Lineaarialgebra ja matriisilaskenta II Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 11.12.2013

Kokeessa ei saa käyttää laskinta eikä taulukkokirjaa.

1. (a) Lineaarikuvaukselle $L \colon \mathbb{R}^2 \to \mathbb{R}^3$ pätee

$$L(1,0) = (1,5,1)$$
 ja $L(0,1) = (0,0,4)$.

Mikä on lineaarikuvauksen L matriisi? Määritä L(-1,3).

- (b) Tiedetään, että lineaarikuvauksella $L\colon \mathbb{R}^3 \to \mathbb{R}^3$ on ominaisarvo $\lambda \in \mathbb{R}$, jota vastaavat ominaisvektorit $\bar{v}_1 = (1,2,0)$ ja $\bar{v}_2 = (-2,0,0)$. Keksi ominaisarvoa λ vastaava ominaisvektori, joka ei ole yhdensuuntainen kummankaan vektoreista \bar{v}_1 ja \bar{v}_2 kanssa. Perustele vastauksesi ominaisvektorin määritelmän avulla.
- 2. (a) Tutkitaan matriiseja

$$B_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \ B_2 = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}, \ B_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ B_4 = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}.$$

Osoita, että jono $\mathcal{B}=(B_1,B_2,B_3,B_4)$ on avaruuden $\mathbb{R}^{2\times 2}$ kanta.

- (b) Minkä matriisin koordinaattivektori kannan \mathcal{B} suhteen on (5, 1, -1, 0)?
- 3. (a) Anna esimerkki polynomiavaruuden $\mathcal P$ aliavaruudesta, johon polynomix kuuluu ja polynomi x^2+1 ei kuulu. Perustele vastauksesi.
 - (b) Avaruudella \mathbb{R}^3 on aliavaruus

$$W = \{ (a - b, \ a + 2b, \ a - b) \mid a, b \in \mathbb{R} \}.$$

Kirjoita $\bar{v}=(0,8,-2)$ summana kahdesta vektorista, joista toinen on aliavaruuden W ja toinen aliavaruuden W^{\perp} alkio.

- 4. (a) Selitä lyhyesti, mihin kannanvaihtomatriiseja käytetään. (Sinun ei tarvitse kertoa kannanvaihtomatriisin määritelmää.)
 - (b) Oletetaan, että V on vektoriavaruus, jolla on kanta $(\bar{v}_1, \ldots, \bar{v}_n)$. Olkoon $L \colon V \to U$ sellainen lineaarikuvaus, että jono $(L(\bar{v}_1), \ldots, L(\bar{v}_n))$ on vapaa. Osoita, että L on injektio.

Kerro mielipiteesi kurssista! Mikä toimi? Mitä voisi parantaa? Saat WebOodin kautta sähköpostiisi linkin, josta pääset täyttämään palautelomakkeen.