=> Eneagy por symbol, Es for a const ellation is the average of the Equared Euclidean distances of the points from the origin.

Feron M-aug constellation, cach symbol carries log 2 M bits of infermation. Hence, we candofine the average energy for bit, Eb, as Eb = $\frac{Es}{log_2 M}$

- Baseband 4 passband - going back.

4p(t) = 4c(t)cos(27fet)-4s(t)sin(27fet) = e(t)cos01t)ces(27fet) - e(t)sino(t)sin(27fet)

e(t) =
$$\int u_c^2(t) + u_s^2(t)$$
, $\theta(t) = tan^{-1} \left(\frac{u_s(t)}{u_c(t)} \right) \left(\frac{u_s(t)}{u_c(t)} \right) \times \frac{u_s(t)}{u_s(t)} \times \frac{u_s($

E= 117112/2

up(t) =
$$\frac{\sqrt{E_s con\theta}}{||p||/\sqrt{2}}$$
 p(t) cos (200) (200) $\frac{\sqrt{E_s sin\theta}}{||p||/\sqrt{2}}$ p(t) sin(200) $\frac{\sqrt{E_s sin\theta}}{||p||/\sqrt{2}}$ up(t) = $\frac{\sqrt{E_s sin\theta}}{\sqrt{E_s sin\theta}}$ $\frac{\sqrt{E_s sin\theta}}{\sqrt{E_s sin\theta}}$

uplts
$$=$$
 $\frac{\sqrt{\text{Esumo}}}{\sqrt{\frac{11911/52}{11911/52}}}$, $\frac{\sqrt{\text{Esumo}}}{\sqrt{\frac{11911/52}{11911/52}}}$

so, for the standard rectangular fulse, we have

up (t)
$$= \int \frac{2Es}{T_s} \cos \theta$$
, $\int \frac{2Es}{T_s} \sin \theta$)

Comptellation for the PB digital T_X .

BPSK:- briary phase shift keying: - phase of the carrier changes & amplitude rumains fixed.

 $e(t) = \int b_c^2 + b_s^2 p(t)$, $o(t) = tan^{-1} \left(\frac{bs}{bc}\right)$

O(t) will have two pessible values $50, \pi 3$

up (t) = e(t) con (2 rfet + 0(t))

case 1: o(t)=0, up(t) = e(t) cos(201 fet)

case 2: $\theta(t) = \pi$, up(t) = -e(t)cos(2nfet)

equivalently, $\left(\int \frac{2E_s}{T_s} \cos 0, \int \frac{2E_s}{T_s} \sin 0\right); \left(\int \frac{2E_s}{T_s} \cos \pi, \int \frac{2E_s}{T_s} \sin \pi\right)$

corrot: -
$$\left(\frac{2E_5}{E_5}, 0 \right) = \left(\frac{2E_5}{T_5}, -\frac{2E_5}{T_5} \right)$$

9m BPSK, $E_5 = E_6$
 $T_5 = T_6$

Courst. = $\int E_5$

- $\int E_5$

Usin the baris functions

$$\frac{P(t)\cos(2nf_ct)}{11PH/T^2} - \frac{P(t)\sin(2nf_ct)}{11PH/T^2}$$

We have

Opsk: - 4 possibilities for Constellation = $\left(\int E_5 \cos \theta \right)$

Oto 2π , late take 4 equidient points $b \mid \omega$

Oscar: - $\left(\frac{2i-1}{T_5} \right) \frac{\pi}{T_5}$, $i=1,2,3,4$

constellation for QPSK (JES coso, JES sono) $0 = M_4, 37, 57, 77$ (P(t) con(2)

(P(t) con(2nfet), p(t) sin() 11P1) HZ 11P1/JZ

Read lec 41 from the locture folder of 23-24 batch.

P(H) 1 Ts

Coherent detection: - when you assume that pour of the courses synchronized copy of the courses cos 2 of the sin 2 of the are available at the Px. And they are wred for detection.