Lista 1 Zaawansowane modele liniowe Regresja logistyczna

Analiza danych

- Zaimportuj do R dane "Lista_1.csv".
 Powyższy zbiór danych opisuje relacje między p-stwami przyjęcia na studia (success) a wynikami z testów rachunkowych (numeracy) i poziomu niepewności (anxiety).
- 2. Narysuj boxploty dla zmiennej "numeracy" w rozbiciu na grupę przyjętych/nieprzyjętych osób (boxplot(numeracy $\sim success$)). Opisz wnioski.
- 3. Wykonaj poprzedni punkt dla zmiennej "anxiety".
- 4. Skonstruuj model regresji logistycznej dla powyższych danych. W szczególności:
 - Podaj estymatory parametrów i wyniki testów istotności,
 - Wyznacz przewidywane p-stwo sukcesu u studenta, którego anxiety=13 a numeracy=10,
 - Wyrysuj krzywa ROC dla dopasowanego modelu statystycznego.
- 5. Powtórz powyższe ćwiczenie dla różnych funkcji linkujących (probit, cauchit, cloglog) i oceń która z funkcji linkujących daje najlepsze dopasowanie modelu do danych. Porównaj krzywe ROC dla modeli z różnymi funkcjami linkującymi.
- 6. Skoncentrujemy się obecnie na modelu z funkcją linkującą "logit".
 - Wyznacz estymator macierzy kowariancji wektora estymatorów parametrów w modelu regresji logistycznej. Następnie, porównaj wartości na przekątnej z estymatorami odchyleń standardowych zwracanych przez R.
 - Przetestuj jedną hipotezę, że obie zmienne objaśniające nie mają wpływu na zmienną odpowiedzi.

- Przetestuj hipotezę, że rozkład danych jest zgodny z założonym modelem.
- Podaj definicję parametru "epsilon" i jego wartość domyślną. Wykonaj ponownie obliczenia stosując wartości epsilon ze zbioru: 10⁻¹, 10⁻², 10⁻³ i 10⁻⁶. Porównaj liczbę iteracji i wartości estymatorów poszczególnych parametrów.

Symulacje

- 1. Wygeneruj macierz X wymiaru n=400, p=3, której elementy są zmiennymi losowymi z rozkładu $N(0,\sigma^2=1/400)$ (pamiętaj, że funkcja rnorm() wymaga podania parametru $\sigma(\text{nie }\sigma^2!)$). Załóżmy, że binarny wektor odpowiedzi jest wygenerowany zgodnie z modelem regresji logistycznej z wektorem $\beta=(3,3,3)$. Wyznacz macierz informacji Fishera w punkcie β i asymptotyczną macierz kowariancji estymatorów największej wiarogodności. Nastepnie wygeneruj 1000 replikacji wektor odpowiedzi zgodnie z powyższym modelem i na podstawie każdej replikacji wyznacz estymator wektora β . W tym celu skorzystaj z funkcji glm(), przy czym wyłącz z modelu Intercept, gdyż nie korzystamy z niego przy generowaniu danych $(glm(y\sim X-1,...))$. Na podstawie uzyskanego zbioru estymatorów:
 - Narysuj histogramy estymatorów $\hat{\beta}_1, \hat{\beta}_2$ i $\hat{\beta}_3$ i porównaj z ich rozkładami asymptotycznymi.
 - Wyestymuj obciążenie estymatorów $\hat{\beta}_1, \hat{\beta}_2$ i $\hat{\beta}_3$
 - Wyestymuj macierz kowariancji wektora estymatorów $(\hat{\beta}_1, \hat{\beta}_2 \text{ i } \hat{\beta}_3)$ i porównaj z asymptotyczną macierzą kowariancji.
- 2. Wpływ liczby obserwacji n.

Doswiadczenie powtórz w przypadku gdy n=100.

3. Wpływ korelacji miedzy regresorami.

Punkt 1 powtórz w przypadku gdy wiersze macierzy X sa niezależnymi wektorami losowymi z wielowymiarowego rozkładu normalnego $N(0,\Sigma)$ z macierza kowariancji $\Sigma = \frac{1}{n}S$, gdzie $S_{ii} = 1$, a dla $i \neq j$, $S_{ij} = 0.3$.

- 4. Wpływ liczby regresorów.
 - Punkt 1 powtórz w przypadku, gdy elementy X sa niezależne a p=20.
- 5. Porównaj wyniki i opisz wnioski.