```
In [5]: import pandas as pd
         from chembl webresource_client.new_client import new_client
In [10]: target = new client.target
         target query = target.search('CHEMBL231')
         targets = pd.DataFrame.from dict(target query)
         targets
Out[10]:
             cross_references
                              organism
                                           pref_name score species_group_flag target_chembl_id
                                                                                                       target_components
                                                                                                                           target_type tax_id
                                         Histamine H1
                                                                                                      [{'accession': 'P35367',
                                                                                                                               SINGLE
                                 Homo
                          []
                                                       17.0
                                                                         False
                                                                                   CHEMBL231
                                                                                                                                         9606
          0
                                                                                                    'component_descriptio...
                                                                                                                              PROTEIN
                                sapiens
                                             receptor
In [13]: selected target = targets.target chembl id[0]
         selected target
Out[13]: 'CHEMBL231'
In [16]: activity = new_client.activity
         res = activity.filter(target_chembl_id=selected_target).filter(standard_type="IC50")
In [19]: df = pd.DataFrame.from dict(res)
In [22]: print(len(res))
        1300
In [44]: df.head()
```

Out[44]:		action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession	assay_
	0	None	None	146647	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
	1	None	None	149038	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
	2	None	None	149041	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
	3	None	None	150189	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
	4	None	None	152698		CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	

In [46]: df.tail()

	action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession	a:
1295	{'action_type': 'INHIBITOR', 'description': 'N	None	25523852	D	CHEMBL5338203	Inhibition of human H1 receptor	В	None	
1296	{'action_type': 'INHIBITOR', 'description': 'N	None	25658311	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5372886	Displacement of [3H] pyrilamine from human rec	В	None	
1297	{'action_type': 'INHIBITOR', 'description': 'N	None	25658312	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5372886	Displacement of [3H] pyrilamine from human rec	В	None	
1298	None	None	25778417	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5465586	Selectivity interaction (BET inhibitor selecti	В	None	
1299	None	None	25787560	[{'comments': None, 'relation': None, 'result	CHEMBL5474422	Selectivity interaction (Histamine H1 receptor	В	None	
5 rows	5 rows × 46 columns								

In [48]: df.info()

Out[46]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1300 entries, 0 to 1299
Data columns (total 46 columns):

Data	columns (cocal 46 columns)	•	
#	Column	Non-Null Count	Dtype
0	action_type	9 non-null	object
1	activity_comment	848 non-null	object
2	activity_id	1300 non-null	int64
3	activity_properties	1300 non-null	object
4	assay_chembl_id	1300 non-null	object
5	assay_description	1300 non-null	object
6	assay_type	1300 non-null	object
7	assay_variant_accession	1 non-null	object
8	assay_variant_mutation	1 non-null	object
9	bao_endpoint	1300 non-null	object
10	bao_format	1300 non-null	object
11	bao_label	1300 non-null	object
12	canonical_smiles	1267 non-null	object
13	data_validity_comment	6 non-null	object
14	data_validity_description	6 non-null	object
15	document_chembl_id	1300 non-null	object
16	document_journal	407 non-null	object
17	document_year	429 non-null	float64
18	ligand_efficiency	242 non-null	object
19	molecule_chembl_id	1300 non-null	object
20	molecule_pref_name	912 non-null	object
21	<pre>parent_molecule_chembl_id</pre>	1300 non-null	object
22	pchembl_value	394 non-null	object
23	<pre>potential_duplicate</pre>	1300 non-null	int64
24	qudt_units	466 non-null	object
25	record_id	1300 non-null	int64
26	relation	466 non-null	object
27	src_id	1300 non-null	int64
28	standard_flag	1300 non-null	int64
29	standard_relation	466 non-null	object
30	standard_text_value	0 non-null	object
31	standard_type	1300 non-null	object
32	standard_units	466 non-null	object
33	standard_upper_value	0 non-null	object
34	standard_value	466 non-null	object
35	target_chembl_id	1300 non-null	object
36	target_organism	1300 non-null	object

```
1300 non-null
         37 target pref name
                                                       object
         38 target tax id
                                        1300 non-null
                                                       object
         39 text value
                                        0 non-null
                                                       object
                                        0 non-null
                                                       object
         40 toid
                                        1300 non-null
         41 type
                                                       object
                                                       object
         42 units
                                        381 non-null
         43 uo units
                                                       obiect
                                        466 non-null
         44 upper value
                                        0 non-null
                                                       obiect
         45 value
                                        466 non-null
                                                       object
        dtypes: float64(1), int64(5), object(40)
        memory usage: 467.3+ KB
In [50]:
         df.columns
Out[50]: Index(['action type', 'activity comment', 'activity id', 'activity properties',
                 'assay chembl id', 'assay description', 'assay type',
                 'assay variant accession', 'assay variant mutation', 'bao endpoint',
                 'bao format', 'bao label', 'canonical smiles', 'data validity comment',
                'data validity description', 'document chembl id', 'document journal',
                'document year', 'ligand efficiency', 'molecule chembl id',
                 'molecule pref name', 'parent molecule chembl id', 'pchembl value',
                 'potential duplicate', 'qudt units', 'record id', 'relation', 'src id',
                'standard flag', 'standard relation', 'standard text value',
                 'standard type', 'standard units', 'standard upper value',
                'standard_value', 'target_chembl_id', 'target_organism',
                'target_pref_name', 'target_tax_id', 'text_value', 'toid', 'type',
                'units', 'uo units', 'upper value', 'value'],
               dtype='object')
In [53]: df2 = df.dropna(subset=["standard value", "canonical smiles"])
         df2
In [55]:
```

Out[55]:

•	action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession	a
0	None	None	146647	О	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
1	None	None	149038	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
2	None	None	149041	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
3	None	None	150189	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
4	None	None	152698	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
•••									
1295	{'action_type': 'INHIBITOR', 'description': 'N	None	25523852		CHEMBL5338203	Inhibition of human H1 receptor	В	None	
1296	{'action_type': 'INHIBITOR', 'description': 'N	None	25658311	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5372886	Displacement of [3H] pyrilamine from human rec	В	None	
1297	{'action_type': 'INHIBITOR', 'description': 'N	None	25658312	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5372886	Displacement of [3H] pyrilamine from human rec	В	None	
1298	None	None	25778417	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5465586	Selectivity interaction (BET inhibitor selecti	В	None	

		action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession a	
	1299	None	None	25787560	[{'comments': None, 'relation': None, 'result	CHEMBL5474422	Selectivity interaction (Histamine H1 receptor	В	None	
	466 row	vs × 46 columr	าร							
In [59]:	len(df	2.canonical_	smiles.unique())							
Out[59]:	377									
In [64]:	df2_nr = df2.drop_duplicates(subset="canonical_smiles", keep="first").reset_index(drop=True)									

In [67]: df2_nr

Out[67]:

•	action_type	activity_comment	activity_id	activity_properties	$as say_chembl_id$	assay_description	assay_type	assay_variant_accession	ass
0	None	None	146647	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
1	None	None	149038	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
2	None	None	149041	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
3	None	None	150189	0	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
4	None	None	152698	[]	CHEMBL692983	Inhibitory activity against human Histamine H1	В	None	
•••									
372	{'action_type': 'INHIBITOR', 'description': 'N	None	25523852	[]	CHEMBL5338203	Inhibition of human H1 receptor	В	None	
373	{'action_type': 'INHIBITOR', 'description': 'N	None	25658311	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5372886	Displacement of [3H] pyrilamine from human rec	В	None	
374	{'action_type': 'INHIBITOR', 'description': 'N	None	25658312	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5372886	Displacement of [3H] pyrilamine from human rec	В	None	
375	None	None	25778417	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5465586	Selectivity interaction (BET inhibitor selecti	В	None	

	action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession	ass
376	None	None	25787560	[{'comments': None, 'relation': None, 'result	CHEMBL5474422	Selectivity interaction (Histamine H1 receptor	В	None	

In [70]: df2_nr.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 377 entries, 0 to 376
Data columns (total 46 columns):

# 	Columns (total 46 columns)	Non-Null Count	Dtype
0	action_type	9 non-null	object
1	activity_comment	5 non-null	object
2	activity_id	377 non-null	int64
3	activity_properties	377 non-null	object
4	assay_chembl_id	377 non-null	object
5	assay_description	377 non-null	object
6	assay_type	377 non-null	object
7	assay_variant_accession	0 non-null	object
8	assay_variant_mutation	0 non-null	object
9	bao_endpoint	377 non-null	object
10	bao_format	377 non-null	object
11	bao_label	377 non-null	object
12	canonical_smiles	377 non-null	object
13	data_validity_comment	4 non-null	object
14	data_validity_description	4 non-null	object
15	document_chembl_id	377 non-null	object
16	document_journal	321 non-null	object
17	document_year	333 non-null	float64
18	ligand_efficiency	203 non-null	object
19	molecule_chembl_id	377 non-null	object
20	molecule_pref_name	74 non-null	object
21	<pre>parent_molecule_chembl_id</pre>	377 non-null	object
22	pchembl_value	310 non-null	object
23	<pre>potential_duplicate</pre>	377 non-null	int64
24	qudt_units	377 non-null	object
25	record_id	377 non-null	int64
26	relation	377 non-null	object
27	src_id	377 non-null	int64
28	standard_flag	377 non-null	int64
29	standard_relation	377 non-null	object
30	standard_text_value	0 non-null	object
31	standard_type	377 non-null	object
32	standard_units	377 non-null	object
33	standard_upper_value	0 non-null	object
34	standard_value	377 non-null	object
35	target_chembl_id	377 non-null	object
36	target_organism	377 non-null	object

```
37 target pref name
                              377 non-null
                                              object
38 target tax id
                                              object
                               377 non-null
39 text_value
                              0 non-null
                                              object
40 toid
                              0 non-null
                                              object
41 type
                              377 non-null
                                              object
42 units
                              303 non-null
                                              object
43 uo units
                                              object
                              377 non-null
                                              object
44 upper value
                              0 non-null
45 value
                              377 non-null
                                              object
dtypes: float64(1), int64(5), object(40)
memory usage: 135.6+ KB
```

Data pre-processing of the bioactivity data

Combine the 3 columns (molecule_chembl_id,canonical_smiles,standard_value) and bioactivity_class into

```
In [75]: selection = ['molecule_chembl_id','canonical_smiles','standard_value']
    df3 = df2_nr[selection]
    df3
```

	molecule_chembl_id	canonical_smiles	standard_value
0	CHEMBL156071	NCCCCCCCCCCc1c[nH]cn1	1258.93
1	CHEMBL152122	NCCCCCCCCCc1cccnc1	1258.93
2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	1000.0
3	CHEMBL157842	NCCCCCCCCc1cccnc1	2511.89
4	CHEMBL94249	NCCCCCCCCc1c[nH]cn1	501.19
•••			
372	CHEMBL5421982	COC1CCN(c2cc(C(=O)NS(=O)(=O)N(C)C)nc3c2c(C2CCC	8000.0
373	CHEMBL5398630	O=C(O)/C=C/C(=O)O.[2H]C([2H])(Cc1c[nH]c2ccccc1	340.0
374	CHEMBL3183055	CN(C)CCc1c[nH]c2ccccc12.O=C(O)/C=C/C(=O)O	520.0
375	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](31600.0
376	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.0

 $377 \text{ rows} \times 3 \text{ columns}$

Out[75]:

Labeling compounds as either being active, inactive or intermediate

The bioactivity data is in the IC50 unit. Compounds having values of less than 1000 nM will be considered to be active while those greater than 10,000 nM will be considered to be inactive. As for those values in between 1,000 and 10,000 nM will be referred to as intermediate.

```
In [80]: bioactivity_threshold = []
for i in df3.standard_value:
    if float(i) >= 10000:
        bioactivity_threshold.append("inactive")
    elif float(i) <= 1000:
        bioactivity_threshold.append("active")
    else:
        bioactivity_threshold.append("intermediate")</pre>
```

```
In [83]: bioactivity_class = pd.Series(bioactivity_threshold, name='class')
    df5 = pd.concat([df3, bioactivity_class], axis=1)
    df5
```

Out[83]:	n	nolecule_chembl_id	canonical_smiles	standard_value	class
	0	CHEMBL156071	NCCCCCCCCCCc1c[nH]cn1	1258.93	intermediate
	1	CHEMBL152122	NCCCCCCCCCc1cccnc1	1258.93	intermediate
	2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	1000.0	active
	3 CHEMBL157842		NCCCCCCCCc1cccnc1	2511.89	intermediate
	4 CHEMBL94249		NCCCCCCCCc1c[nH]cn1	501.19	active
	•••				
	372	CHEMBL5421982	COC1CCN(c2cc(C(=O)NS(=O)(=O)N(C)C)nc3c2c(C2CCC	8000.0	intermediate
	373	CHEMBL5398630	O=C(O)/C=C/C(=O)O.[2H]C([2H])(Cc1c[nH]c2ccccc1	340.0	active
	374 CHEMBL3183055		CN(C)CCc1c[nH]c2ccccc12.O=C(O)/C=C/C(=O)O	520.0	active
	375	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](31600.0	inactive
	376	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.0	inactive

```
In [88]: df5.to_csv('Histamine H1 receptor_03_bioactivity_data_curated.csv', index=False)
In [94]: df = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\Histamine H1 receptor\Histamine H1 receptor_03_bioactivity_data_curated.csv")
df
```

	molecule_chembl_id	canonical_smiles	standard_value	class
0	CHEMBL156071	NCCCCCCCCCCc1c[nH]cn1	1258.93	intermediate
1	CHEMBL152122	NCCCCCCCCCc1cccnc1	1258.93	intermediate
2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	1000.00	active
3	CHEMBL157842	NCCCCCCCCc1cccnc1	2511.89	intermediate
4	CHEMBL94249	NCCCCCCCCc1c[nH]cn1	501.19	active
•••			•••	
372	CHEMBL5421982	COC1CCN(c2cc(C(=O)NS(=O)(=O)N(C)C)nc3c2c(C2CCC	8000.00	intermediate
373	CHEMBL5398630	O=C(O)/C=C/C(=O)O.[2H]C([2H])(Cc1c[nH]c2ccccc1	340.00	active
374	CHEMBL3183055	CN(C)CCc1c[nH]c2ccccc12.O=C(O)/C=C/C(=O)O	520.00	active
375	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](31600.00	inactive
376	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.00	inactive

Out[94]:

\neg		4	г.	4	0	-		
)	Ш	т.	ш	-	И	3		
_	~	-		_	$\overline{}$		• •	۰

	molecule_chembl_id	standard_value	class	canonical_smiles
0	CHEMBL156071	1258.93	intermediate	NCCCCCCCCCc1c[nH]cn1
1	CHEMBL152122	1258.93	intermediate	NCCCCCCCCCc1cccnc1
2	CHEMBL24665	1000.00	active	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1
3	CHEMBL157842	2511.89	intermediate	NCCCCCCCc1cccnc1
4	CHEMBL94249	501.19	active	NCCCCCCCc1c[nH]cn1
•••				
372	CHEMBL5421982	8000.00	intermediate	COC1CCN(c2cc(C(=O)NS(=O)(=O)N(C)C)nc3c2c(C2CCC
373	CHEMBL5398630	340.00	active	[2H]C([2H])(Cc1c[nH]c2ccccc12)N(C)C
374	CHEMBL3183055	520.00	active	CN(C)CCc1c[nH]c2ccccc12
375	CHEMBL2017291	31600.00	inactive	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](
376	CHEMBL3643413	30000.00	inactive	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(

Calculate Lipinski descriptors

Christopher Lipinski, a scientist at Pfizer, came up with a set of rule-of-thumb for evaluating the druglikeness of compounds. Such druglikeness is based on the Absorption, Distribution, Metabolism and Excretion (ADME) that is also known as the pharmacokinetic profile. Lipinski analyzed all orally active FDA-approved drugs in the formulation of what is to be known as the Rule-of-Five or Lipinski's Rule.

The Lipinski's Rule stated the following:

Molecular weight < 500 Dalton Octanol-water partition coefficient (LogP) < 5 Hydrogen bond donors < 5 Hydrogen bond acceptors < 10

```
import numpy as np
from rdkit import Chem
from rdkit.Chem import Descriptors, Lipinski
```

Calculate descriptors

```
# Inspired by: https://codeocean.com/explore/capsules?query=tag:data-curation
In [115...
          def lipinski(smiles, verbose=False):
              moldata= []
              for elem in smiles:
                  mol=Chem.MolFromSmiles(elem)
                  moldata.append(mol)
              baseData= np.arange(1,1)
              i=0
              for mol in moldata:
                  desc MolWt = Descriptors.MolWt(mol)
                  desc MolLogP = Descriptors.MolLogP(mol)
                  desc NumHDonors = Lipinski.NumHDonors(mol)
                  desc_NumHAcceptors = Lipinski.NumHAcceptors(mol)
                  row = np.array([desc_MolWt,
                                   desc MolLogP,
                                   desc_NumHDonors,
                                   desc_NumHAcceptors])
                  if(i==0):
                       baseData=row
                  else:
                       baseData=np.vstack([baseData, row])
                  i=i+1
              columnNames=["MW","LogP","NumHDonors","NumHAcceptors"]
              descriptors = pd.DataFrame(data=baseData,columns=columnNames)
```

return descriptors

In [119...

df_lipinski = lipinski(df_clean_smiles.canonical_smiles)
df_lipinski

Out[119...

	MW	LogP	NumHDonors	NumHAcceptors
0	265.445000	4.20200	2.0	2.0
1	262.441000	4.48380	1.0	2.0
2	255.243000	2.59670	2.0	2.0
3	234.387000	3.70360	1.0	2.0
4	223.364000	3.03170	2.0	2.0
•••				
372	530.626000	2.97850	1.0	8.0
373	190.286204	2.27200	1.0	1.0
374	188.274000	2.27200	1.0	1.0
375	415.453000	4.16254	1.0	7.0
376	450.465000	2.88450	1.0	7.0

377 rows × 4 columns

Combine DataFrames

In [124...

df_lipinski

	MW	LogP	NumHDonors	NumHAcceptors
0	265.445000	4.20200	2.0	2.0
1	262.441000	4.48380	1.0	2.0
2	255.243000	2.59670	2.0	2.0
3	234.387000	3.70360	1.0	2.0
4	223.364000	3.03170	2.0	2.0
•••		•••		
372	530.626000	2.97850	1.0	8.0
373	190.286204	2.27200	1.0	1.0
374	188.274000	2.27200	1.0	1.0
375	415.453000	4.16254	1.0	7.0
376	450.465000	2.88450	1.0	7.0

In [126...

df_lipinski.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 377 entries, 0 to 376
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	MW	377 non-null	float64
1	LogP	377 non-null	float64
2	NumHDonors	377 non-null	float64
3	NumHAcceptors	377 non-null	float64

dtypes: float64(4)
memory usage: 11.9 KB

In [128...

df_lipinski.describe()

\cap	-4-1	Γ1	γ	0	
Uι	1し	1	Z	0	

	MW	LogP	NumHDonors	NumHAcceptors
count	377.000000	377.000000	377.00000	377.000000
mean	426.848953	4.326096	0.63130	4.883289
std	147.117151	1.459095	0.76796	2.601587
min	111.148000	-0.386300	0.00000	1.000000
25%	312.388000	3.353200	0.00000	3.000000
50%	392.503000	4.057400	0.00000	4.000000
75%	506.002000	5.179800	1.00000	7.000000
max	806.976000	8.715300	4.00000	12.000000

In [131... **df**

\cap		+	Γ	1	\supset	1			
U	и	L	L	_	0	_	۰	۰	۰

	molecule_chembl_id	canonical_smiles	standard_value	class
0	CHEMBL156071	NCCCCCCCCCCc1c[nH]cn1	1258.93	intermediate
1	CHEMBL152122	NCCCCCCCCCc1cccnc1	1258.93	intermediate
2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	1000.00	active
3	CHEMBL157842	NCCCCCCCc1cccnc1	2511.89	intermediate
4	CHEMBL94249	NCCCCCCCCc1c[nH]cn1	501.19	active
•••				
372	CHEMBL5421982	COC1CCN(c2cc(C(=O)NS(=O)(=O)N(C)C)nc3c2c(C2CCC	8000.00	intermediate
373	CHEMBL5398630	O=C(O)/C=C/C(=O)O.[2H]C([2H])(Cc1c[nH]c2ccccc1	340.00	active
374	CHEMBL3183055	CN(C)CCc1c[nH]c2ccccc12.O=C(O)/C=C/C(=O)O	520.00	active
375	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](31600.00	inactive
376	CHEMBL3643413	CCC(=O)N1CC[C@H](Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.00	inactive

In [133... df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 377 entries, 0 to 376 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	<pre>molecule_chembl_id</pre>	377 non-null	object
1	canonical_smiles	377 non-null	object
2	standard_value	377 non-null	float64
3	class	377 non-null	object

dtypes: float64(1), object(3)

memory usage: 11.9+ KB

Out[135		standard_value
	count	377.000000
	mean	5495.012305
	std	23852.527737
	min	0.421000
	25%	30.000000
	50%	240.000000
	75%	2130.000000

combine the 2 DataFrame

max 316227.770000

```
In [142... df_combined = pd.concat([df,df_lipinski], axis=1)
```

In [145... df_combined

O	4	[1/E
υu	L	1 45

	molecule_chembl_id	canonical_smiles	standard_value	class	MW	LogP	NumHDonors	NumHA
0	CHEMBL156071	NCCCCCCCCCCc1c[nH]cn1	1258.93	intermediate	265.445000	4.20200	2.0	
1	CHEMBL152122	NCCCCCCCCCc1cccnc1	1258.93	intermediate	262.441000	4.48380	1.0	
2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	1000.00	active	255.243000	2.59670	2.0	
3	CHEMBL157842	NCCCCCCCc1cccnc1	2511.89	intermediate	234.387000	3.70360	1.0	
4	CHEMBL94249	NCCCCCCCc1c[nH]cn1	501.19	active	223.364000	3.03170	2.0	
•••						•••		
372	CHEMBL5421982	COC1CCN(c2cc(C(=O)NS(=O) (=O)N(C)C)nc3c2c(C2CCC	8000.00	intermediate	530.626000	2.97850	1.0	
373	CHEMBL5398630	O=C(O)/C=C/C(=O)O.[2H]C([2H]) (Cc1c[nH]c2ccccc1	340.00	active	190.286204	2.27200	1.0	
374	CHEMBL3183055	CN(C)CCc1c[nH]c2ccccc12.O=C(O)/C=C/C(=O)O	520.00	active	188.274000	2.27200	1.0	
375	CHEMBL2017291	COc1cc2c(cc1- c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](31600.00	inactive	415.453000	4.16254	1.0	
376	CHEMBL3643413	CCC(=O)N1CC[C@H] (Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(30000.00	inactive	450.465000	2.88450	1.0	

377 rows × 8 columns

In [147...

df_combined.head()

standard_value 377 non-null float64 3 class 377 non-null object MW 377 non-null float64 4 377 non-null float64 5 LogP 377 non-null float64 6 NumHDonors NumHAcceptors 377 non-null float64 7

dtypes: float64(5), object(3)

memory usage: 23.7+ KB

In [151... df_combined.describe()

Out[151...

	standard_value	MW	LogP	NumHDonors	NumHAcceptors
count	377.000000	377.000000	377.000000	377.00000	377.000000
mean	5495.012305	426.848953	4.326096	0.63130	4.883289
std	23852.527737	147.117151	1.459095	0.76796	2.601587
min	0.421000	111.148000	-0.386300	0.00000	1.000000
25%	30.000000	312.388000	3.353200	0.00000	3.000000
50%	240.000000	392.503000	4.057400	0.00000	4.000000
75%	2130.000000	506.002000	5.179800	1.00000	7.000000
max	316227.770000	806.976000	8.715300	4.00000	12.000000

Convert IC50 to pIC50

To allow IC50 data to be more uniformly distributed, we will convert IC50 to the negative logarithmic scale which is essentially -log10(IC50).

This custom function pIC50() will accept a DataFrame as input and will:

Take the IC50 values from the standard_value column and converts it from nM to M by multiplying the value by 10 Take the molar value and apply - log10 Delete the standard_value column and create a new pIC50 column

```
In [159... # https://github.com/chaninlab/estrogen-receptor-alpha-qsar/blob/master/02_ER_alpha_R05.ipynb

import numpy as np

def pIC50(input):
    pIC50 = []

    for i in input['standard_value_norm']:
        molar = i*(10**-9) # Converts nM to M
        pIC50.append(-np.log10(molar))

    input['pIC50'] = pIC50
    x = input.drop('standard_value_norm', 1)
```

```
return x
          df combined.standard value.describe()
In [162...
Out[162...
           count
                       377.000000
                      5495.012305
           mean
                     23852.527737
           std
                         0.421000
           min
                        30.000000
           25%
           50%
                       240.000000
           75%
                      2130.000000
                    316227.770000
           max
           Name: standard_value, dtype: float64
In [165...
          -np.log10( (10**-9)* 100000000 )
Out[165...
          1.0
           -np.log10( (10**-9)* 10000000000 )
In [167...
Out[167...
           -1.0
          def norm_value(input):
In [175...
              norm = []
              for i in input['standard_value']:
                   if i > 100000000:
                     i = 100000000
                   norm.append(i)
              input['standard_value_norm'] = norm
              x = input.drop('standard_value', axis=1)
               return x
```

We will first apply the norm_value() function so that the values in the standard_value column is normalized.

In [178...

df_norm = norm_value(df_combined)
df_norm

Out[178...

molecule_chembl_id		canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	standa
0	CHEMBL156071	NCCCCCCCCCCc1c[nH]cn1	intermediate	265.445000	4.20200	2.0	2.0	
1	CHEMBL152122	NCCCCCCCCCc1cccnc1	intermediate	262.441000	4.48380	1.0	2.0	
2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	active	255.243000	2.59670	2.0	2.0	
3	CHEMBL157842	NCCCCCCCCc1cccnc1	intermediate	234.387000	3.70360	1.0	2.0	
4	CHEMBL94249	NCCCCCCCCc1c[nH]cn1	active	223.364000	3.03170	2.0	2.0	
•••								
372	CHEMBL5421982	COC1CCN(c2cc(C(=O)NS(=O) (=O)N(C)C)nc3c2c(C2CCC	intermediate	530.626000	2.97850	1.0	8.0	
373	CHEMBL5398630	O=C(O)/C=C/C(=O)O.[2H]C([2H]) (Cc1c[nH]c2ccccc1	active	190.286204	2.27200	1.0	1.0	
374	CHEMBL3183055	CN(C)CCc1c[nH]c2ccccc12.O=C(O)/C=C/C(=O)O	active	188.274000	2.27200	1.0	1.0	
375	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](inactive	415.453000	4.16254	1.0	7.0	
376	CHEMBL3643413	CCC(=O)N1CC[C@H] (Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(inactive	450.465000	2.88450	1.0	7.0	

377 rows × 8 columns

df_norm.standard_value_norm

In [181...

```
Out[181...
                   1258.93
                   1258.93
           1
           2
                   1000.00
           3
                   2511.89
           4
                    501.19
                    . . .
           372
                   8000.00
           373
                    340.00
           374
                    520.00
           375
                  31600.00
           376
                  30000.00
           Name: standard_value_norm, Length: 377, dtype: float64
In [183...
          df_norm.standard_value_norm.describe()
Out[183...
          count
                       377.000000
                      5495.012305
           mean
           std
                     23852.527737
                         0.421000
           min
           25%
                        30.000000
           50%
                       240.000000
           75%
                      2130.000000
           max
                    316227.770000
           Name: standard_value_norm, dtype: float64
          df_final = df_norm.drop('standard_value_norm', axis=1)
In [195...
```

df_final

$\cap \cup +$	[10E	
ou c	T20	

molecule_chembl_id		canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	pIC
0	CHEMBL156071	NCCCCCCCCCCc1c[nH]cn1	intermediate	265.445000	4.20200	2.0	2.0	5.8999
1	CHEMBL152122	NCCCCCCCCCc1cccnc1	intermediate	262.441000	4.48380	1.0	2.0	5.8999
2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	active	255.243000	2.59670	2.0	2.0	6.0000
3	CHEMBL157842	NCCCCCCCCc1cccnc1	intermediate	234.387000	3.70360	1.0	2.0	5.5999
4	CHEMBL94249	NCCCCCCCCc1c[nH]cn1	active	223.364000	3.03170	2.0	2.0	6.2999
•••					•••			
372	CHEMBL5421982	COC1CCN(c2cc(C(=O)NS(=O) (=O)N(C)C)nc3c2c(C2CCC	intermediate	530.626000	2.97850	1.0	8.0	5.0969
373	CHEMBL5398630	O=C(O)/C=C/C(=O)O.[2H]C([2H]) (Cc1c[nH]c2ccccc1	active	190.286204	2.27200	1.0	1.0	6.4685
374	CHEMBL3183055	CN(C)CCc1c[nH]c2ccccc12.O=C(O)/C=C/C(=O)O	active	188.274000	2.27200	1.0	1.0	6.2839
375	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](inactive	415.453000	4.16254	1.0	7.0	4.5003
376	CHEMBL3643413	CCC(=O)N1CC[C@H] (Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(inactive	450.465000	2.88450	1.0	7.0	4.5228

df_final.pIC50.describe()

In [198...

```
Out[198...
          count
                    377.000000
                      6.590691
           mean
                      1.232397
           std
                      3.500000
           min
           25%
                      5.671620
           50%
                      6.619789
           75%
                      7.522879
                      9.375718
           max
           Name: pIC50, dtype: float64
```

Removing the 'intermediate' bioactivity class

Here, we will be removing the intermediate class from our data set.

```
In [204... df_2class = df_final[df_final["class"] != 'intermediate']
    df_2class
```

\cap		+	Γ	7	a	/	
U	и	L	L	_	U	4	

molecule_chembl_id		canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	pIC50
2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	active	255.243000	2.59670	2.0	2.0	6.000000
4	CHEMBL94249	NCCCCCCCc1c[nH]cn1	active	223.364000	3.03170	2.0	2.0	6.299998
5	CHEMBL157217	c1nc(CCCCCCCCN2CCCC2)c[nH]1	active	277.456000	4.16880	1.0	2.0	6.399997
9	CHEMBL155188	NCCCCCCCCCc1c[nH]cn1	active	251.418000	3.81190	2.0	2.0	6.000000
12	CHEMBL1241	CN(C)CCN(Cc1ccccc1)c1ccccn1	active	255.365000	2.64980	0.0	3.0	7.400008
•••					•••			
371	CHEMBL4519018	CN1C2CCCC1CC(Nc1ccccc1Br)C2	active	309.251000	3.87630	1.0	2.0	6.696804
373	CHEMBL5398630	O=C(O)/C=C/C(=O)O.[2H]C([2H]) (Cc1c[nH]c2ccccc1	active	190.286204	2.27200	1.0	1.0	6.468521
374	CHEMBL3183055	CN(C)CCc1c[nH]c2ccccc12.O=C(O)/C=C/C(=O)O	active	188.274000	2.27200	1.0	1.0	6.283997
375	CHEMBL2017291	COc1cc2c(cc1-c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](inactive	415.453000	4.16254	1.0	7.0	4.500313
376	CHEMBL3643413	CCC(=O)N1CC[C@H] (Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(inactive	450.465000	2.88450	1.0	7.0	4.522879

```
In [338...
```

df_2class.to_csv('Histamine H1 receptor_04_bioactivity_data_3class_pIC50.csv')

Exploratory Data Analysis (Chemical Space Analysis) via Lipinski descriptors

```
import seaborn as sns
sns.set(style='ticks')
import matplotlib.pyplot as plt

In [223... plt.figure(figsize=(12, 10))
numeric_columns = ['MW', 'LogP', 'NumHDonors', 'NumHAcceptors', 'pIC50']
for i, column in enumerate(numeric_columns, 1):
```

```
plt.subplot(2, 3, i) # 2 rows and 3 columns for better layout
sns.histplot(df_2class[column], kde=True, bins=20,color='green')# kde=True for kernel density estimate
plt.title(f'Histogram of {column}')
plt.xlabel(column)
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()
```


Frequency of Bioactivity Classes

```
In [230... # Set figure size
    plt.figure(figsize=(8, 6))
# Count plot with hue
sns.countplot(x='class', hue='class', data=df_2class, palette='viridis')
# Add Labels and title
plt.xlabel('Bioactivity Class')
plt.ylabel('Frequency')
plt.title('Frequency of Bioactivity Classes')
# Show plot
plt.show()
```

Frequency of Bioactivity Classes


```
In [233...
sns.pairplot(df_2class, vars=['NumHDonors', 'NumHAcceptors'], hue='class', palette='plasma')
# Show plot
plt.show()
```



```
In [237... sns.pairplot(df_2class, hue='class', palette='pastel')
# Show plot
plt.show()
```



```
numeric_columns = ['MW', 'LogP', 'NumHDonors', 'NumHAcceptors']
# Set figure size
plt.figure(figsize=(12, 10))
# Loop through numeric columns and create scatter plots
for i, column in enumerate(numeric_columns, 1):
    plt.subplot(2, 2, i) # 2 rows, 2 columns layout
    sns.scatterplot(x=df_2class[column], y=df_2class['pIC50'], hue=df_2class['class'], palette='cividis')
    plt.title(f'Scatter Plot: pIC50 vs {column}')
    plt.xlabel(column)
    plt.ylabel('pIC50')
# Adjust Layout
plt.tight_layout()
plt.show()
```



```
In [249... plt.figure(figsize=(8, 5))
    sns.countplot(x="class", data=df, )
    plt.xlabel("Bioactivity Class")
    plt.ylabel("Count")
    plt.title("y Class Distribution")
    plt.show()
```



```
In [252... plt.figure(figsize=(6.6, 5.6))
    sns.scatterplot(x='MW', y='LogP', data=df_2class, hue='class', size='pIC50',palette='bright', edgecolor='black', alpha=0.7)
    plt.xlabel('MW', fontsize=14, fontweight='bold')
    plt.ylabel('LogP', fontsize=14, fontweight='bold')
    plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0)
    plt.show()

    dass
```



```
In [257...
plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'pIC50', data = df_2class, hue = 'class', palette = 'dark')
plt.xlabel('class', fontsize=14, fontweight='bold')
```

Out[257... Text(0.5, 0, 'class')

Statistical analysis | Mann-Whitney U Test

```
In [265... # https://machinelearningmastery.com/nonparametric-statistical-significance-tests-in-python/
from numpy.random import seed
from scipy.stats import mannwhitneyu

def mannwhitney(descriptor, verbose=False):
    # Seed the random number generator for reproducibility
    seed(1)
```

```
# Select relevant columns
selection = [descriptor, 'class']
df = df 2class[selection]
# Split active and inactive classes
active = df[df['class'] == 'active'][descriptor]
inactive = df[df['class'] == 'inactive'][descriptor]
# Perform Mann-Whitney U test
stat, p = mannwhitneyu(active, inactive)
# Interpret the result
alpha = 0.05
interpretation = 'Same distribution (fail to reject H0)' if p > alpha else 'Different distribution (reject H0)'
# Store results in a DataFrame
results = pd.DataFrame({
    'Descriptor': [descriptor],
    'Statistics': [stat],
    'p': [p],
    'alpha': [alpha],
    'Interpretation': [interpretation]
})
# Save results to CSV
filename = f'mannwhitneyu {descriptor}.csv'
results.to_csv(filename, index=False)
return results
```

In [268... mannwhitney('pIC50')

Out[268...DescriptorStatisticspalphaInterpretation0pIC5016368.01.454226e-340.05Different distribution (reject H0)

```
plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'MW', data = df_2class,hue = 'class' , palette = 'bright')
plt.xlabel('class', fontsize=14, fontweight='bold')
plt.ylabel('MW', fontsize=14, fontweight='bold')
```

Out[280... Text(0, 0.5, 'MW')

Out[283		Descriptor	Statistics	р	alpha	Interpretation
	0	MW	9443.5	0.059407	0.05	Same distribution (fail to reject H0)

LogP

Statistical analysis | Mann-Whitney U Test

In [301... mannwhitney('LogP')

 Out[301...
 Descriptor
 Statistics
 p
 alpha
 Interpretation

 0
 LogP
 8681.5
 0.456767
 0.05
 Same distribution (fail to reject H0)

NumHDonors

Statistical analysis | Mann-Whitney U Test

In [319... mannwhitney('NumHDonors')

Descriptor Statistics Interpretation p alpha **0** NumHDonors Different distribution (reject H0) 6149.5 0.000651 0.05

Out[319...

NumHAcceptors

Statistical analysis | Mann-Whitney U Test

In [321... mannwhitney('NumHAcceptors')

Out[321...

Descriptor Statistics p alpha Interpretation

NumHAcceptors 8682.0 0.451515 0.05 Same distribution (fail to reject H0)

Box Plots pIC50 values Taking a look at pIC50 values, the actives and inactives displayed statistically significant difference, which is to be expected since threshold values (IC50 < 1,000 nM = Actives while IC50 > 10,000 nM = Inactives, corresponding to pIC50 > 6 = Actives and pIC50 < 5 =

Inactives) were used to define actives and inactives.

Lipinski's descriptors Of the 4 Lipinski's descriptors (MW, LogP, NumHDonors and NumHAcceptors), only NumHDonors exhibited difference between the actives and inactives while the other descriptors (only (MW, LogP, and NumHAcceptors shows statistically significant same difference between actives and inactives.

In [341...

df3 = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\Histamine H1 receptor\Histamine H1 receptor_04_bioactivity_data_3class_pIC50.cs

In [343...

df3

Out[343...

	Unnamed: 0	molecule_chembl_id	canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors
0	2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	active	255.243000	2.59670	2.0	2.0
1	4	CHEMBL94249	NCCCCCCCc1c[nH]cn1	active	223.364000	3.03170	2.0	2.0
2	5	CHEMBL157217	c1nc(CCCCCCCCN2CCCC2)c[nH]1	active	277.456000	4.16880	1.0	2.0
3	9	CHEMBL155188	NCCCCCCCCCc1c[nH]cn1	active	251.418000	3.81190	2.0	2.0
4	12	CHEMBL1241	CN(C)CCN(Cc1ccccc1)c1ccccn1	active	255.365000	2.64980	0.0	3.0
•••								
321	371	CHEMBL4519018	CN1C2CCCC1CC(Nc1ccccc1Br)C2	active	309.251000	3.87630	1.0	2.0
322	373	CHEMBL5398630	O=C(O)/C=C/C(=O)O.[2H]C([2H]) (Cc1c[nH]c2ccccc1	active	190.286204	2.27200	1.0	1.0
323	374	CHEMBL3183055	CN(C)CCc1c[nH]c2ccccc12.O=C(O)/C=C/C(=O)O	active	188.274000	2.27200	1.0	1.0
324	375	CHEMBL2017291	COc1cc2c(cc1- c1c(C)noc1C)ncc1[nH]c(=O)n([C@H](inactive	415.453000	4.16254	1.0	7.0
325	376	CHEMBL3643413	CCC(=O)N1CC[C@H] (Nc2ncnc3c2CN(c2cnc(OC)c(C(F)(inactive	450.465000	2.88450	1.0	7.0

326 rows × 9 columns

```
In [346...
```

df3.head()

\cap		+	Γ	2	/	6	
U	и	L	L)	+	U	• •

	Unnamed: 0	$molecule_chembl_id$	canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	pIC50
0	2	CHEMBL24665	NCCc1c[nH]c(-c2cccc(C(F)(F)F)c2)n1	active	255.243	2.5967	2.0	2.0	6.000000
1	4	CHEMBL94249	NCCCCCCCCc1c[nH]cn1	active	223.364	3.0317	2.0	2.0	6.299998
2	5	CHEMBL157217	c1nc(CCCCCCCCN2CCCC2)c[nH]1	active	277.456	4.1688	1.0	2.0	6.399997
3	9	CHEMBL155188	NCCCCCCCCCCc1c[nH]cn1	active	251.418	3.8119	2.0	2.0	6.000000
4	12	CHEMBL1241	CN(C)CCN(Cc1ccccc1)c1ccccn1	active	255.365	2.6498	0.0	3.0	7.400008

In [348...

df3.describe()

Out[348...

	Unnamed: 0	MW	LogP	NumHDonors	NumHAcceptors	pIC50
count	326.000000	326.000000	326.000000	326.000000	326.000000	326.000000
mean	190.895706	434.956041	4.331838	0.595092	5.073620	6.760478
std	107.148013	147.782879	1.490037	0.761683	2.632479	1.237425
min	2.000000	111.148000	-0.386300	0.000000	1.000000	3.500000
25%	100.250000	312.778500	3.349175	0.000000	3.000000	6.005044
50%	189.500000	407.516000	4.034560	0.000000	4.000000	6.861769
75%	283.750000	516.598000	5.185950	1.000000	7.000000	7.734490
max	376.000000	806.976000	8.715300	4.000000	12.000000	9.375718

```
In [362...
selection = ['canonical_smiles','molecule_chembl_id']
df3_selection = df3[selection]
df3_selection.to_csv('molecule.smi', sep='\t', index=False, header=False)
```

```
In [364... with open('molecule.smi', 'r') as file:
    for _ in range(5):
```

Preparing the X and Y Data Matrices

```
In [416... X = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\New folder\archive\descriptors_output.csv")
In [418... X
```

\cap	Γ/110
Ou t	4±0

	Name	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	Pubche
0	CHEMBL130478	1	1	0	0	0	0	0	0	
1	CHEMBL336538	1	1	1	0	0	0	0	0	
2	CHEMBL339995	1	1	1	0	0	0	0	0	
3	CHEMBL341437	1	1	1	0	0	0	0	0	
4	CHEMBL130098	1	1	0	0	0	0	0	0	
•••										
6941	CHEMBL253998	1	1	1	0	0	0	0	0	
6942	CHEMBL502	1	1	1	0	0	0	0	0	
6943	CHEMBL3085398	1	1	1	0	0	0	0	0	
6944	CHEMBL13045	1	1	1	0	0	0	0	0	
6945	CHEMBL417799	1	1	0	0	0	0	0	0	

6946 rows × 882 columns

In [420... X.head(5)

O-	- 4-	г.	- /1	-	\sim	
())	IT.		71	- /	и	

	Name	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP
0	CHEMBL130478	1	1	0	0	0	0	0	0	
1	CHEMBL336538	1	1	1	0	0	0	0	0	
2	CHEMBL339995	1	1	1	0	0	0	0	0	
3	CHEMBL341437	1	1	1	0	0	0	0	0	
4	CHEMBL130098	1	1	0	0	0	0	0	0	

5 rows × 882 columns

In [421...

X.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6946 entries, 0 to 6945

Columns: 882 entries, Name to PubchemFP880

dtypes: int64(881), object(1)

memory usage: 46.7+ MB

In [424...

X.dtypes

Out[424...

object Name PubchemFP0 int64 PubchemFP1 int64 PubchemFP2 int64 PubchemFP3 int64 PubchemFP876 int64 PubchemFP877 int64 PubchemFP878 int64 int64 PubchemFP879 PubchemFP880 int64 Length: 882, dtype: object

```
In [425...
```

```
X = X.drop(columns=['Name'])
```

\cap	14-	[12]
Vι	и С	1442

	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	Pubcheml
0	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
•••							•••			
6941	1	1	1	0	0	0	0	0	0	
6942	1	1	1	0	0	0	0	0	0	
6943	1	1	1	0	0	0	0	0	0	
6944	1	1	1	0	0	0	0	0	0	
6945	1	1	0	0	0	0	0	0	0	

6946 rows × 881 columns

Y variable

```
In [429... y = df3['class']
```

```
In [430... y = y.map({'active': 1, 'inactive': 0})
```

Split dataset

```
In [435... print("Shape of X:", X.shape)
print("Shape of y:", y.shape)
```

```
Shape of X: (6946, 881)
        Shape of v: (326,)
         X = X.iloc[:y.shape[0], :] # Trim X to match y
In [439...
         print("Shape of X:", X.shape)
In [442...
          print("Shape of y:", y.shape)
        Shape of X: (326, 881)
        Shape of y: (326,)
         from sklearn.model selection import train test split
In [445...
          X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
In [448...
         from sklearn.preprocessing import StandardScaler
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.svm import SVC
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import accuracy score, classification report, confusion matrix
         scaler = StandardScaler()
In [469...
          X_train_scaled = scaler.fit_transform(X_train)
          X test scaled = scaler.transform(X test)
          Logistic Regression Model
```

```
In [471... scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
    lr = LogisticRegression(max_iter=500)

In [472... lr.fit(X_train, y_train)

Out[472... LogisticRegression logisticRegression(max_iter=500)
LogisticRegression(max_iter=500)
```

```
y pred lr = lr.predict(X test)
In [475...
       y pred lr
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, dtype=int64)
      print(classification report(y test, y pred lr))
In [478...
                precision
                          recall f1-score
                                       support
                           0.06
                                  0.09
              0
                    0.20
                                           18
              1
                    0.82
                           0.95
                                  0.88
                                           80
                                  0.79
         accuracy
                                           98
                                  0.48
        macro avg
                    0.51
                           0.50
                                           98
      weighted avg
                    0.70
                                  0.73
                                           98
                           0.79
      accuracy = accuracy score(y test, y pred lr)
In [481...
       print(f"Logistic Regression Model Accuracy: {accuracy * 100:.2f}%")
      Logistic Regression Model Accuracy: 78.57%
       cm = confusion_matrix(y_test, y_pred_lr)
In [484...
       ax = sns.heatmap(cm, annot=True, fmt='d', cmap="Reds")
       ax.xaxis.set_ticklabels(['prediction_label_1', 'prediction_label_2'])
       ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
```

[Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]

Out[484...

Logistic Regression Model Accuracy: 78.57%

```
0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int64)
        print(classification report(y test,y pred DT))
In [497...
                     precision
                                 recall f1-score
                                                  support
                  0
                         0.24
                                   0.22
                                            0.23
                                                       18
                         0.83
                                   0.84
                                            0.83
                  1
                                                       80
            accuracy
                                            0.72
                                                       98
          macro avg
                         0.53
                                   0.53
                                            0.53
                                                       98
        weighted avg
                         0.72
                                  0.72
                                            0.72
                                                       98
         accuracy = accuracy score(y test, y pred DT)
In [500...
         print(f"DecisionTreeClassifier Model Accuracy: {accuracy * 100:.2f}%")
        DecisionTreeClassifier Model Accuracy: 72.45%
In [508...
         cm = confusion matrix(y test, y pred DT)
         ax = sns.heatmap(cm, annot=True, fmt='d', cmap="tab10")
         ax.xaxis.set_ticklabels(['prediction_label_1', 'prediction_label_2'])
         ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
```

[Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]

Out[508...

DecisionTreeClassifier Model Accuracy: 72.45%

RandomForestClassifier

```
y_pred_rnf = rnf.predict(X test)
In [521...
         y pred rnf
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 0], dtype=int64)
        print(classification report(y test,y pred rnf))
In [523...
                     precision
                                 recall f1-score
                                                  support
                                   0.17
                  0
                          0.30
                                            0.21
                                                       18
                  1
                          0.83
                                   0.91
                                            0.87
                                                       80
                                            0.78
            accuracy
                                                       98
                                            0.54
           macro avg
                          0.56
                                   0.54
                                                       98
        weighted avg
                          0.73
                                            0.75
                                                       98
                                   0.78
         accuracy = accuracy_score(y_test, y_pred_rnf)
In [539...
         print(f"RandomForestClassifier Model Accuracy: {accuracy * 100:.2f}%")
        RandomForestClassifier Model Accuracy: 77.55%
         cm = confusion matrix(y test, y pred rnf)
In [530...
         ax = sns.heatmap(cm, annot=True, fmt='d', cmap="Blues")
         ax.xaxis.set_ticklabels(['prediction_label_1', 'prediction_label_2'])
         ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
```

[Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]

Out[530...

RandomForestClassifier Model Accuracy: 77.55%

K-Nearest Neighbors (KNN)

```
y pred knn = knn.predict(X test)
In [549...
       y pred knn
Out[549...
       1, 1, 1, 0, 1, 1, 1, 1, 1, 1, dtype=int64)
      print(classification report(y test,y pred knn))
In [551...
                 precision
                          recall f1-score
                                        support
                            0.06
              0
                    0.50
                                   0.10
                                            18
              1
                    0.82
                            0.99
                                   0.90
                                            80
                                   0.82
         accuracy
                                            98
                                   0.50
        macro avg
                    0.66
                            0.52
                                            98
      weighted avg
                    0.76
                                   0.75
                                            98
                            0.82
      accuracy = accuracy_score(y_test, y_pred_knn)
In [554...
       print(f"KNeighborsClassifier Model Accuracy: {accuracy * 100:.2f}%")
      KNeighborsClassifier Model Accuracy: 81.63%
       cm = confusion matrix(y test, y pred knn)
In [564...
       ax = sns.heatmap(cm, annot=True, fmt='d', cmap="YlOrRd")
       ax.xaxis.set_ticklabels(['prediction_label_1', 'prediction_label_2'])
       ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
```

[Text(0, 0.5, 'targeted label 1'), Text(0, 1.5, 'targeted label 2')]

Out[564...

KNeighborsClassifier Model Accuracy: 81.63%

```
In [571... df3_X = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\New folder\archive\descriptors_output.csv")
In [574... df3_X
```

\cap		+	г		7	1/1
U	u	L	н	J	/	4

	Name	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	Pubche
0	CHEMBL130478	1	1	0	0	0	0	0	0	
1	CHEMBL336538	1	1	1	0	0	0	0	0	
2	CHEMBL339995	1	1	1	0	0	0	0	0	
3	CHEMBL341437	1	1	1	0	0	0	0	0	
4	CHEMBL130098	1	1	0	0	0	0	0	0	
•••										
6941	CHEMBL253998	1	1	1	0	0	0	0	0	
6942	CHEMBL502	1	1	1	0	0	0	0	0	
6943	CHEMBL3085398	1	1	1	0	0	0	0	0	
6944	CHEMBL13045	1	1	1	0	0	0	0	0	
6945	CHEMBL417799	1	1	0	0	0	0	0	0	

6946 rows × 882 columns

Out[577...

	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	Pubchem
0	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
•••										
6941	1	1	1	0	0	0	0	0	0	
6942	1	1	1	0	0	0	0	0	0	
6943	1	1	1	0	0	0	0	0	0	
6944	1	1	1	0	0	0	0	0	0	
6945	1	1	0	0	0	0	0	0	0	

6946 rows × 881 columns

In [596... Y = df3['pIC50']
Y

```
Out[596...
                6.00
                6.30
                6.40
          2
                6.00
          3
                7.40
                . . .
          321
                6.70
          322
                6.47
          323
                6.28
          324
               4.50
          325
               4.52
          Name: pIC50, Length: 326, dtype: float64
```

In [598... dataset3 = pd.concat([df3_X,df3_Y], axis=1)
 dataset3

O L	
()IIT	1 5 9 X
Out	220

	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	Pubcheml
0	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
•••										
6941	1	1	1	0	0	0	0	0	0	
6942	1	1	1	0	0	0	0	0	0	
6943	1	1	1	0	0	0	0	0	0	
6944	1	1	1	0	0	0	0	0	0	
6945	1	1	0	0	0	0	0	0	0	

6946 rows × 882 columns

```
In [600...
          from sklearn.model selection import train test split
          import lazypredict
          from lazypredict.Supervised import LazyRegressor
In [601...
         X.shape
Out[601...
          (326, 129)
         # Remove low variance features
In [604...
          from sklearn.feature_selection import VarianceThreshold
          selection = VarianceThreshold(threshold=(.8 * (1 - .8)))
          X = selection.fit_transform(X)
          X.shape
Out[604...
          (326, 129)
In [605...
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
In [607...
         clf = LazyRegressor(verbose=0,ignore warnings=True, custom metric=None)
          models train, predictions train = clf.fit(X train, X train, Y train, Y train)
          models test,predictions test = clf.fit(X train, X test, Y train, Y test)
```

42/42 [00:28<00:00, 1.47it/s]

```
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001114 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force col wise=true`.
[LightGBM] [Info] Total Bins 387
[LightGBM] [Info] Number of data points in the train set: 260, number of used features: 129
[LightGBM] [Info] Start training from score 6.709252
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
'tuple' object has no attribute ' name '
Invalid Regressor(s)
```

100% 42/42 [00:25<00:00, 1.63it/s]

```
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001046 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force col wise=true`.
[LightGBM] [Info] Total Bins 387
[LightGBM] [Info] Number of data points in the train set: 260, number of used features: 129
[LightGBM] [Info] Start training from score 6.709252
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

In [609...

predictions_train

\cap		+	г	C	0	\cap	
U	u	L		O	U	J	

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
DecisionTreeRegressor	0.23	0.61	0.77	0.04
ExtraTreeRegressor	0.23	0.61	0.77	0.05
ExtraTreesRegressor	0.23	0.61	0.77	1.20
Gaussian Process Regressor	0.23	0.61	0.77	0.07
XGBRegressor	0.23	0.61	0.77	1.39
RandomForestRegressor	0.03	0.51	0.86	1.11
BaggingRegressor	-0.04	0.48	0.90	0.14
MLPRegressor	-0.22	0.39	0.97	1.68
GradientBoostingRegressor	-0.23	0.38	0.97	0.45
HistGradientBoostingRegressor	-0.34	0.33	1.02	0.68
LGBMRegressor	-0.35	0.32	1.02	0.16
Ridge	-0.43	0.28	1.05	0.04
RidgeCV	-0.53	0.23	1.09	0.06
HuberRegressor	-0.58	0.21	1.10	0.21
SGDRegressor	-0.63	0.18	1.12	0.04
PoissonRegressor	-0.64	0.18	1.12	0.07
NuSVR	-0.67	0.16	1.13	0.06
LinearSVR	-0.71	0.14	1.15	0.13
SVR	-0.76	0.11	1.17	0.07
AdaBoostRegressor	-0.78	0.11	1.17	0.10
OrthogonalMatchingPursuit	-0.78	0.11	1.17	0.04

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
KNeighborsRegressor	-0.79	0.10	1.17	0.06
TweedieRegressor	-0.81	0.09	1.18	0.06
GammaRegressor	-0.81	0.09	1.18	0.23
LarsCV	-0.94	0.02	1.22	0.51
OrthogonalMatchingPursuitCV	-0.95	0.02	1.23	0.08
Bayesian Ridge	-0.99	0.00	1.24	0.09
LassoLars	-0.99	0.00	1.24	0.03
DummyRegressor	-0.99	0.00	1.24	0.03
ElasticNet	-0.99	0.00	1.24	0.04
ElasticNetCV	-0.99	0.00	1.24	10.28
LassoLarsCV	-0.99	0.00	1.24	0.20
LassoCV	-0.99	0.00	1.24	7.27
Lasso	-0.99	0.00	1.24	0.03
LassoLarsIC	-0.99	0.00	1.24	0.10
QuantileRegressor	-1.01	-0.01	1.25	0.13
Passive Aggressive Regressor	-1.81	-0.41	1.47	0.04
TransformedTargetRegressor	-1.84	-0.43	1.48	0.04
LinearRegression	-1.84	-0.43	1.48	0.16
KernelRidge	-58.83	-29.03	6.79	0.04
RANSACRegressor	-3462091539051886053163008.00	-1737729343925657033244672.00	1633586300395.05	1.13
Lars	-4494631175055414254454702080.00	-2255992481688045817849446400.00	58859943278549.79	0.12

In [613... predictions_test

Model		
Lars	34935877234292879230979793899081844945700065273	-3439840219991914377771971649911932195944540489 2
LinearRegression	302224660895320728666112.00	-297575050727700402536448.00
TransformedTargetRegressor	302224660895320728666112.00	-297575050727700402536448.00
RANSACRegressor	120029513136298050715648.00	-118182905241893471256576.00
KernelRidge	36.32	-33.78
GaussianProcessRegressor	15.73	-13.50
Passive Aggressive Regressor	3.01	-0.98
DecisionTreeRegressor	2.87	-0.84
ExtraTreesRegressor	2.77	-0.75
XGBRegressor	2.71	-0.68
ExtraTreeRegressor	2.69	-0.66
HuberRegressor	2.67	-0.64
LinearSVR	2.62	-0.60
MLPRegressor	2.59	-0.56
Ridge	2.58	-0.55
BaggingRegressor	2.47	-0.44
RandomForestRegressor	2.35	-0.33
RidgeCV	2.32	-0.30
SGDRegressor	2.29	-0.27
KNeighborsRegressor	2.24	-0.22
GradientBoostingRegressor	2.22	-0.21

	Adjusted R-Squared	R-Squared
Model		
PoissonRegressor	2.19	-0.17
LGBMRegressor	2.17	-0.15
HistGradientBoostingRegressor	2.15	-0.13
AdaBoostRegressor	2.12	-0.11
OrthogonalMatchingPursuit	2.09	-0.08
GammaRegressor	2.07	-0.06
TweedieRegressor	2.07	-0.05
LassoLarsIC	2.06	-0.04
DummyRegressor	2.06	-0.04
ElasticNet	2.06	-0.04
ElasticNetCV	2.06	-0.04
LassoLarsCV	2.06	-0.04
Lasso	2.06	-0.04
LassoCV	2.06	-0.04
LassoLars	2.06	-0.04
Bayesian Ridge	2.06	-0.04
SVR	2.04	-0.03
OrthogonalMatchingPursuitCV	2.04	-0.02
LarsCV	2.04	-0.02
QuantileRegressor	2.03	-0.01
NuSVR	2.01	0.00

Bar plot of R-squared values

```
In [618... #train["R-Squared"] = [0 if i < 0 else i for i in train.iloc[:,0] ]

plt.figure(figsize=(5, 10))
sns.set_theme(style="whitegrid")
ax = sns.barplot(y=predictions_train.index, x="R-Squared", data=predictions_train,palette=sns.color_palette("Spectral", len(predictions_train))

Out[618... [(0.0, 1.0)]</pre>
```


Bar plot of RMSE values

```
plt.figure(figsize=(9, 12))
sns.set_theme(style="whitegrid")
ax = sns.barplot(y=predictions_train.index, x="RMSE", data=predictions_train,palette=sns.color_palette("seismic", len(predictions_train.index, x="RMSE")
out[624... [(0.0, 10.0)]
```


Bar plot of calculation time

In []: