Column covering is hard Negative Num. ➤ NP-complete 23:3=0011, -3= 1100. (+): end-around-carry Consider a Boolean expression with n variables, in general 2'3: 3=0011, -3-1101 (+): ignore carry. • ~3ⁿ/n prime implicants overflow detection: (+) + (+) = (-) / (-) + (-) = (+) - The proof is optional: https://core.ac.uk/download/pdf/82016049.pdf # XNUR. Summary XOR # X ⊕ r = xr' + x'r. X=r = x'r'+ xr Karnaugh map • Exact and effective as # of variables ≤ 5 (X @ Y) @ Z = X @ (Y @ Z) X 9 0 = X XY XOY Quine-McCluskey method x 80 1 = X x(Y@Z) = xY@ XZ · Exact and realizable for more variables X G X = 0 1x@Y)'= x'Y'@ XY. Espresso x @ X' = 1 · Heuristic and faster than the Quine-McCluskey method X DY = Y D X BCD: U. 93.2 - 1001 0011.0010 Distributive Laws. I basic forms for 2-bevel circuits. - X(Y+Z) = X + + XZ. XY= Xt => Y=Z. - AND -OR - NAND - NAND - OR - NAND - NOR - OR - X+YZ=(X+Y)(X+Z). X+Y= X+& +> Y=Z. - OR-AND WO NIR-NR W AND-NOR W NAND-AND. XQT= XQZ = Y=Z Functionally complete Set-Gate level. Implicant: product term. (a circle). VEAND, NOTE EDR. NOTE. ENANDE. ING. level 2 level 1 Prime Implicant, maximal circle. x {放有 呎. 礼 AND 的]. Essential Prime Implicant: if a mintern is covered by only one PI. The PI is essential. the o Laws. Distributive Laws. Operations with 0/1 Idempitent laws. x(Y+Z)= XY+ KZ X + X = X minterm 支撑 聯集. X+0= X X . X = X. X+ YZ = (X+Y) (X+Z). X-1= X maxterm. 聊覧. 交货 Laws of complementarity DeMorgan's Laws. X+[=] minmum Sop: min # terms, min # literals base conversion. X+X'=1. (X+Y)' = x'Y' $X \cdot 0 = 0$ y Komap 图图最少且最大 x · X' = 0. (xY)' = x' + Y'0.75,0 7 (1) (10) -> (r) Generic combinational circuit design steps 253 0.75 Translate the word description into a switching function (Unit 4) Simplify the function ... 1 Boolean algebra (Units 2 and 3) * Karnaugh map (Unit 5) Quine-McCluskey (Unit 6) 53,0 = (10101) Other methods .75,02.51, Simplification Theorems. Realize it using available logid gates (Unit 7) Hardware cost = (#terms, #literals) Elimination. Uniting. • Start from minimum SOP ≡ AND-OR → NAND-NAND/OR-NAND/NOR-OR X+ x'Y = X + Y. XY+ XY'= X. Start from minimum POS ≡ OR-AND → NOR-NOR/AND-NOR/NAND-AND X(X'+Y) = XY $(x+y)(x+y')=\chi.$ # of levels = maximum # of cascaded gates between I/Os Con sensus. Absorption. XY+ X'Z + YZ = XY + X'Z Change level by factoring or multiplying out X + X Y = X. (X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z)Problem statement X(X+Y) = X."Initial" state graph and table generation (X+Y)(X'+Z)=XZ+X'Y➤ Unit 14 4 hyic values State reduction unknown 沒接頭. ➤ Unit 15 State assignment ➤ Unit 15 ☐ Choice of flip-flops 1 | 1 ➤ Unit 11 Derivation of flip-flop input equations and output equations ➤ Unit 12 F= Zm(3,4,5,6,1) = TLM(0,1,2). Circuit realization and timing chart

F'= Zm (O. 1. b) = TM (3, 4, 5, 6, 7)

Туре	Input	Q = 0		Q = 1		Rules for forming input map from next state map		
of FF		Q+ = 0	Q+= 1	Q+= 0	Q+= 1	Q = 0 Half of Map	Q = 1 Half of Map	
D	D	0	1	0	1	No change	No change	
Т	Т	0	1	1	0	No change	Complement	
S-R	S	0	1	0	х	No change	Replace 1's with X's	
	R	х	0	1	0	Replace 0's with X's Replace 1's with 0's	Complement	
J-K	J	0	1	х	х	No change	Fill in with X's	
	К	х	Х	1	0	Fill in with X's	Complement	

Туре	Q ⁺	т Q
D Flip-Flop	D	
S-R Flip-Flop	S + R'Q	—>ck q'
J-K Flip-Flop	JQ' + K'Q	→D Q
T Flip-Flop	TQ' + T'Q	FF
D-CE Flip-Flop	D(CE) + Q(CE)'	→ck Q'

Q Κ Q' Q >Ck R Q

Programmable Logic Array 5-

Example

- $F_1(A,B,C,D) = \sum m(2,3,5,7,8,9,10,11,13,15)$
- $F_2(A,B,C,D) = \sum m(2,3,5,6,7,10,11,14,15)$
- $F_3(A,B,C,D) = \sum m(6,7,8,9,13,14,15)$

☐ Minimize using K-map

- $F_1 = A'BD + ABD + AB'C' + B'C$
- $F_2 = C + A'BD$
- $F_3 = BC + AB'C' + ABD$

	Α	В	С	D	F ₁	F ₂	F ₃
A'BD	0	1	-	1	1	1	0
ABD	1	1	-	1	1	0	1
AB'C'	1	0	0	-	1	0	1
B'C	-	0	1	-	1	0	0
С	-	-	1	-	0	1	1
BC	_	1	1	-	0	0	1

Mealy: Output depends on state + input.

Moore Output depends on chate only.

Q	Q+	D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	
D Flip-Flop			

Q	Q ⁺	Т	
0	0	0	
0	1	1	
1	0	1	
1	1	0	
T Flip-Flop			

Q	Q+	S	R	
0	0	0	Х	
0	1	1	0	
1	0	0	1	
1	1	Х	0	

Q	Q	J	K	
0	0	0	Х	
0	1	1	Χ	
1	0	Х	1	
1	1	Х	0	
L K Elin Elan				

S-R Flip-Flop

J-K Flip-Flop

☐ Setup time

> The amount of time that D must be stable before the active edge

☐ Hold time

> The amount of time that D must hold the same value after the active edge

Specified state graph. 6 mpletely

- ightarrow OR together all input labels on arcs emanating from a state, the result can reduce to 1
- Cover all conditions: F + F'R +F'R' = F + F' = 1
- > AND together any pair of input labels on arcs emanating from a state, the result can reduce to 0

State Assignment

Guidelines

- > No guarantee a minimum solution
- ➤ Work for D & J-K flip-flops, not for T and S-R flip-flops

■ Adjacent assignments

- For a given input, states with the same next state (S₀ and S₁)
- > States which are next states of the same state (S₄ and S₅)
- States which have the same output (S₆ and S₇)
 - Place 1's together on the output maps

S_7 0/0 0/0 S₉

Equivalent States

Definition

- > N₁, N₂: sequential circuits (not necessarily different)
- X: a sequence of inputs of arbitrary length
- ightharpoonup Then, state p in $N_1 \equiv$ state q in N_2 if and only if $\lambda_1(p,\underline{X}) = \lambda_2(q,\underline{X})$ for every possible input sequence X
 - λ: output
- > Difficult to check the equivalence using this definition!
 - · Infinite number of input sequences

■ Theorem

- > Two states p and q of a sequential circuit are equivalent if and only if for every single input X, the outputs are the same and the next states are equivalent, i.e., $\lambda(p,X) = \lambda(q,X)$ and $\delta(p,X) \equiv \delta(q,X)$
 - δ: next state
 - Note that the next state do not have to be equal, just equivalent

Equivalent Sequential circuits

Definition

- \triangleright Two sequential circuits are equivalent: $N_1 \equiv N_2$ if
- For each state p in N_1 , there is a state q in N_2 such that $p \equiv q$
- For each state s in N_2 , there is a state t in N_1 such that $s \equiv t$

One-hot state assignment: One flip-flop for each state

 \triangleright Example: 3 flip-flops for 3 states (Q₀Q₁Q₂)

• $S_0 = 100$, $S_1 = 010$, $S_2 = 001$

Write next-state and output (Z) equations directly by inspecting the state graph 從為末 從為末一從為末、

• $Q_0^+ = F'R'Q_0 + F'RQ_1 + FQ_2$

• $Q_1^+ = F'R'Q_1 + F'RQ_2 + FQ_0$

• $Q_2^+ = F'R'Q_2 + F'RQ_0 + FQ_1$

• $Z = Z_0Q_0 + Z_1Q_1 + Z_2Q_2$

Summary.

■ First Half

- > [1] Number Systems and Conversion
- > [2] Boolean Algebra
- > [3] Boolean Algebra (Continued)
- > [4] Applications of Boolean Algebra
- > [5] Karnaugh Maps
- > [6] Quine-McCluskey Method
- > [7] Multi-Level Gate Circuits
- > [8] Combinational Circuit Design

Programmable Logic Devices

Second Half

> [11] Latches and Flip-Flops > [12] Registers and Counters

> [9] Multiplexers, Decoders, and

- > [13] Analysis of Clocked
- **Sequential Circuits**
- > [14] Derivation of State Graphs and Tables
- > [15] Reduction of State Tables
- > [16] Sequential Circuit Design