MSAI Statistics Home Assignment 3

Problem 1. Let $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$. Find:

- 1. (1 point) the method of moments estimator of λ
- 2. (1 point) the maximum likelihood estimator of λ
- 3. (1 point) and the Fisher information $I(\lambda)$

Problem 2. Let $X_1, \ldots, X_n \sim \text{Uniform}(a, b)$ where a and b are unknown parameters such that a < b.

- 1. (1 point) Find the method of moments estimators for a and b
- 2. (1 point) Find the maximum likelihood estimators for a and b

Problem 3. (1 point) Prove that KL-divergence is non-negative: that for any two probability densities p(x) and q(x), $KL(p||q) \ge 0$. Hint: Jensen's inequality.

Problem 4.

- 1. (2 points) Show that Gamma distribution belongs to the exponential family. Find the sufficient statistics and natural parameter.
- 2. (2 points) Show that Laplace belongs to the exponential family. Find the sufficient statistics and natural parameter.

Problem 5. Let $X_1, \ldots, X_n \sim \mathcal{N}(\mu, 1)$. Let $\theta = e^{\mu}$ and let $\hat{\theta} = e^{\overline{X}}$ be the MLE. Create a dataset (using $\mu = 5$ and numpy.random.seed(42)) consisting of n = 100 observations. Use:

- 1. (1 bonus point) delta method
- 2. (1 bonus point) parametric bootstrap
- 3. (2 bonus point) nonparametric bootstrap

to get se and a 95-percent confidence interval for θ .