CS 188: Artificial Intelligence Markov Decision Processes Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley Those slutes were present to Dan Klein Add Please Abbeel to C. 1885 Lees to A Let U. Berkeley. All CLISTE meanwrist are available at Press //s - berkeley. All

multiply in the discount once

U([1,2,3]) < U([3,2,1])

Utilities of Sequences

Stationary Preferences . Theorem: if we assume stationary preferences: $[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$ $[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$ Then: there are only two ways to define utilities • Additive utility: $U([r_0,r_1,r_2,\ldots])=r_0+r_1+r_2+\cdots$

Racing Search Tree

Racing Search Tree We're doing way too much work with expectimax! Problem: States are repeated idea: Only compute needed quantities once Problem: Tree goes on forever idea: Do a depth-limited computation, but with increasing depths until change is small Note deep parts of the tree eventually don't matter if y < 1

Key idea: time-limited values Define V_(s) to be the optimal value of sif the game ends in k more time steps Liquivalently, it's what a depth k expectimax would give from s | Value | V

· Wout converge for infinite steps be 8=1

