Lecture 10

Integer Arithmetic

CPSC 275
Introduction to Computer Systems

Negation: Complement & Increment

- Claim: Following Holds for 2's Complement
 ~x + 1 == -x
 - But why?
- Complement
 - Observation: ~x + x == 1111__111 == -1

Complement & Increment Examples

x = 15213

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
~x	-15214	C4 92	11000100 10010010	
~x+1	-15213	C4 93	11000100 10010011	

x = 0

	Decimal	Hex	Binary	
0	0	00 00	00000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	00000000 00000000	

Unsigned Addition Operands: w bits

u •••

- Standard Addition Function
 Ignores carry output
- Implements Modular Arithmetic UAddw(u, v) = (u + v) mod 2^w

Two's Complement Addition

TAdd and UAdd have identical bit-level behavior

TAdd Overflow

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

Multiplication

- Computing <u>exact</u> product of w-bit numbers x, y (either signed or unsigned) gives the following ranges:
 - Unsigned:

```
0 \le x * y \le (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1
```

- 2's comp:

```
min: x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}
max: x * y \le (-2^{w-1})^2 = 2^{2w-2}
```

- require up to 2w bits

Unsigned Multiplication in C

- Discard w bits: w bits
- Standard multiplication function
 - Ignores high order w bits
- Implements modular arithmetic $UMult_w(u, v) = (u \cdot v) \mod 2^w$

Signed Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
 - Different interpretation for signed vs. unsigned multiplication
 - Lower bits are the same
- Example: x = 100₂, y = 111₂

Power-of-2 Multiply with Shift

- Operation
 - u << k gives u * 2k

Both signed and unsigned

- Most machines shift and add faster than multiply
- Compiler generates this code automatically
- Examples
- u << 3 == u * 8 u * 12 == ?

Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned by power of 2
 - $-\mathbf{u} \gg \mathbf{k}$ gives $\left[\mathbf{u} / 2^{k}\right]$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of signed by power of 2
 - $u \gg k \text{ gives } \lfloor u / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0 (round down!)

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	11111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil \mathbf{x} / 2^k \rceil$ (round toward 0)
 - Compute as $\lfloor (x + 2^k 1) / 2^k \rfloor$ (adding a bias)
 - $-\ln C$: (x + (1 << k) 1) >> k

Practice Problems

Read CSaPP Sec. 2.3 and try the following problems:

2.28, 2.29, 2.33, 2.34, 2.40