

Travelling Salesman Problem

An improved QAOA expedition to Kilimanjaro

Team Red Squishy Fishy 🐟

NP - Hard

Attempt 1 - Encoding in O(N²)

A QAOA solution to the traveling salesman problem using pyQuil

Matthew Radzihovsky, Joey Murphy, Mason Swofford May 2019

visit n cities

3

Unfortunately that did not work very well...

```
number of qubits needed to solve the problem: 9 best energy: 37.169586810927754
```

We tried to do better than that

in $O(N \log N)$

Attempt 2 - Encoding location in O(N log(N))

	ENC
Α	00
В	01
С	10

Attempt 2 - Encoding in O(N log(N))

e.g.
$$N^2$$
 vs $N \log(N)$, for $Q = 10^3$

$$Q = N^2$$

$$Q = N \log(N)$$

$$N \approx 140$$

Attempt 2 - Hamiltonians

Cost Hamiltonian

$$\hat{H_4} = \sum_{j=0}^{n-2} \lambda_{A,B} (|A
angle_i|B
angle_j \langle A|_i \langle B|_j + |B
angle_i|A
angle_j \langle B|_i \langle A|_j)$$

Mixing Hamiltonian

$$\hat{H}_{enc\;\{i,j\},\{A,B\}} = |A\rangle_j |B\rangle_i \langle B|_j \langle A|_i$$

Initial state

$$|s\rangle = H^{\otimes N}|0\rangle^N$$

Attempt 2 - QAOA probabilities

For a 3-City TSP problem

The Team:

Andrea Lizzit | Yudong Sun | Giorgio Trespidi | Federico Simoni