Self-test Questions on Prerequisites

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

The following is a collection of solutions of the self-test questions for Real Variables at the Courant Institute.

Question.

Solution. Two sets are said to be equipotent provided there is a bijective map from one to another. Hence, to show that the sets (0,1] and [0,1] are equipotent, it suffices to construct a bijective map from (0,1] to [0,1].

Question 1-2. Equipotence is an RST relation.

Solution. We prove that equipotence is an equivalence relation on sets, denoted as R. First, a set is equipotent with itself, as the identity map establishes an equipotence. Second, let $(A,B) \in R$. Then, by the definition of equipotence, there exists a map $f:A \to B$ such that f is a one-to-one correpondence. Now, the inverse relation of the map f, f^{-1} , is also a one-to-one map from B to A. Hence, $(B,A) \in R$, and R is reflexive. Now, let (A,B) and (B,C) be elements in R. Then, there exists two bijective maps f_{AB} and f_{BC} . Consider the composition of the two maps $f_{AC}:A \to C$. The map f_{AC} is a bijective map from A to C. Hence, there exists a one-to-one correspondence between A and C. Hence, R is transitive. Therefore, R is an equivalence relation. \square

Question 1-3.

Solution. Let E be a nonempty subset of the real numbers. We want to show that $\inf E = \sup E$ iff E contains a single point. Assume that E is a single point, thus $E = \{x\}$. As, $x \ge x$ and $x \le x$, x is both $\sup E$ and $\inf E$. Hence, $\inf E = \sup E$. Assume that $\inf E = \sup E$. By the definition of supremum and infimum, we have that for all $x \in E$, we have $\inf E \le x \le \sup E$. Combined with $\inf E = \sup E$, we have $\inf E = x = \sup E$. Hence, E is a single point set.

Question The Cauchy Convergence Criterion for Real Sequences.

Solution. Let $\{a_n\}$ be a sequence of real numbers. First, assume that $\{a_n\} \to a$. Then, for all natural numbers n and m, by the triangle inequality, we have

$$|a_n - a_m| = |(a_n - a) - (a_m - a)| \le |a_n - a| - |a_m - a|.$$

As $\{a_n\}$ is convergent, for any $\epsilon>0$, we have N such that $|a_k-a|<\frac{\epsilon}{2}$, for $k\geq N$. Hence, there exists N, such that for $n,m\geq N$, we have N such that $|a_n-a|<\frac{\epsilon}{2}$ and $|a_m-a|<\frac{\epsilon}{2}$, thus $|a_n-a_m|<\frac{\epsilon}{2}$. $\{a_n\}$ is cauchy.

Question 1-4. σ -algebra.

Solution. Let F be a collection of subsets of X, and let $\{A_{\lambda}\}_{\lambda\in\Lambda}$ be a collection of collections of subsets of X that contains F. Consider $\cap_{\lambda\in\Lambda}A_{\lambda}$. Clearly, $F\in\cap_{\lambda\in\Lambda}A_{\lambda}$. We now want to show that $\cap_{\lambda\in\Lambda}A_{\lambda}$ is indeed a σ -algebra. \emptyset and X are in $\cap_{\lambda\in\Lambda}$, as they are in every σ -algebra. It remains to show that it is "closed" under countable union and complement. Let $E\in\cap_{\lambda\in\Lambda}A_{\lambda}$. Then, E is in A_{λ} for all $\lambda\in\Lambda$. As each A_{λ} s are σ -algebra, E^{C} is in A_{λ} for all $\lambda\in\Lambda$.

Question.

Solution. Let $\{a_n\}$ be a sequence of real numbers, X be a set of cluster points of $\{a_n\}$. First, we simply denote $\limsup \{a_n\}$ as s, which can be written as

$$s = \lim_{n \to \infty} [\sup\{a_k \mid k \ge n\}].$$

We first show that $\limsup\{a_n\}\in X$. Let x be any cluster point of $\{a_n\}$. By the definition of a cluster point, we have a subsequence $\{a_{n_k}\}$ such that converges to x. Then, for any $\epsilon>0$, we have N such that for $n_k\geq N$, $x-a_{n_k}<\epsilon$ holds. Hence, $s\geq x$. We have shown that $\limsup\{a_n\}$ is the largest cluster point.

Question lim sup.

Solution.

Question 2. Continous functions.

Solution. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function, and assume that f(0) > 0. By the $\epsilon - \delta$ criterion of continuity at 0, we have that for any $\epsilon > 0$, there exists $\delta > 0$ such that for $x \in \mathbb{R}$, if $|x - 0| < \delta$, then $|f(x) - f(0)| < \epsilon$. Set $\epsilon = \frac{f(0)}{2}$. Then, we have there exists $\delta > 0$ such that for $x \in B(0, \delta)$, $|f(x) - f(0)| < \frac{f(0)}{2}$, thus f(x) > 0. Hence, we have shown that there exists a nonempty interval (δ, δ) , where δ is chosen from the continuity criterion with respect to $\frac{f(0)}{2}$, that all elements inside is strictly positive. \square

Question.