09-10	1	21	2	13	3	$\frac{4}{105}$	4	4	5	-3	Spare
Individual	6	1	7	$\frac{7}{13}$	8	154	9	2	10	1508	2

09-10	1	118	2	11	3	20	4	144	5	0.8	Spare
Group	6	250000	7	4019	8	10105	9	$\sqrt{3}$	10	20	15

Individual Events

In how many possible ways can 8 identical balls be distributed to 3 distinct boxes so that every box contains at least one ball?

Reference: 2001 HG2, 2006 HI6, 2012 HI2

Align the 8 balls in a row. There are 7 gaps between the 8 balls. Put 2 sticks into two of these gaps, so as to divide the balls into 3 groups.

The following diagrams show one possible division.

0 0

The three boxes contain 2 balls, 5 balls and 1 ball.

The number of ways is equivalent to the number of choosing 2 gaps as sticks from 7 gaps.

The number of ways is $C_2^7 = \frac{7 \times 6}{2} = 21$

I2 If α and β are the two real roots of the quadratic equation $x^2 - x - 1 = 0$, find the value of $\alpha^6 + 8\beta$.

Reference 1993 HG2, 2013 HG4

$$\alpha + \beta = 1, \ \alpha\beta = -1$$

 $\alpha^2 = \alpha + 1$
 $\alpha^6 = (\alpha^2)^3 = (\alpha + 1)^3 = \alpha^3 + 3\alpha^2 + 3\alpha + 1$

$$= \alpha(\alpha^{2}) + 3(\alpha + 1) + 3\alpha + 1$$

$$= \alpha(\alpha + 1) + 6\alpha + 4$$

$$= \alpha^{2} + 7\alpha + 4 = (\alpha + 1) + 7\alpha + 4 = 8\alpha + 5$$

$$\alpha^6 + 8\beta = 8(\alpha + \beta) + 5 = 8 + 5 = 13$$

I3 If
$$a = \frac{1}{5 \times 10} + \frac{1}{10 \times 15} + \frac{1}{15 \times 20} + \dots + \frac{1}{100 \times 105}$$
, find the value of a. (**Reference: 2015 HG1**)

$$a = \frac{1}{25} \cdot \left(\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{20 \times 21} \right) = \frac{1}{25} \cdot \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{20} - \frac{1}{21} \right) = \frac{1}{25} \cdot \left(1 - \frac{1}{21} \right)$$

$$a = \frac{20}{25 \cdot 21} = \frac{4}{105}$$

Given that x + y + z = 3 and $x^3 + y^3 + z^3 = 3$, where x, y, z are integers. **I4**

If x < 0, find the value of y.

Let
$$x = -a$$
, where $a > 0$, then $y + z = a + 3$ (3), $y^3 + z^3 = a^3 + 3$ (4)

From (4): $(y + z)^3 - 3yz(y + z) = a^3 + 3$

$$\therefore (a+3)^3 - a^3 - 3 = 3yz(a+3)$$

$$yz = \frac{a^3 + 9a^2 + 27a + 27 - a^3 - 3}{3(a+3)} = \frac{9a^2 + 27a + 24}{3(a+3)} = \frac{3a^2 + 9a + 8}{a+3} = 3a + \frac{8}{a+3} \dots (5)$$

yz is an integer $\Rightarrow a = 1$ or 5

$$\therefore (y-z)^2 = (y+z)^2 - 4yz$$

When
$$a = 1$$
, $x = -1$, $y + z = 4$ from (3) and $yz = 5$ from (5)

$$\therefore$$
 $(y-z)^2 = 4^2 - 4 \times 5 = -4 < 0$, impossible. Rejected.

When
$$a = 5$$
, $y + z = 8$ and $yz = 16$

Solving for y and z gives x = -5, y = 4, z = 4

Given that a, b, c, d are positive integers satisfying $\log_a b = \frac{1}{2}$ and $\log_c d = \frac{3}{4}$. **I5**

If a - c = 9, find the value of b - d.

$$a^{\frac{1}{2}} = b$$
 and $c^{\frac{3}{4}} = d \Rightarrow a = b^2$ and $c = d^{\frac{4}{3}}$
Sub. them into $a - c = 9$.

$$b^{2} - d^{\frac{4}{3}} = 9$$

$$\left(b + d^{\frac{2}{3}}\right) \left(b - d^{\frac{2}{3}}\right) = 9$$

$$b+d^{\frac{2}{3}}=3$$
, $b-d^{\frac{2}{3}}=3$ (no solution, rejected) or $b+d^{\frac{2}{3}}=9$, $b-d^{\frac{2}{3}}=1$

$$b = 5$$
, $d^{\frac{2}{3}} = 4 \Rightarrow b = 5$, $d = 8 \Rightarrow b - d = -3$

If $x\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$, where $0 \le x, y \le 1$, find the value of $x^2 + y^2$.

Let
$$x = \sin A$$
, $y = \sin B$, then $\sqrt{1 - y^2} = \cos B$, $\sqrt{1 - x^2} = \cos A$

The equation becomes $\sin A \cos B + \cos A \sin B = 1$

$$\sin\left(A+B\right)=1$$

$$A + B = 90^{\circ} \Rightarrow B = 90^{\circ} - A$$

$$x^2 + y^2 = \sin^2 A + \sin^2 B = \sin^2 A + \sin^2 (90^\circ - A) = \sin^2 A + \cos^2 A = 1$$

Method 2
$$x\sqrt{1-y^2} = 1 - y\sqrt{1-x^2}$$

$$x^{2}(1-y^{2}) = 1 - 2y\sqrt{1-x^{2}} + y^{2}(1-x^{2})$$

$$2v\sqrt{1-x^2}=1+v^2-x^2$$

$$4y^{2}(1-x^{2}) = y^{4} - 2x^{2}y^{2} + x^{4} + 2y^{2} - 2x^{2} + 1$$

$$x^{4} + 2x^{2}y^{2} + y^{4} - 2y^{2} - 2x^{2} + 1 = 0$$

$$(x^{2} + y^{2})^{2} - 2(x^{2} + y^{2}) + 1 = 0$$

$$x^4 + 2x^2y^2 + y^4 - 2y^2 - 2x^2 + 1 = 0$$

$$(x^2 + y^2)^2 - 2(x^2 + y^2) + 1 = 0$$

$$(x^2 + y^2 - 1)^2 = 0$$

$$\Rightarrow x^2 + y^2 = 1$$

In figure 1, ABCD is a trapezium. The lengths of segments AD, BC and I7. DC are 12, 7 and 12 respectively. If segments AD and BC are both

perpendicular to DC, find the value of $\frac{\sin \alpha}{\sin \beta}$

Method 1

Draw a perpendicular line from B onto AD.

$$\tan \beta = \frac{12}{12} = 1$$
; $\tan(\alpha + \beta) = \frac{12}{12 - 7} = \frac{12}{5}$

$$\tan \alpha = \tan[(\alpha + \beta) - \beta] = \frac{\tan(\alpha + \beta) - \tan \beta}{1 + \tan(\alpha + \beta)\tan \beta} = \frac{\frac{12}{5} - 1}{1 + \frac{12}{5}} = \frac{12 - 5}{5 + 12} = \frac{7}{17}$$

$$\sin \alpha = \frac{7}{\sqrt{17^2 + 7^2}} = \frac{7}{\sqrt{338}} = \frac{7}{13\sqrt{2}}; \sin \beta = \frac{1}{\sqrt{2}}$$

$$\frac{\sin\alpha}{\sin\beta} = \frac{7}{13}$$

Method 2
$$\angle ACB = \beta$$
 (alt. $\angle s$, $AD // BC$)

$$\frac{\sin \alpha}{\sin \beta} = \frac{7}{AB} = \frac{7}{13}$$
 (Sine law on $\triangle ABC$)

I8. In Figure 2, ABC is a triangle satisfying $x \ge y \ge z$ and 4x = 7z. If the maximum value of x is m and the minimum value of x is n, find the value of m + n.

$$x = 7k, z = 4k, x + y + z = 180 \Rightarrow y = 180 - 11k$$

$$\therefore x \ge y \ge z \therefore 7k \ge 180 - 11k \ge 4k$$

 $18k \ge 180$ and $180 \ge 15k$

$$12 \ge k \ge 10$$

$$84 \ge x = 7k \ge 70$$

$$m = 84, n = 70$$

$$m + n = 154$$

19 Arrange the numbers 1, 2, ..., n ($n \ge 3$) in a circle so that adjacent numbers always differ by 1 or 2. Find the number of possible such circular arrangements.

When n = 3, there are two possible arrangements: 1, 2, 3 or 1, 3, 2.

When n = 4, there are two possible arrangements: 1, 2, 4, 3 or 1, 3, 4, 2.

Deductively, for any $n \ge 3$, there are two possible arrangements:

 $1, 2, 4, 6, 8, \dots$, largest even integer, largest odd integer, $\dots, 7, 5, 3$ or

 $1, 3, 5, 7, \ldots$, largest odd integer, largest even integer, $\ldots, 6, 4, 2$.

I10 If $\lfloor x \rfloor$ is the largest integer less than or equal to x, find the number of distinct values in the

following 2010 numbers:
$$\left\lfloor \frac{1^2}{2010} \right\rfloor$$
, $\left\lfloor \frac{2^2}{2010} \right\rfloor$,..., $\left\lfloor \frac{2010^2}{2010} \right\rfloor$.

Reference: IMO Preliminary Selection Contest - Hong Kong 2006 Q13.

Let $f(n) = \frac{n^2}{2010}$, where *n* is an integer from 1 to 2010.

$$f(n+1) - f(n) = \frac{2n+1}{2010}$$

$$f(n+1) - f(n) < 1 \Leftrightarrow \frac{2n+1}{2010} < 1 \Leftrightarrow n < 1004.5$$

$$f(1005) = \frac{1005^2}{2010} = \frac{1005}{2} = 502.5$$

 $\lfloor f(1) \rfloor = 0, \lfloor f(2) \rfloor = 0, \dots, \lfloor f(1005) \rfloor = 502$, the sequence contain 503 different integers.

On the other hand, when n > 1005, f(n + 1) - f(n) > 1

All numbers in the sequence $\lfloor f(1006) \rfloor$, ..., $\lfloor f(2010) \rfloor$ are different, total 1005 numbers 503 + 1005 = 1508. The number of distinct values is 1508.

Spare individual

In Figure 3, ABC is an isosceles triangle and P is a point on BC. If $BP^2 + CP^2 : AP^2 = k : 1$, find the value of k. IS

Reference: 2003 FI2.3

Let AB = AC = a, $BC = \sqrt{2}a$, BP = x, PC = y, AP = tLet $\angle APC = \theta$, $\angle APB = 180^{\circ} - \theta$ (adj. \angle s on st. line)

Apply cosine rule on $\triangle ABP$ and $\triangle ACP$

$$\cos \theta = \frac{t^2 + y^2 - a^2}{2ty} \dots (1); -\cos \theta = \frac{t^2 + x^2 - a^2}{2tx} \dots (2)$$

(1) + (2):
$$\frac{t^2 + y^2 - a^2}{2ty} + \frac{t^2 + x^2 - a^2}{2tx} = 0$$

$$x(t^2 + y^2 - a^2) + y(t^2 + x^2 - a^2) = 0$$

$$x(t+y-a')+y(t+x-a')=0$$

$$t^{2}(x+y)+xy(x+y)-a^{2}(x+y)=0$$

$$(x+y)(t^{2}+xy-a^{2})=0$$

$$x + y = 0$$
 (rejected, : $x > 0$, $y > 0$) or $t^2 + xy - a^2 = 0$

$$t^{2} + xy = a^{2} ... (*)$$

$$BP^{2} + CP^{2} : AP^{2} = x^{2} + y^{2} : t^{2} = [(x + y)^{2} - 2xy] : t^{2} = [BC^{2} - 2xy] : t^{2} = (2a^{2} - 2xy) : t^{2}$$

$$= 2(a^{2} - xy) : t^{2} = 2t^{2} : t^{2}$$
 by (*)

 $\Rightarrow k=2$

Method 2 (Provided by Chiu Lut Sau Memorial Secondary School Ip Ka Ho)

$$\angle ABC = \angle ACB$$
 (base \angle s isosceles triangle)

$$= \frac{180^{\circ} - 90^{\circ}}{2}$$
 (\angle s sum of Δ)

$$= 45^{\circ}$$

Rotate AP anticlockwise 90° about the centre at A to AQ.

$$AP = AQ$$
 and $\angle PAQ = 90^{\circ}$ (property of rotation)

$$\angle BAP = 90^{\circ} - \angle PAC = \angle CAQ$$

$$AB = AC$$
 (given)

$$\triangle ABP \cong \triangle ACQ$$
 (S.A.S.)

$$\angle ACQ = \angle ABP = 45^{\circ}$$
 (corr. \angle s $\cong \Delta$ s)

$$BP = CQ$$
 (corr. sides $\cong \Delta s$)

$$\angle PCQ = \angle ACP + \angle ACQ = 90^{\circ}$$

 $BP^2 + CP^2 : AP^2 = (CQ^2 + CP^2) : AP^2$
 $= PQ^2 : AP^2$ (Pythagoras' theorem)
 $= 1 : \cos^2 45^{\circ}$
 $= 2 : 1$

Group Events

Given that the six-digit number 503xyz is divisible by 7, 9, 11.

Find the minimum value of the three-digit number *xyz*.

Reference: 2000 FG4.1

There is no common factor for 7, 9, 11 and the L.C.M. of them are 693.

504 is divisible by 7 and 9. 504504 is divisible by 693.

504504 - 693 = 503811, 503811 - 693 = 503118.

The three-digit number is 118.

G2 Find the smallest positive integer n so that $20092009 \cdots 2009$ is divisible by 11.

Reference: 2008 FI1.2

Sum of odd digits – sum of even digits = multiples of 11 n(0+9) - n(2+0) = 11m, where m is an integer.

 $7n = 11m \Rightarrow \text{Smallest } n = 11.$

In figure 1, ABC is a triangle. D is a point on AC such that AB = AD. G3 If $\angle ABC - \angle ACB = 40^{\circ}$, find the value of x. Reference: 1985 FI2.2

Let
$$\angle ACB = y^{\circ}$$
, then $\angle ABC = y^{\circ} + 40^{\circ}$

$$\angle BAC = 180^{\circ} - y^{\circ} - y^{\circ} - 40^{\circ} = 140^{\circ} - 2y^{\circ} \ (\angle s \text{ sum of } \Delta ABC)$$

$$\angle ADB = \angle ABD = \frac{180^{\circ} - (140^{\circ} - 2y^{\circ})}{2} = 20^{\circ} + y^{\circ} \text{ (base } \angle s \text{ isos. } \Delta)$$

12 cm

10 cm

$$x^{\circ} = \angle CBD = \angle ADB - \angle ACB = 20^{\circ} + y^{\circ} - y^{\circ} = 20^{\circ} \text{ (ext. } \angle \text{ of } \triangle BCD)$$

 $\Rightarrow x = 20$

Method 2 Let
$$\angle ACB = v^{\circ}$$

$$\angle ADB = x^{\circ} + y^{\circ} \text{ (ext. } \angle \text{ of } \Delta BCD)$$

$$\angle ABD = x^{\circ} + y^{\circ}$$
 (base \angle s isosceles $\triangle ABD$)

$$\therefore$$
 $\angle ABC = x^{\circ} + x^{\circ} + y^{\circ} = 2x^{\circ} + y^{\circ}$

$$\angle ABC - \angle ACB = 40^{\circ}$$

$$2x^{\circ} + y^{\circ} - y^{\circ} = 40^{\circ}$$

$$x = 20$$

G4 In figure 2, given that the area of the shaded region is 35 cm². If the area of A the trapezium ABCD is $z \text{ cm}^2$, find the value of z.

Reference 1993 HI2, 1997 HG3, 2000 FI2.2, 2002 FI1.3, 2004 HG7, 2013 HG2 Suppose AC and BD intersect at K.

$$S_{BCD} = \frac{10 \times 12}{2} = 60 = S_{CDK} + S_{BCK} = 35 + S_{BCK} \Rightarrow S_{BCK} = 25$$

$$BK : KD = S_{BCK} : S_{DCK} = 25 : 35 = 5 : 7 \Rightarrow BK = 5t, KD = 7t$$

$$\triangle BCK \sim \triangle DAK$$
 (equiangular) $\Rightarrow S_{BCK} : S_{DAK} = BK^2 : DK^2 = 7^2 : 5^2 = 49 : 25$

 $\triangle ABK$ and $\triangle ADK$ have the same height but different bases.

$$S_{ABK}: S_{ADK} = BK: KD = 5: 7 \Rightarrow z = S_{ABCD} = 35 + 25 + 49 + 35 = 144$$

Three numbers are drawn from 1, 2, 3, 4, 5, 6.

Find the probability that the numbers drawn contain at least two consecutive numbers.

Method 1

Favourable outcomes = {123, 124, 125, 126, 234, 235, 236, 134, 345, 346, 145, 245, 456, 156, 256, 356}, 16 outcomes

Probability =
$$\frac{16}{C_3^6} = \frac{4}{5} = 0.8$$

Method 2 Probability =
$$1 - P(135, 136, 146 \text{ or } 246) = 1 - \frac{4}{C_2^6} = 0.8$$

Find the minimum value of the following function:

$$f(x) = |x - 1| + |x - 2| + \dots + |x - 1000|$$
, where x is a real number.

Reference: 1994 HG1, 2001 HG9, 2004 FG4.2, 2008 HI8, 2008 FI1.3, 2011 FGS.1, 2012 FG2.3 Method 1

$$f(500) = |500 - 1| + |500 - 2| + \dots + |500 - 1000| = (499 + 498 + \dots + 1) \times 2 + 500 = 250000$$

Let *n* be an integer, for $1 \le n \le 500$ and $x \le n$,

$$|x-n| + |x-(1001-n)| = n - x + 1001 - n - x = 1001 - 2x \ge 1001 - 2n$$

$$|500 - n| + |500 - (1001 - n)| = 500 - n + 501 - n = 1001 - 2n$$

For
$$1 \le n \le x \le 500$$
, $|x - n| + |x - (1001 - n)| = x - n + 1001 - n - x = 1001 - 2n$

If
$$x \le 500$$
, $f(x) - f(500) = \sum_{n=1}^{1000} |x - n| - \sum_{n=1}^{1000} |500 - n|$

$$= \left[\sum_{n=1}^{500} |x - n| + |x - (1001 - n)| \right] - \sum_{n=1}^{500} \left[|500 - n| + |500 - (1001 - n)| \right]$$

$$\ge \sum_{n=1}^{500} \left[1001 - 2n - (1001 - 2n) \right] \ge 0$$

$$f(1001 - x) = |1001 - x - 1| + |1001 - x - 2| + \dots + |1001 - x - 1000|$$

$$= |1000 - x| + |999 - x| + \dots + |1 - x|$$

$$= |x - 1| + |x - 2| + \dots + |x - 1000| = f(x)$$

 \therefore f(x) \ge f(500) = 250000 for all real values of x.

Method 2 We use the following 2 results: (1) |a-b| = |b-a| and (2) $|a| + |b| \ge |a+b|$

$$|x-1| + |x-1000| = |x-1| + |1000 - x| \ge |999| = 999$$

$$|x-2| + |x-999| = |x-2| + |999 - x| \ge |997| = 997$$

$$|x - 500| + |x - 501| = |x - 500| + |501 - x| \ge 1$$

Add up these 500 inequalities: $f(x) \ge 1 + 3 + \dots + 999 = \frac{1}{2}(1 + 999) \times 500 = 250000$.

Let m, n be positive integers such that $\frac{1}{2010} < \frac{m}{n} < \frac{1}{2009}$. Find the minimum value of n.

Reference: 1996 FG10.3, 2005 HI1

Method 1
$$\frac{2009}{2010} = 1 - \frac{1}{2010} > \frac{n-m}{n} > 1 - \frac{1}{2009} = \frac{2008}{2009}$$

$$1 + \frac{1}{2009} = \frac{2010}{2009} < \frac{n}{n-m} < \frac{2009}{2008} = 1 + \frac{1}{2008}$$

$$\frac{1}{2009} < \frac{n}{n-m} - 1 = \frac{m}{n-m} < \frac{1}{2008}$$

$$\frac{2008}{2009} = 1 - \frac{1}{2009} > 1 - \frac{m}{n-m} = \frac{n-2m}{n-m} > 1 - \frac{1}{2008} = \frac{2007}{2008}$$

$$1 + \frac{1}{2008} = \frac{2009}{2008} < \frac{n-m}{n-2m} < \frac{2008}{2007} = 1 + \frac{1}{2007}$$

$$1 + \frac{1}{2008} = \frac{2009}{2008} < \frac{n - m}{n - 2m} < \frac{2008}{2007} = 1 + \frac{1}{2007}$$

$$\frac{1}{2008} < \frac{n-m}{n-2m} - 1 = \frac{m}{n-2m} < \frac{1}{2007}$$

Claim:
$$\frac{1}{2010-a} < \frac{m}{n-am} < \frac{1}{2009-a}$$
 for $a = 0, 1, 2, \dots, 2008$.

Proof: Induction on a. When a = 0, 1, 2; proved above.

Suppose
$$\frac{1}{2010-k} < \frac{m}{n-km} < \frac{1}{2009-k}$$
 for some integer k , where $0 \le k < 2008$ $\frac{2009-k}{2010-k} = 1 - \frac{1}{2010-k} > 1 - \frac{m}{n-km} = \frac{n-(k+1)m}{n-km} > 1 - \frac{1}{2009-k} = \frac{2008-k}{2009-k}$ $1 + \frac{1}{2009-k} = \frac{2010-k}{2009-k} < \frac{n-km}{n-(k+1)m} < \frac{2009-k}{2008-k} = 1 + \frac{1}{2008-k}$ $\frac{1}{2009-k} < \frac{n-km}{n-(k+1)m} - 1 = \frac{m}{n-(k+1)m} < \frac{1}{2008-k}$ $\frac{1}{2010-(k+1)} < \frac{m}{n-(k+1)m} < \frac{1}{2009-(k+1)}$

By MI, the statement is true for $a = 0, 1, 2, \dots, 2008$

Put
$$a = 2008$$
: $\frac{1}{2010 - 2008} < \frac{m}{n - 2008m} < \frac{1}{2009 - 2008}$

$$\frac{1}{2} < \frac{m}{n - 2008m} < 1$$

The smallest possible *n* is found by $\frac{m}{n-2008m} = \frac{2}{3}$

$$m = 2$$
, $n - 2008 \times 2 = 3$

$$\Rightarrow n = 4019$$

Method 2
$$\frac{1}{2010} < \frac{m}{n} < \frac{1}{2009} \Rightarrow 2010 > \frac{n}{m} > 2009 \Rightarrow 2010m > n > 2009m$$

 \therefore m, n are positive integers. We wish to find the least value of n

 \therefore It is equivalent to find the least value of m.

When m = 1, 2010 > n > 2009, no solution for n.

When m = 2, 4020 > n > 4018

$$\Rightarrow n = 4019$$

G8 Let *a* be a positive integer. If the sum of all digits of *a* is equal to 7, then *a* is called a "lucky number". For example, 7, 61, 12310 are lucky numbers.

List all lucky numbers in ascending order a_1, a_2, a_3, \dots If $a_n = 1600$, find the value of a_{2n} .

Number of digits	smallest,, largest	a_2, a_3, \dots If $a_n = 1600$, find Number of lucky numbers	subtotal		
1	7	1	1		
2	$16, 25, \cdots, 61, 70$	7	7		
3	106, 115,, 160	7			
	205, 214,, 250	6			
	304, 313,, 340	5			
	700	1	28		
4	1006, 1015,, 1060	7			
	1105, 1114,, 1150	6			
	1204,, 1240	5			
	1600	1	$a_{64} = 1600$		
	$2005, \dots, 2050$	6			
	2500	1			
	$3004, \cdots, 3040$	5			
	3400	1			
	4XYZ	4+3+2+1			
	5XYZ	3+2+1			
	6XYZ	2+1			
	7000	1	84		
5	100XY	7			
	10105	1			

 $a_{128} = 10105$

G9 If
$$\log_4(x + 2y) + \log_4(x - 2y) = 1$$
, find the minimum value of $|x| - |y|$.
 $(x + 2y)(x - 2y) = 4$
 $x^2 - 4y^2 = 4$
 $x^2 = 4y^2 + 4$
 $T = |x| - |y| = \sqrt{4(y^2 + 1)} - |y|$
 $T + |y| = \sqrt{4(y^2 + 1)}$
 $T^2 + y^2 + 2|y|T = 4(y^2 + 1)$
 $3|y|^2 - 2|y|T + (4 - T^2) = 0$
 $\Delta = 4[T^2 - (3)(4 - T^2)] \ge 0$
 $4T^2 - 12 \ge 0$
 $T \ge \sqrt{3}$

The minimum value of |x| - |y| is $\sqrt{3}$.

G10 In Figure 3, in $\triangle ABC$, AB = AC, $x \le 45$. If P and Q are two points on AC and AB respectively, and AP $= PQ = QB = BC \le AQ$, find the value of x.

Reference: 2004 HG9, HKCEE 2002 Q10 Method 1

Join *PB*.
$$\angle AQP = x^{\circ}$$
 (base $\angle s$ isos. Δ)
 $\angle BPQ = \angle PBQ$ (base $\angle s$ isos. Δ)
 $=\frac{x^{\circ}}{2}$ (ext. \angle of ΔBPQ)

Let R be the mid point of PB. Join QR and produce its own length to S so that QR = RS.

Join PS, BS and CS.

PQBS is a //-gram (diagonals bisect each other)

$$\therefore PS = PQ = BQ = BS$$
 (opp. sides of //-gram)

:: PS // OB

$$\therefore \angle CPS = x^{\circ}$$
 (corr. $\angle s$, $PS // AB$)

$$PC = AC - AP = AB - BQ = AQ$$

$$\therefore \Delta SPC \cong \Delta PAQ \qquad (S.A.S.)$$

$$\therefore SC = PQ$$
 (corr. sides, $\cong \Delta$'s)

$$\therefore BS = SC = BC$$

 ΔBCS is an equilateral triangle.

$$\angle SBC = \angle SCB = 60^{\circ}$$

$$\angle SCP = \angle AQP = x^{\circ}$$
 (corr. $\angle s$, $\cong \Delta's$)

$$\angle SBQ = \frac{x^{\circ}}{2} + \frac{x^{\circ}}{2} = x^{\circ} \text{ (corr. } \angle s, \cong \Delta's)$$

In
$$\triangle ABC$$
, $x^{\circ} + x^{\circ} + x^{\circ} + 60^{\circ} + 60^{\circ} = 180^{\circ}$ (\angle sum of \triangle) $x = 20$

Method 2 Let
$$AP = PQ = QB = BC = t$$
, let $AQ = y$

$$\angle AQP = x^{\circ}$$
 (base \angle s isos. \triangle)

$$AQ = y = 2t \cos x^{\circ} = y + t - t = AC - AP = CP$$

$$\angle BPQ = \angle PBQ$$
 (base \angle s isos. \triangle)

$$=\frac{x^{\circ}}{2} \qquad (\text{ext.} \angle \text{ of } \Delta BPQ)$$

$$\angle QPC = 2x^{\circ}$$
 (ext. \angle of $\triangle APQ$)

$$\angle BPC = \angle QPC - \angle BPQ = 2x^{\circ} - \frac{x^{\circ}}{2} = \frac{3x^{\circ}}{2}$$

$$\angle ABC = \angle ACB = 90^{\circ} - \frac{x^{\circ}}{2}$$
 (\angle sum of isos. $\triangle ABC$)

$$\angle CBP = \angle ABC - \angle PBQ = 90^{\circ} - \frac{x^{\circ}}{2} - \frac{x^{\circ}}{2} = 90^{\circ} - x^{\circ}$$

$$\frac{CP}{\sin \angle CBP} = \frac{BC}{\sin \angle BPC}$$
 (Sine law on $\triangle BCP$)

$$\frac{2t\cos x^{\circ}}{\sin(90^{\circ} - x^{\circ})} = \frac{t}{\sin\frac{3x^{\circ}}{2}}$$

$$\sin \frac{3x^{\circ}}{2} = \frac{1}{2} \implies x = 20$$

B

Method 3 Reflect $\triangle ABP$ along PB to $\triangle RPB$

AABP
$$\cong \Delta RPB$$
 (by construction)

Join AR, AB = BR (corr. sides, $\cong \Delta$'s)

 $\angle AQP = x^{\circ}$ (base \angle s isos. Δ)

 $\angle BPQ = \angle PBQ$ (base \angle s isos. Δ)

 $= \frac{x^{\circ}}{2}$ (ext. \angle of $\triangle BPQ$)

$$\angle PBR = \frac{x^{\circ}}{2}$$
 (corr. $\angle s, \cong \Delta's$)

$$\angle ABR = \angle ABP + \angle RBP = \frac{x^{\circ}}{2} + \frac{x^{\circ}}{2} = x^{\circ}$$

$$\therefore \angle ABR = \angle BAC = x^{\circ}$$

$$AC = AB$$
 (given)

$$=BR$$
 (corr. sides, $\cong \Delta$'s)

$$\therefore \Delta ABR \cong \Delta BAC \qquad (S.A.S.)$$

$$AR = BC$$
 (corr. sides, $\cong \Delta$'s)

$$=AP=PR$$
 (given)

 $\triangle APR$ is an equilateral triangle. (3 sides equal)

$$\angle PAR = 60^{\circ}$$
 (\angle of an equilateral triangle)

$$\angle BAR = 60^{\circ} + x^{\circ}$$

$$\angle ABC = 90^{\circ} - \frac{x^{\circ}}{2}$$
 (\angle sum of isos. $\triangle ABC$)

$$\angle ABC = \angle BAR$$
 (corr. $\angle s$, $\cong \Delta$'s)

$$60^{\circ} + x^{\circ} = 90^{\circ} - \frac{x^{\circ}}{2}$$

$$x = 20$$

Method 4 Let AP = PQ = QB = BC = t

Use Q as centre, QP as radius to draw an arc, cutting

$$AC$$
 at R . $QR = QP = t$ (radius of the arc)

$$\angle AQP = x^{\circ}$$
 (base \angle s isos. Δ)

$$\angle QPR = 2x^{\circ}$$
 (ext. \angle of $\triangle APQ$)

$$\angle QRP = 2x^{\circ}$$
 (base \angle s isos. Δ)

$$\angle BQR = 3x^{\circ} \qquad \text{(ext. } \angle \text{ of } \triangle AQR)$$

$$\angle BRC = 90^{\circ} - \frac{3x^{\circ}}{2} + x^{\circ} = 90^{\circ} - \frac{x^{\circ}}{2}$$
 (ext. \angle of $\triangle ABR$)

$$\angle ABC = \angle ACB = 90^{\circ} - \frac{x^{\circ}}{2} = \angle BRC$$
 (\angle sum of isos. $\triangle ABC$)

$$\therefore BR = BC = t$$
 (sides opp. eq. \angle s)

 ΔBQR is an equilateral triangle. (3 sides equal)

$$\angle BQR = 3x^{\circ} = 60^{\circ}$$

$$x = 20$$

Method 5 Let
$$AP = PQ = QB = BC = t$$
, $AQ = y$

∠ $AQP = x^{\circ}$ (base ∠s isos. Δ)

$$= \frac{x^{\circ}}{2}$$
 (cast. ∠ of ΔBPQ)

∠ $QPC = 2x^{\circ}$ (ext. ∠ of ΔAPQ)

∠ $BPC = \angle QPC - \angle BPQ = 2x^{\circ} - \frac{x^{\circ}}{2} = \frac{3x^{\circ}}{2}$

∠ $ABC = \angle ACB = 90^{\circ} - \frac{x^{\circ}}{2}$ (∠s sum of ΔABC)

As shown, construct two triangles so that

$$\Delta ABC \cong \Delta ACD \cong \Delta ADE$$

Join BE , BD , BP .

$$AP = BC = t$$
, $PQ = CD = t$ (corr. sides $\cong \Delta$'s)

∠ $BCD = 2x \angle ACB = 180^{\circ} - x^{\circ} = \angle BQP$

∴ $\Delta BCD \cong \Delta BQP$
 $BD = BP$ (1)

∠ $CBD = \angle QBP = \frac{x^{\circ}}{2}$; ∠ $BDC = \angle BPQ = \frac{x^{\circ}}{2}$

∠ $BDE = \angle ADE + \angle ADC - \angle BDC$

$$= 90^{\circ} - \frac{x^{\circ}}{2} + 90^{\circ} - \frac{x^{\circ}}{2} - \frac{x^{\circ}}{2}$$

$$= 180^{\circ} - \angle BPC$$

$$= \angle APB$$

∴ ∠ $BDE = \angle APB$ (2)

 $AP = DE$ (3)

By (1), (2) and (3), $\Delta BDE \cong \Delta BPA$

∴ $BE = AB = y + t = AE$

(adj. \angle s on st. line) (S.A.S.) (corr. sides $\cong \Delta$'s) (corr. \angle s $\cong \Delta$'s)

(by construction, corr. sides $\cong \Delta$'s) (S.A.S.) (corr. sides $\cong \Delta$'s)

(angle of an equilateral triangle)

Method 6 The method is provided by Ms. Li Wai Man D Construct another identical triangle ACD so that $\angle ACD = x^{\circ}$, CE = t = EP = PA = AD CD = AB and AD = BC $\therefore ABCD$ is a parallelogram (opp. sides equal) CE = t = QB and CE // BQ (property of //-gram) $\therefore BCEQ$ is a parallelogram (opp. sides equal and //) $\therefore EQ = t = PQ = EQ$ (property of //-gram) $\triangle PQE$ is an equilateral triangle $\triangle QPE = x^{\circ} + 2x^{\circ} = 60^{\circ}$ x = 20

 $\therefore \Delta ABE$ is an equilateral triangle

 $\angle BAE = x^{\circ} + x^{\circ} + x^{\circ} = 60^{\circ}$

x = 20

Method 7 Let
$$AP = PQ = QB = BC = t$$
, $AQ = y$
 $\angle AQP = x^{\circ}$ (base $\angle s$ isos. Δ)
 $\angle BPQ = \angle PBQ$ (base $\angle s$ isos. Δ)
 $= \frac{x^{\circ}}{2}$ (ext. \angle of ΔBPQ)
 $\angle QPC = 2x^{\circ}$ (ext. \angle of ΔAPQ)
 $\angle BPC = \angle QPC - \angle BPQ = 2x^{\circ} - \frac{x^{\circ}}{2} = \frac{3x^{\circ}}{2}$
 $\angle ABC = \angle ACB = 90^{\circ} - \frac{x^{\circ}}{2}$ (\angle sum of ΔABC)

As shown, reflect $\triangle ABC$ along AC to $\triangle ADC$

 $\Delta ABC \cong \Delta ADD$

Join BD, BP, PD.

$$AP = BC = t$$
, $PQ = CD = t$ (corr. sides $\cong \Delta$'s)

$$\angle BCD = 2 \times \angle ACB = 180^{\circ} - x^{\circ} = \angle BQP$$

$$\therefore \Delta BCD \cong \Delta BQP$$

$$BD = BP \dots (1)$$

$$BP = PD$$

 $\therefore \Delta BDP$ is an equilateral triangle.

$$\angle BPD = 2\angle BPC = 2 \times \frac{3x^{\circ}}{2} = 60^{\circ}$$

$$x = 20$$

(adj. ∠s on st. line) (S.A.S.)

(corr. sides $\cong \Delta$'s)

(corr. sides $\cong \Delta$'s)

Spare Group

GS In Figure 4, *ABCD* is a rectangle. Let *E* and *F* be two points on *A DC* and *AB* respectively, so that *AFCE* is a rhombus.

If AB = 16 and BC = 12, find the value of EF.

Let
$$AF = FC = CE = EA = t$$

$$DE = 16 - t = BF$$

In $\triangle ADE$, $12^2 + (16 - t)^2 = t^2$ (Pythagoras' Theorem)

$$144 + 256 - 32t + t^2 = t^2$$

$$32t = 400$$

$$t = 12.5$$

In $\triangle ACD$, $AC^2 = 12^2 + 16^2$ (Pythagoras' Theorem)

$$AC = 20$$

G = centre of rectangle = centre of the rhombus

$$AG = GC = 10$$

(Diagonal of a rectangle)

Let
$$EG = x = FG$$

(Diagonal of a rhombus)

In
$$\triangle AEG$$
, $x^2 + AG^2 = t^2$

(Pythagoras' Theorem)

$$x^2 + 10^2 = 12.5^2$$

$$x = 7.5$$

$$EF = 2x = 15$$

Geometrical Construction

1. Figure 1 shows a line segment AB of length 1 unit. Construct a line segment of length $\sqrt{7}$ units.

$$A B$$
 Figure 1

Method 1

- (1) Extend AB. Use a pair of compasses to mark the points C, D, E so that AB = BC = CD = DE. AE = 4 units.
- (2) Use C as centre, CA = CE as radius to draw a semi-circle.
- (3) Use *E* as centre, *EB* as radius (3 units) to draw an arc, which *A* intersects the semi-circle at *P*.

(4) Join AP.

$$\angle APC = 90^{\circ} (\angle \text{ in semi-circle})$$

$$AP = \sqrt{4^2 - 3^2} = \sqrt{7}$$
 (Pythagoras' Theorem)

Method 2

(1) Extend AB. Use a pair of compasses to mark the points C, D, E, F, G, H, I so that AB = BC = CD = DE = EF = FG = GH = HI. BI = 7 units.

- (3) Use A as centre, AC as radius to draw an arc; use C as centre, CA as radius to draw an arc. The two arcs intersect at R and S.
- (4) Join RS and extend it to cut the circle at P and Q. respectively

Proof: PB = BQ (\perp from centre bisect chord)

 $AB \times BC = PB \times BQ$ (intersection chords theorem)

$$1 \times 7 = PB^2$$

$$PB = \sqrt{7}$$
 units

2. Given that $\triangle ABC$ is equilateral. P, Q and R are distinct points lying on the lines AB, BC and CA such that $OP \perp AB$, $OQ \perp BC$, $OR \perp CA$ and OP = OQ = OR. Figure 2 shows the line segment OP. Construct $\triangle ABC$.

Construction steps

- (1) Use O as centre, OP as radius to construct an arc; use P as centre, PO as radius to construct another arc. The two arcs intersect at H and I. $\triangle OPH$ and $\triangle OPI$ are equilateral.
- (2) Use H as centre, HP as radius to construct an arc; use P as centre, PH as radius to construct another arc. The two arcs intersect at O and J. ΔPHJ is equilateral.
- (3) Use I as centre, IP as radius to construct an arc; use P as centre, PI as radius to construct another arc. The two arcs intersect at O and K. ΔPIK is equilateral.
- (4) Use H as centre, HJ as radius to construct an arc; use J as centre, JH as radius to construct another arc. The two arcs intersect at P and B. ΔBHJ is equilateral.
- (5) Use *I* as centre, *IK* as radius to construct an arc; use *K* as centre, *KI* as radius to construct another arc. The two arcs intersect at *P* and *A*. $\triangle AIJ$ is equilateral. *BP* is the angle bisector of $\angle HPJ$. $AB \perp OP$.
- (6) Use O as centre, OH as radius to construct an arc; use H as centre, HO as radius to construct another arc. The two arcs intersect at P and Q. ΔOHQ is equilateral.
- (7) Use O as centre, OI as radius to construct an arc; use I as centre, IO as radius to construct another arc. The two arcs intersect at P and R. $\triangle OIR$ is equilateral.
- (8) Join AB, AR produced and BQ produced to meet at C.

Then $\triangle ABC$ is the required equilateral triangle.

3. Figure 3 shows a line segment AB. Construct a triangle ABC $\mathbf{A} \bullet$ such that AC : BC = 3 : 2 and $\angle ACB = 60^{\circ}$.

Method 1

- Step 1 Construct an equilateral triangle *ABD*.
- Step 2 Construct the perpendicular bisectors of AB and AD respectively to intersect at the circumcentre O.
- Step 3 Use *O* as centre, *OA* as radius to draw the circumscribed circle *ABD*.

Step 4 Locate
$$M$$
 on AB so that $AM : MB = 3 : 2$

Step 5 The perpendicular bisector of AB intersect the minor arc AB at X and AB at P. Produce XM to meet the circle again at C. Let $\angle ACM = \theta$, $\angle AMC = \alpha$.

$$\Delta APX \cong \Delta BPX$$
 (S.A.S.)

$$AX = BX$$
 (corr. sides $\cong \Delta$'s)

$$\angle ACX = \angle BCX = \theta$$
 (eq. chords eq. angles)

$$\angle AMC = \alpha$$
, $\angle BMC = 180^{\circ} - \alpha$ (adj. \angle s on st. line)

$$3k : \sin \theta = AC : \sin \alpha \dots (1)$$
 (sine rule on $\triangle ACM$)

$$2k : \sin \theta = BC : \sin (180^{\circ} - \alpha) \dots (2) (\Delta BCM)$$

Use the fact that
$$\sin (180^{\circ} - \alpha) = \sin \alpha$$
;

$$(1) \div (2)$$
: 3: 2 = AC : BC

$$\angle ACB = \angle ADB = 60^{\circ}$$
 (\angle s in the same segment)

 $\triangle ABC$ is the required triangle.

Method 2

- Step 1 Use A as centre, AB as radius to draw an arc PBH.
- Step 2 Draw an equilateral triangle AHP (H is any point on the arc) $\angle APH = 60^{\circ}$

Step 3 Locate M on PH so that
$$PM = \frac{2}{3}PH$$

Step 4 Produce AM to meet the arc at B.

Step 5 Draw a line BC // PH to meet AP produced at C.

$$\angle ACB = 60^{\circ}$$
 (corr. \angle s, PH // CB)

$$\triangle ABC \sim \triangle AMP$$
 (equiangular)

$$AC: CB = AP: PM$$
 (ratio of sides, $\sim \Delta$'s)

$$=1:\frac{2}{3}=3:2$$

 $\triangle ABC$ is the required triangle.

Method 3 (Provided by Mr. Lee Chun Yu, James from St. Paul's Co-educational College)

- Step 1 Construct an equilateral triangle *ABD*.
- Step 2 Construct the perpendicular bisectors of *AB*, *BD* and *AD* respectively to intersect at the circumcentre *O*.
- Step 3 Use O as centre, OA as radius to draw the circumscribed circle ABD.
- Step 4 Locate M on AB so that AM : MB = 3 : 2 (intercept theorem)
- Step 5 Produce AB to N so that BN = 2AB. Let AM = 3k, MB = 2k, BN = 10k, then AN : NB = 15k : -10k = 3 : -2 (signed distance) N divides AB externally in the ratio 3 : -2.
- Step 6 Construct the perpendicular bisectors of MN to locate the mid-point L.
- Step 7 Use L as centre, LM as radius to draw a semi-circle MCN which intersects the circle ABD at C.
- Step 8 Join AC and BC, then $\triangle ABC$ is the required triangle.

Proof: Method 3.1

For ease of reference, assume AM = 3, MB = 2

Introduce a rectangular co-ordinate system with B as the origin, MN as the x-axis.

The coordinates of A, M, B, L, N are (-5, 0), (-2, 0), (0, 0), (4, 0) and (10, 0) respectively.

Equation of circle MCN: $(x + 2)(x - 10) + y^2 = 0 \Rightarrow y^2 = 20 + 8x - x^2$ (1)

Let C = (x, y).

$$CA = \sqrt{(x+5)^2 + y^2} = \sqrt{x^2 + 10x + 25 + 20 + 8x - x^2} = \sqrt{18x + 45} = 3\sqrt{2x + 5}$$
 by (1)

$$CB = \sqrt{x^2 + y^2} = \sqrt{x^2 + 20 + 8x - x^2} = \sqrt{8x + 20} = 2\sqrt{2x + 5}$$
 by (2)

$$\frac{CA}{CB} = \frac{3\sqrt{2x+5}}{2\sqrt{2x+5}} = \frac{3}{2}$$

$$\angle ACB = \angle ADB = 60^{\circ}$$
 (\angle s in the same segment)

 $\triangle ABC$ is the required triangle.

T and P are the feet of perpendiculars from A and B onto TL respectively.

$$\angle MRL = 90^{\circ}$$
 (corr. \angle s $TL//CN$)

Let
$$CR = x = RM$$
 (\perp from centre bisects chord)

$$\Delta CSR \cong \Delta MSR$$
 (S.A.S.) and $\Delta CQR \cong \Delta MQR$ (S.A.S.)

$$\therefore$$
 CS = MS and CQ = MQ(*) (corr. sides, $\cong \Delta$ s)

$$\Delta LMR \sim \Delta LAT$$
 (AT // MR, equiangular)

$$AT: MR = AL: ML$$
 (ratio of sides, $\sim \Delta s$)

$$AT = \frac{9k}{6k} \cdot x = 1.5x$$

∠ in semi-circle

$$\Delta ATS \sim \Delta CRS$$
 (AT // CR, equiangular)
AS: $SC = AT$: CR (ratio of sides, $\sim \Delta s$)

$$AS : SC = AT : CR$$

= 1.5x : x
= 3 : 2 (1)

$$\Delta LMR \sim \Delta LBP$$
 (BP // MR, equiangular)
BP : MR = BL : ML (ratio of sides, $\sim \Delta s$)

$$BP:MR=BL:ML$$

$$BP = \frac{4k}{6k} \cdot x = \frac{2x}{3}$$

$$\Delta BPQ \sim \Delta CRQ$$
 (PB // CR, equiangular)
BQ: QC = BP: CR (ratio of sides, $\sim \Delta s$)

$$BQ: QC = BP: CR$$
$$= \frac{2x}{3}: x$$

$$= 2:3 \dots (2)$$

By (1):
$$AS : SC = 3 : 2 = AM : MB$$

$$\therefore SM // CB$$
 (converse, theorem of equal ratio)

By (2):
$$BQ : QC = 2 : 3 = BM : MA$$

$$\therefore$$
 AC // MQ (converse, theorem of equal ratio)

$$\therefore$$
 CSMQ is a parallelogram formed by 2 pairs of parallel lines

By (*),
$$CS = MS$$
 and $CQ = MQ$

:. CSMQ is a rhombus

Let
$$\angle SCM = \theta = \angle QCM$$
 (Property of a rhombus)

Let
$$\angle AMC = \alpha$$
, $\angle BMC = 180^{\circ} - \alpha$ (adj. \angle s on st. line)

$$3k : \sin \theta = AC : \sin \alpha \dots (3)$$
 (sine rule on ΔACM)

$$2k : \sin \theta = BC : \sin (180^{\circ} - \alpha) \dots (4)$$
 (sine rule on ΔBCM)

Use the fact that $\sin (180^{\circ} - \alpha) = \sin \alpha$;

$$(3) \div (4)$$
: 3 : 2 = $AC : BC$

$$\angle ACB = \angle ADB = 60^{\circ}$$
 (\angle s in the same segment)

 $\triangle ABC$ is the required triangle.

Method 4 (Provided by Chiu Lut Sau Memorial Secondary School Ip Ka Ho)

Step 1 Construct an equilateral triangle *PQR*. (*QR* is any length)

Step 2 Produce PQ and PR longer. On PQ produced and PW produced, mark the points S, T, U, V and W such that PS = ST = TU = PV = VW, where PS is any distance.

Step 3 Join UW.

Step 4 Copy $\angle PUW$ to $\angle BAC$.

Step 5 Copy $\angle PWU$ to $\angle ABC$. AC and BC intersect at C.

 $\triangle ABC$ is the required triangle.

Proof: By step 1, $\angle OPR = 60^{\circ}$ (Property of equilateral triangle)

By step 2, PU : PW = 3 : 2

By step 4 and step 5, $\angle PUW = \angle BAC$ and $\angle PWU = \angle ABC$

 $\Delta PUW \sim \Delta CAB$ (equiangular) AC:BC=PU:PW=3:2(corr. sides, $\sim \Delta s$)

The proof is completed.