Model Report

Geologic Time2

Version 2.0 • Proposed

8/12/2020 10:08:47 AM

Stephen Richard

 ${\sf EA\ Repository:\ E:\ GitHub\ Loop3DGKM\ GSO 20200811TimeWork.eapx}$

Table of Contents

GKO-Geologic Time2 diagram	3
Geologic Time Interval	3
Geologic Time Scale	3
IUGS 2014 Time Scale	4
Temporal Location	4
Time Instant	4
Time Interval	4
Time Region	4
Chronometric Geologic Time	5
DateTimePosition	5
Geochronologic Boundary	5
Geologic Age	6
Geologic Age Interval	6
Geologic Date Interval	6
Geologic Time Date	6
Geologic Time Scale	7
GSSA	7
IUGS 2014 Time Scale	7
Temporal Reference System	7
TimeNominalPosition	7
TimeNumericPosition	8
NOTES	8

GKO-Geologic Time2 diagram

Figure 1: GKO-Geologic Time2

Geologic Time Interval

ATTRIBUTES
hasReference: Chronostratigraphic Unit Public Multiplicity: ([01], Allow duplicates: 0, Is ordered: False)
previousTimeInterval : Geologic Time Interval Public Multiplicity: ([0*], Allow duplicates: 0, Is ordered: False)
nextTimeInterval: Geologic Time Interval Public Multiplicity: ([0*], Allow duplicates: 0, Is ordered: False)

ASSOCIATIONS Association (direction: Source -> Destination) Source: Public (Class) Geologic Time Scale Target: Public (Class) Geologic Time Interval

Geologic Time Scale

A collection of hierarchical time intervals that cover some Geologic Time Region that is the scope of a Geologic Time Scale (see Cox and Richard, 2014).

INCOMING STRUCTURAL RELATIONSHIPS → Realization from IUGS 2014 Time Scale to Geologic Time Scale

ATTRIBUTES

hasPart : Geologic Time Interval Public

Multiplicity: ([1..*], Allow duplicates: 0, Is ordered: False)

IUGS 2014 Time Scale

OUTGOING STRUCTURAL RELATIONSHIPS

Realization from IUGS 2014 Time Scale to Geologic Time Scale

Temporal Location

Quality that specifies the position of a time region relative to some temporal reference system.

ATTRIBUTES

hasTRS: Temporal Reference System Public

representation of temporal position in a reference system [iso-19111-2019, iso19108], [ogc-topic-2], i.e. on a number line with a specified origin, such as Julian date, or Unix time, or geologic time.

The temporal ordinal reference system should be provided as the value of the :hasTRS property

The temporal coordinate system should be provided as the value of the :hasTRS property

ASSOCIATIONS

Association (direction: Source -> Destination)

Source: Public (Class) Temporal Location Target: Public (Class) Temporal Reference System

Association (direction: Unspecified)

Source: Public (Class) Time Region Target: Public (Class) Temporal Location

Time Instant

A Time Instant is a Time region that is located by a single temporal location value. DateTimePosition and TimeNominalPosition both assert a 'position' that is actually an interval. The interval represented by a DateTimePosition is determined by the unitType for the position-- a DataTimePosition specified with unitType 'year', e.g. 1950, is the same as an interval from DateTimePosition 1950-01-01 (age_started_by) to 1950-12-31 (age_finished_by). A Geologic age specified as a nominal position 'Cambrian', with TRS https://stratigraphy.org/icschart/ChronostratChart2020-03 is the same as Time Interval with TimeNumericPosition 541.0 ±1.0 (age_started_by) to 485.4 ±1.9 (age_finished_by)

CONSTRAINTS

Invariant. hasDuration/MeasuredValue/hasDataValue = 0

Invariant. age_started_by = age_finished_by OR age_finished_by IS NULL

Time Interval

A Time Interval is a Time Region that has distinct Temporal Location values for age_started_by and age_finished_by. The validation conditions are complex because of the various ways to specify Temporal Location, but the basic logic is that age_started_by has to be before age_finished_by.

CONSTRAINTS

Invariant. hasDuration/MeasuredValue/hasDataValue > 0

Invariant. age_started_by <> age_finished_by

Time Region

Analogous to TimeInterval in Time Ontology in OWL, W3C Candidate Recommendation 26 March 2020: https://www.w3.org/TR/2020/CR-owl-time-20200326/.

Uses idea that time intervals are the more general case and time instants are just a limited specialization (Allen, 1984) http://dx.doi.org/10.1016/0004-3702%2884%2990008-0, Allen and Ferguson, 1997 URL: http://dx.doi.org/10.1007/978-0-585-28322-7_7)

Model Report 12 August, 2020

ATTRIBUTES

- isTemporalOccupiedBy : not Time Region Public
 - Multiplicity: ([0..*], Allow duplicates: 0, Is ordered: False)
- hasPart : Time Region Public
 - Multiplicity: ([0..*], Allow duplicates: 0, Is ordered: False)
- hasReference : Particular Public
- age_started_by : Temporal Location Public
- age_finished_by : Temporal Location Public
- hasDuration : Measured value Public

Measurement of duration needs a clock. In its most general form a clock is just a regularly repeating physical event ('tick') and a counting mechanism for the 'ticks'. These counts may be used to logically relate two events and to calculate a duration between the events.

ASSOCIATIONS

Association (direction: Unspecified)
Source: Public (Class) Time Region

Target: Public (Class) Temporal Location

Chronometric Geologic Time

1D coordinate system containing a time axis measuring millions of (Julian) years [Ma], backwards in time from 1950. http://www.opengis.net/def/crs/OGC/0/ChronometricGeologicTime

ATTRIBUTES

hasUOM: Unit of Measure Public = Ma

DateTimePosition

a time position has a finite extent, corresponding to the precision or temporal unit used. Thus, a DateTimePosition has a duration corresponding to the value of its unitType.

ATTRIBUTES

- hasDateTime : xsd:DateTime Public
- hasUnitType : Unit_of_Measure Public

Geochronologic Boundary

A temporal position that is anchored to a specific location in a stratotype stratigraphic section. Serves as a temporal boundary between two Geochronologic Time Intervals.

OUTGOING STRUCTURAL RELATIONSHIPS

Generalization from Geochronologic Boundary to Geologic Time Date

ATTRIBUTES

hasReference : Stratigraphic Point Public

this objectProperty links a Geochronologic Boundary, a temporal position == Geologic Time Date in this model to a Stratigraphic Point that is the mani

ASSOCIATIONS

Association (direction: Unspecified)

Source: Public hasOlderBound (Class) Geochronologic Boundary Target: Public nextTimeInterval (Class) Geologic

Date Interval

Cardinality: [0..*]

Association (direction: Unspecified)

Source: Public has YoungerBound (Class) Geochronologic Target: Public previousTimeInterval (Class)

ASSOCIATIONS	
Boundary	Geologic Date Interval
	Cardinality: [0*]

Geologic Age

A geologic Property used to specify the age date associated with some geologic entity. Can be quantified as a Chronostratigraphic Age, Geochronologic Age, or a GEochronologic Age Date.

Geologic Age Interval

OUTGOING STRUCTURAL RELATIONSHIPS Generalization from Geologic Age Interval to Geologic Time Interval

ATTRIBUTES

- hasYoungerInterval : Geologic Date Interval Public
- hasOlderInterval : Geologic Date Interval Public

Geologic Date Interval

A time interval that is defined with reference to particular geologic feature in the Earth. Corresponds to GeochronologicEra of Cox and Richard (2014, DOI: 10.1007/s12145-014-0170-6) (gts). The isRealizedBy property corresponds to the manifestedBy property in gts (see http://resource.geosciml.org/vocabulary/timescale/isc2017 for implementation). gts models a stratotype property from GeochronologicEra (the time interval) directly to a Stratotype. In this model the association is indirect from era (time interval) to ChronostratigraphicUnit to Stratotype.

A Geochronologic Time Interval restricts a Geologic Time Interval by restricting the bounding dates to be Geochronologic Boundary.

ASSOCIATIONS	
Association (direction: Unspecified)	
Source: Public hasOlderBound (Class) Geochronologic Boundary	Target: Public nextTimeInterval (Class) Geologic
	Date Interval
	Cardinality: [0*]
Association (direction: Unspecified)	
Source: Public has YoungerBound (Class) Geochronologic	Target: Public previousTimeInterval (Class)
Boundary	Geologic Date Interval
	Cardinality: [0*]

Geologic Time Date

A temporal coordinate value, located either by a point position (with uncertainty) on a time line, specified by a numeric coordinate (generally MYPB, but definitions of 'present' vary), or a GeochronologicBoundary if it is associated with a location in a particular stratigraphic section, or a GSSA if the numeric time coordinate is arbitrarily assigned. Probably should specify a Temporal Reference System used to assign coordinate values.

OUTGOING STRUCTURAL RELATIONSHIPS
← Generalization from Geologic Time Date to Time Instant

INCOMING STRUCTURAL RELATIONSHIPS → Generalization from Geochronologic Boundary to Geologic Time Date → Generalization from GSSA to Geologic Time Date

ATTRIBUTES

age_started_by : TimeNumericPosition Public

Geologic Time Interval

ATTRIBUTES

- hasReference : Chronostratigraphic Unit Public
 - Multiplicity: ([0..1], Allow duplicates: 0, Is ordered: False)
- previousTimeInterval : Geologic Time Interval Public
 - Multiplicity: ([0..*], Allow duplicates: 0, Is ordered: False)
- nextTimeInterval: Geologic Time Interval Public Multiplicity: ([0..*], Allow duplicates: 0, Is ordered: False)

Geologic Time Scale

A collection of hierarchical time intervals that cover some Geologic Time Region that is the scope of a Geologic Time Scale (see Cox and Richard, 2014).

INCOMING STRUCTURAL RELATIONSHIPS

→ Realization from IUGS 2014 Time Scale to Geologic Time Scale

ATTRIBUTES

hasPart : Geologic Date Interval Public

Multiplicity: ([1..*], Allow duplicates: 0, Is ordered: False)

GSSA

Global Standard Stratigraphic Age, abbreviated GSSA, is a temporal position defined by the International Stratigraphic Commission to define the boundary between Geochronologic Eras in cases where a GSSP (Global Stratigraphic Section and Point) can not be established as a reference for geochronologic boundaries. This is the case for Precambrian rocks older than Ediacaran, for which biostratigraphic evidence is not available and well preserved stratigraphic sections are rare.

CONSTRAINTS

The Invariant. hasQuality/SimpleUndertainty/hasDataValue = 0

IUGS 2014 Time Scale

OUTGOING STRUCTURAL RELATIONSHIPS

← Realization from IUGS 2014 Time Scale to Geologic Time Scale

Temporal Reference System

A temporal reference system, such as a temporal coordinate reference system (with an origin, direction, and scale), a calendar-clock combination, or a (possibly hierarchical) ordinal system

Note that an ordinal temporal reference system, such as the geologic timescale, may be represented directly, using this ontology, as a set of :ProperIntervals, along with enough inter-relationships to support the necessary ordering relationships. See example below of Geologic Timescale.

ASSOCIATIONS

Association (direction: Source -> Destination)

Source: Public (Class) Temporal Location

Target: Public (Class) Temporal Reference System

TimeNominalPosition

a value that identifies a location within an ordinal reference system, by name or URI

ATTRIBUTES hasNominalPosition: Geologic Time Interval

TimeNumericPosition

A temporal location specified by a numeric coordinate value relative to some temporal reference system.

ATTRIBUTES	
hasNumericPosit	ion : xsd:decimal
	nple Uncertainty Public 01], Allow duplicates: 0, Is ordered: False)
Multiplicity: ([0	istical Calculation Public *], Allow duplicates: 0, Is ordered: False)
for expressing statist	ics on quality, uncertainty.

NOTES

- is a temporal reference system a quality??? Need a class for 'information objects'-- non-material endurants whose identity is inherent in the content, not the representation. Specifications, FRBR Work...
- isPartOf relation is used to link GeologicDateInterval instances to a timeScale. The various topological constraints necessary for a time scale must be enforced by some means. Constraints: 1. at least one set of part intervals must cover the extent of the time scale.
- interval_contains and interval_in constraints are not precisely correct, but can not be expressed in UML. The constraints need to enforce the hierarchical topology of the Geologic Date Interval subtypes.
- The actual constraint is if longer interval A contains shorter interval D, then interval A must also include intervals that have rank between the rank of A and D, and that contain interval D.
- For example if the timescale includes a Period *Permian*, and an Age *Wordian*, then it MUST also include an Epoch that is contained in *Permian* and contains *Wordian*.