COMPITO DI Calcolabilità e Linguaggi Formali 10 Maggio 2016

Si prega di giustificare accuratamente tutte le risposte.

1. Si enunci e dimostri il secondo teorema di ricorsione di Kleene.

Soluzione Teorema. Sia $h:N\to N$ una funzione calcolabile totale. Allora esiste un numero n tale che

$$\phi_n = \phi_{h(n)}$$
.

Prova. Si definisca la funzione

$$f(x,y) = \phi_{h(\phi_x(x))}(y).$$

La funzione f e' calcolabile: dati x,y in input, decodifichiamo x per ottenere il programma P_x , al quale passiamo in input x. Se P_x termina la computazione su x con output $\phi_x(x)$ allora passiamo questo numero in input ad un programma che calcola h. Essendo h totale, la computazione sicuramente termina con output $h(\phi_x(x))$. Decodifichiamo il numero $h(\phi_x(x))$ per ottenere il programma $P_{h(\phi_x(x))}$, al quale passiamo in input il numero y. Se $P_{h(\phi_x(x))}$ termina la computazione su y con output $\phi_{h(\phi_x(x))}(y)$, allora quest'ultimo sarà il valore f(x,y). In tutti gli altri casi abbiamo $f(x,y) = \uparrow$.

Applichiamo il teorema del parametro ad f ottenendo una funzione calcolabile totale s tale che

$$\phi_{s(x)}(y) = f(x,y) = \phi_{h(\phi_x(x))}(y).$$

Sia m un numero tale $\phi_m = s$ (esiste perché s è calcolabile). Allora abbiamo

$$\phi_{\phi_m(x)}(y) = f(x,y) = \phi_{h(\phi_x(x))}(y).$$

Infine sostituiamo m per x:

$$\phi_{\phi_m(m)}(y) = f(m, y) = \phi_{h(\phi_m(m))}(y).$$

In altri termini,

$$\phi_{\phi_m(m)} = \phi_{h(\phi_m(m))}.$$

Quindi $n=\phi_m(m)$. Il ragionamento funziona perch'e h è totale e quindi definita su $\phi_m(m)$. \square

2. Si provi che un insieme I e' decidibile sse I e \bar{I} sono semidecidibili.

Soluzione Sia I decidibile. Allora la funzione caratteristica φ_I di I è calcolabile:

$$\varphi_I(x) = \begin{cases} 1, & \text{if } x \in I \\ 0, & \text{if } x \notin I \end{cases}$$

Allora possiamo facilmente calcolare la funzione semicaratteristica χ_I di I (oppure $\chi_{\bar{I}}$ di \bar{I}), definita come

$$\chi_I(x) = \begin{cases} 1, & \text{if } x \in I \\ \uparrow, & \text{if } x \notin I \end{cases}$$

aggiungendo un test sul risultato. Se l'output e' 0, aggiungiamo un ciclo infinito.

Viceversa, supponiamo che I e \bar{I} sono semidecidibili. Allora, decidiamo I con il seguente algoritmo: dato x, facciamo partire in parallelo con input x un programma P che semidecide I ed un programma Q che semidecide \bar{I} . Siccome $x \in I$ oppure $x \in \bar{I}$, uno dei due programmi terminerà sicuramente. Se termina P, allora $x \in I$. Se termina Q, allora $x \in \bar{I}$. \Box

3. Si provi che un insieme infinito e' decidibile sse puo' essere enumerato in ordine strettamente crescente.

Soluzione Sia I decidibile ed infinito. Allora la funzione f, definita come segue:

- f(0) = minimo elemento di I;
- $f(n+1) = \text{minimo elemento di } I \setminus \{f(0), f(1), \dots, f(n)\},\$

e' calcolabile con il seguente algoritmo:

$$x := 0; y := 0;$$

while $y \le n$ do begin x := x+1; (while $x-1 \notin I$ do x := x+1); y := y+1 end; f(n) = x.

Viceversa, se *I* puo' essere enumerato in ordine strettamente crescente con una funzione *f* totale, allora abbiamo

$$f(0) < f(1) < \dots f(n) < \dots$$

Dato $x \in N$, essendo f strettamente crescente, si ha sicuramente che f(x+1) > x. Allora $x \in I$ sse $\exists i \leq x (f(i) = x)$ sse $f(0) = x \vee f(1) = x \vee \cdots \vee f(x) = x$. Quindi dobbiamo controllare soltanto un numero finito di valori per sapere se $x \in I$ oppure $x \notin I$, da cui segue la decidibilità di I. \square

- 4. Si provi che le seguenti condizioni sono equivalenti per un insieme nonvuoto $I \subseteq N$:
 - (a) I e' ricorsivamente enumerabile;
 - (b) I e' semidecidibile;
 - (c) Esiste un insieme decidibile $B \subseteq N \times N$ tale che

$$x \in I \Leftrightarrow \exists t \ (t, x) \in B;$$

(d) Esiste una funzione calcolabile f tale che I = dom(f).

Soluzione Ricordiamo che un insieme $I \neq \emptyset$ è r.e. se è condominio di una funzione calcolabile totale f. In tal caso, possiamo enumerare gli elementi di I, possibilmente con ripetizione, come segue:

$$f(0), f(1), f(2), \ldots, f(n), \ldots$$

(a \Rightarrow b) Sia I r.e. Dato $x \in N$, $x \in I$ se $\exists i (f(i) = x)$. Allora il seguente e' un algoritmo che semidecide I:

$$i := 0;$$

while $f(i) \neq x$ do i := i + 1; { e' possibile un loop infinito se $x \notin I$ } output(si).

(b \Rightarrow a) Sia P un programma che semidecide I. Siccome $I \neq \emptyset$, esiste $c_0 \in I$. Consideriamo il piano Tempo \times Inputs. Spazziamo il piano con il seguente ordine: Prima tutte le coppie (t,x) la cui somma t+x=0, poi le coppie la cui somma e' 1 etc,

$$(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0), \ldots$$

Definiamo una funzione calcolabile totale f come segue:

$$f(t,x) = \begin{cases} x, & \text{se } P \text{ termina la computazione su } x \text{ in } \leq t \text{ unità di tempo} \\ c_0, & \text{altrimenti} \end{cases}$$

La sequenza

$$f(0,0), f(0,1), f(1,0), f(0,2), f(1,1), f(2,0), f(0,3), f(1,2), f(2,1), f(3,0), \dots,$$

enumera I.

 $(b \Rightarrow c)$ Sia P un programma che semidecide I. Definiamo

$$B = \{(t, x) : P \text{ termina la computazione su } x \text{ in } \leq t \text{ unità di tempo} \}$$

B e' decidibile e $x \in I$ sse esiste un tempo t tale che $(x, t) \in B$.

 $(c \Rightarrow b)$ Per semidecidere se $x \in I$, enumero le coppie

$$(0,x),(1,x),(2,x),\ldots$$

ed ad ogni passo decido se $(t, x) \in B$. Se trovo una coppia che appartiene a B allora $x \in I$, altrimenti continuo all'infinito.

 $(c \Rightarrow d)$ Definiamo

$$f(x) = \begin{cases} 1, & \text{se esiste } t \text{ tale che } (t, x) \in B \\ \uparrow, & \text{altrimenti} \end{cases}$$

 $(d \Rightarrow b)$ Se f e' calcolabile, posso semidecidere se $x \in dom(f)$ calcolando f(x). Se termina la computazione $x \in dom(f)$, altrimenti ciclo all'infinito. \square

5. Si definisca per ricorsione primitiva la funzione $f(x,y) = y \times (y+1)^x$. Si trovino poi le funzioni g ed h tali che f = recprim(g,h).

Soluzione
$$f(0,y) = y$$
 e $f(x+1,y) = y \times (y+1)^{x+1} = y \times (y+1)^x \times (y+1) = (y+1) \times f(x,y)$. Allora $g(y) = y$ e $h(x,y,z) = (y+1) \times z$.

- 6. Sia $I = \{x : dom(\phi_x) \text{ e' infinito}\}$. Quali teoremi di Rice si possono applicare ad I ed al complementare di I?
- 7. Si consideri la seguente definizione ricorsiva:

$$f(x) = \begin{cases} 1, & \text{se } x = 0; \\ f(f(x-1) - 1), & \text{se } x \neq 0; \end{cases}$$

Si determini il minimo punto fisso della precedente definizione ricorsiva verificando che il funzionale associato è ricorsivo.

- 8. Siano R, S, T espressioni regolari.
 - (i) Determinare se le seguenti espressioni regolari sono equivalenti a $(R+S+T)^*$:

a)
$$(R^* + S^* + T^*)^* + (RS^* + RT^*)^*$$

b) $(R\emptyset^* + RS^*)(RS^* + ST^*) + (RR + S + TS^*)^*$

Giustificare le risposte date, in caso positivo mostrando i passaggi di trasformazione, in caso negativo fornendo un contro-esempio.

- (ii) Supponendo di disporre degli automi finiti per riconoscere R, S e T, costruire un automa finito per riconoscere $(R + S + T)^*$.
- 9. (i) Dare la definizione formale di grammatica.
 - (ii) Illustrare la classificazione di Chomsky per le grammatiche, fornendo un esempio di grammatica di tipo 1, 2 e 3.