

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2002年11月7日 (07.11.2002)

PCT

(10)国際公開番号
WO 02/088529 A1

(51)国際特許分類:
F02B 53/00,
53/10, 53/08, F02M 25/022

(21)国際出願番号:
PCT/JP02/04066

(22)国際出願日:
2002年4月24日 (24.04.2002)

(25)国際出願の言語:
日本語

(26)国際公開の言語:
日本語

(30)優先権データ:
特願2001-127258 2001年4月25日 (25.04.2001) JP
特願2001-301153 2001年9月28日 (28.09.2001) JP

(71)出願人および
(72)発明者: 中野正圓 (NAKANO,Syouen) [JP/JP]; 〒959-
2407 新潟県 北蒲原郡 加治川村大字川口 215番地
5 Niigata (JP).

(81)指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,

DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,
NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
ZM, ZW.

(84)指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW,
MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特
許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される
各PCTガゼットの巻頭に掲載されている「コードと略語
のガイドスノート」を参照。

(54) Title: ENGINE

(54)発明の名称: エンジン

pressure, high velocity gas flow.

(57) Abstract: A tubular body (2) smaller than a tubular body (1) is placed in the frame (1) and the opposite ends are closed. The inner tube (2) is held in eccentric state with respect to the outer tube (1) and then the outer tube (1) and the inner tube (2) are coupled through a vane (3) and rotated. A rotor (3) performs suction and exhaust through resulting variation of volume and supplies air to a combustion chamber (6) separated therefrom. The air is combusted together with fuel and water is also jetted in order to rotate an output rotor with high pressure gas. Even in a conventional reciprocating engine or a rotary piston engine, the combustion chamber is separated, fuel and water are jetted and the engine is driven with high pressure gas. In case of a turbine engine, water is jetted around the combustion chamber and the turbine is rotated with high

WO 02/088529 A1

[締葉有]

(57) 要約:

筒状（1）の中にそれより小さい筒状（2）のものを入れ、両端をふさぎ、外側の筒（1）に対し、中の筒（2）を偏芯状態の保ち、外側の筒（1）と中側の筒（2）をベーン（3）でむすび、回転させて、そこに構成される容積変化で、吸入、排出するローター3を作り、そこから分離された燃焼室（6）へ空気を送り、燃料と燃焼させ、水なども噴射し、高圧ガスで出力ローターを回転させ、また、従来のレシプロエンジン、バンケルエンジンでも燃焼室を分離させ、燃料や水などを噴射し、高圧ガスでエンジンを動かし、タービンエンジンでは、燃焼室あたりに水を噴射し、圧力を高くして高速ガス流でタービンを回転させる。

1

明細書

エンジン

技術分野

この発明は、ロータリーエンジンとレシプロエンジンとターピンエンジンに関する。

5 ジンに関する。

背景技術

レシプロエンジンはピストン、コンロッド等の往復運動によるエネルギー損失、ギヤ損失、シリンダーとピストンやその他の限界等のエネルギー損失、熱エネルギーを運動エネルギーに変換できず熱として放出する損失、振動が大きく音も大きいなど弊害もあり、エンジンも大きいため車などに使用した場合、特に最近ではエンジンルームの余裕が少なく、整備のため手が入りにくく、工具も使いづらく、またエンジンは大きく重く、部品点数も多く、高性他にするためには精密に作る必要があり、多くの問題を解決するほどエンジンは高価になり、バンブル型のロータリーエンジンでは、最適の燃焼室形状（燃焼速度の速い理想的な形状）を作ることが難しく、いずれのエンジンにおいても燃焼速度が速いほど窒素酸化物が多く発生し、構造上燃焼速度を遅くすればするほどエネルギー損失も多くなり、ディーゼルエンジンでは、粒子状物質が多く発生し、燃焼速度を遅くするほど窒素酸化物は減るが、エネルギー効率は悪くなり、水噴射はガソリンエンジンなどでは古く、燃焼を良くするので燃焼促進として使われたが、水を噴射し、その気化で気化熱を奪うので、燃焼室の温度を低下させて窒素酸化物の排出も低下少なくし、水の燃焼促進として使われるが、水を噴射する。

15 その解決方法として、燃焼室に水エマルジョン燃料を噴射する方法があり、水噴射はガソリンエンジンなどでは古く、燃焼を良くするので燃焼促進として使われるが、水を噴射し、その気化で気化熱を奪うので、燃焼室の温度を低下させて窒素酸化物の排出も低下少なくし、水の燃焼促進として使われるが、水を噴射する。

10 ターピンエンジンでは、吸入した空気を高圧縮するほどエネルギー効率は増すが、燃焼温度が高くなり窒素酸化物が増え、ターピン翼の耐熱限界を超える温度上昇はできず、いずれのエンジンにおいてもかなりのエネルギーを捨てている。

15 発明の開示

本発明は、ロータリーエンジンでは、筒の中にそれより小さい筒を入れ、両端をふさぎ、外側の筒に対して内側の筒を偏芯させ、外側の筒と内側の筒をペーンで結び、回転させ（外筒に対し内筒を移動させ）、外筒、内筒、ペーンで構成された空間の変化で、吸込圧縮をし、そこから燃焼室を分離し、燃焼室を回転させ、または燃焼室を長くしたりで燃焼時間を見くし、水も噴射する。

20 また、レシプロエンジン、バンブルエンジンでも燃焼室を分離し、長時間燃焼できるようにして、水も噴射する。

25 ターピンエンジンでは、吸入空気をできるだけ高压にし、その高压の空気を燃焼室で燃料と燃焼させ、高温高压のガスを作り、その温度を下

2

造効果で、粒子状物質排出を低下させる効果があり、これをディーゼルエンジンで燃料と水をコロイド状にし、水エマルジョン燃料として使用する方法があるが、水と油をコロイド状態に長く保てば水と燃料が分離する可能性が高くなり、長期間エンジンを使用しないと、水と燃料が分離し、エンジン始動できなくなる恐れがあり、その対策が必要になる。

5 また、コロイド状態を作るための添加剤も必要とし、それを作るための製造装置も必要とするなど、一般のエンジンに使用するには多くの問題を抱えている。また従来の内燃機関では、気圧の変化する航空機用エンジンなどでは、航空の気圧の低いところは充填効率が悪く、過給機を必要とする。

10 ターピンエンジンでは、吸入した空気を高圧縮するほどエネルギー効率は増すが、燃焼温度が高くなり窒素酸化物が増え、ターピン翼の耐熱限界を超える温度上昇はできず、いずれのエンジンにおいてもかなりのエネルギーを捨てている。

3

げるため、燃焼室に水を噴射し、温度を下げ、高圧のため高速のガスをタービンに送り、ガスの温度を下げるため、タービン翼の耐熱温度を高めなくとも、タービンの効率を上げる。

5 図面の簡単な説明

第1図は、本発明のロータリーエンジンの考え方を表した図であり、第2図は、ロータの吸入、排出を説明する図であり、第3図もローターの吸入、排出を説明する図であり、第4図も弁を設けたローターの吸入、排出を説明する図であり、第5図は、外筒と平板が一体で、外筒とベーンを切り離した状態の説明図であり、第6図は、外筒と平板が一体で、外筒とベーンを切り離しした状態の説明図であり、第7図は、外筒と平板が一体で、外筒とベーンを切り離し、偏芯しないシャフトを持つローターの説明図であり、第8図は、外筒と内筒と内筒を回転させるローターの説明図であり、第9図も外筒とベーンと内筒を回転させるエンジンの説明図であり、第10図は、燃焼器、燃焼室、それを動かすギヤの説明図であり、第11図は、シャフト、ベーン、外筒を一体化したものの説明図であり、第12図は、圧縮機、燃焼器、燃焼室の説明図であり、第13図は、圧縮ローターの回転を変化させる説明図であり、第14図は、プラネットリギヤとクラッチの説明図であり、第15図もプラネットリギヤとクラッチの説明図であり、第16図は、ベーン及び内筒とその関係の説明図であり、第17図もベーン及び内筒とその関係の説明図であり、第18図もベーン及び内筒とその関係の説明図であり、第19図もベーン及び内筒とその関係の説明図であり、第20図は、外筒と内筒の接触部分説明図であり、第21図は、連続燃焼の燃焼器の説明図であり、第22図は、ローター、燃焼器、回転弁の説明図であり、第23図は、脈動を平滑化する説明図であり、第24図は、圧縮ローターを複数にし、回転弁を設けた図であり、第25図は、分離燃焼室を持つタービンエンジンに似ており、そのため燃焼器もタービンエン

4

5

発明を実施するための最良の形態及び実施される可能性のある形態

第1図から第29図は本発明の実施例であり、図と符号と共に本発明の実施例を説明する。

第1図は、本発明の考えを示した概念図で、1は筒状の外筒で、その中に内側の内筒2が嵌まり、外筒1やシャフト4と一緒に化したベーン3や、外筒1と内筒2に支えられたベーン3、筒の両端をふさぐ部分で支えられたベーンなどがあり、第1図の内筒2はシャフト4に支えられ、外筒1に対し筒のように接触するように偏芯して、外筒1とベーン3と内筒2が共に回転するローターができる。

10 そのためベーン3で左右に分割された空間が、外筒1、ベーン3、内筒2が矢印方向に回転することで変化し、そのため左側の吸入管9から空気を吸引し、それを燃焼器5の燃焼室6に送り、図では燃料噴射弁や点火プラグは省略したが、そこで燃料と燃焼させ、燃焼室6は図のよう

15 に矢印方向に回転するため、高圧の燃焼ガスは右側の外筒1、ベーン3、内筒2のローターの方へ送られ、高圧のガスで空間を増大せようとすると、このローターは矢印方向に回転しようとし、ガスは排出管10で排出され、右側のローターと左側のローターはつながれており、そのため右側の出力するローターで左側の圧縮するローターは回転させられ、このようにしてエンジンが成立し、燃焼器5の左側は圧縮ローター、右側は出力ローターとなる。

20 これはタービンエンジンに似ており、そのため燃焼器もタービンエン

5

ジンのように保炎器やミキサーなどを使用でき、逆流燃焼も可能である。このエンジンはシャフト4を固定し他を回転させるが、外筒1、ベーン3の回転を止め、シャフト4の回転で、内筒2を外筒1に対し移動させても、このエンジンは成立する。

5 さらに、従来のレシプロエンジンと比較すれば、往復動のピストンやコントロッド、弁を動かすカム機構などが必要で、クラシク室を大きくしたようなエンジンになり、大幅に小型化できる。

回動自在部分などは普通ボールベアリングやローラーベアリングなどを使用するが、本発明の説明にこのようなものは省略し、組み立て上組み立たない構成部分は、組み立つよう分解し、組み立てて一体化すればよく、このようなどころも省略する。

第2図から第7図で、圧縮ローターや出力ローターがどのようなもののかを述べると、まず第2図の左側の図を見ると、外筒1とベーン3は一體化され、外筒1はその中心をシャフト4（点線で示す）で支えられ、内筒2もシャフトの偏芯部分（点線で示す）で支えられ、外筒1に対して内筒2は偏芯し、それで外筒1と内筒2を図のように接触させ、外筒1と内筒2との空間をベーン3で2つに分解し、シャフト4を固定し、外筒1を矢印方向に回転させればベーン3も回転し、そのベーン3で内筒2が回転せられ、ベーン3の左側の空間は増大し右側の空間は減少し、したがって増大する方に吸入口を設け、減少する方に燃焼室からの通路を設ければ、圧縮機となり、増大する方に燃焼室からの通路をつなぎ、減少する方に排出管を設ければ、出力機となる。

右図は左図の断面であるが、見やすいようハッチングは省略し、図のように吸入口9をシャフト4の中間に設けたもので、吸入する空気をシャフト4から内筒2を通じて吸入するが、内筒2は固定されたシャフト4の偏芯した部分で支えられ、ベーン3で回転させられると、内筒2に設

6

けた吸入口9とシャフト4の吸入口9の穴がずれていれば吸入はできないが、図示しないが、内筒2にシャフト4の吸入口9と通じるよう円状の溝を設け、シャフト4の吸入口9と円状の溝はいつも通じるため、その溝を内筒2の吸入口9とすれば、常に吸入でき、排出も同じようにできる。

第3図ではまず左図を見ると、外筒1と一緒に化されたベーン3が回転すると、ベーン3が内筒2に嵌まり込むため、内筒2を図のように大きく部分や、内筒2とシャフト4の間にシャフト4の吸入口9から吸引し、ベーン3の左側の内筒2の矢印部分に穴を設け、矢印のようにベーン3の左の室に吸引し、ベーン3の右側の室の排出は図のようにベーン3の中に空洞を設け、排出側の室に通じた穴を図のように設ければ、矢印で示すようにベーン3の中に排出ガスを取り込み、そこから右図で示すように排出管10から排出ができる、左右の図の中央に示す図は、ベーン3が吸引と排出ができるようベーン3に左右に分かれた空洞を設け、それで吸引と排出を行うこともでき、右図に吸引管9を2つ点線で示したが、そのどちらでもよく、両方設けることもでき、第4図では、第3図で示したように排出側を右図点線で2つ示したが、左図で見るようベーン3で分割された左右の室への吸引口と排出口を、外筒1より周の外側にはみ出すよう設けたもので、それは吸引と排出の口が図の下部にきたとき、内筒2の内側にこないようしたるもので、内筒2の筒の厚さを厚くし、内側に吸引口や排出口を設けても、内筒2でふさがれれば、吸引口や排出口を内側に設けても問題はなく、これまでシャフト4以外に設けた吸引管と排出管は、外筒1や平板（平面で板状なので平板と記す）8と一緒に化され共に回転するが、第4図右図の左側に吸引管9を示すが、外筒1や平板8と一緒に化され共に回転する吸引管9と、回転しない吸引管9を構成し、それをハッキングの違いで表したが、回転しない

吸入管 9 (ハッチングを細かくした部分) はシャフト 4 の回りを円状に吸入管 9 を構成し、回転する吸入管 9 の方もシャフト 4 の回りを円状に吸入管 9 を構成しているため、回転するものと回転しないものとをつなぐことができる。

5 以上第 2 図、第 3 図、第 4 図でいろいろな吸入と排出方法を示したが、これらをいろいろ組み合わせることができる。

6 第 5 図は、ローターに弁を設けたもので、図 (a) を見ると、弁 2 4 とリンクカム 2 5 をつけたのがわかり、その断面を図 (b) で示し、リンクカムと弁は両側に設けたが、2つ必要な数の弁 10 やカムを設ければよく、弁を設けるとどのような効果があるか、その作動と共に説明すると、図 (c) で示すように弁 2 4 の凸部とリンクカム 2 5 の凹部が噛み合い、リンクカム 2 5 はシャフト 4 に固定され、弁 2 4 がリンクカム 2 5 の回りを回転し、弁 2 4 が外筒 1 に対し往復動をする。

15 図 (d) では弁 2 4 が閉じたところを示しており、弁 2 4 は外筒 1 の凹部に嵌り、なお図のように弁 2 4 の上部に隙間があり、そのため弁 2 4 と外筒 1 がぶつからず、バネなども必要なく、きわめてシンプルな構造で往復動弁機構となる。

20 図 (e) では弁 2 4 が平板 8 にどのように嵌るかを示し、弁 2 4 は断面が T 字型のため、平板 8 からは抜けない。

21 図 (f) はリンクカム 2 5 のシャフト 4 を取り巻く部分を外部に伸びし、その先にウォームギヤ 2 6 を設け、そのウォームギヤの螺旋ギヤ 2 7 を回転させて、リンクギヤ 2 5 を回転させ、弁 2 4 の開閉位置を変えるもので、例えば図 (g) では矢印 A 方向に回転すると、リンクカム 2 5 と弁 2 4 の関係で、矢印 A に示す範囲に弁 2 4 が来ると弁が開き、他では弁 2 4 は閉じるが、しかし、先に示したウォームギヤ 2 6 で、リンク

カム 2 5 を回転させれば、弁 2 4 の開閉位置を変えられる。

これまで外筒 1 に対して内筒 2 を偏芯させるため、シャフト 4 を偏芯させ、その偏芯部分で内筒 2 を支えたが、第 6 図ではシャフト 4 は偏芯せず、その偏芯しないシャフト 4 を、外筒 1 と内筒 2 の両端をふさぐ平板 8 を外筒 1 と切り離し、平板 8 を回転させず固定し、その平板 8 に、外筒 1 の中心にシャフト 4 を回動自在に取り付け、第 6 図の左図を見る

と、外筒 1 とベーン 3 は一体化し、シャフト 4 も一体化されている。したがってこれら一体化された外筒 1 、ベーン 3 、シャフト 4 は同じ回転をするもので、シャフト 4 と外筒 1 は、回動自在に平板 8 で支えられ回転するが、右図で見るようすに、両側の平板 8 の間隔は動かねようすに連結体 4 5 で連結され、内筒 2 は外筒 1 に対し偏芯した状態で、一部を外筒 1 と接触させながら回転するようすに、右図で見るようすに平板 8 に内筒 2 と同じ円状の溝を設け、その溝に内筒 2 が回動自在に嵌まり、そのためベーンの回転で内筒 2 も回転させられる。

15 先に説明したもののは平板 8 を回転させ、そこに吸入口や排出口を設けたが、この場合平板 8 を回転させなくともよいため、図示しないが、平板 8 に吸入口と排出口を設け、そこでの吸入口や排出管を設ければ、それらは回転させずにすむ。

20 次に外筒 1 とベーン 3 を切り離し、外筒 1 と平板 8 を一体化し、ベーン 3 とシャフト 4 を一体化したものを見ると、左図は右図の断面で、右図は左図の断面であり、もう説明するまでもないであろうが、外筒 1 と平板 8 は図のように一体化されており、外筒 1 と平板 8 は回転させず固定し、第 6 図で示したものと同じく、吸引管や排出管を設けても、回転させが必要がなく、外筒 1 も回転しないので、外筒 1 に吸引管や排出管を設けるのも簡単になり、これは最もシンプルな構造のため、特に安価になり、以上第 2 図から第 7 図まで、多く

9

の形式を述べたが、次にエンジンにすることを述べる。

第8図の左図はローターの断面図で右図は左図をエンジンとした図であり、シャフト4を回転させず固定し、その周りを外筒1と内筒2を回転させるもので、右図のように圧縮のローターと出力のローターとで2つあり、その間に燃焼器5がある。

右図左側吸入管9のある方が圧縮ローターで、排出管10を持つ方の右が出力ローターとなり、吸入や排出の方法はいくつか方法を述べたので、例えばシャフト4の回転の中心方向から吸入すれば遠心力が利用できるなど、それぞれ最もよい方法を用いればよいもので、まず右図左側の吸入管9より空気を吸いし、この吸入管9は回転せず、シャフト4の周囲も円状に吸入管は構成され、そこに同じく円状に構成された回転する吸入管9を図のように絞り、回転しない吸入管と回転する吸入管を持つローター、外筒1、内筒2、ベーン3、平板8で構成された空間を持つローター、右図では左側のローターに空気を吸い込み、圧縮し、それを燃焼器5の回転する燃焼室6に送り、図示しないが噴射弁で燃料を燃焼室に噴射し、燃焼させ、燃焼室は回転するため燃焼室から右側の出力ローターに高圧のガスが送られ、高圧のガスがローターに入ればそのまま空間が増大する方向に回転し、出力ローターの出力でローターは回転し、膨張したガスは排出管10から排出される。

出力は出力ローターの右側にギヤを設け、そのギヤと噛合うギヤを持つ出力軸11で出力を取り出すものである。

右図左側のローターの断面は左図になるが、右図右側のローターの断面は、左図の3つある矢印方向を逆にして図を裏側から透かして見た形状となり、燃焼室を回転させる方法は別図で説明する。

第9図では、同じようにシャフト4の周りを圧縮ローターと出力ローターが回転するが、左図の左側の支え31はシャフト4の回転を止めて

10

支え、そこに噴射ポンプまたはデストリビューター29があり、回転する圧縮ローターと回転しないシャフト4で作動し、エアクリーナー30も図のようにあり、これは圧縮ローターと共に回転し、そこから空気を吸入し、先に述べたようにエンジンを作動させ、出力ローターと一体化された出力軸11から出力を取り出すもので、出力ローターと一体化した排出管10と出力軸11から出力を取り出され、ハッチングの邊いで切り離されたことがわかる排出管10と、右側の支え31が一体化されて、出力軸11を回転自在に支え、支え31と一緒に一体化した排出管10は、出力軸11のところが円状で、そこに回転する排出管10がつながるため、回転する排出管と回転しない排出管をつなぐことができる。

第9図の右図は、燃焼器の燃焼室の回転とローターの回転との関係を説明するもので、燃焼室6は回転のため、圧縮ローターで圧縮し燃え、今まで充填しつづけた燃焼室から次の燃焼室に充填するよう、回転のタイミングを合わせる必要があり、燃焼室の回転と出力ローターの回転と同じで、第8図右図の燃焼室から高圧のがスを出力ローターに送るのが、これから高圧ガスを送り始めるが、すでに燃焼室は半分ほど回転しており、これはよいタイミングではなく、燃焼室がこのような位置ならば、内筒2の位置は第9図右図の上の図に示すように、圧縮側も出力側も一番下まで下がっているが、このような位置ならば良いタイミングで回転するが、圧縮側の内筒2の位置が最も下にあり、出力側が最も上にあれば第9図右図の下の図のように、燃焼室を3つにして、圧縮側の燃焼室は充填し始めてから充填し終わるまでの半分回転し、出力側はこれから高圧のガスを出力ローターに送ろうとするところであり、このような位置になるよう回転するのがよい。

第10図左図では燃焼室を4つに分割したが、多く分割するほど燃焼時間は長くでき、燃料の噴射弁7を設けたが、この図の場合は燃焼器5

11

の上半分の位置なら取り付け位置は何か所でもよく、圧縮ローター側に噴射する方が燃焼時間は長く、燃焼時間が長い方が粒子状物質の排出は少なく、ゆっくり燃焼させるほど窒素酸化物の排出もなくなり、従来のエンジンでは、速く燃焼させるほど燃費の良いエンジンになるが、窒素酸化物と粒子状物質の排出が多くなり、そのため水と燃料を混ぜたエマルジョン燃料を使用し、燃焼を速く良くし、水の気化で熱を奪い燃焼温度を下げ、窒素酸化物と粒子状物質の排出を少なくする方法があるが、この方法は水と燃料をコロイド状にするため、長時間経過すると水と燃料が分離し、エンジンを始動できなくなる恐れがあり、コロイド状にするための添加剤を必要とし、コロイド状にするための装置も必要とするなど、多くの問題を抱え、車などの使用は困難がある。

しかし本発明によれば、燃焼時間を大幅に長くできるため、急激な燃焼をさせる必要がなく、窒素酸化物や粒子状物質の排出を防ぎ、さらに水を燃焼室に噴射することで、よりいっそう燃焼温度を下げ粒子状物質と窒素酸化物の排出を少なく、水と燃料のエマルジョン燃料は必要とせず、ただ水を噴射弁7(点線で示す、燃焼器の上半分ならどこでも何か所でもよい)で噴射することで達成される。

本発明のエンジンは燃焼時間を大幅に長くでき、従来のエンジンでは燃焼時間を短くした方が効率のよいエンジンのため、水粒子の気化膨張に伴って燃料を微細化し、燃焼を促進し、燃焼時間を短縮する効果、ミクロ爆発効果を利用するもので、そのためエマルジョン燃料を利用するが、本発明は、先に述べたように、燃焼時間を短縮する必要は全くなく、大幅に燃焼時間を延ばすことができ、そのため、ミクロ爆発効果による燃焼時間短縮効果は不要であるが、特に水噴射で、気化熱を奪い窒素酸化物を少なくする効果を利用し、燃焼時間を長くできるので、粒子状物質を少なくてすむ。

12

さらに燃焼器の燃焼室の大きさを小さくして圧縮比を高くし、本発明は燃焼室を圧縮ローターと出力ローターと出力ローターより分離したため、いくらでも圧縮比を高められ、さらに後で説明するが、圧縮ローターと出力ローターの回転を変えることでも圧縮比を大幅に高圧縮に変化させることができ、従来のエンジンは、圧縮する同じ空間で燃焼し、その同じ空間で膨張させ出力を得るため、噴射弁、バルブ、良い燃焼室形状確保のためなど、多くの制約で圧縮空間をいくらでも小さくはできず、いくらでも高圧縮にはできないが、本発明ではそのような制約はなく、いくらでも高圧縮が可能で、そのためエンジン効率を高められ、燃焼時間も大幅に長くできるため、水を大幅に噴射し、燃焼の熱で水を気化させ、蒸気エンジンのようにもでき、内燃式エンジンと蒸気エンジンを組み合わせた、内燃蒸気エンジンとでも言うべきものにもできる。

水を多く噴射でき、長時間燃焼や長時間水を気化させることは、エンジンを大幅に冷却でき、従来のエンジンのように、ラジエーターを使いエンジンを冷やす必要はなく、ラジエーターを不要にでき、それだけ安価で、熱をラジエーターで捨てないでの、エンジン効率もさらに良くなる。

第10図右図は燃焼器の中の燃焼室を回転させるためのギヤで、シャフト4にリングギヤ23Aが取り付けられ、そこにギヤ23Bが噛み合ひ、その23Bのギヤとシャフトでつながれたベルギヤ23Cが、ベルギヤ23Dと噛合い、方向を変え、そこからシャフトを伸ばし、先端のベルギヤ23Eが燃焼室を回転させるベルギヤ23Fと噛み合ひ、燃焼室を回転させるもので、かららずもこのようにならなければならぬことはなく、圧縮ローターと出力ローターにあわせ、燃焼室が回転すればよいものである。

これまで外筒1と平板8を一体化し共に回転させたが、外筒1と平

板8を切り離し、今度は平板8の回転を止め、平板8の周りを外筒1が回転するもので、第11図左図はローターの断面、右図は左図をエンジンとした段面で、ここでは外筒1とベーン3とシャフト4が一体化され、共に回転し、内筒2は平板8の円状の溝に支えられるもので、平板8が第6図を用いてすでに説明したものとをエンジンにするもので、平板8が回転しないため、吸入管や排出管を回転させることがなく吸入と排出ができ、左図の細かいハッチング部分のAやBの平板8の位置に吸入口や排出口を設ければよく、右図左側に吸入管9を示し、右図の右側に点線で排出管10を示した。

10 どのようにエンジンとして作動させるかは、第8図や第9図で説明したものと同じため省略するが、違うところは外筒1と平板8が切り離され、その平板8でシャフト4を支え、内筒2は平板8の溝で位置を定められ、ベーン3で回転されるものであり、さらに第7図で示したものでもエンジンにできるが、第11図で示すものの、外筒1と平板8が一体化され、外筒1とベーン3が切り離されて、外筒1と平板8の方が回転せず、ベーン3とシャフト4が回転するもので、あまりにも簡単すぎるのでエンジンとして示すことは省略する。

ただ外筒1が回転しないので、そこに吸入管や排出管を設ければ回転しないので、特に外筒に排出管を設けると排出が有利である。

15 第12図は圧縮ローターをさらにもう1段加え、2段圧縮にして高圧縮しやすくしたもので、左図は第7図で示したもので、シャフト4とベーン3が一体で、ベーン3で内筒2が回転させられ、外筒1にあたる部分は平板8を利用し、このローターの平板8にあたる部分も平板8で、平板8は回転せず、ベーン3が筒状の中を回転することで、すでに説明したようにベーン3で左右に分けられた空間の大きさが変化し、図示しない大きな圧縮ローターから実線矢印で示すように、正縮された空気を

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
183

いと、過吸機で充填する必要があるが、これはパンケルエンジンでも同じであり、本発明は圧縮ローターと出力ローターと同じローターにすることも当然でき、このことは簡単なので省略するが、圧縮ローターと出力ローター、それに燃焼室もそれぞれ分離できるので、出力ローターに対し圧縮ローターの回転を上げれば、充填効率も上げることができる。

第13図から第15図でこのことを説明すると、第13図は圧縮ローターと出力ローターが別々で、その間を高圧ガス空間4でつないでいるが、これはシャフト4を利用して（シャフト4を利用せずともよい）、そして圧縮ローターと出力ローターを、ここではラネタリギヤでつないでおり、まず、圧縮ローターは弁のある第5図で示したものを使用するが、必ずしも第5図でなければならぬことではなく、ここでは燃焼室となる高圧ガス空間4に回転燃焼室を使用していないので、弁のある圧縮ローターを使用するもので、シャフト4を固定し、外筒1や平板8を回転させ、左側の圧縮ローターに吸入した空気を高圧にしてから、第15図で説明したように弁24を開き、高圧ガス空間4に移動されれば、弁24があるため高圧ガス空間4からのガスの逆流を防ぐため、圧縮ローターを逆回転させる力が働くくなる利点がある。高圧ガス空間4に移動した圧縮空気に、図示しないが燃料噴射弁から燃料を噴射し、混合ガスの場合は点火ブラングで点火し、さらに水なども噴射すれば、気化熱が奪われ温度が低下するため、シャフト4に与える熱の影響は少なく、シャフトの中を通過せられ、シャフト4を通過するには、高圧ガス空間4をシャフト4の周りに円状に設ければ、シャフト4の高圧ガス空間4は常にその円状の空間とつながり、ガスが常に移動でき、また、円状の空間を設ければ、弁として働き、一定量のガスを移動させることもでき、そして右側の出力ローターに高圧ガスを送れば、すでに説明したとおり、出力ローターで出力できる。

どのように圧縮ローターに対し出力ローターの回転を変化させるか述べると、回転を変える方法は実に多くあり、車などで使用するトランスマッシュションその他多くの方法があり、ここでは回転を変える方法1つのみ記述する。

5 第13図で示すラネタリギヤ23を第14図と第15図で詳しく説明する。

第14図はラネタリギヤ23で、左図の断面を右図に示し、右図の断面を左図に示すと、サンギヤ32の中にシャフト4が回動自在に嵌り、その周りをラネタリビニオンギヤ33（以後ビニオンギヤと記す）が10 3つその両端をビニオンギヤのピンと一体化したリンク35がそのビニオンギヤ33の間隔を一定に保ち、その周りにリングギヤ34があるが、右図に示すリングギヤ34は、回転止め41と一体化してリンクギヤ34の回転を止めており、リンク35とサンギヤ32が延びてテーベークリング36と39を形成し、それぞれに対応するテーベークリング3が15あり、それでコーンクラッチとなつておらず、その部分を第15図で働きを詳しく述べると、リングギヤ34は回転止め41で回転を止められ、その下にビニオンギヤ33があり、リングギヤ34とビニオンギヤ33との間の細かいハッチング部分は歯の噛み合っている部分を殺し、サンギヤ32とビニオンギヤ33とのハッチングの細かい部分も歯の噛み合っている部分であり、サンギヤ32は圧縮ローターの延長部分43と一緒に化され、サンギヤ32が1回転すれば圧縮ローターも1回転し、右側の延長部43は出力ローターの延長部分で、その延長部43が1回転すれば、この図ではその延長部43と、その下のテーベークリング38はスライイン結合され、サンギヤ32と一緒に化されたテーベークリング39と20でコーンクラッチとなつており、それが結合しているため圧縮ローターも1回転することになり、出力ローターの延長部43を上下に揺んで

17

テーパー状リング37と38があり、延長部43にスライイン結合して、延長部43と同じ回転をしながら左右に移動でき、テーパー状リング37と38は中心を延長部43に回転自在に支えられた逆運動部材40が、図に示すようにテーパー状リング37から38に嵌り込み、テーパー状リング37の凸部と図に示すように操作杆42の凹部が噛合い、テーパー状リング37が回転しても、操作杆42を左右に移動すればテーパー状リング37も左右に移動し、テーパー状リング37が右移動すれば、そこに嵌り込む逆運動部材40の働きで、テーパー状リング38は左に移動し、図で示すようにコーンクラッチが作動した状態となり、出力ローターが1回転すれば圧縮ローターも1回転し、操作杆42でテーパー状リング37を左に移動すれば、対応するリング35のテーパー状リング36と接触してコーンクラッチとして働き、逆運動部材40でテーパー状リング38が、対応するテーパー状リング39から離れてクラッチの働きを止め、回転しないリングギヤ34とサンギヤ32の間にあるビニオンギヤ33でサンギヤ32が回転し、出力ローターの力を圧縮ローターオーに伝え、以前より速く圧縮ローターを回転させる。

出力ローターより圧縮ローターをどれだけ速く回転させるかは、ブランネリギヤのギヤ比で決まり、多くの種類の変速装置があり、どのような状況で使われるエンジンであるかにあわせて変速装置を選べばよいものである。

本発明のエンジンの気密をどのように保持するかについて述べると、エンジンは高圧のガスを密閉せねばならず、わずかの隙間からでも気密はもれ、エンジンとして作動しなくなり、レシプロエンジンでは、ピストンリングの発明で、気密保持の効果が得られたが、同じようにピストンリングに相当するもの、あるいはバンケルエンジンのサイドシールやアベックスシールのようなものを使用する必要がある。

18

内筒2と平板8との間では、バンケルエンジンのサイドシールのようないわゆる簡単な構造であり、内筒2とベーン3とでは第16図に示すように、内筒2からバネ2Cで常にベーン3に押される接触部材2Aを設ければ、ローターが回転すると内筒2がベーン3を横切る距離が増減するが、内筒2の接触部材がバネに常に押され、ベーン3と内筒2は常に接触して気密が保たれる。

第17図左図を見ると、ベーン3を4つ設けたが、このようにベーンを複数設ける場合は、図示しないが外筒1と内筒2をギヤで回転させてよいものであるが、しかし複雑になる。

下方のベーンとベーンの間をつなぐ内筒2の長さは上方より長く、回転に合わせて内筒2のベーンとベーンの長さを変化させる必要があり、右図の左側の図では内筒を互いに嵌め込み、スライドさせ長さを変化するようにし、図示しないバネで常に伸び、ベーンを押し付ければ、また右図の右側の図のように内筒2の一部をバネにしてベーンを常に押し付ければ気密を保てる。

第18図左図では内筒2のベーン3を挟む距離をAとしたが、回転してもベーン3を挟む距離が同じくAとなるように、ベーン3の内筒2との接觸面を図のように曲線にすれば、第6図右図で示したように、外筒1と平板8を切り離し、回転しない平板8の円状の溝部分に内筒2は嵌込むので、その溝に嵌込んだ部分はベーン3より幅が広く、ベーン3で切断されないので、その部分で距離Aでつながることができる、第17図の右図左側の図で示すように、内筒を互いに嵌め込んで伸縮すれば、たとえバネの作用がなくとも常にベーンと内筒は接触し、気密は保たれ、ベーン3で内筒2を回転させるのに都合がよい、このようにベーン3を外筒1と一緒に一体としたが、第18図右図に示すように、ベーン3を外筒1に回動自在に複数取り付けてもよいもので、この場合、外筒と内筒はギ

19

ヤを介して回転させる必要があるが、内筒をバネで伸縮させたり、ベーン断面を第18図左図のように曲線にして、内筒との交差する距離を同じにするなどでもでき、ベーンを多くすれば吸入や排出の脈動を平滑化でき、出力ローターでは、出力トルクを滑らかにできる。

5 このようなローターを回転させると、質量の大きい部分は滑らかに回転し、質量の小さい部分は速度が変動し、外筒1とベーン3と平板8が一体化され、質量の小さい内筒2は外筒1に対し偏芯して回転するため、内筒2の回転速度が速くなったりし、そのためベーン3で回転させれば、内筒2とベーン2との接触部分に加わる力が変化し、強10 い力で接触すれば、接触部分が磨り減る恐れもあり、そこで第16図で示したようなものに、さらに接触部分の面積が大きくなるように、第19図に示すように接触面の大きい図で示す接触部材2Aを設ければ、磨り減りを防ぐ。

15 図左側にバネ2Cを記したが、右図には記されず、これはバネが内筒2の端から端まであるのではなく、左側はバネのある部分、右側はバネのない部分の断面を表し、またこれ以上は縮まない。

2Bは伸縮部材であり、第20図は外筒1と内筒2の接觸部分を示す図(a)の気密保持であるが、図(b)、図(c)はその拡大図で、内筒2の端から端に至る図(b)のようなT字型の縫を設け、そのT字型縫の間に棒状のシール2Dを設け、内側からバネ2Cで常に外筒側に押付けていれば、気密は保持され、図示しないがビストンシングのように、当然高圧のガスの圧力をシールを外筒に押し付けることも可能であり、図(b)は図(c)の断面、図(c)は図(b)の断面である。

本発明のエンジンは、圧縮機と燃焼器と出力機からなるタービンエンジンと構成がよく似ており、圧力機関でありながらタービン機関と似て

20

おり、タービンエンジンの技術を本発明エンジンに取り入れられ、また本発明の技術をタービンエンジンに用いることも可能で、タービンエンジンではいかにタービンノズルから速度の速いガス流をタービン風に当てるかが大きな課題であり、本発明は圧力を利用したエンジンのため、いかに大きな課題である。

5 第21図は燃焼器であるが、圧縮機からの圧縮空気を矢印方向より燃焼器5に送り、湯沸を起こし、そこに燃料噴射弁と水噴射弁の2本の弁を設けたが、これは1本の弁で、水と燃料のエマルジョン燃料は使用せず、水は水のパイプで、燃料は燃料のパイプで同じ弁に送り、そこでミクスさせて噴射してもよく、このようでなければならぬことはない。

10 タービンエンジンに似ているから、第22図(a)に圧縮ローター、燃焼器、そして出力ローターを記したが、燃焼器5の中に保炎器4を設け、火が消えないようにし、その保炎器の中心から燃料を噴射し、周りから水を噴射するなどもでき、保炎器から水を噴射すれば、保炎器も15 冷却でき、図示しないが、ミキサーなども必要なら設けることができ、燃焼時間を長くするには、燃焼室を長くすればよく、例えば螺旋のようにならしてもよい。

圧縮ローターでは燃焼しないので、温度はあまり上昇することではなく、出力ローターも大量に水を噴射すれば高温のガスでなく、大幅に温度を下げたがスを送ることができ、燃焼器も、ロケットエンジンやジェットエンジンなどでおこなわれている、高温にさらされないよう温度の低いガスの層を作るなど、例えば本発明には、燃焼器の壁面から水を噴射し、気化熱を奪うとか、壁面に水を噴射したり、壁面から低温の圧縮空気を噴出させるなどができる、燃焼器は燃焼器の真中で噴射し、炎が壁面に届きにくくするなどや、壁面から燃料を噴射してもよく、色々考えられ、燃焼したガスの温度を大幅に下げるため、エンジンを研熱温度の低い

25

材質でも作ることができ、大幅にエンジンを軽量化できる。

図（b）は、燃焼器5を図のように分割し、燃焼器と出力ローターの延長部を43Aと43Bに分割し嵌め込めば、図のように燃焼室の大きさを、出力に合わせて変えることができ、図（c）では、燃焼器と出力ローターの間に回転する弁24を設け、漏られた量のガスを出力ローターに送れば、排出するガスは大気圧と同じくらいになるまで十分に膨張エネルギーを取り出すことができ、図（d）では、図（c）のものにバイパス流を設け、第13図から第15図で説明したように、圧縮ローターを出力ローターより遠く回転できるため、燃焼室に大量の空気と燃料との燃焼で高圧にでき、バイパス流の弁24日を開き、高圧ガスを十分に出力ローターに送れば、大幅に出力を増加できる。

ベーンが1つの場合、圧縮ローターでは燃焼室に送られる空気の量が脈動し、出力ローターでは出力トルクもまた脈動し、そこで第23図と第24図でローターを2つに分割し、ベーンの位置が反対で、2つで1つのローターとなるようにした各ローターを見ると、ベーンがローターの上にあると、吸入量や排出量は最も多いが下ではその量がゼロである。このようにベーンを2つ反対側に取り付けだけでも、吸入量や排出量は大幅に平滑化され、出力トルクも平滑化されることとなる。

第23図は吸入管や排出管を回転させるもので、左側の圧縮ローターから燃焼室へ空気を送り燃料と燃焼させ、それを右側の出力ローターで出力させるが、これでエンジンとして機能はするが、しかし燃焼室の高圧ガスが圧縮ローターを逆回転させる力が働き、出力を少なくする。

第24図は吸入管や排出管を回転させず、回転しない平板や外筒に取り付けるもので、燃焼室の高圧ガスが逆流しないよう、圧縮ローターと燃焼器の間にもう1つ圧縮ローターを設け、この圧縮ローターがなければ第24図左側下の大きなローターのベーンの位置が下にあるのを見れ

ば、吸入口と排出口が簡抜けで、小さなローターがなければ燃焼室の高圧ガスは逆流して吸入管9から逃げてしまう。しかしこれは、ローターの吸入口や排出口をベーンや内筒で据ぐ構造にすることは可能であるが、圧縮ローターを図のように2つにすれば、逆流を防ぎさらに高圧縮ができ、燃焼器から出力ローターの間に図のように回転弁も取り付け、効率のよいエンジンとし、これまでに述べたいろいろのことと組み合わせたエンジンが可能である。

燃焼室を複数に分割する方法はその効果も合わせ述べたが、この方法は從来のレシプロエンジンやバンケルエンジンにおいても可能であり、当然その他の圧縮機や出力機と燃焼室が分離したエンジンにおいても同じ効果があるが、第25図から第27図にその方法を説明する。

第25図はレシプロエンジンで、シリンドラー11から分離された燃焼器5に複数の回転燃焼室を設け、左側の図は圧縮と出力のシリンドラーを分離したもので、吸気バルブや排気バルブそれに点火プラグや燃料噴射弁は省略してあるが、このように圧縮と出力のシリンドラーを分離することで、吸気や排気のバルブ面積を大きくでき、大幅に効率を良くし、すでに説明したように、水を噴射し、水と燃料を混ぜたエマルジョン燃料は不要で、シリンドラーと燃焼室が分離されているため、点火や噴射を ermögめる装置も不要になり、燃焼した圧力は高圧だが、温度は低くすることができるため、ラジエーターを不要にでき、耐熱材料でエンジンを作ることで、高効率の低燃費で、燃焼時間も長くでき、低質の燃料でもエンジンを動かすことができる。

第25図右側の図は、シリンドラー1つで圧縮と出力をを行うもので、吸入排気バルブの面積を大きくはできない。

第26図はバンケルエンジンのローターを正縮と出力とに分割したも

23

ので、ローターハウジング15の中央の内側のふくらんだ凸部とローターリーピストン16とを振り合わせ、ロータリーピストン16とのがった3つの頂点とローターハウジング15とが接することで構成する空間の圧縮ローターの空気を燃焼器5の複数の燃焼室に送り、そこで燃料と燃焼させて、ローターハウジング15とロータリーピストン16の3つの頂点とローターハウジング15の内側にふくらんだ凸部とロータリーピストンとが接することでできる空間に燃焼ガスを送り、出力ローターで出力させるもので、バンケルエンジンはディーゼルエンジンにすることが、圧縮比を上げると、とともに燃焼室形状が悪いエンジンであるが、燃焼室形状がさらに悪くなり、ディーゼル化が難しいが、このようになると、図示しないがローターの偏芯風を大幅に大きくでき、同じ大きさのエンジンでも、排気量を大きくでき、燃焼室形状が悪いといいう問題もなくなり、燃焼室形状はガソリンエンジンの場合でも同様で、燃焼が遅くなり、効率の悪いエンジンである。

燃焼室を多くしてローターハウジングから分離することで得られる効果はすでに述べたので省略する。
図上部の左のローターハウジング15から右のローターハウジング15への点線矢印部分にも、下部に示した燃焼器5があるが、省略したのである。

第27図もバンケルエンジンで、1つのローターハウジングで圧縮と出力をを行うもので、回転燃焼室のある燃焼器5は1つであり、説明はすでに十分したので第27図の説明は省略する。
第28図はレシプロエンジンのシリンダー内のピストンの、下死点から上死点をして下死点に至るシリンダー内圧力を示したものであり、まずピストンがほぼ大気圧のAから上死点Bに至ると、シリンダー内圧力は図に示すように圧力も上昇し、そしてピストンは下降するが、もし、

24

燃焼時間がゼロで、一瞬の中に燃焼を終えるなら、圧力はCのところまで上昇することになり、圧力でピストンは下死点に移動させられると、圧力も下がりAに戻り、このとき、AからBに至る下の部分はピストンを上死点に押すための圧力のため、マイナスの力を生じ、ABCに囲まれた面積がピストンを押してプラスの力を生ずることを表している。
ところが実際は、燃焼時間は一瞬にしては行われず、いくらか時間がかかるため、最も出力が大きくなるように、点火を早め、ピストンがbの位置のときに点火し、ピストンがcの位置で燃焼を終え、Abcの面積が最大の最も出力が大きくなるような方法をとっているのが従来のエンジンである。
ところが、本発明のエンジンは圧縮と出力のローターや、シリンドラから燃焼室を分離することができ、圧縮のローターやシリンドラからの空気あるいは混合気は燃焼室に移動し、圧縮のローターやシリンドラから完全に切り離され、さらに燃焼時間も大幅に長くでき、同じ体積内での燃焼なので、圧力はABCで囲まれた面積が出力となり、先のAbcの面積よりもさらに大きいため、効率の良いエンジンであるが、本発明は、水エマルジョン燃料を適用する必要のないため、より水噴射を一般化できるエンジンで、その水噴射により、エンジンを冷却する必要がなく、熱エネルギーを捨てることのないため、圧力をその分高められ、また圧縮比をいくらでも高くできるため、燃焼したガスの圧力をDまで上げられ、ABDの面積を出力とすることができます、従来のエンジンは構造上いくらでも圧縮比を高められず、本発明は圧縮比をいくらでも高められ、エンジンは圧縮比が高いほどエンジン効率は高まり、窒素酸化物の排出を少なく、粒子状物質の排出も少なく、低質の燃料でも動く、高性能、小型軽量で高効率エンジンとすることができます。
本発明はタービンエンジンと似ていることを述べたが、本発明をター

25

タービンエンジンにも応用でき、第29図でそのことについて述べる。

タービンエンジンは、その性能を決定づける大きな要素にタービン翼の耐熱温度があり、いかに高圧縮の空気を燃焼室に送り、燃料と燃焼させ、高温の高圧ガスを作り、それをタービンノズルからいかに速度の速いガス流をタービン翼に送るかが、タービンエンジンの性能を決定する大きな要因であり、コンプレッサーの性能が良く、高圧縮の空気を燃料と燃焼させ、高速のガスをタービン翼に送っても、タービンエンジンはターピングが高くなれば、性能は向上せず、従来のタービンエンジンはターピングの耐熱温度が性能を決定するといつても過言ではない。

第29図は説明に必要な部分を記した簡略図で、まず、図示しないコンプレッサーから高圧の空気が左側矢印から燃焼器19に入り、燃料噴射弁21から燃料を噴射し燃焼させ、タービン翼の耐熱温度を超えた、できるだけ高温高圧のガスを作るが、しかしこれをノズルからタービン翼18に送れば、タービン翼は熱に耐えられず、エンジンはこわれてしまふが、水噴射弁22から水を噴射し、気化熱を奪い、タービン翼に耐えられる温度まで燃焼器内のガスの温度を下げれば、噴射した水は気体となり、そのため燃焼器内の圧力が高まり、温度が同じでも燃焼器内のガスの圧力は増大しているから、その分タービン翼へのガス流の速さが増すことになり、そのガス流の速度の増した分、タービンエンジンの性能が向上し、また、水噴射で温度を大幅に下げても、水の気化で燃焼室は高圧を維持できるので、タービンに送るガスの温度が低くとも、高圧のガスをタービン翼に送ることができ、タービン翼の耐熱温度が低い安価なタービン翼でも、高性能のタービンエンジンとなる。

これはタービン冷却の複雑な機械を必要とせず、安価な無冷却ターピングとなり、タービン冷却の複雑な機械を必要とせず、安価な無冷却ターピングで高性能タービンとなるもので、低燃費、高性能、安価、さらにう

26

まく水噴射を行えば、窒素酸化物や粒子状物質の排出も減らすことができ、水の噴射するところは、燃焼室ばかりとは限らず、燃焼室の前からでもよく、燃焼室の後、タービン翼の前でも良く、大幅に温度を下げても、大幅に高速のガスをタービン翼に送ることができ、当然燃焼室に噴射するのは燃料と水をコロイド状にしたエマルジョン燃料でも同じ効果があり、さらに圧縮機は従来の遠心式や軸流式の圧縮機でなくとも、第5図から第7図に示したようなものを使用すれば、小型化でき、その圧縮空気を燃料と燃焼させ、それをタービン翼に送り、タービンエンジンにすることができるが、当然燃焼器には水を噴射し、低温高圧のため高速ガスをタービン翼に送ることができる、内燃式の蒸気タービンエンジンのようにすることもでき、第23図や第24図の出力ローターの排出管をノズルとし、タービン翼に送り、圧力型のエンジンとタービンエンジンを合わせたようなエンジンにもでき、より効率の良いエンジンを提供し、飛行体推進用の、ターボジェットエンジンやファンジェットエンジンもタービンエンジンであるから、燃焼室に水を噴射することで、低燃費で、排気ガスもきれいにできて、さらには飛行機の速度を速く飛行させることができる。

これまでの説明で、図面に記されているが、ふれなかつた符号を説明すると、14はピストンであり、17はノズル翼であり、20は燃焼室であり、28はプラグコード又は燃料パイプである。

産業上の利用可能性

以上のように本発明のロータリーエンジンは、エンジンを小型にでき、燃焼温度を水噴射で大幅に下げられるので、耐熱温度の低い材質でエンジンを作ることができため軽量にでき、簡単な構造のため製作も容易で安価、摩擦の少ない外筒とベーンと内筒を回転させれば特に摩耗が少ないといため、摩擦損失が少なく、磨り減りもしくないため耐久性が増し、

往復動を回転運動に変える機構なども必要なく、構造上初めから回転運動の出力が取り出せ、摩擦が少なくて焼き付きなどが起こりにくく、寿命の長い、故障の少ない、水をそのまま噴射でき、エマルジョン燃料を必要としない、燃料の質をあまり間わない、低質の燃料を使用でき、異緊急化物と粒子状物質の排出の少ない、燃焼時間を長くでき連続燃焼も可能なため騒音の小さい、往復動がないため運動エネルギー損失の少なく振動が小さい、ラジエーターが必要で熱エネルギー損失の小さい、低燃費で、高出力高効率のエンジンを提供でき、タービンエンジンでは、燃焼室に水を噴射することで、排気ガスをきれいにできるのはもちろんだが、タービン翼の耐熱温度を高めなくとも、さらには高出力、低燃費が可能な高効率エンジンとなるため、航空機、車、船、発電、その他多くのところに使用可能である。

請求の範囲

1. 空気を圧縮機で圧縮し、その圧縮空気と燃料を燃焼させ、または、空気と燃料との混合気を圧縮機で圧縮し、燃焼させ、その燃焼した高圧のガスを出力機で膨張させて運動エネルギーを取り出すエンジンにおいて、前記圧縮機または前記出力機を、両端の近傍をふさいだ外側の筒状の棒の中にそれより小さい筒状の棒を入れ、前記外側の筒状の棒と前記小さい筒状の棒の外側を接触させ、前記外側の筒状の棒と前記小さい筒状の棒に至る1つのベンチを設けることで、空間を構成するようにしたことを特徴とするエンジン。
2. 空気を圧縮機で圧縮し、その圧縮空気と燃料を、燃焼器で燃焼させ、または、空気と燃料との混合気を圧縮機で圧縮し、燃焼器で燃焼させ、その燃焼した高圧のガスを出力機で膨張させて運動エネルギーを取り出すエンジンにおいて、前記圧縮機または前記出力機を、両端の近傍をふさいだ外側の筒状の棒の中にそれより小さい筒状の棒を入れ、前記外側の筒状の棒に対し、前記小さい筒状の棒を偏芯して入れ、前記外側の筒状の棒から前記小さい筒状の棒に至る複数のベンチを設けたことを特徴とするエンジン。
3. 空気を圧縮機で圧縮し、その圧縮空気と燃料を燃焼器で燃焼させ、または、空気と燃料との混合気を圧縮機で圧縮し、燃焼器で燃焼させ、その燃焼した高圧のガスを出力機で膨張させて運動エネルギーを取り出すエンジンにおいて、前記圧縮機の中または前記燃焼器内に構成する燃焼室に水を噴射するようにしたことを特徴とするエンジン。
4. 空気を圧縮機で圧縮し、その圧縮空気と燃料を燃焼させ、または、空気と燃料との混合気を圧縮機で圧縮し、燃焼させ、その燃焼した高圧のガスを出力機で膨張させて運動エネルギーを取り出すエンジンの、前

30
29

記圧縮機または前記出力機を、両端の近傍をふさいだ外側の筒状の枠の中にそれより小さい筒状の枠を、前記外側の筒状の枠に対し偏芯して入れ、前記外側の筒状の枠から前記小さい筒状の枠に至るべーンを設け、前記外側の筒状の枠と前記小さい筒状の枠と前記ベーンで空間を構成するようにし、前記外側の筒状の枠に対し、前記小さい筒状の枠を偏芯させることを、前記外側の筒状の枠の両端の近傍をふさぐように構成したところ(8)で、前記小さい筒状の枠を、回動自在に前記外側の筒状の枠に対し、偏芯状態を維持する手段を設け、または、前記小さい筒状の枠をシャフトで、前記外側の筒状の枠に対し、偏芯状態を維持するようになしたことを特徴とするエンジン。

5 8. 内燃式エンジンにおいて、空気を吸入し圧縮する圧縮機および燃焼ガスの膨脹で出力する出力機から、燃焼室を分離し、前記圧縮機または前記燃焼室に水を噴射するようにしたことを特徴とするエンジン。

5 9. 空気を吸入しそれを圧縮で圧縮し、その圧縮された空気を燃焼器の燃焼室で燃料と燃焼させ、その燃焼ガスをタービンで出力するターピングエンジンにおいて、前記燃焼器の燃焼室に水を噴射するようにしたことを特徴とするエンジン。

10. 空気を圧縮機で圧縮し、その圧縮空気と燃料を、燃焼器で燃焼させ、そのまま、空気と燃料との混合気を圧縮機で圧縮し、燃焼器で燃焼させ、その燃焼した高圧のガスを出力機で膨張させて運動エネルギーを取り出すエンジンにおいて、前記圧縮機と前記燃焼器の間にまたは前記燃焼器と前記出力機の間に弁を設けたこと、または、前記圧縮機と前記燃焼器の間にまたは前記燃焼器と前記出力機の間に弁と前記弁をかわした15 バイパスを設けたことを特徴とするエンジン。

10 11. 空気を圧縮機で圧縮し、その圧縮空気と燃料を、燃焼器で燃焼させ、または、空気と燃料との混合気を圧縮機で圧縮し、燃焼器で燃焼させ、その燃焼した高圧のガスを出力機で膨張させて運動エネルギーを取り出すエンジンの、前記圧縮機と前記出力機を变速装置で結合したことを特徴とするエンジン。

15 12. 空気を圧縮機で圧縮し、その圧縮空気と燃料を燃焼させ、または、空気と燃料との混合気を圧縮機で圧縮し、その燃焼した高圧のガスを出力機で膨張させて運動エネルギーを取り出すエンジンの、前記圧縮機または前記山形機を、両端の近傍をふさいだ外側の筒状の枠の中に入れて、前記外側の筒状の枠の内側と前記小さい筒状の枠の外側を接触させ、前記外側の筒状の枠と前記小さい筒状の枠に至る1つのベーンを設けることで、空間を構成し、前記圧縮機と前記出力機を、变速機でつないだことを特徴とするエンジン。

20 13. 内燃式のレシプロエンジンおよび内燃式のパンクルエンジンにおいて、前記エンジンに空気を吸入し、それを圧縮して燃焼器に送り、燃焼器の燃焼室で燃料と燃焼させ、その燃焼した高圧ガスの膨張で出力するエンジンの、前記燃焼器の燃焼室に水を噴射するようにしたことを特徴とするエンジン。

25

1 / 15

第 1 図

第 2 図

2 / 15

第 3 図

第 4 図

3 / 15

第 5 図

4 / 15

第 6 図

第 7 図

5 / 15

6 / 15

第 10 図

第 9 図

7 / 15

第 12 図

8 / 15

第 14 図

第 14 図

第 13 図

第 15 図

第 16 図
9 / 15

第 17 図

第 18 図

10 / 15

第 19 図

第 20 図

(a)

(b)

(c)

1.1 / 1.5
第 21 図

第 22 図

1.2 / 1.5
第 23 図

第 24 図

13 / 15

第 25 図

14 / 15

第 27 図

第 28 図

第 26 図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/04066

15 / 15

A. CLASSIFICATION OF SUBJECT MATTER

Int. C17 F02B53/00, F02B53/10, F02B53/08, F02M25/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.C17 F02B53, F02D19, F01C13

第 29 国

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Jitsuyo Shinan Koho 1926-1966 Toroku Jitsuyo Shinan Koho 1994-2002
 Kokai Jitsuyo Shinan Koho 1971-2002 Jitsuyo Shinan Toroku Koho 1996-2002
 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 48-13711 A (Zennoosuke OYA), 21 February, 1973 (21.02.73), Full text; Figs. 1 to 3 (Family: none)	1, 2, 4-6, 10, 11 3, 8
X	JP 49-43010 A (Hanji UMERERA), 28 April, 1974 (28.04.74), Full text; Figs. 1, 3, 6 (Family: none)	2, 4, 5, 10, 11 3, 8
X	Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 110102/1972 (Laid-open No. 64604/1974) (Yukio MIYAKE), 29 March, 1975 (29.03.75), Full text; Fig. 1 (Family: none)	1, 4, 10, 11 3, 8
<input checked="" type="checkbox"/>	Further documents are listed in the continuation of Box C.	<input type="checkbox"/> See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not
 considered to be of particular relevance.
 "C" earlier document but published on or after the international filing
 date
 "L" document which may throw doubts on priority claim(s) or which is
 cited to establish the publication date of another citation or other
 special reason (as specified).
 "O" document referring to an oral disclosure, use, exhibition or other
 means
 "P" document published prior to the international filing date but later
 than the priority date claimed
 "T" later document published after the international filing date or
 priority date and not in conflict with the application but cited to
 understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be
 considered novel or cannot be considered to involve an inventive
 step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be
 considered to involve an inventive step when the document is
 combined with one or more other such documents, such
 combination being obvious to a person skilled in the art
 "Z" document member of the same patent family

Date of the actual completion of the international search
20 May, 2002 (20.05.02) Date of mailing of the international search report
04 June, 2002 (04.06.02)

Name and mailing address of the ISA/
Japanese Patent Office
Facsimile No.

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/04066

C(Continuation): DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 3989011 A1 (Minoru TAKAHASHI), 02 November, 1976 (02.11.76), Full text; Figs. 1, 2 A JP 50-102711 A	2, 4 3, 8
X	JP 50-132533 A (Keizo TAMAOKI), 20 October, 1975 (20.10.75), Page 1, lower left column, line 18 to lower right column, line 2; Fig. 1 (Family: none)	9
Y	JP 5-187252 A (Mitsubishi Heavy Industries, Ltd.), 27 July, 1993 (27.07.93), Par. No. (0013); Fig. 1 (Family: none)	3, 7-9
Y	JP 7-127453 A (Isuzu Motors Ltd.), 16 May, 1995 (16.05.95), Full text; Fig. 1 (Family: none)	3, 7-9
Y	Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 47372/1985 (Laid-open No. 162588/1986), (Nasao TAKABIRA), 08 October, 1986 (08.10.86), Full text; Fig. 7 (Family: none)	7
A	JP 60-209630 A (Mazda Motor Corp.), 22 October, 1985 (22.10.85), Page 4, lower left column to lower right column; Fig. 1 (Family: none)	10, 11

A. 発明の属する分野の分類 (国際特許分類 (IPC)) Int. C1, F02B53/00, F02B53/10, F02B53/08, F02M25/02		國際出願番号 PCT/JP02/04066										
B. 講査を行った分野 講査を行った最小限資料 (国際特許分類 (IPC)) Int. C1, F02B53, F02D19, F01C13												
<p>最小限資料以外の資料で講査を行った分野に含まれるもの</p> <p>日本国実用新案公報 1926-1996年 日本国公開実用新案公報 1971-2002年 日本国登録実用新案公報 1994-2002年 日本国実用新案登録公報 1996-2002年</p> <p>国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)</p>												
C. 関連すると認められる文献 引用文献のカテゴリ* <input checked="" type="checkbox"/> C欄の焼きにも文献が列記されている。		<p>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する 文献の範囲の番号</p> <table border="1"> <tr> <td>X</td> <td>JP 4 8-13711 A (大宅智之典) 1973. 02. 21 全文, 第1-3図 (ファミリーなし)</td> <td>1, 2, 4-6, 10, 11 3, 8</td> </tr> <tr> <td>X</td> <td>JP 4 9-43010 A (梅原半二) 1974. 04. 28 全文, 第1, 3, 6図 (ファミリーなし)</td> <td>2, 4, 5, 10, 11 3, 8</td> </tr> <tr> <td>X</td> <td>日本国実用新案登録出願 47-110102号 (日本国実用新案登録出願 公開 49-64604号) の原本に添付した明細書及び図面の内容を撮影 したマイクロフィルム (三宅幸夫) 1975. 03. 29, 全文, 第1図 (ファミリーなし)</td> <td>1, 4, 10, 11 3, 8</td> </tr> </table> <p><input type="checkbox"/> ベントンファミリーに関する別紙を参照。</p>		X	JP 4 8-13711 A (大宅智之典) 1973. 02. 21 全文, 第1-3図 (ファミリーなし)	1, 2, 4-6, 10, 11 3, 8	X	JP 4 9-43010 A (梅原半二) 1974. 04. 28 全文, 第1, 3, 6図 (ファミリーなし)	2, 4, 5, 10, 11 3, 8	X	日本国実用新案登録出願 47-110102号 (日本国実用新案登録出願 公開 49-64604号) の原本に添付した明細書及び図面の内容を撮影 したマイクロフィルム (三宅幸夫) 1975. 03. 29, 全文, 第1図 (ファミリーなし)	1, 4, 10, 11 3, 8
X	JP 4 8-13711 A (大宅智之典) 1973. 02. 21 全文, 第1-3図 (ファミリーなし)	1, 2, 4-6, 10, 11 3, 8										
X	JP 4 9-43010 A (梅原半二) 1974. 04. 28 全文, 第1, 3, 6図 (ファミリーなし)	2, 4, 5, 10, 11 3, 8										
X	日本国実用新案登録出願 47-110102号 (日本国実用新案登録出願 公開 49-64604号) の原本に添付した明細書及び図面の内容を撮影 したマイクロフィルム (三宅幸夫) 1975. 03. 29, 全文, 第1図 (ファミリーなし)	1, 4, 10, 11 3, 8										
<p>* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的な技術水準を示す もの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの 「L」優先権主張に既存を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す) 「O」口頭による開示、使用、展示等に資する文献 「P」国際出願日前、かつ優先権の主張となる出願 「&」同ーベントファミリー</p>												
国際調査を完了した日 20. 06. 02		国際調査報告の発送日 04.06.02										
国際調査機関の名稱及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号		<p>特許庁審査官 (権利のある権利) 大紀 電話番号 03-3581-1101 内線 3355</p> <p>3 T 9 8 20</p>										
様式PCT/ISA/210 (continuation of second sheet) (July 1998)												

引用文献の カテゴリー*	C(総合)、 関連すると思われる文献	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	US 3 989 011 A1 (高橋英) 1976. 11. 02		2,4
Y	全文、第1-2図		3,8
	& JP 450-102711 A		
	[JP 50-132533 A (玉置敏三) 1975. 10. 20 第1頁、左下欄18行-同頁右下欄2行、第1図 (ファミリーなし)]	9	
Y	JP 5-187252-A (三菱重工業株式会社) 1993. 07. 27		3,7-9
	[0013]段落、第1図 (ファミリーなし)		
Y	JP 7-127453 A (いすゞ自動車株式会社) 1995. 05. 16, 全文、第1図 (ファミリーなし)	3,7-9	
Y	日本国実用新案登録出願 60-47372号 (日本国実用新案登録出願公 開 61-162588号) の願書に添付した明細書及び図面の内容を撮影 したマイクロフィルム (高原正夫)	7	
	1986. 10. 08, 全文、第7図 (ファミリーなし)		
A	JP 60-209630 A (マツダ株式会社) 1985. 10. 22, 第4頁左下欄-右下欄、第1図 (ファミリーなし)	10,11	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.