Notice that $\sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{2}$. OK, but why? Consider

$$S = \sum_{n=1}^{\infty} \frac{1}{3^n}$$
 # define S

$$= \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots$$
 # expand terms
$$\Rightarrow 3 \cdot S = 3 \cdot \left[\frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots \right]$$
 # multiply both sides by 3

$$\Rightarrow 3 \cdot S = 1 + \frac{1}{3^1} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots$$
 # multiply through on right side
$$\Rightarrow 3 \cdot S = 1 + S$$
 # definition of S

$$\Rightarrow 3 \cdot S - S = 1$$
 # subtract S from both sides
$$\Rightarrow 2 \cdot S = 1$$
 # $3 \cdot S - S = 2 \cdot S$ # divide both sides by S