

Exception-enriched Rule Learning from Knowledge Graphs

Mohamed Gad-Elrab¹, Daria Stepanova¹, Jacopo Urbani ², Gerhard Weikum¹

¹Max-Planck-Institut für Informatik, Saarland Informatics Campus, Germany

² Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

21st October 2016

Knowledge Graphs (KGs)

- Huge collection of < *subject*, *predicate*, *object* > triples
- Positive facts under Open World Assumption (OWA)
- Possibly incomplete and/or inaccurate

Mining Rules from KGs

Mining Rules from KGs

 $r: livesIn(X, Z) \leftarrow isMarriedTo(X, Y), livesIn(Y, Z)$

[Galárraga et al., 2015]

Mining Rules from KGs

 $r: livesIn(X, Z) \leftarrow isMarriedTo(X, Y), livesIn(Y, Z)$

Our Goal

 $r: livesIn(X, Z) \leftarrow isMarriedTo(X, Y), livesIn(Y, Z), not isA(X, res)$

Problem Statement

Quality-based theory revision problem

- Given
 - Knowledge graph KG
 - Set of Horn rules R_H

• Find the nonmonotonic revision R_{NM} of R_H

Problem Statement

Quality-based theory revision problem

- Given
 - Knowledge graph KG
 - Set of Horn rules R_H

- Find the nonmonotonic revision R_{NM} of R_H
 - Maximize top-k avg. confidence
 - Minimize conflicting prediction

Defining conflicts

```
R = \begin{cases} r_1: releasedInJP(X) \leftarrow isGame(X), isBasedOnJPAnime(X) \\ r_2: releasedInJP(X) \leftarrow hasJPComposer(X), not publisherUSA(X) \end{cases}
```


Defining conflicts

```
R = \begin{cases} r_1: releasedInJP(X) \leftarrow isGame(X), isBasedOnJPAnime(X) \\ r_2: releasedInJP(X) \leftarrow hasJPComposer(X), not publisherUSA(X) \end{cases}
```

 $\{isGame(a), isBasedOnJPAnime(a), hasJPComposer(a), publisherUSA(a)\}$

Defining conflicts

```
R = \begin{cases} r_1: releasedInJP(X) \leftarrow isGame(X), isBasedOnJPAnime(X) \\ r_2: releasedInJP(X) \leftarrow hasJPComposer(X), not publisherUSA(X) \end{cases}
```

 $\{isGame(a), isBasedOnJPAnime(a), hasJPComposer(a), publisherUSA(a)\}$

Measuring conflicts (auxiliary rules)

```
r_2: releasedInJP(X) \leftarrow hasJPComposer(X), not\ publisherUSA(X)
r_2^{aux}: not\_releasedInJP(X) \leftarrow hasJPComposer(X), publisherUSA(X)
```

 $(releasedInJP(a), not_releasedInJP(a))$

Approach Overview

Step 1

Mining Horn Rules

Step 2

Extracting Exception Witness Set (EWS)

Step 3

Constructing Candidate Revisions

Step 4

Selecting the Best Revision

Step 1: Mining Horn Rules

 r_i : $livesInUSA(X) \leftarrow bornInUSA(X)$

		bornInUSA	livesInUSA	stateless	emigrant	singer	poet
Ab-normal Normal	p1	✓	√				
	p2	✓	√				
	рЗ	√	√				
	р4	✓	√			✓	
	р5	✓	√	√			
	p6	✓		✓			
	р7	√		√			
	р8	✓		√	√		✓
	р9	✓			√		✓
	p10	✓			√	✓	✓
	p11	√				✓	1

Step 2: Extracting Exception Witness Set (EWS)

 r_i : $livesInUSA(X) \leftarrow bornInUSA(X)$

		bornInUSA	livesInUSA	stateless	emigrant	singer	poet
<u>–</u>	p1	/	√				
	p2	✓	√				
Normal	р3	√	√				
Z	p4	√	√			✓	
	р5	✓	√	✓			
_e	p6	✓		√			
	р7	√		√			
Ab-normal	p8	√		√	✓		√
n-q	p9	√			✓		√
4	p10	√			✓	✓	√
	p11	✓				√	\

 $EWS_i = \{emigrant(X), poet(X)\}$

Step 3: Constructing Candidate Revisions

Horn rules

```
R = \begin{cases} r_1: \ livesInUSA(X) \leftarrow bornInUSA(X) & EWS = \{poet(X), emigrant(X), \dots\} \\ r_2: \ emigrant(X) \leftarrow stateless(X) & EWS = \{e_1(X), e_2(X), \dots\} \end{cases}
```

Rule revisions

```
r_1: livesInUSA(X) \leftarrow bornInUSA(X), not\ poet(X)

r_1: livesInUSA(X) \leftarrow bornInUSA(X), not\ emigrant(X)

...
```


Step 4: Selecting the Best Revision

Finding globally best revision is expensive!

- Naïve ranker
 - For each rule, pick the revision that maximizes confidence
 - Works in isolation from other rules
- Partial materialization ranker
 - KGs are incomplete!
 - Augment the original KG with predictions of other rules
 - Rank revisions on avg. confidence of the rule and its auxiliary.

Partial materialization

 r_i : $livesInUSA(X) \leftarrow bornInUSA(X)$

		bornInUSA	livesInUSA	stateless	emigrant	singer	poet
Normal	р1	/	✓				
	p2	✓	✓				
	р3	✓	✓				
Z	р4	✓	✓			✓	
	р5	✓	√	✓			
Ab-normal	р6	✓		✓			
	р7	✓		✓			
	р8	√		✓	✓		✓
	р9	√			✓		✓
⋖	p10	√			✓	✓	✓
	p11	✓				✓	1

Partial materialization

 r_i : $livesInUSA(X) \leftarrow bornInUSA(X)$

		bornInUSA	livesInUSA	stateless	emigrant	singer	poet
al	p1	1	√				
	p2	✓	√				
Normal	р3	✓	√				
Z	р4	✓	√			✓	\bigcirc
	р5	√	√	✓		\bigcirc	
	p6	1	\bigcirc	✓			
Ab-normal	р7	√		√	\bigcirc		
	p8	✓		✓	√		✓
	р9	✓	\bigcirc		√	\bigcirc	✓
٩	p10	✓			√	✓	✓
	p11	1			\bigcirc	✓	1

- Ordered partial materialization ranker
 - Only rules with higher quality

- Ordered weighted partial materialization ranker
 - KG fact weight = 1
 - Predicted facts inherit their weights from the rules

Ruleset quality

Facts			
Rules			

10M 10K 2M 25K

Predictions consistency

Examples

```
isMountain(X) \leftarrow isInAustria(X), isInItaly(X), not isRiver(X)
```

```
isPolitOfUSA(X) \leftarrow bornInUSA(X), isGov(X), not isPolitPuertoRico(X)
```

 $bornInUSA(X) \leftarrow actedInMovie(X), createdMovie(X), not wonFilmfare(X)$

Summary

Conclusion

- Quality-based theory revision under OWA
- Partial materialization for ranking revisions
- Comparison of ranking methods on real life KGs

Outlook

- Extending to higher arity predicates
 - Binary predicates [Tran et al., to appear ILP2016]
- Evidence from text corpora
- Exploiting partial completeness

References

- [Angiulli and Fassetti, 2014] Fabrizio Angiulli and Fabio Fassetti. Exploiting domain knowledge to detect outliers. *Data Min. Knowl. Discov.*, 28(2):519–568, 2014.
- [Dimopoulos and Kakas, 1995] Yannis Dimopoulos and Antonis C. Kakas. Learning non-monotonic logic programs: Learning exceptions. *In Machine Learning: ECML-95, 8th European Conference on Machine Learning*, Heraclion, Crete, Greece, April 25-27, 1995, Proceedings, pages 122–137, 1995.
- [Galarraga et al., 2015] Luis Galarraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast Rule Mining in Ontological Knowledge Bases with AMIE+. In VLDB Journal, 2015.
- [Law et al., 2015] Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for learning answer set programs, 2015.
- **[Leone et al., 2006]** Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco Scarcello. 2006. The DLV system for knowledge representation and reasoning. *ACM Trans. Comput. Logic 7*, 3 (July 2006), 499-562.
- [Suzuki, 2006] Einoshin Suzuki. Data mining methods for discovering interesting exceptions from an unsupervised table. *J. UCS*, 12(6):627–653, 2006.
- [Tran et al., 2016] Hai Dang Tran, Daria Stepanova, Mohamed H. Gad-Elrab, Francesca A. Lisi, Gerhard Weikum. Towards Nonmonotonic Relational Learning from Knowledge Graphs. *ILP2016*, London, UK, to appear.
- **[Katzouris et al., 2015]** Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of event definitions with inductive logic programming. Machine Learning, 100(2-3):555–585, 2015.

Related Work

- Learning nonmonotonic programs
 - E.g., [Dimopoulos and Kakas, 1995], ILASP [Law et al., 2015], ILED [Katzouris et al., 2015], etc.
- Outlier detection in logic programs
 - E.g., [Angiulli and Fassetti, 2014], etc.
- Mining exception rules
 - E.g., [Suzuki, 2006], etc.

Problem Statement: Ruleset Quality

- Independent Rule Measure (rm)
 - Support: $supp(H \leftarrow B) = supp(H \cup B)$
 - Coverage: $cov(H \leftarrow B) = supp(B)$
 - Confidence: $conf(H \leftarrow B) = \frac{supp(H \cup B)}{supp(B)}$
 - Lift: $lift(H \leftarrow B) = \frac{conf(H \leftarrow B)}{supp(H)}$
 - •
- Average Ruleset Quality

$$q_{rm}(R_{NM},G) = \sum_{r \in R_{NM}} \frac{rm(r,G)}{|R_{NM}|}$$

Measuring conflicts (auxiliary rules)

```
r_2: releasedInJP(X) \leftarrow hasJPComposer(X), not\ publisherUSA(X)
r_2^{aux}: not\_releasedInJP(X) \leftarrow hasJPComposer(X), publisherUSA(X)
```

$$q_{conflict}(R_{NM}, G) = \frac{|\{(p(a), not_p(a)), ...\}|}{|\{not_p(a), ...\}|}$$

Propositionalization

Unary predicates

Binary Predicates

- hasType(enstein, scientist)
- isMarriedTo(elsa, einstein)
- bornIn(einstein, um)

Unary

- isAScientist(einstein)
- isMarriedToEinstein(elsa)
- bornInUlm(einstein)

Abstraction

- isAScientist(einstein)
- isMarriedToScientist(elsa)
- bornInGermany(einstein)

Input

General-purpose KG

Domain-specific KG (Movies)

Experiment statistics

	YAGO3	IMDB
Input Facts	10M	2M
Horn Rules	10K	25K
Revised Rules	6K	22K

- Predictions assessment
 - Run DLV on YAGO and R_H then R_{NM} seperately
 - Sample facts such that fact $f \in YAGO_H \backslash YAGO_{NM}$
 - 73% of the sampled facts were found to be erroneous

- Partial materialization ranker
 - Augment the original KG with predictions of other rules
 - Rank revisions on Avg. confidence of the r and r^{aux}

$$score(r_e, KG^*) = \frac{conf(r_e, KG^*) + conf(r_e^{aux}, KG^*)}{2}$$

where r_e is the rule r with exception $e \& KG^*$ is the augmented KG.

