Differential Calculus with Applications to Life Sciences

Math 102:105

Pooya Ronagh

Agenda for today:

- Tangent line (ex)
- Linear approximation (ex)
- Newton's method (ex)
- Tests of first derivative

Question

Find tangent line to $f(x) = x^2$ that goes through (1, -1). The point of tangency for this line will be at:

$$(A) \quad (1+\sqrt{2},3-2\sqrt{2})$$

(B)
$$(1+\sqrt{2},3+2\sqrt{2})$$

$$(C)$$
 $(1,-1)$

(D)
$$(1-\sqrt{2},3-2\sqrt{2})$$

Example

Estimate $\sqrt{3}$ using Newton's method.

Then using linear approximation.

Question: Which method is giving an overestimation/underestimation?

Question: Which one gives a better approximation?

Example

Find the derivative of $(x^4 + 3x^7)^9$

Example

Find the derivative of $\sin(\sqrt{x})$

$$(A) \quad \frac{\sqrt{x}}{2x}\cos(x)$$

$$(B) \quad \frac{1}{2}\sqrt{x}\cos(\sqrt{x})$$

$$(D) \cos(\sqrt{x})$$

$$(A) \quad \frac{\sqrt{x}}{2x} \cos(x)$$

$$(B) \quad \frac{1}{2} \sqrt{x} \cos(\sqrt{x})$$

$$(D) \quad \cos(\sqrt{x})$$

$$(D) \quad \frac{\sqrt{x}}{2x} \cos(\sqrt{x})$$

Increasing/decreasing functions

Given a function defined on an interval D:

The function is increasing on D, if for every choice of a and b with a < b,

$$f(a) \le f(b)$$

The function is decreasing on D, if for every choice of a and b with a < b,

$$f(a) \ge f(b)$$

Increasing/decreasing functions

If $f'(x) \ge 0$ on D then f is **increasing** on D.

If $f'(x) \leq 0$ on D then f is **decreasing** on D.

Local min/max

Question: Which one is a local minimum?

Local min/max

Given a function defined on an interval D and a is a point in D:

The function has a **local minimum** at a if for all x in D:

$$f(a) \le f(x)$$

The function has a **local maximum** at a if for all x in D:

$$f(a) \ge f(x)$$

Local min/max

If f' changes sign at x=a then a is a local min/max (aka local extremum).

Critical points

If (1) f'(a) = 0 or (2) f'(a) = 0 is undefined at a even though f(a) is defined, a is called a critical point.

So: to find local max/min, **first** step is finding the critical points, and **second** step is determining the sign of f away from the critical points.

See you on Thursday!

IMPORTANT: Quiz will be in the beginning of the class so do not be late.

Oct 5 PL5.2

Oct 6 WW 4

Oct 6 Quiz 2

