

QP07

Sessió nº 02	Full nº 01	Data:	Grup:	21

MEDIDA: Atenuador

Diseñar, implementar y caracterizar un atenuador resistivo en Π que, conectado a la salida del oscilador local (toma del puesto de trabajo), proporcione una potencia de 4 dBm.

DISEÑO

					Atenu	ador		
Señal de	ia toma	Valores	teóricos	Valores	reales (*)	Va	ores esperado	os (**)
Frecuencia	Potencia	Rs	Rp	Rs	Rp	LR (dB)	VSWR (:1)	L (dB)
1300	Miss	160	POI	65	120	38	1.025:	7.45

(*) Sólo se disponen de los siguientes valores de resistencias SMD (valores en ohms):

5.6 12 15 18 33 47 68 100 120 180 270 820

(**) Los valores esperados se han de obtener mediante simulación con Vipec

QP07

Sessió nº 02	Full nº 01	Data:	Grup:

PREPARACION DEL EXPERIMENTO

RELACIÓN DE MATERIAL NECESARIO

(Para <u>fuentes de alimentación</u>, indicar el valor o valores de tensión requeridos) (Para <u>generadores de funciones</u>, indicar tipo de señal, frecuencia, offset y tensión pico-pico)

-	·			
Instrumentos	Cables	Transiciones	Dispositivos	
AEspectio	N/SHAX Z	SMAH/SMAH	ATENUADOR	
			CARGA	
			600700000VY	

UNIVERSITAT POLITÉCNICA DE CATALUNYA

QP07

Full nº 02 Grup: Sessió nº 02 Data:

MEDIDA: Sintonización del VCO

Aplicar a VTUNE una tensión continua adecuada para que la señal de salida esté centrada a la frecuencia asignada a cada grupo.

Utilizar el circuito de OFFSET (la misión del circuito de offset es añadir un cierto nivel de tensión continua que se sume a la tensión de la señal moduladora o señal de datos. Dicho nivel de continua es ajustable con un potenciómetro accesible por el usuario).

El circuito de OFFSET se polariza con tensión -15 V, 0V y + 15 V. Para ello poned la fuente de alimentación en tracking y ajustad el nivel de tensión a +15 V. Una excesiva tensión de polarización del circuito de OFFSET puede dañar irreversiblemente el circuito por lo que preparad la fuente SIN tener el circuito conectado y avisad al profesor antes de conectar el circuito.

El obietivo de este bloque de RF del laboratorio de SRO consiste en que cada grupo transmita la señal de salida audio de un walkman (o similar). Para permitir la transmisión simultánea de todos los grupos sin que se produzcan interferencias, se implementará una técnica de acceso por multiplexación en frecuencia (FDMA). A cada grupo se le ha asignado un canal frecuencial para transmitir, con un ancho del canal de 1 MHz y habrá de cuidarse de no invadir los canales vecinos (para facilitario, se han reservado unas bandas de guarda entre canales).

El primer elemento del transmisor es el modulador, cuya misión es trasladar la señal de información a una frecuencia diferente para cada grupo.

GRUPO	FRECUENCIA	GRUPO	FRECUENCIA
1	101 MHz	8	122 MHz
2	104 MHz	9	102 MHz
3	107 MHz	10	105 MHz
4	110 MHz	11	108 MHz
5	113 MHz	12	111 MHz
6	116 MHz	21	103 MHz
7	119 MHz	23	106 MHz

EL VCO, cuyas siglas en inglés significan Oscilador Controlado por Tensión, es el sistema modulador de nuestro enlace.

Data rev.: pàgina: 4 Revisat per:

Sessió nº 02	Full nº 01	Data:	Grup:
			· · · · · · · · · · · · · · · · · · ·

RESULTADOS OBTENIDOS

C/	RACTERIS	TICAS DEL	ATENUADO	R A 1300 M	Hz
LR ((dB)	VSW	R (:1)	L (4	dB)
Esperado	Medido	Esperado	Medido	Esperado	Medido
38	20	1,025 1	1,21:1	7,45	9.4

CUESTIONES:

- 1. Indicar los pasos a seguir para medir las pérdidas de retorno del atenuador
- 1 Ametauros MODE AE
- 2 STIMOLIC / RESPONSE
- 3 Return Loss
- 4 Comprobamos on abiento a 1300 (for desenda)
- 5 Conectains al circute on su extremo con ma cargo al otro extremo
- 6 Hedius LRa la freg desert
- 2. Indicar los pasos a seguir para medir la atenuación del atenuador
- 1 MODE
- 2 STOMOLUS / RESPONSE
- 1. Catedraitans con transision 1N/out para medir perdidas de insreción a la frecuencia desenda el atennador societamo entrade -Salida al atennador
- 6 Hadims 2 a De pag desender

INCIDENCIAS:

QP07

Sessió nº 02	Full nº 02	Data:	Grup:

RESULTADOS OBTENIDOS

(Los valores de la tensión de sintonización han de ser medidos a la salida del circuito de offset)

Frecuencia	Tensión de s	intonización
asignada	Valor esperado	Valor medido
103	2.55	2.08

fcent:	103 HH?
span:	SONHZ
resbw:	Auto /500 KHZ
att:	13.42
reflevel:	iodsi
scale:	1025/010

Marker 1. Freq	103
Marker 1. Pot	12.64

INCIDENCIAS:

Alun de les cables de RF no state bien

Revisat per:

Data rev.:

de Castelideres Universitat Politècnica de Catalunya

QP07

Sessió nº 02	Full nº 02	Data:	Grup:

PREPARACION DEL EXPERIMENTO

(EL VCO DEBE ALIMENTARSE A 12 VOLTS)

RELACIÓN DE MATERIAL NECESARIO

(Para <u>fuentes de alimentación</u>, indicar el valor o valores de tensión requeridos) (Para <u>generadores de funciones</u>, indicar tipo de señal, frecuencia, offset y tensión pico-pico)

Instrumentos	Cables	Transiciones	Dispositivos
F. Aliment tisy-150	Alinentacion		Decimator V.
OSciloses Pio	BNC/BNC RE		Occident V.
Osciloscopio A. Espectros	BNC/BNERF SMA/N. RF		OFFSET
u	*		

Revisat per:

Data rev.:

UNIVERSITAT POLITÉCNICA DE CATALUNYA

QP07

Sessió nº 02 Full nº 03 Data: Grup:

MEDIDA: Características de las señales presentes en los puertos del mezclador (sin señal moduladora)

Medir las características (frecuencia y potencia) de la señal de salida del VCO sin modular de frecuencia igual a la asignada a cada grupo y de la señal a la salida del conjunto oscilador local + atenuador. Conectar en la puerta de FI del mezclador LRMS-30J la señal del VCO y en la puerta OL la señal del oscilador local. Observar la señal a la salida del mezclador (puerta RF) e interpretar el espectro entre 0 y 2 GHz. Identificar la frecuencia de los diferentes tonos que aparecen y medir la potencia de cada uno de ellos.

Una de las antenas más habituales para transmitir señales de RF es el dipolo en $\lambda/2$ (que en nuestro caso será un dipolo en λ/4 sobre un plano de masa). Para transmitir directamente la señal disponible a la salida del VCO (de frecuencia entorno a 100 MHz) necesitamos una antena de longitud aproximada 75 cm. Para reducir el tamaño de la antena a valores razonables (pocos centímetros) es necesario que la frecuencia de la señal sea del orden de 1 GHz.

Para subir la frecuencia de la señal presente a la salida del VCO se utiliza un mezclador (en nuestro caso el LRMS-30J).

A partir de las frecuencias asignadas a cada grupo (especificadas en el ejercicio nº 16 o en la medida 1 de esta sesión), de la frecuencia del OL (medida en la sesión nº 1) y del ancho de cada canal (1 MHz), situar los diferentes canales que se quieren transmitir dentro de la banda asignada al servicio (entre 1375 y 1425 MHz).

Revisat per:

Data rev.:

QP07

Sessió nº 02	Full nº 03	Data:	Grup:

PREPARACION DEL EXPERIMENTO

(EL VCO DEBE ALIMENTARSE A 12 VOLTS)

RELACIÓN DE MATERIAL NECESARIO (Para fuentes de alimentación, indicar el valor o valores de tensión requeridos) (Para generadores de funciones, indicar tipo de señal, frecuencia, offset y tensión pico-pico) Instrumentos Cables Transiciones Dispositivos F. A (IMENTACION INFINE SMA/SMA M. BNC/BNC Regulator V. Malizada Espectus N/SMA SMA/SMA M. OFFSET

BUMENTACION SMA/SMA H VCO
MEDICADOR
ATENNADOR

ESQUEMA DEL MONTAJE			
A Espection A Espection ATE RE Toucot OFSET MEDILABOR			

QP07

			Crun
Sessió nº 02	Full n° 03	Data:	Glup.

RESULTADOS OBTENIDOS

Pos #	151.5	Potencia (dBm)			
Frecuencia	Ubicación (*)	Entrada FI	Entrada QL	Salida RF	
1402	EN SANDA	460	 	80	
1407	d d		2484		
1.204	st. ex			- 78	
1405	n h			- 50	
1406	the el	The state of the s		-900 	
1407	A B	***************************************	200	<u>* 900 </u>	
1408	pr- pr-			-78	
1410	u u	1		= 76	
1411	et et	İ	-	- 7-1	
1013	the let			- 7 6	
1416	is u	3.		- 77	
1419	la la			- 76	
1422	111 2	1		77	
1405	FULL BANDO			-54	
1506	61 4	7		-41	
1343	er in			-57	
1350	4 69			-30	
		r l			
		V	<u> </u>		

(*) Indicar, para cada tono medido, si se encuentra fuera de la banda asignada al servicio o dentro de ella, y en este último caso, si está dentro del margen de frecuencias asignado al grupo, dentro de las bandas de guarda o dentro del canal asignado a otro grupo.

1250 440
1500 MH2
5 14142
0
10dBu
10d3/dil

Marker 1. F	Freq	11	Q	7
Marker 1. F	Pot). Samuel	6	OBL

Marker 2. Freq	1403
Marker 2. Pot	-60B

Revisat per:

Data rev.:

QP07

Sessió nº 02	Full n° 03	Data:	Grup:
1			

CUESTIONES:

1. De las señales presentes en los diferentes puertos del mezclador, indicar cuales son las que nos interesa tener.

Las Fredericas de la Baurk de Méres entre 1401 y 1422 MHZ

2. Para cada señal presente a la salida del mezclador, identificar su origen (consultar al profesor en caso de duda).

INCIDENCIAS:

QT06

Sessió nº 02	Full nº 04	Data:	Grup:

MEDIDA: Ancho de banda de transmisión del VCO (señal senoidal como moduladora)

Aplicar a VTUNE una señal senoidal de 20 kHz con la amplitud y offset adecuados para que la señal de salida esté centrada a la frecuencia asignada a cada grupo con un ancho de banda de transmisión de 1 MHz.

<u>Utilizar el circuito de OFFSET</u> (la misión del circuito de offset es añadir un cierto nivel de tensión continua que se sume a la tensión de la señal moduladora o señal de datos. Dicho nivel de continua es ajustable con un potenciómetro accesible por el usuario).

El circuito de OFFSET se polariza con tensión -15 V, 0V y + 15 V. Para ello poned la fuente de alimentación en tracking y ajustad el nivel de tensión a +15 V. Una excesiva tensión de polarización del circuito de OFFSET puede dañar irreversiblemente el circuito por lo que preparad la fuente SIN tener el circuito conectado y avisad al profesor antes de conectar el circuito.

PREPARACION DEL EXPERIMENTO

(EL VCO DEBE ALIMENTARSE A 12 VOLTS)

RELACIÓN DE MATERIAL NECESARIO

a da alimentación, indicar al valor a valoros de tensión requeridos

(Para generadores de funciones, indicar tipo de señal, frecuencia, offset y tensión pico-pico)			
Instrumentos	Cables	Transiciones	Dispositivos
OSCICOS COPTO			Divisor E.
Oscicos copio Exerte			
			1

I gent que autes + GEN. FUNCIONES FOSCILOS CABLE BNG/JACK

Revisat per: Data rev.: pàgina: 11

QT06

Sessió nº 02 Full nº 04 Data: Grup:

isual al anterior lastranto 20 KHZ

a la entrada de andio del circuito de

altret

RESULTADOS OBTENIDOS

(Los valores de tensión solicitados han de ser medidos a la salida del circuito de offset)

	Tensión pico a pico Valor esperado	valor medido
1MHZ	0.122	0,120

fcent:	1,403 RH
span:	32012
resbw:	3, 7
att:	0
reflevel:	0
scale:	10/2/1/1

Marker 1. Freq	1403
Marker 1. Pot	-10/2m

Revisat per:

Data rev.:

QT06

		I	I
Sessió nº 02	Full nº 04	Data:	Grup:

CUESTIONES:

 ¿Por qué es necesario que la señal aplicada a la entrada VTUNE del VCO tenga un offset?

Para Marinar la f. de trabajo del VOO THT

4. ¿Por qué se ha elegido una frecuencia de 20 kHz para la señal senoidal utilizada como moduladora?

Porque se corresponde con la fremener superior de le Santa de ancho

INCIDENCIAS:

Revisat per:

Data rev.:

QP07

Sessió nº 02 Full nº 05 Data: Grup:

MEDIDA: Características de las señales presentes en los puertos del mezclador (con tono senoidal como señal moduladora)

Conectar en la puerta de FI del mezclador LRMS-30J la señal de salida del VCO de frecuencia igual a la asignada a cada grupo y 1 MHz de ancho de banda y en la puerta OL la señal del oscilador local. Observar la señal a la salida del mezclador (puerta RF) e interpretar el espectro entre 1375 y 1425 MHz (banda asignada al servicio). Identificar la frecuencia de los diferentes tonos que aparecen y medir la potencia de cada uno de ellos.

PREPARACION DEL EXPERIMENTO

(EL VCO DEBE ALIMENTARSE A 12 VOLTS)

RELACIÓN DE MATERIAL NECESARIO

(Para <u>fuentes de alimentación</u> , indicar el valor o valores de tensión requeridos) (Para <u>generadores de funciones</u> , indicar tipo de señal, frecuencia, offset y tensión pico-pico)			
Instrumentos	Cables	Transiciones	Dispositivos
:			
	4		
1.11.2			

Revisat per: Data rev.: pàgina: 14

QP07

Sessió nº 02	Full n° 05	Data:	Grup:	
	1			,
	E	SQUEMA DEL MONT	AJE	

RESULTADOS OBTENIDOS

SEÑAL A LA SALIDA DEL MEZCLADOR DENTRO DE LA BANDA ASIGNADA AL SERVICIO				
Ubicación		Potencia (dBm)		
En canal asignado al grupo				
En banda de guarda				
En canal asignado a otro grupo				

Revisat per: Data rev.: pàgina: 15