phenolic resin in the raw material is adjusted to a value ranging from 0.8 to 1.2 such that generation of a reaction byproduct gas is minimized;

charging the raw material into a predetermined mold; and

heat press forming the raw material charged into the mold at a temperature which is equal or less than a temperature at which the epoxy resin and the phenolic resin are carbonized.

10. (Thrice amended) A method of manufacturing a separator for a fuel cell comprising:

preparing a raw material by mixing a carbon, an epoxy resin and a phenolic resin, wherein said phenolic resin is different from said epoxy resin;

charging the raw material into a predetermined mold;

heat press forming the raw material charged into the mold at a temperature which is equal or less than a temperature at which the epoxy resin and the phenolic resin are carbonized; and

completing manufacture of the separator while maintaining the temperature of the separator equal or less than a temperature at which the epoxy resin and the phenolic resin are carbonized, wherein the completion of manufacture includes grinding a surface of the separator which is brought into contact with an adjacent member to be eliminated when the separator is incorporated into a fuel cell.

13. (Twice amended) A method of manufacturing a separator for a fuel cell comprising:

preparing a raw material by mixing a carbon and a resin;

charging the raw material into a predetermined mold;

heat press forming the raw material charged into the mold at a temperature which is equal or less than a temperature at which the resin is carbonized; and

completing manufacture of the separator while maintaining the temperature of the separator equal or less than a temperature at which the resin is carbonized, wherein the completion of manufacture includes grinding a surface of the separator which is brought into contact with an adjacent member to be eliminated when the separator is incorporated into a fuel cell.

Please cancel claims 14-17, without prejudice to the subject matter contained therein, and add the following new claims 18-21:

18. (New) A separator for a fuel cell prepared by a process comprising the steps of: preparing a raw material by mixing a carbon, an epoxy resin and a phenolic resin, wherein said phenolic resin is different from said epoxy resin, and further wherein a ratio of an amount of an epoxy group of said epoxy resin to an amount of a hydroxyl group of said phenolic resin in the raw material is adjusted to a value ranging from 0.8 to 1.2 such that generation of a reaction byproduct gas is minimized;

charging the raw material into a predetermined mold;

· -: :

heat press forming the raw material charged into the mold at a temperature which is equal or less than a temperature at which the epoxy resin and the phenolic resin are carbonized; and

completing manufacture of the separator while maintaining the temperature of the separator equal or less than a temperature at which the epoxy resin and the phenolic resin are carbonized.

19. (New) A separator for a fuel cell prepared by a process comprising the steps of: preparing a raw material by mixing a carbon, an epoxy resin and a phenolic resin, wherein said phenolic resin is different from said epoxy resin;

charging the raw material into a predetermined mold;

heat press forming the raw material charged into the mold at a temperature which is equal or less than a temperature at which the epoxy resin and the phenolic resin are carbonized; and

completing manufacture of the separator while maintaining the temperature of the separator equal or less than a temperature at which the epoxy resin and the phenolic resin are carbonized,

wherein the step of preparing the raw material includes the substeps of: forming the raw material into a slurry; and preparing a power having an average particle size ranging from 50 to 150 μ m and a particle size distribution ranging from 50 to 300 μ m by spraying and drying the slurry for granulation.

20. (New) A separator for a fuel cell prepared by a process comprising the steps of: preparing a raw material by mixing a carbon, an epoxy resin and a phenolic resin, wherein said phenolic resin is different from said epoxy resin;

charging the raw material into a predetermined mold;

heat press forming the raw material charged into the mold at a temperature which is equal or less than a temperature at which the epoxy resin and the phenolic resin are carbonized; and

completing manufacture of the separator while maintaining the temperature of the separator equal or less than a temperature at which the epoxy resin and the phenolic resin are carbonized, wherein the completion of manufacture includes grinding a surface of the separator which is brought into contact with an adjacent member to be eliminated when the separator is incorporated into a fuel cell.

21. (New) A separator for a fuel cell prepared by a process comprising the steps of: preparing a raw material by mixing a carbon and a resin; charging the raw material into a predetermined mold;

heat press forming the raw material charged into the mold at a temperature which is equal or less than a temperature at which the resin is carbonized; and

completing manufacture of the separator while maintaining the temperature of the separator equal or less than a temperature at which the resin is carbonized, wherein the completion of manufacture includes grinding a surface of the separator which is brought into contact with an adjacent member to be eliminated when the separator is incorporated into a fuel cell.