Modeling and Algorithms for Prof Shit's Project

Hongda Li, Yining Zhou, Xiaoping Shi

January 21, 2024

Abstract

We propose some better algorithm for a problem in detecting structure of probability transition matrices from data.

Introduction

1

3

17

24 25

- We describe an optimization problem introduce by Prof Shi and his student Yining. To start we define the following quantities for the optimization problem.
- 1. $n \in \mathbb{N}$. It denotes the numer of states for a Markov Chain. 10
- 2. $p \in \mathbb{R}^{n \times n}$ denotes the probability transition matrix. It's in small case because it's 11 also the variable for the optimization problem. It supports 2 types of indexing, p_{ij} for 12 $i, j \in \{1, \dots, n\}$, or p_j with $j \in \{1, \dots, n^2\}$. More on this later. 13
- 3. $\eta_{ij} \geq 0$ for $i, j \in \{1, \dots, n\}$ is a parameter of the problem.
- 4. \hat{p} is the empirically measured probability transition matrix. They are the maximal 15 likelihood estimators for the transition probability in the transition probability matrix. 16
 - 5. λ is the regularization parameter.
- 6. \mathbf{C}_n^m is the combinatoric term that counts all possible subset of size n, n < m from a 18 super set of size m. 19

When p is referred to as a vector we may say $p \in \mathbb{R}^{n^2}$, if it's referred to as the matrix, 20 we will use $p \in \mathbb{R}^{n \times n}$. When indexing p using a tuple, or a single number, it's possible to 21 translate between the two type of indexing scheme using the following bijective map:

$$(i,j)\mapsto k:=i\times n+j$$

$$k\mapsto (i,j):=(\lfloor k/n\rfloor,\operatorname{mod}(k,n)+1).$$

We emphasize, in different programming languages and development environments, the con-26 vention of indexing a muti-array using different kind of tuples can be very different. For now we use the above indexing, which is a row major index convention (Like Python).

₉ 1.1 The Optimization Problem

The optimization problem is posed as

$$\underset{p \in \mathbb{R}^{n^2}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \sum_{j=1}^{n} -\eta_{ij} \log(p_{i,j}) + \lambda \sum_{i=1}^{n^2} \sum_{\substack{j=1\\j \neq i}}^{n^2} \frac{1}{2} \frac{|p_i - p_j|}{|\hat{p}_i - \hat{p}_j|} \right\}$$
(1.1.1)

s.t:
$$\left\{ \sum_{i=1}^{n} p_{i,j} = 1 \quad \forall i = 1, \dots, n \\ p_{i,j} \ge 0 \quad \forall i = 1, \dots, n, j = 1, \dots, n \right\}$$
 (1.1.2)

There are 3 parts to the optimization problem posed above. It has a smooth differentiable function, the sume of $\eta_{ij} \log(p_{i,j})$ but its gradient is not Lipschitz. The ias a non-smooth part with $p_i - p_j$ for all indices $1, \dots, n^2$ and $i \neq j$. If $\hat{p}_i - \hat{p}_j = 0$, then we would ignore the term. Finally, it has a linear constraints on all n^2 variables. $p \in \mathbb{R}^{n^2}$ is a vector with the structure $\Delta_n \oplus \Delta_n \oplus \cdots \oplus \Delta_n$. Each Δ_n is a probability simplex. It's defined as $\Delta_n = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1\}$. For simplicity we just denote using notation $\Delta_{n \times n} = \Delta_n \oplus \Delta_n \oplus \cdots \oplus \Delta_n$.

40 2 Modeling

31 32 33

56

57 58 59

60

62

64

66

The non-smooth part with the absolute value requires some amount of creativity if we were to use common optimization algorithms.

⁴³ 2.1 Representation of the Non-smooth Part

Claim 2.1.1. The nonsmooth objective can be model as

$$\lambda \sum_{i=1}^{n^2} \sum_{j>i}^{n^2} \frac{|p_i - p_j|}{|\hat{p}_i - \hat{p}_j|} = ||Cp||_1 \quad \text{where } C \text{ is } \mathbf{C}_2^{n^2} \text{ by } n^2.$$

The one norm represents the summation of absolute values. The transformation Cp is linear transformation and it's a vector of length $C_2^{n^2}$. The vector is long and it has a dimension of $(1/2)(1+n^2)n^2$. Each term inside of the summation is a row of the matrix C. Each row of matrix C has exactly 2 non-zero elements in it. Suppose that $i \in \{1, \dots, C_2^{n^2}\}$ denoting the index for a specific row of matrix C denotes the index of a specific row, and $j \in \{1, \dots, n^2\}$ denotes a specific column of matrix C. Mathematically describing the matrix is difficult, but it can be algorithmically defined. A sparse matrix format can be described by as a mapping from (i, j), the set of all indices to the element in the vector. The following algorithm 1 construct such a mapping.

Algorithm 1 Matrix Make Algorithm

```
1: Let C be a \mathbf{C}_2^{n^2} by n^2 zero matrix.
44
       2: for i = 1, \dots, n^2 do
45
                for j=1,\cdots,n^2 do
46
                    if |\hat{p}_i - \hat{p}_j| == 0 then
47
                        Break
48
                    end if
       6:
49
                    \begin{split} C[i\times n^2+j,i] &:= \lambda/|\hat{p}_i-\hat{p}_j|\\ C[i\times n^2+j,j] &:= -\lambda/|\hat{p}_i-\hat{p}_j| \end{split}
50
51
                end for
       9:
52
      10: end for
53
```

Remark 2.1.1. In practice, we should use sparse matrix data format such as SCR, SCC in programming languages.

⁷¹ 2.2 Modeling it for Sequential Quadratic Programming

To use sequential programming, we model the non-smooth $||Cp||_1$ parts of the objective function as a linear constraints. Define $u \in \mathbb{R}^{\mathbf{C}_2^{n^2}}_+$ then the below problem is equivalent to the original formulation:

$$\underset{p,u}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \sum_{j=1}^{n} -\eta_{ij} \log(p_{i,j}) + \sum_{i=1}^{C_2^{n^2}} u_k \right\}$$
 (2.2.1)

s.t:
$$\begin{cases} -u \le Cp \le u \\ p \in \Delta_{n \times n} \end{cases}$$
$$u \in \mathbb{R}_{+}^{\mathbf{C}_{2}^{n^{2}}}$$
 (2.2.2)

76 77

75

54

This is a Non-linear programming problem and it has a convex objective. Common NLP packages in programming languages can solve this efficiently. However it's potentially possible that these solvers are not adapated to huge sparse matrix C that has special structure to it.

Remark 2.2.1. To formulate into a linear programming with some relaxations, consider that the non-linear objective $-\eta_{ij} \log(p_{i,j})$ can be discretized.

84 2.3 Modeling it for Operator Splitting

Operator splitting method aims for objective function of the type f + g where f, g are both convex function and they are proximal friendly. And $\operatorname{ri.dom}(f) \cap \operatorname{ri.dom}(g) \neq \emptyset$. Recall that proximal operator of function f is the resolvent operator on the subgradient $(I + \partial f)^{-1}$. Subgradient is just a generalize type of gradient that can handle continuous function that is not necessarily differentiable. To model the original formulation in such a form, we introduce these quantities:

91 1.
$$f_1(x_1): \mathbb{R}^{n^2} \mapsto \mathbb{R} := \sum_{i=1}^{n^2} -\eta_{i,j}(p_{i,j})$$

92 2.
$$f_2(x_2): \mathbb{R}^{\mathbf{C}_2^{n^2}} \mapsto \mathbb{R} := \|x_2\|_1$$
.

3.
$$f_3(x_3)=\mathbb{R}^{n^2}\mapsto ar{\mathbb{R}}:=\delta_{\Delta_{n\times n}}(x_3)$$

The above 3 functions represent the three parts of the summed objective. Let $f(x_1, x_2, x_3) := f_1(x_1) + f_2(x_2) + f_3(x_3)$. However, they share different variables x_1, x_2, x_3 , from different dimension. We want g to represents the constraints that $x_2 = Cp$, and $x_1 = x_3 = p$. Simplifying: $x_2 = Cx_1, x_1 = x_3$. This is a linear system of the form

$$\begin{bmatrix} C & -I & \mathbf{0} \\ I & \mathbf{0} & -I \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0}.$$

Simply denote the above as $Ax = \mathbf{0}$, then g is just a non-smooth function that happens to be an indicator function of a convex set. The convex set is the set of all solutions to the linear system. Therefore setting $g = \delta_{Ax=\mathbf{0}}(x)$, to be the indicator of the linear constraints, we had a complete equivalent representation of the original form of the problem.

The matrix A is a $(\mathbb{C}_2^{n^2} + n^2) \times (3n^2)$ matrix. It's still a sparse matrix. Conviently, if we use \otimes then the above matrix admit kronecker product representation:

2.4 Implementation, Software, and Toolings

References