

Arquitetura de Computadores

Prof. Marcos Grillo marcos.grillo@anhanguera.com

Apresentação da Disciplina

PLANO DE ENSINO E APRENDIZAGEM						
CURSO: Ciência da Computação						
Disciplina:	Período Letivo:	Série:	Periodo:	Semestre de	Ano de Ingresso:	
Arquitetura de Computadores	2° sem/2013	6ª Série	Não definido	Ingresso:	2011	
C.H. Teórica:		C.H. Outras: C.H. Total:		tal:		
40	20 60					

Ementa

Arquiteturas RISC e CISC. Pipeline. Paralelismo de Baixa Granularidade. Processadores Superescalares e Superpipeline. Multiprocessadores. Multicomputadores. Arquiteturas Paralelas e não Convencionais. Microprocessadores e Computadores Pessoais. Organização de Memória. Sistemas de Entrada e Saída, Sistemas de vídeo, Som e Outros.

Objetivos

Compreender e assimilar os componentes de dispositivos que compõem o computador. Formas de organização e de comunicação entre os subsistemas computacionais (processador, memória, disco e etc.)

Conhecer a estrutura de funcionamento de uma CPU. conhecer as arquiteturas de computadores do tipo CISC e RISC. Conhecer arquiteturas de computadores pessoalis, multicomputadores e multiprocessadores.

Apresentação da Disciplina

	Cronograma de Aulas			
Semana nº.	Tema			
1	Estrutura básica de um computador pessoal			
2	Estrutura e Funcionamento da CPU: conjunto de instruções			
3	Estrutura e Funcionamento da CPU: ciclo de instruções			
4	Arquitetura RISC e CISC			
5	Registradores: tipos de registradores			
6	Registradores mais utilizados em computadores pessoais			
7	Arquitetura Pipeline			
8	Atividades de Avaliação.			
9	Memorias: principal			
10	Memorias: Secundária, cache			
11	Dispositivos de entradas e saída			
12	Barramento: Tipos, arquitetura, adaptadores			
13	Sistema de video: GPU, Memórias, VGA, HDMI, 3D			
14	Sistema multimídia			
15	Análise de desempenho de computadores (Benchmark)			
16	Arquitetura de computadores com paralelismo: Cluster, Cloud.			
17	Computadores dedicados e embarcados			
18	Prova Escrita Oficial			
19	Exercícios de Revisão.			
20	Prova Substitutiva			

Cronograma de Aulas - 1ª etapa.

- Estrutura básica de um computador pessoal
- Estrutura e Funcionamento da CPU: conjunto de instruções
- Estrutura e Funcionamento da CPU: ciclo de instruções
- Arquitetura RISC e CISC
- Registradores: tipos de registradores
- Registradores mais utilizados em computadores pessoais
- Arquitetura Pipeline
- Atividades de Avaliação.

Cronograma de Aulas - 2ª etapa.

- Memorias: principal;
- Memorias: Secundária, cache;
- Dispositivos de entradas e saída;
- Barramento: Tipos, arquitetura, adaptadores;
- Sistema de vídeo;
- Sistema multimídia;
- Análise de desempenho de computadores (Benchmark);
- Arquitetura de computadores com paralelismo;
- Computadores dedicados e embarcados;
- Prova Escrita Oficial;
- Exercícios de Revisão;
- Prova Substitutiva;

Linguagens de Abstração

Operandos e registradores

- Um operando é uma das entradas (argumentos) de um operador. Por exemplo, em 5 + 2 = 7:
 - + é o operador 5 e 2 são os operandos.
- Ao contrário de linguagens de alto nível, os operandos de instruções aritméticas não podem ser quais quer variáveis;

Conjunto de instruções

- Linguagens de máquina seguem os mesmos princípios, sendo assim teremos mais facilidade de interpretar conhecendo o conceito porque?
 - Baseiam-se na mesma arquitetura, von Neumann;
 - Projetistas com o mesmo objetivo, buscando a facilidade de construção de compiladores;
 - Operações básicas que todas as maquinas devem oferecer;
 - ▶ Compatibilidade.

Linguagens (classificação)

- ▶ LBN Linguagem de baixo nível:
 - Linguagens de máquina;
 - **▶** 10101010101;
- ▶ LAN Linguagem de alto nível:
 - ▶ C C++;
 - ▶ Pascal;
 - Programadores utilizam linguagem de alto nível.

Linguagens (classificação)

- As linguagens LBN são definidas por uma série de Mnemônicos, que são, basicamente, símbolos que representam código binários;
- Por exemplo, no caso do MIPS a instrução de adição é representada por add a, b, c:
 - Esta instrução determina que o processador some o conteúdo de dois registradores (b, c) e coloque o resultado em outro registrador (a);
- A instrução ADD segue um formato bem definido:
 - código correspondente ao mnemônico da instrução add;
 - Identificação do registrador destino;
 - Identificação do primeiro operando;
 - Identificação do segundo operando;

Benefícios de utilizar os registradores.

- Nível mais próximo do processador, muito mais rápido que memorias RAM (barramentos);
- Mais fácil utilização por compiladores
 - Local de armazenamento temporário;
 - Armazenam valores e reduzem o trafego da memória, já que se o valor constar neste nível não será necessário ir buscar na memória;

Registradores de programas.

- Armazena o endereço da instrução sendo executada ou o endereço da próxima instrução;
- Contador de programa é automaticamente incrementado para cada ciclo de instrução de forma que as instruções são normalmente executadas.
- Principal função, indicar a próxima instrução a ser executada.

Registradores de instrução.

- É um registrador invisível de 2 bits que armazena o código da instrução que está sendo executada;
- Entrada deste registrador recebe diretamente o valor presente nos dois bits mais significativos da via de dados do barramento da memória e a saída deste registrador é ligada diretamente à unidade de controle do processador.

Nomenclatura padrão:

```
Para:
```

Soma = add

Subtração = sub

Valores = \$sn

n = número do operando

Temporários = \$tn

n = número do temporário

Busca externa = lw

Operações de Hardware

$$a = b + c;$$

 $d = a - e;$

Qual o código gerado para a seguinte equação?

$$f = (g + h) - (i + j);$$

Resposta!

$$f = (g + h) - (i + j);$$

Somente uma operação é feita por instrução: necessidade de variáveis temporárias.

```
add t0, g, h # temporário t0 = g
+ h
add t1, i, j # temporário t1 = i +
j
sub f, t0, t1 #f = (g + h) - (l + j)
```