

HEXFET® Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- Logic-Level Gate Drive
- R_{DS(ON)} Specified at V_{GS} = 4V & 5V
- 150°C Operating Temperature
- Fast Switching
- Ease of paralleling

Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low onresistance and cost-effectiveness.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V GS @ 5.0V	9.0	
I _D @ T _C = 100°C	Continuous Drain Current, V GS @ 5.0V	5.7	A
I _{DM}	Pulsed Drain Current ①	36	
P _D @T _C = 25°C	Power Dissipation	74	W
	Linear Derating Factor	0.59	W/°C
V_{GS}	Gate-to-Source Voltage	±10	V
E _{AS}	Single Pulse Avalanche Energy ②	250	mJ
I _{AR}	Avalanche Current ①	9.0	Α
E _{AR}	Repetitive Avalanche Energy ①	7.4	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case			1.7	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface		0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient			62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, ID = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.27		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(ON)}	Static Drain-to-Source On-Resistance			0.40	Ω	V _{GS} = 5.0V, I _D = 5.4A ④
				0.50		V _{GS} = 4.0V, I _D = 4.5A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250\mu A$
g _{fs}	Forward Transconductance	4.8			S	$V_{DS} = 50V, I_D = 5.4A$
	Dunin to Course Lookson Comment			25		$V_{DS} = 200V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} = 160V, V _{GS} = 0V, T _J = 125°C
	Gate-to-Source Forward Leakage			100	^	V _{GS} = 10V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -10V$
Qg	Total Gate Charge			40		$I_D = 9.0A$
Q_{gs}	Gate-to-Source Charge			5.5	nC	V _{DS} = 160V
Q _{gd}	Gate-to-Drain ("Miller") Charge			24		V _{GS} = 10V, See Fig. 6 and 13 ④
t _{d(on)}	Turn-On Delay Time		8.0		ns	$V_{DD} = 100V$
t _r	Rise Time	_	57		115	$I_{D} = 9.0A$
t _{d(off)}	Turn-Off Delay Time		38			$R_G = 6.0\Omega$
t _f	Fall Time	_	33			$R_D = 11\Omega$, See Fig. 10 ④
	Internal Dunin Industria		4.5		-11	Between lead,
L _D	Internal Drain Inductance		4.5			6mm (0.25in.)
L _S	Internal Source Inductance		7.5	-	nH	from package
						and center of die contact
C _{iss}	Input Capacitance	_	1100			V _{GS} = 0V
Coss	Output Capacitance	—	220		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance	_	70			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions						
Is	Continuous Source Current			0.0		MOSFET symbol						
	(Body Diode)		9.0	9.0	A	showing the						
I _{SM}	Pulsed Source Current							00		200		integral reverse
	(Body Diode) ①			- 36	36		p-n junction diode.					
V_{SD}	Diode Forward Voltage			2.0	V	$T_J = 25^{\circ}C$, $I_S = 9.0A$, $V_{GS} = 0V$ ④						
t _{rr}	Reverse Recovery Time		230	350	ns	$T_J = 25^{\circ}C, I_F = 9.0A$						
Q _{rr}	Reverse Recovery Charge		1.7	2.6	μC	$di/dt = 100A/\mu s $ ④						
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)										

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\ \Im \ I_{SD} \leq 9.0A, \ di/dt \leq 120A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 150 ^{\circ} C$
- @ V_{DD} = 25V, starting T $_{J}$ = 25°C, L = 4.6mH R_{G} = 25 $\Omega,$ I_{AS} = 9.0A. (See Figure 12)
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics, $T_C = 25^{\circ}C$

Fig 2. Typical Output Characteristics, $T_C = 150^{\circ}C$

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFETS

IRL630

Package Outline

TO-220AB Outline

CONFORMS TO JEDEC OUTLINE TO-220AB

Dimensions in Millimeters and (Inches)

Part Marking Information

TO-220AB

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: (44) 0883 713215 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 3L1, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: 6172 37066 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: (39) 1145 10111 IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo 171 Tel: (03)3983 0641 IR

SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, 0316 Tel: 65 221 8371

Data and specifications subject to change without notice.