Goniometria (Cenni)

• Definizioni (Cenni)

• Formule di base

	le cinque r	relazioni fondamental	i	
$sen^2\alpha + cos^2\alpha = 1$	$tg \ \alpha = \frac{sen \ \alpha}{cos \ \alpha}$	$ctg \ \alpha = \frac{\cos \alpha}{\sin \alpha}$	$\sec \alpha = \frac{1}{\cos \alpha}$	$cosec \alpha = \frac{1}{sen \alpha}$

$sen \ lpha$ in funzione di	cos α in funzione di	$tg \ \alpha$ in funzione di	ctg α in funzione di
$sen \ \alpha = \pm \sqrt{1 - cos^2 \alpha}$	$\cos\alpha = \pm\sqrt{1-sen^2\alpha}$	$tg \ \alpha = \pm \frac{sen \ \alpha}{\sqrt{1 - sen^2 \alpha}}$	$ctg \ \alpha = \pm \frac{\sqrt{1 - sen^2 \alpha}}{sen \ \alpha}$
$sen \ \alpha = \pm \frac{tg\alpha}{\sqrt{1 + tg^2\alpha}}$	$\cos\alpha = \pm \frac{1}{\sqrt{1 + tg^2\alpha}}$	$tg \ \alpha = \pm \frac{\sqrt{1 - \cos^2 \alpha}}{\cos \alpha}$	$ctg \ \alpha = \pm \frac{\cos \alpha}{\sqrt{1 - \cos^2 \alpha}}$
$sen \alpha = \pm \frac{1}{\sqrt{1 + ctg^2 \alpha}}$	$\cos \alpha = \pm \frac{ctg\alpha}{\sqrt{1 + ctg^2\alpha}}$	$tg \alpha = \frac{1}{ctg \alpha}$	$ctg \ \alpha = \frac{1}{tg \ \alpha}$

addizione e sottrazione		
$sen(\alpha \pm \beta) = sen\alpha \cdot cos\beta \pm sen\beta \cdot cos\alpha$	$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$	
$cos(\alpha \pm \beta) = cos\alpha \cdot cos\beta \mp sen\alpha \cdot sen\beta$	$ctg(\alpha \pm \beta) = \frac{ctg\alpha \cdot ctg\beta \mp 1}{ctg\beta \pm ctg\alpha}$	

duplicazione			
$sen2\alpha = 2sen\alpha \cdot cos\alpha$		$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$	
	$cos2\alpha = 1 - 2sen^2\alpha$	$ctg^2\alpha - 1$	
$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	$\cos 2\alpha = 2\cos^2\alpha - 1$	$ctg2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha}$	

• Angoli notevoli

gradi	radianti	seno	coseno	tangente	cotangente
<u>0</u> °	0	0	1	0	<u></u>
9°	$\frac{\pi}{20}$		$\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$	$\frac{4-\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}$	$\frac{\sqrt{5}-1}{4-\sqrt{10+2\sqrt{5}}}$
15°	$\frac{\pi}{12}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$	$2 + \sqrt{3}$
18°	$\frac{\pi}{10}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{25-10\sqrt{5}}}{5}$	$\sqrt{5+2\sqrt{5}}$
22°30	$\frac{\pi}{8}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\sqrt{2}-1$	$\sqrt{2} + 1$
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	√3
36°	$\frac{\pi}{5}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\sqrt{5-2\sqrt{5}}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
54°	$\frac{3}{10}\pi$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{25+10\sqrt{5}}}{5}$	$\sqrt{5-2\sqrt{5}}$
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
67°30	$\frac{3}{8}\pi$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\sqrt{2} + 1$	$\sqrt{2}-1$
72°	$\frac{2}{5}\pi$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2\sqrt{5}}$	$\frac{\sqrt{25-10\sqrt{5}}}{5}$
75°	$\frac{5}{12}\pi$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$
81°	$\frac{9}{20}\pi$	$\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$	$\frac{\sqrt{3+\sqrt{5}}-\sqrt{5-\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4-\sqrt{10+2\sqrt{5}}}$	$\frac{4-\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}$
90°	$\frac{\pi}{2}$	1	0	œ	0
180°	π	0	-1	0	∞
2709	$\frac{3}{2}\pi$	-1	0	∞	0
360°	2π	0	1	0	∞

NB:
$$\cos(45^\circ) = \frac{\sqrt{2}}{2} \left(\text{A volte si trova: } \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{\sqrt{2}} \right) \; ; \; tg(30^\circ) = \frac{sen(30^\circ)}{\cos(30^\circ)} = \frac{1}{\sqrt{3}} \left(\text{A volte si trova: } \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} = \frac{\sqrt{3}}{3} \right)$$

• Angoli associati

angoli supplementari		
secondo quadrante		
$sen(180^{0} - \alpha) = sen \alpha$	$sen(\pi - \alpha) = sen \alpha$	
$\cos(180^{\circ} - \alpha) = -\cos\alpha$	$\cos(\pi - \alpha) = -\cos\alpha$	
$tg(180^{0}-\alpha)=-tg\;\alpha$	$tg(\pi-\alpha)=-tg\;\alpha$	
$ctg(180^{0} - \alpha) = -ctg \ \alpha$	$ctg(\pi - \alpha) = -ctg \ \alpha$	

angoli complementari		
primo quadrante		
$sen(90^0 - \alpha) = cos \ \alpha$	$sen\left(\frac{\pi}{2} - \alpha\right) = cos \ \alpha$	
$cos(90^{\circ} - \alpha) = sen \alpha$	$\cos\left(\frac{\pi}{2} - \alpha\right) = \operatorname{sen}\alpha$	
$tg(90^0 - \alpha) = ctg \ \alpha$	$tg\left(\frac{\pi}{2}-\alpha\right)=ctg\ \alpha$	
$ctg(90^{0}-\alpha)=tg\;\alpha$	$ctg\left(\frac{\pi}{2}-\alpha\right)=tg\ \alpha$	

angoli che differiscono di un angolo piatto	
terzo quadrante	
$sen(180^0 + \alpha) = -sen \alpha$	$sen(\pi + \alpha) = -sen \alpha$
$\cos(180^{\circ} + \alpha) = -\cos\alpha$	$\cos(\pi + \alpha) = -\cos\alpha$
$tg(180^0 + \alpha) = tg \ \alpha$	$tg(\pi + \alpha) = tg \ \alpha$
$ctg(180^0 + \alpha) = ctg \ \alpha$	$ctg(\pi + \alpha) = ctg \ \alpha$

angoli esplementari		
quarto quadrante		
$sen(360^0 - \alpha) = -sen \alpha$	$sen(2\pi - \alpha) = -sen \alpha$	
$\cos(360^{\circ} - \alpha) = \cos \alpha$	$\cos(2\pi - \alpha) = \cos\alpha$	
$tg(360^0 - \alpha) = -tg \ \alpha$	$tg(2\pi - \alpha) = -tg \ \alpha$	
$ctg(360^0 - \alpha) = -ctg \ \alpha$	$ctg(2\pi - \alpha) = -ctg \ \alpha$	

angoli opposti		
quarto quadrante		
$sen(-\alpha) = -sen \alpha$	$sen(-\alpha) = -sen \alpha$	
$cos(-\alpha) = cos \alpha$	$cos(-\alpha) = cos \alpha$	
$tg(-\alpha) = -tg \ \alpha$	$tg(-\alpha) = -tg \ \alpha$	
$ctg(-\alpha) = -ctg \ \alpha$	$ctg(-\alpha) = -ctg \ \alpha$	

angoli che differiscono di un angolo retto		
secondo quadrante		
$sen(90^0 + \alpha) = cos \alpha$	$sen\left(\frac{\pi}{2} + \alpha\right) = cos \ \alpha$	
$\cos(90^0 + \alpha) = -\operatorname{sen} \alpha$	$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$	
$tg(90^0 + \alpha) = -ctg \ \alpha$	$tg\left(\frac{\pi}{2}+\alpha\right)=-ctg\;\alpha$	
$ctg(90^0 + \alpha) = -tg \ \alpha$	$ctg\left(\frac{\pi}{2} + \alpha\right) = -tg \ \alpha$	

angoli la cui somma è 270°		
terzo quadrante		
$sen(270^{0} - \alpha) = -\cos\alpha$	$sen\left(\frac{3}{2}\pi - \alpha\right) = -\cos\alpha$	
$\cos(270^{\circ} - \alpha) = -\sin\alpha$	$\cos\left(\frac{3}{2}\pi - \alpha\right) = -\operatorname{sen}\alpha$	
$tg(270^{0}-\alpha)=ctg\ \alpha$	$tg\left(\frac{3}{2}\pi - \alpha\right) = ctg \ \alpha$	
$ctg(270^{0}-\alpha)=tg\;\alpha$	$ctg\left(\frac{3}{2}\pi - \alpha\right) = tg \ \alpha$	

angoli che differiscono di 270°			
quarto quadrante			
$sen(270^0 + \alpha) = -\cos\alpha$	$sen\left(\frac{3}{2}\pi + \alpha\right) = -\cos\alpha$		
$\cos(270^0 + \alpha) = \sin \alpha$	$\cos\left(\frac{3}{2}\pi + \alpha\right) = \operatorname{sen}\alpha$		
$tg(270^0 + \alpha) = -ctg \ \alpha$	$tg\left(\frac{3}{2}\pi + \alpha\right) = -ctg \ \alpha$		
$ctg(270^0 + \alpha) = -tg \ \alpha$	$ctg\left(\frac{3}{2}\pi + \alpha\right) = -tg \ \alpha$		

• Formule avanzate

bisezione				
$sen\frac{\alpha}{2} = \pm \sqrt{\frac{1 - cos\alpha}{2}}$	$tg\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} = \frac{sen\alpha}{1 + \cos\alpha} = \frac{1 - \cos\alpha}{sen\alpha}$			
$\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}$	$ctg\frac{\alpha}{2} = \pm \sqrt{\frac{1 + cos\alpha}{1 - cos\alpha}} = \frac{sen\alpha}{1 - cos\alpha} = \frac{1 + cos\alpha}{sen\alpha}$			

parametriche o razionali $(t=tgrac{lpha}{2})$		
$sen\alpha = \frac{2t}{1+t^2}$	$tg\alpha = \frac{2t}{1 - t^2}$	
$\cos\alpha = \frac{1 - t^2}{1 + t^2}$	$ctg\alpha = \frac{1 - t^2}{2t}$	

prostaferesi				
$sen p + sen q = 2 sen \frac{p+q}{2} \cdot cos \frac{p-q}{2}$	$sen p - sen q = 2 sen \frac{p - q}{2} \cdot cos \frac{p + q}{2}$			
$\cos p + \cos q = 2\cos\frac{p+q}{2} \cdot \cos\frac{p-q}{2}$	$\cos p - \cos q = -2 \operatorname{sen} \frac{p+q}{2} \cdot \operatorname{sen} \frac{p-q}{2}$			

Werner				
$sen \alpha \cdot cos \beta = \frac{1}{2} [sen(\alpha + \beta) + sen(\alpha - \beta)]$	$sen\beta \cdot cos\alpha = \frac{1}{2}[sen(\alpha + \beta) - sen(\alpha - \beta)]$			
$\cos\alpha \cdot \cos\beta = \frac{1}{2}[\cos(\alpha + \beta) + \cos(\alpha - \beta)]$	$sen \alpha \cdot sen \beta = -\frac{1}{2} [cos(\alpha + \beta) - cos(\alpha - \beta)]$			

• Esercizi

ES 01)

$$\begin{aligned} & \text{Calcola: } \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{3}{4}\pi\right) + \text{tg}\left(-\frac{5}{4}\pi\right) + \cot g\left(\frac{3}{2}\pi\right) \\ & \left(\text{Trasformo} - \frac{5}{4}\pi \ : \ \text{So } \text{che} \, \frac{1}{4}\pi = 45^\circ \ , \ \text{quindi} + \frac{5}{4}\pi = 5 \cdot 45^\circ = 225^\circ \ , \ \text{quindi} - \frac{5}{4}\pi = 360^\circ - 225^\circ = 135^\circ = \frac{3}{4}\pi\right) \\ & \left[+\frac{\sqrt{2}}{2} \right] + \left[-\frac{\sqrt{2}}{2} \right] + tg\left(\frac{3}{4}\pi\right) + \cot g\left(\pi + \frac{1}{2}\pi\right) = 0 + \left[\frac{sen\left(\frac{3}{4}\pi\right)}{\cos\left(\frac{3}{4}\pi\right)} \right] + \left[\frac{\cos\left(\frac{3}{2}\pi\right)}{sen\left(\frac{3}{2}\pi\right)} \right] = \frac{\left[+\frac{\sqrt{2}}{2} \right]}{\left[-\frac{\sqrt{2}}{2} \right]} + \frac{\left[0 \right]}{\left[-1 \right]} = -1 + 0 = -1 \end{aligned}$$

ES 02)

Risolvi:
$$\cos(3x) = \frac{1}{2}$$

$$\Rightarrow 3x = \frac{\pi}{3} + 2k\pi \quad \forall \quad 3x = \frac{5}{6} \cdot 2\pi + 2k\pi = \frac{5}{3}\pi + 2k\pi \quad \left(\text{Ricorda che } \cos(\alpha) = \frac{1}{2} \quad \text{per } \alpha = 60^{\circ} \, \forall \, \alpha = 300^{\circ} \right) \quad \Rightarrow$$

$$\Rightarrow \quad x = \frac{\pi}{9} + \frac{2}{3}k\pi \quad \forall \quad x = \frac{5}{9}\pi + \frac{2}{3}k\pi$$

ES 03)

Risolvi:
$$\cos\left(\frac{\pi}{9} - x\right) = 0$$

Pongo $t = \frac{\pi}{9} - x$
 $\cos(t) = 0 \implies t = \frac{\pi}{2} + k\pi \implies \left[\frac{\pi}{9} - x\right] = \frac{\pi}{2} + k\pi \implies \left[\dots\right] \implies x = -\frac{7}{18}\pi - k\pi$

ES 04)

Risolvi:
$$sen(4x) = cos(2x)$$

 $sen(2[2x]) = cos(2x) \Rightarrow [2 \cdot sen(2x) \cdot cos(2x)] = cos(2x) \Rightarrow 2 \cdot sen(2x) \cdot cos(2x) - cos(2x) = 0 \Rightarrow cos(2x) \cdot (2sen(2x) - 1) = 0 \Rightarrow$
Risolvo F₁: $cos(2x) = 0 \Rightarrow 2x = \frac{\pi}{2} + k\pi \Rightarrow x = \frac{\pi}{4} + k\frac{\pi}{2} \quad (x = 45^\circ + k\pi)$
Risolvo F₂: $2sen(2x) - 1 = 0 \Rightarrow sen(2x) = \frac{1}{2} \Rightarrow$
(Sulla tavola dei valori c'è solo $sen(30^\circ) = \frac{1}{2}$, ma so che $sen(\alpha) = sen(180^\circ - \alpha)$, quindi anche $sin(150^\circ) = \frac{1}{2}$).

$$\Rightarrow 2x = \frac{\pi}{6} + 2k\pi \vee 2x = \frac{5}{6}\pi + 2k\pi \Rightarrow x = \frac{\pi}{12} + k\pi \vee x = \frac{5}{12}\pi + k\pi \quad (x = 15^\circ + k\pi \vee x = 75^\circ + k\pi)$$
Risultato: $x = \frac{\pi}{4} + k\frac{\pi}{2} \quad \forall \quad x = \frac{\pi}{12} + k\pi \quad \forall \quad x = \frac{5}{12}\pi + k\pi$

ES 05)

Risolvi:
$$\sin\left(2x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4} - 3x\right)$$

 $(Errore\ comune: Ricorda\ che\ sin(\alpha) = sin(\beta) \quad \Rightarrow \quad \alpha = \beta \quad ; \quad sin(\alpha) = sin(\beta) \quad \Rightarrow \quad \alpha = \beta + 2k\pi)$

$$\Rightarrow 2x - \frac{\pi}{3} = \frac{\pi}{4} - 3x + 2k\pi \quad \Rightarrow \quad 5x = \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi \quad \Rightarrow \quad 5x = \frac{7}{12}\pi + 2k\pi \quad \Rightarrow \quad x = \frac{7}{60}\pi + \frac{2}{5}k\pi$$
(Risultati: $\frac{7}{60}\pi$; $\frac{31}{60}\pi$; $\frac{55}{60}\pi = \frac{11}{12}\pi$; $\frac{79}{60}\pi$; $\frac{103}{60}\pi$)

ES 06)

Risolvi: $\cos\left(\frac{\pi}{2} + x\right) = \cos(x)$

$$\Rightarrow \frac{\pi}{2} + x = x + 2k\pi \Rightarrow \frac{\pi}{2} = 2k\pi \Rightarrow k = \frac{1}{4} \Rightarrow \text{Non ci interessa, serve risolvere per } x \Rightarrow \text{Cambio metodo} \Rightarrow$$

$$\Rightarrow \left[\cos\left(\frac{\pi}{2}\right) \cdot \cos(x) - sen\left(\frac{\pi}{2}\right) \cdot sen(x)\right] = \cos(x) \Rightarrow \left[0 \cdot \cos(x) - (+1) \cdot sen(x)\right] = \cos(x) \Rightarrow$$

$$\Rightarrow -sen(x) = \cos(x) \Rightarrow -\frac{sen(x)}{\cos(x)} = \frac{\cos(x)}{\cos(x)} \quad \left(\text{Per } \cos(x) \neq 0 \rightarrow x \neq \frac{\pi}{2} + k\pi\right) \Rightarrow -\frac{sen(x)}{\cos(x)} = 1 \Rightarrow$$

$$\Rightarrow -tg(x) = 1 \Rightarrow x = \frac{3}{4}\pi + k\pi \quad (x = 135^{\circ} \lor x = 315^{\circ})$$

Perché? |tg(x)| = 1 agli angoli delle bisettrici (45°, 135°, 225°, 315°).

In particolare, è tg(x) = -1 quando il seno è positivo e il coseno negativo, o viceversa.

ES 07)

Riscrivi la seguente funzione con le formule di bisezione: $f(x) = \sin^2(t)$

Ricordo la formula di bisezione per il seno:
$$\sin\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos(\alpha)}{2}}$$

Pongo
$$t = \frac{\alpha}{2} \Rightarrow \sin(t) = \pm \sqrt{\frac{1 - \cos(2t)}{2}} \Rightarrow \sin^2(t) = \left(\pm \sqrt{\frac{1 - \cos(2t)}{2}}\right)^2 = \frac{1 - \cos(2t)}{2}$$