A Structured Set of Higher-Order Problems

Christoph E. Benzmüller and Chad E. Brown

Computer Science
Saarland University
Saarbrücken, Germany

TPHOLS'05, 22 August 2005, Oxford, UK

Test problems for FOL theorem provers

- Test problems for FOL theorem provers
 - [McCharenOverbeekWos76], [WilsonMinker79], [Pelletier86], etc.

- Test problems for FOL theorem provers
 - [McCharenOverbeekWos76], [WilsonMinker79], [Pelletier86], etc.
 - TPTP [PelletierSutcliffeSuttner02]

- Test problems for FOL theorem provers
 - [McCharenOverbeekWos76], [WilsonMinker79], [Pelletier86], etc.
 - TPTP [PelletierSutcliffeSuttner02]
 - significantly fostered the development of FOL ATPs

- Test problems for FOL theorem provers
 - [McCharenOverbeekWos76], [WilsonMinker79], [Pelletier86], etc.
 - TPTP [PelletierSutcliffeSuttner02]
 - significantly fostered the development of FOL ATPs
- Test problems for HOL theorem provers

- Test problems for FOL theorem provers
 - [McCharenOverbeekWos76], [WilsonMinker79], [Pelletier86], etc.
 - TPTP [PelletierSutcliffeSuttner02]
 - significantly fostered the development of FOL ATPs
- Test problems for HOL theorem provers
 - common library missing

- Test problems for FOL theorem provers
 - [McCharenOverbeekWos76], [WilsonMinker79], [Pelletier86], etc.
 - TPTP [PelletierSutcliffeSuttner02]
 - significantly fostered the development of FOL ATPs
- Test problems for HOL theorem provers
 - common library missing
- Is our paper proposing challenging HOL benchmark problems?

- Test problems for FOL theorem provers
 - [McCharenOverbeekWos76], [WilsonMinker79], [Pelletier86], etc.
 - TPTP [PelletierSutcliffeSuttner02]
 - significantly fostered the development of FOL ATPs
- Test problems for HOL theorem provers
 - common library missing
- Is our paper proposing challenging HOL benchmark problems?
 - No!!!

- Test problems for FOL theorem provers
 - [McCharenOverbeekWos76], [WilsonMinker79], [Pelletier86], etc.
 - TPTP [PelletierSutcliffeSuttner02]
 - significantly fostered the development of FOL ATPs
- Test problems for HOL theorem provers
 - common library missing
- Is our paper proposing challenging HOL benchmark problems?
 - No!!!
 - But see the ESHOL'05-WS at LPAR'05 in Jamaica http://www.ags.uni-sb.de/~chris/ESHOL-05

Examples are simple

- Examples are simple
 - highlight the essence of some semantical or technical point

- Examples are simple
 - highlight the essence of some semantical or technical point
 - easy to understand and easy to encode

- Examples are simple
 - highlight the essence of some semantical or technical point
 - easy to understand and easy to encode
 - relevant for both: automated and interactive TP

- Examples are simple
 - highlight the essence of some semantical or technical point
 - easy to understand and easy to encode
 - relevant for both: automated and interactive TP
- Examples are structured

Examples are simple

- highlight the essence of some semantical or technical point
- easy to understand and easy to encode
- relevant for both: automated and interactive TP

Examples are structured

quick indicators for completeness and soundness wrt to HOL model classes from [Benzm.BrownKohlhase-JSL-04]

Examples are simple

- highlight the essence of some semantical or technical point
- easy to understand and easy to encode
- relevant for both: automated and interactive TP

Examples are structured

- quick indicators for completeness and soundness wrt to HOL model classes from [Benzm.BrownKohlhase-JSL-04]
- shall precede formal soundness / completeness analysis

Examples are simple

- highlight the essence of some semantical or technical point
- easy to understand and easy to encode
- relevant for both: automated and interactive TP

Examples are structured

- quick indicators for completeness and soundness wrt to HOL model classes from [Benzm.BrownKohlhase-JSL-04]
- shall precede formal soundness / completeness analysis
- many are collected from experience with LEO and TPS

Examples are simple

- highlight the essence of some semantical or technical point
- easy to understand and easy to encode
- relevant for both: automated and interactive TP

Examples are structured

- quick indicators for completeness and soundness wrt to HOL model classes from [Benzm.BrownKohlhase-JSL-04]
- shall precede formal soundness / completeness analysis
- many are collected from experience with LEO and TPS
- (Some more challenging examples are also added)

Outline of Talk ____

HOL (notion and syntax)

Outline of Talk ___

- HOL (notion and syntax)
- HOL-CUBE: different model classes for HOL (semantics)

- HOL (notion and syntax)
- HOL-CUBE: different model classes for HOL (semantics)
 - Boolean extensionality
 - functional extensionality
 - η -equality
 - ξ -equality

- HOL (notion and syntax)
- HOL-CUBE: different model classes for HOL (semantics)
 - Boolean extensionality
 - functional extensionality
 - η -equality
 - ξ-equality
- HOL-Problems: simple problems structured along HOL-CUBE

- HOL (notion and syntax)
- HOL-CUBE: different model classes for HOL (semantics)
 - Boolean extensionality
 - functional extensionality
 - η -equality
 - ξ -equality
- HOL-Problems: simple problems structured along HOL-CUBE
- (Some more challenging problems)

- HOL (notion and syntax)
- HOL-CUBE: different model classes for HOL (semantics)
 - Boolean extensionality
 - functional extensionality
 - η -equality
 - ξ -equality
- HOL-Problems: simple problems structured along HOL-CUBE
- (Some more challenging problems)
- Conclusion

HOL: Simple Types

o (truth values)

Simple Types T:

 ι (individuals)

 $(\alpha\beta)$ (functions from β to α)

HOL: Simple Types

o (truth values)

Simple Types T:

 ι (individuals)

 $(\alpha\beta)$ (functions from β to α)

 $(\alpha\beta\gamma)$ abbreviates $((\alpha\beta)\gamma)$

 X_{α} Variables (\mathcal{V})

 \mathbf{a}_{α} Parameters (\mathcal{P})

 c_{α} Logical constants (S)

 $[\mathbf{F}_{\alpha\beta} \, \mathbf{B}_{\beta}]_{\alpha}$ Application

 $[\lambda Y_{\beta} \mathbf{A}_{\alpha}]_{\alpha\beta}$ λ -abstraction

Terms:

 X_{α} Variables (\mathcal{V})

 \mathbf{a}_{α} Parameters (\mathcal{P})

Terms: c_{α} Logical constants (S)

 $[\mathbf{F}_{\alpha\beta} \, \mathbf{B}_{\beta}]_{\alpha}$ Application

 $[\lambda Y_{\beta} A_{\alpha}]_{\alpha\beta}$ λ -abstraction

Equality of terms: $\alpha\beta\eta$

 X_{α} Variables (\mathcal{V})

 \mathbf{a}_{α} Parameters (\mathcal{P})

Terms: c_{α} Logical constants (S)

 $[\mathbf{F}_{\alpha\beta} \, \mathbf{B}_{\beta}]_{\alpha}$ Application

 $[\lambda Y_{\beta} A_{\alpha}]_{\alpha\beta}$ λ -abstraction

Equality of terms: $\alpha\beta\eta$

 α -conversion Changing Bound Variables

 β -reduction $[[\lambda Y_{\beta} A_{\alpha}] B] \xrightarrow{\beta} [B/Y] A$

 η -reduction $[\lambda Y_{\beta} [\mathbf{F}_{\alpha\beta} Y]] \xrightarrow{\eta} \mathbf{F}$ $(Y_{\beta} \notin Free(\mathbf{F}))$

 X_{α} Variables (\mathcal{V})

 \mathbf{a}_{α} Parameters (\mathcal{P})

Terms: c_{α} Logical constants (S)

 $[\mathbf{F}_{\alpha\beta} \, \mathbf{B}_{\beta}]_{\alpha}$ Application

 $[\lambda Y_{\beta} A_{\alpha}]_{\alpha\beta}$ λ -abstraction

Equality of terms: $\alpha\beta\eta$

Every term has a unique $\beta\eta$ -normal form (up to α -conversion).

HOL: Logical Constants

Some logical constants which may be in S:

- \top_{o} true
- \perp_{0} false
- ¬oo negation
- V_{ooo} disjunction
- \Rightarrow _{ooo} implication
- ⇔ooo − equivalence

HOL: Logical Constants

Some logical constants which may be in S:

- \blacksquare $\Pi^{\alpha}_{o(o\alpha)}$ universal quantification over type α
- $\mathbf{\Sigma}_{\mathbf{o}(\mathbf{o}\alpha)}^{\alpha}$ existential quantification over type α

Intuition:

■ $[\Sigma^{\alpha} \bullet \lambda X_{\alpha} C_{o}]$ is true iff $\{X_{\alpha} \mid C\}$ is nonempty.

HOL: Abbreviations for Logical Operators

- $\qquad [\mathbf{A}_{\mathsf{o}} \vee \mathbf{B}_{\mathsf{o}}] \text{ means } [\vee_{\mathsf{ooo}} \mathbf{A}_{\mathsf{o}} \mathbf{B}_{\mathsf{o}}]$
- $lackbox{ } [\mathbf{A}_{\mathsf{o}} \wedge \mathbf{B}_{\mathsf{o}}] \text{ means } [\wedge_{\mathsf{ooo}} \mathbf{A}_{\mathsf{o}} \mathbf{B}_{\mathsf{o}}]$
- $lackbox{ } [\mathbf{A}_\mathsf{o} \Rightarrow \mathbf{B}_\mathsf{o}] \ \mathsf{means} \ [\Rightarrow_\mathsf{ooo} \ \mathbf{A}_\mathsf{o} \ \mathbf{B}_\mathsf{o}]$
- $lackbox{ } [\mathbf{A}_{\mathsf{o}} \Leftrightarrow \mathbf{B}_{\mathsf{o}}] \text{ means } [\Leftrightarrow_{\mathsf{ooo}} \mathbf{A}_{\mathsf{o}} \mathbf{B}_{\mathsf{o}}]$
- $[\mathbf{A}_{\alpha}] = \mathbf{B}_{\alpha}$ means $[\mathbf{B}_{\alpha}]$ m $\mathbf{B}_{\alpha}]$
- $[\forall X_{\alpha} A_{o}]$ means $[\Pi^{\alpha}_{o(o\alpha)} \bullet \lambda X_{\alpha} A_{o}]$
- $\blacksquare [\exists X_{\alpha} A_{o}] \text{ means } [\Sigma_{o(o\alpha)}^{\alpha} \blacksquare \lambda X_{\alpha} A_{o}]$

HOL: Equality and Extensionality

Some important conventions and reminders for the talk:

= denotes primitive equality

HOL: Equality and Extensionality

Some important conventions and reminders for the talk:

- = denotes primitive equality

HOL: Equality and Extensionality

Some important conventions and reminders for the talk:

- = denotes primitive equality
- \bullet denotes Leibniz equality: $\mathbf{A}_{\alpha} \doteq^{\alpha} \mathbf{B}_{\alpha} := \forall \mathsf{P}_{\mathsf{o}\alpha} \bullet (\mathsf{P}\mathbf{A}) \Rightarrow (\mathsf{P}\mathbf{B})$
- = :... other definition of equality (e.g., see [Andrews02])

HOL: Equality and Extensionality

Some important conventions and reminders for the talk:

- = denotes primitive equality
- \bullet denotes Leibniz equality: $\mathbf{A}_{\alpha} \doteq^{\alpha} \mathbf{B}_{\alpha} := \forall \mathsf{P}_{\mathsf{o}\alpha} \bullet (\mathsf{P}\mathbf{A}) \Rightarrow (\mathsf{P}\mathbf{B})$
- = :... other definition of equality (e.g., see [Andrews02])

We use $\stackrel{*}{=}$ in the following to refer to any of the above

Church's Type Theory:

Simply typed λ -calculus with the signature

$$\mathcal{S} := \{\neg, \lor\} \cup \{\Pi^{\alpha} \mid \alpha \in \mathcal{T}\}\$$

(and perhaps a description or choice operator).

Church's Type Theory:

Simply typed λ -calculus with the signature

$$\mathcal{S} := \{\neg, \lor\} \cup \{\Pi^{\alpha} \mid \alpha \in \mathcal{T}\}\$$

(and perhaps a description or choice operator).

Axioms of extensionality

Church's Type Theory:

• Simply typed λ -calculus with the signature

$$\mathcal{S} := \{\neg, \lor\} \cup \{\Pi^{\alpha} \mid \alpha \in \mathcal{T}\}\$$

(and perhaps a description or choice operator).

- Axioms of extensionality
- Axiom of description or choice

Church's Type Theory:

Simply typed λ -calculus with the signature

$$\mathcal{S} := \{\neg, \lor\} \cup \{\Pi^{\alpha} \mid \alpha \in \mathcal{T}\}\$$

(and perhaps a description or choice operator).

- Axioms of extensionality
- Axiom of description or choice
- Axiom of infinity

S Fragment of Elementary Type Theory:

S Fragment of Elementary Type Theory:

Simply typed λ -calculus with the signature \mathcal{S}

S Fragment of Extensional Type Theory:

• Simply typed λ -calculus with the signature $\mathcal S$

S Fragment of Elementary Type Theory:

- Simply typed λ -calculus with the signature $\mathcal S$
- No extensionality

- Simply typed λ -calculus with the signature $\mathcal S$
- Extensionality

S Fragment of Elementary Type Theory:

- Simply typed λ -calculus with the signature $\mathcal S$
- No extensionality
- No axiom of description or choice

- Simply typed λ -calculus with the signature $\mathcal S$
- Extensionality
- No axiom of description or choice

S Fragment of Elementary Type Theory:

- Simply typed λ -calculus with the signature $\mathcal S$
- No extensionality
- No axiom of description or choice
- No axiom of infinity

- Simply typed λ -calculus with the signature $\mathcal S$
- Extensionality
- No axiom of description or choice
- No axiom of infinity

Landscape of HOL model classes

[Kohlhase-PhD-94]

[Benzmüller-PhD-99]

[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

Landscape of HOL model classes

[Kohlhase-PhD-94]

[Benzmüller-PhD-99]

[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

 \mathfrak{M}_{β} model class for \mathcal{S} fragment of elementary type theory

Landscape of HOL model classes

[Kohlhase-PhD-94]

[Benzmüller-PhD-99]

[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

 \mathfrak{M}_{β} model class for \mathcal{S} fragment of elementary type theory

 $\mathfrak{M}_{\beta f \mathfrak{b}}$ model class for \mathcal{S} fragment of extensional type theory (Henkin models)

Landscape of HOL model classes

[Kohlhase-PhD-94]

[Benzmüller-PhD-99]

[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

 \mathfrak{M}_{β} model class for \mathcal{S} fragment of elementary type theory

 $\mathfrak{M}_{\beta \mathfrak{f} \mathfrak{b}}$ model class for \mathcal{S} fragment of extensional type theory (Henkin models)

Signature S defined as $\{\top, \bot, \neg, \land, \lor, \Rightarrow, \Leftrightarrow\} \cup \{\Pi^{\alpha}, \Sigma^{\alpha}, =^{\alpha}\}$ (less logical connectives are possible)

q: models provide identity relations

 $\forall \alpha : \mathsf{id} \in \mathcal{D}_{\alpha \to \alpha \to \mathsf{o}}$

q: models provide identity relations

$$\forall \alpha : \mathsf{id} \in \mathcal{D}_{\alpha \to \alpha \to \mathsf{o}}$$

Relationship of \doteq and =

- [Andrews72]: without property q Leibniz equality = not necessarily evaluates to identity relation
- $(a_{\alpha} \stackrel{:}{=}^{\alpha} b_{\alpha}) \Rightarrow (a = ^{\alpha} b)$ (property q corresponds to requiring this to be a theorem)

b: models are Boolean extensional

$$\mathcal{D}_o \equiv \{\bot, \top\}$$

f: models are functional

$$orall f, g \in \mathcal{D}_{eta lpha}:$$
 f \equiv g iff f@a \equiv g@a ($orall a \in \mathcal{D}_{lpha}$)

 η : models are η -functional

$$\mathcal{E}_{arphi}(\mathbf{A}) \equiv \mathcal{E}_{arphi}(\mathbf{A}\downarrow_{eta\eta})$$

 ξ : models are ξ -functional

$$\mathcal{E}_{\varphi}(\lambda \mathsf{X}_{\alpha \blacksquare} \mathbf{M}_{\beta}) \equiv \mathcal{E}_{\varphi}(\lambda \mathsf{X}_{\alpha \blacksquare} \mathbf{N}_{\beta}) \text{ iff}$$

$$\mathcal{E}_{\varphi,[\mathsf{a}/\mathsf{X}]}(\mathbf{M}) \equiv \mathcal{E}_{\varphi,[\mathsf{a}/\mathsf{X}]}(\mathbf{N}) \ (\forall \mathsf{a} \in \mathcal{D}_{\alpha})$$

HOL-CUBE: Abstract Consistency

 Abstract consistency properties are provided in [Benzm.BrownKohlhase-JSL-04]

HOL-CUBE: Abstract Consistency

- Abstract consistency properties are provided in [Benzm.BrownKohlhase-JSL-04]
- They support completeness and soundness analysis of calculi by syntactical means for the HOL-CUBE

HOL-CUBE: Abstract Consistency

- Abstract consistency properties are provided in [Benzm.BrownKohlhase-JSL-04]
- They support completeness and soundness analysis of calculi by syntactical means for the HOL-CUBE
- Proposal:
 use the examples of this paper before trying a formal analysis

Church numerals:

$$\overline{\mathbf{n}}^{\alpha} := (\lambda \mathsf{F}_{\alpha\alpha} \lambda \mathsf{Y}_{\alpha^{\blacksquare}} \left(\mathsf{F}^{\mathbf{n}} \; \mathsf{Y} \right))$$

$$\overline{+} := \lambda M \lambda N \lambda F \lambda Y$$
. MF(NFY)

$$\overline{\times} := \lambda M \lambda N \lambda F \lambda Z \cdot N(MF) Z$$

Church numerals:

$$\begin{split} & \overline{\mathbf{n}}^{\alpha} := (\lambda \mathsf{F}_{\alpha\alpha} \lambda \mathsf{Y}_{\alpha \blacksquare} \left(\mathsf{F}^{\mathsf{n}} \; \mathsf{Y} \right)) \\ & \overline{+} := \lambda \mathsf{M} \lambda \mathsf{N} \lambda \mathsf{F} \lambda \mathsf{Y}_{\blacksquare} \; \mathsf{MF} (\mathsf{NFY}) \\ & \overline{\times} := \lambda \mathsf{M} \lambda \mathsf{N} \lambda \mathsf{F} \lambda \mathsf{Z}_{\blacksquare} \; \mathsf{N} (\mathsf{MF}) \mathsf{Z} \end{split}$$

Efficiency of β -conversion:

- $\overline{3}\overline{\times}\overline{4} \stackrel{*}{=} \overline{5}\overline{+}\overline{7}$
- $(\overline{10} \overline{\times} \overline{10}) \overline{\times} \overline{10} \stackrel{*}{=} ((\overline{10} \overline{\times} \overline{5}) \overline{+} (\overline{5} \overline{\times} \overline{10})) \overline{\times} \overline{10}$

Church numerals:

 $\overline{\mathbf{n}}^{\alpha} := (\lambda \mathsf{F}_{\alpha \alpha} \lambda \mathsf{Y}_{\alpha \bullet} (\mathsf{F}^{\mathsf{n}} \mathsf{Y}))$ $\overline{+} := \lambda \mathsf{M} \lambda \mathsf{N} \lambda \mathsf{F} \lambda \mathsf{Y}_{\bullet} \mathsf{MF} (\mathsf{NFY})$ $\overline{\times} := \lambda \mathsf{M} \lambda \mathsf{N} \lambda \mathsf{F} \lambda \mathsf{Z}_{\bullet} \mathsf{N} (\mathsf{MF}) \mathsf{Z}$

Efficiency of β -conversion:

- $\overline{3} \times \overline{4} \stackrel{*}{=} \overline{5} + \overline{7}$
- $(\overline{10} \overline{\times} \overline{10}) \overline{\times} \overline{10} \stackrel{*}{=} ((\overline{10} \overline{\times} \overline{5}) \overline{+} (\overline{5} \overline{\times} \overline{10})) \overline{\times} \overline{10}$

Pre-unification with β -conversion:

- $\exists N_{(\iota \to \iota) \to \iota \to \iota^{\blacksquare}} ((N \overline{\times} \overline{1}) \stackrel{*}{=} \overline{1})$ (two solutions if only β ; one solution if $\beta \eta$)
- $\exists N. N \times \overline{4} \stackrel{*}{=} \overline{5+7}$
- $\exists H_{\bullet} ((H \bar{2})\bar{3}) \stackrel{*}{=} \bar{6} \wedge ((H \bar{1})\bar{2}) \stackrel{*}{=} \bar{2}$
- $\exists N, M$ $N \times 4 \stackrel{*}{=} 5 + M$ (infinitely many solutions!)

HOL-Non-Problems

Some non-theorems:

- essentially FOL
- apply to all model classes
- address
 - Skolemization
 - axiom of choice

$\stackrel{*}{=}$ is equivalence relation

- $\forall X_{\alpha} X \stackrel{*}{=} X$
- $\forall X_{\alpha}, Y_{\alpha} X \stackrel{*}{=} Y \Rightarrow Y \stackrel{*}{=} X$
- $\forall X_{\alpha}, Y_{\alpha}, Z_{\alpha^{\bullet}} (X \stackrel{*}{=} Y \wedge Y \stackrel{*}{=} Z) \Rightarrow X \stackrel{*}{=} Z$

$\stackrel{*}{=}$ is equivalence relation

- $\forall X_{\alpha} X \stackrel{*}{=} X$
- $\forall X_{\alpha}, Y_{\alpha} X \stackrel{*}{=} Y \Rightarrow Y \stackrel{*}{=} X$
- $\forall X_{\alpha}, Y_{\alpha}, Z_{\alpha} (X \stackrel{*}{=} Y \wedge Y \stackrel{*}{=} Z) \Rightarrow X \stackrel{*}{=} 7$

* is congruence relation

- $\forall \mathsf{X}_{\alpha}, \mathsf{Y}_{\alpha}, \mathsf{F}_{\alpha\alpha} \mathsf{X} \overset{*}{=} \mathsf{Y} \Rightarrow (\mathsf{F}\mathsf{X}) \overset{*}{=} (\mathsf{F}\mathsf{Y})$
- $\forall \mathsf{X}_{\alpha}, \mathsf{Y}_{\alpha}, \mathsf{P}_{\mathsf{o}\alpha} \mathsf{X} \stackrel{*}{=} \mathsf{Y} \wedge (\mathsf{P}\mathsf{X}) \Rightarrow (\mathsf{P}\mathsf{Y})$

$\stackrel{*}{=}$ is equivalence relation

- $\forall X_{\alpha} X \stackrel{*}{=} X$
- $\forall X_{\alpha}, Y_{\alpha}, X \stackrel{*}{=} Y \Rightarrow Y \stackrel{*}{=} X$
- $\forall X_{\alpha}, Y_{\alpha}, Z_{\alpha} (X \stackrel{*}{=} Y \wedge Y \stackrel{*}{=} Z) \Rightarrow X \stackrel{*}{=} 7$

* is congruence relation

- $\forall \mathsf{X}_{\alpha}, \mathsf{Y}_{\alpha}, \mathsf{F}_{\alpha\alpha} \mathsf{X} \stackrel{*}{=} \mathsf{Y} \Rightarrow (\mathsf{F}\mathsf{X}) \stackrel{*}{=} (\mathsf{F}\mathsf{Y})$
- $\forall \mathsf{X}_{\alpha}, \mathsf{Y}_{\alpha}, \mathsf{P}_{\mathsf{o}\alpha} \mathsf{X} \stackrel{*}{=} \mathsf{Y} \wedge (\mathsf{P}\mathsf{X}) \Rightarrow (\mathsf{P}\mathsf{Y})$

Trivial directions of Boolean and functional extensionality

- $\qquad \forall A_o, B_o \text{ } A \stackrel{*}{=} B \Rightarrow (A \Leftrightarrow B)$
- $\qquad \forall \mathsf{F}_{\beta\alpha}, \mathsf{G}_{\beta\alpha} \mathsf{F} \stackrel{*}{=} \mathsf{G} \Rightarrow (\forall \mathsf{X}_{\alpha} \mathsf{F} \mathsf{X} \stackrel{*}{=} \mathsf{G} \mathsf{X})$

Non-trivial direction of Boolean extensionality

$$\forall A_o, B_o (A \Leftrightarrow B) \Rightarrow A \stackrel{*}{=} B$$

HOL-Problems requiring f

Non-trivial direct. of functional extensionality

$$\qquad \forall \mathsf{F}_{\beta\alpha}, \mathsf{G}_{\beta\alpha^{\blacksquare}} \left(\forall \mathsf{X}_{\alpha^{\blacksquare}} \, \mathsf{FX} \stackrel{*}{=} \mathsf{GX} \right) \Rightarrow \mathsf{F} \stackrel{*}{=} \mathsf{G}$$

Example requiring property η

HOL-Problems requiring ξ

Example requiring property ξ (and q!)

$$(\forall X_{\iota^{\bullet}} (f_{\iota\iota}X) \stackrel{*}{=} X) \wedge p_{o(\iota\iota)}(\lambda X_{\iota^{\bullet}}X)$$

$$\Rightarrow p(\lambda X_{\iota^{\bullet}} fX)$$

HOL-Problems requiring §

Example requiring property f (and q!)

$$(\forall X_{\iota^{\bullet}} (f_{\iota\iota}X) \stackrel{*}{=} X) \wedge p_{o(\iota\iota)}(\lambda X_{\iota^{\bullet}}X)$$

$$\Rightarrow (p f)$$

HOL-Problems requiring b

Examples requiring property b

$$(p_{oo} a_o) \wedge (p b_o) \Rightarrow (p (a \wedge b))$$

$$\neg (a \stackrel{*}{=} \neg a)$$
 (in particular $\neg (a = \neg a)$)

$$\qquad \qquad (\mathsf{h}_{\iota \mathsf{o}}((\mathsf{h}\top) \stackrel{*}{=} (\mathsf{h}\bot))) \stackrel{*}{=} (\mathsf{h}\bot)$$

Playing with DeMorgan's Law:

 $\forall X, Y \cdot X \land Y \Leftrightarrow \neg(\neg X \lor \neg Y)$

'Ok' for all model classes

Playing with DeMorgan's Law:

- $\forall \mathsf{X}, \mathsf{Y}_{\bullet} \mathsf{X} \wedge \mathsf{Y} \stackrel{*}{=} \neg (\neg \mathsf{X} \vee \neg \mathsf{Y})$

requires **b**

Playing with DeMorgan's Law:

- $\forall X, Y X \land Y \Leftrightarrow \neg(\neg X \lor \neg Y)$
- $(\lambda U \lambda V_{\bullet} U \wedge V) \stackrel{*}{=} (\lambda X \lambda Y_{\bullet} \neg (\neg X \vee \neg Y))$

requires $\mathfrak b$ and ξ

Playing with DeMorgan's Law:

- $(\lambda U \lambda V_{\bullet} U \wedge V) \stackrel{*}{=} (\lambda X \lambda Y_{\bullet} \neg (\neg X \vee \neg Y))$
- $\wedge \stackrel{*}{=} (\lambda X \lambda Y_{\bullet} \neg (\neg X \vee \neg Y))$

requires b and f

- generating set instantiations is a challenge (for automation)
- [Benzm.BrownKohlhase-Draft-05] set instantiations can be used to simulate cut-rule if one of the following axioms is given: comprehension, induction, extensionality, choice, description
- possible set instantiations dependend on logical constants in \mathcal{S}

Set comprehension

- generating set instantiations is a challenge (for automation)
- [Benzm.BrownKohlhase-Draft-05] set instantiations can be used to simulate cut-rule if one of the following axioms is given: comprehension, induction, extensionality, choice, description
- possible set instantiations dependend on logical constants in \mathcal{S}

In the remainder

- signature S varying
- no property q assumed

Set comprehension

- generating set instantiations is a challenge (for automation)
- [Benzm.BrownKohlhase-Draft-05] set instantiations can be used to simulate cut-rule if one of the following axioms is given: comprehension, induction, extensionality, choice, description
- possible set instantiations dependend on logical constants in S

In the remainder

- signature S varying
- no property q assumed

External vs. internal logical constants

- if $\neg \notin S$ formula $(\neg A)$ still makes sense:
 - \neg refers to external symbol and $\mathcal{M} \models \neg \mathbf{A}$ means $\mathcal{M} \not\models \mathbf{A}$

- ∃P. P
 - ightharpoonup if $\top \in \mathcal{S}$ or
 - $\quad \textbf{if} \ \neg \in \mathcal{S}$

- ∃P. P
 - ightharpoonup if $\top \in \mathcal{S}$ or
 - $\quad \textbf{if} \ \neg \in \mathcal{S}$
- $\exists N_{oo} \forall P_{o\bullet} NP \Leftrightarrow \neg P$
 - ightharpoonup if $\neg \in \mathcal{S}$ or
 - if $\{\bot, \Rightarrow\} \subseteq \mathcal{S}$ or $\{\bot, \Leftrightarrow\} \subseteq \mathcal{S}$

Set comprehension

- ∃P.P
 - ightharpoonup if $\top \in \mathcal{S}$ or
 - ightharpoonup if $\neg \in \mathcal{S}$
- $\exists N_{oo} \forall P_{o\bullet} NP \Leftrightarrow \neg P$
 - ightharpoonup if $\neg \in \mathcal{S}$ or
 - if $\{\bot, \Rightarrow\} \subseteq \mathcal{S}$ or $\{\bot, \Leftrightarrow\} \subseteq \mathcal{S}$

Other examples from [Brown-PhD-04]

- Surjective Cantor Theorem
- Injective Cantor Theorem

- ∃P.P
 - $\qquad \text{if } \top \notin \mathcal{S} \text{ and } \neg \notin \mathcal{S}$

- ∃P. P
 - ▶ if $\top \notin S$ and $\neg \notin S$
- $\exists N_{oo} \forall P_{o\bullet} NP \Leftrightarrow \neg P$
 - $\text{if } \neg \notin \mathcal{S} \text{ and } \\ \{\bot, \Rightarrow\} \not\subseteq \mathcal{S} \text{ or } \{\bot, \Leftrightarrow\} \not\subseteq \mathcal{S}$

Set comprehension

- ∃P. P
 - ▶ if $\top \notin S$ and $\neg \notin S$
- $\exists N_{oo} \forall P_{o} NP \Leftrightarrow \neg P$
 - $\text{if } \neg \notin \mathcal{S} \text{ and } \\ \{\bot, \Rightarrow\} \not\subseteq \mathcal{S} \text{ or } \{\bot, \Leftrightarrow\} \not\subseteq \mathcal{S}$

Other examples from [Brown-PhD-04]

- Surjective Cantor Theorem
- Injective Cantor Theorem

Presented simple examples

- Presented simple examples
 - highlight some semantical or technical point

- Presented simple examples
 - highlight some semantical or technical point
 - easy to understand / encode

- Presented simple examples
 - highlight some semantical or technical point
 - easy to understand / encode
 - relevant for automated and interactive TP

- Presented simple examples
 - highlight some semantical or technical point
 - easy to understand / encode
 - relevant for automated and interactive TP
 - shall precede formal soundness / completeness analysis

- Presented simple examples
 - highlight some semantical or technical point
 - easy to understand / encode
 - relevant for automated and interactive TP
 - shall precede formal soundness / completeness analysis
- Further examples needed

- Presented simple examples
 - highlight some semantical or technical point
 - easy to understand / encode
 - relevant for automated and interactive TP
 - shall precede formal soundness / completeness analysis
- Further examples needed
 - to illustrate properties of different forms of equality

Presented simple examples

- highlight some semantical or technical point
- easy to understand / encode
- relevant for automated and interactive TP
- shall precede formal soundness / completeness analysis

Further examples needed

- to illustrate properties of different forms of equality
- mediocre and challenge ones to built up a HOL TPTP

- Presented simple examples
 - highlight some semantical or technical point
 - easy to understand / encode
 - relevant for automated and interactive TP
 - shall precede formal soundness / completeness analysis
- Further examples needed
 - to illustrate properties of different forms of equality
 - mediocre and challenge ones to built up a HOL TPTP
- Outlook

Presented simple examples

- highlight some semantical or technical point
- easy to understand / encode
- relevant for automated and interactive TP
- shall precede formal soundness / completeness analysis

Further examples needed

- to illustrate properties of different forms of equality
- mediocre and challenge ones to built up a HOL TPTP

Outlook

Refine model classes for: description, choice, etc.

Presented simple examples

- highlight some semantical or technical point
- easy to understand / encode
- relevant for automated and interactive TP
- shall precede formal soundness / completeness analysis

Further examples needed

- to illustrate properties of different forms of equality
- mediocre and challenge ones to built up a HOL TPTP

Outlook

- Refine model classes for: description, choice, etc.
- See you at ESHOL-05 in Jamaica:

http://www.ags.uni-sb.de/~chris/ESHOL-05

