UNIVERSIDAD CARLOS III DE MADRID Departamento de Tecnología Electrónica

Grado en Ingeniería Electrónica Industrial y Automática Electrónica Digital

PRIMERA EVALUACIÓN PARCIAL

25 octubre de 2016

Problema 1 (5 p.)

Diseñe un circuito combinacional de encriptación que convierta un número de cuatro bits según el siguiente algoritmo:

- Realiza la función espejo del número de la entrada. Ejemplo: 1110 se convertirá en 0111.
- Al número resultado de la función espejo, se le suma 1. Ejemplo: al 0111 resultante de la etapa anterior se le suma 1 y por tanto la salida será: 1000.

Se pide:

- a) Tabla de verdad de las funciones de salida (S3, S2, S1, S0) en función de las entradas (I3, I2, I1,
- b) Simplificación de las funciones de salida (S3, S2, S1, S0) utilizando Karnaugh.
- c) Implementación de S3 y S2 con puertas NAND.
- d) Implementación de S3 y S2, con multiplexores de 2 entradas de control y lógica adicional.

Problema 2 (5 p.)

Diseñe, exclusivamente con biestables tipo D y lógica adicional, un circuito contador binario natural de dos bits (Z, Y), con entradas B y A que funcione de la siguiente manera:

- Si B=0 y A=0, el contador no cuenta.
- Si B=0 y A=1, el contador cuenta ascendente de uno en uno.
- Si B=1 y A=0, el contador cuenta ascendente de dos en dos.
- Si B=1 y A=1, el contador cuenta ascendente de tres en tres.

Se pide:

(Utilice siempre la notación en el orden Z, Y para las salidas y A, B para las entradas)

- a) Diagrama de estados, identificando entradas, salidas y estados.
- b) Número de biestables y codificación de estados.
- c) Tabla de transiciones.
- d) Simplificación de las funciones de estado y de salida.
- e) Implementación completa del circuito, exclusivamente con biestables tipo D y lógica adicional.

0)	-	entrao	4		1 0	Salid	a		MUX1	Mux
	工。	Iz	土土	工。	53		. 51	5.	MIONE	1100%
	0	0	0	0	0	0	0	1	-	
	0	0	0	1	1	Ó	0	1	I.	- (
	0	0	1	6	0	1	0	1	1 -0 1	11
	0	0	1	1	1	1	0	1		
	0	1	0	0	0	0	1	1	100	V
	0	1	0	1	1	0	1	1	1-	T.
16	0	1	1	0	0	1	1	1		
	0	1	1	1	1	1	1	1		1
	1	0	0	0	0	o	1	0		
	1	0	0	1	1	0	1		_/	+
	1	0	1	0	0	1	1	0	1-0	11
	1	0	1	1	1	1	1	0		
	1	1	0	0	0	1	0	0	1	
	1	1	0	1	1	1	0	0		
	1	1	1	0	1	0	0	0	I ₁ ⊕ I ₀	工业
	1	1	1	1	0	0	0	0		
				-						

		. 9	dificació		
Estados	Desampcion		Q1 Q0		
Eo	Tengo un 'O'd	kairol	0 0		
E1	Tengo un '1	deciral	1 0		
Ez	Tengo un 2	decinal	1 1		
Eg	Tengo un 3	decirol			
				1	
· El núrero de br	iestables wiee	definido pa: Nº	biestobles = log_ne esta	des	
Nº estado = 4	-> Necestae	2 8000-05			
(Tabla gereral)			Do = Od Biostales D1 = O1 } Biostales		
			D1 = 01 J D		
Estado actual	Entrados	Estado futuro	Exitación		
		Q'a Qo'	Da Do		
Q1 Q0	A.B				
0 0	00	0.0	0 0		
	0 1	1. 0	1 0		
	1 0		0 1		
0 0			1 1		
0 0	1 1	1 1			
0 1	0 0	0.1	0 1		
7 0500		1- 10	1 1		
0 1	01		1 0		
0 1	1 0	1-01			
0 1	1 1	0.01	0 0		
0 1	Y . III				
1 0	0 0	1.0-	1 0		
1 0	0 1	000	0 0		
	1 0	1. 1/	1 1		
		11/1/1/11/11	0 1		
1 0	1 1	0.1			
	00	1 1	1 1		
1 1	0 0	del del			
1 1	0 1	0.1/	0 1		
1 1	1 0	0.01	0 0		
1 1	1 1	1 0	1 0		
1 1					

· Cortinación problema Z:

In Moore las solidos dependen unicarente de los estados, a difereia de Mooly en dande las solidas dependen tanto de las entradas cara de la estados:

Extradas	Solidas	Por lo tanto:		
Q1 Q0	ZY	Q1= Z		
0 0	00			
0 1	0 1	Q.= Y		
10	10			
1 1	1 1			

Funcises de existación:

D1= (Q1Q, AB) + (Q1Q, AB) + (Q1Q, B) + (Q1AB) + (Q1AB) + (Q1Q, B)

