

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

These formulae will also serve to give an idea of the constitution of the anthocyanidins. The flavonols and flavones are well known yellow pigments of plants. Our thorough knowledge of the chemistry of these pigments is partly due to their extensive use in the dyeing industry. Wheldale¹⁶ has suggested that anthocyanins originate from the flavonol glucosidic pigments by a process of hydrolysis followed by oxidation, and she questions Everest's ideas as set forth above, so far as they apply to the origin of anthocyanins in plants, since the drastic reagents used by Everest are not available for the plant. It would seem that her protest is rather poorly grounded.

Almost every point established concerning the anthocyanins is of great immediate significance to plant breeders and physiologists. WILLSTÄTTER and his students have done much to put our knowledge of this group of pigments on solid foundations, as they previously did for the pigments of the chloroplast.—WM. CROCKER.

Anatomy of Isoetes.—Lang, 17 in continuing his studies of Isoetes, has analyzed the stele of I. lacustris, with the help of apical development. The contradictory interpretations of the stem of *Isoetes* have arisen from complications due to the occurrence of crowded leaves upon a very slightly elongating axis, accompanied by the continued growth of the cortex. The summary of the analysis is as follows, proceeding from within outward: (1) central column of primary xylem (the strictly cauline region of the stem); (2) peripheral zone of xylem, consisting of bases of leaf traces connected with the central cylinder and radially arranged xylem between the entering leaf traces; (3) parenchymatous xylem sheath, continuous with similar region in leaf trace; (4) primary phloem, continuous with phloem of leaf trace; (5) secondary prismatic tissue, consisting of tracheids, sieve tubes, or parenchyma; (6) meristen of secondary prismatic tissue; (7) cortical tissue. LANG states that such an analysis of the stele of *Isoetes* "not only affords points for comparison with the Lepidodendreae, but promises to be of interest from the standpoint of general stelar morphology."-J. M. C.

Espeletia.—This is a genus of the Asteraceae, restricted so far as known to the high cordilleras of Colombia and Venezuela. The genus is among the most conspicuous of the composites, the leaves and inflorescences in most of the species being closely invested by long wool. The genus has just been revised by Standley,¹⁸ who recognizes 17 species, 6 of which are described as new.—J. M. C.

¹⁶ Jour. Genetics 4:369-376. 1915.

¹⁷ LANG, WILLIAM H., Studies in the morphology of *Isoetes*. II. The analysis of the stele of the shoot of *Isoetes lacustris* in the light of mature structure and apical development. Mem. and Proc. Manchester Lit. and Phil. Soc. **59**:29-56. pls. 4. figs. 7. 1915.

¹⁸ STANDLEY, PAUL C., The genus *Espeletia*. Amer. Jour. Bot. 2:468-485. figs. 6. 1915.