Graph Signal Processing – Part I: Graphs, Graph Spectra, and Spectral Clustering

Qincheng Lu

Ph.D. Student Supervised by Prof. Xiao-Wen CHANG

September 21, 2020

Section 1

Graph Definitions and Properties

2 Spectral Decomposition of Graph Matrices

3 Vertex Clustering and Mapping

Examples

Figure: Images graph

Figure: Minnesota roadmap graph

Graph and Graph Signal

Figure: Marks per student and per course Figure: 2D map with random position

Definition: Graph
$$\mathcal{G} = \{\mathcal{V}, \mathcal{B}\}$$
, $\mathcal{B} \subset \mathcal{V} \times \mathcal{V}$ Graph Signal $f \to \mathbb{R}^N$

Classical Discrete Signal Processing

Figure: Time series data

 ${\bf Figure:} \ {\sf Digital} \ {\sf image} \ {\sf data}$

Adjacency Matrix

$$A_{mn} \stackrel{\text{def}}{=} \begin{cases} 1, & \text{if } (m, n) \in \mathcal{B} \\ 0, & \text{if } (m, n) \notin \mathcal{B} \end{cases}$$

② For undirected graph, if $(n,m) \in \mathcal{B}$ then also $(m,n) \in \mathcal{B}$, $\mathbf{A} = \mathbf{A}^{\intercal}$.

 $oldsymbol{3}$ Adjacency matrix $oldsymbol{A}$ is a special case of the weight matrix $oldsymbol{W}$

Laplacian Matrix

- $oldsymbol{0}$ Degree matrix $oldsymbol{D}$ is a diagonal matrix, where $D_{mm} \stackrel{\mathsf{def}}{=} \sum_{n=0}^{N-1} \mathbf{W}_{mn}$
- ② Laplacian matrix is defined as $\mathbf{L} \stackrel{\mathsf{def}}{=} \mathbf{D} \mathbf{W}$ For undirected graph
 - Symmetric
 - Off-diagonal entries are non-positive for non-negative weights
 - 8 Rows sum up to zero
 - Eigenvalues are non-negative real numbers
 - 6 Eigenvectors are real and orthogonal
- **3** Notion of "smoothness": $\mathbf{f}^\intercal \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j=0}^{N-1} \mathbf{W}_{ij} (f(i) f(j))^2$

Normalized laplacian matrix:

$$\mathbf{L}_N \stackrel{\mathsf{def}}{=} \mathbf{D}^{-1/2} (\mathbf{D} - \mathbf{W}) \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$$

Frequently Used Graph Topologies

Disconnected Graph

- 4 Adjacency matrix and Laplacian matrix are of block-diagonal form.
- The multiplicity of the zero eigenvalue of the Laplacian = the number of disjoint components.

• $\mathbf{v_0} = (1,...,1,0,...,0)^{\mathsf{T}}$, $\mathbf{v_1} = (0,...,0,1,...,1)^{\mathsf{T}}$ are two eigenvectors of eigenvalue $\lambda_0 = 0$ for \mathbf{L}

Find a Partition into Two Sets of Vertices \mathcal{E} , \mathcal{H}

Minimum k-cuts Problem, k=2

- ullet Consider an undirected graph $\mathcal{G} = \{\mathcal{V}, \mathcal{B}\}$ with set of edge weights \mathbf{W}
- $\bullet \ \ \text{We want to find} \ \mathcal{E} \ \text{and} \ \mathcal{H} \ (\mathcal{E} \subset \mathcal{V}, \ \mathcal{H} \subset \mathcal{V}, \ \mathcal{E} \cup \mathcal{H} = \mathcal{V} \ \text{and} \ \mathcal{E} \cap \mathcal{H} = \emptyset)$
- Such that cut $Cut(\mathcal{E},\mathcal{H}) = \sum_{m \in \mathcal{E}, n \in \mathcal{H}} \mathbf{W}_{mn}$ is minimized.

Figure: A cut for a weighted undirected graph

Minimum 2-cuts Problem

ullet Combinatorial problem: Brute force approach on N vertices takes

$$\binom{N}{1}+\binom{N}{2}+\ldots+\binom{N}{N/2-1}+\binom{N}{N/2}/2=O(2^N)$$

• Express partition $(\mathcal{E}, \mathcal{H})$ as a vector \mathbf{x} : $\mathbf{x}_i \stackrel{\mathsf{def}}{=} \begin{cases} +1, & \mathsf{if } i \in \mathcal{E} \\ -1, & \mathsf{if } i \in \mathcal{H} \end{cases}$

$$\mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} \mathbf{W}_{mn} \left(\mathbf{x}(n) - \mathbf{x}(m) \right)^{2}$$
$$= 4 \sum_{m \in \mathcal{E}, n \in \mathcal{H}} \mathbf{W}_{mn}$$
$$= 4 \mathsf{Cut}(\mathcal{E}, \mathcal{H})$$

 $\bullet \ \, \mathsf{Fiedler} \,\, \mathsf{vector} \,\, \mathbf{x} = \mathsf{arg} \min_{\mathbf{y} \in \mathbb{R}^N} \! \mathbf{y}^\intercal \mathbf{L} \mathbf{y}$

Minimum Normalized 2-cuts Problem

- Normalized (ratio) cut $\operatorname{CutN}(\mathcal{E},\mathcal{H}) = (\frac{1}{N_{\mathcal{E}}} + \frac{1}{N_{\mathcal{H}}}) \sum_{m \in \mathcal{E}, n \in \mathcal{H}} \mathbf{W}_{mn}$
- ullet where $N_{\mathcal{E}}$ and $N_{\mathcal{H}}$ are the respective numbers of vertices in the sets ${\mathcal{E}}$ and ${\mathcal{H}}.$
- The normalized indicator \mathbf{x} : $\mathbf{x}_i \stackrel{\text{def}}{=} \begin{cases} +1/(N_{\mathcal{E}}e_x), & \text{if } i \in \mathcal{E} \\ -1/(N_{\mathcal{H}}e_x), & \text{if } i \in \mathcal{H} \end{cases}$, $||\mathbf{x}||_2^2 = 1$, $e_x^2 = \frac{1}{N_{\mathcal{E}}} + \frac{1}{N_{\mathcal{U}}}$
- The indicator x is orthogonal to the eigenvector of L for $\lambda_0 = 0$

$$\begin{split} \frac{\mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\mathsf{T}} \mathbf{x}} &= \frac{1}{||\mathbf{x}||_{2}^{2}} \frac{1}{2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} \mathbf{W}_{mn} \left(\mathbf{x}(n) - \mathbf{x}(m) \right)^{2} \\ &= \frac{1}{||\mathbf{x}||_{2}^{2}} \frac{1}{e_{x}^{2}} \left(\frac{1}{N_{\mathcal{E}}} + \frac{1}{N_{\mathcal{H}}} \right)^{2} \sum_{m \in \mathcal{E}, n \in \mathcal{H}} \mathbf{W}_{mn} \\ &= \mathsf{CutN}(\mathcal{E}, \mathcal{H}) \end{split}$$

Minimum Normalized 2-cuts Problem (Continue)

- $\frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} = \mathsf{CutN}(\mathcal{E}, \mathcal{H})$, with indicator \mathbf{x} normalized to unit energy
- $\min\{\mathbf{x}^{\mathsf{T}}\mathbf{L}\mathbf{x}\}$ subject to $\mathbf{x}^{\mathsf{T}}\mathbf{x} = 1$
- $\mathcal{L}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x} \lambda (\mathbf{x}^{\mathsf{T}} \mathbf{x} 1) \Rightarrow \partial \mathcal{L}(\mathbf{x}) / \partial \mathbf{x}^{\mathsf{T}} = \mathbf{0} \Rightarrow \mathbf{L} \mathbf{x} = \lambda \mathbf{x}$
- ullet x is an eigenvector of $\mathcal L$
- $\bullet \ \min\{\mathbf{x}^{\mathsf{T}}\mathbf{L}\mathbf{x}\} = \min\{\lambda\mathbf{x}^{\mathsf{T}}\mathbf{x}\} = \min\{\lambda\}$

Section 2

Graph Definitions and Properties

2 Spectral Decomposition of Graph Matrices

3 Vertex Clustering and Mapping

Eigenvalue Decomposition of A

- $oldsymbol{0}$ $\mathbf{A}\mathbf{x}$ is output after a movement of graph signal \mathbf{x} along walks of length one.
- The output signal from a system on a graph

$$\mathbf{y} = h_0 \mathbf{A}^0 \mathbf{x} + h_1 \mathbf{A}^1 \mathbf{x} + \dots + h_{M-1} \mathbf{A}^{M-1} \mathbf{x} = \sum_{m=0}^{M-1} h_m \mathbf{A}^m \mathbf{x}$$

- **3** Given $\mathbf{A} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}$, $\mathbf{A}^m = \mathbf{U} \boldsymbol{\Lambda}^m \mathbf{U}^{-1}$
- Characteristic polynomial of A

$$P(\lambda) = \det |\mathbf{A} - \lambda \mathbf{I}| = \lambda^{N} + c_1 \lambda^{N-1} + c_2 \lambda^{N-2} + \dots + c_N$$

= $(\lambda - \mu_1)^{p_1} (\lambda - \mu_2)^{p_2} \cdot \dots \cdot (\lambda - \mu_{N_m})^{p_{N_m}}$
 $p_1 + p_2 + \dots + p_{N_m} = N, N_m \le N$

The minimal polynomial of A

$$P_{\min}(\lambda) = (\lambda - \mu_1)(\lambda - \mu_2) \cdots (\lambda - \mu_{N_m})$$

Eigenvalue Decomposition of L

- lacktriangle The set of the eigenvalues of the graph Laplacian ${f L}$ is called graph spectrum
- ② Eigenvalues are usually sorted increasingly: $0 = \lambda_0 \le \lambda_1 \le \lambda_2 \le ... \le \lambda_{N-1}$
- **3** If $\lambda_1 \neq 0$, λ_1 is called algebraic connectivity
- The smoothness of an eigenvector \mathbf{u}_k is $\mathbf{u}_k^\mathsf{T} \mathbf{L} \mathbf{u}_k = \lambda_k$