Subject: Engineering Mathematics Chapter: Linear Algebra

DPP-02

Topic : Determinant & Its Properties

- 1. If A and B are square matrices of size $n \times n$, then which of the following statement is not true.
 - (a) det(AB) = det(A) det(B)
 - (b) $det(kA) = k^n det(A)$
 - (c) det(A + B) = det(A) + det(B)
 - (d) $det(A^T) = 1/det(A^{-1})$
- 2. If the determinant of matrix $\begin{vmatrix} 1 & 3 & 2 \\ 0 & 5 & -6 \\ 2 & 7 & 8 \end{vmatrix}$ is 26, then

the determinant of the matrix $\begin{bmatrix} 2 & 7 & 8 \\ 0 & 5 & -6 \\ 1 & 3 & 2 \end{bmatrix}$ is

- (a) -26
- (b) 26
- (c) 0
- (d) 52
- 3. The determinant of the matrix $\begin{bmatrix} 6 & -8 & 1 & 1 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 4 & 8 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
 - (a) 11
 - (b) -48
 - (c) 0
 - (d) -24

4. If
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
 then $[AA^T]^{-1}$ is

(a)
$$\begin{bmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/4 & 0 \\ 0 & 0 & 0 & 1/4 \end{bmatrix}$$

- 5. Consider the matrices $X_{(4\times 3)}$, $Y_{(4\times 3)}$ and $P_{(2\times 3)}$. The order of $[P(X^TY)^{-1}P^T]^T$ will be
 - (a) (2×2)
- (b) (3×3)
- (c) (4×3)
- (d) (3×4)
- **6.** For the given orthogonal matrix Q.

$$Q = \begin{bmatrix} 3/7 & 2/7 & 6/7 \\ -6/7 & 3/7 & 2/7 \\ 2/7 & 6/7 & -3/7 \end{bmatrix}$$

The inverse is

(a)
$$\begin{bmatrix} 3/7 & 2/7 & 6/7 \\ -6/7 & 3/7 & 2/7 \\ 2/7 & 6/7 & -3/7 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -3/7 & -2/7 & -6/7 \\ 6/7 & -3/7 & -2/7 \\ -2/7 & -6/7 & 3/7 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 3/7 & -6/7 & 2/7 \\ 2/7 & 3/7 & 6/7 \\ 6/7 & 2/7 & -3/7 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} -3/7 & -6/7 & -2/7 \\ -2/7 & -3/7 & -6/7 \\ -6/7 & -2/7 & 3/7 \end{bmatrix}$$

7. Which one of the following does NOT equal

$$\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}$$
?

(a)
$$\begin{vmatrix} 1 & x(x+1) & x+1 \\ 1 & y(y+1) & y+1 \\ 1 & z(z+1) & z+1 \end{vmatrix}$$

(b)
$$\begin{vmatrix} 1 & x+1 & x^2+1 \\ 1 & y+1 & y^2+1 \\ 1 & z+1 & z^2+1 \end{vmatrix}$$

(c)
$$\begin{vmatrix} 0 & x - y & x^2 - y^2 \\ 0 & y - z & y^2 - z^2 \\ 1 & z & z^2 \end{vmatrix}$$

(d)
$$\begin{vmatrix} 2 & x+y & x^2+y^2 \\ 2 & y+z & y^2+z^2 \\ 1 & z & z^2 \end{vmatrix}$$

8. If any two columns of determinant $D = \begin{bmatrix} 4 & 7 & 8 \\ 3 & 1 & 5 \\ 9 & 6 & 2 \end{bmatrix}$

are interchanged, which one of the statement is correct?

- (a) Absolute value remains unchanged but sign will change
- (b) Both value & sign will change
- (c) Absolute value will change but sign will not change
- (d) Both absolute value and sign will remain unchanged.
- 9. For a matrix $M = \begin{bmatrix} 3/5 & 4/5 \\ x & 3/5 \end{bmatrix}$, the transpose of the

matrix is equal to the inverse of the matrix, $[M]^T = [M]^{-1}$. The value of x is given by

(a)
$$-\frac{4}{5}$$

(b)
$$-\frac{3}{5}$$

(c)
$$\frac{3}{5}$$

(d)
$$\frac{4}{5}$$

10. Let $M^4 = I$, (where I denotes the identity matrix) and $M \neq I$ and $M^2 \neq I$ and $M3 \neq I$. Then, for any natural number k, M^{-1} equals:

(a)
$$M^{4k+1}$$

(b)
$$M^{4k+2}$$

(c)
$$M^{4k+3}$$

(d)
$$M^{4k}$$

Answer Key

1. (c)

2. (a)

3. (b)

4. (a)

5. (a)

6. (c)

7. (a)

8. (a)

9. (a)

10. (c)

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4