

Interdyscyplinarne Centrum Modelowania

ICM UW = superkomputery na Uniwersytecie Warszawskim:

- Okeanos
- Topola
- Rysy

Granty obliczeniowe: https://kdm.icm.edu.pl/Podrecznik_grantowy/zakladanie_konta/

Agenda

Cel warsztatów:

- pokazać działanie Trovares xGT i nauczyć podstaw wykorzystywania tego narzędzia
- udostępnić "wędkę do łowienia ryb"

Plan warsztatów:

- wprowadzenie 1h
- demonstracja 30min
- część praktyczna 2h
- ewalucja

Przerwy?

Pytania?

Czym są grafy?

Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego

Graf to formalnie para (zbiór wierzchołków, zbiór krawędzi).

Każda krawędź musi zaczynać się w jednym z wierzchołków i kończyć się w drugim z wierzchołków.

Przykład po prawej:

- 6 wierzchołków
- 5 krawędzi

Etykiety i atrybuty w grafach

UNIWERSYTET WARSZAWSKI Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego icm.edu.pl

Prostą definicję grafu można wzbogacić o pojęcia atrybutów i etykiet.

Atrybut – para (klucz, wartość) przechowywana w wierzchołku lub krawędzi.

Etykieta – pojedyncza wartość przechowywana w wierzchołku lub krawędzi.

Czym jest Trovares xGT?

- grafowe narzędzie analityczne typu *in memory*
- języki wejściowe:
 - Python administracja (np. wczytywanie/zapisywanie danych)
 - Trovares Query Language analityka (ile jest wierzchołków...?)
- formaty wejściowe/wyjściowe danych: CSV

Do czego można zastosować Trovares xGT?

- wyszukiwanie wzorców w dużych grafach
- zastosowania:
 - fraud detection
 - nauki społeczne
 - ..

Co wchodzi w skład Trovares xGT?

- oprogramowanie klienta publicznie dostępna biblioteka o nazwie xgt w języku Python
- oprogramowanie serwera licencjonowany program napisany w C++ do wydajnego przetwarzania grafów
- *klient* "zleca" wykonywanie prac *serwerowi*

Serwer Trovares xGT

Serwer Trovares xGT – komputer o odpowiednio dużej pamięci RAM z zainstalowanym licencjonowanym oprogramowaniem Trovares xGT.

To serwer xGT przetwarza dane a nie klient xGT!

Klient Trovares xGT

Klient Trovares xGT – komputer z zainstalowanym środowiskiem Python 3.5.+, działającym połączeniem z internetem oraz zainstalowaną biblioteką xgt ("pip install xgt").

Biblioteka *xgt* w języku Python dostarcza zestaw klas do nawiązywania połączenia z serwerem xGT, wczytywania/zapisywania danych do i z serwera oraz zlecania mu "prac".

Jak reprezentowane są dane na serwerze Trovares xGT?

Sposób reprezentacji danych w xGT

Dane przechowywane są na serwerze Trovares xGT w tzw. ramkach (*frames*), których są 3 typy:

- ramki wierzchołków (VertexFrame),
- ramki krawędzi (EdgeFrame),
- wyniki zapytań (TableFrame).

Mapowanie grafów na ramki

Mapowanie grafów na ramki

name: Jan

name: Ala

name: Ola

name: Staś

isA

isA

isA

isA

isA

job: programmer

job: admin

source	target
1	1001
2	1001
2	1002
3	1002
4	1002
	1 2 2 3

id	name
1	Jan
2	Ala
3	Ola
4	Staś

VertexFrame: Jobs

id	job
1001	programmer
1002	admin

Dostępne typy danych

- xgt.BOOLEAN
- xgt.INTEGER
- xgt.FLOAT
- xgt.DATE
- xgt.TIME
- xgt.TEXT
- xgt.DATETIME
- xgt.IPADDRESS

Schemat ramki

Schemat ramki to zbiór rodzajów pól, jakie przechowuje dany typ wierzchołka lub krawędzi.

EdgeFrame: isA

source	target
1	1001
2	1001
2	1002
3	1002
4	1002

VertexFrame: Persons

id	name
1	Jan
2	Ala
3	Ola
4	Staś

VertexFrame: Jobs

id	job
1001	programmer
1002	admin

Jakie typy nadać atrybutom?

isA.source: ???

isA.target: ???

Persons.id: ???

Persons.name: ???

Jobs.id: ???

Jobs.job: ???

Schemat ramki

Schemat ramki to zbiór rodzajów pól, jakie przechowuje dany typ wierzchołka lub krawędzi.

EdgeFrame: isA

source	target
1	1001
2	1001
2	1002
3	1002
4	1002

id	name
1	Jan
2	Ala
3	Ola
4	Staś

id job 1001 programmer 1002 admin isA.source: xgt.INT
isA.target: xgt.INT
Persons.id: xgt.INT
Persons.name: xgt.TEXT
Jobs.id: xgt.INT

Reprezentacja grafu – kompletny obraz

- nazwa ramki uwaga na prefiks!
- schemat
- wyróżnienie kluczy

EdgeFrame: workshop isA

target: xgt.INT
1001
1001
1002
1002
1002

VertexFrame: workshop Persons

id: xgt.INT 1	name: xgt.TEXT Jan
2	Ala
3	Ola
4	Staś

VertexFrame: workshop__Jobs

id: xgt.INT	job: xgt.TEXT
1001	programmer
1002	admin

Jak pracować z Trovares xGT?

Trovares Query Language (TQL)

Przykład zapytania w TQL "wybierz wszystkie wierzchołki a połączone krawędzią e z wierzchołkiem b, gdzie wierzchołek b ma atrybut job równy "admin". Poniżej widoczna jest ramka TableFrame, będąca rezultatem zapytania:

TableFrame: workshop__Person_Job

```
name: xgt.TEXT job: xgt.TEXT

Ala admin

Ola admin

Staś admin
```

Trovares Query Language (TQL)

TQL to język zapytań do danych przechowywanych na serwerze Trovares xGT.

Ogólna charakterystyka TQL:

• wybieranie danych: MATCH

• filtrowanie danych: WHERE

• modyfikacja danych: SET

• zapisywanie danych w nowej ramce: RETURN ... INTO

Jak wywołać zapytanie na serwerze?

Biblioteka xgt w języku Python dostarcza klasę xgt. Connection, służącą do wykonywania wszelkich działań na serwerze.

```
Klasa xgt.Connection posiada metody takie jak: run_job(...),
create_vertex_frame(...), create_edge_frame(...), drop_frame(...), itd.
```

Uwaga – metody wywoływane na obiekcie klasy xgt. Connection mają przede wszystkim działanie po stronie serwera!

Klient Trovares xGT objekt klasy xgt.Connection Serwer Trovares xGT

Jak wywołać zapytanie na serwerze?

kod Python

```
server = xgt.Connection(...parametry połączenia...)
...wczytanie danych do Persons, isA oraz Jobs...

query = """
MATCH (a:workshop__Persons)-[e: workshop__isA]->(b: workshop__Jobs)
WHERE b.job = "admin" RETURN a.name, b.job INTO results__Person_Job
"""
server.run_job(query)
...sprawdzenie wyników...
```


Dziękuję za uwagę

Zapraszam na część praktyczną