Compartment models cont'd Silver Springs Aquatic System Five sets of organisms

- Primary producers (plants)
- Herbivores (eat plants)
- Carnivores (eat herbivores)
- Top carnivores (eat other carn.)
- Decomposers (consume dead)

Transfer function examples

$J_{AB}=k$	constant flow	
$J_{{\scriptscriptstyle A}{\scriptscriptstyle B}}=k_{{\scriptscriptstyle A}{\scriptscriptstyle B}}A$	donor dependent	
$J_{AB} = k_{AB}B$	recipient dependent	
$J_{AB} = k_{AB} \left(A - B \right)$	donor-recipient difference	
$J_{AB} = k_{AB}AB$	donor-recipient product	
$J_{AB} = k_{AB}A - l_{AB}A^2$	like logistic function	
$J_{AB} = k_{AB} f(t)$	forcing function (time)	

Energy inputs

$$\begin{split} J_{\mathit{OF}} = M + R \sin \left(\frac{2\pi (t-11)}{52} \right) \\ J_{\mathit{OH}} = k \end{split}$$

Feeding

$$\begin{split} J_{\mathit{PH}} &= a_{\mathit{PH}} \, P \, H \\ J_{\mathit{HC1}} &= a_{\mathit{HC1}} \, H \, C1 \\ J_{\mathit{C1C2}} &= a_{\mathit{C1C2}} \, C1 \, C2 \end{split}$$

Death (decomposition)

$$J_{PD} = b_{PD} P$$

$$J_{HD} = b_{HD} H$$

$$J_{C1D} = b_{C1D} C1$$

$$J_{C2D} = b_{C2D} C2$$

Respiration

$$\begin{split} J_{1,PO} &= c_{1,PO} \, P \\ J_{HO} &= c_{HO} \, H \\ J_{C1O} &= c_{C1O} \, C1 \\ J_{C2O} &= c_{C2O} C2 \\ J_{DO} &= c_{DO} \, D \end{split}$$

Loss to export

 $J_{2,PO} = e_{PO} P$

Berkeley-Madonna Program

- 1) Draw compartments
- 2) Add flows between compartments
- 3) Define any parameters (like k)
- 4) Define flows (transfer equations)
- 5) Set initial conditions
- 6) Set run options
- 7) Check compartment DEs
- 8) Run model (solve)
- 9) Examine results (draw graphs)

l	