ОБЛАСТЬ збіжності функціональних рядів.

1.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}.$$

За ознакою порівняння. Ряд збігається для всіх дійсних x, тому що $\left|\frac{\sin nx}{n^2}\right| \leq \frac{1}{n^2}$, а числовий ряд $\sum_{n=1}^{\infty} \frac{1}{n^2} (p=2>1)$ збігається. Відповідь $x \in (-\infty; \infty)$.

2.
$$\sum_{n=1}^{\infty} 27^n x^{3n} arctg \frac{3x}{2n+3}$$

За ознакою Даламбера ряд збігається для будь-якого х, що задовольняє нерівність

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| < 1;$$

$$\lim_{n \to \infty} \left| \frac{27^{n+1} x^{3(n+1)} arctg \frac{3x}{2(n+1)+3}}{27^n x^{3n} arctg \frac{3x}{2n+3}} \right| = \lim_{n \to \infty} \left| \frac{27x^3 \frac{3x}{2n+5}}{\frac{3x}{2n+3}} \right| = 27|x|^3 < 1.$$

$$27|x|^3 < 1$$

При $|x| < \frac{1}{3}$ або $x \in (\frac{-1}{3}; \frac{1}{3})$ ряд збігається. Перевіримо збіжність на кінцях інтервалу.

1) При $x = -\frac{1}{3}$ одержимо числовий ряд, знакозмінний:

$$\sum_{n=1}^{\infty} 27^n \frac{(-1)^n}{27^n} \operatorname{arctg} \frac{(-1)}{2n+3} = \sum_{n=1}^{\infty} (-1)^{n+1} \operatorname{arctg} \frac{1}{2n+3}.$$

АР – НО виконується $\lim_{n\to\infty} arctg \, \frac{1}{2n+3} = 0$. ДО: за ознакою порівняння з рядом $\frac{1}{n}$, АР розбігається. ($arctg \, \frac{1}{2n+3} \, \mathop{\sim}_{n\to\infty} \, \frac{1}{2n+3} \, \mathop{\sim}_{n\to\infty} \, \frac{1/2}{n}$)

3Р – збігається за теоремою Лейбниця (виконується НО збіжності АР).

При
$$x = -\frac{1}{3}$$
 ряд збігається умовно.

2) При
$$x = \frac{1}{3}$$
 маємо числовий ряд $\sum_{n=1}^{\infty} arctg \frac{1}{2n+3}$.

Це AP з попереднього пункту, він <mark>розбіжний</mark>.

Отже, відповідь: область збіжності ряду: $\left[-\frac{1}{3}, \frac{1}{3}\right]$.

3.
$$\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$$
.

$$u_n = \frac{x^n}{1 + x^{2n}}$$
; $u_{n+1} = \frac{x^{n+1}}{1 + x^{2(n+1)}}$.

За ознакою Даламбера
$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{1+x^{2n+2}} \cdot \frac{1+x^{2n}}{x^n} \right| = \lim_{n\to\infty} \left| \frac{x+x^{2n+1}}{1+x^{2n+2}} \right| = ?$$

При
$$|x| < 1$$
: $\lim_{n \to \infty} x^{2n+1} = 0$, $\lim_{n \to \infty} x^{2n+2} = 0$.

$$\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=|x|<1$$
 \Longrightarrow ряд збігається.

При |x|=1: $|u_n|=1$, ряд розбігається.

При
$$|x| > 1$$
, $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{\infty}{\infty} \right| \lim_{n \to \infty} \left| \frac{x^{2n+1}}{x^{2n+2}} \right| = \frac{1}{|x|} < 1$, тобто $|x| > 1 \Longrightarrow$ ряд збігається.

Отже, ряд збігається всюди, окрім $x = \pm 1$.