BEAST2 Analysis of Algonquian Language Data

Benjamin Teo

University of Wisconsin-Madison

bteo@wisc.edu

September 11, 2020

1/22

Background

Tree of Languages

Figure: Illustration by cartoonist Minna Sundberg

Cognates: Words that have a common historical origin.

- Night (English), Nacht (German), Nyx (Ancient Greek)
 - Mozart's Eine kleine Nachtmusik ('A little night music')
 - Nyx, the primordial deity of the night in Greek mythology
- False Cognates: Possibly similar sounds/meaning, but different origin.
- ❶ emoticon (English), emoji/絵文字 (Japanese)

Problem setup

Dataset: A 52-by-9 matrix representing cognate data from 52 words across 9 languages.

- Seach row corresponds to a different word, and uses non-negative integers to indicate the cognate classes for that word.
- 2 X's indicate cases where cognacy was undeterminable.

PI Cree	SW Oj	Chey	Menom	Pot.	Meskw.	Shaw	Miami	Pass-M
0	0	2	1	0	0	0	0	0
2	0	Χ	0	0	3	0	1	4

Table: Rows 14-15 from the dataset. Row 14 indicates 3 cognate classes, while row 15 indicates 5 cognate classes and one language (Chey) for which cognacy was undeterminable.

Problem setup

Reformatted data: A 9-by-152 matrix of mostly 0's and 1's, with the exception of some ?'s.

- Each row corresponds to a different language, and each column corresponds to a cognate class for some word.
- ② 0, 1, and ? respectively indicate cognate absence, presence, and undeterminable cognacy.

PI Cree	1	0	0	0	0	1	0	0
SW Oj	1	0	0	1	0	0	0	0
Chey	0	0	1	?	?	?	?	?
Menom	0	1	0	1	0	0	0	0
Pot.	1	0	0	1	0	0	0	0
Meskw.	1	0	0	0	0	0	1	0
Shaw	1	0	0	1	0	0	0	0
Miami	1	0	0	0	1	0	0	0
Pass-M	1	0	0	0	0	0	0	1

Table: Reformatted information from rows 14-15 of the original dataset. The light-gray columns correspond to row 14, and the gray columns correspond to row 15.

Problem setup

Objectives:

- Compare how well 6 different models of cognate evolution explain the dataset.
 - 3 possible site-state models: Binary CTMC, Binary Covarion, Stochastic Dollo.
 - 2 possible clock models: Strict, Log-normal Relaxed.
- ② Infer the phylogeny of these 9 languages, assuming this is a tree.

Why these models? An attempt to reproduce the methodology adopted in Bowern, Claire and Atkinson, Quentin, 2012. Computational Phylogenetics and the Internal Structure of Pama-Nyungan, Language, Vol. 88, 817-845

5/22

Pipeline

*HPD: Highest Posterior Density
*MCC: Maximum Clade Credibility

MCC Trees: Visualized as ultrametric time-trees labeled with internal-edge posterior probabilities, and colored by rate.

(a) Strict clock

(b) Relaxed clock

イロト イ団ト イミト イミト

Figure: CTMC model

(a) Strict clock

(b) Relaxed clock

Figure: Covarion model

Figure: S. Dollo model

Recall that BF(Model 1, Model 2) =
$$\frac{Pr(\text{Data}|\text{Model 1})}{Pr(\text{Data}|\text{Model 2})}$$
 so that:

$$\log BF(M1, M2) = \log Pr(D \mid M1) - \log Pr(D \mid M2)$$

Bayes Factor Comparison:

Model	Marginal L estimate	CTMC		Covarion		S. Dollo	
		strict	relaxed	strict	relaxed	strict	relaxed
CTMC strict	-691	_					
CTMC relaxed	-646 (-687)	45 <mark>(4)</mark>	_				
Covarion strict	-693	-2	-47 (-6)	_			
Covarion relaxed	-647 (-689)	44 (2)	-1 (-2)	46 (4)	_		
S. Dollo strict	-873	-182	-227 (-186)	-180	-226 (-184)	_	
S. Dollo relaxed	-818	-127	-172 (-131)	-125	-171 (-129)	55	_

Table: Table of marginal likelihoods and their differences, all on the log scale. The row corresponding to the best performing model is highlighted in light-gray.

Improves model fit: Relaxed clock assumption

Does not improve model fit: Covarion assumptions

Worsens model fit: Stochastic Dollo assumptions

(Binary CTMC, Relaxed clock) MCC Tree:

Figure: CTMC-relaxed model revisited. The 95% HPD intervals for node ages are shown as blue rectangles, whereas the internal edges are labeled by posterior support.

Story: The Miami-Meskw. clade is strongly supported. Other than that, many configurations of internal branching are plausible.

< ロ > < 回 > < 重 > <

Models

Data-generating process

Generate time-tree: Yule process

Adjust branch lengths to reflect evolutionary change: Clock model

Propagate site-states down tree: Site-state model

Models

Yule process

- **1** Branching birth process with $Exp(\lambda_y)$ waiting times.
 - **1** Time is proportional to evolutionary change.
 - 2 Elapsed time between parent and child is iid $Exp(\lambda_y)$.
 - $\mathbf{0}$ $1/\lambda_y$ is the expected branch length or elapsed time between parent and child.
 - **③** $\uparrow \lambda_y \downarrow$ expected branch length, and $\downarrow \lambda_y \uparrow$ expected branch length.
 - **6** λ_y controls the expected total evolutionary change.

Clock model

- Generate clock rates for each branch.
 - 1 Strict clock: the rates are all 1.
 - **Q** Log-normal relaxed clock: the rates are iid Log-normal $(-\sigma_{\rm clock}^2/2,\sigma_{\rm clock}^2)$
 - $[Log-normal(\mu, \sigma^2)] = \exp(\mu + \sigma^2/2)$
 - $E[\text{Log-normal}(-\sigma_{\text{clock}}^2/2, \sigma_{\text{clock}}^2)] = 1$
- Scale each branch by its corresponding clock rate.
 - **1** The expected branch length is still λ_{ν} .
 - ② Instead of $1/\lambda_v^2$, the variance is now $(1/\lambda_v^2)(2\exp(\sigma_{\text{clock}}^2)-1)\in (1/\lambda_v^2,\infty)$.
 - \bullet σ_{clock}^2 controls the variation in evolutionary change between parent and child.

Picture

14/22

Models

Binary CTMC

Equilibrium proportions, π and normalized rate matrix, Q

$$\pi = [f_0, (1 - f_0))]$$

$$Q = \frac{1}{2f_0(1 - f_0)} \begin{bmatrix} -(1 - f_0) & (1 - f_0) \\ f_0 & -f_0 \end{bmatrix}$$

- (1) 'Evolutionary change' quantified in terms of number of substitutions per site.
- ② 'Normalized' means that $\pi_1 |Q_{11}| + \pi_2 |Q_{22}| = 1$ (i.e. the expected substitution rate is 1).
- Expected number of substitutions per site between parent and child is λ_{V} .

Binary Covarion

Possible states = {slow-absent, slow-present, fast-absent, fast-present} Switch rate, s. Scaling factor, α_{slow} . Normalizing constant, η .

$$\pi = [f_0/2, (1 - f_0)/2, f_0/2, (1 - f_0)/2]$$

$$Q = rac{1}{\eta} egin{bmatrix} -(lpha_{\mathsf{slow}}(1-f_0) + s) & lpha_{\mathsf{slow}}(1-f_0) & s & 0 \ lpha_{\mathsf{slow}}f_0 & -(lpha_{\mathsf{slow}}f_0 + s) & 0 & s \ s & 0 & -(1-f_0 + s) & (1-f_0) \ 0 & s & f_0 & -(s+f_0) \end{pmatrix}$$

(1) 'slow' and 'fast' are latent states like in a Hidden Markov Model. For the sake of time-reversibility, their equilibrium proportions are assumed to be 1/2.

Models

Stochastic Dollo

- 1 The waiting times for each cognate to be "born" on the tree are iid $Exp(\nu)$.
- ② Once a cognate is born, it undergoes a branching death process with $Exp(\mu)$ waiting times.
 - O Problem: Can we ensure that the expected substitution rate is 1?
 - **9** If the expected substitution rate \neq 1, then branch length does not represent number of substitutions per site.
 - If the expected substitution rate varies along the tree, then there is no simple interpretation for branch length.
 - **1** Furthermore, λ_y and μ cannot simultaneously be estimated.

*Caveat: Site-heterogeneity

- Allow for variation across sites.
- ② Site-specific rates, $r_i \stackrel{\text{iid}}{\sim} \text{Discretized-Gamma}(\alpha_{site}, 1/\alpha_{site})$, where the number of categories is 4.
 - **1** For the Binary CTMC/Covarion models, the site-specific transition probability matrix is given by $P_{I^*} = e^{r_I I^* Q}$, where I^* corresponds to branch length traversed.
 - **1** $E[Gamma(\alpha_{site}, 1/\alpha_{site})] = 1$ preserves the expected branch length.
 - **②** For the Stochastic Dollo model, the r_i 's scale the birth and death rates (e.g. $\mathsf{Exp}(r_i\nu)$ and $\mathsf{Exp}(r_i\mu)$).

4 D > 4 B > 4 B > 4 B >

Picture

17 / 22

Inference

Bayesian inference process

Inference

Estimated parameters

In practical terms, estimating a parameter means selecting a prior for it.

Parameter	CTMC		Covarion		S. Dollo	
	strict	relaxed	strict	relaxed	strict	relaxed
Yule birth rate, λ_y	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Scale parameter (relaxed clock), σ_{clock}		\checkmark		\checkmark		✓
Scale parameter (site-heterogeneity), α_{site}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Equilibrium proportion (absent state), f_0	\checkmark	\checkmark	\checkmark	\checkmark		
Switch rate (between slow/fast modes), s			\checkmark	\checkmark		
Scale parameter (slow mode), α_{slow}			\checkmark	\checkmark		
Cognate birth rate, ν					\checkmark	✓
Cognate death rate, μ					\checkmark	✓

Table: Model parameters

Priors

Tree parameters:

- 2 $\sigma_{
 m clock} \sim {\sf Gamma}(lpha_{\sigma_{
 m clock}} = 0.5396, eta_{\sigma_{
 m clock}} = 0.3819)$

Site-state parameters:

- ① $f_0 \sim \mathsf{Unif}(0,1), \ s \sim \mathsf{Gamma}(\alpha_s = 0.05, \beta_s = 10), \ \alpha_{\mathsf{slow}} \sim \mathsf{Unif}(0,\infty)$
- 2 $\nu=1,~\mu\sim {\sf Exp(mean}=10^{-4}),~\alpha_{\sf site}\sim {\sf Exp(mean}=1)$

Model Selection

Marginal likelihood: $f(D \mid M) = \int_{\Theta} f(D \mid \theta, M) \pi(\theta \mid M) d\theta$

Importance sampling:

- Regard the integral as an expectation, and estimate it as a sample mean.
- 2 Arithmetic Mean (AM) Method: Take $\pi(\theta \mid M)$ as the 'importance distribution'.

$$\int_{\Theta} f(D \mid \theta, M) \cdot \pi(\theta \mid M) d\theta = E_{\pi(\theta \mid M)}[f(D \mid \theta, M)]$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} f(D \mid \theta_{i}, M), \ \theta_{i} \stackrel{\text{iid}}{\sim} \pi(\theta \mid M)$$

Disadvantage: 'If the likelihood is sharp compared with the prior, the AM estimate can have an unacceptably high variance' (Xie et al. 2011).

*Xie, Wangang & Lewis, Paul & Fan, Yu & Kuo, Lynn & Chen, Ming-Hui. (2011). Improving Marginal Likelihood Estimation for Bayesian Phylogenetic Model Selection. Systematic biology. 60. 150-60. 10.1093/sysbio/syq085.

Model selection

Stepping-stone sampling:

- Regard the integral as a telescoping product, and estimate each term by importance sampling.
- 2 The importance distribution for each term is a different power-posterior distribution.

Letting $0 = \beta_0 < \beta_1 < ... < \beta_K = 1$, we have:

$$\begin{split} \int_{\Theta} f(D \mid \theta, M) \pi(\theta \mid M) d\theta &= \prod_{k=1}^{K} \frac{\int_{\Theta} f(D \mid \theta, M)^{\beta_{k}} \pi(\theta \mid M) d\theta}{\int_{\Theta} f(D \mid \theta, M)^{\beta_{k-1}} \pi(\theta \mid M) d\theta}, \\ &= \prod_{k=1}^{K} \int_{\Theta} f(D \mid \theta, M)^{\beta_{k} - \beta_{k-1}} \cdot p_{\beta_{k-1}} (\theta \mid D, M) d\theta \\ &= \prod_{k=1}^{K} E_{p_{\beta_{k-1}}(\theta \mid D, M)} [f(D \mid \theta, M)^{\beta_{k} - \beta_{k-1}}] \\ &\approx \prod_{k=1}^{K} \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} f(D \mid \theta_{(i,k-1)}, M)^{\beta_{k} - \beta_{k-1}}, \ \theta_{(i,k)} \stackrel{\text{iid}}{\sim} p_{\beta_{k}}, \ i \in \{1, ..., n_{k}\} \end{split}$$

* $p_{\beta_k}(\theta \mid D, M) = \frac{f(D \mid \theta, M)^{\beta_k} \pi(\theta \mid M)}{\int_{\Omega} f(D \mid \theta, M)^{\beta_k} \pi(\theta \mid M) d\theta}$ is simulated through MCMC sampling.

* $\beta_k \stackrel{\mathsf{iid}}{\sim} \mathsf{Beta}(\alpha_{\mathsf{step}} = \mathsf{0.3}, \mathsf{1})$

Discussion

Extensions

- Reduce computing time using high-performance library BEAGLE, which can make use of GPUs.
- Node calibration.

Challenges

- Computing time: To run an MCMC chain of length 100,000,000 takes about 2-2.5 hours.
- Sensitivity analysis.

Thanks!

- 1 To the Linguisticians (or Linguists?) who shared their data and thoughts.
- ② To Prof. Ané, for answering my numerous and repetitive questions.
- 3 To the audience, for listening.