

lwIP Library (v3.00.a)

EDK 10.1, January 15, 2008

Summary

This document describes the Embedded Development Kit (EDK) port of the open source lightweight IP (lwIP) TCP/IP stack. lwIP provides an easy way to add TCP/IP-based networking capability to an embedded system.

lwip_v3_00_a in EDK provides adapters for the xps_ethernetlite and xps_l1_temac Xilinx® Ethernet MAC cores, and is based on the lwIP stack version 1.2.0. This document describes how to use lwip_v3_00_a to add networking capability to embedded software. It contains the following sections:

- "Overview"
- "Features"
- "Additional Resources"
- "Using IwIP"
- "Setting up the Hardware System"
- "Setting up the Software System"

Overview

IwIP is an open source TCP/IP protocol suite available under the BSD license. IwIP is a standalone stack – there are no operating systems dependencies, although it can be used along with operating systems. IwIP provides two APIs for use by applications:

- A specialized Raw API optimized for performance
- A sockets-style interface optimized for ease of use

lwip_v3_00_a is an EDK library which is built on the open source lwIP library version 1.2.0. lwip_v3_00_a provides adapters for the Ethernetlite (xps_ethernetlite) and the TEMAC (xps_ll_temac) Xilinx EMAC cores. It can run on MicroBlazeTM or PowerPC® 405 processors.

[©] Copyright 2002 – 2008 Xilinx, Inc. All Rights Reserved. XILINX, the Xilinx logo, the Brand Window and other designated brands included herein are trademarks of Xilinx, Inc. The PowerPC name and logo are registered trademarks of IBM Corp., and used under license. All other trademarks are the property of their respective owners.

Disclaimer: Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information. THE DOCUMENTATION IS DISCLOSED TO YOU"AS-IS" WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Features

IwIP provides support for the following protocols:

- Internet Protocol (IP)
- Internet Control Message Protocol (ICMP)
- User Datagram Protocol (UDP)
- TCP (Transmission Control Protocol (TCP)
- Address Resolution Protocol (ARP)
- Dynamic Host Configuration Protocol (DHCP)

Additional Resources

- Xilinx lwIP designs: http://www.xilinx.com/ise/embedded/edk examples.htm
- IwIP examples using RAW and Socket APIs: http://savannah.nongnu.org/projects/lwip/

Using IwIP

The following sections detail the hardware and software steps for using lwIP for networking in an EDK system. The key steps are:

- Creating a hardware system containing the processor, ethernet core, and a timer. The timer and ethernet interrupts must be connected to the processor using an interrupt controller.
- 2. Configuring lwip_v3_00_a to be a part of the software platform.

Setting up the Hardware System

This section describes the hardware configurations supported by the lwIP Library, lwip_v3_00_a. The key components of the hardware system include:

- Processor either a PowerPC 405 or a MicroBlaze
- EMAC lwIP supports xps ethernetlite and xps II temac EMAC cores
- Timer to maintain TCP timers, lwIP requires that certain functions are called at periodic intervals by the application. An application can do this by registering an interrupt handler with a timer.
- DMA xps_II_temac core can be configured in with an optional Soft Direct Memory Access (SDMA) engine

The following figure shows a system architecture where the system is using an xps_ethernetlite core.

The system has a processor (either MicroBlaze or PowerPC 405 processor) connected to a Multi-Port Memory Controller (MPMC) with the other required peripherals (timer and ethernetlite) on the PLB v4.6 interface bus. Interrupts from both the timer and the ethernetlite are required, so the timer and the ethernet use the EMAC interrupt controller.

Figure 1: System Architecture using xps_ethernetlite Core

When using TEMAC, the system architecture changes depending on whether DMA is required. If DMA is required, a fourth port (of type SDMA), which provides direct connection between the TEMAC (xps_II_temac) and the memory controller (MPMC), is added to the memory controller. The following figure shows this system architecture.

Figure 2: System Architecture using xps_II_temac Core (with DMA)

Note: There are four interrupts that are necessary in this case: a timer interrupt, a TEMAC interrupt, and the SDMA RX and TX interrupts. The SDMA interrupts are from the Multi-Port Memory Controller (MPMC) SDMA Personality Interface Module (PIM). Refer to the *Multi-Port Memory Controller (MPMC) Data Sheet* for more information.

If the TEMAC is used without DMA, a FIFO (xps_1l_fifo) is used to interface to the TEMAC. The system architecture in this case is shown in the following figure.

Figure 3: System Architecture using TEMAC with xps_II_fifo (without DMA)

Setting up the Software System

To use lwIP in a software application, you must first compile the library as part of your application software platform. To set up the lwIP library in XPS:

- 1. Open the Software Platform Settings dialog box.
- 2. Enable lwIP in the Library/OS Settings tab.
- 3. Select Generate Libraries and BSPs to regenerate the library.
- 4. Link the application with the -llwip4 linker flag.

Configuring IwIP Options

lwIP provides configurable parameters. The values for these parameters can be changed using the **Software Platform Settings** dialog box. There are two major categories of configurable options:

- Xilinx Adapter to IwIP options: These control the settings used by Xilinx adapters for the xps ethernetlite and xps II temac cores.
- Base lwIP options: These options are part of lwIP library itself, and include parameters for TCP, UDP, IP and other protocols supported by lwIP.

The following sections describe the available lwIP configurable options.

Customizing IwIP API Mode

lwip_v3_00_a supports both raw API and socket API:

- The raw API is customized for high performance and lower memory overhead. The limitation of raw API is that it is callback-based, and consequently does not provide portability to other TCP stacks.
- The socket API provides a BSD socket-style interface and is very portable; however, this
 mode is inefficient both in performance and memory requirements.

lwip_v3_00_a also provides the ability to set the priority on TCP/IP and other lwIP application threads. The following table provides lwIP library API modes.

Table 1: API Mode Options and Descriptions

Attribute/Options	Description	Туре	Default
<pre>api_mode {RAW_API SOCKET_API}</pre>	lwIP Library mode of operation	enum	RAW_API
socket_mode_thread_prio <integer></integer>	Priority of IwIP TCP/IP thread and all IwIP application threads.	integer	1
	This setting applies only when Xilkernel is used in priority mode.		
	The recommendation is that all threads using IwIP run at the same priority level.		

Configuring Xilinx Adapter Options

The Xilinx adapters for xps_ethernetlite and xps_11_temac EMAC cores are configurable.

Ethernetlite Adapter Options

The following table provides the configuration parameters for the xps_ethernetlite adapter.

Table 2: xps_ethernet Adapter Options

Attribute	Description	Туре	Default
sw_rx_fifo_size	Software Buffer Size in bytes of the receive data between EMAC and processor	integer	8192
sw_tx_fifo_size	Software Buffer Size in bytes of the transmit data between processor and EMAC	integer	8192

TEMAC Adapter Options

The following table provides the configuration parameters for xps_II_temac adapter.

Table 3: xps_II_temac Adapter

Attribute	Description	Туре	Default
phy_link_speed {CONFIG_LINKSPEED10 CONFIG_LINKSPEED100 CONFIG_LINKSPEED1000	Link speed as auto-negotiated by the PHY. IwIP configures the TEMAC for this speed setting. This setting must be correct for the TEMAC to transmit or receive packets.	integer	CONFIG_LINKSPEED_ AUTODETECT
CONFIG_LINKSPEED_AUTODETECT}	Note: The setting, CONFIG_LINKSPEED_AUTODETECT, attempts to detect the correct linkspeed by reading the PHY registers; however, this is PHY dependent, and works only for Marvell PHYs present on Xilinx development boards. For other PHYS, the correct speed should be chosen.		
n_tx_descriptors	Number of TX buffer descriptors used in SDMA mode	integer	32
n_rx_descriptors	Number of RX buffer descriptors used in SDMA mode	integer	32
n_tx_coalesce	TX interrupt coalescing setting for the TEMAC	integer	1
n_rx_coalesce	RX interrupt coalescing setting for the TEMAC	integer	1
tcp_tx_csum_offload	TX enable checksum offload	integer	1
tcp_rx_csum_offload	RX enable checksum offload	integer	1

Configuring Memory Options

lwIP stack provides different kinds of memories. The configurable memory options are provided as a separate category. Default values work well unless application tuning is required. The various memory parameter options are provided in the following table:

Table 4: Memory Configuration Parameter Options

Attribute	Description	Туре	Default
mem_size	Size of the heap memory in bytes. Set this value high if application sends out large data	int	8192
mem_num_pbuf	Number of memp struct pbufs. Set this value high if application sends lot of data out of ROM or static memory	int	16
mem_num_udp_pcb	Number of active UDP protocol control blocks. One per active UDP connection	int	5
mem_num_tcp_pcb	Number of active TCP protocol control blocks. One per active TCP connections	int	5
mem_num_tcp_pcb_listen	Number of listening TCP connections	int	5

Table 4: Memory Configuration Parameter Options (Continued)

Attribute	Description		Default
mem_num_tcp_seg	Number of simultaneously queued TCP segments	int	255
mem_num_sys_timeout	Number of simultaneously active time-outs	int	3

Configuring Socket Memory Options

Sockets API mode has memory options. The configurable socket memory options are provided as a separate category. Default values work well unless application tuning is required. The following table provides the parameters for the socket memory options.

Table 5: Socket Memory Options Configuration Parameters

Attribute	Description	Туре	Default
memp_num_netbuf	Number of struct netbufs. This translates to one per socket	int	5
memp_num_netconn	Number of struct netconns. This translates to one per socket	int	5
memp_num_api_msg	Number of struct api_msg. Used for communication between TCP/IP stack and application	int	8
memp_num_tcpip_msg	Number of struct tcpip_msg. Used for sequential API communication and incoming packets	int	8

Note: Because Sockets Mode support uses Xilkernel services, the number of semaphores chosen in the Xilkernel configuration must take the value set for the memp_num_netbuf parameter into account.

Configuring Packet Buffer (Pbuf) Memory Options

Packet buffers (Pbufs) carry packets across various layers of the TCP/IP stack. The following are the pbuf memory options provided by the IwIP stack. Default values work well unless application tuning is required. The following table provides the parameters for the Pbuf memory option.

Table 6: Pbuf Memory Options Configuration Parameters

Attribute	Description	Туре	Defaults
pbuf_pool_size	Number of buffers in pbuf pool	int	512
pbuf_pool_bufsize	Size in bytes of each pbuf in pbuf pool	int	1536

Configuring ARP Options

The following table provides the parameters for the ARP options. Default values work well unless application tuning is required.

Table 7: ARP Options Configuration Parameters

Attribute	Description	Туре	Default
arp_table_size	Number of active hardware addresses, IP address pairs cached	int	10
arp_queueing	When enabled, (default (1)), outgoing packets are queued during hardware address resolution	int	1
arp_queue_first	When enabled, first packet queued is not overwritten by later packets. The default (0), disabled, is recommended	int	0
etharp_always_insert	When set to 1, cache entries are updated or added for every ARP traffic. This option is recommended for routers. When set to 0, only existing cache entries are updated. Entries are added when IwIP is sending to them. Recommended for embedded devices.	int	0

Configuring IP Options

The following table provides the IP parameter options. Default values work well unless application tuning is required.

Table 8: IP Configuration Parameter Options

Attribute	Description	Туре	Default
ip_forward	Set to 1 for enabling ability to forward IP packets across network interfaces. If running IwIP on a single network interface, set o 0.	int	0
ip_reassembly	Reassemble incoming fragmented IP packets.	int	1
ip_frag	Fragment outgoing IP packets if their size exceeds MTU.	int	1
ip_options	When set to 1, IP options are allowed (but not parsed). When set to 0, all packets with IP options are dropped.	int	0

Configuring ICMP Options

The following table provides the parameter for ICMP protocol option. Default values work well unless application tuning is required.

Table 9: ICMP Configuration Parameter Option

Attribute	Description	Туре	Default
icmp_ttl	ICMP TTL value	int	255

Configuring UDP Options

The following table provides UDP protocol options. Default values work well unless application tuning is required.

Table 10: UDP Configuration Parameter Options

Attribute	Description	Туре	Defaults
lwip_udp	Specify if UDP is required	bool	true
udp_ttl	UDP TTL value	int	255

Configuring TCP Options

The following table provides the TCP protocol options. Default values work well unless application tuning is required.

Table 11: TCP Options Configuration Parameters

Attribute	Description	Туре	Defaults
lwip_tcp	Require TCP	bool	true
tcp_ttl	TCP TTL value	int	255
tcp_wnd	TCP Window size in bytes	int	16384
tcp_maxrtx	TCP Maximum retransmission value	int	12
tcp_synmaxrtx	TCP Maximum SYN retransmission value	int	4
tcp_queue_ooseq	Accept TCP queue segments out of order. Set to 0 if your device is low on memory.	int	1
tcp_mss	TCP Maximum segment size	int	1476
tcp_snd_buf	TCP sender buffer space in bytes	int	32768

Configuring Debug Options

IwIP stack has debug information. The debug mode can be turned on to dump the debug messages onto STDOUT. The following option, when set to true, prints the debug messages.

Table 12: Debug Options Configuration Parameters

Attribute	Description	Туре	Default
lwip_debug	Turn on IwIP Debug	bool	false

Configuring the Stats Option

lwIP stack has been written to collect statistics, such as the number of connections used; amount of memory used; and number of semaphores used, for the application. The library provides the ${\tt stats_display}()$ API to dump out the statistics relevant to the context in which the call is used. The stats option can be turned on to enable the statistics information to be collected and displayed when the ${\tt stats_display}$ API is called from user code. Use the following option to enable collecting the stats information for the application.

Table 13: Statistics Options Configuration Parameters

Attribute	Description	Туре	Default
lwip_stats	Turn on IwIP Statistics	int	0

Software APIs

IwIP provides two different APIs: RAW mode and Socket mode.

Raw API

The Raw API is callback based. Applications obtain access directly into the TCP stack and vice-versa. As a result, there is no unnecessary copying of data, and using the Raw API provides excellent performance at the price of compatibility with other TCP stacks.

Xilinx Adapter Requirements when using RAW API

In addition to the lwIP RAW API, the Xilinx adapters provide the xemacif_input utility function for receiving packets. You must call this function at frequent intervals to move the received packets from the interrupt handlers to the lwIP stack. Depending on the type of packet received, lwIP then calls registered application callbacks.

Raw API File

The \$XILINX_EDK/sw/ThirdParty/sw_services/lwip_v3_00_a/src/lwip-1.2.0/doc/rawapi.txt file describes the lwIP Raw API.

Socket API

The lwIP socket API provides a BSD socket-style API to programs. This API provides an execution model that is a blocking, open-read-write-close paradigm.

Xilinx Adapter Requirements when using Socket API

Applications using the Socket API with Xilinx adapters need to spawn a separate thread called xemacif_input_thread. This thread takes care of moving received packets from the interrupt handlers to the tcpip_thread of the lwIP.

Xilkernel scheduling policy when using Socket API

IwIP in socket mode requires the use of the Xilkernel, which provides two policies for thread scheduling: round-robin and priority based:

There are no special requirements when round-robin scheduling policy is used because all threads receive the same time quanta.

With priority scheduling, care must be taken to ensure that lwIP threads are not starved. lwIP internally launches all threads at the priority level specified in <code>socket_mode_thread_prio</code>. In addition, application threads must launch <code>xemacif_input_thread</code>. The priorities of both <code>xemacif_input_thread</code>, and the lwIP internal threads (<code>socket_mode_thread_prio</code>) must be high enough in relation to the other application threads so that they are not starved.

Using Xilinx Adapter Helper Functions

The Xilinx adapters provide the following helper functions to simplify the use of the IwIP APIs.

```
void lwip_init()
```

This function provides a single initialization function for the lwIP data structures. This replaces specific calls to initialize stats, system, memory, pbufs, ARP, IP, UDP, and TCP layers.

```
struct netif *xemac_add (struct netif *netif, struct
  ip_addr *ipaddr, struct ip_addr *netmask, struct
  ip_addr *gw, unsigned char *mac_ethernet_address
  unsigned mac_baseaddr)
```

The xemac_add function provides a unified interface to add any Xilinx EMAC IP. This function is a wrapper around the lwIP $netif_add$ function that initializes the network interface 'netif' given its IP address ipaddr, netmask, the IP address of the gateway, gw, the 6 byte ethernet address $mac_ethernet_address$, and the base address, $mac_baseaddr$, of the xps_ethernetlite or xps_ll_temac MAC core.

```
void xemacif_input(struct netif *netif)
(RAW mode only)
```

The Xilinx IwIP adapters work in interrupt mode. The receive interrupt handlers move the packet data from the EMAC and store them in a queue. The <code>xemacif_input</code> function takes those received packets from the queue, and passes them to IwIP; consequently, this function is required for IwIP operation in RAW mode. An IwIP application in RAW mode should have a structure like:

The program is notified of the received data through callbacks.

```
void xemacif_input_thread(struct netif *netif)
(Socket mode only)
```

In the socket mode, the application thread must launch a separate thread to receive the input packets. This performs the same work as the RAW mode function, <code>xemacif_input</code>, except that it resides in its own separate thread; consequently, any lwIP socket mode application is required to have code similar to the following in its main thread:

```
sys_thread_new(xemacif_input_thread, netif,
DEFAULT_THREAD_PRIO);
```

The application can then continue launching separate threads for doing application specific tasks. The xemacif_input_thread receives data processed by the interrupt handlers, and passes them to the lwIP tcpip_thread.

Known Issues and Limitations

The following are known issues and limitations in lwip_v3_00_a:

- lwip_v3_00_a does not support more than one TEMAC within a single xps_ll_temac instance. For example, lwip_v3_00_a does not support the TEMAC enabled by setting C_TEMAC1_ENABLED = 1 in xps_ll_temac.
- Socket mode performance is typically much lower than RAW mode performance.
 Improvements will be made in subsequent releases.
- The lwip_v3_00_a library can only be used with C compilers. C++ compilers will issue errors due to missing typecasts inside the lwIP core source code. This issue will be resolved with the upgrade to open source lwIP 1.3.0 when it becomes available.

API Examples

Sample applications using the Raw API and the Socket API are available on the Xilinx website.

