Versuch 351

Fourier- Analyse und Sythese

 ${\bf Stefanie\ Hilgers} \\ {\bf Stefanie. Hilgers@tu-dortmund. de}$

Lara Nollen Lara.Nollen@tu-dortmund.de

Durchführung: 14.11.2018 Abgabe: 21.11.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1 Theorie

2 Durchführung

3 Auswertung

Die bei 0 mbar gemessene Position des Maximums entspricht einer Energie von ca. 4 MeV. Unter der Annahme einer linearen Energieskala können mit diesem Startwert die anderen Energien E_{α} berechnet werden, die Ergebnisse sind in Tabelle 1 zu sehen. Dort sind auch die nach Formel ?? berechneten effektiven Längen eingetragen, für die Berechneung wird der bei der ersten Messung eingestelle Abstand von $x_0=2,5\,\mathrm{cm}$ verwendet.

Tabelle 1: Zählrate und Energiemaximum bei variierem Druck, Abstand a=2,5cm

Druck ρ / mbar	Energiemaximum	Zählrate N	$EnergieE_{\alpha}$	effektive Länge $x/$ cm
0	540	92505	4,00	0,00
50	530	91459	3,93	$0,\!12$
100	525	89723	3,88	$0,\!25$
150	515	88232	3,81	$0,\!37$
200	521	91197	3,86	0,49
250	521	89515	3,86	0,62
300	505	88548	3,74	0,74
350	489	82659	3,62	0,86
400	486	84531	3,60	1,00
450	480	82048	$3,\!55$	1,11
500	467	78730	3,46	1,23
550	458	75023	3,39	1,36
600	451	69593	3,34	1,48
650	440	65145	3,26	1,60
700	429	64647	$3,\!17$	1,73
750	414	54482	$3,\!07$	1,85
800	406	52385	3,00	1,97
850	-	32376	-	2,10
900	-	27305	-	$2,\!22$
950	-	20768	-	2,34
1000	-	9593	-	$2,\!47$

Wird die Zählrate gegen die effektive Länge aufgetragen, so ergibt sich Abbildung ??.

Abbildung 1

Die mittlere Reichweite der α -Teilchen wird bestimmt, indem der lineare Teil der Funktion gefittet wird, anschließend wird der Geradenschnittpunkt mit N/2 gleichgesetzt. Durch umstellen ergibt sich für die mittlere Reichweite die Formel:

$$R_m = \frac{N/2 - b}{m},\tag{1}$$

woraus sich die mittlere Reichweite von $(1,93\pm0,23)\,\mathrm{cm}$ ergibt. Aus Gleichung ?? ergibt sich somit eine Energie von

$$E_{\alpha} = (0.122 \pm 0.029) \,\text{MeV}.$$

In Abbildung ?? wird die Energie gegen die effektive Länge aufgetragen, aus der linearen Ausgleichsgeraden wird die Ableitung dE/dx bestimmt, die den Energieverlust -dE/dx darstellt. Es ergibt sich ein Energieverlust von:

$$\frac{-dE}{dx} = (0.49 \pm 0.02) \,\text{MeV}.$$

Für die zweite Messreihe, dessen Messwerte in Tabelle \ref{legren} zu sehen sind, wird ebenfalls die Zählrate N gegen die effektive Länge x aufgetragen. An den Messwerten ist zu erkennen, das die Werte für die Zählrate deutlich langsamer abfallen als das bei der ersten Messreihe der Fall ist. Wie in Abbildung \ref{legren} zu sehen überschneiden sich die Messwerte nicht mit der \ref{legren} Zu sehen überschneiden sich die Energie nicht bestimmt werden.

Abbildung 2

Die Messergebnisse des zweiten Versuchsteils sind in Tabelle ?? dargestellt und werden in Abbildung ?? in einem Histogramm veranschaulicht.

plot4.pdf

Abbildung 3

Es werden sowohl die Gauß-, als auch die Poissonverteilung eingezeichnet, um diese mit den Messwerten vergleichen zu können. Da die Poissonverteilung von dem Mittelwert der Messwerte und die Gaußverteilung von dem Mittelwert \bar{N} und der Varianz σ^2 abhängen werden diese ermittelt. Dabei ist die VArianz das Quadrat der Standardabweichung σ .

$$\bar{N} = 1015,52$$
 $\sigma^2 = 10,88$

4 Diskussion