GRUB

Como es el proceso de arranque

- 1- El sistema carga y ejecuta el gestor de arranque. Las especificaciones de este proceso dependen de la arquitectura del sistema. Por ejemplo:
 - BIOS en sistemas basados en x86 ejecutan una primera etapa del gestor de arranque desde el MBR del disco duro primario, el cual, a su vez, carga un gestor de arranque adicional, GRUB.
 - UEFI en sistemas basados en x86 montan una partición de sistema EFI que contiene una versión del gestor de arranque de GRUB. El gestor de arranque EFI carga y ejecuta GRUB como una aplicación de EFI.
- 2- El gestor de arranque carga el kernel en memoria, la cual a su vez carga los módulos necesarios y monta la partición root para sólo-lectura.
- 3- El kernel transfiere el control del proceso de arranque al programa /sbin/init.
- 4- El programa /sbin/init carga todos los servicios y herramientas de espacio del usuario y monta todas las particiones listadas en /etc/fstab.
- 5- Se le presenta al usuario una pantalla de inicio de conexión para el sistema Linux recién iniciado.

GRUB 2

GRUB 2(GNU GRand Unified Bootloader) permite al usuario seleccionar el sistema operativo o el kernel a ser cargado al momento del inicio.

El archivo de configuración de GRUB 2, /boot/grub2/grub.cfg es generado:

- Durante la instalación del S.O.
- Alinvocar /usr/bin/grub2-mkconfig
- por grubby cada vez que se instala un kernel

Al utilizar grub2-mkconfig el archivo es generado de acuerdo a la plantilla ubicada en /etc/grub.d/ y a la configuración almacenada en el archivo /etc/default/grub.

Por este motivo no se debe modificar el archivo grub.cfg ya que los cambios se perderán cada vez que se ejecute grub2-mkconfig.

Las operaciones sobre <code>grub.cfg</code> que normalemente se realizan ante la eliminación o instalación de un nuevo kernel se deben hacer mediante <code>grubby</code>.

Nombres de dispositivos en GRUB 2

Cuando se refiera a un dispositivo específico con GRUB, hágalo mediante el formato siguiente (observe que los paréntesis y las comas son muy importantes en la sintaxis):

(<tipo-de-dispositivo><número-de-dispositivo-bios>,<número-de-partición>)

El <tipo-de-dispositivo> especifica el tipo de dispositivo desde el cual GRUB arranca. Las opciones más comunes son hd para un disco.

El <número de dispositivo bios> es el número del dispositivo de BIOS. El disco duro IDE primario es 0 y un disco duro IDE secundario es 1. Esta sintaxis es casi equivalente a la que utiliza el kernel por dispositivos. Por ejemplo, la a en hda para el kernel es análoga al 0 en hd0 para GRUB, la b en hdb es análoga al 1 en hd1, y así sucesivamente.

<partition-number> Especifica el número de la partición en un dispositivo. Al igual que

Por ejemplo, si un sistema tiene más de un disco duro, GRUB se refiere al primer disco duro como (hd0) y al segundo como (hd1). De la misma manera, GRUB se refiere a la primera partición en el primer disco como (hd0,0) y se refiere a la tercera partición en el segundo disco duro como (hd1,2).

Ejemplo de una entrada de grub2

```
menuentry 'CentOS Linux (3.10.0-693.el7.x86_64) 7 (Core)'
  --class centos --class gnu-linux --class gnu
  --class os --unrestricted $menuentry_id_option
  gnulinux-3.10.0-693.el7.x86_64-advanced-a0de2b66-ac69-452d-a560-f8649349f3ed' {
      load_video
     set gfxpayload=keep
     insmod gzio
     insmod part_msdos
      insmod xfs
      set root='hd0,msdos1'
     if [ x$feature_platform_search_hint = xy ]; then
        search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1
    --hint-efi=hd0,msdos1
    --hint-baremetal=ahci0, msdos1 --hint='hd0, msdos1'
    13ae7bb0-94fa-4731-be30-6554bffca839
        search --no-floppy --fs-uuid --set=root
    13ae7bb0-94fa-4731-be30-6554bffca839
      linux16 /vmlinuz-3.10.0-693.el7.x86_64 root=/dev/mapper/centos-root
  ro crashkernel=auto
  rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb quiet
      initrd16 /initramfs-3.10.0-693.el7.x86_64.img
```

De lo anterior podemos destacar:

- Nombre de la entrada
- Modulos que se cargan (insmod)
- Root filesystem
- Kernel a cargar
- Initramfs

ACTIVIDAD 1

- Compruebe la versión del kernel que se está ejecutando usando el comando uname -a
- Identifique en la salida previa, la arquitectura
- Analice otros parámetros viendo man uname

Cambios temporales

Al momento de inicio, cuando se presenta el menu de grub2, podemos presionar la tecla "e" y de ese modo ingresar al menu de edición de grub. Todos los cambios que relalicemos durarán hasta que reiniciemos el equipo.

Cambios permanentes con grubby

La herramienta grubby puede utilizar para leer la información de grub2, y generar el nuevo archivo /boot/grub2/grub.cfg, quedando de este modo de manera persistente los mismos.

• Para visualizar todos los kernels disponibles, ejecutamos

```
[root@localhost ~]# grubby --info=ALL
kernel=/boot/vmlinuz-3.10.0-693.21.1.el7.x86_64
args="ro crashkernel=auto rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb
quiet LANG=es_AR.UTF-8"
root=/dev/mapper/centos-root
initrd=/boot/initramfs-3.10.0-693.21.1.el7.x86_64.img
title=CentOS Linux (3.10.0-693.21.1.el7.x86_64) 7 (Core)
kernel=/boot/vmlinuz-3.10.0-693.el7.x86 64
args="ro crashkernel=auto rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb
LANG=es_AR.UTF-8 quiet"
root=/dev/mapper/centos-root
initrd=/boot/initramfs-3.10.0-693.el7.x86_64.img
title=CentOS Linux (3.10.0-693.el7.x86_64) 7 (Core)
index=2
kernel=/boot/vmlinuz-0-rescue-8f345dae63df40e39b2469ca7e7d8be9
args="ro crashkernel=auto rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb quiet"
root=/dev/mapper/centos-root
initrd=/boot/initramfs-0-rescue-8f345dae63df40e39b2469ca7e7d8be9.img
title=CentOS Linux (0-rescue-8f345dae63df40e39b2469ca7e7d8be9) 7 (Core)
index=3
non linux entry
```

Si queremos ver las opciones de una entrada en particular, le pasamos el kernel en cuestión

```
[root@localhost ~]# grubby --info=/boot/vmlinuz-3.10.0-693.21.1.el7.x86_64
index=0
kernel=/boot/vmlinuz-3.10.0-693.21.1.el7.x86_64
args="ro crashkernel=auto rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb quiet
LANG=es_AR.UTF-8"
root=/dev/mapper/centos-root
initrd=/boot/initramfs-3.10.0-693.21.1.el7.x86_64.img
title=CentOS Linux (3.10.0-693.21.1.el7.x86_64) 7 (Core)
```

Si queremos ver cual es el kernel que bootea por defecto

```
[root@localhost ~]# grubby --default-index
0
```

Si queremos ver que kernel es

```
# grubby --default-kernel
/boot/vmlinuz-3.10.0-693.21.1.el7.x86_64
```

ACTIVIDAD 2

- Liste los kernels instalados en su sistema usando grubby
- Corrobore cual es el kernel que inicia por defecto y su índice

Liste los archivos que se encuentran en /boot para corroborar los kernels disponibles
 Si queremos cambiar los argumentos de booteo

```
# grubby --remove-args "quiet" --update-kernel /boot/vmlinuz-3.10.0-693.el7.x86_64
```

Para ver un detalle completo de los mensajes de booteo elimine rhgb quiet, para ver los mensajes estándar de booteo deje solamente quiet.

Si queremos agregar un argumento de booteo

```
# grubby --args "quiet" --update-kernel /boot/vmlinuz-3.10.0-693.el7.x86_64
```

Si queremos actualizar todos los kernels, agregando o sacando argumentos

```
# grubby --update-kernel=ALL --args=console=ttyS0,115200 --remove-args="quiet"
```

si queremos cambiar la entrada de booteo por defecto

```
# grubby --set-default-index=0
```

ACTIVIDAD 3

- Pruebe el efecto que tiene quitar el argumento quiet y rhgb (reinicie el sistema en cada cambio)
- Modifique el kernel que se inicia por defecto por alguno de los disponibles
- Modifique los argumentos del kernel en forma temporal, desde los comandos durante el booteo
- Algunos parámetros globales de grub2 se modifican en el archivo /etc/default/grub. Cambie el valor del GRUB_TIMEOUT y luego ejecute

```
grub2-mkconfig -o /boot/grub2/grub.cfg
```

Como bootear el sistema si el archivo grub.cfg no existe

Si por error borramos /boot/grub2/grub.cfg, el sistema no iniciara, pero por suerte grub cuenta con una consola para la ejecución de los comando necesarios. Desde esta consola debemos consignarle los siguientes parámetros:

- · rootfs
- kernel
- Initramfs

Comandos útiles en la consola

En el menú de grub al inicio es posible ingresar comandos presionando la tecla c.`

- 1s nos muestra los dispositivos que encontró y sus particiones
- linux16 nos permite especificar el kernel a utilizar (recordemos que al kernel se le debe pasar como parametro cual es el rootfs, que en el caso de Centos es por defecto /dev/mapper/centos-root)
- initrd16 nos permite cargar el archivo initramfs a utilizar.

Ejemplo paso a paso de recuperación:

ACTIVIDAD 4

- Borre el archivo /boot/grub2/grub.cfg
- Reinicie y en la consola de grub escriba

```
set root=(hd0,msdos1)
linux16 /vmlinuz-3.10.0-693.el7.x86_64 root=/dev/mapper/centos-root
initrd16 /initramfs-3.10.0-693.el7.x86_64.img
boot
```

Con eso conseguira bootear nuevamente el sistema, por lo que solo restará luego ejecutar grub2-mkconfig para que se vuelva generar dicho archivo

```
grub2-mkconfig -o /boot/grub2/grub.cfg
```

Recuperar el grub si se ha borrado el registro del MBR

En caso de que se haya borrado el registro MBR, el grub no podra arrancar y no contaremos con la consola anterior. En estos casos debemos inicar el sistema con un CD de rescate, como el de instalación de Centos, y seleccionar la opción de rescate.

Para volver a tener la opción de bootear windows, debemos agregar la siguiente líneas en el archivo /etc/grub.d/40_custom

```
menuentry "Windows 7" {
    set root=(hd0,3)
    chainloader +1
}
```

Luego ejecutamos

```
grub2-mkconfig --output=/boot/grub2/grub.cfg
```

Referencias

- Red Hat Enterprise Linux 7 System Administrator's Guide, cap. 25 (pág. 539).
- Red Hat Enterprise Linux 6 Guía de instalación, Apéndice F.
- WikiCentos
- DocsFedora