MINIMAL ORDERED PENFECT HASHING (praph)

-given a set of strips: \(\) aor, \(\) ba, \(\) bc, \(\) cay

-sassey cooles that are ranking of the skips starty from o

-given \(h(x)_s: \) \(\) choice of the strys

\(h_1(c'c'') = 2 \cdot \) rank(c') + rank(c'') mod 11

	l &	h1	hz
aa	0	8	2
ba	1	1_	7
b b	2	7	8
7	3	2	ج
Ca	4	5	1

tank	9	6	C
	2	3	1

mod 11=3

compute funtion of Crepresuled by sen energy

of the dound in forms

max volues

=> build the paph with 11 water [0,10]

cust

made

Anol woult

$$A(cc) = g(h_1(cc)) + g(h_2(cc)) \mod y = 0$$

curos Hashing : table of m=+ 7=> positions SHOW CONTENT OF THE TABLE INSONING lin(x) = x mod 7 THE KEX $m = \frac{12|3|}{23|456}$ M2(x) = 3x mod 7 m = > skeys to insert: 13,2,1,0,65,15 When both cells after hy & he are occupied: => PREFAR ALWAYS by TO INSERT 1, (1) = 1 mod 7 = 1 $h_1(3) = 3 \mod 7 = 3$ $h_2(3) = 3.3 \mod 7 = 2$ Ma(1)=3.1md7=3 4, (8) = 1 1 1 Kilk of h, (2) = 2 m = 2 7 = 2 (1) = 6 mod 7 = 6 42(8)= 24 mod 7=3 _ Kirk at - ment the enon 41(6)=6 X 95(e)= 18 mmd 7= 4 h, (15) = 1 hill 4, (15) = 15.3 mod 7= "> cycle = 42 mog 3= => 6007 with 15 THY WE = 3 july 1,8,18 => 15 CANNOT BE INSANCED

=> Should take other 2 h(x)

STNINGS:	S=hAA	1AC 1	BB	, , , , ,
----------	-------	-------	----	-----------

compute MOPE

gren	h, (xy) = x+y and	7
	hr (xy) = x+ 2.y mod=	7
	10055 11000	

Copes org

A=1 B=2

c=3

Ę	tap label		MOE > UREL
Keey \	l\	ha	ha
AA AC BB	0 1 2	2 4 4	1+2-1 m 7 = ? 1+2-3 m 7 = 0 2+2-2 AM 7 = 6
CC	3	6	3+2·3 m7=2

AA=1+2=2 AC=1+3=4 BB=262=4 CC=3+3=6

 $\begin{array}{c|c}
 & 2 \\
\hline
 & 3 \\
\hline
 & 3 \\
\hline
 & 3 \\
\hline
 & 3 \\
\hline
 & 1
\end{array}$ $\begin{array}{c}
 & 2 \\
 & 3 \\
\hline
 & 3 \\
\hline
 & 1
\end{array}$

M=7 [0,6]

h(xy)= g(h1(xy))+ g(h2(xg)) mod 4

MOPT

$$S = d 11, 27, 33, 44$$

 $h_1(xy) = x + y \mod 7$

Keys \	h	l ha	hz
//	D	2	1+2·1m7 = 3
22	1	4	2+2.2 m7 = 6
33	1	6/	3+2°3 m7 = Z
hh	3	1	(4+2.4m7=5

mod 4

$$h(t) = g(t(h_1)) + g(t(h_2))$$
 $mod \times$

MOPP

$$S = \lambda AA A AC BC CC$$

 $h(xy) = 3 vank(x) + vank(y) mod 7 x-a,b,c$
 $h_2(xy) = vank(x) + vank(y) mod 7$

key 8	er	hn	12
AA	0	3.2 +2 m7.1	•
A C	1	3.2+4m7=3	2+ h = 6
BC	5	3.31 h m7=6	3+ h=1 m= = 0
$C\subset$	3	3.6+ hm== 2	4+4 m 7 = 1

mod f

