

Latihan Soal Scientific Computing Persiapan UAS (Kampus Kemanggisan – Alam Sutera)

Clue untuk turunan numerik

Hampiran Selisih Pusat

Galat untuk hampiran selisih pusat :

$$f' = \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2)$$

$$f' = \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2) \qquad O(h^2) = -\frac{h^2}{6} f'''(t), \quad x_{i-1} < t < x_{i+1}$$

Dengan menggunakan skema pusat, hitunglah turunan pertama dan turunan kedua dari

a)
$$y = -0.1x^4 - 15x^3 - 0.5x^2 - 0.25x^2 + 1.2$$
 pada $x = 0$ dengan $h = 0.25$

b)
$$y = x^3 + 4x - 15$$
 pada $x = 0.4$ dengan $h = 0.25$

c)
$$y = x^2 \cos x$$
 pada $x = 3$ dengan $h = 0.1$

d)
$$y = \tan \frac{x}{3}$$
 pada $x = 3$ dengan $h = 0.5$

e)
$$y = \sin \frac{0.5\sqrt{x}}{x}$$
 pada $x = 3$ dengan $h = 0.2$

f)
$$y = e^x + x$$
 pada $x = 3$ dengan $h = 0.2$

g)
$$y = e^x - 5x^2$$
 pada $x = 2.5$ dengan $h = 0.2$

h)
$$y = \frac{x-3}{3x+1}$$
 pada $x = 2.3$ dengan $h = 0.2$

i)
$$y = 3xe^x - \cos x$$
 pada $x = 1.3$ Dengan $h = 0.01$

serta carilah $O(h^2)$ nya pada hasil turunan numerik!

Data berikut ini dikumpulkan untuk jarak yang ditempuh versus waktu untuk roket: 2.

t,s	0	25	50	75	100	125
y,km	0	32	58	78	92	100

Gunakan turunan numerik untuk memperkirakan kecepatan dan akselerasi roket pada setiap waktu.

3. Dapatkan taksiran turunan pertama untuk data dengan jarak yang tidak sama. Ujilah dengan data berikut ini:

di mana $f(x) = 5e^{-2x}x$. Bandingkan hasil nya dengan turunan yang analitik.

4. Data berikut ini disediakan untuk kecepatan suatu benda sebagai fungsi waktu,

t,s	0	4	8	12	16	20	24	28	32	36
v,m/s	0	34.7	61.8	82.8	99.2	112.0	121.9	129.7	135.7	140.4

- a) Dengan menggunakan metode numerik terbaik yang tersedia, seberapa jauh benda bergerak dari t=0 hingga 28 s ?
- b) Dengan menggunakan metode numerik terbaik yang tersedia, berapakah percepatan benda pada $t=28 \mathrm{\ s}$?
- c) Dengan menggunakan metode numerik terbaik yang tersedia, berapakah percepatan benda pada t=0 s?
- 5. Gunakan data berikut untuk menemukan kecepatan dan percepatan pada t = 10 detik:

									16
x, m	0	0.7	1.8	3.4	5.1	6.3	7.3	8.0	8.4

Dengan menggunakan metode ekstrapolasi richardson

6. Dengan menggunakan metode Trapesium 4 pias dan Gauss-Legendre 3 pias, hitunglah integral berikut:

a)
$$\int_0^3 xe^{2x} dx$$

g)
$$\int_{-2}^{3} y e^{-y} \, dy$$

b)
$$\int_{1}^{2} \left(x + \frac{1}{x} \right)^{2} dx$$

h)
$$\int_0^3 e^{-y} \sin^2 y \, dy$$

$$c) \int_0^2 \frac{e^x \sin x}{1 + x^2} dx$$

i)
$$\int_0^1 x^{0.1} (1.2 - x) (1 - e^{20(x-1)}) dx$$

d)
$$\int_{-3}^{3} \frac{1}{1+x^2} dx$$

$$j) \int_{-\frac{1}{2}}^{0} \frac{1}{t^2} e^{-\frac{1}{2t^2}} dt$$

$$e) \int_2^4 \frac{1}{x(x+2)} dx$$

k)
$$\int_0^{\frac{\pi}{6}} 6\sin 2x + 9\cos 3x \, dx$$

f)
$$\int_0^2 \frac{1}{(1+y^2)\left(1+\frac{y^2}{2}\right)} dx$$

1)
$$\int_0^2 \frac{e^{2x} - 1}{e^{2x} - 3} dx$$

Serta ukurlah error yang didapatkan dari hasil perhitungan antara pengerjaan secara analitik maupun secara numeriknya!

Selesaikanlah persamaan diferensial biasa berikut, dengan menggunakan metode numerik Runge-Kutta Orde 2. Apabila persamaan dapat dikerjakan secara analitik dengan sederhana, maka wajib untuk menghitungnya!

a)
$$\frac{dy}{dt} = yt^2 - 1.1y$$

$$h_1 = 0.5$$

 $h_2 = 0.25$

$$t=0\to 2 \qquad y(0)=1$$

b)
$$\frac{dy}{dt} = (1+4t)\sqrt{y}$$

$$h = 0.25$$

$$t = 0 \to 1 \qquad y(0) = 1$$

c)
$$\frac{dy}{dt} = y \sin^3 t$$

$$h_1 = 0.1$$

 $h_2 = 0.05$

$$t = 0 \to 3 \qquad y(0) = 1$$

d)
$$\frac{dy}{dt} = -2y + t^2$$

$$h_1 = \text{sesuai selera}$$

 $h_2 = \text{sesuai selera}$

$$t = 0 \to 3 \qquad y(0) = 1$$

e)
$$\frac{dy}{dt} + 2(t+1)y^2 = 0$$

$$h_1 = \text{sesuai selera}$$

 $h_2 = \text{sesuai selera}$

$$t = 0 \to 2$$
 $y(0) = -\frac{1}{8}$

f)
$$2\frac{dy}{dx} + (4\cos x)y = x$$

$$h = 0.5$$

$$t = 0 \to 2 \qquad y(0) = 1$$

g)
$$\frac{dy}{dx} - 4xy = \sin x^2$$

$$h = 0.25$$

$$t = 0 \rightarrow 3 \qquad y(0) = 7$$

$$h) \quad x\frac{dy}{dx} + 2y = xe^{x^2}$$

$$h = 0.25$$

$$t = 1 \rightarrow 2.5 \quad y(1) = 3$$

i)
$$x\frac{dy}{dx} + (\sin x)y = 0$$

$$h_1 = 0.5$$

 $h_2 = 0.25$

$$t = 0 \rightarrow 2.5 \quad y(0) = 10$$

k)
$$\frac{dy}{dx} = \frac{y^2 - x^2}{xy}$$

$$h_1 = \text{sesuai selera}$$

$$h_2 = 0.1$$

$$t = 1 \rightarrow 3$$

$$t = 1 \to 3 \qquad y(1) = -\sqrt{2}$$