Let

 $BOTH_{NFA} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are NFAs where } L(M_1) \cap L(M_2) \neq \emptyset \}.$ Show that $BOTH_{NFA}$ is NL-complete.

Step-by-step solution

Step 1 of 3

Consider the given language, $BOTH_{NFA} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are NFAs where, } L(M_1) \cap L(M_2) \neq \emptyset \}$. A non-deterministic log space algorithm is given here, which determines that "there are some strings which both M_1 and M_2 accepts". Consider that q_1 and q_2 are the number of states in both NFAs accordingly.

M = "On input $\langle M_1, M_2 \rangle$, where M_1, M_2 are NFAs:

- 1. Place markers on the start states of both of the NFAs.
- 2. Repeat $2^{q_1 \times q_2}$ times:
- 3. In each step select non-deterministically an input symbol and accordingly change the marker positions on M_1 and M_2 's states to simulate reading of that symbol.
- 4. **Accept**; if some string is found in stage 2 and 3 on which both M_1 and M_2 attends any accepting state that is if at some point on input string both the markers are on accepting states of M_1 and M_2 . Otherwise **Reject**."

The only space requirement for this algorithm is to store the location of the markers and the repeat counter. This requirement will be possible in logarithmic space. Therefore, $BOTH_{NFA} \in NL$. Next user need to prove that $BOTH_{NFA}$ is also NL-Hard.

Comment

Step 2 of 3

Now, consider a log space reduction from some language A in NL to $BOTH_{NEA}$. For this purpose, consider a Nondeterministic TM M which decides A in $O(\log n)$.

- Given an input string ω , construct two different NFAs M_1 and M_2 in log space which accepts ω if and only if M accepts ω .
- The states of M_1 and M_2 are the configurations of M on ω . For configuration q_1 and q_2 of M on ω , the pair q_1 are two states both in M_1 and M_2 if q_2 is the possible next configuration of M starting from q_1 .
- The above statement shows, if M's transition function follows that state q_1 together with its state symbols under corresponding input symbol.
- Also, each of the work tape heads can find the next state and also the head actions to take from q_1 to q_2 , then q_1 and q_2 are two states in both M_1 and M_2 .

This configuration reduces A to ${}^{BOTH}_{N\!F\!A}$ because whenever M accepts an input, some its computational branch accepts some state transition in both of the machines M_1 and M_2 .

Comments (1)

Step 3 of 3

Again conversely, if M_1 and M_2 accepts a string ω some computational branch follows in M and accepts ω . Now to show that the given reduction works in log space, consider the log space transducer that outputs $\langle M_1, M_2 \rangle$ on input ω .

- Consider describing M_1 and M_2 by listing their states. Here each state is a configuration of M on input of ω and it can be denoted by $c \log n$ space where c is some constant.
- Now, it can be said, transducer attends via all possible strings of length $c \log n$ sequentially and checks if each one is a legal configuration of M on ω and outputs only those which passes the checking.
- Hence, it is sufficient to verify in log space that any configuration q_1 of M on input ω can find another configuration q_2 . This is because, the transducer only needs to check for the actual tape contents under the each head locations given in q_1 and used to determine that M is transition function would produce q_2 as a result.
- The transducer verifies all pairs (q_1,q_2) in each turn to find the states in M_1 and M_2 . Hence it is proved that $BOTH_{NFA}$ is NL-Complete.

Comment