Niveau: Première année de PCSI

COLLE 6 = FONCTIONS CONTINUES ET MATRICES

Questions de cours :

Soient I un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions, $\lambda, \beta \in \mathbb{R}$, $a \in I$ et $l \in \mathbb{R}$.

1. Démontrer la propriété suivante :

Propriété.

f tend vers l en a si et seulement si pour toute suite $(u_n)_{n\in\mathbb{N}}$ convergeant vers a, $(f(u_n))_{n\in\mathbb{N}}$ converge vers l

2. Démontrer la propriété suivante :

Propriété.

Si f tend vers l en a et g tend vers l' en a alors $\lambda f + \beta g$ tend vers $\lambda l + \beta l'$ en a.

3. Démontrer la propriété suivante :

Propriété.

Si f tend vers l en a et g tend vers l' en a alors fg tend vers ll' en a.

4. Démontrer la propriété suivante :

Propriété.

Si f tend vers l en a avec $l \neq 0$ alors $\frac{1}{f}$ tend vers $\frac{1}{l}$ en a.

Soient $n \in \mathbb{N}$ et $A, B \in \mathcal{M}_n(\mathbb{R})$.

- 6. Que signifie que la matrice A et est une matrice symétrique? antisymétrique? Montrer que l'on peut toujours écrire la matrice A comme la somme d'une matrice symétrique avec une matrice antisymétrique.
- 7. Rappeler la définition de Tr(A), et calculer $\sum_{k=1}^{n} Tr(I_k)$.
- 8. Pour $(i,j) \in \{1,..,n\}^2$ donner le coefficient AB_{ij} en fonction des coefficients des matrices A et B. Montrer que Tr(AB) = Tr(BA).

Fonctions continues:

Exercice 1.

Donner si elles existe les limites suivantes :

1.
$$\lim_{x \to +\infty} \frac{\lfloor 2x \rfloor}{\lfloor x \rfloor}$$

3.
$$\lim_{x \to 0} x \left| \frac{1}{x} \right|$$

$$2. \lim_{x \to 0} \left[\frac{1}{x} \right]$$

$$4. \lim_{x \to 0} x^2 \left[\frac{1}{x} \right]$$

Exercice 2.

Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par

$$f(x) = x\sqrt{1 + \frac{1}{x^2}}$$

La fonction f admet-elle un prolongement par continuité en 0?

Exercice 3.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = |x| + \sqrt{x - |x|}$$

Montrer que la fonction f est continue sur \mathbb{R} . (Indication : Étudier f(x+1))

Exercice 4.

Soit $f: \mathbb{R} \to \mathbb{R}$ périodique et admettant une limite finie l en $+\infty$. Montrer que f est constante.

Exercice 5.

1.
$$\lim_{x \to +\infty} \frac{e^{3x} + 2x + 7}{e^x + e^{-x}}$$

Étudier les limites suivantes :
$$1. \lim_{x \to +\infty} \frac{e^{3x} + 2x + 7}{e^x + e^{-x}} \quad 2. \lim_{x \to 0} \frac{\sqrt{1+x} - \left(1 + \frac{x}{2}\right)}{x^2}$$

Exercice 6.

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+^*$ une fonction continue telle que $\lim_{x \to +\infty} \frac{f(x)}{x} = 0.$ Montrer que la fonction f admet un point fixe sur \mathbb{R}^+ .

Exercice 7.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} 0 & \text{Si } x \text{ est irrationnel ou } x = 0. \\ \frac{1}{q} & \text{Si } x = \frac{p}{q}, \text{ avec } p \in \mathbb{Z}, q \ge 1 \text{ et } pgcd(p, q) = 1 \end{cases}$$

Montrer que la fonction f est continue sur $\mathbb{R}\setminus\mathbb{Q}\cup\{0\}$, discontinue sur \mathbb{Q}^*

Niveau: Première année de PCSI

Matrices:

Exercice 8.

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ et $\lambda, \beta \in \mathbb{R}$.

- 1. Montrer que $Tr({}^{t}AA) \ge 0$. Que peut-on en déduire sur la matrice A si $Tr({}^{t}AA) = 0$?
- 2. Montrer que $Tr(\lambda A + \beta B) = \lambda Tr(A) + \beta Tr(B)$.
- 3. En déduire que si pour tout $M \in \mathcal{M}_n(\mathbb{R})$ on a : Tr(XA) = Tr(XB) alors A = B.

Exercice 9.

Soit

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

- 1. Montrer que le polynôme $P(X) = X^2 3X + 2$ est anulateur de la matrice A.
- 2. Donner le reste de la division Euclidienne de X^n par $X^2 3X + 2$ pour $n \ge 2$.
- 3. En déduire la valeur de A^n .

Exercice 10.

Soient

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} , I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = A - I_3$$

Montrer que la matrice B est nilpotente et en déduire pour tout $n \in \mathbb{N}$ l'expression de A^n .

Exercice 11.

Soit $A \in \mathcal{M}_3(\mathbb{R})$

- 1. Pour tout $(i, j) \in \{1, 2, 3\}$ on note E_{ij} une matrice élémentaire de $\mathcal{M}_3(\mathbb{R})$. Expliquer ce que donne les produits matriciels AE_{ij} et $E_{ij}A$.
- 2. Considérons le centre de $\mathcal{M}_3(\mathbb{R})$:

$$\mathcal{Z}\left(\mathcal{M}_{3}\left(\mathbb{R}\right)\right):\left\{ A\in\mathcal{M}_{3}\left(\mathbb{R}\right);\forall M\in\mathcal{M}_{3}\left(\mathbb{R}\right):MA=AM\right\}$$

Montrer que:

$$\mathcal{Z}\left(\mathcal{M}_3\left(\mathbb{R}\right)\right) = \{\lambda I_3 : \lambda \in \mathbb{R}\}$$

3. Que peut-on dire de $\mathcal{Z}(\mathcal{M}_n(\mathbb{R}))$?