Non-determinestic Finite Automata (NFA): NFA is a finite automaton where for some cases when a single input is given to a single state, the machine goes to more than 1 states, i.e. some of the moves cannot be uniquely determined by the present state and the present input symbol.

An NFA can be represented as $M = \{ Q, \Sigma, \partial, q0, F \}$

 $Q \rightarrow$ Finite non-empty set of states.

 $\Sigma \to \text{Finite non-empty set of input symbols.}$

 $\partial \rightarrow$ Transitional Function.

 $q0 \rightarrow Beginning state.$

 $F \rightarrow Final State$

NFA with (null) or \in move: If any finite automata contains ϵ (null) move or transaction, then that finite automata is called NFA with \in moves

Example:

Consider the following figure of NFA with \in move :

Transition state table for the above NFA

STATES	0	1	epsilon
A	в, С	A	В
В		В	C
С	С	С	_

Epsilon (ϵ) – closure: Epsilon closure for a given state X is a set of states which can be reached from the states X with only (null) or ϵ moves including the state X itself. In other words, ϵ -closure for a state can be obtained by union operation of the ϵ -closure of the states which can be reached from X with a single ϵ move in recursive manner.

For the above example \in closure are as follows :

 \in closure(A) : {A, B, C} \in closure(B) : {B, C} \in closure(C) : {C}