# CS4052 Logic and Software Verification

## Sizhe Yuen

## December 15, 2017

## Contents

| 1 | Pro | mela                                        | <b>2</b> |
|---|-----|---------------------------------------------|----------|
|   | 1.1 | Processes                                   | 2        |
|   | 1.2 |                                             | 2        |
|   | 1.3 |                                             | 4        |
|   | 1.4 |                                             | 4        |
| 2 | LTL |                                             | 5        |
|   | 2.1 | Linear Time Properties                      | 5        |
|   |     |                                             | 5        |
|   |     |                                             | 5        |
|   |     | 2.1.3 Fairness                              | 5        |
|   | 2.2 |                                             | 6        |
|   |     | 2.2.1 Syntax                                | 6        |
|   |     |                                             | 7        |
|   |     |                                             | 7        |
|   |     |                                             | 8        |
|   | 2.3 |                                             | 8        |
|   |     |                                             | 8        |
|   |     |                                             | 8        |
|   | 2.4 | 9                                           | 9        |
|   |     |                                             | 9        |
|   | 2.5 |                                             | 0        |
|   | -   |                                             | 0        |
|   |     | 2.5.2 Handshaking $TS_1 \parallel_{H} TS_2$ | _        |

| 3 | $\mathbf{Tim}$ | ned Automata                                | 11 |
|---|----------------|---------------------------------------------|----|
|   | 3.1            | Definition                                  | 11 |
|   | 3.2            | Handshaking with timed automata             | 11 |
|   | 3.3            | CTL Syntax                                  | 12 |
|   |                | 3.3.1 CTL properties                        | 12 |
|   |                | 3.3.2 CTL examples                          | 12 |
|   |                | 3.3.3 Derivations for eventually and always | 13 |
|   | 3.4            | Timed CTL (TCTL)                            | 13 |
|   |                | 3.4.1 Definition                            | 13 |
|   |                | 3.4.2 Example TCTL Properties               | 14 |
|   | 3.5            | UPPAAL                                      | 14 |
| 4 | Dot            | ri Nets                                     | 14 |
| ± | геп            |                                             |    |
|   | 4.1            | Definition                                  | 14 |
|   | 4.2            | Reachability                                | 14 |

## 1 Promela

#### 1.1 Processes

Listing 1: Process definition

```
1 | proctype P1(int id) {
2
        int n = id;
3
4
        :: n < N \rightarrow n = n + 1;
5
        :: else -> break;
6
        od
7
   }
8
9
   active [N] proctype Pi() {
10
        //process\ is\ active\ on\ start\ and\ there\ are\ N\ processes
11
12
13 | init {
14
        run P1(0);
15 || }
```

More than one alternative can be given in a loop denoted by ::. If more than one alternative is possible, choice is non-deterministic.

#### 1.2 Channels

#### Listing 2: Channel definition

```
chan toP1 = [0] of {byte}; //synchronous channel
chan toP2 = [N] of {byte}; //asynchronous channel with
    buffer size N

toP1!x; //send value of x down channel toP1
toP1?x; //receive message from channel toP1 into variable x
```

Synchronous channels block until the message is read while asynchronous channels block only when the buffer is full.

There are a number of functions that can be applied to a channel:

- len(c) Number of messages in c
- empty(c) Is the channel empty?
- nempty(c) Is the channel not empty?
- full(c) Is the channel full?
- nfull(c) Is the channel not full?

There are also a number of variations of possible received messages:

- c?x,y Received values saved to x and y
- c?2,y First sent value has to be 2
- c?eval(x), y First sent value must have the value of x
- c?<x,y> Received values saved to x and y, but message is kept in buffer
- c??2,y Get the first message in the buffer which has a first value of 2 (if none, keep waiting)
- $\bullet$ c??<2, y> As above, but keep in buffer rather than read to variable y

Additional checks for asynchronous channels:

- c?[x,y] Checks whether the message receipt is possible
- c?[2,y] Is c?2,y possible next?
- c??[2,y] Is c??2,y possible?

Note that we can also write c?\_ if we do not care about the value being sent.

#### 1.3 Invariant

An invariant is an example of a verifiable safety property which has to be true in all system states. In spin, assertions can be used as follows:

Listing 3: PROMELA assertion

```
1 assert(<Boolean condition>)
2
3 active proctype Invariant() {
4 byte y = 0;
5 bool b = false;
6 assert(!b || y > 42);
7 ||}
```

Note the assertion above is only executed once. Labels can be used to block until a process reaches that label. For example:

Listing 4: PROMELA labels

```
1 || active [3] proctype P() {
2
   m1: do
3
        :: x < 10 \rightarrow m2: x = x + 1;
4
        :: x > 5 -> m3: break;
5
6
   |}
7
8
   active proctype Inv() {
9
        P[0]m2;P[1]m3;
10
        P[2]m3;assert(x <= 11)
```

#### 1.4 Trace

It is possible to impose specific sequences of communication using a trace.

Listing 5: Example of a trace

```
1 | mtype = {a,b};
2 | trace {
    do
    :: c1!a; c2?b;
5 | od
6 |}
```

This above example states that sendong on channel c1 alternates with receiving on channel c2.

## 2 LTL

## 2.1 Linear Time Properties

#### 2.1.1 Safety

Safety properties are about *nothing bad should happen*. An example of this is the **mutual exclusion property** - Always at most one process is in its critical section.

Safety properties refer to all states in the system.

#### 2.1.2 Liveness

Liveness properties are about something good will happen eventually. They can be used to guarantee that progress is made.

- Eventually Each process will eventually enter its critical section
- Repeated eventually Each process will enter its critical section infinitely often
- Starvation freedom Each waiting process will eventually enter its critical section

Liveness properties need to be checked for all possible system executions.

#### 2.1.3 Fairness

#### Unconditional fairness

Every process gets its turn infinitely often.

#### Strong fairness

Every process that is **enabled** infinitely often gets its turn infinitely often.

#### Weak fairness

Every process that is continuously enabled from a certain point onwards gets its turn infinitely often.



Figure 1: Illustration of fairness

Spin supports weak fairness and can support strong fairness with an LTL statement.

#### 2.2 LTL

#### 2.2.1 Syntax

Given valid formulae p, q and r:

- $\Box p$  Always p
- $\Diamond p$  Eventually p
- $\bigcirc p$  Next p
- ullet  $p\ U\ q$  p until q

There is a difference between strong and weak until.



Figure 2: Strong and weak until

## 2.2.2 Typical LTL Properties

 $\begin{array}{ll} \bullet \;\; \mathbf{Invariant} & \qquad \Box p \\ \\ \bullet \;\; \mathbf{Reply} & p \to \Diamond q \\ \\ \bullet \;\; \mathbf{Guaranteed \; reply} & \qquad \Box (p \to \Diamond q) \\ \\ \bullet \;\; \mathbf{Progress} & \qquad \Box \Diamond p \;\; \mathbf{Infinitely \; often} \;\; p \\ \\ \bullet \;\; \mathbf{Stability} & \qquad \Diamond \Box p \;\; \mathbf{Eventually \; forever} \;\; p \\ \\ \bullet \;\; \mathbf{Exclusion} & \qquad \Box (p \to \neq q) \\ \end{array}$ 

## 2.2.3 LTL Properties for mutual exclusion

 $\bullet$   $P_1$  and  $P_2$  never simultaneously have access to their critical sections:

$$\Box(\neg \operatorname{crit}_1 \lor \neg \operatorname{crit}_2) \tag{1}$$

• Each process is infinitely often in its critical section:

$$(\Box \Diamond \operatorname{crit}_1) \wedge (\Box \Diamond \operatorname{crit}_2) \tag{2}$$

• Every waiting process will eventually enter its critical section:

$$(\Box \Diamond wait_1 \to \Box \Diamond crit_1) \land (\Box \Diamond wait_2 \to \Box \Diamond crit_2)$$
 (3)

ullet Whenever the semaphore y has the value 0, one of the processes is in its critical section:

$$\Box(y = 0 \to \operatorname{crit}_1 \vee \operatorname{crit}_2) \tag{4}$$

#### 2.2.4 Fairness in LTL

Three types of fairness constraints:

- Unconditional  $\Box \Diamond \operatorname{crit}_i$
- Strong fairness  $\Box \Diamond \text{wait}_i \to \Box \Diamond \text{crit}_i$
- Weak fairness  $\Diamond \square \text{wait}_i \to \square \Diamond \text{crit}_i$

#### 2.3 Transition System

$$TS = (S, Act, T, I, AP, L) \tag{5}$$

where

S = set of states

Act = set of actions

 $T\subseteq S \times Act \times S$  = transition relation

 $I \subset S$  = set of initial states

AP = set of atomic propositions

L:S  $\rightarrow$ 2<sup>AP</sup> = labelling function

#### 2.3.1 Deterministic observable behaviour

Action based: deterministic on the executed observable actions. At most one outgoing transition labelled with action  $\alpha per state$ 

**State based**: ignore actions and reply on APs that hold in the current state. At most one outgoing transition from a state with label **a** to a state with label **a** 

#### 2.3.2 Execution fragment

Let 
$$TS = (S, Act, T, I, AP, L)$$

A finite execution of fragment  $\rho$  of TS is an alternating sequence of states and actions ending with a state:

$$\rho = s_0 \ \alpha_1 \ s_1 \ \alpha_2 \ s_2 \ \dots \ \alpha_n \ s_n \tag{6}$$

such that  $(s_i, \alpha_{i+1}, s_{i+1}) \in T$  for all  $0 \le i < n$  where  $n \ge 0$ .

- An execution fragment  $\rho$  of TS can also be infinite.
- A maximal execution fragment is either finite ending in a terminal state, or infinite.
- An initial execution fragment starts in an initial state.

A state  $s \in S$  is **reachable** in TS if there exists an initial, finite execution fragment:

$$\rho = s_0 \ \alpha_1 \ s_1 \ \alpha_2 \ s_2 \dots \alpha_n \ s_n = s$$

with  $s_0 \in I$  and  $n \ge 0$ 

### 2.4 Program Graphs

A program graph over a set Var of typed variables is defined as follows:

$$PG = (Loc, Act, \text{Effect}, C_{\dagger}, Loc_0, g_0) \tag{7}$$

where

Loc = set of locations Act = set of actions Effect:  $Act \times Eval(var) \rightarrow Eval(var)$  = effect function  $C_{\uparrow} \subseteq Loc \times Cond(var) \times Act \times Loc$  = conditional transition relation  $Loc_0 \subseteq Loc$  = set of initial locations  $g_0 \in Cond(Var)$  = initial condition

The **Effect** indicates how the evaluation  $\eta$  of variables is changed by performing an action.

#### 2.4.1 Transition System for a Program Graph

The TS(PG) of a  $PG = (Loc, Act, Effect, C_{\dagger}, Loc_0, g_0)$  over Var is the following tuple:

$$TS(PG) = (S, Act, T, I, AP, L)$$
(8)

where

$$S = Loc \times Eval(Var)$$

$$T \subseteq S \times Act \times S = \frac{l_1 \xrightarrow{g:\alpha} l_2 \wedge \eta \vDash g}{\langle l_1, \eta \rangle \xrightarrow{\alpha} \langle l_2, Effect(\alpha, \eta) \rangle}$$

$$I = \{\langle l, \eta \rangle \mid l \in Loc_0 \wedge \eta \vDash g_0\}$$

$$AP = Loc \cup Cond(Var)$$

$$L(\langle l, \eta \rangle) = \{l\} \cup \{g \in Cond(Var) \mid \eta \vDash g\}$$

#### 2.5 Parallel Composition of Transition Systems

$$TS = TS_1 \parallel TS_2 \parallel \dots \parallel TS_n \tag{9}$$

|| is the parallel composition operator and is usually **commutative** and **associative** but depends on the kind of communication supported.

||| is the **interleaving** operator where the actions from different processes are interleaved and the system is made of a set of independent processes (no communication).

The interleaving operator for transition systems simply constructs the **Cartesian product** of the individual state spaces without considering the potential conflicts from *shared* variables. For programs with shared variables, we define interleaving directly on the program graph level:  $PG_1 \parallel PG_2$ .

#### 2.5.1 Composed Program Graph $PG_1 \parallel \mid PG_2$

- Local variables of  $PG_1$  are  $x_1 \in Var_1 \setminus Var_2$
- Local variables of  $PG_2$  are  $x_2 \in Var_2 \setminus Var_1$
- Global variables are  $x \in Var_1 \cap Var_2$

Actions that access global variables are **critical** and critical actions *cannot* be executed simultaneously.

#### **2.5.2** Handshaking $TS_1|_HTS_2$

Handshaking allows for processes to interact at the same time through synchronous communication (shared actions). The composition of two transition systems handshaking on actions H is as follows:

$$TS_1|_H TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, T, I_1 \times I_2, AP_1 \cup AP_2, L)$$
 (10)

where  $H \subseteq Act_1 \cap Act_2$ .

Transitions for synchronisation means the actions in H are taken synchronously by both processes:

$$\frac{(s_1 \xrightarrow{\alpha}_1 s'_1) \wedge (s_2 \xrightarrow{\alpha}_2 s'_2)}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s'_2 \rangle}$$
(11)

Note that if there is no synchronisation of actions, it is the same as interleaving:

$$TS_1 \parallel_{\emptyset} TS_2 = TS_1 \mid \mid \mid TS_2 \tag{12}$$

## 3 Timed Automata

Timed automata add clock variables to the program graph. A clock constraint over a set of C of clocks is formed as follows:

$$g ::= x < c|x \le c|x > c|x \ge c|g \land g \tag{13}$$

where c is a natural number and  $x \in C$ .

### 3.1 Definition

A Timed Automata is the tuple  $TA = (Loc, Act, C, C_t, Loc_0, Inv, AP, L$  where:

$$C = \text{Finite set of clock}$$
  
 $Inv = Loc \rightarrow CC(C)$ 

#### 3.2 Handshaking with timed automata

Synchronisation

$$\frac{l_1 \xrightarrow{g_1:\alpha,D_1} l'_1 \wedge l_2 \xrightarrow{g_2:\alpha,D_2} l'_2}{\langle l_1, l_2 \rangle \xrightarrow{g_1 \wedge g_2:\alpha,D_1 \cup D_2} \langle l'_1, l'_2 \rangle}$$
(14)

#### Interleaving

$$\frac{l_1 \xrightarrow{g:\alpha,D}_1 l'_1}{\langle l_1, l_2 \rangle} \text{ or } \frac{l_2 \xrightarrow{g:\alpha,D}_2 l'_2}{\langle l_1, l_2 \rangle}$$
(15)

## 3.3 CTL Syntax

State formula of a set of AP are formed according to the following grammar:

$$\Phi ::= true \mid a \mid \Phi \wedge \Phi \mid \neg \Phi \mid \exists \phi \mid \forall \phi \tag{16}$$

where  $\phi$  is a path formula:

$$\phi ::= \bigcirc \Phi \mid \Phi \cup \Phi \tag{17}$$

#### 3.3.1 CTL properties

• There exists an execution along which p will eventually hold:

$$\exists \Diamond p \tag{18}$$

ullet There exists an execution along which p is always true:

$$\exists \Box p$$
 (19)

• Necessarily p will eventually hold

$$\forall \Diamond p \tag{20}$$

• p is always true

$$\forall \Box p$$
 (21)

#### 3.3.2 CTL examples

 $\bullet$   $P_1$  and  $P_2$  are never simultaneously in their critical sections:

$$\forall \Box (\neg \operatorname{crit}_1 \vee \neg \operatorname{crit}_2) \tag{22}$$

• Each process is infinitely often in its critical section:

$$(\forall \Box \forall \Diamond \operatorname{crit}_1) \land (\forall \Box \forall \Diamond \operatorname{crit}_2) \tag{23}$$

# 3.3.3 Derivations for eventually and always

**Eventually** 

$$\exists \Diamond \Phi = \exists (true \cup \Phi)$$
$$\forall \Diamond \Phi = \forall (true \cup \Phi)$$

Always

$$\exists \Box \Phi = \neg \forall \Diamond \neg \Phi$$
$$\forall \Box \Phi = \neg \exists \Diamond \neg \Phi$$

## 3.4 Timed CTL (TCTL)

**Eventually** 

$$\exists \Diamond^{J} \Phi = \exists (true \cup^{J} \Phi)$$
$$\forall \Diamond^{J} \Phi = \forall (true \cup^{J} \Phi)$$

Always

$$\exists \Box^J \Phi = \neg \forall \Diamond^J \neg \Phi$$
$$\forall \Box^J \Phi = \neg \exists \Diamond^J \neg \Phi$$

J denotes the time interval, for example:

#### 3.4.1 Definition

There exists a path in which  $\Phi$  holds during interval J:

$$\exists \Box^J \Phi \tag{24}$$

In all paths  $\Phi$  must hold during interval J:

$$\forall \Box^J \Phi \tag{25}$$

#### 3.4.2 Example TCTL Properties

The light cannot be continuously on for more than 2 time units:

$$\forall \Box (on \to \forall \lozenge^{\leq 2} \neg on) \tag{26}$$

The light will stay on for at least 1 time unit and then switch off:

$$\forall \Box (on \to (\forall \Box^{\leq 1} on \land \forall \Diamond^{>1} off)) \tag{27}$$

The gate is always closed when the train is at the crossing:

$$\forall \Box (crossing \to closed) \tag{28}$$

Once the train is far, within one minute the gate is up for at least 1 minute:

$$\forall \Box (\text{far} \to \forall \lozenge^{\leq 1} \forall \Box^{\leq 1} up) \tag{29}$$

#### 3.5 UPPAAL

#### 4 Petri Nets

#### 4.1 Definition

A Petri net is a tuple N = (P, T, G) where:

- P is a set of places
- $\bullet$  T is a set of **transitions**
- G is a directed graph linking places and transitions

#### 4.2 Reachability

Let M ba a marking for a Petri net N = (P, T, G):

Reachable(
$$N, M$$
) = { $M' \mid M'$  is a marking for  $N$ } (30)

such that there is a sequence of enabled transitions  $t_i \in T$  with  $0 \le i \le n$  which leads to M'

The set can be finite and infinite and a marking for which there is no enabled transition indicates a deadlock.