「소방안전 빅데이터 활용 및 아이디어 경진대회」기획서

1. 참가자 정보		
신청자명	파이로스 아르고스 (Pyros Argos)	
공모 부분	☑ 서비스 개발	□ 아이디어 기획
연락처	(전화)	(이메일)

2. 기획서 작성

1) 명칭

사회안전망(CCTV) 기반 화재 조기 인지 시스템

2) 기획서 요약

[시스템 요약도]

기존 사회안전망(생활안전 CCTV 등)을 그대로 활용해 AI 모델로 24시간 화재를 자동 감지하고, 발생 지점 등 핵심 정보를 실시간으로 통합·가공하여 웹 서비스로 제공함 으로써 신속한 대응과 피해 최소화를 지원함

[시스템 설계도]

3) 제안배경

1. 실시간 현장 인식 인프라는 충분, 관제는 포화상태

골목·시장·공원·교량·간선도로까지 실시간 영상 자원은 이미 확보. 그러나 '사람 눈'만 으로는 화면 누락·피로도 급증 → AI 선별관제로 카메라를 '현장 센서'화해야 함

- * 전국 통합관제센터에 연계된 생활안전망 CCTV 1,380,000대(2024.12.31. 공공데이터 포틸)
- * 관제요원 1 인당 실시간 모니터링 477 대 행안부 권고 50대의 10배(2024. 네이트 뉴스)

2. 야간(00~06시) 화재 = '저빈도 × 고피해'

야간에는 신고·인지 지연이 피해 급증으로 직결. 24시간 자동 감지로 '無 신고 공백'을 메워야 골든타임 확보

* 울산광역시소방본부_출동보고현황 데이터셋(2025.07.03. 소방안전 빅데이터 플랫폼)

구분	시간대	진압시간(초)	그을음(m²)	재산피해	인명피해
1	00 ~ 06시	1642	14.6	15,411원	0.097640명
2	06 ~ 18시	1326	10.7	3,612원	0.061062명
3	18 ~ 24시	1285	8.9	2,581원	0.051265명

✔ 통제변수: 건물구조동수, 지상층수, 지하층수, 연면적, 바닥면적, 현장거리, 발화열원분류,

최초착화물 ✓ 독립변수: 시간 범주

✔ 종속변수: 그을음 면적, 재산피해, 인명피해, 화재진압시간

✔ 제외속성: 발화열원분류에 기타에 해당하는 속성

* 서울소방재난본부 화재출동 현황(2025.07.21, 소방안전 빅데이터 플랫폼)

3. 중복 필터 + 위치 근사로 '출동 낭비' 차단

- ① 기 신고 이력(쓰레기 소각 등)이 있다면, '화재 위험 단계'에서 '모니터링 단계'로 자동 Down-grade 하여 '출동 낭비' 차단
 - [참고] 쓰레기 소각 신고으로 인한 소방출동 이동 소요시간(이동거리 포함)이 평균 소방출동에 비해 상대적으로 긴 시간이 걸림

구분	출동	소요시각	현장 거리		
丁世	평균	쓰레기 소각	평균	쓰레기 소각	
2021	330.255	337.066	1.549	1.629	
2022	346.838	383.13	1.482	1.513	
2023	338.972	358.023	1.471	1.466	
2024	322.735	324.256	1.461	1.63	

- * 서울소방재난본부 화재출동 현황(2025.07.21. 소방안전 빅데이터 플랫폼)
- ② 실화·미지정 화재만 우선 출동
 - ⇒ 불필요한 출동 제거, 소방 전력 공백 최소화

4) 세부내용

[활용 데이터]

- ① 서울소방재난본부 화재출동 현황 (소방안전 빅데이터 플랫폼)
 - 링크: https://www.bigdata-119.kr/goods/goodsInfo?goods mng sn=374
- ② 울산광역시소방본부_출동보고현황 데이터셋 (소방안전 빅데이터 플랫폼)
 - 링크: https://www.bigdata-119.kr/goods/goodsInfo?goods_mng_sn=20
- ③ 화재 감지 모델 활용 이미지/라벨링 데이터
 - 링크: https://universe.roboflow.com/videoannotation/fire-smoke-other
- ④ 화재 감지 모델 활용 이미지/라벨링 데이터
 - 링크: https://www.mapillary.com/dataset/vistas
- ⑤ 도로교통 및 생활안전 CCTV 위치-주제도: 교통
 - 링크: https://map.vworld.kr/map/dtkmap.do
- ⑥ 경매 오르는 '주택가 도로' 月 150건, 팔리는 이유는...(모델 테스트 이미지)
 - 링크: https://news.mt.co.kr/mtview.php?no=2016071713005543077
- ⑦ 주택 거리뷰(모델 테스트 이미지)
 - 링크: https://map.naver.com/p?c=18.88,0,0,0,dh

1. 가정사항 및 기술 검증범위

- ① CCTV 영상 수급
 - 실제 생활안전망 CCTV API는 미개방되어, 유사 환경(골목, 주택가, 야간 등)의 공개 영상
 - 공개 데이터의 테스트 영상을 기반으로 연기·불꽃 탐지 AI를 검증함
- ② 위치 메타데이터 처리
 - CCTV 스트림에서 위치(위도·경도, 방위각, 높이, 경사각) 정보를 직접 수신한 것이 아니라, 가상의 메타데이터(정적 좌표값 등)를 활용하여 위치 근사 및 중복 필터 로직을 설계함

2. 모델 설계

가) 화재모델

1) 데이터 EDA 및 전처리

- 클래스 구성 : 화재(fire), 연기(smoke), 화재 오인 요소들(other)
- 데이터 Class 불균형→ 데이터 증강 과정을 거쳐 데이터 불균형 해결

[Class 별 데이터 증강]

- fire : 별도의 데이터 증강이 필요하지 않음
- smoke : 좌우 반전, 흑백 처리, 블러 처리, 밝기/채도 조절, 가우시안 노이즈 추가, 이미지 회전을 적용하여 추가 증강

• other : 좌우 반전, 흑백 처리, 블러 처리를 적용하여 증강

2) 사전학습모델

(가) YOLO v8s

- 모델 크기와 연산량이 작아 CCTV 연산 모듈에서의 실시간 추론 가능
- 화재·연기 등의 객체를 정확하게 인식
- 실시간 객체 탐지 및 인스턴스 분할(segmentation), 이미지 분류 등 지원

3) 학습결과(Score)

epoch	precision	recall	mAP50	mAP 50-95	val / loss
44	0.538	0.414	0.434	0.204	1.818

4) 추론결과(Test)

나) 위치 특정 모델

- 1) 위치 특정 알고리즘
 - (가) 카메라의 기본제원

(1) 최대 감시거리(D) 확인

(2) 3D CCTV 화면에서 물체 위치(각도) 실제 지도 2D 기반 실제 위치(각도) 확인

* CCTV화면은 이미지(해상도 기반)이고 또한 카메라에 대한 초점 정보가 없기에 시야각 기반 각도 매핑 기법이 필요함

(3) 3D CCTV 화면에서 물체 위치(거리) 실제 지도 2D 기반 실제 위치(거리) 확인

- * 카메라 이미지는 원근 투영이기에 y좌표의 실제 거리값의 보정이 필요 $\to y$
- * y(감마)는 보통 1.5 ~ 2.0 사이 값을 사용
- (4) 건물 또는 평면 이외의 구조물에 위치한 객체는 수직 오프셋과 투영 왜곡 발생
 - 추후 객체 인식모델을 통한 해결이 필요

(5) 이미지 상의 객체 좌표를 통한 2D 좌표(위도, 경도) 추출

- 객체 위도: $lpha_0 + \Delta lpha$, 객체 경도: $eta_0 + \Delta eta$
- * 방위각: Φ, CCTV 위도: α, CCTV 경도, β

1. 수평각도 계산

$$heta' = \left(rac{x - rac{W}{2}}{W}
ight) \cdot heta$$

$$d = D \cdot \left(rac{H-y}{H}
ight)^{\gamma}$$

3. 방위각을 통한 절대 각도 계산 4. 위도 경도 오프셋 계산

$$heta_{
m abs} = \phi + heta'$$

$$\Delta lpha = rac{y_{
m real}}{R} \cdot rac{180}{\pi} \ \Delta eta = rac{x_{
m real}}{R \cdot \cos(lpha_0)} \cdot rac{180}{\pi}$$

2) EDA 및 데이터 전처리

(가) 데이터: Mapilary_vista

* image: 20,000장, segment-label: 139개

→ label의 불균형과 다양한 label 수로 학습의 진행이 불안정

(1) label 통합 및 불필요 label 삭제

label 통합 ex) road	label 삭제	
 constructionflatroad constructionflatsidewalk constructionflatcurb-cut constructionflattraffic-island 	- nature—sand - nature—snow	
	- Hature—Snow	

- 3) 사전학습모델: YOLO_v8s-seg
- 4) 추론결과(Test) (가) 네이버 지도

(나) 뉴스

(다) 도로 교통 CCTV(대구 북구 공고네거리)

5) 위치특정

- (가) 객체 좌표(x, y), 위치가 도로가 아닌 다른 객체일 시 해당 위치로부터 이미지 H의 수직되는 선을 아래로 연장
- (나) 연장되는 지점과 도로가 만나는 지점과의 교차좌표를 기준으로 위도, 경도 추출

3. 웹 설계

4. 실시간 영상 분석 시스템 구조 및 처리 흐름

- 전체 프레임이 아닌 3프레임마다 영상을 분석하도록 하여 연산 부담 감소
- 처리기기의 과부하를 방지하면서 최대한의 실시간성 확보 가능

5) 기대효과 및 정책활용 가능성

1. 기대효과

가) 비용절감

- 1) 인프라 구축 비용 절감
- (지능형 CCTV 추가 설치 없이) 기존 CCTV 인프라 활용, 화재 감지 시스템 구현 가능 * 별도의 장비를 추가 설치할 필요가 없어 인프라 구축 비용이 절감

구분	기존 CCTV	지능형 CCTV
초기 설치 비용	이미 설치되어 있음	3,000만 원 이상
라이선스 비용	Х	1대당 약 100만 원
서버 비용	100대당 서버 구축에 약 2,000만 원 내외	100대당 서버 구축에 약 6,000만 원 이상
펌웨어 업데이트 비용	상대적으로 낮음	정기적 업데이트에 따른 유지비 발생

- 2) 운영 효율성 측면의 비용 절감
- 사전 신고 시스템과 화재 감지 관제시스템과 연동을 통한 소방전력 공백 최소화
 - * 사전 신고 (데이터): 실제 화재가 아닌 계획·통제 연소(쓰레기 소각 등) 상황

나) 재난 대응력 향상

- 1) 골든타임 확보
 - ① 화재 발생 직후 빠르게 화재를 사전 감지(신고전화 X) → 조기 진화가 가능
 - ② 화재 확산 방지 및 대형 재난으로 확산되기 전 단계에서 차단
 - ⇒ 결과적으로 인명피해와 사회적 손실 비용↓

2. 정책활용 가능성

가) 스마트 도시

- 1) 도시 인프라의 지능화, 화재 감지 기술의 역할 확대
- 국토교통부『제4차 스마트도시 종합계획(2023~2027)』

『제4차 스마트도시 종합계획(2023~2027)』

정부는 AI·빅데이터 기반 스마트 기술을 통해 재 난 대응 역량이 강화된 도시를 구축하고자 함. 특히, 민간 기술의 도시 적용 가능성과 파급력을 주요 평가 기준으로 설정하고 있음.

본 시스템은 기존 CCTV 인프라를 활용, AI 기반 고도화된 화재 감지 기능을 제공함으로써 정책 연계성과 전국 확장 가능성을 모두 갖 춘 현실적 대안으로 평가 가능함.

- 2) 스마트 도시 과도기에서의 적용성
- 스마트 도시로의 전환은 단계적 진행 중

L지능형 CCTV 도입, 예산·기술력·기반 인프라 등 다양한 제약 발생 → 전면적 적용 어려움

- 기존 인프라에 AI 기능을 더하고 과도기 단계에 적합한 **현실적·경제적** 대안

정책 실행 초기 단계에서 적합한 브릿지(Bridge) 기술로 기능 ↓