Developer Guide: SwarmBot

A project by

Charlie Wu, <u>chw357@ucsd.edu</u> [team lead] Wesley Xiao, <u>wex057@ucsd.edu</u> [software] Carl Villegas, <u>cavilleg@ucsd.edu</u> [hardware design]

Table of Content

Introduction	2
Hardware	3
Navigate Google Drive	3
Assembly and Code	3
Leader Robot	4
1. Connect two servos	4
2. Connect IR receiver	4
3. Decode signal from IR remote	5
4. Example code	5
5. Attach magnet	6
6. Connect battery	6
Follower Robot	7
1. Connect two servos	7
2. Connect magnetometer	7
3. How it works?	7
4. To Be Continued	7

Introduction

The idea of this project is to build two robots that can follow each other. Scheme is simple:

- 1. Leader robot can be controlled via IR remote.
- 2. Follower robot will follow the leader robot.

Hardware

- Arduino Nano
- Servo + Wheels → allow robots to move around
- Caster Ball ½" → support the robot
- IR Remote
- IR Receiver
- MPU-9250 3-Axis Accelerometer, Gyro, & Magnetometer → location tracking
 - We only use the magnetometer. At least for now.
 - Magnetometer measures magnetic field (intensity, direction)
 - This sensor is installed on **follower robot**. It tracks the location of leader robot
- Breadboard
- Magnet → This is only installed on leader robot. It allows follower robot to track leader robot's location using magnetometer.

For more details. Visit Parts List.

Assembly and Code Leader Robot

1. Connect two servos

Example code us pin 10 and 11.

2. Connect IR receiver

Out → Any digital pin. Example code use pin 12.

3. Decode signal from IR remote

You need to decode signal from IR remote because arduino needs to know what command (in the form of he1x code) it will receive if a particular button is pressed. Upload **this** code to arduino and press up (forward), down (backward), left, right, and ok button (stop). Record the hex code for above five buttons.

You will get something like this. **Note** hex code might vary depending on model and manufacturer of the IR remote.

```
//HEX code correspond to each button
#define Forward 0x10EFA05F
#define Left 0x10EF10EF
#define Right 0x10EF807F
#define Stop 0x10EF20DF
#define Backward 0x10EF00FF
```

4. Example code

<u>This</u> code allows you to control the leader robot with IR remote. You might need to update the hex code for each button if yours are different.

5. Attach magnet

Make sure the **north** pole of magnet is pointing away from the robot itself. Sensor will have different readings if polarity of magnet is reversed.

6. Connect battery

Positive (red) \rightarrow VIN

Negative (black) → GND

Follower Robot

1. Connect two servos
Same as the leader robot.

2. Connect magnetometer See instructions <u>here</u>.

3. How it works?

Check out <u>this</u> demo video. As the leader robot moves, you can see the change of reading on follower robot.

- Absolute value of reading tells distance
 - Leader robot is further → absolute value of reading gets smaller
 - o Leader robot is cloer → absolute value of reading gets larger
- Sign of Y reading tells direction
 - $\circ \quad \text{Leader robot moving left} \to Y \text{ is negative}$
 - \circ Leader robot moving right \rightarrow Y is positive