# Algoritmická matematika 3

Rozděl a panuj

Petr Osička



Univerzita Palackého v Olomouci

Zimní semestr 2013

## Základní idea

### Pro vstupní instanci I

- **1** Rozděl I na k menších instancí  $I_1, \ldots, I_k$  stejného problému
- **2** Najdi řešení instancí  $I_1, \ldots, I_k$ 
  - Pro malé instance už známe odpověď, nebo použijeme jiný algoritmus
  - Jinak použime opět přístup rozděl a panuj
- $\bullet$  řešení instancí  $I_1, \ldots, I_k$  zkombinuj do řesení instance I



# Schéma v pseudokódu

```
1: procedure Divide-And-Conquer(I)
 2:
        if |I| \leq c then
             return BasicAlgoritm(I)
 3:
         end if
 4:
 5:
        Vytvoř instance I_1 \dots I_k menší velikosti než I
 6:
        for i \leftarrow 1 to k do
             x_i \leftarrow \mathsf{Divide}\text{-}\mathsf{And}\text{-}\mathsf{Conquer}(x_i)
 7:
         end for
 8:
         Zkombinuj x_1 \dots x_k do x
 9:
10:
         return x
11: end procedure
```

### Příklad

Výpočet Fibonnaciho čísla.

n-té Fibonnaciho číslo budeme značit jako F(n), definice následuje

$$F(n) = \begin{cases} F(n-1) + F(n-2) & n \ge 2\\ n & n \in \{0, 1\} \end{cases}$$
 (1)

### Idea algoritmu

- $\bullet \ \ \mathsf{Pokud} \ n \in \{0,1\} \mathsf{,} \ \mathsf{vrat} \ n$
- vstupní instanci n "rozděl" na dvě menší instance n-1 a n-2.
- rekurzivně vypočítej F(n-1) a F(n-2)
- spočítej F(n) pomocí (1)

Jak uvidíme později (přednáška *Dynamickém programování*), algoritmus založený na předchozí myšlence je neefektivní. Později si řekneme proč. Příklad je přesto užitečný pro pozdější demonstraci toho, jak se počítá složitost algoritmů fungujících na principu rozděl a panuj.

(DAMOL, UP) ALM3 Zimní semestr 2013 4/40

Strom rekurze odpovídající výpočtu F(6)



5/40

## Příklad (pokračování)

- Třídění sléváním
  - 1: **procedure** MergeSort(A, l, p)
  - 2: if p < l then
  - 3:  $q \leftarrow \lfloor (l+p)/2 \rfloor$
  - 4: MergeSort(A, l, q)
  - 5: MergeSort(A, q + 1, p)
  - 6: Merge(A, l, q, p)
  - 7: end if
  - 8: end procedure
  - fáze rozděl (ř. 3-5): rozděl vstupní pole na poloviny a ty setřiď
  - **fáze panuj** (ř. 6): slej setřízená pole do jednoho (proceduru Merge znáte z ALM1, pseudokód je v handoutech)



# Analýza složitosti algoritmů rozděl a panuj

- 1: **procedure** Divide-And-Conquer(I) if  $|I| \leq c$  then **return** BasicAlgoritm(I) end if 4: 5: Vytvoř instance  $I_1 \dots I_k$  menší velikosti než I6: for  $i \leftarrow 1$  to k do  $x_i \leftarrow \mathsf{Divide}\text{-}\mathsf{And}\text{-}\mathsf{Conquer}(x_i)$ 8: end for Zkombinuj  $x_1 \dots x_k$  do x10: return x
- 11: end procedure
- složitost označíme T(n)
- pokud je  $|I| \le c$ , pak je složitost konstanta: T(|I|) = O(1) pro  $|I| \le c$
- jinak je složitost sumou složitostí rekurzivních zavolání (ř. 6-7) a f(n) zachycující sumu složitostí ř. 5 a 9, tedy

$$T(|I|) = \sum_{i=1}^{k} T(|I_i|) + f(|I|).$$

```
\begin{array}{lll} \text{1: procedure } \mathsf{MergeSort}(A,l,p) \\ \text{2: } & \mathsf{if} \ p < l \ \mathsf{then} \\ \text{3: } & q \leftarrow \lfloor (l+p)/2 \rfloor \\ \text{4: } & \mathsf{MergeSort}(A,l,q) \\ \text{5: } & \mathsf{MergeSort}(A,q+1,p) \\ \text{6: } & \mathsf{Merge}(A,l,q,p) \\ \text{7: } & \mathsf{end} \ \mathsf{if} \\ \text{8: } & \mathsf{end} \ \mathsf{procedure} \\ \end{array}
```

Spočítáme počet provedených porovnání prvků z A

- velikost instance je n = p l + 1
- ullet pro l=p, třídíme 1 prvek, tedy se neprovede porovnání, složitost je tedy T(1)=0
- ullet ř. 3 neprovádí žádné porovnání, procedura merge na ř. 6 provede nejvýše n porovnání (za porovnání počítáme i zjištění, že už není s čím porovnávat)
- celková složitost tedy je  $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n$

### Rekurence

### Co to je?

Výrazy typu  $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n$ , kdy hodnotu funkce na levé straně získáme za pomoci jejích hodnot (pro jiné body) na pravé straně.

### Řešení rekurence

Nalezení **uzavřené formy** dané rekurence. Tj. takové vyjádření T(n), které neobsahuje volání sama sebe a obsahuje aplikaci pouze konečného množství známých operací.

#### Odhad rekurence

Co nejpřesnější určení funkce f(n) tak, že  $T(n) \in O(f(n))$  a/nebo  $T(n) \in \Omega(f(n))$ .

#### Příklad

Fibonnaciho čísla jsou definována pomocí rekurence. Nalezení jejího řešení znamená nalezení vzorečku pro n-té Fibonnaciho číslo. Uzavřená forma je  $\frac{\varphi^n-(-\varphi)^{-n}}{\sqrt{5}}$ , kde  $\varphi=\frac{1+\sqrt{5}}{2}$ . Jako odhad by postačovalo  $O(2^n)$ .

(DAMOL, UP) ALM3 Zimní semestr 2013 10 / 40

# Metody řešení rekurencí

#### Substituční metoda

Funguje ve dvou krocích. První krok je **odhad** (= uhodnutí) uzavřené formy. Druhý krok je **důkaz správnosti uzavřené formy pomocí indukce**.

Pro jednoduché rekurence lze najít uzavřenou formu. Pro složitější rekurence lze metodu použít pro nalezení odhadu a důkaz jeho správnosti.

## Odhad pomocí stromu rekurze

Pomocí této metody lze uzavřenou formu (nebo její odhad) nalézt. Postup je nutno dokončit pomocí Substituční metody. Uzavřená forma je

#### Master theorem

Kombinace předchozích dvou typů fungující pro specifický typ rekurencí.

## Substituční metoda

#### Příklad

Uvažme rekurenci

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$
  
$$T(1) = 1$$

### Postup řešení

- **1** Odhadneme, že řešením je lineární funkce, tedy  $T(n) \in O(n)$ .
- ② Nyní musíme dokázat, že pro jednu funkci  $f(n) \in O(n)$  ukázat, že  $T(n) \le f(n)$ . Učiníme tak indukcí. Vybereme funkci cn-b a snažíme se najít konstanty b a c tak, aby důkaz indukcí fungoval, tj. takové, že  $T(n) \le cn-b$ .

Indukční předpoklad je

$$T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor - b$$
  
$$T(\lceil n/2 \rceil) \le c \lceil n/2 \rceil - b.$$

## Příklad (pokračování)

Po dosazení do rekurence dostaneme

$$T(n) \le (c |n/2| - b) + (c \lceil n/2 \rceil - b) + 1 = cn - 2b + 1$$

Výraz cn-2b+1 ted rozdělíme na sumu výrazu, který chceme obdržet a zbytku, tzv. residentu

$$cn - 2b + 1 = cn - b + (-b + 1).$$

Odtud vidíme, že b = 1.

Po dosazení do okrajové podmínky dostaneme nerovnost

$$T(1) = 1 \le c - 1,$$

která platí pro c > 2.

(DAMOL, UP) ALM3 Zimní semestr 2013 13 / 40

### Substituční metoda

### **Poznámky**

- předchozí příklad byl triviální
- obvykle je potřeba více triků (dosazování, změna okrajových podmínek, zkoušení různých reprezentantů)
- je potřeba experimentovat a zkoušet různé postupy
- získat počáteční odhad lze buď pomocí zkušeností (např. znáte algoritmus, který vede na podobnou rekurenci), nebo pomocí metody stromu
- více na cvičeních, v handoutech nebo v literatuře.

## Metoda rekurzivního stromu

Rekurentní vztah  $T(n) = \sum_{i=1}^{k} T(n_i) + f(n)$  si **představíme jako strom.** 

- ullet Uzly stromu odpovídají jednotlivým rekurzivním voláním T
- Každému uzlu přiřadíme množství práce, kterou pomyslný algoritmus při daném volání provede (funkce *f* zavolaná na příslušný argument).
- Listové uzly tak budou mít přiřazenu konstantu, která odpovídá okrajovým podmínkám rekurentního vztahu.
- Sečteme-li práci přiřazenou všem uzlům, dostaneme řešení rekurence.
- Součet provedeme ve dvou krocích.
  - pro každou úroveň stromu sečteme práci provedenou v uzlech na oné úrovni,
  - 2 sečteme sumy z jednotlivých vrstev.

## Metoda rekurzivního stromu



(DAMOL, UP) ALM3 Zimní semestr 2013 16 / 40

Uvažujme rekurenci  $T(n)=2T(n/4)+n^2$ . Odpovídá jí strom



 (DAMOL, UP)
 ALM3
 Zimní semestr 2013
 17 / 40

#### Příklad

### Můžeme si všimnout, že

- Práce, kterou provedeme v jednom uzlu v i-té vrstvě (kořen je v nulté vrstvě) odpovídá  $(n/4^i)^2$ , počet uzlů v i-té vrstvě je  $2^i$ , suma přes všechny uzly v této vrstvě je tedy  $2^i(n/4^i)^2 = n^2/8^i$ .
- Listy se nacházejí ve vrstvě  $\log_4 n$ , jejich počet je tedy  $2^{\log_4 n} = n^{\log_4 2} = n^{1/2}$ .

Pokud nyní sečteme všechny vrstvy, dostaneme

$$T(n) = \sum_{i=0}^{\log_4 n - 1} (n^2/8^i) + n^{1/2}$$
$$= n^2 \sum_{i=0}^{\log_4 n - 1} (1/8^i) + n^{1/2}$$

(DAMOL, UP) ALM3 Zimní semestr 2013 18 / 40

## Příklad (pokračování)

Abychom se zbavili závislosti na n v sumě, nahradíme ji sumou celé geometrické posloupnosti. Dostaneme tedy

$$\begin{split} T(n) &= n^2 \sum_{i=0}^{\log_4 n - 1} (1/8^i) + n^{1/2} \\ &\leq n^2 \sum_{i=0}^{\infty} (1/8^i) + n^{1/2} \\ &= n^2 \frac{1}{1 - 1/8} + n^{1/2} \end{split}$$

Odhad řešení rekurence je tedy  $O(n^2)$ .

### Master Theorem

#### Věta

Nechť  $a \ge 1$  a b > 1 jsou konstanty a f(n) je funkce a T(n) je definovaná na nezáporných celých číslech pomocí rekurence

$$T(n) = aT(n/b) + f(n),$$

přičemž n/b interpretujeme jako  $\lfloor n/b \rfloor$  nebo  $\lceil n/b \rceil$ . Pak můžeme T(n) následovně asymptoticky omezit.

- **1** Pokud  $f(n) = O(n^{\log_b a \epsilon})$  pro  $\epsilon \ge 0$ , pak  $T(n) = \Theta(n^{\log_b a})$ .
- $\textbf{ 2} \ \textit{Pokud} \ f(n) = \Theta(n^{\log_b a}) \ \textit{pak} \ T(n) = \Theta(n^{\log_b a} \log n).$
- **3** Pokud  $f(n) = \Omega(n^{\log_b a + \epsilon})$  pro  $\epsilon \ge 0$  a pokud  $af(n/b) \le cf(n)$  pro konstantu c < 1 a všechna dostatečně velká n, pak  $T(n) = \Theta(f(n))$ .

(DAMOL, UP) ALM3 Zimní semestr 2013 20 / 40

#### Příklad

Uvažujme rekurenci  $T(n) = 2T(n/4) + n^2$ .

Vidíme, že a=2, b=4,  $f(n)=n^2$  a  $\log_b a=1/2$ 

## Případ 1:

 $n^2 \in O(n^{1/2-\epsilon})$ ? Takové  $\epsilon > 0$  neexistuje.

### Případ 2:

 $n^2 \in O(n^{1/2})$ ? Ne.

### Případ 3:

 $n^2 \in O(n^{1/2+\epsilon})$ ? Ano, pro  $0 < \epsilon < 3/2$ . Navíc $2(n^2/4) = n^2/8 \le cn^2$  platí pro 1/8 < c < 1.

Platí případ 3 a odhadem T(n) je  $\Theta(n^2)$ .

- vstup: množina bodů  $P = \{p_1, p_2, \dots\}, p_i = \langle x_i, y_i \rangle$ .
- $p_i, p_j \in P$ , vzdálenost  $d(p_i, p_j)$  je definována

$$d(p_i, p_j) = \sqrt{|x_i - x_j|^2 - |y_i - y_j|^2}.$$

- **cíl:** je nalézt dvojici různých bodů  $p_i, p_j \in P$ , jejichž vzdálenost je nejmenší mezi všemi dvojicemi bodů z P.
- naivní algoritmus má složitost  $O(n^2)$ .

Algoritmus je založen na následující myšlence. Pro množinu bodů P

- Rozdělíme body vertikální čarou na poloviny (v případě lichého počtu bodů má levá polovina o jeden bod více).
- 2 Rekurentně nalezneme dvojici nejbližších bodů pro levou i pravou polovinu. Rekurze končí v případě, že množina obsahuje pouze 3 body, to nalezneme dvojici nejbližších bodů hrubou silou.
- Ovojicí nejbližších bodů v P je pak buď lepší z dvojic nejbližších bodů v levé a pravé polovině, nebo dvojice s jedním bodem z levé a s jedním bodem z pravé poloviny. Existenci takové dvojice lze efektivně ověřit.

#### Pro množinu bodů P:

- $P_x$  = seznam bodů z P uspořádaný vzestupně podle x-ové souřadnice.
- $P_y$  = seznam bodů z P uspořádaných vzestupně podle y-ové souřadnice.
- ullet Q = množina prvních  $\lceil |P|/2 \rceil$  bodů ze seznamu  $P_x$
- R zbývající body jako
- ullet dvojice nejbližších bodů ve Q je  $q_1^*$  a  $q_2^*$ ,
- dvojice nebližších bodů vR je  $r_1^*$  a  $r_2^*$ .
- $\delta$  = kratší ze vdáleností  $d(q_1^*,q_2^*)$  a  $d(r_1^*,r_2^*)$ .

Pokud v P existuje dvojice bodů  $q\in Q$  a  $r\in R$  taková, že  $d(q,r)<\delta$ , lze tuto dvojici efektivně najít.

(DAMOL, UP) ALM3 Zimní semestr 2013 24 / 40

#### **Theorem**

Nechť  $x^*$  je x-ová souřadnice nejpravějšího bodu v Q a nechť L je svislá čára daná rovnicí  $x=x^*$ . Pokud existují body  $q\in Q$  a  $r\in R$  takové, že  $d(q,r)<\delta$ , pak tyto body leží maximálně ve zdálenosti  $\delta$  od L.

### Důkaz.

Označme  $q=\langle q_x,q_y\rangle$  a  $r=\langle r_x,r_y\rangle$ . Z definice  $x^*$  plyne, že  $q_x\leq x^*\leq r_x$ . Odtud máme, že platí

$$x^* - q_x \le r_x - q_x \le d(q, r) \le \delta,$$

а

$$r_x - x^* \le r_x - q_x \le d(q, r) \le \delta,$$

z čehož už trvzení plyne.

(DAMOL, UP) ALM3 Zimní semestr 2013 25 / 40

Při hledání q a r můžeme omezit na body ležící ve vzdálenosti maximálně  $\delta$  od L. Označme si množinu takových bodů jako S.

#### Theorem

Pro všechny body  $s', s \in S$  platí, že pokud  $d(s', s) < \delta$ , pak s' a s jsou od sebe v setřízeném seznamu  $S_y$  vzdáleny maximálně 15 míst.

### Důkaz.

Větu dokážeme následující geometrickou konstrukcí. Představíme si plochu obsahující všechny prvky S, a tuto plochu rozdělíme na čtverce o velikosti stran  $\delta/2$ . Všimněme si, že jedna řada se skládá ze 4 čtverců.

(DAMOL, UP) ALM3 Zimní semestr 2013 26/40



(DAMOL, UP) ALM3 Zimní semestr 2013 27 / 40

## pokračování.

Nyní dokážeme, že každý takový čtverec může obsahovat pouze jeden bod z S. Důkaz provedeme sporem. Předpokládejme, že dva body z S leží ve stejném čtverci. Pak buď oba dva leží v Q nebo oba dva leží v R. Díky tomu, že strana čtverce je  $\delta/2$ , je maximální vzdálenost mezi těmito body rovna  $\delta \cdot \sqrt{2}/2 \le \delta$ , což je spor s tím, že nejmenší vzdálenost mezi body uvnitř Q nebo uvnitř R je  $\delta$ .

Vezměme nyní  $s,s'\in S$  takové, že jsou od sebe v seznamu  $S_y$  vzdáleny 16 míst. Předpokládejme, že  $s_y < s_y'$ . Díky tomu, že v každém čtverci může být maximálně jeden bod, musí mezi s a s' ležet minimálně tři řady čtverců (v každé řadě jsou 4 čtverce). Tedy vzdálenost mezi s a s' je minimálně  $3\delta/2$ .

```
1: procedure ClosestPair(P)
                                                                  17:
                                                                            else
         sestav P_x a P_y
                                                                  18:
                                                                                 \delta \leftarrow d(r_0^*, r_1^*)
         return ClosestPairHelp(P_x, P_y)
                                                                  19:
                                                                                 (b_0, b_1) \leftarrow (r_0^*, r_1^*)
 4: end procedure
                                                                  20:
                                                                            end if
 5:
                                                                  21:
                                                                            x^* \leftarrow \max\{q_r \mid q \in Q\}
    procedure ClosestPairHelp(P_x, P_y)
                                                                  22:
                                                                            S \leftarrow \{p \in P \mid |p_r - x^*| < \delta\}
         if |P_r| < 3 then
                                                                  23:
                                                                            sestav S_u
              najdi (p_0^*, p_1^*) hrubou silou
                                                                            for s \in S do
 8:
                                                                  24:
                                                                                 for s' \in S, S_{u}[s'] - S_{u}[s] \le 15 do
 9:
              return (p_0^*, p_1^*)
                                                                  25:
         end if
                                                                                      if d(b_0, b_1) > d(s, s') then
10:
                                                                  26:
                                                                                          (b_0, b_1) \leftarrow (s, s')
11:
         sestav Q_x, Q_y, R_x, R_y
                                                                  27:
12:
         (q_0^*, q_1^*) \leftarrow \mathsf{ClosestPairHelp}(Q_x, Q_y)
                                                                  28:
                                                                                      end if
         (r_0^*, r_1^*) \leftarrow \mathsf{ClosestPairHelp}(R_x, R_y)
13:
                                                                  29:
                                                                                 end for
         if d(q_0^*, q_1^*) < d(r_0^*, r_1^*) then
14:
                                                                  30:
                                                                            end for
              \delta \leftarrow d(q_0^*, q_1^*)
15:
                                                                  31:
                                                                            return (b_0, b_1)
              (b_0, b_1) \leftarrow (q_0^*, q_1^*)
16:
                                                                  32: end procedure
```

#### Složitost

- řádky 11 a 23 provést v lineárním čase, stejně tak cyklus na řádcích 24–30 a řádek 21.
- řádky 7–10 a podmínku na řádcích 14-20 lze provést v konstantním čase.
- složitost ClosestPairHelp rekurence

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n),$$

jejímž řešením je  $O(n \log n)$ .

- Třídění v proceduře ClosestPair má složitost  $O(n \log n)$ ,
- celkově je tedy složitost  $O(n \log n)$ , kde n je počet prvků v P.

# Násobení polynomů a FFT

Pro polynomy

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_d x^d$$
  

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_d x^d$$

je jejich součinem polynom definovaný jako

$$AB(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{2d} x^{2d},$$

kde

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0 = \sum_{i=0}^k a_i b_{k-i}.$$

Že tomu tak je snadno ověříme **jednoduchým roznásobením** polynomů A a B. Složitost takového násobení je  $O(d^2)$  (násobíme "každý s každým" ).

(DAMOL, UP) ALM3 Zimní semestr 2013 31 / 40

# Násobení polynomů a FFT

zefektivnění = změna reprezentace polynomu

#### Věta

Polynom stupně d je jednoznačně reprezentován svými hodnotami v alespoň d+1 různých bodech.

- místo koeficienty polynom reprezentujeme pomocí hodnot polynomu ve stejném počtu bodů, násobení pak má linerání složitost
- mezi oběma reprezentacemi lze přecházet



## Násobení polynomů a FFT

Pro rychlý výpočet hodnot polynomu i interpolaci lze použít **Rychlou Fourierovu Transformaci (FFT).** 

- vstup: polynom reprezentovaný n koeficienty, kde  $n=2^k$  (proč to lze?)
- **výstup**: reprezentace polynomu hodnotami v n bodech (ve kterých, je dáno algoritmem)
- funguje na základě principu rozděl a panuj

### Naivní algoritmus

- ullet dosadime n bodu do n výskytů proměnné v polynomu
- složitost je tedy  $\Theta(n^2)$
- aby se FFT vyplatila, musí mít složitost lepší

# Idea: druhé mocniny opačných bodů se rovnají

Uvažujme body  $\pm x_0, \pm x_1, \dots \pm x_{n/2-1}$ . Polynom rozdělíme na sudé a liché mocniny

$$A(x) = (a_0 + a_2x^2 + \dots) + x(a_1 + a_3x^3 + \dots)$$

polynom v levé závorce:

$$A_S(z) = (a_0 + a_2 z + \dots)$$
 a tedy  $(a_0 + a_2 x^2 + \dots) = A_S(x^2)$ 

• polynom v pravé závorce:

$$A_L(z) = (a_1 + a_3 z + \dots)$$
 a tedy  $(a_1 + a_3 x^3 + \dots) = A_L(x^2)$ .

• Hodnoty pro  $\pm x_i$ 

$$A(x_i) = A_s(x_i^2) + x_i \cdot A_l(x_i^2),$$
  

$$A(-x_i) = A_s(x_i^2) - x_i \cdot A_l(x_i^2).$$

- K výpočtu hodnot polynomu A stupně n v n bodech tedy potřebujeme vypočítat hodnoty polynomů  $A_S$  a  $A_L$  stupně n/2 v n/2 bodech.
- K výpočtu  $A_S$  a  $A_L$  použijeme stejný trik.



**Problém:** Pro výpočet  $A_S$  a  $A_L$  potřebujeme opačné body, ale máme druhé mocniny.

Řešení: použijeme komplexní čísla



(DAMOL, UP) ALM3 Zimní semestr 2013 36/40

FFT využívá následujících vlastností  $\sqrt[n]{1}$ . (pro  $n=2^k$ )

- n-té odmocniny jedné jsou  $\omega^0 = 1, \omega, \omega^2, \dots, \omega^{n-1}$ , kde  $\omega = e^{\frac{2\pi i}{n}}$ .
- $\bullet \ \omega^{\frac{n}{2}+j} = -\omega^j$
- Množina druhých mocnin  $\sqrt[n]{1}$  jsou právě  $\{1,\omega^2,(\omega^2)^2,\dots,(\omega^2)^{n/2-1}\}$ , tedy n/2-té odmocniny 1.

### Poznámky

- **iterace**: spočítat  $\omega$  a pak iterovat přes její mocniny.
- snadno můžeme najít opačné body
- druhé mocniny opět tvoří opačné body

```
1: procedure FFF(A[0,\ldots,n-1],\omega)
 2:
          if \omega = 1 then
 3:
               return A
 4:
          end if
          for i \leftarrow 0 to n/2 - 1 do
 5:
               A_S[i] \leftarrow A[i \cdot 2]
 6:
 7:
               A_L[i] \leftarrow A[i \cdot 2 + 1]
 8:
          end for
          S \leftarrow \mathsf{FFT}(A_S, \omega^2)
 9:
         L \leftarrow \mathsf{FFT}(A_L, \omega^2)
10:
11:
          x \leftarrow 1
          for j \leftarrow 0 to n/2 - 1 do
12:
               R[i] \leftarrow S[i] + x \cdot L[i]
13:
               R[j+n/2] \leftarrow S[j] - x \cdot L[j]
14.
15.
               x \leftarrow x \cdot \omega
          end for
16:
          return R
17.
18: end procedure
```

 $> n \text{ je mocnina dvou } \\ > \text{V tomto případě už } |A| = 1 \\$ 

⊳ Koeficienty pro sudé mocniny

⊳ Koeficienty pro liché mocniny

hitharpoonup Začínáme od  $\omega^0$ 

 $\triangleright$  Další mocnina  $\omega$ 

#### Složitost:

- velikost instance = počet koeficientů
- algoritmu jsou dvě rekurzivní volání, každému z nich předáváme instanci o velikosti n/2
- Zbývající část algoritmu ( ř. 5 až 8 a 13 až 17) má složitost O(n).
- rekurence: T(n) = 2T(n/2) + O(n)
- řešením je (Master theorem):  $\Theta(n \log n)$

### Interpolace

- Ize spočítat pomocí FFT
- Pro hodnoty  $AB(\omega^0), AB(\omega), AB(\omega^2), \dots, AB(\omega^{n-1})$  dostaneme koeficienty  $ab_0, ab_1, \dots, ab_{n-1}$  pomocí

$$[ab_0, ab_1, \dots, ab_{n-1}] = \frac{1}{n} \text{FFT}([AB(\omega^0), AB(\omega), AB(\omega^2), \dots, AB(\omega^{n-1})], \omega^{-1}).$$

(DAMOL, UP) ALM3 Zimní semestr 2013 39 / 40

# Rychlé násobení polynomů

```
procedure FastPolyMultiply(A[0,...,s], B[0,...,t])
         n \leftarrow 2^{\lceil \log_2(s+t+1) \rceil}
 2:
        \omega \leftarrow e^{\frac{2\pi i}{n}}
 3.
         Doplň pomocí nul A i B na n prvků.
 4:
                                                                                      Nuly přidávám na konec
 5:
       V_A \leftarrow \mathsf{FFT}(A, \omega)
                                                                                                   \triangleright Hodnoty pro A
      V_B \leftarrow \mathsf{FFT}(B,\omega)
                                                                                                   \triangleright Hodnoty pro B
 6:
 7:
         for i \leftarrow 0 to n-1 do
              V_{AB}[i] \leftarrow V_A[i] \cdot V_B[i]
 8:
                                                                                            Násobení polynomů
         end for
 9:
         return \frac{1}{n}FFT(V_{AB}, \omega^{-1})
10:
                                                                                       ▷ Interpolace pomocí FFT
11: end procedure
```

#### Složitost:

- Algoritmus třikrát volá FFT se složitostí  $\Theta(n \log n)$ , zbytek je v linearním čase.
- Složitost je tedy  $\Theta(n \log n)$

(DAMOL, UP) ALM3 Zimní semestr 2013 40 / 40