Computing the efficient frontier for the 0/1 biobjective uncapacitated facility location problem

X. Gandibleux, A. Przybylski, S. Bourougaa, A. Derrien, A. Grimault

Université de Nantes — LINA, UMR CNRS 6241 UFR Sciences – 2 rue de la Houssinière BP92208, F44322 Nantes cédex 03 – France

> CORS/MOPGP'2012 Niagara Falls – June 11 to 13, 2012

Multi-Objective Combinatorial Optimization [Ehrgott and Gandibleux 2000, 2002]

 Multi-Objective Combinatorial Optimization (MOCO) problems

$$\min \left\{ Cx : Ax \ge b, x \in \mathbb{Z}^n \right\}$$

- Objectives optimized simultaneously
- Efficient solutions X_E , Non dominated points Y_N (efficient frontier)
- Preferences of the decision-maker introduced a posteriori

0/1 biobjective uncapacitated facility location problem (bi-0/1UFLP)

- single objective version
 - NP-hard [Krarup and Pruzan, 1983]
 - practical situations (example in telecom [Gourdin and al. 2002])
- multi-objective version
 - exact and approximated algorithms for small size bi (multi) objective instances [Fernandez and Puerto 2003]
 - o data and numerical instances available [Harris and al. 2009; 2011]

New proposals of this talk

An **exact algorithm** in two steps

\blacksquare paving Y_N :

- Set of boxes giving a rigorous description of areas of Y which include potentially non-dominated points.
- A box is defined by an unique combination of opened facilities
- o Initial paving obtained with a branch and bound algorithm
- Decomposition of the paving by dichotomy and filtering on Pareto dominance relation
- o Recomposition of the paving for the sets issued from the same origin

generating Y_N :

- Compute the efficient solutions X_E for each box
- Non-dominated points are computed with a label setting algorithm on boxes.
- Return a complete set of efficient solutions

New proposals of this talk

An **exact algorithm** in two steps

\blacksquare paving Y_N :

- Set of boxes giving a rigorous description of areas of Y which include potentially non-dominated points.
- A box is defined by an unique combination of opened facilities
- o Initial paving obtained with a branch and bound algorithm
- Decomposition of the paving by dichotomy and filtering on Pareto dominance relation
- o Recomposition of the paving for the sets issued from the same origin

generating Y_N :

- Compute the efficient solutions X_E for each box
- Non-dominated points are computed with a label setting algorithm on boxes.
- o Return a complete set of efficient solutions.

Let $J_1 \subseteq J$, set of indexes for facilities opened

Paving: set of boxes characterizing rigorously the existence of potential efficient solutions

 ${\bf Box}$: Sub-set of dimension 2 in Y bounded by (at most) two feasible solutions corresponding to lexicographic optimal solutions on both objectives for J_1

Remarkable points related to a box ${\cal B}$:

$$\diamond$$
: $z_{lex^1}(\mathcal{B}), z_{lex^2}(\mathcal{B})$, lex-optimal points

$$\star$$
 : $z_I(\mathcal{B})$, ideal point

$$+: Y_{ND}(\mathcal{B})$$
, non dominated points

when $\#J_1=1\Rightarrow$ remarkable points correspond to a same single point

(1) Paving principle

Example with 7 potential facilities 1...7.

- : point corresponding to the opening of one facility {1}
- : point corresponding to the assignment of all customers to the opened facility. It corresponds to the performances of a feasible solution.

(1) Paving principle

Others points (symbol \circ) corresponding to the opening of two facilities $\{1,2\}$ à $\{1,7\}$.

(1) Paving principle

Examination of the dominance cone with origin \square

Test: \exists ? an origin point dominated by the performance of at least one feasible solution

(1) Paving principle

The point corresponding to opened facities $\{1,6\}$ is dominated. It is pruned (domination by origin).

(1) Paving principle

Expansion of domain for the opened facilities $\{1,2\}$ giving a box.

The two feasible solutions (\diamond) for the box are the two lexicographic optimal solutions.

(1) Paving principle

Examination of the dominance cone with origin \diamond

The point corresponding to opened facities $\{1,4\}$ is dominated. It is pruned (domination by origin).

(1) Paving principle

Expansion of domain for the remaining facilities giving a set of boxes.

Test: ∃? an ideal point of a box dominated by the performance of at least one feasible solution

(1) Paving principle

Examination of the dominance cone with origin \diamond and \Box

Expansions with origin $\{1,3\}$ and $\{1,7\}$ are dominated. They are pruned (domination by expansion).

(1) Paving principle

Others points (symbol \circ) corresponding to the opening of three facilities $\{1,5,6\}$ et $\{1,5,7\}$.

(1) Paving principle

Examination of the dominance cone with origin \diamond

The points corresponding to opened facilities $\{1,5,6\}$ et $\{1,5,7\}$ are dominated. They are pruned (domination by origin).

(1) Paving principle

Paving partial resulting. $\{1,2\} \text{ and } \{1,3\} \text{ are pending}.$

Summary of the branch & bound algorithm for the paving

- **Search strategy:** breadth first search
- **Branching rule:** variables s_j
- Pruning strategy: 3 dominance tests
- Output : non dominated expansed nodes

Final paving

Instance with 30 facilities and 90 customers

Generation

A box is defined by the opened facilities:

e.g.
$$J_1 = \{1, 3, 4\}$$

Set of indexes for the non trivial assignments: e.g. $I_c = \{2, 4, 9, 10\}$

Generation

Customer 2 has three potential assignments:

- **[**2, 4]
- **[**3, 3]
- **[**7, 2]

Generation

Assignment of customer 4 to facility 3 is dominated. ⇒ pruned

- **[**2, 4]
- **[**3, 3]
- **[**7, 2]

Generation

For each solution already computed, the possible assignments for customer 4 are added.

- **[**2, 4]
- **[**3, 3]
- **[**7, 2]

Generation

For each solution already computed, the possible assignments for customer 4 are added.

[3, 6]

[5, 5]

4 [4, 5]

[7, 4]

8 [8, 4]

[10, 3]

Generation

For each solution already computed, the possible assignments for customer 4 are added.

[3, 6]

■ [5, 5]

4, 5

[7, 4]

■ [8, 4]

[10, 3]

Generation

In fine: 6 labels (solutions) not dominated.

[7, 12] **[**14, 9]

■ [8, 11] **■** [6, 14]

■ [11, 10] **■** [5, 23]

- dataset F [Fernandez and Puerto 2003]
 - 28 instances
 - source: collection obtained in pasting two mono-obj UFLP
 - size : n=30; m=90
 - correlation of objectives : ≈ 0.0
 - ranges : $c_{ii}^k \in [0, 100]; r_i^k \in [200, 28000]$
 - http://www-eio.upc.es/%7Eelena/sscplp/
- dataset H [Harris et al 2011]
 - 5 instances
 - source : green logistic (obj1 : cost; obj2 : CO₂)
 - size : n=10; m=2000...10000
 - correlation of objectives : ≈ 0.99
 - ranges : $c_{ii}^k \in [0, 43000]$; r_i^k unique $\forall j \in J$ per instance
 - http://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/FLP/papers/data/
- Soon available on the MCDMLib, section MOCOlib :
 - http:// http://mcdmsociety.org/MCDMlib.html

3. Numerical experiments

Efficient frontier (dataset F)

3. Numerical experiments

Computation of the paving and the generation

	Paving			Generation	
	(1)	(2)	CPUt	(3)	CPUt
Н			ms		ms
min	1 023	11	411	13 412	104
avg	1 023	12	1 200	295 868	35 142
max	1 023	13	1 994	731 385	122 691
F					
min	280	3	1	3	<1
avg	8 885	18	53	421	6
max	48 741	152	399	1 229	29

(1): expansed boxes

(2): non-dominated expansed boxes

(3): non-dominated points

3. Numerical experiments

Comparison of performances

	(1)	(2)	(3)
Н		ms	ms
min	15h39min	-	515
avg	N.A.	-	36 342
max	N.A.	-	124 285
tot	N.A.	-	181 713
F	ms	ms	ms
min	1 000	59 000*	1
avg	94 428	97 200*	59
max	300 000	162 000*	428
tot	2 644 000	-	1 669

(1) : ϵ -constraint with Cplex

(2) : algorithm of Fernandez and Puerto [2003]

(3): algorithm proposed (paving + generation)

4. Summary

Conclusion and future investigations

- introduced the principle of rigorous paving by boxes in MOCO
- lacktriangle paving is useful for a decision-maker aiming to navigate on Y_N
- proposed algorithm is efficient for the benchmarks known
- \blacksquare observed some Y_N with previously unpublished characteristics
- ...
- reinforce the algorithm which is somewhere brute-force
- identify the computational limits of the proposed algorithm
- quid of this algorithm for situations with more than 2 objectives
- version of this algorithm for situations with capacities
- **...**

