

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences

PROGRAM (S) TO

BE

Computer Science

EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	CS302						
Course Title	DESIGN & ANALYSIS OF ALGORITHMS						
Credit Hours	3						
Prerequisites by Course(s) and Topics	Data Structures						
Assessment	Assessment with the weight.						
Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Assessment Type	Weight					
	Assignments / Quizzes	15 (10+5)					
	Mid-Terms	25 (12.5 each)					
	Project	10					
	Final	50					
Course Coordinator	Dr. Muhammad Atif Tahir						
URL (if any)							
Current Catalog Description	Introduction; role of algorithms in computing, Analysis on nature of input and size of input Asymptotic notations; Big-O, Big Ω , Big Θ , little-o, little- ω , Sorting Algorithm analysis, loop invariants, Recursion and recurrence relations; Algorithm Design Techniques, Brute Force Approach, Divide-and-conquer approach; Merge, Quick Sort, Greedy approach; Dynamic programming; Elements of Dynamic Programming, Search trees; Heaps; Hashing; Graph algorithms, shortest paths, sparse graphs, String matching; Introduction to complexity classes;						
Textbook (or Laboratory Manual for Laboratory Courses)	Thomas H. Cormen et al. "Introduction to Algorithms" 2 nd Edition. Anany Levitin "Introduction to the design and analysis of algorithms" 3 rd Edition.						
Reference Material	1. Dasgupta, Papadimitriou, and Vazirani: <i>Algorithms</i> , McGraw-Hill, 2006						

NCEAC

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

	 Kleinberg, Tardos: Algorithm Design, Addison Wesley Longman, 2006. Algorithm Design, (1st edition, 2013/2014), Jon Kleinberg, Eva Tardos, Algorithms, (4th edition, 2011), Robert Sedgewick, Kevin Wayne ACM Transactions on Algorithms 							
Course Goals	A. Course Learning Outcomes (CLOs)							
	Design algorithms using different algorithms design techniques i.e. Brute Force, Divide and Conquer, Dynamic Programming, Greedy Algorithms							
	Analyse the time and space complexity of different algorithms by using standard analysis techniques for recursive and non-recursive algorithms.							
	Discussion on Asymptotic notations, standard complexity classes and representation of time complexities in asymptotic notations of standard complexity functions							
	Describe, compare, analyse, and solve general algorithmic problem types: Sorting, Searching, String Processing, Graph.							
	5. Implement the algorithms, compare the implementations empirically, and apply fundamental algorithms knowledge to solve real-world problems.							
	6. Understanding of NP-Completeness and Approximate Problems.							
	B. Program Learning Outcomes For each attribute below, indicate whether this attribute is covered in this course or not. Leave the cell blank if the enablement is little or non-existent.							
	1. Academic To prepare graduates as computing professionals Education:							
	2. Knowledge for Apply knowledge of computing fundamentals, Solving knowledge of a computing specialization, and Computing mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.							
	3. Problem Analysis: Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.							
	4. Design/ Design and evaluate solutions for complex computing problems, and design and evaluate Solutions: systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.							

NCEAC.FORM.001-D

5. Modern Tool Usage:	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations.	
6. Individual and Team Work:	Function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings.	~
7. Communication:	Communicate effectively with the computing community and with society at large about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.	
8. Computing Professionalism and Society:	Understand and assess societal, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice.	
9. Ethics:	Understand and commit to professional ethics, responsibilities, and norms of professional computing practice.	
10. Life-long Learning:	Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.	

C. Relation between CLOs and PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)											
(020	. 000	100 200	arriii g C	<u> </u>	0, 1 20		.Os	arriii g C	dioonii	30)	
		1	2	3	4	5	6	7	8	9	10
CLOs	1	>	>		>		>				
	2	~	~	>			~				
	3	~	~	>			~				
	4	~	~		~		~				
	5	~	~		~		~				
	6	~	~	~			~				

NCEAC.FORM.001-D

Topics Covered in	1. Topics to be covered:							
the Course, with Number of Lectures on Each Topic	List	of Topics	No. of Weeks	Contact Hours	CLO			
(assume 15-week instruction and one-hour lectures)	Basics of Algorit Foundation, Gro Asymptotic Nota		2	6	2,3			
,	Divide and Cond	uer, Substitution ence-Tree Method,	2	6	2,3			
	Sorting (Merge, Heap, Counting, Data Structures Linked List, Hasl	Radix),	1	3	1,2,3,4			
	Dynamic Progra	mming	1.5	4.5	1,2			
	(Graph Cate Terminology, Graphs, BFS Connected Co	ruskal's Algorithm, hms, Bellman-Ford	3	9	2, 4			
		orithms (Introduction, Close Points). String	2	6	2,4,5			
		oblems and Solutions ation Algorithm	2	6	2,6			
	Review		0.5	1.5	1,4,6			
	Project Presenta	itions	1	3	1,2,3,4,5			
	Total		15	45				
Laboratory Projects/Experiments Done in the Course								
Programming Assignments Done in the Course		Yes, Algorithm published in research paper based on Genetic Algorithm was implemented using a preferred programming language selected by student (e.g. C++, Java, Python)						
Class Time Spent on (in credit hours)	Theory Problem Analysis		Solution Design		Social and Ethical Issues			
	30	5		0				
Oral and Written Communications	Every student is required to submit at least1 written reports of typically _2 pages and to make1 oral presentations of typically10 minute's duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.							

NCEAC.FORM.001-D

Instructor Name: Dr Muhammad Atif Tahir / Mr Muhammad Waqas / Mr Zeshan Khan Instructor Signature

Dated: Fall 2019