```
In [1]: ▶ # Manuel Duran
# Project 3
# Tennis Betting Analysis
```

```
In [4]: M Tennis_Bet_DF = pd.read_csv('FinalTennisDataSet.csv', encoding = 'latin1')
    Tennis_Bet_DF.WRank = pd.to_numeric(Tennis_Bet_DF.WRank, errors = 'coerce')
    Tennis_Bet_DF.LRank = pd.to_numeric(Tennis_Bet_DF.LRank, errors = 'coerce')
```

In [22]: Tennis_Bet_DF.head()

Out[22]:

	ATP	Location	Tournament	Date	Series	Court	Surface	Round	Best of	Wi
0	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	Do:
1	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	Enq\
2	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	Es
3	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	Fe
4	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	From

5 rows × 59 columns

In [24]: ▶ Tennis_Bet_DF.describe()

Out[24]:

	ATP	Best of	WRank	LRank	W1	L1	
count	46652.000000	46652.000000	46636.000000	46554.000000	46423.000000	46423.000000	4
mean	32.931000	3.373746	59.056180	94.083086	5.792667	4.043211	
std	17.953268	0.780315	73.300861	143.836733	1.239261	1.847833	
min	1.000000	-1.000000	1.000000	1.000000	0.000000	0.000000	
25%	19.000000	3.000000	17.000000	35.000000	6.000000	3.000000	
50%	33.000000	3.000000	41.000000	66.000000	6.000000	4.000000	
75%	49.000000	3.000000	77.000000	105.000000	6.000000	6.000000	
max	69.000000	5.000000	1890.000000	7380.000000	7.000000	7.000000	

8 rows × 49 columns

```
In [5]: M Tennis_Bet_DF['Diff'] = Tennis_Bet_DF.LRank - Tennis_Bet_DF.WRank

Tennis_Bet_DF['Round_10'] = 10*round(np.true_divide(Tennis_Bet_DF.Diff,10))
Tennis_Bet_DF['Round_20'] = 20*round(np.true_divide(Tennis_Bet_DF.Diff,20))

Tennis_Bet_DF['Total Sets'] = Tennis_Bet_DF.Wsets + Tennis_Bet_DF.Lsets

Tennis_Bet_DF.W3 = Tennis_Bet_DF.W3.fillna(0)
Tennis_Bet_DF.W4 = Tennis_Bet_DF.W4.fillna(0)
Tennis_Bet_DF.W5 = Tennis_Bet_DF.W5.fillna(0)
Tennis_Bet_DF.L3 = Tennis_Bet_DF.L3.fillna(0)
Tennis_Bet_DF.L4 = Tennis_Bet_DF.L4.fillna(0)
Tennis_Bet_DF.L5 = Tennis_Bet_DF.L5.fillna(0)

Tennis_Bet_DF['Sets_Diff'] = Tennis_Bet_DF.W1+Tennis_Bet_DF.W2+Tennis_Bet_DF.Final_DF = Tennis_Bet_DF
```

Out[25]:

	ATP	Location	Tournament	Date	Series	Court	Surface	Round	Best of	Wi
0	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	Do:
1	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	Enq\
2	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	Es
3	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	Fe
4	1	Adelaide	Australian Hardcourt Championships	3/01/2000	International	Outdoor	Hard	1st Round	3	From

5 rows × 59 columns

Out[28]: <AxesSubplot:>

In [29]: np.log(Final_DF['LRank']).hist()

Out[29]: <AxesSubplot:>

Out[33]: <AxesSubplot:xlabel='Surface'>

Out[34]: <AxesSubplot:xlabel='Court'>


```
In [6]: Non_GrandSlam_DF = Final_DF[~(Final_DF.Series == 'Grand Slam')]
GrandSlam_DF = Final_DF[Final_DF.Series == 'Grand Slam']
```

```
In [14]:

    bins = np.arange(10,200,10)

             Gs prob = []
             for bi in bins:
                 pos = bi
                 neg = -pos
                 pos wins = len(GrandSlam DF[GrandSlam DF.Round 10 == pos])
                 neg_wins = len(GrandSlam_DF[GrandSlam_DF.Round_10 == neg])
                 Gs prob.append(np.true divide(pos wins,pos wins + neg wins))
             prob = []
             for bi in bins:
                 W = np.true_divide(1,np.mean(GrandSlam_DF.AvgW[GrandSlam_DF.Round_10 == b
                 L = np.true divide(1,np.mean(GrandSlam DF.AvgL[GrandSlam DF.Round 10 == b
                 ratio = np.true_divide(1,L + W)
                 part ratio = (ratio - 1)/2 + 1
                 prob.append(W/part_ratio)
             plt.figure(figsize = (10,10))
             plt.bar(bins,prob, width = 10, color = 'black')
             plt.bar(bins,Gs_prob, width = 8, color = 'blue')
             plt.xlabel('Ranking', fontsize = 15)
             plt.ylabel('Winning Prob.', fontsize = 15)
             plt.xlim([10,200])
             plt.ylim([0.5,1])
             plt.title('Betting Markets as Predictors in GrandSlam Tournaments?', fontsize
             plt.legend(['Betting Odds', 'Real Life'], loc = 2, fontsize = 15)
             plt.show()
```



```
In [20]:
             Non GrandSlam DF = Non GrandSlam DF[~np.isnan(Non GrandSlam DF.AvgW)]
             mo over = 0
             mo under = 0
             tracking over = []
             tracking_under = []
             for row in Non GrandSlam DF.iterrows():
                 if row[1].Diff>0:
                     mo_over = mo_over + row[1].AvgW - 1
                     mo under = mo under - 1
                 else:
                     mo over = mo over - 1
                     mo under = mo under + row[1].AvgW - 1
                 tracking over.append(mo over)
                 tracking_under.append(mo_under)
                 if np.isnan(mo over):
                     break
                 if np.isnan(mo under):
                     break
             plt.figure()
             plt.plot(tracking_under,'black')
             plt.plot(tracking over, 'blue')
             plt.xlabel('Non-Grand Slam games', fontsize = 15)
             plt.ylabel('$', fontsize = 15)
             plt.title('A Dollar Bet On Each Non Grand Slam', fontsize = 15)
             plt.legend(['Underdog Betting', 'Favorite Betting'], loc = 3, fontsize = 15)
             plt.show()
```



```
In [21]:
             GrandSlam DF = GrandSlam DF[~np.isnan(GrandSlam DF.AvgW)]
             mo over = 0
             mo under = 0
             tracking over = []
             tracking_under = []
             for row in GrandSlam DF.iterrows():
                 if row[1].Diff>0:
                     mo_over = mo_over + row[1].AvgW - 1
                     mo under = mo under - 1
                 else:
                     mo over = mo over - 1
                     mo under = mo under + row[1].AvgW - 1
                 tracking over.append(mo over)
                 tracking_under.append(mo_under)
                 if np.isnan(mo over):
                     break
                 if np.isnan(mo under):
                     break
             plt.figure()
             plt.plot(tracking_under,'black')
             plt.plot(tracking_over, 'blue')
             plt.xlabel('Grand Slam games', fontsize = 15)
             plt.ylabel('Money Balance [$]', fontsize = 15)
             plt.title('A Dollar Bet On Each Grand Slame')
             plt.legend(['Underdog Betting', 'Favorite Betting'], loc = 3, fontsize = 15)
             plt.show()
```

