Math 241 X8

Name(s): Solutions

Homework 12 supplement

This is a written homework supplement to the homework for Unit 13: 3D Flow Along.

- (1) Consider the surface R that is the cone $z = \sqrt{x^2 + y^2}$ with $z \le 3$. Let $\mathbf{F}(x, y, z) = \langle x^3y, xz, \sin z \rangle$.
 - (a) Compute $\iint_R \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$ directly. Use a downward/outward normal.

$$cur(\vec{F} = \begin{vmatrix} \hat{c} & \hat{j} & \hat{k} \\ \frac{\partial_{x}}{\partial y} & \frac{\partial_{y}}{\partial z} & \frac{\partial_{z}}{\partial z} \end{vmatrix} = \langle 0 - x, -0 + 0, z - x^{3} \rangle.$$

Parametrize R:
$$x = r \cos t$$
, $y = r \sin t$, $z = r$, $r \in [0,3]$, $t \in [0,2\pi]$

$$dS = \begin{vmatrix} \hat{L} & \hat{J} & \hat{k} \\ \cos t & \sin t & 1 \end{vmatrix} = \langle -r \cos t, -r \sin t, r \rangle \text{ is upward;}$$

$$result result 0 \qquad use \langle r \cos t, r \sin t, -r \rangle \text{ instead.}$$

(b) Verify your answer to (a) using Stokes's Theorem. Be sure to check that your orientations match.

Boundary of R is circle at
$$z=3$$
, $x^2+y^2=9$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$

downward

normal

induces

on C that

is clockwise

when viewed

from above;

my param. of

C is opposite

Boundary of R is circle at $z=3$, $x^2+y^2=9$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3$, $te[0,2\pi]$
 $x=3\cos t$, $y=3\sin t$, $z=3\sin t$

(2) Compute the flow of G along C, where $G(x, y, z) = \langle x^2y, \frac{1}{3}x^3, xy \rangle$ and C is the curve of intersection of the hyperbolic paraboloid $z = y^2 - x^2$ and the cylinder $x^2 + y^2 = 4$. Which direction is it?

where R is the piece of the hyperbolic paraboloid inside the cylinder.

Parametrize R:
$$X=U$$
, $y=V$, $Z=V-u^2$, u^2+v^2s4

$$\frac{1}{2}S = \begin{vmatrix} 2 & 3 & \hat{k} \\ 1 & 0 & -2u \\ 0 & 1 & 2v \end{vmatrix} = \langle 2u, -2v, 1 \rangle$$

$$\int \int curlG \cdot dS = \int \int \langle u, -v, o \rangle \cdot \langle 2u, -2v, i \rangle dudv$$

$$= \int \int (2u^2 + 2v^2) dudv$$

$$= \int \int (2u^2 + 2v^2) dudv$$

$$= \int \int (2u^2 + 2v^2) du dv$$

$$= \int \int 2r^2 \cdot r dr d\theta$$

$$= \int \int 2r^2 \cdot r dr d\theta$$