Definition 0.1 — .

An ideal q in A is primary if $q \neq A$ and if

$$xy \in q \Rightarrow \text{ either } x \in q \text{ or } y^n \in q \text{ for some } n > 0$$
 (1)

Proposition 1. q is primary $\iff A/q \neq 0$ and every zero-divisor in A/q is nilpotent

Proof. Let q be a primary ideal.

- 1. Let $x \in A/q$ be a zero-divisor, then there is a $y \in A/q$ such that $(x+q)(y+q) = xy+q = \overline{0}$.
- 2. So $xy \in q$ and by definition, we either have $x \in q$ or $y^n \in q$ for some n > 0.
- 3. $x \in q$ and $y \in q$ cannot be, because we required x to be a zero-divisor in A/q.
- 4. The only other option is $x^n = 0$ for some n > 0.
- 5. Hence, x is nilpotent in A/q.

Proposition 2. Every prime ideal is primary.

Proposition 3. Contraction of primary ideals are primary.

Proposition 4. Let q be a primary ideal in a ring A. Then \sqrt{q} is the smallest prime ideal containing q.

Proof. The nilradical of A is the intersection of all the prime ideals of A.

Theorem 0.2 (First Uniqueness Theorem). Let \mathfrak{a} be a decomposable ideal and let $\mathfrak{a} = \bigcap_{i=1}^n q_i$ be a minimal primary decomposition of \mathfrak{a} . Let $\mathfrak{p}_i = \sqrt{q_i}$. Then the \mathfrak{p}_i are precisely the prime ideals which occur in the set of ideals $\sqrt{(\mathfrak{a}:x)}$ with $x \in R$, and hence are independent of the particular decomposition of \mathfrak{a} .

Exercise 0.3. 4.2

Proof. 1. If a is not decomposable, then the statement is vacuously true, so let a be decomposable, i.e.

$$\mathfrak{a} = \bigcap_{i=1}^{n} q_i \tag{2}$$

We have

$$\mathfrak{a} = \sqrt{\mathfrak{a}} = \tag{3}$$

2.