Niveaux: SM PC SVT | Matière: Physique

PROF: Zakaryae Chriki | Résumé N:6

Dipole RC

Dipôle RC : association série d'un conducteur ohmique de résistance R et d'un condensateur de capacité C

1. Condensateur :

Description.

Un condensateur est un dipôle constitué de deux armatures métalliques parallèles, placées à des potentiels différents et séparées par un isolant ou un diélectrique.

Relation charge-tension.

La charge d'un condensateur, notée q, est liée à la tension U par la relation :

q = C.U

C : capacité du condensateur (F) q : charge du condensateur (C)

U: tension (V)

Capacité d'un condensateur :

- Le coefficient de proportionnalité C est appelé capacité du condensateur.
- Son unité est le Farad (F)
- Autres unités du Farad

Millifarad $1mF=10^{-3}F$

Microfarad $1\mu F = 10^{-6}F$

Nanofarad $1nF=10^{-9}F$

Picofarad $1pF=10^{-12}F$

Expression de l'intensité.

Par définition, l'intensité du courant traversant un condensateur est la variation de la charge q au cours du

En adoptant la convention réceptrice pour ce dipôle, on obtient :

Courant continu

Courant variable avec q=C.Uc d'où i = C. $\frac{dU_c}{dt}$

Sens conventionnel du courant :

Le sens positif (Conventionnel) du courant est toujours vers l'armature positive.

3. Association des condensateurs :

Association en parallèle

 $C = C_1 + C_2$

La capacité équivalente C du condensateur équivalent de l'association en parallèle de deux condensateurs est égale à la somme de leurs capacités C_1 et C_2 .

La capacité équivalente C de plusieurs condensateurs de capacités C₁, C₂, C₃ ... C_n montés en parallèle, de capacité est la somme des capacités de chaque condensateur : $C = \Sigma C_i$

Interet de l'association:

C= C₁ + C₂ : L'intérêt de l'association en parallèle des condensateurs est d'obtenir une capacité équivalente supérieure à la plus grande d'entre elles. $C > C_1$ et $C > C_2$

Association en série :

La capacité équivalente C du condensateur équivalent de l'association en série de deux condensateurs de capacités C1 et C2 est telle que

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$
 et $C = \frac{C_1 \cdot C_2}{C_1 + C_2}$

NB:

La capacité équivalente C du condensateur équivalent de l'association en série des condensateurs de capacités $C_1, C_2, C_3 \dots C_n$, montés en série, vérifie la relation : $\frac{1}{C} = \sum \frac{1}{C_1} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}$

Interet de l'association : $C = \frac{C_1.C_2}{C_1+C_2}$: L'intérêt de l'association en parallèle des condensateurs est d'obtenir une capacité équivalente inferieure à la plus petite d'entre elles. $C < C_1$ et $C < C_2$

4. Charge d'un condensateur :

Montage de la charge :

Interrupteur K sur la position (1)

Equation différentielle:

En appliquant la loi d'additivité des tensions $U_R + U_C = E$ et les transitions $U_R = R$. i = R. $\frac{dq}{dt} = R$. C. $\frac{dU_C}{dt}$ On aboutit à l'équation différentielle vérifié par une variable donnée

<u>Variable la tension du condensateur Uc:</u> $U_c + R. C. \frac{dU_c}{dt} = E$

 $\frac{\mathbf{q}}{\mathbf{c}} + \mathbf{R} \cdot \frac{\mathbf{dq}}{\mathbf{dt}} = \mathbf{E} \quad \text{Ou} \quad \mathbf{q} + \mathbf{R} \cdot \mathbf{C} \cdot \frac{\mathbf{dq}}{\mathbf{dt}} = \mathbf{E} \cdot \mathbf{C}$ Variable la charge q:

Equation horaire:

On considère Uc(t) comme variable et la solution de l'équation différentielle $Uc(t) = A.e^{-\frac{t}{\tau}} + B$

Pour déterminer les constantes \underline{A} , \underline{B} et $\underline{\tau}$, on remplace la solution et sa dérivée première dans l'équation différentielle

$$\begin{aligned} \text{Uc(t)} &= \text{A.}\, \text{e}^{-\frac{t}{\tau}} + \text{B} \quad \text{et} \quad \frac{\text{dUc(t)}}{\text{dt}} = \textbf{A.} \left(-\frac{1}{\tau}\right).\, \text{e}^{-\frac{t}{\tau}} = -\frac{\textbf{A}}{\tau}.\, \text{e}^{-\frac{t}{\tau}} \\ \text{U}_c + \text{R.}\, \text{C.} \frac{\text{dU}_c}{\text{dt}} = \text{E} : \text{\'equation diff\'erentielle v\'erifi\'ee par Uc} \\ \text{A.}\, \text{e}^{-\frac{t}{\tau}} + \text{B} + \text{R.}\, \text{C.} \left(-\frac{\textbf{A}}{\tau}.\, \text{e}^{-\frac{t}{\tau}}\right) = \text{E} \qquad \text{et} \quad \text{A.}\, \text{e}^{-\frac{t}{\tau}} + \text{B} - \text{R.}\, \text{C.}\, \text{A.} \frac{1}{\tau}.\, \text{e}^{-\frac{t}{\tau}} = \text{E} \\ \text{donc} \quad \textbf{A.}\, \textbf{e}^{-\frac{t}{\tau}} \left(\textbf{1} - \textbf{R.}\, \textbf{C.} \frac{\textbf{1}}{\tau}\right) + \textbf{B} = \textbf{E} \end{aligned}$$

Par Egalité de deux fonctions polynomiales, l'équation est exacte si : $\mathbf{B} = \mathbf{E}$ et $(\mathbf{1} - \mathbf{R}. \mathbf{C}. \frac{1}{\tau}) = \mathbf{0}$ d'où $\mathbf{\tau} = \mathbf{R}. \mathbf{C}$

Déterminer la constante <u>A</u> par les conditions initiales :

à t=0 la tension Uc(0)= 0, on remplace dans l'équation horaire et on obtient : $Uc(t) = A \cdot e^{-\frac{t}{\tau}} + B$

$$0 = A.e^0 + B = A + B$$
, $A + B = 0$ et $A = -B = -E$

Conclusion : A=-E, B=E et τ = R.C alors $Uc(t) = A.e^{-\frac{t}{\tau}} + B = -E.e^{-\frac{t}{\tau}} + E = E.(1 - e^{-\frac{t}{\tau}})$

<u>NB:</u>

Souvent la solution est Uc(t) = A. $(1 - e^{-\frac{t}{\tau}})$ dont la dérivée première est $\frac{dUc(t)}{dt} = A$. $\left(-\frac{1}{\tau}\right)$. $e^{-\frac{t}{\tau}} = A$. $\left(\frac{1}{\tau}\right)$. $e^{-\frac{t}{\tau}} = \frac{A}{\tau}$. $e^{-\frac{t}{\tau}}$

La representation de $u_C = f(t)$:

Mathématiquement la courbe qui représente $u_C = f(t)$ est la suivante tel que à t = 0 on a $u_C(0) = 0$ et quand $t \longrightarrow \infty$ on a $u_C = E$, pratiquement on considère $t > 5\tau$ on a $u_C(\infty) = E$

La courbe présente deux régime :

Un régime transitoire : la tension $u_c(t)$ varie au cours du temps .

Un régime stationnaire ou régime permanent où $u_C(t)$ reste constante et égale à E

Première méthode:

On utilise la solution de l'équation différentielle :

$$u_C(t=\tau) = E(1-e^{-1}) = 0.63E$$

 τ est l'abscisse qui correspond à l'ordonnée 0,63E

Deuxième méthode : utilisation de la tangente à la courbe à l'instant t=0.

Unité de la constante du temps τ :

D'après l'équation des dimensions , on a $[\tau] = [R].[C]$

d'autre part
$$[R] = \frac{[U]}{[I]}$$
 et $[C] = \frac{[I]}{[U]}.[t]$ donc $[\tau] = [t]$
La grandeur τ a une dimension temporelle , son unité dans SI est le

seconde (s).

Expression de l'intensité du courant de chrage i(t):

On sait que l'intensité du courant de charge : $i(t) = C \frac{du_C}{dt}$ tel que

$$\frac{du_C}{dt} = \frac{E}{R_1 C} e^{-t/\tau}$$
 donc:

$$i(t) = \frac{CE}{R_1 C}.e^{-t/\tau}$$

$$i(t) = \frac{E}{R_1} e^{-t/\tau}$$

tel que E/R_1 représente l'intensité de courant à l'instant t=0 c'est à dire à t = 0 on a $u_C = 0$ donc $E = R_1.I_0$ i.e $I_0 = \frac{E}{R}$.

$$i(t) = I_0 e^{-t/\tau}$$

5. Décharge d'un condensateur :

Montage de la charge :

Interrupteur K sur la position (2)

Equation différentielle:

En appliquant la loi d'additivité des tensions
$$U_R + U_C = 0$$
 et les transitions
$$U_R = R. \, i = R. \frac{dq}{dt} = R. \, C. \frac{dU_C}{dt}$$

On aboutit à l'équation différentielle vérifié par une variable donnée Variable Uc:

$$U_c + R.C.\frac{dU_c}{dt} = 0$$

Variable q:

$$\frac{q}{c} + R.\frac{dq}{dt} = 0 \quad \text{Ou} \quad q + R.C.\frac{dq}{dt} = 0$$

Equation horaire:

On considère Uc(t) comme variable et la solution de l'équation différentielle $Uc(t) = A.e^{-\frac{t}{\tau}} + B$

• Pour déterminer les constantes \underline{A} , \underline{B} et $\underline{\tau}$, on remplace la solution et sa dérivée première dans l'équation différentielle

 $Uc(t) = A. e^{-\frac{t}{\tau}} + B \text{ et } \frac{dUc(t)}{dt} = A. \left(-\frac{1}{\tau}\right). e^{-\frac{t}{\tau}} = -\frac{A}{\tau}. e^{-\frac{t}{\tau}} \qquad U_c + R. C. \frac{dU_c}{dt} = 0 \text{ : équation différentielle vérifiée par Uc}$

$$A. e^{-\frac{t}{\tau}} + B + R. C. \left(-\frac{A}{\tau}. e^{-\frac{t}{\tau}}\right) = 0 \quad \text{et} \quad A. e^{-\frac{t}{\tau}} + B - R. C. A. \frac{1}{\tau}. e^{-\frac{t}{\tau}} = 0 \text{ donc} \quad A. e^{-\frac{t}{\tau}} \left(1 - R. C. \frac{1}{\tau}\right) + B = 0$$

Par Egalité de deux fonctions polynomiales, l'équation est exacte si : $\underline{\mathbf{B}} = \underline{\mathbf{0}}$ et $(\mathbf{1} - \mathbf{R}, \mathbf{C}, \frac{1}{\tau}) = \mathbf{0}$ d'où $\underline{\tau} = \mathbf{R}, \mathbf{C}$

• Déterminer la constante A par les conditions initiales :

à t=0 la tension Uc(0)= E, on remplace dans l'équation horaire et on obtient : $Uc(t) = A \cdot e^{-\frac{t}{\tau}} + B$

$$E = A.e^0 + B = A + B$$
, $E = A + B$ et $A = E$ vu que $B = 0$

Conclusion : A=E , B=0 et τ = R.C alors $\mathbf{Uc(t)} = \mathbf{A} \cdot \mathbf{e}^{-\frac{t}{\tau}} + \mathbf{B} = \mathbf{E} \cdot \mathbf{e}^{-\frac{t}{\tau}} + \mathbf{0} = \mathbf{E} \cdot \mathbf{e}^{-\frac{t}{\tau}}$

La representation de $u_C = f(t)$:

Mathématiquement la courbe qui représente $u_C = f(t)$ est la suivante tel que à t = 0 on a $u_C(0) = E$ et quand $t \longmapsto \infty$ on a $u_c = 0$, pratiquement on considère $t > 5\tau$ on a $u_C(\infty) = 0$

Dètermanition de la constante du temps τ :

Première méthode :

On utilise la solution de l'équation $u_C(V)$

différentielle :

 $u_C(t=\tau) = Ee^{-1}$) = 0,37E

Deuxième méthode : utilisation de la tangente à la courbe à l'instant t=0. On a :

Expression de l'intensité du courant de chrage i(t):

On a $u_C(t) = Ee^{-t/\tau}$

d'après la loi d'additivité des tensions : $u_R = -u_C(t)$ i.e : $u_R(t) = -Ee^{-t/\tau}$ et puisque $u_R = Ri(t)$ c'est à dire $i(t) = -\frac{E}{R}e^{-t/\tau}$

5. Energie électrique stockée dans un condensateur.

L'énergie électrique stockée par un condensateur est :

$$\mathscr{E}_{e} = \frac{1}{2}C.u_{C}^{2} = \frac{1}{2}.\frac{q^{2}}{C}$$

 E_e s'exprime en joule (J) avec C en farad (F), u_C en volt (V) et q en coulomb (C).

6. L'influence de τ sur la durée de la décharge

f. l'influence de sur la durée de la décharge

On suppose que $\tau_1>\tau_2$, on obtient la représentation graphique suivante : Quelle est l'influence de τ sur la décharge du condensateur dans le dipôle RC

NB:

- $\tau = R.C$: Constante de temps et est homogène à un temps
- Conditions initiales (à t=0):

Charge d'un condensateur : Uc(0) = 0 , q(0) = 0 , $I(0) = I_0 = \frac{E}{R}$

Décharge d'un condensateur : Uc(0) = E , q(0) = C.E , $I(0) = -I_0 = -\frac{E}{R}$