Домашнее задание №7

Задача №1.

Будем говорить, что случайная величина ξ имеет **решетчатое распределение**, если сущесвуют числа $a,h\in\mathbb{R}$ такие, что h>0

$$\sum_{k=-\infty}^{+\infty} \mathbb{P}\{\xi = a + kh\} = 1,$$

т. е. с вероятностью 1 случайная величина ξ принимает значение из множества $\{a+kh\}_{k=-\infty}^{+\infty}$. Докажите, что случайная величина ξ имеет решетчатое распределение тогда и только тогда, когда $\left|\varphi_{\xi}\left(\frac{2\pi}{h}\right)\right|=1$ для некоторого h>0.

Задача №2.

Покажите, что если характеристическая функция $\varphi(t)$ равна единице в некоторой точке $t_0 > 0$, то t_0 является периодом функции $\varphi(t)$.

Задача №3. (Гл. 4, №13)

Может ли функция

$$\varphi(t) = \begin{cases} 1, & t \in [-T, T], \\ 0, & t \notin [-T, T] \end{cases}$$

быть характеристической функцией некоторой случайной величины? Изменится ли ответ, если чуть-чуть сгладить разрывы функции $\varphi(t)$ в точках $t=\pm T$?

Задача №4. (Гл. 4, №18)

Пусть φ_{ξ} — характеристическая функция абсолютно непрерывной случайной величины ξ с плотностью p_{ξ} . Рассмотрим $f_1 = \text{Re}(\varphi_{\xi})$ и $f_2 = \text{Im}(\varphi_{\xi})$. Существуют ли случайные величины η_1, η_2 , для которых f_1, f_2 являются характеристическими функциями?