مساخص السدرس

مقادير كمية المادة

1- كمية المادة و عدد أفوقادروا:

- * الأفراد الكيميائية إما ذرات أو جزيئات أو شوارد أو الكترونات .
 - * المول هو كمية المادة لجملة تتكون من N_A فرد كيميائى .

 $N_A = 6.02 * 10^{23} / \text{mol}$ حيث $N_A = 6.02 * 10^{23} / \text{mol}$ عدد آفوقادروا و قيمته

 N_A عدد المولات (كمية المادة) n: النسبة بين عدد الأفراد الكيميائية N و عدد آفوقادروا N

$$n = \frac{N}{NA}$$

. العدد $10^{23} / \text{mol}$ عدد الذرات الموجودة في $10^{23} / \text{mol}$ عدد الخربون

2- الكتلة المولية:

-2 الكتلة المولية الذرية : هي كتلة واحد مول من ذرات هذا العنصر -2

2-2 الكتلة المولية الجزيئية: هي كتلة واحد مول من هذا الجزيء، قيمتها تساوي إلى مجموع الكتل المولية الذرية المكونة لهذا الجزيء.

 $M(H_2O) = 2*M(H) + 1*M(O)$: مثال

العلاقة بين كمية المادة و الكتلة -3

 $n = \frac{m}{M}$ عدد المولات هي النسبة بين كتلة العنصر و كتلته المولية

4- حالة الغاز ات:

الحجم المولي : هو حجم مول من هذا الغاز عند درجة حرارة (θ) و ضغط (P) محدد .

 $n = \frac{V}{Vm}$: كمية مادة غاز عند شروط محددة من الضغط و درجة الحرارة تعطى بالعلاقة

* قانون آفوقادروا - أمبير:

عند نفس الشروط من الضغط و درجة الحرارة كل الغازات لها نفس الحجم

 $V_{\rm m} = 22.4 \text{ L/mol} : 0 \, {}^{0}\text{C}$, p = 1.013 bar 2

 $V_{\rm m} = 24.4 \text{L/mol} : 20 \, ^{0}\text{C}$, p = 1.0bar 3

5- التركيز المولى:

التركيز المولي C لعنصر كيميائي في محلول يساوي إلى النسبة بين عدد مولات هذا العنصر و حجم

 $C = \frac{n}{V}$. Which is a

6- الكتلة الحجمية:

 Kg/m^3 هي النسبة بين كتلة العنصر و حجمه وحدتها

$$\rho = \frac{m}{V}$$

التمرين الأول:

- . $\rho = 7800 \text{ kg/m}^3$: و كتلته الحجمية : Fe= 56 g / mol و كتلته الخجمية . A
 - -1 احسب حجم قطعة من الحديد كتلتها g
 - 2 ما هو عدد المولات (كمية المادة) المحتواة في هذه الكتلة ؟
- B. تعطى الكتلة المولية الذرية و الكتلة المولية الحجمية لكل من الألمنيوم و النحاس في الحالة الصلبة:
 - . Cu = 63.5 g/mol; $\rho = 8900 \text{ kg/m}^3$ Al = 27 g/mol; $\rho = 2700 \text{ kg/m}^3$
 - -1 حدد من أجل كل معدن الحجم المولى الموافق (حجم 1 mol) في الحالة الصلبة -1
 - C. لدينا ثلاثة دوارق تحتوي على نفس الحجم من ثلاث غازات مختلفة في نفس درجة الحرارة و تحت نفس الضغط ، عينا كتلة كل غاز فحصلنا على النتائج التالية :

الغاز	الصيغة	الحجم (L)	الكتلة (g)
الأوكسجين	O_2	1.5	2.01
الميثان	CH ₄	1.5	1.01
غاز الفحم	CO_2	1.5	2.78

- 1- أحسب الكتلة المولية لكل غاز .
 - 2- حدد عدد مولات كل غاز .
- 3- استنتج الحجم المولي لكل غاز . ما هو القانون المحقق في هذه التجربة ؟

أعطي نص هذا القانون . ما معرف 14 م ما معرف ما معرف

C = 12 g/mol, H = 1 g/mol, O = 16 g/mol

التمرين الثاني:

- $ho=2700~{
 m kg}\,/{
 m m}^3$ و كتلته الحجمية $ho=2700~{
 m kg}\,/{
 m m}^3$ و كتلته الحجمية $ho=2700~{
 m kg}\,/{
 m m}^3$ و كتلته المولية الذرية $ho=27~{
 m g}\,/{
 m mol}$.
 - 1- أحسب كتلة مكعب الألمنيوم .
 - -2 أحسب حجمه
 - (C) ستنتج طول ضلعه −3

التمرين الثالث:

- عدد المولات المحتواة في كرية من الحديد نصف قطرها (r) 4.67 mol و كتلته الحجمية :
 - $\rho = 7800 \text{ kg/m}^3$
 - 1- أحسب كتلة الحديد .
 - 2- أحسب حجم كرية الحديد .
 - . ($V=4/3~\pi~r^3$) فطر الكرية

التمرين الرابع:

الدم يحتوي على عدة مكونات مختلفة ، و نميز منها على الخصوص القليكوز ($C_6H_{12}O_6$) . (CH_4N_2O) .

1- أحسب الكتلة المولية لهده الجزيئات.

-2 أحسب عدد مو لات الموجودة في كل g من كل مركب -2

C=12~g/mol , H=1~g/mol , O=16~g/mol , N=14~g/mol , $N_a=6.02*10^{23}mol^{-1}$: التمرين الخامس :

 $^{37}\,\mathrm{Cl}$ و $^{35}\,\mathrm{Cl}$ و للكلور الطبيعي نظريين هما

نسبة وجوده (%)	الكتلة المولية الذرية(g/mol)	النظير
75.78	34.9688	³⁵ C1
24.22	36.9659	³⁷ Cl

اعتمادا على هذه المعطيات ، أوجد الكتلة المولية الذرية لعنصر الكلور .

التمرين السادس:

للمغنيزيوم الطبيعي ثلاثة نظائر هي:

نسبة وجوده (%)	الكتلة المولية الذرية (g/mol)	النظير
78.99	23.9850	²⁴ Mg
10.00	24.9858	25 Mg
11.01	25.9826	26 Mg

1- أحسب الكتلة المولية الذرية لعنصر المغنيزيوم .

2- أ) أحسب كتلة واحد مول من الإلكترونات

 $m e = 9.1*10^{-31} \text{ kg}; N_A = 6.02*10^{+23} \text{ mol}^{-1}$ معطيات : كتلة الإلكترون

ب) قارن بين كتلة 2mol من الإلكترونات و كتلة العنصر .

-3 احسب كتلة واحد مول من شوارد المغنيزيوم

التمرين السابع:

نملأ قارورة سعتها 2 L بغاز الأوكسجين و ذلك في الشرطين النظامين من الضغط و درجة الحرارة .

. أحسب عدد مولات غاز الأوكسجين (O_2) و كتلته الموجودة في القارورة في الشرطين النظامين -1

 0 C عند الدرجة 0 C و تحت ضغط 1 bar الحجم المولي في هذه الشروط 0 C - أحسب حجم غاز الأوكسجين عند الدرجة 0 C . Vm = 24.4 l/mol , O = 16 g/mol

التمرين الثامن:

1 bar و تحت الضغط 20 0 C عند الدرجة 0 C و تحت الضغط 1 bar من غاز الفحم 0 C عند الدرجة 0 C و تحت الضغط 0 C الحجم المولى في هذه الشروط : 0 O = 16 g/m ، 0 C = 12 g/mol ، 0 Vm = 24.4 l/mol .

- 1- أحسب عدد مولات غاز الفحم الناتج.
- 2- أحسب كتلة غاز الفحم المتحصل عليها .

التمرين التاسع:

الصيغة العامة لحمض الكبريت: H₂SO₄

في الدرجة 0 C و تحت الضغط $^1.013$ bar يكون عبارة عن سائل زيتي عديم اللون ، بحيث أن كتلة واحد سنتمتر مكعب منه تعادل $^1.83$ غ .

- 1- أحسب الكتلة المولية الجزيئية لحمض الكبريت .
- 2- حدد حجمه المولى في شروط التجربة المذكورة أعلاه .
- . من هذا المحلول الحمضي 3~ml من هذا المحلول الحمضي S=32~g/mol , O=16~g/mol , H=1~g/mol

التمرين العاشر:

نحضر محلول سكري و ذلك بإذابة m g 100 من القلكوز ($m C_6H_{12}O_6$) في m 500~ml من الماء عند الدرجة $m C_2$ 0 C .

- -1 أحسب التركيز المولي للمحلول السكري .
- 0 C و نبرد إلى أن تصبح درجة الحرارة 0 C و نبرد إلى أن تصبح درجة الحرارة 0 C ما هو تركيز المحلول الجديد 0
 - -3 القلكوز 1 / 3.89 mol (محلول مشبع) .
 - أ) أحسب كتلة القلكوز الموافقة و التي يمكن أن تتحل في ml من الماء .
 - ب) في السؤال (2) ، هل يكون القلكوز منحلا كليا ؟

التمرين الحادي عشر:

NaOH : هيدروكسيد الصوديوم جسم أبيض اللون ، كثير الانحلال في الماء ، صيغته العامة من الشكل : NaOH . و عند انحلاله في الماء تتشكل شوارد Na^+ 0 و شوارد OH^- 0 . كتلته المولية الجزيئية : Na^+ 0 هيدروكسيد في حوجلة مدرجة سعتها Na^+ 1 مملئة إلى النصف بالماء المقطر ، ندخل na^+ 2 من هيدروكسيد الصوديوم نرج و نكمل الحجم إلى na^+ 2 بالماء المقطر .

- 1- أحسب عدد مولات هيدروكسيد الصوديوم.
- . OH و شوارد Na^+ و منوارد -2
- OH^- نريد تحضير محلول لهيدروكسيد الصوديوم بتركيز : OH^- من شوارد OH^- انطلاقا من المحلول السابق . اقترح طريقة عملية للتحضير علما أن الوسائل المتوفرة لدينا :

- حوجلة بسعة 100 ml .
 - ماصة مدرجة .

التمرين الثاني عشر:

قارورة زجاجية موضوعة في درج في مخبر ، كتب عليها اسم المادة الكيميائية الموجودة بداخلها و هي : ثانى هيدروجين فوصفات الصوديوم المائى $(NaH_2PO_4, 2H_2O)$.

- 1- أحسب الكتلة المولية لهذا المركب الكيميائي .
- 2- نأخذ عينة منه كتلتها g 3.12 ، أحسب عدد المولات الموجودة في هذه العينة .
- ~ -3 من هذا المركب ~ -3 من هذا المركب ~ -3

Na = 23 g/mol, O = 16 g/mol, H = 1 g/mol, P = 31 g/mol

التمرين الثالث عشر:

نفاعل 1 mol من برادة الحديد مع 1 mol من برادة الكبريت فنحصل على 1 mol من كبريت الحديد .

- نزن g 8.24 g من برادة الحديد

- أ) أحسب عدد مولات الحديد .
- ب) ما هو عدد ذرات الحديد الموجودة في هذه الكتلة ؟
- 2- ما هي كتلة الكبريت اللازمة للحصول على نفس عدد ذرات الحديد ؟
 - Fe = 55.8 g/mol, S = 32.1 g/mol, $N_A = 6.02*10^{+23}$

التمرين الرابع عشر:

كلور المغنيزيوم (MgCl₂) جسم صلب أبيض اللون كتلته المولية 94.3 g/mol . ندخل في حوجلة سعتها 18.86 g ، 250 ml من هذا المركب و نكمل بالماء المقطر ، فينحل هذا الأخير مشكلا شوارد موجبة و شوارد سالبة .

1- أكتب صيغ الشوارد الناتجة .

2- أحسب تراكيز الشوارد الموجودة في هذا المحلول.

التمرين الخامس عشر:

 Na_2CO_3 12 H_2O : نقرأ على ورقة وضعت على زجاجة البيانات التالية : كربونات الصوديوم المائية : M = 286.14 g/mol في الكحول برادة بيضاء اللون ، كتلتها المولية : M = 286.14 g/mol في الكحول .

- 2- أحسب الكتلة المولية لهذا المركب و قارنها مع الكتلة المولية المعطاة .
- من المركب في الماء تتشكل شوارد Na^+ و شوارد CO_3^{2-} ، نريد تحضير Na^+ من المحلول بتركيز O.1~mol/l من شوارد CO_3^{2-} .
 - أ) اقترح طريقة للتحضير هذا المحلول.
 - \cdot Na⁺ ما هو تركيز المحلول بشوارد

جـ) ما هي كمية شوارد ${\rm CO_3}^2$ الموجودة في $20~{\rm ml}$ من هذا المحلول ؟

التمرين السادس عشر:

الجدول التالي يمثل تغيرات انحلال (m) كتل من غاز الأوكسجين في 1 ماء تحت الضغط 1.013 bar بدلالة تغيرات درجة الحرارة (θ) :

$(^{0}C)\theta$	0	10	20	30	40	60	80
m	69.5	55	43.5	36	31	22	14
(mg)							

- θ بيانيا تغير ات m بدلالة θ
- . $^{0}\mathrm{C}$ عند الدرجة $^{1}\mathrm{L}$ ماء عند الدرجة $^{-2}$
- . 24.5 l/mol: الدرجة 0 C و تحت الضغط 0 C الحجم المولي لغاز الأوكسجين 0 C عند الدرجة 0 C عند الدرجة 0 C الحسب أكبر قيمة لحجم الأوكسجين التي يمكن أن تتحل في 0 C ماء .

التمرين السابع عشر:

 $M=63.5463 \; g/mol:$ الكتلة المولية للنحاس المعطاة في الجدول الدوري لترتيب العناصر هي الخاص المعطاة في الجدول الدوري لترتيب العناصر هي يحتوي النحاس الطبيعي على نظريين $Cu, ^{63}$ Cu, الكتلة المولية الذرية لكل

منهما على الترتيب : 64.9278 g/mol , 62.9296 g/mol : منهما على

أحسب النسبة المئوية الكتلية لكل نظير في النحاس الطبيعي .

التمرين الثامن عشر:

أثناء تفاعل محلول حمض كلور الماء مع برادة الزنك ينطلق غاز الهيدروجين ، يجمع هذا الغاز في حوجلة مدرجة بانتقال الماء فيها ، سعة هذه الحوجلة $100 \, \mathrm{ml}$ وعند انتهاء التفاعل نحصل على $100 \, \mathrm{ml}$ من هذا الغاز عند الدرجة $20 \, \mathrm{^0C}$ و تحت الضغط $1.013 \, \mathrm{bar}$ ، الحجم المولي في هذه الشروط : $24 \, \mathrm{l/mol}$.

1- أحسب عدد مولات غاز الهيدروجين الناتج .

2- أعظ قيمة للتركيز الكتلي لغاز الهيدروجين في الشروط السابقة هي : 16 mg/l المنحلة في 90 ml . أحسب عدد المو لات الموافقة لهذا التركيز ، قارنها بالعدد المحسوب سابقا .

التمرين التاسع عشر:

كلور البوتاسيوم (KCl)جسم بلوري ، ينحل في الماء مشكلا شوارد $^+$ و $^-$ Cl عند الدرجة 0 C أكبر كتلة تتحل في $^-$ 100 ml من الماء هي $^-$ 34.2 g .

- 1- أحسب التركيز الأعظمي لمحلول كلور البوتاسيوم.
- . 0.1 mol/l هو 100 ml من هذا المحلول تركيزه المولي بشوارد -2
 - أ) حدد طريقة تجريبية تمكنك من تحقيق ذلك .
 - ب) هل تظهر بلورات في هذا المحلول ؟
- -3 بو اسطة ماصة نأخذ من هذا المحلول-20 ml و ندخلها في حوجلة مدرجة سعتها -3 ، نكمل الحجم ما هو التركيز الجديد بشو ارد -100 .