MTH101: Lecture 15-16

Dr. Tai-Jun Chen, Dr. Xinyao Yang

Xi'an Jiaotong-Liverpool University, Suzhou

October 30 - November 5, 2017

Second-Order Linear ODEs

You have already learned how to solve second-order linear **ODEs** (Ordinary Differential Equations) with constant coefficients,

$$y'' + ay' + by = r(t) ,$$

and corresponding IVPs (Initial Value Problems) like

$$y'' + ay' + by = r(t)$$
, $y(t_0) = K_0$, $y'(t_0) = K_1$.

Please brush up your knowledge, read the sections:

- 1.5 Linear ODEs of First Order
- 2.1 Homogeneous Linear ODEs of Second Order
- 2.2 Homogeneous Linear ODEs with Constant Coefficients
- 2.7 Nonhomogeneous ODEs

Strategy

- Transform a given IVP into a subsidiary equation using Laplace transformation.
- Solve the subsidiary equation algebraically.
- **3** Transform the algebraic solution back into a solution of the IVP using \mathcal{L}^{-1} .

Definition

For a function f(t) defined for all $t \ge 0$, the Laplace transform $F = \mathcal{L}[f]$ of f(t) is defined by:

$$F(s) = \mathcal{L}[f](s) = \int_0^\infty e^{-st} f(t) dt$$
.

If F(s) exists, then the original function f(t) is **the** (essentially unique) **inverse transform** of F(s),

$$f(t) = \mathcal{L}^{-1}[F](t)$$
 or short $f = \mathcal{L}^{-1}[F]$.

Let f(t) = 1 for $t \ge 0$. Find F(s).

Example

$$\mathcal{L}[f] = \mathcal{L}[1] = \int_0^\infty e^{-st} dt = -\frac{1}{s} e^{-st} \bigg|_0^\infty = \frac{1}{s} \quad (\text{if } s > 0).$$

Let $f(t) = e^{\alpha t}$ for $t \ge 0$, where α is a constant. Find F(s).

Example

Solution

$$\mathcal{L}[f] = \mathcal{L}[e^{\alpha t}] = \int_0^\infty e^{-st} e^{\alpha t} dt = \left. \frac{1}{\alpha - s} e^{-(s - \alpha)t} \right|_0^\infty,$$

when $s - \alpha > 0$,

$$\mathcal{L}\left[e^{\alpha t}\right] = \frac{1}{s - \alpha}.$$

Remark

$$f = \mathcal{L}^{-1}[\mathcal{L}[f]], \qquad F = \mathcal{L}[\mathcal{L}^{-1}[F]]$$

Remark

Linearity

$$\mathcal{L}\big[\mathsf{a}f+\mathsf{b}g\big] = \mathsf{a}\mathcal{L}\big[f\big] + \mathsf{b}\mathcal{L}\big[g\big],$$
 or,
$$\mathcal{L}\big[\mathsf{a}f(t) + \mathsf{b}g(t)\big](s) = \mathsf{a}\mathcal{L}\big[f(t)\big](s) + \mathsf{b}\mathcal{L}\big[g(t)\big](s).$$

Integration is linear operation!

Let $f(t) = \cosh \alpha t$ for $t \ge 0$, find F(s).

Example

Solution

$$\cosh \alpha t = \frac{e^{\alpha t} + e^{-\alpha t}}{2}$$

$$\mathcal{L}[f] = \mathcal{L}[\cosh \alpha t] = \frac{1}{2}\mathcal{L}[e^{\alpha t}] + \frac{1}{2}\mathcal{L}[e^{-\alpha t}]$$
$$= \frac{1}{2}\left(\frac{1}{s-\alpha} + \frac{1}{s+\alpha}\right) = \frac{s}{s^2 - \alpha^2}.$$

Well-defined when $s - |\alpha| > 0$.

Find
$$\mathcal{L}\left[\cos\omega t\right]=rac{s}{s^2+\omega^2}$$
 and $\mathcal{L}\left[\sin\omega t\right]=rac{\omega}{s^2+\omega^2}$.

Example

Let
$$\mathcal{L}_c \equiv \mathcal{L}[\cos \omega t]$$
, $\mathcal{L}_s \equiv \mathcal{L}[\sin \omega t]$.

$$\mathcal{L}_{c} = \int_{0}^{\infty} e^{-st} \cos \omega t dt$$

$$= \left(-\frac{1}{s} e^{-st} \cos \omega t \right) \Big|_{0}^{\infty} - \frac{\omega}{s} \int_{0}^{\infty} e^{-st} \sin \omega t dt$$

$$= \frac{1}{s} - \frac{\omega}{s} \mathcal{L}_{s}, \qquad (when s > 0).$$

Find
$$\mathcal{L}\left[\cos\omega t\right]=rac{s}{s^2+\omega^2}$$
 and $\mathcal{L}\left[\sin\omega t\right]=rac{\omega}{s^2+\omega^2}$.

Example

Solution

Similarly,

$$\mathcal{L}_{s} = \int_{0}^{\infty} e^{-st} \sin \omega t dt$$

$$= \left(-\frac{1}{s} e^{-st} \sin \omega t \right) \Big|_{0}^{\infty} + \frac{\omega}{s} \int_{0}^{\infty} e^{-st} \cos \omega t dt$$

$$= \frac{\omega}{s} \mathcal{L}_{c}, \qquad (when s > 0).$$

Find
$$\mathcal{L}\left[\cos\omega t\right] = \frac{s}{s^2 + \omega^2}$$
 and $\mathcal{L}\left[\sin\omega t\right] = \frac{\omega}{s^2 + \omega^2}$.

Example

$$\mathcal{L}_c = \frac{1}{s} - \frac{\omega}{s} \mathcal{L}_s, \qquad \mathcal{L}_s = \frac{\omega}{s} \mathcal{L}_c.$$

$$\Rightarrow \mathcal{L}_c = \frac{s}{s^2 + \omega^2}, \qquad \mathcal{L}_s = \frac{\omega}{s^2 + \omega^2}.$$

Find
$$\mathcal{L}\left[t^{n+1}\right] = \frac{(n+1)!}{s^{n+2}}$$
, for $n = -1, 0, \cdots$.

Example

$$\mathcal{L}[t^{n+1}] = \int_0^\infty e^{-st} t^{n+1} dt$$

$$= -\frac{1}{s} e^{-st} t^{n+1} \Big|_0^\infty + \frac{n+1}{s} \int_0^\infty e^{-st} t^n dt$$

$$= \frac{n+1}{s} \mathcal{L}[t^n] = \frac{(n+1)!}{s^{n+1}} \mathcal{L}[1] = \frac{(n+1)!}{s^{n+2}}.$$

Definition

The **Gamma function** is defined for $\alpha > 0$ by the integral

$$\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha-1} dx .$$

Integration by parts yields

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha) .$$

Since $\Gamma(1) = 1$, this implies for $n \in \mathbb{N}$

$$\Gamma(n+1) = n! .$$

Let $\alpha > 0$, then, using the substitution st = x,

$$\mathcal{L}[t^{\alpha}](s) = \int_{0}^{\infty} e^{-st} t^{\alpha} dt = \int_{0}^{\infty} e^{-x} \left(\frac{x}{s}\right)^{\alpha} \frac{dx}{s}$$
$$= \frac{1}{s^{\alpha+1}} \int_{0}^{\infty} e^{-x} x^{\alpha} dx = \frac{\Gamma(\alpha+1)}{s^{\alpha+1}}.$$

In particular,

$$\mathcal{L}\big[t^n\big](s)=\frac{n!}{s^{n+1}}.$$

Theorem

First shifting theorem, s-Shifting

$$\mathcal{L}[e^{\alpha t}f(t)](s) = F(s-\alpha)$$

or, $e^{\alpha t}f(t) = \mathcal{L}^{-1}[F(s-\alpha)].$

Proof.

$$F(s-\alpha) = \int_0^\infty e^{-(s-\alpha)t} f(t) dt = \int_0^\infty e^{-st} \left[e^{\alpha t} f(t) \right] dt,$$

= $\mathcal{L} \left[e^{\alpha t} f(t) \right].$

$$\mathcal{L}\left[e^{\alpha t}\cos\omega t\right] = \mathcal{L}\left[\cos\omega t\right](s-\alpha) = \frac{(s-\alpha)}{(s-\alpha)^2 + \omega^2},$$

$$\mathcal{L}\left[e^{\alpha t}\sin\omega t\right] = \mathcal{L}\left[\sin\omega t\right](s-\alpha) = \frac{\omega}{(s-\alpha)^2 + \omega^2}.$$

	f(t)	$\mathcal{L}(f)$
1	1	1/s
2	t	1/s ²
3	t ²	$2!/s^3$
4	$(n=0,1,\cdots)$	$\frac{n!}{s^{n+1}}$
5	t ^a (a positive)	$\frac{\Gamma(a+1)}{s^{a+1}}$
6	e^{at}	$\frac{1}{s-a}$

	f(t)	$\mathcal{L}(f)$
7	cos ωt	$\frac{s}{s^2 + \omega^2}$
8	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
9	cosh at	$\frac{s}{s^2 - a^2}$
10	sinh <i>at</i>	$\frac{a}{s^2 - a^2}$
11	$e^{at}\cos \omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
12	$e^{at} \sin \omega t$	$\frac{\omega}{(s-a)^2+\omega^2}$

Completing the square

Example

Consider
$$F(s) = \frac{3s-137}{s^2+2s+401}$$
. Find $f(t) = \mathcal{L}^{-1}[F(s)]$.

Example

$$f(t) = \mathcal{L}^{-1} \left[\frac{3(s+1) - 140}{(s+1)^2 + 400} \right]$$

$$= 3\mathcal{L}^{-1} \left[\frac{s+1}{(s+1)^2 + 20^2} \right] - 7\mathcal{L}^{-1} \left[\frac{20}{(s+1)^2 + 20^2} \right]$$

$$= 3e^{-t} \cos 20t - 7e^{-t} \sin 20t.$$

Bibliography

1 Kreyszig, E. Advanced Engineering Mathematics. Wiley, 10th Edition.