硅光电池的实验报告

1 实验目的

- 1. 了解硅光电池工作原理.
- 2. 掌握硅光电池的工作特性.

2 实验原理

硅光电池是根据光伏效应而制成的将光能转换成电能的一种器件,它的基本结构就是一个 P-N 结。 当 P 型和 N 型半导体材料结合时,P 型材料中的空穴向 N 型材料这边扩散,使 P 型区出现负电荷,N 型区带正电荷,形成一个势垒。由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在 PN 结两侧形成一个耗尽区。势垒通过外加电场的作用下使 PN 结形成单向导电性,电流方向是从 P 指 向 N,即 P 为正,N 为负。

当硅光电池 PN 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,当有光照时,电池对光子的本征吸收和非本征吸收都产生光生载流子,当在 PN 结两端加负载时就有一光生电流流过负载。

伏安特性:在一定光照下,在光电池两端加一个负载就会有电流流过,当负载很大时,电流较小而电压较大;当负载很小时,电流较大而电压较小。在无偏压工作状态下,光电流随负载变化很大。

照度特性: 当没有光照时,硅光电池等效于普通的二极管,对于外加正向电压,I 随 V 指数增长,称正向电流;当外加电压为反向时,在反向击穿电压之内,反向饱和电流基本是个常数。当有光照时,入射光子把处于价带的束缚电子激发到导带,激发出的电子空穴对在内电场作用下分别飘逸到 N 型区和 P 型区,当在 PN 结两端加负载时就有光生电流流过负载,流过 PN 结两端的电流:

$$I = I_{ph} - I_0 \left[\exp\left(\frac{qU}{k_B T}\right) - 1 \right]$$

式中 I_{ph} 是与入射光的强度成正比的光生电流,其比例系数与负载电阻的大小及硅光电池的结构特性有关.

当硅光电池在短路状态时 (U=0),短路电流为: $I_{SC}=I_{ph}$;当硅光电池在开路状态时 (I=0),开路电压为 $U_{OC}=\frac{k_BT}{q}\ln\left(\frac{I_{SC}}{I_0}+1\right)$. 即短路电流 I_{SC} 和光照强度 L 成正比,开路电压 U_{OC} 与光照强度 L 的对数成正比。在线性测量中,光电池通常以电流形式使用,故 I_{SC} 与 L 呈线性关系,是光电池的重要光照特性。实际使用时都接有负载电阻 R_L ,输出电流 I_L 随 L 的增加而非线性缓慢地增加,并且随 R_L 的增大线性范围也越来越小。因此,在要求输出的 I_L 与 L 呈线性关系时, R_L 在条件许可的情况下越小越好,并限制在光照范围内使用。故本实验的短路电流测量时,所使用的的是 50Ω 的电阻。光照强度在 40-250 lx 范围内。

输出特性: 硅光电池负载 R_L 上的电压降 U 和通过 R_L 的电流之积称为硅光电池的输出功率 P。在一定的照度下,不同 R_L 有不同的输出功率 P,输出功率达到最大值 P_m 时的负载电阻 R_m 称为最佳负载电阻。此时能量转换效率最高,且 R_m 随光强而变化。当 $R_m = R_L$ 时, $P_m = U_m I_m$,式中 U_m 和 I_m

分别是最佳工作电压和最佳工作电流,为最大输出功率。填充因子定义为 $FF = \frac{P_m}{U_{OC}I_{SC}}$,FF 越大则输出功率越高,说明硅光电池对光的利用率越高。

3 实验仪器

硅光电池、数字万用表、毫安表、电阻箱、溴钨灯、直流稳压电源、光学导轨及支座、开关、导线若 干。

4 实验步骤及测量记录

4.1 硅光电池暗伏安特性测量

在没有光照(全黑)下,按图 4所示连接电路,测量 20 组电流 I 和电压 U。由于试验所使用的电流表满偏为 100 mA,则间隔 5 mA 读取一组数据。实验中所用电流表量程 I=20 mA,电压表量程 U=2 V. 经处理后得到表 1,将其用 $y=a e^x+b$ 曲线拟合,得到图 1.

表 1: 硅光电池暗伏安特性

					• •		- , , , , , , ,						
$I_{\mathfrak{F}}(\mathrm{mA})$	1	2	3	4	5	6	7	8	9	10	11	12	13
U(V)	0.645	0.766	0.838	0.892	0.941	0.980	1.017	1.048	1.078	1.105	1.132	1.156	1.180
$I_{\mathfrak{F}}(\mathrm{mA})$	14	15	16	17	18	19	20						
U(V)	1.202	1.223	1.245	1.264	1.284	1.304	1.323						

拟合得 $I = 0.708 \exp\left(\frac{U}{0.377}\right) - 3.36$,表明电流 I 随电压 U 呈指数增长。

4.2 硅光电池输出特性测量

不加偏压,用溴钨灯照射硅光电池,测量不同 L、不同 R 下硅电池的工作电压 U。电路按如图 5所示连接。溴钨灯到硅光电池的距离 (d) 为 50 cm 时,光照强度 (L) 为 40 lx. 根据 $L \propto \frac{1}{d^2}$,即可计算出其他距离的光照强度。实验中所使用的的电压表量程为 U=2V. 整理后得到的数据如表 2 和. 分别画出 I-U 图像和 P-R 图像如图 2和图 3. 由图可知,不同光照下对应的最大功率 P_m 和最加负载电阻 R_m 的关系如表 3.

图 1: 硅光电池暗伏安特性曲线

表 2: 硅光电池输出特性

	$d{=}20{\rm cm},L{=}250.0~{\rm lx}$		50.0 lx	d=30	0cm, $L=1$	11.1 lx	d=40cm, L =62.5 l:			d=50cm, L =40.0 lx		
$R(\Omega)$	U(V)	I(mA)	$P(\mu W)$	U(V)	I(mA)	$P(\mu W)$	U(V)	I(mA)	$P(\mu W)$	U(V)	I(mA)	$P(\mu W)$
50	0.016	0.320	5.120	0.008	0.160	1.280	0.004	0.080	0.320	0.003	0.060	0.180
100	0.033	0.330	10.890	0.017	0.170	2.890	0.009	0.090	0.810	0.006	0.060	0.360
200	0.066	0.330	21.780	0.035	0.175	6.125	0.019	0.095	1.805	0.011	0.055	0.605
300	0.099	0.330	32.670	0.053	0.177	9.363	0.028	0.093	2.613	0.018	0.060	1.080
400	0.132	0.330	43.560	0.070	0.175	12.250	0.038	0.095	3.610	0.023	0.058	1.323
500	0.163	0.326	53.138	0.088	0.176	15.488	0.048	0.096	4.608	0.029	0.058	1.682
600	0.192	0.320	61.440	0.106	0.177	18.727	0.057	0.095	5.415	0.035	0.058	2.042
700	0.219	0.313	68.516	0.123	0.176	21.613	0.067	0.096	6.413	0.041	0.059	2.401
800	0.243	0.304	73.811	0.141	0.176	24.851	0.077	0.096	7.411	0.047	0.059	2.761
900	0.266	0.296	78.618	0.158	0.176	27.738	0.086	0.096	8.218	0.053	0.059	3.121
1000	0.282	0.282	79.524	0.176	0.176	30.976	0.096	0.096	9.216	0.059	0.059	3.481
2000	0.365	0.183	66.613	0.312	0.156	48.672	0.191	0.096	18.241	0.119	0.060	7.081
3000	0.392	0.131	51.221	0.360	0.120	43.200	0.279	0.093	25.947	0.178	0.059	10.561
4000	0.405	0.101	41.006	0.379	0.095	35.910	0.330	0.083	27.225	0.235	0.059	13.806
5000	0.413	0.083	34.114	0.390	0.078	30.420	0.354	0.071	25.063	0.285	0.057	16.245
6000	0.418	0.070	29.121	0.397	0.066	26.268	0.366	0.061	22.326	0.319	0.053	16.960
7000	0.422	0.060	25.441	0.402	0.057	23.086	0.375	0.054	20.089	0.338	0.048	16.321
8000	0.425	0.053	22.578	0.406	0.051	20.605	0.380	0.048	18.050	0.350	0.044	15.313
9000	0.427	0.047	20.259	0.408	0.045	18.496	0.385	0.043	16.469	0.358	0.040	14.240
10000	0.429	0.043	18.404	0.410	0.041	16.810	0.388	0.039	15.054	0.363	0.036	13.177
15000	0.433	0.029	12.499	0.417	0.028	11.593	0.397	0.026	10.507	0.378	0.025	9.526
20000	0.436	0.022	9.505	0.420	0.021	8.820	0.401	0.020	8.040	0.385	0.019	7.411
50000	0.440	0.009	3.872	0.425	0.009	3.613	0.409	0.008	3.346	0.395	0.008	3.121
80000	0.441	0.006	2.431	0.427	0.005	2.279	0.410	0.005	2.101	0.397	0.005	1.970
100000	0.442	0.004	1.954	0.427	0.004	1.823	0.411	0.004	1.689	0.398	0.004	1.584

图 2: 硅光电池输出特性的 I-U 曲线

图 3: 硅光电池输出特性的 P-R 曲线. 图中 R 的刻度是以 10 位底的对数刻度

表 3: 不同光照下对应的最大功率 P_m 和最加负载电阻 R_m 的关系

d(cm)	L(lx)	$P_m(\mu W)$	$R_m(\Omega)$
20	250	79.524	1000
30	111.1	48.762	2000
40	62.5	27.225	4000
50	40	16.96	6000

图 5: 硅光电池输出特性测量的电路

图 4: 硅光电池暗伏安特性测量的电路

4.3 硅光电池开路电压 U_{OC} 、短路电流 I_{SC} 与光照 L 特性测量

电路连接分别如图 6和如 7所示,测量不同光照下硅光电池的开路电压 U_{OC} 、短路电流 I_{SC} . 实验中测量开路电压时,电压表量程为 U=2V. 测量短路电流时,使用的电压表量程为 U=200mV,所接的电阻为 $R=50\Omega$.

图 6: 测量硅光电池开路电压的电路

图 7: 测量硅光电池开路电流的电路

测量得到的数据如表 4.

表 4:	硅光电池的开路电压和短路电流

	,						
$\frac{d(\mathrm{cm})}{L(\mathrm{lx})}$	$\frac{20}{250.00}$	25 160.00	30 111.11	$35 \\ 81.63$	$40 \\ 62.50$	45 49.38	50 40
$U_{OC}(V)$	0.443	0.434	0.425	0.417	0.408	0.402	0.396
$U_R(\text{mV})$ $I_{SC}(\text{mA})$	$16.8 \\ 0.336$		$8.8 \\ 0.176$	$6.4 \\ 0.128$	$4.7 \\ 0.094$	$\frac{3.8}{0.076}$	3.1 0.062

由上表画出 $U_{OC} - L$ 和 $I_{SC} - L$ 曲线如图 8和图 9所示. 对 $U_{OC} - L$ 对数拟合,即使用 $y = a \ln(bx)$ 拟合,得 a = 0.0261, b = 98561.462,故

$$U_{OC} = 0.0261 \cdot \ln(98561.462L)$$

对 $I_{SC}-L$ 线性拟合,即 y=a+bx 拟合,得 $a=0.01575\pm0.01007, b=0.00135$. 所以有 $I/10^{-3}=(0.01575\pm0.01007)+0.00135L$,故

$$I_{SC} = (15.75 \pm 10.07) + 1.35L$$

结合表 3, 可以得到不同光照下的填充因子 FF, 其关系如表 5.

4.4 不同负载下硅光电池输出电压 U 与光照 L 特性测量

测量不同负载 R 的硅光电池输出电压 U 与光照 L 的关系, 其电路如图 5所示. 实验中电压表的量程为 U=2V. 得到的实验数据如表 6. 将 U-L 曲线画出如图 10.

图 8: 硅光电池的 $U_{OC}-L$ 曲线

图 9: 硅光电池的 $I_{SC}-L$ 曲线

表 5: 不同光照下的填充因子 FF

d(cm)	L(lx)	$P_m(\mu W)$	$U_{OC}(V)$	$I_{SC}(\mathrm{mA})$	FF
20	250	79.524	0.443	0.336	0.534263
30	111.1	48.762	0.425	0.176	0.651898
40	62.5	27.225	0.408	0.094	0.709872
50	40	16.96	0.396	0.062	0.690779

表 6: 不同负载下硅光电池输出电压 U 与光照 L 特性测量

	1	1.17/1//	FL./6		<u>, </u>	7 L MN —	1 1 T 1/1 = T	•
$R(\Omega)$	d(cm) L(lx)	$\frac{20}{250.00}$	$\frac{25}{160.00}$	30 111.11	$35 \\ 81.63$	$40 \\ 62.50$	$45 \\ 49.38$	$50 \\ 40.00$
100	U(V) $I(mA)$	0.033 0.33	$0.025 \\ 0.25$	0.017 0.17	0.012 0.12	0.009 0.09	0.007 0.07	0.006 0.06
1000	U(V) $I(mA)$	0.283 0.283	0.241 0.241	0.175 0.175	0.123 0.123	0.096 0.096	$0.074 \\ 0.074$	0.059 0.059
5000	U(V) $I(mA)$	0.414 0.0828	0.403 0.0806	0.388 0.0776	$0.37 \\ 0.074$	0.353 0.0706	0.324 0.0648	$0.285 \\ 0.057$
10000	U(V) $I(mA)$	0.428 0.0428	0.42 0.042	0.409 0.0409	0.396 0.0396	0.386 0.0386	0.374 0.0374	$0.362 \\ 0.0362$

可以看出,随着负载 R 的增大, U 随 L 的增加速度越来越大,即达到一定电压所需要的光照强度越来越小. 且当 R 变大时,其增加速度是非线性的,在 $R < 5000\Omega$ 时增加速度增大的较快, $R > 5000\Omega$ 增加速度增大的相较于前就很慢了.

5 误差分析和讨论

5.1 硅光电池输出特性的 测量

在硅光电池输出特性的 测量中,由于所使用的电压表量程为 U=2V,当 R 很小或 L 时,U 的范围都在 20mV 以下,容易导致误差过大,而当 R 很大时,U 变化的范围又太

图 10: 不同负载下硅光电池的 U-L 曲线

小,且已超过了 200 mV,此时仍存在一定的相对误差。这会使得硅光电池输出特性 I-U 曲线及 P-R 曲线在 R 很小或很大时会稍有不准.

在绘制 P-R 曲线时,R 的刻度采用了 \log_{10} 的对数处理,因为若采用线性处理,则在 $R<20000\Omega$ 的曲线会挤在左侧很小的一片区域,不利于观察.

5.2 硅光电池开路电压 U_{OC} 、短路电流 I_{SC} 与光照 L 特性测量

实验中发现测量短路电流 I_{SC} 时,电压表的读数都在 0.02V 以下,故使用量程为 U=200mV 的电压表测量,使结果更加准确。

可以看出,短路电流 I_{SC} 线性拟合的残差稍大,可能是因为所测量时,接了一个负载 $R=50\Omega$,使得输出电流 I 随 L 的增加而缓慢地增加,在达到一定线性范围后则显示为非线性.

6 思考题

1. 光电池在工作时为什么要处于零偏或反偏?

当 PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强。PN 结零偏时,其内部仍存在耗尽层。因此,在它们的结合面耗尽区存在一内电场,当有光照时,电池对光子的本征吸收和非本征吸收都产生光生载流子,形成反向的电流,从而在有负载时检测出形成的电流。

若 PN 结正偏, 耗尽区在外电场作用下变窄, 使势垒削弱, 使载流子扩散运动继续形成电流, 相当于导通了, 即使没有光照, 也会形成电流, 无法检测光照。

2. 当增加光照强度, 硅光电池的哪些参数发生变化?

增加光照强度: 硅光电池的输出电压和输出电流变化,且基本与光照强度成正比。对应的最大功率 P_m 随光照强度增加而减小,最加负载电阻 R_m 岁光照强度增加而增大。填充因子随之变化,但变化是非线性的。开路电压随其增大对数增加,短路电流则线性增加。