Computabilità e Algoritmi (Computabilità) 16 Luglio 2015

Esercizio 1

Dimostrare che se un predicato $P(x, \vec{y})$ è semidecidibile allora $\exists x. P(x, \vec{y})$ è semidecidibile. Vale anche il contrario? Dimostrarlo o portare un controesempio.

Soluzione: Il primo asserto è parte della teoria. Si osservi invece che l'implicazione opposta è falsa. Si consideri, per esempio, il predicato $P(x,y) = x \notin W_x$, che non è semi-decidibile. Il predicato ottenuto tramite la quantificazione esistenziale $Q(y) = \exists x. \ P(x,y)$ è costantemente vero o falso (anche se non rilevante per la prova, si osservi che essendo \bar{K} non vuoto, il predicato Q(y) è costantemente vero), quindi decidibile. Come esempio meno "degenere" si può considerare $P(x,y) = (y > x) \land (y \notin W_x)$ e la quantificazione $Q(y) = \exists x. (y > x) \land (y \notin W_x)$. In questo caso, si osservi che detto $e_0 \in \mathbb{N}$, un indice per la funzione sempre indefinita, si ha che Q(y) è vero per ogni $y > e_0$, da cui discende facilmente la decidibilità di Q(y).

Esercizio 2

Dimostrare che un insieme A è r.e. se e solo se $A \leq_m K$.

Soluzione: Si consideri Se A è r.e., allora $g(x,y) = sc_A(x)$, con l'applicazione del teorema smn porta alla funzione di riduzione. Viceversa, se $A \leq_m K$, allora detta f la funzione di riduzione, si ha $sc_A(x) = sc_k(f(x))$ è calcolabile.

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : \exists y \in E_x. \exists z \in W_x. \ x = y * z\}$, ovvero dire se $A \in \bar{A}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione: Mostriamo che $K \leq A$, quindi A non ricorsivo. Infatti si definisca

$$g(x,y) = \begin{cases} 1 & \text{se } x \in K \\ \uparrow & \text{altrimenti} \end{cases}$$

La funzione g(x,y) è calcolabile, dato che

$$q(x,y) =_K (x)$$

Quindi per il teorema SMN, si ha che esiste una funzione $s: \mathbb{N} \to \mathbb{N}$ calcolabile totale tale che per ogni $x, y \in \mathbb{N}$

$$\varphi_{s(x)}(y) = g(x,y)$$

La funzione s è funzione di riduzione di K a A. Infatti, se $x \in K$, $\varphi_{s(x)}(y) = y$ per ogni y e quindi esistono certamente $y = 1 \in E_{s(x)} = \{1\}$ e $z = s(x) \in W_{s(x)} = \mathbb{N}$ etali che s(x) = y * z = s(x) * 1. Quindi $s(x) \in A$. Altrimenti $\varphi_{s(x)} = \emptyset$ ed è immediato concludere $s(x) \notin A$.

Inoltre A è r.e., dato che la sua funzione semicaratteristica può essere espressa come:

$$sc_A(x) = \mathbf{1}(\mu w. \ S(x, (w)_1, (w)_2, (w)_4) \ \land \ H(x, (w)_3, (w)_4) \ \land \ (w)_2 * (w)_3 = x)$$

e quindi è calcolabile. Pertanto \bar{A} non r.e. (e quindi neppure ricorsivo).

Esercizio 4

Studiare la ricorsività dell'insieme $B = \{x \in N : |W_x \setminus E_x| \ge 2\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: L'insieme in esame è saturato, dato che $B = \{x : \varphi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : |dom(f) \setminus cod(f)| \geq 2\}\}$.

Utilizzando il teorema di Rice-Shapiro si prova B e \bar{B} sono entrambi non r.e.:

 \bullet B non r.e.

Si osservi che $f(x) = x - 2 \notin \mathcal{B}$ $(dom(f) = cod(f) = \mathbb{N}$ quindi dom(f) - cod(f) ma vi è la funzione finita

$$\theta(x) = \begin{cases} 0 & \text{se } x \le 2\\ \uparrow & \text{altrimenti} \end{cases}$$

tale che $\theta \subseteq f$ e $\theta \in \mathcal{B}$ Per il teorema di Rice-Shapiro si conclude quindi che B non è r.e.

• \bar{B} non r.e.

Si noti che se θ è la funzione definita al punto precedente, $\theta \notin \overline{\mathcal{B}}$, ma la funzione sempre indefinita $\emptyset \in \overline{\mathcal{B}}$. Per il teorema di Rice-Shapiro si conclude quindi che $\overline{\mathcal{B}}$ non è r.e.

Esercizio 5

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che esiste un indice x tale che $W_x = \{kx \mid k \in \mathbb{N}\}.$

Soluzione: Il Secondo Teorema di Ricorsione asserisce che data una funzione calcolabile totale $h: \mathbb{N} \to \mathbb{N}$ esiste $e \in \mathbb{N}$ tale che $\varphi_{h(e)} = \varphi_e$.

Per quanto riguarda la domanda, definiamo una funzione $g(x,y) = \mu z |zx-y|$. infatti:

$$g(x,y) = \begin{cases} y/x & \text{se } y \text{ multiplo di } x \\ \uparrow & \text{altrimenti} \end{cases} = \mu z.|zx - y|$$

Per come si può esprimere, la funzione è calcolabile, pertanto il teorema smn ci garantisce l'esistenza di una funzione calcolabile totale $s: \mathbb{N} \to \mathbb{N}$ tale che $\varphi_{s(x)}(y) = g(x,y)$. Si nota che $dom(\varphi_{s(x)}) = \{kx \mid k \in \mathbb{N}\}$. Ora, per il secondo teorema di ricorsione, esiste $e \in \mathbb{N}$ tale che $\varphi_{s(e)} = \varphi_e$ e pertanto

$$dom(\varphi_e) = dom(\varphi_{s(e)}) = \{ke \mid k \in \mathbb{N}\}.$$

come desiderato. \Box