Universidade de São Paulo Instituto de Matemática e Estatística

MAC 5742 - Computação Paralela e Distribuída

Exercício Programa 1: OpenMP

Autores:

Diana Naranjo

Walter Perez

São Paulo

Abril 2015

Resumo

Nesse Exercício Programa o objetivo foi explorar a computação paralela com memoria compartilhada, para isso foi usado o padrão openMP. A primeira parte do trabalho explora o cuidado que deve-se ter no momento de realizar o desenvolvimento de programas usando as diretivas do openMP. É muito simples cometer erros quando ainda se está pensando de maneira sequencial, ao assumir algum comportamento ou quando não se conhece bem o comportamento padrão das diretivas usadas. A segunda parte do EP procura avaliar as melhoras (ou falta delas) no tempo de execução de um programa alvo, mult.c, que realiza a multiplicação de 2 matrizes. Para avaliar o desempenho da versão sequencial versus a paralela uma serie de experimentos foram realizados. Alguns deles involucraram a alterção do programa para criar distintas zonas paralelas e também a execução deles usando diferentes numeros de threads. A continuação presentamos os experimentos, resultados e conclusões.

Sumário

1	Intro	trodução				
2	Exemplos de Equações					
	2.1	Equações simples	2			
	2.2	Equações com mais de uma linha	2			
	2.3	Sistema linear	3			
3	Tabe	elas	4			
	3.1	Tabela Simples	4			
	3.2	Tabela mais elaborada	4			
4	Edição					
5	Inserir figuras					
6	Con	clusões	5			
\mathbf{A}	Anexo I					

1 Introdução

- introduzir o problema a ser estudado
- ullet apresentar trabalhos relacionados
- apresentar motivação
- apresentar objetivos
- último parágrafo deve conter a organização do documento

2 Exemplos de Equações

Nesta seção serão apresentados diferentes exemplos de equações.

2.1 Equações simples

Sem numeração

$$\sum_{i=1}^{100} \frac{2^{i-1}}{4}$$

Com numeração

$$\int_{0}^{100} \sqrt[4]{\frac{2n}{7}} \tag{1}$$

$$M^{-1}(AD^{-1}A^T)M^{-T}\bar{y} = M^{-1}(AD^{-1}(r_d - X^{-1}r_a) + r_p), \tag{2}$$

2.2 Equações com mais de uma linha

min
$$c^T x$$
 (3)
s.a. $Ax = b$
 $x \ge 0$,

onde $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$. Referenciando a equação (3)

2.3 Sistema linear

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 (4)

$$d_i = \left\{ \begin{array}{ll} 1 & \text{se } i = 0 \\ 2 & \text{caso contrário} \end{array} \right\}$$

3 Tabelas

3.1 Tabela Simples

12	13	14
15	16	17

Tabela 1: Título da tabela

3.2 Tabela mais elaborada

	CCF preconditioner		Number of nonzeros	
Problem	η	$\frac{n(AD^{-1}A^T)}{nrow}$	FCC	Cholesky
ELS-19	-11	31	87750	3763686
SCR20	-12	31	103179	2591752
NUG15	-12	32	54786	6350444
PDS-20	15	5	625519	7123636

Tabela 2: Título da Tabela.

Referenciando a tabela 2.

4 Edição

Comando para preservar a formatação do texto.

5 Inserir figuras

Para citar referências bibliográficas [1], [2].

6 Conclusões

Apresentar as conclusões finais.

Acknowledgments Agradecimentos aos colaboradores

Referências

- [1] I. Adler, N. K. Karmarkar, M. G. C. Resende, and G. Veiga. An implementation of Karmarkar's algorithms for linear programming. *Mathematical Programming*, 44:297–335, 1989.
- [2] F. C. Carmo and F. F. Campos. Algoritmos para reordenação de matrizes esparsas. Technical Report 001-02, Departamento de Ciência da Computação-UFMG, 2002.

A Anexo I

O anexo bla