Geometry Unit 6: Analytic Geometry Bronx Early College Academy

Christopher J. Huson PhD

7 December 2022 - 13 January 2023

6.1 Midpoint formula

6.2 Slope-intercept form

6.3 Functions, standard form

6.4 Parallel and perpendicular slopes	13 December
6.5 Review linear equations	13 December
6.6 Quiz linear equations	16 December
6.7 Systems	3 January
6.8 Systems	4 January

8 December

9 December

12 December

Learning Target: I can plot a midpoint on the plane

HSG.CO.C.9 Prove theorems about lines and angles

6.1 Thursday 8 December

Do Now

- 1. Review your Jumprope grades
- 2. Find the midpoint M of \overline{AB}

Lesson: Midpoint and average, classwork practice

Homework: Deltamath midpoint practice (optional extension)

What do you know about the coordinate plane?

Coordinates Values locating a point on a plane (x, y)Axis The two number lines, x and y-axis Origin The center of the plane, (0,0)Quadrant The four quarters of the plane

The midpoint formula

Given $A(x_A, y_A)$, $B(x_B, y_B)$, midpoint

$$M = \left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$$

Learning Target: I can use slope-intercept form of linear equations

8.F.A.3 Interpret y = mx + b as a linear function, whose graph is a straight line 6.2 Friday 9 December

Do Now: Find the midpoint M of \overline{AB}

Lesson: Slope, *y*-intercept, linear equations Homework: Deltamath graphing practice (optional extension)

Linear equations of the form y = mx + b

Linear Straight, constant rate of change Intercept Where the line crosses the axis b y-intercept, point (0,b) when x=0 Increasing Going up. y increases as x increases Decreasing Going down. y decreases as x increases m, slope How steep the line is

$$m = \frac{rise}{run} = \frac{y_B - y_A}{x_B - x_A}$$

Learning Target: I can use the standard form of linear equations

8.F.A.3 Interpret y = mx + b as a linear function, whose graph is a straight line 6.3 Monday 12 December

Do Now: Find the equation of \overrightarrow{AB}

Lesson: Function notation, vertical and horizontal slopes, the standard form of linear equations (GraspableMath practice)

Homework: Handout problem set

Function notation, f(x) = mx + b

Function (x,y) pairs that satisfy a rule, f(x) = yHorizontal Slope is zero, m = 0Vertical Slope is undefined, $m = \infty$ Domain The set of x values that are allowed Range The set of y values that are allowed Real numbers The set of all numbers, \mathbb{R}

Linear equations of the form ax + by = c

Standard form A linear equation written in the form ax + by = cCalculator form Casios and other calculators use the form y = mx + b

Convert from standard to *y*-intercept form. Example:

$$x + 2y = 6$$

Learning Target: I can find parallel and perpendicular slopes

HSG.GPE.B.5 The slope criteria for parallel and perpendicular lines

6.4 Tuesday 13 December

Do Now: Find the equation of \overrightarrow{AB} Challenge: find the *x*-intercept

Lesson: Parallel and perpendicular lines,

negative reciprocals

Homework: Deltamath problem set

Parallel lines have the same slope

Parallel Lines in the same plane that never intersect

Skew Lines that do not intersect and are not parallel

Lines k and l are parallel if and only if $m_k = m_l$, if their slopes are equal.

Perpendicular lines slopes' are negative reciprocals

Perpendicular Lines that intersect at right angles

Reciprocals Two numbers whose product is 1 Quarter turn 90° rotation, reversing the sign of the slope and the x and y coordinates

Lines k and l are perpendicular if and only if $m_k \times m_l = -1$, if their slopes are negative reciprocals.

Learning Target: I can graph linear equations

8.F.A.3 Interpret y = mx + b as a linear function, whose graph is a straight line 6.5 Wednesday 14 December

Prequiz roundtable groupwork

Do Now: Organize and complete worksheets

6.5 Prequiz: Review slope-intercept form of linear equations

6.4 Classwork: Parallel and perpendicular slopes

6.3 Homework: Standard form

6.2 Classwork: Linear equations

6.1 Classwork: Midpoints

Lesson: Peer review of linear equations Homework: Study for quiz on Thursday

Deltamath due Friday

Quiz: Slope and linear equations

6.6 Friday 16 December

8.F.A.3 Interpret y = mx + b as a linear function, whose graph is a straight line HSG.GPE.B.5 The slope criteria for parallel and perpendicular lines

Do Now: Turn in worksheets (Deltamath due)

Open notebook, calculator allowed

Learning Target: I can solve two equations in two variables

HSG.REI.C.6 Solve systems of linear equations

6.7 Tuesday 3 January

Do Now: Find the equations of \overrightarrow{AC} and \overrightarrow{BC} Are they perpendicular?

Lesson: Systems of equations, two

intersecting lines

Homework: Deltamath problem set

Systems of equations

$$\overrightarrow{AC}: y = +\frac{1}{2}x - 1$$

$$\overrightarrow{BC}: y = -\frac{3}{2}x + 3$$

Lines are not perpendicular: $\frac{1}{2}\times -\frac{3}{2}\neq -1$ (slopes are not negative reciprocals)

Systems Multiple equations with the same variables

Intersection Point that satisfies both equations
Solution Values (x, y) that satisfy both
equations

T-chart list of (x, y) pairs satisfying a equation

Solve the system for its solution, the intersection

link to Graspable Math calculator

Solution: the intersection is (6,8)

Learning Target: I can solve linear systems in context

HSG.REI.C.6 Solve systems of linear equations

6.8 Wednesday 4 January

Do Now:

- ► Laptop check: Raise your hand if your laptop has a 75+% charge.
- Notebook check: find these formulas in your notebook
 - 1. Slopes are erpendicular when $m imes m_{\perp} = -1$
 - 2. Distance $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
 - 3. Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Lesson: Solving word problems with systems of equations (Deltamath)

4 January