ML FOR SOFTWARE ENGINERING

Luca Saverio Esposito 0334321

Ingegneria Del Software 2

Università degli Studi di Roma "Tor Vergata"

AGENDA

- Introduzione al contesto, obiettivi del progetto.
- Metodologia:
 - 1. Individuazione classi buggy
 - 2. Costruzione del dataset, metriche considerate
 - 3. Valutazione dei classificatori
- Risultati ottenuti, conclusioni.
- Link al repository GitHub, link SonarCloud.

INTRODUZIONE CONTESTO

Qualsiasi progetto software che si rispetti prevede un'attività di testing con lo scopo di individuare bug nel software.

Questa attività risulta esser onerosa e spesso complessa. Ridurre i costi ed efficientare il processo sono obbiettivi cardine di tutte le aziende.

Spesso la problematica principale è individuare quali porzioni del progetto e quante risorse assegnargli per il testing.

INTRODUZIONE CONTESTO(2)

L'idea alla base dello studio è quella di sfruttare le informazioni del passato riguardo le classi caratterizzate da bug per predire quali classi nel futuro potranno averne.

Il tutto è realizzato tramite strumenti di Machine Learning utilizzati con un approccio di tipo black-box.

STEP PRELIMINARI

Dati due progetti open-source di Apache (BookKeeper e Tajo), realizzare un software in grado di creare un dataset completando i seguenti passi:

- individuare le classi che sono state buggy tra le varie release
- calcolare metriche del software associate alle classi
- realizzare un file arff contente classi buggy e metriche associate

OBIETTIVO

Una volta ottenuto il dataset, utilizzare le API di Weka per stabilire quale tra i tre classificatori considerati ovvero: **Naive Bayes, Random Forest** e **IBk** effettua le predizioni migliori.

I vari classificatori saranno utilizzati insieme a tecniche di **feature selection**, **sampling**, **cost sensitivity** anche in combinazione tra loro.

INDIVIDUARE COPPIE (CLASSE, REALEASE) BUGGY

- IV è la release in cui è stato introdotto il bug.
- OV la release in cui il bug è stato rivelato a seguito di una failure
- FV è la release in cui il bug è stato eliminato

Le classi risultano difettose dall'IV (inclusa) alla FV (esclusa)

INDIVIDUARE COPPIE (CLASSE, REALEASE) BUGGY(2)

Le informazioni su quali siano OV e FV sono ottenute tramite Jira. Tuttavia, la IV non è sempre presente, perciò è necessario ottenerla in altro modo.

Il **Proportion** è una tecnica che permette di stimare l'injected version dei bug utilizzando una costante di proporzionalità p calcolata sui bug per cui IV è nota.

$$P = (FV - IV) / (FV - OV)$$

$$IV = FV - (FV - OV) \times P$$

INDIVIDUARE COPPIE (CLASSE, REALEASE) BUGGY(3)

Il valore di P è utilizzato per calcolare l'injected version laddove non è presente. Esistono diverse varianti di proportion, la scelta è ricaduta su ColdStart.

L'approccio consiste nel calcolare la P del progetto studiato utilizzando le P medie di altri progetti. Affinché la tecnica abbia senso: Pi devono essere simili.

- Per ogni progetto viene calcolata Pi ovvero la media delle P dei vari bug
- Viene presa la mediana tra le Pi e viene utilizzata come P_ColdStart

Per mantenere l'omogeneità tra i valori è stato scartato il Pi di Storm che risultava troppo grande rispetto a quelli di Avro, OpenJPA, Zookeeper e Syncope.

COSTRUZIONE DEL DATASET

Individuate le injected version di tutti i bug ed eseguito il labeling ovvero l'associazione tra classe buggy e release in cui lo è stata; lo step successivo è quello del calcolo le metriche necessarie per la predizione.

Con l'intento di verificare empiricamente la validità del concetto **less is more**, sono state scelte svariate metriche ridondanti tra loro, attendendosi dei risultati decisamente migliori nella predizione a seguito dell' utilizzo di feature selection.

METRICHE CONSIDERATE

NOME	DESCRIZIONE
LOC	Numero di linee di codice.
LOC_ADDED	Somma delle linee di codice aggiunte tra le varie revisioni.
MAX_LOC_ADDED	Numero max di linee di codice aggiunte in una singola revisione.
AVG_LOC_ADDED	Media delle linee di codice aggiunte sulle revisioni.
LOC_DELETED	Somma delle linee di codice rimosse tra le varie revisioni.
MAX_LOC_DELETED	Numero max di linee di codice rimosse in una singola revisione.
AVG_LOC_DELETED	Media delle linee di codice rimosse sulle revisioni.
CHURN	Somma tra le revisioni di una release di LOC_ADDED - LOC_DELETED
MAX_CHURN	Valore massimo del churn in una singola revisione.
AVG_CHURN	Media dei churn sulle revisioni relative alla release
FIXED_DEFECTS	Numero di difetti fixati.
NUMBER_OF_COMMITS	Numero di commits.
NUMBER_OF_AUTHORS	Numero di autori.
NUMBER_OF_REVISION	Numero di revisioni.

VALUTAZIONE DEI CLASSIFICATORI

Tenendo in mente che l'obiettivo è quello di stabilire quale combinazione classificatore/tecnica di utilizzo ha ottenuto i risultati migliori, è necessario utilizzare una **tecnica di valutazione**.

La tecnica usata è Walk Forward

Testing Training

VALUTAZIONE DEI CLASSIFICATORI(2)

Walk forward è una tecnica di validazione di tipo time-series, ciò significa che è indispensabile tener conto dell'ordine temporale dei dati.
Il dataset viene diviso in parti, per esempio, per ogni release. Le parti vengono ordinate cronologicamente e in ogni run tutti i dati antecedenti rispetto a quelli da predire, ossia il test set, vengono usati come training set.
La prima iterazione, con solo testing set, non è stata effettuata. Inoltre, il processo di walk forward si ferma alla prima metà delle release scartando quelle più recenti. Questo per evitare di avere fenomeni di snoring nel testing set.

VALUTAZIONE DEI CLASSIFICATORI(3)

- E' affetto da snoring.
- Non può sfruttare dati del "futuro".

Viene ricalcolata la buggyness delle classi del set ad ogni iterazione i del walk forward con i ticket disponibili fino alla versione i-esima.

TESTING SET

- Non è affetto da snoring.
- Deve esser il più possibile fedele alla realtà.

Per il labelling del testing set sono stati usati tutti a ticket disposizione, cercando di limitare il più possibile fenomeni di snoring.

CLASSIFICATORI E TECNICHE DI UTILIZZO

CLASSIFICATORI

- Naive Bayes
- Random Forest
- IBk

TECNICHE

- Nessun filtro
- Feature selection(FS): Best First
- FS + sampling
- FS + sensitive learningCFN = 10 * CFP

BOOKKEEPER SENZA FILTRI SUI CLASSIFICATORI

Random Forest in media ottiene risultati migliori

BOOKKEEPER FEATURE SELECTION (BEST FIRST)

Naive Bayes raggiunge ottimi valori di precision. Random Forest, invece prevale ancora per quanto riguarda la recall.

BOOKKEEPER FS E OVERSAMPLING

Non c'è un classificatore dominante sugl'altri. Random Forest mostra un incremento della recall a discapito della precision

BOOKKEEPER FS E SENSITIVE LEARNING

Random Forest è quello che reagisce meglio al sensitive learning ottenendo valori molto alti di recall.

BOOKKEEPER, RANDOM FOREST A CONFRONTO.

La configurazione più interessante è quella che fa uso di **sensitive** learning. Rispetto al classificatore di base raddoppia la recall media perdendo solo la metà della precision.

TAJO SENZA FILTRI SUI CLASSIFICATORI

Per quanto riguarda Tajo. Guardando i valori medi ottenuti dai classificatori base, Naive Bayes ha ottenuto i risultati migliori.

TAJO FEATURE SELECTION (BEST FIRST)

Guardando i
valori medi,
Naive Bayes
con best first ha
ottenuto i
risultati migliori.

TAJO FS E SMOTE

Applicando
smote come
tecnica di
sampling Naive
Bayes risulta
dominante
rispetto gli altri
classificatori.

TAJO FS E SENSITIVE LEARNING

Ancora Naive Bayes risulta dominante rispetto gli altri classificatori. Tuttavia la configurazione non mostra un aumento così sostanzioso della recall.

CONCLUSIONI

BOOKKEEPER

Per il progetto BookKeeper, **Random Forest** si è rivelato il classificatore più sensibile ai filtri aggiunti. Ha raggiunto valori di recall via via più grandi, fino all'apice nella configurazione con feature selection e sensitive learning. Comportamento desiderato visto la maggiore gravità di un **falso negativo** quando si parla di bug.

CONCLUSIONI

Per il progetto Tajo, **Naive Bayes** è stato il classificatore dominante in quasi tutte le configurazioni, tuttavia non è riuscito a raggiungere valori medi di recall superiori allo 0.5, mostrando quindi una difficoltà maggiore nell'evitare di predire falsi negativi.

LINK

- Q GITHUB
 https://github.com/0334321-LSE/ISW2MLforSE
- ◇ SONAR CLOUD

 https://sonarcloud.io/project/overview?id=0334321LSE_ISW2InformationRetrieval
- Q ASSUNZIONI
 https://github.com/0334321LSE/ISW2MLforSE/blob/master/Assunzioni.txt