

Understanding Future Motion of Agents in Dynamic Scene using Deep-Learning

Masters Thesis Defense

Anuj Sharma

Supervised by:
Prof. Philip H. S. Torr and Dr. Puneet K. Dokania
Torr Vision Group, University of Oxford, UK

5th September, 2017

OUTLINE

- Introduction
- Problem Definition
- Approach
- Background
- Model
- Experiments
- Results
- Conclusions

INTRODUCTION

• Understand the motion characteristics of agents (pedestrians, cyclists, cars etc.) in a dynamic traffic scenario

Stanford Drone Dataset

http://cvgl.stanford.edu/projects/uav_data/

PROBLEM DEFINITION

• To predict future motion of the agents, subject to their mutual interactions and scene, for the given past motion

```
f_{\theta}: X \mid (scene, interactions) \rightarrow Y
```

X: past trajectory

Y: future trajectory

 θ : parameters of the function f

• Aim to learn the parameters θ through data-driven experience, like humans

- Utilize concepts from Computer Vision and Deep Learning
 - Recurrent Neural Network (RNN)

BACKGROUND – Neural Networks

• Neurons in human brain

• Mathematically, expressed as (also known as fully-connected fc):

BACKGROUND - Neural Networks

• <u>Activation Functions</u> — to introduce non-linearities

Sigmoid

$$y = \sigma(x) = \frac{1}{1 + e^{-x}}$$

Hyperbolic tangent

$$y = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Rectified Linear Unit

$$y = \max(0, x)$$

BACKGROUND - Neural Networks

- Artificial Neural Network:
 - Composition of functions

BACKGROUND - Neural Networks

- Training:
 - Back-propagation algorithm backward flow of gradients

BACKGROUND - CNN

- Convolutional Neural Networks (CNNs)
 - Neural networks designed with layers of convolutions and pooling operations
 - Powerful enough to extract relevant features in image
 - Highly utilized in tasks, such as classification, segmentation, pose-estimation in images etc.

BACKGROUND - RNN

- Recurrent Neural Networks
 - Type of Neural Networks, designed with recurrent cells, to extract patterns in sequences
 - Capable to store and retrieve long-term memory
 - Highly utilized in tasks, such as, language translations, time series predictions, financial and weather forecasting etc.

A: RNN-cell,

X_t: input sequence

h_t: hidden features/ summary

BACKGROUND - RNN Cell

- Gated Recurrent Unit (GRU) type RNN-Cell
 - Input: x_t
 - Previous state: h_{t-1}
 - Update gate: z_t
 - Reset gate: r_t

$$h_t = z_t h_{t-1} + (1 - z_t) \tilde{h}_t$$

$$\tilde{h}_t = \tanh \left(W x_t + U(r_t \odot h_{t-1}) \right)$$

$$r_t = \sigma \left(W_r x_t + U_r h_{t-1} \right)$$

$$z_t = \sigma \left(W_z x_t + U_z h_{t-1} \right)$$

MODEL - Nomenclature

Representation	Description
I_{0}	Image of the scene
N	Number of agents in the scene
$X = [X_1, X_2,, X_N]$	Past trajectory (ground truth) of the N agents
$Y = [Y_1, Y_2,, Y_N]$	Future trajectory (ground truth) of the N agents
$X_i = [X_{i,t-\nu+1}, X_{i,t-\nu+2},, X_{i,t}]$	Past positions of i th agent for v steps
$Y_i = [Y_{i,t+1}, Y_{i,t+2},, Y_{i,t+\delta}]$	Future positions of i^{th} agent for δ steps
$\dot{X} = [\dot{X}_1, \dot{X}_2,, \dot{X}_N]$	Past velocity of the N agents
$\dot{Y} = [\dot{Y}_1, \dot{Y}_2,, \dot{Y}_N]$	Future velocity of the N agents
$\hat{Y} = [\hat{Y}_1, \hat{Y}_2,, \hat{Y}_N]$	Predicted trajectory of the N agents

MODEL - RNN-Encoder

- Encodes the past motion into summary
- Takes velocity features as inputs instead of velocity

 $F_t = \max(0, w_v \dot{X}_t + b_v)$

MODEL - RNN-Encoder

$$h_t = z_t h_{t-1} + (1 - z_t) h_t$$

$$\tilde{h}_t = \tanh \left(W F_t + U(r_t \odot h_{t-1}) \right)$$

$$r_t = \sigma \left(W_r F_t + U_r h_{t-1} \right)$$

$$z_t = \sigma \left(W_z F_t + U_z h_{t-1} \right)$$

15/29

MODEL – RNN-Decoder

• Decodes the past summary conditioned on dynamic scene and interactions, to predict the future trajectory

AM: Attention
Mechanism
SCF: Scene
Context Fusion
C: weighted

c_t: weighted summary

F'_t: scene + interaction features

X_c: current position

MODEL - Scene Context Fusion (SCF)

- Fuses the agent's motion context with features of scene and interactions among agents
- Agent's motion context
 - Map the velocity to high-dimensional feature representation

$$f'_{\hat{Y}_{t-1}} = \max(0, w_v \dot{\hat{Y}}_{t-1} + b_v)$$

MODEL - Scene Context Fusion (SCF)

- Scene Features
 - Obtain scene features using CNN

Pool scene features corresponding to the agent's position

MODEL - Scene Context Fusion (SCF)

- <u>Interaction Features</u>
 - Velocity features of all agents placed at their respective positions in $N_1 \mathbf{x} N_1$ grid

 \blacksquare Pool interaction features around the agent's position in $N_0\mathbf{x}N_0$ grid

MODEL – Scene Context Fusion (SCF)

• Overall architecture:

20/29

MODEL - Attention Mechanism (AM)

Weighs all the past summaries w.r.t. the future scenarios

$$c_t = \sum_{m=1}^{m=\nu} \alpha_{t,m} h_m$$

$$\alpha_{t,m} = \frac{e_{t,m}}{\sum_{m=1}^{m=\nu} e_{t,m}}$$

$$e_{t,m} = V_a^T \tanh\left(U_a' h_{t-1}' + W_a h_m\right) \cdots \forall m \in (1,\nu)$$

MODEL - Architecture

22/29

EXPERIMENTS - Dataset

• Stanford Drone Dataset

• Highly dynamic situations (roads, roundabouts, etc.) with many agents (pedestrians, cars, etc.) in many different dynamics (slow, fast, sharp maneuver, static, etc.)

 Data split into 5-folds with usage of 4-folds for training and 1-fold for test performance evaluation

EXPERIMENTS – Model Parameters

Model	Parameters	Dimensions/Values	
CNN	H, W	1024	
	H_{CNN}, W_{CNN}	256	
	w_{k_1}	$5 \times 5 \times 3 \times 16$	
	w_{k_2}	$5 \times 5 \times 16 \times 32$	
	b_{k_1}	16	
985	b_{k_2}	32	
Encoder	w_v	16×2	
	b_v	16	
	W, W_r, W_z	48×16	
S	U, U_r, U_z	48×48	
Attention	U_a', W_a	48×48	
Mechanism	V_a	1×48	
SCF	w_i	$16 \times (5 \times 5 \times 16)$	
1 110	b_i	16	
	N_0	5	
	N_1	32	
Decoder	W', W_z', W_r', W_g'	48×64	
	U', U'_z, U'_r, U'_g	48×48	
	V', V'_z, V'_r, V'_g	48×48	
	w_v^{\prime}	2×48	
	b_v^{\prime}	2	

Past: 2 seconds

Future: 4 seconds

Position in pixels

EXPERIMENTS – Evaluation Metrics

Variants of model

Model	Description	
RNN-ED-DESIRE	RNN-Encoder-Decoder variant of DESIRE [1] without SCF	
RNN-ED	RNN-Encoder-Decoder without AM and SCF	
RNN-ED-VSI	RNN-Encoder-Decoder with SCF	
RNN-ED-A	RNN-Encoder-Decoder with AM	
RNN-ED-VSI-A	Final Model: RNN-Encoder-Decoder with AM and SCF	

[1] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B. Choy, Philip H. S. Torr, Manmohan Chandraker, 'DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents'; IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

RESULTS - Summary

Model	Pixel Error (scaled by 1/5) at				
	1.0 seconds	2.0 seconds	3.0 seconds	4.0 seconds	
RNN-ED-DESIRE	1.76	3.98	6.51	9.31	
RNN-ED	1.75	3.94	6.47	9.26	
RNN-ED-VSI	1.78	3.91	6.41	9.22	
RNN-ED-A	1.70	3.84	6.32	9.08	
RNN-ED-VSI-A	1.70	3.79	6.22	8.92	

RESULTS - Figures

CONCLUSIONS

- Dynamic scene and interactions, with variable number of agents is taken care of by our model
- The final model RNN-ED-VSI-A predicts future trajectory quite well conditioned on the dynamic scene and interactions
- Attention Mechanism significantly improves the prediction accuracy

[1] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B. Choy, Philip H. S. Torr, Manmohan Chandraker, 'DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents'; IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Thank You