MAT-266: Análisis de Regresión

Certamen 1. Abril 19, 2022

Tiempo: 70 minutos

Nombre:

Profesor: Felipe Osorio

1. (30 pts) Sea $X \sim N_n(\mathbf{0}, \mathbf{I})$. Muestre que

$$\operatorname{var}(\boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X}) = 2 \operatorname{tr}(\boldsymbol{A}^2).$$

2. (30 pts) Sea $Y \sim \mathsf{EC}_p(\mu, \Sigma; g)$ con Σ matriz definida positiva. Suponga además que Σ es conocida. Muestre que

$$\operatorname{Cov}\left(\frac{\partial \log f(\boldsymbol{y};\boldsymbol{\mu})}{\partial \boldsymbol{\mu}}\right) = \frac{1}{p}\operatorname{E}\{W_g^2(R^2)R^2\}\boldsymbol{\Sigma}^{-1},$$

donde $W_g(u) = -2g'(u)/g(u)$.

- 3. Considere $\boldsymbol{b} \sim \mathsf{N}_p(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^\top \boldsymbol{X})^{-1})$ y $\boldsymbol{\epsilon} \sim \mathsf{N}_n(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_n)$.
- a. (15 pts) Obtenga la distribución de:

$$Q_1 = \frac{(\boldsymbol{G}\boldsymbol{b} - \boldsymbol{g})^{\top} [\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top}]^{-1} (\boldsymbol{G}\boldsymbol{b} - \boldsymbol{g})}{\sigma^2},$$

donde $G \in \mathbb{R}^{q \times p}$ con $\operatorname{rg}(G) = q$, y $Q_2 = e^{\top} e / \sigma^2$, con $e = M \epsilon$, donde M es matriz simétrica e idempotente con rango n - p.

b. (10 pts) Suponga que $G\beta = g$ y, usando $b = (X^{\top}X)^{-1}X^{\top}Y$. Muestre que

$$Gb - q = G(X^{\top}X)^{-1}X^{\top}\epsilon$$
,

 $con \ \epsilon = Y - X\beta.$

c. (15 pts) Suponga que $X^{\top}M = \mathbf{0}$, ¿son Q_1 y Q_2 independientes?