

PCIe-FIW Series 1394b PCI Express Frame Grabber User's Manual

Manual Rev. 2.03

Revision Date: Fabruary 2, 2009

Part No: 50-11157-1010

Recycled Paper

Advance Technologies; Automate the World.

Copyright 2009 ADLINK TECHNOLOGY INC.

All Rights Reserved.

The information in this document is subject to change without prior notice in order to improve reliability, design, and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Trademarks

NuDAQ, NuIPC, DAQBench are registered trademarks of ADLINK TECHNOLOGY INC.

Product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

Getting Service from ADLINK

Contact us should you require any service or assistance.

ADLINK Technology Inc.

Address: 9F, No.166 Jian Yi Road, Chungho City,

Taipei County 235, Taiwan

台北縣中和市建一路 166 號 9 樓

Tel: +886-2-8226-5877 Fax: +886-2-8226-5717

Email: service@adlinktech.com

Ampro ADLINK Technology Inc.

Address: 5215 Hellyer Avenue, #110, San Jose, CA 95138, USA

Tel: +1-408-360-0200

Toll Free: +1-800-966-5200 (USA only)

Fax: +1-408-360-0222 Email: info@adlinktech.com

ADLINK Technology Beijing

Address: 北京市海淀区上地东路 1 号盈创动力大厦 E 座 801 室

(100085)

Rm. 801, Power Creative E, No. 1, B/D Shang Di East Rd., Beijing 100085, China

Tel: +86-10-5885-8666 Fax: +86-10-5885-8625 Email: market@adlinktech.com

ADLINK Technology Shanghai

Address: 上海市漕河泾高科技开发区钦江路 333 号 39 幢 4 层

(200233)

Tel: +86-21-6495-5210 Fax: +86-21-5450-0414 Email: market@adlinktech.com

ADLINK Technology Shenzhen

Address: 深圳市南山区科技园南区高新南七道 数字技术园

A1 栋 2 楼 C 区 (518057)

2F, C Block, Bld. A1, Cyber-Tech Zone,

Gao Xin Ave. Sec 7, High-Tech Industrial Park S.,

Shenzhen, 518054 China

Tel: +86-755-2643-4858 Fax: +86-755-2664-6353 Email: market@adlinktech.com

ADLINK Technology Inc. (German Liaison Office)

Address: Nord Carree 3, 40477 Duesseldorf, Germany

Tel: +49-211-495-5552 Fax: +49-211-495-5557 Email: emea@adlinktech.com

ADLINK (French Liaison Office)

Address: 15 rue Emile Baudot, 91300 MASSY Cedex, France

Tel: +33 (0) 1 60 12 35 66 Fax: +33 (0) 1 60 12 35 66 Email: france@adlinktech.com

ADLINK Technology Japan Corporation

Address: 151-0072 東京都渋谷区幡ヶ谷

1-1-2 朝日生命幡ヶ谷ビル 8F Asahiseimei Hatagava Bldg. 8F

1-1-2 Hatagaya, Shibuya-ku, Tokyo 151-0072, Japan

Tel: +81-3-4455-3722 Fax: +81-3-5333-6040 Email: japan@adlinktech.com

ADLINK Technology Inc. (Korean Liaison Office)

Address: 서울시 강남구 논현동 60-12 동성빌딩 4층 402호

No.402, Dongsung B/D, 60-12, Nonhyeon-Dong

Gangnam-gu, Seoul, 135-010, Korea.

Tel: +82-2-2057-0565 Fax: +82-2-2057-0563 Email: korea@adlinktech.com

ADLINK Technology Singapore Pte Ltd.

Address: 84 Genting Lane #07-02A, Cityneon Design Centre,

Singapore 349584

Tel: +65-6844-2261 Fax: +65-6844-2263

Email: singapore@adlinktech.com

ADLINK Technology Singapore Pte Ltd. (Indian Liaison Office)

Address: No. 1357, "Anupama", Sri Aurobindo Marg, 9th Cross,

JP Nagar Phase I, Bangalore - 560078, India

Tel: +91-80-65605817 Fax: +91-80-22443548 Email: india@adlinktech.com

Table of Contents

Ta	able o	of Contents	i
Li	st of	Tables	iii
Li	st of	Figures	iv
1	Intro	oduction	1
	1.1	Features	2
	1.2	Applications	2
2	Hard	dware Reference	3
	2.1	PCIe-FIW64	3
		PCIe-FIW64 Specifications	3
		PCIe-FIW64 Outline	
		PCIe-FIW64 Connectors and Pin Definitions	5
		PCIe-FIW64 Trigger Delay Function	
		Input and Output Circuits Diagrams	
		User Device I/O Connection Examples	
		Hardware Features	
	2.2	PCIe-FIW62 Specifications	
		PCIe-FIW62 Appearance	
		PCIe-FIW62 Connectors and Pin Definitions	21
3	Inst	allation Guide	23
	3.1	Hardware Installation	
	3.2	Driver Installation	24
4	Fun	ction Library	33
	4.1	Function List	
	4.2	Functions	34
		FIW64_Initialize	34
		FIW64_GetTotalDeviceNum	35
		FIW64_GetTotalDeviceID	36
		FIW64_ResetDevice	
		FIW64_GetFirmwareVersion	
		FIW64_SetDO	39
		FIW64_GetDI	
		FIW64_GetTriggerDelayTime	41

	FIW64_SetTriggerDelayTime	42
	FIW64_GetTriggerWidth	
	FIW64_SetTriggerWidth	
	FIW64_GetTriggerPolarity	45
	FIW64_SetTriggerPolarity	
	FIW64_GetErrorMessage	
4.3	Error Codes	

ii Table of Contents

List of Tables

Table	2-1:	1394b Pinout	. 5
Table	2-2:	Additional 12 V Power Input Port	. 6
Table	2-3:	IEEE1394 Connection Status LEDs	. 6
Table	2-4:	Card ID Select	. 7
Table	2-5:	Card ID Select Table	. 7
Table	2-6:	GPIO & Trigger	. 8
Table	2-7:	Extension Cable Connector	. 9
Table	2-8:	Trigger Control Timing	10
Table	2-9:	Specifications	18
		1394b Pinout	
Table	2-11:	Status LED	22
Table	2-12:	Disk Power Pinout	22

List of Tables iii

List of Figures

Figure 2-1:	PCIe-FIW64 Outline	. 4
Figure 2-2:	PCIe-FIW62 Diagram	20

iv List of Figures

1 Introduction

The PCIe-FIW series are IEEE 1394b (FireWire 800) interface cards based on the PCI Express form factor and designed for high speed computer-based machine vision applications. This series consists of two main product families:

- ► PCIe-FIW62: two 1394b (FireWire 800) ports
- ▶ PCIe-FIW64: four 1394b (FireWire 800) ports

The PCIe-FIW series supports multiple 1394b device connections with data transfer rates up to 800 Mb/s, like most of the IEEE 1394b cameras. The IEEE 1394b standard also supports a power over cable feature to reduce wiring.

The 4-pin ATX power connector on the PCIe-FIW series allows the 1394 cameras that are connected to draw power. The LEDs on the front panel of the PCIe-FIW series will illuminate when a PCIe-FIW card is connected to a 1394b camera, thus making it is easy to identify the channel connection status.

The PCIe-FIW64 provides four isolated digital inputs and outputs for connecting to external devices such as position sensors. The PCIe-FIW64 also includes four isolated programmable trigger output pulses to manage trigger events such as activating a strobe light.

Introduction 1

1.1 Features

- ▶ PCI Express compliant
 - ▷ PCIe-FIW62: x1 PCI Express
- ▶ High-speed image transfer rates up to 800 Mb/s
- ▶ Provides industrial screw lock connector
- Status LED for channel activation
- ► Four isolated digital inputs/outputs
- ► Four isolated TTL level programmable trigger output pulses
- ► Supports Windows XP/XP Embedded/Vista

1.2 Applications

- ▶ Machine vision inspection systems
- ▶ Scientific research instrumentation
- ▶ Medical research instrumentation

2 Introduction

2 Hardware Reference

2.1 PCIe-FIW64

2.1.1 PCIe-FIW64 Specifications IEEE1394b Port

- Four IEEE1394b fully compliant cable ports at 100 Mb/s, 200 Mb/s, 400 Mb/s, and 800 Mb/s.
- Fully supports the IEEE P1394b-2002 standard.
- Fully compliant with the IEEE 1394-1995 standard for a high performance serial bus and the IEEE 1394a-2000 standard.
- Fully compliant with the 1394 Open Host Controller Interface Specification, Revision 1.1 and revision 1.2 draft.

Digital I/O and Trigger I/O Functions

- > Four isolated digital inputs
- Four isolated digital outputs
- Four isolated trigger outputs

Isolated Voltage

Form Factor

- > x4 PCI-express interface (compliant with the PCI
- Express Base Specification, Revision 1.1))

Dimensions

Operating Environment

Temperature: 0 to 55°CHumidity: 5 to 90% RHNC

Storage Environment

Temperature: 0 to 85°CHumidity: 0 to 95% RHNC

Power Requirements

PCIe-FIW64: +12 V max 200 mA, +3.3 V max 2.5 A

2.1.2 PCIe-FIW64 Outline

Figure 2-1: PCIe-FIW64 Outline

2.1.3 PCIe-FIW64 Connectors and Pin Definitions

CN1-CN4: IEEE1394b Port

Pin Signal		Pin	Signal
1	TPB-	6	VG
2	TPB+	7	SC
3 TPA-		8	VP
4	TPA+	9	TPB(R)
5	TPA(R)		

Table 2-1: 1394b Pinout

CN5: Additional 12 V Power Input Port

Pin	Signal
1	+12 V
2	GND
3	GND
4	NC

Table 2-2: Additional 12 V Power Input Port

LED19-LED22: IEEE1394 Connection Status LEDs

Component	Function	Description
LED19	CN1 IEEE1394 bus connection status display.	Green light: Normal connection
LED20	CN2 IEEE1394 bus connection status display.	Green light: Normal connection
LED21	CN3 IEEE1394 bus connection status display.	Green light: Normal connection
LED22	CN4 IEEE1394 bus connection status display.	Green light: Normal connection

Table 2-3: IEEE1394 Connection Status LEDs

SW1: Card ID Select

Card ID: Maximum of four cards supported.

	SW1						
Pin	Signal Name	Default					
1	Board ID Select 0	ON					
2	Board ID Select 1	ON					
3	Non use	ON					
4	Non use	ON					

Table 2-4: Card ID Select

Card ID Board ID Select 0		Board ID Select 1
0	ON	ON
1 OFF		ON
2	ON	OFF
3	OFF	OFF

Table 2-5: Card ID Select Table

CN5: GPIO & Trigger

Pin	Pin Name	Туре	Pin	Pin Name	Туре
1	System Power(+12V)	OUT	2	System GND	
3	Digital input 1	IN	4	Digital input common 1	IN
5	Digital input 2	IN	6	Digital input common 2	IN
7	Digital input 3	IN	8	Digital input common 3	IN
9	Digital input 4	IN	10	Digital input common 4	IN
11	Digital output 1	OUT	12	Digital output common 1	OUT
13	Digital output 2	OUT	14	Digital output common 2	OUT
15	Digital output 3	OUT	16	Digital output common 3	OUT
17	Digital output 4	OUT	18	Digital output common 4	OUT
19	Trigger input 1	IN	20	Trigger input common 1	IN
21	Trigger input 2	IN	22	Trigger input common 2	IN
23	Trigger input 3	IN	24	Trigger input common 3	IN
25	Trigger input 4	IN	26	Trigger input common 4	IN
27	Trigger output 1	OUT	28	Trigger output 2	OUT
29	Trigger output 3	OUT	30	Trigger output 4	OUT
31	Frame GND		32	Frame GND	
33	Frame GND		34	Frame GND	

Table 2-6: GPIO & Trigger

Extension D-sub 37 Pin Cable Connector:

Pin	Pin Name	Туре	Pin	Pin Name	Туре
1	System Power(+12V)	OUT	20	System GND	
2	Digital input 1	IN	21	Digital input common 1	IN
3	Digital input 2	IN	22	Digital input common 2	IN
4	Digital input 3	IN	23	Digital input common 3	IN
5	Digital input 4	IN	24	Digital input common 4	IN
6	Digital output 1	OUT	25	Digital output common 1	OUT
7	Digital output 2	OUT	26	Digital output common 2	OUT
8	Digital output 3	OUT	27	Digital output common 3	OUT
9	Digital output 4	OUT	28	Digital output common 4	OUT
10	Trigger input 1	IN	29	Trigger input common 1	IN
11	Trigger input 2	IN	30	Trigger input common 2	IN
12	Trigger input 3	IN	31	Trigger input common 3	IN
13	Trigger input 4	IN	32	Trigger input common 4	IN
14	Trigger output 1	OUT	33	Trigger output 2	OUT
15	Trigger output 3	OUT	34	Trigger output 4	OUT
16	Frame GND		35	Frame GND	
17	Frame GND		36	Frame GND	
18	NC		37	NC	
19	NC				

Table 2-7: Extension Cable Connector

2.1.4 PCIe-FIW64 Trigger Delay Function

Trigger function description

The trigger function is based on the trigger output delay time, output signal pulse width, trigger signal level polarity, busy period and trigger input signal to produce a trigger output signal. The range of trigger delay setting is 0-1000 ms and one scale is 1 ms. The range of trigger output pulse width setting is 0.1-50 ms and one scale is 0.1 ms. The reference of trigger delay function depends on trigger input signal rising edge or falling edge. The polarity setting has four values:

- ► A value of "0" is for the trigger input signal falling edge and trigger output low active level signal.
- ► A value of "1" is for the trigger input signal falling edge and trigger output high active level signal.
- ► A value of "2" is for the trigger input signal rising edge and trigger output low active level signal.
- ► A value of "3" is for the trigger input signal rising edge and trigger output high active level signal.

Trigger Control Timing Chart

Symbol	Characteristic	Specification
T1	Trigger input pulse width	0.1 msec (min.)
T2	Trigger delay	0 to 1000 msec selectable (1 msec step) Actual delay = Selected delay time
T3	Output trigger pulse width	0.1 to 50 msec selectable (0.1 msec step)

Table 2-8: Trigger Control Timing

Trigger Busy Control

Symbol	Characteristic	Specification
T4	Trigger busy timer	T3 + 0.1 msec. The busy flag is set and the trigger busy timer starts counting when the Trigger In signal is detected. The Trigger Busy flag is reset when the trigger busy timer is done counting When the Trigger Busy flag is set, the Trigger In signal is ignored.

Trigger control setting flow chart

2.1.5 Input and Output Circuits Diagrams Digital Input Circuit

Digital Output Circuit

Digital Output Circuit

Trigger Input Circuit

Trigger Output Circuit

2.1.6 User Device I/O Connection Examples

Digital input or trigger input connection for switch input.

Digital input or trigger input connection for TTL signal input.

The response of the computer needs to be inverted in this connection condition mode. *If the external device output controls a digital input common con-tact, then the response from the computer needs to be inverted.

Digital output connection for user device control.

Digital output connection for a logic signal output.

Trigger output connection for a trigger signal output.

Loop back connection.

2.1.7 Hardware Features

Function	Electronic Specification
Isolated Digital Input	Photo Coupled Input x 4 ch
Input voltage range	0 to 25 V
Low level	0 to 0.5 V
High Level	2 to 25 V
Isolated Digital Output	Photo Coupled Output x 4 ch
Load voltage range	3 to 24 V
Output sink current	80 mA (Max)
Output voltage drop	1.0 V (Max)
Leak current	0.1 mA (Max)
Reverse voltage	-6 V
Isolated Trigger Input	Photo Coupled Trigger input x 4 ch
Input voltage range	0 to 25 V
Low level	0 to 0.5 V
High level	2.4 to 25 V
Polarity	Positive / Negative Selectable
Minimum pulse width	0.1 msec
Isolated Trigger out	Photo Coupled Trigger output x 4 ch
Load voltage range	0 to 5 V
Output sink current	40 mA (Max)
Output voltage drop	0.4 V Max (@16 mA)
Trigger Out Control	
Trigger delay	0 msec to 1000 msec selectable (1 msec step.)
Trigger out pulse width	0.1 msec to 50 msec selectable (0.1 msec step)
Polarity	Positive / Negative Selectable

Table 2-9: Specifications

2.2 PCIe-FIW62 Specifications

External device signal input

- Channel ports (1 and 2) : 1394b 9-pin connector with screw
- > 1394b differential signals

Form factor

> PCI-express x1 interface

User EEPROM

▷ Includes 2 kbit available EEPROM

Dimension

Power Requirements

→ +3.3 V, max 0.22 A

2.2.1 PCIe-FIW62 Appearance

Figure 2-2: PCIe-FIW62 Diagram

2.2.2 PCIe-FIW62 Connectors and Pin Definitions

Pin Number	Pin Definition	Function
1	TPB-	Twisted Pair B, Minus
2	TPB+	Twisted Pair B, Plus
3	TPA-	Twisted Pair A, Minus
4	TPA+	Twisted Pair A, Plus
5	TPA (R)	Ground, Twisted Pair A
6	VG	Power Ground
7	NC	No Connection
8	VP	Power Voltage
9	TPB (R)	Ground, Twisted Pair B

Table 2-10: 1394b Pinout

LED No.	Function
LED 1	Port 1 active
LED 2	Port 2 active

Table 2-11: Status LED

Pin	Signal
1	+12 V
2	GND
3	GND
4	NC

Table 2-12: Disk Power Pinout

3 Installation Guide

3.1 Hardware Installation

Use the following steps to install the PCIe-FIW series card on the PCI Express bus:

- 1. Remove the computer cover using the instructions from the computer manual.
- Check that there is an empty PCI express slot accommodated the board. If there is no empty slot, remove a PCI Express board from the computer to make room for the PCIe-FIW series card and take note of the chosen slot number.
- Remove the blank metal plate located at the back of the selected slot (if any). Keep the removed screw to fasten the PCIe-FIW series card after installation.
- Carefully position the PCle-FIW series card in the selected PCI Express slot. If using a tower computer, align the board with the board slots.
- 5. Press the card in firmly, but carefully into the connector.
- 6. Anchor the board by replacing the screw.
- 7. Connect the device via the 1394 connector.
- 8. Turn on the computer.

Note: The PCIe-FIW64 can be installed in a PCI Express x4, x8, x16 slot, and the PCIe-FIW62 can be installed in a PCI express x1, x4, x8, Xx16 slot

3.2 Driver Installation

- 1. Microsoft Windows will automatically install 1394 driver through a built-in OHCI IEEE-1394 driver.
- 2. Go to the **Device Manager** and check **IEEE 1394 Bus host controllers**, you should see the following item:

2.1. If there is a yellow exclamation mark in front of the new driver name, you will need to setup the driver manually.

2.2. Right-click IEEE 1394 Controller and select Update driver.

2.3. Click Next

2.4. Click Next

2.5. Click Next

2.6. Click **Finish** to complete the wizard.

3. For the PCIe-FIW64, after installing the IEEE-1394 driver, please double-click **FIW64_SetupDisk.exe** to start driver installation of the ADLINK FIW64 DI/O and trigger function.

4. Click **Next** to continue driver installation.

5. Click **Install** to begin the installation.

6. Click Finish to complete driver installation.

Note: If using Windows Vista, there is an important setting must be performed in order for the PCle-FIW series to function properly. Perform the following to turn off the User Account Control (UAC).

- 1. Click Start -> Settings -> Control Panel -> User Accounts -> Turn User Account Control On or Off.
- 2. Uncheck Use User Account Control (UAC) to help protect your computer.
- 3. Click OK.
- 4. Restart the computer and the PCIe-FIW series card will work normally.

4 Function Library

4.1 Function List

Function Name	Description	
System Functions		
FIW64_Initialize	Loads the FIW64 driver. This function must be called before any other functions.	
FIW64_GetTotalDeviceNum	Obtain the number of the FIW64 cards in the system.	
FIW64_GetTotalDeviceID	Obtain the CardIDs of the FIW64 cards in the system.	
FIW64_ResetDevice	Resets the FIW64 card to the default status.	
FIW64_GetFirmwareVersion	Obtain the firmware version of the FIW64 card.	
FIW64_GetErrorMessage	Obtain the Error Message by returning the value of functions.	
DIO Functions		
FIW64_SetDO	Set the general purpose digital output status.	
FIW64_GetDI	Obtain the general purpose digital input status.	
Trigger Functions		
FIW64_SetTriggerDelayTime	Set the delay time of the output triggers.	
FIW64_GetTriggerDelayTime	Obtain the delay time of the output triggers.	
FIW64_SetTriggerWidth	Set the width of the output triggers.	
FIW64_GetTriggerWidth	Obtain the width of the output triggers.	
FIW64_SetTriggerPolarity	Set the input and output polarity of the output triggers.	
FIW64_GetTriggerPolarity	Obtain the input and output polarity of the output triggers.	

4.2 Functions

4.2.1 FIW64_Initialize

Description

Loads the FIW64 driver. This function must be called before any other functions.

Syntax

```
int FIW64_Initialize();
```


4.2.2 FIW64_GetTotalDeviceNum

Description

Obtain the number of the FIW64 cards in the system.

Syntax

int FIW64_GetTotalDeviceNum(int *DeviceNum);

Parameters

DeviceNum

[out] Pointer to a 32-bit integer which stores the read out Card Number.

4.2.3 FIW64_GetTotalDeviceID

Description

Obtain the CardIDs of the FIW64 cards in the system.

Syntax

```
int FIW64_GetTotalDeviceID(int *DeviceID, int
ArrayLen );
```

Parameters

DeviceID

[out] Pointer to a 32-bit integer array which stores the read out CardID(s) defined by the DIP switch on FIW64.

ArrayLen

[in] Length of the 32-bit integer array of DeviceID.

4.2.4 FIW64 ResetDevice

Description

Resets the FIW64 card to the default status.

Syntax

int FIW64_ResetDevice(int ChannelNo);

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. can be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

If ChannelNo is set to -1, all channels will be reset.

4.2.5 FIW64 GetFirmwareVersion

Description

Obtain the firmware version of the FIW64 card.

Syntax

```
int FIW64_GetFirmwareVersion(int ChannelNo, int
*Version);
```

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. can be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

Version

[out] Pointer to a 32-bit integer variable which stores the read out firmware version.

4.2.6 FIW64 SetDO

Description

Set the general purpose digital output status.

Syntax

```
int FIW64_SetDO(int ChannelNo,int Status);
```

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. can be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

Status

[in] A 32-bit integer variable which represents the status of digital output.

0: Low

1: High

4.2.7 FIW64 GetDI

Description

Obtain the general purpose digital input status.

Syntax

```
int FIW64_GetDI(int ChannelNo,int *Status);
```

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. can be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

Status

[out] Pointer to a 32-bit integer variable which stores the read out digital input status.

4.2.8 FIW64_GetTriggerDelayTime

Description

Obtain the delay time of the output triggers.

Syntax

```
int FIW64_GetTriggerDelayTime(int ChannelNo,int
*DelayTime);
```

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. can be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

DelayTime

[out] Pointer to a 32-bit integer variable which stores the read out delay time of output triggers.

4.2.9 FIW64_SetTriggerDelayTime

Description

Set the delay time of the output triggers.

Syntax

int FIW64_SetTriggerDelayTime(int ChannelNo,int
DelayTime);

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. can be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

DelayTime

[in] A 32-bit integer variable which specifies the delay time of output triggers.

The value should be 0 - 1000 (units: 1 ms).

4.2.10 FIW64_GetTriggerWidth

Description

Obtain the width of the output triggers.

Syntax

```
int FIW64_GetTriggerWidth(int ChannelNo,int *
Width);
```

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. can be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

Width

[out] Pointer to a 32-bit integer variable which stores the read out width of output triggers.

4.2.11 FIW64_SetTriggerWidth

Description

Set the width of the output triggers.

Syntax

int FIW64_SetTriggerWidth(int ChannelNo,int Width);

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. ccan be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

Width

[in] A 32-bit integer variable which specifies the width of output triggers.

The value should be 0 - 500 (units: 0.1 ms).

4.2.12 FIW64_GetTriggerPolarity

Description

Obtain the polarity of the input and output triggers.

Syntax

```
int FIW64_GetTriggerPolarity(int ChannelNo,int
*Status);
```

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. can be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

Status

[out] Pointer to a 32-bit integer variable which stores the read out polarity of the input and output triggers.

0: meaning low input polarity and low output polarity

1: meaning low input polarity and high output polarity

2: meaning high input polarity and low output polarity

3: meaning high input polarity and high output polarity

4.2.13 FIW64_SetTriggerPolarity

Description

Set the input and output polarity of the output triggers.

Syntax

int FIW64_SetTriggerPolarity(int ChannelNo,int Status);

Parameters

ChannelNo

[in] Channel No. of the FIW64 card. The channel No. can be 0, 1, 2 and 3 in the device whose Card ID is 0; moreover, it can be 4, 5, 6 and 7 in the device whose Card ID is 1, etc.

Status

[in] A 32-bit integer variable which specifies the polarity of the input and output triggers.

The value will be 0 for low input polarity and low output polarity.

The value will be 1 for low input polarity and high output polarity.

The value will be 2 for high input polarity and low output polarity.

The value will be 3 for high input polarity and high output polarity.

4.2.14 FIW64_GetErrorMessage

Description

Obtain the Error Message by returning the value of functions.

Syntax

```
int FIW64_GetErrorMessage(int ErrorCode, char*
ErrorMessage);
```

Parameters

ErrorCode

[in] A 32-bit integer variable which specifies the error code.

ErrorMessage

[out] Pointer to a character array which stores the read out error message.

4.3 Error Codes

Error Code	Meaning
0	ERROR_NoError
-1	ERROR_DeviceNotExist
-2	ERROR_LoadDriverFail
-3	ERROR_DeviceCannotOpen
-4	ERROR_DeviceCannotAccess
-5	ERROR_Invalid_ChannelNo
-6	ERROR_SPIFunctionError
-7	ERROR_ParameterExceedLimit
-8	ERROR_CardIDError