第一章 真题与模拟题

备注

▲表示难度, 越多越难 ♦表示计算量, 越多计算量越大

1.1 数学真题一网打尽

1.
$$\blacktriangle \blacktriangle \stackrel{\text{xin } \frac{\pi}{n}}{\lim_{n \to \infty}} \left(\frac{\sin \frac{\pi}{n}}{n+1} + \frac{\sin \frac{2\pi}{n}}{n+\frac{1}{2}} + \dots + \frac{\sin \pi}{n+\frac{1}{n}} \right)$$

Solution

显然是一道夹逼定理的题目,但有几点需要注意.

原式
$$<\frac{1}{n}\sum_{i=1}^n\sin\frac{i}{n}\pi \xrightarrow{n\to\infty}\int_0^1\sin\pi x\mathrm{d}x$$

放大这一方向是比较好想的, 重点在于缩小.

原式
$$> \frac{1}{n+1} \sum_{i=1}^n \sin \frac{i}{n} \pi = \frac{n}{n+1} \cdot \frac{1}{n} \sum_{i=1}^n \sin \frac{i}{n} \pi \xrightarrow{n \to \infty} \int_0^1 \sin \pi x \mathrm{d}x$$

$$\int_0^1 \sin \pi x = \frac{2}{\pi}$$

由夹逼定理有

$$\lim_{n\to\infty} \mathbb{R} \, \mathfrak{J} = \frac{2}{\pi}$$

1

A.
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \cdot \frac{1}{2n}$$

B.
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \cdot \frac{1}{n}$$

C.
$$\lim_{n\to\infty} \sum_{k=1}^n f\left(\frac{k-1}{2n}\right) \cdot \frac{1}{n}$$

D.
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{2n}\right) \cdot \frac{2}{n}$$

解法一 正面突破

这道题显然是考察定积分的定义, 但考察的比较细节.

i 其中 (A)(B) 选项是将区间进行 n 等分的划分, 且取的是区间重点, 如何得知呢? 考虑端点 $0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{k}{n}, \frac{k+1}{n}, \dots, \frac{n}{n}$ 而

$$\frac{k-1}{n} = \frac{2k-2}{2n} < \frac{2k-1}{2n} < \frac{2k}{2n} = \frac{k}{n}$$

故由定积分的定义, 此时有

$$\int_{0}^{1} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(\frac{2k-1}{2n}) \cdot \frac{1}{n}$$

ii 其中 (C)(D) 是将区间进行 2n 等分的划分, 取的分别是左/右端点, 这并不影响 定积分形式, 应该为

$$\int_0^1 f(x) \mathrm{d}x = \lim_{n \to \infty} \sum_{k=1}^{2n} f(\frac{k}{2n}) \cdot \frac{1}{2n}$$

解法二选择题不客气!

取 f(x) = 1 则 $\int_0^1 1 dx = 1$, 对应的选项可以直接计算, 结果为

(A) 原式 =
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2n} = \frac{1}{2} \neq 1$$

(B) 原式 =
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} = 1$$

(C)
$$\[\text{R} \ \vec{\Xi} = \lim_{n \to \infty} \sum_{i=1}^{2n} \frac{1}{n} = 2 \neq 1 \]$$

(D) 原式 =
$$\lim_{n \to \infty} \sum_{i=1}^{2n} \frac{2}{n} = 4 \neq 1$$

定积分的定义

定积分的定义有如下几个要点

(1) 将区间 [a,b] 划分为 n 个区域, 其中记

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b$$

记自区间长度即模为

$$\lambda = \max\{\Delta_1, \Delta_2, \dots, \Delta_{n-1}, \Delta_n\}$$

(2) 在每个子区间上取任意一点 ξ_i 取其函数值 $f(\xi_i)$, 则 Riemann 和为

$$S = \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

当 $\lambda \to 0$ 时, 若 S 极限存在, 且 <u>分割方式与 ξ_i 无关</u>, 则称该极限为 f 在 [a,b] 上 的定积分, 如下

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

3. \blacktriangle (1999.2) $a_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx (n = 1, 2, ...)$,设 f(x) 是区间 $[0, +\infty)$ 上单调递减且非负的连续函数证明数列 $\{a_n\}$ 极限存在

Solution

先证明单调性, 作差有

$$a_{n+1} - a_n = f(n+1) - \int_n^{n+1} f(x) dx$$

$$\frac{\Re \varphi + \text{dic}}{2} f(n+1) - f(\xi), \xi \in (n, n+1)$$

由于 f(x) 在 $[0, +\infty)$ 上单调递减故 $a_{n+1} - a_n < 0 \implies$ 原数列单调递减. 再证明有界性由于

$$\sum_{k=1}^{n-1} \int_{k}^{k+1} f(x) dx = \int_{1}^{n} f(x) dx$$

原式化为

$$\sum_{k=1}^{n-1} \left[f(k) - \int_{k}^{k+1} f(x) dx \right] + f(n)$$

由于 f(x) 非负且单调递减,容易直到 $f(k) > \int_k^{k+1} f(x) \mathrm{d}x$ 故原式一定有 原式 ≥ 0

即原数列单调递减有下界,故原数列收敛.

4. (2011-12) ▲▲

- (1) 证明: 对于任意的正整数 n, 都有 $\frac{1}{n+1} < \ln\left(1+\frac{1}{n}\right) < \frac{1}{n}$
- (2) 设 $a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} \ln n$ 证明数列 $\{a_n\}$ 收敛

拉氏中值+单调有界证明

(1) 令 $f(x) = \ln(1+x)$ 则

$$\ln{(1+\frac{1}{n})}-\ln{1}=f'(\xi)\cdot\frac{1}{n},\xi\in(0,\frac{1}{n})$$

即

$$\frac{n}{n+1} < \frac{1}{1+\xi} < 1$$

综上有

$$\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$$

(2) 首先证明其单调, 作差有

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln(1+\frac{1}{n}) < 0$$

即原数列单调递减,只需证明其有下界即可. 考虑

$$a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n$$

$$> \ln(1+1) + \ln(1+\frac{1}{2}) + \ldots + \ln(1+\frac{1}{n}) - \ln n$$

$$= \ln(2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \ldots \frac{n+1}{n}) - \ln n$$

$$= \ln(n+1) - \ln n > 0$$

故原数列单调递减有下界,即其极限值存在.

积分放缩法

由积分保号性, 若需证明 $\int_a^b f(x) dx > \int_a^b f(x) dx$ 只需证明 f(x) > g(x)

(1) 考虑如下操作

$$\begin{split} \frac{1}{n+1} < \ln{(1+n)} - \ln{n} < \frac{1}{n} \\ \frac{1}{n+1} < \int_{n}^{n+1} \frac{1}{x} \mathrm{d}x < \frac{1}{n} \\ \int_{n}^{n+1} \frac{1}{n+1} \mathrm{d}x < \int_{n}^{n+1} \frac{1}{x} \mathrm{d}x < \int_{n}^{n+1} \frac{1}{n} \mathrm{d}x \end{split}$$

显然在 (n, n+1) 上有 $\frac{1}{n+1} < \frac{1}{x} < \frac{1}{n}$, 故原不等式得证

(2) 证明单调性, 作差有

$$a_{n+1} - a_n = \int_{n}^{n+1} \left(\frac{1}{n+1} - \frac{1}{x} \right) dx < 0$$

证明有下界有

$$a_n = \sum_{k=1}^n \frac{1}{k} - \int_1^n \frac{1}{x} dx > 0$$

有没有很眼熟, 没错, 正是上一题 (1999.2) 的所考察的证明!

故原数列单调递减有下界, 其极限存在.

收敛级数

(1) 不等式最基本的方法应该想到构建函数, 证明单调性. 不妨令 $x = \frac{1}{n}$, 原不等式等价于证明

$$\frac{x}{1+x} < \ln(1+x) < x, x \in (0,1)$$

令 $f(x) = x - \ln(1+x)$ 则 $f'(x) = 1 - \frac{1}{x+1} > 0$, 故 f'(x) 单调递增, 即 f(x) > f(0) = 0, 同理可证明左边不等式.

(2) 基于如下结论

$$\lim_{n\to\infty} a_n$$
存在 $\iff \sum_{n=1}^{\infty} (a_{n+1} - a_n)$ 收敛

由于

$$a_n = a_1 + (a_2 - a_1) + \ldots + (a_n - a_{n-1}) = a_1 + \sum_{k=2}^{n} (a_k - a_{k-1})$$

故数列
$$\{a_n\}$$
 与级数 $\sum_{k=2}^{n} (a_k - a_{k-1})$ 同敛散.

由于
$$|a_n - a_{n-1}| = \left|\frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)\right|$$
 做 Taylor 展开有

$$|a_n - a_{n-1}| = \left| \frac{1}{n} \left[-\frac{1}{n} - \frac{1}{2} \frac{1}{n^2} + o(\frac{1}{n^2}) \right] \right|$$
$$= \left| -\frac{1}{2} \frac{1}{n^2} + o(\frac{1}{n^2}) \right| \sim \frac{1}{n^2}$$

又因为 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛, 由比较判别法可知原级数绝对收敛, 故而原级数收敛. 从而数列极限存在

5. (2012**-**2) ▲

- (1) 证明方程 $x^n + x^{n-1} + \ldots + x = 1 (n > 1, n \in \mathbb{N})$ 在区间 $\left(\frac{1}{2}, 1\right)$ 内仅有一个实根
- (2) 记 (I) 中的实根为 x_n 证明 $\lim_{n\to\infty} x_n$ 存在, 并求出此极限

Solution

(1) 令 $f(x) = x^n + \ldots + x - 1$, $f'(x) = nx^{n-1} + \ldots + 2x + 1 > 0$ 故 f(x) 在 $(\frac{1}{2}, 1)$ 上单 调递增, 又有

$$\begin{cases} f(1) = n - 1 > 0 \\ f(\frac{1}{2}) = -\frac{1}{2^n} < 0 \end{cases}$$

由零点存在定理可知, 在区间 $(\frac{1}{2},1)$ 上仅有唯一零点

(2) 考虑 $f(x)_{n+1} = x^{n+1} + x^n + \ldots + x - 1$ 由 (1) 可知

$$\begin{cases} f(x_n)_{n+1} = x_n^{n+1} > 0\\ f(\frac{1}{2})_{n+1} = -\frac{1}{2^{n+1}} < 0 \end{cases}$$

故在区间 $(\frac{1}{2},x_n)$ 中有唯一零点 x_{n+1} 因此有

$$\frac{1}{2} < x_{n+1} < x_n$$

即数列 $\{x_n\}$ 单调递减有下界故极限存在.

不妨令 $\lim_{n\to\infty} x_n = a$ 带入 f(x) 有

$$\lim_{n\to\infty}\frac{x_n-x_{n+1}}{1-x_n}=1$$

即

$$\frac{a-0}{1-a} = 1 \implies a = \frac{1}{2}$$

- 6. \blacktriangle (2013.2) 设函数 $f(x) = \ln x + \frac{1}{x}$
 - (1) 求 f(x) 的最小值
 - (2) 设数列 $\{x_n\}$ 满足 $\ln x_n + \frac{1}{x_{n+1}} < 1$ 证明 $\lim_{n \to \infty} x_n$ 存在, 并求此极限

Solution

(1) $f'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x-1}{x^2}(x>0)$ 有 f(x) 在 (0,1) 上递减, 在 $(1,+\infty)$ 上递增, 故 f(1) = 1 为 f(x) 的最小值

(2) 由题设有

$$\ln x_n < \ln x_n + \frac{1}{x_{n+1}} < 1 = \ln e$$

有 $\ln x$ 单调, 故 $0 < x_n < e$ 又由于 (1) 可知 $1 = f(1) < f(x_n) \implies x_{n+1} < x_n$ 故原数列单调递减有下界故其极限存在, 不妨设 $\lim_{n \to \infty} x_n = a$, 有题设有

$$\ln a + \frac{1}{a} \le 1$$

又因为

$$\ln x + \frac{1}{x} \ge 1$$

故a=1即

$$\lim_{n \to \infty} x_n = 1$$

- 7. \blacktriangle 设对任意的 x, 总有 $\varphi(x) \leq f(x) \leq g(x)$, 且 $\lim_{n \to \infty} \left[g(x) \varphi(x) \right] = 0$, 则 $\lim_{n \to \infty} f(x)$ ()
 - A. 存在且等于零

B. 存在但不一定为零

C. 一定不存在

D. 不一定存在

Solution

对于 A,B 选项, 不妨取 $f(x) = g(x) = \varphi(x) = x$ 但是 $\lim_{x \to \infty} f(x) = \infty$ 不存在对于 C 选项, 不妨取 $f(x) = g(x) = \varphi(x) = 1$, 此时 $\lim_{x \to \infty} f(x) = 1$

夹逼定理

原式形式

$$n$$
充分大时,
$$\begin{cases} \varphi(n) \leq f(n) \leq g(n) \\ \lim_{n \to \infty} \varphi(n) = \lim_{n \to \infty} g(n) = A \end{cases} \implies \lim_{n \to \infty} f(n) = A$$

考虑题设的 $\lim_{n\to\infty} [g(x) - \varphi(x)] = 0$ 则有

$$0 \le f(x) - \varphi(x) \le g(x) - \varphi(x) \implies \lim_{n \to \infty} [f(x) - \varphi(x)] = 0$$

也可以看出 f(x) 的极限与 $\varphi(x)$ 有关, 若 $\varphi(x)$ 存在则 f(x) 极限也存在否则不存在.

- 8. **▲**(2007-12) 设函数 f(x) 在 $(0, +\infty)$ 内具有二阶导数,且 f''(x) > 0, 令 $u_n = f(n)(n = 1, 2, ...)$ 则下列结论正确的是()
 - **A.** 若 $u_1 > u_2$, 则 $\{u_n\}$ 必收敛
- **B.** 若 $u_1 > u_2$, 则 $\{u_n\}$ 必发散
- **C.** 若 $u_1 < u_2$, 则 $\{u_n\}$ 必收敛
- **D.** 若 $u_1 < u_2$, 则 $\{u_n\}$ 必发散

拉格朗日中值定理

存在 $\xi_n \in (n, n+1), u_{n+1} - u_n = f(n+1) - f(n) = f'(\xi_n)$ 进而有 $u_{n+1} = u_n + f'(\xi_n)$, 由于 $f''(x) > 0 \implies f'(x)$ 单调递增, 此时有

$$u_{n+1} = u_n + f'(\xi_n)$$

$$= u_{n-1} + f'(\xi_{n-1}) + f'(\xi_n)$$

$$\cdots$$

$$= u_1 + \sum_{i=1}^n f'(\xi_i)$$

$$> u_1 + nf'(\xi_i) = u_1 + n(u_2 - u_1)$$

显然当 $u_2 > u_1$ 当 $n \to \infty, u_n > +\infty$ 显然极限不存在.

数学真题一网打尽 1.1

9

选择题不客气

对于选项
$$\mathbf{A}, f(x) = \frac{1}{x} - x$$

对于选项 $\mathbf{B}, f(x) = \frac{1}{x}$
对于选项 $\mathbf{C}, f(x) = x^2$

级数

由于 $u_{n+1} - u_n = f'(\xi_n) > f'(\xi_i) = u_2 - u_1 > 0$ 此时 $\lim_{n \to \infty} u_{n+1} - u_n \neq 0$ 从而级数 $\sum_{n=0}^{\infty} (a_{n+1} - a_n)$ 极限不存在, 由定义有其部分和不存在, 即

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} u_{n+1} - u_1$$

进而可知 $\lim_{n\to\infty} u_n$ 不存在.

- 9. 设 $\lim_{n\to\infty} a_n = a$ 且 $a\neq 0$ 则当 n 充分大的时候,有()
- **A.** $|a_n| > \frac{|a|}{2}$ **B.** $|a_n| < \frac{|a|}{2}$ **C.** $a_n > a \frac{1}{n}$ **D.** $a_n < a + \frac{1}{n}$

- 10. 设有数列 $\{x_n\}, -\frac{\pi}{2} \le x_n \le \frac{\pi}{2}$ 则 ()
 - **A.** 若 $\lim_{n\to\infty}\cos(\sin x_n)$ 存在,则 $\lim_{n\to\infty}x_n$ 存在
 - **B.** 若 $\lim_{n\to\infty} \sin(\cos x_n)$ 存在, 则 $\lim_{n\to\infty} x_n$ 存在
 - C. 若 $\lim_{n\to\infty}\cos(\sin x_n)$ 存在,则 $\lim_{n\to\infty}\sin x_n$ 存在,但 $\lim_{n\to\infty}x_n$ 不存在
 - **D.** 若 $\lim_{n\to\infty} \sin(\cos x_n)$ 存在,则 $\lim_{n\to\infty} \cos x_n$ 存在,但 $\lim_{n\to\infty} x_n$ 不存在
- 11. $\exists \exists n \ a_n = \sqrt[n]{n} \frac{(-1)^n}{n} (n = 1, 2, ...) \ \mathbb{N} \{a_n\}()$
 - A. 有最大值与最小值

B. 有最大值无最小值

C. 有最小值无最大值

- D. 无最大值与最小值
- 12. ♦♦ 设 z=z(x,y) 是由方程 $x^2+y^2-z=\varphi(x+y+z)$ 所确定的函数, 其中 φ 具有 2 阶 导数且 $\varphi' \neq -1$
 - (1) 求 dz

13.

1.2 超越 (11-25年)

1.3 共创 (22,23,24) 年

1.4 25 年模拟卷 (百来套)