Transferable Sparse Adversarial Attack against Deep Learning Models

Wanpeng Xu

Contents

- Seminal Work
- Research Status of Adversarial Attacks
- Research Status of Adversarial Training
- Our Work Transferable Sparse Adversarial Attack

Seminal Work

x
"panda"
57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_{x}J(\theta, x, y))$ "gibbon" 99.3 % confidence

Research Status of Adversarial Attacks

White-box Attack

- FGSM
- DeepFool
- C&W
- PGD / PGD₀
- JSMA
- SparseFool
- •

Black-box Attack

- ZOO
- Boundary Attack
- UAP
- One Pixel Attack
- Pointwise Attack
- CornerSearch
- •

JUST TRY IT! JSMA!

cropped_panda.j

GPU: 5 seconds or less CPU: 1 minute or less


```
for epoch in range(epochs):
    output = model(imq)
   label = np.argmax(output.data.cpu().numpy())
   loss = loss_func(output, target)
   print('epoch={} label={} loss={}'.format(epoch, label, loss))
   if label == target_label:
                           # 攻击成功
       break
   zero_gradients(img)
                           # 梯度清零
   idx, pix_sign = saliency_map(output, img, target_label, mask)
   #添加扰动
   img.data[idx] = img.data[idx] + pix_sign * theta * (max_ - min_)
   # 达到极限的点不再参与更新
   if (img.data[idx] <= min_) or (img.data[idx] >= max_):
       print('idx={} over {}'.format(idx, img.data[idx]))
       mask[idx] = 0
       img.data.cpu()[idx] = np.clip(img.data.cpu()[idx], min_, max_)
```

Attack Result

Research Status of Adversarial Training

$$\min_{\theta} \mathbb{E}_{(x,y) \sim \mathbb{D}} \left[\max_{\delta \in B(x,\varepsilon)} \mathcal{L}_{ce}(\theta, x + \delta, y) \right]$$

- Adversarial Regularization
- Curriculum-based Adversarial Training
- Ensemble Adversarial Training
- Adversarial Training with Adaptive ϵ
- Adversarial Training with Semi/Unsupervised Learning
- Efficient Adversarial Training

•

Our Work — Transferable Sparse Adversarial Attack

Features in an adversarial example with original class "cat"

Trainable Generator Architecture

$$egin{aligned} \min_{oldsymbol{\delta}} \|oldsymbol{\delta}\|_0 \ ext{s.t.} & rg \max_{c} f(\mathbf{x} + oldsymbol{\delta})_c
eq y \implies rg \max_{c} f(\mathbf{x}_{adv})_c = y_t \ \|oldsymbol{\delta}\|_{\infty} < \epsilon \end{aligned}$$

$$\boldsymbol{\delta} = \mathbf{r} \odot \mathbf{m}$$

$$\mathbf{r} = \epsilon \cdot \mathcal{D}_1(\mathbf{z})$$

$$q(\varrho_{i,j}) = \begin{cases} 0 & \varrho_{i,j} \leq \tau \\ 1 & \varrho_{i,j} > \tau \end{cases}$$

$$P(X = k) = p^k (1 - p)^{1 - k}, k \in \{0, 1\}$$

Attack Result

root@autodl-container-90b111a9b0-190f96e6:~/autodl-tmp/TSAA_Capstone_Project/code# ./run.sh my_eval.py

Namespace(batch_size=10, eps=10, generator_weight_path='/root/autodl-tmp/TSAA_Capstone_Project_Big_Files/pretrained_generators/netG_-1_res50_eps10_epoch9_loss96.1.pth', model='res50', num_classes=10, target_tass=-1, target_model='res18', target_model_weight='/root/autodl-tmp/TSAA_Capstone_Project_Big_Files/dataset/CIFAR_10/cifar-10-batches-py/test')

Test data size: 10000

L0 norm: tensor(499.2936, device='cuda:0')

time: 0.0

Acc in Clean Image: 89.670% Acc in Adversarial Image: 27.830%

Fooling Rate:71.880%

root@autodl-container-90b111a9b0-190f96e6:~/autodl-tmp/TSAA_Capstone_Project/code# ./run.sh my_eval.py

Namespace(batch_size=10, eps=10, generator_weight_path='/root/autodl-tmp/TSAA_Capstone_Project_Big_Files/pretrained_generators/netG_-1_res50_eps10_epoch9_loss96.1.pth', model='res50', num_classes=10, target_class=-1, target_model='res34', target_model_wight='/root/autodl-tmp/TSAA_Capstone_Project_Big_Files/dataset/CIFAR_10/cifar-10-batches-py/test')

Test data size: 10000

L0 norm: tensor(499.2936, device='cuda:0')

time: 0.0

 Fooling Rate:70.340%

130 root@autodl-container-90b111a9b0-190f96e6:~/autodl-tmp/TSAA_Capstone_Project/code# ./run.sh my_eval.py

Namespace(batch_size=10, eps=10, generator_weight_path='/root/autodl-tmp/TSAA_Capstone_Project_Big_Files/pretrained_generators/netG_-1_res50_eps10_epoch9_loss96.1.pth', model='res50', num_classes=10, target_class=-1, target_model='res50' target_model_we

ight='/root/autodl-tmp/TSAA_Capstone_Project/code/pytorch_cifar/checkpoint/res50/ckpt.pth', test_dir='/root/autodl-tmp/TSAA_Capstone_Project_Big_Files/dataset/CIFAR_10/cifar-10-batches-py/test')

Test data size: 10000

L0 norm: tensor(499.2936, device='cuda:0')

time: 0.0

Acc in Clean Image: 90.650% Acc in Adversarial Image: 18.760% Fooling Rate:81.050%

Thanks for Listening!