Institute of Information Technology (IIT)

Jahangirnagar University

Lab Report: 06

Submitted by:

Name: Md. Shakil Hossain

Roll No: 2023

Lab Date: 22/08/2023

Submission Date: 29/08/2023

K Nearest Neighbors(K-NN)

Import Libraries

In [12]:

import pandas as pd
import numpy as np

import seaborn as sns
import matplotlib.pylab as plt

%matplotlib inline

Get the Data

In [13]:

```
glass_data = pd.read_csv("glass.csv")
```

In [14]:

glass_data.head()

Out[14]:

RI	Na	Mg	AI	Si	K	Ca	Ва	Fe	Туре
0 1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.0	0.0	1
1 1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.0	0.0	1
2 1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.0	0.0	1
3 1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.0	0.0	1
4 1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.0	0.0	1

In [15]:

glass_data.describe().transpose()

Out[15]:

	count	mean	std	min	25%	50%	75%	max
RI	214.0	1.518365	0.003037	1.51115	1.516522	1.51768	1.519157	1.53393
Na	214.0	13.407850	0.816604	10.73000	12.907500	13.30000	13.825000	17.38000
Mg	214.0	2.684533	1.442408	0.00000	2.115000	3.48000	3.600000	4.49000
Al	214.0	1.444907	0.499270	0.29000	1.190000	1.36000	1.630000	3.50000
Si	214.0	72.650935	0.774546	69.81000	72.280000	72.79000	73.087500	75.41000
K	214.0	0.497056	0.652192	0.00000	0.122500	0.55500	0.610000	6.21000
Ca	214.0	8.956963	1.423153	5.43000	8.240000	8.60000	9.172500	16.19000
Ва	214.0	0.175047	0.497219	0.00000	0.000000	0.00000	0.000000	3.15000
Fe	214.0	0.057009	0.097439	0.00000	0.000000	0.00000	0.100000	0.51000
Туре	214.0	2.780374	2.103739	1.00000	1.000000	2.00000	3.000000	7.00000

In [16]:

glass_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 214 entries, 0 to 213 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	RI	214 non-null	float64
1	Na	214 non-null	float64
2	Mg	214 non-null	float64
3	ΑI	214 non-null	float64
4	Si	214 non-null	float64
5	K	214 non-null	float64
6	Ca	214 non-null	float64
7	Ba	214 non-null	float64
8	Fe	214 non-null	float64
9	Type	214 non-null	int64

dtypes: float64(9), int64(1) memory usage: 16.8 KB

In [17]:

glass_data.isnull().sum()

Out[17]:

RI	0
Na	0
Mg	0
Αĺ	0
Si	0
K	0
Ca	0
Ba	0
Fe	0
Type	0
dtype:	int64

```
glass_data.hist(figsize=(20,20))
```

Out[18]:

In [19]:

sns.pairplot(glass_data, hue='Type')

Out[19]:

<seaborn.axisgrid.PairGrid at 0x170e0cdc580>

standardize the variables

In [20]:

from sklearn.preprocessing import StandardScaler

In [21]:

scaler = StandardScaler()

```
In [22]:
```

```
X = pd.DataFrame(scaler.fit_transform(glass_data.drop(["Type"],axis = 1))) y =
glass_data.Type
```

In [23]:

X.head()

Out[23]:

		0	1	2	3	4	5	6	7	
	0 0.872	2868	0.284953	1.254639	-0.692442	-1.127082	-0.671705	-0.145766	-0.352877	-0.5
	1 -0.249	9333	0.591817	0.636168	-0.170460	0.102319	-0.026213	-0.793734	-0.352877	-0.5
	2 -0.72	1318	0.149933	0.601422	0.190912	0.438787	-0.164533	-0.828949	-0.352877	-0.5
	3 -0.23	2831	-0.242853	0.698710	-0.310994	-0.052974	0.112107	-0.519052	-0.352877	-0.5
	4 -0.31	2045	-0.169205	0.650066	-0.411375	0.555256	0.081369	-0.624699	-0.352877	-0.5
4										•

Train Test Split

In [24]:

from sklearn.model_selection import train_test_split

In [25]:

```
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.30)
```

Using KNN

In [26]:

from sklearn.neighbors import KNeighborsClassifier

In [27]:

```
knn = KNeighborsClassifier(n_neighbors=1)
```

In [28]:

knn.fit(X_train,y_train)

Out[28]:

KNeighborsClassifierKNeighborsClassifier(n_neighbors=1)

In [29]:

```
pred = knn.predict(X_test)
```

Predictions and Evaluations

In [30]:

from sklearn.metrics import classification_report,confusion_matrix

In [31]:

```
print(confusion_matrix(y_test,pred))
```

```
[[20 3
         0 0
              0]
[5 20
      2 2
           0
              0]
[3 0
      1 0 0
              0]
0 0]
      0 3 0
              0]
        0
0 0]
      0
           1
              0]
0 0]
      0 0 0 4]]
```

In [32]:

print(classification_report(y_test,pred))

	precision	recall	f1-score	support
1	0.71	0.83	0.77	24
2	0.87	0.69	0.77	29
3	0.25	0.25	0.25	4
5	0.60	1.00	0.75	3
6	1.00	1.00	1.00	1
7	1.00	1.00	1.00	4
accuracy			0.75	65
macro avg	0.74	0.80	0.76	65
weighted avg	0.77	0.75	0.75	65

Choosing a K Value

In [33]:

```
error_rate = []

# Will take some time
for i in range(1,40):

knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train,y_train)
pred_i = knn.predict(X_test)
error_rate.append(np.mean(pred_i != y_test))
```

In [34]:

Out[34]:

Text(0, 0.5, 'Error Rate')

In [35]:

```
#Orginal K=1
knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train,y_train)
pred = knn.predict(X_test)

print('WITH k=1')
print('\n')
print(confusion_matrix(y_test,pred)) print('\n')
print(classification_report(y_test,pred))
```

WITH k=1

[[20	3	1	0	0	0]
[5	20	2	2	0	0]
[3	0	1	0	0	0]
[0	0	0	3	0	0]
[0	0	0	0	1	0]
[0	0	0	0	0	4]]

	precision	recall	f1-score	support
1	0.71	0.83	0.77	24
2	0.87	0.69	0.77	29
3	0.25	0.25	0.25	4
5	0.60	1.00	0.75	3
6	1.00	1.00	1.00	1
7	1.00	1.00	1.00	4
accuracy			0.75	65
macro avg	0.74	0.80	0.76	65
weighted avg	0.77	0.75	0.75	65

In [36]

from sklearn.metrics **import** ConfusionMatrixDisplay **import** matplotlib.pyplot **as** plt

conf_matrix = confusion_matrix(y_test, pred)
vis = ConfusionMatrixDisplay(confusion_matrix = conf_matrix,display_labels = [True,False vis.plot()
plt.grid(False)

plt_show()


```
In [37]:
```

```
#Now With K=17
  knn = KNeighborsClassifier(n_neighbors=17)
  knn.fit(X_train,y_train)
  pred = knn.predict(X_test)
  print('WITH k=17')
  print('\n')
  print(confusion_matrix(y_test,pred))
  print('\n')
  print(classification_report(y_test,pred))
WITH k=17
[[21 3 0 0 0
                  0]
 [7 20 0 0 2
                  0]
 [4 0
        0 0 0
                  0]
 [ 1
        0
           1 0
                  0]
 [1 0 0 0 0
                  0]
 [0 1 0 0 0
                  3]]
```

	precision	recall	f1-score	support
1	0.62	0.88	0.72	24
2	0.80	0.69	0.74	29
3	0.00	0.00	0.00	4
5	1.00	0.33	0.50	3
6	0.00	0.00	0.00	1
7	1.00	0.75	0.86	4

In [38]:

from sklearn.metrics import ConfusionMatrixDisplay import matplotlib.pyplot as plt

conf_matrix = confusion_matrix(y_test, pred)
vis = ConfusionMatrixDisplay(confusion_matrix = conf_matrix,display_labels = [True,False vis.plot()
plt.grid(False) plt.show()

