<u>Zadanie</u> Dana jest funkcja logarytmiczna o wzorze $f(x) = \log_4(x - k) + 3$, gdzie k jest parametrem. Dziedziną funkcji jest przedział $(2, +\infty)$. Podaj wartość parametru k, a następnie:

- a) Oblicz wartość funkcji f dla argumentu 18.
- b) Oblicz argument, dla którego wartość funkcji f wynosi 3,5.
- c) Określ, dla jakich argumentów funkcja f przyjmuje wartości dodatnie.

Rozwiązanie:

Jeżeli mamy dany logarytm $\log_a b$, to musimy założyć, że a>0 i $a\neq 1$ oraz b>0. W ten sposób określa się dziedzinę logarytmu.

Określmy zatem dziedzinę naszej funkcji, w której występuje logarytm:

$$x - k > 0$$

Czyli dziedziną funkcji jest przedział: $(k, +\infty)$.

Z treści zadania wiemy, że dziedziną funkcji jest przedział $(2, +\infty)$, zatem wynika z tego, że k=2.

Czyli:

$$f(x) = \log_4(x - 2) + 3$$

a)
$$f(18) = \log_4(18 - 2) + 3 = \log_4 16 + 3 = 2 + 3 = 5$$

b) Musimy rozwiązać równanie:

$$\log_{4}(x-2) + 3 = 3.5$$

$$\log_{4}(x-2) = \frac{1}{2}$$

$$4^{\log_{4}(x-2)} = 4^{\frac{1}{2}}$$

$$x - 2 = 4^{\frac{1}{2}}$$

$$x - 2 = 2$$

$$x = 4$$

c) Musimy rozwiązać nierówność:

$$\log_{4}(x-2) + 3 > 0$$

$$\log_{4}(x-2) > -3$$

$$4^{\log_{4}(x-2)} > 4^{-3}$$

$$x - 2 > 4^{-3}$$

$$x > \frac{1}{64} + 2$$

$$x > 2\frac{1}{64}$$