Esame scritto, Luglio 2017

punteggio di partenza: 2 (4/6 cfu: 0)

esercizi(o)

corretto: +8 (4/6 cfu: 12)

o sbagliato: -4 (4/6 cfu: 0) (errore concettuale), 0 (4/6 cfu: 4) (due o più errori di calcolo, errore di conversione), 4 (4/6 cfu: 8) (un errore di calcolo); non svolto: 0

	4/6 cfu	8 cfu
sufficienza	2	2
30	3	4
sufficienza con 1 errore di calcolo	2	3
sufficienza con 1 errore di fisica	3	4

1. Una molla con costante elastica 77.61 N/cm, viene compressa prima di lanciare una palla verso un piano inclinato. La palla ha massa 1 kg e il piano inclinato è alto H = 4.36 m. Quanto deve essere compressa la molla affinché la palla arrivi con una velocità di 15 m/s in cima al piano? $\Delta x = 0.2$ m

- **2.** Calcolare il minimo coefficiente di attrito statico tra un corpo di massa 4 kg e il piano inclinato sui cui è appoggiato in modo che inclinando il piano a 60° il corpo rimanga fermo. $\mu = 1.7$
- **3.** Una bottiglia (volume $V_B = 2.0$ L e massa 80 g) contiene 40 atm di He (gas perfetto) a temperatura ambiente. Calcolare la forza che bisogna esercitare verticalmente sulla bottiglia per tenerla completamente immersa in acqua. (Massa atomica He = 6.64×10^{-24} g. Densità dell'acqua $\rho = 1000$ kg/m³) F = 18.7 N
- **4.** Sull'asse che unisce la terra con la luna (distanza terra-luna $D_{TL} = 3.8 \times 10^8 \,\mathrm{m}$), a quale distanza dal centro della terra ($M_T = 6.0 \times 10^{24} \,\mathrm{kg}$) la forza gravitazionale

netta esercitata su un corpo di massa M è nulla? (massa luna $M_L = 7.4 \times 10^{22} \,\mathrm{kg}$) $d = 3.4 \times 10^8 \,\mathrm{m}$

- **5.** Un elettrone con energia cinetica 6.4×10^{-21} J entra in un campo magnetico perpendicolare alla direzione di moto. Si vuole che l'elettrone compia traiettorie circolari di raggio 20 cm. Quale deve essere l'intensità del campo magnetico? (carica elettrone $q_e = 1.6\times10^{-19}$ C, massa elettrone $m_e = 9,1\times10^{-31}$ kg) $B = 3.4\times10^{-6}$ T
- **6.** Calcolare il periodo di un pendolo lungo 4 m a 80000 km dalla superficie della terra, sapendo che la massa e il raggio della terra sono 5.97×10^{24} kg e 6371 km rispettivamente. **7** = **54.4** s
- **7.** Due fili conduttori paralleli di dimensioni infinite sono distanti 10 cm. Sul filo di destra è distribuita una carica uniforme per unità di lunghezza $\lambda_1 = 40$ nC/m; il filo di sinistra ha distribuzione di carica per unità di lunghezza $\lambda_2 = 60$ nC/m. Calcolare la posizione del punto compreso tra i due piani dove si annulla il campo elettrico. ($\epsilon_0 = 8.85 \times 10^{-12} \, \text{F/m}$) x = 4.00 cm

8. Si determini l'intensità del campo elettrico del condensatore mostrato in figura in modo che un fascio di elettroni che entri con velocità 8 km/s colpisca un punto a 31 mm di distanza dal bordo del piatto da cui è entrato. La distanza del fascio non deflesso dal piatto del condensatore è h=1 m. (carica elettrone $q_e=1.6\times10^{-19}$ C, massa elettrone $m_e=9.1\times10^{-31}$ kg) E=0.758 N/C

