

mic Ad		
	TAGE NO.:	
	DATE: /	/
	Now. Since XI&X2 are uniformly	, dutibe
	Now, Since XILX2 are uniformly P(XI-=x) x has following vo	lues
.01	FOR CORROD X London roll	
1-0	Ber note light x 200 condo = x	<1
0 = 1	if X->1	
	J	
	P(2X2 = n) Ras following value	
	ie P(X2 = 2) Ras following value	
	0 11 y 40	
	N/2 if x 200 and o 5n	£2
700	le britarrige x1>2709	
3 Y	From i eq. (0, X)? = (1) ;	
	703	
	$F_{\nu}(x) = 0$ if $\gamma < 0$	
K =	E(XS.12) 6013/2 =: [(1) 0 = n =	
	= 71/2 is 200009 12	$x \leq 2$
21%	101012 (== 10x) 9: (x = x > 02 =	,
moga		
Street	Company Coppel Toky price. You are using a Harmon enchodey "spreadure with a Teacher's Signature	

max $(X_1, 2X_2) = X_1$ if $X_2 \leq \frac{X_1}{2}$ = X_2 if $X_2 > \frac{X_1}{2}$ $E(X_{X},) = \int_{1}^{2} \int_$ $\int_{0}^{1} \left(\frac{1}{\lambda_{1}} \right)^{2} X_{1} dx_{2} dx_{1} dx_{2} dx_{1} dx_{2} dx_{1} dx_{2} dx_{2} dx_{2} dx_{3} dx_{4} dx_{2} dx_{3} dx_{4} dx_{5} dx_{5} dx_{6} dx_{$ $= \int_{0}^{1} \chi_{1}^{2} \left(\int_{0}^{1/2} dx_{2} \right) dx_{1} + 2 \int_{0}^{1} \lambda_{1} \left(\int_{0}^{1/2} \lambda_{2} dx_{2} \right) dx_{1}$ $=\int_{2}^{2} \chi_{1}^{2} \chi_{1} + 2\int_{2}^{2} \chi_{1} \times \chi_{2}^{2} dx_{1}$ $= \int_{3}^{\frac{1}{2}} \frac{1}{2} + 2 \int_{1}^{\frac{3}{2}} \frac{1}{2} \times \left(\frac{1}{2} - \frac{1}{8}\right) dx$ $= \int_{\frac{1}{2}}^{\frac{3}{2}} \int_{\frac{1}{2}}^{\frac{3}{$ Congra & description of the using a Navered acceptable of the season of

Now,
$$E(x) = 1.0833 = \frac{13}{12}$$

$$E(x_1) = \int_{0}^{2} x f(x) dx$$

$$= \int_{0}^{2} x dx$$

$$= \frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$