\hat{y} and on the target y (see section 6.2.1.1 for examples of loss functions). To obtain the total cost J, the loss may be added to a regularizer $\Omega(\theta)$, where θ contains all the parameters (weights and biases). Algorithm 6.4 shows how to compute gradients of J with respect to parameters W and b. For simplicity, this

Algorithm 6.3 Forward propagation through a typical deep neural network and the computation of the cost function. The loss $L(\hat{y}, y)$ depends on the output

demonstration uses only a single input example x. Practical applications should use a minibatch. See section 6.5.7 for a more realistic demonstration.

Require: Network depth, lRequire: $W^{(i)}$, $i \in \{1, ..., l\}$, the weight matrices of the model

Require: $\mathbf{w}^{(i)}, i \in \{1, ..., l\}$, the weight matrices of the model **Require:** $\mathbf{b}^{(i)}, i \in \{1, ..., l\}$, the bias parameters of the model

Require: x, the input to process

Require: y, the target output

 $egin{aligned} oldsymbol{h}^{(0)} &= oldsymbol{x} \ \mathbf{for} \ k = 1, \dots, l \ \mathbf{do} \ oldsymbol{a}^{(k)} &= oldsymbol{b}^{(k)} + oldsymbol{W}^{(k)} oldsymbol{h}^{(k-1)} \ oldsymbol{h}^{(k)} &= f(oldsymbol{a}^{(k)}) \end{aligned}$

 $egin{aligned} \mathbf{end} & \mathbf{for} \ \hat{m{y}} &= m{h}^{(l)} \ J &= L(\hat{m{y}}, m{y}) + \lambda \Omega(heta) \end{aligned}$