnh i := i +1 thực hiện n + I lần. Do đó thời gian tính tồi nhất của thuật toán là Θ(n).
- Thời gian trung bình?

Nếu $x = a_i$: câu lệnh câu lệnh i := i + I thực hiện i lần, nên số lần trung bình phải thực hiên câu lệnh i := i + I là

$$\frac{(1+2+...+n)+n+1}{n+1} = \frac{(n+1)(n+2)}{2(n+1)} = \frac{n+2}{2}.$$

Do đó thời gian trung bình của thuật toán là $\Theta(n)$

Sau đây là tên gọi của một số dạng đánh giá thộng dụng:

Dạng đánh giá	Tên gọi
⊕(1)	Hằng số
Θ(log _a n)	Logarithm
Θ (n)	Tuyến tính
Θ (nlgn)	n log n
$\Theta(n^k)$	Đa thức bậc k
Θ (a ⁿ), a ≥ 2	Hàm mũ
Θ (n!)	Giai thừa

Trong bảng, các độ phức tạp được sắp xếp theo thứ tự tăng dần. Nghĩa là một bào toán có độ phức tạp Θ (n^k) sẽ phức tạp hơn bào toán có độ phức tạp Θ (n) hay Θ (lgn).

Bảng sau đây cho ta thấy thời gian tính tăng như thế nào với các đánh giá khác nhau với đơn vị thời gian 0,001 giấy (những số có đơn vị kèm theo là những số gần đúng).

Đánh giá	Thời gian tính nếu n =						
•••	2	8	32	64			
1	0,001	0,001	0,001	0,001			
log_2n	1	3	5	6			
n	2	. 8	32	64			

Chương 3: Thuật toán

nlog ₂ n	2	24	160	384
n ²	4	64	- 1,02 giây	4,09 giây
n ³	8	512	32,7 giây	4,36 phút
2 ⁿ	4	256	49,6 ngày	5,85 x10 ⁸ năm
n!	2	40,3 giây	8,34 x10 ²³ năm	4,02 x 10 ⁷⁸ năm

Định nghĩa 3:

- i) Bài toán đặt ra được gọi là được giải tốt, nếu ta có thể xây dựng thuật toán với thời gian tính tồi nhất là đa thức để giải nó.
- ii) Bài toán đặt ra được gọi là **khó giải**, nếu không có thuật toán với thời gian tính tồi nhất là đa thức để giải nó.
- iii) Bài toán đặt ra được gọi là không giải được, nếu ta không thể xây dựng thuật toán để giải nó.

Ví dụ

Một trong những bài toán không giải được là bài toán về tính dừng: cho một chương trình và tập đầu vào, hỏi rằng chương trình có dừng hay không?

BÀI TẬP CHƯƠNG 3 (THUẬT TOÁN)

Bài 1 Hãy vẽ lưu đồ của các thuật toán:

- a) Giải phương trình trùng phương.
- b) Tìm số lớn nhất trong một dãy số có n phần từ.
- c) Tính tổng S của n số nguyên đầu tiên.
- d) Tìm ước số chung lớn nhất của hai số tự nhiên.

Bài 2 Viết thuật toán giải các bài toán sau:

a) Giải hệ phương trình

$$\begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2 \end{cases}.$$

b) Tính xⁿ với x là một số thực và n là một số nguyên.

Ghi chú: Trước hết cho một thủ tục tính x^n với n là một số nguyên không âm bằng cách nhân liên tiếp với x, bắt đầu với 1. Sau đó mở rộng thủ tục này và dùng tính chất $x^{-n} = 1/x^n$ để tính x^n với n âm.

- c) Chèn một số nguyên x vào vị trí thích họp trong dãy các số nguyên a₁, a₂, ..., a_n xếp theo thứ tự tăng dần.
- Tìm cả số lớn nhất lẫn bé nhất trong một dãy hữu hạn các số nguyên.

Bài 3 Viết thuật toán giải các bài toán sau:

- a) Tìm trong một dãy các số nguyên số hạng đầu tiên bằng một số hạng nào đó đứng trước nó trong dãy.
- b) Tìm trong một dãy các số nguyên tất cả các số hạng lớn hơn tổng tất cả các số hạng đứng trước nó trong dãy.
- c) Liệt kê các giá trị khác nhau của một dãy số cho trước, và ứng với mỗi giá trị cũng cho biết số lần xuất hiện của giá trị đó trong dãy. Chẳng hạn, với dãy cho trước sau đây:

3 5 4 2 3 2 3 5 4 6 4 3

thì sẽ xuất kết quả như sảu:

<u>Giá tri</u>	<u>Số lần xuất hiện</u>		
CUU 2 UONE	than cong		
3	4		
4	3		
5	2		
6	1.		

Bài 4 Chứng minh rằng:

a)
$$1 + 2 + 3 + ... + n = O(n^2)$$

b)
$$n! = O(n^n)$$

c)
$$lg n! = O(nlgn)$$

Bài 5 Chứng minh rằng nếu $f_1(x) = O(g_1(x))$, $f_2(x) = O(g_2(x))$ thì

a)
$$f_1(x) + f_2(x) = O(\max\{g_1(x), g_2(x)\})$$

b)
$$f_1(x).f_2(x) = O(g_1(x).g_2(x))$$

Bài 6 Cho hàm số

$$f(x) = 2x^3 + x^2 \log x$$

Tìm số nguyên nhỏ nhất n sao cho $f(x) = O(x^n)$.

Bài 7 Chứng minh

$$\lg n! = \Theta(n \lg n)$$

Bài 8 Thuật toán thông thường để tính toán giá trị của đa thức

$$a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

tại x = c được mô tả bằng ngôn ngữ phỏng Pascal như sau:

Procedure Da_thuc(c, a₀, a₁, ..., a_n);

Begin

$$power := 1;$$

$$y := a_0;$$

```
For i := 1 to n do

Begin

power := power * c;

y := y + a_i * power;

End; \{y = a_n c^n + a_{n-1} c^{n-1} + ... + a_1 c + a_0\}

End;
```

- a) Tính toán giá trị của đa thức $3x^2 + x + 1$ tại x = 2 bằng cách thực hiện từng bước của thuật toán trên.
- b) Có chính xác bao nhiều phép nhân và phép cộng trong thuật toán trên đã sử dụng để tính toán giá trị của đa thức tại x = c (không kể các phép cộng được dùng để tăng biến của vòng lặp).
- **Bài 9** Đánh giá số lần thực hiện câu lệnh x := x + 1 trong các đoạn chương trình sau như là hàm của đầu vào n:

a)

```
for i := 1 to n do duong than cong
for j := 1 to i do
    x := x +1;
```

b)

Chương 3: Thuật toán

Bài 10 Đánh giá thời gian tính tồi nhất của thuật toán sắp xếp nổi bọt sau:

```
Procedure Bubble_sort(a₁, a₂, ..., aₙ);

Begin

i := 1; done := false;

While (i < n) and (done = false) do

Begin

done := true;

For j := 1 to n-1 do

If aᵢ > aᵢ+₁ then

Begin '

dỗi chỗ aᵢ và aᵢ+₁

done := false;

End;

i := i + 1;

End;

End;
```

Chương 4:

QUAN HỆ

4.1. Quan hệ

4.1.1. Các định nghĩa

Định nghĩa 1:

Một quan hệ hai ngôi giữa tập hợp A và tập hợp B là một tập con \Re của AxB. Nếu $(a, b) \in \Re$ ta viết $a\Re$ b, ngược lại $(a, b) \notin \Re$ ta viết $a\Re$ b. Một quan hệ hai ngôi giữa A và A được gọi là một quan hệ hai ngôi trên A.

Từ đây ta dùng các từ "quan hệ" thay cho "quan hệ hai ngôi".

Ví dụ 1

Cho A = $\{a, b, c, d\}$, B = $\{m, n\}$.

Khi đó tập $\Re = \{(a, n), (b, m), (c, n)\} \subset AxB$ là một quan hệ giữa A và B.

Ví dụ 2

Trên tập $A = \{1; 2; 3; 4; 5\}$, xét quan hệ \Re được định nghĩa bởi:

Với quan hệ này ta có: 1 R 2, nhưng 1 R 3.

Ví dụ 3

Một số nguyên a được nói là chia hết cho số nguyên n nếu $\exists k \in \mathbb{Z}$: a = kn.

Khi ấy ta cũng nói n là ước số của a và a là bội số của n.

Cho trước số nguyên n > 1, ∀a,b ∈ Z ta định nghĩa quan hệ:

a R b ⇔ a – b chia hết cho n

Quan hệ này gọi là quan hệ đồng dư modulo n. Nếu a R b ta viết

$$a \equiv b \pmod{n}$$

Với n = 7 ta có $9 \equiv 2 \pmod{7}$ và $3 \equiv 10 \pmod{7}$ nhưng $3 \neq 6 \pmod{7}$.

Ví dụ 4

Xét các quan hệ sau trên tập các số nguyên:

$$\Re_1 = \{(a, b) / a \le b \},$$

 $\Re_2 = \{(a, b) / a = b \text{ hoặc } a = -b \},$
 $\Re_3 = \{(a, b) / a = b + 1 \},$
 $\Re_4 = \{(a, b) / a + b \le 3 \}.$

Hỏi mỗi cặp sau được chứa trong các quan hệ nào ở trên: (1; 1), (1; 2), (2; 1) và (1; -1)?

Giải:

Cặp (1; 1) thuộc \Re_1 , \Re_2 và \Re_4 ; (1; 2) thuộc \Re_1 và \Re_4 ; (2; 1) thuộc \Re_3 và \Re_4 ; (1; -1) thuộc \Re_2 và \Re_4 .

Định nghĩa 2:

Một quan hệ n-ngôi giữa các tập hợp A_1 , A_2 , ..., A_n là một tập con \Re của tích Descartes $A_1 \times A_2 \times ... \times A_n$.

Các tập A_1 , A_2 , ..., A_n được gọi là miền xác định, số n là bậc và $(a_1, a_2, ..., a_n) \in \Re$ là bộ n - tọa độ (n - thành phần) của quan hệ.

Ví dụ

Với
$$A_1 = A_2 = A_3 = A = \{1; 2; 3; 4\}$$
. Xét quan hệ 3-ngôi:

$$(a, b, c) \in \Re \Leftrightarrow a < b < c$$

Ta có $\Re = \{(1;2;3), (1;2;4), (1;3;4); (2;3;4)\}.$

Chú ý

Quan hệ n-ngôi có thể biểu diễn dưới dạng bảng:

Ví dụ

Xét quan hệ có tên Giáo viên biểu diễn ở bảng sau:

Số điện thoại	Tên	Bộ môn	Tuổi
9912516	Hùng	Mang	40
8423169	Long	нттт	. 35
8321022	An	CNPM	36
9931521	Long	КНМТ	25
9912432	Mai	Mạng	40

Bảng gồm 4 cột biểu diễn quan hệ 4-ngôi với các thành phần: Số điện thoại, Tên giáo viên, Bộ môn và Tuổi.

Một cơ sở dữ liệu gồm các bản ghi, đó là các bộ n thành phần, n thành phần này ứng với n tọa độ của quan hệ n-ngôi.

Quan hệ 4-ngôi ở bảng trên ứng với 5 bản ghi, mỗi bản ghi có 4 thành phần:

4.1.2. Ma trận biểu diễn quan hệ

Cho \Re là một quan hệ giữa tập $A = \{x_1, x_2, ..., x_n\}$ và tập $B = \{y_1, y_2, ..., y_n\}$.

Ta có thể biểu diễn quan hệ \Re dưới dạng một ma trận không - một M_{\Re} , gọi là ma trân quan hệ như sau:

Các phần từ của A được sắp xếp theo một trật tự nào đó trên một cột, còn các phần từ của B được sắp xếp theo một trật tự nào đó trên hàng. Khi đó $M_{\rm N} = (m_{ij})_{mxn}$ được xác định:

$$\label{eq:mass_mass_mass_mass_mass_mass_mass} m_{ij} = \begin{cases} 1 & khi & x_i \mathfrak{R} y_j, \\ 0 & khi & x_i \overline{\mathfrak{R}} y_j. \end{cases}$$

Chương 4: Quan hệ

Ta nói \Re được biểu diễn bởi ma trận M_{\Re} . Quan hệ hai ngôi \Re và ma trận M_{\Re} xác định lẫn nhau một cách duy nhất.

Ví dụ

Cho A =
$$\{2; 3; 4\}$$
, B = $\{5; 6; 7; 8\}$ và $\Re = \{(2; 6), (2; 8), (3; 6), (4; 8)\}$.

Ta có:
$$M_{\Re} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Trường hợp đã biết trật tự sắp xếp (chẳng hạn tăng dần) các phần tử của A (theo cột) và B (theo dòng) thì ta chỉ viết:

$$\mathbf{M}_{\mathfrak{R}} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

** Nếu $\mathfrak R$ là một quan hệ trên A và |A|=n thì $M_{\mathfrak R}$ là ma trận vuông cấp n.

4.1.3. Xác định một quan hệ 🕅 trên A

Cách 1: Liệt kê tất cả các cặp hay bộ phần từ có quan hệ R (nếu R có ít phần từ). Trong ví dụ 1 ở (4.1.1), quan hệ R được cho theo cách liệt kê.

Cách 2: Chi ra ma trận biểu diễn quan hệ R (nếu A có ít phần tử)

Cách 3: Nêu tính chất đặc trưng cho quan hệ \Re , tức là tính chất hay tiêu chuẩn để xác định các phần tử thuộc \Re hay không. Trong các ví dụ 2, 3 và 4 ở (4.1.1), quan hệ \Re được cho bằng cách nêu lên tính chất đặc trưng cho quan hệ.

Chú ý

Ngoài 3 cách trên để biểu diễn một quan hệ, ta còn biểu đồ (dạng đồ thị) để biểu diễn quan hệ. Cách biểu diễn này sẽ được xét trong phần sau, khi nói về biểu đồ Hasse của một cấu trúc thứ tự.

4.2. Quan hệ tương đương

4.2.1. Các định nghĩa

Định nghĩa 1:

Một quan hệ R trên tập A được gọi là phản xạ (reflexive) nếu;

$$\forall x \in A : x \Re x$$
.

Ví dụ 1

Xét các quan hệ trên tập {1,2,3,4}:

$$\begin{split} \mathfrak{R}_1 &= \{(1;1), (1;2), (2;1), (2;2), (3;4), (4;1), (4;4)\} \\ \mathfrak{R}_2 &= \{(1;1), (1;2), (2;1)\} \\ \mathfrak{R}_3 &= \{(1;1), (1;2), (1;4), (2;1), (2;2), (3;3), (4;1), (4;4)\} \\ \mathfrak{R}_4 &= \{(2;1), (3;1), (3;2), (4;1), (4;2), (4;3)\} \\ \mathfrak{R}_5 &= \{(1;1), (1;2), (1;3), (1;4), (2;2), (2;3), (2;4), (3;3), (3;4), (4;4)\} \\ \mathfrak{R}_6 &= \{(3;4)\} \end{split}$$

Các quan hệ \Re_3 và \Re_5 là phản xạ, vì cả hai quan hệ đó đều chứa tất cả các cặp dạng (x; x), cụ thế (1; 1), (2; 2), (3; 3), (4; 4). Các quan hệ khác không phải là phản xạ vì chúng không chứa tất cả các cặp đó.

Ví dụ 2 -

Xét các quan hệ sau trên tập các số nguyên:

$$\Re_1 = \{(a, b) / a \le b\}$$
 $\Re_2 = \{(a, b) / a > b\}$
 $\Re_3 = \{(a, b) / a = b \text{ hoặc } a = -b\}$
 $\Re_4 = \{(a, b) / a = b\}$
 $\Re_5 = \{(a, b) / a = b + 1\}$
 $\Re_6 = \{(a, b) / a + b \le 3\}$

Chương 4: Quan hệ

Các quan hệ \Re_1 , \Re_3 và \Re_4 là phản xạ. Các quan hệ khác không phải là phản xạ.

Định nghĩa 2:

Một quan hệ R trên tập A được gọi là đối xứng (symmetric) nếu:

$$\forall x,y \in A : x \Re y \Rightarrow y \Re x.$$

Ví dụ 3

Các quan hệ \Re_2 và \Re_3 trong ví dụ 1 là đối xứng. Các quan hệ \Re_3 , \Re_4 và \Re_6 trong ví dụ 2 là đối xứng.

Định nghĩa 3:

Một quan hệ R trên tập A được gọi là bắc cầu (transitive) nếu:

$$\forall x,y,z \in A : x \Re y \text{ và } y \Re z \Rightarrow x \Re z.$$

Ví dụ 4

Các quan hệ \Re_4 , \Re_5 và \Re_6 trong ví dụ 1 là bắc cầu (\Re_1 không có tính bắc cầu vì (3; 4), (4; 1) $\in \Re_1$ nhưng (3; 1) $\notin \Re_1$,...). Các quan hệ \Re_1 , \Re_2 và \Re_4 trong ví dụ 2 là bắc cầu.

Định nghĩa 4 (quan hệ tương đương):

Một quan hệ R trên tập hợp A được gọi là quan hệ tương đương nếu nó phản xạ, đối xứng và bắc cầu.

Hai phần tử quan hệ với nhau bằng một quan hệ tương đương được gọi là tương đương với nhau.

Ví dụ 5

 Gọi L là tập hợp các đường thẳng trong mặt phẳng. Quan hệ song song được định nghĩa bởi:

$$M \Re N \Leftrightarrow M /\!\!/ N$$

là quan hệ tương đương.

Tuy nhiên, quan hệ " \perp " (vuông góc) trên \mathcal{L} không phải là quan hệ tương đương, vì nó không phản xạ và bắc cầu.

- 2. Quan hệ $\Re = \{(1; 1), (2; 2), (3; 3), (2; 3), (3; 2)\}$ trên $A = \{1; 2; 3\}$ là quan hệ tương đương.
- 3. Gọi A là tập hợp những người đang sống trên trái đất. Ta định nghĩa quan hệ R trên A như sau :

x ℜ y ⇔ x và y có cùng năm sinh.

Khi đó R là một quan hệ tương đương.

- Quan hệ ℜ trên R: x ℜ y ⇔ sinx = siny
 là một quan hệ tương đương.
- 5. Quan hệ đồng dư modulo n (n nguyên > 1).

$$\mathfrak{R} = \{(a,b) / a \equiv b \pmod{n}\}$$

có phải là quan hệ tương đương trên tập các số nguyên không?

Giải:

- $\forall a \in \mathbb{Z}$, ta có a a = 0 chia hết cho n (vì 0 = 0.n) nên $a \equiv a \pmod{n}$ $\Rightarrow \Re$ phản xạ.
- ∀a,b∈Z, giả sử a ≡ b (mod n). Khi đó a b = kn, với k∈Z. Từ đó suy ra b a = -kn, vây b ≡ a (mod n) ⇒ ℜ đối xứng.
- ∀a,b,c∈Z, giả sử a = b (mod n) và b = c (mod n). Khi đó ∃k, l∈Z:
 a b = kn và b c = ln. Cộng lại ta được: a c = kn + ln = (k + l)n,
 vậy a = c (mod n) ⇒ ℜ bắc cầu.

Vậy R là một quan hệ tương đương.

4.2.2. Lớp tương đương

Định nghĩa:

Giả sử \Re là một quan hệ tương đương trên A và $x \in A$. Khi ấy *lớp* tương đương chứa x, kí hiệu \overline{x} hay [x], là tập hợp con:

$$\{y \in A / y \Re x\}$$

Ví dụ

Xét quan hệ ℜ trên R:

 $x \Re y \Leftrightarrow x^3 - 12x = y^3 - 12y$. 127.0.0.1 downloaded 85802.pdf at Tue Jul 31 11:02:48 ICT 2012

Chương 4: Quan hệ

ℜ là một quan hệ tương đương. Xét 0; 2; -5 ∈ R. Ta có:

[0] =
$$\{x \in \mathbb{R} / x \Re 0\} = \{x \in \mathbb{R} / x^3 - 12x = 0\} = \{0; 2\sqrt{3}; -2\sqrt{3}\}$$

[2] = $\{x \in \mathbb{R} / x \Re 2\} = \{x \in \mathbb{R} / x^3 - 12x = -16\} = \{2; -4\}$
[-5] = $\{x \in \mathbb{R} / x \Re (-5)\} = \{x \in \mathbb{R} / x^3 - 12x = -65\} = \{-5\}$

2. Quan hệ ≡ (mod 3) có 3 lớp tương đương :

$$[0] = \{...; -6; -3; 0; 3; ...\}$$

$$[1] = \{...; -5; -2; 1; 4; ...\}$$

$$[2] = \{...; -4; -1; 2; 5; ...\}$$

$$D\hat{e} \circ r \tilde{a} \text{ng} : [0] = [3] = [6] = ...$$

$$[1] = [4] = [7] = ...$$

Như thế {[0], [1], [2]} là một phân hoạch của **Z**, nghĩa là **Z** là hợp của 3 tập hợp đôi một rời nhau [0], [1] và [2]. Tổng quát hơn ta có:

Định lí 1

Giả sử R là một quan hệ tương đương trên tập hợp A. Khi ấy:

- a) $\forall x \in A, x \in [x]$
- b) $\forall x,y \in A, x \Re y \Leftrightarrow [x] = [y]$
- c) Nếu $[x] \cap [y] \neq \emptyset$ thì [x] = [y]

Vậy quan hệ tương đương R phân hoạch tập hợp A thành các lớp tương đương rời nhau từng đôi một. Hai phần tử có quan hệ R thì cùng thuộc một lớp tương đương. Hai phần tử không quan hệ R thì thuộc về hai lớp tương đương rời nhau. Mỗi phần tử trong một lớp tương đương đều là một phần tử đại diện của lớp tương đương đó.

Ví đự

Cho A = {0; 1; 2; 3; 4; 5; 6; 9; 11; 23; 24; 39}. Xét quan hệ tương đương = (mod 5) trên A. Ta có:

 $[2] = \{2\};$ 127.0.0.1 downloaded 85802.pdf at Tue Jul 31 11:02:48 ICT 2012

Tập A được phân hoạch thành 5 lớp tương đương rời nhau từng đôi một là {2}, {0; 5}, {3; 23}, {1; 6; 11}, {4; 9; 24; 39}.

2. Xét quan hệ \Re trên \mathbb{Z} : $m \Re n \iff m^2 = n^2$.

R là một quan hệ tương đương. Các lớp tương đương là:

$$\{0\}, \{-1, 1\}, \{-2, 2\}, ..., \{-n, n\},$$

ở đây Z được phân hoạch thành vô số tập con hữu hạn.

Định lí 2

Giả sử \Re là một quan hệ tương đương trên tập hợp A. Khi đó các lớp tương đương của \Re sẽ lập nên một phân hoạch của A. Ngược lại, với mỗi phân hoạch đã cho $\{A_i \mid i \in I\}$ của tập A, tồn tại một quan hệ tương đương \Re có các tập con A_i là các lớp tương đương của nó.

Với $n \in \mathbb{Z}$, quan hệ đồng dư (mod n) là một quan hệ tương đương với n lớp đồng dư (lớp tương đương) [0], [1], ..., [n-1]. Các lớp đồng dư này được ký hiệu lần lượt là $[0]_n$, $[1]_n$, ..., $[n-1]_n$. Chúng tạo thành một phân hoạch của tập các số nguyên.

Ví dụ

Xác định các tập trong phân hoạch các số nguyên tạo bởi quan hệ đồng dư (mod 4).

Giải.

Có 4 lớp đồng đư là:

$$[0]_4 = \{..., -8, -4, 0, 4, 8, ...\}$$

$$[1]_4 = \{..., -7, -3, 1, 5, 9, ...\}$$

$$[2]_4 = \{..., -6, -2, 2, 6, 10, ...\}$$

$$[3]_4 = \{..., -5, -1, 3, 7, 11, ...\}$$

Các lớp đồng dư này rời nhau và mỗi số nguyên chỉ thuộc một trong 4 lớp trên, tức là chúng tạo nên một phân hoạch của tập các số nguyên.

Chương 4: Quan hệ

4.3. Quan hệ thứ tự

4.3.1. Các định nghĩa

Định nghĩa 1:

Một quan hệ R trên tập A được gọi là phản xứng (antisymmetric) nếu:

 $\forall x,y \in A: x \Re y \text{ và } y \Re x \Rightarrow x = y.$

Ví dụ 1

Các quan hệ \Re_4 , \Re_5 và \Re_6 trong ví dụ 1 ở (4.2.1) là phản xứng; đối với các quan hệ này không có cặp (a, b) nào với a \neq b sao cho cả (a, b) và (b, a) đều thuộc các quan hệ đó. Tương tự, các quan hệ \Re_1 , \Re_2 , \Re_4 và \Re_5 trong ví dụ 2 ở (4.2.1) là phản xứng (\Re_1 phản xứng vì a \leq b và b \leq a kéo theo a = b; \Re_2 phản xứng vì không thể có đồng thời a > b và b > a; \Re_4 phản xứng vì hai phần tử có quan hệ với \Re_4 nếu và chỉ nếu chúng bằng nhau; \Re_5 phản xứng vì không thể đồng thời có a = b+1 và b = a+1).

Ví dụ 2

Quan hệ "≤" trên Z, Q hay R là phản xứng

Định nghĩa 2:

Một quan hệ R trên tập hợp A được gọi là quan hệ thứ tự nếu nó phản xạ, phản xứng và bắc cầu. Khi ấy ta nói A là một tập hợp sắp thứ tự (hay có thứ tự).

Chú ý

- Ta thường kí hiệu một quan hệ thứ tự bới≺. Cặp (A,≺) là một tập hợp có thứ tự.
- Giả sử B là một tập hợp con của một tập hợp có thứ tự (A,≺). Khi ấy ≺ cảm sinh một thứ tự trên B một cách tự nhiên: với x, y∈ B, ta nói x≺y trong B nếu x≺y trong A.

Ví dụ

- 1. (\mathbf{R}, \leq) là một tập hợp có thứ tự. Thứ tự \leq cảm sinh các thứ tự tự nhiên trên \mathbf{Z}, \mathbf{Q} .
- Với n ∈ Z⁺(tập các số nguyên dương), đặt:

$$U_n = \{a \in N/ | a | n \}$$

trong đó a n có nghĩa a là một ước của n hay n chia hết cho a.

Trên Un ta định nghĩa quan hệ:

$$x \Re y \Leftrightarrow x \mid y$$
.

Rỗ ràng R là phản xạ và bắc cầu.

Giả sử x \Re y và y \Re x. Ta có: y = kx và x = ly với $k, l \in Z^+$.

Suy ra $y = kly \implies kl = 1 \implies k = l = l \text{ (do } k, l \in Z^+).$

Vậy x = y, nghĩa là \Re phản xứng.

Do đó ℜ là một quan hệ thứ tự. Ký hiệu sẽ được dùng thay vì ≺.

Chẳng hạn, với n = 8 ta có:

$$U_8 = \{1, 2, 4, 8\}.$$

Ta có thể liệt kê các cặp thuộc quan hệ trên:

$$\{(1,1), (1,2), (1,4), (1,8), (2,2), (2,4), (2,8), (4,4), (4,8), (8,8)\}$$

Quan hệ bao hàm ⊂ trên tập hợp 𝒫(E) (𝒫(E): tập gồm tất cả các tập con của E):

$$A \prec B \Leftrightarrow A \subset B$$
.

là một quan hệ thứ tự, gọi là thứ tự bao hàm. Kí hiệu $A \subset B$ sẽ được dùng thay vì \prec .

Định nghĩa 3

(thứ tự toàn phần và thứ tự bán phần): Xét tập hợp có thứ tự (A, \prec) .

- i) \prec là thứ tự toàn phần nếu $\forall x, y \in A$: $(x \prec y) \lor (y \prec x)$ {nghĩa là hai phần từ bất kỳ của A đều so sánh được}.
- ii) \prec là thứ tự bán phần nếu $\exists x,y \in A: (x \prec y) \land (y \prec x)$.

Ví dụ

N, Z, Q, R với thứ tự \leq thông thường là những tập họp sắp thứ thự toàn phần.

 \subset là thứ tự bán phần trên $\mathcal{D}(E)$ (nếu $|E| \ge 2$).

Chương 4: Quan hệ

Chẳng hạn, với $E = \{a, b\}$, ta có

$$\mathcal{P}(E) = \{\emptyset, E, \{a\}, \{b\}\} \text{ và } \{a\} \not\subset \{b\}, \{b\} \not\subset \{a\}.$$

Định nghĩa 4

(phần tử nhỏ nhất và phần tử lớn nhất): Xét tập hợp có thứ tự (A,≺).

- i. a ∈ A là phần tử nhỏ nhất của tập A, ký hiệu a = min(A), nếu
 ∀x∈A ta có: a ≺ x.
- ii. $b \in A$ là *phần tử lớn nhất* của tập A, ký hiệu $b = \max(A)$, nếu $\forall x \in A$ ta có: $x \prec b$.

Ví dụ

Trong tập hợp có thứ tự (A, ≤), với A = {x ∈ Z / x² < 100}. Ta có

$$\min(A) = -9, \ \max(A) = 9.$$

- 2. $min(\mathbf{R}, \leq)$ và $max(\mathbf{R}, \leq)$ không tồn tại.
- 3. $\min(\mathcal{D}(E), \subset) = \emptyset \text{ và } \max(\mathcal{D}(E), \subset) = E.$

Nhận xét

- Phần tử lớn nhất (nhỏ nhất) của A có thể tồn tại hoặc không tồn tại, nếu tồn tại thì duy nhất.
- Nếu (A,≺) là tập hợp hữu hạn được sắp thứ tự toàn phần thì min(A)
 và max(A) đều tồn tai.
- Nếu min(A) và max(A) đều tồn tại thì min(A) ≺ max(A).

Định nghĩa 5

(phần tử tối tiểu và phần tử tối đại): Xét tập họp có thứ tự (A,≺).

- i. a ∈ A là phần tử tối tiểu của A nếu không tồn tại x∈A sao cho a ≠ x ≺ a. Nói cách khác mệnh để sau là đúng: ∀x ∈ A, x ≺ a ⇒ x = a.
- ii. b ∈ A là phần tử tối đại của A nếu không tồn tại x ∈ A sao cho b ≺ x ≠ b. Nói cách khác mệnh đề sau là đúng: ∀x ∈ A, b ≺ x ⇒ b = x.

Ví dụ

- 1. (R, ≤) không có phần tử tối tiểu và tối đại.
- Cho E = {a, b, c} và A = 𝒫(E) \ {Ø, E}. Khi đó (A, ⊂) có 3 phần tử tối tiểu là {a}, {b}, {c} và 3 phần tử tối đại là {a, b}, {a, c}, {b, c}.
- Cho A = {2; 4; 5; 6; 8; 12}. Khi đó (A, |) có hai phần từ tối tiểu là 2 và 5; có 3 phần tử tối đại là 5, 8 và 12.

Định lý 1

Trong một tập hợp sắp thứ tự, phần tử lớn nhất (tương ứng nhỏ nhất), nếu tồn tại, là phần tử tối đại (tương ứng tối tiểu) duy nhất.

Định lý 2

Nếu một tập hợp sắp thứ tự hữu hạn có một phần tử tối đại (tương ứng tối tiểu) duy nhất thì phần tử đó chính là phần tử lớn nhất (tương ứng nhỏ nhất).

Chú ý

Định lý trên sẽ không còn đúng nếu bỏ đi điều kiện hữu hạn của tập hợp.

Định nghĩa 6

(phần tử chận dưới và phần tử chận trên): Xét tập hợp có thứ tự (A, \prec) và $B \subset A$.

- i. a ∈ A là một chận dưới của B nếu ∀x ∈ B ta có a ≺ x.
 Phần tử lớn nhất của tập hợp {a ∈ A/ a là chận dưới của B} được ký hiệu là inf(B).
- b ∈ A là một chận trên của B nếu ∀x ∈ B ta có x ≺ b.
 Phần tử bẻ nhất của tập hợp {b ∈ A/ a là chận trên của B} được ký hiệu là sup(B).

. Ví dụ

Trong (\mathbf{R}, \leq) , xét $A = \{x \in \mathbf{R}/x^2 < 100\}$. Ta có $\sup(A) = 10$, $\inf(A) = -10$.

Chú ý

Nếu trong tập A tồn tại phần từ maxA (tương ứng minA) thì đó cũng 127.0.0.1 downloaded 35802.5d at Tue Jul 31 11:02:48 ICT 2012

Định nghĩa 7 (thứ tự tốt):

Một tập hợp có thứ tự được gọi là *có thứ tự tốt* (hay được sắp tốt) nếu mọi tập con khác rỗng đều có phần tử nhỏ nhất.

Ví dụ 8

- 1. Tập hợp có thứ tự (N, ≤) là một tập hợp được sắp tốt.
- Tập hợp có thứ tự (Z, ≤) không phải là một tập hợp được sắp tốt vì Z không có phần từ nhỏ nhất.

4.3.2. Biểu đồ Hasse cho các tập hợp hữu hạn được sắp thứ tự

Định nghĩa 1:

Xét tập hợp có thứ tự (A, \prec) và x, y là hai phần tử bất kỳ của A.

- i. Nếu x ≺ y ta nói y là trội của x hay x được trội bởi y.
- ii. y là trội trực tiếp của x nếu y trội x và không tồn tại một trội z của x sao cho:

$$\mathbf{x} \stackrel{\prec}{\to} \mathbf{z} \stackrel{\prec}{\to} \mathbf{y}$$

Định nghĩa 2:

Biểu đồ Hasse của một tập hữu hạn có thứ tự (A, ≺) bao gồm:

- Một tập hợp các điểm trong mặt phẳng tương ứng 1-1 với A, gọi là các đình.
- ii. Một tập hợp các cung có hướng nối một số đinh: hai đinh x, y được nối lại bởi một cung có hướng (từ x tới y) nếu y là trội trực tiếp của x.

Ví dụ

1.

2. Biểu đồ Hasse của {1; 2; 3; 4; 5} với thứ tự thông thường có dạng của một dây chuyển:

Ta có thể duyệt hết các đình qua một lần bằng cách đi theo các cung mà không quay trở lại.

Cho S = {2; 3; 6; 8; 9; 12;18} và | là quan hệ ước số trên S.
 Khi đó (S, |) có biểu đồ Hasse như sau:

BÀI TẬP CHƯƠNG 4 (QUAN HỆ)

Bài 1 Xác định quan hệ nào sau đây là quan hệ giữa $A = \{a,b,c\}$ và $B = \{1; 2\}$:

a)
$$\Re_1 = \{(a,1), (b,2), (c,1)\}$$

b)
$$\Re_2 = \{(b,1)\}$$

c)
$$\Re_3 = \{(a,2), (b,1)\}$$

d)
$$\Re_4 = \emptyset$$

e)
$$\Re_5 = AxB$$

Bài 2 Giả sử $A = \{a,b,c\}$ và $B = \{1; 2\}$.

- a) Tìm số quan hệ giữa A và B
- b) Tìm số quan hệ trên A
- c) Tìm số quan hệ giữa A và B không chứa (a,1), (a,2).
- d) Tìm số quan hệ giữa A và B chứa đúng 3 cặp có thứ tự.

Bài 3 Giả sử $A_1 = \{0; 1; 2; 3; 4\}, A_2 = \{1; 3; 7; 12\},$

$$A_3 = \{0; 1; 2; 4; 8; 16; 32\}, A_4 = \{-3, -2, -1, 0, 1, 2, 3\}.$$

- a) Xét $\mathfrak{R}_1 = \{(x,y,z,t) \in A_1xA_2xA_3xA_4 : xyzt = 0\}$. Hãy tính $|\mathfrak{R}_1|$.
- b) Xét $\Re_2 = \{(x,y,z,t) \in A_1xA_2xA_3xA_4 : xyzt < 0\}$. Hãy tính $|\Re_2|$.
- **Bài 4** Cho A = $\{1; 2; 3\}$ và $\Re = \{(1; 1), (2; 1), (3; 2), (1; 3)\}$ là một quan hệ trên A. Xác định mỗi câu sau đây đúng hay sai:
 - a) 1 R 1

b) 1\overline{\Pi}2

c) 293

- d) 2971
- **Bài 5** Cho \Re là quan hệ trên tập hợp số nguyên dương N xác định bởi phương trình 3x+4y=17. Viết \Re ở dạng một tập hợp các cặp thứ tự.
- Bài 6 Cho X = {a, b, c, d, e, f} và Y = {beef, dad, ace, cab}, \Re là quan hệ giữa X và Y, trong đó $(x,y) \in \Re$ nếu x là một mẫu tự trong từ y. Tìm ma trận M biểu diễn \Re .
- Bài 7 Xác định khi nào một quan hệ R trên A là không phản xạ, không đối xứng, không bắc cầu, không phản xứng.
- Bài 8 Xét tập A = {1; 2; 3}. Trong số các quan hệ dưới đây, hãy cho biết quan hệ nào là phản xạ, đối xứng, phản xứng, bắc cầu:
 - a) $R = \{(1; 1), (1; 2), (1; 3), (3; 3)\}$
 - b) $S = \{(1; 1), (1; 2), (2; 1), (2; 2), (3; 3)\}$
 - c) $T = \{(1; 1), (1; 2), (2; 2), (2; 3)\}$
- Bài 9 Nếu các ví dụ về các quan hệ R trên A = {1; 2; 3} thoả mãn:
 - a) ℜ vừa đối xứng vừa phản xứng
 - b) R không đối xứng cũng không phản xứng
- Bài 10 Trong số các quan hệ đưới đây, hãy cho biết quan hệ nào là phản xạ, đối xứng, phản xứng, bắc cầu:
 - a) Quan hệ ℜ trên Z: xℜy⇔x+y chẵn
 - b) Quan hệ ℜ trên Z : x ℜ y ⇔ x-y lẻ
- 127.0.0.1 downloadeQuantage? ያስመር ቋተረጉ ጊዜ ህ ነገር ፍተ ነጻ ተነሻር ያለም ነገር ተ 2012

- d) Quan heä \Re trên $R : x \Re y \Leftrightarrow |x| = |y|$
- e) Quan heä \Re trên R : $x \Re y \Leftrightarrow \sin^2 x + \cos^2 y = 1$
- **Bài 11** Cho $\Re = \{(1; 1), (1; 3), (3; 1), (3; 3)\}.$

 \Re có phải là quan hệ tương đương trên $A = \{1; 2; 3\}$ không ? Trên $B = \{1; 3\}$ không ?

Bài 12 Cho A = {1; 2; 3; ...; 14; 15} và R là một quan hệ trên A được xác định bởi:

$$(a,b) \Re (c,d) \Leftrightarrow a+d=b+c.$$

Chứng minh R là một quan hệ tương. Tìm lớp tương đương của (2;11).

Bài 13 Cho A =
$$\{1; 2; 3; 4; 5; 6\}$$
 và

$$\mathfrak{R} = \{(1;1), (1;2), (2;1), (2;2), (3;3), (4;4), (4;5), (5;4), (5;5), (6;6)\}.$$

- a) Kiểm tra R là một quan hệ tương đương
- b) Tìm các lớp tương đương [1], [2], [3]
- c) Tìm phân hoạch của A thành các lớp tương đương.
- Bài 14 C là một tập con cố định của E, xét quan hệ R trên T(E):

$$A \Re B \Leftrightarrow A \cap C = B \cap C$$
.

- a) Quan hệ R có phải tương đương không?
- b) Với $E = \{1; 2; 3\}$ và $C = \{1; 2\}$. Tim phân hoạch của $\mathcal{F}(E)$ thành các lớp tương đương.
- c) Với E = {1; 2; 3; 4; 5} và C = {1; 2; 3}. Tìm lớp tương đương [{1; 3; 5}]. Có bao nhiều lớp tương đương khác nhau?
- Bài 15 Kiểm chứng R là một quan hệ thứ tự trên tập hợp S và cho biết đó là thứ tự toàn phần hay bán phần ? Vẽ biểu đồ Hasse của (S,R) và chỉ ra các phần tử min, max, tối tiểu, tối đại (nếu có) của (S,R).
 - a) $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10\}, \forall x,y \in S$:

 $x \Re y \Leftrightarrow [x \le y \ va\ (x-y) \ chan] hoặc [x lẻ va y chan]$

127.0.0.1 downloade 2858628 dPat 7 web 20 31 44 10 2:48 10 120 12 y.

- c) $S = \{2; 3; 4; 6; 8; 16; 24; 32; 48; 96\}, \forall x,y \in S : x \Re y \Leftrightarrow x \mid y$.
- d) $S = \{0; 5; 10; 15; 20; 25; 30; 40\}, \forall x, y \in S : x \Re y \Leftrightarrow y \mid x.$
- **Bài 16** Cho tập hợp E và một quan hệ \Re trên E. Chứng minh rằng \Re có hai tính chất đối xứng và phản xứng \Leftrightarrow x \Re y \Rightarrow x = y.
- Bài 17 Cho tập hợp E. Một quan hệ R trên E có thể vừa là quan hệ tương đương, vừa là quan hệ thứ tự không?
- Bài 18 Chứng minh rằng trong một tập hợp sắp thứ tự, phần tử lớn nhất, nếu tồn tại, là phần tử tối đại duy nhất.
- Bài 19 Chứng minh rằng trong một tập hợp sắp thứ tự hữu hạn thì:
 - a) Mọi phần tử được trội bởi một phần tử tối đại.
 - b) Nếu m là phần tử tối đại duy nhất của A thì m là phần tử lớn nhất.
- **Bài 20** Giả sử $A = \mathcal{P}(E)$ với $E = \{1; 2; 3\}$. Trong tập A với thứ tự bao hàm, hãy tìm sup và inf của tập con $B \subset A$ dưới đây:
 - a) $B = \{\{1\}, \{2\}\}$
 - b) $B = \{\{1\}, \{2\}, \{3\}, \{1; 2\}\}$
 - c) $B = \{\emptyset, \{1\}, \{2\}, \{1; 2\}\}$
 - d) $B = \{\{1\}, \{1; 2\}, \{1; 3\}, \{1; 2; 3\}\}$
- Bài 21 Trong các tập hợp sắp thứ tự dưới đây, cho biết tập hợp nào sắp thứ tự tốt:
 - a) (N, \leq)
 - b) (**Z**, ≤)
 - c) (**Q**, ≤)
 - d) (\mathbf{Q}^+, \leq)
 - e) (P, ≤) trong đó P là tập hợp các số nguyên tố
 - f) (A, \leq) trong đó $A \neq \emptyset$ là một tập con hữu hạn của \mathbb{Z}
- 127.0.0.1 downloaded 85802.pdf at Tue Jul 31 11:02:48 ICT 2012

Chuong 5:

ĐẠI SỐ BOOLE

5.1. Mở đầu

Đại số Boole đưa ra các phép toán và qui tắc làm việc với tập {0; 1}. Trong các mạch điện của máy tính, các dụng cụ điện từ và quang học được nghiên cứu bằng cách dùng tập này và các qui tắc của đại số Boole. Ba phép toán được dùng nhiều nhất trong đại số Boole là:

 Phần bù của một phần tử, ký hiệu bằng một gạch ngang trên đầu, được định nghĩa bởi:

$$\overline{0} = 1$$
 và $\overline{1} = 0$;

Tổng Boole, ký hiệu là + hoặc OR (hoặc), được xác định:

$$1+1=1$$
; $1+0=1$; $0+1=1$; $0+0=0$;

3) Tích Boole, ký hiệu là . hoặc AND (và), được xác định:

$$1.1 = 1$$
; $1.0 = 0$; $0.1 = 0$; $0.0 = 0$.

Chú ý

- Ký hiệu . có thể bỏ đi như các tích đại số thông thường.
- Thứ tự thực hiện các phép toán Boole:
 - lấy phần bù
 - tích Boole
 - tổng Boole
- Phép lấy phần bù, lấy tổng và tích Boole tương ứng với các toán tử logic ¬, ∨ và ∧; trong đó 0 tương ứng với chân trị "sai" và 1 tương ứng với chân trị "đúng". Các kết quả của đại số Boole có thể được dịch trực tiếp thành các kết quả về các mệnh đề. Ngược lại, các kết quả về các mệnh đề cũng có

127.0.0.1 dovinifoliele thèrie géodifiag Tinh thia thailsí (1204 B.ICT 2012

Chương 5: Đại số Boole

Ví dụ Tìm giá trị của $1.0 + (\overline{0+1})$.

Giải.

$$1.0 + (\overline{0+1}) = 0 + \overline{1} = 0 + 0 = 0.$$

5.2. Hàm Boole và biểu thức Boole

5.2.1. Hàm Boole

Định nghĩa 1. Cho $B = \{0, 1\}$. Một ánh xạ

$$f: B^n \rightarrow B$$

 $(x_1,...,x_n) \mapsto f(x_1,...,x_n)$

gọi là hàm Boole bậc n theo n biến x₁,...,x_n.

Chú ý

- Các hàm Boole còn gọi là hàm logic hay hàm nhị phân.
- Các biến xuất hiện trong hàm Boole được gọi là biến Boole.
- Mỗi hàm Boole được liên kết với một bảng cho biết sự phụ thuộc của hàm Boole theo giá trị của các biến Boole, gọi là bảng chân trị của hàm Boole.
- Ví dụ 1 Hàm Boole hai biến f(x,y) với giá trị bằng 1 khi x = 1, y = 0 và bằng 0 với mọi khả năng còn lại của x và y có thể được cho trong bảng sau:

х	·y	f(x,y)
0	0	0
0	1	0
1	0	1
1	1	0

Bảng chân trị của f(x,y)

Ví dụ 2 Các cử tri A₁, A₂ và A₃ tham gia bỏ phiếu trong cuộc bầu cử có ứng cử viên D. Các biến Boole tương ứng là x₁, x₂, x₃

 $với \ x_{j} = \begin{cases} 1 \text{ nếu } A_{j} \text{ bầu phiếu cho } D \\ với \ x_{j} = \end{cases} (1 \leq j \leq 3)$ 127.0.0.1 downloaded 85802. Fur At Tuế vul 3.1 17.02.48 ICT 2012

Đặt $f(x_1, x_2, x_3) = \begin{cases} 1 \text{ nếu D trúng cử (D được ít nhất hai phiếu)} \\ 0 \text{ nếu không trúng cử (D được ít hơn hai phiếu)} \end{cases}$

Ta có hàm Boole $f: B^3 \to B$ tương ứng với bảng chân trị dưới đây:

X ₁	X 2	Х3	$\mathbf{f}(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3)$
0	0	0	0
0	0	1	0
0	1	0	0
.0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Định nghĩa 2.

Hai hàm Boole f và g được gọi là bằng nhau, ký hiệu f = g, nếu:

$$f(x_1, x_2,...,x_n) = g(x_1, x_2,...,x_n)$$
 với mọi $x_1, x_2,...,x_n \in B$.

Định nghĩa 3.

Phần bù của hàm Boole f, ký hiệu là \overline{f} , được xác định như sau:

$$\overline{f}(x_1,x_2,...,x_n) = \overline{f(x_1,x_2,...,x_n)}$$
.

Định nghĩa 4.

Tổng Boole f + g và tích Boole f.g, được xác định như sau:

$$(f+g)(x_1,x_2,...,x_n) = f(x_1,x_2,...,x_n) + g(x_1,x_2,...,x_n).$$

$$(f.g)(x_1,x_2,...,x_n) = f(x_1,x_2,...,x_n).g(x_1,x_2,...,x_n).$$

Chú ý Số hàm Boole n biến khác nhau là 22".

Thật vậy: theo qui tắc nhân của phép đếm \Rightarrow có 2^n bộ n phần từ khác nhau gồm các số 0 và 1. Vì hàm Boole là sự gán 0 hoặc 1 cho mỗi bộ trong số 2^n bộ n phần từ đó, nên lại theo qui tắc nhân sẽ có 2^{2^n} các hàm Boole khác nhau.

Ví dụ

127.0.0 Pau f(x) là hàm Boole một hiến thì có 4 hàm được cho theo bing sau:

X	\mathbf{f}_1	f ₂	f ₃	f ₄
0	0	0	1	1
1	0	1	0	1

Chú ý f₁ là hàm hằng 0; f₄ là hàm hằng 1; f₂ là hàm lặp lại giá trị x; f₃ là hàm lấy phần bù của x.

5.2.2. Biểu thức Boole

Ở trên ta đã thấy hàm Boole có thể cho dưới dạng bảng. Các hàm Boole cũng có thể được biểu diễn bằng cách dùng các biểu thức được thiết lập từ các biến và các phép toán Boole.

Các biểu thức Boole với các biến $x_1, x_2,..., x_n$ được định nghĩa một cách đệ quy như sau :

- 0, 1, x₁, x₂,..., x_n là các biểu thức Boole.
- Nếu E₁ và E₂ là các biểu thức Boole thì E

 ₁, E₁E₂ và E₁ + E₂ cũng là các biểu thức Boole.

Chú ý

- Mỗi biểu thức Boole biểu diễn một hàm Boole. Các giá trị của hàm này nhận được bằng cách thay 0 và 1 cho các biến trong biểu thức đó.
- Hai biểu thức Boole cùng biểu diễn một hàm Boole thì tương đương nhau.

Ví dụ Tìm giá trị của hàm Boole được biểu diễn bởi:

$$F(x,y,z) = xy + \overline{z}$$
.

Giài.

Các giá trị của hàm này được cho trong bảng sau:

x	y	Z	xy	z	$\mathbf{F}(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{x}\mathbf{y} + \mathbf{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0.5	000	, Q _T	م الم	1 11:02:18 ICT 2

5.2.3. Biểu diễn các hàm Boole

Vấn để: Cho các giá trị của một hàm Boole n biến $x_1,x_2,...,x_n$. Làm thế nào để tìm được biểu thức Boole biểu diễn hàm đó?

Định nghĩa 1.

- i) Một biến Boole hoặc phần bù của nó được gọi là một tục biến.
- ii) Tích Boole $y_1y_2...y_n$ trong đó $y_i = x_i$ hoặc $y_i = x_i$ với $x_1, x_2, ...x_n$ là các biến Boole được gọi là một tiểu hạng.

Ghi chú -

- Tiểu hạng $y_1y_2...y_n$ có giá trị $1 \Leftrightarrow \text{mọi } y_i = 1 \Leftrightarrow y_i = \begin{cases} x_i & \text{khi } x_i = 1 \\ \hline x_i & \text{khi } x_i = 0. \end{cases}$
- Tổng Boole của các tiểu hạng có giá trị 1 chỉ khi một trong các tiểu hạng của tổng có giá trị 1.
- Tổng các tiểu hạng biểu diễn hàm Boole được gọi là khai triển tổng các tích hay dạng tuyển chuẩn tắc của hàm Boole.

Ví dụ 1 Tiểu hạng chỉ có giá trị bằng 1 nếu $x_1 = x_3 = 0$ và $x_2 = x_4 = x_5 = 1$ là $x_1 x_2 x_3 x_4 x_5$.

Ví dụ 2 Tìm biểu thức Boole biểu diễn hàm Boole f(x,y) xác định theo bảng sau:

х	у	f(x,y)
1	1	0
1	0	1
0	1	0
0	0	0

Giài.

Hàm có giá trị 1 khi x = 1, y = 0 và có giá trị 0 trong mọi trường hợp còn lại. Từ đó biểu thức Boole của f(x,y) chỉ có 1 tiểu hạng là $x\overline{y}$. Vậy $f(x,y) = x\overline{y}$.

Ví dụ 3 Tìm các biểu thức Boole biểu diễn các hàm f(x,y,z) và g(x,y,z) xác định theo bảng sau: 127.0.0.1 downloaded 85802 pdf at Tue Jul 31 11:02:48 ICT 2012

x	у	Z	f(x,y,z)	g(x,y,z)
1	1	i	0	0
1	1	0	0	1
ClU	0	U 101	ig ith	0
1	0	0	0	0
0	1	1	0	0
0	1	0	0	1
0	0	1	0	0
0	0	_0	0	0

Giài.

- Biểu diễn hàm f: biểu thức Boole của f là xyz.
- Biểu diễn hàm g: g là tổng của hai tiểu hạng tương ứng với hai dòng của bảng có giá trị 1. Biểu thức Boole của g là xyz+xyz.

Ví dụ 4 Tìm khai triển tổng các tích của hàm

$$f(x,y,z) = (x+y)\overline{z}$$
.

Giải.

Trước hết, tìm giá trị của hàm f. Các giá trị này được cho trong bảng sau:

X	у	Z	х+у	z	f=(x+y)z
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0 .	0	1	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	0	0	0
0	0	0	0	1	0

Giải. f là tổng của ba tiểu hạng tương ứng với ba dòng của bảng có giá trị 1.

$$\Rightarrow$$
 f(x,y,z) = $xyz + xyz + xyz + xyz$.

5.2.4. Các hằng đẳng thức của đại số Boole

Sau đây là các hằng đẳng thức quan trọng nhất của đại số Boole (thường được dùng để đơn giản hoá việc thiết kế các mạch).

Hằng đẳng thức	Tên gọi
x = x	luật phần bù kép
$ \begin{array}{c} x + x = x \\ x.x = x \end{array} $	luật luỹ đẳng
$x + 0 = x$ $x \cdot 1 = x$	luật đồng nhất
$ \begin{aligned} \mathbf{x} + 1 &= 1 \\ \mathbf{x} \cdot 0 &= 0 \end{aligned} $	luật nuốt
x + y = y + x $xy = yx$	luật giao hoán
x + (y + z) = (x + y) + z $x(yz) = (xy)z$	luật kết hợp
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	luật phân phối
$\frac{\overline{(xy)} = \overline{x} + \overline{y}}{(\overline{x} + \overline{y}) = \overline{x}.\overline{y}}$	luật De Morgan

Mỗi hằng đẳng thức trong bảng trên có thể chứng minh bằng cách lập bảng. Chẳng hạn, bảng sau chứng minh sự đúng đắn của luật phân phối:

$$x + yz = (x + y)(x + z).$$

x	у	z	yz	x + y	x + z	x + yz	(x+y)(x+z)
1	1	1	1	1	1	1	1
1.	1	0	0	1	1	1	1
1 1	0	1	0	1	1	1	1
1 1	0	0	0	1	1	1	1
0	1	1	1	1	Í	1	1
0	1	0	0	1	0	0	0
0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0

Ví dụ Chứng minh luật hút thu

$$x(x+y)=x$$

bằng cách dùng các hằng đẳng thức của đại số Boole.

Chương 5: Đại số Boole

Giải.

$$(x + y) = (x + 0)(x + y)$$
 {luật đồng nhất}
 $= x + 0.y$ {luật phân phối của tổng đối với tích}
 $= x + y.0$ {luật giao hoán}
 $= x + 0$ {luật nuốt}
 $= x$ {luật đồng nhất}

5.2.5. Tính đối ngẫu của đại số Boole

Đối ngẫu của một biểu thức Boole là một biểu thức Boole nhận được bằng cách các tổng và tích Boole đổi chỗ cho nhau, các số 0 và 1 đổi chỗ cho nhau.

Ví dụ

- Đối ngẫu của (x.y) + z là (x+y).z
- Đối ngẫu của \overline{x} . $1+(\overline{y}+z)$ là $(\overline{x}+0)(\overline{y}.z)$

Đối ngẫu của một hàm Boole F được biểu diễn bởi một biểu thức Boole là một hàm Boole được biểu diễn bởi đối ngẫu của biểu thức đó. Hàm đối ngẫu này được ký hiệu bởi F^đ.

Nguyên lý đối ngẫu: Một hằng đẳng thức giữa các hàm được biểu diễn bởi các biểu thức Boole vẫn còn đúng nếu ta lấy đối ngẫu hai về của nó.

Ví dụ Lấy đối ngẫu hai vế của hằng đẳng thức từ luật hút thu

$$x(x+y)=x,$$

ta được hằng đẳng thức

$$x + xy = x$$

hằng đẳng thức này cũng được gọi là luật hút thu.

5.3. Định nghĩa trừu tượng của đại số Boole

Chương này, tập trung xem xét các hàm và biểu thức Boole. Tuy nhiên, các kết quả mà chúng ta xác lập có thể chuyển thành kết quả cho các mệnh đề hoặc cho các tập hợp. Vì thế, rất tiện ích nếu chúng ta định nghĩa đại số Boole một cách trừu tượng. Một khi đã chứng minh được rằng một cấu trúc đặc biệt nào

đó là một đại số Boole, thì khi đó mọi kết quả đã được thiết lập cho đại số Boole tổng quát sẽ được áp dụng cho cấu trúc đặc biệt đó.

Các đại số Boole có thể được định nghĩa bằng nhiều cách. Tuy nhiên, cách phổ biến nhất là chỉ ra những tính chất mà phép toán cần phải thòa mãn như sau:

Định nghĩa.

Một đại số Boole là một tập A cùng với hai phép toán hai ngôi ∨, ∧ thoả mãn các tính chất sau :

a) Tính kết hợp: $\forall x, y, z \in A$:

$$x \lor (y \lor z) = (x \lor y) \lor z$$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$

b) Tính giao hoán: $\forall x, y \in A$.

$$x \lor y = y \lor x$$

$$x \wedge y = y \wedge x$$

c) Tính phân phối: $\forall x, y, z \in A$:

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

d) Tính đồng nhất: tồn tại hai phần từ trung hoà, ký hiệu 0, 1 đối với hai phép toán ∨, ∧ sao cho ∀x ∈ A:

$$x \vee 0 = x$$

$$x \wedge 1 = x$$

e) Tính nuốt: $\forall x \in A, \exists x \in A$:

$$x \vee \overline{x} = 1$$

$$x \wedge \overline{x} = 0$$

- **Chú ý** Qua định nghĩa trên ta thấy các tập hợp cùng với các phép toán kèm theo sau đây thoả mãn tất cả tính chất đó:
 - Tập B = {0,1} với các phép toán tổng Boole (OR), tích Boole (AND) cùng với phép toán bù.

- Tập hợp các dạng mệnh để với các phép toán v, A và phép toán phủ định.
- Tập hợp các tập con của tập hợp vũ trụ U với các phép toán hợp, giao cùng với phép toán lấy phần bù của tập hợp.

Do đó, để thiết lập các kết quả cho mỗi một biểu thức Boole, cho các mệnh đề hoặc tập hợp ta chi cần chứng minh các kết quả cho đại số Boole trừu tượng.

5.4. Các cổng logic và tổ hợp các cổng logic

Một máy tính cũng như một dụng cụ điện từ được tạo bởi nhiều mạch. Mỗi một mạch có thể được thiết kế bằng cách dùng các phép toán của đại số Boole. Các phần tử cơ bản của các mạch được gọi là các cổng. Mạch mà nó được thiết kế trên cơ sở sử dụng các cổng định nghĩa dưới đây được gọi là *mạch tổ hợp*, tức là mạch có đầu ra chỉ phụ thuộc giá trị đầu vào mà không phụ thuộc vào trạng thái hiện thời của mạch, hay nói cách khác các mạch này không có khả năng nhớ.

5.4.1. Các cổng logic

1. Bộ đảo

Bộ đảo chấp nhận giá trị của một biến Boole như đầu vào và tạo phần bù của giá trị đó như đầu ra.

2. Cổng OR

Đầu vào của cổng OR là các giá trị của hai hoặc nhiều hơn biến Boole. Đầu ra là tổng Boole của các giá trị đó.

3. Cổng AND

Đầu vào của cổng AND là các giá trị của hai hoặc nhiều hơn biến Boole. Đầu ra là tích Boole của các giá trị đá: 127.0.0.1 downloaded 85802.pdf at Tue Jul 31 11:02:48 ICT 2012

5.4.2. Tổ hợp các cổng logic

Các mạch tổ hợp có thể được thiết kế từ việc tổ hợp các bộ đảo, các cổng OR và các cổng AND.

Ví dụ 1 Hãy thiết kế một mạch tổ hợp, có đầu ra là biểu thức Boole $xy + \overline{xy}$.

Giải.

Ta thấy xy là cổng AND, x là bộ đảo và xy là cổng AND.

Hình vẽ ở hình sau là mạch tổ hợp cho đầu ra là xy + xy và đầu vào là x và y.

Ví dụ 2 Thiết kế mạch tổ hợp có đầu ra là biểu thức Boole $xy + \overline{y.z}$.

Giải.

Ví dụ 3 Một uỷ ban gồm ba thành viên phải quyết định vấn đề nhân sự của tổ chức. Mỗi một thành viên bỏ phiếu tán thành hoặc không cho mỗi một đề nghị được đưa ra. Một đề nghị sẽ được uỷ ban thông qua nếu nó nhận được ít nhất hai phiếu tán thành. Hãy thiết kế một mạch cho phép xác định được một đề nghị có được thông qua hay không.

Giải.

Ta có 3 thành viên x, y, z của uỷ ban. Thành viên x bỏ phiếu tán thành thì cho bằng x = 1, ngược lại cho x = 0. Phương thức gán đó cũng áp dụng cho thành viên y và z.

Ta phải thiết kế mạch tổ hợp sao cho nó tạo đầu ra bằng 1 từ các đầu vào x, y, z khi có hai hoặc nhiều hơn các biến x, y, z có giá trị 1.

Ta có : biểu thức Boole xy + xz + yz có giá trị 1 khi và chỉ khi ít nhất hai trong số các biến x, y, z có giá trị 1.

Vậy sơ đồ mạch tổ hợp của xy + xz + yz chính là sơ đồ mạch cần tìm, và được cho ở hình sau :

5.5. Tối thiểu hoá hàm Boole

Hiệu quả của một mạch tổ hợp phụ thuộc vào số các cổng và sự bố trí các cổng đó. Quá trình thiết kế một mạch tổ hợp được bắt đầu bởi một bảng chỉ rõ các giá trị đầu ra đối với mỗi một tổ hợp các giá trị đầu vào. Chúng ta luôn luôn có thể sử dụng khai triển tổng các tích của mạch để tìm tập các cổng logic thực hiện mạch đó. Tuy nhiên khai triển tổng các tích có thể chứa các số hạng nhiều hơn mức cần thiết. Tối thiểu hoá hàm Boole là tìm dạng biểu thức Boole đơn giản nhất của hàm Boole đó.

Có ba phương pháp để tối thiểu hoá hàm Boole $f(x_1, x_2, ..., x_n)$.

5.5.1. Phương pháp biến đổi đại số

Phương pháp này dựa vào các luật, hay các hằng đẳng thức của đại số Boole để tối thiểu hoá các biến và các phép toán trên biểu thức Boole.

Ví dụ 1

a) Tối thiểu hoá hàm Boole : f(x,y,z) = xyz + xyz . 127.0.0.1 downloaded 85802.pdf at Tue Jul 31 11:02:48 ICT 2012

b) Thiết kế mạch tổ hợp của f(x,y,z) = xyz + xyz và mạch tổ hợp của dạng tối thiểu hoá của nó.

Giải.

- a) Ta có: f(x,y,z) = xyz + xyz = (y + y)xz = 1.xz = xz
- b)
 - Mạch tổ hợp của f(x,y,z) = xyz + xyz có dạng :

Mạch này dùng 3 cổng và một bộ đảo

• Mạch tổ hợp của dạng tối thiểu f(x,y,z) = xz là:

Mạch này chỉ dùng một cổng.

Ví dụ 2

- a) Tối thiểu hoá hàm Boole : f(x,y) = xy + xy + xy.
- b) Thiết kế mạch tổ hợp của f(x,y) = xy + xy + xy và mạch tổ hợp của dạng tối thiểu hoá của nó.

Giải.

a)
$$f(x,y) = (x\overline{y} + \overline{x}\overline{y}) + (\overline{x}\overline{y} + \overline{x}\overline{y})$$
 (dùng luật luỹ đẳng : $x + x = x$)
= $(x + \overline{x})\overline{y} + \overline{x}(\overline{y} + y) = 1.\overline{y} + \overline{x}.1 = \overline{y} + \overline{x}$.

b)

• Mạch tổ hợp của f(x,y) = xy + xy + xy có dạng:

• Mạch tổ hợp của $f(x,y) = \overline{y} + \overline{x}$ có dạng:

5.5.2. Phương pháp bảng Karnaugh

Phương pháp này do Maurice Karnaugh để xuất vào năm 1953 (dựa trên một công trình trước đó của E.W. Veitch), thường chỉ được áp dụng khi hàm Boole có 6 biến hoặc ít hơn.

Phương pháp bảng Karnaugh được dùng để tìm các số hạng có thể tổ họp được của hàm Boole. Các bảng Karnaugh cho chúng ta một phương pháp trực quan để rút gọn các khai triển tổng các tích.

Mô tả phương pháp để rút gọn biểu thức của các hàm Boole 2 biến x, y

Một bảng Karnaugh đối với một hàm Boole 2 biến x, y gồm 4 ô vuông, trong đó ô vuông biểu diễn tiểu hạng có mặt trong khai triển được ghi số 1. Các ô vuông được gọi là kề nhau nếu các tiểu hạng mà chúng biểu diễn chỉ khác nhau một tục biến. Chẳng hạn, ô biểu diễn xy kề với các ô biểu diễn xy và xy.

x xy xy

Bất cứ khi nào có số 1 ở hai ô kề nhau, thì các tiểu hạng được biểu diễn bởi các ô đó đều có thể được tổ hợp lại thành một tục biến. Chẳng hạn, xy và \overline{xy} được biểu diễn bởi hai ô kề nhau và có thể tổ hợp lại thành \overline{y} (vì $xy + \overline{xy} = (x + \overline{x})\overline{y} = \overline{y}$). Chúng ta sẽ khoanh các khối ô trong bảng Karnaugh, đó là nhng ô biểu diễn các tiểu hạng có thể tổ hợp lại và sau đó tìm tổng tương ứng của các tích.

Ví dụ 1 Dùng bảng Karnaugh để tối thiểu hoá hàm Boole

$$f(x,y) = xy + \overline{x}y$$
.

Giải.

Bảng Karnaugh của hàm f(x,y):

	У	ÿ
x	1	
_ x	1	

Có 2 ô kể nhau.

Ta có dạng tối thiểu hoá của f(x,y):

$$f(x,y) = (x + \overline{x})y = y.$$

Ví dụ 2 Dùng bảng Karnaugh để tối thiểu hoá hàm Boole

$$f(x,y) = xy + xy + xy + xy$$

Giải.

Bảng Karnaugh của hàm f(x,y):

	У	<u></u> y
x		1
_ x	1	1

Có 3 ô kề nhau.

- Nhóm các tiểu hạng xy và xy (ứng với 2 ô kề nhau) ta

- Nhóm các tiểu hạng xy và xỳ ta được: y.
- \Rightarrow dạng tối thiểu hoá: $f(x,y) = \overline{x} + \overline{y}$.

Mô tả phương pháp để rút gọn biểu thức của các hàm Boole 3 biến x,y,z

Một bảng Karnaugh đối với một hàm Boole 3 biến là hình chữ nhật chia thành 8 ô vuông. Ô biểu diễn tiểu hạng có mặt trong khai triển được ghi số 1. Các ô vuông được gọi là *kề nhau* nếu các tiểu hạng mà chúng biểu diễn chỉ khác nhau một tục biến.

	yz 	уz	yz	yz
x				
_ Z				

Để rút gọn khai triển tổng các tích ba biến, chúng ta dùng bảng Karnaugh để nhận dạng các tiểu hạng có thể tổ hợp lại.

- Các khối gồm hai ô kề nhau biểu điển cặp các tiểu hạng có thể tổ hợp lại một tích của hai tục biến.
- Các khối gồm 4 ô kể nhau biểu diễn cặp các tiểu hạng có thể tổ hợp lại thành một tục biến duy nhất.
- Khối tất cả tám ô biểu diễn một tích không có tục biến nào.

Ví dụ 3 Dùng bảng Karnaugh để tối thiểu hoá hàm Boole

$$f(x,y,z) = xyz + xyz + xyz + xyz$$
.

Giải.

Bảng Karnaugh của hàm này là:

	yz ——	уz	yz	- yz
x	<u> </u>	1	1	
z	1		1	

- Tổ hợp 2 ô kề nhau : $xyz + x\overline{yz} = x\overline{z}$

133 🕮 •

 \Rightarrow dạng tối thiểu hoá: f(x,y,z) = xz + yz + xyz.

Ví dụ 4: Dùng bảng Karnaugh để tối thiểu hoá hàm Boole

$$f(x,y,z) = xyz + xyz + xyz + xyz + xyz + xyz$$
.

Giải.

Bảng Karnaugh của hàm này là:

	yz	уz	yz	yz
x			1	1
– Z	. 1		1	1

- Tổ hợp 4 ô kề nhau : xyz + xyz + xyz + xyz = xy + xy = y

- Tổ hợp 2 ô kề nhau : $\overline{xyz} + \overline{xyz} = \overline{xz}$.

 \Rightarrow dạng tối thiểu hoá: f(x,y,z) = y + xz.

5.5.3. Phương pháp Quine - Mc. Cluskey

Phương pháp bảng Karnaugh có hạn chế là rất khó sử dụng khi số biến của hàm Boole lớn hơn 4, hơn nữa lại dựa trên việc rà soát trực quan để nhận dạng các số hạng cần được nhóm lại. Phương pháp Quine - Mc. Cluskey khắc phục được nhược điểm trên, và được W.V. Quine, E.J. McCluskey phát triển vào những năm 1950. Phương pháp Quine - Mc. Cluskey có hai phần : phần thứ nhất là tìm các số hạng là ứng viên đưa vào khai triển cực tiểu như một tổng các tích Boole. Phần thứ hai là xác định xem trong các ứng viên đó, các số hạng nào là thực sự dùng được. Ta mô tả phương pháp này qua các ví dụ sau:

Ví dụ 1 Tối thiểu hoá hàm Boole

$$f(x,y,z) = xyz + xyz + xyz + xyz + xyz + xyz$$
.

Giải.

- Trước hết ta biểu diễn các tiểu hạng trong khai triển trên bằng các xâu bit theo nguyên tắc sau : các biến Boole không có dấu phủ định thì thay bởi 1, có dấu phủ định thì thay bởi 0. Xem bảng 1 dưới đây :

Bảng 1

Chương 5: Đại số Boole

Tiểu hạng	Xâu bit	Số các số 1
xyz	111 +	nan3cor
x yz	101	2
xyz	011	2
x yz	001	1
xyz	000	0

- Nhóm các xâu bit theo số các số 1 trong chúng.
- Các tiểu hạng có thể tổ hợp lại nếu chúng chỉ khác nhau một tục biến. Do đó, hai số hạng có thể tổ hợp được thì các xâu bit tương ứng với nó sẽ chỉ khác nhau một con số 1. Chẳng hạn: xyz và xyz được biểu diễn bởi hai xâu bit 101 và 001 có thể tổ hợp thành yz với xâu bit là 01.
- Hai tích có hai tục biến có thể tổ hợp thành số hang có một tục biến với điều kiện chúng chứa tục biến của cùng hai biến. Nói theo ngôn ngữ của xâu bit thì hai xâu đó phải có gạch ngang ở cùng một vị trí và chỉ khác nhau ở một trong hai vị trí còn lại. Chẳng hạn, ta có thể tổ hợp yz và yz được biểu diễn qua xâu bit -11 và - 01 thành z được biểu diễn bởi xâu bit - -1. Tất cả các tổ hợp có thể được tạo theo cách đó được cho trong bảng 2 sau:

Bảng 2

				Bước 1]	Bước 2	
	Số hạng	Xâu bit		Số hạng	Xâu bit		Số hạng	Xâu bit
1	xyz	111	(1,2)	xz	1-1	(1,2,3,4)	z	1
2	x yz	101	(1,3)	yz	-11	(1,3,2,4)	Z	1
3	xyz	011	(2,4)	yz	-01		·	
4	x yz	001	(3,4)	XZ	0-1	 		
5	xyz	000	(4,5)	xy	00-	1		

Trong bảng 2, chúng ta đã chỉ ra các số hạng được dùng để tạo ra các tích có số tục biến nhỏ hơn nhưng không nhất thiết có mặt trong biểu thức tối thiểu hoá hàm Boole.

- Bước cuối cùng là xây dựng biểu thức tối thiểu hoá hàm Boole f(x,y,z) theo nguyên tắc sau:
 - ► Xét tất cả các tích chưa được dùng để xây dựng các tích có số tục biến ít hơn (trong bảng 2, đó là z và xy).
 - Lập bảng 3 dưới đây để kiểm tra xem các ứng viên z và xy có thực sự phủ hết các tiểu hạng gốc của hàm f(x,y,z) hay không (ghi dấu x ở vị trí nếu số hạng gốc trong khai triển tổng các tích được dùng để tạo ứng viên đó). Chúng ta cần phải bao hàm ít nhất một tích phủ mỗi tiểu hạng gốc.

Bảng 3

Tiểu hạng gốc					
Các ứng viên	xyz	x yz	_ xyz	xyz	xyz
Z	х	x	х	Х	
xy	Cuu	auong	LIIIC	x	x

Qua bảng 3, ta thấy các ứng viên z và \overline{xy} là phủ hết các tiểu hạng gốc. Vậy tối thiểu hoá hàm f(x,y,z) là: $z + \overline{xy}$.

Ví dụ 2 Tối thiểu hoá hàm Boole

$$f(\omega,x,y,z) = \omega xyz + \omega xyz +$$

Giải.

Quá trình tối thiểu hoá hàm f được thực hiện ở các bảng 4 và 5 :

B	ản	σ	4
.,	ши	-	7

				Bước 1			Bước 2	2
	Số hạng	Xâu bit	uu,	Số hạng	Xâu bit	than	Số hạng	Xâu bit
1	ωxyz	1110	(1,4)	ωyz	1-10	(3,5,6,7)	_ wz	01
2	ωxyz	1011	(2,4)	ωxy	101-	(3,6,5,7)	— ωz	01
3	ωxyz	0111	(2,6)	- xyz	-011		·	- i i
4	ωxyz	1010	(3,5)	ωxz	01-1			<u></u>
5	ωxyz	0101	(3,6)	ωyz	0-11			
6	ωxyz	0011	(5,7)	ωyz	0-01			
7	ωxyz	0001	(6,7)	ωxz	00-1			

Bảng 5

	ωxyz	ωxyz	ωxyz	ωxyz	— – ωx yz	ωxyz	ωxyz
ωz		cuu	□ x □	ng t	x	x	, x
ωyz	х			х			
ωxy		х		х			
xyz		х				x	

Các tích duy nhất không được dùng để tạo các tích có ít biến hơn là

$$\overline{\omega}z, \omega yz, \omega xy, xyz$$
.

Bảng 5 cho thấy các tiểu hạng được phủ bởi các tích đó.

Kết quả:

$$f(\omega,x,y,z) = \overline{\omega}z + \omega y\overline{z} + \overline{\omega}xy$$

hoặc $f(\omega, x, y, z) = \omega z + \omega y \overline{z} + \overline{z} y \overline{z}$ 127.0.0.1 downloaded 85802.pdf at Tue Jul 31 11:02:48 ICT 2012

BÀI TẬP CHƯƠNG 5 (Đại Số BOOLE)

Tìm giá trị của các biểu thức sau : Bài 1

a) $1.\overline{0}$:

b) $1+\bar{1}$;

c) $\overline{0}.0$:

d) (1+0).

Tìm giá trị của các hàm Boole đười đây khi các biến x, y, z và Bài 2 t lấy các giá tri 1, 1, 0 và 0.

a) xy + xy;

b) t + xy;

c) tx + v + vz:

d) tx + xy + yz.

Tìm tất cả các giá trị của y và z để các biểu thức dưới đây luôn Bài 3 luôn lấy giá trị 1, biết rằng x = 1.

a) xy + xz;

b) xy + z.

Tìm tích Boole của các biến x, y, z hoặc phần bù của chúng, Bài 4 biết rằng tích đó có giá trị 1 nếu và chỉ nếu:

- a) x = 0, y = 1, z = 0; b) x = 0, y = z = 1.

Tìm khai triển tổng các tích của các hàm Boole sau : Bài 5

- a) f(x,y,z) = x + y + z;
- b) g(x,y,z) = x.y.

Tim một tổng Boole chứa x hoặc x, y hoặc y và z hoặc z có Bài 6 giá tri 0 nếu và chỉ nếu:

a) x = y = 1, z = 0;

b) x = z = 0, y = 1.

Chứng minh luật De Morgan của đại số Boole: Rài 7

$$\overline{xy} = \overline{x} + \overline{y};$$

$$(\overline{x+y}) = \overline{x}.\overline{y}.$$

Trong đại số Boole $B = \{0, 1\}$, hãy tìm phần bù của: Bài 8

a) y.z + zt;

b) yz + yx + xz.

Bài 9 Tìm đối ngẫu của các biểu thức sau:

a)
$$x.y.z + x.y.z$$
;

b)
$$x.\bar{z} + x.0 + \bar{x}.1$$
.

Bài 10 Tìm đầu ra của các mạch tổ hợp sau:

a)

Bài 11 Dựng các mạch gồm các bộ đảo, các cổng AND và OR để tạo các đầu ra sau :

a)
$$x.y + \overline{x}.\overline{y}$$
;

b)
$$(x+y+z)(x.y.z)$$
;

c)
$$\overline{xy} + (\overline{z} + x);$$

d)
$$\overline{x}.\overline{\left(y+\overline{z}\right)}$$

Bài 12 Dựng mạch tổ hợp trong đó chỉ sử dụng cổng AND và bộ đảo để tạo đầu ra là tổng Boole x + y.

Bài 13 Dùng bảng Karnaugh để tối thiểu hoá các hàm Boole hai biến sau:

127.0.0.1 downloadใช้เหมือริชาระ paryait Tue Jul 31 11:02:48 ICT 2012

b)
$$f(x,y) = xy + xy^{-}$$
;

c)
$$f(x,y) = xy + xy + xy + xy + x.y$$
.

- Bài 14 Vẽ các bảng Karnaugh của những khai triển tổng các tích Boole ba biến sau :
 - a) x.y.z;
 - b) $\overline{x}.y.z + \overline{x}.y.z$;
 - c) xyz + xyz + xyz + x.y.z.
- Bài 15 Dùng bảng Karnaugh để tối thiểu hoá các hàm Boole ba biến sau:
 - a) xyz + x.y.z;
 - b) xyz + xyz + xyz + xyz;
 - c) xyz + xyz + x.y.z + xyz + xyz + x.y.z;
 - d) xyz + xyz + x.y.z + xyz + x.y.z + xyz + x.y.z + x.y.z
- Bài 16 Dùng phương pháp Quine McCluskey để tối thiểu hoá các hàm Boole ba biến trong bài tập 15 (a,b,c).
- Bài 17 Tìm dạng tuyển chuẩn tắc tối thiểu của hàm:

$$f(x, y, z, t) = \overline{x.yzt} + \overline{x.yzt} + \overline{xy.zt} + \overline{xyzt} + \overline{xyzt} + \overline{xyzt} + \overline{xyzt}$$

Chương 5: Đại số Boole

TÀI LIỆU THAM KHẢO

- [1]. Iablonski S.V. Introduction to Discrete Mathematics. Nauka, Moscow, 1079. (in Russ.).
- [2]. Kenneth H. Rosen. Toán học rời rạc ứng dụng trong tin học. Nhà xuất bản Khoa học & Kỹ thuật, 1997.
- [3]. Hoàng Chúng. Logic học phổ thông. Nhà xuất bản giáo dục, 1997.
- [4]. Nguyễn Hữu Anh. Toán rời rạc. Nhà xuất bản giáo dục, 1999.
- [5]. Đỗ Đức Giáo. Toán rời rạc. Nhà xuất bản ĐH Quốc gia Hà Nội, 2000.
- [6]. Nguyễn Đức Nghĩa Nguyễn Tô Thành. Toán rời rạc. Nhà xuất bản ĐH Quốc gia Hà Nội, 2003.

cuu duong than cong . com

LỜI NÓI ĐẦU	3
Chương 1: CƠ SỞ LÔGIC	5
1.1. Mệnh đề	5
1.1.1. Định nghĩa	5
1.1.2. Các phép toán trên mệnh đề	5
1.1.3 Mệnh đề có điều kiện và sự tương đương lôgic	8
1.2. Các qui luật lôgic	11
1.3. Vị từ và lượng tử	14
1.3.1. Hàm mệnh đề	14
1.3.2. Vị từ và lượng tử	15
1.3.3. Phủ định của vị từ	17
1.4. Suy luận toán học	18
1.4.1. Suy luận và quy tắc suy diễn	18
1.4.2. Một số phương pháp chứng minh toán học	22
1.4.3. Đệ quy và ứng dụng	27
BÀI TẬP CHƯƠNG 1	30
Chương 2: PHÉP ĐẾM	37
2.1. Nhắc lại lý thuyết tập hợp và ánh xạ	37
2.1.1. Tập hợp	37
2.1.2. Ánh xạ	42
2.2. Phép đếm	45
2.2.1. Những nguyên lý đếm cơ bản	46
2.2.2. Nguyên lý bù trừ	
2.3. Giải tích tổ hợp	52
0.1 downloaded 85802.pdf at Tue Jul 31 11:02:48 ICT 2012	

2.3.1. Hoán vị	52
2.3.2. Tổ hợp và chính hợp	53
2.3.3. Tổ hợp và chính hợp lặp	56
2.3.4. Tam giác Pascal	58
2.4. Nguyên lý Dirichlet (nguyên lý chuồng bồ câu)	59
2.4.1. Nguyên lý Dirichlet	59
2.4.2. Nguyên lý Dirichlet tổng quát	60
BÀI TẬP CHƯƠNG 2	62
Chương 3: THUẬT TOÁN	69
3.1. Thuật toán	69
3.1.1. Khái niệm thuật toán	69
3.1.2. Biểu diễn thuật toán	72
3.2. Một số thuật toán xử lý số	80
3.2.1. Thuật toán kiểm tra số nguyên tố	80
3.2.2. Thuật toán tìm ước chung lớn nhất của hai số tự nhiên	
3.2.3. Thuật toán tìm số lớn nhất trong dãy hữu hạn số	83
3.2.4. Thuật toán sắp xếp	84
3.2.5. Thuật toán tìm kiếm	85
3.3. Độ phức tạp của thuật toán	88
3.3.1. Khái niệm về độ phức tạp của thuật toán	88
3.3.2. Đánh giá thời gian tính tốt nhất, tồi nhất và trung bình của một thuật toán	
BÀI TẬP CHƯƠNG 3	94
Chương 4: QUAN HỆ	99
4.1. Quan hệ	
4.1.1. Các định nghĩa	
4.1.2. Ma trận biểu diễn quan hệ	
0.1 downloaded 85802 ndf at Tue, Jul 31 11:02:48 ICT 2012	

GIÁO TRÌNH TOÁN RỜI RẠC

NHÀ XUẤT BẢN THỐNG KỆ

Chịu trách nhiệm xuất bản: TRẦN HỮU THỰC
Biên soạn: VÕ VĂN TUẤN DỮNG
Biên tập: THANH DUY
Sửa bản in: NXB THỐNG KÊ
Trình bày bìa: HỮU NGHĨA

Thực hiện liên doanh: Công ty TNHH Minh Khai S.G E-mail: mk.book@minhkhai.com.vn – Website: www.minhkhai.com.vn

Tổng phát hành

- Nhà sách Minh Khai: 249 Nguyễn Thị Minh Khai Quân 1 TP.HCM ĐT: (08) 9.250.590 - 9.250.591 - Fax: (08) 9.257.837
- Nhà sách Minh Châu: Nhà 30 Ngô 22 Tạ Quang Bửu Bách Khoa Hà Nội ĐT: (04) 8.692,785 Fax: (04) 8.683,995

Đại lý các khu vực

- Nhà sách Huy Hoàng: 95 Núi Trúc Kim Mã Ba Đình Hà Nội ĐT: (04) 7,365.859
- Cty cổ phần sách thiết bị trường học Đà Năng: 78 Bạch Đằng Đà Năng ĐT: 0511.837100
- Nhà sách Chánh Trí: 116A Nguyễn Chí Thanh Đà Nẵng ĐT: 0511.820129
- Cty phát hành sách Khánh Hòa:
 - Nhà sách Ponagar: 73 Thống Nhất Nha Trang Khánh Hòa ĐT: 058.822636
 - Siêu thị sách Tân Tiến 11 Lê Thành Phương Nha Trang Khánh Hòa ĐT: 058.827303
- Nhà sách Năm Hiền: 79/6 Xô Viết Nghệ Tĩnh TP.Cần Thơ ĐT: 071, 821668

In 2.000 cuốn, khổ 16 x 24 cm, tại Xí nghiệp in Machineo Số 21 Bùi Thị Xuân, Quận 1, Thành phố Hồ Chí Minh Số đăng ký kế hoạch xuất bản: 07-2007/CXB/185.2-75/TK In xong và nộp lưu chiều tháng 9 năm 2007.

WWW.VNMATH.COM

GIÁO TRÌNH

TOÁN RỜI RẠC

Giá: 19.500 đ

127.0.0.1 downloaded 85802.pdf at Tue Jul 31 11:02:48 ICT 2012

10.500

Cong.com