· Athornodynamic system performs a complete cycle. To clothal, it interacts with reservoires R.,..., Rn with temp
T.,..., To and exchange heat Q.,..., Qn.

· Convention -> Q = +ve , heatgoes into system.

So forthe carnot engine (a special rubclass of this),

Qi,
$$+\frac{Qz}{T_1} = 0$$

Qenocal case,

Neinthoduce a generoise with orbitrary temp to, and exactly in cornotengines.

() C, supplies Q; heat to R, , the name heat that it looses to loses to S, and no on to n

Onote that this is possible les to the fact that Cornotengins are suverible and can act as heat engine as well as refridge rator.

() Sand R, ..., Rn goes back to same state (2) To gaservoir loses energy Q = \(\times \ Q \(\times \) Nowwe Kusen that for the carastengines, $\frac{Q_c^{(0)}}{Q_c^{(0)}} = \frac{T_6}{T_c^{(0)}}$ $Q_0 = \sum_{i=1}^{N} Q_i^{(0)} = T_0 \sum_{i=1}^{N} \frac{Q_i}{T_i}$ The process in cyclic for all the engines involved. If we think of themas one engine, DU=0 Now, DU = AQ+AU 7-00 = AW -> Work done. AN= - To Dai Combining the engines, () Evicusts this engine Cannotexist (3 Violater End law But this is okay if Qo <0 + Heat conversion is i.e., if work in done on system and never prohibited. hat heat ingivento To guservoir. [Allowed

$$\exists Q_0 = T_0 \sum_{i=1}^{N} \frac{Q_i}{T_i} \leq 0$$

Consider Stobe a reversible engine.

=> All enginer loycles are reversible

Replace Q; -> -Q; (neverse the process)

This can alsorly be consistent if to
$$\sum_{i=1}^{N} \frac{Q_{i}}{T_{i}} = 0$$

For severible $\sum_{i=1}^{N} \frac{Q_{i}}{T_{i}} = 0$

for a cyclic procum,
$$\sum_{i=1}^{N} \frac{Q_i}{T_i} \leq 0$$

@ equality for reversible, in equality otherwise.

Thirmay be generalised to,

Consider a neversible eycle 1

$$\oint \frac{dQ}{T} = 0 \quad P \int \frac{1}{1} \int_{2}^{4} V$$

-> ct Gow doer not depand on party It is a state function. This will be called ent-900 py. ath February 2024 Ollawsius Inequality -> \$ \$Q 50 Equality for reversible Entacopy? Reversible? $\frac{\int dQ_{\text{nev}} = 0}{T}$ $\frac{11f^{2}i}{T}$ $\frac{1}{T} = 0$ $\frac{1}{T} = 0$ $\frac{1}{T} = 0$ $\frac{1}{T} = 0$ =) | dager | = | dager | 2 Does not depend on the path, clearly. => It is a state function. Sowe define, $\int_{-\infty}^{2} dQ_{rev} = \int_{-\infty}^{\infty} dS = S_{2} - S_{1}$ S = Entropy of the system.

Statement of entropy is related to suversible heat thansfer only => dQ is not strictly correct. it hastobe & Quev Jagged to imply isouvers ble Now, I pouversible. Igreversible cycle -> dissipation. \$ 20 <0 $\Rightarrow \int \frac{dQ}{T} \Big|_{T} + \int \frac{dQ_{nev}}{T} \Big|_{C} < 0$ => J dQ < J dQqeu / R \Rightarrow $S_f - S_i > \int \frac{dQ_{min}}{T} \Big|_{T}$ Conds (O If included system of Q = 0 (adiabatic) S(P) > S(i) & For inveverible process, S(f) > S(i) Keversible process / S(f) = S(i) (Isentropic) Contact with reservoir at temp T, the heat it exchanges with the reservoir also scales. Trumains same.

Intropy is extensive.

0 Joule Expansion:

Astemp/internal energy Does not depend on v for ideal gas, Ti = Tf

y gas expands immediately, thus irreversibly.

We want to find entropy change in this process.

$$\Delta S = S_2 - S_1 = \int \frac{dQ_{nev}}{T}$$

But the path is irreversible, how do we dothis?

The entropy change is a state function! It has nothing to do with the path. We may construct any hypothetical path which is neversible and calculate entropy change for that path — it is going to be the same for any path.

1) Sinstale function- allows you to take any rev path.

2ds in defined for any reversible path.

We choose isotherm here. : AS = f od Quev = / de +pdv $= \frac{1}{T} \int_{V} p dV$ - RIn 2 > 0 (Positive semidifinite) Note that livre &Q = 0, so AS = otq =0 But that is not suversible, no do not be fooled by this. It must be O Any process of ideal gas - & (P1, V1, T) -> (P2, V2, T) AS= NRIn(V) -> DCheck P Trothermal, reversible we argue that this is the same for all neversible paths. Sowe construct another reversible path (P1,V1) -> (P1,V2) inobaric

inochani

Hand to do () - 3 -> 2 reversibly (reginf reservoirs)
but we donot care - we just arrument to 60 900

D→3 in not insothermal, it is isobaric we use version of &Q where pinconstant.

$$= \int_{CP} \frac{dT}{T} + \int_{CV} \frac{dT}{T}$$

$$= C_{P} \ln \left(\frac{T'}{T} \right) + C_{V} \ln \left(\frac{T}{T'} \right)$$

Show that,

$$\frac{T'}{T} = \frac{V_2}{V_1}$$

$$\Rightarrow AS = C_{p} \ln \left(\frac{V_{z}}{V_{1}} \right) - C_{v} \ln \left(\frac{V_{z}}{V_{1}} \right)$$

$$= \left(C_{p} - C_{v} \right) \ln \left(\frac{V_{z}}{V_{1}} \right)$$

$$= NR \ln \left(\frac{V_{z}}{V_{1}} \right) \qquad (Ideal gas)$$

We can construct enteropy some other way too — we demand that ds is a state variable withouther formula — axiomatically like Callen.

(F) So, we have redefined reversibility and irreversible with respect to entropy.