3.3 - GE-steg med strömspegel som last

- Du har ett GE-steg med emitterresistorer till höger. Matningsspänningen Vcc / VEE skall sättas till ± 50 V. Kollektorströmmen Icq skall sättas till 10 mA i vilopunkten. Samtliga transistorer kan antas inneha en Earlyspänning UA på 100 V.
- Dimensionera emitterresistorer R_{E1} R_{E3} för att öka GE-stegets temperaturstabiltet, samtidigt som spänningsfallet över dem inte begränsar utsignalernas toppvärde allför mycket.

Tips: Ett spänningsfall runt 220 mV brukar vara lagom, vilket medför en emitterfaktor EF runt 10.

- Dimensionera referensresistor R_{REF} för att erhålla en kollektorström I_{CQ} på 10 mA i vilopunkten.
- Rita småsignalschema och beräkna GE-stegets förstärkningsfaktor G. last. **Tips:** Ersätt strömspegeln med dess utresistans r₀ i småsignalschemat. Kom ihåg att emitterresistorer R_{E2} – R_{E3} medför en ökning av strömspegelns utresistans r_o med emitterfaktor EF, som i detta fall bör ligga runt 10.
- d) Antag nu att en last R_L på 15 Ω placeras på GE-stegets utgång. Rita småsignaschema för GE-steget i lastat tillstånd och beräkna förstärkningsfaktorn G. Redogör via ditt resultat för varför det är så viktigt med buffrar / spänningsföljare för att driva lågohmiga laster.
- Härled formler och beräkna GE-stegets in R_{IN}. Anta att BJT-transistorns strömförstärkningsfaktor h_{FE} är 100. Visa också sambandet mellan inresistansen R_{IN} och strömförstärkningsfaktor h_{FE} genom att beräkna R_{IN} i värstafallscenaratiot, då h_{FE} kan antas vara 50.
- Beräkna GE-stegets utresistans R_{UT} i olastat tillstånd via tumregler samt småsignalschema.

GE-steg med strömspegel som