	Assignment 1
	1 Joseph 1
	Tille: To find the best til line for diven data resing
	Ploblen stakmen:
	The plaving table show the result of secently
	Conducted study on conselation, number of her spent
)	driving with sein of developing accede backache find-the
	lquatin q best jet line foi This data
	Dog huspend dérieng (x) Perk Scoce (q)
137	10
	9
	2
vall.	50
133	10
	16
	38
	16
	Objective: To understand linear regression
	Outronne. To find best scenario por result to be achieved
	for given dataset lesing linear segressin.
	SIW + HIW Package: 15/17 64 bit processor
	15/17 64 bit placerson
	Os-Windows Linux
	Jupyter Notchook

Concept related theory: linear fegression: Selationship between scalar response and one de more emplanatory variables.

The case of one emplanatory variable is linai regression. linear fledictor functions whom lenknown model falameters are estimated from data. Such model Uhear regression focuses on conditional probability distribution y response given the values of predectors, lather than joint probability distribution of all of these variables, which is domain of Multivariale analysis. A regression line is obtained which invincement which vell give nivinum error. 4= MX + C The values of he and a must be chosen so that - they rining the error. $M = \sum_{i=1}^{\infty} (\chi_i - \bar{\chi})(y_i - \bar{y})$ ¿ (x1-x)2 If 4 have positive relationship have regative relationship

$C = \overline{q} - n x \overline{x}$
Mean can
Mean square error (MSE):
Mse = 1 \(\frac{2}{5}\) (actual 0/P - predicted 0/P) ²
loot man square error Elmst)
muse = Truse
Drust - Vivos
Lesulte:
for the given tupat dataset,
We get $M = 4.58$
C = 12.58
squation of line is-
1. 10010
y= 4.58 * x + 12.58
PMSE = 22.575
MSE = 518.0047

1000	
	low
	Conclusion:
	Thus, linear regression model on given data ect is applied and best fit equation is Calculated.
	data set is applied and best but equation is
	Callulated
	- Continue.
	77. A - M
	FB0031