THE BRIDGE

Estadística Inferencial

Introducción

ESTADÍSTICA INFERENCIAL

- 1. Probabilidad
- 2. Variables aleatorias
- 3. Distribuciones de probabilidad
- 4. Distribución normal
- 5. Intervalos de confianza
- 6. Error absoluto y tamaño de la muestra
- 7. Contraste de hipótesis

3. Estadística Inferencial 3.1. Probabilidad

Conceptos básicos

- Experimento aleatorio: su resultado no puede predecirse con certeza
- Espacio muestral: El conjunto de todos los resultados posibles
- Suceso: Subconjunto del espacio muestral

UNIÓN AUB

INTERSECCIÓN AOB

Conceptos básicos

Ejemplo: Se lanza una moneda al aire dos veces

- \triangleright Espacio muestral: $\mathbf{E} = \{\mathbf{CC}, \mathbf{CX}, \mathbf{XC}, \mathbf{XX}\}, \text{ donde C (Cara) y X (Cruz)}$
- \triangleright Suceso A: Al menos sale una cara $\mathbf{A} = \{\mathbf{CC}, \mathbf{CX}, \mathbf{XC}\}$
- > Suceso B: Las dos veces sale cara $\mathbf{B} = \{\mathbf{CC}\}\$

¿Cuál es el suceso complementario de A?

$$ightharpoonup A' = \{XX\}$$

¿Cuál es el suceso A∩B?

$$ightharpoonup A \cap B = \{CC\}$$

Definición de probabilidad

La probabilidad de un suceso es **un número** que cuantifica en términos relativos las opciones de verificación de un suceso

$$P(A) = \frac{N^{o} \text{ de casos favorables}}{N^{o} \text{ de casos posibles}}$$

Propiedades:

- P(E) = 1
- $ightharpoonup 0 \le P(A) \le 1$
- \triangleright P(A') = 1 P(A)
- \triangleright P(A \cup B) = P(A) + P(B) P(A \cap B)
- \triangleright P(A \cap B) = P(A) \cdot P(B) si A y B son independientes

Probabilidad condicional

Probabilidad del suceso A, dada la verificación del suceso B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Ejemplo: El 50% de la población fuma y el 10% que fuma es hipertenso. ¿Cuál es la probabilidad de que un fumador sea hipertenso?

A = {ser hipertenso}
B = {ser fumador}
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.10}{0.50} = 0.2$$

3. Estadística Inferencial 3.2. Variables Aleatorias

Variables aleatorias (VA)

- Supongamos el experimento de elegir al azar un universitario de España. El espacio muestral está formado por todos los distintos universitarios: $E = \{\omega_i\}_{i=1}^N$
- ullet Nuestro interés no está en el individuo ω_i sino en un valor asociado a él que denotamos por $X(\omega_i)=x$, por ejemplo, su edad
- A la función que asocia a un resultado un valor numérico se le llama variable aleatoria

$$X: E \longrightarrow \mathbb{R}$$

$$\omega \longrightarrow X(\omega) = x$$

Variables aleatorias continuas

- Pueden tomar un número infinito de valores, por ejemplo, la concentración de azúcar de un refresco
- De estos valores aleatorios, nos interesa conocer la probabilidad que tenemos de que el valor que observemos esté entre dos números:

$$P(a < X \le b) = \int_a^b f(x)d(x)$$

• La función f(x) recibe el nombre de **función densidad de probabilidad** de la variable aleatoria X, y nos informa sobre la cantidad de probabilidad que hay en un intervalo determinado. Cumple las siguientes propiedades:

$$1) f(x) \ge 0$$
$$2) \int f(x) = 1$$

3. Estadística Inferencial

3.3. Distribuciones de probabilidad

Distribución de probabilidad

- La distribución de probabilidad describe las probabilidades de los posibles valores de una variable aleatoria
- Si la VA es discreta, le corresponderá una distribución discreta
- Si la VA es continua (puede tomar cualquier valor dentro de un intervalo), la distribución será continua.

Función densidad de probabilidad (fdp)

 La función de densidad de probabilidad, función de densidad, o, simplemente, densidad de una variable aleatoria continua describe la probabilidad relativa según la cual dicha variable aleatoria tomará determinado valor

Función densidad de probabilidad (fdp)

- Ejemplo: Una especie de bacteria típicamente vive entre 0 y 4 horas. ¿Cuál es la probabilidad de que una bacteria viva exactamente 2 horas?
- La respuesta es 0%. Muchas bacterias vivirán *aproximadamente* 2 horas, pero es improbable que dada una bacteria ésta viva *exactamente* 2.000000 horas
- > En lugar de eso, la pregunta debería ser: ¿Cuál es la probabilidad de que la

bacteria muera entre 2 y 2.01 horas?

Distribuciones discretas más comunes

- **Distribución binomial**: describe el número de aciertos en experimentos con posibles resultados binarios con probabilidad de acierto p y probabilidad de fallo q = 1 p.
- Para representar que una VA sigue una distribución binomial: $X \sim B(n, p)$
- \triangleright Ejemplos: n° de caras al lanzar 20 veces una moneda $X \sim B(20, 0.5)$
- Distribución uniforme: Asume un número finito de valores con la misma probabilidad
- \triangleright La probabilidad de cada resultado x_i es $p(x_i) = \frac{1}{n}$
- Ejemplo: En un dado, todos los resultados tienen la probabilidad 1/6

Distribuciones continuas más comunes

Distribución uniforme

Distribución normal

Distribución exponencial

Histogramas y fdps

 Los histogramas dan una idea aproximada de la distribución de los datos, y a menudo se utilizan para estimar la función densidad de probabilidad

Distribuciones para la asignación de valores aleatorios

 A menudo, se realizan experimentos escogiendo números aleatorios, donde se especifica la distribución que deben seguir estos números

> Ejemplo: generar 100 números que sigan una distribución uniforme entre

12 y 29

3. Estadística Inferencial

3.4. Distribución normal

• Una variable aleatoria X se dice que sigue una distribución normal con media μ y varianza σ^2 (o, simplemente, que es una variable aleatoria normal) y se denota con X ~ N(μ , σ) si su función de densidad viene dada por

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

• Ejemplo: ¿A cuál de las siguientes curvas corresponden las distribuciones normales N(16,4), N(24,4) y N(16,9)?

Muchos fenómenos físicos se pueden modelar de manera adecuada a través de esta distribución.

Se pueden conocer las proporciones de datos/probabilidades en función de

la desviación estándar:

Ejemplo: Supongamos la VA de la altura de los universitarios españoles, la cual se distribuye de forma normal con media 160cm y desviación estándar de 10.23 Suponiendo que hay 1500 personas en el estudio, vamos a generar aleatoriamente estos valores

¿Cuál es la probabilidad de que la altura Esté entre 159 y 162cm? Solución: 15.49%

3. Estadística Inferencial

3.5. Intervalos de confianza

Intervalos de confianza

- El intervalo de confianza nos da una idea del "margen de error" al realizar un muestreo
- El intervalo de confianza nos da un rango en el que podemos estar seguros con cierta probabilidad (normalmente del 95%) de que la media real de la población estará en ese rango.

Intervalos de confianza

 Ejemplo: Disponemos de 100.000 clavos y queremos conocer la longitud media de cada uno de ellos. Para ello, se realiza un muestreo de 100 clavos y se calcula la media de ellos.

100 clavos con media de longitud \bar{x}

 μ estará comprendido entre $\overline{x} \pm IC$ con un 95% de probabilidad

Error estándar de la muestra

 Es la desviación estándar de todas las posibles muestras escogidas en una población

$$SE = \frac{S}{\sqrt{n}}$$

donde s es la desviación estándar de la muestra

Factor multiplicador

- El intervalo de confianza se calcula como $IC = \pm 1.96 \cdot SE$
- El valor z = 1.96 proviene del 95% de la distribución normal estándar
- Cuanto más se quiera aumentar la confianza, mayor será el IC

Error estándar de la muestra

Confidence Level	z*– value
80%	1.28
85%	1.44
90%	1.64
95%	1.96
98%	2.33
99%	2.58

Distribución de t-student

 La distribución t - student es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeña (n<30)

- En función de los **grados de libertad** (n° de muestras -1) se tienen diferentes fdp
- Los valores suelen consultarse en tablas

Ejemplo 1

 Al salir de una película en el cine, se entrevistan a 11 personas para saber qué puntuación entre 0 y 10 le darían a la película que acaban de ver. Se quiere conocer la media muestral el intervalo de confianza. Las puntuaciones fueron:

- 1. Calculamos la media muestral $\bar{x} = \frac{\sum x_i}{n} = 4.27$
- 2. Calculamos la desviación estándar de la muestra $s=\sqrt{\frac{\sum(x_i-\bar{x})^2}{n-1}}=2.24$
- 3. Calculamos el error estándar de la media $SE = \frac{s}{\sqrt{n}} = \frac{2.24}{\sqrt{11}} = 0.675$
- 4. Busco en la tabla de t-student el factor multiplicador con n=11 (10 grados de libertad) y p = 0.95, obteniendo t=1.8125
- 5. Intervalo de confianza: $(\bar{x} t \cdot SE, \bar{x} + t \cdot SE) = (4.27 0.675 \cdot 1.8125, 4.27 + 0.675 \cdot 1.8125)$ = (3.05, 5.49) (La nota media real de la película está entre esos valores con un 95% de confianza)

Ejemplo 2

 Se quiere conocer la altura de los estudiantes de cursos de análisis de datos con una confianza del 99%, teniendo las siguientes muestras:

180,165,176,165,169,179,168,176,191,178,173,157,175,179,169,185,168, 170,166,178,177,180,168,179,173,162,175,175,180,167

- 1. $\bar{x} = 173.43$
- 2. s = 7.24
- 3. $SE = \frac{s}{\sqrt{n}} = \frac{7,24}{\sqrt{30}} = 1.32$
- 4. $z \cdot SE = 2.58 \cdot 1.32 = 3.40$
- 5. Intervalo de confianza: $(\bar{x} z \cdot SE, \bar{x} + z \cdot SE) = (170,176)$

3. Estadística Inferencial

3.6. Error absoluto y tamaño de la muestra

Error absoluto y tamaño de la muestra

- ¿Cuántos datos hemos de tener para que nuestro estudio tenga validez? Es una pregunta muy genérica y sin respuesta
- ¿Cuántos datos necesitamos que al estimar una media poblacional el error máximo que cometemos sea menor que una cantidad que previamente especificamos?
- En Estadística nunca podemos afirmar con seguridad nada. Siempre hacemos afirmaciones basadas en la probabilidad
- El error absoluto es la mitad de la longitud del intervalo de confianza

Estimar una media

$$E = z \cdot \frac{S}{\sqrt{n}} \Longrightarrow n = \left(\frac{Z \cdot S}{E}\right)^2$$

"Para asumir un cierto error acerca de la media, con un grado de confianza determinado, necesito *n* muestras"

Estimar una media

 Ejemplo: deseamos conocer la media del nivel de azúcar en un refresco, con una seguridad del 95% y una precisión de ±3 mg/dl y tenemos información bibliográfica de que la varianza es de 250 mg/dl

$$n = \left(\frac{z \cdot s}{E}\right)^2 = \left(\frac{1.96 \cdot \sqrt{250}}{3}\right)^2 = 106.7$$

Necesitaría tomar al menos 107 muestras para mantener esa precisión

Estimar una proporción (población total desconocida)

$$n = \left(\frac{z}{E}\right)^2 \cdot p \cdot (1 - p)$$

- Si deseamos estimar una proporción, debemos tener una idea aproximada del parámetro que queremos medir (en este caso una proporción). En caso de no tener dicha información utilizaremos el valor p=0.5 (50%), que maximiza el tamaño muestral.
- Ejemplo: Sabiendo que un 5% de la población tiene diabetes, ¿a cuántas personas habría que examinar para conocer la proporción de diabetes con una precisión del 3% y una confianzadel 95%?

$$n = \left(\frac{1.96}{0.03}\right)^2 \cdot 0.05 \cdot 0.95 = 203$$

Estimar una proporción (población total conocida)

$$n = \frac{N \cdot z^2 \cdot p \cdot (1-p)}{E^2 \cdot (N-1) + z^2 \cdot p \cdot (1-p)}$$

donde N es el tamaño de la población

• Ejemplo: ¿A cuántas personas tendría que estudiar de una población de 15.000 habitantes para conocer la prevalencia de diabetes?

>
$$n = \frac{15000 \cdot 1.96^2 \cdot 0.05 \cdot 0.95}{0.03^2 (15000 - 1) + 1.96^2 \cdot 0.05 \cdot 0.95} = 200$$

Estimar una proporción (población total conocida)

Tamaño de la población	Tamaño de la muestra por margen de error		
	±3 %	±5%	±10%
500	345	220	80
1000	525	285	90
3000	810	350	100
5000	910	370	100
10 000	1000	385	100
100 000	1100	400	100

Calculadora online

https://www.netquest.com/es/gracias-calculadora-muestra

5000

TAMAÑO DEL UNIVERSO

Número de personas que componen la población a estudiar.

HETEROGENEIDAD %

Es la diversidad del universo. Lo habitual suele ser 50%. El tamaño de muestra que necesitas es...

5

MARGEN DE ERROR

Menor margen de error requiere mayores muestras.

NIVEL DE CONFIANZA

Cuanto mayor sea el nivel de confianza, mayor tendrá que ser la muestra (95% - 99%).

357

El resultado anterior debe interpretarse así:

Si encuestas a 357 personas, el 95% de las veces el dato que quieres medir estará en el intervalo ±5% respecto al dato que observes en la encuesta.

3. Estadística Inferencial

3.7. Contraste de hipótesis

_

Ejemplo

- Un fabricante de bombillas afirma que sus bombillas tienen una duración media de 1500 horas.
- Nuestro problema es tomar una entre dos decisiones: admitir que lo que afirma es correcto o bien que no lo es y la duración media real no es igual a 1500
- Lo primero que necesitamos para tomar la decisión son datos. Se toma una muestra de bombillas y se repite el experimento consistente en tenerlas en funcionamiento ininterrumpido hasta que la bombilla deja de funcionar.
- La afirmación del fabricante la consideramos como una hipótesis que hemos de evaluar. En concreto nos planteamos dicha hipótesis y su negación
- \rightarrow H_0 : $\mu = 1500$ (hipótesis nula)
- \rightarrow H_1 : $\mu \neq 1500$ (hipótesis alternativa)

Contraste de hipótesis

- Es un método estadístico que nos va a permitir aceptar o rechazar una determinada afirmación que realizamos (hipótesis nula) en función de los valores obtenidos en una muestra
- ullet El objetivo del contraste de hipótesis no es decidir si la hipótesis válida es H_0 o H_1 , solo podemos rechazar H_0 basándonos en que la probabilidad de que sea errónea es elevada
- ullet Haciendo un símil con un juicio, donde H_0 representaría la inocencia de un acusado y H_1 la culpabilidad:
- \triangleright Para poder asegurar que es culpable (rechazar H_0) tengo que tener muchas pruebas
- > Si no existen pruebas suficientes, no podemos asegurar que el acusado sea inocente.

Pasos a seguir

- 1. Identificar el parámetro que vamos a estudiar (media, varianza, desviación...)
- 2. Especificar la hipótesis nula H_0 y la hipótesis alternativa H_1
- 3. Fijar un valor para el nivel de confianza
- 4. Obtener el valor del estadístico para la muestra elegida
- 5. Determinar la región de aceptación y la región de rechazo
- 6. Decidir si rechazamos o no rechazamos la hipótesis nula
- 7. Interpretar los resultados obtenidos

Contraste de hipótesis bilateral: media

 H_0 : $\mu = k$ (hipótesis nula)

 H_1 : $\mu \neq k$ (hipótesis alternativa)

Estadísticos:

$$Z = \frac{\bar{x} - k}{\sigma / \sqrt{n}}$$
 si se conoce σ ; sigue una distribución N(0,1)

$$T = \frac{\bar{x} - k}{s/\sqrt{n}}$$
 si no se conoce σ ; sigue una distribución t-student con n-1 grados de libertad

Contraste de hipótesis bilateral: media

Ejemplo: Un fabricante afirma que la duración media de sus bombillas es de 1500 horas. Se toma una muestra de 100 bombillas y se utilizan hasta fundirse, obteniendo una media de 1405 horas y una desviación típica de 323 horas

$$H_0$$
: $\mu = 1500$ (hipótesis nula) H_1 : $\mu \neq 1500$ (hipótesis alternativa)

$$m_1$$
. $\mu \neq 1500$ (mpotesis diterriativa)

Estadístico $T = \frac{1405-1500}{323/\sqrt{100}} = -2.94$ (sigue una distribución t-student)

El valor de la distribución t-student con 99 grados de libertad y p=95% es de 1.66

⇒ Se rechaza la hipótesis nula (el fabricante miente)

Contraste de hipótesis unilateral: media

 H_0 : $\mu \ge k$ (hipótesis nula)

 H_1 : $\mu < k$ (hipótesis alternativa)

Estadísticos:

$$Z = \frac{\bar{x} - k}{\sigma/\sqrt{n}}$$
 si se conoce σ ; sigue una distribución N(0,1)

$$T = \frac{\bar{x} - k}{s/\sqrt{n}}$$
 si no se conoce σ ; sigue una distribución t-student con n-1 grados de libertad

Contraste de hipótesis unilateral: media

Ejemplo: Otro fabricante afirma que la duración media de sus bombillas es de al menos 1500 horas. Se toma una muestra de 100 bombillas y se utilizan hasta fundirse, obteniendo una media de 1595 horas y una desviación típica de 323 horas

$$H_0$$
: $\mu \le 1500$ (hipótesis nula)

$$H_1$$
: $\mu > 1500$ (hipótesis alternativa)

Estadístico
$$T = \frac{1595 - 1500}{323/\sqrt{100}} = 2.94$$
 (sique una distribución t-student)

El valor de la distribución t-student con 99 grados de libertad y p=95% es de 1.66

⇒ Se rechaza la hipótesis nula (el fabricante dice la verdad)

¡Gracias!

Contacto: Rafael Zambrano rafael@thebridgeschool.es

