Université Mohammed kheider Biskra Département de Mathématiques 1^{ième} année Master: 2021 - 2022 Module: Distributions et EDP

TD:1

Exercise 1 Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction de classe C^1 . Montrer que si $\varphi \in D$; alors $f\varphi \in D$.

Exercise 2 1. Montrer que La fonction $\varphi : \mathbb{R} \to \mathbb{R}$ définie par :

$$\varphi(x) = \begin{cases} e^{-\frac{1}{1-x^2}}, si \ |x| < 1\\ 0, \ si \ |x| \ge 1 \end{cases}$$

appartient à D.

1. Soit la suite (f_n) de fonctions de $D(\mathbb{R})$ définie par :

$$f_n(t) = \frac{1}{2^n} \exp\left(-\frac{1}{1 - \frac{|t|^2}{n^2}}\right) si |t| < n, 0 \ sinon.$$

Montrer que, pour chaque $k \geq 0$, la suite de fonctions $(f_n^{(k)})$ converge uniformément sur tout compact vers une fonction $g \in D(\mathbb{R})$ que l'on précisera. A-t-on convergence dans $D(\mathbb{R})$?

Exercise 3 1. Soit I un intervalle et $f: I \to \mathbb{R}$. une fonction de classe C^{n+1} . Montrer que si x_0 et $x_0 + x \in I$, alors

$$f(x_o + x) = \sum_{k=0}^{n} \frac{x^k}{k!} f^{(k)}(x_0) + \frac{x^{n+1}}{n!} \int_0^1 f^{(n+1)}(x_o + tx) (1 - t)^n dt$$

(formule de Taylor d'ordre n avec reste sous forme intégrale).

- 2. Pour tout $\varphi \in D$, on pose $\varphi(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} f^{(k)}(0) + x^{n+1} \theta(x), x \in \mathbb{R}^{*}$ et $\varphi^{(n+1)}(0) = (n+1)!\theta(0)$
 - a) Montrer que la fonction θ est continue sur \mathbb{R} .
 - **b**) On suppose que supp $(\varphi) \subset [-c, c], c > 0$. Montrer que

$$\sup_{x \in [-c,c]} |\theta(x)| \le A \sup_{x \in [-c,c]} \left| \varphi^{(n+1)}(x) \right|$$

où A > 0, est une constante.

Exercise 4 Soit φ , $\theta \in D(\mathbb{R})$ tel que $\theta(0) = 1$. Démontrer qu'il existe $\psi \in D(\mathbb{R})$ tel que, pour tout $x \in \mathbb{R}$,

$$\varphi(x) = \varphi(0) \theta(x) + x \psi(x).$$

Exercise 5 Soient f et g deux fonctions quelconques. Montrer que

- 1. $Supp(\lambda, f) = Supp(f), \lambda \in \mathbb{R}^*$
- 2. $Supp(f.g) \subset Supp(f) \cap Supp(g)$.
- 3. $Supp(f+g) \subset Supp(f) \cup Supp(g)$.

Exercise 6 Montrer que l'application

$$\varphi \in D \longmapsto \langle f, \varphi \rangle = \int_{a}^{b} \varphi(x) dx$$

définit une distribution sur \mathbb{R} .

Exercise 7 Soient $\varphi \in D$ et T une distribution, on suppose que les supports de T et φ sont disjoints. Montrer que $\langle T, \varphi \rangle = 0$.

1. Montrer que si T_f est la distribution associée à une fonction continue f, alors

$$SuppT_f = Suppf$$

2. Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$f(x) = \begin{cases} 1 & sur \{a\} \\ 0 & ailleurs \end{cases}, a \in \mathbb{R}$$

Déterminer Supp f(x) et $Supp T_f$