♠ Interpolação

temperatura (°	C) 20	25	30	35	40	45	50
calor específic	0,99907	0,99852	0,99826	0,99818	0,99828	0,99849	0,99878

- (i) Qual o calor específico da água a 32,5°?
- (ii) Qual a temperatura para a qual o calor específico é 0,99387?

A interpolação nos ajuda a resolver esse tipo de problema!

- \bullet **Def.** Interpolar uma função f é aproximá-la por uma função g que satisfaça algumas propriedades.
- $\blacktriangleright g$ é usada em substituíção à f.

Porque interpolamos?

- (i) Qdo for necessário calcular o valor da função em um pto não tabelado
- (ii) Q
do diferenciação e integração da função em estudo são difície
is de se calcular $\,$

X Considere $(x_0, f(x_0)), ..., (x_n, f(x_n))$ (n+1) ptos, com os x_i 's distintos. Queremos encontar g tal que

Figura 5.1

Teo. 1 $\exists ! p_n$, polinômio de grau $\leq n$, tal que $p_n(x_k) = f(x_k), \forall k = 0, 1, ..., n$, onde $x_k \neq x_j$ se $k \neq j$.

Dem.:

Ponha $p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$.

A existência e unicidade de p_n satisfazendo $p_n(x_k) = f(x_k), \ \forall k = 0, 1, ..., n$ é equivalente a existência e unicidade de solução do sistema:

$$\begin{cases} p_n(x_0) = f(x_0) \\ p_n(x_1) = f(x_1) \\ \vdots \\ p_n(x_n) = f(x_n) \end{cases} \iff (*) \begin{cases} a_0 + x_0 a_1 + x_0^2 a_2 + \dots + x_n^n a_n = f(x_0) \\ a_0 + x_1 a_1 + x_1^2 a_2 + \dots + x_n^n a_n = f(x_n) \\ \vdots \\ a_0 + x_n a_1 + x_n^2 a_2 + \dots + x_n^2 a_n = f(x_n) \end{cases}$$

A matriz dos coef é:

$$A = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

Observe que se $x_k = x_j$ para algum $k \neq j$ teríamos $\det A = 0$. Por exemplo, se $x_0 = x_1$, teríamos duas linhas iguais na matriz A e, portanto, teríamos $\det A = 0$. Mas a informação $x_k \neq x_j$ se $k \neq j$ nos diz que os ptos $x_0, x_1, ..., x_n$ são distintos.

Além disso, observe que as linhas estão em P.G. Assim, A é uma matriz de Vandermonde cujo o determinante é: det A =

Logo o sistema admite solução única. Ou seja, $\exists^{m}! a_0, a_1, ..., a_n$ satisfazendo (*).

 \blacktriangleright Formas de se obter p_n : Sistema Linear, Forma de Lagrange, Forma de Newton

Ex. 1: Usando o método do sistema linear, ache p_2 que interpolar f, onde:

X	-1	0	2
f(x)	4	1	-1

Forma de Lagrange:

 $(x_0, f(x_0)), ..., (x_n, f(x_n))$ ptos tais que os x_i 's são distintos. Pelo Teo. 1, $\exists p_n$ que interpolar f, ou seja, $p_n(x_i) = f(x_i), \forall i = 0, 1, ..., n$.

Para cada
$$k = 0, 1, ..., n$$
, defina:

$$L_k(x) := \frac{(x - x_0)(x - x_1) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0)(x_k - x_1) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$
Observe:

(i) L_k são polinômios de grau n;

$$L_k(x_i) = \begin{cases} 0 & \text{se } i \neq k \\ 1 & \text{se } i = k \end{cases}$$
(*)

$$p_n(x_i) = f(x_i) = 0 \cdot f(x_0) + 0 \cdot f(x_1) + \dots + 0 \cdot f(x_{i-1}) + 1 \cdot f(x_i) + 0 \cdot f(x_{i+1}) + \dots + 0 \cdot f(x_n)$$

$$\stackrel{(*)}{=} \underbrace{L_0(x_i)}_{0} f(x_0) + \dots + \underbrace{L_{i-1}(x_i)}_{0} f(x_{i-1}) + \underbrace{L_i(x_i)}_{1} f(x_i) + \underbrace{L_{i+1}}_{0} (x_i) f(x_{i+1}) + \dots + \underbrace{L_n(x_i)}_{0} f(x_n)$$

Portanto,
$$p_n(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + \dots + f(x_n)L_n(x) = \sum_{k=0}^n f(x_k)L_k(x)$$
 (**)

satisfaz a condição $p_n(x_i) = f(x_i), \forall i = 0, 1, ..., n.$

(**) é a forma como obtemos o polinômio interpolador p_n . Tal forma é chamada de forma de Lagrange.

► Um caso simples: $(x_0, f(x_0)), (x_1, f(x_1)), \text{ onde } x_0 \neq x_1.$

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} \in L_1(x) = \frac{x - x_0}{x_1 - x_0}.$$

$$p_1(x) = f(x_0)L_0(x) + f(x_1)L_1(x) = f(x_0)\frac{x - x_1}{x_0 - x_1} + f(x_1)\frac{x - x_0}{x_1 - x_0}$$
 que é uma reta que passa pelos ptos $(x_0, f(x_0))$ e $(x_1, f(x_1))$.

Obs.:

Usando o método do sistema linear, chagaremos a mesma expressão para p_1 .

Use o método de Lagrange para obter o polinômio p_2 do Ex. |1|.

Forma de Newton:

Operador diferenças divididas

$$\begin{cases} f[x_0] := f(x_0) & \text{ordem } 0 \\ f[x_0, x_1] := \frac{f[x_1] - f[x_0]}{x_1 - x_0} & \text{ordem } 1 \\ f[x_0, x_1, x_2] := \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} & \text{ordem } 2 \\ f[x_0, x_1, x_2, x_3] := \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} & \text{ordem } 3 \\ \vdots & \vdots & \vdots \\ f[x_0, x_1, ..., x_n] := \frac{f[x_1, ..., x_n] - f[x_0, ..., x_{n-1}]}{x_n - x_0} & \text{ordem } n \end{cases}$$

<u>Obs.</u>: $(x_0, f(x_0)), ..., (x_n, f(x_n))$ tais que os x_i 's são distintos.

(i) Quantas diferenças divididas de ordem 0 podemos formar?

Resposta: $\underline{f[x_0], f[x_1], ..., f[x_n]}$

n+1 diferencas divididas de ordem 0

(ii) Quantas diferenças divididas de ordem 1 podemos formar? Resposta: $f[x_0,x_1],f[x_1,x_2],...,f[x_{n-1},x_n]$

n diferencas divididas de ordem 1

(iii) Quantas diferenças divididas de ordem 2 podemos formar? **Resposta:** $f[x_0, x_1, x_2], f[x_1, x_2, x_3], ..., f[x_{n-2}, x_{n-1}, x_n]$

n-1 diferencas divididas de ordem 2

(iv) Quantas diferenças divididas de ordem n-1 podemos formar? **Resposta:** $f[x_0,...,x_{n-1}], f[x_1,...,x_n]$

2 diferencas divididas de ordem n-1

(v) Quantas diferenças divididas de ordem n podemos formar? **Resposta:** $f[x_0, x_1, ..., x_n]$

1 diferencas divididas de ordem n

Observações:

▶ O operador diferenças divididas é **simétrico**:

 $f[x_0, x_1, ..., x_n] = f[x_{j_0}, x_{j_1}, ..., x_{j_n}]$ para qualquer permutação: $(0, 1, ..., n) \longmapsto (j_0, j_1, ..., j_n)$. Exemplo:

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0) - f(x_1)}{x_0 - x_1}$$
$$= \frac{f[x_0] - f[x_1]}{x_0 - x_1} = f[x_1, x_0]$$

$$f[x_1, x_0, x_2] = \frac{f[x_0, x_2] - f[x_1, x_0]}{x_2 - x_1} = \frac{1}{x_2 - x_1} \left[\frac{f(x_2) - f(x_0)}{x_2 - x_0} - \frac{f(x_0) - f(x_1)}{x_0 - x_1} \right]$$

$$= \frac{1}{x_2 - x_1} \left[\frac{(x_0 - x_1) \Big(f(x_2) - f(x_0) \Big) - (x_2 - x_0) \Big(f(x_0) - f(x_1) \Big)}{(x_2 - x_0) (x_0 - x_1)} \right]$$

$$= \frac{1}{x_2 - x_0} \left[\frac{(x_0 - x_1) \Big(f(x_2) - f(x_0) \Big) - (x_2 - x_0) \Big(f(x_0) - f(x_1) \Big)}{(x_2 - x_1) (x_0 - x_1)} \right]$$

$$= \underbrace{\frac{1}{x_2 - x_0}}_{(*)} \left[\frac{(x_2 - x_0) \Big(f(x_0) - f(x_1) \Big) - (x_0 - x_1) \Big(f(x_2) - f(x_0) \Big)}{(x_2 - x_1)(x_1 - x_0)} \right]$$

$$= (*) \left[\frac{x_1 f(x_2) - \underline{x_0 f(x_0)} - x_0 f(x_2) + x_0 f(x_1) - x_2 f(x_1) + x_2 f(x_0) - x_1 f(x_0) + \underline{x_0 f(x_0)}}{(x_2 - x_1)(x_1 - x_0)} \right]$$

$$= (*) \left[\frac{x_1 f(x_2) - \underline{x_1 f(x_1)} - x_0 f(x_2) + x_0 f(x_1) - x_2 f(x_1) + x_2 f(x_0) - x_1 f(x_0) + \underline{x_1 f(x_1)}}{(x_2 - x_1)(x_1 - x_0)} \right]$$

$$= \frac{1}{x_2 - x_0} \left[\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right]$$

$$= f[x_0, x_1, x_2]$$

Ex. 2: De acordo com a tabela abaixo, ache as diferenças divididas.

Observe que teremos diferenças dividas de ordem 0 até a ordem 4.

$$\star C^{\infty}([a,b]) \ni f, \ a = x_0 < x_1 < \dots < x_n = b$$

(i) Encontrar $p_0(x) = a_0$ que interpola f em x_0 :

$$\begin{array}{l} a_0 = p_0(x_0) = f(x_0) = f[x_0] \Longrightarrow p_0(x) = a_0 = f[x_0] \\ \text{\'e f\'acil ver que } f(x) = f(x_0) + (x - x_0) f[x_0, x] = p_0(x) + \underbrace{(x - x_0) f[x_0, x]}_{=:E_0(x)} \end{array}$$

Portanto,

 $E_0(x) = f(x) - p_0(x)$ é o erro que se comete em aprox f por p_0 .

(ii) Encontrar $p_1(x) = a_0 + a_1 x$ que interpola f em x_0, x_1 :

$$f[x_0, x_1, x] = f[x_1, x_0, x] = \frac{f[x_0, x] - f[x_1, x_0]}{x - x_1} \Longrightarrow$$

$$f(x) = f(x_0) + (x_0, x_0) + (x_0$$

$$f(x) = \underbrace{f(x_0) + (x - x_0)f[x_1, x_0]}_{=:p_1(x)} + \underbrace{(x - x_0)(x - x_1)f[x_0, x_1, x]}_{=:E_1(x)}$$

Veja que p_1 assim definido, interpola f em x_0 e x_1 :

 $p_1(x_0) = f(x_0)$

$$p_1(x_1) = f(x_0) + (x_1 - x_0)f[x_1, x_0] = f(x_0) + (x_1 - x_0)\frac{f(x_0) - f(x_1)}{x_0 - x_1} = f(x_1)$$

(iii) Encontrar $p_2(x) = a_0 + a_1x + a_2x^2$ que interpola f em x_0, x_1 e x_2 :

$$f[x_0, x_1, x_2, x] = f[x_2, x_1, x_0, x] = \frac{f[x_1, x_0, x] - f[x_2, x_1, x_0]}{x - x_2} \Longrightarrow$$

$$f(x) = \underbrace{f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]}_{=:p_2(x)} + \underbrace{(x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x]}_{E_2(x)}$$

Resumo:

(i)
$$p_0(x) = f(x_0)$$

 $E_0(x) = (x - x_0)f[x_0, x]$

(ii)
$$p_1(x) = f(x_0) + (x - x_0)f[x_0, x_1]$$

 $E_1(x) = (x - x_0)(x - x_1)f[x_0, x_1, x]$

(iii)
$$p_2(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]$$

 $E_2(x) = (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x]$

(iv)
$$p_n(x) = f(x_0) + (x - x_0) f[x_0, x_1] + \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

 $E_n(x) = (x - x_0) (x - x_1) \dots (x - x_n) f[x_0, x_1, \dots, x_n, x]$

Temos $f(x) = p_n(x) + E_n(x)$.

Daí,
$$f(x_i) = p_n(x_i) + E_n(x_i) = p_n(x_i), \forall i = 0, 1, ..., n$$

Ex De acordo com a tabela abaixo, use o método do Newton para achar p_2 que interpola f.

$$\begin{array}{c|ccccc} x & -1 & 0 & 2 \\ \hline f(x) & 4 & 1 & -1 \end{array}$$

Solução:
$$p_2(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2]$$

Estudar o erro na interpolação:

Obs.1: Se p_n interpola f em $x_0, x_1, ..., x_n$ tem-se que o erro cometido é $E_n(x) = f(x) - p_n(x).$

Teo. Rolle:

$$\overline{\overline{C^0} \ni f : [a, b]} \longrightarrow \mathbb{R}, f(a) = f(b), \exists f' : (a, b) \longrightarrow \mathbb{R} \Longrightarrow \exists c \in (a, b); f'(c) = 0.$$

 $\begin{array}{ll} \underline{\underline{\text{Teo.2:}}} & x_0 < x_1 < \dots < x_n. & f\big|_{[x_0,x_n]} \in C^{n+1}. & p_n \text{ interpolador de } f \text{ em } \\ x_0,x_1,\dots,x_n. & \text{Ent\~ao}, \text{ para valores de } x \in [x_0,x_n], \text{ temos:} \\ E_n(x) = (x-x_0)(x-x_1)(x-x_2)\cdots(x-x_n)\frac{f^{(n+1)}(\xi_x)}{(n+1)!}, \text{ onde } \xi_x \in (x_0,x_n). \end{array}$

$$E_n(x) = (x - x_0)(x - x_1)(x - x_2) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$
, onde $\xi_x \in (x_0, x_n)$.

Dem.:

Para não ficar carregando expressões grandes, defina:

$$G: [x_0, x_n] \longrightarrow \mathbb{R}$$

$$x \longmapsto (x - x_0)(x - x_1) \cdots (x - x_n)$$

Para cada $x \in [x_0, ..., x_n] \setminus \{x_0, x_1, ..., x_n\}$ fixado arbitrariamente, defina the função

$$H: [x_0, x_n] \longrightarrow \mathbb{R}$$
 $t \longmapsto E_n(x)G(t) - E_n(t)G(x)$

$$\underline{Af.1:} H \in C^{n+1}:$$

 $\overline{p_n,f}\big|_{[x_0,x_n]}\in C^{n+1}\Longrightarrow E_n=f-p_n\in C^{n+1}. \text{ Além disso, }G\in C^{n+1},\text{ pois é polinômio. Então:}$

$$H = \underbrace{E_n(x)}_{\in \mathbb{R}} \underbrace{G}_{\in C^{n+1}} - \underbrace{E_n}_{\in C^{n+1}} \underbrace{G(x)}_{\in \mathbb{R}} \Longrightarrow H \in C^{n+1}$$

Portanto,

$$\underline{H^{(n+1)}(t)} = E_n(x)G^{(n+1)}(t) - E_n^{(n+1)}(t)G(x)$$
(*).

Por outro lado, sabemos que $E_n(t) = f(t) - p_n(t)$. Assim,

$$\underline{\underline{E_n^{(n+1)}(t)}} = f^{(n+1)}(t) - p_n^{(n+1)}(t) = \underline{\underline{f^{(n+1)}(t)}}, \text{ onde } p_n^{n+1}(t) = 0, \text{ pois } p_n \text{ \'e um polinômio de grau } \leq n.$$

Além disso, não é difícil ver que $G^{(n+1)}(t) = (n+1)!$.

Voltando a expressão (*):
$$H^{(n+1)}(t) = (n+1)!E_n(x) - G(x)f^{(n+1)}(t)$$
 (**)

como $H(x_0) = H(x_1) = \cdots = H(x_k) = H(x) = H(x_{k+1}) = \cdots = H(x_n) = 0,$ temos, pelo Teo de Rolle:

$$\exists \alpha_{0,1} \in (x_0, x_1); \ H'(\alpha_{0,1}) = 0 \\ \exists \alpha_{1,2} \in (x_1, x_2); \ H'(\alpha_{1,2}) = 0 \\ \vdots \qquad \qquad \vdots \\ \exists \alpha_{k,x} \in (x_k, x); \ H'(\alpha_{x_k,x}) = 0 \\ \exists \alpha_{x,k+1} \in (x, x_{k+1}); \ H'(\alpha_{x,k+1}) = 0 \\ \vdots \qquad \qquad \vdots \\ \exists \alpha_{n-1,n} \in (x_{n-1}, x_n); \ H'(\alpha_{n-1,n}) = 0 \end{bmatrix} \Longrightarrow H' \text{ possui } n+1 \text{ zeros.}$$

Ou seja, mostramos que H possui pelo menos $n+2 \Longrightarrow H'$ possui pelo menos n+1 zeros.

Analogamente, mostra-se:

H possui pelo menos n+2 zeros \implies H' possui pelo menos n+1 zeros $\implies H''$ possui pelo menos n zeros $\vdots \quad \vdots \\ \Longrightarrow \quad H^{(n+1)} \text{ possui pelo menos 1 zero}$

Seja então $\xi_x \in (x_0, x_n)$ um zero de $H^{(n+1)}$. Assim, da expressão (**) temos:

$$0 = H^{n+1}(\xi_x) = (n+1)! E_n(x) - G(x) f^{(n+1)}(\xi_x). \implies E_n(x) = G(x) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$

Ou seja, mostramos que para cada
$$x \in [x_0, x_n] \setminus \{x_0, ..., x_n\}$$
 vale:
$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}.$$

Observe que se $x \in \{x_0, ..., x_n\}$ tem-se:

$$\underline{E_n(x)} = f(x) - p_n(x) = f(x) - f(x) = \underline{0}$$
, pois p_n interpola f em $x_0, ..., x_n$.

Além disso, claramente $\underline{G(x)} = 0$, para $x \in \{x_0, ..., x_n\}$.

Portanto,

Portanto,
$$E_n(x) = 0 = G(x) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}, \text{ para } x \in \{x_0, ..., x_n\}.$$
 Concluimos assim que

$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}, \forall x \in [x_0, x_n].$$

Obs.1: O erro que se comete ao aproximar f pelo polinômio de grau $n, p_n,$ estar relacionado com a derivada de ordem (n+1).

Obs.2: A fórmula acima é pouco utilizada, pois precisamos saber ξ_x e $f^{(n+1)}(\xi_x)$

<u>Exemplo:</u> Usando interpolação linear (interpolação que usa apenas dois ptos) ache ln 3, 7, onde:

Solução: Como $3, 7 \in (3, 4)$, usaremos $x_0 = 3$ e $x_1 = 4$.

Pela forma de Newton, $p_1(x) = \ln(x_0) + (x - x_0) \ln[x_0, x_1]$, onde

$$\ln[x_0, x_1] = \frac{\ln x_1 - \ln x_0}{x_1 - x_0}.$$

Portanto,

$$p_1(x) = \ln 3 + (x-3)\ln[3,4] = \ln 3 + (x-3)\frac{\ln 4 - \ln 3}{4-3} = 1,0986 + (x-3)(1,3863 - 1,0986)$$

= 1,0986 + 0,2877(x - 3) $\Longrightarrow p_1(3,7) = 1,0986 + 0,2877(3,7-3) = 1,3000$ (arredondando)

 $\ln 3, 7$ com quatro casas decimais: $\ln 3, 7 = 1,3083$.

Então:

$$E_1(3,7) = \ln(3,7) - p_1(3,7) = 0,0083 = 8,3 \times 10^{-3}$$
 é o erro cometido.

$$\underline{\underline{\text{Observação:}}} \ f[x_0,...,x_n,x] = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}, \text{ veja Teo.2 e (iv)}$$

Cor.1 do Teo.2:

$$\overline{f^{(n+1)} \in C^0([x_0, x_n])} \Longrightarrow |f(x) - p_n(x)| = |E_n(x)| \le |(x - x_0) \cdots (x - x_n)| \frac{M_{n+1}}{(n+1)!}$$

 $ond\epsilon$

$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$$

Cor.2 do Teo. 2: $x_{i+1} - x_i = h$, $\forall i = 0, 1, ..., n$. Dado $x \in [x_0, x_n]$ tem-se que $x \in [x_k, x_{k+1}]$ para algum k. Então:

$$|x - x_0| < (k+1)h$$

$$|x - x_1| < kh$$

$$|x - x_2| < (k - 1)h$$

$$|x - x_{k-2}| < 3h$$

$$|x - x_{k-1}| < 2h$$

$$|x - x_k| < h$$

$$|x - x_{k+1}| < h < (k+2)h$$

$$|x - x_{k+2}| < 2h < (k+3)h$$

$$|x - x_{k+3}| < 3h < (k+4)h$$

:

$$|x - x_{n-2}| < (n - k - 2)h < (n - 1)h$$

$$|x - x_{n-1}| < (n - k - 1)h < nh$$

$$|x - x_n| < (n - k)h$$

$$\underbrace{\frac{\left|x-x_{0}\right|\cdot\left|x-x_{1}\right|\cdot\left|x-x_{2}\right|\cdot\cdot\cdot\left|x-x_{k-2}\right|\cdot\left|x-x_{k-1}\right|\cdot\left|x-x_{k}\right|\cdot\left|x-x_{k}\right|\cdot\left|x-x_{k}\right|\cdot\left|x-x_{k}\right|\cdot\left|x-x_{k}\right|\cdot\left|x-x_{k+1}\right|\cdot\left|x-x_{k+1}\right|\cdot\left|x-x_{k+2}\right|\cdot\left|x-x_{k+3}\right|\cdot\cdot\cdot\left|x-x_{n-2}\right|\cdot\left|x-x_{n-1}\right|\cdot\left|x-x_{n}\right|\cdot\left|x-$$

Portanto.

$$|E_{n}(x)| = |x - x_{0}| \cdots |x - x_{n}| \frac{M_{n+1}}{(n+1)!} < n!(n-k)h^{n+1} \cdot \frac{M_{n+1}}{(n+1)!} = \frac{(n-k)h^{n+1}M_{n+1}}{n+1}$$

$$\downarrow_{\chi_{0}} \qquad \chi_{1} \qquad \chi_{2} \qquad \chi_{K-2} \qquad \chi_{K-1} \qquad \chi_{K} \qquad \chi_{K+1} \qquad \chi_{K+2} \qquad \chi_{K+2} \qquad \chi_{n-2} \qquad \chi_{n-1} \qquad \chi_{n}$$

No livro:
$$|f(x) - p_n(x)| = |E_n(x)| < \frac{h^{n+1} M_{n+1}}{4(n+1)}$$
 (*)

Exemplo: $f(x) = e^x + x - 1$. Obter f(0,7) por interpolação linear e analisar o erro, onde:

Solução: Como $0,7 \in (0,5,1)$, na interpolação linear $x_0 = 0,5$ e $x_1 = 1$. Forma de Newton: $p_1(x) = f(x_0) + (x - x_0)f[x_0, x_1] \Longrightarrow p_1(0,7) = 1,7765$ Nesse exemplo temos como saber o verdadeiro erro, já que a expressão para f foi dada.

Erro verdadeiro = $f(0,7) - p_1(0,7) = 0,0628$

$$\underline{\underline{\text{Cor.1:}}} |E_n(x)| \le |x - x_0| \cdots |x - x_n| \frac{M_{n+1}}{(n+1)!}, \text{ onde } M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|.$$

$$|E_1(0,7)| \le |0,7 - 0,5| \cdot |0,7 - 1| \frac{M_2}{2!}, \text{ onde } M_2 = \max_{[x_0, x_1]} |f''(x)| = \max_{[0,5,1]} |e^x| = e^1 = e$$

Computando: $|E_1(0,7)| \le 0,0815$. Tal estimativa é coerente com o verdadeiro erro.

$$\underline{\text{Cor.2:}} |E_n(x)| < \frac{h^{n+1} M_{n+1}}{4(n+1)}$$

Computando: $|E_1(0,7)| < \frac{(0,5)^2 M_2}{4 \cdot 2} = 0,0850$. Coerente com o verdaeiro erro.

Observação: Para usarmos as estimativas:

$$|E_n(x)| \le |x - x_0| \cdots |x - x_n| \frac{M_{n+1}}{(n+1)!}$$

(ii)
$$|E_n(x)| < \frac{h^{n+1}M_{n+1}}{4(n+1)}$$

precisamos achar $M_{n+1} = \max_{[x_0, x_n]} |f^{(n+1)}(x)|.$

Portanto, qdo f é dada na forma tabelada, não é possível achar M_{n+1} . Porém, podemos tomar o maior valor absoluto da maior diferença dividada de ordem (n+1), $f[x_0,...,x_n,x_{n+1}]$, como uma aproximação para $\frac{M_{n+1}}{(n+1)!}$ em $[x_0,x_n]$.

•
$$\left| f[x_0, ..., x_n, x] \right| \stackrel{Obs}{=} \frac{|f^{(n+1)}(\xi_x)|}{(n+1)!} \le \frac{1}{(n+1)!} \max_{[x_0, x_n]} |f^{(n+1)}(x)| = \frac{M_{n+1}}{(n+1)!},$$
 onde $\xi_x \in (x_0, x_n).$

Exemplo: Considere a tabela abaixo para:

- $\overline{\text{(a) Obter}} \ f(0,47)$ usando um polinômio de grau 2.
- (b) Estimar $|E_2(x)|$.

Solução: Sabemos que p_n interpola f em (n+1) ptos.

Como queremos um polinômio p_2 , precisaremos de (2+1) ptos.

Como $0,47 \in (0.4,0.52), 0,4$ e 0,52 é um dos três ptos que devemos considerar.

Escolheremos o outro pto para ser 0,6 (poderíamos ter escolhido 0,34).

Nesse caso: $x_0 = 0, 4, x_1 = 0, 52 e x_2 = 0, 6.$

Forma de Newton: $p_2(0,47) \simeq f(0,47)$

Temos três diferenças divididas de ordem (2+1):

f[0.2, 0.34, 0.4, 0.52], f[0.34, 0.4, 0.52, 0.6], f[0.4, 0.52, 0.6, 0.72]

A maior delas em valor absoluto é: 18, 2494.

Assim,

$$|E_2(0,47)| \le |0,47-0,4| \cdot |0,47-0,52| \cdot |0,47-0,6| \cdot |18,2494|.$$

Interpolação inversa

Considere a tabela abaixo:

$$\begin{array}{c|ccccc} x & x_0 & x_1 & x_2 & \cdots & x_n \\ \hline f(x) & f(x_0) & f(x_1) & f(x_2) & \cdots & f(x_n) \end{array}$$

Interpolaçã inversa: Dado $y \in (f(x_0), f(x_n))$, encontrar x tal que f(x) = y. Como?

Obtem-se p_n que interpola f em $x_0, x_1, ..., x_n$ e encontra x tal que $p_n(x) = y$.

Exemplo: Encontrar x tal que f(x) = 2, onde:

Solução: Como $2 \in (1.82, 2.01)$, consideremos $x_0 = 0, 6$ e $x_1 = 0, 7$ e encontraremos p_1 que interpola f em x_0 e x_1 .

Forma de Lagrange:

$$p_1(x) = f(x_0)L_0(x) + f(x_1)L_1(x) = f(x_0)\frac{x - x_1}{x_0 - x_1} + f(x_1)\frac{x - x_0}{x_1 - x_0}$$

 $\implies p_1(x) = 1.9x + 0.68$. Daí

$$p_1(x) = 2 \iff x = 0.6947368$$

Observação: Dado $y \in (f(x_0, f(x_n))$ queremos encontrar x tal que f(x) = y. Se a função f for inversível, $x = f^{-1}(y)$. Daí, interpolamos f^{-1} por um polinômio p_n e $p_n(y)$ será uma aproximação para $f^{-1}(y) = x$, ou seja,

 $p_n(y) \simeq f^{-1}(y) = x$. Nesse caso, o erro $E_n(y) = f^{-1}(y) - p_n(y)$ poderá ser estimado usando (*), Cor.1 do Teo.2 e maior valor absoluto das diferenças divididas

Exemplo: Obter x tal que $e^x = 1.3165$, usando um polinômio de grau 2, p_2 , onde:

Solução: $e^x = 1.3165 \iff x = \ln 1.3165$.

Então basta interpolar ln.

Usando a forma de Newton (iv), para interpolar $f^{-1}=\ln$ usando um polinômio de grau 2 (p_2) , precisamos de três ptos.

Dois deles devem ser 1.2214 e 1.3499, pois:

$$y_0 = 1.2214 < \underline{1.3165} < 1.3499 = y_1$$

Escolha $y_2 = 1.4918$ para ser o outro.

Forma de Newton: $p_2(y) = f^{-1}(y_0) + (y - y_0) f^{-1}[y_0, y_1] + (y - y_0) (y - y_1) f^{-1}[y_0, y_1, y_2].$ $p_2(y) = \ln 1.2214 + (y - 1.2214) \ln \left[1.2214, 1.3499\right] + (y - 1.2214) (y - 1.3499) \ln \left[1.2214, 1.3499, 1.4918\right]$ Computando: $p_2(y) = 0.2 + (y - 1.2214) 0.7782 + (y - 1.2214) (y - 1.3499) (-0.2718)$

 $p_2(1.3165) = 0.27487$

 $\overline{\text{Assim}, x = \ln 1.3165} \simeq p_2(1.3165) = 0.27487 \iff 1.3165 = e^x \simeq e^{0.27487}$

Escolha do grau do polinômio interpolador

Considere a tabela abaixo:

		1.01			1.04	1.05
\sqrt{x}	1	1.005	1.01	1.0149	1.0198	1.0247

	Ordem 0	Ordem 1	Ordem 2
	1		
		0.5	
.01	1.005		0
		0.5	
.02	1.01		-0.5
		0.49	
.03	1.0149		0
		0.49	
.04	1.0198		0
		0.49	
.05	1.0247		
		†	
		† constantes	

Veja que na tabela de diferenças dividas, no intervalo [1, 1.05] as diferenças de <u>ordem 1</u> são praticamente constantes (o que acarreta as diferenças de ordem 2 variarem próximas de zero). Isso é um bom critério para concluirmos que o polinômio de <u>grau 1</u> é o melhor para interpolarmos $f(x) = \sqrt{x}$ no intervalo [1, 1.05].

Observações:

 $\boxed{1}$: Ao interpolarmos um polinômio de grau n por um polinômio de grau $\geq n$ obteremos o próprio polinômio que queríamos interpolar.

<u>Ex.:</u> Interpolar $f(x) = x^2$ nos ptos $x_0 = -2$, $x_1 = -1$, $x_2 = 0$, $x_3 = 1$ por um polinômio de grau 3.

 $p_3(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3] \Longrightarrow p_3(x) = x^2.$

Exercícios

- 1. Dada a tabela abaixo,
- a) Calcule $e^{3.1}$ usando um polinômio de interpolação sobre três pontos.
- b) Dê um limitante para o erro cometido.

x	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8
e ^x	11.02	13.46	16.44	20.08	24.53	29.96	36.59	44.70

2. Use o *método do sistema linear*, a forma de Lagrange e a forma de Newton para achar o polinômio de grau 2 que interpola a função dada na tabela abaixo:

- 3. Ache f(0) na questão anterior e estime o erro cometido.
- 4. Sabendo que a função da tabela abaixo é invertível, use as duas maneiras que vimos na teoria para obter o x tal que $f(x)=\frac{1}{2}$ utilizando polinômio de grau 1.

$$\begin{array}{c|ccccc} x & 0 & 1 & 8 \\ \hline f(x) & 0 & 1 & 2 \\ \end{array}$$