專題	目錄	頁次
(-)	前言	55 ~ 55
(二)	數位工廠優化架構	56 ~ 56
(三)	數位工廠製程優化應用說明	57 ~ 59
(四)	龍德PTA廠氧化段CTA氧化反應優化模組開發	60 ~ 67
(五)	數位工廠優化開發進度與總結與後續工作	68 ~ 68
(六)	化三部數位工廠(AI)應用彙總	69 ~ 75
(七)	各廠數位工廠優化項目	76 ~ 78

題目:數位工廠優化推動計畫

(一)、前言:

隨著電腦運算效能與數值方法應用的快速發展,可以運用過去累積的數據,經由數據分析、模擬軟體應用、機器學習建模,將現有管理方式優化至預測、預警,並提供操作建議的管理模式,達到提升產品品質、降低成本,並提高營運管理效率。

本部推動方向主要有數位工廠優化與營運管理優化兩部分,數位工廠優化是建立製程即時管理系統,並進一步導入優化模組,應用在製程優化、製程模擬、設備管理、工廠安全;營運管理優化是透過數位化工具,將重覆性、例行性高的工作進行連續性的分析及優化。

因純對苯二甲酸(PTA)與純間苯二甲酸(PIA)製程相似,現階段優先執行PTA的數位工廠優化,後續將平行展開到PIA工廠。

數位工廠優化

製程優化

- 即時製程管理系統
- 製程優化模組
- 品質預測模組

製程模擬

製程流量、組成軟儀錶點 建置

設備管理

- 轉動設備振動即時監診
- 設備健康度預警模組

工廠安全

- 作業人員安全行為監控
- 管線腐蝕、洩漏監控

營運管理優化

商情資訊

- 原料及產品價格統計分析
- 原料及產品供需統計分析
- 同業銷售量商情統計分析

營業管理

- 訂單進度即時追踪
- 客戶需求及庫存資訊整合
- 客戶貢獻分析

產銷優化

- 產、銷、庫存協調數位化
- 產品損益預估
- 產銷量最適化推薦

題目:數位工廠優化推動計畫

(二)、數位工廠優化架構:

數位工廠優化需自動化收集整合不同的數據來源,運用製程模擬與機器學習等工具,結合製程、保養等領域知識,開發管理系統以及預測、優化模組,反映工廠運行的狀態,並進一步利用模組達到提升效益及預警監控的效用。

數據收集整合自動化

- 1. DCS/PLC 感測器數據
- 2. 品管檢驗數據
- 3. 工安環保及設備振動

1.即時製程管理系統

▶將製程條件連結SOP,建立生產、製程、品質等 即時管理系統,主動警示異常,輔助盤控操作

2. 製程優化/品質預測模組

▶利用製程模擬與機器學習,開發預測及操作建 議模組,優化製程條件,穩定品質、降低能耗

3.設備性能監控及預警模組

▶針對重要設備開發監控診斷模組,提供早期預 警機制,避免無預警損壞

4.工廠安全監控模組

- ▶針對管線腐蝕、洩漏建立預警模組,即時監控
- ▶ 開發影像辨識模組,監控防護器具穿戴完整性

題目:數位工廠優化推動計畫

(三)、數位工廠製程優化應用說明: 本部產品包含純對苯二甲酸(PTA)與純間苯二甲酸(PIA),氧化反應為製程核心,影響成品品質與醋酸 等單耗,規劃進料組成、品質優化、反應優化、能源優化四個類別,共檢討12個AI模型子項目,而 氫化反應是全廠能耗最高的單元,規劃能源優化及品質優化兩個類別,共4個AI模型子項目。 OSBL 系統 #600 蒸餾系統 ⑦尾氣溫度最適化 (12)冷却水減排優化 ③蒸餾塔穩定控制 ⑧蒸汽系統壓優化 ⑨尾氣 LEL 優化 #700 #300 氧化反應 氫化反應 → 進料組成 #200 進料調配 #400 分離乾燥 → 能源優化 □ 品質優化 13)結晶熱整合優化 ④CTA 4-CBA 預測 ①水份預測 → 品質優化 (5)CTA OD 預測 (14)RPF 操作優化 □ 反應優化 ②觸媒濃度預測 ⑥RPF 操作優化 (15)PTA 粒徑預測 PX **CTA PTA** ➡ 能源優化 11)氧化反應 COx 優化 #100 空壓機 #900 TA 系統 (16)TA 系統電力優 10空壓機用電優化 化

題目:數位工廠優化推動計畫

氧化反應段進料組成、品質優化、反應優化、能源優化四個類別目前已完成、進行中、規劃中的AI模型子項目如下圖。氧化反應為製程核心,因此需先達到進料組成與產品品質的穩定,才可更進一步對氧化反應進行優化分析,以降低產品單耗。

題目:數位工廠優化推動計畫

氫化反應段品質優化及能源優化兩個類別目前已完成、進行中、規劃中的AI模型子項目如下圖: 品質優化 能源優化 **PTA** 粒徑預測 氫化 RPF 操作 TA 系統電 優化 反應 力優化 結晶熱 整合優 已完成 進行中 規劃中

題目:數位工廠優化推動計畫

(四)、龍德PTA廠氧化反應優化模組開發:

模組開發歷程

【問題點】

對二甲苯(PX)氧化為劇烈的放熱反應,過程中伴隨PX與醋酸燃燒等副反應,增加原單位。尾氣COX(CO+CO₂)為燃燒副反應的指

標,如COX越低,表示醋酸因燃燒反應造成的損失越低。

【改善對策1】理論模型

透過ASPEN PLUS理論模型建立反應優化模型,但實際與計算COX的平均誤差大於5%。誤差偏大原因為反應方程式中活化能EA使用固定值,未考慮氧化觸媒CO/MN/BR濃度的變化,會改變活化能,影響反應速率。

【改善對策2】理論模型+數據模型

為改善理論模型與實際數據的誤差,以數據模型建立 活化能E_A與觸媒濃度製程變數之關係,修正理論模型, 以提高COX計算準確度。

【改善對策3】最佳操作建議

以理論模型+數據模型的優化模型,產生廣域製程條件下的COX 結果,找出最佳氧化條件(觸媒濃度、氧化溫度、液位...等),並提 供製程人員操作建議。

題目:數位工廠優化推動計畫

(四)、龍德PTA廠氧化反應優化模組開發:

1.【問題點】:定義與目標

對二甲苯(PX)氧化為劇烈的放熱反應,過程中共有兩類反應發生,一類是對二甲苯(PX)氧化成對苯二甲酸(TA)的主反應;另一類則是同時伴隨發生的副反應,主要是指溶劑醋酸(HAC)、原料對二甲苯(PX)的燃燒反應。

由於醋酸消耗是影響PTA生產成本的主要項目之一,擬進一步尋求更優化的氧化操作條件,減少醋酸燃燒損失,降低原單位。

[主反應] PX + O₂ → TA + H₂O

[副反應] $PX + HAC + O_2 \rightarrow CO + CO_2 + H_2O$

燃燒指標

問題點	改善對策
對二甲苯(PX)氧化為劇烈的放熱反應,過程伴	以Aspen Plus建置穩態模擬理論模型,並引入
隨醋酸(HAC)、對二甲苯(PX)燃燒副反應發	數據模型修正誤差,建立氧化反應優化模
生,經檢討可進一步尋求更優化的操作條	型,以降低醋酸(HAC)燃燒的指標CO、CO2為
件,降低原單位。	目標,提供操作建議。

題目:數位工廠優化推動計畫

2.【改善對策1】:理論模型

(1). 資料盤點

經與製程檢討,盤點相關的24個變數如下圖(含製程儀錶測點與品管檢測數據):

題目:數位工廠優化推動計畫

(2). 模組建立

①. PX氧化反應機構,主反應可分為6條反應方程式、副反應(PX、醋酸燃燒)可分為5條反應方程式,依此建立Aspen Plus理論模型。

		PX氧化反應式	E _a (kJ/mol)	反應機理
	1	$\mathbf{PX} + \mathbf{O}_2 \longrightarrow \mathbf{TALD} + \mathbf{H}_2\mathbf{O}$	64.99	
	2	$TALD + 1/2O_2 \rightarrow PTS$	51.52	CH ₃ CHO COOH COOH COOH $k_1 \qquad k_2 \qquad k_3 \qquad k_4 \qquad k_4$
主反	3	$PTS + O_2 \rightarrow 4\text{-}CBA + H_2O$	85.06	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
應	4	$4\text{-CBA} + 1/2O_2 \rightarrow \text{TA}$	78.25	CH ₃ CH ₃ CH ₀ COOH PX TALD PTS 4-CBA TA
	5	$\mathbf{PX} + 1/2\mathbf{O}_2 \rightarrow \mathbf{TALC}$	65.28	5 10
	6	$TALC + 1/2O_2 \rightarrow TALD + H2O$	57.42	CH ₂ OH TALC
	7	$PX + 15/2O_2 \rightarrow 8CO_2 + 3H_2O$	49800	$\mathbf{PX} + \mathbf{O_2} \xrightarrow{k_7} \mathbf{CO_2} + \mathbf{H_2O}$
副	8	$PX + 7/2O_2 \rightarrow 8CO + 3H_2O$	55400	$\mathbf{PX} + \mathbf{O_2} \xrightarrow{k_8} \mathbf{CO} + \mathbf{H_2O}$
反應	9	$HAC + 2O_2 \rightarrow 2CO_2 + 2H_2O$	80000	$\mathbf{HAC} + \mathbf{O_2} \xrightarrow{k_9} \mathbf{CO_2} + \mathbf{H_2O}$
(燃燒)	10	$HAC + O_2 \rightarrow 2CO + 2H_2O$	65000	$\mathbf{HAC} + \mathbf{O_2} \xrightarrow{k_{10}} \mathbf{CO} + \mathbf{H_2O}$
	11	$HAC + PX + 3/2O_2 \rightarrow MA + BA + H_2O$	55000	$PX + HAC + O_2 \xrightarrow{k_{11}} MA + BA + H_2O$

題目:數位工廠優化推動計畫

- ②.由於系統中的醋酸氣體分子會透過氫鍵結合為二聚體,因此熱力學方法選用可描述真實 氣體狀態的NRTL-HOC模型。
- ③.以現場製程數據導入Aspen Plus理論模型,計算出CO、CO2濃度。模型架構如下:

(3).結論

理論模型計算的尾氣CO與CO2濃度與實際數據的平均誤差大於5.0%,如下圖。

題目:數位工廠優化推動計畫

- 3.【改善對策2】:理論模型+數據模型
 - (1).誤差偏大原因為反應中活化能Ea使用定值,未考慮Co/Mn/Br氧化觸媒濃度的變化會改變活化能,影響反應速率r。因此建立氧化觸媒濃度對活化能關係之數據模型,以修正理論模型計算與實際之誤差。

(2).數據模型以2020年5月穩定數據做為訓練集,2020年6~7月做為測試集,嘗試KNN、Random Forest、PLS、SVR、Ridge等演算法,其中以Ridge的結果最佳。模型架構如下圖:氧化觸媒數據輸入數據模型,以計算出符合實際生產狀態下的活化能Ea,再與製程數據輸入至理論模型,可得更貼近實際的CO、CO2。

題目:數位工廠優化推動計畫

(3).結論

以數據模型修正後的理論模型計算結果,CO₂平均誤差降至2.8%,如下圖,有效改善模型的性能。

題目:數位工廠優化推動計畫

- 4.【改善對策3】:最佳操作建議
 - (1).以理論模型結合數據模型,產生大量且廣域的數據,建立優化模型。透過優化模型可讀取即時數據,在品質合格的條件下,以降低COx為目標,經過優化模型計算可控製程變數(氧化塔溫度、觸媒溴濃度)的操作建議值,來減少醋酸燃燒損失。

(2).效益

預定2022年3月完成,上線後預期COx降低0.035%,醋酸原單位降低0.3 kg/噸PTA,年效益2,579千元。

題目:數位工廠優化推動計畫

(五)、數位工廠優化開發進度

化三部龍德、麥寮、寧波三個PTA廠相似,已同步展開數位工廠優化開發,後續規劃的案件將分配各廠分頭進行,待完成後將共通性的案件平行展開。

刺 八一	龍德F	PTA廠	麥寮F	PTA廠	寧波PTA廠		
數位工廠優化進度	完成/計畫量	預完日	完成/計畫量	預完日	完成/計畫量	預完日	
即時製程管理系統	211/213	2021.12	143/149	2021.12	132/167	2021.12	
製程優化模組	2/9	2023.12	2/9	2023.12	1/4	2023.12	
品質預測模組	3/6	2022.12	4/6	2022.12	2/6	2022.12	
設備監診模組	20/39	2022.6	22/36	2022.6	38/38	2021.7	
工廠安全	工廠安全 1/2 2		0/1	2022.12	0/2	2022.12	

(六)、總結與後續工作

本部數位工廠優化架構已規劃完成,並陸續完成4-CBA、OD、進料觸媒組成與水份等預測模組,將 持續積極開發優化模組,提升生產效益及設備妥善率。

目前已使用理論模結合數據模的方式,自行開發PTA廠氧化反應優化模組中,此模式也已開始套用到PIA廠,並逐步建立全廠的優化模組。化三部數位工廠優化計劃在2023年12月完成。

題目:數位工廠優化推動計畫

化三部智能工廠(AI)應用彙總

本部2018年起推動智能工廠,AI專案類別主要分為製程操作管理優化、品質管理優化、設備健康度監診、工廠安全管理等四大類,立案數共32案(合作開發10案,自行開發22案),投資金額25,067千元,預估年效益176,482千元。目前上線應用共20案,年效益74,275千元,持續進行中12案。

1张 4七 米石 口,1	車 安 粘 叫	А	專案數量	<u>-</u>	投資金額	年效益
機能類別	專案類別	合作開發	自行開發	合計	(千元)	(已完成)
	1.蒸餾塔穩定提升	4 (3)	0 (0)	4 (3)		
	2.蒸汽節能	1 (0)	3 (0)	4 (0)		
制印品化签四值儿	3.冷卻水塔優化	0 (0)	2 (2)	2 (2)	10.000	139,800
製程操作管理優化	4.氧化反應優化	1 (0)	1 (0)	2 (0)	18,080	(37,593)
	5.醋酸反應優化	1 (0)	1 (0)	2 (0)		
	6.設備操作優化	0 (0)	3 (3)	3 (3)		
	1.CTA 品質(4-CBA、OD)	0 (0)	7 (7)	7 (7)		
品質管理優化	2.CTA 進料組成(觸媒、水份)	0 (0)	3 (1)	3 (1)	653	36,682 (36,682)
	3.PTA 品質(粒徑)	1 (1)	0 (0)	1 (1)		(00)00=)
設備健康度監診	iEM/PRiSM 開發設備監診模組	0 (0)	2 (2)	2 (2)	2,996	-
工廠安全管理	電氣室高壓盤人員穿著安全監控	1 (1)	0 (0)	1 (1)	3,338	_
上	醋酸廠氫氣管線洩漏監控系統	1 (0)	0 (0)	1 (0)	3,330	-
合	<u></u>	10 (5)	22 (15)	32 (20)	25,067	176,482 (74,275)

題目:數位工廠優化推動計畫

(一)、製程操作管理優化

類別	AI 專案	合作開開	自行開發	模組開發成效	投資金額 (千元)	年效益 (開發中)
1				麥寮 PTA 廠,第一階段利用數據探索分析, 找出影響醋酸脫水蒸餾塔穩定的顯著變數, 提供製程控制模式調整指引,節省蒸汽 0.96 噸/H,以及共沸劑 10.3KG/H。	1,000	10,443
蒸餾塔瑶	(1)CTA 蒸餾塔穩定控制	3		麥寮 PTA 廠,第二階段建立氧化系統水份的操作建議模組,投入後系統水份的偏移量由0.22%下降至 0.16%,節省醋酸 0.1 噸/H。	2,000	11,138
塔穩定提升				龍德 PTA 廠,開發脫水蒸餾塔導電度預測模組,上線應用後蒸餾塔導電度穩定度提升,節省蒸汽 0.8 噸/H。	0	4,595
	(2)醋酸區成品塔及丙酸 塔穩定控制	1	0	醋酸廠,開發成品塔丙酸預測模組,優化蒸餾單元內回流能耗,達到節能操作的目的,預計節省蒸汽 0.1 噸/H。	900	(958)
蒸汽節	(1)PTA 結晶熱能回收優化 與粒徑分析	1	0	麥寮 PTA 廠,建立 ASPEN 穩態模擬模型,提供最大化回收蒸汽能源方案,改善高壓蒸汽使用效率,並提高結晶槽熱能回收,預計節省蒸汽 4.5 噸/H。因節能改善需調整結晶槽溫度壓力,造成液位操作裕度減小,同時導入粒徑預測數據模型,維持粒徑穩定度。	950	(31,104)
能	(2)2K 蒸汽壓力最適化控制	0	1	麥寮 PTA 廠,開發氧化塔及第一結晶槽尾氣 熱能回收優化模組,提升熱回收效率,預計 節省蒸汽 3.6 噸/H。	0	(14,546)

題目:數位工廠優化推動計畫

類別	AI 專案	合作開開	自行開發	模組開發成效	投資金額 (千元)	年效益 (開發中)
2蒸汽節	(3)CIA 尾氣加熱溫度最適 化控制	1	0	龍德 PTA 廠,開發氧化尾氣含水率預測模組 ,計算膨脹機出口露點溫度,優化入口溫度 控制,預計節省蒸汽 3.3 頓/H。	0	(35,581)
八節 能	(4)CO 轉化器出口温度優化	0	1	寧波 PTA 廠,開發 CO 轉化器出口溫度預測 模組,優化 CO 轉化器操作,預計節省蒸汽 0.2 噸/H。	0	(1,561)
3冷卻水	(1)冷却水塔減排優化	0	1	麥寮 PTA 廠,開發冷卻水塔關鍵指標預測模組,最大化提升濃縮倍數,降低排水量,節省藥劑用量。	0	76
水塔優化	(2)冷卻水系統用電優化	0	1	寧波 PTA 廠,開發對冷卻水塔用電量優化模組,計算啟/停冷卻水泵或風扇對冷卻水溫 度影響,節省電力 42 度/H。	0	724
4 氧化反	(1)CIA 氧化反應優化	1	0	龍德 PTA 廠,開發 CIA 氧化反應優化模組, 降低醋酸燃燒副反應(以尾氣 COx 為指標), 預計節省醋酸 13KG/H、觸媒 1KG/H。	0	(2,586)
及應優化	(2)CTA 氧化反應優化	0	1	龍德 PTA 廠,開發 CTA 氧化反應優化模組, 降低醋酸燃燒副反應(以尾氣 COx 為指標), 預計節省醋酸 23KG/H。	0	(2,579)

題目:數位工廠優化推動計畫

類別	AI 專案	合作開開	自行開發	模組開發成效	投資金額 (千元)	年效益 (開發中)
醋酸反應	(1)POx 反應器進料單元最 佳化操作	1	0	醋酸廠,開發 POx 反應器優化模組,提升 CO 產率,預計 CO 產率由 45.98%提升至 46.5%以上。	5,510	(13,292)
	(2)醋酸區反應水份最佳化 控制	0	1	醋酸廠,開發醋酸反應器水份預測模組,建 立軟儀表輔助盤控員更即時調整製程,提升 反應活性穩定。	0	-
6	(1)PTA 高壓過濾機(RPF) 優化	0	1	麥寮 PTA 廠,開發 RPF 堵管預警系統,輔助 製程人員即時監控堵管程度,延長設備運轉 週期,節省檢修費用。	0	3,873
設備操作優	(2)CIA 乾燥機操作最適化	0	1	龍德 PTA 廠,開發乾燥機結垢預警系統,輔助製程人員即時監控設備狀態,延長運轉週期,節省停車損失。	0	6,744
化	(3)iEM 監控分析系統規劃	0	1	醋酸廠,規劃 30 個系統單元,開發健康狀態預警模組,早期發現異常,可提前處置(備料、維修等),避免無預警損壞。	4,420	-

題目:數位工廠優化推動計畫

(二)、品質管理優化

類別	AI 專案		自行開發	模組開發成效	投資金額 (千元)	年效益 (開發中)
				龍德 PTA 廠,開發 CTA 品質 4CBA 預測及操作建議模組,提升品質穩定度,提高氧化反應穩定,PX 原單位降低 0.45KG/噸-PTA,醋酸原單位降低 1.5KG/噸-PTA。	0	16,939
	(1)CTA 品質 4CBA 預測 管控	0	4	麥寮 PTA 廠,開發 CTA 品質 4CBA 預測及操作建議模組,提升品質穩定度,提高氧化反應穩定,PX 原單位降低 0.45KG/噸-PTA,醋酸原單位降低 1.5KG/噸-PTA。	0	16,743
1 C T A				寧波 PTA 廠,開發 CTA 品質 4CBA 預測及操作建議模組,提升品質穩定度,提高氧化反應穩定,醋酸原單位降低 0.1KG/噸-PTA。	0	3,000
品質				龍德 PTA 廠,開發 CTA 品質 OD 預測模組, 建立即時預警機制,提升品質穩定度。	0	-
	(2)CTA 品質 OD 值預測 管控	0	3	麥寮 PTA 廠,開發 CTA 品質 OD 預測模組, 建立即時預警機制,提升品質穩定度。	0	-
				麥寮 PTA 廠,開發 CTA 品質 OD 預測模組, 建立即時預警機制,提升品質穩定度。	0	-

題目:數位工廠優化推動計畫

類別	AI 專案	合作開開	自行開發	模組開發成效	投資金額 (千元)	年效益 (開發中)
2	(1)CTA V205 觸媒組成預測	0		龍德 PTA 廠,開發進料調配槽 V205 觸組預 測及操作建議模組,建立即時預警機制,提 升氧化塔進料組成穩定度。	0	-
C T A 進料	管控	U		麥寮 PTA 廠,開發進料調配槽 V205 觸組預 測及操作建議模組,建立即時預警機制,提 升氧化塔進料組成穩定度。	0	-
組成	(2)CTA V205 水份預測管控	0	1	龍德 PTA 廠,開發進料調配槽 V205 水份預 測及操作建議模組,建立即時預警機制,提 升氧化塔進料組成穩定度。	0	-
3 P T A 品質	(1)PTA 成品平均粒徑預測	1	0	麥寮 PTA 廠,開發 PTA 成品平均粒徑預測模組,即時預判製程變化對應粒徑的影響,供操作人員即時調整指引,強化品質管控。	653	-

題目:數位工廠優化推動計畫

(三)、設備健康度監診

類別	AI 專案	合作開開	自行開發	模組開發成效	投資金額 (千元)	年效益 (開發中)
設備健康	備	0		引進 iEM 軟體,針對重要設備開發監控診斷模組,提供早期預警機制,目前已上線 24個設備模組,後續規劃再建立 28個設備模組。	0	-
健康度監診	診模組	0		引進 PRiSM 軟體,針對重要設備開發監控診 斷模組,提供早期預警機制,目前已上線 5 個設備模組,後續規劃再建立 18 個設備模 組。	0	-

(四)、工廠安全管理

類別	AI 專案	合作開開	自行開發	模組開發成效	投資金額 (千元)	年效益 (開發中)
一廠案	(1)電氣室高壓盤人員穿著 安全監控	1	0	龍德 PTA 廠,開發 AI 影像辨識模組,確保電氣室操作人員正確配戴安全防護器具,保護人員不受設備非預期異常所發生之電弧能量衝擊危害。	1,888	-
全管理	(2)醋酸廠氫氣管線洩漏監 控系統	1	0	醋酸廠,開發氫氣管線溫度趨勢變化預警模組,即時監測氫氣洩漏,當溫度偏移時即發出警報,並標記異常位置,通知 DCS 人員迅速採取因應措施,降低火災擴大風險。	1,450	-

題目:數位工廠優化推動計畫

各數位工廠優化項目(龍德廠)

即時製程管理系統(RTPMS)

●生產管理、製程管理、品質管理、保養管理、安衛環、能源管理系統

製程優化模組

- CTA蒸餾塔穩定優化
- CIA乾燥機操作最適化
- CTA/CIA 氧化反應COx優化
- CIA 尾氣加熱溫度最適化
- PIA 結晶熱能回收優化
- 製程空壓機產氣分配節電最適化
- CTA3 尾氣LEL最佳化
- CTA RPF優化

品質預測模組

- CTA 4-CBA預測
- CTA V205觸媒濃度預測
- CTA OD預測
- CTA V205水分預測
- CIA粉粒徑預測
- PTA成品平均粒徑預測

設備管理優化

- ●iEM設備監控診斷模組
- PRiSM設備監控診斷模組

工廠安全

- 電氣室高壓盤內操作人員安全防護完整性監控
- CTA尾氣管路減薄預警

已完成 進行中 規劃中

題目:數位工廠優化推動計畫

各數位工廠優化項目(麥寮廠)

即時製程管理系統(RTPMS)

●生產管理、製程管理、品質管理、保養管理、安衛環、能源管理系統

製程優化模組

- CTA蒸餾塔穩定優化
- PTA RPF優化
- 冷却水塔減排優化
- PTA結晶熱能回收優化
- 2K蒸汽壓力最適化控制
- CTA RPF優化
- 大小台空壓機產氣分配節電最適化
- TA系統電力節能優化整合
- CTA氧化塔反應穩定控制

品質預測模組

- CTA 4-CBA預測
- CTA V205水分預測
- CTA OD預測
- PTA 粒徑預測
- CTA V205觸媒濃度預測
- 鍋爐水品質系統控制優化

設備管理優化

- iEM設備監控診斷模組
- PRiSM設備監控診斷模組

工廠安全

● 電氣室高壓盤內操作人員安全防護完整性監控

已完成 進行中 規劃中

題目:數位工廠優化推動計畫

各數位工廠優化項目(寧波廠)

即時製程管理系統(RTPMS)

●生產管理、製程管理、品質管理、保養管理、安衛環、能源管理系統

製程優化模組

- 冷卻水系統用電優化
- CO轉化器出口溫度優化
- CTA製程空壓機用電優化
- CTA氧化塔反應穩定控制

設備管理優化

● 轉動設備無線傳感器在線監診模組

品質預測模組

- CTA 4-CBA預測
- CTA OD預測
- CTA/CIA V205水分預測
- CTA/CIA V205 網媒濃度預測

工廠安全

- 電器盤紅外線溫度監控
- 人員定位監控系統

已完成 進行中 規劃中

恭請 總裁指導