```
hurlet9-1) (3.49 (8th ed.), 3.41 (7th ed.)
               You can enter the numbers here, but I'll do it generally.
            The Least-squares Normalogs are (Lect 10)
                   Y .. - an û - n r. = 0 Yi. - n p - n r. = 0, but I'll suppress
                 The hat ( ) for simplicity.
                 Y .. - anp -n ? = 0 Y : -np -n ? = 0,
   a) Im pose T.=0. Then 1.. -ann=0 1: -nn-n7:=0
                                                                               \int M = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} 
             T_1 - T_2 = (Y_1, -Y_1) - (Y_2, -Y_1) = Y_1, -Y_2, 7
             A(so, T_1 - T_3) = (\overline{Y}_1, -\overline{Y}_1) - (\overline{Y}_3, -\overline{Y}_1) = \overline{Y}_1, -\overline{Y}_3
                                            \gamma_2 - \gamma_3 = \overline{\gamma}_2 - \overline{\gamma}_3
   b) Impose [7 = 0]. Then (4, - any-n(7, +72) = 0
             The estimates are completely different.

But 7, -72 = (71, -73, )-(72, -73.) = 71. -72. is some as in parta
```

In fact consider The other contrasts in T:: T1-T2 = 71. - 72. $T_1 - T_3 = \overline{Y_1, -\overline{Y_3}} - O = \overline{Y_1, -\overline{Y_3}}.$ $\overline{1}_2 - \overline{1}_3 = \overline{Y}_2 - \overline{Y}_3 - 0 = \overline{Y}_2 - \overline{Y}_3$ These are all equal to the contrasts in part a Because these contrasts N:-Ti do not depend on the choice of The constraint, one says " they are estimable." T3=0 M+T, Y. + 91, -9. = 91. 73, + Y1, - 73, = Y1, $2 \cdot \overline{Y_{1}} - \overline{Y_{2}} - \overline{Y_{3}} = 2 \cdot \overline{Y_{1}} - \overline{Y_{2}} - \overline{Y_{3}} - \overline{Y_{2}} - \overline{Y_{3}} = 2 \cdot \overline{Y_{1}} - \overline{Y_{2}} - \overline{Y_{2}} = 2 \cdot \overline{Y_{1}} - \overline{Y_{2}}$ M+~, + 73 7. + 72, -7. = 71, + 72, -7. (1-1) (\(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}{2}\), \(\fr 30 M+T, is estimable 12T,-Tz-Tz is estimable

M+T,+Tz is not estimable

hu-led 9-2

Consider the "means model": Yij = Mi + Eij , & ~ N(O, Te)

Find the maximum likelihood (or least square) estimates of Mi, E

Show all the steps, like done above.

Note: you cannot write pi=p+7; here. In This model Mi is The param.

then Likelihood of data = $\frac{a}{77} \frac{h}{77} + \frac{1}{\sqrt{2\pi \sigma_e^2}} e^{-\frac{1}{2}(\frac{x_{ij} - \mu_i}{\sigma_e})^2}$

 $= e^{-\frac{1}{2} \frac{2}{5} \frac{2}{5} \left(\frac{\text{Vij-/u}}{5} \right)^2 - \frac{1}{2} \text{ an } \log(2\pi 0^2)}$

 $\frac{2}{2} \left[\text{exponent} \right] \sim \frac{2}{2} \left(\text{Yi}_{i} - \text{M}_{i} \right) \left| \frac{2}{\hat{M}_{i}}, \hat{\sigma}_{e} \right| = 0 \implies \hat{M}_{i} = \overline{Y}_{i}.$

 $\frac{\partial}{\partial \sigma_{e}} \left[- - \right] \sim \underbrace{\sum_{i} \sum_{j} (Y_{ij} - M_{i})^{2}}_{ij} \frac{1}{\sigma_{e}^{3}} - an \frac{1}{\sigma_{e}} \right] = 0 = \widehat{\sigma_{e}^{2}} = Sane}_{as}$ between

Note: In contrast to The effects model (;;= M+T;+ E;; ,

The effects model is said to be over-parameterized;
The introduction of the constraint is necessary to
hondle the "extra" parameters.

hr-letq-3

- a) For The reduced model $Y_{ij} = \mu + \epsilon_{ij}$, find The Max. Like, estimate of μ and σ_{ϵ}^2 (and ϵ_{ij}), in terms of sums or averages of Y_{ij} , and find the value of SSE at those estimated values. That quantity is what I denoted SSE(μ) (although a better notation is SSE($\hat{\mu}$).) where SSE($\hat{\mu}$) = $\sum_{i,j} \hat{\epsilon}_{ij}^2 = \sum_{i,j} (Y_{ij} \hat{\mu})^2$
- b) For the full model $Y_{ij} = y_i + T_i + E_{ij}$, we have already estimated $\hat{\mu}_i$ $\hat{\tau}_i$, $\hat{\tau}_{E}^2$ (and E_{ij}). Use Those expressions to compute $SSE(\mu,T)$, again better written as $SSE(\hat{\mu},\hat{\tau}) = \sum_{i,j} \hat{E}_{i,j}^2 = \cdots$
- c) Show that the F-valis given in terms of These SSE values is the same as the ANOVA F-valis MSTV, used before. The advantage of writing the F-valis in terms of The SSE's of full and reduced models is that it allows us to test other effects (not just the Vi); later!
- a) $Y_{i,j} = \mu + \epsilon_{i,j}$ Likelihood = $e^{-\frac{1}{2}\sum_{i=1}^{2}\sum_{j=1}^{2}\left(\frac{Y_{i,j}-\mu}{\sigma_{\epsilon}}\right)^{2}} \frac{1}{2}$ and $\log(2\pi\sigma_{\epsilon}^{2})$ $\frac{\partial}{\partial \mu}\left[\text{exponend}\right]\Big|_{\hat{\mu}_{i},\hat{\sigma}_{\epsilon}^{2}} \implies \sum_{j=1}^{2}\left(\frac{Y_{i,j}-\mu}{\gamma_{i,j}}\right)^{2}\Big|_{\hat{\mu}_{i}} = 0 \implies \sum_{j=1}^{2}\left(\frac{Y_{i,j}-\mu}{\gamma_{i,j}}\right)^{2} \implies \sum_{j=1}^{2}\left(\frac{Y_{i,j}-\mu}{\gamma_{i,j}}\right)^{2} = 0 \implies \sum_{j=1}^{2}\left($

$$SSE[\hat{\mu}] = \underbrace{\xi}_{i,j} \hat{\epsilon}_{i,j}^{2} = \underbrace{\xi}_{i,j} (Y_{i,j} - \hat{\mu})^{2} = \underbrace{\xi}_{i,j} (Y_{i,j} - Y_{i,i})^{2}$$
 [= SST]

$$\begin{array}{lll}
b) & \widehat{\rho} = \overline{Y}_{n}, \quad \overline{T}_{i} = \overline{Y}_{i}, \quad \overline{Y}_{i}, \\
& = \overline{Y}_{i}, \quad \overline{Y}_{i} = \overline{Y}_{i}, \quad \overline{Y}_{i}, \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} - \overline{Y}_{i} \cdot \overline{Y}_{i}^{2} \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} - \overline{Y}_{i} \cdot \overline{Y}_{i}^{2} \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} - \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} - \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} - \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} - \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} - \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} - \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \\
& = \overline{Y}_{i} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \right)^{2} \right) \left(\overline{Y}_{i}, \quad \overline{Y}_{i}, \quad \overline{Y}_{i},$$

(hw-let 9-4) The following should be done ALL by hand, not even R for avithmets. But to simplify the compulation of variances, use the fact that for 41 x2, one has 52= \frac{1}{2(4,-42)^2. How, consider The data in The following table. a) Find The vow-means & row-vars, and put them here, respectively. 7îp 2 (4 6) . Find The col-means & col-vars, and write them have, respectively. Find Y. and SST, and put Them have, respectively. Compon Vi Si2 1 2 L K $7i\rho$ $\frac{1}{2}\begin{pmatrix} 4 & 6 \\ 10 & 2 \end{pmatrix} = \frac{1}{6}(10-2)^{2}$ b) For The vow-quantities, find the variance of the means, and The sum of The vars. According to The ANOVA decomposition, These 2 numbers are supposed to be velated to SST. Confirm That relationship. SStv + SSE = SST var. of The means = { (5-6)2 = 1/2 $2(\frac{1}{2}) + 34 = 35$ / Sum of The vars = 2+32 = 34 C) Same as b) but between SST and The Col-means and col-variances? SSTV + SSE = SST var. of The means = { (7-4) = 9/2 2(1)+26=35 / sum of The vars = 18+8 = 26 The point of This exercise is to get you comfortable with all The

is in the Expected value of all These quantities.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.