

Слушатель: Едренников Николай Сергеевич

лан работы:

- 1. Загрузить и обработать входящие датасеты
- 2. Провести разведочный анализ данных:
- 3. Визуализировать разведочный анализ сырых данных (до выбросов и нормализации)
- 4. Провести предобработку данных
- 5. Провести нормализацию и стандартизацию (продолжим предобработку данных)
- Разработать и обучить несколько моделей прогноза прочности и модуля упругости при растяжении (с 30% тестовой выборки)
- Создание нейронной сети для рекомендации соотношения матрица-наполнитель
- 8. Создание приложения
- 9. Создание удалённого репозитория и загрузка результатов работы на него

8. Rлассификаци Statistica oft.ru/prod ucts/trial/ качества алгоритма. Statistica oft.ru/prod ucts/trial/ качества алгоритма. Statistica oft.ru/prod ucts/trial/ качества использованием R. 351 с. — Электронная книга, адрес доступа: https://github.com/ranalytics/datamining 2. Рассел С., Норвиг П. Искусственный интеллект: современный подход, 2-е изд.: Төр. с англ. - М.: Издательский дом "Вильямс", 2007. - 1408 с.

Начало работы:

Подробный план работы:

- Подробный план позволил не пропускать этапы работ и снизил количество ошибок;
- Вспомнил курс материаловедения, чтобы понимать суть проблемы;
- Иногда приходилось переделывать или повторять шаги для поиска ошибок;
- Использовал 9 методов регрессий для каждой модели;
- Приложение скорее работает, но требует доработки

Вспомогательные приложения

• Справочный материал, собранный во время курса, приложения для заметок и текстовые редакторы помогали структурировать данные и быстро находить решение.

[18]:	#Просмотрим информацию о датасете, проверим тип данных в столбцах df.info()							
	Int6	ss 'pandas.core.frame.DataFrame'> 4Index: 1023 entries, 0 to 1022 columns (total 13 columns):						
	#	Column	Non-Null Count	Dtype				
	0	Соотношение матрица-наполнитель	1023 non-null	float64				
	1	Плотность, кг/м3	1023 non-null	float64				
	2	модуль упругости, ГПа	1023 non-null	float64				
	3	Количество отвердителя, м.%	1023 non-null	float64				
	4	Содержание эпоксидных групп,%_2	1023 non-null	float64				
	5	Температура вспышки, С_2	1023 non-null	float64				
	6	Поверхностная плотность, г/м2	1023 non-null	float64				
	7	Модуль упругости при растяжении, ГПа	1023 non-null	float64				
	8	Прочность при растяжении, МПа	1023 non-null	float64				
	9	Потребление смолы, г/м2	1023 non-null	float64				
	10	Угол нашивки, град	1023 non-null	float64				
	11	Шаг нашивки	1023 non-null	float64				
	12	Плотность нашивки	1023 non-null	float64				
	dtyp	es: float64(13)						
	memo	ry usage: 111.9 KB						

[19]:	#Поиск уникальных значений (nunique) df.nunique()	
[19]:	,	1014 1013 1020 1005 1004 1003 1004 1004 1004 1003 2
	Плотность нашивки dtype: int64	988

Объединение файлов и разведочный анализ:

Объединение по индексу:

- Импортируем необходимые библиотеки;
- Загружаем файлы;
- Смотрим размерность;
- Объединяем оба файла по индексу по типу объединения INNER

Разведочный анализ данных:

- Сравним начальные и конечные строки датасета;
- Изучим информацию о датасете;
- Проверим типы данных в каждом столбце;
- Убедимся в отсутствии пропусков;
- Выполним поиск уникальных значений с помощью функции nunique


```
[49]: # Изучим столбец "Угол нашивки, град'].nunique()

#Количество уникальных значений в строке "Угол нашивки" равно двум, приведем данные к значениям в и 1

[50]: 2

[51]: #Посчитаем кол-во элементов, где Угол нашивки равен в градусов df['Угол нашивки, град'][df['Угол нашивки, град'] == 0.0].count()

[51]: 520

[52]: #Приведем столбец "Угол нашивки" к значениям в и 1 и integer df = df.replace({'Угол нашивки, град': {0.0 : 0, 90.0 : 1}}) df['Угол нашивки, град'] = df['Угол нашивки, град'].astype(int)

[53]: #Переименование столбца df = df.rename(columns={'Угол нашивки, град' : 'Угол нашивки'}) df
```

[89]: #Посчитаем количество элементов, где угол нашивки равен 0 градусов, проверим, что количество не изменилось после наших манипуляций df['Угол нашивки'][df['Угол нашивки'] == 0.0].count() #После преобразования колонки Угол нашивки к значениям 0 и 1, кол-во элементов, где угол нашивки равен 0 не изменилось (520 до и после пр

[89]: 520

[90]: # Переведем столбец с нумерацией в integer df.index = df.index.astype('int')

[91]: # Сохраним итоговый датасет в отдельную папку с данными, чтобы долго не искать df.to_excel('itog_V3.xlsx')

Почему-то не получается указать путь к месту сохренения файла. Еще вернусь к этому. Пока сохраняет в дерикторияю пользователя..

4]:		count	mean	std	min	25%	50%	75%	max
	Соотношение матрица-наполнитель	1023.0	2.930366	0.913222	0.389403	2.317887	2.906878	3.552660	5.591742
	Плотность, кг/м3	1023.0	1975.734888	73.729231	1731.764635	1924.155467	1977.621657	2021.374375	2207.773481
	модуль упругости, ГПа	1023.0	739.923233	330.231581	2.436909	500.047452	739.664328	961.812526	1911.536477
	Количество отвердителя, м.%	1023.0	110.570769	28.295911	17.740275	92.443497	110.564840	129.730366	198.953207
	Содержание эпоксидных групп,%_2	1023.0	22.244390	2.406301	14.254985	20.608034	22.230744	23.961934	33.000000
	Температура вспышки, С_2	1023.0	285.882151	40.943260	100.000000	259.066528	285.896812	313.002106	413.273418
	Поверхностная плотность, г/м2	1023.0	482.731833	281.314690	0.603740	266.816645	451.864365	693.225017	1399.542362
	Модуль упругости при растяжении, ГПа	1023.0	73.328571	3.118983	64.054061	71.245018	73.268805	75.356612	82.682051
	Прочность при растяжении, МПа	1023.0	2466.922843	485.628006	1036.856605	2135.850448	2459.524526	2767.193119	3848.436732
	Потребление смолы, г/м2	1023.0	218.423144	59.735931	33.803026	179.627520	219.198882	257.481724	414.590628
	Угол нашивки	1023.0	0.491691	0.500175	0.000000	0.000000	0.000000	1.000000	1.000000
	Шаг нашивки	1023.0	6.899222	2.563467	0.000000	5.080033	6.916144	8.586293	14.440522
	Плотность нашивки	1023.0	57.153929	12.350969	0.000000	49.799212	57.341920	64.944961	103.988901

«Угол нашивки» и описательная статистика:

Работа со столбцом "Угол нашивки":

- Проверяем количество элементов со значением 0 градусов;
- Приводим к значениям 0 и 1;
- Убедимся в неизменном количестве элементов

Описательная статистика:

- Изучим описательную статистику данных
- Посмотрим на основные параметры анализа данных;
- Проверим датасет на пропущенные и дублирующие данные;
- Вычислим коэффициенты ранговой корреляции Кендалла и Пирсона

Визуализация «сырых» данных:

Графики без нормализации и исключения шумов:

- Построим гистограммы распределения каждой из переменных (несколько вариантов);
- диаграммы "ящиков с усами" (несколько вариантов);
- попарные графики рассеяния точек (несколько вариантов);
- графики квантиль-квантиль;
- тепловые карты (несколько вариантов)

Предобработка данных:

Исключение выбросов:

- Посчитаем количество значений методом 3 сигм и методом межквартильных расстояний;
- Исключим выбросы методом межквартильного расстояния;
- Проверим результат;
- Построим графики;
- Убедимся, что выбросы ещё остались;
- Повторим удаление выбросов ещё 4 раза до полного удаления;
- Проверим чистоту датасета от выбросов
- Построим все возможные графики «чистого» датасета

Предобработка данных:

✓ Нормализация данных:

- Нормализуем данные MinMaxScaler();
- Построим график плотности ядра;
- Проверим результат MinMaxScaler();
- Построим графики MinMaxScaler();
- Нормализуем данные с помощью Normalizer();
- Проверим результат Normalizer();
- Построим графики Normalizer();
 - **✓** Стандартизация данных:
- Стандартизируем данные с помощью StandardScaler();
- Проверим результат StandardScaler();
- Построим графики StandardScaler();

K Neighbors Regressor Results Train:

Test score: 0.94

K Neighbors Regressor Results:

KNN_MAE: 102 KNN_MAPE: 0.04 KNN_MSE: 16723.93 KNN_RMSE:129.32 Test score: 0.92

Тестовые и прогнозные значения К Neighbors Regressor

Разработка и обучение моделей для прогноза прочности при растяжении:

Метод К ближайших соседей:

- Разбиваем данные на тестовую и тренировочную выборки;
- Обучаем модель;
- Вычисляем коэффициент детерминации;
- Считаем MAE, MAPE, MSE, RMSE, test score train и test score test;
- Сравниваем с результатами модели, выдающей среднее значение;
- Построим графики для тестовых и прогнозных значений;
- Построим гистограмму распределения ошибки


```
pipe = Pipeline([('preprocessing', StandardScaler()), ('regressor', SVR())])
      param grid = [
      {'regressor': [SVR()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None],
       'regressor_gamma': [0.001, 0.01, 0.1, 1, 10, 100],
      'regressor_C': [0.001, 0.01, 0.1, 1, 10, 100]},
      {'regressor': [RandomForestRegressor(n_estimators = 100)],
      'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
      {'regressor': [LinearRegression()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
      {'regressor': [GradientBoostingRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
      {'regressor': [KNeighborsRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
      {'regressor': [DecisionTreeRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
      {'regressor': [SGDRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
      {'regressor': [MLPRegressor(random_state = 1, max_iter = 500)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
      {'regressor': [linear_model.Lasso(alpha = 0.1)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},]
      grid = GridSearchCV(pipe, param_grid, cv = 10)
      grid.fit(x_train_1, np.ravel(y_train_1))
      print("Наилучшие параметры:\n{}\n".format(grid.best_params_))
      print("Наилучшее значение правильности перекрестной проверки: {:.2f}".format(grid.best_score_))
      print("Правильность на тестовом наборе: {:.2f}".format(grid.score(x_test_1, y_test_1)))
     Наилучшие параметры:
      {'preprocessing': StandardScaler(), 'regressor': SGDRegressor()}
     Наилучшее значение правильности перекрестной проверки: 0.97
     Правильность на тестовом наборе: 0.97
# Проведем поиск по сетке гиперпараметров с перекрестной проверкой, количество блоков равно 10 (cv = 10), для
#Деревья решений - Decision Tree Regressor - 6
criterion = ['squared_error', 'friedman_mse', 'absolute_error', 'poisson']
splitter = ['best', 'random']
                                                                       #Выводим гиперпараметры для оптимальной модели
\max_{depth} = [3,5,7,9,11]
                                                                       print(gs4.best estimator )
min_samples_leaf = [100,150,200]
                                                                       gs1 = gs4.best_estimator_
min_samples_split = [200,250,300]
                                                                       print(f'R2-score DTR для прочности при растяжении, МПа: {gs4.score(x_test_1, y_test_1).round(3)}')
max_features = ['auto', 'sqrt', 'log2']
param_grid = {'criterion': criterion,
                                                                       DecisionTreeRegressor(criterion='poisson', max_depth=5, max_features='auto',
             'splitter': splitter,
                                                                                          min_samples_leaf=100, min_samples_split=250)
            'max depth': max depth,
                                                                       R2-score DTR для прочности при растяжении, МПа: 0.779
            'min_samples_split': min_samples_split,
            'min_samples_leaf': min_samples_leaf,
            'max_features': max_features}
#Запустим обучение модели. В качестве оценки модели будем использовать коэффициент детерминации (R^2)
# Если R2<0, это значит, что разработанная модель даёт прогноз даже хуже, чем простое усреднение.
gs4 = GridSearchCV(dtr, param_grid, cv = 10, verbose = 1, n_jobs =-1, scoring = 'r2')
gs4.fit(x_train_1, y_train_1)
                                                                          #подставим оптимальные гиперпараметры в нашу модель метода деревья решений
dtr_3 = gs4.best_estimator_
                                                                          dtr_grid = DecisionTreeRegressor(criterion = 'poisson', max_depth = 7, max_features = 'auto',
gs.best_params_
                                                                                             min_samples_leaf = 100, min_samples_split = 250)
                                                                          #Обучаем модель
Fitting 10 folds for each of 1080 candidates, totalling 10800 fits
                                                                          dtr grid.fit(x train 1, y train 1)
{'algorithm': 'brute', 'n_neighbors': 7, 'weights': 'distance'}
                                                                          predictions_dtr_grid = dtr_grid.predict(x_test_1)
                                                                          #Оцениваем точность на тестовом наборе
                                                                          mae_dtr_grid = mean_absolute_error(predictions_dtr_grid, y_test_1)
                                                                          mae_dtr_grid
                                                                          168.6249974156563
```

Поиск гиперпараметров:

- ✓ Для метода «Деревья решений»:
- Поиск гиперпараметров методом GridSearchCV с перекрёстной проверкой с количеством блоков 10;
- Выводим гиперпараметры для оптимальной модели;
- Подставляем оптимальные гиперпараметры в модель случайного леса;
- Обучаем модель;
- Оцениваем точность на тестовом наборе;
- Выводим наилучшее значение правильности перекрёстной проверки , наилучшие параметры, наилучшую модель по всем 9 методам;
- Проверяем правильность на тестовом наборе

Разработка и обучение моделей для прогноза модуль упругости при растяжении:

Графики тестовых и прогнозных значений для разных методов:

- 1. Метод опорных векторов
- 2. Линейная регрессия
- 3. Стохастический градиентный спуск
- 4. Многослойный перцептрон
- 5. К-ближайших соседей
- 6. Градиентный бустинг
- 7. «Случайный лес»
- 8. Дерево принятия решений
- 9. Лассо


```
pipe2 = Pipeline([('preprocessing', StandardScaler()), ('regressor', SVR())])
param_grid2 = [
{'regressor': [SVR()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None],
'regressor__gamma': [0.001, 0.01, 0.1, 1, 10, 100],
'regressor__C': [0.001, 0.01, 0.1, 1, 10, 100]},
{'regressor': [RandomForestRegressor(n_estimators=100)],
'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [LinearRegression()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [GradientBoostingRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [KNeighborsRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [DecisionTreeRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [SGDRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [MLPRegressor(random_state=1, max_iter=500)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [linear_model.Lasso(alpha=0.1)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},]
grid2 = GridSearchCV(pipe2, param_grid2, cv=10)
grid2.fit(x_train_1, np.ravel(y_train_2))
print("Наилучшие параметры:\n{}\n".format(grid2.best_params_))
print("Наилучшее значение правильности перекрестной проверки: {:.2f}".format(grid2.best_score_))
print("Правильность на тестовом наборе: {:.2f}".format(grid.score(x test 2, y test 2)))
{'preprocessing': MinMaxScaler(), 'regressor': SVR(C=100, gamma=1), 'regressor_C': 100, 'regressor_gamma': 1}
Наилучшее значение правильности перекрестной проверки: 0.68
Правильность на тестовом наборе: -79805487.66
print("Наилучшая модель:\n{}".format(grid.best_estimator_))
Pipeline(steps=[('preprocessing', StandardScaler()),
               ('regressor', SGDRegressor())])
# Проведем поиск по сетке гиперпараметров с перекрестной проверкой, количество блоков равно 10 (cv = 10), для
# модели случайного леса - Random Forest Regressor - 2
parametrs = { 'n_estimators': [200, 300],
```

```
MAE
                     Perpeccop
                                  78,477914
                 Support Vector
                                  76.589025
                 RandomForest
               Linear Regression
                                  61.986894
               GradientBoosting
                                  64.728717
                    KNeighbors
                                 102.030259
                   DecisionTree
                                 107.158013
                                 181.624450
                          SGD
                          MLP 1808.547264
                         Lasso
                                  69,474334
     RandomForest_GridSearchCV
                                  67.603567
       KNeighbors_GridSearchCV
                                  99.281694
      DecisionTree_GridSearchCV
                                 168.624997
12 RandomForest1_GridSearchCV
                                   2.627032
```

Поиск гиперпараметров: для прогноза модуль упругости при растяжении:

Для метода «Случайный лес»:

- Поиск гиперпараметров методом GridSearchCV с перекрёстной проверкой с количеством блоков 10;
- Выводим гиперпараметры для оптимальной модели;
- Подставляем оптимальные гиперпараметры в модель случайного леса;
- Обучаем модель;
- Оцениваем точность на тестовом наборе;
- Выводим наилучшее значение правильности перекрёстной проверки, наилучшие параметры, наилучшую модель по всем 9 методам;
- Проверяем правильность на тестовом наборе

grid21.fit(x_train_2, y_train_2)

GridSearchCV(cv=10,

'max_depth': [9, 15],
'max_features': ['auto'],

'criterion': ['mse'] }

grid21 = GridSearchCV(estimator = rfr2, param_grid = parametrs, cv=10)

estimator=RandomForestRegressor(max depth=7, n estimators=15,

random_state=33),

```
def create_model(lyrs=[32], act='softmax', opt='SGD', dr=0.1):

    seed = 7
    np.random.seed(seed)
    tf.random.set_seed(seed)

    model = Sequential()
    model.add(Dense(lyrs[0], input_dim=x_train.shape[1], activation=act))
    for i in range(1,len(lyrs)):
        model.add(Dense(lyrs[i], activation=act))

    model.add(Dropout(dr))
    model.add(Dense(3, activation='tanh')) # βωχοθμοῦ cnοῦ
    model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['mae', 'accuracy'])
    return model

# построение окончательной модели
model = create_model(lyrs=[128, 64, 16, 3], dr=0.05)

print(model.summary())
```



```
Model: "sequential 405"
Layer (type)
                             Output Shape
                                                       Param #
dense 1077 (Dense)
dense_1078 (Dense)
                             (None, 64)
dense_1079 (Dense)
                             (None, 16)
dense_1080 (Dense)
                             (None, 3)
dropout 405 (Dropout)
                             (None, 3)
dense_1081 (Dense)
                             (None, 3)
Total params: 11,023
Trainable params: 11,023
Non-trainable params: 0
```

```
Best: 0.001538 using {'batch_size': 4, 'epochs': 10}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 10}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 50}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 100}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 200}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 300}
```

```
Best: 0.004639 using {'lyrs': [128, 64, 16, 3]}
0.001538 (0.004615) with: {'lyrs': [8]}
0.001538 (0.004615) with: {'lyrs': [16, 4]}
0.001538 (0.004615) with: {'lyrs': [32, 8, 3]}
0.001538 (0.004615) with: {'lyrs': [12, 6, 3]}
0.001538 (0.004615) with: {'lyrs': [64, 64, 3]}
0.004639 (0.009877) with: {'lyrs': [128, 64, 16, 3]}
```

```
Best: 0.001538 using {'act': 'softmax'}
0.001538 (0.004615) with: {'act': 'softmax'}
0.001538 (0.004615) with: {'act': 'softplus'}
0.001538 (0.004615) with: {'act': 'softsign'}
0.001538 (0.004615) with: {'act': 'relu'}
0.001538 (0.004615) with: {'act': 'tanh'}
0.001538 (0.004615) with: {'act': 'sigmoid'}
0.001538 (0.004615) with: {'act': 'hard_sigmoid'}
0.001538 (0.004615) with: {'act': 'linear'}
```

```
Best: 0.001538 using {'dr': 0.0}
0.001538 (0.004615) with: {'dr': 0.0}
0.001538 (0.004615) with: {'dr': 0.01}
0.001538 (0.004615) with: {'dr': 0.05}
0.001538 (0.004615) with: {'dr': 0.1}
0.001538 (0.004615) with: {'dr': 0.2}
0.001538 (0.004615) with: {'dr': 0.3}
0.001538 (0.004615) with: {'dr': 0.5}
```

Нейронная сеть для соотношения «матрица- наполнитель»:

Первая модель:

- Сформируем входы и выход для модели.
- Разобьём выборки на обучающую и тестовую.
- Нормализуем данные.
- Создадим функцию для поиска наилучших параметров и слоёв.
- Построим модель, определим параметры, найдем оптимальные параметры посмотрим на результаты;
- Повторим все эти этапы до построения окончательной модели;
- Обучим нейросеть;
- Посмотрим на потери модели;
- Построим график потерь на тренировочной и тестовой выборках.
- Построим график результата работы модели.

Layer (type)	Output Shape	Param :
normalization (Normalization)		25
dense (Dense)	(None, 128)	1664
dense_1 (Dense)	(None, 128)	16512
dropout (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 128)	16512
dense_3 (Dense)	(None, 64)	8256
dense_4 (Dense)	(None, 32)	2080
dense_5 (Dense)	(None, 16)	528
dense_6 (Dense)	(None, 1)	17

Total params: 45,594 Trainable params: 45,569 Non-trainable params: 25

Model: "sequential"

Обучим модель model_hist = model.fit(x_train, y_train, epochs = 100, verbose = 1, validation_split = 0.3) Model Results:

Model_MAE: 1
Model_MAPE: 0.37
Test score: 1.25

Нейронная сеть для соотношения «матрица- наполнитель»:

Вторая модель:

- Сформируем входы и выход для модели.
- Разобьём выборки на обучающую и тестовую.
- Нормализуем данные.
- Сконфигурируем модель, зададим слои, посмотрим на архитектуру модели.
- Обучим модель.
- Посмотрим на MAE, MAPE, Test score и на потери модели.
- Построим график потерь на тренировочной и тестовой выборках.
- Построим график результата работы модели.
- Оценим модель по MSE.

Приложение: Пользовательское приложение

- Сохранил вторую модель нейронной сети для разработки веб-приложения для прогнозирования соотношения "матрица-наполнитель" в фреймворке Flask;
- При запуске приложения, пользователь переходит на: http://127.0.0.1:5000/;
- В открывшемся окне пользователю необходимо ввести в соответствующие ячейки требуемые значения и нажать на кнопку «Готово».
- На выходе пользователь получает результат прогноза для значения параметра «Соотношение «матрица наполнитель»».

....

edu.bmstu.ru

+7 495 182-83-85

edu@bmstu.ru

Москва, Госпитальный переулок , д. 4-6, с.3

