

TURMA DOS 15 - CICLO 2

2023

MATEMÁTICA

Convenções

- Considere o sistema de coordenadas cartesiano, a menos que haja indicação contrária.
- \mathbb{R} denota o conjunto dos números reais.
- \mathbb{C} denota o conjunto dos números complexos.
- i denota a unidade imaginária, $i^2 = -1$.

Questão 11. Determine os valores de x que satisfazem:

$$\sqrt{3-x} - \sqrt{x+1} > \frac{1}{2}$$

Questão 12. Determine o valor do determinante:

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ \sqrt{2} & \sqrt{3} & 2 & 9 \\ 2 & 3 & 4 & 9 \\ 4 & 9 & 16 & 81 \end{vmatrix}$$

Questão 13. Considere o polinômio: $x^3 - ax^2 + ax - 1$ com raízes r_1 , r_2 e r_3 .

Determine os possíveis valores de a de modo que $r_1,\,r_2$ e r_3 sejam lados de um triângulo.

Questão 14. Seja a um complexo e b um número real. Prove que se a equação:

$$|z|^2 + \Re(az) + b = 0$$

tem soluções, então $|a|^2 \ge 4b$.

Questão 15. Resolva a equação:

$$\operatorname{sen}^3(3x) + \cos^3(3x) = 1$$

Questão 16. Se

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Determine a matriz:

$$X = \sum_{k=1}^{10} A^k$$

Questão 17. Seja $\triangle ABC$ um triângulo de lados com medidas iguais a $\overline{AB} = 3$, $\overline{BC} = 4$ e $\overline{AC} = \sqrt{5}$. Sejam m_a , m_b e m_c as medidas das medianas relativas aos lados BC, AC e AB, respectivamente.

Calcule o maior ângulo interno de um triângulo cujos lados possuem medidas iguais a m_a , m_b e m_c .

Questão 18. Seja o triângulo $\triangle OAB$ no plano cartesiano, em que O é a origem do sistema de eixos e os pontos A e B estão respectivamente nas retas y=1 e y=3, alinhados com o ponto (7,0).

Determine as coordenadas de A e B para os quais a soma dos quadrados das medidas dos lados do $\triangle OAB$ é mínima.

Questão 19. Considere um triângulo isósceles $\triangle ABC$ retângulo em A. Sejam os pontos D e E sobre AC e AB, respectivamente, tais que $BD \cup CE = P$.

Determine a área do triângulo $\triangle BCP$ sabendo que $\overline{AB}=\overline{AC}=a$ e $\overline{AD}=\overline{AE}=a.$

Questão 20. Uma moeda é lançada sucessivas vezes até que se tenha a ocorrência de 3 caras. Qual a probabilidade de o número total de lançamentos ser múltiplo de 3?

Dados

• Constante de Avogadro, $N_A = 6.02 \cdot 10^{23} \,\mathrm{mol}^{-1}$

Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$

Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$

Constante de autoionização da água, $K_{\rm w} = 1 \cdot 10^{-14}$

• Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$

• Constante dos gases, $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

• Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \,\mathrm{m}^{-1}$

• Velocidade da luz no vácuo, $c = 3 \cdot 10^8 \,\mathrm{m\,s^{-1}}$

Definições

• Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

• $\sqrt{2} = 1.4$

• $\sqrt{3} = 1.7$ • $\sqrt{5} = 2.2$ • $\log 2 = 0.3$ • $\log 3 = 0.5$

• $\ln 10 = 2.3$

Tabela Periódica

Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol}^{-1}) \end{array}$		Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol}^{-1}) \end{array}$
H	1	1,01	Na	11	22,99
$^{\mathrm{C}}$	6	12,01	${ m Mg}$	12	24,31
N	7	14,01	\mathbf{S}	16	32,06
O	8	16,00	Cl	17	35,45

Questão 21. Uma câmara de combustão queima etano com ar atmosférico. Os gases de saída da câmara são inicialmente resfriados até 20 °C. Após o resfriamento, a corrente gasosa contém 84% de nitrogênio e 6% de oxigênio, em volume. A corrente gasosa resfriada é passada por um leito contendo excesso de uma solução de hidróxido de cálcio, que absorve o CO₂ conforme a reação:

$$CO_2(g) + Ca(OH)_2(s) \longrightarrow CaCO_3(s) + H_2O(l)$$

Verifica-se que a vazão volumétrica de saída de gás do leito de hidróxido de cálcio é 95% da vazão de entrada. A combustão não gera produtos sólidos em 20 °C.

- a. Apresente a equação balanceada de combustão do etano nas condições do problema.
- b. Determine a razão entre a quantidade de ar adicionada e o mínimo necessário para a combustão completa.

Questão 22. Considere os compostos com fórmula molecular C₃H₃Cl₃.

- a. Apresente os compostos de cadeia aberta com fórmula molecular C₃H₃Cl₃.
- b. Apresente os compostos de cadeia fechada com fórmula molecular C₃H₃Cl₃.

Questão 23. Gás natural liquefeito vem sendo produzido no mundo em quantidades cada vez maiores devido à sua alta densidade de energia, quando comparada à do gás natural comprimido. O gás natural liquefeito é composto majoritariamente por metano, cuja pressão de vapor varia com a temperatura conforme a equação empírica:

$$\log(P/{\rm bar}) = 4 - \frac{480}{T/{\rm K} - 0.5}$$

Um tanque criogênico típico para transporte marítimo de gás natural liquefeito tem volume de $40\,000\,\mathrm{m}^3$, e é armazenado a $-112,5\,^\circ\mathrm{C}$. Este tanque não possui resfriamento externo e a pressão em seu interior é mantida constante. Inicialmente o tanque é carregado com $14\,000\,\mathrm{ton}$ de metano líquido, que evapora durante o transporte, perdendo calor a uma taxa de $50\,\mathrm{kW}$.

- a. Determine a temperatura de ebulição do metano em pressão de 1 bar.
- b. Determine a entalpia de vaporização do metano nas condições de transporte.
- c. Determine a fração de metano que evapora após quinze dias de navegação.

Questão 24. Considere as entalpias de rede e de solução:

Dados em $25^{\circ}\mathrm{C}$	NaCl	NaI	KCl	KI
Entalpia de rede, $\Delta H_{\mathrm{rede}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	790	690	700	630
Entalpia de solução, $\Delta H_{\mathrm{sol}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	+3	+5	+17	

- a. **Determine** a entalpia de solução do iodeto de potássio em $25\,^{\circ}\mathrm{C}$.
- b. Explique por que as entalpias de rede seguem a ordem: NaCl > KCl > NaI > KI.

Questão 25. Plantas que sobrevivem na água do mar possuem soluções internas que são isotônicas ao ambiente. Um folha de uma certa planta de água do mar sobrevive a $25\,^{\circ}\text{C}$ em uma solução aquosa com ponto de congelamento $-0.621\,^{\circ}\text{C}$. As soluções têm densidade de $1\,\mathrm{g\,cm^{-3}}$. Uma folha dessa planta foi colocada em um recipiente fechado a $25\,^{\circ}\text{C}$ ao lado de uma solução aquosa com temperatura de ebulição $102\,^{\circ}\text{C}$.

A água tem constante crioscópica da água $k_c = 1.9 \,\mathrm{K\,kg\,mol}^{-1}$ e constante ebulioscópica $k_b = 5.1 \,\mathrm{K\,kg\,mol}^{-1}$.

- a. **Determine** a pressão osmótica da solução na folha da planta.
- b. Explique o que acontece com a planta após um longo período de tempo.

Questão 26. A nicotina é um composto orgânico da classe dos alcaloides que está presente nos cigarros.

Nicotina

Deseja-se isolar a nicotina de uma solução deste composto em diclorometano contaminada com tolueno. Para isso, dispõe-se de uma solução $1 \text{ mol } L^{-1}$ de NaOH e de uma solução $1 \text{ mol } L^{-1}$ de HCl.

- a. Apresente a estrutura do cátion e do dicátion da nicotina que são formados em solução ácida.
- b. Proponha um processo de purificação da nicotina utilizando os reagentes a disposição.

Questão 27. A energia de ionização do nitrogênio atômico é $1400 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$, e a do gás nitrogênio é $1500 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$. A energia de ligação N \equiv N no gás nitrogênio é $940 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$.

Considere um frasco contendo gás nitrogênio que é irradiado com luz de comprimento de onda 25 nm.

- a. Determine quais espécies podem ser formadas dentro do frasco.
- b. Determine a faixa de comprimentos de onda que levaria apenas à formação de nitrogênio atômico, sem a formação de íons.
- c. **Explique** por que a energia de ionização do gás nitrogênio é maior que a energia de ionização do nitrogênio atômico, enquanto a energia de ionização do gás flúor $(1520\,\mathrm{kJ\,mol}^{-1})$ é menor que a do flúor atômico $(1680\,\mathrm{kJ\,mol}^{-1})$.

Questão 28. Oxigênio e enxofre formam diversos compostos binários com flúor.

- a. Apresente a estrutura molecular do difluoreto de dioxigênio, O_2F_2 .
- b. **Explique** porque o comprimento da ligação O-F no difluoreto de dioxigênio (160 pm) é maior do que no difluoreto de oxigênio, OF_2 (140 pm).
- c. Apresente a estrutura molecular dos isômeros constitucionais do difluoreto de dienxofre, S₂F₂.
- d. Apresente a estrutura molecular do tetrafluoreto de dienxofre, S₂F₄.
- e. Explique porque o hexafluoreto de enxofre, SF₆ é mais volátil que o tetrafluoreto de enxofre, SF₄.

Questão 29. A seguir é apresentado o diagrama de fases para a mistura de acetona e clorofórmio em 1 bar.

Considere uma mistura binária líquida equimolar de acetona e clorofórmio, em temperatura ambiente e 1 bar. Quando essa mistura é aquecida, ela entra em ebulição, possibilitando a marcação do ponto A, que representa o líquido α em ebulição e o ponto B, que representa o vapor β , gerado pela vaporização do líquido α . Considere, agora, que o vapor β seja condensado e em seguida vaporizado, gerando o vapor γ .

- a. Classifique o processo de mistura de acetona e clorofórmio como endotérmico ou exotérmico.
- b. **Determine** a composição de α , β e γ e as temperaturas de ebulição dos líquidos α e γ , em 1 bar.
- c. **Determine** o número de pratos teóricos necessários para se obter uma mistura contendo 90% de acetona a partir do líquido α .

Questão 30. O produto B é obtido pela reação de decomposição:

$$A \longrightarrow B + C$$

A unidade industrial para a síntese de B é composta por um reator e uma torre de destilação, que separa o efluente do reator em uma corrente de produto e uma corrente de reciclo. A corrente de produto contém 4% de A em base molar, e a corrente de reciclo contém 84% de A e 16% de B em base molar.

A reação de conversão de A em B no reator tem rendimento de 40%. A corrente de entrada consiste em $100\,\mathrm{mol\,min^{-1}}$ de A.

- a. **Determine** a conversão global de A.
- b. **Determine** a pureza do produto.
- c. **Determine** a vazão molar da corrente de reciclo.