Multivariate Statistical Analysis

Lecture 11

Fudan University

luoluo@fudan.edu.cn

Outline

1 The Density of Wishart Distribution

Outline

1 The Density of Wishart Distribution

The Density of Wishart Distribution

The density of $\mathbf{A} \sim \mathcal{W}_p(\mathbf{\Sigma}, n)$ is

$$\frac{\left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{A}\right)\right)}{2^{\frac{np}{2}}\pi^{\frac{p(p-1)}{4}}\left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}}\prod_{i=1}^{p}\Gamma\left(\frac{1}{2}(n+1-i)\right)}.$$

for positive definite **A**.

Properties of Wishart Distribution

Let $\mathbf{A} \sim \mathcal{W}_p(\mathbf{\Sigma}, n)$ and partition \mathbf{A} and $\mathbf{\Sigma}$ into q and p-1 rows and columns as

$$\label{eq:lambda} \boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{bmatrix} \qquad \text{and} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix},$$

then we have

- (a) $\mathbf{A}_{11} \sim \mathcal{W}_q(\mathbf{\Sigma}_{11}, n)$ and $\mathbf{A}_{22} \sim \mathcal{W}_{p-q}(\mathbf{\Sigma}_{22}, n)$;
- (b) if q = 1, then

$$\mathbf{A}_{21} \, | \, \mathbf{A}_{22} \sim \mathcal{N}_{p-q} (\mathbf{A}_{22} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21}, \sigma_{11.2}^2 \mathbf{A}_{22})$$

where
$$\sigma_{11.2}^2 = \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}$$
;

(c) if n > p - q, then

$$\mathbf{A}_{11.2} = \mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \sim \mathcal{W}_q(\mathbf{\Sigma}_{11.2}, n-p+q)$$

is independent on \mathbf{A}_{22} and \mathbf{A}_{12} , where $\mathbf{\Sigma}_{11.2} = \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}$.

Quiz

Define $ar{\mathbb{S}}^p o \mathbb{R}^{p imes p}$ as

$$F(X) = X^{-1},$$

where $\bar{\mathbb{S}}^p = \{\mathbf{X} \in \mathbb{R}^{p \times p} : \mathbf{X} = \mathbf{X}^{\top} \text{ and } \mathbf{X} \text{ is non-singular}\}.$

What is the determinant of Jacobian of F(X)?