Compilers - Second Assignment

Authors

Menozzi Matteo Turci Gabriele Turci Sologni Enrico

April 4, 2025

Contents

1	Very Busy Expressions	2
2	Dominator Analysis	3
3	Constant Propagation	4

1 Very Busy Expressions

The first point asks to create a general framework for identifying Very Busy Expressions (VBE) and apply this framework to a given problem, which is described using a Data Flow Graph (DFG). The graph can be found in the assignment slides.

Very Busy Expressions - DFA Framework		
Domain	Sets of Expressions	
Direction	Backward:	
	$in[b] = f_b(out[b])$	
	$out[b] = \wedge in[succ(b)]$	
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$	
Meet operation (△)	Λ	
Boundary Condition	$in[exit] = \varnothing$	
Initial interior points	$in[b] = \mathbb{U}$	

Very Busy Expressions - Iterations				
	1° Iteration		2° Iteration	
	IN[B]	OUT[B]	IN[B]	OUT[B]
BB1	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$
BB2	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$	$\{b-a\}$
BB3		a-b	$\{a-b,\ b-a\}$	$\{a-b\}$
BB4	$\{a-b\}$	{Ø}	$\{a-b\}$	{Ø}
BB5	$\{0, b-a\}$	{0}	$\{0, b-a\}$	{0}
BB6	{0}	$\{a-b\}$	{0}	$\{a-b\}$
BB7	$\{a-b\}$	{Ø}	$\{a-b\}$	{Ø}
BB8	{Ø}	{Ø}	{Ø}	{Ø}

The algorithm stops after the second iteration because the input set from each basic block doesn't change between the first and second iterations.

2 Dominator Analysis

The second point asks to create a general framework to perform Dominator Analysis (DA) and apply this framework to a given problem, which is described using a Data Flow Graph (DFG). The graph can be found in the assignment slides.

Dominator Analysis - DFA Framework		
Domain	Sets of Basic Blocks	
Direction	Forward:	
	$out[b] = f_b(in[b])$	
	$in[b] = \wedge \ out[pred(b)]$	
Transfer function	$f_b(x) = Def_b \cup x$	
Meet operation (△)	Λ	
Boundary Condition	$out[entry] = \varnothing$	
Initial interior points	$out[b] = \mathbb{U}$	

	Dominator Analysis - Iterations			
	1° Iteration		2° Iteration	
	IN[B]	OUT[B]	IN[B]	OUT[B]
Α	{Ø}	$\{A\}$	{Ø}	$\{A\}$
В	$\{A\}$	$\{A,B\}$	$\{A\}$	$\{A,B\}$
С	$\{A\}$	$\{A,C\}$	$\{A\}$	$\{A,C\}$
D	$\{A,C\}$	$\{A,C,D\}$	$\{A,C\}$	$\{A,C,D\}$
Е	$\{A,C\}$	$\{A,C,E\}$	$\{A,C\}$	$\{A,C,E\}$
F	$\{A,C\}$	$\{A,C,F\}$	$\{A,C\}$	$\{A,C,F\}$
G	$\{A\}$	$\{A,G\}$	$\{A\}$	$\{A,G\}$

Associated dominator tree.

The algorithm stops after the second iteration because the output set from each basic block doesn't change between the first and second iterations.

3 Constant Propagation

The third point asks to create a general framework for performing Constant Propagation (CP) analysis and apply this framework to a given problem, which is described using a Data Flow Graph (DFG). The graph can be found in the assignment slides.

Constant Propagation - DFA Framework		
Domain	Sets of Pairs $(var, const)$	
Direction	Forward:	
	$out[b] = f_b(in[b])$	
	$in[b] = \wedge \ out[pred(b)]$	
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$	
Meet operation (△)	Λ	
Boundary Condition	$out[entry] = \varnothing$	
Initial interior points	$out[b] = \mathbb{U}$	

Constant Propagation - Iterations				
	1° Iteration		2° Iteration	
	IN[B]	OUT[B]	IN[B]	OUT[B]
BB1	{∅}	{∅}	{∅}	{Ø}
BB2	{∅}	$\{(k,2)\}$	{∅}	$\{(k,2)\}$
BB3	$\{(k,2)\}$	$\{(k,2)\}$	$\{(k,2)\}$	$\{(k,2)\}$
BB4	$\{(k,2)\}$	$\{(k,2),(a,4)\}$	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB5	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$
BB6	$\{(k,2)\}$	$\{(k,2),(a,4)\}$	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB7	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,8)\}$	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,8)\}$
BB8	$\{(k,2),(a,4)\}$	$\{(k,4),(a,4)\}$	$\{(k,2),(a,4)\}$	$\{(k,4),(a,4)\}$
BB9	$\{(k,4),(a,4)\}$	$\{(k,4),(a,4)\}$	$\{(a,4)\}$	$\{(a,4)\}$
BB10	$\{(k,4),(a,4)\}$	$\{(k,4),(a,4),(b,2)\}$	$\{(a,4)\}$	$\{(a,4),(b,2)\}$
BB11	$\{(k,4),(a,4),(b,2)\}$	$\{(k,4),(a,4),(b,2),$	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2)\}$
		(x,8)		
BB12	$\{(k,4),(a,4),(b,2),$	$\{(k,4),(a,4),(b,2),$	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2),(y,8)\}$
	(x,8)	$(x,8),(y,8)$ }		
BB13	$\{(k,4),(a,4),(b,2),$	$\{(k,5),(a,4),(b,2),$	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$
	$(x,8),(y,8)$ }	$(x,8),(y,8)$ }		
BB14	$\{(k,4),(a,4)\}$	$\{(k,4),(a,4)\}$	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$
BB15	$\{(k,4),(a,4)\}$	$\{(k,4),(a,4)\}$	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$

Constant Propagation - Iterations		
	3° Iteration	
BB1	{Ø}	{Ø}
BB2	{Ø}	$\{(k,2)\}$
BB3	$\{(k,2)\}$	$\{(k,2)\}$
BB4	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB5	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$
BB6	$\{(k,2)\}$	$\{(k,2),(a,4)\}$
BB7	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,8)\}$
BB8	$\{(k,2),(a,4)\}$	$\{(k,4),(a,4)\}$
BB9	$\{(a,4)\}$	$\{(a,4)\}$
BB10	$\{(a,4)\}$	$\{(a,4),(b,2)\}$
BB11	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2)\}$
BB12	$\{(a,4),(b,2)\}$	$\{(a,4),(b,2),(y,8)\}$
BB13	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$
BB14	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$
BB15	$\{(a,4),(b,2),(y,8)\}$	$\{(a,4),(b,2),(y,8)\}$

The algorithm stops after the third iteration because the output set from each basic block doesn't change between the second and third iterations.