Вопрос 1 Сюрьективный гомоморфизм и образующие. Сюрьективный гомоморфизм и порядок. Нормальная подгруппа. Переформулировки. Примеры.

Утверждение. Пусть дан сюрьективный гомоморфизм $f: G \to H$, $\ker f = \langle g_1, \dots g_k \rangle$, $H = \langle h_1, \dots h_l \rangle$. Если взять $h_i' \in G$ такие, что $g(h_i') = h_i$, то группа G будет порождена $h_1', \dots h_l', g_1, \dots g_k$.

Лемма 1

Пусть $f: G \to H$ — гомоморфизм. Тогда $f(g_1) = f(g_2)$ тогда и только тогда, когда $g_1 \in g_2 \ker f$.

Утверждение. Пусть G конечна, $f: G \to H$ — сюрьективный гомоморфизм. Тогда $|G| = |\ker f| \cdot |H|$.

Определение 1: Нормальная подгруппа

Подгруппа $H\leqslant G$ называется нормальной, если для любых $g\in G$ и $h\in H$ выполнено следующее: $ghg^{-1}\in H$.

Обозначение. HG.