L-20 (Op-Amp)

For ideal Op-Amp,

$$Rin = \infty$$
, $Rout = 0$
 $I = I_{+} = 0$, $A = \infty$

$$V_o = A V_J = \begin{cases} V_s^+ & \text{if } V_J > 0 \\ V_s^- & \text{if } V_J < 0 \end{cases}$$

- 1 Comparator
- @ AC ON/OFF
- 3 Smoke Detector

Feed Back (Closed loop config): Negative

When
$$A = \infty$$
, $V_0 = k V_i$

* In feedback circuits the output slowly stabilizes.

, In negative feedback, * * Basic Structure:

O Inverting Amplifier:

$$I_{1} = \frac{\forall \overline{R}^{0}}{R_{1}} = \frac{\forall \overline{R}^{0}}{R_{2}}$$

$$I_{2} = I_{1} = \frac{\forall \overline{R}^{0}}{R_{2}} \Rightarrow \forall 0 = -I_{2}R_{2}$$

$$\Rightarrow \forall 0 = -\left(\frac{\forall \overline{R}^{0}}{R_{1}}\right)R_{2}$$

$$\Rightarrow \forall 0 = \left(-\frac{R_{1}^{2}}{R_{1}^{2}}\right) \forall i$$

$$Gain$$

Eg: y = 1.52 $\frac{3k\Omega}{W}$ $\frac{1k\Omega}{W}$ $\frac{2k\Omega}{W}$ $\frac{1k\Omega}{W}$ $\frac{3k\Omega}{W}$ $\frac{1k\Omega}{W}$

Cascading Amplifier

@ Inverting Adder:

3 Differentiator:

$$V_{c} = V_{i} - O = V_{i}$$

$$I_{c} = C + C + I_{i}$$

$$I_{1} = I_{2} = I_{c}$$

$$\Rightarrow I_{2} = O - V_{0} \Rightarrow V_{0} = -I_{2}R$$

if
$$V_i = 10\cos(2+)$$

 $V_o = -RC \frac{44}{1000}$
 $= -(2000)(\frac{300}{1000})(\frac{4}{1000}(10\cos 2+))$
 $= -6(-20\sin 2+)$
 $= 120\sin 2+$

$$*I_0 = I_s exp\left(\frac{V_0}{V_T}\right)$$

6 Logarithm

Formulas:

*For
$$f = 2\ell y$$

 $2\ell \rightarrow \ln 2$
 $2\ell \rightarrow \ln 2$

CS CamScanner