Problem 6.6:1. On [a,b], let α be a strictly increasing function and f a continuous function, and for $x \in [a,b]$ define $F(x) = \int_a^x f(t) d\alpha(t)$. Show that for all $x \in [a,b]$, $\frac{dF(x)}{d\alpha(x)} = f(x)$, where the left-hand side is defined as $\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)}$, and the equality includes the assertion that the limit exists.

Proof. First, we note that because $f \in \Re(\alpha)$ on [a,b]

$$F(x) - F(t) = \int_{a}^{x} f(s)d\alpha(s) - \int_{a}^{t} f(s)d\alpha(s) = \int_{t}^{x} f(x)d\alpha(s)$$

For all partitions P,

$$\int_{t}^{x} f(s)d\alpha(s) \leq \sum_{x_{i} \in P} M_{i} \Delta \alpha_{i} \leq \left(\sup_{s \in [x,t]} f(s)\right) \sum_{x_{i} \in P} \Delta \alpha_{i} = \left(\sup_{s \in [x,t]} f(s)\right) (\alpha(x) - \alpha(t))$$

Since $\alpha(x)$ is strictly increasing, $\alpha(x) - \alpha(t) > 0$ when $x \neq t$, so

$$\frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le \sup_{s \in [x, t]} f(s)$$

Taking the limit as t approaches x on both sides gives

$$\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le \lim_{t \to x} \sup_{s \in [x, t]} f(s)$$

Lemma 0.0.0.1.

$$\lim_{t \to x} \sup_{s \in [x,t]} f(s) = f(x)$$

Proof. Let x_n be an arbitrary sequence such that $\forall n \in \mathbb{N}, x_n > x$ and $\lim_{n \to \infty} x_n = x$. Since $[x, x_n]$ is a closed, bounded interval on \mathbb{R} and f is continuous, there exists a sequence of points $p_n \in [x, x_n]$ such that $f(p_n) = \sup_{s \in [x, x_n]} f(s)$. $x_n \to x$ implies $p_n \to x$ by the Squeeze Theorem, and the continuity of f implies that $f(p_n) \to f(x)$.

Thus

$$\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le f(x)$$

The analogous result for the lower integral and the Squeeze Theorem complete the proof.

Problem 6.6:2.

(a). Show that if f is continuous, then

$$\int_{t=a}^{b} \left(\int_{s=a}^{t} f(s)ds \right) dt = \int_{t=a}^{b} (b-t)f(t)dt$$

Proof. Let $x \in [a,b]$. Define $P(x) = \int_{t=a}^{x} \left(\int_{s=a}^{t} f(s) ds \right) dt$ and $Q(x) = \int_{t=a}^{x} (x-t)^{s} dt$

f(t) being continuous on [a, b] implies that it is Riemann-integrable. This implies that $f^*(t) = \int_{s=a}^t f(s)ds$ is continuous, and that $P(x) = \int_a^x f^*(t)dt$ is continuous and differentiable. Similarly, (b-t)f(t) is continuous on [a,b], so Q(x) is continuous and differentiable.

By the Fundamental Theorem of Calculus,

$$P'(x) = \int_{s=a}^{x} f(s)ds$$

For Q(x), since t and tf(t) are Riemann-integrable,

$$Q(x) = x \int_{t=a}^{x} f(t)dt - \int_{t=a}^{x} tf(t)dt$$

x is trivially differentiable. Since t and tf(t) are continuous,

$$Q'(x) = \int_{t=a}^{x} f(t)dt + xf(x) - xf(x) = \int_{t=a}^{x} f(t)dt$$

Thus, P'(x) = Q'(x). Integrating both sides from a to c, then setting c = b, produces the desired result.

(c). Show that the result of Part (a) continues to hold if f is merely assumed Riemann-integrable, but not necessarily continuous.

Proof. P(x) has the same derivative as in Part (a), as the derivation only assumed that P(x) is Riemann-integrable. Similarly, for $x_0 \in [a,b]$ where $f(x_0)$ is continuous, the above derivations hold for Q(x).

Let x_0 be a point where $f(x_0)$ is discontinuous. First, we will prove two lemmas.

Lemma 0.0.0.2. If f(x) is bounded, then $(x-x_0)f(x)$ is continuous at x_0 .

Proof. Let $M = \sup |f(x)|$. Then $(x - x_0)f(x) \le |(x - x_0)f(x)| \le |(x - x_0)|M$, which can be made arbitrarily small.

Lemma 0.0.0.3. If f(x) is continuous, then $(x-x_0)f(x)$ is differentiable at x_0 with derivative $f(x_0)$.

Proof. By the definition of differentiability,

$$\lim_{x \to x_0} \frac{(x - x_0)f(x) - (x_0 - x_0)f(x_0)}{x - x_0} = \lim_{x \to x_0} f(x) = f(x_0)$$

by continuity.

We can rewrite Q(x) as

$$Q(x) = \int_{t=a}^{x} ((x - x_0) + (x_0 - t))f(t)dt = (x - x_0) \int_{t=a}^{x} f(t)dt + \int_{t=a}^{x} (x_0 - t)f(t)dt$$

because the sub-functions are trivially Riemann-integrable. $\int_{t=a}^{x} f(t)$ is a continuous function, so by Lemma 0.0.0.3 $(x-x_0) \int_{t=a}^{x} f(t) dt$ is differentiable at $x=x_0$ with derivative $\int_{t=a}^{x_0} f(t) dt$. Similarly, f(t) is bounded because it is Riemann-integrable, so by Lemma 0.0.0.2 $(x_0-t)f(t)$ is continuous at $t=x_0$. Therefore $\int_{t=a}^{x} (x_0-t)f(t) dt$ is differentiable at $x=x_0$, with derivative 0.

Therefore, Q(x) is differentiable at $x = x_0$, and $Q'(x_0) = \int_{t=a}^{x} f(t)dt$. The proof then follows using the same logic as in Part (a).

Problem 6.6:4. Let f be a function on [a, b], and α , β monotonically increasing nonnegative functions on [a, b] such that $f \in \mathfrak{R}(\alpha) \cap \mathfrak{R}(\beta)$, $\alpha \in \mathfrak{R}(\beta)$, and $\beta \in \mathfrak{R}(\alpha)$. Prove that

$$\int f d(\alpha \beta) = \int f \alpha d(\beta) + \int f \beta d(\alpha)$$

Proof. We first begin with two lemmas.

Lemma 0.0.0.4. Let α and β be monotonically increasing non-negative functions with $\alpha \in \Re(\beta)$. Then for all $\epsilon > 0$, there exists a partition P such that on intervals $[x_{i-1}, x_i]$ where $\Delta \alpha_i > \epsilon$, $\Delta \beta_i < \epsilon$, and on intervals $[x_{i-1}, x_i]$ where $\Delta \beta_i > \epsilon$, $\Delta \alpha_i < \epsilon$.

Proof. Because $\alpha \in \mathfrak{R}(\beta)$ and α is monotonically increasing, for all $\epsilon > 0$, there exists a partition P such that

$$\sum_{i \in P} \left[\sup_{x \in [x_{i-1}, x_i]} \alpha(x) - \inf_{x \in [x_{i-1}, x_i]} \alpha(x) \right] \Delta \beta_i = \sum_{i \in P} \Delta \alpha_i \Delta \beta_i < \epsilon$$

Because α and β are monotonic and increasing, the terms in the summation are nonnegative. Thus for all i in partition P, $\Delta \alpha_i \Delta \beta_i < \epsilon$. The lemma follows by letting $\epsilon = \epsilon^2$.

Lemma 0.0.0.5. Let f and α be real-valued functions on [a,b], with α non-negative and weakly monotonically increasing. Then the following are true.

- If $\sup f > 0$, then $\sup(f\alpha) \le \sup(f)\alpha(b)$
- If $\sup f \leq 0$, then $\sup(f\alpha) \leq \sup(f)\alpha(a)$

We now find an upper bound for the difference.

Theorem 0.0.1.

$$\int f\alpha d\beta + \int f\beta d\alpha - \int fd(\alpha\beta) \le 0$$

Proof. Let $\epsilon > 0$ and partition P be a partition that satisfies Lemma 0.0.0.4. By the Lemma, we can divide the interval [a, b] into two sets

$$C := \{i < N | \Delta \alpha_i < \epsilon \}$$

$$D \coloneqq \{i \le N | \Delta \alpha_i \ge \epsilon, \Delta \beta_i \le \epsilon\}$$

Restricting our attention to C, by upper and lower integrals,

$$\int f\alpha d\beta + \int f\beta d\alpha - \int fd(\alpha\beta) \le \sum_{i \in C} \sup_{x \in [x_i, x_{i-1}]} (f\alpha) \Delta\beta_i + \sup_{x \in [x_i, x_{i-1}]} (f\beta) \Delta\alpha_i - m_i \Delta(\alpha\beta)_i$$

By Lemma 0.0.0.5,

$$\sum_{i \in C} \sup_{x \in [x_i, x_{i-1}]} (f\alpha) \Delta \beta_i \le \sum_{i \in C} M_i \alpha(x_i) \Delta \beta_i$$

By assumption on C,

$$\sum_{i \in C} \sup_{x \in [x_i, x_{i-1}]} (f\beta) \Delta \alpha_i < \sum_{i \in C} \sup_{x \in [x_i, x_{i-1}]} (f\beta) \epsilon$$

Similarly,

 $m_i \Delta(\alpha \beta)_i = m_i (\alpha_i \beta_i - \alpha_{i-1} \beta_{i-1}) \ge m_i \Delta(\alpha \beta)_i = m_i (\alpha_i \beta_i - (\alpha_i - \epsilon) \beta_{i-1}) = m_i \alpha_i \Delta \beta + m_i \beta_{i-1} \epsilon$ Putting it all together,

$$\begin{split} & \sum_{i \in C} \sup_{x \in [x_i, x_{i-1}]} (f\alpha) \Delta \beta_i + \sup_{x \in [x_i, x_{i-1}]} (f\beta) \Delta \alpha_i - m_i \Delta (\alpha\beta)_i \\ & \leq \sum_{i \in C} M_i \alpha(x_i) \Delta \beta_i + \sup_{x \in [x_i, x_{i-1}]} (f\beta) \epsilon - m_i \alpha_i \Delta \beta + m_i \beta_{i-1} \epsilon \\ & = \sum_{i \in C} (M_i - m_i) \alpha(x_i) \Delta \beta_i + \epsilon \sum_{i \in C} (\sup_{x \in [x_i, x_{i-1}]} (f\beta) + m_i \beta_{i-1}) \end{split}$$