PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-326138

(43) Date of publication of application: 16.12.1997

(51)Int.Cl.

G11B 7/24 G11B 7/24 G11B 7/007 // G11B 7/09

(21)Application number: 08-171528

(71)Applicant: SONY CORP

PIONEER ELECTRON CORP

PIONEER VIDEO CORP

(22)Date of filing:

01.07.1996

(72)Inventor: AKIYAMA YOSHIYUKI

IIMURA SHINICHIROU OGAWA HIROSHI

KURODA KAZUO SUZUKI TOSHIO INOUE AKIMASA TANIGUCHI TERUSHI

OOTA MINEMASA

(30)Priority

Priority number: 08 80378

Priority date: 02.04.1996

Priority country: JP

(54) OPTICAL RECORDING MEDIUM, METHOD AND DEVICE FOR RECORDING/REPRODUCING IT (57)Abstract:

PROBLEM TO BE SOLVED: To provide an optical recording medium, and method and device for recording/reproducing it capable of precisely obtaining address information and rotation control information of a disk even in a narrow track pitch and recording a signal in high density.

SOLUTION: The optical recording medium is provided with wobbled grooves 1 and pits 2 on an area between these grooves at prescribed interval. Further, its recording/reproducing method controls the rotation of the optical recording medium by a wobble signal detected from the groove, and detects the position of the recording signal on the optical recording medium by a pit signal detected from the pit. Further, the recording/reproducing device is provided with the optical recording medium, a detection means detecting the wobble signal from the groove and the detection means detecting the pit signal from the pit, and controls the rotation of the optical recording medium by the wobble signal detected from the grooves, and detects the position of the recording signal on the optical recording medium by the pit signal detected from the pit.

LEGAL STATUS

[Date of request for examination]

30.06.2003

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3703569 [Date of registration] 29.07.2005

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-326138

(43)公開日 平成9年(1997)12月16日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	ΡI			技	術表示箇所
G11B 7/24	565	8721 -5D	G11B	7/24	5651)	
	561	8721-5D			5610	Ð.	
7/007		9464-5D		7/007			
// G 1 1 B 7/09				7/09 A			
			審查請求	未蘭求	請求項の数20	OL	(全 10 頁)
(21)出願番号	特顧平8-171528		(71)出願人	000002185			
				ソニーを	朱式会社		
(22)出廣日	平成8年(1996)7月1日			東京都品川区北品川6丁目7番35号			
			(71) 出願人	0000050	16		
(31)優先権主張番号)優先権主張番号 特願平8-80378			パイオニア株式会社			
(32)優先日	平8 (1996) 4月2	∃		東京都目黒区目黒1丁目4番1号			
(33)優先権主張国	日本 (JP)		(71)出顧人	000111889			
				パイオニ	ニアビデオ株式会	会社	
				山梨県中	中巨摩郡田富町	雪花輪26	80番地
			(72)発明者	秋山 氰	発行		
				東京都品	品川区北品川67	「目7番	35号 ソニ
				一株式会	会社内		
			(74)代理人	弁理士	小池 晃 (3	12名)	
						最	終頁に続く

(54) 【発明の名称】 光記録媒体及びその記録再生方法、記録再生装置

(57)【要約】

【課題】 狭いトラックピッチにおいてもアドレス情報 やディスクの回転制御情報を正確に得ることが可能で、 信号を高密度に記録することが可能な光記録媒体、その 記録再生方法、記録再生装置を提供する。

【解決手段】 光記録媒体は、ウォブルしたグルーブを 有するとともに、これらグルーブ間の領域に所定間隔で ピットが形成されていることを特徴とする。また、その 記録再生方法は、グルーブから検出したウォブル信号に より光記録媒体の回転を制御するとともに、ピットから 検出したピット信号により記録信号の光記録媒体上での 位置を検出することを特徴とする。さらに、記録再生装 置は、上記光記録媒体と、グルーブからウォブル信号を 検出する検出手段と、ピットからピット信号を検出する 検出手段とを備え、グルーブから検出したウォブル信号 により光記録媒体の回転が制御されるとともに、ピット から検出したピット信号により記録信号の光記録媒体上 での位置が検出されることを特徴とする。

1

【特許請求の範囲】

【請求項1】 ウォブルしたグルーブを有するととも に、これらグルーブ間の領域に所定間隔でピットが形成 されていることを特徴とする光記録媒体。

【請求項2】 ウォブル周波数 f wとピット周波数 f p

 $M \times f w = N \times f p$ (ただし、M、Nは整数である。) なる関係を満足することを特徴とする請求項1記載の光 記録媒体。

【請求項3】 ウォブル量が略一定の値となる位置にピ 10 法。 ットが形成されていることを特徴とする請求項1記載の 光記録媒体。

【請求項4】 ウォブル量が略最小となる位置にピット が形成されていることを特徴とする請求項3記載の光記 録媒体。

【請求項5】 ウォブル量が略最大となり且つ隣接する グルーブに対して近接する位置にピットが形成されてい ることを特徴とする請求項3記載の光記録媒体。

【請求項6】 上記ピットが隣接するグルーブ間に連な って半径方向に形成されていることを特徴とする請求項 20 1 記載の光記録媒体。

【請求項7】 ウォブルが単一周波数のウォブルである ことを特徴とする請求項1記載の光記録媒体。

【請求項8】 上記ピットによりセクター情報が記録さ れていることを特徴とする請求項1記載の光記録媒体。

【請求項9】 上記ピットがシンクピット及び/または アドレスピットを有することを特徴とする請求項8記載 の光記録媒体。

【請求項10】 ウォブル信号の変調によりグルーブに セクター情報が記録されていることを特徴とする請求項 30 1記載の光記録媒体。

【請求項11】 セクター情報が同期信号及び/又はア ドレスデータを含むことを特徴とする請求項10記載の 光記録媒体。

【請求項12】 ウォブル信号の変調によりグルーブに セクター情報が記録されていることを特徴とする請求項 8記載の光記録媒体。

【請求項13】 セクター情報が同期信号及び/又はア ドレスデータを含むことを特徴とする請求項12記載の 光記録媒体。

【請求項14】 ウォブル信号のセクター情報とピット のセクター情報とが一定の位置関係にあることを特徴と する請求項12記載の光記録媒体。

【請求項15】 ウォブル信号のセクター情報に含まれ る同期信号が信号の再生方向においてピットのセクター 情報の手前にあることを特徴とする請求項14記載の光 記録媒体。

【請求項16】 ウォブル信号のセクター情報に含まれ る同期信号の位置がシンクピットの1ピット周期以内の 位置に形成されていることを特徴とする請求項15記載 50 の光記録媒体。

【請求項17】 ウォブルしたグループを有するととも に、これらグルーブ間の領域に所定の間隔でピットが形 成されてなる光記録媒体に対し信号を記録及び/または 再生するに際し、

グルーブから検出したウォブル信号により光記録媒体の 回転を制御するとともに、ピットから検出したピット信 号により記録信号の光記録媒体上での位置を検出するこ とを特徴とする光記録媒体の記録及び/または再生方

【請求項18】 ウォブル信号とピット信号をプッシュ プル法により一つのビームスポットで同時に読み出すこ とを特徴とする請求項17記載の光記録媒体の記録及び /または再生方法。

【請求項19】 ウォブルしたグループを有するととも に、これらグルーブ間の領域に所定の間隔でピットが形 成されてなる光記録媒体と、

上記グルーブからウォブル信号を検出する検出手段と、 上記ピットからピット信号を検出する検出手段とを備

グルーブから検出したウォブル信号により光記録媒体の 回転が制御されるとともに、ピットから検出したピット 信号により記録信号の光記録媒体上での位置が検出され ることを特徴とする記録及び/または再生装置。

【請求項20】 ウォブル信号を検出する検出手段とピ ット信号を検出する検出手段が、これら信号をプッシュ プル法により一つのビームスポットで同時に読み出す検 出手段であることを特徴とする請求項19記載の記録及 び/または再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ウォブルしたグル ーブを有する光記録媒体に関するものであり、信号を高 密度に記録することが可能な新規な光記録媒体に関する ものである。さらには、このような光記録媒体に対する 記録再生方法、及び記録再生装置に関するものである。

[0002]

【従来の技術】例えば、いわゆるコンパクトディスク・ レコーダブルシステム (CD-R) に用いられるCD-Rディスクは、ウォブルしたグルーブを有し、アドレス 情報を含むセクター情報は、ウォブル信号の変調で記録 されている。

【0003】すなわち、CD-R記録再生装置において は、グルーブ上に集光させた記録再生光スポットによっ て、例えば22kHzを搬送波とするウォブル信号を検 出し、アドレス情報を含むデータ列はその信号をFM復 調することによって検出する。

【0004】セクターの先頭にアドレスを配置する方式 では、アドレス情報と記録情報を時分割で記録すること になり、記録した信号が不連続となってしまうが、この

方式では、連続にデータを記録することが可能であり、 信号が連続的に記録されている再生専用ディスクとの互 換性を重視する用途において有用性が高い。

[0005]

【発明が解決しようとする課題】ところで、ウォブル信 号の変調でアドレス情報を記録する方法では、隣接する グルーブ間の距離であるトラックピッチを狭くすると、 隣接グルーブからのウォブル信号の漏れ込みが大きくな り、ウォブル信号のS/Nが低下し、アドレス情報の復 調が正しくできなくなるばかりか、ディスクの回転制御 に必要なウォブル信号の搬送波の検出も困難となり、そ の場合にはディスクの回転制御にも支障をきたす。

【0006】高密度で信号を記録するためには、トラッ クピッチを狭くする必要があるため、狭いトラックピッ チでも正確にアドレス情報を再生することが課題とな る。

【0007】また、上述の方式においては、再生したア ドレス情報によって得られる記録再生スポットのディス ク上での位置精度は、搬送波の周波数に依存し、およそ 搬送波の波長のオーダーである。一方、搬送波の周波 数、すなわちウォブリングの周波数は、記録信号に悪影 響を与えないように、比較的低い周波数を選択する必要 がある。CDーRの例で言えば、22kHzであり、デ ィスク上での波長は54μmである。

【0008】 データを連続的ではなく間をおいて記録 し、さらに後から未記録部分にデータを記録する場合に は、ディスク上の正確な位置にデータを記録する必要が ある。正確に記録できない場合には、記録するデータの 単位毎に、記録位置の誤差を吸収するための,いわゆる ギャップを設け、記録データ同士の重複を避ける必要が ある。

【0009】ギャップはディスクに記録可能な容量を減 少させるので、その長さは極力小さくする必要がある が、先に述べた精度では不十分である。

【0010】本発明は、このような従来の実情に鑑みて 提案されたものであって、狭いトラックピッチにおいて もアドレス情報やディスクの回転制御情報を正確に得る ことが可能で、信号を高密度に記録することが可能な光 記録媒体を提供することを目的とし、さらにはその記録 再生方法、記録再生装置を提供することを目的とする。 [0011]

【課題を解決するための手段】上述の目的を達成するた めに、本発明の光記録媒体は、ウォブルしたグルーブを 有するとともに、これらグルーブ間の領域に所定間隔で ピットが形成されていることを特徴とするものである。

【0012】また、本発明の光記録媒体の記録再生方法 は、ウォブルしたグルーブを有するとともに、これらグ ルーブ間の領域に所定の間隔でピットが形成されてなる 光記録媒体に対し信号を記録及び/または再生するに際 し、グループから検出したウォブル信号により光記録媒 50 体の回転を制御するとともに、ピットから検出したピッ ト信号により記録信号の光記録媒体上での位置を検出す ることを特徴とするものである。

【0013】さらに、本発明の記録再生装置は、ウォブ ルしたグルーブを有するとともに、これらグルーブ間の 領域に所定の間隔でピットが形成されてなる光記録媒体 と、上記グルーブからウォブル信号を検出する検出手段 と、上記ピットからピット信号を検出する検出手段とを 備え、グルーブから検出したウォブル信号により光記録 媒体の回転が制御されるとともに、ピットから検出した ピット信号により記録信号の光記録媒体上での位置が検 出されることを特徴とするものである。

【0014】以上の構成を有する本発明によれば、狭い トラックピッチにおいても、アドレス情報や光記録媒体 の回転制御情報が正確に得られ、高密度化に有利であ る。

【0015】また、同時に、光記録媒体の回転制御の応 答速度と確実性が向上される。例えば、ランドプリピッ トのみでCLVディスクの回転制御しようとすると、ラ ンダムアクセスによって線速度が大きく変化した時に、 20 プリピットが一時的に検出できなくなり、再び検出し回 転制御が復帰するのに時間がかかってしまうが、ウォブ ル信号とピット信号を併用することで、このような不都 合が解消される。

[0016]

【発明の実施の形態】本発明の光記録媒体は、ウォブル したグルーブを有するとともに、これらグルーブ間の領 域に所定間隔でピットが形成されていることを特徴とす るものであり、グルーブのウォブル信号とピットのピッ ト信号の併用により高密度記録可能とするものである。 【0017】上記ピットは、グルーブとグルーブの間の

領域、すなわちランド部に形成され、その形状は、通常 のピットであってもよいし、グループとグループを繋ぐ ランド部の切り欠きとして隣接するグループ間に連なっ て形成されてもよい。

【0018】このピットは、通常、シンクピットやアド レスピット等を含むセクター情報を有しており、このセ クター情報によってアドレス情報等が得られるようにす るが、本願発明の場合には、必ずしもこのようなセクタ 一情報が存在しなくともよく、また、シンクピットの み、あるいはアドレスピットのみを有するものであって もよい。なお、シンクピットは、セクター情報の開始位 置を示すピットであり、例えば近接して配置された2個 のピットや、他のピットとはピット長の異なるピットと して形成され、他のピットとは区別して検出することが 可能である。

【0019】一方、グルーブは、単一周波数のウォブル 信号を有するものであってもよいし、変調により同期信 号やアドレスデータが記録されたセクター情報を有する ものであってもよい。

40

5

【0020】セクター情報は、記録データのセクター、または記録データセクターの集合であるクラスタに関連付けられた情報であり、同期信号、またはアドレスデータ、あるいは同期信号とアドレスデータの両者を有する。

【0021】また、これらの組み合わせも任意であり、例えば、単一周波数のウォブル信号を有するグループとシンクピット、アドレスピットの組み合わせ、変調で同期信号、アドレスデータ等のセクター情報が記録されたウォブル信号を有するグルーブとシンクピット、アドレ 10 スピットの組み合わせ、変調でセクター情報が記録されたウォブル信号を有するグルーブと一定間隔のピットの組み合わせ等が挙げられる。

【0022】上記組み合わせのうち、例えば単一周波数のウォブル信号を有するグループとシンクピット、アドレスピットの組み合わせを採用した場合には、これらシンクピットやアドレスピットにより確実に同期情報、アドレス情報が得られるとともに、ウォブル信号によりディスクの回転制御情報を正確に得ることが可能である。【0023】ウォブル信号を単一周波数の信号とすると、隣接グルーブからの漏れ込み信号が大きくなっても、その漏れ込み信号が本来検出するべき信号と正確に同じ周波数であるため、漏れ込みの影響は、検出されるウォブル信号において振幅のゆっくりとした変化となるのみで、したがって検出すべき単一周波数は容易に検出される。

【0024】また、変調で同期信号やアドレスデータを含むセクター情報が記録されたウォブル信号を有するグループと、シンクピット、アドレスピットの組み合わせを採用した場合には、同期情報やアドレス情報がグループとピットの両方に2重に記録されることになり、精度や信頼性が増す。

【0025】以上のようなグループとピットとを組み合わせる場合、ピットの位置をグループに対してランダムに形成すると、ピットの位置によって得られる再生信号のレベルが変動し、正確にピットを検出することが難しくなる虞れがある。あるいは、これらを再生するための再生装置におけるクロック発生回路が複雑化するという問題もある。

【0026】そこで、これを解消するために、例えばウォブル周波数 fw(平均周波数)とピット周波数 fpとの関係を、下記の数式で示すように整数関係にすることが好ましい。

[0027]

 $M \times f w = N \times f p$ (ただし、M、Nは整数である。) これは、言い換えれば、ウォブル周期T wとピット周期 T pとの関係を整数関係とすることである。

[0028]

 $M \times T w = N \times T p$ (ただし、M、Nは整数である。) なお、ウォブル周期T wは、ウォブルの平均周期であ

り、ピット周期Tpは、ピットを所定の間隔の整数倍の 間隔で記録する場合の、その所定の間隔である。また、 例えば連続する2個のピットをシンクピットとした場合 のピット周期Tpは、その連続する2個のピットを1個 のピットと見なし、これら2個のピット間の周期は無視 することとする。

【0029】このようにウォブル周波数 f wとピット周波数 f pと整数関係とすれば、基準クロックを1つにしたり、電圧制御発振器 VCOを1つにすることが可能になり、記録再生装置のクロック発生回路を簡易なものとすることができる。

【0030】また、PLLを利用してウォブル信号から ピット周期に同期した信号を生成することが可能とな り、その結果、正確にピットを検出することができる。 【0031】あるいは、ウォブルとピットの位相を合わ せることで、正確にピットを検出するようにしてもよ い。

【0032】すなわち、ピットの位置をウォブルの一定 位相に対応させ、ウォブル量(グルーブの蛇行量)が一 定となる位置にピットを形成することにより、ピット検 出信号を安定にさせることができ、正確にピットを検出 することが可能になる。

【0033】この場合、図1に示すように、グルーブGのウォブル中心位置(ウォブル量が最小となる位置)に対応してピットPを形成してもよいし、図2に示すように、ウォブル量が略最大となり且つ隣接するグルーブに対して近接する位置にピットPを形成してもよい。前者の場合、他のグルーブからのクロストークが最小となり、後者の場合、ウォブル信号成分を除去せずに信号レベルのみでピットを検出することができる。

【0034】また、ウォブル信号に同期情報やアドレス情報等を含んだセクター情報が記録され、ピットもシンクピット、アドレスピット等のセクター情報を有する場合には、これらセクター情報、特にシンクピットとウォブル信号の同期信号の位置関係を一定にすることが好ましい。例えば、再生方向において、シンクピットの手前の1ピット周期以内にウォブルによる同期信号を記録する。

【0035】このように、ウォブル信号からピットアドレスの同期部の位置を予め知ることにより、より正確にピットアドレスの同期を検出することが可能となり、その結果、ピットアドレスの読み取りがより確実となる。【0036】上述の光記録媒体に対して記録再生を行う場合には、ウォブルしたグルーブから検出した信号を用いてディスクの回転を制御し、ランド部のピットから検出した情報により、記録信号のディスク上での位置を制御する。

【0037】このとき、ウォブル信号とピットの信号を、プッシュプル法を用いて一つのビームスポットで同50時に読み出すようにすれば、記録再生装置の簡略化が可

20

7

能である。

[0038]

【実施例】以下、本発明を適用した具体的な実施例につ いて、図面を参照しながら詳細に説明する。

【0039】実施例1

本実施例の光ディスクは、波長635nmのレーザ光で 記録が可能な有機色素の記録膜を持つ直径12cmの追 記型ディスクである。

【0040】ディスクの材質は、ポリカーボネートであ り、射出成型により形成された案内溝(グルーブ)と、 グルーブ間のランド部を有する。

【0041】上記グルーブは、幅約0.25 μm、深さ 約70 n mであり、グルーブ間隔(トラックピッチ)約 0. 74μmで内周から外周まで連続したスパイラルと して形成されている。

【0042】また、上記グルーブには、ディスクの回転 数と記録信号のクロック周波数を制御するための情報と して、単一周波数のウォブル信号が記録されている。な お、ウォブルとは、グルーブをディスクの半径方向に僅 かに蛇行させることである。

【0043】本例においては、蛇行幅は20nm、蛇行 周期は約30 μ mである。したがって、このディスクを 線速度3.5m/秒で回転させ、ウォブル信号を再生す ると、その周波数は約120kHzとなる。

【0044】一方、グルーブとグルーブの間のランド部 には、アドレス情報を記録するピット(アドレスピッ ト)として、幅約0.3μmで、深さがグルーブと同じ 約70nmの溝が形成されている。

【0045】図3は、上述のグルーブとアドレスピット を模式的に示すもので、本例では、ウォブルするグルー 30 ブ1の間の領域に、所定の間隔でアドレスピット2が形 成されている。各アドレスピット2は、隣接するグルー ブ間に連なり、ディスクの半径方向の溝として形成され ている。

【0046】上記アドレスピットは、本例では約0.2 mm間隔で、情報の1/0に対応して形成されている。 すなわち、情報1に対応する位置にはアドレスピットが 有り、情報0に対応する位置にはアドレスピットは無 い。したがって、アドレスピットの有無が情報の1/0

【0047】図4は、グルーブに沿ってビームスポット Bを走査したときに得られる信号を示すものある。具体 的には、内周側のアドレスピットによるパルスと、これ とは逆の極性を有する外周側のアドレスピットによるパ ルスとが得られる。したがって、これらのいずれか一方 に基づいてアドレス情報を検出すればよい。

【0048】この記録方式では、情報の0が連続する と、アドレスピットが記録されない状態が連続し、アド レスピットの検出が困難となることが予想され、本実施

調し、0の連続は最大2ビットとしている。

【0049】ただし、同期信号の中には、同期信号の検 出を容易にするため、000111という変調規則外の パターンを設けるので、同期信号区間には、3チャンネ ルビット連続してアドレスピットが記録されない部分が ある。

【0050】図5に同期パターンとデータビットの変調 の例を示す。同期パターンは、01100011100 01110であり、既に説明したように、変調規則外の 3チャンネルビット連続の0及び1が含まれている。

【0051】データビットは、0は1-0、1は0-1 と変調されており、したがって、データ部分には3チャ ンネルビット以上の1の連続、0の連続は含まれていな

【0052】一方、図6がセクター情報の記録フォーマ ットの一例である。合計208チャンネルビットでセク ター情報は構成されており、先頭の16チャンネルビッ トが同期パターンであり、8バイトのアドレスデータに 4 バイトのリードソロモン符号のエラー訂正のためのパ リティを付加している。

【0053】この記録フォーマットでは、4バイトのパ リティによって2バイトまで訂正可能であるので、20 8チャンネルビットのセクター情報のうち、任意の位置 の2チャンネルビットが誤っていても、アドレスデータ を正しく検出することができる。

【0054】次に、上記の構成を有する光ディスクの信 号再生について説明する。なお、ここでは、グルーブの ウォブル信号とピットのアドレス信号を、プッシュプル 法を用いて一つのビームスポットで同時に読み出す方法 について説明する。

【0055】図7は、信号再生回路のブロック図であ る。図3において、グルーブ1上に集光されたビームス ポットBからの戻り光を、4分割のPINダイオード A. B. C. Dをディテクタとして光電変換し、これを I-V変換して4分割された各々のダイオードに対応す る信号A.B.C.Dを得る。

【0056】 これら信号のうち、信号A, B, C, Dを 加算したもの(A+B+C+D)が、記録された信号の 再生信号であり、等化回路11で記録再生の周波数特性 を補償した後、2値化回路12によって2値化すること により再生データが得られ、位相比較器13と電圧制御 発振器(VCO)14とによって構成したPLL回路に より、この2値化データから再生データのクロックを得 る。

【0057】一方、上記信号A、B、C、Dを利用して A-B+C-Dなる演算を行うと、非点収差方式のフォ ーカス誤差信号が得られる。

【0058】このフォーカス誤差信号は、位相補償回路 15を経てフォーカス駆動回路16に送られ、このフォ 例では、記録する情報を予め、いわゆるバイフェイズ変 50 一カス駆動回路 1 6 から対物レンズの焦点位置を制御す

るフォーカス駆動信号が出力される。

【0059】また、上記信号A、B、C、Dを利用してA+B-C-Dなる演算を行うと、いわゆるプッシュプル方式のトラッキング誤差信号が得られる。この信号は、グルーブとビームスポットBの半径方向の相対位置に対応した信号であるから、グルーブのウォブル信号も同時に再生される。さらに、アドレスピットが記録された位置でも、アドレスピットがグルーブに対してディスクの内周側であるか外周側であるかに応じて、プラスあるいはマイナスのパルスが検出され、これも信号A+B-C-Dに含まれる。

【0060】そこで、先ず、この信号A+B-C-Dをローパスフィルタ(LPF)17を通してトラッキング 誤差信号のみを取り出し、これを位相補償回路18を介してトラッキング駆動回路19に送り、トラッキング駆動信号を出力する。

【0061】また、アドレスピットによって発生するパルス信号を検出するためには、ウォブル信号の影響や、ウォブルの蛇行等による低周波数帯域のノイズの影響を避けるため、130kHz以下の信号を抑圧するハイパ 20スフィルタ(HPF) 20を用いる。

【0062】ウォブル信号は、狭い帯域の信号であるから、その帯域を通過させるバンドパスフィルター(BPF)21を用いることによって、良好なS/Nのウォブル信号を得ることができる。得られたウォブル信号は、2値化回路22によって2値化し、この2値化データを周波数比較回路23において基準周波数と比較することで、スピンドルモータ制御信号を得る。

【0063】以上説明したように、本実施例では、1つの4分割PINダイオードにより信号再生に必要な全て 30の信号を得ることが可能である。

【0064】実施例2

本例では、ウォブルとピットの様々な組み合わせについ て説明する。

【0065】先ず、第1の例は、単一周波数のウォブルと、このウォブル信号の周波数と整数関係にあるようにピットを形成した例である。

【0066】この場合、得られる信号は、図8に示すようなものとなり、ウォブル信号Swの周期Twの整数倍の間隔、すなわちピット周期Tpのさらに整数倍の間隔 40でピット信号Spが検出される。

【0067】第2の例は、変調されたウォブル信号に対して位相を合わせてピットを形成した例である。本例は、ウォブル量が略最大となり且つ隣接するグルーブに対して近接する位置にピットを形成した例であり、図9に示すように、ピット信号Spがウォブル信号Swの頂点に位置し、ピット信号Spの信号レベルのみでピットが検出される。

【0068】図9において、ピット信号Spは、トラッキング中のグループの内周側に配置されたピットにより 50

生成されたピット信号であり、一方、ピット信号Sp´は、前記グルーブの外周側に配置されたピットにより生成されたピット信号である。

【0069】なお、先の実施例1では、ピット信号からウォブル信号をハイパスフィルターにより除去した後、ピット信号を検出しているが、本例でのハイパスフィルターは、ウォブル信号を通過させ、ウォブル信号を含むピット信号Spを検出レベルLと比較することによりピットが検出される。これは、ウォブル信号の周波数帯域とピット信号の周波数帯域が近い場合、ハイパスフィルターによる周波数分離が困難な場合が想定されるからである。

【0070】また、本例では、グルーブの内周側のピットは、そのグルーブが内周側に略最大の量ウォブルした位置に記録してある。この場合、外周側のピットは、外周側の隣接グルーブが内周側に略最大量ウォブルした位置に記録されることになる。

【0071】隣接グルーブ間のウォブル信号は必ずしも一致しないため、図9に示すように、内周側のピットによるピット信号Spがウォブル信号が一定の値になる位置に位置しても、別のグルーブに関連付けられて記録された外周側のピットによるピット信号Sp´は、ウォブル信号とは無関係に位置することになる。

【0072】図9に示すように、ウォブル信号と無関係に位置した外周側ピットによるピット信号Sp´のピーク値がピット毎に変動するのに対して、ウォブル量が一定となる位置に記録された内周側ピットによるピット信号Spのピーク値は一定である。

【0073】ピーク値が一定である場合、例えば、ピット信号の振幅が変動しても簡単なピークホールド回路によりピーク値が容易に検出可能であり、その検出したピーク値を利用して、ピット検出レベルを最適値に保ち、安定したピットの検出が可能である。これは、ウォブル量がほぼ一定となる位置にピットが形成された場合に得られる利点である。

【0074】さらに、本例では、ピット信号Spはウォブル信号Swの頂点に位置するため、検出レベルの許容変動幅が最も大きくなる。このことが、ウォブル量がほぼ最大であり且つ隣接するグルーブに対して近接する位置にピットが形成された場合の利点である。

【 0 0 7 5 】 図 1 0 は、ウォブル信号に同期信号 S wsを 記録し、これをシンクピット S spと組み合わせた例であ る。

【0076】この場合には、ウォブル信号の同期信号SwsからシンクピットSspの位置を予め知ることができ、より確実にシンクピットSspが検出される。

【0077】このように、ウォブルとピットに関しては、種々の組み合わせが考えられるが、これらの組み合わせによって、次のような利点が生ずる。

【0078】先ず、ウォブルとピットの位相を合わせて

ることができる。

11

形成した場合について説明する。

【0079】図11は、このような光ディスクから得られる再生信号を示すもので、この再生信号はウォブル信号Swとピット信号Spとからなる。ここで、ピット信号にはノイズ成分Snが含まれているとする。

【0080】一方、図12は、これらウォブル信号とピット信号を再生するための再生装置のブロック図である。

【0081】この再生装置では、ウォブル信号Swは、バンドパスフィルタ31を介して2値化回路32に供給 10 され、一方、ピット信号Spは、ハイパスフィルタ33を介して2値化回路34に供給され、それぞれ2値化される。

【0082】このとき、2値化回路34からは、図11 (B) に示すように、各ピット信号Sp及びノイズ成分Snが出力される。

【0083】ウォブル信号Swは、さらに位相比較回路35へと送られ、電圧制御発振器36の発振周波数を1/100分周回路37及び1/M分周回路38によって1/(M*100)分周された信号と位相比較される。位相比較回路35によって検出された位相情報により電圧制御発振器36を制御することにより、フェイズロックドループが形成され、その結果、ウォブル信号周波数Fwの(M*100)倍の周波数Foが電圧制御発振器36から出力される。

【0084】ウォブル周波数 F wとピット周波数 F pとが F w * M = F p * Nの関係にあるとすると、電圧制御発振器 36 の発振周波数 F o は、F o = F w * (M * 100) = F p * (N * 100) であるから、ピット周波数 F pの (N * 100) 倍の周波数となる。

【0085】したがって、電圧制御発振器36の出力を 1/(N*100)カウンタ39で分周することによっ て、図11(C)に示す位相情報が得られ、ピットパル ス検出・補間回路40へ出力される。

【0086】そして、この図11(C)に示す位相情報 と2値化回路34からの出力のアンドをとることによって、図11(D)に示すように、ノイズ成分Snがキャンセルされ、本来のピット信号Spのみが検出され、図11(E)に示すピットデータクロックや図11(F)に示すピットデータが出力される。

【0087】この例のように、ウォブル周波数Fwとピット周波数FpとがFw*M=Fp*N(M、Nは整数)の関係にあるときは、ウォブル信号からフェイズロックドループによって、ピット周期で位相情報を得ることが可能であり、正確なピットアドレスの検出が可能である。

【0088】次に、ウォブル信号に同期信号(シンク)を記録し、これをシンクピットと組み合わせた例について説明する。

【0089】図13において、(a)に示すウォブル信 50 置にピットを形成した例を示す模式図である。

12

号は、F M変調されており、これを復調した結果が (b)である。一方、プリピットのシンクを(c)に示 すようにウォブルのシンクの直後に配置することで、ウ ォブルのシンクを検出後、プリピットのシンクを検出す

【0090】ウォブル自体の位置的な精度は、プリピットほど正確ではないが、プリピットとは違う系でプリピット保護のための仕組みを作ることで、プリピット信号自体の安全性を向上させることが可能である。

【0091】また、ゲート以外の使用方法として、図14に示すように、プリピット列の先頭判別信号をウォブルで入れることも可能である。

【0092】この結果、シンクパターンをプリピットで 形成する必要がなく、プリピット情報を増加させること が可能である。また、プリピットシンクパターンの検出 も不要なため、回路節減が可能であり、制御系が2重に なるため信頼性が増す。

【0093】以上、本発明を適用した具体的な実施例に ついて説明してきたが、本発明がこの実施例に限定され るものでないことは言うまでもなく、種々の変形、組み 合わせが可能である。

【0094】例えば、図15に示すように、アドレスピット2を通常のピット形状とすることも可能である。

【0095】また、ウォブル信号とピットの両者にセクター情報を記録した場合に、両者を使い分けることも可能であり、例えば信号を記録する前にはピットによるアドレス情報を利用し、信号記録後にはウォブル信号に変調で記録されるアドレス情報を利用することが可能である。

30 [0096]

【発明の効果】以上の説明からも明らかなように、本発明によれば、狭いトラックピッチにおいても、安定してディスク回転情報とアドレス情報とを得ることができ、 高密度での記録が可能である。

【0097】また、本発明によれば、これまでに比べて、正確且つ高い時間精度でアドレス情報を得ることが可能である。

【0098】さらに、本発明の光記録媒体において、例えば一つのビームスポットによりウォブル信号とアドレス信号を読み出すようにすれば、記録データの再生信号、サーボ信号(フォーカスサーボ信号、トラッキングサーボ信号)、ウォブル信号、アドレス情報の全てを検出することが可能であり、記録再生装置の簡略化を図り、低コストで記録再生装置を製作することが可能となる。

【図面の簡単な説明】

【図1】ウォブル中心にピットを配置した例を示す模式 図である。

【図2】ウォブル量が最大で隣接グルーブに近接する位置にピットを形成した例を示す模式図である。

(8)

14

【図3】本発明を適用した光記録媒体におけるグルーブ とピットの一例を模式的に示す要部概略平面図である。

【図4】ピットから得られるパルス信号を示す波形図である。

【図5】同期パターンとデータビットの変調例を示す図である。

【図6】アドレス情報の記録フォーマットの一例を示す 図である。

【図7】信号再生回路の一例を示す回路図である。

【図8】ウォブル信号とピット信号の周波数を整数関係 10 にしたときの再生信号の一例を示す波形図である。

【図9】 ウォブル信号とピット信号の位相を合わせたと きの再生信号の一例を示す波形図である。

【図10】 ウォブルとピットの両者に同期信号を記録し*

* たときの再生信号の一例を示す波形図である。

【図11】ウォブル信号とピット信号の位相を合わせた ときのタイミングチャートである。

【図12】再生装置における再生回路の一例を示すプロック図である。

【図13】ウォブルとピットの両者に同期信号を記録し たときのタイミングチャートである

【図14】 プリピット列の先頭判別信号をウォブルで入れた場合のタイミングチャートである。

【図15】グルーブとピットの他の例を模式的に示す要 部概略平面図である。

【符号の説明】

1 グルーブ、2 ピット

【図7】 【図15】 I-V変換 等化 2位化 A+B+ I-V変換 C+D 回路 回路 -V安换 I-V変換 位相補價 フォーカス 駆動回路 A-B+ **駆動信号** C-D トラッキング 製造信号 位相構做 トラッキング トラッキング 回路 アドレス HPF 2 植化 四路 周波数 スピンドル 比較回路 モータ 制御信号

フロントページの続き

(72)発明者 飯村 紳一朗

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 小川 博司

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 黒田 和男

埼玉県所沢市花園 4丁目2610番地 パイオ

ニア株式会社所沢工場内

(72)発明者 鈴木 敏雄

埼玉県所沢市花園4丁目2610番地 パイオ

ニア株式会社所沢工場内

(72)発明者 井上 章賢

埼玉県所沢市花園 4丁目2610番地 パイオ

ニア株式会社所沢工場内

(72)発明者 谷口 昭史

埼玉県所沢市花園 4丁目2610番地 パイオ

ニア株式会社所沢工場内

(72)発明者 太田 岑正

山梨県中巨摩郡田富町西花輪2680番地 パ

イオニアビデオ株式会社内

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第4区分

【発行日】平成16年7月22日(2004.7.22)

【公開番号】特開平9-326138

【公開日】平成9年12月16日(1997.12.16)

【出願番号】特願平8-171528

【国際特許分類第7版】

G 1 1 B 7/24 G 1 1 B 7/007

// G 1 1 B 7/09

[FI]

G 1 1 B 7/24 5 6 5 D G 1 1 B 7/24 5 6 1 Q G 1 1 B 7/007

G 1 1 B 7/09 A

【手続補正書】

【提出日】平成15年6月30日(2003.6.30)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

ウォブルしたグルーブを有するとともに、これらグルーブ間の領域に所定間隔でピットが 形成されていることを特徴とする光記録媒体。

【請求項2】

ウォブル周波数fwとピット周波数fpとが

 $M \times f w = N \times f p$ (ただし、M、Nは整数である。)

なる関係を満足することを特徴とする請求項1記載の光記録媒体。

【請求項3】

ウォブル量が略一定の値となる位置に<u>上記</u>ピットが形成されていることを特徴とする請求項1記載の光記録媒体。

【請求項4】

ウォブル量が略最小となる位置に<u>上記</u>ピットが形成されていることを特徴とする請求項3 記載の光記録媒体。

【請求項5】

上記ウォブルが単一周波数のウォブルであることを特徴とする請求項1記載の光記録媒体

【請求項6】

上記ピットによりセクター情報が記録されていることを特徴とする請求項1記載の光記録媒体。

【請求項7】

上記ピットがシンクピット及び/又はアドレスピットを有することを特徴とする請求項 6 記載の光記録媒体。

【請求項8】

ウォブル信号の変調により<u>上記</u>グルーブにセクター情報が記録されていることを特徴とする請求項1記載の光記録媒体。

【請求項9】

上記セクター情報が同期信号及び/又はアドレスデータを含むことを特徴とする請求項8 記載の光記録媒体。

【請求項10】

ウォブル信号の変調により<u>上記</u>グルーブにセクター情報が記録されていることを特徴とする請求項6記載の光記録媒体。

【請求項11】

<u>上記</u>セクター情報が同期信号及び/又はアドレスデータを含むことを特徴とする請求項10記載の光記録媒体。

【請求項12】

<u>上記</u>ウォブル信号のセクター情報と<u>上記</u>ピットのセクター情報とが一定の位置関係にあることを特徴とする請求項10記載の光記録媒体。

【請求項13】

<u>上記</u>ウォブル信号のセクター情報に含まれる同期信号が信号の再生方向において<u>上記</u>ピットのセクター情報の手前にあることを特徴とする請求項12記載の光記録媒体。

【請求項14】

上記ウォブル信号のセクター情報に含まれる同期信号の位置がシンクピットの1ピット周期以内の位置に形成されていることを特徴とする請求項13記載の光記録媒体。

【請求項15】

ウォブルしたグルーブを有するとともに、これらグルーブ間の領域に所定の間隔でピットが形成されてなる光記録媒体に対し信号を記録及び/または再生するに際し、

上記グルーブから検出したウォブル信号により上記光記録媒体の回転を制御するとともに、上記ピットから検出したピット信号により上記光記録媒体上での<u>記録及び/又は再生位</u>置を検出することを特徴とする光記録媒体の記録及び/又は再生方法。

【請求項16】

<u>上記</u>ウォブル信号と<u>上記</u>ピット信号をプッシュプル法により一つのビームスポットで同時 に読み出すことを特徴とする請求項15記載の光記録媒体の記録及び/または再生方法。

【請求項17】

ウォブルしたグルーブを有するとともに、これらグルーブ間の領域に所定の間隔でピットが形成されてなる光記録媒体に<u>対し信号を記録及び/又は再生する記録及び/又は再生装</u>置であり、

上記グルーブからウォブル信号を検出する検出手段と、

上記ピットからピット信号を検出する検出手段とを備え、

上記グルーブから検出したウォブル信号により光記録媒体の回転が制御されるとともに、

上記ピットから検出したピット信号により上記光記録媒体上で<u>記録及び/又は再生位置</u>が 検出されることを特徴とする記録及び/又は再生装置。

【請求項18】

上記ウォブル信号を検出する検出手段と上記ピット信号を検出する検出手段が、これら信号をプッシュプル法により一つのビームスポットで同時に読み出す検出手段であることを特徴とする請求項17記載の記録及び/又は再生装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 2

【補正方法】変更

【補正の内容】

[0012]

また、本発明<u>に係る</u>光記録媒体の<u>記録及び/又は</u>再生方法は、ウォブルしたグルーブを有するとともに、これらグルーブ間の領域に所定の間隔でピットが形成されてなる光記録媒体に対し信号を記録及び/または再生するに際し、<u>上記</u>グルーブから検出したウォブル信号により<u>上記</u>光記録媒体の回転を制御するとともに、<u>上記</u>ピットから検出したピット信号

により上記光記録媒体上での記録及び/又は再生位置を検出することを特徴とする。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 3

【補正方法】変更

【補正の内容】

[0013]

さらに、本発明<u>に係る記録及び/又は</u>再生装置は、ウォブルしたグルーブを有するとともに、これらグルーブ間の領域に所定の間隔でピットが形成されてなる光記録媒体に<u>対し信号を記録及び/又は再生する記録及び/又は再生装置であり、</u>上記グルーブからウォブル信号を検出する検出手段と、上記ピットからピット信号を検出する検出手段とを備え、上記グルーブから検出したウォブル信号により光記録媒体の回転が制御されるとともに、上記ピットから検出したピット信号により上記光記録媒体上で<u>記録及び/又は再生位置</u>が検出されることを特徴とする。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 7

【補正方法】変更

【補正の内容】

[0057]

一方、上記信号 A , B , C , D を利用して (A - B) + (C - D) なる演算を行うと、非点収差方式のフォーカス誤差信号が得られる。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 9

【補正方法】変更

【補正の内容】

[0059]

また、上記信号 A , B , C , D を利用して(A + B) - (C - D) なる演算を行うと、いわゆるプッシュプル方式のトラッキング誤差信号が得られる。この信号は、グルーブとビームスポット B の半径方向の相対位置に対応した信号であるから、グルーブのウォブル信号も同時に再生される。さらに、アドレスピットが記録された位置でも、アドレスピットがグルーブに対してディスクの内周側であるか外周側であるかに応じて、プラスあるいはマイナスのパルスが検出され、これも信号(A + B) - (C - D) に含まれる。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 0 6 0

【補正方法】変更

【補正の内容】

[0060]

そこで、先ず、この信号(A+B)-(C-D)をローパスフィルタ(LPF)17を通してトラッキング誤差信号のみを取り出し、これを位相補償回路18を介してトラッキング駆動回路19に送り、トラッキング駆動信号を出力する。

【手続補正7】

【補正対象書類名】図面

【補正対象項目名】図7

【補正方法】変更

【補正の内容】

【図7】

