Universidade de Aveiro Departamento de Matemática

Cálculo I - Agrupamento IV

2017/2018

Soluções do Exame Final (Época Normal de Exames) (10/1/2018)

- 1. f é estritamente decrescente em] $-\infty$, 0[e em]0, $+\infty$ [. A função f não tem extremos locais.
- 2. (a) $D_g = [-1, 1] \setminus \{0\}$; x = 1 é o único zero de g.
 - (b) (Sugestão: Usar a Teorema de Lagrange)
- 3. (a) $\frac{x^2+1}{2}\ln(1+x^2) \frac{x^2}{2} + C$, $C \in \mathbb{R}$.
 - (b) $-\frac{3}{2}\ln(x^2+4) + 3\ln x + \frac{1}{2}\operatorname{arctg}\left(\frac{x}{2}\right) + C$, $C \in \mathbb{R}$.
- 4. (a) (Sugestão: Usar o Teorema Fundamental do Cálculo Integral)
 - (b) $\frac{1}{2}$ (Sugestão: Usar a Regra de Cauchy e a alínea anterior)
- 5. $\frac{\pi^2}{8}$
- 6. (Sugestão: Fazer uma mudança de variável no integral de Riemann)
- 7. (a) O integral é convergente e o seu valor é $\frac{1}{2e}$
 - (b) O integral dado é convergente (Sugestão: Usar Critério de Comparação e a alínea anterior)
- 8. A série de Mengoli dada é convergente e o seu valor é $-\frac{3}{2}$
- 9. (a) Absolutamente convergente (Sugestão: Usar o Critério da Razão ou o Critério da Raiz)
 - (b) Simplesmente convergente (Sugestão: Usar o Critério do Limite para estudar a série dos módulos e o Critério de Leibniz)