

Rate law and Rate constant

97. (b)
$$r = k(C_A)^{\frac{3}{2}}(C_B)^{-\frac{1}{2}}$$

Order =
$$\frac{3}{2} + \left(-\frac{1}{2}\right) = \frac{2}{2} = 1$$

98. (c) If rate= $K(A)^m(B)^n$, then order of reaction = m + n.

99. (a)
$$k = \frac{0.693}{t_{\frac{1}{2}}} = \frac{0.693}{100sec^{-3^{-1}}}$$

100. (c)
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

101. (b)
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$
, $k = \frac{0.693}{480} = 1.44 \times 10^{-3} \, sec^{-1}$

102. (d) $r = k(A)^2$, when concentration is doubled $r = k(2A)^2 = k4(A)^2$ the rate becomes 4 times.

103 (c)
$$r = K[FeCl_3]^2[SnCl_2]^1$$
. Order = 2 + 1 = 3

- **105.** (a) $t_{\frac{1}{2}}$ for I order reaction independent of initial concentration.
- **107.** (a)The rate will be given by slowest step. Thus $r=K[A][B_2].K_c=\frac{[A][A]}{[A_2]}$ or $[A]=[K_c]^{\frac{1}{2}}[A_2]^{\frac{1}{2}}$

$$r = K \times [K_c]^{\frac{1}{2}} [A_2]^{\frac{1}{2}} [B_2] = K[A_2]^{\frac{1}{2}} [B]$$
. Thus order is $0.5 + 1 = 1.5$

108. (b)For Ist order reaction half life is independent of concentration.

110. (b) Rate = $K[A]^{\frac{1}{2}}[B]^{\frac{3}{2}}$

$$\therefore O.R. = \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 2$$

112. (d) The rate of this photochemical reaction is independent of the concentration, therefore, it is zero order reaction.

113. (b)
$$t_{\frac{1}{2}} = \frac{0.693}{k} = \frac{0.693}{0.6932hr^{-1}} = 1hr$$
.

114. (b) The unit of rate constant shows that reaction is of first order. For first order reaction, half life is independent of initial conc. of the reactant. Thus,

$$t_{\frac{1}{2}} = \frac{0.693}{0.69 \times 10^{-1}} = \frac{0.693 \times 60}{0.69 \times 10^{-1}} = 600 sec$$

- 115. (d) *Given*: Rate constant of the first order reaction $(K) = 3 \times 10^{-6}$ per sec and initial concentration [A] = 0.10M. We know that initial rate constant $K[A] = 3 \times 10^{-6} \times 0.10 = 3 \times 10^{-7} ms^{-1}$.
- 116. (d) It is the characteristic of pseudo-unimolecular reactions.
- **117.** (b) It is a second order reaction.
- **118.** (d) r = K [reactant]

$$\therefore K = \frac{1.0 \times 10^{-2}}{0.2} = 0.05$$

$$t_{\frac{1}{2}} = \frac{0.693}{0.05} = 13.86s$$

