1

6.

What is claimed is:

1	1.	An isolated nucleic acid molecule selected from the group consisting of:
2	a)	a nucleic acid molecule comprising a nucleotide sequence which is at least
3	70% identical	to the nucleotide sequence of SEQ ID NO:1, 3, 11, or 13;
4	b)	a nucleic acid molecule comprising a fragment of at least 311 nucleotides of
5	the nucleotide	e sequence of SEQ ID NO:1, 3, 11, or 13;
6	c)	a nucleic acid molecule which encodes a polypeptide comprising the amino
7	acid sequence	e of SEQ ID NO:2 or 12;
8	d)	a nucleic acid molecule which encodes a fragment of a polypeptide
9	comprising th	ne amino acid sequence of SEQ ID NO:2 or 12, wherein the fragment
10	comprises at	least 15 contiguous amino acids of SEQ ID NO: 2 or 12; and
11	e)	a nucleic acid molecule which encodes a naturally occurring allelic variant of
12	a polypeptide	comprising the amino acid sequence of SEQ ID NO:2 or 12, wherein the
13	nucleic acid r	molecule hybridizes to a nucleic acid molecule comprising SEQ ID NO:1, 3,
14	11, or 13, or	a complement thereof, under stringent conditions.
1	2.	The isolated nucleic acid molecule of claim 1, which is selected from the
2	group	consisting of:
3	a)	a nucleic acid comprising the nucleotide sequence of SEQ ID NO:1, 3, 11, or
4	13; and	
5	b)	a nucleic acid molecule which encodes a polypeptide comprising the amino
6	acid sequenc	e of SEQ ID NO:2 or 12.
1	2	The much is said as cleanly of claims 1 fourther communicing a visator much is not
1	3.	The nucleic acid molecule of claim 1 further comprising a vector nucleic acid
. 2	seque	ence.
1	4.	The nucleic acid molecule of claim 1 further comprising a nucleic acid
2	seque	ence encoding a heterologous polypeptide.
4	5	A heat call which contains the musleis said malesule of claims 1
1	5.	A host cell which contains the nucleic acid molecule of claim 1.

The host cell of claim 5 which is a mammalian host cell.

1	7.	A non-human mammalian host cell containing the nucleic acid molecule of	
2	claim	1.	
1	8.	An isolated polypeptide selected from the group consisting of:	
2	a)	a polypeptide which is encoded by a nucleic acid molecule comprising a	
3	nucleotide sec	quence which is at least 70% identical to a nucleic acid comprising the	
4	nucleotide sec	quence of SEQ ID NO:1, 3, 11, or 13;	
5	b)	a naturally occurring allelic variant of a polypeptide comprising the amino	
6	acid sequence	e of SEQ ID NO:2, wherein the polypeptide is encoded by a nucleic acid	
. 7	molecule which hybridizes to a nucleic acid molecule comprising SEQ ID NO:1, 3, 11, or		
8	13, or a complement thereof under stringent conditions; and		
9	c)	a fragment of a polypeptide comprising the amino acid sequence of SEQ ID	
10	NO:2 or 12, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID		
11	NO:2 or 12.		
1	9.	The isolated polypeptide of claim 8 comprising the amino acid sequence of	
1	SEQ ID NO:		
2	SEQ ID NO.	2 01 12.	
1	10.	The polypeptide of claim 8 further comprising a heterologous amino acid	
2	sequence.		
. 1	11.	An antibody which selectively binds to a polypeptide of claim 8.	
1	12.	A method for producing a polypeptide selected from the group consisting of:	
2	a)	a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or 12;	
3	b)	a polypeptide comprising a fragment of the amino acid sequence of SEQ ID	
4	NO:2 or 12,	wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID	
5			
6	c)	a naturally occurring allelic variant of a polypeptide comprising the amino	
7	acid sequen	ce of SEQ ID NO:2 or 12, wherein the polypeptide is encoded by a nucleic acid	
8	molecule wl	hich hybridizes to a nucleic acid molecule comprising SEQ ID NO:1, 3, 11, or	
9	13, or a com	aplement thereof under stringent conditions;	

5

b)

10	the method, comprising culturing the host cell of claim 5 under conditions in which		
11	the nucleic acid molecule is expressed.		
1	13. A method for detecting the presence of a polypeptide of claim 8 in a sample,		
2	comprising:		
3	a) contacting the sample with a compound which selectively binds to a		
4	polypeptide of claim 8; and		
5	b) determining whether the compound binds to the polypeptide in the sample.		
1	14. The method of claim 13, wherein the compound which binds to the		
2	polypeptide is an antibody.		
1	15. A kit comprising a compound which selectively binds to a polypeptide of		
2	claim 8 and instructions for use.		
1	16. A method for detecting the presence of a nucleic acid molecule of claim 1 ir	1	
2	a sample, comprising the steps of:		
3	a) contacting the sample with a nucleic acid probe or primer which selectively		
4	hybridizes to the nucleic acid molecule; and		
5	b) determining whether the nucleic acid probe or primer binds to a nucleic acid	1	
6	molecule in the sample.		
1	17. The method of claim 16, wherein the sample comprises mRNA molecules		
2	and is contacted with a nucleic acid probe.		
1	18. A kit comprising a compound which selectively hybridizes to a nucleic acid	i	
2	molecule of claim 1 and instructions for use.		
1	19. A method for identifying a compound which binds to a polypeptide of clair	n	
2	8 comprising the steps of:		
3	a) contacting a polypeptide, or a cell expressing a polypeptide of claim 8 with	a	
4	test compound; and		

determining whether the polypeptide binds to the test compound.

3

1	20. The method of claim 19, wherein the binding of the test compound to the		
2	polypeptide is detected by a method selected from the group consisting of:		
3	a) detection of binding by direct detecting of test compound/polypeptide		
4	binding;		
5	b) detection of binding using a competition binding assay;		
6	c) detection of binding using an assay for 14094-mediated proteolysis.		
1	21. A method for modulating the activity of a polypeptide of claim 8 comprising		
2	contacting a polypeptide or a cell expressing a polypeptide of claim 8 with a		
3	compound which binds to the polypeptide in a sufficient concentration to modula		
4	the activity of the polypeptide.		
1	22. A method for identifying a compound which modulates the activity of a		
2	polypeptide of claim 8, comprising:		
3	a) contacting a polypeptide of claim 8 with a test compound; and		
4	determining the effect of the test compound on the activity of the polypeptide to thereby		
5	identify a compound which modulates the activity of the polypeptide.		
1	23. A method of inhibiting proliferation, or inducing the killing, of a 14094-		
2	expressing hyperproliferative cell, comprising contacting the hyperproliferative cell		
3	with a compound that modulates the activity or expression of a polypeptide of claim		
4	8, in an amount which is effective to reduce or inhibit the proliferation of, or induce		
5	the killing of, the hyperproliferative cell.		
1	24. The method of claim 23, wherein the compound is selected from the group		
2	consisting of a peptide, a phosphopeptide, a small organic molecule, a small		
3	inorganic molecule and an antibody.		
1	25. The method of claim 23, wherein the compound is an antibody conjugated t		
2	a therapeutic moiety selected from the group consisting of a cytotoxin, a cytotoxic		

agent and a radioactive metal ion.

1	26.	The method of claim 23, wherein the compound is administered in
2	combin	nation with a cytotoxic agent.

- 27. A method of inhibiting proliferation, or inducing the killing, of a 14094expressing hyperproliferative cell, comprising contacting the hyperproliferative cell
 with a compound that modulates the activity or expression of a nucleic acid molecule
 of claim 1, in an amount which is effective to reduce or inhibit the proliferation of, or
 induce the killing of, the hyperproliferative cell.
- The method of claim 27, wherein the compound is an antisense, a ribozyme, or a triple helix molecule.
- 1 29. The method of claim 23, wherein the hyperproliferative cell is found in a solid tumor, a soft tissue tumor, or a metastatic lesion.
- 1 30. The method of claim 23, wherein the hyperproliferative cell is found in a 2 cancer selected from the group consisting of a sarcoma, a carcinoma, and an 3 adenocarcinoma.
- 1 31. The method of claim 23, wherein the hyperproliferative cell is found in a 2 cancer selected from the group consisting of lung cancer, breast cancer, ovarian 3 cancer, liver cancer, and colon cancer.
- 32. A method of treating or preventing a disorder characterized by aberrant cellular proliferation or differentiation of a 14094-expressing cell, in a subject, comprising:

 administering to the subject an effective amount of a compound that modulates to
- administering to the subject an effective amount of a compound that modulates the activity or expression of a polypeptide of claim 8; such that the aberrant cellular proliferation or differentiation of the 14094-expressing cell is reduced or inhibited.
- 1 33. A method of treating or preventing a disorder characterized by aberrant 2 cellular proliferation or differentiation of a 14094-expressing cell, in a subject, 3 comprising:

- administering to the subject an effective amount of a compound that modulates the activity or expression of a nucleic acid molecule of claim 1; such that the aberrant cellular proliferation or differentiation of the 14094-expressing cell is reduced or inhibited.
- 1 34. The method of either of claim 32, wherein the disorder is a cancer.
- 1 35. The method of claim 34, wherein the cancer is a solid tumor, a soft tissue tumor, or a metastatic lesion.
- 1 36. The method of claim 34, wherein the cancer is selected from the group consisting of a sarcoma, a carcinoma, and an adenocarcinoma.
- 1 37. The method of claim 32, wherein the disorder is selected from the group consisting of lung cancer, breast cancer, and colon cancer.
- 1 38. The method of claim 32, wherein the subject is a mammal.
- 1 39. The method of claim 32, wherein the subject is a human.
- 1 40. The method of claim 32, wherein the compound is selected from the group 2 consisting of a peptide, a phosphopeptide, a small organic molecule, a small 3 inorganic molecule and an antibody.
- 1 41. The method of claim 32, wherein the compound is an antibody conjugated to a therapeutic moiety selected from the group consisting of a cytotoxin, a cytotoxic agent and a radioactive metal ion.
- 1 42. The method of claim 32, wherein the compound is administered in combination with a cytotoxic agent.
- 1 43. The method of claim 42, wherein the cytotoxic agent is selected from the 2 group consisting of an antimicrotubule agent, a topoisomerase I inhibitor, a 3 topoisomerase II inhibitor, an antimetabolite, a mitotic inhibitor, an alkylating agent, 4 an intercalating agent, an agent capable of interfering with a signal transduction 5 pathway, an agent that promotes apoptosis or necrosis, and radiation.

1	44. The method of claim 13, wherein the sample comprises a cancer cell or	
2	tissue.	
1	45. The method of claim 16, wherein the sample comprises a cancer cell or	
2	tissue.	
1	46. The method of claim 44, wherein the cancer is a solid tumor, a soft tissue	
2	tumor, or a metastatic lesion.	
1	47. The method of claim 45, wherein the cancer is a solid tumor, a soft tissue	
2	tumor, or a metastatic lesion.	
1	48. The method of claim 44, wherein the cancer is selected from the group	
2	consisting of a sarcoma, a carcinoma, and an adenocarcinoma.	
1	49. The method of claim 45, wherein the cancer is selected from the group	
2	consisting of a sarcoma, a carcinoma, and an adenocarcinoma.	
1	50. The method of claim 44, wherein the cancer is selected from the group	
2	consisting of lung cancer, breast cancer, ovarian cancer, liver cancer, and colon	
3	cancer.	
1	51. The method of claim 45, wherein the cancer is selected from the group	
2	consisting of lung cancer, breast cancer, ovarian cancer, liver cancer, and colon cancer.	
1	52. A method for evaluating the efficacy of a treatment of a proliferative	
2	disorder, in a subject, comprising:	
3	treating a subject with a protocol under evaluation;	
4	evaluating the expression of a 14094 nucleic acid or polypeptide,	
5	wherein a change in the level of 14094 nucleic acid or polypeptide after treatment,	
6	relative to the level of expression before treatment, is indicative of the efficacy of the	
7	treatment of the disorder.	

- 1 53. The method of claim 52 wherein the proliferative disorder is a cancer of the
- 2 lung, breast, ovary, liver, and colon.