2

3

Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1 (Previously Presented). A frequency hopping time division duplex indoor

wireless communication system comprising: 2 3 a master unit having a processor and a first frequency selection unit 4 for finding a current frequency on which to transmit and receive during a 5 current time slot and at least a second frequency selection unit interfaced with said processor to look ahead at frequencies that are to be used in 7 future time slots; and 8 a plurality of mobile stations communicating with said master unit. 1 2 (Original). The communication system recited in claim 1, wherein the 2 first and second frequency selection units comprise combinatorial logic 3 units to perform frequency hop selection according to predetermined 4 standards. 1 3 (Previously Presented). The communication system as recited in claim 1, 2 wherein the processor in the master unit interfaced to the second frequency 3 selection unit cooperate such that a frequency corresponding to a future 4 time slot is obtained by the processor by providing binary information 5 about a pico-cell related address bits and clock bits corresponding to the 6 time slot. 4 (Canceled). 1 5 (Previously Presented). A frequency hopping indodr wireless

communication system comprising:

a master unit and a plurality of slave units;

5

6

7

1

2

3

4

5

communication f_i between the master and the slave "i".

said master unit having a plurality of link state counters C(i, j),

wherein the condition of wireless links between the master unit and a slave

unit are recorded in link state counters provided one for each frequency of

8 (Previously Presented). A frequency hopping time division duplex

for finding a current frequency on which to transmit and receive during a

current time slot and at least a second frequency selection unit interfaced

a master unit having a processor and a first frequency selection unit

master-slave indoor wireless communication system comprising:

and

6 7

2

3

4 5 with said processor to select frequencies to be used in future time slots;

8	a plurality of slave units communicating with said master unit, said
9	master unit having a plurality of link state history counters $C(i,j)$, wherein
10	the link state counters are provided one for each frequency of
11	communication f_i between the master and the slave "i", wherein
12	(a) before transmission to a slave unit, the master unit obtains
13	the frequencies corresponding to time slots which will be
14	encountered in the immediate future,
15	(b) if the link state history counter for a scheduled slave unit at
16	an expected transmission frequency indicates that a
17	transmission attempt can be made, the master unit proceeds
18	to transmit to the slave unit at an appropriate packet size,
19	(c) the master unit tries to choose another active slave unit, if
20	any, for transmission if the link state history counter for the
21	scheduled slave forbids transmission,
22	(d) the master unit records the loss and gain of service by the
23	slave units when transmission to slave units takes place in
24	an order different from a predetermined scheduling order,
25	and ·
26	(e) if the link state history counter values of all active slave
27	units are above a threshold $T_{TRANSMIT}$, the master unit
28	chooses a slave unit whose link state history counter has the
29	lowest value, and decides on a packet size of one.
1	9 (Original). The frequency hopping time division duplex master-slave

indoor wireless communication system recited in claim 8, wherein

3) after a slave unit for transmission is chosen by the master unit

based on a link state history corresponding to a frequency to be

used in a first time slot after a last time slot used by a current slave

6		unit, the master unit checks for transmission worthiness for the
7		\
		slave at the frequency corresponding to an <i>n</i> -th time slot for
8		transmitting an $(n + 1)$ size packet, and chooses the highest packet
9		size corresponding to which the link state history counter value is
10		less than or equal to a threshold T _{TRANSMIT} , and
11	4)	if all frequencies corresponding different allowed packet sizes are
12		such that the corresponding link state history counter values are
13		above the threshold T _{TRAN} , the master unit proceeds to choose
$\sqrt{14}$		another slave unit for transmission.
En.		
1	10 (Or	riginal). A frequency hopping time division duplex master-slave
2	indoor	wireless communication system comprising:
3		a master unit and a plurality of lave units, wherein
4	(a)	every active slave unit monitors packet transmissions from the
5		master unit and records the number of successful receptions by
6		using goodness counters GC(i,j) for every slave unit "i" with
. 7		reference to frequency f_j ,
. 8	(b)	a slave unit increments a goodness counter $GC(i,j)$ when a packet
9		transmitted by the slave unit on frequency f_j is successfully
10		acknowledged by the master unit,
11	(c)	short-term link history is maintained by periodic transfer of
12		goodness counter values from active slave units to the master unit,
13	(d)	the master unit constructs a link state history table of counters after
14		receiving values of goodness counters $GC(i, j)$ from all the slave
15		units and uses this information during a next scheduling period,
16	(e)	goodness counters $GC(i,j)$ are reset to zero by slave units after
17		successfully transmitting their values to the master unit, and
18	(f)	the goodness counters $GC(i,j)$ are allowed to count up to the
19		maximum value and stay there until reset

1	11 (Ori	ginal). The indoor wireless communication system recited in claim		
2	10, wherein			
3	(g)	from among the currently active slave units, a first slave unit for		
4		which a value of goodness counter $GC(i,j)$ for the frequency of		
5		transmission f_j is greater than or equal to a minimum goodness		
6		threshold value T _{GOOD} is chosen for communication starting from a		
7		next transmission time alot of the master unit,		
8	(h)	if, however, none of the slave units' goodness counter values is		
1 9		greater than or equal to the threshold value T _{GOOD} , the master unit		
10		chooses a slave unit with a highest value of the goodness counter		
11		and decides on a packet size of one,		
12	(i)	after the slave unit for transmission is chosen by the master unit		
13		based on goodness counter values, the master unit checks for		
14		transmission worthiness for the slave unit at the frequency		
15		corresponding to an n -th time slot for transmitting an $(n-1)$ size		
16		packet, and chooses a highest packet size corresponding to which a		
17		goodness counter value is greater than or equal to the threshold		
18		T_{GOOD} , and		
19	(j)	if all frequencies corresponding different allowed packet sizes are		
20		such that the corresponding goodness counter values are below the		
21		threshold T _{GOOD} , the master unit proceeds to choose another slave		
22		unit for transmission.		
1	12 (Or	iginal). A frequency hopping time division duplex master-slave		
2	indoor	wireless communication system comprising:		
3		a master unit and a plurality of slave units, wherein		
4	(a)	a second level frequency look-ahead is performed by the master		
5		unit even before a packet from an addressed slave unit is received,		
6		and		

(b) the second level look-ahead is performed by the master unit to

2

4 5

Christ.

determine the slave units and packet sizes to be used next corresponding to the different sizes of packet that might be transmitted by an addressed slave unit.

13 (Cancelled).

14 (Previously Presented). A frequency hopping time division duplex master-slave indoor wireless communication system as recited in claim 12 wherein the master unit maintains an expected state of wireless links with reference to interference by using a table of counters whose values indicate goodness of links.