Introduction to spatial point process and its Fourier analysis

Qi-Wen Ding

Fundamentals

Point pattern data

Spatial **locations** of things or events

For a study area, all locations are observable!

Locations without a point = observed but no event happened!

Point pattern data

Spatial **locations** of things or events

Japanese black pine seedlings

Sky positions of 4215 galaxies in the Shapley Supercluster

Red blood particles

For a study area, all locations are observable!

Locations without a point = observed but no event happened!

Characteristics of point process

From univariate to multivariate

Example 1: Type interaction

Example 2: Source detection of infectious disease

Martínez-Beneito et al. (2006)

Fourier analysis of point processes

Time series vs. spatial point processes

Time series model

- White noise : $e_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$
- MA(1) : $X_t = e_t + \theta e_{t-1}$
- $\cdot \mathsf{AR}(1): X_t = \alpha X_{t-1} + e_t$

ACF

- $\cdot \ \gamma(k) = \sigma^2 \mathbb{1}\{k = 0\}$
- $\cdot \gamma(k) = \theta \sigma^2, k = \pm 1$
- $\cdot \gamma(k) = \alpha^{|k|} \sigma_X^2$

Spectral density

- $f(\omega) = \sigma^2/(2\pi)$
- $f(\omega) = \sigma^2 (1 + \theta^2 + 2\theta \cos \omega)/(2\pi)$
- $\cdot f(\omega) = \frac{\sigma^2}{2\pi (1 2\alpha \cos \omega + \alpha^2)}$

Point process model

- · Homogeneous Poisson process
- · Thomas cluster process
- · Determinantal point process

PCF

- g(r) = 1
- $\cdot g(r) = 1 + \frac{e^{-r^2/4\sigma^2}}{4\pi\kappa\sigma^2}$
- $\cdot g(r) = 1 \left(e^{-r^2/\sigma^2}\right)^2$

Spectral density

- $\cdot f(\boldsymbol{\omega}) = (2\pi)^{-d} \lambda$
- $f(\boldsymbol{\omega}) = (2\pi)^{-d} \kappa \mu \left[1 + \mu e^{-\sigma^2 ||\boldsymbol{\omega}||^2} \right]$
- $\cdot f(\boldsymbol{\omega}) = (2\pi)^{-d} \left[\lambda \lambda^2 \left(\frac{\pi \sigma^2}{2} \right)^{\frac{d}{2}} e^{\frac{-\sigma^2 ||\boldsymbol{\omega}||^2}{8}} \right]$

For stationary and isotropic case, $g(\mathbf{x}_i, \mathbf{x}_j) = g(||\mathbf{x}_i - \mathbf{x}_j||) = g(r)$. Parameter: $\mathbf{\theta}_{Thomas} = (\kappa, \mu, \sigma^2)^T$, $\mathbf{\theta}_{Determinantal} = (\lambda, \sigma^2)^T$.

PCF and spectral density

Frequency domain parameter estimation

Whittle-type likelihood

Let $\{X_{\theta}\}$ be a family of 2^{nd} -order stationary point processes with parameter $\theta \in \Theta$. The associated spectral density is denoted as f_{θ} . Then, we fit the model using the pseudo-likelihood

$$L(\boldsymbol{\theta}) = \sum_{\boldsymbol{\omega_k} \in D} \left\{ \frac{\hat{I}(\boldsymbol{\omega_k})}{f_{\boldsymbol{\theta}}(\boldsymbol{\omega_k})} + \log f_{\boldsymbol{\theta}}(\boldsymbol{\omega_k}) \right\}.$$

Intuition

- $\hat{I}(\omega)$ can be regarded as the "truth" since $\mathbb{E}[\hat{I}_n(\omega)] o f(\omega)$.
- $f_{\theta}(\omega)$ are the parameter family of spectral densities.
- $L(\theta)$ is the spectral divergence between the truth and our guess. The smaller the better!

Proposed model parameter estimator

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta})$$

Frequency domain parameter estimation

Model	Window	Parameter	Method		
			Ours	ML	
TCP	[-5, 5] ²	K	-0.04 (0.11)	-0.02 (0.11)	
		μ	0.72 (3.52)	-0.24 (5.93)	
		σ^2	0.02 (0.07)	-0.04 (0.22)	
		Time (sec)	0.74	0.38	
	[– 10, 10] ²	K	-0.02 (0.05)	-0.02 (0.05)	
		μ	0.60 (1.77)	0.33 (2.79)	
		σ^2	0.01 (0.02)	-0.01 (0.11)	
		Time (sec)	2.38	5.67	
	[-20, 20] ²	K	-0.01 (0.04)	0.00 (0.03)	
		μ	0.25 (1.03)	0.15 (1.23)	
		σ^2	0.01 (0.02)	0.00 (0.03)	
		Time (sec)	9.15	173.66	

The bias and the standard errors (in parentheses) of the estimated parameters based on two different approaches for the Thomas clustered process (TCP)

Spectral analysis

Time series model

- White noise : $e_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$
- $MA(1): X_t = e_t + \theta e_{t-1}$
- $\cdot \mathsf{AR}(1): X_t = \alpha X_{t-1} + e_t$

ACF

- $\cdot \ \gamma(k) = \sigma^2 \mathbb{1}\{k = 0\}$
- $\cdot \gamma(k) = \theta \sigma^2, k = \pm 1$
- $\gamma(k) = \alpha^{|k|} \sigma_X^2$

Spectrum

- $\cdot f(\omega) = \sigma^2/(2\pi)$
- $f(\omega) = \sigma^2 (1 + \theta^2 + 2\theta \cos \omega)/(2\pi)$
- $f(\omega) = \frac{\sigma^2}{2\pi(1 2\alpha\cos\omega + \alpha^2)}$

Spectral analysis

Time series model

- White noise : $e_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$
- $MA(1): X_t = e_t + \theta e_{t-1}$
- $\cdot \mathsf{AR}(1): X_t = \alpha X_{t-1} + e_t$

ACF

- $\cdot \ \gamma(k) = \sigma^2 \mathbb{1}\{k = 0\}$
- $\gamma(k) = \theta \sigma^2, k = \pm 1$
- $\cdot \ \gamma(k) = \alpha^{|k|} \sigma_X^2$

Spectrum

- $\cdot f(\omega) = \sigma^2/(2\pi)$
- $f(\omega) = \sigma^2 (1 + \theta^2 + 2\theta \cos \omega)/(2\pi)$
- $f(\omega) = \frac{\sigma^2}{2\pi(1 2\alpha\cos\omega + \alpha^2)}$

Does NOT work for inhomogeneous point processes!

Spectral analysis under inhomogeneity

Spectral analysis under inhomogeneity

$$f_P(oldsymbol{\omega}) := \lim_{n o \infty} \mathbb{E}[\hat{I}_n(oldsymbol{\omega})], \quad orall oldsymbol{\omega} \in \mathbb{R}^d.$$

Estimating the pseudo-spectrum

Estimating the pseudo-spectrum

Simulation: Data generating process

Bivariate point process with marginal and joint clustering interactions

Simulation: Result

Decude chectrum	Window -	$\hat{I}(\mathbf{\omega})$		$\hat{f}_P(oldsymbol{\omega})$	
Pseudo-spectrum		Bias	MSE	Bias	MSE
	$[-5, 5]^2$	0.03	1.49	0.02	0.49
Marginal	$[-10, 10]^2$	0.01	1.09	0.00	0.17
	$[-20, 20]^2$	0.00	1.02	0.00	0.13
	$[-5, 5]^2$	0.06	28.14	0.01	3.76
Cross	$[-10, 10]^2$	0.05	22.61	0.01	2.45
	$[-20, 20]^2$	0.05	20.18	0.01	2.11

Barro Colorado Island (BCI) data

207,718 alive trees310 species7 censuses

Figure 1 in Fricker et al. (2012)

Barro Colorado Island (BCI) data

Point patterns of five species in the BCI dataset and image of elevation in the study region.

Multivariate point pattern

Consider a p-variate process: $i, j \in \mathcal{V} = \{1, 2, ..., p\}$

Spectral coherence:

$$R_{ij}(\boldsymbol{\omega}) = rac{f_{ij}(\boldsymbol{\omega})}{[f_{ii}(\boldsymbol{\omega})f_{jj}(\boldsymbol{\omega})]^{rac{1}{2}}}$$

Cross-spectrum:

$$f_{ij}(\boldsymbol{\omega}) = (2\pi)^{-d} \int_{\mathbb{R}^d} C_{ij}(\boldsymbol{x}_1 - \boldsymbol{x}_2) e^{-i\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\omega}} \, \mathrm{d}\boldsymbol{x}$$

Marginal spectrum:

$$f_{ij}(\boldsymbol{\omega}) = (2\pi)^{-d} \int_{\mathbb{R}^d} C_{ij}(\boldsymbol{x}_1 - \boldsymbol{x}_2) e^{-i\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\omega}} \, \mathrm{d}\boldsymbol{x} \qquad f_{ii}(\boldsymbol{\omega}) = (2\pi)^{-d} \int_{\mathbb{R}^d} C_{ii}(\boldsymbol{x}_1 - \boldsymbol{x}_2) e^{-i\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\omega}} \, \mathrm{d}\boldsymbol{x}$$

Pseudo-spectra

Coherence analysis

