Problem Set 4: Nondeterministic Finite Automaton

Noah Buchanan CS 4043: Formal Languages University of Arkansas - Fort Smith Fall 2021

October 6, 2021

1. Conversion Process Detailed

(a) Q', the new set of states, will be the powerset of our original set of states Q.

$$Q' = P(Q) = \{\emptyset, \{q_1\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}, \{q_2, q_3\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}\}\}$$

(b) Σ' , our new alphabet, will be the same as the prior alphabet with ϵ removed.

$$\Sigma' = \{a, b\}$$

(c) Now we first specify δ' without epsilon transfers in mind.

$\delta' =$		a	b
	$\{q_1\}$	$\{q_3\}$	Ø
	$\{q_2\}$	$\{q_1\}$	$\{q_3\}$
	$\{q_3\}$	$\{q_2,q_3\}$	$\{q_2\}$
	$\{q_1,q_2\}$	$\{q_1,q_3\}$	$\{q_3\}$
	$\{q_2,q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_2,q_3\}$
	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_2\}$
	$\{q_1,q_2,q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_2,q_3\}$

(d) F', our new set of accept states, is the set of states of R that contain an element of F, the original set of accept states.

$$F' = \{\{q_3\}, \{q_2, q_3\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}\}\$$

(e) Now we must account for epsilon transfers. We will denote the possible epsilon transfers as $E(\delta(q, a))$ for each element in R.

$$E(R) =$$

 $\{q|q \text{ can be reached from R by traveling along 0 or more } \epsilon \text{ values}\}$

- (f) Our new start state will be the result of $E(\delta(q_1, a))$, $\{q_1, q_2\}$.
- (g) Finally we adjust the transition function using E(R) for epsilon transfers and we are ready to build the DFA conversion.

$\delta' =$		a	b
	$\{q_1\}$	$\{q_3\}$	Ø
	$\{q_2\}$	$\{q_1,q_2\}$	$\{q_3\}$
	$\{q_3\}$	$\{q_2,q_3\}$	$\{q_2\}$
	$\{q_1,q_2\}$	$\{q_1,q_2,q_3\}$	$\{q_3\}$
	$\{q_2,q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_2,q_3\}$
	$\{q_1,q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_2\}$
	$\{q_1, q_2, q_3\}$	$\{q_1, q_2, q_3\}$	$\{q_2, q_3\}$

Original DFA conversion

Unreachable states removed

2. proof for closure under concatenation

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ to recognize A, and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize B.

Construct $N = (Q', \Sigma, \delta', q_1, F_2)$ to recognize $A \circ B$.

- (a) $Q' = Q_1 \cup Q_2$. The states of N are the states of N_1 and N_2 .
- (b) The start state for N will be the start state of N_1 .
- (c) The accept states for N will be the accept states of N_2 .
- (d) We will define δ' so that for any $q \in Q'$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \epsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

Therefore we have constructed N that recognizes $A \circ B$ proving that regular languages are closed under concatenation.

Resulting NFA

3. proof for closure under union

Let
$$N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 to recognize $D,$ and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize $E.$

Construct $N = (Q', \Sigma, \delta', q'_0, F')$ to recognize $D \cup E$.

- (a) $Q' = q'_0 \cup Q_1 \cup Q_2$. The states of N are the states of N_1 and N_2 , and additionally some new start state q'_0 .
- (b) q'_0 will be the start state for N.
- (c) $F' = F_1 \cup F_2$. The accept states of N are the accept states of N_1 and N_2 .
- (d) We will define δ' so that for any $q \in Q'$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ q_1, q_2 & q = q'_0 \text{ and } a = \epsilon \\ \emptyset & q = q'_0 \text{ and } a \neq \epsilon \end{cases}$$

Therefore we have constructed N that recognizes $D \cup E$ proving that regular languages are closed under union.

Resulting NFA

4. proof for closure under concatenation, union, and star operations

concatenation

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ to recognize M, and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize N.

Construct $N = (Q', \Sigma, \delta', q_1, F_2)$ to recognize $M \circ N$.

- (a) $Q' = Q_1 \cup Q_2$. The states of N are the states of N_1 and N_2 .
- (b) The start state for N will be the start state of N_1 .

- (c) The accept states for N will be the accept states of N_2 .
- (d) We will define δ' so that for any $q \in Q'$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \epsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

Now that we have constructed N to recognize $M \circ N$ and proved closure for concatenation let us rename $M \circ N$ to MN to signify it is the machine that is the result of $M \circ N$ while maintaining that it is one machine.

union

Now let $N_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ to recognize O. Let us recall at this point that $MN = M \circ N$ and $MN = (Q, \Sigma, \delta, q_0, F)$.

Construct a new $N = (Q', \Sigma, \delta', q'_0, F')$ to recognize $MN \cup O$.

- (a) $Q' = \{q'_0\} \cup Q \cup Q_3$. The states of N are the states of MN and N_3 , and additionally some new start state q'_0 .
- (b) q'_0 will be the start state for N.
- (c) $F' = F \cup F_3$. The accept states of N are the accept states of MN and N_3 .
- (d) We will define δ' so that for any $q \in Q'$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q, a) = \begin{cases} \delta(q, a) & q \in Q \\ \delta_3(q, a) & q \in Q_3 \\ \{q, q_3\} & q = q'_0 \text{ and } a = \epsilon \\ \emptyset & q = q'_0 \text{ and } a \neq \epsilon \end{cases}$$

Now that we have constructed N to recognize $MN \cup O$ and proved closure for union let us rename $MN \cup O$ to MNO to signify it is the machine that is the result of $MN \cup O$ while maintaining once again that it is now one machine.

star

Let us recall at this point that $MNO=(M\circ N)\cup O$ and $MNO=(Q,\Sigma,\delta,q_0,F).$

Construct a new $N = (Q', \Sigma, \delta', q'_0, F')$ to recognize $[(M \circ N) \cup O]*$.

- (a) $Q' = \{q'_0\} \cup Q$. The states of N are the states of MNO and the addition of some new start state q'_0 .
- (b) The state q'_0 is the start state.
- (c) $F = \{q'_0\} \cup F$. The accept states for N will be the accept states of MNO with the addition of q'_0 also being an accept state as well as a start state.
- (d) We will define δ' so that for any $q \in Q'$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q, a) = \begin{cases} \delta(q, a) & q \in Q \text{ and } q \notin F \\ \delta(q, a) & q \in F \text{ and } q \neq \epsilon \\ \delta(q, a) \cup \{q_0\} & q \in F \text{ and } q = \epsilon \\ \{q_0\} & q = q'_0 \text{ and } q = \epsilon \\ \emptyset & q = q'_0 \text{ and } q \neq \epsilon \end{cases}$$

Let us now call this final machine we have constructed [(MN)O*. We have now constructed MNO* that recognizes the language $[(M\circ N)\cup O]*$, thereby proving the language is closed under all 3 of these operations.

Resulting NFA

