DE CLICS A CIENCIA: PREDICTING ONLINE NEWS POPULARITY WITH MACHINE LEARNING

Equipo 10

Curso: Aprendizaje de Máquina (1INF02)

Fecha: 17/06/2025

◎ EL DESAFÍO: ¿QUÉ HACE POPULAR A UNA NOTICIA?

EL PROBLEMA

- Sobrecarga de contenido digital.
- ¿Cómo predecir qué artículos clasificador preciso destacarán?
- Misión: Predecir si un artículo superará los 1400 'shares'.

NUESTROS OBJETIVOS 🚀

- 1. Desarrollar un modelo clasificador preciso.
- 2. Evaluar múltiples algoritmos avanzados.
- 3. Superar el benchmark académico (AUC > 0.73).
- 4. Identificar factores clave de popularidad.

X NUESTRO ENFOQUE: UNA METODOLOGÍA ESTRUCTURADA

Adoptamos una metodología inspirada en CRISP-DM para asegurar un desarrollo riguroso, desde los datos hasta los insights.

EXPLORANDO LOS DATOS: PRIMEROS HALLAZGOS CLAVE

Balance de Clases

Insight: El dataset está razonablemente balanceado (49% vs 51%).

Impacto de Keywords

Insight: Las noticias populares tienden a usar keywords que ya son, en promedio, más populares.

EXPLORANDO LOS DATOS: PRIMEROS HALLAZGOS CLAVE

Influencia de la Temporalidad

Insight: El tiempo es un factor crucial. Los artículos publicados durante el fin de semana tienen una mayor probabilidad de volverse populares.

DE DATOS CRUDOS A FEATURES LISTAS

1. Definición del Objetivo:

 Transformamos `shares` en un objetivo binario (`popularity`)

2. Transformación de Características:

 Aplicamos `log(1+x)` a variables asimétricas para estabilizarlas.

3. Estandarización:

 Escalamos todas las 58 características con `StandardScaler`.

NUESTRA CARTERA DE MODELOS: DE LA BASE AL SOTA

Regresión Logística (GPU): Nuestra línea base lineal, rápida e interpretable.

Random Forest (GPU): Un ensamble robusto para capturar interacciones no lineales.

XGBoost & LightGBM (GPU): Modelos de Gradient Boosting de vanguardia, conocidos por su rendimiento superior.

Ensambles de 2º Nivel (Stacking): Para combinar las fortalezas de todos los modelos y maximizar el rendimiento.

Y RESULTADOS: ¡MISIÓN CUMPLIDA! SUPERAMOS EL BENCHMARK

Modelo	AUC
Reg. Log.	0.7048
Rand. For.	0.7235
LGBM	0.7321
XGBoost	0.7333
Stacking	0.7342

Insight:

- XGBoost, LightGBM y Ensambles superaron la línea base de 0.73.
- Nuestro mejor modelo, el StackingClassifier, alcanzó 0.7342.

ANÁLISIS DEL CAMPEÓN: ¿CÓMO FUNCIONA EL STACKING?

El StackingClassifier aprende a combinar las predicciones de forma inteligente, actuando como un "gerente de expertos".

DE INSIGHTS A IMPACTO: ESTRATEGIAS ACCIONABLES

1. Amplificar el Contenido de Entretenimiento 🎭

 Asignar más recursos a la creación y promoción en el canal `Entertainment`, nuestro predictor más fuerte.

2. Optimizar el Calendario para el Fin de Semana 🚞

 Publicar o re-promocionar contenido de alto potencial los sábados y domingos para maximizar el engagement.

3. Usar Inteligencia de Contenido y SEO 🧠

 Crear un sistema para priorizar el uso de keywords con un historial de alta popularidad (`kw_avg_avg`).

1. Objetivo Cumplido y Superado:

 Desarrollamos un modelo (Stacking) que supera la línea base académica, alcanzando un ROC AUC de 0.7342.

2. Factores Clave Descubiertos:

 El contexto de una noticia (su canal y temporalidad) es más predictivo que las métricas simples de su contenido.

3. Impacto Tecnológico Clave:

 La aceleración por GPU fue fundamental para la viabilidad del proyecto, permitiendo la optimización de modelos avanzados en tiempos manejables.

GRACIAS ¿Preguntas? ?

Python Pandas NumPy SKLearn cuML XGBoost LightGBM