Monotype Semantics

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Objectives

- Explain the parts of a type judgment.
- Build proof trees to indicate the derivation of a type for a program.
- Explain the circumstances under which a type environment can be modified.

The Language

 \blacktriangleright We are going to type λ -calculus extended with let, if, arithmetic, and comparisons.

Typing Rules

L ::=	$\lambda x.L$	abstractions
	LL	applications
	$\mathtt{let}\ \mathit{x} = \mathit{L}\ \mathtt{in}\ \mathit{L}$	let expressions
	if L then L else L	if expressions
	Ε	expressions
E ::=	X	variables
	n	integers
	b	booleans
	$E \oplus E$	integer operations
	$E \sim E$	integer comparisons
	E && E	boolean and
	E E	boolean or

Format of a Type Judgment

A type judgment has the following form:

$$\Gamma \vdash e : \alpha$$

where Γ is a *type environment*, e is some expression, and α is a *type*.

- $ightharpoonup \Gamma \vdash$ if true then 4 else 38 : Int
- $ightharpoonup \Gamma \vdash \text{true \&\& false : Bool}$

Note: the ⊢ is pronounced "turnstile" or "entails."

000

Assumptions on top

$$\frac{\Gamma \vdash e_1 : \mathtt{Int} \qquad \Gamma \vdash e_2 : \mathtt{Int}}{\Gamma \vdash e_1 \oplus e_2 : \mathtt{Int}} \, \mathsf{BINOP}$$

Conclusion on the bottom

- If a rule has no assumptions, then it is called an axiom.
- $ightharpoonup \Gamma$ is a set of the form $\{x:\alpha;\ldots\}$.
- $ightharpoonup \Gamma$ may be left out if we don't need a type environment.
- **Basic idea**: the meaning of an expression can be determined by combining the meaning of its parts.

Axioms

Constants

 $\frac{}{\Gamma \vdash n : \mathtt{Int}}$ Const, when n is an integer.

Similarly for True and False.

Variables

$$\Gamma \vdash x \cdot \alpha$$
 VAR, when $x : \alpha \in \Gamma$

- Here, α is a *type variable*; it stands for another type.
- These are rules that are true no matter what the context is.

Simple Rules

Binary Arithmetic

$$rac{\Gamma dash e_1 : \mathtt{Int} \qquad \Gamma dash e_2 : \mathtt{Int}}{\Gamma dash e_1 \oplus e_2 : \mathtt{Int}}$$
 BINOP

Integer Relations

$$rac{\Gamma dash e_1 : \mathtt{Int} \qquad \Gamma dash e_2 : \mathtt{Int}}{\Gamma dash e_1 \sim e_2 : \mathtt{Bool}}$$
 RELOP

Booleans Ops

$$\frac{\Gamma \vdash e_1 : \mathsf{Bool} \qquad \Gamma \vdash e_2 : \mathsf{Bool}}{\Gamma \vdash e_1 \&\& e_2 : \mathsf{Bool}} \mathsf{BoolOp}$$

You can actually conflate these rules by using signatures.

Suppose we want to prove that $\Gamma \vdash (x*5>7)\&\&\ y: \texttt{Bool}$.

Assume that $\Gamma = \{x : \text{Int } ; y : \text{Bool } \}$

First thing: Write down the thing you are trying to prove, and put a bar over it.

$$\Gamma \vdash (x*5 > 7)$$
&& y : Bool

Look at the *outermost* expression. What rule applies here?

Suppose we want to prove that $\Gamma \vdash (x*5>7)$ && y: Bool .

Assume that $\Gamma = \{x : \mathtt{Int}; y : \mathtt{Bool}\}$

First thing: Write down the thing you are trying to prove, and put a bar over it.

$$\Gamma \vdash (\mathsf{x} * 5 > 7)$$
&& $\mathsf{y} : \mathtt{Bool}$

Look at the *outermost* expression. What rule applies here?

$$rac{\Gamma dash e_1 : {\sf Bool} \qquad \Gamma dash e_2 : {\sf Bool}}{\Gamma dash e_1 \&\& e_2 : {\sf Bool}}$$
 BOOLOP

Suppose we want to prove that $\Gamma \vdash (x*5 > 7)$ && y: Bool .

Assume that $\Gamma = \{x : \mathtt{Int} ; y : \mathtt{Bool} \}$

Write parts on top and put a bar over them as well.

$$\frac{\Gamma \vdash x*5 > 7 : \texttt{Bool} \qquad \Gamma \vdash y : \texttt{Bool}}{\Gamma \vdash (x*5 > 7) \&\&\ y : \texttt{Bool}} \ \texttt{BoolOp}$$

What to do next? Let's work left to right. The expression we want next is a "greater" expression. (Besides, the y expression is already an axiom.)

Suppose we want to prove that $\Gamma \vdash (x*5>7)$ && y: Bool .

Assume that $\Gamma = \{x : \text{Int } ; y : \text{Bool } \}$

Following the "greater" rule, we break the x * 5 > 7 into two parts.

$$\frac{\overline{\Gamma \vdash x*5: \mathtt{Int}} \quad \overline{\Gamma \vdash 7: \mathtt{Int}}}{\frac{\Gamma \vdash x*5 > 7: \mathtt{Bool}}{\Gamma \vdash (x*5 > 7) \&\& y: \mathtt{Bool}}} \, \mathtt{BoolOff}$$

We will turn our attention to the multiplication now.

Suppose we want to prove that $\Gamma \vdash (x*5>7)\&\&\ y$: Bool . Assume that $\Gamma = \{x: {\tt Int}\ ; y: {\tt Bool}\ \}$

$$\frac{\overline{\Gamma \vdash x : \text{Int}} \quad \text{Var}}{\frac{\Gamma \vdash x * 5 : \text{Int}}{\Gamma \vdash x * 5 : \text{Int}}} \underbrace{\frac{\text{Const}}{\text{BinOp}}}_{\text{BinOp}} \underbrace{\frac{\Gamma \vdash 7 : \text{Int}}{\Gamma \vdash 7 : \text{Int}}}_{\text{RelOp}} \underbrace{\frac{\text{Const}}{\Gamma \vdash y : \text{Bool}}}_{\text{BoolOp}} \underbrace{\frac{\Gamma \vdash x * 5 > 7 : \text{Bool}}{\Gamma \vdash (x * 5 > 7) \& \& y : \text{Bool}}}_{\text{BoolOp}} \underbrace{\frac{\Gamma \vdash x * 5 > 7 : \text{Bool}}{\Gamma \vdash (x * 5 > 7) \& \& y : \text{Bool}}}_{\text{BoolOp}} \underbrace{\frac{\Gamma \vdash x * 5 > 7 : \text{Bool}}{\Gamma \vdash (x * 5 > 7) \& \& y : \text{Bool}}}_{\text{Const}} \underbrace{\frac{\Gamma \vdash x * 5 > 7 : \text{Bool}}{\Gamma \vdash (x * 5 > 7) \& \& y : \text{Bool}}}_{\text{Const}}$$

At this point, there are no more subtrees to expand out. We are done.

A monotype τ can be a

- ► Type constant (e.g., Int , Bool , etc.)
- ▶ Instantiated type constructor (e.g., [Int], Int \rightarrow Int)
- ightharpoonup A type variable α

If Rule

$$rac{\Gamma dash e_1 : \mathtt{Bool} \qquad \Gamma dash e_2 : lpha \qquad \Gamma dash e_3 : lpha}{\Gamma dash \ ext{if} \ e_1 \ ext{then} \ e_2 \ ext{else} \ e_3 : lpha} \ ext{IF}$$

- ightharpoonup Here, α is a meta-variable.
- This rule says that if can result in any type, as long as the then and else branches have the same type. This could even include functions.

Function Application

$$rac{\Gamma dash e_1 : lpha_2
ightarrow lpha}{\Gamma dash e_1 \, e_2 \, : lpha} \, \Gamma dash e_2 : lpha}{\Gamma dash e_1 \, e_2 \, : lpha} \, {\sf Fun}$$

- If you have a function of type $\alpha_2 \to \alpha$ and an argument e_2 of type α_2 , then applying e_1 to e_2 will produce an expression of type α .
- You can generalize this rule to multiple arguments.

$$\frac{\Gamma \vdash \mathtt{incList} : [\mathtt{Int}] \to [\mathtt{Int}] \qquad \Gamma \vdash \mathtt{xx} : [\mathtt{Int}]}{\Gamma \vdash \mathtt{incList} \ \mathtt{xx} : [\mathtt{Int}]} \ \mathsf{Fun}$$

$$\frac{\Gamma \cup \{x : \alpha_1\} \vdash e : \alpha_2}{\Gamma \vdash \lambda x.e : \alpha_1 \rightarrow \alpha_2} \mathsf{Abs}$$

- \blacktriangleright Important point: this rule describes types and also describes when you may change Γ .
- \blacktriangleright You may **NOT** change Γ except as described!

Example: show that $\{\} \vdash \lambda x.x + 1 : \mathtt{Int} \rightarrow \mathtt{Int}$.

$$\frac{\Gamma \cup \{x : \alpha_1\} \vdash e : \alpha_2}{\Gamma \vdash \lambda x.e : \alpha_1 \rightarrow \alpha_2}$$
 Abs

- lacktriangle Important point: this rule describes types and also describes when you may change Γ .
- ▶ You may **NOT** change Γ except as described!

$$\frac{1}{\{\} \vdash \lambda x.x + 1 : \mathtt{Int} \rightarrow \mathtt{Int}} \mathsf{Abs}$$

$$\frac{\Gamma \cup \{\mathbf{x}:\alpha_1\} \vdash \mathbf{e}:\alpha_2}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{e}:\alpha_1 \rightarrow \alpha_2} \text{ Abs }$$

- lacktriangle Important point: this rule describes types and also describes when you may change Γ .
- ightharpoonup You may **NOT** change Γ except as described!

$$\frac{ \{x: \text{Int}\} \vdash x + 1: \text{Int}}{\{\} \vdash \lambda x. x + 1: \text{Int} \rightarrow \text{Int}} ABS$$

$$\frac{\Gamma \cup \{\mathbf{x} : \alpha_1\} \vdash \mathbf{e} : \alpha_2}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{e} : \alpha_1 \rightarrow \alpha_2}$$
 Abs

- lacktriangle Important point: this rule describes types and also describes when you may change Γ .
- ▶ You may **NOT** change Γ except as described!

$$\frac{ \overline{\{x: \mathtt{Int}\} \vdash x: \mathtt{Int}} \quad \forall \mathsf{AR} \quad \overline{\{x: \mathtt{Int}\} \vdash 1: \mathtt{Int}} \quad \mathsf{Const} }{ \overline{\{x: \mathtt{Int}\} \vdash x + 1: \mathtt{Int}} \quad \mathsf{Abs} } \\ \frac{ \{x: \mathtt{Int}\} \vdash x + 1: \mathtt{Int}}{ \{\} \vdash \lambda x. x + 1: \mathtt{Int} \quad \to \mathtt{Int}} \quad \mathsf{Abs}$$

Let Rule

► Here is let. Note that HASKELL uses the recursive rule, and it is polymorphic.

Let

$$\cfrac{\overline{\Gamma \vdash e_1 : au_1}}{\Gamma \vdash \mathsf{let} \; \mathsf{x} = e_1 \; \mathsf{in} \; e_2 : au_2} \; \mathsf{Let}$$

Letrec

$$\frac{\Gamma \cup [\mathsf{x} : \tau_1] \vdash e_1 : \tau_1}{\Gamma \vdash \mathsf{let} \ \mathsf{x} = e_1 \ \mathsf{in} \ e_2 : \tau_2} \ \mathsf{LetRec}$$