Serial No.: 10/541,198 Att'y Dkt: 87408.2000

AMENDMENTS TO THE CLAIMS

In the Claims:

The following listing of claims replaces all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently amended) A glass plate cutting machine to generate a scribe line on the glass plate and then break the plate, comprising:

a cracking unit to provide a micro-crack at a cutting initiation point of a glass plate;

an irradiation unit to irradiate at least one laser beam, which is absorbed in the glass plate, to the glass plate to heat the glass plate, and including a first carbon dioxide laser beam irradiation part;

a cooling unit to cool the glass plate by use of a cooling fluid after irradiation of the at least one laser beam, and including a first cooling part <u>disposed at the rear of the first carbon dioxide laser beam irradiation part</u>; and

a breaking unit, including a second carbon dioxide laser beam irradiation part, to break the glass plate, <u>and</u>

a second cooling part disposed at the rear of the second carbon dioxide laser beam irradiation part,

wherein the first carbon dioxide laser beam irradiation part and the first cooling part disposed at the rear of the first carbon dioxide laser beam irradiation part are used to generate the scribe line while a plane irradiation density is controlled in a range of 0.05-2 joule/mm² on an irradiation area of 20-200 mm² by a first control part,

wherein the breaking unit is used to break the glass plate while a volume irradiation density is controlled in the range of 0.1-0.5 joule/mm² on the irradiation area of 20-200 mm² by a second control part.

2–3. (Canceled).

Serial No.: 10/541,198 Att'y Dkt: 87408.2000

4. (Previously presented) The machine as defined in claim 1, wherein a second control part functions to decrease the volume irradiation density of the breaking unit to 10-60% at an area between the cutting initiation point of the glass plate and a point of 10-150 mm upon an initial cutting.

- 5. (Previously presented) The machine as defined in claim 4, wherein the second control part functions to control irradiation intensity of the initial cutting and after the initial cutting in a nonlinear manner when the irradiation intensity of the breaking unit decreases to 10-60% upon the initial cutting.
- 6. (Previously presented) The machine as defined in claim 2, wherein the plane irradiation density or the volume irradiation density is controlled by adjusting at least one of an output, an irradiation area and a transfer rate of the irradiation unit.
- 7. (Original) The machine as defined in claim 6, further comprising a synchronizing unit acting to change the output of the irradiation unit in proportion to the transfer rate of the irradiation unit, so as to control the output and the transfer rate of the irradiation unit.
- 8. (Previously presented) The machine as defined in claim 1, wherein the cooling fluid of the cooling unit comprises water.
- 9. (Previously presented) The machine as defined in claim 1, further comprising a vacuum suction machine sucking the fluid disposed at the direct rear of the cooling unit.
 - 10–11. (Canceled).
- 12. (Withdrawn) A method of manufacturing a glass plate using a cutting machine to generate a scribe line on the glass plate and then break the plate, comprising:

providing a micro-crack at a cutting initiation point of a glass plate;

using an irradiation unit to irradiate at least one laser beam, which is absorbed in the glass plate, to the glass plate to heat the glass plate, and including a first carbon dioxide laser beam irradiation part;

a cooling unit to cool the glass plate by use of a cooling fluid after irradiation of the at least one laser beam, and including a first cooling part; and

Serial No.: 10/541,198 Att'y Dkt: 87408.2000

breaking the glass plate using a breaking unit,

wherein the first carbon dioxide laser beam irradiation part and the first cooling part disposed at the rear of the first carbon dioxide laser beam irradiation part are used to generate the scribe line while a plane irradiation density is controlled in a range of 0.05-2 joule/ mm² on an irradiation area of 20-200 mm² by a first control part.