

Metrology and Sensing

Lecture 12-2: Optical Coherence Tomography

2021-02-02

Herbert Gross

Contents

- Principle of optical coherence tomography
- Time domain OCT
- Examples

OCT Setup

filtered signal

- Basic principle of OCT
- Michelson interferometer
- Time domain signal

1,0

8,0

0,6

Interference Contrast

Superposition of plane wave with initial phase φ
 Intensity:

$$I = \sum_{m} I_{m} + 2\sum_{n < m} \sqrt{I_{n} \cdot I_{m}} \cdot \cos(\varphi_{n} - \varphi_{m})$$

Radiation field with coherence function Γ:

 $I(\vec{r}) = I_1(\vec{r}) + I_2(\vec{r}) + 2 \cdot \Gamma(\vec{r}_1, \vec{r}_2, 0)$

Reduced contrast for partial coherence

$$K = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \left| \frac{\Gamma(\vec{r}_1, \vec{r}_2, \tau)}{\sqrt{I(\vec{r}_1)I(\vec{r}_2)}} \right|$$

 Measurement of coherence in Michelson interferometer: phase difference due to path length difference in the two arms (Fourier spectroscopy)

$$\Delta \varphi = 2\Delta k \cdot z = \frac{4\pi \cdot \Delta \lambda \cdot z}{\lambda^2}$$

Principle of OCT

- Basic method of optical coherence tomography:
 - short pulse light source creates a coherent broadband wave
 - white light interferometry allows for interference inside the axial coherence length
- Measured signal:
 - low pass filtering
 - maximum of envelope gives the relative length difference between test and reference arm

$$\Delta l pprox rac{\lambda_o^2}{\Delta \lambda}$$

For Gaussian beam

$$\Delta l = \frac{4\ln 2}{\pi} \cdot \frac{\lambda_o^2}{\Delta \lambda}$$

High frequency oscillation depends on z

$$\Delta \varphi = 2\Delta k \cdot z = \frac{4\pi \cdot \Delta \lambda \cdot z}{\lambda^2}$$

OCT - White Light Interference

- Signal spectral profile
- Basic setup: Michelson interferometer

Fiber Based OCT Interferometer

OCT Measurement of Distances

Technical application of white light interferometry

OCT Modes

- Possibilities of the usage of OCT:
 - measureing of surfaces
 reflected light at n-interface
 - volume imaging reflected light or back scattered light in inhomogeneous medium n(x,z), μ

Optical Coherence Tomography

- Example: sample with two reflecting surfaces
- 1. Spatial domain
 - 2. Complete signal
 - 3. Filtered signal high-frequency content removed

Optical Coherence Microscopoy

1. Decrease of contrast as a result of the coherence gating

Properties of OCT

- Reference arm:
 - allows for z-scan in the depth
 - z-discrimination by axial length of coherence, defined by the bandwidth (coherence gating)
 - Large spectral width of illumination source: good time/spatial z-resolution
- Measured signals:
 - reflected light and scattered light
 - SNR above 10⁻¹⁰ can be resolved
- Problems:
 - refractive interfaces are dispersive
 - group refractive index is important
- Typical:
 - fast axial scan by moving mirror or rotating cube (A-scan)
 - slow lateral x-y-scans (B-scans)

Optical Coherence Tomography

Achronyms in literature

Acronym	Term
CPM	Coherence probe microscope
CSM	Coherence scanning microscope
CR	Coherence radar
CCI	Coherence correlation interferometry
HSI	Height scanning interferometer
MCM	Mirau correlation microscope
RSP	Rough surface profiler
RST	Rough surface tester
SWLI	Scanning white light interferometry
TD-OCT	Time-domain optical coherence tomography (full field)
VSI	Vertical scanning interferometry
EVSI	Enhanced VSI
HDVSI	High-definition VSI
WLI	White light interferometry
WLSI	White light scanning interferometry
WLPSI	White light phase shifting interferometry

Resolution of OCT

Lateral resolution: Airy profile

$$\Delta x = \frac{4\lambda \cdot f}{\pi \cdot \emptyset} = \frac{2\lambda}{\pi \cdot \sin u}$$

Penetration depth: axial resolution

$$\Delta z_{res} = \frac{2 \ln 2}{\pi} \cdot \frac{\lambda^2}{\Delta \lambda}$$

Optical Coherence Tomography

Signature of OCT signale for thin layer measurements at the resolution limit

Theory of Time Domain OCT

- Basic assumption: Michelson interferometer
- Coherent field of the reference arm factor 2: double pass in the arm

$$E_r(\omega) = E_{ro}(\omega) \cdot e^{2ik_r(\omega)z_r - i\omega t}$$

Coherent field of the sample/test arm

$$E_s(\omega) = E_{so}(\omega) \cdot e^{2ik_s(\omega)z_s - i\omega t}$$

- The spectral distributions E(ω) correspond to a low coherence light source (ultra short pulses)
- Simplification: only a single mirror is assumed as sample
- Interference signal

$$I(\omega) = |E_r(\omega)|^2 + |E_s(\omega)|^2 + 2 \cdot \text{Re}[E_r(\omega)E_s^*(\omega)]$$

integrating over all spectral components of the modulated signal part

$$I_{TD} = 2 \operatorname{Re} \left[\int E_r(\omega) E_s^*(\omega) d\omega \right]$$
$$= 2 \operatorname{Re} \left[\int E_{ro}(\omega) E_{so}^*(\omega) \cdot e^{i\Delta\varphi(\omega)} d\omega \right]$$

 Phase difference determines the fast oscillating signal depends on z-difference and on dispersion

$$\Delta \varphi(\omega) = 2[k_s(\omega)z_s - k_r(\omega)z_r]$$

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Theory of Time Domain OCT

- With expansion of the dispersion functions
- Definition of the spectral cross correlation S(ω) between reference and sample arm assumed to be symmetrical R_s: reflectivity in sample arm
- Phase difference with phase and group velocity
- Final result of TD-OCT signal

$$k_s(\omega) = k(\omega_0) + (\omega - \omega_o) \frac{dk}{d\omega} \Big|_{\omega_o}$$

$$R_s S(\omega) = E_{ro}(\omega) E_{so}^*(\omega)$$

$$\Delta \varphi = 2\Delta z \cdot \left(\frac{\omega_o}{c_p} + \frac{\omega - \omega_o}{c_g(\omega)}\right) = \omega_o \Delta t_p + (\omega - \omega_o) \Delta t_g$$

$$I_{TD}(\Delta z) = R_s \cos(\omega_o \Delta t_p) \cdot \int S(\omega) \cdot e^{-i(\omega - \omega_o) \Delta t_g} d\omega$$

- Interpretation:
 - cos-prefactor: high oscillating term, proportional to time difference
 - integral term: envelope of signal, depends on dispersion is determined by the light source spectrum bandwidth

OCT Enables 3D Imaging in Ophthalmology

OCT combines unique resolution with high sensitivity

- axial resolution is independent of the numerical aperture (pupil) with NA = 0.05
- by heterodyne detection a photon-noise limited sensitivity is achieved (R ≥ 10⁻¹⁰)

$$\Delta z = I_c \approx 0.44 \ \lambda / \Delta \lambda$$
$$\approx 5 \ \mu m$$

optical resolution $\Delta z \approx 2 \lambda / N A^2 \\ \approx 1.7 \ \mu m \ (1.33 \cdot 1/24)^{-2} \\ \approx 555 \ \mu m$

within Rayleigh range of imaging optics

Example of OCT Imaging

Example:

Fundus of the human eye

Optical Coherence Tomography

- Dimensions of OCT imaging:
 - a) only depth (A-scan), one-dimensional
 - b) depth and one lateral coordinate (B-scan), two-dimensional
 - c) all three coordinates, volume imaging

White Light Interferometry

Examples

Ref: R. Kowarschik