1. Classical 95% Confidence Interval for µ

Given:

- Sample size n=10
- Sample mean y=176,
- Sample variance $s^2 = 9$ ($s = sqrt\{9\} = 3$),
- Population standard deviation σ is unknown.

The 95% confidence interval for μ uses the t-distribution with n-1=9degrees of freedom:

CI95=
$$y^-\pm t_{\alpha/2,n-1}\cdot s/sqrt\{n\}$$
,

where $t\alpha/2,9\approx2.262$,

Calculation:

Margin of Error= $t_{\alpha/2,9}$ ·s/sqrt(n)=2.262·310 \approx 2.14

Classical 95% Confidence Interval:

(173.86, 178.14)

2. Bayesian Posterior Credible Intervals for μ

Case a:

Posterior Mean: 176.00

95% Credible Interval for μ: [174.41, 177.49]

Hypothesis $\mu = 200$ is rejected.

Case b:

Posterior Mean: 176.00

95% Credible Interval for μ: [174.82, 177.10]

Hypothesis $\mu = 200$ is rejected.

Case c:

Posterior Mean: 176.00

95% Credible Interval for μ: [174.37, 177.52]

Hypothesis $\mu = 200$ is rejected.