PR: ABOULFADIL YASSINE

Géométrie dans l'espace

2 BAC PC/SVT

Dans ce cours, l'espace est rapporté à un repère orthonormé

 $(\mathbf{0}, \vec{\imath}, \vec{\jmath}, \vec{k})$

1- Le produit scalaire et le produit vectoriel dans l'espace :

a-Les coordonnées d'un point :

Soit M un point de l'espace tel que : M(x, y, z)

x : L'abscisse du point M.

y : L'ordonnée du point M.

z : La cote du point M.

Soient M et M' deux point de l'espace tel que : M(x, y, z)

et M'(x', y', z').

D'autre façon
$$\overrightarrow{MM'} = (x' - x)\overrightarrow{i} + (y' - y)\overrightarrow{j} + (z' - z)\overrightarrow{k}$$

c- Le produit scalaire :

Soient \vec{U} et \vec{V} deux vecteurs de l'espace tel que : $\vec{U}(a,b,c)$ et $\vec{V}(a',b',c')$

$$\vec{U} \cdot \vec{V} = aa' + bb' + cc'$$
 (Produit scalaire)

d- La norme d'un vecteur :

Soit \vec{U} un vecteur de l'espace tel que : $\vec{U}(a,b,c)$

$$\|\overrightarrow{U}\| = \sqrt{a^2 + b^2 + c^2}$$
 (Norme d'un vecteur)

e- Le produit vectoriel :

Soient \vec{U} et \vec{V} deux vecteurs de l'espace tel que : $\vec{U}(a,b,c)$ et $\vec{V}(a',b',c')$

 $\underline{\mathbf{Remarque:}} \ \overrightarrow{\boldsymbol{U}}.\overrightarrow{\boldsymbol{V}} = \left\|\overrightarrow{\boldsymbol{U}}\right\| \times \left\|\overrightarrow{\boldsymbol{V}}\right\| \times \cos\left(\overline{\overrightarrow{\boldsymbol{U}},\overrightarrow{\boldsymbol{V}}}\right)$

$$\|\overrightarrow{U}\wedge\overrightarrow{V}\| = \|\overrightarrow{U}\| \times \|\overrightarrow{V}\| \times \sin\left(\overline{\overrightarrow{U},\overrightarrow{V}}\right)$$

f- Orthogonalité de deux vecteurs dans l'espace :

Soient \vec{U} et \vec{V} deux vecteurs de l'espace.

 \vec{U} et \vec{V} deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul.

g- Vecteurs colinéaires :

On dit que deux vecteurs \vec{U} et \vec{V} sont colinéaires lorsqu'il existe un réel k tel que : $\vec{U}=k$. \vec{V} avec $k \in IR^*$

2- Plan et vecteur normal:

Soit \vec{n} (a, b, c) un vecteur non nul, et $A(x_A, y_A, z_A)$ un point de l'espace.

L'ensemble des points M de l'espace qui vérifient : $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$ est le plan (P) passant par A et de

vecteur normal \vec{n} . Une équation cartésienne de ce plan , s'écrit sous la forme : ax + by + cz + d = 0

Si A, B et C sont trois points non alignés, alors $\overrightarrow{AB} \wedge \overrightarrow{AC}$ est un vecteur normal au plan (ABC), et dans ce cas on peut déduire l'équation cartésienne du plan (ABC) à l'aide de l'équivalence suivante : $M \in (ABC) \Leftrightarrow \overrightarrow{AM}. (\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0$

<u>3- La sphère :</u>

🗻 Equation cartésienne d'une sphère définie par le centre et le rayon :

Une équation de la sphère (S) de centre

 $\Omega(a,b,c)$ et de rayon R avec $(R\succ 0)$. Est :

$$\frac{(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2}{(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2}$$
 que l'on peut écrire :

$$x^2 + y^2 + z^2 + ax + by + cz + d = 0$$
 ou $d = a^2 + b^2 + c^2 - R^2$.

🗻 Equation cartésienne d'une sphère définie par l'un de ces diamètres :

Soit A et B deux points de l'espace tel que : $(A \neq B)$.

L'ensemble des points M de l'espace tels que : $\overrightarrow{AM}.\overrightarrow{BM} = 0$ est la sphère dont AB est l'un de ces diamètres.

Une équation cartésienne de cette sphère est :

$$(x-x_A)(x-x_B)+(y-y_A)(y-y_B)+(z-z_A)(z-z_B)=0$$
avec $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$.

Remarque: Dans ce cas la sphère (S) est de centre Ω milieu du segment [AB] et de rayon $r = \frac{AB}{2}$.

Etude de analytique de l'ensemble des points M(x,y,z) tels que

$$x^{2} + y^{2} + z^{2} + ax + by + cz + d = 0$$

Soit a, b, c et d quatre nombres réels tels que $(a,b,c)\neq(0,0,0)$ et (S) l'ensemble des points M(x,y,z) de l'espace qui vérifient : $x^2 + y^2 + z^2 + ax + by + cz + d = 0$.

$$x^{2} + y^{2} + z^{2} + ax + by + cz + d = 0 \Leftrightarrow x^{2} + ax + y^{2} + by + z^{2} + cz + d = 0$$

$$\Leftrightarrow \left(x + \frac{a}{2}\right)^2 - \left(\frac{a}{2}\right)^2 + \left(y + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + \left(z + \frac{c}{2}\right)^2 - \left(\frac{c}{2}\right)^2 + d = 0$$

$$\Leftrightarrow \left(x + \frac{a}{2}\right)^2 + \left(y + \frac{b}{2}\right)^2 + \left(z + \frac{c}{2}\right)^2 = \left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 + \left(\frac{c}{2}\right)^2 - d$$

$$\frac{Si}{2} \cdot \left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 + \left(\frac{c}{2}\right)^2 - d > 0$$
: l'ensemble des points $M(x, y, z)$ est la sphère (S) de centre

$$\Omega\left(-\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2}\right) \text{ et rayon } R = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 + \left(\frac{c}{2}\right)^2 - d}$$

Si:
$$\left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 + \left(\frac{c}{2}\right)^2 - d = 0$$
: (S) est l'ensemble $\left\{\Omega\left(-\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2}\right)\right\}$.

$$\frac{\text{Si}: \left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 + \left(\frac{c}{2}\right)^2 - d < 0}{}: (S) \text{ est l'ensemble vide.}$$

4- La distance:

La distance entre deux points A et B est égale à :

$$AB = \|\overline{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

La distance entre un point M et un plan (P) d'équation cartésienne : ax + by + cz + d = 0 est :

$$d(M;(P)) = \frac{|ax_M + by_M + cz_M + d|}{\sqrt{a^2 + b^2 + c^2}}$$

La distance entre un point M et une droite $\Delta(A; \vec{u})$ est $d(M; (\Delta)) = \frac{\|\overline{AM} \wedge \vec{u}\|}{\|\vec{u}\|}$

5- Intersection d'une sphère et un plan :

Soit H la projection orthogonale du centre Ω sur le plan (P)

On pose : $d = \Omega H = d(\Omega; (P))$

$$d \prec R$$

Le plan (P) coupe la sphère (S) selon un cercle (C) de centre H et de rayon $r = \sqrt{R^2 - d^2}$

$$d = R$$

Le plan (P) est tangent à la sphère (S)

Le plan (P) ne coupe pas la sphère (S)

6- Intersection d'une sphère et une droite :

Soit H la projection orthogonale du centre Ω sur la droite (Δ)

On pose : $d = \Omega H = d(\Omega; (\Delta))$

$$d \prec R$$

La droite (Δ) coupe la sphère (S) en deux points différents

d = R

La droite (Δ) est tangente à la sphère (S)

 $d \succ R$

La droite (Δ) ne coupe pas la sphère (S)

7- L'aire d'un triangle - l'aire d'un parallélogramme :

- ✓ Soit ABC un triangle, son aire est : $S_{ABC} = \frac{1}{2} \| \overrightarrow{AB} \wedge \overrightarrow{AC} \|$
- ✓ Soit ABCD un parallélogramme, son aire est : $S_{ABCD} = ||\overrightarrow{AB} \wedge \overrightarrow{AC}||$.

8- la représentation paramétrique d'une droite :

Soit une droite (D) passe par un point A tel que : $A(x_A, y_A, z_A)$

et de vecteur directeur $\vec{U}(a, b, c)$.

Soit l'ensemble des points M(x, y, z) de la droite (D) qui vérifient

la relation : $\overrightarrow{AM} = k \cdot \overrightarrow{U}$

$$\overrightarrow{AM} = k. \overrightarrow{U} \Leftrightarrow \begin{cases} x - x_A = a. k \\ y - y_A = b. k \end{cases}$$

$$z - z_A = c. k$$

$$\Leftrightarrow \begin{cases} x = x_A + a. k \end{cases}$$

$$\Leftrightarrow \begin{cases} y = y_A + b. k & (k \in IR) \text{ est une représentation paramétrique de la droite (D).} \end{cases}$$