Honours Analysis Notes

Anthony Catterwell

April 18, 2019

Contents

1	The	Real Number System			
	1.1	Introduction			
	1.2	Ordered Field Axioms			
	1.3	Completeness Axiom			
	1.4	Mathematical Induction			
	1.5	Inverse Functions and Images			
	1.6	Countable and Uncountable Sets			
2	Sequ	uences in $\mathbb R$			
	2.1	Limits of Sequences			
	2.2	Limit Theorems			
	2.3	Bolzano-Weierstrass Theorem			
	2.4	Cauchy Sequences			
	2.5	Limits Supremum and Infimum			
3	Fun	ctions on R			
	3.1	Two-Sided Limits			
	3.2	One-Sided Limits and Limits at Infinity			
	3.3	Continuity			
	3.4	Uniform Continuity			
4	Differentiability on R				
	4.1	The Derivative			
	4.2	Differentiability Theorems			
	4.3	Mean Value Theorem			
	4.4	Taylor's Theorem and L'Hopital's Rule			
	4.5	Inverse Function Theorems			
5	Riemann Integration 20				
	5.1	Introduction			
	5.2	Step functions and their integrals			
	5.3	Riemann-integrable functions and their integrals			
	5.4	Fundamental Theorem of Calculus, and Practical Integration			
	5.5	Integrals and uniform limits of sequences and series of functions			
	5.6	A couple of odds and ends			
6	Infinite Series of Real Numbers 23				
	6.1	Introduction			
	6.2	Series with Nonnegative Terms			
	6.3	Absolute Convergence			
	6.4	Alternating Series			

7	Infi	nite Series of Functions	27	
	7.1	Uniform Convergence of Sequences	27	
		Uniform Convergence of Series		
		Power Series		
8		tric Spaces	30	
	8.1	Introduction	30	
	8.2	Limits of Functions	31	
	8.3	Interior, Closure, and Boundary	33	
		Compact Sets	34	
			35	
		Continuous Functions	35	
9	Contraction Mapping & ODEs			
	9.1	Banach's Contraction Mapping Theorem	37	
	9.2	Existence and uniqueness for solutions to ODEs	37	

1 The Real Number System

1.1 Introduction

1.2 Ordered Field Axioms

• Postulate 1 Field Axioms

There are functions + and \cdot defined on $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$, which satisfy the following properties $\forall a, b, c \in \mathbb{R}$

- Closure Properties: a + b, $a \cdot b \in \mathbb{R}$
- Associative Properties: a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Commutative Properties: a + b = b + a and $a \cdot b = b \cdot a$
- Distributive Law: $a \cdot (b+c) = a \cdot b + a \cdot c$
- Existence of Additive Identity: There is a unique element $0 \in \mathbb{R}$ such that 0+a=a for all $a \in \mathbb{R}$
- Existence of Multiplicative Identity: There is a unique element $1 \in \mathbb{R}$ such that $1 \neq 0$ and $1 \cdot a = a$ for all $a \in \mathbb{R}$
- Existence of Additive Inverses: For every $x \in \mathbb{R}$ there is a unique element $-x \in \mathbb{R}$ such that

$$x + (-x) = 0$$

- Existence of Multiplicative Inverses: For every $x \in \mathbb{R} \setminus \{0\}$ there is a unique element $x^{-1} \in \mathbb{R}$ such that

$$x \cdot (x^{-1}) = 1$$

• Postulate 2 Order Axioms

There is a relation < on $\mathbb{R} \times \mathbb{R}$ that has the following properties:

- Trichotomy Property: Given $a, b \in \mathbb{R}$, one and only one of the following statements hold:

$$a < b, b < a, \text{ or } a = b$$

- Transitive Property: For $a, b, c \in \mathbb{R}$

$$a < b \text{ and} ic \implies a < c$$

- Additive Property: For $a, b, c \in \mathbb{R}$

$$a < b \text{ and } c \in \mathbb{R} \implies a + c < b + c$$

- Multiplicative Properties: For $a, b, c \in \mathbb{R}$

$$a < b \text{ and } c > 0 \implies ac < bc$$

and

$$a < b \text{ and } c < 0 \implies bc < ac$$

• Remark 1.1

We will assume that the sets \mathbb{N} and \mathbb{Z} satisfy the following properties:

- 1. If $n, m \in \mathbb{Z}$, then n + m, n m and mn belong to \mathbb{Z}
- 2. If $n \in \mathbb{Z}$, then $n \in \mathbb{N}$ if and only if $n \geq 1$

- 3. There is no $n \in \mathbb{Z}$ that satisfies 0 < n < 1
- Definition 1.4 Absolute Value

The absolute value of a number $a \in \mathbb{R}$ is the number

$$|a| := \begin{cases} a & a \ge 0 \\ -a & a < 0 \end{cases}$$

- Remark 1.5 The absolute value is multiplicative; that is, $|ab| = |a||b| \ \forall a, b, \in \mathbb{R}$
- Theorem 1.6 Fundamental Theorem of Absolute Values Let $a \in \mathbb{R}$ and $M \ge 0$. Then $|a| \le M \iff -M \le a \le M$.
- **Theorem 1.7** The absolute value satisfies the following three properties:
 - 1. Positive Definite: For all $a \in \mathbb{R}$, |a| > 0 with |a| = 0 if and only if a = 0.
 - 2. Symmetric: For all $a, b \in \mathbb{R}$, |a b| = |b a|,
 - 3. Triangle Inequalities: For all $a, b \in \mathbb{R}$,

$$|a+b| \le |a| + |b|$$
 and $||a| - |b|| \le |a-b|$

• Theorem 1.9 Let $x, y, a \in \mathbb{R}$

1.
$$x < y + \epsilon \ \forall \epsilon > 0 \iff x \le y$$

2.
$$x > y - \epsilon \ \forall \epsilon > 0 \iff x \ge y$$

3.
$$|a| < \epsilon \ \forall \epsilon > 0 \iff a = 0$$

1.3 Completeness Axiom

• **Definition 1.10** Upper bounds

Let $E \subset \mathbb{R}$ be non-empty

- 1. The set E is said to be bounded above if and only if there is an $M \in \mathbb{R}$ such that $a \leq M$ for all $a \in E$, in which case M is called an upper bound of E.
- 2. A number s is called a *supremum* of the set E if and only if s is an upper bound of E and $s \leq M$ for all upper bounds M of E. (In this case we shall say that E has a *finite supremeum* s and write $s = \sup E$)
- Remark 1.12 If a set has one upper bound, it has infinitely many upper bounds.
- Remark 1.13 If a set has a supremum, then it has only one supremum.
- Theorem Approximation Property for Suprema If E has a finite supremum and $\epsilon > 0$ is any positive number, then there is a point $a \in E$ such that

$$\sup E - \epsilon < a \le \sup E$$

• Theorem 1.15

If $E \subset \mathbb{Z}$ has a supremum, then $\sup E \in E$. In particular, if the supremum of a set, which contains only integers, exists, that supremum must be an integer.

• Postulate 3 Completeness Axiom

If E is a nonempty subset of \mathbb{R} that is bounded above, then E has a finite supremum.

• Theorem 1.16 The Archimedean Principle

Given real numbers a and b, with a > 0, there is an integer $n \in \mathbb{N}$ such that b < na.

- Theorem 1.18 Density of Rationals If $a, b \in \mathbb{R}$ satisfy a < b, then there is a $q \in \mathbb{Q}$ such that a < q < b.
- **Definition 1.19** Upper bounds Let $E \in \mathbb{R}$ be nonempty
 - 1. The set E is said to be bounded below if and only if there is an $m \in \mathbb{R}$ such that $a \geq E$, in which case m is called a lower bound of the set E.
 - 2. A number t is called an *infimum* of the set E if and only if t is a lower bound of E and $t \ge m$ and write $t = \inf E$.
 - 3. E is said to be bounded if and only if it is bounded both above and below.
- Theorem 1.20 Reflection Principle

Let $E \in \mathbb{R}$ be nonempty

1. E has a supremum if and only if -E has an infimum, in which case

$$\inf(-E) = -\sup E$$

2. E has an infimum if and only if -E has a supremum, in which case

$$\sup(-E) = -\inf E$$

• Theorem 1.21 Monotone Property

Suppose that $A \subseteq B$ are nonempty subsets of \mathbb{R} .

- 1. If B has a supremum, then $\sup A \leq \sup B$.
- 2. If B has an infimum, then $\inf A \ge \inf B$.

1.4 Mathematical Induction

• Theorem 1.22 Well-Ordering Principle

If E is a nonempty subset of \mathbb{N} , then E has a least element (i.e. E has a finite infimum and inf $E \in E$).

• Theorem 1.23

Suppose for each $n \in \mathbb{N}$ that A(n) is a proposition which satisfies the following two properties:

- 1. A(1) is true.
- 2. For every $n \in \mathbb{N}$ for which A(n) is true, A(n+1) is also true.

Then A(n) is true for all $n \in \mathbb{N}$.

• Theorem 1.26 Binomial Formula

If $a, b \in \mathbb{R}$, $n \in \mathbb{N}$ and 0^0 is interpreted to be 1, then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

1.5 Inverse Functions and Images

• **Definition 1.29** Injection, Surjection, Bijection Let X and Y be sets and $f: X \to Y$

1. f is said to be *injective* if and only if

$$x_1, x_2 \in X \text{ and } f(x_1) = f(x_2) \implies x_1 = x_2$$

2. f is said to be *surjective* if and only if

$$\forall y \in Y \ \exists x \in X \ \ni y = f(x)$$

3. f is called bijective if and only if it is both injective and surjective

• Theorem 1.30

Let X and Y be sets and $f: X \to Y$. Then the following three statements are equivalent.

- 1. f has an inverse;
- 2. f is injective from X onto Y;
- 3. There is a function $g: Y \to X$ such that

$$g(f(x)) = x \quad \forall x \in X$$

and

$$f(g(y)) = y \quad \forall y \in Y$$

Moreover, for each $f: X \to Y$, there is only one function g that satisfies these. It is the inverse function f^{-1} .

• Remark 1.31

Let I be an interval and let $f: I \to \mathbb{R}$. If the derivative of f is either always positive on I, or always negative on I, then f is injective on I.

• Definition 1.33 Image

Let X and Y be sets and $f: X \to Y$. The *image* of a set $E \subseteq X$ under f is the set

$$f(E) := \{ y \in Y : y = f(x) \text{ for some } x \in E \}$$

The *inverse image* of a set $E \subseteq Y$ under f is the set

$$f^{-1}(E) := \{x \in X : f(x) = y \text{ for some } y \in E\}$$

• Definition 1.35 Union, Intersection

Let $\mathcal{E} = \{E_{\alpha}\}_{{\alpha} \in A}$ be a collection of sets.

1. The union of the collection \mathcal{E} is the set

$$\bigcup_{\alpha \in A} E_{\alpha} := \{x : x \in E_{\alpha} \text{ for some } \alpha \in A\}$$

2. The intersection of the collection \mathcal{E} is the set

$$\bigcap_{\alpha \in A} E_{\alpha} := \{x : x \in E_{\alpha} \text{ for all } \alpha \in A\}.$$

• Theorem 1.36 DeMorgan's Laws

Let X be a set and $\{E_{\alpha}\}_{{\alpha}\in A}$ be a collection of subsets of X. If for each $E\subseteq X$ the symbol E^c represents the set $X\setminus E$, then

$$\left(\bigcup_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} E_{\alpha}^{c}$$

and

$$\left(\bigcap_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} E_{\alpha}^{c}$$

• Theorem 1.37

Let X and Y be sets and $f: X \to Y$.

1. If $\{E_{\alpha}\}_{\alpha} \in A$ is a collection of subsets of X, then

$$f\left(\bigcup_{\alpha\in A} E_{\alpha}\right) = \bigcup_{\alpha\in A} f(E_{\alpha}) \text{ and } f\left(\bigcap_{\alpha\in A} E_{\alpha}\right) \subseteq \bigcap_{\alpha\in A} f(E_{\alpha})$$

- 2. If B and C are subsets of X, then $f(C) \setminus f(B) \subseteq f(C \setminus B)$
- 3. If $\{E_{\alpha}\}_{{\alpha}\in A}$ is a collection of subsets of Y, then

$$f^{-1}\left(\bigcup_{\alpha\in A}E_{\alpha}\right)=\bigcup_{\alpha\in A}f^{-1}(E_{\alpha})$$
 and $f^{-1}\left(\bigcap_{\alpha\in A}E_{\alpha}\right)=\bigcap_{\alpha\in A}f^{-1}(E_{\alpha})$

- 4. If B and C are subsets of Y, then $f^{-1}(C \setminus B) = f^{-1}(C) \setminus f^{-1}(B)$.
- 5. If $E \subseteq f(x)$, then $f(f^{-1}(E)) = E$, but if $E \subseteq X$, then $E \subseteq f^{-1}(f(E))$.

1.6 Countable and Uncountable Sets

- **Definition 1.38** Countable Uncountable Let E be a set.
 - 1. E is said to be *finite* if and only if either $E = \emptyset$ or there exists an injective function which takes $\{1, 2, ..., n\}$ onto E, for some $n \in \mathbb{N}$.
 - 2. E is said to be *countable* if and only if there exists and injective function which takes \mathbb{N} onto E.
 - 3. E is said to be at most countable if and only if E is either finite or countable.
 - 4. E is said to be *uncountable* if and only if E is neither finite nor countable.
- Remark 1.39 Cantor's Diagonalisation Argument The open interval (0, 1) is uncountable.

• Lemma 1.40

A nonempty set E is at most countable if and only if there is a function g from \mathbb{N} onto E.

• Theorem 1.41

Suppose A and B are sets.

- 1. If $A \subseteq B$ and B is at most countable, then A is at most countable.
- 2. If $A \subseteq B$ and A is uncountable, then B is uncountable.
- 3. \mathbb{R} is uncountable.

• Theorem 1.42

Let A_1, A_2, \ldots be at most countable sets.

- 1. Then $A_1 \times A_2$ is at most countable.
- 2. If

$$E = \bigcup_{j=1}^{\infty} A_j := \bigcup_{j \in \mathbb{N}} A_j := \{x : x \in A_j \text{ for some } j \in \mathbb{N}\},\$$

then E is at most countable.

• Remark 1.43

The sets \mathbb{Z} and \mathbb{Q} are countable, but the set of irrationals is uncountable.

2 Sequences in \mathbb{R}

2.1 Limits of Sequences

• Definition 2.1 Convergence

A sequence of real numbers $\{x_n\}$ is set to *converge* to a real number $a \in \mathbb{R}$ if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ (which in general depends on ϵ) such that

$$n \ge N \implies |x_n - a| < \epsilon$$

- Remark 2.4 A sequence can have at most one limit.
- Definition 2.5 Subsequence

By a subsequence of a sequence $\{x_n\}_{n\in\mathbb{N}}$, we shall mean a sequence of the form $\{x_{nk}\}_{k\in\mathbb{N}}$, where each $n_k\in\mathbb{N}$ and $n_1< n_2<\cdots$.

• Remark 2.6

If $\{x_n\}_{n\in\mathbb{N}}$ converges to a and $\{x_{nk}\}_{k\in\mathbb{N}}$ is any subsequence of $\{x_n\}_{n\in\mathbb{N}}$, then x_{nk} converges to a as $k\to\infty$.

• Definition 2.7 Bounded Sequences

Let $\{x_n\}$ be a sequence of real numbers.

- 1. The sequence $\{x_n\}$ is said to be *bounded above* if and only if the set $\{x_n : n \in \mathbb{N}\}$ is bounded above.
- 2. The sequence $\{x_n\}$ is said to be bounded below if and only if the set $\{x_n : n \in \mathbb{N}\}$ is bounded below
- 3. $\{x_n\}$ is said to be bounded if and only if it is bounded both above and below.
- **Theorem 2.8** Every convergent sequence is bounded.

2.2 Limit Theorems

• Theorem 2.9 Squeeze Theorem

Suppose that $\{x_n\}, \{y_n\}, \text{ and } \{w_n\} \text{ are real sequences.}$

1. If $x_n \to a$ and $y_n \to a$ as $n \to \infty$, and if there is an $N_0 \in \mathbb{N}$ such that

$$x_n < w_n < y_n$$
 for $n > N_0$

then $w_n \to a$ as $n \to \infty$.

2. If $x_n \to 0$ as $n \to \infty$ and $\{y_n\}$ is bounded, then $x_n y_n \to 0$ as $n \to \infty$.

• Theorem 2.11

Let $E \subset \mathbb{R}$. If E has a finite supremum (respectively, a finite infimum), then there is a sequence $x_n \in E$ such that $x_n \to \sup E$ (respectively, a sequence $y_n \in E$ such that $y_n \to \inf E$) as $n \to \infty$.

• Theorem 2.12

Suppose that $\{x_n\}$ and $\{y_n\}$ are real sequences and that $\alpha \in \mathbb{R}$. If $\{x_n\}$ and $\{y_n\}$ are convergent, then

1.

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$$

2.

$$\lim_{n \to \infty} (\alpha x_n) = \alpha \lim_{n \to \infty} x_n$$

and

3.

$$\lim_{n \to \infty} (x_n y_n) = (\lim_{n \to \infty} x_n) (\lim_{n \to \infty} y_n)$$

If, in addition, $y_n \neq 0$ and $\lim_{n\to\infty} y_n \neq 0$, then

4.

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$$

(In particular, all these limits exist.)

• Definition 2.14 Divergence

Let $\{x_n\}$ be a sequence of real numbers.

1. $\{x_n\}$ is said to diverge to $+\infty$ if and only if for each $M \in \mathbb{R}$ there is an $N \in \mathbb{N}$ such that

$$n \ge N \implies x_n > M$$

2. $\{x_n\}$ is said to diverge to $-\infty$ if and only if for each $M \in \mathbb{R}$ there is an $N \in \mathbb{N}$ such that

$$n \ge N \implies x_n < M$$

• Theorem 2.15

Suppose that $\{x_n\}$ and $\{y_n\}$ are real sequences such that $x_n \to +\infty$ (respectively, $x_n \to -\infty$) as $n \to \infty$.

1. If y_n is bounded below (respectively, y_n is bounded above), then

$$\lim_{n \to \infty} (x_n + y_n) = +\infty \quad \text{(respectively, } \lim_{n \to \infty} (x_n + y_n) = -\infty)$$

2. If $\alpha > 0$, then

$$\lim_{n\to\infty} (\alpha x_n) = +\infty \quad \text{(respectively, } \lim_{n\to\infty} (\alpha x_n) = -\infty)$$

3. If $y_n > M_0$ for some $M_0 > 0$ and all $n \in \mathbb{N}$, then

$$\lim_{n\to\infty} (x_n y_n) = +\infty \quad \text{(respectively, } \lim_{n\to\infty} (x_n y_n) = -\infty)$$

4. If $\{y_n\}$ is bounded and $x_n \neq 0$, then

$$\lim_{n \to \infty} \frac{y_n}{x_n} = 0$$

• Corollary 2.16

Let $\{x_n\}$, $\{y_n\}$ be real sequences and α, x, y be extended real numbers. If $x_n \to x$ and $y_n \to y$, as $n \to \infty$, then

$$\lim_{n \to \infty} (x_n + y_n) = x + y$$

provided that the right side is not of the form $\infty - \infty$, and

$$\lim_{n \to \infty} (\alpha x_n) = \alpha x, \quad \lim_{n \to \infty} (x_n y_n) = xy$$

provided that none of these products is of the form $0 \cdot \pm \infty$.

• Theorem 2.17 Comparison Theorem

Suppose that $\{x_n\}$ and $\{y_n\}$ are convergent sequences. If there is an $N_0 \in \mathbb{N}$ such that

$$x_n \leq y_n \text{ for } n \geq N_0$$

then

$$\lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n$$

In particular, if $x_n \in [a, b]$ converges to some point c, then c must belong to [a, b].

2.3 Bolzano-Weierstrass Theorem

- **Definition 2.18** Increasing, Decreasing Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers.
 - 1. $\{x_n\}$ is said to be *increasing* (respectively, *strictly increasing*) if and only if $x_1 \leq x_2 \leq \cdots$ (respectively, $x_1 < x_2 < \cdots$).
 - 2. $\{x_n\}$ is said to be decreasing (respectively, strictly decreasing) if and only if $x_1 \geq x_2 \geq \cdots$ (respectively, $x_1 > x_2 > \cdots$).
 - 3. $\{x_n\}$ is said to be monotone if and only if it is either increasing or decreasing.
- Theorem 2.19 Monotone Convergence Theorem if $\{x_n\}$ is increasing and bounded above, or if $\{x_n\}$ is decreasing and bounded below, then $\{x_n\}$ converges to a finite limit.
- **Definition 2.22** Nested A sequence of sets $\{I_n\}_{n\in\mathbb{N}}$ is said to be nested if and only if

$$I_1 \supseteq I_2 \supseteq \cdots$$

• Theorem 2.23 Nested Interval Property

If $\{I_n\}_{n\in\mathbb{N}}$ is a nested sequence of nonempty closed bounded intervals, then $E:=\bigcap_{n=1}^{\infty}I_n$ is nonempty. Moreover, if the lengths of these intervals satisfy $|I_n \to 0|$ as $n \to \infty$ then E is a single point.

- Remark 2.24 The Nested Interval Property might not hold if "closed" is omitted.
- Remark 2.25 The Nested Interval Property might not hold if "bounded" is omitted.
- Theorem 2.26 Bolzano-Weierstrass Theorem
 Every bounded sequence of real numbers has a convergent subsequence.

2.4 Cauchy Sequences

• Definition 2.27 Cauchy

A sequence of points $x_n \in \mathbb{R}$ is said to be Cauchy (in R) if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$n, m \ge N \implies |x_n - x_m| < \epsilon$$

- Remark 2.28 If $\{x_n\}$ is convergent, then $\{x_n\}$ is Cauchy.
- Theorem 2.29 Cauchy Let $\{x_n\}$ be a sequence of real numbers. Then $\{x_n\}$ is Cauchy if and only if $\{x_n\}$ converges (to some point $a \in \mathbb{R}$).
- Remark 2.31 A sequence that satisfies $x_{n+1} x_n \to 0$ is not necessarily Cauchy.

2.5 Limits Supremum and Infimum

• Definition 2.32 Limit Supremum & Infimum Let $\{x_n\}$ be a real sequence. Then the limit supremum of $\{x_n\}$ is the extended real number

$$\limsup_{n \to \infty} x_n := \lim_{n \to \infty} (\sup_{k > n} x_k)$$

and the *limit infimum* of $\{x_n\}$ is the extended real number

$$\liminf_{n \to \infty} x_n := \lim_{n \to \infty} (\inf_{k \ge n} x_k)$$

• Theorem 2.35

Let $\{x_n\}$ be a sequence of real numbers, $s = \limsup_{n \to \infty} x_n$, and $t = \liminf_{n \to \infty} x_n$. Then there are subsequences $\{x_{nk}\}_{k \in \mathbb{N}}$ and $\{x_{\ell j}\}_{j \in \mathbb{N}}$ such that $x_{nk} \to s$ as $k \to \infty$ and $x_{\ell j} \to t$ as $j \to \infty$.

• Theorem 2.36

Let $\{x_n\}$ be a real sequence and x be an extended real number. Then $x_n \to x$ as $n \to \infty$ if and only if

$$\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = x$$

• Theorem 2.37

Let $\{x_n\}$ be a sequence of real numbers. Then $\limsup_{n\to\infty} x_n$ (respectively, $\liminf_{n\to\infty}$) is the largest value (respectively, the smallest value) to which some subsequences of $\{x_n\}$ converges. Namely, if $x_{nk} \to x$ as $k \to \infty$, then

$$\liminf_{n \to \infty} x_n \le x \le \limsup_{n \to \infty} x_n$$

• Remark 2.38 If $\{x_n\}$ is any sequence of real numbers, then

$$\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n$$

• Remark 2.39 A real sequence $\{x_n\}$ is bounded above if and only if $\limsup_{n\to\infty} x_n < \infty$, and is bounded below if and only if $\liminf_{n\to\infty} x_n > -\infty$.

• Theorem 2.40

If $x_n \leq y_n$ for n large, then

$$\limsup_{n \to \infty} x_n \le \limsup_{n \to \infty} y_n \quad \text{and} \quad \liminf_{n \to \infty} y_n \le \liminf_{n \to \infty} y_n$$

3 Functions on R

3.1 Two-Sided Limits

• Definition 3.1 Limits

Let $a \in \mathbb{R}$, let I be an open interval which contains a, and let f be a real function defined everywhere on I except possibly at a. Then f(x) is said to converge to L, as x approaches a, if and only if for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ , f, I, and a) such that

$$0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$$

In this case we write

$$L = \lim_{x \to a} f(x)$$
 or $f(x) \to L$ as $x \to a$

and call L the *limit* of f(x) as x approaches a

• Remark 3.4

Let $a \in \mathbb{R}$, let I be an open interval which contains a, and let f, g be real functions defined everywhere on I except possibly at a. If f(x) = g(x) for all $x \in I \setminus \{a\}$ and $f(x) \to L$ as $x \to a$, then g(x) also has a limit as $x \to a$, and

$$\lim_{x \to a} g(x) = \lim_{x \to a} f(x)$$

• Theorem 3.6 Sequential Characterisation of Limits

Let $a \in \mathbb{R}$, let I be an open interval which contains a, and let f be a real function defined everywhere on I except possibly at a. Then

$$L = \lim_{x \to a} f(x)$$

exists if and only if $f(x_n) \to L$ as $n \to \infty$ for every sequence $\{x_n\} \in I \setminus \{a\}$ which converges to a as $n \to \infty$.

• Theorem 3.8

Suppose that $a \in \mathbb{R}$, that I is an open interval which contains a, and that f, g, are real functions defined everywhere on I except possibly at a. If f(x) and g(x) converge as x approaches a, then so do (f+g)(x), (fg)(x), $(\alpha f)(x)$, and (f/g)(x) (when the limit of g(x) is nonzer). In fact,

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} + \lim_{x \to a} g(x)$$
$$\lim_{x \to a} (\alpha f)(x) = \lim_{x \to a} f(x)$$
$$\lim_{x \to a} (fg)(x) = \lim_{x \to a} \lim_{x \to a} g(x)$$

and (when the limit of g(x) is nonzero)

$$\lim_{x \to a} \left(\frac{f}{g} \right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

• Theorem 3.9 Squeeze Theorem for Functions

Suppose that $a \in \mathbb{R}$, that I is an open interval which contains a, and that f, g, h are real functions defined everywhere on I except possibly at a.

1. If
$$g(x) \le h(x) \le f(x) \ \forall x \in I \setminus \{a\}$$
, and

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L,$$

then the limit of h(x) exists, as $x \to a$, and

$$\lim_{x \to a} h(x) = L.$$

2. If $|g(x)| \leq M \ \forall x \in I \setminus \{a\}$ and $f(x) \to 0$ as $x \to a$, then

$$\lim_{x \to a} f(x)g(x) = 0$$

• Theorem 3.10 Comparison Theorem for Functions

Suppose that $a \in \mathbb{R}$, that I is an open interval which contains a, and that f, g are real functions defined everywhere on I except possibly at a. If f and g have a limit as x approaches a and $f(x) \leq g(x) \ \forall x \in I \setminus \{a\}$, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

3.2 One-Sided Limits and Limits at Infinity

• Definition 3.12 Converge from left \mathcal{E} right Let $a \in \mathbb{R}$ and f be a real function.

1. f(x) is said to converge to L as x approaches a from the right if and only if f is defined on some open interval I with left endpoint a and for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ, f, I , and a) such that

$$a + \delta \in I$$
 and $a < x < a + \delta \implies |f(x) - L| < \epsilon$

in this case we call L the right-hand limit of f at a, and denote it by

$$f(a+) := L =: \lim_{x \to a+} f(x)$$

2. f(x) is said to converge to L as x approaches a from the left if and only if f is defined on some open interval I with left endpoint a and for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ , f, I, and a) such that

$$a + \delta \in I$$
 and $a < x < a + \delta \implies |f(x) - L| < \epsilon$

in this case we call L the *left-hand limit* of f at a, and denote it by

$$f(a-) := L =: \lim_{x \to a-} f(x)$$

• Theorem 3.14

Let f be a real function. Then the limit

$$\lim_{x \to a} f(x)$$

exists and equals L if and only if

$$L = \lim_{x \to a+} f(x) = \lim_{x \to a-} f(x)$$

• Definition 3.15 Convergence

Let $a, L \in \mathbb{R}$ and let f be a real function.

1. f(x) is said to converge to L as $x \to \infty$ if and only if there exists a c > 0 such that $(c, \infty) \subset \text{Dom}(f)$ and given $\epsilon > 0$ there is an $M \in \mathbb{R}$ such that x > M implies $|f(x) - L| < \epsilon$, in which case we shall write

$$\lim_{x \to \infty} f(x) = L \quad \text{or} \quad f(x) \to L \text{ as } x \to \infty$$

Similarly, f(x) is said to converge to L as $x \to -\infty$ if and only if there exists a c > 0 such that $(infty, -c) \subset \text{Dom}(f)$ and given $\epsilon > 0$ there is $M \in \mathbb{R}$ such that x > M implies $|f(x) - L| < \epsilon$, in which case we shall write

$$\lim_{x \to \infty} = L \quad \text{or} \quad f(x) \to L \text{ as } x \to \infty$$

2. The function f(x) is said to converge to ∞ as $x \to a$ if and only if there is an open interval I containing a such that $I \setminus \{a\} \subset \mathrm{Dom}(f)$ and given $M \in \mathbb{R}$ there is a $\delta > 0$ such that $0 \le |x - a| < \delta$ implies f(x) < M, in which case we shall write

$$\lim_{x \to a} f(x) = \infty \quad \text{or} \quad f(x) \to \infty \text{ as } x \to a$$

Similarly, f(x) is said to *converge* to $-\infty$ as $x \to a$ if and only if there is an open interval I containing a such that $I \setminus \{a\} \subset \mathrm{Dom}(f)$ and given $M \in \mathbb{R}$ there is a $\delta > 0$ such that $0 < |x - a| < \delta$ implies f(x) < M, in which case we shall write

$$\lim_{x \to a} f(x) = -\infty$$
 or $f(x) \to -\infty$ as $x \to a$

• Theorem 3.17

Let a be an extended real number, and let I be a nondegenerate open interval which either contains a or has a as one of its endpoints. Suppose further that f is a real function defined on I except possibly at a. Then

$$\lim_{x \to a; x \in I} f(x)$$

exists and equals L if and only if $f(x_n) \to L$ for all sequences $x_n \in I$ which satisfy $x_n \neq a$ and $x_n \to a$ as $n \to \infty$.

3.3 Continuity

• Definition 3.19 Continuous

Let E be a nonempty subset of \mathbb{R} and $f: E \to \mathbb{R}$.

1. f is said to be *continuous* at a point $a \in \mathbb{E}$ if and only if given $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ, f , and a) such that

$$|x-a| < delta$$
 and $x \in E \implies |f(x) - f(a)| < \epsilon$

2. f is said to be continuous on E if and only if f is continuous at every $x \in E$.

• Remark 3.20

Let I be an open interval which contains a point a and $f: I \to \mathbb{R}$. Then f is continuous at $a \in \mathbb{I}$ if and only if

$$f(a) = \lim_{x \to a} f(x)$$

• Theorem 3.21

Suppose that E is a nonempty subset of \mathbb{R} , that $a \in E$, and that $f : E \to \mathbb{R}$. Then the following statements are equivalent:

- 1. f is continuous at $a \in E$.
- 2. If x_n converges to a and $x_n \in E$, then $f(x_n) \to f(a)$ as $n \to \infty$.

• Theorem 3.22

Let E be a nonempty subset of \mathbb{R} and $f,g:E\to\mathbb{R}$. If f,g are continuous at a point $a\in E$ (respectively continuous on the set E), then so are f+g, fg, and αf (for any $\alpha\in\mathbb{R}$). Moreover, f/g is continuous at $a\in E$ when $g(a)\neq 0$ (respectively, on E when $g(x)\neq 0$ $\forall x\in E$).

• Definition 3.23 Composition

Suppose that A and B are subsets of R, that $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$. If $F(A) \subseteq B$ for every $x \in A$, then the *composition* of g with f is the function $g \circ f: A \to \mathbb{R}$ defined by

$$(g \circ f)(x) := g(f(x)), \quad x \in A$$

• Theorem 3.24

Suppose that A and B are subsets of \mathbb{R} , that $f:A\to\mathbb{R}$ and $g:B\to\mathbb{R}$, and that $f(x)\in B$ $\forall x\in A$.

1. If $A := I \setminus \{a\}$, where I is a nondegenerate interval which either contains a or has a as one of its endpoints, if

$$L := \lim_{x \to a: x \in I} f(x)$$

exists and belongs to B, and if g is continuous and $L \in B$, then

$$(g \circ f)(x) = g \left(\lim_{x \to a; x \in I} f(x) \right)$$

2. If f is continuous at $a \in A$ and g is continuous at $f(a) \in B$, then $g \circ f$ is continuous at $a \in A$.

• Definition 3.25 Bounded

Let E be a nonempty subset of \mathbb{R} . A function $f: E \to \mathbb{R}$ is said to be bounded on E if and only if there is an $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in E$, in which case we shall say that f is dominated by M on E.

• Theorem 3.26 Extreme Value Theorem

If I a is closed, bounded interval and $f: I \to \mathbb{R}$ is continuous on I, then f is bounded on I. Moreover if

$$M = \sup_{x \in I} f(x)$$
 and $m = \inf_{x \in I} f(x)$

then there exist points $x_m, x_M \in I$ such that

$$f(x_M) = M$$
 and $f(x_m) = m$

• Remark 3.27 The Existence Value Theorem is false if either "closed" or "bounded" is dropped from the hypotheses.

• Lemma 3.28

Suppose that a < B and that $f : [a,b) \to \mathbb{R}$. If f is continuous at a point $x_0 \in [a,b)$ and $f(x_0) > 0$, then there exist a positive number ϵ and a point $x_1 \in [a,b)$ such that $x_1 > x_0$ and $f(x) > \epsilon \ \forall x \in [x_0,x_1]$.

• Theorem 3.29 Intermediate Value Theorem

Suppose that a < b and that $f : [a, b] \to \mathbb{R}$ is continuous. If y_0 lies between f(a) and f(b), then there is an $x_0 \in (a, b)$ such that $f(x_0) = y_0$.

• Remark 3.34 The composition of two functions $g \circ f$ can be nowhere continuous, even though f is discontinuous only on \mathbb{Q} and g is discontinuous at only one point.

3.4 Uniform Continuity

• Definition 3.35 Uniform continuity

Let E be a nonempty subset of \mathbb{R} and $f: E \to \mathbb{R}$. Then \mho is said to be uniformly continuous on E if and only if for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$|x-a| < delta$$
 and $x, a, \in E \implies |f(x) - f(a)| < \epsilon$

• Lemma 3.38

Suppose that $E \subseteq \mathbb{R}$ and that $f: E \to \mathbb{R}$ is uniformly continuous. If $x_n \in E$ is Cauchy, the $f(x_n)$ is Cauchy.

\bullet Theorem 3.39

Suppose that I is a closed, bounded interval. If $f: I \to \mathbb{R}$ is continuous on I, then f is uniformly continuous on I.

• Theorem 3.40

Suppose that a < b and that $f:(a,b) \to \mathbb{R}$. Then f is uniformly continuous on (a,b) if and only if f can be continuously extended to [a,b]; that is, if and only if there is a continuous function $g:[a,b] \to \mathbb{R}$ which satisfies

$$f(x) = g(x), \quad x \in (a, b)$$

4 Differentiability on R

4.1 The Derivative

• **Definition 4.1** Differentiable

A real function f is said to be differentiable at a point $a \in \mathbb{R}$ if and only if f is defined on some open interval I containing a and

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. In this case f'(a) is called the *derivative* of f at a.

• Theorem 4.2

A real function f is differentiable at some point $a \in \mathbb{R}$ if and only if there exist an open interval I and a function $F: I \to \mathbb{R}$ such that $a \in I$, f is defined on I, F is continuous at a, and

$$f(x) = F(x)(x - a) + f(a)$$

holds for all $x \in I$ in which case F(a) = f'(a).

• Theorem 4.3

A real function f is differentiable at a if and only if there is a function T of the form T(x) := m(x) such that

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - t(h)}{h} = 0$$

• Theorem 4.4

If f is differentiable at a, then f is continuous at a.

• **Definition 4.6** Continuously differentiable

Let I be a nondegenerate interval.

1. A function $f: I \to \mathbb{R}$ is said to be differentiable on I if and only if

$$f_i'(a) := \lim_{x \to a: x \in I} \frac{f(x) - f(a)}{x - a}$$

exists and is finite for every $a \in I$.

2. f is said to be *continuously differentiable* on I if and only if f'_I exists and is continuous on I

• Remark 4.9

f(x) = |x| is differentiable on [0, 1] and on [-1, 0] but not on [-1, 1].

4.2 Differentiability Theorems

• Theorem 4.10

Let f and g be real functions and $\alpha \in \mathbb{R}$. If f and g are differentiable at a, then f+g, αf , $f \cdot g$, and [when $g(a) \neq 0$] f/g are all differentiable at a. In fact,

$$(f+g)'(a) = f'(a) + g'(a)$$

$$(\alpha f)'(a) = \alpha f'(a)$$

$$(f \cdot g)'(a) = g(a)g'(a) + f(a)g'(a)$$

$$\left(\frac{f}{g}\right)'(a) = \frac{g(a)f'(a) - f(a)g'(a)}{g^2(a)}$$

• Theorem 4.11 Chain Rule

Let f and g be real functions. If f is differentiable at a and g is differentiable at f(a), then $g \circ f$ is differentiable at a with

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

4.3 Mean Value Theorem

• Lemma 4.12 Rolle's Theorem

Suppose that $a, b \in \mathbb{R}$ with a < b. If f is continuous on [a, b], differentiable on (a, b), and if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

• Remark 4.13

The continuity hypothesis on Rolle's Theorem cannot be relaxed at even one point in [a, b].

• Remark 4.14

The differentiability hypothesis on Rolle's Theorem cannot be relaxed at even one point in [a, b].

• Theorem 4.15

Suppose that $a, b \in \mathbb{R}$ with a < b.

1. Generalised Mean Value Theorem: If f, g are continuous on [a, b] and differentiable on (a, b), then there is a $c \in (a, b)$ such that

$$g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a))$$

2. Mean Value Theorem: If f is continuous on [a,b] and differentiable on (a,b), then there is a $c \in (a,b)$ such that

$$f(b) - f(a) = f'(c)(b - A)$$

• Definition 4.16 Increasing, Monotone, Decreasing

Let E be a nonempty subset of \mathbb{R} and $f: E \to \mathbb{R}$.

- 1. f is said to be increasing (respectively, strictly increasing) on E if and only if $x_1, x_2 \in E$ and $x_1 < x_2 \implies f(x_1) \le f(x_2)$ [respectively, $f(x_1) < f(x_2)$].
- 2. f is said to be decreasing (respectively, strictly decreasing) on E if and only if $x_1, x_2 \in E$ and $x_1 < x_2 \implies f(x_1) \ge f(x_2)$ [respectively, $f(x_1) > f(x_2)$].
- 3. f is said to be *monotone* (respectively, *strictly monotone*) on E if and only if f is either decreasing or increasing (respectively, either strictly decreasing or strictly increasing) on E.

• Theorem 4.17

Suppose that $a, b \in \mathbb{R}$, with a < b, that f is continuous on [a, b], and that f is differentiable on (a, b).

- 1. If f'(x) > 0 [respectively f'(x) < 0] for all $x \in (a, b)$, then f is strictly increasing (respectively, strictly decreasing) on [a, b].
- 2. If f'(x) = 0 for all $x \in (a, b)$, then f is constant on [a, b].
- 3. If g is continuous on [a, b] and differentiable on (a, b), and if f'(x) = g'(x) for all $x \in (a, b)$, then f g is constant on [a, b].

• Theorem 4.18

Suppose that f is increasing on [a, b]

- 1. If $c \in [a, b)$, then f(c+) exists and $f(c) \leq f(c+)$.
- 2. If $c \in (a, b]$, then f(c-) exists and $f(c-) \leq f(c)$.

• Theorem 4.19

If f is monotone on an interval I, then f has at most countable many points of discontinuity on I.

• Theorem 4.21 Bernoulli's Inequality

Let α be a positive real number. If $0 < \alpha < 1$, then $(1+x)^{\alpha} \le 1 + \alpha x \ \forall x \in [-1, \infty)$, and if $\alpha \ge 1$, then $(1+x)^{\alpha} \ge 1 + \alpha x \ \forall x \in [-1, \infty)$.

• Theorem 4.23 Intermediate Value Theorem for Derivatives

Suppose that f is differentiable on [a, b] with $f'(a) \neq f'(b)$. If y_0 is a real number which lies between f'(a) and f'(b), then there is an $x_0 \in (a, b)$ such that $f'(x_0) = y_0$.

4.4 Taylor's Theorem and L'Hopital's Rule

• Theorem 4.24 Taylor's Formula

Let $n \in \mathbb{N}$ and let a, b be extended real numbers with a < b. If $f : (a, b) \to \mathbb{R}$, and if $f^{(n+1)}$ exists on (a, b), then for each pair of points $(x, x_0 \in (a, b))$ there is a number c between x and x_0 such that

$$f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

• Theorem 4.27 L'Hopital's Rule

Let a be an extended real number and I be an open interval which either contains a or has a as an endpoint. Suppose that f and g are differentiable on $I \setminus \{a\}$ and that $g(x) \neq 0 \neq g'(x) \ \forall x \in I \setminus \{a\}$. Suppose further that

$$A := \lim_{x \to a: x \in I} f(x) = \lim_{x \to a: x \in I} g(x)$$

is either 0 or ∞ . If

$$B := \lim_{x \to a; x \in I} \frac{f'(x)}{g'(x)}$$

exists as an extended real number, then

$$\lim_{x \to a; x \in I} \frac{f(x)}{g(x)} = \lim_{x \to a; x \in I} \frac{f'(x)}{g'(x)}$$

4.5 Inverse Function Theorems

• Theorem 4.32

Let I be a nondegenerate interval and suppose that $f: I \to \mathbb{R}$ is injective. If f is continuous on I, then J := f(I) is an interval, f is strictly monotone on I, and f^{-1} is continuous and strictly monotone on J.

• Theorem 4.33 Inverse Function Theorem

Let I be an open interval and $f: I \to \mathbb{R}$ be injective and continuous. If b = f(a) for some $a \in I$ and if f'(a) exists and is nonzero, then f^{-1} is differentiable at b and $(f^{-1})'(b) = \frac{1}{f'(a)}$.

5 Riemann Integration

5.1 Introduction

5.2 Step functions and their integrals

• **Definition 1** Step function

We say that $\phi : \mathbb{R} \to \mathbb{R}$ is a *step function* if there exist real numbers $x_0 < x_1 < \cdots < x_n$ (for some $n \in \mathbb{N}$) such that

- 1. $\phi(x) = 0$ for $x < x_0$ and $x > x_n$
- 2. ϕ is constant on $(x_{j-1}, x_j)1 \leq j \leq n$.

• Definition 2

If ϕ is a steup function with respect to $\{x_0, x_1, \ldots, x_n\}$ which takes the value c_j on (x_{j-1}, x_j) , then

$$\int \phi := \sum_{j=1}^{n} c_j (x_j - x_{j-1})$$

• Proposition 1

If ϕ and ψ are step functions and α and $\beta \in \mathbb{R}$, then

$$\int (\alpha \phi + \beta \psi) = \alpha \int \phi + \beta \int \psi.$$

5.3 Riemann-integrable functions and their integrals

• **Definition 3** Riemann-integrable

Let $f : \mathbb{R}\ddot{0}\mathbb{R}$. We say that f is Riemann-integrable if for every $\epsilon > 0$ there exist step functions ϕ and ψ such that

$$\phi \leq f \leq \psi$$

and

$$\int \psi - \int \phi < \epsilon$$

• Theorem 1

A function $f: \mathbb{R} \to \mathbb{R}$ is Riemann-integrable if and only if

 $\sup\{\int \phi: \phi \text{ is a step function and } \phi \leq f\} = \inf\{\int \psi: \psi \text{ is a step function and } \psi \geq f\}.$

• Definition 4

If f is Riemann-integrable we define its integral $\int f$ as the common value

$$\int f := \sup \{ \int \phi : \phi \text{ is a step function and } \phi \leq f \} = \inf \{ \int \psi : \psi \text{ is a step function and } \psi \geq f \}.$$

• Theorem 2

A function $f: \mathbb{R} \to \mathbb{R}$ is Riemann-integrable if and only if there exist sequences of step functions ϕ_n and ψ_n such that

$$\phi_n \le f \le \psi_n \ \forall n, \quad \text{and} \quad \int \psi_n - \int \phi_n \to 0$$

If ϕ_n and ψ_n are any sequences of step functions satisfying above, then

$$\int \phi_n \to \int f$$
 and $\int \psi_n \to \int f$

as $n \to \infty$.

• Lemma 1

Let $f: \mathbb{R} \to \mathbb{R}$ be a bounded function with bounded support [a, b]. The following are equivalent:

- 1. f is Riemann-integrable.
- 2. for every $\epsilon > 0$ there exist $a = x_0 < \cdots < x_n = b$ such that, if M_j and m_j denote the supremum and infimum values of f on $[x_{j-1}, x_j]$ respectively, then

$$\sum_{j=1}^{n} (M_j - m_j)(x_j - x_{j-1}) < \epsilon$$

3. for every $\epsilon > 0$ there exist $a = x_0 < \cdots < x_n = b$ such that, with $I_j = (x_{j-1}, x_j)$ for $j \ge 1$,

$$\sum_{j=1}^{n} \sup_{x,y,\in I_j} |f(x) - f(y)||I_j| < \epsilon.$$

For $f: \mathbb{R} \to \mathbb{R}$ a bounded function with bounded support [a, b] and for $a = x_0 < \cdots < x_n = b$, let $I_j = (x_{j-1}, x_j), m_j := \inf_{x \in I_j} f(x)$ and $M_j := \sup_{x \in I_j} f(x)$. Define the lower step function of f with respect to $\{x_0, \ldots, x_n\}$ as

$$\phi_*(x) = \sum_{j=1}^n m_j \chi_{I_j} + \sum_{j=0}^n \chi_{x_j}$$

and the upper step function of f with respect to $\{x_0, \ldots, x_n\}$ as

$$\phi^*(x) = \sum_{j=1}^n M_j \chi_{I_j} + \sum_{j=0}^n \chi_{x_j}$$

Note that ϕ_* and ϕ^* are step functions, and that $\phi_* \leq f \geq \phi^*$.

• Theorem 3

Suppose f and g are Riemann-integrable and α and β are real numbers. Then

1. $\alpha f + \beta g$ is Riemann-integrable and

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g$$

- 2. If $f \geq 0$ then $\int f \geq 0$; if $f \leq g$ then $\int f \leq \int g$.
- 3. |f| is Riemann-integrable and $|\int f| \leq \int |f|$
- 4. $\max\{f,g\}$ and $\min\{f,g\}$ are Riemann-integrable.
- 5. fg is Riemann-integrable.

• Theorem 4

If $g:[a,b]\to\mathbb{R}$ is continuous, and f defined by f(x)=g(x) for $a\leq x\leq b,$ f(x)=0 for $x\notin[a,b]$ then f is Riemann-integrable.

5.4 Fundamental Theorem of Calculus, and Practical Integration

• Theorem 5

Let $g:[a,b]\to\mathbb{R}$ be Riemann-integrable. For $a\leq x\leq b$ let $G(x)=\int_a^x g$. Suppose g is continuous at x for some $x\in[a,b]$. [If x is an endpoint, we mean one-sided continuous.] Then G is differentiable at x and G'(x)=g(x). [If x is an endpoint, we mean one-sided differentiable.]

• Theorem 6

Suppose $f:[a,b]\to\mathbb{R}$ has continuous derivative f' on [a,b]. Then

$$\int_a^b f' = f(b) - f(a).$$

5.5 Integrals and uniform limits of sequences and series of functions

• Theorem 7

Suppose that $f_n : \mathbb{R} \to \mathbb{R}$ is a sequence if Riemann-integrable functions which converges uniformly to a function f. Suppose that f_n and f are zero outside some common interval [a,b]. Then f is Riemann-integrable and

$$\int f = \lim_{n \to \infty} \int f_n.$$

- 5.6 A couple of odds and ends
 - Improper integrals
 - Integral test

6 Infinite Series of Real Numbers

6.1 Introduction

• Definition 6.1 Partial sum Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series with terms a_k .

1. For each $n \in \mathbb{N}$, the partial sum of S of order n is defined by

$$s_n := \sum_{k=1}^n a_k$$

2. S is said to converge if and only if its sequence of partial sums $\{s_n\}$ converges to some $s \in \mathbb{R}$ as $n \to \infty$; that is, if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $n \geq N \Longrightarrow |s_n - s| < \epsilon$. In this case we shall write

$$\sum_{k=1}^{\infty} a_k = s$$

and call s the sum, or value, of the series $\sum_{k=1}^{\infty} a_k$

3. S is said to diverge if and only if its sequence of partial sums $\{s_n\}$ does not converge as $n \to \infty$. When s_n diverges to $+\infty$ as $n \to \infty$, we shall also write

$$\sum_{k=1}^{\infty} a_k = s$$

- Theorem 6.5 Divergence Test Let $\{a_k\}_{k\in\mathbb{N}}$ be a sequence of real numbers. If a_k does not converge to zero, then the series $\sum_{k=1}^{\infty} a_k$ diverges.
- Theorem 6.6 Telescoping Series If $\{a_k\}$ is a convergent real sequence, then

$$sum_{k=1}^{\infty}(a_k - a_{k+1}) = a_1 - \lim_{k \to \infty} a_k$$

• Theorem 6.7 Geometric Series

Suppose that $x \in \mathbb{R}$, that $N \in \{0, 1, ...\}$, and that 0^0 is interpreted to be 1. Then the series $\sum_{k=N}^{\infty} x^k$ converges if and only if |x| < 1, in which case

$$\sum_{k=N}^{\infty} x^k = \frac{x^N}{1-x}$$

In particular,

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}, \quad |x| < 1.$$

• Theorem 6.8 The Cauchy Criterion

Let $\{a_k\}$ be a real sequence. Then the infinite series $\sum_{k=1}^{\infty} a_k$ converges if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$m \ge n \ge N \implies \left| \sum_{k=n}^{n} a_k \right| < \epsilon$$

• Corollary 6.9

Let $\{a_k\}$ be a real sequence. Then the infinite series $\sum_{k=1}^{\infty} a_k$ converges if and only if given $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$n \ge N \implies \left| \sum_{k=n}^{\infty} a_k \right| < \epsilon$$

• Theorem 6.10

Let $\{a_k\}$ and $\{b_k\}$ be real sequences. If $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ are convergent series, then

$$\sum_{i=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$$

and

$$\sum_{k=1}^{\infty} (\alpha a_k) = \alpha \sum_{k=1}^{\infty} a_k$$

for any $\alpha \in \mathbb{R}$.

6.2 Series with Nonnegative Terms

• Theorem 6.11

Suppose that $a_k \geq 0$ for large k. Then $\sum_{k=1}^{\infty} a_k$ converges if and only if its sequence of partial sums $\{s_n\}$ is bounded; that is, if and only if there exists a finite number M > 0 such that

$$\left| \sum_{i=1}^{n} a_k \right| \le M \ \forall n \in \mathbb{N}$$

• Theorem 6.12 Integral Test

Suppose that $f:[1,\infty)\to\mathbb{R}$ is positive and decreasing on $[1,\infty)$. Then $\sum_{k=1}^{\infty}f(k)$ converges if and only if f is improperly integrable on $[1,\infty)$; that is if and only if

$$\int_{1}^{\infty} f(x) \, \mathrm{d}x < \infty$$

• Corollary 6.13 p-Series Test The series

$$\sum_{i=1}^{\infty} \frac{1}{k^p}$$

converges if and only if p > 1.

• Theorem 6.14 Comparison Test Suppose that $0 \le a_k \le b_k$ for large k.

1. If
$$\sum_{k=1}^{\infty} b_k < \infty$$
, then $\sum_{k=1}^{\infty} a_k < \infty$.

2. If
$$\sum_{k=1}^{\infty} b_k = \infty$$
, then $\sum_{k=1}^{\infty} a_k = \infty$.

• Theorem 6.16 Limit Comparison Test

Suppose that $a_k \geq 0$, that $b_k > 0$ for large k, and that $L := \lim_{n \to \infty} \frac{a_n}{b_n}$ exists as an extended real number.

1. If
$$0 < L < \infty$$
, then $\sum_{k=1}^{\infty} a_k$ converges if and only if $\sum_{k=1}^{\infty} b_k$ converges.

2. If
$$L = 0$$
 and $\sum_{k=1}^{\infty} b_k$ converges then $\sum_{k=1}^{\infty} a_k$ converges.

3. If
$$L = \infty$$
 and $\sum_{k=1}^{\infty} b_k$ diverges then $\sum_{k=1}^{\infty} a_k$ diverges.

6.3 Absolute Convergence

- **Definition 6.18** Absolute & Conditional Convergence Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series.
 - 1. S is said to converge absolutely if and only if $\sum_{k=1}^{\infty} |a_k| < \infty$
 - 2. S is said to converge conditionally if and only if S converges but not absolutely.

• Remark 6.19

A series $\sum_{k=1}^{\infty} a_k$ converges absolutely if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$m > n \ge N \implies \sum_{k=1}^{\infty} |a_k| < \epsilon$$

• Remark 6.20

If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then $\sum_{k=1}^{\infty} a_k$ converges, but not conversely. In particular, there exist conditionally convergent series.

• Definition 6.21 Limit supremum

The *limit supremum* of a sequence of real numbers $\{x_k\}$ is defined to be

$$\limsup_{k \to \infty} x_k := \lim_{n \to \infty} \left(\sup_{k > n} x_k \right).$$

• Remark 6.22

Let $x \in \mathbb{R}$ and $\{x_k\}$ be a real sequence.

- 1. If $\limsup_{k \to \infty} x_k < x$, then $x_k < x$ for large k.
- 2. If $\limsup_{k\to\infty} x_k > x$, then $x_k > x$ for infinitely many ks.
- 3. If $x_k \to x$ as $x \to \infty$, then $\limsup_{k \to \infty} x_k = x$.

• Theorem 6.23 Root Test

Let $a_k \in \mathbb{R}$ and $r := \lim \sup_{k \to \infty} |a_k|^{\frac{1}{k}}$.

- 1. If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.
- 2. If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.

• Theorem 6.24 Ratio test

Let $a_k \in \mathbb{R}$ with $a_k \neq 0$ for large k and suppose that

$$r = \lim_{k \to \infty} \frac{|a_{k+1}|}{|a_k|}$$

exists as an extended real number.

- 1. If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.
- 2. If r > 1, then $\sum_{k=1}^{\infty} a_k$ diverges.
- Remark 6.25 The Root and Ratio tests are inconclusive when r = 1.

• **Definition 6.26** Rearrangement

A series $\sum_{j=1}^{\infty} b_j$ is called a rearrangement of a series $\sum_{k=1}^{\infty} a_k$ if and only if there is an injection $f: \mathbb{N} \to \mathbb{N}$ such that

$$b_{f(k)} = a_k, \quad k \in \mathbb{N}$$

• Theorem 6.27

If $\sum_{k=1}^{\infty} a_k$ converges absolutely and $\sum_{j=1}^{\infty} b_j$ is any rearrangement of $\sum_{k=1}^{\infty} a_k$, then $\sum_{j=1}^{\infty} b_j$ converges and

$$\sum_{k=1}^{\infty} a_k = \sum_{j=1}^{\infty} b_j$$

- Lemma 6.28
- Theorem 6.29 Riemann

6.4 Alternating Series

• Theorem 6.30 Abel's Formula

Let $\{a_k\}_{k\in\mathbb{N}}$ and $\{b_k\}_{k\in\mathbb{N}}$ be real sequences, and for each pair of integers $n\geq m\geq 1$ set

$$A_{n,m} := \sum_{k=m}^{n} a_k$$

Then

$$\sum_{k=m}^{n} a_k b_k = A_{n,m} b_n - \sum_{k=m}^{n-1} A_{k,m} (b_{k+1} - b_k)$$

for all integers $n > m \ge 1$.

• Theorem 6.31 Dirichlet's Test

Let $a_k, b_k \in \mathbb{R}$ for $k \in \mathbb{N}$. If the sequence of partial sums $s_n = \sum_{k=1}^n a_k$ is bounded an $b_k \downarrow 0$ as $k \to \infty$, then $\sum_{k=1}^{\infty} a_k b_k$ converges.

• Corollary 6.32 Alternating Series Test

If $a_k \downarrow 0$ as $k \to \infty$, then

$$\sum_{k=1}^{\infty} (-1)^k a_k$$

converges.

7 Infinite Series of Functions

7.1 Uniform Convergence of Sequences

• **Definition 7.1** Pointwise Convergence

Let E be a nonempty subset of \mathbb{R} . A sequence of functions $f_n: E \to \mathbb{R}$ is said to converge pointwise on E if and only if $f(x) = \lim_{n \to \infty} f_n(x)$ exists for each $x \in E$.

• Remark 7.2

Let E be a nonempty subset of \mathbb{R} . Then a sequence of functions f_n converges pointwise on E, as $n \to \infty$ if and only if for every $\epsilon > 0$ and $x \in E$ there is an $N \in \mathbb{N}$ (which may depend on x as well as ϵ) such that

$$n \ge N \implies |f_n(x) - f(x)| < \epsilon$$

• Remark 7.3

The pointwise limit of continuous (respectively, differentiable) functions is not necessarily continuous (respectively, differentiable).

• Remark 7.4

The pointwise limit of integrable functions is not necessarily integrable.

• Remark 7.5

There exist differentiable functions f_n and f such that $f_n \to f$ pointwise on [0,1] but

$$\lim_{n \to \infty} f'_n(x) \neq \left(\lim_{n \to \infty} f_n(x)\right)'$$

for x = 1.

• Remark 7.6

There exist continuous functions f_n and f such that $f_n \to f$ pointwise on [0,1] but

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, \mathrm{d}x \neq \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) \, \mathrm{d}x$$

• **Definition 7.7** *Uniform Convergence*

Let E be a nonempty subset of \mathbb{R} . A sequence of function $f_n: E \to \mathbb{R}$ is said to *converge* uniformly on E to a function f if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$n > N \implies |f_n(x) - f(x)| < \epsilon$$

for all $x \in E$.

• Theorem 7.9

Let E be a nonempty subset of \mathbb{R} and suppose that $f_n \to f$ uniformly on E, as $n \to \infty$. If f_n is continuous at some $x_0 \in E$, then f is continuous at $x_0 \in E$.

• Theorem 7.10

Suppose that $f_n \to f$ uniformly on a closed interval [a, b], if each f_n is integrable on [a, b], then so is f and

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \left(\lim_{n \to \infty} f_n(x) \right) dx$$

In fact, $\lim_{n\to\infty} \int_a^x f_n(t) dt = \int_a^x f(t) dt$ uniformly for $x \in [a, b]$.

• Lemma 7.11 Uniform Cauchy Criterion

Let E be a nonempty subset of \mathbb{R} and let $f_n: E \to \mathbb{R}$ be a sequence of functions. Then f_n converges uniformly on E if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$n, m > N \implies |f_n(x) - f_m(x)| < \epsilon$$

for all xinE.

• Theorem 7.12

Let (a, b) be a bounded interval and suppose that f_n is a sequence of funtions which converges at some $x_0 \in (a, b)$. If each f_n is differentiable on (a, b), and f'_n converges uniformly on (a, b) as $n \to \infty$, the f_n converges uniformly on (a, b) and

$$\lim_{n \to \infty} f'_n(x) = \left(\lim_{n \to \infty} f_n(x)\right)'$$

for each $x \in (a, b)$.

7.2 Uniform Convergence of Series

• Definition 7.13 Convergence

Let f_k be a sequence of real functions defined on some set E and set

$$s_n(k) := \sum_{k=1}^n f_k(x), \quad x \in E, n \in \mathbb{N}$$

- 1. The series $\sum_{k=1}^{n} f_k(x)$ is said to *converge pointwise* on E if and only if the sequence $s_n(x)$ converges pointwise on E as $n \to \infty$.
- 2. The series $\sum_{k=1}^{n} f_k(x)$ is said to *converge uniformly* on E if and only if the sequence $s_n(x)$ converges uniformly on E as $n \to \infty$.
- 3. The series $\sum_{k=1}^{n} f_k(x)$ is said to converge absolutely (pointwise) on E if and only if $\sum_{k=1}^{n} |f_k(x)|$ converges for each $x \in E$.

• Theorem 7.14

Let E be a nonempty subset of \mathbb{R} and let $\{f_k\}$ be a sequence of real functions defined on E.

- 1. Suppose that $x_0 \in E$ and that each f_k is continuous at $x_0 \in E$. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on E, then f is continuous at $x_0 \in E$.
- 2. Term-by-term integration. Suppose that E = [a, b] and that each f_k is integrable on [a, b]. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on [a, b], then f is integrable on [a, b] and

$$\int_a^b \sum_{k=1}^\infty f_k(x) dx = \sum_{k=1}^\infty \int_a^b f_k(x) dx.$$

3. Term-by-term differentiation. Suppose that E is a bounded, open interval and that each f_k is differentiable on E. If $\sum_{k=1}^{\infty} f_k$ converges at some $x_0 \in E$, and $\sum_{k=1}^{f} f_k$ converges uniformly on E, then $f := \sum_{k=1}^{\infty} f_k$ converges uniformly on E, f is differentiable on E, and

$$\left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f'_k(x)$$

for $x \in E$.

• Theorem 7.15 Weierstrass M-Test

Let E be a nonempty subset of \mathbb{R} , let $f_k : E \to \mathbb{R}, k \in \mathbb{N}$, and suppose that $M_k \geq 0$ satisfies $\sum_{k=1}^{\infty} M_k < \infty$. If $|f_k(x)| \leq M_k$ for $k \in \mathbb{N}$ and $x \in E$, then $\sum_{k=1}^{\infty} f_k$ converges absolutely and uniformly on E.

• Theorem 7.16* Dirichlet's Test for Uniform Convergence Let E be a nonempty subset of \mathbb{R} and suppose that $f_k, g_k : E \to \mathbb{R}, k \in \mathbb{N}$. If

$$\left| \sum_{k=1}^{n} f_k(x) \right| \le M < \infty$$

for $n \in \mathbb{N}$ and $x \in E$, and if $g_k \downarrow 0$ uniformly on E as $k \to \infty$, then $\sum_{k=1}^{\infty} f_k g_k$ converges uniformly on E.

7.3 Power Series

• Definition Power Series

Let (a_n) be a sequence of real numbers, and $c \in \mathbb{R}$. A power series is a series of the form

$$\sum_{n=1}^{\infty} a_n (x-c)^n$$

With a_n being the *coefficients* and c its centre.

• **Definition** Radius of Convergence

The radius of convergence R of the power series

$$\sum_{n=1}^{\infty} a_n (x-c)^n$$

is defined by

$$R = \sup\{r \ge 0 : (a_n r^n) \text{ is bounded}\}$$

unless $(a_n r^n)$ is bounded for all $r \ge 0$, in which case we declare $R = \infty$.

• Theorem 1

Suppose the radius of convergence R satisfies $0 < R < \infty$. If |x - c| < R, the power series converges absolutely. If |x - c| > R, the power series diverges.

• Theorem 2

Assume that R > 0. Suppose that 0 < r < R. Then the series converges uniformly and absolutely on $|x - c| \le r$ to a continuous function f. hence

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

defines a continuous function $f:(cR,c+R)\to\mathbb{R}$.

• Lemma

The two power series $\sum_{n=1}^{\infty} a_n(x-c)^n$ and $\sum_{n\to\infty} na_n(x-c)^{n-1}$ have the same radius of convergence.

• Theorem 3

Suppose the radius of convergence of the power series is R. Then the function

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

is infinitely differentiable on |x-c| < R, and for such x,

$$f'(x) = \sum_{n=0}^{\infty} na_n(x-c)^{n-1}$$

and the series converges absolutely, and also uniformly on $[c-r,c+r] \forall r < R$. Moreover

$$a_n = \frac{f^{(n)}(c)}{n!}$$

8 Metric Spaces

8.1 Introduction

• **Definition 10.1** *Metric Space*

A metric space is a set X together with a function $\rho: X \times X \to \mathbb{R}$ (called the metric of ρ) which satisfies the following properties for all $x, y, z \in X$:

Positive Definite
$$\rho(x,y) \ge 0$$
 with $\rho(x,y) = 0 \iff x = y$
Symmetric $\rho(x,y) = \rho(y,x)$
Triangle Inequality $\rho(x,y) \le \rho(x,z) < \rho(z,y)$

• Definition 10.7 Ball

Let $a \in X$ and r > 0. Then open ball (in X) with centre a and radius r is the set

$$B_r(a) := \{ x \in X : \rho(x, a) < r \}$$

and the closed ball (in X) with centre a and radius r is the set

$$\{x \in X : \rho(x, a) \le r\}$$

- Definition 10.8 Open & Closed
 - 1. A set $V \subseteq X$ is said to be *open* if and only if for every $x \in V$ there is an $\epsilon > 0$ such that the open ball $B_{\epsilon}(x)$ is contained in V.
 - 2. A set $E \subseteq X$ is set to be *closed* if and only if $E^c := X \setminus E$ is open.
- Remark 10.9 Every open ball is open, and every closed ball is closed.
- Remark 10.10 If $a \in X$, then $X \setminus \{a\}$ is open, and $\{a\}$ is closed.
- Remark (10.11) In an arbitrary metric space, the empty set \emptyset and the whole space X are both open and closed.
- **Definition 10.13** Convergence, Cauch, & Boundedness Let $\{x_n\}$ be a sequence in X.
 - 1. $\{x_n\}$ converges (in X) if there is a point $a \in X$ (called the *limit* of x_n) such that for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$n \ge N \implies \rho(x_n, a) < \epsilon.$$

2. $\{x_n\}$ is Cauchy if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$n, m \ge N \implies \rho(x_n, x_m) < \epsilon$$
.

3. $\{x_n\}$ is bounded if there is an M>0 and a $b\in X$ such that $\rho(x_n,b)\leq M$ for all $n\in\mathbb{N}$.

• Theorem 10.14

Let X be a metric space.

- 1. A sequence X can have at most one limit.
- 2. If $x_n \in X$ converges to a and $\{x_{nk}\}$ is any subsequence of $\{x_n\}$, then x_{nk} converges to a as $k \to \infty$.
- 3. Every convergent sequence X is bounded.

4. Every convergent sequence in X is Cauchy.

• Theorem 10.16

Let $E \subseteq X$. Then E is closed if and only if the limit of every convergent sequence $x_k \in E$ satisfies

$$\lim_{k \to \infty} x_k \in E.$$

- Remark 10.17 The discrete space contains bounded sequence which have no convergent subsequences.
- Remark 10.18 The metric space $X = \mathbb{Q}$ contains Cauchy sequences which do not converge.

• Definition 10.19 Completeness

A metric space X is said to be *complete* if and only if every Cauchy sequence $x_n \in X$ converges to some point in X.

• Remark 10.20

By 10.19, a complete metric space X satisfies two properties:

- 1. Every Cauchy sequence in X converges;
- 2. the limit of every Cauchy sequence in X stay in X.

• Theorem 10.21

Let X be a complete metric space E be a subset of X. Then E (as a subspace) is complete if and only if E as a (subset) is closed.

8.2 Limits of Functions

• Definition 10.22 Cluster Point

A point $a \in X$ is said to be a *cluster point* (of X) if and only if $B_{\delta}(a)$ contains infinitely many points for each $\delta > 0$.

• Definition 10.25 Converge

Let a be a cluster point of X and $f: X \setminus \{a\} \to Y$. Then f(x) is said to converge to L, as x approaches a, if and only if for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$0 < \rho(x, a) < \delta \implies \tau(f(x), L) < \epsilon.$$

In this case we write $f(x) \to L$ as $x \to a$, or

$$L = \lim_{x \to a} f(x),$$

and call L the *limit* of f(x) as x approaches a.

• Theorem 10.26

Let a be a cluster point of X and $f, g: X \setminus \{a\} \to Y$.

1. If $f(x) = g(x) \ \forall x \in X \setminus \{a\}$ and f(x) has a limit as $x \to a$, then g(x) also has a limit as $x \to a$, and

$$\lim_{x \to a} g(x) = \lim_{x \to a} f(x).$$

2. Sequential characterisation of limits. The limit

$$L := \lim_{x \to a} f(x)$$

exists if and only if $f(x_n) \to L$ as $n \to \infty$ for every sequence $x_n \in X \setminus \{a\}$ which converges to a as $n \to \infty$.

3. Suppose that $Y = \mathbb{R}^n$. If f(x) and g(x) have a limit as x approaches a, then so do $(f+g)(x), (f \cdot g)(x), (\alpha f)(x)$, and (f/g)(x) [when $Y = \mathbb{R}$ and the limit of g(x) is nonzero]. In fact,

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$$
$$\lim_{x \to a} (\alpha f)(x) = \alpha \lim_{x \to a} f(x),$$
$$\lim_{x \to a} (f \cdot)(x) = \lim_{x \to a} \cdot \lim_{x \to a} g(x)$$

and [when $Y = \mathbb{R}$ and the limit of g(x) is nonzero]

$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

4. Squeeze Theorem for Functions. Suppose that $Y = \mathbb{R}$. If $h : X \setminus \{a\} \to \mathbb{R}$ satisfies $g(x) \leq h(x) \leq f(x) \ \forall x \in X \setminus \{a\}$, and

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L$$

then the limit of h exists, as $x \to a$, and

$$\lim_{x \to a} h(x) = L$$

5. Comparison Theorem for Functions. Suppose that $Y = \mathbb{R}$. If $f(x) \leq g(x) \ \forall X \setminus \{a\}$, and if f and g have a limit as x approaches a, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

• Definition 10.27 Continuity

Let E be a nonempty subset of X and $f: E \to Y$.

1. f is said to be *continuous* at a point $a \in E$ if and only if given $\epsilon > 0$ there is a $\delta > 0$ such that

$$\rho(x,a) < \delta \text{ and } \in E \implies \tau(f(x),f(a)) < \epsilon.$$

2. f is said to be *continuous on* E if and only if f is continuous at every $x \in E$.

• Theorem 10.28

Let E be a nonempty subset of X and $f, g: E \to Y$.

- 1. f is continuous at $a \in E$ if and only if $f(x_n) \to f(a)$, as $n \to \infty$, for all sequences $x_n \in E$ which converge to a.
- 2. Suppose that $Y = \mathbb{R}^n$. If f, g are continuous at a point $a \in E$ (respectively continuous on a set E), then so are f + g, $f \cdot g$, and αf (for any $\alpha \in \mathbb{R}$). Moreover, in the case $Y = \mathbb{R}$, f/g is continuous at $a \in E$ when $g(a) \neq 0$ [respectively, on E when $g(x) \neq 0$, $\forall x \in E$].

• Theorem 10.29

Suppose that X, Y, and Z are metric space and that a is a cluster point of X. Suppose further that $f: X \to Y$ and $g: f(X) \to Z$. If $f(x) \to L$ as a $x \to a$ and g is continuous at L, then

$$\lim_{x \to a} (g \circ f)(x) = g \left(\lim_{x \to a} f(x) \right).$$

• **Definition 10.30** Bolzano-Weierstrass Property

X is said to satisfy the Bolzano-Weierstrass Property if and only if every bounded sequence $x_n \in X$ has a convergent subsequence.

8.3 Interior, Closure, and Boundary

• Theorem 10.31

Let X be a metric space.

1. If $\{V_{\alpha}\}_{{\alpha}\in A}$ is any collection of open sets in X, then

$$\bigcup_{\alpha \in A} V_{\alpha}$$

is open.

2. If $\{V_k : k = 1, 2, ..., n\}$ is a finite collection of open sets in X, then

$$\bigcap_{k=1}^{n} V_k := \bigcap_{k \in \{1, 2, \dots, n\}} V_k$$

is open.

3. If $\{E_{\alpha}\}_{{\alpha}\in A}$ is any collection of closed sets in X, then

$$\bigcap_{\alpha \in A} E_{\alpha}$$

is closed.

4. If $\{E_k : k = 1, 2, ..., n\}$ is a finite collection of closed sets in X, then

$$\bigcup_{k=1}^{n} E_k := \bigcup_{k \in \{1,2,\dots,n\}} E_k$$

is closed.

5. If V is open in X and E is closed in X, then $V \setminus E$ is open and $E \setminus V$ is closed.

• Remark 10.32

Statements 2 and 4 of *Theorem 10.31* are false if arbitrary collections are used in place of finite collections.

• Definition 10.33 Interior & Closure

Let E be a subset of a metric space X.

1. The *interior* of E is the set

$$E^O := \bigcup \{V : V \subseteq E \text{ and } V \text{is open in } X\}.$$

2. The *closure* of E is the set

$$\overline{E}:=\bigcup\{B:B\supseteq E\text{ and }B\text{ is closed in }X\}.$$

• Theorem 10.34

Let $E \subseteq X$. Then

1.
$$E^O \subseteq E \subseteq \overline{E}$$
,

2. if V is open and $V \subseteq E$, then $V \subseteq E^0$, and

3. if C is closed and $C \supseteq E$, then $C \supseteq \overline{E}$.

• **Definition 10.37** Boundary

Let $E \subseteq X$. The boundary of E is the set

$$\partial E := \{x \in X : \forall r > 0, \ B_r(x) \cap E \neq \emptyset \text{ and } B_r(x) \cup E^c \neq \emptyset\}.$$

[We refer to the last two conditions in the definition of ∂E by saying $B_r(x)$ intersects E and E^c .]

• Theorem 10.39

Let $E \subseteq X$. Then

$$\partial E = \overline{E} \setminus E^0.$$

• Theorem 10.40

Let $A, B \subseteq X$. Then

1.
$$(A \cup B)^O \supseteq A^O \cup B^O$$
, $(A \cap B)^O = A^O \cap B^O$,

2.
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
, $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$,

3.
$$(A \cup B) \subseteq A \cup B$$
, and $(A \cap B) \subseteq (A \cap B) \cup (B \cap A) \cup (A \cap B)$.

8.4 Compact Sets

• Definition 10.41 Covering

Let $\mathcal{V} = \{V_{\alpha}\}_{{\alpha} \in A}$ be a collection of subsets of a metric space X and suppose that E is a subset of X.

1. V is said to cover E if and only if

$$E \subseteq \bigcup_{\alpha \in A} V_{\alpha}.$$

- 2. \mathcal{V} is said to be an open covering of E if and only if \mathcal{V} covers E and each V_{α} is open.
- 3. Let \mathcal{V} be a covering of E. \mathcal{V} is said to have a *finite* (respectively *countable*) subcovering if and only if there is a finite (respectively, countable) subset A_0 of A such that $\{V_{\alpha}\}_{{\alpha}\in A_0}$ covers E.

• Definition 10.42 Compact

A subset H of a metric space X is said to be *compact* if and only if every open covering of H has a finite subcover.

- Remark 10.43 The empty set and all finite subsets of a metric space are compact.
- Remark 10.44 A compact set is always closed.
- Remark 10.45 A closed subset of a compact set is compact.

• Theorem 10.46

Let H be a subset of a metric space X. If H is compact, then H is closed and bounded.

• Remark 10.47 The converse of *Theorem 10.46* is false for arbitrary metric spaces

• Definition 10.48 Separable

A metric space X is said to be *separable* if and only if it contains a countable dense subset (i.e. if and only if there is a countable subset Z of X such that for every point $a \in X$ there is a sequence $x_k \in Z$ such that $x_k \to a$ as $k \to \infty$).

• Theorem 10.49 Lindelöf

Let E be a subset of a separable metric space X. If $\{V_{\alpha}\}_{{\alpha}\in A}$ is a collection of open sets and $E\subseteq\bigcup_{{\alpha}\in A}V_{\alpha}$, then there is a countable subset $\{\alpha_1,\alpha_2,\ldots\}$ of A such that

$$E \subseteq \bigcup_{k=1}^{\infty} V_{\alpha_k}$$

• Theorem 10.50 Heine-Borel

Let X be a separable metric space which satisfies the *Bolzano-Weierstrass Property*, and H be a subset of X. Then H is compact if and only if it is closed and bounded.

• Definition 10.51 Uniform Continuity

Let X be a metric space, E be a nonempty subset of X, and $f: E \to Y$. Then f is said to be uniformly continuous on E if and only if given $\epsilon > 0$ there is a $\delta > 0$ such that

$$\rho(x, a) < \delta \text{ and } x, a \in E \implies \tau(f(x), f(a)) < \epsilon.$$

• Theorem 10.52

Suppose that E is a compact subset of X and that $f: X \to Y$. Then f is uniformly continuous on E if and only if f is continuous on E.

8.5 Connected Sets

• Definition 10.53 Separate & Connected

Let X be a metric space.

- 1. A pair of nonempty open sets U, V in X is said to separate X if and only if $X = U \cup V$ and $U \cap V = \emptyset$.
- 2. X is said to be *connected* if and only if X cannot be separated by any pair of open sets U, V.

• Definition 10.54 Relatively open & closed

Let X be a metric space and $E \subseteq X$.

- 1. A set $U \subseteq E$ is said to be *relatively open* in E if and only if there is a set V open in X such that $U = E \cup V$.
- 2. A set $A \subseteq E$ is said to be *relatively closed* in E if and only if there is a set C closed in X such that $A = E \cap V$.

• Remark 10.55

Let $E \subseteq X$. If there exists a pair of open sets A, B in X which separate E, then E is not connected.

• Theorem 10.56

A subset E of \mathbb{R} is connected if and only if E is an interval.

8.6 Continuous Functions

• Theorem 10.58

Suppose that $f: X \to Y$. Then f is continuous if and only if $f^{-1}(V)$ is open in X for every open V in Y.

• Corollary 10.59

Let EX and $f: E \to Y$. Then f is continuous on E if and only if $f^{-1}(V) \cap E$ is relatively open in E for all open sets V in Y.

• Theorem 10.61

If H is compact in X and $f: H \to Y$ is continuous on H, then f(H) is compact in Y.

• Theorem 10.62

If E is connected in X and $f: E \to Y$ is continuous on E, then f(E) is connected in Y.

• Theorem 10.63 Extreme Value Theorem

Let H be a nonempty, compact subset of X and suppose that $f: H \to \mathbb{R}$ is continuous. Then

$$M := \sup\{f(x) : x \in H\}$$
 and $m := \inf\{f(x) : x \in H\}$

are finite real numbers and there exist points $x_M, x_m \in H$ such that $M = f(x_M)$ ad $m = f(x_m)$.

• Theorem 10.64

if H is a compact subset of X and $f: H \to Y$ is injective and continuous, then f^{-1} is continuous on f(H).

9 Contraction Mapping & ODEs

9.1 Banach's Contraction Mapping Theorem

• **Definition** Contraction

Let (X, d) be a metric space. A function $f: X \to X$ is called a *contraction* if there exists a number α with $0 < \alpha < 1$ such that

$$d(f(x), f(y)) \le \alpha d(x, y) \ \forall x, y \in X.$$

Note the target space and the domain mus be the same.

• Remark

- 1. It is really important that α be strictly less than 1. It's also really important that we have $d(f(x), f(y)) \leq \alpha d(x, y)$ and not just $d(f(x), f(y)) < d(x, y) \ \forall x, y \in X$. So $f(x) = \cos(x)$ is not a contraction on \mathbb{R} .
- 2. The constant $\alpha < 1$ is called the *contraction constant* of f.

• Theorem

If (X, d) is a complete metric space and if $f: X \to X$ is a contraction, then there is a unique point $x \in X$ such that f(x) = x.

• Remarks

- 1. It's really important that X be complete.
- 2. It's really important that the image of X under f is contained in X.
- 3. A point x such that f(x) = x is called a fixed point of f.

• Remarks

9.2 Existence and uniqueness for solutions to ODEs

• **Definition** Lipschitz Condition

Suppose $A \in \mathbb{R}$, $\rho, r > 0$, and $F : [A - \rho, A + \rho] \times [-r, r] \to \mathbb{R}$ is continuous. Suppose also that for all $x, y \in [A - \rho, A + \rho]$ and all $t \in [-r, r]$ we have, for some M > 0

$$|F(x,t) - F(y,t)| \le M|x - y|$$

• Theorem Picard

Suppose F satisfies the Lipschitz Condition. Then there exists an s > 0 such that the ODE

$$\frac{\mathrm{d}x}{\mathrm{d}t} = F(x, t)$$
$$x(0) = A$$

has a unique solution x(t) for |t| < s.