CLAIMS

We claim:

1. A compound of formula I:

.

$$A^{1} \xrightarrow{T} O R^{1}$$

I

or a pharmaceutically acceptable derivative or mixtures thereof, wherein:

 R^{1} is $-(L)_{m}R$, $-(L)_{m}Ar^{1}$, or $-(L)_{m}Cy^{1}$;

L is -S-, -O-, -N(R)-, or a C_{1-6} alkylidene chain wherein up to two non-adjacent methylene units of L are optionally and independently replaced by -S-, -O-, -N(R)-, -N(R)C(O)-,

 $-N(R)C(S)-, -N(R)C(O)N(R)-, -N(R)C(S)N(R)-, -N(R)CO_2-, -C(O)-, -CO_2-, -C(O)N(R)-, -N(R)C(S)N(R)-, -N(R)C(S)N(R)-, -N(R)C(S)N(R)-, -N(R)C(S)N(R)-, -N(R)CO_2-, -C(O)-, -CO_2-, -C(O)N(R)-, -N(R)C(S)N(R)-, -N(R)CO_2-, -C(O)-, -CO_2-, -C(O)-, -C(O$

-C(S)N(R)-, -OC(O)N(R)-, $-SO_2$ -, $-SO_2N(R)$ -, $-N(R)SO_2$ -, $-N(R)SO_2N(R)$ -,

-C(R)=NN(R)-, -C(R)=N-O(R)-, -C(O)C(O)-, or $-C(O)CH_2C(O)$ -;

m is 0 or 1;

Ar¹ is an optionally substituted 5-7 membered monocyclic ring or an 8-10 membered bicyclic ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

Cy¹ is an optionally substituted 3-7 membered saturated or partially unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-10 membered saturated or partially unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein;

Ar¹ and Cy¹ are each optionally substituted with up to 5 occurrences of Z-R^X; wherein each occurrence of Z is independently a bond or a C₁₋₆ alkylidene chain, wherein up to two non-adjacent methylene units of Z are optionally replaced by -S-,

-O-, -N(R)-, -N(R)C(O)-, -N(R)C(S)-, -N(R)C(O)N(R)-, -N(R)C(S)N(R)-,

 $-N(R)CO_{2}$ -, -C(O)-, $-CO_{2}$ -, -C(O)N(R)-, -C(S)N(R)-, -OC(O)N(R)-, $-SO_{2}$ -,

```
-SO<sub>2</sub>N(R)-, -N(R)SO<sub>2</sub>-, -N(R)SO<sub>2</sub>N(R)-, -C(R)=NN(R)-, -C(R)=N-O(R)-, -C(O)C(O)-, or -C(O)CH<sub>2</sub>C(O)-; each occurrence of R<sup>X</sup> is independently selected from -R', halogen, NO<sub>2</sub>, CN,
```

each occurrence of R is independently selected from -R, halogen, NO₂, CN

-OR', -SR', -N(R')₂, -N(R')C(O)R', -N(R')C(S)R', -N(R')C(O)N(R')₂,

 $-N(R')C(S)N(R')_2$, $-N(R')CO_2R'$, -C(O)R', -C(S)R', $-CO_2R'$, -OC(O)R',

 $-C(O)N(R')_2$, $-C(S)N(R')_2$, $-OC(O)N(R')_2$, -S(O)R', $-SO_2R'$, $-S(O)_3R'$;

 $-SO_2N(R')_2$, $-N(R')SO_2R'$, $-N(R')SO_2N(R')_2$, -C(O)C(O)R',

 $-C(O)CH_2C(O)R'$, -NR'NR'C(O)R', $-NR'NR'C(O)N(R')_2$, $-NR'NR'CO_2R'$,

-C(O)N(OR') R', -C(NOR') R', $-S(O)_3R$, -N(OR')R', $-C(=NH)-N(R')_2$; or

-(CH₂)₀₋₂NHC(O)R'; wherein

each occurrence of R is independently hydrogen or an optionally substituted C_{1-6} aliphatic group,

each occurrence of R' is independently hydrogen or an optionally substituted C_{1-6} aliphatic group, an optionally substituted C_{6-10} aryl ring, an optionally substituted heteroaryl ring having 5-10 ring atoms, or an optionally substituted heterocyclyl ring having 3-10 ring atoms; or

R and R' or two occurrences of either R or R' are taken together with the atoms to which they are bound to form an optionally substituted 5-8 membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or two occurrences of either R' or R on the same nitrogen are taken together with the nitrogen atom to which they are bound to form an optionally substituted 5-8 membered saturated, partially unsaturated, or aryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

 R^2 is hydrogen, CN, -SR, -OR, -CO₂R, -OC(O)R, -C(O)R, -C(O)N(R)₂, -N(R)₂, -N(R)C(O)R, or an optionally substituted C_{1-6} aliphatic group;

T is selected from nitrogen or CR³;

each of A^1 , A^2 , and A^3 is independently nitrogen or CR^4 provided that no more than two of T, A^1 , A^2 , or A^3 are nitrogen;

- R³ is selected from hydrogen, halogen, NO₂, CN, -SR, -OR, -N(R)₂, or an optionally substituted C₁₋₆ aliphatic group; and
- R⁴ is selected from halogen, NO₂, CN, -(L)_mR, -(L)_mAr¹, or -(L)_mCy¹; or
 two R⁴ groups on adjacent atoms are taken together to form an optionally substituted
 5-7 membered partially unsaturated or fully unsaturated ring having 0-3
 heteroatoms independently selected from oxygen, sulfur, or nitrogen, wherein;

each ring formed by two R⁴ groups on adjacent atoms taken together is optionally substituted with up to 4 occurrences of Z-R^X;

provided that:

- a) when T is CR^3 where R^3 is H, and A^2 and A^3 are both CR^4 where R^4 is H, R^2 is H and R^1 is $-(L)_mAr^1$, m is zero, and Ar^1 is phenyl, 4-OH phenyl, 3-NO₂ phenyl, 4-OMe phenyl, 4-Me phenyl, or 1,2 ethylenedioxy phenyl, then:
 - i) A¹ is not CR⁴ where R⁴ is H, Cl, F, Br, NO₂, or Me;
- b) when R¹ is -(L)_mAr¹, m is zero, and Ar¹ is phenyl, 4-OMe phenyl, 3,4-diOMe phenyl, or 4-Cl phenyl then:
 - i) A³ is not CR⁴ where R⁴ is Me when R² is H, when T is CR³ where R³ is H and when A¹ and A² are CR⁴ where each R⁴ is H;
 - ii) A³ is not CR⁴ where R⁴ is Br and A¹ is not CR⁴ where R⁴ is Me, when R² is H, when T is CR³ where R³ is H, and when A² is CR⁴ where R⁴ is H;
 - iii) A² is not CR⁴ where R⁴ is Me, when R² is H, when T is CR³ where R³ is H and when A¹ and A³ are each CR⁴ where R⁴ is H;
 - iv) A¹, A², A³ are not CR⁴ where each R⁴ is H, when T is CR³ where R³ is H and R² is Me:
 - v) A^1 , A^2 , A^3 are not CR^4 where each R^4 is H, when T is CR^3 where R^3 is H and R^2 is H;
 - vi) A^2 and A^3 are not CR^4 where both R^4 groups are taken together to form a fused benzo ring, when T is CR^3 where R^3 is H and when A^1 is CR^4 where R^4 is H;
 - c) when R¹ and R² are H, then:
 - i) T is not CR3 where R3 is H, and A1, A2, and A3 are not CR4 where each R4 is H;
 - ii) A^1 is not CR^4 where R^4 is Cl, NO_2 , or Me when T is CR^3 where R^3 is H and when A^2 and A^3 are CR^4 where each R^4 is H;

- iii) A² is not CR⁴ where R⁴ is Me, Et, OH, OEt, OMe, or Cl when T is CR³ where R³ is H and when A¹ and A³ are CR⁴ where each R⁴ is H;
- iv) A² is not CR⁴ where R⁴ is Et, OH, OEt, OMe and A³ is not CR⁴ where R⁴ is NO₂ when T is CR³ where R³ is H and when A¹ is CR⁴ where R⁴ is H:
- v) A² is not CR⁴ where R⁴ is Me, Et, OH, OEt, or OMe and A³ is not CR⁴ where R⁴ is NH₂, -N(CH₂)₂N(n-Pr)₂, -N(CH₂)₂N(Et)₂, -N(CH₂)₂NH₂, -N(CH₂)₄N(n-Pr)₂, or -N(CH₂)₄N(Et)₂, when T is CR³ where R³ is H and when A¹ is CR⁴ where R⁴ is H;
- vi) A¹ and A² are not CR⁴ where both R⁴ groups are taken together to form a fused benzo or cyclohexyl ring, when T is CR³ where R³ is H and when A³ is CR⁴ where R⁴ is H;
- d) when R¹ is 3,6-dimethylbenzofuran-2-yl or benzofuran-2-yl and R² is H, then:
- i) A² is not CR⁴ where R⁴ is Me or H when T is CR³ where R³ is H and when A¹ and A³ are CR⁴ where each R⁴ is H;
- ii) A^1 is not CR^4 where R^4 is Me when T is CR^3 where R^3 is H and when A^2 and A^3 are CR^4 where each R^4 is H;
- e) when R¹ is Me and R² is H, then:
- i) A^3 is not CR^4 where R^4 is Me when T is CR^3 where R^3 is H and when A^1 and A^2 are CR^4 where each R^4 is H;
- ii) A¹ is not CR⁴ where R⁴ is Me when T is CR³ where R³ is H and when A² and A³ are CR⁴ where each R⁴ is H;
- iii) T is not CR^3 where R^3 is OMe and A^3 is not CR^4 where R^4 is OMe and when A^1 and A^2 are CR^4 where each R^4 is H;
- iv) A¹ and A² are not CR⁴ where R⁴ is OMe when T is CR³ where R³ is H and when A³ is CR⁴ where R⁴ is H:
- v) A^2 is not CR^4 where R^4 is OMe and A^4 is not CR^4 where R^4 is Me when T is CR^3 where R^3 is H and when A^3 is CR^4 where R^4 is H;
- vi) A³ is not CR⁴ where R⁴ is Me and A² is not CR⁴ where R⁴ is OH when T is CR³ where R³ is H and when A¹ is CR⁴ where R⁴ is H;
- vii) T is not CR³ where R³ is H and A¹, A², and A³ are not CR⁴ where each R⁴ is H;

- viii) A³ is not CR⁴ where R⁴ is Me and when A² is not CR⁴ where R⁴ is OH when T is H and when A¹ is CR⁴ where R⁴ is H;
- ix) A^2 and A^3 are not CR^4 where both R^4 groups are taken together to form a fused benzo ring or a fused furanyl-2-carboxylic methyl ester, when T is CR^3 where R^3 is H and when A^1 is CR^4 where R^4 is H;
- f) when R² is Me and R¹ is H, then:
 - i) T is not CR³ where R³ is H and A¹, A², and A³ are not CR⁴ where each R⁴ is H;
- ii) A^1 is not CR^4 where R^4 is Me or Cl when T is CR^3 where R^3 is H and when A^2 and A^3 are CR^4 where each R^4 is H;
- iii) A¹ and A³ are not CR⁴ where each R⁴ is Cl when T is CR³ where R³ is H and when A² is CR⁴ where R⁴ is H;
- iv) A^3 is not CR^4 where R^4 is Me when T is CR^3 where R^3 is H and when A^1 and A^2 are CR^4 where each R^4 is H;
- v) A^2 is not CR^4 where R^4 is Me when T is CR^3 where R^3 is H and when A^1 and A^3 are CR^4 where each R^4 is H;
- vi) A^3 is not CR^4 where R^4 is Me when T is CR^3 where R^3 is H and when A^1 and A^2 are CR^4 where each R^4 is H;
- g) when R¹ and R² are simultaneously Me, then:
 - i) T is not CR³ where R³ is H and A¹, A², and A³ are not CR⁴ where each R⁴ is H;
- ii) A¹ is not CR⁴ where R⁴ is Me, Cl, or SO₃H when T is CR³ where R³ is H and when A² and A³ are CR⁴ where each R⁴ is H;
- iii) A¹ and A³ are not each CR⁴ where R⁴ is Me when T is CR³ where R³ is H and when A² is CR⁴ where R⁴ is H;
- iv) A^3 is not CR^4 where R^4 is Me when T is CR^3 where R^3 is H and when A^1 and A^2 are CR^{4_5} where each R^4 is H:
 - v) T is not CR³ where R³ is Me when A¹, A², and A³ are CR⁴ where each R⁴ is H;
- vi) A^2 is not CR^4 where R^4 is Me when T is CR^3 where R^3 is Me and when A^1 and A^2 are CR^4 where each R^4 is H;
- h) when T is CR³ where R³ is H and A¹, A², and A³ are CR⁴ where each R⁴ is H, then:
 - i) R¹ is not acetyl, propionyl, butyryl or sec-butyryl;
- j) when R¹ is Me or Et and R² is acetyl or propionyl, then:

- i) A¹ and A³ are not CR⁴ where R⁴ is Me when T is CR³ where R³ is H and when A² is CR⁴ where R⁴ is H;
- ii) A¹ is not CR⁴ where R⁴ is Me when T is CR³ where R³ is H and when A² and A³ are CR⁴ where each R⁴ is H:
- iii) A¹ and A² are not CR⁴ where both R⁴ groups are taken together to form a fused benzo ring, when T is CR³ where R³ is H and when A³ is CR⁴ where R⁴ is H;
 - iv) A² is not CR⁴ where R⁴ is Me when T is CR³ where R³ is H and when A¹ and A³ are CR⁴ where each R⁴ is H;
- k) when R^2 is H, SH, OH, -OR, N(R)₂, and T is CR³ wherein R³ is H, an optionally substituted C₁₋₆ aliphatic group, OH, NH₂, SH, OR, halogen or N(R)₂, and A¹, A², and A³ are CR⁴ where R⁴ is hydrogen, halogen or -(L)_mR wherein m is 1, L is -S-, -O-, -N(R)-, and R is H or an optionally substituted C₁₋₆ aliphatic group, then R¹ is not:
 - i) -(L)_mR wherein m is 0 and R is an optionally substituted C₁₋₆ aliphatic group; or
- ii) $-(L)_mR$ wherein m is 1 and L is -S-, -O-, -N(R)-, and R is an optionally substituted C_{1-6} aliphatic group;
- 1) when A² and A³ are CR⁴ where both R⁴ groups are taken together to form a fused benzo ring, and when T is CR³ where R³ is H, then R¹ is not:
- i) p-chlorostyryl, styryl, p-methylstyryl, or p-methoxystyryl; and also provided that the following compounds are excluded:
 - 6-Chloro-2-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-chromen-4-one oxime,
 - 3-Acetyl-5-chloro-2,6-dimethyl-chromen-4-one oxime,
 - 2,3-Dihydro-1,5-dioxa-cyclopenta[b]naphthalene-8-one oxime,
 - 4,9-Dimethoxy-7-methyl-furo[3,2-g]chromen-5-one oxime,
 - 4,7,9-Trimethyl-furo[3,2-g]chromen-5-one oxime,
- 5,6,7,8-Tetrafluoro-4-hydroxyimino-2-methyl-4H-chromene-3-carboxylic acid ethyl ester,

Nicotinic acid 5-hydroxyimino-9-methoxy-7-methyl-5H-furo[3,2,g]chromen-4-yl ester,

Benzoic acid 5-hydroxyimino-9-methoxy-7-methyl-5H-furo[3,2,g]chromen-4-yl ester, 4-(2-Diethylamino-ethoxy)-9-methoxy-7-methyl-furo[3,2,g]chromen-5-one oxime, 4-Benzyloxy-9-methoxy-7-methyl-furo[3,2,g]chromen-5-one oxime,

Acetic acid 5-hydroxyimino-9-methoxy-7-methyl-5H-furo[3,2,g]chromen-4-yl ester,

- 4-Hydroxy-9-methoxy-7-methyl-furo[3,2,g]chromen-5-one oxime,
- 2-(3,4-Dihydroxy-phenyl)-5,7-dihydroxy-chromen-4-one oxime,
- 6-[4-(1-Hydroxyimino-ethyl)-phenoxy]-5,7-dimethoxy-2-(4-methoxy-phenyl)-chromen-4-one oxime,
 - 8-(4-Acetyl-phenoxy)-5,7-dihydroxy-2-(4-hydroxy-phenyl)-chromen-4-one oxime,
 - 6-(4-Acetyl-phenoxy)-5,7-dihydroxy-2-(4-hydroxy-phenyl)-chromen-4-one oxime,
 - 2-(2,6-Dimethoxy-phenyl)-5,6-dimethoxy-chromen-4-one oxime,
 - 2-(2,4-Dimethoxy-phenyl)-7-methoxy-chromen-4-one oxime,
 - 6-Chloro-3-ethyl-2-methyl-chromen-4-one oxime,
 - (4-Hydroxyimino-4H-chromen-3-yl)-acetic acid,
 - 3-(1-Hydroxyimino-ethyl)-2,6-dimethyl-chromen-4-one oxime,

Acetic acid 3,7-diacetoxy2-(4-acetoxy-phenyl)-4-hydroxyimino-4H-chromen-5-yl ester,

- 2-(3,4-dimethoxy-phenyl)-3,5,7-trimethoxy-chromen-4-one oxime,
- 3,5,7-trimethoxy-2-(4-methoxy-phenyl)-chromen-4-one oxime,
- 8-[4-(1-hydroxyimino-ethyl)-phenoxy]-5,7-dimethoxy-2-(4-methoxy-phenyl)chromen-4-one oxime,
- 8-[5-(1-hydroxyimino-ethyl)-2-methoxy-phenyl]-5,7-dimethoxy-2-(4-methoxy-phenyl)chromen-4-one oxime,
 - 4-hydroxyimino-7-methoxy-4H-chromen-3-yl)-acetic acid.
- 2. The compound according to claim 1, wherein R^1 is $-(L)_mAr^1$ and Ar^1 is selected from one of the following groups:

3. The compound according to claim 2, wherein Ar¹ is selected from one of the following groups:

4. The compound according to claim 2, wherein R^1 is $-(L)_m$ -Ar¹, m is 1 and compounds have the formula IA-1:

$$A^{1} \xrightarrow{T} O \qquad (L) - Ar^{1}$$

IA-1

5. The compound according to claim 2, wherein Ar¹ is phenyl with 0-5 occurrences of ZR^X and compounds have the formula IA-1-5:

$$A^{1} \xrightarrow{T} O \qquad (L)_{m} \xrightarrow{(ZR^{X})_{x}}$$

IA-1-5

6. The compound according to claim 1, wherein R^1 is $-(L)_m$ -Cy¹ and compounds have the formula IA-2:

IA-2

7. The compound according to claim 6, wherein Cy¹ is selected from one of the following groups:

- 8. The compound according to claim 2, wherein L is an optionally substituted C_{1-6} straight or branched alkylidene chain wherein one methylene unit of L is optionally replaced by O, NR, NRCO, NRCS, NRCONR, NRCSNR, NRCO₂, CO, CO₂, CONR, CSNR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O).
- 9. The compound according to claim 8, wherein L is an optionally substituted C_{1-6} straight or branched alkylidene chain wherein one methylene unit of L is optionally replaced by O, NR, NRCO, CO, CONR, SO₂NR, NRSO₂.

- 10. The compound according to claim 1, wherein R¹ is -(L)_mR, L is an optionally substituted C₁₋₆ straight or branched alkylidene chain wherein one methylene unit of L is optionally replaced by O, NR, NRCO, NRCONR, NRCO₂, CO, CO₂, CONR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, and R is an optionally substituted C₁₋₆ aliphatic group.
- 11. The compound according to claim 1, wherein R^2 is hydrogen, CN, -OR, -CO₂R, -OC(O)R, -C(O)R(R)₂, -N(R)₂, -N(R)(C)(O)R, or an optionally substituted C₁₋₆ aliphatic group.
- 12. The compound according to claim 11, wherein R^2 is hydrogen or an optionally substituted C_{1-6} aliphatic group.

i

- 13. The compound according to claim 12, wherein R² is hydrogen, methyl, ethyl, n-propyl, isopropyl, or cyclopropyl.
- 14. The compound according to claim 1, wherein R² is hydrogen and compounds have the formula **IB**:

ΙB

- 15. The compound according to claim 1, wherein T is CR^3 and R^3 is hydrogen, halogen, CN, or an optionally substituted C_{1-6} aliphatic group.
- 16. The compound according to claim 15, wherein R³ is hydrogen, halogen, CF₃, methyl, ethyl, n-propyl, isopropyl, or cyclopropyl.
- 17. The compound according to claim 1, wherein T is CR³, R³ is hydrogen and compounds have the formula **IC**:

IC

- 18. The compound according to claim 1, wherein A^1 is CR^4 and R^4 is halogen, CN, $-(L)_mR$, $-(L)_mAr^1$, or $-(L)_mCy^1$.
- 19. The compound according to claim 18, wherein L is an optionally substituted C₁₋₆ straight or branched alkylidene chain wherein one methylene unit of L is optionally replaced by O, NR, NRCO, NRCONR, NRCO₂, CO, CO₂, CONR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O).

.

- 20. The compound according to claim 18, wherein A¹ is CR⁴ and R⁴ is halogen, CN, or R.
- 21. The compound according to claim 18, wherein A^1 is CR^4 , R^4 is $-(L)_mR$, and compounds have the formula ID-1:

$$\begin{array}{c} R \\ N(OH) \\ R^2 \\ A^2 \\ A^3 \end{array}$$

ID-1

22. The compound according to claim 18, wherein A^1 is CR^4 , R^4 is $-(L)_mAr^1_{\pi}$ and compounds have the formula ID-2:

$$Ar_{l}^{1} \qquad N(OH)$$

$$m(L) \qquad T \qquad R^{2}$$

$$A^{2} \qquad O \qquad R^{1}$$

ID-2

23. The compound according to claim 18, wherein A^1 is CR^4 , R^4 is $-(L)_mCy^1$, and compounds have the formula **ID-3**:

ID-3

- 24. The compound according to claim 1, wherein A^2 is CR^4 and R^4 is halogen, CN, $-(L)_mR$, $-(L)_mAr^1$, or $-(L)_mCy^1$.
- 25. The compound according to claim 24, wherein L is an optionally substituted C₁₋₆ straight or branched alkylidene chain wherein one methylene unit of L is optionally replaced by O, NR, NRCO, NRCONR, NRCO₂, CO, CO₂, CONR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O).
- 26. The compound according to claim 24, wherein A² is CR⁴ and R⁴ is halogen or R.
- 27. The compound according to claim 24, wherein A² is CR⁴ and R⁴ is -(L)_mR, wherein L is -O- or -N(R)-.
- 28. The compound according to claim 24, wherein A^2 is CR^4 , R^4 is $-(L)_mCy^1$, m is 0 and Cy^1 is 2-2, 2-5, 2-6, 2-7, 2-8, or 2-12.
- 29. The compound according to claim 24, wherein A^2 is CR^4 , R^4 is $-(L)_mAr^1$, m is 0 and Ar^1 is 1-5, 1-6, 1-11, 1-12, 1-13, 1-19, 1-24, or 1-25.
- 30. The compound according to claim 24, wherein A^2 is CR^4 , R^4 is $-(L)_mR$, and compounds have the formula **IE-1**:

31. The compound according to claim 24, wherein A^2 is CR^4 , R^4 is $-(L)_mAr^1$, and compounds have the formula **IE-2**:

.

$$\begin{array}{c}
N(OH) \\
R^2 \\
R^1 \\
Ar^1
\end{array}$$

IE-2

32. The compound according to claim 24, wherein A^2 is CR^4 , R^4 is $-(L)_mCy^1$, and compounds have the formula IE-3:

IE-3

- 33. The compound according to claim 1, wherein A^3 is CR^4 and R^4 is halogen, CN, $-(L)_mR$, $-(L)_mAr^1$, or $-(L)_mCy^1$.
- 34. The compound according to claim 33, wherein L is an optionally substituted C₁₋₆ straight or branched alkylidene chain wherein one methylene unit of L is optionally replaced by O, NR, NRCO, NRCONR, NRCO₂, CO, CO₂, CONR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O).

- 35. The compound according to claim 33, wherein A³ is CR⁴ and R⁴ is halogen or R.
- 36. The compound according to claim 33, wherein A^3 is CR^4 and R^4 is $-(L)_mR$, wherein L is -O- or -N(R)-.
- 37. The compound according to claim 33, A^3 is CR^4 , R^4 is $-(L)_mCy^1$, m is 0 and Cy^1 is 2-2, 2-5, 2-6, 2-7, 2-8, or 2-12.
- 38. The compound according to claim 33, wherein A^3 is CR^4 , R^4 is $-(L)_mAr^1$, m is 0 and Ar^1 is 1-5, 1-6, 1-11, 1-12, 1-13, 1-19, 1-24, or 1-25.
- 739. The compound according to claim 33, wherein A³ is CR⁴, R⁴ is -(L)_mR, and compounds have the formula IF-1:

$$A^{1} \xrightarrow{R^{2}} O R^{1}$$

IF-1

40. The compound according to claim 33, wherein A^3 is CR^4 , R^4 is $-(L)_mAr^1$, and compounds have the formula **IF-2**:

IF-2

41. The compound according to claim 33, wherein A^3 is CR^4 , R^4 is $-(L)_mCy^1$, and compounds have the formula IF-3:

IF-3

42. The compound according to claim 1, wherein x is 0-5, and Ar¹ and Cy¹ are independently substituted with 0-5 occurrences of ZR^X.

4

43. The compound according to claim 1, wherein T is CR³, A¹, A² and A³ are each CR⁴ and compounds have the formula IG-1:

IG-1

- 44. The compound according to claim 1, wherein x is 0 and Ar¹ is unsubstituted.
- 45. The compound according to claim 1, wherein each ZR^X is independently halogen, NO₂, CN, or an optionally substituted group selected from C_{1.4} alkyl, aryl, aralkyl, -N(R')₂, -CH₂N(R')₂, -OR', -CH₂OR', -SR', -CH₂SR', -COOR', or -S(O)₂N(R')₂.
- 46. The compound according to claim 1, selected from one of the following compounds:

N(OH) N(OH) N(OH) I-1 I-2 I-3 . N(OH) I-6 I-4 I-5 Й(ОН) N(OH) I-8 I-9 I-7 : N(ОН) Й(ОН) N(OH)

I-13 I-14 I-15

N(OH)
N(OH)
I-16 I-17 I-18

I-19 I-20 I-21

•

I-22 I-23 I-24

I-25

N(OH)
N(OH)

I-27 I-28

I-37

- 47. A composition comprising an effective amount of compound of claim 1, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- 48. The composition of claim 47, wherein the compound is in an amount to detectably inhibit CDK-2, cMET, FLT-3, JAK-3, GSK-3, IRAK-4, SYK, p70S6K, TAK-1, or ZAP-70 protein kinase activity.
- 49. The composition of claim 47, additionally comprising a therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating destructive bone disorders, an agent for treating liver disease, an anti-viral agent, an agent for treating blood disorders, an agent for treating diabetes, or an agent for treating immunodeficiency disorders.
- 50. A method of inhibiting CDK-2, cMET, FLT-3, JAK-3, GSK-3, IRAK-4, SYK, p70S6K, TAK-1, or ZAP-70 kinase activity in:
 - (a) a patient; or

115 64

(b) a biological sample;

which method comprises administering to said patient, or contacting said biological sample with:

- a) a composition of claim 47; or
- b) a compound of claim 1.
- 51. The method of claim 50, wherein the method comprises inhibiting CDK-2, cMET, FLT-3, JAK-3, GSK-3, IRAK-4, SYK, p70S6K, TAK-1, or ZAP-70 activity.
- 52. A method of treating or lessening the severity of a disease of condition selected from cancer, a proliferative disorder, a cardiac disorder, a neurodegenerative disorder, an autoimmune disorder, a condition associated with organ transplant, an inflammatory disorder, an immunologically mediated disorder, a viral disease, or a bone disorder, comprising the step of administering to said patient:

- a) a composition of claim 47; or
- b) a compound of claim 1.

112

53. The method according to claim 52, comprising the additional step of administering to said patient an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating destructive bone disorders, an agent for treating liver disease, an anti-viral agent, an agent for treating blood disorders, an agent for treating diabetes, or an agent for treating immunodeficiency disorders, wherein:

said additional therapeutic agent is appropriate for the disease being treated; and said additional therapeutic agent is administered together with said composition as a single dosage form or separately from said composition as part of a multiple dosage form.

.

54. The method according to claim 52, wherein said disease is cancer, Alzheimer's disease, restenosis, angiogenesis, glomerulonephritis, cytomegalovirus, HIV, herpes virus, varicella-zoster virus, human cytomegalovirus, psoriasis, atherosclerosis, inflammatory bowel disease, sepsis, alopecia, rheumatoid arthritis, diabetes, manic depressive disorder neurodegenerative and neurological diseases, cardiomyocyte hypertrophy, autoimmune diseases, inflammatory diseases, metabolic diseases, cardiovascular diseases, diabetes, Huntington's disease, Parkinson's disease, AIDS-associated dementia, multiple sclerosis (MS), schizophrenia, reperfusion/ischemia, stroke, baldness, acute-myelogenous leukemia (AML, Lou Gehrig's disease), acute lymphocytic leukemia (ALL), mastocytosis and gastrointestinal stromal tumor (GIST), hematopoietic disorders, in particular, acutepromyelocytic leukemia (APL), osteoporosis, hepatitis B virus, proliferative and hyperproliferative diseases, immunologically-mediated diseases including rejection of transplanted organs or tissues and Acquired Immunodeficiency Syndrome (AIDS), reversible obstructive airways diseases including asthma, such as bronchial, allergic, intrinsic, extrinsic and dust asthma, particularly chronic or inveterate asthma (e.g. late asthma airways hyperresponsiveness) and bronchitis, those conditions characterised by inflammation of the nasal

mucus membrane, including acute rhinitis, allergic, atrophic thinitis and chronic rhinitis including rhinitis caseosa, hypertrophic rhinitis, rhinitis purulenta, rhinitis sicca and rhinitis medicamentosa; membranous rhinitis including croupous, fibrinous and pseudomembranous rhinitis and scrofoulous rhinitis, seasonal rhinitis including rhinitis nervosa (hay fever) and vasomotor rhinitis, sarcoidosis, farmer's lung and related diseases, fibroid lung, and idiopathic interstitial pneumonia.

- 55. The method according to claim 54, wherein said disease is cancer, diabetes, asthma, Alzheimer's disease, osteoporosis, transplant rejection, stroke, rheumatoid arthritis, schizophrenia, neurological or neurodegenerative disease, amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease), or multiple sclerosis (MS).
- 56. The method according to claim 55, wherein said cancer is selected from renal, colon, breast, prostate, hepatic pancreatic, ovarian or lung cancer, or certain B-cell leukemias or lymphomas.
- 57. A method for treating or lessening the severity of a stroke, wherein said method comprises administering to a patient in need thereof an effective amount of the composition according to claim 47.
- 58. A method of inhibiting the phosphorylation of Tau protein in a patient, wherein said method comprises administering to said patient in need thereof an effective amount of the composition according to claim 47.