Watch Luis Serrano - Naive Bayes Classifier

```
In [18]: import pandas as pd
    df = pd.read_csv("C:/Users/prasa/Desktop/py codes/ds projects/ML/13 Nai
    ve Bayes/titanic.csv")
    df.head()
```

Out[18]:

	Passengerld	Name	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
0	1	Braund, Mr. Owen Harris	3	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	Cumings, Mrs. John Bradley (Florence Briggs Th	1	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	Heikkinen, Miss. Laina	3	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	female	35.0	1	0	113803	53.1000	C123	
4	5	Allen, Mr. William Henry	3	male	35.0	0	0	373450	8.0500	NaN	
4											•

```
Out[19]:
             Pclass
                                  Fare Survived
                      Sex Age
                                            0
                     male 22.0
                               7.2500
           1
                 1 female
                          38.0 71.2833
           2
                 3 female 26.0
                                7.9250
           3
                 1 female 35.0 53.1000
                                            1
                     male 35.0 8.0500
In [20]: target=df.Survived
          inputs=df.drop('Survived',axis='columns')
In [21]: | dummies = pd.get_dummies(inputs.Sex)
          dummies.head(3)
Out[21]:
             female male
           0
                 0
                       1
                 1
         inputs = pd.concat([inputs,dummies],axis='columns')
In [22]:
          inputs.head(3)
Out[22]:
                      Sex Age
                                  Fare female male
             Pclass
                     male 22.0
                                7.2500
           1
                 1 female 38.0 71.2833
                                                0
                 3 female 26.0
           2
                               7.9250
                                                0
```

I am dropping male column as well because of dummy variable trap theory. One column is enough to repressent male vs female

```
In [23]: inputs.drop('Sex',axis='columns',inplace=True)
          inputs.head(3)
Out[23]:
             Pclass Age
                          Fare female male
          0
                 3 22.0
                        7.2500
                                  0
                                        1
                 1 38.0 71.2833
          1
                                  1
                3 26.0 7.9250
          2
                                  1
                                        0
In [24]: inputs.columns[inputs.isna().any()]
Out[24]: Index(['Age'], dtype='object')
In [26]: inputs.Age[:10]
Out[26]: 0
               22.0
               38.0
               26.0
               35.0
               35.0
               NaN
               54.0
          7
               2.0
               27.0
               14.0
         Name: Age, dtype: float64
In [30]:
         inputs.Age = inputs.Age.fillna(inputs.Age.mean()) #fill na with mean va
          lue
          inputs.head(6)
Out[30]:
             Pclass
                       Age
                              Fare female male
                 3 22.000000
                            7.2500
          0
                                            1
                                       0
          1
                 1 38.000000 71.2833
                                            0
          2
                 3 26.000000
                            7.9250
                                       1
                                            0
```

```
Pclass
                       Age
                             Fare female male
                1 35.000000 53.1000
                                      1
          3
                                           0
                3 35.000000
                           8.0500
                3 29.699118 8.4583
          5
                                      0
                                           1
In [31]: from sklearn.model selection import train test split
         X_train, X_test, y_train, y_test = train_test split(inputs, target, test
         size=0.2)
In [33]: len(X train)
Out[33]: 712
In [34]: len(X test)
Out[34]: 179
In [35]: len(inputs)
Out[35]: 891
In [37]: len(X train)
Out[37]: 712
In [38]: len(inputs)
Out[38]: 891
In [42]: from sklearn.naive_bayes import GaussianNB
         model = GaussianNB()
In [43]: model.fit(X_train,y_train)
```

```
Out[43]: GaussianNB(priors=None, var_smoothing=le-09)
In [44]: model.score(X_test,y_test)
Out[44]: 0.8435754189944135
In [45]: X_test[:10]
Out[45]:
               Pclass
                                 Fare female male
                          Age
                   3 2.000000 39.6875
                                               1
           824
           593
                   3 29.699118
                               7.7500
                                                0
           154
                   3 29.699118
                               7.3125
                               7.4958
           786
                   3 18.000000
                                                0
            61
                   1 38.000000 80.0000
                                                0
                   2 24.000000 27.0000
           600
                                                0
           514
                   3 24.000000
                               7.4958
                                               1
                                               1
           76
                   3 29.699118
                               7.8958
                   3 18.000000
                               7.7958
                                               1
           688
                   3 17.000000
                                8.6625
           500
                                               1
In [46]: y_test[:10]
Out[46]: 824
                  0
          593
                 0
          154
                  0
          786
                 1
          61
                 1
          600
                 1
          514
          76
                  0
          688
                  0
```

```
500
         Name: Survived, dtype: int64
In [47]: model.predict(X test[:10])
Out[47]: array([0, 1, 0, 1, 1, 1, 0, 0, 0, 0], dtype=int64)
In [48]: model.predict proba(X test[:10])
Out[48]: array([[0.96499346, 0.03500654],
                [0.0979403 , 0.9020597 ],
                [0.98765608, 0.01234392],
                [0.08073053, 0.91926947],
                [0.00194834, 0.99805166],
                [0.04108853, 0.95891147],
                [0.98669108, 0.01330892],
                [0.98770415, 0.01229585],
                [0.98485828, 0.01514172],
                [0.98452849, 0.01547151]])
         Calculate the score using cross validation
In [49]: from sklearn.model selection import cross val score
         cross val score(GaussianNB(),X train, y train, cv=5)
Out[49]: array([0.72727273, 0.76223776, 0.79577465, 0.8028169 , 0.75352113])
```