Page 85

T5

a) 假 b) 假 c) 假 d) 真 e) 假 f) 假 g) 真

T9

 $A \subseteq B \Leftrightarrow \forall x(x \in A \rightarrow x \in B)$

 $B \subseteq C \Leftrightarrow \forall x(x \in B \rightarrow x \in C)$

对 A 中任意元素 a,则 a \in A。可以推出 a \in B,所以 a \in C。 故对任意 A 中元素 a,a 都满足 a \in C,即 A \subseteq C

T10

a) 1 b) 1 c) 2 d) 3

T11

- a) $\{ \{a\}, \emptyset \}$
- b) { {a}, {b}, {a,b}, Ø }
- c) { {Ø}, {{Ø}}, {Ø,{Ø}}, Ø }

T19

有 mⁿ 个不同的元素

Page 92-93

T2

- a) $A \cup B = \{0,1,2,3,4,5,6\}$
- b) $A \cap B = \{3\}$
- c) $A-B = \{1,2,4,5\}$
- d) $B-A = \{0,6\}$

T8

- a) 证明:

假定 $x \in \overline{A \cup B}$,则 $x \notin A \cup B$,故 $\exists ((x \in A) \lor (x \in B))$ 为真,则等价于 $(x \notin A) \land (x \notin B)$,即 $(x \in \overline{A}) \land (x \in \overline{B})$,可得 $x \in \overline{A} \cap \overline{B}$ 。从而得证 $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$

$2\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$

假定 $x \in \overline{A} \cap \overline{B}$,则 $(x \in \overline{A}) \land (x \in \overline{B})$ 为真,故 $\exists (x \in A) \land \exists (x \in B)$ 为真,则等价于 $\exists ((x \in A) \lor (x \in B))$,即 $\exists (x \in A \cup B)$,可得 $\exists (x \in \overline{A} \cup \overline{B})$ 。从而得证 $\exists (x \in \overline{A} \cup \overline{B})$

综合①②,可得 $\overline{A} \cup \overline{B} = \overline{A} \cap \overline{B}$

b)证明:成员表如下:

Α	В	Ā	В	A∪B	$\overline{A \cup B}$	$\overline{A} \cap \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	1	0	0
0	1	1	0	1	0	0
0	0	1	1	0	1	1

Page 104-105

T7

a) 是 b)不是 c)不是 d)是

T14

- a) 令 f 为从 R 到自身严格递减的函数,则当 a>b 时,f(a)<f(b); 当 a<b 时,f(a)>f(b),即 a \neq b 时,f(a) \neq f(b),即 f 是一对一函数。
- b) 当 x<-1 时, f(x)=-x-1; 当-1<x<1 时, f(x)=0; 当 x>1 时, f(x)=-x+1。

T18

不能,举出反例:f和fog为映上函数,而g不是映上函数。

T22

证明:
$$f^{-1}(\overline{S}) = \{ a \in A \mid f(a) \notin S \}$$

$$\overline{f^{-1}}(\overline{S}) = \{ \overline{a} \in \overline{A \mid f(a)} \in S \} = \{ a \in A \mid f(a) \notin S \}$$

利用图像解释:

