Reporting Measurements

A measurement of any quantity f is typically reported like

$$f = (3.14 \pm 0.15) \cdot 10^9 \,\mathrm{m},$$

a value $(3.14 \cdot 10^9 \text{ m})$ and a non-zero positive uncertainty $(0.15 \cdot 10^9 \text{ m})$. These have the same unit (m) and are rounded to the same place (0.01), typically such that the uncertainty has 1 or 2 significant digits.

• If f is directly measured once, then this value is reported and the uncertainty is an estimate: If the instrument does not list one, then you may use its resolution, or, for a ruler, half of its resolution.

- If f is directly measured $M \gg 1$ times (significantly more than once), then the value is the **estimated mean** and the uncertainty is $1/\sqrt{M}$ times the **estimated standard deviation**.
- If f is calculated from 1 or more independent quantities with values x_i and uncertainties Δx_i , then the value is a function $f(x_i)$ and the uncertainty Δf is calculated by **uncertainty propagation**.

Function	Gaussian uncertainty propagation
$f(x_i)$ differentiable	$\Delta f = \sqrt{\sum_{j} \left(\frac{\partial f(x_{i})}{\partial x_{j}} \Delta x_{j}\right)^{2}}$
	All cases below follow from this one.
$f = x_1 + x_2 \text{ or } x_1 - x_2$	$\Delta f = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2}$
$f = x_1 x_2 \text{ or } x_1 / x_2$	$\Delta f = f \sqrt{(\Delta x_1/x_1)^2 + (\Delta x_2/x_2)^2}$
f = cx	$\Delta f = c \Delta x$
$f = x^c$	$\Delta f = f \ c \ \Delta x/x $
$f = \overline{x} = (\sum_{i=1}^{M} x_i)/M$	$\Delta f = \sqrt{\sum_{i=1}^{M} (\Delta x_i)^2} / M \approx \sigma_x / \sqrt{M}$

For deeper insight, you may look into random variables, the Gaussian distribution, the central limit theorem and confidence intervalls.

Uncertainty	Error	
Statistical deviation from true	Systematic deviation from true	
value. Gets smaller with $1/\sqrt{M}$.	value. Independent of M .	
precise = smaller uncertainty accurate = smaller error		
imprecise = larger uncertainty inaccurate = larger error		
imprecise imprecise inaccurate accurate	precise precise inaccurate accurate	

Beware: Many people use *uncertainty* and *error* interchangeably, or *statistical error* for uncertainty, or *systematic uncertainty* for error.

Mean	Standard deviation	
Let there be a sample , any set of $M \geq 2$ values f_i randomly drawn from a population , any set of $N > M$ values g_i .		
Mean of population $\overline{g} = (\sum_{i=1}^{N} g_i)/N$	Standard deviation of population $\sigma_g = \sqrt{\sum_{i=1}^{N} (g_i - \overline{g})^2} / \sqrt{N}$	
Estimated mean $\overline{g} \approx (\sum_{i=1}^{M} f_i)/M = \overline{f}$	Estimated standard deviation $\sigma_g \approx \sqrt{\sum_{i=1}^{M} (f_i - \overline{f})^2} / \sqrt{M - 1}$ This underestimates σ_g . Would be	
	unbiased with both sides squared.	

Rounding half up	Gaussian rounding
For equally near options, choose	For equally near options, choose
the larger one.	the one whose last digit is even.
$1.4999 \approx 1$ $2.4999 \approx 2$	$1.4999 \approx 1$ $2.4999 \approx 2$
$1.5 \approx 2$ $2.5 \approx 3$	$1.5 \approx 2$ $2.5 \approx 2$
$1.5001 \approx 2$ $2.5001 \approx 3$	$1.5001 \approx 2$ $2.5001 \approx 3$
Biases towards larger numbers. The mean of rounded uniformly drawn numbers is biased. Often taught in school.	Biases towards even last digits. The mean of rounded uniformly drawn numbers is unbiased. Often preferred by scientists.