Introduction to Turbulence Modeling or Why Turbulence Modeling is Black Magic

Truman E. Ellis

Institute for Computational and Engineering Sciences
The University of Texas at Austin

April 15, 2013

Reynolds Averaged Navier Stokes

Let $\phi = \bar{\phi} + \phi'$, where

$$ar{\phi} = \lim_{T o \infty} \int_{t_0}^{t_0 + T} \phi(t) dt$$

Interested in solving for \bar{u}_i . Nondimensionalizing such that $\rho = 1$,

Continuity Equation

$$\frac{\partial u_i}{\partial x_i} = 0$$

$$\Downarrow$$

$$\frac{\partial \bar{u}_i}{\partial x_i} = 0$$

Momentum Equation

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_j \partial x_i}$$

$$\Downarrow$$

$$\frac{\partial \bar{u}}{\partial t} + \bar{u}_j \frac{\partial \bar{u}_i}{\partial x_j} = -\frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left[-\overline{u_i' u_j'} + \frac{1}{Re} \frac{\partial \bar{u}_i}{\partial x_j} \right]$$

But the Reynolds stress, $\overline{u'_i u'_i}$ is an unclosed quantity.

Modeling the Reynolds Stress

$$\frac{\partial \bar{u}}{\partial t} + \bar{u}_j \frac{\partial \bar{u}_i}{\partial x_j} = -\frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left[-\overline{u_i' u_j'} + \frac{1}{\textit{Re}} \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right) \right]$$

Eddy Viscosity Hypothesis

$$\overline{u_i'u_j'} = -\nu_T \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right) + \frac{2k}{3} \delta_{ij}$$

where $k = \frac{1}{2} \overline{u_i' u_i'}$.

This assumption is fundamentally flawed, but useful.

We still need a model for ν_T and k.

Spalart-Allmaras Model

- Model the eddy viscosity
- Assume *k* is negligible
- Surprisingly decent for the types of flows it was designed for (external aerodynamics)

$$\frac{\partial \tilde{\nu}}{\partial t} + \bar{u}_{j} \frac{\partial \tilde{\nu}}{\partial x_{j}} = C_{b1} [1 - f_{t2}] \tilde{S} \tilde{\nu} + \frac{1}{\sigma} \left\{ \nabla \cdot [(\nu + \tilde{\nu}) \nabla \tilde{\nu}] + C_{b2} |\nabla \tilde{\nu}|^{2} \right\}
- \left[C_{w1} f_{w} - \frac{C_{b1}}{\kappa^{2}} f_{t2} \right] \left(\frac{\tilde{\nu}}{d} \right)^{2} + f_{t1} \Delta U^{2}
\nu_{T} = \tilde{\nu} f_{v1}, \quad f_{v1} = \frac{\chi^{3}}{\chi^{3} + v_{v1}^{3}}, \quad \chi = \frac{\tilde{\nu}}{\nu} \quad \cdots$$

$k - \epsilon$ Exact Equations

Turbulence Kinetic Energy Equation

$$\frac{\partial k}{\partial t} + \bar{u}_i \frac{\partial k}{\partial x_i} = -\overline{u_i' u_j'} \frac{\partial \bar{u}_i}{\partial x_j} - \frac{\partial}{\partial x_i} \left(\frac{1}{2} \overline{u_j' u_j' u_i'} + \overline{\rho' u_i'} \right) + \nu \frac{\partial^2 k}{\partial x_i \partial x_i} - \epsilon$$

Dissipation Equation

$$\begin{split} \frac{\partial \epsilon}{\partial t} + \bar{u}_{i} \frac{\partial \epsilon}{\partial x_{i}} &= \nu \frac{\partial^{2} \epsilon}{\partial x_{i} \partial x_{i}} + P_{\epsilon} + D_{\epsilon} - \Phi_{\epsilon} \\ P_{\epsilon} &= -2\nu \left[\overline{\frac{\partial u_{i}'}{\partial x_{j}} \frac{\partial u_{k}'}{\partial x_{i}} \frac{\partial \bar{u}_{i}}{\partial x_{k}} + \overline{\frac{\partial u_{j}'}{\partial x_{k}} \frac{\partial u_{j}'}{\partial x_{k}} \frac{\partial \bar{u}_{i}}{\partial x_{k}} + \overline{u_{k}' \frac{\partial u_{i}'}{\partial x_{j}} \frac{\partial^{2} \bar{u}_{i}}{\partial x_{k} \partial x_{j}} + \overline{\frac{\partial u_{i}'}{\partial x_{k}} \frac{\partial u_{k}'}{\partial x_{m}} \frac{\partial u_{k}'}{\partial x_{m}} \right] \\ D_{\epsilon} &= -\frac{\partial}{\partial x_{k}} \left(\overline{u_{k}' \epsilon'} + 2\nu \overline{\frac{\partial p'}{\partial x_{m}} \frac{\partial u_{k}'}{\partial x_{m}} \right) \\ \Phi_{\epsilon} &= 2\nu^{2} \overline{\frac{\partial^{2} u_{i}'}{\partial x_{k} \partial x_{m}} \frac{\partial^{2} u_{i}'}{\partial x_{k} \partial x_{m}} \frac{\partial^{2} u_{i}'}{\partial x_{k} \partial x_{m}} \end{split}$$

$k - \epsilon$ Approximations

Turbulence Kinetic Energy Equation

$$\frac{1}{2}\overline{u'_{j}u'_{j}u'_{i}} + \overline{p'u'_{i}} \approx -\frac{\nu_{T}}{\sigma_{k}}\frac{\partial k}{\partial x_{i}}$$

Dissipation Equation

From dimensional analysis

$$u_T pprox C_\mu rac{k^2}{\epsilon}$$
 $P_\epsilon pprox - C_{\epsilon 1} rac{\epsilon}{k} rac{u_i' u_j'}{\partial x_j} rac{\partial ar{u}_i}{\partial x_j}$
 $\Phi_\epsilon pprox C_{\epsilon 2} rac{\epsilon^2}{k}$

From gradient transport model

$$D_{\epsilon} \approx \frac{\partial}{\partial x_{i}} \left(\frac{\nu_{T}}{\sigma_{\epsilon}} \frac{\partial \epsilon}{\partial x_{i}} \right)$$

Channel Flow Predictions

Figure: Reynolds Stress Components

Channel Flow Predictions

Figure: Production of Turbulent Kinetic Energy

Channel Flow Predictions

Figure: Transport of Turbulent Kinetic Energy

Notes on $k - \epsilon$

Fixes near the wall

- Wall functions
- Two-layer models
- SST $k \omega$
- $\overline{v^2} f$ four equation model (f is an elliptic relaxation function)

Boundary conditions

- BC on ϵ is not obvious
- Enforce both k = 0 and $\frac{\partial k}{\partial n} = 0$ at walls.

Popularity

- One of the earliest models
- · Physically motivated derivation
- Insensitive to freestream conditions on k and ϵ

Wilcox (1993) $k - \omega$ Model

Turbulence Kinetic Energy Equation

$$\frac{\partial k}{\partial t} + \bar{u}_{j} \frac{\partial k}{\partial x_{j}} = 2\nu_{T} |S|^{2} - C_{\mu} k\omega + \frac{\partial}{\partial x_{j}} \left(\left(\nu + \frac{\nu_{T}}{\sigma_{k}} \right) \frac{\partial k}{\partial x_{j}} \right)$$

Specific Dissipation Equation

$$\frac{\partial \omega}{\partial t} + \bar{u}_j \frac{\partial \omega}{\partial x_j} = 2C_{\omega 1} |S|^2 - C_{\omega 2} \omega^2 + \frac{\partial}{\partial x_j} \left(\left(\nu + \frac{\nu_T}{\sigma_\omega} \right) \frac{\partial \omega}{\partial x_j} \right)$$

$$\omega \equiv \frac{\epsilon}{C_\mu k}$$

$$\nu_T = \frac{k}{\omega}$$

Notes on $k-\omega$

Wall Treatment

- Produces decent results at the wall
- \bullet Formally, ω is singular at a perfectly smooth wall
- · Numerically, this is fixed by assuming a finite roughness

•
$$\omega_{\textit{wall}} = \frac{40000\nu_{\textit{wall}}}{k_c^2}$$
, need $\frac{u_\tau k_s}{\nu} < 5$

• Can perform the same trick with two BCs on k

Other Notes

- $\bullet\,$ Early models were very sensitive to freestream conditions on $\omega\,$
- Menter propsed shear stress transport model to overcome this shortcoming
- Possible to write a $k \epsilon$ model with $k \omega$ "physics"

Other Ideas - Unsteady RANS

Figure 7.72 Vortex shedding from a triangular cylinder. (a) composite showing time-average contours of U in the upper half, versus a steady solution in the lower half. The dashed lines indicate negative velocity. (b) time-averaged velocity profiles in the wake. (c) velocity along centerline: time-average, ——; steady computation, ---- (Durbin, 1995).

Other Ideas

- Large Eddy Simulation
- Reynolds Stress Models
 - ► Elliptic relaxation model solves 18 coupled, highly nonlinear PDEs
- Variational Multiscale
- Direct Numerical Simulation

DNS Velocity Field

Filtered Velocity Field $\Delta = L/32$

Filtered Velocity Field $\Delta = L/16$