# Relations in doubly laced crystal graphs via discrete Morse theory

#### Molly Lynch

Workshop on representation theory, combinatorics and geometry University of Virginia

October 21, 2018

Slides: https://melynch4.wixsite.com/melynch4 Preprint: https://arxiv.org/abs/1810.04696

# (Kashiwara) crystals

#### Definition

A *crystal*  $\mathcal{B}$  is a directed graph that has vertex set  $\mathcal{B}$  and edges labeled with  $i \in I$  satisfying the following:

- all monochromatic directed paths have finite length (no circuits),
- ② for every vertex x and color  $i \in I$ , there is at most one outgoing edge from x labeled i and at most one incoming edge to x labeled i.

If we have an edge  $x \xrightarrow{i} y$ , we say that  $f_i(x) = y$  and  $e_i(y) = x$ . We call  $f_i$  and  $e_i$  crystal operators. We can define a covering relation on a crystal by saying

$$x \lessdot y \iff y = f_i(x)$$

Note: In many interesting cases, this covering relation gives rise to a *partial order*.

## Example:



Type  $A_3$  crystal  $\mathcal{B}_{(2,1,1)}$  of shape  $\lambda=(2,1,1)$ 

## Poset basics

### Example



- P has a *minimal element*  $\hat{0}$  if  $\hat{0} \leq u$  for all  $u \in P$ .
- P has a maximal element  $\hat{\mathbf{1}}$  if  $\hat{\mathbf{1}} \geq u$  for all  $u \in P$ .
- For  $u, v \in P$ , we say v covers u (u < v) if u < v and there is no element  $w \in P$  such that u < w < v.
- The *open interval* (u, v) is the set  $\{x \in P | u < x < v\}$ .
- A saturated chain from u to v (u < v) is a series of cover relations  $u = u_0 \leqslant u_1 \leqslant \cdots \leqslant u_k = v$ .

# Stembridge relations

Recall: If  $x \stackrel{i}{\to} y$ , we say that  $f_i(x) = y$  and  $e_i(y) = x$ .

Not every crystal arises from a representation, but in the simply laced case Stembridge (2003) gave a list of local structural conditions that characterize when a crystal graph is the crystal of a representation:



The dual picture holds true for the crystal operators  $e_i$  and  $e_j$ .

## Example:



Type  $A_3$  crystal  $\mathcal{B}_{(2,1,1)}$  of shape  $\lambda=(2,1,1)$ 

## Sternberg relations for the doubly laced case

Sternberg (2006) showed that there are additional relations that hold in doubly laced crystals arising from a representation  $(B_n, C_n)$ , although these do not characterize doubly laced crystals.



OR previous Stembridge relations.

# Sternberg relations



Type  $C_2$  crystal  $\mathcal{B}_{(2,1)}$  of shape  $\lambda = (2,1)$ .

# Highest weight representations of type $B_2$ and $C_2$

- Recall: A poset P is a lattice if for every pair of elements in P there
  is a unique least upper bound (join) and unique greatest lower bound
  (meet).
- DKK (2007) showed that crystals of type  $A_2$  are lattices, HL (2017) showed that in general, crystals of type  $A_n$  are not lattices.

## Theorem (L. (2018))

Crystal posets coming from highest weight representations of type  $B_2$  and  $C_2$  are not lattices.

<u>Proof sketch:</u> The degree five Sternberg relation is asymmetric which will result in incomparable least upper bounds (or incomparable greatest lower bounds).

## Möbius function and order complexes

The *Möbius function*,  $\mu$ , is a combinatorial function that arises as counting coefficients in inclusion-exclusion formulas.

Recursive definition for  $\mu$  on the interval [u, v]:

$$\mu(u, u) = 1,$$
  

$$\mu(u, v) = -\sum_{u \le z < v} \mu(u, z)$$

## Möbius function and order complexes

The *Möbius function*,  $\mu$ , is a combinatorial function that arises as counting coefficients in inclusion-exclusion formulas.

Recursive definition for  $\mu$  on the interval [u, v]:

$$\mu(u, u) = 1,$$
  

$$\mu(u, v) = -\sum_{u \le z < v} \mu(u, z)$$

#### Definition

The order complex of a poset P is the abstract simplicial complex  $\Delta(P)$  whose i-dimensional faces are the (i+1)-chains  $u_0 < u_1 < \cdots < u_i$  in P.

Recall: (Hall, popularized by Rota)

$$\mu(u, v) = \tilde{\chi}(\Delta(u, v))$$

## Lexicographic discrete Morse functions

- Discrete Morse theory was introduced by Forman (1998) as a tool to study homotopy type and homology groups of finite CW-complexes.
- Combinatorial reformulation by Chari (2000) where an "acyclic matching" on the face poset of the complex is constructed.
- Babson and Hersh (2005) introduced lexicographic discrete Morse functions for the order complex of any finite poset with 0 and 1.
- Use natural edge labeling of crystal graphs to lexicographically order all saturated chains and construct a lexicographic discrete Morse function on the order complex of the poset.

## Lexicographic discrete Morse functions

- Discrete Morse theory was introduced by Forman (1998) as a tool to study homotopy type and homology groups of finite CW-complexes.
- Combinatorial reformulation by Chari (2000) where an "acyclic matching" on the face poset of the complex is constructed.
- Babson and Hersh (2005) introduced *lexicographic discrete Morse* functions for the order complex of any finite poset with  $\hat{0}$  and  $\hat{1}$ .
- Use natural edge labeling of crystal graphs to lexicographically order all saturated chains and construct a lexicographic discrete Morse function on the order complex of the poset.

## Theorem (Babson-Hersh (2005))

Any edge labeling on any finite poset gives rise to a lexicographic discrete Morse function such that the critical cells give rise to facets whose attachment changes the homotopy type of the complex.

## Critical cells and interval system

To see if a facet  $F_j$  contributes a critical cell, we look at the *interval* system of  $F_j$ .

- Each maximal face in  $\overline{F_j} \cap (\cup_{i < j} F_i)$  omits a single interval of i+1,...,j-1, of consecutive ranks. Call the rank interval [i+1,j-1] a minimal skipped interval of  $F_j$ .
- Call the collection of minimal skipped intervals of F<sub>j</sub> the interval system of F<sub>j</sub>.
- $F_j$  contributes a critical cell if and only if the interval system of  $F_j$  covers all ranks in  $F_j$ .

## Critical cells and interval system



- Looking at interval system for the chain with label sequence (4, 3, 3, 4, 2, 1).
- At each cover relation, check if there is a lexicographically earlier cover relation. If so, travel up to the earliest rank that it reconnects with the black chain. This gives minimal skipped interval.
- We get a critical cell from the lowest element of each interval.
- No critical cell unless interval system fully covers F<sub>i</sub>.

# A connection between the Möbius function and crystal operators

## Theorem (Hersh-Lenart (2017); L. (2018))

Given any u < v in a crystal  $\mathcal B$  of a highest weight representation of finite simply laced type such that all relations among crystal operators are implied by Stembridge local relations, this implies  $\mu(u,v) \in \{-1,0,1\}$ .

## Theorem (L. (2018))

Given any u < v in a crystal  $\mathcal B$  of a highest weight representation of finite doubly laced type such that all relations among crystal operators are implied by Stembridge and Sternberg local relations, this implies  $\mu(u,v) \in \{-1,0,1\}$ .

<u>Proof sketch:</u> Construct a lexicographic discrete Morse function on the order complex of the interval to see that at most one facet can contribute a critical cell.

## Application - simply laced case

From this result, we know that anytime we find an interval [u,v] in a crystal poset such that  $\mu(u,v) \notin \{-1,0,1\}$ , there must exist relations among crystal operators not implied by Stembridge/Sternberg relations.

- Let  $u = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 3 & 4 \end{bmatrix}$ ,  $v = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 4 & 4 \end{bmatrix}$
- $\mu(u, v) = 2$ .
- The saturated chains with labels (1, 2, 2, 3) and (3, 2, 2, 1) are not connected by Stembridge moves.



## Application - doubly laced case

- Let  $u = \begin{bmatrix} 1 & 1 & 2 & 3 \\ \hline 3 & 3 & 3 \\ \hline 3 & 3 & 2 \end{bmatrix}$ ,  $v = \begin{bmatrix} 1 & 3 & 3 & 3 \\ \hline 3 & 3 & 1 & 1 \\ \hline 2 & 2 & 2 \end{bmatrix}$  in  $\mathcal{B}_{(4,3,1)}$  of shape  $\lambda = (4,3,1)$ .
- Contained in an interval where  $\mu(u, v) = 2$ .
- New relation not implied by Stembridge/Sternberg relations.



## References

#### Thank you!



Eric Babson, Patricia Hersh, Discrete Morse functions from lexicographic orders, Trans. Amer. Math. Soc. 357 (2004). 509-534.



Daniel Bump, Anne Schilling, Crystal bases: Representations and combinatorics. World Scientific (2017).



Patricia Hersh, Cristian Lenart, From the weak Bruhat order to crystal posets. Mathematische Zeitschrift 286 (2017),1435-1464.



Patricia Hersh, On optimizing discrete Morse functions, Advances in Appl. Math 35 (2005), 294-322.



Molly Lynch, Relations in doubly laced crystal graphs via discrete Morse theory, arXiv 1810.04696 math.CO (2018).



Richard Stanley, Enumerative Combinatorics, Volume 1. Cambridge University Press (2012).



John Stembridge, A local characterization of simply-laced crystals. Trans. Amer. Math. Soc. 355 (2003), 4807-4823.



Philip Sternberg, On the local structure of doubly laced crystals. J. of Combinatorial Theory, Series A 114 (2007), no. 5, 809-824.