

PHÂN TÍCH KẾT QUẢ KHÍ MÁU ĐỘNG MẠCH

Báo cáo viên: ThS. Lê Khắc Bảo Bô môn Nội – Đại học Y Dược TPHCM

- Đánh giá tính chính xác của kết quả
 - A. Tương thích nội tại
 - B. Tương thích ngoại lai
- Phân tích rối loạn cân bằng toan kiềm
 - A. Đọc kết quả
 - B. Xác định nguyên nhân
- Phân tích rối loạn oxy hóa máu
 - A. Đọc kết quả
 - B. Xác định nguyên nhân

- Đánh giá tính chính xác của kết quả:
 - A. Kiểm tra tính tương thích bên trong
 - Đánh giá chuyển hóa gián tiếp
 - 2. Qui luật số 8
 - 3. Phương trình Henderson Hasselbalch cải biên
 - B. Kiếm tra tính tương thích bên ngoài

1. ĐÁNH GIÁ CHUYỂN HÓA GIÁN TIẾP

- Bất kỳ sự thay đổi pH nào phải có nguồn gốc là hô hấp hoặc chuyển hóa.
- Các bước tính toán:
 - Tính pH dự kiến từ trị số PaCO₂
 - So sánh pH dự kiến với pH thực
 - Dự kiến > Thực 0,03 → kèm kiềm chuyển hóa → HCO₃ ↑
 - Dự kiến < Thực 0,03 → kèm toan chuyển hóa → HCO₃ ↓
 - o Nếu thay đổi HCO₃ ngược hướng → Sai sót kỹ thuật

ƯỚC ĐOÁN THAY ĐỔI pH, HCO₃ THEO THAY ĐỔI PaCO₂

Thay đổi PaCO₂ cấp	Thay đổi tương ứng		
tính so với ban đầu	рН	HCO ₃	
↑ 10 mmHg	↓ 0,05	↑1 mmol/L	
↓ 10 mmHg	↑ 0,1	↓ 2 mmol/L	

Thay đổi PaCO ₂ mạn	Thay đổi tương ứng		
tính so với ban đầu	рН	HCO ₃	
↑ 10 mmHg	↓ 0,03	↑ 3,5 mmol/L	
↓ 10 mmHg	10,03	↓ 5 mmol/L	

2. QUI LUẬT SỐ 8

- HCO₃⁻ có thể được tiên đoán dựa trên trị số pH và PaCO₂.
- HCO₃⁻ đo được HCO₃⁻ dự đoán | > 4 mmol/ L
 → Sai số kỹ thuật

ƯỚC ĐOÁN HCO₃ THEO PaCO₂ & pH

HCO ₃ ⁻ dự đoán = PaCO ₂ x Hệ số theo pH			
рН	hệ số tương ứng		
7,6	8/8		
7,5	6/8		
7,4	5/8		
7,3	4/8		
7,2	2,5/8		
7,1	2/8		

3. PHƯƠNG TRÌNH ANDERSON HASSELBALCH CẢI BIÊN

- Trị số H⁺ có thể tính toán được khi biết 2 trị số PaCO₂ và HCO₃⁻
- Phương trình tính toán:

$$[H^+] = \frac{24 \times PaCO_2}{[HCO_3^-]}$$

pH thay đổi trong khoảng 7,2 – 7,5 có tương quan đường thẳng giữa pH và H⁺

TƯƠNG QUAN GIỮA pH & [H⁺]

рН	[H+] nEq/L
7,80	16
7,70	20
7,60	25
7,55	28
7,50	32
7,45	35
7,40	40
7,35	45
7,30	50
7,25	56
7,20	63
7,15	71
7,10	79
7,00	100
6,90	126
6,80	159

- Đánh giá tính chính xác của kết quả:
 - A. Kiểm tra tính tương thích bên trong
 - B. Kiếm tra tính tương thích bên ngoài
 - Bệnh cảnh lâm sàng đối lập kết quả KMĐM
 - 2. HCO₃ tĩnh mạch HCO₃ động mạch > 5 mmol/L
 - 3. $SpO_2 \neq SaO_2$
 - 4. $PaO_2 > 5 \times FiO_2$

- Đánh giá tính chính xác của kết quả
 - A. Tương thích nội tại
 - B. Tương thích ngoại lai
- Phân tích rối loạn cân bằng toan kiềm
 - A. Đọc kết quả
 - B. Xác định nguyên nhân
- Phân tích rối loạn oxy hóa máu
 - A. Đọc kết quả
 - B. Xác định nguyên nhân

Phân tích rối loạn cân bằng toan – kiềm

- A. Đọc kết quả
 - Xác định toan hay kiềm máu
 - Xác định rối loạn nguyên phát
 - 3. Xác định bù trừ có đủ chưa
 - 4. Xác định khoảng trống anion máu, nước tiểu
 - Xác định khoảng trống delta
- B. Xác định nguyên nhân

BƯỚC 1: TOAN HAY KIỀM MÁU

- pH < 7,35 → Toan máu</p>
- pH > 7,45 → Kiềm máu

BƯỚC 2: RỐI LOẠN NGUYÊN PHÁT

nU ~ 7 25 ~	PaCO ₂ > 45 → Toan hô hấp HCO ₃ < 22 → Toan chuyển hóa	
μπ < 7,35 - 7		
nU > 7.45 ->	PaCO ₂ < 35 → Kiềm hô hấp HCO ₃ > 26 → Kiềm chuyển hóa	
ρη - 1,45 -	HCO₃ > 26 → Kiềm chuyển hóa	

BƯỚC 3: BÙ TRỪ ĐỦ HAY KHÔNG

Thay đổi tiên phát PaCO ₂		Thay đổi thứ phát		
		рН	HCO ₃	
Cán	↑ 10 mmHg	↓ 0,05	↑1 mmol/L	
Cấp	↓ 10 mmHg	↑ 0,1	↓ 2 mmol/L	
Mạn	↑ 10 mmHg	↓ 0,03	↑ 3,5 mmol/L	
	↓ 10 mmHg	1 0,03	↓ 5 mmol/L	
Thay đổi tiên phát Thay đổi thứ p HCO₃ pH PaC		ổi thứ phát		
		рН	PaCO ₂	
↑1 mmo	ol/L	↑ 0,015 ↑ 0,7 mmH		
↓ 1 mmol/L		↓ 0,015 ↓ 1,2 mmH ₀		

BƯỚC 4: KHOẢNG TRỐNG ANION

- Σ anion (ion âm) = Σ cation (ion dương)
 - $_{\circ}$ Σ anion = anion [đo được + không đo được]
 - $_{ullet}$ Σ cation = cation [đo được + không đo được]
- □ Anion gap (AG) AGT lehi có axit hui cơ le diện ly → le có gọ bũ thể
 - Hiệu của anion không đo được cation không đo được = cation đo được – anion đo được
- Công thức tính AG
 - AG $_{MAU}$ = Na⁺ [Cl ⁻ + HCO₃⁻]; \perp : 10 ± 2 mEq/L
 - o AG $_{NT}$ = Na⁺ + K ⁺ Cl⁻; \bot ≥ 0 mEq/L

BƯỚC 5: KHOẢNG TRỐNG DELTA

- ↑ AG → ↓ HCO₃- tương ứng để duy trì
 được cân bằng nội môi về điện tích
- Delta gap (DG)
 - Khác biệt giữa thay đổi AG và HCO₃-
 - DG = \triangle AG \triangle HCO₃⁻
- Kết quả:
- loan chuyển hóa AG ↑ đơn thuần
- AAG 66 O DG > 0 → kèm kiềm chuyển hóa
- Дню, DG < 0 -> kèm toan chuyển hóa AG 🗘 (có mất 1103,)

- Phân tích rối loạn cân bằng toan kiềm
 - A. Đọc kết quả
 - B. Xác định nguyên nhân
 - Toan chuyển hóa
 - Kiểm chuyển hóa
 - 3. Toan hô hấp
 - 4. Kiềm hô hấp

TOAN CHUYỂN HÓA

Cơ chế bệnh sinh

↑ tạo H⁺

↑ mất HCO₃-

↓ thải H+

Nhiễm acid lactic, ceton acid, ly giải cơ vân nặng

Ngộ độc ethylene glycol, ethanol, methanol, acid salicylic

Nuôi ăn tĩnh mạch, truyền NaCl, uống NH₄Cl Mất qua đường tiêu hóa: tiêu chảy; viêm tụy; dò mậttiêu hóa; mở hồng tràng ra da

Mất qua đường tiết niệu: RTA₂, lợi tiểu ống gần Do giảm lọc tại cầu thận: Suy thận mạn; Suy thận cấp Do giảm bài tiết H⁺

Do giam bai tiet H⁺ tại ống thận: RTA₁ ; RTA₄

PHÂN LOẠI TOAN CHUYỂN HÓA

- Toan chuyển hóa tăng AG
 - Toan ceton acid (ĐTĐ, đói, ngộ độc rượu)
 - Toan acid lactic (↓ oxy mô: choáng, thuốc)
 - Toan acid uremic (suy thận)
 - Ngộ độc (ethylene glycol, ethanol, methanol, aspirin)
- Toan chuyển hóa AG bình thường
 - Mất HCO₃⁻ : qua tiêu hóa hoặc qua thận
 - Giảm thải H⁺ qua thận

PHÂN LOẠI TOAN CHUYỂN HÓA ANION GẠP MÁU BÌNH THƯỜNG

- Toan chuyển hóa do tiêu hóa:
 - HCO₃[−] giảm → H⁺ tăng tương đối
 - Thận tăng thải NH₄⁺ vào nước tiểu dưới dạng NH₄CL
 → Cl⁻ NT tăng → AG NT âm tính
 - AG $_{NT}$ = [Na⁺ + K⁺] Cl⁻ < 20 \rightarrow 50 mEq/L
 - Meo nhớ: "neGUTive" urinary anion gap
- Toan chuyển hóa do thận (toan hóa ống thận)
 - Thận không tăng thải NH₄⁺ → Cl⁻_{NT} bình thường → AG _{NT} ≥ 0 mEq/L

TOAN HÓA ỐNG THẬN GẦN (RTA₂)

Cơ chế:

- Óng gần tổn thương → HCO₃⁻ không được hấp thu tại ống gần sẽ đi đến ống xa và ống góp
- Ông xa toàn vẹn → tăng tái hấp thu HCO₃⁻ bằng cách tăng tiết H⁺ & K⁺
- Ông góp toàn vẹn → tăng hấp thu nước bằng cách tăng tiết H+, K+ dưới tác dụng Aldosteron

Hậu quả:

- pH nước tiểu kiềm hay toan tùy theo lượng HCO₃⁻
 được hấp thu thiếu xót hay đầy đủ
- Giảm K+ máu do mất K+ qua nước tiểu

TOAN HÓA ỐNG THẬN XA (RTA₁)

Cơ chế:

- Óng xa tổn thương → HCO₃⁻ không được hấp thu tại
 ống xa đi đến ống góp
- Ông góp toàn vẹn → tăng tái hấp thu nước bằng cách tăng tiết H+, K+ dưới tác dụng của aldosteron

Hậu quả:

- pH nước tiểu kiềm vì HCO₃⁻ mất ra ngoài
- Giảm K+ máu

TOAN HÓA ỐNG GÓP (RTA₄)

Cơ chế:

- Óng góp tổn thương → không hấp thu được nước
 bằng cách tăng tiết K⁺ dưới tác dụng của aldosteron
- Gồm có toan hóa ống góp do nồng độ aldosteron máu giảm hoặc tế bào ống góp đề kháng aldosteron

Hậu quả:

- pH nước tiểu toan vì HCO₃- không bị mất
- Tăng K⁺ máu

TIÊU CHÍ CHẨN ĐOÁN

CÁC NGUYÊN NHÂN GÂY TOAN HÓA ỐNG THẬN

RTA ₂	RTA ₁	RTA ₄
Đa u tủy vô căn Thoái biến dạng bột Giảm Canxi máu Thiếu vitamin D	H/chứng Sjogren vô căn, có tính gia đình Tăng tiểu calci Viêm thấp khớp Bệnh hồng cầu liềm Lupus đỏ hệ thống	Đái tháo đường Viêm thận mô kẽ Suy thượng thận Tắc đường niệu
Lợi tiểu ống gần Ngộ độc kim loại nặng: Pb, Hg	Amphotericin B	UCMC, NSAIDS, Heparin, Lợi tiểu giữ K ⁺

KIÈM CHUYỂN HÓA

- Cơ chế gây kiềm chuyển hóa bao gồm:
 - 。 Hình thành kiềm chuyển hoá → HCO₃-↑
 - Duy trì kiềm chuyển hóa → HCO₃⁻ không thải ra được
- Cơ chế duy trì kiềm chuyển hóa liên quan tổn thương tại thận
- Cơ chế duy trì kiềm chuyển hóa không tồn tại → kiềm chuyển hóa sẽ nhanh chóng điều chỉnh

KIÈM CHUYỂN HÓA

- Cơ chế hình thành kiềm chuyển hóa:
 - Tăng nhập HCO₃⁻
 - Tăng mất H⁺
 - Mất nước làm giảm thể tích dịch ngoại bào
- Cơ chế duy trì kiềm chuyển hóa:
 - Tổn thương bài tiết HCO₃- tại thận là cơ chế chính để duy trì kiểm chuyển hóa
 - Giảm độ lọc cầu thận (GFR) hoặc tăng hấp thu HCO₃là hai lý do gây tổn thương bài tiết HCO₃-
 - 。 Tăng hấp thu HCO₃⁻ do ↓ V_{TH}, ↓ Cl ⁻ , ↓ K⁺ máu

PHÂN LOẠI KIỀM CHUYỂN HÓA

- Kiềm chuyển hóa đáp ứng điều trị bù NaCl:
 - Cl nước tiểu ≤ 25 mEq/L
 - Mất H⁺ qua dạ dày do ói hay hút dịch dạ dày
 - Dùng lợi tiểu quai/ lợi tiểu thiazide trước đó
 - Tiêu chảy mất Cl⁻ do u tuyến nhung mao/ thuốc xổ
 - 。 Bệnh xơ nang (Cl⁻ mồ hôi cao)
 - Kiềm chuyển hóa sau tăng CO₂

PHÂN LOẠI KIỀM CHUYỂN HÓA

- Kiềm chuyển hóa kháng điều trị bù NaCl:
 - Cl nước tiểu ≥ 25 mEq/L
 - † aldosteron nguyên phát: h/chứng Cushing, Liddle, lạm dụng corticoid.
 - Hội chứng Bartter hay Gitelman
 - Đang dùng lợi tiểu quai/ thiazide
 - Quá tải chất kiềm ngoại sinh: truyền dịch bicarbonate, truyền máu có chất kháng đông citrate, dùng antacid
 - Giảm K⁺ máu nặng

TOAN HÔ HẤP

- Tổn thương thần kinh:
 - Trung ương gây ức chế trung tâm hô hấp
 - Thần kinh cơ ngoại biên gây yếu cơ hô hấp
- Tổn thương phổi → ↓ thông khí phế nang:
 - Tăng kháng lực đường thở
 - Giảm đàn hồi
 - Tăng khoảng chết

CƠ CHẾ GÂY TOAN HỘ HẤP

KIÈM HÔ HẤP

- Cơ chế: thông khí phế nang tăng do:
 - Kích thích thần kinh trung ương
 - Giảm oxy máu
 - Rối loạn lo âu
- Phân loại:
 - Kiềm hô hấp có P(A a) O₂ bình thường
 - Kiềm hô hấp có P(A a) O₂ tăng

NGUYÊN NHÂN GÂY KIỀM HỘ HẤP

- P(A-a)O₂ bình thường
 - Thông khí cơ học quá mức
 - Tổn thương thần kinh trung ương:
 - Tăng thông khí do nguyên nhân tâm thần kinh
 - Sốt, Đau
 - Viêm màng não, Viêm não, U não
 - Thai kỳ
 - Cường giáp
 - Do thuốc: Salicylates, Progesterone, Catecholamines
 - Giảm oxy mô: do độ cao, thiếu máu nặng
 - Nhiễm nội độc tố
 - Xo gan

NGUYÊN NHÂN GÂY KIỀM HÔ HẤP

- P(A-a)O₂ tăng
 - Bất xứng V/Q
 - Shunt

Đánh giá tính chính xác của kết quả

Phân tích rối loạn cân bằng toan – kiềm

Phân tích rối loạn oxy hóa máu

BA THÀNH PHẦN TRONG ĐÁNH GIÁ OXY HÓA MÁU ĐỘNG MẠCH

Hb

- \circ ≥ 8 g/dL \rightarrow tải đủ O₂ cho mô / tim mạch bình thường
- ≥ 10 g/dL → tải đủ O₂ / tim mạch bệnh lý

SaO₂

- Cùng với Hb quyết định lượng O₂ tải đến mô
- Chỉ dùng đến khi SaO₂ được đo trực tiếp

PaO₂

- Là trị số thường dùng nhất vì đo trực tiếp
- Phân tích PaO₂ tùy thuộc BN có thở oxy hay không

ĐỊNH NGHĨA THÔNG SỐ

- $P_{(A-a)}O_2 = P_AO_2 PaO_2$

 - R = thương số hô hấp = 0,8
 - $_{\circ}$ P_(A-a)O₂ bình thường = 2,5 + 0,21 x tuổi

TRẢ LỜI KẾT QUẢ PaO₂

PaO ₂	FiO ₂ = 21%	FiO ₂ > 21 %	
> 100 mmHg (*)	Sai số kỹ thuật	↓ oxy máu điều chỉnh quá mức	
80 – 100 mmHg	Bình thường	↓ oxy máu đã	
60 – 80 mmHg	Giảm oxy máu nhẹ	được điều chỉnh	
40 – 60 mmHg	Giảm oxy máu vừa	↓ oxy máu không	
< 40 mmHg	Giảm oxy máu nặng	được điều chỉnh	

(*) $PaO_2 > 5 FiO_2 \rightarrow sai số kỹ thuật$

CƠ CHẾ GIẨM PaO₂

Nguyên nhân	PaO ₂	PaCO ₂	$P_{(A-a)}O_2$	
Nguyen man	Γ aO ₂	$racc_2$	21% FiO ₂	100% FiO ₂
Thông khí phế nang ↓	\	↑	Т	Τ
Bất xứng V/Q ↑	\	⊥, ↑ hay ↓	↑	Т
Shunt tuyệt đối ↑	\	⊥ hay ↓	↑	↑
Oxy tĩnh mạch trộn ↓	\	\	↑	1
Khuếch tán qua màng ↓	Nghỉ ngơi: ⊥	Nghỉ ngơi: ⊥ Vận động: ↓	Nghỉ ngơi ⊥	
	Vận động: ↓	Vận động: ↓	Vận động ↑	

- Bình thường P_(A-a)O₂ ↑3 mmHg/10 tuổi ↑ thêm kể từ 30 tuổi
- $P_{(A-a)}O_2$ < 25mmHg (FiO₂ = 21%); <150mmHg (FiO₂=100%)

TIẾP CẬN CHẨN ĐOÁN CƠ CHẾ & NGUYÊN NHÂN GIẢM OXY MÁU

NGUYÊN NHÂN GÂY BẤT XỬNG V/Q

- Bất xứng V/Q do tổn thương thông khí:
 - Đường thở: COPD, Hen, Viêm tiểu phế quản tắc nghẽn
 - Mô kẽ : IPF, Sarcoidosis
 - Phế nang: Phù phổi, Suy tim, Viêm phổi.v.v.
- Bất xứng V/Q do tổn thương tưới máu:
 - Thuyên tắc huyết khối, thuyên tắc mỡ

NGUYÊN NHÂN GÂY SHUNT

- Shunt do phế nang lấp đầy hoặc xẹp:
 - Phế nang bị lấp đầy:
 - Tim mạch: Suy tim trái, Phù phổi, Bệnh van hai lá
 - Phổi: ARDS, Viêm phổi, Viêm phổi tăng tế bào ái toan
 - Phế nang: xuất huyết, dập, ứ đọng protein
 - Hít sặc, ngạt nước, tắc đường hô hấp trên
 - Phế nang bị xẹp:
 - · Bất động, sau phẫu thuật
- Shunt do mạch máu đi tắt:
 - Tại phổi: Dị dạng động tĩnh mạch phối
 - Tại tim: Thông liên thất, liên nhĩ, còn ống động mạch

KÉT LUẬN

- 1) Kiểm tra tương thích bên trong và bên ngoài là việc phải làm trước phân tích kết quả KMĐM
- 2) Phân tích rối loạn cân bằng toan kiềm
 - Tương quan giữa pH, PaCO₂, HCO₃ là then chốt trong phân tích cân bằng toan kiềm
 - Bệnh cảnh lâm sàng luôn là chứng cứ quan trọng cho chẩn đoán chính xác
- 3) Phân tích oxy hóa máu:
 - Nguyên nhân giảm oxy hóa máu luôn phải tìm kiếm
 - Cả Hb, SaO₂,PaO₂ chứ không chỉ mỗi PaO₂