$12a_{0424} (K12a_{0424})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -6.05060 \times 10^{58} u^{67} - 1.04724 \times 10^{59} u^{66} + \dots + 1.01515 \times 10^{59} b + 8.01162 \times 10^{59},$$

$$7.86149 \times 10^{58} u^{67} + 1.36435 \times 10^{59} u^{66} + \dots + 3.38385 \times 10^{58} a - 9.50671 \times 10^{59}, \ u^{68} + u^{67} + \dots - 4u + 8 \rangle$$

$$I_1^v = \langle a, b - v + 1, v^3 - 2v^2 + v - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 71 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -6.05 \times 10^{58} u^{67} - 1.05 \times 10^{59} u^{66} + \dots + 1.02 \times 10^{59} b + 8.01 \times 10^{59}, \ 7.86 \times 10^{58} u^{67} + 1.36 \times 10^{59} u^{66} + \dots + 3.38 \times 10^{58} a - 9.51 \times 10^{59}, \ u^{68} + u^{67} + \dots - 4u + 8 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2.32324u^{67} - 4.03195u^{66} + \dots + 33.5515u + 28.0944 \\ 0.596027u^{67} + 1.03160u^{66} + \dots - 6.46797u - 7.89203 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.77029u^{67} - 2.91509u^{66} + \dots + 24.3748u + 22.7432 \\ 0.564882u^{67} + 0.682242u^{66} + \dots - 5.65045u - 4.24863 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.20541u^{67} - 2.23285u^{66} + \dots + 18.7243u + 18.4946 \\ 0.564882u^{67} + 0.682242u^{66} + \dots - 5.65045u - 4.24863 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.694072u^{67} - 1.44115u^{66} + \dots + 11.5944u + 11.4434 \\ 0.204815u^{67} + 0.394112u^{66} + \dots - 0.0438270u - 5.62061 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.77029u^{67} - 2.91509u^{66} + \dots + 24.3748u + 22.7432 \\ 0.269738u^{67} + 0.621521u^{66} + \dots - 3.93271u - 4.90972 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1.22840u^{67} + 2.01698u^{66} + \dots - 18.5328u - 16.9508 \\ -0.265656u^{67} - 0.556698u^{66} + \dots + 4.05685u + 6.12494 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{5} + u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-1.40934u^{67} 1.84025u^{66} + \dots + 36.8272u + 15.8368$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6	$u^{68} + 18u^{67} + \dots + 11u + 1$
c_2,c_5	$u^{68} + 2u^{67} + \dots + 3u - 1$
c_3, c_{10}	$u^{68} + u^{67} + \dots - 4u + 8$
c_7, c_8, c_{12}	$u^{68} + 4u^{67} + \dots - 8u^2 - 1$
c_9, c_{11}	$u^{68} - 21u^{67} + \dots - 720u + 64$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$y^{68} + 66y^{67} + \dots - 19y + 1$
c_2, c_5	$y^{68} - 18y^{67} + \dots - 11y + 1$
c_3, c_{10}	$y^{68} - 21y^{67} + \dots - 720y + 64$
c_7, c_8, c_{12}	$y^{68} - 56y^{67} + \dots + 16y + 1$
c_9, c_{11}	$y^{68} + 47y^{67} + \dots - 19712y + 4096$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.993071 + 0.113125I		
a = -1.89033 - 2.06207I	6.85914 - 0.90233I	8.48968 - 1.09090I
b = 0.881273 + 0.827269I		
u = 0.993071 - 0.113125I		
a = -1.89033 + 2.06207I	6.85914 + 0.90233I	8.48968 + 1.09090I
b = 0.881273 - 0.827269I		
u = 0.659498 + 0.764722I		
a = 0.550961 + 0.309922I	0.588563 - 1.246350I	5.81021 + 0.45012I
b = 0.040503 - 0.569798I		
u = 0.659498 - 0.764722I		
a = 0.550961 - 0.309922I	0.588563 + 1.246350I	5.81021 - 0.45012I
b = 0.040503 + 0.569798I		
u = -1.000140 + 0.155243I		
a = -0.98075 - 2.90583I	6.75864 - 5.23492I	7.99359 + 6.56298I
b = 0.913795 + 0.817365I		
u = -1.000140 - 0.155243I		
a = -0.98075 + 2.90583I	6.75864 + 5.23492I	7.99359 - 6.56298I
b = 0.913795 - 0.817365I		
u = 0.021687 + 1.023690I		
a = -0.218747 + 0.841325I	8.72956 - 3.07936I	8.43070 + 2.69230I
b = -0.898997 - 0.825730I		
u = 0.021687 - 1.023690I		
a = -0.218747 - 0.841325I	8.72956 + 3.07936I	8.43070 - 2.69230I
b = -0.898997 + 0.825730I		
u = 0.991893 + 0.263165I		
a = -0.412778 - 1.347760I	5.18458 + 4.97460I	7.77509 - 7.49917I
b = -0.884341 + 0.498364I		
u = 0.991893 - 0.263165I		
a = -0.412778 + 1.347760I	5.18458 - 4.97460I	7.77509 + 7.49917I
b = -0.884341 - 0.498364I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.829279 + 0.618745I		
a = -0.332097 - 0.896610I	3.84635 + 0.92115I	5.28354 + 1.08542I
b = -0.970966 + 0.736214I		
u = -0.829279 - 0.618745I		
a = -0.332097 + 0.896610I	3.84635 - 0.92115I	5.28354 - 1.08542I
b = -0.970966 - 0.736214I		
u = -0.697002 + 0.783946I		
a = -0.105875 + 0.873399I	0.83003 - 1.22443I	2.00000 + 2.28588I
b = -0.785825 - 0.814885I		
u = -0.697002 - 0.783946I		
a = -0.105875 - 0.873399I	0.83003 + 1.22443I	2.00000 - 2.28588I
b = -0.785825 + 0.814885I		
u = 0.884256 + 0.567359I		
a = -0.044342 - 0.919731I	4.53565 + 4.78229I	7.19204 - 6.23856I
b = -0.732492 + 0.772305I		
u = 0.884256 - 0.567359I		
a = -0.044342 + 0.919731I	4.53565 - 4.78229I	7.19204 + 6.23856I
b = -0.732492 - 0.772305I		
u = -1.061960 + 0.111325I		
a = 0.459698 - 0.837106I	6.64379 - 0.94912I	11.95029 + 0.I
b = -0.392765 + 0.607634I		
u = -1.061960 - 0.111325I		
a = 0.459698 + 0.837106I	6.64379 + 0.94912I	11.95029 + 0.I
b = -0.392765 - 0.607634I		
u = 0.890731 + 0.590142I		
a = -1.76219 - 0.11747I	4.59428 - 0.22084I	6.48510 + 0.I
b = 0.809278 + 0.829802I		
u = 0.890731 - 0.590142I		
a = -1.76219 + 0.11747I	4.59428 + 0.22084I	6.48510 + 0.I
b = 0.809278 - 0.829802I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.716202 + 0.821100I		
a = -0.311479 + 0.865388I	0.27108 - 4.71837I	0
b = -0.969652 - 0.768571I		
u = 0.716202 - 0.821100I		
a = -0.311479 - 0.865388I	0.27108 + 4.71837I	0
b = -0.969652 + 0.768571I		
u = -0.800894 + 0.745034I		
a = -1.40099 + 1.63231I	-2.36206 - 1.49059I	0
b = -0.971234 - 0.263287I		
u = -0.800894 - 0.745034I		
a = -1.40099 - 1.63231I	-2.36206 + 1.49059I	0
b = -0.971234 + 0.263287I		
u = -0.909702 + 0.630284I		
a = 0.94341 - 2.77762I	4.11637 - 5.81729I	0
b = 0.964261 + 0.783946I		
u = -0.909702 - 0.630284I		
a = 0.94341 + 2.77762I	4.11637 + 5.81729I	0
b = 0.964261 - 0.783946I		
u = 0.876321		
a = 0.998697	2.31122	4.45630
b = 0.963850		
u = -0.867744 + 0.719052I		
a = 0.502678 - 0.415224I	-2.78825 - 2.74528I	0
b = -0.051505 + 0.630284I		
u = -0.867744 - 0.719052I		
a = 0.502678 + 0.415224I	-2.78825 + 2.74528I	0
b = -0.051505 - 0.630284I		
u = -0.723892 + 0.871174I		
a = 1.099390 - 0.016027I	-2.20577 + 4.23347I	0
b = 0.977262 - 0.289069I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.723892 - 0.871174I		
a = 1.099390 + 0.016027I	-2.20577 - 4.23347I	0
b = 0.977262 + 0.289069I		
u = 0.829532 + 0.792287I		
a = 1.069520 + 0.001488I	-6.00877 - 0.07335I	0
b = 0.995888 + 0.247406I		
u = 0.829532 - 0.792287I		
a = 1.069520 - 0.001488I	-6.00877 + 0.07335I	0
b = 0.995888 - 0.247406I		
u = 0.637253 + 0.973593I		
a = -0.123805 - 0.840626I	5.07615 - 2.51950I	0
b = -0.805330 + 0.845791I		
u = 0.637253 - 0.973593I		
a = -0.123805 + 0.840626I	5.07615 + 2.51950I	0
b = -0.805330 - 0.845791I		
u = -0.781819 + 0.294985I		
a = -0.05603 + 1.97815I	0.13820 - 2.92436I	2.59443 + 9.53509I
b = -0.755261 - 0.362856I		
u = -0.781819 - 0.294985I		
a = -0.05603 - 1.97815I	0.13820 + 2.92436I	2.59443 - 9.53509I
b = -0.755261 + 0.362856I		
u = -0.933508 + 0.715246I		
a = 1.048350 + 0.008631I	-1.94942 - 4.06921I	0
b = 1.016160 - 0.211403I		
u = -0.933508 - 0.715246I		
a = 1.048350 - 0.008631I	-1.94942 + 4.06921I	0
b = 1.016160 + 0.211403I		
u = -0.667756 + 0.982329I		
a = -0.302229 - 0.843220I	4.55831 + 8.62464I	0
b = -0.972548 + 0.790652I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.667756 - 0.982329I		
a = -0.302229 + 0.843220I	4.55831 - 8.62464I	0
b = -0.972548 - 0.790652I		
u = 0.923270 + 0.765436I		
a = -1.25292 - 1.44461I	-5.71945 + 5.92897I	0
b = -0.999457 + 0.296326I		
u = 0.923270 - 0.765436I		
a = -1.25292 + 1.44461I	-5.71945 - 5.92897I	0
b = -0.999457 - 0.296326I		
u = -0.996451 + 0.711234I		
a = -1.309380 + 0.201391I	1.73332 - 4.42504I	0
b = 0.794344 - 0.853811I		
u = -0.996451 - 0.711234I		
a = -1.309380 - 0.201391I	1.73332 + 4.42504I	0
b = 0.794344 + 0.853811I		
u = 0.170683 + 0.754290I		
a = 0.848846 + 0.211083I	2.32891 - 1.45239I	4.90559 + 4.31092I
b = 0.635194 + 0.359962I		
u = 0.170683 - 0.754290I		
a = 0.848846 - 0.211083I	2.32891 + 1.45239I	4.90559 - 4.31092I
b = 0.635194 - 0.359962I		
u = 1.008450 + 0.698435I		
a = 0.456475 + 0.467018I	1.62108 + 6.80691I	0
b = -0.098986 - 0.677355I		
u = 1.008450 - 0.698435I		
a = 0.456475 - 0.467018I	1.62108 - 6.80691I	0
b = -0.098986 + 0.677355I		
u = 1.003540 + 0.733346I		
a = 0.89900 + 2.36045I	1.15325 + 10.54940I	0
b = 0.981570 - 0.789856I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.003540 - 0.733346I		
a = 0.89900 - 2.36045I	1.15325 - 10.54940I	0
b = 0.981570 + 0.789856I		
u = -1.234530 + 0.258857I		
a = -1.25723 + 1.36690I	13.36960 - 1.32073I	0
b = 0.873045 - 0.864648I		
u = -1.234530 - 0.258857I		
a = -1.25723 - 1.36690I	13.36960 + 1.32073I	0
b = 0.873045 + 0.864648I		
u = 1.231130 + 0.291396I		
a = -0.32877 + 2.27833I	13.1585 + 7.6380I	0
b = 0.940263 - 0.838288I		
u = 1.231130 - 0.291396I		
a = -0.32877 - 2.27833I	13.1585 - 7.6380I	0
b = 0.940263 + 0.838288I		
u = -1.017380 + 0.758083I		
a = -1.15099 + 1.34572I	-1.29085 - 10.28430I	0
b = -1.016370 - 0.322893I		
u = -1.017380 - 0.758083I		
a = -1.15099 - 1.34572I	-1.29085 + 10.28430I	0
b = -1.016370 + 0.322893I		
u = 0.676957 + 0.032911I		
a = 1.18518 + 1.04468I	1.049650 + 0.101234I	9.47396 - 0.04712I
b = -0.420279 - 0.292993I		
u = 0.676957 - 0.032911I		
a = 1.18518 - 1.04468I	1.049650 - 0.101234I	9.47396 + 0.04712I
b = -0.420279 + 0.292993I		
u = 1.094230 + 0.755851I		
a = -1.129750 - 0.325888I	6.52598 + 8.82716I	0
b = 0.793548 + 0.872752I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.094230 - 0.755851I		
a = -1.129750 + 0.325888I	6.52598 - 8.82716I	0
b = 0.793548 - 0.872752I		
u = -1.091090 + 0.774273I		
a = 0.79093 - 2.16616I	5.9100 - 15.0350I	0
b = 0.990918 + 0.798516I		
u = -1.091090 - 0.774273I		
a = 0.79093 + 2.16616I	5.9100 + 15.0350I	0
b = 0.990918 - 0.798516I		
u = -0.022492 + 0.551897I		
a = -0.220910 - 0.899639I	3.60354 + 2.91698I	-1.07047 - 2.93516I
b = -0.884082 + 0.773478I		
u = -0.022492 - 0.551897I		
a = -0.220910 + 0.899639I	3.60354 - 2.91698I	-1.07047 + 2.93516I
b = -0.884082 - 0.773478I		
u = 0.528183		
a = 2.56903	1.06452	11.9270
b = -0.477187		
u = -0.298991 + 0.383237I		
a = 0.953304 - 0.043713I	-1.254010 + 0.311770I	-6.76966 - 0.58136I
b = 0.759455 - 0.112169I		
u = -0.298991 - 0.383237I		
a = 0.953304 + 0.043713I	-1.254010 - 0.311770I	-6.76966 + 0.58136I
b = 0.759455 + 0.112169I		

II.
$$I_1^v = \langle a, \ b-v+1, \ v^3-2v^2+v-1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ v - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -v^2 + 2v - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -v^2 + 2v \\ -v^2 + 2v - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} v - 1 \\ v^2 - v - 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v^2 - 2v \\ v^2 - 2v + 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v^2 - v \\ v^2 - 2v + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2v^2 3v + 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_4	$u^3 - u^2 + 2u - 1$
c_2	$u^3 + u^2 - 1$
c_3, c_9, c_{10} c_{11}	u^3
<i>C</i> ₅	$u^3 - u^2 + 1$
<i>C</i> ₆	$u^3 + u^2 + 2u + 1$
c_7, c_8	$(u+1)^3$
c_{12}	$(u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$y^3 + 3y^2 + 2y - 1$
c_2, c_5	$y^3 - y^2 + 2y - 1$
c_3, c_9, c_{10} c_{11}	y^3
c_7, c_8, c_{12}	$(y-1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.122561 + 0.744862I		
a = 0	4.66906 + 2.82812I	7.71191 - 2.59975I
b = -0.877439 + 0.744862I		
v = 0.122561 - 0.744862I		
a = 0	4.66906 - 2.82812I	7.71191 + 2.59975I
b = -0.877439 - 0.744862I		
v = 1.75488		
a = 0	0.531480	-4.42380
b = 0.754878		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^3 - u^2 + 2u - 1)(u^{68} + 18u^{67} + \dots + 11u + 1)$
c_2	$(u^3 + u^2 - 1)(u^{68} + 2u^{67} + \dots + 3u - 1)$
c_3,c_{10}	$u^3(u^{68} + u^{67} + \dots - 4u + 8)$
<i>C</i> 5	$(u^3 - u^2 + 1)(u^{68} + 2u^{67} + \dots + 3u - 1)$
c_6	$(u^3 + u^2 + 2u + 1)(u^{68} + 18u^{67} + \dots + 11u + 1)$
c_7, c_8	$((u+1)^3)(u^{68}+4u^{67}+\cdots-8u^2-1)$
c_9, c_{11}	$u^3(u^{68} - 21u^{67} + \dots - 720u + 64)$
c_{12}	$((u-1)^3)(u^{68} + 4u^{67} + \dots - 8u^2 - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$(y^3 + 3y^2 + 2y - 1)(y^{68} + 66y^{67} + \dots - 19y + 1)$
c_2,c_5	$(y^3 - y^2 + 2y - 1)(y^{68} - 18y^{67} + \dots - 11y + 1)$
c_3, c_{10}	$y^3(y^{68} - 21y^{67} + \dots - 720y + 64)$
c_7, c_8, c_{12}	$((y-1)^3)(y^{68} - 56y^{67} + \dots + 16y + 1)$
c_9, c_{11}	$y^3(y^{68} + 47y^{67} + \dots - 19712y + 4096)$