

EXERCISE 4 — SOLUTION

1. Projection I

Suppose you want to render a WUXGA image (1920×1200) with square pixels. Your camera has a vertical field of view of $\theta = 60^{\circ}$ and a symmetric view frustum.

- (a) Write down a perspective projection matrix for
 - distance to near clipping plane: 3,
 - distance to far clipping plane: 6.

Solution

• WUXGA, square pixels \rightarrow aspect ratio a:

$$a = \frac{n_x}{n_y} = \frac{1920}{1200} = \frac{16}{10} = \frac{8}{5} = \frac{r}{t} \iff r = \frac{8}{5} \cdot t$$

• symmetric frustum:

$$t = -b$$
 , $r = -l$

• vertical field of view:

$$\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{t}{|n|} \quad \iff \quad t = |n| \cdot \frac{1}{\sqrt{3}}$$

• clipping planes (looking along negative z!):

$$n = -3 \qquad , \qquad f = -6$$

• matrix:

$$\mathbf{P} = \begin{bmatrix} -\frac{5\sqrt{3}}{8} & 0 & 0 & 0\\ 0 & -\sqrt{3} & 0 & 0\\ 0 & 0 & -3 & -12\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(b) Check the matrix. Use at least 4 points for which you know the projection in advance.

Solution

$$\bullet \ \mathbf{P} \cdot \begin{bmatrix} 0 & 0 & -3 & 1 \end{bmatrix}^\top = \begin{bmatrix} 0 & 0 & -3 & -3 \end{bmatrix}^\top \equiv \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^\top$$

$$\bullet \ \mathbf{P} \cdot \begin{bmatrix} 0 & 0 & -6 & 1 \end{bmatrix}^{\top} = \begin{bmatrix} 0 & 0 & 6 & -6 \end{bmatrix}^{\top} \equiv \begin{bmatrix} 0 & 0 & -1 & 1 \end{bmatrix}^{\top}$$

•
$$\mathbf{P} \cdot \begin{bmatrix} 0 & 0 & -6 & 1 \end{bmatrix}^{\top} = \begin{bmatrix} 0 & 0 & 6 & -6 \end{bmatrix}^{\top} \equiv \begin{bmatrix} 0 & 0 & -1 & 1 \end{bmatrix}^{\top}$$

• $\mathbf{P} \cdot \begin{bmatrix} -\frac{8}{5}\sqrt{3} & -\sqrt{3} & -3 & 1 \end{bmatrix}^{\top} = \begin{bmatrix} 3 & 3 & -3 & -3 \end{bmatrix}^{\top} \equiv \begin{bmatrix} -1 & -1 & 1 & 1 \end{bmatrix}^{\top}$

•
$$\mathbf{P} \cdot \begin{bmatrix} \frac{8}{5}\sqrt{3} & \sqrt{3} & -3 & 1 \end{bmatrix}^{\top} = \begin{bmatrix} 3 & 3 & -3 & -3 \end{bmatrix}^{\top} \equiv \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\top}$$

2. Projection II

Determine how a symmetric perspective projection matrix' maps z-values. Draw a graph.

Solution

• use the above matrix for this task

Solution cont.

• we only require the matrix' / vector's sub-block:

$$\begin{bmatrix} -3 & -12 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} p_z \\ 1 \end{bmatrix}$$

•	p_z	-3.0	-3.25	-3.5	-3.75	-4.0	-4.5	-5.0	-5.5	-6.0
	p'_z	1.00	0.69	0.43	0.20	0.00	-0.33	-0.60	-0.82	-1.00

SOLUTION 2/2