Contrôle TD n° 1

L1/S2, Mathématiques, groupe D

23 Février 2024

Exercice 1

On considère la suite (u_n) définie par $u_0 = 0$ et la relation de récurrence $u_{n+1} = \frac{1}{2}u_n + \frac{1}{4}$. Montrer que la suite (v_n) définie par $v_n = u_n - \frac{1}{2}$ est géometrique de raison 1/2. En déduire l'expression générale de v_n puis celle de u_n . Déterminer $\lim_{n\to\infty} u_n$.

Solution : Soit la suite (u_n) définie par la relation de récurrence $u_{n+1} = \frac{1}{2}u_n + \frac{1}{4}$ et $v_n = u_n - \frac{1}{2}$. Si on considère v_{n+1} alors on obtient

$$\begin{split} v_{n+1} &= u_{n+1} - \frac{1}{2} \\ &= (\frac{1}{2}u_n + \frac{1}{4}) - \frac{1}{2} \text{ (en utilisant que } u_{n+1} = \frac{1}{2}u_n + \frac{1}{4}) \\ &= \frac{1}{2}u_n - \frac{1}{4} = \frac{1}{2}\left(u_n - \frac{1}{2}\right). \end{split}$$

Comme $v_n=u_n-\frac{1}{2},$ on obtient une relation de récurrence pour la suite (v_n) donnée par $v_{n+1}=\frac{1}{2}v_n,$ donc (v_n) est une suite géometrique de raison r=2. Par la formule vue en TD on a que la formule générale pour (v_n) est $v_n=v_0r^n$ pour $n\geq 0,$ et comme $v_0=\frac{1}{4},$ c'est-à-dire $v_n=\frac{1}{4}\left(\frac{1}{2}\right)^n=\frac{1}{2^{n+2}}.$ Avec cette expression, on reobtient que $v_n=\frac{1}{2^{n+2}}=u_n-\frac{1}{2}$ pour tout $n\geq 0,$ donc $u_n=\frac{1}{2^{n+2}}+\frac{1}{2}.$ En utilisant l'expression prédédent on a $\lim_{n\to+\infty}u_n=1/2.$

Exercice 2

Déterminer la limite en a de la fonction f dans chacun des cas suivants :

1.
$$f(x) = \frac{x^2 + 2}{5x^2 + x + 9}$$
; $a = \infty$.

Solution : La fonction f(x) est le quotient de deux pôlynomes $p(x) = x^2 + 2$ et $q(x) = 5x^2 + x + 9$ oú $\lim_{x\to a} p(x) = +\infty$ et aussi $\lim_{x\to a} q(x) = +\infty$, donc on a une forme indeterminée ∞/∞ . On regarde que la function f(x) peut être écrit de la forme suivante :

$$f(x) = \frac{x^2 + 2}{5x^2 + x + 9}$$
$$= \frac{x^2(1 + 2/x^2)}{x^2(5 + 1/x + 9/x^2)}$$
$$= \frac{1 + 2/x^2}{5 + 1/x + 9/x^2}$$

Donc ou peut l'écrire comme un quotient de deux fonctions $\tilde{p}(x) = 1 + 2/x^2$ et $\tilde{q}(x) = 5 + 1/x + 9/x^2$, d'où on obtient $\lim_{x \to \infty} \tilde{p}(x) = 1$ et $\lim_{x \to \infty} \tilde{q}(x) = 5$. Comme les limites de $\tilde{p}(x)$ et $\tilde{q}(x)$ existent, alors la limite de f(x) dans $a = \infty$ est le quotient des limites des fonctions $\tilde{p}(x)$ et $\tilde{q}(x)$ dans $a = \infty$, alors $\lim_{x \to \infty} f(x) = \frac{1}{5}$.

2. $f(x) = xe^x$; $a = \infty$.

Solution : La fonction f est le produit de deux fonctions, q(x) = x et $r(x) = e^x$. Comme $\lim_{x \to +\infty} x = +\infty$ et pareil pour $\lim_{x \to +\infty} e^x = +\infty$, alors $\lim_{x \to +\infty} x e^x = +\infty$.

Exercice 3

1. Calculer la dérivée de la fonction $f(x) = \frac{\ln(x)}{1+x^2}$.

Solution : On écrit la fonction comme le quotient de deux fonctions $u(x) = \ln(x)$ et $v(x) = 1 + x^2$. La formule pour la dérivée du quotient nous donne

$$f'(x) = \left(\frac{u(x)}{v(x)}\right)'$$
$$= \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$$

comme $u'(x) = \frac{1}{x}$ et v'(x) = 2x, en reemplaçant finalement on obtient

$$f'(x) = \frac{\frac{1}{x}(1+x^2) - \ln(x)2x}{(1+x^2)^2}$$
$$= \frac{1+x^2 - 2x^2 \ln(x)}{x(1+x^2)^2}.$$

2. Déterminer le $DL_2(0)$ de la fonction $f(x) = xe^x$.

Solution : Pour déterminer le $DL_2(0)$ il faut déterminer f'(0) et f''(0). Comme la fonction f est le produit de deux fonctions, on applique la formule la dérivée de produit, alors on obtient que

$$f'(x) = 1 \cdot e^x + x \cdot e^x = xe^x + e^x = (x+1)e^x$$
.

en applicant la dérivée de produit pour obtenir f''(x) on a

$$f''(x) = 1 \cdot e^x + (x+1) \cdot e^x = (x+2)e^x$$
.

Alors on obtient que f'(0) = 1 et f''(x) = 2, donc le $DL_2(0)$ de f est

$$f(x) = 0 + 1 \cdot (x - 0) + \frac{2}{2}(x - 0)^{2} + \epsilon(x)$$
$$= x + x^{2} + \epsilon(x).$$