

MD-FORMULARIO.pdf

antoniommff

Matemática Discreta

2º Grado en Ingeniería Informática - Ingeniería del Software

Escuela Técnica Superior de Ingeniería Informática Universidad de Sevilla

bit CLASES MINITES

MD

AMF

Tema 1

```
L. a.m: 2 d(v) = 2a
         d(v): VALENCIA DEL VÉRTICE "V"
             : VÉRTICE
             : N' DE ARASTAS
            : N' DE VÉRTICES
```

```
Alg. Havel-Hakimi:
```

```
Para una lista decreciente (a,,...an)
Mientras (a_n > 0)
   Eliminar elem. a, de la lista
  Restar 1 a 68 ay primeros elem. de la lista
  Ordenamos la nieva lista
Devolvemos la lista
Es una SG. Si
   Es una lista de cenos.
   Ó posee un nº pour de valencias impaires
 Ó NO posec valencias 0 y n-1 a la vez
```


de grafos: Tipos

- TRIVAL : Sin avistas · GRAFO
- K-REGULAR: vértices con mismos d(v)

n° de vértices

d(v) = n-1: valencia

 $cl = \frac{n(n-1)}{2}$: no de cristas

CICLO Cn: vert. con valnua 1

- · ARBOL : grafo sin cicles
- BIPARTITO: litodos los grafos Cn con n parl
- BIPARTITO COMPLETS Kn,m: · GRAFO

no vértices de un subgrate

no vertices del otro subgrafa

du), = m : valencia de vértices n

d(v)m=n : valencia de vértices m

a = m·n: no de aristas

2 d(v) = 2a m·n+n·m = 2a 2mn = 2α

Isomerfisme

- \Rightarrow Si G y G' son isomorfos G ~ G' si para {u,v} \ni {\(\lambda \lam
 - · = n° de vértices
 - •= nº de aristas

G~G' ← G~G'

- = lista de grados
- = n° de comp. conexas
- = nº de victos en vertices con mismos valencias

Grafes autocompl. $G \sim \overline{G}$

→ Si G es autocomplementario, G es su grafo isomorfo.

idía de clases infinitas?

masca y fluye

Matemática Discreta

Banco de apuntes de la

Comparte estos flyers en tu clase y consigue más dinero y recompensas

- Imprime esta hoja
- 2 Recorta por la mitad
- Coloca en un lugar visible para que tus compis puedan escanar y acceder a apuntes
- Llévate dinero por cada descarga de los documentos descargados a través de tu QR

DFS

5 7

BFS

MD

 N° de **clique** (ω): n° de vértices del mayor subgrafo completo.

 N° de <u>independencia</u> (α): n° de vértices del <u>mayor conjunto de vértices</u> independientes.

<u>Excentricidad</u> \underline{e} de un vértice \underline{v} , es la mayor distancia desde v al resto de vértices del grafo.

Radio de un grafo: la menor excentricidad

Diámetro: la mayor excentricidad

<u>Centro</u>: conjunto de vértices con menor excentricidad <u>Periferia</u>: conjunto de vértices con mayor excentricidad

Alg. Tarjan (comp. frerkmente conexas)

- 1. Aplicar <u>D</u>+S sobre G. Crear lista de vértices ordendes segun se van eliminando de la pila: "l".
- 2. Oblener grafo transpoesto GI a pourtir de 'l'
- 3. Aplicar <u>DFS</u> sobre GT <u>eligiendo</u> los vértices <u>en orden contrario</u> <u>al que aparecen en l.</u>

bit de infinitas?

MD

Teorema de Whitney

 $K(G) \leq \lambda(G) \leq \partial_{min}(G)$

Teorema de Menger

La conectividad de un grafo coincide con el número de caminos disjuntos que hay entre los dos vértices del grafo que están conectados por menos caminos disjuntos.

Propiedades árboles m-carios:

 $h \leq m^{P} \rightarrow p \geq \log_{m} h$ h: n° hojas p: altura n: n° vérticos internos $h = m \cdot i + 1$

Alg. Kruskal (minimum spanning-tree):

- 1. Obtenemos lista de <u>anistas seguin su peso</u>(l)
- 2. Oblenemos tabla ordenada de vértices(t)
- 3. Por cada anista en "l", mientras les vértices de "t" no tengan mismo orden:
 - Asignamos a ambos vérhies de t el orden del meron
 - Si hay més elem. de "t" con el orden del elem. mayor, tambien se cambia el orden

Alg. Djikstra (shortest path):

- 1. Obtenemos tables con los <u>vértices</u>, la <u>bose</u> (vértice desde el que reremos el peso de la anista) y <u>anista</u> (anista de peso mínimo)
- 1. Elegimos el vértice desde el que queremos colleular peso virmimo.
- 3. Por cada base, hasta que se huxan entierto todos los vértices:
 - Si el <u>vértice</u> [i] es <u>ady</u> con la <u>base</u> añadimos la distancia a la tabla. distancia [i] = distancia + distancia [i]
 - Elegimas vértice con menor distancia como base.
 - Elegimes (a arista = { base_antiqua, base_nueva} como arista.

Propiedades planaridad

Si G tiene c caras y a aristas: 3c ≤ 2a

Si G tiene a aristas y c caras , cada una delimitada al menos por d aristas: dc ≤ 2a (generalización)

Fórmula de Euler

G=(V,A) plano y conexo, con **c** caras, **a** aristas y **n** vértices: n + c = a + 2

G=(V,A) plano con **d** componentes conexas: n + c = a + d + 1

Test de planaridad

Si G=(V,A) es un grafo plano maximal, con $n \ge 3$: $a \le 3n - 6$

Teorema de Kuratowski

Un grafo es plano syss, <u>no</u> contiene ningún subgrafo isomorfo a **K5** ni a **K3,3**, ni a **subdivisiones** de ellos**.

Teorema de Wagner

Un grafo es plano syss, <u>no</u> contiene ningún subgrafo que se pueda **contraer** a K5 o K3,3

Grafo dual G*=(V*, A*)

- Cada cara de G se identifica con un vértice de G*
- Cada arista de G se identifica con una arista de G*, que pasa entre los dos vértices de la arista de G que separa dos caras.

Todo	arafo	nlano	oc 4.	-colore	ahla	v(G*)	< 1
1000	grato	piano	es 4	-colore	apie	מוש") > 4

	G	G*		
, ,	n	n* = c		
•	a	a* = a		
	c (n° caras)	c* = n		

Orbit

it ¿DÍA DE INSINITAS?

Tema 5

Grafos eulerianos

Grafos eulerianos

- 1. Es conexo
- 2. Todos sus vértices son pares (tiene valencia par)

MD

Grafos semieulerianos

- 1. Es conexo
- 2. Tiene exactamente 2 vértices son impares

Grafos hammiltonianos

Grafos Hamiltonianos

- 1. Es conexo
- 2. d(G) >= 2
- 3. No tiene vértices de corte
- 4. Al eliminar c vértices (c>1) no pueden aparecer más de c componentes conexas

Grafos Semihamiltonianos

- 1. Es conexo
- 2. Como máximo tiene dos vértices con d=1, el resto tendrán d >= 2
- 3. No tiene vértices de corte cuya eliminación de lugar a más de dos componentes conexas.
- Al eliminar c vértices (c>1) no pueden aparecer más de c+1 componentes conexas.

¡¡Cuidado, sólo son <u>condiciones necesarias y no suficientes</u>! Si un grado no cumple estas propiedades NO será hamiltoniano/euleriano, pero si las cumple no tienen porqué serlo.

Condiciones suficientes: teorema de Dirac

Grafos Hamiltonianos Si G tiene $n \ge 3$ y $\delta_{min}(G) \ge n/2$ Grafos Semihamiltonianos Si G tiene n \geq 3 y $\delta_{min}(G) \geq (n-1)/2$

^{*} Si G = $K_{m,n}$, con n=m

Ta de Brooks

- 1. $\omega(G) \le \chi(G) \le \Delta$, $\forall G \ne K_n, C_{2n+1}$
- **2.** $\chi(K_n) = 1 + \Delta = n$
- 3. $d_{min} + 1 \le \chi(C_{2n+1}) \le 1 + \Delta$

Grafos bipartitos

G es bipartito syss:

- 1. No admite ciclos de longitud impar.
- 2. $\circ \chi(G) = 2$
- 3. $\acute{O}_{\chi_1}(G) = \Delta$

Teorema de Vizing

 $\Delta \le \chi_1(G) \le \Delta + 1$, $\forall G \ne K_n$

$$\chi^1(K_n) = \begin{cases} n-1 & si \ n=2k & n \text{ es par} \\ n & si \ n=2k+1 & n \text{ es impar} \end{cases}$$

Ta de Hall

 $|P| \le |T(P)|$ siendo

P: vértices del un grafo G

T(P): vértices a los que llega P

Alg. de árbol de comino aumentante

- 1. Objener <u>empargiamients "M" cualquiera</u> de G. P → T(P)
- 2. Obtener 600 verticos p[i] no empargados
- 3. Por cada vértice no emparejado, obtener arbol de com alternado:
 - <u>Arbol de com. alternado</u>: desde el 1^{er} vértice, ir alternando aristas "nucuas" y aristas del emparejamiento.
 - Obtener un mero empargamiento M1 = M u [nuevas aristas del árbol]