CS3231 Tutorial 2

WANG Xiyu

August 28, 2024

Contents

1 1

1

Prove or disprove

$$L((R+S)^*) = L((R^*S^*)^*)$$

Solution:

Suppose string $w \in L(R+S)$, $w = t_1t_2t_3...t_n$, for some $n \in \mathbb{N}$, $t_i \in R \vee t_i \in S$. Which fits the definition of $L(R^*S^*)$ since both accept arbituary combination of $s \in S$ and $r \in R$, or arbituary length $n \in \mathbb{N}$.

Therefore, $L(R+S) \subseteq L(R^*S^*)$

Now suppose string $u \in L(R^*S^*)$, $u = k_1k_2k_3...k_n$, for some $n \in \mathbb{N}$, $k_i \in R^* \vee k_i \in S^*$. Which fits the definition of L(R+S) for the same reason above.

$$L(S(R+S)^*S) = L((SR^*S)^+)$$

Solution: