

Dvojitý H-Můstek 6.8V/2x0,7A s obvodem MPC17529

Milan Horkel

Modul používá integrovaný dvojitý H-Můstek od firmy Freescale. Je určen pro buzení malých motorků. Obvod stojí cca 40Kč a lze snadno koupit od firmy Farnell.Hodí se pro malé roboty napájené ze 4 Ni-MH článků nebo z jednoho Li akumulátoru. Podporuje PWM řízení do frekvence 200 kHz.

1. Technické parametry

Parametr	Hodnota	Poznámka	
Napájení motoru	2.0 – 6.8V	Absolutní maximum 8.0V	
Napájení logiky	2.7 – 5.7V	Absolutní maximum 7.0V	
Výstupní proud	2x0,7A, max. 2x1,4A	Odpor spínačů typ. 0.7Ω	
Spotřeba	max. 3mA	Logika	
Frekvence PWM	0-200kHz	Dovolen statický režim	
Rozměry	30 x 30 x 15mm	Výška nad základnou	

2. Popis konstrukce

2.1. Úvodem

Při pátrání po vhodných obvodech jsem narazil na webu http://www.farnell.com na tento zajímavý obvod. Je totiž levný (cca 40Kč) a přitom umožňuje dodávat proud 0,7A trvale a špičkově až 1,4A a to ve dvou kanálech. Obvod je zapouzdřen v jemném pouzdru s roztečí vývodů 0.65mm. Je tedy velmi prostorově úsporný.

2.2. Zapojení modulu

Modul je osazen obvodem MPC17529.

Protože má obvod zvlášť vyvedeno napájení pro motor a pro logiku, je možné motor napájen přímo z baterií a řídící mikroprocesor ze stabilizátoru nebo jiné baterie. Napětí logiky může být v rozsahu 2.7 až 5.7V. Obvod obsahuje nábojovou pumpu a vyrábí si kladné napětí cca 13V pro buzení horních tranzistorů můstku.

MPC17529HB01A

Napájecí obvodu jsou doplněny ochrannými diodami proti přepólování. Předpokládá se, že napájecí proud je omezen což při napájení z akumulátorů nemusí být splněno a tak proto pozor na polaritu napájení. Zenerova dioda v napájení pro motor je zde proto, aby omezila napětí na napájecí větvi když někdo zatočí motorem při odpojeném napětí. Motor vyrábí napětí a toto napětí se přes diody v H-Můstku dostane na napájecí nožičku a nesmí být větší než cca 8V.

Výkonový výstup spíná podle pravdivostní tabulky. Oba kanály pracují stejně, signál OE# je společný pro oba kanály.

OE#	IN1A IN2A	IN1B IN2B	OUT1A OUT2A	OUT1B OUT2B	Funkce
Н	X	X	Z	Z	Vypnuto
L	L	L	L	L	Brzda
L	L	Н	L	Н	Jeden směr
L	Н	L	Н	L	Opačný směr
L	Н	Н	Z	Z	Vypnuto

2.3. Zapojení obvodu MPC17529

INTERNAL BLOCK DIAGRAM

Figure 2. 17529 Simplified Internal Block Diagram

MPC17529HB01A

2.4. Rušení od motoru

Motor s komutátorem je vydatný zdroj rušení a často způsobuje zasekávání řídícího procesoru nebo zmatené fungování. Je nezbytné motor opatřit alespoň základním odrušením tak, že se přímo k motoru, na jeho vývody umístí odrušovací kondenzátor. Používá se obyčejný keramický o hodnotě obvykle 4n7.

Když to nestačí je třeba použít odrušovací tlumivky z několika závity drátu na kousku feritu. Zapojují se do série z přívody k motoru. Když se ještě hračky dělaly poctivě, tak to u každého motoru bylo.

Dále je vhodné oddělit napájení procesoru od napájení motoru. V extrémním případě lze použít dva zdroje (baterie). Obvykle postačuje elektroniku napájen přes filtr (RC nebo lépe LC) a stabilizátor. Pozor na dobré propojení výkonové země z H-Můstků k baterii. *Zem elektroniky připojíme na zem H-Můstku, ne na baterii*. Eliminuje se tak rušení způsobené úbytkem na spojení mezi H-Můstkem a baterií.

2.5. Mechanická konstrukce

Jedná se o standardní modul do stavebnice MLAB s rohovými šrouby.

3. Osazení a oživení

3.1. Osazení

Z vrchní strany jsou jen hřebínky, šrouby a jedna drátová propojka. Ze spodní strany jsou jen SMD součástky. Nejdříve se pájí integrovaný obvod, protože je užitečné, když nám nic překáží. Používáme minimum pájky a vhodné prstovité tavidlo pro SMD. Katody diod a kladné konce kondenzátorů jsou na osazovacích výkresech označeny.

Počet	Reference	Název	Pouzdro		
Odpory 4	R1, R2, R3, R4	100k	R0805		
Keramio	cké kondenzátory				
6	C2, C3, C4, C5, C6, C7	100nF	C0805		
Elektrolytické kondenzátory					
1	C1	33uF/10V	ELYTC		
Diody					
2	D1, D2	1N4007SMD	MELF		
Zenerovy diody					
1	D3	BZV55C8.2SMD	MINIMELF		
Integrované obvody					
1	U1	MPC17529EV	SSO20_210		
Mechanické součástky					
2	J1, J2	JUMP2X3	JUMP2X3		
5	J3, J4, J5, J6, J7	JUMP2	JUMP2		
Konstrukční součástky					
4		Šroub M3x12 křížový s válcovou hlavou			
4		Podložka M3			
4		Distanční sloupek M3x5			

MPC17529HB01A

3.2. Oživení

Připojíme na napájecí zdroj s omezením proudu a postupně zvyšujeme napětí na cca 5V. Pak už stačí připojit malý motorek, třeba z CD mechaniky, a ověřit funkčnost podle pravdivostní tabulky.