Анна Прилуцкая

Вторая часть задачи

По условию задачи линейно поляризованное излучение вдоль оси y падает на фазовую пластинку, ориентированную под углом θ к оси y (Рис. 1).

Рис. 1

Воспользуемся методом матриц Джонса для описания прохождения излучения через пластинку. Для этого сперва нужно выполнить преобразование базиса матрицей поворота на угол θ , потом записать ABCD матрицу фазовой пластинки (разность фаз δ), а затем вернуться к исходному базису с помощью поворота системы координат на угол $-\theta$:

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} e^{\frac{i\delta}{2}} & 0 \\ 0 & e^{\frac{-i\delta}{2}} \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} E_x' \\ E_y' \end{pmatrix}$$

Перемножая три матрицы, получаем матрицу фазовой пластинки с разностью фаз δ , повёрнутой на угол θ :

$$\begin{pmatrix} \cos\frac{\delta}{2} + i\sin\frac{\delta}{2}\cos 2\theta & i\sin\frac{\delta}{2}\sin 2\theta \\ i\sin\frac{\delta}{2}\sin 2\theta & \cos\frac{\delta}{2} - i\sin\frac{\delta}{2}\cos 2\theta \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} E'_x \\ E'_y \end{pmatrix}$$

Следовательно, $E_x'=isin\frac{\delta}{2}sin2\theta,\, E_y'=cos\frac{\delta}{2}-isin\frac{\delta}{2}cos2\theta.$

На выходе из фазовой пластинки мы имеем эллиптически поляризованное излучение (Рис. 2).

Рис. 2

Воспользовавшись формулами с лекций

$$tg2\varphi = \frac{2r}{1-r^2}cos\delta$$

$$sin2\chi = \frac{2r}{1+r^2}sin\delta$$

$$ctg\chi = \frac{I_a}{I_b}, \ r = \frac{|E_x'|}{|E_y'|},$$

имеем:

$$\varphi = 18^{\circ}, \ \frac{I_a}{I_b} \approx 3.$$

Какая доля излучения пройдёт через поляроид, плоскость пропускания которого параллельна оси y? Подействуем на эллиптически поляризованное излучение матрицей Джонса для поляроида:

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} E_x' \\ E_y' \end{pmatrix} = \begin{pmatrix} E_x'' \\ E_y'' \end{pmatrix}.$$

Получаем, что $E''_x = 0$, $E''_y = E'_y$.

Тогда интенсивность $I=(E_y'')^2=cos^2\frac{\delta}{2}+sin^2\frac{\delta}{2}cos^22\theta=0,8.$ Так как изначально излучение было линейно поляризованно вдоль оси y, то есть $E_x=0$ и $E_y=1$, то $I_0=1$. Тогда $\frac{I}{I_0}=0,8$.