INFINITY Workshop July 7th, 2020

Branching Immediate Observation Petri Nets

A strong class with simple reachability

Chana Weil-Kennedy joint work with Javier Esparza and Mikhail Raskin

INFINITY Workshop July 7th, 2020

Branching Immediate Observation Petri Nets

A strong class with simple reachability non-semilinear PSPACE

Chana Weil-Kennedy joint work with Javier Esparza and Mikhail Raskin

SCWR SCWR
$$(1,3,0,0) \xrightarrow{*} (1,0,0,0)$$

SCWR SCWR
$$(1,3,0,0) \xrightarrow{*} (1,0,0,0)$$

SCWR SCWR
$$(1,3,0,0) \xrightarrow{*} (1,0,0,0)$$

Reachability problem: Given a Petri net \mathcal{N} , and markings M_0 and M can marking M_0 reach marking M in \mathcal{N} ?

Reachability Problem

Reachability problem: Given a Petri net \mathcal{N} , and markings M_0 and M can marking M_0 reach marking M in \mathcal{N} ?

- verification of systems modelled by Petri nets
- many problems are interreducible with reachability in Petri nets in:
 - formal languages (e.g. shuffle closure of regular language)
 - logic (e.g. logics on data words)
 - process calculi (e.g. fragment of π -calculus)

[survey by S. Schmitz, '16]

Reachability Problem

Reachability problem: Given a Petri net \mathcal{N} , and markings M_0 and M can marking M_0 reach marking M in \mathcal{N} 2 complexity non-elementary complexity. Lasota, Lazic, Leroux, Mazowiecki, 19]

- verification of systems modelled by Petri nets
- many problems are interreducible with reachability in Petri nets in:
 - formal languages (e.g. shuffle closure of regular language)
 - logic (e.g. logics on data words)
 - process calculi (e.g. fragment of π -calculus)

[survey by S. Schmitz, '16]

Reachability Problem

Reachability problem: Given a Petri net \mathcal{N} , and markings M_0 and M can marking M_0 reach marking M in \mathcal{N} 2 complexity non-elementary complexity. Lasota, Lazic, Leroux, Mazowiecki, 19]

- verification of systems modelled by Petri nets
- many problems are interreducible with reachability in Petri nets in:
 - formal languages (e.g. shuffle closure of regular language)
 - logic (e.g. logics on data words)
 - process calculi (e.g. fragment of π -calculus)

[survey by S. Schmitz, '16]

Study subclasses of Petri nets

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

- Token creation and destruction
- Communication-free

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

- Token creation and destruction
- Communication-free

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

- Token creation and destruction
- Communication-free

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

- Token creation and destruction
- Communication-free

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

- Token creation and destruction
- Communication-free

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

- Token creation and destruction
- Communication-free

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

Branching Parallel Processes (BPP)

- Token creation and destruction
- Communication-free

[Esparza, Raskin, W.-K., '19]

Immediate Observation nets (IO)

- Conservative
- Communication

[Christensen et al., '93] [Yen, '97] [Lasota, '09] [Mayr, Weihmann, '15]

Branching Parallel Processes (BPP)

- Token creation and destruction
- Communication-free

[Esparza, Raskin, W.-K., '19]

Immediate Observation nets (IO)

- Conservative
- Communication

- Token creation and destruction
- Communication

- Token creation and destruction
- Communication

- Token creation and destruction
- Communication

- Token creation and destruction
- Communication

- Token creation and destruction
- Communication

- Token creation and destruction
- Communication

- Token creation and destruction
- Communication

- Token creation and destruction
- Communication

- Token creation and destruction
- Communication

$$Card(^{\bullet}t - t^{\bullet}) \leq 1$$

Branching Immediate Observation nets

Branching Immediate Observation nets

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

Unbounded Petri net classes with provably simpler reachability then the general case have **semilinear** reachability sets (e.g. BPP nets, reversible Petri nets...)

BIO nets reachability is a **PSPACE-complete** problem

• PSPACE-hard by weakly simulating bounded tape Turing machines

BIO nets reachability is a **PSPACE-complete** problem

- PSPACE-hard by weakly simulating bounded tape Turing machines
- Solvable in PSPACE via a main theorem which provides firing sequences of bounded length and bounded token count.

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then
$$\exists$$
 markings $M_1, M_2, ..., M_l$

$$\exists transitions t_1, t_2, ..., t_l$$

$$\exists \ constants \ k_1, k_2, ... k_l \geq 0$$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \rightarrow \dots \xrightarrow{t_l^{k_l}} M_l = M$$

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then \exists markings $M_1, M_2, ..., M_l$

 $\exists transitions t_1, t_2, ..., t_l$

 $\exists \ constants \ k_1, k_2, ... k_l \geq 0$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \to \dots \xrightarrow{t_l^{k_l}} M_l = M$$

such that $l \in O(|M|n)^n$ bound on (accelerated) length

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then \exists markings $M_1, M_2, ..., M_l$

 $\exists transitions t_1, t_2, ..., t_l$

 $\exists \ constants \ k_1, k_2, ... k_l \geq 0$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \to \dots \xrightarrow{t_l^{k_l}} M_l = M$$

such that $l \in O(|M|n)^n$ bound on (accelerated) length

and $\forall i, M_i \in O(|M_o||M|n\gamma)^n$ bound on token count

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then \exists markings $M_1, M_2, ..., M_l$

 $\exists transitions t_1, t_2, ..., t_l$

 $\exists constants k_1, k_2, ... k_l \geq 0$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \to \dots \xrightarrow{t_l^{k_l}} M_l = M$$

such that $l \in O(|M|n)^n$ bound on (accelerated) length

and $\forall i, M_i \in O(|M_o| |M| n\gamma)^n$ bound on token count

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then \exists markings $M_1, M_2, ..., M_l$

 $\exists transitions t_1, t_2, ..., t_l$

 $\exists constants k_1, k_2, ... k_l \geq 0$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \to \dots \xrightarrow{t_l^{k_l}} M_l = M$$

such that $l \in O(|M|n)^n$ bound on (accelerated) length

and $\forall i, M_i \in O(|M_o| |M| n\gamma)^n$ bound on token count

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then $\exists markings M_1, M_2, ..., M_l \quad \exists transitions t_1, t_2, ..., t_l \quad \exists constants k_1, k_2, ...k_l \geq 0$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \rightarrow \dots \xrightarrow{t_l^{k_l}} M_l = M$$

such that $l \in O(|M|n)^n$ and $\forall i, M_i \in O(|M_o||M|n\gamma)^n$

NPSPACE algorithm for reachability

$$M_0 \stackrel{*}{\rightarrow} M$$
?

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then $\exists markings M_1, M_2, ..., M_l \quad \exists transitions t_1, t_2, ..., t_l \quad \exists constants k_1, k_2, ...k_l \geq 0$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \rightarrow \dots \xrightarrow{t_l^{k_l}} M_l = M$$

such that $l \in O(|M|n)^n$ and $\forall i, M_i \in O(|M_o||M|n\gamma)^n$

NPSPACE algorithm for reachability

$$M_0 \stackrel{*}{\rightarrow} M$$
?

Guess the first marking M_1

Check that there $\exists t, k$ such that $M_0 \xrightarrow{t^k} M_1$

Guess the next marking M_2

1. Keep the final tokens

- 1. Keep the final tokens
- 2. Reduce the number of helper tokens

- 1. Keep the final tokens
- 2. Reduce the number of helper tokens

- 1. Keep the final tokens
- 2. Reduce the number of helper tokens

- 1. Keep the final tokens
- 2. Reduce the number of helper tokens

- 1. Keep the final tokens
- 2. Reduce the number of helper tokens
- 3. Cut out repetitions of final + helper

- 1. Keep the final tokens
- 2. Reduce the number of helper tokens
- 3. Cut out repetitions of final + helper

- 1. Keep the final tokens
- 2. Reduce the number of helper tokens
- 3. Cut out repetitions of final + helper

- 1. Keep the final tokens
- $\leq |M|$ per intermediate marking
- 2. Reduce the number of helper tokens
- 3. Cut out repetitions of final + helper

- 1. Keep the final tokens $\leq |M|$ per intermediate marking
- 2. Reduce the number of helper tokens $\leq n^2$ per intermediate marking
- 3. Cut out repetitions of final + helper

- 1. Keep the final tokens $|\leq|M|$ per intermediate marking
- 2. Reduce the number of helper tokens $\leq n^2$ per intermediate marking
- 3. Cut out repetitions of final + helper

accelerated length \leq O(# such configurations)

[Leroux, Sutre, '05]

flat \exists sequence $t_1^*t_2^*...t_l^*$ such that $M_0 \overset{*}{\to} M \text{ iff } M_0 \overset{t_1^{k_1}t_2^{k_2}...t_l^{k_l}}{\longrightarrow} M$

[Leroux, Sutre, '05]

flat \exists sequence $t_1^*t_2^*...t_l^*$ such that $M_0 \overset{*}{\to} M \text{ iff } M_0 \overset{t_1^{k_1}t_2^{k_2}...t_l^{k_l}}{\to} M$ BPP, IO nets

[Leroux, Sutre, '05]

flat
$$\exists$$
 sequence $t_1^*t_2^*...t_l^*$ such that $M_0 \stackrel{*}{\to} M$ iff $M_0 \stackrel{t_1^{k_1}t_2^{k_2}...t_l^{k_l}}{\to} M$ BPP, IO nets

pre*-flat
$$\forall M, \exists$$
 sequence $t_1^*t_2^*...t_l^*$ such that $M_0 \xrightarrow{*} M$ iff $M_0 \xrightarrow{t_1^{k_1}t_2^{k_2}...t_l^{k_l}} M$

[Leroux, Sutre, '05]

flat \exists sequence $t_1^*t_2^*...t_l^*$ such that $M_0 \xrightarrow{*} M$ iff $M_0 \xrightarrow{t_1^{k_1}t_2^{k_2}...t_l^{k_l}} M$

BPP, IO nets

pre*-flat $\forall M, \exists$ sequence $t_1^*t_2^*...t_l^*$ such that $M_0 \stackrel{*}{\to} M$ iff $M_0 \stackrel{t_1^{k_1}t_2^{k_2}...t_l^{k_l}}{\longrightarrow} M$

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then \exists markings $M_1, M_2, ..., M_l$ \exists transitions $t_1, t_2, ..., t_l$ \exists constants $k_1, k_2, ..., k_l \ge 0$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \rightarrow \dots \xrightarrow{t_l^{k_l}} M_l = M$$

such that $l \in O(|M|n)^n$ and $\forall i, M_i \in O(|M_o||M|n\gamma)^n$

[Leroux, Sutre, '05]

flat \exists sequence $t_1^*t_2^*...t_l^*$ such that $M_0 \xrightarrow{*} M$ iff $M_0 \xrightarrow{t_1^{k_1}t_2^{k_2}...t_l^{k_l}} M$

BPP, IO nets

pre*-flat $\forall M, \exists$ sequence $t_1^*t_2^*...t_l^*$ such that $M_0 \xrightarrow{*} M$ iff $M_0 \xrightarrow{t_1^{k_1}t_2^{k_2}...t_l^{k_l}} M$ BIO nets

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then \exists markings $M_1, M_2, ..., M_l$ \exists transitions $t_1, t_2, ..., t_l$ \exists constants $k_1, k_2, ..., k_l \ge 0$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \rightarrow \dots \xrightarrow{t_l^{k_l}} M_l = M$$

such that $l \in O(|M|n)^n$ and $\forall i, M_i \in O(|M_o||M|n\gamma)^n$

[Leroux, Sutre, '05]

flat \exists sequence $t_1^*t_2^*...t_l^*$ such that

$$M_0 \stackrel{*}{\rightarrow} M \text{ iff } M_0 \stackrel{t_1^{k_1}t_2^{k_2}...t_l^{k_l}}{\longrightarrow} M$$
 BPP, IO nets

pre*-flat $\forall M, \exists$ sequence $t_1^*t_2^*...t_l^*$ such that

Main Theorem

In a BIO net with n places, and transitions producing $\leq \gamma$ tokens

If
$$M_0 \stackrel{*}{\rightarrow} M$$

then \exists markings $M_1, M_2, ..., M_l$ \exists transitions $t_1, t_2, ..., t_l$ \exists constants $k_1, k_2, ..., k_l \ge 0$

$$M_0 \xrightarrow{t_1^{k_1}} M_1 \xrightarrow{t_2^{k_2}} M_2 \rightarrow \dots \xrightarrow{t_l^{k_l}} M_l = M$$

such that $l \in O(|M|n)^n$ and $\forall i, M_i \in O(|M_o||M|n\gamma)^n$

model checking tools with acceleration techniques e.g. FAST [Bardin, Finkel, Leroux, Petrucci, '03]

Other results:

- reachability between possibly infinite sets of markings (cubes) is also PSPACE-complete
- this also holds for coverability, liveness, and more

Other results:

- reachability between possibly infinite sets of markings (cubes) is also PSPACE-complete
- this also holds for coverability, liveness, and more

Future: Investigate consequences in chemical reaction networks, formal languages, etc.