Zyxel-NYCU Project: Al-Empowered Wi-Fi Self-Optimization and User Association Scheme

Monthly Progress Report: July 2021

Speaker: Kuan-Hsun Liao

(simon7766112233.eed04@nctu.edu.tw)

Advisor: Kai-Ten Feng, Ph.D., Professor

(ktfeng@mail.nctu.edu.tw)

Institute of Communications Engineering
National Yang Ming Chiao Tung University (NYCU), Hsinchu, Taiwan

Project Scenario

■ Mobile Intelligent Network Technology (MINT) Lab

System Diagram

System Model

Mobile Intelligent Network Technology (MINT) Lab

• Channel selection matrix $\mathbf{A} = (\alpha_{i,c}) \in \mathbb{R}^{\mathbb{N} \times \mathbb{C}}$:

$$\begin{bmatrix} 1 & \dots & 0 \\ 0 & \dots & 1 \\ 1 & \dots & 0 \end{bmatrix}$$
All Zeros

- Selected channel interference level $\mathbf{E} = (\mathbf{e}_{ij}) = \mathbf{A} \mathbf{\Gamma} \mathbf{A}^T \mathbf{\epsilon} \mathbb{R}^{N \times N}$
 - \emph{A} : Use the row vector to select a row of channel interference level , indicating latent interference
 - $-A^T$: Filter out the true interference
 - $-\,$ Physical meaning : $e_{
 m ij}$ is the interference level between AP i and AP j
- Let $\boldsymbol{B} = \boldsymbol{A}^T$
 - $-\beta_{ci}=\alpha_{ic}$
- Power allocation matrix $\mathbf{P} = (p_{ic}) \in \mathbb{R}^{N \times C}$
- Bandwidth Vector : $\boldsymbol{b} = (b_i) \in \mathbb{R}^{N \times 1}$

Notation Description

■ Mobile Intelligent Network Technology (MINT) Lab

	Description	Acquirement	Role
N	# APs in this architecture	-	Media
С	Number of operating channels defined in spec.	 Wireless LAN MAC and PHY specification C = 41 in Taiwan 	Media
N_0	AWGN	-174 dBm/Hz	Media
$\gamma_{c_i c_j}$	Channel interference level between channel c_i and c_j	Wireless LAN MAC and PHY specification	Media
T_T	Trigger frame phase	100 μs	Media
T_D	Payload phase	100 μs	Media
T_{M}	ACK phase	40 μs	Media
e_m	Error probability of specific m MCS level	Wireless LAN MAC and PHY specification	Media
l	Packets length	Wireless LAN MAC and PHY specification	Media
e_{th}	Allowable packet error rate	Manual settings	Input
h_{ij}	Channel gain between AP j and user of AP i	RSSI and path loss transformation	Input
b_i	Channel bandwidth deployed on AP i	[20, 40, 80, 160] MHz	Output
p_{ic}	Power of $AP i$ operating on channel c	Transmit power control [5, 10, 15, 20] dBm	Output
$\alpha_{ic} \cdot \beta_{ci}$	Indicator variable: Whether AP i is operating on channel ${\bf c}$	Self defined channel selection matrix	Output

Problem Formulation

Mobile Intelligent Network Technology (MINT) Lab

Problem formulation:

Channel Gain

Transmit Power

$$\max_{P, A, b} \Gamma = \left(\frac{T_D}{T_T + T_D + T_M}\right) \sum_{i=1}^{N} \sum_{c=1}^{C} b_i \log_2 \left(1 + \frac{h_{ii} \alpha_{ic} p_{ic}}{\sum_{j=1, j \neq i}^{BS} \alpha_{jc} \gamma_{c_i c_j} \beta_{cj} h_{ij} \alpha_{jc} p_{jc} + N_0}\right)$$

Operating channel indicator Interference level Noise

s.t.

$$PER = 1 - (1 - e_m)^{8l} < e_{th}$$
 Packet length $P_m = f(\Gamma)$

- Action :
 - \blacksquare α_{ic} : channel selection index
 - \blacksquare p_{ic} : transmit power control, i.e., [5, 10, 15, 20] dbm
 - b_i : bandwidth deployed on specific AP i, i.e., [20, 40, 80, 160]

Al Optimizer Design

Mobile Intelligent Network Technology (MINT) Lab

Discussions

Mobile Intelligent Network Technology (MINT) Lab

- Which are the available channels in your 802.11ax system?
- What are the available transmit power to be utilized?
 - Continuous power or discrete power level
- Is it feasible to obtain RSSI among APs?
- What is the reasonable number of users considered in 802.11ax network?
- Beacon interval is not feasible to be considered in our current problem formulation
 - We optimize over an averaged channel environment within a frame period
 - The selection of beacon interval will be influenced by how often we update our algorithm
 - We may consider to add another Beacon Interval Optimizer afterwards

Gantt Chart

	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
System Modeling and Problem Formulation												
Related Work Surveys												
Al Algorithm Design												
Al Algorithm Adjustment												
AI Algorithm Analysis												
Performance Evaluation in Simulations												
Performance Evaluation via Realistic Data												

Thank You Q & A

