Worksheet of Experiment

Date of Experiment	3 sep, 2024
Name	Akshada Jotiram Ghorpade.
Registration Number	12302956.

Title of Experiment: Develop RTL designs in verilog to implement decoders and encoders and verify their functionality using cadence NCSIM.

Name of Language: Verilog.

Name of Software: Cadence NCSIM, simvision.

Theory of Experiment:

Decoder:

- A combinational logic circuit which converts N input lines into a maximum of 2_N output lines is called a **decoder**.
- Therefore, a decoder is a combination logic circuit that is capable of identifying or detecting a particular code. The operation that a decoder performs is referred to as decoding.

2:4 Decoder :

- The 2 to 4 decoder is one that has 2 input lines and 4 (2²) output lines.
- When this decoder is enabled with the help of enable input E, then its one of the four outputs will be active for each combination of inputs.

Truth table:

INPUT		OUTPUT			
Α	В	D0	D1	D2	D3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Boolean expression:

D0=A'·B' D1=A'·B D2=A·B' D3=A·B

Circuit Diagram:

Encoder:

- An **encoder** is a digital combinational circuit that converts a human friendly information into a coded format for processing using machines.
- An encoder consists of a certain number of input and output lines. Where, an encoder can have maximum of "2" input lines whereas "n" output lines.

4:2 Encoder:

- A 4 to 2 Encoder is a type of encoder which has 4 (2²) input lines and 2 output lines. It produces an output code (i.e., convert input information in a 2-bit format) depending on the combination of input lines.

Truth table:

INPUT				OUTPUT	
10	I1	12	13	Y0	Y1
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Boolean expression:

Circuit Diagram:

Program and Stimulus (Testbench) program:

endmodule

```
PROGRAM (Decoder):
module dec24(a, b, d0, d1, d2, d3);
input a,b;
output d0,d1,d2,d3;
assign d0=(^a\&^b);
assign d1=(~a&b);
assign d2=(a&~b);
assign d3=(a&b);
endmodule
TESTBENCH (Decoder):
module dec24tb;
reg a,b;
wire d0,d1,d2,d3;
dec24 dut(a, b, d0, d1, d2, d3);
initial
begin
$monitor("a=%b, b=%b, do=%b, d1=%b, d2=%b, d3=%b", a, b, do, d1, d2, d3);
a=0; b=0;
#10 a=0; b=1;
#10 a=1; b=0;
#10 a=1; b=1;
#10 $stop;
end
endmodule
PROGRAM (Encoder):
module enc42(I0,I1,I2,I3,A,B);
input I0,I1,I2,I3;
output A,B;
assign A=((^{10}&^{11})&(12^{13}));
assign B=((I0\&^{\sim}I2)\&(I1^{\sim}I3));
```

TESTBENCH (Encoder):

```
module enc42tb;
reg I0,I1,I2,I3;
wire A,B;
enc42 dut(I0,I1,I2,I3,A,B);
initial
begin
$monitor("I0=%b, I1=%b, I2=%b, I3=%b, A=%b, B=%b", I0,I1,I2,I3,A,B);
{I0,I1,I2,I3} = 4'b1000;
#10 {I0,I1,I2,I3} = 4'b0100;
#10 {I0,I1,I2,I3} = 4'b0010;
#10 {Stop;
end
endmodule
```

Simulation waveform:

Decoder

Encoder

RTL Schematic:

Decoder (Gate level)

Decoder (Dataflow level)

Encoder

Console Window:

Encoder

```
File Edit View Simulation Windows Help

Text Search:

Text
```

Decoder

```
Text Search

Text
```

Learning Outcome:

- 1. Learn to write syntactically correct Verilog code for encoder and decoder.
- 2. Create testbenches to simulate and verify the functionality of encoder and decoder.
- 3. Apply techniques to optimize logic circuits for speed, area, and power efficiency.
- 4. Perform timing analysis to ensure circuits meet required timing constraints.
- 5. Analyze the performance of encoder and decoder and circuits in terms of timing, power, and area using simulation results.

Simulation wave	eform	
RTL Schematic		

Learning Outcome