Theorem 1 (Product Rule). For processes X_t, Y_t , we have that

$$d(X_tY_t) = Y_t dX_t + X_t dY_t + d\langle X, Y \rangle_t.$$

Theorem 2 (One-dimensional Ito's Lemma). Let $X_t = X_0 + M_t + A_t$ be a continuous semimartingale. Then for $f \in C^2(\mathbb{R})$, we have

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dM_s + \int_0^t f'(X_s) dA_s + \frac{1}{2} \int_0^t f''(X_s) d\langle M \rangle_s$$

Theorem 3 (Multi-dimensional Ito's Lemma). Let $X = (X^1, \ldots, X^d) = (X_0^1 + X_t^1 + A_t^1, \ldots, X_0^d + X_t^d + A_t^d)$ be a vector continuos semimartingales. Let $f \in C^2(\mathbb{R}^d)$. Then, for all t, we have that

$$f(X_t) = f(X_0) + \sum_{i=1}^d \int_0^t \frac{\partial f}{\partial x^i}(X_s) dM_s^i + \sum_{i=1}^d \int_0^t \frac{\partial f}{\partial x^i}(X_s) dA_s^i + \frac{1}{2} \sum_{i,j=1}^d \int_0^t \frac{\partial^2 f}{\partial x^i \partial x^j}(X_s) d\langle M^i, M^j \rangle_s.$$

Theorem 4 (Levy). If $M \in \mathcal{M}_c^2$ satisfies $\langle M \rangle_t = t$ and $M_0 = 0$, then M is a standard Brownian motion.

Theorem 5 (Danbis-Dubis-Schwarz, DDS). Let $M \in \mathscr{M}_c^2$ and $\lim_{t\to\infty} \langle M \rangle_t = \infty$ almost surely. Let $\tau_s := \inf\{t \geq 0 : \langle M \rangle_t = s\}$. Then $B_s := M_{\tau_s}$ is a standard Brownian motion. Also $M_t = B_{\langle M \rangle_t}$ for $t \geq 0$.

Theorem 6 (Girsanov's Theorem). Given $(B^{(1)}, \ldots, B^{(m)})$ a m-dimensional standard Brownian motion and $X^{(1)}, \ldots, X^{(m)} \in \mathcal{L}$, define

$$Z_t(X) := \exp\left(\sum_{i=1}^m \int_0^t X_s^{(i)} dB_s^{(i)} - \frac{1}{2} \sum_{i=1}^m (X_s^{(i)})^2 ds\right).$$

If $(Z_t(X))_{t\in[0,T]}$ is a martingale, then:

$$(W_t^{(1)}, \dots, W_t^{(m)}) := \left(B_t^{(1)} - \int_0^t X_s^{(1)} \, ds, \dots, B_t^{(m)} - \int_0^t X_s^{(m)} \, ds\right)$$

is a standard Brownian motion on [0,T] under $\tilde{\mathbb{P}}$ where

$$\frac{d\tilde{\mathbb{P}}}{d\mathbb{P}} = Z_T(X).$$

Theorem 7 (Novikov's Condition). If $\mathbb{E}\left[e^{\frac{1}{2}\sum_{i=1}^m\int_0^T(X_s^{(i)})^2ds}\right]<\infty$, then Z(X) is a martingale on [0,T].

Theorem 8 (Strong Uniqueness). If for all $R, T < \infty$, there exists C := C(R, T) such that

$$|b(t,x) - b(t,y)| \le C|x - y|$$

$$|\sigma(t,x) - \sigma(t,y)| \le C|x - y|$$

for all $-R \le x, y \le R$ and $t \in [0, T]$, then strong uniqueness holds for

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t, \quad X_0 = x_0.$$

Lemma 1 (Gronwell's Lemma). A function $g:[0,\infty)\to\mathbb{R}$ such that

$$0 \le g(t) \le \alpha + \beta \int_0^t g(s) \, ds, \quad t \ge 0$$

Then $g(t) \le \alpha e^{\beta t}$, $t \ge 0$. If $\alpha = 0$ then $g \equiv 0$.

Theorem 9 (Yamada-Watanabe). Assume there is K such that

$$|b(t,x) - b(t,y)| \le K|x - y|$$

$$|\sigma(t,x) - \sigma(t,y)| \le h(|x - y|)$$

for all t, x, y where h is nondecreasing, h(0) = 0 and $\int_0^1 \frac{da}{h(a)^2} = \infty$. Then strong uniqueness holds.

Theorem 10 (Strong Existence). If there is $C < \infty$ such that

$$|b(t,x) - b(t,y)| \le C|x - y|$$

$$|\sigma(t,x) - \sigma(t,y)| \le C|x - y|$$

$$|b(t,x)|^2 + |\sigma(t,x)|^2 \le C(1 + |x|^2)$$

for all t, x, y then strong existence holds.