

## **EXPLAINABLE AI VERFAHREN**

und die Herausforderung ihrer Anwendung

Verena Barth



# **WARUM XAI?**



#### **PROBLEMATISCHES BEISPIEL**



## AMAZON: AUTOMATISIERTER EINSTELLUNGSPROZESS [1]



#### **PROBLEMANALYSE**



## **WARUM WIRD XAI NICHT ANGEWENDET?**



- XAI ist ein neuer, sich rasant entwickelnder Bereich [1]
- Wissen ist verstreut und unorganisiert [2]
- → Keine Unterstützung bei der Auswahl und Anwendung geeigneter Methoden
  - Sehr anwendungsfallspezifisch
  - Viele offene Fragen (z.B. Metrik f
    ür Erklärbarkeit) [3]

Wie kann man den Nutzer bei der Auswahl und anschließenden Anwendung von geeigneten XAI-Methoden auf Black-Box Modelle durch Empfehlungen unterstützen?

#### **PROBLEMANALYSE**



## **WARUM WIRD XAI NICHT ANGEWENDET?**



- XAI ist ein neuer, sich rasant entwickelnder Bereich [1]
- Wissen ist verstreut und unorganisiert [2]
- → Keine Unterstützung bei der Auswahl und Anwendung geeigneter Methoden
  - Sehr anwendungsfallspezifisch
  - Viele offene Fragen (z.B. Metrik f
    ür Erklärbarkeit) [3]



#### ZIEL



# XAI-EMPFEHLUNGSSYSTEM (XAIR)

- Auswahl der für den Anwendungskontext geeigneten XAI-Methoden erleichtern
- Förderung der tatsächlichen Anwendung empfohlener XAI-Methoden
- Empfehlung jederzeit und ohne viel Aufwand einholbar
- Nachschlagewerk

#### ANNAHMEN

- Empfehlung für existierendes ML-Modell
- Klassifikation/Regression mit tabellarischen Daten
- Zielgruppe: Modellentwickler und -verantwortliche (ohne tieferen ML-Kenntnisse)



## **AGENDA**

- Methodik
- Konzeption des XAIR
  - Eignungsbeurteilung einer XAI-Methode
  - Eignungsbeeinflussende Kriterien
  - Formalisierung des Wissens
  - Konfiguration des Expertensystems
- Live-Demo des XAIR
- Evaluation
  - Nutzerbefragung
  - Limitationen und Herausforderungen
  - Einordnung in den Forschungsstand



## **VERWENDETE METHODIK**

#### **Requirements Driven Design Science Research Ansatz [4]**



#### Anforderungsanalyse und Evaluation:

Halbstrukturierte Online-Einzelinterviews mit 5 Personen der Zielgruppe



# KONZEPTION EINES XAI-EMPFEHLUNGSSYSTEMS

# **EIGNUNG EINER XAI-METHODE**





Ergebnisbeurteilung nicht sinnvoll

→ Erklärung subjektiv, kontextabhängig [6]



Beurteilung anhand von Eigenschaften, die

- Methodenanwendung erschweren/unmöglich machen
- Negativen/verfälschenden Einfluss auf Ergebnis haben
- Interpretierbarkeit der Erklärung mindern/verkomplizieren

# **KONZEPTION METHODENAUSWAHL**

Lokale Erklärung



| VISUALISIERUNG      | PDP + ICE Partial Dependence Plot + Individual Conditional Expectation | ALE Accumulated Local Effects             |
|---------------------|------------------------------------------------------------------------|-------------------------------------------|
| FEATURE RELEVANZ    | SHAP SHapley Additive exPlanations                                     | <b>PFI</b> Permutation Feature Importance |
| BEISPIELBASIERT     | <b>CFProto</b> Counterfactuals guided by Prototypes                    |                                           |
| MODELLVEREINFACHUNG | Anchors                                                                |                                           |

12.07.2021

Globale Erklärung Globale und lokale Erklärung

# METHODENVORAUSSETZUNGEN





☐ Boolesche Kriterien

Ausschlusskriterien

#### KONZEPTION



## **EIGNUNGSBEEINFLUSSENDE KRITERIEN**



17.11.2023

© 2021 viadee

#### KONZEPTION



## PROBLEM DER UNGENAUIGKEIT



- Bei Erhebung der Kriterienwerte und der Auswahl einer Wissensrepräsentation
- Keine Schwellwerte
  - Bspw.: Wie kann man die Korrelation eines Datensatzes messen?
    - → keine exakte Quantifizierung möglich
- Teilweise subjektiv oder nicht-deterministisch
  - Bspw.: Wann hat ein Datensatz viele Features?
- Vage Aussagen bzgl. Beeinflussung der Methodeneignung



# EXKURS FUZZY LOGIK [7]



Beispiel: Korrelation

**Vage Kriterien** 





Vage XAI-Methodenbewertungen

Wenn die Korrelation mittelstark ist, ist Methode X eher nicht geeignet.

→ Regel wird mit einem Gewicht von 0.75 aktiviert

## KONZEPTION SYSTEMAUFBAU





S © 2021 viadee

# FUZZY-EXPERTENSYSTEM INFERENZ

→ 38 eignungsreduzierende Regeln (48 insgesamt)

| Kriterium                                  | Kriteriums- | Methode  |         |     |      |         |          |
|--------------------------------------------|-------------|----------|---------|-----|------|---------|----------|
|                                            | wert        | PDP+ ICE | ALE     | PFI | SHAP | Anchors | CF Proto |
| Korrelation                                | L           | VH       | L       | -   | -    | -       | -        |
|                                            | M           | -        | -       | L   | L    | L % 0.6 | L % 0.6  |
|                                            | Н           | L        | VH      | VL  | VL   | L       | L        |
| Korrelation der FOI                        | L           | VH       | L       | -   | -    | -       | -        |
|                                            | М           | L        | Н       | -   | -    | -       | -        |
|                                            | Н           | VL       | VH      | L   | L    | L % 0.6 | L % 0.6  |
| Diskretisierbarkeit                        | L           | -        | L % 0.6 | -   | -    | VL      | -        |
|                                            | М           | _        | -       | -   | -    |         | -        |
|                                            | Н           | -        | -       | -   | -    | -       | -        |
| Diskretisierbarkeit<br>der FOI             | L           | -        | L       | -   | -    | VL      | -        |
|                                            | M           | -        | -       | -   | -    | L       | -        |
|                                            | Н           | -        | -       | -   | -    | -       | -        |
| Anzahl der Features                        | L           | -        | -       | -   | -    | -       | -        |
|                                            | M           | -        | -       | -   | -    | L       | -        |
|                                            | Н           | -        | -       | L   | VL   | VL      | L        |
| Zugriffszeit Modell/<br>Vorhersagefunktion | L           | -        | -       | -   | -    | -       | -        |
|                                            | M           | -        | -       | -   | -    | L       | VL       |
|                                            | Н           | -        | -       | L   | L    | VL      | VL       |
| Aufwand<br>Vorbereitung                    | L           | -        | -       | L   | L    | VL      | VL       |
|                                            | M           | -        | -       | -   | -    | L       | L        |
|                                            | Н           | -        | -       | -   | -    | -       | -        |
| Globale Erklärung                          | 0           | -        | -       | -   | -    | -       | -        |
|                                            | 1           | VH       | VH      | VH  | VH   | -       | -        |
| Locale Erklärung                           | 0           | -        | -       | -   | -    | -       | -        |
|                                            | 1           | VH       | -       | -   | VH   | VH      | VH       |

```
prep_time[L] -> [PFI[L], SHAP[L], Anchors[VL], CFProto[VL]]
foi_available[True] AND corr_foi[H]) AND discr_foi[H] -> [ALE[VH]]
discr[M] -> [Anchors[L]]
corr[L] AND discr[L] -> [ALE[VL]@0.70%]
foi available[True] AND corr foi[L]) AND discr foi[L] -> [ALE[VL]]
perf_pref[H] AND dur_call[H] -> [PFI[L], SHAP[L], Anchors[VL], CFProto[V
foi_available[True] AND discr_foi[L] -> [ALE[L], Anchors[VL]]
init_bb[False] -> [PDP + ICE[M], ALE[M], PFI[M], SHAP[M], Anchors[M], CI
foi_available[True] AND corr_foi[H]) AND discr_foi[M] -> [ALE[H]]
corr[H] -> [PDP + ICE[L], ALE[VH], PFI[VL], SHAP[VL], Anchors[L], CFProto
perf_pref[H] AND dur_call[M] -> [Anchors[L], CFProto[VL]]
init[True] -> [PDP + ICE[M], ALE[M], PFI[M], SHAP[M], Anchors[M], CFPro
NOOP[M]]
perf_pref[M] AND dur_call[H] -> [PFI[L]@0.50%, SHAP[L]@0.50%,
Anchors[VL]@0.50%, CFProto[VL]@0.50%]
foi_available[True] AND corr_foi[M]) AND discr_foi[M] -> [ALE[L]@0.60%]
foi_available[True] AND corr_foi[L]) AND discr_foi[L] -> [ALE[L]@0.60%]
discr[L] -> [ALE[L]@0.60%, Anchors[VL]]
ordinal_feat[True] AND discr[M] -> [CFProto[L]@0.60%]
corr[L] -> [PDP + ICE[VH], ALE[L]]
corr[H] AND discr[H] -> [ALE[VH]@0.70%]
scope_global[True] -> [PDP + ICE[VH], ALE[VH], PFI[VH], SHAP[VH]]
foi available[True] AND discr foi[M] -> [Anchors[L]]
corr[L] AND discr[H] -> [ALE[L]@0.50%]
discr[H] -> [NOOP[M]]
scope_local[True] -> [PDP + ICE[VH], SHAP[VH], Anchors[VH], CFProto[V
ordinal_feat[True] AND corr[VL] -> [CFProto[VL]@0.60%]
corr[M] AND discr[H] -> [ALE[H]@0.70%]
perf_pref[M] AND num_feat[M] -> [Anchors[L]@0.50%]
foi_available[True] AND corr_foi[M] -> [PDP + ICE[L], ALE[H]]
ordinal_feat[True] AND discr[L] -> [CFProto[VL]@0.80%]
perf_pref[H] AND num_feat[M] -> [Anchors[L]]
corr[H] AND discr[M] -> [ALE[H]@0.70%]
corr[M] -> [PFI[L], SHAP[L], Anchors[L]@0.60%, CFProto[L]@0.60%]
perf pref[M] AND num feat[H] -> [PFI[L]@0.50%, SHAP[VL]@0.50%.
Anchors[VL]@0.50%, CFProto[L]@0.50%]
foi_available[True] AND corr_foi[H] -> [PDP + ICE[V
Anchors[L]@0.60%, CFProto[L]@0.60%]
```

TOI\_AVAIIADIE[ | rue] AND CORR\_TOI[L] -> [PDP + ICE[VH], ALE[L]]

## KONZEPTION / IMPLEMENTIERUNG FUZZY-EXPERTENSYSTEM





#### **KONZEPTION / IMPLEMENTIERUNG**

# viadee (IT-Unternehmensberatung

## **BOOLESCHES AUSSCHLUSSSYSTEM**

Methodenanwendung möglich:
 Eingabevariable >= Methodenbewertung

| Ausschlusskriterium                         | Methode  |     |     |      |         |          |
|---------------------------------------------|----------|-----|-----|------|---------|----------|
|                                             | PDP+ ICE | ALE | PFI | SHAP | Anchors | CF Proto |
| Verfügbarkeit des Modells                   | 0        | 1   | 1   | 0    | 0       | 0        |
| Klassifikationsaufgabe                      | 0        | 0   | 0   | 0    | 1       | 1        |
| Erhalt der Klassen-<br>wahrscheinlichkeiten | 0        | 0   | 0   | 0    | 0       | 1        |
| Zugriff auf Labels                          | 0        | 0   | 1   | 0    | 0       | 0        |
| Zugriff auf Preprocessing<br>Operationen    | 0        | 0   | 0   | 0    | 1       | 1        |



## **IMPLEMENTIERUNG**

#### **BACKEND**

Python

Flask (API)

scikit-fuzzy

#### **FRONTEND**

React mit GatsbyJS

(TypeScript)





# **ERGEBNIS DES XAIRS**

Verfügbar unter

http://xairecommender-frontend.germanywestcentral.azurecontainer.io/start/

### **EVALUATION**

## **NUTZERBEFRAGUNG**



- ✓ Übersichtliche Darstellung des Empfehlungsergebnisses
- ✓ Nachvollziehbare Begründung der Empfehlungsentscheidung anhand der Eingaben
  - → Ergebnisse vergleichbar
  - → Relevante Aspekte der Auswahl aufzeigen
- Benutzerfreundlichkeit
  - → Intuitiv
  - → Ohne tiefe XAI-/ML-Kenntnisse bedienbar
- ✓ Förderung der Bereitschaft der Anwendung von XAI
  - → Zeitersparnis bei Informationsbeschaffung

#### EVALUATION

# viadee® IT-Unternehmensberatung

# LIMITATIONEN & HERAUSFORDERUNGEN

- Eingabe benötigter Parameter
  - Schwierigkeiten der fuzzy Einschätzung
  - Minimierung zusätzliche Verzerrungen
  - → Umsetzung der automatisierten Datenanalyse
- Beachtung weiterer HCI-, UI- und UX-Aspekte
- Erweiterung der Evaluation auf
  - Qualität der resultierenden Erklärung
  - Umsetzbarkeit der Empfehlung
- Umsetzung nicht implementierter Anforderungen
- Erweiterung des Prototypen ....
  - ... Feel free to join: <a href="https://github.com/viadee/xair">https://github.com/viadee/xair</a>

#### EVALUATION

# viadee® IT-Unternehmensberatung

# EINORDNUNG IN FORSCHUNGSSTAND

- Ermittlung der Eignung einer XAI-Methode
- Identifikation eignungsbeeinflussender Kriterien
- Erstes Expertensystem im Kontext XAI
  - Organisation existierenden Wissens ausgewählter XAI-Methoden
  - Generalisiert anwendbar
  - Dynamisch erweiterbar (XAI-Methoden, Kriterien)
  - Bietet begründete Empfehlung geeigneter XAI-Methoden





# VIELEN DANK FÜR IHRE AUFMERKSAMKEIT



## REFERENZEN

- [1] Dastin, J. (2018), 'Amazon scraps secret Al recruiting tool that showed bias against women', [Online], Verfügbar unter https://www.reuters.com/article/us-amazon-com-jobs-automationinsight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-womenidUSKCN1MK08G. (Zugriff am: 14.10.2020).
- [2] Belle, V. & Papantonis, I. (2020), 'Principles and Practice of Explainable Machine Learning', arXiv preprint arXiv:2009.11698.
- [3] Vilone, G. & Longo, L. (2020), 'Explainable Artificial Intelligence: A Systematic Review', arXiv preprint arXiv:2006.00093.
- [4] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Pedreschi, D. & Giannotti, F. (2018), 'A Survey Of Methods For Explaining Black Box Models', ACM computing surveys (CSUR) 51(5), 1–42.
- Braun, R., Benedict, M., Wendler, H. & Esswein, W. (2015), Proposal for Requirements Driven Design Science Research, *in* B.
- [5] Donnellan, M. Helfert, J. Kenneally, D. VanderMeer, M. Rothenberger & R. Winter, eds, 'New Horizons in Design Science: Broadening the Research Agenda', Vol. 9073, Springer, Cham, pp. 135–151.
- vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R. & Cleven, A. (2009), 'Reconstructing the Giant On the Importance of Rigour in Documenting the Literature Search Process'.
- [7] Miller, T. (2019), 'Explanation in Artificial Intelligence: Insights from the Social Sciences', Artificial intelligence 267, 1–38.
- [8] Zadeh, L. A. (1975), 'Fuzzy logic and approximate reasoning', Synthese 30 (3) pp. 407–428.
- [9] Cho, H.-C., Lee, D., Ju, H., Park, H.-C., Kim, H.-Y. & Kim, K. (2017), 'Fire damage assessment of reinforced concrete structures using fuzzy theory', Applied Sciences 7, 518.