

Psychological and neural representations of political attitudes, opinions, and facts

Joshua S. Cetron, Jacob Blair, & Mina Cikara, Department of Psychology, Harvard University

Block Structure:

Political block #1, order

Political block #2, order Political block #1, order

Introduction

- Much of what we learn about the world, we learn from others' $attitudes^1$.
- Attitudes are useful for encoding *valenced beliefs*. Opinions
- "No civilian needs to own an assault weapon."
- But not all *beliefs* are necessarily *valenced*. Factual claims
 - "Assault weapons can be used for self-defense."
- Still, when we encounter social and political information in the world, it often takes the form of beliefs embedded into attitudes.
 - We get opinions and facts in one fell swoop.
- How do we make epistemic judgments like "fact" and "opinion" when we encounter such propositions?

"No civilian needs to own an assault weapon."

These reactions <u>feel</u> similar but <u>imply</u> different things!

- Evidence suggests we struggle to make these judgments about statements in political and news media².
- But is this a phenomenon of *epistemology*, or of *attitudes*?
- How might epistemic judgments be related to features of social and political attitudes?

Behavioral Studies: Results Logistic regressions predicting opinion judgments Exponentiated parameters for odds-ratio interpretation Behavioral Study Block = B Experimenter-defined statement = "Opinion Position = Disagree Position = Neutral Confidence Controlling for block and experimenterdefined epistemic category, participants were more likely to judge a statement as Perceived Consensus an "opinion statement" if they... • ...disagreed with or were neutral on the ...believed fewer people agreed with Moral Relevance

Odds Ratio of "Opinion" judgment over "Factual" judgment

fMRI Study: Methods

- N = 40 participants, preregistered on OSF
- Pre-scan behavioral statement ratings
- Explicit judgments made in scanner for every statement
- Followed later by non-political statements

Multivariate analysis: "Factual" vs. "opinion" judgment SVM classification

12 trials (30s each) per block

- 1. Beta estimates for each statement computed using GLMs via nilearn⁹
- 2. Computed whole-brain representational dissimilarity matrices (RDMs)¹⁰
- 3. RDMs averaged within Schaefer 2018 parcels (200 parcel version)¹¹
- RDMs separated into political (24x24) and non-political (12x12) RDMs
- 5. Projected RDMs into 3D embeddings using multidimensional scaling
- 6. Ran support vector machine (SVM) classifier to predict judgments

fMRI Study: Preliminary Results

Behavioral results replicate

 Agreement and perceived consensus predict "factual statement" judgments

Epistemic judgment classification from neural representations of statements

- Higher judgment classification accuracy for non-political statements
- Different areas of peak judgment classification between non-political and political statements

Non-political statements 90th percentile SVM accuracy threshold = 76%

Regions with peak judgment classification

Parcels from the 2018 Schaefer Parcellation, 200 Parcels, 17 Networks version. ROIs shown were in the 90th percentile for judgment classification accuracy within each statement type.

(Not shown: somatomotor regions where judgment classification is confounded with motor planning for button presses.)

90th percentile SVM accuracy threshold = **65**%

Political statements

References

Behavioral Studies: Methods

Three Behavioral Studies

Online on Prolific

Study 1 (N = 508)

24 statements: 12 opinion and
 12 factual (paired)

Study 2 (N = 494)

• Same as Study 1 except factual statements could only be "true"

Study 3 (N = 498)

12 statements, all opinion

1. Position ratings for each statement

("strongly disagree" to "strongly agree")

- 2. Feature ratings for each position
- 3. Explicit judgments

Statement Ratings Position Confidence³ Depth of understanding⁴ Perceived consensus⁵ Moral relevance6 Explicit Judgments Binary forced-choice judgments: FACTUAL statement Regression Control covariates: Block order Experimenter-defined epistemic type

Conclusions & Future Directions

- Epistemic judgments about political statements are predicted by attitude features.
- Agreeing with a statement and believing many people agree with you predict "factual statement" judgments
- > Can we manipulate this effect by providing consensus information?
- Different brain regions predict these political statement judgments compared to non-political statement judgments
- > Do the neural and psychological representations have similar geometries?
- .. Allport, G. W. (1935). Attitudes. In A Handbook of Social Psychology (pp. 798–844). https://ci.nii.ac.jp/naid/10007783833/
 2. Can Americans Tell Factual From Opinion Statements in the News? (2018, June 18). Pew Research Center's Journalism Project. https://www.pewresearch.org/journalism/2018/06/18/distinguishing-between-factual-and-opinion-statements-in-the-news/
- Eriksson, L., & Hájek, A. (2007). What Are Degrees of Belief? *Studia Logica*, 86(2), 183–213. https://doi.org/10.1007/s11225-007-9059-4
 Fernbach, P. M., Light, N., Scott, S. E., Inbar, Y., & Rozin, P. (2019). Extreme opponents of genetically modified foods know the least but think they know the most. *Nature Human Behaviour*, 1. https://doi.org/10.1007/s11225-007-9059-4
- 5. Schwarz, N., Newman, E., & Leach, W. (2016). Making The Truth Stick and The Myths Fade: Lessons from Cognitive Psychology. *Behavioral Science and Policy*, 2. https://doi.org/10.1353/bsp.2016.0009
 6. Skitka, L. J., Bauman, C. W., & Sargis, E. G. (2005). Moral Conviction: Another Contributor to Attitude Strength or Something More? *Journal of Personality and Social Psychology*, 88(6), 895–917. https://doi.org/10.1037/0022-3514.88.6.895
 7. Faten A. A. & Viscor B. S. (2008). Attitude Importance: Understanding the Causes and Consequences of Passionately Hold Views. Social and Passonality Revolution.
- Eaton, A. A., & Visser, P. S. (2008). Attitude Importance: Understanding the Causes and Consequences of Passionately Held Views. Social and Personality Psychology Compass, 2(4), 1719–1736. https://doi.org/10.1111/j.1751-9004.2008.00125.x
 Cetron, J. S., Haque, O., Mair, P., & Cikara, M. (Preprint). Attitude importance, more than extremity, predicts costly intergroup behavior. OSF Preprints. https://doi.org/10.31219/osf.io/xzpfu
 Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8. https://www.frontiersin.org/article/10.3389/fninf.2014.00014
- 10. Lu, Z., & Ku, Y. (2020). NeuroRA: A Python Toolbox of Representational Analysis From Multi-Modal Neural Data. Frontiers in Neuroinformatics, 14. https://www.frontiersin.org/article/10.3389/fninf.2020.563669
 11. Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. (2018). Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cerebral Cortex (New York, N.Y.: 1991), 28(9), 3095–3114 https://doi.org/10.1093/cercor/bhx179