Preventative measure: A mathematical model for forecasting the impact of vaccination programs of COVID-19 for the United Kingdom.

Introduction to Mathematics

Group Project Report

Page count: 10 pages (not including references or appendix)

Year of Study: 2022/23

Abstract

In this mathematical modeling project, we develop a mathematical model of the COVID-19 epidemic that can predict and evaluate the impact of vaccination programs in the United Kingdom (UK). To forecast the transmission rate, we used an ordinary differential equation-based dynamic SIR model. We introduced the unreported symptomatic infectious population as an addition to this model. To identify the number of unreported cases we utilize the parameterized model1. Our finds emphasize the importance and found evidence that the mass covid vaccination initiative helped the UK to reduce this virus transmission rate.

Objectives:

- 1) Develop a mathematical model to show preventative measures of vaccination programmes
- 2) The main features of this model
 - a. Incorporation of asymptomatic (which is longer in COVID-19) and symptomatic infectiousness.
- 3) Reported daily case data will be used to parameterise the models
- 4) This model will forecast the epidemic with vaccination programs, social distancing measures and public health policies.

Model and Methodology

Ordinary differential equation-based dynamic model of an infectious disease is applied. This model is well suited to explain and understand basic concepts and dynamics for ideal cases (uniform homogeneous populations with homogeneous interaction dynamics)¹. This type of models, for instance, does not consider that recovered individuals might infect others or could get infected again. In certain type of epidemics, dead individuals could infect living ones too.

In our model we have divided total population into four components.

- 1. S(t)- susceptible population at time t, who could potentially catch the disease
- 2. *I(t)* infectious population at time *t* (asymptomatic) this would be people who currently have the disease and infecting others.
- 3. R(t)- symptomatic infectious population at time t (reported)
- 4. *U(t)* symptomatic infectious population at time *t* (unreported)

Assumptions

Assumptions for this model: -

- To identify the transmissions rate²:
 - \circ Susceptible become infected from asymptomatically infection and symptomatically infectious individuals such that τ (t) S(t)(I(t) + U(t))
 - (τ (t) identify as a time dependent parameter)
 - *R(t)* reported symptomatic symptomatic cases no longer contribute to transmitting the infection
- *I(t)* Asymptomatic individual's average period stay infectiousness of 1/*v*. (People who are medically confirmed are typically isolated)
- Moreover, assuming that reported infections individuals are infected on average $1/\eta$; this assumption arises from the first order loss term in the equations (U(t) unreported symptomatic people)³.
- f represents the fraction of population who become reported therefore reported symptomatic infectious at rate $v_1 = f v$ and the fraction who remain unreported 1 f that fraction; therefore $v_2 = (1 f) v$, where $v_1 + v_2 = v$; v is new days

Time units are days, and these assumptions arise from the first-order loss term in the equations.

¹ Turkyilmazoglu, Mustafa Explicit formulae for the peak time of an epidemic from the SIR model. Physica D: Nonlinear Phenomena; Volume 422, August 2021, 132902

² Z. Liu, P. Magal, O. Seydi, G. Webb;Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data; Mathematical Biosciences and Engineering doi: 10.3934/mbe.2020172

³ Suli,Liua; Michael Y.Lib; Epidemic models with discrete state structures; Physica D: Nonlinear Phenomena Volume 422, August 2021, 132903

These are simplified assumptions which could be modified if better information is available.

$$S'(t) = -\tau (t)S(t)(I(t) + U(t)) - v(t), t \ge t_0$$

$$I'(t) = \tau (t)S(t)(I(t) + U(t)) - v(t), t \ge t_0$$

$$R'(t) = V_1I(t) - \eta R(t), t \ge t_0,$$

$$U'(t) = V_2I(t) - \eta U(t), t \ge t_0,$$

$$V_2I(t)$$

$$V_3I(t)$$

$$V_2I(t)$$

$$V_3I(t)$$

$$V_2I(t)$$

$$V_3I(t)$$

$$V_2I(t)$$

$$V_3I(t)$$

$$V$$

Susceptible people become asymptomatically infectious at a certain rate and then they are lost at a rate certain fraction (*Greek New v_1*) $v_1I(t)$ goes to the symptomatic reported class and remainder v_2 = (1 - f) v_1 goes to symptomatically unreported class. Assumption is both groups remain those classes for one before they move to the remove class. Furtherly, susceptible are removed as well by vaccination.

Collecting the data:

A major problem we found in working with models of Covid 19 is to use of data and the data we have is daily reported cases. Typically, we assume there are more unreported cases daily than reported cases. In the model, we simplified the data by calling a function DR(t). The daily transmission rate in the model can be obtained from the daily reported cases data⁴. Hence, we connect the daily reported cases in the model to the daily reported cases dataⁱⁱ:

Let,

The number of daily reported cases is $DR(t)^5$

$$DR'(t) = V_1 I(t) - 1 DR(t) \rightarrow I(t) = \frac{DR'(t) + DR(t)}{V 1}$$

Since, the transmission rate in the equation:

$$I'(t) = \tau(t)S(t)(I(t) + U(t)) - vI(t)$$
; $(\tau(t)S(t)(I(t) + U(t) = transmission rate)$

So,

$$\tau(t)S(t)(I(t) + U(t)) = I'(t) + vI(t),$$

$$= \frac{DR''(t) + DR'(t)}{V1} + v(\frac{DR'(t) + DR(t)}{V1}) \text{ (since, } I(t) = \frac{DR'(t) + DR(t)}{V1}))$$

Connecting the daily reported cases in the Model to the daily reported cases in the data:

⁴ Tang et al., 2020; B. Tang, N.L. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu; An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov) Infectious Disease Modelling, 5 (2020), pp. 248-255

⁵ Z. Liu, P. Magal, O. Seydi, G. Webb; Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data; Mathematical Biosciences and Engineering doi: 10.3934/mbe.2020172;

Since the daily reported cases of COVID-19 epidemics are heavily fluctuated and typically very erratic, it varies with locations. It can be doubled from one day to the next in some cases. Since, the difficulty of using the date, we use rolling weekly moving average daily reported cases of that data to smooth the daily reported cases i.e our data to be interpolated by a smooth continuum B-spline curve $BS(t)^{iii}$

Therefore, DR(t) can be equated in the model to BS(t) in the data and the derivatives DR'(t) = BS'(t) and DR''(t) = BS''(t) can be obtained.

$$\tau(t)S(t)(I(t) + U(t)) = \frac{BS'(t) + BS'(t)}{V1} + v(\frac{BS'(t) + BS(t)}{V1})$$
 (formula for the transmission in our model)

Therefore, we can solve for this function τ (t)

$$\tau(t) = \frac{BS''(t) + BS'(t)}{V1} + v\left(\frac{BS'(t) + BS(t)}{V1}\right) / (S(t)(I(t) + U(t)))$$

Since we know the transmission up to the last day of reported data, that we can incorporate into our model.

Background of the Covid-19 Model to the United Kingdom⁶:

<u>February</u>: First cases reported

March: Beginning of the first lock down. The UK Government introduces

different lockdown measures, along with rising covid infection and death cases⁷

<u>Late April, May, June</u>: The British Government started to ease the restrictions

<u>July and August:</u> Cases remained low during the summertime

<u>September and October:</u> Winter approaching, the Government reintroduce the Covid measures

November: (End of Nov.) the UK reported a high number of deaths

<u>December:</u> The British government. imposed stricter lockdown measures

Parameters for Covid-19 Model⁸

⁶ Uk health security agency, 'COVID-19: epidemiology, virology and clinical features' (GovUK, 17 May 2022)

https://www.gov.uk/government/publications/wuhan-novel-coronavirus-background-information accessed 1 November 2022

⁷ Institutie for Government, 'Timeline of UK government coronavirus lockdowns and restrictions' (LeadingThinkTank, 21 Jan 2022) < https://www.instituteforgovernment.org.uk/charts/uk-government-coronavirus-lockdowns >

⁸ Liu, Z.; Magal, P.; Seydi, O.; Webb, G. Understanding Unreported Cases in the COVID-19 Epidemic Outbreak in Wuhan, China, and the Importance of Major Public Health Interventions. Biology 2020, 9, 50.

- V = 1/7 the period of asymptomatic infectiousness to one week
- *f* = .4 fraction of reported asymptomatic cases
- 1 f = .6 fraction of the unreported symptomatic infectious
- $S(t_0) = 67,900,000$ initial population of the UK

We initially collected the data from the beginning of March to January 15 (322 days); later we extended our forecast till the 1st of September to show the vaccination impact on the transmission rate. Furthermore, in our project, we compared our model data with the data published by the British Government.

The daily reported cases without Bspline interpolation *BS(t)*, which tell the data heavily fluctuated.

The daily reported cases with Bspline interpolation BS(t), the line chart went over the bar chart to show the effectiveness of the moving average data rather than daily data entry point.

Incorporation of Vaccination into the Model:

On Dec the 8 United Kingdom (UK) began their vaccination program with a 2-dose Pfizer vaccine. Then, on Dec 30th, the NHS delayed the second dose vaccine for over 500k people after they had received the first dose. This endeavour aimed at providing the first dose vaccine to as many people as possible⁹. AstraZeneca was approved on the 30th of Dec as a vaccine, and it followed

⁹ Institutie for Government, 'Timeline of UK government coronavirus lockdowns and restrictions' (LeadingThinkTank, 21 Jan 2022) < https://www.instituteforgovernment.org.uk/charts/uk-government-coronavirus-lockdowns >

the same policy to delay vaccination for the second dose. Both doses followed similar policy for delaying second dose approximately 12 weeks delay from the first dose. According to The BBC, during the beginning of January, the UK was vaccinating around 2 million people per week¹⁰.

Let $0 < f \le 1$, the model equations include the loss term f x 2,000,000/7 in the susceptible population equation, since the vaccination begun from January 1= day 307, with effectiveness at 100% x f (approximately f x 285,000 people per day)¹¹.

The equations down below explain the vaccination removes susceptible from becoming infected^{iv}. Since¹²,

$$S'(t) = -\tau (t)S(t)(I(t) + U(t)) - v(t), t \ge t_0$$

Therefore,

$$S'(t) = -\tau (t)S(t)(I(t) + U(t)) - f \times 285000 \ t \ge t_0$$

$$I'(t) = \tau(t)S(t)(I(t) + U(t)) - v(t), t \ge t_0$$

$$R'(t) = V_1 I(t) - \eta R(t), t \ge t_0,$$

$$U'(t) = V_2 I(t) - \eta U(t), t \ge t_0$$

It is necessary to find the effectiveness of that vaccination rate, as a successful immunisation. Since not every person was vaccinated. In addition, after the jab susceptible people are not instantaneously immune to infection. In fact, it can take up to three of more weeks before a susceptible individual becomes immune to infection.

Going forward for a month designing the transmission rate after January 15 to find out the effectiveness of the vaccination

<u>Model to predict effectiveness of vaccination in UK:</u>(Designing the transmission rate after the vaccination role out)

Since the vaccination program began on day 307 = January 1, we can take that transmission rate which we have in our model up to January 15, and put it in a graph. After setting a linear

¹⁰ Bbc, 'Covid vaccine: How many people are vaccinated in the UK?' (*Coronavirus pandemic*, 4 March 2022) https://www.bbc.co.uk/news/health-55274833 accessed 3 November 2022

¹¹ Thompson,R. N.; Novel coronavirus outbreak in Wuhan, China, 2020: Intense surveillance Is vital for preventing sustained transmission in new locations. J. Clin. Med. 9(2), (2020), 498

¹² Nishiura,H; Jung,SM; Linto,Natalie; Kinoshita,Ryo; The Extent of Transmission of Novel Coronavirus in Wuhan, China, 2020; J. Clin. Med. 2020, 9(2), 330; https://doi.org/10.3390/jcm9020330

regression line to visualize the transmission rate relationship after the vaccination, it is clear that t_x is the going forward value.

We identified a time $t_x \le t_1$ in which is the time that we will change from reported cases data information daily to a new form in the model going forward from that date. To clarify, we will take the last value where the red line intersects. Therefore, the transmission rate in the week before t_1 such that the transmission rate in the week before t_1 is represented by τ (t_x). To find the transmission rate we fit a linear regression line and take the fourth intersection value, Therefore, $t_x = 319.3$ for the value of linear regression graph with τ (t_1) t_2 (t_3) t_4 (t_4) t_5 (t_5) t_7 (t_7) t_8 (t_8) t_8 (

Identify the time we call t_x (the time that we will change from reported cases data information daily to a new form in the model going forward from that date)

Let t_0 = 1 = March 1, 2020, the first day of reported cases data. The last date of daily reported cases date in day t_1 = 322 = January 15. The transmission rate before day t1 is (Before January 15 we the value of τ (t)S(t)(I(t) + U(t)) susceptible population losses through asymptomatic)

$$\tau(t)S(t)(I(t) + U(t)) = I'(t) + vI(t)^{13},$$

$$= \frac{DR''(t) + DR'(t)}{V1} + v(\frac{DR'(t) + DR(t)}{V1}), t_0 \le t \le t_1$$

<u>The transmission rate for the Model going forward</u> (absence of any relaxation of social distancing)

Before time t_x = 319.3 from the t_0 = March 1st

$$\tau(t)S(t)(I(t) + U(t)) = \frac{DR''(t) + DR'(t)}{V1} + v(\frac{DR'(t) + DR(t)}{V1}), t_0 \le t \le t_x$$

Forward from t_x the formula, is the continuous function of time¹⁴

$$\tau\left(t\right)S(t)(I(t)+U(t)) = \left[\frac{DR''(tx)+DR'(tx)}{Vx} + \nu\left(\frac{DR'(tx)+DR(tx)}{V}\right)\right] \times \frac{S(t)(I(t)+U(t))}{S(tx)(I(tx)+U(tx))} \text{, } t \geq tx \text{ (At time } t_x \text{this } \frac{S(t)(I(t)+U(t))}{S(tx)(I(tx)+U(tx))} = 1; \text{ Therefore, both above equations match at time } t_x)$$

After time tx, transmission is dependent on S(t), I(t), U(t), but not on R(t). Vaccination is implemented from day 307 = January 1 to a time $t > t_1$.

This equation brings in the dynamics of the susceptible loss and the number of infected people,i.e., both asymptomatic and symptomatic. The transmission rate is continuous of function of time.

Going forward in time t_x we define τ (t, S(t), (I(t), U(t)). (Considering relaxation of pandemic measures due to mass vaccination)

¹³ Lau, E.H.Y.; Wu, P.; Hao, X.; Wong, J.Y.; Wu, J.T.; Leung, K.S.M.; Leung, G.M; Cowling, B.J.; Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020.

¹⁴ Z. Liu, P. Magal, O. Seydi, G. Webb; Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data; Mathematical Biosciences and Engineering doi: 10.3934/mbe.2020172;

Forward from t_x = 319.3 value (before the last day of daily reported cases to the next day of daily reported cases) to t_2 = March 1,

For $t_x < t \le t_2$ = March 1,

$$\tau(t, S(t)(I(t) + U(t)) = \tau((t)S(t), I(t), U(t)) \frac{S(t)(I(t) + U(t))}{S(tx)(I(tx) + U(tx))}$$

Changes of social behaviour

Undoubtedly, the relaxation of social distancing rules happened because of the mass vaccination program. Consequently, there is a chance of increasing the transmission rate:

We estimated three intervals of time:

For $t_2 \le t < t_3$ = May 1, increase in transmission due to this relaxation $\tau(t)S(t)(I(t) + U(t)) =$

$$(1+.03(t-t_2)) \ \tau \ ((t_x)S(t_x),I(t_x),U(t_x)) \ \frac{S(t)(I(t)+U(t))}{S(tx)(I(tx)+U(tx))} \quad \text{(if } t=t_0 \text{ which is 1 and it }$$

matches the previous equations; but $t > t_0$ then it will be increased transmission .03($t - t_2$) will be added);

Further relaxation of social behaviour:

for
$$t_3$$
 = May 1 < t_4 = July 1,
 τ (t)S(t)(I(t) + U(t)) =

$$(1+.03(t-t_2)+.02(t-t_3)) \ \tau$$
 ((t_x)S(t_x),I(t_x),U(t_x)) $\frac{S(t)(I(t)+U(t))}{S(tx)(I(tx)+U(tx))}$

Furthermore relaxation:

for
$$t_4$$
 = July 1 < t = June 1,

$$\tau(t)S(t)(I(t) + U(t)) = (1+.03(t-t_2) +.02(t-t_3) +.01(t-t_4)) \tau((t_x)S(t_x),I(t_x),U(t_x))$$

$$\frac{S(t)(I(t)+U(t))}{S(tx)(I(tx)+U(tx))}$$

With this transmission rate, we show the model simulations of daily reported cases for three cases of the vaccination efficiency with vaccination beginning on January 1:

Red: efficiency 85%, 53,000,000 vaccinated by September 1. Daily reported cases data (bars); Green: efficiency 90%, 56,000,000 vaccinated by September. Blue: efficiency 95%, 59,000,000 vaccinated by September 1.

Result:

There are three different efficiency values are plotted in the graph. Up until January 15, the vertical bar represents the daily reported cases data. The red graph is the model simulation of the daily reported cases data, where the efficiency is 90%. Since the vaccination started on January 1st but after January 15th the vaccination starts to remove the transmission. Hence the number of cases started to slow down throughout January, and it continues to slow down forward from the previous day but then there is an upswing due to the relaxation of social distancing. This spick of transmission from June to the end of July is due to vaccination efficiency. The Red line represents the less efficient than the green line, however, the blue line represents the most efficiency and less transmission rate.

Comparison between SIR model and published data:

By making comparations between the two graphs, you can appreciate that our model correctly predicted the higher rate of transmission during the summertime due to the relaxation measures. However, in the data published by the UK government, the daily transmission rate continued to increase beyond the summer then it started to level out after September. According to our model, the incidence starts levelling out before September.

Furthermore, in our model, we introduced relaxation measures after March, and we predicted a slow increase in transmission rate. Therefore, you saw after January the 15th there was a big drop in the transmission rate. However, in the data published by the Government, the daily transmission rate suggests the transmission started to increase middle of February and it went at pick by mid-March before it started to level out after.

Nevertheless, our model did not consider the child vaccination factors, whereas during the beginning of March, the UK government reopened the schools without child vaccination¹⁵. Therefore, children and teenagers who were under 18 had a high rate of transmission rate, which helped to increase the total tally number. Another reason which could contribute to this higher transition rate during March was the increasing number of lateral flow tests, hence, the reported symptomatic population¹⁶.

By contrast, when the UK government started to relax the pandemic measures, e.g., outdoor gatherings, parties (etc...) among the vaccinated group after March 2021, it is clear that the transmission rate did not increase amongst that group ¹⁷.

Conclusion

This forecast summarises, how the vaccination immunizes the population against covid-19. Vaccination programs lowered the transmission rate and the level of the epidemic for the UK. We can confirm that the vaccine has delayed transmission of the disease, but this was not an immediate effect, it happened over some time. In addition, a recent government reported evidence for lower transmission rates since the majority of the UK population had two doses of the vaccine¹⁸.

¹⁵ BBC/Health, Child Covid vaccinations: Your questions answered' (*Coronavirus pandemic*, 17th Feb 2022)

< https://www.bbc.co.uk/news/health-60415846> accessed 3 November 2022

¹⁶BBC/Health, 'UK reports nearly 120,000 daily Covid cases' ((*Coronavirus pandemic*, 10th Dec 2021)) < https://www.bbc.co.uk/news/live/uk-59764750 >

¹⁷ NHS/England; Covid-19 vaccinations/Data https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-vaccinations accessed 3 November 2022

¹⁸GOV.UK, Coronavirus (Covid-19) in the UK; (report published: 27th of Sep 2022)

< https://coronavirus.data.gov.uk/details/cases?areaType=nation&areaName=England > accessed 3rd Nov 2022

This mass action form S(t)(I(t) + U(t)) depends on the number of susceptible * against the number of infected asymptomatic individuals + the unreported symptomatic infected individuals; in addition, v(t) is the loss term for the susceptible population, that's the number of people vaccinated each day or effectiveness of the vaccination for the people vaccinated each day (which is much less); Moreover, both symptomatic reported and unreported cases stay in 1 week in their classes before they move to the remove class.

Furthermore, to incorporate this into the model; we take the daily averaged rolling weekly cases each day that a discreate set of points; one point each day; we want to continue that in our model; because it is a continues model and it based on averages over time. So, we want to replace that rolling weekly average data discrete with a continue interpolation of it involving cubic spline approximation. We take that cubic spline approximation to that discrete data and transmission rate expression in our mode and replaces with this continuum cubic spline approximation to that discrete data

References

- BBC/Health, Child Covid vaccinations: Your questions answered' (*Coronavirus pandemic*, 17th Feb 2022) < https://www.bbc.co.uk/news/health-60415846> accessed 3 November 2022
- BBC/Health, 'UK reports nearly 120,000 daily Covid cases' ((Coronavirus pandemic, 10th Dec 2021)) < https://www.bbc.co.uk/news/live/uk-59764750 >
- BBC, 'Covid vaccine: How many people are vaccinated in the UK?' (*Coronavirus pandemic*, 4 March 2022) https://www.bbc.co.uk/news/health-55274833 accessed 3 November 2022
- GOV.UK, Coronavirus (Covid-19) in the UK; (report published: 27th of Sep 2022)
 https://coronavirus.data.gov.uk/details/cases?
 areaType=nation&areaName=England > accessed 3rd Nov 2022
- Institutie for Government, 'Timeline of UK government coronavirus lockdowns and restrictions' (LeadingThinkTank, 21 Jan 2022) < https://www.instituteforgovernment.org.uk/charts/uk-governmentcoronaviruslockdowns >
- 6. Institutie for Government, 'Timeline of UK government coronavirus lockdowns and restrictions' (LeadingThinkTank, 21 Jan 2022) < https://www.instituteforgovernment.org.uk/charts/uk-government-coronavirus-lockdowns >

i Susceptible populations are lost either by transmission or vaccination. Susceptible population has lost its transmission term - τ (t)S(t) because population is decreasing; this is the loss of individuals who become infected; τ (t) is the function; we have to identify as a time dependent parameter; (susceptible people are lost to the infected)

ii DR'(t) change of daily reported cases (dependent variable) at time t is equal to the number of reported cases going into that variable and they will stay in that class for one day,

iii Idea is we just need to take the todays data of daily reported cases and we take the average daily reported cases data for the past 7 days; and we replace the value we get today by that average with the past 7days that's called the (rolling weekly averaged daily) data. Therefore, we get a value for that each day.

Where, $-\tau(t)S(t)(I(t) + U(t))$ is the transmission rate, $v(t) = f \times 285000$ loss of susceptible via vaccination (we will take is value for this fraction and look at the outcome vaccination dependent on this fraction of successful vaccination)

- 7. Lau, E.H.Y. et al., 2020; Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January.
- 8. Z. Liu, P. Magal, O. Seydi, G. Webb; Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data; Mathematical Biosciences and Engineering doi: 10.3934/mbe.2020172
- 9. Liu, Z.; Magal, P.; Seydi, O.; Webb, G. Understanding Unreported Cases in the COVID-19 Epidemic Outbreak in Wuhan, China, and the Importance of Major Public Health Interventions. Biology 2020, 9, 50.
- 10. NHS/England; Covid-19 vaccinations/Data https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-vaccinations accessed 3 November 2022
- 11. Nishiura,H; Jung,SM; Linto,Natalie; Kinoshita,Ryo; The Extent of Transmission of Novel Coronavirus in Wuhan, China, 2020; J. Clin. Med. 2020, 9(2), 330; https://doi.org/10.3390/jcm9020330
- 12. Suli,Liua; Michael Y.Lib; Epidemic models with discrete state structures; Physica D: Nonlinear Phenomena, Volume 422, August 2021, 132903
- 13. Tang et al., 2020; An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov) Infectious Disease Modelling, 5 (2020), pp. 248-255
- 14. Thompson,R. N.; Novel coronavirus outbreak in Wuhan, China, 2020: Intense surveillance Is vital for preventing sustained transmission in new locations. J. Clin. Med. 9(2), (2020), 498
- Turkyilmazoglu, Mustafa Explicit formulae for the peak time of an epidemic from the SIR model. Physica D: Nonlinear Phenomena; Volume 422, August 2021, 132902
- 16. UK health security agency, 'COVID-19: epidemiology, virology and clinical features' (GovUK, 17 May 2022) https://www.gov.uk/government/publications/wuhan-novel-coronavirus-background-information accessed 1 November 2022

APPENDIX

```
In [268-
    effective_contact_rate = 0.5
    recovery_rate = 1/4
                 # We'll compute this for fun
print("R0 is", effective_contact_rate / recovery_rate)
                 # What's our start population look like?
# Everyone not infected or recovered is susceptible
total_pop = 1000
recovered = 0
infected = 1
susceptible = total_pop - infected - recovered
                 # A list of days, 0-160
days = range(0, 160)
                 # Build a dataframe because why not
df = pd.DataFrame{{
    'suseptible': S,
    'infected': I,
    'recovered': R,
    'day': days
})
                 # If you get the error:

# When stacked is True, each column must be either all
# positive or negative.infected contains both...
               #
# just change stacked=True to stacked=False
               RØ is 2.0
```

date	num	NewReno	ModelingData	Cumulativ
01/03/2020	1	18	WodelingData	87
02/03/2020	2	40		127
03/03/2020	3			
		52		179
04/03/2020	4	49		228
05/03/2020	5	46		274
06/03/2020	6	74		348
07/03/2020	7	55	48	403
08/03/2020	8	50	52	453
09/03/2020	9	127	65	580
10/03/2020	10	229	90	809
11/03/2020	11	358	134	1167
12/03/2020	12	421	188	1588
13/03/2020	13	401	234	1989
14/03/2020	14	315	272	2304
15/03/2020	15	398	321	2702
16/03/2020	16	552	382	3254
17/03/2020	17	683	447	3937
18/03/2020	18	910	526	4847
19/03/2020	19	932	599	5779
20/03/2020	20	1096	698	6875
21/03/2020	21	1040	802	7915
22/03/2020	22	1212	918	9127
23/03/2020	23	2010	1126	11137
24/03/2020	24	2041	1320	13178
25/03/2020	25	2284	1516	15462
26/03/2020	26	2633	1759	18095
27/03/2020	27	2672	1985	20767
	28			23146
28/03/2020		2379	2176	
29/03/2020	29	2449	2353	25595
30/03/2020	30	3514	2567	29109
31/03/2020	31	3816	2821	32925
01/04/2020	32	4150	3088	37075
02/04/2020	33	4097	3297	41172
03/04/2020	34	4102	3501	45274
04/04/2020	35	3405	3648	48679
05/04/2020	36	3094	3740	51773
06/04/2020	37	4407	3867	56180
07/04/2020	38	4605	3980	60785
08/04/2020	39	4315	4004	65100
09/04/2020	40	4076	4001	69176
10/04/2020	41	3590	3927	72766
11/04/2020	42	3085	3882	75851
12/04/2020	43	2958	3862	78809
13/04/2020	44	3463	3727	82272
14/04/2020	45	3568	3579	85840
15/04/2020	46	4240	3569	90080
16/04/2020	47	4360	3609	94440
17/04/2020	48	4088	3680	98528
18/04/2020	49	4142	3831	102670
19/04/2020	50	3494	3908	106164
20/04/2020	51	3698	3941	109862
21/04/2020	52	3996	4003	113858
22/04/2020	53	4812	4084	118670
23/04/2020	54	4574	4115	123244
24/04/2020	55			
		4352	4153	127596
25/04/2020	56	3381	4044	130977
26/04/2020	57	3137	3993	134114
27/04/2020	58	4056	4044	138170
28/04/2020	59	4113	4061	142283
29/04/2020	60	4737	4050	147020

30/04/2020 Mar	4314	55	4013	151334
1/05/2020 Mar	4109	56	3978	155443
2/05/2020 Mar	2762	57	3890	158205
3/05/2020 Mar	2648	58	3820	160853
4/05/2020 Mar	2851	59	3648	163704
5/05/2020 Mar	3148	60	3510	166852
6/05/2020 Mar	3264	61	3299	170116
7/05/2020 Mar	3205	62	3141	173321
8/05/2020 Mar	2622	63	2929	175943
9/05/2020 Mar	1797	64	2791	177740
.0/05/2020 Mar	2013	65	2700	179753
1/05/2020 Mar	3088	66	2734	182841
2/05/2020 Mar	2940	67	2704	185781
13/05/2020 Mar	2899	68	2652	188680
4/05/2020 Mar	2222	69	2512	190902
5/05/2020 Mar	2145	70	2443	193047
.6/05/2020 Mar	1781	71	2441	194828
7/05/2020 Mar	1593	72	2381	196421
8/05/2020 Mar	2226	73	2258	198647
19/05/2020 Mar	2602	74	2210	201249
20/05/2020 Mar	2359	75	2133	203608
21/05/2020 Mar	2277	76	2140	205885
22/05/2020 Mar	1798	77	2091	207683
23/05/2020 Mar	1309	78	2023	208992
24/05/2020 Mar	1206	79	1968	210198
25/05/2020 Mar	1389	80	1849	211587
26/05/2020 Mar	1461	81	1686	213048
27/05/2020 Mar	1616	82	1579	214664
28/05/2020 Mar	1575	83	1479	216239
29/05/2020 Mar	1374	84	1419	217613
80/05/2020 Mar	1010	85	1376	218623
31/05/2020 Mar	984	86	1344	219607
01/06/2020 Mar	1319	87	1334	220926
02/06/2020 Mar	1365	88	1320	222291
03/06/2020 Mar	1251	89	1268	223542
04/06/2020 Mar	1147	90	1207	224689
05/06/2020 Mar	1020	91	1157	225709
06/06/2020 Mar	723	92	1116	226432
07/06/2020 Mar	668	93	1070	227100
08/06/2020 Mar	990	94	1023	228090
09/06/2020 Mar	1066	95	981	229156
10/06/2020 Mar	1086	96	957	230242
1/06/2020 Mar	915	97	924	231157
12/06/2020 Mar	938	98	912	232095
13/06/2020 Mar	785	99	921	232880
14/06/2020 Mar	752	100	933	233632
15/06/2020 Mar	944	101	927	234576
.6/06/2020 Mar	996	102	917	235572
7/06/2020 Mar	914	103	892	236486
8/06/2020 Mar	938	104	895	237424
19/06/2020 Mar	818	105	878	238242
20/06/2020 Mar	626	106	855	238868
1/06/2020 Mar	550	107	827	239418
2/06/2020 Mar	821	108	809	240239
3/06/2020 Mar	727	109	771	240966
4/06/2020 Mar	732	110	745	241698
5/06/2020 Mar	643	111	702	242341
26/06/2020 Mar	640	112	677	242981
27/06/2020 Mar	506	113	660	243487
28/06/2020 Mar	413	114	640	243900
29/06/2020 Mar	666	115	618	244566
30/06/2020 Mar	578	116	597	245144
01/07/2020 Mar	607	117	579	245751

02/07/2020 Mar 561 118 03/07/2020 Mar 536 119	567 24631
103/07/2020 Mar 536 110	
	552 24684
04/07/2020 Mar 385 120	535 24723
05/07/2020 Mar 544 121	554 24777 554 24844
06/07/2020 Mar 664 122 07/07/2020 Mar 565 123	554 24844 552 24900
07/07/2020 Mar 565 123 08/07/2020 Mar 682 124	562 24968
09/07/2020 Mar 688 125	581 25037
10/07/2020 Mar 524 126	579 25090
11/07/2020 Mar 433 127	586 25133
12/07/2020 Mar 351 128	558 25168
13/07/2020 Mar 694 129	562 25237
14/07/2020 Mar 661 130	576 25303
15/07/2020 Mar 726 131	582 25376
16/07/2020 Mar 644 132	576 25440
17/07/2020 Mar 548 133	580 25495
18/07/2020 Mar 473 134	585 25543
19/07/2020 Mar 419 135	595 25584
20/07/2020 Mar 769 136	606 25661
21/07/2020 Mar 697 137	611 25731
22/07/2020 Mar 764 138	616 25807
23/07/2020 Mar 741 139	630 25882
24/07/2020 Mar 720 140	655 25954
25/07/2020 Mar 499 141	658 26003
26/07/2020 Mar 518 142	673 26055
27/07/2020 Mar 824 143	680 26138
28/07/2020 Mar 796 144	695 26217
29/07/2020 Mar 994 145 30/07/2020 Mar 879 146	727 26317 747 26405
31/07/2020 Mar 644 147	736 26469
01/08/2020 Mar 508 148	738 26520
02/08/2020 Mar 518 149	738 26572
03/08/2020 Mar 963 150	757 26668
04/08/2020 Mar 965 151	782 26764
05/08/2020 Mar 974 152	779 26862
06/08/2020 Mar 1005 153	797 26962
07/08/2020 Mar 892 154	832 27051
08/08/2020 Mar 648 155	852 27116
09/08/2020 Mar 569 156	859 27173
10/08/2020 Mar 1375 157	918 27311
11/08/2020 Mar 1247 158	959 27435
12/08/2020 Mar 1126 159	980 27548
13/08/2020 Mar 1036 160	985 27652
14/08/2020 Mar 1059 161	1009 27757
15/08/2020 Mar 656 162	1010 27823
16/08/2020 Mar 534 163 17/08/2020 Mar 1159 164	1005 27876 974 27992
18/08/2020 Mar 955 165	932 28088
19/08/2020 Mar 1109 166	930 28199
20/08/2020 Mar 1254 167	961 28324
21/08/2020 Mar 1031 168	957 28427
22/08/2020 Mar 732 169	968 28500
23/08/2020 Mar 704 170	992 28571
24/08/2020 Mar 1157 171	992 28687
25/08/2020 Mar 1085 172	1010 28795
26/08/2020 Mar 1181 173	1021 28913
27/08/2020 Mar 1356 174	1035 29049
28/08/2020 Mar 1395 175	1087 29188
29/08/2020 Mar 1051 176	1133 29293
30/08/2020 Mar 987 177	1173 29392
31/08/2020 Mar 1279 178	1191 29520
01/09/2020 Mar 1962 179	1316 29716
02/09/2020 Mar 2696 180	1532 29986

03/09/2020		2716	181	1727	302578
04/09/2020		2637	182	1904	305215
05/09/2020		2200	183	2068	307415
06/09/2020		2079	184	2224	309494
07/09/2020		3530	185	2546	313024
08/09/2020		3071	186	2704	316095
09/09/2020		2893	187	2732	318988
10/09/2020		3143	188	2793	322131
11/09/2020		2893	189	2830	325024
12/09/2020		2224	190	2833	327248
13/09/2020 14/09/2020		1722 2941	191 192	2782 2698	328970 331911
15/09/2020		3057	192	2698	334968
16/09/2020		3778	193	2823	334968
17/09/2020		3979	195	2942	342725
18/09/2020		4290	196	3142	347015
19/09/2020		4215	197	3426	351230
20/09/2020		4652	198	3845	355882
21/09/2020		4727	199	4100	360609
22/09/2020		5400	200	4434	366009
23/09/2020		5933	200	4742	371942
24/09/2020		6361	201	5083	378303
25/09/2020		6105	202	5342	384408
26/09/2020		5704	203	5555	390112
27/09/2020		6084	205	5759	396196
28/09/2020		8641	206	6318	404837
29/09/2020		8832	207	6809	413669
30/09/2020		10663	208	7484	424332
01/10/2020		11444	209	8210	435776
02/10/2020		11719	210	9012	447495
03/10/2020		9820	211	9600	457315
04/10/2020		9966	212	10155	467281
05/10/2020		14218	213	10952	481499
06/10/2020		14458	214	11755	495957
07/10/2020		15418	215	12435	511375
08/10/2020		15452	216	13007	526827
09/10/2020		13159	217	13213	539986
10/10/2020		10301	218	13282	550287
11/10/2020		9781	219	13255	560068
12/10/2020		16420	220	13570	576488
13/10/2020		15660	221	13742	592148
14/10/2020		16646	222	13917	608794
15/10/2020		15429	223	13914	624223
16/10/2020		14761	224	14143	638984
17/10/2020		12487	225	14455	651471
18/10/2020		11982	226	14769	663453
19/10/2020		22369	227	15619	685822
20/10/2020		21638	228		707460
21/10/2020		21762			729222
22/10/2020		19866			
23/10/2020		18359		18352	767447
24/10/2020		13713			
25/10/2020		13354			
26/10/2020	Mar	23033			
27/10/2020		20761			
28/10/2020		20547			
29/10/2020		20257			879112
30/10/2020		19899			
31/10/2020		14565			
01/11/2020		13611			
02/11/2020		28394			
03/11/2020		22690			
	Mar	21053			

Due to Microsoft word error we couldn't upload our full appendix.