

Définition

Définition

Soit V un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}.$ On définit inductivement l'ensemble P des formules logiques par :

• L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$

Définition

Soit V un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}.$ On définit inductivement l'ensemble P des formules logiques par :

• L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: p \mapsto \neg p$

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: p \mapsto \neg p$
 - conjonction $\wedge : p, q \mapsto (p \wedge q)$

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$ \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: p \mapsto \neg p$
 - conjunction $\wedge : p, q \mapsto (p \wedge q)$
 - disjonction $\vee:p,q\mapsto(p\vee q)$

- L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$
 - \top se lit « top » et \bot se lit « bottom »
- Les règles d'inférence :
 - négation $\neg: p \mapsto \neg p$
 - $\bullet \ \ conjonction \ \land : p,q \mapsto (p \land q)$
 - disjonction $\vee: p, q \mapsto (p \vee q)$
 - implication \rightarrow : $p, q \mapsto (p \rightarrow q)$

Soit V un ensemble au plus dénombrable de variables logiques noté $V=\{p,q,r,\dots\}.$ On définit inductivement l'ensemble P des formules logiques par :

• L'ensemble d'axiomes $P_0 = \{\top, \bot\} \cup V$

 \top se lit « top » et \bot se lit « bottom »

- Les règles d'inférence :
 - négation $\neg: p \mapsto \neg p$
 - $\bullet \ \ \textit{conjonction} \ \land : p,q \mapsto (p \land q)$
 - disjonction $\vee:p,q\mapsto(p\vee q)$
 - $\bullet \ \textit{implication} \to : p, q \mapsto (p \to q)$
 - $\bullet \ \, \textit{\'equivalence} \, \leftrightarrow : p,q \mapsto (p \leftrightarrow q)$

Remarques

• Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de \land , \lor :
 Par exemple, $p\lor (q\lor r)$ s'écrit plus simplement $p\lor q\lor r$.

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, p ∨ (q ∨ r) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : \neg , \wedge , \vee , \rightarrow , \leftrightarrow

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de \land , \lor :
 Par exemple, $p \lor (q \lor r)$ s'écrit plus simplement $p \lor q \lor r$.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : \neg , \wedge , \vee , \rightarrow , \leftrightarrow Par exemple $(\neg p) \lor (q \land r)$ s'écrit plus simplement $\neg p \lor q \land r$.
- On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, p ∨ (q ∨ r) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple (¬p) ∨ (q ∧ r) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, p ∨ (q ∨ r) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : \neg , \wedge , \vee , \rightarrow , \leftrightarrow Par exemple $(\neg p) \lor (q \land r)$ s'écrit plus simplement $\neg p \lor q \land r$.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Exemples

• $\neg p \lor \neg q \land r$ est une formule logique.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de ∧, ∨ :
 Par exemple, p ∨ (q ∨ r) s'écrit plus simplement p ∨ q ∨ r.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple (¬p) ∨ (q ∧ r) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Exemples

- $\neg p \lor \neg q \land r$ est une formule logique.
- $\wedge p \neg pq$ n'est pas une formule logique.

Remarques

- Afin d'éviter de surcharger les écritures, on pourra omettre certaines parenthèses :
 - En utilisant l'associativité à droite de \land , \lor :
 Par exemple, $p \lor (q \lor r)$ s'écrit plus simplement $p \lor q \lor r$.
 - En utilisant l'ordre de priorité suivant sur les connecteurs : ¬, ∧, ∨, →, ↔
 Par exemple (¬p) ∨ (q ∧ r) s'écrit plus simplement ¬p ∨ q ∧ r.

En cas de doute, on laissera les parenthèses afin de lever toute ambiguïté.

• On a définit pour le moment simplement les propositions logiques valables d'un point de vue *syntaxique*, sans leur donner de sens ou de valeur.

Exemples

- $\neg p \lor \neg q \land r$ est une formule logique.
- $\wedge p \neg pq$ n'est pas une formule logique.
- $(p \to q) \land (q \to p)$ et $p \leftrightarrow q$ sont deux formules logiques différentes.