RFID, Smart card systems and authentication

CEN 464 – Cyber Security Assoc.Prof.Dr. Fatih ABUT

RFID (Radio Frequency Identification)

contactless smart cards

Cyber Security

Slide 2

Types of transponders

Cyber Security

Slide 3

Inductively coupled transponder

Reader

Transponder

Cyber Security

Slide 4

Card Types: Embossed Cards

Card Types: Swipe Card

What is a Smart Card?

Definition

A smart card is a (mostly) credit card-sized device embedded with

- either a memory chip or
- a memory chip and a microprocessor.

Think of microprocessor smart card as a tiny, portable database and computer that you can carry in your pocket.

25 March 1974:

Roland Moreno, a French journalist, filed the first patent for the Smart Card

Types of smart card storage

- ROM
- PROM
- EPROM
- EEPROM
- Flash-EEPROM
- FeRAM
- RAM

Contact fields of a chip card (ISO 7816-2)

Structure of a memory chip card Electrically Programmable Read Only Memory Vcc EEPROM Access, Reset/Ctrl address, Read Only Clock Memory security Ground ROMlogic I/O

Structure of a processor chip card

Communication card / terminal

Basic scheme of chip card protocol

Activation Sequence and Reset

Activation sequence (driven by the terminal)

- 1)Ground
- 2)Power supply
- 3)(external) Clock
- 4)Reset
- 5)

Cyber Security

Slide 14

Physical Layer - Transmitting a Bit

data transmission rate = 3571200 / 372 = 9600 bit/s etu (elementary time unit) = length of a bit = 372 / 3571200 = 104 µs

Answer to Reset

Protocol Type Selection

Cyber Security

Slide 17

Sending a Command

Layered Communication Model for Smart Card DataTransfer

Transmission Layer (Data Link Layer, Übertragungsschicht)

Protocol	Norm	Meaning
T=0	ISO/IEC 7816-3	half-duplex, asynchronous block- oriented
T=1	ISO/IEC 7816-3	half-duplex, asynchronous block- oriented
T=2		full duplex, asynchronous block oriented (in normalization)
T=3		full duplex,
T=4		half-duplex, asynchronous byte- oriented extension of T = 0
T=14		

T1 is a transparent, block-oriented, asynchronous half-duplex protocol with error handling

Sending a Response

Aufbau Response-APDU

Classification Scheme for the Return Code (SW1, SW2)

Resource requirements of a chip card

	ROM	RAM	EEPROM
Basic Card	min. 8 KB	256 Byte	8 KB
Java Card / MultOS	min. 16 KB	1 KB	8 KB
			_

- Chip card file system is organized in directories and elementary files.
- There are four types of elementaryfiles
 - Transparent
 - Linear fixed
 - Linear variable
 - Cyclic

Four Types of Elementary Files

File structure:

Standards for chip card commands

Secure messaging as an intermediate layer

Cyber Security

 \bigcirc

Secure Environment Concept

Layer architecture of smart card communication

OSI	Layer	Specification
OSI Layer 7 APDU	application layer	ISO/IEC 7816-4 EMV GSM 11.11,
	secure messaging	ISO/IEC 7816-4 und -8
OSI Layer 2 Frames	data link layer	ISO/IEC 7816-3 (T=0 / T=1) ISO/IEC 10536-4 (T=2)
OSI Layer 1 Bits	physical layer	ISO/IEC 7816-3

Authentication with smart cards

Key Management, Authentication and Encryption

Cyber Security

Slide 33

Different definitions 'Authentication'

- American National Standard for Telecommunications (http://www.its.bldrdoc.gov):
 - A security measure designed to protect a communications system against acceptance of a fraudulent transmission or simulation by establishing the validity of a transmission, message, or originator.
- OASIS, the Organization for the Advancement of Structured Information Standards (http://www.oasis-open.org/committees/security)
 - Authentication is the process of confirming a system entity's (=an active element of a system - e.g., an automated process or set of processes, a subsystem, a person or group of persons--that incorporates a specific set of capabilities) asserted principal identity (= AAA Service clients) with a specified, or understood, level of confidence.
- Center for Democracy and Technology (http://www.cdt.org/)
 - Authentication the process of verifying that a file or message has not been altered in route from the distributor to the recipient(s).

Definitionen 'Authentisierung' nach Clifford Lynch

- Authentication is the process where a network user establishes a right to an identity in essence, the right to use a name.
- Validating authenticity entails verifying claims that are associated with an object in effect, verifying that an object is indeed what it claims to be, or what it is claimed to be (by external metadata).

Clifford Lynch (ed.): A White Paper on Authentication and Access Management Issues in Cross-Organizational Use of Networked Information Resources, Coalition for Networked Information, Spring 1998. (Revised discussion draft – April 14).

Available at http://www.cni.org/projects/authentication/authentication-wp.html, accessed: November 20, 2001.

Lynch Clifford A.: Authenticity and Integrity in the Digital Environment: An Exploratory Analysis of the Central Role of Trust," Authenticity in a Digital Environment. Washington, DC, Council on Library and Information Resources, pp 32-50, 2000. Available at

http://www.clir.org/pubs/reports/pub92/lynch.html, accessed: November 20, 2001.

Classification scheme Authentication (according to Rankl / Effing)

One-sided, symmetric, static authentication

One-sided, symmetric, dynamic authentication

Mutual, symmetric, dynamic authentication

One-sided, asymmetric, static authentication with global keys

One-sided, asymmetric, dynamic authentication

Mutual, symmetric, dynamic authentication and encryption

Mutual, symmetric, dynamic authentication with key management and encryption

Mutual, symmetric, dynamic authentication with master key and encryption

