

Silicon Power MOSFETs

Jean-Marie Lauenstein, Megan Casey, Mike Campola, Ray Ladbury, and Ken LaBel - NASA/GSFC Ted Wilcox, Anthony Phan, Hak Kim, and Alyson Topper, AS&D, Inc.

Acknowledgment:

This work was sponsored by:
NASA Office of Safety & Mission Assurance
in collaboration with:
NASA Engineering and Safety Center

Abbreviations & Acronyms

Acronym	Definition	
BV _{DSS}	Drain-Source Breakdown Voltage	
COTS	Commercial Off The Shelf	
EEE	Electrical, Electronic, and Electromechanical	
ETW	Electronics Technology Workshop	
FY	Fiscal Year	
GCR	Galactic Cosmic Ray	
I_D	Drain Current	
I _{DSS}	Drain-Source Leakage Current	
I_{G}	Gate Current	
LBNL	Lawrence Berkeley National Laboratory cyclotron facility	
LET	Linear Energy Transfer	
MOSFET	Metal Oxide Semiconductor Field Effect Transistor	
NEPP	NASA Electronic Parts and Packaging	

Acronym	Definition	
NESC	NASA Engineering & Safety Center	
PIGS	Post Irradiation Gate Stress	
RHA	Radiation Hardness Assurance	
RTN	Random Telegraph Noise	
Si	Silicon	
SJ	Superjunction	
SOA	State Of the Art	
SWAP	Size, Weight, And Power	
TAMU	Texas A&M University cyclotron facility	
TID	Total Ionizing Dose	
VDMOS	Vertical Double-diffused MOSFET	
V_{DS}	Drain-Source Voltage	
V_{GS}	Gate-Source Voltage	
V_{TH}	Gate Threshold Voltage	

Outline

- Power MOSFET Task & Technology Focus
- Task Roadmap & Partners
- Recent Results
- Summary & Comments

Trench-style MOSFETs
offer application-targeted
performance enhancements
but are more vulnerable to
ion-induced TID degradation

Lauenstein, IEEE REDW 2013

Silicon Power MOSFET Technology

Planar Gate VDMOS

- Dominates rad-hardened offerings
- Prior NEPP efforts helped to expand market

Drawings from: Lauenstein, IEEE REDW 2013

Trench SJ VDMOS

Emerging technology

Trench Gate VDMOS

- Dominates COTS lower-V applications
- Only 1 rad-hardened offering

Superjunction (SJ) VDMOS

- COTS competes with IGBTs
- Near-term availability of radhardened options for 100V-650V (100V – 250V out now...for a \$\$)

Silicon Power MOSFET Technology

 NEPP task focuses on RHA of state-of-the-art Si power MOSFETs offering competitive edge over older planar gate VDMOS

Trench SJ VDMOS

Emerging technology

Trench Gate VDMOS

- Dominates COTS lower-V applications
- Only 1 rad-hardened offering

Superjunction (SJ) VDMOS

- COTS competes with IGBTs
- Near-term availability of radhardened options for 100V-650V applications

Motivational Factors

Images courtesy of NASA

CubeSATs

Solar Electric Propulsion

Commercial Space

- Game-changing NASA approaches are demanding higher-performance power electronics
 - SWAP benefits for existing technologies

Conclusions: We must understand risks of COTS/Auto options; We must foster industry partnerships to develop rad-hardened options when feasible

NEPP Collaborations

Topic	Agency(ies)/Industry	Description
COTS/Automotive Trench	NESC, Aerospace Corp., Vishay	Radiation evaluation of trench MOSFETs
Rad-Hardened Trench	Infineon/IR	Independent radiation testing of new offering
Superjunction MOSFETs	Infineon, STMicro	Independent radiation testing of new rad hardened SJ MOSFETs
planar VDMOS	Fuji, Microsemi	Independent radiation testing of rad hardened new offerings: High voltage is a priority (500 V and up)

Informal relationships include assisting end-users:

- Understanding radiation effects and sharing test data on power MOSFETs to aid parts selection
- Best practices, "rules of thumb" for application conditions

Silicon Power MOSFET Roadmap

- STMicro superjunction
- Infineon superjunction 100 V, higher-V targeted
- Fuji JAXA-R VDMOS high voltage
- Microsemi i2MOS
- Infineon (IR) R8 trench

COTS/Alternative Grade

- Vishay Trench
- On Semiconductor Trench
- NKP Trench

FY15 FY16 FY17 FY18

Silicon Trench Power MOSFET Catastrophic Failure Modes

Comparison of n-type 60V trench MOSFET SEB thresholds

Trench MOSFETs on test board at Lawrence Berkeley National Laboratory accelerator facility

COTS/Automotive:

- Collaborative effort with NESC
- Part-part variability requires larger test sample sizes, possibly more derating
- N-type SEB
 - Onset LET varies within manufacturer
 - Cannot generalize test results
 - Even for LETs below GCR "iron knee", must use these 60 V parts at < 50 %
- P-type SEGR
 - Often safe at higher % of rated voltage

P-Type Trench Power MOSFET Test Results

Vishay SQJ431EP Automotive: -200V, 12A, 213 m Ω

SEGR Response Curve

Strip Tape During Run

- SEGR with 886 MeV krypton (LET = 31 MeV-cm²/mg) at 75% of rated voltage
 - "x" in left plot marks failure after first beam run at -150 V: threshold thus not found.
 - 2 samples failed on PIGS; 1 during run (gate-to-drain) (right plot)

P-Type Trench Power MOSFET Test Results (cont'd)

On Semiconductor NVTFS5116PL Automotive: -60V, 14A, 52 m Ω

SEGR Response Curve

Strip Tape During Run

- SEGR with 886 MeV krypton (LET = 31 MeV-cm²/mg) at 83% of rated voltage
 - All 3 samples failed during run (ex/ right plot)
 - Part-to-part variability: may require additional derating over standard 0.75 factor
 - Ex/ 0.75*(-50 V) = -37.5 V but 99/90 one-sided tolerance (KTL) yields -30 V

P-Type Trench Power MOSFET Test Results (cont'd)

Nexperia BSS84AKV Automotive: -50V, 170mA, 7.5 Ω

SEGR Response Curve

- SEGR with 886 MeV krypton (LET = 31 MeV-cm²/mg) at 88% of rated voltage
 - All 3 samples failed during run (ex/ right plot)
 - Part-to-part variability: may require additional derating over standard 0.75 factor
 - Cannot rule out bimodal distribution

N-Type Trench Power MOSFET **Test Results**

Vishay SQS460EN Automotive: 60V, 8A, $36 \text{ m}\Omega$

SEB Response Curve

Vishay Si7414DN COTS: $60V, 8.7A, 25 \text{ m}\Omega$

SEB Response Curve

- SEB with ions below the GCR "iron knee", at 50% of rated voltage
 - Possible risk of SEB in proton environment
 - Part-to-part variability/bimodality continues to be a concern

N-Type Trench Power MOSFET Test Results: 200 MeV Protons

Vishay Si7414DN COTS: 60V, 8.7A, $25 \text{ m}\Omega$

1.4E-7

1.2E-7 1.0E-7 1.0E-7 V_{GS} = 0 V V_{DS} = 48 V 1.0E-8 2.0E-8 2.0E-8 -2.0E-8 -50 0 50 100 150 Elapsed Time (s)

Strip Tape During Run: Charge Collection Only

Strip Tape During Run: Current Spikes

- Onset V_{DS} for current spikes from 200-MeV protons is similar to that of SEB from heavy ions
 - Lack of stiffening capacitor may have allowed V_{DS} quenching

N-Type Trench Power MOSFET Test Results: 200 MeV Protons (cont'd)

Vishay Si7414DN COTS: 60V, 8.7A, $25 \text{ m}\Omega$

MIL-STD
Test Circuit

Strip Tape During Run: Increased Current Spike Frequency

- Frequency of current spikes, but not magnitude, increases at higher V_{DS}
 - Additional tests needed to reveal whether spikes are protective-mode SEB events

Silicon Trench Power MOSFET Degradation from Heavy Ions

Modified from: Lauenstein, IEEE REDW 2013

Strikes through gate oxide along channel length form regions of lower V_{TH}

Non-hardened n-type susceptible to localized dosing degradation

- Ion strike through gate oxide locally shifts the flatband voltage, forming a transistor region with lower gate threshold voltage
- Well-understood phenomenon affecting only n-type transistors
 - Gate threshold shift in p-type swamped by overall lower threshold voltage

Greater effect on V_{TH} from heavy ions vs. protons

Silicon Trench Power MOSFET Degradation from Heavy Ions (cont'd)

- Magnitude of effect is primarily voltage-dependent
 - On orbit, unbiased spares are still vulnerable

Trench MOSFET drain current during beam run: 0 V applied to all pins

At 6 V_{DS}, ~3 order of mag. increased I_D after ~6 argon ions through gate oxide

Hardened Trench MOSFET Test Results

Infineon (International Rectifier) IRHLF87Y20 R8 rad-hardened: 20V, 12A, 32 m Ω

SEE Response Curve

- First (and only) radhardened trench MOSFET
 - Verified manufacturer SOA
 - 3 different failure signatures occurred outside SOA
 - **Greater complexity than** planar MOSFETs

SEB (note RTN-like behavior)

SEGR

SEB with partial recovery

Summary and Comments

- Commercial and alternative-grade MOSFET usage will continue
 - Driven by higher risk-tolerant missions & commercial space
 - RHA challenge in light of limited funding:
 - Understand general radiation effects
 - Become wiser at identifying "must test" candidates
 - By application & environment
 - By component itself (voltage rating, type, manufacturer, etc.)
- Higher-performing radiation-hardened options are on the horizon
- Partnering is the key to incentivize manufacturers of rad-hardened parts and to share COTs data
 - Government
 - Industry
 - Academia