import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

2]:		Unnamed: 0	YearsExperience	Salary
	0	0	1.2	39344.0
	1	1	1.4	46206.0
	2	2	1.6	37732.0
	3	3	2.1	43526.0
	4	4	2.3	39892.0

In [4]: # Here, we can see our dataset is sort of linear
 plt.scatter(df['YearsExperience'], df['Salary'])
 plt.xlabel('YearsExperience')
 plt.ylabel('Salary')
 plt.show()

In [5]: # we creating new dataframe
df1 = df[['YearsExperience','Salary']].head()

In [6]: # Import necessary libraries import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense import tensorflow as tf # Sample data: X (input), Y (output) for training # Example: Let's assume we're predicting the output of a linear equation y = 2x + 1X = df1['YearsExperience'] Y = df1['Salary'] # Build the ANN model model = Sequential([Dense(units=1, input_shape=(1,), activation='linear')]) # Compile the model with SGD optimizer model.compile(optimizer='sgd', loss='mean_squared_error') # Train the model without displaying the epochs model.fit(X, Y, epochs=1000, verbose=0) # Predict the output for a user input user_input = float(input("Enter a value for prediction: ")) prediction = model.predict(np.array([[user_input]])) # Display the prediction print(f"Predicted output for input {user_input}: {prediction[0][0]}")

C:\Users\AMIT KUMAR\AppData\Roaming\Python\Python\11\site-packages\keras\src\layers\core\dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. Whe n using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Enter a value for prediction: 15

1/1 — 0s 82ms/step

Predicted output for input 15.0: 139696.484375