5.1 Convergence in Probability

5.1.3. Let W_n denote a random variable with mean μ and variance b/n^p , where p > 0, μ , and b are constants (not functions of n). Prove that W_n converges in probability to μ .

Hint: Use Chebyshev's inequality.

5.1.5. Let X_1, \ldots, X_n be iid random variables with common pdf

$$f(x) = \begin{cases} e^{-(x-\theta)} & x > \theta - \infty < \theta < \infty \\ 0 & \text{elsewhere.} \end{cases}$$
 (5.1.3)

This pdf is called the **shifted exponential**. Let $Y_n = \min\{X_1, \dots, X_n\}$. Prove that $Y_n \to \theta$ in probability, by first obtaining the cdf of Y_n .

5.1.7. For Exercise 5.1.5, obtain the mean of Y_n . Is Y_n an unbiased estimator of θ ? Obtain an unbiased estimator of θ based on Y_n .

5.2 Convergence in Distribution

- **5.2.2.** Let Y_1 denote the minimum of a random sample of size n from a distribution that has pdf $f(x) = e^{-(x-\theta)}$, $\theta < x < \infty$, zero elsewhere. Let $Z_n = n(Y_1 \theta)$. Investigate the limiting distribution of Z_n .
- **5.2.4.** Let Y_2 denote the second smallest item of a random sample of size n from a distribution of the continuous type that has cdf F(x) and pdf f(x) = F'(x). Find the limiting distribution of $W_n = nF(Y_2)$.
- **5.2.5.** Let the pmf of Y_n be $p_n(y) = 1$, y = n, zero elsewhere. Show that Y_n does not have a limiting distribution. (In this case, the probability has "escaped" to infinity.)
- **5.2.11.** Let the random variable Z_n have a Poisson distribution with parameter $\mu = n$. Show that the limiting distribution of the random variable $Y_n = (Z_n n)/\sqrt{n}$ is normal with mean zero and variance 1.
- **5.2.18.** Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of a random sample (see Section 5.2) from a distribution with pdf $f(x) = e^{-x}$, $0 < x < \infty$, zero elsewhere. Determine the limiting distribution of $Z_n = (Y_n \log n)$.

5.3 Central Limit Theorem

- **5.3.2.** Let \overline{X} denote the mean of a random sample of size 128 from a gamma distribution with $\alpha = 2$ and $\beta = 4$. Approximate $P(7 < \overline{X} < 9)$.
- **5.3.3.** Let Y be $b(72, \frac{1}{3})$. Approximate $P(22 \le Y \le 28)$.
- **5.3.5.** Let Y denote the sum of the observations of a random sample of size 12 from a distribution having pmf $p(x) = \frac{1}{6}$, x = 1, 2, 3, 4, 5, 6, zero elsewhere. Compute an approximate value of $P(36 \le Y \le 48)$.

Hint: Since the event of interest is $Y = 36, 37, \dots, 48$, rewrite the probability as P(35.5 < Y < 48.5).

5.3.12. Let X_1, X_2, \ldots, X_n be a random sample from a Poisson distribution with mean μ . Thus, $Y = \sum_{i=1}^n X_i$ has a Poisson distribution with mean $n\mu$. Moreover, $\overline{X} = Y/n$ is approximately $N(\mu, \mu/n)$ for large n. Show that $u(Y/n) = \sqrt{Y/n}$ is a function of Y/n whose variance is essentially free of μ .