Groupe IPESUP Année 2022-2023

Devoir Maison n°0

À rendre par groupe de 2 ou 3 pour le 21/09/2022 – durée : 4 heures

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Les étudiants sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Les réponses doivent toutes être soigneusement justifiées. Les calculatrices sont interdites.

Barème indicatif :		
• Exercice 1 .		
• Exercice 2 .		
• Exercice 3 .		
• Exercice 4 .		
• Exercice 5 .		
• Exercice 6 .		
• Exercice 7 .		
• Exercice 8 .		
• Exercice 9 .		

Exercice 1.

1. Écrire aussi simplement que possible les expressions suivantes.

(a) (*)
$$A = (2 + \sqrt{5})^2$$

(b) (*)
$$B = \left(\sqrt{2\sqrt{3}}\right)^4$$

(c)
$$(**)C = \sqrt{11 + 6\sqrt{2}}$$

2. (**) Exprimer la quantité suivante sans racine carrée au dénominateur.

$$D = \frac{1}{1 + \sqrt{2} + \sqrt{3}}$$

Exercice 2.

(**) Montrer que $\sqrt{5}$ est un irrationnel. Généraliser.

Exercice 3.

Etudier la convergence des suites définies par :

$$1. (**) u_n = \ln\left(\frac{n^n}{2^n}\right)$$

2. (**)
$$v_n = \sqrt{n + \cos(n)} - \sqrt{n}$$

3. (***)
$$w_n = \frac{\ln(1 + e^{-n})}{e^{-n}}$$

(on pourra penser à un taux d'accroissement)

4. (***)
$$\forall n \in \mathbb{N}^*, t_n = \frac{1}{n^2} \sum_{k=1}^n \left\lfloor \frac{k^2}{n} \right\rfloor$$

La partie entière d'un réel x, notée |x|, désigne le plus grand entier relatif plus petit ou égal à x.

Exercice 4.

On pose, pour x réel :

$$B(x) = \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}}$$

1. (*) Résoudre dans \mathbb{R} l'inéquation :

$$x - 2\sqrt{x - 1} \ge 0$$

- 2. (*) Donner l'ensemble de définition de B.
- 3. (*) Démontrer que pour tout $x \in [1, +\infty[$, on a :

$$(B(x))^2 = 2x + 2|x - 2|$$

4. (**) En déduire, sans le symbole valeur absolue et selon les valeurs de x, la valeur de B(x).

Exercice 5.

(***) Pour $x \in [0,1[$, calculer

$$F(x) = \int_0^x \ln\left(\frac{1+t}{1-t}\right) dt.$$

Montrer que $\lim_{x\to 1} F(x) = 2\ln(2)$

Groupe IPESUP Année 2022-2023

Exercice 6.

Pour $n \in \mathbb{N}$, f_n désigne la fonction de $]0,\pi]$ dans \mathbb{R} définie par

$$\forall x \in]0, \pi], \quad f_n(x) = \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{\sin\left(\frac{x}{2}\right)}$$

- 1. (**) En utilisant la définition de la dérivée, montrer que $\lim_{u\to 0} \frac{\sin(u)}{u} = 1$
- 2. (**) En déduire que la fonction f_n admet une limite que l'on précisera en 0. Ceci permet de prolonger f_n en une fonction continue sur $[0, \pi]$, encore notée f_n et de poser

$$I_n = \int_0^{\pi} f_n(t)dt$$

3. (***) Si $n \in \mathbb{N}$, calculer $I_{n+1} - I_n$, puis I_n .

Exercice 7.

- 1. (*) On lance un dé non pipé. On répète 4 fois l'opération, les lancers successifs étant supposés indépendants. Quelle est la probabilité pour que l'on obtienne au moins un 6?
- 2. (*) On considère deux dés non pipés. Donner la probabilité qu'en 24 lancers, les dés amènent au moins un double 6. Est-elle supérieure à $\frac{1}{2}$?
- 3. Soit $n \in \mathbb{N}^*$. On considère n dés non pipés. On les jette $4 \times 6^{n-1}$ fois.
 - (a) (***) Déterminer la probabilité p_n d'obtenir au moins une fois n six.
 - (b) (***) Déterminer la limite de la suite $(p_n)_{n>1}$.

Exercice 8.

- 1. (**) Trouver les nombres complexes non nuls z tels que $Z = z + \frac{1}{z}$ soit réel.
- 2. (a) (*) Soient z et z' deux nombres complexes. Montrer:

$$|z + z'|^2 + |z - z'|^2 = 2(|z|^2 + |z'|^2).$$

- (b) (*) Donner une interprétation géométrique de cette égalité en considérant un parallélogramme, les longueurs de ses côtés, les longueurs de ses diagonales.
- (c) (*) Soient A, B, C trois points non alignés du plan, I le milieu de [BC]. Déduire de (b) une expression de AI^2 en fonction de AB^2 , BC^2 , CA^2 .

Exercice 9.

Soit $n \in \mathbb{N}^*$, E un ensemble de cardinal n

- 1. Soit B un sous-ensemble de E de cardinal r avec r un entier entre 0 et n. Montrer que le nombre de sous-ensembles A de E tel que $A \subseteq B$ vaut 2^r
- 2. En déduire que le nombre de couples (A, B) de sous-ensembles de E tels que $A \subset B$ vaut $\sum_{k=0}^{n} \binom{n}{k} 2^k$
- 3. Calculer cette somme et conclure.