Structure Relational Database +.

10301223 ฐานข้อมูลโครงสร้างเชิงสัมพันธ์

คำอธิบายรายวิชา (Course Description)

(บรรยาย 2 ชั่วโมง ปฏิบัติ 3 ชั่วโมง ศึกษาด้วยตนเอง 5 ชั่วโมง/สัปดาห์)

การออกแบบและประยกต์ใช้งาน ด้านระบบฐานข้อมูล พืชคณิตเชิง สัมพันธ์ แบบจำลองข้อมูล กระบวนการนอร์มัลไลเซชั่น ภาษา ้สำหรับการสืบคุ้น (เอสคิวแอล การ รวบรวมชุดคำสัง) การประมวลผล การสืบค้น (การเชื่อมโยง, การ เรียงลำดับ, การรวม, การเพิ่ม ประสิทธิภาพ)

design and implementation of database management systems. relational algebra. data models, normalization; query languages (SQL, stored procedures), query processing (joins, sorting, aggregation, optimization)

Course Outline

Database Fundamental

Relational Model

Database Design

SQL

Query Process

Transaction Management

Resource

- Database System Concepts. 7th Edition. Avi Silberschatz, Henry F. Korth & S. Sudarshan. McGraw-Hill. ISBN 9780078022159
- Database Design for Mere Mortals.
 4th Edition. Michael
 J. Hernandez.
 Addison-Wesley
 Professional. ISBN 9780136788041

Assignment

60%

Midterm Exam

20%

Final Exam

20%

10301223 Structure Relational Database

Data?

- 1. Data constitute the building blocks of information
- 2. Information is produced by processing data
- 3. Information is used to reveal the meaning of data
- 4. Good relevant and timely information are the key to good decision making
- 5. Good decision making is the key to organization survival in global environment

Data vs Information

Data

Information

Data Processing

- Calulating : คำนวณ mean, median, mode,...
- Summarizing : สรุปผลรวม, ค่าเฉลีย
- Updating : ปรับแก้ไข
- Sorting : เรียงลำดับข้อมูล
- Reporting : รายงานข้อมูลในมิติต่าง ๆ
- Searching : ผลการค้นหาข้อมูล
- Classifying : แยกข้อมูลตามประเภท

Data?

History of Database Systems

1960s:

- Data processing using magnetic tapes for storage :Tapes provided only sequential access
- Punched cards for input

1970s:

- Hard disks allowed direct access to data
- Network and hierarchical data models in widespread use
- Ted Codd
 defines the
 relational data
 model : Oracle
 releases first
 commercial
 relational
 database
- Highperformance (for the era) transaction processing

1980s:

- Research relational prototypes evolve into commercial systems :SQL becomes industrial standard
- Parallel and distributed database systems: Wisconsin, IBM, Teradata
- Object-oriented database systems

1990s:

- Large decision support and data-mining applications
- Large multiterabyte data warehouses
- Emergence of Web commerce

2000s

- Big data storage systems
- Google
 BigTable,
 Yahoo PNuts,
 Amazon,
- "NoSQL" systems.
- Big data analysis: beyond SQL
 - Map reduce and friends

2010s

- SQL reloaded
 - SQL front end to Map Reduce systems
- Massively parallel database systems
- Multi-core main-memory databases

Database?

- Database is a collection of data.
- Database is a collection of related data and data is a collection of facts and figures that can be processed to produce information

Database Management System?

- Database Management System (DBMS) is a collection of programs which enables its users to access a database, manipulate data and reporting/representation of data.
- DBMS contains information about a particular enterprise
 - Collection of interrelated data
 - Set of programs to access the data
 - An environment that is both convenient and efficient to use
- Database systems are used to manage collections of data that are:
 - Highly valuable
 - Relatively large
 - Accessed by multiple users and applications, often at the same time.

Tools

Database Applications Examples

- Enterprise Information
 - Sales: customers, products, purchases
 - Accounting: payments, receipts, assets
 - Human Resources: Information about employees, salaries, payroll taxes.
- Manufacturing: management of production, inventory, orders, supply chain.
- Banking and finance
 - customer information, accounts, loans, and banking transactions.
 - Credit card transactions
 - Finance: sales and purchases of financial instruments (e.g., stocks and bonds; storing real-time market data
- Universities: registration, grades
- Etc.

การแก้ไขปัญหาระบบไฟล์ข้อมูล ด้วย ระบบฐานข้อมูล

Program

Database

Student file

Regis file

Teacher file

Workload file

.... file

Interface

Database Management System (DBMS) **Application Program**

งานตารางสอน อจ.

Lecture Schedule System

Program B

Program C งานทะเบียนนศ.

Registration System

Program D

Program E

งานเงินเดือน

Registration System Reports

Users

Purpose of Database Systems

• Data redundancy and inconsistency: data is stored in multiple file formats resulting induplication of information in different files

Emp_code	Emp_name	Emp_experience	ce Dep_id	Dep_mar	nager_name
1	Arpit	2	22	Ankit	
2	Ajay	5	18	Mohit	
3	Deepak	3	17	Shruti	
4	Chetan	1	22	Ankit	
5	Manish	4	18	Mohit	
6	Abhishek	2	19	Rohit	

• Data isolation : Multiple files and formats

Purpose of Database Systems

 Integrity constraints: The existence of such constraints allows storing of data in an organized and refined manner.

• Security : provide user access

Purpose of Database Systems

Atomicity of updates

Transfer of funds from one account to another should either complete or not happen at all

Concurrent access by multiple users

Database Architecture

Centralized databases

One to a few cores, shared memory

Client-server,

One server machine executes work on behalf of multiple client machines.

Parallel databases Shared disk

Many core shared memory

Shared nothing

Distributed databases

Geographical distribution

Schema/data

heterogeneity

Database Applications

- Two-tier architecture --the application resides at the client machine, where it invokes database system functionality at the server machine
- Three-tier architecture -- the client machine acts as a front end and does not contain any direct database calls.
 - The client end communicates with an application server, usually through a forms interface.
 - The application server in turn communicates with a database system to access data.

Database Users

Database Administrator

A person who has central control over the system is called a database administrator (DBA). Functions of a DBA include:

Schema definition

Storage structure and access-method definition Schema and physical-organization modification

Granting of authorization for data access

Routine maintenance

Periodically backing up the database

Ensuring that enough free disk space is available

Monitoring jobs running on the database

Data Management System?

10301223 Structure Relational Database