15EEE337 Digital Image Processing

Sarath T.V.

Last Lecture

Segmentation

Detection of Isolated points

- Second order derivatives.
- Isolated point –different from its surroundings
- Intensity wise its different from surroundings
- Use kernel -->
- If the absolute value of the response of the filter at that Point exceed a specific threshold

1	1	1
1	-8	1
1	1	1

$$g(x,y) = \begin{cases} 1 & \text{if } |Z(x,y)| > 7 \\ 0 & \text{otherwise} \end{cases}$$

• Threshold 90% of the highest absolute pixel value of image

Line detection

- Second derivatives results in stronger filter response , thinner lines than first derivatives.
- Double line effect
- Absolute value of filtered image
- Positive values of filtered image

-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1

 $+45^{\circ}$

Vertical

Detecting lines in specified directions.

Horizontal

6

 -45°

Edges

- Frequently used approach
- Abrupt changes in intensity.
- Edge models- intensity profiles.
- Step, ramp, roof edges

Impact of noise on first and second derivative

- The three steps performed typically for edge detection are
- Image smoothing for noise reduction
- Detection of edge points
- Edge localization
- Edge detection should yield set of pixels lying **only** on edges
- Edge detection followed by linking algorithms → meaningful edges or boundaries.

Fitting approach

- Extraneous data
- Incomplete data
- Noise

