/* elice */

인공지능/머신러닝 맛보기 - Python

Module 5: 확률 기초 및 베이지안 확률론

Introduction to Probability

확률이란

어떤 사건이 일어날 것인지 혹은 일어났는지에 대한 **지식** 혹은 **믿음**을 표현하는 방법

A와 B가 주사위 게임을 해서 먼저 6번을 이긴 사람이 80만원을 차지하기로 했다.

A가 5번, B가 3번 이긴 후 게임이 중단되었다면 판돈을 어떻게 나눠야 하는가?

Luca Pacioli

"게임이 중단되기 전까지의 성적에 따라 나누자"

지금까지 A는 5번, B는 3번 이겼으므로 판돈도 $\frac{5}{8}$ 과 $\frac{3}{8}$ 의 비율로 나누면 된다!

A는 50만원, B는 30만원 — 합리적인가?

현재 상황: 6번 이기면 판돈을 모두 가져감

A는 5번, B는 3번 승리

	9번째 판	10번째 판	11번째 판
A가 승리	0		
B가 승리	X		

Blaise Pascal

 $\frac{1}{2}$

현재 상황: 6번 이기면 판돈을 모두 가져감

A는 5번, B는 3번 승리

	9번째 판	10번째 판	11번째 판
A가 승리	X	O	
B가 승리	0	X	

$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

Blaise Pascal

현재 상황: 6번 이기면 판돈을 모두 가져감

A는 5번, B는 3번 승리

	9번째 판	10번째 판	11번째 판
A가 승리	X	X	0
B가 승리	0	0	Χ

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

Blaise Pascal

현재 상황: 6번 이기면 판돈을 모두 가져감

A는 5번, B는 3번 승리

	9번째 판	10번째 판	11번째 판
A가 승리	X	X	X
B가 승리	0	O	O

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

Blaise Pascal

현재 상황: 6번 이기면 판돈을 모두 가져감

A는 5번, B는 3번 승리

A가 승리할 확률
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$$

B가 승리할 확률

$$\frac{1}{8}$$

7:1로 나누면 공평하다.

Blaise Pascal

확률예제

엘리스를 수강한 학생 1,000명에게 질문 "강아지를 기르시나요?": **예/아니오**

사건 Yes: 강아지를 기른다 -> 88명

사건 No: 강아지를 기르지 않는다 -> 912명

P(Yes) = 88/1000 = 0.088

P(No) = 912/1000 = 0.912

확률 예제

완벽한 주사위를 한 번 굴린다.

짝수가 나오는 사건 A: {2, 4, 6}

홀수가 나오는 사건 B: {1, 3, 5}

$$P(A) = 0.5$$

$$P(B) = 0.5$$

$$P(A) = 0.5$$

$$P(B) = 0.5$$

짝수가 나오는 사건 A: {2, 4, 6} 3보다 큰 수가 나오는 사건 B: {4, 5, 6}

$$P(A) = 3/6 = 1/2$$

$$P(B) = 3/6 = 1/2$$

$$P(A) = 3/6 = 1/2$$

$$P(B) = 3/6 = 1/2$$

짝수가 나오는 사건 A: {2, 4, 6} 3보다 큰 수가 나오는 사건 B: {4, 5, 6}

조건부확률: 사건 B가 일어났을 때 A가 일어날 확률

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

P(AIB) = **3보다 큰 수가 나왔을 때 그 수**가 짝수일 확률

$$=\frac{P(\{4, 6\})}{P(\{4, 5, 6\})}=2/3$$

짝수가 나오는 사건 A: {2, 4, 6} 3보다 큰 수가 나오는 사건 B: {4, 5, 6}

조건부확률: 사건 B가 일어났을 때 A가 일어날 확률

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

P(BIA) = **짝수가 나왔을 때** 그 수가 3보다 클 확률

$$\frac{P(\{4,6\})}{P(\{2,4,6\})} = \frac{2}{3}$$

베이즈법칙

Bayes' Rule

빈도주의자 vs 베이즈주의자

"동전 하나를 던졌을 때 앞면이 나올 확률은 50%이다."

빈도주의자: 이 동전을 **수천, 수만 번** 던졌을 때 그 중 앞면이 50%, 뒷면이 50% 나온다.

베이즈주의자: 동전 던지기의 결과가 앞면이 나올 것이라는 **확신** (혹은 **믿음**) 이 50%이다.

베이즈법칙

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$

베이즈법칙

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$
 아래로

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$
$$P(A|X) = \frac{P(A \cap X)}{P(X)}$$

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$

$$P(A|X) = \frac{P(A \cap X)}{P(X)}$$

$$P(A|X)P(X) = P(A \cap X)$$

$$P(X \cap A) = P(X|A)P(A)$$

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$

$$P(A|X) = \frac{P(A \cap X)}{P(X)}$$

$$P(A|X)P(X) = P(A \cap X)$$

$$P(X \cap A) = P(X|A)P(A)$$

$$P(A|X)P(X) = P(X|A)P(A)$$

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$

$$P(A|X) = \frac{P(A \cap X)}{P(X)}$$

$$P(A|X)P(X) = P(A \cap X)$$

$$P(X \cap A) = P(X|A)P(A)$$

$$P(A|X)P(X) = P(X|A)P(A)$$

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$

암 A에 대한 테스트 키트가 있다.

임의의 사람이 이 암에 걸릴 확률은 1%이다.

즉, 전체 인구 중 암에 걸린 사람은 1%이다.

이 암을 진단할 수 있는 키트가 있는데,

암에 걸린 사람은 99%의 확률로 양성 반응이 나오고,

걸리지 않은 사람은 1%의 확률로 양성 반응이 나온다.

키트 검사 결과 양성 반응이 나왔다면, 암에 걸렸을 확률은?

암에 걸린 사건: A 키트에서 양성반응이 나온 사건: X

암에 걸렸을 때 키트에서 양성반응이 나올 확률

암에 걸렸을 확률

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$

키트에서 양성반응이 나왔을 때 암에 실제로 걸렸을 확률

키트에서 양성반응이 나올 확률

암에 걸린 사건: A 키트에서 양성반응이 나온 사건: X

$$P(X|A) = 0.99$$

이 암을 진단할 수 있는 키트가 있는데, 암에 걸린 사람은 99%의 확률로 양성 반응이 나오고, 걸리지 않은 사람은 1%의 확률로 양성 반응이 나온다.

암에 걸린 사건: A 키트에서 양성반응이 나온 사건: X

$$P(A) = 0.01$$

임의의 사람이 이 암에 걸릴 확률은 1%이다.

암에 걸린 사건: A 키트에서 양성반응이 나온 사건: X / not

$$P(X) = P(X \cap A) + P(X \cap \neg A)$$

$$P(X \cap A) = P(X|A)P(A)$$

암에 걸린 사건: A 키트에서 양성반응이 나온 사건: X

$$P(X) = P(X \cap A) + P(X \cap \neg A)$$
$$= P(X|A)P(A) + P(X|\neg A)P(\neg A)$$

$$P(X \cap A) = P(X|A)P(A)$$

암에 걸린 사건: A 키트에서 양성반응이 나온 사건: X

$$P(X) = P(X \cap A) + P(X \cap \neg A)$$

$$= P(X|A)P(A) + P(X|\neg A)P(\neg A)$$

$$0.99 \quad 0.01 \quad 0.01 \quad 0.99$$

$$= 0.0198$$

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$
$$= \frac{0.99 \times 0.01}{0.0198}$$
$$= 0.5$$

키트에서 양성 반응이 나왔는데 암에 걸렸을 확률이 50%밖에 안 된다고?

실습: 유방암 검사 키트

/* elice */

인공지능/머신러닝 맛보기 - Python

Module 6: Naive Bayes 분류기

나이브 베이즈 분류기

분류작업

주어진 데이터가 어떤 클래스에 속하는지 알아내는 작업

분류기

주어진 데이터가 어떤 클래스에 속하는지 알아내는 방법을 자동으로 학습하는 알고리즘

사탕기계

사탕 기계 A, B가 있다.

이 둘은 **같은 종류의 사탕**을 내놓지만, 들어 있는 사탕의 **비율**이 다르다.

사탕기계

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

사탕기계

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

문제: 사탕 10개를 뽑아서

빨강색 4개, 노랑색 5개, 초록색 1개를 뽑았다면 이 사탕은 어느 기계에서 뽑은 것일까?

X: 사탕 10개를 뽑아 그 결과를 관측한 사건

A: 사탕 기계 A에서 사탕을 뽑은 사건

B: 사탕 기계 B에서 사탕을 뽑은 사건

P(AIX) 와 P(BIX) 를 비교하면 어떤 것이 더 클까?

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$

비율	빨강색	노랑색	초록색
Α	2	2	1
R	1	1_	1

A 기계에서 사탕을 뽑았을 때 사탕을 빨4, 노5, 초1 로 뽑을 확률

A 기계에서 사탕을 뽑을 확률

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$

사탕을 빨4, 노5, 초1로 뽑았을 때 그게 기계 A에서 뽑았을 확률

어느 기계에서 뽑든 사탕을 빨4, 노5, 초1로 뽑을 확률

비율	빨강색	노랑색	초록색
Α	2	2	1
R	1	1_	1

B 기계에서 사탕을 뽑았을 때 사탕을 빨4, 노5, 초1 로 뽑을 확률

B 기계에서 사탕을 뽑을 확률

$$P(B|X) = \frac{P(X|B)P(B)}{P(X)}$$

사탕을 빨4, 노5, 초1로 뽑았을 때 그게 기계 B에서 뽑았을 확률

어느 기계에서 뽑든 사탕을 빨4, 노5, 초1로 뽑을 확률

P(AIX) 와 P(BIX) 를 비교하면 어떤 것이 더 클까?

$$P(A|X) = \frac{P(X|A)P(A)}{P(X)}$$

$$P(B|X) = \frac{P(X|B)P(B)}{P(X)}$$

P(AIX) 와 P(BIX) 를 비교하면 어떤 것이 더 클까?

$$P(A|X):P(B|X)=rac{P(X|A)P(A)}{P(X)}:rac{P(X|B)P(B)}{P(X)}$$
 : $rac{P(X|B)P(B)}{P(X)}$ 필요 없음

먼저 사전 확률부터

P(A)? P(B)?

A 기계보다 B 기계가 조금 더 좋은 자리에 있어서 일반적으로 더 많이 팔린다.

$$P(A) = 0.4, P(B) = 0.6$$

Likelihood (우도)

P(XIA) 부터 계산해 보자

비율	빨강색	노랑색	초록색
A	2	2	1
В	1	1	1

가정: 사탕 기계가 매우 커서, 그 안에 있는 사탕 수의 비율은 몇 개를 꺼내도 일정하게 유지된다

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

A에서 **빨강** 사탕을 꺼낼 확률 = $\frac{2}{5}$ A에서 **노랑** 사탕을 꺼낼 확률 = $\frac{2}{5}$ A에서 **초록** 사탕을 꺼낼 확률 = $\frac{1}{5}$

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

A에서 **빨강** 사탕 4개를 꺼낼 확률 = $(\frac{2}{5})^4$ A에서 **노랑** 사탕 5개를 꺼낼 확률 = $(\frac{2}{5})^5$ A에서 **초록** 사탕 1개를 꺼낼 확률 = $(\frac{1}{5})^1$

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

A에서 **빨강** 사탕 4개,

노랑 사탕 5개,

초록 사탕 1개를 꺼낼 확률 = $(\frac{2}{5})^4 \times (\frac{2}{5})^5 \times (\frac{1}{5})^1$

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

$$P(X|A) = (\frac{2}{5})^4 \times (\frac{2}{5})^5 \times (\frac{1}{5})^1$$

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

$$P(X|A) = (\frac{2}{5})^4 \times (\frac{2}{5})^5 \times (\frac{1}{5})^1$$

$$P(X|B) = (\frac{1}{3})^4 \times (\frac{1}{3})^5 \times (\frac{1}{3})^1$$

$$P(X|A) = (\frac{2}{5})^4 \times (\frac{2}{5})^5 \times (\frac{1}{5})^1 \times C$$

$$P(X|B) = (\frac{1}{3})^4 \times (\frac{1}{3})^5 \times (\frac{1}{3})^1 \times C$$

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

$$P(X|A) = (\frac{2}{5})^4 \times (\frac{2}{5})^5 \times (\frac{1}{5})^1 = 5.243 * 10^{-5}$$

$$P(X|B) = (\frac{1}{3})^4 \times (\frac{1}{3})^5 \times (\frac{1}{3})^1 = 1.694 \times 10^{-5}$$

Naive Bayes

$$P(A|X) : P(B|X) = \frac{P(X|A)P(A)}{P(X)} : \frac{P(X|B)P(B)}{P(X)}$$
$$= P(X|A)P(A) : P(X|B)P(B)$$
$$= 5.243 * 10^{-5} \times 0.4 : 1.694 * 10^{-5} \times 0.6$$
$$= 0.674 : 0.326$$

꺼낸 10개의 사탕은 A에서 나왔을 확률이 B에서 나왔을 확률보다 두 배 더 높다.

실습:

Naive Bayes Classifier

/* elice */

인공지능/머신러닝 맛보기 - Python

Module 7: Bag of Words 와 감정분석

텍스트 데이터의 분류

오늘의 목표:

감정분석 알고리즘을 만들어 본다

텍스트 데이터의 분류

비율	좋아	최고	싫어	별로
긍정	3	5	1	1
부정	1	1	2	4

긍정 사탕

부정 사탕

오늘 나는 밥을 먹었다. 어제 나는 햄버거를 먹었다.

특수 문자 제거

오늘 나는 밥을 먹었다 어제 나는 햄버거를 먹었다

Tokenize

오늘 / 나는 / 밥을 / 먹었다 / 어제 / 나는 / 햄버거를 / 먹었다

오늘 / 나는 / 밥을 / 먹었다 / 어제 / 나는 / 햄버거를 / 먹었다

BoW 모델에서

순서는

중요하지 않다

Python Dictionary로 표현하면 쉽다.

BoW 모델에서

순서는

중요하지 않다

```
{"오늘": 1, "나는": 2, "먹었다": 2, "햄버거를": 1, "밥을": 1, "어제": 1}
```

오늘 나는 밥을 먹었다. 어제 나는 햄버거를 먹었다.

```
{"오늘": 1, "나는": 2, "먹었다": 2, "햄버거를": 1, "밥을": 1, "어제": 1}
```

사탕기계와 Bag of Words

비율	빨강색	노랑색	초록색
Α	2	2	1
В	1	1	1

사탕기계와 Bag of Words

비율	빨강색	노랑색	초록색
A	2	2	1
В	1	1	1

```
A {"초록색": 1, "노랑색": 2, "빨강색": 2}
```

실습: Bag of Words

감정 분류기

Sentiment Classifier

사탕기계와 Bag of Words

```
A {"초록색": 1, "노랑색": 2, "빨강색": 2}
```

A 기계에서 노랑색 사탕이 나올 확률은? $\frac{2}{5}$

노랑색 사탕의 개수 <u>노랑색 사탕의 개수</u> 초록 + 노랑 + 빨강 사탕의 개수 전체 사탕의 개수

사탕기계와 Bag of Words

```
A {"초록색": 1, "노랑색": 2, "빨강색": 2}
```

B 기계에서 초록색 사탕이 나올 확률은? $\frac{1}{3}$

초록색 사탕의 개수

초록 + 노랑 + 빨강 사탕의 개수

초록색 사탕의 개수

전체 사탕의 개수

Likelihood 다시 보기

- A {"초록색": 1, "노랑색": 2, "빨강색": 2}
- B {"빨강색": 1, "초록색": 1, "노랑색": 1}

A에서 **빨강** 사탕 4개,

노랑 사탕 5개,

초록 사탕 1개를 꺼낼 확률 = $(\frac{2}{5})^4 \times (\frac{2}{5})^5 \times (\frac{1}{5})^1$

Naive Bayes

$$P(A|X) : P(B|X) = \frac{P(X|A)P(A)}{P(X)} : \frac{P(X|B)P(B)}{P(X)}$$
$$= P(X|A)P(A) : P(X|B)P(B)$$
$$= 5.243 * 10^{-5} \times 0.4 : 1.694 * 10^{-5} \times 0.6$$
$$= 0.674 : 0.326$$

이것과 똑같이

Sentiment Classifier

```
긍정 {"좋아": 3, "최고": 5, "싫어": 1, "별로": 1}
부정 {"좋아": 1, "최고": 1, "싫어": 2, "별로": 4}
```

"긍정" 기계에서 "최고" 단어가 나올 확률은? $\frac{5}{10}$

Sentiment Classifier

```
긍정 {"좋아": 3, "최고": 5, "싫어": 1, "별로": 1}
부정 {"좋아": 1, "최고": 1, "싫어": 2, "별로": 4}
```

"부정" 기계에서 "싫어" 단어가 나올 확률은? $\frac{2}{8}$

"싫어" 단어의 개수 전체 단어의 개수

학습: Training

긍정/부정 BoW는 어떻게 알아내야 하나?

손으로? 단어 사전? …

기계학습 알고리즘은

자동으로 학습되게 한다.

학습: Training

긍정적인 문서 2000개

부정적인 문서 2000개

각각의 문서 셋들에서 나오는 단어의 빈도 수를 측정

트레이닝결과

각각의 문서 셋들에서 나오는 단어의 빈도 수를 측정

```
[('영화', 11452),
                                     [('영화', 13930),
       ('너무', 5417),
                                     ('정말', 7544),
       ('진짜', 4698),
                                      ('너무', 6046),
       ('정말', 3836),
                                      ('진짜', 4325),
       ('그냥', 3537),
                                       ('0|', 3988),
       ('0|', 3279),
                                      ('최고의', 2776),
                              → ('수', 2695),
('잘', 2630),
부정 ('왜', 3108),
('이런', 2659),
                                      ('더', 2436),
       ('이건', 2253),
       ('좀', 2203),
                                  ('보고', 2178),
       ('다', 2132),
                                      ('최고', 2035),
       ('더', 2036),
                                      ('영화를', 2005),
       ('영화는', 2013),
                                    ('==', 1998),
       ('쓰레기', 1991),
                                      (''', 1960),
```

트레이닝결과

```
[('영화', 11452),
                                                    [('영화', 13930),
                                                     ('정말', 7544),
              ('너무', 5417),
              ('진짜', 4698),
                                                     ('너무', 6046),
              ('정말', 3836),
                                                     ('진짜', 4325),
              ('그냥', 3537),
                                                     ('0|', 3988),
              ('0|', 3279),
                                                     ('최고의', 2776),
      부정 ('왜', 3108),
('이런', 2659),
                                             → ('수', 2695),
('잘', 2630),
                                      전체 단어 수 ('더', 2436),
('보고', 2178),
              ('이건', 2253),
전체 단어 수 ('좀', 2203),
             ('다', 2132),
                                                    ('최고', 2035),
                                         773,502 ('영화를', 2005),
   796,466 ('더', 2036),
                                                     (' = = ', 1998)
              ('영화는', 2013),
              ('쓰레기', 1991),
                                                     ('그', 1960),
```

P("쓰레기"부정) = 0.00249

P("쓰레기"I긍정) = 0.000111

트레이닝결과

마음이 따뜻해지는 최고의 영화

P("마음이"|부정) = 0.000498

P("따뜻해지는"|부정) = 0.0000142

P("최고의"|부정) = 0.000111

P("영화"]부정) = 0.0180

1.420 * 10-14

0.001

P("마음이") 긍정) = 0.000228

P("따뜻해지는" I 긍정) = 0.00135

P("최고의" 긍정) = 0.00249

P("영화"]긍정) = 0.0143

1.114 * 10-11

0.999

단어가 없으면 어떡할까?

이거 볼 시간에 엘리스 에서 공부하자.

P("시간에"| 부정) = 0.0000313

P("엘리스"|부정) = 0

P("에서"| 부정) = 0.00184

P("시간에"| 긍정) = 0.0000459

P("엘리스") 긍정) = 0

P("에서") - 30000838

P("공부하자"|부정) = 0.00484 P("공부하자"|긍정) = 0.00112

단어가 없으면 어떡할까?

이거 볼 시간에 엘리스 에서 공부하자.

P("시간에"| 부정) = 0.0000313 P("시간에"| 긍정) = 0.0000459

P("엘리스"|부정) = 0.00000001 P("엘리스"|긍정) = 0.00000001

P("에서"| 부정) = 0.00184 P("에서"| 긍정) = 0.000838

P("공부하자"|부정) = 0.00484 P("공부하자"|긍정) = 0.00112

2.787 * 10-18 : 4.308 * 10-19

0.866 : 0.133

/* elice */

문의 및 연락처

academy.elice.io contact@elice.io facebook.com/elice.io blog.naver.com/elicer