ONDE ELETTROMAGNETICHE

ONDA: Jenomens fisis in eur quantité fincle si propagans nel temps

ONDE MECRANICHE: onde del more, il suons, le onde di una corda tere oscillante

Ce onde non trospertono maro, ma energia e quentità di moto

IPOTES1: $\frac{\int E\alpha}{\int Y} = \frac{\int E\alpha}{\int B\alpha} = 0$ $\frac{\int B\alpha}{\int B\alpha} = \frac{\int B\alpha}{\int B\alpha} = 0$

$$(\nabla \times \vec{E})_{x} = \frac{\partial \vec{B}}{\partial t}, \quad \nabla \times \vec{B} = \mu \cdot \epsilon \cdot \frac{\partial \vec{E}}{\partial t}$$

$$(\nabla \times \vec{E})_{x} = \frac{\partial E_{y}}{\partial t} - \frac{\partial E_{z}}{\partial t} = 0 = -\frac{\partial B_{x}}{\partial t} + \frac{\partial B_{x}}{\partial t} = 0 \neq 0$$

$$(\nabla \times \vec{E})_{x} = \frac{\partial E_{y}}{\partial t} - \frac{\partial E_{z}}{\partial t} = 0 = \mu \cdot \epsilon \cdot \frac{\partial E_{x}}{\partial t} + \frac{\partial E_{x}}{\partial t} = 0 \neq 0$$

$$(\nabla \times \vec{E})_{x} = \frac{\partial E_{y}}{\partial t} - \frac{\partial E_{z}}{\partial t} = 0 = \mu \cdot \epsilon \cdot \frac{\partial E_{x}}{\partial t} + \frac{\partial E_{x}}{\partial t} = 0 \neq 0$$

$$(\overrightarrow{\nabla}_{x}\overrightarrow{E})_{x} = \underbrace{\underbrace{\sum_{b=1}^{b} - \underbrace{\sum_{b=1}^{b} = 0}_{b} - \underbrace{\sum_{b=1}^{b} + 0}_{b}}_{Dx} = 0 = \underbrace{\underbrace{\sum_{b=1}^{b} - \underbrace{\sum_{b=1}^{b} + 0}_{b}}_{Dx} = 0 = \underbrace{\underbrace{\sum_{b=1}^{b} + 0}_{b}}_{Dx} = 0 = \underbrace{\underbrace{\sum_{b=1}^{b} + 0}_{Dx}}_{Dx} = 0 = \underbrace{\underbrace{\sum_{b=1}^{b} + 0}_{Dx}}_{Dx}$$

6 incognite
$$B_{x}$$
, B_{y} , B_{z} $Iposso$ O , B_{y} , B_{z}

$$E_{x}$$
, E_{y} , E_{z}

$$O$$
, E_{y}

$$O$$
, E_{z}

$$O$$
, E_{y}

$$O$$
, E_{z}

$$\frac{\int_{-\infty}^{2} E_{x}}{\int_{-\infty}^{2} E_{y}} = \frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}}$$
 equazione delle onde elettromagnetiche

 $\frac{\int_{-\infty}^{2} E_{x}}{\int_{-\infty}^{2} E_{y}} = \frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}}$ equazione delle onde o di d'Allembert

 $\frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}} = \frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}}$ equazione delle onde o di d'Allembert

 $\frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}} = \frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}}$ equazione delle onde o di d'Allembert

 $\frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}} = \frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}}$ equazione delle onde o di d'Allembert

 $\frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}} = \frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} E_{y}} = \frac{\int_{-\infty}$

E.M. =
$$\frac{1}{C^2}$$
 F) le equazioni di Maxwell Ponno come olunione un'onda che ni propaga con velocità c

 $C = 2.99792.10^8 \text{ m/s} = \frac{1}{\sqrt{\Sigma_0 \mu_0}}$

quetta eq. ni applica a $E_{x}, E_{z}, B_{x}, B_{z}$ (pr. so. $3 \times 2^2 = \frac{1}{C^2} 3 \times 2^2$)

$$\frac{\int_{X^2}^2 = \frac{1}{v^2} \int_{t^2}^{2t}}{\int_{x^2}^2 \int_{t^2}^{2t}}, \quad f(x,t) = f(x \pm vt) \quad \text{function: cosi sons obligation:} \\
\varphi = x - vt \quad F) \quad \frac{f}{f} = \frac{f}{f} \quad \frac{$$

ONDE ARHONICHE $f(x,t) = f(x-vt) = f_0 \sin[k(x-vt)]$ oppure $f(x,t) = f_0 \cos[k(x-vt)]$ [KX] = rad, [KVt] = rad K e detto vettere d'onda $x \triangle X = \frac{2\pi}{k}$ la fusione (KV = W è detta pulsassione ×=×* se st = 2T 11 $\Delta = \frac{2\pi}{K}$ lungher AD of onde T= 211 period

λ = vT = ¹/₂, ν = ¹/₂ frequents del punts de virte fines → ω (ν, T) depende della sirgente dell'enda → λ (κ) depende del meters in cui l'ando si propaga

$$(7) \phi = x - vt$$
 for dell'orde

2) tutt i punt delle spiris che bonne la stessa fose costituiscen il fronte d'anda ntena fore stessa fore

$$\frac{\int_{-\infty}^{2} E_{y}}{\int_{-\infty}^{2} x^{2}} = \frac{1}{C^{2}} \frac{\int_{-\infty}^{2} x^{2}}{\int_{-\infty}^{2} x^{2}} = \frac{1}{C^{2}} \frac{\int_{-\infty}^{2} x^{$$

quete solutioni sons connerse tro di lor.
$$\frac{\partial \overline{tz}}{\partial x} = \frac{\partial Bx}{\partial t}$$

re faccions la derivate:

$$B^{2} = B_{y}^{2} + B_{z}^{2} = \frac{E_{z}^{2}}{C^{2}} + \frac{E_{y}^{2}}{C^{2}} = \frac{E^{2}}{C^{2}} \neq S \qquad B = \frac{E}{C}$$

in un ondo elettromognetico
$$E \perp B$$

$$E \times B = (E, Y + E + E + E) \times (B, Y + B + E) = \frac{1}{C} (E_{Y} + E_{z}) \times (E_{Y} + E$$

ENERGIA E QUANTITÀ DI MOTO $u = \frac{1}{2} \mathcal{E}_0 \mathcal{E}^2 + \frac{1}{2} \frac{\mathcal{B}^2}{\mathcal{U}} = \frac{1}{2} \mathcal{E}_0 \mathcal{E}^2 + \frac{1}{2} \frac{\mathcal{E}^2}{\mathcal{U}_0 \mathcal{E}^2} = \mathcal{E}_0 \mathcal{E}^2 \text{ dewrite oh energie dell'onde volume del alindro$

S= Bx = EoEcx = EoC2EBx = 1 + xB vettere di Byynting 15 | = 5 = Eot c = Eocto cos (kx-wt) definire l'internito di un'anda e.m.

$$I = \frac{1}{T} \int_{0}^{T} \int_{0}^{T} \int_{0}^{T} \int_{0}^{T} \int_{0}^{2} (kx - \omega t) dt = \frac{1}{2} \left\{ c \cdot c \cdot t \right\} \frac{1}{2} \int_{0}^{T} \int_{0}^{T} \int_{0}^{T} \left[c \cdot c \cdot t \right] dt$$

premiene d' rodiorione prodinents complets: $Prod = \frac{1}{C} = \frac{1}{2} \cdot E_0^2$ Le riflessione: $Prod = E_0 = 2I$

