732A96 Advanced Machine Learning Graphical Models and Hidden Markov Models

Jose M. Peña IDA, Linköping University, Sweden

Lecture 2: Probabilistic Reasoning

Contents

- Probabilistic Reasoning for BNs
 - Lauritzen-Spiegelhalter Algorithm
 - Most Probable Configuration
- Probabilistic Reasoning for MNs

Literature

- Main source
 - Lauritzen, S. L. and Spiegelhalter, D. J. Local Computations with Probabilities on Graphical Structures and Their Application to Expert Systems. *Journal of the Royal Statistical Society B* 50, 157-224, 1988.
- Additional source
 - ▶ Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

Original	Moralization	Triangulation	Triangulation	
$A \longrightarrow C$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad $	$\begin{vmatrix} A - C \\ & \\ B - D \end{vmatrix} E$	$ \begin{array}{c c} A \longrightarrow C \\ \downarrow & \downarrow & \downarrow \\ B \longrightarrow D \end{array} $ Ordering: E, D, A, B, C	$ \begin{array}{c c} A \longrightarrow C \\ \downarrow & \downarrow & \downarrow \\ B \longrightarrow D \end{array} $ Ordering: E, B, A, C, D	

Moralization

Repeat for every node in G Make its parents pairwisely adjacent Replace all the directed edges in G with undirected edges

 An UG is triangulated if every cycle in it contains a chord, i.e. an edge between two non-consecutive nodes in the cycle.

Triangulation

Repeat until all the nodes in G are marked

If there is an unmarked node whose unmarked neighbours are a complete set then Mark it

Flse

Mark any unmarked node and make its unmarked neighbours a complete set

Original	Moralization	Triangulation
$ \begin{array}{ccc} A \longrightarrow C \\ \downarrow \\ B \longrightarrow D \end{array} $	A — C E E E	$ A \longrightarrow C $

The cliques of a triangulated graph can be ordered as C_{1:k} to have the running intersection property (RIP), i.e. C_j ∩ C_{1:j-1} ⊂ C_i with i < j.</p>

RIP

Repeat until all the nodes in G are marked

Mark an unmarked node whose unmarked neighbours are a complete set

Record the union of the node and its unmarked neighbours as a candidate clique Remove any candidate clique that is included in any other

Label every clique with the number of the first iteration that marked one of its nodes Sort the cliques in descending order of their labels

- ▶ Let $S_i = C_i \cap C_{1:i-1}$ and $R_i = C_i \setminus S_i$.
- Note that $R_i \perp_G C_{1:i-1} \setminus S_i | S_i$.

• Exercise. Moralize, triangulate and order the resulting cliques to as to satisfy the RIP for the following DAG.

Original	Moralization	Triangulation
$A \longrightarrow C$ $\downarrow B \longrightarrow D$ $p(A, B, C, D, E) = q(A)q(B A)q(C A)q(D B)q(E C, D)$	A — C E B — D	$ \begin{array}{c c} A & C \\ & D \\ B & D \end{array} $ RIP: $C_1 = \{A, B, C\}, C_2 = \{B, C, D\}, C_3 = \{C, D, E\}$

- Let $\varphi(C_1) := q(A)q(B|A)q(C|A)$, $\varphi(C_2) := q(D|B)$, $\varphi(C_3) := q(E|C,D)$.
- Then

$$p(R_3|S_3) = p(E|C,D) := \varphi(C_3) / \sum_{R_3} \varphi(C_3) = q(E|C,D) / \sum_{E} q(E|C,D) = q(E|C,D)$$

▶ Since $S_3 \subset C_2$ by RIP, let

$$\varphi(C_2) \coloneqq \varphi(C_2) \sum_{B_2} \varphi(C_3) = q(D|B) \sum_{E} q(E|C,D) = q(D|B)$$

Then

$$p(R_2|S_2) = p(D|B,C) := \varphi(C_2) / \sum_{D_2} \varphi(C_2) = q(D|B) / \sum_{D_2} q(D|B) = q(D|B)$$

▶ Since $S_2 \subset C_1$ by RIP, let

$$\varphi(C_1) := \varphi(C_1) \sum_{B \in \mathcal{A}} \varphi(C_2) = q(A)q(B|A)q(C|A) \sum_{D} q(D|B) = q(A)q(B|A)q(C|A)$$

► Then,
$$p(R_1|S_1) = p(A, B, C) := \varphi(C_1) / \sum_{R_1} \varphi(C_1)$$

= $q(A)q(B|A)q(C|A) / \sum_{A,B,C} q(A)q(B|A)q(C|A) = q(A)q(B|A)q(C|A)$

Original	Moralization	Triangulation
$A \longrightarrow C$ $\downarrow B \longrightarrow D$ $P(A, B, C, D, E) = q(A)q(B A)q(C A)q(D B)q(E C, D)$	$ \begin{array}{c c} A - C \\ & \\ B - D \end{array} $	$ \begin{array}{c c} A \longrightarrow C \\ \downarrow & \downarrow \\ B \longrightarrow D \end{array} $ RIP: $C_1 = \{A, B, C\}, C_2 = \{B, C, D\}, C_3 = \{C, D, E\}$

- Note that $S_1 = \emptyset$ and, thus, $p(C_1) = p(R_1|S_1)$.
- ▶ Since $S_2 \subset C_1$ by RIP

$$p(S_2) = \sum_{C_1 \setminus S_2} p(C_1)$$

Then

$$p(C_2) := p(R_2|S_2)p(S_2)$$

▶ Since $S_3 \subset C_2$ by RIP

$$p(S_3) = \sum_{C_2 \setminus S_3} p(C_2)$$

Then

$$p(C_3) \coloneqq p(R_3|S_3)p(S_3)$$

• Output: $p(C_1)$, $p(C_2)$ and $p(C_3)$.

In general, rewrite

$$p(X) = \prod_{i=1}^{n} q(X_i | pa_G(X_i)) = \prod_{i=1}^{k} \varphi(C_i)$$

Note that

$$p(X) = f(C_{1:k-1} \setminus S_k, S_k)g(S_k, R_k)$$

and thus

$$R_k \perp_p C_{1:k-1} \setminus S_k | S_k$$

Then

$$p(X) = p(C_{1:k-1})p(R_k|C_{1:k-1}) = p(C_{1:k-1})p(R_k|S_k)$$

Note that

$$p(C_{1:k-1}) = \sum_{R_k} p(X) = \left[\prod_{i=1}^{k-1} \varphi(C_i)\right] \sum_{R_k} \varphi(C_k)$$

and thus

$$p(R_k|S_k) = \varphi(C_k) / \sum_{R_k} \varphi(C_k)$$

- ▶ Let $S_k \subset C_j$ by RIP. Then, replace $\varphi(C_j)$ with $\varphi(C_j) \sum_{R_k} \varphi(C_k)$.
- ▶ Then, $p(C_{1:k-1}) = \prod_{i=1}^{k-1} \varphi(C_i)$
- ▶ Repeat the above for $p(C_{1:k-1})$. **Output**: $p(R_i|S_i)$ for all i.

- Note that $S_1 = \emptyset$ and, thus, $p(C_1) = p(R_1|S_1)$.
- ▶ Since $S_2 \subset C_1$ by RIP

$$p(S_2) = \sum_{C_1 \setminus S_2} p(C_1)$$

Then

$$p(C_2) = p(R_2|S_2)p(S_2)$$

▶ Repeat the above for $C_{3:k}$. **Output**: $p(C_i)$ for all i.

LS algorithm

```
Moralize G
Triangulate G
Order the cliques of G so as to satisfy the RIP
For i = k, \dots, 1 do
Let S_i \subset C_j by RIP
p(R_i|S_i) := \varphi(C_i)/\sum_{R_i} \varphi(C_i)
\varphi(C_j) := \varphi(C_j)\sum_{R_i} \varphi(C_i)
For i = 1, \dots, k do
Let S_i \subset C_j by RIP
p(S_i) := \sum_{C_j \setminus S_i} p(C_j)
p(C_i) := p(R_i|S_i)p(S_i)
Return p(C_1), \dots, p(C_k)
```

- ▶ Then, we know p(Y) for all $Y \subseteq C_i$.
- ▶ What if we want p(Y|o) with $O \subseteq X \setminus Y$?
 - Let $U = X \setminus O$. Note that p(U|o) is a normalized version of p(U,o), and the latter can be expressed as $P(U,o) = P(V) \prod_i 1_{O_i=o_i}$.
 - Then, just add the factors 1_{O_i=o_i} to the appropriate cliques, perform inference as before, and finally normalize.
- ▶ What if $Y \nsubseteq C_i$ for all i?
 - Compute p(z) where $z = \{y, o\}$ for all y, and normalize.
- Exercise. Apply the LS algorithm to compute p(J|a) in the previous exercise.

Probabilistic Reasoning for BNs: Most Probable Configuration

Note that

$$\max_{X} p(X) = \max_{R_1, \dots, R_k} \varphi(C_1) \dots \varphi(C_k) = \max_{R_1, \dots, R_{k-1}} [\varphi(C_1) \dots \varphi(C_{k-1}) \max_{R_k} \varphi(C_k)]$$

Probability of the most probable configuration

For
$$i = k, \dots, 1$$
 do
Let $S_i \subset C_j$ by RIP
 $\phi(S_i) := \max_{R_i} \varphi(C_i)$
 $\varphi(C_j) := \varphi(C_j)\phi(C_i)$
 $\psi(S_i) := \arg\max_{R_i} \varphi(C_i)$
Return $\phi(S_1)$

Most probable configuration

For
$$i = 1, ..., k$$
 do $R_i^{max} \coloneqq \psi(S_i^{max})$ Return $R_1^{max}, ..., R_k^{max}$

• After running the first algorithm and since $S_1 = S_1^{max} = \emptyset$, we have that

$$R_1^{\textit{max}} = \arg\max_{R_1} [\max_{R_2, \dots, R_k} p(X)] = \arg\max_{R_1} \varphi(C_1) = \psi(S_1^{\textit{max}})$$

Note that

$$\underset{R_1,R_2}{\operatorname{arg\,max}} \left[\underset{R_3,\ldots,R_k}{\operatorname{max}} p(X) \right] = \underset{R_1,R_2}{\operatorname{arg\,max}} \varphi(C_1) \varphi(C_2)$$

and since it has to be consistent with R_1^{max} , then

$$R_2^{\textit{max}} = \arg\max_{R_2} \varphi(S_1^{\textit{max}}, R_1^{\textit{max}}) \varphi(S_2^{\textit{max}}, R_2)$$

And so on.

Probabilistic Reasoning for MNs

- ▶ The same as for BNs. Just skip the moralization step.
- No need to include Z. After inference, just normalize any $p(C_i)$ to obtain Z and use it to normalize the rest of the output.