ভেষ্টর (VECTOR)

প্রশ্নমালা - II A

1. (a) ABC একটি ত্রিভুজ। $\overrightarrow{BC} = a$, $\overrightarrow{CA} = b$ এবং $\overline{BA} = c$ হলে, দেখাও যে, a + b = c

প্রমাণ ঃ দেওয়া আছে. $\triangle ABC$ এ.

$$\overrightarrow{BC} = \underline{a}$$
 , $\overrightarrow{CA} = \underline{b}$ এবং $\overrightarrow{BA} = \underline{c}$. ভেষ্টর যোগের ত্রিভুজ সূত্র হতে পাই,

$$\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{BA}$$

 $\underline{a} + \underline{b} = \underline{c}$ (Showed)

(b) ABC একটি ত্রিভুজ; D বিন্দু BC এর মধ্যবিদ্য । $\overline{AB} = c$ এবং $\overline{AC} = \mathbf{b}$ হলে, দেখাও যে,

$$\overrightarrow{AD} = \frac{1}{2} (\underline{b} + \underline{c})$$

[4.'55]

প্রমাণ ঃ $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$

$$\Rightarrow \overrightarrow{AD} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$$

 $\Rightarrow \overrightarrow{AD} = \overrightarrow{AB} + \frac{1}{2}(\overrightarrow{AC} - \overrightarrow{AB})$

$$= \underline{c} + \frac{1}{2}(\underline{b} - \underline{c}) = \frac{1}{2}(2\underline{c} + \underline{b} - \underline{c})$$

$$\overrightarrow{AD} = \frac{1}{2}(\underline{b} + \underline{c})$$
 (Showed)

(c)ABCDE পঞ্চন্ত; AB = a, 1. BC = b , CD = c এবং DE = d হলে, দেখাও যে,

$$\overrightarrow{AE} = \underline{a} + \underline{b} + \underline{c} + \underline{d}$$

প্রমাণ ঃ ABC, ACD ও ADE ত্রিভুজে ভেক্টর যোগের ত্রিভুজ সূত্র হতে পাই.

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

$$= \underline{a} + \underline{b} \cdots (1)$$

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD}$$
$$= a + b + c \quad [$$

(1) ঘারা]

[বু. '০১]

এবং
$$\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE} = a + b + c + d$$

1. (d) E ও F বিশ্ব দুইটি ABCD চতুর্ভুঞ্জের BD ও AC কর্ণ দুইটির মধ্যবিদ্য। দেখাও যে,

$$\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4\overrightarrow{FE}$$

প্রমাণ ঃ A ABD এ BD বাহুর

মধ্যবিদ্য E.

$$\overrightarrow{AB} + \overrightarrow{AD} = 2 \overrightarrow{AE} \cdots (1)$$

$$\Delta BCD \triangleleft BD \triangleleft 2 \overrightarrow{AE} \cdots (2)$$

মধ্যকিদু E.

আবার, Δ AEC এ AC বাহুর মধ্যবিদ্দু F

$$\overrightarrow{EA} + \overrightarrow{EC} = 2\overrightarrow{EF}$$

$$\Rightarrow \overrightarrow{AE} + \overrightarrow{CE} = 2\overrightarrow{FE} \cdots (3)$$

(1) ও (2) যোগ করে পাই,

$$\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 2(\overrightarrow{AE} + \overrightarrow{CE})$$

 $\Rightarrow \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 2(2 \overrightarrow{FE})$

$$\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4 \overrightarrow{FE}$$
 (Showed)

1. (e) A ও B এর অবস্থান ভেষ্টর যথাক্রমে a ও b হলে, AB এর উপরিস্থিত C বিন্দুর অকস্থান ভেক্টর নির্ণয় কর যেন $\overrightarrow{AC} = 3\overrightarrow{AB}$ হয়।

সমাধান ঃ মনে করি C কিন্দুর অকস্থান ভেক্টর c.

দেওয়া আছে,
$$\overrightarrow{AC} = 3\overrightarrow{AB} \Rightarrow c - a = 3(b - a)$$

$$\Rightarrow \underline{c} = 3\underline{b} - 3\underline{a} + \underline{a} = 3\underline{b} - 2\underline{a}$$

C বিন্দুর অবস্থান ভেক্টর 3b-2a (Ans.)

QR, RP & PQ বাহুগুলোর মধ্যকিদু যথাব্রুমে L, M ও N । প্রমাণ কর α , PL + QM + RN = 0াসি.'০৭,'০৯,'১২; য.'০১; দি.'০৯,'১৩; রা.'০৯,'১১,'১৩; ব.'১২,'১৪]

প্রমাণ ঃ QR এর মধ্যকিদু L বলে,

$$\overrightarrow{PL} = \frac{1}{2} (\overrightarrow{PQ} + \overrightarrow{PR})$$

বইঘর কম

অনুরূপভাবে,

$$\overrightarrow{QM} = \frac{1}{2}(\overrightarrow{QP} + \overrightarrow{QR}) \, \text{GR}$$

$$\overrightarrow{RN} = \frac{1}{2}(\overrightarrow{RP} + \overrightarrow{RQ})$$

$$L.H.S. = \overrightarrow{PL} + \overrightarrow{QM} + \overrightarrow{RN}$$

$$Q$$

L.H.S.= PL + QM + RN
$$= \frac{1}{2} (\overrightarrow{PQ} + \overrightarrow{PR} + \overrightarrow{QP} + \overrightarrow{QR} + \overrightarrow{RP} + \overrightarrow{RQ})$$

$$= \frac{1}{2} \{ (\overrightarrow{PQ} + \overrightarrow{QP}) + (\overrightarrow{RQ} + \overrightarrow{QR}) + (\overrightarrow{RP} + \overrightarrow{PR}) \}$$

$$= \frac{1}{2} (0 + 0 + 0) = 0 = R.H.S. \text{ (Proved)}$$

2. (a) \overrightarrow{ABC} গ্রিভ্জের \overrightarrow{BC} , \overrightarrow{CA} ও \overrightarrow{AB} বাহুর মধ্যবিন্দু যথাক্রমে \overrightarrow{D} , \overrightarrow{E} ও \overrightarrow{F} হলে \overrightarrow{BE} ও \overrightarrow{CF} ভেষ্টর দুইটিকে \overrightarrow{AB} ও \overrightarrow{AC} ভেষ্টর দুইটির যোগাশ্রয়ী সমাবেশে প্রকাশ কর।

সমাধান ঃ
$$\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{AE}$$
[ভেষ্টর যোগের ত্রিভূজ সূত্রানুযায়ী]
$$\Rightarrow \overrightarrow{BE} = -\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$
[E, AC এর মধ্যবিন্দু |]
$$\overrightarrow{BE} = \frac{1}{2}\overrightarrow{AC} - \overrightarrow{AB}$$
B D C

 $\overrightarrow{CF} = \overrightarrow{CA} + \overrightarrow{AF}$ [ভেক্টর যোগের ত্রিভুজ সূত্রানুযায়ী] $\Rightarrow \overrightarrow{CF} = -\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AC}$ [∴ E, AC এর মধ্যকিদু ।]

$$\overrightarrow{CF} = \frac{1}{2} \overrightarrow{AB} - \overrightarrow{AC}$$

2. (b) \overrightarrow{OAC} আিপুজে \overrightarrow{AC} বাহুর মধ্যবিদ্ধু \overrightarrow{B} ; যদি $\overrightarrow{OA}=\underline{a}$ এবং $\overrightarrow{OB}=\underline{b}$ হয়, তবে \overrightarrow{OC} ভেষ্টরকে \underline{a} ও \underline{b} এর মাধ্যমে প্রকাশ কর। [ঢা.'০৯,'১৩; দি.'১২]

সমাধান ঃ
$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$$

$$= \overrightarrow{OA} + 2\overrightarrow{AB}$$

$$[\because B, AC এর মধ্যবিদ্দু]$$

$$\Rightarrow \overrightarrow{OC} = \overrightarrow{OA} + 2(\overrightarrow{OB} - \overrightarrow{OA})$$

$$= \underline{a} + 2(\underline{b} - \underline{a})$$

[$\overrightarrow{OA} = \underline{a}$ এবং $\overrightarrow{OB} = \underline{b}$] $\overrightarrow{OC} = 2\underline{b} - a$ (Ans.)

2. (c) $\overrightarrow{OP} = \underline{a}$, $\overrightarrow{OQ} = \underline{b}$ এবং $\overrightarrow{OR} = \underline{a} + \underline{b}$ হলে \overrightarrow{OPRQ} কি ধরনের চতুর্ভুম্ব তা নির্ধারন কর।

সমাধান ঃ দেওয়া আছে, $\overrightarrow{OP} = \underline{a}$, $\overrightarrow{OQ} = \underline{b}$ এবং $\overrightarrow{OR} = \underline{a} + \underline{b}$

এখন, \overrightarrow{OP} + \overrightarrow{OQ} = \underline{a} + \underline{b} = \overrightarrow{OR} \overrightarrow{OP} + \overrightarrow{OQ} = \overrightarrow{OR} ; যা ভেক্টর যোগের সামান্তরিক সূত্রের শর্ত। অতএব, OPRQ একটি সামান্তরিক।

3. যদি \underline{a} ও \underline{b} অসমরৈখিক ভেক্টর এবং $(x+1)\underline{a}$ + (y-2) $\underline{b}=2\underline{a}$ + \underline{b} হয় তবে x ও y এর মান নির্ণয় কর।

সমাধান ঃ দেওয়া আছে, \underline{a} ও \underline{b} অসমরৈথিক ভেক্টর এবং $(x+1)\underline{a}+(y-2)\underline{b}=2\underline{a}+\underline{b}$ $x+1=2\Rightarrow x=1, y-2=1\Rightarrow y=3$

প্রশ্নমালা - II B

1. (a) $\vec{A} = \hat{i} + 3\hat{j} - 2\hat{k}$ এবং $\vec{B} = 4\hat{i} - 2\hat{j} + 4\hat{k}$ হলে $2\vec{A} + \vec{B}$ ও $6\vec{A} - 3\vec{B}$ এর মান নির্ণয় কর। [কু.'০৭; চ.'০৪]

সমাধান ៖
$$2\overline{A} + \overline{B} = 2(\hat{i} + 3\hat{j} - 2\hat{k})$$

 $+ 4\hat{i} - 2\hat{j} + 4\hat{k}$
 $= 2\hat{i} + 6\hat{j} - 4\hat{k} + 4\hat{i} - 2\hat{j} + 4\hat{k}$
 $= 6\hat{i} + 4\hat{j} \text{ (Ans.)}$
 $6\overline{A} - 3\overline{B} = 6(\hat{i} + 3\hat{j} - 2\hat{k}) - 3(4\hat{i} - 2\hat{j} + 4\hat{k})$
 $= 6\hat{i} + 18\hat{j} - 12\hat{k} - 12\hat{i} + 6\hat{j} - 12\hat{k}$
 $= -6\hat{i} + 24\hat{j} - 24\hat{k} \text{ (Ans.)}$

1. (b) $\vec{A} = \hat{i} + 3\hat{j} - 2\hat{k}$ এবং $\vec{B} = 4\hat{i} - 2\hat{j} + 4\hat{k}$ হলে $|3\vec{A} + 2\vec{B}|$ এর মান নির্ণয় কর।

[কু.'০৭;ক্লক্সয়েট.১১-১২]