PROBABILIDAD II

Grado en Matemáticas

Tema 1 Espacios de probabilidad

Javier Cárcamo

Departamento de Matemáticas Universidad Autónoma de Madrid

javier.carcamo@uam.es

Javier Cárcamo

Probabilidad II. Tema 1: Espacios de probabilidad

1

Tema 1: Espacios de probabilidad

- 1. Espacios de probabilidad
- 2. σ -álgebras
- 3. Ejemplos
- 4. Probabilidad condicional

Tipos de fenómenos:

- 1 Deterministas: Se conoce desde el principio el resultado final.
- 2 Aleatorios: Muchas situaciones finales posibles.

La **Teoría de la probabilidad** estudia el comportamiento de los fenómenos o experimentos aleatorios.

Dado ϵ experimento aleatorio:

- Conocemos con antelación el conjunto de todos los posibles resultados finales Ω (espacio muestral).
- No es posible determinar que resultado se va a dar previa realización de ϵ .
- La Teoría de la Probabilidad nos permitirá "medir" o "cuantificar" la incertidumbre asociada a los posibles resultados finales de un experimento aleatorio.

Javier Cárcamo

Probabilidad II. Tema 1: Espacios de probabilidad

2

Espacios de probabilidad

Queremos definir la probabilidad como medida de la incertidumbre.

Definiciones de la probabilidad en la historia

Clásica: Basada en los juegos de azar. La probabilidad se define como el cociente entre los casos favorables y los posibles.

Inconvenientes: ¿Qué ocurre cuando Ω es infinito o cuando los sucesos elementales no son equiprobables?

Frecuentista o empírica: La probabilidad de un suceso se define como el límite de las frecuencias relativas del suceso.

Inconvenientes: ¿Qué número de pruebas debemos realizar?, ¿qué ocurre con aquellos experimentos que se puedan repetir una sola vez?

Axiomática: Engloba a las anteriores y solventa los problemas mencionados. Es la que estudiaremos y se debe a Kolmogorov.

Un **espacio de probabilidad** es un triplete (Ω, \mathcal{F}, P) , donde

- (1) Ω es un conjunto no vacío llamado **espacio muestral**.
- (2) \mathcal{F} es una σ -álgebra o tribu de $\mathcal{P}(\Omega)$ (partes de Ω).
- (3) P es una **medida de probabilidad** sobre \mathcal{F} , es decir,

$$P: \mathcal{F} \longrightarrow [0,1]$$
 $A \longmapsto P(A)$

verificando los axiomas de probabilidad de Kolmogorov:

- (A1) $P(\Omega) = 1$.
- (A2) σ -aditividad o aditividad numerable: $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ disjuntos dos a dos (i.e., $A_i \cap A_j = \emptyset$, $i \neq j$), entonces:

$$P\left(\biguplus_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i}).$$

Javier Cárcamo

Probabilidad II. Tema 1: Espacios de probabilidad

σ -álgebras

Una colección $\mathcal{F} \subset \mathcal{P}(\Omega)$ se dice que es una σ -álgebra o tribu si

- (1) $\Omega \in \mathcal{F}$.
- (2) \mathcal{F} es cerrada o estable para la complementación.

Si
$$A \in \mathcal{F}$$
, entonces $A^c \in \mathcal{F}$.

(3) \mathcal{F} es estable para la unión numerable.

Si
$$\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$$
, entonces $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Los elementos de \mathcal{F} se llaman sucesos (aleatorios).

Si $A = \{\omega\} \in \mathcal{F} \text{ con } \omega \in \Omega$, A se denomina suceso elemental.

Si A no es elemental, se dice **suceso compuesto**.

Si $A \in \mathcal{F}$, A^c se llama suceso contrario a A.

 Ω se denomina suceso seguro y \emptyset se suceso imposible.

Ejercicio: Dado Ω cualquiera, ¿Podrías dar ejemplos de σ -álgebras sencillas?

- (1) $\emptyset \in \mathcal{F}$.
- (2) Si $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, entonces $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.
- (3) Si $\{A_i\}_{i=1}^n \subset \mathcal{F}$, entonces $\bigcap_{i=1}^n A_i \in \mathcal{F}$ y $\bigcup_{i=1}^n A_i \in \mathcal{F}$.
 - Si $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, decimos que A_n crece hasta A, $A_n \uparrow A$, si $A_1 \subset A_2 \subset A_3 \subset \cdots$ y $A = \bigcup_{i=1}^{\infty} A_i$.
 - Si $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, decimos que A_n decrece hasta $A, A_n \downarrow A$, si $A_1 \supset A_2 \supset A_3 \supset \cdots$ y $A = \bigcap_{i=1}^{\infty} A_i$.
- (4) \mathcal{F} es estable para límites crecientes y decrecientes: Si $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ y $A_n \uparrow A$ o $A_n \downarrow A$, entonces $A \in \mathcal{F}$.

Javier Cárcamo

Probabilidad II. Tema 1: Espacios de probabilidad

σ -álgebras

Si $\{\mathcal{F}_i\}_{i\in I}\subset\mathcal{P}(\Omega)$ σ -álgebras, entonces $\bigcap_{i\in I}\mathcal{F}_i$ es σ -álgebra.

Dado $\mathcal{C} \subset \mathcal{P}(\Omega)$, se define

$$\sigma(\mathcal{C}) = \bigcap_{\mathcal{F}} \{\mathcal{F}: \mathcal{F} \supset \mathcal{C} \text{ y } \mathcal{F} \text{ } \sigma\text{-\'algebra}\}.$$

El conjunto C se denomina **generador** de la σ -álgebra $\sigma(C)$.

Ejercicio: Si $A \in \mathcal{P}(\Omega)$, calcula $\sigma(\{A\})$.

Nota: Si \mathcal{C} , $\mathcal{C}' \subset \mathcal{P}(\Omega)$, $\sigma(\mathcal{C}) = \sigma(\mathcal{C}')$ si y sólo si $\mathcal{C} \subset \sigma(\mathcal{C}')$ y $\mathcal{C}' \subset \sigma(\mathcal{C})$.

Ejemplo: \mathcal{F}_1 y \mathcal{F}_2 σ-álgebras sobre Ω y $\mathcal{C} = \{A \cap B : A \in \mathcal{F}_1 \text{ y } B \in \mathcal{F}_2\}$. Se tiene que $\sigma(\mathcal{C}) = \sigma(\mathcal{F}_1 \cup \mathcal{F}_2)$.

Si (Ω, τ) es un espacio topológico, a la σ -álgebra $\sigma(\tau)$ se denomina σ -álgebra Boreliana o de Borel asociada a τ .

De interés especial para nosotros serán:

• $\Omega = \mathbb{R}$ o $\overline{\mathbb{R}}$, $au = au_u$ (topología usual).

• $\Omega = \mathbb{R}^k$ o $\overline{\mathbb{R}}^k$, $\tau = \tau_\mu$ (topología usual).

 $\sigma(\tau_u) = \mathcal{B} \ \sigma$ -álgebra Boreliana (sin especificar la topología).

Observación: Si τ tiene una base contable β ((Ω , τ) es 2-contable), entonces $\sigma(\tau) = \sigma(\beta)$.

Ejemplo: Cada una de las siguientes colecciones genera la σ -álgebra Boreliana en \mathbb{R} , $\mathcal{B}(\mathbb{R})$.

(e) $\{(-\infty, a] : a \in \mathbb{Q}\}.$ (a) $\{(a,b): a,b \in \mathbb{Q}\}.$

(b) $\{(a,b]: a,b \in \mathbb{Q}\}.$ (f) $\{(-\infty,a): a \in \mathbb{Q}\}.$

(c) $\{[a,b): a,b \in \mathbb{Q}\}.$ (g) $\{[a,\infty): a \in \mathbb{Q}\}.$

(h) $\{(a,\infty):a\in\mathbb{Q}\}.$ (d) $\{[a, b] : a, b \in \mathbb{Q}\}.$

Javier Cárcamo Probabilidad II. Tema 1: Espacios de probabilidad

Propiedades de la probabilidad

- **1** $P(\emptyset) = 0$.
- 2 $\{A_i\}_{i=1}^n \subset \mathcal{F}$ disjuntos, entonces $P(\biguplus_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$.
- 3 Si $A, B \in \mathcal{F}$, entonces $P(B A) = P(B) P(A \cap B)$.
- 4 A, $B \in \mathcal{F}$ y $A \subset B$. P(B-A) = P(B) P(A) y $P(A) \leq P(B)$.
- **5** $P(A^c) = 1 P(A)$.
- 6 Principio de inclusión-exclusión:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$- (P(A \cap B) + P(A \cap C) + P(B \cap C))$$

$$+ P(A \cap B \cap C).$$

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \cdots + (-1)^{n+1} P(\bigcap_{i=1}^{n} A_i).$$

 $\{A_i\}_{i=1}^n \subset \mathcal{F}$, entonces $P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$.

- **1** $P(\emptyset) = 0$.
- 2 $\{A_i\}_{i=1}^n \subset \mathcal{F}$ disjuntos, entonces $P(\biguplus_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$.
- 3 Si $A, B \in \mathcal{F}$, entonces $P(B A) = P(B) P(A \cap B)$.
- 4 A, $B \in \mathcal{F}$ y $A \subset B$. P(B-A) = P(B) P(A) y $P(A) \leq P(B)$.
- **6** $P(A^c) = 1 P(A)$.
- 6 Principio de inclusión-exclusión:

$$P\left(\bigcup_{i=1}^{n}A_{i}\right) = \sum_{i=1}^{n}P(A_{i}) - \sum_{i< j}P(A_{i}\cap A_{j}) + \cdots + (-1)^{n+1}P\left(\bigcap_{i=1}^{n}A_{i}\right).$$

- $\{A_i\}_{i=1}^n \subset \mathcal{F}$, entonces $P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$.
- 8 $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F} \text{ y } A_n \uparrow A, \text{ entonces } P(A_n) \uparrow P(A).$

Javier Cárcamo Probabilidad II. Tema 1: Espacios de probabilidad

Ejemplos básicos

Ejemplo 1: Modelo clásico o de Laplace

Dado $\Omega = \{\omega_1, \dots, \omega_n\}$ espacio muestral finito, la aplicación:

$$P(A) = \frac{\operatorname{card}(A)}{n}, \quad A \subseteq \Omega,$$

es una medida de probabilidad sobre $(\Omega, \mathcal{P}(\Omega))$.

En este ejemplo, cada elemento ω_i $(i=1,\ldots,n)$ tiene la misma probabilidad ($P(\{\omega_i\}) = 1/n, i = 1, ..., n$). Esto se conoce como equiprobabilidad.

Ejemplo 2: Espacios discretos

 $\Omega=\{\omega_1,\omega_2,\dots\}$ contable, $\mathcal{F}=\mathcal{P}(\Omega)$ y $\mathrm{P}(\{w_i\})\in[0,1]$ tal que $\sum_{i} P(\{\omega_i\}) = 1$. (Ω, \mathcal{F}, P) es un espacio de probabilidad.

Ejemplo 3: Espacios definidos mediante densidades

 $\Omega = I$ (intervalo de \mathbb{R}). Una función $f : \mathbb{R} \longrightarrow \mathbb{R}^+$ se llama función de densidad (de probabilidad) sobre I si cumple:

- (a) f es integrable (Lebesgue).
- (b) $\int_{I} f(t) dt = 1$.

Tomando como σ -álgebra $\mathcal{F} = \mathcal{B}(I)$, podemos definir

$$P(A) = \int_A f(x) dx, \quad A \in \mathcal{F}.$$

 (Ω, \mathcal{F}, P) es un espacio de probabilidad.

Ejercicio: ¿Podrías dar algunos ejemplos de densidades de probabilidad?

Javier Cárcamo

Probabilidad II. Tema 1: Espacios de probabilidad

12

Probabilidad condicional

Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y $A, B \in \mathcal{F}$ con P(B) > 0. Se llama **probabilidad de** A **condicionada a** B a:

$$P(A|B) := \frac{P(A \cap B)}{P(B)}.$$

Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y $B \in \mathcal{F}$ fijo con P(B) > 0. La aplicación:

$$P(\cdot|B): \mathcal{F} \longrightarrow [0,1]$$

$$A \longmapsto P(A|B)$$

es una medida de probabilidad sobre (Ω, \mathcal{F}) . Por tanto, $P(\cdot|B)$ verifica los axiomas y propiedades de una probabilidad.

La nueva información disponible (se ha dado B) ha modificado la medida de probabilidad sobre (Ω, \mathcal{F}) . Hemos pasado de $(\Omega, \mathcal{F}, P(\cdot))$ a $(\Omega, \mathcal{F}, P(\cdot|B))$. De esta manera incorporamos esta información al modelo de probabilidad.

Fórmulas asociadas a la probabilidad condicional

Fórmula del producto

Si $A_1, \ldots, A_n \in \mathcal{F}$ con $P(A_1 \cap \cdots \cap A_n) > 0$, se tiene

$$\mathrm{P}(A_1\cap\cdots\cap A_n)=\mathrm{P}(A_1)\mathrm{P}(A_2|A_1)\mathrm{P}(A_3|A_1\cap A_2)\cdots\mathrm{P}(A_n|A_1\cap\cdots\cap A_{n-1}).$$

Sea (Ω, \mathcal{F}, P) espacio de probabilidad. Una colección de sucesos $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ se dice que es un **sistema completo de sucesos (S.C.S.)** o una **partición de** Ω si:

- (a) $P(A_i) > 0, i \ge 1.$
- (b) $\Omega = \sum_{i=1}^{\infty} A_i$ (unión disjunta).

Fórmula de la probabilidad total

Sea (Ω, \mathcal{F}, P) un espacio de probabilidad y $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ un S.C.S. Entonces, para cualquier $B \in \mathcal{F}$,

$$P(B) = \sum_{i=1}^{\infty} P(A_i)P(B|A_i).$$

Javier Cárcamo

Probabilidad II. Tema 1: Espacios de probabilidad

16

Fórmulas asociadas a la probabilidad condicional

Fórmula de Bayes

Sea (Ω, \mathcal{F}, P) un espacio de probabilidad, $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$ un S.C.S y $B \in \mathcal{F}$ con

P(B) > 0, entonces

$$P(A_j|B) = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^{\infty} P(A_i)P(B|A_i)}.$$

 $P(A_n)$ se llaman **probabilidades a priori** $P(A_n|B)$ se llaman **probabilidades a posteriri**