- 1. For a given integer $n \geq 2$, let $\{a_1, a_2, \ldots, a_m\}$ be the set of positive integers less than n that are relatively prime to n. Prove that if every prime that divides m also divides n, then $a_1^k + a_2^k + \cdots + a_m^k$ is divisible by m for every positive integer k.
- 2. An animal with n cells is a connected figure consisting of n equal-sized cells. A dinosaur is an animal with at least 2007 cells. It is said to be primitive if its cells cannot be partitioned into two or more dinosaurs. Find with proof the maximum number of cells in a primitive dinosaur.
- 3. Prove that for every nonnegative integer n, the number $7^{7^n} + 1$ is the product of at least 2n + 3 (not necessarily distinct) primes.
- 4. A town has 3n citizens. Any two persons in the town have at least one common friend in this same town. Show that one can choose a group consisting of n citizens such that every person of the remaining 2n citizens has at least one friend in this group of n.
- 5. A game of solitaire is played with R red cards, W white cards, and B blue cards. A player plays all the cards one at a time. With each play he accumulates a penalty. If he plays a blue card, then he is charged a penalty which is the number of white cards still in his hand. If he plays a white card, then he is charged a penalty which is twice the number of red cards still in his hand. If he plays a red card, then he is charged a penalty which is three times the number of blue cards still in his hand. Find, as a function of R, W, and B, the minimal total penalty a player can amass and all the ways in which this minimum can be achieved.
- 6. There are 2013 cards with different numbers written on them. You can choose 10 cards and in response you are told the number on one of the those cards (you do not know which card). What is the maximum number of cards that we can guarantee knowing the number on each card?
- 7. In the country of Sugarland, there are 13 students in the IMO team selection camp. 6 team selection tests were taken and the results have came out. Assume that no students have the same score on the same test. To select the IMO team, the national committee of math Olympiad have decided to choose a permutation of these 6 tests and starting from the first test, the person with the highest score between the remaining students will become a member of the team. The committee is having a session to choose the permutation. Is it possible that all 13 students have a chance of being a team member?