

算法

主讲:赵良

本讲授课目录

算法的度量标准

算法

- 算法——解决某一特定问题的具体步骤的描述,是指令的有限序列。
- 每一条指令表示一个或多个操作。

算法与程序的关系

- 算法着重体现思路和方法,程序着重体现计算机的实现;
- •程序中的指令必须是机器可执行的,算法中的指令无此限制;
- 一个算法若用计算机语言来书写,它就可以是一个程序。

算法的表示方式

- 用自然语言描述算法
- 用流程图描述算法
- 用数学语言或约定的符号语言描述算法
- 用C++的函数形式来描述算法

- 算法应满足具体问题的需求—正确性
 - 程序中不含任何语法错误。
 - 程序对于几组输入数据能够得出满足要求的结果。
 - 程序对于精心选择的、典型的、苛刻的并带有刁难性的几组输入数据能够得出满足要求的结果。
 - 程序对于一切输入数据都能得出满足要求的结果。

- 一个算法必须由一系列具体操作组成, "具体"指的所有操作都必须经过已实现的基本操作有限次来实现,并且所有操作都是可读的、可执行的,每一操作必须在有限时间内完成。
- 具体性

- 算法中的所有操作都必须有确切的含义,不能产生歧义, 算法的执行者或阅读者都能明确其含义及如何执行。
- 确定性

• 对于任意一组合法输入值,在执行有限步骤之后一定能结束,即:算法中的每个步骤都能在有限时间内完成

• 有限性

算法应具备良好的可读性,一般算法的逻辑必须清楚、结构简单,所有标识符必须具有实际含义,能见名知义。

• 可读性

当输入数据非法时,算法能作适当的处理并作出反应,而不应死机或输出异常结果。

• 健壮性

算法评价标准

- 一个特定算法的"运行工作量"的大小,只依赖于问题的规模(通常用整数量n表示),或者说,它是问题规模的函数。
- 时间复杂度 T(n)
- 空间复杂度 S(n)

时间复杂度

- · 基本操作执行次数通常是问题规模n的某个函数,记作f(n)。
- 假设随着问题规模 n 的增长, 算法执行时间的增长率和 f(n) 的增长率相同, 可记作:

$$-T(n) = O(f(n))$$

- T(n) 为算法的(渐近)时间复杂度。

■例1: N*N 矩阵相乘

语句1的执行次数是: n²

语句2的执行次数是: n*n²

该程序段的时间复杂度为: O(?)

■ 例2:


```
for (i=1;i<n;i++)
y=y+1;
for (j=0; j<=(2*n); j++)
   X++;
                /* 2 * /
```

语句1的执行次数是: n-1

语句2的执行次数是: (n-1)*(2n+1)

该程序段的时间复杂度为: O(?)

■ 例3:

语句1的次数是: 1

设语句2的次数是f(n),则有:

即 $f(n) \leq \log_2^n$, 取最大值:

则该程序段的时间复杂度为: O(?)

$$2^{f(n)} \le n$$
$$f(n) = \log_2 n$$

常用的时间复杂度频率计数

• 常用的时间复杂度频率表:

log ₂ n	n	nlog ₂ n	n ²	n ³	2 ⁿ	一般讲:前3种 一可理现,后3种 一可理现的有对以上,后 一致现有对对的,对 上很义,不可能 一个一个的,可以 一个的。
0	1	0	1	1	2	
1	2	2	4	8	4	
2	4	8	16	64	16	
3	8	24	64	512	256	
4	16	64	256	5096	65536	
5	32	160	1024	32768	2147483648	

多种数量级的时间复杂度图示

算法的空间复杂度

定义:

用空间复杂度作为算法所需存储空间的量度,记做: S(n)=O(f(n))。

具体的为程序执行过程中由于需要所申请的内存空间。

Questions and answers

