

1. O Padrão JPEG

- O quê é JPEG?
- Preparação da imagem/bloco.
- Transformada DCT.
- Quantização.
- Codificação por Entropia.
- Construção do Quadro.

1.1 O quê é JPEG?

- Joint Photographic Experts Group.
 - ISO, CCITT e IEC.
 - Padrão para codificação de imagens estáticas de tons contínuos.
 - Possui 4 modos de operação:
 - Sequencial (baseline mode).
 - Progressivo.
 - Sem perdas.
 - Hierárquico.

1.1 O quê é JPEG?

- Modo seqüencial
 - É um método de compressão com perdas.
 - Possui 5 etapas principais:
 - Preparação da imagem/bloco.
 - DCT.
 - Quantização.
 - Codificação.
 - Construção do quadro.

1.3 Transformada DCT

- Transformada Discreta de Cossenos (DCT).
- Transformadas:
 - Transformam a informação de um formato (domínio) para outro.
- Transformada DCT aplicada a imagens:
 - Transforma matriz (imagem) em matriz de frequências espaciais.
 - Não produz perdas.

- Olho humano é menos sensível a distorções em regiões com alta freqüência espacial.
- Se a amplitude, nas altas freqüências, está abaixo de um limite, o olho não detecta a informação.
- Matriz transformada ajuda a detectar tais informações (redundância psicovisual).

1.3 Transformada DCT

- Transformada Discreta de Cossenos (DCT)
 - Todos os blocos, um a um, são submetidos à DCT.

$$F[i,j] = \frac{1}{4}C(i)C(j)\sum_{x=0}^{7}\sum_{y=0}^{7}P[x,y]\cos\frac{(2x+1)i\pi}{16}\cos\frac{(2y+1)j\pi}{16}$$

onde C(i) e $C(j) = 1/\sqrt{2}$ para i,j=0

= 1 para todos os outros valores de i e j. x, y, i e j todos variam de 0 a 7.

1.3 Transformada DCT

 Transformada Discreta dos Cossenos Inversa (IDCT)

$$P[x,y] = \frac{1}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} C(i)C(j)F[i,j] \cos \frac{(2x+1)i\pi}{16} \cos \frac{(2y+1)j\pi}{16}$$

onde C(i) e $C(j) = 1/\sqrt{2}$ para i,j=0= 1 para todos os outros valores de i e j. x, y, i e j todos variam de 0 a 7.

1.3 Transformada DCT

- Após DCT:
 - As regiões da imagem que possuem uma única cor geram matrizes com coeficientes DC idênticos (ou próximos) e poucos coeficientes AC.
 - As regiões da imagem que possuem transições de cores geram matrizes com coeficientes DC distintos e muitos coeficientes AC.
- Tamanho do bloco na imagem.
- Regiões com pouca/muita transição de cor X coeficientes DC/AC.

1.4 Quantização

- Quantização
 - Olho humano:
 - Boa resposta para coeficientes DC.
 - Baixa reposta para coeficientes AC.
 - Busca reduzir a quantidade de dados.
 - Limite da amplitude para freqüências: divide os valores da matriz transformada pelos valores correspondentes em uma tabela pré-definida.
 - Isso diminui os valores dos coeficientes proporcionalmente à posição dos mesmos na matriz.
 - Ocorre perda. No caso ideal, não perceptível.

1.4 Quantização

- Tabelas de quantização:
 - JPEG define duas tabelas default
 - Uma para luminância.
 - Uma para crominância.
 - JPEG permite a utilização de tabelas personalizadas.

1.5 Codificação por Entropia

- Envolve quatro passos:
 - Vetorização.
 - Codificação por diferença.
 - Codificação por carreira (run-length).
 - Codificação Estatística (método de Huffman).

1.5 Codificação por Entropia

- Codificação por diferença
 - Codificação dos coeficientes DC.
 - DCs possuem alto grau de correlação (redundância espacial).
 - São blocos adjacentes na imagem.
 - Exemplo:
 - Sequência de coeficientes DC de blocos adjacentes: 12, 13, 11, 11, 10, ...
 - Valores codificados: 12, 1, -2, 0, -1, ...

1.5 Codificação por Entropia

- Codificação run-length
 - Codificação dos coeficientes AC.
 - Vetor de coeficientes possui longas cadeias de zeros.
 - Exemplo:

	0														63
l	12	6	7	3	3	3	2	2	2	2	0	0	0	 	0

(0,6),(0,7),(0,3),(0,3),(0,2),(0,2),(0,2),(0,2),(0,0)

1.5 Codificação por Entropia

- Codificação estatística
 - Após a codificação Run-Length é aplicada uma codificação estatística.
 - JPEG usa Huffman.
 - A codificação estatística é aplicada no resultado das codificações dos DCs e ACs.
 - Vetor possui cadeias de bits apropriado para codificação estatística.
 - JPEG usa tabela de códigos (prefixo).
 - São 256 códigos possíveis.
 - Pré-definida ou enviada junto com o bitstream da imagem.

1.8 Considerações Sobre JPEG

- JPEG:
 - Padrão abrangente.
 - Alcança boas taxas de compressão para imagens de tons contínuos. (até 20:1).
 - Desempenho diminui em imagens com muita transição de cores.
 - Baseado em particularidades do sistema visual humano:
 - Não é necessário reproduzir cantos com fidelidade.
 - O olho humano n\u00e3o responde bem a transi\u00f3\u00f3es nas altas freq\u00fc\u00e4ncias espaciais.
 - É adequado para imagens de tom contínuo.

2. JPEG2000

- Uma das maiores limitações do JPEG:
 - Desempenho degrada em baixas taxas de dados (bitrate).
- Emprega transformada Wavelet.
- Melhorias:
 - Codificação estática/dinâmica de alta qualidade de uma região específica.
 - Recuperação de erros.
 - Desempenho: até 50:1 (níveis de cinza), 100:1 (cor).

3. Outros Formatos

- Outros formatos populares são:
 - GIF
 - PNG
 - TIFF, BMP, ...

3.1 O Formato GIF

- Graphical Interchange Format
 - Usa paleta de cores exibe apenas 256 cores simultâneas das 16 milhões possíveis.
 - Usa uma variante do algoritmo LZW (patenteado).
 - Suporta entrelaçamento e animação.

3.2 PNG

- Portable Network Graphics.
 - Alternativa ao GIF (royalties p/ Unisys LZW).
 - Suporta True color, níveis de cinza e paletas (CLUT).
 - Múltiplos níveis de transparência (canal alfa).
 - http://www.libpng.org/pub/png/

3.3 Outros Formatos Populares

- Outros formatos incluem:
 - BMP: padrão de imagem para o SO Windows.
 - TIFF: padrão para documentos digitalizados de alta definição (48 bits de profundidade).
 - TGA, PCD, ICO, CUR, FNT, ...

Para Saber Mais

- Gonzales & Woods. Digital Image Processing. 2nd ed. Prentice-Hall, 2002. Capítulo 8, seção 8.1.
- Halsall, F. Multimedia Communications: Applications, Networks, Protocols, and Standards, Addison-Wesley Publishing, 2001. ISBN: 0201398184. Capítulo 2, seção 2.4 e capítulo 3, seções 3.2 e 3.4.
- Pennebaker & Mitchell. JPEG Still Image Data Compression Standard. Van Nostrand Reinhold, 1993.