Домашнее задание 2, Новиков Герман, 277

Все вычисления вместе с кодом и комментариями находятся в файле на **github**

Задача 1. (Задача нормер 9). Цифры 0,1,2,...,9 среди 800 первых десятичных знаков числа π появляются 74,92,83,79,80,73,77,75,76,91 раз соответственно.

Проверить гипотезу о согласии данных с законом равномерного распределения.

Решение: Для проверки гипотезы о равномерности распределении данных воспользуемся критерием χ^2 :

Получаемое значение T_{χ^2} отвечает нашему предположению для $\alpha=0.05$, соотвественно, принимаем гипотезу о равномерном распределении.

3адача 2. data = [50numbers]

Используя Пирсоновский хи-квадрат тест, проверить гипотезу о том, что эти числа распределены согласно равномерному распределению на отрезке [0, 1].

Решение: Аналогично предыдущей задаче, однако в этот раз воспользуемся p-value.

Полученное значение $p_{value} = 0.23$ показывает, что с достаточной вероятностью данные распределены равномерно на [0,1], что подтверждает нашу гипотезу.

Задача 3. (Задача номер 10) При эпидемии гриппа из 200 контролируемых людей однократное заболевание наблюдалось у 181 человека, а дважды болели гриппом 9 человек. Правдоподобна ли гипотеза о том, что в течение эпидемии гриппа число заболеваний отдельного человека представляет собой случайную величину, подчиняющуюся биномиальному распределению с числом испытаний n=2?

Решение: Изначально, мы не знаем распределение вероятностей (то есть не знаем параметр p), строим правдоподобие для него и находим предполагаемое значение. Дальше используем критерий χ^2 .

Полученное $p_{value} = 3.18e^{-29}$ есть почти нулевая величина, что означает, что мы получили очень редкое событие и, в соответствии с этим, мы отвергаем нашу гипотезу о нормальном распределении.

Задача 4. Пусть некоторая статистика, построенная по простой выборке, в условиях истинности гипотезы H_0 имеет абсолютно непрерывное

распределение. Рассматривая p-value как случайную величину, найти ее распределение.

Решение: В предположении, что нулевая гипотеза H_0 справедлива, рассматриваемая нами статистика T(X) имеет распределение F(t). Рассматриваем распределение p-value (учитывая, что статистика имеет абсолютно непрерывное распределение), фактически - p-value - случайная величина: $\xi = 1 - F(T(X))$, но тогда:

$$\mathsf{P}(\xi < t) = \mathsf{P}(1 - F(T(X)) < t) = 1 - \mathsf{P}(F(T(X)) > 1 - t) = 1 - \mathsf{P}(T(X) > F^{-1}(1 - t)) = 1 - F(F^{-1}(1 - t)) = 1 - (1 - t) = t$$

То есть мы получаем, что p-value для любого распределения есть равномерно распределенная на [0,1] случайная величина.

Задача 5. (Задача номер 12). При снятии показаний измерительного прибора десятые доли деления шкалы прибора оцениваются "на глаз" наблюдателем. Количества цифр 0,1,2,...,9, записанных наблюдателем в качестве десятых долей 1 при 100 независимых измерениях, равны 5,8,6,12,14,18,11,6,13,7 соответственно.

Проверить гипотезы о согласии данных с законом равномерного распределения и с законом нормального распределения. Для ответа на вопрос можно сравнить значения p-value для обеих гипотез.

Решение: С семинара и в Ивченко-Медведеве выведены формулы для $\widehat{\theta}_1$ и $\widehat{\theta}_2$, остается посчитать их численно и подставить в T_{chi^2} , для которого у нас будет N-1-2 степеней свободы в силу независимости θ_1 и θ_2 .