

VNQ600AP-E

Quad channel high side driver

Features

Туре	R _{DS(on)} ⁽¹⁾	l _{lim}	V _{CC}
VNQ600AP-E	35 m Ω	25 A	36 V

- 1. Per each channel
- DC short circuit current: 25 A
- CMOS compatible inputs
- Proportional load current sense
- Undervoltage and overvoltage shutdown
- Overvoltage clamp
- Thermal shutdown
- Current limitation
- Very low standby power dissipation
- Protection against: loss of ground and loss of V_{CC}
- Reverse battery protection^(a)
- In compliance with the 2002/95/EC european directive

Description

The VNQ600AP-E is a quad HSD formed by assembling two VND600-E chips in the same SO-28 package. The VND600-E is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology. The VNQ600AP-E is intended for driving any type of multiple loads with one side connected to ground. This device has four independent channels and four analog sense outputs which deliver currents proportional to the outputs currents. Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection.

Table 1. Device summary

Package	Order codes					Order codes	
Fackage	Tube	Tape and reel					
SO-28	VNQ600AP-E	VNQ600APTR-E					

a. See Application schematic on page 14.

Contents VNQ600AP-E

Contents

1	Bloc	k diagram and pin description	5
2	Elec	trical specifications	7
	2.1	Absolute maximum ratings	7
	2.2	Thermal data 8	8
	2.3	Electrical characteristics	8
3	Арр	lication information	4
	3.1	GND protection network against reverse battery 14	4
	3.2	Load dump protection	5
	3.3	Microcontroller I/O protection	5
	3.4	Electrical characteristics curves	7
	3.5	Maximum demagnetization energy (VCC = 13.5V)	9
4	Pacl	kage and PCB thermal data	0
	4.1	SO-28 thermal data	0
5	Pacl	kage and packing information	3
	5.1	ECOPACK® packages	3
	5.2	SO-28 packing information	4
6	Revi	sion history	5

VNQ600AP-E List of tables

List of tables

Table 1.	Device summary	. 1
Table 2.	Suggested connections for unused and not connected pins	
Table 3.	Absolute maximum rating	
Table 4.	Thermal data (per island)	. 8
Table 5.	Power	
Table 6.	Switching (V _{CC} =13 V)	. 9
Table 7.	V _{CC} - output diode	. 9
Table 8.	Logic input	. 9
Table 9.	Protections	. 9
Table 10.	Current sense (9 V < V _{CC} < 16 V) (see <i>Figure 7</i>)	10
Table 11.	Truth table	10
Table 12.	Electrical transient requirements (part 1/3)	11
Table 13.	Electrical transient requirements (part 2/3)	11
Table 14.	Electrical transient requirements (part 3/3)	11
Table 15.	Thermal calculation according to the PCB heatsink area	20
Table 16.	Thermal parameter	22
Table 17.	SO-28 mechanical data	23
Table 18	Document revision history	25

List of figures VNQ600AP-E

List of figures

Figure 1.	Block diagram	. 5
Figure 2.	Configuration diagram (top view)	. 6
Figure 3.	Current and voltage conventions	. 7
Figure 4.	Switching characteristics (resistive load RL= 2.6 Ω)	12
Figure 5.	Waveforms (per each chip)	13
Figure 6.	Application schematic	14
Figure 7.	IOUT/ISENSE versus IOUT	16
Figure 8.	Off-state output current	17
Figure 9.	High level input current	17
Figure 10.	Input clamp voltage	17
Figure 11.	Input high level	17
Figure 12.	Input low level	17
Figure 13.	Input hysteresis voltage	17
Figure 14.	Overvoltage shutdown	18
Figure 15.	ILIM vs Tcase	18
Figure 16.	Turn-on voltage slope	18
Figure 17.	Turn-off voltage slope	18
Figure 18.	On-state resistance vs Tcase	
Figure 19.	On-state resistance vs VCC	18
Figure 20.	Maximum turn-off current versus load inductance	19
Figure 21.	Demagnetization	19
Figure 22.	SO-28 PC board	
Figure 23.	Rthj-amb Vs PCB copper area in open box free air condition	
Figure 24.	Thermal impedance junction ambient single pulse	21
Figure 25.	Thermal fitting model of a quad channel HSD in SO-28	
Figure 26.	SO-28 package dimensions	23
Figure 27.	SO-28 tube shipment (no suffix)	
Figure 28.	SO-28 tape and reel shipment (suffix "TR")	24

1 Block diagram and pin description

Figure 1. Block diagram

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection/pin	Current sense	N.C.	Output	Input
Floating	Not allowed	Х	Х	Х
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 10 kΩ resistor

6/26 Doc ID 10873 Rev 3

2 Electrical specifications

Figure 3. Current and voltage conventions

^{1.} $V_{Fn} = V_{CCn} - V_{OUTn}$ during reverse battery condition

2.1 Absolute maximum ratings

Table 3. Absolute maximum rating

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage (continuous)	41	V
-V _{CC}	Reverse supply voltage (continuous)	-0.3	V
I _{OUT}	Output current (continuous), for each channel	15	Α
I _R	Reverse output current (continuous), for each channel	-15	Α
I _{IN}	Input current	+/- 10	mA
V _{CSENSE}	Current sense maximum voltage	-3 +15	V V
I _{GND}	Ground current at T _{pins} ≤ 25 °C (continuous)	-200	mA
V _{ESD}	Electrostatic discharge (Human Body Model: R=1.5 KΩ; C=100 pF) - Input - Current Sense - Output - V _{CC}	4000 2000 5000 5000	V V V
E _{MAX}	Maximum switching energy (L=0.11 mH; R _L =0 Ω ; V _{bat} =13.5 V; T _{jstart} =150 $^{\circ}$ C; I _L =40 A)	126	mJ
P _{tot}	Power dissipation (per island) at T _{lead} =25 °C	6.25	W

Table 3. Absolute maximum rating (continued)

Symbol	Parameter	Value	Unit
T _j	Junction operating temperature	Internally limited	°C
T _{stg}	Storage temperature	-55 to 150	°C

2.2 Thermal data

Table 4. Thermal data (per island)

Symbol	Parameter	Value		Unit
R _{thj-lead}	Thermal resistance Junction-lead (max)	15		°C/W
R _{thj-amb}	Thermal resistance Junction-ambient (one chip on max)	ermal resistance Junction-ambient (one chip on max) 60 ⁽¹⁾ 44 ⁽²⁾		°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient (two chips on max)	46 ⁽¹⁾	31 ⁽⁽²⁾⁾	°C/W

When mounted on a standard single-sided FR-4 board with 0.5 cm² of Cu (at least 35 μm thick) connected to all V_{CC} pins. Horizontal mounting and no artificial air flow.

2.3 Electrical characteristics

Values specified in this section are for 8 V<V $_{CC}$ < 36 V; -40 °C < T $_{j}$ <150 °C, unless otherwise specified.

Table 5. Power

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC} ⁽¹⁾	Operating supply voltage		5.5	13	36	V
V _{USD} ⁽¹⁾	Undervoltage shutdown		3	4	5.5	V
V _{OV} ⁽¹⁾	Overvoltage shutdown		36	-	-	V
R _{ON}	On-state resistance	I _{OUT} 1,2,3,4=5 A; T _j =25 °C I _{OUT} 1,2,3,4=5 A; T _j =150 °C I _{OUT} 1,2,3,4=3 A; V _{CC} =6 V	-	-	35 70 120	$m\Omega$ $m\Omega$ $m\Omega$
V _{clamp}	Clamp voltage	I _{CC} =20 mA ⁽²⁾	41	48	55	V
Is ⁽¹⁾	Supply current		_	12 12	40 25	μA μA
IS'	Зирріу сипепі	T_{j} =25 °C On-state; V_{CC} =13 V; V_{IN} =5 V; I_{OUT} =0 A; R_{SENSE} =3.9 K Ω ; V_{SENSE} =0 V	-		6	mA
I _{L(off1)}	Off-state output current	V _{IN} =V _{OUT} =V _{SENSE} =0V	0	-	50	μΑ

When mounted on a standard single-sided FR-4 board with 6 cm² of Cu (at least 35 μm thick) connected to all V_{CC} pins.
Horizontal mounting and no artificial air flow.

Table 5. Power (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{L(off3)}	Off-state output current	$V_{IN}=V_{OUT}=V_{SENSE}=0$ V; $V_{CC}=13$ V; $T_j=125$ °C	-	-	5	μΑ
I _{L(off4)}	Off-state output current	$V_{IN}=V_{OUT}=V_{SENSE}=0$ V; $V_{CC}=13$ V; $T_j=25$ °C	-	-	3	μΑ

^{1.} Per island

Table 6. Switching (V_{CC}=13 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{D(on)}	Turn-on delay time	R _L =2.6 Ω channels 1,2,3,4 (see Figure 4)	-	40	-	μs
t _{D(off)}	Turn-off delay time	R _L =2.6 Ω channels 1,2,3,4 (see Figure 4)	-	40	-	μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	R_L =2.6 Ω channels 1,2,3,4 (see Figure 4)	-	See relative diagram	-	V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	R _L =2.6 Ω channels 1,2,3,4 (see Figure 4)	-	See relative diagram	-	V/µs

Table 7. V_{CC} - output diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on voltage	-I _{OUT} =2.3 A; T _j =150 °C	-	-	0.6	V

Table 8. Logic input

	U					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{IL}	Low level input voltage		-	-	1.25	V
V _{IH}	High level input voltage		3.25	-	-	V
V _{I(hyst)}	Input hysteresis voltage		0.5	-	-	V
I _{IL}	Low level input current	V _{IN} =1.25 V	20	65	-	μΑ
I _{lh}	High level input current	V _{IN} =3.25 V	-	75	110	μΑ
V _{ICL}	Input clamp voltage	I _{IN} =1 mA	6	6.8	8	٧
V ICL	input clamp voltage	I _{IN} = -1 mA		-0.7		V

Table 9. Protections⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{lim}	DC short circuit current	V _{CC} =13 V 5.5 V <v<sub>CC<36 V</v<sub>	25	40	70 70	A A
T _{TSD}	Thermal shutdown temperature		150	175	200	°C

477

^{2.} Vclamp and $\rm V_{OV}$ are correlated. Typical difference is 5 V.

Table 9. Protections⁽¹⁾ (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _R	Thermal reset temperature		135	-	-	°C
T _{hyst}	Thermal hysteresis		7	15	-	°C
V _{demag}	Turn-off output voltage clamp	I _{OUT} =2 A; L=6 mH	V _{CC} -41	V _{CC} -48	V _{CC} -55	V
V _{ON}	Output voltage drop limitation	I _{OUT} =0.5 A; T _j = -40 °C+150 °C	-	50	-	mV

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals
must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must
limit the duration and number of activation cycles.

Table 10. Current sense (9 V< V_{CC}< 16 V) (see *Figure 7*)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
K1	I _{OUT} /I _{SENSE}	I _{OUT1,2} =0.35 A; V _{SENSE} =0.5 V; Tj= -40 °C+150 °C	3100	4150	5560	
K2	I _{OUT} /I _{SENSE}	I _{OUT} =2 A; V _{SENSE} =2.5 V; Tj=-40 °C Tj= 25 °C+150 °C	3750 4000	4600 4600	5700 5400	
K3	I _{OUT} /I _{SENSE}	I _{OUT} =4 A; V _{SENSE} =4 V; T _j =-40 °C Tj= 25 °C+150 °C	4000 4100	4500 4500	5200 5150	
V _{SENSE1,2}	Max analog sense output voltage	V_{CC} =5.5 V; $I_{OUT1,2}$ =2 A; R_{SENSE} =10 KΩ V_{CC} >8 V; $I_{OUT1,2}$ =4 A; R_{SENSE} =10 KΩ	2	-	-	V
V _{SENSEH}	Analog sense output voltage in over temperature condition	V_{CC} =13 V; R _{SENSE} =3.9 K Ω	-	5	-	V
R _{VSENSEH}	Analog sense output impedance in over temperature condition	V _{CC} =13 V; T _j >T _{TSD} ; All channels open	-	400	-	Ω
t _{DSENSE}	Current sense delay response	to 90% I _{SENSE} ⁽¹⁾	-	-	500	μs

^{1.} Current sense signal delay after positive input slope.

Table 11. Truth table

Conditions	Input	Output	Sense
Normal operation	L H	Н	0 Nominal
Over temperature	L H	г г	0 V _{SENSEH}
Undervoltage	L H	L L	0 0

Table 11. Truth table (continued)

Conditions	Input	Output	Sense
Overvoltage	L	L	0
	H	L	0
Short circuit to GND	L	L	0
	H	L	(T _j <t<sub>TSD) 0</t<sub>
	H	L	(T _j >T _{TSD}) V _{SENSEH}
Short circuit to V _{CC}	L	H	0
	H	H	< Nominal
Negative output voltage clamp	L	L	0

Table 12. Electrical transient requirements (part 1/3)

ISO T/R 7637/1	Test level					
test pulse	I	II	III	IV	Delays and impedance	
1	-25 V	-50 V	-75 V	-100 V	2 ms, 10 Ω	
2	+25 V	+50 V	+75 V	+100 V	0.2 ms, 10 Ω	
3a	-25 V	-50 V	-100 V	-150 V	0.1 μs, 50 Ω	
3b	+25 V	+50 V	+75 V	+100 V	0.1 μs, 50 Ω	
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω	
5	+26.5 V	+46.5 V	+66.5 V	+86.5 V	400 ms, 2 Ω	

Table 13. Electrical transient requirements (part 2/3)

ISO T/R 7637/1	Test levels result						
test pulse	I	II	III	IV			
1	С	С	С	С			
2	С	С	С	С			
3a	С	С	С	С			
3b	С	С	С	С			
4	С	С	С	С			
5	С	E	E	E			

Table 14. Electrical transient requirements (part 3/3)

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.

Figure 4. Switching characteristics (resistive load R_L= 2.6 Ω)

Figure 5. Waveforms (per each chip)

3 Application information

+5V R_{prot} INPUT1 V_{CC1,2} $V_{CC3,4}$ D_{ld} Rprot OUTPUT1 C. SENSE 1 R_{prot} INPUT2 μС R_{prot} C. SENSE 2 OUTPUT2 INPUT3 OUTPUT3 R_{prot} C. SENSE 3 INPUT4 OUTPUT4 R_{prot} C. SENSE 4 GND1,2 GND3,4 R_{SENSE1,2,3,4} $\mathsf{D}_{\mathsf{GND}}$

Figure 6. Application schematic

Note: Channels 3 and 4 have the same internal circuit as channel 1 and 2

3.1 GND protection network against reverse battery

This section provides two solutions for implementing a ground protection network against reverse battery.

Solution 1: Resistor in the ground line (R_{GND} only). This can be used with any type of load. The following is an indication on how to dimension the R_{GND} resistor.

- 1. $R_{GND} \le 600 \text{ mV} / 2(I_{S(on)max})$
- 2. $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where $-I_{\mbox{\footnotesize GND}}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet.

Power dissipation in R_{GND} (when V_{CC}<0: during reverse battery situations) is:

$$P_D = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not common with the device ground then the R_{GND} will produce a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output

values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below).

Solution 2: A diode (D_{GND}) in the ground line. A resistor (R_{GND} =1 k Ω) should be inserted in parallel to D_{GND} if the device will be driving an inductive load.

This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (\cong 600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

Series resistor in input line is also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating.

Safest configuration for unused input pin is to leave it unconnected, while unused sense pin has to be connected to ground pin.

3.2 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CC} maximum DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than those shown in the ISO T/R 7637/1 table.

3.3 Microcontroller I/O protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μC I/O pins from latching up.

The value of these resistors is a compromise between the leakage current of μC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os:

Example

For the following conditions:

$$\begin{split} &V_{CCpeak}\text{=}\text{-}100\text{ V}\\ &I_{|atchup} \geq 20\text{ mA}\\ &V_{OH\mu C} \geq 4.5\text{ V}\\ &5\text{ }k\Omega \leq R_{prot} \leq 65\text{ }k\Omega. \end{split}$$

Recommended values are:

 $R_{prot} = 5 k\Omega$

3.4 Electrical characteristics curves

Figure 8. Off-state output current

IL(off1) (uA)

5
4.5
Off state
Vcc=36V
Vin=Vout=0V

3.5
2
1.5
1
0.5
0
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)

Figure 9. High level input current

Figure 10. Input clamp voltage

Figure 11. Input high level

Figure 12. Input low level

Figure 13. Input hysteresis voltage

577

Figure 14. Overvoltage shutdown

Figure 15. I_{LIM} vs T_{case}

Figure 16. Turn-on voltage slope

Figure 17. Turn-off voltage slope

Figure 18. On-state resistance vs Tcase

Figure 19. On-state resistance vs V_{CC}

3.5 Maximum demagnetization energy (Vcc = 13.5V)

0.01

100
100
100

0.1

1

L(mH)

10

100

Figure 20. Maximum turn-off current versus load inductance

Legend:

A = Single Pulse at T_{Jstart}=150 °C

0.001

B = Repetitive pulse at T_{Jstart}=100 °C

C = Repetitive Pulse at T_{Jstart}=125 °C

Conditions:

Vcc=13.5 V

Values are generated with RL=0 Ω

In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

Figure 21. Demagnetization

4 Package and PCB thermal data

4.1 SO-28 thermal data

Figure 22. SO-28 PC board

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area=58 mm x 58 mm, PCB thickness=2 mm, Cu thickness=35 μ m, Copper areas: 0.5 cm², 3 cm², 6 cm²).

Table 15. Thermal calculation according to the PCB heatsink area

Chip 1	Chip 2	T _{jchip1}	T _{jchip2}	Note
On	Off	R _{thA} x P _{dchip1} + T _{amb}	R _{thC} x P _{dchip1} + T _{amb}	
Off	On	R _{thC} x P _{dchip2} + T _{amb}	R _{thA} x P _{dchip2} + T _{amb}	
On	On	R _{thB} x (P _{dchip1} + P _{dchip2}) + T _{amb}	R _{thB} x (P _{dchip1} + P _{dchip2}) + T _{amb}	P _{dchip1} =P _{dchip2}
On	On	(R _{thA} x P _{dchip1}) + R _{thC} x P _{dchip2} + T _{amb}	(R _{thA} x P _{dchip2}) + R _{thC} x P _{dchip1} + T _{amb}	P _{dchip1} ≠P _{dchip2}

 R_{thA} = Thermal resistance Junction to Ambient with one chip on

R_{thB} = Thermal resistance Junction to Ambient with both chips on and P_{dchip1}=P_{dchip2}

 R_{thC} = Mutual thermal resistance

Figure 23. R_{thi-amb} Vs PCB copper area in open box free air condition

Equation 1: pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where } \delta &= t_p / T \end{split}$$

Figure 25. Thermal fitting model of a quad channel HSD in SO-28

Table 16. Thermal parameter

Area/island (cm ²)	0.5	6
R1=R7=R13=R15 (°C/W)	0.05	-
R2=R8=R14=R16 (°C/W)	0.3	-
R3=R9 (°C/W)	3.4	-
R4=R10 (°C/W)	11	-
R5=R11 (°C/W)	15	-
R6=R12 (°C/W)	30	13
C1=C7=C13=C15 (W.s/°C)	0.001	-
C2=C8=C14=C16 (W.s/°C)	5.00E-03	-
C3=C9 (W.s/°C)	1.00E-02	-
C4=C10 (W.s/°C)	0.2	-
C5=C11 (W.s/°C)	1.5	-
C6=C12 (W.s/°C)	5	8
R17=R18 (°C/W)	150	-

5 Package and packing information

5.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

Figure 26. SO-28 package dimensions

Table 17. SO-28 mechanical data

Dim.	mm.			inch		
	Min.	Тур	Max.	Min.	Тур.	Max.
Α	-	-	2.65	-	-	0.104
a1	0.10	-	0.30	0.004	-	0.012
b	0.35	-	0.49	0.013	-	0.019
b1	0.23	-	0.32	0.009	-	0.012
С	-	0.50	-	-	0.020	-
c1	45 (typ.)			-		
D	17.7	-	18.1	0.697	-	0.713
E	10.00	-	10.65	0.393	-	0.419
е	-	1.27	-	-	0.050	-
e3	-	16.51	-	-	0.650	-
F	7.40	-	7.60	0.291	-	0.299
L	0.40	-	1.27	0.016	-	0.050
S	8 (max.)			-		

5.2 SO-28 packing information

Figure 27. SO-28 tube shipment (no suffix)

Figure 28. SO-28 tape and reel shipment (suffix "TR")

VNQ600AP-E Revision history

6 Revision history

Table 18. Document revision history

Date	Revision	Changes	
01-Oct-2004	1	Initial release.	
08-Jun-2009	2	Features: - Changed <i>Ilim</i> value from 22 A to 25 A - Changed DC short circuit current value from 22 A to 25 A <i>Table 9</i> : changed I _{lim} min value from 22 A to 25 A	
15-Oct-2009	3	Updated Figure 2: Configuration diagram (top view).	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

26/26 Doc ID 10873 Rev 3

