常微分方程

通解: 含任意常数, 且常数的个数等于微分方程的阶数

可分离变量微分方程

$$g(y)dy = f(x)dx$$

$$\int g(y)dy = \int f(x)dx \quad y' = \frac{dy}{dx}$$

齐次方程

$$\frac{dy}{dx} = \varphi(\frac{y}{x})$$
 x, y 整体出现

齐次方程求解

- 令 $u = \frac{y}{x}$ 求x与u的关系式y = xu
- 求y=xu 关于 $\frac{dy}{dx}=u+x\frac{du}{dx}$
- 转为可分离变量微分方程

一阶线性微分方程

$$rac{dy}{dx}+P(x)y=Q(x)$$

其通解公式为: $y=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C)$ $Q(x)\equiv 0$ 时其通解为 $y=Ce^{-\int P(x)dx}$

一阶线性齐次微分方程 $Q(x) \equiv 0$,非齐次方程等号右端不等于0

可降阶的高阶方程

•
$$y^n = f(x)$$
 $y^{n-1} = \int f(x)dx + C$

•
$$y'' = f(x, y')$$

令
$$y'=p$$
 $y''=p$ '带入原式得到一阶线性微分方程求y $y=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C)$

•
$$y'' = f(y, y')$$

令
$$y'=p$$
 $y''=rac{dp}{dx}=prac{dp}{dy}$,原函数: $prac{dp}{dy}=f(y,p)$

常系数齐次线性微分方程

$$y$$
" $+p(x)y$ ' $+q(x)y=f(x)$, 当 $f(x)=0$ 时为齐次方程

特解:

$$y$$
" $+py$ ' $+qy=0$ o $r^2+pr+q=0$ $\Delta=p^2-4q>0$ 其解为 $y=C_1e^{r_1x}+C_2e^{r_2x}$ 其中 r_1 与 r_2 为二次方程的两个根 $\Delta=p^2-4q=0$ $y=(C_1+C_2)e^{r_1x}$