

Bivariate Data

- Compares two variables
- By convention, the x-axis is set to the independent variable
- The y-axis is set to the dependent variable, or that which is being measured relative to x.

- Scatter plots may uncover a correlation between two variables
- They can't show causality!

- Correlation between two variables
- Doesn't prove causality!

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

- More statistical analysis is needed to determine causality!
- For example: "Does increasing number of police officers decrease crime?"
- We would look at correlation, and do further analysis to understand causality.

Bivariate Data

Positive correlation

Negative or Inverse correlation

- A common way to compare two variables is to compare their variances – how far from each item's mean do typical values fall?
- The first challenge is to match scale.
 Comparing height in inches to weight in pounds isn't meaningful unless we develop a standard score to normalize the data.

 For simplicity, we'll consider the population covariance:

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

Consider the following two tables:

х	у
1	4
2	6
3	5
4	7
5	9
6	8

x	у
1	5
2	9
3	7
4	4
5	8
6	6

Plot them:

х	у
1	4
2	6
3	5
4	7
5	9
6	8

Calculate mean values:

х	у	
1	1	

4

2 6

3 5

4 7

5 9

6 8

$$\bar{x} = \frac{1+2+3+4+5+6}{6} = 3.5$$

$$\bar{y} = \frac{4+6+5+7+9+8}{6} = 6.5$$

1 5

2 9

3 7

4 4

5 8

6 6

$$\bar{x} = \frac{1+2+3+4+5+6}{6} = 3.5$$

$$\bar{y} = \frac{5+9+7+4+8+6}{6} = 6.5$$

 \bar{x} = 3.5, \bar{y} = 6.5

• Calculate $(x - \overline{x})$ and $(y - \overline{y})$:

x	у	(x - ₹)	(y - y)
1	4	-2.5	-2.5
2	6	-1.5	-0.5
3	5	-0.5	-1.5
4	7	0.5	0.5
5	9	1.5	2.5
6	8	2.5	1.5

x	у	(x - ₹)	(y - ȳ)
1	5	-2.5	-1.5
2	9	-1.5	2.5
3	7	-0.5	0.5
4	4	0.5	-2.5
5	8	1.5	1.5
6	6	2.5	-0.5

 \bar{x} = 3.5, \bar{y} = 6.5

• Calculate $(x - \overline{x})(y - \overline{y})$:

х	у	(x - ₹)	(y - y)	(x - x)(y - y)
1	4	-2.5	-2.5	6.25
2	6	-1.5	-0.5	0.75
3	5	-0.5	-1.5	0.75
4	7	0.5	0.5	0.25
5	9	1.5	2.5	3.75
6	8	2.5	1.5	3.75

х	у	(x - ₹)	(y - ȳ)	(x - ₹)(y - ₹)
1	5	-2.5	-1.5	3.75
2	9	-1.5	2.5	-3.75
3	7	-0.5	0.5	-0.25
4	4	0.5	-2.5	-1.25
5	8	1.5	1.5	2.25
6	6	2.5	-0.5	-1.25

 \bar{x} = 3.5, \bar{y} = 6.5

Calculate sums:

x	у	(x - ₹)	(y - y)	(x - ₹)(y - ₹)
1	4	-2.5	-2.5	6.25
2	6	-1.5	-0.5	0.75
3	5	-0.5	-1.5	0.75
4	7	0.5	0.5	0.25
5	9	1.5	2.5	3.75
6	8	2.5	1.5	3.75
			Σ	15.5

x	у	(x - ₹)	(y - ȳ)	(x - \overline{x})(y - \overline{y})
1	5	-2.5	-1.5	3.75
2	9	-1.5	2.5	-3.75
3	7	-0.5	0.5	-0.25
4	4	0.5	-2.5	-1.25
5	8	1.5	1.5	2.25
6	6	2.5	-0.5	-1.25
			Σ	-0.5

 \bar{x} = 3.5, \bar{y} = 6.5

Calculate covariance:

x	у

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

$$=\frac{15.5}{6}=2.583$$

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

$$=\frac{-0.5}{6}=-0.083$$

Compare covariances:

х	У
1	4
2	6
3	5
4	7
5	9
6	8

cov(x,y) = 2.583

cov(x,y) = -0.083

