PIZZO

Lista na siódmy tydzień

Zadanie 1. Pokaż, że:

1. $3SAT \leq_P Clique$

Wskazówka: Dla każdego wystąpienia literału zdefiniuj jeden wierzchołek.

2. Clique \leq_P Independent-Set

Wskazówka: \bar{V} .

3. Independent-Set \leq_P Vertex-Cover

 $Wskaz \acute{o}wka: |V| - k$.

4. Vertex-Cover \leq_P Hamiltonian-Cycle

Wskazówka: To jest znacznie trudniejsze; przyda się taki gadżet:

- 5. Hamiltonian-Cycle \leq_P TSP
- 6. Vertex-Cover \leq_P Subset-Sum $Wskaz\acute{o}wka$:

Subset Sum

Treat as base k+1 integer

Claim. VERTEX-COVER \leq $_{p}$ SUBSET-SUM.

Proof. Given instance G, k of VERTEX-COVER, create following

instance of SUBSET-SUM.

		e ₁	e ₂	e ₃	e_4	e ₅	e ₆
	V ₁	1	0	1	0	0	0
	V ₂	0	1	0	0	1	0
	V ₃	0	0	0	1	1	0
	V ₄	0	0	1	0	0	1
	V ₅	1	1	0	1	0	1

Node-arc incidence matrix

		e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	decimal
X ₁	1	1	0	1	0	0	0	5,184
X ₂	1	0	1	0	0	1	0	4,356
X ₃	1	0	0	0	1	1	0	4,116
X ₄	1	0	0	1	0	0	1	4,161
X ₅	1	1	1	0	1	0	1	5,393
y ₁	0	1	0	0	0	0	0	1,024
y ₂	0	0	1	0	0	0	0	256
y ₃	0	0	0	1	0	0	0	64
y ₄	0	0	0	0	1	0	0	16
y ₅	0	0	0	0	0	1	0	4
y ₆	0	0	0	0	0	0	1	1

t 3 2 2 2 2 2 2 15,018

7. $3SAT \leq_P NAE-SAT$

gdzie

- 3SAT to problem spełnialności formuł w 3CNF.
- \bullet Clique to problem, dla danego grafu i liczby k, czy w tym grafie istnieje klika rozmiaru k.
- \bullet Independent-Set to problem, dla danego grafu i liczby k, czy w tym grafie istnieje k wierzchołków, z których żadne dwa nie są połączone.
- Vertex-Cover to problem, dla danego grafu i liczby k, czy można wybrać k wierzchołków tego grafu tak, by każda z krawędzi miała wybrany co najmniej jeden z końców.
- Hamiltonian-Cycle to problem znalezienia w grafie cyklu Hamiltona, tzn. cyklu prostego przechodzącego przez wszystkie wierzchołki.
- TSP to problem, dla danego grafu pełnego z wagami na krawędziach oraz liczby k, czy istnieje w tym grafie cykl Hamiltona o łącznej wadze co najwyżej k.
- Subset-Sum to problem, dla danego zbioru liczb całkowitych, czy można wybrać niepusty podzbiór tego zbioru tak, by suma jego elementów wynosiła 0.
- NAE-SAT to problem, dla danej formuły w CNF, czy istnieje wartościowanie tej formuły
 takie, że w każdej klauzuli co najmniej jeden literał jest prawdziwy i co najmniej jeden literał
 jest fałszywy.

Wywnioskuj z tego, że wszystkie powyższe problemy są NP-zupełne.

Zadanie 2. Pokaż, że następujące problemy są w P:

- 1. Problem SAT, gdy ograniczymy się do klauzul hornowskich.
- 2. Problem k-Clique, gdzie pytamy, czy w grafie istnieje klika rozmiaru k (które jest teraz częścią problemu, a nie instancji).
- 3. Problem 3Taut, gdzie pytamy, czy dana formuła w 3CNF jest tautologią.