23 noiembrie 2019

Lect. dr. Stefan Berinde

Şiruri

- **1.** (Admitere 2016) Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = |x|\sqrt[3]{1-x^2}$.
- a) Arătați că f este mărginită superior pe \mathbb{R} . b) Calculați $\lim_{n\to\infty}\int_{-1}^1 x^{2n}f(x)\mathrm{d}x$.
- 2. (Admitere 2019) Calculați limitele șirurilor:

$$x_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{\sqrt{n^2 + k}}, \quad y_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{\sqrt{n^2 + k^2}}, \quad n \in \mathbb{N}^*.$$

- **3.** (Admitere 2015) Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{x-1}$.
- a) Arătați că $f(x) > x, \forall x \in \mathbb{R} \setminus \{1\}.$
- b) Definim şirul $(x_n)_{n\geq 1}$ prin $x_1=2,\ x_{n+1}=f(x_n), \forall n\geq 1$. Arătaţi că şirul este strict monoton şi calculaţi limita sa. Ce se întâmplă dacă luăm $x_1 = 1/2$?
 - 4. Calculați următoarele limite:

 - b) $\lim_{n \to \infty} \sqrt{n} \left(7^{\sqrt{n+1} \sqrt{n}} 1 \right).$

 - c) $\lim_{n \to \infty} n \left(\sqrt[7]{\frac{n+1}{n}} 1 \right).$ d) $\lim_{n \to \infty} \sqrt{n} \left[(\sqrt{n} + 1 \sqrt{n+1})^7 1 \right].$

 - e) $\lim_{n \to \infty} \frac{7^n}{(7n)!}.$ f) $\lim_{n \to \infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}.$