1 Lemmes de Borel-Cantelli et applications à l'étude des nombres premiers

Premier lemme

Lemme 1. Soit (A_n) une suite d'évènements tels que $\sum_{n\in\mathbb{N}} \Pr(A_n) < \infty$, alors $\mathbb{P}(A) = 0$ en notant $A = \limsup_n A_n$.

Proof. A est aussi égal à $\bigcap_{n\in\mathbb{N}}\bigcup_{k\geq n}A_k$. On a alors $\mathbb{P}(A)=\lim_{n\to\infty}\mathbb{P}\left(\bigcup_{k\geq n}A_k\right)$. Or, $\mathbb{P}\left(\bigcup_{k\geq n}A_k\right)\leq \sum_{k\geq n}\mathbb{P}(A_k)$. En passant à la limite, on obtient $\mathbb{P}(A)=0$.

Une application du premier lemme est :

Proposition 1. Soit X_n une suite de variables aléatoires et X une variable aléatoire discrète. On pose $A_n(\epsilon) = \{|X_n - X| > \epsilon\}$. Si pour tout $\epsilon > 0$, $\sum_{n \in \mathbb{N}} \Pr(A_n(\epsilon)) < \infty$, alors X_n converge presque sûrement vers X.

Proof. Pour tout ϵ , on note $A(\epsilon) = \limsup_n A_n(\epsilon)$. D'après les hypothèses et le premier lemme de Borel-Cantelli, on a $\mathbb{P}(A(\epsilon)) = 0$ pour tout ϵ . On a alors

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A\left(2^{-n}\right)\right)\leq\sum_{n\in\mathbb{N}}\mathbb{P}(A\left(2^{-n}\right))=0.$$
 (1)

Par complémentaire, on a $\mathbb{P}(\bigcap_{n\in\mathbb{N}}\overline{A\left(2^{-n}\right)})=1.$ Soit

$$\mathbb{P}(\bigcap_{n\in\mathbb{N}}\bigcup_{j\in\mathbb{N}}\bigcap_{k\geq j}\{|X_j-X|\leq 2^{-k}\})=1.$$
 (2)

Ce qui permet de conclure que X_n converge presque sûrement vers X.

Deuxième lemme

Lemme 2. Soit (A_n) une suite d'évènements indépendants. Si $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) = \infty$, alors $\mathbb{P}(A) = 1$ en notant $A = \limsup_n A_n$.

 ${\it Proof.}$ Pour commencer, on va considérer le complémentaire de A, que l'on va noter B, donc

$$B = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} \overline{A_k}.$$
 (3)

Remarquons que $\left(\bigcap_{k\geq n}\overline{A_k}\right)$ est une suite croissante d'évènements. On a alors

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}\bigcap_{k\geq n}\overline{A_k}\right) = \lim_{n\to\infty}\mathbb{P}\left(\bigcap_{k\geq n}\overline{A_k}\right). \tag{4}$$

Or, $\mathbb{P}\left(\bigcap_{k\geq n}\overline{A_k}\right)=\prod_{k\geq n}\mathbb{P}(\overline{A_k})=\prod_{k\geq n}(1-\mathbb{P}(A_k))$. On peut alors appliquer l'inégalité de convexité suivante : $1-x\leq e^{-x}$.

$$\prod_{k \ge n} \mathbb{P}(\overline{A_k}) \le \prod_{k \ge n} e^{-\mathbb{P}(A_k)} = e^{-\sum_{k \ge n} \mathbb{P}(A_k)}.$$
 (5)

On peut aussi remarquer que $\lim_n - \sum_{k \geq n} \mathbb{P}(A_k) = -\infty$ puisqu'il s'agit du reste d'une suite divergente. Ainsi,

$$\lim_{n} \prod_{k \ge n} \mathbb{P}(\overline{A_k}) = 0. \tag{6}$$

Et donc, $\mathbb{P}(B) = 0$, ce qui permet de conclure que $\mathbb{P}(A) = 1$.

On peut appliquer ce lemme pour démontrer la fameuse expérience de pensée des singes de Shakespeare.

Proposition 2. Un singe tape au hasard sur un clavier (de 26 lettres) pour un temps infini. Alors on trouvera, presque sûrement, Hamlet dans le texte tapé.

Proof. On suppose que la longueur de Hamlet est l. On note A_n l'évènement "Hamlet" est tapé entre les n et n+l-1 lettres. Les A_n sont indépendants et $\mathbb{P}(A_n)=26^{-l}$. Et donc, $\sum_{n\in\mathbb{N}}\mathbb{P}(A_n)=\infty$. En utilisant le deuxième lemme, on a que $\mathbb{P}(A)=1$ où $A=\limsup_n A_n$. C'est-à-dire que

$$\mathbb{P}\left(\bigcap_{n}\bigcup_{k\geq n}A_{k}\right)=1.\tag{7}$$

Ce qui signifie que Hamlet sera presque sûrement tapé.

Proposition 3. Il n'existe pas de probabilité \mathbb{P} sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$ telle que $\mathbb{P}(n\mathbb{N}^*) = \frac{1}{n}$.

Proof. Notons $A_n = n\mathbb{N}^*$ Supposons qu'une telle probabilité existe. Remarquons que si p et q deux premiers distincts, alors $A_p \cap A_q = A_{pq}$. En effet, on a généralement que $A_p \cap A_q \subset A_{pq}$ mais puisque p et q sont premiers, on a que $A_{pq} \subset A_p \cap A_q$ (plus généralement, cela est vrai pour deux nombres premiers entre eux). Par définition,

$$\mathbb{P}(A_p \cap A_q) = \mathbb{P}(A_{pq}) = \frac{1}{nq} = \mathbb{P}(A_p)\mathbb{P}(A_q). \tag{8}$$

On remarquera que pour un nombre arbitraire de premiers distincts, les A_p seront indépendants. Notons $p_1, ..., p_n, ...$ les nombres premiers rangés dans l'ordre croissant.

On sait que $\sum_{k=1}^{\infty} \frac{1}{p_k} = \infty$ donc d'après le deuxième lemme, on a que

$$\mathbb{P}\left(\limsup_{n} A_{p_n}\right) = 1. \tag{9}$$

Remarquons qu'il n'existe qu'un seul entier multiples d'une infinité de nombre premiers, il s'agit de 0 (ici exclu). De plus, $\limsup_n A_{p_n} \subset \{\text{entier multiple d'une infinité de premiers} = \emptyset\}$. On obtient une contradiction

$$\mathbb{P}\left(\limsup_{n} A_{p_n}\right) = \mathbb{P}(\emptyset) = 1. \tag{10}$$

Il n'existe donc pas de probabilité $\mathbb P$ sur $(\mathbb N^*,\mathcal P(\mathbb N^*))$ telle que $\mathbb P(n\mathbb N^*)=\frac{1}{n}$. \square

On rappelle une preuve de la divergence de la série des inverses de nombres premiers, autant le faire avec des probabilités.

Proposition 4. La série $\sum_{n\in\mathbb{N}} \frac{1}{p_n}$ diverge.

Proof. On définit la probabilité suivante pour s > 1:

$$\mathbb{P}(\{n\}) = \frac{1}{\zeta(s)} \frac{1}{n^s} \tag{11}$$

où ζ est la fonction zêta de Riemann. On peut alors montrer que $\mathbb P$ est bien une probabilité. On reprend la notation A_p pour $p\mathbb N^*$. Remarquons déjà que pour un ensemble B, on a

$$\mathbb{P}(B) = \sum_{n \in B} \mathbb{P}(\{n\}) = \frac{1}{\zeta(s)} \sum_{n \in B} \frac{1}{n^s}.$$
 (12)

En particulier, pour A_p avec p premier, on a

$$\mathbb{P}(A_p) = \frac{1}{\zeta(s)} \sum_{n \in \mathbb{P}^{\mathbb{N}^*}} \frac{1}{n^s} = \frac{1}{\zeta(s)} \sum_{n \in \mathbb{N}^*} \frac{1}{(pn)^s} = \frac{1}{p^s}.$$
 (13)

On considère $q_1,...,q_k$ un ensemble de nombres de premiers distincts

$$\mathbb{P}\left(\bigcap_{i=1}^{k} A_{q_i}\right) = \sum_{n \in \bigcap_{i=1}^{k} A_{q_i}} \mathbb{P}(\{n\}) \tag{14}$$

$$=\frac{1}{\zeta(s)}\sum_{n\in\mathbb{N}^*}\frac{1}{(q_1\dots q_k n)^s}\tag{15}$$

$$= \prod_{i=1}^{k} \frac{1}{q_i^s} \qquad \qquad = \prod \mathbb{P}(A_{q_i}). \tag{16}$$

On en déduit que les (A_{p_i}) sont indépendants. Notons B l'ensemble des entiers qui ne sont multiples d'aucun nombre premier.

$$\mathbb{P}(B) = \mathbb{P}(\{1\}) + \mathbb{P}(B \setminus \{1\}) = \frac{1}{\zeta(s)}$$
(17)

 $\operatorname{car}\, \mathbb{P}(B\setminus\{1\})=\mathbb{P}(\emptyset).$ Mais par définition :

$$\mathbb{P}(B) = \mathbb{P}\left(\bigcap_{k \ge 1} \overline{A_{p_k}}\right) \tag{18}$$

d'où

$$\mathbb{P}(B) = \prod_{k \ge 1} 1 - \frac{1}{p_k^s} = \frac{1}{\zeta(s)}.$$
 (19)

 ${\bf Appliquons\ un\ logarithme:}$

$$-\log(\zeta(s)) = \sum_{k>1} \log\left(1 - \frac{1}{p_k^s}\right). \tag{20}$$

Or, $\log(1-x) \le -x$ pour $x \in [0,1]$ donc

$$-\log(\zeta(s)) \ge -\sum_{k\ge 1} \frac{1}{p_k^s}.$$
 (21)

On en déduit

$$\log(\zeta(s)) \le \sum_{k \ge 1} \frac{1}{p_k^s} \le \sum_{k \ge 1} \frac{1}{p_k}.$$
 (22)

Or, $\zeta(s)$ tend vers l'infini quand s tend vers 1, donc la série $\sum_{k\geq 1}\frac{1}{p_k}$ diverge. \square