Universidade Estadual Vale do Acaraú - UVA

Curso: Ciência da Computação Disciplina: Matemática Discreta

Professor: Hudson Costa

Entrega: 18/10/2022

Tarefa 02 - Funções, Relações e Equivalências, Ordem Parcial, Relações de Recorrência e Soluções em Forma Fechada

1. **[Funções]** Sejam $f: X \longleftarrow Y \in g: Y \longleftarrow Z$ funções tal que $h = g \circ f$ é uma bijeção.

- a) Prove que f é injetiva.
- b) Prove que g é sobrejetiva.
- 2. [Funções] Suponha que $f:X\to Y$ e $g:Y\to Z$ são ambas sobrejetivas. Prove que $g\circ f$ é sobrejetiva.
- 3. [Relações e Equivalências] Para todo $[x] \in \mathbb{Z}/n$ e todo $k \in \mathbb{Z}$, podemos definir k[x] por:

$$k[x] = \underbrace{[x] + [x] + \dots + [x]}_{k \text{ vezes}}$$

em que o resultado é um elemento de \mathbb{Z}/n . Dizemos que k[x] é um múltiplo de [x].

- a) Liste todos os múltiplos de [3] em $\mathbb{Z}/9$.
- b) Liste todos os múltiplos de [3] em $\mathbb{Z}/8$.
- 4. [Relações e Equivalências] Seja G um grafo conexo não orientado e seja V o conjunto de todos os vértices em G. Defina uma relação R em V da seguinte forma: dados vértices $a, b \in V, aRb$ quando existe um caminho de a para b com um número par de arestas. (Um caminho pode usar a mesma aresta mais de uma vez). Prove que R é uma relação de equivalência.
- 5. [Ordem Parcial] Suponha que você queira escrever um programa que irá coletar informação sobre os gostos de um cliente e customizar o conteúdo web de acordo com esses dados. Ao monitorar os hábitos de compra online, você é capaz de coletar um conjunto de preferências entre pares de produtos. Seja X o conjunto dos produtos. Se $x, y \in X$ são dois produtos diferentes, dizemos que $x \leq y$ se o cliente prefere y a x. (A fim de satisfazer a propriedade reflexiva, estipulamos que $x \leq y$ para todo $x \in X$.) Suponha que você saiba as seguintes coisas a respeito do seu cliente.

Cliente prefere	Mais que
alface	brócolis
repolho	brócolis
tomate	repolho
cenoura	repolho
cenoura	alface
aspargos	alface
cogumelo	tomate
milho	tomate
milho	cenoura
berinjela	cenoura
berinjela	aspargos
cebola	cogumelo
cebola	milho

A fim de que (X, \preceq) seja um conjunto parcialmente ordenado, devemos assumir também que as preferências do cliente são transitivas.

- a) Desenhe o diagrama de Hasse para (X, \preceq) .
- b) Qual é (ou quais são) o(s) vegetal(is) favorito(s) do cliente? [Ou seja, quais são so elementos maximais?] Qual é (ou quais são) o(s) vegetal(is) menos apreciado(s)?
- c) Use ordenação topológica para classificar esses vegetais na ordem de preferência do cliente. Essa classificação é única?
- 6. [Ordem Parcial] Seja $W = \{a, b, c, d, e, f, g, h, i, j, k, l\}$. Defina uma ordem parcial em W pelo diagrama de Hasse abaixo.

- a) Encontre dois elementos de W cujo encontro existe mas cuja junção não existe.
- b) Encontre dois elementos de W cuja junção existe mas cujo encontro não existe.
- c) Encontre dois elementos de W cujo encontro e cuja junção não existam.
- 7. [Relações de Recorrência] Círculos podem ser arrumados na forma arrumados na forma de triângulo equilátero. seja T(n) o número de círculos necessários para formar um triângulo com n círculos. Escreva uma relação de recorrência para T(n).

- 8. [Relações de Recorrência] O antigo jogo indiano Chaturanga do qual aparentemente deriva o jogo de xadrez moderno era jogado em um tabuleiro com 64 quadrados. Uma certa lenda folclórica conta a história de um rajá que prometeu uma recompensa de um grão de arroz para o primeiro quadrado do tabuleiro, dois grãos de arroz para o segundo quadrado, quatro para o terceiro e assim por diante, dobrando o número de grãos para cada quadrado consecutivo.
 - a) Escreva uma relação de recorrência para R(n), o número de grãos de arroz no n-ésimo quadrado.
 - b) Calcule R(64). Assumindo que um grão de arroz pesa 25 miligramas, quantos quilogramas de arroz devem ser colocados no 64º quadrado?
- 9. [Soluções em Forma Fechada] Considere a relação de recorrência a seguir:

$$B(n) = \begin{cases} 2 & \text{se } n = 1\\ 3 * B(n-1) + 2 & \text{se } n > 1 \end{cases}$$

use indução para provar que $B(n) = 3^n - 1$

10. **[Soluções em Forma Fechada]** Dê um palpite de solução em forma fechada para a relação de recorrência a seguir:

$$P(n) = \begin{cases} 5 & \text{se } n = 0\\ P(n-1) + 3 \text{ se } n > 0. \end{cases}$$

Demonstre que seu palpite está correto.