Lecture 19 More Duality

Note by Samion Suwito on 1/4/25

Convexity and Duality

Base Result: If $C \subset X$ is a closed convex set,

$$x_0
otin C \implies \exists x^* \in X^* \text{ s.t.} \langle x^*, x
angle < \langle x^*, x_0
angle orall x \in C$$

Separation Theorem

A closed set means the set contains a boundary, for example [-5,0) is a convex set but not a closed for the right side is not a distinct. So it's a set + its accumulation points.

Consequence of base result: C= closed convex set $\iff C=$ intersection of (closed) half spaces.

$$C = igcap_{x^* \in X^*} \{x: \langle x^*, x
angle = h_c(x^*)\}$$

where $h_c(x^*) = \max_{x \in C} \langle x^*, x
angle$

Connections to Convex Functions

A function $f:X\to\mathbb{R}\cup\{+\infty\}$ is lower semicontinuous (lsc) if \forall convergent $(x_n)_{n\geq 1}\subset X$

$$\lim\inf_{n o\infty}\geq f(\lim_n x_n)$$

Every jump is continuous on the lower.

Claim: A function $f:X o \mathbb{R}\cup\{+\infty\}$ is lsc $\iff \operatorname{epi}(f)$ is closed

Notice if the higher point in the jump was solid then the epigraph would have a dotted line and not be closed therefore.

Theorem: If $f:X o \mathbb{R}\cup\{+\infty\}$ is convex, lsc, then

$$f(x) = \sup_{ ext{affine } a \leq f} \{a(x)\} \quad x \in X = \mathbb{R}^n$$

(a bunch of affine functions under a convex function)

Moral: "every" convex function looks max affine

Duality in Optimisation

Convex Conjugate

For
$$f:X o\mathbb{R}\cup\{+\infty\}(\mathrm{dom}\ f
eq 0),$$
 define $f^*:X^*t_9\mathbb{R}\cup\{+\infty\}$ by $f^*(x^*):=\sup_{x\in X}\{\langle x^*,x\rangle-f(x)\}$

We consider this to be the "convex conjugate of f" or the "Legandre-Fenchel Transform" $\sup_{x\in X}\{\langle x^*,x\rangle-f(x)\}$ is always convex and Isc

Economic Interpretation

 $x=(x_1,\ldots,x_n)$, $x_i=$ quantity of good i produced.

f(x) is cost to produce items $x_1, \ldots x_n$

 $x_i^st=$ price of item i

Then $\langle x^*, x \rangle - f(x)$ is revenue - cost

So then by taking the sup as in $\sup_{x\in X}\{\langle x^*,x\rangle-f(x)\}$ we get the maximum revenue

Examples

Example: For set $K \subset X$, define indicator

$$I_K(x) = egin{cases} 0 ext{ if } x \in K \ +\infty ext{ if } x
otin K \end{cases}$$

The complex conjugate

$$egin{aligned} I_K^*(x^*) &= \sup_{x \in X} \{\langle x^*, x
angle - I_K(x) \} \ &= \sup_{x \in K} \langle x^*, x
angle = h_K(x^*) \end{aligned}$$

Where h is the support function

Example: If $a:X o \mathbb{R}$ is affine. $a(x)=\langle x_a^*,x
angle+b$ for some $x_a^*\in X^*$, $b\in \mathbb{R}$

$$egin{aligned} a^*(x^*) &= \sup_{x \in X} \{\langle x^*, x
angle - \langle x_a^*, x
angle - b \} \ &= \sup_{x \in X} \{\langle x^* - x_a^*, x
angle - b \} \ &= egin{aligned} +\infty & ext{ if } x^*
eq x_a^* \ -b & ext{ if } x^* = x_a^* \end{aligned}$$

Properties

 f, f^* are defined on different spaces, so it doesn't make sense to compare them directly in general. Nevertheless f, f^* satisfy following **Fenchel's Inequality**:

$$\langle x^*, x
angle \leq f(x) + f^*(x^*) \quad orall x \in X, x^* \in X^*$$

This comes from the definition as

$$f^*(x^*) = \sup_{x \in X} \{\langle x^*, x
angle - f(x)\} \geq \langle x^*, x
angle - f(x)$$

Property 2:

Conjugation is order-reversing:

$$\underbrace{f \leq g}_{f(x) \leq g(x) \; orall x \in X} \implies g^* \leq f^*$$

$$f^*(x^*)=\sup_{x\in X}\{\langle x^*,x
angle-f(x)\}\geq \sup_{x\in X}\{\langle x^*,x
angle-g(x)\}=g^*(x)$$
 Property 3

To get back to something comparable to f, take conjugate of f^* :

$$f^{**}(x)=\sup_{x^*\in X^*}\{\langle x^*,x
angle-f^*(x^*)\}$$

This is called the "biconjugate" order preservation as you order reverse twice:

$$f \leq g \Longrightarrow f^{**} \leq g^{**}$$

Example: $a(x) = \langle x_a^*, x \rangle + b$

$$a^*(x^*) = egin{cases} +\infty ext{ if } x^*
eq x_a^* \ -b ext{ if } x^* = x_a^* \end{cases}$$

$$a^{**}(x)=\sup_{x^*\in X^*}\{\langle x^*,x
angle-a^*(x^*)\}=\langle x_a^*,x
angle+b=a(x)$$

Weak Duality

$$f^{**} \leq f$$
Proof

$$f^{**}(x) = \sup_{x^* \in X^*} \{ \underbrace{\langle x^*, x
angle - f^*(x^*)}_{\leq f(x) ext{ Fenchel's inequality}} \} \leq f(x)$$

Strong Duality

Theorem (Fenchel-Moreau) Let $f:X\to\mathbb{R}\cup(+\infty)$ (no convexity assumption) $f=f^{**}\iff f$ is convex, lsc Proof: Already know $f^{**}\le f$ by weak duality

If
$$a \le f,a$$
 affine $\implies a=a^{**} \le f^{**}$ (order preservation)
$$f(x)=\sup_{\text{affine }a \le f}\{\underbrace{a(x)}_{=a^{**} \le f^{**}}\} \le f^{**}(x)$$

Only have to prove this direction since f^{stst} is convex and lsc

Consequence: f^{**} is the pointwise-greatest convex lsc, function that lies below f

While f is not convex we f^{**} shares the global minima making it sound like all not convex functions are easy but f^{**} may be hard to compute or not share the same feasible set

If
$$g$$
 is convex, lsc, $g \leq f \implies g = g^{**} \leq f^{**}$

Take the epigraph of f and then the closure of its convex hull

Primal and Dual optimisation Problems

Consider objective $f:X\to\mathbb{R}\cup\{+\infty\}$ and the optimisation problem $\inf_{x\in X}f(x)$ this looks unconstrained but we could take $f(x)=f_0(x)+I_K(x)$ where K= feasible set. This is the primal problem and the dual will be covered next time.

Good practice: write p^* not p^* for optimal value