Ho Chi Minh City National University University of Information Technology Computer Engineering

Report

Digital Logic Design

Subject: LIFO (Stack)

Class: CE118.P11.2

Instructor: Ta Tri Duc

Performed by students: Truong Thien Quy - 23521321

Ho Chi Minh City, 04/2023

able	e of contents:	Page
1.	Top	3
	Top-1	
	RAM	
4.	STACK	6
5.	Waveform	7

Top: The smallest empty address.

Use Up/down_counter to design the TOP block.

When E=0 it doesn't work

When E = 1:

D = 0: count up (push)

D = 1: count down (pop)

When Reset = 1: Ouput = 00000b

Top-1: The biggest address has data:

Use an Up/down_counter and Sub_00001 block to design the TOP-1 block.

Sub_00001 block is desined by 4 Sub_0 block and 1 Sub_1 block

When E=0 it doesn't work

When E = 1:

D = 0: count up (push)

D = 1: count down (pop)

When Reset = 1: Ouput = 11111b

Ram 32x8:

Connecting the 4 blocks of 8x8 designed above, we get a 32x8 block of memory cells.

The I/O signals are in turn connected to the IO buffers due to the CS x (RWS)' signal to control the signals in the read and write states.

The Row_Select pins connect to the 5 to 32 decoder to access the address of each row (register).

RWS x CS input to generate the Write_Enable signal.

Stack:

Push: Data \rightarrow RAM (*TOP*); Increment Top, Top-1

Pop: RAM $(Top-1) \rightarrow Data$; Decrement Top, Top-1

Stack is full when Top=1023

Stack is empty when Top=0

Location with address 1023 is never loaded

Waveform:

