3.1 Resolução

A resolução é um método para a automatização da geração de provas.

A resolução corresponde a uma abordagem segundo a qual o sistema dedutivo contém uma única regra de inferência, o *princípio da resolução*, para além da regra de premissa.

A utilização do princípio da resolução obriga à transformação das *fbfs* para uma forma especial, a *forma clausal*.

3.1.1 Forma clausal

Definição 3.1.1 (Literal)

Um literal é uma fbf atómica ou a negação uma fbf atómica.

Um literal positivo é uma fbf atómica.

Um literal negativo é a negação de uma fbf atómica.

Definição 3.1.2 (Cláusula)

Uma cláusula é um literal ou uma disjunção de literais.

Definição 3.1.3 (Cláusula unitária)

Uma cláusula constituída apenas por um literal chama-se cláusula unitária.

Exemplos:

 $\neg P$ e Q são literais, respetivamente, negativo e positivo.

 $P, P \lor Q$ e $\neg P \lor Q$ são cláusulas.

 $P \in \neg P$ são cláusulas unitárias.

3.1.1 Forma clausal

Definição 3.1.4 (Forma conjuntiva normal)

Uma fbf diz-se na forma conjuntiva normal se for da forma $\alpha_1 \wedge \ldots \wedge \alpha_n$ em que cada um dos α_i $(1 \leq i \leq n)$ é uma cláusula.

Exemplo:

$$(P \vee \neg Q \vee \neg R) \wedge (\neg P \vee S) \wedge (Q \vee R \vee S).$$

Representação através de conjuntos:

Uma cláusula é representada pelo conjunto dos seus literais.

Por exemplo, $P \vee \neg Q \vee \neg R$ é representada por $\{P, \neg Q, \neg R\}$.

Uma *fbf* na forma conjuntiva normal é representada pelo conjunto das suas cláusulas.

Por exemplo, $(P \lor \neg Q \lor \neg R) \land (\neg P \lor S) \land (Q \lor R \lor S)$ é representada por $\{\{P, \neg Q, \neg R\}, \{\neg P, S\}, \{Q, R, S\}\}.$

3.1.1 Forma clausal

Definição 3.1.5 (Cláusula – versão 2)

Uma cláusula é um conjunto de literais.

Assim, usamos letras gregas maiúsculas para designar cláusulas.

Transformação de uma fbf na forma clausal:

- **1** Apenas utilizamos os símbolos \neg , \lor , \land e \rightarrow .
- ② A transformação é baseada em teoremas que correspondem a equivalências entre *fbfs*. Sendo α e β duas *fbfs*, a *fbf* $\alpha \leftrightarrow \beta$ permite-nos substituir a *fbf* α pela *fbf* β e vice-versa.

3.1.1 Forma clausal

Passos para a transformação de uma fbf em forma clausal:

- 1. Eliminação do símbolo \rightarrow Baseia-se na seguinte equivalência: $(\alpha \rightarrow \beta) \leftrightarrow (\neg \alpha \lor \beta)$.
- 2. Redução do domínio do símbolo ¬
 Baseia-se na seguintes equivalências:
 - Lei da dupla negação

$$\neg \neg \alpha \leftrightarrow \alpha$$

2 Primeiras leis de De Morgan

$$\neg(\alpha \lor \beta) \leftrightarrow (\neg\alpha \land \neg\beta)$$
$$\neg(\alpha \land \beta) \leftrightarrow (\neg\alpha \lor \neg\beta)$$

3.1.1 Forma clausal

3. Obtenção da forma conjuntiva normal Baseia-se na seguinte equivalência:

$$\alpha \vee (\beta \wedge \gamma) \leftrightarrow (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

- **4.** Eliminação do símbolo ∧ Este passo consiste em transformar a fbf num conjunto de cláusulas.
- Eliminação do símbolo ∨
 Este passo consiste na transformação de cada cláusula num conjunto de literais.

Passagem de $P \to \neg (Q \lor ((R \land S) \to P))$ à forma clausal:

- 1. $\neg P \lor \neg (Q \lor ((R \land S) \rightarrow P))$ $\neg P \lor \neg (Q \lor (\neg (R \land S) \lor P))$
- 2. $\neg P \lor (\neg Q \land \neg (\neg (R \land S) \lor P))$ $\neg P \lor (\neg Q \land (\neg \neg (R \land S) \land \neg P))$ $\neg P \lor (\neg Q \land ((R \land S) \land \neg P))$
- 3. $(\neg P \lor \neg Q) \land (\neg P \lor ((R \land S) \land \neg P))$ $(\neg P \lor \neg Q) \land (\neg P \lor (R \land S)) \land (\neg P \lor \neg P)$ $(\neg P \lor \neg Q) \land (\neg P \lor R) \land (\neg P \lor S) \land (\neg P \lor \neg P)$
- **4.** $\{\neg P \lor \neg Q, \neg P \lor R, \neg P \lor S, \neg P \lor \neg P\}$
- **5.** $\{\{\neg P, \neg Q\}, \{\neg P, R\}, \{\neg P, S\}, \{\neg P\}\}$

3.1.2 O princípio da resolução

O princípio da resolução afirma que a partir de $\alpha \vee \beta$ e de $\neg \alpha \vee \gamma$ podemos concluir $\beta \vee \gamma$.

3.1.2 O princípio da resolução

O princípio da resolução é uma *regra de inferência derivada* que é aplicável a cláusulas, gerando novas cláusulas.

Considerando a representação de cláusulas através de conjuntos:

Definição 3.1.6 (Princípio da resolução)

Sejam Ψ e Φ duas cláusulas e α uma fbf atómica tal que $\alpha \in \Psi$ e $\neg \alpha \in \Phi$; então, podemos inferir a cláusula $(\Psi - \{\alpha\}) \cup (\Phi - \{\neg \alpha\})$.

3.1.2 O princípio da resolução

A cláusula obtida é chamada o *resolvente* das cláusulas Ψ e Φ , representado por $Res(\Psi, \Phi)$, as quais são designadas por *cláusulas mãe*.

Os literais α e $\neg \alpha$ designam-se por *literais em conflito* nas cláusulas Ψ e Φ .

Duas cláusulas podem ter mais do que um resolvente.

Neste caso, dizemos que $(\Psi - \{\alpha\}) \cup (\Phi - \{\neg \alpha\})$ é o *resolvente-* α das cláusulas Ψ e Φ , representado por $Res_{\alpha}(\Psi, \Phi)$.

3.1.2 O princípio da resolução

Exemplo:

Consideremos as cláusulas $\{\neg P, Q, S\}$ e $\{P, \neg Q\}$.

O seu resolvente- $P \notin \{Q, S, \neg Q\}$.

O seu resolvente-Q é $\{\neg P, S, P\}$.

Exemplo:

Mostrar que $\{P, P \to Q\} \vdash Q$, usando resolução. Primeiro passo: passar as *fbfs* à forma clausal: $\{P\}, \{\neg P, Q\} \in \{Q\}.$

3.1.2 O princípio da resolução

Segundo passo: aplicar a resolução:

Graficamente:

3.1.2 O princípio da resolução

Exemplo:

Mostrar que
$$\{\{\neg P, Q\}, \{\neg P, \neg Q\}, \{P\}\} \vdash \{\}.$$

$$\begin{array}{llll} 1 & \{\neg P, Q\} & \text{Prem} \\ 2 & \{\neg P, \neg Q\} & \text{Prem} \\ 3 & \{P\} & \text{Prem} \\ 4 & \{Q\} & \text{Res, (1, 3)} \\ 5 & \{\neg Q\} & \text{Res, (2, 3)} \\ 6 & \{\} & \text{Res, (4, 5)} \\ \end{array}$$

Cláusula vazia corresponde a uma contradição.

3.1.3 Prova por resolução

Exemplo:

Provar $\{S\}$ a partir de $\{\{\neg P,Q\},\{\neg Q,R\},\{\neg R,S\},\{P\}\}$.

1	$\{\neg P, Q\}$	Prem
2	$\{\neg Q, R\}$	Prem
3	$\{\neg R, S\}$	Prem
4	$\{P\}$	Prem
5	$\{\neg P, R\}$	Res, (1, 2)
6	$\{\neg P, S\}$	Res, (3, 5)
7	{ <i>S</i> }	Res, (4, 6)

3.1.3 Prova por resolução

Normalmente a resolução aplica-se a provas por absurdo, as quais, utilizando a resolução se chamam *provas por refutação*. Nas provas por refutação adiciona-se às premissas a negação da conclusão

Definição 3.1.8 (Prova por refutação)

e gera-se uma contradição (a cláusula vazia).

Uma prova por refutação a partir de um conjunto de cláusulas Δ é uma prova por resolução de $\{\}$ a partir de Δ .

3.1.3 Prova por resolução

Exemplo:

Demonstrar o teorema $(\neg P \land \neg Q) \rightarrow \neg (P \lor Q)$.

Temos de fazer uma prova por refutação:

Negação da conclusão: $\neg((\neg P \land \neg Q) \to \neg(P \lor Q))$

Obtenção da forma clausal: $\{\{\neg P\}, \{\neg Q\}, \{P, Q\}\}$

3.1.3 Prova por resolução

Prova por refutação:

1

$$\{\neg P\}$$
 Prem

 2
 $\{\neg Q\}$
 Prem

 3
 $\{P,Q\}$
 Prem

 4
 $\{Q\}$
 Res, $(1, 3)$

 5
 $\{\}$
 Res, $(2, 4)$

3. Lógica Proposicional (II) 3.1.5 Correção e completude da resolução

A resolução é correta mas não é completa, pois não é possível demonstrar todos os argumentos válidos.

No entanto, a resolução é completa no que respeita a refutação, garantindo a derivação da cláusula vazia no caso do conjunto inicial de cláusulas ser insatisfazível.