ECE M146 Introduction to Machine Learning

Prof. Lara Dolecek

ECE Department, UCLA

Today's Lecture

Recap:

- Unsupervised Learning
- K-means algorithm for clustering

New topic:

- PCA algorithm for dimensionality reduction
- Linear algebra: SVD, eigen values

Today's Lecture

Recap:

- Unsupervised Learning
- K-means algorithm for clustering

New topic:

- PCA algorithm for dimensionality reduction
- Linear algebra: SVD, eigen values

Recap: Unsupervised learning

• In the previous lecture, we introduced the notion of unsupervised learning.

This set-up is described by un-labeled data.

The goal is to organize or represent this data.

Clustering

• Clustering = group unlabeled data into clusters.

• Use prototypes as cluster representatives.

• This is a form of lossy data compression.

K-means algorithm

- K-means algorithm is an iterative algorithm that iterates between two steps:
- 1) Cluster Assignment (set indicators given the prototypes)
- Refitting (set prototypes given the indicators)

Today's Lecture

Recap:

- Unsupervised Learning
- K-means algorithm for clustering

New topic:

- PCA algorithm for dimensionality reduction
- Linear algebra: SVD, eigen values

Dimensionality reduction

- In clustering, we used prototypes to represent individual clusters (all data points assigned to that cluster).
- Prototypes are of the same dimension as the data points.

 Another way to represent data efficiently is to project all data points onto a lower dimensional space.

• Applications are also in lossy data compression, visualization and also feature extraction.

Dimensionality reduction

• Set-up: Suppose data is provided in some D-dimensional space, but it can be well explained in an M-dimensional subspace for M<D.

• Example: D = 2 and M = 1.

Goal: find this subspace.

How to find the appropriate subspace of dimension M?

• Some projections:

• We want to look at the projection with the **highest sample variance**, because this will be the most informative choice.

First, we need some linear algebra

Notion of a **basis**:

- For a vector space V, a set of vectors {v₁, v₂,...,v_D} forms a basis if:
- Vectors v₁, v₂,...,v_D are linearly independent:

• Any vector x in SD is uniquely expressed in terms of {v₁, v₂,...,v_D} as:

• Vector space V must then be of dimension D.

Basis set is not unique

• Here are some examples in 3-D.

• Example 1:

• Example 2:

• Example 3:

Orthonormal basis

 It is also of interest to consider a basis that has vectors that are orthogonal to each other and each has unit norm.

- Mathematically:
- Cond. 1:
- Cond. 2:
- This basis is then called orthonormal basis.
- Which of the preceding examples constitute orthogonal basis, orthonormal basis, neither?

Basis set is not unique

• Here are some examples in 3-D.

• Example 1:

• Example 2:

• Example 3:

Matrix format

• Can organize vectors of an orthonormal basis into a matrix:

Useful property of this matrix:

Back to our set-up: projection with max. sample variance

• Suppose we have N data points, in a D-dimensional space: $x_1, x_2, ..., x_N$.

• Suppose we wish to project the data onto the most informative dimension. Let u_1 be a vector in that dimension.

• Then, these are our projections:

Sample mean and its projection

Sample mean

 By linearity, projected sample mean is the same as the projection of the sample mean.

Sample variance in the projection dimension

Consider the following:

Write it in the matrix format:

Math verification

Maximization of the sample variance in the projection dimension

• The goal of finding the dimension along which the sample variance is maximized is then equivalent to maximizing $u_1^T \times S \times u_1$?

- Almost.
- Note that without further restriction, we could pick an arbitrary dimension and vector \mathbf{u}_1 of huge magnitude and artificially maximize this product.
- To make this meaningful, consider only vectors of unit norm:

Mathematical formulation

What we then have is:

- This is a constrained optimization problem.
- Where did we study constrained optimization problems before?

SVM

How did we solve them then?

Convert to unconstrained optimization and take derivative of the Lagrangian.

Unconstrained optimization

Mathematical formulation:

• Set the derivative to zero.

Math, continued

Eigenvalues and eigenvectors

Upshot

• For any eigen vector, we get a stationary solution.

• Matrix S being a covariance matrix is positive semi-definite, so all its eigenvalues are non-negative, and all its eigenvectors are real.

 So we are looking for the eigenvector that corresponds to the largest eigenvalue!

Arrived at PCA

• This is the dimension projection.

This vector u₁ is called the first principal component.

• Hence the name: principal component analysis.

General version of PCA

- We can generalize this projection idea to more than one dimension.
- Idea: express S as S = X^T * X (view the matrix X as the centered version of data)

General version of PCA

Decompose X as follows:

• This is known as the singular value decomposition (SVD)

Math analysis

• Write S as

General PCA:

• Write S as

• SVD is a powerful matrix decomposition tool. We just showed how to use it in PCA.