mit einem Widerstand von 10 k Ω und einem Kondensator von 50 nF ?

Lösung: 318 Hz.

Grenzfrequenz:
$$f_{GR} = \frac{1}{2 \cdot \pi \cdot R \cdot C}$$

$$C = 0,000\ 000\ 050\ 000\ Farad$$
 = 50 • 10⁻⁹
 $R = 10\ 000\ Ohm$ = 10 000

R • C:
$$10\ 000 \cdot 50^{-9} = 5^{-4}$$

 $2 \cdot Pi = 6,283 \cdot 5^{-4} = 0,0031415$
1 durch $0,0031415 = 318,309 \text{ Hz}$

Wie im Diagramm sichtbar, ist $\mathbf{X}_{\mathbf{R}}$ gleichbleibend und trifft bei der Resonanzfrequenz f grenz auf $\mathbf{X}\mathbf{c}$. Kapazitiver und ohmscher Widerstand sind bei Resonanz gleichgroß. Der hellblaue Bereich im Diagramm ist also das, was vom R-C-Tiefpaß durchgelassen wird.