Modelowanie i analiza systemów informatycznych

Logika Temporalna i Automaty Czasowe - konstrukcja i weryfikacja czasowych automatów UPPAAL 1.

Zadanie 1.

Czas i alarm

Zadanie 2.

Weryfikacja automatów z zadania 1

A[] T.GO imply T.minute <= 60	$AG(T.G0 \implies T.minute \le 60)$	Na pewno zawsze w T.G0, minuta ≤ 60	True
A<> T.GO and T.minute == 60	$AF(T.G0 \land T.minute = 60)$	Na pewno kiedyś w T.G0, minuta = 60	True
A[] T.minute <= 60	AG(T.minute <= 60)	Na pewno zawsze minuta ≤ 60	True
A<> T.minute == 60	AF(T.minute = 60)	Na pewno kiedyś minuta = 60	True
T.GO -> T.G23	$AG(T.G0 \implies AF T.G23)$	Na pewno po T.G0 nastąpi kiedyś T.G23	True
T.G23 -> T.G0	$AG(T.G23 \implies AF T.G0)$	Na pewno po T.G0 nastąpi kiedyś T.G23	True
A[] T.G7_1 imply T.minute <= 10	$AG(T.G7_1 \implies T.minute \le 10)$	Na pewno zawsze w T.G7_1, minuta \le 10	True
A<> T.G7_1 and T.minute == 10	$AF(T.G7_1 \land T.minute = 10)$	Na pewno kiedyś w T.G7_1, minuta = 10	True
A[] T.G7_2 imply T.minute >= 10 and	$AG(T.G7_2) \implies T.minute \ge 10 \land$	Na pewno zawsze w T.G7_2, minuta ≥ 10	True
T.minute <= 15	T.minute ≤ 15)	i minuta ≤ 15	
A<> T.G7_2 and T.minute == 15	$AF(T.G7_2 \land T.minute = 15)$	Na pewno kiedyś w T.G7_2, minuta = 15	True
A[] T.G7_3 imply T.minute >= 15 and	$AG(T.G7_3 \implies T.minute \ge 15 \land$	Na pewno zawsze w T.G7_3, minuta ≥ 15	True
T.minute <= 60	T.minute ≤ 60)	i minuta ≤ 60	
A<> T.G7_3 and T.minute == 60	$AF(T.G7_3 \land T.minute = 60)$	Na pewno kiedyś w T.G7_3, minuta = 60	True
A[] T.G7_2 imply Alarm1.alarm_	$AG(T.G7_2 \implies Alarm1.alarm_)$	Na pewno zawsze w T.G7_2,	True
		Alarm1.alarm_	
A[] Alarm1.alarm_ imply T.G7_2 and	$AG(Alarm1.alarm_ \implies T.G7_2 \land$	Na pewno zawsze w Alarm1.alarm_, będzie	True
T.minute >= 10 and T.minute <= 15	T.minute $\geq 10 \wedge \text{T.minute} \leq 15$	w T.G7_2 i minute \in [10,15]	
A<> Alarm1.alarm_ and T.G7_2 and	$AF(Alarm1.alarm_ \land T.G7_2 \land T.minute$	Na pewno kiedyś Alarm1.alarm_ i T.G7_2	True
T.minute == 15	= 15	i minuta == 15	

Tablica 1: Formuły weryfikacyjne. Automat ma tylko jedną ścieżkę (cykl), więc użyto tylko operatora A