FUNDAMENTOS DE DISEÑO DIGITAL Profesor: Carlos Pastrana

1.- Simplificar por Karnaugh la función siguiente, indique su tabla de verdad y la función booleana sin simplificación así como la función reducida.

$$f(x, y, z) = \sum_{3} m(3,5,6)$$

tabla de verdad

2.- Usando los mapas de Karnaugh, simplificar las siguientes funciones y obtener las del mismo mapa mediante los dos métodos miniterminos y maxiterminos las funciónes de suma de productos y el producto de sumas de las siguientes funciones.

a)
$$f(w,x,y,z) = \sum m(5,6,9,10)$$

b)
$$f(x,y,z) = \sum m(2,3,4,5,6,7)$$

c)
$$f(x,y,z) = \sum m(2,4,5,6)$$

d)
$$f(w,x,y,z) = \sum m(3,6,7,11,12,14,15)$$

- 3.- Obtener la tabla de verdad y las formas canónicas (expresado con suma de mini-términos y en producto de maxi-términos) a partir de esta.
- 4.- Comprobar mediante la tabla de verdad y/o algebra booleana que la función $f(a,b,c,d) = \sum m(3,5,7,11,15) = \Pi M(0,1,2,4,6,8,9,10,12,13,14)$

$$f(a,b,c,d) = m_3 + m_5 + m_7 + m_{11} + m_{15} = \overline{m3 + m5 + m7 + m11 + m15} =$$

$$= m_0 + m_1 + m_2 + m_4 + m_6 + m_8 + m_9 + m_{10} + m_{12} + m_{13} + m_{14} =$$

$$= m_0 \cdot m_1 \cdot m_2 \cdot m_4 \cdot m_6 \cdot m_8 \cdot m_9 \cdot m_{10} \cdot m_{12} \cdot m_{13} \cdot m_{14} =$$

$$= M_{15} \cdot M_{14} \cdot M_{13} \cdot M_{11} \cdot M_9 \cdot M_7 \cdot M_6 \cdot M_5 \cdot M_3 \cdot M_2 \cdot M_1 =$$

$$= M_1 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6 \cdot M_7 \cdot M_9 \cdot M_{11} \cdot M_{13} \cdot M_{14} \cdot M_{15}$$

FUNDAMENTOS DE DISEÑO DIGITAL Profesor: Carlos Pastrana

a	b	С	d	f	m	M
0	0	0	0	0		M_{15}
0	0	0	1	0		M_{14}
0	0	1	0	0		M_{13}
0	0	1	1	1	\mathbf{m}_3	
0	1	0	0	0		M_{11}
0	1	0	1	1	\mathbf{m}_{5}	
0	1	1	0	0		M_9
0	1	1	1	1	\mathbf{m}_7	
1	0	0	0	0		M_7
1	0	0	1	0		M_6
1	0	1	0	0		M ₅
1	0	1	1	1	\mathbf{m}_{11}	
1	1	0	0	0		M_3
1	1	0	1	0		M_2
1	1	1	0	0		M_1
1	1	1	1	1	m ₁₅	

SOLUCIÓN:

$$f(a,b,c,d) = m_3 + m_5 + m_7 + m_{11} + m_{15}$$

$$f(a,b,c,d) = M_1 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6 \cdot M_7 \cdot M_9 \cdot M_{11} \cdot M_{13} \cdot M_{14} \cdot M_{15}$$

e) Minimizar la función obtenida empleando los mapas de Karnaugh.

ab/cd	00	01	11	10
00	0	1	(13)	2
01	4	(1,	17	6
11	12	13	1 15	14
10	8	9	1"	10
ā∙b	\ c∙d			

SOLUCIÓN:

$$f(a,b,c,d) = \overline{a \cdot b \cdot d} + c \cdot d$$

FUNDAMENTOS DE DISEÑO DIGITAL Profesor: Carlos Pastrana

1 1 0

FUNDAMENTOS DE DISEÑO DIGITAL Profesor: Carlos Pastrana

c)
$$f(x,y,z) = \sum m(2,4,5,6)$$

Comprobación de igualdad (no es necesaria):

d) $f(w,x,y,z) = \sum m(3,6,7,11,12,14,15)$

tabla de verdad

Problemario: Tema simplificación de términos mediante Mapas de Karnaugh FUNDAMENTOS DE DISEÑO DIGITAL Profesor: Carlos Pastrana

5.- Minimizar empleando mapas de Karnaugh (dx= valor no definido):

- a) f(a,b,c,d) = m0+m2+m3+m4+m5+m6+m7+m8+m12
- b) f(a,b,c,d) = M1 + M5 + M9 + M10 + M11 + M13 + M14 + M15
- C) f(a,b,c,d) = m0+m2+m3+m4+m5+m6+m7+m8+m12+d1
- d) f(a,b,c,d) = M1+M5+M9+M10+M11+M13+M14+M15+d8+d12