1

Assignment 17

Jayati Dutta

Abstract—This is a simple document explaining how to determine whether a set of polynomials are linearly independent or not.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

Let W_1 , W_2 , W_3 be 3 distinct subspaces of \mathbf{R}^{10} such that each W_i has dimension of 9. Let $W = W_1 \cap W_2 \cap W_3$. Then we can conclude that

- 1. W may not be a subspace of \mathbf{R}^{10}
- 2. dim $W \le 8$
- 3. dim $\mathbf{W} \ge 7$
- 4. dim $\mathbf{W} \leq 3$

2 Solution

Given	$\mathbf{W_1}, \mathbf{W_2}, \mathbf{W_3}$ are 3 distinct subspaces of \mathbf{R}^{10} Each $\mathbf{W_i}$ has dimension 9
	$\mathbf{W} = \mathbf{W}_1 \cap \mathbf{W}_2 \cap \mathbf{W}_3$
Explanation	As $W = W_1 \cap W_2 \cap W_3$ and W_1 , W_2 , W_3 are subspaces of W , then W must be a subspace of R^{10} . So the first option is cancelled out.
	And as W be a subspace of a finite dimension vector space \mathbf{R}^{10} and dim \mathbf{R}^{10} = 10, so W is finite dimension and dim $\mathbf{W} \le 10$
	$\dim (W_1 \cap W_2)$ $= \dim(W_1) + \dim(W_2) - \dim(W_1 + W_2)$ $W_1 \cap W_2 \text{ is also a subspace of } \mathbf{R}^{10}$

Hence, we can conclude that $dim(\mathbf{W}) \geq 7$.

Proof

Let us consider
$$\mathbf{V} = \mathbf{R}^{10}$$
 and $dim(\mathbf{V}) = 10$ and $\mathbf{U} = \mathbf{W}_1 \cap \mathbf{W}_2$

So, $dim(\mathbf{W}_1 \cap \mathbf{W}_2 \cap \mathbf{W}_3) = dim(\mathbf{U})$
 $+dim(\mathbf{W}_3) - dim(\mathbf{U} + \mathbf{W}_3)$

or, $dim(\mathbf{W}_1 \cap \mathbf{W}_2 \cap \mathbf{W}_3) = dim(\mathbf{W}_1)$
 $+dim(\mathbf{W}_2) + dim(\mathbf{W}_3) - dim(\mathbf{W}_1 + \mathbf{W}_1)$
 $-dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) \leq V$

$$\Rightarrow dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) \leq dim(\mathbf{V})$$

$$\Rightarrow -dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) \geq -dim(\mathbf{V})$$
Similarly, $(\mathbf{W}_1 + \mathbf{W}_2) \subseteq \mathbf{V}$

$$\Rightarrow dim(\mathbf{W}_1 + \mathbf{W}_2) \leq dim(\mathbf{V})$$

$$\Rightarrow -dim(\mathbf{W}_1 + \mathbf{W}_2) \leq -dim(\mathbf{V})$$

Considering these two inequations,
 $-dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) - dim(\mathbf{W}_1 + \mathbf{W}_2)$
 $\geq -2dim(\mathbf{V})$

or, $dim((\mathbf{W}_1) + dim(\mathbf{W}_2) + dim(\mathbf{W}_3)$
 $-dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) - dim((\mathbf{W}_1 + \mathbf{W}_2)$
 $\geq dim((\mathbf{W}_1) + dim((\mathbf{W}_2) + dim((\mathbf{W}_3)) - 2dim((\mathbf{V}_1)$

$$\Rightarrow dim((\mathbf{W}_1) + dim((\mathbf{W}_2) + dim((\mathbf{W}_3)) - 2dim((\mathbf{V}_1) + dim((\mathbf{W}_3)) - 2dim((\mathbf{V}_1) - \mathbf{W}_2) + 2dim((\mathbf{W}_1) + \mathbf{W}_2)$$
 $\geq (9 + 9 + 9) - (2 \times 10)$

$$\Rightarrow dim((\mathbf{W}_1 \cap \mathbf{W}_2) + \mathbf{W}_3) - dim((\mathbf{W}_1 + \mathbf{W}_2)$$
 $\geq (9 + 9 + 9) - (2 \times 10)$

$$\Rightarrow dim((\mathbf{W}_1 \cap \mathbf{W}_2 \cap \mathbf{W}_3) \geq 7$$

$$\Rightarrow dim((\mathbf{W}_1) \leq 10$$