

ADMINISTRAÇÃO

IBM0112 DATA MINING

Tipos de visualizações de dados

Cassius Figueiredo

O histograma

• É um gráfico de barras que apresenta uma distribuição de frequências (quantidade de ocorrências) de dados em intervalos distintos, chamados de caixas.

Como criamos o histograma

• Definimos intervalos de valores que irão delimitar nossas "caixas", onde classificaremos cada um dos dados da variável em estudo.

• Pegamos cada um dos valores e colocamos na caixa apropriada.

Ao final, teremos uma visualização assim...

O histograma

Fonte: https://matematicanareal.wordpress.com/2015/10/25/o-que-e-normal/

A importância do histograma

 Visualização que nos ajuda a fazer uma avaliação do comportamento estatístico do dado em análise.

A importância do histograma

Fontes: Associação Brasileira de Estudos Populacionais e https://teobcalvo.wordpress.com/2021/12/23/porque-usar-distribuicao-exponencial/

O gráfico de Pareto

• É um histograma adaptado para que possamos avaliar os impactos de determinados aspectos de um problema e definirmos abordagens de solução.

O histograma

- São visualizações que trazem em uma única imagem diversas características estatísticas:
 - Mediana
 - Valores extremos (máximo e mínimo)
 - Concentração de valores
 - Distribuição dos dados
 - Outliers

O gráfico de barras

- A forma mais simples e direta de comparar dados/informações é por meio de um gráfico de barras.
- É importante identificar o(s) elemento(s) chave que queremos abordar em nossa visualização.

• Imaginem a situação onde queremos apresentar a evolução de vendas de um determinado produto no decorrer de um período de tempo.

Gráfico de barras

Fonte: autor desconhecido

Variações do gráfico de barras

• E se quisermos indicar o aproveitamento de alunos em uma determinada avaliação?

 Como estamos identificando os alunos por seus nomes pode ser mais apropriado apresentar as barras horizontalmente.

O gráfico de barras horizontais

Gráfico de barras empilhadas

 Um outro cenário é termos que passar mais de uma informação por período/barra.

Gráfico de barras empilhadas 100%

ATENÇÃO!

• Devemos sempre apresentar a informação de forma correta e justa!

Atenção!

Atenção!

Fonte: autor desconhecido

Evitar a poluição visual e excesso de informações

Mapas de calor

 Os mapas de calor utilizam cores para indicar comportamento dos dados.

• São muito utilizados quando queremos dar ênfase a padrões dos dados, no lugar do próprio dado em si.

Mapas de calor

Gráficos de bolhas

• Utilizam tamanhos de círculos e cores para representar valores e agregar informação útil a uma visualização única.

 São particularmente importantes quando não precisamos nos importar com a apresentação de um valor exato, e sim de uma escala de valor.

Gráficos de bolhas

Fonte: autor desconhecido

Gráficos de bolhas animado

• É uma visualização bem conhecida, que facilita a apresentação de informações que variam no decorrer de um período.

Gráfico de linhas

• E se quisermos chamar atenção para uma série de dados em especial, dentre outras?

Podemos fazer uso do processamento pré-atentivo.

 Podemos e devemos incluir informações textuais em nossa visualização para facilitar o entendimento do público-alvo.

• Porém, devemos ter cuidado para não poluir demais a visualização!

Principais épocas de términos de relacionamento

de Acordo com as Atualizações de Status no Facebook

O gráfico de áreas

 São que gráficos de linha onde preenchemos toda a área abaixo da linha. Este tipo de visualização é muito útil quando queremos chamar a atenção para comportamentos diferenciados entre os dados.

O gráfico de áreas

Fonte: autor desconhecido

Fluxos e linhas do tempo

• São visualizações mais complexas, muitas vezes criadas por especialistas e com a utilização de ferramentas específicas.

 Porém são recursos poderosos para visualizarmos processos e fluxos no tempo mais complexos, além de ter um grande apelo visual.

Fluxos e linhas do tempo

Fluxos e linhas do tempo

O diagrama de dispersão

• É uma visualização que nos ajuda a avaliar como duas variáveis se relacionam entre si e perceber padrões de comportamento comuns

 Apesar de muitas vezes não serem percepções definitivas, nos ajudam a melhorar nosso entendimento sobre a dinâmica do comportamento das variáveis.

 Colocamos os valores de cada uma das duas variáveis em estudo em um dos eixos (X e Y) e marcamos o ponto de cruzamento entre estes valores.

O diagrama de dispersão

Reta de tendência ou regressão

• Podemos incluir uma reta que nos ajudará a ter uma ideia melhor sobre o "comportamento médio" das variáveis.

Reta de tendência ou regressão

Correlação a partir do diagrama de dispersão

• A correlação é uma medida estatística importante para avaliarmos o comportamento conjunto de duas variáveis numéricas.

Correlação a partir do diagrama de dispersão

Atenção! Correlação não indica causalidade!

 Apesar da correlação ser uma medida estatística muito relevante, nunca devemos partir do princípio que uma correlação alta seja indicativo de relação de causa-efeito entre as variáveis em estudo.

Vale uma visita ao site Spurious Correlations (em inglês).

Atenção! Correlação não indica causalidade!

O gráfico radar

• Utilizado para apresentar características dos dados que favorecem a comparação dos dados de forma simples e compacta.

Muito usado em jogos eletrônicos!

O gráfico radar

Gymnast Scoring Radar Chart

Fonte: https://www.sipoonature.com/d3-radar-chart

O gráfico radar

TOP 3 JOGADORES

L. Messi

Nacionalidade: Argentina Idade: 31 Posição: RF Valor: €110.5MM Clube: FC Barclona Score: 94

Cristiano Ronaldo

Nacionalidade: Portugal Idade: 33 anos Posição: ST Valor: €77MM Clube: Juventus Score: 94

Neymar Jr

Nacionalidade: Brasil Idade: 26 Posição: LW Valor: €118.5MM Clube: PSG Score: 92

Habilidade (Tudo) Acceleration Aggression ✓ Agility ✓ Balance BallControl Composure Crossing Curve Dribbling Finishing FKAccuracy HeadingAccuracy Interceptions Jumping LongPassing LongShots Marking Penalties Positioning ✓ Reactions ShortPassing ShotPower SlidingTackle SprintSpeed ✓ Stamina StandingTackle ✓ Strength Vision Volleys

O diagrama de rede

• Visualizações baseadas em grafos que nos indicam relações entre elementos. Formada por nós e arestas.

O diagrama de rede

 Popularmente conhecidos por gráficos de pizza são, provavelmente, as visualizações mais conhecidas e mais utilizadas, principalmente na área de negócios de forma geral.

 Apesar de muito usada, esta visualização apresenta algumas deficiências e casos de uso um pouco mais específicos.

 De forma simples, basta apresentar as partes como "fatias" de uma pizza (ou, se preferir, uma torta) onde a soma das proporções das partes deverá ser sempre igual a 100%.

Peso dos itens no IPCA (em jan/14)

 Muitos autores defendem que um gráfico de setores com muitas partes, como vimos no slide anterior, pode e deve ser substituído por um gráfico de barras.

 Outra abordagem interessante é reduzir o número de partes e destacar as partes para as quais queremos atenção, seja com algum recursos visual ou agregando partes menores.

• Um gráfico de setores ideal não deveria ter mais de três partes!

Treemap

• É uma boa opção ao gráfico de setores. Divide um quadrado ou retângulo em setores, ilustrando algum grau de hierarquia ou relação de parte com o todo.

• As hierarquias podem ser identificadas, via rótulos, diretamente na visualização.

• Vamos ver como fica, comparando com um gráfico de setores.

O gráfico de setores vs. Treemap

O gráfico de setores vs. Treemap

Treemap

• Podemos ainda usar cores para indicar comportamentos que consideramos relevantes e queremos destacar.

 Na próxima visualização, azul indica o crescimento em relação ao período anterior e o vermelho queda.

Treemap

Sunburst

 Visualização que lembra um gráfico de setores, porém com características de um Treemap e esteticamente mais bonita.

 Apresenta hierarquia de informações de dentro para fora, com o nível mais alto sendo representado no anel interior da visualização e aumentando a granularidade da informação de dentro para fora.

Sunburst

Sunburst

Fonte: https://pt.excelideas.net/13274842-how-to-use-sunburst-chart-in-excel

Uso de mapas em visualizações

• A utilização de mapas como base de uma visualização é mais um recurso muito importante e necessário na "caixa de ferramentas" de qualquer cientista de dados.

 Os mapas trazem para as visualizações uma imagem conhecida para as pessoas e podem agregar um senso de pertencimento e inclusão ao público-alvo.

Uso de mapas em visualizações

Fonte: https://blog.curso-r.com/posts/2019-02-10-sf-miojo/

Uso de mapas em visualizações

Nuvem de palavras

 Para apresentar a frequência de ocorrência e/ou relevância de palavras específicas em um conjunto de palavras podemos utilizar a visualização chamada Nuvem de palavras.

• É um recurso de visualização cada vez mais utilizado pela mídia pois é de simples entendimento e bastante informativo, quando utilizada corretamente.

 Podemos agregar informações a uma nuvem de palavras por meio de cores.

Nuvem de palavras

Nuvem de palavras

Fonte: Francisco Giovanni David Vieira

Tabelas

• Um recurso que deve ser utilizado com cuidado, mas que pode ser sempre considerado uma opção válida, é a utilização de tabelas para apresentação de informações.

 Neste caso, o uso do processamento pré-atentivo é uma ferramenta muito importante na indicação dos dados relevantes para o públicoalvo.

Tabelas

	2010	2011	2012	2013	2014	2015	2016
China	10.10	9.01	7.33	7.23	6.76	6.36	6.12
India	8.76	5.25	4.13	5.10	6.14	6.90	5.89
United States	1.68	0.85	1.46	0.96	1.80	2.09	0.74
Indonesia	4.83	4.79	4.68	4.24	3.73	3.65	3.85
Brazil	6.50	3.00	0.98	2.07	-0.38	-4.37	-4.25
Pakistan	-0.48	0.61	1.34	2.21	2.51	2.61	3.44
Nigeria	5.00	2.12	1.52	2.61	3.52	-0.02	-4.16
Bangladesh	4.40	5.25	5.28	4.77	4.84	5.37	5.96
Russia	4.46	5.20	3.48	1.57	-1.04	-3.04	-0.41
Mexico	3.49	2.12	2.15	-0.06	1.45	1.90	1.58
	2010	2011	2012	2013	2014	2015	2016
China	10.10	9.01	7.33	7.23	6.76	6.36	6.12
India	8.76	5.25	4.13	5.10	6.14	6.90	5.89
United States	1.68	0.85	1.46	0.96	1.80	2.09	0.74
Indonesia	4.83	4.79	4.68	4.24	3.73	3.65	3.85
Brazil	6.50	3.00	0.98	2.07	-0.38	-4.37	-4.25
Pakistan	-0.48	0.61	1.34	2.21	2.51	2.61	3.44
Nigeria	5.00	2.12	1.52	2.61	3.52	-0.02	-4.16
Bangladesh	4.40	5.25	5.28	4.77	4.84	5.37	5.96
Russia	4.46	5.20	3.48	1.57	-1.04	-3.04	-0.41
Mexico	3.49	2.12	2.15	-0.06	1.45	1.90	1.58

Fonte: Schwabish , Jonathan; Better Data Visualizations A Guide for Scholars, Researchers, and Wonks