# Bases de Dados

Módulo 19: Baco de dados Analítico

Prof. André Bruno de Oliveira

28/05/24 10:03



# Introdução DATA WAREHOUSE

- O que é um Data WareHouse (DW) ?
  - Uma DW pode ser definida como <u>uma coleção de dados orientada</u> <u>a assunto</u>, integrada, não volátil, variável no tempo para o suporte às decisões da gerência.
  - Os DW oferecem acesso a dados para análise complexa, descoberta de conhecimento e tomada de decisão. Eles dão suporte a demandas de alto desempenho sobre os dados e informações de uma organização.

# 1 Introdução DATA WAREHOUSE

- Entre as aplicações que interagem com o DW pode-se citar: OLAP e DSS e mineração de dados.
- OLAP é a abreviação de processamento analítico on-line, um termo usado para descrever a análise de dados DW. O OLAP exige utilização de computação distribuída, capacidade alta de armazenamento e um bom poder de processamento.
- DSS (Decision Support System sistemas de apoio à decisão) São sistemas que fazem uso de dados de alto nível para apoiar decisões da liderança nas empresas.
- EIS (Executive Information Systems Sistemas de Informação Executivos) Permite gerar relatórios com informações gerencias a partir de aplicações de alto nível. É considerada uma forma especializada de DSS voltada para informações de gerenciais.
- A mineração de dados por exemplo é usada para busca de novo conhecimento não detectado nos dados.

# 1 Introdução DATA WAREHOUSE

Grosso modo os dados estão divididos em duas abordagens: i) Dados estruturados (relatórios e planilhas) e; ii) e informações sem clareza que precisam de técnicas matemáticas para descoberta da informação.

#### • Ex.:

- Uso de modelos estatísticos para estabelecer relações entre os dados: Use de faixa etária combinado com a renda de uma população para determinar o grupo alvo sobre venda de cursos.
- Uso de modelos preditivos sobre dados históricos para prever períodos de melhorar investimento. Por exemplo, venda de passagens aéreas.

#### 1.2 Características dos data warehouses

- O DW faz uso do modelo de dados multidimensional que mantem um depósito de dados integrados de múltiplas fontes.
- Em comparação com os bancos de dados transacionais, os DW são não voláteis. Isso significa que as informações no DW mudam com muito menos frequência.
- Diferentemente dos bancos transacionais, DW trabalham com dados históricos. As informações têm um nível de detalhamento menor do que nos BD transacionais e atualizações são incrementais vinculadas a uma política da organização.
  - Exemplo: Novas informações do mesmo produto são inseridas gerando duplicidades e uso de *surrogate* em tabelas para favorecer o poder processamento e a descoberta de informações relevantes.

## 1.2 Características dos data warehouses

- A abaixo a figura oferece uma visão geral da estrutura conceitual de um DW.
- O processo inteiro inclui limpeza e reformatação dos dados antes que sejam carregados no DW. Este processo é tratado por soluções conhecidas como ferramentas de ETL (extração, transformação e carga).
  - Perceba que no processo de elaboração de uma DW é fundamental reunir softwares capazes de transformar a informação para um esquema de linhas e colunas. Isso envolve o trabalho de profissionais capacitados.



## 1.2 Características dos data warehouses

- No backend ocorre o processo de descoberta do conhecimento que podem gerar novas informações relevantes, como as regras de agregação envolvendo somatório, média, mínimo e máximo. Essas informações aparecem na figura num processo de retroalimentação (atualização de novos dados)
- O volume de dados chaga na ordem de petabytes  $(10^{12})$ .



- Dois esquemas multidimensionais comuns são o esquema estrela e o esquema floco de neve. O esquema estrela consiste em uma tabela de fatos com uma única tabela para cada dimensão. A tabela fatos possui as FK de cada tabela de dimensão, numa relação de 1,N. Assim, uma tabela fatos possui muito mais registros do que a tabela de dimensão.
- Cada linha da tabela fatos contém valores resumos resultado de cruzamentos que consideram as características de cada linha da tabela dimensão, isso é feito na etapa de ETL. A inclusão de linhas nestas tabelas fatos e dimensão demanda estudo e planejamento.

#### Esquema estrela



O esquema floco de neve é uma variação do esquema estrela em que as tabelas de dimensões de um esquema estrela são organizadas em uma hierarquia para normalizá-las. A normalização visa reduzir as repetições que acabam aumentando o tamanho da tabela dimensão e impactando no espaço ocupado em HD, contudo o aumento de relacionamentos aumenta o custo das *queries* devido aos JOINs.

#### Esquema floco de neve



- O modelo de armazenamento multidimensional envolve dois tipos de tabelas: tabela dimensão e tabela fato.
- Uma tabela de dimensão consiste em tuplas de atributos da dimensão: Costumam usar *surrogate* para manter dados históricos.
- Uma tabela fato pode ser imaginada como tendo tuplas, uma para cada fato registrado. Cada tupla é composto pelo valor agregado e pelas FK de cada tabela dimensão.



- O DW faz uso dos relacionamentos inerentes aos dados para gerar matrizes multidimensionais chamadas de cubos de dados quando se tem 3 dimensões. Quando há mais de 3 dimensões denomina-se hipercubos.
  - Exemplo: Imagine uma planilha de vendas regionais por produto e região. Os produtos dispostos como linhas e as receitas de vendas para cada região compreendendo as colunas. O acréscimo de uma dimensão de tempo, como os trimestres fiscais de uma organização, produz uma matriz tridimensional, neste caso é possível representar estas dimensões usando um cubo de dados.

|         |      |       | Região |       |  |
|---------|------|-------|--------|-------|--|
|         |      | Reg 1 | Reg 2  | Reg 3 |  |
| Produto | P123 |       |        |       |  |
|         | P124 |       |        |       |  |
|         | P125 |       |        |       |  |
|         | P126 |       |        |       |  |
|         | ÷    |       |        |       |  |

Veja a figura abaixo de cubo tridimensional: Um modelo com as dimensões, produto, receita de vendas por região e tempo por trimestre fiscal. Cada célula contém um produto e região específicas. Este tipo de modelo usa uma tecnologia que permite realizar consultas diretamente em qualquer combinação de dimensões, evitando consultas complexas diretamente no banco de dados.



# 1.4 Funcionalidade típica de um DW

- Os data DW existem para facilitar as consultas complexas, com uso intenso de dados. Neste sentido, precisam oferecer suporte à consulta muito maior e mais eficiente do que é exigido pelos bancos de dados transacionais.
- Entre as ferramentas e técnicas usadas estão no ROLAP, MOLAP:
- ROLAP (Relational On Line Analytical Processing) Os dados são armazenados no BD relacional em estruturas multidimensionais e o SQL é utilizado para realizar as consultas.
- O MOLAP (Multidimensional On Line Analytical Processing) usa um cubo multidimensional que acessa os dados armazenados por meio de várias combinações. Os dados são pré-calculados, pré-resumidos e armazenados neste cubo, o que garante uma boa eficiência na análise dos dados.

# 1.4 Funcionalidade típica de um DW

- MOLAP oferece boa performance nas opções de *slicing and dicing* (quebrar um corpo de informações em partes menores ou examiná-lo de diferentes pontos de vista para que você possa compreendê-lo melhor).
- O ROLAP em comparação com o MOLAP é menos eficiente no tempo de resposta, porque ele armazena os dados em linhas e colunas das tabelas do BD e realiza junções, com isso o desempenho não é tão eficiente.

# 1.4 Funcionalidade típica de um DW

- O MOLAP é limitado na quantidade de dados que consegue guardar/manipular em memória. Além disso, adicionar dimensões nesta solução é mais complicado, ao invés disso costuma-se reconstruir as dimensões de dados.
- Pode-se dizer que os sistemas ROLAP são adequados para guardar grandes quantidades de dados, usando um processamento paralelo e tecnologias separadas, enquanto os sistemas MOLAP são adequados para aplicações departamentais com pequenos volumes de dados.

# **WIBGE**

# Bibliografia

# Fontes de consulta:

https://run.unl.pt/bitstream/10362/8403/1/TEGI0304.pdf

https://azure.microsoft.com/pt-br/resources/cloud-computing-dictionary/what-is-a-data-lake

https://azure.microsoft.com/pt-br/resources/cloud-computing-dictionary/what-is-a-data-warehouse

https://www.oracle.com/br/internet-of-things/what-is-iot/

https://www.dataside.com.br/dataside-community/big-data/data-lake-e-data-warehouse-do-conceito-a-arquitetura

https://azure.microsoft.com/pt-br/resources/cloud-computing-dictionary/what-is-a-data-lake

#### Livros

Fundamentals of Database Systems, 7th Edition

Ramez Elmasri& ShamkantB. Navathe

Pearson, 2016.

#### O Livro Completo da Engenharia de Dados

Aprenda com casos de uso do mundo real

https://www.databricks.com/br/resources/ebook/the-big-book-of-data-engineering (Download gratuito).

Dissertação de mestrado em estatística. Soraia Vanessa Moura Velho. -

https://run.unl.pt/bitstream/10362/8403/1/TEGI0304.pdf

 Exercício prático para a construção de um Data Warehouse (DW), focado no cenário de uma empresa de e-commerce. Esse exercício envolve a definição dos requisitos, modelagem, criação de tabelas e a aplicação de um processo simplificado de ETL.

#### Cenário:

Você foi contratado por uma empresa de e-commerce para construir um data warehouse que ajudará a analisar as vendas de produtos para seus clientes, produtos e avaliar o desempenho de campanhas de marketing. A empresa utiliza várias fontes de dados, incluindo seu *sistema de vendas*, CRM (Customer Relationship Management – Gestão de Relacionamento com Cliente), e uma plataforma de marketing digital.

- O objetivo é consolidar esses dados em um Data Warehouse e fornecer suporte para a criação de relatórios como:
  - Total de vendas por produto, cliente e região.
  - Performance de campanhas de marketing.
  - Tendências de compras ao longo do tempo.

- Etapa 1: Definição dos Requisitos
- 1. Quais relatórios e métricas são importantes para a empresa?
  - Exemplo: Vendas por produto, região (cidade, estado), vendedor, análise de campanhas de marketing, análise de clientes recorrentes e novos.
- 2. Quais perguntas precisam ser respondidas pelo DW?
  - Quais produtos têm o maior número de vendas por região?
  - Qual foi o impacto de uma *campanha* específica nas vendas?
  - Quais são os *clientes* que mais compram?
  - Qual o *volume de vendas* por período (*mês, trimestre*)?

#### • 3. Fontes de Dados:

- ERP (dados de vendas [quantidade, data] e produtos [nome do produto, preço, tipo ou categoria])
- CRM (dados de clientes nome, sexo, idade, cidade, estado)
- Sistema de Marketing (dados das campanhas nome da campanha, custo do investimento, canal de divulgação, )

#### ERP - Enterprise Resource Planning Signifcado:

Planejamento de Recursos Empresariais – é um sistema de informação que permite aos gestores de uma empresa terem, de forma integrada e simplificada, dados sobre os setores envolvidos nos processos de produção e/ou desenvolvimento de um produto ou serviço, indo desde o estoque e o fluxo de caixa até o pósatendimento prestado aos clientes

- Etapa 2: Modelagem do Data Warehouse
- Agora, você deve criar um modelo em estrela para organizar os dados no DW.
- Tabela Fato: Centraliza as métricas de interesse, neste caso, os dados de vendas.
- Tabelas Dimensão: Tabelas descritivas que fornecem detalhes sobre os atributos relacionados às vendas:
  - Produto, Cliente, Tempo, Campanha



Detalhes

#### Dim\_Produto

ID\_Produto

Nome\_Produto

Categoria

Preço

#### **Dim\_Cliente**

#### **ID** Cliente

Nome\_Cliente

Sexo (1- homem, 2-mulher)

Idade inteiro

Dim\_Campanha

ID\_Campanha

Nome\_Campanha

Canal (Email, Redes Sociais, etc.)

Custo\_Campanha

#### Dim\_Tempo

ID Tempo

Dia

Mês

Ano

23

Cidade (nome da cidade)

Projeto lógico

#### Dim\_Produto:

- ID\_Produto int (PK)
- Nome\_Produto text
- Categoria text
- Preço real

#### Dim\_Cliente

- ID\_Cliente int (PK)
- Nome\_Cliente text
- Sexo text check(sexo in ('M','F'))
- Idade int
- Cidade text

#### Dim\_Campanha

- ID\_Campanha int (PK)
- Nome\_Campanha text
- Canal text
- Custo\_Campanha real

#### Dim\_Tempo

- ID\_Tempo int (PK)
- Dia int
- Mês int
- Ano int
- Trimestre int

Projeto lógico

#### Fato\_venda

- ID\_venda int (PK)
- ID\_Produto int (FK para dim\_produto)
- ID\_Cliente (FK para dim\_cliente)
- ID\_Campanha (FK para dim\_campanha)
- ID\_Tempo (FK para dim\_tempo)
- Quantidade int
- valor\_total real
- data\_venda text

- Projeto Físico
- 1. Criação da Tabela Dimensão: Dim\_Produto

```
CREATE TABLE Dim_Produto (
```

ID\_Produto INT PRIMARY KEY,

Nome\_Produto text,

Categoria text,

Preco real);

2. Criação da Tabela Dimensão: Dim\_Cliente

CREATE TABLE Dim\_Cliente (

ID\_Cliente INT PRIMARY KEY,

Nome\_Cliente text,

Sexo text check( sexo in ('M','F')),

Idade int,

Cidade text,

Estado text);

- Projeto Físico
- 3. Criação da Tabela Dimensão: Dim\_Campanha

```
CREATE TABLE Dim_Campanha (
```

ID\_Campanha INT PRIMARY KEY,

Nome\_Campanha text,

Canal text,

Custo\_Campanha real);

4. Criação da Tabela Dimensão: Dim\_Tempo

CREATE TABLE Dim\_Tempo (

ID\_Tempo INT PRIMARY KEY,

Dia INT,

Mes INT,

Ano INT,

Trimestre INT);

Projeto Físico

```
5. Criação da Tabela Fato: Fato_Vendas
CREATE TABLE Fato_Vendas (
 ID_Venda INT PRIMARY KEY,
 ID_Produto INT,
 ID_Cliente INT,
 ID_Campanha INT,
 ID_Tempo INT,
 Quantidade INT,
 Valor Total real,
 Data Venda text,
 FOREIGN KEY (ID_Produto) REFERENCES Dim_Produto(ID_Produto),
 FOREIGN KEY (ID_Cliente) REFERENCES Dim_Cliente(ID_Cliente),
 FOREIGN KEY (ID_Campanha) REFERENCES Dim_Campanha(ID_Campanha),
 FOREIGN KEY (ID_Tempo) REFERENCES Dim_Tempo(ID_Tempo)
```

28

- Etapa 3: Processo de ETL (Extração, Transformação e Carga)
- Nesta etapa, você implementará o processo de ETL para mover os dados das fontes de origem para o Data Warehouse.
- 1. Extração: Coletar os dados brutos do ERP, CRM e sistema de marketing.
  - Extraia os dados de vendas do ERP, que contêm informações sobre as transações (produto, quantidade, valor, data).
  - Extraia os dados dos clientes do CRM, contendo informações pessoais (nome, localização, etc.).
  - Extraia os dados das campanhas do sistema de marketing, contendo as campanhas lançadas e os canais de distribuição.

- Etapa 3: Processo de ETL (Extração, Transformação e Carga)
- 2. Transformação: Padronize e limpe os dados.
  - Combine as informações de produtos e clientes, removendo duplicatas.
  - Ajuste o formato das datas e valores monetários.
  - Garanta que todas as chaves estrangeiras estejam corretas (ex.: cada venda tem um ID\_Cliente válido).

- Etapa 3: Processo de ETL (Extração, Transformação e Carga)
- 3. Carga: Carregue os dados transformados nas tabelas do Data Warehouse.
  - Carregue as vendas na Tabela Fato\_Vendas.
  - Carregue os dados de produtos na Dim\_Produto, clientes na Dim\_Cliente, campanhas na Dim\_Campanha e datas na Dim\_Tempo.

- Etapa 3: Processo de ETL (Extração, Transformação e Carga)
- 1. Inserção de Dados na Tabela Dimensão: Dim\_Produto
- INSERT INTO Dim\_Produto (ID\_Produto, Nome\_Produto, Categoria, Preco)

- (101, 'Camiseta', 'Vestuário', 50.00),
- (102, 'Celular', 'Eletrônicos', 150.00),
- (103, 'Notebook', 'Eletrônicos', 150.00),
- (104, 'Tênis', 'Calçados', 100.00),
- (105, 'Fone de Ouvido', 'Eletrônicos', 25.00);

- Etapa 3: Processo de ETL (Extração, Transformação e Carga)
- 2. Inserção de Dados na Tabela Dimensão: Dim\_Cliente
- INSERT INTO Dim\_Cliente (ID\_Cliente, Nome\_Cliente, Sexo, Idade, Cidade, Estado)

- (201, 'João Silva', 'M', 34, 'São Paulo', 'SP'),
- (202, 'Maria Oliveira', 'F', 28, 'Rio de Janeiro', 'RJ'),
- (203, 'Ana Souza', 'F', 45, 'Belo Horizonte', 'MG'),
- (204, 'Carlos Lima', 'M', 22, 'Curitiba', 'PR'),
- (205, 'Luiza Martins', 'F', 39, 'Porto Alegre', 'RS');

- Etapa 3: Processo de ETL (Extração, Transformação e Carga)
- 3. Inserção de Dados na Tabela Dimensão: Dim\_Campanha
- INSERT INTO Dim\_Campanha (ID\_Campanha, Nome\_Campanha, Canal, Custo\_Campanha)

- (301, 'Black Friday 2023', 'Email', 10000.00),
- (302, 'Natal 2023', 'Redes Sociais', 8000.00),
- (303, 'Aniversário E-commerce', 'SMS', 5000.00);

- Etapa 3: Processo de ETL (Extração, Transformação e Carga)
- 4. Inserção de Dados na Tabela Dimensão: Dim\_Tempo

INSERT INTO Dim\_Tempo (ID\_Tempo, Dia, Mes, Ano, Trimestre)

#### **VALUES**

(401, 15, 1, 2023, 1),

(402, 10, 2, 2023, 1),

(403, 20, 3, 2023, 1),

(404, 5, 4, 2023, 2),

(405, 25, 5, 2023, 2);

- Etapa 3: Processo de ETL (Extração, Transformação e Carga)
- 5. Inserção de Mais Dados na Tabela Fato: Fato\_Vendas
- INSERT INTO Fato\_Vendas (ID\_Venda, ID\_Produto, ID\_Cliente, ID\_Campanha, ID\_Tempo, Quantidade, Valor\_Total, Data\_Venda)

- (6, 102, 201, 303, 401, 3, 450.00, '2023-06-12'),
- (7, 105, 202, 301, 402, 1, 25.00, '2023-07-22'),
- (8, 101, 203, NULL, 403, 2, 100.00, '2023-08-30'),
- (9, 104, 204, 302, 404, 4, 400.00, '2023-09-15'),
- (10, 103, 205, 303, 405, 1, 150.00, '2023-10-18')

#### DATA WHAREHOUSE ECOMMERCE - GERADO PELO DBEAVER

Veja que a cardinalidade está trocada.



- **Etapa 4:** Criação de Relatórios e Dashboards (área de trabalho)
- Com os dados organizados no Data Warehouse, crie relatórios para responder às perguntas de negócios.
  - 1. Total de Vendas por Produto e Cidade, Estado:

Agrupe os dados da Fato\_Vendas por produto e região (dimensões Dim\_Produto e Dim\_Cliente).

Create View Total\_vendas\_cidade\_estado as

SELECT p.Nome\_Produto, c.cidade, c.estado, SUM(f.Quantidade) AS Total\_Vendas
FROM Fato\_Vendas f
INNER JOIN Dim\_Produto p ON f.ID\_Produto = p.ID\_Produto
INNER JOIN Dim\_Cliente c ON f.ID\_cliente=C.id\_cliente
GROUP BY p.Nome\_Produto, c.cidade, c.estado;

- Etapa 4: Criação de Relatórios e Dashboards (área de trabalho)
- 2. Vendas por Cliente e Cidade:
  - Create view Cliente\_cidade as
  - SELECT c.Nome\_Cliente, c.Cidade, SUM(f.Valor\_Total) AS Total\_Gasto
  - FROM Fato\_Vendas f
  - JOIN Dim\_Cliente c ON f.ID\_Cliente = c.ID\_Cliente
  - GROUP BY c.Nome\_Cliente, c.Cidade;

- Etapa 4: Criação de Relatórios e Dashboards (área de trabalho)
- 3. Desempenho de Campanhas de Marketing:

Create view Marketing as

- SELECT camp.Nome\_Campanha, SUM(f.Valor\_Total) AS Total\_Vendas
- FROM Fato\_Vendas f
- JOIN Dim\_Campanha camp ON f.ID\_Campanha = camp.ID\_Campanha
- GROUP BY camp.Nome\_Campanha;

- Etapa 4: Criação de Relatórios e Dashboards (área de trabalho)
- 4. Tendência de Vendas ao Longo do Tempo:
  - Create view Vendas\_tempo as
    - SELECT t.Mes, t.Ano, SUM(f.Valor\_Total) AS Vendas\_Totais
    - FROM Fato\_Vendas f
    - JOIN Dim\_Tempo t ON f.ID\_Tempo = t.ID\_Tempo
    - GROUP BY t.Mes, t.Ano
    - ORDER BY t.Ano, t.Mes;

#### DW DO ENADE

- DW criado a partir dos microdados do Enade disponibilizados pelo site do INEP. DW está baseado em dados de todos os estudantes que realizaram o exame no ano de 2017, 2018 e 2019. Criado pela Pela Litícia Tavares (Fonte: https://github.com/leticiatavaresds/Projeto\_ENADE?tab=readme-ov-file).
- No presente trabalho foi utilizada a modelagem Estrela (Star Schema) caracterizada por poucas tabelas e relacionamentos, onde todas as tabelas de Dimensão se relacionam direta e unicamente com a tabela Fato, sendo assim um modelo simples e eficiente.
- O modelo elaborado neste trabalho foi desenvolvido com o intuito de ser centrado nas notas das provas (NT\_FG formação geral, NT\_CE conhecimento específico, NT\_GER nota geral), objetivando fornecer dados para análise de fatores que influenciam no desempenho de cada aluno que presta a avaliação. Dessa forma, o modelo apresenta como fato a prova que possui como métrica a nota final e as notas de formação geral incluindo seu componente específico, além de 11 tabelas de dimensão.



# Exercícios práticos - DW DO ENADE

- (1) Encontre a média da nota geral (FATO) para cada grupo de cursos (DIM\_CURSO) e exiba as médias na ordem decrescente.
- (2) Encontre os cinco primeiros grupos de cursos de maior média geral.
- (3) Encontre a média geral do grupo do curso de medicina por sexo e raça (DIM\_INFO\_ALUNO) e exiba as médias na ordem decrescente.
- (4) Retorne o total de candidatos em cada instituição de ensino (DIM\_IES) para o ano de 2019. O resultado deve exibir a instituição com menor número de candidatos primeiro.
- (5) Retorna uma lista contendo instituições de ensino que não tiveram candidatos em 2019.

# Obrigado