THERMODYNAMICS **PROCESSES**

- · ISothermal Process $\Lambda T = 0$
- · ISochoric Process $\Delta V = 0$
- Adiabatic Process q = 0
- Cyclic Process $\Delta U_{\text{cyclic}} = 0$

THERMODYNAMICS PROPERTIES

THERMODYNAMICS

INTENSIVE PROPERTIES P. T. N

Properties of the System which are independent of amount of System.

STATE FUNCTION

values of such functions do not depend on the path of the System. e.g. ΔU, ΔH, ΔS etc.

V. U. H

EXTENSIVE PROPERTIES

Properties of the System which depend on the amount of the System.

PATH FUNCTION

values of such functions depend on the path of the system.

e.g. W and q.

Enthalpy change when 1 mole of compound undergoes melting at

ENTHALPY CHANGE WHEN I MOLE OF COMPOUND UNDERGOES boiling at

into gaseous state at a constant temperature and standard

ENTHAIPY CHANGE WHEN I MOLE OF SUBSTANCE IS dissolved in fixed

ENTHALPY CHANGE WHEN I MOLE OF SOLID SUBSTANCE IS directly converted

It is the enthalpy change to break 1 mole bonds of a particular kind.

constant temperature and atmospheric pressure.

constant temperature and atmospheric pressure.

ZEROTH LAW OF THERMODYNAMICS

If two bodies are in thermal equilibrium with a third one. then they are in thermal equilibrium with each other.

GIBB'S FREE ENERGY

The net energy available to do useful work and it is a measure of Spontanity.

Standard free energy of a reaction:

$$\Delta G^{\circ} = \Sigma \Delta G^{\circ}_{Products} - \Sigma \Delta G^{\circ}_{Reactants}$$

 $\Lambda G^{\circ} = \Lambda H^{\circ} - T \Lambda S^{\circ}$

GIBB'S ENERGY CHANGE & EQUILIBRIUM

 $\Delta G^{\circ} = -2.303RT \log K$ $\Delta G^{\circ} = 0$ log K = 0 Equilibrium reached.

Mixture contains mostly products. $\Delta G^{\circ} > 0 \log K < 1$ Mixture contains

mostly reactants.

 $\Delta G < 0$. Process is spontaneous $\Delta G > 0$, Process is non-spontaneous

 $\Delta G = 0$. Process is at equilibrium

TYPES OF SYSTEM

=>Energy

<--->Matter

ISOLATED SYSTEM

ENTHAIPS OF TUSION (ΔH°)

ENTRAIPY of vapourization (ΔH_{vap}°)

ENTHALPY OF SUBLIMATION (ΔH°)

Bond dissociation enthalpy (B.E.)

ENTHAIPY OF SOLUTION (ΔH_{od}°)

 $H_2O(s) \rightarrow H_2O(l)$

 $H,O(\ell) \rightarrow H,O(g)$

 $CO_2(s) \rightarrow CO_2(g)$

 $KCl + aq \rightarrow KCl (aq)$

 $Cl_2(g) \longrightarrow 2Cl(g)$

ENTHALPY

$$\Delta H = \Delta U + \Delta (PV)$$

 $\Delta H = \Delta U + \Delta n_a RT$

pressure.

quantity of Solvent.

Enthalpy of reaction (ΔH)

$$\Delta H = \Sigma \Delta H_{f(Products)} - \Sigma \Delta H_{f(Reactants)}$$

 $\Delta H = \Sigma B.E._{Reactants} - \Sigma B.E_{Products}$

ISOTHERMAL REVERSIBLE

$$W_{rev} = -2.303 nRT log \left(\frac{V_2}{V_1}\right)$$

 $W_{rev} = -2.303 nRT log \left(\frac{P_1}{P_1}\right)$

ADIABATIC REVERSIBLE

$$W_{rev} = \frac{nR}{\gamma R} (T_2 - T_1)$$

Sign of Sign o $\Delta G = \Delta H - T \Delta S$ Spontanity. Always Spontaneous at all temp. Positive Negative Negative Always Non-Spontaneous at all Negative Positive Positive temperature. Non-Spontaneous at all +ve @ low temp. temperature. Postive Postive Spontaneous at high temperature. SPONTANEOUS AT LOW -ve @ low temp. Negative Negative Spontaneous at low +ve @ low temp.

HEAT (q)

Exchange of energy due to temperature differnece.

INTERNAL ENERGY (U)

Total energy within the Substance

WORK (W)

work is a mode of energy transfer when temperature difference is not involved.

$$W = -P_{ext}\Delta V$$

SPONTANEITY

It is natural direction of a process.

FIRST LAW OF THERMODYNAMICS

Law of conservation of energy total energy of an isolated system is constant.

Mathematically. Au= 9 + W

MOIAR HEAT CAPACITY

Amount of heat required to raise the temperature of a 1 mole SubStance.

Molar heat capacity $\Rightarrow q_v = N_vRT$

Specific heat capacity $\Rightarrow q_a = nC_aRT$

MEYERS'S FORMULA $C_p - C_v = R$ POISSON'S RATIO $\frac{C_p}{C_v} = \gamma$

HESS' LAW CONSTANT HEAT SUMMATION

SIGN CONVENTION

Heat absorbed by the System = +ve

Heat evolved by the System = -ve

work done by the System = -ve

work done on the System = +ve

FREE EXPANSION

when an ideal gas expands in vacuum then, $P_{ext} = 0$.

∴ W=0

SECOND LAW OF **THERMODYNAMICS**

The Total entropy of the universe is always increasing in the course of every spontaneous or natural change.

$$\Delta S_{Total} > 0$$

ENTROPY

This is the measure of the degree of randomness or disorder of the system.

$$\Delta s = \frac{q_{rev}}{T}$$

 $\Delta S_{Total} = \Delta S_{system} + \Delta S_{surroundings}$

Entropy changes during phase transformation

$$\Delta S_{\text{fusion}} = \frac{\Delta H_{\text{fusion}}}{T}$$
 , $\Delta S_{\text{vap}} = \frac{\Delta H_{\text{vap}}}{T}$

 $\Delta_{sub}S = \frac{\Delta_{subs}H}{T}$

Entropy change of a reaction.

 $\Delta_r S^\circ = \Sigma s^\circ_{products} - \Sigma s^\circ_{reactants}$

THIRD LAW OF **THERMODYNAMICS**

The Entropy of a perfectly crystalline Substance at 0 K or absolute zero Temperature to be zero.

© 08047484847

9521396655