# **UNCLASSIFIED**

| AD NUMBER                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| AD835851                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| NEW LIMITATION CHANGE                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| TO Approved for public release, distribution unlimited                                                                                                                                                                                      |  |  |  |  |  |  |  |
| FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; 23 NOV 1964. Other requests shall be referred to Army Biological Laboratory, Attn: Technical Release Branch [TID], Fort Detrick, MD 21701. |  |  |  |  |  |  |  |
| AUTHORITY                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| smufd, d/a ltr 14 feb 1972                                                                                                                                                                                                                  |  |  |  |  |  |  |  |

TRANSLATION NO. /22 8

DATE: 23 nov 1964

#### DDC AVAILABILITY NOTICE

Reproduction of this publication in whole or in part is prohibited. However, DDC is authorized to reproduce the publication for United States Government purposes.

#### STATISTICS OF VACLASSETIES

This document is subject to special export controls and each 

Fort Detrick
Frederick, Maryland
Tech Relace 12, TID

# DISCLAIMER NOTICE



THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

BIOCHEMICAL STUDIES ON THE RICE BLAST DISEASE (PART 10) BIOCHEMICAL CLASSIFICATION OF PIRICULARIA ORYZAE (NO 3)

- Japan -

[Following is a translation of an article by Otsuka, H., et al., in the Japanese-language Agricultural Chem. Soc. Japan Journal, Vol 31, 1457, pages 886-890.]

Attempts have been made to classify Piricularia oryzae Cavara in terms of bacterial reactions to several varieties of rice (1, 2), and we have noticed a close relationship between them and the method in our report Part 10 (No 2), which depended on the extent of the sugar consumption of 45 stock-cultures of Piricularia oryzae Cavara (3).

Recently Burkholder and others (4) have demonstrated the possibility of classifying ray bacteria by the differential amount of use by them of nitrogen sources, and this is of great interest with respect to the problem of bacteria classification.

Otani (5) studied the degree of consumption of nitrogen sources by Piricularia oryzae Cavara and showed that nitric acid-derived nitrogen, glycocoll, L-alaninine, aspartic acid, asparagine, and D-glutamic acid constitute excellent nitrogen sources, while DL- $\alpha$ -amino butyric acid, creatine, and taurine are not adequate as nitrogen sources.

Tanaka and Kogetsu (6), on the other hand, studied the effects of the ammonia family and of nitric acid-derived nitrogen on nutrition absorption in Piricularia oryzae Cavara (hereafter called P.o.c.) and demonstrated that the prevention of Ph acidification of the culture medium results in effective use and assimilation of ammonia

In addition, there is a study by Leaver (7) that indicates the effective use of organic nitrogen, particularly amino acid, by P.o.c.

Using the 45 P.o.c. stock-cultures as described in our report Part 10 (No 1) (8), we have investigated the degree of consumption of various inorganic as well as organic nitrogens, amino acid in particular, and noted a great amount of stock-culture difference among them. The present study reports on such stock-culture differences, were based on the classification table in our report Part 10 (No 2).

# Experiment

- 1) P.o.c. used in the experiment: the 45 stock-cultures which were used in report Part 10 (No 1)
- 2) Pre-cultivation: as described in the report Part 10 (No 1)
- 3) Culture medium for the use of nitrogen-source: The composition of the culture medium is as shown in Table 1.

Table 1
Composition of the culture medium for the use of nitrogen source

| 1)         | <b>ゲルコース</b>                          | 20 g         |
|------------|---------------------------------------|--------------|
|            | Nitrogen-Source                       | 0.4154 g     |
|            |                                       | (KNO。3g に相当) |
|            | K2HPO4                                | 1.0 g        |
|            | KH <sub>2</sub> PO <sub>4</sub>       | 1.0g         |
|            | MgSO4-71120                           | 0. 5 g       |
|            | CaCla                                 | 0.1 g        |
|            | FeSO. 7 H2O                           | 0. 0075 g    |
|            | MnSO <sub>4</sub> ·7 H <sub>2</sub> O | 0. 002 g     |
|            | CuSO <sub>4</sub> ·5 H <sub>2</sub> O | 0.006 g      |
|            | ZnCla                                 | 0. 075 g     |
|            | (NH4)4MO4O24 4 H2O                    | 0.009 g      |
| 21         | ピオチン                                  | 5 7          |
| 3)         | ナフミン                                  | 1 mg         |
| <b>4</b> ) | 福電水を加え 11 とす (pH                      | . •          |
|            |                                       |              |

[Legend:] 1) Glucose; 2) Biotine; 3) Thiamine; 4) Make it 11 by adding distilled water; 5) equivalent to.

The solution of the compound without the glucose, nitrogen source, biotine and vitamine  $B_1$  was sterilized for 15 min.

at 15 pounds pressure, and then glucose, the nitrogen source, biotine and vitamine  $B_1$  were added. After dissolving the resulting compound, 2 ml. each was transferred into test tubes of 17 mm diameter and further sterilized for 10 min. at 10 lb. before being put to use as the culture medium.

4) Determination of the extent of consumption: Each stock-culture was cultivated in the culture medium for 14 days at 25°, and was washed with water and dried at 100° to a constant quantity (4-6 hr.). The extent of nitrogen consumption was determined from the relative weight of the dried bacteria. The results are shown in Table 2.

Table 2

Results on the extent of nitrogen source consumption (weight of bacteria gx200)

```
Φ / 5414 5418 3 No. No. 1. No. No. 1. No. P Λ 25 Λ 36 5309 5311 5327 5330
● 発表器
              #10 0.05 0.10 0.05 0.05 0.05 0.05 0.06 (0.05 0.10 0.11 0.05 0.05 0.00 0.05 0.20 0.10
A) $t
 ● アスペラギン - 2.80 1.85 2.60 2.90 0.10 1.77 - 3.30 2.70 3 :- 1.80 3.35 3.20 2.95 3.10 3.30
  KNO<sub>2</sub>
                  1.35 3.25 2.80 2.10 3.60 2.20 3.10 2.50 0.03 3.50 0.70 3.10 3.30 3.70 2.40
                                                  3.65 2.60 3 3 2.75 2.60 3.40 3.60 1.90 2.80
  NaNO.
                  1. 15 3. 40 3. 10 3. 50 3. 60 3. 64
                                                   0.50 0.20 0 40 1.80 0.25 2.20 2.00 2.80 2.30
  NaNOs
                  1.00 1,25 1,15 2,10 2.80 0.(X
(a) + \nu \psi = \nu 2.80 4.35 2.80 3.20 3.25 3.80 5.20 4.15 5.7 3.70 2.50 0.80 3.35 2.90 2.55
❷ アスパラギン酸 3.50 3.15 2.80 3.90 4.90 3.7(
                                                   10 1,65 1 at 3,60 2,40 3,50 3,10 3,20 3,80
9 7 2 4 = > 3.05 3.80 2.60 3.60 3.90 2.70
                                                  3, 50 1, 85 3 17 3, 60 2, 40 3, 20 3, 90 3, 00 2, 90
     □ ♥ ♥ 1.20 1.20 2.00 2.20 2.10 2.3. 1.70 1.50 1 → 1.50 1.40 1.75 1.90 2.10 1.80
                  2.10 4.35 2.70 4.00 4.40
                                                   0.70 0.13 . . 2.50 3.80 3.50 2.50 4.05 2.10
                                            4. 10
@ 7 == ~ 7 7 = > 0.50 0.70 1.00 0.80 1.40 1.3
                                                   6,20 0,25 c - 1,20 0,50 1,00 5,10 0,60 0,50
∅ ≠ 😠 y > 3.20 3.00 3.05 3.85 4.40 2.84 3.80 3.50 3 3.70 3.60 3.40
                                                                                        3,60 3,20
② v x ≠ v 0.65 0.10 1.10 1.30 1.50
                                                   1.80 0.25 P io 1.20 0.00 0.40 1.30 0.40 0.05
                                            1.04
   Hydroxy proline 0.10 0.10 0.20 0.20 0.30 0.10 0.10 0.10 0.10 0.05 0.05 0.00 0.50 0.10 0.20
② = イ シ ン 2.70 3.10 2.75 1.60 1.80 3.20
                                                   2.90 1.20 1.70 2.30 0.60 2.10 2.30 1.20 2.95
B + + + = >
                  2.00 1.70 1.15 2.40 2.60 2.70
                                                    2.00 1.95 2 00 1.70 1.30 2.80 2.55 2.10 0.50
                                                   2,55 1,60 2.80 2.60 2.00 2.00 3.00
                                                                                             3.80
@イソコイシン
                 2.30 3.10 3.60 3.10 2.70 3.20
(a) +c, y = 2.50 2.10 3.55 3.85 3.70 3.61 3.10 3.30 3.80 3.30 2.90 3.30 2.60 3.45 3.60 (a) +c, y = 2 3.07 3.07 2.85 4.40 4.20 4.01 3.85 3.20 3.50 4.10 2.20 3.65 3.50 3.10 4.10
                  2.20 2.07 2.80 2.30 2.95 3.30 4 00 1.50 3 50 3.80 2.00 2.80 3.20 3.40 2.30
              y
                  3.80 3.00 3.10 2.20 3.60 3.85 B 80 3.40 1 20 3.90 2.30 2.75 3.60 3.50 3.10
2 + N + 1 + N 2 2 40 8 20 3 85 4 40 4 50 4 8 4 50 3 50 3 60 3 50 4 4 10 4 10 2 70 3 40 3 60 3 9 9 9 1 1.38 1.06 2 40 2 50 2 20 2 16 3 00 0 80 1 80 2 30 0 25 1.80 2 60 1.40
                   1.35 1.05 2.40 2.50 2.20 2.16 3.00 0.80 i So 2.30 0.25 1.80 2.60
② トリプトファン 0.80 1.00 1.80 1.50 3.00 2.70 ± 60 0.25 ± □ 1.80 0.10 0.50 1.00 2.80 1.40
```

[Table on following page]

```
0 H A
                   5333 5404 5420 5424 5425 34 / 6514 5515 // 3517 5518 5519 5520 5521 5522
O REE
 0 H
                   0.30 0.05 0.30 0.20 0.05 0. 0 0.05 0.20 0 50 0.05 0.20 0.00 0.10 0.05
 ● アスパラギン
                   3.40 3.50 2.50 3.20 3.35 3.46 3.20 3.50 3 26 3.50
                                                                       3.40 2.75 3.30 3.00
   XXO.
                   1.00 2.05 0.70 2.20 3.05 2.10 2.30 3.70 1 do 3.20
                                                                       2.80 2.80 2.50 1.60
   Nanc.
                   1.40 3.50 0.60 2.30 3.80 2.70 3.20 3.60 1.90
                                                                       3.00 2.20 3.40 3.00
   NaNO.
                   2.70 1.00 0.30 1.20 0.50 3.0a 0.50 2.10 1 20 0.40
                                                                       2.70 1.10 1.20 0.10
 タトレオニン
                   3.35 2.10 3.60 1.70 2.95 0 0 2 10 1 FO 6 5 1.20 1.20 2.35 1.90 3.00 3.65
 ロフスハラギンは
                   3.20 3.60 3.20 3.20 3.00 3.00 3.80 3.00 Dec 3.90
                                                                       3.00 3.00 3.60 3.70
 07 N 4 = v
                   2.60 3.30 3.10 3.90 3.70 3.10 3.50 2.55 2.50 2.80
                                                                       3, 20 2, 00 3, 70 2, 50
O+ = > >
                   0.85 2.40 1,25 0.70 1.25 1.10 1.70 2.20 1 to 1.40 1.75 0.90 1.70 1.50 1.20
 97 7 a v
                   2.60 2.80 3.60 3.60 3.60 3.65 3.30 4.10 3.00 3.20 2.15 2.30 2.10 2.70 3.45
 @ 7== ~ 7 7 = ¥
                   0.70 1.05 2.90 1.50 1.20 0.00 0.00 1.00 1 to 0.80
                                                                       1.00 0.80 0.70 0.70
 ロナ = リン
                   3.30 3 40 2.40 3.20 3.40 3. 0 3 60 2.70 3 L 2.80
                                                                       3.15 3.10 2.90 2.80
 BUXFY
                   0.80 1.05 0.50 0.70 0.40 0.03 0 0.00 1 25 0.50
                                                                       1.30 0.30 0.70 0.70
   Hydroxy preline
                   0.05 0.10 0.30 0.10 0.20 0.00 0.10 0.10 0 to 0.20
                                                                       0. 20 1. 10 0. 30 0. 10
 0 = 1 = 7
                   1.90 1.10 2.00 1.30 1.20 1.00 1 80 2.00 2 to 1.40
                                                                       2, 20 2, 45 1, 20 0, 60
 @メチオニン
                   2.45 2.90 1.95 0 80 2.50 1. 0 1.50 2.80 1.80 2.40 0 75 1.30 0.65 1.40 2.00
 @17=100
                   3.20 1.90 1.70 3.00 3.00 3.10 2.00
                                                       2.50
                                                                       3.70 1.50
   * 1
             y
                   3.40 2.80 3.35 2.40 3.60 3.00 3.50 3.60 3 io 4.05 2.80 2.85 3.50 3.70 3.30
                   3.85 3.00 2.70 3.50 2.50 3.70 3.50 3.50 3.60 3.50
                                                                       3. 30 3. 25 3. 60 2 30
 0
   ,ł
      y >
                   2.40 2.00 0.80 2.00 2.30 2.40 1.80 3.50 1 60 2.00
                                                                       3.10 1.30 3.70 1.10
1 x + V v
                   2.05 4.20 1.40 2.50 4.20 3.00 1.40 4.20 2.70 3.10
                                                                       3.00 4.30 1.80 1.80
OFREE VE
                   2.80 3.50 3.25 2.90 3.65 3.40 3.60 3.75 3 30 3.10 3.00 2.70 3.80 3.90 3.55
                   1.60 2.30 1.00 1.00 1.30 1.10 2.00 1.20 1 80 1.40
                                                                       2.50 1.10 1.90 1.80
                   1.40 3.50 0.50 0.50 0.40 0.40 0.30 3.70 0.60 2.40
                                                                       1.70 0.80 1.75 0.80
                  5523 5524 5525 5526 5527 5528 5579 5502 5503 5-34 5535 5536 5537 5539 5540
(1) 有水道
⊕ ∺
                  0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.20 0.20 0.20 0.05 0.30 0.05 0.10
ロアスペラギン
                  3.40 1.70 3.45 3.80 3.30 3.75 3.10 3.10 3.40 3.13 3.20 3.50 3.30 3.00 2.20
  KNO,
                  3.50 0.70 3.00 3.40 1.15 2.50 3. 0 3.00 3.20 3.40 3.60 3.70 3.50 1.85 3.90
  NaNOs
                  3.40 1.35 1.50 3.80 3.00 3.40 3.40 3.40 3.20 3.30 4.00 3.50 3.40 3.20 2.90
  NaNOs
                  1.00 0.03 0.65 0.05 0.75 1.80 2.10 0.80 0.80 1 60 3.10 2.60 2.20 0.30 1.90
⑤トレオニン
                  3.10 3.90 3.20 3.90 3.20 3.00 1.10 2.25 3.70 0 10 3.00 3.20 4.50 1.40 0.70
 ロアスパラギン機
                  3.50 3.40 3.30 3.40 3.30 4.20 3.40 3.70 3.30 3.50 3.75 3.20 3.20 3.10 3.20
07 N 4 = >
                  3.30 3.00 3.50 3.40 3.30 3.80 3.11 0.40 3.15 (6) 2.60 3.70 3.50 3.40 2.30
◎チョシン
                  1.00 0.80 1.80 1.00 1.10 1.70 1.10 1.20 1.50 1.60 1.25 1.00 1.15 1.15 1.65
●た ラ エ ン
                  3.85 2.90 3.15 3.70 3.45 3.90 4.10 0.85 2.50 0.20 3.40 3.45 2.20 3.20 2.00
@7==~79=y
                  1.00 0.00 0.60 0.80 3.20 0.60 0.7 (1.40 1.2) 2.50 1.50 1.40 1.20 0.05 0.60
@ナ ⇒ , リ ン
                  2.70 2.35 3.90 3.25 3.50 3.60 3.27 3.99 2.70 3.30 3.55 3.15 3.20 2.90 2.80
② ≠ × + ×
                  1.00 0.00 0.40 0.40 0.40 1.15 0.7) 1.20 1.40 0.60 1.20 1.20 1.25 0.30 0.20
  Hydroxy preline
                  0.15 0.10 0.10 0.10 0.20 0.20 0.2: 0.10 0.10 0.30 0.15 0.10 0.10 0.20 0.05
Ø⇒ イシン
                  1.70 1.20 1.80 1.35 1.60 2.05 2.5 · 1.50 4.40 5.40 2.10 2.00 3.40 1.60 0.90
0/1 + * = v
                  1.00 1.50 2.20 1.90 1.80 2.40 2.91 1.50 2.00 2.10 2.00 0.90 3.60 2.40 0.75
                  3.70 2.20 2.45 3.20 2.90 2.40 3.51 3.00 2.70 3.00
                                                                      2.80 3.60 1.50
0 + 1 v v
                  3.30 3.25 3.60 3.50 3.60 3.15 3.6) 3.20 3.60 3.30 3.50 2.95 2.50 3.00 2.50
                  3.40 3.40 3.30 3.50 3.50 4.00 4.41 3.70 2.90 3.10 3.70 3.70 3.90 3.40 1.65
                  2.70 1.35 1.90 1.00 1.40 2.60 2.50 2.50 3.50 2.70 2.75 3.20 3.40 1.80 1.60
OEXFULL BOOK
                  4.00 1.70 2.90 1.05 1.40 4.30 3.70 3.45 3.10 3.60 3.50 4.60 2.25 4.00 1.30
                  3.50 3.30 3.70 3.80 3.30 3.50 4.0+ 3.20 3.50 3.30 3.05 3.50 2.55 2.70 2.70
      v v
                  1.75 1.80 1.10 1.10 1.00 1.80 1.00 1.50 2.30 2.10 1.20 2.20 2.00 1.40 1.90
                  0.90 1.00 0.40 0.90 0.30 0.60 0.70 0.60 3.50 2 10 2.00 2.30 1.80 0.70 1.00
```

[Legend on following page]

[Legend:] 1) Stock culture; 2) Nitrogen source; 3) Control; 4) Asparagine; 5) Threonine; 6) Aspartic acid; 7) Arginine; 8) Tyrosine; 9) Alanine; 10) Phenyl-alanine; 11) proline; 12) Cystine; 13) Leucine; 14) Methionine; 15) Isoleucine; 16) Serine; 17) Glycine; 18) Barine; 19) Histidine; 20) Glutamic acid; 21) Lysine; 22) Tryptophane; 23) By control is meant the bacteria weight in the culture medium of Table 1 from which all the nitrogen sources are removed.

5) Nitric acid reducibility: The culture medium was composed of Zapeck solution (glucose 3%) and 0.2% polypeptone. 7 and 14 days after the inoculation, ordinary tests were carried out on the cultivation filtered solution, the results of which are given in Table 3.

Table 3
Nitric acid reducibility of P.o.c.

| ● 均養日数            | 7   | 14       | 変むの /      | 7          | 14   | < 0 mg                | 7          | 11 |
|-------------------|-----|----------|------------|------------|------|-----------------------|------------|----|
| <b>Q</b> .,       | DI  | B        | 日数         | <b>⊘</b> ∏ | a    | G ∷ ikk               | <b>B</b> I | 11 |
|                   | 後   | 췑        | 0首体        | 錗          | 後    | <b>26</b> 1 ⋅ 1       | 一校         | H  |
| . 5414            | +   | #        | 5333       | +          | -    | 523                   | +          | +  |
| 5418              | +   | <b>±</b> | 5404       | +          | +    | 521                   | +          | +  |
| 3.                | #   | ±        | 5420       | +          | +    | 525                   | +          |    |
| No. 1             | +   | æ        | 5424       | +          | +    | . 526                 | +          | +  |
| No. 2             | +   | + .      | 5425       | .+         | +    | . 527                 | -+-        | +  |
| No. 11 F 8 hetero | -   | _        | 5415       | +          | ±    | 128                   | +          | +  |
| No. 11 hetero     | +   | ±        | 5514       | +          | +    | 5.529                 | ±          |    |
| No. 188 hetero    | ±   | -        | 5515       | + .        | _    | € 32                  | -          | -  |
| P <sub>3</sub>    | +   | #        | 5516       | +          | _    | 5 33                  | ~          | ٠, |
| Å 25              | +   | +        | 5317       | #          | -    | 5 334                 | ~          |    |
| A 36              | Φ.  | ±        | 5518       | +          | +    | 5 🗇                   | .+-        |    |
| 5309              | +   | _        | 5519       | +          | -    | 5 dai                 | 4          |    |
| 5311              | +   | ±        | 5520       | +          | +    | 5. 37                 | 4-         |    |
| 5327              | +   | ±        | 5521       | +          | #    | 5                     | _          |    |
| 5330              | +   | Ŧ        | 5522       | +          | +    | 5. (0                 | -+         |    |
| ONA: # SHEAL      | ĞE, | + 6      | iを選え行あり、1( | na.a       | ASK. | 2. <del>- 13 3.</del> |            |    |

[Legend:] 1) The number of days of cultivation; 2) days after (e.g. 7 days after inoculation, etc.); 3) Stock-culture; 4) Comments; +-- Presence of strong nitric acid reducibility; +-- Presence of nitric acid reducibility; +-- Doubtful presence of acid reducibility; --- Absence of nitric acid reducibility.

# Discussion

Excellent nitrogen sources for the growth of P.o.c. is general are asparagine, aspartic acid, arginine, alanine, proline, serine, glycine, histidine, glutamic acid and MaNO2, while such substances as barine, threonine, iso-leucine and MaNO2, constitute a fair source of nitrogen. On the other hand, the following substances do not provide a good source of hitrogen; oxiproline, cystine, phenylalanine, trypto-phine and MaNO2.

Furthermore, some stock-cultures propagate well on phonyl-alanise, cystime, tryptophane and MaNO2, while other stock-cultures do not propagate at all.

Maving been converted from NO3 by P.O.C., No 2 could be used as mitrogen source. For this reason the determination of mitric seid reducibility was carried out 7 days or 14 days after the inoculation. Considering both the mitric seid reducibility and the extent of consumption with NaNO2 as attrogen source (Table 3), we conclude that the following four stock-culture do not show any sign of mitric acid reducibility: No 11 F8 hetero, No 155 hetero, A36 and 5539.

Among the stock-cultures that show nitric acid reducibility, one can distinguish those that utiline NaNO2 from the rest that do not utilise it.

We believe that nitric acid reducibility and the use of MaNO2 will provide important clues in classifying the P.o.c. Therefore, we have revised Table 3 of our report Part 16 (No 2) in terms of nitric acid reducibility and the use of MaNO2 and tryptophase. The revision is shown in Table 4.

The present classification is much simpler than that in our report Part 10 (No 2). Firstly, much is simplified in the matter of poorly propagating organic salts. Secondly the imulin-, sorbose- and glycerol(+)-based typology was previously further subdivided in terms of the Ma-citrate, mannite and Ma-succinate, whereas in our present scheme the use of MaNO<sub>2</sub> and, further, the use of tryptophane provide the slassificatory criteria.

Type 1 in our report Part 10 (No 2) included both type K and type D 11 of Agr. Res. Ctr. In contrast to this, however, type 2 of the present classification includes type K enly, and D 11 is included in type 7.

Table 4

Classification of Piricularia orygae Cavara



[Legend:] 1) Negative nitric-acid reducibility; 2) Positive nitric-acid reducibility; 3) Those not using NaNO<sub>2</sub> as nitrogen source; 4) Inuln; 5) Sorbose; 6) type; 7) Those using NaNO<sub>2</sub> as nitrogen source; 8) Those using tryptophane as nitrogen source; 9) Those not using tryptophane as nitrogen; 10) Remarks -- (1) The number inside ( ) is the classification type of the Agricultural Res. Ctr. The ones with asterik are the results obtained (i.e., 1955.); (2) 5518 is doubtful.

Similarly, A 1, A 11, C 1 and C 11 of Agr. Res. Ctr. were all found in type 6 of our previous scheme, whereas only A 1 and A 11 are included, as shown, in type 9 and 10.

Thus, we note that the etiologically based classification of Agr. Res. Ctr. is somewhat similar to our biochemically based classification, suggesting the possibility that

etiological and biochemical characteristics are rather alike to a large extent.

We do not believe that a calssification scheme based on nitrogen- and carbon- sources exhausts the possibilities for classification. We feel that with increased information on the biochemical properties a better classification system would become feasible.

### Summary

Experimenting with the 45 stock-cultures of P.o.c. on the extent of their consumption of various nitrogen sources, amino acid in particular, we have obtained the following results:

- l. The following substances are excellent nitrogensources -- asparagine, aspartic acid, arginine, alanine, proline, serine, glycine, histidine, glutamic acid and NaNO<sub>3</sub>, while such substances as oxiproline, cystine, phenylalanine, tryptophane and NaNO<sub>2</sub> provide a poor source.
- 2. The four stock-cultures No 11 F8 hetero, No 188 hetero, A 36 and 5539 do not show nitric acid reducibility, while the remaining 41 stocks show the sign of nitric acid reducibility.
- 3. The 45 stock-cultures of P.o.c. were classified into 10 families in terms of nitric acid reducibility and the use of NaNO2 and tryptophane in its propagation.

#### References

- 1. Kuribayashi, et al., Nagano Noshi Nendo Hokoku ("Annual Report of Nagano Agricultural Research Center") (1951-52).
- 2. Goto, W., et al., Showa Sanjunendo Nogi Kenkyu Chukan Hokoku ("1955 mid-year report on Agricultural Techniques") Vol 9, 43 (1955). Showa Sanjuichinendo Nogi Kenkyu Chukan Hokoku ("1956 mid-year report on Agriculture Techniques") Vol 10, 69, (1956).
  - 3. Otsuka, H., et al., This journal, 31, 794 (1957).
- 4. Paulr. R. Burkholder, Sung Huang Sun, Ann. N.Y. Acad. Sci., 60, 102 (1954).

- 5. Otani, Y., Nishokubyo ("Japan J. of Plant Pathology") 17 (1), 9 (1953).
- 6. Tanaka. S., et al., Nishokubyo ("Japan J. of Plant Pathology") 16, 103 (1952).
- 7. F. W. Leaver, J. Leal, C. R. Brawer, J. Bact., 54, 501 (1947).
  - 8. Otsuka, H., et al., This journal, 31, 791 (1957).

- END -