Housing Price Regression

Author - Kainshk Karam

STEP1: Import required libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from warnings import filterwarnings
filterwarnings('ignore')
from sklearn.preprocessing import LabelEncoder
```

STEP2: Import file

```
In [3]: df=pd.read csv("Housing.csv")
        df.head(2)
Out[3]:
                                                                        basement hotwaterheating airconditioning parking
              price area bedrooms bathrooms stories mainroad guestroom
        0 13300000 7420
                                           2
                                                  3
                                                          yes
        1 12250000 8960
                                                          yes
                                                                     no
                                                                               no
                                                                                                           yes
In [4]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 545 entries, 0 to 544
       Data columns (total 13 columns):
        #
          Column
                              Non-Null Count Dtype
            price
        0
                              545 non-null
                                               int64
                             545 non-null
                                              int64
            area
            bedrooms
                             545 non-null
                                              int64
                             545 non-null
        3
            bathrooms
                                              int64
           stories
                              545 non-null
                                               int64
        5 mainroad
                             545 non-null
                                              obiect
        6
          guestroom
                             545 non-null
                                               object
            basement
                              545 non-null
                                              object
          hotwaterheating
        8
                              545 non-null
                                               object
          airconditioning 545 non-null
                                               object
        10 parking
                              545 non-null
                                               int64
        11 prefarea 545 non-null
12 furnishingstatus 545 non-null
                              545 non-null
                                               object
                                               object
       dtypes: int64(6), object(7)
       memory usage: 55.5+ KB
In [5]: df.isnull().sum()
Out[5]: price
                             0
                             0
                             0
        bedrooms
        bathrooms
                             0
        stories
        mainroad
        questroom
        basement
        hotwaterheating
                             0
                             0
        airconditioning
        parking
                             0
        prefarea
         furnishingstatus
                             0
        dtype: int64
In [5]: # no null values in data
In [6]: #using boxplot to visualise any outliers presence
```


In [9]: # The presence of outliers is indicated

In [10]: # since the obeservations are very few.. we try not removing outliers

STEP3: visualising numeric variables

sns.boxplot(x='furnishingstatus',y='price',data=df)

plt.tight_layout()

plt.show()

In [14]: # if we look at the above boxplot the houses which are on mainroad, having guestroom, having hotwater facility,
with basement, airconditioning and semi furinished and fully furnished are expensive and more than compared to
houses with not having most facilities

```
In [10]: df.replace({'yes': 1, "no": 0},inplace=True)
# replacing object variables 'YES' and "NO" to one and zero
```

<class 'pandas.core.frame.DataFrame'>

In [11]: df.info()

1

area

```
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):
# Column Non-Null Count Dtype
--- 0 price 545 non-null int64
```

2 bedrooms 545 non-null int64 3 bathrooms 545 non-null int64 545 non-null stories int64 545 non-null mainroad int64 545 non-null 6 questroom int64 7 545 non-null basement int64 8 545 non-null hotwaterheating int64

545 non-null

int64

object

9 airconditioning 545 non-null int64 10 parking 545 non-null int64 11 prefarea 545 non-null int64

12 furnishingstatus 545 non-null dtypes: int64(12), object(1) memory usage: 55.5+ KB

```
In [17]: # encoding furnishing status
In [12]: encoded_furniture=pd.get_dummies(df['furnishingstatus'],drop_first=True).astype('uint8')
```

```
In [13]: df= pd.concat([df, encoded_furniture], axis = 1)
    df
```

Out[13]:		price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking p
	0	13300000	7420	4	2	3	1	0	0	0	1	2
	1	12250000	8960	4	4	4	1	0	0	0	1	3
	2	12250000	9960	3	2	2	1	0	1	0	0	2
	3	12215000	7500	4	2	2	1	0	1	0	1	3
	4	11410000	7420	4	1	2	1	1	1	0	1	2
	540	1820000	3000	2	1	1	1	0	1	0	0	2
	541	1767150	2400	3	1	1	0	0	0	0	0	0
	542	1750000	3620	2	1	1	1	0	0	0	0	0
	543	1750000	2910	3	1	1	0	0	0	0	0	0
	544	1750000	3850	3	1	2	1	0	0	0	0	0
	545 rd	ows × 15 cc	lumns									
	4											
In [14]:												
	<pre><class 'pandas.core.frame.dataframe'=""></class></pre>											
1	RangeIndex: 545 entries, 0 to 544											
'	Data columns (total 15 columns): # Column Non-Null Count Dtype											
	0 price 545 non-null int64											
	1 area 545 non-null int64 2 bedrooms 545 non-null int64											
	2 bedrooms 545 non-null int64 3 bathrooms 545 non-null int64											
	4 stories 545 non-null int64											
		mainroad guestroom				int64 int64						
		basement		545 no		int64						
		hotwaterh	-	•		int64						
		aircondit parking	ioning	545 no 545 no		int64 int64						
		prefarea		545 no		int64						
	12	furnishin				object						
		semi-furn unfurnish		545 no 545 no		uint8						
				object(1),		uint8						
		y usage:										
In [21]:	# we	can drop	furn	ishingstat	us now							
In [15]:	df.d	lrop('furn	nishin	gstatus',a	xis=1,inpl	ace =Tru	e)					
In [16]:	# standardising the data from sklearn.preprocessing import MinMaxScaler											

In [17]: mm=MinMaxScaler()
 df_scaled=pd.DataFrame(mm.fit_transform(df),columns=df.columns)
 df_scaled

Out[17]:		price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	park
	0	1.000000	0.396564	0.6	0.333333	0.666667	1.0	0.0	0.0	0.0	1.0	0.666
	1	0.909091	0.502405	0.6	1.000000	1.000000	1.0	0.0	0.0	0.0	1.0	1.000
	2	0.909091	0.571134	0.4	0.333333	0.333333	1.0	0.0	1.0	0.0	0.0	0.666
	3	0.906061	0.402062	0.6	0.333333	0.333333	1.0	0.0	1.0	0.0	1.0	1.000
	4	0.836364	0.396564	0.6	0.000000	0.333333	1.0	1.0	1.0	0.0	1.0	0.666
	540	0.006061	0.092784	0.2	0.000000	0.000000	1.0	0.0	1.0	0.0	0.0	0.666
	541	0.001485	0.051546	0.4	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.000
	542	0.000000	0.135395	0.2	0.000000	0.000000	1.0	0.0	0.0	0.0	0.0	0.000
	543	0.000000	0.086598	0.4	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0	0.000
	544	0.000000	0.151203	0.4	0.000000	0.333333	1.0	0.0	0.0	0.0	0.0	0.000
	545 r	ows × 14 co	olumns									

In [18]: plt.figure(figsize=(15,15))
sns.heatmap(df_scaled.corr(),annot=True)

Out[18]: <Axes: >

In [26]: # Area, bathroms, bedrooms, stories with price look to have a good correlation,

STEP4: Splitting the Data into Training and Testing Sets

```
In [19]: from sklearn.model_selection import train_test_split
In [20]: X=df_scaled.drop('price',axis=1)
    y=df_scaled['price']
In [21]: xtrain,xtest,ytrain,ytest= train_test_split(X,y, test_size = 0.2, random_state = 100)
    xtrain.shape,xtest.shape,ytrain.shape,ytest.shape
Out[21]: ((436, 13), (109, 13), (436,), (109,))
```

STEP5: Model Building

```
In [22]: from sklearn.linear_model import LinearRegression
In [26]: lin_reg = LinearRegression()
# train the model with input and output data - train
model = lin_reg.fit(xtrain,ytrain)
```

```
#test the model with input data - test
         y_pred = model.predict(xtest)
         lin_reg.fit(xtest,y_pred)
Out[26]: Value LinearRegression (1)
         LinearRegression()
In [32]: #Model Evaluation
In [27]: from sklearn.metrics import mean_squared_error,r2_score
In [34]: # model evaluation for training set
         y pred = lin reg.predict(xtrain)
         rmse = (np.sqrt(mean_squared_error(ytrain, y_pred)))
         print("rmse:",rmse)
         # R square value - training dataset
         r2 = r2_score(ytrain, y_pred)
        print("R- Square:",r2)
        rmse: 0.09160650416956634
        R- Square: 0.6781789392869301
In [35]: # model evaluation for testing set
         y_pred = lin_reg.predict(xtest)
         rmse = (np.sqrt(mean_squared_error(ytest, y_pred)))
         print("rmse:",rmse)
         r2 = r2_score(ytest, y_pred)
         print("R- Square:",r2)
        rmse: 0.09191877175078576
        R- Square: 0.6806539407870682
         OLS - model summary
In [36]: import statsmodels.api as sm
         model = sm.OLS(y, X).fit()
         predictions = model.predict(X) # make the predictions by the model
```

Print out the statistics

model.summary()

```
Out[36]: OLS Regression Results
```

0.912	R-squared (uncentered):	price	Dep. Variable:
0.909	Adj. R-squared (uncentered):	OLS	Model:
421.6	F-statistic:	Least Squares	Method:
3.45e-270	Prob (F-statistic):	Mon, 27 Nov 2023	Date:
530.67	Log-Likelihood:	15:07:26	Time:
-1035.	AIC:	545	No. Observations:
-979.4	BIC:	532	Df Residuals:
		13	Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
area	0.3137	0.030	10.399	0.000	0.254	0.373
bedrooms	0.0707	0.026	2.727	0.007	0.020	0.122
bathrooms	0.2531	0.027	9.480	0.000	0.201	0.306
stories	0.1161	0.017	6.974	0.000	0.083	0.149
mainroad	0.0443	0.010	4.260	0.000	0.024	0.065
guestroom	0.0260	0.011	2.281	0.023	0.004	0.048
basement	0.0315	0.009	3.318	0.001	0.013	0.050
hotwaterheating	0.0751	0.019	3.890	0.000	0.037	0.113
airconditioning	0.0756	0.009	8.077	0.000	0.057	0.094
parking	0.0718	0.015	4.721	0.000	0.042	0.102
prefarea	0.0558	0.010	5.574	0.000	0.036	0.075
semi-furnished	0.0009	0.009	0.100	0.921	-0.017	0.019
unfurnished	-0.0292	0.009	-3.075	0.002	-0.048	-0.011

Omnibus:	90.675	Durbin-Watson:	1.240
Prob(Omnibus):	0.000	Jarque-Bera (JB):	232.079
Skew:	0.841	Prob(JB):	4.02e-51
Kurtosis:	5.718	Cond. No.	11.1

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Building random forest model with all features to find out the feature importance

```
In [37]: from sklearn.ensemble import RandomForestRegressor
forest = RandomForestRegressor(n_estimators = 100, max_depth = 10)
forest.fit(xtrain,ytrain)

Out[37]: v RandomForestRegressor
RandomForestRegressor(max_depth=10)

In [38]: y_pred=forest.predict(xtest)

In [39]: rmse=np.sqrt(mean_squared_error(ytest,y_pred))
rmse

Out[39]: 0.0963470346104841

In [40]: r2_score(ytest,y_pred)

Out[40]: 0.6491432461227882

In [41]: Importance = pd.DataFrame({'Importance':forest.feature_importances_*100}, index=xtrain.columns)
Importance.sort_values('Importance', axis=0, ascending=True).plot(kind='barh', color='r', )
plt.xlabel('Variable Importance')
plt.gca().legend_ = None
```

```
plt.figure(figsize=(20,15))
Out[41]: <Figure size 2000x1500 with 0 Axes>
                    area
              bathrooms
          airconditioning
                 parking
                  stories
               bedrooms
                prefarea
```

```
unfurnished
     guestroom
      basement
hotwaterheating
 semi-furnished
      mainroad
                              10
                                            20
                                                                         40
                                                           30
                                         Variable Importance
```

<Figure size 2000x1500 with 0 Axes>

```
In [42]: Importance.sort_values('Importance', axis=0, ascending=False)
```

```
Out[42]:
                            Importance
                      area
                              44.750199
                bathrooms
                              20.754096
            airconditioning
                               4.918742
                               4.817895
                   parking
                    stories
                               4.517445
                 bedrooms
                               4.048446
                   prefarea
                               3.763245
                               2.891752
               unfurnished
                guestroom
                               2.485536
                 basement
                               2.240064
           hotwaterheating
                               2.205662
            semi-furnished
                               1.588988
                 mainroad
                               1.017932
```

```
In [43]: # area and bathrooms explain 65 percent variance togetehr considering they are the most important features
In [44]: # creating new X based on selective features
         # taking features that could give 85% variance together
         X_new=df_scaled.drop(['unfurnished','guestroom','basement','hotwaterheating','semi-furnished','mainroad'],axis=
         Y=df_scaled['price']
 In [ ]:
In [48]:
         from sklearn import metrics
         from sklearn.model_selection import KFold
         from sklearn.linear_model import Ridge,Lasso
In [49]: LR=LinearRegression()
         Ridge_R=Ridge(alpha=0.5)
         Lasso_R=Lasso(alpha=0.1)
In [53]:
         kf=KFold(n_splits=3,shuffle=True,random_state=2)
         for model, name in zip([LR,Ridge_R,Lasso_R],['Ridge','Lasso']):
             rmse=[]
             for train,test in kf.split(X_new,Y):
                 x train,x test=X new.iloc[train,:],X new.iloc[test,:]
```

y train,y test=Y.iloc[train],Y.iloc[test]

model.fit(x_train,y_train) Y_predict=model.predict(x_test)

```
rmse.append(np.sqrt(metrics.mean_squared_error(y_test,Y_predict)))
print(rmse)
print("Cross_Validated_rmse_score: %0.03f (+/- %0.5f) [%s]" % (np.mean(rmse),np.var(rmse,ddof=1),name))

[1.2334373077647615e-16, 1.661481330599047e-16, 8.773567958375563e-17]
Cross_Validated_rmse_score: 0.000 (+/- 0.00000) [Ridge]
[0.012877039040894732, 0.011901611855598371, 0.012292062950779137]
Cross_Validated_rmse_score: 0.012 (+/- 0.00000) [Lasso]
```

Model Evaluation Summary

Initial Model: Linear Regression with All Features (Scaled) Root Mean Square Error (RMSE): 0.0916 Intermediate Model: Random Forest with All Features RMSE: 0.0958 Final Model: Linear Regression with Ridge and Lasso Regression (Selected Features)

Features selected to account for 85% variance

Ridge Regression:

Cross-Validated RMSE Score: 0.012 (± 0.00000)

Lasso Regression:

Cross-Validated RMSE Score: 0.00 (± 0.00000)

Conclusion

The model initially had an RMSE of 0.0916. A Random Forest model yielded a slightly higher RMSE of 0.0958. Using Ridge and Lasso regression with selected features improved the RMSE significantly. The Cross-Validated RMSE for Ridge Regression is 0.012, while for Lasso Regression it is 0.00. This demonstrates a significant reduction in RMSE, indicating that Ridge and Lasso regression models are more effective.

Measures of a Good Model

Lower RMSE: Indicates better predictive accuracy. Cross-Validation: Ensures the model's reliability and generalizability. Feature Importance: Identifying key features that contribute most to the prediction, improving model interpretability and performance. Variance Explained: Selecting features that explain a high percentage of variance helps in reducing complexity and enhancing model performance.

In []:	
In []:	
In []:	

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js