Flow Visualization

ME 590: Applied CFD and Numerical Heat Transfer Graham Wilson, AER

Problem Statement

Analyze the CFD simulation results for a NACA airfoil, including pressure coefficient distribution, flow field visualization, and convergence characteristics.

Solution

Results

Streamline Analysis

Figure 1 and 2 show the streamline patterns around the airfoil at different flow conditions, visualized through contour lines.

Figure 1: Streamline Pattern with Pressure Gradient Visualization

The streamline pattern in Figure 1 reveals several critical flow features:

- Smooth flow acceleration over the upper surface, indicated by the increased spacing between streamlines
- Clear stagnation point at the leading edge where streamlines diverge
- Pressure gradient visualization through color contours, showing:
 - High pressure (red) at the stagnation point
 - Low pressure (blue/green) region over the upper surface
 - Gradual pressure recovery in the wake

- No significant flow separation, evidenced by the attached streamlines
- Uniform upstream flow conditions indicated by parallel streamlines

Figure 2: Velocity-Based Streamline Visualization

Figure 2 provides additional insight through velocity-based streamline visualization:

- Velocity magnitude variations shown through color gradients:
 - Higher velocities (yellow/green) in the flow acceleration region
 - Lower velocities (blue) near stagnation points and in the wake
- Streamline convergence over the upper surface indicating flow acceleration
- Wake characteristics showing:
 - Gradual velocity recovery downstream
 - Minimal wake thickness suggesting low drag
 - Symmetric wake pattern indicating zero angle of attack
- Boundary layer development visible through streamline density near the surface

Pressure Coefficient Distribution

Figure 3: Pressure Coefficient Distribution Along Airfoil Surface

The pressure coefficient distribution reveals key aerodynamic characteristics:

- Leading edge characteristics:
 - Stagnation point with maximum $C_p \approx 1.0$
 - Rapid pressure decrease on upper surface
 - Moderate pressure decrease on lower surface
- Upper surface behavior:
 - Strong suction peak $(C_p \approx -2.5)$
 - Gradual pressure recovery toward trailing edge
 - Smooth pressure gradient indicating attached flow
- Lower surface characteristics:
 - Relatively constant pressure distribution
 - Higher pressure than upper surface throughout
 - Contributes to net lift generation
- Trailing edge region:
 - Pressure recovery to near-freestream conditions
 - Similar pressures on upper and lower surfaces
 - Indicates proper flow closure

Pressure Contours

Figure 4: Pressure Contours Around Airfoil

The pressure contour visualization demonstrates several important flow features:

- Pressure field characteristics:
 - High-pressure region (red) at leading edge stagnation point
 - Low-pressure region (blue) over upper surface
 - Moderate pressure (green/yellow) below airfoil
- Flow field properties:
 - Smooth pressure transitions indicating good solution quality
 - Symmetric pressure field ahead of leading edge
 - Gradual pressure recovery in wake region
- Aerodynamic implications:
 - Clear pressure differential generating lift
 - Well-behaved pressure gradients suggesting low drag
 - No adverse pressure gradients causing separation

Convergence

Figure 5: Scaled Residuals vs. Iterations

The convergence history provides crucial information about solution quality:

- Residual behavior:
 - Continuity residuals stabilized at 10^{-4}
 - Velocity components reached 10^{-4} to 10^{-5}
 - Consistent downward trend indicating proper convergence
- Convergence characteristics:
 - Stable but oscillations present in residuals
 - -10^{-6} was not reached for all variables
- Solution quality:
 - Acceptable accuracy achieved but could not converge to 10^{-6} due to computational resources
 - All variables show consistent convergence showing mesh refinement is near or above requirements

Velocity Field Analysis

Figure 6: Velocity Magnitude Contours

The velocity magnitude contours reveal the flow field structure:

- Velocity distribution characteristics:
 - Flow acceleration over upper surface
 - Stagnation region at leading edge
 - Wake velocity deficit downstream
- Flow features:
 - Smooth acceleration and deceleration regions
 - Boundary layer development along surface
 - Symmetric wake structure
- Performance implications:
 - Attached flow condition maintained
 - Efficient energy conversion indicated
 - Minimal wake thickness suggesting low drag

Figure 7: Velocity Vector Field

The velocity vector field provides detailed flow direction information:

- Vector characteristics:
 - Clear flow directionality around airfoil
 - Vector magnitude indicating local velocities
 - Flow alignment with surface geometry
- Flow behavior:
 - Smooth flow turning at leading edge
 - Parallel flow recovery downstream
 - No reversed flow regions visible
- Dynamic features:
 - Acceleration zones clearly identified
 - Wake development and recovery visible
 - Proper upstream and downstream conditions