Efficient Evolutionary Methods for Game Agent Optimisation:

Model-Based is Best

Simon M Lucas, Jialin Liu, Ivan Bravi, Raluca D. Gaina, John Woodward, Vanessa Volz, Diego Perez-Liebana

SUSTech

1 Main Contributions

- Show effectiveness of model-based optimization approaches.
- Insight into N-Tuple Bandit EA (NTBEA).
- Emphasize importance of parameter tuning in game Al.

2 Motivation

Noisy optimisation problem:

- Stochastic games
- Stochastic agents
- Develop efficient games for testing Al agents, rapid experimentation.

3 Problem

Optimisation of Rolling Horizon Evolutionary Algorithm (RHEA) parameters, playing Fast Planet Wars against opponent RHEA with **fixed** parameters.

Parameter	Туре	Legal values
Nb. Mutated Genes	Integer	0, 1 , 2, 3
Flip Min. One Gene	Boolean	False, True
Use Shift Buffer	Boolean	False, True
Nb. Resamples	Integer	1 , 2, 3
Sequence Length	Integer	5 , 10, 15, 20, 25, 30

4 Fast Planet Wars

- Random initial state (ownership, planet sizes and number of ships).
- Planets grow ships at rate ∝ to size.
- Ships transferred via each player's buffer and their planet of focus.
- Aim: have most ships at time limit.
 - Win/loss game.
 - Constant speed regardless of number of planets.

5 NTBEA

Efficient, effective and informative. Uses a standard EA but does most of the search in the space of a learned model.

The model is similar to a combinatorial multiarmed bandit, offering explicit control of exploitation / exploration dilemma and natural escape from local optima.

Multi-armed bandit

$$UCB_{i} = \widehat{x}_{i} + k \sqrt{\frac{\ln n}{n_{i} + \epsilon}}$$

Combinatorial multi-armed bandit

$$v_{UCB}(x) = \frac{1}{m} \sum_{j=1}^{m} UCB_{N_j(x)}$$

$$(m = 16)$$

6 Results

Algorithm	Avg. ± St. Err.
RMHC (1)	-0.29 ± 0.01
CMA-ES (1x)	-0.12 ± 0.04
UH-CMA-ES (1x)	-0.09 ± 0.04
RMHC (5)	0.01 ± 0.01
SGA	0.03 ± 0.01
CMAE-ES (5x)	0.29 ± 0.02
UH-CMA-ES (5x)	0.32 ± 0.03
SWcGA	0.36 ± 0.01
SMEDA	0.38 ± 0.01
NTBEA (1,2,5)-	0.41 ± 0.01
UH-CMA-ES (10x)	0.44 ± 0.02
CMA-ES (10x)	0.48 ± 0.02
SMAC	0.49 ± 0.01
NTBEA (1)	0.50 ± 0.01
NTBEA (1,2)	0.51 ± 0.01
NTBEA (1,2,5)+	0.51 ± 0.01

NTBEA Insight

Detailed statistics for each parameter combination, including number of times selected, average fitness, standard error, min and max.

7 Conclusions

- New game with significant skill depth.
- Importance of parameter tuning demonstrated, well tuned RHEA agents hugely outperformed poorly tuned ones.
- Restricted sample budget for tests (288) fitness evaluations per optimisation run).
 - Model-based clearly performed best.
- NTBEA is especially simple and informative: high mutation rates work surprisingly well.

Future Work

- Add continuous parameters.
- Add tree-structured parameterization.

