Customer No.: 26021

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-14 (canceled).

15.(new): A Y_2O_3 sintered material comprising 99.9% by weight or more Y_3O_3 in terms of Y_2O_3 , wherein a difference in crystal grain size between the surface and the inside region is not larger than 30 μm .

16.(new): A corrosion resistant member comprising a Y_2O_3 sintered material that includes 99.9% by weight or more Y in terms of Y_2O_3 , wherein a difference in crystal grain size between the surface and the inside region of said Y_2O_3 sintered material is not larger than 30 μ m.

17.(new): The corrosion resistant member according to claim 16, wherein said Y₂O₃ sintered material comprises at least metal element of AE (AE represents group II elements of the periodic table).

18.(new): The corrosion resistant member according to claim 17, wherein said Y₂O₃ sintered material further comprises any one of Si, Fe and Al.

19.(new): The corrosion resistant member according to claim 16, wherein said Y₂O₃ sintered material further comprises any of a group of metallic elements consisting of Si, Fe, Al and AE (these metallic elements will hereinafter be collectively referred to as metal elements M), in concentrations of 300 ppm of less for Si in terms of SiO₂, 50 ppm or less for Fe in terms of Fe₂O₃, 100 ppm or less Al in terms of Al₂O₃ and 350 ppm or less AE in terms of AEO.

Customer No.: 26021

- 20.(new): The corrosion resistant member according to claim 19, wherein the content ratio of any of the metal elements M contained at and near the surface to that contained deep inside of said Y_2O_3 sintered material is in a range from 0.2 to 5.
- 21.(new): The corrosion resistant member according to claim 16, wherein said Y_2O_3 sintered material shows dielectric loss tangent of 2 x 10^{-3} or less in a frequency range from 10 MHz to 5 GHz.
- 22.(new): The corrosion resistant member according to claim 16, wherein the carbon content in said Y₂O₃ sintered material is 100 ppm by weight or less.
- 23.(new): The corrosion resistant member according to claim 16, wherein said Y₂O₃ sintered material has void ratio of 5% or less.
- 24.(new): The corrosion resistant member according to claim 16, wherein said Y₂O₃ sintered material has density of 4.8 g/cm³ or higher.
- 25.(new): A method for manufacturing a corrosion resistant member comprising:

preparing a powder having a mean particle size of 1 µm or less that comprises 99.9% by weight of Y₂O₃ with the rest including any of SiO₂, Fe₂O₃, Al₂O₃ and AEO,

forming the powder into a compact, heating the compact at a rate of 50°C per hour or less, and firing the compact at a temperature from 1500 to 2000°C.

26.(new): The method for manufacturing a corrosion resistant member according to claim 25, wherein the compact is placed on a firing fixture that has melting point higher than 2000°C.

Attorney Docket No. 81880.0136 Express Mail Label No. EV 631 168 002 US

Customer No.: 26021

27.(new): The method for manufacturing a corrosion resistant member according to claim 25, wherein the powder contains all of SiO₂, Fe₂O₃, Al₂O₃ and AEO, in concentrations by weight of 250 ppm of less for SiO₂, 40 ppm or less for Fe₂O₃, 50 ppm or less for Al₂O₃ and 250 ppm or less for AEO.

28.(new): A member for a semiconductor/liquid crystal manufacturing apparatus comprising the corrosion resistant member according to claim 16, wherein said corrosion resistant member is used in an atmosphere where said corrosion resistant member is exposed to a corrosive gas containing a halogen element or plasma thereof.