	 121							
Reg. No.								

M.Sc. DEGREE EXAMINATION, MAY 2023

Fourth Semester

18PMA402 – INTEGRAL EQUATIONS AND TRANSFORMATION TECHNIQUES

(For the candidates admitted during the academic year 2018-2019)

Time: Three hours Max. Marks: 100

PART - A (5 × 5 = 25 Marks) Answer ANY FIVE Questions

- 1.i. Define Fredholm first and second kind integral equations with examples.
 - ii. Define Voltenna first and second kind integral equations with examples.
 - 2. Convert the following boundary value problem (BVP) into Fredholm integral equation

$$\frac{d^2u}{dx^2} + u = x, \quad 0 < x < \frac{\pi}{2} \quad \text{with the boundary conditions}$$
$$u(0) = 0 \text{ and } u\left(\frac{\pi}{2}\right) = \pi$$

- 3. Find the resolvent Kernel $R(x,t;\lambda)$ of $K(x,t)=xe^t$, $0 \le x \le 1$, $0 \le t \le 1$ by the method of Fredholm's determinant.
- 4. Find the Fourier transform of

$$f(x) = \begin{cases} x & for & |x| \le a \\ 0 & for & |x| > a \end{cases}$$

5. State and prove convolution theorem for Fourier transform.

- 6. Verify the final value theorem for the function $1-e^{-t}$.
- 7. If $L\{f(t) = F(s)$, then show that $L\{\sinh(at)f(t)\} = \frac{1}{2}[F(s-a) F(s+a)].$ Hence evaluate $\sinh(2t).\sin(3t)$.
- 8. Find the inverse Z transform of

$$F(z) = \frac{z}{z^2 - 6z + 8}$$

$PART - B (5 \times 15 = 75 Marks)$

9. a. If $\frac{d^2u}{dx^2} + \lambda u = 0$, $0 < x < \ell$ and u(x) satisfies the boundary conditions u(0) = 0 and $u(\ell) = 0$, then, show that $u(x) = \lambda \int_0^1 K(x,t)u(t)dt$ where

$$u(x) = \lambda \int_{0}^{1} K(x,t)u(t)dt \text{ where}$$

$$K(x,t) = \begin{cases} t/(\ell-x); & 0 < t < x \\ x/(\ell-t); & x < t < \ell \end{cases}$$

(OR)

b. Find the resolvent Kernel of the Fredholm integral equation $u(x) = e^x + \frac{1}{2} \int_0^1 e^{x-t} \ u(t) dt$ using this resolvent Kernel, find the solution u(x) of the given integral equation.

10. a. Find the eigenvalues and eigenfunctions of the homogeneous Fredholm integral equation of second kind

$$u(x) = \lambda \int_{0}^{2\pi} \sin(x+t)u(t)dt.$$

(OR)

b. Determine $D(\lambda)$ and $D(x,t;\lambda)$ and hence solve the Fredholm integral equation

$$u(x) = e^{x} + \lambda \int_{0}^{1} e^{x} e^{t} u(t) dt$$

- 11. a.i. Show that $F_s[f''(x)] = -s^2 F_s(s) + sf(0)$ if f(x) and $f'(x) \to 0$ as $x \to \infty$.
 - ii. Show that $F_c[f''(x)] = -S^2 F_c(s) f'(0)$ if f(x) and $f'(x) \to 0$ as $x \to \infty$.

(OR)

b. Find the Fourier transform of

$$f(x) = \begin{cases} a - |x| & \text{if} & |x| < a \\ 0 & \text{if} & |x| > a \end{cases}$$

Hence show that

i.
$$\int_{0}^{\infty} \left(\frac{\sin x}{x} \right)^{2} dx = \frac{\pi}{2}$$

ii.
$$\int_{0}^{\infty} \left(\frac{\sin x}{x} \right)^{4} dx = \frac{\pi}{3}$$

12. a.i. Show that
$$L^{-1} \left\{ \frac{1}{s(s-a)} \right\} = \frac{1}{a} (e^{at} - 1).$$

ii. Show that

$$L^{-1} \left\{ \frac{1}{\left(s^2 + a^2\right)\left(s^2 + b^2\right)} \right\} = \frac{1}{b^2 - a^2} \left(\frac{\sin at}{a} - \frac{\sin bt}{b} \right)$$
(OR)

b.i. Use initial value theorem to find f(0) and f'(0) from the following function

$$F(s) = \frac{s}{s^2 - 5s + 12}$$

ii. Use final value theorem to find $f(\infty)$, if it exists, from the following function

$$F(s) = \frac{1}{s(s^2 + as + b)}$$

13. a. Using convolution theorem, find the inverse of

$$\frac{z^2}{(z-a)(z-b)}.$$
 Hence evaluate the inverse of
$$\frac{8z^2}{(2z-1)(4z-1)}.$$

(OR)

b. Using the Z transform, solve the following difference equations

i.
$$f_{n+1} + 3f_n = n, f_0 = 1$$

ii.
$$f_{n+2} + 3f_{n+1} + 2f_n = 0, f_0 = 1, f_1 = 2$$

* * * *