Grenzwerte von Funktionen

Jendrik Stelzner

24. Dezember 2014

Inhaltsverzeichnis

1	Häufungspunkte	1
2	Grenzwerte von Funktionen	2
3	Links-, rechts- und beidseitige Grenzwerte	5
4	Uneigentliche Grenzwerte	6
5	Lösungen der Übungen	7

1 Häufungspunkte

Es sei $A\subseteq\mathbb{R}^n$ und $f\colon A\to\mathbb{R}^m$. Wir wollen untersuchen, wie sich f an einer Stelle $x\in\mathbb{R}^n$ verhält, bzw. verhalten sollte. Um das Verhalten von f an x zu untersuchen, brauchen wir, dass f "in der Nähe" von x definiert ist. Hierfür brauchen wir, dass x "nahe" an A ist. Dies motiviert die folgende Definition:

Definition 1. Es sei $A \subseteq \mathbb{R}^n$. Ein Punkt $x \in \mathbb{R}^n$ heißt *Häufungspunkt von A*, falls es für alle $\varepsilon > 0$ ein $a \in A$ mit $||x - a|| < \varepsilon$ und $x \neq a$ gibt.

Wir bezeichnen die Menge aller Häufungspunkte von A mit A'.

Übung 1

Es sei $x \in \mathbb{R}^n$. Der punktierte offene ε -Ball um x ist die Menge

$$\dot{B}_{\varepsilon}(x) := B_{\varepsilon}(x) \setminus \{x\} = \{y \in \mathbb{R}^n \mid 0 < ||y|| < \varepsilon\}.$$

Eine punktierte Umgebung von x ist eine Menge $U \setminus \{x\}$, wobei $U \subseteq \mathbb{R}^n$ eine Umgebung von x ist

Es sei $A\subseteq \mathbb{R}^n$ und $x\in \mathbb{R}^n$. Zeigen Sie, dass die folgenden Bedingungen äquivalent sind:

- 1. x ist ein Häufungspunkt von A.
- 2. Für jedes $\varepsilon > 0$ gibt es ein $a \in A$ mit $a \in \dot{B}_{\varepsilon}(x)$.
- 3. Für jede punktierte Umgebung V von x gibt es ein $a \in A$ mit $a \in V$.

Vorstellungsmäßig ist $x \in \mathbb{R}^n$ ein Häufungspunkt von $A \subseteq \mathbb{R}^n$, falls sich x von außen durch Punkte aus A annähern lässt.

- Beispiel(e). x=0 ist ein Häufungspunkt von $A:=\{1/n\mid n\geq 1\}\subseteq \mathbb{R}$: Da $\lim_{n\to\infty}1/n=0$ gibt es für jedes $\varepsilon>0$ ein $n\geq 1$ mit $|x-1/n|<\varepsilon$, wobei klar ist, dass $1/n\neq 0$.
 - Der Punkt x=2 ist kein Häufungspunkt der Menge $A\coloneqq [0,1]\cup\{2\}\subseteq\mathbb{R}$, denn das einzige $a\in A$ mit |x-a|<1/2 ist a=2.
 - Ist $U\subseteq\mathbb{R}^n$ offen, so ist jeder Punkt $x\in U$ ein Häufungspunkt von U: Da U offen ist, gibt es ein $\delta>0$ mit $B_\delta(x)\subseteq U$. Für jedes $\varepsilon>0$ gibt es für $\omega:=\min\{\varepsilon,\delta\}$ daher ein

$$y \in B_{\omega}(x) \subseteq B_{\delta}(x) \subseteq U \quad \text{mit } y \neq x,$$

und es gilt $||x - y|| < \omega \le \varepsilon$.

• Allgemeiner ergibt sich mit dieser Argumentation, dass $x \in \mathbb{R}^n$ ein Häufungspunkt von $V \subseteq \mathbb{R}^n$ ist, falls V eine Umgebung von x ist. (Es genügt bereits eine punktierte Umgebung.)

Übung 2.

Es sei $A \subseteq \mathbb{R}^m$ und $x \in \mathbb{R}^m$. Zeigen Sie, dass x genau dann ein Häufungspunkt von A ist, falls es eine Folge (a_n) auf $A \setminus \{x\}$ gibt, so dass $a_n \to x$.

Übung 3.

Es sei $M \subseteq \mathbb{R}^n$ endlich. Zeigen Sie, dass $M' = \emptyset$.

Übung 4.

Bestimmen Sie \mathbb{Z}' .

Übung 5.

Es seien $A, B \subseteq \mathbb{R}$. Zeigen Sie:

- 1. Ist $A \subseteq B$, so ist $A' \subseteq B'$.
- 2. Es ist $(A \cup B)' = A' \cup B'$.

Übung 6.

Bestimmen Sie A' für $A := [0,1] \cup [2,3]$.

2 Grenzwerte von Funktionen

Definition 2. Es sei $A\subseteq\mathbb{R}^n$, $f\colon A\to\mathbb{R}^m$ und $x\in\mathbb{R}^n$ ein Häufungspunkt von A. Für $y\in\mathbb{R}^m$ schreiben wir

$$\lim_{\substack{a\to x\\a\in A}}f(a)=y,$$

falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass

$$\|x-a\|<\delta\Rightarrow \|f(x)-f(a)\|<\varepsilon\quad \text{für alle }a\in A \text{ mit }a\neq x.$$

Wir nennen y dann den Grenzwert von f an x über A.

Beispiel(e). • Wir betrachten die Signumabbildung

$$\mathrm{sgn} \colon \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} -1 & \mathrm{falls} \ x < 0, \\ 0 & \mathrm{falls} \ x = 0, \\ 1 & \mathrm{falls} \ x > 0. \end{cases}$$

0ist ein gemeinsamer Häufungspunkt von $(-\infty,0)$ und $(0,\infty),$ und es ist

$$\lim_{\begin{subarray}{c} x\to 0\\ x\in (-\infty,0)\end{subarray}} f(x)=-1, \quad \text{und} \quad \lim_{\begin{subarray}{c} x\to 0\\ x\in (0,\infty)\end{subarray}} f(x)=1.$$

• Wir betrachten die Abbildung

$$f \colon (0, \infty) \to \mathbb{R}, x \mapsto \sin \frac{1}{x}.$$

0 ist ein Häufungspunkt der beiden Mengen

$$A \coloneqq \left\{ \frac{1}{\frac{\pi}{2} + n \cdot 2\pi} \,\middle|\, n \in \mathbb{N} \right\} \quad \text{und} \quad B \coloneqq \left\{ \frac{1}{\frac{3\pi}{2} + n \cdot 2\pi} \,\middle|\, n \in \mathbb{N} \right\},$$

und es ist

$$\lim_{\substack{x \to 0 \\ x \in A}} f(x) = 1 \quad \text{und} \quad \lim_{\substack{x \to 0 \\ x \in B}} f(x) = -1.$$

0 ist auch ein Häufungspunkt der Menge $(0, \infty)$, der Grenzwert

$$\lim_{\substack{x \to 0 \\ x \in (0,\infty)}} f(x)$$

existiert jedoch nicht.

Lemma 3. Es sei $A \subseteq \mathbb{R}^m$, $f: A \to \mathbb{R}^k$ und $x \in \mathbb{R}^m$ ein Häufungspunkt von A. Für $y \in \mathbb{R}^k$ sind äquivalent:

- 1. $\lim_{a \to x, a \in A} f(a) = y$.
- 2. Für jede Folge (a_n) auf $A \setminus \{x\}$ mit $a_n \to x$ ist $f(a_n) \to y$.

(Da x ein Häufungspunkt von A ist, existiert eine entsprechende Folge.)

Beweis. $(1\Rightarrow 2)$ Es sei (a_n) eine Folge auf $A\setminus\{x\}$ mit $a_n\to x$. Wir wollen zeigen, dass $f(a_n)\to y$. Sei hierfür $\varepsilon>0$ beliebig aber fest. Da $\lim_{a\to x, a\in A}f(a)=y$ gibt es ein $\delta>0$, so dass

$$||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \varepsilon$$
 für alle $a \in A$ mit $a \neq x$.

Da $a_n \to x$ gibt es ein $N \in \mathbb{N}$ mit $||x - a_n|| < \delta$ für alle $n \ge N$. Da $a_n \ne x$ ist deshalb $||f(x) - f(a_n)|| < \varepsilon$ für alle $n \ge N$.

 $(2\Rightarrow 1) \text{ Angenommen es ist nicht } \lim_{a\to x, a\in A} f(a) = y. \text{ Dann gibt es ein } \varepsilon > 0,$ so dass es für alle $\delta > 0$ ein $a\in A$ gibt, so dass zwar $x\neq a$ und $\|x-a\|<\delta$, aber $\|y-f(a)\|\geq \varepsilon.$ Insbesondere gibt es deshalb für alle $n\geq 1$ ein $a_n\in A\setminus \{x\}$ mit $\|x-a_n\|<1/n$ aber $\|y-f(a_n)\|\geq \varepsilon.$ Dann ist (a_n) eine Folge auf $A\setminus \{x\}$ mit $a_n\to x$, aber nicht $f(a_n)\to y.$

Aus dieser Beschreibung von Funktionsgrenzwerten durch Folgen ergeben sich direkt zwei einfache Konsequenzen: Zum einen sehen wir, dass sich Funktionsgrenzwerte auch koordinatenweise beschreiben lassen.

Lemma 4. Es sei $f: A \to \mathbb{R}^m$ mit $A \subseteq \mathbb{R}^n$ und $x \in \mathbb{R}^n$ ein Häufungspunkt von A. In Koordinaten sei $f = (f_1, \ldots, f_m)$. Für $y = (y_1, \ldots, y_m) \in \mathbb{R}^m$ ist genau dann $\lim_{a \to x, a \in A} f(a) = y$, falls $\lim_{a \to x, a \in A} f_i(a) = y$, für alle $1 \le i \le m$.

Beweis. Das $\lim_{a \to x, a \in A} f(a) = y$ ist äquivalent dazu, dass für jede Folge (a_n) auf $A \setminus \{x\}$ mit $a_n \to x$ auch $f(a_n) \to y$. Dies ist äquivalent dazu, dass für jede Folge (a_n) auf $A \setminus \{x\}$ auch $f_i(a_n) \to y_i$ für alle $1 \le i \le m$. Dies bedeutet wiederum, dass $\lim_{a \to x, a \in A} f_i(a) = y_i$ für alle $1 \le i \le n$.

Ein weiteres Ergebnis ist, dass Funktionsgrenzwerte mit den üblichen Rechenregeln im \mathbb{R}^n verträglich sind.

Proposition 5. Es seien $A \subseteq \mathbb{R}^n$, $f, f_1, f_2 \colon A \to \mathbb{R}^m$, $\lambda \in \mathbb{R}$ und $x \in \mathbb{R}^n$ ein Häufungspunkt von A.

- 1. Der Grenzwert $\lim_{a\to x,a\in A} f(a)$ ist eindeutig (wenn er existiert).
- 2. Existieren die Grenzwerte $\lim_{a\to x, a\in A} f_1(a)$ und $\lim_{a\to x, a\in A} f_2(a)$, so existiert auch der Grenzwert $\lim_{x\to a, a\in A} (f_1+f_2)(a)$ und es gilt

$$\lim_{\substack{a \to x \\ a \in A}} (f_1 + f_2)(a) = \left(\lim_{\substack{a \to x \\ a \in A}} f_1(a)\right) + \left(\lim_{\substack{a \to x \\ a \in A}} f_2(a)\right).$$

3. Existiert der Grenzwert $\lim_{a\to x, a\in A} f(a)$, so existiert auch $\lim_{a\to x, a\in A} (\lambda f)(a)$, und es gilt

$$\lim_{\substack{a\to x\\a\in A}}(\lambda f)(a)=\lambda\lim_{\substack{a\to x\\a\in A}}f(a).$$

Im Fall n=1, also für $\mathbb{R}^1=\mathbb{R}$, gilt auch eine Verträglichkeit mit Multiplikation und Division

4. Existieren die Grenzwerte $\lim_{a \to x, a \in A} f_1(a)$ und $\lim_{a \to x, a \in A} f_2(a)$, so existiert auch der Grenzwert $\lim_{x \to a, a \in A} (f_1 \cdot f_2)(a)$ und es gilt

$$\lim_{\substack{a \to x \\ a \in A}} (f_1 \cdot f_2)(a) = \left(\lim_{\substack{a \to x \\ a \in A}} f_1(a)\right) \cdot \left(\lim_{\substack{a \to x \\ a \in A}} f_2(a)\right).$$

5. Existieren die beiden Grenzwerte $\lim_{a \to x, a \in A} f_1(a)$ und $\lim_{a \to x, a \in A} f_2(a)$, und ist $f_2(a) \neq 0$ für alle $a \in A \setminus \{x\}$ sowie $\lim_{a \to x, a \in A} f_2(a) \neq 0$, so existiert auch der Grenzwert $\lim_{a \to x, a \in A} f_1(a)/f_2(a)$ und es gilt

$$\lim_{\substack{a\to x\\a\in A}}\frac{f_1(a)}{f_2(a)}=\frac{\lim_{a\to x,a\in A}f_1(a)}{\lim_{a\to x,a\in A}f_2(a)}$$

(Sehen wir $\mathbb{R}^2 \cong \mathbb{C}$, so ergibt sich auch eine Verträglichkeit mit der Multiplikation und Division im Komplexen; hierdrauf wollen wir jetzt aber nicht weiter eingehen.)

Wie wir bereits gesehen haben, können für eine Funktion $f\colon X\to \mathbb{R}^m$ mit Definitionsbereich $X\subseteq \mathbb{R}^n$ für Teilmengen $A,B\subseteq X$ mit gemeinsamen Häufungspunkt $x\in \mathbb{R}^n$ die beiden Grenzwerte $\lim_{a\to x,a\in A} f(a)$ und $\lim_{b\to x,b\in B} f(b)$ existieren, aber dennoch

$$\lim_{\substack{a \to x \\ a \in A}} f(a) \neq \lim_{\substack{b \to x \\ b \in B}} f(b).$$

Es kann auch passieren, dass einer der beiden Grenzwerte existiert, der andere jedoch nicht. Es gibt also im Allgemeinen keinen Zusammehang zwischen dem Grenzwert von f über A und dem Grenzwert über B. Unter bestimmten Umständen lassen sich die entsprechenden Grenzwerte aber vergleichen:

Lemma 6. Es seien $A \subseteq B \subseteq \mathbb{R}^n$ und $f: B \to \mathbb{R}^m$. Ist $x \in \mathbb{R}^n$ ein gemeinsamer Häufungspunkt von A und B, sodass der Grenzwert $\lim_{b \to x, b \in B} f(b)$ existiert, so existiert auch $\lim_{a \to x, a \in A} f(a)$, und es gilt

$$\lim_{\substack{a\to x\\a\in A}}f(a)=\lim_{\substack{b\to x\\b\in B}}f(b).$$

Beweis. Zur besseren Lesbarkeit setzen wir $y\coloneqq \lim_{b\to x,b\in B}f(b)$. Wir wollen zeigen, dass auch $\lim_{a\to x,x\in A}f(a)=y$. Es sei hierfür $\varepsilon>0$ beliebig aber fest. Da $y=\lim_{b\to x,b\in B}f(b)$ gibt es ein $\delta>0$, so dass

$$||x - b|| < \delta \Rightarrow ||y - f(b)|| < \varepsilon$$
 für alle $b \in B$ mit $b \neq x$.

Da $A\subseteq B$ ist daher insbesondere

$$||x - a|| < \delta \Rightarrow ||y - f(a)|| < \varepsilon$$
 für alle $a \in A$ mit $a \neq x$.

Wegen der Beliebigkeit von $\varepsilon > 0$ folgt, dass $\lim_{a \to x. a \in A} f(a) = y$.

Korollar 7. Es sei $f: X \to \mathbb{R}^m$ mit Definitionsbereich $X \subseteq \mathbb{R}^n$. Es seien $A, B \subseteq X$ Teilmengen, so dass $x \in \mathbb{R}^n$ ein gemeinsamer Häufungspunkt von A und B ist, und die beiden Grenzwerte $\lim_{a \to x, a \in A} f(a)$ und $\lim_{b \to x, b \in B} f(b)$ existieren. Ist x auch ein Häufungspunkt von $A \cap B$, so ist

$$\lim_{\substack{a\to x\\a\in A}}f(a)=\lim_{\substack{b\to x\\b\in B}}f(b).$$

Beweis. Da die beiden Grenzwerte $\lim_{a \to x, a \in A} f(a)$ und $\lim_{b \to x, b \in B} f(b)$ existieren, und $A \cap B \subseteq A$ und $A \cap B \subseteq B$, erhalten wir aus Lemma 6, dass auch der Grenzwert $\lim_{c \to x, c \in A \cap B} f(c)$ existiert und

$$\lim_{\substack{a\to x\\a\in A}}f(a)=\lim_{\substack{c\to x\\c\in A\cap B}}f(c)=\lim_{\substack{b\to x\\b\in B}}f(b).$$

3 Links-, rechts- und beidseitige Grenzwerte

Wir wollen uns nun einem Sonderfall von Funktionsgrenzwerten zuwenden.

Definition 8. Es sei $f: A \to \mathbb{R}^m$ mit Definitionsbereich $A \subseteq \mathbb{R}$ und $x \in \mathbb{R}$. Gibt es ein r > 0, so dass $(x - r, x) \subseteq A$, so schreiben wir

$$\lim_{a\uparrow x} f(a) \quad \text{für} \quad \lim_{\substack{a\to x\\ a\in (x-r,x)}} f(a),$$

und nennen dies den linksseitigen Grenzwert von f an x.

Gibt es ein r > 0, so dass $(x, x + r) \subseteq A$, so schreiben wir

$$\lim_{a \downarrow x} f(a) \quad \text{für} \quad \lim_{\substack{a \to x \\ a \in (x, x+r)}} f(a),$$

und nennen dies den rechtsseitigen Grenzwert von f an x.

Existiert ein r > 0, so dass $(x - r, x) \cup (x, x + r) \subseteq A$, so schreiben wir

$$\lim_{a \to x} f(a) \quad \text{für} \quad \lim_{\substack{a \to x \\ a \in (x-r,x) \cup (x,x+r)}} f(a),$$

und nennen dies den beidseitigen Grenzwert von f an x.

Die Wohldefiniertheit der jeweiligen Ausdrücke, also die Unabhängigkeit von r, ergibt sich aus Korollar 7.

Der beidseitige Grenzwert lässt sich auch als Kombination des links- und rechtsseitigen Grenzwertes definieren:

Lemma 9. Es sei $A \subseteq \mathbb{R}$ und $f : A \to \mathbb{R}$. Für $x \in \mathbb{R}$ und $y \in \mathbb{R}$ sind äquivalent:

- 1. Der beidseitige Grenzwert $\lim_{a\to x} f(a)$ existiert und $\lim_{a\to x} f(a) = y$.
- 2. Die Grenzwerte $\lim_{a\uparrow x} f(a)$ und $\lim_{a\downarrow x} f(a)$ existieren und es ist

$$\lim_{a\uparrow x}f(a)=y=\lim_{a\downarrow x}f(a).$$

4 Uneigentliche Grenzwerte

Definition 10. Es sei $A\subseteq\mathbb{R}^n$, $f\colon A\to\mathbb{R}^m$ und $x\in\mathbb{R}^n$ ein Häufungspunkt von A. Wir schreiben dass $\lim_{a\to x, a\in A}f(x)=\infty$, falls es für alle R>0 ein $\delta>0$ gibt, so dass

$$||x - a|| < \delta \Rightarrow ||f(a)|| \ge R$$
 für alle $a \in A$ mit $a \ne x$.

Wir schreiben $\lim_{a\to x, a\in A} f(x) = -\infty$, falls es für alle R>0 ein $\delta>0$ gibt, so dass

$$||x - a|| < \delta \Rightarrow ||f(a)|| \le -R$$
 für alle $a \in A$ mit $a \ne x$.

Definition 11. Es sei $f\colon X\to\mathbb{R}$ eine Abbildung mit Definitionsbereits $X\subseteq\mathbb{R}$. Für $y\in\mathbb{R}$ sagen wir, dass $\lim_{x\to\infty}f(x)=y$, falls

- 1. es gibt $r_0 \in \mathbb{R}$, so dass f(x) für alle $x \geq r_0$ definiert ist, und
- 2. für alle $\varepsilon > 0$ gibt es $r \ge r_0$, so dass $|f(x) y| < \varepsilon$ für alle $x \ge r$.

Wir sagen, dass $\lim_{x\to-\infty} f(x) = y$, falls

- 1. es gibt $r_0 \in \mathbb{R}$, so dass f(x) für alle $x \leq r_0$ definiert ist, und
- 2. für alle $\varepsilon > 0$ gibt es $r \le r_0$, so dass $|f(x) y| < \varepsilon$ für alle $x \le r$.

5 Lösungen der Übungen

Lösung 1.

 $(1 \Leftrightarrow 2)$ 2 ist eine direkte Umformulierung der Definition von 1.

 $(2 \Leftrightarrow 3)$ Jeder punktierte ε -Ball um x ist auch eine punktierte Umgebung von x. Andererseits enthält jede punktierte Umgebung von x einen punktierten ε -Ball um x.

Lösung 2.

Angenommen, x ist ein Häufungspunkt von A. Dann gibt es für jedes $n \geq 1$ ein $a_n \in A \setminus \{x\}$ mit $|x - a_n| < 1/n$. Die Folge $(x_n)_{n \geq 1}$ konvergiert per Konstruktion gegen x.

Angenommen, eine solche Folge $(a_n)_{n\in\mathbb{N}}$ existiert. Dann gibt es für jedes $\varepsilon>0$ ein $N\in\mathbb{N}$, so dass $|x-a_n|<\varepsilon$ für alle $n\geq N$. Inbesondere ist $a_N\in A$ mit $|x-a_N|<\varepsilon$ und $a_N\neq x$.

Lösung 3.

Es sei $x \in \mathbb{R}^n$. Ist $x \notin M$, so ergibt sich für

$$\varepsilon \coloneqq \frac{1}{2} \min_{m \in M} \|x - m\| > 0,$$

dass es kein $m \in M$ mit $\|x - m\| < \varepsilon$ gibt. Also ist x dann kein Häufungspunkt von M. Ist $x \in M$, so ergibt sich für

$$\varepsilon \coloneqq \begin{cases} \frac{1}{2} \min_{m \in M, m \neq x} \|x - m\| & \text{falls } |M| \ge 2\\ 1 & \text{falls } M = \{x\}, \end{cases}$$

dass x das einzige $m \in M$ mit $\|x-m\| < \varepsilon$ ist. Also ist x auch dann kein Häufungspunkt von M.

Lösung 4.

Es sei $x \in \mathbb{R}$. Ist $x \notin \mathbb{Z}$, so gibt es für

$$\varepsilon \coloneq \frac{1}{2} \min \{ \lceil x \rceil - x, x - \lfloor x \rfloor \}$$

kein $n \in \mathbb{Z}$ mit $\|x - n\| < \varepsilon$. Also ist x dann kein Häufungspunkt von \mathbb{Z} . Ist andererseits $x \in \mathbb{Z}$, so gibt es außer x kein $n \in \mathbb{Z}$ mit $\|x - n\| < 1/2$, weshalb x auch dann kein Häufungspunkt von \mathbb{Z} ist.

Also ist kein $x \in \mathbb{R}$ ein Häufungspunkt von \mathbb{Z} , und somit $\mathbb{Z}' = \emptyset$.

Lösung 5.

- 1. Es sei $x \in A'$. Für jedes $\varepsilon > 0$ gibt es daher ein $a \in A$ mit $\|x a\| < \varepsilon$ und $a \neq x$. Da $a \in A \subseteq B$ folgt, dass es für jedes $\varepsilon > 0$ ein $b \in B$ mit $\|x b\| < \varepsilon$ und $b \neq x$ gibt. Also ist x ein Häufungspunkt von B, also $b \in B'$. Aus der Beliebigkeit von $a \in A'$ folgt, dass $A' \subseteq B'$.
- 2. Da $A\subseteq A\cup B$ ist $A'\subseteq (A\cup B)'$, und da $B\subseteq A\cup B$ ist $B'\subseteq (A\cup B)'$. Also ist auch $A'\cup B'\subseteq (A\cup B)'$.

Angenommen, es ist $x \notin A' \cup B'$. Dann gibt es $\varepsilon_A, \varepsilon_B > 0$, so dass es kein $a \in A$ mit $\|x - a\| < \varepsilon$ und $x \neq a$ gibt, und auch kein $b \in B$ mit $\|x - b\| < \varepsilon$ und $x \neq b$. Für $\varepsilon := \min\{\varepsilon_A, \varepsilon_B\}$ gibt es daher kein $y \in A \cup B$ mit $\|x - y\| < \varepsilon$ und $y \neq x$. Also ist dann $x \notin (A \cup B)'$. Das zeigt, dass auch $(A \cup B)' \subseteq A' \cup B'$.

Lösung 6.

Behauptung. Für alle $a, b \in \mathbb{R}$ mit a < b ist

$$[a,b]' = [a,b].$$

Beweis der Behauptung. Für x < a ist a - x > 0, es gibt aber kein $y \in [a,b]$ mit ||x-y|| < a - x; also ist dann $x \notin [a,b]'$ Analog ergibt sich, dass auch $x \notin [a,b]'$ für x > b. Also ist $[a,b]' \subseteq [a,b]$.

Dass $a,b \in [a,b]'$ ergibt sich durch die Folgen (x_n) auf (a,b] und (y_n) auf [a,b) mit

$$x_n \coloneqq a + \frac{b-a}{n+1} \quad \text{und} \quad y_n \coloneqq b - \frac{b-a}{n+1} \quad \text{für alle } n \in \mathbb{N}.$$

Dass $x \in [a,b]'$ für a < x < b ergibt sich daraus, dass [a,b] eine Umgebung für diese x ist. Damit ergibt sich, dass $[a,b] \subseteq [a,b]'$.

Aus der Behauptung ergibt sich direkt, dass

$$([0,1] \cup [2,3])' = [0,1]' \cup [2,3]' = [0,1] \cup [2,3].$$