Отчёт о выполненой лабораторной работе Определение C_p/C_v методом адиабатического расширения (2.1.2)

Каплин Артём Б01-402 23 марта 2025

Цель работы: определение отношения C_p/C_v для воздуха и углекислог газа.

В работе используются: стеклянный сосуд: U-образный жидкостный манометр; резиновая груша; газгольдер с углекислым газом, секундомер.

1 Экспериментальная установка

Экспериментальная установка состоит из стеклянного сосуда A, снабжённого краном K_1 , и Uобразного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на рисунке:

С помощью резиновой груши, соединённой трубкой и краном K_1 , в сосуде создаётся избыточное давление воздуха. При этом газ оказывается перегретым по отношению к окружающей среде. Будем следить за изменением его давления вследствие теплообмена со стенками сосуда: через некоторое время газ остынет до комнатной температуры (изохорное охлаждение). При этом давление воздуха понизится до $p_0 + \Delta p_1$, где

$$\Delta p_1 = \rho g \Delta h_1$$
.

Откроем кран K_2 , за время Δt порядка 0.5 с происходит адиабатическое расширение газа, и его температура окажется ниже комнатной. Далее газ будет изобарически нагреваться . Зададим время τ , в течение которого кран K_2 остаётся открытым, таким чтобы можно было пренебречь временем Δt адиабатического расширения воздуха. После закрытия крана K_2 газ станет изохорически нагреваться до комнатной температуры, при чём давление внутри сосуда возрастёт до $p_0 + \rho g \Delta h_2$, где

$$\Delta p_2 = \rho g \Delta h_2$$
.

Наибольший интерес представляет исследование зависимости отношения перепадов давления $\frac{\Delta p_1}{\Delta p_2}$ от времени τ .

С хорошей точностью мы можем считать воздух в газгольдере идеальным газом. Рассмотрим изобарическое расширение воздуха. Для этого запишем уравнение теплового баланса для имеющейся во времени массы газа: $m=\frac{p_0V_0}{RT}\mu$:

$$c_n m \ dT = -\alpha (T - T_0) dt$$

где c_v — удельная теплоёмкость воздуха при постоянном давлении, a — положительный постоянный коэффициент, характеризующий теплообмен, V — объем сосуда.

Перепишем уравнение в виде:

$$\frac{dT}{T(T-T_0)} = -\frac{\alpha dt}{c_p \frac{p_0 V_0}{R} \mu}$$

После преобразования:

$$\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T - T_0} \right) dT = -\frac{\alpha dt}{c_p m_0 T_0}$$

После сокращения на T_0 выполним интегрирование:

$$\int \frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T - T_0} \right) dT = -\frac{\alpha}{c_p m_0 T_0} \int dt$$

$$\ln \left(\frac{T_2 \cdot \Delta T_1}{T_1 \cdot \Delta T_2} \right) = \frac{a}{c_p} \tau$$

Для адиабатического расширения справедливо соотношение $T^{\gamma} = const \cdot p^{\gamma-1}$. После взятия логарифмических производных, получим:

$$\gamma \frac{dT}{T} = (\gamma - 1) \frac{dp}{p}$$

Переходя к конечным приращениям:

$$\frac{\Delta T}{T} = \frac{\gamma - 1}{\gamma} \frac{\Delta p_1}{p_0}$$

При изохорическом нагреве выполняется: $\frac{p}{T}=\mathrm{const.}$ Возьмём от этого выражения логарифмическую производную: $\frac{dp}{p}=\frac{dT}{T}.$ В конечных приращениях $\frac{\Delta T_2}{T_2}=\frac{\Delta p_2}{p_0}.$

После подстановок получаем:

$$\left(\frac{\gamma - 1}{\gamma}\right) \frac{\Delta p_1}{p_0} = \frac{\Delta p_2}{p_0} \exp\left(\frac{\alpha}{c_p m_0}\right)$$

Подставляя первые выражения, получаем:

$$\frac{\Delta h_1}{\Delta h_2} = \frac{\gamma}{\gamma - 1} \exp\left(\frac{\alpha}{c_p m_0} \tau\right)$$

Следовательно,

$$\ln \frac{\Delta h_1}{\Delta h_2} = \ln \frac{\gamma}{\gamma - 1} + \left(\frac{\alpha}{c_p m_0} \tau\right)$$

Из графика зависимости $\ln \frac{\Delta h_1}{\Delta h_2}$ от τ определим γ .

2 Ход работы

- 1. Проверим исправность установки. Перед началом работы убедимся в том, что краны и места сочленений трубок достаточно герметичны. Убедимся, что давление через некоторое время установится.
- 2. Закроем краны K_1 и K_2 , убедимся что уровни жидкости в манометре одинаковы.
- 3. Откроем кран K_1 (в случае воздуха используем резиновую грушу), наполним сосуд газом так, чтобы разность уровней жидкости в манометре составляла примерно у воздуха 20-25 см, а у углекилого газа 8-12 см (так как больше газгольдер не выдаёт).
- 4. Закроем кран K_2 . После того как давлене в сосуде перестанет изменяться, измерим разность уровней жидкости Δh_1 в манометре.
- 5. Откроем кран K_2 на время τ в интервале 5-35 с.
- 6. После того как давлене в сосуде перестанет изменяться, измерим разность уровней жидкости Δh_2 в манометре.
- 7. Откроем краны K_2 и K_1 на 3–4 минуты.
- 8. Повторим действия, перечисленные выше несколько раз для разного времени au.

2.1 Измерения для воздуха

Измерения проходили при таких параметрах в комнате: давление $P=101{,}325$ к Π а, температура в комнате T=297 K, влажность $\varphi=91\%$.

$$z = \ln\left(\frac{\Delta h_1}{\Delta h_2}\right)$$

$$\sigma_z = \sigma_{\Delta h} \cdot \sqrt{\left(\frac{1}{\Delta h_1}\right)^2 + \left(\frac{1}{\Delta h_1}\right)^2}$$

Таблица 1: Экспериментальные данные для воздуха Δt

$N_{\overline{0}}$	Δh_1 , cm	Δh_2 , cm	τ , c	$\ln \frac{\Delta h_1}{\Delta h}$	σ_z	$\frac{\sigma_z}{z} \cdot 100\%$
1	19.8	4.2	5	1.551	0.049	3.16
2	17.2	3.4	6	1.621	0.060	3.70
3	18.3	3.2	8	1.744	0.063	3.61
4	20.4	3.0	12	1.917	0.067	3.50
5	21.7	2.4	18	2.202	0.084	3.81
6	20.9	1.8	24	2.452	0.112	4.57
7	20.9	1.4	29	2.703	0.143	5.29
8	21.6	1.1	34	2.977	0.182	6.11

Lля нахождения γ по известному значению b, можно подставить значение b в формулу:

$$\gamma = \frac{e^b}{e^b - 1},$$

где b выражается как:

Рис. 1: График зависимости h(t)

20

t, c

25

30

35

15

$$b = \ln \frac{\gamma}{\gamma - 1}$$

Из графика коэфициент $b=1.336\pm0.133$. Тогда $\gamma=1.357\pm0.064,\, \varepsilon_{\gamma}=4{,}74\%.$

2.2 Измерения для для углекислого газа

10

1.50

5

Таблица 2: Экспериментальные данные для углекислого газа Δt

No॒	Δh_1 , cm	Δh_2 , cm	τ , c	$\ln \frac{\Delta h_1}{\Delta h}$	σ_z	$\frac{\sigma_z}{z} \cdot 100\%$
1	9.2	2.4	5	1.344	0.086	6.41
2	8.8	1.2	10	1.992	0.168	8.43
3	9.4	1.0	15	2.241	0.201	8.97
4	9.0	0.9	20	2.303	0.223	9.68
5	8.9	0.7	25	2.543	0.287	11.29
6	8.7	0.4	30	3.080	0.501	16.26
7	8.7	0.4	35	3.080	0.501	16.26

У углекислого газа коэфициент $b=1.189\pm0.477$. Тогда $\gamma=1.438\pm0.300,\, \varepsilon_{\gamma}=20\%.$

Зависимость ln(h1/h2) от времени

Рис. 2: График зависимости h(t)

3 Вывод

В ходе лабораторной работы было получено значение показателя адиабаты для воздуха и углекислого газа. Сравним реультаты эксперимента с табличными значениями, взятыми с книги Лабораторный практикум по общей физике. Табличные значения взяты при $T=20^{\circ}C$ для сухого воздуха и углекислого газа.

	$\gamma^{ m skcn}$	γ ^{табл}	σ_{γ}	$\varepsilon_{\gamma},\%$
Воздух	1.357	1.40	0.064	4.74
CO_2	1.438	1.30	0.300	20

Таблица 3: Сравнение экспериментальных и табличных значений γ для различных газов

Неполное совпадение результата вызвано, во-первых, погрешностью в определении времени τ , а во-вторых с тем, что снятая мной разница уровней воды в трубке не всегда была точной, так как время на выполнение работы ограничено. Так мы видим, что погрешность у углекислого газа оказалась значительной, могу предположить, что это связанно как раз таки с тем, что последние точки снимались быстро, из-за чего газ мог не возвращаться в состояние равновесия.