Advanced Probabilistic Machine Learning and Applications

Alessandro Lonardi and Caterina De Bacco

November 9, 2021

Tutorial 4: Mean field approach

Exercise 1: Curie-Weiss model

The Hamiltonian of the Curie-Weiss model can be written as:

$$H(\mathbf{s}) = -\frac{J}{2N} \sum_{i,j} s_i s_j - h \sum_i s_i. \tag{1}$$

From the lecture, we know that the Mean Field free variational energy is:

$$F[Q] = -\frac{J}{2}m^2 - hm + \frac{1}{\beta} \left[\frac{1+m}{2} \log \left(\frac{1+m}{2} \right) + \frac{1-m}{2} \log \left(\frac{1-m}{2} \right) \right]$$

where $m := \mathbb{E}_Q \left[\sum_i s_i / N \right]$ is the expected total magnetisation.

Perform the following tasks.

- 1. Plot the function F[Q] as a function of m in the two following cases:
 - (i) at h = 0, for different values of J larger and lower than 1;
 - (ii) at a value of J larger than 1 for different values (positive and negative) of h.

Describe what you see in both cases.

2. The minimizer m^* is also the solution of the self-consistency equation:

$$m = \tanh \left[\frac{J}{2}m + h \right].$$

Compute the value of m^* in the three following cases:

- (i) $h = 10^{-6}$ and *J* between 0 and 2;
- (ii) $h = -10^{-6}$ and J between 0 and 2;
- (iii) J = 1.5 and h between -1 and 1.
- 3. Focusing on the case J = 1.5. With h = 0.1, 0.2, how many solutions to the self-consistency equations are there? Which one is the correct one? (Plot the function F[Q] to answer to these questions).

Exercise 2: Sampling from the Curie-Weiss model (MCMC method)

Consider again the Curie-Weiss Hamiltonian in Equation (1). A practical way to sample configurations of N spins from the Gibbs probability distribution:

$$P(\mathbf{s}) = \frac{e^{-\beta H(\mathbf{s})}}{Z},$$

is the Monte-Carlo-Markov-Chain (MCMC) method, and in particular the Metropolis-Hastings algorithm. This works as follows:

- 1. Choose a starting configuration for the N spins values $s_i = \pm 1$, for i = 1, ..., N
- 2. Choose a spin i at random. Compute the current value of the energy H_{now} and the value of the energy H_{flip} if the spins i is flipped (that is if $s_i^{\text{new}} = -s_i^{\text{old}}$)
- 3. Sample a number $r \sim U(0,1)$
- 4. if $r < \exp[\beta(H_{\text{now}} H_{\text{flip}})]$ then: perform the flip (i.e. $s_i^{\text{new}} = -s_i^{\text{old}}$)
- 5. if $r \ge \exp[\beta(H_{\text{now}} H_{\text{flip}})]$ then: leave s_i as it is
- 6. Go back to step 2

If one is running this program long enough, it is guaranteed that the final configuration of spins will have been chosen with the correct probability.

Perform the following tasks.

- 1. Write a code to implement the MCMC dynamics.
- 2. Run the code starting from a configuration where all spins are equal to 1. Take h=0, J=1, $\beta=1.2$ and run your dynamics for a time that is long enough (say, with $t_{\rm max}=100N$ attempts to flips spins). Monitor the value of the magnetization per spin $m=\sum_i s_i/N$ as a function of time. Make a plot for N=10,50,100,200,1000 spins. Compare with the exact solution at $N=\infty$. Comment.
- 3. Start by a configuration where all spins are equal to 1 and take $h=-0.1,\ J=1,\ \beta=1.2.$ Monitor again the value of the magnetization per spin $m=\sum_i s_i/N$ as a function of time. Make a plot for N=10,50,100,200,1000 spins. Compare with the exact solution at $N=\infty$. Comment.