Theorem 45.7. Let (P) be a linear program in standard form, where Ax = b and A is an $m \times n$ matrix of rank m. If $\mathcal{P}(A,b)$ is nonempty (there is a feasible solution), then $\mathcal{P}(A,b)$ has some vertex; equivalently, (P) has some basic feasible solution.

Proof. The proof relies on a trick, which is to add slack variables x_{n+1}, \ldots, x_{n+m} and use the new objective function $-(x_{n+1} + \cdots + x_{n+m})$.

If we let \widehat{A} be the $m \times (m+n)$ -matrix, and x, \overline{x} , and \widehat{x} be the vectors given by

$$\widehat{A} = \begin{pmatrix} A & I_m \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \quad \overline{x} = \begin{pmatrix} x_{n+1} \\ \vdots \\ x_{n+m} \end{pmatrix} \in \mathbb{R}^m, \quad \widehat{x} = \begin{pmatrix} x \\ \overline{x} \end{pmatrix} \in \mathbb{R}^{n+m},$$

then consider the Linear Program (\widehat{P}) in standard form

maximize
$$-(x_{n+1} + \cdots + x_{n+m})$$

subject to $\widehat{A}\widehat{x} = b$ and $\widehat{x} \ge 0$.

Since $x_i \ge 0$ for all i, the objective function $-(x_{n+1} + \cdots + x_{n+m})$ is bounded above by 0. The system $\widehat{A}\widehat{x} = b$ is equivalent to the system

$$Ax + \overline{x} = b$$
,

so for every feasible solution $u \in \mathcal{P}(A, b)$, since Au = b, the vector $(u, 0_m)$ is also a feasible solution of (\widehat{P}) , in fact an optimal solution since the value of the objective function $-(x_{n+1} + \cdots + x_{n+m})$ for $\overline{x} = 0$ is 0. By Proposition 45.3, the linear program (\widehat{P}) has some basic feasible solution (u^*, w^*) for which the value of the objective function is greater than or equal to the value of the objective function for $(u, 0_m)$, and since $(u, 0_m)$ is an optimal solution, (u^*, w^*) is also an optimal solution of (\widehat{P}) . This implies that $w^* = 0$, since otherwise the objective function $-(x_{n+1} + \cdots + x_{n+m})$ would have a strictly negative value.

Therefore, $(u^*, 0_m)$ is a basic feasible solution of (\widehat{P}) , and thus the columns corresponding to nonzero components of u^* are linearly independent. Some of the coordinates of u^* could be equal to 0, but since A has rank m we can add columns of A to obtain a basis K associated with u^* , and u^* is indeed a basic feasible solution of (P).

The definition of a basic feasible solution can be adapted to linear programs where the constraints are of the form $Ax \leq b$, $x \geq 0$; see Matousek and Gardner [123] (Chapter 4, Section 4, Definition 4.4.2).

The most general type of linear program allows constraints of the form $a_i x \geq b_i$ or $a_i x = b_i$ besides constraints of the form $a_i x \leq b_i$. The variables x_i may also take negative values. It is always possible to convert such programs to the type considered in Definition 45.1. We proceed as follows.