Title

HÉCTOR BAHAMONDE *1 and NAME LASTNAME $^{\dagger 2}$

 $^1{\rm Assistant~Professor,~O'Higgins~University~(Chile)}$ $^2{\rm Position,~Institution}$

July 29, 2020

${\bf Abstract}$

This is the abstract.

Keywords— time series, IPE, IR

Work in progress. Please don't cite.

We both thank Tsung-wu Ho.

^{*}hector.bahamonde@uoh.cl; www.HectorBahamonde.com.

[†]hector.bahamonde@uoh.cl; http://www.hectorbahamonde.com.

I. Intro

I. Presenting the GVAR Methodology

Following Mauro and Pesaran (2013, 14), we define a country-specific GVAR model as follows,

$$\mathbf{x}_{it} = \alpha_{i,0} + \Phi_{i1}\mathbf{x}_{i,t-1} + \Phi_{i2}\mathbf{x}_{i,t-2} + \Lambda_{i0}\mathbf{x}_{it}^{*} + \Lambda_{i1}\mathbf{x}_{i,t-1}^{*} + \Lambda_{i2}\mathbf{x}_{i,t-2}^{*} + \mathbf{u}_{it}$$
(1)

where \mathbf{x}_{it} is a $k_i \times 1$ vector of domestic variables, \mathbf{x}_{it}^{\star} is a $k_i^{\star} \times 1$ vector of foreign variables, and \mathbf{u}_{it} is a serially uncorrelated and cross-sectionally weakly dependent process. The inclusion of the weighting foreign variables \mathbf{x}_{it}^{\star} is one of the main characteristics of the GVAR approach. In our case, the vector of foreign variables is a single variable, namely, bilateral trade. Using this variable, a square weighting matrix was constructed. If there are 30 countries, the weight matrix has 30 rows and 30 columns—its diagonal element contains only zeros. Every country is weighted by the other 29 remaining countries. Finally, in our case, the vector \mathbf{x}_{it} containing the domestic variables considers military personnel and iron production.

cite cow data

II. Guns and Steel

 Table 1: Bivariate Gobal Granger Causality Tests of the World Political Economy, 1871-1913

	Granger Relationship	F-Test	P-Value	DF	Adjusted R-sq	Lags
Austria-Hungary	$steel \rightarrow guns$	2.834	0.017	8,31	0.273	1
	$\mathrm{guns} \to \mathrm{steel}$	1.393	0.238	8,31	0.075	1
Belgium	$steel \rightarrow guns$	4.216	0.001	10,28	0.458	2
	$\mathrm{guns} \to \mathrm{steel}$	2.759	0.017	10,28	0.316	
France	$steel \rightarrow guns$	1.35	0.257	8,31	0.067	1
	$\mathrm{guns} \to \mathrm{steel}$	1.907	0.095	8,31	0.157	1
Germany	$steel \rightarrow guns$	3.827	0.003	8,31	0.367	1
	$\mathrm{guns} \to \mathrm{steel}$	2.694	0.022	8,31	0.258	
Italy	$steel \rightarrow guns$	3.61	0.004	10,28	0.407	2
	$\mathrm{guns} \to \mathrm{steel}$	5.039	0	10,28	0.515	
Russia	$steel \rightarrow guns$	10.499	0	16,19	0.813	5
	$\mathrm{guns} \to \mathrm{steel}$	2.423	0.034	16,19	0.394	
Spain	$steel \rightarrow guns$	1.749	0.126	8,31	0.133	1
	$\mathrm{guns} \to \mathrm{steel}$	1.454	0.214	8,31	0.085	1
United Kingdom	$steel \rightarrow guns$	2.674	0.023	8,31	0.256	1
	$guns \rightarrow steel$	1.29	0.284	8,31	0.056	1
United States	$steel \rightarrow guns$	2.254	0.044	10,28	0.248	2
	$\mathrm{guns} \to \mathrm{steel}$	5.528	0	10,28	0.544	

 Table 2: Bivariate Gobal Granger Causality Tests of the World Political Economy, 1955-2014

	Granger Relationship	F-Test	P-Value	DF	Adjusted R-sq	Lags
Argentina	$steel \rightarrow guns$	1.072	0.402	9,45	0.012	1
	$guns \rightarrow steel$ $steel \rightarrow guns$	6.222 0.996	0.466	9,45 11,42	0.465 -0.001	
Australia	guns → steel	3.564	0.001	11,42	0.347	2
Austria	$steel \rightarrow guns$	0.694	0.736	11,42	-0.068	2
riustria	$guns \rightarrow steel$	2.526	0.015	11,42	0.24	
Belgium	$steel \rightarrow guns$ $guns \rightarrow steel$	4.525 1.012	$0 \\ 0.459$	13,39 13,39	0.468 0.003	3
	steel → guns	0.19	0.455	11,42	-0.202	_
Brazil	$guns \rightarrow steel$	5.779	0	11,42	0.498	2
Bulgaria	$steel \rightarrow guns$	0.606	0.813	11,42	-0.089	2
	$guns \rightarrow steel$ $steel \rightarrow guns$	3.202	0.003	11,42	0.314	_
Canada	$steel \rightarrow guns$ $guns \rightarrow steel$	1.531 3.517	0.137	11,42 11,42	0.099 0.343	2
C1 11	steel → guns	0.294	0.973	9,45	-0.133	٠,
Chile	$guns \rightarrow steel$	5.678	0	9,45	0.438	1
China	$steel \rightarrow guns$	0.13	0.999	9,45	-0.17	1
	$guns \rightarrow steel$ $steel \rightarrow guns$	25.707 3.422	0.001	9,45 17,33	0.805 0.452	
Colombia	$guns \rightarrow steel$	1.719	0.001	17,33	0.196	5
Et	$steel \rightarrow guns$	0.19	0.994	9,45	-0.156	1
Egypt	$guns \rightarrow steel$	2.639	0.015	9,45	0.215	1
Finland	$steel \rightarrow guns$	1.504	0.154	17,33	0.146	5
	guns → steel	2.994 1.456	0.003	17,33	0.404	
France	$steel \rightarrow guns$ $guns \rightarrow steel$	2.438	0.194	9,45 9,45	0.071 0.193	1
G	steel → guns	1.35	0.232	11,42	0.068	
Greece	$guns \rightarrow steel$	1.917	0.064	11,42	0.16	2
Hungary	$steel \rightarrow guns$	3.568	0.001	11,42	0.348	2
- 3.0	$guns \rightarrow steel$ $steel \rightarrow guns$	4.868 0.45	0.9	11,42 9,45	-0.101	
India	$guns \rightarrow steel$	7.349	0.9	9,45	0.514	1
T1	steel → guns	1.405	0.201	13,39	0.092	-
Israel	$guns \rightarrow steel$	1.291	0.259	13,39	0.068	3
Italy	$steel \rightarrow guns$	0.386	0.936	9,45	-0.114	1
-	$guns \rightarrow steel$ $steel \rightarrow guns$	1.142 2.783	0.355	9,45 17,33	0.023	
Japan	guns → steel	2.074	0.036	17,33	0.267	5
T	$steel \rightarrow guns$	5.861	0	17,33	0.623	5
Luxembourg	$guns \rightarrow steel$	1.483	0.162	17,33	0.141	9
Mexico	steel → guns	2.421	0.014	17,33	0.326	5
	$guns \rightarrow steel$ $steel \rightarrow guns$	4.269	0	17,33 13,39	0.526 0.431	
Netherlands	guns → steel	1.771	0.084	13,39	0.162	3
North Korea	$steel \rightarrow guns$	3.9	0.001	11,42	0.376	2
North Korea	$guns \rightarrow steel$	5.135	0	11,42	0.462	2
Norway	$steel \rightarrow guns$	0.786	0.684	15,36	-0.067	4
	$guns \rightarrow steel$ $steel \rightarrow guns$	1.26 0.597	0.276 0.792	15,36 9,45	0.071 -0.072	
Poland	guns → steel	1.487	0.132	9,45	0.075	1
Dontes and	$steel \rightarrow guns$	0.678	0.724	9,45	-0.057	1
Portugal	$guns \rightarrow steel$	1.59	0.147	9,45	0.089	1
Romania	steel → guns	0.753	0.659	9,45	-0.043	1
	$guns \rightarrow steel$ $steel \rightarrow guns$	2.089	0.051	9,45	0.154 0.246	
Russia	guns → steel	1.032	0.43	9,45	0.005	1
C. al Action	$steel \rightarrow guns$	0.323	0.963	9,45	-0.127	1
South.Africa	$guns \rightarrow steel$	1.282	0.273	9,45	0.045	1
South Korea	$steel \rightarrow guns$	0.306	0.969	9,45	-0.131	1
Spain Taiwan	$guns \rightarrow steel$ $steel \rightarrow guns$	7.079 3.799	0.001	9,45	0.503 0.412	
	$guns \rightarrow steel$	1.347	0.229	13,39	0.08	3
	steel → guns	2.099	0.05	9,45	0.155	1
	$guns \rightarrow steel$	2.644	0.015	9,45	0.215	1
Turkey	steel → guns	1.617	0.139	9,45	0.093	1
	guns → steel	10.103 10.371	0	9,45 9,45	0.603	
United Kingdom	$steel \rightarrow guns$ $guns \rightarrow steel$	0.994	0.459	9,45	-0.001	1
TI-:4-3 Ct. t	steel → guns	1.527	0.168	9,45	0.081	-
United States	$guns \rightarrow steel$	2.986	0.007	9,45	0.249	1

REFERENCES

Mauro, Filippo di, and Hashem Pesaran. 2013. The GVAR Handbook: Structure and Applications of a Macro Model of the Global Economy for Policy Analysis. 1st, edited by Filippo di Mauro and Hashem Pesaran. Oxford University Press.

.Word count:	190

III. Appendix

I. Info that goes into the Appendix