Lab 2

Tyron Samaroo

11:59PM February 17, 2020

More Basic R Skills

• Calculate the average of 1000 realizations of Bernoullis with p = 0.9 in one line using rbinom.

```
mean(rbinom(100, size = 1, prob = 0.9))
```

[1] 0.89

• In class we considered a variable x_3 which measured "criminality". We imagined L = 4 levels "none", "infraction", "misdimeanor" and "felony". Create a variable x3 here with 100 random elements (equally probable). Create it as a nominal (i.e. unordered) factor.

```
x_3= sample(c("none", "infraction", "misdimeanor", "felony"),
             size = 100,
             replace = TRUE)
#x_3_ord = factor(sample_criminality, levels = c("none", "infraction", "misdimeanor", "felony"), ordere
x_3
##
     [1] "infraction"
                        "infraction"
                                       "infraction"
                                                      "infraction"
                                                                     "infraction"
     [6] "infraction"
                                                      "none"
##
                        "infraction"
                                       "infraction"
                                                                     "infraction"
##
    [11] "misdimeanor"
                        "misdimeanor" "none"
                                                      "infraction"
                                                                     "none"
    [16] "felony"
                        "none"
                                       "none"
                                                      "felony"
                                                                     "none"
    [21] "misdimeanor"
                        "none"
                                       "felony"
                                                      "infraction"
                                                                     "misdimeanor"
##
##
    [26] "misdimeanor" "infraction"
                                       "felony"
                                                      "none"
                                                                     "infraction"
    [31] "infraction"
                        "misdimeanor"
                                       "infraction"
                                                      "misdimeanor" "infraction"
##
##
    [36] "felony"
                        "felony"
                                       "none"
                                                      "infraction"
                                                                     "none"
    [41] "misdimeanor" "none"
                                       "none"
                                                                     "infraction"
##
                                                      "infraction"
##
    [46] "misdimeanor" "infraction"
                                       "misdimeanor" "felony"
                                                                     "none"
##
    [51] "felony"
                        "felony"
                                       "misdimeanor" "felony"
                                                                     "none"
                        "none"
    [56] "none"
                                       "felony"
                                                      "misdimeanor" "misdimeanor"
##
##
    [61] "felony"
                        "felony"
                                       "felony"
                                                      "misdimeanor" "misdimeanor"
                                       "misdimeanor" "none"
    [66] "misdimeanor" "felony"
                                                                     "felony"
##
##
    [71] "none"
                        "felony"
                                       "none"
                                                      "infraction"
                                                                     "felony"
##
    [76] "misdimeanor"
                        "none"
                                       "infraction"
                                                      "infraction"
                                                                     "none"
    [81] "infraction"
                        "infraction"
                                       "infraction"
                                                      "none"
                                                                     "misdimeanor"
##
##
    [86] "infraction"
                        "felony"
                                       "misdimeanor" "none"
                                                                     "infraction"
    [91] "none"
                        "none"
                                       "misdimeanor" "misdimeanor" "infraction"
##
                        "misdimeanor" "infraction"
                                                                     "none"
    [96] "infraction"
                                                      "none"
```

 Convert this variable into three binary variables without any information loss and put them into a data matrix.

```
X = matrix(nrow= length(x_3), ncol = 3)
X[ ,1] = as.numeric(x_3 == 'infraction')
X[ ,2] = as.numeric(x_3 == 'felony')
```

```
X[ ,3] = as.numeric(x_3 == 'misdimeanor')
colnames(X) = c('is_infraction', 'is_felony', 'is_misdimeanor')
X
```

##		is_infraction	is_felony	is_misdimeanor
##	[1,]	1	0	0
##	[2,]	1	0	0
##	[3,]	1	0	0
##	[4,]	1	0	0
##	[5,]	1	0	0
##	[6,]	1	0	0
##	[7,]	1	0	0
##	[8,]	1	0	0
##	[9,]	0	0	0
##	[10,]	1	0	0
##	[11,]	0	0	1
##	[12,]	0	0	1
##	[13,]	0	0	0
##	[14,]	1	0	0
##	[15,]	0	0	0
##	[16,]	0	1	0
##	[17,]	0	0	0
##	[18,]	0	0	0
##	[19,]	0	1	0
##	[20,]	0	0	0
##	[21,]	0	0	1
##	[22,]	0	0	0
##	[23,]	0	1	0
##	[24,]	1	0	0
##	[25,]	0	0	1
##	[26,]	0	0	1
##	[27,]	1	0	0
##	[28,]	0	1	0
##	[29,]	0	0	0
##	[30,]	1	0	0
##	[31,]	1	0	0
##	[32,]	0	0	1
##	[33,]	1	0	0
##	[34,]	0	0	1
##	[35,]	1	0	0
##	[36,]	0	1	0
##	[37,]	0	1 0	0
##	[38,] [39,]	0 1	0	0
## ##	[40,]	0	0	0
##	[41,]	0	0	1
##	[42,]	0	0	0
##	[43,]	0	0	0
##	[44,]	1	0	0
##	[45,]	1	0	0
##	[46,]	0	0	1
##	[47,]	1	0	0
##	[48,]	0	0	1
##	[49,]	0	1	0
	L 10, J	O	1	U

##	[50,]	0	0	0
##	[51,]	0	1	0
##	[52,]	0	1	0
##	[53,]	0	0	1
##	[54,]	0	1	0
##	[55,]	0	0	0
##	[56,]	0	0	0
##	[57,]	0	0	0
##	[58,]	0	1	0
##	[59,]	0	0	1
##	[60,]	0	0	1
##	[61,]	0	1	0
##	[62,]	0	1	0
##	[63,]	0	1	0
##	[64,]	0	0	1
##	[65,]	0	0	1
##	[66,]	0	0	1
##	[67,]	0	1	0
##	[68,]	0	0	1
##	[69,]	0	0	0
##	[70,]	0	1	0
##	[71,]	0	0	0
##	[72,]	0	1	0
##	[73,]	0	0	0
##	[74,]	1	0	0
##	[75,]	0	1	0
##	[76,]	0	0	1
##	[77,]	0	0	0
##	[78,]	1	0	0
##	[79,]	1	0	0
##	[80,]	0	0	0
##	[81,]	1	0	0
##	[82,]	1	0	0
##	[83,]	1	0	0
##	[84,]	0	0	0
##	[85,]	0	0	1
##	[86,]	1	0	0
##	[87,]	0	1	0
##	[88,]	0	0	1
##	[89,]	0	0	0
##	[90,]	1	0	0
##	[91,]	0	0	0
##	[92,]	0	0	0
##	[93,]	0	0	1
##	[94,]	0	0	1
##	[95,]	1	0	0
##	[96,]	1	0	0
##	[97,]	0	0	1
##	[98,]	1	0	0
##	[99,]	0	0	0
##	[100,]	0	0	0

• What should the sum of each row be (in English)? Verify that. It should be either 1 or 0 because categories are mutally exclusive. We can only put an object into 1 category, None = 0

[38] 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1

[75] 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0

table(rowSums(X))

0 1 ## 27 73

• How should the column sum look (in English)? Verify that. The should should be around the expectation 25 since they are uniforml distructed

colSums(X)

```
## is_infraction is_felony is_misdimeanor
## 31 19 23
```

• Generate a matrix with 100 rows where the first column is realization from a normal with mean 17 and variance 38, the second column is uniform between -10 and 10, the third column is poisson with mean 6, the fourth column in exponential with lambda of 9, the fifth column is binomial with n = 20 and p = 0.12 and the sixth column is a binary variable with exactly 24% 1's dispersed randomly. Name the columns based on the r.v. Name the rows the entries of the fake first names vector.

```
n = 100
X = matrix(data = NA, nrow = n, ncol = 6)
X[,1] = rnorm(n, mean = 17, sd = sqrt(38))
X[,2] = runif(n, min = -10, max = 10)
X[,3] = rpois(n, lambda = 6)
X[,4] = rexp(n, rate = 9)
X[,5] = rbinom(n, size = 20, prob = 0.12)
X[,6] = sample(c(rep(1, n * 0.24), rep(0, n * 0.76)))
\#X[,6] = sample(c(1,0), size = n, replace = TRUE, prob = c(0.24, 0.76))
fake_first_names = c(
  "Sophia", "Emma", "Olivia", "Ava", "Mia", "Isabella", "Riley",
  "Aria", "Zoe", "Charlotte", "Lily", "Layla", "Amelia", "Emily",
  "Madelyn", "Aubrey", "Adalyn", "Madison", "Chloe", "Harper",
  "Abigail", "Aaliyah", "Avery", "Evelyn", "Kaylee", "Ella", "Ellie",
  "Scarlett", "Arianna", "Hailey", "Nora", "Addison", "Brooklyn",
  "Hannah", "Mila", "Leah", "Elizabeth", "Sarah", "Eliana", "Mackenzie",
  "Peyton", "Maria", "Grace", "Adeline", "Elena", "Anna", "Victoria",
  "Camilla", "Lillian", "Natalie", "Jackson", "Aiden", "Lucas",
  "Liam", "Noah", "Ethan", "Mason", "Caden", "Oliver", "Elijah",
  "Grayson", "Jacob", "Michael", "Benjamin", "Carter", "James",
  "Jayden", "Logan", "Alexander", "Caleb", "Ryan", "Luke", "Daniel",
  "Jack", "William", "Owen", "Gabriel", "Matthew", "Connor", "Jayce",
  "Isaac", "Sebastian", "Henry", "Muhammad", "Cameron", "Wyatt",
  "Dylan", "Nathan", "Nicholas", "Julian", "Eli", "Levi", "Isaiah",
  "Landon", "David", "Christian", "Andrew", "Brayden", "John",
  "Lincoln"
)
rownames(X) = fake_first_names
```

```
##
                    [,1]
                                [,2] [,3]
                                                  [,4] [,5] [,6]
             17.8460639 -9.5060941
                                        5 0.038361642
## Sophia
                                                           2
                                                                0
## Emma
             28.4915007 -8.9494042
                                        6 0.267481023
                                                                0
## Olivia
              16.5854290 -6.7571072
                                        4 0.320759563
                                                           2
                                                                1
## Ava
              13.6426384
                          3.2624797
                                       10 0.056956998
                                                           2
                                                                0
## Mia
              11.1561830 -1.0958796
                                        7 0.033177328
                                                           1
                                                                1
## Isabella
               9.2997628 -5.2515940
                                        6 0.149927116
                                                                0
                                                           1
## Riley
             22.9104565
                          6.1770309
                                        8 0.164080251
                                                           6
                                                                1
##
  Aria
              11.1231149
                          9.3543350
                                       11 0.185602755
                                                           2
                                                                0
## Zoe
              11.9161521
                          3.2380188
                                        4 0.183038683
                                                           1
                                                                0
  Charlotte
             7.7076312
                          1.2894057
                                        9 0.126249892
                                                           2
                                                                0
                                                           2
                                                                0
## Lily
              17.2432819
                          6.1564785
                                        2 0.008464963
              15.0086994 -1.2397703
                                        4 0.452499452
                                                           2
                                                                0
## Layla
                                        7 0.108566045
  Amelia
               3.3679293 -1.8651010
                                                                0
## Emily
              16.1034771 -8.1924464
                                        5 0.298669357
                                                           5
                                                                0
## Madelyn
              18.3381568
                          7.2429860
                                        4 0.106924399
                                                           3
                                                                0
                                                           4
                                                                0
## Aubrey
              18.8155499
                          3.5943590
                                        6 0.382279928
## Adalyn
              24.7798129
                          6.7852624
                                        9 0.057037102
## Madison
             16.5070152 -2.4699173
                                        4 0.003585211
                                                                1
## Chloe
              10.4706402
                          8.8440410
                                        4 0.165242959
                                                           0
## Harper
             26.7656433 -8.4924086
                                        4 0.007587857
                                                           3
                                                                0
                                       11 0.085680424
## Abigail
              11.8064633 -1.2552792
## Aaliyah
              11.5997922
                          2.6650190
                                        3 0.134880841
                                                           3
                                                                1
## Avery
             17.1584074 -4.3875140
                                        4 0.104212531
                                                           2
                                                                1
## Evelyn
             21.2929363
                         3.6682151
                                        6 0.167579909
                                                           3
                                                                0
## Kaylee
             18.2358792 -6.0737976
                                        3 0.126087118
                                                           2
                                                                0
              15.0437353 -2.0431593
                                                                0
## Ella
                                        7 0.108505565
                                                           1
## Ellie
              22.3032292 -3.5904466
                                        4 0.216496446
                                                           0
                                                                0
## Scarlett
              7.4616564
                         8.5137227
                                        9 0.187972426
                                                           1
                                                                1
             15.9293528 -9.9830577
                                        4 0.006363437
                                                           3
                                                                0
  Arianna
## Hailey
              19.5855909
                          9.2276552
                                        8 0.102149615
                                                           1
                                                                0
## Nora
              20.2532767
                          4.9183549
                                        9 0.059694295
                                                           3
                                                                1
   Addison
             33.3456553
                          1.5298770
                                         6 0.020926553
             12.2121592 -7.6243079
                                        2 0.105940416
                                                           3
                                                                0
  Brooklyn
  Hannah
               0.7551125 -1.5447252
                                        7 0.144820232
                                                           3
                                                                0
                                                           2
## Mila
              14.9503566 -4.3306047
                                        5 0.250470975
                                                                0
## Leah
               9.0576792 9.7354602
                                        8 0.007902291
                                                                0
## Elizabeth 14.9684417
                          2.7669378
                                        8 0.082905491
                                                                0
                                                           4
## Sarah
              13.1405139 -4.0523690
                                        4 0.025734279
                                                           2
                                                                1
## Eliana
              12.3896418
                          1.4772260
                                        5 0.141967242
                                                           2
                                                                0
## Mackenzie 20.3705252
                          5.1017751
                                        5 0.080281952
                                                           3
                                                                0
## Peyton
                          5.2138714
                                                           2
                                                                0
               6.5280722
                                        5 0.003543715
## Maria
               1.7394001 -7.3650968
                                        4 0.012500477
                                                           6
                                                                0
## Grace
                                                           0
                                                                0
               7.1753630
                         1.2419093
                                        6 0.006903284
## Adeline
              19.4658398 -5.1258283
                                        6 0.090066574
                                                           2
                                                                0
                                                                0
## Elena
              15.4285953
                          9.4307998
                                        8 0.475183383
                                                           3
## Anna
               7.3502659 -1.7272058
                                        4 0.032556350
                                                           3
                                                                0
## Victoria
             11.0452077 -9.1667514
                                        7 0.114661936
                                                                0
## Camilla
             21.3039494 -8.7682942
                                        5 0.568942244
                                                           3
                                                                0
## Lillian
             21.8340344
                          9.3304956
                                        6 0.001679693
                                                           3
                                                                0
                                        2 0.005753041
                                                           4
## Natalie
             10.6438132
                          3.6276964
                                                                0
                                                           2
## Jackson
             27.8076653 -0.1086385
                                        2 0.127087859
                                                                0
## Aiden
             24.5353613 -8.8936180
                                        3 0.207745144
                                                           3
                                                                1
## Lucas
             12.2851798 8.9568441
                                       13 0.222767339
                                                           0
```

```
## Liam
             19.6230118
                          1.5540945
                                       12 0.303399984
                                                               0
                                                          3
## Noah
             25.8673359
                          5.7168356
                                        9 0.281435189
                                                          0
                                                               0
                          4.7062299
## Ethan
             19.6126825
                                        4 0.052532391
                                                               1
## Mason
             15.4016300 -6.4346912
                                        8 0.065530862
                                                          5
                                                               0
## Caden
             13.7905921
                          7.9200834
                                        6 0.268540250
                                                          1
                                                               0
## Oliver
              7.8451608 -2.7757978
                                        8 0.026458621
                                                               0
                                                          4
## Elijah
             17.1831069
                          9.6767045
                                        5 0.020582555
                                                          3
                                                               1
## Grayson
             18.4184724 -6.3467487
                                        6 0.037672199
                                                          3
                                                               0
## Jacob
             26.1388981
                          5.0119568
                                        7 0.003480217
                                                               0
                                                          1
## Michael
             26.2660677
                          6.0427397
                                        8 0.042675469
                                                          0
                                                               0
## Benjamin
             22.0588916
                          7.7028747
                                        5 0.230381360
                                                          5
                                                               0
## Carter
             23.0800879 -9.4443183
                                        6 0.072860874
                                                          3
                                                               0
                                        4 0.159943750
  James
             19.6892059 -3.9509075
                                                          3
##
                                                               0
  Jayden
                          2.0615713
              6.3825643
                                        7 0.021451617
                                                          2
                                                               1
## Logan
             25.1085777
                          2.1855631
                                        6 0.542308775
                                                               0
                                                          1
## Alexander 17.5249353 -6.7842310
                                        8 0.047498953
                                                               0
                                                          1
## Caleb
                                        2 0.142631623
                                                               0
              7.5594596
                          1.1825783
                                                          3
## Ryan
             11.7416278 5.0718581
                                        7 0.017098239
                                                               0
## Luke
             17.3704998 -8.3840656
                                        7 0.090446829
                                                               0
                                                          0
## Daniel
             18.4040739 -7.2609475
                                        3 0.111720339
                                                          4
                                                               0
## Jack
             11.7872360 2.0194711
                                        4 0.301871504
                                                          1
                                                               1
## William
              9.9815725 -1.4982323
                                        2 0.006453232
                                                          3
                                                               0
## Owen
             20.2091650
                          6.4915914
                                        5 0.011335256
                                                               0
                                                          2
## Gabriel
             20.9984813 -1.4287210
                                        6 0.035902912
                                                          2
                                                               1
## Matthew
             10.6431590 -9.9941786
                                        2 0.027212663
                                                          2
                                                               0
## Connor
             23.5985333 -1.2002555
                                       10 0.200970573
                                                          2
                                                               0
  Jayce
                                                               0
##
             17.3112198 -4.6498597
                                        4 0.024323893
                                                          0
  Isaac
             25.1913497 -6.4539217
                                        8 0.187812729
                                                          3
                                                               1
  Sebastian 19.2601796 5.9818775
                                        4 0.128995957
                                                          6
                                                               1
                                        4 0.028278859
## Henry
             24.0906311 -0.2932333
                                                          2
                                                               0
## Muhammad
             10.3436572 -8.9193682
                                        2 0.092533974
                                                          0
                                                               1
  Cameron
             20.3262996 -4.9513969
                                        3 0.001830488
                                                          0
                                                               0
## Wyatt
             21.5982794
                          7.5528204
                                        7 0.005887059
                                                          2
                                                               0
## Dylan
              8.7855847
                          7.1488876
                                        7 0.212643774
                                                               0
                                                          0
## Nathan
              9.7185833
                          5.3018862
                                        7 0.054421710
                                                          1
                                                               0
## Nicholas 12.5698115
                          6.2560763
                                        8 0.084506920
                                                          3
                                                               0
## Julian
             16.7086358
                          7.0619437
                                        7 0.018497346
                                                               1
## Eli
              9.4813328
                          6.1563604
                                        4 0.246621867
                                                          3
                                                               1
## Levi
             15.0263016 -2.5991395
                                        4 0.011645380
                                                          4
                                                               1
## Isaiah
             13.9668847
                          4.1343714
                                        4 0.024058102
                                                          0
                                                               0
## Landon
             27.7428360 -6.7516982
                                        4 0.080731379
                                                          2
                                                               0
## David
             24.1240825 -1.5402520
                                        4 0.159107455
                                                          2
                                                               0
## Christian 26.3120336
                          3.9995236
                                        1 0.044213118
                                                          4
                                                               0
                                                          2
## Andrew
              5.8743114 -3.3497811
                                        4 0.058814780
                                                               1
## Brayden
             19.2861893
                          2.1287030
                                        6 0.056114437
                                                          2
                                                               0
## John
             21.1858926
                          0.7651000
                                        2 0.021521685
                                                          1
                                                               0
## Lincoln
             15.2239088 3.7545871
                                        7 0.104387754
                                                          1
```

• Create a data frame of the same data as above except make the binary variable a factor "DOMESTIC" vs "FOREIGN" for 0 and 1 respectively. Print out the top few rows to check this worked correctly.

```
df = data.frame(X)
df$X6 = factor(df$X6, levels = c(0,1), labels = c("DOMESTIC", "FOREIGN"))
df
```

```
##
                                 X2 X3
                                                X4 X5
                                                            Х6
             17.8460639 -9.5060941
                                    5 0.038361642
                                                    2 DOMESTIC
## Sophia
## Emma
             28.4915007 -8.9494042
                                     6 0.267481023
                                                    3 DOMESTIC
## Olivia
             16.5854290 -6.7571072
                                    4 0.320759563
                                                       FOREIGN
                                                    2
## Ava
             13.6426384
                         3.2624797 10 0.056956998
                                                    2 DOMESTIC
## Mia
             11.1561830 -1.0958796
                                    7 0.033177328
                                                    1 FOREIGN
              9.2997628 -5.2515940
                                                    1 DOMESTIC
## Isabella
                                     6 0.149927116
## Riley
             22.9104565
                         6.1770309
                                     8 0.164080251
                                                    6 FOREIGN
## Aria
             11.1231149
                         9.3543350 11 0.185602755
                                                    2 DOMESTIC
## Zoe
             11.9161521
                         3.2380188
                                     4 0.183038683
                                                    1 DOMESTIC
  Charlotte 7.7076312
                         1.2894057
                                     9 0.126249892
                                                    2 DOMESTIC
                         6.1564785
                                     2 0.008464963
                                                    2 DOMESTIC
## Lily
             17.2432819
## Layla
             15.0086994 -1.2397703
                                     4 0.452499452
                                                    2 DOMESTIC
## Amelia
              3.3679293 -1.8651010
                                     7 0.108566045
                                                    4 DOMESTIC
             16.1034771 -8.1924464
                                     5 0.298669357
                                                    5 DOMESTIC
## Emily
## Madelyn
             18.3381568
                         7.2429860
                                     4 0.106924399
                                                    3 DOMESTIC
                                                    4 DOMESTIC
## Aubrey
             18.8155499
                         3.5943590
                                     6 0.382279928
## Adalyn
             24.7798129
                         6.7852624
                                     9 0.057037102
                                                    2 DOMESTIC
## Madison
             16.5070152 -2.4699173
                                     4 0.003585211
                                                      FOREIGN
## Chloe
             10.4706402 8.8440410
                                     4 0.165242959
                                                    0
                                                       FOREIGN
## Harper
             26.7656433 -8.4924086
                                     4 0.007587857
                                                    3 DOMESTIC
             11.8064633 -1.2552792 11 0.085680424
                                                    3 DOMESTIC
## Abigail
             11.5997922 2.6650190
                                                    3
## Aaliyah
                                     3 0.134880841
                                                       FOREIGN
             17.1584074 -4.3875140
                                                    2
                                                       FOREIGN
## Avery
                                     4 0.104212531
## Evelyn
             21.2929363
                        3.6682151
                                     6 0.167579909
                                                    3 DOMESTIC
## Kaylee
             18.2358792 -6.0737976
                                     3 0.126087118
                                                    2 DOMESTIC
## Ella
             15.0437353 -2.0431593
                                     7 0.108505565
                                                    1 DOMESTIC
## Ellie
             22.3032292 -3.5904466
                                     4 0.216496446
                                                    O DOMESTIC
## Scarlett
                        8.5137227
                                     9 0.187972426
              7.4616564
                                                    1
                                                       FOREIGN
  Arianna
             15.9293528 -9.9830577
                                     4 0.006363437
                                                    3 DOMESTIC
## Hailey
             19.5855909
                         9.2276552
                                     8 0.102149615
                                                    1 DOMESTIC
## Nora
             20.2532767
                         4.9183549
                                     9 0.059694295
                                                    3
                                                       FOREIGN
  Addison
             33.3456553
                         1.5298770
                                     6 0.020926553
                                                    3 DOMESTIC
            12.2121592 -7.6243079
                                     2 0.105940416
                                                    3 DOMESTIC
## Brooklyn
## Hannah
              0.7551125 -1.5447252
                                     7 0.144820232
                                                    3 DOMESTIC
## Mila
             14.9503566 -4.3306047
                                     5 0.250470975
                                                    2 DOMESTIC
## Leah
              9.0576792 9.7354602
                                     8 0.007902291
                                                    4 DOMESTIC
## Elizabeth 14.9684417
                         2.7669378
                                     8 0.082905491
                                                    4 DOMESTIC
## Sarah
             13.1405139 -4.0523690
                                     4 0.025734279
                                                    2
                                                       FOREIGN
## Eliana
                         1.4772260
                                                    2 DOMESTIC
             12.3896418
                                     5 0.141967242
## Mackenzie 20.3705252
                         5.1017751
                                     5 0.080281952
                                                    3 DOMESTIC
## Peyton
              6.5280722 5.2138714
                                     5 0.003543715
                                                    2 DOMESTIC
## Maria
              1.7394001 -7.3650968
                                     4 0.012500477
                                                    6 DOMESTIC
## Grace
              7.1753630
                        1.2419093
                                     6 0.006903284
                                                    O DOMESTIC
## Adeline
             19.4658398 -5.1258283
                                     6 0.090066574
                                                    2 DOMESTIC
## Elena
             15.4285953
                         9.4307998
                                     8 0.475183383
                                                    3 DOMESTIC
  Anna
              7.3502659 -1.7272058
                                     4 0.032556350
                                                    3 DOMESTIC
## Victoria
            11.0452077 -9.1667514
                                     7 0.114661936
                                                    O DOMESTIC
                                     5 0.568942244
## Camilla
             21.3039494 -8.7682942
                                                    3 DOMESTIC
## Lillian
             21.8340344
                         9.3304956
                                     6 0.001679693
                                                    3 DOMESTIC
             10.6438132
## Natalie
                        3.6276964
                                     2 0.005753041
                                                    4 DOMESTIC
                                                    2 DOMESTIC
## Jackson
             27.8076653 -0.1086385
                                     2 0.127087859
                                    3 0.207745144
## Aiden
             24.5353613 -8.8936180
                                                    3
                                                       FOREIGN
## Lucas
             12.2851798 8.9568441 13 0.222767339
                                                    0
                                                       FOREIGN
```

```
## Liam
             19.6230118
                        1.5540945 12 0.303399984
                                                    3 DOMESTIC
## Noah
                                                    O DOMESTIC
             25.8673359
                         5.7168356
                                    9 0.281435189
                                    4 0.052532391
## Ethan
             19.6126825
                         4.7062299
                                                    2 FOREIGN
## Mason
             15.4016300 -6.4346912
                                    8 0.065530862
                                                    5 DOMESTIC
## Caden
             13.7905921
                         7.9200834
                                    6 0.268540250
                                                    1 DOMESTIC
## Oliver
                                    8 0.026458621
              7.8451608 -2.7757978
                                                    4 DOMESTIC
## Elijah
             17.1831069
                         9.6767045
                                    5 0.020582555
                                                    3 FOREIGN
## Grayson
             18.4184724 -6.3467487
                                     6 0.037672199
                                                    3 DOMESTIC
## Jacob
             26.1388981
                         5.0119568
                                    7 0.003480217
                                                    1 DOMESTIC
## Michael
             26.2660677
                         6.0427397
                                    8 0.042675469
                                                    O DOMESTIC
## Benjamin
             22.0588916
                         7.7028747
                                    5 0.230381360
                                                    5 DOMESTIC
                                    6 0.072860874
## Carter
             23.0800879 -9.4443183
                                                    3 DOMESTIC
  James
             19.6892059 -3.9509075
                                    4 0.159943750
                                                    3 DOMESTIC
## Jayden
              6.3825643
                         2.0615713
                                    7 0.021451617
                                                    2
                                                      FOREIGN
## Logan
             25.1085777
                         2.1855631
                                     6 0.542308775
                                                    1 DOMESTIC
## Alexander 17.5249353 -6.7842310
                                    8 0.047498953
                                                    1 DOMESTIC
## Caleb
              7.5594596
                         1.1825783
                                    2 0.142631623
                                                    3 DOMESTIC
## Ryan
             11.7416278
                         5.0718581
                                    7 0.017098239
                                                    O DOMESTIC
             17.3704998 -8.3840656
## Luke
                                    7 0.090446829
                                                    O DOMESTIC
## Daniel
             18.4040739 -7.2609475
                                    3 0.111720339
                                                    4 DOMESTIC
## Jack
             11.7872360
                         2.0194711
                                    4 0.301871504
                                                    1 FOREIGN
## William
              9.9815725 -1.4982323
                                     2 0.006453232
                                                    3 DOMESTIC
                         6.4915914
                                                    2 DOMESTIC
## Owen
             20.2091650
                                    5 0.011335256
             20.9984813 -1.4287210
                                    6 0.035902912
## Gabriel
                                                    2
                                                       FOREIGN
## Matthew
             10.6431590 -9.9941786
                                    2 0.027212663
                                                    2 DOMESTIC
## Connor
             23.5985333 -1.2002555 10 0.200970573
                                                    2 DOMESTIC
## Jayce
             17.3112198 -4.6498597
                                     4 0.024323893
                                                    O DOMESTIC
  Isaac
             25.1913497 -6.4539217
                                    8 0.187812729
                                                    3
                                                       FOREIGN
## Sebastian 19.2601796 5.9818775
                                    4 0.128995957
                                                    6
                                                      FOREIGN
## Henry
             24.0906311 -0.2932333
                                    4 0.028278859
                                                    2 DOMESTIC
## Muhammad
            10.3436572 -8.9193682
                                     2 0.092533974
                                                    0
                                                       FOREIGN
## Cameron
             20.3262996 -4.9513969
                                    3 0.001830488
                                                    O DOMESTIC
## Wyatt
             21.5982794
                         7.5528204
                                    7 0.005887059
                                                    2 DOMESTIC
                         7.1488876
## Dylan
              8.7855847
                                    7 0.212643774
                                                    O DOMESTIC
## Nathan
              9.7185833
                         5.3018862
                                    7 0.054421710
                                                    1 DOMESTIC
## Nicholas 12.5698115
                         6.2560763
                                    8 0.084506920
                                                    3 DOMESTIC
## Julian
             16.7086358
                         7.0619437
                                    7 0.018497346
                                                    2
                                                       FOREIGN
## Eli
              9.4813328
                         6.1563604
                                    4 0.246621867
                                                    3
                                                       FOREIGN
## Levi
             15.0263016 -2.5991395
                                    4 0.011645380
                                                    4
                                                       FOREIGN
## Isaiah
                                                    O DOMESTIC
             13.9668847
                         4.1343714
                                    4 0.024058102
                                    4 0.080731379
## Landon
             27.7428360 -6.7516982
                                                    2 DOMESTIC
## David
             24.1240825 -1.5402520
                                    4 0.159107455
                                                    2 DOMESTIC
## Christian 26.3120336
                         3.9995236
                                    1 0.044213118
                                                    4 DOMESTIC
## Andrew
              5.8743114 -3.3497811
                                    4 0.058814780
                                                    2
                                                      FOREIGN
                                                    2 DOMESTIC
## Brayden
             19.2861893
                         2.1287030
                                    6 0.056114437
                                    2 0.021521685
## John
             21.1858926
                         0.7651000
                                                    1 DOMESTIC
## Lincoln
             15.2239088
                        3.7545871
                                   7 0.104387754
                                                   1 DOMESTIC
```

Print out a table of the binary variable. Then print out the proportions of "DOMESTIC" vs "FOREIGN".

DOMESTIC FOREIGN

table(df\$X6)

```
table(df$X6) / n
##
## DOMESTIC FOREIGN
       0.76
                 0.24
##
Print out a summary of the whole dataframe.
summary(df)
##
          X1
                              Х2
                                                 ХЗ
                                                                   Х4
            : 0.7551
                               :-9.9942
                                                  : 1.00
                                                                    :0.00168
##
    Min.
                       Min.
                                           Min.
                                                            Min.
##
    1st Qu.:11.4889
                       1st Qu.:-4.7252
                                           1st Qu.: 4.00
                                                            1st Qu.:0.02628
    Median :16.6470
                       Median : 1.2122
##
                                           Median : 5.50
                                                            Median: 0.08787
##
           :16.3749
                             : 0.2606
                                                 : 5.66
    Mean
                       Mean
                                           Mean
                                                            Mean
                                                                    :0.11916
##
    3rd Qu.:21.0453
                       3rd Qu.: 5.2359
                                           3rd Qu.: 7.00
                                                            3rd Qu.:0.16583
##
    Max.
            :33.3457
                       Max.
                               : 9.7355
                                           {\tt Max.}
                                                  :13.00
                                                            Max.
                                                                    :0.56894
##
          Х5
                            Х6
##
            :0.00
                    DOMESTIC:76
   Min.
##
    1st Qu.:1.00
                    FOREIGN:24
##
   Median:2.00
           :2.26
##
    Mean
## 3rd Qu.:3.00
## Max.
            :6.00
   • Let n = 50. Create a n x n matrix R of exactly 50% entries 0's, 25% 1's 25% 2's. These values should
     be in random locations.
n = 50
X = matrix(data = sample(c(rep(0, n^2 *.5),
                             rep(1, n^2 * .25),
                             rep(2, n^2 * .25))),
           nrow = n,
           ncol = n)
table(X)
## X
##
      0
           1
                 2
## 1250 625 625
   • Randomly punch holes (i.e. NA) values in this matrix so that approximately 30% of the entries are
     missing.
for (i in 1 : n) {
  for(j in 1 : n){
    if(runif(1) < 0.3){ # runif gives anything between 0 - 1</pre>
      X[i, j] = NA
  }
}
```

```
## [1] 0.2956
Х
         [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
##
##
    [1,]
            1
                  0
                       0
                           NA
                                 NA
                                       0
                                             0
                                                 NA
                                                      NA
                                                             NA
                                                                    2
                                                                           2
                                                                                 2
```

0

sum(is.na(X) / n^2)

0

NA

0

NA

0

0

##

[2,]

NA

0

1

0

NA

NA

##	[3,]	1	0	NA	NA	0	2	2	NA	NA	NA	NA	0	NA
##	[4,]	0	0	0	NA	0	0	0	2	NA	0	NA	NA	0
##	[5,]	0	NA	NA	NA	0	0	0	0	2	0	1	0	NA
##	[6,]	NA	2	NA	2	0	NA	0	1	2	NA	0	0	1
##	[7,]	NA	0	NA	0	1	0	2	1	2	2	1	1	0
##	[8,]	0	NA	0	NA	2	2	0	1	0	0	0	NA	2
##	[9,]	2	NA	2	0	1	NA	1	0	2	0	2	1	2
##	[10,]	NA	2	1	1	0	NA	2	0	0	0	0	NA	NA
##	[11,]	NA	0	NA	1	NA	NA	1	0	1	1	NA	NA	NA
##	[12,]	1	2	0	2	NA	2	2	2	NA	NA	NA	0	NA
##	[13,]	NA	2	0	1	NA	NA	2	NA	1	2	NA	0	0
##	[14,]	0	2	1	NA	2	2	NA	NA	0	NA	2	NA	0
##	[15,]	1	1	2	0	0	0	NA	NA	NA	1	NA	0	0
##	[16,]	0	NA	NA	NA	NA	0	NA	NA	NA	0	0	0	1
##	[17,]	2	0	NA	0	1	NA	NA	1	0	2	NA	NA	NA
##	[18,]	1	NA	0	0	NA	0	0	NA	0	NA	NA	NA	0
##	[19,]	NA	1	1	0	NA	NA	NA	0	0	0	1	NA	1
##	[20,]	0	NA	0	2	2	2	0	0	1	1	0	2	2
##	[21,]	0	2	2	0	0	0	0	NA	2	0	0	0	NA
##	[22,]	NA	0	0	0	1	NA	NA	0	0	0	0	2	NA
##	[23,]	2	0	0	NA	NA	NA	0	NA	2	1	1	NA	NA
##	[24,]	1	2	2	0	2	NA	0	0	0	NA	1	NA	2
##	[25,]	NA	1	NA	NA	0	0	0	2	0	0	2	2	NA
##	[26,]	NA	1	NA	1	NA	NA	0	1	2	1	NA	2	NA
##	[27,]	0	2	0	2	2	NA	0	NA	NA	0	NA	1	NA
##	[28,]	NA	0	NA	0	NA	0	NA	2	2	1	0	0	NA
##	[29,]	0	1	0	0	NA	2	1	0	NA	NA	NA	1	NA
##	[30,]	0	2	0	1	0	2	1	0	0	2	2	1	0
##	[31,]	0	NA	1	0	1	0	NA	0	0	NA	2	0	0
##	[32,]	NA	2	1	2	2	NA	NA	2	NA	2	NA	0	2
##	[33,]	0	NA	0	0	NA	2	NA	0	0	1	0	2	0
##	[34,]	0	0	2	NA	2	1	2	2	1	2	1	0	2
##	[35,]	NA	NA	NA	NA	0	NA	0	0	NA	0	NA	1	1
##	[36,]	0	1	0	0	0	NA	1	NA	2	0	1	0	0
##	[37,]	NA	0	NA	NA	2	NA	NA	0	NA	0	0	2	NA
##	[38,]	0	2	0	NA	1	0	0	1	NA	NA	0	2	1
##	[39,]	1	0	NA	0	0	2	NA	NA	0	2	0	0	0
	[40,]	0	1	1	NA	NA	0	2	NA	0	2	NA	NA	0
	[41,]	2	0	1	NA	0	2	1	2	0	1	NA	NA	NA
	[42,]	NA	NA	NA	NA	2	NA	0	2	1	NA	NA	NA	1
	[43,]	NA	1	0	NA	NA	NA	1	NA	NA	2	0	0	NA
	[44,]	NA	0	NA	NA	0	2	NA	0	0	NA	NA	0	NA
	[45,]	2	1	2	NA	1	1	2	0	0	1	2	NA	NA
	[46,]	1	1	0	0	0	NA	1	NA	0	1	0	2	NA
	[47,]	0	NA	NA	NA	1	1	2	0	1	1	1	1	0
	[48,]	0	0	0	NA	2	0	0	NA	2	0	NA	0	1
	[49,]	1	0	NA	NA	1	1	NA	NA	NA	1	NA	NA	NA
##	[50,]	0	NA	0	0	1	1	NA	0	0	0	0	0	1
##	[00,]	[,14]								[,21]				
##	[1,]	0	NA	∟,⊥	2	0	,10]	NA	NA	NA	NA			0
##	[2,]	0	2		2	NA	0	1	NA	1	2	1	NA	2
##	[3,]	NA	2		0	NA	1	NA	NA	2	NA	0	0	NA
##	[4,]	2	NA		NA	NA	1	NA	0	1	1	0	0	1
##	[5,]	NA	1		NA	2	0	0	1	0	0	0	NA	NA
πĦ	١٠,١	IVA	1		MU	2	U	U	1	U	J	U	IVA	IVA

	[A]	37.4	^	^		37.4	^		37.4			37.4	
##	[6,]	NA	0	0	1	NA	0	1	NA	1	1	NA	1
##	[7,]	0	1	NA	1	NA	2	0	1	0	2	0	NA
##	[8,]	NA	2	0	NA	2	NA	1	NA	2	2	0	NA
##	[9,]	1	NA	1	NA	0	1	0	NA	1	NA	1	NA
##	[10,]	0	NA	NA	0	2	2	0	2	0	2	2	1
##	[11,]	1	0	0	0	0	1	NA	1	0	2	2	NA
##	[12,]	1	2	NA	0	1	NA	0	0	NA	NA	0	0
##	[13,]	0	1	NA	NA	2	NA	0	0	0	NA	0	NA
##	[14,]	NA	2	1	1	1	1	NA	0	1	0	2	0
##	[15,]	1	NA	0	NA	2	0	2	0	NA	2	0	2
##	[16,]	NA	2	1	1	1	0	NA	NA	0	0	NA	1
##	[17,]	0	1	1	1	NA	NA	2	0	0	2	NA	2
##	[18,]	NA	0	NA	0	NA	NA	1	0	0	2	1	NA
##	[19,]	0	0	0	0	1	NA	NA	0	2	2	1	2
##	[20,]	1	2	0	1	NA	0	0	NA	1	2	0	NA
##	[21,]	2	NA	1	0	2	2	0	0	NA	1	0	NA
##	[22,]	0	1	0	0	1	0	1	1	0	NA	0	2
##	[23,]	0	NA	NA	0	NA	0	NA	NA	0	NA	0	1
##	[24,]	0	0	0	2	NA	2	2	2	2	NA	1	0
##	[25,]	1	NA	1	NA	0	2	0	NA	NA	0	NA	NA
##	[26,]	1	1	NA	0	NA	NA	0	0	2	0	NA	0
##	[27,]	NA	0	2	NA	0	1	1	1	0	1	2	0
##	[28,]	2	2	1	NA	NA	0	1	NA	NA	NA	0	NA
##	[29,]	NA	2	0	2	2	0	1	2	0	NA	1	0
##	[30,]	2	0	2	0	NA	0	NA	NA	NA	NA	NA	2
##	[31,]	0	1	1	0	1	0	0	NA	2	0	1	0
##	[32,]	0	1	2	NA	NA	1	0	NA	2	0	2	0
##	[33,]	NA	NA	0	0	1	0	NA	0	2	1	0	0
##	[34,]	1	1	1	0	0	1	0	0	NA	NA	0	0
##	[35,]	0	NA	0	2	NA	1	0	0	2	2	0	1
##	[36,]	0	NA	0	1	2	NA	2	0	2	2	0	0
##	[37,]	NA	NA	NA	1	2	0	0	1	0	2	1	0
##	[38,]	0	NA	0	2	NA	1	NA	NA	0	0	NA	1
##	[39,]	0	0	0	NA	1	1	0	0	NA	2	2	0
##	[40,]	NA	0	NA	1	1	0	0	0	0	2	NA	2
##	[41,]	0	NA	2	0	1	0	NA	1	0	0	2	NA
##	[42,]	2	NA	1	0	1	NA	0	0	0	0	0	2
	[43,]	1	1	1	0	NA	1	NA	0	2	0	1	1
	[44,]	NA	0	NA	1	NA	1	0	0	0	NA	2	1
	[45,]	2	0	NA	NA	2	0	2	2	2	0	NA	0
	[46,]	0	1	1	0	NA	2	0	2	NA	NA	NA	NA
	[47,]	NA	2	1	2	NA	0	0	NA	1	0	NA	1
	[48,]	0	0	0	1	NA	0	2	0	NA	1	0	1
	[49,]	2	NA	1	NA	0	1	1	NA	0	0	2	NA
##		NA	0	2	2	1	1	1	0	2	1	NA	0
##	[00,]									[,34]			[,37]
##	[1,]	NA	0	NA	1	0	2	0	NA	NA	2	1	
##	[2,]	0	0	0	NA	0	1	NA	NA NA	0	0	NA	1 0
##	[3,]	1	NA	0	0	1 NA	2	NA	NA	1 NA	1	1 0	0
##	[4,]	O	0	2	2	NA	1	2	2	NA 1	O N. A		0
##	[5,]	NA	2	0	O	2	2	2	0	1 NA	NA 1	NA NA	0
##	[6,]	0	2	0	NA	2	2	1 NA	0	NA	1	NA	0
##	[7,]	1	2	1	1	2	NA	NA	0	NA	0	0	0
##	[8,]	0	0	0	NA	0	0	0	2	1	0	0	2

##	[9,]	0	NA	1	1	0	2	0	0	0	1	0	0
##	[10,]	2	0	NA	NA	1	0	1	NA	0	NA	1	NA
##	[11,]	NA	0	2	2	0	0	0	2	1	1	1	NA
##	[12,]	0	NA	NA	0	0	2	0	1	0	2	0	2
##	[13,]	0	NA	1	NA	NA	2	2	1	NA	1	1	1
##	[14,]	0	0	2	0	NA	NA	NA	NA	1	NA	0	1
##	[15,]	NA	2	NA	NA	NA	2	0	2	2	NA	2	NA
##	[16,]	0	0	1	NA	NA	0	0	2	1	1	NA	1
##	[17,]	NA	0	2	2	NA	2	0	NA	2	0	0	NA
##	[18,]	0	NA	NA	1	1	2	0	1	0	0	0	0
##	[19,]	NA	NA	1	2	0	0	0	0	0	NA	2	2
##	[20,]	NA	2	0	NA	1	NA	NA	0	1	1	NA	2
##	[21,]	NA	NA	2	1	NA	NA	NA	1	0	1	1	NA
##	[22,]	NA	0	0	2	0	1	0	2	0	2	2	2
##	[23,]	1	NA	0	1	1	0	NA	1	1	NA	0	NA
##	[24,]	1	1	0	0	0	1	0	0	0	0	2	0
##	[25,]	2	0	2	NA	0	1	1	2	1	0	0	0
##	[26,]	0	1	2	0	0	0	1	1	NA	NA	2	0
##	[27,]	NA	0	2	0	NA	1	NA	1	NA	1	2	NA
##	[28,]	0	NA	2	NA	2	0	2	1	2	1	NA	1
##	[29,]	NA	NA	0	0	0	1	0	2	0	0	2	0
##	[30,]	0	2	1	2	1	NA	0	0	2	NA	1	NA
##	[31,]	0	NA	2	2	2	0	NA	0	2	1	0	1
##	[32,]	0	0	2	0	1	1	2	0	2	0	0	1
##	[33,]	0	1	1	1	0	NA	NA	2	2	NA	NA	1
##	[34,]	2	2	0	1	0	1	NA	1	0	0	NA	0
##	[35,]	1	NA	0	0	0	0	1	NA	1	1	0	NA
##	[36,]	0	0	0	NA	2	2	2	2	1	NA	NA	0
##	[37,]	NA	0	0	2	2	1	0	2	0	2	NA	2
##	[38,]		1	0	NA	0	0	2	NA	2	0	0	2
		1											
##	[39,]	NA	NA	NA	0	0	0	NA	2	1	0	NA	NA
##	[40,]	NA	NA	1	NA	2	0	0	0	0	NA	2	0
##	[41,]	1	NA	0	NA	0	0	1	NA	0	0	0	0
##	[42,]	NA	NA	0	0	0	NA	1	NA	2	NA	2	1
##	[43,]	NA	2	1	2	1	1	2	0	0	NA	0	2
##	[44,]	1	1	NA	2	2	1	0	0	0	1	2	1
##	[45,]	NA	0	0	0	NA	NA	2	NA	0	1	0	0
	[46,]	1	1	NA	0	0	0	0	0	0	1	2	0
##	[47,]	NA	NA	0	0	1	NA	NA	NA	0	NA	NA	NA
##	[48,]	1	1	2	1	1	NA	NA	NA	1	2	NA	NA
##	[49,]	0	NA	1	1	1	NA	NA	NA	2	0	0	1
##	[50,]	0	2	0	0	2	1	NA	0	1	NA	2	NA
##		[,38]	[,39]	[,40]	[,41]	[,42]	[,43]	[,44]	[,45]	[,46]	[,47]	[,48]	[,49]
##	[1,]	1	0	1	NA	2	0	1	1	0	NA	NA	2
##	[2,]	0	0	0	2	NA	2	1	NA	NA	0	1	1
##	[3,]	1	NA	0	NA	NA	2	0	1	NA	1	0	2
##	[4,]	NA	0	0	2	NA	0	0	NA	NA	0	0	NA
##	[5,]	0	2	NA	0	NA	1	NA	0	NA	2	0	2
##	[6,]	NA	NA	NA	2	0	1	0	0	NA	1	2	2
					2								2
##	[7,]	0	NA	0		O	0	NA	NA	NA	0	0	
##	[8,]	2	0	0	0	NA	NA	0	NA	2	0	0	0
##	[9,]	2	0	2	1	2	NA	2	2	0	0	0	0
##	[10,]	NA	1	0	2	0	1	0	NA	NA	0	0	2
##	[11,]	1	2	0	0	NA	NA	1	0	0	0	NA	1

##	[12,]	2	2	1	NA	1	1	0	0	NA	0	NA	1
##	[13,]	NA	0	NA	0	0	NA	NA	1	NA	2	0	2
##	[14,]	NA	1	2	2	NA	NA	0	2	NA	NA	0	0
##	[15,]	2	NA	NA	1	2	0	1	0	NA	0	NA	NA
##	[16,]	0	1	0	2	0	NA	1	NA	NA	1	1	NA
##	[17,]	0	1	0	1	1	0	1	NA	NA	NA	NA	0
##	[18,]	0	1	0	0	0	2	0	NA	0	2	NA	1
##	[19,]	2	1	0	2	NA	NA	0	0	0	0	NA	0
##	[20,]	1	NA	1	NA	NA	NA	NA	0	0	1	2	NA
##	[21,]	NA	2	2	NA	0	0	2	2	0	NA	2	0
##	[22,]	0	1	NA	NA	0	0	0	NA	1	0	0	1
##	[23,]	NA	0	NA	2	NA	1	0	0	0	NA	1	2
##	[24,]	0	1	0	0	NA	1	0	NA	NA	0	1	0
##	[25,]	NA	NA	2	2	NA	1	NA	0	0	1	0	NA
##	[26,]	NA	0	1	0	2	0	0	0	0	NA	NA	1
##	[27,]	NA	0	0	2	NA	2	0	1	2	0	0	NA
##	[28,]	NA	0	0	2	0	0	2	2	1	1	2	1
##	[29,]	NA	2	0	1	0	NA	2	1	2	2	NA	2
##	[30,]	0	0	NA	NA	NA	NA	NA	0	1	0	1	NA
##	[31,]	0	1	NA 1	2	0	1	NA	NA 2	1	2	NA 1	NA
## ##	[32,]	2 2	2 1	1 2	0 2	NA	O N A	O N. A		NA O	NA 1	1 0	NA
##	[33,] [34,]	1	0	NA	NA	NA NA	NA 2	NA NA	NA O	2	1	0	0
##	[35,]	NA	NA	0	1	2	NA	0	0	0	ΝA	0	0
##	[36,]	NA NA	1	1	ΝA	1	NA	0	0	NA	1	NA	NA
##	[37,]	0	2	0	2	NA	0	NA	0	0	1	1	NA
##	[38,]	0	2	2	1	0	NA	0	0	0	1	NA	0
##	[39,]	NA	0	NA	2	0	NA	0	NA	1	2	0	2
##	[40,]	2	NA	0	0	2	0	2	NA	NA	NA	0	0
##	[41,]	NA	0	0	2	1	NA	NA	NA	2	0	0	0
##	[42,]	2	0	1	NA	NA	0	NA	2	0	NA	NA	NA
##	[43,]	0	0	NA	NA	1	0	0	0	1	0	NA	0
##	[44,]	NA	0	1	1	NA	NA	0	NA	2	0	0	2
##	[45,]	0	0	0	2	1	2	0	0	1	2	1	2
##	[46,]	1	NA	2	0	0	1	2	1	0	0	1	0
##	[47,]	NA	NA	0	0	0	2	0	0	1	0	2	0
##	[48,]	0	NA	0	0	NA	NA	2	2	NA	0	1	2
	[49,]	NA	0	2	NA	2	0	2	0	NA	NA	0	0
##	[50,]	0	0	NA	NA	0	0	2	1	2	1	2	0
##		[,50]											
##	[1,]	2											
##	[2,]	0											
##	[3,]	1											
##	[4,]	NA											
##	[5,]	1											
##	[6,]	0											
##	[7,] [8,]	O N A											
##		NA											
##	[9,] [10,]	O N A											
	[11,]	NA NA											
	[12,]	0											
	[13,]	0											
	[14,]	NA											
	- ,-												

```
## [15,]
              2
## [16,]
              2
## [17,]
              0
## [18,]
              2
## [19,]
              0
## [20,]
              1
## [21,]
              1
## [22,]
             NA
## [23,]
              2
## [24,]
              0
## [25,]
             NA
## [26,]
              1
## [27,]
              1
## [28,]
             NA
## [29,]
              2
## [30,]
             NA
## [31,]
              0
## [32,]
              2
## [33,]
              0
## [34,]
              2
## [35,]
              0
## [36,]
             NA
## [37,]
             NA
## [38,]
             NA
## [39,]
             NA
## [40,]
              1
## [41,]
              2
## [42,]
              0
## [43,]
             NA
## [44,]
             NA
## [45,]
              1
## [46,]
             NA
## [47,]
              1
## [48,]
              1
## [49,]
              1
## [50,]
              0
sums = rowSums(X,na.rm = TRUE)
sums
```

• Sort the rows in matrix R by the largest row sum to lowest. Be careful about the NA's!

```
sums = rowSums(X,na.rm = TRUE)
sums

## [1] 26 20 25 19 24 29 28 25 34 28 25 30 25 29 32 21 27 18 24 32 31 23 20 29 26
## [26] 24 30 33 34 28 27 40 25 34 17 27 28 25 21 24 24 23 25 24 37 25 22 27 24 29

sort(sums)

## [1] 17 18 19 20 20 21 21 22 23 23 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25  ## [26] 26 26 27 27 27 27 28 28 28 28 29 29 29 30 30 31 32 32 33 34 34 34 37 40

order(sums, decreasing = TRUE)

## [1] 32 45 9 29 34 28 15 20 21 12 27 6 14 24 50 7 10 30 37 17 31 36 48 1 25 ## [26] 3 8 11 13 33 38 43 46 5 19 26 40 41 44 49 22 42 47 16 39 2 23 4 18 35

X_sorted = order(sums, decreasing = TRUE)

X_sorted
```

```
## [1] 32 45 9 29 34 28 15 20 21 12 27 6 14 24 50 7 10 30 37 17 31 36 48 1 25 ## [26] 3 8 11 13 33 38 43 46 5 19 26 40 41 44 49 22 42 47 16 39 2 23 4 18 35
```

• We will now learn the apply function. This is a handy function that saves writing for loops which should be eschewed in R. Use the apply function to compute a vector whose entries are the standard deviation of each row. Use the apply function to compute a vector whose entries are the standard deviation of each column. Be careful about the NA's! This should be one line.

```
std_apply_row = apply(X, 1, sd, na.rm = TRUE)
std_apply_row
    [1] 0.8601075 0.7778445 0.7914776 0.8235612 0.8667529 0.8219673 0.8280296
  [8] 0.9145143 0.8337397 0.8677218 0.7503501 0.8783101 0.8334409 0.8560741
## [15] 0.9158109 0.7006621 0.8461141 0.7424692 0.8238196 0.8178677 0.8992943
## [22] 0.7807787 0.7580980 0.8406761 0.8572330 0.7581490 0.8451543 0.8698761
## [29] 0.8941091 0.8693637 0.7997975 0.8988692 0.8218253 0.8337397 0.7071068
## [36] 0.8409179 0.9035482 0.8183335 0.8533253 0.8714117 0.8280787 0.8610339
## [43] 0.7503501 0.8012774 0.8883145 0.7429380 0.7359801 0.8062258 0.7611244
## [50] 0.8137537
std_apply_col = apply(X, 2, sd, na.rm = TRUE)
std_apply_col
  [1] 0.7463518 0.8550744 0.7975517 0.8006408 0.8451543 0.9216628 0.8520859
   [8] 0.8590129 0.8819171 0.8005155 0.8243603 0.8637067 0.8325393 0.8023076
## [15] 0.8300291 0.7603145 0.7862913 0.7620008 0.7390740 0.7622867 0.7778445
## [22] 0.9161115 0.9112246 0.8520859 0.8075276 0.6720215 0.8700899 0.8621611
## [29] 0.8451543 0.8300749 0.8206182 0.8637067 0.8742344 0.8035084 0.7100716
## [36] 0.8979456 0.8044546 0.8835413 0.7997975 0.8193951 0.8979456 0.8495145
## [43] 0.8125775 0.8517407 0.8170422 0.8243603 0.7723284 0.7663560 0.9055699
## [50] 0.8213940
```

• Use the apply function to compute a vector whose entries are the count of entries that are 1 or 2 in each column. This should be one line.

```
count_entires_not_zero = apply(X > 0, 2, sum, na.rm = TRUE)
count_entires_not_zero

## [1] 14 21 13 10 20 16 17 14 16 22 15 16 15 16 21 21 18 23 20 16 14 19 21 17 19
## [26] 13 16 22 20 21 24 16 21 24 20 19 19 15 19 16 25 13 16 15 14 15 19 16 20 20

count_entires_not_zero_again = apply(X == 2 | X == 1, 2, sum, na.rm = TRUE)
count_entires_not_zero_again

## [1] 14 21 13 10 20 16 17 14 16 22 15 16 15 16 21 21 18 23 20 16 14 19 21 17 19
## [26] 13 16 22 20 21 24 16 21 24 20 19 19 15 19 16 25 13 16 15 14 15 19 16 20 20
```

• Use the split function to create a list whose keys are the column number and values are the vector of the columns. Look at the last example in the documentation ?split.

```
col_list = split(X,col(X))
col_list
               O O NA NA O 2 NA NA
                                  1 NA O
                                          1 0
  [1]
      1 0
            1
                                                2 1 NA
                                                       0
                                                         O NA
## [26] NA O NA
               O O O NA O O NA O NA
                                     0 1 0 2 NA NA NA
## $\2\
      0 0 0 0 NA 2 0 NA NA 2 0 2 2 2 1 NA 0 NA 1 NA 2 0 0 2 1
  [1]
```

```
## [26] 1 2 0 1 2 NA 2 NA 0 NA 1 0 2 0 1 0 NA 1 0 1 1 NA 0 0 NA
##
## $`3`
## [1] O NA NA O NA NA NA O 2 1 NA O O 1 2 NA NA O 1 O 2 O O 2 NA
## [26] NA O NA O O 1 1 O 2 NA O NA O NA 1 1 NA O NA 2 O NA O NA O
## [1] NA NA NA NA NA 2 0 NA 0 1 1 2 1 NA 0 NA 0 0 2 0 0 NA 0 NA
##
## $\5\
## [1] NA O O O O O 1 2 1 O NA NA NA 2 O NA 1 NA NA 2 O 1 NA 2 O
## [26] NA 2 NA NA O 1 2 NA 2 O O 2 1 O NA O 2 NA O 1 O 1 2 1 1
##
## $`6`
## [26] NA NA O 2 2 O NA 2 1 NA NA NA O 2 O 2 NA NA 2 1 NA 1 O 1 1
##
## $`7`
## [1] 0 0 2 0 0 0 2 0 1 2 1 2 2 NA NA NA NA O NA O O NA O O
## [26] O O NA 1 1 NA NA NA 2 O 1 NA O NA 2 1 O 1 NA 2 1 2 O NA NA
## $`8`
## [1] NA NA NA 2 0 1 1 1 0 0 0 2 NA NA NA NA 1 NA 0 0 NA 0 NA 0 2
## [26] 1 NA 2 0 0 0 2 0 2 0 NA 0 1 NA NA 2 2 NA 0 0 NA 0 NA NA 0
## $`9`
## [1] NA O NA NA 2 2 2 0 2 0 1 NA 1 0 NA NA 0 0 0 1 2 0 2 0 0
## [26] 2 NA 2 NA O O NA O 1 NA 2 NA NA O O O 1 NA O O O 1 2 NA O
##
## $`10`
## [1] NA 1 NA 0 0 NA 2 0 0 0 1 NA 2 NA 1 0 2 NA 0 1 0 0 1 NA 0
## [26] 1 0 1 NA 2 NA 2 1 2 0 0 0 NA 2 2 1 NA 2 NA 1 1 1 0 1 0
##
## $`11`
## [1] 2 0 NA NA 1 0 1 0 2 0 NA NA 1 A 2 NA 0 NA NA 1 0 0 0 1 1 2
## [26] NA NA O NA 2 2 NA O 1 NA 1 O O O NA NA NA O NA 2 O 1 NA NA O
##
## $`12`
## [1] 2 NA O NA O O 1 NA 1 NA NA O O NA O O NA NA NA 2 O 2 NA NA 2
## [26] 2 1 0 1 1 0 0 2 0 1 0 2 2 0 NA NA NA O 0 NA 2 1 0 NA 0
##
## $\13\
## [1] 2 NA NA O NA 1 O 2 2 NA NA NA O O O 1 NA O 1 2 NA NA NA 2 NA
## [26] NA NA NA NA O O 2 O 2 1 O NA 1 O O NA 1 NA NA NA NA O 1 NA 1
##
## $\ 14\
## [1] O O NA 2 NA NA O NA 1 O 1 1 O NA 1 NA O NA O 1 2 O O O 1
## [26] 1 NA 2 NA 2 O O NA 1 O O NA O O NA O 2 1 NA 2 O NA O 2 NA
##
## $`15`
## [1] NA 2 2 NA 1 0 1 2 NA NA 0 2 1 2 NA 2 1 0 0 2 NA 1 NA 0 NA
## [26] 1 0 2 2 0 1 1 NA 1 NA NA NA NA 0 0 NA NA 1 0 0 1 2 0 NA 0
##
```

```
## $`16`
## [1] 2 2 0 NA NA O NA O 1 NA O NA NA 1 O 1 1 NA O 0 1 0 NA O 1
## [26] NA 2 1 0 2 1 2 0 1 0 0 NA 0 0 NA 2 1 1 NA NA 1 1 0 1 2
## $\17\
## [1] O NA NA NA 2 1 1 NA NA O O O NA 1 NA 1 1 O O 1 O O O 2 NA
## [26] O NA NA 2 O O NA O O 2 1 1 2 NA 1 O O O 1 NA O 2 1 NA 2
## $\18\
## [1] 0 0 1 1 0 NA NA 2 0 2 0 1 2 1 2 1 NA NA 1 NA 2 1 NA NA 0
## [26] NA O NA 2 NA 1 NA 1 O NA 2 2 NA 1 1 1 1 NA NA 2 NA NA NA O 1
##
## $`19`
## [1] NA 1 NA NA O O 2 NA 1 2 1 NA NA 1 O O NA NA NA O 2 O O 2 2
## [26] NA 1 0 0 0 0 1 0 1 1 NA 0 1 1 0 0 NA 1 1 0 2 0 0 1 1
##
## $`20`
## [1] NA NA NA O 1 1 O 1 O 0 NA O 0 NA 2 NA 2 1 NA O 0 1 NA 2 O
## [26] O 1 1 1 NA O O NA O O 2 O NA O O NA O NA O 2 O O 2 1 1
## $`21`
## [1] NA 1 2 1 0 NA 1 NA NA 2 1 0 0 0 0 NA 0 0 0 NA 0 1 NA 2 NA
## [26] O 1 NA 2 NA NA NA O O O O 1 NA O O 1 O O O 2 2 NA O NA O
## $`22`
## [1] NA 2 NA 1 0 1 0 2 1 0 0 NA 0 1 NA 0 0 0 2 1 NA 0 0 2 NA
## [26] 2 0 NA 0 NA 2 2 2 NA 2 2 0 0 NA 0 0 0 2 0 2 NA 1 NA 0 2
## $`23`
## [1] NA 1 0 0 0 1 2 2 NA 2 2 NA NA 0 2 0 2 2 2 2 1 NA NA NA 0
## [26] O 1 NA NA NA O O 1 NA 2 2 2 0 0 2 2 0 0 0 NA O NA O 1 0 1
##
## $\24\
## [1] NA NA O O NA NA O O 1 2 2 0 0 2 0 NA NA 1 1 0 0 0 0 1 NA
## [26] NA 2 0 1 NA 1 2 0 0 0 0 1 NA 2 NA 2 0 1 2 NA NA NA 0 2 NA
## $`25`
## [1] O 2 NA 1 NA 1 NA NA NA 1 NA O NA O 2 1 2 NA 2 NA NA 2 1 O NA
## [26] 0 0 NA 0 2 0 0 0 0 1 0 0 1 0 2 NA 2 1 1 0 NA 1 1 NA 0
##
## $`26`
## [1] NA O 1 O NA O 1 O O 2 NA O O NA O NA O NA NA NA NA 1 1 2
## [26] O NA O NA O O O O O 2 1 O NA 1 NA NA 1 NA NA 1 NA 1 NA 1 O O
##
## [1] O O NA O 2 2 2 O NA O O NA NA O 2 O O NA NA 2 NA O NA 1 O
## [26] 1 0 NA NA 2 NA 0 1 2 NA 0 0 1 NA NA NA NA 2 1 0 1 NA 1 NA 2
##
## $`28`
## [1] NA 0 0 2 0 0 1 0 1 NA 2 NA 1 2 NA 1 2 NA 1 0 2 0 0 0 2
## [26] 2 2 2 0 1 2 2 1 0 0 0 0 0 NA 1 0 0 1 NA 0 NA 0 2 1 0
##
## $`29`
## [1] 1 NA 0 2 0 NA 1 NA 1 NA 2 0 NA 0 NA NA 2 1 2 NA 1 2 1 0 NA
```

```
## [26] O O NA O 2 2 O 1 1 O NA 2 NA O NA NA O 2 2 O O O 1 1 O
##
## $`30`
## [1] O O 1 NA 2 2 2 0 O 1 O O NA NA NA NA NA 1 O 1 NA O 1 O O
## [26] 0 NA 2 0 1 2 1 0 0 0 2 2 0 0 2 0 0 1 2 NA 0 1 1 1 2
##
## $`31`
## [1] 2 1 2 1 2 2 NA 0 2 0 0 2 2 NA 2 0 2 2 0 NA NA 1 0 1 1
## [26] O 1 O 1 NA O 1 NA 1 O 2 1 O O O NA 1 1 NA O NA NA NA 1
##
## $`32`
## [1] O NA NA 2 2 1 NA O O 1 O O 2 NA O O O O NA NA O NA O 1
## [26] 1 NA 2 0 0 NA 2 NA NA 1 2 0 2 NA 0 1 1 2 0 2 0 NA NA NA NA
##
## $\33\
## [1] NA NA NA 2 0 0 0 2 0 NA 2 1 1 NA 2 2 NA 1 0 0 1 2 1 0 2
## [26] 1 1 1 2 0 0 0 2 1 NA 2 2 NA 2 0 NA NA 0 0 NA 0 NA NA NA 0
##
## $\34\
## [1] NA O 1 NA 1 NA NA 1 O O 1 O NA 1 2 1 2 O O 1 O O 1 O 1
## [26] NA NA 2 0 2 2 2 2 0 1 1 0 2 1 0 0 2 0 0 0 0 1 2 1
## $\35\
## [1] 2 0 1 0 NA 1 0 0 1 NA 1 2 1 NA NA 1 0 0 NA 1 1 2 NA 0 0
## [26] NA 1 1 0 NA 1 0 NA 0 1 NA 2 0 0 NA 0 NA NA 1 1 1 NA 2 0 NA
## $`36`
## [1] 1 NA 1 0 NA NA 0 0 0 1 1 0 1 0 2 NA 0 0 2 NA 1 2 0 2 0
## [26] 2 2 NA 2 1 0 0 NA NA 0 NA NA 0 NA 2 0 2 0 2 0 2 NA NA 0 2
##
## $`37`
  [1] 1 0 0 0 0 0 0 2 0 NA NA 2 1 1 NA 1 NA 0 2 2 NA 2 NA 0 0
## [26] O NA 1 O NA 1 1 1 O NA O 2 2 NA O O 1 2 1 O O NA NA 1 NA
##
## $\ 38\
## [1] 1 0 1 NA 0 NA 0 2 2 NA 1 2 NA NA 2 0 0 0 2 1 NA 0 NA 0 NA
## [26] NA NA NA NA O O 2 2 1 NA NA O O NA 2 NA 2 O NA O 1 NA O NA O
##
## $\39\
## [1] O O NA O 2 NA NA O O 1 2 2 O 1 NA 1 1 1 1 NA 2 1 O 1 NA
## [26] 0 0 0 2 0 1 2 1 0 NA 1 2 2 0 NA 0 0 0 0 NA NA NA 0 0
##
## $`40`
## [1] 1 0 0 0 NA NA 0 0 2 0 0 1 NA 2 NA 0 0 0 0 1 2 NA NA 0 2
## [26] 1 0 0 0 NA NA 1 2 NA 0 1 0 2 NA 0 0 1 NA 1 0 2 0 0 2 NA
##
## $`41`
## [1] NA 2 NA 2 O 2 2 O 1 2 O NA O 2 1 2 1 O 2 NA NA NA 2 O 2
## [26] 0 2 2 1 NA 2 0 2 NA 1 NA 2 1 2 0 2 NA NA 1 2 0 0 0 NA NA
##
## $`42`
## [1] 2 NA NA NA NA O O NA 2 O NA 1 O NA 2 O 1 O NA NA O O NA NA NA
## [26] 2 NA O O NA O NA NA NA 2 1 NA O O 2 1 NA 1 NA 1 O O NA 2 O
##
```

```
## $`43`
           2
                 O 1 1 O NA NA 1 NA 1 NA NA O NA O 2 NA NA
   Г1]
        0
              2
                                                                  0
                                                                     0
                                                                        1
             O NA NA 1 O NA 2 NA NA O NA NA
  [26]
                                                 O NA
                                                       O O NA
##
## $`44`
   [1]
                 0 NA 0 NA 0 2 0
                                    1 0 NA 0
##
        1
              0
                                                 1 1
                                                       1
                                                          0
                                                             ONA
                                                                   2
                 2 NA NA O NA NA
                                  0
                                     O NA
                                           0
                                              0
                                                 2 NA NA
##
## $`45`
                                        0
   [1]
        1 NA
              1 NA
                    O O NA NA
                               2 NA
                                     0
                                           1
                                             2 O NA NA NA
                                                             0
                                                                0
                                                                   2 NA
                    O NA
                          2 NA
                               0
                                  0
                                     0
                                        0
                                           O NA NA NA
                                                       2
                                                          O NA
                                                                   1
##
## $`46`
        O NA NA NA NA NA
   [1]
                             2
                               O NA
                                    O NA NA NA NA NA
                                                          0
                                                             0
                                                                0
              1
                 2 1 1 NA
                            0
                               2
                                 O NA
                                       O O 1 NA
                                                    2
                                                       0
                                                             2
                                                                     1 NA NA
## [26]
                                                          1
##
## $`47`
    [1] NA
                               0
                                  0
                                     0
                                        0
                                           2 NA
                                                    1 NA
  [26] NA
                 2
                    0
                       2 NA
                            1
                               1 NA
                                     1
                                        1
                                           1
                                              2 NA
                                                    O NA
                                                          0
                                                                2
                                                                     0
##
           0
                                                             0
## $`48`
   [1] NA
                       2
                             0
                               0
                                  O NA NA O O NA 1 NA NA NA
                                  O NA
                                       1 NA O O
                                                    O NA NA
              2 NA
                            0
                               0
                                                            0
                    1 NA
                          1
##
## $`49`
   Г17
        2
          1
              2 NA
                    2
                       2
                          2
                             0
                               0
                                  2
                                     1
                                        1
                                           2
                                              O NA NA
                                                       0
                                                          1
                                                             O NA
                                                                   0
                                                                     1
##
                 2 NA NA NA
                             0
                               0
                                  O NA NA
                                           0
                                              2
                                                 0
                                                    O NA
                                                          0
                                                             2
                                                                2
                                                                   0
  [26]
## $\ 50\
   [1]
        2
             1 NA
                       0
                          O NA O NA NA O O NA
                                                 2
                                                    2
                                                       0
                                                          2
                                                             0
                                                               1 1 NA
                    1
                       0 2 0 2 0 NA NA NA NA 1
## [26]
           1 NA
                 2 NA
                                                    2
                                                       O NA NA 1 NA 1
```

• In one statement, use the lapply function to create a list whose keys are the column number and values are themselves a list with keys: "min" whose value is the minimum of the column, "max" whose value is the maximum of the column, "pct_missing" is the proportion of missingness in the column and "first_NA" whose value is the row number of the first time the NA appears.

```
special_list_col = lapply(col_list,
                          function(X){
                            minimum = min(X,na.rm = TRUE)
                            maximum = max(X, na.rm = TRUE)
                            pct_missing = (sum(is.na(X)) / length(X)) * 100
                            first_NA = min(which(is.na(X)))
                            c(minimum, maximum, pct_missing, first_NA) #Needed to return all info
                          })
special_list_col
## $`1`
## [1]
       0
          2 32 6
##
## $`2`
## [1]
       0
           2 24
                5
##
## $`3`
```

[1]

0

2 36 2

```
##
## $`4`
## [1] 0 2 46 1
##
## $`5`
## [1] 0 2 28 1
##
## $`6`
## [1] 0 2 38 6
##
## $`7`
## [1] 0 2 30 14
## $`8`
## [1] 0 2 36 1
##
## $`9`
## [1] 0 2 28 1
##
## $`10`
## [1] 0 2 24 1
##
## $`11`
## [1] 0 2 38 3
##
## $`12`
## [1] 0 2 32 2
## $`13`
## [1] 0 2 44 2
##
## $`14`
## [1] 0 2 30 3
##
## $`15`
## [1] 0 2 32 1
##
## $`16`
## [1] 0 2 26 4
##
## $`17`
## [1] 0 2 28 2
## $`18`
## [1] 0 2 36 6
##
## $`19`
## [1] 0 2 24 1
##
## $`20`
## [1] 0 2 26 1
##
## $`21`
## [1] 0 2 30 1
```

```
##
## $`22`
## [1] 0 2 24 1
##
## $`23`
## [1] 0 2 26 1
##
## $`24`
## [1] 0 2 30 1
##
## $`25`
## [1] 0 2 30 3
## $`26`
## [1] 0 2 36 1
##
## $`27`
## [1] 0 2 36 3
##
## $`28`
## [1] 0 2 16 1
##
## $`29`
## [1] 0 2 28 2
##
## $`30`
## [1] 0 2 18 4
## $`31`
## [1] 0 2 22 7
##
## $`32`
## [1] 0 2 32 2
##
## $`33`
## [1] 0 2 28 1
##
## $`34`
## [1] 0 2 14 1
##
## $`35`
## [1] 0 2 30 5
## $`36`
## [1] 0 2 26 2
##
## $`37`
## [1] 0 2 26 10
##
## $`38`
## [1] 0 2 38 4
##
## $`39`
## [1] 0 2 22 3
```

```
##
## $`40`
## [1] 0
          2 24 5
##
## $`41`
## [1]
       0
          2 26 1
##
## $`42`
## [1] 0
          2 42 2
##
## $`43`
           2 36 8
##
  [1] 0
##
## $`44`
## [1] 0
          2 24 5
##
## $`45`
## [1]
       0
           2 32 2
##
## $`46`
## [1] 0 2 38 2
##
## $`47`
## [1] 0
         2 22 1
##
## $`48`
## [1]
       0
           2 28 1
##
## $`49`
## [1] 0
          2 24
##
## $\ 50\
## [1] 0 2 32 4
```

• Create a vector v consisting of a sample of 1,000 iid normal realizations with mean -10 and variance 100.

```
v = rnorm(1000, mean = -10, sd = sqrt(100))
```

• Create a function my_reverse which takes as required input a vector and returns the vector in reverse where the first entry is the last entry, etc. No function calls are allowed inside your function otherwise that would defeat the purpose of the exercise! (Yes, there is a base R function that does this called rev). Use head on v and tail on my_reverse(v) to verify it works.

```
my_reverse = function(x){
    n = length(x)
    for(i in 1 :ceiling(n / 2)){
        temp = x[i]
        x[i] = x[n - i + 1]
        x[n - i + 1] = temp
    }
    x
}

dumb_rev = function(x){
    n = length(x)
    rev_array = array(NA,n)
```

```
for(i in 1:n){
    rev_array[i] = x[n - i + 1]
  rev_array
head(v)
## [1] -11.059930
                 -5.896357 15.478425 -2.335823 -12.714922 -12.377216
tail(my_reverse(v))
```

[1] -12.377216 -12.714922 -2.335823 15.478425 -5.896357 -11.059930

 Create a function flip_matrix which takes as required input a matrix, an argument dim_to_rev that returns the matrix with the rows in reverse order or the columns in reverse order depending on the dim_to_rev argument. Let the default be the dimension of the matrix that is greater.

```
#If you want to reverse columns pass in 2.
#If you want to reverse rows pass in 1.
flip_matrix = function(matrix,dim_to_rev){
  apply(matrix,dim_to_rev, my_reverse)
}
```

• Find the average of v and the standard error of v.

```
avg = mean(v)
std_error = sd(v) / sqrt(length(v))
```

• Find the 5%ile of v and use the qnorm function to compute what it theoretically should be. Is the estimate about what is expected by theory?

```
quantile(v, probs = 0.05)
##
          5%
## -26.02206
qnorm(0.05,-10,sqrt(100))
```

[1] -26.44854

• What is the percentile of v that corresponds to the value 0? What should it be theoretically? Is the estimate about what is expected by theory?

```
quantile(v)
##
           0%
                     25%
                                50%
                                           75%
                                                      100%
## -41.953914 -16.721442 -9.829132 -3.846213 24.795196
plot(v)
```


• Create a list named my_list with keys "A", "B", ... where the entries are arrays of size 1, 2 x 2, 3 x 3 x 3, etc. Fill the array with the numbers 1, 2, 3, etc. Make 8 entries.

```
keys = c("A", "B", "C", "D", "E", "F", "G", "H")
my_list = list()
#Iterate each key. Value be an array with nums
for(i in 1:length(keys)){
  my_list[[keys[i]]] = matrix(1:i,i,i)
}
my_list
## $A
##
        [,1]
## [1,]
##
## $B
##
        [,1] [,2]
## [1,]
            1
                 1
## [2,]
            2
                 2
##
## $C
        [,1] [,2] [,3]
##
## [1,]
            1
                 1
                       1
                       2
  [2,]
            2
                 2
##
##
   [3,]
            3
                 3
                       3
##
## $D
##
         [,1] [,2] [,3] [,4]
                            1
## [1,]
            1
                 1
                       1
## [2,]
                 2
                       2
                            2
            2
## [3,]
            3
                       3
                            3
                 3
##
   [4,]
            4
                       4
                            4
##
```

```
## $E
##
        [,1] [,2] [,3] [,4] [,5]
## [1,]
## [2,]
            2
                 2
                       2
                            2
                                  2
                            3
            3
                 3
                       3
                                  3
## [3,]
## [4,]
            4
                 4
                       4
                            4
                                 4
            5
## [5,]
                       5
##
## $F
        [,1] [,2] [,3] [,4] [,5] [,6]
##
## [1,]
           1
                 1
                       1
                            1
                                  1
                                       1
## [2,]
            2
                 2
                       2
                            2
                                  2
                                       2
## [3,]
            3
                 3
                       3
                            3
                                  3
                                       3
## [4,]
            4
                 4
                            4
                                       4
                       4
                                  4
## [5,]
            5
                 5
                       5
                            5
                                  5
                                       5
## [6,]
            6
                 6
                       6
                            6
                                       6
##
## $G
        [,1] [,2] [,3] [,4] [,5] [,6] [,7]
##
## [1,]
                            1
                                       1
           1
                 1
                       1
                                 1
## [2,]
                                 2
            2
                 2
                       2
                            2
                                       2
                                            2
## [3,]
            3
                 3
                       3
                            3
                                       3
## [4,]
            4
                 4
                       4
                            4
                                  4
                                       4
                                            4
## [5,]
           5
                            5
                                       5
                 5
                       5
                                 5
                                            5
## [6,]
                       6
                            6
                                  6
                                       6
                                            6
           6
                 6
## [7,]
            7
                 7
                       7
                            7
                                       7
##
## $H
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
##
## [1,]
            1
                            1
                                 1
                                       1
                                            1
                 1
                       1
                                                  1
                                  2
                                       2
                                                  2
## [2,]
            2
                 2
                       2
                            2
                                            2
## [3,]
            3
                 3
                       3
                            3
                                  3
                                       3
                                            3
                                                  3
## [4,]
            4
                       4
                            4
                                  4
                                       4
                                                  4
## [5,]
            5
                            5
                                  5
                                       5
                 5
                       5
                                                  5
## [6,]
            6
                 6
                       6
                            6
                                  6
                                       6
                                            6
                                                  6
## [7,]
            7
                      7
                            7
                                 7
                                       7
                                                  7
                 7
                                            7
## [8,]
            8
                 8
                       8
                            8
                                       8
                                                  8
```

Run the following code:

lapply(my_list, object.size)

```
## $A
## 224 bytes
## $B
## 232 bytes
## $C
## 264 bytes
## 
## $D
## 280 bytes
## 
## $E
```

```
## 344 bytes
## $F
## 360 bytes
## $G
## 416 bytes
## 
## $H
## 472 bytes
```

Use **?object.size** to read about what these functions do. Then explain the output you see above. For the later arrays, does it make sense given the dimensions of the arrays?

```
#TO-DO
```

Now cleanup the namespace by deleting all stored objects and functions:

```
rm(list=ls())
```

A little about strings

[10] " Mauris at sodales augue"

• Use the strsplit function and sample to put the sentences in the string lorem below in random order. You will also need to manipulate the output of strsplit which is a list. You may need to learn basic concepts of regular expressions.

```
lorem = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi posuere varius volutpat. Morbi
strsplit(lorem,"[.]")
## [[1]]
   [1] "Lorem ipsum dolor sit amet, consectetur adipiscing elit"
    [2] " Morbi posuere varius volutpat"
   [3] " Morbi faucibus ligula id massa ultricies viverra"
   [4] " Donec vehicula sagittis nisi non semper"
##
    [5] " Donec at tempor erat"
##
    [6] " Integer dapibus mi lectus, eu posuere arcu ultricies in"
   [7] " Cras suscipit id nibh lacinia elementum"
   [8] " Curabitur est augue, congue eget quam in, scelerisque semper magna"
   [9] " Aenean nulla ante, iaculis sed vehicula ac, finibus vel arcu"
##
## [10] " Mauris at sodales augue"
output = unlist(strsplit(lorem,"[.]"))
res = sample(output)
output
    [1] "Lorem ipsum dolor sit amet, consectetur adipiscing elit"
##
    [2] " Morbi posuere varius volutpat"
   [3] " Morbi faucibus ligula id massa ultricies viverra"
    [4] " Donec vehicula sagittis nisi non semper"
##
   [5] " Donec at tempor erat"
##
   [6] " Integer dapibus mi lectus, eu posuere arcu ultricies in"
   [7] " Cras suscipit id nibh lacinia elementum"
    [8] " Curabitur est augue, congue eget quam in, scelerisque semper magna"
  [9] " Aenean nulla ante, iaculis sed vehicula ac, finibus vel arcu"
```

res

- ## [1] "Lorem ipsum dolor sit amet, consectetur adipiscing elit"
 ## [2] " Integer dapibus mi lectus, eu posuere arcu ultricies in"
 ## [3] " Morbi posuere varius volutpat"
 ## [4] " Morbi faucibus ligula id massa ultricies viverra"
 ## [5] " Curabitur est augue, congue eget quam in, scelerisque semper magna"
 ## [6] " Donec at tempor erat"
 ## [7] " Donec vehicula sagittis nisi non semper"
 ## [8] " Mauris at sodales augue"
- ## [9] " Cras suscipit id nibh lacinia elementum"
 ## [10] " Aenean nulla ante, iaculis sed vehicula ac, finibus vel arcu"