UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea

Iulie 2019

CHESTIONAR DE CONCURS

Numărul legitimației de bancă Prenumele tatălui Prenumele

DISCIPLINA: Algebră și Elemente de Analiză Matematică Mb

VARIANTA S

- 1. Fie ecuația $x^3 + x^2 2x = 0$. Suma S a soluțiilor reale este: (6 pct.)
 - a) S = -1; b) S = 0; c) S = 1; d) S = -2; e) S = 2; f) S = 3.
- 2. Produsul soluțiilor ecuației $\sqrt{1-x} + \sqrt{x} = 1$ este: (6 pct.)
 - a) 0; b) 1; c) -1; d) 2; e) $\frac{1}{3}$; f) $\frac{1}{2}$.
- 3. Soluția ecuației $4^{x-1} = 16$ este: (6 pct.)
 - Soluția ecuației $4^{x-1} = 16$ este: (6 pct.) a) x = 3; b) x = 4; c) x = 2; d) x = -2; e) x = 0; f) x = 5.
- 4. Să se rezolve sistemul de ecuații $\begin{cases} x+y=4\\ 2x-y=-1 \end{cases}$ (6 pct.)
 - a) x=1, y=3; b) x=0, y=4; c) x=-1, y=5; d) x=-2, y=-3; e) x=4, y=0; f) x = 2, y = 2.
- 5. Valoarea determinantului $\begin{vmatrix} 2 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{vmatrix}$ este: (6 pct.)
 - a) 0; b) 1; c) -1; d) 2; e) -2; f) 5.
- 6. Fie polinomul $f = X^2 + 2X + 3$. Să se calculeze $S = f(x_1) + f(x_2) + f(x_3)$, unde x_1, x_2, x_3 sunt soluțiile complexe ale ecuației $x^3 - 1 = 0$. (6 pct.)
 - a) S=9; b) S=1; c) S=-1; d) S=i; e) S=6; f) S=0.
- 7. Știind că numerele x, x+1, x+3 sunt în progresie geometrică (în această ordine), atunci: (6 pct.)
 - a) x=1; b) x=2; c) x=-1; d) x=4; e) x=-2; f) x=3.
- 8. Să se rezolve ecuația $\log_5(x-1)=1$. (6 pct.)
 - a) x = 6; b) x = 3; c) x = 4; d) x = 0; e) x = 1; f) x = 11.
- 9. Dacă $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x e^x$, să se calculeze f'(0). (6 pct.)
 - a) 0; b) 2; c) -2; d) 1; e) -1; f) 3.

10. Fie matricele
$$A = \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix}$$
 și $B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Dacă $X = A + 2B$, să se calculeze determinantul matricei X . (6 pct.)

a)
$$-20$$
; b) 10 ; c) 14 ; d) -10 ; e) 20 ; f) -14 .

11. Să se determine $x \in \mathbb{R}$ astfel încât numerele x, x+1, 2x-1 să fie (în această ordine) în progresie aritmetică. (6 pct.)

a)
$$x=3$$
; b) $x=20$; c) $x=7$; d) $x=-2$; e) $x=10$; f) $x=-10$.

12. Fie P un polinom cu coeficienți reali astfel încât $P(1) + P(2) + ... + P(n) = n^5$, pentru orice număr natural $n \ge 1$. Să se calculeze $P\left(\frac{3}{2}\right)$. (6 pct.)

a)
$$\frac{121}{16}$$
; b) $\frac{114}{31}$; c) $\frac{169}{25}$; d) $\frac{91}{17}$; e) $\frac{47}{15}$; f) $\frac{225}{49}$.

13. Să se determine mulțimea valorilor lui $a \in \mathbb{R}$ astfel încât ecuația $\ln(1+2x)-x^2=a$ să aibă o singură soluție strict negativă. (6 pct.)

a)
$$a \in (-\infty, 0)$$
; b) $a \in (0, \ln 2)$; c) $a \in (-1, \ln 2)$; d) $a \in \left(\frac{1}{2}, \ln 3\right)$; e) $a \in (-e, e)$; f) $a \in \left(0, \ln 2 - \frac{1}{4}\right)$.

14. Valoarea integralei $\int_{0}^{1} (3x^2 + e^x) dx$ este: (6 pct.)

a)
$$e$$
; b) 1; c) 0; d) 2; e) $e-3$; f) -1 .

15. Pentru r > 0, fie mulțimea $M = \{z \in \mathbb{C} : |z| = 1 \text{ și } |z - 3i| = r\}$.

Fie $A = \{r > 0 ; M \text{ are un singur element} \}$. Să se determine suma S a elementelor mulțimii A. (6 pct.)

a)
$$S = 6$$
; b) $S = 8$; c) $S = 12$; d) $S = 5$; e) $S = 2$; f) $S = 4$.