

Evaluation Randomisiert-Kontrollierter Studien und Experimente mit ${\sf R}$

Randomisiert-Kontrollierte Studien: Aufbau & Hintergrund

Prof. Dr. David Ebert & Mathias Harrer

Graduiertenseminar TUM-FGZ

Psychology & Digital Mental Health Care, Technische Universität München

Randomisiert-Kontrollierte Studien: Kernmerkmale

"Randomized controlled trials are the **most rigorous** way of determining whether a **cause-effect relation** exists between **treatment and outcome** and for assessing the **cost effectiveness** [sic] of a treatment."

- Sibbald & Roland (1998)

Randomisiert-kontrollierte Studien werden häufig als "Goldstandard" zum Nachweis der Wirksamkeit einer Intervention angesehen.

(Akobeng, 2005; Backmann, 2017; Hariton & Locascio, 2018; Lilienfeld et al., 2018)

Dieser Status wird auch teils hinterfragt und relativiert.

(z.B. Cartwright, 2007, 2011; Grossman & Mackenzie, 2005; Kaptchuk, 2001; Pearl & Mackenzie, 2018, Kapitel 4).

Kernmerkmale Randomisiert-Kontrollierter Studien

- Zufällige Zuordnung zu Experimental- und Kontrollbedingungen.
- Teilnehmende und Studienpersonal wissen nicht, wem welche Bedingung zugeordnet wurde ("double-blind study"). Dies ist oftmals aber nicht möglich!
- Alle Gruppen erhalten die gleiche Behandlung, bis auf die Experimentalgruppe
- Teilnehmende werden als Teil der Gruppe analysiert, zu der sie zugeordnet wurden; unabhängig davon, ob sie diese Behandlung tatsächlich (vollständig) erhalten haben ("once randomized, alyways analyzed"; Intention-to-treat-Ansatz)
- Die Analyse fokussiert auf die Schätzung der Größe der Unterschiede zwischen den Gruppen bezüglich eines vordefinierten Outcomes ab. Dieses Outcome ist zeitlich und hinsichtlich des genutzten Instruments genau definiert.

Konfundierung

Ziel eines Experimentes ist es, kausale Schussfolgerungen ziehen zu können (z.B. "Behandlung X führt zu Outcome Y").

Das Experimentaldesign soll es erlauben, von beobachteten Zusammenhängen ausgehend ($X\leftrightarrow Y$) Ursache-Wirkungs-Beziehungen abzuleiten ($X\to Y$; "kausale Inferenz").

Dieser Inferenzschluss ist gefährdet wenn die Wirkungsbeziehung $X \to Y$ durch Drittfaktoren Z konfundiert wird.

Kausalmechanismen können durch Kausaldiagramme ("directed acyclic graphs"; DAGs) formalisiert werden (Pearl, 2009, Kapitel 1.2.1; Greenland et al., 1999):

Potential Outcomes Model of Causation (Rubin, 1974)

Der **kausale Effekt einer Behandlung** au auf Person i ist die **Differenz** zum Messzeitpunkt t zwischen

- ullet Y, vorausgesetzt, dass i die Behandlung erhält (X_1); und
- Y, vorausgesetzt, dass i die Behandlung $\underline{\mathrm{nicht}}$ erhält (X_0):

$$\tau_{i,t} = Y_{i,t}(X_1) - Y_{i,t}(X_0)$$

Problem: Ein Individuum i kann nie gleichzeitig X_1 und X_0 erhalten; $\tau_{i,t}$ basiert also gewissermaßen auf "kontrafaktischen" (counterfactual) Zuständen. Die Schätzung von $\tau_{i,t}$ setzt daher die "Austauschbarkeit" (Exchangeability) von i voraus (Greenland & Robins, 1986, 2009).

o Wie kann "Austauschbarkeit" erreicht werden, insbesondere wenn unbekannte Einflussfaktoren Z das Outcome Y ebenfalls beeinflussen?

aus Pearl & MacKenzie (2018), Kapitel 4.

In den 1920er Jahren beginnt Fisher in der Rothamsted Forschungsstation mit randomisierten Experimenten zum Effekt von Düngemitteln.

Seine Einsicht: durch die Randomisierung wird der systematische Einfluss sämtlicher Konfundierungsvariablen ausgeschaltet; Unterschiede in den Gruppen kommen nur zufällig zustande.

- Wird ein randomisiertes Experiment unendlich oft wiederholt, "canceln" sich die Zufallseffekte gegenseitig aus. Es entstehen dadurch zwei (hypothetische) Kollektive, die mit Blick auf <u>alle</u> (bekannten und unbekannten) Einflussfaktoren "austauschbar" sind.
- Die Randomisierung ersetzt zahllose unbekannte und bekannte Einflussvariablen durch eine einzige: den unsystematischen Einfluss des Zufalls, der sich statistisch quantifizieren lässt (z.B. durch Konfidenzintervalle).

Vor Randomisierung von X.

 ${\bf Nach\ Randomisierung\ von\ } X{:}\ confounders\ bleiben\ als\ {\bf prognostische}\ {\it Variablen\ erhalten}.$

X

LEHMAN, CHAP5.

Hypothesen

equivalence, non-inferiority

randomisierungstests

Referenzen

- Akobeng, A. K. (2005). Understanding randomised controlled trials. *Archives of Disease in Childhood*, 90(8), 840–844.
- Backmann, M. (2017). What's in a gold standard? In defence of randomised controlled trials. *Medicine*, *Health Care and Philosophy*, 20(4), 513–523.
- Cartwright, N. (2007). Are RCTs the gold standard? BioSocieties, 2(1), 11-20.
- Cartwright, N. (2011). Predicting what will happen when we act. What counts for warrant? *Preventive Medicine*, 53(4-5), 221–224.
- Greenland, S., Pearl, J., & Robins, J. M. (1999). Causal diagrams for epidemiologic research. *Epidemiology*, 37–48.
- Greenland, S., & Robins, J. M. (1986). Identifiability, exchangeability, and epidemiological confounding. International Journal of Epidemiology, 15(3), 413–419.
- Greenland, S., & Robins, J. M. (2009). Identifiability, exchangeability and confounding revisited. Epidemiologic Perspectives & Innovations, 6(1), 1–9.
- Grossman, J., & Mackenzie, F. J. (2005). The randomized controlled trial: Gold standard, or merely standard? *Perspectives in Biology and Medicine*, 48(4), 516–534.

- Hariton, E., & Locascio, J. J. (2018). Randomised controlled trials—the gold standard for effectiveness research. *BJOG: An International Journal of Obstetrics and Gynaecology*, 125(13), 1716.
- Kaptchuk, T. J. (2001). The double-blind, randomized, placebo-controlled trial: Gold standard or golden calf? *Journal of Clinical Epidemiology*, 54(6), 541–549.
- Lehmann, E. L. (2011). Fisher, neyman, and the creation of classical statistics. Springer Science & Business Media.
- Lilienfeld, S. O., McKay, D., & Hollon, S. D. (2018). Why randomised controlled trials of psychological treatments are still essential. *The Lancet Psychiatry*, 5(7), 536–538.
- Pearl, J. (2009). Causality. Cambridge university press.
- Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic books.
- Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688.
- Sibbald, B., & Roland, M. (1998). Understanding controlled trials. Why are randomised controlled trials important? *BMJ: British Medical Journal*, 316(7126), 201.