Logistic Regression

Gautam Kamath

Intuition

- "Predictions with confidence"
 - Binary classification, but also gives a "confidence" for correctness
 - Today: use 0 and 1 as labels, instead of ± 1
- (Draw hours studied vs passed class example)
- (Draw perceptron example, sharp threshold, boundary examples)
- Bernoulli model: parameterize probability of label y by feature vector x, parameter vector w
 - $\Pr[y = 1 \mid x, w] = p(x, w) \in [0,1]$
 - Pr[y = 0 | x, w] = 1 p(x, w)

How to parameterize?

- $\Pr[y = 1 \mid x, w] = p(x, w) \in [0,1]$. How do we define p(x, w)?
- Take 1: $p(x, w) = \langle x, w \rangle$
 - Being far on the positive side of the hyperplane makes it large, vice versa
 - Why doesn't it work? LHS is in [0,1], while RHS is over \mathbf{R}
- Take 2: $\log\left(\frac{p(x,w)}{1-p(x,w)}\right) = \langle x,w \rangle$ ("logit transform")
 - Sanity check: p(x, w) ranging over [0,1] causes LHS to range over \mathbf{R} (like RHS)

Rearranging the parameterization

$$\log\left(\frac{p(x,w)}{1-p(x,w)}\right) = \langle x,w\rangle$$

$$\frac{p(x,w)}{1-p(x,w)} = \exp(\langle x,w\rangle) \text{ (LHS: "odds ratio")}$$

$$p(x,w) = \exp(\langle x,w\rangle) \left(1-p(x,w)\right)$$

$$p(x,w) = \exp(\langle x,w\rangle) - \exp(\langle x,w\rangle) p(x,w)$$

$$p(x,w) (1+\exp(\langle x,w\rangle)) = \exp(\langle x,w\rangle)$$

$$p(x,w) = \frac{\exp(\langle x,w\rangle)}{1+\exp(\langle x,w\rangle)}$$

$$p(x,w) = \frac{1}{1+\exp(\langle x,w\rangle)} \triangleq \text{sigmoid}(\langle x,w\rangle)$$

$$(\text{draw sigmoid})$$

Visualizing p(x, w)

•
$$p(x, w) = \frac{1}{1 + \exp(-\langle x, w \rangle)} \triangleq \operatorname{sigmoid}(\langle x, w \rangle)$$

- (Draw linear separator, point on line $\langle x, w \rangle = 0$, point on either side)
- (Draw picture from the side of sigmoid)
- Why sigmoid? Admittedly a bit arbitrary
- Any monotone function from $\mathbf{R} \to [0,1]$ works
- E.g., take $sign(\langle x, w \rangle)$ and you recover perceptron

Predicting using p(x, w)

•
$$p(x, w) = \frac{1}{1 + \exp(-\langle x, w \rangle)}$$

- If $p(x, w) > \frac{1}{2}$, predict $\hat{y} = 1$. Otherwise, predict $\hat{y} = 0$.
- Note this corresponds to $\hat{y} = \text{sign}(\langle x, w \rangle)$, same as perceptron!
 - Difference 1: While we use same predictions, we optimize different functions
 - E.g., this can handle non linearly separable, couldn't with perceptron
 - Difference 2: Magnitude of p(x, w) indicates *confidence* in prediction
 - Hence why we call it regression we're learning confidences, which imply predictions

Deriving the MLE parameter vector

$$\widehat{w} = \arg\max_{w} \prod_{i=1}^{n} \Pr[(x_i, y_i) | w]$$

$$= \arg\max_{w} \prod_{i=1}^{n} p(x_i, w)^{y_i} (1 - p(x_i, w))^{1 - y_i}$$

$$(\text{Let } p_i = p_i(x_i, w))$$

$$= \arg\max_{w} \log \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

$$= \arg\max_{w} \sum_{i=1}^{n} \log(p_i^{y_i} (1 - p_i)^{1 - y_i})$$

$$= \arg\max_{w} \sum_{i=1}^{n} y_i \log p_i + (1 - y_i) \log(1 - p_i)$$
("cross entropy loss")

Recall:
$$p(x, w) = \frac{1}{1 + \exp(-\langle x, w \rangle)}$$
.
Suppose some $y_i = 1$. Then $y_i \log p_i + (1 - y_i) \log(1 - p_i) = \log p_i$ $= \log(1 + \exp(-\langle x, w \rangle))^{-1}$ $= -\log(1 + \exp(-\langle x, w \rangle))$
Similarly, if $y = 0$, then $y_i \log p_i + (1 - y_i) \log(1 - p_i) = \log(1 - p_i)$ $= \log\left(\frac{\exp(-\langle x, w \rangle)}{1 + \exp(-\langle x, w \rangle)}\right)$ $= -\log(1 + \exp(\langle x, w \rangle))$

Deriving the MLE parameter vector

$$\widehat{w} = \arg\max_{w} \sum_{i=1}^{n} y_{i} \log p_{i} + (1 - y_{i}) \log(1 - p_{i})$$
If $y_{i} = 1$, argument is $-\log(1 + \exp(-\langle x, w \rangle))$
If $y_{i} = 0$, argument is $-\log(1 + \exp(\langle x, w \rangle))$

$$\widehat{w} = \arg\max_{w} \sum_{i=1_{n}}^{n} -\log(\exp(-y_{i}\langle x_{i}, w \rangle) + \exp((1 - y_{i})\langle x, w \rangle))$$

$$\widehat{w} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(\exp(-y_{i}\langle x_{i}, w \rangle) + \exp((1 - y_{i})\langle x, w \rangle))$$

An equivalent formulation

$$\widehat{w} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(\exp(-y_{i}\langle x_{i}, w \rangle) + \exp((1 - y_{i})\langle x, w \rangle))$$
Let $\widetilde{y}_{i} = +1$ if $y_{i} = 1$, and $\widetilde{y} = -1$ if $y_{i} = 0$.
$$\widehat{w} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-\widetilde{y}_{i}\langle x_{i}, w \rangle))$$

A step back: Optimization

Letting

loss
$$\ell_w(x_i, y_i) = y_i \log p_i + (1 - y_i) \log(1 - p_i)$$
,

Goal is to compute

$$\widehat{w} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} \ell_{w}(x_{i}, y_{i})$$

- Claim 1: $\ell_w(x_i, y_i)$ is convex
 - Thus only need to find point where gradient $\frac{1}{n}\sum_{i=1}^{n}\nabla\ell_{w}(x_{i},y_{i})$ is 0
- Claim 2: $\nabla_{w} \ell_{w}(x_{i}, y_{i}) = (p_{i}(x_{i}, w) y_{i})x_{i}$
 - No closed form solution to set it equal to 0... (cf. linear regression)

Optimization methods

- (Draw iterative method picture for 1D, multiple D)
- Initialize w_0
- For t = 1, 2, ...
 - Choose direction d_t and step size η_t
 - $\bullet \ w_t = w_{t-1} \eta_t d_t$
- How to pick step size η_t ?
 - Constant, decaying (e.g., $1/\sqrt{t}$), "adaptively"
- How to pick direction d_t ?

How to pick direction d_t ?

- Gradient Descent
 - $d_t = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell_{w_{t-1}}(x_i, y_i)$ (note, = 0 at optimum)
 - Running time?
- Stochastic gradient descent
 - Draw random set $B \subseteq [n]$, then let $d_t = \frac{1}{|B|} \sum_{i \in B} \nabla_w \ell_{w_{t-1}}(x_i, y_i)$
- Newton's Method
 - $d_t = \left(\frac{1}{n}\sum_{i=1}^n \nabla_w^2 \ell_{w_{t-1}}(x_i, y_i)\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \nabla_w \ell_{w_{t-1}}(x_i, y_i)\right)$
 - Often needs fewer steps to converge, but more time/memory per step

Multiclass Logistic Regression

$$\Pr[y = k \mid x, w] = \frac{\exp(\langle w_k, x \rangle)}{\sum_{\ell=1}^{c} \exp(\langle w_\ell, x \rangle)}$$