

CS215 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

More generally, in how many ways can we choose a list of k distinct elements from $\{1, 2, ..., n\}$?

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

More generally, in how many ways can we choose a list of k distinct elements from $\{1, 2, ..., n\}$?

A list of k distinct elements chosen from a set N is called a k-element permutation of N

In how many ways can we choose an ordered triple of distinct elements from $\{1, 2, ..., n\}$?

More generally, in how many ways can we choose a list of k distinct elements from $\{1, 2, ..., n\}$?

A list of *k distinct* elements chosen from a set *N* is called a *k*-element permutation of *N*

Note that the case of k = n is special;

An *n*-element permutation of a set N of size |N| = n is what we earlier simply called a permutation.

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

• How many three-element permutations of $\{1, 2, ..., n\}$ are there?

n choices for first number

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

n choices for first number

For each way of choosing first number there are n-1 choices for the second

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

n choices for first number

For each way of choosing first number there are n-1 choices for the second

For each way of choosing first two numbers, there are n-2 choices for the third number

• How many three-element permutations of $\{1, 2, \ldots, n\}$ are there?

n choices for first number

For each way of choosing first number there are n-1 choices for the second

For each way of choosing first two numbers, there are n-2 choices for the third number

By product rule, there are n(n-1)(n-2) ways to choose the permutation

An Example

By product rule, there are n(n-1)(n-2) ways to choose the permutation

An Example

By product rule, there are n(n-1)(n-2) ways to choose the permutation

```
Ex: When n = 4, there are 4 \times 3 \times 2 = 24 3 -element permutations of \{1, 2, 3, 4\}
```

```
L = \{123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243, 312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432\}.
```


An Example

■ By product rule, there are n(n-1)(n-2) ways to choose the permutation

```
Ex: When n = 4, there are 4 \times 3 \times 2 = 24
3 -element permutations of \{1, 2, 3, 4\}
```

$$L = \{123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243, 312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432\}.$$

Note: This type of "dictionary" ordering of tuples (assuming that we treat numbers the same as letters) is called a *lexicographic ordering* and is used quite often.

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with *n* distinct elements.

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

Note that every 3-element subset $\{i, j, k\}$ can be made into exactly 6 3-element perms

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

Note that every 3-element subset $\{i, j, k\}$ can be made into exactly 6 3-element perms

(# 3-element perms) =
$$6 \times (\# 3\text{-element subsets})$$

■ **Theorem** If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

How does this help us solve our original problem(from triangle program) of counting # of 3-element subsets?

Note that every 3-element subset $\{i, j, k\}$ can be made into exactly 6 3-element perms

$$(\# 3\text{-element perms}) = 6 \times (\# 3\text{-element subsets})$$

$$P(n,3) = 3! \cdot C(n,3)$$

■ **Theorem** For integers n and k with $0 \le k \le n$, the number of k-element subsets of an n-element set is

$$\binom{n}{k} = C(n, k) = \frac{P(n, k)}{k!} = \frac{n!}{k!(n-k)!}.$$

This is the number of k-combinations of a set with n elements.

$${}^{\bullet}\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 is the number of k-element subsets of an n-element set.

$$\binom{n}{0} = 1$$
 only one set of size 0.

$$\binom{n}{n} = 1$$
 only one set of size n .

 $\binom{n}{k} = \binom{n}{n-k}$ Obvious from equation. Can you think of a simple bijection that explains this?

 $\sum_{i=0}^{n} \binom{n}{i} = 2^n$

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Use Sum Rule

```
Let P = \text{set of all subsets of } \{1,2,\ldots,n\}

S_i = \text{set of all } i \text{ subsets of } \{1,2,\ldots,n\}
```


$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Use Sum Rule

Let
$$P = \text{set of all subsets of } \{1,2,\ldots,n\}$$

 $S_i = \text{set of all } i \text{ subsets of } \{1,2,\ldots,n\}$

$$\Rightarrow |P| = \sum_{i=0}^{n} |S_i| = \sum_{i=0}^{n} \binom{n}{i}$$

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$ There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Let L = L₁L₂...L_n be a list of size n from {0,1}
If L = set of all such lists ⇒ |L| = 2ⁿ
There is a bijection between L and P so |P| = 2ⁿ and we are done.
Define the following function f: L → P
If L ∈ L then f(L) is the set S ⊆ {1,2,...,n} defined by

 $i \in S \Leftrightarrow L_i = 1$

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$ There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Define the following function $f: \mathcal{L} \to P$

If $L \in \mathcal{L}$ then f(L) is the set $S \subseteq \{1, 2, ..., n\}$ defined by $i \in S \iff L_i = 1$

f is a bijection between \mathcal{L} and P (why?) so $|\mathcal{L}| = |P|$

Let $L = L_1 L_2 \dots L_n$ be a list of size n from $\{0, 1\}$ If $\mathcal{L} = \text{set of all such lists} \Rightarrow |\mathcal{L}| = 2^n$ There is a *bijection* between \mathcal{L} and P so $|P| = 2^n$ and we are done.

Define the following function $f: \mathcal{L} \to P$

If $L \in \mathcal{L}$ then f(L) is the set $S \subseteq \{1, 2, ..., n\}$ defined by $i \in S \iff L_i = 1$

f is a *bijection* between $\mathcal L$ and P (why?) so $|\mathcal L|=|P|$

Ex: n = 5 $f(10101) = \{1, 3, 5\}, \ f(11101) = \{1, 2, 3, 5\}, \ f(00000) = \emptyset$ 9 - 4

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

n^{k}	0	1	2	3	4	5	6
0	$\sqrt{1}$		1 3 6 10 15				
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Each row increases at first then decreases.

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Each row increases at first then decreases.

Second half of each row is the reverse of the first half.

Each row begins with a 1 because $\binom{n}{0} = 1$

Each row ends with a 1 because $\binom{n}{n} = 1$.

Each row increases at first then decreases.

Second half of each row is the reverse of the first half. Sum of items on n-th row is 2^n

Pascal's Triangle

Take the table

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Pascal's Triangle

Take the table

n^{k}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

and shift each row slightly so that middle element is in middle

Pascal's Triangle

What is the next row in the table?


```
6
        10 10
      15 20 15
1 7 21 35 35 21
```


Pascal identity

Each (non-1) entry in Pascal's

Triangle is the sum of
the two entries directly above it
1sft and to right).

Pascal identity

Each (non-1) entry in Pascal's

Triangle is the sum of
the two entries directly above it
1sft and to right).

Pascal's Identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Pascal's Identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

A purely *algebraic* proof (manipulating formulas) is possible.

Pascal's Identity

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

A purely *algebraic* proof (manipulating formulas) is possible.

We will use a combinatorial proof.

 $\binom{n}{k}$ is the number of k-element subsets of an n-element set.

 $\binom{n}{k}$ is the number of k-element subsets of an n-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Therefore, each term (left and right) represents the number of subsets of a particular size chosen from an appropriately sized set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

Number of (k-1)-subsets of an (n-1)-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

Number of (k-1)-subsets of an (n-1)-element set.

Number of k-subsets of an (n-1)-element set.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Number of k-subsets of an n-element set.

Number of (k-1)-subsets of an (n-1)-element set.

Number of k-subsets of an (n-1)-element set.

Try to use sum principle to explain relationship among these three terms.

Example: n = 5, k = 2

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

Set S_1 of 2-subsets of S

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

Set S_1 of 2-subsets of S can be partitioned into 2 disjoint parts.

 S_2 the 2-subsets that contain E and

 S_3 , the set of 2-subsets that do not contain E.

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

$$\binom{5}{2} = \binom{4}{1} + \binom{4}{2}.$$

Consider $S = \{A, B, C, D, E\}$.

Set S_1 of 2-subsets of S can be partitioned into 2 disjoint parts.

 S_2 the 2-subsets that contain E and

 S_3 , the set of 2-subsets that do not contain E.

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

$$S_1 = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, D\}, \{C, E\}, \{D, E\}\}\}.$$

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof: Apply sum rule.

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof: Apply sum rule.

Let S_1 be set of all k-element subsets.

If n and k are integers satisfying 0 < k < n, then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof: Apply sum rule.

Let S_1 be set of all k-element subsets.

To apply sum rule, partition S_1 into S_2 and S_3 .

Let S_2 be set of k-element subsets that contain x_n .

Let S_3 be set of k-element subsets that don't contain x_n

Blaise Pascal

Born 1623; Died 1662

French Mathematician

A Founder of Probability Theory

Inventor of one of the first mechanical calculating machines

Pascal Programming Language named for him

$$(x+y) = \binom{1}{0}x + \binom{1}{1}y$$

$$(x+y) = \binom{1}{0}x + \binom{1}{1}y$$

$$(x+y)^2 = x^2 + 2xy + y^2 = {2 \choose 0}x^2 + {2 \choose 1}x^1y^1 + {2 \choose 2}y^2$$

$$(x+y) = \binom{1}{0}x + \binom{1}{1}y$$

$$(x+y)^2 = x^2 + 2xy + y^2 = {2 \choose 0}x^2 + {2 \choose 1}x^1y^1 + {2 \choose 2}y^2$$

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$
$$= {3 \choose 0}x^3 + {3 \choose 1}x^2y + {3 \choose 2}xy^2 + {3 \choose 3}y^3$$

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

The Binomial Theorem For any integer $n \geq 0$,

$$(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}$$

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

The Binomial Theorem For any integer $n \geq 0$,

$$(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}$$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

Number of k-element subsets of an n-element set is called a binomial coefficient because of its role in the algebraic expansion of a binomial $(x + y)^n$.

The Binomial Theorem For any integer $n \ge 0$,

$$(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \ldots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}$$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

Proof?

Application of the Binomial Theorem

We may use the Binomial Theorem to prove

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Suppose we have k labels of one kind, e.g., red and n-k labels of another, e.g., blue. In how many different ways can we apply these labels to n objects?

Suppose we have k labels of one kind, e.g., red and n-k labels of another, e.g., blue. In how many different ways can we apply these labels to n objects?

Show that if we have k_1 labels of one kind, e.g., red, k_2 labels of a second kind, e.g., blue, and $k_3 = n - k_1 - k_2$ labels of a third kind, then there are $\frac{n!}{k_1!k_2!k_3!}$ ways to apply these labels to n objects

■ Suppose we have k labels of one kind, e.g., red and n-k labels of another, e.g., blue. In how many different ways can we apply these labels to n objects?

Show that if we have k_1 labels of one kind, e.g., red, k_2 labels of a second kind, e.g., blue, and $k_3 = n - k_1 - k_2$ labels of a third kind, then there are $\frac{n!}{k_1!k_2!k_3!}$ ways to apply these labels to n objects

What is the coefficient of $x^{k_1}y^{k_2}z^{k_3}$ in $(x+y+z)^n$?

There are $\binom{n}{k_1}$ ways to choose the red items There are then $\binom{n-k_1}{k_2}$ ways to choose the blue items from the remaining $n-k_1$. The remaining k_3 items get labelled a third color.

Labelling and Trinomial Coefficients

There are $\binom{n}{k_1}$ ways to choose the red items There are then $\binom{n-k_1}{k_2}$ ways to choose the blue items from the remaining $n-k_1$. The remaining k_3 items get labelled a third color.

Using the *product rule* the total number of labellings is

$$\binom{n}{k_1} \binom{n-k_1}{k_2} = \frac{n!}{k_1!(n-k_1)!} \frac{(n-k_1)!}{(k_2)!(n-k_1-k_2)!}$$

$$= \frac{n!}{k_1!k_2!(n-k_1-k_2)!} = \frac{n!}{k_1!k_2!k_3!}$$

Labelling and Trinomial Coefficients

• When $k_1 + k_2 + k_3 = n$, we call

$$\frac{n!}{k_1!k_2!k_3!}$$

a trinomial coefficient and denote it as

$$\begin{pmatrix} n \\ k_1 & k_2 & k_3 \end{pmatrix}$$

Labelling and Trinomial Coefficients

• When $k_1 + k_2 + k_3 = n$, we call

$$\frac{n!}{k_1!k_2!k_3!}$$

a trinomial coefficient and denote it as

$$\begin{pmatrix} n \\ k_1 & k_2 & k_3 \end{pmatrix}$$

What is the coefficient of $x^{k_1}y^{k_2}z^{k_3}$ in $(x+y+z)^n$?

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

```
It's greater than 1/2! (only need 23)
```


Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

We may assume that a year has 365 days and there are no twins in the room.

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

We may assume that a year has 365 days and there are no twins in the room.

This will be very similar to the analysis of hashing *n* keys into a table of size 365.

 \blacksquare A_n – "there are n students in a room and at least two of them share a birthday."

Sample space: $|S| = 365^n$

 \blacksquare A_n – "there are n students in a room and at least two of them share a birthday."

Sample space:
$$|S| = 365^n$$

 B_n – "there are n students in a room and none of them share a birthday."

 \blacksquare A_n — "there are n students in a room and at least two of them share a birthday."

Sample space:
$$|S| = 365^n$$

 B_n – "there are n students in a room and none of them share a birthday."

$$\#B_n = 365 \times 364 \times \cdots \times (365 - (n-1))$$

 \blacksquare A_n — "there are n students in a room and at least two of them share a birthday."

Sample space:
$$|S| = 365^n$$

 B_n – "there are n students in a room and none of them share a birthday."

$$\#B_n = 365 \times 364 \times \cdots \times (365 - (n-1))$$

$$\#A_n + \#B_n = 365^n$$

n	A_n	B_n	n	A_n	B_n
1	0.00000000	1.00000000	16	0.28360400	0.71639599
2	0.00273972	0.99726027	17	0.31500766	0.68499233
3	0.00820416	0.99179583	18	0.34691141	0.65308858
4	0.01635591	0.98364408	19	0.37911852	0.62088147
5	0.02713557	0.97286442	20	0.41143838	0.58856161
6	0.04046248	0.95953751	21	0.44368833	0.55631166
7	0.05623570	0.94376429	22	0.47569530	0.52430469
8	0.07433529	0.92566470	23	0.50729723	0.49270276
9	0.09462383	0.90537616	24	0.53834425	0.46165574
10	0.11694817	0.88305182	25	0.56869970	0.43130029
11	0.14114137	0.85885862	26	0.59824082	0.40175917
12	0.16702478	0.83297521	27	0.62685928	0.37314071
13	0.19441027	0.80558972	28	0.65446147	0.34553852
14	0.22310251	0.77689748	29	0.68096853	0.31903146
15	0.25290131	0.74709868	30	0.70631624	0.29368375
			ı		OF SCIE

Event A: at least two people in the room have the same birthday
Event B: no two people in the room have the same birthday

$$Pr[A] = 1 - Pr[B]$$

$$\Pr[B] = \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{365}\right)$$
$$= \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right).$$

$$\Pr[A] = 1 - \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right)$$

Event A: at least two people in the room have the same birthday
Event B: no two people in the room have the same birthday

$$Pr[A] = 1 - Pr[B]$$

$$\Pr[B] = \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{365}\right)$$
$$= \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right).$$

$$\Pr[A] = 1 - \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right)$$

$$p(n; H) := 1 - \prod_{i=1}^{n-1} (1 - \frac{i}{H})$$

Since $e^x = 1 + x + \frac{x^2}{2!} + \cdots$, for $|x| \ll 1$, $e^x \approx 1 + x$

Since $e^x = 1 + x + \frac{x^2}{2!} + \cdots$, for $|x| \ll 1$, $e^x \approx 1 + x$ Thus, we have $e^{-i/H} \approx 1 - \frac{i}{H}$.

Since $e^x = 1 + x + \frac{x^2}{2!} + \cdots$, for $|x| \ll 1$, $e^x \approx 1 + x$

Thus, we have $e^{-i/H} \approx 1 - \frac{i}{H}$.

Recall that
$$p(n; H) := 1 - \prod_{i=1}^{n-1} (1 - \frac{i}{H})$$

This probability can be approximated as

$$p(n; H) \approx 1 - e^{-n(n-1)/2H} \approx 1 - e^{-n^2/2H}$$
.

Since $e^x = 1 + x + \frac{x^2}{2!} + \cdots$, for $|x| \ll 1$, $e^x \approx 1 + x$

Thus, we have $e^{-i/H} \approx 1 - \frac{i}{H}$.

Recall that
$$p(n; H) := 1 - \prod_{i=1}^{n-1} (1 - \frac{i}{H})$$

This probability can be approximated as

$$p(n; H) \approx 1 - e^{-n(n-1)/2H} \approx 1 - e^{-n^2/2H}$$
.

Let n(p; H) be the smallest number of values we have to choose, such that the probability for finding a collision is at least p. By inverting the expression above, we have

$$n(p; H) \approx \sqrt{2H \ln \frac{1}{1-p}}.$$

The Euclidean algorithm in pseudocode

ALGORITHM 1 The Euclidean Algorithm.

```
procedure gcd(a, b): positive integers)

x := a

y := b

while y \neq 0

r := x \mod y

x := y

y := r

return x\{\gcd(a, b) \text{ is } x\}
```

The number of divisions required to find gcd(a, b) is $O(\log b)$, where $a \ge b$. (this will be proved later.)

The Euclidean algorithm in pseudocode

ALGORITHM 1 The Euclidean Algorithm.

```
procedure gcd(a, b): positive integers)
x := a
y := b
while y \neq 0
r := x \mod y
x := y
y := r
return x\{\gcd(a, b) \text{ is } x\}
```

The number of divisions required to find gcd(a, b) is $O(\log b)$, where $a \ge b$. (this will be proved later.)

Why?

Key steps in the Euclidean algorithm

```
egin{array}{lll} r_0 &= r_1 q_1 + r_2 & 0 \leq r_2 < r_1, \\ r_1 &= r_2 q_2 + r_3 & 0 \leq r_3 < r_2, \\ & \cdot & \\ & \cdot & \\ & \cdot & \\ r_{n-2} &= r_{n-1} q_{n-1} + r_n & 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_n q_n \ . \end{array}
```

Key steps in the Euclidean algorithm

```
r_0 = r_1q_1 + r_2 0 \le r_2 < r_1, r_1 = r_2q_2 + r_3 0 \le r_3 < r_2, 0 \le r_3 < r_3, 0 \le r_3 < r_2, 0 \le r_3 < r_3, 0 \le r_3 < r_3
```

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

Key steps in the Euclidean algorithm

$$r_0 = r_1q_1 + r_2$$
 $0 \le r_2 < r_1$, $r_1 = r_2q_2 + r_3$ $0 \le r_3 < r_2$, $0 \le r_3 < r_3$, $1 \le r_3$,

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

We claim that $r_{i+2} < \frac{1}{2}r_i$

Key steps in the Euclidean algorithm

$$r_0 = r_1q_1 + r_2$$
 $0 \le r_2 < r_1$, $r_1 = r_2q_2 + r_3$ $0 \le r_3 < r_2$, $0 \le r_3 < r_3$, $0 \le r_3 < r_2$, $0 \le r_3 < r_3$

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

We claim that $r_{i+2} < \frac{1}{2}r_i$

Case (i):
$$r_{i+1} \leq \frac{1}{2}r_i$$
: $r_{i+2} < r_{i+1} \leq \frac{1}{2}r_i$.

Case (ii):
$$r_{i+1} > \frac{1}{2}r_i$$
: $r_{i+2} = r_i \mod r_{i+1} = r_i - r_{i+1} < \frac{1}{2}r_i$.

Key steps in the Euclidean algorithm

$$r_0 = r_1q_1 + r_2$$
 $0 \le r_2 < r_1$, $r_1 = r_2q_2 + r_3$ $0 \le r_3 < r_2$, $r_1 = r_1q_1 + r_2$ $0 \le r_3 < r_2$, $0 \le r_3 < r_3$, $0 \le r_3 <$

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

We claim that $r_{i+2} < \frac{1}{2}r_i$

Case (i):
$$r_{i+1} \leq \frac{1}{2}r_i$$
: $r_{i+2} < r_{i+1} \leq \frac{1}{2}r_i$.

Case (ii):
$$r_{i+1} > \frac{1}{2}r_i$$
: $r_{i+2} = r_i \mod r_{i+1} = r_i - r_{i+1} < \frac{1}{2}r_i$.

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

♦ linear: it is a linear combination of previous terms

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

- ♦ linear: it is a linear combination of previous terms
- \diamond homogeneous: all terms are multiples of a_j 's

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

- ♦ linear: it is a linear combination of previous terms
- \diamond homogeneous: all terms are multiples of a_i 's
- \diamond degree k: a_n is expressed by the previous k terms

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$,

- ♦ linear: it is a linear combination of previous terms
- \diamond homogeneous: all terms are multiples of a_j 's
- \diamond degree k: a_n is expressed by the previous k terms
- constant coefficients: coefficients are constants

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$,

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

- ♦ linear: it is a linear combination of previous terms
- \diamond homogeneous: all terms are multiples of a_i 's
- \diamond degree k: a_n is expressed by the previous k terms
- constant coefficients: coefficients are constants

By induction, such a recurrence relation is uniquely determined by this recurrence relation, and k initial conditions $a_0, a_1, \ldots, a_{k-1}$.

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$
 $f_n = f_{n-1} + f_{n-2}$
 $a_n = a_{n-1} + a_{n-2}^2$
 $H_n = 2H_{n-1} + 1$
 $B_n = nB_{n-1}$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

 $P_n = (1.11)P_{n-1}$ linear homogeneous recurrence relation of degree 1

$$f_n = f_{n-1} + f_{n-2}$$

$$a_n = a_{n-1} + a_{n-2}^2$$

$$H_n = 2H_{n-1} + 1$$

$$B_n = nB_{n-1}$$

Definition A linear homogeneous relation of degree k with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$

 $P_n = (1.11)P_{n-1}$ linear homogeneous recurrence relation of degree 1

$$f_n = f_{n-1} + f_{n-2}$$

 $f_n = f_{n-1} + f_{n-2}$ linear homogeneous recurrence relation of degree 2

$$a_n = a_{n-1} + a_{n-2}^2$$

$$H_n=2H_{n-1}+1$$

$$B_n = nB_{n-1}$$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$
 linear homogeneous recurrence relation of degree 1 $f_n = f_{n-1} + f_{n-2}$ linear homogeneous recurrence relation of degree 2 $a_n = a_{n-1} + a_{n-2}^2$ NOT linear $H_n = 2H_{n-1} + 1$ $B_n = nB_{n-1}$

Examples of Linear Recurrence Relations

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

 $P_n = (1.11)P_{n-1}$ linear homogeneous recurrence relation of degree 1 $f_n = f_{n-1} + f_{n-2}$ linear homogeneous recurrence relation of degree 2 $a_n = a_{n-1} + a_{n-2}^2$ NOT linear

$$H_n = 2H_{n-1} + 1$$
 NOT homogeneous

$$B_n = nB_{n-1}$$

Examples of Linear Recurrence Relations

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$
 linear homogeneous recurrence relation of degree 1

$$f_n = f_{n-1} + f_{n-2}$$
 linear homogeneous recurrence relation of degree 2

$$a_n = a_{n-1} + a_{n-2}^2$$
 NOT linear

$$H_n = 2H_{n-1} + 1$$
 NOT homogeneous

$$B_n = nB_{n-1}$$
 coefficients are not constants

Example Consider the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2}$$

Which of the following are solutions?

$$\diamond a_n = 3n$$
:

$$\diamond a_n = 2^n$$
:

$$\diamond a_n = 5$$
:

Example Consider the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2}$$

Which of the following are solutions?

$$\diamond a_n = 3n$$
: YES

$$\diamond a_n = 2^n$$
: NO

$$\diamond a_n = 5$$
: YES

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Basic idea: Look for solutions of the form $a_n = r^n$, where r is a constant.

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Basic idea: Look for solutions of the form $a_n = r^n$, where r is a constant.

 \diamond Bring $a_n = r^n$ back to the recurrence relation:

i.e.,
$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k}$$
, $r^{n-k} (r^k - c_1 r^{k-1} - \dots - c_k) = 0$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Basic idea: Look for solutions of the form $a_n = r^n$, where r is a constant.

 \diamond Bring $a_n = r^n$ back to the recurrence relation:

i.e.,
$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \cdots + c_k r^{n-k}$$
, $r^{n-k} (r^k - c_1 r^{k-1} - \cdots - c_k) = 0$

♦ The solutions to the *characteristic equation* can yield an explicit formula for the sequence.

$$(r^k - c_1 r^{k-1} - \cdots - c_k) = 0$$

Recall: Problem IV

■ Fibonacci number

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

Recall: Problem IV

■ Fibonacci number

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

 \diamond What is the closed-form expression of F_n ?

Recall: Problem IV

Fibonacci number

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

 \diamond What is the closed-form expression of F_n ?

Consider $x^n = x^{n-1} + x^{n-2}$, with $x \neq 0$. There are two different roots

$$\phi = \frac{1+\sqrt{5}}{2}, \quad \psi = \frac{1-\sqrt{5}}{2}$$

Then F_n can be the form of $a\phi^n + b\psi^n$. By $F_0 = 0$ and $F_1 = 1$, we have a + b = 0 and $\phi a + \psi b = 1$, leading to $a = \frac{1}{\sqrt{5}}$, b = -a. Therefore,

$$F_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$$

Consider an arbitrary linear homogeneous relation of degree 2 with constant coefficients:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
.

Consider an arbitrary linear homogeneous relation of degree 2 with constant coefficients:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
.

The characteristic equation (CE) is:

$$r^2-c_1r-c_2=0.$$

Consider an arbitrary linear homogeneous relation of degree 2 with constant coefficients:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
.

The characteristic equation (CE) is:

$$r^2 - c_1 r - c_2 = 0.$$

Theorem If this CE has 2 roots $r_1 \neq r_2$, then the sequence $\{a_n\}$ is a solution of the recurrence relation if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for $n \geq 0$ and constants α_1, α_2 .

Consider an arbitrary linear homogeneous relation of degree 2 with constant coefficients:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
.

The characteristic equation (CE) is:

$$r^2 - c_1 r - c_2 = 0.$$

Theorem If this CE has 2 roots $r_1 \neq r_2$, then the sequence $\{a_n\}$ is a solution of the recurrence relation if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for $n \geq 0$ and constants α_1, α_2 .

Proof?

Consider an arbitrary linear homogeneous relation of degree 2 with constant coefficients:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
.

The characteristic equation (CE) is:

$$r^2 - c_1 r - c_2 = 0.$$

Theorem If this CE has 2 roots $r_1 \neq r_2$, then the sequence $\{a_n\}$ is a solution of the recurrence relation if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for $n \geq 0$ and constants α_1, α_2 .

Proof?

See [Theorem 1 p. 515].

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

The characteristic equation is

$$r^2 - r - 2 = 0$$
.

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

The characteristic equation is

$$r^2 - r - 2 = 0$$

Two roots are 2 and -1. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

The characteristic equation is

$$r^2 - r - 2 = 0$$

Two roots are 2 and -1. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 + \alpha_2 = 2$$

$$a_1 = 2\alpha_1 - \alpha_2 = 7$$

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

The characteristic equation is

$$r^2 - r - 2 = 0$$

Two roots are 2 and -1. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 + \alpha_2 = 2$$

 $a_1 = 2\alpha_1 - \alpha_2 = 7$

We get $\alpha_1 = 3$ and $\alpha_2 = -1$. Thus, $a_n = 3 \cdot 2^n - (-1)^n$

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

The characteristic equation is

$$r^2 - 7r + 10 = 0.$$

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

The characteristic equation is

$$r^2 - 7r + 10 = 0$$

Two roots are 2 and 5. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 5^n.$$

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

The characteristic equation is

$$r^2 - 7r + 10 = 0$$

Two roots are 2 and 5. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 5^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 + \alpha_2 = 2$$

$$a_1 = 2\alpha_1 + 5\alpha_2 = 1$$

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

The characteristic equation is

$$r^2 - 7r + 10 = 0$$

Two roots are 2 and 5. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 5^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 + \alpha_2 = 2$$

 $a_1 = 2\alpha_1 + 5\alpha_2 = 1$

We get $\alpha_1 = 3$ and $\alpha_2 = -1$. Thus, $a_n = 3 \cdot 2^n - 5^n$

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}.$$

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}.$$

The characteristic equation (CE) is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0.$$

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}.$$

The characteristic equation (CE) is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0.$$

Theorem If this CE has k distinct roots r_i , then the solutions to the recurrence are of the form

$$a_n = \sum_{i=1}^k \alpha_i r_i^n$$

for all $n \ge 0$, where the α_i 's are constants.

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}$$
.

The characteristic equation (CE) is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0.$$

Theorem If this CE has k distinct roots r_i , then the solutions to the recurrence are of the form

$$a_n = \sum_{i=1}^k \alpha_i r_i^n$$

for all $n \ge 0$, where the α_i 's are constants.

Example
$$a_n = 2a_{n-1} + 5a_{n-2} - 6a_{n-3}$$

Theorem If the CE $r^2 - c_1 r - c_2 = 0$ has only 1 root r_0 , then

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n,$$

for all $n \geq 0$ and two constants α_1 and α_2 .

Theorem If the CE $r^2 - c_1 r - c_2 = 0$ has only 1 root r_0 , then

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n,$$

for all $n \geq 0$ and two constants α_1 and α_2 .

Proof?

Theorem If the CE $r^2 - c_1 r - c_2 = 0$ has only 1 root r_0 , then

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n,$$

for all $n \geq 0$ and two constants α_1 and α_2 .

Proof?

Exercise.

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$
.

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$

The only root is 2. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n.$$

The Case of Degenerate Roots

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$

The only root is 2. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 = 1$$

 $a_1 = 2\alpha_1 + 2\alpha_2 = 0$

The Case of Degenerate Roots

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$

The only root is 2. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 = 1$$

 $a_1 = 2\alpha_1 + 2\alpha_2 = 0$

We get
$$\alpha_1 = 1$$
 and $\alpha_2 = -1$. Thus, $a_n = 2^n - n2^n$

The Case of Degenerate Roots in General

Theorem [Theorem 4, p.519] Suppose that there are t roots r_1, \ldots, r_t with multiplicities m_1, \ldots, m_t . Then

$$a_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i-1} \alpha_{i,j} n^j \right) r_i^n,$$

for all $n \geq 0$ and constants $\alpha_{i,j}$.

The Case of Degenerate Roots in General

Theorem [Theorem 4, p.519] Suppose that there are t roots r_1, \ldots, r_t with multiplicities m_1, \ldots, m_t . Then

$$a_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i-1} \alpha_{i,j} n^j \right) r_i^n,$$

for all $n \geq 0$ and constants $\alpha_{i,j}$.

Example

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$
 with $a_0 = 1$, $a_1 = -2$, $a_2 = -1$

■ **Definition** A *linear nonhomogeneous relation* with constant coefficients may contain some terms F(n) that depend only on n

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n)$$
.

The recurrence relation

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ is called the associated homogeneous recurrence relation.

Theorem If $a_n = p(n)$ is any particular solution to the linear nonhomogeneous relation with constant coefficients,

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n),$$

Then all its solutions are of the form

$$a_n = p(n) + h(n),$$

where $a_n = h(n)$ is any solution to the associated homogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

We try a degree-t polynomial as the particular solution p(n).

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

We try a degree-t polynomial as the particular solution p(n).

Let
$$p(n) = cn + d$$
, then $cn + d = 3(c(n-1) + d) + 2n$, which means $(2c + 2)n + (2d - 3c) = 0$.

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

We try a degree-t polynomial as the particular solution p(n).

Let
$$p(n) = cn + d$$
, then $cn + d = 3(c(n-1) + d) + 2n$, which means $(2c + 2)n + (2d - 3c) = 0$.

We get
$$c = -1$$
 and $d = -3/2$. Thus, $p(n) = -n - 3/2$
49 - 5

Next Lecture

generating function, relation ...

