CIS450/ECE478 Winter 2019 Project 1: Building xv6

Due Thursday, January 24, 2019

To develop a better sense of how an operating system works, you will also do a few projects inside a real OS kernel. The kernel we'll be using is a port of the original Unix (version 6), and is runnable on modern x86 processors. It was developed at MIT and is a small and relatively understandable OS and thus an excellent focus for simple projects. In this project, we'll learn how to build a xv6 kernel.

FORMAT

You should work in a group of two students (or work individually). Every student needs to sign up for one of the project groups on canvas **no later than 1/20**.

Preparation: Linux Virtual Machine

The easiest way to build xv6 is to install a modern Linux distribution on your computer. With platform virtualization, Linux can cohabitate with your normal computing environment.

Download VirtualBox

Download VirtualBox to run Linux.

VirtualBox download

Follow the instructions at the website to install the VirtualBox.

Download Ubuntu Linux Virtual Machine Image

I have created a Linux Virtual Machine Image, <u>OSVM.ova</u>, with xv6 and other related tools pre-installed. You can click the link and download it.

Open and configure VirtualBox

- 1. Open VirtualBox from "Applications"
- 2. Click "Important Appliance" under the File menu and select the OSVM appliance "OSVM.ova"
- 3. Linux virtual machine will start. You will be prompted for a username and password:
 - Default username: osstudent
 - Default password: student2019

Building and Running xv6

Inside the Linux VM, open a terminal, run the following commands:

```
cp -r xv6-public xv6
cd xv6
make
make gemu
```

An original source code copy of xv6 is stored in the folder xv6-public. The first line in the above is to make a copy of the source code to the xv6 folder. So, you can use the folder xv6 for any modification while keeping a backup of the original codes under xv6-public. The last two lines are for building and running xv6, respectively.

Then you shall see something like this:

```
xv6...
cpu1: starting
cpu0: starting
init: starting sh
$
```

You can try the command 1s in xv6 as follows:

```
$1s
```

xv6 doesn't provide a function to shutdown itself. You can just close the pop-up terminal to shutdown the xv6.

Adding a new user program

Add into xv6 the first user program called hello.c, which is implemented as follows:

```
#include "types.h"
#include "user.h"

int
main(int argc, char *argv[])
{
    printf (1, "Hello, my name is %s %s\n", argv[1], argv[2]);
    exit();
}
```

Add into Makefile this user program under UPROGS as

```
UPROGS=\
```

```
_hello\
_cat\
...
```

Make sure to use tab space instead of blank space in front of _hello.

Then rerun the xv6 with the command, "make qemu"

Then you can test the new user program hello in the xv6 shell as follows:

\$hello yourFirstName yourLastName

Resources

Even though in this project you are not required to write any new C code, it might be better for you to get familiar with it now. In next project, we will hack the xv6 and modify the C source codes. You can find C Programming Online Tutorial here: https://www.tutorialspoint.com/cprogramming.

The online textbook also provides a very brief document to familiarize you with the basics of the C programming environment on UNIX systems: http://pages.cs.wisc.edu/~remzi/OSTEP/lab-tutorial.pdf

<u>Report</u>

Your report should include two screenshots showing that xv6 is running and hello is working (showing your own names) and a brief reflection on what you learned (> 100 words).

Please submit your report to Canvas under the "P1" assignment folder. Each group just submits one report.