Name: Tom Ralph Class: Physics II

Period: 2
Group #:

Lab # and Title: 2 – Hydrostatic Pressure

Laboratory Report

# **Purpose**

In this lab we are attempting to identify the relationship between pressure and depth in a liquid. We will measure the depth of the sensor and the pressure at each point.

# **Equipment Used**

Depth sensor, water container, meter stick

#### **Procedure**

- 1. Fill a container with water to use for testing
- 2. Take an initial test of the pressure with the sensor out of the water, record this as depth 0
- 3. Take a test at a depth of 4 cm and record



a.

4. Repeat on even intervals until you have tested at depth of 14 cm



a.

5. Record your data and check for a trendline to find the correlation

| Depth | Pressure |
|-------|----------|
| [cm]  | [N/m^2]  |
| 0     | 101542   |
| 4     | 101916   |
| 6     | 102103   |
| 8     | 102290   |
| 10    | 102477   |
| 12    | 102734   |
| 14    | 102851,  |
|       |          |

| 103000    |           |     |                  |        |      |      |       |        |
|-----------|-----------|-----|------------------|--------|------|------|-------|--------|
| 102800    |           |     | y = 95.6         |        |      |      |       | 102851 |
| 102000    |           |     | R <sup>2</sup> : | 0.9972 |      | 2.15 | 02734 |        |
| TI 102600 |           |     |                  |        |      |      |       |        |
| E 102400  |           |     |                  |        | 10   | 2477 |       |        |
| >         |           |     |                  | 10     | 2290 |      |       |        |
| g 102200  |           |     | 1021             |        |      |      |       |        |
| 2 102000  |           |     |                  | 103    |      |      |       |        |
| ii.       |           | 101 | 916              |        |      |      |       |        |
| 101800    |           |     |                  |        |      |      |       |        |
| 101600    | Andreas . |     |                  |        |      |      |       |        |
| 101400    | 101542    |     |                  |        |      |      |       |        |
| 101400 -  | 2         | 4   | 6                | 8      | 10   | 12   | 14    | 4 1    |
| 0         | 4         | 4   | 0                | 8      | 10   | 12   | 14    | 4 1    |

a.

### Data

| Depth<br>[cm] | Pressure<br>[N/m^2] |
|---------------|---------------------|
| 0             | 101542              |
| 4             | 101916              |
| 6             | 102103              |
| 8             | 102290              |
| 10            | 102477              |
| 12            | 102734              |
| 14            | 102851              |



# **Analysis Questions**

1. What type of relationship exists between pressure and depth?

The relationship between pressure and depth is strongly suggested to be directly correlated based on our lab. Our data gives a trendline with a  $R^2$  value of 0.9972.

2. Static pressure is related to depth according to the equation,

$$P = P_0 + \rho g h$$

where P is pressure,  $P_0$  is the initial pressure,  $\rho$  is density, g is acceleration due to gravity and h is depth. From a linear graph relating pressure to depth, extrapolate a value for the density of the fluid in the reservoir (water).

$$102851 = 101542 + \rho(-9.8) * 0.14$$
$$\rho = 954.08 \, kg/m^3$$

3. If the theoretical value of the density of water is 1,000 kg/m<sup>3</sup>, calculate the percent error between your experimental value and the actual value. Show your work.

% 
$$error = \left| \frac{1000 - 954.08}{1000} \right| \times 100 = 4.59\%$$

4. If you performed this same experiment using liquid iodine (density  $\approx 4,900 \text{ kg/m}^3$ ) instead of water, how would a graph of pressure versus depth be different?

The graph would have a much larger slope, because the denser liquid would exert a greater pressure