Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-11-26

Recall:

Reachability

- Transitive closure R^+ is reachability via at least one R-step
- **Reflexive transitive closure** R^* is reachability via any number of R-steps

Let a directed graph G = (V, E) with vertex/node set V and edge relation $E : V \leftrightarrow V$ be given.

Formalise:

- No edge ends at node *s*
- No edge starts at node s
- Node n_2 is reachable from node n_1 via a three-edge path
- Every node is reachable from node *r*
- From every node, each node is reachable
- Each node in the set *S* : **set** *V* is reachable from every node in *S*
- A node n is said to "lie on a cycle" if there is a non-empty path from n to n
- No node lies on a cycle
- Each node has at most one predecessor
- Every node is reachable from node *r*

Plan for Today

- Sets of Functions with Selected Properties: +>, >>, +>>, ...
- Inverses, Categories
- Bags (Multisets)
- Equivalence Classes, Partitions
- Graph Concepts via Relations: Closures, Reachability

Recall: Properties of Heterogeneous Relations

A relation $R: B \leftrightarrow C$ is called:

univalent determinate	$R \ \ \ R \subseteq Id$	$\forall b, c_1, c_2 \bullet b (R) c_1 \land b (R) c_2 \Rightarrow c_1 = c_2$			
total	Dom R =	$A \mid R \mid \forall b : B \bullet (\exists c : C \bullet b (R) c)$			
injective	$R \mathring{\circ} R \check{\smile} \subseteq \operatorname{Id}$	$\forall b_1, b_2, c \bullet b_1 (R) c \wedge b_2 (R) c \Rightarrow b_1 = b_2$			
surjective	Ran R =				
a mapping	iff it is univalent and total				
bijective	iff it is injective and surjective				

Univalent relations are also called (partial) functions.

Mappings are also called total functions.

Function Sets — Z Definition and Description [Spivey 1992]

In Z, $X \leftrightarrow Y = \mathbb{P}(X \times Y)$, and $x \mapsto y = (x, y)$ is an abbreviation for pairs.

$$X \rightarrow Y == \{f: X \leftrightarrow Y \mid (\forall x: X; y_1, y_2: Y \bullet (x \mapsto y_1) \in f \land (x \mapsto y_2) \in f \Rightarrow y_1 = y_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x: X; y_1, y_2: Y \bullet (x \mapsto y_1) \in f \land (x \mapsto y_2) \in f \Rightarrow y_1 = y_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f = X\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_2) \Rightarrow x_1 = x_2\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_2) \Rightarrow x_1 = x_2\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_2) \Rightarrow x_1 = x_2\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \bullet f(x_2) \Rightarrow x_1 = x_2\}\}$$

$$X \rightarrow Y == \{f: X \rightarrow Y \mid (\forall x_1, x_2: \text{dom } f \land f(x_2) \Rightarrow$$

If X and Y are sets, $X \leftrightarrow Y$ is the set of partial functions from X to Y. These are relations which relate each member x of X to at most one member of Y. This member of Y, if it exists, is written f(x). The set $X \to Y$ is the set of total functions from X to Y. These are partial functions whose domain is the whole of X; they relate each member of X to exactly one member of Y.

Function Sets — Z Definition and Laws [Spivey 1992]

In Z, $X \leftrightarrow Y = \mathbb{P}(X \times Y)$, and $x \mapsto y = (x, y)$ is an abbreviation for pairs, and $S \circ R = R \, \mathring{\varsigma} \, S$. $X \to Y = \{ f : X \longleftrightarrow Y \mid (\forall x : X; y_1, y_2 : Y \bullet (x \mapsto y_1) \in f \land (x \mapsto y_2) \in f \Rightarrow y_1 = y_2) \}$

$$X \longrightarrow Y == \{ f : X \longrightarrow Y \mid \text{dom } f = X \}$$

$$X \rightarrowtail Y == \{f: X \nrightarrow Y \mid (\forall x_1, x_2 : \text{dom } f \bullet f(x_1) = f(x_2) \Rightarrow x_1 = x_2)\}$$

$$X \rightarrowtail Y == (X \rightarrowtail Y) \cap (X \longrightarrow Y)$$

$$X + Y = \{ f : X \to Y \mid \operatorname{ran} f = Y \}$$

$$X \longrightarrow Y == (X \longrightarrow Y) \cap (X \longrightarrow Y)$$

$$X \rightarrowtail Y == (X \multimap Y) \cap (X \rightarrowtail Y)$$

Laws:
$$f \in X \to Y \Leftrightarrow f \circ f^{\sim} = \operatorname{id}(\operatorname{ran} f)$$

$$f \in X \to Y \Leftrightarrow f \in X \to Y \land f^{\sim} \in Y \to X$$

$$f \in X \to Y \Leftrightarrow f \in X \to Y \land f^{\sim} \in Y \to X$$

$$f \in X \to Y \Leftrightarrow f \in X \to Y \land f^{\sim} \in Y \to X$$

$$\begin{split} f \in X \rightarrowtail Y &\Leftrightarrow f \in X \longrightarrow Y \land f^{\sim} \in Y \longrightarrow X \\ f \in X \nrightarrow Y &\Rightarrow f \circ f^{\sim} = \operatorname{id} Y \end{split}$$

Function Sets

For two sets A : **set** t_1 and B : **set** t_2 , we adopt the following **function set** definitions from Z:

Z	CALCCHECK			
$f \in A \to B$	$f \in A \Leftrightarrow B$	\tfun	total function	$Dom f = A \wedge f \ \S f \subseteq \mathbb{I} B$
$f \in A \Rightarrow B$		\pfun	partial function	$Dom f \subseteq A \land f \ \S f \subseteq \mathbb{I} B$
$f \in A \rightarrow B$		\tinj	total injection	$f \mathring{\varsigma} f \widetilde{} = \mathbb{I} A \wedge f \widetilde{} \mathring{\varsigma} f \subseteq \mathbb{I} B$
$f \in A \Rightarrow B$		\pinj	partial injection	$f \mathring{\varsigma} f^{\sim} \subseteq \mathbb{I} A \wedge f^{\sim} \mathring{\varsigma} f \subseteq \mathbb{I} B$
$f \in A \twoheadrightarrow B$		\tsurj	total surjection	$Dom f = A \wedge f \ \S f = \mathbb{I} B$
$f \in A \twoheadrightarrow B$		\psurj	partial surjection	$Dom f \subseteq A \land f \ \S f = \mathbb{I} B$
$f \in A > \!\!\!\! > \!\!\!\! > B$		\tbij	total bijection	$f \mathring{g} f = \mathbb{I} A \wedge f \mathring{g} f = \mathbb{I} B$
	$f \in A \rtimes B$	\pbij	partial bijection	$f \circ f \cong \mathbb{I} A \wedge f \circ f = \mathbb{I} B$

Properties of Heterogeneous Relations — Notes

univalent	$R \ \ \ \ \ \ \ R$	⊆	Id	$\forall b, c_1, c_2 \bullet b \ (R) \ c_1 \land b \ (R) \ c_2 \Rightarrow c_1 = c_2$
surjective	Id	⊆	$R \ \ \beta R$	$\forall c: C \bullet (\exists b: B \bullet b (R) c)$
total	Id	⊆	$R\SR$	$\forall b: B \bullet (\exists c: C \bullet b (R) c)$
injective	$R \stackrel{\circ}{,} R^{\sim}$	⊆	Id	$\forall b_1, b_2, c \bullet b_1 (R) c \wedge b_2 (R) c \Rightarrow b_1 = b_2$

All these properties are defined for arbitrary relations! (Not only for functions!)

• *R* is univalent and surjective

iff $R \sim R = Id$

iff R is a left-inverse of R

• *R* is total and injective

iff $R \circ R = Id$

iff R is a right-inverse of R

Inverses of Total Functions

- (14.43) **Definition:** Let $f: B \leftrightarrow C$ be a **mapping**. An **inverse of** f is a mapping $g: C \leftrightarrow B$ such that $f \circ g = \mathbb{I} \setminus B$ and $g \circ f = \mathbb{I} \setminus C$.
 - *f* has an inverse iff *f* is a bijective mapping.
 - The inverse of a bijective mapping f is its converse f.
 - A homogeneous bijective mapping is also called a **permutation**.

4 1 5

```
Inverses of Total Functions (ctd.)
```

(14.43) **Definition:** Let $f: B \leftrightarrow C$ be a mapping.

An **inverse of** f is a mapping $g: C \leftrightarrow B$ such that $f \circ g = \mathbb{I} \setminus B$, and $g \circ f = \mathbb{I} \setminus C$.

Theorem: If g is an inverse of $f: B \to C$, then $g = f^{\sim}$. **Proving** $f^{\sim} \subseteq g \subseteq f^{\sim}$, for using antisymmetry of \subseteq : f^{\sim} $= \langle \text{ Identity of } \mathring{g} \rangle$ $= \langle g \text{ is an inverse of } f \rangle$ $f^{\sim} \mathring{g} f \mathring{g} g$ $\subseteq \langle \text{ "Mon. } \mathring{g} \text{ w. } f \text{ is univalent, that is, } f^{\sim} \mathring{g} f \subseteq \text{Id} \rangle$ $\text{Id} \mathring{g} g$ $= \langle \text{ Identity of } \mathring{g} \rangle$ g $\subseteq \langle \text{ Identity of } \mathring{g} \rangle$ g $\subseteq \langle \text{ Identity of } \mathring{g} \rangle$ g $g \mathring{g} f \mathring{g} f^{\sim}$ $g \mathring{g} f \mathring{g} f^{\sim}$

General Inverses

A general setting that has an associative composition ; with identities Id is called a category.

In any category: **Definition of Inverse**: g is an inverse of $f: B \to C$ iff $f \circ g = Id$ and $g \circ f = Id$.

In the category of sets and total functions, we have (see previous slide):

Theorem: Characterisation of inverse total functions:

 $f: B \longrightarrow C$ has an inverse iff f is bijective.

In the category of sets and arbitrary relations, we have:

Theorem: Characterisation of inverse relations:

 $R: B \leftrightarrow C$ has an inverse iff R is a bijective mapping.

Proof: Exercise!

In the category of monotone mappings between partial orders, a bijective monotone mapping may not have an inverse,

e.g. $f : \{a, b\} \rightarrow \{\sigma, \tau\}$ with orders as indicated:

(The inverse of f as just a mapping is not monotone.)

"Multisets" or "Bags"

A **bag** (or **multiset**) is "like a set, but each element can occur any (finite) number of times". Bag comprehension and enumeration: Written as for sets, but with delimiters l and l. Sets versus bags example:

The operator $_{\#}: t \to Bag \ t \to \mathbb{N}$ counts the number of occurrences of an element in a bag: $1 \# \ \ 0,0,0,1,1,4 \ \ = 2$

Bag extensionality and bag inclusion are defined via all occurrence counts:

$$B = C \equiv (\forall x \bullet x \# B = x \# C) \qquad B \subseteq C \equiv (\forall x \bullet x \# B \le x \# C)$$

Bag union, intersection, difference: $x \# (B \cup C) = (x \# B) + (x \# C)$ $x \# (B \cap C) = (x \# B) \downarrow (x \# C)$

$$x \# (B - C) = (x \# B) - (x \# C)$$

In Z, a bag is the function producing the counts of its elements: $Bag A = A \Rightarrow (\mathbb{N} - \{0\})$ — This view is useful for **implementation via "dictionary" datatypes**.

Equivalence Relations, Equivalence Classes, Partitions

Recall: A (homogeneous) relation $R : B \leftrightarrow B$ is called:

reflexive	Id	⊆	R	$(\forall b: B \bullet b (R) b)$
symmetric	R∼	=	R	$(\forall b,c:B \bullet b (R) c \equiv c (R) b)$
transitive	$R \mathring{\circ} R$	⊆	R	$(\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d)$
idempotent	$R \stackrel{\circ}{,} R$	=	R	
equivalence	$Id \subseteq R = R \stackrel{\circ}{,} R$	=	R~	reflexive, transitive, symmetric

Definition (14.34): Let Ξ be an equivalence relation on B. Then $[b]_{\Xi}$. the **equivalence class of** b, is the subset of elements of B that are equivalent (under Ξ) to b:

$$x \in [b]_{\Xi} \equiv x (\Xi) b$$

$$[b]_{\Xi} = \Xi(|\{b\}|)$$

Theorem: For an equivalence relation Ξ on B, the set $\{b: B \bullet \Xi (|\{b\}|)\}$ of equivalence classes of Ξ is a partition of $_{\iota}B_{\iota}$.

Definition (11.76): If $T : \mathbf{set} \ t$ and $S : \mathbf{set} \ (\mathbf{set} \ t)$, then:

S is a partition of
$$T \equiv (\forall u, v \mid u \in S \land v \in S \land u \neq v \bullet u \cap v = \{\}) \land (\bigcup u \mid u \in S \bullet u) = T$$

The partition view can be useful for **implementing** equivalence relations.