

Frank Rosenblatt

What is a Perceptron?

Mathematical Model of a Biological Neuron

Building Block of an Artificial Neural Network.

Supervised Learning Algorithm for Binary Classifier.

The Perceptron

Activation Functions

Biological Neuron vs Perceptron

2 Input Perceptron

2 Input Perceptron

2 Input Perceptron

Error

Perceptron Training

$$\Delta w_i = \eta(t - o)x_i$$

Step 1: Initialization

Step 2: Activation

$$f(z) = 1$$
 if $z >= 0$
= 0 if $z < 0$

Error = target - observed

Step 3: Weight Update

f(z) = 1 if z >= 0= 0 if z < 0 Error = target - observed

Step 4: Iteration

Input		Output
A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

We have:

$$w0 = -0.2$$
, $w1 = 0.3$, $w2 = -0.1$, $lr = 0.1$

1st Epoch:

```
For x1 = 0, x2 = 0

z = w0 + w1*x1 + w2*x2 = -0.2 + 0.3 * 0 + (-0.1) * 0 = -0.2

output = f(z) = f(-0.2) = 0

target = 0 (No need for weight update)
```


We have:

$$w0 = -0.2$$
, $w1 = 0.3$, $w2 = -0.1$, $lr = 0.1$

1st Epoch:

```
For x1 = 0, x2 = 1

z = w0 + w1*x1 + w2*x2 = -0.2 + 0.3 * 0 + (-0.1) * 1 = -0.3

output = f(z) = f(-0.3) = 0

target = 0 (No need for weight update)
```


We have:

$$w0 = -0.2$$
, $w1 = 0.3$, $w2 = -0.1$, $lr = 0.1$

1st Epoch:

For
$$x1 = 1$$
, $x2 = 0$

$$z = wO + w1*x1 + w2*x2 = -0.2 + 0.3 * 1 + (-0.1) * O = 0.1$$

output =
$$f(z) = f(0.1) = 1$$

target = 0 (Weight Update Required)

Weight Update:

$$w0 = -0.2 + 0.1*(0-1)*1 = -0.3$$

$$w1 = 0.3 + 0.1*(0-1)*1 = 0.2$$

$$w2 = -0.1 + 0.1*(0-1)*0 = -0.1$$

We have:

$$w0 = -0.3$$
, $w1 = 0.2$, $w2 = -0.1$, $lr = 0.1$

$$w_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = \eta(t - o)x_i$$

1st Epoch:

For
$$x1 = 1$$
, $x2 = 1$

$$z = w0 + w1*x1 + w2*x2 = -0.3 + 0.2 * 1 + (-0.1) * 1 = -0.2$$

output =
$$f(z) = f(-0.2) = 0$$

target = 1 (Weight Update Required)

Weight Update:

$$w0 = -0.3 + 0.1*(1-0)*1= -0.2$$

$$w1 = 0.2 + 0.1*(1-0)*1 = 0.3$$

$$w2 = -0.1 + 0.1*(1-0)*1 = 0.0$$

Input Output A B Y O O O O 1 O 1 O O 1 1 1

We have:

$$w0 = -0.2$$
, $w1 = 0.3$, $w2 = 0.0$, $lr = 0.1$

$w_i \leftarrow w_i + \Delta w_i$

2nd Epoch:

For
$$x1 = 0$$
, $x2 = 0$

$$z = w0 + w1*x1 + w2*x2 = -0.2 + 0.3 * 0 + 0.0 * 0 = -0.2$$

output =
$$f(z) = f(-0.2) = 0$$

target = 0 (No weight update required)

$$\Delta w_i = \eta(t - o)x_i$$

Iterate Until Convergence or Minimum Error

X ₁	X ₂	y
0	0	0
0	1	0
1	0	0
1	1	1

Logical OR

Logical XOR??

Not Linearly Separable!

Linear vs Non-Linear Problem

Types of Perceptron

Single Layered Perceptron

Multi Layered Perceptron

Lets Solve XOR Problem using MultiLayer Perceptron Approach!

Building a Logical XOR

Inputs		Output
A	В	X
0	0	0
0	1	1
1	0	1
1	1	0

$$XOR(A,B)=(A \land \neg B) \lor (\neg A \land B)$$

Building a Logical XOR

 $XOR(A,B)=(A \land \neg B) \lor (\neg A \land B)$

Thank you!

