Exercício 6 - Problemas de Valor no Contorno - 2D

Lorena B. Bassani

2021

Abstract

Este documento relata os resultados do sexto exercício da disciplina de Algoritmos Numéricos II, no semestre 2021/01 EARTE. O objetivo é observar o comportamento Método das Diferenças Finitas para aproximar problemas de valor no contorno bidimensionais em domínios retangulares.

1 Introdução

Este exercício visa observar o comportamento do método das diferenças finitas para resolver problemas bidimensionais de valor no contorno considerando condições de contorno de valor prescrito, fluxo prescrito e do tipo mista. Este exercício foi feito em três partes: na primeira parte foi realizado um teste de validação e uma análise de convergência do método, descrito no tópico 2, a segunda parte foi a aplicação em um problema de resfriamento, descrito no tópico 3, e a terceira parte foi a aplicação em um problema de escoamento em águas subterrâneas, descrito em 4.

2 Primeira parte – Teste de Validação e Análise de Convergência

Para este exercício, foi desenvolvido um código para resolver problemas de valor de contorno do tipo:

$$-k(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}) + \beta_{x}(x, y)\frac{\partial u}{\partial x} + \beta_{y}(x, y)\frac{\partial u}{\partial y} + \gamma(x, y)u = f(x, y) \qquad em \quad \Omega$$

$$u = g \qquad em \quad \Gamma_{g} \quad (1)$$

$$-k\frac{\partial u}{\partial n} \qquad em \quad \Gamma_{h}$$

em um domínio retangular $\Omega=(a,b)\times(c,d)$ com condições de contorno do tipo valor prescrito, fluxo prescrito ou do tipo mista. Em cada contorno as condições são independentes e podem ser do mesmo ou de outro tipo que nos demais. Por se tratar de um domínio retangular, os contornos são: esquerda, com x=a, direita com x=b, superior com y=d e inferior com y=c.

Para validar a solução implementada, foi utilizado um problema com solução conhecida.

$$-\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right) + \frac{\partial u}{\partial x} + 20 * y \frac{\partial u}{\partial y} + 1 = f(x, y) \qquad em \quad \Omega$$

$$f(x, y) \text{ calculada tal que } u(x, y) = 10xy(1 - x)(1 - y)e^{x^{4.5}}$$

$$\Omega = (0, 1) \times (0, 1)$$

$$(2)$$

Foram realizados três testes com este problema: um com todas as condições do tipo valor prescrito, uma com todas as condições do tipo fluxo prescrito, e uma com todas as condições do tipo mista. Para cada teste, foram utilizados diversos valores de N e M, analisando o tempo de processamento de cada um, tanto com método direto quanto com o método das diferenças finitas.

2.1 Primeiro teste - Valor Prescrito

Os resultados do primeiro teste podem ser vistos na figura 1 para n $=50~\rm com$ o método GMRES.

Figure 1: Resultado com condições do tipo valor prescrito. n=50

Na tabela 1, os resultados para todos os n
 testados com o método GMRES são mostrados, enquanto os resultados com o método direto são mostrados na tabela 2.
 Como é possível notar, Os erros ficaram muito próximos em todos os casos, com

o método direto tendo tempo mais vantajoso que o GMRES para as configurações utilizadas.

A análise assintótica do erro pode ser vista na Figura 2.

Figure 2: Análise assintótica do erro

2.2 Segundo teste - Fluxo Prescrito

Os resultados do segundo teste podem ser vistos na figura 3 para n $=50~\rm com$ o método GMRES.

Figure 3: Resultado com condições do tipo valor prescrito. n=50

Na tabela 1, os resultados para todos os n
 testados com o método GMRES são mostrados, enquanto os resultados com o método direto são mostrados na tabela 2.
 Como é possível notar, Os erros ficaram muito próximos em todos os casos, com o método direto tendo tempo mais vantajoso que o GMRES para as configurações utilizadas, ainda mais do que os vistos no primeiro teste.

A análise assintótica do erro pode ser vista na Figura 4.

Figure 4: Análise assintótica do erro

2.3 Terceiro teste - Condição Mista

Para os terceiro teste, nenhuma solução foi encontrada em nenhum dos casos testados. Isso pode ser visto pelas tabelas 1 e 2, assim como na Figura 5.

Figure 5: Resultado com condições do tipo valor prescrito. n=50

Como não houveram soluções encontradas, não foi possível realizar a análise assintótica do erro neste caso.

3 Resfriado Bidimensional

O problema do resfriador bidimensional é um problema com a seguinte configuração:

$$-k(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}) + \frac{2c}{T}u = +\frac{2c}{T}u_{ref} \qquad em \quad \Omega = (0, L) \times (0, W)$$

$$T = 2; \quad L = W = 1; \quad k = 1; \quad u_{ref} = 70; \quad c = 1$$
(3)

Neste modelo, foram realizados três situações diferentes. Cada uma das três situações continha diferentes condições de contorno, com a primeira contendo apenas condições de valor prescrito, a segunda tanto valor quanto fluxo prescrito, e a última contendo valor prescrito e condição mista.

3.1 Primeira Situação - Apenas Valor Prescrito

Nesta situação, o problema foi modelado com as seguintes condições de contorno:

$$u(x,0) = 70$$
$$u(x,W) = 70$$
$$u(L,y) = 70$$
$$u(0,y) = 200$$

Quando solucionado por método direto e por GMRES, as soluções encontradas diferiram drasticamente, como é possível ver na Figura 6.

Figure 6: Soluções com n = 50.

Na tabela 3 é possível ver a comparação dos tempos de execução entre os métodos Direto e GMRES. Na tabela 4 é possível ver os detalhes dos resultados do GMRES.

3.2 Segunda Situação - Valor e Fluxo Prescrito

Nesta situação, o problema foi modelado com as seguintes condições de contorno:

$$-k\frac{\partial u}{\partial x}(x,0) = 0$$
$$-k\frac{\partial u}{\partial x}(x,W) = 0$$
$$u(L,y) = 70$$
$$u(0,y) = 200$$

Quando solucionado por método direto e por GMRES, as soluções encontradas diferiram drasticamente, como é possível ver na Figura 7. A solucionada pelo método direto também é muito diferente da encontrada na versão 1 com o mesmo método.

Figure 7: Soluções com n = 50.

Na tabela 3 é possível ver a comparação dos tempos de execução entre os métodos Direto e GMRES. Na tabela 4 é possível ver os detalhes dos resultados do GMRES.

3.3 Terceira Situação - Valor Prescrito e Condição Mista

Nesta situação, o problema foi modelado com as seguintes condições de contorno:

$$u(x,0) = 70$$

$$u(x,W) = 70$$

$$u(L,y) = 70$$

$$-k\frac{\partial u}{\partial y}(0,y) = c(u(0,y) - u_{ref})$$

Quando solucionado por método direto e por GMRES, as soluções encontradas diferiram drasticamente, como é possível ver na Figura 8. A solucionada pelo método direto também é muito diferente da encontrada nas versões 1 e 2 com o mesmo método. Ainda é possível notar que a solucionada pelo método GMRES ficou parecida com a solução do método direto da versão 1. Isso provavelmente se deve ao fato de ter sido a primeira instancia de solução com GMRES a convergir, como é possível ver na tabela 4.

Figure 8: Soluções com n = 50.

Na tabela 3 é possível ver a comparação dos tempos de execução entre os métodos Direto e GMRES. Na tabela 4 é possível ver os detalhes dos resultados do GMRES.

4 Escoamento em Águas Subterrâneas

O problema do escoamento em águas subterrâneas é um problema com a seguinte configuração:

$$-k(\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}}) = 0 \quad \text{quando } (x,y) \text{ não for poço} \qquad em \quad \Omega = (a,b) \times (c,d)$$

$$-k\frac{\partial u}{\partial y} = 0 \qquad em \quad y = c \quad e \quad y = d$$

$$u = p_{ref} \qquad em \quad x = a \quad e \quad x = b$$

$$(4)$$

$$a = c = 0; \quad b = 5000; \quad d = 1000;$$

$$k = 1; \quad R_{w} = -250; \quad p_{ref} = 100;$$

$$p_{1} = (x_{1}, y_{1}) = (1500, 600);$$

$$p_{2} = (x_{2}, y_{2}) = (3200, 250);$$

As soluções encontradas não diferiram entre a aplicação do método direto e do GMRES, sendo possível ver na Figura 9 o gráfico da solução para o GMRES com n=101.

Figure 9: Gráfico da solução do escoamento de águas subterrâneas para n=101.

Na tabela 5 é possível ver a comparação dos tempos de execução entre os métodos Direto e GMRES. Na tabela 6 é possível ver os detalhes dos resultados do GMRES.

5 Tabelas dos resultados observados

	Tabela do Método dos Gradientes Conjugados								
Condição do Tipo 1 - Valor Prescrito									
n	N	flag	iterações	erro relativo	$ x _{\infty}$	E	tempo (s)		
20	400	0	1	0.000000e+00	6.595594 e-01	1.319119e+01	0.0871229 s		
50	2500	0	1	0.000000e+00	6.630184e-01	3.315092e+01	0.822362 s		
100	10000	0	525	9.838598e-09	6.636441e-01	6.636441e+01	7.95769 s		
200	40000	0	952	9.963137e-09	6.637838e-01	1.327568e + 02	201.558 s		
	Condição do Tipo 2 - Fluxo Prescrito								
n	N	flag	iterações	erro relativo	$ x _{\infty}$	E	tempo (s)		
20	400	0	3740	9.997300e-09	1.681540e+00	3.363081e+01	1.47537 s		
50	2500	3	19978	1.957993e-08	1.063115e+00	5.315575e + 01	16.6895 s		
100	10000	0	12597	9.849295e-09	8.634567e-01	8.634567e + 01	52.0243 s		
200	40000	0	6312	9.993532e-09	7.638675e-01	1.527735e+02	520.39 s		
	Condição do Tipo 3 - Tipo Misto								
n N flag iterações		erro relativo	$ x _{\infty}$	E	tempo (s)				
20	400	1	1	NaN	0.000000e+00	0.000000e+00	0.098444 s		
50	2500	1	1	NaN	0.000000e+00	0.000000e+00	0.825819 s		
100	10000	1	1	NaN	0.000000e+00	0.000000e+00	6.51944 s		
200	40000	1	1	NaN	0.000000e+00	0.000000e+00	147.943 s		

Table 1: Tabela do Método dos Gradientes Conjugados para problema de análise do erro.

	Tabela do Método do Direto							
	Condição do Tipo 1 - Valor Prescrito							
n	N	$ x _{\infty}$	E	tempo (s)				
20	400	6.595594 e-01	1.319119e+01	0.0871229 s				
50	2500	6.630184e-01	3.315092e+01	$0.615677 \mathrm{\ s}$				
100	10000	6.636441e-01	6.636441e+01	$6.00707 \mathrm{\ s}$				
200	40000	6.637838e-01	1.327568e + 02	145.728 s				
	Condição do Tipo 2 - Fluxo Prescrito							
n	N	$ x _{\infty}$	E	tempo (s)				
20	400	1.681541e + 00	3.363081e+01	$0.0794878 \mathrm{\ s}$				
50	2500	1.063116e+00	5.315579e + 01	$0.620678 \mathrm{\ s}$				
100	10000	8.634572e-01	8.634572e + 01	$6.07651 \mathrm{\ s}$				
200	40000	7.638667e-01	1.527733e+02	146.375 s				
	Condição do Tipo 3 - Tipo Misto							
\mathbf{n}	N	$ x _{\infty}$	E	tempo (s)				
20	400	NaN	NaN	$0.09446 \mathrm{\ s}$				
50	2500	NaN	NaN	$0.699575 \mathrm{\ s}$				
100	10000	NaN	NaN	7.15775 s				
200	40000	NaN	NaN	167.146 s				

Table 2: Tabela do Método Direto para problema de análise do erro.

Tabela dos tempos do resfriador bidimensional							
Versão 1 - Apenas Valor Prescrito							
n	N	Método	tempo (s)				
20	400	Direto	0.071908 s				
20	400	GMRES	0.129661 s				
50	2500	Direto	$0.61017 \mathrm{\ s}$				
30	2500	GMRES	52.8942 s				
100	10000	Direto	$0.61017 \mathrm{\ s}$				
100	10000	GMRES	10119.3 s				
	Versão 2 - Valor e Fluxo Prescrito						
n	N	Método	tempo (s)				
20	400	Direto	$0.070807 \mathrm{\ s}$				
		GMRES	0.189039 s				
50	2500	Direto	0.597409 s				
		GMRES	997.626 s				
100	10000	Direto	5.67305 s				
100		GMRES	430.635 s				
	Versã	o 3 - Valor	r Prescrito e Mista				
n	N	Método	tempo (s)				
20	400	Direto	0.045166 s				
		GMRES	0.0940962 s				
50	2500	Direto	$0.353983 \mathrm{\ s}$				
		GMRES	5.67305 s				
100	10000	Direto	5.67305 s				
100		GMRES	73.8163 s				

Table 3: Tabela de resultados do problema do resfriador bidimensional

	Tabela do Método dos Gradientes Conjugados							
	Versão 1 - Apenas Valor Prescrito							
n	N	flag	iterações	erro relativo	$ x _{\infty}$	tempo (s)		
20	400	3	143	9.699703e-01	0.000000e+00	$0.129661 \mathrm{\ s}$		
50	2500	3	69422	9.234149e-01	0.000000e+00	52.8942 s		
100	10000	1	5000001	8.698264e-01	0.000000e+00	10119.3 s		
	Versão 2 - Valor e Fluxo Prescrito							
n	N	flag	iterações	erro relativo	$ x _{\infty}$	tempo (s)		
20	400	3	160	9.647217e-01	0.000000e+00	0.189039 s		
50	2500	1	1300001	8.942057e-01	0.000000e+00	997.626 s		
100	10000	1	400001	9.770273e-01	2.624822e-01	430.635 s		
	Versão 3 - Valor Prescrito e Mista							
n	N	flag	iterações	erro relativo	$ x _{\infty}$	tempo (s)		
20	400	3	257	9.377263e-02	3.707682e+01	$0.0940962 \mathrm{\ s}$		
50	2500	0	14598	9.981631e-09	7.0000000e+01	5.67305 s		
100	10000	0	66635	9.999599e-09	6.999999e+01	73.8163 s		

Table 4: Tabela do Método dos Gradientes Conjugados para problema do resfriador bidimensional.

Tabela dos tempos do resfriador bidimensional						
n	N	Método	tempo (s)			
51x21	2601	Direto	4.98348 s			
	2001	GMRES	5.20732 s			
101	10201	Direto	94.0219 s s			
		GMRES	96.3122 s			
201	40401	Direto	934.229 s			
	40401	GMRES	937.766 s			

Table 5: Tabela de resultados do problema do escoamento de águas subterrâneas

Tabela do Método dos Gradientes Conjugados							
\mathbf{n} \mathbf{N} flag iterações erro relativo $\ x\ _{\infty}$ tempo							
51x21	2601	0	11581	9.991741e-09	2.547210e + 06	5.20732 s	
101	10201	0	13879	9.996832e-09	2.779431e+05	96.3122 s	
201	40401	0	12982	9.993612e-09	7.310659e + 04	937.766 s	

Table 6: Tabela do Método dos Gradientes Conjugados para problema do escoamento de águas subterrâneas.