

Frequency Modulation

Fábio Demo da Rosa

Universidade Federal de Santa Maria Pós-Graduação em Ciência da Computação Disciplina de Robótica Móvel

faberdemo@gmail.com

25 de Agosto de 2023

Visão Geral

- Frequency Modulation
- VRSS Automotive Collision Avoidance Radar
- 3 VORAD Vehicle Detection and Driver Alert System
- Safety First System Vehicular Obstacle Detection and Warning System
- 6 Millitech Millimiter Wave Radar

Frequency Modulation I

- O Frequency Modulated Continuous Wave Radar (FMCW), ou Radar de Onda contínua com Modulação de Frequência, é uma técnica alternativa ao Phase-shift measurement;
- Transmissão de uma onda eletromagnética contínua modulada por um sinal triangular periódico que ajusta a frequência da portadora acima e abaixo da frequência média f0;
- O transmissor emite um sinal que varia em frequência como uma função linear do tempo;

$$f(t) = f_0 + at \tag{1}$$

Onde:

a = some constant;t = elapsed time.

• O sinal é refletido no alvo e chega ao receptor em um tempo t + T

$$T = \frac{2d}{c} \tag{2}$$

Frequency Modulation II

• Onde:

T = round-trip propagation time; d = distance to target; c = speed of light.

Figura 1: A curva de frequência recebida é deslocada ao longo do eixo do tempo em relação à frequência de referência.

• O sinal recebido é comparado com o sinal referência obtido diretamente do transmissor;

Frequency Modulation III

- A curva de frequência recebida será deslocada ao longo do eixo de tempo, por um período igual ao tempo necessário para a onda se propagar e retornar;
- Devido ao efeito Doppler, pode ocorrer um deslocamento no eixo de frequência.
- As duas frequências da 4, quando combinadas em um misturador, produzem uma frequência de batida f_b :

$$F_b = f(t) - f(T+t) = aT$$
(3)

• A frequency beat é a medida usada para calcular a distância do objeto (alvo):

$$d = \frac{F_b c}{4F_r F_d} \tag{4}$$

Onde:

c = range to target; d = speed of light; $F_b = beat frequency;$

Frequency Modulation IV

```
F_r = repetition (modulation) frequency;

F_d = total FM frequency deviation.
```

- A medida da distância é proporcional a diferença ou frequency beat;
- Os avanços no controle de onda de diodos laser permite essa tecnologia de alcance com radar ser usada com lasers.
- A frequency-modulation apresenta vantagens sobre a phase-shift measurement, já que não apresenta ambiguidade quando medindo uma única distância;
- Entretanto, possui desvantagens associadas com a linearidade e repetibilidade da frequency ramp, assim como a coerência do feixe de laser em sistemas ópticos;
- Sendo assim, a maioria dos FMCW disponíveis comercialmente são baseados em radar, enquanto os dispositivos laser são mais comuns no TOF ou no phase-detection

Automotive Collision Avoidance Radar I

- É um radar Doppler modificado, com intuito de alertar motoristas para situações perigosas;
- Uma antena de microondas miniaturizada, montada no parachoque do veículo envia um sinal de feixe estreito que detecta apenas os objetos diretamente no caminho do veículo
 - ignorando alvos (placas de trânsito e carros estacionados) em ambas as vias.
- Quando o sinal do radar é refletido por um alvo estacionário ou em movimento mais lento, ele é detectado pela antena e transmitido a um processador de sinal eletrônico sob o capô.
- O processador de sinal computa constantemente:
 - Velocidade deo veículo;
 - Aceleração;
 - Distância do alvo;
 - Velocidade relativa.
- Se algum desses parâmetros necessitem que o motorista tome uma ação ofensiva/corretiva, um *buzzer* e uma luz são ativadas em um painel "especial" do veículo.

Automotive Collision Avoidance Radar II

Parameter	Value	Units
Effective range	1-300	feet
Accuracy	1.5	percent
Update rate	200	Hz
Operating frequency	24	GHz
RF power	10	milliwatts
Beamwidth (horizontal)	6	degrees
(vertical)	6	degrees
Size (antenna)	3 x 4	inches
(electronics unit)	4 x 5 x 2	inches
Weight (total)	4	pounds
Power	12	volts DC
	12	watts

Figura 2: Especificações VRSS

Vehicle Detection and Driver Alert System I

 VORAD (Vehicle Onboard Radar) Safety Systems, Inc., também desenvolveu um sistema comercial de radar doppler FMCW de ondas milimétricas;

Figura 3: O módulo antena/trasmissor/receptor é montado na frente (ou lateral) do veículo

Vehicle Detection and Driver Alert System II

- O VORAD consegue distinguir até 20 objetos estacionários ou em movimento, dentro de um range de 350 pés (106,68m);
- Dois microprocessadores calculam o range e a range-rate dos dados (radio frequência) e analisam os resultados em conjunto com a velocidade, frenagem e ângulo da direção;
- Esse sistema também guarda 20 minutos dos dados históricos mais recentes numa memória EEPROM para reconstrução dos fatos após possíveis acidentes.

Vehicle Detection and Driver Alert System III

Parameter	Value	Units
Effective range	1-350	feet
Accuracy	3	percent
Update rate	30	Hz
Host platform speed	0.5-120	miles per hour
Closing rate	0.25-100	miles per hour
Operating frequency	24.725	GHz
RF power	0.5	milliwatts
Beam width (horizontal)	4	degrees
(vertical)	5	degrees
Size (antenna)	6 x 8 x 1.5	inches
(electronics unit)	8 x 6 x 5	inches
Weight (total)	6.75	pounds
Power	12-24	volts DC
	20	watts
Mean-time-between-failure	17,000	hours

Figura 4: O módulo antena/trasmissor/receptor é montado na frente (ou lateral) do veículo

Safety First System Vehicular Obstacle Detection and Warning System I

- Safety Frist Systems, Ltd. e General Microwave desenvolveram uma unidade, que utiliza microondas para alerta de pontos cegos enquanto motoristas estão freando ou trocando de pistas;
- Um protótipo do sistema entregue à Chrysler Corporation, usa antenas de microfita biestáticas;
- Tais antenas eram montadas nos painéis laterais traseiros e no para-choque traseiro de uma minivan e pode detectar objetos parados e em movimento dentro dos padrões de cobertura mostrados na Figura 5

Safety First System Vehicular Obstacle Detection and Warning System II

Figura 5: Safety First System

Millitech Millimiter Wave Radar I

- Millitech Corporation também desenhou alguns sistemas FMCW de onda milimétrica focadas em *robotic collision avoidance*;
- Foram sistemas superiores aos dispositivos infravermelhos sob quaisquer condições climáticas, incluindo neblina, chuva, poeira e areia;
- A Figura 6 demonstra as imagens escaneadsa e o sistema de aquisição de dados, no qual quatro feixes empilhados verticalmente são mecanicamente escaneados para produzir um quadro de 256 pixels de dados a uma taxa de 5 Hz;

Millitech Millimiter Wave Radar II

Figura 6: Sensores empilhados

- Cada pixel individual contém 512 bins de alcance com 0,5 metros de distância;
- Uso de controle de loop fechado do oscilador para gerar a forma de onda básica do transmissor, produzindo um desempenho estável e de baixo custo que não se degrada com o tempo;

Millitech Millimiter Wave Radar III

Figura 7: Quatro feixes de ondas milimétricas empilhados verticalmente para produzir uma imagem de por 64 pixels em um campo de visão de 12 por 64 graus

Millitech Millimiter Wave Radar IV

 A operação na região de ondas milimétricas do espectro de radiofrequência permite um desempenho de maior resolução em uma configuração de pacote menor que pode ser obtida com contrapartes de micro-ondas de frequência mais baixa;

Millitech Millimiter Wave Radar V

Parameter	256-Pixel Scanned Sensor	Fixed-Beam Industrial Sensor	Units
Maximum range:	100	30	meters
Minimum range	0.5	0.2	meters
Output power	10	5-10	milliwatts
Field of View	12 by 64	1 to 2	degrees
Radar cross-section	-40 (minimum)	-30 (minimum)	dBsm
Resolution: range	50	5	centimeters
azimuth	1	1-2	degrees
elevation	3	1-2	degrees
Center frequency	77	94	GHz
Sweep bandwidth	300	400	MHz
Frame rate	5		Hz
Data output	Digital	External A/D	
Power	24	±18 to ±28	volts DC
	3	0.5	amps

Figura 8: Especificações do Millitech Millimiter Wave Radar

EVERETT, H.R. Sensors for Mobile Robots. [S.I.]: CRC Press, 1995. ISBN 9781439863480. Disponível em: jhttps://books.google.com.br/books?id=s0BZDwAAQBAJ¿.

Frequency Modulation

Fábio Demo da Rosa

Universidade Federal de Santa Maria Pós-Graduação em Ciência da Computação Disciplina de Robótica Móvel

faberdemo@gmail.com

25 de Agosto de 2023

