# Algoritmul lui Prim

### Algoritmul lui Prim

- ☐ Se pornește de la un vârf, care formează arborele inițial
- La un pas, este selectată o muchie de cost minim, de la un vârf deja adăugat în arbore, la un vârf neadăugat



#### **KRUSKAL**

- □ Iniţial:  $T = (V, \varnothing)$
- □ pentru i = 1, n-1
  - alege o muchie uv cu cost minim din G a.î. u,v sunt în componente conexe diferite (T + uv aciclic)
  - $\circ \quad \mathsf{E}(\mathsf{T}) = \mathsf{E}(\mathsf{T}) \ \mathsf{U} \ \{\mathsf{uv}\}$

#### **PRIM**

- **s** vârful de start
- □ Iniţial, T = ({s}, ∅)

#### **KRUSKAL**

- □ Iniţial: T = (V, ∅)
- □ pentru i = 1, n-1
  - alege o muchie uv cu cost minim din G a.î. u,v sunt în componente conexe diferite (T + uv aciclic)
  - $\circ \quad \mathsf{E}(\mathsf{T}) = \mathsf{E}(\mathsf{T}) \ \mathsf{U} \ \{\mathsf{uv}\}$

#### **PRIM**

- □ **s** vârful de start
- □ pentru i = 1, n-1
  - alege o muchie uv cu cost minim
     din G a.î. u ∈ V(T) şi v ∉ V(T)
  - $\circ \quad V(T) = V(T) \ \bigcup \ \{v\}$
  - $\circ$  E(T) = E(T) U uv

#### **KRUSKAL**

 Iniţial: cele n vârfuri sunt izolate, fiecare formând o componentă conexă



 Se încearcă unirea acestor componente prin muchii de cost minim

#### <u>PRIM</u>

Iniţial: se porneşte de la un vârf de start

1

Se adaugă, pe rând, câte un vârf la arborele deja construit, folosind muchii de cost minim

#### **KRUSKAL**

#### La un pas:

 muchiile selectate formează o pădure

#### **PRIM**

#### La un pas:

 muchiile selectate formează un arbore

#### **KRUSKAL**

#### La un pas:

 muchiile selectate formează o pădure



Este selectată o muchie de cost minim, care unește doi arbori din pădurea curentă (două componente conexe).

#### **PRIM**

#### La un pas:

 muchiile selectate formează un arbore



Este selectată o muchie de cost minim, care unește un vârf din arbore cu unul care nu este în arbore (neselectat).

### Arbori parțiali de cost minim



**Imagine din**R. Sedgewick, K. Wayne – **Algorithms, 4th edition**, Pearson Education, 2011







1











































Cum alegem *eficient* o muchie de cost minim cu o extremitate selectată (deja în arbore) și cealaltă nu?



La fiecare pas, parcurgem toate muchiile și o alegem pe cea de cost minim cu o extremitate selectată și una neselectată.



La fiecare pas, parcurgem toate muchiile și o alegem pe cea de cost minim cu o extremitate selectată și una neselectată.

⇒ O(mn) - ineficient





Cum evităm să comparăm de fiecare dată toate muchiile cu o extremitate în arbore și cealaltă nu?

#### **Exemplu:**

După ce vârfurile 1 și 5 au fost adăugate în arbore, muchiile (2, 1) și (2, 5) sunt comparate la fiecare pas, deși w(2, 1) > w(2, 5), deci (2, 1) nu va fi selectată niciodată.



Cum evităm să comparăm de fiecare dată toate muchiile cu o extremitate în arbore şi cealaltă nu?

Pentru fiecare vârf (neselectat), memorăm doar muchia de cost minim care îl unește cu un vârf din arbore (selectat).

pentru vârful **2**, va fi memorată, la acest pas, muchia **(2, 5)** 



### Prim - Complexitate

Variante: O(n<sup>2</sup>) / O(m logn)

 memorăm, la fiecare pas, pentru fiecare vârf, muchia de cost minim care îl uneşte de un vârf care este deja în arbore

sau

heap de muchii

(v. şi laborator + seminar + alg. Dijkstra)

# Detalii de implementare Algoritmul lui Prim

Asociem fiecărui vârf u următoarele informaţii (etichete) - pentru a reţine muchia de cost minim care îl unește de un vârf selectat deja în arbore:

Asociem fiecărui vârf u următoarele informaţii (etichete) - pentru a reţine muchia de cost minim care îl uneşte de un vârf selectat deja în arbore:

- □ **d[u]** = costul minim al unei muchii de la u la un vârf deja selectat în arbore
- □ tata[u] = acel vârf din arbore pentru care se realizează minimul



#### Avem:

- (u, tata[u]) este muchia de cost minim de la u la un vârf din arbore



#### Algoritmul se modifică astfel:

#### La un pas:

- se alege **un vârf** u cu **eticheta d minimă**, care nu este încă în arbore și se adaugă la arbore muchia **(tata[u], u)** 
  - o aceasta este muchia de cost minim care unește un vârf neselectat de un vârf din arbore

### Algoritmul se modifică astfel:

#### La un pas:

se alege **un vârf** u cu **eticheta d minimă**, care nu este încă în arbore și se adaugă la

arbore muchia (tata[u], u)

se actualizează etichetele vârfurilor v ∉ V(T)vecine cu u astfel:

dacă w(u, v) < d[v] atunci d[v] = w(u, v) tata[v] = u



Muchiile arborelui vor fi, în final:

(u, tata[u]),  $u \neq s$ 

### Prim

Notăm Q = V(G) - V(T) = mulțimea vârfurilor neselectate încă în arbore

### Prim - Algoritm

```
□ s - vârful de start
□ inițializează Q cu V
□ pentru fiecare u ∈ V execută
    d[u] = ∞
    tata[u] = 0
□ d[s] = 0
```

```
s - vârful de start
inițializează Q cu V
pentru fiecare u ∈ V execută
    d[u] = ∞
    tata[u] = 0

d[s] = 0
cât timp Q ≠ Ø execută // pentru i=1,n (suficient n-1)
```

```
□ s - vârful de start
☐ inițializează Q cu V
  pentru fiecare u ∈ V execută
       d[u] = \infty
       tata[u] = 0
\Box d[s] = 0
   cât timp Q \neq \emptyset execută // pentru i=1,n (suficient n-1)
       extrage un vârf u ∈ Q cu eticheta d[u] minimă
       pentru fiecare uv ∈ E execută
           dacă v \in Q si w(u,v) < d[v] atunci
               d[v] = w(u,v)
               tata[v] = u
```

```
□ s - vârful de start
☐ inițializează Q cu V
   pentru fiecare u ∈ V execută
       d[u] = \infty
       tata[u] = 0
\Box d[s] = 0
  cât timp Q \neq \emptyset execută // pentru i=1,n (suficient n-1)
       extrage un vârf u ∈ Q cu eticheta d[u] minimă
       pentru fiecare uv ∈ E execută
           dacă v \in Q și w(u,v) < d[v] atunci
               d[v] = w(u,v)
               tata[v] = u
\square scrie (u, tata[u]) pentru u \neq s
```

□ Iniţializări —

□ n \* extragere vârf minim —

□ actualizare etichete vecini —



Cum putem memora Q pentru a determina eficient vârful u ∈ Q cu eticheta minimă?



- Cum putem memora Q pentru a determina eficient vârful u ∈ Q cu eticheta minimă?
  - o vector?
  - heap?

Varianta 1 - Folosim vector de vizitat

Varianta 1 - cu vector de vizitat

☐ Iniţializări

□ n \* extragere vârf minim

actualizare etichete vecini

Varianta 1 - cu vector de vizitat

Iniţializări

→ O(n)

□ n \* extragere vârf minim

 $\rightarrow$  O(n<sup>2</sup>)

actualizare etichete vecini

O(m)

 $O(n^2)$ 











Pentru vârful 2, este memorată muchia (2,1) de cost 15, mai exact costul muchiei în d[2] și cealaltă extremitate în tata[2]











| urtata     | L 0/0, | ω/υ,  | ω/ <b>υ</b> , | ω/ <b>υ</b> , | ω/ <b>υ</b> , | $\infty / 0$ |
|------------|--------|-------|---------------|---------------|---------------|--------------|
| Selectăm 1 | [ -,   | 15/1, | 11/1,         | ∞ <b>/0</b> , | ∞ <b>/0</b> , | ∞/0 ]        |
| Selectăm 3 | [ -,   | 15/1, | -,            | ∞ <b>/0</b> , | <b>8/3</b> ,  | 9/3]         |
| Selectăm 5 | [ -,   | 10/5, | -,            | ∞ <b>/0</b> , | -,            | 9/3]         |
| Selectăm 6 |        |       |               |               |               |              |
|            |        |       |               |               |               |              |



5/6,

Selectăm 6











Vectorul tata ⇒ muchiile arborelui (u, tata[u]), u ≠ s

Varianta 2 - cu memorarea vârfurilor într-un min-heap Q (min-ansamblu)

☐ Iniţializare Q —

□ n \* extragere vârf minim –

□ actualizare etichete vecini —

```
Prim(G, w, s)
    pentru fiecare u ∈ V executa
        d[u] = \infty; tata[u] = 0
    d[s] = 0
    initializeaza 0 cu V
    cat timp Q ≠ ∅ executa
         u = extrage varf cu eticheta minima din Q
         pentru fiecare v adiacent cu u executa
             daca v \in Q si w(u, v) < d[v] atunci
                 d[v] = w(u, v)
                  tata[v] = u
                  ???
    scrie (u, tata[u]), pentru u ≠ s
```

```
Prim(G, w, s)
    pentru fiecare u ∈ V executa
        d[u] = \infty; tata[u] = 0
    d[s] = 0
    initializeaza 0 cu V
    cat timp Q ≠ Ø executa
         u = extrage varf cu eticheta minima din Q
         pentru fiecare v adiacent cu u executa
             daca v \in Q si w(u, v) < d[v] atunci
                 d[v] = w(u, v)
                 tata[v] = u
                 // actualizeaza Q - pentru Q heap
    scrie (u, tata[u]), pentru u ≠ s
```

Varianta 2 - cu memorarea vârfurilor într-un min-heap Q (min-ansamblu)

☐ Iniţializare Q

O(n)

n \* extragere vârf minim

→ O(n logn)

actualizare etichete vecini

O(m logn)

O(m logn)

**Observație** - Dacă graful este complet (spre exemplu, dacă toate punctele se pot conecta și distanța dintre puncte este distanța euclidiană), atunci m = n(n-1) / 2 este de ordin  $n^2$ 

⇒ O(n²) mai eficient

## Algoritmi bazați pe eliminare de muchii



**Temă:** Care dintre următorii algoritmi determină corect un arbore parțial de cost minim? Justificați. Pentru fiecare algoritm corect, precizați ce complexitate are.

1.  $T \leftarrow G$  cât timp T conține cicluri execută alege e o muchie de cost minim care este conținută într-un ciclu din T  $T \leftarrow T$  - e

2. T ← G cât timp T conține cicluri execută alege C un ciclu oarecare din T și fie e muchia de cost maxim din C T ← T - e

# Corectitudine Algoritmii Kruskal + Prim



Cei doi algoritmi determină corect un apcm?

Chiar dacă muchiile au și costuri negative?

Costul arborelui obținut de algoritmul lui Prim nu depinde de vârful de start?

☐ Fie A  $\subseteq$  E o mulțime de muchii

#### Amintim

#### **KRUSKAL**

- □ Iniţial:  $T = (V, \emptyset)$
- □ pentru i = 1, n-1
  - alege o muchie uv cu cost minim din G a.î. u,v sunt în componente conexe diferite (T + uv aciclic)
  - $\circ \quad \mathsf{E}(\mathsf{T}) = \mathsf{E}(\mathsf{T}) \ \cup \ \{\mathsf{uv}\}$



#### <u>PRIM</u>

- □ **s** vârful de start
- □ Iniţial, T = ({s}, ∅)
- □ pentru i = 1, n-1
  - alege o muchie uv cu cost minim din
     G a.î. u ∈ V(T) şi v ∉ V(T)
  - $\circ V(T) = V(T) \cup \{v\}$
  - $\circ$  E(T) = E(T) U uv



Atât algoritmul lui Kruskal, cât și cel al lui Prim, funcționează după următoarea schemă:

- $\Box$  A =  $\varnothing$  (mulțimea muchiilor selectate în arborele construit)
- □ pentru i = 1, n-1 execută

alege o muchie e astfel încât  $A \cup \{e\} \subseteq apcm$ 

$$A = A \cup \{e\}$$

□ returnează T = (V, A)

Vom demonstra cu **criteriu de alegere a muchiei e** la un pas astfel încât:

$$A \subseteq apcm \Rightarrow A \cup \{e\} \subseteq apcm$$

Vom demonstra că algoritmii lui Kruskal și Prim aplică acest criteriu.

#### **KRUSKAL**



#### **PRIM**





 $A \subseteq apcm \Rightarrow A \cup \{e\} \subseteq apcm$ 

Fie G = (V, E, w) un **graf conex ponderat.** 

Propoziție. Algoritmul lui Kruskal determină un apcm.

**Propoziție.** Algoritmul lui Prim determină un apcm.

