Friday, Oct 25

Optimum Sample Sizes for Two-Stage Cluster Sampling

One of the advantages of two-stage cluster sampling over one-stage cluster sampling is that we have more control over the cost and precision (in terms of the variance of an estimator) of the survey. This is because there are *two* stages of sampling, and thus *two* sample size decisions.

- 1. The number of clusters to sample (n).
- 2. The number of elements to sample from each cluster (m_1, m_2, \ldots, m_n) .

Between-Group and Within-Group Mean Squares

Assume a simple case where we have the following.

- 1. Simple random sampling at both stages.
- 2. All clusters are the same size (i.e., all M_i are equal).
- 3. The number of elements sampled from each cluster are the same (i.e., all m_i are equal).

To simplify notation, let $\bar{M} = M/N$ be the number of elements per cluster, and let m denote the number of elements sampled from each cluster. In this case the unbiased and ratio estimators are the same. Without loss of generality we will consider $\hat{\mu}$.

The variance of $\hat{\mu}$ can be written as

$$V(\hat{\mu}) = \left(1 - \frac{n}{N}\right) \frac{\sigma_b^2}{n\bar{M}} + \left(1 - \frac{m}{\bar{M}}\right) \frac{\sigma_w^2}{nm},$$

where σ_b^2 and σ_w^2 are the mean squares between-groups and within-groups, respectively, defined as

$$\sigma_b^2 = \bar{M} \frac{\sum_{i=1}^N (\mu_i - \mu)^2}{N-1}, \quad \sigma_w^2 = \frac{1}{N} \sum_{i=1}^N \sigma_i^2,$$

where μ_i and σ_i^2 are the mean and variances of the target variable for all the elements in the i-th cluster.

Example: Consider populations with M=1250 elements in N=25 clusters, each of size $\bar{M}=50$.

Population C: Low Between, High Within

The mean squares for the three populations are given below.

Population	σ_b^2	σ_w^2
A	1551.41	10.39
В	873.23	23.68
\mathbf{C}	103.07	38.76

Optimal Sample Sizes

Assume that the total cost of the survey can be computed as

$$C = nc_1 + nmc_2$$
,

where c_1 is the cost-per-cluster and c_2 is the cost-per-element. Minimizing cost for a fixed variance or bound, or minimizing the variance or bound for a fixed cost yields

$$m_{\mathrm{opt}} = \sqrt{\frac{\bar{M}\sigma_w^2}{\sigma_b^2 - \sigma_w^2} \times \frac{c_1}{c_2}}.$$

Note: We must have $1 \leq m \leq \bar{M}$, and $m_{\rm opt}$ will not necessarily respect this constraint. Also $m_{\rm opt}$ isn't defined if $\sigma_b^2 < \sigma_w^2$.

The sample size for the *number of clusters* (n) to minimize the variance for a fixed cost is

$$n_{\rm opt} = \frac{C}{c_1 + c_2 m_{\rm opt}}.$$

Note: Clearly we must have $1 \le n \le N$.

We can encounter various "limiting cases" when solving for m_{opt} and n_{opt} .

1. If $m_{\text{opt}} < 1$ then set $m_{\text{opt}} = 1$ (i.e., sample just one element per cluster).

- 2. If $m_{\rm opt} > \bar{M}$, then set $m_{\rm opt} = \bar{M}$ (i.e., use one-stage cluster sampling). 3. If $\sigma_b^2 < \sigma_w^2$ then set $m_{\rm opt} = \bar{M}$ (i.e., use one-stage cluster sampling). 4. If $n_{\rm opt} \geq N$ then set $n_{\rm opt} = N$ (i.e., use stratified random sampling).

Example: What would be the optimal sample sizes for the three populations if we have a total budget of C= 100, the cost per cluster is $c_1 = 10$, and the cost per element is $c_2 = 1$?

Population	σ_b^2	σ_w^2	$m_{ m opt}$	$n_{ m opt}$
A	1551.41	10.39	1.836067	8.448752
В	873.23	23.68	3.733201	7.281624
$^{\mathrm{C}}$	103.07	38.76	17.359517	3.655035

Notice what happens as $m_{\rm opt}$ and $n_{\rm opt}$ as σ_b^2 increases, and notice what happens to $m_{\rm opt}$ and $n_{\rm opt}$ as σ_w^2 increases.

Clearly the solution is approximate — we would need to round the sample sizes.

How do we get σ_b^2 and σ_w^2 in practice?

Example: The following plot shows $m_{\rm opt}$ and $n_{\rm opt}$ as a function of the between-group and within-group mean squares for a population of N=100 clusters with $\bar{M}=25$ elements in each cluster. The costs are $c_1=10$ and $c_2=1$. The fixed total cost is C=100.

Example: The following plot shows m_{opt} and n_{opt} as a function of the between-group and within-group mean squares for a population of now N=20 clusters, with the cost-per-cluster reduced to $c_1=1$.

Numerical Solution

We can also solve this problem *numerically*. Here is the numerical solution to the first example above.

```
library(Rsolnp)
# Function to compute the variance of the estimator.
vf <- function(x, msb, msw, N, Mbar, c1, c2) {</pre>
  m \leftarrow x[1]
 n < -x[2]
 return((1 - n/N) * msb / (n * Mbar) + (1 - m/Mbar) * msw/(n*m))
}
# Function to compute the cost of the survey.
cf <- function(x, msb, msw, N, Mbar, c1, c2) {
  m < -x[1]
 n < -x[2]
 return(n*c1 + n*m*c2)
# Find n and m to minimize the variance subject to the
# constraint that the cost must equal 100.
tmp \leftarrow solnp(pars = c(5,5), fun = vf, eqfun = cf, eqB = 100,
N = 25, Mbar = 50, msb = 1551.41, msw = 10.39, c1 = 10, c2 = 1, LB = c(1,1), UB = c(50,25)
Iter: 1 fn: 3.4968
                     Pars: 3.71283 7.09572
Iter: 2 fn: 3.1969 Pars: 2.72390 7.80416
Iter: 3 fn: 3.1021 Pars: 2.17386 8.19659
Iter: 4 fn: 3.0797
                    Pars: 1.90797 8.39335
Iter: 5 fn: 3.0767
                    Pars: 1.84024 8.44547
Iter: 6 fn: 3.0766 Pars: 1.83610 8.44873
Iter: 7 fn: 3.0766 Pars: 1.83607 8.44875
Iter: 8 fn: 3.0766 Pars: 1.83607 8.44875
solnp--> Completed in 8 iterations
tmp$pars
[1] 1.836067 8.448752
round(tmp$pars)
```

[1] 2 8

Multi-Stage Cluster Sampling

A multi-stage cluster sampling design is a natural extension of a two-stage cluster sampling design. A k-stage cluster sampling design where $k \geq 2$ can be designed by applying clusters sampling designs recursively.

A three-stage cluster sampling design can be described as follows.

- 1. Partition the M elements in a population into clusters.
- 2. Select n_1 primary sampling units using a probability sampling design.
- 3. For each of the n_1 sampled primary units, partition the elements into sub-clusters.
- 4. Select n_2 secondary sampling units using a probability sampling design.
- 5. For each of the n_2 sampled secondary units, sample *tertiary* sampling units (i.e., elements) using a probability sampling design, and observe the target variable for these sampled elements.

Multi-stage cluster sampling designs are useful when elements are formed into groups hierarchically. Here are some examples of the three levels of sampling units in three-stage cluster sampling designs.

Sa	mpling Unit		
primary	secondary	tertiary	Target Variable
pallet	box	widget	weight
neighborhood	block	household	income
county	$_{ m farm}$	field	acres of wheat
school	classroom	student	test score
day	hour	minute	number of fish
plot	sub-plot	${\it tree}$	volume

In principle, any probability sampling design can be used at each stage. But often only the first stage uses a design other than SRS (e.g., PPS, stratified random sampling).