STUDENT ID NO						

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2018/2019 SESSION

PPC 0116 - PRE-CALCULUS

(All sections / Groups)

27 MAY 2019 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 3 pages (excluding the cover page) with 4 questions.
- 2. Answer all questions.
- 3. Unless stated otherwise, if an answer is given as a decimal, it should be rounded to four significant figures.
- 4. Write your answers in the Answer Booklet provided.
- 5. Show all relevant steps to obtain maximum marks.

QUESTION 1 [25 marks]

- (a) A right-angled triangle has a base of 2x + 3, a height of h and a hypotenuse of 3x. Show that $h^2 = 5x^2 - 12x - 9$. [3 marks]
- (b) Simplify $\frac{(4m^5n)^3}{(2mn^2)(8m^{10}n^3)}$. [3 marks]
- (c) Solve $\frac{2-x}{\sqrt{\frac{9-6x}{4}}} = \frac{2}{3}$. [6 marks]
- (d) Solve the inequalities below. Express your answers using interval notation.
 - (i) $\frac{x+4}{x+5} 1 \le 0$ [5 marks]
 - (ii) $\left| \frac{2x+1}{2} \right| \ge 0$ [3 marks]
- (e) Solve the inequality below. Express your answer using set-builder notation.
 - $-\frac{2}{3} < 2 \frac{5x}{3} \le \frac{3}{2}$ [5 marks]

Continued...

QUESTION 2 [45 marks]

- (a) Line A passes through P_1 (1, -5) and P_2 (x, y) and is perpendicular to Line B that passes through P_3 (4, 3) and the origin.
 - (i) Find the coordinate of P_2 if y = -1,

[2 marks]

(ii) Find the equation of Line B,

[2 marks]

(iii) Determine the coordinate of the midpoint of P_2 and P_3 .

[2 marks]

- (b) Suppose that $f(x) = 3x^2 + 2$,
 - (i) find the average rate of change of f from x=1 to x=3 and from x=1 to x=5, [4 marks]
 - (ii) evaluate the pattern of the function f for x > 0. (Is the graph increasing or decreasing and what about the steepness?). [2 marks]
- (c) For the function $g(x) = \frac{x}{x-1}$ and $h(x) = \frac{3}{1+x}$, find
 - (i) (gh)(x) and its domain,

[4 marks]

(ii) h[g(x)] and its domain,

[5 marks]

(iii) (h-g)(x),

[3 marks]

(iv) the inverse function of g.

[3 marks]

- (d) For the equation $(x-2)^2 = 5e^{2y+5}$, find
 - (i) y as a function of x,

[3 marks]

(ii) the domain of y.

[1 mark]

- (e) Sketch the graph of $f(x) = \sqrt{x}$. Use the graph of $f(x) = \sqrt{x}$ to graph $g(x) = -\sqrt{x-1} + 2$. For each stage of the transformation, state the transformation involved and sketch the corresponding graph. [8 marks]
- (f) For the function $y(x) = \frac{x+2}{x^2-9}$,
 - (i) find its x- and y-intercepts, if there are any,

[3 marks]

(ii) find the vertical and horizontal asymptotes, if there

are any. [3 marks]

Continued...

QUESTION 3 [15 marks]

- (a) Find the remainder of $f(x) = 6x^4 + 5x^3 3x^2 65$ when it is divided by x 3.
- (b) Given a function $f(x) = 2x^3 5x^2 x + 3$, use synthetic division to determine whether x+3 is a factor of f(x). Then, use Factor Theorem to verify your answer.

 [6 marks]
- (c) Using Rational Zeros Theorem, list all the possible rational zeros of $f(x) = x^3 + 2x^2 5x 6$. Then, verify that x = 2 is a zero of f(x). [3 marks]
- (d) Find the partial fraction decomposition of $\frac{7x-23}{x^2-8x+15}$. [5 marks]

QUESTION 4 [15 marks]

- (a) (i) Find the expansion of $(2+x)^5$ using the Binomial Theorem. [4 marks]
 - (ii) Find the coefficient of the x^3y^5 term in the expansion of $(2x-3y)^8$

[3 marks]

- (b) Find the sum of the first 16 terms of the arithmetic sequence $\{4-2n\}$. [2 marks]
- (c) A chemist carried out a series of experiments which involved the use of increasing amount of titanium dioxide powder (in gram, g) that followed a geometric sequence. In the first and second experiments, 6 g and 7.8 g were used respectively.
 - (i) Give a recursive formula for this sequence. [1 mark]
 (ii) If a total of 1800 g of titanium dioxide available, show that N, the number of
 - experiments possible satisfies the inequality $1.3^N \le 91$. [3 mark]
 - (iii) Find the maximum number of experiments that can be performed. [2 marks]

