Resumen Grupos

Mario Calvarro Marines

Índice general

1.		eralidades sobre grupos. nula de Lagrange	1
	1.1.	Grupos cíclicos y diedrales	1
	1.2.	Fórmula de Lagrange	2
2.		grupos normales y omorfismos	5
	2.1.	Subgrupos normales	5
		2.1.1. Grupo cociente	5
	2.2.	Homomorfismos de grupos	6
		2.2.1. Teoremas de isomorfía	6
3.	Gru	pos de permutaciones	9
	3.1.	Generalidades	9
		3.1.1. Grupo simétrico	9
	3.2.	Teorema de Abel	10
4.		ón de un grupo e un conjunto	13
	4.1.	Ecuación de clases	13
		4.1.1. Acciones, órbitas y estabilizadores	13
		4.1.2. Órbitas y estabilizadores	13
		4.1.3. Aplicaciones a los p -grupos	14
	4.2.	Teorema de Cauchy	14

Generalidades sobre grupos. Fórmula de Lagrange

Grupos cíclicos y diedrales

Definición (Grupo)

Un conjunto G y la operación $G \times G \to G, (a,b) \mapsto ab$ se dicen **grupo** si cumplen:

- Asociatividad.
- Elemento neutro.
- Elementos inversos.

Si además es conmutativo, se dice abeliano.

Proposición

Sea G, grupo, $y g \in G \Rightarrow$

$$\{gx:x\in G\}=G=\{xg:x\in G\}$$

Definición (Subgrupo)

Se dice que $H \subset G$ es un **subgrupo** de G si:

- \bullet $1_G \in H$
- $ab^{-1} \in H, \ \forall a, b \in H$

Definición (Subgrupo generado por un subconjunto)

Sea G, grupo, $y \emptyset \neq S \subset G$. Llamamos **subgrupo generado por** S a:

$$\langle S \rangle = \bigcap_{H \in \mathcal{H}_S} H$$

donde \mathcal{H}_S es la familia de los subgrupos de G que contienen a S.

Otra forma de expresarlo es:

$$W(S) = \{s_1^{n_1}, \dots, s_k^{n_k} : s_i \in S \& n_j \in \mathbb{N}\}$$

y diremos que un grupo es finitamente generado si $\exists S \subset G : \langle S \rangle = G$.

Proposición (Identidad de Bézout)

Sean $m, n \in \mathbb{Z} \setminus \{0\}$ y $d := \operatorname{mcd}(m, n)$. Entonces,

$$\exists a, b \in \mathbb{Z} : d = am + bn$$

Definición

 $Sea\ H \leq G$

■ Sea $a \in G$. Llamamos **conjugado** de H vía a a:

$$H^a := a^{-1}Ha := \{a^{-1}ha : h \in H\}$$

 $Diremos que H y H^a son conjugados$

■ Llamamos centralizador de H en G a:

$$C_G(H) := \{ a \in G : ah = ha \ \forall h \in H \}$$

En particular, $\mathcal{Z}(G) := C_G(G)$ se denomina **centro** de G.

Proposición

Sea G un grupo cíclico (generado por un solo elemento), entonces $H \leq G$ es cíclico.

Fórmula de Lagrange

Proposición

Sean $H, K \leq G$. Entonces,

$$\operatorname{ord}(H)\operatorname{ord}(K) = \operatorname{Card}(HK)\operatorname{ord}(H \cap K)$$

En particular, $Card(HK) \leq ord(H) ord(K)$

Definición (Clases laterales)

Sean $H \leq G$.

■ Definimos la clase de equivalencia \mathcal{R}_H tal que:

$$a\mathcal{R}_H b \Leftrightarrow ab^{-1} \in H$$

y decimos que a y b son congruentes por la derecha.

$$Ha := \{ha : h \in H\}$$

lacksquare Definimos la clase de equivalencia \mathcal{R}^H tal que:

$$a\mathcal{R}^H b \Leftrightarrow a^{-1}b \in H$$

y decimos que a y b son congruentes por la izquierda.

$$aH:=\{ah:h\in H\}$$

Las clases de equivalencia definidas por estas relaciones tienen el mismo número de elementos que denominamos **índice** de H en G, [G:H].

Corolario (Fórmula de Lagrange)

Sea G un grupo finito.

■ $H \leq G$, entonces:

$$\operatorname{ord}(G) = \operatorname{ord}(H)[G:H]$$

- $Si \ K \leq G \ y \ \operatorname{mcd} (\operatorname{ord} (H), \operatorname{ord} (K)) = 1, \ entonces \ H \cap K = \{1_G\}.$
- Si el orden de G es un primo, entonces G es cíclico y está generado por cualquiera de sus elementos distintos de 1_G .

Corolario (Pequeño teorema de Fermat)

Dados un entero primo $p \ y \ k \in \mathbb{Z}$ se cumple:

$$k^p \equiv k \mod p$$

Lema

Sea G grupo y $a, b \in G$, elementos de orden n, m, entonces:

- $\blacksquare \ \forall k \in \mathbb{Z}, \ o\left(a^k\right) = \frac{n}{\operatorname{mcd}(n,k)}.$
- $Si\ ab = ba\ y\ \mathrm{mcd}\ (m,n) = 1 \Rightarrow o\ (ab) = mn.$

Proposición

Sea G un grupo cíclico finito. Para cada divisor d > 0 de ord (G), $\exists ! H \leq G : \text{ord}(H) = d$.

Proposición (Transitividad del índice)

Sean $H, K \leq G : H \subset K$ y [G : H] es finito. Entonces, también lo son [G : K] y [K : H] y

$$[G:H] = [G:K] \cdot [K:H]$$

Subgrupos normales y homomorfismos

Subgrupos normales

Definición

Sean $H, K \leq G$, tal que $H \subset K$.

- H es subgrupo normal de K si $Ha = aH, \forall a \in K \Leftrightarrow a^{-1}Ha = H$. En notación, $H \triangleleft K$.
- lacktriangledown Denominamos normalizador de H en G, $N_G(H)$, al subgrupo de Gdefinido por:

$$N_G(H) := \left\{ a \in G : Ha = aH \right\} = \left\{ a \in G : a^{-1}Ha = H \right\}$$

Por tanto, $C_G(H) \subset N_G(H)$

■ Un grupo será **simple** si sus únicos subgrupos normales son los triviales.

Proposición

- Sean $H \triangleleft G$ y $K \leq G$, entonces $HK \leq G$ y $H \triangleleft HK$.
- Sean $H, K \triangleleft G$, entonces:
 - 1. $HK \triangleleft G$.
 - 2. $H \cap K \triangleleft G$. Si, además, $H \cap K = \{1_G\} \Rightarrow hk = kh, \forall k \in K, h \in H$.
- Sea $a \in G$ una involución, entonces $\langle a \rangle \triangleleft G \Leftrightarrow a \in \mathcal{Z}(G)$.
- Sean S, generador, $y H \leq G$ tales que, $s^{-1}Hs = H$, $\forall s \in S$, entonces $H \triangleleft G$.
- Sean $H \leq G$ y $K \triangleleft G$ finito tal que $H \subset K$, entonces $H \triangleleft G$.

Proposición (Indice del normalizador)

Sean $H \leq G$ finito $y \Sigma := \{a^{-1}Ha : a \in G\}$. Entonces, $Card(\Sigma) = [G : N_G(H)]$.

Grupo cociente

Sea $H \triangleleft G$ y utilizando la operación:

$$G/H \times G/H \to G/H$$

 $(Ha, Hb) \mapsto Hab$

definimos un grupo cociente.

Teorema (de Correspondencia)

Sean $H \triangleleft G$, $\Sigma_H(G) := \{L \leq G : H \subset L\}$ $y \Sigma(G/H) := \{L \leq G/H\}$. Entonces,

$$\Sigma_H(G) \to \Sigma(G/H)$$
 $K \mapsto K/H$

es una biyección.

Lema (Normalizador del cociente)

Sean $H \leq G$ y $K \triangleleft G : K \subset H$. Entonces,

$$N_G(H)/K = N_{G/K}(H/K)$$

En particular, $H \triangleleft G \Leftrightarrow H/K \triangleleft G/K$.

Homomorfismos de grupos

Definición

Dados G_1, G_2 y una aplicación $f: G_1 \to G_2$, se dice que es **homomorfismo** de grupos si f(ab) = f(a) f(b).

Observación:

- $\forall H_1 \leq G, H_2 := f(H_1) \leq G_2$. En particular, $\operatorname{img} f := f(G_1) \leq G_2$ y si $H_1 \triangleleft G_1 \Rightarrow H_2 \triangleleft \operatorname{img} f$.
- $\forall H_2 \leq G_2, H_1 := f^{-1}H_2 \leq G_1$. Además, $H_2 \triangleleft G_2 \Rightarrow H_1 \leq G_1$. En concreto, $\ker f \triangleleft G$.
- f es inyectivo $\Leftrightarrow \ker f = \{1_G\}.$
- La composición de homomorfismos es homomorfismo.
- Llamamos isomorfismo a f homomorfismo biyectivo tal que f^{-1} también es homomorfismo. En tal caso, diremos que $G_1 \simeq G_2$ son isomorfos.

Ejemplo:

- Sea $f: G \to G$ isomorfismo. Lo llamaremos **automorfismo** y el conjunto Aut(G) con la operación $f \cdot g = g \circ f$ forma un subgrupo de Biy(G).
- Dados $H \leq G$ y $a \in N_G(H)$ las aplicaciones:

$$f_a: H \to H$$
$$x \mapsto a^{-1}xa$$

forman el grupo $\operatorname{Int}_G(H)$, automorfismos internos de H, que es un subgrupo de $\operatorname{Aut}(G)$.

Teoremas de isomorfía

Teorema (Primer teorema de isomorfía)

Dado $f: G_1 \to G_2$ homomorfismo, la aplicación:

$$\hat{f}: G_1/\ker f \to \operatorname{img} f$$

$$a \ker f \mapsto f(a)$$

es un isomorfismo.

Corolario

- Sea $f:G_1 \to G_2$ homomorfismo sobreyectivo y $H \triangleleft G$. Entonces, $G_1/f^{-1}(H) \simeq G_2/H$.
- Sea $H \leq G$, entonces $N_G(H)/C_G(H) \simeq \operatorname{Int}_G(H)$. En particular, $G/\mathcal{Z}(G) \simeq \operatorname{Int}(G)$.

Grupos de permutaciones

Generalidades

Grupo simétrico

Siendo $n \in \mathbb{N}$, denotamos $I_n := \{x \in \mathbb{Z} : 1 \le x \le n\}$ y \mathcal{S}_n al conjunto de biyecciones de I_n en si mismo, que tiene Card $(\mathcal{S}_n) = n!$. Forma el llamado **grupo de permutaciones** con la composición "al revés".

$$\sigma \cdot \tau := \sigma \tau : I_n \to I_n$$
$$j \mapsto \tau \left(\sigma \left(j\right)\right)$$

Teorema (de Cayley)

Todo grupo G es isomorfo a un subgrupo de Biy G). En particular, todo grupo finito es isomorfo a un subgrupo del grupo de permutaciones.

Definición (Soporte)

Llamamos soporte de una permutación $\sigma \in \mathcal{S}_n$ al conjunto:

$$sop(\sigma) := \{ j \in I_n : \sigma(j) \neq j \}$$

y decimos que dos permutaciones son disjuntas si lo son sus soportes.

Proposición

- Sea $j \in \text{sop}(j)$, entonces $\sigma(j) \in \text{sop}(j)$.
- Dos permutaciones disjuntas conmutan.

Definición (Ciclos)

Una permutación $\sigma \in S_n$ se denomina **ciclo de longitud** k si $\exists i_1, \ldots, i_k \in I_n$ tales que sop $(\sigma) = \{i_1, \ldots, i_k\}$ y

$$\sigma(i_1) = i_2, \ \sigma(i_2) = i_3, \dots, \sigma(i_{k-1}) = i_k \& \sigma(i_k) = i_1$$

Si es de longitud 2 lo denominaremos como transposición.

Proposición

■ Toda permutación es composición de ciclos disjuntos y esta factorización es única salvo el orden de los factores.

■ Si $\sigma_1, \ldots, \sigma_r$ son ciclos disjuntos y long $(\sigma_i) \leq \log(\sigma_{r+1})$, $\forall 1 \leq i \leq r-1$, se llama estructura cíclica de $\sigma := \sigma_1 \cdots \sigma_r$ a la r-tupla $(\log(\sigma_1), \ldots, \log(\sigma_r))$.

Lema

Siendo $\sigma, \tau \in \mathcal{S}_n$ disjuntas tal que $o(\sigma) = \ell$ y $o(\tau) = m$, entonces $o(\sigma\tau) = \operatorname{mcm}(\ell, m)$

Corolario

Sea $\sigma := \sigma_1 \cdots \sigma_k$ una factorización en ciclos de la permutación. Entonces,

$$o\left(\sigma\right) = \operatorname{mcm}\left(\operatorname{long}\left(\sigma_{1}\right), \ldots, \operatorname{long}\left(\sigma_{k}\right)\right)$$

Definición (Índice)

■ $\forall \sigma \in \mathcal{S}_n$ consideramos el endomorfismo, $f_{\sigma} : \mathbb{R}^n \to \mathbb{R}^n$ que cumple que $f_{\sigma}(e_j) = e_{\sigma^{-1}(j)}$. Entonces.

$$\psi: \mathcal{S}_n \to \operatorname{Aut}(\mathbb{R}^n)$$

$$\sigma \mapsto f_{\sigma}$$

es homomorfismo de grupos.

La matriz de f_{σ} proviene de desordenar las columnas de la identidad, por tanto, $\det(f_{\sigma}) \in \{1, -1\}$. Definimos, pues, el homomorfismo **índice**:

$$\varepsilon := \det \circ \psi : \mathcal{S}_n \to \mathcal{U}_2$$

■ Al kernel de ε se le denota \mathcal{A}_n , **n-ésimo grupo alternado**. Si $\sigma \in \mathcal{A}_n$ se dice **par** y en caso contrario **impar**.

Lema

Las transposiciones constituyen un sistema generador de S_n .

Proposición

El ciclo $\sigma := (a_1, \ldots, a_k) \in \mathcal{S}_n \in \mathcal{A}_n \Leftrightarrow k \text{ impar.}$

Proposición (Sistemas generadores de S_n y A_n)

- S_n es generado por $\{\alpha_i := (1,i) : 2 \le i \le n\}$.
- S_n es generado por $\{\tau_i := (i, i+1) : 1 \le i \le n-1\}.$
- S_n es generado por (1,2) y $(1,\ldots,n)$.
- \mathcal{A}_n es generado por $\{\sigma_i := (1,2,i) : 3 \leq i \leq n\}.$

Teorema de Abel

Teorema (De Abel)

Si $n \geq 5$, A_n es simple.

Corolario

Si $n \geq 5$, entonces A_n es el único subgrupo normal propio de S_n .

Definición

 $H \leq S_n$ será transitivo si $\forall (i, j)$ tal que $1 \leq i, j \leq n, \exists \sigma \in H$ tal que $\sigma(i) = j$.

Proposición

Si $p \in \mathbb{Z}$ es primo y $H \leq \mathcal{S}_p$ transitivo que contiene una transposición, entonces $H = \mathcal{S}_p$.

Acción de un grupo sobre un conjunto

Ecuación de clases

Acciones, órbitas y estabilizadores

Definición

Denominamos acción de un grupo G sobre un conjunto $X \neq \emptyset$ a cualquier homomorfismo:

$$G \to \operatorname{Biy}(X)$$

 $g \mapsto \tilde{g}$

Esto define una relación de equivalencia tal que $x \sim y \Leftrightarrow \exists g \in G : y = \tilde{g}(x)$.

La clase de equivalencia definida así se denomina **G-órbita** de x bajo la acción de G, $O_{G,x} := \{\tilde{g}(x) : g \in G\}$.

Observación:

 $\{O_x: x \in X\}$ particiona X y, siendo $R \subset X$ un conjunto de representantes de las clases, se cumple $X = \bigsqcup_{x \in R} O_x$. Por tanto, $\operatorname{Card}(X) = \sum_{x \in R} \operatorname{Card}(O_x)$.

Definición

Llamamos estabilizador de $x \in X$ bajo la acción de G al subgrupo:

$$\operatorname{Stab}_{G}(x) := \{ g \in G : \tilde{g}(x) = x \}$$

Órbitas y estabilizadores

Proposición (Cardinal de una órbita)

Si G actúa sobre X y $x \in X$, se cumple $Card(O_x) = [G : Stab_G(x)]$.

Corolario (Fórmula de las órbitas)

Sea R conjunto de representantes de las órbitas de X, finito, bajo la acción de G. Entonces,

$$\operatorname{Card}\left(X\right) = \sum_{x \in R} \left[G : \operatorname{Stab}_{G}\left(x\right)\right]$$

Aplicaciones a los p-grupos

Definición

Llamamos p-grupo a aquellos cuyo orden es potencia de un número primo p.

Lema (Centro de un p-grupo)

Sea $H \neq \{1_G\} \leq G$, p-grupo. Entonces, $H \cap \mathcal{Z}(G) \neq \{1_G\}$. En particular, $\mathcal{Z}(G) \neq \{1_G\}$, por lo que G no es simple salvo si ord (G) = p.

Lema (Criterio de abelianidad)

- Sean p, n^0 primo, $n \in \mathbb{N}$ y G: ord $(G) = p^n$. Entonces, ord $(\mathcal{Z}(G)) \neq p^{n-1}$. En particular, si ord $(G) = p^3$, no abeliano, entonces ord $(\mathcal{Z}(G)) = p$.
- Todo G de orden p^2 , es abeliano.

Lema

Sean p, n^{o} primo, G finito $y H \leq G$ que es p-grupo. Entonces $[G : H] \equiv [N_{G}(H) : H]$ mód p.

Teorema de Cauchy

Teorema (de Cauchy)

Sea $p, n^{\underline{o}}$ primo, y G grupo de orden múltiplo de p. Entonces, el $n^{\underline{o}}$ de subgrupos de G de orden p es congruente con $1 \mod p$. En particular, $\exists a \in G$ de orden p.