In the claims:

1-21 (cancelled)

22. (new) A fluorescent diketopyrrolopyrrole of formula !

wherein

 R^1 and R^2 may be the same or different and are a C_1 - C_{25} alkyl group, which can be substituted by fluorine, chlorine or bromine, an allyl group, which can be substituted one to three times with C_1 - C_4 alkyl, , C_5 - C_{12} -cycloalkyl which can be substituted one to three times with C_1 - C_8 alkoxy, C_5 - C_{12} -cycloalkyl condensed one or two times by phenyl which can be substituted one to three times with C_1 - C_4 -alkyl, halogen, nitro or cyano, an alkenyl group, a cycloalkenyl group, an alkynyl group, a haloalkyl group, a haloalkenyl group, a haloalkynyl group, an aldehyde group, an ester group, a carbamoyl group, a ketone group, a silyl group, a siloxanyl group, A^3 or $-CR^3R^4$ - $(CH_2)_m$ - A^3 wherein

R³ and R⁴ independently from each other stand for hydrogen or C₁-C₄alkyl, or phenyl which can be substituted one to three times with C₁-C₄alkyl,

 A^3 stands for aryl or heteroaryl, which can be substituted one to three times with C_1 - C_8 alkyl and/or C_1 - C_8 alkoxy, and m stands for 0, 1, 2, 3 or 4,

A¹ and A² are independently of each other a group

wherein

R⁵ is a group NR8R9,

wherein R⁸ is a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, a heterocyclic group, an aralkyl group,

R⁹ is an aryl group or a heteroaryl group,

or R⁸ and R⁹ together with the nitrogen atom to which they are bonded form a five or six membered heterocyclic ring condensed by one or two optionally substituted phenyl groups.

wherein

R⁶, and R⁷ may be the same or different and are a hydrogen atom, a C₁-C₂₅alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a mercapto group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, an aryl group, a heterocyclic group, a halogen atom, a haloalkyl group, a haloalkynyl group, a cyano group, an aldehyde group, a carboxyl group, an ester group, a carbamoyl group, a nitro group, a silyl group, a siloxanyl group, a substituted or unsubstituted vinyl group, a group NR⁸R⁹, wherein R⁸ and R⁹ independently of each other stand for a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, a heterocyclic group, an aralkyl group, or R⁸ and R⁹ together with the nitrogen atom to which they are bonded form a five or six membered heterocyclic ring, which can be condensed by one or two optionally substituted phenyl groups.

- 23. (new) A fluorescent diketopyrrolopyrrole according to claim 22, wherein R¹ and R² independently from each other are C₁-C₂alkyl, C₅-C₁₂-cycloalkyl, C₅-C₁₂-cycloalkyl substituted one to three times with C₁-C₂alkyl and/or C₁-C₂alkoxy, C₅-C₁₂cycloalkyl, condensed one or two times by phenyl which can be substituted one to three times with C₁-C₄-alkyl, halogen, nitro or cyano, phenyl or 1- or 2-naphthyl which can be substituted one to three times with C₁-C₂alkyl and/or C₁-C₂alkoxy, or -CR³R⁴-(CH₂)m-A³ wherein R³ and R⁴ stand for hydrogen, A³ stands for phenyl or 1- or 2-naphthyl, which can be substituted one to three times with C₁-C₂alkyl and/or C₁-C₂alkoxy, and m stands for 0 or 1.
- 24. (new) A fluorescent diketopyrrolopyrrole according to claim 22, wherein A¹ and A² are

independently of each other
$$R^5$$
 or R^5 , wherein R^5 is a group -NR 8 R 9 ,

wherein R⁸ and R⁹ independently from each other stand for

or R⁸ and R⁹ together with the nitrogen atom to which they are bonded form a five or six

1 .-

membered heterocyclic ring condensed by one or two optionally substituted phenyl groups, wherein R^{15} , R^{16} and R^{17} independently from each other stands for hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, or phenyl.

25. (new) A fluorescent diketopyrrolopyrrole according to claim 24, which is

$$R^{16}$$
 R^{16}
 R

wherein

 R^1 and R^2 are independently of each other a C_1 - C_{12} alkyl group, a C_5 - C_7 cycloalkyl group substituted one to three times with C_1 - C_8 alkyl and/or C_1 - C_8 alkoxy, or a C_7 - C_{14} aralkylgroup, which optionally can be substituted by one to three C_1 - C_8 -alkyl or C_1 - C_8 -alkoxy groups, and R^{15} and R^{16} stands for hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, or phenyl.

10/551,976

26. (currently amended): A fluorescent diketopyrrolopyrrole according to claim 25, which is

- 27. (new) An EL device comprising a fluorescent diketopyrrolopyrrole according to claim 22.
- 28. (new) An EL device comprising a fluorescent diketopyrrolopyrrole according to claim 25.
- 29. (new) An EL device comprising a composition which composition comprises a guest chromophore and a host chromophore, wherein the absorption spectrum of the guest chromophore overlaps with the fluorescence emission spectrum of the host chromophore, wherein the host chromophore is a diketopyrrolopyrrole having a photoluminescence emission peak at 500 to 720 nm and wherein the host choromophore and/or the guest chromophore is a diketopyrrolopyrrole of formula I according to claim 22.
- 30. (new) An EL device comprising a composition which composition comprises a guest chromophore and a host chromophore, wherein the absorption spectrum of the guest chromophore overlaps with the fluorescence emission spectrum of the host chromophore, wherein the host chromophore is a diketopyrrolopyrrole having a photoluminescence emission peak at 500 to 720 nm and wherein the the guest chromophore is a diketopyrrolopyrrole of formula I according to claim 22.
- 31. (new) An EL device comprising a composition which composition comprises a guest chromophore and a host chromophore, wherein the absorption spectrum of the guest chromophore overlaps with the fluorescence emission spectrum of the host chromophore, wherein the host chromophore is a diketopyrrolopyrrole having a photoluminescence emission peak at 500 to 720 nm and wherein the guest chromophore is a diketopyrrolopyrrole of formula I according to claim 25.
- 32. (new) An EL device according to claim 30, wherein the host chromophore is a diketopyrrolopyrrole ("DPP") represented by formula II

$$R^{13} \longrightarrow N \longrightarrow N \longrightarrow R^{14}$$
 (II)

wherein R¹³ and R¹⁴ independently from each other stand for C₁-C₂₅-alkyl, which can be substituted by fluorine, chlorine or bromine, C₅-C₁₂-cycloalkyl or C₅-C₁₂-cycloalkyl, which can be

condensed one or two times by phenyl which can be substituted one to three times with C_1 - C_4 -alkyl, halogen, nitro or cyano, silyl, A^6 or ${}^{-}CR^{11}R^{12}$ - $(CH_2)_m$ - A^6 , wherein R^{11} and R^{12} independently from each other stand for hydrogen, fluorine, chlorine, bromine, cyano or C_1 - C_4 alkyl, which can be substituted by fluorine, chlorine or bromine, or phenyl which can be substituted one to three times with C_1 - C_4 alkyl, A^6 stands for phenyl or 1- or 2-naphthyl which can be substituted one to three times with C_1 - C_8 alkyl, C_1 - C_8 alkoxy, halogen, nitro, cyano, phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, -NR²³R²⁴, wherein R²³ and R²⁴ represent hydrogen, C_1 - C_2 -alkyl, C_5 - C_{12} -cycloalkyl or C_6 - C_2 -aryl, in particular phenyl or 1- or 2-naphthyl which can be substituted one to three times with C_1 - C_8 alkoxy, halogen or cyano, or phenyl, which can be substituted with C_1 - C_8 alkyl or C_1 - C_8 alkoxy one to three times, and m stands for 0, 1, 2, 3 or 4.

A⁴ and A⁵ independently from each other stand for

$$R^{25}$$
 R^{26} R^{27} R^{26} R^{27} R^{26} R^{27} R^{28} R^{26} R^{26} R^{26} R^{26} R^{26} R^{26} R^{26} R^{27} R^{27} R^{28} R^{28} R^{29} R

 R^{25} , R^{26} , R^{27} independently from each other stands for hydrogen, C_1 - C_{25} alkyl, $-CR^{11}R^{12}$ - $(CH_2)_m$ - A^6 , cyano, halogen, $-OR^{29}$, $-S(O)_pR^{30}$, or phenyl, which can be substituted one to three times with C_1 - C_8 alkyl or C_1 - C_8 alkoxy, wherein R^{29} stands for C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, $-CR^{11}R^{12}$ - $(CH_2)_m$ -Ph, C_6 - C_{24} -aryl, or a saturated or unsaturated heterocyclic radical comprising five to seven ring atoms, wherein the ring consists of carbon atoms and one to three hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur, R^{30} stands for C_1 - C_{25} -alkyl, C_5 - C_{12} -cycloalkyl, $-CR^{11}R^{12}$ - $(CH_2)_m$ -Ph, R^{28} stands for C_2 - C_{20} -heteroaryl or C_6 - C_{24} -aryl, p stands for C_1 , 2 or 3, m and n stands for C_1 , 2, 3 or 4.

- 33. (new) An EL device according to claim 32, wherein the host chromophore is a diketopyrrolopyrrole represented by formula II wherein R¹³ and R¹⁴ independently from each other stand for C₁-C₈alkyl, C₅-C₁₂-cycloalkyl, which can be substituted one to three times with C₁-C₈alkyl and/or C₁-C₈alkoxy, phenyl or 1- or 2-naphthyl which can be substituted one to three times with C₁-C₈alkyl and/or C₁-C₈alkoxy, or -CR¹¹R¹²-(CH₂)_m-A⁶ wherein R¹¹ and R¹² stand for hydrogen, or C₁-C₄alkyl, A⁶ stands for phenyl or 1- or 2-naphthyl, which can be substituted one to three times with C₁-C₈alkyl and/or C₁-C₈alkoxy, and m stands for 0 or 1.
- 34. (new) An EL device according to claim 33, wherein the host chromophore is a diketopyrrolopyrrole represented by formula II, wherein A⁴ and A⁵ independently from each other stand for

wherein R^{25} is C_1 - C_8 -alkyl, phenyl, 1- or 2-naphthyl.

35. (new) An EL device according to claim 34, wherein the host chromophore is a diketopyrrolopyrrole represented by formula II, wherein A⁴ and A⁵ independently from each other stand for

and the guest chromophore is a fluorescent diketopyrrolopyrrole selected from

wherein R^1 and R^2 are independently of each other a $C_1\text{-}C_{12}$ alkyl group.