Assignment1

12011517 李子南

Q1.

(a) $\neg p$

(b) $p \wedge \neg q$

(c) p o q

(d) eg p o
eg q

(e) p o q

(f) $eg p \wedge q$

(g) q
ightarrow p

Q2.

(a)

p	q	$p\oplus q$	$p \wedge q$	$(p\oplus q)\to (p\wedge q)$
F	F	F	F	Т
Т	F	Т	F	F
F	Т	Т	F	F
Т	Т	F	Т	Т

(b)

p	q	$p \leftrightarrow q$	$\neg p \leftrightarrow q$	$(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$
F	F	Т	F	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
Т	Т	Т	F	Т

(c)

p	q	$p\oplus q$	$p \oplus \neg q$	$(p \oplus q) \to (p \oplus \neg q)$
F	F	F	Т	Т
Т	F	Т	F	F
F	Т	Т	F	F
Т	Т	F	Т	Т

Q3.

(a)

p	q	p o q
F	F	Т
Т	F	F
F	Т	Т
Т	Т	Т
p	q	$\neg p \lor q$
<i>р</i> F	q F	eg p ee q
		eg p ee q T
F	F	Т

The two propositions are equivalent

(b)

p	q	$p\oplus q$
F	F	F
Т	F	Т
F	Т	Т
Т	Т	F

p	q	$\neg p \vee \neg q$
F	F	Т
Т	F	Т
F	Т	Т
Т	Т	F

The two propositions are not equivalent

(c)

p	q	r	$(p \to q) \to r$
F	F	F	F
Т	F	F	Т
F	Т	F	F
F	F	Т	Т
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
Т	Т	Т	Т

p	q	r	p o (q o r)
F	F	F	Т
Т	F	F	Т
F	Т	F	Т
F	F	Т	Т
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
Т	Т	Т	Т

The two propositions are not equivalent

p	q	r	eg p o eg (q o r)		
F	F	F	F		
Т	F	F	Т		
F	Т	F	Т		
F	F	Т	F		
Т	Т	F	Т		
Т	F	Т	Т		
F	Т	Т	F		
Т	Т	Т	Т		
p			eg p		
	F		Т		

Т

The two propositions are not equivalent

Т

(e)

p	q	r	$(p\vee q)\to r$
F	F	F	Т
Т	F	F	F
F	Т	F	F
F	F	Т	Т
Т	Т	F	F
Т	F	Т	Т
F	Т	Т	Т
Т	Т	Т	Т

p	q	r	$(p \to r) \land (q \to r)$
F	F	F	Т
Т	F	F	F
F	Т	F	F
F	F	Т	Т
т	т	F	F

р Т	q F	г Т	$(p o r) \overset{ extsf{r}}{\wedge} (q o r)$
F	Т	Т	Т
Т	Т	Т	Т

The two propositions are equivalent

Q4.

$$\neg(p\oplus q)$$

$$\equiv (\lnot p \land q) \land \lnot (p \land \lnot q)$$

$$\equiv (p ee
eg q) \wedge (
eg p ee q)$$

$$\equiv (q
ightarrow p) \wedge (p
ightarrow q)$$

$$\equiv p \leftrightarrow q$$

(b)

$$\lnot(p
ightarrow q)
ightarrow \lnot q$$

$$\equiv (p \to q) \vee \neg q$$

$$\equiv (\lnot p \lor q) \lor \lnot q$$

$$\equiv \neg p \lor (q \lor \neg q)$$

$$\equiv True$$

(c)

$$\equiv (\lnot p \lor q) o ((\lnot r \lor p) o (\lnot r \lor q))$$

$$\equiv (\lnot p \lor q) o (\lnot p \lor \lnot r \lor q)$$

$$\equiv (p \wedge
eg q) ee (
eg p ee
eg r ee q)$$

$$\equiv \neg q \vee q \vee \neg r$$

 $\equiv True$

Q5.

$$(p \lor \lnot q) \land (q \lor \lnot r) \land (r \lor \lnot p)$$

$$egin{aligned} \equiv ((p ee
eg q) \wedge (q ee
eg r) \wedge r) ee ((p ee
eg q) \wedge (q ee
eg r) \wedge p) \end{aligned}$$

$$\equiv (p \wedge q \wedge r) ee (\lnot p \wedge \lnot q \wedge \lnot r)$$

If
$$(p \wedge q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r)$$
 is true, then $(p \wedge q \wedge r)$ or $(\neg p \wedge \neg q \wedge \neg r)$ Is true.

Therefore, only when p, q, r have the same truth value, $(p \lor \neg q) \land (q \lor \neg r) \land (r \lor \neg p)$ Is true.

Q6.

(a) They are logically equivalent

$$\equiv (\lnot p \lor q) \lor (\lnot p \lor r)$$

$$\equiv \neg p \lor q \lor r$$

$$\equiv \neg p \lor q \lor r$$

(b) They are logically equivalent

$$\equiv p ee
eg q ee r$$

$$\equiv \neg q \lor p \lor r$$

(c)They are logically equivalent

$$(p o q)\wedge (p o r)$$

$$\equiv (\lnot p \lor q) \land (\lnot p \lor r)$$

$$\equiv \neg p \lor (q \land r)$$

$$p o (q \wedge r)$$

$$\equiv \neg p \wedge (q ee r)$$

(d) They are not logically equivalent

$$(p \lor q) o r$$

$$\equiv (\lnot p \land \lnot q) \lor r$$

$$\equiv (\lnot p \lor r) \lor (\lnot q \lor r)$$

$$\equiv r \lor \lnot p \lor \lnot q$$

Q7.

(a)
$$\exists x (C(x) \land D(x) \land F(x))$$

(b)
$$orall x(C(x) \wedge D(x)) ee F(x)$$

(c)
$$\exists x (C(x) \land F(x) \land \neg D(x))$$

(d)
$$eg \exists x (C(x) \land D(x) \land F(x))$$

(e)
$$\exists x C(x) \wedge \exists x D(x) \wedge \exists x F(x)$$

Q8.

(a)
$$orall xF(x,Fred)$$

(b)
$$\forall y F(Evelyn,y)$$

(c)
$$\neg \exists x \forall y F(x,y)$$

$$(\mathsf{d})\exists p\exists q((p\neq q)\land F(Nancy,p)\land F(Nancy,q)\land \forall k(F(Nancy,k)\rightarrow ((k=q)\lor (k=p))))$$

(e)
$$\exists y \forall x (F(x,y) \land \forall z (F(x,z) \rightarrow z = y))$$

$$(\mathsf{f})\exists x(\exists y(F(x,y) \wedge \forall z(F(x,z) \rightarrow (z=y)) \wedge (y \neq x)))$$

Q9.

(a)
$$\exists y \forall x \forall z (\neg T(x,y,z) \land \neg Q(x,y))$$

(b)
$$\forall x \forall y \neg P(x,y) \lor \exists x \exists y \neg Q(x,y)$$

$$(\mathsf{c}) \forall x \forall y ((Q(x,y) \land \neg Q(y,x)) \lor (Q(y,x) \land \neg Q(x,y)))$$

(d)
$$\exists x \forall y \exists z \neg T(x, y, z)$$

Q10.

. .

$$(p \wedge q) \wedge (p
ightarrow \lnot (q \wedge r)) \wedge (s
ightarrow r)$$

$$\equiv (p \wedge q) \wedge (\neg p \vee \neg q \vee \neg r) \wedge (\neg s \vee r)$$

$$\equiv (p \wedge q \wedge \neg r) \wedge (\neg s \vee r)$$

$$\equiv p \wedge q \wedge \neg r \wedge \neg s$$

٠.

$$(p \wedge q) \wedge (p
ightarrow \lnot (q \wedge r)) \wedge (s
ightarrow r)
ightarrow \lnot s$$

$$\equiv \neg p \lor \neg q \lor r \lor s \lor \neg s$$

 $\therefore (s \lor \neg s)$ is always true

... The statement is true.

Q11.

(a)Domain of x: all the people

P(x): x is in the class

Q(x): x enjoys whale watching

R(x): x cares about ocean pollution

Somebody in this class enjoys whale watching: $\exists x (P(x) \land Q(x))$

Every person who enjoys whale watching cares about ocean pollution: orall x(Q(x) o R(x))

Therefore, there is a person in this class who cares about ocean pollution: $\exists x (p(x) \land R(x))$

	Step	Reason
1	$\exists x (P(x) \wedge Q(x))$	Premise
2	$P(a) \wedge Q(a)$	Existential instantiation from (1)
3	Q(a)	Simplification from (2)
4	orall x(Q(x) o R(x))	Premise
5	Q(a) o R(a)	Universal instantiation from (4)
6	R(a)	Modus pond from (3) and (5)
7	P(a)	Simplificationfrom (2)
8	$P(a) \wedge R(a)$	Conjunction from (6) and (7)
9	$\exists x (p(x) \land R(x))$	Existential generalization from (8)

(b)Domain of x: all people

a: Zeke

P(x): x owns a computer

Q(x): x can use a word processing

C(x): x is in this class

Each of the 93 students in this class owns a personal computer: orall x(C(x) o P(x))

Everyone who owns a personal computer can use a word processing program: orall x(P(x) o Q(x))

Zeke, a student in this class: C(a)

Zeke can use a word processing program: Q(a)

	Step	Reason
1	orall x(C(x) o P(x))	Premise
2	C(a) o P(a)	Universal instantiation from (1)
3	C(a)	Premise
4	P(a)	Modus pond from (2) and (3)
5	orall x(P(x) o Q(x))	Premise
6	P(a) o Q(a)	Universal instantiation from (5)

	\	
7	$egin{aligned} extstyle extstyle$	Reason Modus pond from (4) and (6)

- (c)Domain: all students
- P(x): x has taken a course in discrete mathematics
- Q(x): x can take a course in algorithms

Each of five roommates, A, B, C, D, and E, has taken a course in discrete mathematics:

Every student who has taken a course in discrete mathematics can take a course in algorithms:

All five roommates can take a course in algorithms next year: $Q(A) \wedge Q(B) \wedge Q(C) \wedge Q(D) \wedge Q(E)$

	Step	Reason
1	P(A)	Premise
2	orall x(P(x) o Q(x))	Premise
3	P(A) o Q(A)	Existential instantiation
4	Q(A)	Modus pond from (1) and (3)
5	P(B), P(C), P(D), P(E)	Premise
6	$Q(B),\ Q(C),\ Q(D),\ Q(E)$	Same reasons from (1) to (4) and (5)
7	$Q(A) \wedge Q(B) \wedge Q(C) \wedge Q(D) \wedge Q(E)$	Conjunction from (4) and (6)

Q12.

(a)
$$\exists n \in N(n^3+6n+5~is~odd \wedge n~is~odd)$$

(b) The statement in (a) is true

If
$$n^3+6n+5$$
 is odd, then $\exists k \in N(n^3+6n+5=2k+1)$

Then
$$n^3=2k-6n-4$$
 , $(2k-6n-4)\%2=0$

Therefore n^3 is even

Assume that n is odd, then $\exists q \in N (n=2q+1)$

Then
$$n^3 = 8q^3 + 12q^2 + 6q + 1$$

Because
$$(8q^3+12q^2+6q+1)\%2=1$$

Therefore n^3 is odd, it's contradict with previous conclusion, the assumption is wrong

Therefore n is even

Q13.

$$a^2 + b^2$$
 is even

 $Assume\ that\ \exists k\in N(a^2+b^2=2k)$

Then $a^2 + b^2 + 2ab = 2k + 2ab$

 $(a+b)^2 = 2(k+ab)$, a and b are integer

 $(a+b)^2 = (a+b)(a+b)$ is even

 $\therefore a + b \text{ is even}$

Q14.

Set
$$a=2$$
 , $b=rac{1}{2}$

Then $\sqrt{2}$ is an irrational number

The statement is wrong.

Q15.

Assume $\sqrt[3]{2}$ is rational, then $\exists p \in N \exists q \in N (rac{p}{q} = \sqrt[3]{2} \land (p,q \ are \ relatively \ prime))$

Therefore $rac{p^3}{q^3}=2$

$$p^3=2q^3$$
 , $\exists k\in N(p=2k)$

$$p^3 = 8k^3 = 2q^3$$

$$a^3 = 4k^3$$

Therefore p and q are both even, they are not relatively prime. It's contradict with the assumption, the assumption is wrong.

Therefore $\sqrt[3]{2}$ is irrational

Q16.

$$(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$$

 $9 < 5 + 2\sqrt{6} < 16$, $5 + 2\sqrt{6}$ is not a perfect square.

Therefore $(\sqrt{2}+\sqrt{3})=\sqrt{(5+2\sqrt{6})}$ is an irrational number.

Q17.

Case1: We win and our bid is the highest.

Then our payment is the second highest bid b_{h_2}

If
$$b_{h_1}=v_n>b_{h_2}$$
: our payoff is $v_n-b_{h_2}>0$

If
$$b_{h_1}>v_n=b_{h_2}$$
: our payoff is $v_n-b_{h_2}=0$

If
$$b_{h_1}>b_{h_2}>v_n$$
: our payoff is $v_n-b_{h_2}<0$

If
$$b_{h_1}>v_n>b_{h_2}$$
: our payoff is $v_n-b_{h_2}>0$

If
$$v_n>b_{h_1}>b_{h_2}$$
: our payoff is $v_n-b_{h_2}>0$

Case2: We win and our bid is one of the highest.

Then our payment is the highest bid b_h

If $v_n=b_h$: our payment is $v_n-b_h=0$

If $b_h>v_n$: our payment is $v_n-b_h<0$

Case3: We lose.

The payoff is always 0

Overall, we can see in all cases $b_n=v_n$ will always lead to a payoff that is no small than $b_n
eq v_n$