Paper ID: 1348

MBrain: A Multi-channel Self-Supervised Learning Framework for Brain Signals

Donghong Cai^{1*}, Junru Chen^{1*}, Yang Yang^{1†}, Teng Liu¹, Yafeng Li²

¹Zhejiang University ²Nuozhu Technology Co., Ltd.

jrchen_cali@zju.edu.cn

yangya@zju.edu.cn

Background

Brain signals are

foundational

quantitative data for the study of human brain

Brain signals can be measured by

various

methods

The patterns of brain signals help us to

understand

the brain functions

Cognitive science

The scientific investigation of the mind and intelligence

Emotion recognition

The process of identifying human emotion

Neurological disorders

The diseases of the central and peripheral nervous system

Background

■ Non-invasive Methods (**EEG**)

- Easy to implement without any surgery.
- Cannot simultaneously consider temporal and spatial resolution along with the deep brain information.

☐ Invasive Methods (SEEG)

- Require extra surgeries to insert the recording devices.
- Have access to more precise and higher signal-to-noise data.

Background

Motivation

- Why do we want to model EEG and SEEG signals uniformly?
 - Share similar physiological mechanisms
 - Closely related in healthcare applications

Challenges

- Lack of a unified method for handling both signals.
 - Varying monitoring location for SEEG.
 - Different signal patterns for EEG and SEEG signals.

- ➤ A gold-standard collection location
- Collect noisy and rough scalp signals

- Different number and position
- Collect more stereo and deeper signals

Challenges

- ☐ Lack of a unified method for handling both signals.
 - Varying monitoring location for SEEG.
 - Different signal patterns for EEG and SEEG signals.
- ☐ A gap between existing methods and applications.
 - Capture the spatial and temporal correlations

Mainstream hypothesis:

The synergistic effects between different brain regions reflect different brain functions.

How to Model Brain Signals Uniformly?

Muller, L., Chavane, F., Reynolds, J. et al. Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 19, 255–268 (2018).

How to Model Brain Signals Uniformly?

Conclusion:

The correlation patterns can help distinguish different brain states.

How to Model Brain Signals Uniformly?

How to capture spatial correlation patterns?

Proposition

$$I(x_{t+k}^{i}; c_{t}^{i}, \Phi(\{c_{t}^{j}\}_{j\neq i})) \ge I(x_{t+k}^{i}; c_{t}^{i}), \qquad (1)$$

Theorem 1. Given a sample set for each channel $X^i = \{x_1^i, \ldots, x_N^i\}$, $i = 1, \ldots, n$ consisting of one positive sample from $p(x_{t+k}^i | \Phi(c_t))$ and N-1 negative samples from $\sum_j p(x_{t+k}^j)/n$, where n is the number of channels. The optimal \mathcal{L}_N^{opt} is the lower bound of $\sum_i I(x_{t+k}^i; \Phi(c_t))$:

$$\mathcal{L}_{N}^{opt} \ge \sum_{i} \left[-I(x_{t+k}^{i}; \Phi(c_{t})) + \log N \right]. \tag{3}$$

How to capture temporal correlation patterns?

Conclusion:

It is necessary to model the correlations across time steps.

How to capture temporal correlation patterns?

 $\mathcal{L}_3 = -\mathbb{E}_{t,\tau,i} \left[Y_t(\tau,i) \log \hat{q} + (1-Y_t(\tau,i)) \log (1-\hat{q}) \right],$

Experimental Setup

Experimental Setup

Baseline methods

- Supervised model MiniRocket [1]
- Graph-based model GTS [6]
- □ Reconstruction-based model TST [5]
- □ Contrastive-based models CPC [2], SimCLR [3], T-Loss [4], TS-TCC [7], TS2Vec [8]
- [1] Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. 2021. Minirocket: A very fast (almost) deterministic transform for time series classification. In KDD. 248–257.
- [2] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
- [3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In ICML. 1597–1607.
- [4] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. 2019. Unsupervised scalable representation learning for multivariate time series. In NeurIPS.
- [5] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff. 2021. A Transformer-based framework for multivariate time series representation learning. In KDD. 2114–2124.
- [6] Chao Shang, Jie Chen, and Jinbo Bi. 2021. Discrete graph structure learning for forecasting multiple time series. In ICLR.
- [7] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and Cuntai Guan. 2021. Time-series representation learning via temporal and contextual contrasting. In IJCAI. 2352–2359.
- [8] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu. 2021. TS2Vec: Towards universal representation of time series. arXiv preprint arXiv:2106.10466 (2021).

Models

MiniRocket

CPC

SimCLR

T-Loss

TST

GTS

TS-TCC

TS2Vec

MBrain

Experimental Setup Downstream SSL Valid **Test Train** Subject Achieve **Dependent** Competitive Performance **Subject Independent** Domain k m Clinically Generalization Feasible Setting Domain Adaptation

Subject Dependent Experiment

SEEG dataset

		[28.92% ↑	26.85% ↑	
Models	Pre.	Pre. Rec. F_1		F_2	
MiniRocket	22.98±0.15	66.24±0.26	31.79±0.19	43.58±0.22	
CPC	27.65±4.49	55.07±3.52	34.20±3.40	42.73±2.57	
SimCLR	11.06±3.95	51.54 ± 5.87	16.60±4.68	25.41±4.95	
T-Loss	29.29 ± 2.65	51.55 ± 2.53	36.00±1.97	43.13±1.57	
TST	13.60 ± 3.48	44.65 ± 4.21	19.80±3.73	28.41±3.29	
GTS	24.29 ± 4.26	40.39 ± 5.80	29.16±2.97	34.17±2.36	
TS-TCC	22.10 ± 7.65	49.94 ± 5.41	25.32 ± 8.02	32.74±7.95	
TS2Vec	30.56±2.17	52.83±2.89	36.03±1.72	43.35±1.59	
MBrain	37.97±2.75	65.07±2.68	46.45 ±2.25	55.28±1.77	

Domain Generalization Experiment

SEEG dataset

EEG dataset

4.74% 1

on average

Models	SEEG			EEG					
	Pre.	Rec.	F_1	F_2	Pre.	Rec.	F_1	F_2	AUROC
MiniRocket	5.85 ± 0.20	39.18±0.59	9.93±0.29	17.24±0.37	22.86 ± 0.84	63.08±1.47	33.56±1.11	46.66±1.33	75.30±0.77
CPC	22.88±5.06	23.92±3.90	20.11±3.27	21.23±2.49	22.81±2.04	58.31±7.55	32.50±1.24	44.02±2.43	74.53±1.00
SimCLR	14.02 ± 3.71	26.36±4.99	11.07±3.49	13.47±4.01	12.63 ± 1.62	74.88 ± 16.77	21.33±1.95	36.78±2.61	55.86±5.36
T-Loss	21.38 ± 4.25	28.50 ± 4.07	23.48±3.30	25.90±3.06	20.72 ± 1.26	69.25±3.99	31.82±1.08	47.00±0.50	75.88±0.49
TST	8.37 ± 3.96	32.48 ± 8.25	11.80±3.91	15.67±3.69	15.65 ± 1.54	28.59 ± 12.93	19.65±4.36	23.87±8.09	58.20±4.27
GTS	24.16 ± 5.91	27.99 ± 4.98	22.77±2.69	24.15±2.79	18.86±1.09	62.51 ± 5.04	28.88±0.88	42.54±1.48	71.69±1.88
TS-TCC	24.24 ± 4.51	26.61±5.96	19.89±5.23	22.11±5.08	15.55 ± 0.88	39.76 ± 11.08	21.89±1.20	29.60±4.64	58.63±1.62
TS2Vec	27.93 ± 5.23	29.49±3.97	26.78±3.29	27.88±3.52	21.40±0.63	58.31±6.14	31.24±1.18	43.24±2.78	73.35±1.02
MBrain	30.69 ± 5.92	38.94±4.34	32.61±3.60	35.64±3.04	22.13±1.03	76.99±4.49	34.32 ± 0.90	51.34±0.97	77.96±0.97
		2	1.77% ↑	27.83%	↑		<u>'</u>		

Domain Adaptation Experiment (DA)

Case Study

Conclusion:

MBrain can learn the correlation patterns of brain signals.

Conclusions

- ☐ We are the **first** to design a generalized self-supervised learning framework MBrain to pre-train both EEG and SEEG signals.
- ☐ MBrain explicitly capture the spatial and temporal correlations of brain signals while giving channel-wise predictions.
- We validate the effectiveness and clinical value of MBrain through extensive experiments on real-world EEG and SEEG datasets.

THANKS | Q&A

More relevant research of our group: http://yangy.org
Contact: jrchen_cali@zju.edu.cn; yangya@zju.edu.cn

