Assignment 2

I. Show how to find a $\in \mathbb{Z}_2$ given one application of a black-box that maps |x| = |x

2. For
$$x, y \in \{0,13^n \text{ and } S = x \oplus \}$$
,

Prove that $H^{\otimes h}\left(\frac{1\times y + 1/y}{\sqrt{2}}\right) = \frac{1}{2^{\frac{n-1}{2}}} \sum_{Z \in \{3\}^{\frac{1}{2}}}^{(-1)} \frac{1Z}{Z \in \{3\}^{\frac{1}{2}}}$

3. Let S be a subspace of \mathbb{Z}_{2}^{n} of dimension = \mathbb{M} .

Define $|S\rangle = \frac{1}{2^{m/2}} \mathbb{I}_{3}$. Prove that $|S\rangle = \frac{1}{2^{n-m}} \mathbb{I}_{3} = \mathbb{I}_{2}^{n} \mathbb{I}_{3}$.

Here $|S\rangle = \mathbb{I}_{2^{n-m}} \mathbb{I}_{3} = \mathbb{I}_{2^{n-m}} \mathbb{I}_{2^{n-m}} = \mathbb{I}_{2^{n-m}} \mathbb{I}_{2^{n-m}} = \mathbb{I}_{2^{n-m}} \mathbb{I}_{2^{n-m}} = \mathbb{I}_{2^{n-m$

Let $W \leq \{0,3\}^n$ be a subspace of dimension m. Let W_1, W_2, W_3, \cdots be a sequence of elements of W selected W.a.r.

Let $V_i = \langle w_i, w_2, \cdots, w_i \rangle$ be the subspace generated by $\{w_1, \cdots, w_i\}$. Define X_j to be the random by $\{w_1, \cdots, w_i\}$. Define X_j to be the random variable denoting the lowest index i such that V variable denoting the lowest index i such that V is has dimension J. Show an upper bound V_i has dimension J.