Reconstruction and Repair Degree of Fractional Repetition Codes

Krishna Gopal Benerjee DA-IICT Gandhinagar Email: krishna_gopal@daiict.ac.in

Manish K. Gupta DA-IICT Gandhinagar Email: mankg@computer.org

Nikhil Agrawal DA-IICT Gandhinagar Email: nikhil_agrawal@daiict.ac.in

Abstract-Given a Fractional Repetition (FR) code, finding the reconstruction and repair degree in a Distributed Storage Systems (DSS) is an important problem. In this work, we present algorithms for computing the reconstruction and repair degree of FR Codes.

I. Introduction

We consider Distributed Storage Systems (DSSs) that use Distributed Replication-based Simple Storage (DRESS) codes consisting of an inner Fractional Repetition (FR) code and an outer Maximum Distance Separable (MDS) code to optimize various parameters of DSS [1], [2]. Constructing a FR code $\mathscr{C}(n,\theta,\alpha,\rho)$ for a given (n,k,d) DSS is an important problem addressed in [1]. On the other hand, given a FR code finding the reconstruction degree k (minimum number of nodes that needs to be contacted to reconstruct the entire data) and the repair degree d (number of nodes needs to be contacted in case of failure of a node) in such a (n, k, d) DSS has not been studied. Towards this end, for a given FR code, we define a reconstruction degree k^* as the smallest number of nodes one has to contact to recover the entire file. This gives us a lower bound on actual reconstruction degree k_{FR} defined as a degree such that user can get the entire data by contacting any (minimal) k_{FR} nodes. For weak dress codes [2], finding the repair degree is non-trivial problem. Algorithm 2 computes it.

II. ALGORITHMS

Let the column support (non-zero entries) of a column $M_i, 1 \leq j \leq \theta$ of incidence matrix M of a FR code $\mathscr{C}(n,\theta,\alpha,\rho)$ [3] is H_j and the repair degree of each node

Example 1. Consider a FR Code $\mathscr{C}(5,9,4,2)$ (see [2]) with 9 packets and 5 nodes given as $U_1 = \{1, 2, 3, 4\}, U_2 = \{1, 2, 3, 4\}, U_3 = \{1, 2, 3, 4\}, U_4 = \{1, 2, 3, 4\}, U_5 = \{1, 2, 3, 4\}, U_6 = \{1, 2, 3, 4\}, U_8 = \{1, 2,$ $\{1,6,9\}, U_3 = \{2,5,7,9\}, U_4 = \{3,5,6,8\} \& U_5 = \{4,7,8\}.$ Algorithm 1 gives $k_{upp}^{\star} = 3$ and using algorithm 2, one finds the repair degree of node $U_2 = d_2 = 3$.

REFERENCES

- [1] S. El Rouayheb and K. Ramchandran, "Fractional repetition codes for repair in distributed storage systems," in Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on, Oct. 2010, pp. 1510 -1517.
- [2] M. K. Gupta, A. Agrawal, and D. Yadav, "On weak dress codes for cloud storage," CoRR, vol. abs/arXiv/1302.3681, 2013.
- S. Anil, M. K. Gupta, and T. A. Gulliver, "Enumerating some fractional repetition codes," CoRR, vol. abs/1303.6801, 2013.

An extended abstract of the paper can be obtained from Arxiv or author's home page at http://www.guptalab.org

Algorithm 1 Algorithm to compute reconstruction degree k^*

Require: Node packet distribution of FR code after removing the last packet θ (as it can be recovered by parity) from all $n \text{ nodes of } V^n = \{V_1, V_2, ..., V_n\}.$

Ensure: $k_{upp}^{\star} = \text{Reconstruction degree}$ 1: For $1 \leq i, j, m \leq n$, if $\exists V_i \& V_j \ s.t. \ V_j \subseteq V_i$ then delete all such V_j for all possible nodes V_i and list remaining collection of nodes as $V^m = \{V_{i_1}, V_{i_2}, ..., V_{i_m}\}, |V_{i_j}| =$

 $\begin{array}{l} \alpha_{ij} = \text{ number of packets in node } V_{ij}^{1/2}.\\ 2: \text{Let } V^l = \left\{V_{ij} \in V^m | 1 \leq j \leq m \ \& \ |V_{ij}| = \max\{\alpha_{ij}\}\right\}.\\ 3: \text{Pick an arbitary set } V_{ij} \in V^l, \text{ and call this set as } P. \text{ Set} \end{array}$

the counter $k_{\lambda}=1, 1\leq k_{\lambda}^{'}\leq m$ and $1\leq \lambda\leq |V^{l}|=l.$ 4: If $\exists \ V_{i_{j'}}(1\leq j'\leq m)\in V^{m}$ s.t. $V_{i_{j'}}\bigcap P=\phi$ then go to step 5 otherwise jump to step 6.

5: Pick $V_{i_{j''}}(1 \leq j'' \leq m) \in V^m$ which has max cardinality among all $V_{i_{j''}}$ in V^m with $V_{i_{j''}} \cap P = \phi$. Update $\dot{P} = \dot{P} \bigcup V_{i,"}$, update counter $k_{\lambda} = (k_{\lambda} + 1)$

6: If $\exists~V_{i_r}(1\leq r\leq m)\in V^m~s.t.~V_{i_r}\not\subset P$ then go to step 7 otherwise go to step 8.

7: Pick $V_{i_{r'}}(1 \leq r' \leq m) \in V^m$ which has maximum $|V_{i_{r'}} \backslash P|$ among all $V_{i_{r'}} \in V^m$ having the condition $V_{i_{r'}} \not\subset P$ then update $P = P \bigcup V_{i_{r'}}$, update counter $k_{\lambda} = (k_{\lambda} + 1)$ and go to step 6.

 $k_{upp}^{\star} = \min\left\{k_{\lambda}^{\prime}\right\}_{\lambda=1}^{l}.$

Algorithm 2 Algorithm to compute Repair Degree d_i

Require: Incidence matrix $M_{n \times \theta}$ of FR code and H_j . **Ensure:** Repair degree d_i for a node $U_i, 1 \le i \le n$. 1: For each node $i, 1 \le i \le n$ let $S_i^{\{i\}} = \{H_j \setminus \{i\} | i \in I\}$

 $H_j, 1 \leq j \leq \theta$ }. Set $q = 1, 1 \leq q \leq n$. 2: Compute $T \subseteq \{1, 2, \dots, \theta\}$ s.t. |T| > 1 is maximum among all possible subsets and for $t \in T$, $H_t \setminus \{i\} \in S_i^{\{i\}}$, and $\bigcap H_t \setminus \{i\} \neq \emptyset$. Set counter $l_q(1 \leq q \leq n) = |T| - 1$.

Store l_q in l_q' . 3: Update $S_i^{\{i\}} = S_i^{\{i\}} \setminus (H_t \setminus \{i\}), \forall t \in T$. 4: If $S_i^{\{i\}} = \phi$ or singleton set or $H_r \setminus \{i\} \cap H_s \setminus \{i\} \in S_i^{\{i\}} = \phi \ \forall 1 \leq r, s \leq n \ \text{then} \ d_i = \alpha_i - \sum_{\lambda=1}^q l_\lambda'$, where $\alpha_i = |V_i|$, otherwise set q = q + 1 and go to step 2.