

ÁLGEBRA LINEAL

AÑO 2020

Ejercitación Complementaria N°7

TRANSFORMACIONES LINEALES

- 1. Determinar si la transformación dada es lineal
 - a) T: R⁴ \rightarrow R²; T $\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x+z \\ y+w \end{pmatrix}$
 - b) T: $M_{nn} \rightarrow R$; T(A) = tr(A) donde la traza de una matriz cuadrada A, que se denota por tr(A), es la suma de las componentes de la diagonal principal. Es decir, si A es una matriz de nxn, entonces $tr(A) = a_{11} + a_{22} + ... + a_{nn}$
 - c) T: $P_2 \rightarrow P_3$; $T(p(t)) = t^3 p'(0) + t^2 p(0)$
 - d) T: $P_1 \to P_2$; T(p(t)) = t p(t) + 1
- **2.** Sea $T: \Re^2 \to \Re^2 / T \binom{x}{y} = \binom{-x}{y}$
- Sean $u = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ y $v = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Encuentre T(u) y T(v).

Compruebe la linealidad (o no) de la transformación de manera gráfica.

3. Encontrar el núcleo, imagen, rango y nulidad de las siguientes transformaciones lineales:

a) T:
$$R^2 \rightarrow R / T \begin{pmatrix} x \\ y \end{pmatrix} = (x+y)$$

b) T: R³
$$\rightarrow$$
 R² / T $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ z \end{pmatrix}$

c) T:
$$M_{2x2} \to M_{2x2} / T(A) = A^t + A$$

- **4.** Demuestra que T: U \rightarrow V es una transformación <u>lineal</u> si y sólo si T (α u+ β v) = α T(u)+ β T(v) con α , β \in R y u, v \in V.
- **5.** Sea T: $R \rightarrow R/T(x) = mx+b$ con m, $b \in R$.
 - a) ¿Con qué nombre se conoce esta transformación?
 - b) Demuestra que T es una transformación lineal sólo si b=0.
 - c) ¿Cuál/es de las condiciones de linealidad no se cumple cuando b≠0?
- **6.** Sea $T: \Re^2 \to \Re^2$: $T \binom{x}{y} = \binom{x}{-y}$. Geométricamente, ¿qué representa esta transformación? ¿Es lineal?
- **7.** Sea $T: \Re^2 \to \Re^2: T \binom{x}{y} = \binom{y}{x}$. Geométricamente, ¿qué representa esta transformación? ¿Es lineal?
- **8.** Demuestra que si V y W son espacios vectoriales y L es una transformación lineal de V en W entonces $\forall v \in V$ se verifica que la imagen de su opuesto es igual al opuesto de la imagen, es decir, que L(-v) = -L(v).

RESOLUCION DE ALGUNOS EJERCICIOS

- 1) Determinar si la transformación dada es lineal
- **b)** T: $M_{nn} \rightarrow R$; T(A) = tr(A) donde la traza de una matriz cuadrada A, que se denota por tr(A), es la suma de las componentes de la diagonal principal. Es decir, si A es una matriz de nxn, entonces tr(A) = $a_{11} + a_{22} + ... + a_{nn}$ Sean A= (a_{ij}) , B= (b_{ij}) matrices de nxn. Entonces A+B = $(a_{ij} + b_{ij})$ con i=1,2,....n

$$T(A+B)= tr (A+B)= a_{ii} + b_{ii}= tr(A)+tr(B)$$

Sea $\alpha \in R$

$$T(\alpha A) = tr(\alpha A) = \alpha$$
. $a_{ii} = \alpha tr(A) = \alpha T(A)$

Entonces T es lineal.

c) T: $P_2 \rightarrow P_3$; T(p(t)) = t^3 p'(0)+ t^2 p(0) Si p(t)= at^2 + bt+ c entonces p(0)=c y p'(0)=b. De modo que

$$T(p(t)) = T[at^2 + bt + c] = bt^3 + ct^2$$

Sean $p(t)=at^2 + bt + c y q(t) = dt^2 + et + f$

Entonces $T[(p+q)(t)] = T[(a+d)t^2 + (b+e) t + (c+f)] = (b+e) t^3 + (c+f) t^2$ $= [b t^3 + c t^2] + [e t^3 + f t^2]$ = T[p(t)] + T[q(t)]

Sea $\alpha \in R$. Entonces: $T[\alpha \ p(t)] = T[\alpha \ (at^2 + bt + c)] = T[\alpha at^2 + \alpha b \ t + \alpha c]$ $= \alpha b \ t^3 + \alpha c \ t^2$ $= \alpha T[p(t)]$

Por lo tanto, T es lineal.

3) Encontrar el núcleo, imagen, rango y nulidad de las siguientes transformaciones lineales:

a) T:
$$R^2 \rightarrow R / T \begin{pmatrix} x \\ y \end{pmatrix} = x + y$$

nu (T)={(x,y)
$$\in \mathbb{R}^2/\mathbb{T}\binom{x}{y} = 0$$
}

Entonces los pares $(x,y) \in \text{nu}$ (T) satisfacen que: $x+y=0 \Rightarrow x=-y$ De modo que:nu (T)= $\{ \begin{pmatrix} -y \\ y \end{pmatrix} \ con \ y \in R \} = \text{gen} \ \{ \begin{pmatrix} -1 \\ 1 \end{pmatrix} \} \Rightarrow v(T)=1$

imagen (T)= $\{x + y \ con \ x + y \in R\}$.

Si denotamosr = x + y resulta que imT = $\{r \in R\} = R \Rightarrow \rho(T) = 1$

c) T: $M_{2\times 2} \to M_{2\times 2}/T(A) = A^t + A$

nu(T)=
$$\{A \in M_{2\times 2} / T(A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \}$$

Entonces las matrices $A \in nu$ (T) satisfacen que $A^t + A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow A = -A^t \Rightarrow A$ es antisimétrica

$$nu(T) = \left\{ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \ con \ b, c \in R \right\} = \text{gen} \ \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\} \ \Rightarrow \text{v(T)} = 1$$

im
$$T = \{A^t + A \quad con A \in M_{2x2}\}$$

Si
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 entonces $A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ y $A^t + A = \begin{pmatrix} 2a & b+c \\ b+c & 2c \end{pmatrix}$

Por lo tanto im T= $\left\{ \begin{pmatrix} 2a & b+c \\ b+c & 2c \end{pmatrix} & con\ a,b,c,d \in R \right\} = \operatorname{gen}\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \Rightarrow \rho(\mathsf{T})=3$

4) Demuestre que T: U \rightarrow V es lineal **si y sólo** si T (α u+ β v) = α T(u)+ β T(v) con α , β \in R y u, v \in V.

Recordemos la definición de TL: T es lineal \Leftrightarrow i) T(a+b)=T(a)+T (b) $\forall a, b \in U$

ii)
$$T(\alpha a) = \alpha T(a) \quad \forall a \in U, \forall \alpha \in R$$

Demostremos las dos implicaciones.

- \Rightarrow) Sea T: U \rightarrow V lineal T(α u+ β v) = T(α u)+T(β v)= α T(u)+ β T(v) ψ por i) de la definición de linealidad por ii) de la definición de linealidad
- \Leftarrow) Sea T una transformación de U en V tal que si α, $\beta \in R$ y u, $v \in U$ se verifica que

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v) \quad (*)$$

Si $\alpha = \beta = 1$ aplicando (*) se verifica que T (u+v) = T(u)+T(v)

Si α = 1 y β =0 aplicando (*) se verifica que T (α u)= T(α u+0v)= α T(u)+0.T(v)= α T(u)

Se demostró, entonces, i) y ii) de la definición de transformación lineal.

- **8.** Por propiedades de las transformaciones lineales se sabe que si ésta se define de V en W (con V y W espacios vectoriales) entonces
 - la imagen de 0_V es 0_W (afirmación i del Teorema 7.2.1)

- la imagen de la diferencia de dos elementos de V es igual a la diferencia de las imágenes de dichos elementos (afirmación il del Teorema 7.2.1)

Entonces empleado los vectores cero o nulo de cada espacio vectorial, que L es una transformación lineal y las dos propiedades anteriores se obtiene que

$$L(-v) = L(0_V - v) = L(0_V) - L(v) = 0_W - L(v) = - L(v)$$

que es lo que se pedía demostrar.