

EE2029: Introduction to Electrical Energy System What is the Reactive Power of a Generator?

Lecturer: Dr. Sangit Sasidhar

Department of Electrical and Computer Engineering

Learning Outcomes

- Reactive Power Output
- Reactive Power Exchange
- Control of Reactive Power Output

Reactive Power Output

• From

$$Q_{3\Phi} = 3\frac{|V||E|}{X}\cos(\delta) - 3\frac{|V|^2}{X} = 3\frac{|V|}{X}\{|E|\cos(\delta) - |V|\}$$

- Reactive power control is done by adjusting |E|.
- Consider three cases,

Cases	Reactive power output	Operation mode
E cos δ > V	Q > 0	Supply reactive power. This mode is called 'Overexcited'.
$ E \cos\delta = V $	Q = 0	No reactive power exchange
E cos δ < V	Q < 0	Absorb reactive power. This mode is called 'Underexcited'.

Reactive Power Exchange

 We can vary the magnitude of excitation voltage to either supply or absorb variable amount of reactive power.

Supply reactive power →
Overexcited

No reactive power exchange

Absorb reactive power →
Underexcited.

Adjusting Excitation Voltage

The magnetic field can be intensified with higher <u>field current</u> magnitude. As a result, excitation voltage of a generator will be increased when we increase the magnitude of magnetic field.

Reactive Power Output

- When we increase field current, the magnetic field is intensified. As a result, internal excitation voltage is increased. The reactive power output is increased.
- Two operating conditions of a generator: supplying reactive power is called overexcited and absorbing reactive power is called underexcited.

Control of Reactive Power Output

- |V| and power angle remain unchanged.
- The current magnitude and angle, θ (power factor) will change as a result of the change in excitation voltage magnitude.
- We can now adjust the excitation voltage to maintain the power factor of the original load.

Control of Reactive Power Output

© Copyright National University of Singapore. All Rights Reserved.

Summary

© Copyright National University of Singapore. All Rights Reserved.