CLAIMS

What is claimed is:

1	1. A roller cone drill bit comprising:
2	a plurality of arms;
3	rotatable cutting structures mounted on respective ones of said
4	arms; and
5	a plurality of teeth located on each of said cutting structures;
б	wherein approximately the same axial force is acting on each of
7	said cutting structure.
I	2. The roller cone drill bit of Claim 1, wherein the axial force on each
2	of said cutting structure is between thirty-one (31) percent and
3	thirty-five (35) percent of the total of the axial force on the bit.
1	3. A roller cone drill bit comprising:
2	a plurality of arms;
3	rotatable cutting structures mounted on respective ones of said
4	arms; and
5	a plurality of teeth located on each of said cutting structures;
6	wherein a substantially equal volume of formation is drilled by each
7	said cutting structure.
1	4. The roller cone drill bit of Claim 3, wherein the volume of
2	formation drilled by each of said cutting structures is between
3	thirty-one (31) percent and thirty-five (35) percent of the total
4	volume drilled by the drill bit.

App'n of Halliburton Energy Services, Inc.: SC-98-25 Page 24

1	5. A rotary drilling system, comprising:
2	a drill string which is connected to conduct drilling fluid from a
3	surface location to a rotary drill bit;
4	a rotary drive which rotates at least part of said drill string together
5	with said bit
6	said rotary drill bit comprising
7	a plurality of arms;
8	rotatable cutting structures mounted on respective ones of said
9	arms; and
10	a plurality of teeth located on each of said cutting structures;
11	wherein approximately the same axial force is acting on each of
12	said cutting structure.
1	6. A method of designing a roller cone drill bit, comprising the steps
2	of:
3	(a) calculating the volume of formation cut by each tooth on each
4	cutting structure;
5	(b) calculating the volume of formation cut by each cutting structure
6	per revolution of the drill bit;
7	(c) comparing the volume of formation cut by each of said cutting
8	structures with the volume of formation cut by all others of
9	said cutting structures of the bit;
10	(d) adjusting at least one geometric parameter on the design of at
11	_ least one cutting structure; and
12	(e) repeating steps (a) through (d) until substantially the same
13	volume of formation is cut by each of said cutting structures
14	of said bit.

5

10

11

12

13

I	7. The method of Claim 6, wherein the step of calculating the volume
2	of formation cut by each tooth on each cutting structure further
3	- comprises the step of using numerical simulation to determine
4	the interval progression of each tooth as it intersects the
5	formation.

- 8. A method of designing a roller cone drill bit, the steps of 1 comprising: 2
- (a) calculating the axial force acting on each tooth on each cutting 3 structure:
 - (b) calculating the axial force acting on each cutting structure per revolution of the drill bit;
 - (c) comparing the axial force acting on each of said cutting +. structures with the axial force on the other ones of said cutting structures of the bit;
 - (d) adjusting at least one geometric parameter on the design of at least one cutting structure;
 - (e) repeating steps (a) through (d) until approximately the same axial force is acting on each cutting structure.
- 9. The method of Claim 8, wherein the step of calculating the normal 1 force acting on each tooth, on each cutting structure further 2 comprises the step of using numerical simulation to determine 3 the interval progression of each tooth as it intersects the formation:

2

I	10The method of Claim 8, further comprising the steps of:
2	(a) calculating the volume of formation displaced by the depth of
3	_ penetration of each tooth;
4	(b) calculating the volume of formation displaced by the tangential
5	scrapping movement of each tooth;
6	(c) calculating the volume of formation displaced by the radial
7	scrapping movement of each tooth; and,
8	(d) calculating the volume of formation displaced by a crater
9	enlargement parameter function.
1	11. A method of designing a roller cone drill bit, the steps of
2	comprising:
3	(a) calculating the force balance conditions of a bit;
4	(b) defining design variables;
5	(c) determine lower and upper bounds for the design variables;
6	(d) defining objective functions;
7	(e) defining constraint functions;
8	(f) performing an optimization means; and,
9	(g) evaluating an optimized cutting structure by modeling.
I	12. A method of using a roller cone drill bit, comprising the step of
2	rotating said roller cone drill bit such that substantially the same
3	volume of formation is cut by each roller cone of said bit.
1	13. A method of using a roller cone drill bit, comprising the step of
ž	12. 12 memor of ming a toner come arm one combining are such or

axial force is acting on each roller cone of said bit.

rotating said roller cone drill bit such that substantially the same