

Konstantinos Solomos, Panagiotis Ilia, Soroush Karami, Nick Nikiforakis, Jason Polakis ksolom6@uic.edu

Browser Extensions

1 Million users

An Emerging Privacy Problem

- Fingerprinting browser extensions
 - Arbitrary websites detect extensions and track the user
 - No permissions
 - Reveal personal-sensitive information
- Side channel inference techniques
 - Web Accessible Resources (Sjosten et al. CODASPY '17)
 - Behavioral fingerprints (Starov & Nikiforakis IEEE S&P '17, Karami et al. NDSS '20)
 - Style Modifications (Laperdrix et al. USEC '21)

An Emerging Privacy Problem

- Fingerprinting browser extensions
 - Arbitrary websites detect extensions and track the user
 - No permissions
 - Reveal personal-sensitive information
- Side channel inference techniques
 - Web Accessible Resources (Sjosten et al. CODASPY '17)
 - Behavioral fingerprints (Starov & Nikiforakis IEEE S&P '17, Karami et al. NDSS '20)
 - Style Modifications (Laperdrix et al. USEC '21)

Extensions: Complex & Dynamic Behavior

- Specialized features triggered by user interactions
 - Text Selection
 - User Input
 - Right Click
 - Context Menu
 - Hotkeys

. . .

> How do user interactions affect the fingerprintability of extensions?

Threat model

Methodology

Methodology

Preparatory Phase

- Parse manifest.json extract permissions & structure
 - ContextMenu → Right-click action
 - Browser_Action → Extension icon
- Static analysis to identify user-driven capabilities
 - addEventListener (click, scroll, keypress, ...)
 - Categorize and group by the target action
 - Mouseup, Mousedown, Mousemove, Mouseover
 - Click, Doubleclick, Scroll, Select
 - Keypress, Keyup, Keydown

• • • •

User Interaction Templates

- Browser actions
 - Extension's browser icon, Popup page, Configuration page

User Interaction Templates

Browser actions

• Extension's browser icon, Popup page, Configuration page

Mouse actions

- Doubleclick, Select, Highlight
- Mousemove, Mousedown, Mouseup, Mouseover

User Interaction Templates

Browser actions

• Extension's browser icon, Popup page, Configuration page

Mouse actions

- Doubleclick, Select, Highlight
- Click, Mousedown, Mouseup, Blur, Focus

Keyboard actions

- Single keystroke, Repetitive keystroke
- Combined Hotkeys

Methodology

Extension Fingerprinting via User Actions

- Honey Page
 - Adopted by Carnus [Karami et al.]
 - Forms, clickable elements, dynamic elements, dropdown lists
 - Textual content of 8 popular languages
- Exercise extension according to their structure & permissions

```
Actions_{exti}: {extension-icon, right-click, mouse, keyboard, . . .}
Actions_{extj}: {right-click, popup page, mouse, keyboard, . . . }
```


Extension Fingerprinting via User Actions

- Generate fingerprint after each action
 - Trigger each action independently
 - Collect the behavioral fingerprint
 - Outer HTML modifications (DOM)
 - Intra-communication (broadcasted messages)
 - Inter-communication (resources loaded)

Fingerprint_{exti}: {right-click [background-color:blue], key_M [msg:abc]}

Experimental Evaluation

- 3 Datasets [2018-2021]
 - 41K extensions
 - Fingerprinted : **5,531** (13%)
- Overview
 - 89% of extensions triggered by extension icon
 - Mouse events: highlight term and right-click (75%)
 - Keyboard interactions: single keystroke and 2 key combination (83%)
- > Effectively replicate user interactions and trigger extensions

Experimental Evaluation

Attack: Page Simulated Events

- Generate artificially crafted interaction events
 - JavaScript API Dispatch Event
 - Replicate all mouse and keyboard events
 - Click, Scroll, Select, Mouse Move, ...
 - Bypass real user interactions
- Browsers origin verification mechanism
 - event.isTrusted {True, False}
 - Rarely used by developers

Attack Evaluation

- Leverage artificial events to trigger extensions
 - Select term {mousemove, ..., mouseover, highlight, ..., doubleclick}
 - Enable form {mousemove, ..., mouseup, click, ..., click}
- Vulnerable extensions: 1,513 (67 %)
 - 88% of mouse events
 - 65% of keyboard events

Triggering 20 extensions < 0.5 seconds

Conclusion

- Novel extension fingerprinting vector that employs user interactions to fingerprint extensions
- Evaluated user-triggered extension fingerprinting and detected 1,820 hidden extensions
- Demonstrated the lack of security checks by triggering extensions through artificial actions
- Proposed a countermeasure for automatic incorporation of safeguards in the extension's code

Thank you!

Feel free to reach out with any questions:

ksolom6@uic.edu