3年後期ゼミ資料

齊藤 隆斗

j2200071@gunma-u.ac.jp

I. Introduction

Definition 1.1

n 次正方行列 $A \in \mathbb{R}^{n \times n}$ に対して、

$$AA^{-1} = A^{-1}A = E_n (1$$

を満たす正方行列 $A^{-1} \in \mathbb{R}^{n \times n}$ が存在するとき A は可逆行列という. ただし、 E_n は $n \times n$ の単位行列である.

Definition 1.2

• 階段行列とは以下のような行列 B のことである.

ある整数 $r \ge 1$ があって、B の第 1 行から第 r 行までの各行は ピボット とよばれる数 1 を含み、 次の条件 (1) - (3) を満たす.

- (1) B の第(r+1)行から最後の行までの各行において、すべての成分が 0.
- (2) B の第 1 行から第 r 行までの各行では、ピボットより左の成分はすべて 0.
- (3) B の第 i 行 のピボットが含まれる列の番号を p_i とすると、 $p_1 < p_2 < \cdots < p_r$ であり、B の第 p_i 列ではピボット以外の成分はすべて 0.
 - ここで、零行列 O も階段行列であるとする.

$$[[b]]: \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

II. Exercise [1]

A. Exercise 6

真か偽か(真ならば理由を説明し、偽ならば反例をあげよ)

(a) 正方行列には自由変数はない.

偽:(反例)

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 について考える. $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$, とする. ここで $Ax = b$ を解く. $Ax = \begin{pmatrix} x_1 + 2x_2 \\ 2x_1 + 4x_2 \end{pmatrix}$ であるから、 $\begin{pmatrix} x_1 + 2x_2 \\ 2x_1 + 4x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ を解けば良い. これを解くと $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2c \\ c \end{pmatrix}$ (2)

となる. ただし、 $c \in \mathbb{R}$ である. ここで、c は自由変数であるから、これは命題(a)に対する反例である.

(b) 可逆行列には自由変数はない.

真: (理由)

 $A\in\mathbb{R}^{n imes n},x\in\mathbb{R}^n,b\in\mathbb{R}^n$ とする. ここで A は可逆行列とする. A は可逆行列であるから、ある A^{-1} が存在して、

$$A^{-1}A = E_n \tag{3}$$

が成り立つ.

ここで、

$$Ax = b \tag{4}$$

を解く. 左から (4) の両辺に A^{-1} をかけると

$$x = A^{-1}b \tag{5}$$

となる. ここで、 A^{-1} , b はそれぞれ定数行列、定数ベクトルであるから、解x はただ一つに定まり、自由変数を含まない.

(c) $m \times n$ 行列に含まれるピボットは高々n個である.

真: (理由)

Definition 1.2 の (3) より、1 つの列に複数個のピボットは存在しないため、行列のそれぞれの列に存在するピボットの数は1以下となる. 行列の列の数はn であるから $m \times n$ 行列に含まれるピボットは高々n個である.

(d) $m \times n$ 行列に含まれるピボットは高々m個である.

真: (理由)

Definition 1.2 の (2) より、1 つの行に複数個のピボットは存在しない. 実際、1 つの行に複数個のピボットが存在するとする. この行ベクトルを v とする. v の1つ目のピボットを v_i とする. ここで i < j を満たすピボットを v_j とする. しかしこれは、 v_j の左にピボット v_i が存在しており、Definition 1.2 の (2) に矛盾する. よって、1 つの行に複数個のピボットは存在しないので、それぞれの行に含まれるピボットの個数は 1 以下となる. 行列の行の数は m であるから、 $m \times n$ 行列に含まれるピボットは高々 m 個である.

References

[1] ギルバート・ストラング, "ストラング: 教養の線形代数," 2020.