

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

	ame:	
120 K		

Kyle Williams

UB Person Number:

(5) (5) **(5) (5)** 5 5 (5) 6 6 6 6 (8) (8) 9 9 9 9 9

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

a)
$$\Sigma l: W^2 2V_2, |b^2-6|$$

$$W^2 V_1 + V_3, |b^2 2|$$

$$W^2 3V_1 + 2V_2, |b^2 0|$$

b) The set is not loverly independent because there is a lover combination of vectors V, and Vz which give V3.

$$3V_{1} + 2V_{2} = V_{3}$$

$$3\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + 2\begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 0 \\ 6 \end{bmatrix} + \begin{bmatrix} -2 \\ 2 \\ -6 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = V_{3}$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

First, append Soluthy meters, I, there had rock (A)

$$\begin{bmatrix} 1 - 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \in \mathbb{R}^2} \begin{bmatrix} 1 - 1 & 2 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \in \mathbb{R}^2} \begin{bmatrix} 1 - 1 & 2 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \in \mathbb{R}^2} \begin{bmatrix} 1 - 1 & 2 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 & | & 2 & -1 & 1 \\
0 & 1 & 0 & | & -1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 & | & 2 & -1 & 1 \\
0 & 1 & 0 & | & -1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & | & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & | & 2 & -2 & 1
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{vmatrix} A^{-1} & = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{vmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

Find a matrix C such that
$$A'C = B$$
 (where A' is the transpose of A).

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \xrightarrow{A} A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \xrightarrow{A} A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 2 & 1 & -1 \end{bmatrix} \xrightarrow{A_1 + X_2 + 10X_3 = 1} \xrightarrow{A_1 + 2X_3 = 1} \xrightarrow{A_2 + 2X_3 = 1} \xrightarrow{A_3 = 1} \xrightarrow{A_3$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

b)
$$u^{2}\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1-2 \\ 1 \\ 1-3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}^{2} \begin{bmatrix} 10 \\ -2 \end{bmatrix}$$

But 9/2-13/6 \$10: There are no vectors, u, which satisfy T(u)=[10]

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

vectors
$$V_1$$
 and V_2 such that
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$\begin{vmatrix} R_3 - 3R_1 \\ 0 & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} R_3 - 3R_2 \\ 0 & 1 & 4 \end{vmatrix}$$

$$\begin{vmatrix} R_3 - 2R_2 \\ 0 & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} R_3 - 2R_2 \\ 0 & 1 & 4 \end{vmatrix}$$

$$\begin{vmatrix} R_3 - 2R_2 \\ 0 & 1 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix} O & 1 & 4 \\ O & 2 & 4 \end{vmatrix}$$

$$\begin{vmatrix}$$

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

which is a linear combination of u and V ... w E Span(u, V)

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

True, any subset of a linearly independent set of vectors must

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

Fake; Linear dependence independence is only guerosteed to be preserved if A is a matrix which defines a linear transformation. Since this written is not specified, then linear dependence cannot be gueranteed ofter transformation.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True; Snee T is a linear operator whose operation preserves the dimensions of the original vectors, then any vector $u \in Span(v, w)$ must be in the span of T(v), V(w). Additionally, since there are 3 vectors in 2 spaces, and it is known that $u \in Span(v, w)$, v and w either are linearly dependent on one another, and u, or are linearly independent. Since T is a linear transformation, these properties are maintained, meaning $T(u) \in Span T(v)$, T(w) by definition (3 vectors in 2 space; 2 are linearly independent; v and w) or because all 3 vectors were linearly dependent to begin with