

Universitatea POLITEHNICA din București Facultatea de Automatică și Calculatoare

Proiectarea algoritmilor (PA)

- seria CD -

Andrei Mogoș - Suport de curs

Curs 2: Greedy (Programare lacomă)

Observație

Suportul de curs de la seria CD (pentru cele 14 cursuri) se bazează pe slide-urile de la PA din anii precedenți (2007 – 2016) de la seriile CA, CB, CC (titulari de curs: Ş. Trăușan, T. Rebedea, C. Chiru)

Bibliografie

- Cormen Introducere în Algoritmi: cap. Algoritmi Greedy (17)
- Giumale Introducere în Analiza Algoritmilor: cap. 4.4
- https://people.cs.umass.edu/~barring/cs611/lecture/4.pdf
- http://profs.info.uaic.ro/~dlucanu/cursuri/tpaa/resurse/Curs6.pps
- http://euler.math.fau.edu/locke/Greedy.htm
- http://en.wikipedia.org/wiki/Greedoid

Greedy (1)

- Metodă de rezolvare eficientă a unor probleme de optimizare.
- Soluţia trebuie să satisfacă un criteriu de optim global (greu de verificat) → optim local mai uşor de verificat.
- Se aleg soluții parțiale ce sunt îmbunătățite repetat pe baza criteriului de optim local până ce se obțin soluții finale.
- Soluţiile parţiale ce nu pot fi îmbunătăţite sunt abandonate → proces de rezolvare irevocabil (fără reveniri)!

Greedy (2)

- Schema generală de rezolvare a unei probleme folosind Greedy (programarea lacomă):
- Rezolvare lacomă(Crit optim, Problemă)

```
sol_parţiale = sol_iniţiale(Problemă); // determinarea soluţiilor parţiale
   sol fin = \Phi:
    Cât timp (sol parțiale \neq \Phi)
        Pentru fiecare (s în sol_parțiale)
 4
           Dacă (s este o soluție a problemei) { // dacă e soluție
 5
 6
              sol_fin = sol_fin U {s}; // finală se salvează
              sol_parţiale = sol_parţiale \ {s};
 8
           } Altfel // se poate optimiza?
               Dacă (optimizare_posibilă (s, Crit_optim, Problemă))
                  sol_parţiale = sol_parţiale \ {s} U
10
                                 optimizare(s, Crit_optim, Problemă) // da
11
              Altfel
                  sol_parţiale = sol_parţiale \ {s}; // nu
    Întoarce sol fin;
```


Problema rucsacului (1)

Trebuie să umplem un rucsac de capacitate maximă M kg cu obiecte care au masa m_i şi valoarea v_i. Putem alege mai multe obiecte din fiecare tip cu scopul de a maximiza valoarea obiectelor din rucsac.

Variante:

- □ Varianta 1: putem alege fracţiuni de obiect "problema continuă"
- □ Varianta 2: putem alege doar obiecte întregi "problema 0-1"

Problema rucsacului (2)

- Varianta 1: Algoritm Greedy
 - □ sortăm descrescător obiectele după raportul v_i/m_i;
 - adăugăm fracţiuni din obiectul cu cea mai mare valoare per kg până epuizăm stocul şi apoi adăugăm fracţiuni din obiectul cu valoarea următoare.
 - \square Exemplu: M = 50; m₁ = 10 kg, v₁ = 60, m₂ = 30 kg,

$$v_2 = 120$$
, $m_3 = 20$ kg, $v_3 = 100$

- \square Objectele sortate: m_1 , m_3 , m_2 (v_i/m_i : 6, 5, 4)
- □ Soluție: (m_1, v_1) 10 kg, (m_3, v_3) 20 kg şi 20kg din (m_2, v_2)
 - valoarea totală: 60 + 100 + 80 = 240

Problema rucsacului (3)

Varianta 2: Algoritmul Greedy nu funcţionează => contraexemplu:

```
\square Exemplu: M = 50; m<sub>1</sub> = 10 kg, v<sub>1</sub> = 60, m<sub>2</sub> = 30 kg, v<sub>2</sub> = 120, m<sub>3</sub> = 20 kg, v<sub>3</sub> = 100
```

- \square Objectele sortate: m_1 , m_3 , m_2 (v_i/m_i : 6, 5, 4)
- \square Rezultat corect: (m_2, v_2) , (m_3, v_3)
 - valoarea totală: 220
- \square Rezultat algoritm Greedy: (m_1, v_1) , (m_3, v_3)
 - valoarea totală: 160

Arbori Huffman

- Metodă de codificare folosită la compresia fișierelor.
- Construcția unui astfel de arbore se realizează printr-un algoritm Greedy.
- Considerăm un text, de exemplu:
 - ana are mere
- Vom exemplifica pas cu pas construcţia arborelui de codificare pentru acest text şi vom defini pe parcurs conceptele de care avem nevoie.

Arbori Huffman – Definiții (1)

- K: mulţimea de simboluri ce vor fi codificate. (a, n, " ", r, e, m)
- Un arbore de codificare a cheilor K este un arbore binar cu proprietățile:
 - Doar frunzele conțin cheile din K; nu există mai mult de o cheie într-o frunză;
 - Orice nod intern are exact 2 copii (arbore binar complet);
 - Arcele sunt etichetate cu 0 și 1
 - etichetă(u,v) = 0, dacă v este succesorul stâng al lui u;
 - etichetă(u,v) = 1, dacă v este succesorul drept al lui u.
- k: Codul unei chei este şirul etichetelor de pe calea de la rădăcina arborelui la frunza care conţine cheia k (k este din K).
- p(k): frecvența de apariție a cheii k în textul ce trebuie comprimat.
- Ex pentru "ana are mere":

$$p(a) = p(e) = 0.25$$
; $p(n) = p(m) = 0.083$; $p(r) = p() = 0.166$

Arbori Huffman – Definiții (2)

- A arborele de codificare a cheilor.
- lg_cod(k) lungimea codului cheii k conform A.
- nivel(k,A) nivelul pe care apare în A frunza ce conține cheia K.
- Costul unui arbore de codificare A al unor chei K relativ la o frecventa p este:

Cost
$$(A) = \sum_{k \in K} lg \ _cod(k) * p(k) = \sum_{k \in K} nivel(k, A) * p(k)$$

Un arbore de codificare cu cost minim al unor chei K, relativ la o frecvență p este un arbore Huffman, iar codurile cheilor sunt coduri Huffman.

Arbori Huffman – Exemplu (1)

Textul: "Un text x."

 $K = \{U, n, t, e, x, ., spatiu\}$

Codificare: 0110 0111 10 11 0100 00 11 10 00 0101

Arbori Huffman – Exemplu (2)

28 biţi → 4 octeţi: text codificat

10 octeţi: textul iniţial

=> Factor de compresie: 60% (doar pentru textul comprimat)

U, n, e, .: o singură apariţie
 x, t, spaţiu: două apariţii
 => p(x) = p(t) = p(spaţiu) = 0.2
 p(U) = p(n) = p(e) = p(.) = 0.1

Cost(A) = 2.8 biţi (lungimea medie a codului unei chei din K) Codificarea ASCII: 8 biţi pentru o cheie

Observaţie: Arborele prezentat în acest exemplu este un arbore Huffman.

Arbori Huffman – Algoritm de construcție (1)

- 1. Pentru fiecare k din K se construiește un arbore cu un singur nod care conține cheia k si este caracterizat de ponderea w = p(k). Subarborii construiți formează o mulțime numită Arb.
- 2. Se aleg doi subarbori a şi b din Arb astfel încât a şi b au pondere minimă.

Arbori Huffman – Algoritm de construcție (2)

- 3. Se construiește un arbore binar complet cu o rădăcina *r* care nu conține nici o cheie și cu descendenții a și b. Ponderea arborelui este definită ca w(r) = w(a) + w(b).
- 4. Arborii a şi b sunt eliminaţi din Arb iar r este inserat în Arb.
- 5. Se repetă procesul de construcție descris de pașii 2-4 până când mulțimea Arb conține un singur arbore Arborele Huffman pentru cheile K.

Arbori Huffman – Exemplu (1)

- Text: ana are mere
- p(a) = p(e) = 0.25; p(n) = p(m) = 0.083; p(r) = p() = 0.166
- Pasul 1:

■ Pasii 2-4:

Arbori Huffman – Exemplu (2)

■ Pasii 2-4 (II):

$$W(r+)=0.32$$
 $W(m+n)=0.16$ $W(a)$ $W(b)$ $W(c)$ $W(c)$ $W(d)$ $W(d)$ $W(d)$ $W(d)$ $W(d)$

W(m+n+e)=0.41

■ Pasii 2-4 (III):

$$W(a)$$
 $W(r+)=0.32$ $W(m+n)=0.16$ $W(e)$ $W(r)$ $W(r)$ $W(m)$ $W(m)$

■ Pasii 2-4 (IV):

$$W(a+r+)=0.57$$
 $W(m+n+e)=0.41$ $W(a)$ $W(r+)=0.32$ $W(m+n)=0.16$ $W(e)$ $W(r)$ $W(r)$ $W(m)$ $W(m)$

Ŋ.

Arbori Huffman – Exemplu (3)

■ Pasii 2-4 (V):

Codificare: a - 00; e -11; r - 010; ' - 011; m - 100; n - 101;

$$Cost(A) = \sum_{k \in K} lg _cod(k) * p(k) = \sum_{k \in K} nivel(k, A) * p(k)$$

- p(a) = p(e) = 0.25; p(n) = p(m) = 0.083; p(r) = p() = 0.166
- Cost(A) = 2 * 0.25 + 2 * 0.25 + 3 * 0.083 + 3 * 0.083 + 3 * 0.166 + 3 * 0.166 = 1 + 1.2 = 2.2 biti.

b/A

Arbori Huffman - Pseudocod

- Huffman(K,p){
 1 Arb = {frunză(k, p(k)) | k ∈ K};
 2 Cât timp (card (Arb) > 1) // am mai mulți subarbori
 3 fie a₁ și a₂ arbori din Arb a.i. ∀a ∈ Arb a ≠ a₁ si a ≠ a₂, avem w(a₁) ≤ w(a) și w(a₂) ≤ w(a)); // practic se extrage // de două ori minimul și se salvează în a₁ și a₂
 4 Arb = Arb \ {a₁, a₂} U nod_intern(a₁, a₂, w(a₁) + w(a₂));
 5 Dacă (Arb = Φ)
 6 Întoarce arb_vid;
 7 Altfel
 8 fie A singurul arbore din mulțimea Arb;
 9 Întoarce A;
- Notații folosite:
 - a = frunză (k, p(k)) subarbore cu un singur nod care conține cheia k, iar w(a) = p(k);
 - □ a = nod_intern(a₁, a₂, x) − subarbore format dintr-un nod intern cu descendenții a₁ și a₂ și w(a) = x.

Arbori Huffman - Decodificare

- Se încarcă arborele şi se decodifică textul din fişier conform algoritmului:
- Decodificare (in, out) // in: fișierul comprimat; out: fișierul decomprimat
 1 A = restaurare_arbore(in) // reconstruiesc arborele
 2 Cât timp (! terminare_cod(in)) // mai am caractere de citit
 3 nod = A // pornesc din rădăcină
 4 Cât timp (! frunză(nod)) // cât timp nu am determinat caracterul
 5 Dacă (bit(in) = 1) nod = dreapta(nod) // avansez în arbore
 6 Altfel nod = stânga(nod)
 7 Scrie (out, cheie(nod)) // am determinat caracterul și îl scriu la ieșire

Demonstrație (1)

Arborele de codificare construit trebuie să aibă cost minim pentru a fi arbore Huffman.

Lema 1. Fie K mulţimea cheilor dintr-un arbore de codificare, card(K) ≥ 2, x, y două chei cu pondere minimă. Există un arbore Huffman de înălţime h în care cheile x şi y apar pe nivelul h fiind descendente ale aceluiaşi nod intern.

Observație. Numărăm nivelurile unui arbore (de sus in jos) începand cu nivelul 0.

Demonstrație (2)

Demonstrație Lema 1:

$$Cost(A) = \sum_{k \in K} lg _cod(k) * p(k) = \sum_{k \in K} nivel(k, A) * p(k)$$

Se interschimbă a cu x şi b cu y şi din definiţia costului arborelui => cost(A") ≤ cost(A) ≤ cost(A) => A" arbore Huffman

Demonstrație (3)

Lema 2. Fie A un arbore Huffman cu cheile K, iar x şi y două chei direct descendente ale aceluiaşi nod intern a. Fie K' = K \ {x,y} U {z} unde z este o cheie fictivă cu ponderea w(z) = w(x) + w(y). Atunci arborele A' rezultat din A prin înlocuirea subarborelui cu rădăcina a şi frunzele x, y cu subarborele cu un singur nod care conţine frunza z, este un arbore Huffman cu cheile K'.

Demonstrație Lema 2:

- □ 1) analog $Cost(A') \le Cost(A)$ (Cost(A) = Cost(A') + w(x) + w(y))
- □ 2) pp există A" a.i. Cost(A") < Cost(A') =>
 - Cost(A'') < Cost(A) (w(x) + w(y));
 - Cost(A") + w(x) + w(y) < Cost(A); => A nu este Huffman (contradicţie)

Demonstrație (4)

Teorema 1 – Algoritmul Huffman construiește un arbore Huffman.

Demonstrație Teorema 1: prin inducție după numărul de chei din mulțimea K.

- \blacksquare n \leq 2 => evident
- n > 2
 - □ Ip. Inductivă: algoritmul Huffman construiește arbori Huffman pentru orice mulțime cu n-1 chei
 - □ Fie K = $\{k_1, k_2, ..., k_n\}$ a.i. $w(k_1) \le w(k_2) \le ... \le w(k_n)$

Demonstrație (5)

- □ Cf. Lema 1, ∃ Un arbore Huffman unde cheile k₁, k₂ sunt pe acelaşi nivel şi descendente ale aceluiaşi nod.
- □ A_{n-1} arborele cu n-1 chei K' = K $\{k_1, k_2\}$ ∪ z unde w(z) = w(k₁) + w(k₂).
- \square A_{n-1} rezultă din A_n prin modificările prezentate in Lema 2 => A_{n-1} este Huffman, şi cf. ipotezei inductive e construit prin algoritmul Huffman(K',p').
- => Algoritmul Huffman(K, p) construieşte arborele format din k₁ si k₂ si apoi lucrează ca şi algoritmul Huffman(K', p') ce construieşte A_{n-1} => Algoritmul Huffman(K, p) construieşte un arbore Huffman.

Când funcţionează algoritmii Greedy? (1)

1) Problema are proprietatea alegerii locale

 Alegând soluţia optimă local se ajunge la soluţia optimă global.

2) Problema are proprietatea de substructură optimă

- O soluţie optimă a problemei conţine soluţiile optime ale subproblemelor.
- 1)+2): facem o alegere locală (lacomă) => rămâne o subproblemă. Soluţia optimă a subproblemei + alegerea locală deja facută => soluţia optimă pentru problemă.

ÎNTREBĂRI?