STA286 Lecture 23

Neil Montgomery

Last edited: 2017-03-17 12:49

probability/statistics

I said probability was "done", but it really wasn't.

In statistics we use a sample to make statements about what is unknown about an underlying distribution.

Then we did more probability - but not for the purpose of modeling actual random processes in the wild.

The purpose of the additional probability was to determine some properties of functions of samples—with a focus on the properties of \overline{X}

Now we are actually going to do statistics.

We will treat population parameters as constants (as opposed to Bayesian statistics).

The goal is to use a statistic $\hat{\theta}$, i.e. a function of a sample, to estimate the value of a parameter θ , which could be a vector. This statistic is called a "point estimator".

We will treat population parameters as constants (as opposed to Bayesian statistics).

The goal is to use a statistic $\hat{\theta}$, i.e. a function of a sample, to estimate the value of a parameter θ , which could be a vector. This statistic is called a "point estimator".

e.g. Sample is from $N(\mu, 3)$. We want to estimate μ .

We will treat population parameters as constants (as opposed to Bayesian statistics).

The goal is to use a statistic $\hat{\theta}$, i.e. a function of a sample, to estimate the value of a parameter θ , which could be a vector. This statistic is called a "point estimator".

- e.g. Sample is from $N(\mu,3)$. We want to estimate μ .
- e.g. Sample is from Bernoulli(p). We want to estimate p.

We will treat population parameters as constants (as opposed to Bayesian statistics).

The goal is to use a statistic $\hat{\theta}$, i.e. a function of a sample, to estimate the value of a parameter θ , which could be a vector. This statistic is called a "point estimator".

- e.g. Sample is from $N(\mu, 3)$. We want to estimate μ .
- e.g. Sample is from Bernoulli(p). We want to estimate p.
- e.g. Sample is from $N(\mu, \sigma)$. We want to estimate (μ, σ) .

We will treat population parameters as constants (as opposed to Bayesian statistics).

The goal is to use a statistic $\hat{\theta}$, i.e. a function of a sample, to estimate the value of a parameter θ , which could be a vector. This statistic is called a "point estimator".

- e.g. Sample is from $N(\mu, 3)$. We want to estimate μ .
- e.g. Sample is from Bernoulli(p). We want to estimate p.
- e.g. Sample is from $N(\mu, \sigma)$. We want to estimate (μ, σ) .

Open questions about point estimators:

what desirable properties should they have?

We will treat population parameters as constants (as opposed to Bayesian statistics).

The goal is to use a statistic $\hat{\theta}$, i.e. a function of a sample, to estimate the value of a parameter θ , which could be a vector. This statistic is called a "point estimator".

- e.g. Sample is from $N(\mu,3)$. We want to estimate μ .
- e.g. Sample is from Bernoulli(p). We want to estimate p.
- e.g. Sample is from $N(\mu, \sigma)$. We want to estimate (μ, σ) .

Open questions about point estimators:

- what desirable properties should they have?
- how do I know which one to use? (To be addressed later.)

We would like $\hat{\theta}$ to be *unbiased* ("for θ "):

$$E(\hat{\theta}) = \theta$$

We would like $\hat{\theta}$ to be *unbiased* ("for θ "):

$$E(\hat{\theta}) = \theta$$

For example, \overline{X} is always unbiased for the mean μ of any population, because we showed earlier that:

$$E(\overline{X}) = \mu$$

We would like $\hat{\theta}$ to be *unbiased* ("for θ "):

$$E(\hat{\theta}) = \theta$$

For example, \overline{X} is always unbiased for the mean μ of any population, because we showed earlier that:

$$E(\overline{X}) = \mu$$

There can be lots of unbiased estimators. How to choose the best one? Take the one with the smallest variance.

We would like $\hat{\theta}$ to be *unbiased* ("for θ "):

$$E(\hat{\theta}) = \theta$$

For example, \overline{X} is always unbiased for the mean μ of any population, because we showed earlier that:

$$E(\overline{X}) = \mu$$

There can be lots of unbiased estimators. How to choose the best one? Take the one with the smallest variance.

For example, if you have a sample X_1, \ldots, X_n from a $N(\mu, \sigma)$ distribution, then \overline{X} is unbiased. But so is just taking X_1 , say, because:

$$E(X_1) = \mu$$

We would like $\hat{\theta}$ to be *unbiased* ("for θ "):

$$E(\hat{\theta}) = \theta$$

For example, \overline{X} is always unbiased for the mean μ of any population, because we showed earlier that:

$$E(\overline{X}) = \mu$$

There can be lots of unbiased estimators. How to choose the best one? Take the one with the smallest variance.

For example, if you have a sample X_1, \ldots, X_n from a $N(\mu, \sigma)$ distribution, then \overline{X} is unbiased. But so is just taking X_1 , say, because:

$$E(X_1) = \mu$$

But $Var(\overline{X}) = \sigma^2/n$ which is smaller than $Var(X_1) = \sigma^2$.

That was a silly example.

A less silly example is that is possible to show that the sample median \tilde{X} is also unbiased for μ when the sample is from a normal population.

That was a silly example.

A less silly example is that is possible to show that the sample median \tilde{X} is also unbiased for μ when the sample is from a normal population.

It turns out (FIXED - the problem was the 4 should have been 2) $\mathrm{Var} \big(\widetilde{X} \big) \approx \frac{\pi \sigma^2}{2n} \approx 1.57 \mathrm{Var} \big(\overline{X} \big)$, in the $N(\mu,\sigma)$ case.

That was a silly example.

A less silly example is that is possible to show that the sample median \tilde{X} is also unbiased for μ when the sample is from a normal population.

It turns out (FIXED - the problem was the 4 should have been 2) $\mathrm{Var} \big(\widetilde{X} \big) \approx \frac{\pi \sigma^2}{2n} \approx 1.57 \mathrm{Var} \big(\overline{X} \big)$, in the $N(\mu,\sigma)$ case.

So \overline{X} is preferred.

That was a silly example.

A less silly example is that is possible to show that the sample median \tilde{X} is also unbiased for μ when the sample is from a normal population.

It turns out (FIXED - the problem was the 4 should have been 2) $\operatorname{Var}(\tilde{X}) \approx \frac{\pi \sigma^2}{2n} \approx 1.57 \operatorname{Var}(\overline{X})$, in the $N(\mu, \sigma)$ case.

So \overline{X} is preferred.

Fact: when the population is normal, \overline{X} is the unbiased estimator with the smallest variance.

That was a silly example.

A less silly example is that is possible to show that the sample median \tilde{X} is also unbiased for μ when the sample is from a normal population.

It turns out (FIXED - the problem was the 4 should have been 2)

$$\mathsf{Var}ig(ilde{X}ig) pprox rac{\pi\sigma^2}{2n} pprox 1.57 \mathsf{Var}ig(\overline{X}ig)$$
, in the $\mathit{N}(\mu,\sigma)$ case.

So \overline{X} is preferred.

Fact: when the population is normal, \overline{X} is the unbiased estimator with the smallest variance.

Another desirable property (that \overline{X} has, for example) is *consistency*, which means the variance tends to 0 as $n \to \infty$.

Population: $N(\mu, \sigma)$. Sample: X_1, \dots, X_n .

Paramater to estimate: σ^2 .

Population: $N(\mu, \sigma)$. Sample: X_1, \ldots, X_n .

Paramater to estimate: σ^2 .

Since:

$$\frac{n-1}{\sigma^2}S^2 \sim \chi_{n-1}^2$$

and the expected value of a $\mathsf{Gamma}(\alpha,\lambda)$ is $\frac{\alpha}{\lambda},$ we get:

Population: $N(\mu, \sigma)$. Sample: X_1, \ldots, X_n .

Paramater to estimate: σ^2 .

Since:

$$\frac{n-1}{\sigma^2}S^2 \sim \chi_{n-1}^2$$

and the expected value of a Gamma(α, λ) is $\frac{\alpha}{\lambda}$, we get:

$$E\left(\frac{n-1}{\sigma^2}S^2\right) = n-1$$

Population: $N(\mu, \sigma)$. Sample: X_1, \ldots, X_n .

Paramater to estimate: σ^2 .

Since:

$$\frac{n-1}{\sigma^2}S^2 \sim \chi_{n-1}^2$$

and the expected value of a Gamma (α, λ) is $\frac{\alpha}{\lambda}$, we get:

$$E\left(\frac{n-1}{\sigma^2}S^2\right) = n-1$$

and therefore $E(S^2) = \sigma^2$.

Population: $N(\mu, \sigma)$. Sample: X_1, \ldots, X_n .

Paramater to estimate: σ^2 .

Since:

$$\frac{n-1}{\sigma^2}S^2 \sim \chi_{n-1}^2$$

and the expected value of a Gamma (α, λ) is $\frac{\alpha}{\lambda}$, we get:

$$E\left(\frac{n-1}{\sigma^2}S^2\right) = n-1$$

and therefore $E(S^2) = \sigma^2$.

This explains the embarassing n-1 in the denominator of S^2 .

 $Exp(\lambda)$

How to estimate the rate parameter λ ?