

Corso di Performance Modeling Of Computer Systems And Networks

A.A. 2022/2023

AMA - Roma

Agenda

Simone Festa - Michele Tosi

Progetto PMCSN: AMA - Roma

Introduzione

• Sistema analizzato: polo impiantistico AMA.

 I mezzi di raccolta di rifiuti, dopo aver completato il servizio, tornano nel polo impiantistico per lo smaltimento.

• Se i mezzi presentano un guasto, vengono riparati.

Problematiche del sistema

- Spesso l'azienda non rispetta i vincoli riguardo il numero minimo di mezzi che devono stare fuori dal sistema.
- Tempi di attesa per riparazioni molto lunghi.

Criticità: mancata gestione ottimale delle code dei mezzi (causa di disservizio pubblico).

Scopi e obiettivi

 Obiettivo: minimizzare numero di mezzi all'interno del sistema in modo da rispettare i QoS:

• CSL2 fuori dal sistema devono essere più del 27%

CSL3 fuori dal sistema devono essere più del 64%.

Modello concettuale

- Utenti mezzi (182: 103 piccoli, 79 grandi).
- Eventi:
 - Arrivo di un mezzo in uno specifico centro.
 - Uscita di un mezzo da uno specifico centro.
- Gestione code: FIFO.

Modello delle specifiche

Equazioni di traffico:

•
$$\lambda_1 = (1 - p_1) \cdot \lambda$$

•
$$\lambda_2 = p_2 \cdot \lambda_1$$

•
$$\lambda_3 = p_3 \cdot \lambda_1$$

$$\lambda_4 = p_4 \cdot \lambda_1$$

•
$$\lambda_5 = p_5 \cdot \lambda_1$$

$$\lambda_6 = p_6 \cdot \lambda_1$$

•
$$\lambda_7 = \lambda$$

•
$$\lambda_8 = (1 - p_7) \cdot \lambda_7$$

Matrice di routing:

	Esterno	Accettazione	Gommista	Carrozzeria	Elettrauti	Carpenteria	Meccanica	Scarico	Checkout
Esterno	0	$1 - p_1$	0	0	0	0	0	p_1	0
Accettazione	0	0	p_2	p_3	p_4	p_5	p_6	0	0
Gommista	0	0	0	0	0	0	0	1	0
Carrozzeria	0	0	0	0	0	0	0	1	0
Elettrauti	0	0	0	0	0	0	0	1	0
Carpenteria	0	0	0	0	0	0	0	1	0
Meccanica	0	0	0	0	0	0	0	1	0
Scarico	p_7	0	0	0	0	0	0	0	$1 - p_{7}$
Checkout	1	0	0	0	0	0	0	0	0

Modello computazionale

- Controllers: contengono la logica dei vari nodi del sistema e un EventHandler per la gestione centralizzata degli eventi.
- Models: contiene codice per l'implementazione della MSQ e le costanti necessarie.
- Utils: contiene codice per la generazione di numeri multi-stream e produzione di statistiche di output.
- Per effettuare la simulazione del sistema è stato utilizzato l'approccio della Next-Event Simulation.

0	t	x
1	t	x
2	t	x
3	t	x
4	t	x

arrival
completion of service by server 1
completion of service by server 2
completion of service by server 3
completion of service by server 4

private double t;
private int x;
private int vehicleType;

Implementazione entry della EventList (EventListEntryClass)

Event-List

Modello computazionale (2)

- Gestione degli arrivi esterni: l'accettazione si preoccupa di indirizzare gli
 eventi esterni nelle varie officine. [eventHandler.getInternalEventsOfficina(off).add(new EventListEntry(event.getT(), event.getX(), event.getX(), event.getX());
- Se i mezzi sono tutti all'interno del sistema il nuovo evento viene restituito con un tipo invalido di veicolo finché non si ha un'uscita.

 [eventHandler.decrementVType(event.getVehicleType());

```
int vType=rnd.getExternalVehicleType(); //vedo qualetipo di veicolo sta arrivando
if(vType==Integer.MAX_VALUE) { // se il veicolo è pari a max_value vuol dire che non possono esserci arrivi
    eventList.get(0).setX(0);
    eventHandler.setEventsAccettazione(eventList);
    return;
}
```

I servizi sono stati modellati come normali troncate.

```
public doubleidfTruncatedNormal(double m, double s, double lowerBound, double upperBound, double r){
   double a = cdfNormal(m, s, lowerBound-1);
   double b = 1.0-cdfNormal(m, s, upperBound);
   double u=idfUniform(a,1.0-b,r);
   return idfNormal(m, s, u);
}
```

Verifica

• In questa fase si è fatto uso di tempi di servizio esponenziali per permettere il

calcolo.

Seed: 123456789.

Intervallo di confidenza: 95%.

Criteri di consistenza considerati:

$$- E[T_s] = E[T_q] + E[S_i]$$

$$- E[N_S] = E[N_a] + m \cdot \rho$$

$$- 0 < \rho \le 1$$

CENTRI	Popolazione in coda	Tempo di attesa	Popolazione nel sistema	Tempo di risposta	Utilizzazione	
Accettazione	0,007±8,107*10-4	3,928±0,487	1,008±0,023	605,64±13,18	0,250±0,006	
Gommista	0,525±0,034	1.048,401±65,237	2,328±0,066	4.661,33±123,75	0,601±0,014	
Carrozzeria	0,030±0,002	183,600±13,003	0,923±0,021	5.598,75±123,27	0,298±0,007	
Elettrauto	6,882±0,710	41.520,13±4097,79	7,766±0,720	46.890,29±4138,81	0,884±0,020	
Carpenteria	0,511±0,031	1.547,12±91,04	2,285±0,062	6.936,14±178,04	0,591±0,013	
Meccanica	8,023±1,485	15.676,39±2.457,30	10,439±1,513	21.076,98±2.494,29	0,899±0,020	
Scarico	3,297±0,343	589,588±58,773	6,634±0,385	1.190,85±64,50	0,834±0,019	
Check-out	1,296±0,061	2.344,62±102,33	1,962±0,072	3.551,079±119,403	0,665±0,015	

Risultati ottenuti dalla simulazione

CENTRI	Popolazione in coda	Tempo di attesa	Popolazione nel sistema	Tempo di risposta	Utilizzazione
Accettazione	0,0065	3,9342	0,9965	603,9342	0,2475
Gommista	0,5078	1.025,8806	2,2898	4.625,8806	0,5940
Carrozzeria	0,0289	174,8555	0,9199	5.574,8555	0,2970
Elettrauto	6,6386	40.233,8164	7,5296	45.633,8164	0,8910
Carpenteria	0,5078	1.538,8209	2,2898	6.938,8209	0,3471
Meccanica	6,5493	13.230,9973	9,2223	18.630,9973	0,8910
Scarico	3,0273	550,4225	6,3273	1.150,4225	0,8250
Check-out	1,2812	2.329,4100	1,9410	3.529,4100	0,6600

Risultati ottenuti analiticamente

Validazione

- Arrivi al sistema con normali troncate nell'arco delle 24 compresi tra 466 e 521,
 valore coerente con i 480 arrivi del sistema reale.
- Nello scarico confluiscono tutti i mezzi presenti nel sistema, una volta chiuse le porte continuano ad arrivare i mezzi dalle officine.
- Nell'accettazione ci si aspetta una popolazione ridotta e costante grazie ai tempi di servizio ridotti e ai numerosi serventi.
- Nelle officine più utilizzate (meccanica ed elettrauto) ci aspettiamo la maggior parte della popolazione del sistema (lunghi tempi di servizio).

Analisi del collo di bottiglia

Servizio medio dei centri del sistema:

$$S_1 = \frac{1}{\mu_1} = 600 \, \text{sec}$$
 $S_5 = \frac{1}{\mu_5} = 5400 \, \text{sec}$ $S_2 = \frac{1}{\mu_2} = 3600 \, \text{sec}$ $S_6 = \frac{1}{\mu_6} = 5400 \, \text{sec}$ $S_3 = \frac{1}{\mu_3} = 5400 \, \text{sec}$ $S_7 = \frac{1}{\mu_7} = 600 \, \text{sec}$ $S_4 = \frac{1}{\mu_4} = 5400 \, \text{sec}$ $S_8 = \frac{1}{\mu_8} = 1200 \, \text{sec}$

 Numero medio di visite ai centri del sistema:

$$v_1 = \frac{\lambda_1}{\gamma} = 0.3$$
 $v_5 = \frac{\lambda_5}{\gamma} = 0.06$ $v_2 = \frac{\lambda_2}{\gamma} = 0.09$ $v_6 = \frac{\lambda_6}{\gamma} = 0.09$ $v_7 = \frac{\lambda_7}{\gamma} = 1$ $v_4 = \frac{\lambda_4}{\gamma} = 0.03$ $v_8 = \frac{\lambda_8}{\gamma} = 0.1$

Analisi del collo di bottiglia

Domanda media per i centri del sistema:

$$D_1 = v_1 \cdot S_1 = 180 \ sec$$
 $D_5 = v_5 \cdot S_5 = 324 \ sec$ $D_2 = v_2 \cdot S_2 = 324 \ sec$ $D_6 = v_6 \cdot S_6 = 486 \ sec$ $D_7 = v_7 \cdot S_7 = 600 \ sec$ $D_8 = v_8 \cdot S_8 = 120 \ sec$

 I valori calcolati sono coerenti con quelli ottenuti dalla simulazione:

	Accettazione	${\bf Gommista}$	${\bf Carrozzeria}$	Elettrauti	Carpenteria	Meccanica	Scarico	Checkout
V	0.300158	0.090122	0.029928	0.029888	0.059984	0.090235	1	0.099851
D (sec)	180.094748	324.439330	161.610493	161.395675	323.915256	487.270761	600	119.821711

 Da questi risultati si nota che è lo scarico il collo di bottiglia.

Simulazione ad orizzonte finito

- Uso della tecnica di Replicazione, 96 repliche indipendenti.
- Intervallo di confidenza calcolato come $t^* \cdot \left(\frac{s}{\sqrt{n-1}}\right)$

Replicazioni indipendenti, run nº 1 dei centri "Scarico" e "Meccanica"

Simulazione ad orizzonte finito

Evoluzione della popolazione per: Sistema

Run n° 92 della simulazione

Evoluzione della popolazione per: Sistema

Run n° 1 della simulazione

QoS violati 536 volte, a causa dei veicoli di tipo 2 (mezzi grandi) nelle 96 replicazioni totali.

Simulazione ad orizzonte infinito

- Utilizzo della tecnica "Batch Means", con B = 1080, K = 96
- Riduce l'influenza dello stato iniziale.

Simulazione ad orizzonte infinito

Numero di volte in cui è stato superato il limite di veicoli nel sistema: 59285 Per i veicoli di tipo 1: 0 e per i veicoli di tipo 2: 59285

In media, nel sistema, troveremo 16 veicoli di piccole dimensioni e 12 veicoli di grandi dimensioni.

Evoluzione della popolazione per: Sistema

Simone Festa - Michele Tosi

Progetto PMCSN: AMA - Roma

Modello migliorativo

- La politica FIFO favorisce i veicoli di piccole dimensioni.
- Servizio sottodimensionato, per le aree che necessitano di veicoli grandi.
- Proposta: Rinnovare la gestione dei mezzi in attesa di un servizio.
- Come: Introducendo un controller generale che aggiorni la priorità dinamicamente, in base ai QoS.
- Perché: Necessità di un approccio che non vada a snaturare il polo impiantistico. Introduzione di veicoli e strumentazione non sono proposte reali.
- Obiettivo: rispettare i QoS illustrati precedentemente.

Veicolo di tipo 1

Veicolo di tipo 2

Modello concettuale

- Utenti mezzi (182: 103 piccoli, 79 grandi).
- Eventi:
 - Arrivo di un mezzo in uno specifico centro.
 - Uscita di un mezzo da uno specifico centro.
- Gestione code: priorità dinamica ed adattativa a seconda dello stato del sistema.

Modello delle specifiche

Equazioni di traffico:

•
$$\lambda_1 = (1 - p_1) \cdot \lambda$$

•
$$\lambda_2 = p_2 \cdot \lambda_1$$

•
$$\lambda_3 = p_3 \cdot \lambda_1$$

$$\lambda_4 = p_4 \cdot \lambda_1$$

•
$$\lambda_5 = p_5 \cdot \lambda_1$$

•
$$\lambda_6 = p_6 \cdot \lambda_1$$

•
$$\lambda_7 = \lambda$$

$$\lambda_8 = (1 - p_7) \cdot \lambda_7$$

Matrice di routing:

	Esterno	Accettazione	Gommista	Carrozzeria	Elettrauti	Carpenteria	Meccanica	Scarico	Checkout
Esterno	0	$1 - p_1$	0	0	0	0	0	p_1	0
Accettazione	0	0	p_2	p_3	p_4	p_5	p_6	0	0
Gommista	0	0	0	0	0	0	0	1	0
Carrozzeria	0	0	0	0	0	0	0	1	0
Elettrauti	0	0	0	0	0	0	0	1	0
Carpenteria	0	0	0	0	0	0	0	1	0
Meccanica	0	0	0	0	0	0	0	1	0
Scarico	p_7	0	0	0	0	0	0	0	$1 - p_7$
Checkout	1	0	0	0	0	0	0	0	0

Modello computazionale

- Invariato rispetto al precedente a parte per la gestione della priorità nelle code.
- Viene introdotto un contatore dei mezzi del sistema per ciascun tipo di veicoli.
- La classe EventHandler viene utilizzata come controller centrale per gestire la priorità delle code.

```
public int getNextEventFromQueue(List<EventListEntry> queue)
{
  for(int i=0;i<queue.size();i++){
    if(queue.get(i).getVehicleType()==this.priorityClass){
      return i;
    }
  }
  return 0;
}</pre>
```

Metodo per ottenere prossimo evento da gestire

```
if(eventHandler.getNumberV1()>MAX_VEICOLI1|| eventHandler.getNumberV2()>MAX_VEICOLI2){
    eventHandler.incrementSuperatoMax();
    if (eventHandler.getNumberV1()>MAX_VEICOLI1) eventHandler.incrementSuperatoMaxVeicoli1();
    else eventHandler.incrementSuperatoMaxVeicoli2();
}
if(eventHandler.getNumberV1()>=(MAX_VEICOLI1*BOUNDV1)){
    eventHandler.setPriorityClassV1();
}
if(eventHandler.getNumberV2()>=(MAX_VEICOLI2*BOUNDV2)){
    eventHandler.setPriorityClassV2();
}
if(eventHandler.getNumberV1()>MAX_VEICOLI1*BOUNDV1 && eventHandler.getNumberV2()>MAX_VEICOLI2*BOUNDV2){
    if (eventHandler.getNumberV1() - MAX_VEICOLI1*BOUNDV1)>= (eventHandler.getNumberV2() - MAX_VEICOLI2*BOUNDV2)){
        eventHandler.setPriorityClassV1();
    } else eventHandler.setPriorityClassV2();
}
```

Metodo per modificare priorità

Fase di verifica

- Sfruttando distribuzioni esponenziali torniamo alla verifica precedente.
- L'introduzione di classi di priorità apporta miglioramenti solo nel caso locale.
- I tempi globali rimangono gli stessi.
- Criteri di consistenza considerati:

$$- E[T_s] = E[T_q] + E[S_i]$$

$$- E[N_S] = E[N_q] + m \cdot \rho$$

$$-0 < \rho \le 1$$

Validazione

- tempi di interarrivo sono gli stessi ottenuti precedentemente dai report AMA.
- Viene modificato solo l'ordine con cui gli eventi sono serviti, si mantiene quindi consistenza tra dati reali e simulazione:
 - Nello scarico confluiscono tutti i mezzi presenti nel sistema, una volta chiuse le porte continuano ad arrivare i mezzi dalle officine.
 - Nell'accettazione ci si aspetta una popolazione ridotta e costante grazie ai tempi di servizio ridotti e ai numerosi serventi.
 - Nelle officine più utilizzate (meccanica ed elettrauto) ci aspettiamo la maggior parte della popolazione del sistema (lunghi tempi di servizio).

Analisi del collo di bottiglia

Servizio medio dei centri del sistema:

$$S_1 = \frac{1}{\mu_1} = 600 \, \text{sec}$$
 $S_5 = \frac{1}{\mu_5} = 5400 \, \text{sec}$ $S_2 = \frac{1}{\mu_2} = 3600 \, \text{sec}$ $S_6 = \frac{1}{\mu_6} = 5400 \, \text{sec}$ $S_3 = \frac{1}{\mu_3} = 5400 \, \text{sec}$ $S_7 = \frac{1}{\mu_7} = 600 \, \text{sec}$ $S_4 = \frac{1}{\mu_4} = 5400 \, \text{sec}$ $S_8 = \frac{1}{\mu_8} = 1200 \, \text{sec}$

 Numero medio di visite ai centri del sistema:

$$v_1 = \frac{\lambda_1}{\gamma} = 0.3$$
 $v_5 = \frac{\lambda_5}{\gamma} = 0.06$ $v_2 = \frac{\lambda_2}{\gamma} = 0.09$ $v_6 = \frac{\lambda_6}{\gamma} = 0.09$ $v_7 = \frac{\lambda_7}{\gamma} = 1$ $v_4 = \frac{\lambda_4}{\gamma} = 0.03$ $v_8 = \frac{\lambda_8}{\gamma} = 0.1$

Analisi del collo di bottiglia

Domanda media per i centri del sistema:

$$D_1 = v_1 \cdot S_1 = 180 \ sec$$
 $D_5 = v_5 \cdot S_5 = 324 \ sec$ $D_2 = v_2 \cdot S_2 = 324 \ sec$ $D_6 = v_6 \cdot S_6 = 486 \ sec$ $D_7 = v_7 \cdot S_7 = 600 \ sec$ $D_8 = v_8 \cdot S_8 = 120 \ sec$

 I valori calcolati sono coerenti con quelli ottenuti dalla simulazione:

	Accettazione	${\bf Gommista}$	${\bf Carrozzeria}$	Elettrauti	Carpenteria	Meccanica	Scarico	Checkout
V	0.300158	0.090122	0.029928	0.029888	0.059984	0.090235	1	0.099851
D (sec)	180.094748	324.439330	161.610493	161.395675	323.915256	487.270761	600	119.821711

 Da questi risultati si nota che è lo scarico il collo di bottiglia.

Simulazione ad orizzonte finito

- Uso della tecnica di Replicazione, 96 repliche indipendenti.
- Intervallo di confidenza calcolato come $t^* \cdot \left(\frac{s}{\sqrt{n-1}}\right)$

QoS non vengono mai violati nelle 96 replicazioni totali.

N.B. modello transiente poco accurato rispetto al funzionamento dell'azienda

Simulazione ad orizzonte finito

Evoluzione della popolazione per: Sistema

Modello migliorativo: run n° 92

Evoluzione della popolazione per: Sistema

Modello base: run n° 92

60000

Tempo

80000

Simone Festa - Michele Tosi

Progetto PMCSN: AMA - Roma

100000

40000

20000

Simulazione ad orizzonte infinito

- Utilizzo della tecnica "Batch Means", con B = 1080, K = 96
- Riduce l'influenza dello stato iniziale.

Simulazione ad orizzonte infinito

Numero di volte in cui è stato superato il limite di veicoli nel sistema: 10184 Per i veicoli di tipo 1: 798 e per i veicoli di tipo 2: 9386

In media, nel sistema, troveremo 20 veicoli di piccole dimensioni e 8 veicoli di grandi dimensioni.

Evoluzione della popolazione per: Sistema

Simone Festa - Michele Tosi

Progetto PMCSN: AMA - Roma

Conclusione

- Gestione diversa delle code porta a un miglioramento dell'83%.
- Lieve peggioramento per i veicoli di tipo 1 ma netto miglioramento di quelli di tipo 2.
- Si è fatto uso di priorità dinamica poiché:
 - Veicoli di tipo 1 non riuscirebbero, a causa della loro capacità minore, a fornire la stessa efficienza di quelli di tipo 2.
 - Veicoli di tipo 2 non possono completare tutti i servizi dei veicoli di tipo 1.

Grazie per l'attenzione!

Simone Festa - Michele Tosi Università degli Studi di Roma "Tor Vergata" Facoltà di Ingegneria

https://github.com/simonefesta/AMA-ROMA_PMCSN