VERMES MIKLÓS Fizikaverseny 2017. április 8. III. forduló

1,5 p

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

XI. osztály

I. feladat

1.) Egy vízszintes felületre helyezett m tömegű testet k_1 és k_2 rugóállandójú rugókkal kötünk egy függőleges falhoz úgy, hogy a kezdeti időpillanatban az 1. rugót L_1 -gyel megnyújtjuk, a 2. rugót L_2 -vel összenyomjuk alakváltozás nélküli állapotukhoz képest.

A súrlódás elhanyagolható. Határozzuk meg!

<i>j 6</i>	8	
 a) A rezgések amplitúdóját. 		1 p
b) A rezgések periódusát az m	test szabadon engedése után.	1 p

2.) Egy vízszintesen elhelyezett, hosszú téglalap alakú acéllap egyik végét rögzítjük, a másik végére a saját tömegénél jóval nagyobb tömegű testet helyezünk. Ennek következtében a szabad vég 4 *cm*-t ereszkedik függőlegesen lefelé.

Mekkora periódussal rezeg a test+acéllap rendszer, amikor egy kis függőleges kezdősebességet kap? (A rendszer harmonikus oszcillátorként közelíthető.) 1 p Mekkora gyorsulással mozog a test, amikor az acéllap éppen vízszintes ($g = 10 \ m/s^2$)? 1 p

- 3.) Egy anyagi pont egyidejűleg a következő két rezgést végzi:
 - $x = b \cdot \cos \omega t$ az Ox tengely mentén
 - $y = c \cdot \cos 2\omega t$ az Oy tengely mentén
 - a) Adjuk meg az anyagi pont pályájának egyenletét.

b) Ábrázoljuk *x*O*y* koordinátarendszerben az anyagi pont pályáját. 1,5 p

c) Számítsuk ki az anyagi pont pillanatnyi gyorsulásának értékét a $t = \pi/4\omega$ időpillanatban.

d) Az ábrázolt pályán tüntessük fel az anyagi pont helyzetét, pillanatnyi sebességének és pillanatnyi gyorsulásának vektorát $t = \pi/4\omega$ időpillanatban. 2 p Tudjuk, hogy: $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$.

II. feladat

- 1.) Az ábrán látható test súrlódás nélkül mozoghat a vízszintes felületen. A testet L távolságra kimozdítjuk B egyensúlyi helyzetéből, és rezegni hagyjuk. A rezgések periódusa 6 s.
 A B egyensúlyi helyzettől jobbra, L/2 távolságra egy rugalmas falat tolunk be a rezgő test útjába. Mekkora lesz most mozgásának periódusa?
 3 p
- 2.) Két hullámforrás, A és B transzverzális síkhullámokat kelt egy adott közegben. Ezek hullámegyenletei:

Számítsuk ki:

a) A hullám tovaterjedési sebességét az adott közegben.	1 p
b) A rezgések amplitúdóját az AB szakasz felezőmerőlegesének pontjaiban.	1 p
c) A rezgések amplitúdóját a C pontban, ha $x_1 = 0.9 \ m$ és $x_2 = 1 \ m$ (lásd az ábrát).	1 p
d) Módosítjuk a hullámforrások működését úgy, hogy ellentétes fázisban rezegjenek.	
Mekkora most a rezgések amplitúdója az AB szakasz felezőmerőlegesének pontjaiban?)
	1 p
e) Mekkora most a rezgések amplitúdója a C pontban?	1,5 p
f) Mekkora most a hullámtérben előforduló legnagyobb rezgési sebesség?	1,5 p

III. feladat

Egy $l=1,2\,m$ hosszú, mindkét végén rögzített, kissé megfeszített szálban álló hullámot keltünk. A szálon 5 orsó jelenik meg, az orsópontokban a rezgés amplitúdója 6 mm, a hullám tovaterjedési sebessége a szálban 24 m/s.

a) Határozzuk meg a rezgések frekvenciáját és a hullámhosszt. 1 p b) A szál mentén mekkora távolságra található két szomszédos, 3 mm amplitúdóval rezgő pont? 2 p c) Ábrázoljuk a szálat abban a pillanatban, amikor az orsópontoknál levő kis kötélszakaszok egyensúlyi helyzetükön mennek keresztül. 1 p d) Mekkora a fáziseltolódás két olyan pont között, amelyeket a szál mentén 20 cm távolság választ el egymástól? 2 p e) Ugyanezt a gerjesztő eszközt használva a mostani érték hány százalékával változtassuk meg a szálat feszítő erőt ahhoz, hogy 4 orsó jelenjék meg a kötélen? 2 p f) Ha a szálat az az erő feszíti, amely 5 orsót eredményez 50 Hz gerjesztő frekvencia esetén, mi történne, ha a gerjesztő frekvencia értékét módosítanánk v' = 100 Hz, illetve v'' = 125 Hz értékre? 2 p