Badania Operacyjne

Zadanie 1. Przedsięwzięcie składa się z operacji A, B, C, D, E, F i G o następujących czasach trwania i relacjach poprzedzania:

Operacja	A	В	C	D	E	F	G
Czas trwania	5	2	8	3	4	11	7
Operacie poprzednie	G	_	G	B.G	C.D	A.B	_

- a) Narysować reprezentację łukową tego przedsięwzięcia.
- b) Wypisać wszystkie operacje krytyczne.

Zadanie 2. Dane jest zadanie programowania całkowitoliczbowego:

min
$$x_0 = 3x_1 + x_2$$

 $4x_1 + 3x_2 \le 18$
 $4x_1 + x_2 \ge 6$
 $x_1 + x_2 \ge 2$
 $x_1, x_2 \ge 0$
 x_1, x_2 całkowite

- a) Zaznaczyć w wyraźny sposób wszystkie rozwiązania dopuszczalne powyższego zadania.
- b) Wyznaczyć rozwiązanie optymalne i wyliczyć odpowiadającą mu wartość funkcji celu.
- c) Narysować powłokę wypukłą dla powyższego zadania w przestrzeni zmiennych x_1 , x_2 .

Zadanie 3. Przed procesorem oczekuje 5 zadań do wykonania. Czasy wykonywania zadań są następujące: p_1 =40, p_2 =20, p_3 =30, p_4 =10, p_5 =15. Zysk z wykonania poszczególnych zadań jest natomiast równy: z_1 =50, z_2 =30, z_3 =40, z_4 =60, z_5 =50. Procesor jest dostępny przez 50 jednostek czasu. Należy określić, które zadania powinno się wykonać w tym czasie na procesorze, aby osiągnąć maksymalny sumaryczny zysk (przyjmujemy, że zadanie przynosi zysk jeżeli jest ono w całości wykonane).

- a) Rozwiązać zadanie metodą programowania dynamicznego. Narysować graf przejść między stanami, określić optymalną trajektorię. Wyliczyć wartości funkcji Bellmana dla wszystkich wierzchołków. Podać rozwiązanie zadania.
- b) Sformułować model programowania liniowego (całkowitoliczbowego) dla powyższego zadania **Zapisać funkcję celu i wszystkie ograniczenia w sposób jawny.**

Zadanie 4. Przed dwoma identycznymi procesorami równoległymi jest 10 zadań do wykonania. Czasy wykonania zadań p_j są podane w poniższej tabeli. Każdy z procesorów może obsługiwać w danej chwili tylko jedno zadanie. Należy:

- a) określić i narysować harmonogram wykonywania zadań, w którym suma czasów oczekiwania wszystkich zadań będzie najmniejsza,
- b) obliczyć i podać sumę czasów oczekiwania na obsługę wszystkich zadań dla tego harmonogramu.

	Zad. 1	Zad. 2	Zad. 3	Zad. 4	Zad 5.	Zad 6.	Zad. 7	Zad. 8	Zad. 9	Zad.10
p_{j}	5	11	9	1	13	6	4	10	15	8