CHAPTER-8

- 1. Find the area of the region bounded by the curves $y^2 = 9x$, y = 3x.
- 2. Find the area of the region bounded by the parabola $y^2 = 2px$, $x^2 = 2py$.
- 3. Find the area of the region bounded by the curve $y = x^3$ and y = x + 6 and x = 0.
- 4. Find the area of the region bounded by the curve $y^2 = 4x$, $x^2 = 4y$.
- 5. Find the area of the region included between $y^2 = 9x$ and y = x
- 6. Find the area of the region enclosed by the parabola $x^2=y$ and the line y=x+2
- 7. Find the area of region bounded by the line x=2 and the parabola $y^2=8x$
- 8. Sketch the region $(x,0): y = \sqrt{4-x^2}$ and x-axis. Find the area of the region using integration.
- 9. Calcualte the area under the curve $y = 2\sqrt{x}$ included between the lines x = 0 and x = 1.
- 10. Using integration, find the area of the region bounded by the line 2y = 5x + 7, x-axis and the line x = 2 and x = 8.
- 11. Draw a rough sketch of the curve $y = \sqrt{x-1}$ in the interval [1, 5]. Find the area under the curve and between the lines x = 1 and x = 5.
- 12. Determine the area under the curve $y=\sqrt{a^2-x^2}$ included between the lines x=0 and x=a
- 13. Find the area of the region bounded by $y = \sqrt{x}$ and y = x.
- 14. Find the area enclosed by the curve $y = -x^2$ and the straight lilne x + y + 2 = 0.
- 15. Find the area bounded by the curve $y = \sqrt{x}$, x = 2y + 3 in the first quadrant and x-axis.

Long Answer (L . A)

- 16. Find the area of the region bounded by the curve $y^2 = 2x$ and $x^2 + y^2 = 4x$.
- 17. Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$.
- 18. Find the area of region bounded by the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
- 19. Draw a rough sketch of the region $(x,y): y^2 \leq 6ax$ and $x^2 + y^2 \leq 16a^2$.
- 20. Compute the area bouded by the line x+2y=2, y-x=1 and 2x+y=7.
- 21. Find the area bonded by the lines y = 4x + 5, y = 5 x and 4y = x + 5.
- 22. Find the area bounded by the curve $y = 2\cos x$ and the x-axis from x = 0 to $x = 2\pi$.
- 23. Draw a rough sketch of the given curve y = 1 + |x + 1|, x = -3, x = 3, y = 0, and find the area of the region bounded by them, using integration.

Objective Type Questions

Choose the correct answer from the given four options in each of the Exercises 24 to 34.

- 24. The area of the region bounded by the y-axis, $=\cos x$ and $y=\sin x$, $0\leqslant x\leqslant \overline{2}$ is
 - (a) $\sqrt{2}$ sq units
 - (b) $(\sqrt{2} + 1)$ sq units
 - (c) $(\sqrt{2}-1)$ sq units
 - (d) $(2\sqrt{2}-1)$ sq units
- 25. The area of the region bounded by the curve $x^2 = 4y$ and the straight line x = 4y 2 is
 - (a) $\frac{3}{8}$ sq units
 - (b) $\frac{5}{8}$ sq units
 - (c) $\frac{7}{8}$ sq units

- (d) $\frac{9}{8}$ sq units
- 26. The area of the region bounded by the curve $y = \sqrt{16 x^2}$ and x-axis is
 - (a) 8 sq units
 - (b) 20π sq units
 - (c) 16π sq units
 - (d) 256π sq units
- 27. Area of the region in the first quadrant enclosed by the x-axis, the line y=x and the circle $x^2+y^2=32$ is
 - (a) 16π sq units
 - (b) 4π sq units
 - (c) 32π sq units
 - (d) 24π sq units
- 28. Area of the region bounded by the curve $y=\cos x$ between x=0 and $x=\pi$ is
 - (a) 2 sq units
 - (b) 4 sq units
 - (c) 3 sq units
 - (d) 1 sq units
- 29. The area of the region bounded by parabola $y^2=x$ and the straight line 2y=x is
 - (a) $\frac{4}{3}$ sq units
 - (b) 1 sq units
 - (c) $\frac{2}{3}$ sq units
 - (d) $\frac{1}{3}$ sq units
- 30. The area of the region bounded by the curve $y=\sin x$ between the ordinates $x=0,\,x=\overline{2}$ and the x- axis is

- (a) 2 sq units
- (b) 4 sq units
- (c) 3 sq units
- (d) 1 sq units
- 31. The area of the region bounded by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is
 - (a) 20π sq units
 - (b) $20\pi^2$ sq units
 - (c) $16\pi^2$ sq units
 - (d) 25π sq units
- 32. The area o thr region bounded by the circle $x^2 + y^2 = 1$ is
 - (a) 2π sq units
 - (b) π sq units
 - (c) 3π sq units
 - (d) 4π sq units
- 33. The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is
 - (a) $\frac{7}{2}$ sq units
 - (b) $\frac{9}{2}$ sq units
 - (c) $\frac{11}{2}$ sq units
 - (d) $\frac{13}{2}$ sq units
- 34. The area of the region bounded by the curve x=2+3 and th y lines y=1 and y=-1 is
 - (a) 4 sq units
 - (b) $\frac{3}{2}$ sq units
 - (c) 6 sq units
 - (d) 8 sq units