

Курсовая Разработка системы учёта успеваемости студентов

	Управление проектами
Та	аджикский государственный педагогический университет имени
	С.Айни (ТГПУ)
	34 pag.
	. 3

Негосударственное аккредитованное некоммерческое частное образовательное учреждение высшего образования «Академия маркетинга и социально–информационных технологий – ИМСИТ» (г. Краснодар) (НАН ЧОУ ВО Академия ИМСИТ)

Факультет информатики и вычислительной техники

Кафедра математики и вычислительной техники

КУРСОВАЯ РАБОТА

по дисциплине: «Проектирование информационных систем»

на тему: ПРОЕКТИРОВАНИЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ УСПЕВАЕМОСТИ СТУДЕНТОВ

направление 38.03.05 Бизнес информатика

Направленность (профиль) образовательной программы «Информационная сфера»

Работу выполнила студентка З курса очной формы обучения, группы 16–БИ–01	К.О. Колесник
Научный руководитель: канд. техн. наук, доцент	 К.Н. Цебренко
Работа защищена с оценкой «	

Краснодар 2019

РЕФЕРАТ

Курсовая работа 33 C., 16 рис., 1 табл., 20 источн., **АВТОМАТИЗИРОВАННЫЕ** ИНФОРМАЦИОННЫЕ СИСТЕМЫ, ФУНКЦИОНАЛЬНОЕ МОДЕЛИРОВАНИЕ, ДЕКОМПОЗИЦИЯ, ПРОЕКТ, ТЕХНИЧЕСКОЕ ЗАДАНИЕ, IDEF, UML – ДИАГРАММЫ, ДИАГРАММА КЛАССОВ, ДИАГРАММА ВАРИАНТОВ ИСПОЛЬЗОВАНИЯ, СТУДЕНТЫ

Объектом исследования является система учёта успеваемости студентов.

Цель работы: разработка проекта информационной системы, для автоматизации рабочего места преподавателей и учёта успеваемости студентов.

Методы исследования: экспериментальный, методы системного анализа, моделирования, методы аналогий и сравнений.

Основные результаты: разработан проект подсистемы для учёта успеваемости студентов.

Область применения системы – автоматизация учёта успеваемости студентов.

Разработанный проект готов для внедрения в виде автоматизированной информационной системы.

Эффективность разработки заключается в разработке оригинальной архитектуры информационной системы с облачным сервисом.

Предметом дальнейших исследования является разработка программного обеспечения системы на основе приведенной в работе документации.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 Обзор проектных решений	7
1.1 Техническое задание на разработку	7
1.2 Описание предметной области	13
1.3 Обоснование выбора среды моделирования	15
2 Моделирование информационной системы «Святой исток»	17
2.1 IDEF – комплект	17
2.2Диаграммы UML	21
З Проектирование разрабатываемой системы «Святой исток»	26
3.1 Логическая модель данных	26
3.2 Физическая модель данных	27
3.3 Диалоговые окна разработанной информационной системы	28
ЗАКЛЮЧЕНИЕ	32
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	33

ВВЕДЕНИЕ

В настоящее время общество все больше ведет свое развитие к тому, чтобы как можно сильнее упростить повседневную жизнь, собственную работу. Одним из способов является внедрение компьютерных технологий в любую деятельность человека, начиная от написания документа и заканчивая проведением сложнейших математических расчетов. Внедрение компьютеров значительно облегчает большинство трудоемких операций, на которые раньше уходили часы, сейчас уходит всего пару минут.

Задача данной работы состоит в разработке проекта информационной системы, направленной на упрощение трудной и рутинной работы преподавателей, за счет централизованного хранения данных о успеваемости, и удобного доступа к ним [1].

В настоящее время информационные системы для учета успеваемости и посещаемости студентов имеют следующие функции: сбор, обработка и предоставление информации в целях повышения качества работы преподавательского состава и административного персонала высшего учебного заведения по управлению учебным процессом [2].

Актуальность проектирования подсистемы учета успеваемости студентов обусловлена следующими обстоятельствами:

- анализ успеваемости по данным в бумажной форме отличается высокой трудоемкостью и низкой оперативностью,
- компьютерный учет позволяет создать средства контроля регистрации оценок со стороны студента, преподавателя, декана, зав. кафедрой, учебного отдела, проректора по учебной работе. Контроль позволит уменьшить долю неправильно оформленных документов,
- подсистема позволит оперативно изготавливать бумажные документы по итогам обучения,
 - накопленные оценки позволят строить учебные рейтинги студентов,

– подсистема предоставит аналитический инструмент по анализу качества обучения по оценкам преподавателей [3].

Методы исследования – аналитический, экспериментальный. Анализ и сравнение востребованных данных с течением времени. Методы аналогий и сравнений.

Целью курсовой работы является проектирование информационной системы успеваемости студентов.

Объект исследования: информационная система успеваемости студентов.

Предмет исследования: проектирование автоматизированной информационной системы успеваемости студентов.

После определения цели и задач, было принято решение о проработке моделей и методов достижения целей.

Структурно работа состоит из введения, семи разделов и заключения.

В первом разделе разработка технического задания, описание предметной области и выбор среды моделирования.

Во втором разделе разработаны диаграммы IDEF и UML.

В третьем разделе спроектированы базы данных, а точнее логическая и физическая модели, создан примерный интерфейс информационной системы.

1 Обзор проектных решений

1.1 Техническое задание на разработку

1.1.1 Наименование программы

Наименование программы: "Святой Исток"

1.1.2 Назначение и область применения

АИС "Святой Исток" предназначена для комфортности ведения учёта успеваемости студентов и повышения эффективности работы и безопасность данных, за счет простого автоматизированного сбора данных.

Функционал системы позволяет решить такие задачи как:

- безопасное хранение данных о успеваемости студентов,
- динамично обновлять списки неуспевающих студентов по итогам пересдач,
 - выводить статистические отчеты по итогам сессии,
- управление документацией (Редактирование, сохранение, копирование, просмотр и т.д.),
 - обеспечивать удобный поиск заданного студента по ФИО.

1.1.3 Требования к программе

Приведены требования к функциональным характеристикам. Программа должна обеспечивать возможность выполнения перечисленных ниже функций:

- безопасное хранение данных,
 - управление и подготовка отчётов,
 - управление документацией студентов,

обновление информации об неуспевающих студентов по итогам пересдач;

– расчёт среднего балла студентов,

- хранение всех методик для оценивания знаний,

– сохранение прогресса при аварийном завершении работы.

1.1.4 Требования к надежности

Перечислим требования к обеспечению надежного функционирования программы. Для надежного функционирования и использования программы, должны быть выполнены ниже перечисленные организационно-технические мероприятия:

- бесперебойное питание техники,

– лицензионное ПО,

– выполнением ГОСТ 51188–98 и все последующие поправки, внесённые в 2018 году. Защита информации. Проверка программных средств на наличие компьютерных вирусов.

Опишем время восстановления после отказа. Время восстановления работы программы после отказа, вызванного сбоем электропитания технических средств и другими внешними факторами, если это не фатальный сбой ОС, не должно превышать одного часа, при соблюдении условий эксплуатации технических и программных средств.

Время восстановления после отказа, вызванного неисправностью технических средств, фатальным сбоем ОС, не должно превышать трёх часов, данное количество времени требуется на устранение неисправностей технических средств и переустановки программных средств.

1.1.5 Условия эксплуатации

Климатические условия эксплуатации. Климатические условия, при

7

которых программное и техническое ПО должно работать в штатном режиме.

Заданные характеристики нормального климата, должны удовлетворять требованиям, предъявляемым к техническим средствам.

Требования к квалификации и численности персонала. Минимальное количество рабочего персонала, требуемого для работы программы, должно составлять – 1 системный администратор и 2 Пользователя.

Системный администратор и пользователи, использующие систему должны иметь высшее образование.

В перечень задач, выполняемых системным администратором, должны входить:

- поддержание работоспособности информационной системы и технических средств,
 - установка и поддержание работоспособности системных ОС,
 - установка программ,
 - создание резервных копий базы данных.

Перечислим требования к составу и параметрам технических средств. В состав технических средств должен входить Сервер и Рабочая станция (ПК). Требования:

1) рабочие станции:

- операционная система: XP, Vista, 7,
- процессор: Core 2 Duo 2,4 ГГц или выше,
- оперативной памяти: 2048 Мб,
- свободного места на жестком диске: 2474 Мб,
- видеокарта: GeForce 7900GS или Radeon 2000, (256 Mб), (Shader Model 3.0).

Сервер:

- операционная система: XP, Vista, 7,
- процессор: Athlon X2 2,8 ГГц или выше,

- оперативной памяти: 4048 Мб,
- свободного места на жестком диске: 30гб,
- видеокарта: GeForce 7900GS или Radeon 2000, (256 Mб), (Shader Model 3.0).

Требования к информационной и программной совместимости Дополнительные требования не предъявляются.

Требования к информационным структурам и методам решения. База данных работает под управлением самой же «Святой исток». Данная база данных использует много поточный доступ.

Требования к исходным кодам и языкам программирования. Дополнительные требования не предъявляются.

Требования к программным средствам, используемым программой.

Программные средства, которые используются программой, должны работать исключительно на лицензионной версией ОС Windows 10.

Приведены требования к защите информации и программ. Требования к защите информации и программ не предъявляются.

Специальные требования. Специальные требования к данной программе не предъявляются.

1.1.6 Требования к программной документации

Предварительный состав программной документации. Состав программной документации должен включать в себя:

- техническое задание,
- программу и методики испытаний,
- руководство оператора.

1.1.7 Технико-экономические показатели

Экономические преимущества разработки. Ориентировочная

эффективность не рассчитываются. Аналогия не проводится ввиду уникальности предъявляемых требований к разработке.

1.1.8 Стадии и этапы разработки

Стадии разработки. Разработка должна быть проведена в три стадии:

- разработка технического задания,
- рабочее проектирование,
- внедрение.

Этапы разработки. При разработке технического задания должны быть выполнены этапы согласования и утверждения технического задания.

При проектировании должны быть выполнены перечисленные ниже этапы работ:

- разработка программы,
- разработка программной документации,
- испытания программы.

На стадии внедрения, должна быть выполнена разработка и передача программы.

Содержание работ по этапам. При разработке ТЗ должны быть выполнены перечисленные ниже работы:

- постановка задач,
- определение и уточнение требований к техническим средствам,
- определение требований к программе,
- определение стадий, этапов и сроков разработки программы и документации на неё,
 - согласование и утверждение технического задания.

Во время этапа разработки программы, должна быть выполнена работа по программированию и отладке программы.

Должна быть выполнена разработка программных документов в соответствии с требованиями к определённому составу документации.

На этапе тестирования программы должны быть выполнены перечисленные ниже виды работ:

- разработка, согласование и утверждение и методики испытаний;
- проведение приемо-сдаточных испытаний;
- корректировка программы и программной документации по результатам испытаний.

Должна быть выполнена работа по подготовке и передаче программы.

1.1.9 Порядок контроля и приемки

Виды испытаний. Приемо-сдаточные испытания должны проводиться на объекте Заказчика в оговоренные сроки.

Приемо-сдаточные испытания программы должны проводиться согласно разработанной Исполнителем и согласованной Заказчиком Программы и методик испытаний.

Общие требования к приемке работы. На основании Протокола проведения испытаний Исполнитель совместно с Заказчиком подписывает Акт приемки-сдачи программы в эксплуатацию.

1.2 Описание предметной области

В связи с большим количеством студентов университета и множеством дисциплин есть необходимость вести учет учебного процесса студентов. В настоящее время существуют множество видов учета и контроля успеваемости студентов, которые ведутся старостами групп, кураторами, преподавателями, проректорами по учебной работе и деканами факультетов. Это такие виды контроля как:

- текущая успеваемость студента,
- информация про успеваемость студента за каждый месяц,
- сведения об академической задолженности и абсолютной

успеваемости студентов по состоянию на последний день сессии,

- результаты экзаменов и зачетов,
- приказы о зачислении студентов на стипендию на следующий после экзаменационной сессии семестр,
- учет посещаемости студентами лекций, семинаров, лабораторных работ и другие. Эти данные хранятся в журналах групп, экзаменационных и зачетных ведомостях, справках, приказах, списках и т.д.

Предметная область учёта успеваемости студентов. Основная информация, которую обязана содержать предоставленная система — это информация об студентах, а также в системе можно изменять, добавлять, удалять, просматривать и хранить информацию о студентах и дисциплинах [4]. Предоставленные на сегодняшний день системы имеют небольшой список своих оригинальных плюсов и возможностей, такие как:

- удобный интерфейс, интуитивно-понятные связи между диалогами ввода информации,
 - компактное хранение больших размеров информации,
 - структурировано выводить на экран имеющуюся информацию,
- быстрый поиск требуемых документов или возможно даже их фрагментов в очень большом количестве,
- программа по учету успеваемости студентов должна содержать информацию об обучающемся (год поступления, группа, список изучаемых предметов, успеваемости по каждой дисциплине),
 - выводить статистические отчеты по итогам сессии.

Данная проектируема система учёта успеваемости студентов «Святой Исток», включает в себя средний спектр функций. К примеру функция по хранению информации как о студентах, так и о предметах [5]. Система учёта успеваемости студентов «Святой Исток» позволяет редактировать информацию, хранящуюся в базе. Так же имеет такую возможность как сбор информации для упрощения формирования отчёта, т.е. пользователь (Сотрудник образовательного учреждения или же преподаватель) имеют

полный доступ к информации, но имеют доступ в зависимости от возможностей полномочий, выданных им выше стоящими сотрудниками (Ректор). Ректор в свою очередь даёт поручение системному администратору для выдачи тех или иных полномочий для каждого из преподавателей (Сотрудников). Данная система очень комфортна в использовании, нет загромождённого интерфейса только самые важные функции для быстрой и эффективной работы за данной информационной системой [6]. Чтобы не расписывать каждую функцию и возможность системы, ниже приведены в виде списка все функции системы «Святой Исток»:

- хранение информации о студентах,
- хранение информации о предметах,
- обработка внесённой или же изменённой информации,
- быстрый работающий без задержек интерфейс,
- возможность создания аккаунта и входа в него,
- сохранение прогресса при аварийном завершении работы,
- сбор информации для формирования отчёта,
- хранение всех видов методик оценивания знаний,
- возможность работы с очень большим размером информации.

Данная информационная система, не уступает существующим аналогам на рынке, а даже больше, она имеет функции, которые позволяют превзойти другие информационные системы. Проектируемая система учёта успеваемости студентов «Святой Исток» позволит увеличить эффективность работы и уменьшить затраты на время, а также уменьшить трудоёмкость рабочего процесса [7].

1.3 Обоснование выбора среды моделирования

В настоящее время на российском рынке представлено достаточно большое количество информационных систем, многие из которых позволяют, создавать различные описания (модели) бизнес-процессов

предприятий. Выбор системы, определяет весь дальнейший ход проекта. Правильный выбор системы возможен при понимании руководством компании, и ее специалистами системы рабочей деятельности организации. Описание бизнес-процессов проводится с целью их дальнейшего анализа и реорганизации. Целью реорганизации в данной проектируемой системе сокращение трудозатрат при работе с документацией, уменьшение риска при расчёте заработной платы, создание финансовых отчётов и т.п. Для текущего проектирования ограничились следующими на рынке продуктами: Microsoft Visio и Ramus Educational.

Місгоsoft Visio. При помощи такой программы можно создавать различные проекты, модели, диаграммы, карты компаний и многое другое. Visio представляет собой необычный и очень разносторонний графический редактор. Основные возможности Visio по моделированию бизнес процессов заключаются в следующем:

- графическое оформление схем. С помощью средств Visio можно задать различные эффекты для фигур на схемах процессов, выбрать темы оформления схем, изменять фигуры, сохраняя макеты схем и метаданные фигур,
- совместная работа над схемами. Используя web браузер можно организовать общий доступ к просмотру схем. При дополнительной установке SharePoint Server и Microsoft Lync 2013 у пользователей появляется возможность комментировать схемы, осуществлять совместную работу с ними и обмениваться сообщения,
- взаимосвязь схем с наборами данных. Каждую фигуру из схемы можно связать с набором данных из Excel, SharePoint, службы SharePoint Business Connectivity Services и SQL Server. Для наглядного представления данных можно использовать большое количество графиков и цветовых схем,
- создание схем с помощью стандартных нотаций. Для проверки корректности создаваемых схем в Visio встроены правила, позволяющие контролировать правильность применения элементов. Эти правила заданы

для стандартных нотаций, таких как BPMN. При необходимости, такие правила можно задавать самостоятельно.

Ramus Educational. Программный продукт в области управления информацией предприятия. Позволяет проводить описание, анализ и моделирование бизнес-процессов, а также строить систему классификации и кодирования.

Поддерживает стандартную методологию IDEF0 (функциональное моделирование) и DFD. Позволяет связывать с деятельностью компании практически любые объекты, таким образом реализуя системное сохранение информации о предприятии [10].

2 Моделирование информационной системы «Святой Исток»

2.1 Диаграммы IDEF

Название проекта – Проектирование информационной системы учёта успеваемости студентов.

Название модели – Учёт успеваемости студентов.

Методология IDEF предписывает построение иерархической системы диаграмм – единичных описаний фрагментов системы. Сначала проводится описание системы в целом и ее взаимодействия с окружающим миром (контекстная диаграмма), после чего проводится функциональная декомпозиция – система разбивается на подсистемы и каждая подсистема описывается отдельно (диаграммы декомпозиции). Затем каждая подсистема разбивается на более мелкие и так далее до достижения нужной степени подробности.

Рисунок 2.1- Контекстная IDEF0-диаграмма

Данная диаграмма содержит следующий список атрибутов [12]:

- информация о студентах,
- информация о предметах,
- информация о знаниях,
- лицензия на право ведения образовательной деятельности,
- формы отчётности,
- методики оценки знаний,
- свидетельство о государственной акредитации,
- сотрудники и преподаватели,
- отдел кадров,
- отчёты.

Далее производим декомпозицию контекстной диаграммы информационной системы по учёту успеваемости студентов. Готовую декомпозицию можно наблюдать на рисунке 2.2.

Рисунок 2.2 – Декомпозиция контекстной диаграммы

Закончив декомпозицию контекстной диаграммы, переходим к декомпозиции диаграммы следующего уровня. Декомпозируем последовательно все блоки полученной диаграммы.

Такие как:

Оценка знания студентов (рисунок 2.3).

Рисунок 2.3 – Оценка знания студентов

После получения данных о студенте, о предмете, и о знаниях студента на текущий момент. С учетом данных о студенте, данных о предмете и методики оценки знаний указывается оценка. В результате получаем данные об оценках (рисунок 2.3).

На данной IDEFдиаграмме находятся следующие атрибуты [13]:

- информация о знаниях студентов,
- данные о предметах,
- сотрудники и преподаватели,

- методики оценки знаний,
- данные о предмете,
- формы отчётности,
- данные о студенте,
- данные об оценках.

Рисунок 2.4 – Формировать отчёты

Остальные IDEF-диаграммы делать не обязательно так как система учёта успеваемости студентов достаточно понятна и не сложна. На данной IDEFдиаграмме находятся следующие атрибуты [14]:

- формы отчётности,
- сотрудники и преподаватели,
- форма отчёта,
- параметры отчёта,
- выбрать форму отчёта,
- указать параметры отчёта,
- обработка данных,

- данные о студентах,
- данные о предметах,
- данные об оценках,
- отчёты.

2.2 Диаграммы UML

UML представляет собой графическую нотацию которая предназначена для моделирования и описания всех процессов протекающих в процессе разработки. Основу UML представляют диаграммы, которые различаются по типам и предназначены для моделирования различных аспектов разработки [16].

Первая диаграмма вариантов использования (рисунок 2.5).

Рисунок 2.6 – Диаграмма вариантов использования

На диаграмме использования изображаются:

- субъект группы лиц или систем, взаимодействующих с нашей системой,
- варианты использования (прецеденты) сервисы, которые наша система предоставляет субъект,
 - отношения между элементами диаграммы.

Диаграммы последовательности (рисунки 2.7 – 2.9). Эти диаграммы описывают поведение взаимодействующих между собой объектов. Как правило, диаграмма взаимодействия охватывает поведение объектов в рамках только одного варианта использования. На такой диаграмме отображается ряд объектов и те сообщения, которыми они обмениваются между собой.

Рисунок 2.7–Диаграмма последовательностей учёта успеваемости студентов

Изначально сотрудники или же преподаватели вносят информацию о студентах, которая сохраняется в базе. Дальше сотрудники или же преподаватели вносят информацию о предметах, которая сразу сохраняется в базе.

Следующим этапом сотрудники или же преподаватели оценивают студента имея полную информацию об их предметах и успеваемости [17].

Все данные диаграммы последовательности в полной мере описывают систему учёта успеваемости студентов. На данной диаграмме показан жизненный цикл информационной системы и взаимодействие актёров информационной системы в рамках определённого прецедента.

Вся информация всегда сохраняется, все изменения, произведённые в базе, тоже сохраняются, но также есть возможность отката проделанных манипуляций в базе.

Рисунок 2.8-Диаграмма последовательностей указание оценки

Изначально сотрудники или же преподаватели, делают запрос на форму для получения информации о предметах. Дальше сотрудники или же преподаватели, делают запрос на форму для получения информации о студентах.

Следующим этапом, оценивание знаний студента, сохранение информации в базе данных и получение копии отчёта о выполненной работе. А также отправка отчёта о проделанной работе.

Диаграмма последовательности – это диаграмма, с некоторым набором объектов, она отражает поток событий, происходящих в рамках варианта использования.

На созданной диаграмме последовательности продемонстрирован жизненный цикл нужного и определённого объекта и взаимосвязь актёров ИС [18].

На этой диаграмме описание более точнее. Скажем, приходит внутренняя уже согласованная и готовая заявка, администратору, которую он принимает, после чего, администратор обрабатывает запрос и выполняет заказ. Дальше системный администратор даёт запрос на получение нового оборудования, подав заявку на форму и заполнив бланк, отправляет его обратно в заполненном виде и уже в дальнейшем получает требуемое оборудование и материалы.

Рисунок 2.9 – Диаграмма последовательностей формирование отчёта

Дальше сотрудники или же преподаватели делают запрос на форму бланка отчёта, после получения формы бланка отчёта, производят выставление параметров, которые указываются в отчёте, в базе происходит сохранение рабочего процесса и обработка информации, после чего пользователь получает информацию, которую он может использовать для написания отчёта.

Следующим этапом, отправка отчёта, пользователь после написания отчёта и работы с информацией отправляет отчёт в базу, которая в свою очередь сохраняет готовый отчёт и обрабатывает полученную информацию. А также отправка отчёта о проделанной работе и сохранение внесённых изменений в базе и завершение работы с системой [19].

На данных диаграммах описана полная последовательность действий пользователя в данной системе. Диаграммы последовательностей (UML) очень эффективны для описания процесса работы с системой.

Диаграммы классов (рисунок 2.10) используются при моделировании ПС наиболее часто. Они являются одной из форм статического описания системы.

Рисунок 2.10 – Диаграмма классов

Целью создания диаграммы классов является графическое представление статической структуры декларативных элементов системы (классов, типов и т. п.) Она содержит в себе также некоторые элементы поведения (например – операции) рисунок 2.10.

3 Проектирование разрабатываемой системы «Святой исток»

3.1 Логическая модель данных

Логическая модель реализована с помощью нотации IDEF1 (рисунок 3.1). Логическое проектирование необходимо для выделения взаимосвязанных сущностей, для описания их атрибутов и создания общей логической схемы проекта. Составим логическую модель (рисунок 3.1).

Рисунок 3.1-Логическая модель

Для построения логической модели необходимо определить основные понятия, которыми необходимо оперировать при проектировании информационной системы в общем и инфологической схемы, в частности. Основными элементами являются [15]:

Сущность – объект информационной системы (таблица), имеющий ряд атрибутов (свойств, или полей таблицы),

Атрибут — характеристика сущности, имеющая ряд собственных свойств, таких как тип поля, его длина, возможность нулевого значения и т.д.,

Данная логическая модель была построена для наглядного демонстрирования проектируемой ИС «Святой исток». Она полностью описывает базу данных информационной системы «Святой исток». Она подходит под проектируемую систему по учёту успеваемости студентов.

3.2 Физическая модель данных

Физическая модель реализована с помощью нотации IDEF1X для моделирования баз данных (рисунок 3.2). Целью создания физической модели является обеспечение администратора соответствующей информацией для переноса логической модели данных в СУБД. При построении физической модели необходимо скорректировать типы и размеры полей, которые указаны на (таблица 1.1).

Таблица 1.1-Типы атрибутов

Атрибут	Тип
Номер студента	int
ФИО студента	char
Пол	log
Дата рождения	date
Адрес	char
Номер телефона	char
Оценка	int
Название предмета	char
Код предмета	int
Фамилия лектора	char

Первичный ключ – это уникальная характеристика для каждой записи в пределах таблицы; Внешний ключ – для обеспечения ссылочной целостности в дочерней таблице создается внешний ключ. Во внешний

ключ входят поля связи дочерней таблицы. Логическая модель данных – графическое представление структуры базы данных с учетом принимаемой модели данных (иерархической, сетевой, реляционной и т.д.), независимое от конечной реализации базы данных и аппаратной платформы.

Физической моделью процесса или явления называется его математическая модель, составленная из идеальных физических объектов (рисунок 3.2).

Рисунок 3.2-Физическая модель

3.3 Диалоговые окна разработанной информационной системы

Что бы работать с информационной системой, был создан примерный макет интерфейса. Работа в программе, которая помогает, автоматизировать начинается со стартовой страницы.

Следующая страница, это вход в аккаунт пользователя, при этом каждый аккаунт имеет свои привилегии. Привилегии выдаются системным администратором после разрешения Ректора на выдачу привилегий тому или иному преподавателю. Данная страница имеет следующие элементы [20]:

- 1) Логин это имя, которое выбирается для регистрации в системе или имя, которое система вам сама присваивает,
 - 2) Пароль условное слово или набор знаков, предназначенный для

подтверждения личности или полномочий. Пароли часто используются для защиты информации от несанкционированного доступа.

На странице имеется специально созданные поля, в которые вводятся логин и пароль (рисунок 3.3).

Рисунок 3.3 – Стартовое диалоговое: Вход в аккаунт

Это окно выбора предлагает пользователю войти в свой заранее созданный аккаунт, если же аккаунт не был создан нужно обратиться за помощью к системному администратору (рисунок 3.3).

Следующее рабочее окно предназначено для работы с информацией о студентах, внесения новых студентов в списки (рисунок 3.4). Все диаграммы, представленные в данной проектной работе, имеют примерный вид и не описывают точное представление об информационной системе.

Рисунок 3.4 – Окно базы со списком внесённых уже ранее студентов

Рисунок 3.5 – Окно с информацией об предметах студента

На данном изображении (рисунок 3.5) показана информация о предметах студента. Данную информацию можно как редактировать, так и распечатать в печатный вид, удалить полностью.

Предметы	Оценка	Сумма баллов
1. Математика	4	80
2. Русский	3	60
3. Физическая культура	5	95
4. Программная инженерия	4	83
5. Информационная безопасность	4	81
	277	

Рисунок 3.6 – Окно с информацией об успеваемости студента

Рисунок 3.7 – Окно с бланком отчёта (для заполнения)

ЗАКЛЮЧЕНИЕ

В результате выполнения курсовой работы была спроектирована система ведения учёта успеваемости студентов. В ходе разработки проекта был проведен анализ предметной области. Было написано техническое задание на проект. В инструментальной среде моделирования Ramus были созданы диаграммы, выполненные в соответствии с международными стандартами IDEF0 и схемы моделей данных информационной системы, что позволило создать полное представление системе. Выполнено моделирование программного обеспечения в такой среде как Microsoft Visio. В данной среде были спроектированы такие как диаграммы UML, как: вариантов использования, последовательностей, классов. Разработка данных позволит дополнить представленную диаграмм картину проекта информационной системы vчёта успеваемости ДЛЯ студентов образовательного учреждения.

Разработан проект интерфейса системы. в результате выполнения данного курсового проекта была спроектирована система ведения учёта успеваемости студентов, позволяющая снизить время, затрачиваемое на работу с информацией о студентах и предметах, а также сохранение и качественное и безопасное хранение информации. Во время проектирования информационной системы были составлены требования к разрабатываемой системе.

СПИСОК ИСПОЛЬЗОВАНЫХ ИСТОЧНИКОВ

- 1 Жамбеева, Э.Э. Индивидуальные различия в коммуникативных способностях / Э. Э. Жамбеева., издание «наука и образование» 2016 с. 4 12.
- 2 Маркова, А.К., Формирование мотивации учения: Учебник /А. К. Маркова, Т.А. Матис, А.Б. Орлов. М.: издательство «Просвещение», 2017 с. 334
- 3 Кругольский С.А., «Оценка знаний. Принципы, технологии, методы» издательство «Феникс» 2016. 654с.
- 4 Павицкая З.И. «Формирование коммуникативных умений студентов в условиях аудиторного обучения» издательство «Росмэн» 2016, с. 175
- 5 TCP/IP. Сетевое администрирование системного администратора М.: изд–во «Символ–Плюс», 2015. 816с.
- 6 Проектирование информационных систем: Учебное пособие / Заботина Н.Н. М.: НИЦ ИНФРА-М, 2016. 331 с.: 60х90 1/16. (Высшее образование: Бакалавриат) (Переплёт) ISBN 978-5-16-004509-2 [Электронный ресурс] Режим доступа: http://znanium.com/catalog/product/542810, (дата обращения 28.04.2019).
- 7 Тищенко, В.А. Классификация коммуникативных умений студентов, Информационный гуманитарный портал Знание. Понимание. Умение. [Электронный ресурс] Режим доступа: http://www.zpu-journal.ru. (дата обращение 20.04.2019)
- 8 Селевко, Г.К. «Современные образовательные технологии: учебное пособие» издание «Народное образование», 2016. с. 231
- 9 Свободная энциклопедия [Электронный ресурс] Режим доступа: http://ru.wikipedia.org (дата обращение 20.04.2019).

- 10 Почепцов, Г.Г. Теория коммуникации: Учебник / Г.Г. Почепцов. издательство «Ваклер», 2016. 656 с.
- 11 Основы программирования на языке С: Учебное пособие / В.Г. Дорогов, Е.Г. Дорогова; Под общ. ред. проф. Л.Г. Гагариной М.: ИД ФОРУМ: ИНФРА-М, 2011. 224 с.: 60х90 1/16. (Высшее образование). (переплет) ISBN 978-5-8199-0471-8 [Электронный ресурс] Режим доступа: http://znanium.com/catalog/product/225634, свободный (дата обращения –28.04.2019).
- 12 Цетлин, В.С. Успеваемость студентов: Учебное пособие / В.С. Цетлин. издательство «ИНФРА-М», 2017. 15с.
- 13 Локалова, Н.П. Студент. Успеваемость каждого: Учебное пособие / Н.П. Локалова. издательство «Проспект», 2015. 87с.
- 14 Соколов, А.В. Общая теория успеваемости студентов: Учебное пособие / А.В. Соколов. издательство «ГЭОТАР-Медиа», 2016. 65с.
- 15 Якунин, В.А. «Учёт успеваемости студентов. Лёгкий уровень» 2015 учебное пособие. 653с.
- 16 Чунаев А.В., Шиков А.Н., «Основы проектирования– информационных систем» учебное пособие, 2015 – 642с.
- 17 Программирование на языке С++: Учебное пособие / Т.И. Немцова, С.Ю. Голова, А.И. Терентьев; Под ред. Л.Г. Гагариной. М.: ИД ФОРУМ: ИНФРА-М, 2012. 512 с.: ил.; 60х90 1/16 + CD-ROM. (Проф. обр.). (п, cd rom) ISBN 978-5-8199-0492-3 [Электронный ресурс] Режим доступа: http://znanium.com/catalog/product/244875 (дата обращения 28.04.2019).
- 18 Локалова, Н.П. UML моделирование и разработка диаграмм / Локалова, Н.П. [Электронный ресурс] Режим доступа: http://psy.1september.ru. (дата обращения 20.04.2019).
- 19 Забрамная, С. Проектирование IDEF диаграмм / С. Забрамная, Ю. Костенкова издательство «Стратас» 2017 с. 27–30

20 Жуков Ю.М. Коммуникация преподавателя и студента / Ю.М.

Жуков: М.: издательство «Гардарики», 2016, с. – 223