Stability selection:

enhanced variable selection and network models

Session 1/3

Barbara Bodinier

Computational Epidemiology
MSc Health Data Analytics and Machine Learning

4 March 2021

Imperial College London

Towards stability analyses

- Penalised approaches to variable selection: e.g. identification of risk factors for COVID-19 and other cause mortality (logistic-LASSO)
- Resampling approaches to investigate the stability in selection of the predictors

2/12

Towards stability analyses

- Penalised approaches to variable selection: e.g. identification of risk factors for COVID-19 and other cause mortality (logistic-LASSO)
- Resampling approaches to investigate the stability in selection of the predictors

⇒ How to characterise "stable" findings? That is, how to choose a threshold in selection proportion above which the selection is considered stable?

Stability selection

- Concept of stability selection introduced by Meinshausen and Bühlmann in 2010 in the context of penalised approaches
- Combination of selection algorithm (e.g. LASSO) and resampling procedure to identify stable features (i.e. with high selection proportion)
- Let $p_{\lambda}(j)$ be the selection probability of edge j over resampling iterations of the graphical LASSO with penalty parameter λ
- The stability selection model $V_{\lambda,\pi}$ is made of edges with selection probability over a threshold π :

$$V_{\lambda,\pi} = \{j : p_{\lambda}(j) \geq \pi\}$$

 \Rightarrow The stability selection model only includes stable features

 \Rightarrow The model is controlled by two parameters (λ, π)

Error control in stability selection

 In the same paper, Meinshausen and Bühlmann derived an upper-bound of the expected number of false positives:

$$U_{\lambda,\pi}^{MB} = \frac{1}{2\pi - 1} \frac{q^2}{N}$$

- They proposed to use the formula to guide calibration, by ensuring that the estimated PFER is below a threshold
- The parameter λ can be computed when the threshold in PFER and threshold in selection proportion π are fixed
 - ⇒ The procedure relies on the arbitrary choice of one of the two parameters

Devising a stability score 1/2

- Let $H_{\lambda}(j)$ be the selection count of edge j over the K resampling iterations
- We define the three stability categories:
 - stable inclusion if $H_{\lambda}(j) \geq K\pi$
 - ▶ stable exclusion if $H_{\lambda}(j) \leq K(1-\pi)$
 - un-stable if $(1 \pi)K < H_{\lambda}(j) < K\pi$

Devising a stability score 1/2

- Let $H_{\lambda}(j)$ be the selection count of edge j over the K resampling iterations
- We define the three stability categories:
 - ▶ stable inclusion if $H_{\lambda}(j) \ge K\pi$
 - ▶ stable exclusion if $H_{\lambda}(j) \leq K(1-\pi)$
 - un-stable if $(1 \pi)K < H_{\lambda}(j) < K\pi$
- Under the assumption that the $H_{\lambda}(j)$, $j \in \{1, ..., N\}$ are independent, the likelihood can be expressed as:

$$\begin{split} L_{\lambda,\pi} &= \prod_{j=1}^{N} \left[\mathbb{P} \big(H_{\lambda}(j) \geq K\pi \big)^{\mathbb{1}_{\{H_{\lambda}(j) \geq K\pi\}}} \right. \\ &\times \mathbb{P} \big(H_{\lambda}(j) \leq K(1-\pi) \big)^{\mathbb{1}_{\{H_{\lambda}(j) \leq K(1-\pi)\}}} \\ &\times \mathbb{P} \big((1-\pi)K < H_{\lambda}(j) < K\pi \big)^{\mathbb{1}_{\{(1-\pi)K < H_{\lambda}(j) < K\pi\}}} \right] \end{split}$$

Devising a stability score 2/2

- Intuition: the most uninformative (least stable) model would be uniformly selecting features
- $H_{\lambda}(j), j \in \{1, ..., N\}$ follow a binomial distribution with parameters $(K, \frac{K}{N})$

Translation into probabilistic distributions: the selection counts

- ullet The likelihood $L_{\lambda,\pi}$ can be expressed under the null hypothesis of uniform selection
- The stability score is defined as:

$$S_{\lambda,\pi} = -\log(L_{\lambda,\pi})$$

 \Rightarrow The higher the score $S_{\lambda,\pi}$, the more stable the network is

Optimisation problem

• The proposed calibration procedure aims at identification of the pair of parameters (λ, π) maximising the stability score:

$$\max_{\lambda,\pi} S_{\lambda,\pi}$$

Optimisation problem

• The proposed calibration procedure aims at identification of the pair of parameters (λ, π) maximising the stability score:

$$\max_{\lambda,\pi} S_{\lambda,\pi}$$

• The proposed constrained calibration procedure aims at identification of the pair of parameters (λ, π) maximising the stability score, while ensuring that the expected number of False Positives is below τ :

Illustration on simulated data: calibration by stability score

- \bullet In practice, LASSO models are fitted on K subsamples of the data with different values of penalty λ
- The selection proportions for each predictor and each value of λ are stored
- The stability score can be computed for pairs of parameters (λ, π)

 \Rightarrow The stability score is maximum for λ = 0.5597 and π = 0.87

Stability selection

Barbara Bodinier

4 March 2021

8/12

Illustration on simulated data: selected features

ullet The stability selection model includes features with selection proportions above the calibrated threshold π for models fitted with calibrated penalty λ

⇒ The stability selection model includes 6 features

9/12

Barbara Bodinier Stability selection 4 March 2021

Illustration on simulated data: network estimation

- Example on simulated data with p = 100, n = 200 and $\nu = 0.02$
- Calibration of the pair of parameters (λ, π) maximising the stability score

 \Rightarrow Estimated network includes the edges with selection proportions above $\hat{\pi}$ = 0.83 over the graphical lasso models fitted with $\hat{\lambda}$ = 0.26 on K = 100 random subsamples of the data

10/12

Illustration on simulated data: network estimation

• Constrained calibration of the pair of parameters (λ, π) such that the expected number of False Positives is below 5

 \Rightarrow Grey area of forbidden models, with upper-bound of the expected number of False Positives exceeding the user-defined threshold (PFER_{thr} = 5)

4日 > 4日 > 4 至 > 4 至 >

Illustration on simulated data: network estimation

Calibrated network:

- ⇒ Recovered edges (blue), falsely selected edges (red), missed edges (green)
- \Rightarrow Evaluation of model performance and comparison with existing approaches

Barbara Bodinier Stability selection 4 March 2021 12/12