The ping-pong lemma Sept 29, 2017

First, let's recall free products of groups from a perspective that will make our ping-pong discussion easier.

Given groups & Gifier, set

A = U Gi and W(A) the collection of all words

in the alphabet A. Then the free product is

 \star Gi := W(A)/ $_{N}$, with concatenation, where $_{N}$ He equivalence relation generated

weiw'n ww' whenever eie Gist the identity
wabw'n wow' whenever a, b, ce Gi for some

o and ab=c.

Then & Gi Is indeed a group, and in fact its elements have a nice description: A word w \(W(A) is called reduced if

w=a,...an where aj∈Gj and

(i) ij ≠ ij+, for |= j ≤ n-1

(ii) aj is not the identity in Gij.

Theorem: Every element in & Gi has a unique reduced representative.

These groups occur in nature - for example, the free group F2 is $\mathbb{Z} \times \mathbb{Z}$, and more generally the output of any application of the Seifert Van Kampen theorem is a free product (or possibly a quotient thereof).

To produce examples, we introduce the topic of the talk

Theorem (ping-pong lemma).

Let G be a group acting on a set X, let G_1 , G_2 be subgroups of G and let Γ be the subgroup of G generated by $G_1 \cup G_2$. Assume $|G_1| \ge 2$ and $|G_2| \ge 3$.

If there exist nonempty X1, X2 CX with X2 \$\neq X1 satisfying

 $g(X_2) \subset X_1$ for all $g \in G_1$, $g \neq 1$ and $g(X_1) \subset X_2$ for all $g \in G_2$, $g \neq 1$ Then $\Gamma \cong G_1 \times G_2$.

Proof: Let $A = G_1(1) \cup G_2(1)$, and let we W(A) be a reduced word. If w does

not represent the identity in T', we'redone. Arque by cases: Wrote w=a,b,...brian with a; EG,\{13 and b; ∈ G2/{13. Then $w(X_2) = a_1b_1 \dots b_{k-1}a_k(X_2)$ c a,b, ... be-1 (X1) Ca,b, - . - a_K-1(X2) $\subset a_1(X_2) \subseteq X_1$. So wis not the identity. Same for all other words (3 more cases). In general, the rule is: find at least one element that, via some coarse partition of the set X, can be shown to land somewhere other than where it started. Example: Consider the copies of Z in M2(Z[t]) generated by $A = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$. Let X denote the set of column rectors (p(t)) with entries in Z[t]. Then $X = X_1 \sqcup X_2 \sqcup X_3$ where $X_i = \text{deg p(t)} > \text{deg q(t)}$ X2 = degp(t) < degq(t) X3 = degp(t) = degg(t) Then a straightforward degree argument gives $A^m(X_2) \subset X_1$ $\forall m$, and $B^n(X_1) \subset X_2$ $\forall n$. Thus $\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix}$ generate $\mathbb{Z} \times \mathbb{Z} \simeq \mathbb{F}_2$.

More generally, Suppose G, and G2 are subgroups of the multiplicative group of a ring R w no zero divisors. Define

$$p:G_1*G_2 \longrightarrow M_2(R[t])$$
by
$$p(g) = \begin{bmatrix} g & (g-1)t \\ 0 & 1 \end{bmatrix} \quad \forall g \in G_1$$

and
$$p(g) = \begin{bmatrix} 1 & 0 \\ (g-1)t & g \end{bmatrix}$$
 $\forall g \in G_2$.

Then this map is always injective. This is a key to a very elegant proof that G, and Gz being bi-orderable \Rightarrow G, \star G, is bi-orderable.

Example: Recall Mobius transformations (ie. elements of PSL (2, c) map circles to circles. We can also, for pair of circles C1, C2 find bounding disks D, and D2, find

"a Möbius transformation sending D to D2 or
Di to int ((Cux) \D,)
derior
Di derior Cinderior Di Di Control de de la control de la
So choose D_1 , D_2 ,, $D_{2g} \subset \text{Ru}\{\infty\}$ doshs with disjoint interiors. Let $\mathcal{E}_{R} \in PSL(2, \mathbb{C})$ be the
disjoint interiors. Let 8 REPSL(2, C) be the
ways jour
$\aleph_{R}\left(\inf\left(((U\infty)\backslash D_{2R-1})\right)=\inf\left(D_{2R}\right)$
for k=1,,g. Set XR = D2R-1 U D2R.
One can check that $X_k^l(X_k^c) \subset X_k \forall l >$
and any reduced word in the 1/k's satisfies:
The Yell Yell (Xik) CXi, (this is a bit tricky)
This reduced word.
this reduced word.
The subgroup of PSL(2, (1) generated
by {8, , , 8g} 15
Z*Z* * Z = Fg, the fee group
g times on g generators.
This is called a Schottky group.
Group.

Example: Let Homeo, (R) denote the group of order-preserving homeomorphisms of R. We can explicitly embed Fn C Homeo+ (R) as follows: Let Ta: R-> R denote Ta(x) = x-a, and Las the floor. Set $f_{n}(x) = \begin{cases} 2nx & \text{if } x \in [0, \frac{1}{2n+1}] \\ \frac{2n}{2n+1} + \frac{1}{2n} \left(x - \frac{1}{2n+1}\right) x \in [\frac{1}{2n+1}, 1] \end{cases}$ Define f. R-R to be $f_n(x) = (T_{iyi})' \circ f_n \circ T_{iyi}(y)$ ie. stack many of the fis.

For i=0,...,n-1, set $g_{i,n}=\left(T_{i/n}\right)^{-1}\circ f_{n}\circ T_{i/n} \quad \left(\begin{array}{c} \text{shift} \\ \text{scale} \end{array}\right. \text{by } \stackrel{.}{y}_{n}\right).$ Theorem: The subgroup of Homeo, (R) generated by {go,n, ..., gn-1,n} is a free group of rank n. Proof: Again, locate sets Xi = R such that $g_{i,n}(X_i) \subset X_i$ for all i. This means that free groups inheret many properties of Homeo, (IR), for example, left-orderability (Actually it turns out that Fn is bi-orderable).

Aside from these "baby" examples, does somethy like the pring-pong lemma come up in "real" research? Yes.

Theorem (Tits Alternative).

Let G be a findely generated linear group over a field. Then G is solvable-by-finite or contains a non-cyclic free group.

There are many far-reaching consequences to this, e.g. by Gromov dealing with group growth, etc.

In every known proof of Tit's theorem, and in every proof of generalizations of this theorem, the final steps (creating a free subgroup) follow from a ping-pong argument.

Some sample consequences:

Theorem: A linear group is not amenable iff it contains a non-abelian tree group.

More famously,

Theorem (Gromor).

Every finitely generated group of polynomial growth is nilpotent-by-finite.

(Thus you can determine the algebraic structure of the group simply by knowing that the Cayley balls centred at the origin grow in apaynomial fashion).