A Cross-Layer Diversity Technique for Multi-Carrier OFDM Multimedia Networks

Yee Sin Chan, Pamela Cosman and Laurence Milstein
Department of Electrical and Computer Engineering,
University of California San Diego, CA, U.S.A.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 01 DEC 2007		2. REPORT TYPE N/A		3. DATES COVERED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
A Cross-Layer Diversity Technique for Multi-Carrier OFDM Multimedia Networks				5b. GRANT NUMBER	
THETWOIRS				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Electrical and Computer Engineering University of California San Diego, CA, U.S.A.				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited.			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF: 17. LIM				18. NUMBER OF PAGES	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	19	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Application Layer Diversity

- Multiple description coding: transmit and receive distinct descriptions through independently fading channels
 - Generate multiple distinct bitstreams (descriptions) of the source such that each description independently describes the source with a certain level of fidelity.
 - Losses of some of the descriptions will not jeopardize the decoding of correctly received descriptions.
 - Fidelity improves as the number of received descriptions increases.
 - Typically the composite quality using multiple descriptions is less than that achievable with a single description at the same net rate.

FEC-Based Multiple Description Coding

An embedded bitstream from a source coder partitioned into 5 quality levels

MDS (4,1) erasure code

Embedded bitstream: source can be reconstructed progressively from the prefixes of the bitstream.

Contiguous information symbols are spread across the multiple descriptions.

Use maximum distance separable codes (MDS) (n=4,k) erasure codes (e.g. Reed-Solomon codes)

k information symbols can be recovered if any *k* channel symbols are correctly received.

If any g out of n descriptions are received, decoding is guaranteed up to D_{α} .

Channel Model

- Assume a frequency selective environment.
- *N* independent bands, each consisting of *M* correlated subcarriers.
- $N_t = N \times M = \text{total } \# \text{ of subcarriers.}$
- Each subcarrier is assumed to experience slow flat Rayleigh fading.

APPROVED FOR PUBLIC RELEASE Cross-Layer Diversity Transmission Scheme

FEC Coding

 λ Choose optimal allocation of information symbols and parity symbols to minimize the expected distortion.

Proposed Cross-Layer Design

 Serial-to-parallel conversion: based on the rate distortion curve and packet loss PMF, an embedded bitstream is converted into N_t = N × M distinct descriptions using FEC-based multiple description coder.

APPROVED FOR PUBLIC RELEASE

Simple Diversity-Information Rate Tradeoff (Equal Error Protection, EEP)

- Information rate-diversity gain tradeoff
 - Higher diversity gain can be achieved at the expense of lower information rate.
 - Higher information rate can be achieved by sacrificing diversity gain (higher error rate)
- Degree of unequal error protection (UEP) vs. equal error protection (EEP)

Simulation Parameters

- Total number of subcarriers N_t =128. (128 descriptions)
- QPSK modulation and ideal coherent detection
- Each description consists of L=64 Reed-Solomon (R-S) symbols.
- Each Reed-Solomon symbol = 8 bits (4 QPSK symbols)
- Normalized Doppler spread $f_{nd} = 10^{-3}$
- Measure the performance using peak signal-to-noise ratio (PSNR), defined as

$$PSNR = 10\log \frac{255^2}{MSE_{avg}}$$

• MSE_{avg} = average mean square error

$$MSE_{avg} = E\left[\left(X - \hat{X}\right)^{3}\right]$$

X = original image, \hat{X} = reconstructed image

• Number of Images = 100,000

APPROVED FOR PUBLIC RELEASE

Packet Loss PMF $P_J(j)$ of the N-Band OFDM System

N = No. of Independent Bands, M = No. of Correlated Subcarriers/Band

Optimized Equal Error Protection

(PSNR vs. Number of Independent Channels N)

- Equal error protection: information rate and diversity gain tradeoff.
- For a fixed N_t =128, PSNR performance improves as N increases.
- Relatively poor performance for (N=1), frequency diversity techniques become ineffective in a flat-fading environment.

Optimal Allocation

- Relative importance of an embedded bitstream is strictly decreasing, hence less redundancy is added across the subcarriers as we move to the right.
- As *N* increases, the average FEC level decreases.
 - Less redundancy needs to be added across the subcarriers for optimal system performance.
- Degree of unequal error protection (UEP) decreases as N increases.
 - Variance of packet loss PMF $P_i(j)$ decreases.

APPROVED FOR PUBLIC RELEASE Optimized Unequal Error Protection (PSNR vs. Number of Independent Channels N)

- Unequal error protection: optimal allocation of information symbols and FEC parity symbols
- For a fixed N_t =128, there is a significant improvement in system performance measured in terms of PSNR, as N increases.

Difference in PSNR Performance Between Optimized UEP and Optimized EEP

- There is an improvement in PSNR performance by utilizing the UEP technique, especially when N is small.
- Relative advantage of UEP to EEP diminishes with increasing N.
- In some OFDM systems, the number of independent channels, *N*, might be limited. Hence, there is a significant advantage in employing the cross-layer diversity and UEP techniques.

UEP vs. EEP (Cumulative Distribution)

$$(N, M) = (1, 128)$$

SNR = 16.0 dB

UEP vs. EEP (Cont.) (Cumulative Distribution)

$$(N, M) = (1, 128)$$

 $SNR = 20.0 dB$

UEP vs. EEP (Cont.)

(Cumulative Distribution)

$$(N, M) = (4, 32)$$

SNR = 20.0 dB

UEP vs. EEP (Cont.)

(Cumulative Distribution)

$$(N, M) = (8, 16)$$

SNR = 20.0 dB

Summary

- Proposed a cross-layer diversity technique for multi-carrier OFDM systems jointly considering
 - Application layer diversity: FEC-based multiple description coding
 - Physical layer diversity: frequency diversity by channel coding across subcarriers
- Investigated the tradeoffs associated with the transmission strategy
 - Information rate and diversity gain tradeoff
 - Unequal error protection vs. equal error protection
 - Results indicate improved robustness and a substantial improvement in end-user QoS can be achieved