EXERCÍCIOS DE COMPUTAÇÃO

Prof. Jorge Habib / Eliane Nascimento / Fabiana Frata

UNIOESTE/PTI

1. Escrever functions para preencher uma determinada matriz de ordem N conforme os padrões que seguem:

a) $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$	b) $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 \end{bmatrix}$	c) $\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$
d) $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$	e) $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 3 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$	f) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
g) $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 & 0 \\ 10 & 7 & 3 & 0 & 0 \\ 13 & 11 & 8 & 4 & 0 \\ 15 & 14 & 12 & 9 & 5 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i) $\begin{bmatrix} 1 & 1 & 2 & 3 & 5 \\ 2 & 2 & 4 & 6 & 10 \\ 3 & 3 & 6 & 9 & 15 \\ 4 & 4 & 8 & 12 & 20 \\ 5 & 5 & 10 & 15 & 25 \end{bmatrix}$
j) $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \end{bmatrix}$	k) $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 4 \\ 3 & 4 & 5 & 4 & 3 \\ 4 & 5 & 4 & 3 & 2 \\ 5 & 4 & 3 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$
m) $\begin{bmatrix} 1 & 1 & 2 & 2 & 3 \\ 1 & 1 & 2 & 2 & 3 \\ 4 & 4 & 5 & 5 & 6 \\ 4 & 4 & 5 & 5 & 6 \\ 7 & 7 & 8 & 8 & 9 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o) $\begin{bmatrix} -1 & 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 & -1 \end{bmatrix}$

Escrever também a função que apresenta a matriz na tela. A função main deverá organizar a chamada das funções.

2. Implementar uma função que retorna a soma dos elementos da diagonal principal de uma matriz quadrada $m_{n\times n}$.

 $int\ somadiag\ (int\ m[][MAXC], int\ n);$

3. Dizemos que uma matriz inteira $A_{n\times n}$ é uma matriz de permutação se em cada linha e em cada coluna houver n-1 elementos nulos e um único elemento igual a 1. Exemplo:

Parte dos exercícios que seguem foram extraídos de http://www.ime.usp.br/~macmulti/exercicios/

A matriz abaixo é de permutação

 $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

A matriz abaixo não é de permutação

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Pede-se: Dada uma matriz inteira $A_{n\times n}$, verificar se A é de permutação.

4. Dada uma matriz $A_{m \times n}$, imprimir o número de linhas e o número de colunas nulas da matriz.

$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 4 & 0 & 5 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

5. Dizemos que uma matriz quadrada inteira é um quadrado mágico se a soma dos elementos de cada linha, a soma dos elementos de cada coluna e a soma dos elementos das diagonais principal e secundária são todas iguais.

Exemplo: A matriz
$$\begin{bmatrix} 8 & 0 & 7 \\ 4 & 5 & 6 \\ 3 & 10 & 2 \end{bmatrix}$$
 é um quadrado mágico.

Dada uma matriz quadrada $A_{n\times n}$, verificar se A é um quadrado mágico.

6. Dizemos que uma matriz quadrada inteira de ordem n é um quadrado latino se cada linha e cada coluna é formada exclusivamente pelos valores de 1 a n, sem repetição.

Exemplo: A matriz
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 3 \end{bmatrix}$$
 é um quadrado latino.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

Dada uma matriz quadrada $A_{n \times n}$, verificar se A é um quadrado latino.

7. Elaborar uma função que verifica se uma matriz quadrada inteira de ordem n forma a matriz Identidade. Em uma matriz Identidade a diagonal principal é formada apenas por 1, e as demais células por 0.

Dada uma matriz quadrada $A_{n\times n}$, verificar se A é a matriz Identidade.

8. Elaborar uma função que verifica se uma matriz quadrada inteira de ordem n forma a matriz deslocamento. Em uma matriz deslocamento a superdiagonal ou a subdiagonal é formada apenas Scapor 190 as demais células por 0. Uma matriz A é dita matriz deslocamento superior quando apenas a superdiagenal é formada por 1.

Dada uma matriz quadrada $A_{n \times n}$, verificar se A é a matriz deslocamento superior.

9. Elaborar uma função que verifica se uma matriz quadrada inteira de ordem n forma a matriz cisalhamento. A matriz cisalhamento é uma matriz Identidade, onde um dos zeros é substituído por um valor diferente de zero.

Dada uma matriz quadrada $A_{n \times n}$, verificar se A é uma matriz cisalhamento .

Exemplo: A matriz
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 é matriz cisalhamento .

- 10. Dadas duas matrizes $A_{la \times ca}$ e $B_{lb \times cb}$ efetuar o produto matricial gerando resultado em $C_{lc \times cc}$.
- 11. Implementar mattovet que preenche o vetor v com os elementos da matriz $m_{lin \times col}$. A quantidade de elementos inseridos em v deve ser guardada no endereço indicado por n. A função retorna v.

int * mattovet (int * v, int * n, int m[][MAXC], int lin, int col);

12. Implementar *vettomat* que preenche a matriz $m_{lin \times col}$ com os elementos dados pelo vetor v. Se o tamanho do vetor não for suficiente para preencher a matriz, o vetor deverá ser percorrido novamente. Se o vetor contiver mais elementos do que o previsto para a matriz, os excedentes deverão ser desconsiderados.

void vettomat (int m[][MAXC], int lin, int col, int * v, int n);

13. Faça uma função MAX que recebe como entrada um inteiro n, uma matriz inteira $A_{n\times n}$ e devolve três inteiros: k, Lin e Col. O inteiro k é um maior elemento de A e é igual a A[Lin][Col]. Exemplo:

Exemplo: Se
$$A = \begin{bmatrix} 3 & 7 & 1 \\ 1 & 2 & 8 \\ 5 & 3 & 4 \end{bmatrix} \qquad então \begin{bmatrix} k = 8 \\ Lin = 1 \\ Col = 2 \end{bmatrix}$$

Obs.: Se o elemento máximo ocorrer mais de uma vez, indique em Lin e Col qualquer uma das possíveis posições.

14. Faça um programa que, dado um inteiro n e uma matriz quadrada de ordem n, cujos elementos são todos inteiros positivos, imprimir uma tabela onde os elementos são listados em ordem decrescente, acompanhados da indicação de linha e coluna a que pertencem. Havendo repetições de elementos na matriz, a ordem é irrelevante. Utilize obrigatoriamente a função do exercício anterior, mesmo que você não o tenha feito.

EXERCÍCIOS DE COMPUTAÇÃO

Prof. Jorge Habib / Eliane Nascimento / Fabiana Frata

UNIOESTE/PTI

Ex.: No caso da matriz acima, a saída poderia ser:

Elemento	Linha	Coluna	
8	1	2	
7	0	1	
5	2	0	
4	2	2	
3	0	0	
3	2	1	
2	1	1 ·	
1	0	2	
1	1	0	

- 15. Implemente uma função que recebe como parâmetros uma matriz, o número de linhas e colunas da matriz e um determinado elemento X. A função deverá efetuar a busca do elemento X na matriz, retornando suas coordenadas e um código CODE = 0 indicando sucesso. De forma similar deverá retornar CODE = 1 (fracasso), para o caso do elemento não estar na matriz.
- 16. Implemente uma função que recebe como parâmetros uma matriz, o número de linhas e colunas da matriz, um determinado vetor e o número de elementos do vetor. O procedimento deverá efetuar a busca do vetor na matriz, retornando suas coordenadas de início e um código CODE = 0 indicando sucesso. De forma similar deverá retornar CODE = 1 (fracasso), para o caso do vetor não estar na matriz.
- 17. Implemente um procedimento que recebe como parâmetros uma matriz A, o número de linhas e colunas da matriz A, uma matriz B com o número de linhas e colunas da matriz B. O procedimento deverá efetuar a busca da matriz B vetor na matriz A, retornando suas coordenadas de início e um código CODE = 0 indicando sucesso. De forma similar deverá retornar CODE = 1 (fracasso), para o caso da matriz B não estiver inclusa em A.
- 18. Considere o seguinte mapa de cidades e suas distâncias, bem como sua representação matricial:

Pede-se, implementar as seguintes funções:

- void lermat (int M[][MAXC], int *N), que lê os dados da matriz distância a partir do teclado;
- void lertrajeto (int V[] int *T), que lê um vetor de inteiros representando um trajeto. Exemplo: (0, 1, 3).
- int dist (int M[][MAXC], int N, int V[] int T), que calcula a distância para percorrer um trajeto, conforme o mapa de distâncias; e retorna a distância do trajeto ou −1 se o trajeto não é possível. Por exemplo: para o trajeto (0, 1, 3) → 50. Para o trajeto (1, 3, 4, 0) → −1;
- Elaborar o main para testar o programa.

- 19. A Indústria MAKER tem um portfólio com vários <u>produtos</u> (P0, P1, ···). Cada um destes produtos consume uma determinada quantidade de diversas <u>matérias-primas</u> (M0, M1, ···). Cada uma das matérias-primas tem um <u>custo unitário</u>. A MAKER está para repor seu estoque. Ela recebeu de vários <u>fornecedores</u> (F0, F1, ···) uma relação dos custos unitários de cada matéria-prima. O gestor da empresa solicitou à área de TI preparar um programa com as seguintes especificações:
 - i. Dados Entrada:
 - Matriz com as quantidades de cada matéria prima por produto, e
 - Matriz dos custos unitários de cada matéria prima por fornecedor.
 - ii. Relatório:
 - Relação de produtos, com suas respectivas quantidades de cada matéria prima, seguidos dos custos de produção de cada fornecedor, e
 - O fornecedor com a proposta que gera o menor custo global de produção.
 - a) Exemplo de Entrada de Dados:

ENTRE COM A RELAÇÃO DE PRODUTOS COM AS RESPECTIVAS QUANTIDADES DE MATÉRIAS-PRIMAS

5 4 materia pruma P 3.1 2.5 5.5 I

pred. 3.4 6.6 5.8 8.9

4.6 4.3 9.9 7.4

9.9 2.5 7.8 9.5

7.7 3.2 8 8.7

ENTRE COM A RELAÇÃO DE FORNECEDORES COM OS RESPECTIVOS CUSTOS DAS MATÉRIAS-PRIMAS

brued 2.75 3.86 6.76 8.66

1.66 4.17 6.02 7.61

2.12 4.73 5.52 8.55

O usuário fornece o número de linhas e colunas da primeira matriz seguidos dos dados. A linha 0 desta matriz, $(3.1\ 2.5\ 5.5\ 1)$, significa que o produto P0 consome 3.1 unidades da matéria-prima M0, 2.5 unidades da matéria-prima M1, e assim sucessivamente. A linha seguinte refere-se ao produto P1, e assim por diante.

Na sequência, o usuário informa a quantidade de fornecedores e os dados da matriz de propostas. A quantidade de colunas é a mesma da matriz anterior. A linha 0 desta matriz (2.75 3.86 6.76 8.66), significa que o fornecedor F0 orçou o custo unitário da matéria prima M0 em 2.75, o custo unitário da matéria prima M1 em 3.86, e assim sucessivamente. A linha seguinte refere-se à proposta do fornecedor F1, e assim por diante. $P_{\times}M$ $P_{\times}P$

FYM

b) Exemplo de Relatório:

P1 P2 P3	3.4 4.6 9.9	M1 2.5 6.6 4.3 2.5 3.2	5.8 9.9 7.8	8.9 7.4 9.5		F1 1/56.29 135.81 141.48 146.11 140.49	F2 57.31 146.54 148.01 157.09 150.01
TOT	AL				710.20	620.18	658.95

MELHOR FORNECEDOR = F1