LICENCE DE PHYSIQUE, FIP

Mathématiques pour physiciens : TD n°1

Nombres complexes, suites et séries

Emmanuel Baudin & Francesco Zamponi

1 Nombres complexes

Commençons par un petit échauffement autour des nombres complexes :

- 1. Calculer la partie réelle et la partie imaginaire de 5^{3i} , $\frac{1+i}{2-i}$, i^n $(n \in \mathbb{N})$.
- 2. Dessiner les regions suivantes du plan complexe :

$$|z-i+5| = 3$$
 $|3z+i| \ge 1$ $\text{Re}z \le \text{Im}z$ $|z-1|-|z+1| = 2$ $|z-1|+|z+i| = 0$

- 3. Trouver la condition nécessaire et suffisante pour que |z+w|=|z|+|w|
- 4. Prouver par induction que

$$|z_1 + \dots + z_n| \le |z_1| + \dots + |z_n|$$

$$|z_1 \dots z_n| = |z_1| \dots |z_n|$$

$$\overline{z_1 \dots z_n} = \overline{z_1} \dots \overline{z_n}$$

- 5. Calculer la partie réelle et la partie imaginaire de $\cos z$ et $\tanh z$.
- 6. Prouver que pour $\theta \neq 0$

$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{\sin[(n+1)\theta/2]}{\sin(\theta/2)}\cos(n\theta/2)$$

Montrer que la même relation reste vraie pour $\theta \to 0$.

2 Suites de Cauchy

Nous rappelons la définition d'une suite de Cauchy : Une suite u_n est dite de Cauchy (ou elle satisfait le critère de Cauchy) si

$$\forall \epsilon \ \exists N : \forall n, n' > N \ \|u_n - u_{n'}\| < \epsilon \,. \tag{1}$$

Rappelons également la définition d'une norme : Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} . Une norme est une fonction $\|\cdot\|: E \to \mathbb{R}$ qui vérifie les propriétés suivantes pour tout $x, y \in E$:

1.
$$||x|| \ge 0$$

- 2. $||x|| = 0 \Rightarrow x = 0$
- 3. $\|\lambda x\| = |\lambda| \|x\|$ pour $\lambda \in \mathbb{R}, \mathbb{C}$
- 4. $||x + y|| \le ||x|| + ||y||$ (inégalité triangulaire)
- 1. Démontrez le théorème suivant :
 - (a) Toute suite de Cauchy est bornée.
 - (b) Toute suite de Cauchy admettant une sous-suite convergeant vers l converge ellemême vers l.
- 2. Soit $\mathbb{R}[x]$ l'espace des polynômes à coefficients réels. On le munit de la norme

$$\left|\left|\sum_{i=0}^{n} \alpha_{i} x^{i}\right|\right| = \max_{0 \le i \le n} |\alpha_{i}|. \tag{2}$$

- (a) Vérifiez que (2) est bien une norme.
- (b) On considère la suite $(P_n)_{n\in\mathbb{N}}$ avec $P_n = \sum_{k=1}^n \frac{x^k}{k}$. Montrez qu'il s'agit d'une suite de Cauchy. Converge-t-elle dans $\mathbb{R}[x]$? Que peut-on en conclure sur $\mathbb{R}[x]$?

3 Convergence uniforme

- 1. Considérons la suite des fonctions $f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$.
 - (a) En considérant des quotients de termes successifs de la suite $\frac{x^k}{k!}$, montrez la convergence absolue pour tout $x \in \mathbb{C}$. La fonction limite s'appelle la fonction exponentielle e^x
 - (b) En utilisant une suite géométrique, trouver une estimation de $r_n(x) = \sum_{k=n}^{\infty} \frac{x^k}{k!}$ pour x fixé et n suffisament grand.
 - (c) La suite $(f_n)_{n \in \mathbb{N}}$ converge-t-elle uniformément sur $C_R = \{x \in \mathbb{C} | |x| < R\}, R \in \mathbb{R}$? Sur \mathbb{R} ? Sur \mathbb{C} ?
- 2. Considérez les séries de fonctions $\sum_{k=1}^{\infty} g_k$ pour les g_k suivantes. Convergent-elles? Si oui, simplement ou uniformément? La limite, si elle existe, est-elle continue?

(a)
$$g_k(x) = \begin{cases} 0, & x < k \\ (-1)^k, & x \ge k. \end{cases}$$

(b)
$$g_k(x) = \begin{cases} \frac{1}{k^2}, & |x| < k \\ \frac{1}{x^2}, & |x| \ge k \end{cases}$$

(c)
$$g_k(x) = x^k, \ x \in (0,1).$$

3. Montrez que $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2} x^3$ définit une fonction continue pour tout $x \in \mathbb{R}$.

4 Intégration

- 1. Soit la suite de fonctions $f_n(x) = \frac{n^{3/2}x}{1+n^2x^2}$. Vers quoi converge cette suite? La convergence est-elle uniforme? En dérivant par rapport à n, montrer que $f_n(x) \leq \frac{3^{3/4}}{4\sqrt{x}}$. Calculer alors $\lim_{n\to\infty} \int_0^1 f_n(x) \mathrm{d}x$. Comparer avec le calcul direct de $\int_0^1 f_n(x) \mathrm{d}x$.
- 2. On considère la fonction:

$$f_n(x) = \begin{cases} 2^n, & 2^{-n} < x < 2^{-(n-1)} \\ 0, & \text{ailleurs}. \end{cases}$$

Montrer que f_n est dominée par une fonction simple . Peut-on appliquer le théorème de convergence dominée à $\int_0^1 f_n(x) \mathrm{d}x$?

5 Exercices maison

- 1. Calculer la partie réelle et la partie imaginaire de $\log z$.
- 2. Déterminer le rayon de convergence des séries suivantes :

$$\sum_{n=1}^{\infty} \frac{z^n}{(n!)^a}, \ a > 0 \qquad \sum_{n=1}^{\infty} \frac{n^n}{n!} z^n \qquad \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} z^n \qquad \sum_{n=1}^{\infty} e^{-\sqrt{n}} z^n$$

$$\sum_{n=1}^{\infty} n! e^{-n^a} z^n, \ a > 0 \qquad \sum_{n=1}^{\infty} c^{n^2} z^n, \ c \in \mathbb{C} \qquad \sum_{n=1}^{\infty} (\log n)^2 z^n \qquad \sum_{n=1}^{\infty} z^{n!}$$

- 3. Considérons la suite de fonctions $g_n(x) = (1 + \frac{x}{n})^n$ pour $x \in \mathbb{R}$.
 - (a) Exprimer $g_n(x)$ en utilisant le développement binomial. En supposant x > 0, prouver ainsi que $g_n(x) \le f_n(x)$ où $f_n(x)$ a été defini dans la partie 3.
 - (b) En deduire les propriétés de convergence de $g_n(x)$ sur $C_R = \{x \in \mathbb{C} | |x| < R\}, R \in \mathbb{R}$.