AD-779 435

ATMOSPHERIC STRUCTURE WHITE SANDS MISSILE RANGE, NEW MEXICO. PART 2. TEMPERATURE, RELATIVE HUMIDITY, DEW POINT, STATION PRESSURE, DENSITY, CLOUDS, HYDROMETEORS, AND LITHOMETEORS

Marjorie McLardie Hoidale, et al

Army Electronics Command White Sands Missile Range, New Mexico

April 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return to the originator,

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

AD-779435

SECURITY	CLASSIFICATION OF THIS PAGE (When Date	Entered	H.11-11-10
	REPORT DOCUMENTATION		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPOR	T NUMBER	2. JOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
DR-8	822		
4. TITLE	(and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
	ospheric Structure, White San	ds Missile	
Rang	ge, New Mexico, Part 2		6 PERFORMING ORG. REPORT NUMBER
7. AUTHO	DR(a)		6. CONTRACT OR GRANT NUMBER(a)
	jorie M. Hoidale		
Lama	ar Newman		DA Task 1T665702D127-02
9. PERFO	DRMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
			AREA'S WORK UNIT NUMBERS
1			
}			
	ROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
	S. Army Electronics Command	•	April 1974
	ospheric Sciences Laboratory		13. NUMBER OF PAGES
	e Sands Missile Range, New M		115
14. MONI	TORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	18. SECURITY CLASS. (of this report)
11 9	3. Army Electronics Command		IDIOI AGGETTERD
•	Monmouth, New Jersey		UNCLASSIFIED
1			15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTR	RIBUTION STATEMENT (of this Report)		
Appr	coved for public release; dis	tribution unlimit	ed.
ł			
17. DIST	RIBUTION STATEMENT (of the abstract entered	in Block 20, if different tro	m Repart)
I			
18 CHOD	LEMENTARY NOTES		
TO. SUPE	LEMEN INTERVEN		
			i
19. KEY W	ORDS (Continue on reverse elde if necessary an	nd identify Ly block number)	
1.	Ballistics	duced by	
	Meteorology N.	ATIONAL TECHNICAL	
	Wind IN	FORMATION SERVICE	
	U	S Department of Commerce Springfield VA 22151	
20. ABST	RACT (Continue on reverse side if necessary and	d identify by block number)	

A statistical analysis of exoteric meteorological data is presented for "A" Station, White Sands Missile Range, New Mexico. The atmospheric parameters analyzed are surface temperature, relative humidity, dew point, pressure, density, precipitation, and observed weather and clouds. This climatological information is based on the period of observation from 1951-1973.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

ATMOSPHERIC STRUCTURE

WHITE SANDS MISSILE RANGE, NEW MEXICO

PART 2

TEMPERATURE, RELATIVE HUMIDITY, DEW POINT, STATION PRESSURE, DENSITY, CLOUDS, HYDROMETEORS, AND LITHOMETEORS

By Marjorie McLardie Hoidale and

Lamar Newman

DR-822

DA Task 1T665702D127-02

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

Approved for public release; distribution unlimited.

FOREWORD

This report is a revision of Data Report 590 published under the same title in January 1971. The revision updates the original data to cover the period from 1951 through 1973.

Supersedes 10-883071L

ACKNOWLEDGEMENTS

It would be impossible to acknowledge all whose work have made this report possible; however, the authors do wish to acknowledge the very important contribution made by the military surface observers who collected and edited the initial records during the years 1951 through 1973. Without their records this report could never have been written.

CONTENTS

	PAGE
INTRODUCTION	1
EXPLANATION OF TERMS	3
FIGURES	
1. Map of White Sands Missile Range	2
SECTION I. TEMPERATURE, RELATIVE HUMIDITY, AND DEW POINT	
Mean Number of Days Per Month, Dry-Bulb Temperature (Table I)	8
Minimum, Maximum, and Mean Duration in Hours by Month- Dry-Bulb Temperature (Table II)	10
Mean and Extreme Dry-Bulb Temperature and Relative Humidity by Month and by Hour/Mean and Extreme Dew Point by Month and by Hour (Table III)	12
Monthly and Annual Temperature Means and Extremes (°Fahrenheit) at Seven WSMR Sites (Table IV)	36
Diurnal Variation of the Relative Frequency Distribution of Temperatures by Month and by Hour (Table V)	37
SECTION II. DENSITY AND PRESSURE	
Mean and Extreme Density and Station Pressure by Month and by Hour (Table VI)	62
SECTION III. CLOUDS	
Diurnal Variation of the Relative Frequency Distribution of Cloudiness Types by Month and by Hour (Table VII)	77

CONTENTS (CONT)

	PAGE
SECTION IV. WEATHER	
Monthly and Annual Mean Precipitation (Inches) at Seven WSMR Sites (Table VIII (a)	90
Annual Rainfall (Inches) by Years at "A" Station 1950-1973 (Table VIII (b)	90
Monthly and Annual Precipitation Means and Extremes (Inches) at "A" Station 1950-1973 (Table VIII (c)	91
Monthly and Annual Mean and Maximum Snowfall (Inches) at "A" Station 1950-1973 (Table VIII (d)	91
Minimum, Maximum, and Mean Number of Days Per Month for Various Weather Conditions (Table IX)	92
Minimum, Maximum, and Mean Duration in Hours of the Various Weather Conditions by Month (Table X)	93
Diurnal Variation of the Relative Frequency Distribution of Weather Conditions by Month and by Hour (In Percent) (Table XI)	94
LITERATURE CITED	106

INTRODUCTION

Activities of various projects on the Range often necessitate a knowledge of atmospheric conditions at the surface, or aloft, weeks or months in advance of the scheduled mission. As this is well beyond the capability of the normal 24-56 hour forecast, or the longer five-day outlook, a statistical analysis of exoteric meteorological data is often desirable.

This report presents the frequency of occurrence of the critical meteorological condition, mean values, and extreme conditions classified by months and hours that can be expected at "A" Station, White Sands Missile Range (WSMR), New Mexico, latitude 32° 22′ 42″ north, longitude 106° 28′ 47″ west, elevation 4,238 feet above mean sea level (MSL). The eight surface parameters so analyzed are temperature, relative humidity, dew point, station pressure, density, precipitation, and observed weather and clouds. The statistical information is based on the observational period 1951-1973. It must be realized, however, that the data presented in this type of statistical analysis are merely an aid and not the final or complete answer to scheduling a mission successfully from the meteorological standpoint. Averages or means do not give information on the random variability of monthly or hourly values or long-term climatic changes.

A statistical analysis of sky cover, surface wind conditions, and visibility appeared in Report 1 of this series [1], while climatological information on upper air data at various test sites on the Range appears in Report 3 in the series [2, 3, 4, 5, 6, 7].

FIGURE 1. MAP OF WHITE SANDS MISSILE RANGE

EXPLANATION OF TERMS

- 1. DRY-BULB TEMPERATURE. Technically, the ambient temperature registered by the dry-bulb thermometer of a psychrometer. However, it is identical with the temperature of the air and may also be used in that sense. [8]
- RELATIVE HUMIDITY. The ratio, expressed as a percentage, of the actual vapor pressure in the air to the amount that would be present if the air were saturated at the same pressure and temperature. [8]
- 3. DEW POINT TEMPERATURE. The temperature to which a given parcel of air must be cooled at constant pressure and constant water-vapor content in order for saturation to occur. [8]
- 4. STATION PRESSURE. The atmospheric pressure at the assigned station elevation. [8]
- 5. HYDROMETEORS. A hydrometeor is a meteor consisting of liquid or solid water particles which are either falling through or suspended in the atmosphere, blown from the surface by wind, or deposited on objects. Some examples are fog, rain, drizzle, freezing rain, hail, snow, blowing snow, etc. [8]
- 6. LITHOMETEORS. A lithometeor is a meteor consisting of a visible concentration of mostly solid, dry particles. The particles are more or less suspended in the air or lifted from the ground by wind. The term includes such dry atmospheric suspensoids as dust, haze, smoke, sand, etc. [8]
- 7. TEMPERATURE EXTREME. In climatology, the highest and, in some cases, the lowest temperature observed during a given period or during a given month or season of that period. If this is the whole period for which observations are available, it is the absolute extreme. [9]
- 8. DENSITY. [10]

$$\rho_{x} = .248.43 \left[\frac{P_{x}}{K_{vx}} \right] \text{ grams/cubic meter}$$

$$K_{vx} = K_{x}$$

$$\begin{bmatrix} \frac{P_{x}}{x} & \frac{P_{x}}{x} & \frac{P_{x}}{x} \end{bmatrix}$$

$$e_{x} = 0.0611 f_{x} 10^{7.5} c_{x}/c_{x} + 237.3$$

$$K_{x} = C_{x} + 273.16$$

where,

 $\rho_{x} = Density$

P = Pressure, in millibars

K = Virtual temperature in degrees Kelvin

 e_x = Partial pressure of aqueous vapor, in millibars

C = Temperature, ° Centigrade

 K_{x} = Temperature, Absolute, in ° Kelvin

 f_x = Relative humidity, per cent

9. CUMULUS. Dense clouds with vertical development; the upper surface is dome-shaped and exhibits rounded protuberances, while the base is nearly horizontal.

When the cloud is opposite the sun, the surfaces normal to the observer are brighter than the edges of the protuberances. When the light comes from the side, the clouds exhibit strong contrasts of light and shade; against the sun, on the other hand, they look dark with a bright edge. [11]

10. CUMULONIMBUS. Heavy masses of cloud, with great vertical development, whose cumuliform summits resemble mountains or towers, whose upper parts have a fibrous texture, and office spread out in the shape of an anvil

Virga frequently trails from the base, which resembles nimbostratus. This base has often a layer of very low ragged clouds below it (fractostratus, fractocumulus).

Cumulonimbus clouds are generally associated with showers of rain or snow and sometimes of hail, and often with thunderstorms. [11]

- 11. MAMMATO-CUMULUS. (Cumulonimbus mammatus). This description is given to all clouds whose lower surfaces resemble pouches. This form is found especially in stratocumulus and in cumulonimbus, either at the base or, more commonly, on the lower surface of anvil projections. It is also found, though rarely, in cirrus clouds, probably when they have originated in the anvil of a dispersing cumulonimbus. [11]
- 12. CIRRUS. Detached clouds of delicate and fibrous appearance, without shading (except cirrus nothus), generally white in color, often of a silky appearance.

Cirrus appears in such forms as isolated tufts, lines drawn across a blue sky, branching feather-like plumes, curved lines ending in tufts, etc.; they are often arranged in bands which cross the sky like meridian lines, and which, owing to the effect of perspecitve, converge to a point on the horizon, or two opposite points (cirrostratus and cirrocumulus often take part in the formation of these bands). [11]

- 13. CIRROSTRATUS. A thin, whitish veil which does not blur the outlines of the sun or moon, but usually gives rise to halos. Sometimes it is quite diffuse and merely gives the sky a milky look; sometimes it more cr less distinctly shows a fibrous structure with disordered filaments. [11]
- 14. CIRROCUMULUS. A cirriform layer or patch composed of small white flakes or of very small globular masses, usually without shadows, which are arranged in groups or lines, or more often in ripples resembling those of the sand on the seashore. [11]
- 15. STRATUS. A low, uniform layer of cloud, resembling fog, but not resting on the ground. [11]
- 16. STRATOCUMULUS. A layer (or patches) composed of laminae, globular masses or rolls; the smallest of the regularly arranged elements are fairly large; they are soft and grey, with darker parts.
- 17. FRACTOSTRATUS. When a layer of stratus is broken up into irregular shreds, it is designated "fractostratus". [11]
- 18. FRACTOCUMULUS. This cloud resembles ragged cumulus, in which the different parts show constant change. [11]

19. ALTOCUMULUS. A layer (or patches) composed of laminae or rather flattened globular masses, the smallest elements of the regularly arranged layer being fairly small and thin, with or without shading. These elements are arranged in groups, in lines, or waves, following one or two directions, and are sometimes so close together that their edges join.

The thin translucent edges of the elements often show irisations which are rather characteristic of this class of cloud. [11]

20. ALTOSTRATUS. Straited or fibrous veil, more or less grey or bluish in color. This cloud is like thick cirrostratus but without halo phenomena; the sun or moon shows vaguely, with a faint gleam, as though through ground glass. Sometimes the sheet is thin, with forms intermediate with cirrostratus. Sometimes it is very thick and dark, sometimes even completely hiding the sun or moon. In this case differences of thickness may cause relatively light patches between very dark parts; but the surface never shows real relief, and the straited or fibrous structure is always seen in places in the body of the cloud.

Every form is observed between high altostratus and cirrostratus on the one hand, and low altostratus and nimbostratus on the other.

Rain or snow may fall from altostratus (altostratus precipitans), but when the rain is heavy, the cloud layer will have grown thicker and lower, becoming nimbostratus; but heavy snow may fall from a layer that is definitely altostratus. [11]

21. NIMBOSTRATUS. A low amorphous and rainy layer, of a dark grey color, usually nearly uniform; feebly illuminated seemingly from inside. When precipitation occurs, it is in the form of continuous rain or snow. However, nimbostratus may occur without rain or snow.

There is often precipitation which does not reach the ground; in this case the base of the cloud is usually diffuse and looks wet because of the general trailing precipitation, virga, so that it is not possible to determine the limit of its lower surface. [11]

SECTION I

TEMPERATURE, RELATIVE HUMIDITY, AND DEW POINT

		•	PAGE
Table	I.	Mean Number of Days Per Month, Dry-Bulb Temperature	8
Table	II.	Minimum, Maximum, and Mean Duration in Hours by Month- Dry-Bulb Temperature	10
Table	III.	Mean and Extreme Dry-Bulb Temperature and Relative Humidity by Month and by Hour/Mean and Extreme Dew Point by Month and by Hour	12
Table	IV.	Monthly and Annual Temperature Means and Extremes (°Fahrenheit) at Seven WSMR Sites	36
Table	٧.	Diurnal Variation of the Relative Frequency Distribution of Temperatures by Month and by Hour	37

TABLZ: I

MEAN NUMBER OF DAYS PER MONTH - DRY BULB TEMPERATURE
A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

DRY BULB TEMPERATURE (DEG F)

MONTH	<u><</u> 32	<u>></u> 20 <32	>10 <20	<u>></u> 0 <10	0>	TOTAL DAYS OBSERVED
JAN	11	6	-	0	0	645
FEB	7	9	0	0	0	588
MAR	ന	2	0	0	0	949
APR	0	0	0	0	0	625
MAY	0	0	0	0	0	655
JUN	0	0	0	0	0	633
JUL	0	0	0	0	0	650
AUG	0	0	0	0	0	656
SEP	0	0	0	0	0	635
OCT	0	0	0	0	0	661
NOV	က	2	0	0	0	632
DEC	11	6	0	0	0	299

TABLE I (CONT)

MEAN NUMBER OF DAYS PER MONTH - DRY BULB TEMPERATURE
A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO
PERIOD OF RECORD 1951 - 1973

DRY BULB TEMPERATURE (DEG F)

TOTAL DAYS OBSERVED	645	588	979	625	655	633	650	929	635	661	632	299
×90	0	0	0	0	9	20	23	18	œ	0	0	0
>95	0	0	0	0	-	10	13	9	-	0	0	0
×100	0	0	0	0	0	7	က	H	0	0	0	0
MONTH	JAN	FEB	MAR	APR	MAY	JUN	JOE	AUG	SEP	OCT	NOV	DEC

TABLE II

MINIMUM, MAXIMUM, AND MEAN DURATION IN HOURS BY MONTH - DRY BULB TEMPERATURE

A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

DRY BULB TEMPERATURE (DEG F)

		<32 -32		۸۱	>20 <32	2	×10	0 <20		٧١	<u>></u> 0 <10			ô		
MON'TH	MAX	MEAN	MIN	MAX 1	MEAN	MIN	MAX M	MEAN M	MIN	MAX MB	MEAN M	MIN	MAX	MEAN	MIN	OBSERVATIONS
JAN	191	87	17	145	9	12	62	6	0	21		0	6	0	0	15679
FEB	133	94	0	113	35	0	27	4	0	က	0	0	0	0	0	14372
MAR	78	16	0	89	12	0	7	0	0	0	0	0	0	0	0	15758
APR	7	0	0	H	0	0	0	0	0	0	0	0	0	0	0	15088
MAY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15550
JUN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14870
JUL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15543
AUG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15750
SEP	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	15227
OCT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15977
NOV	43	13	0	33	6	0	0	0	0	0	0	0	0	0	0	15124
DEC	182	09	11	145	97	က	12	П	0	7	0	0	0	0	0	15236

TABLE II (CONT)

MINIMUM, MAXIMUM, AND MEAN DURATION IN HOURS BY MONTH - DRY BULB TEMPERATURE

A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

DRY BULB TEMPERATURE (DEG F)

	TIONS	6	7	œ	80	0	0	6	0	7	7	7	9
	OBSERVA	1567	1437	1.575	15088	1555	1487	1554	1575	1522	1597	1512	1523
	MIN	0	0	0	0	0	ന	2	9	_	0	0	0
×90	MEAN	0	0	0	7	23	120	132	85	28	0	0	0
	MAX	0	0	0	11	75	7:2	295	204	115	4	0	0
	MIN	0	0	0	0	0	-1	7	1	0	0	0	0
>95	MEAN	0	0	0	0	က	40	97	18	m	0	0	0
	MAX	0	0	0	0	34	122	166	84	35	0	0	0
	MIN	0	0	0	0	0	0	0	0	0	0	0	0
<u>></u> 100	MEAN	0	0	0	0	0	∞	9	Н	0	0	0	0
	MAX	0	0	0	0	11	45	48	6	0	0	0	0
	MONTH	JAN	FEB	MAR	APR	MAY	SUS	JUL	AUG	SEP	OCT	NOV	DEC

TARLE III

MEAN AND FXIREME DRY BULR TEMPERATURE AND RELATIVE HUMIDITY BY HORIN ALD BY HOUR A STATION - WHITE SANDS MISSILE RANGE - NEW MEATICO 1951 - 1973 PERTOD OF RECORD

MONTH OF JANUARY

		Υ - τ	c		8	~;	7	'n	¢	~	w	>		1 1	12	13	7	15	16	17						23		
OITY (SERCENT)	TOTAL		0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	665	3	30	~	~			~	~		****
E NUMIOIT			٥	۵	٥	C.	3		ə	-	10	1	.n	2	1	J	7	•	'n,	7	U	n	٥	7	-	٥		#
RELATIV	4	2 € : J	7	4 8	5.0	5.1	52	5.0	55	5	53	T T	7	0,	37	34	33	32	3.2	.35	39	7	42	4 3	\$	4.5		†
	3	2 .	00	001	100	100	O	100	C	Ċ	100	100	100	O	130	96	66	100)	66	001	100	130	100	100	001	•	1 00
*(3 5 10)	TOTAL		л	S	S	S	5	ហ	S	•	•	9	S	÷	S	5	•	•	•	1	3	3	~	~	439	1		156 3
RATURE	5	7	-	•	•	•	•	•	•	•	•	•	•	•	<u>-</u>	•	~	13.0	2	•		•	•		•	0 • 1		0.9-
16.4PF	<u>-</u>	?	•	-	•	Ċ	•	T	7 •	7	œ	2.	.0	7	•	5	3	54.5	•	•	•	÷	Ŋ.		3.			45.1
SRY SULA	-		•	å	7	c	•	•	ŝ	1	2	7 .	7 •	•	•	3.	2	76.0	• 9	•	•	•	•	•	•	•		76.0
	1) (7	ฑ	7	Ŋ	•	7	8	٥	0	1 1	12	13	†	5 7	16	17	9	0	20	2.1	22	23	≻ .Ω.	MONTH

VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST A THERMOGRAPH TRACE.

TABLE III (CONT)

HEAN AND EXTREME DEW POINT BY MOPTH AND BY HOUP A STATION - SHITE SANDS MISSILE RANGE - NEW MEAICO PERIOD OF RECORD 1951 - 1973

951 + 1973	>- 02:		TOTAL OBSERVATIONS	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S.	S	S	S	so .	0 1		S	•	S	S	•	.0	•	7	3	~	~	~	~	7	1	15669
080 19	F JANUAF	7 (UFG F	۲٥٠	-21.0	•	•	7	5	2 - 6	• •	7 -	3.	19.	11.	- 4-	5	.51	•	7.	•	*	•	4.	23.	27.	,	-27.0
OF REC	MONTH OF	N L O d Z	MEAN	21.9	•	-	-	-	<u>.</u>	• (1 2	2	2.	3.	2.	7.	2.	-	:	2.	5	5	•	•	•	•	22.0
PER100		90	н51н	4 4 6 6 6 6		ċ	•	•	0	• •		•	•	•	•	•	•	•	•	•	8	7.	•	•	• •	-	51.0
			ясон	n	2	~	7	5	e r	- 1	· ~	~	-	1.2	1 3	7	15	10	17	18		5 U		22	-	» ×	

TABLE III (CONT)

NEAN AND EXTREME ORY HULB TEMPLAATURE AND RELATIVE HUMINITY OF MONTH ALD BY HOUR A STATION - THITE SANDS MISSILE RANGE - NEV MEAICO 1951 - 1973 PERTUD OF RECORD

MONTH OF FEBRUARY

	ORY GULR	- B TEMPE	RATHEL	(.,FG F)*		RELATIV	ve nonto	OITY (DEMCENT)	
				OTA				OTA	
& 200 4	5	EA	L.J.A	⋖	2		۲0.	•	4.0 CR
0	6	5	•	0	0	1		5.45	
-	•	1	•	0	J	43	•~	7	
7	80	÷	Ö	\Box	0		/	7	7
٣	E.	₩ ;	~	C	\circ		. Te	3	ım
4	7	2	•	0	100		7	#	.
S	S	-	æ	C	O		. 6	9	·
•	7	0	•	0	100) 1	1	• •
7	+	ċ	ċ	O	0		7	3	~
αυ	•	2.	2.	C	100		7	5	3 0
0	8	ۍ.	5	0	0		-	3	0
<u> </u>	έδ •	Ť	~	0	ı.)		٠,		-
	2.	_	7	C	0		. ~	•	
12	7.	۳.	7.	0	66		·	3	1 2
1 3	•	5.	8		96		٥	*	
7	•		7.		66		3	3	.
15	£	7.	-		44		(7)	7	5
9 1	Ċ	7.	-	-	96		'n	3	9
17	7 •	ç	٠	0	9.6		ı.n	. 0	17
8 1	2.	3.	•	30	96		~	N	80
61	<u>.</u>	ċ	α	ໝ	66		ø	~	
7 C	•	÷	·	1	86		9	~	
21	•	*		æ			0	2	
22	70.0	47.4	15.0	586	47	39	~	5.28	22
73	•	•	•	T			7	T	
46Y 40NTE	9 1 • Ü	4.8 ° S	α; • α;	1 4372	00	∂ .	~1	13054	

OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE A THERMOGRAPH TRACE.

TABLE III (CONT)

REALL AND EXTREME DEM POINT BY NUMBER BY PUUMA STATION - LHITE SANDS MISSILE NANGE - NEW PERICO PERICO OF RECORD 1951 - 1973

MONTH OF FEARUARY

DEN POINT (DEG F)

0	ଏ ନ ଅ	603	7:9	603	€ 59	4139	£ () 0	603	すじゅ	دَنَ 6	6 04	404	409	605	+09	÷.:.9	909	6 04	294	506	5. T.J.	5 9 5	585	586	583		14370	
	۲٥:	0.9-	() ()	-7.0	0.6-	0.9-	•	• •	0.0-	-16.0	•	6	•	-10.0	•	•	\$		•	•	-7.0	•	-10.0	-10.0	0.9-		-19.0	
	æ ¥ ¥	71.4	in • ₩.	•	•	-	•	-	_	•	2.	5	2.	22.1	-	0	ċ	ċ	•	•	÷	ċ	0.	ò	•		21.2	
	H163		52.0	~	÷	<u>:</u>	-	•	8	•	8	<u>:</u>	÷	51.0	-	7	ô	•	•	÷	7	•	•	8	•		59.0	
	101 30	0	,-a	CI	*1	†	ŗ	O	7	ε	5 -	<u>٠</u>	1.	1 5	13	ty -	51	91	1.1	9C -	6.1	2 ي	2 1	22	23	9	H L Z O ₩	

TAMLE III (CONT)

MEBU AND EXPOSTS OF YOUR TEMPERATURE AND RELATIVE SOLIT BY SOLIT ALD ST. HOUS HITE SAMPS MISSILE HAUSE - MEN MEXICO PERTON OF RECORD 1951 - 1973 A SIATIC . -

MONTH OF MARCH

	DRY BULL	TEMP	FPATURE	(D) G F)*		PELATIV	THE MUNITER	FITY (DEMCE OF)	
				OTA				0 1 4	
HOUR	2	⋖	Ċ	⋖	5		. O.1	⋖	1 C 1
Ċ	Š	~	٦.	99			`	0	ت
	3	-	3.	9	3		ç		-
7	7	6	نما •	9			~	5	2
~;	1	ď	~	€			າ	D.	٠,
1	2		i O	S			7	6	†
S			(• a: 1	599	9 н	4.2	E	168	S
·c	-	'n	7 •	•			2		
7	3	•	ď	•			æ	>	7
Œ	ŝ	•	5	4			<u>ت</u>		æ
6	S	2.	3	÷			^	3	ţ.
0.1	7	٠ •	7.	÷			c	5	
	2	æ	8	9			ç	6	
	2	ċ	7.	O			S	0	1.2
	3	2.	•	•			7	0	
	Š	3.	5	Ŷ			7	C	
	S	÷	-	¢			ۍ	5	
	1	3	-	Ş			'n	0	
	3	<u>د</u>	-	4			5	1	
	2	•	Ċ	$\overline{}$			7	3	
	•	a	æ	~			М	9	
	60	7	7 •	~			.n	1	
	7	5.	ۍ •	4			.n	1	
	7	3	9	~			7	7	
73	78.0		5	~			`	1	
Z & ≺		5 5 0	- 4	15758	ت ت ت	32	ำ	14122	

OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE A THERMOGRAPH TRACE.

TABLE III (CONT)

MEAN AND EXTREME DEW POINT BY MONTH AND BY HOUK A STATION - WHITE SANDS MISSILE RANGE - NEW MEAICO PERIOD OF RECORD 1951 - 1973

MONTH OF MARCH

DEA POINT (DEG F)

TOTAL OBSERVATIONS	10 00000000000000000000000000000000000	
L0 !		
MEAN	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
H 0 1 H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
3 0 1	H W2-098755400000000000000000000000000000000000	

TABLE III (CONT)

MEAN AND FATREME DRY BULB TEMPERATURE AND RELATIVE HUMIDITY BY MONTH AND BY HOUR STATION - WHITE SANDS MISSILE RANGE - NEW MEXTOD PERIOD OF RECORD 1951 - 1973 1951 - 1973

MONTH OF APRIL

	DRY BUL	ULB TEMPER	RATURE	(Dr.G. F.)*		RELATI	VE MUMI	DITY (PERCENT)	
				OTA				O T A	
# 2001	5	EA		A >			r.o.:	⋖	AL. CH
0	<u>ب</u>	-	7.	3			-	5.9	
-	ċ	•	5	*				3	
7	ò	a 0	• 9	1			1	0	7
٣	7	7	5	J			Ą	0	٣
1	7	÷	2.	5			Ŧ	0	\$
J.		ដូវ	2.	Ŧ			5	0	3
•	•	3	•	7			s	0	•
7	77.0	56.9	34.0	1 7 9	. 87	3.2	J	598	1
c o	2	•	•	Ŧ			7	0	6 0
٥	2	2.	5	1			ď	0	0
<u>ာ</u>	•	رن •	-	5			า	6	
=	•	80	2.	3			#	0	-
12	•	•	4	7			2	0	
13	2.	•	5	7			~	9	13
7	-	<u>ب</u>	7	*			~	6	
15	*	9	7.	Ŧ			7	9	1.5
16	3.	3.	÷	7			~	0	
17	2.	3	\$	0			7	•	
18	ô	<u>:</u>	S	0			7	S	
19		8	3.	0				S	
20	5.	•		599			7	S	
21	•	S	7.	0			٣	S	
22	*		8	0			1	S	22
23	•	2.	æ	0			3 *	S	23
MONTE	94.0	64.5	29.0	15088	66	54		14058	

VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST A THERMOGRAPH TRACE.

TABLE III (CONT)

MEAN AND EXTREME DEW POINT 37 MONTH AND BY HOUR STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF APRIL

DEN POINT (DEG F)

TOTAL OBSERVATIONS	4	6 + 1	*	1	1	7	1	1	7	3	4	3	~	4	7	#	#	0	0	0	3	0	0	0	15087	
F03	•	-10.0	13.	20.	•	20.	•	•	•	+ -		•	8	•	0	8	•	-22.0	•	-20.0	•	•	•	ŝ	-30.0	
A E A N	2	23.0	3.	3	3.	3	4	4	5	4	1.	+	3.	2.	2.	-	ċ	•		•	-	•	-	2.	22.7	
н16н	6	51.0	ċ	ô	•	-	ċ	<u>:</u>	•	2.	2.	4	•	•	2.	•	ċ	2.	•	-		•	•	-	20.0	
H 00 80	5		7	7	- ਹਾ	J	•	7	20	٥	01		12	13	t	15	16	17	1 8			21			NONTH	

TABLE III (CONT)

HEAN AND EXTREME DRY BULB TEMPERATURE AND RELATIVE HUMIDITY BY MONTH AND BY HOUR A STATION - CHITE SANDS MISSILE RANGE - NEW MEXICO 1951 - 1973 PERTOD OF RECORD

MONTH OF MAY

		HOUR	0		7	~	3	ഹ	•	1	30	٥	0	-		13									22		
DITY (PERCENT)	OTA		~	-	-	_	~	979	2	2	2	~		2	N	N	2	2	N	30	-	~	•	•	9	•	985%1
E HUMID		L0.,	*	_		'n	3	ហ	\$	•	3	7	\$	'n	m	~	~	m	~	7	~	~	~	m	~	#	-
RELATIV								34																	23	-	2
_								16																			96
(DEG F)*	OTA	⋖	S		S	S		667		•	•	•	•		•	9	•	•	•	~	2	N	0	C	0	0	15556
RATURE			2	2	-	2.	•	0 • ú 1	-	3.	8	•	6	8	-	5	-	•	•	_	-	•	æ	• 9	*	5	38.0
TEMPE		EA	•		ហ	•	3	62.4	3.	• 9	œ		*	•	•	ô	-	2.	2.	-	ċ		+	3.	•	0	72.9
DRY BULB		9 1	•	1.	•	•	2.	80.0	4	ċ	-	2	• 9	1.	•	50	5	0.10	3.	•	•	5	*	3.	5	•	103.0
		HOUR	0	-	7	М	t	'n	9	7	œ	•	<u>0</u>	11	12		7	ß							22		3 G ×

VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALKAYS AGREE WITH THE HIGHEST OR LOWEST A THERMOGRAPH TRACE.

TABLE III (CONT)

MEAN AND EXTREME DEM POINT BY MONTH AND BY HOUR STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF MAY

DEW POINT (DEG F)

•	TOTAL OBSERVATIONS		J	559	J	•	•		•	•	•	•	•	•	799	•	•	•	~	~	N		0	0	0		15556
,	۲٥,	-15.0	•	-10.0	•	•	-10.0	-2.0	•	-	-24.0	•	-5.0	•	-10.0	-	•	•	-19.0	-21.0	-17.0	-27.0	-17.0	-16.0	-15.0		-27.0
	MEAN	28.2	8	•	6	•	30.3	-	-	2.	-	-	•	•	8	7.	•	•	5.	S	5	• 9	• 9	7	7		28.7
	H 6H	•	•	7.	•	•	58.0		-	20	3.	•		3.	62.0	9	~	•	2.		•	60	8	8	7.		10.0
	HOUR	Ö	-	7	٤	#	Š	•	7	10	6	01		12	13	†	15	9 [17	70	61	20		22	-	BY	HLNON

TABLE III (CONT)

REAN AND EXTREME DRY BULB TEMPERATURE AND RELATIVE HUMIDITY BY MONTH AND BY HOUR A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO 1951 - 1973 PERIOD OF RECORD

MONTH OF JUNE

		HOOR	0		~	~	*	S	•	7	3 0	0-	0	-	12	13	+		9 1		18				22		
DITY (PERCENT)	UTA	UBSEKVATIONS	3	•	9	•	0	0	0	0	0	0	0	•	•	296	0	0	0	8	557	Š	~	~	526	~	13804
E HUMIDIT		LOA	~	~	~	.	~	~	*	•	'n	~	7	~	~	~	-	~		~	~	~	7	~	~	٣	-
RELATIV																20											27
		HIGH	92	95	66	æ >-	66	Э	100	Ò	Ö	96	9.5	86	66	06	58	95	9.0	6 6	86	93	16	19		46	001
(DEG F)*	OTA	OBSERVATIONS	0	-	0	-	7	7	7	4	3	1	3	1	1	1	~	3	4	~		0	1	1	~	-	14870
RATURE		C	7	7.	. 9		3	-	2.	5	9 9	7.	6	•	-	0.19	+	-	-	0	2 .	2.	2	6	ò	•	50.0
B TEMPE		EA	7	5.	4	2.	•	0	2	4	7.	0	3.	\$		89.3	ċ	ċ	ċ	•	8	5	5	-	•	•	81•3
DRY BULB		5	•	2.	ċ	•	•	ċ	*	*	•		00	2	04.	S	06.	S	90	4	03.	ċ	69	•	*		106.0
		HOUR	0		7	٣	7	ī	•3	7	90	o	0.1		12	13	1 4		91		6						3 C X

* THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THEROMETERS OR A THERMOGRAPH TRACE.

TABLE III (CONT)

MEA! AND EXTREME DEW POINT BY MONTH AND BY MOUR A STATION - WHITE SANDS MISSILE MANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF JUNE

DEM POINT (DEG F)

TOTAL OBSERVATIONS	0	-	0	-	3	945	3	1	7	3	7	-	3	3	7	3	7	N	0	0	~	1		1	0	2007
467	9	-13.0	-9.0	•	0.6-	-10.0	•	0.7	•	•	-2.0	•	-	-1.0	-16.0	•	•	•	-13.0	•	0.6-	0.6-	-9.0	-10.0		0.91-
MEAN	•	8	•	•	0	40.3	-	2.	2.	7.		•	ċ	8.	9	7.	•	•	•	• 9	•	7.	7.	7.		7
H 1 GH	• 9	S	5.	5	S	0.59	3	5.	7.	•	4	ŝ		•	5	7.	7	•	5	5	5	•	5	•		75.0
HOUR	၁		2	~	Ŧ	S	•	7	10	•	01	1 1	12	13	7	15	16	17	79	61	20	21	22	23	- 6	ILON

TABLE III (CONT)

MEAN AND EXTREME DRY BULB TEMPERATURE AND RELATIVE HUMIDITY BY MONTH AND BY HOUR A STATION - SHITE SANDS MISSILE RANGE - NEW MEXICO PERTOD OF RECORD 1951 - 1973

MONTH OF JULY

HEAN LOK OBSERVATIONS HIGH HEAN LOK OBSERVATIONS HIGH HEAN LOK OBSERVATIONS HIGH HEAN LOK OBSERVATIONS HOUR LOK OBSERVATIONS HOUR LOK OBSERVATIONS HOUR LOK OBSERVATIONS HOUR LOK LO	HEAN LOR OBSERVATIONS HIGH MEAN LOR OBSERVATIONS HOTOWARD CORNERS (VATIONS HOTOWARD) 7.00 61.00 654 99 46 13 588 75.5 61.00 654 99 51 13 588 77.0 59.00 664 99 56 12 599 77.0 59.00 665 99 56 12 599 77.0 59.00 665 99 56 11 599 77.0 663 99 56 11 599 77.0 663 99 56 11 599 77.0 663 99 56 11 599 77.0 663 99 56 11 599 78.2 62.00 662 99 48 13 599 78.2 62.00 662 99 44 11 599 78.3 62.00 662 99 49 10 599 78.4 62.00 662 99 99 59 9 599 78.5 64.00 662 99 99 99 599 78.5 64.00 662 99 99 99 99 99 99 99 99 99 99 99 99 99	BULB	TEMP	ERATURE	(DEG F)*		RELATIVE	IE HUMIDIT	DITY (PERCENT)	
MEAN LOK OBSERVATIONS HIGH MEAN LOK OBSERVATIONS HOR TAGEN LOK OBSERVATIONS HOR TAGEN LOK OBSERVATIONS HOR TAGEN LOK OBSERVATIONS TO THE COLOR OF TAGEN LOK OBSERVATIONS HOR TAGEN COLOR OF TAGEN COLOR OF TAGEN LOK OF TAGEN COLOR OF TAGEN LOK OF TAGEN COLOR OF TA	MEAN LOK OBSERVATIONS HIGH MEAN LOK OBSERVATIONS HOW TAN LOK OBSERVATIONS HOW TOO BY THE STABLE STAB				1				OTAL	
76.80 61.0 654 99 46 12 573 76.8 61.0 654 99 51 13 586 76.8 61.0 654 99 56 12 586 77.1 59.0 665 99 56 12 586 77.0 59.0 664 99 56 12 599 77.0 59.0 664 99 56 12 599 77.0 59.0 664 99 56 11 599 77.0 59.0 664 99 56 11 599 77.0 59.0 662 100 57 16 597 77.0 662 99 46 13 597 11 599 78.0 662 99 46 13 599 10 599 80.2 62.0 662 99 49 10 599 80.	77.0 61.0 654 76.8 61.0 654 75.5 60.0 654 77.0 59.0 665 77.1 59.0 665 77.0 59.0 665 77.0 69.0 661 77.0 662 77.0 662 77.0 662 77.0 662 77.0 663 7		•		TA TO TO	9	u	0	BSERVATION	2
77.0 61.0 654 75.5 60.0 654 77.1 59.0 655 77.1 59.0 665 77.1 59.0 665 77.1 59.0 665 77.2 665 77.3 1 59.0 665 77.4 1 59.0 665 77.4 1 59.0 665 77.4 61.0 662 77.4 11 59.0 663 77.5 62.0 662 77.5 62.0 662 77.5 64.0 662 77.5 64.0 662 77.5 64.0 662 77.5 64.0 662 77.5 64.0 662 77.5 64.0 663 77.5 64.0 663 77.5 64.0 663 77.5 64.0 663 77.5 67.0 663 77.5 67.0 67.0 67.0 67.0 67.0 67.0 67.0 67.0	75.0 61.0 654 75.5 60.0 654 75.5 60.0 654 75.5 60.0 654 77.1 59.0 665 77.1 59.0 665 77.1 59.0 665 77.2 62.0 663 77.2 62.0 663 77.2 62.0 663 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 64.0 662 77.3 67.0 67.0 67.0 79.0 79.0 79.0 79.0 79.0 79.0 79.0 7	_	⋖	4	02544450	0	7	-		0
76.6 61.0 654 99 51 13 588 75.5 60.0 654 99 56 12 538 74.1 59.0 665 100 53 11 599 72.0 59.0 664 100 57 16 599 72.0 59.0 662 100 53 11 599 75.6 62.0 663 99 48 13 597 75.6 62.0 663 99 48 13 597 75.6 62.0 663 97 44 11 597 75.6 62.0 663 97 44 11 597 86.2 62.0 663 97 44 11 599 86.2 62.0 662 97 44 11 599 90.0 64.0 662 97 44 11 599 90.0 64.0	76.8 61.0 654 75.5 60.0 654 73.1 59.0 665 73.1 59.0 664 73.1 59.0 665 72.0 59.0 662 72.0 59.0 663 72.0 60.0 662 73.1 100 53 115 599 77.0 62.0 663 78.0 62.0 662 78.0 64.0 662 78.0 64.0 662 78.0 64.0 662 78.0 64.0 662 78.0 64.0 662 79.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78	_	•	•	170		4			-4
75.5 60.0 654 99 56 12 598 74.1 59.0 664 100 56 11 599 72.0 59.0 664 100 57 16 599 72.0 59.0 663 100 57 16 597 75.6 62.0 663 100 57 16 599 75.6 62.0 663 100 57 16 597 75.6 62.0 663 99 48 13 599 86.2 62.0 663 97 44 11 599 86.2 62.0 663 97 44 11 599 86.2 62.0 663 97 44 11 599 86.3 63.0 665 96 96 597 96 599 86.3 64.0 662 96 96 599 96 599	75.5 60.0 654 99 53 13 558 77.0 665 665 99 656 12 599 77.0 665 77.0 665 77.0 665 77.0 665 77.0 663 77.	_	•	•	_		7 4			7
74.1 59.0 654 99 53 11 599 72.0 59.0 664 99 56 12 599 72.0 59.0 663 100 57 16 597 75.6 62.0 663 100 53 15 597 78.2 62.0 663 99 48 13 597 81.1 61.0 663 97 44 11 599 81.1 61.0 663 97 44 11 599 81.2 62.0 663 97 44 11 599 81.2 62.0 662 94 48 13 599 81.2 62.0 662 94 32 9 599 81.2 62.0 664 94 36 699 10 81.2 62.0 664 94 30 8 599 81.2 65.0 <td< td=""><td>74.1 59.0 665 99 53 11 5599 72.0 665 99 56 12 5999 72.0 662 100 57 16 597 72.0 662 100 57 16 597 72.0 662 100 57 16 597 72.0 662 99 99 99 18 13 597 72.0 663 99 99 10 597 81.1 61.0 663 99 99 99 10 597 86.2 62.0 663 99 99 99 10 599 86.3 64.0 662 99 99 58 8 597 87.1 61.0 662 99 99 58 8 597 88.3 64.0 662 99 99 58 8 597 88.3 64.0 662 99 92 30 8 597 88.7 64.0 621 99 99 38 10 547 88.7 64.0 619 99 38 10 547 88.9 65.0 610 99 44 11 554</td><td>_</td><td>•</td><td>•</td><td>_</td><td></td><td>7</td><td></td><td></td><td>, ~</td></td<>	74.1 59.0 665 99 53 11 5599 72.0 665 99 56 12 5999 72.0 662 100 57 16 597 72.0 662 100 57 16 597 72.0 662 100 57 16 597 72.0 662 99 99 99 18 13 597 72.0 663 99 99 10 597 81.1 61.0 663 99 99 99 10 597 86.2 62.0 663 99 99 99 10 599 86.3 64.0 662 99 99 58 8 597 87.1 61.0 662 99 99 58 8 597 88.3 64.0 662 99 99 58 8 597 88.3 64.0 662 99 92 30 8 597 88.7 64.0 621 99 99 38 10 547 88.7 64.0 619 99 38 10 547 88.9 65.0 610 99 44 11 554	_	•	•	_		7			, ~
73.1 59.0 665 99 56 12 599 72.0 664 99 58 11 599 72.8 60.0 662 100 57 16 597 72.8 60.0 662 100 59 13 597 75.6 62.0 662 97 44 11 597 78.2 62.0 663 97 44 11 599 81.1 61.0 663 97 44 11 599 81.1 62.0 663 97 44 11 599 86.2 62.0 662 96 32 8 600 86.3 64.0 96 32 8 600 599 86.2 64.0 96 32 8 600 10 599 10 699 600 10 600 600 600 600 600 600 600 6	73.1 59.0 664 99 56 12 599 72.0 664 99 66 11 599 72.0 664 99 58 11 597 72.8 60.0 662 100 53 15 597 75.6 62.0 663 99 48 13 597 74 11 597 78.2 62.0 663 99 73 44 11 599 73 86.2 62.0 662 97 39 10 599 73 86.3 63.0 665 94 30 86.3 64.0 665 94 30 8 599 73 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75		•	•	_	65	53			1 :
73.1 59.0 664 99 58 11 599 72.0 562 100 57 16 597 72.6 62.0 663 100 57 16 597 76.6 62.0 663 99 48 13 597 78.2 62.0 663 97 44 11 599 81.1 61.0 663 97 44 11 599 81.1 62.0 663 97 44 11 599 86.2 62.0 662 96 32 8 600 86.2 64.0 96 32 8 600 599 90.7 64.0 662 99 9 599 10 599 90.7 64.0 662 99 9 9 599 10 9 599 90.7 64.0 662 99 9 9 599 10	73.1 59.0 664 100 58 11 599 72.0 59.0 664 100 57 16 597 72.6 62.0 663 100 53 15 597 78.2 62.0 663 997 44 11 599 81.4 62.0 663 997 34 10 599 86.3 63.0 664 997 36 9 597 86.3 63.0 664 997 36 9 6597 86.3 63.0 664 997 36 9 6597 86.3 63.0 662 94 29 9 597 86.4 64.0 662 94 29 9 597 86.5 65.0 662 94 29 9 597 86.5 65.0 662 94 29 6 597 86.5 65.0 662 94 29 35 10 5547 86.6 609 99 36 10 5547 86.6 609 99 36 10 547 86.6 609 99 36 10 547 86.6 609 99 36 10 547		•	•		66	95	12		*
72.0 59.0 662 100 57 16 597 75.6 62.0 663 100 53 15 597 78.6 62.0 663 97 48 13 597 78.1 61.0 663 97 44 11 599 81.1 61.0 663 97 34 11 599 81.2 62.0 662 97 34 11 599 86.2 62.0 664 94 30 8 599 88.3 63.0 664 94 30 8 599 88.3 64.0 664 94 30 8 599 99.5 64.0 662 94 29 9 599 99.5 64.0 662 94 29 9 599 99.5 65.0 662 94 29 4 599 99.5 64.0 662	72.0 59.0 662 100 57 16 597 72.8 60.0 663 99 48 13 597 78.2 62.0 663 99 48 13 599 81.1 61.0 662 997 44 11 599 81.2 62.0 663 997 36 9 597 81.1 62.0 662 99 99 99 99 99 81.2 65.0 662 99 99 99 597 81.2 65.0 609 99 38 10 547 81.2 62.0 609 99 38 10 547 81.2 62.0 609 99 38 10 547 81.3 62.0 609 99 38 10 547 81.4 65.0 609 99 38 10 547 81.5 62.0 609 99 38 10 547 81.5 62.0 609 99 38 10 547 81.5 62.0 609 99 38 10 547 81.5 62.0 609 99 38 10 547 81.5 62.0 609 99 38 10 547	_	•	•	_	0	of the	-		S
72.8 60.0 66.3 100 53 15 597 78.2 62.0 66.3 100 53 15 597 78.2 62.0 66.3 97 44 11 599 81.1 61.0 66.3 97 34 9 599 83.6 62.0 66.3 97 36 9 599 84.2 62.0 66.2 94 32 9 599 88.3 63.0 66.4 94 30 8 597 90.7 64.0 66.4 94 30 8 597 91.2 65.0 66.2 94 29 9 597 91.2 65.0 66.2 94 29 9 599 91.2 65.0 64.8 92 9 599 91.2 64.0 64.8 9 599 91.2 64.0 66.2 9 60.2	72.6 60.0 66.3 100 53 15 597 78.2 62.0 66.3 99 48 13 597 78.2 62.0 66.3 97 44 11 599 81.1 61.0 66.3 97 44 11 599 81.6 62.0 66.2 97 39 10 599 86.2 62.0 66.5 96 32 8 690 88.3 63.0 66.4 94 30 8 597 90.7 64.0 66.2 94 29 9 597 90.7 64.0 66.2 94 29 9 597 90.7 64.0 66.2 94 29 6 597 90.5 64.0 66.2 94 29 6 598 90.5 65.0 66.2 94 29 2 598 90.5 65.0	_		•	•	, c	0 0	• (•
75.6 62.0 662 99 48 13 597 78.2 62.0 663 97 44 11 599 81.1 61.0 663 97 34 10 599 83.6 62.0 662 96 32 9 597 11 86.2 62.0 662 94 30 8 597 1 90.7 64.0 662 94 30 8 597 1 90.7 64.0 662 94 29 9 597 1 90.7 64.0 662 100 28 8 597 1 90.7 64.0 662 94 29 2 597 1 90.5 65.0 662 94 29 2 598 1 90.5 65.0 662 94 29 2 2 2 90.5 65.0 662 94 29 2 2 2 90.5 65.0 603 99	75.6 62.0 663 100 53 15 597 78.2 62.0 663 97 48 13 597 10 599 11 599 11 599 11 599 11 599 10 599 11 599 11 599 10 599 10 599 11 599 10 599	_	•	•		יכ	n (1
78.2 62.0 66.2 99 48 13 599 10 599 11 599 11 599 10 599	78.2 62.0 66.3 99 48 13 599 81.1 66.3 97 34 10 599 1 86.2 62.0 66.2 97 34 10 599 88.3 62.0 66.2 94 30 8 597 90.7 64.0 66.2 94 29 9 599 90.7 64.0 66.2 94 29 9 599 90.7 64.0 66.2 100 28 8 597 90.5 64.0 66.2 100 28 8 597 90.5 64.0 66.2 94 29 29 599 90.5 64.0 66.2 94 29 29 599 90.5 64.0 66.2 94 29 29 599 90.5 65.0 64.8 93 35 10 540 90.5 65.0	_	•	•		0	e (n ·		. a
81.1 61.0 663 97 44 11 5599 83.6 62.0 662 97 36 9 599 10 599 86.2 62.0 665 96 32 8 600 10 599	81.1 61.0 663 97 44 11 599 83.6 62.0 662 97 36 9 599 86.2 62.0 665 94 30 8 599 88.3 63.0 664 94 30 8 599 88.3 64.0 662 94 29 9 597 90.7 64.0 662 94 29 9 597 90.5 65.0 662 94 29 9 598 90.5 65.0 648 92 30 8 558 90 65.0 648 92 31 9 558 90 65.0 609 99 40 10 547 90 65.0 609 99 40 10 547 90 62.0 609 99 40 10 547 91.0 62.0 609 99 40 10 547 91.0 62.0 609 99 45 12 546 91.0 62.0 609 99 45 12 546 91.0 62.0 609 <		_	•		66	3	7		0
83.6 62.0 66.2 97 39 10 597 1 86.2 62 96 32 8 600 1 86.3 63.0 66.5 94 30 8 597 1 89.9 64.0 66.2 94 29 9 597 1 90.7 64.0 66.2 94 29 9 597 1 91.2 65.0 66.2 94 29 6 597 1 91.2 65.0 66.2 94 29 6 597 1 89.7 64.0 66.2 94 29 6 598 1 89.7 64.0 62.1 92 31 9 55.8 1 85.7 64.0 61.9 99 33 10 54.7 1 81.9 62.0 60.9 99 40 10 54.7 1 80.5 62.0 60.9 99 45 11 54.7 1 80.5 62.0 60.9 99 45 11 54.6 1 80.5 62.0 60.9 99 45 11 54.7 <	83.6 62.0 663 97 39 10 597 1 86.2 62 96 32 8 600 1 86.2 62.0 664 94 30 8 597 1 86.2 64.0 96 29 9 597 1 2 64.0 662 100 28 8 597 1 3 91.2 65.0 662 99 9 9 597 1 3 91.2 65.0 662 99 9 9 9 597 1 4 91.2 65.0 662 92 9 9 598 1 598 9 90.5 61.0 9 9 40 1 54 556 1 54 <td></td> <td>•</td> <td>•</td> <td>-0</td> <td>44</td> <td>3</td> <td>-</td> <td></td> <td>. 5</td>		•	•	-0	44	3	-		. 5
86.2 97 36 9 597 86.2 96 32 8 600 86.3 65.0 664 94 30 8 599 90.7 64.0 662 98 29 9 597 1 91.2 65.0 662 94 29 9 597 1 90.5 65.0 662 94 29 9 599 1 90.5 65.0 662 94 29 4 29 598 1 90.5 65.0 648 92 30 8 579 1 90.5 65.0 648 92 31 9 556 90 621 93 35 10 546 90 609 99 40 10 546 90 609 99 45 11 546 90 609 99 45 12 546 90 609 99 45 12 546	86.2 66.2 97 36 9 597 1 86.2 66.4 96 32 8 600 1 89.9 64.0 66.2 96 29 9 599 1 90.7 64.0 66.2 96 29 9 599 10 1 90.7 64.0 66.2 100 28 8 599 10 1 90.7 64.0 66.2 94 29 9 599 10 1 90.5 65.0 66.2 94 29 4 579 10 1 89.7 64.0 62.0 648 92 31 9 556 10 556 10 556 10 556 10 556 10 556 10 547 56 10 547 546 547 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 546 <t< td=""><td></td><td></td><td>•</td><td></td><td>47</td><td>39</td><td>0 7</td><td></td><td>) ·</td></t<>			•		47	39	0 7) ·
88.3 63.0 664 96 32 8 88.3 64.0 664 94 30 8 597 99.7 64.0 662 100 28 8 597 91.2 65.0 662 100 28 8 597 90.5 65.0 662 94 29 4 90.5 65.0 648 92 31 9 579 98.2 65.0 648 92 31 9 558 98.2 65.0 619 93 34 550 98.3 65.0 609 99 40 10 544 98.3 62.0 619 99 40 10 544 98.3 62.0 619 99 40 10 544 98.3 45 12 546 79.2 610 99 45 11 544	88.3 63.0 664 94 32 8 1 89.9 64.0 662 94 30 8 597 1 90.7 64.0 662 100 28 8 597 1 91.2 65.0 662 94 29 9 598 1 91.5 65.0 648 92 30 8 579 1 89.7 64.0 621 92 31 9 558 1 88.2 65.0 619 99 38 10 547 1 81.9 62.0 609 99 40 10 547 1 81.9 62.0 609 99 45 11 546 1 81.9 62.0 609 99 45 12 546 1 79.2 61.0 609 98 45 12 546 1 81.9 60.9 98 45 12 546 1 81.0 45 12 546 1 10 45 12 546 1 10 45 12 546 1 10 <td></td> <td></td> <td></td> <td></td> <td>44</td> <td>36</td> <td>•</td> <td></td> <td>- C</td>					44	36	•		- C
89.9 64.0 664 94 30 8 90.7 64.0 662 100 28 8 597 91.2 65.0 662 100 28 8 597 90.5 65.0 662 94 29 4 598 90.5 65.0 648 92 30 8 579 90.5 65.0 648 92 31 9 558 90.6 65.0 619 99 34 54 90.6 60.9 99 40 10 544 90.5 61.0 60.9 99 40 11 544 90.5 61.0 60.9 99 45 11 544 90.5 61.0 60.9 99 45 11 544 90.5 61.0 60.9 99 45 11 544 90.5 61.0 60.9 99 45 11 544	89.9 644 94 30 8 90.7 64.0 662 98 29 9 91.2 65.0 662 94 29 4 90.5 65.0 662 94 29 4 90.5 65.0 648 92 30 8 90.5 65.0 648 92 31 9 90.5 65.0 619 93 35 10 547 90.6 60.9 99 40 10 547 90.6 60.9 99 40 10 547 90.6 60.9 99 40 10 546 90.6 60.9 99 45 11 547 90.6 60.9 99 45 12 546 90.7 45 12 546 90.7 45 12 546 90.9 45 12 546 90.9 45 12 546 90.9 45 12 546 90.0 45 45 12 546 90.0 46 45 12 546 90.0 46 45 </td <td>· ·</td> <td></td> <td></td> <td>-0</td> <td>96</td> <td>32</td> <td>30</td> <td></td> <td>y (</td>	· ·			-0	96	32	30		y (
98. 29. 9 91.2 65.0 662 100 28 8 597 0 90.5 65.0 662 92 30 8 559 0 89.7 64.0 648 92 31 9 559 0 88.2 65.0 609 99 38 10 547 0 81.9 62.0 609 99 40 10 547 0 81.9 62.0 610 99 45 12 546	90.7 64.0 662 100 28 8 597 1 91.2 65.0 662 94 29 4 29 4 29 7 64.0 662 94 29 7 4 29 7 64.0 662 94.0 29 31 9 558 1 0 65.0 609 99 38 10 547 65.0 609 99 40 10 547 65.0 609 99 40 10 547 65.0 609 99 40 10 547 65.0 609 99 40 10 547 65.0 609 99 40 10 547 65.0 609 99 40 10 547 65.0 609 99 40 10 548 10 547 65.0 609 99 42 11 5545 10 548 65.0 609 99 42 12 548 65.0 609 99 42 12 548 65.0 609 99 42 12 548 65.0 609 609 609 600 600 600 600 600 600 60) (-	4	30	ø		7
91.2 65.0 662 100 28 8 597 1 648 69.7 64.0 648 92 30 8 579 1 648 65.0 648 92 30 8 558 1 0 558 1 0 547 0 619 99 38 10 547 0 610 610 610 97 42 11 547 0 546 0 609 609 99 45 12 546 0 609 0 79.2 61.0 609 98 45 12 546	91.2 65.0 662 100 28 8 597 1 662 662 94 29 4 59 6 579 1 648 95.7 64.0 648 92 31 9 558 1 0 558	.				66	29	•		*
91.2 65.0 662 94 29 4 59 6 579 10 89.7 64.0 648 92 31 9 558 10 85.7 64.0 619 99 38 10 547 619 99 40 10 547 610 81.9 62.0 610 99 40 10 546 610 98 45 12 546 610 610 610 98 45 12 546	91.2 65.0 662 94 29 4 29 4 29 6 579 10 89.7 64.0 648 92 31 9 558 10 558 10 554 619 99 38 10 547 619 97 42 11 547 610 609 99 45 12 546 609 97 42 11 547 610 609 98 45 12 546 619 98 45 12 546 619 98 45 12 546 619 98 45 12 546 619 98 45 12 546 619 98 45 12 546 619 98 45 12 546 619 98 45 12 546 619 98 45 12 546 619 98 45 12 546 619 98 45 12 546 619 619 619 619 619 619 619 619 619 61	_	Š.,	٠,		_	28	Œ		5
0 90.5 65.0 648 92 30 8 579 1 0 89.7 64.0 621 92 31 9 558 1 628 1 628 1 628 1 639 99 40 1 547 609 99 40 1 547 609 609 99 40 1 544 654 609	0 90.5 65.0 648 92 30 8 558 10 85.7 64.0 648 92 31 9 558 10 558 10 85.7 64.0 609 99 38 10 547 609 99 40 10 547 609 97 42 11 547 609 98 45 12 548 609 609 97 42 11 548 609 609 97 42 11 548 609 609 97 42 11 548 609 609 97 45 12 548 609 609 609 98 45 12 548 609 609 609 609 609 609 609 609 609 609	0	_		о,	, •	0	•		16
0 89.7 64.0 621 92 31 9 558 0 88.2 65.0 619 93 34 10 554 0 85.7 64.0 609 99 40 10 547 0 81.9 62.0 609 99 40 10 546 0 81.9 62.0 610 97 42 11 547 0 79.2 61.0 609 98 45 12 546	89.7 64.0 64.8 92 31 9 621 92 31 9 63.4 65.0 619 99 38 10 547 6 63.4 62.0 609 99 40 10 547 6 81.9 62.0 609 97 42 11 547 6 80.5 61.0 609 98 45 12 546 6 79.2 61.0 609 98 45 12 546 7 81.9 59.0 15543 100 42 2 13991	0	Ö	•	•	- 0) d		17
0 88-2 65-0 621 72 35 10 556 0 85-7 64-6 619 99 38 10 547 0 83-4 65-0 609 99 40 10 546 0 81-9 62-0 609 97 42 11 547 0 80-5 62-0 609 98 45 12 546 0 79-2 61-0 609	0 88-2 65-0 621 72 35 10 556 0 85-7 64-0 619 93 35 10 547 0 83-4 65-0 609 99 38 10 547 0 81-9 62-0 609 97 42 11 547 0 79-2 61-0 609 98 45 12 546 0 79-2 61-0 609 98 45 12 546	0	0	•		7.0	7	0		91
0 85.7 64.6 619 93 33 10 547 0 83.4 65.0 609 99 40 10 547 0 81.9 62.0 609 97 42 11 547 0 80.5 62.0 610 98 45 12 546	0 85.7 64.6 619 93 35 10 547 0 83.4 65.0 609 99 38 10 547 0 81.9 62.0 609 97 42 11 547 0 79.2 61.0 609 98 45 12 546 0 79.2 61.0 609 98 45 12 546	0	00		"	72	7	•		6
0 83.4 65.0 609 99 38 10 546 0 81.9 62.0 609 97 42 11 547 0 80.5 62.0 610 97 42 11 546 0 79.2 61.0 609 98 45 12 546	83.4 65.0 609 99 38 10 546 0 81.9 62.0 609 99 40 10 546 0 80.5 62.0 610 97 42 11 547 0 79.2 61.0 609 98 45 12 546	0	LO.			E 6	רי	2 (20
0 81.9 62.0 609 99 40 10 547 0 80.5 62.0 610 97 42 11 547 0 79.2 61.0 609 98 45 12 546	0 81.9 62.0 609 99 40 10 547 0 80.5 62.0 610 97 42 11 546 0 79.2 61.0 609 98 45 12 546	· C			•	66	ים ר) ·		
0 80.5 62.0 610 97 42 11 547 0 79.2 61.0 609 98 45 12 546	0 80.5 62.0 610 97 42 11 547 0 547 0 79.2 61.0 609 98 45 12 546 5 61.0 61.0 42 2 13991		-		-	66	4	<u> </u>	ř	
0 79.2 61.0 609 98 45 12 546	0 79.2 61.0 609 98 45 12 546 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	י כ	• (, ,		47	45	7 7	7	77
0 79.2 61.0 607	0 79.2 61.0 6U7 59.0 15543 100 42 2 13	Ö		•) (0 = (1	0	45	12	3	23
	6 81.9 59.0 15543 100 42 2 13	0	0	-	409		•	•		
		C	0	59.0	1	0		7	1,401	

VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST A THERMOGRAPH TRACE.

TABLE III (CONT)

JEAN AND EXTREME DEW POINT BY MONTH AND BY HOUM A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

				•														
951 - 1973		.	TOTAL OBSERVATIONS	636 652	n n		661	_	-	 799	664 662		*	619	0	6 09	_	15525
R0 1	JUL Y	OEG	L 3.4	25.0 25.0		4 4	• •	•	2 0	* "	9 9			• •	ŝ		25.0	22.0
OF RECO	MONTH OF	EW POINT	MEAN	52.9		4 W	5.0	· 0	U 4	÷ 6	2 -	50.4		• •		52.6		53.4
PERIOD		٥	ī	6 8 • 0 0 • 8	66.0	4	69.0		7 7	7.	4.		. 7 .			e -		78.0
			H 0 U R	0 ~	N M	វ ហិ	9 1	20 0	- 0	- 2	6 4			<u> </u>	_	21		SONTH

TABLE III (CONT)

MEAN AND EXTREME DRY BULB TEMPERATURE AND RELATIVE HUMIDITY BY MONTH AND BY HOUR A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO 1951 - 1973 PERIOD OF RECORD

MONTH OF AUGUST

		HOUR	3	-	7	~	7	'n	9	7	œ	٥	٥		12	13	†	15	16	17	8 7	6 1			22	23		
DITY (PERCENT)	OTA	•	5.9	_	0	0	0	0	•	0		0	0	0	0	0	0	209	0		~	~	•	1	~	•		14186
F HUM				91		'n	5 !		20				7		12	-	٥	>	5	07	_	12	+		12	10		-
RELATIV																		31				3.8		43		47		T
		HIGH	36	66	9.6	100	66	66	0	100	0	41	41	96	47	93	9.6	92	80	96	87	91	001	Ü6	9.6	100		100
(DEG F)*	OTA	~	S	•	9	•	•	•	•	•	•	•	•	9	•	•	•	665	•	#		3		635	M			15751
RATURE		107	<u>-</u>	2.	•	•	•	7	ď	-	-	-	3.	3.	+	•	3	0.59	8	•	ı,	•	•	2.	•	•		55.0
8 TEMPE		EA	•	.	3.	2.	-	ċ	ċ	3.	•	•	:	1	•	7.	æ	88.6	8	7.	5	7	•	•	•	7.		19.1
DRY BUL		9	ċ	7	•	+	ŝ	2	2.	•	7	3	7	7	8	000	00	102.0	010	• 00	9	4	+	2.	-	•		103.0
		HOUR	0	-	7	ฯ	7	ហ	•	7	90	٥	01	11	12	13	+	15	9 [17	8 7	6 1	20	21	22	23	>	MOLTH

VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST A THERMOGRAPH TRACE.

TABLE III (CONT)

MEAN AND EXTREME DEW POINT BY MONTH AND BY HOUM STATION - WHITE SANDS MISSILE RANGE - NEW MEAICO PERIOD OF RECORD 1951 - 1973

-	F.)	TOTAL OBSERVATIONS	959	_	699	•	_	•	662	•	•	999	•		•	•	•	599	•	4	~	M	~	~		~		15750	
AUGUS	930)	L 3 ;	•	•	28.0	•	7	7.	ċ	-	•	:	3.	ċ	ŝ	•	7	7	7	7.	7	·	_	8		1		24.0	
MONTH OF	EM POINT	MEAN	54.1	3	5.40	+	+	+	Š	5.	5	5	+	*	3	2.	2.	•	•	-	•	2.	7	•	9	3.		53.6	
•	0	н16н	77.0	•	77.0	<u>:</u>		• 9	•	•	•	•	8	•		0	7.	71.0	•	• 9	5	• 9	5	7.	•	0 • 6 9		80.0	
		HOUR R	0	-	2	٣	Ŧ	ភ	¢	7	3 0	٥	01	11	12	13	†	51	16	17	9	61			22	-	>	.ONTH	

TABLE III (CONT)

PEAN AND EXTREME DRY BULH TEMPERATURE AND RELATIVE HUMIDITY BY MONTH AND BY HOUR A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO 1951 - 1973 PERIOD OF RECORD

MONTH OF SEPTEMBER

		HOUR	c	-	~	m	*	J	•	^	90	0	<u> </u>	1	12	13	1	51	91			6 1			22	_	
RELATIVE HUMIDITY (PERCENT)	OTA	OBSERVATIONS	•	~	1	~	1	-	-	1	-	1	~		~	1	~	~		•	S		·D	S	S	•	13710
		LO 4		13	=	12	15	80	11	<u>s</u>	- 1	12	0	-	•	1	7	æ	6	٥	٥	7	1 1	1 1	01	12	•
				40														87							43		45
				66																				Э	100		1 00
(DEG F)*	0	OBSERVATIONS	*	640	~	3	#	3	~	~	~	3	m		3	3	#		*	m	~	N		~	622	2	15227
DRY BULB TEMPERATURE		0		48.0	7.	7.	7.	8	7.	7.	7	9	•	•		-	-	3.	•	2.	•	•	•	0	•	6	46.0
		EA	•	0	8	~	•	5	4	7.	•	~	• 9	•	-	÷	+	+	9	2.	6	7		+	۵.	•	74.6
		9	Š	85.0	÷	5	-	-	2.	5	ŝ	ċ	ċ	3	•	•		8		•	4	•	8	8	•	•	98.0
		HOUR	o	-	2	٣	7	ß	9	7	Œ	•	01	11	12	13	7 -	15	16	17	18	6.1	20	21	72	23	RONT

VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST A THERMOGRAPH TRACE.

TABLE III (CONT)

PEAN AND EXTREME DRY BULH TEMPERATURE AND HELATIVE HUMIDITY BY MONTH AND BY HOUR A STATION - WHITE SANDS MISSILE RANGE - NEW MEAICO 1951 - 1973 PERIOD OF RECORD

MONTH OF SEPTEMBER

	DRY BUL	8 TEMP	ERATURE	(DEG F)*		RELATIV	L HUMI	DITY (PERCENT)	
				OTA				OTA	
ROOM	9	EA	407			MEAN	LOw	CHSERVATIONS	HOUR
ဂ	\$	•		249	66	4 6		~	O
-	S	•	8	1		40	13	~	-
7	•		7	~		15	+ 1	~	~
~	2.	7	•	640		53		~	~
#	-	•	7	#		55	15	1	Ŧ
S	•	S	8	4		57	c 0	-	S
•	2.		7.	~		5.9	17	-	•
7	3.	7.	7	~		55		~	^
6 0	85.0	70.4	47.0	637	16	20	_		6
•	•		•	~		\$ 0		1	0
	ċ	•	0	~		0 \$		~	-
-	•	•	•	~		36	-	•	
12	•	-		3		33		1	12
	• 9	3.	•	3		31	1	1	13
†	. ′	*	-	7	50	29	7	~	7
5 1	8	+	3.	~	92	58	æ	~	
		3.	3.	3	90	2.9	•		
17	•	2.	2.	m	06	30	0-	•	17
	1	6	•	~	06	33	•	S	
	•		•	~	93	. 37	^	•	
	8	5	•		40	0 7	11	·J	
	8	*			100	7 7	-	S	
	•	<u>ب</u>	•	~	O	43		S	
	8	7	•		66	45	12	•	
>									
RONTE	98.0	74.6	46.0	15227	001	42	•	13710	

VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST A THERMOGRAPH TRACE.

TABLE III (CONT)

MEAN AND EXTREME DEW POINT HY MONTH AND BY HOUR A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF SEPTEMBER

F.)	TOTAL OBSERVATIONS	642	010	~	040	3	4	639	~	~	~	638	~	7	*	7	~	3	630	N	~	2	N	~	N	(15226
(DE 6	ro.,	•	13.0	•	•	•	•	•	8	•	÷	<u>ب</u>	-	•	•	•	•	•	15.0	S		•	•	16.0	•		0
EW POINT	H F A S	•	47.3	•	7	7.	7.	8.	8	49.0	8		8	7	•	ŝ	5	*	n)	5	• 9	• 9	• 9	• 9	7.	P	
90	H 1 GH	•	0.59	3.	+	5.	5	•	.	ŝ	8	7	7.	•	•	•		2.	7	•			•	•	•	r	0•//
	HOUR	0		2	M	7	'n	9	7	89	•	C I	_	12	13	†	5 1	9	17	e -	6-	20		22	-	- 6	I N N

A. B.

TABLE III (CONT)

MEAN AND EXTREME DRY BULB TEMPERATURE AND RELATIVE HUMIDITY BY MONTH AND BY HOUR A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO 1951 - 1973 PERIOD OF RECORD

MONTH OF OCTOBER

	DRY BULB	TEM	PERATURE	(DEG F)*		RELATIV	E HUM 3	DITY (PERCENT)	
				OTA				OTA	
HUUR	9	EA	0	<	9	MEAN	107	~	HOUR ROUR
0	ò	<u>.</u>	•	-	0	7		602	0
_	•		7	~	0	7		0	-
7	•	•	4	1	0	10 5	01	0	~
~	8	7.	8	1	0	47	•	O	e
ŧ	ŝ	•	÷	1	100	4	13	C	1
s	'n	ů.	5	1	'n	5.0		J	រោ
•	+	+	•	1	Ċ	52		0	• •
7	77.0	56.3	35.7	+19	100	5.0	7	409	7
6 0	8	•	•	-	0	40		0	30
~	2.	۳	•	1	C	7.4	3	\Box	٥
0.1	3	•		~	0	36		0	
-	1.	•	2.	1	100	33	70	C	
12	ċ	•	3.	1	9.8	31	٥	0	12
13	•	3.	7	1	92	28	7	0	
+	÷	4	•	1	6	27	٥	0	
5 1	•	2.	•	~	56	26	•	O	5
9 7	•	*	4	~	96	26	5	0	
		2		S	0	28	æ	-	
18		•	•	3	100	33	-	1	
	3.	•	•	6.2.0	96	35	5	1	
	•	S.	•	7	47	37	~	1	
	•	1.		4	44	38	O.	8	
	•	2.	•		47	39	•	~	
	ċ	•		3	98	4 3	95	1	23
> 1		,							
11011	92.0	9.49	33.0	15977	00.1	62	•	0000	
)				•	•	

OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOR ALWAYS AGREE WITH THE HIGHEST OR LOWEST VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE A THERMOGRAPH TRACE.

TABLE III (CONT)

MEAN A'1D EXTREME DEW POINT BY MONTH AND BY HOUM A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

		5 K O																											
ER		TOTAL OBSERVATI	~	672	1	~	~	1	1	1	~	~	~	~	1		1	~	1	ŝ	7	3	*	1	2+9	*		15978	
F 0CT08	IT (DEG	L04	•	7.0	•	•	2.	-10.0	•	•	•	7.0	•	•	•	•	•	•	•	•	8.0	•	•	•	5.0	•		-10.0	
MONTH 0	EW POIN	MEAN	36.2	. 9	•	36.3	•	• 9	•	7	7	7.	7.	7	7.	•	•	5.	5	5	•	•	•	2.	5	S		36.3	
	٥	H 1 GH	9.59	5.	5	95.0	\$	3	5.	Ş	5.	•	5	Š	5.	+		3.	3.		3.	9	*	3		1		71.0	
		8 0 8	၁	-	~	m	3	u	•	7	œ	•	0.1	Ξ	15	13	+ -	5	9 [17	9	6	٦ 7	21	22	23	8	HONTH	

TABLE III (CONT)

MEAN AND EXTREME DRY BULB TEMPERATURE AND RELATIVE HUMIDITY BY MONTH AND BY HOUR A STATION - MHITE SANDS MISSILE HANGE - NEW MEAICO 1951 - 1973 PERIOD OF RECORD

MONTH OF NOVEMBER

	DRY BUL	B TEMP	ERATURE	(DEG F)*		RELATIV	VE HUM	IDITY (PERCENT)	
				0				0.1	
HOUR	5	EA		⋖ >	S		L 0 .	•	よりのな
Ö	•	•	7.	~			^	57	၁
	ċ	8	7.	~			/	~	-
8	•	•	•	3			~	-	^
E	٠ د	9	5.	~	Ü		7	1	m
7	3	•	<u>.</u>	\sim			1	1	3
'n		ŝ	S	*				Ø	'n
•9	7	*	1	636	100	5.4	~		9
1	•	•	9	m			· 1 0	1	7
Œ	•	7.	• 9	~			æ	-	œ
۰	•	ເ	ů	3			6	/	0
	2.	3.	•		0			~	0
	4	• 9	2.	~			٥	~	-
	8		2.	3	Э		30	1	12
	ċ	ċ	2.	~			ن 0	~	. T
	•	2.	3.	~			•	1	7
	•	2.	3.	~			.20	1	1 5
	•	•	3.	100			10	1	Ģ
	•	e 33	-	3	0		·1	:	7.7
	•	'n	2.	-			6	٠Ŋ	8
		•	0	-			>	S	51
	3.	2.	•	_	Ö		٥	S	20
	5	<u>:</u>	8	~			>	in	
77	•	51.0		613	001	†	7	553	22
	70.0	2.09	27.0	-			0-		23
₩.		. (:						
エトこつと	() • 37 • 10	22.6	24.0	15124	071	4 5	m	13712	

OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST VALUE FOR THE INDIVIDUAL HOURS. The HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE A THERMOGRAPH TRACE.

TABLE III (C.JNT)

MEAN AND EXTREME DEW POINT BY MONTH AND BY HOUM A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF NOVEMBER

DEW POINT (DEG F)

TOTAL Observations	3	m	~	635	ā	~	~	~	~	3		3	~	~	•	~	7	~	_	~	~	-	720	-	
÷0-1	0.4	-8.0		0.	•	-3.0	•	1.0	•	0.4-	-5.0	•	-5.0	•	•	•	•	3.0	•	•	-2.0	3.0	•	1 • 0	
MEAN		1.		27.2	7.	7.	7.	7.	7.	7.		7.	7	7	7	7	•	8	8	8	8	7	7	7.	
19 11	•	•	-	51.0	•	0	2.	-	2.	5	3	5	+	3	+	+	-	3.	2	-	-	3	ċ	•	
HOUR	0	~	~	~	Ŧ	S	•	7	30	0	0.	-	12	- 3	7 -	1.5	16	17	18	6 -			22		

27.5 -12.0

54.0

MON THE

TABLE III (CONT)

MEAN AND EXTREME DPY BULB TEMPERATURE AND RELATIVE HUMIDITY BY MONTH AND BY HOUR A STATION - MHITE SANDS MISSILE RANGE - NEW MEXICO 1951 - 1973 PERIOD OF RECORD

MONTH OF DECEMBER

	DRY BULB	.8 TEMPER	RATURE	(DEG F)*		RELATIV	E HUMIDI	DITY (PERCENT)	
				OTA				01	
HOUR	9	¥	0	•	9	MEAN		•	HOUR
0	•	2.			1 30	50	<u> </u>	0	o
	68.0	41.7	18.0	637	1 30	25	:0	965	-
~	7.	-		3	0	E Z	15	0	~
•	7.	ö	~	3	0	5.4	15	0	n
3				~	0	ភ	ะก	6	3
S	8	•	0	~	C	26	0.	0	ß
٥	7.	8	Œ	~	Э	5.7	7.	0	•
7		7.		~	100	S	13	0	^
30	8	•	Ü	S	C	5.5	12	0	20
0	-	2		7	\Box	<u>ئ</u> د)	1.2	3	٠
01	•	S	~	#	0	4	•	0	
11	•	æ		S	0	42	•	0	
12	-	ċ	S	3	0	38	9	0	
13	7	2.		3	O	36	•	0	
7 -	•	9	Ģ	7	00	7 M	*	0	
15	7.	4		3	66	34	60	0	
9	• 9	3.		7	0	35	70	0	
	2.	ċ	~	2	O	39	0	Ð	
	•	7.	25.0	-	100	# #	^	1	8 1
	2	•	3	-	J	7 7	- 1	1	
	ò	ŝ		-	100	46		~	
	ċ	*	7	-	0	47		~	
	ċ	0.11		_	100	4		~	
23	•	9	9	-	0	4.9	10	8	
± 20 €	77.0	. n	6	9 r C S i	00	4	3	14.57	
	•	•	•	,) , i)	•	•)	

OBSERVATION IS TAKEN, WHILE THE MONTHLY VALUE IS BASED ON READINGS FROM MAXIMUM-MINIMUM THERMOMETERS OR * THE HIGH AND LOW DRY BULB TEMPERATURE FOR THE MONTH WILL NOT ALWAYS AGREE WITH THE HIGHEST OR LOWEST VALUE FOR THE INDIVIDUAL HOURS. THE HOURLY HIGH-LOW IS BASED ON THE TEMPERATURE READ AT THE TIME THE A THERMOGRAPH TRACE.

TABLE III (CONT)

A STATION - WHITE SANDS HISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF DECEMBER

DEA POINT (DEG F)

TOTAL OBSERVATIONS	634	637	~	m	7	639	~	~	S	3	*	AT.	*	*	#	. 3	*	N	-	919		612	-	618	
÷07	-19.0	0.9-	0.8-	-7.0	-11.0	-12.0	-7.0	-7.0	0.4-	-2.0	-2.0	-10.0	0.8-	-8.0	-24.0	-7.0	-11.0	-13.0	-10.0	-3.0	0.4-	-8.0	-8.0	-5.0	
JEAN	23.3	3.	23.2	3.	7	22.9	7	2.	5	+		23.9	3		5	9	9	•	•	*	9	•	•	23.3	
I I	50.0	49.0	48.0	•	48.0	48.0	0.65	S		7	46.0	•	7.	•		8	51.0	51.0	8	7	6	•	•	50.0	
HOUR	o	-	~	C	7	S	•	^	3 0	۰	0	11	12	13	7 4	5	9 1	17	9	1 9	20		2.5		

15236

-24.0

23.6

51.0

HINOS

TABLE IV

MONTHLY AND ANNUAL TEMPERATURE MEANS AND EXTREMES ("FAHRENHEIT) AT SEVEN WSMR SITES

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annu

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	Annual
"A" Site				Ele	vation	4,238	FT MSL		Period	of Re	cord 19	50-197	73
Mean Max	56	60	66	75	84	93	93	91	86	77	64	56	75
Mean Min	34	38	43	52	60	69	70	69	63	53	41	36	52
Abs Max	76	81	86	94	103	106	107	103	98	92	84	77	107
Abs Min	-6	8	16	29	38	50	5 9	55	46	33	22	8	-6
WSD Site				Ele	vation	3,989	FT MSL		Period	of Re	cord 19	962-197	73
Mean Max	57	61	68	78	87	94	95	92	87	78	66	57	77
Mean Min	25	29	36	46	53	62	67	64	58	45	33	27	45
Abs Max	78	81	89	97	100	108	108	104	98	94	83	7 5	108
Abs Min	-14	5	6	19	26	41	57	51	37	22	12	5	-14
HMN Site				Ele	vation	4,090	FT MSL		Period	of Re	cord 19	963-19	73
Mean Max	55	59	67	76	85	93	95	91	-86	77	65	5 5	75
Mean Min	26	29	36	44	52	61	67	64	5 8	46	35	28	46
Abs Max	74	78	87	96	100	106	105	106	97	92	81	73	106
Abs Min	-3	7	9	25	27	42	57	53	40	24	17	6	- 3
SMR Site				Ele	vation	3,999	FT MSL		Period	of Re	cord 19	963-19	73
Mean Max	56	60	68	77	86	92	95	91	86	77	65	56	76
Mean Min	27	31	39	48	56	63	68	65	60	47	37	29	48
Abs Max	78	83	87	96	100	106	108	103	98	93	82	74	108
Abs Min	4	7	9	22	32	42	59	57	42	23	16	6	4
AT ACHE Si	te			Ele	vation	3,956	FT MSL		Period	of Re	cord 19	962-19	73
Mean Max	56	60	68	77	86	93	95	92	86	77	65	56	76
Mean Min	24	28	3 5	44	52	61	66	63	57	44	33	26	44
Abs Max	78	80	89	97	100	108	107	103	99	93	82	75	108
Abs Min	-7	7	7	20	28	42	59	53	37	21	13_	2	- 7
JALLEN Si	te			Ele	vation	4,051	FT MSL		Period	of Re	cord 19	963-19	73
Mean Max	5 5	59	67	76	86	92	95	91	85	77	64	55	75
Mean Min	25	29	3 5	44	52	61	67	65	57	46	34	27	45
Abs Max	76	81	89	98	98	108	106	106	98	92	84	76	108
Abs Min	-2	5	7	22	30	43	58	50	37	28	16	7	-2
STALLION	Site			Ele	vation	4,940	FT MSL		Period	of Re	cord 19	962-19	73

L	ADS MIII	-2)	/	22	30	43	<u> </u>		31		10		2
	STALLION S	Site			Elev	ation	4,940	FT MSL		Period	of Rec	ord 19	62 - 1973	
ſ	Mean Max	51	5 5	63	72	82	89	92	89	83	73	61	51	72
١	Mean Min	21	25	31	39	48	57	64	61	54	43	31	23	41
1	Abs Max	72	77	85	93	97	101	104	101	95	90	79	71	104
L	Abs Min	-16	2	6	17	30	40	54	47	35	20	14	2	-16

TABLE V

VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES BY MONTH AND BY HOUR (IN PERCENT) - WHITE SANDS MISSILE RANGE - NEW MEXICO 1973 1951 PERIOD OF RECORD A STATION DIURNAL

1-15 JANUARY

DRY SULB TEMPERATURE (DEG F)

UBSERVATIONS 313 306 308 306 311 306 7477 7100 300000000000000000000 >90 de 0 280 <69 <u>>0<</u> 0 × 60 < 69 >50×59 21 >33 <39 > 40<49 35 26 24 27 4 T W 38 22 220<32 5 >10 ₫ 9 >-1n <9 00000000000---C HONTH ROUR

TABLE V (COLT)

DIURMAL VARIAȚIO, OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES

- A STATIOM - WHITE SANDS MISSILE RANGE - NEW MEXICO

- PERIOD OF RECORD 1951 - 1973

16-31 JANUARY

DRY BULB TEMPERATURE (DEG F)

90 <99 > 100 0856 vATIONS		344	၁	e o	e o	0	*C 0		36	4 M	36	36	36	34	* P	3 m	⊅ €	33	0 33	0 33	0 33	33	0 33	0 33		961 0 0
0 <79 > 80 < 89 >		0																								0
< 69 > 60 < 69 > 7	7 9	9	_	•	7	9	7	1 5	2	0	9	-	1 2	0 3	5 3	T	6 3	c	2	7	5	5		7		71 6
>40< 49 >50 >40<		40		60	7		ν.	31	9	J	7	33 4	7	7	æ	. •	7	•	7.	7	*	*	9	0		32 2
> 33<39	17	18	2 1	77	24	24		52	27	22		9	9	ጥ	ŧ	3	7	·c	0	13	13	13	91	1 6		<u></u>
20232	<u>c</u>	13	6 T	17	19	2.1		54		89	ū	6	2	-		0			7	2	ហ	7	30	æ		•
617017	C	0	o	O	o	-			0	0	0	0	0	0	0	0	0	٥	0	O	0	0	٥	·c		0
6) 6)	c	c.	O	O	c	c .	C	O	Ċ	Ö	c	O	C.	C.	C	c	c.	C	c	O	C	0	r.	c:		C
1 0 3 3	o	-	7	m	4	S		^	90	٠	0.7	1 1				15	_	17	18	6 1	20	21	22	23	>- C	HONTH

TABLE V (CORT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES

SY MONTH AND BY HOUR (IN PERCENT)

A STATION - AHITE SANDS MISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

1-15 FEBRUARY

DRY BULB TEMPERATURE (DEG F)

	UBSERVATIONS	- 7		4 6	4 5	4 0		1 N	~	N	N	N	N	~		. ~		1 6	-						311		7674
	00 I	0	· C) C) c	0	0	O	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0		0
	الم الم	3) () C) (0	0	c. c	O	0	0	0	၁	0	O	0	3	0	0	0	C	0	0	0	0		3
	280 <89	J	C	.) (0	0	0	3	0	0	0	0	0	0	0	•	0	0	0	3	0	0	0	0		9
	>10<79	"1	C) C	C	ی ر	၁	Ö	ιɔ	0	0	0	7	7	J.	01	2.1	1 1	.	2	-	-	0	0	0		~
	69 ¹ 0 %	10	1		ហា	М	7	~	7	٣	•	1 1	16	54	31	32	35	35	32	21	5 7	13	12	•	Œ.		7
	×50 <59	24	22	20	6	19	17	1.5	13	17	52	32	7	38	35	31	31	30	36	0+	36	32	29	28	26		27
	64>04 <	- Ŧ	39	7	39	38	37	36	33	9.0	M T	33	7 8	22	20	6-	16	17	1 9	5 2	32	35	36	37	37		32
	>33 <39	0		20	22	23	54	52	5.5	25	æ -	- 1	o - 1	^	ហ	3	m	†	J	ø.	7	12	2	91	9 1		5 1
	>20<32	□			7 -	16	1 6	21	22	5	©	^	J.	3	7	n	~	•	۳	J	S	•	^	0 0	C		٥
	> 1C < 1 9	~	2	7	2	8	-	7	7	~	-	~	0	0	0	0	0	0	O	Ø	C.	~					
	\$\cup \cup \cup \cup \cup \cup \cup \cup	C.	0	C	C.	C	C	C	C	0	0	0	0	c	c	C	C'	c	C	Ç)	0	0	0	c	C		c
*	H 0 U R	O		7	•	7	S	c 1	~ (10 (• (0.	- 0	71	r) :	7 (S.	9 7	1 1		6			22		8	MONTH

TABLE V (COLT)

DIUKRAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES OF AND BY HOUR (IN PERCENT) A STATIO'S - "HITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

16-29 FEBRUARY

SNO

DRY BULB TEMPERATURE (DEG F)

OBSERVATION	30	8	0	8	282	0	0	9	•	•	0	8	8	Ø	3	4	0	~	~	~	~	-	-	1		4698
0017	a	သ	0	Ü	0	0	0	0	0	0	0	9	0	0	0	0	O	0	9	0	0	0	0	0		0
66 V 06 <	ા	O	O	ڼ	0	÷	O	၁	0	0	0	0	٥	၁	ت	0	0	0	0	ی	c	0	o	O		0
2 6 8 D 6 2	د	၁	Ö	3	ن.	.0	Э	ن	ن	0	a	a	0	c	0	J	9	0	٥	o	0	0	0	ာ		0
× 70< 7	2	J	ن	1 +	ن	0	a	၁	0	0	0		7	•		11		٥	2		0	0	0	0		7
~ 69 09 Z	ţ.	,	£	٣	m	7	-	7	7	sy.					37											17
> 50< 59					20																					3.1
(65\U) - <					.																					32
\$65.66	<u>п</u>	(1) 	5 0	23	7 7	7.7	56	31	21	16	01	7	3	4	7	7	2	e	ç	٥	٠	٥	12			1.3
≥2 0≤32	æ	^	7	30	11	7	91	15	3	ភ	7	-	7	-	0	a	0		-	0	-	٣	*	3		Ŋ
61∑01 <	ָרַי	O.	c	ن	ت		••	-		D	۵	ن	0	0	0	o	C	0	0	¢	0	O	0	Cı		Ö
\$1 C 1 *1	€.	0	0	Ć.	¢.	0	C	0	C	0	c	c	Ċ	0	C	0	د	O	0	C	O	C	C.	C		c
0 0 0	Ċ	-	2	٣	7	S	•	~	30	Ġ.	01		12	13	†	15	16	17	6 7		20		22		>	KONTH

TABLE V (CONT)

1-15 MARCH

DRY BULA TEMPERATURE (DEG F)

OBSEKJATIONS	~	~	N	N	323	N	N	N	N	N	N	N	N	N	N	N	N	-	-	-	-	-	-	-	7673
2100	0	Э	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	J	0	0	0	0	0	o	0
96>06<	د	C	3	Ö	3	Э	0	٥	ø	0	0	0	0	O	0	0	0	د.	0	٥	0	0	0	0	0
68 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	þ	0	0	J	0	0	0	0	0	0	0	0	0	-		~	-		0	O	0	0	၁	0	٥
> 70< 79		-	~	O		٥	0	0	0		7	S				23				œ	S	t	٦	-	2
69×09×	4	91	7	1 1	a 0	•	•	9	0.7	†	24	31	36	36	36	33	33	33	36	32	28	76	54	22	22
\$ 2 0 × 5 \$	28	28	54	5.4	22	22	21	22	27	35	37	9	35	31	28	30	30	31	31	33	32	33	31	56	53
< 64504 <	76	7 €	39	38	0+	3.0	37	36	42	35	30	13	16	<u>.</u>	12	01	•		17	23	28	53	31	33	27
>33 <39	T	9 1	9 1	· -	2.0	7.7	54	22	17	12	•	Ŧ	7	-	7	~	7	7	7	m	‡	7	C 1	12	7
>20<32	٣	3	J	7	٥		12		Ŧ	٣	~	-			-	-		O	-	-	7	7	~	7	7
か マ に ズ	C	O	0	O	c)	0	٥	O	C	O	0	٥	0	0	O	C I	0	0	O	0	0	0	0	ъ	0
۶۱ د ۱	€.	C	C.	C	C	C	c	C	c	C	C	0	C	0	C	C.	C	C	C	C	0	0	C	C	c
1001 2008	D	-	7	m	.	S	•	-	30	0	0	1 1	12							6-					HONATH

TABLE V (CONT)

DISRMAL VAGIATIO OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES
OF MONTH AND BY HOUR (IN PERCENT)

A STATION - WHITE SANDS HISSILE RANGE - NEW MEXICO
PERIOD OF RECORD 1951 - 1973

16-31 MARCH

DRY PULB TEMPERATURE 10EG F1

OBSERVATIONS		342	4	-	•	3	- :	•	*	340	136			- (c	01:0	77	342	340	342	770	246	-) (C) (3.65	326	326	325	325			8 0 8 S
00 اے		C)	C	1 :	O	O	Ċ	: כ	2	n	O	0	C) () :)	0	Ö	0	0	Ü	ာ	ာ	C	0 (כ	0	0	0		(5
66166		د	0) ;	၁	G	3)	>	C	Ö	J	ت	י נ) () (0	က	0	Ö	O	ij	O	Ç) (5	a	0	Ü		•	5
69 70 8~		3	0	c	0	၁	c) ()	ح	Ö	၁	0	a) (3) -	4	7	m	Ŧ	1	•	. 7	Q) (3 (0	0	0		•	-
×70<79	v	n .	M	•	J	~	-		0 0	5		-	~	S	13	2 0	T .	7 0	9	-	42	38	53	1.1	1 1	• (20 (`	D		1	-
69>09 <) : (4.7	21		Œ	90	ď		9 .	M .	12	33	7	46	- -	• (7 0	\$! ? (75	3	7	- -	t T	3. 7U		7 6	70	7		-	
45>05<	30		•	+	0	,	35	35	32		o .	-	9	35	29	27	22	1 0		0 4	0	cc .	7.1	28	28	20	, r	3 6	E 1		3.1	·
>4 0 > 4 9		26	1 ·	92	28		1		39	7.6	י ר	0 (77	~	0	S	ŧ	3	. 1	. 1	٠.	n ~	0 (•	T	66	0	0	•		18	
> 33<39	:	4	, ,	•	~		•	12	1.2	e.	ی ۰	1 1	7 (V :	8	7	-	_	٠	. ~	•	-	٠.	- 1	7	?	~	ď	,		5	
<u>>20 <32 </u>		_				1 1	•	ŧ	'n	7			٠,		0	0	c	0	0	C) C	o c) (، د	0	0	0	C	,		-	
61201	C:	0) C	>	0	· c	•	0	0	c) C		0 6) כ	C) -	0	c	0	C	0) C	c) ر) د	0	0	0	C	ı		Ü	
% C -	C	C	c	9	C	C	•	C	C	C	c	• •	o c	> 0	_	C	C	C.	c	0	· c	c	. c	. c	•	c	c				c	
HOUR	c		2		C	7	u	n ·	•	^	90	•	07		• (71	13	‡	15	91	17	1.8	6	2		17	22	23		₩	F.02TH	

TABLE V (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES

BY MONTH AND BY HOUR (IN PERCENT)

A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO
PERIOD OF RECORD 1951 - 1973

1-15 APRIL

DRY BULB TEMPERATURE (DEG F)

	OBSERVATIONS	-	-	-	-	-	-	319	-	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0	0		2496
	00 1×1	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0		0
	46×06×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
	6 € 0 ₹	a	0	0	0	0	0	0	0	0	0		~	•	12	*		•-	-	•	*	-		0	0		*
	×70×79	1.	۰	•	ហ	3	•	~		ហ							20										54
•	6909 <							20																47			35
	50<59	34	37	39	39	\$	36	4.	7	43	38	24	17	12	60	7	7	Ŋ	•	٥		20					52
	< 64 \ 0 + < < < < < < < < < < < < < < < < < <	13	91	19	23		<u>.</u>	30	56		•	ហ	*	•	~	-	-	-	-	-	7	7	ភ	7	0		1.1
	×33 <39	-	•	٣	‡	*	•	9	~	0	~	0	0	0	٥	0	O	0	Ö	0	0	0	0	-	-		-
	>20<32	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
	>1 0 < 1 9	0	0	0	0	0	0	0	O	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	ъ		0
	61 -1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0		0
•	1 0 2	0	-	8	M	ŧ	ល	•		•	•	2		12	E 7	†	15	91	17	9 7	6	20	21	22	23	6 3	RONTE

TABLE V (CONT)

DIURGAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES

OF MONTH AND BY HOUR (IN PERCENT)

A STATION - HITE SANDS MISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

16-30 APRIL

DRY BULB TEMPERATURE (DEG F)

OBSERVATIONS	322	~	N	N	?	~	N	N	N	N	N	N	N	N	N	N	N	0	0	0	0	0	0	0		7592
0017	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0		0
66 064	Q	0	၁	J	0	0	O	0	0	O	0	0	0	0	-	~	***		-	0	0	0	0	0		0
₹8 0 × 0 8×	· ເວ	~	0	q	٥	0	0	0	0	-	~	•			27					89	‡	~	-			Q
>70<79	20			~	3	e	7	Ŋ	12	25	39	4	26	£0.	21	20	52	1) 1	57	1 5	42	37	31	24		31
69 >04<	47																			32		45	47			36
> 50 < 5	30											7	w	n	•	7	7	n	•	7	0	5	8	23		21
6 년 D 수 C	3 ('n	7	©	1 2	16	17	_	†	7	-		-	0	0	0	0	0	0		7	7	m	~		Ŧ
133<39	0	ים	0	0	o	0	ว	0	0	0	0	0	0	0	0	0	ø	O	0	0	•	0	0	•		0
20 <32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
< 41201<	0	o	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0		0		0
81 51	C	0	C	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		G
2001	0 •		~	n	†		• • • • • • • • • • • • • • • • • • •	^	0 0	•	0	~	12	2	*	S	•	17	9	6	20	21	22	23	&	HONTH

TABLE V (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES.

AY MONTH AND BY HOUR (IN PERCENT)

A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

1-15 MAY

DRY BULB TEMPERATURE (DEG F)

OBSERVATIONS	N	N	N	324	N	N	N	N	N	N	N	N	~	N	N	N	N	0	0	0	0	0	0	0		7610
2100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
66 > 0 6 <	0	O	0	٥	0	0	0	0	0	0	0	-	2	.s	01		•	‡	-	0	0	0	٥	0		~
. 60 × 84	ū	~	7	-	0	0	၁		n	7	1 8	27	36	7	4	8+	40	51	e t	30	17	12	•	•		1 9
70<79	32	30	56	6 7	9	13	13	•=	32	45	47	8	43	37	35	34	36	32	+	6.7	≯	20	47	0		35
< 69 09 <				40																17						29
<u> 50<59</u>				32								•	7	8	-		~	7	n	*	•	•	11	15		*
\$ 0	7	٣	7	វា	•	6	7	~		0	0	0	0	0	0	0	0	0	0	0	0			-		7
33 < 39 <	O	O	၁	9	0	0	o	0	၁	0	0	O	0	0	o	0	0	0	0	O	o	0	0	0		O
×20 <32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
<u> </u>	O	a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0		0
\$\\ \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \cdot \\ \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \cdot \\ \cdot	C	· C	. c	C	0	0	0	0	0	0	0	0	a	0	0	0	C	O	C	C	0	0	C	0		Ç
NDCH NDCR	٥	-4	~	•	7	5	•	^	Ġ	•	10	=======================================	12	13	7 (15	9	17	8 7	61	20	21	22	23	> a	HONTH

۲,

TABLE V (CO:T)

DIURGAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURFS

BY HONTH AND BY HOUR (IN PERCENT)

A STATION - WHITE SANDS HISSILE RANGE - NEW MEXICO

PERIOU OF RECORD 1951 - 1973

16-31 MAY

DRY GULB TEMPERATURE (DEG F)

OBSERVATIONS	~	N	~	~	-	TO SE PO	8	4			-	-	2	-	*	-	*	N	N	~	0	0	0	0		7446
1 00	0	O	0	0	o	0	O	0	0	0	0	0	0		-	-	-		0	0	0	0	0	0		0
< 66 V 0 6 < 7	0	0	3	0	0	O	0	0	-	-		*	•	5			21			8	-	-		•		v
68708	7	7	7	~	-4		-	~	•	1.8			26													30
> 70<79						20																				36
₹ 69 × 09 ×						5.3				•			3	7	n	7	m	\$	•	•		51				54
50< 59	3	•	01	13	8	12	÷	•	7		Ü	0	Ö	0	0	0	0	0	c			7	-	7		‡
< 64 V D + <	0	J	0	٥	o	0	۵	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0		0
>33 39 2	ø	O	၁	O	O	'n	0	O	a	0	O	O	o	0	Ö	0	O	o	.0	0	O	o	0	0		כי
20<32	C	0	O	0	0	0	0	0	0	0	٥	0	o	0	0	0	0	0	0	0	0	0	0	0		0
<u> </u>	o	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	Ö	0		0
\$1 01 • K	0	C	C	C	. 0	0	G	0	0	0	0	0	0	0	0	0	0	0	0	0	G	O	0	0		0
HOUR	0		7	٣	7	Ŋ	•	7	©	۰	0.1	1 1	12	13	†	S	91	17	8	61	20	21	22	23	8	HONTH

TABLE V (CONT)

DISTRIBUTION OF TEMPERATURES - NEW MEAICO (IN PERCENT) 1951 -RANGE OF THE RELATIVE FREQUESICY STATION - AHITE SANDS MISSILE PERIOD OF RECORD BY MONTH AND BY HOUR DIURNAL VAFIATIO

1-15 JUNE

DRY BULR TERPERATURE (DEG F)

UBSEKVATIONS 313 7414 304 304 321 321 318 318 320 319 318 319 285 285 285 318 319 301 301 200 0000000000--00000000 0 >20 <32 > 33 <39 >40 <49 >50 <59 >60 <69 > 70 <79 > 80 <89 >90 <99 13 48 1 0 0 0 t 37 32 23 13 35 19 4 -000000000000000 0 O >1 \s\ \c 0 >-10< C HONTH HOUR 20 80 6

TAULE V (COAT)

LIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES. A STATION - AHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

16-30 JUNE

DRY BULB TEMPERATURE (DEG F)

UBSERVATIONS	0	0	0	0	N	321	~	~	N	N	N	2	2	~	N	2	~	-	0	0		•	9			7450
1 00	0	O	0	0	0	0	0	0	0	0	0	7	m	•		2		0	#	0	0	0	0	0		~
< 99204<	8	7		0	0	0	-	~	'n	12	54	36	4	63	79	9	19	9	9	4 8	56	11	•	•		56
60×00×	25	37	58	24	51	12	91	31	47	9	19	1 S	38	92	2.1	61	17	20	53	42	65	99	19	21		37
>76 < 579 >						63							7	?	7	٣	•	*	S	٥		61				28
69 ₹ 9 6	•	^				74		0	*	-		-		-	0	٥	0		8	-		•	*	S		•
<u> </u>	Ö	o	0	9	O	_	0	0	O	O	0	0	ט	0	o	O	O	0	0	0	O	0	0	0		O
40<	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	c	0	0	0		0
33<39 >	c	ာ	0	Ö	O	9	0	•	n	0	'n	O	O	ဝ	0	o	0	0	၁	ဝ	o	0	0	9		ū
×20 032	0	ت	o	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0		O
×1 0 < 1 9	C	0	O	0	0	Ċ	C	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	•	О		0
٠ ١ ١	C	c	c	· C	c) C			0	0	C	0	0	C	0	C	0	0	0	0	C	0	0	0		c
I CO	0	-	7	4	*	'n	•	^	90	•	10		12	13	+	5	16	17	9 1	0	20	21	22	23	>	HONTH

TABLE V (CONT)

1-15 JULY

DRY BULB TEMPERATURE (DEG F)

UBSERVATIONS	0	0	0	0	-	***	-	-	-	-	-	-	-	-	-	-	317	-	0	0	•	•	•	•		7421
2 5	0	0	0	0	9	0	က			0	0	-	~	~	œ	•	7	•	7	0	0	0	0	0		7
66>06<	~			0	0	0	9			7							63				7	0		~		23
\$8 <u>></u> ₽8≥	4			91		*	_										23									36
70<79	4	52	-	67	7.1	70	75	67	43	76	9 [0	^	#	S	'n	•	^					31			32
< 69>09<	œ	6	12		6 =			0 0	s	s	•	•	7	•	7	~		7	7	~	~	S	Ŧ	•		7
<u> </u>	n	0	C	0	Ç	e	Ö	0	0	0	0	0	O	0	O	0	0	C	O	0	o	0	0	0		0
67> 0h<	0	0	0	0	a	0	0	0	0	a	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0		0
> 33<39	• •	כו	ß	ن	O	ij	0	Ö	O	0	O	O	O	၁	O	0	O	ı	0	ت	9	0	0	0		0
>20 <32	၁	၁	ာ	٥	0	C	0	0	0	0	0	0	0	6	0	٥	0	0	0	0	0	0	0	0		0
61 70 1	c	0	6	0	0	0	0	0	0	0	0	ດ	0	0	0	0	0	0	0	0	0	0	.0	0		۵
6 V U I - K	c	C) C·	C	0	C	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0		c
HOUR	0	-	~	e	*	'n	9	^	æ	•	0		12	13	†	51	9 [17	18	61	20	21	22	23	8	HON

TAILE V (CONT)

DIJRNAL VARIATIO: OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMFERATURES
OF MONTH AND BY HOUR (IN PERCENT)
A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO
PERIOD OF RECORD 1951 - 1973

16-31 JULY

				a	RY BUL	B TEMPER	MPERATURE	(DEG F)				
1 0 3	4-10-4	\$1 <u>₹</u> 2 1 \$	220 <32 2	> 33<39	×40 ×4	> 50 < 5	69>09 <	>7.0<79	~ 80 C82	667 D 44	100	OBSEH VAT TONS
o ·	C	D	0	C	c	Ċ	,					
~-	0	C	0) (C	י כ	י כ	^	25	- Ŧ	-	O	(
7	C	c) C) (Э (r	0 7	7.0	26) (055
M	• •	. ())	۵	C	13	0 4) 0	o	o	940
7	O	D (0	יכי	O	C	9	. (0 (O	0	346
ď	5 (0 (0	כי	0	()	. ~) · (); -	0	0	346
40	בי כ	0 (0	O	0	G		n (•	0	Q	970
^	5 6	o (0	· ጋ	0	()	2 6	0 4	N 1	0	0	346
o oc	D (D (0	0	0	O	-	r o		၁	J	345
•) (0 (0	0	0	o		0 0	7 7	0	0	348
· c	5 (D I	0	၁	0	0	•	0 m		0	0	***
-	0 0	© (0	Ö	P	C) (• 6		-	0	345
	5 (0	0	a	Ö.	0 0	٧ -	> 0	7.1	©	0	346
. F	- c	D (0	'n	0	O	-	٠ ،	0 (23	0	345
7) c	-	0 (0	0	0) u	• •	3 (0	346
5	> c	ɔ (0	0	0	O		n a	0 1	26	8	346
91	o c	> c	0 (د	0	٥	•	7 3	J (0 9	~	346
17) c	- (0 (0	0	9	•	•	7 6	-	~	346
89) C	> (0 (O I	۵	0	۰ -) [7 .	^	~	340
19	c c	> (o (ס	C	0	· N	• 0	ים מר	S		336
20) c	> (0 (0	0	0	~	• α		0	~	322
21	o c	5 (o (ဂ	0	O	١ ٨	o ~	7 .	28	0	320
22	- c	D (0	0	c	0				-	0	320
23	o ()	0	O	0	0	ď	, נ ה	- i	†	0	322
)	0	0	၀	٥	O	• 4) 4		N	0	322
BY						1	>	n	-	7	0	321
HONTH	c	0	0	ć	c	•						
				n	0	O	^	36	37	6 =	0	£122

£122

TABLE V (CO:T)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES
AY MONTH AND BY HOUR (IN PERCENT)
A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO
PERIOD OF RECORD 1951 - 1973

1-15 AUGUST

DRY BULB TEMPERATURE (DEG F)

085ERVAT 10NS	_	N	N	N	N	321	N	N	N	N	N	C4	N	N	N	N	N	-	Ò	0	0	Ò	Ò	0		7595
0017	0	.	0	0	0	0	0	0	0	0	0	0	0	-		~	-	-	0	0	0	0	0	0		0
66>06<	۵	0	o	0	o	0	၁	0	0	-	80				95							-	-	0		•
6 8 ≥0 8<		23			*	e	~	10							38											38
<u> </u>						+9								•	<u>ហ</u>	М	‡	•				34				37
69>09<	30					33			ហ	7		0	-	٥	0	-	0	٥	0	-	~	7	e	*		60
\$5 \overline{<}	ຕ	0	0	O	0	റ	CI	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
64004	0	O	0	0	0	0	٥	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0	0	0		0
<u>></u> 33<39	.	ာ	Ö	ı	Ö	o	Ö	o)	0	0	O	0	0	0	0	0	0	0	٥	o	0	0	0	O		G
>20 <32	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0		0
>10<19	c	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		6
>=10<9	c	C	0	O	0	0	c	0	0	0	0	0	0	0	0			0	0	0	Ð	0	0	0		c
# 0 1	0		7	۳	7	S	• 0 51	^	©	•	0.	11	12	13	†			17	8		20	21	22	23	8 ¥	T P O P H

1

TABLE V (CO.T)

DIURAAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES

A STATIOW - WHITE SANDS MISSILE RANGE - WEA MEAICO PERIOD OF RECOND 1951 - 1973 AY MONTH AND BY HOUR (IN PERCENT)

16-31 AUGUST

HOUR 2-19<9 >10<19 >20 <32 > 33 < 39 > 40 <49 > 50 < 69 > 50 < 69 > 70 < 79 > 80 < 89 > 90 < 99 > 100 0856 NATIONS

DRY BULB TEMPERATURE (DEG F)

	3	1	7	-		243	4	-	#	-	-	3	*	-	-	7	-	~	~	m	•	~	•	~		A 155
	o	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	-	0	0	0	0	0	0	o		a
	0	2	O	ی	ာ	0	0	0	o	0	~	۰	2.1	32	7	T	 *	3.5	20	S	0	0	0	9		4
ξ1		e -	o	4	7	-4		٣	15	39	4	20	67	56	5.1	4	/ +	0 7	58	19	5 2	47	36	30		35
	\$ 9	5.0	47	7	J 0	4	7 0	72	75	57	31	1 9	10	20		0			19							7
						2 0				#	~	N	8	-	7	7		7	٣	S	•	'n	•	12		13
	0	9	Ö	o	٥	כי	O	0	0	O	0	o	0	0	0	0	٥	0	0	0	0	O	٥	0		0
	ဝ	٥	0	၁	o	0	O	0	0	0	0	0	0	0	0	o	b	٥	0	0	0	0	o	0		٥
	Ö	? j	i)	Ċ	0	ij	כ	ن ن	٥	0	0	0	၁	0	0	o	0	o	o	۵	0	O	0	0		n
1 2 1	0	0	0	o	0	0	0	0	0	0	0	0	0	0	Ü	0	0	0	0	0	0	0	0	0		0
	c	O	O	0	c	O	0	٥	0	0	0	0	0	0	0	0	0	0	Ö	o	0	0	O	0		c
	C	0	C:	c	C	C	0	0	0	0	c	٥	0	0	0	0	c	0	c	٥	0	0	0	0		0
,	0		7	e	Ŧ	J.	•	^	6 0	•	01	11	12	13	† 7	51	16	17	8 1	67	20	21	22	23	*	HONTH

TABLE V (COUT)

OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES MEXICO GE - NEA - 1973 SY MONTH AND BY HOUR (IN PERCENT) MISSILE RANGE 1951 PERIOD OF RECORD WHITE SANUS • STATION DIURNAL VARIATIO.

1-15 SEPTEMBER

AULB TEMPERATURE (DEG F)

2

TABLE V (CO'T)

DIURNAL VARIATIO : OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES A STATIO: - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

16-30 SEPTEMBER

DRY BULB TEMPERATURE (NEG F)

OBSERVATIONS		N	N		N	322	~	323	~	2	~	2	N	N	2	N	N	-	_	-	-	-	-	-	7688
2130	כי	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	a	0	0	0	0	0	0	0	0
66 >06	Э	Э	၀	o	0	0	0	0	0	0		7	^	1 1	12	*	†	•	0	0	0	o	0	•	n
× 80×89×		7	~	7		0	O	0	m	10	23					62							90	•	23
70<79						9 7										61									38
< 69×09 .						63							•	ß	Ŧ	n	М	9	7		20				5
<u>< 65 05 < </u>	7	60	07	12	15	61	25		9	М	7		-		-		-	7	8	М	m	3	7	7	•
65 V V V X	_	c	o	-	8	7	7	-	-		0	٥	c	0	0	0	0	0	0	0	0	0	o	0	-
33<39	O	7	n	n	Ö	O	· ɔ	၀	O	ာ	0	ن د	0	O	0	0	0	0	0	Ö	o	c	0	9	Ö
×20 <32 ×	O	Œ.	o	0	0	o	o	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
>10<19	0	0	c	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0
\$ \ U = \	0	C	0	0	0	0	c	0	0	0	O	0	0	0	0	C	0	c	0	O	0	C	0	0	c
3 0 1	0		7	٣	3	ហ	-0	7	80	۰	01	-	12	13	† 1	15	97	17	18	61	20	21	22	23	I BY

TABLE V (COLT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES MISSILE RANGE - NEW MEXICO 1973 (IN PERCENT) 1951 PERIOD OF RECORD BY MONTH AND BY HOUR WHITE SANDS . STATION

1-15 OCTO3ER

DRY 3ULB TEHPERATURE (DEG F)

TABLE V (COLT)

DIURNAL VAGIATIO OF THE RELATIVE FREQUESCY DISTRIBUTION OF TEMPERATURES

OF MONTH AND BY MOUR (IN PERCENT)

A STATION - AHITE SANDS MISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

16-31 OCTURER

DRY BULB TEMPERATURE (DEG F)

UBSERVATIONS	S	3	3	3	3	350	S	-	1	3	3	-	S		3	S	4	~	~	~	3	~	~	•		8279
1 00	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0		0
9 65 C 9 <u><</u>	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
86269		٥	0	٥	0	0	0	0	0	0	0	-	~	7		11		-	0	0	0	0	0	0		8
< 70< < < < < < < < < < < < < < < < < <	S	5	٣		-	-	~	-	7	•	7 9 1	31	4	.	S	S	5 8	53	27	9 7	13	•	œ	•		20
691 097						9					58				\$							50				33
\$ <u>\$0</u> \$\$	5	95	57	5.8	57	5.1	5.1	58	99	38	23	16	11	^	7	4	•	1 1		5 #						34
64 \U	1.	13	17	61	5 4	31	38		13	s	. m .	7		-	~	8	-	7	m	S	S	9	œ	•		0.1
> 33<39	O	ဂ	-	-	-	-	7	~	O	O	0	()	O	0	O	0	Ö	0	o	0	ာ	0	0	0		O
<u>>20 ⊴3</u>	0	a	0	၁	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
<u>>1 0< 1 9</u>	0	0	0	0	0	G	0	c	0	0	0	0	0	0	0	0	0	0	a	0	0	0	o	0		0
\$1 0 T	C.	0	c	0	O	C	0	0	0	0	0	C	0	0	0	0	0	0	C	0	0	0	0	0		C.
2 0 1	0	-	7	M	*	Ŋ	•	^	6 0	•	01	1.1	1 2	13	14	15	91	17	81	61	20	21	22	23	6	HONTH

TABLE V (CUAT)

DIURNAL VACIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES A STATION - WHITE SANDS HISSILE RANGE - NEW MEAICO PERIOD OF RECORD 1951 - 1973

1-15 NOVE BER

DRY BULB TEMPERATURE (DEG F)

UBSERVATIONS	~	N	N	N	N	N	319	-	-	-	-	-	-	-	-	-	-	-	0	0	O	0	0	_		7593
100 1	0	0	ာ	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
6 6≥ D √ ≤	G	Ö	O	0	0	0	J	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
80< 69	ت	0	ာ	0	0	9	0	0	0	0	0	0	0		0	-	0	٥	a	0	0	0	0	0		0
× 270<×	2		0	0	0	0	ن	0	0	9	8	•	13	25	*	37	31	10	ş	*	7	~	7	-		7
69×09×			٥-				10				38															56
92 <u>></u> 04_							23																			35
^ 6 7 \ 0 7 \	31	34	37				52					0-	Ŧ	4	m	m	m	Ŧ	٥			22		27		54
> 33<39	:V	•	~	1 1	12	13	51	+	*	•	-	7	-	-	-		-	-	-	8	7	ä	n	7		'n
20 <32	O	O	Ö	0	~		7	-	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0		0
< 61>0₹	Ü	0	ပ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0		0
67 11 -2	C	0	O	0	0	Ċ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	G	0		0
2001	0		8	e	Ŧ	S	•	^	a	•	10		12	13	†	5 1				1 9					8	HONTH

TABLE V (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES A STATION - THITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

16-30 NOVEHBER

DRY BULB TEMPERATURE (DEG F)

FRUATIONS		-	-	_	-	317	-	-	-	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0		7531
C 8 C																										
1 00	0	0	0	0	0	0	၁	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0		0
< 66×06 <	c	0	O	0	0	0	Ö	0	0	0	0	0	0	0	0	0	ی	0	0	0	0	0	0	0		0
> B 0 < 8 9		0	၁	0	0	0	0	0	0	0	۵	0	٥	٥	o	0	0	0	٥	٥	٥	0	0	0		0
>7 0< 79	G	O	0	0	0	0	O	O	o.	0	***	~	J	^	10	11	٥	~	***	~	O	0	0	0		7
9 9 0 0	1 0	o	0-	^	'n	3	n	n	7	•		21										12	12	0		17
> 50<59		22			_	18	17					42														30
V 40 V	45	\$ ቢ	4 1	4 1		39			42			30						22	31	3.8	7 7	4 0	42	£		ナの
33≤39	17					28					^	3	e	7	8	8	8	7	ល	•	0	e -	15	9.		7 -
> <u>2 U < 3 2</u>	7	J.	•	٥	0	1 1	15	1 4	'n		-	0	0	0	0	0	0	0	0		0		7	m		Ŧ
41 <u>00</u> k	D	Ü	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		o	0		0
6>U1-<	c	C	c	0	0	C	o	0	0	0	c	0	0	0	0	0	C	c	c.	0	c	0	c	0		0
0000	0		7	٣	T	Ŋ	•	~	co	•	0.7	1 1	12	13	†	1 5	9.1	17	18	61	20	21	22	23	8	

TABLE V (COST)

DIURNAL VAGIATIO. OF THE RELATIVE FREQUENCY DISTRIBUTION OF TEMPERATURES OF TATION - BY MONTH AND BY HOUR (IN PERCENT)

A STATION - MITE SANDS MISSILE RANGE - NEA MEXICO PERIOD OF RECORD 1951 - 1973

1-15 DECENBER

SNO

DRY BULB TEMPERATURE (DEG F)

SERVATIO	~	2	2	7	2	2	7	7	7	2	7	7	2	N	2	2	322	-	-	-	-	-	-	-	1668
8																									
001 ~	0	0	O	Ö	0	0	o	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\$ 0 < 9 9	0	0	0	3	0	ပ	၁	0	O	0	0	0	۵	0	O	0	၀	0	0	0	0	0	0	0	0
× 80×89×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
> 70 < 79	C.	0	0	o	0	0	0	0	0	0	-	0		~	7	0	7	-	0	0	0	0	0	0	-
69 ×09<	*	'n	t (e	7	•	7	2	٣	7	7						27			O	•	7	9	•	01
<u>>50 <59</u>			1 5			12											42								24
64>04<																	25								36
33<39								37					•	S	3	ហ	7	9				23	-	28	2 1
<u> </u>	1	0						27			7	7	7	_	-	••	-	7	7	•	•	S	S	7	90
×1 0< 1 3	C	. c	o	0	0	0	0	0	0	O	O	0	0	0	0	0	0	0	٥	O	0	0		0	0
6 V C T = <	C	: c	C	c	· c	c	C	. 0	0	0	0	· a	C	C	o 0	C) C	C	.	0	0	0	0	0	c
300 X	0	-	۰ ۲	· m	*	'n	•	^	00	o	0		-	13	-	5	91	•	8	19	20	21	22		FONTE
							0																		

TABLE V (COLT)

DISTRIBUTION OF TEMPERATURES - NEA MEXICO 1973 AY MONTH AND BY HOUR (IN PERCENT)

R - AHITE SANDS MISSILE RANGE - NEW

PERIOD OF RECORD 1951 - 1973 FREGUENCY RELATIVE THE 90 STATION VARIATION DIURNAL

16-31 DECE .. BER

TEMPERATURE

DRY BULB

(DEG F

OBSERVATIONS 327 328 326 330 325 316 317 323 305 301 1568 001~ 0 66 >06 < Õ >80<8. 0 270<79 0 >60≤69 ションテロロをとうし ヤマンととし トーススマをとれ ドースススーー Œ > 50 < 5.9 24 > 40 <49 **THUS TERMORE** 4 4 サラ >33<39 22 <u>></u>20<32 12 ×1 2 5 1 8 00000-0-0000000000000000 -10<3 C **^**1 HON HOUR ₩ 22 23

SECTION II

DENSITY AND PRESSURE

	•	PAGE
Table VI.	Mean and Extreme Density and Station Pressure by Month and by Hour	62

TABLE VI

BY HOLITH AND BY HOUR - NEW MEXICO 1973 MEAN AND EXTHEME DENSITY AND STATION PRESSURE A STATION - WHITE SANDS MISSILE MANGE PERIOD OF RECORD 1951 -

MONTH OF JANUARY

300H

E (IN OF HG)	TOTAL OBSERVATIONS	•	•	S	•	J	S	•	•	•	•	•	•	•	568	•	~	•	S	1	1	*	•	*	*
PRESSUR	۲٥،	5 - 2	5.2	5 . 2	5.2	5.2	5 . 2	5 • 2	5 . 2	5.2	5.3	5.3	5.2	5.2	25.230	5.1	5 . 1	5.1	5 . 1		5 . 2	5.2		5.2	5.2
STATION	JE AN	5.76	5.76	5.77	5.76	5.76	5.76	5.76	5.77	5.79	5.80	5.81	5.81	5.77	25.749	5.73	5.72	5.72	5.73	5.73	5.74	5.75	5.75	5.76	5.77
	H9 I H	6 - 17	6.16	6.18	91.9	6.14	6.18	6.15	6.17	6.23	6.20	6.22	6.24	6.20	26.180	6.16	6.16	6.15	6.16	6.14	6.14	6.20	6.16	6.17	6.21
	TOTAL OBSERVATIONS	•	9	0	•	•	0	9	•	0	•	•	0	•	895	0	~	•	8	3	3	1	4	4	~
(@ / C () · M)	107		34.	26.	31.	27.	29.	27.	29.	28.	23.	26.	21.	. 6 1	1017.8	16.	5	15.	19.	19.	21.	26.	26.	28.	32.
DENSITY	¥ ₩	587•	368.	091.	293.	. 460	.960	997.	100	.960	089.	083.	078.	071.	1065.5	062.	.090	960.	067.	073.	077.	080	081.	084.	086.
	1011	50.	164.	219.	168.	170.	215.	160.	172.	217.	162.	158.	184.	150.	1144.2	174.	146.	144.	176.	150.	156.	194.	158.	161.	207.

14221

25.380

25.765

26.240

13719

1015.2

1082.0

1219.2

MONTH

HOUR

TABLE VI (CONT)

MEAN AND EXTREME DENSITY AND STATION PRESSURE BY MUNIM AND BY HOUR A STATION - MHITE SANDS HISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF FEBRUARY

STATION PRESSURE (IN OF HG)

DENSITY (G/CU.M)

E 30 1	0	-	7	n	*	s	•	,	•	•		11													
TOTAL OBSERVATIONS	-	-	0	517	-	0	-	-	0	\rightarrow	-	0	-	-	0	-	-	•	0	0	0	0	0	0	12991
L0*	5.27	5.27	5.26	25.250	5.24	5 . 25	5.29	5.26	5.21	5.29	5.23	5.22	5.27	5.27	5.18	5.29	5.28	5.28	5.31	5.30	5.30	5.28	5.28	5.28	25.180
3 E A	5 • 7 3	5.73	5.72	25.731	5.73	5 . 72	5.74	5.75	5.76	5.77	5.78	5.17	5.75	5.72	5.69	5.69	5.68	5.68	5.69	5.70	5.70	5.72	5.72	5.72	25.728
H 9 I H	91.9	6.15	41.9	26.120	6.11	6.11	6.12	6 - 13	6.16	6.17	6.17	91.9	6.16	4.13	0.12	01.9	6.10	60.9	40.9	6.11	5.13	41.9	6.15	6.15	26.170
TOTAL ORSERVATIONS	-	-	7	517	-	9	-	-	4	-	-	£	-	-	1	-	-	Š	ō	0	N	õ	0	4	12600
רטע	27.	26.	28.	1026.8	28.	031.	34.	037.	033.	030.	6250	21.	018.	013.	.600	0.08	. 400	614.	010	.610	020	022.	024.	024.	1004•2
A E B B B	980	CA2.	083.	1066.1	088.	089.	091.	093.	087.	082.	076.	. 690	064.	058.	054.	053.	053.	055.	063.	068.	070	074.	076.	077.	1074.2
H 2 I H		1180.4	8	~	•	77.	77.	74.	70.	63.	• 69	•	57.	52.	54.	45.	45.	40.	540	55.	55.	•	64.	2.	1180.4
HOUR	c		7	٣	7	'n	•	7	3 0	٥	_				-	-		-		_					 MONTH

TABLE VI (CONT)

MEAN A 1D EXTREME DENSITY AND STATION PRESSURE BY MONTH AND BY MOUR

			8 3 O T	0		7	~	*	s	•	7	•	•										19						
, c		E (IN OF HG)	TOTAL OBSERVATIONS	•	•	•	ě	995	•	•	•	•	ē	•	•	•	•	•	•	•	7	~	~	~	*		~		14173
EN MEAICO		PRESSUR	£0.	5 • 25	5.25	5.24	5.22	25.190	5.20	5.20	5.22	5 . 25	5.26	5.30	5.30	5.26	5.24	5.20	5.21	5.20	5 - 18	5.21	5.23	5.26	5.28	5.28	5.27		25 • 1 80
ANGE - N		STATION	2 4 9 5	5.67	2.67	5.67	5.67	25.672	2.68	5.69	5.70	5.72	5.72	5.72	5.71	5.69	2.67	19.5	5.63	29.5	29.5	29.5	5.63	2.65	2.66	2.67	2.67		25.674
MISSILE R ECURD 19	OF HARCH		I U	0 • 1 1	0.14	41.00	41.9	26.140	6.12	41.9	41.0	6.17	91.9	6.18	6.17	9.19	6.11	4.07	0.02	9.00	10.9	2.99	9.00	6.03	90.9	6.07	6.18		26.180
0' - "HITE SANDS PERTOD OF RE	M041H		TOTAL ORSERVATIONS	•	9	5	9	566	0	•	•	0	\$	•	0	•	•	0-	9	•	~	3	~	~	\$	3	<u></u>		13629
A STATIC		(8/CU·M)	ر د د	, ,	17.	19.	018.	0	025.	025.	21.	018.	015	014.	0.11	0.05	002	98.	96	98.	66	002.	1007.4	900	13.	_	10		496.7
		DENSITY	3 E A 2	. 490	.99	٠ ٥٠	70.	1072.7	75.	77.	76.	71.	065.	059.	53.	47.	043.	39.	0.37	37.	39.	43.	40	053.	056.	•	0.61.		1058.0
٠			1 1 1	•	•	•	å	1148.5	ď	2.	ċ	39.	5	1125.5	•	œ	•	1112.5	•	•	ŝ	<u>.</u>	4	•	ò	45.	*		1152.2
			400H	O		7	e	7	ī.	•	7	œ	0	01	1 1	12	13						19					₽	HONTH

TABLE VI (CONT)

MEAN AND EXTREME DENSITY AND STATION PRESSURE BY MONTH AND BY HOUR A STATION - PHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF APRIL

TOTAL Orservations High
73 2
75 26.
98
74 26
75 26
97 2
75 2
74 2
96 56
74 2
574 26.
97 2
73 2
75 2
98
73 2
74 2
61 2
32 2
30 2
57 2
31 2
29 2
56 2
13674 26

TABLE VI (CONT)

MEAN AND EXTREME DENSITY AND STATION PRESSURE BY HONTH AND BY HOUR A STATIO. - AMITE SANDS MISSILE RANGE - NEW MEXICO

		2001	0-	2	m	*	S	•	7	•	•	0									6						
	E (IN OF MG)	TOTAL OBSERVATIONS	27.50 9.70	S	0	0	•		0	•	•	0	•	0	0	•	0	•	~	3	3	0	~	~	0	9	14180
	PRESSUR	, ,	25.38U 25.380	5.38	5.39	5.39	5.40	5 • 41	5 - 41	5.43	5.43	5.43	5 . 42	5.39	5.37	5.36	5.33	5.32	5.31	5.33	5.34	5.35	5.36	5.37	5.39		25.310
	STATION	Z W E	25.681 25.680	5.67	5.68	5.68	5.69	5.70	5.12	5.73	5.73	5.73	5.71	5.69	5.67	5 . 65	5.63	5.62	5.61	5.61	5.62	5.63	5.65	5.66	2.67	1	25.677
OF MAY		I U	26.100	6.10	60.9	60.9	90.9	4.09	6.10	6.10	6.10	6.10	90.9	90.9	40.9	6.02	9.00	6.01	6.02	6.03	6.05	90.9	90.9	6.12	9 10	,	26.120
T L ZOS		TOTAL. OBSERVATIONS	579 5 79	-	œ		7	0	0	2	9	•	N	0	6	N	0	0	8	4	3	•	7	m	4		14736
	(@ / CU • M)	L 0 w	991.7	.16	98.	98.	02.		90.	88	85.	80.	76.	72.	.69	64.	67.	62.	• 99	69	77.	79.	81.	83.	91.	i .	962.1
	DENSITY	E A S	1030.2	035.	038.	4 0.	42.	41.	036.	031.	025.	019.	014.	010	900	003.	002.	002.	003.	• 900	- :	016.	020	023.	05¢•		1021.8
		H 1 GH	1086.9 1095.6	093.	098.	102.	100.	09P.	0.00	084.	078.	079.	076.	076.	973.	072.	076.	072.	076.	075.	077.	080	.980	090	C8H•	ı	
		800	C	7	E	7	ស	4	7	Œ	٥	10									19					₩	

TABLE VI (CONT)

MEAN AND EXTREME DENSITY AND STATION PRESSURE BY MONTH AND BY HOUR A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF JUNE

STATION PRESSURE (IN OF HG)

DENSITY (G/CU.M)

	2001	0	-	7	•	*	s	•	^	•	•						3										
OTA	OBSERVATIONS	-	~	0	537	~	*	•	•	4	•	•	1	•	•	~	•	•	N	~	~		•	0	~		13687
	101	5 - 38	5.37	5.37	25.390	5.41	5.42	5.43	5.44	5.46	5.47	5.46	5.44	5.44	5.42	5.40	5.38	5.38	5.36	5.34	5.33	5.33	5.32	5.31	5.37		25.310
	MEAN	5.67	5.67	5.67	25.679	5.68	5.69	5.71	5.72	5.73	5.73	5.73	5.71	5.70	5.68	99.5	5.64	5.63	5.61	5.61	5.62	5.63	5.45	99.5	5.67		25.678
	H91H	5.98	5.98	5.98	25.990	5.99	6.02	6.02	90.9	90.9	90.9	4.07	90.9	6.03	10.9	5.99	5.96	5.95	5.93	5.93	5.93	5.94	5.96	5.98	5.99	,	26.070
OTA	OBSERVATIONS	-	~	•	537		•	•	•	0	•		0	•	•	Ö	•	•	0	~	~	N	•	0	~		13327
	L 0 %	. T ::	76.	80.	982.8	85.	89.	87.	84.	79.	74.	70.	65	62.	61.	58.	58.	56.	55.	61.	67.	71.	73.	75.	77.		955.5
	MEAN	012.	015.	017.	1020.3	023.	025.	022.	017.	013.	900	003.	98	93.	90.	87.	86.	86.	87.	90.	94	.66	003.	90	600	;	100401
	I I I	• U 9 O	060.	062.	1065.7	067.	072.	.690	063.	055.	.640	047.	0440	0440	042.	035.	038.	041.	041.	041.	044.	043.	45.	045.	040	(1072.0
•	HOUR	0	-	7	M	3	ហ	•	7	c o	•						15									₽ ₹	

.1

TABLE VI (CONT)

MEAN AND EXTREME DENSITY AND STATION PRESSURE BY MONTH AND BY MOUR A STATION - WHITE SANDS MISSILE RANGE - NEW MEAICO 1951 - 1973 PERTOD OF RECORD

MONTH OF JULY

S	ı
5	ATC
z	-
FRESSURE	
TATION	
STA	
	-
	DENSITY

2001	2220404551111111111111111111111111111111	
OBSERVATIONS		. 70+1
607	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25.470
Z F S	25.760 25.761 25.761 25.761 25.759 25.774 25.774 25.774 25.774 25.774 25.774 25.774 25.774 25.774 25.774 25.774 25.774 25.774 25.774	25.754
1911	26.960 25.960 26.000 26.000 26.000 25.990 25.990 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.990 26.000	26.050
TOTAL OBSERVATIONS	らら うらららららららららららららららららららららららららららららららららら	13496
L04	9666.7 9864.5 9864.3 9981.1 9981.1 9985.7 9985.7 9677.6 9957.7 9957.7 9957.8 9957.8	954•4
I E A N	1011-0 1013-3 1015-6 1015-6 1022-6 1022-6 1002-3 10012-0 1001-6 996-8 997-2 987-2 987-2 987-7 999-9	1003.7
1011	1051.6 1051.6 1052.5 1054.0 1054.0 1052.7 1049.9 1048.9 1048.9 1048.0 1048.0 1042.3 1042.3	1054.5
100E	2222349549210 08 7 6 5 4 3 7 1 C	HONTH

TABLE VI (CONT)

MEAN AND EXTREME DENSITY AND STATION PRESSURE BY HONTH AND BY HOUR A STATIO - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF AUGUST

HOCK

TOTAL	VA	95	57	999 0	95	57	99	56	5.5	99	99	95	99	26	57	99	56	99	19	53	53	63	53	53	63	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	-1 -1	5 • 55	5.54	25.53	5.53	5.53	5.54	5.55	5.56	5.57	5.59	5.58	5.59	5.58	5.57	5.56	5.54	5.51	5.52	5.51	5.52	5.53	5.55	5.56	5 • 55	25.51
	MEAN	5.17	5.77	25.770	5.76	5.77	5.77	5.78	5.80	5.80	5.81	5.81	5.80	5.78	5.76	5.74	5.72	5.71	5.70	5.70	5.71	5.73	5.75	5.75	5.76	25.764
	IU II	5.97	96.5	26.000	5.96	96.5	5.97	5.97	5.99	0009	00+9	9.00	16.9	5.98	96.5	5.95	5.93	5.92	2.94	5.94	5.95	96.5	5.98	5.98	9.00	24.0
TOTAL	< >	•	۲	109	•	F	0	•	•	0	•	•	C	•	~	0	•	•	1	~	M	•	m	m	•	1.487
	L 0 %	6 9	90.		96	98.	000	00	45.	92.	83.	75.	75	72.	68.	67.	63.	• 59	.99	72.	78.	78.	82.	96.	87.	8 - 1 - 9
	Z W Z	315	018.	1020.3	922.	024.	026.	027.	021.	016.	011.	.900	.100	97.	93.	91.	90.	91.	93.	.96	001	.500	.800	010	9	4.800
	I I I	2.45°	.940	1049.8	052	058.	.950	054.	048.	046.	045.	045.	042.	041.	037.	038.	38.	635.	038.	038.	042.	.640	.050	054.	.95	
	1 0 2 2	Ü	-	7	٣	3	'n	•	7	6 0	۰		11													E 00 €

TABLE VI (CONT)

MEAN AND EATHEME DENSITY AND STATION PRESSURE BY MULTH AND BY MOUR A STATIC - AMITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF SEPTEMBER

STATION PRESSUME (IN OF MA)	TOTAL
PRESSU	101
STATION	RAN
	1911
	TOTAL JESERVATIONS
(6/CU+M)	L 0 ×
DENSITY	RAN
	H 2 H

O Nm + 10 4					•	l			
	. 6.2	325.	74.	S	6.02	5 . 75	5.51	S	c
	080	920	92.	3	6.02	5.75	5.50	3	•
	082.	030.	91.	1	10.9	5.75	5 • 5	4	~ ~
	082.	033.	96	3	6.90	5.75	5.51	7	l en
	081.	035.	000	3	6.00	5.75	5.51	3	3
	. 180	037.	004.	1	6.02	5.76	5 - 5 1	*	- un
	084.7	1939.5	1002.5	548	26.020	25.776	5.51	3	•
	. 580	. 460	0:1.	3	40.04	97.0	5 • 5 2	3	_
	086.	028.	97.	1	40.9	5.79	5.53	~	- 30
	C84.	022.	89.	3	50.9	5.80	5.54	T	•
	080	016.	8 9 ·	3	90.9	5.80	5.54	*	0
-	380.	011.	94	~	40.0	5.79	5.54	~	
7	080	. 900	76.	3	6.03	5.77	5.50	7	
~	0770	005	76.	3	6.02	5 . 75	5.48	3	
3 .	576.	000	74.	_	10.9	5.72	5 . 45	3	
S	072.	99.	74.	3	00.9	5 . 7 1	5 . 4 4	3	
9	072.	99.	72.	*	9.00	5.70	5 . 43	3	
7	074.	002	76.	-0	9.00	5.70	5 . 45	7	
æ	040	007.	79.	N	9.00	5.70	5.47	N	
•	010	012.	84.	3	6.01	5.71	5 . 47	~	
0	080	016.	87.	10	6.03	5 . 72	5 . 47	~	
-	.080	. 6 1	88.	N	40.9	5.74	5.51	N	
7	.080	021.	93.	•	40.9	5.74	5.51		
er.	080	024.	94	•	6.03	5 • 75	•	623	23
	0.980	1018.9	972.1	13250	26.050	25.753	25.430	13759	

TABLE VI (CONT)

MEAN ADD EXTREME DEDSITY AND STATION PRESSURE BY MOWIN AND BY HOUR A STATION - SHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF OCTOBER

		DENSITY	[B/CJ/N]			STATION	PHESSUR	E (IN 0F HG)	
HOUR	I E	2 4 8	Low	TOTAL OBSERVATIONS	H91:H	E A S	F0#	TOTAL OBSERVATIONS	3000
0	1104+3			æ	6 - 1 1	5.17	5 • 30	•	0
-	1107.7	ò	C	•	6.11	5.77	5.41	1	-
7	•	052.	007.	0	6.11	5.77	5.33	~	~
m	0.5	1054.3	1011.0	570		25.775	25.370	570	M
Ŧ	• 60	056.	011.		6.12	5.77	5.37	-	*
ñυ	5	.885	014.	0	P1.9	5.78	5.34	~	ហ
•	4	061.	017.	-	6.16	5.79	5.37	-	•
^	113.	058.	015.	~	6.18	5.80	5.39	~	7
	101	051.	.800	0	6.20	5.81	5 . 41	-	•
~	060	044.	002.	~	6.22	5.83	5.44	~	٥
0	040	038.	.000	1	6.22	5.83	5.44	-	
1.	091.	032.	96	O	91.9	5.81	5.42	-	
12		027.	91.	~	41.0	5.79	5.41	-	12
13	085.	022.	89.	~	6.11	5.76	5.38		
† 1	084.	019.	87.	0	60.9	5.74	5.33		
15	084.	018.	87.	~	6.07	5.73	5.34	-	
	084.	019.	87		90.9	5.73	5.34	•	
17	0.85	023.	90.	~	90.9	5.72	5.30	S	
	085.	031.	94.	3	40.9	5.73	5.34	4	
	089.	035.	4.966	3	90.9	5.74	5.35	3	
	091	038.	. 66	~	60.9	5.75	5.32	*	
	060	041.	000	4	6009	5.76	5.37	-	
	. 460	044.	03.	3	60.9	5.77	5.36	-	
	.960	950	004	-	0.11	5.77	5.33	3	
9									
HONTH	1114.7	1040.7	987.1	13792	26.220	25.775	25.300	14355	

TABLE VI (CONT)

MEAN AND EXTREME DENSITY AND STATION PRESSURE BY MOWTH AND BY HOUR A STATIOM - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

NOVEMBER MONTH OF

	2001	0		~	m	7	ß	•	7	•	•	_		12		† 1		_	-	_	_	_			23		
E (14 OF HG)	TOTAL OBSERVATIONS	*	S	~	S	S	3	S	S	~	S	S	~	*	7	633	1	3	m	N	~	-	N	N	-		13755
PRESSUR	10	5 • 43	5 . 41	5.34	5.40	5.39	5.29	5.36	5 - 41	5.36	5 . 46	5 + 45	5.39	5.40	5.39	25.360	5.39	5 - 40	5.33	5.39	5 . 40	5.36	5 - 40	2.40	5.36		25.290
STATION	E A	5.78	5.78	5.78	5.77	5.77	5.78	5.79	5.80	5.82	5.62	5.83	5.82	5.79	5.76	25,753	5.74	5.73	5.74	5.74	5.75	5.76	5.77	5.78	5.78		25.780
	H91H	6 - 18	6.18	61.9	61.9	61.9	6.21	6.22	6.24	6.26	6.27	6.28	97.9	6.23	6.20	26.170	41.9	6 - 15	+1.9	6.14	6.15	91.9	6.16	6.18	91.9		26.260
	TOTAL OBSERVATIONS	7	S	-	S	S	8	S	S	-	S	S	1	1	3	575	3	3	•	N	N	S	N	Ñ	S		13279
(6/CU•M)	L 0 %	024•	026.	026.	26.	028.	930.	030.	031.	028.	027.	023.	021.	012.	008.	10101	.600	. 600	013.	015.	019.	018.	020	023.	024.		1008.3
DENSITY	MEAN	072.	074.	070	278.	080	082.	084.	084.	078.	071.	065.	.090	053.	048.		044.	046.	052.	058.	062.	065.	067.	.690	071.		1066.4
	HOIH	3	1	•	•	ċ	7	146.	141	•	128.	125.	122.	-	120.	1	114.	119.	23.	21.	121.	125.	126.	1126.4	131.		1147.3
	HOUR.	0		7	•	7	Š	•	7	6	•	01	11	12	-13	*	15									> 0	HON

TABLE VI (CONT)

MEAN AND EXTREME DENSITY AND STATION PRESSURE BY MONTH AND BY HOUR A STATION - MHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF DECEMBER

_
Σ
•
=
=
•
3
٠
_
_
>
۲
-
U
2

_
S K
J.C
z -
PRESSURE
STATION

	2 0 1	0	-	7	~	7	S	•	~	c o	•				13													
TOTAL	⋖ >		•	m	•	•	639	•	•	S	•	•	S	•	•	7	•	•	N	S	S	-	3	3	-		****	
	۲ •	5.24	5.23	5.22	5.21	5.20	25.240	5.28	5.28	5.27	5.28	5.28	5.27	5.24	5.26	5.23	5.21	5.20	5.21	5.20	5.22	5.24	5.27	5.27	5 • 25	. •	25.200	
	Z W T	5.77	5.76	5.77	5.77	5.76	25.767	5.77	5.78	5.80	5.81	5.81	5.80	5.78	5.75	5474	5.73	5.73	5.73	5.74	5.75	5.75	5.76	5.76	5.77		25.769	
	I O I	6.25	6.24	6.25	6.25	6 - 25	26.270	6.27	6.27	6.27	6.28	6.29	6.25	6.22	6.21	6.18	6.18	91.9	91.9	61.9	6.21	6.22	6.24	6.24	6.24		26.290	
TOTAL	+	9	•	0	•	•	598	•	9	0	•	•	0	•	•	0	9	ø	8	S	Ŋ	-	4	3	0		13684	
	* 	029.	029.	030.	077.	027.	1025.2	027.	027.	025.	025.	0220	023.	019.	014.	011.	. 410	014.	018.	020	022.	021.	022.	023.	025.		1011.1	
	Z W E	0.88.	.000	091.	0.63	095.	1096.2	298.	.660	095.	089.	083.	077.	071.	065.	062.	061.	963.	.690	075.	078.	080	083.	085.	086.		1082.7	
	I L I	7.		S	•	63.		C.	77.	75.	53.	50.	46.	3	37.	2	32.	-	•	40	•	46.	43.	•	55.		1180.3	
	er O	O	-	7	•	4	S	•	7	89	•				ان												HONTH	

SECTION III

CLOUDS

	•	PAGE
Table VII.	Diurnal Variation of the Relative Frequency	
	Distribution of Cloudiness Types by Month and by Hour	77

CLOUD CLASSIFICATION (11)

Family A: High Clouds (Mean lower level, 6,000 meters, 20,000 feet)

Cirrus (Ci) Cirrocumulus (Cc) Cirrostratus (Cs)

Family B: Middle Clouds (Mean upper level, 6,000 meters, 20,000 feet; mean lower level, 2,000 meters, 6,500 feet)

> Altocumulus (Ac) Altostratus (As)

Famil C: Low Clouds (Mean upper level 2,000 meters, 6,500 feet; mean lower level, close to the surface)

> Stratocumulus (Sc) Stratus (St) Nimbostratus (Ns)

Family D: Clouds With Vertical Development (Mean upper level, that of cirrus; mean lower level 500 meters, 1,600 feet)

Cumulus (Cu) Cumulonimbus (Cb)

TABLE VII

DIURMAL VARIATION OF THE RELATIVE FREGUENCY DISTRIBUTION OF CLO DINESS TYPES

BY MONTH AND BY HOUR (IN PERCENT)

A STATION - AHITE SANDS HISSILE RANGE - NEW MEXICO
PERIOD OF PECORD 1951 - 1973

MONTH OF LANDARY

5 0 8 8	2	-	~	~	5	n	•	7	30	•			12			5								23		
OBSERVATIONS	J	S	S	S	'n	•	•	•	•	•	•	•	299	•	•	•	•	S	1	•	S	S	5	-	•	15806
ALTOSTKATUS Nimbostratus	n	#	•		3	'n	S	7	•	•	•	'n	~	~	*	~	7	~	Ŧ	~	•	~	*	•		æ
ALTOCUMULUS	7	7 -	٠,										. 92													2.1
STRATOCUMULUS FRACTOSTRATUS FRACTOCUMULUS	 			01									15													7
CIRRUS CIRROSTRATUS CIRROCUMULUS	3.1	30	34	30	29	3.2	33	. 46	53	5.0	25	6 n	53	53	09	51	53	S. E.	46	38	4		32	37		43
CUMULUS CUMULONIMBUS MAMMATO-CUMULUS		-	w#	-	Ð	0	-	e	7	ហ	9	٠	1.1	1.1	E 7	12	1.1	•	ıs	М			8	7		S
10 10 10	0	-	7	m	3	'n	9	7	80	0	10		12	13			9 1							23	87	MONTH

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF CLOODINESS TYPES

BY MONTH AND BY HOUR (IN PERCENT)

A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO

PFRION OF RECORD 1951 - 1973

HONTH OF FERRUARY

) 0 1	0	-	~	~	*	n	•	^	30	•	01	-	12							6 7						
OBSERVATIONS	603	+09	603	603	+09	605	603	† 0 9	6 03	109	† O 9	† 0 9	509	909	†09	509	†09	705	587	603	70 9	509	†09	595		のオナナー
AL TOSTRATUS NIMBOSTRATUS	.	c)	7	7	Ŧ	.s	S	•9	20	S	m	3	n	~	.	*	*	•	•	ហ	•	~	~	s		3
ALTOCUMULUS	13	12	3																	. 17						20
STRATOCUMULUS FRACTOSTRATUS FRACTOCUMULUS	01	0.1	12		זט															F 7			•	=		13
CIRROSTRATUS CIRROCUMULUS			72																	36						39
CUMULUS CUMULONIMBUS MAMMATO+CUMULUS		2	7		-	-	-	8	Ŧ	S		16								S		. 2	8	n		89
3 0 1	0		7	٣	7	S	9	~	•	٥	10	1.1	12	13	† I		9			19		21			9 ⊀	HON

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF CLO,DINESS TYPES
BY MONTH AND RY MOUR (IN PERCENT)
A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO
PERIOD OF RECORD 1931 - 1973

FONTH OF MARCH

		HOUR
		OBSERVATIONS
	ALTCSTRATUS	NIMBOSTRATUS
		ALTOCUMULUS
STRATOCUMULUS	TUS FRACTOSTRATUS	ULUS FRACTOCUMULUS ALTOCUMULUS NIMBOSTRATUS OBSERVATIONS HOUR
	CIRPOSTRATUS	S CIRROCUMULUS
COMOLO	CUMULONIMBUS	MAMMATO-CUMULUS
		HOUR

ATUS OBSERVATIONS HOUR	7 199	999	664	665		799	667 667 5	6.7	V 0 0 0	6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		00000000000000000000000000000000000000	V V L L L L L L L L L L L L L L L L L L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
NI MBOSTRAT	M	٣	7	r	*	•	*	7 -0	T • • •	F • • • •	7 4 4 4 7	F 49 49 47 1/1	1 0 0 0 1 N 7	1 4 4 4 10 7 M	1 	1 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	្នៃ ១១៩៩៣ ៩៩២៣៣៩		1 4 4 4 T T T T T T T T T T T T T T T T	ត្ ១១១ ៩១៩១១១១១៩		1 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 4 4 T M T M T M T M T M T M T M T M T	្ត្រ
AL TOCUMULUS	15																								
FRACTOCUMULUS	o -	•	11	<u>-</u>	۰	- 1	•	2 -	1 1 2)) r r o r	, u u u u u u	, w w w w w w w	1	7. 7. 4. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2 7.2.2. 2.1.18	25	1231157 77	712311127 272	2	2	2 . 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 <u>, 7, 7, 7, 7, 1</u> , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	- • • • · · · · · · · · · · · · · · · ·
CIRROCUMULUS																									. U - C N 4 4 N 4 4 N 4 4 N 4 4 N 4 4 N 4 4 N 4 A 8 8 N 4 P P - P W
AMMATO-CUMULUS	М	m	m	2	m	٣		4	4 N	ታ ለ ኦ	3 W F &										1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
E .	0	-	7	m	3	ى 9		•	9 /	9 N 80	4 M 40 M	9 / 8 9 D	9	9 C 8 G C C C C C C C C C C C C C C C C C	4 C 8 C - Z C C	4 V 0 4 0 - V 4 4	0 C 0 C C C C C C C C C C C C C C C C C	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 C B C C C C C C C C C C C C C C C C C	9 N B P D - N B P S S N P N B P D - N B P S S N P N P N P N P N P N P N P N P N	9 N B P D - N B P S S P S P S P S P S P S P S P S P S	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 N N N N N N N N N N N N N N N N N N N	4 C B C C C C C C C C C C C C C C C C C

TAULE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREGUENCY DISTRIBUTION OF CLOWINESS TYPES
BY MONTH AND BY HOUR (IN PERCENT)
A STATION - WHITE SANDS MISSILE RANGE - NEW HEXICO
PERIOD OF RECORD 1951 - 1973

MONTH OF APRIL

ALTOSTRATUS CIRRUS STRATOCUMULUS
CIRROSTRATUS FRACTOSTRATUS CUMULUS

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREGURNCY DISTRIBUTION OF CLO, GINESS TYPES BY MONTH AND BY HOUR (IN PERCENT)
A STATION - WHITE SANDS HISSILE RANGE - WEW MEXICO
PERIOD OF RECORD 1951 - 1973

MUNTH OF MAY

STRATOCUMULUS STRATUS CIRRUS CUMULUS

0
OBSERVATIONS
ALTOSTRATUS S NIMBOSTRATUS
S ALTOCUMULUS
FRACTOSTRATUS FRACTOCUMULUS
CIRROSTRATUS CIRROCUMULUS
COMOLONINBUS MAMMATO-CUMULUS
H 0 C R

HOUR		0		• (Y	7	#	ď	4	~	.	0	10		2	7	t	- G	9	17	9	67	20	21	22	23	
OBSERVATIONS		159														999											15457
NIMBOSTRATUS			m	М	, ,	7	3	•	*	m	•	~	7	2	•	•	~	~	2	7	*	ហ	*	~	~	•	m
ALTOCUMULUS !	•	* .	9 -	13	1.7			0 6	33	00	E 6	5.5	23			•	5 0 3			6.	17	57	17	<u>.</u>			21
ACTOCUMULUS	u	n ~	a ·	9	40			•	3 0 (~ •	- 0	n s	;	.	.	.	, c	V :	.	,	n a	0 6		ក ម	n u	n	ĸ
יאאטיטאטן.	25			6.7	23	30	4	- 37	7 6	7.7	. 3	- a	- 4	- r) 3	. 4. Q	40	2 3	י ע) d	. z	200		20	3-6	•	6 E
	9	ហ	3	. 3	r	7	7	S	7	-	22	37	ut	. ក្ស ពោ	5.9	99	09	58	90	9#	33	هدد ا		10	•		27
	2		2			*	'n	•	_						_												I,

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF CLOUDINESS TYPES BY MONTH AND BY HOUR (IN PERCENT) A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF JUNE

3 0 1	をごう 日本日 くり ちゃき こくの ちゃち こうりょう ちゃち こうしょく こくしょ しょうしょうしょう しょうしょう しょうしゅう しょうしょう しょう
OBSERVATIONS	
ALTOSTRATUS NIMBOSTRATUS	~
ALTOCUMULUS	
STRATUS STRATOCUMULUS FRACTOSTRATUS FRACTOCUMULUS	• B B C C C C C C C C C C C C C C C C C
CIRRUS CIRROSTRATUS CIRROCUMULUS	
CUAULUS CUMULONIMBUS MAMMATO-CUMULUS	12 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
H 00 H	1

15017

- ,2

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREGUENCY DISTRIBUTION OF CLO, DINESS TYPES

A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

MONTH OF JULY

100 800 800	3	-	~	~	7	J	•	^	20	•	0									<u>6</u>						
OBSERVATIONS	628	454	S	S	999	•	•	•	•	•	•	•	•	•	•	~	•	1	N	~	~	~	~	-		15638
ALTUSTRATUS NIMBOSTRATUS	7	~	*	T	7	S	*	m	Ŧ	•	7	7	7	2	7	2	m	L f1	7	7	•	m	~	S		7
ALTOCUMULUS					40																-	•	33	-		34
STRATOCUMULUS FRACTOSTRATUS FRACTOCUMULUS	C	0		01	=		17				•		ι ν	m	3	~	m	S	•	•	E 7	~	1.1		•	2
CIRRUS CIRROSTRATUS CIRROCUMULUS		30	56			52		40	53		40									26		40		39		0
CUMULUS CUMULONIMBUS MAMMATO-CUMULUS	5 &	22	18	E 1		20	-	16		42	63			8 1						67	. 62	0	3 M		C	∩ c
H 0 U R	O	-	O	٣	3	S	•	7	Ø	0 -	01	1 1	12	13	7	15	16	17	18					23	10 C	

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREGUENCY DISTRIBUTION OF CLOUDINESS TYPES A STATION - WHITE SANDS HISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF AUGUST

H 00 8		0	-	~	· ") 7	. . .	•	~	(10)	•	0	-	12	13	*	5	•	12	9 -	6	20	21	22	23	1	
OBSERVATIONS	į	959	999	999	999	999	100	799	599	999	999	799	999	999	999	199	999	599	9+9	636	59	707	653	653	635		15829
ALTOSTRATUS NIMBOSTRATUS	ı	7	~	3	•	m	S	~	7	~			→			~		7	.	*	~	.	~	~	•	•	m
AL TOCUMULUS	2.7	. (E :		0	+	49	0.9	D :	•	25	.n :			9 6	27	5 .	97	7 6	A 0			0	92	e •		•
STRATOCUMULUS FRACTOSTRATUS FRACTOCUMULUS	œ	; c	. (• (10 (0 1	0 3	P (<u>^</u>	-	0 \	0 4		۸ ۳	.	.	7 3		• 6	- 0	> 1	~ (o (9	Œ	
CIRRUS CIRROSTRATUS CIRROCUMULUS	29	25	2 0			6 7 3	9 0		. ע	7 3	5 3	c.	*	4.2	c	o Co	, 3 0	370	, ru	25	, ₋	34	3 6		9	e t	
CUMULUS CUMULONIMBUS MAMMATO-CUMULUS	1.8	15	16		0		7	2	22) M	. A	6	w	6 4	44	83	82	93	7.2	80	20	. 66	27	27		97	
H 00 R	0	-	7	٣	7	S	•	^	•	٥	01	11						17		6-	20	21	22	23	₩.	HONTE	

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREGUENCY DISTRIBUTION OF CLOUDINESS TYPES BY MONTH AND BY HOUR (IN PERCENT)
A STATION - BHITE SANDS MISSILE RANGE - NEW MEXICO
PERIOD OF RECORD 1951 - 1973

MONTH OF SEPTEMBER

		SHOUR
		OBSERVATION!
	AL TOSTRATUS	NIMBOSTRATUS
		ALTOCUMULUS
STRATOCOMOLUS	CIRROSTRATUS FRACTOSTRATUS	US CIRROCUMULUS FRACTOCUMULUS ALTOCUMULUS NIMBOSTRATUS OBSERVATIONS MOUR
CIRRID	CIRROSTRATUS	CIRROCUMULUS
くのおのしのさ	CUMULONIMBUS	MAMMATO-CUMULUS
		TOUR

7 O F	2	-	~	ď	1	J	9	7	90	•	0					5									
OBSERVATIONS	3	3	1 7 9	#	#	3	m		~	~	3	7	3	3	Ŧ	~	3	3	~	S	3	3	3	~	15251
AL TOSTRATUS Nimbostratus			2	7	7	#	m		~			7			~	7	7	7	8	.	.	7	7	7	8
ALTOCUMULUS			52																			54			31
STRATOCUMULUS FRACTOSTRATUS FRACTOCUMULUS	7	œ	01		٥		S1		17		12	12	œ	7	•	•	•	•	œ	œ	æ	^	•	60	01
CIRRUS CIRROSTRATUS CIRROCUMULUS	22		20				30																		27
CUMULONIMBUS MAMMATO-CUMULU _s	10	7	7	ហ	ស	7	01	01	6.1	26	e t			67		67	59		15		25		S	2	32
300 R	o		8	•	7	ល	•	7	©	0	01	7	12	13	7 -	15	16	17	18			21	-	23 8 Y	HONAI

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREGUENCY DISTRIBUTION OF CLOLDINESS TYPES A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO 1951 - 1973 BY MONTH AND BY HOUR (IN PERCENT) PERIOD OF RECORD

NONTH OF OCTOBER

HOUR ALTOSTRATUS NIMBORTDATES CIRRUS STRATOCUMULUS
CIRROSTRATUS FRACTOSTRATUS STRATUS CUMULONIMBUS CURULUS

) 0 1	0	-	8	~	#	S	•	7	30	5				E												
08SERVATIONS	~	~	~	~	1	67		~	~	7	1	~	1	~	-	-	1	S	S	~	•	999	•	4		1 6067
NIMBOSTRATUS	_				-	M	7	٣	~	~	7	~	~	7	7	~	~	Ŧ	~	7	7	-		8		~
ALTOCUMULUS						20																				6
FRACTOCUMULUS	6 0	7	01	60	•	1 1		91	81	7	3	7	01	•	==	60	60		•	•	•	.	•	=		
CIRROCUMULUS	1.7	15	82	15	15	8-	31	29	35	31	32	36	33	32	36	34	35	39	30	25	52	21	20	21		27
MAMMATO-CUMULUS	e	m	m	m	m	m	•	ហ	•	12			31	36	43		35		1.8	•	•	•	v	*		S 1
E 00 E	0	***	7	n	4	S	•	^	00	٠	0	11	12	13	7 -	15	9	17	81	<u>6</u>		21		23	₽ 4	IPOS

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF CLO. DINESS TYPLS A STATION - WHITE SANDS PISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MORTH OF KOVEMBER

ALTOSTRATUS CIRRUS STRATOCUMULUS CIRROSTRATUS FRACTOSTRATUS CURULONIABUS

10c	၁	-	7	~	*	S)	•	1	30	0	<u></u>	1 1	12	-	7	5	9	17	20	-	20	21		2 6	•		
OBSERVAT1035	635					1 7 9																				15224	1
NIMBOSTHATUS	2		•	7	7	~	*	*	•	S	S	•	3	· 4	•	ט פ	n ব	r -	Du	្រ	7 3	r •	? (7) (7	13	r
ALTOCUMULUS	13	_	3	2		9 7	29	3.	32	26	23	27			7 6 6	7.	17	77	97	0 3	7 3	r (7 1		5	•	^
FRACTOCUMULUS	o			→ 0	⊢ α				• •) u	n d	n a	D 4	r :	.	9 :	*	13	91	12	• ;	-	•	•	9		12
CIRROSTRATUS	r	77	17	7 7	7 .	- c	9 6	กร	→ q	0 6	7 U	n c	76	7	9 7	. 53	47	4	53	38			27		30		37
CUMULON IMBUS MAHMATO-CUMULUS	•	7		N ·		p=0 (→ (•) :	r	rı	~ (7 (21	5	91	₩ -	51	6.1		9	7	a	m	n	•		7
E 00 H	į	0		7	m	3 * 1	'n.	•	~ (XO (o - ;	0 1		12	- 1	+ -	15	16	17	8 7					23	8	MONTH

TABLE VII (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF CLOLDINESS TYPES. A STATION - WHITE SANDS HISSILE RANGE - NEW HEXICO PERIOD OF RECORD 1951 - 1973

POLITH OF DECEMBER

HOUR	9		7	m	3	S	•	^	0	•	3	-	12	e -	7	5	•	17	3 	6-	20	21	22	23		
OBSERVATIOMS	~	637	3	4		049	~		t D	ın	LIN.	•	un	ш	3	3	3	N	-	~	7	1	w	1.4		19851
ALTOSTRATUS Nimbostratus	(4	2	~		2	•	~	•	~	S	*	S	m	•	S.	*	•	S	•	m	•	~	~	•		M
ALTOCUMULUS	91	16	15		13	3 *	22	30	30	30	28	30	22	7.7	97	23	54	27	21	6	•	17	16	17		2.1
STRATOCUMULUS FRACTOSTRATUS FRACTOCUMULUS	01		12			*	*	20	54	61	8	21	5	91	•	91	17	2.1	្ន	12		0 7	-			51
CIRROSTRATUS CIRROCUMULUS	24	-	22	22	2.0	23	30	2	7	7	4.7	15	47											27		37
CUMULUS CUMULONIMBUS MAMMATO-CUMULUS	-				1 0	1		i m	3	. ሊ	n - ¢	2		2		2			· W) e7) -		•	ĸ
HOUR	c	- (• •	,	1	ď	•) ^	. α	0	-		12	-	3	· ·	2 4	- 2		0				23		

SECTION IV

WEATHER

		Page
Table VIII.	(a) Monthly and Annual Mean Precipitation (Inches) at Seven WSMR Sites	90
	(b) Annual Rainfall (Inches) by Years at "A" Station 1950-1973	90
	(c) Monthly and Annual Precipitation Means and Extremes (Inches) at "A" Station 1950-1973	91
	(d) Monthly and Annual Mean and Maximum Snowfall (Inches) at "A" Station 1950-1973	91
Table IX.	Minimum, Maximum, and Mean Number of Days Per Month for Various Weather Conditions	92
Table X.	Minimum, Maximum, and Mean Duration in Hours of the Various Weather Conditions by Month	93
Table XI.	Diurnal Variations of the Relative Frequency Distribution of Weather Conditions by Month and by Hour (In Percent)	94

TABLE VIII (a)

MONTHLY AND ANNUAL MEAN PRECIPITATION (INCHES) AT SEVEN WSMR SITES

Site	A	WSD	AMN	SMR	APA	JAL	STA
Elevation	4,238	3,989	4,070	3,999	3,956	4,051	4,940
Period of Record	1950-73	1963-73	1964-73	1964-73	1964-73	1966-73	1963-73
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov	0.48 0.57 0.52 0.22 0.23 0.89 2.29 1.86 1.29 1.06	0.29 0.40 0.25 0.14 0.15 1.39 1.94 2.06 1.39 0.75 0.37	0.41 0.40 0.53 0.12 0.30 0.98 1.86 1.95 1.32 1.04	0.29 0.39 0.26 0.13 0.16 1.04 1.89 2.48 1.15 0.77 0.35	0.29 0.18 0.17 0.12 0.15 0.96 1.35 2.13 1.21 0.63 0.35	0.26 0.34 0.14 0.07 0.37 0.77 1.82 1.50 1.07 0.98	0.12 0.19 0.29 0.10 0.30 0.97 1.71 2.13 1.27 0.96 0.25
Dec	0.76	0.47	0.62	0.64	0.58	0.55	0.52
Annua1	10.59	10.20	8.76	9.55	7.87	8.27	8.80

TABLE VIII (b)

ANNUAL RAINFALL (INCHES) BY YEARS AT "A" STATION
1950-1973

Year	Rainfall	Year	Rainfall
1950 1951 1952 1953 1954 1955	6.41 7.08 9.32 5.30 5.91 9.27 3.92	1962 1963 1964 1965 1966 1967 1968	14.07 7.56 9.22 12.40 16.63 10.12
1957 1958 1959 1960 1961	10.37 20.02 11.45 11.25 12.62	1969 1970 1971 1972 1973	13.53 8.41 8.75 16.19 11.38

TABLE VIII (c)

MONTHLY AND ANNUAL PRECIPITATION MEANS AND EXTREMES (INCHES) AT "A" STATION 1950-1973

Month	Mean	Greatest Monthly	Year	Greatest 24-Hour* Rainfall	Date
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	0.48 0.57 0.52 0.22 0.23 0.89 2.29 1.86 1.29 1.06 0.42 0.76	1.50 1.74 3.00 1.37 0.95 7.42 5.63 6.32 5.76 3.65 2.40 2.43	1960 1957 1958 1952 1959 1966 1962 1959 1958 1955 1961	0.96 1.01 1.46 0.95 0.82 2.40 2.50 4.25 2.96 1.91 0.89	11-1960 28-1953 5, 6-1958 11-1952 23-1959 29-1966 14, 15-1973 23, 24-1959 11, 12-1964 3, 4-1955 8-1961 14, 15-1967
Annual	10.59	20.02	1958		

^{*} Any consecutive 24-hour period.

TABLE VIII (d)

MONTHLY AND ANNUAL MEAN AND MAXIMUM SNOWFALL (INCHES) AT "A" STATION 1950-1973

Month	Mean Snowfall	Maximum Snowfall	Date
Jan	1.3	6.9	1972
Feb	1.5	8.6	1952
Mar	0.5	3.5	1958
Apr	T	T	1973*
May	0.0	0.0	
Jun	0.0	0.0	
Jul .	0.0	0.0	
Aug	0.0	0.0	
Sep	0.0	0.0	
0ct	T	T	1973*
Nov	0.8	6.2	1961
Dec	2.4	14.9	1967
Annual	6.5	18.5	1960

^{*} Trace also recorded in earlier years.

TABLE IX

MINIMUM. MAXIMUM. AND MEAN JUMBER OF DAYS PER MOMTH FOR THE FOLLOWING WFATMER CONDITIONS A STATION - WHITE SANDS HISSILE RANGE - NEW MEXICO

7
~
-
•
_
S
5
\mathbf{a}
æ
5
Ū
44
34
OF
0
-
0
_
r
i
<u>a</u>
_

DAYS OBSERVED		674 666 666 666 666 666 666 666 666 666
		11
FOG OUND FOG	MAX MEAN SIN	011-048804444
SNOW SHOWERS SNOW GRAINS SNOW PELLETS SLEET	HAN MEAN MIN	2
RAIN PAINSHOVERS DRIZZLE	MAX MEAS FIN	13 14 11 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
THUNDERSTURMS	NEAT TIN	1
	HENON	

TABLE X

MINIMUM, MAXIMUM, AND MEAN DURATION IN HOURS OF THE FOLLOWING BY MONTH

A STATION - AHITE SANDS MISSILE RANGE - NEW MEAICO

PERIOD OF RECORD 1951 - 1973

	ב חיו ד	THUNDERSTOR	40 E M S	1 4 7	RAIN Inshor Orizzl	N N N N N N N N N N N N N N N N N N N	X X X X X X X X X X X X X X X X X X X	SNOT SHO GRA PEL	WERS Ins Lets	9 8	F 0 G	.a	8 8 7 7 2 5 3 2	DCST 40.	Bust	
HONTH	TA X	REA	2 E	Z A X	4EAN	? \$	HAX	MEAN	2 I E	I K	MEAN	Ξ	NA K	R R R	<u>z</u> 7	UESERJATIONS
2	•	c	:	77	<u>د</u>	C	37	-	٥		•	0	£	m	c	568
	, 0) C	C		. -	0	45	0	0	17	*	0	9	0-	0	14372
N N	4 0	, -	, c	. r	·		22	ū	0			ə	7.8	12	0	16
204	1) C	3 M	6	0		0	0		0	0	9	15	၁	508
× ×		• •	0	17	•	0	-	0	0	0	0	0	5.6	•	0	522
2		. 00) C	. 5		0	~	O	0		0	0	76	3	0	487
קר זחר		20	œ	67	28	*-	0	0	0	0		0	•	7	0	554
904		20	7	72		80	~	0	0	~	0	0	7	0	0	15
SFP		æ	C	89		0	0	0	P	.5	<u></u>	0	•	-	0	525
100		•	. C	2 1		0	7	0	0	•	-	0	~	8	0	97
2 2		, C) C	A. P.		0	30	s)	0	32	~	0	24	m	0	12
	-	0	o	7.1	9	0	47	٥	0	89	^	0	20	8	0	23
	•	,	•	•												

TABLE XI

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF REATHER CONDITIONS BY MONTH AND BY HOUR (IN PERCENT)
A STATION - WHITE SANDS HISSILE RANGE - NEW HEAICO 1951 - 1973 PERTOD OF RECORD

MONTH OF JANUARY

10CR	0	-	~	~	*	S	•	^	•	•	<u>-</u>		12	2	\$		9 1			6-	20	21		23	
36SERVATIONS	049	929	999	656	959	657	000	663	995	663	662	663	69	099	661	199	099	479	07.	638	0**	634	0,0	149	15672
DUST	0	O	0	0	0	0	0	0	0	0		0		-i	_	~	-	~	-	-		0	0	0	0
F 0 6	-	-	7	~	-	-	-	-	~	~	~	-	-	0	-	-	0	0	0	0	0	0	0	0	-
FREEZING	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HAIL	0	0	0	0	0	O	ာ	0	၁	0	o	0	a	0	റ	0	G	റ	0	0	0	0	0	0	0
SNO*	7	_	7	7	7	-	7	7	7	~	7	7	2	7	~			-	-	~	7	~	7	7	7
R A I	8	7	~	~	~	~	M	7	7	7	~	~	~	7	•	m	m	~	7	~	-	8	8	~	~
THUNDER STORMS	0	C	0	0	0	0	O	0	0	0	O	0	ဂ	0	0	0	0	c	ဝ	0	0	0	ດ •	0	0
HOUR	0	-	7	~	*	· G	•	^	•	•	01	=	12	13	+ 1	5	9 [17	18		20			23	3.0× 3.0× 1.1

TABLE XI (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF "EATHER CONDITIONS OF URALLE CONDITIONS OF URALLE RANGE - NEW MEXICO FERLOS OF RECORD 1951 - 1973

HONTH OF FEBRUARY

	Y 00 H	0		7	m	3	'n	٥	^	•	•	2	=	12	2	*	15	16		18				22		
	OBSERVATIONS	Û	Q	0	Ċ		509	\supset	·Э	3	0	9	Ċ	0	7	Ċ	O	0	•	10	•	0	4		•	14372
	DUST		0	-	-			-	~	-		-	-	7	٣	*	~	М	~	7	7		-	-		<i>;</i>
	FOG	0	c	C		_		0	-	-	-		0	0	0	0	0	0		-	~	0	-		0	~
	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•	HAIL	9	0	0	0	0	0	ဂ	O	0	0	0	O	0	0	Ö	0	0	0	Ö	0	0	0	0	0	0
	¥:0NS	-		-			-	-	-	7	7	7	-		7	7	7	7	-	-	-	-	-	7	-	2
	X I I	7	7	8	•	~	7	7			7	7	7	7	~	m	7	~	7	~	7	~	7	~	~	~
OE	STORMS	0	0	0	O	0	0	c	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0	0	0	.
	1 0 2 2	0	-	7	М	+	S	•	^	80	•	0	7	12	13	*	5		17		6					BY HONTH

TABLE XI (CONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF WEATHER CONDITIONS

BY MONTH AND BY HOUR (IN PERCENT)

A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

MONTH OF MARCH

	100x	0	-	7	~	*	s	•	~	30	•	0	=	12	13	*	5	91	17	9 7	6.	20	77	22	23		
	OBSERVATIONS	•	0	•	0	•	599	•	•	•	•	•	•	9	•	4	•	•	*	~	~	~	3	•			15761
	DUST	0	0	-	0	0	-	O	٥		-	~	~	~	7	**************************************	s	្រា	**	*	•	~	м	7	0		~
	F06	0	0	0	0	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
23	& = =	0	O	O	G	0	0	ר	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
_	HAIL	0	0	0	റ	0	c	C	0	0	9	0	0	0	0	•	0	0	0	0	0	0	0	0	0		0
	SNOW	-	-	_	-	-	-	-	-	-	-		~	7	7		· .	0	0	0	0	0	0	0	0		
	Z 4 ¥	8	~	7	~	~	•	7	~	~	~	~	~	~	~	~	~	~	~	7	~	7	m	~	7		~
THUNDER	STORMS	0	n	C	0	0	0	ሶ	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	•	0		0
	100F	c	-	7	~	7	S	•	^	10	•	01	11	12	13	†	5	9	17	91		5 0				6	

TABLE AL (CENT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF LEATHER CONDITIONS BY MONTH AND BY HOUR (IN PERCENT)
A STATION - WHITE SANDS MISSILE WANGE - WEN MEXICO
PERIOD OF RECORD 1951 - 1973

MONTH OF APRIL

	201	0		8	~	*	'n	•	^	6 0	•	0	=	12	13	*	15	9 !	17	18	6	20	21	22			
	OBSERVATIOUS	049	641	3	7	1,9	3	2	3	1	 	3	3	3	8	3	1	7	0	0	0	•	0	0	•	9	1 20 6 1
	ous t		~	~	-		0	-	-	-	-	_	7	~	7	₹	ណ	S	ហ	S	7	~	7		-	•	~
	90	0	0	c	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0
FREEZING	1 V V	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	9
•	HAIL	0	0	'n	O	O	C	O	0	0	0	0	0	0	O	0	0	0	0	0	C	0	0	0	0	c	0
	Store	0	O	0	0	0	0	Ċ	O	0	0	0	0	0	0	0	0	, Co	0	0	0	0	0	0	O	(0
	K & I !!	-	7	-	-	_	-	c	-	-	-	7	7	-	-	7	-	-	-	-			7	-	-	•	
THUNDER	STORMS	0	0	כי	ø	0	O	Ö	0	င	0	0	0	0	0	0	0	O	0	0	ດ	0	-		0	•	0
	HOUR	0		7	~	*	S	9	~	00	•	0	1 1	12	13	+	15	9 [17	8 -		20	21	22		69 ⊀	I POI

TABLE XI. ICONT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF WEATHER CONDITIONS BY HOUR (IN PERCENT)

A STATION - WHITE SANDS HISSILE RANGE - NEW HEXICO
PERIOD OF RECORD 1951 - 1973

MONTH OF MAY

	300 200 300 300 300	0		7	m	*	ហ	•	7	ro.	•	10	-	12	13	†	15	16	17	1.8	61	20					
	OBSERVATIONS	169	159	653	653	•	999	199	199	9	•	599	•	•	199	•	•	•			N		Q				15550
	DUST	0	0	0	0	0	0	0	0	~	-		٥	-	-	~	7	Ni	7	8	7	-	-				-
	F 0 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0		0
FREEZING	-	0	0	0	0	0	0	0	0	0	0	Ġ	0	0	0	0	0	0	0	0	0	0	0	0	0		0
_	HAIL	0	O	Ü	נט	0	0	ဝ	0	0	0	0	O	0	0	O	0	0	0	0	0	0	0	0	0		0
	SNO	0	0	၁	0	0	ō	Ö	0	0	0	က	0	0	ō	0		0	0	0	0	0	0	0	0		0
	X A I	-	-	0	-	-		-	-	-	-	-		-	-	-	~	7	-		~	_	-	-	-		-
:4	STORMS	O	C	Ö	0	0	0	Ċ	0	0	0	E	-	_	0	-	***	-		c		-	-	•			O
	HOUR	0	-	7	M	7	ū	•	7	•	•	10	11	12	13				17							8	HONTH

TABLE XI. (CCNT)

DIURNAL VARIATIUS OF THE RELATIVE FREQUENCY DISTRIBUTION OF WEATHER CONDITIONS OF URALINES CONDITIONS OF THE SANDE AND A MONTH AND BY HOUR (IN PERCENT)

A STATIOS — SHITE SANDS MISSILE RANGE — SEW MEXICO PERIOD OF RECORD 1951 — 1973

MONTH OF JUNE

	100 K	0	-	7	٣	*	s	•	^	Φ	•	0	1 1	12	6 3					91						
	>	•		0	-	1	249	2	7	3	*	1	3	3	-	~	~	1	N	9	9	~	~	~	-	14870
	DUST	-	0	0	0	0	-	0	0	0	o	0	0	0	0			, ma	-	-	-	8	-	0	-	-
	F06	0	0	0	0	0	0	IJ	0	0	0	0	0	0	0	0	0	0	0	ဂ	C	Ö	0	0	0	0
~	Z - -	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	HAIL	0	C	0	0	O	0	つ	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	ာ	0
	5 NO &	0	O	0	0	0	C	၁	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0
	X A 1.	-	~	8		0	_	-	-	-	-	-	-		-	m	~	*	\$	7	~	~	7	*	~	~
	STURMS	-			C	ဂ	Ċ	Ö	0	0	0	0	O	0	-	7	n	Ŧ	3	+	m	m	=	~	••	-
	HOUR	0	-	7	•	7	3	•	^	4 0	0	10	11			*										MON TH

TABLE XI (CONT)

OTURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF MEATHER CONDITIONS OF URATHER CONDITIONS OF MEATHER CONDITIONS A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO 1951 - 1973 PERTON OF RECORD

MONTH OF JULY

	100r	ດ		7	m	*	ភ	•	7	6 0	٥	10		12	13		15											
	OBSERVATIONS	629	5	L)	Δ	-0	•	•	•	•	•	•	•	•	544	•	•	•	4	~	-	0	-	-	-		1	1224
	DUST	0	0	0	0	O	D	0	o	0	0	٥	0	0	0	0	0	0	0	-	-	0	0	-	0		(•
	٦٥. ن	0	O	0	0	0	0	0	0	-	0	0		0	0	5	0	0	0	0	0	0	0	0	0		(>
REE	₹ - - -	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0		•	>
L	HA I L	0	0	റ	Ö	0	C	כו	0	0	0	0	၀	٥	Q	o	0	0	0	0	0	0	0	0	0		•	5
	70 P S	0	O	0	0	c	0	0	0	0	0	0	0	0	0	a	0	0	0	0	0	0	0	0	0		(0
	X X I	7	•	ß	រា	m	3	*	3	~	~	~	7	7	*	*	•	•	©	•	•	•	•	.•	•		•	v
30	STORMS	•	~	7	7	-	0	•	c	0	0	0	0		Ä	ហ	•	01		^	7	•	•	*	*		•	P)
	¥ 700 T	c	_	~	~	7	S	•	~	•	•	0	=	12	13	+	5	91	17	8				22		3	-	I ZOL

TABLE XI (CANT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF WEATHER CONDITIONS A STATION - NHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 - 1973

MONTH OF AUGUST

	3 0 2 3	0		7	~	*	S	•	^	©	•		=							18							
	OBSERVATIONS	Ś	•	•	•	•	199	•	•	•	•	•	•	•	•	•	•	•	3	m	~	•	~	~	~		15750
	DUST	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	ò	0	0	0	0	0	0	0	0	0		0
	306	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ō	0	0	0	0	0	0	0	0		0
£ 2	α •	0	O	0	0	0	0	c	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0		0
	HAIL	Ç	0	O	0	0	0	0	3	0	0	0	0	0	0	0	0	.	0	0	0	0	٥	o	0		0
	SNO.	0	0	0	٥	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
	Α Α Σ	S	ភ	•	Ŋ	3	e		•	7	7		7	7	~	J	•	•	•	S	•	Ŋ	S		ī.		7
ADE	STORMS	m	7	7			O	0	0	0	0	0		7	3	•	60	7	7	•	1	ហ	S	3	ነጣ		٣
	3 20 8	ာ		2	M	*	'n	•	7	œ	•	01	1 1	12	13	*				18						×	RONTH

TABLE XI ICONT)

DIURNAL VARIATIO: OF THE RELATIVE FREQUENCY DISTRIBUTION OF MEATHER CONDITIONS AT MONTH AND BY HOUR (IN PERCENT)

A STATIO: - AHITE SANDS HISSILE RANGE - NEW MEXICO
PERIOD OF RECORD 1951 - 1973

MONTH OF SEPTENBER

	2001	0	-	~	n	•	ស	•	~	•	•	01	11	12	2	=				2							
	OBSERVATIONS		3	~	1	3	6 4 1	~	~	~	M	~		*	1	1	~	7	~	~	N	N	N	~	623		15227
	DOST	٥	0	0	0	0	0	O	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0		0
	F0G	0	9	0	0	0	0	C	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
E 2	N I A	0	o	0	0	0	0	Ö	O	0	0	ō	0	0	O	0	0	0	٥	0	0	O	0	0	0		0
	HAIL	5	0	Ċ	0	0	0	O	0	၁	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
	N N S	0	כו	O	0	O	0	ເນ	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0		0
	A Z	٣	7	e	3	3	٣	m	~	~	7	٣	7	7	~	7	~	m	~	3	7	S	‡	3	e		m
UNDE	STORMS	-	-	O	0	-	n	O	0	0	0	0	O	0		7	m	e	m	Ŧ	e	7	7	2.	~		-
	100 300 300	6	-	7	~	#	Ŋ	8	^	6 0	•						15									>	MONTH

TABLE XI (C. NT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF WEATHER CONDITIONS

OF MONTH AND BY HOUR (IN PERCENT) A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO

MONTH OF OCTOBER

	1 0 1 1	0	-	7	~	7	'n	•	~	€	•		-		_	*	<u>.</u>	9-	17	8-	6	20	21	22	23		
	OBSERVATIONS	-	_		_		672		•				•		N	•	~		J	•	Ŧ	ਤ	T	Ŧ	•	15978	
	DUST	0	0	0	a	0	0	0	a	0	0	0	0	0	9	O	0	_	0	0	0	0	0	0	0	0	
	F06	0	C	0	0	0	0	0	_		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E 2	N N N N N N N N N N N N N N N N N N N	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D	
	14 1 L	a	a	0	0	• •	O	0	C	O	0	0	o	0	O	0	0	0	O	0	0	0	0	0	0	0	
	5 NO 18	c) C) C) C) C	0	0	0	0	0	0	Ö	0	0	0	0		0	0	0	0	0	0	0	0	,
	Z 4 7	^	۰ ،	. ~	•	•	~	m	~	(1)	· ~	~)	~	~	M	8	•	~	~	8) eri	· 64	~	~	~	•
THUNDER	œ	•	• c	ם כ	o c	o c	· c) C		C	0	· c	0	· c	0		· ©	. –		-	c	-	9 em	· c	ໍດ		
	HOUR			→ C	4 "	7 3	٠ ٧	۰ ح	•	. α	•	_	2 =			.	ď	1		- cc	0		-	20	23	¥ 00 €	

TABLE XI (CUNT)

DIURNAL VÄRIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF MEATHER CONDITIONS 3Y MONTH AND BY HOUR (IN PERCENT)
A STATION - WHITE SANDS MISSILE RANGE - NEW MEXICO PERIOD OF RECORD 1951 × 1973

MONTH OF NOVEMBER

	10 20 31	٥	-	N	~	*	S	•	^	€0	•	0	1 1	12	7	*		• -		9 -		5 0	21	22			
	UBSERVATIONS		7	~	~	1	-	~	~	~	M	7	~	M	7	633	•	•	~	~	-	-	~	613	-		15124
R FREEZ	DUST	0	O	0	0	O	0	0	0	0	0	0	0	0			-	_	-	0	0	0	0	0	0		0
	F 06	0	0	0		0	0		-				0	0	0	0	0	0	0	0	0	0	0	0	0		0
		0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
	44 1 L	0	O	0	0	0	0	c	o	0	0	0	0	0	٥	0	0	0	0	0	0	0	Ģ	0	0		0
	5140 M		-	-		-		0	0		-	0	-	0	0	0	0	0	0	ò			-	-			-
	Z Z		-	~	~		~	7	7	•	e	7	7	~	~	c	7	7	~	7		7	7	.7	7		~
	STORAS	c	0	כז	0	O	O	0	٥	0	c	0	0	0	Ö	n	0	0	0	0	0		0	0	0		0
	HOUR	0	-	~	m	3	ú	•	_	80	•	0		12		+ 1	5	9	17	18				22		>	

TABLE XI (CUNT)

DIURNAL VARIATION OF THE RELATIVE FREQUENCY DISTRIBUTION OF MEATHER CONDITIONS

BY HOUR (IN PERCENT)

A STATION - WHITE SANDS HISSILE RANGE - NEW MEXICO

PERIOD OF RECORD 1951 - 1973

MONTH OF DECEMBER

	7 0 1	0	-	~	~	*	N.	4	•	• (•	0	_	~	7	-	5	9	17	1.8	6	20	21	22	23			
	OBSERVATIONS	1	~	~	~	87.9	-	•	0	7	· N	7	9 + 9	:51	*	974	₹	939	J		919	616	****	612	-				15237
	DUST	0	-	0	C	o C) -	- (D	0	0	0	0	0	0	0	0	-	_		a	C		0	•) (•		0
	F06	-	***	-		4 0		y (7	~	7	7	~	~	7			-	_	~		•	· C) C		.	-		
	RAI	0	0) C) () ()	0	0	0	0	0	0	0	0	0	0	6	0	•	· c	o c) C	•	5	9		0
	HAIL	C	c	9 0) ()	o (9	O	0	0	0	0	0	Q	0	C	0	· c) C	C) C	o c	o c) (0	0		0
	SHOW	-	٠,	٠.		 .	-	-	7	_	. ~	j	, ,	, 0				-	• -	-	• -		- (٠, ٧		-	8		7
	A 5	c	4 (v :	r	~	m)	n	m	-	, ^	. ~	, c	, ,	• 0	• ^	1 4	•	יןנ	7 6	, c	9 (V (7 (٦.	7	~		•
_	STORMS		-	0	כ	0	0	0	0	•	.	.	-		o c	.	.	-	o ()) (3 (0	0	ס	6	0		c
	100E	•	O		~	•	7	'n	•	•		D (• •) ;	→ (7 :	? :	† (s :	9 !	-	90	61	20	21	22	23	8	HONTH

.

LITERATURE CITED

- Hoidale, M. M. and L. Newman, March 1974, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 1, Surface Wind, Cloud Cover, Visibility," DR-818, Meteorological Support Division, Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico. AD 776 908
- Hoidale, M. M., B. J. Gee, M. A. Seagraves, and G. W. Harmon, August 1968, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air Data: White Sands Desert Site," DR-327, Meteorological Support Division, Environmental Sciences Department, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico. AD 679 043
- 3. Hoidale, M. M., B. J. Gee, and G. W. Harmon, May 1968, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air Data: Holloman Site," DR-321, Meteorological Support Division, Environmental Sciences Department, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico. AD 672 063
- 4. Hoidale, M. M., B. J. Richart, and T. B. Hudson, May 1971, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air Data: Apache Site," DR-621, Meteorological Support Division, Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico.
- 5. Hoidale, M. M., B. J. Gee, and M. A. Seagraves, November 1968, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air Data: Stallion Site," DR-323, Meteorological Support Technical Area, Environmental Sciences Department, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico. AD 844 656
- 6. Hoidale, M. M., B. J. Gee, and M. A. Seagraves, April 1969, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air Data: SMR Site," DR-324, Meteorological Support Technical Area, Environmental Sciences Department, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico. AD 857 333
- 7. Hoidale, M. M., R. L. Russo, and L. Newman, May 1973, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air Data: Jallen Site," DR-776, Meteorological Support Division, Environmental Sciences Department, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico.

- 8. Anon., January 1970, "Federal Meteorological Handbook No. 1, Surface Observations," (supersedes seventh edition of WBAN Circular N), U. S. Government Printing Office, Washington, D. C. 20402
- 9. Huschke, R. E., edited by, 1959, "Glossary of Meteorology," p 216, American Meteorological Society, Boston, Massachusetts.
- Stidham, L. R., March 1962, "Computation of Rawinsonde Program," Data Reduction Division North, Holloman Air Force Base, New Mexico.
- 11. Anon., May 1956, "Manual of Cloud Forms and Codes for States of the Sky," Circular S, Second Edition, U. S. Government Printing Office, Washington, D. C. 20402