A=00.00

NEW APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Charles A. McWherter, Yiqing Feng, and Neena L. Summers

TITLE: NOVEL ERYTHROPOIETIN RECEPTOR AGONISTS

Commissioner of Patents and Trademarks

Washington, D. C. 20231

Sir:

Transmitted herewith for filing is the above-identified patent application which, in accordance with 37 CFR 1.51, comprises:

- Abstract and Specification including 22 Claims [X]
- [X] An Assignment of the application and a Declaration and Power of Attorney
- An Assignment of the application and a Declaration and Power of Attorney to follow under separate cover
- [X] Sheets of formal/informal drawings 5.
- [X] Post Card
- Prior Art Statement (37 CFR 1.97)
- [] Preliminary Amendment
- [X]A triplicate copy of this transmittal paper is enclosed.
- The present application claims priority under Title 35, United States Code, §119 of United States [X] Provisional application Serial No. 60/034,044, filed October 25, 1996.

The Commissioner is hereby authorized and requested to charge any

fees* in addition to the above as well as all future fees set forth in

37 CFR 1.16 and 1.17 which may be required during the entire pendency of this Application, and credit any overcharges to Deposit Account No. 19-1025.

NOTE: THIS AUTHORIZATION DOES NOT INCLUDE FEES REQUIRED UNDER 37 CFR 1.18

G.D. Searle & Co. Corporate Patent Department P.O. Box 5110

Chicago, Illinois 60680-9889

Dennis A. Bennett Attorney for Applicants Registration No.34,547 314-737-6986

* Calculated as follows:

	Basic Fee	\$790.00
	Total Claims in Excess of 20 X \$22 (42 X \$22)	924.00
.4	Independent Claims in Excess of 3 X \$82 (0)	0
*	Surcharge for each Multiple Dependent Claim (\$270)	270.00
	FILING FEE	\$1984.00
	ASSIGNMENT RECORDING FEE	\$40.00

NOVEL ERYTHROPOIETIN RECEPTOR AGONISTS

The present application claims priority under Title 35, United States Code, §119 of United States Provisional application Serial No. 60/034,044, filed October 25, 1996.

FIELD OF THE INVENTION

The present invention relates to human

10 Erythropoietin (EPO) receptor agonists. These EPO
receptor agonists retain one or more activities of
native EPO and may also show improved hematopoietic
cell-stimulating activity and/or an improved activity
profile which may include reduction of undesirable

15 biological activities associated with native EPO and/or
have improved physical properties which may include
increased solubility, stability and refold efficiency.

BACKGROUND OF THE INVENTION

Colony stimulating factors which stimulate the differentiation and/or proliferation of bone marrow cells have generated much interest because of their therapeutic potential for restoring depressed levels of hematopoietic stem cell-derived cells.

25

30

35

Erythropoietin is a naturally-occurring glycoprotein hormone with a molecular weight that was first reported to be approximately 39,000 daltons (T. Miyaki et al., J. Biol. Chem. 252:5558-5564 (1977)). The mature hormone is 166 amino acids long and the "prepro" form of the hormone, with its leader peptide, is 193 amino acids long (F. Lin, U.S. Patent No. 4,703,008). The mature hormone has a molecular weight, calculated from its amino acid sequence, of 18,399 daltons (K. Jacobs et al., Nature 313:806-810 (1985); J. K. Browne et al., Cold Spring Harbor Symp. Quant. Biol. 5:1693-702 (1986).

The first mutant erythropoietins (i.e., erythropoietin analogs), prepared by making amino acid substitutions and deletions, have demonstrated reduced or unimproved activity. As described in U.S. Patent NO. 4,703,008, replacement of the tyrosine residues at positions 15, 40 and 145 with phenylalanine residues, replacement of the cysteine residue at position 7 with an histidine, substitution of the proline at position 2 with an asparagine, deletion of residues 2-6, deletion 10 of residues 163-166, and deletion of residues 27-55 does not result in an apparent increase in biological activity. The Cys'-to-His' mutation eliminates biological activity. A series of mutant erythropoietins with a single amino acid substitution at asparagine 15 residues 24, 38 or 83 show severely reduced activity (substitution at position 24) or exhibit rapid intracellular degradation and apparent lack of secretion (substitution at residue 38 or 183). Elimination of the O-linked glycosylation site at serine126 results in 20 rapid degradation or lack of secretion of the erythropoietin analog (S. Dube et al., J. Biol. Chem. 33:17516-17521 (1988). These authors conclude that glycosylation sites at residues 38, 83 and 126 are 25 required for proper secretion and that glycosylation sites located at residues 24 and 38 may be involved in the biological activity of mature erythropoietin.

Deglycosylated erythropoietin is fully active in in vitro bioassays (M. S. Dorsdal et al., Endocrinology 116:2293-2299 (1985); U.S. Patent No. 4,703,008; E. Tsuda et al., Eur J. Biochem. 266:20434-20439 (1991). However, glycosylation of erythropoietin is widely accepted to play a critical role in the in vivo activity of the hormone (P. H.. Lowy et al., Nature 185:102-105 (1960); E. Goldwasser and C. K. H.. Kung, Ann. N.Y. Acad. Science 149:49-53 (1968); W. A. Lukowsky and R.

H.. Painter, Can. J. Biochem. :909-917 (1972); D.W. Briggs et al., Amer. J. Phys. 201:1385-1388 (1974); J.C. Schooley, Exp. Hematol. 13:994-998; N. Imai et al., Eur. J. Biochem. 194:457-462 (1990); M.S. Dordal et al., Endocrinology 116:2293-2299 (1985); E. Tsuda et al., 5 Eur. J. Biochem. 188:405-411 (1990); U.S. Patent No. 4,703,008; J.K. Brown et al., Cold Spring Harbor Symposia on Quant. Biol. 51:693-702 (1986); and K. Yamaguchi et al., J. Biol. Chem. 266:20434-20439 (1991). The lack if in vivo biological activity of 10 deglycosylated analogs of erythropoietin is attributed to a rapid clearance of the deglycosylated hormone from the circulation of treated animals. This view is supported by direct comparison of the plasma half-life of glycosylated and deglycosylated erythropoietin (J.C. 15 Spivak and B.B. Hoyans, Blood 73:90-99 (1989), and M.N. Fukuda, et al., Blood 73:84-89 (1989).

Oligonucleotide-directed mutagenesis of
erythropoietin glycosylation sites has effectively
probed the function of glycosylation but has failed, as
yet, to provide insight into an effective strategy for
significantly improving the characteristics of the
hormone for therapeutic applications.

25

30

35

A series of single amino acid substitution or deletion mutants have been constructed, involving amino acid residues 15, 24, 49, 76, 78, 83, 143, 145, 160, 162, 163, 164, 165 and 166. In these mutants are altered the carboxy terminus, the glycosylation sites, and the tyrosine residues of erythropoietin. The mutants have been administered to animals while monitoring hemoglobin, hematocrit and reticulocyte levels (EP No. 0 409 113). While many of these mutants retain in vivo biological activity, none show a significant increase in their ability to raise hemoglobin, hematocrit or

reticulocyte (the immediate precursor of an erythrocyte) levels when compared to native erythropoietin.

Another set of mutants has been constructed to probe the function of residues 99-119 (domain 1) and residues 111-129 (domain 2) (Y. Chern et al., Eur. J. Biochem. 202:225-230 (1991)). The domain 1 mutants are rapidly degraded and inactive in an in vitro bioassay while the domain 2 mutants, at best, retain in vitro activity. These mutants also show no enhanced in vivo biological activity as compared to wild-type, human erythropoietin. These authors conclude that residues 99-119 play a critical role in the structure of erythropoietin.

15

20

25

10

5

The human erythropoietin molecule contains two disulfide bridges, one linking the cysteine residues at positions 7 and 161, and a second connecting cysteines at positions 29 and 33 (P.H. Lai et al., J. Biol. Chem. 261:3116-3121 (1986)). Oligonucleotide-directed mutagenesis has been used to probe the function of the disulfide bridge linking cysteines 29 and 33 in human erythropoietin. The cysteine at position 33 has been converted to a proline residue, which, mimics the structure of murine erythropoietin at this residue. resulting mutant has greatly reduced in vitro activity. The loss of activity is so severe that the authors conclude that the disulfide bridge between residues 29 and 33 is essential for erythropoietin function (F.K. Lin, Molecular and Cellular Aspects of Erythropoietin 30 and Erythropoiesis, pp. 23-36, ed. I.N. Rich, Springer-Verlag, Berlin (1987)).

U.S. Patent No. 4,703,008 by Lin, F-K. (hereinafter referred to as "the '008 patent") speculates about a 35 wide variety of modifications of EPO, including addition, deletion, and substitution analogs of EPO.

The '008 patent does not indicate that any of the suggested modifications would increase biological activity per se, although it is stated that deletion of glycosylation sites might increase the activity of EPO produced in yeast (See the '008 patent at column 37, lines 25-28). Also, the '008 patent speculates that EPO analogs which have one or more tyrosine residues replaced with phenylalanine may exhibit an increased or decreased receptor binding affinity.

10

15

30

35

Australian Patent Application No. AU-A-59145/90 by Fibi, M et al. also discusses a number of modified EPO proteins (EPO muteins). It is generally speculated that the alteration of amino acids 10-55, 70-85, and 130-166 of EPO. In particular, additions of positively charged basic amino acids in the carboxyl terminal region are purported to increase the biological activity of EPO.

U.S. Patent No. 4,835,260 by Shoemaker, C.B.

discusses modified EPO proteins with amino acid substitutions of the methionine at position 54 and asparagine at position 38. Such EPO muteins are thought to have improved stability but are not proposed to exhibit any increase in biological activity relative to wild type EPO.

WO 91/05867 discloses analogs of human erythropoietin having a greater number of sites for carbohydrate attachment than human erythropoietin, such as EPO (Asn^{69}) , EPO $(Asn^{125}$, $Ser^{127})$, EPO (Thr^{125}) , and EPO (Pro^{124}, Thr^{125}) .

WO 94 /24160 discloses erythropoietin muteins which have enhanced activity, specifically amino acid substitutions at positions 20, 49, 73, 140, 143, 146, 147 and 154.

WO 94/25055 discloses erythropoietin analogs, including EPO (X33, Cys139, des-Arg166) and EPO (Cys139, des-Arg¹⁶⁶).

5

10

20

25

30

35

Rearrangement of Protein Sequences

In evolution, rearrangements of DNA sequences serve an important role in generating a diversity of protein structure and function. Gene duplication and exon shuffling provide an important mechanism to rapidly generate diversity and thereby provide organisms with a competitive advantage, especially since the basal mutation rate is low (Doolittle, Protein Science 1:191-200, 1992).

15 The development of recombinant DNA methods has made it possible to study the effects of sequence transposition on protein folding, structure and function. The approach used in creating new sequences resembles that of naturally occurring pairs of proteins that are related by linear reorganization of their amino acid sequences (Cunningham, et al., Proc. Natl. Acad. Sci. U.S.A. 76:3218-3222, 1979; Teather & Erfle, J. Bacteriol. 172: 3837-3841, 1990; Schimming et al., Eur. J. Biochem. 204: 13-19, 1992; Yamiuchi and Minamikawa, FEBS Lett. 260:127-130, 1991: MacGregor et al., FEBS Lett. 378:263-266, 1996). The first in vitro application of this type of rearrangement to proteins was described by Goldenberg and Creighton (J. Mol. Biol. 165:407-413, 1983). A new N-terminus is selected at an internal site (breakpoint) of the original sequence, the new sequence having the same order of amino acids as the original from the breakpoint until it reaches an amino acid that is at or near the original C-terminus. At this point the new sequence is joined, either directly or through an additional portion of sequence (linker), to

an amino acid that is at or near the original N-

terminus, and the new sequence continues with the same sequence as the original until it reaches a point that is at or near the amino acid that was N-terminal to the breakpoint site of the original sequence, this residue forming the new C-terminus of the chain.

This approach has been applied to proteins which range in size from 58 to 462 amino acids (Goldenberg & Creighton, J. Mol. Biol. 165:407-413, 1983; Li & Coffino, Mol. Cell. Biol. 13:2377-2383, 1993). The proteins examined have represented a broad range of structural classes, including proteins that contain predominantly α -helix (interleukin-4; Kreitman et al., Cytokine 7:311-318, 1995), β -sheet (interleukin-1; Horlick et al., Protein Eng. 5:427-431, 1992), or mixtures of the two (yeast phosphoribosyl anthranilate isomerase; Luger et al., Science 243:206-210, 1989). Broad categories of protein function are represented in these sequence reorganization studies:

20 Enzymes

10

15

25	T4 lysozyme	<pre>Zhang et al., Biochemistry 32:12311-12318 (1993); Zhang et al., Nature Struct. Biol. 1:434-438 (1995)</pre>
30	dihydrofolate reductase	Buchwalder et al., <i>Biochemistry</i> 31 :1621-1630 (1994); Protasova et al., <i>Prot. Eng.</i> 7 :1373-1377 (1995)
30	ribonuclease T1	Mullins et al., J. Am. Chem. Soc. 116 :5529-5533 (1994); Garrett et Protein Science 5 :204-211 (1996)

35 Bacillus β -glucanse Hahn et al., Proc. Natl. Acad. Sci. U.S.A. 91:10417-10421 (1994)

	aspartate transcarbamoylase	Yang & Schachman, Proc. Natl. Acad. Sci. U.S.A. 90:11980-11984 (1993)
5	phosphoribosyl anthranilate isomerase	Luger et al., Science 243:206-210 (1989); Luger et al., Prot. Eng. 3:249-258 (1990)
10	pepsin/pepsinogen	Lin et al., <i>Protein Science</i> 4: 159-166 (1995)
	glyceraldehyde-3- phosphate dehydro- genase	Vignais et al., Protein Science 4:994-1000 (1995)
15	ornithine decarboxylase	Li & Coffino, <i>Mol. Cell. Biol.</i> 13 :2377-2383 (1993)
20	yeast phosphoglycerate dehydrogenase	Ritco-Vonsovici et al., <i>Biochemistry</i> 34 :16543-16551 (1995)
	Enzyme Inhibitor	
25	basic pancreatic trypsin inhibitor	Goldenberg & Creighton, J. Mol. Biol. 165 :407-413 (1983)
	Cytokines	
30	interleukin-1β	Horlick et al., <i>Protein Eng.</i> 5 :427-431 (1992)
	interleukin-4	<pre>Kreitman et al., Cytokine 7:311- 318 (1995)</pre>

Tyrosine Kinase

Recognition Domain

35

 α -spectrin SH3 Viguera, et al., J. domain Mol. Biol. 247:670-681 (1995)

Transmembrane

5 Protein

omp A Koebnik & Krämer, *J. Mol. Biol.* **250**:617-626 (1995)

10 Chimeric Protein

interleukin-4— Kreitman et al., *Proc. Natl. Acad. Pseudomonas* Sci. U.S.A. **91**:6889-6893 (1994).

exotoxin fusion

15 molecule

20

25

30

35

The results of these studies have been highly In many cases substantially lower activity, variable. solubility or thermodynamic stability were observed (E. coli dihydrofolate reductase, aspartate transcarbamoylase, phosphoribosyl anthranilate isomerase, glyceraldehyde-3-phosphate dehydrogenase, ornithine decarboxylase, omp A, yeast phosphoglycerate dehydrogenase). In other cases, the sequence rearranged protein appeared to have many nearly identical properties as its natural counterpart (basic pancreatic trypsin inhibitor, T4 lysozyme, ribonuclease T1, Bacillus β -glucanase, interleukin-1 β , α -spectrin SH3 domain, pepsinogen, interleukin-4). In exceptional cases, an unexpected improvement over some properties of the natural sequence was observed, e.g., the solubility and refolding rate for rearranged α -spectrin SH3 domain sequences, and the receptor affinity and anti-tumor activity of transposed interleukin-4-Pseudomonas exotoxin fusion molecule (Kreitman et al., Proc. Natl. Acad. Sci. U.S.A. 91:6889-6893, 1994; Kreitman et al., Cancer Res. 55:3357-3363, 1995).

The primary motivation for these types of studies has been to study the role of short-range and long-range

15

20

25

30

35

interactions in protein folding and stability. Sequence rearrangements of this type convert a subset of interactions that are long-range in the original sequence into short-range interactions in the new sequence, and vice versa. The fact that many of these sequence rearrangements are able to attain a conformation with at least some activity is persuasive evidence that protein folding occurs by multiple folding pathways (Viguera, et al., *J. Mol. Biol.* **247**:670-681, 1995). In the case of the SH3 domain of α -spectrin, choosing new termini at locations that corresponded to β -hairpin turns resulted in proteins with slightly less stability, but which were nevertheless able to fold.

The positions of the internal breakpoints used in the studies cited here are found exclusively on the surface of proteins, and are distributed throughout the linear sequence without any obvious bias towards the ends or the middle (the variation in the relative distance from the original N-terminus to the breakpoint is ca. 10 to 80% of the total sequence length). The linkers connecting the original N- and C-termini in these studies have ranged from 0 to 9 residues. case (Yang & Schachman, Proc. Natl. Acad. Sci. U.S.A. 90:11980-11984, 1993), a portion of sequence has been deleted from the original C-terminal segment, and the connection made from the truncated C-terminus to the original N-terminus. Flexible hydrophilic residues such as Gly and Ser are frequently used in the linkers. Viguera, et al.(J. Mol. Biol. 247:670-681, 1995) compared joining the original N- and C- termini with 3or 4-residue linkers; the 3-residue linker was less thermodynamically stable. Protasova et al. (Protein Eng. 7:1373-1377, 1994) used 3- or 5-residue linkers in connecting the original N-termini of E. coli dihydrofolate reductase; only the 3-residue linker

produced protein in good yield.

Summary of the Invention

The modified human EPO receptor agonists of the present invention can be represented by the Formula:

$$X^{1}-(L)_{a}-X^{2}$$

wherein;

10 a is 0 or 1;

 χ^1 is a peptide comprising an amino acid sequence corresponding to the sequence of residues n+1 through J;

 χ^2 is a peptide comprising an amino acid sequence corresponding to the sequence of residues 1 through n;

n is an integer ranging from 1 to J-1; and L is a linker.

- In the formula above the constituent amino acids residues of human EPO are numbered sequentially 1 through J from the amino to the carboxyl terminus. A pair of adjacent amino acids within this protein may be numbered n and n+1 respectively where n is an integer ranging from 1 to J-1. The residue n+1 becomes the new N-terminus of the new EPO receptor agonist and the residue n becomes the new C-terminus of the new EPO receptor agonist.
- 30 The present invention relates to novel EPO receptor agonists polypeptides comprising a modified EPO amino acid sequence of the following formula:

AlaProProArgLeuIleCysAspSerArgValLeuGluArgTyrLeuLeuGluAlaLys
35 10 20

 ${\tt GluAlaGluAsnIleThrThrGlyCysAlaGluHisCysSerLeuAsnGluAsnIleThr}\\ 30 40$

40 ValProAspThrLysValAsnPheTyrAlaTrpLysArgMetGluValGlyGlnGlnAla

 ${\tt GlyLeuArgSerLeuThrThrLeuLeuArgAlaLeuGlyAlaGlnLysGluAlaIleSer}$ ${\tt ProProAspAlaAlaSerAlaAlaProLeuArgThrIleThrAlaAspThrPheArgLys}$ ${\tt LeuPheArgValTyrSerAsnPheLeuArgGlyLysLeuLysLeuTyrThrGlyGluAla}$ CysArgThrGlyAspArg

wherein optionally 1-6 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said EPO receptor agonists polypeptide;

wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;

00 04	40.40	444
23-24	48-49	111-112
24-25	50-51	112-113
25-26	51-52	113-114
26-27	52-53	114-115
27-28	53-54	115-116
28-29	54-55	116-117
29-30	55-56	117-118
30-31	56-57	118-119
	T	
31-32	57-58	119-120
32-33	77-78	120-121
33-34	78-79	121-122
34-35	79-80	122-123
35-36	80-81	123-124
36-37	81-82	124-125
37-38	82-83	125-126
38-39	84-85	126-127
40-41	85-86	127-128
41-42	86-87	
43-44	·	128-129
	87-88	129-130
44-45	88-89	131-132
45-46	108-109	respectively; and
46-47	109-110	
47-48	110-111	

said EPO receptor agonist polypeptide may optionally be immediately preceded by (methionine⁻¹), (alanine⁻¹) or (methionine⁻², alanine⁻¹).

5

The more preferred breakpoints at which new C-terminus and N-terminus can be made are; 23-24, 24-25, 25-26, 27-28, 28-29, 29-30, 30-31, 31-32, 32-33, 33-34, 34-35, 35-36, 36-37, 37-38, 38-39, 40-41, 41-42, 42-43, 52-53, 53-54, 54-55, 55-56, 77-78, 78-79, 79-80, 80-81, 81-82, 82-83, 83-84, 84-85, 85-86, 86-87, 87-88, 88-89, 109-110, 110-111, 111-112, 112-113, 113-114, 114-115, 115-116, 116-117, 117-118, 118-119, 119-120, 120-121, 121-122, 122-123, 123-124, 124-125, 125-126, 126-127, 127-128, 128-129, 129-130, 130-131, and 131-132.

The most preferred breakpoints at which new C-terminus and N-terminus can be made are; 23-24, 24-25, 31-32, 32-33, 37-38, 38-39, 82-83, 83-84,85-86, 86-87, 87-88, 125-126, 126-127, and 131-132.

The most preferred breakpoints include glycosylationn sites, non-nuetralizing antibodies, proteolyte cleavage sites.

25

30

35

20

The EPO receptor agonists of the present invention may contain amino acid substitutions, such as those disclosed in WO 94/24160 or one or more of the glycosylation sites at Asn , Asn , and Asn are changed to other amino acids such as but not limited to Asp or Glu, deletions and/or insertions. It is also intended that the EPO receptor agonists of the present invention may also have amino acid deletions at either/or both the N- and C- termini of the original protein and or deletions from the new N- and/or C- termini of the sequence rearranged proteins in the formulas shown above.

A preferred embodiment of the present invention the linker (L) joining the N-terminus to the C-terminus is a polypeptide selected from the group consisting of:

GlyGlyGlySer SEQ ID NO:123;

GlyGlyGlySerGlyGlySer SEQ ID NO:124; GlyGlyGlySerGlyGlyGlySerGlyGlyGlySer SEQ ID NO: 125;

> SerGlyGlySerGlyGlySer SEQ ID NO:126; GluPheGlyAsnMet SEQ ID NO:127;

GluPheGlyGlyAsnMet SEQ ID NO:128;
GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:129; and
GlyGlySerAspMetAlaGly SEQ ID NO:130.

The present invention also encompasses recombinant 15 human EPO receptor agonists co-administered or sequentially with one or more additional colony stimulating factors (CSF) including, cytokines, lymphokines, interleukins, hematopoietic growth factors which include but are not limited to GM-CSF, G-CSF, c-20 mpl ligand (also known as TPO or MGDF), M-CSF, IL-1, IL-4, IL-2, IL-3, IL-5, IL 6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, human growth hormone, Bcell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor 25 (SCF) also known as steel factor or c-kit ligand (herein collectively referred to as "factors"). These coadministered mixtures may be characterized by having the usual activity of both of the peptides or the mixture may be further characterized by having a biological or 30 physiological activity greater than simply the additive function of the presence of the EPO receptor agonists or the second colony stimulating factor alone. The coadministration may also provide an enhanced effect on the activity or an activity different from that expected 35 by the presence of the EPO or the second colony stimulating factor. The co-administration may also have an improved activity profile which may include reduction

15

20

25

30

35

of undesirable biological activities associated with native human EPO. In addition to the list above, IL-3 variants taught in WO 94/12639 and WO 94/12638 fusion protein taught in WO 95/21197, and WO 95/21254 G-CSF receptor agonists disclosed in WO 97/12977, c-mpl receptor agonists disclosed in WO 97/12978, IL-3 receptor agonists disclosed in WO 97/12979 and multifunctional receptor agonists taught in WO 97/12985 can be co-administered with the polypeptides of the present invention. As used herein "IL-3 variants" refer to IL-3 variants taught in WO 94/12639 and WO 94/12638. As used herein "fusion proteins" refer to fusion protein taught in WO 95/21197, and WO 95/21254. As used herein "G-CSF receptor agonists" refer to G-CSF receptor agonists disclosed in WO 97/12978. As used herein "c-mpl receptor agonists" refer to c-mpl receptor agonists disclosed in WO 97/12978. As used herein "IL-3 receptor agonists" refer to IL-3 receptor agonists disclosed in WO 97/12979. As used herein "multi-functional receptor agonists" refer to multi-functional receptor agonists taught in WO 97/12985.

In addition, it is envisioned that in vitro uses would include the ability to stimulate bone marrow and blood cell activation and growth before the expanded cells are infused into patients

It is also envisioned that uses of EPO receptor agonists of the present invention would include blood banking applications, where the EPO receptor agonists are given to a patent to increase the number of red blood cells and blood products removed from the patient, prior to some medical procedure, and the blood products stored and transfused back into the patient after the medical procedure. Additionally, it is envisioned that uses of EPO receptor agonists would include giving the EPO receptor agonists to a blood donor prior to blood

donation to increase the number of red blood cells, thereby allowing the donor to safely give more blood.

Brief Description of the Figures

Figure 1 schematically illustrates the sequence rearrangement of a protein. The N-terminus (N) and the C-terminus (C) of the native protein are joined through a linker, or joined directly. The protein is opened at a breakpoint creating a new N-terminus (new N) and a new C-terminus (new-C) resulting in a protein with a new linear amino acid sequence. A rearranged molecule may be synthesized de novo as linear molecule and not go through the steps of joining the original N-terminus and the C-terminus and opening of the protein at the breakpoint.

Figure 2 shows a schematic of Method I, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the amino acid 11 (a.a. 1- 10 are deleted) through a linker region and a new C-terminus created at amino acid 96 of the original sequence.

Figure 3 shows a schematic of Method II, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined without a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the original N-terminus and a new C-terminus created at amino acid 96 of the original sequence.

10

15

Figure 4 shows a schematic of Method III, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to amino acid 1 through a linker region and a new C-terminus created at amino acid 96 of the original sequence.

Figure 5 shows a DNA sequence encoding human mature EPO based on the sequence of Lin et al. (PNAS 82:7580-7584, 1985).

10

15

20

25

30

35

Detailed Description of the Invention

Receptor agonists of the present invention may be useful in the treatment of diseases characterized by decreased levels of red blood cells of the hematopoietic system.

A EPO receptor agonist may be useful in the treatment or prevention of anemia. Many drugs may cause bone marrow suppression or hematopoietic deficiencies. Examples of such drugs are AZT, DDI, alkylating agents and anti-metabolites used in chemotherapy, antibiotics such as chloramphenicol, penicillin, gancyclovir, daunomycin and sulfa drugs, phenothiazones, tranquilizers such as meprobamate, analgesics such as aminopyrine and dipyrone, anti-convulsants such as phenytoin or carbamazepine, antithyroids such as propylthiouracil and methimazole and diuretics. EPO receptor agonists may be useful in preventing or treating the bone marrow suppression or hematopoietic deficiencies which often occur in patients treated with these drugs.

Hematopoietic deficiencies may also occur as a result of viral, microbial or parasitic infections and as a result of treatment for renal disease or renal failure, e.g., dialysis. The present peptide may be useful in treating such hematopoietic deficiency.

Another aspect of the present invention provides plasmid DNA vectors for use in the method of expression of these novel EPO receptor agonists. These vectors contain the novel DNA sequences described above which code for the novel polypeptides of the invention.

Appropriate vectors which can transform host cells capable of expressing the EPO receptor agonists include expression vectors comprising nucleotide sequences coding for the EPO receptor agonists joined to transcriptional and translational regulatory sequences which are selected according to the host cells used.

Vectors incorporating modified sequences as described above are included in the present invention and are useful in the production of the modified EPO receptor agonist polypeptides. The vector employed in the method also contains selected regulatory sequences in operative association with the DNA coding sequences of the invention and capable of directing the replication and expression thereof in selected host cells.

As another aspect of the present invention, there is provided a method for producing the novel family of human EPO receptor agonists. The method of the present invention involves culturing suitable cells or cell line, which has been transformed with a vector containing a DNA sequence coding for expression of the novel EPO receptor agonist polypeptide. Suitable cells or cell lines may include various strains of bacteria such as *E. coli*, yeast, mammalian cells, or insect cells may be utilized as host cells in the method of the present invention.

20

25

10

15

Other aspects of the present invention are methods and therapeutic compositions for treating the conditions referred to above. Such compositions comprise a therapeutically effective amount of one or more of the EPO receptor agonists of the present invention in a mixture with a pharmaceutically acceptable carrier. This composition can be administered either parenterally, intravenously or subcutaneously. When administered, the therapeutic composition for use in this invention is preferably in the form of a pyrogenfree, parenterally acceptable aqueous solution. The preparation of such a parenterally acceptable protein solution, having due regard to pH, isotonicity, stability and the like, is within the skill of the art.

35

30

Administration will be in accordance with a dosage regimen that will be readily ascertained by the skilled,

based on in vivo specific activity of the analog in comparison with human erythropoietin and based on what is now known in the art concerning the administration of human erythropoietin for inducing erythropoiesis and treating various conditions, such as anemia, in humans, including anemia in patients suffering from renal failure. Dosage of an analog of the invention may vary somewhat from individual to individual, depending on the particular analog and its specific in vivo activity, the route of administration, the medical condition, age, weight or sex of the patient, the patient's sensitivities to the analog or components of vehicle, and other factors which the attending physician will be capable of readily taking into account. With regard to therapeutic uses of analogs of the invention, reference is made to U.S. Patent Nos. 4,703,008 and 4,835,260; see also the chapter on (recombinant) [des-Arg166] human erythropoietin at pages 591-595 of the Physicians' Desk Commercially available preparations of recombinant [des-Arg166] human erythropoietin have 2,000, 3,000, 4,000 or 10,000 units of the glycohormone per mL in preservativefree aqueous solution with 2.5 mg/mL human serum albumin, 5.8 mg/mL sodium citrate, 5.8 mg/mL NaCl, and 0.06 mg/mL citric acid, pH 6.9 (+/-0.3).

25

10

15

20

Recombinantly produced EPO has proven especially useful for the treatment of patients suffering from impaired red blood cell production (Physicians Desk Reference (PDR). 1993 edition, pp 602-605). Recombinant EPO has proven effective in treating anemia associated with chronic renal failure and HIV-Infected individuals suffering from lowered endogenous EPO levels related to therapy with Zidovudine (AZT) (See PDR, 1993 edition, at page 6002).

35

30

Modifications of the EPO protein which would improve its utility as a tool for diagnosis or treatment

of blood disorders are certainly desirable. particular, modified forms of EPO exhibiting enhanced biological activity would be more effective and efficient than native EPO in the therapy setting when it is necessary to administer EPO to the patient, enabling administration less frequently and/or at a lower dose. Administration of reduced amounts of EPO would also presumably reduce the risk of adverse effects associated with EPO treatment, such as hypertension, seizures, headaches, etc. (See PDR, 1993 edition, at pp. 603-604). 10 The EPO receptor agonists of the present invention may also have improved stability and hence increased halflife which would allow for the production of a nonglycosylated form of EPO in a bacterial expression system at a much lower cost. Due it's increased half-15 life this non-glycosylated form of EPO would have an increased in vivo activity compared de-glycosylated EPO.

The therapeutic method and compositions may also include co-administration with other hematopoietic 20 factors. A non-exclusive list of other appropriate hematopoietins, colony stimulating factors (CSFs) and interleukins for simultaneous or serial coadministration with the polypeptides of the present invention includes GM-CSF, G-CSF, c-mpl ligand (also 25 known as TPO or MGDF), M-CSF, IL-1, IL-4, IL-2, IL-3, IL-5, IL 6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor (SCF) also 30 known as steel factor or c-kit ligand (herein collectively referred to as "factors"), or combinations thereof. In addition to the list above, IL-3 variants taught in WO 94/12639 and WO 94/12638 fusion protein taught in WO 95/21197, and WO 95/21254 G-CSF receptor 35 agonists disclosed in WO 97/12977, c-mpl receptor agonists disclosed in WO 97/12978, IL-3 receptor

agonists disclosed in WO 97/12979 and multi-functional receptor agonists taught in WO 97/12985 can be coadministered with the polypeptides of the present invention.

5

10

15

20

25

The EPO receptor agonists of the present invention may be useful in the mobilization of hematopoietic progenitors and stem cells in peripheral blood. Peripheral blood derived progenitors have been shown to be effective in reconstituting patients in the setting of autologous marrow transplantation.

The EPO receptor agonists of the present invention may also be useful in the ex vivo expansion of hematopoietic progenitors. Colony stimulating factors (CSFs), such as G-CSF, have been administered alone, co-administered with other CSFs, or in combination with bone marrow transplants subsequent to high dose chemotherapy to treat the anemia, neutropenia and thrombocytopenia which are often the result of such treatment.

Another aspect of the invention provides methods of sustaining and/or expanding hematopoietic precursor cells which includes inoculating the cells into a culture vessel which contains a culture medium that has been conditioned by exposure to a stromal cell line such as HS-5 (WO 96/02662, Roecklein and Torok-Strob, Blood 85:997-1105, 1995) that has been supplemented with a EPO receptor agonist of the present invention.

30

Determination of the Linker

35 The length of the amino acid sequence of the linker can be selected empirically or with guidance from structural information, or by using a combination of the two approaches.

When no structural information is available, a small series of linkers can be prepared for testing using a design whose length is varied in order to span a range from 0 to 50 Å and whose sequence is chosen in order to be consistent with surface exposure (hydrophilicity, Hopp & Woods, Mol. Immunol. 20: 483-489, 1983; Kyte & Doolittle, J. Mol. Biol. 157:105-132, 1982; solvent exposed surface area, Lee & Richards, J. Mol. Biol. 55:379-400, 1971) and the ability to adopt the necessary conformation without deranging the 10 configuration of the EPO receptor agonist (conformationally flexible; Karplus & Schulz, Naturwissenschaften 72:212-213, (1985). Assuming an average of translation of 2.0 to 3.8 Å per residue, this would mean the length to test would be between 0 to 30 15 residues, with 0 to 15 residues being the preferred range. Exemplary of such an empirical series would be to construct linkers using a cassette sequence such as Gly-Gly-Gly-Ser repeated n times, where n is 1, 2, 3 or Those skilled in the art will recognize that there 20 are many such sequences that vary in length or composition that can serve as linkers with the primary consideration being that they be neither excessively long nor short (cf., Sandhu, Critical Rev. Biotech. 12: 437-462, 1992); if they are too long, entropy effects 25 will likely destabilize the three-dimensional fold, and may also make folding kinetically impractical, and if they are too short, they will likely destabilize the molecule because of torsional or steric strain.

30

35

Those skilled in the analysis of protein structural information will recognize that using the distance between the chain ends, defined as the distance between the c-alpha carbons, can be used to define the length of the sequence to be used, or at least to limit the number of possibilities that must be tested in an empirical selection of linkers. They will also recognize that it

10

15

20

25

30

35

is sometimes the case that the positions of the ends of the polypeptide chain are ill-defined in structural models derived from x-ray diffraction or nuclear magnetic resonance spectroscopy data, and that when true, this situation will therefore need to be taken into account in order to properly estimate the length of the linker required. From those residues whose positions are well defined are selected two residues that are close in sequence to the chain ends, and the distance between their c-alpha carbons is used to calculate an approximate length for a linker between them. Using the calculated length as a guide, linkers with a range of number of residues (calculated using 2 to 3.8Å per residue) are then selected. These linkers may be composed of the original sequence, shortened or lengthened as necessary, and when lengthened the additional residues may be chosen to be flexible and hydrophilic as described above; or optionally the original sequence may be substituted for using a series of linkers, one example being the "Gly-Gly-Gly-Ser" cassette approach mentioned above; or optionally a combination of the original sequence and new sequence having the appropriate total length may be used.

Determination of the Amino and Carboxyl Termini of EPO Receptor Agonists

Sequences of EPO receptor agonists capable of folding to biologically active states can be prepared by appropriate selection of the beginning (amino terminus) and ending (carboxyl terminus) positions from within the original polypeptide chain while using the linker sequence as described above. Amino and carboxyl termini are selected from within a common stretch of sequence, referred to as a breakpoint region, using the guidelines described below. A novel amino acid sequence is thus generated by selecting amino and carboxyl termini from

15

20

25

30

35

within the same breakpoint region. In many cases the selection of the new termini will be such that the original position of the carboxyl terminus immediately preceded that of the amino terminus. However, those skilled in the art will recognize that selections of termini anywhere within the region may function, and that these will effectively lead to either deletions or additions to the amino or carboxyl portions of the new sequence.

It is a central tenet of molecular biology that the primary amino acid sequence of a protein dictates folding to the three-dimensional structure necessary for expression of its biological function. Methods are known to those skilled in the art to obtain and interpret three-dimensional structural information using x-ray diffraction of single protein crystals or nuclear magnetic resonance spectroscopy of protein solutions. Examples of structural information that are relevant to the identification of breakpoint regions include the location and type of protein secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets, chain reversals and turns, and loops; Kabsch & Sander, Biopolymers 22: 2577-2637, 1983; the degree of solvent exposure of amino acid residues, the extent and type of interactions of residues with one another (Chothia, Ann. Rev. Biochem. 53:537-572; 1984) and the static and dynamic distribution of conformations along the polypeptide chain (Alber & Mathews, Methods Enzymol. 154: 511-533, 1987). In some cases additional information is known about solvent exposure of residues; one example is a site of post-translational attachment of carbohydrate which is necessarily on the surface of the protein. When experimental structural information is not available, or is not feasible to obtain, methods are also available to analyze the primary amino acid sequence in order to make predictions of protein tertiary and secondary structure, solvent accessibility

15

20

25

30

and the occurrence of turns and loops. Biochemical methods are also sometimes applicable for empirically determining surface exposure when direct structural methods are not feasible; for example, using the identification of sites of chain scission following limited proteolysis in order to infer surface exposure (Gentile & Salvatore, Eur. J. Biochem. 218:603-621, 1993)

Thus using either the experimentally derived structural information or predictive methods (e.g., Srinivisan & Rose Proteins: Struct., Funct. & Genetics, 22: 81-99, 1995) the parental amino acid sequence is inspected to classify regions according to whether or not they are integral to the maintenance of secondary and tertiary The occurrence of sequences within regions structure. that are known to be involved in periodic secondary structure (alpha and 3-10 helices, parallel and antiparallel beta sheets) are regions that should be Similarly, regions of amino acid sequence that are observed or predicted to have a low degree of solvent exposure are more likely to be part of the socalled hydrophobic core of the protein and should also be avoided for selection of amino and carboxyl termini. In contrast, those regions that are known or predicted to be in surface turns or loops, and especially those regions that are known not to be required for biological activity, are the preferred sites for location of the extremes of the polypeptide chain. Continuous stretches of amino acid sequence that are preferred based on the above criteria are referred to as a breakpoint region.

Materials and Methods

Recombinant DNA methods

35 Unless noted otherwise, all specialty chemicals were obtained from Sigma Co., (St. Louis, MO).

Restriction endonucleases and T4 DNA ligase were

obtained from New England Biolabs (Beverly, MA) or Boehringer Mannheim (Indianapolis, IN).

Transformation of E. coli strains

5

10

20

- $E.\ coli$ strains, such as DH5 $\alpha^{\,}$ m (Life Technologies, Gaithersburg, MD) and TG1 (Amersham Corp., Arlington Heights, IL) are used for transformation of ligation reactions and are the source of plasmid DNA for transfecting mammalian cells. $E.\ coli$ strains, such as MON105 and JM101, can be used for expressing the EPO receptor agonist of the present invention in the cytoplasm or periplasmic space.
- 15 MON105 ATCC#55204: F-, lamda-,IN(rrnD, rrE)1, rpoD+, rpoH358

DH5α™: F-, phi80dlacZdeltaM15, delta(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(rk-,mk+), phoA, supE44lamda-, thi-1, gyrA96, relA1

TG1: delta(lac-pro), supE, thi-1, hsdD5/F'(traD36, proA+B+, lacIq, lacZdeltaM15)

 ${
m DH5}\alpha^{ exttt{ iny M}}$ Subcloning efficiency cells are purchased as 25 competent cells and are ready for transformation using the manufacturer's protocol, while both E. coli strains TG1 and MON105 are rendered competent to take up DNA using a CaCl₂ method. Typically, 20 to 50 mL of cells are grown in LB medium (1% Bacto-tryptone, 0.5% Bacto-30 yeast extract, 150 mM NaCl) to a density of approximately 1.0 optical density unit at 600 nanometers (OD600) as measured by a Baush & Lomb Spectronic spectrophotometer (Rochester, NY). The cells are collected by centrifugation and resuspended in one-fifth 35 culture volume of CaCl, solution (50 mM CaCl, 10 mM Tris-C1, pH7.4) and are held at 4°C for 30 minutes. The

15

20

25

30

cells are again collected by centrifugation and resuspended in one-tenth culture volume of CaCl2 solution. Ligated DNA is added to 0.2mL of these cells, and the samples are held at 4°C for 1 hour. are shifted to 42°C for two minutes and 1mL of LB is added prior to shaking the samples at 37°C for one hour. Cells from these samples are spread on plates (LB medium plus 1.5% Bacto-agar) containing either ampicillin (100 micrograms/mL, ug/mL) when selecting for ampicillinresistant transformants, or spectinomycin (75 ug/mL) when selecting for spectinomycin-resistant transformants. The plates are incubated overnight at Single colonies are picked, grown in LB supplemented with appropriate antibiotic for 6-16 hours at 37°C with shaking. Colonies are picked and inoculated into LB plus appropriate antibiotic (100 ug/mL ampicillin or 75 ug/mL spectinomycin) and are grown at 37°C while shaking. Before harvesting the cultures, 1 ul of cells are analyzed by PCR for the presence of a EPO receptor agonist gene. The PCR is carried out using a combination of primers that anneal to the EPO receptor agonist gene and/or vector. After the PCR is complete, loading dye is added to the sample followed by electrophoresis as described earlier. A gene has been ligated to the vector when a PCR product of the expected size is observed.

Methods for creation of genes with new N-terminus/C-terminus

Method I. Creation of genes with new N-terminus/C-terminus which contain a linker region.

Genes with new N-terminus/C-terminus which contain a linker region separating the original C-terminus and N-terminus can be made essentially following the method described in L. S. Mullins, et al J. Am. Chem. Soc. 116,

5529-5533 (1994). Multiple steps of polymerase chain reaction (PCR) amplifications are used to rearrange the DNA sequence encoding the primary amino acid sequence of the protein. The steps are illustrated in Figure 2.

5

10

15

20

25

30

35

In the first step, the primer set ("new start" and "linker start") is used to create and amplify, from the original gene sequence, the DNA fragment ("Fragment Start") that contains the sequence encoding the new Nterminal portion of the new protein followed by the linker that connects the C-terminal and N-terminal ends of the original protein. In the second step, the primer set ("new stop" and "linker stop") is used to create and amplify, from the original gene sequence, the DNA fragment ("Fragment Stop") that encodes the same linker as used above, followed by the new C-terminal portion of the new protein. The "new start" and "new stop" primers are designed to include the appropriate restriction enzyme recognition sites which allow cloning of the new gene into expression plasmids. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and 1x PCR buffer, 200 uM dGTP, 200 uM datp, 200 um dttp, 200 um dctp, 2.5 units Amplitaq DNA polymerase and 2 mM ${\rm MgCl}_2$. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT).

"Fragment Start" and "Fragment Stop", which have complementary sequence in the linker region and the coding sequence for the two amino acids on both sides of the linker, are joined together in a third PCR step to make the full-length gene encoding the new protein. The

15

20

DNA fragments "Fragment Start" and "Fragment Stop" are resolved on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments are combined in equimolar quantities, heated at 70°C for ten minutes and slow cooled to allow annealing through their shared sequence in "linker start" and "linker stop". In the third PCR step, primers "new start" and "new stop" are added to the annealed fragments to create and amplify the full-length new N-terminus/C-terminus gene. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 60°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and approximately 0.5 ug of DNA; and 1x PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM ${\rm MgCl}_2$. PCR reactions are purified using a Wizard PCR Preps kit (Promega).

Method II. Creation of genes with new N-terminus/C-terminus without a linker region.

New N-terminus/C-terminus genes without a linker 25 joining the original N-terminus and C-terminus can be made using two steps of PCR amplification and a blunt end ligation. The steps are illustrated in Figure 3. In the first step, the primer set ("new start" and "P-bl start") is used to create and amplify, from the original 30 gene sequence, the DNA fragment ("Fragment Start") that contains the sequence encoding the new N-terminal portion of the new protein. In the second step, the primer set ("new stop" and "P-bl stop") is used to create and amplify, from the original gene sequence, the 35 DNA fragment ("Fragment Stop") that contains the sequence encoding the new C-terminal portion of the new

15

20

25

30

35

protein. The "new start" and "new stop" primers are designed to include appropriate restriction sites which allow cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for 45 seconds and 72°C extension for 45 seconds. Deep Vent polymerase (New England Biolabs) is used to reduce the occurrence of overhangs in conditions recommended by the manufacturer. The "P-bl start" and "P-bl stop" primers are phosphorylated at the 5' end to aid in the subsequent blunt end ligation of "Fragment Start" and "Fragment Stop" to each other. A 100 ul reaction contained 150 pmole of each primer and one ug of template DNA; and 1x Vent buffer (New England Biolabs), 300 uM dGTP, 300 uM dATP, 300 uM dTTP, 300 uM dCTP, and 1 unit Deep Vent polymerase. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT). PCR reaction products are purified using a Wizard PCR Preps kit (Promega).

The primers are designed to include appropriate restriction enzyme recognition sites which allow for the cloning of the new gene into expression vectors. Typically "Fragment Start" is designed to create a NcoI restriction site , and "Fragment Stop" is designed to create a HindIII restriction site. Restriction digest reactions are purified using a Magic DNA Clean-up System kit (Promega). Fragments Start and Stop are resolved on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). fragments are combined with and annealed to the ends of the ~ 3800 base pair NcoI/HindIII vector fragment of pMON3934 by heating at 50°C for ten minutes and allowed to slow cool. The three fragments are ligated together using T4 DNA ligase (Boehringer Mannheim). The result is a plasmid containing the full-length new N-terminus/Cterminus gene. A portion of the ligation reaction is

20

25

30

35

used to transform $E.\ coli$ strain DH5 α cells (Life Technologies, Gaithersburg, MD). Plasmid DNA is purified and sequence confirmed as below.

5 Method III. Creation of new N-terminus/C-terminus genes by tandem-duplication method

New N-terminus/C-terminus genes can be made based on the method described in R. A. Horlick, et al *Protein* 10 Eng. **5**:427-431 (1992). Polymerase chain reaction (PCR) amplification of the new N-terminus/C-terminus genes is performed using a tandemly duplicated template DNA. The steps are illustrated in Figure 4.

The tandemly-duplicated template DNA is created by cloning and contains two copies of the gene separated by DNA sequence encoding a linker connecting the original C- and N-terminal ends of the two copies of the gene. Specific primer sets are used to create and amplify a full-length new N terminus/C-terminus gene from the tandemly-duplicated template DNA. These primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit (Perkin Elmer Corporation, Norwalk, CT) is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and 1x PCR buffer, 200 um dGTP, 200 um dATP, 200 um dTTP, 200 um dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM ${\rm MgCl}_2$. reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT). reactions are purified using a Wizard PCR Preps kit (Promega).

10

15

20

30

35

DNA isolation and characterization

Plasmid DNA can be isolated by a number of different methods and using commercially available kits known to those skilled in the art. A few such methods are shown herein. Plasmid DNA is isolated using the Promega Wizard™ Miniprep kit (Madison, WI), the Qiagen QIAwell Plasmid isolation kits (Chatsworth, CA) or Qiagen Plasmid Midi kit. These kits follow the same general procedure for plasmid DNA isolation. Briefly, cells are pelleted by centrifugation (5000 \times g), plasmid DNA released with sequential NaOH/acid treatment, and cellular debris is removed by centrifugation (10000 \times The supernatant (containing the plasmid DNA) is loaded onto a column containing a DNA-binding resin, the column is washed, and plasmid DNA eluted with TE. After screening for the colonies with the plasmid of interest, the E. coli cells are inoculated into 50-100 mLs of LB plus appropriate antibiotic for overnight growth at 37°C in an air incubator while shaking. The purified plasmid DNA is used for DNA sequencing, further restriction enzyme digestion, additional subcloning of DNA fragments and transfection into mammalian, E. coli or other cells.

25 <u>Sequence confirmation</u>.

Purified plasmid DNA is resuspended in dH₂O and quantitated by measuring the absorbance at 260/280 nm in a Bausch and Lomb Spectronic 601 UV spectrometer. DNA samples are sequenced using ABI PRISM™ DyeDeoxy™ terminator sequencing chemistry (Applied Biosystems Division of Perkin Elmer Corporation, Lincoln City, CA) kits (Part Number 401388 or 402078) according to the manufacturers suggested protocol usually modified by the addition of 5% DMSO to the sequencing mixture. Sequencing reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT)

20

25

30

35

following the recommended amplification conditions.

Samples are purified to remove excess dye terminators with Centri-Sep™ spin columns (Princeton Separations, Adelphia, NJ) and lyophilized. Fluorescent dye labeled sequencing reactions are resuspended in deionized formamide, and sequenced on denaturing 4.75% polyacrylamide-8M urea gels using an ABI Model 373A automated DNA sequencer. Overlapping DNA sequence fragments are analyzed and assembled into master DNA contigs using Sequencher v2.1 DNA analysis software (Gene Codes Corporation, Ann Arbor, MI).

Expression of EPO receptor agonists in mammalian cells

15 Mammalian Cell Transfection/Production of Conditioned Media

The BHK-21 cell line can be obtained from the ATCC (Rockville, MD). The cells are cultured in Dulbecco's modified Eagle media (DMEM/high-glucose), supplemented to 2mM (mM) L-glutamine and 10% fetal bovine serum (FBS). This formulation is designated BHK growth media. Selective media is BHK growth media supplemented with 453 units/mL hygromycin B (Calbiochem, San Diego, CA). The BHK-21 cell line was previously stably transfected with the HSV transactivating protein VP16, which transactivates the IE110 promoter found on the plasmid pMON3359 (See Hippenmeyer et al., Bio/Technology, pp.1037-1041, 1993). The VP16 protein drives expression of genes inserted behind the IE110 promoter. BHK-21 cells expressing the transactivating protein VP16 are designated BHK-VP16. The plasmid pMON1118 (See Highkin et al., Poultry Sci., 70: 970-981, 1991) expresses the hygromycin resistance gene from the SV40 promoter. A similar plasmid is available from ATCC, pSV2-hph.

BHK-VP16 cells are seeded into a 60 millimeter (mm) tissue culture dish at 3 X 10° cells per dish 24 hours

prior to transfection. Cells are transfected for 16 hours in 3 mL of "OPTIMEM"™ (Gibco-BRL, Gaithersburg, MD) containing 10 ug of plasmid DNA containing the gene of interest, 3 ug hygromycin resistance plasmid, pMON1118, and 80 ug of Gibco-BRL "LIPOFECTAMINE"™ per dish. The media is subsequently aspirated and replaced with 3 mL of growth media. At 48 hours posttransfection, media from each dish is collected and assayed for activity (transient conditioned media). The cells are removed from the dish by trypsin-EDTA, diluted 10 1:10 and transferred to 100 mm tissue culture dishes containing 10 mL of selective media. After approximately 7 days in selective media, resistant cells grow into colonies several millimeters in diameter. The colonies are removed from the dish with filter paper (cut to 15 approximately the same size as the colonies and soaked in trypsin/EDTA) and transferred to individual wells of a 24 well plate containing 1 mL of selective media. After the clones are grown to confluence, the conditioned media is re-assayed, and positive clones are 20 expanded into growth media.

Expression of EPO receptor agonists in E. coli

E. coli strain MON105 or JM101 harboring the 25 plasmid of interest are grown at 37°C in M9 plus casamino acids medium with shaking in a air incubator Model G25 from New Brunswick Scientific (Edison, New Jersey). Growth is monitored at OD600 until it reaches a value of 1, at which time nalidixic acid (10 30 milligrams/mL) in 0.1 N NaOH is added to a final concentration of 50 $\mu g/mL$. The cultures are then shaken at 37°C for three to four additional hours. A high degree of aeration is maintained throughout culture period in order to achieve maximal production of the 35 desired gene product. The cells are examined under a light microscope for the presence of inclusion bodies

(IB). One mL aliquots of the culture are removed for analysis of protein content by boiling the pelleted cells, treating them with reducing buffer and electrophoresis via SDS-PAGE (see Maniatis et al. Molecular Cloning: A Laboratory Manual, 1982). The culture is centrifuged (5000 x g) to pellet the cells.

Additional strategies for achieving high-level expression of genes in E. coli can be found in Savvas, C.M. (Microbiological Reviews 60;512-538, 1996).

Inclusion Body preparation, Extraction, Refolding,

Dialysis, DEAE Chromatography, and Characterization of

the EPO receptor agonists which accumulate as inclusion bodies in E. coli.

Isolation of Inclusion Bodies:

The cell pellet from a 330 mL E. coli culture is 20 resuspended in 15 mL of sonication buffer (10 mM 2amino-2-(hydroxymethyl) 1,3-propanediol hydrochloride (Tris-HCl), pH 8.0 + 1 mM ethylenediaminetetraacetic acid (EDTA)). These resuspended cells are sonicated using the microtip probe of a Sonicator Cell Disruptor 25 (Model W-375, Heat Systems-Ultrasonics, Inc., Farmingdale, New York). Three rounds of sonication in sonication buffer followed by centrifugation are employed to disrupt the cells and wash the inclusion bodies (IB). The first round of sonication is a 3 30 minute burst followed by a 1 minute burst, and the final two rounds of sonication are for 1 minute each.

Extraction and refolding of proteins from inclusion body pellets:

Following the final centrifugation step, the IB pellet is resuspended in 10 mL of 50 mM Tris-HCl, pH 9.5, 8 M urea and 5 mM dithiothreitol (DTT) and stirred at room temperature for approximately 45 minutes to allow for denaturation of the expressed protein.

The extraction solution is transferred to a beaker containing 70 mL of 5mM Tris-HCl, pH 9.5 and 2.3 M urea and gently stirred while exposed to air at 4°C for 18 to 48 hours to allow the proteins to refold. Refolding is monitored by analysis on a Vydac (Hesperia, Ca.) C18 reversed phase high pressure liquid chromatography (RP-HPLC) column (0.46x25 cm). A linear gradient of 40% to 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed to monitor the refold. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Denatured proteins generally elute later in the gradient than the refolded proteins.

Purification:

20

25

30

35

15

5

10

Following the refold, contaminating $E.\ coli$ proteins are removed by acid precipitation. The pH of the refold solution is titrated to between pH 5.0 and pH 5.2 using 15% (v/v) acetic acid (HOAc). This solution is stirred at 4°C for 2 hours and then centrifuged for 20 minutes at 12,000 x g to pellet any insoluble protein.

The supernatant from the acid precipitation step is dialyzed using a Spectra/Por 3 membrane with a molecular weight cut off (MWCO) of 3,500 daltons. The dialysis is against 2 changes of 4 liters (a 50-fold excess) of 10mM Tris-HCl, pH 8.0 for a total of 18 hours. Dialysis lowers the sample conductivity and removes urea prior to DEAE chromatography. The sample is then centrifuged (20 minutes at $12,000 \times g$) to pellet any insoluble protein following dialysis.

15

20

25

A Bio-Rad Bio-Scale DEAE2 column (7 x 52 mm) is used for ion exchange chromatography. The column is equilibrated in a buffer containing 10mM Tris-HCl, pH 8.0. The protein is eluted using a 0-to-500 mM sodium chloride (NaCl) gradient, in equilibration buffer, over 45 column volumes. A flow rate of 1 mL per minute is used throughout the run. Column fractions (2 mL per fraction) are collected across the gradient and analyzed by RP HPLC on a Vydac (Hesperia, Ca.) C18 column (0.46 x 25 cm). A linear gradient of 40% to 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Pooled fractions are then dialyzed against 2 changes of 4 liters (50-to-500-fold excess) of 10 mM ammonium acetate (NH,Ac), pH 4.0 for a total of 18 hours. Dialysis is performed using a Spectra/Por 3 membrane with a MWCO of 3,500 daltons. Finally, the sample is sterile filtered using a 0.22µm syringe filter (µStar LB syringe filter, Costar, Cambridge, Ma.), and stored at 4°C.

In some cases the folded proteins can be affinity purified using affinity reagents such as mAbs or receptor subunits attached to a suitable matrix. Alternatively, (or in addition) purification can be accomplished using any of a variety of chromatographic methods such as: ion exchange, gel filtration or hydrophobic chromatography or reversed phase HPLC.

These and other protein purification methods are

described in detail in Methods in Enzymology, Volume 182
'Guide to Protein Purification' edited by Murray

Deutscher, Academic Press, San Diego, CA (1990).

Protein Characterization:

35

The purified protein is analyzed by RP-HPLC, electrospray mass spectrometry, and SDS-PAGE. The

protein quantitation is done by amino acid composition, RP-HPLC, and Bradford protein determination. In some cases tryptic peptide mapping is performed in conjunction with electrospray mass spectrometry to confirm the identity of the protein.

Methylcellulose Assay

This assay reflects the ability of colony stimulating factors to stimulate normal bone marrow cells to produce different types of hematopoietic colonies in vitro (Bradley et al., Aust. Exp Biol. Sci. 44:287-300, 1966), Pluznik et al., J. Cell Comp. Physio 66:319-324, 1965).

15

5

Methods

Approximately 30 mL of fresh, normal, healthy bone marrow aspirate are obtained from individuals following informed consent. Under sterile conditions samples are diluted 1:5 with a 1X PBS (#14040.059 Life Technologies, 20 Gaithersburg, MD.) solution in a 50 mL conical tube (#25339-50 Corning, Corning MD). Ficoll (Histopaque 1077 Sigma H-8889) is layered under the diluted sample and centrifuged, 300 x g for 30 min. The mononuclear cell band is removed and washed two times in 1X PBS and 25 once with 1% BSA PBS (CellPro Co., Bothel, WA). Mononuclear cells are counted and CD34+ cells are selected using the Ceprate LC (CD34) Kit (CellPro Co., Bothel, WA) column. This fractionation is performed since all stem and progenitor cells within the bone 30 marrow display CD34 surface antigen.

Cultures are set up in triplicate with a final volume of 1.0~mL in a 35 X 10~mm petri dish (Nunc#174926).

35 Culture medium is purchased from Terry Fox Labs. (HCC-4230 medium (Terry Fox Labs, Vancouver, B.C., Canada) and erythropoietin (Amgen, Thousand Oaks, CA.) is added

30

35

to the culture media. 3,000-10,000 CD34+ cells are added per dish. EPO receptor agonist proteins, in conditioned media from transfected mammalian cells or purified from conditioned media from transfected

mammalian cells or *E. coli*, are added to give final concentrations ranging from .001 nM to 10 nM. Cultures are resuspended using a 3cc syringe and 1.0 mL is dispensed per dish. Control (baseline response) cultures received no colony stimulating factors.

10 Positive control cultures received conditioned media (PHA stimulated human cells: Terry Fox Lab. H2400). Cultures are incubated at 37°C, 5% CO₂ in humidified air.

Hematopoietic colonies which are defined as greater than
50 cells are counted on the day of peak response (days
10-11) using a Nikon inverted phase microscope with a
40x objective combination. Groups of cells containing
fewer than 50 cells are referred to as clusters.
Alternatively colonies can be identified by spreading
the colonies on a slide and stained or they can be
picked, resuspended and spun onto cytospin slides for
staining.

Human Cord Blood Hematopoietic Growth Factor Assays

Bone marrow cells are traditionally used for in vitro assays of hematopoietic colony stimulating factor (CSF) activity. However, human bone marrow is not always available, and there is considerable variability between donors. Umbilical cord blood is comparable to bone marrow as a source of hematopoietic stem cells and progenitors (Broxmeyer et al., PNAS USA 89:4109-113, 1992; Mayani et al., Blood 81:3252-3258, 1993). In contrast to bone marrow, cord blood is more readily available on a regular basis. There is also a potential to reduce assay variability by pooling cells obtained fresh from several donors, or to create a bank of

cryopreserved cells for this purpose. By modifying the culture conditions, and/or analyzing for lineage specific markers, it is be possible to assay specifically for burst forming colonies (BFU-E) activity.

Methods

5

10

15

20

25

30

Mononuclear cells (MNC) are isolated from cord blood within 24 hr. of collection, using a standard density gradient (1.077 g/mL Histopaque). Cord blood MNC have been further enriched for stem cells and progenitors by several procedures, including immunomagnetic selection for CD14-, CD34+ cells; panning for SBA-, CD34+ fraction using coated flasks from Applied Immune Science (Santa Clara, CA); and CD34+ selection using a CellPro (Bothell, WA) avidin column. Either freshly isolated or cryopreserved CD34+ cell enriched fractions are used for the assay. Duplicate cultures for each serial dilution of sample (concentration range from 1 pM to 1204 pM) are prepared with 1x104 cells in 1ml of 0.9% methylcellulose containing medium without additional growth factors (Methocult H4230 from Stem Cell Technologies, Vancouver, BC.). After culturing for 7-9 days, colonies containing >30 cells are counted.

Transfected cell lines:

Cell lines, such as BHK or the murine pro B cell line Baf/3, can be transfected with a colony stimulating factor receptor, such as the human EPO receptor which the cell line does not have. These transfected cell lines can be used to determine the cell proliferative activity and/or receptor binding.

35 EXAMPLE 1

Genes encoding the sequence rearranged EPO ligands can be constructed by any one of the methods described herein or by other recombinant methods known to those

30

skilled in the art. For the purpose of this example, the site of permutation is between residues 131(Arg) and 132(Thr) of EPO. This is a site which is susceptible to proteolytic cleavage, thereby indicating surface exposure with a relatively high degree of flexibility.

In this example a new N-terminus and a new C-terminus is created without a linker joining the original termini. This is done, as described in Method II, in 2 steps of PCR and a blunt end ligation.

In the first PCR step, using a vector containing the DNA sequence of SEQ ID NO:120 as the template, and the primers "new start" and "blunt start", a DNA fragment is created which encodes the new N-terminus. This fragment is termed "fragment start". The sequence underlined in the new start primer is the NcoI restriction site.

New start primer = gcgcgcCCATGGACATCACTGCTGAC SEQ ID

NO:131
Blunt start primer = TCTGTCCCCTGTCCT SEQ ID NO:132

In the second PCR step, using a vector containing the DNA sequence of SEQ ID NO:120 as the template, and the primers "new stop" and "blunt stop" create a DNA fragment which encodes the new C-terminus. This fragment is termed "fragment stop". The sequence underlined in the new stop primer is the HindIII restriction site.

New stop primer =
gcgcgcAAGCTTATTATCGGAGTGGAGCAGCTGAGGCCGCATC SEQ ID
NO:133

35 Blunt end primer = GCCCCACCACGCCTCATCTGT SEQ ID NO:134

15

20

25

In the ligation step, the two fragments created in the two PCR reactions are ligated together, digested with NcoI and HindIII and cloned into an expression vector. The clones are screened by restiction analysis and DNA sequenced to confirm the proper sequence. The primers can be designed to create restriction sites other than NcoI and HindIII to clone into other expression vectors.

10 <u>EXAMPLE 2</u>

The sequence rearranged EPO receptor agonists of the present invention can be assayed for bioactivity by the methods described herein or by other assays know to those skilled in the art.

Additional techniques for the construction of the variant genes, recombinant protein expression, protein purification, protein characterization, biological activity determination can be found in WO 94/12639, WO 94/12638, WO 95/20976, WO 95/21197, WO 95/20977, WO 95/21254 which are hereby incorporated by reference in their entirety.

All references, patents or applications cited herein are incorporated by reference in their entirety as if written herein.

Various other examples will be apparent to the
person skilled in the art after reading the present
disclosure without departing from the spirit and scope
of the invention. It is intended that all such other
examples be included within the scope of the appended
claims.

35

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: Summers, Neena McWherter, Charles Feng, Yiqing
- (ii) TITLE OF THE INVENTION: Novel Erythropoietin Receptor Agonists
- (iii) NUMBER OF SEQUENCES: 134
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: G. D. Searle & Co.
 - (B) STREET: P.O. Box 5110
 - (C) CITY: Chicago
 - (D) STATE: IL
 - (E) COUNTRY: U. S. A.
 - (F) ZIP: 60680
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 21-OCT-1997
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/034,044
 - (B) FILING DATE: 25-OCT-1996
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Bennett, Dennis A
 - (B) REGISTRATION NUMBER: 34,547
 - (C) REFERENCE/DOCKET NUMBER: 2991/1
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 314-737-6986 (B) TELEFAX: 314-737-6972
 - (C) TELEX:
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu 25 30 20 Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser 35 40 45 Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro 55 Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg 70 75 Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile 90 Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala 100 105 110 Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

| The thick of the color of the

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Thr 6ly Cys Ala 6lu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro 15

Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln 25

Leu Arg Gly Gln Ala Leu Leu Val Asn Leu Leu Val Asn Ser Gly Leu Arg Glu Ala Val 55

Leu Arg Glu His Val Leu Val Asn Ser Gly Leu Arg Ser Glu Pro Trp Glu Pro 50

Thr Leu Leu Arg Ala Leu Gly Ala Glu Ser Gly Leu Arg Ser Leu Thr 65

Thr Leu Leu Arg Ala Leu Gly Ala Glu Lys Glu Ala Ile Ser Pro Pro 95

Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr 11e Thr Ala Asp Thr Phe 105

Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys 125

Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser 135

Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu 145

Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr 170

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr 1 5 10 Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala 20 25 30Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg 35 40 Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln 55 60 Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu 65 70 75 80 Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala 85 90 95 Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys
100 105 110 Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr 115 120 125 Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro 135 140 Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu 145 150 150 150 Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly 165

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys 10 Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val 20 30 Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly 35 40 45Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu 55 60 His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu 65 70 75 80 Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala 85 90 95 Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu 100 105 110 Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr 115 120 125 Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro 130 135 Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala 145 150 160 Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys 165

- (2) INFORMATION FOR SEQ ID NO:8:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val

10 15 Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu 20 25 Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln 40 45 Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His 50 60 Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg 65 70 75 80 Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser 90 85 Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe 100 105 110Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly 115 120 Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg 130 135 140 Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys 145 150 150 Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala 165

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn -5 10 Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val 20 25 30 Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala 35 40 45 Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val 50 55 60 Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala 65 70 75 80 Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala 85 90 Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg 100 105 110Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu 115 120 125 Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg Leu 130 135 140 Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 150 Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 65 70 75 80 Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala 85 90 Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val 100 105 110 Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 115 120 125 Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile 135 140 Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala 150 155 160 150 155 Glu Asn Ile Thr Thr Gly Cys Ala Glu His

- (2) INFORMATION FOR SEQ ID NO:11:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr 5 10 15 Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln 20 25 Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu 35 40 45Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys 50 55 60 Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly 65 70 75 80Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro 85 90 95 90 85 Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr 100 105 110 100 105 Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys 115 120 125Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys 130 135 Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu 145 150 160 Asn Ile Thr Thr Gly Cys Ala Glu His Cys

- (2) INFORMATION FOR SEQ ID NO:12:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly
20 25 30 Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val 35 40 45 Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala 50 55 60 60 Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala 65 70 75 80 Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu 90 Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser 100 105 110 Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg

Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp 130

Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn 145

Thr Thr Gly Cys Ala Glu His Cys Ser 165

- (2) INFORMATION FOR SEQ ID NO:13:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

- (2) INFORMATION FOR SEQ ID NO:14:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys 10 Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala 20 25 3025 Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser 35 40 45 Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser 55 50 Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys 65 70 75 80 Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr 85 90 95 Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe 100 105 110 Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly 115 120 125 Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg 130 135 140 Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu As
n Ile Thr 145 \$150\$ 150 \$155\$ 160 Thr Gly Cys Ala Glu His Cys Ser Leu Asn 165

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 10 Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 20 25 30 Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 35 40 45 Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 50 60 55 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu 65 70 75 80 Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 85 90 95 Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 105 100 Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 120 115 125 Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val $130 \\ 135 \\ 140 \\$ Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr 145 150 155 160Gly Cys Ala Glu His Cys Ser Leu Asn Glu 165

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 170 amino acids

 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met 10 Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu 20 25 30 Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln 35 40 45 Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu 50 55 60 Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala 65 70 75 80Tle Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr 85 90 95 Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg 100 105 110 Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg 115 120 125 Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu 130 135 Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly 150 Cys Ala Glu His Cys Ser Leu Asn Glu Asn 165

- (2) INFORMATION FOR SEQ ID NO:17:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val 10 Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu 20 25 30 20 Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp 45 40 35 Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser 55 Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser 70 75 80 70 Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp 85 90 95 Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys 100 Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly 115 120 Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg 140 135 130 Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala 150 Glu His Cys Ser Leu Asn Glu Asn Ile Thr 165

- (2) INFORMATION FOR SEQ ID NO:18:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala 20 25 30 Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu 35 40 45 Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu 50 60 55 50 Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro 70 75 80 Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr 85 90 Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu 100 105 110 Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly 115 120 125 Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr 130 135 140 Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu 150 His Cys Ser Leu Asn Glu Asn Ile Thr Val 165

- (2) INFORMATION FOR SEQ ID NO:19:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln

Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val 25 20 Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro 40 45 35 Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr 50 60 Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro 65 70 75 80 Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe 85 90 95 Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys 100 105 110 Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser 115 120 125 115 Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu 130 135 140 Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His 150 Cys Ser Leu Asn Glu Asn Ile Thr Val Pro 165

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala 10 Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser 20 25 30 Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser 35 40 45 Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys 55 50 Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr 65 70 75 80Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe 85 Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly 100 105 110 Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg 115 120 125 115 Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr 130 135 Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro 160 155 150 Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys 165

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 10 Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 25 30 20 Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 45 40 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 65 70 75 80 Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 90 85 Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 100 Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr 135 140 Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp 150 155 Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 165

- (2) INFORMATION FOR SEQ ID NO:22:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu 10 Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val As
n Ser Ser Gl
n 20 25 30 Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu 35 40 35 Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala 50 60 Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr 65 70 75 80 Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg 85 90 95 85 Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg 100 105 110 Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu 115 120 125 Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly
130
135
140 Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr 145 150 150 160 Lys Val Asn Phe Tyr Ala Trp Lys Arg Met 165

- (2) INFORMATION FOR SEQ ID NO:23:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids(B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser 1 5 10 Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro 20 25 30 Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg 45 3.5 40 Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile 50 60 Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala 65 70 75 80 Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly 85 90 95 Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly 105 100 Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu

- (2) INFORMATION FOR SEQ ID NO:24:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu 15

His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu 25

Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ala 35

Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu 50

Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr 65

Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro 95

Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala 105

Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu 130

Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp 130

Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu 155

Ala Leu Leu Ser Glu Ala Val Leu Arg Gly 170

- (2) INFORMATION FOR SEQ ID NO:25:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His 5 10 Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg 20 25 30 Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser 40 Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe 55 60 Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly 65 70 75 80 Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg 85 90 95 Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys
100 105 110 Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn 115 120 125 115 Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys 135 140 Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala
145 150 155 160 Leu Leu Ser Glu Ala Val Leu Arg Gly Gln 165

- (2) INFORMATION FOR SEQ ID NO:26:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

 Leu
 Val
 Asn
 Ser
 Ser
 Gln
 Pro
 Trp
 Gln
 Pro
 Leu
 Gln
 Pro
 Leu
 Gln
 Leu
 His
 Val

 Asp
 Lys
 Ala
 Val
 Ser
 Gly
 Leu
 Arg
 Ser
 Leu
 Thr
 Leu
 Leu
 Arg
 Ala

 Leu
 Gly
 Ala
 Gln
 Lys
 Glu
 Ala
 Ile
 Ser
 Pro
 Pro
 Arg
 Ala
 Ala
 Ser
 Ala

 Ala
 Pro
 Leu
 Arg
 Ala
 Arg
 Ala
 Arg
 Arg

- (2) INFORMATION FOR SEQ ID NO:27:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

- (2) INFORMATION FOR SEQ ID NO:28:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

 Val
 Asn
 Ser
 Ser
 Gln
 Pro
 Trp
 Glu
 Pro
 Leu
 Gln
 Leu
 His
 Val
 Asp
 Lys

 Ala
 Val
 Ser
 Gly
 Leu
 Arg
 Ser
 Leu
 Thr
 Thr
 Leu
 Leu
 Ala
 Leu
 Gly

 Ala
 Gly
 Leu
 Arg
 Ser
 Pro
 Pro
 Asp
 Ala
 Ala
 Ala
 Pro

 Ala
 Ala
 Ala
 Ile
 Ser
 Pro
 Pro
 Asp
 Ala
 Ala
 Ala
 Pro

 Arg
 Thr
 Ile
 Thr
 Ala
 Asp
 Thr
 Phe
 Arg
 Ile
 Tyr

 Arg
 Thr
 Ile
 Arg
 Gly
 Ley
 Leu
 Lys
 Leu
 Pro
 Arg
 Ile
 Cys

 Arg
 Thr
 Arg
 Gly
 Arg
 Tyr
 Leu
 Lys
 Leu
 Tyr
 Tro
 Arg
 <t

- (2) INFORMATION FOR SEQ ID NO:29:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala 10 5 Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala 25 20 Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu 35 40 45 Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser 55 Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg 65 70 80 Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp 85 90 95 Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn 100 105 110 Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr 115 120 125 Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val 130 135 130 Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu 155 150 Ala Val Leu Arg Gly Gln Ala Leu Leu Val 165

- (2) INFORMATION FOR SEQ ID NO:30:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val

10 Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln 20 25 30 Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg 40^{-} 45 Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn 60 55 50 Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr 65 70 75 Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser 85 90 95 Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile 105 100 Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val 115 120 125 Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly
130
135
140 Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala 145 150 155 Val Leu Arg Gly Gln Ala Leu Leu Val Asn 165

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser 10 Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys 25 30 20 Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr 35 40 45 Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe 50 60 Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly 65 70 75 80 Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr 100 105 110 Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val 145 150 160 Leu Arg Gly Gln Ala Leu Leu Val Asn Ser 165

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

 Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 65 70 75 80 Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val 85 90 95 Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr 100 105 110 Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp 115 120 125 Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln 130 Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu 145 150 150 160 Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 165

- (2) INFORMATION FOR SEQ ID NO:33:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu 10 Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala 25 20 Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr 35 40 45 Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg 50 60 Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg 65 70 75 80 Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu 85 90 95 Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly 100 Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr 115 120 125 Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala 130 135 140 Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg 145 150 155 160 Gly Gln Ala Leu Leu Val Asn Ser Ser Gln 165

- (2) INFORMATION FOR SEQ ID NO:34:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile 25 20 Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala 35 40 45 Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly 50 55 60 Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly 65 70 75 Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu 85 90 95 Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val 130
Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly 145
Gln Ala Leu Leu Val Asn Ser Ser Gln Pro 165

- (2) INFORMATION FOR SEQ ID NO:35:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

 Glu
 Pro
 Leu
 Gln
 Leu
 His
 Val
 Asp
 Lys
 Ala
 Val
 Ser
 Gly
 Leu
 Arg
 Ser

 Leu
 Thr
 Thr
 Leu
 Leu
 Arg
 Ala
 Leu
 Gly
 Ala
 Gln
 Lys
 Glu
 Ala
 Ile
 Ser

 Pro
 Pro
 Asp
 Ala
 Ala
 Ser
 Ala
 Pro
 Asp
 Ala
 Ala
 Ala
 Pro
 Asp
 Ala
 Ala
 Ala
 Pro
 Asp
 Ala
 Ala
 Ala
 Ala
 Pro
 Asp
 Asp
 Ala
 Asp
 Asp

- (2) INFORMATION FOR SEQ ID NO:36:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

 Leu
 Arg
 Ala
 Leu
 Gly
 Ala
 Glu
 Lys
 Glu
 Ala
 Ile
 Ser
 Pro
 Pro
 Asp
 Ala
 Arg
 Thr
 Ile
 Thr
 Ala
 Asp
 Thr
 Pro
 Asp
 Ile
 Thr
 Ala
 Asp
 Thr
 Pro
 Asp
 Thr
 Pro
 Asp
 Thr
 Ile
 Thr
 Ala
 Asp
 Thr
 Pro
 Asp
 Ile
 Thr
 Ala
 Asp
 Ile
 Thr
 Asp
 Gly
 Lys
 Leu
 Lys
 Leu
 Lys
 Leu
 Tyr
 Leu
 Tyr
 Asp
 Thr
 T

- (2) INFORMATION FOR SEQ ID NO:37:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala 10 Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu 20 25 30Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro 50 60 Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala 65 70 80Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu 85 90 95 Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu 115 120 Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn 135 Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val 145 150 155 160 155 Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu 165

- (2) INFORMATION FOR SEQ ID NO:38:
- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
- Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser 10 Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe 20 25 30Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly 35 40 40 Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg 50 60 Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys 65 70 75 80 Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn 85 90 Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys 100 105 Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala 120 Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser 130 135 Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser 150 155 Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg 165 170
 - (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala 10 Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg 20 25 30 Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu 35 40 45 Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg Leu 50 60 Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu 65 70 75 80 Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 90 85 Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 100 105 110 100 Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 115 120 125 Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 130 135 Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly 150 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala 165

- (2) INFORMATION FOR SEQ ID NO:40:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

- (2) INFORMATION FOR SEQ ID NO:41:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg 1 10 15 Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn 20 25 30 Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr 35 40 45 Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser 50 60

Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile 65 70 75 80 Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val 90 85 Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly 100 105 Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala 115 120 125 Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu 130 135 140 Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu 145 150 155 160 Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln 165

- (2) INFORMATION FOR SEQ ID NO:44:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe 20 25 30 Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly 35 40 45 Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg 50 60 Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr 65 70 75 80 Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro 85 90 95 Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln 100 105 110Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val 115 120 125 Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro
130
135
140 Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr
145
150
160 Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys

- (2) INFORMATION FOR SEQ ID NO:45:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile 10 Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu 20 25 30 Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp 35 Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val 50 60 Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr 65 70 75 80 Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp 85 90 95 Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln 100 105 Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu 130
Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr 145
Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu 170

- (2) INFORMATION FOR SEQ ID NO:46:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

 11e
 Ser
 Pro
 Pro
 Asp
 Ala
 Ala
 Ser
 Ala
 Ala
 Pro
 Leu
 Ile
 Thr
 Ile
 Thr
 15
 15
 Ile
 Thr
 15
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 <th

- (2) INFORMATION FOR SEQ ID NO:47:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

 Ser 1 Pro 1 P

- (2) INFORMATION FOR SEQ ID NO:48:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

 Pro
 Pro
 Asp
 Ala
 Ala
 Ser
 Ala
 Ala
 Pro
 Leu
 Arg
 Thr
 Ile
 Thr
 Ala
 Asp

 Thr
 Phe
 Arg
 Lys
 Leu
 Phe
 Arg
 Val
 Tyr
 Ser
 Asn
 Phe
 Leu
 Arg
 Gly
 Lys
 Arg
 Gly
 Lys
 Arg
 Ile
 Ile

- (2) INFORMATION FOR SEQ ID NO:49:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

 Pro 1
 Asp 1
 Ala Ser 5
 Ala Ala Fro 5
 Pro 1
 Leu 10
 Thr 10
 Thr 15
 Thr 15

- (2) INFORMATION FOR SEQ ID NO:50:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe 10 Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys 20 25 30 Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser 35 40 45 Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
50 60 Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His 70 Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 90 85 Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp 100 Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu 115 120 125 Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 140 135 130 Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 150 Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro 165

- (2) INFORMATION FOR SEQ ID NO:51:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg 15

Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu 20

Tyr Thr Gly Glu Ala Cys Asp Thr Gly Asp Arg Gly Gly Gly Ser Ala 35

Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu 60

Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Gly Gly Asp 80

Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr 95

Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln 100

Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu 110

Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Asp Lys 130

Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Glu Gln Ala Val Glu His Val Gly Gln Ala Glu Fys 140

Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp 170

- (2) INFORMATION FOR SEQ ID NO:52:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys

10 Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr 20 25 30 Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro 35 40 45 Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu 50 60 Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser 65 70 75 80 Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala 85 Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly 105 100 Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val 115 120 125 Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala 130 135 140 Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala
145 150 160 150 Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala 165

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

 Ser 1
 Ala Ala Pro 1
 Leu 5
 Thr 1
 Ile Thr 10
 Ala Asp Thr 10
 Thr 10
 Asp Thr 10
 Thr 10
 Asp Thr 10
 Thr 10
 Asp Thr 25
 Asp Thr

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

 Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn 65 70 75 80Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys 90 85 Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala 105 100 Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser 115 120 125 Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser 135 140 Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys 145 150 155 160 Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser 165

- (2) INFORMATION FOR SEQ ID NO:55:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg 10 5 Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu 20 25 30 Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg Leu
35 40 45 35 Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu
50 60 Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu 65 70 75 80 Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg 85 90 95 Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu 110 100 105 Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser 115 120 125 Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
130 140 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu 145 150 155 160 Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala 165

- (2) INFORMATION FOR SEQ ID NO:56:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val 10 Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 25 20 Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile 45 40 Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala 50 60 Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn 65 70 75 80 Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met 85 90 95 Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu 100 105 110 Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln

- (2) INFORMATION FOR SEQ ID NO:57:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 171 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

 Leu
 Arg
 Thr
 Ile
 Thr
 Ala
 Asp
 Thr
 Phe
 Arg
 Lys
 Leu
 Tyr
 Ile
 Tyr
 Ile
 Ile</td

- (2) INFORMATION FOR SEQ ID NO:58:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

 Arg
 Thr
 11e
 Thr
 Ala
 Asp
 Thr
 Phe
 Arg
 Leu
 Phe
 Leu
 Arg
 Cly
 Leu
 Leu
 Leu
 Tyr
 Leu
 Thr
 Gly
 Arg
 Arg
 Gly
 Leu
 Leu
 Leu
 Tyr
 Thr
 Gly
 Glu
 Ala
 Cys
 Arg

 Thr
 Gly
 Arg
 Gly
 Gly
 Gly
 Ser
 Ala
 Pro
 Pro
 Arg
 Leu
 Ile
 Cys
 Asp

 Ser
 Arg
 Val
 Leu
 Gly
 Arg
 Leu
 Leu
 Gly
 Ala
 Ile
 Thr
 Fro
 Arg
 Ile
 Ile
 Arg
 Ile
 Ile

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr 20 25 30 Gly Asp Arg Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser 40 35 Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile 50 55 60 Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val 75 70 65 Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly 90 85 Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala 100 105 110 Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu 120 115 Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu 135 130 Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro 150 145 Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg 165

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 512 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 512 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

ATCACGACGG	GCTGTGCTGA	ACACTGCAGC	TTGAATGAGA	ATATCACTGT	CCCAGACACC	60
ΔΔΔΩΨΨΔΔΨΨ	TCTATGCCTG	GAAGAGGATG	GAGGTCGGGC	AGCAGGCCGT	AGAAGTCTGG	120
CAGGGCCTGG	CCCTGCTGTC	GGAAGCTGTC	CTGCGGGGCC	AGGCCCTGTT	GGTCAACTCT	180
TCCCACCCCT	GGGAGCCCCT	GCAGCTGCAT	GTGGATAAAG	CCGTCAGTGG	CCTTCGCAGC	240
CTCACCACTC	TGCTTCGGGC	TCTGGGAGCC	CAGAAGGAAG	CCATCTCCCC	TCCAGATGCG	300
CCCTCACCTC	CTCCACTCCG	AACAATCACT	GCTGACACTT	TCCGCAAACT	CTTCCGAGTC	360
TACTCCA ATT	TCCTCCGGGG	AAAGCTGAAG	CTGTACACAG	GGGAGGCCTG	CAGGACAGGG	420
CACACATCAC	CCCCCCCCTC	CCCCCACCAC	GCCTCATCTG	TGACAGCCGA	GTCCTGGAGA	480
		GAGGCCGAGA				512
GGIWCCICII	GCAGGCCAAG	0,1000001021				

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 512 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

ACGACGGGCT GTGCTGAA	CA CTGCAGCTTG	AATGAGAATA	TCACTGTCCC	AGACACCAAA	60
CTTA ATTTCT ATCCCTGG	AA GAGGATGGAG	GTCGGGCAGC	AGGCCGTAGA	AGTCTGGCAG	120
CCCCTCCCCC TCCTCTCG	GA AGCTGTCCTG	CGGGGCCAGG	CCCTGTTGGT	CAACTCTTCC	180
CACCCCTCCC ACCCCCTG	CA GCTGCATGTG	GATAAAGCCG	TCAGTGGCCT	TCGCAGCCTC	240
ACCACHONGO PROGGGCT	CT GGGAGCCCAG	AAGGAAGCCA	TCTCCCCTCC	AGATGCGGCC	300
TOACCTCCTC CACTCCGA	AC AATCACTGCT	GACACTTTCC	GCAAACTCTT	CCGAGTCTAC	360
Ψ	AA GCTGAAGCTG	TACACAGGGG	AGGCCTGCAG	GACAGGGGAC	420
AGATGAGGCG GCGGCTCC	CC CCACCACGCC	TCATCTGTGA	CAGCCGAGTC	CTGGAGAGGT	480
ACCTCTTGGA GGCCAAGG					512

(2) INFORMATION FOR SEQ ID NO:63:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 512 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

A CCCCCTCTCTC	СТСАВСАСТС	CAGCTTGAAT	GAGAATATCA	CTGTCCCAGA	CACCAAAGTT	60
AATTTCTATG	COTCGAACAC	CATCGAGGTC	GGGCAGCAGG	CCGTAGAAGT	CTGGCAGGGC	120
CTGGCCCTGC	TCTGGAAGAG	TCTCCTCCGG	GGCCAGGCCC	TGTTGGTCAA	CTCTTCCCAG	180
CCGTGGGAGC	CCCECCACCE	CCATCTCCAT	AAAGCCGTCA	GTGGCCTTCG	CAGCCTCACC	240
ACTCTGCTTC	CCCTGCAGCT	ACCCCAGAAG	GAAGCCATCT	CCCCTCCAGA	TGCGGCCTCA	300
GCTGCTCCAC	mcccy y cy y m	CACTCCTCAC	ACTITICCGCA	AACTCTTCCG	AGTCTACTCC	360
AATTTCCTCC	CCCCAACAAI	CACIGCIGAC	ACAGGGGAGG	CCTGCAGGAC	AGGGGACAGA	420
AATTTCCTCC	GGGGAAAGCI	CCACCCCTCA	TCTGTGACAG	CCGAGTCCTG	GAGAGGTACC	480
TGAGGCGGCG	GCTCCCCCCA	CACAAMAMCA	CC	00011010010		512
TCTTGGAGGC	CAAGGAGGCC	GAGAATATCA	CG			

(2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 512 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

(2) INFORMATION FOR SEQ ID NO:65:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 512 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

ТСТССТСААС	ACTGCAGCTT	GAATGAGAAT	ATCACTGTCC	CAGACACCAA	AGTTAATTTC
TATGCCTGGA	AGAGGATGGA	GGTCGGGCAG	CAGGCCGTAG	AAGTCTGGCA	GGGCCTGGCC

CTGCTGTCGG AAGCTGTCCT GCGGGGCCAG GCCCTGTTGG TCAACTCTTC CCAGCCGTGG	180						
GAGCCCCTGC AGCTGCATGT GGATAAAGCC GTCAGTGGCC TTCGCAGCCT CACCACTCTG	240						
CTTCGGGCTC TGGGAGCCCA GAAGGAAGCC ATCTCCCCTC CAGATGCGGC CTCAGCTGCT	300						
CCACTCCGAA CAATCACTGC TGACACTTTC CGCAAACTCT TCCGAGTCTA CTCCAATTTC	360						
CTCCGGGGAA AGCTGAAGCT GTACACAGGG GAGGCCTGCA GGACAGGGGA CAGATGAGGC	420						
GGCGGCTCC CCCACCACGC CTCATCTGTG ACAGCCGAGT CCTGGAGAGG TACCTCTTGG	480						
AGGCCAAGGA GGCCGAGAAT ATCACGACGG GC	512						
AGGCCAAGGA GGCCGAGAAI AICACGACGG GG							
(2) INFORMATION FOR SEQ ID NO:66:							
(;) SPOUDNCE CHARACTERISTICS:							

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 512 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

GCTGAACACT	GCAGCTTGAA	TGAGAATATC	ACTGTCCCAG	ACACCAAAGT	TAATTTCTAT	60
GCCTGGAAGA	GGATGGAGGT	CGGGCAGCAG	GCCGTAGAAG	TCTGGCAGGG	CCTGGCCCTG	120
		GGGCCAGGCC				180
CCCCTGCAGC	TGCATGTGGA	TAAAGCCGTC	AGTGGCCTTC	GCAGCCTCAC	CACTCTGCTT	240
CGGGCTCTGG	GAGCCCAGAA	GGAAGCCATC	TCCCCTCCAG	ATGCGGCCTC	AGCTGCTCCA	300
		CACTTTCCGC				360
CGGGGAAAGC	TGAAGCTGTA	CACAGGGGAG	GCCTGCAGGA	CAGGGGACAG	ATGAGGCGGC	420
GGCTCCCCCC	ACCACGCCTC	ATCTGTGACA	GCCGAGTCCT	GGAGAGGTAC	CTCTTGGAGG	480
CCAAGGAGGC	CGAGAATATC	ACGACGGGCT	GT			512

(2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 512 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

GAACACTGCA GCTTGAATGA	GAATATCACT	GTCCCAGACA	CCAAAGTTAA	TTTCTATGCC	60
TGGAAGAGGA TGGAGGTCGG	GCAGCAGGCC	GTAGAAGTCT	GGCAGGGCCT	GGCCCTGCTG	120
TCGGAAGCTG TCCTGCGGGG	CCAGGCCCTG	TTGGTCAACT	CTTCCCAGCC	GTGGGAGCCC	180
CTGCAGCTGC ATGTGGATAA					240
GCTCTGGGAG CCCAGAAGGA					300
CGAACAATCA CTGCTGACAC	TTTCCGCAAA	CTCTTCCGAG	TCTACTCCAA	TTTCCTCCGG	360
GGAAAGCTGA AGCTGTACAC	AGGGGAGGCC	TGCAGGACAG	GGGACAGATG	AGGCGGCGGC	420
TCCCCCACC ACGCCTCATC	TGTGACAGCC	GAGTCCTGGA	GAGGTACCTC	TTGGAGGCCA	480
AGGAGGCCGA GAATATCACG					512
AGGAGGCCGA GAATATCACG	ACCOCCICIO	0 1			

(2) INFORMATION FOR SEQ ID NO:68:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 512 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

CACTGCAGCT	TGAATGAGAA	TATCACTGTC	CCAGACACCA	AAGTTAATTT	CTATGCCTGG	60
AAGAGGATGG	AGGTCGGGCA	GCAGGCCGTA	GAAGTCTGGC	AGGGCCTGGC	CCTGCTGTCG	120
GAAGCTGTCC	TGCGGGGCCA	GGCCCTGTTG	GTCAACTCTT	CCCAGCCGTG	GGAGCCCCTG	180
	TGGATAAAGC					240
CTGGGAGCCC	AGAAGGAAGC	CATCTCCCCT	CCAGATGCGG	CCTCAGCTGC	TCCACTCCGA	300
ACAATCACTG	CTGACACTTT	CCGCAAACTC	TTCCGAGTCT	ACTCCAATTT	CCTCCGGGGA	360
AAGCTGAAGC	TGTACACAGG	GGAGGCCTGC	AGGACAGGGG	ACAGATGAGG	CGGCGGCTCC	420
CCCCACCACG	CCTCATCTGT	GACAGCCGAG	TCCTGGAGAG	GTACCTCTTG	GAGGCCAAGG	480
	TATCACGACG					512

(2) INFORMATION FOR SEQ ID NO:69:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 512 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

TGCAGCTTGA	ATGAGAATAT	CACTGTCCCA	GACACCAAAG	TTAATTTCTA	TGCCTGGAAG	60
AGGATGGAGG	TCGGGCAGCA	GGCCGTAGAA	GTCTGGCAGG	GCCTGGCCCT	GCTGTCGGAA	120
GCTGTCCTGC	GGGGCCAGGC	CCTGTTGGTC	AACTCTTCCC	AGCCGTGGGA	GCCCCTGCAG	180
CTGCATGTGG	ATAAAGCCGT	CAGTGGCCTT	CGCAGCCTCA	CCACTCTGCT	TCGGGCTCTG	240
GGAGCCCAGA	AGGAAGCCAT	CTCCCCTCCA	GATGCGGCCT	CAGCTGCTCC	ACTCCGAACA	300
ATCACTGCTG	ACACTTTCCG	CAAACTCTTC	CGAGTCTACT	CCAATTTCCT	CCGGGGAAAG	360
CTGAAGCTGT	ACACAGGGGA	GGCCTGCAGG	ACAGGGGACA	GATGAGGCGG	CGGCTCCCCC	420
CACCACGCCT	CATCTGTGAC	AGCCGAGTCC	TGGAGAGGTA	CCTCTTGGAG	GCCAAGGAGG	480
CCGAGAATAT	CACGACGGGC	TGTGCTGAAC	AC			512

(2) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 512 base pairs(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

AGCTTGAATG AG	SAATATCAC TGTCCCA	GAC ACCAAAGTT	A ATTTCTATGC	CTGGAAGAGG	60
ATGGAGGTCG GG	GCAGCAGGC CGTAGAA	GTC TGGCAGGGC	C TGGCCCTGCT	GTCGGAAGCT	120
GTCCTGCGGG GC	CAGGCCCT GTTGGTC	AAC TCTTCCCAG	CCTGGGAGCC	CCTGCAGCTG	180
CATGTGGATA AA	AGCCGTCAG TGGCCTT	CGC AGCCTCACC	A CTCTGCTTCG	GGCTCTGGGA	240
GCCCAGAAGG AA	AGCCATCTC CCCTCCA	GAT GCGGCCTCA	G CTGCTCCACT	CCGAACAATC	300
ACTGCTGACA CT	TTTCCGCAA ACTCTTC	CGA GTCTACTCC	A ATTTCCTCCG	GGGAAAGCTG	360
	AGGGGAGGC CTGCAGG				420
CACGCCTCAT CT	TGTGACAGC CGAGTCC	TGG AGAGGTACC	F CTTGGAGGCC	AAGGAGGCCG	480
AGAATATCAC GA	ACGGGCTGT GCTGAAC	ACT GC			512

(2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 512 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

TTGAATGAGA	ATATCACTGT	CCCAGACACC	AAAGTTAATT	TCTATGCCTG	GAAGAGGATG	60
GAGGTCGGGC	AGCAGGCCGT	AGAAGTCTGG	CAGGGCCTGG	CCCTGCTGTC	GGAAGCTGTC	120
CTGCGGGGCC	AGGCCCTGTT	GGTCAACTCT	TCCCAGCCGT	GGGAGCCCCT	GCAGCTGCAT	180
GTGGATAAAG	CCGTCAGTGG	CCTTCGCAGC	CTCACCACTC	TGCTTCGGGC	TCTGGGAGCC	240
CAGAAGGAAG	CCATCTCCCC	TCCAGATGCG	GCCTCAGCTG	CTCCACTCCG	AACAATCACT	300
GCTGACACTT	TCCGCAAACT	CTTCCGAGTC	TACTCCAATT	TCCTCCGGGG	AAAGCTGAAG	360
CTGTACACAG	GGGAGGCCTG	CAGGACAGGG	GACAGATGAG	GCGGCGGCTC	CCCCCACCAC	420
GCCTCATCTG	TGACAGCCGA	GTCCTGGAGA	GGTACCTCTT	GGAGGCCAAG	GAGGCCGAGA	480
ATATCACGAC	$\operatorname{GGGCTGTGCT}$	GAACACTGCA	GC			512

(2) INFORMATION FOR SEQ ID NO:72:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 512 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

AATGAGAATA	TCACTGTCCC	AGACACCAAA	GTTAATTTCT	ATGCCTGGAA	GAGGATGGAG	60
GTCGGGCAGC	AGGCCGTAGA	AGTCTGGCAG	GGCCTGGCCC	TGCTGTCGGA	AGCTGTCCTG	120
CGGGGCCAGG	CCCTGTTGGT	CAACTCTTCC	CAGCCGTGGG	AGCCCCTGCA	GCTGCATGTG	180
GATAAAGCCG	TCAGTGGCCT	TCGCAGCCTC	ACCACTCTGC	TTCGGGCTCT	GGGAGCCCAG	240
AAGGAAGCCA	TCTCCCCTCC	AGATGCGGCC	TCAGCTGCTC	CACTCCGAAC	AATCACTGCT	300
GACACTTTCC	GCAAACTCTT	CCGAGTCTAC	TCCAATTTCC	TCCGGGGAAA	GCTGAAGCTG	360
TACACAGGGG	AGGCCTGCAG	GACAGGGGAC	AGATGAGGCG	GCGGCTCCCC	CCACCACGCC	420
TCATCTGTGA	CAGCCGAGTC	CTGGAGAGGT	ACCTCTTGGA	GGCCAAGGAG	GCCGAGAATA	480
TCACGACGGG	CTGTGCTGAA	CACTGCAGCT	TG			512

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 512 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

GAGAATATCA CTGTCCC	AGA CACCAAAGTT	AATTTCTATG	CCTGGAAGAG	GATGGAGGTC	60
GGGCAGCAGG CCGTAGA	AGT CTGGCAGGGC	CTGGCCCTGC	TGTCGGAAGC	TGTCCTGCGG	120
GGCCAGGCCC TGTTGGT	CAA CTCTTCCCAG	CCGTGGGAGC	CCCTGCAGCT	GCATGTGGAT	180
AAAGCCGTCA GTGGCCT	TCG CAGCCTCACC	ACTCTGCTTC	GGGCTCTGGG	AGCCCAGAAG	240
GAAGCCATCT CCCCTCC	AGA TGCGGCCTCA	GCTGCTCCAC	TCCGAACAAT	CACTGCTGAC	300
ACTTTCCGCA AACTCTT	CCG AGTCTACTCC	AATTTCCTCC	GGGGAAAGCT	GAAGCTGTAC	360
ACAGGGGAGG CCTGCAG	GAC AGGGGACAGA	TGAGGCGGCG	GCTCCCCCCA	CCACGCCTCA	420
TCTGTGACAG CCGAGTC	CTG GAGAGGTACC	TCTTGGAGGC	CAAGGAGGCC	GAGAATATCA	480
CGACGGGCTG TGCTGAA	CAC TGCAGCTTGA	. AT			512

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 512 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

CAGCAGGCCG TAGAAGTCTG GCAGGGCCTG GCCCTGCTGT CGGAAGCTGT CCTGCGGGGC 12 CAGGCCCTGT TGGTCAACTC TTCCCAGCCG TGGGAGCCCC TGCAGCTGCA TGTGGATAAA 18	
α_{λ} and a sum of the contract of the cont	
CAGGCCCTGT TGGTCAACTC TTCCCAGCCG TGGGAGCCCC TGCAGCTGCA TGTGGATAAA	0
GCCGTCAGTG GCCTTCGCAG CCTCACCACT CTGCTTCGGG CTCTGGGAGC CCAGAAGGAA 24	.0
GCCATCTCCC CTCCAGATGC GGCCTCAGCT GCTCCACTCC GAACAATCAC TGCTGACACT 30	0
TTCCGCAAAC TCTTCCGAGT CTACTCCAAT TTCCTCCGGG GAAAGCTGAA GCTGTACACA 36	0
GGGGAGGCCT GCAGGACAGG GGACAGATGA GGCGGCGGCT CCCCCCACCA CGCCTCATCT 42	0
GTGACAGCCG AGTCCTGGAG AGGTACCTCT TGGAGGCCAA GGAGGCCGAG AATATCACGA 48	0
CGGGCTGTGC TGAACACTGC AGCTTGAATG AG 51	.2

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 512 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

ATCACTGTCC	CAGACACCAA	AGTTAATTTC	TATGCCTGGA	AGAGGATGGA	GGTCGGGCAG	60
CAGGCCGTAG	AAGTCTGGCA	GGGCCTGGCC	CTGCTGTCGG	AAGCTGTCCT	GCGGGGCCAG	120
GCCCTGTTGG	TCAACTCTTC	CCAGCCGTGG	GAGCCCCTGC	AGCTGCATGT	GGATAAAGCC	180
GTCAGTGGCC	TTCGCAGCCT	CACCACTCTG	CTTCGGGCTC	TGGGAGCCCA	GAAGGAAGCC	240
ATCTCCCCTC	CAGATGCGGC	CTCAGCTGCT	CCACTCCGAA	CAATCACTGC	TGACACTTTC	300
CGCAAACTCT	TCCGAGTCTA	CTCCAATTTC	CTCCGGGGAA	AGCTGAAGCT	GTACACAGGG	360
GAGGCCTGCA	GGACAGGGGA	CAGATGAGGC	GGCGGCTCCC	CCCACCACGC	CTCATCTGTG	420
ACAGCCGAGT	CCTGGAGAGG	TACCTCTTGG	AGGCCAAGGA	GGCCGAGAAT	ATCACGACGG	480
GCTGTGCTGA	ACACTGCAGC	TTGAATGAGA	AT			512

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

ACTGTCCCAG	ACACCAAAGT	TAATTTCTAT	GCCTGGAAGA	GGATGGAGGT	CGGGCAGCAG	60
GCCGTAGAAG	TCTGGCAGGG	CCTGGCCCTG	CTGTCGGAAG	CTGTCCTGCG	GGGCCAGGCC	120

CTGTTGGTCA ACTCTTCCCA GCCGTGGGAG CCCCTGCAGC TGCATGTGGA TAAAGCCGTC AGTGGCCTTC GCAGCCTCAC CACTCTGCTT CGGGCTCTGG GAGCCCAGAA GGAAGCCATC TCCCCTCCAG ATGCGGCCTC AGCTGCTCCA CTCCGAACAA TCACTGCTGA CACTTTCCGC AAACTCTTCC GAGTCTACTC CAATTTCCTC CGGGGAAAGC TGAAGCTGTA CACAGGGGAG GCCTGCAGGA CAGGGGACAG ATGAGGCGGC GGCTCCCCCC ACCACGCCTC ATCTGTGACA GCCGAGTCCT GGAGAGGTAC CTCTTGGAGG CCAAGGAGGC CGAGAATATC ACGACGGGCT GTGCTGAACA CTGCAGCTTG AATGAGAATA ATC (2) INFORMATION FOR SEQ ID NO:77: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	180 240 300 360 420 480 513
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:	
GTCCCAGACA CCAAAGTTAA TTTCTATGCC TGGAAGAGGA TGGAGGTCGG GCAGCAGGCC GTAGAAGTCT GGCAGGGCCT GGCCCTGCTG TCCGGAAGCTG TCCTGCGGGG CCAGGCCCTG TCGGAAGCTG TCCTGCGGGG CCAGGCCCTG TCGGAGCTGC ATGTGGATAA AGCCGTCAGT TCCTCCAGATG CCCCCACACAC TCTGCTTCGG GCTCTGGGAG CCCAGAAGGA AGCCATCTCC CCTCCAGATG CGGCCTCAGC TCCTCCACAC TCTCCCACAC TCCTCCACAC TCTCCCACAC AGCCACAACAATCA CTGCTGACAC TCTCCCCAAA AGCCGTCAAC AGGCGAGGCC TCCCCCCACC ACGCCTCATC TGTGACAGCC AGGAGCCCAACGAACAATCA AGCCGTCAAC AGGCGAGGCC TCCCCCCACC ACGCCTCATC TGTGACAGCC AGGAGCCCAACAATCA AGCGGCCGC TCCCCCCACC ACGCCTCATC TGTGACAGCC AGGAGCCCAACAATCA ACGGGCCGAACAATCA AGCCGCTCATC TGTGACAGCC AGGAGCCCAACAATCA AGCCGCCTGAACACTC CAGCTTGAACACT CAGCTTGAATAATC ACT	60 120 180 240 300 360 420 480 513
(2) INFORMATION FOR SEQ ID NO:78:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
CCAGACACCA AAGTTAATTT CTATGCCTGG AAGAGGATGG AGGTCGGGCA GCAGGCCGTA GAAGTCTGGC AGGGCCTGGC CCTGCTTGTCG GAAGCTGTCC TGCGGGGCCA GGCCCTGTTG GTCAACTCTT CCCAGCCGTG GGAGCCCCTG CAGCTGCATG TGGATAAAGC CGTCAGTGGC CTTCGCAGCC TCACCACTCT GCTTCGGGCT CTGGGAGCCC AGAAGGAAGC CATCTCCCCT CCAGATGCGG CCTCAGCTGC TCCACTCCGA ACAATCACTG CTGACACTTT CCGCAAACTC TTCCGAGTCT ACTCCAATTT CCTCCGGGGA AAGCTGAAGC TGTACACAGG GGAGGCCTGC AGGACAGGGG ACAGATGAGG CGGCGGCTCC CCCCACCACG CCTCATCTGT GACAGCCGAG TCCTGGAGAG GTACCTCTTG GAGGCCAAGG AGGCCGAGAA TATCACGACG GGCTGTCTG AACACTGCAG CTTGAATGAG AATAATCACT GTC	60 120 180 240 300 360 420 480 513
(2) INFORMATION FOR SEQ ID NO:79:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:	
GACACCAAAG TTAATTCTA TGCCTGGAAG AGGATGGAGG TCGGGCAGCA GGCCGTAGAA GTCTGGCAGG GCCTGCCCC GCTGTCGGAA GCTGTCCTGC GGGGCCAGGC CCTGTTGGTC AACTCTTCCC AGCCGTGGGA GCCCTGCAG CTGCATGTGG ATAAAAGCCGT CAGTGGCCTT CGCAGCCTCA CCACTCTGCT TCGGGCTCTG GGAGCCCAGA AGGAAGCCAT CTCCCCTCCA GATGCGGCCT CAGCTGCTC ACTCCGAACA ATCACTGCTG ACACTTTCCG CAAACTCTTC CCAGTGTACT CCCATTTCCT CCGGGGAAAG CTGAAGCTGT ACACAGGGGA GGCCTGCAGG ACAGGGGACA GATGAGGCGA GCCAAGGAGG CCAACGCCT CATCTGTGAC AGCCGAGTCC CACTGCAGCT CACTGCAGC TGTGCTGAAC ACTCGCAGCT CACTGCAGC TGTGCTGAAC ACTCGCAGCT CACTGCAGCCT TGTGCTGAAC ACTCGCAGCTC CCCACTGCAGC CCCACACGCCT CACCACGCC TGTGCTGAAC ACTCGCAGCT TGTGCTGAAC ACTCGCAGCT CACCACGCCT CACCACGCC TGTGCTGAAC ACTGCAGGAT AATCACTGTC CCA	60 120 180 240 300 360 420 480 513

(2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

AGGATGGAGG	TCGGGCAGCA	GGCCGTAGAA	GTCTGGCAGG	GCCTGGCCCT	GCTGTCGGAA	60
GCTGTCCTGC	GGGGCCAGGC	CCTGTTGGTC	AACTCTTCCC	AGCCGTGGGA	GCCCCTGCAG	120
CTGCATGTGG	ATAAAGCCGT	CAGTGGCCTT	CGCAGCCTCA	CCACTCTGCT	TCGGGCTCTG	180
GGAGCCCAGA	AGGAAGCCAT	CTCCCCTCCA	GATGCGGCCT	CAGCTGCTCC	ACTCCGAACA	240
ATCACTGCTG	ACACTTTCCG	CAAACTCTTC	CGAGTCTACT	CCAATTTCCT	CCGGGGAAAG	300
CTGAAGCTGT	ACACAGGGGA	GGCCTGCAGG	ACAGGGGACA	GATGAGGCGG	CGGCTCCCCC	360
CACCACGCCT	CATCTGTGAC	AGCCGAGTCC	TGGAGAGGTA	CCTCTTGGAG	GCCAAGGAGG	420
		TGTGCTGAAC				480
		CTATGCCTGG				513
CC11011CT1CT1	11410111111	01111000100				

(2) INFORMATION FOR SEQ ID NO:81:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

ATGGAGGTCG GGCAGCAGGC	CGTAGAAGTC	TGGCAGGGCC	TGGCCCTGCT	GTCGGAAGCT	60
GTCCTGCGGG GCCAGGCCCT	GTTGGTCAAC	TCTTCCCAGC	CGTGGGAGCC	CCTGCAGCTG	120
CATGTGGATA AAGCCGTCAG	TGGCCTTCGC	AGCCTCACCA	CTCTGCTTCG	GGCTCTGGGA	180
GCCCAGAAGG AAGCCATCTC	CCCTCCAGAT	GCGGCCTCAG	CTGCTCCACT	CCGAACAATC	240
ACTGCTGACA CTTTCCGCAA	ACTCTTCCGA	GTCTACTCCA	ATTTCCTCCG	GGGAAAGCTG	300
AAGCTGTACA CAGGGGAGGC	CTGCAGGACA	GGGGACAGAT	GAGGCGGCGG	CTCCCCCCAC	360
CACGCCTCAT CTGTGACAGC					420
AGAATATCAC GACGGGCTGT	GCTGAACACT	GCAGCTTGAA	TGAGAATAAT	CACTGTCCCA	480
GACACCAAAG TTAATTTCTA	TGCCTGGAAG	AGG			513

(2) INFORMATION FOR SEQ ID NO:82:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

GAGGTCGGGC	AGCAGGCCGT	AGAAGTCTGG	CAGGGCCTGG	CCCTGCTGTC	GGAAGCTGTC	60
CTGCGGGGCC	AGGCCCTGTT	GGTCAACTCT	TCCCAGCCGT	GGGAGCCCCT	GCAGCTGCAT	120
GTGGATAAAG	CCGTCAGTGG	CCTTCGCAGC	CTCACCACTC	TGCTTCGGGC	TCTGGGAGCC	180
		TCCAGATGCG				240
		CTTCCGAGTC				300
		CAGGACAGGG				360
		GTCCTGGAGA				420
ATATCACGAC	GGGCTGTGCT	GAACACTGCA	GCTTGAATGA	GAATAATCAC	TGTCCCAGAC	480
ACCAAAGTTA	ATTTCTATGC	CTGGAAGAGG	ATG			513

(2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

GTCGGGCAGC	AGGCCGTAGA	AGTCTGGCAG	GGCCTGGCCC	TGCTGTCGGA	AGCTGTCCTG	60
CGGGGCCAGG	CCCTGTTGGT	CAACTCTTCC	CAGCCGTGGG	AGCCCCTGCA	GCTGCATGTG	120
GATAAAGCCG	TCAGTGGCCT	TCGCAGCCTC	ACCACTCTGC	TTCGGGCTCT	GGGAGCCCAG	180
		AGATGCGGCC				240
GACACTTTCC	GCAAACTCTT	CCGAGTCTAC	TCCAATTTCC	TCCGGGGAAA	GCTGAAGCTG	300
		GACAGGGGAC				360
		CTGGAGAGGT				420
TCACGACGGG	CTGTGCTGAA	CACTGCAGCT	TGAATGAGAA	TAATCACTGT	CCCAGACACC	480
AAAGTTAATT	TCTATGCCTG	GAAGAGGATG	GAG			513

(2) INFORMATION FOR SEQ ID NO:84:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

		TTCCCAGCCG				60
		CCTCACCACT				120
GCCATCTCCC	CTCCAGATGC	GGCCTCAGCT	GCTCCACTCC	GAACAATCAC	TGCTGACACT	180
		CTACTCCAAT				240
		GGACAGATGA				300
		AGGTACCTCT				360
		AGCTTGAATG				420
		GATGGAGGTC				480
		TGTCCTGCGG				513

(2) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

GCCCTGTTGG TCAACTCTTC	CCAGCCGTGG	GAGCCCCTGC	AGCTGCATGT	GGATAAAGCC	60
GTCAGTGGCC TTCGCAGCCT					120
ATCTCCCCTC CAGATGCGGC	CTCAGCTGCT	CCACTCCGAA	CAATCACTGC	TGACACTTTC	180
CGCAAACTCT TCCGAGTCTA	CTCCAATTTC	CTCCGGGGAA	AGCTGAAGCT	GTACACAGGG	240
GAGGCCTGCA GGACAGGGGA	CAGATGAGGC	GGCGGCTCCC	CCCACCACGC	CTCATCTGTG	300
ACAGCCGAGT CCTGGAGAGG					360
GCTGTGCTGA ACACTGCAGC	TTGAATGAGA	ATAATCACTG	TCCCAGACAC	CAAAGTTAAT	420
TTCTATGCCT GGAAGAGGAT	GGAGGTCGGG	CAGCAGGCCG	TAGAAGTCTG	GCAGGGCCTG	480
GCCCTGCTGT CGGAAGCTGT	CCTGCGGGGC	CAG			513

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

CTGTTGGTCA ACTCTTCCCA	GCCGTGGGAG	CCCCTGCAGC	TGCATGTGGA	TAAAGCCGTC	60
AGTGGCCTTC GCAGCCTCAC	CACTCTGCTT	CGGGCTCTGG	GAGCCCAGAA	GGAAGCCATC	120
TCCCCTCCAG ATGCGGCCTC					180
AAACTCTTCC GAGTCTACTC					240
GCCTGCAGGA CAGGGGACAG	ATGAGGCGGC	GGCTCCCCCC	ACCACGCCTC	ATCTGTGACA	300
GCCGAGTCCT GGAGAGGTAC	CTCTTGGAGG	CCAAGGAGGC	CGAGAATATC	ACGACGGGCT	360
GTGCTGAACA CTGCAGCTTG	AATGAGAATA	ATCACTGTCC	CAGACACCAA	AGTTAATTTC	420
TATGCCTGGA AGAGGATGGA	GGTCGGGCAG	CAGGCCGTAG	AAGTCTGGCA	GGGCCTGGCC	480
CTGCTGTCGG AAGCTGTCCT	GCGGGGCCAG	GCC			513

(2) INFORMATION FOR SEQ ID NO:87:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

TTGGTCAACT	CTTCCCAGCC	GTGGGAGCCC	CTGCAGCTGC	ATGTGGATAA	AGCCGTCAGT	60
GGCCTTCGCA	GCCTCACCAC	TCTGCTTCGG	GCTCTGGGAG	CCCAGAAGGA	AGCCATCTCC	120

- (2) INFORMATION FOR SEQ ID NO:88:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

GTCAACTCTT	CCCAGCCGTG	GGAGCCCCTG	CAGCTGCATG	TGGATAAAGC	CGTCAGTGGC	60
CTTCGCAGCC	TCACCACTCT	GCTTCGGGCT	CTGGGAGCCC	AGAAGGAAGC	CATCTCCCCT	120
CCAGATGCGG	CCTCAGCTGC	TCCACTCCGA	ACAATCACTG	CTGACACTTT	CCGCAAACTC	180
TTCCGAGTCT	ACTCCAATTT	CCTCCGGGGA	AAGCTGAAGC	TGTACACAGG	GGAGGCCTGC	240
AGGACAGGGG	ACAGATGAGG	CGGCGGCTCC	CCCCACCACG	CCTCATCTGT	GACAGCCGAG	300
TCCTGGAGAG	GTACCTCTTG	GAGGCCAAGG	AGGCCGAGAA	TATCACGACG	GGCTGTGCTG	360
AACACTGCAG	CTTGAATGAG	AATAATCACT	GTCCCAGACA	CCAAAGTTAA	TTTCTATGCC	420
TGGAAGAGGA	TGGAGGTCGG	GCAGCAGGCC	GTAGAAGTCT	GGCAGGGCCT	GGCCCTGCTG	480
TCGGAAGCTG	TCCTGCGGGG	CCAGGCCCTG	TTG			513

- (2) INFORMATION FOR SEQ ID NO:89:
- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 513 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

GCCCCTGCAG	CTGCATGTGG	ATAAAGCCGT	CAGTGGCCTT	60
TCGGGCTCTG	GGAGCCCAGA	AGGAAGCCAT	CTCCCCTCCA	120
ACTCCGAACA	ATCACTGCTG	ACACTTTCCG	CAAACTCTTC	180
'CCGGGGAAAG	CTGAAGCTGT	ACACAGGGGA	GGCCTGCAGG	240
CGGCTCCCCC	CACCACGCCT	CATCTGTGAC	AGCCGAGTCC	300
				360
				420
GCAGGCCGTA	GAAGTCTGGC	AGGGCCTGGC	CCTGCTGTCG	480
GGCCCTGTTG	GTC			513
	TCGGGCTCTG ACTCCGAACA CCGGGGAAAG CGGCTCCCCC GGCAAGGAGG AATCACTGTC AGCAGGCCGTA	TCGGGCTCTG GGAGCCCAGA ACTCCGAACA ATCACTGCTG CCGGGGGAAAG CTGAAGCTGT CGGCTCCCCC CACCACGCCT GGCCAAGGAGG CCGAGAATAT AATCACTGTC CCAGACACCA	TCGGGCTCTG GGAGCCCAGA AGGAAGCCAT ACTCCGAACA ATCACTGCTG ACACTTCCG CCGGGGAAAG CTGAAGCTGT ACACAGGGA CGCCCCC CACACGCCT CATCTGTGAC GGCCAGGGAGAATAT CACGACGGGC AATCACTGTC CCAGACACCA AAGTTAATTT AGCAGGCCGTA GAAGTCTGGC AGGGCCTGGC	A GCCCCTGCAG CTGCATGTGG ATAAAGCCGT CAGTGGCCTT TCGGGCTCTG GGAGCCCAGA AGGAAGCCAT CTCCCCTCCA ACTCCGAACA ATCACTGCTG ACACTTTCCG CAAACTCTTC CCGGGGGAAAG CTGAAGCTGT ACACAGGGGA GGCCTGCAG CGCACAGGGGG CGCACACGCCT CATCTGTGAC AGCCGAGTCC GCCAAGGAGG CCGAGAATAT CACGACGGGC TGTGCTGAAC AATCACTGTC CCAGACACCA AAGTTAATTT CTATGCCTGG AGCAGGCCGTA GAAGTCTGGC AGGGCCTGGC CCTGCTGTCG AGCCCTGTTG GTC

- (2) INFORMATION FOR SEQ ID NO:90:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

TCTTCCCAGC	CGTGGGAGCC	CCTGCAGCTG	CATGTGGATA	AAGCCGTCAG	TGGCCTTCGC	60
AGCCTCACCA	CTCTGCTTCG	GGCTCTGGGA	GCCCAGAAGG	AAGCCATCTC	CCCTCCAGAT	120
GCGGCCTCAG	CTGCTCCACT	CCGAACAATC	ACTGCTGACA	CTTTCCGCAA	ACTCTTCCGA	180
GTCTACTCCA	ATTTCCTCCG	GGGAAAGCTG	AAGCTGTACA	CAGGGGAGGC	CTGCAGGACA	240
GGGGACAGAT	GAGGCGGCGG	CTCCCCCCAC	CACGCCTCAT	CTGTGACAGC	CGAGTCCTGG	300
AGAGGTACCT	CTTGGAGGCC	AAGGAGGCCG	AGAATATCAC	GACGGGCTGT	GCTGAACACT	360
GCAGCTTGAA	TGAGAATAAT	CACTGTCCCA	GACACCAAAG	TTAATTTCTA	TGCCTGGAAG	420
AGGATGGAGG	TCGGGCAGCA	GGCCGTAGAA	GTCTGGCAGG	GCCTGGCCCT	GCTGTCGGAA	480
GCTGTCCTGC	GGGGCCAGGC	CCTGTTGGTC	AAC			513

- (2) INFORMATION FOR SEQ ID NO:91:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

(2) INFORMATION FOR SEQ ID NO:92:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

CAGCCGTGGG	AGCCCCTGCA	GCTGCATGTG	GATAAAGCCG	TCAGTGGCCT	TCGCAGCCTC	60
		GGGAGCCCAG				120
TCAGCTGCTC	CACTCCGAAC	AATCACTGCT	GACACTTTCC	GCAAACTCTT	CCGAGTCTAC	180
TCCAATTTCC	TCCGGGGAAA	GCTGAAGCTG	TACACAGGGG	AGGCCTGCAG	GACAGGGGAC	240
AGATGAGGCG	GCGGCTCCCC	CCACCACGCC	TCATCTGTGA	CAGCCGAGTC	CTGGAGAGGT	300
ACCTCTTGGA	GGCCAAGGAG	GCCGAGAATA	TCACGACGGG	CTGTGCTGAA	CACTGCAGCT	360
		CCCAGACACC				420
GAGGTCGGGC	AGCAGGCCGT	AGAAGTCTGG	CAGGGCCTGG	CCCTGCTGTC	GGAAGCTGTC	480
CTGCGGGGCC	AGGCCCTGTT	GGTCAACTCT	TCC			513

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

CCGTGGGAGC	CCCTGCAGCT	GCATGTGGAT	AAAGCCGTCA	GTGGCCTTCG	CAGCCTCACC	60
		AGCCCAGAAG				120
GCTGCTCCAC	TCCGAACAAT	CACTGCTGAC	ACTTTCCGCA	AACTCTTCCG	AGTCTACTCC	180
		GAAGCTGTAC				240
		CCACGCCTCA				300
		GAGAATATCA				360
		AGACACCAAA				420
		AGTCTGGCAG				480
		CAACTCTTCC				513

(2) INFORMATION FOR SEQ ID NO:94:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

TGGGAGCCCC TGCAGCTGCA	TGTGGATAAA	GCCGTCAGTG	GCCTTCGCAG	CCTCACCACT	60
CTGCTTCGGG CTCTGGGAGC	CCAGAAGGAA	GCCATCTCCC	CTCCAGATGC	GGCCTCAGCT	120
GCTCCACTCC GAACAATCAC	TGCTGACACT	TTCCGCAAAC	TCTTCCGAGT	CTACTCCAAT	180
TTCCTCCGGG GAAAGCTGAA	GCTGTACACA	GGGGAGGCCT	GCAGGACAGG	GGACAGATGA	240
GGCGGCGGCT CCCCCCACCA					300
TGGAGGCCAA GGAGGCCGAG					360
AGAATAATCA CTGTCCCAGA					420
GGGCAGCAGG CCGTAGAAGT	CTGGCAGGGC	CTGGCCCTGC	TGTCGGAAGC	TGTCCTGCGG	480
GGCCAGGCCC TGTTGGTCAA	CTCTTCCCAG	CCG			513

(2) INFORMATION FOR SEQ ID NO:95: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95: 60 GAGCCCCTGC AGCTGCATGT GGATAAAGCC GTCAGTGGCC TTCGCAGCCT CACCACTCTG CTTCGGGCTC TGGGAGCCCA GAAGGAAGCC ATCTCCCCTC CAGATGCGGC CTCAGCTGCT CCACTCCGAA CAATCACTGC TGACACTTTC CGCAAACTCT TCCGAGTCTA CTCCAATTTC 120 180 CTCCGGGGAA AGCTGAAGCT GTACACAGGG GAGGCCTGCA GGACAGGGGA CAGATGAGGC 240 300 GGCGGCTCCC CCCACCACGC CTCATCTGTG ACAGCCGAGT CCTGGAGAGG TACCTCTTGG AGGCCAAGGA GGCCGAGAAT ATCACGACGG GCTGTGCTGA ACACTGCAGC TTGAATGAGA 360 ATAATCACTG TCCCAGACAC CAAAGTTAAT TTCTATGCCT GGAAGAGGAT GGAGGTCGGG CAGCAGGCCG TAGAAGTCTG GCAGGGCCTG GCCCTGCTGT CGGAAGCTGT CCTGCGGGGC 420 480 CAGGCCCTGT TGGTCAACTC TTCCCAGCCG TGG 513 (2) INFORMATION FOR SEQ ID NO:96: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96: CTTCGGGCTC TGGGAGCCCA GAAGGAAGCC ATCTCCCCTC CAGATGCGGC CTCAGCTGCT CCACTCCGAA CAATCACTGC TGACACTTTC CGCAAACTCT TCCGAGTCTA CTCCAATTTC CTCCGGGGAA AGCTGAAGCT GTACACAGGG GAGGCCTGCA GGACAGGGGA CAGATGAGGC 180 GGCGGCTCCC CCCACCACGC CTCATCTGTG ACAGCCGAGT CCTGGAGAGG TACCTCTTGG 240 AGGCCAAGGA GGCCGAGAAT ATCACGACGG GCTGTGCTGA ACACTGCAGC TTGAATGAGA 300 ATAATCACTG TCCCAGACAC CAAAGTTAAT TTCTATGCCT GGAAGAGGAT GGAGGTCGGG 360 CAGCAGGCCG TAGAAGTCTG GCAGGGCCTG GCCCTGCTGT CGGAAGCTGT CCTGCGGGGC CAGGCCCTGT TGGTCAACTC TTCCCAGCCG TGGGAGCCCC TGCAGCTGCA TGTGGATAAA 420 480 GCCGTCAGTG GCCTTCGCAG CCTCACCACT CTG 513 (2) INFORMATION FOR SEQ ID NO:97: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97: CGGGCTCTGG GAGCCCAGAA GGAAGCCATC TCCCCTCCAG ATGCGGCCTC AGCTGCTCCA CTCCGAACAA TCACTGCTGA CACTTTCCGC AAACTCTTCC GAGTCTACTC CAATTTCCTC CGGGGAAAGC TGAAGCTGTA CACAGGGGAG GCCTGCAGGA CAGGGGACAG ATGAGGCGGC 240 GGCTCCCCC ACCACGCCTC ATCTGTGACA GCCGAGTCCT GGAGAGGTAC CTCTTGGAGG CCAAGGAGGC CGAGAATATC ACGACGGCT GTGCTGAACA CTGCAGCTTG AATGAGAATA 300 ATCACTGTCC CAGACACCAA AGTTAATTTC TATGCCTGGA AGAGGATGGA GGTCGGGCAG 360 CAGGCCGTAG AAGTCTGGCA GGGCCTGGCC CTGCTGTCGG AAGCTGTCCT GCGGGGCCAG GCCCTGTTGG TCAACTCTTC CCAGCCGTGG GAGCCCCTGC AGCTGCATGT GGATAAAGCC 420 480 513 GTCAGTGGCC TTCGCAGCCT CACCACTCTG CTT

- (2) INFORMATION FOR SEQ ID NO:98:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:
- GCTCTGGGAG CCCAGAAGGA AGCCATCTCC CCTCCAGATG CGGCCTCAGC TGCTCCACTC CGAACAATCA CTGCTGACAC TTTCCGCAAA CTCTTCCGAG TCTACTCCAA TTTCCTCCGG

GGAAAGCTGA AGCTGTACAC AGGGGAGGCC TGCAGGACAG GGGACAGATG AGGCGGCGGC TCCCCCCACC ACGCCTCATC TGTGACAGCC GAGTCCTGGA GAGGTACCTC TTGGAGGCCA ACGCGCCGAC ACGCCTCATC ACGGGCTGTG CTGAACACTG CAGCTTGAAT GAGAATAATC ACTGTCCCAG ACACCAAAGT TAATTTCTAT GCCTGGAAGA GGATGGAGGT CGGGCAGCAG CCGTGTGGA ACTCTTCCCA GCCGTGGGAG CCCCTGCAGC CTGTCGGA GCCTGCAGC CACTCTGCTT CGG (2) INFORMATION FOR SEQ ID NO:99: (i) SEQUENCE CHARACTERISTICS:	180 240 300 360 420 480 513
(A) LENGTH: 513 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:	
CTGGGAGCCC AGAAGGAAGC CATCTCCCCT CCAGATGCGG CCTCAGCTGC TCCACTCCGA ACAATCACTG CTGACACTTT CCGCAAACTC TTCCGAGTCT ACTCCAATTT CCTCCGGGGA AAGCTGAAGC TGTACACAGG GGAGGCCTGC AGGACAGGGG ACAGATGAGG CGCCGGCTCC CCCCACCACG CCTCATCTGT GACAGCCGAG TCCTGGAAGAG GTACCTCTTG GAGGCCAAGG AGGCCGAGAA TATCACGACG GGCTGTGCTG AACACTGCAG CTTGAATGAG AATAATCACT GTCCCAGACA CCAAAGTTAA TTTCTATGCC TGGAAGAGGA TGGAGGTCG GCAGCAGGCC GTAGAAGTCT CTTCCCAGCC GTGGGAGCCC CTGCAGCTG TCCTGCGGG CCAGGCCCTG TTGGTCAACT CTTCCCAGCC GTGGGAGCCC CTGCAGCTGC ATGTGGATAA AGCCGTCAGT GGCCTTCGCA GCCTCACCAC TCTGCTTCGG GTC	60 120 180 240 300 360 420 480 513
(2) INFORMATION FOR SEQ ID NO:100:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
GGAGCCCAGA AGGAAGCCAT CTCCCCTCCA GATGCGGCCT CAGCTGCTCC ACTCCGAACA ATCACTGCTG ACACTTTCCG CAAACTCTTC CGAGTCTACT CCAATTTCCT CCGGGGAAAG CTGAAGCTGT ACACAGGGGA GGCCTGCAGG ACAGGGGACA GATGAGGCGG CGGCTCCCCC CACCACGCCT CATCTGTGAC AGCCGAGGTC TGGAGAGGTA CCTCTTGGAG GCCAAGGAGG CCGAGAATAT CACGACCGGC TGTGCTGAAC ACTGCAGCTT GAATGAGAAT AATCACTGTC CCAGACACCA AAGTTAATTT CTATGCCTGG AAGAGGATGG AGGTCGGGCA GCAGGCCGTA GAAGTCTGGC AGGCCCTGG CCTGCTGTCG GAAGCTGTC TGCGGGGCCA GGCCCTGTTG GTCAACTCTT CCCAGCCGTG GGAGCCCCTG CAGCTGCATG TGGATAAAGC CGTCAGTGGC CTTCGCAGCC TCACCACTCT GCTTCGGGCT CTG	60 120 180 240 300 360 420 480 513
(2) INFORMATION FOR SEQ ID NO:101:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:	
GCCCAGAAGG AAGCCATCTC CCCTCCAGAT GCGGCCTCAG CTGCTCCACT CCGAACAATC ACTGCTGACA CTTTCCGCAA ACTCTTCCGA GTCTACTCCA ATTTCCTCCG GGGAAAGCTG AAGCTGTACA CAGGGGAGGC CTGCAGGACA GGGGACAGAT GAGGCGGGGG CTCCCCCCAC CAGCGCCTCAT CTGTGACAGC CGAGTCCTGG AGAGTACTC CTTGGAGGCC AAGGAGGCCG AGAATATCAC GACGGCTGT GCTGAACACT GCAGCTTGAA TGAGAATAAT CACTGTCCCA GACACCAAAG TTAATTTCTA TGCCTGGAAG ACGATGGAGG TCGGGCAGCA GGCCGTAGAA GTCTGCCAG GCCTGCAG GCCTTGCAG GCCTTCCC GGGGCCAGGC CCTGTTGGTC CGCAGCCTCA CCACTCTGCT TCGGGCTCTG GGA	60 120 180 240 300 360 420 480 513

(2) INFORMATION FOR SEQ ID NO:102:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

CAGAAGGAAG CCA	ATCTCCCC TCCAGATGCG	GCCTCAGCTG	CTCCACTCCG	AACAATCACT	60
GCTGACACTT TCC	CGCAAACT CTTCCGAGTC	TACTCCAATT	TCCTCCGGGG	AAAGCTGAAG	120
CTGTACACAG GGO	GAGGCCTG CAGGACAGGG	GACAGATGAG	GCGGCGGCTC	CCCCCACCAC	180
GCCTCATCTG TGA	ACAGCCGA GTCCTGGAGA	. GGTACCTCTT	GGAGGCCAAG	GAGGCCGAGA	240
ATATCACGAC GGG	GCTGTGCT GAACACTGCA	GCTTGAATGA	GAATAATCAC	TGTCCCAGAC	300
ACCAAAGTTA AT	TTCTATGC CTGGAAGAGG	ATGGAGGTCG	GGCAGCAGGC	CGTAGAAGTC	360
TGGCAGGGCC TGG	GCCCTGCT GTCGGAAGCT	GTCCTGCGGG	GCCAGGCCCT	GTTGGTCAAC	420
TCTTCCCAGC CG	TGGGAGCC CCTGCAGCTC	CATGTGGATA	AAGCCGTCAG	TGGCCTTCGC	480
AGCCTCACCA CT	CTGCTTCG GGCTCTGGGA	GCC			513

(2) INFORMATION FOR SEQ ID NO:103:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

AAGGAAGCCA TCT	CCCCTCC AGATGCGGC	TCAGCTGCTC	CACTCCGAAC	AATCACTGCT	60
GACACTTTCC GCA	AACTCTT CCGAGTCTAG	TCCAATTTCC	TCCGGGGAAA	GCTGAAGCTG	120
TACACAGGGG AGG	CCTGCAG GACAGGGGA	AGATGAGGCG	GCGGCTCCCC	CCACCACGCC	180
TCATCTGTGA CAG	CCGAGTC CTGGAGAGGT	ACCTCTTGGA	GGCCAAGGAG	GCCGAGAATA	240
TCACGACGGG CTG	TGCTGAA CACTGCAGCT	TGAATGAGAA	TAATCACTGT	CCCAGACACC	300
	ATGCCTG GAAGAGGATO				360
CAGGGCCTGG CCC	TGCTGTC GGAAGCTGT	CTGCGGGGCC	AGGCCCTGTT	GGTCAACTCT	420
	AGCCCCT GCAGCTGCAT		CCGTCAGTGG	CCTTCGCAGC	480
CTCACCACTC TGC	TTCGGGC TCTGGGAGC	C CAG			513

(2) INFORMATION FOR SEQ ID NO:104:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

GAAGCCATCT	CCCCTCCAGA	TGCGGCCTCA	GCTGCTCCAC	TCCGAACAAT	CACTGCTGAC	60
ACTTTCCGCA	AACTCTTCCG	AGTCTACTCC	AATTTCCTCC	GGGGAAAGCT	GAAGCTGTAC	120
ACAGGGGAGG	CCTGCAGGAC	AGGGGACAGA	TGAGGCGGCG	GCTCCCCCCA	CCACGCCTCA	180
TCTGTGACAG	CCGAGTCCTG	GAGAGGTACC	TCTTGGAGGC	CAAGGAGGCC	GAGAATATCA	240
CGACGGGCTG	TGCTGAACAC	TGCAGCTTGA	ATGAGAATAA	TCACTGTCCC	AGACACCAAA	300
GTTAATTTCT	ATGCCTGGAA	GAGGATGGAG	GTCGGGCAGC	AGGCCGTAGA	AGTCTGGCAG	360
	TGCTGTCGGA					420
CAGCCGTGGG	AGCCCCTGCA	GCTGCATGTG	GATAAAGCCG	TCAGTGGCCT	TCGCAGCCTC	480
ACCACTCTGC	TTCGGGCTCT	GGGAGCCCAG	AAG			513

(2) INFORMATION FOR SEQ ID NO:105:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

TTCCGCAAAC GGGGAGGCCT GTGACAGCCG CGGGCTGTGC AATTTCTATG CTGGCCCTGC	TCTTCCGAGT GCAGGACAGG AGTCCTGGAG TGAACACTGC CCTGGAAGAG TGTCGGAAGC	GGCCTCAGCT CTACTCCAAT GGACAGATGA AGGTACCTCT AGCTTGAATG GATGGAGGTC TGTCCTGCGG	TTCCTCCGGG GGCGCGGCT TGGAGGCCAA AGAATAATCA GGGCAGCAGG GGCCAGGCCC	GAAAGCTGAA CCCCCCACCA GGAGGCCGAG CTGTCCCAGA CCGTAGAAGT TGTTGGTCAA	GCTGTACACA CGCCTCATCT AATATCACGA CACCAAAGTT CTGGCAGGGC CTCTTCCCAG	60 120 180 240 300 360 420
CCGTGGGAGC	CCCTGCAGCT	TGTCCTGCGG GCATGTGGAT AGCCCAGAAG	AAAGCCGTCA			420 480 513

(2) INFORMATION FOR SEQ ID NO:106:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

(2) INFORMATION FOR SEQ ID NO:107:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

TCCCCTCCAG ATGCGGCCTC	AGCTGCTCCA	CTCCGAACAA	TCACTGCTGA	CACTTTCCGC	60
AAACTCTTCC GAGTCTACTC	CAATTTCCTC	CGGGGAAAGC	TGAAGCTGTA	CACAGGGGAG	120
GCCTGCAGGA CAGGGGACAG	ATGAGGCGGC	GGCTCCCCCC	ACCACGCCTC	ATCTGTGACA	180
GCCGAGTCCT GGAGAGGTAC	CTCTTGGAGG	CCAAGGAGGC	CGAGAATATC	ACGACGGGCT	240
GTGCTGAACA CTGCAGCTTG	AATGAGAATA	ATCACTGTCC	CAGACACCAA	AGTTAATTTC	300
TATGCCTGGA AGAGGATGGA					360
CTGCTGTCGG AAGCTGTCCT					420
GAGCCCCTGC AGCTGCATGT	GGATAAAGCC	GTCAGTGGCC	TTCGCAGCCT	CACCACTCTG	480
CTTCGGGCTC TGGGAGCCCA	GAAGGAAGCC	ATC			513

- (2) INFORMATION FOR SEQ ID NO:108:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

CCTCCAGATG	CGGCCTCAGC	TGCTCCACTC	CGAACAATCA	CTGCTGACAC	TTTCCGCAAA	60
CTCTTCCGAG	TCTACTCCAA	TTTCCTCCGG	GGAAAGCTGA	AGCTGTACAC	AGGGGAGGCC	120
TGCAGGACAG	GGGACAGATG	AGGCGGCGGC	TCCCCCCACC	ACGCCTCATC	TGTGACAGCC	180
GAGTCCTGGA	GAGGTACCTC	TTGGAGGCCA	AGGAGGCCGA	GAATATCACG	ACGGGCTGTG	240
CTGAACACTG	CAGCTTGAAT	GAGAATAATC	ACTGTCCCAG	ACACCAAAGT	TAATTTCTAT	300
GCCTGGAAGA	GGATGGAGGT	CGGGCAGCAG	GCCGTAGAAG	TCTGGCAGGG	CCTGGCCCTG	360
CTGTCGGAAG	CTGTCCTGCG	GGGCCAGGCC	CTGTTGGTCA	ACTCTTCCCA	GCCGTGGGAG	420
CCCCTGCAGC	TGCATGTGGA	TAAAGCCGTC	AGTGGCCTTC	GCAGCCTCAC	CACTCTGCTT	480
		GGAAGCCATC				513

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

CCAGATGCGG	CCTCAGCTGC	TCCACTCCGA	ACAATCACTG	CTGACACTTT	CCGCAAACTC	60
ጥጥር CGAGጥርጥ	ACTCCAATTT	CCTCCGGGGA	AAGCTGAAGC	TGTACACAGG	GGAGGCCTGC	120

AGGACAGGGG ACAGATGAGG CGGCGGCTCC CCCCACCACG CCTCATCTGT GACAGCCGAG TCCTGGAGAG GTACCTCTTG GAGGCCAAGG AGGCCGAGAA TATCACGACG GGCTGTGCTG AACACTGCAG CTTGAATGAG AATAATCACT GTCCCAGACA CCAAAGTTAA TTTCTATGCC TGGAAGAGGA TGGAGGTCGG GCAGGCCCTG GTAGAAGTCT GGCAGGGCCT GGCCCTGCTG CTGCAGCTGC ATGTGGATAA AGCCGTCAGT GGCCTTCGCA GCCTCACCAC TCTGCTCGG GCTCTGGGAG CCCAGAAGGA AGCCATCTCC CCT (2) INFORMATION FOR SEQ ID NO:110:	180 240 300 360 420 480 513
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:	
GATGCGGCCT CAGCTGCTCC ACTCCGAACA ATCACTGCTG ACACTTTCCG CAAACTCTTC CGAGTCTACT CCAATTTCCT CCGGGGAAAG CTGAAGCTGT ACACAGGGGA GGCCTGCAGG ACAGGGGACA GATGAGGCGG CGGCTCCCC CACCACGCCT CATCTGTGAC AGCCGAGTCC TGGAGAGGTA CCTCTTGGAG GCCAAGGAGG CCGAGAATAT CACGACGGG TGTGCTGAAC ACTGCAGCTT GAATGAGAAT AATCACTGTC CCAGACACCA AAGTTAATTT CTATGCCTGG GAAGCTGTCC TGCGGGGCA GCCCTGTTG GTCAACTCTT CCCAGCCGTG CGTGCTGTCG CAGCTGCATG TGGATAAAGC CGTCAGTGGC CTTCGCAGCC TCACCACTCT GCTTCGGGCT CTGGGAGCCC AGAAGGAAGC CATCTCCCCT CCCA	60 120 180 240 300 360 420 480 513
(2) INFORMATION FOR SEQ ID NO:111:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
GCGGCCTCAG CTGCTCCACT CCGAACAATC ACTGCTGACA CTTTCCGCAA ACTCTTCCGA GTCTACTCCA ATTTCCTCCG GGGAAAGCTG AAGCTGTACA CAGGGGAGGC CTGCAGGACA GGGGACAGAT GAGGCGGCGG CTCCCCCAC CACGCCTCAT CTGTGACAGC CGAGTCCTGG AGAGGTACCT CTTGGAGGCC AAGGAGGCCG AGAATATCAC GACGGCTGT GCTGAACACT GCAGCTTGAA TGAGAATAAT CACTGTCCCA GACACCAAAG TTAATTTCTA TGCCTGGAAG AGGATGGAGG TCGGGCAGCA GGCCGTAGAA GTCTGGCAGG GCCTGGCCCT GCTGTCGGAA GCTGTCCTGC GGGGCCAGGC CCTGTTGGTC AACTCTTCCC AGCCGTGGA GCCCCTGCAG CTGCATGTGG ATAAAGCCGT CAGTGGCCTT CGCAGCCTCA CCACTCTGCT TCGGGCTCTG GGAGCCCAGA AGGAAGCCAT CTCCCCTCCA GAT	60 120 180 240 300 360 420 480 513
(2) INFORMATION FOR SEQ ID NO:112:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
GCCTCAGCTG CTCCACTCCG AACAATCACT GCTGACACTT TCCGCAAACT CTTCCGAGTC TACTCCAATT TCCTCCGGG AAAGCTGAAG CTGTACACAG GGGAGGCCTG CAGGACAGGG GACAGATGAG GCGGCGCTC CCCCCACCAC GCCTCATCTG TGACAGCCGA GTCCTGGAGA GCTTGAATGA GAATAATCAC TGTCCCAGAC ACCAAAGTTA ATTTCTATGC CTGGAAGAGG GTCCTGCGGG GCCAGGCCCT GTTGGTCAAC TCTTCCCAGC CGTGGGAGCC TGCCCTGCTG CATGTGGATA AAGCCGTCAG TGGCCTTCGC AGCCTCACCA CTCTGCAGCC CCTGCAGCTG CATGTGGATA AAGCCGTCAG TGGCCTTCGC AGCCTCACCA CTCTGCTTCG GGCTCTGGGA GCCCCAGAAGG AAGCCATCTC CCCTCCAGAT GCG	60 120 180 240 300 360 420 480 513

(2) INFORMATION FOR SEQ ID NO:113:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

TCAGCTGCTC	CACTCCGAAC	AATCACTGCT	GACACTTTCC	GCAAACTCTT	CCGAGTCTAC	60
TCCAATTTCC	TCCGGGGAAA	GCTGAAGCTG	TACACAGGGG	AGGCCTGCAG	GACAGGGGAC	120
AGATGAGGCG	GCGGCTCCCC	CCACCACGCC	TCATCTGTGA	CAGCCGAGTC	CTGGAGAGGT	180
ACCTCTTGGA	GGCCAAGGAG	GCCGAGAATA	TCACGACGGG	CTGTGCTGAA	CACTGCAGCT	240
TGAATGAGAA	TAATCACTGT	CCCAGACACC	AAAGTTAATT	TCTATGCCTG	GAAGAGGATG	300
GAGGTCGGGC	AGCAGGCCGT	AGAAGTCTGG	CAGGGCCTGG	CCCTGCTGTC	GGAAGCTGTC	360
CTGCGGGGCC	AGGCCCTGTT	GGTCAACTCT	TCCCAGCCGT	GGGAGCCCCT	GCAGCTGCAT	420
GTGGATAAAG	CCGTCAGTGG	CCTTCGCAGC	CTCACCACTC	TGCTTCGGGC	TCTGGGAGCC	480
CAGAAGGAAG	CCATCTCCCC	TCCAGATGCG	GCC			513

(2) INFORMATION FOR SEQ ID NO:114:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

GCTGCTCCAC	TCCGAACAAT	CACTGCTGAC	ACTTTCCGCA	AACTCTTCCG	AGTCTACTCC	60
AATTTCCTCC	GGGGAAAGCT	GAAGCTGTAC	ACAGGGGAGG	CCTGCAGGAC	AGGGGACAGA	120
TGAGGCGGCG	GCTCCCCCCA	CCACGCCTCA	TCTGTGACAG	CCGAGTCCTG	GAGAGGTACC	180
TCTTGGAGGC	CAAGGAGGCC	GAGAATATCA	CGACGGGCTG	TGCTGAACAC	TGCAGCTTGA	240
ATGAGAATAA	TCACTGTCCC	AGACACCAAA	GTTAATTTCT	ATGCCTGGAA	GAGGATGGAG	300
GTCGGGCAGC	AGGCCGTAGA	AGTCTGGCAG	GGCCTGGCCC	TGCTGTCGGA	AGCTGTCCTG	360
CGGGGCCAGG	CCCTGTTGGT	CAACTCTTCC	CAGCCGTGGG	AGCCCCTGCA	GCTGCATGTG	420
GATAAAGCCG	TCAGTGGCCT	TCGCAGCCTC	ACCACTCTGC	TTCGGGCTCT	GGGAGCCCAG	480
AAGGAAGCCA	TCTCCCCTCC	AGATGCGGCC	TCA			513

(2) INFORMATION FOR SEQ ID NO:115:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 513 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

GCTCCACTCC	GAACAATCAC	TGCTGACACT	TTCCGCAAAC	TCTTCCGAGT	CTACTCCAAT	60
TTCCTCCGGG	GAAAGCTGAA	GCTGTACACA	GGGGAGGCCT	GCAGGACAGG	GGACAGATGA	120
GGCGGCGGCT	CCCCCCACCA	CGCCTCATCT	GTGACAGCCG	AGTCCTGGAG	AGGTACCTCT	180
TGGAGGCCAA	GGAGGCCGAG	AATATCACGA	CGGGCTGTGC	TGAACACTGC	AGCTTGAATG	240
AGAATAATCA	CTGTCCCAGA	CACCAAAGTT	AATTTCTATG	CCTGGAAGAG	GATGGAGGTC	300
GGGCAGCAGG	CCGTAGAAGT	CTGGCAGGGC	CTGGCCCTGC	TGTCGGAAGC	TGTCCTGCGG	360
GGCCAGGCCC	TGTTGGTCAA	CTCTTCCCAG	CCGTGGGAGC	CCCTGCAGCT	GCATGTGGAT	420
AAAGCCGTCA	GTGGCCTTCG	CAGCCTCACC	ACTCTGCTTC	GGGCTCTGGG	AGCCCAGAAG	480
GAAGCCATCT	CCCCTCCAGA	TGCGGCCTCA	GCT			513

(2) INFORMATION FOR SEQ ID NO:116:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

CCACTCCGAA	CAATCACTGC	TGACACTTTC	CGCAAACTCT	TCCGAGTCTA	CTCCAATTTC	60
CTCCGGGGAA	AGCTGAAGCT	GTACACAGGG	GAGGCCTGCA	GGACAGGGGA	CAGATGAGGC	120
GGCGGCTCCC	CCCACCACGC	CTCATCTGTG	ACAGCCGAGT	CCTGGAGAGG	TACCTCTTGG	180
AGGCCAAGGA	GGCCGAGAAT	ATCACGACGG	GCTGTGCTGA	ACACTGCAGC	TTGAATGAGA	240
ATAATCACTG	TCCCAGACAC	CAAAGTTAAT	TTCTATGCCT	GGAAGAGGAT	GGAGGTCGGG	300
CAGCAGGCCG	TAGAAGTCTG	GCAGGGCCTG	GCCCTGCTGT	CGGAAGCTGT	CCTGCGGGGC	360
CAGGCCCTGT	TGGTCAACTC	TTCCCAGCCG	TGGGAGCCCC	TGCAGCTGCA	TGTGGATAAA	420
GCCGTCAGTG	GCCTTCGCAG	CCTCACCACT	CTGCTTCGGG	CTCTGGGAGC	CCAGAAGGAA	480
GCCATCTCCC	CTCCAGATGC	GGCCTCAGCT	GCT			513

(2) INFORMATION FOR SEQ ID NO:117:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117: CTCCGAACAA TCACTGCTGA CACTTTCCGC AAACTCTTCC GAGTCTACTC CAATTTCCTC CGGGGAAAGC TGAAGCTGTA CACAGGGGAG GCCTGCAGGA CAGGGGACAG ATGAGGCGGC 120 GGCTCCCCC ACCACGCCTC ATCTGTGACA GCCGAGTCCT GGAGAGGTAC CTCTTGGAGG 180 CCAAGGAGGC CGAGAATATC ACGACGGCT GTGCTGAACA CTGCAGCTTG AATGAGAATA ATCACTGTCC CAGACACCAA AGTTAATTTC TATGCCTGGA AGAGGATGGA GGTCGGGCAG 240 300 CAGGCCGTAG AAGTCTGGCA GGGCCTGGCC CTGCTGTCGG AAGCTGTCCT GCGGGGCCAG 360 GCCCTGTTGG TCAACTCTTC CCAGCCGTGG GAGCCCCTGC AGCTGCATGT GGATAAAGCC GTCAGTGGCC TTCGCAGCCT CACCACTCTG CTTCGGGCCTC TGGGAGCCCA GAAGGAAGCC 420 480 ATCTCCCCTC CAGATGCGGC CTCAGCTGCT CCA 513 (2) INFORMATION FOR SEQ ID NO:118: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118: CGAACAATCA CTGCTGACAC TTTCCGCAAA CTCTTCCGAG TCTACTCCAA TTTCCTCCGG GGAAAGCTGA AGCTGTACAC AGGGGAGGCC TGCAGGACAG GGGACAGATG AGGCGGCGGC 60 120 TCCCCCCACC ACGCCTCATC TGTGACAGCC GAGTCCTGGA GAGGTACCTC TTGGAGGCCA 180 AGGAGGCCGA GAATATCACG ACGGGCTGTG CTGAACACTG CAGCTTGAAT GAGAATAATC 240 ACTGTCCCAG ACACCAAAGT TAATTTCTAT GCCTGGAAGA GGATGGAGGT CGGGCAGCAG 300 GCCGTAGAAG TCTGGCAGGG CCTGGCCCTG CTGTCGGAAG CTGTCCTGCG GGGCCAGGCC CTGTTGGTCA ACTCTTCCCA GCCGTGGGAG CCCCTGCAGC TGCATGTGGA TAAAGCCGTC 360 420 AGTGGCCTTC GCAGCCTCAC CACTCTGCTT CGGGCTCTGG GAGCCCAGAA GGAAGCCATC 480 TCCCCTCCAG ATGCGGCCTC AGCTGCTCCA CTC 513 (2) INFORMATION FOR SEQ ID NO:119: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 513 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119: ACAATCACTG CTGACACTTT CCGCAAACTC TTCCGAGTCT ACTCCAATTT CCTCCGGGGA AAGCTGAAGC TGTACACAGG GGAGGCCTGC AGGACAGGGG ACAGATGAGG CGGCGGCTCC CCCCACCACG CCTCATCTGT GACAGCCGAG TCCTGGAGAG GTACCTCTTG GAGGCCAAGG 120 180 AGGCCGAGAA TATCACGACG GGCTGTGCTG AACACTGCAG CTTGAATGAG AATAATCACT 240 GTCCCAGACA CCAAAGTTAA TTTCTATGCC TGGAAGAGGA TGGAGGTCGG GCAGCAGGCC GTAGAAGTCT GGCAGGGCCT GGCCCTGCTG TCGGAAGCTG TCCTGCGGGG CCAGGCCCTG 300 360 TTGGTCAACT CTTCCCAGCC GTGGGAGCCC CTGCAGCTGC ATGTGGATAA AGCCGTCAGT GGCCTTCGCA GCCTCACCAC TCTGCTTCGG GCTCTGGGAG CCCAGAAGGA AGCCATCTCC CCTCCAGATG CGGCCTCAGC TGCTCCACTC CGA 420 480 513 (2) INFORMATION FOR SEQ ID NO:120: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 501 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120: GCCCCACCAC GCCTCATCTG TGACAGCCGA GTCCTGGAGA GGTACCTCTT GGAGGCCAAG 60 GAGGCCGAGA ATATCACGAC GGGCTGTGCT GAACACTGCA GCTTGAATGA GAATATCACT 120

GTCCCAGACA	CCAAAGTTAA	TTTCTATGCC	TGGAAGAGGA	TGGAGGTCGG	GCAGCAGGCC	180
GTAGAAGTCT	GGCAGGGCCT	GGCCCTGCTG	TCGGAAGCTG	TCCTGCGGGG	CCAGGCCCTG	240
TTGGTCAACT	CTTCCCAGCC	GTGGGAGCCC	CTGCAGCTGC	ATGTGGATAA	AGCCGTCAGT	300
			GCTCTGGGAG			360
			CGAACAATCA			420
CTCTTCCGAG	TCTACTCCAA	TTTCCTCCGG	GGAAAGCTGA	AGCTGTACAC	AGGGGAGGCC	480
TGCAGGACAG	GGGACAGATG	A				501

(2) INFORMATION FOR SEQ ID NO:121:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu 1 5 10 15 10 Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His 20 25 30 Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 40 Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp 55 Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu 75 70 Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 85 90 95 Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu 100 105 110Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala 115 120 125 115 Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 145 150 150 Cys Arg Thr Gly Asp Arg

(2) INFORMATION FOR SEQ ID NO:122:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser 25 Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro 35 40 Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg 50 60 Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile 70 75 Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala 85 90 95 Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly 100 105 Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly
115
120
125 120 115 Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu 140 135 130 Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys 150 Ala Glu His Cys Ser Leu Asn Glu Asn Ile 165

(2) INFORMATION FOR SEQ ID NO:123:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Gly Gly Gly Ser

- (2) INFORMATION FOR SEQ ID NO:124:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Gly Gly Gly Ser Gly Gly Ser

- (2) INFORMATION FOR SEQ ID NO:125:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

Gly Gly Gly Ser Gly Gly Ser Gly Gly Ser 1 0 0

- (2) INFORMATION FOR SEQ ID NO:126:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

Ser Gly Gly Ser Gly Gly Ser

- (2) INFORMATION FOR SEQ ID NO:127:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Glu Phe Gly Asn Met

- (2) INFORMATION FOR SEQ ID NO:128:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: None	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
Glu Phe Gly Gly Asn Met 1 5	
(2) INFORMATION FOR SEQ ID NO:129:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 9 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: None	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:	
Glu Phe Gly Gly Asn Gly Gly Asn Met 1 5	
(2) INFORMATION FOR SEQ ID NO:130:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 7 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: None	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:	
Gly Gly Ser Asp Met Ala Gly 1 5	
(2) INFORMATION FOR SEQ ID NO:131:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:	
GCGCGCCCAT GGACAATCAC TGCTGAC 2	7
(2) INFORMATION FOR SEQ ID NO:132:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 15 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:	
TCTGTCCCCT GTCCT 1	5
(2) INFORMATION FOR SEQ ID NO:133:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 43 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
GCGCGCAAGC TTATTATCGG AGTGGAGCAG CTGAGGCCGC ATC	43
(2) INFORMATION FOR SEQ ID NO:134:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
GCCCCACCAC GCCTCATCTG T	21

5

WHAT IS CLAIMED IS:

- 1. A human EPO receptor agonist polypeptide, comprising a modified EPO amino acid sequence of the Formula:
- AlaProProArgLeuIleCysAspSerArgValLeuGluArgTyrLeuLeuGluAlaLys
 10 20
- 10 GluAlaGluAsnIleThrThrGlyCysAlaGluHisCysSerLeuAsnGluAsnIleThr 30 40
 - ValProAspThrLysValAsnPheTyrAlaTrpLysArgMetGluValGlyGlnGlnAla
 50 60
- 15
 ValGluValTrpGlnGlyLeuAlaLeuLeuSerGluAlaValLeuArgGlyGlnAlaLeu
 70 80
- LeuValAsnSerSerGlnProTrpGluProLeuGlnLeuHisValAspLysAlaValSer 20 90 100
 - GlyLeuArgSerLeuThrThrLeuLeuArgAlaLeuGlyAlaGlnLysGluAlaIleSer 110 120
- ProProAspAlaAlaSerAlaAlaProLeuArgThrIleThrAlaAspThrPheArgLys
 130 140
 - LeuPheArgValTyrSerAsnPheLeuArgGlyLysLeuLysLeuTyrThrGlyGluAla 150 160
- 30 CysArgThrGlyAspArg SEQ ID NO:121
- wherein optionally 1-6 amino acids from the Nterminus and 1-5 from the C-terminus can be deleted from said EPO receptor agonist polypeptide;
- wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;

23-24	48-49	111-112
24-25	50-51	112-113
25-26	51-52	113-114
26-27	52-53	114-115
27-28	53-54	115-116
28-29	54-55°	116-117
29-30	55-56	117-118
30-31	56-57	118-119

5

31-32	57-58	119-120
32-33	77-78	120-121
33-34	78-79	121-122
34-35	79-80	122-123
35-36	80-81	123-124
36-37	81-82	124-125
37-38	82-83	125-126
38-39	84-85	126-127
40-41	85-86	127-128
41-42	86-87	128-129
43-44	87-88	129-130
44-45	88-89	130-131
45-46	108-109	131-132
46-47	109-110	respectively; and
47-48	110-111	_

said EPO receptor agonist polypeptide may optionally be immediately preceded by (methionine⁻¹), (alanine⁻¹) or (methionine⁻², alanine⁻¹).

2. The EPO receptor agonist polypeptide, as recited in claim 1, wherein said linker is selected from the group consisting of;

GlyGlyGlySer SEQ ID NO:123;
GlyGlyGlySerGlyGlyGlySer SEQ ID NO:124;
GlyGlyGlySerGlyGlyGlySerGlyGlyGlySer SEQ ID
NO:125;

SerGlyGlySerGlyGlySer SEQ ID NO:126;

GluPheGlyAsnMet SEQ ID NO:127;

GluPheGlyGlyAsnMet SEQ ID NO:128;

GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:129; and

GlyGlySerAspMetAlaGly SEQ ID NO:130.

3. The EPO receptor agonist polypeptide of claim 1 selected from the group consisting of;

SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID NO:4; SEQ ID NO:5; SEQ ID NO:6; SEQ ID NO:7;

SEQ ID NO:8; SEQ ID NO:9; SEQ ID NO:10; SEQ ID NO:11; SEQ ID NO:12; SEQ ID NO:13; SEQ ID NO:14; SEQ ID NO:15; SEQ ID NO:16; SEQ ID NO:17; SEQ ID NO:18; SEQ ID NO:19; SEQ ID NO:20; SEQ ID NO:21; SEQ ID NO:22; SEQ ID NO:23; SEQ ID NO:24; SEQ ID NO:25; SEQ ID

```
NO:26; SEQ ID NO:27; SEQ ID NO:28; SEQ ID NO:29; SEQ ID NO:30; SEQ ID NO:31; SEQ ID NO:32; SEQ ID NO:33; SEQ ID NO:34; SEQ ID NO:35; SEQ ID NO:36; SEQ ID NO:37; SEQ ID NO:38; SEQ ID NO:39; SEQ ID NO:40; SEQ ID NO:41; SEQ ID NO:42; SEQ ID NO:43; SEQ ID NO:44; SEQ ID NO:45; SEQ ID NO:46; SEQ ID NO:47; SEQ ID NO:48; SEQ ID NO:49; SEQ ID NO:50; SEQ ID NO:51; SEQ ID NO:52; SEQ ID NO:56; SEQ ID NO:57; SEQ ID NO:55; SEQ ID NO:56; SEQ ID NO:57; SEQ ID NO:58; SEQ ID NO:59 and SEQ ID NO:122.
```

4. The EPO receptor agonist polypeptide of

15 claim 3 wherein the linker sequence (GlyGlyGlyGlySer

SEQ ID NO:123) is replaced by a linker sequence

selected from the group consisting of;

GlyGlyGlySerGlyGlySer SEQ ID NO:124; 20 GlyGlyGlySerGlyGlyGlySerGlyGlySer SEQ ID NO:125;

> SerGlyGlySerGlyGlySer SEQ ID NO:126; GluPheGlyAsnMet SEQ ID NO:127; GluPheGlyGlyAsnMet SEQ ID NO:128; GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:129; and GlyGlySerAspMetAlaGly SEQ ID NO:130.

- 5. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 1.
 - 6. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 2.

35

- 7. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 3.
- 8. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 3 selected from the group consisting of;

```
SEQ ID NO:60; SEQ ID NO:61; SEQ ID NO:62; SEQ
            ID NO:63; SEQ ID NO:64; SEQ ID NO:65; SEQ ID
10
            NO:66; SEQ ID NO:67; SEQ ID NO:68; SEQ ID
            NO:69; SEQ ID NO:70; SEQ ID NO:71; SEQ ID
            NO:72; SEQ ID NO:73; SEQ ID NO:74; SEQ ID
            NO:75; SEQ ID NO:76; SEQ ID NO:77; SEQ ID
            NO:78; SEQ ID NO:79; SEQ ID NO:80; SEQ ID
15
            NO:81; SEQ ID NO:82; SEQ ID NO:83; SEQ ID
            NO:84; SEQ ID NO:85; SEQ ID NO:86; SEQ ID
            NO:87; SEQ ID NO:88; SEQ ID NO:89; SEQ ID
            NO:90; SEQ ID NO:91; SEQ ID NO:92; SEQ ID
            NO:93; SEQ ID NO:94; SEQ ID NO:95; SEQ ID
20
            NO:96; SEQ ID NO:97; SEQ ID NO:98; SEQ ID
            NO:99; SEQ ID NO:100; SEQ ID NO:101; SEQ ID
            NO:102; SEQ ID NO:103; SEQ ID NO:104; SEQ ID
            NO:105; SEQ ID NO:106; SEQ ID NO:107; SEQ ID
            NO:108; SEQ ID NO:109; SEQ ID NO:110; SEQ ID
25
            NO:111; SEQ ID NO:112; SEQ ID NO:113; SEQ ID
            NO:114; SEQ ID NO:115; SEQ ID NO:116; SEQ ID
            NO:117; SEQ ID NO:118 and SEQ ID NO:119.
```

- 9. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 4.
- 10. A method of producing a EPO receptor agonist polypeptide comprising: growing under suitable nutrient conditions, a host cell transformed or transfected with a replicable vector comprising said nucleic acid molecule of claim 5, 6, 7, 8 or 9

in a manner allowing expression of said EPO receptor agonist polypeptide and recovering said EPO receptor agonist polypeptide.

- 11. A composition comprising; a EPO receptor agonist polypeptide according to claim 1, 2, 3 or 4; and a pharmaceutically acceptable carrier.
- 12. A composition comprising; a EPO receptor 10 agonist polypeptide according to claim 1, 2, 3 or 4; a factor; and a pharmaceutically acceptable carrier.
- 13. The composition of claim 12 wherein said factor is selected from the group consisting of: GM15 CSF, G-CSF, c-mpl ligand, M-CSF, IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL12, IL-13, IL-15, LIF, flt3/flk2 ligand, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem
 20 cell factor, IL-3 variants, fusion proteins, G-CSF receptor agonists, c-mpl receptor agonists, IL-3 receptor agonists, multi-functional receptor agonists.
- 14. A method of stimulating the production of hematopoietic cells in a patient comprising the step of; administering a EPO receptor agonist polypeptide of claim 1, 2, 3 or 4, to said patent.
- 15. A method for selective ex vivo expansion of erythroid progenitors, comprising the steps of;
 - (a) culturing erythroid progenitor cells in a culture medium, comprising; a polypeptide of claim 1, 2, 3 or 4; and
- 35 (b) harvesting said cultured cells.

- 16. A method for selective ex vivo expansion of erythroid progenitors, comprising the steps of;
- (a) separating erythroid progenitor cells from other cells;
- (b) culturing said separated erythroid progenitor cells with a selected culture medium comprising a polypeptide of claim 1, 2, 3 or 4; and
 - (c) harvesting said cultured cells.
- 17. A method for treatment of a patient having a hematopoietic disorder, comprising the steps of;
 - (a) removing erythroid progenitor cells;
 - (b) culturing said erythroid progenitor cells in a culture medium, comprising; a polypeptide of claim 1, 2, 3 or 4;
 - (c) harvesting said cultured cells; and
 - (d) transplanting said cultured cells into said patient.
- 20 18. A method for treatment of a patient having a hematopoietic disorder, comprising the steps of;
 - (a) removing erythroid progenitor cells;
 - (b) separating erythroid progenitor cells from other cells;
- (c) culturing said separated erythroid progenitor cells with a selected culture medium comprising a polypeptide of claim 1, 2, 3 or 4;
 - (d) harvesting said cultured cells; and
- (e) transplanting said cultured cells into said 30 patient.
 - 19. A method of claim 15 wherein said erythroid progenitor cells are isolated from peripheral blood.
- 20. A method of claim 16 wherein said erythroid progenitor cells are isolated from peripheral blood.

- 21. A method of claim 17 wherein said erythroid progenitor cells are isolated from peripheral blood.
- 22. A method of claim 18 wherein said erythroid progenitor cells are isolated from peripheral blood.

Sequence Rearranged Protein New C N New N **Native Protein**

Key

''''''''' Linker

Figure 2.

Figure 3.

I. Construct tandemly-duplicated template

II. PCR-amplify tandemly-duplicated template

Figure 4.

-	GCCCCACCACGCCTCATCTGTGACAGCCGAGTCCTGGAGAGGTACCTCTTGGAGGCCAAG	C 0	
1	CGGGGTGGTGCGGAGTAGACACTGTCGGCTCAGGACCTCTCCATGGAGAACCTCCGGTTC AlaProProArgLeuIleCysAspSerArgValLeuGluArgTyrLeuLeuGluAlaLys	TCACT+ 120 AGTGA leThr AGGCC+ 180 TCCGG lnAla CCCTG+ 240 GGGAC laLeu TCAGT+ 300 AGTCA alSer TCTCC+ 360 AGAGG leSer GCAAA+ 420 CGTTT rgLys AGGCC+ 480 TCCGG	
	GAGGCCGAGAATATCACGACGGGCTGTGCTGAACACTGCAGCTTGAATGAGAATATCACT		
91	CTCCGGCTCTTATAGTGCTGCCCGACACGACTTGTGACGTCGAACTTACTCTTATAGTGA GluAlaGluAsnIleThrThrGlyCysAlaGluHisCysSerLeuAsnGluAsnIleThr	120	
	GTCCCAGACACCAAAGTTAATTTCTATGCCTGGAAGAGGATGGAGGTCGGGCAGCAGGCC		
121	CAGGGTCTGTGGTTTCAATTAAAGATACGGACCTTCTCCTACCTCCAGCCCGTCGTCCGGValProAspThrLysValAsnPheTyrAlaTrpLysArgMetGluValGlyGlnGlnAla	180	
101	GTAGAAGTCTGGCAGGGCCTGGCCCTGCTGTCGGAAGCTGTCCTGCGGGGCCAGGCCCTG	240	
181	CATCTTCAGACCGTCCCGGACCGGACGACAGCCTTCGACAGGACGCCCCGGTCCGGGAC ValGluValTrpGlnGlyLeuAlaLeuLeuSerGluAlaValLeuArgGlyGlnAlaLeu	GACCTCTCCATGAGAGAACCTCCGGTTC LeuGluArgTyrLeuLeuGluAlaLys CACTGCAGCTTGAATGAGAATATCACT++ GTGACGTCGAACTTACTCTTATAGTGA HisCysSerLeuAsnGluAsnIleThr AAGAGGATGAGGTCGGGCAGCCC++ TTCTCCTACCTCCAGCCCGTCGTCCGG LysArgMetGluValGlyGlnGlnAla GAAGCTGTCCTGCGGGGCCAGGCCTG++ CTTCGACAGGACGCCCGGTCCGGGAC GluAlaValLeuArgGlyGlnAlaLeu CAGCTGCATGTGGATAAAGCCGTCAGT++ GTCGACGTACACCTATTTCGGCAGTCA GlnLeuHisValAspLysAlaValSer CTGGGAGCCCAGAAAGGAAGCATCTCC	240
241	TTGGTCAACTCTTCCCAGCCGTGGGAGCCCCTGCAGCTGCATGTGGATAAAGCCGTCAGT	200	
241	AACCAGTTGAGAAGGGTCGGCACCCTCGGGGACGTCGACGTACACCTATTTCGGCAGTCA LeuValAsnSerSerGlnProTrpGluProLeuGlnLeuHisValAspLysAlaValSer		
201	GGCCTTCGCAGCCTCACCACTCTGCTTCGGGCTCTGGGAGCCCAGAAGGAAG	260	
3 U I	CCGGAAGCGTCGGAGTGGTGAGACGAAGCCCGAGACCCTCGGGTCTTCCTTC	360	
261	CCTCCAGATGCGGCCTCAGCTGCTCCACTCCGAACAATCACTGCTGACACTTTCCGCAAA	420	
301	GGAGGTCTACGCCGGAGTCGACGAGGTGAGGCTTGTTAGTGACGACTGTGAAAGGCGTTTProProAspAlaAlaSerAlaAlaProLeuArgThrIleThrAlaAspThrPheArgLys	420	
421	CTCTTCCGAGTCTACTCCAATTTCCTCCGGGGAAAGCTGAAGCTGTACACAGGGGAGGCC	480	
#21	GAGAAGGCTCAGATGAGGTTAAAGGAGGCCCCTTTCGACTTCGACATGTGTCCCCTCCGG LeuPheArgValTyrSerAsnPheLeuArgGlyLysLeuLysLeuTyrThrGlyGluAla	400	
101	TGCAGGACAGGGGACAGATGA		
40T	ACGTCCTGTCCCCTGTCTACT		
	CysArgThrGlyAspArg Figure 5		

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As the below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name; that

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

NOVEL ERYTHROPOIETIN RECEPTOR AGONISTS

The specification of which, with any Preliminary Amendment, (check one)

[X] is attached hereto

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a)

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

PRIOR FOREIGN APPLICATION(S)

Priority Claimed

(Number)

(Country)

(Day/month/year filed)

[]Yes [X]No

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

60/034,044

October 25, 1996

Pending

(Application Serial No.)

(Filing date)

(Status)

POWER OF ATTORNEY: As a named inventor, I hereby appoint as attorneys/agents: GEORGE R. BECK, Registration No. 21, 180; DENNIS A. BENNETT, Registration No. 34,547; JON H. BEUSEN, Registration No. 30,610; GARY M. BOND, Registration No. 29,283; GRACE L. BONNER, Registration No. 32, 963; JOSEPH W. BULOCK, Registration No. 37,103; JAMES C. FORBES, Registration No. 39,457; DENNIS R. HOERNER, Registration No. 30,914; J. TIMOTHY KEANE, Registration No. 27,808;

CYNTHIA S. KOVACEVIC, Registration No. 35,578; ; LARRY M. LAVIN, Registration No. 30,768; THOMAS P MCBRIDE, Registration No. 32, 706; SCOTT J. MEYER, Registration No. 25,275; MICHAEL J. ROTH 29,342; JOY ANN SERAUSKAS, Registration No. 27,952; RICHARD H. SHEAR, Registration No. 26,583; BRIAN K. STIERWALT, Registration No. 33,213; ROGER A. WILLIAMS, Registration No. 27,679; to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith.

Direct all telephone calls to Dennis A. Bennett at 314-737-6986 and address all correspondence to:

G. D. Searle & Co. Corporate Patent Law Department P.O. Box 5110 Chicago, Illinois 60680-9889 ATTENTION: Dennis A. Bennett

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

1.)	LAST NAME	FIRST NAME	MIDDLE NAME
FULL NAME	Summers	Neena	L.
OF INVENTOR 3			
RESIDENCE	CITY	STATE	COUNTRY
&	St. Charles	Missouri	U. S. A.
CITIZENSHIP			
POST	POST OFFICE ADDRESS	CITY	STATE OR
OFFICE	1203 Saddlemaker	St. Charles	COUNTRY
ADDRESS			Missouri
SIGNATURE		DATE	ZIP CODE
OF	Muna Summe	6/12/93	63304-
INVENTOR 3	Murray Junion	10/17/97	2423

2.)	LAST NAME	FIRST NAME	MIDDLE NAME
FULL NAME	McWherter	Charles	A.
OF INVENTOR 1			
RESIDENCE	CITY	STATE	COUNTRY
&	Wildwood	Missouri	U. S. A.
CITIZENSHIP			
POST	POST OFFICE ADDRESS	CITY	STATE OR
OFFICE	16564 Thunderhead Canyon Ct.	Wildwood	COUNTRY
ADDRESS			Missouri
SIGNATURE	00 00	DATE	ZIP CODE
OF	Charles C. Mathest	10/17/97	63011
INVENTOR 1	Cruses - 170 POPWW	10/19/1	

3.)	LAST NAME	FIRST NAME	MIDDLE NAME
FULL NAME OF INVENTOR 2	Feng	Yiqing	
RESIDENCE & CITIZENSHIP	CITY St. Louis	STATE Missouri	COUNTRY U. S. A.
POST OFFICE ADDRESS	POST OFFICE ADDRESS 423 Mission Ct.	CITY St. Louis	STATE OR COUNTRY Missouri
SIGNATURE OF INVENTOR 2	Bot / Leg	DATE 10/17/97	ZIP CODE 63130