10 класс

Задача 1. Льдинка с полостью

В частично заполненный водой цилиндрический сосуд, площадь дна которого равна S, положили кусок льда с воздушной полостью, в которой находился алюминиевый шарик массой, равной массе льда. При этом уровень воды поднялся на h, а полностью погружённый в воду лёд плавает, не касаясь дна и стенок сосуда.

- 1. Найдите объём V_{π} воздушной полости.
- 2. Повысится или понизится уровень воды в сосуде после того, как весь лёд растает?
- 3. На сколько изменится уровень воды в сосуде после того, как лёд растает? Плотность воды $\rho_{\rm B}$, плотность льда $\rho_{\rm \pi}$, плотность алюминия $\rho_{\rm m}$, ускорение свободного падения g.

Задача 2. Максимальная высота

Камень бросили под углом к горизонту с начальной скоростью $v_0=25$ м/с. Через время τ он достиг максимальной высоты, удалившись по горизонтали на расстояние L=30 м от места броска. Найдите время τ . Примите ускорение свободного падения равным g=10 м/с².

Задача 3. На вираже (1)

Автомобиль массой m=1400 кг движется с постоянной скоростью $v=90~{\rm km/v}$ по прямолинейному горизонтальному участку дороги. При этом на колёса автомобиля передаётся от двигателя мощность $P=25~{\rm kBr}$. Затем автомобиль въезжает на криволинейный горизонтальный участок дороги с радиусом закругления $R=350~{\rm m}$ и движется с прежней скоростью.

При каких значениях коэффициента трения между колёсами и дорогой возможно такое движение автомобиля на

- 1.) прямолинейном участке,
- 2.) криволинейном участке?

Все колёса считать ведущими. Колёса не проскальзывают. Принять $g=10~{\rm m/c^2}.$

Задача 4. Лампочки

Связь между напряжением U на лампе накаливания и силой тока, текущего через неё, даётся формулой: $I \sim U^{3/5}$. Две лампы с номинальными напряжениями 220 В и номинальными мощностями $P_1=40$ Вт и $P_2=100$ Вт включили последовательно в сеть 220 В. Какое напряжение падает на лампе меньшей номинальной мощности?

XLVI Всероссийская олимпиада по физике. Региональный этап

Задача 5. Это что за газ?

Для нагревания 100 г некоторого газа на $4^{\circ}C$ в процессе с прямой пропорциональностью давления объёму требуется на 831 Дж больше, чем для такого же нагревания при постоянном объёме. Что это за газ?