Дискретная математика. Лекция 08.04.

С. В. Ткаченко

08.04.2022

Системы булевых функций

Система булевых функций $\{f_1, \dots f_m\}$ называется *полной*, если любая булева функция может быть выражена через функции f_1, \dots, f_m с помощью суперпозиций.

Пусть $K^0=\{f_1(x_1,\ldots,x_{k_1}),f_2(x_1,\ldots,x_{k_2})\ldots,f_m(x_1,\ldots,x_{k_m})\}$ - конечная система булевых функций.

Функция f называется суперпозицией ранга 1 функций f_1, \dots, f_m , если она может быть получена одним из следующих способов:

- 1) замена переменной x_j на некоторую переменную y в любой функции $f_i \in K^0: f = f_i(x_1, \dots, x_{j-1}, y, x_{j+1}, \dots, x_{k_i})$, где y может совпадать с любой переменной;
- 2) замена переменной x_j на некоторую функцию $f_1(1 \le l \le m)$ в любой функции $f_i \in K^0$:

$$f = f_i(x_1, \dots, x_{j_1}, f_1(x_1, \dots, x_{k_1}), x_{j+1}, \dots, x_{k_i})$$

Теорема 10 (теорема Поста). Для того чтобы система булевых функций $\{f_1, \ldots, f_m\}$ была полной, необходимо и достаточно, чтобы для каждого из классов T_0, T_1, S, M, L нашлась хотя бы одна функция f_i из системы, не принадлежащая этому классу.

Система булевых функций $\{f_1,\ldots,f_m\}$ является полной, если в каждом столбце таблицы

f	T_0	T_1	S	M	L
f_1					
f_m					

есть хотя бы один минус («-»).

Пример.

 $\overline{\text{Проверить}}$ на полноту систему функций $\{0, 1, \overline{x}\}.$

x	0	1	\overline{x}
0	0	1	1
1	0	1	0

f	T_0	T_1	S	M	L
0	+	_	_	+	+
1	_	+	_	+	+
\overline{x}	_	_	+	_	+

Так как классу L принадлежат все три функции, то данная система функций не является полной.

1) T_0 - класс булевых функций $f(x_1,\ldots,x_n)$, сохраняющих константу 0:

$$f(0,\ldots,0) = 0.$$

2) T_1 - класс булевых функций $f(x_1, \ldots, x_n)$, сохраняющих константу 1:

$$f(1,...,1) = 1.$$

3) S - класс самодвойственных функций:

$$f^*(x_1, \dots, x_n) = f(x_1, \dots, x_n).$$

4) М - класс монотонных функций

Введем отношение частичного порядка на множестве оценок списка переменных (x_1, \ldots, x_n) .

Оценка
$$\alpha=(\alpha_1,\ldots,\alpha_n)$$
 предшествует оценке $\beta=(\beta_1,\ldots,\beta_n),$ если $\alpha_i\leq\beta_i,$

где $\alpha_i \in \{0,1\}, \ \beta_i \in \{0,1\}, \ i=1,\dots,n.$ Обозначение: $\alpha \prec \beta.$

Пример.

x_1	x_2	Предшествование
0	0	$(0,0) \prec (0,1), (0,0) \prec (1,0), (0,0) \prec (1,1)$
0	1	$(0,1) \prec (1,1)$
1	0	$(1,0) \prec (1,1)$
1	1	_

Функция $f(x_1, ..., x_n)$ называется монотонной, если для любых оценок α, β , находящихся в отношении предшествования $(\alpha \prec \beta)$, выполняется неравенство $f(\alpha) \leq f(\beta)$.

5) L - класс линейных функций

Функция $f(x_1, ..., x_n)$ называется *линейной*, если полином Жегалкина имеет вид

$$P(x_1,\ldots,x_n) = a_0 \oplus \sum_{i=1}^n a_i \wedge x_i.$$

$$P(x_1,\ldots,x_n)=a_0\oplus a_1x_1\oplus a_2x_2\oplus\ldots\oplus a_nx_n.$$

Пример.

1. Константа 0 и константа 1 - линейные функции:

$$f_1(x_1,\ldots,x_n)=0,\ P_1(x_1,\ldots,x_n)=0.$$

$$f_2(x_1,\ldots,x_n)=1,\ P_2(x_1,\ldots,x_n)=1.$$

2.
$$f_3(x,y)=x\oplus y$$
 - линейная функция: $P_3(x,y)=x\oplus y$, $f_4(x,y)=x\sim y$ - линейная функция: $P_4(x,y)=1\oplus x\oplus y$.

3.
$$f_5(x,y)=xy$$
 - нелинейная функция: $P_5(x,y)=xy,$ $f_6(x,y)=x\vee y$ - нелинейная функция: $P_6(x,y)=x\oplus y\oplus xy.$