Communication Networks

Chapter 3

Types of Communication Networks

- Traditional
 - Traditional local area network (LAN)
 - Traditional wide area network (WAN)
- Higher-speed
 - High-speed local area network (LAN)
 - Metropolitan area network (MAN)
 - High-speed wide area network (WAN)

Figure 3.1 Comparison of Multiprocessor Systems, LANs, MANs, and WANs

-

Characteristics of WANs

- Covers large geographical areas
- Circuits provided by a common carrier
- Consists of interconnected switching nodes
- Traditional WANs provide modest capacity
 - 64000 bps common
 - Business subscribers using T-1 service 1.544 Mbps common
- Higher-speed WANs use optical fiber and transmission technique known as asynchronous transfer mode (ATM)
 - 10s and 100s of Mbps common

Characteristics of LANs

- Like WAN, LAN interconnects a variety of devices and provides a means for information exchange among them
- Traditional LANs
 - Provide data rates of 1 to 20 Mbps
- High-speed LANS
 - Provide data rates of 100 Mbps to 1 Gbps

Differences between LANs and WANs

- Scope of a LAN is smaller
 - LAN interconnects devices within a single building or cluster of buildings
- LAN usually owned by organization that owns the attached devices
 - For WANs, most of network assets are not owned by same organization
- Internal data rate of LAN is much greater

The Need for MANs

- Traditional point-to-point and switched network techniques used in WANs are inadequate for growing needs of organizations
- Need for high capacity and low costs over large area
- MAN provides:
 - Service to customers in metropolitan areas
 - Required capacity
 - Lower cost and greater efficiency than equivalent service from telephone company

Switching Terms

- Switching Nodes:
 - Intermediate switching device that moves data
 - Not concerned with content of data
- Stations:
 - End devices that wish to communicate
 - Each station is connected to a switching node
- Communications Network:
 - A collection of switching nodes

Figure 3.3 Simple Switching Network

Observations of Figure 3.3

- Some nodes connect only to other nodes (e.g., 5 and 7)
- Some nodes connect to one or more stations
- Node-station links usually dedicated point-to-point links
- Node-node links usually multiplexed links
 - Frequency-division multiplexing (FDM)
 - Time-division multiplexing (TDM)
- Not a direct link between every node pair

Techniques Used in Switched Networks

- Circuit switching
 - Dedicated communications path between two stations
 - E.g., public telephone network
- Packet switching
 - Message is broken into a series of packets
 - Each node determines next leg of transmission for each packet

Phases of Circuit Switching

- Circuit establishment
 - An end to end circuit is established through switching nodes
- Information Transfer
 - Information transmitted through the network
 - Data may be analog voice, digitized voice, or binary data
- Circuit disconnect
 - Circuit is terminated
 - Each node deallocates dedicated resources

Characteristics of Circuit Switching

- Can be inefficient
 - Channel capacity dedicated for duration of connection
 - Utilization not 100%
 - Delay prior to signal transfer for establishment
- Once established, network is transparent to users
- Information transmitted at fixed data rate with only propagation delay

Components of Public Telecommunications Network

- Subscribers devices that attach to the network;
 mostly telephones
- Subscriber line link between subscriber and network
 - Also called subscriber loop or local loop
- Exchanges switching centers in the network
 - A switching centers that support subscribers is an end office
- Trunks branches between exchanges

How Packet Switching Works

- Data is transmitted in blocks, called packets
- Before sending, the message is broken into a series of packets
 - Typical packet length is 1000 octets (bytes)
 - Packets consists of a portion of data plus a packet header that includes control information
- At each node end route, packet is received, stored briefly and passed to the next node

Figure 3.7 Packet Switching: Datagram Approach

Figure 3.7 Packet Switching: Datagram Approach

Packet Switching Advantages

- Line efficiency is greater
 - Many packets over time can dynamically share the same node to node link
- Packet-switching networks can carry out data-rate conversion
 - Two stations with different data rates can exchange information
- Unlike circuit-switching networks that block calls when traffic is heavy, packet-switching still accepts packets, but with increased delivery delay
- Priorities can be used

Disadvantages of Packet Switching

- Each packet switching node introduces a delay
- Overall packet delay can vary substantially
 - This is referred to as jitter
 - Caused by differing packet sizes, routes taken and varying delay in the switches
- Each packet requires overhead information
 - Includes destination and sequencing information
 - Reduces communication capacity
- More processing required at each node

Packet Switching Networks - Datagram

- Each packet treated independently, without reference to previous packets
- Each node chooses next node on packet's path
- Packets don't necessarily follow same route and may arrive out of sequence
- Exit node restores packets to original order
- Responsibility of exit node or destination to detect loss of packet and how to recover

Packet Switching Networks – Datagram

- Advantages:
 - Call setup phase is avoided
 - Because it's more primitive, it's more flexible
 - Datagram delivery is more reliable

Packet Switching Networks – Virtual Circuit

- Preplanned route established before packets sent
- All packets between source and destination follow this route
- Routing decision not required by nodes for each packet
- Emulates a circuit in a circuit switching network but is not a dedicated path
 - Packets still buffered at each node and queued for output over a line

- Advantages:
 - Packets arrive in original order
 - Packets arrive correctly
 - Packets transmitted more rapidly without routing decisions made at each node

Figure 3.9 Effect of Packet Size on Transmission Time

Effect of Packet Size on Transmission

- Breaking up packets decreases transmission time because transmission is allowed to overlap
- Figure 3.9a
 - Entire message (40 octets) + header information (3 octets) sent at once
 - Transmission time: 129 octet-times
- Figure 3.9b
 - Message broken into 2 packets (20 octets) + header (3 octets)
 - Transmission time: 92 octet-times

Effect of Packet Size on Transmission

- Figure 3.9c
 - Message broken into 5 packets (8 octets) + header (3 octets)
 - Transmission time: 77 octet-times
- Figure 3.9d
 - Making the packets too small, transmission time starts increases
 - Each packet requires a fixed header; the more packets, the more headers

Asynchronous Transfer Mode (ATM)

- Also known as cell relay
- Operates at high data rates
- Resembles packet switching
 - Involves transfer of data in discrete chunks, like packet switching
 - Allows multiple logical connections to be multiplexed over a single physical interface
- Minimal error and flow control capabilities reduces overhead processing and size
- Fixed-size cells simplify processing at ATM nodes

ATM Terminology

- Virtual channel connection (VCC)
 - Logical connection in ATM
 - Basic unit of switching in ATM network
 - Analogous to a virtual circuit in packet switching networks
 - Exchanges variable-rate, full-duplex flow of fixed-size cells
- Virtual path connection (VPC)
 - Bundle of VCCs that have the same end points

Advantages of Virtual Paths

- Simplified network architecture
- Increased network performance and reliability
- Reduced processing and short connection setup time
- Enhanced network services

Figure 3.11 Call Establishent Using Virtual Paths

Virtual Channel Connection Uses

- Between end users
 - Can carry end-to-end user data or control signaling between two users
- Between an end user and a network entity
 - Used for user-to-network control signaling
- Between two network entities
 - Used for network traffic management and routing functions

Virtual Path/Virtual Channel Characteristics

- Quality of service
 - Specified by parameters such as cell loss ratio and cell delay variation
- Switched and semipermanent virtual channel connections
- Cell sequence integrity
- Traffic parameter negotiation and usage monitoring
- Virtual channel identifier restriction within a VPC

ATM Cell Header Format

- Generic flow control (GFC) 4 bits, used only in user-network interface
 - Used to alleviate short-term overload conditions in network
- Virtual path identifier (VPI) 8 bits at the usernetwork interface, 12 bits at network-network interface
 - Routing field
- Virtual channel identifier (VCI) 8 bits
 - Used for routing to and from end user

ATM Cell Header Format

- Payload type (PT) 3 bits
 - Indicates type of information in information field
- Cell loss priority (CLP) 1 bit
 - Provides guidance to network in the event of congestion
- Header error control (HEC) 8 bit
 - Error code

ATM Service Categories

- Real-time service
 - Constant bit rate (CBR)
 - Real-time variable bit rate (rt-VBR)
- Non-real-time service
 - Non-real-time variable bit rate (nrt-VBR)
 - Available bit rate (ABR)
 - Unspecified bit rate (UBR)

Examples of CBR Applications

- Videoconferencing
- Interactive audio (e.g., telephony)
- Audio/video distribution (e.g., television, distance learning, pay-per-view)
- Audio/video retrieval (e.g., video-ondemand, audio library)

Examples of UBR applications

- Text/data/image transfer, messaging, distribution, retrieval
- Remote terminal (e.g., telecommuting)