Lenguajes, Computación y Sistemas Inteligentes

Grado en Ingeniería Informática de Gestión y Sistemas de Información Escuela de Ingeniería de Bilbao (UPV/EHU) Departamento de Lenguajes y Sistemas Informáticos

2° curso

Curso académico: 2023-2024

Grupo 16

Tema 8: Autómatas finitos: Lenguajes regulares

2,350 puntos

Modelo de examen

Índice

8.1	Probar que es un lenguaje regular (0,200 puntos)	1
8.2	Calcular una ER correspondiente a un AF (0,500 puntos)	2
8.3	Calcular el AF correspondiente a una ER (0,500 puntos)	2
8.4	Calcular la gramática regular correspondiente a un AF (0,400 puntos)	2
8.5	Calcular el AF correspondiente a una gramática regular (0,400 puntos)	3
8.6	Árbol correspondiente a una gramática regular (0,200 puntos)	3
8.7	Existencia de lenguajes no regulares (0,150 puntos)	3

8.1 Probar que es un lenguaje regular (0,200 puntos)

Una manera de probar que un lenguaje definido sobre el alfabeto $A = \{a, b, c\}$ es regular, consiste en formalizar ese lenguaje mediante una expresión regular utilizando solo los elementos a, b, c, ε y \varnothing y las operaciones +, * y la concatenación de lenguajes. Aplicar ese método para probar que el siguiente lenguaje es regular:

$$L = \{ w \mid w \in A^* \land |w|_a \ge 1 \land |w|_b \ge 1 \land |w|_c \ge 1 \land |w|_a \ge$$

Por tanto, palabras como $cbbaacebc\varepsilon$, $cab\varepsilon$, $bac\varepsilon$, $abc\varepsilon$, $caab\varepsilon$, $aaabcbb\varepsilon$, $bcbaaaa\varepsilon$ y $bbaaaacbc\varepsilon$ pertenecen al lenguaje, mientras que palabras como ε , $a\varepsilon$, $bb\varepsilon$, $aab\varepsilon$, $cccc\varepsilon$, $aabbaaa\varepsilon$, $acc\varepsilon$ y $accbccacbca\varepsilon$ no pertenecen al lenguaje.

8.2 Calcular una ER correspondiente a un AF (0,500 puntos)

En la figura 1, se muestra el diagrama de transiciones de un autómata finito (AF) definido sobre el alfabeto $\mathbb{A} = \{a, b, c, d, e, f\}$. Aplicar el procedimiento presentado en clase y obtener una expresión regular (ER) que represente el lenguaje regular asociado al AF.

Figura 1: Diagrama de transiciones correspondiente a un AF definido sobre el alfabeto $\mathbb{A} = \{a, b, c, d, e, f\}$.

8.3 Calcular el AF correspondiente a una ER (0,500 puntos)

Dada la siguiente expresión regular (ER) definida sobre el alfabeto $A = \{a, b, c, d, e, f, g\}$, calcular el autómata finito (AF) correspondiente aplicando el procedimiento presentado en clase:

$$ccc((aaa)^* + (bbb)^*)(dd + ee)^*) + (f^*g^*) + (d + e)^*$$

8.4 Calcular la gramática regular correspondiente a un AF (0,400 puntos)

En la figura 2, se muestra el diagrama de transiciones de un autómata finito (AF) definido sobre el alfabeto $A = \{a, b, c\}$. Aplicar el procedimiento presentado en clase y obtener la gramática regular correspondiente al AF.

Figura 2: Diagrama de transiciones correspondiente a un AF definido sobre el alfabeto $\mathbb{A} = \{a, b, c\}$.

8.5 Calcular el AF correspondiente a una gramática regular (0,400 puntos)

Diseñar el AF correspondiente a la siguiente gramática regular G = (N, T, P, S):

- $N = \{Z_0, Z_1, Z_2, Z_3, Z_4, Z_5\}.$
- $T = \{a, b, c\}.$
- P es el conjunto formado por las siguientes reglas de producción:

1. $Z_0 \rightarrow aZ_0$	7. $Z_2 \rightarrow bZ_2$	13. $Z_4 \to Z_5$
$2. Z_0 \rightarrow aZ_1$	8. $Z_2 \rightarrow bZ_3$	14. $Z_4 \rightarrow cZ_5$
$3. Z_0 \rightarrow Z_4$	9. $Z_3 \rightarrow cZ_1$	15. $Z_5 \to \varepsilon$
$4. Z_1 \rightarrow Z_2$	10. $Z_3 \rightarrow cZ_5$	
$5. Z_1 \rightarrow Z_4$	11. $Z_3 \to \varepsilon$	
6. $Z_1 \rightarrow cZ_4$	12. $Z_4 \rightarrow cZ_4$	

• S es Z_0 .

8.6 Árbol correspondiente a una gramática regular (0,200 puntos)

Desarrollar, hasta el nivel 4 inclusive, el árbol correspondiente a la gramática regular del ejercicio anterior, es decir, del ejercicio 8.5.

Posible enunciado alternativo:

Desarrollar el árbol correspondiente a la gramática regular del ejercicio anterior —ejercicio 8.5— hasta generar 4 palabras distintas del lenguaje correspondiente.

8.7 Existencia de lenguajes no regulares (0,150 puntos)

Probar que para cualquier alfabeto A existen lenguajes no regulares definidos sobre el alfabeto A. Para ello, se han de utilizar los resultados de enumerabilidad y no enumerabilidad obtenidos en el Tema 3.