Работа 2.2.3

Определение теплопроводности газов при атмосферном давлении

Гаврилин Илья Дмитриевич Б01-101

5 апреля 2022 г.

1 Аннотация

В работе получен коэффициент теплопроводности воздуха ($k\left[\frac{\mathrm{Br}}{\mathrm{M}\cdot\mathrm{K}}\right]$) при атмосферном давлении в зависимости от температуры. Определен коэффициент β в формуле: $k(T)\sim T^{\beta}$. Также, оценен тепловой коэффициент сопротивления α для молибдена. Расчитаны погрешности полученных величин.

2 Теоритические сведения

Tennonposodhocmb— это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии $\overline{q} = -k\nabla T$, где $k\left[\frac{\mathrm{BT}}{\mathrm{M}\cdot\mathrm{K}}\right]$ - $\kappa o \!\!\!\! = \!\!\!\! = \!\!\!\! = \!\!\! + \!\!\! = \!\!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\! = \!\!\!\! = \!\!\! = \!\!\!= \!\!\!= \!\!\!\!= \!\!\!\!$

Молекулярно-кинетическая теория дает следующую оценку для коэффициента теплопроводности газов:

$$k \sim \lambda \overline{\nu} \cdot nc_V, \overline{\nu} = \sqrt{\frac{8kT}{\pi m}}$$
 (1)

С помощью некоторых преобразований мы получаем, что:

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_1}} k \cdot \Delta T \tag{2}$$

2.1 Экспериментальная установка

Установка состоит из термостата, нагревающего воздух вокруг исследуемой проволоки, электрической схемы коммутации и замера тока и напряжения на исследуемой проволоке (Рис. 2). Исследуемая проволока находится в металлическом цилиндре, вокруг которого проходит рубашка водяного нагревателя (Рис. 1).

Рис. 2: Схема измерения тока и напряжения на проволоке

Рис. 1: Устройство колбы с нитью

Параметры указанные на рисунках установки:

$$L=347\,\,{\rm mm}; D_0=2r_0=10\pm0.1\,\,{\rm mm}; D_1=2r_1=0.05\pm0.005\,\,{\rm mm}; R_9=10\pm0.001\,\,{\rm Om}$$

3 Ход работы

Подберем такие значения сопротивления магазина сопротивлений $(R_{\scriptscriptstyle M})$, что мощность нагрева будет равномерно расти в соответствии с коэффициентом α .

α	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.01
$R_{\scriptscriptstyle \mathrm{M}}, \mathrm{Om}$	0	1.48	1.6	4.3	6.4	9.1	12.6	18.2	27.2	47.6	198

Таблица 1: Подбор сопротивлений для установки параметров.

Проведем эксперимент для замера теплопроводности воздуха при комнатной температуре ($T=295~\mathrm{K}$). Путем вычислений получим выделяемую на проволоке мощность и ее сопротивление. Из этих данных построим график R(Q), аппроксимирую его прямой получим значение $\frac{dR}{dQ}$, а также сопротивление проволоки при этой температуре, то есть при нулевой мощности(R_0).

α	$V_{\scriptscriptstyle \rm H},~{ m B}$	$V_{\mathfrak{d}}, \ \mathrm{B}$	R, Ом	ΩДж
0.01	0.265	0.182	14.560	0.005
0.1	0.823	0.560	14.696	0.046
0.2	1.154	0.777	14.852	0.090
0.3	1.403	0.936	14.989	0.131
0.4	1.620	1.071	15.126	0.174
0.5	1.793	1.175	15.260	0.211
0.6	1.953	1.270	15.378	0.248
0.7	2.098	1.354	15.495	0.284
0.8	2.319	1.478	15.690	0.343
0.9	2.355	1.498	15.721	0.353

Таблица 2: Мощность и сопротивление нити при комнатной температуре ($T=295~\mathrm{K}$).

Рис. 3: Зависимость сопротивления проволоки от выделяемой мощности(Т = 295 K).

Аналогичные рассуждения проведем для 4 оставшихся значений температур, составим таблицу и построим графики.

$\mathrm{T}=303~\mathrm{K}$					$T=313~\mathrm{K}$				
α	$V_{\scriptscriptstyle \mathrm{H}}, \; \mathrm{B}$	$V_{\mathfrak{s}}, \ \mathrm{B}$	R, Ом	Q, Дж	α	$V_{\scriptscriptstyle \mathrm{H}}, \; \mathrm{B}$	$V_{\mathfrak{d}}, \ \mathrm{B}$	R, Ом	Q, Дж
0.01	0.272	0.182	14.945	0.005	0.01	0.279	0.182	15.330	0.005
0.1	0.839	0.557	15.063	0.047	0.1	0.859	0.554	15.505	0.048
0.2	1.174	0.772	15.207	0.091	0.2	1.198	0.766	15.640	0.092
0.3	1.425	0.929	15.339	0.132	0.3	1.451	0.919	15.789	0.133
0.4	1.642	1.061	15.476	0.174	0.4	1.670	1.049	15.920	0.175
0.5	1.816	1.164	15.601	0.211	0.5	1.843	1.149	16.040	0.212
0.6	1.976	1.257	15.720	0.248	0.6	2.004	1.240	16.161	0.248
0.7	2.121	1.339	15.840	0.284	0.7	2.148	1.321	16.260	0.284
0.8	2.340	1.460	16.027	0.342	0.8	2.365	1.438	16.446	0.340
0.9	2.376	1.474	16.119	0.350	0.9	2.401	1.457	16.479	0.350
		T = 323	3 K		$T=333~\mathrm{K}$				
α	$V_{\scriptscriptstyle \mathrm{H}},~\mathrm{B}$	$V_{\mathfrak{d}}$, B	R, Ом	Q, Дж	α	$V_{\scriptscriptstyle \rm H},~{ m B}$	$V_{\mathfrak{d}}, \ \mathrm{B}$	R, Ом	Q, Дж
0.01	0.287	0.181	15.856	0.005	0.01	0.295	0.181	16.298	0.005
0.1	0.879	0.550	15.982	0.048	0.1	0.900	0.547	16.453	0.049
0.2	1.222	0.759	16.100	0.093	0.2	1.247	0.752	16.582	0.094
0.3	1.477	0.909	16.249	0.134	0.3	1.504	0.900	16.711	0.135
0.4	1.697	1.037	16.365	0.176	0.4	1.724	1.025	16.820	0.177
0.5	1.871	1.138	16.441	0.213	0.5	1.898	1.121	16.931	0.213
0.6	2.031	1.224	16.593	0.249	0.6	2.058	1.207	17.051	0.248
0.7	2.175	1.302	16.705	0.283	0.7	2.201	1.283	17.155	0.282
0.8	2.391	1.416	16.886	0.339	0.8	2.417	1.395	17.326	0.337
0.9	2.426	1.435	16.906	0.348	0.9	2.452	1.413	17.353	0.346

Таблица 3: Мощность и сопротивление нити при температурах, отличных от комнатной.

Рис. 4: Т = 303 К

Рис. 5: T = 313 K

Рис. 6: T = 323 K

Рис. 7: Т = 333 К

Зависимости сопротивлений проволоки от выделяемой мощности при различных температурах

Построим таблицу полученных из аппроксимаций значений, сразу вычислим $\frac{dQ}{d\Delta T}$ (см. Рис. 8).

T	, K	R_0 , Ом	$\sigma(R)$, Om	$\frac{dR}{dQ}$, Ом/Дж	$\sigma(\frac{dR}{dQ}), \mathrm{OM}/\mathrm{Д}$ ж	$\frac{dQ}{d\Delta T}$ Дж/К	k
2	295	14.5481	0.003	3.338	0.013	0.01372	0.0333 ± 0.002
3	303	14.907	0.013	3.325	0.058	0.01377	0.0335 ± 0.002
3	313	15.338	0.007	3.279	0.035	0.01397	0.0339 ± 0.002
3	323	15.826	0.011	3.084	0.050	0.01485	0.0361 ± 0.003
3	333	16.291	0.005	3.062	0.024	0.01496	0.0364 ± 0.003

Таблица 4: Данные, полученные из аппроксимаций графиков R(Q)

По полученным данным R_0 построим график зависимости R(T), по нему определим тепловой коэффициент зависимости сопротивления и $\frac{dR}{dT}$. Для температурного коэффициента зависимости сопротивления:

$$\alpha = \frac{1}{R_{273}} \frac{dR}{dT} = 0.0034 \frac{1}{C}; \ \alpha_{\text{табл}} = 0.0046 \frac{1}{C}; \ \epsilon = 26\%$$
 (3)

Построим в логарифмическом масштабе график: $\ln k/k_0(\ln T/T_0)$, по нему определим коэффициент β в формуле $k \sim T^{\beta}$ (см. Рис. 9).

Рис. 8: Зависимость сопротивления проволоки от температуры

Рис. 9: Зависимость $\ln k/k_0(\ln T/T_0)$

4 Выводы

- 1. Нашли тепловой коэффициент зависимости сопротивления для молибдена $\alpha=0.0034\frac{1}{C},$ погрешность его определения составила 26%.
- 2. Определили степень в зависимости коэффициента теплопроводности воздуха от температуры $\beta = 0.83 \pm 0.27$, хотя из теоретических предположений $\beta = 0.5$.
- 3. Оценили значения теплопроводности воздуха при нормальном давлении для разных температур.

T, K	$k_{ m skcn}$	$k_{ m { an}}$	ϵ
295	0.033	0.026	0.291
303	0.034	0.026	0.279
313	0.034	0.027	0.260
323	0.036	0.028	0.303
333	0.036	0.029	0.277

Таблица 5: Сравнение полученного и эталонного коэффициента теплопроводности

- 4. Проанализировав данные модно заметить что погрешность определения теплопроводности не зависит от температуры, а также нет больших различий в погрешностях, что косвенно доказывает отсутствие ошибок в измерении конкретной серии значений, также об отсутствии ошибок можно судить по тому, что экспериментальные точки и зависимость сопротивления от температуры прекрасно ложатся на прямую. Подводя итог, хотелось бы выразить предположение что ошибка может появится ввиду:
- 4.1 Плохого электрического контакта в рубильнике и соединительных проводах (особенно между проволокой и проводами вольтметра).
- 4.2 Слабого теплоотвода трубы и недостижения достаточно большой разницы температур.
- 4.3 Появления конвекционных потоков внутри трубки с проволокой (или же напротив неоднородности температуры воздуха относительно всей длины проволоки).
- 4.4 Того, что представленные методы дают большую погрешность при отсутствии прямого снятия показаний тока и напряжения непосредственно с измеряемой проволоки.