Isomorphism Spectra and Computably Composite Structures

Joey Lakerdas-Gayle

University of Waterloo

Graduate Student Conference in Logic XXV April 27, 2025

Computable structures

Definition

A countable structure $\mathcal M$ is *computable* if its relations, functions, and constants are uniformly computable.

Computable structures

Definition

A countable structure \mathcal{M} is *computable* if its relations, functions, and constants are uniformly computable. Equivalently, if its atomic diagram $\mathcal{D}(\mathcal{M}) \in 2^{\omega}$ is computable.

Computable structures

Definition

A countable structure \mathcal{M} is *computable* if its relations, functions, and constants are uniformly computable. Equivalently, if its atomic diagram $\mathcal{D}(\mathcal{M}) \in 2^{\omega}$ is computable.

Remark

We may assume that all structures are relational.

Definition

If $\mathcal{A}\cong\mathcal{B}$ are computable structures, their isomorphism spectrum is the set of Turing degrees

$$\operatorname{IsoSpec}(\mathcal{A},\mathcal{B}) = \{ \mathbf{d} : (\exists f : \mathcal{A} \cong \mathcal{B}) \ f \leq_{\mathcal{T}} \mathbf{d} \}.$$

Definition

If $\mathcal{A}\cong\mathcal{B}$ are computable structures, their isomorphism spectrum is the set of Turing degrees

$$\operatorname{IsoSpec}(\mathcal{A},\mathcal{B}) = \{ \mathbf{d} : (\exists f : \mathcal{A} \cong \mathcal{B}) \ f \leq_{\mathcal{T}} \mathbf{d} \}.$$

Example

Let $A \subseteq \omega$ be a c.e. set with a fixed computable enumeration $(a_i : i < \omega)$. Consider the structure $(\omega, <_A)$ where

- $2n <_A 2m$ for all n < m,
- $2a_i <_A 2i + 1 <_A 2a_i + 2$ for all $i < \omega$.

Definition

If $\mathcal{A}\cong\mathcal{B}$ are computable structures, their isomorphism spectrum is the set of Turing degrees

$$IsoSpec(\mathcal{A},\mathcal{B}) = \{ \mathbf{d} : (\exists f : \mathcal{A} \cong \mathcal{B}) \ f \leq_{\mathcal{T}} \mathbf{d} \}.$$

Example

Let $A \subseteq \omega$ be a c.e. set with a fixed computable enumeration $(a_i : i < \omega)$. Consider the structure $(\omega, <_A)$ where

- $2n <_A 2m$ for all n < m,
- $2a_i <_A 2i + 1 <_A 2a_i + 2$ for all $i < \omega$.

The (unique) isomorphism $f:(\omega,<)\cong(\omega,<_A)$ has $f\equiv_T A$.

Definition

If $\mathcal{A}\cong\mathcal{B}$ are computable structures, their isomorphism spectrum is the set of Turing degrees

$$IsoSpec(\mathcal{A},\mathcal{B}) = \{ \mathbf{d} : (\exists f : \mathcal{A} \cong \mathcal{B}) \ f \leq_{\mathcal{T}} \mathbf{d} \}.$$

Example

Let $A \subseteq \omega$ be a c.e. set with a fixed computable enumeration $(a_i : i < \omega)$. Consider the structure $(\omega, <_A)$ where

- $2n <_A 2m$ for all n < m,
- $2a_i <_A 2i + 1 <_A 2a_i + 2$ for all $i < \omega$.

The (unique) isomorphism $f:(\omega,<)\cong(\omega,<_A)$ has $f\equiv_T A$. So, $\operatorname{IsoSpec}((\omega,<),(\omega,<_A))=\mathcal{D}(\geq \deg_T(A)):=\{\mathbf{d}:\mathbf{d}\geq \deg_T(A)\}$, the cone above $\deg_T(A)$.

Definition

The categoricity spectrum of \mathcal{M} is

$$\operatorname{CatSpec}(\mathcal{M}) = \bigcap_{\mathcal{A} \cong \mathcal{B} \cong \mathcal{M}} \operatorname{IsoSpec}(\mathcal{A}, \mathcal{B})$$

Definition

The categoricity spectrum of \mathcal{M} is

$$\operatorname{CatSpec}(\mathcal{M}) = \bigcap_{\mathcal{A} \cong \mathcal{B} \cong \mathcal{M}} \operatorname{IsoSpec}(\mathcal{A}, \mathcal{B})$$

If $CatSpec(\mathcal{M}) = \mathcal{D}(\geq \mathbf{d})$, **d** is the *degree of categoricity* of \mathcal{M} .

Definition

The categoricity spectrum of \mathcal{M} is

$$CatSpec(\mathcal{M}) = \bigcap_{\mathcal{A} \cong \mathcal{B} \cong \mathcal{M}} IsoSpec(\mathcal{A}, \mathcal{B})$$

If $\mathrm{CatSpec}(\mathcal{M}) = \mathcal{D}(\geq \mathbf{d})$, \mathbf{d} is the degree of categoricity of \mathcal{M} . If there are $\mathcal{A} \cong \mathcal{B} \cong \mathcal{M}$ with $\mathrm{IsoSpec}(\mathcal{A},\mathcal{B}) = \mathrm{CatSpec}(\mathcal{M}) = \mathcal{D}(\geq \mathbf{d})$, then \mathbf{d} is the strong degree of categoricity of \mathcal{M} .

Definition

The categoricity spectrum of \mathcal{M} is

$$CatSpec(\mathcal{M}) = \bigcap_{\mathcal{A} \cong \mathcal{B} \cong \mathcal{M}} IsoSpec(\mathcal{A}, \mathcal{B})$$

If $\mathrm{CatSpec}(\mathcal{M}) = \mathcal{D}(\geq \mathbf{d})$, \mathbf{d} is the degree of categoricity of \mathcal{M} . If there are $\mathcal{A} \cong \mathcal{B} \cong \mathcal{M}$ with $\mathrm{IsoSpec}(\mathcal{A},\mathcal{B}) = \mathrm{CatSpec}(\mathcal{M}) = \mathcal{D}(\geq \mathbf{d})$, then \mathbf{d} is the strong degree of categoricity of \mathcal{M} .

Example

$$CatSpec(\omega, <) = \mathcal{D}(\geq \mathbf{0}').$$

Question (Fokina, Kalimullin, and R. Miller 2009)

Does there exist a Turing degree **d** that is a degree of categoricity, but not a strong degree of categoricity?

Question (Fokina, Kalimullin, and R. Miller 2009)

Does there exist a Turing degree **d** that is a degree of categoricity, but not a strong degree of categoricity?

Theorem (following Bazhenov, Kalimullin, Yamaleev 2016 & 2020)

If $CatSpec(\mathcal{M}) = \mathcal{D}(\geq \mathbf{d})$ and \mathbf{d} is not the strong degree of categoricity of any structure, then there exist computable copies $\mathcal{A} \cong \mathcal{B} \cong \mathcal{M}$ such that $IsoSpec(\mathcal{A}, \mathcal{B})$ is not a finite union of cones.

Question (Fokina, Kalimullin, and R. Miller 2009)

Does there exist a Turing degree **d** that is a degree of categoricity, but not a strong degree of categoricity?

Theorem (following Bazhenov, Kalimullin, Yamaleev 2016 & 2020)

If $CatSpec(\mathcal{M}) = \mathcal{D}(\geq \mathbf{d})$ and \mathbf{d} is not the strong degree of categoricity of any structure, then there exist computable copies $\mathcal{A} \cong \mathcal{B} \cong \mathcal{M}$ such that $IsoSpec(\mathcal{A}, \mathcal{B})$ is not a finite union of cones.

Goal: Show that (computable) unions of isomorphism spectra are also isomorphism spectra.

Union of two isomorphism spectra

Given computable copies $\mathcal{A}_0 \cong \mathcal{B}_0$ and $\mathcal{A}_1 \cong \mathcal{B}_1$, we want to construct computable structures $\mathcal{M} \cong \mathcal{N}$ such that

 $\operatorname{IsoSpec}(\mathcal{M},\mathcal{N}) = \operatorname{IsoSpec}(\mathcal{A}_0,\mathcal{B}_0) \cup \operatorname{IsoSpec}(\mathcal{A}_1,\mathcal{B}_1).$

Union of two isomorphism spectra

Given computable copies $\mathcal{A}_0 \cong \mathcal{B}_0$ and $\mathcal{A}_1 \cong \mathcal{B}_1$, we want to construct computable structures $\mathcal{M} \cong \mathcal{N}$ such that

$$\operatorname{IsoSpec}(\mathcal{M},\mathcal{N}) = \operatorname{IsoSpec}(\mathcal{A}_0,\mathcal{B}_0) \cup \operatorname{IsoSpec}(\mathcal{A}_1,\mathcal{B}_1).$$

"Attach" the original structures to P_4 , the 4-vertex undirected path:

$$\mathcal{M}$$
: $\mathcal{A}_0 - \mathcal{A}_1 - \mathcal{B}_1 - \mathcal{B}_0$

$$\mathcal{N}$$
: $\mathcal{A}_0 - \mathcal{B}_1 - \mathcal{A}_1 - \mathcal{B}_0$

 \mathcal{M} and \mathcal{N} are isomorphic and have two kinds isomorphisms, corresponding to the two automorphisms of P_4 .

Let S be a computable structure, and let $\mathbf{A} = \{A_x : x \in S\}$ be a uniformly computable collection of structures.

Let S be a computable structure, and let $\mathbf{A} = \{A_x : x \in S\}$ be a uniformly computable collection of structures.

Let S be a computable structure, and let $\mathbf{A} = \{A_x : x \in S\}$ be a uniformly computable collection of structures.

Let S be a computable structure, and let $\mathbf{A} = \{A_x : x \in S\}$ be a uniformly computable collection of structures.

Let S be a computable structure, and let $\mathbf{A} = \{A_x : x \in S\}$ be a uniformly computable collection of structures.

Theorem

Every computable copy of a computably composite structure is also computably composite.

Theorem

Every computable copy of a computably composite structure is also computably composite.

Theorem

Suppose $\mathcal{G}[\mathbf{B}]$ is a computable copy of $\mathcal{S}[\mathbf{A}]$. Then the isomorphisms from $\mathcal{S}[\mathbf{A}]$ to $\mathcal{G}[\mathbf{B}]$ are exactly the maps of the form

$$\rho = \theta \cup \bigcup_{\mathsf{x} \in \mathsf{S}} \psi_\mathsf{x}$$

where $\theta: S \cong \mathcal{G}$ and $\psi_x: \mathcal{A}_x \cong \mathcal{B}_{\theta(x)}$ for each $x \in S$.

Union of two isomorphism spectra

$$\mathcal{M} = P_4[\mathcal{A}_0, \mathcal{A}_1, \mathcal{B}_1, \mathcal{B}_0] : \qquad \qquad \mathcal{N} = P_4[\mathcal{A}_0, \mathcal{B}_1, \mathcal{A}_1, \mathcal{B}_0] :$$

$$\mathcal{A}_0 - \mathcal{A}_1 - \mathcal{B}_1 - \mathcal{B}_0 \qquad \qquad \mathcal{A}_0 - \mathcal{B}_1 - \mathcal{A}_1 - \mathcal{B}_0$$

Union of two isomorphism spectra

$$\mathcal{M} = P_4[\mathcal{A}_0, \mathcal{A}_1, \mathcal{B}_1, \mathcal{B}_0] : \qquad \qquad \mathcal{N} = P_4[\mathcal{A}_0, \mathcal{B}_1, \mathcal{A}_1, \mathcal{B}_0] :$$

$$\mathcal{A}_0 - \mathcal{A}_1 - \mathcal{B}_1 - \mathcal{B}_0 \qquad \qquad \mathcal{A}_0 - \mathcal{B}_1 - \mathcal{A}_1 - \mathcal{B}_0$$

The isomorphisms $\rho:\mathcal{M}\cong\mathcal{N}$ have the form

$$\rho = \theta \cup \bigcup_{\mathsf{x} \in P_4} \psi_\mathsf{x}$$

where $\theta: P_4 \cong P_4$ and ψ_x is an isomorphism between the components at index x in \mathcal{M} and at index $\theta(x)$ in \mathcal{N} .

$$\operatorname{IsoSpec}(\mathcal{N}, \mathcal{M}) = \operatorname{IsoSpec}(\mathcal{A}_0, \mathcal{B}_0) \cup \operatorname{IsoSpec}(\mathcal{A}_1, \mathcal{B}_1).$$

We define a structure,
$$\mathcal{H} = (H, \{D_i\}_{i < \omega}, \{E_i\}_{i < \omega})$$
 with universe $H = [\omega]^{<\omega} \cup (\omega \times \{0, 1\})$.

We define a structure, $\mathcal{H} = (H, \{D_i\}_{i < \omega}, \{E_i\}_{i < \omega})$ with universe $H = [\omega]^{<\omega} \cup (\omega \times \{0, 1\})$.

Think of $[\omega]^{<\omega}$ as an infinite-dimensional cube where $X,Y\in [\omega]^{<\omega}$ are adjacent if $|X\triangle Y|=1$.

For $X, Y \in [\omega]^{<\omega}$,

$$E_i(X, Y) \Leftrightarrow E_i(Y, X) \Leftrightarrow X \triangle Y = \{i\}.$$

The two opposite "faces" of the cube $[\omega]^{<\omega}$ in the $i^{\rm th}$ dimension are the sets

$$L_i = \{X \in [\omega]^{<\omega} : i \notin X\} \text{ and } R_i = \{X \in [\omega]^{<\omega} : i \in X\}.$$

We label the faces L_i and R_i with the elements (i, 0) and (i, 1).

We also add directed D_i -edges from the points of L_i to (i,0) and from the points of R_i to (i,1).

We label the faces L_i and R_i with the elements (i, 0) and (i, 1).

We also add directed D_i -edges from the points of L_i to (i,0) and from the points of R_i to (i,1).

Automorphisms of ${\cal H}$

Let h_X be the unique automorphism of \mathcal{H} , with $h_X(\emptyset) = X$.

Automorphisms of ${\cal H}$

Let h_X be the unique automorphism of \mathcal{H} , with $h_X(\emptyset) = X$.

$$h_X(Y) = X \triangle Y \text{ if } Y \in [\omega]^{<\omega}$$

$$h_X(i, a) = \begin{cases} (i, a) & \text{if } i \notin X \\ (i, 1 - a) & \text{if } i \in X \end{cases}$$

Automorphisms of \mathcal{H}

Let h_X be the unique automorphism of \mathcal{H} , with $h_X(\emptyset) = X$.

$$h_X(Y) = X \triangle Y \text{ if } Y \in [\omega]^{<\omega}$$

$$h_X(i,a) = \begin{cases} (i,a) & \text{if } i \notin X \\ (i,1-a) & \text{if } i \in X \end{cases}$$

Theorem

The automorphisms of \mathcal{H} are exactly $\{h_X : X \in [\omega]^{<\omega}\}$. Moreover, every isomorphism between computable copies of \mathcal{H} is computable.

Computably composite structures on ${\cal H}$

Theorem

Given any two uniformly computable collections of copies $\mathbf{A} = \{A_i : i < \omega\}$ and $\mathbf{B} = \{\mathcal{B}_i : i < \omega\}$ such that for each i, $A_i \cong \mathcal{B}_i$, there exists a structure with two computable copies $\mathcal{M} \cong \mathcal{N}$ where $IsoSpec(\mathcal{M}, \mathcal{N}) = \bigcup_{i < \omega} IsoSpec(\mathcal{A}_i, \mathcal{B}_i)$.

Computably composite structures on ${\cal H}$

Isomorphism spectrum that is not a finite union of cones

By a result of Thomason (1971), there is a uniformly c.e. sequence of sets $\{Z_i: i<\omega\}$ such that if $i\neq j$, then Z_i and Z_j are Turing incomparable.

Isomorphism spectrum that is not a finite union of cones

By a result of Thomason (1971), there is a uniformly c.e. sequence of sets $\{Z_i: i<\omega\}$ such that if $i\neq j$, then Z_i and Z_j are Turing incomparable.

So the collection $\mathbf{B} = \{(\omega, <_{Z_i})\}_{i < \omega}$ is uniformly computable. Recall that $\mathrm{IsoSpec}((\omega, <), (\omega, <_{Z_i})) = \mathcal{D}(\geq \deg_T(Z_i))$.

Isomorphism spectrum that is not a finite union of cones

By a result of Thomason (1971), there is a uniformly c.e. sequence of sets $\{Z_i: i<\omega\}$ such that if $i\neq j$, then Z_i and Z_j are Turing incomparable.

So the collection $\mathbf{B} = \{(\omega, <_{Z_i})\}_{i < \omega}$ is uniformly computable. Recall that $\operatorname{IsoSpec}((\omega, <), (\omega, <_{Z_i})) = \mathcal{D}(\geq \deg_T(Z_i))$.

Let \mathcal{M} and \mathcal{N} be the computably composite structures on \mathcal{H} corresponding to $\mathbf{A} = \{(\omega, <)\}_{i < \omega}$ and \mathbf{B} . Then,

IsoSpec(
$$\mathcal{M}, \mathcal{N}$$
) = $\bigcup_{i < \omega}$ IsoSpec($(\omega, <), (\omega, <_{Z_i})$)
= $\{\mathbf{d} : (\exists i < \omega)\mathbf{d} \ge \deg(Z_i)\}$

which is not a finite union of cones.

Categoricty spectra of CCS's?

This $\mathcal{M} \cong \mathcal{H}[(\omega, <) : i \in H]$ has strong degree of categoricity $\mathbf{0}'$.

Categoricty spectra of CCS's?

This $\mathcal{M} \cong \mathcal{H}[(\omega, <) : i \in H]$ has strong degree of categoricity $\mathbf{0}'$.

Question

What can we say about categoricity spectra of CCS's on ${\cal H}$ and CCS's in general?

Categoricty spectra of CCS's?

This $\mathcal{M} \cong \mathcal{H}[(\omega, <) : i \in H]$ has strong degree of categoricity $\mathbf{0}'$.

Question

What can we say about categoricity spectra of CCS's on \mathcal{H} and CCS's in general?

We always have

$$\operatorname{CatSpec}(\mathcal{H}[\mathbf{A}]) \subseteq \bigcap_{i < \omega} \operatorname{CatSpec}(\mathcal{A}_i).$$

The other inclusion holds if and only if all A_i satisfy a particular notion of *uniform categoricity*.