Termistor jako termometr

Hubert Ładziński

7 czerwca 2017

1 Streszczenie

W pracy badano możliwość użycia termistora jako termometru, badając dokładność przyrządu w zależności od przedziału zmienności temperatury. Raport zawiera także wszystkie dane potrzebne do użytku i kalibracji termistora.

2 Wstęp

Pomiary składały się z dwóch części, pierwsza polegała na mierzeniu oporu termistora znajdującego się w puszce z wodą o temperaturze początkowej $t_o=93^{\circ}\mathrm{C}$ aż do osiągnięcia przez wodę temeratury $t_k=52^{\circ}\mathrm{C}$. Następnie przeprowadzono pomiar analogiczny ale z użyciem wody o $t_o=5,2^{\circ}\mathrm{C}$, który trwał póki woda nie ogrzała się do $t_k=13,2^{\circ}\mathrm{C}$. Dane z pierwszej części pozwoliły na obliczenie oporu referencyjnego R dla temperatury 65°C opornika podłączanego do dzielnika napięć. W drugiej części pomiarów termistor po raz kolejny został umieszczony w naczyniu z wodą o temperaturze $t_o=80^{\circ}\mathrm{C}$, lecz tym razem został podłączony do dzielnika napięć według schematu z rysunku numer 1. Napięcie było mierzone zarówno na zasilaczu prądu stałego ze względu na możliwą niestabilność urządzenia jak i na termistorze aż do osiągnięcia przez wodę w puszce temperatury 46°C.

3 Układ doświadczalny i pomiary

Do pomiarów napięcia i oporu na termistorze używano miernika Brymen 805, pomiar napięcia na zasilaczu był przeprowadzony przy pomocy miernika CHY. Do pomiaru temperatury użyto termometru cyfrowego o najmniejszej

działce odczytu $\Delta=0,1^{\circ}$ C. Pomiary oporu w pierwszej części jak i napięcia w drugiej były zapisywane co 1°C. Dzielnik napięcia został zbudowany według rysunku numer 1 gdzie $R=36[\mathrm{k}\Omega]$ odpowiada opornikowi o oporności zbliżonej do referencyjnej równej $(32,5\pm3,8)[\mathrm{k}\Omega],r(T)$ odpowiada oporowi termistora, E jest zasilaczem. Wyniki pomiarów części pierwszej znajdują się w tabeli numer 1, części drugiej w tabeli numer 2.

Tabela 1: Dane z części pierwszej

	Tabela 1. Dane z części pierwszej				
Temperatura[°C]	$\operatorname{Op\'or}[k\Omega]$	Temperatura[°C]	$\operatorname{Op\'or}[\mathrm{k}\Omega]$		
93	19,71	62	52,2		
90	21,47	61	53,9		
88	22,82	60	55,7		
86	24,08	59	57,8		
84	25,74	58	60		
82	27,84	57	62,4		
81	28,5	56	64,8		
80	29,11	55	66,7		
79	30,61	54	68,7		
78	31,28	53	71,2		
77	31,97	52	73,5		
76	33,22	Temperatura[°C]	$\operatorname{Op\'or}[\operatorname{M}\Omega]$		
75	34,26	13,2	0,341		
74	35,57	11	0,378		
73	36,67	10,5	0,387		
72	37,97	10	0,396		
71	39,10	9,5	0,406		
70	40,10	8,5	0,424		
69	41,5	8	0,432		
68	42,6	7,5	0,442		
67	43,8	7	0,450		
66	45,7	6,6	0,455		
65	47,3	6	0,459		
64	49	5,5	0,463		
63	50,5	5,2	0,464		

Tabela 2: Dane z części drugiej

Temperatura[°C]	Napięcie[V]	Temperatura[°C]	Napięcie[V]
80	7,88	61	10,77
76	8,60	60	10,90
75	8,70	59	11,06
73	9,02	58	11,18
72	9,20	57	11,34
71	9,33	56	11,50
70	9,49	55	11,61
69	9,59	54	11,76
68	9,69	53	11,89
67	9,92	52	12,03
66	10,02	51	12,16
65	10,20	50	12,31
64	10,35	49	12,43
63	10,49	48	12,57
62	10,63	47	12,70
		46	12,83

Rysunek 1: Dzielnik napięć

4 Analiza danych

W celu wyznaczenia parametór B i r_{∞} ze wzoru 1, logarytmujemy obustronnie i otrzymujemy zależność 2.

$$r(T) = r_{\infty} e^{\left(\frac{B}{T}\right)} \tag{1}$$

$$\ln \frac{r(T)}{1\Omega} = \ln \frac{r_{\infty}}{1\Omega} + \frac{B}{T} \tag{2}$$

W celu skorzystania z metody najmniejszych kwadratów uznajemy pomiar temperatury za dokładny, w zależności y=ax+b za a odpowiada B, za b odpowiada $\ln\frac{r_\infty}{1\Omega}$. Za zmienną niezależną przyjmujemy temperaturę. Niepewność u_r została wyznaczona dla każdego pomiaru oporu przy użyciu danych dostępnych w instrukcji przyrządu. Parametry prostej uzyskane tą metodą mają następujące wartości $(a=3700\pm38)[\mathrm{K}],\ b=(-7,10\pm0,12)[\mathrm{k}\Omega].$ Po przeniesieniu niepewności u_b niepewność u_{r_∞} osiągneła wartość 0,00010[k Ω]. Parametr r_∞ jest równy $(0,00083\pm0,00010)[\mathrm{k}\Omega].$ Wykres na rysunku 2 przedstawia dane uzyskane w pierwszej części pomiarowej oraz funkcję ze wzoru 1 z parametrami uzyskanymi podczas analizy metodą najmniejszych kwadratów. Wykres na rysunku 3 jest przedstawieniem danych z drugiej części pomiarowej.

Rysunek 2: Wykres oporu od temperatury

Opór referencyjny dla 65°C obliczono na $(32,5\pm3,8)[k\Omega]$, zgodnie z tym parametrem dobrano najbliższy tej ocenie opornik o oporności $36[k\Omega]$,

dla którego odpowiadającą temperaturą t_o jest 62°C. Oceny parametrów h i g z zależności 3 otrzymane metodą najmniejszych kwadratów mają wartości $h=(-0,1435\pm0,00042)[\frac{V}{\circ C}],~g=(19,5\pm0,26)[\mathrm{V}]$ a ich kowariancja wynosi $c_{ab}=-0,011$. Wykres reszt wartości zmierzonych i dopasowanych $\varepsilon=V_i-U_i$ jest przedstawiony na rysunku 4.

$$U = ht + g \tag{3}$$

Rysunek 3: Wykres napięcia do temperatury

Rysunek 4: Wykres reszt $V_i - U_i$

W celu wyznaczenia z zależności 3 funkcji temperatury od napięcia przekształcamy ją do następującej formy,

$$t(V) = HV + G \tag{4}$$

gdzie $G=\frac{-g}{h}$ a $H=\frac{1}{h}$. Po podstawieniu danych otrzymujemy $\hat{H}=(-6,97\pm0,20)[\frac{\circ C}{V}]$ oraz $\hat{G}=(135,8\pm2,2)[^{\circ}$ C], ich kowariancja wynosi $C_{HG}=-0,44$. W celu sprawdzenia podstawiamy przykładową wartość V=15V nie uzyskaną podczas drugiej części pomiarowej, dla tak danego napięcia temperatura powinna wynieść $t=(31,3\pm1,0)^{\circ}$ C. Wykres reszt $t_i-t(V_i)$ jest przedstawiony na rysunku 5, gdzie t_i są wartościami zmierzonymi a $t(V_i)$ jest funkcją temperatury od napięcia uzyskaną z zależności 4. Na ten sam wykres naniesione zostały także hiperbole wartości granicznych dla zobrazowania dokładności wskazań przyrządu w zależności od temperatury.

Rysunek 5: Wykres reszt $t_i - t(V_i)$ wraz z hiperbolami wartości granicznych

5 Dyskusja i wnioski końcowe

Termistor został zbadany pod kątem niepewności pomiarowej w roli termometru, w trakcie analizy udało się potwierdzić obecność punktu przegięcia w okolicy temperatury 62 $^{\circ}$ C, tam też zmierzona wartość jest najdokładniejsza jak wynika to z rysunku numer 5. Wszystkie dane potrzebne do obsługi urządzenia również zostały zawarte w sekcji analizy danych.