

DATABASE SYSTEMS
(Part 2 of 2: SQL)

CT102: Information Systems

## DATABASE LANGUAGES

The programming language for Relational Databases is called SQL - Structured Query Language

SQL is a standardised Query language across all relational DBMS (with some minor variations):

- First version SQL-89
- •SQL-92 (SQL-2)
- SQL-99 (SQL-3)
- Recent standards include XML-related features

Standardised by American National Standards Institute (ANSI) and International Standards Organization (ISO)

### SQL

- SQL is a declarative language
- It allows you specify the results you require ... not the order of the operations to retrieve those results
- In comparison, C, C++, Java, Python are considered Imperative Languages ... which facilitate computation by means of state changes, e.g., can specify

```
int a; a = 3;
```

SQL allows you to create tables and links between tables, manipulate and query data (CRUD operations) and specify privileges.

#### SQL QUERIES

Allows for specification of queries

Queries represent information needs

Queries can be run to produce results

Result might be:

- Output to user
- Modification of Data in Database
- CRUD operations: Create Read Update Delete

## INSERT STATEMENT

The INSERT statement allows data to be inserted as part of a query (rather than via the graphical user interface (GUI))

General format is:

```
INSERT INTO table (<attribute list> )
VALUES (<value list>);
```



#### **EXAMPLE 1**

Add a new tuple to the AddressBook table for name 'Ann Lawlor' and house number (HseNum) 12

**Note:** If primary key exists, must specify it for any INSERT statement, e.g. if mobile phone is Primary Key

## WITH PRIMARY KEY



Add a new tuple to the AddressBook table for name 'Ann Lawlor' and house number (HseNum) 12 with mobile phone, '086858585'

#### **UPDATE**

Can modify one or more records

General format is:

```
UPDATE table
SET <attribute name> = <some value>
WHERE <condition>;
```

#### **EXAMPLE 2**

Update the house number of Peter Smith in the AddressBook Table to 90

#### DELETE

The DELETE statement does not remove the table structure (e.g. attributes), only the data in the tables

General format:

```
PELETE *

FROM table

WHERE condition;
```

### **EXAMPLE 3**

Delete appointment number 8 from the table appointments:

```
DELETE *
FROM appointments
WHERE id = 8;
```

# MORE EXAMPLES: Example 4: for school table

Using INSERT, insert a new tuple into the school table for student "R. Sandip" with ID 181111 and Code GY350 and modCode 'CT441'

```
INSERT INTO School (ID, Sname, Code,
modCode)

VALUES (181111, 'R. Sandip', 'GY350',
'CT441');
```

# EXAMPLE 5: again with school table:



Using UPDATE, change the grade for student with ID 21112 and modcode MA160 from "B" to "A"

Note: Boolean AND is written "AND" in SQL

```
UPDATE School
SET     Grade = 'A'
WHERE     ID = 21112 AND
     modcode = 'MA160' AND
     Grade = 'B';
```

# Example 6 with school table

Using DELETE, delete student "A. Alabbad", with ID 20343

DELETE \*

FROM School

**WHERE** ID = 20343

# Read using SQL SELECT statement

Most important and often-used query is that of **selecting** tuples (rows) from a table (or multiple tables) that satisfy some condition

SELECT statement allows this

Has 6 possible "clauses", we will consider the first 3:

```
SELECT [DISTINCT] <attribute list>
FROM 
WHERE <condition>
```

# Examples using addressbook table



7 Using the original table 1, write a query to find the names and mobile phone numbers of all people in Galway.

```
SELECT FullName, MobPh
```

FROM AddressBook

WHERE county = 'Galway';



8 Using the original table 1, write a query to find the name of the person with mobile phone number '087 123456'

SELECT FullName

FROM AddressBook

WHERE MobPh = '087123456'

# Example using the appointments table

**9** Using the appointments table, write a query to find the names and date of all appointments for the consultant "Dr Garvey"



SELECT PatientName, AptDate

FROM appointments

WHERE ConsultantName = 'Dr Garvey';

## QUERYING ACROSS MULTIPLE TABLES

- A number of different approaches can be used if query needs to select data from multiple tables.
- The query becomes more complex. One approach is use two queries – an outer and a sub-query.
- If the subquery returns a single number then can connect the two with a simple mathematical operator such as =, !=, >, <, etc.
- If the subquery returns a single string then can connect the two with a string comparison using an operator such as =,!=

#### **EXAMPLE 10:**

```
## appointments

∠ ID → PatientName → BirthYear → ConsultantName → Room → Speciality → AptDate →
```

#### Assume you are given the following three tables:

```
patient(pID, pName, BirthYear)
counsultant(cID, cName, room,
speciality)
appointments(ID, pID, cID, AptDate)
```

Find what room Ali Byrne should attend for appointments

```
patient(<u>pid</u>, pname, birthyear)
counsultant(<u>cid</u>, cname, room, speciality)
appointments(<u>id</u>, pid, cid, aptdate)
```

```
SELECT
       room
FROM consultant
WHERE CID IN
    (SELECT cID
    FROM appointment
    WHERE pID =
                (SELECT pID
                 FROM patient
                 WHERE pName = 'Ali Byrne')
  );
```

# What does the query look like using the original appointments table?

```
appointments

∠ ID → PatientName → BirthYear → ConsultantName → Room → Speciality → AptDate →
```

```
SELECT room
```

FROM appointments

```
WHERE PatientName = 'Ali Byrne';
```

#### **EXAMPLE 11: USING SCHOOL TABLE**

Using the school table, write a query to find the names of all students with an "A" grade in the subject with name 'Mathematics'

```
SELECT SName

FROM School

WHERE grade = 'A' AND ModName = 'Mathematics';
```

# USING AGGREGATE FUNCTIONS

SQL supports a number of aggregate functions which can be used in the SELECT clause

**Examples include:** 

- •SUM, AVG, MIN, MAX applied to numeric fields
- \*COUNT returns the number of tuples/values specified in a query

#### **EXAMPLE 12**

Using the school table, write a query to find how many people received an "A" grade across all subjects



SELECT COUNT(Sname)

FROM School

WHERE grade = 'A';

#### **EXAMPLE 13**

Using the appointments table, (and using a subquery) write a query to find the youngest person who has an appointment

```
SELECT PatientName

FROM appointments

WHERE DateOfBirth =

(SELECT MAX(DateOfBirth))

FROM appointments);

Consult Room • Consult Area • AptDate
```

## EXAMPLE 14: LOOKING AT 2 NEW TABLES:

employees(employeeNumber, lastName, firstName,
extension, email, officeCode, reportsTo, jobTitle)

offices(officeCode, city, phone, addressLine1, addressLine2, state, country, postalCode, territory)

# LOOKING AT THE DATA TYPES

employees(employeeNumber, lastName, firstName, extension,
email, officeCode, reportsTo, jobTitle)

offices(officeCode, city, phone, addressLine1, addressLine2, state, country, postalCode, territory)

| Column       | Туре                    |
|--------------|-------------------------|
| officeCode   | varchar(10)             |
| city         | varchar(50)             |
| phone        | varchar(50)             |
| addressLine1 | varchar(50)             |
| addressLine2 | varchar(50) NULL        |
| state        | varchar(50) <i>NULL</i> |
| country      | varchar(50)             |
| postalCode   | varchar(15)             |
| territory    | varchar(10)             |

| Column         | Туре         |
|----------------|--------------|
| employeeNumber | int(11)      |
| lastName       | varchar(50)  |
| firstName      | varchar(50)  |
| extension      | varchar(10)  |
| email          | varchar(100) |
| officeCode     | varchar(10)  |
| reportsTo      | int(11) NULL |
| jobTitle       | varchar(50)  |

# **EXAMPLE 14 QUESTIONS:** Write SELECT statements to find the following answers:

- 14.1 Find all the countries where there are offices.
- 14.2 Find all the employees (their names) with job Title "Sales Rep".
- 14.3 Find the cities in country "USA" where there are offices.
- 14.4 Find the email address of employee "Julie Firrelli".
- 14.5 Find the postcode of the Paris office.

### SOLUTIONS

```
-- 14.1
SELECT DISTINCT country
FROM offices
-- 14.2
SELECT firstName, lastName
FROM employees
WHERE jobTitle = 'Sales Rep';
```

# SOLUTIONS ctd.

```
-- 14.3

SELECT city

FROM offices

WHERE country = 'USA';

-- 14.4

SELECT email

FROM employees

WHERE firstName = 'Julie' AND lastName = 'Firrelli';
```

# SOLUTIONS ctd.

```
-- 14.5

SELECT postalCode

FROM offices

WHERE city = 'Paris';
```

# DATABASE SYSTEM SUMMARY PART 2

A database requires some data access method in order to query and modify data - SQL is the programming language for Relational Databases

Many other languages for structured data are similar to SQL

SQL SELECT statement: 3 clauses we considered:

SELECT FROM WHERE with 1 table only

Also: MIN, MAX, AVG, SUM, COUNT()

SQL INSERT INTO, UDPATE, DELETE on 1 table only