MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

September 23, 2024

Outline

- Real Analysis Lecture 7
 - Open Balls and Open Sets

Outline

- Real Analysis Lecture 7
 - Open Balls and Open Sets

n-dimensional **euclidean space** is

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \ldots, a_n) : a_1, \ldots, a_n \in \mathbb{R}\}.$$

n-dimensional euclidean space is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$\vec{x} - \vec{y} = \vec{x} + (-1)\vec{y} = (x_1 - y_1, \dots, x_n - y_n)$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$\vec{x} - \vec{y} = \vec{x} + (-1)\vec{y} = (x_1 - y_1, \dots, x_n - y_n)$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$\vec{x} - \vec{y} = \vec{x} + (-1)\vec{y} = (x_1 - y_1, \dots, x_n - y_n)$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$\vec{x} - \vec{y} = \vec{x} + (-1)\vec{y} = (x_1 - y_1, \dots, x_n - y_n)$$

$$|\vec{x}| = (\vec{x} \cdot \vec{x})^{1/2} = (\sum_{i=1}^{n} x_i^2)^{1/2}$$

The norm $|\vec{x}|$ is an example of a **metric**.

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

```
Theorem
```

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

(positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- (symmetry) $|\vec{x} + \vec{y}| = |\vec{y} + \vec{x}|$

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- lacktriangle (triangle inequality) $|ec{x}+ec{y}| \leq |ec{x}| + |ec{y}|$

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- **(triangle inequality)** $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$

It also satisfies

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- **(triangle inequality)** $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$

It also satisfies

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- (triangle inequality) $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$

It also satisfies

(scaling) $|c\vec{x}| = |c| |\vec{x}|$

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- (triangle inequality) $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$

It also satisfies

- (scaling) $|c\vec{x}| = |c| |\vec{x}|$
- **(Cauchy-Schwartz)** $|\vec{x} \cdot \vec{y}| \le |\vec{x}| |\vec{y}|$

An **open ball** of radius r centered at \vec{a} is

An **open ball** of radius r centered at \vec{a} is

$$B(\vec{a}; r) = {\vec{x} : |\vec{x} - \vec{a}| < r}.$$

An **open ball** of radius r centered at \vec{a} is

$$B(\vec{a}; r) = {\vec{x} : |\vec{x} - \vec{a}| < r}.$$

An **open ball** of radius r centered at \vec{a} is

$$B(\vec{a}; r) = {\vec{x} : |\vec{x} - \vec{a}| < r}.$$

Definition

A point \vec{a} in a subset $A \subseteq \mathbb{R}^n$ is called an **interior point** of A if there exists r > 0 with $B(\vec{a}; r) \subseteq A$.

An **open ball** of radius r centered at \vec{a} is

$$B(\vec{a}; r) = {\vec{x} : |\vec{x} - \vec{a}| < r}.$$

Definition

A point \vec{a} in a subset $A \subseteq \mathbb{R}^n$ is called an **interior point** of A if there exists r > 0 with $B(\vec{a}; r) \subseteq A$. If every point of A is an interior point, then A is called an **open set**.

Problem

Prove that the empty set \emptyset and the whole space \mathbb{R}^n are open.

Problem

Let $\vec{a} \in \mathbb{R}^n$. Show that the singleton set

$$A = {\vec{a}}$$

is not open.

Problem

Let $a, b, c, d \in \mathbb{R}$ with a < b and c < d. Prove that the **open square**

$$(a,b) \times (c,d) = \{(x,y) : a < x < b, c < x < d\}$$

is an open set

Problem

Prove that an open ball is an open set.

Unions of open sets are open

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Unions of open sets are open

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_j is open, this means \vec{x} is an interior point of U_j .

Therefore there exists r > 0 such that $B(\vec{x}; r) \subseteq U_i$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists r > 0 such that $B(\vec{x}; r) \subseteq U_i$.

This means $B(\vec{x}; r) \subseteq \bigcup_{i \in I} U_i$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists r > 0 such that $B(\vec{x}; r) \subseteq U_i$.

This means $B(\vec{x}; r) \subseteq \bigcup_{i \in I} U_i$.

Thus \vec{x} is an interior point of $\bigcup_{i \in I} U_i$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_j is open, this means \vec{x} is an interior point of U_j .

Therefore there exists r > 0 such that $B(\vec{x}; r) \subseteq U_j$.

This means $B(\vec{x}; r) \subseteq \bigcup_{i \in I} U_i$.

Thus \vec{x} is an interior point of $\bigcup_{i \in I} U_i$.

Since \vec{x} is arbitrary, this proves that $\bigcup_{i \in I} U_i$ is open.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$. Then for all $i, \vec{x} \in U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

This means $B(\vec{x}; r) \subseteq B(\vec{x}; r_i) \subseteq U_i$ for all i.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

This means $B(\vec{x}; r) \subseteq B(\vec{x}; r_i) \subseteq U_i$ for all i.

Therefore $B(\vec{x}; r) \subseteq \bigcap_{i=1}^n U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

This means $B(\vec{x}; r) \subseteq B(\vec{x}; r_i) \subseteq U_i$ for all i.

Therefore $B(\vec{x}; r) \subseteq \bigcap_{i=1}^n U_i$.

Thus \vec{x} is an interior point of $\bigcap_{i=1}^{n} U_i$.

Theorem (Open Intersection Theorem)

Suppose that $U_1, U_2, ..., U_n$ are open sets. Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcap_{i=1}^n U_i$.

Then for all i, $\vec{x} \in U_i$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists $r_i > 0$ such that $B(\vec{x}; r_i) \subseteq U_i$.

Take $r = \min\{r_i : 1 \le i \le n\}$.

This means $B(\vec{x}; r) \subseteq B(\vec{x}; r_i) \subseteq U_i$ for all i.

Therefore $B(\vec{x}; r) \subseteq \bigcap_{i=1}^n U_i$.

Thus \vec{x} is an interior point of $\bigcap_{i=1}^{n} U_i$.

Since \vec{x} is arbitrary, this proves that $\bigcap_{i=1}^{n} U_i$ is open.

Challenge

Problem

Show that the infinite intersection

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right)$$

is not open.

Let $U \subseteq \mathbb{R}$ be open.

Let $U \subseteq \mathbb{R}$ be open.

Definition

A **component interval** of *U* is an interval *I* with $I \subseteq U$ and with the property that if *J* is an interval and $I \subseteq J$, then $J \nsubseteq U$.

Let $U \subseteq \mathbb{R}$ be open.

Definition

A **component interval** of *U* is an interval *I* with $I \subseteq U$ and with the property that if *J* is an interval and $I \subseteq J$, then $J \nsubseteq U$.

• (0,1) is a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$

Let $U \subseteq \mathbb{R}$ be open.

Definition

A **component interval** of *U* is an interval *I* with $I \subseteq U$ and with the property that if *J* is an interval and $I \subseteq J$, then $J \nsubseteq U$.

- (0,1) is a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$
- $(-\infty,0)$ is also a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$

Let $U \subseteq \mathbb{R}$ be open.

Definition

A **component interval** of *U* is an interval *I* with $I \subseteq U$ and with the property that if *J* is an interval and $I \subseteq J$, then $J \nsubseteq U$.

- (0,1) is a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$
- $(-\infty,0)$ is also a component interval of $\mathbb{R}\setminus\{0,1,2,3\}$
- we will show all open sets of ℝ are made of component intervals!

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Proof.

Lemma

If I_1 and I_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $I_1 = I_2$ or $I_1 \cap I_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Then $J := I_1 \cup I_2$ is an interval.

Lemma

If I_1 and I_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $I_1 = I_2$ or $I_1 \cap I_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Then $J := I_1 \cup I_2$ is an interval.

Also $I_1 \subseteq U$ and $I_2 \subseteq U$, so $J \subseteq U$.

Lemma

If I_1 and I_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $I_1 = I_2$ or $I_1 \cap I_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Then $J := I_1 \cup I_2$ is an interval.

Also $I_1 \subseteq U$ and $I_2 \subseteq U$, so $J \subseteq U$.

Since I_i is a component interval and $I_i \subseteq J \subseteq U$, we have $I_i = J$.

Lemma

If l_1 and l_2 are two component intervals of an open subset $U \subseteq \mathbb{R}$, then $l_1 = l_2$ or $l_1 \cap l_2 = \emptyset$.

Proof.

Suppose that $I_1 \cap I_2 \neq \emptyset$.

Then $J := I_1 \cup I_2$ is an interval.

Also $I_1 \subseteq U$ and $I_2 \subseteq U$, so $J \subseteq U$.

Since I_i is a component interval and $I_i \subseteq J \subseteq U$, we have $I_i = J$.

In particular $I_1 = J = I_2$.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Suppose that $x \in U$ and consider

$$A = \{a : (a, x) \subseteq S\}, \text{ and } B = \{b : (x, b) \subseteq S\}$$

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Suppose that $x \in U$ and consider

$$A = \{a : (a, x) \subseteq S\}, \text{ and } B = \{b : (x, b) \subseteq S\}$$

If *A* is not bounded below, let $a = -\infty$. Otherwise, let $a = \inf(A)$.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Suppose that $x \in U$ and consider

$$A = \{a : (a, x) \subseteq S\}, \text{ and } B = \{b : (x, b) \subseteq S\}$$

If *A* is not bounded below, let $a = -\infty$. Otherwise, let $a = \inf(A)$.

If *B* is not bounded above, let $b = \infty$. Otherwise, let $b = \sup(B)$.

Theorem (Apostol 3.10)

If $U \subseteq \mathbb{R}$ is open and $x \in U$, then there is a unique component interval of U containing x.

Proof.

Uniqueness follows from previous Lemma, so we only need existence.

Suppose that $x \in U$ and consider

$$A = \{a : (a, x) \subseteq S\}, \text{ and } B = \{b : (x, b) \subseteq S\}$$

If *A* is not bounded below, let $a = -\infty$. Otherwise, let $a = \inf(A)$.

If *B* is not bounded above, let $b = \infty$. Otherwise, let $b = \sup(B)$.

Claim: (a, b) is a component interval of U containing x.

Challenge

Problem

Prove that (a, b) is a component interval of U.

Open subsets of ${\mathbb R}$

Theorem (Representation Theorem for Open Intervals in \mathbb{R})

If $U \subseteq \mathbb{R}$ is open, then U is the union of a countable family of disjoint open intervals.