Diagramme Potentiel-pH

(Construction exclue)

Agrégation 2020

Diagramme potentiel-pH du fer

Diagramme potentiel-pH du fer

Superposition diagramme potentiel-pH du fer et de l'iode

Superposition diagramme potentiel-pH du fer et de l'iode

Superposition diagramme potentiel-pH du fer et de l'iode

Nécessité de doser le dioxygène dissous dans l'eau

Etude de la méthode de Winkler 1,8 -Mn³⁺ 1,6 -<u>3ème étape</u>: passage en milieu acide 1,4 - $Mn(OH)_3$ 1,2 H₂O € 0,8 -Mn²⁺ 0,6 0,4 0,2 -

Mn(OH)₂

12

14

10

рН

0

-0,2

-0,4

 S_0

Dosage iodométrique

Superposition des diagrammes E-pH du fer et de l'eau (Ctra = 1,0 µmol.L-1).

Source : CHIMIE Hprépa MP/PT

Corrosion d'un clou en fer en milieu acide

- Combustion du gaz formé
- Ajout de quelques gouttes d'une solution d'hexacyanatoferrate (III) de potassium.

Superposition des diagrammes E-pH du fer et de l'eau

Conclusion

Peroxyde d'hydrogène présent dans deux couples: H2O2/H2O O2/H2O2

Dismutation:

$$2 H_2 O_2$$
 (aq) = O_2 (aq) + $2 H_2 O_{(I)}$