

Inference

Sampling Methods

Using a Markov Chain

Using a Markov Chain

- Goal: compute $P(x \in S)$
 - but P is too hard to sample from directly
- Construct a Markov chain T whose unique stationary distribution is P
- Sample $x^{(0)}$ from some $P^{(0)}$
- For t = 0, 1, 2, ...
 - Generate $x^{(t+1)}$ from $T(x^{(t)} \rightarrow x')$

Using a Markov Chain

- We only want to use samples that are sampled from a distribution close to P
- At early iterations, $P^{(t)}$ is usually far from P
- Start collecting samples only after the chain has run long enough to "mix" P" clase everyt to Tr

Mixing

- How do you know if a chain has mixed or not?
 - In general, you can never "prove" a chain has mixed
 - But in many cases you can show that it has NOT

- How do you know a chain has not mixed?
 - Compare chain statistics in different windows within a single run of the chain
 - and across different runs initialized differently

- Each dot is a statistic (e.g., $P(x \in S)$)
- x-position is its estimated value from chain 1

y-position is its estimated value from chain 2

Daphne Koller

Using the Samples

- Once the chain mixes, all samples $x^{(t)}$ are from the stationary distribution π
 - So we can (and should) use all $x^{(\dagger)}$ for $t > T_{mix}$
- · However, nearby samples are correlated!
 - So we shouldn't overestimate the quality of our estimate by simply counting samples
- The faster a chain mixes, the less correlated (more useful) the samples

MCMC Algorithm Summary I

- For c=1,...,C
 - Sample $x^{(c,0)}$ from $P^{(0)}$
- Repeat until mixing
 - For c=1,...,C
 - Generate $x^{(c, t+1)}$ from $T(x^{(c,t)} \rightarrow x')$
 - Compare window statistics in different chains to determine mixing
 - † := †+1

MCMC Algorithm Summary II

- Repeat until sufficient samples
 - $-D := \emptyset$
 - For c=1,...,C
 - Generate $x^{(c, t+1)}$ from $T(x^{(c,t)} \rightarrow x')$
 - D := D $\cup \{x^{(c, +1)}\}$
 - † := †+1
- Let D = $\{x[1],...,x[M]\}$ Estimate $E_P[f] \approx \frac{1}{M} \sum_{m=1}^{M} f(x[m])$

Daphne Koller

Summary

• Pros:

- Very general purpose
- Often easy to implement
- Good theoretical guarantees as $t \rightarrow \infty$

· Cons:

- Lots of tunable parameters / design choices
- Can be quite slow to converge
- Difficult to tell whether it's working