Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 27 Nov 2020 1 of 7

Sample Information

Patient Name: 王文信 Gender: Male ID No.: K120900565 History No.: 46479509

Age: 53

Ordering Doctor: DOC3127D 趙恒勝

Ordering REQ.: D5J6MDC Signing in Date: 2020/11/26

Path No.: S109-89872 **MP No.:** F20105

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$109-38178A+B Percentage of tumor cells: 30%

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Clinical Trials Summary	4

Report Highlights

1 Relevant Biomarkers0 Therapies Available6 Clinical Trials

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding	
ALK	Not detected	NTRK1	Not detected	
BRAF	Not detected	NTRK2	Not detected	
EGFR	EGFR amplification	NTRK3	Not detected	
ERBB2	Not detected	RET	Not detected	
KRAS	Not detected	ROS1	Not detected	
MET	Not detected			

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Nov 2020 2 of 7

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	EGFR amplification epidermal growth factor receptor	None	None	6

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Although no fusion transcript can be detected, there is high imbalance of the number of 3' reads and 5' reads in the RET gene (3'/5' imbalance value: 25.86). A high 3'/5' imbalance value is suggestive of the presence of gene fusion. The possibility of RET fusion involving partners other than those targeted by the panel cannot be excluded. Further confirmation with other methodologies is suggested.

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Fraction	Transcript	Variant Effect	Coverage
EGFR	p.(R494G)	c.1480A>G	•	chr7:55228013	0.051	NM_005228.4	missense	2000
Сор	y Number Variat	tions						
Gene		Locus			Сор	y Number		
EGFR		chr7:5	5198956		12.1	3		

Biomarker Descriptions

DNA Sequence Variants

EGFR (epidermal growth factor receptor)

Background: The EGFR gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase, a member of the ERBB/human epidermal growth factor receptor (HER) family. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4¹. EGFR ligand induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways. Activation of these pathways promote cell proliferation, differentiation, and survival².³.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations^{4,5,6,7}. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (EGFR exon 19 deletion) and the L858R amino acid substitution in exon 21⁸. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the EGFR mutations observed in lung cancer. A second group of less prevalent activating mutations include E709K, G719X, S768I, L861Q, and short in-frame insertion mutations in exon 20^{9,10,11,12}. EGFR activating mutations in lung cancer tend to be mutually exclusive to KRAS activating mutations¹³. In contrast, a different set of recurrent activating EGFR mutations in the extracellular domain include R108K, A289V and G598V and are primarily observed in glioblastoma^{8,14}. Amplification of EGFR is observed in several cancer types including 30% of glioblastoma, 12% of esophageal cancer, 10% of head and neck cancer, 5% of bladder cancer, and 5% of lung squamous cell carcinoma^{5,6,7,14,15}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRVIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma^{16,17,18}.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib¹⁹ (2004) and gefitinib²⁰ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Nov 2020 3 of 7

No evidence

Biomarker Descriptions (continued)

21 activating mutations. Second-generation TKIs afatinib²¹ (2013) and dacomitinib²² (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring EGFR exon 19 insertions, exon 19 deletions, point mutations L861Q, L858R, S768I, and codon 719 mutations, whereas EGFR exon 20 insertions confer resistance to the same therapies²³. In lung cancer containing EGFR exon 19 or 21 activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance²⁴. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases8. Third generation TKIs were developed to maintain sensitivity in the presence of T790M. Osimertinib25 (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance. In this case, resistance is associated with the C797S mutation, and occurs in 22-44% of cases²⁴. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa²⁶. T790M and C797S can occur in either cis or trans allelic orientation²⁶. If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs²⁶. If C797S co-occurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{26,27}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs²⁶. Fourth-generation TKIs are in development to overcome acquired C797S and T790M resistance mutations after osimertinib treatment. EGFR targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations. The bispecific antibody, JNJ-6118637228, targeting EGFR and MET, and the TKI mobocertinib²⁹, each received a breakthrough designation from the FDA (2020) for NSCLC tumors harboring EGFR exon 20 insertion mutations. The Oncoprex immunogene therapy CNVN-20230 in combination with osimertinib received a fast track designation from the FDA (2020) for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone. BDTX-18931 was granted a fast track designation (2020) for the treatment of solid tumors harboring an EGFR exon 20 insertion mutation.

Relevant Therapy Summary

In other cancer type

In this cancer type

EGFR amplification							
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*		
apatinib, gefitinib	×	×	×	×	(IV)		
erlotinib	×	×	×	×	(II)		
gefitinib	×	×	×	×	(II)		
nimotuzumab + chemotherapy	×	×	×	×	(II)		
BCA101	×	×	×	×	(I)		
neratinib, palbociclib, everolimus, trametinib	×	×	×	×	(I)		

In this cancer type and other cancer types

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 27 Nov 2020 4 of 7

Clinical Trials Summary

EGFR ampli	fication	
NCT ID	Title	Phase
No NCT ID	A Pilot Study for Apatinib Mesylate Combined with Gefitinib in First-line Treatment of Lung Adenocarcinoma with Malignant Pleural Effusion or Pericardial Effusion	IV
NCT03574402	An Open-label, Multi-center, Phase II Umbrella Study to Assess Efficacy of Targeted Therapy or Immunotherapy Directed by Next Generation Sequencing (NGS) in Chinese Patients With Advanced NSCLC (TRUMP)	II
NCT04429542	First-in-Human, Phase I/Ib, Open-label, Multicenter Study of Bifunctional EGFR/TGFß Fusion Protein BCA101 Alone and in Combination With Pembrolizumab in Patients With EGFR-Driven Advanced Solid Tumors	I
NCT02447419	Study to Evaluate the Safety and Efficacy of Gefitinib, in Subjects With EFGR Amplification Refractory Solid Tumors	II
NCT03297606	Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR): A Phase II Basket Trial	II
NCT03065387	Phase I Study of the Pan-ERBB Inhibitor Neratinib Given in Combination With Everolimus, Palbociclib, or Trametinib in Advanced Cancer Subjects With EGFR Mutation/Amplification, HER2 Mutation/Amplification, or HER3/4 Mutation or KRAS Mutation	I

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Nov 2020 5 of 7

Signatures			
Testing Personnel:			
Laboratory Supervisor:			
Pathologist:			

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Nov 2020 6 of 7

References

- 1. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 2. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 3. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 4. Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- 5. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 11. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 12. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 13. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 14. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 15. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 16. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan;277(2):301-8. PMID: 19922469
- 17. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 18. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206995s003lbl.pdf
- 21. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/201292s015lbl.pdf
- 22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211288s000lbl.pdf
- 23. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 8.2020]
- $24. \quad \text{Madic et al. Oncotarget. 2018 Dec 21;} 9 (100) : 37393 37406. \ PMID: 30647840$
- 25. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208065s016lbl.pdf
- 26. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 27. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 27 Nov 2020 7 of 7

References (continued)

- 28. https://www.jnj.com/janssen-announces-u-s-fda-breakthrough-therapy-designation-granted-for-jnj-6372-for-the-treatment-of-non-small-cell-lung-cancer
- 29. https://www.takeda.com/newsroom/newsreleases/2020/takeda-announces-u.s.-fda-breakthrough-therapy-designation-for-mobocertinib-tak-788-for-the-treatment-of-nsclc-patients-with-egfr-exon-20-insertion-mutations/
- 30. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/
- 31. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda