# COMP0147 Discrete Mathematics for Computer Scientists Notes

Joe

April 16, 2019

- Notes adapted from:
  Lecture notes by Max Kanovich and Robin Hirsch [1].
  A First Course in Abstract Algebra by Joseph J. Rotman [2].

# **Contents**

| 1 | Set  | Theory 7                                             |
|---|------|------------------------------------------------------|
|   | 1.1  | Set Notations                                        |
|   | 1.2  | Properties                                           |
|   | 1.3  | Set Equality                                         |
|   | 1.4  | Set Operations                                       |
|   | 1.5  | Boolean Algebra                                      |
|   | 1.6  | Set Algebra                                          |
| 2 | Fun  | ctions 11                                            |
|   | 2.1  | Function Basics                                      |
|   | 2.2  | Composition of Injections                            |
|   | 2.3  | Composition of Surjection                            |
|   | 2.4  | Composition of Bijection                             |
|   | 2.5  | Cardinality of Sets                                  |
| 3 | Per  | mutations 15                                         |
|   | 3.1  | Permutation Basics                                   |
| 4 | Bina | ary Relations 17                                     |
|   | 4.1  | Equivalence Relations                                |
|   | 4.2  | Equivalence Classes                                  |
|   | 4.3  | Quotient Groups                                      |
| 5 | Gго  | ups 21                                               |
|   | 5.1  | Group Basics                                         |
|   | 5.2  | Multiplicative Group                                 |
|   | 5.3  | Additive Group                                       |
|   | 5.4  | Associativity of Sequential Composition of Functions |
|   | 5.5  | Subgroups                                            |
|   | 5.6  | Lagrange's Theorem                                   |
|   |      | 5.6.1 Equivalence Classes                            |
|   |      | 5.6.2 Order of an Element in Lagrange's Theorem 28   |

# 1 Set Theory

#### 1.1 Set Notations

- Set definition:  $A = \{a, b, c\}$
- Set membership (element-of):  $a \in A$
- Set builder notation:  $\{x \mid x \in \mathbb{R} \land x^2 = x\}$
- Empty set: ∅

### 1.2 Properties

- No structure
- No order
- No copies

For example, a, b, c are references to actual objects in

$$\{a,b,c\} \Leftrightarrow \{c,a,b\} \Leftrightarrow \{a,b,c,b\}$$

### 1.3 Set Equality

**Definition 1.3.1** (Set Equality). Set A = B iff:

- 1.  $A \subseteq B \implies \forall x(x \in A \rightarrow x \in B)$
- 2.  $B \subseteq A \implies \forall y(y \in B \rightarrow y \in A)$

**Remark.**  $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$ 

### 1.4 Set Operations

- Union:  $A \cup B := \{x \mid x \in A \lor x \in B\}$
- Intersection:  $A \cap B := \{x \mid x \in A \land x \in B\}$
- Relative Complement:  $A \setminus B := \{x \mid x \in A \land x \notin B\}$
- Absolute Complement:  $A^c := U \setminus A := \{x \mid x \in U \land x \notin A\}$
- Symmetric Difference:  $A \Delta B := (A \setminus B) \cup (B \setminus A) := (A \cup B) \setminus (A \cap B)$
- Cartesian Product:  $A \times B := \{(x, y) \mid x \in A \land y \in B\}$

### 1.5 Boolean Algebra

**Definition 1.5.1** (De Morgan's Laws).

$$\neg (p \lor q) \equiv \neg p \land \neg q \tag{1.1}$$

$$\neg (p \land q) \equiv \neg p \lor \neg q \tag{1.2}$$

**Definition 1.5.2** (Idempotent Laws).

$$p \lor p \equiv p \tag{1.3}$$

$$p \wedge p \equiv p \tag{1.4}$$

**Definition 1.5.3** (Commutative Laws).

$$p \lor q \equiv q \lor p \tag{1.5}$$

$$p \wedge q \equiv q \wedge p \tag{1.6}$$

**Definition 1.5.4** (Associative Laws).

$$p \lor (q \lor r) \equiv (p \lor q) \lor r \tag{1.7}$$

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r \tag{1.8}$$

**Definition 1.5.5** (Distributive Laws).

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \tag{1.9}$$

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \tag{1.10}$$

**Definition 1.5.6** (Identity Laws).

$$p \vee F \equiv p \tag{1.11}$$

$$p \vee T \equiv T \tag{1.12}$$

$$p \wedge T \equiv p \tag{1.13}$$

$$p \wedge F \equiv F \tag{1.14}$$

**Definition 1.5.7** (Absorption Laws).

$$p \lor (p \land q) \equiv p \tag{1.15}$$

$$p \land (p \lor q) \equiv p \tag{1.16}$$

**Definition 1.5.8** (Implication and Negation Laws).

- *Identity*:  $p \rightarrow q \equiv \neg p \lor q$
- Counter-example:  $\neg(p \rightarrow q) \equiv p \land \neg q$
- Equivalences:  $p \to q \to r \equiv (p \land q) \to r \equiv q \ to(p \to r)$

• *Absorption*:

$$p \to T \equiv T$$
 $p \to F \equiv \neg p$ 
 $T \to p \equiv p$ 
 $F \to p \equiv T$ 

- Contrapositive:  $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- Law of Excluded Middle:

$$p \vee \neg p \equiv \mathbf{T}$$
$$p \wedge \neg p \equiv \mathbf{F}$$

- *Double Negation*:  $\neg \neg p \equiv p$
- Reduction to Absurdity:  $\neg p \rightarrow F \equiv p$

#### 1.6 Set Algebra

**Definition 1.6.1** (De Morgan's Laws).

$$(A \cup B)^c \equiv A^c \cap B^c \tag{1.17}$$

$$(A \cap B)^c \equiv A^c \cup B^c \tag{1.18}$$

**Definition 1.6.2** (Idempotent Laws).

$$A \cup A \equiv A \tag{1.19}$$

$$A \cap A \equiv A \tag{1.20}$$

**Definition 1.6.3** (Commutative Laws).

$$A \cup B \equiv B \cup A \tag{1.21}$$

$$A \cap B \equiv B \cap A \tag{1.22}$$

**Definition 1.6.4** (Associativity Laws).

$$A \cup (B \cup C) \equiv (A \cup B) \cup C \tag{1.23}$$

$$A \cap (B \cap C) \equiv (A \cap B) \cap C \tag{1.24}$$

**Definition 1.6.5** (Distributive Laws).

$$A \cap (B \cup C) \equiv (A \cap B) \cup (B \cap C) \tag{1.25}$$

$$A \cup (B \cap C) \equiv (A \cup B) \cap (B \cup C) \tag{1.26}$$

**Definition 1.6.6** (Identity Laws).

$$A \cup \emptyset \equiv A \tag{1.27}$$

$$A \cap \emptyset \equiv \emptyset \tag{1.28}$$

$$A \cap U \equiv A \tag{1.29}$$

$$A \cup U \equiv U \tag{1.30}$$

**Definition 1.6.7** (Absorption Laws).

$$A \cup (A \cap B) \equiv A \tag{1.31}$$

$$A \cap (A \cup B) \equiv A \tag{1.32}$$

**Definition 1.6.8** (Difference Identity Laws).

$$C \setminus (A \cup B) \equiv (C \setminus A) \cap (C \setminus B) \tag{1.33}$$

$$C \setminus (A \cap B) \equiv (C \setminus A) \cup (C \setminus B) \tag{1.34}$$

**Definition 1.6.9** (Complement-Difference Identity Law).

$$C \setminus D \equiv C \cap D^c \tag{1.35}$$

**Definition 1.6.10** (Double Complement Law).

$$\left(D^{c}\right)^{c} \equiv D \tag{1.36}$$

**Definition 1.6.11** (Contraposition).

$$C \subseteq D \Leftrightarrow D^c \subseteq C^c \tag{1.37}$$

$$C = D \Leftrightarrow C^c = D^c \tag{1.38}$$

Definition 1.6.12 (Arbitrary Union).

Given sets  $A_1, A_2, \dots, A_n$  where  $I = \{1, 2, \dots, n\}$ 

$$A_1 \cup A_2 \cup \dots \cup A_n \coloneqq \bigcup_{i \in I} A_i \tag{1.39}$$

Then

$$x \in \bigcup_{i \in I} A_i \Leftrightarrow \exists i \in I \colon x \in A_i \tag{1.40}$$

Definition 1.6.13 (Arbitrary Intersection).

Given sets  $A_1, A_2, \dots, A_n$  where  $I = \{1, 2, \dots, n\}$ 

$$A_1\cap A_2\cap \cdots \cap A_n\coloneqq \bigcap_{i\in I} A_i \tag{1.41}$$

Then

$$x \in \bigcap_{i \in I} A_i \Leftrightarrow \forall i \in I \colon x \in A_i \tag{1.42}$$

### 2 Functions

#### 2.1 Function Basics

**Definition 2.1.1** (Function). A function f is a mapping from X to Y

$$f \colon X \mapsto Y$$
 (2.1)

- domain(f) = X
- image(f) = f(X)

**Definition 2.1.2** (Total Function). A function is *total* if

$$domain(f) = X (2.2)$$

**Definition 2.1.3** (Partial Function). A function is *partial* if

$$domain(f) \subseteq X \tag{2.3}$$

**Definition 2.1.4** (Surjection). A function  $f: X \mapsto Y$  is *surjective* iff

$$f(X) = Y \Leftrightarrow \forall y \in Y \colon \exists x \in X \colon f(x) = y \tag{2.4}$$

Namely each  $y \in Y$  has a corresponding  $x \in X$ .

**Definition 2.1.5** (Injection (Encodings, One-to-one)). A function  $f: X \mapsto Y$  is *injective* iff

$$\forall x_1, x_2 \in X \colon x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
 (2.5)

$$\Leftrightarrow \forall x_1, x_2 \in X \colon f(x_1) = f(x_2) \to x_1 = x_2$$
 (2.6)

Namely each distinct element  $x \in X$  maps to a different element in Y.

**Definition 2.1.6** (Bijection). A function  $f: X \mapsto Y$  is *bijective* iff f is both *injective* and *surjective*.

$$Bijective(f) := Injective(f) \land Surjective(f)$$
 (2.7)

The *inverse bijection*  $f^{-1}: Y \mapsto X$  does exist.

### 2.2 Composition of Injections

**Proposition 2.2.1** (Composition of Injection). Given *injections*  $f: X \mapsto Y$  and  $g: Y \mapsto Z$ , then their *composition*  $h: X \mapsto Z$  is given by

$$h(x) := g(f(x)) \tag{2.8}$$

Then h is also an *injective* function. Namely  $h = g \circ f$  where h is composed from g and f with f applied first.

*Proof.* Given any  $x_1, x_2 \in X$  where  $x_1 \neq x_2$ , then

$$f(x_1) \neq f(x_2) \tag{2.9}$$

as *f* is *injective*, and thus

$$h(x_1) = g(f(x_1)) \neq g(f(x_2)) = h(x_2)$$
(2.10)

*h* is *injective* consequently.

### 2.3 Composition of Surjection

**Proposition 2.3.1** (Composition of Surjection). Given *surjections*  $f: X \mapsto Y$  and  $g: Y \mapsto Z$ , then their *composition*  $h: X \mapsto Z$  is given by

$$h(x) := g(f(x)) \tag{2.11}$$

Then h is also a *surjective* function.

*Proof.* To prove  $h: X \mapsto Z$  is *injective*, it is required to prove that

$$\forall z \in Z \colon \exists x \in X \colon h(x) = z \tag{2.12}$$

Where  $h(x) \Leftrightarrow (g \circ f)(x) \Leftrightarrow g(f(x))$ .

Given any element  $z \in Z$  ( $\forall z \in Z$ ):

- 1. That  $g: Y \mapsto Z$  is surjective by definition, then  $\exists y \in Y : g(y) = z$ .
- 2. That  $f: X \mapsto Y$  is *surjective* by definition, then  $\exists x \in X : f(x) = y$ .

Then 
$$\forall z \in Z : \exists x \in X : h(x) = (g \circ f)(x) = g(f(x)) = g(y) = z$$
 holds true.

### 2.4 Composition of Bijection

**Proposition 2.4.1** (Composition of Bijection). Given *bijections*  $f: X \mapsto Y$  and  $g: Y \mapsto Z$ , then their composition  $h: X \mapsto Z$  is given by

$$h(x) := g(f(x)) \tag{2.13}$$

Then h is also a bijective function; an inverse bijection  $h^{-1}: Z \mapsto X$  also exists.

### 2.5 Cardinality of Sets

**Definition 2.5.1** (Cardinality). The number of elements in a set X is denoted |X|.

Definition 2.5.2 (Equal Cardinality and Bijection).

$$|X| = |Y| \tag{2.14}$$

Holds true if there exists a *bijection*  $h: X \mapsto Y$  (one-to-one correspondence between X and Y).

Namely, X and Y have the same number of distinct elements, and each distinct element  $x \in X$  corresponds to exactly one distinct element  $y \in Y$ .

Theorem 2.5.1 (Cantor-Bernstein). Given

- 1. *injective* function  $f: X \mapsto Y$
- 2. *injective* function  $g: Y \mapsto X$

Then there exists a *bijective* function  $h: X \mapsto Y$ .

Equivalently,

$$(|X| \le |Y|) \land (|Y| \le |X|) \to (|X| = |Y|)$$
 (2.15)

Remark. Examples include countable sets, enumerable sets

$$|\mathbb{Q}| = |\mathbb{Z}| = |\mathbb{N}| = \aleph_0 \tag{2.16}$$

Where the cardinality of countable sets such as the *rational numbers*, *integers* and the *natural numbers* is denoted as "alpeh-zero" ( $\aleph_0$ ).

On the other hand, continuum such as the real numbers are not countable and as such

$$|\mathbb{R}| > \aleph_0 \tag{2.17}$$

### 3 Permutations

#### 3.1 Permutation Basics

**Definition 3.1.1** (Permutation). The bijection – *permutation* – of

Is denoted as

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$$
 (3.2)

Where  $\sigma \colon \{1, \dots, n\} \to \{1, \dots, n\}$  is the *permutation* bijection.

**Definition 3.1.2** (Counting Permutations).

$$|S_n| := n! \tag{3.3}$$

Which is the number of different ways to permutate n elements  $\{1,2,\ldots,n\}\subset\mathbb{Z}$ . Together, the different permutations for n distinct elements is the *symmetric group*  $S_n$ .

**Remark.** For example, with  $S_3 = \{1, 2, 3\}$ , there are 3! = 6 different ways to arrange the three distinct elements

$$\begin{pmatrix}
1 & 2 & 3 \\
1 & 2 & 3
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{pmatrix}$$
(3.4)

**Definition 3.1.3** (Order of Permutation). The *order* of a permutation  $\sigma$  is the smallest  $k \in \mathbb{Z}^+$  such that

$$\sigma^k = \epsilon \tag{3.5}$$

Where  $\epsilon$  is the *identity permutation* 

$$\epsilon(x) = x \tag{3.6}$$

**Definition 3.1.4** (Sign of Permutation). The sign of a permutation  $sgn \sigma \colon \sigma \to \{-1, +1\}$  where  $\sigma \in S_n$  is defined as

$$\operatorname{sgn}(\sigma) = (-1)^k \tag{3.7}$$

Where k is the number of *disorders* within  $\sigma$ , the number of pairs (x,y) such that  $x > y \to \sigma(x) < \sigma(y)$  or the converse  $x < y \to \sigma(x) > \sigma(y)$ . Additionally,

$$\operatorname{sgn}(\sigma) = \begin{cases} +1 & \text{if } k \text{ is even} \\ -1 & \text{if } k \text{ is odd} \end{cases}$$
 (3.8)

Remark. For example, in

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

1 < 2 but  $\sigma(1) = 2 > \sigma(2) = 1$ , hence a disorder.

For each  $i \in \{1, \dots, n\}$ , starting from i = 1, compare  $\sigma(i)$  with  $\sigma(i+1), \dots, \sigma(n)$  and add the number of disordered pairs, then move on to i+1 and compare  $\sigma(i+1)$  with  $\sigma(i+2), \dots, \sigma(n)$  and so on.

#### Theorem 3.1.1 (Composition of Permutation).

$$\operatorname{sgn}(\sigma_1 \sigma_2) := \operatorname{sgn}(\sigma_1) \cdot \operatorname{sgn}(\sigma_2) \tag{3.9}$$

Where

| 0    | even | odd  |
|------|------|------|
| even | even | odd  |
| odd  | odd  | even |

Table 3.1: Sign Changes on Composition

# 4 Binary Relations

**Definition 4.0.1** (Binary Relation). A binary relation R(x, y) describes some relationship between x and y where  $R \colon X \to Y$ ,  $R \subseteq X \times Y$ ,  $x \in X$  and  $y \in Y$ . This relation can be expressed in infix notation as xRy.

#### 4.1 Equivalence Relations

**Definition 4.1.1** (Equivalence Relation). A binary relation E(x, y) is an *equivalence relation* on X iff it satisfies all three conditions:

1. Reflexivity

$$\forall \, x \in X \colon E(x,x)$$

2. Symmetry

$$\forall x, y \in X \colon E(x, y) \to E(y, x)$$

3. Transitivity

$$\forall x, y, z \in X \colon E(x, y) \land E(y, z) \to E(x, z)$$

### 4.2 Equivalence Classes

**Definition 4.2.1** (Equivalence Class). If  $a \in X$ , the equivalence class [a] is

$$[a] := \{x \in X \colon E(x, a)\} \subseteq X \tag{4.1}$$

**Definition 4.2.2** (Congruence and Equivalence Class of mod m on  $\mathbb{Z}$ ). For *congruence mod* m on  $\mathbb{Z}$ , if  $a \in \mathbb{Z}$  then the *congruence class* of a is

$$[a]_m := \{ x \in \mathbb{Z} \colon x = a + km \} \tag{4.2}$$

Where  $k \in \mathbb{Z}$ . Since  $x = a + km \Leftrightarrow x \equiv a \mod m$ , then the *equivalence class* of a is also the *congruence class*.

$$\Leftrightarrow [a]_m := \{ x \in \mathbb{Z} \colon x \equiv a \bmod m \} \tag{4.3}$$

**Definition 4.2.3** (Set of Remainders). Over  $\mathbb{Z}$ , the *remainder* r from the integer division  $k \div m$  is

$$r \bmod m \equiv k \bmod m \tag{4.4}$$

Then the set of remainders  $G_m$  from the integer division  $k \div m$  is defined by

$$G_m := \{0, 1, 2, \dots, m - 2, m - 1\} \tag{4.5}$$

### 4.3 Quotient Groups

**Definition 4.3.1** (Quotient Group). A *quotient group* is a group constructed via congruence mod m.

**Definition 4.3.2** (Congruence Class). If  $m \leq 2$  and  $a \in \mathbb{Z}$  then the *congruence class* of  $a \mod m$  is  $[a] \subseteq \mathbb{Z}$ 

$$[a] := \{ b \in \mathbb{Z} \colon b \equiv a \bmod m \} \tag{4.6}$$

$$\Leftrightarrow \{a + km \colon k \in \mathbb{Z}\} \tag{4.7}$$

$$\Leftrightarrow \{\dots, a-2m, a-m, a, a+m, a+2m, \dots\}$$
 (4.8)

**Remark.** Let  $E(x,y) := "x-y \equiv 0 \mod 2"$ , that is, x-y is divisible by 2. Then,

$$[k]_2 := \{ y \colon E(k, y) \} \tag{4.9}$$

Where  $[k]_2$  is the congruence class of integers modulo 2.

Computing  $[0]_2$  and  $[1]_2$  yields

- $\bullet \ \ [0]_2=\{0,2,-2,4,-4,\ldots,2n,-2n,\ldots\}$
- $[1]_2 = \{1, -1, 3, -3, \dots, 2n + 1, \dots\}$

Observe that

$$[1]_2 \oplus [1]_2 \Leftrightarrow [2]_2 \Leftrightarrow [0]_2 \tag{4.10}$$

It can be deduced that  $[0]_2$  and  $[1]_2$  are two congruence (and equivalence) classes which partition the integers  $\mathbb Z$  into two disjoint subsets – integers which are odd, and integers which are even. This may be denoted as

$$\mathbb{Z}/E \equiv \{\text{EVEN, ODD}\}\$$
 (4.11)

**Definition 4.3.3** (Congruence Modular Arithmetic  $\pmod{m}$  on  $\mathbb{Z}$ ).

$$[a]_m \oplus [b]_m \equiv [a+b]_m \tag{4.12}$$

$$[a]_m \otimes [b]_m \equiv [a \cdot b]_m \tag{4.13}$$

If  $a_1 \equiv a_2 \mod m$  and  $b_1 \equiv b_2 \mod m$  then

$$a_1 + b_1 \equiv a_2 + b_2 \bmod m \tag{4.14}$$

$$a_1 \cdot b_1 \equiv a_2 \cdot b_2 \bmod m \tag{4.15}$$

(4.16)

**Remark.** We may introduce addition (+) and multiplication (\*) over the remainders  $G_m$  previously defined as

$$G_m := \{0, 1, 2, \dots, m - 2, m - 1\} \tag{4.17}$$

For example, given m=3, then the multiplication and addition table of  $\pmod{3}$  and  $\pmod{3}$  over  $G_3$  can be computed:

| $+ \pmod 3$ | 0                                           | 1 | 2 | * (mod 3) | 0 | 1           | 2 |
|-------------|---------------------------------------------|---|---|-----------|---|-------------|---|
| 0           | $\begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix}$ | 1 | 2 | 0         | 0 | 0           | 0 |
| 1           | 1                                           | 2 | 0 | 1         | 0 | 0<br>1<br>2 | 2 |
| 2           | 2                                           | 0 | 1 | 2         | 0 | 2           | 1 |

Table 4.1: Multiplication and Addition Table of  ${\cal G}_3$ 

## 5 Groups

#### 5.1 Group Basics

A *group* is an abstract collection consisting of:

- A nonempty set G.
- A binary operation  $\star : G \times G \to G$ .

It has the following properties:

1. Closure

$$\forall x, y \colon x \in G \land y \in G \to x \star y \in G \tag{5.1}$$

2. Associativity

$$\forall x, y, z \in G \colon (x \star y) \star z \equiv x \star (y \star z) \tag{5.2}$$

3. Neutral Element

$$\exists \epsilon \in G \colon \forall x \in G \colon x \star \epsilon \equiv \epsilon \star x \equiv x \tag{5.3}$$

That there exists an unique *neutral* element  $\epsilon \in G$ .

4. Invertibility

$$\forall x \in G \colon \exists y \in G \colon x \star y \equiv y \star x \equiv \epsilon \tag{5.4}$$

That there exists an unique *inverse* element  $y := x^{-1} \in G$  where  $x^{-1}$  denotes the *inverse* element of x.

**Definition 5.1.1** (Commutative Group). An *commutative group* (or *abelian group*) is a *group* for which its operation  $\star : G \times G \to G$  satisfies the additional *commutative* property:

• Commutativity

$$\forall x, y \in G \colon x \star y \equiv y \star x \tag{5.5}$$

### 5.2 Multiplicative Group

**Proposition 5.2.1** (Multiplicative Group). A *multiplicative group* is a *group* (G, \*) which has the binary operation  $*: G \times G \to G$ :

- Closure, Associativity. The multiplication operation  $*: G \times G \to G$  is closed and is left associative.
- **Neutral Element**. The neutral element  $\epsilon$  is unique.
- **Invertibility**. The inverse element  $x^{-1}$  is unique.
- For all  $a, b \in G$  the equation

$$a * x = b \tag{5.6}$$

Has the unique solution

$$x = a^{-1} * b \tag{5.7}$$

Since

$$a * x = b \Leftrightarrow a^{-1} * (a * x) = a^{-1} * b$$
 (Multiply by inverse element) (5.8)

$$\Leftrightarrow (a^{-1} * a) * x = a^{-1} * b$$
 (Associativity) (5.9)

$$\Leftrightarrow \epsilon * x = a^{-1} * b \tag{Invertibility}$$

$$\Leftrightarrow x = a^{-1} * b$$
 (Neutral Element) (5.11)

**Remark.** An example of a multiplicative group is permutations under composition, namely  $S_n$  is a group  $(G, \circ)$  where  $\circ : G \times G \to G$ .

For example, let *G* be the set of permutations

$$\epsilon = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \sigma_2 = \sigma_1^2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
(5.12)

To verify that G does form a group with composition  $\circ$ , one may draw the multiplication table for the group. Note that

$$\sigma_2 \sigma_2 = \sigma_1^4 = \sigma_1^3 \sigma_1 = \epsilon \sigma_1 = \sigma_1 \tag{5.13}$$

Table 5.1: Multiplication Table of Composition  $\circ$  over G

### 5.3 Additive Group

**Definition 5.3.1** (Additive Group). An *additive group* is a *group* (G, +) with the binary operation  $+: G \times G \to G$ . It has the same properties of a general *group*.

1. Closure

$$\forall x, y \colon x \in G \land y \in G \to x + y \in G \tag{5.14}$$

2. Associativity

$$\forall x, y, z \in G \colon (x+y) + z \equiv x + (y+z) \tag{5.15}$$

3. Neutral Element

$$\exists \epsilon \in G \colon \forall x \in G \colon x + \epsilon \equiv \epsilon + x \equiv x \tag{5.16}$$

That there exists an unique *neutral* element  $0_G \in G$  (usually denoted simply as 0).

4. Invertibility

$$\forall x \in G \colon \exists y \in G \colon x + y \equiv y + x \equiv 0 \tag{5.17}$$

That there exists an unique *inverse* element  $y := -x \in G$  where -x denotes the *inverse* element of x.

**Remark.** An example of an additive group is  $(\mathbb{Z}, +)$  (i.e. addition over the integers).

Then for any of such *commutative group* (G, +)

- *Neutral element* 0 is unique.
- *Inverse element* -x is unique.
- For any  $a, b \in G$  the equation

$$a + x = b \tag{5.18}$$

Has a unique solution

$$x = b + (-a) = b - a (5.19)$$

### 5.4 Associativity of Sequential Composition of Functions

**Definition 5.4.1** (Sequential Composition of Functions). Let f\*g denote the sequential composition of functions  $f*X \to Y$  and  $g\colon Y \to Z$  such that  $f*g\colon X \to Z$  where f is applied first then g, i.e.  $\forall x \in X \colon (f*g)(x) \coloneqq g(f(x))$ .

**Proposition 5.4.1** (Associativity of Sequential Composition of Functions). Given sets X, Y and Z and

- Injection  $f: A \to B$
- Injection  $g: B \to C$
- Injection  $h: C \to D$

Then their composition is associative:

$$(f*q)*h \equiv f*(q*h) \tag{5.20}$$

Proof.

Let 
$$s=(f*g)$$
 and  $t=(s*h)$ , then  $t(x)=h(s(x))=h(g(f(x)))$ .  
 Let  $u=(g*h)$  and  $v=(f*u)$ , then  $v(x)=u(f(x))=h(g(f(x)))$ .  
 Together they yield the desired equality  $t(x)=v(x)$ .

### 5.5 Subgroups

**Definition 5.5.1** (Subgroup). Given a *group* (G, \*), then the subset  $H \subseteq G$  is a *subgroup* of G if it fulfills the properties:

1. Closure

$$\forall x, y \colon x \in H \land y \in H \to x * y \in H \tag{5.21}$$

2. Neutral Element

$$\epsilon \in H \tag{5.22}$$

That is, the *neutral* element  $\epsilon$  from G is contained within the subset  $H \subseteq G$ .

3. **Invertibility** 

$$\forall x \in H \colon x^{-1} \in H \tag{5.23}$$

### 5.6 Lagrange's Theorem

**Theorem 5.6.1** (Lagrange's Theorem). Given a finite *group* of order n(G, \*) where

$$G := \{g_1, g_2, \dots, g_n\} \tag{5.24}$$

And its *subgroup* (H, \*) of order  $k \le n$ 

$$H := \{h_1, h_2, \dots, h_k\} \tag{5.25}$$

Then k|n (k divides n).

*G* can be *partitioned* into  $\ell$  disjoint subsets of the same size k such that

$$n = k\ell \tag{5.26}$$

**Definition 5.6.1** (Left Coset). Given (G, \*) is a *group*, (H, \*) is a *subgroup* of (G, \*) and  $g \in G$  then the *left coset gH* of H in G with respect to g is defined as

$$gH := \{g * h \colon h \in H\} \tag{5.27}$$

Remark. Visually,

$$G \equiv \begin{array}{c} \boxed{g_1 H} \\ \hline g_2 H \\ \vdots \\ \hline g_\ell H \end{array} \bigg\} \ell \text{ disjoint subsets} \tag{5.28}$$

To verify that the *left cosets* together do in fact reconstruct *G*, check the multiplication table

Table 5.2: Multiplication Table from  $\ell$  Left Cosets, Each of Size |H|=k

**Proposition 5.6.1.** For any  $a, b \in G$  from (G, \*)

$$(a*b)^{-1} \equiv b^{-1}*a^{-1} \tag{5.29}$$

Proof.

$$(a*b)^{-1} \Leftrightarrow (a*b)^{-1} * \epsilon \qquad \qquad \text{(Neutral element)} \qquad (5.30)$$

$$\Leftrightarrow (a*b)^{-1} * (a*a^{-1}) \qquad \qquad \text{(Invertibility)} \qquad (5.31)$$

$$\Leftrightarrow (a*b)^{-1} * ((a*\epsilon)*a^{-1}) \qquad \qquad \text{(Neutral element)} \qquad (5.32)$$

$$\Leftrightarrow (a*b)^{-1} * [(a*(b*b^{-1}))*a^{-1}] \qquad \qquad \text{(Invertibility)} \qquad (5.33)$$

$$\Leftrightarrow (a*b)^{-1} * [(a*b)*(b^{-1}*a^{-1})] \qquad \qquad \text{(Associativity)} \qquad (5.34)$$

$$\Leftrightarrow [(a*b)^{-1} * (a*b)] * (b^{-1}*a^{-1}) \qquad \qquad \text{(Associativity)} \qquad (5.35)$$

$$\Leftrightarrow \epsilon * (b^{-1}*a^{-1}) \qquad \qquad \text{(Invertibility)} \qquad (5.36)$$

$$\Leftrightarrow b^{-1}*a^{-1} \qquad \qquad \text{(Neutral Element)} \qquad (5.37)$$

*Proof.* For a constructive proof of Lagrange's Theorem:

Let the binary relation E(x, y) be defined on the *group* (G, \*), with its *subgroup* (H, \*)

$$E(x,y) := x^{-1} * y \in H \tag{5.38}$$

For the equivalence

$$x = y \Leftrightarrow x^{-1} * y = 1 \tag{5.39}$$

Then for each of the required properties:

• **Neutral Element** from *Reflexivity* of E(x, y)

$$\forall x \in G \colon E(x, x) \tag{5.40}$$

Since

$$E(x,x) \equiv x^{-1} * x \in H \equiv \epsilon \in H \tag{5.41}$$

Then this satisfies the *reflexivity* requirement for *equivalence relations*, and proves the *neutral element* requirement for *subgroups*.

• **Invertibility** from *Symmetry* of E(x, y)

$$\forall x, y \in G \colon E(x, y) \to E(y, x) \tag{5.42}$$

Let for some  $h \in H$ ,  $x^{-1} * y = h$ , then by proposition 5.6.1

$$y^{-1} * x \equiv (x^{-1} * y)^{-1} \equiv h^{-1} \in H$$
 (5.43)

Which satisfies the *symmetry* requirement for *equivalence relations*, and proves the *invertibility* requirement for *subgroups*.

• **Closure** from *Transitivity* of E(x,y)

$$\forall x, y, z \in G \colon E(x, y) \land E(y, z) \to E(x, z) \tag{5.44}$$

Let for some  $h_1,h_2\in H$ ,  $\left(x^{-1}*y=h_1\right)\wedge \left(y^{-1}*z=h_2\right)$ , then

$$x^{-1} * z \Leftrightarrow x^{-1} * \epsilon * z \tag{5.45}$$

$$\Leftrightarrow (x^{-1} * y) * (y^{-1} * z)$$
 (5.46)

$$\Leftrightarrow h_1 * h_2 \in H \tag{5.47}$$

Which satisfies the *transitivity* requirement for *equivalence* relations, and proves the *closure* requirement for *subgroups*.

**Remark.** To demonstrate Lagrange's Theorem, let the *group* be constructed from  $x * y \pmod{10}$ .

Let (G, \*) be a finite *group* of order n = 4 where

$$G = \{1, 3, 7, 9\} \tag{5.48}$$

And (H, \*) be its *subgroup* of order k = 2.

Constructing the multiplication table yields

| * (mod 10) | 1 | 9 |
|------------|---|---|
| 1 * H      | 1 | 9 |
| 3*H        | 3 | 7 |
| 7*H        | 7 | 3 |
| 9*H        | 9 | 1 |

Table 5.3: Multiplication Table for (G, \*)

There are only  $\ell=2$  disjoint subsets (unique cosets) gH; G can be partitioned into  $\ell$  disjoint subsets, each of size |H|=2 such that  $4=n=k\ell=2\cdot 2$ .

Visually,

$$G = \begin{cases} 1 * H = 9 * H = \{1, 9\} \\ 3 * H = 7 * H = \{3, 7\} \end{cases} \qquad \} \ell = 2$$
 (5.49)

#### 5.6.1 Equivalence Classes

**Definition 5.6.2** (Equivalence Class). Given *group* (G, \*) and its *subgroup* (H, \*), then the *equivalence class* [g] is defined as

$$[g] := \{ y \in G \mid g^{-1} * y \in H \} \tag{5.50}$$

Then

$$\forall h \in H \colon g^{-1} * y = h \Leftrightarrow y = g * h \tag{5.51}$$

Which yields the equivalence

$$\{y \in G \mid g^{-1} * y \in H\} \equiv \{y \in G \mid y \in gH\}$$
 (5.52)

Hence

$$[g] \equiv gH \tag{5.53}$$

That the *equivalence class* [g] is exactly the *left coset* gH.

Let  $\ell$  be the number of disjoint equivalence class [g], then G can be partitioned into  $\ell$  disjoint subsets where visually,

$$G = \begin{bmatrix} [g_1] \equiv g_1 H \\ [g_2] \equiv g_1 H \\ \vdots \\ [g_\ell] \equiv g_\ell H \end{bmatrix}$$
 \(\ell\_{\ell\_1} \text{disjoint subsets} \) (5.54)

#### Proposition 5.6.2.

$$\forall g \in G \colon |gH| \equiv |H| \equiv k \tag{5.55}$$

*Proof.* Let *I* be the set of indices  $I := \{1, ..., k\}$ 

$$\forall i, j \in I \colon (h_i = h_j) \leftrightarrow (g * h_i = g * h_j) \tag{5.56}$$

$$\Leftrightarrow \forall \ i,j \in I \colon (h_1 \neq h_j) \leftrightarrow (g * h_i \neq g * h_j) \tag{5.57}$$

**Remark.** Let  $A_n$  be the set of all *even permutations* and  $B_n$  be the set of all *odd permutations*. Given the  $group\ (S_n,*)$ , then  $(A_n,*)$  is a  $subgroup\ of\ S_n$ . With the multiplication table

Table 5.4: Multiplication Table for Group  $S_n$ 

Since

$$\sigma * A_n \equiv \begin{cases} A_n & \text{if } \sigma \text{ is even} \\ B_n & \text{if } \sigma \text{ is even} \end{cases}$$
 (5.58)

Hence,

$$|A_n| \equiv \frac{1}{2} \cdot |S_n| \equiv \frac{1}{2} \cdot n! \tag{5.59}$$

#### 5.6.2 Order of an Element in Lagrange's Theorem

**Definition 5.6.3** (Order of an Element). Given a *group* (G, \*) and element  $a \in G$  then the *order* of the element a is the smallest  $k \in \mathbb{Z}^+$  such that

$$a^k = \epsilon \tag{5.60}$$

**Proposition 5.6.3.** Given a *group* (G, \*) with *order* n, then for any  $a \in G$ , should its *order* k exist, then k|n (k divides n).

**Proposition 5.6.4.** Given *group* (G, \*),

$$\forall a \in G \colon a^{|G|} \equiv 1 \tag{5.61}$$

*Proof.* With the *cyclic subgroup* generated by  $a \in G$ 

$$\{a^m \mid m \in \mathbb{Z}\} = \{\epsilon, a, a^2, ...\}$$
 (5.62)

**Remark.** This may be used to calculate the modulo of integers raised to large exponents. For example, for  $2^{20} \pmod{15}$ . To compute this, let the *multiplicative group* (G,\*) be defined over G of *order* 8 where

$$G = \{1, 2, 4, 7, 8, 11, 13, 14\} \tag{5.63}$$

And the *binary operation*  $x * y := x * y \pmod{15}$ .

Note that  $2^{-1} = 8 \pmod{15}$  and  $4^{-1} = 4 \pmod{15}$ .

Since |G| = 8,

$$2^8 = 1 \pmod{15} \tag{5.64}$$

Then  $2^{20} \pmod{15}$  can be calculated by decomposing its exponent:

$$2^{20} = 2^{2 \cdot 8 + 4} = (2^8)^2 * 2^4 = 1 * 16 = 1 \pmod{15}$$
 (5.65)

# **Bibliography**

- [1] Max Kanovich and Robin Hirsch.

  "Lecture Notes on Discrete Mathematics for Computer Scientists".

  URL: http://www.cs.ucl.ac.uk/1819/a4u/t2/comp0147\_discrete\_
  mathematics\_for\_computer\_scientists/.
- [2] Joseph J. Rotman. *A First Course in Abstract Algebra*. 3rd ed. University of Illinois at Urbana-Champaign: Pearson. ISBN: 978-0131862678.