Duração: 2h

29/6/2004

Utilize um caderno separado para responder a cada um dos grupos de questões I e II

Ι

1. Considere as seguintes tabelas de encaminhamento de quatro estações num internet local.

Estação A:	Destino	Próximo salto	Máscara	Interf	MTU
	192.168.100.0	192.168.100.1	255.255.255.0	eth_A	1500
	default	192.168.100.254	0.0.0.0	eth_A	1500
Estação B:	Destino	Próximo salto	Máscara	Interf	MTU
	192.168.200.0	192.168.200.1	255.255.255.0	eth_B	1500
	default	192.168.200.254	0.0.0.0	eth_B	1500
Estação C:	Destino 192.168.100.0 192.168.150.0 default	Próximo salto 192.168.100.254 192.168.150.254 192.168.150.253	Máscara 255.255.255.0 255.255.255.0 0.0.0.0	Interf eth_C serial_C serial_C	
Estação D:	Destino 192.168.150.0 192.168.100.0 192.168.200.0 default	Próximo salto 192.168.150.253 192.168.150.254 192.168.200.253 192.168.200.254	Máscara 255.255.255.0 255.255.255.0 255.255.255.0 0.0.0.0	<pre>Interf serial_D serial_D eth_D eth_D</pre>	

- a) Apresente um esquema deste internet que contenha todos os equipamentos e as respectivas indicações de interface físico e IP.
- b) Que alterações poderiam ser feitas ao encaminhamento neste internet local para impedir apenas a estação **A** de ter acesso externo, admitindo que este acesso se faz através do interface 192.168.200.254.
- c) Suponha agora que apenas dispõe do endereço de rede 192.168.100.0 para atribuir a este internet e que deverá fazer *subnetting* com uma distribuição equitativa de endereços de estação por *subnet*.
 - i) Apresente, justificando, as novas tabelas de encaminhamento dessas quatro estações por forma a que o esquema de routing se mantenha inalterado.
 - ii) Que vantagens e desvantagens vê na utilização de subnetting.
- d) Suponha que a estação **A** envia um datagrama UDP contendo 1500 bytes de dados através do comando **ttcp -t -u -l1500 -n1 -s<end-da-estação-B>**. Diga, justificando:
 - i) quantas tramas são recebidas pela estação **B** resultantes desta acção sabendo que os cabeçalhos IP e UDP são de 20 e 8 bytes respectivamente?
 - ii) quais os endereços MAC presentes nessas tramas? (**Nota:** represente o endereço ethernet da interface eth X por MAC(eth X))
 - iii) quais os valores de fragment offset e de more fragments presentes nos cabeçalhos IP desses fragmentos?

Resolução:

a)

b) A estação **A** só deve poder alcançar as redes 192.168.100.0, 192.168.150.0 e 192.168.200.0. Assim, a sua tabela de encaminhamento deve ser a seguinte:

Destino	Próximo salto	Máscara	Interf	MTU
192.168.100.0	192.168.100.1	255.255.255.0	eth_A	1500
192.168.150.0	192.168.100.254	255.255.255.0	eth_A	1500
192.168.200.0	192.168.100.254	255.255.255.0	$\mathtt{eth}_{\mathtt{A}}$	1500

Estação A:	Destino 192.168.100.32		Máscara	Interf	MTU
		192.168.100.33	255.255.255.224	eth_A	1500
	default	192.168.100.62	0.0.0.0	eth_A	1500
Estação B:	Destino	Próximo salto	Máscara	Interf	MTU
	192.168.100.96	192.168.100.97	255.255.255.224	${\tt eth_B}$	1500
	default	192.168.100.126	0.0.0.0	eth_B	1500
Estação C:	Destino	Próximo salto	Máscara	Interf	MTU
	192.168.100.32	192.168.100.62	255.255.255.224	${\tt eth_C}$	1500
	192.168.100.64	192.168.100.65	255.255.255.224	$serial_C$	620
	${\tt default}$	192.168.100.94	0.0.0.0	serial_C	620
Estação D:	Destino	Próximo salto	Máscara	Interf	MTU
	192.168.100.32	192.168.100.65	255.255.255.224	$serial_D$	620
	192.168.100.64	192.168.100.94	255.255.255.224	$serial_D$	620
	192.168.100.96	192.168.100.125	255.255.255.224	eth_D	1500
	$\mathtt{default}$	192.168.100.126	0.0.0.0	eth_D	1500

Reparar que 192.168.100.63, 192.168.100.95 e 192.168.100.127 são os endereços de broadcast para cada uma das subredes escolhidas, e portanto não devem ser atribuidas às interfaces.

- ii) O subnetting permite libertar endereços de rede para a internet e poupar em termos económicos uma vez que são requisitados menos endereços para estabelecer um internet local. Também permite reduzir a dimensão das redes, tornando-as mais seguras e fáceis de gerir, bem como o tamanho das tabelas de routing exteriores. Porém a sua utilização implica uma redução do espaço de endereçamento de estações e uma menor clareza no endereçamento, para quem as gere.
- d) i) O datagrama UDP com 1500 bytes de dados ao ser encapsulado produziria um datagrama IP de comprimento total 20(header IP)+8(header UDP)+1500(dados)= 1528 bytes. Como MTU=1500, a estação A terá de produzir dois fragmentos IP: um com 1500 bytes de comprimento total [20(header IP)+8(header UDP)+ 1472 (dados)] e outro com 48 bytes [20(header IP)+(1500-1472=28)(dados)]. Como a rede 192.168.150.0 tem MTU=620, o primeiro fragmento será novamente fragmentado em três: os dois primeiros de comprimento total igual a 620 bytes e o terceiro de comprimento total igual a 20+(1480-600-600)=300 bytes. Portanto como resultado da acção do comando, chegam à estação B 4 tramas contendo estes fragmentos.

ii) À estação $\bf B$ chegam 4 tramas, cada uma com os seguintes endereços MAC: endereço origem = $MAC(eth_D)$ (o da interface, na LAN de destino, que originou a trama) endereço destino = $MAC(eth_B)$ (o da interface, na LAN de destino, à qual a trama é destinada)

iii)

```
Fragmentos(*) frag.offset(**) more fragments

20+8+592 0 1 (porque não é o último fragmento)

20+600 600 1 (porque não é o último fragmento)

20+280 1200 1 (porque não é o último fragmento)

20+28 1480 0 (porque é o último fragmento)
```

- (*) Indicação dos tamanhos dos cabeçalhos IP (e UDP no primeiro) e do campo de dados contidos nos fragmentos recebidos pela estação B.
- (**) O fragment offset indica a posição absoluta que o primeiro byte de dados transportado no fragmento IP ocupa no datagrama original, devendo ser múltiplo de 8.

- 2. Suponha que as estações **C** e **D** do internet local anterior se encontram directamente ligadas por uma linha série onde opera o protocolo de linha HDLC em modo ABM.
 - a) Diga o que entende por modo ABM de operação e em que situações é usado.
 - b) Estabeleça um diagrama temporal de troca de dados entre as estações ${\bf C}$ e ${\bf D}$ que contemple de forma clara (e identificada no diagrama) os seguintes aspectos:
 - i) a fase de estabelecimento duma ligação com contagem em módulo-8.
 - ii) uma abertura de janela mínima de 3 na transmissão de C para D, e de 2 no sentido contrário.
 - iii) C envia 7 tramas de dados para D, e esta envia 5 tramas de dados para C.
 - iv) **D** recebe uma trama corrompida que deve ser recuperada.
 - v) Após a transferência correcta de todas as tramas, a ligação termina.
 - c) **REJ** e **SREJ** são duas tramas do tipo **S** que realizam mecanismos ARQ.
 - i) Qual o objectivo dos mecanismos ARQ e que formas de ARQ aquelas duas tramas permitem realizar.
 - ii) Explique o princípio de funcionamento dessas formas ARQ.
 - iii) Que vantagens e desvantagens apresentam a utilização dessas formas ARQ.

Resolução:

- a) O modo de operação ABM é usado em configurações de linha ponto-a-ponto, ou seja, em ligações (full ou half-duplex) ponto-a-ponto simétricas, ou equilibradas, não-contenciosas, em que ambas as estações podem enviar comandos e resposta, ditas combinadas. Qualquer das estações pode assumir o controlo da ligação lógica, estabelecer ou terminar uma ligação e controlar o seu fluxo de dados.
- b) Na figura seguinte mostra-se uma sequência de tramas possível.

- i) tramas SABM e UA.
- ii) Tramas I0,0; I1,0; I2,0 e I3,2; I4,2; I5,2 indicam uma abertura de janela mínima de 3 na transmissão de $\bf C$ para $\bf D$. Tramas I0,3; I1,3 e I2,6; I3,6 indicam uma abertura de janela mínima de 2 na transmissão de $\bf D$ para $\bf C$.
- iii) Assim o mostram as confirmações feitas pelas tramas I4,7 e RR5.

- iv) Observado na sequência REJ 6 + I6,4.
- v) DISC e UA.
- c) i) Os mecanismos ARQ permitem corrigir os erros que possam ocorrer numa transmissão entre duas estações ao ser pedida, pelo receptor, a retransmissão automática das tramas que chegaram erradas. O REJ e o SREJ implementam os ARQs Go-Back-N e Selective Reject, respectivamente.
 - ii) No ARQ Go-Back-N são retransmitidas todas as tramas (inclusivé as que chegaram correctas) a partir daquela que chegou ao destino corrompida ou que por time-out terá de ser novamente retransmitida. No ARQ Selective Reject apenas é retransmitida a trama que chegou ao destino com erro ou que por time-out terá de ser novamente transmitida.
 - iii) O ARQ Selective Reject permite minimizar o número de retransmissões e portanto usa mais eficientemente a largura de banda existente no canal de comunicação do que o Go-Back-N. Porém, impõe ao transmissor uma carga de processamento mais elevada (o reenvio de tramas fora de sequência) bem como ao receptor, que deve guardar as tramas correctas e reinserir a trama retransmitida. Por ser de mais fácil realização, o Go-Back-N é normalmente o ARQ mais utilizado.

- 3. a) O cabeçalho de um datagrama ARP possui quatro campos para endereços, dois para endereços protocolares e dois para endereços de hardware. Quais os valores de cada um destes campos num ARP Request?
 - b) Discuta a validade da seguinte asserção: Sempre que uma estação tiver de enviar uma trama MAC, deve primeiramente efectuar um ARP Request na LAN.
 - c) Um datagrama ARP com endereço protocolar de destino igual ao endereço protocolar de origem é designado um anúncio ARP (ARP Announcement). Qual o significado ou objectivo de um anúncio ARP?
 - d) Um ARP Probe pode ser utilizado para detectar endereços protocolares repetidos. Explique como o faz.

Resolução:

- a) O campo endereço de hardware de origem toma como valor o endereço MAC do interface da estação pelo qual se efectua o pedido (Request) e o campo endereço protocolar de origem toma como valor o respectivo endereço de rede.

 O campo endereço de hardware de destino toma o valor HEX 000000000000 e o campo endereço protocolar de destino toma como valor o endereço de rede do interface do qual se pretende conhecer o endereço MAC.
- b) A asserção é falsa. Só necessita efectuar um ARP Request se não encontrar na cache ARP a resolução do endereço de rede pretendido, caso contrário, não necessita (embora o possa fazer por outros motivos).
- c) Um anúncio ARP é um anúncio assertivo. Tem como objectivo a estação emissora afirmar que o endereço protocolar anunciado lhe pertence.
- d) Um ARP Probe é uma inquirição. A estação emissora coloca a zero o campo endereço protocolar de origem e coloca o endereço de rede a resolver no campo endereço protocolar de destino. Ao colocar neste campo o endereço de rede do seu próprio interface está de facto a perguntar se algum outro interface na LAN possui o mesmo endereço de rede.

4. A figura representa a parte da máquina de estados do protocolo TCP referente ao estabelecimento de conexões.

- a) Diga o que se entende por abertura passiva (passive open) de uma conexão TCP e qual a respectiva sequência normal de estados.
- b) Indique qual o evento (1) que determina a transição de estado de **LISTEN** para **SYN_RCVD** bem como a correspondente acção semântica (2). Justifique.
- c) Suponha que a estação A é um cliente e a estação B é um servidor. Esboce num diagrama espaço-temporal a troca de segmentos TCP numa abertura passiva de uma conexão por parte do cliente.

Re solução:

- a) Abertura passiva de uma conexão TCP é a operação pela qual o protocolo é colocado no estado de escuta (LISTEN) numa determina da porta a aguardar o establecimento de uma conexão TCP nessa porta. A sequência de estados é CLOSED → LISTEN.
- b) O evento (1) é a recepção, pelo servidor, de um segmento SYN à qual o servidor responde com o envio de um segmento SYN que também confirma o anterior com a flag ACK=1, isto é, (1)=SYN e (2)=SYN,ACK. Trata-se da troca dos dois primeiros segmentos do "three way handshake" que constitui a abertura activa de uma conexão TCP e que levam o protocolo, no servidor, a passar ao estado intermédio SYN RCVD.
- c) Numa abertura passiva de conexão não há troca de segmentos TCP. A estação A apenas se coloca no estado de LISTEN num socket. Subsequentemente, será a estação B a efectuar aberturas activas. O diagrama de uma abertura activa terá a seguinte forma:

5. A seguinte listagem é o resultado da execução do comando **netstat** num servidor S.

Proto	R-Q	S-Q	Local Address	Foreign Address	State	
tcp	0	0	0.0.0.0:111	0.0.0.0:*	LISTEN	(portmap)
tcp	0	0	192.168.90.90:53	0.0.0.0:*	LISTEN	(domain)
tcp	0	0	192.168.89.89:53	0.0.0.0:*	LISTEN	(domain)
tcp	0	0	192.168.90.90:515	0.0.0.0:*	LISTEN	(printer)
tcp	0	0	0.0.0.0:22	0.0.0.0:*	LISTEN	(ssh)
tcp	0	0	192.168.89.89:22	192.168.90.19:32912	TIME_WAI	T
tcp	0	0	192.168.89.89:32859	192.168.90.19:22	ESTABLIS	SHED

- a) Quais os serviços disponíveis neste servidor e como os indentificou?
- b) Discuta a possibilidade da estação 192.168.89.13 usar a impressora de S.
- c) Interprete as duas últimas linhas desta listagem.

Resolução:

a) Os serviços disponíveis no servidor são:

Resolução de Nomes ou DNS (domain name system)

Impressão (printer)

Secure Shell (ssh) e

Mapeamento de Portas (portmap).

São identificados pelos números de porta associados aos Local Address das conexões TCP no estado de LISTEN, respectivamente 53, 515, 22 e 111.

- b) Vê-se na tabela que o servidor tem interfaces nas redes 192.168.89.0 e 192.168.90.0 (coluna Local Address) e que só aceita conexões para impressão recebidas através do interface 192.168.90.90 (4ª linha). Por esta razão e embora a estação 192.168.89.13 esteja na mesma rede que o interface 192.168.89.89 do servidor, ela deverá dirigir os pedidos de impressão ao interface 192.168.90.90. Como há encaminhamento entre as duas redes, como se deduz das duas últimas linhas, é possível a utilização da impressora.
- c) Linha 6: Uma conexão SSH/TCP iniciada pela estação 192.168.90.19 para o servidor, no interface 192.168.89.89, encontra-se no penúltimo estado de terminação (TIME_WAIT). Linha 7: Uma conexão SSH/TCP iniciada através do interface 192.168.89.89 do servidor encontra-se estabelecida com a estação 192.168.90.19.