

Machine Learning

Dr. Mehran Safayani

safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Machine Learning

- Grew out of work in AI
- New capability for computers
- Learn from Data

Examples

CATs vs DOGs

if-then-else

#
intelligence

It is very hard to say what makes a 2

Machine Learning Fundamentals

Machine Learning definition

- Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.
- Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

"A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam. What is the task T in this setting?

ML is only a small part!

More Examples:

- Database mining
 - Large datasets from growth of automation/web.
 - E.g., Web click data, medical records, biology, engineering
- Applications can't program by hand.
 - E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision.
- Self-customizing programs
 - E.g., Amazon, Netflix product recommendations
- Understanding human learning (brain, real AI).

GigaFLOPs per Dollar

GigaFLOPs per Dollar

What to expect?

- overview over ML
- basic understanding of most important ML methods and fundamental concepts
- experience how ML is done on a practical problem

What not to expect?

- instantly becoming an expert data scientist / ML researcher / statistician / large-scale ML specialist / ML software expert / domain expert
- You will not learn ALL advanced methods.
- This course is not specially about big data or large-scale methods.

Syllabus

- Introduction
- Regression
 - Least Square
 - Maximum Likelihood
 - Overfitting
 - Regularization
 - Ridge and Lasso Regression
 - Model Selection
 - Bias and variance

Syllabus

- Classification
 - Logistic Regression
 - softmax regression
 - Bayes classifier
 - Naive Bayes
 - K-nearest Neighbors
 - support vector machine
 - Decision tree
 - Error metrics for unbalance data
- Unsupervised Learning
 - k-means clustering
 - Gaussian mixture models
 - Expectation maximization
 - Dimension Reduction
 - Singular value decomposition
 - Principal Component Analysis

Prerequisites

- Statistics and probability
- Linear Algebra
- Programming

Recommended Textbooks

- G. James, D. Witten, T. Hastie and R. Tibshirani: An introduction to statistical learning
- C. Bishop: Pattern Recognition and Machine Learning
- K. Murphy: Machine Learning: A Probabilistic Perspective

Related Courses

- Machine Learning, EPFL, https://www.epfl.ch/labs/mlo/machine-learning-cs-433/
- Machine Learning, Standford university, Coursera <u>https://www.coursera.org/learn/machine-learning</u>

Teacher Assistants

- Fatemeh Piri
- Ali Tamizifar
- Arsham haghighat
- Amir Arbab

Course Strategy

- Assignments and projects 20% to 30%
- Midterm and quizzes 30% to 40%
- Final 30% to 40%

برای دریافت آموزش های بیشتر در حوزه یادگیری عمیق و یادگیری ماشین کانال زیر را دنبال کنید:

https://www.aparat.com/mehran.safayani