ФГБОУ ВО «НИУ «МЭИ» ИРЭ им. В.А. Котельникова Кафедра Радиотехнических систем

Искусственный интеллект: ультразвуковое зрение (как у летучей мыши) на базе нейросети для навигации роботов среди препятствий

Студент: Масалкова Наталья Владимировна

Группа: ЭР-13-16

Специальность: 11.03.01

Радиотехника

Научный руководитель: Куликов Роман

Сергеевич

Москва, 2020

Проблема

Лидар

Машинное зрение

Ультразвуковые дальномеры

Высокая точность позиционирования

Умеренная погода

Среднее требование вычислительной мощности

Низкая надежность

Видение 3D

Высокая стоимость

Высокая точность позиционирования

Умеренная погода

Высокое требование вычислительной мощности

Средняя надежность

Видение 3D

Умеренная стоимость

Средняя точность позиционирования

Любая погода

Низкое требование вычислительной мощности

Высокая надежность Определение только расстояния

Низкая стоимость

Решение

Дешевые ультразвуковые дальномеры

+

Алгоритмы машинного обучения на базе искусственной нейронной сети (ИНС)

Видение 3D

Ультразвуковое зрение

Ультразвуковой локатор летучей мыши предоставляет информацию о расстоянии до объекта, о его размерах и размерах отдельных элементов

Это позволяет животному «видеть» с помощью ультразвука

Цель работы

Разработать ИНС, которая имитирует ультразвуковой локационный аппарат летучей мыши

Задачи

- •Собрать программно-аппаратную установку
- •Собрать базу данных для обучения ИНС
- •Подобрать архитектуру ИНС
- •Оценить качество работы ИНС

Подсистема имитации ультразвукового зрения

Оптическая подсистема Microsoft Kinect Xbox 360

Референсные карты глубин

Референсная карта глубин

Уменьшается яркость пикселей

Референсная карта глубин

Предмет слева Предмет справа

Размерность данных для подачи в ИНС

Вход ИНС

осциллограммы с четырех микрофонов – числовой вектор длиной 8000

$$\left[m_{1_1}, \dots, m_{2000_1}, m_{1_2}, \dots, m_{2000_2}, m_{1_3}, \dots, m_{2000_3}, m_{1_4}, \dots, m_{2000_4}\right]^T$$

m - нормированная амплитуда в дискретный момент времени в диапазоне [-1;1]

Выход ИНС

векторное представление оценки карты глубины – числовой вектор длиной 10000

$$[\mathbf{p'_1}, \mathbf{p'_2}, ..., \mathbf{p'_{10000}}]^{\mathrm{T}}$$

р' – нормированное значение интенсивности пикселя в диапазоне [0;1]

Размер выборок

Обучающая выборка – набор данных, который используется для обучения сети

548 примеров

Проверочная (валидационная) выборка – набор данных, который используется в процессе обучения для оценки качества обучения сети

200 примеров

Каждая выборка содержит примеры из всех категорий

Процесс обучения ИНС

Написание кода ИНС

ИНС написана на высокоуровневом языке Python

с применением открытых библиотек для машинного обучения – Keras и TensorFlow

Параметры обучения ИНС

• Функция потерь – среднеквадратическая ошибка (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (p'_i - p_i)^2$$

о' – оцененное значение интенсивности пикселя

> р – референсное значение интенсивности пикселя

- Алгоритм обучения Adam (адаптивный метод оптимизации)
- Размер мини-выборки 10

Архитектура ИНС

Обучение ИНС

График изменения функции ошибки сети по мере обучения ИНС

Время обучения 200 эпох - 77 секунд

Переобучение на проверочном наборе

Ошибка сети на проверочном наборе MSE = 0.0095

На маленькой базе сеть ОБУЧАЕТСЯ

Результаты работы ИНС

Оцененные карты глубин на выходе ИНС

Референсные карты глубин

Интерпретация результатов работы ИНС

Зависимость изменения интенсивности Математическое ожидание и СКО пикселя от расстояния до объекта

невязки на проверочном наборе по шкале [0;255]

$$m_{\text{инт.пикс.}} = -0,984$$
 $\sigma_{\text{инт.пикс.}} = 24,86$

Математическое ожидание и СКО погрешности определения расстояния

$$m_{\text{pac.}} = 0,45 \text{ cm} \ \sigma_{\text{pac.}} = 10,6 \text{ cm}$$

Выводы

- Собрана программно-аппаратная установка
- Собрана база данных для обучения ИНС
- Подобрана архитектура ИНС с наименьшей среднеквадратической ошибкой
- Визуальная оценка работы ИНС: карта глубин на выходе ИНС близка к референсной
- Численная оценка работы ИНС: дециметровая точность определения расстояния

Разработку можно применить для решения задачи позиционирования робота среди препятствий