BUNDESREPUBLIK DEUTSCHLAND

9

Deutsche Kl.:

45 1, 9/02

(1) (1)	Offenlegu	ingsschrift	2218097
②		Aktenzeichen:	P 22 18 097.8
2		Anmeldetag:	14. April 1972
43		Offenlegungsta	g: 2. November 1972
-		•	- Continue of the Continue of
	Ausstellungspriorität:	-	·
@	Unionspriorität		
39 32	Datum:	16. April 1971	9. Dezember 1971
33	Land:	V. St. v. Amerika	
39	Aktenzeichen:	134868	208041
<u> </u>	Bezeichnung:	Herbizides Mittel und seine	Verwendung
60	Zusatz zu:		
@	Ausscheidung aus:		
10	Anmelder:	Stauffer Chemical Co., New	York, N.Y. (V. St. A.)
	Vertreter gem. § 16 PatG:	Beil, W., DiplChem. Dr. ju Wolff, H. J., DiplChem. E Rechtsanwälte, 6230 Frank	or. jur.; Beil, H. Chr., Dr. jur.;
@	Als Erfinder benannt:	Pallos, Ferenc Marcus, Wal Brokke, Mervin Edward, M	

Arnekley, Duane Randall, Sunnyvale; Calif. (V. St. A.)

RECHTSANWALTE
DR. JUR. DIPL-CHEM. WALTER BEIL
ALFRED HOEPPENER
DR. JUR. DIEL-CHEM. H.-J. WOLFF
DR. JUR. HAHS CHR. BEIL

13. April 1972

623 FRANKFURT AM MAIN-HUCHST

Unsere Nr. 17 782

Stauffer Chemical Company New York, N.Y., V.St.A.

Herbizides Mittel und seine Verwendung

Die Erfindung betrifft ein herbizides Mittel, bestehend aus einem herbiziden Wirkstoff und einem Gegenmittel, sowie ein Verfahren zur Verwendung dieses herbiziden Mittels. Das Gegenmittel entspricht der Formel

$$\begin{array}{c} 0 \\ \parallel \\ R-C-N \end{array} \begin{array}{c} R_1 \\ R_2 \end{array}$$

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamyl- alkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkin-oxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkyoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxy-halogenalkyloxyalkyl-, Hydroxyalkylcarboalkyoxyalkyl-, Hydroxyalkyl-, Thienyl-, Alkyl-dithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen

durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyloder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-, Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R, und R, gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptoalkyl-, Alkylaminoalkyl-, Alkyoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylearbamyloxyalkyl-, Cycloalkylearbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen-, Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-, 4,5-Polyalkylen-thienyl-, \alpha-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, a-Halogenalkylacetamidohalogenphenylalkyl-,

oder Cyanoalkenylreste bedeuten können oder auch R_1 und R_2 zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Morpholyl-, Alkylmorpholyl-, Azo-bicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylminoalkenylrest bilden können, wobei R_2 kein Wasserstoffatom oder Halogenphenylrest ist, wenn R_1 ein Wasserstoffatom darstellt.

Aus der Vielzahl der handelsüblichen Herbizide haben die Thiolcarbamate als solche oder im Gemisch mit anderen Herbi ziden, wie den Triazinen, eine relativ hohe, industrielle Erfolgsquote erreicht. Bei unterschiedlicher Konzentration, die je nach der Resistenz der Unkrautarten schwankt, wirken diese Herbizide auf eine große Zahl derselben sofort toxisch. Einige Beispiele dieser Verbindungen werden in den USA-Patentschriften Nr. 2 913 327, 3 037 853, 3 175 897, 3 185 720, 3 198 786 und 3 582 314 beschrieben. Die Praxis erwies jedoch, daß die Verwendung dieser Thiolearbamate als Herbizide in Getreidefeldern (crops) bisweilen starke Schädigungen der Getreidepflanzen zur Folge hat. Erfolgt die Verwendung im Boden in den empfohlenen Mengen mit dem Ziel, eine Vielzahl von breitblättrigen Unkrautarten und Gräsern zu bekämpfen, so kommt es zu schweren Mißbildungen und Verkümmerungen der Getreidepflanzen. Dieses anomale Wachstum führt zu Ertragsschmälerungen. Bei früheren Versuchen, dieses Problem zu überwinden, wurde der Getreidesamen vor dem Pflanzen mit bestimmten Gegenmitteln behandelt; vgl. USA-Patentschrift 3 131 509 Diese Gerenmittel waren nicht besonders wirksam.

Es wurde nun gefunden, daß die Pflanzen dadurch vor Schädinungen durch die Thiolearbamate als solche oder im Gemisch mit anderen Verbindungen geschützt und/oder gegen die Wirkstoffe der vorstehend genannten Patentschriften erheblich widerstandsfähiger gemacht werden können, daß man dem Boden eine Verbindung der Formel

$$R-C-N$$
 R_2

in der R, R_1 und R_2 die vorstehend genannten Bedeutungen besitzen, zuführt.

Die Infindungsgemäßen Verbindungen können durch Vermischen eines geeigneten Säurechlorids mit einem entsprechenden Amin synthetisiert werden. Gegebenenfalls kann ein Lösungsmittel wie Benzel eingesetzt werden. Die Reaktion wird vorzugsweise bei verminderten Temperaturen durchgeführt. Nach Abschluß der Reaktion wird das Endprodukt auf Raumtemperatur gebracht und kann leicht ebgetrennt werden.

Die nachstehenden Beispiele dienen der Erläuterung der Erfindung.

209845/1180

BAD ORIGINAL

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetylchlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 5 $^{\circ}$ C abgekühlt wurde. Dann wurden 4,9 g (0,05 Mol) Diallylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 4,0 g; $n_{\rm D}^{30}$ = 1,4990.

Beispiel 2

$$CHC1_2 - C-N$$
 $C_3H_7 - n$
 $C_3H_7 - n$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetylchlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 $^{\circ}$ C abgekühlt wurde. Dann wurden 5,1 g (0,05 Mol) Di-n-propylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 3,6 g; $n_{\rm D}^{30}$ = 1,4778.

Beispiel 3

$$CHCl2-C-N$$

$$CH(CH3)-C = CH$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetyl-

SAD ORIGINAL

chlorid und 80 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 °C abgekühlt wurde. Dann wurden 4,2 g (0,05 Mol) N-Methyl-N-1-methyl-3-propinylamin in 20 ml Methylendichlorid tropfenweise zugesetzt, wobei die Temperatur bei etwa 10 °C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 2,9 g; $n_{\rm D}^{30}$ = 1,4980.

Beispiel 4

Es wurde eine Lösung aus 100 ml Aceton und 5,05 g (0,1 Mol) Furfurylamin hergestellt und dann unter Zusatz von 7 ml Triäthylamin bei 15 °C gerührt. Diese Lösung wurde dann mit 5,7 g Monochloracetylchlorid versetzt und weitere 15 Minuten gerührt, während 500 ml Wasser zugesetzt wurden. Die Reaktionsmasse wurde filtriert, mit verdünnter Salzsäure in zusätzlichem Wasser gewaschen und dann auf ein konstantes Gewicht getrocknet.

Beispiel 5

Es wurde eine Lösung aus 5,7 g (0,05 Mol) Aminomethylthiazol in 100 ml Benzol und 7 ml Triäthylamin hergestellt. Diese Lösung wurde bei 10 - 15 °C gerührt und dann mit 5,2 ml (0,05 Mol) Dichloracetylchlorid tropfenweise versetzt. Das Reaktionsgemisch wurde 10 Minuten lang bei Raumtemperatur gerührt. Dann wurden 100 ml Wasser zugesetzt, und die Lösung wurde anschließend mit Benzol gewaschen, über Magnesiumsulfat getrocknet und dann zur Entfernung des Lösungsmittels filtriert.

Es wurde eine Lösung aus 200 ml Aceton, 17,5 g (0,05 Mol) 2-Amino-6-brombenzothiazol und 7 ml Triäthylamin hergestellt. Die Lösung wurde unter Kühlen bei 15 °C gerührt. Dann wurden langsam 5,2 ml (0,05 Mol) Dichloracetylchlorid zugesetzt. Diese Lösung wurde 10 Minuten lang bei Raumtemperatur gerührt. Der Feststoff wurde abfiltriert, mit Äther und dann mit kaltem Wasser gewaschen und anschließend nochmals filtriert und bei 40 - 50 °C getrocknet.

Beispiel 7

$$n-C_9H_{19}-C-N$$
 $C(CH_3)_2-C=CH$

2,4 g 3-Methyl-3-butinylamin wurden in 50 ml Methylenchlorid aclöst; diese Lösung wurde mit 4,5 g Triäthylamin und anschließend unter Rühren und Kühlen in einem Wasserbad tropfenweise mit 7,6 g Decanoylchlorid versetzt. Nach Abschluß der Renktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 7,1 g des Produktes erhalten wurden.

Beispiel 8

$$\begin{array}{c}
\text{CH}_{2} \\
\text{CH}_{2}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{2} - \text{CH} = \text{CH}_{2} \\
\text{CH}_{2} - \text{CH} = \text{CH}_{2}
\end{array}$$

Es wurde eine Lösung aus 5,9 g Diallylamin in 15 ml Methylenchlorid und 6,5 g Triäthylamin hergestellt. Dann wurden unter

209845/1180

BAD ORIGINAL

Rühren und Kühlen in einem Wasserbad 6,3 g Cyclopropancarbonylchlorid tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,2 g des Produktes erhalten wurden.

Beispiel 9

$$\begin{array}{c|c}
 & O \\
 & \text{ii} \\
 & \text{CH}_2 - \text{CH} = \text{CH}_2
\end{array}$$

$$\begin{array}{c|c}
 & \text{CH}_2 - \text{CH} = \text{CH}_2
\end{array}$$

Es wurde eine Lösung aus 4,5 g Diallylamin in 15 ml Methylenchlorid und 5,0 g Triäthylamin hergestellt. Dann wurden 7,1 g o-Fluorbenzoylchlorid unter Rühren und Kühlen in einem Wasserbad tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,5 g des Produktes erhalten wurden.

Beispiel 10

Zur Herstellung von N,N-Bis(2-hydroxyäthyl)-dichloracetamid wurden 26,3 g Diäthanolamin in Gegenwart von 25,5 g Triäthylamin in 100 ml Aceton mit 37 g Dichloracetylchlorid umgesetzt. Dann wurden 6,5 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid in 50 ml Aceton gelöst und anschließend mit 4 g Methylisocyanat in Gegenwart von Dibutylzinndilaurat und Triäthylamin als Katalysatoren umgesetzt. Das Reaktionspredukt wurde unter Vakuum abgestreift, wobei 8,4 g des Produktes erhalten wurden.

7,8 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 5,6 g Malonylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 12

$$CH_2 = CH - CH_2$$
 $N - C - CH_2 - CH_2 - CH_2 - CH = CH_2$
 $CH_2 = CH - CH_2$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,7 g des Produktes erhalten wurden.

Beispiel 13

6,7 g N-Mcthyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise

zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 14

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 8,1 g o-Phthaloylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 10,9 g des Produktes erhalten wurden.

Peispiel 15

3,3 g N-Methyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 4,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 9,2 g Diphenylacetyl-chlorid unter Kühlen und Rühren tropfenweise zugesetzt. Mach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,9 g des Produktes erhalten wurden.

209845/1180

JAMONES COS

BAD ORIGINAL

$$\begin{array}{c|c}
 & O \\
 & C \\$$

4.3 g Diallylamin wurden in 50 ml Aceton gelöst, wobei 7,4 g Fhthelsäureanhydrid portionsweise unter Rühren zugesetzt wurden. Das Lösungsmittel wurde unter Vakuum abgestreift, wobei 13,0 g des Produktes erhalten wurden.

Budepiel 17

$$C = C - ON = CH^3$$

$$C + OH - C - C = CH$$

$$CH^3$$

3,2 g N(1,1-Dimethyl-3-propinyl)0-phthalamidsäure wurden in 50 ml Methanol gelöst und mit 9,6 g Natriummethylat in Form einer 25 %igen Lösung in Methanol unter Rühren und Kühlen portionsweise versetzt. Das Lösungsmittel wurde unter Vakuum absostraift oder entfernt, wobei 9,0 g des Produktes erhalter wurden. Das Zwischenprodukt N(1,1-Dimethyl-3-propinyl)0-phthalamat wurde aus 29,6 g Phthalsäureanhydrid und 16,6 g 3-Amino-3-methylbutin in 150 ml Aceton hergestellt. Das Zwischenprodukt wurde mit Petroläther in Form eines weißen Footstoffes ausgefällt und ohne weitere Reinigung verwandt.

Beispiel 18

$$CIICl2-C-N$$

$$C2H5$$

$$C2H5$$

Din 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Trapftrichter versehen. Dann wurden 7,7 g Diäthylamin (0,105

Mol), 4,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt und in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portions-weise zugesetzt. Das Gemisch wurde eine weitere Stunde gerührt und in ein Eisbad getaucht. Es wurde dann einer Phasentrennung unterworfen, und die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum konzentriert, wobei 16,8 g des Produktes erhalten wurden.

Baispiel 19

$$CH_3$$
 - C = C - CH_2 -

50 ml Methylendichlorid wurden mit 4,0 g (0,025 Mol) N,N-Diallylcarbamoylchlorid versetzt. Dann wurden 1,8 g (0,025 Mol) 2-Butin-1-ol zusammen mit 2,6 g Triäthylamin in 10 ml Methylenchlorid tropfenweise zugesetzt. Das Reaktionsprodukt wurde über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen und über Magnesiumsulfat getrocknet, wobei 4,0 g des Produktes erhalten wurden.

Beispiel 20

$$N = C-S-CH_2-C-N$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

9,7 g (0,1 Mol) Kaliumthiocyanat wurden in 100 ml Aceton gelöst. Dann wurden 8,7 g (0,05 Mol) N,N-Diallylchloracetamid. zusammen mit 10 ml Dimethylformamid bei Raumtemperatur zugesetzt. Das Reaktionsprodukt wurde über Nacht gerührt. Das Reaktionsprodukt wurde teilweise abgestreift. Dann wurde Was-

ser zusammen mit zwei Portionen von 100 ml Äther zugesetzt. Der Äther wurde abgetrennt, getrocknet und abgestreift, wobei 7,2 g des Produktes erhalten wurden.

Beispiel 21

Es wurde eine Lösung von 50 ml Benzol, die 7,4 g (0,05 Mol) Dichloracetylchlorid enthielt, hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,0 g (0,05 Mol) Cyclopropylamin und 5,2 g Triäthylamin in 2ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 50 - 55 °C gerührt. Das Produkt wurde wie in den vorstehenden Beispielen aufgearbeitet, wobei 5,7 g des Produktes erhalten wurden.

Beispiel 22

4,7 g (0,032 Mol) Piperonylamin und 1,2 g Natriumhydroxid in 30 ml Methylenchlorid und 12 ml Wasser wurden bei -5° bis 0°C mit 4,4 g (0,03 Mol) Dichloracetylchlorid in 15 ml Methylenchlorid versetzt. Man rührte das Gemisch weitere 10 Minuten bei etwa 0°C und ließ es sich dann unter Rühren auf Raumtemperatur erwärmen. Die Schichten wurden abgetrennt, und die organische Schicht wurde mit verdünnter Salzsäure, einer 10 %igen Natriumcarbonatlösung und mit Wasser gewaschen und getrocknet, wobei 5,9 g des Produktes erhalten wurden.

209845/1180

BAD ORIGINAL

Eine Lösung von 75 ml Benzol, die 5,7 g m-Chlorcinnamylchlorid enthielt, wurde hergestellt. Diese Lösung wurde
bei einer Temperatur von 5 - 10 °C mit 3,2 g Diallylamin
und 3,3 g Triäthylamin in 2 ml Benzol versetzt. Es bildete
sich ein Niederschlag, und das Gemisch wurde zwei Stunden
bei Raumtemperatur und eine Stunde bei 55 °C gerührt. Das
Produkt wurde gewaschen und aufgearbeitet, wobei 5,8 g des
Produktes erhalten wurden.

Beispiel 24

$$\mathsf{CHCl}_2 - \mathsf{CH}_3 \\ \mathsf{CH}_3$$

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 11,9 g 2,4-Dimethylpiperidin, 4,0 g Natronlauge und 100 ml Methylenchloril in den Kolben gefüllt, und das Gemisch wurde in einem Trockencis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde eine Stunde lang gerührt und in das Eisbad getaucht. Dann wurde es einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und in einem Rotationsverdampfer unter einem mit einer Wasserstrahlpumpe erzeugten Vakuum konzentriert wurde. Dabei wurden 13,3 g des Produktes erhalten.

209845/1180

高州的市 300年

Jamesho das

Brispicl 25

Tropftrichter versehen. Dann wurden 14,6 g (0,105 MoI)

cis-trans-Decahydrochinolin und 4,0 g Natronlauge zusammen

mit 100 ml Methylenchlorid zugesetzt. Dann wurden 14,7 g.

Dichloracetylchlorid portionsweise zugesetzt. Das Reaktions
comisch wurde aufgearbeitet, wobei es etwa eine Stunde lang

gerührt, in ein Eisbad getaucht und dann einer Phasentrennung

untervorfen wurde; dann wurde die untere organische Phase

mit zwei Fortionen von 100 ml verdünnter Salzsäure und zwei

Fortionen von je 100 ml 5 %igem Natriumcarbonat gewaschen,

über Magnesiumsulfat getrocknet und konzentriert, wobei 22,3 g

des Produktes erhalten wurden.

Seispiel 29

Tin 500 ml-4-Halskolben wurde mit Rührer, Thermometer und Trepftrichter versehen. Dann wurden 13,6 g (0,104 Mol) 3,3 -Iminobis-propylamin zusammen mit 12,0 g Natronlauge und 150 ml Methylenchlorid zugesetzt. Anschließend wurde das Gemisch in einem Trockeneis-Accton-Bad gekühlt, und 48,4 g (0,300 Mol) Dichloracetylchlorid wurden portions-weise zugesetzt. Dabei bildete sich ein öliges Produkt, das in Methylenchlorid nicht löslich war; dieses Produkt uurde abgetrennt, mit zwei Portionen von 100 ml verdünster Selzsäure gewaschen und über Nacht stehen gelassen. Am nächsten Morgen wurde fas Produkt mit zwei Portionen von je 100 12 5 bigem Natriumcarbonat gewaschen, und das Produkt wurde

209845/1180

RAD ORIGINAL

in 100 ml Äthanol aufgenommen, über Magnesiumsulfat getrocknet und konzentriert, wobei 21,0 g des Produktes erhalten wurden.

Boispiel 27

The First Substitute of the Standard of the Rührer, Thermometer and Tropftrichter versehen. Dann wurden 7,5 g (0,0525 Mol) Tetrohydrofurfuryl-n-propylamin, 2,0 g Natronlauge and 100 ml Mathylenchlorid zugesetzt. Anschließend wurden 7,4 g (0,05 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemaisch wurde eine weitere Standard in einem Eisbad gerührt und dann einer Frasentrennung unterworfen; danach wurde die untere organische Phase mit zwei Portionen von 100 ml versühnter Salzsäure und zwei Fortionen von 100 ml einer 5 %igen Bachiumearbonatlösung gewaschen, über Magnesiumsulfat gettricknet und konzentriert, wobei 12,7 g des Produktes erhalten wurden.

Beispiel 28

Das Beispiel 27 werde vollständig wiederholt, mit der Ausnahme, daß 8,9 g Piperidin als Amin verwandt wurden.

beispiel 29

Das Beispiel 28 wurde is w santlichen vollständig wiederhilt; mit der Ausnahm, daß 9,1 g Morpholin els Amin verwandt von den.

3,2 g Benzaldehyd und 7,7 g Dichloracetamid wurden mit 100 ml Benzol und etwa 0,05 g Paratoluolsulfonsäure vereint. Das Gemisch wurde solange unter Rückfluß erhitzt, bis kein Wasser mehr überging. Beim Abkühlen kristallisierte das Produkt aus Benzol, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 31

2,5 3-Amino-3-methylbutin wurden in 50 ml Aceton gelöst, und dann wurden 3,5 g Triäthylamin zugesetzt. Anschließend wurden 6,0 g Adamantan-1-carbonylchlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und der feste Stoff wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 6,5 g des Produktes erhalten wurden.

Beispiel 32

$$N = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH - C$$

$$CH_{3} = C - C - NH$$

$$CH_{4} = C - C - C$$

$$CH_{4} = C$$

$$CH_{4} = C$$

$$CH_{4} = C$$

$$CH_{$$

5,1 g 2-Cyanoisopropylamin wurden in 50 ml Aceton gelöst,

und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 5,3 g Benzol-1,3,5-tricarbonsäurechlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und das feste Produkt wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 7,6 g des Produktes erhalten wurden.

Beispiel 33

6,0 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 6,6 g 3,6-Endomethylen-1,2,3,6-tetrahydrophthaloylchlorid unter Rühren und Kühlen tropfenweise zugesetzt.

Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,3 g des Produktes erhalten wurden.

und dann wurden 4,5 g Triäthylamin zugesetzt. Anschließend wurden 7,2 g trans-2-Phenylcyclopropanearbonylchlorid unter Künlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,2 g des Froduktes erhalten wurden.

Es wurde eine Lösung aus 4,0 g (0,03 Mol) 2-Methylindolin, 7,0 ml Triäthylamin und 100 ml Methylenchlorid hergestellt. Dann wurden 2,9 ml Dichloracetylchlorid im Verlauf von et einer Minute zugesetzt, wobei die Temperatur durch Kühlung mit Trockeneis unter 0 °C gehalten wurde. Nachdem sich die Lösung auf Raumtemperatur erwärmt hatte, wurde sie eine Stunde lang stehen gelassen; anschließend wurde sie mit Wasser und dann mit verdünnter Salzsäure gewaschen, über Magnesiumsulfat getrocknet und eingedampft, wobei ein Feststoff erhalten wurde, der mit n-Pentan gewaschen wurde. Dabei wurden 5,0 g des Produktes erhalten.

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 8,9 g Cyclooctyl-n-propylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt, und das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen. Die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert, wobei 9,5 g des Produktes erhalten wurden.

$$\mathsf{CH}_{2}\mathsf{C1-C-N} \underbrace{\mathsf{C}_{2}\mathsf{H}_{5}}^{\mathsf{C}_{2}\mathsf{H}_{5}} \\ \mathsf{CH}_{2} \underbrace{\mathsf{C}_{1}\mathsf{C}_{1}\mathsf{C}_{1}}^{\mathsf{C}_{2}\mathsf{H}_{5}} \\ \mathsf{C}_{1}\mathsf{C}_{2}\mathsf{C}_{2}\mathsf{C}_{1} \\ \mathsf{C}_{1}\mathsf{C}_{2}\mathsf{C}_{1} \\ \mathsf{C}_{1}\mathsf{C}_{2}\mathsf{C}_{2}\mathsf{C}_{1} \\ \mathsf{C}_{2}\mathsf{C}_{2}\mathsf{C}_{2}\mathsf{C}_{2} \\ \mathsf{C}_{3}\mathsf{C}_{2}\mathsf{C}_{2}\mathsf{C}_{3} \\ \mathsf{C}_{1}\mathsf{C}_{2}\mathsf{C}_{2}\mathsf{C}_{3} \\ \mathsf{C}_{2}\mathsf{C}_{2}\mathsf{C}_{3}\mathsf{C}_{2}\mathsf{C}_{3} \\ \mathsf{C}_{3}\mathsf{C}_{2}\mathsf{C}_{3}\mathsf{C}_{3} \\ \mathsf{C}_{4}\mathsf{C}_{2}\mathsf{C}_{2}\mathsf{C}_{3}\mathsf{C}_{3} \\ \mathsf{C}_{4}\mathsf{C}_{2}\mathsf{C}_{3}\mathsf{C}_{3} \\ \mathsf{C}_{5}\mathsf{C}_{2}\mathsf{C}_{3}\mathsf{C}_{3} \\ \mathsf{C}_{5}\mathsf{C}_{3}\mathsf{C}_{3} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{3} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{3} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5} \\ \mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5} \\ \mathsf{C}_{5} \\ \mathsf{C}_{5} \\ \mathsf{C}_{5}\mathsf{C}_{5} \\ \mathsf{C}_{5} \\ \mathsf{C}_{5}$$

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,8 g (0,0525 Mol) p-Methylbenzyläthylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt. Das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g (0,05 Mol) Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und anschließend mit zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert wurde. Dabei wurden 9,5 g des Produktes erhalten.

4,7 g Aminopyridin wurden zusammen mit 100 ml Aceton in ein Reaktionsgefäß gefüllt und bei 10 - 15 °C gerührt. Dann wurden 7,0 ml Triäthylamin tropfenweise zugesetzt. Danach wurde das Reaktionsgemisch im Verlauf von fünf Aceton Minuten mit 5,25 ml Dichloracetylchlorid in 10 ml/versetzt und bei Raumtemperatur gerührt. Die Feststoffe wurden abfiltriert und mit Aceton gewaschen, wobei 10,0 g des Produktes erhalten wurden.

Beispiel 39

Eine Lösung von 8,1 g (0,05 Mol) 4-Aminophthalimid in 100 ml Dimethylfuran wurde im Verlauf von 5 Minuten bei 0 - 10 °C unter Rühren mit 5,0 g Dichloracetylchlorid versetzt. Dann wurden 7,0 ml Triäthylamin zugesetzt. Die Reaktionsmasse wurde eine halbe Stunde lang bei Raumtemperatur gerührt, und dann wurde ein Liter Wasser zugesetzt. Anschließend wurde sie mit Wasser filtriert und getrocknet, wobei 12,0 g des Produktes erhalten wurden.

Zur Herstellung der Verbindung dieses Beispiels wurden 5,4 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid mit 4,3 g Isopropylisocyanat in 50 ml Aceton in Gegenwart von Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren umgesetzt. Dabei wurden 8,2 g des Produktes erhalten.

Beispiel 41

Zur Herstellung der Verbindung dieses Beispiels wurden 3,6 g N,N-Bis(2-hydroxyäthyl)-chloracetamid in Gegenwart von 50 ml Aceton und Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren mit 5,0 g Cyclohexylisocyanat umgesetzt. Die Reaktionsmasse wurde auf Rückflußtemperatur erhitzt und unter Vakuum abgestreift. Dabei wurden 6,9 g des Produktes erhalten.

15 g Aceton und 12,2 g Äthanolamin wurden in 150 ml Benzol vereint und solange unter Rückfluß erhitzt, bis kein weiteres Wasser mehr überging. Bei der Untersuchung der so entstandenen Lösung ergab sich, daß sie 2,2-Dimethyl-1,3-oxazolidin enthielt. Ein Viertel der Benzollösung (0,05 Mol) wurde mit 7,4 g Dichloracetylchlorid und 5,5 g Triäthylamin umgesetzt, mit Wasser gewaschen, getrocknet und unter Vakuum abgestreift, wobei ein leicht dunkelgelber Feststoff erhalten wurde. Ein Teil dieses Feststoffes wurde aus Äther umkristallisiert, wobei ein weißes Produkt erhalten wurde.

Analog hierzu wurden weitere Verbindungen unter Verwendung der entsprechenden Ausgangsmaterialien wie vorstehend aufgeführt hergestellt. In nachstehender Tabelle werden Beispiele erfindungsgemäßer Verbindungen zusammengestellt. Die den Verbindungen zugeordneten Nummern werden im folgenden beibehalten.

209845/1180

ing s	R2	-CH ₂ -CH=CH ₂		# #0 #10 #10 #10 #11 #10 #11 #10 #11 #10 #11 #10 #11 #10 #11 #10 #11 #10 #11 #10 #11 #10 #11 #10 #11 #10 #11 #1	н	-CH(CH ₃)-C CH		-CH ₂ (0)	-CH2-CH-C.H-	N N
Tabelle I (Fortsetzung:	П		$-cH_2^{C1}$ $-c(cH_3)_2$ $= cH_2^{C1}$		$-cc_{13}$ $-c(cH_{3})_{2}$ $-c = cH_{3}$		-CHC1 ₂ -CH ₂ -CH _{=CH₂}	-сн ₂ с1 н	-CEC1 ₂ H	
	Verbindung Nr.	1.4	15	16		18	19	20	21 -(66

209845/1180

: Sun	R Z	-сн(сн ₃)-с≡сн	-ch2-ch=ch2 -ch2-ch=ch2	$-c(cH_3)_2-c\equiv cH$	-CH ₂ -CH=CH ₂	$-cH(cH_3)-c=cH$	$-C(CH_3)_2-C=N$	-CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	-сн(сн ²)-с - сн	-c(сн ₃) ₂ -с := св	-сн(сн ₃)с - : сн
Tabelle I (Fortsetzung:	H. H.	-c-d-c ₂ H ₅	-c-c-c ₂ H ₅ -c_H ₂	-CH2-CH(CH3)-CH2-t-C4H9 H	-c(cH ₃) ₂ *c ₃ H ₇ -cH ₂ -	$-cH_2-t-c_4H_9$	-0H2-t-C4H9	-CH(CH ₃)-C ₃ H ₇ -CH ₂ -	~сн(сн ₃)-с ₃ н ₇ -сн ₃	-CH(CH ₃)-C ₃ H ₇ H	1-C ₃ H ₇
	Verbindung Nr.	62.	. 30	31	32	33.	.34	. 35	36	37	38

209845/1180

	Tabelle I	Tabelle I (Fortsetzung:	
ferbindung Nr.	æ	H.	В.
59	-C ₁₃ H27	CH2-CH=CH2	-ch2ch=ch2
40	-c ₁₁ H23	CH2-CH-CH2	-ch2ch=ch2
41 .	-c ₁₁ H ₂₃	щ	$-c(cH_3)_2-c \Longrightarrow cH$
42	-c ₉ H ₁₉	$-cH_2-cH=cH_2$	-cH2-CH=CH2
43	-c ₉ H ₁₉	щ	$-c(cH_3)_2-c \equiv cH$
44	-c6H13	-ch2-ch*ch2	-CH2-CH=CH3
45	-c _{6H13}	-сн ₃	-CH(CH ₃)-C == CH
46	-c6H13	щ	-c(cH ₃) ₂ -c == cH
47	- C4H9	щ	$-c(cH_3)_2-c \equiv cH$
48	-c ₃ H ₇	-CH2-CH=CH2	-ch2-ch=ch2
49	-C3H7	-0H ₃	-сн (сн ²)-с == сн
50.	-c ₃ H ₇	¤	$-c(cH_3)_2c=cH$
51	-CH ₃	-CH ₂ -CH=CH ₂	-CH2-CH=CH2

209845/1180

••
60
₫
3
unz
Ξ
0
Ø
دب
rts
0
Ę.
н
Н
e H
le I
lle I
elle I
belle I
abelle I

Verbindung Nr.	æ	R ₁	R 22
. 52	-ch ₃	 , pa	$-c(cH_3)_2-c = cH$
53	-c(cH ₃)-cH ₂	щ	$-c(cH_3)_2-c \equiv cH$
54	-CE=CE-CH ₃	-ch2-ch=ch2	-CH2-CH=CH2
55	-CH-CH-CH ₃	#	$-c(cH_3)_2-c=cH$
26	-CE-C(CH ₃) ₂	- CH ₃	-сн(сн ₃)-с == сн
57	-CH-C(CH ₃) ₂	ш	$-c(cB_3)_2-c=cH$
28	-CH-CH-CH-CH-CH ₂	CH2-CH2	-ch2-ch=ch2
59	-CH=CH-CH=CH-CH	щ	$c(cH_3)_2^{C} \equiv cH$
09	сн / сн ₂	-CH2-CH=CH2	-CH2-CH=CH2
61	CHZ CHZ	-cH ₃	-сн(сн ₃)-с = сн

-он(сн₃)-с = он -CH2-CH=CH2 $-ch_2-ch=ch_2$ $-cH_2-cH=cH_2$ Tabelle I (Fortsetzung: 띮 Verbindung Nr. 62 .29 99 64 **6**4

	R2	-CH2-CH=CH2	-ен(он3)-с. сн	-с(сн ₃) ₂ -с тон	-cH ₂ -cH ₌ cH ₂	во - о-(² но)но-	-0(сн ³) ² -0 — сн	-ch2-ch=ch2	
Tabelle I (Fortsetzung:	R	-CH ₂ -CH=CH ₂	-сн ₂	Ħ	-сн ₂ -сн ₂	-cH ₂	ш	-сн ₂ -сн " сн ₂	
Tabelle I	ద			√ (a)		-CH-CH ₂	-ch-ch ₂	CH2 CH2	-
	Verbindung Nr.	89	69	70	7.1	72	73	74	

Werbindung Nr.

R

-0H₂
$$<$$
 S

-0H₃

-0H₃

76

-0H₂ $<$ S

-0H₃

-0H(0H₃)-0 = 0H

77

 $<$ $<$ $<$ $<$ $<$ CH₂-CH=0H₂

-0H₃

-0H(0H₃)-0 = 0H

78

 $<$ $<$ $<$ $<$ $<$ CH₂-CH=0H₂

-0H₃

-0H(0H₃)-0 = 0H

79

 $<$ $<$ $<$ $<$ CH₃

-0H(0H₃)-0 = 0H

79

 $<$ $<$ CH₃

-0H₃

-0H(0H₃)-0 = 0H

 $<$ $<$ CH₃

-0H(0H₃)-0 = 0H

 $<$ CH₃

-0H(0H₃)-0 = 0H

Verbindung Nr. 81 82 84 85 86	-CBr ₃	Tabelle I (Fortsetzung: R1 -CH2-CH=CH2 -OH3 H H H H H H H H H H H H	$ \frac{R_2}{-cH_2-cH_2-cH_2} $ $ -cH(cH_3)-c-cH_2 $ $ -c(cH_3)_2-c-cH_2 $ $ -cH_2-cH_2-cH_2 $ $ -cH_2-cH_2-cH_2 $ $ -cH_2(cH_3)_2-c-cH_2 $ $ -cH(cH_3)_2-c-cH_2 $ $ -cH(cH_3)_2-c-cH_2 $
66 6	🖒 ៖	-сн ² -сн = сн ²	-CH ₂ -CH≖CH ₂
06	61	-c _H ₂	-сн (сн ₃)-с сн

	R ₂	-сн(сн ₃)-с-сн	-ch2cH=cH2	-сн(сн ³)-с - св	-с(сн ²) ² -с сн	-сн ₂ -сн=сн ₂	-с(сн ₃) ₂ -с сн	-сн(сн ₃)-с = сн
Tabelle I (Fortsetzung:	L L	-CH ₂	-ch ₂ ch=ch ₂	-CH ₃	щ	-CH2-CH=CH2	·Ħ	-сн ₃
Tabelle I	ez			€ 10 C1		—		o ch ₃
	Verbindung Nr.	91	. 26	93	94	95	. 96	

209845/1180

Werbindung Nr. H. H. H. H.
$$\frac{R_2}{1}$$

98

0 c_{H_3}

008

99

008

008

100

008

100

008

101

009

102

H. $-c(G_{H_3})_2 - c = OH$

008

009

009

009

009

H. $-c(G_{H_3})_2 - c = OH$

101

009

009

H. $-c(G_{H_3})_2 - c = OH$

102

009

009

H. $-c(G_{H_3})_2 - c = OH$

	2 H	-с(сн ²) ² -с сн	-сн(сн ³)-с сн	-CH ₂ -CH=CH ₂	-сн(сн ²)-с сн	-CH2-CH=CH2	-c(cH ₂) ₂ -c cH	-CH ₂ -CH=CH ₂
Tabelle I (Fortsetzung):	R.	H	-CH ₃	-CH ₂ -CH=CH ₂	-cH ₃	-CH2-CH=CH2	#	-CH2-CH=CH2
Таре	æ		10 \\		Br	=-		S
	Verbindung Nr.	109	110	111	112	113	114	115

	R ₂	-с(сн ₃) ₂ -с ;= сн	-с ₂ н ₄ он	"-CH2-CH2-CH2-	-сн ₂ -сн-0-s0 ₂ -сн ₃	-сн(сн ₃)-с — сн	но о- (сн) - о	$-cH(cH_3)-c = CH$	-с(сн ₃) ₂ -с = он
Tabelle I (Fortsetzung):	F ₁	щ	-с ₂ н ₄ он	-cH ₂ -CH ₂ -0-C-CHCl ₂	$-c_{\rm H_2}-c_{\rm H_2}-0-s_{\rm O_2}-c_{\rm H_3}$	-ca ₅	-0H3	- CH ₂	Ħ
Tabel	æ		-CHC12	-CHC1 ₂	-CHC12	- \		-CHBr-CH3	-CHBr-CH ₃
	Verbindung Nr.	116	711	118	119	120	121	122	123

209845/1180

(Fortsetzung)
belle I
Tab

82 8	$-cH_2-cH=cH_2$ $-cH(cH_3)-c == cH$	$-c(cH_3)_2-c = cH$ $-c(cH_3)_2-c = cH$	$-cH_2-cH=cH_2$ $-cH(cH_3)-c=cH$	-CH ₂ -CH ₂ CI	-ch2-ch2-0-c-NH-ch3	-CH2-CH-0-C-0-CH3
R	$-cH_2-cH=cH_2$ $-cH_3$	ш ш	-CH ₂ -CH=CH ₂ -CH ₃	-с ₂ -сн ₂ сл	-CH2-CH2-0-C-NH-CH3	-CH2-CH2-CH2-CH3
æ	-CH ₂ -CH ₂ C1 -CH ₂ -CH ₂ C1	-CH ₂ -CH ₂ Cl -CBr(CH ₃) ₂	-ch ₂ I -ch ₂ I	-0421 -0461 ₂	_CHC1_2	-CHC12
Verbindung Nr.	124 125	126	128 129	130 131	132	133

	Tabell	Tabelle I (Fortsetzung):	·
erbindung Nr.	æ	E	С
134	-chc1 ₂	-сн ₂ -сн ₂ -о-с ₂ н ₅	-ch2-ch2-0-c-c2h5
135	-cHC12	-сн ₂ -сн ₂ -о-с-s-с ₂ н ₅	-ch2-ch2-0-c-s-c2 ^E 5
136	-CH2-	-CH2-CH=CH2	-CH2-CH=CH2
137	-0H2	-CH ₂	-сн(сн ₃)-с сн
138	-0H2	Ħ	-с(сн ₃) ₂ -с = он
139	-CH2-CH2	-cH2-CH=CH2	-CH2-CH=CH2
140	-CH2-CH2	-cH ₃	$-ch(ch_3)-c\equiv ch$

	R2	-ch ₂ -ch=ch ₂	-он(он ³)-с =он	-CH2-CH=CH2	-сн(сн ₃)-с =≡ сн	-c(cH ₃) ₂ -c : cH	-сн ₂ -сн=сн ₂	-CH(CH ₃)-C CH
Tabelle I (Fortsetzung):	R ₁	-CH ₂ -CH=CH ₂	-сн ₃	-CH2-CH=CH2	сн ₃ -	щ	-сн2-сн=сн2	cH ₃
Tabelle I	E			-CH ₂ -C-N(CH ₂ -CH=CH ₂) ₂	O CH ₂ -CH ₂ -C-N-GH-C== CH CH ₂	-CH ₂ -C-NH-C(CH ₃) ₂ C CH	-c-N(CH ₂ -CH=OH ₂) ₂	$-c-N(cH_3)-cH(cH_3)-c=cH$
	Verbindung Nr.	141	142	143	144	145	146	147

Tabelle I (Fortsetzung):

. R2	с(сн ₃) ₂ -с: · сн	-ch2-ch=ch2	-сн(сн ²)-с сн	-ch ₂ -ch=ch ₂	-сн(сн3)-с ≡ сн	-cH2-CH=CH2
R ₁	Ħ	-ch ₂ -ch=ch ₂	снэ-	-CH2-CH=CH2	CH ₃	-ch2-ch=ch2
ces	$\begin{array}{c} 0 \\ -c-nH-c(cH_3)_2-c = cH \end{array}$	о -сн ₂ -сн ₂ -с-м (сн ₂ -сн-сн ₂) ₂	енги сну - сну - сну сну) - сну - сну - сну - сну - сну - сну	-(CH ₂) ₅ -C-N(CH ₂ -CH=CH ₂) ₂	$-(cH_2)_3-c-N(cH_3)-cH(cH_3)-c = cH$	-(cH ₂) ₄ -c-N(cH ₂ -CH=CH ₂) ₂
Verbindung Nr.	148	. 149	. 150	151	152	153

	Tabelle I (Fortsetzung):	
Verbindung Nr.	R R	.B.2
154	$-(cH_2)_4-c-N(cH_3)-cH(cH_3)-c=cH$	-сн(сн ²)-с == сн
155	$-c(cH_3)_2-c-N(cH_3)-cH(cH_3)-c=cH$	-сн(сн ₃)-с ≔ сн
156	$-(cH_2-c(cH_3)_2-cH_2-c-NH-c(cH_3)_3-c=cH$ H	-с(сн ₃) ₂ -с — сн
157	-CH ₂ -0-CH ₂ -C-N(CH ₂ -CE=CH ₂) ₂ -CH ₂ -CH ₂ CH ₂	-CH2-CH=CH2
158	$-cH_2-0-cH_2-c-N(cH_3)-cH(cH_3)-c \Longrightarrow cH$	-сн(сн ₃)-с= сн
159.	CH2-CH2 CH2-CH2 M(CH -CH2-CH)	-CH ₂ -CH=CH ₂

Tabelle I (Fortsetzung):

Werbindung Nr.

B.

B.

B.

B.

CH(CH₃)-C=-CH

1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 $^$

209845/1180

	н, 2	-ch ₂ -ch=ch ₂	$-c(c_{\rm H_3})_2-c=c_{\rm H}$	-сн2-сн=сн2	-с(сн ²) ² -с. сн	-CH2-CH=CH2	-сн(сн ₃)-с ==сн
Tabelle I (Fortsetzung):	$\frac{R}{1}$	-CH ₂ -CH=CH ₂	н	-сн ₂ -сн=сн ₂	щ	-сн ₂ -сн=сн ₂	с но-
Tabelle I	•	-c(cH ₃) ₂ -c-N(CH ₂ -CH=CH ₂) ₂ 0	-c(ch ₃) ₂ -c-nh-c(ch ₃) ₂ -c ch	NO2	NO2	2 on - 1	_/_ NO ₂
	Verbindung Nr.	164	165	7)— ————————————————————————————————————	168)— 691

	R ₂	-с(сн ³) ⁵ с св	-e(сн ₃) ₂ с - сн	-с(сн ₃) ₂ с - он	-62 ^H 5	-CH2-CH=CH2
Tabelle I (Fortsetzung):	E E	ш	in i	Ħ	-c ₂ H ₅	i-c ₅ H ₇
Tabel	CK	HO-D=O	0=C-0Na	0=c-0_NH3 ⁺ c(cH ₃)-c=+ CH	-GHC1 ₂	-CHG1 ₂
	Verbindung Nr.	176	177	178	179	180

<u></u>
(Fortsetzung)
н
Tabelle

erbindung Mr.	es	R	R2
181	-CHCL2	-c ₅ H ₇	-CH2-CH-CH2
182	-chc1 ₂	n-C4H9	-ch2-ch=ch2
163	-0HC1 ₂	-cH ₂ -CH=CH ₂	-cH2-ccl=cH2
184	-chc1 ₂	-c ₃ H ₇	$-cH_2-ccl=cH_2$
185	-cHCl ₂	i-C4H9	-CH ₂ -CH=CH ₂
786	-chcl ₂	-cH2-c(cH3)=CH2	-CH2-CH=CH2
187	-chc1 ₂	n-c4H9	sec-C4H9
188	-cHC12	n-C4H9	1-C4H9
189	-chc1 ₂	n-C4H9	$i-c_3H_7$
190	-chcl ₂	1-C4H9	i-C3H7
191	-CHC12 .	1-C4H9	n-c ₂ H ₇
192	-CHC12 .	sec-C ₄ H ₉	n-C ₃ H ₇

209845/1180

	. Н.2	n-C ₂ H ₇	i-C4H9	, , , , , , , , , , , , , , , , , , ,	_ 	-NH2	-CH ₂ -CH=CH ₂	$=c\sqrt{N}(cH_3)_2/2$	$=c\sqrt{N}(cH_3)_2/2$	-CH2-CH=CH2
Tabelle I (Fortsetzung):	H,	n-C ₄ H ₉	-c ₂ H ₅		н	-сн ⁵	-CH ₂ -CH=CH ₂	(D) <u>N</u> 70=	(C) N Z =	-CH ₂ -CH=CH ₂
Tabell	n	-снс1 ₂	-chc1 ₂		-cuc1 ₂	-CEC1 ₂	C1	-chc1 ₂	-cH ₂ cl	-0-CH ₂ -C == C-CH ₃
	Verbindung Nr.	193	194		195	196	197	198	199	200

209845/1180 88/11846985

		-CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	-CH2-CH=CH2	-CH2-CH=CH2	-CH2-CH=CH2	о -и(сн ₃)-с-снс1 ₂	" -N(c-CEC1 ₂) ₂	-cH2cH=CH2
Tabelle I (Fortsetzung:)	R.	-CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	-CH2-CH=CH2	-CH ₂ -CH=CH ₂	-CH2-CH=CH2	##	-сн ₃	-CH2-CH=CH2
TR	x	-0-c ₂ H ₄ c1 -0-cH ₂ -cHc1 ₂	-0-(-CH2-S-C=N	-ch ₂ -n(ch ₂ -ch=ch ₂) ₂	-cHC1 ₂	-CEC1 ₂	-ch2-c-ch3
	Verbindung Nr.	201	203	204	205	206	207	208

209845/1180

	. В.2	-ch ₂ ch=ch ₂ -ch ₂ ch=ch ₂	"-CH2-CH2-0-CHC12	-CH ₂ -CH-C ≡ N		(2世名)	E B
Tabelle I (Fortsetzung):	H.	-CH2-CH=CH2 -CH2-CH=CH2	-c ₂ H ₅	$-cH_2-cH_2-c = N$	щ	Ħ	щ
	æ,	-ch ₂ -c == n -ch ₂ -0-c == n	-CHC1 ₂	-CHC1 ₂	-снс12	-CEC1 ₂	-cHC1 ₂
	Verbindung Nr.	209	. 211	212	213	214	215

ng:)	R2	1-C ₂ H ₇	-cH ₂ -cH(CH ₃) ₂	CH CH2	i-C4H9	t-c4H9	t-C4H9	-сн(сн ₃)-сн ₂ -сн(сн ₃)-сн ₃
Tabelle I (Fortsetzung:)	r r	_, #I	æi	H	д	m	ш	#
	æ	-0HC1 ₂	-cH2c1	-CHC1 ₂	-CHC12	-ch2cl	-CHC12	-cH2c1
	Verbindung Nr.	216	217	218	219	220	221	222

209845/1180

	2 H	(s)	-CH ₂	-0H2-/C1	-cH ₂ -(\ - c1	-CH2-(\ - 0	-cH ₂ -cH=CH ₂
Tabelle I (Fortsetzung:)	R	щ	Ħ	III	ш	ш	-CH ₂ -CH=CH ₂
	e	-0HC1 ₂	-cHCl ₂	-chc1 ₂	-GHG1 ₂	- OHO12	-CH-CH-()
	Verbindung Nr.	223	224	225	526	227	228

BAD ORIGINAL

	R2	-CH ₂ -CH=CH ₂	-CH2-CH=CH2	-ch2-ch=ch2	-cH ₂ -cH=cH ₂	-CH=CH-CH2-CH3	-CH=CH=CH2-CH3	с′ сн ₂ -сн ₃	-сн-сн-сн ₂ -сн ₃
Tabelle I (Fortsetzung):	٠ د	-CH ₂ -CH=CH ₂	-CH ₂ -CH≈CH ₂	-ch-ch-ch ₂		-t-C ₄ H ₉	-c(cH ₂) ₂ -c -cH	-c ₂ H ₅	n-C4H9
	æ	-CH=CH-()- CH2	-CH=CH-/-		-chc1 ₂	-chc1 ₂	-cHC1 ₂	-сисл ₂	-CHC12
	Verbindung Nr.	229	230	231	232	253	234	235	236

(Fortsetzung):		
Н	1	
ø		
Ä	ļ	
$\overline{}$	ı	
e 1	i	
\sim	l	
ಹ	l	
•	ı	

R ₁	$ \begin{array}{c} $	$-c(cH_3)-cH-cH_2-cH_3$ $n-c_3H_7$	(CH ₂ -CH=CH ₂) -CH=CH ₂	· C ₂ H ₅) ₂ - CH ₂ -CH=CH ₂ - CH ₂ -CH=CH ₂	-CH ₃ -N=C(CH ₃) ₂	.c-cecl ₂ -ch ₂ -ch=ch ₂ -ch=ch ₂	$\langle - \rangle$ c1) ₂ -CH ₂ -CH=CH ₂ -CH=CH ₂	H () - 1
æ	-cec1 ₂	-CHC1 ₂	-CH ₂ -SO ₂ -N(CH ₂ -CH=CH ₂)	-cH(s-c ₂ H ₅) ₂	-CEC1 ₂	-GH2-0-C-CHC1 ₂	-CH(0-{-} C1)2	רטאט־
Verbindung Nr.	237	238	239	240	241	242	243	770

٠	R ₂	-C2H5	-c ₂ H ₅	-c ₂ H ₅	s	(8)	-CH2-()	sec-C ₅ H ₁₁	sec-C ₅ H ₁₁
Tabelle I (Fortsetzung):	R ₁	t-C4H9	$ m sec-C_5H_{11}$	i-c ₂ H ₇	-cH ₃	-c ₂ H ₅	л-С ₂ Н ₇	$c_{\mathrm{H}_{2}}$	² Н 2 О − ц
	æ	-chc1 ₂	-cacl ₂	-chc1 ₂	-cHC1 ₂	-chc1 ₂	-chc1 ₂	-CHC1 ₂	-cHC1 ₂
	Verbindung Nr.	245	246	247	248	249	250	251	252

209845/1180

sutzung):	R2		ec-C4H9	i-C ₃ H ₇	-сн(сн ₃)-сн(сн ₃)-сн ₃	CH ₂	CH ₂	CH2 CH3	sec-C4H9
Tabelle 1 (Forts.tzung):	H.	-n-C ² H	i-c4H9	-0H ₂	-CH ₃	-C2H2	-C2H5	-c ₂ H ₅	-cn₂
•	Nr. A	-cHCl ₂	-CEC1 ₂	CHO12	-CEC12	-CHC1 ₂	-CHC1 ₂	-cHC1 ₂	-CHC12
	erbindung Nr.	253	254	255	256	257	258	259	5.60

· · · · · · · · · · · · · · · · · · ·	. R2	n-c6 ^H 13	t-C4H9	-сн(сн ₃)-сн(сн ₃)-сн ₃	Ÿ	-CH2 - CH3	-cH ₂ CH ₃	-CH ₂	S CH ₂
Tabelle I (Fortsetzung):	B. T.	-c ₂ H ₅	n-C ₃ H ₇	n-C ₂ H ₇	л-С ₃ Н ₇	n-c ₂ H ₇	n-C ₃ H ₇	n-C ₃ H ₇	-c ₂ H5
	떠 .	-chc1 ₂	-chc1 ₂	-cHC1 ₂	-CHC12	-CHC1 ₂	-cec1 ₂	-chc1 ₂	-cHC1 ₂
	Verbindung Nr.	261	262	263	264	265	566		. 568

209845/1180

209845/1180

Verbindung Nr. R R
$$\frac{R_1}{284}$$
 $\frac{R_2}{-CBO_2}$ $\frac{R_2}{-CB_2}$ $\frac{CH_2}{-CB_2}$ $\frac{CH_2$

209845/1180

Tabelle I (Fortsetzung):	R ₂	n-0 ₅ H ₇		n-C6H13	-c ₂ H ₄ -0-cH ₃	-c ₂ H ₄ -0-C ₂ H ₅	-CH2-	-cH2-	-CH2
	R	-cH ₂ —_cH ₂	n-C ₃ H ₇	$^{\mathrm{n-C_3H_7}}$	-c ₂ H ₄ -o-cH ₃	-c ₂ H ₄ -0-c ₂ H ₅	-c ₂ H ₅	n-6 ₃ H ₇	i-C ₃ H ₇
	æ	-CHC1 ₂	-CHC1 ₂	-CHC1 ₂	-chcl ₂	-cHC12	-chc1 ₂	-cHC1 ₂	-CHC1 ₂
	Verbindung Nr.	596	297	298	299	300	301	302	303

MATTER THE

BAD ORIGINAL

: (Su	. R2						-сн ₂ -сн ₂ он	-сн ₂ -сн ₂ -с =	
Tabelle I (Fortsetzung):	\mathbb{R}_{1}	-62 ^H 5	n-C ₃ H ₇	i-C ₃ H ₇	n-C ₄ H ₉	sec-C ₄ H ₉	t-C4H9	-CH ₃	
	x	-CHC1 ₂	-cHC12	-chc1 ₂	-снс1 ₂	-cHC1 ₂	-CHC12	-chc1 ₂	-CHC1 ₂
	Verbindung Nr.	310	311	. 312	515	514	315	216	317

	R2	n-c ₆ H ₁₃	-сн ₂ -сн ₂ он		-0H2	-c(c ₂ H ₅) ₂ -c≡ ·· N	$-c(c_2H_5)_2-c=N$	61	()
Tabelle I (Fortsetzung):	R.	n-c ₆ H ₁₃	-CH ₂ CH ₂	CH ₂	-сн ₂ -сн ₂ -sн	щ	Ħ	Ħ	щ
Tabe	æ	-chc1 ₂	-снст	-cha1 ₂	-снс1 ₂	-chc1 ₂	-ch2c1	-CHC1 ₂	-chc1 ₂
	Verbindung Nr.	318	319	320	321	322	323	324	325

209845/1180

209845/1180

209845/1180

	. R2	CH ₂ S	-CH2-CH2-N(C2H5)2	-CH ₂ -CH(OCH ₃) ₂	O "CH2-CH2-NHC-CHC1 ₂	-CH ₂ -CH=CH ₂	0 -CH(NH-C-CHC1 ₂)—(-CH(NH-C-CHC1 ₂)-(NO ₂
Tabelle I (Fortsetzung:)	R	ш	ш	ш	ш	-ch ₂ -ch=ch ₂	щ	н
	æ	-cHC1 ₂	-CHC12 .	-cHC1 ₂	-chc1 ₂	-CH=CH	-CHC1 ₂	-CHC1 ₂
	Verbindung Nr.	338	339	340	341	342	343	344

209845/1180

; (Sur	R ₂	-с(сн ₃) ₂ -с== сн	-с(сн ₃) ₂ -с = он	$-c(cH_3)=cH-c=$	-сн ₂ -сн=сн ₂	NH-C-CHC1 ₂	
Tabelle I (Fortsetzung):	R.	щ	Ħ	щ	-сн ₂ -сн=сн ₂	#	
	Nr. R	0	"-cH2-cH2-c-CH3	-0HC1 ₂	S CH S	-CHC1 ₂	-chc1 ₂
	Verbindung Nr.	362	363	364	365	366	267

209845/1180

	R ₂	-c(cH ₃) ₂ -c N	$-c(cH_3)_2-c=N$	$-c(cH_3)_2-c\equiv cH$	-0(0H ₃) ₂ -0 = 0H	-c(cH ₃) ₂ -c ==cH	$-c(cH_{3})_{2}-c \Longrightarrow N$
Tabelle I (Fortsetzung):	H.	щ	ш	H ·	Ħ	æ	щ
Tabel	*	-CH ₂	-cH2-c(cH3)3	-oH(c ₂ H ₅) -(-)	-CH-CH-CH-CH3	-CH=CH (-())	-CH=CH
	Verbindung Nr.	375	. 376	377	378	379	380

PAD OPIGIEIAL

 $-cE(cH_3)-c = cE$ Tabelle I (Fortsetzung): -CH2-CH-CH2 -cH2-0-c-ccl=ccl-ccl=ccl2 ద Verbindung Nr. 383 382 384 385 381 386

209845/1180

·	7. K.	-CH ₂ -NH-C-CH ₂ -O-	" -сн ₂ -мн-с-сн ₂ сл он	0=	0-C-NH-C ₂ H ₅	O-C-NH-CH ₂ -CH=	-C-0-C ₂ B ₅
Tabelle I (Fortsetzung):	R	щ	щ	ш	μi	Ħ	Ħ
	e l	-сн2с1	-cc1 ₃	-CHC1 ₂	-chc1 ₂	-CHC1 ₂	-chc1 ₂
	Verbindung Nr.	387	388	389	390	391	392

209845/1180

Fortsetzung):	
Tabelle I	

	я с	-c-0-c ₂ H ₄ cı	-с(сғ ₃) ₂ -он о	NH-C-CHC12	MA-C-C2H5	-сн2-сн=сн2	-CH2-CH=CH2
Tabelle I (Fortsetzung):	R	H	щ	# -	н	сн2-сн=сн ²	-CH2-CH=CH2
Tabelle	R	-cHC1 ₂	сн ₃	-chc1 ₂	-chc1 ₂	-сн ₂ -о-с(снс1 ₂) ₂ -он	-сн ₂ -о-с(снс1 ₂)(сс1 ₃)-он
	Verbindung Nr.	393	394	395	965	597	398

	^н 2	u-c ⁶ H ¹³	()	-CH ₂	-CH ₂	-cH ₂ -//	-0H ₂ (-01	-0H2-/-
Tabelle I (Fortsetzung):	H ₁	$^{\mathrm{n-c}_{GH_{1,3}}}$	-C2H5	n-C ₃ H ₇	i-c ₂ H ₇	-сн ₃	-CH ₃	-c ₂ H ₅
	24	-cH ₂ C1	-сн ⁵ сл	-cH ₂ C1	-cH ₂ cl	-GH2cl	-cH ₂ cl	-cH ₂ cl
	Verbindung Nr.	405	406	407	408	409	410	411

	-			: - :			н3)-сн3
	R2	∇				1-C3H7	-он(сн ₃)-сн(сн ₃)-сн ₃
sung);				C2H5		•	•
Tabelle I (Fortsetzung);	H H	n-C ₂ H ₇				5日0-	- CH 3
Tabell							
	et	-cH2-	-cH ₂ C1	-сн ₂ с1	-CH ₂ Cl	-cH ₂ c1	-cH2cl
	Verbindung Mr.	Q.				\$. 	
	Verbin	412	413	414	415	416	417

ક(કા	, R ₂	CH2	i-C4H9	sec-C _{5H111}	t-C4H9	sec-C4 ^H 9	sec-C4H9	i-C ₃ H ₇	1-C3H7	i-c4H9	-cH2-CH2-CH3
Tabelle I (Fortsetzung):	R	-c ₂ H ₅	$^{\mathrm{r-c_{3}H_{7}}}$	n-C ₃ H ₇	n-C ₃ H ₇	i-C4H9	c ₂ H ₅	i-C4H9	n-C4H9	n-C ₄ H ₉	$-cH_2-cH_2-0-cH_3$
	斑	-cH2cl	-cH2c1	-cH ₂ Cl	-cH2cl	-cH2c1	-ch2cl	-ch2c1	-cH ₂ cl	-cH ₂ Cl	-cH ₂ Cl
	erbindung Nr.	418	419	420	421	422	423	424	425	426	427

		Tabelle I (Fortsetzung):	٠.
rbindung Nr.	24	R ₁	R2
128	¢H2C1	-cH ₂ -CH ₂ -0-C ₂ H ₅	-cH2-CH2-0-C2H5
621	CH2 cl	-cH2-	-n-C ₂ H ₇
150	OH2CI	-cH2-(0)	-n-C ₂ H ₇
131	CH2C1	-n-C ₂ H ₇	-0H ₂
25.	082.c1	-n-c ₃ H ₇	ĺ.
23	CH2 C1	7H20-u+	15

	2	-cH ₂	-Ch2 CH3	-cH ₂	-CH2-()-CH3	-CH ₂
Tabelle I (Fortsetzung):	R	-C2H5	-C2H5	n-C ₂ H ₇	-C2H5	-cH ₂
-,	cci	сн ₂ с1	сн ₂ с1	сн ₂ сл	сн2сл	CH ₂ C1
	Verbindung Nr.	434	435 ·	436	437	438

Verbindung Nr.
 h

$$\frac{R_1}{1}$$
 $\frac{R_2}{1}$

 459
 -CHG12
 -CH25
 -CH2 \leftarrow

 440
 -CHG12
 -C2H5
 -CH2 \leftarrow

 441
 -CHG12
 -C2H5
 -CH2 \leftarrow

 442
 -CHG12
 -C2H5
 -CH2 \leftarrow

 443
 -CHG12
 -CH2 \leftarrow
 -CH2 \leftarrow

 444
 -CHG12
 -CH2 \leftarrow
 -CH2 \leftarrow

209845/1180

	. K.2	n-C ₄ H ₉	sec-C4H9	sec-C4H9	$n-C_5H_7$	$n-c$ $^{\mathrm{H}_{7}}$	t-C4H9	sec-C4H9	sec-C ₄ H ₉	n-C ₅ H ₁₁	n-c ₅ H ₁₁	sec-C _{5H11}
Tabelle I (Fortsetzung):	R	-cH ₂	-cH ₃	-cH ₂	-cH ₃	-cH ₂	-n-C4H9	1-03H7	1-C3H7	i-c ₃ H ₇	1-C3H7	1-C3H7
	м	-cH ₂ cl	-cHC1 ₂	-ch ₂ c1	-chc1 ₂	-сн2с1	-chcl ₂	-CHC1 ₂	-ch ₂ cı	-cHC1 ₂	-cH ₂ Cl	-cHC1 ₂
	Verbindung Nr.	445	446	447	448	449	450	. 451	452	z. 453	454	455

: (&	2	C2H5	0 " -c(cH ₂)=cH-c-o-c ₂ H ₅ o	" -NH-C-CHCl ₂	10 -	-C-CHC1 ₂	$-(cH_2)_5-0-cH(cH_3)_2$
Tabelle I (Fortsetzung):	H.	-cH ₂ -0-CH ₃	ш	Ed	-сно	-сн ₂ -сн(сн ₃) ₂	ш
	æ	-0BC1 ₂	-CHC1 ₂	-CHC1 ₂	-CHC1 ₂	-cec1 ₂	-CEC12
	Verbindung Nr.	461	462	463	464	465	466

HAD ORIGINAL

		Tabelle I (Fortsetzung):	· · · ·
Verbindung Nr.	æ	щ.	R ₂ 61
467	-CHC1 ₂	ш	-0H2
468	-cHc1 ₂	₩,	-с(с ₂ н ₅)(сн ₃) ₂
469	-CHC1 ₂	щ	-сн(сн ²)
470	-cH2c1	щ	-c(c ₂ H ₅)(cH ₃) ₂
471	-ch2cl	щ	-c ₂ H ₄ -0-CH ₃
472	-cH2cl	H	-сн ₂ -сн(осн ₃) ₂
473	-CH=CH	"	$-c(cH_{\overline{3}})_2-c = N$

					- 94 -				
	R2	-c(cH ₃) ₂ -c≅cH	$-cH_2-cH_2-0-c-N(cH_3)_2$	-ch2-ch2-0-c-nH-c2H5	-CH ₂ -CH ₂ -CH-CH-CH ₂ -CH-CH ₂ -CH ₂ -C	-CH ₂ -CH ₂ -0-C-NH-i-C ₃ H ₇	-CH ₂ -CH ₂ -0-C-NH-C ₄ H ₉	-CH ₂ -CH ₂ -O-C-NH-CH ₃	-CH ₂ -CH ₂ -O-C-NH-CH ₂ -CH=CH ₂
Tabelle I (Fortsetzung):	R ₁	-сн ₂ с1 н о	$-cH_2-cH_2-0-c-N(cH_3)_2$	-cH ₂ -cH ₂ -o-c-NH-c ₂ H ₅	-CH ₂ -CH ₂ -0-C-NH-CH ₂ -CH-CH ₂	-CH ₂ -CH ₂ -O-C-NH-i-C ₃ H ₇	-CH2-CH2-0-C-NH-C4H9	-CH2-CH2-O-C-NH-CH3	-ch ₂ -ce ₂ -o-c-nh-ch ₂ -ch=ch ₂
	د	O " " NH-C-CH ₂ C1	-CHC12	-cHC1 ₂	-CHC1 ₂	-cec1 ₂	-chc1 ₂	-сн2с1	-сн ₂ сл
	Verbindung Nr.	474	475	476	477	478	479	480	481

:
(Fortsetzung
Tabelle I

R ₂	-c ₂ H ₅ -c ₂ H ₅	-sos-	н -сн(сн ₃)	-c ₂ H ₅ -c ₂ H ₅	H CH3 -SO2C1	CH ₃	-C3H7	نر.
EK .	±02HD-	-ch3-	-cH ₂ -s -c1	-cH2-SO2-0-CH3	-c ₃ H ₆ Br	-cHC12	-cc1 ₃	
Verbindung Nr.	490	491	492	493	494	495	496	

	<u>u</u>	Tabelle I (Fortsetzung):	
Verbindung Nr.	œ	H.	R ₂
906	-CHC1 ₂	-n-c4H9	-n-C4H9
507	-cc1 ₃ -	-c ₂ H ₅	-n-C4H9
508	-cc1 ₃ -	-1-C ₂ H ₇	-1-C ₃ H ₇
509	-c ₁₃ -	-i-C4H9	-i-c ₄ H9
. 510	-chc1 ₂	ш	C245
115	-cc1 ₃	ш	$-c(cH_{3})(c_{2}H_{5})-c = N$
512	-сн2с1	н	$-c(cH_5)(c_2H_5)-c \Rightarrow N$
513	-chc1 ₂	#	$-c(cH_3)(c_2H_5)-c = N$

209845/1180

Die erfindungsgemäßen Mittel wurden wie folgt getestet.

Versuch 1: Verwendung im Boden

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Herbizid und Herbizid-Gegenmittel wurden getrennt oder zusammen in den Boden eingearbeitet, während dieser in einem 19-Liter-Zementmischer gemischt wurde. Für die getrennte Verwendung von Herbizid und Gegenmittel wurden von jeder Verbindung folgende Vorratslösungen hergestellt: Vorratslösungen des Herbizids wurden durch Verdünnen von etwa 1g eines Wirkstoffkonzentrats mit 100 ml Wasser erhalten. Für das Gegenmittel wurden 700 mg technisches Material mit 100 ml Aceton verdünnt. 1 ml dieser Vorratslösungen entsprach 7 mg 🕟 Wirkstoff oder 0.112 g/m², wenn der damit behandelte Boden in die 20,32 x 30,48 x 7,62 cm großen Kästen gefüllt wurde. Nach Behandlung des Bodens mit dem Herbizid und dem Gegenmittel in dem gewünschten Verhältnis wurde die Erde von Zementmischer in die 20,32 x 30,48 x 7,62 cm großen Kästen gebracht, um die Einsaat durchzuführen. Zuvor wurde von jedem Kasten etwa ein halber Liter Boden (1 Pinte) zum späteren Abdecken der Samenkörner weggenommen. Die Erde in den Kästen wurde eingeebnet, und es wurden in jedem Kasten 12,7 mm tiefe Rillen angelegt. Die Samenkörner wurden jeweils in ausreichender Menge für guten Stand ausgesät. Anschließend bedeckte man die Samenkörner mit dem etwa halben Liter Boden, der kurz vor dem Einsäen entnommen wurde.

100

Die Kästen wurden dann auf Bänke bei 21 - 32°C ins Gewächshaus gestellt. Bis zur Auswertung wurden sie so besprengt, daß gutes Pflanzenwachstum sichergestellt war. Die Ertragstoleranz wurde nach 3 bis 6 Wochen ermittelt. Die Ergebnisse sind in der Tabelle II zusammengestellt.

- 1:00 -

		Gegenmittel	ttel ·		Schädigung	der	Pflanzen
rbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen
SPTC	0,672	ī.	200,0	Mais	0	0	. •
SPTC	0,672	9	0,014	Mais	0	0	۰.0
SPTC	0,672	9	0,056	Mais	0	0	
PEC	0,672	9	0,112	Mais	o	0	0
PTC .	0,672	9	0,224	Mais	0	0	
PTC	0,672	9	0,560	Mais	0	0	0
	1	• •	0,560	Mais	0	0	. 0
PTC	0,672	91	0,014	Mais	20 M	·:	
PTC	0,672	11	0,014	Maïs		-	
PTC	0,672	12	0,014	Mais	10 1	٠. •-	
PTC	0,672	13	0,014	Mais	M 09		
PEC	0,672	15	0,014	Mais	0		
PTC	0,672	16	0,014.	Mais	10 M		
PTC	0,672	1;8	0,014	Mais	0		
PTC	0,672	ω	950.0	Mais		20 M	
PTC	0,672	60	0,224	Meis	•	0	
P.T.C.	0,672	2	0,224	Mais		45 區	
				-			

209845/1180

· 101 -

			Tabelle	le II (Fortsetzung):	:(Bunz		
	İ	Gegenmittel	ttel		Schädi	Schädigung der Pflanzen in % nach	flanzen
Herbizid	Anwendungs-verhältnis	Verbin- dung Nr.	Anwendungs-verhältnis g/m^2	Getreide- art	3 Wochen	4 Wochen	6 Wochen
BPTC RPTC	0,336	7	0,448	Mais]. 	
S-Xthyldiiso- butyl-thio- carbamat	-0		1 0	S S S S S S S S S S S S S S S S S S S		M 16	M 86
S-Kthyldiiso- butyl-thio- carbamat	69,0		0.448		ă O C		
S-Athyldiiso- butyl-thio- carbumat	90-			Mais	75 M		
S-2,3,3-fri- chlorallyl- difsopropyl- thiolearba-	 0,112	9	0,448	Weizen	. 20 V		
S-2,5,5-Tri- oblorallyl- liisopropyl- thiologroba- ast	0,112			Weizen	я 06		

6 Wochen Schädigung der Pflanzen in % nach 4 Wochen 95 M 0 3 wochen Tabelle II (Fortsetzung): Getreide-Mais Mais Mais Mais art Anwendungsverhältnis 0,224 0,014 g/m^2 0,014 0,224 Gegenmittel Verbindung Q 9 Anwendungsverhältnis 0,672 + 0,672 + 0,672 + 0,672 + 0,672 + 0,112 0,112 0,112 0,112 0,112 8/m² amino-6-isopropyl-2-Chlor-4-ëthyl-2-Chlor-4-8thylpylamino-s-triapyl-amino-s-tri-2-Chlor-4-äthyl-2-Chlor-4,6-bisamino-s-triazin amino-6-1sopro-2-Chlor-4,6-bisamino-6-isopro-(äthylamino)-säthylamino)-s-Herbizid triazin triazin APTC + BPTC + EPIC + EPTC + azin EPTC

zin

104

	ren	6 Wochen			-]	1 03 -					
	Schädigung der Pflanzen in % nach	4 Wochen 6		ўч 06		C)	海 08			(
••	Schädigu	3 Tochen		-							
(Fortsetzung):		Getreide- art		Mais		Mais		Kais			1 th
Tabelle II	tel	Anwendungs- verhältnis R/m ²		ı	<i>:</i>	0,014				,	. * - 0
	Gegenmittel	Verbin- dung Nr.				9					v
		Anwendungs- verhältnis g/m ²	. 0,672 +	0,112		thyl- 0,112	0,672 +	 .hyl- 0,112	0,672 +	•	0.112
		Herbizid	EPTC + 2-Chlor-4,6-bis-	(äthylamino)-s- triazin EPTC +	2(4-Chlor-6-äthyl-	amino-s-triazin- 2-yl-amino)-2-methyl- propionitril 0,112	- + oude	2(4-Chlor-6-äthyl-amino-s-triazin-2-yl-amino)-2-methyl-propionitril 0	EPTC	2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-	triazin

AUS
104 -

	· .·	٠.	Tabelle II	(Fortsetzung):	••			
	ජි -	Gegenmittel			Schädigung in %	ung der Pflanzen in % nach	lanzen	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m	Getreide- art	3 Wochen 4 Wochen	4 Wochen	6 Wochen	•
EPTC +	0,672 +	 						
2-Chlor-4-cyclo- propylamino-6- isopropylamino-s- triazin	0,112	ı	ı	Wais		о м об		-
EPTC + 2,4-D	0,672 + 0,112	9	0,014	Mais		0		104
EPTC + 2,4-D	9,672 0,112	9	0,224	Meis	•	10 V		-
EPrc + 2,4-D	0,672 + 0,112	•	1	Mais		50 M		
S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-ëthyl-	0,672 +			:	•			
amino-6-isopropyl- amino-s-triazin	0,112	9	0,014	Mais		3 M		٠
S-Propyldipropyl- thiolcarbamat +	0,672 +	. :						
z-unlor-4-singi- amino-6-isopropyl- amino-s-triazin	0,112	9	0,224	Mais		•		٠.,

106

	•	
-	105	_

				- رەء -	-						
lanzen	6 Wochen										
ung der Pf n % nach	4 Wooben		0		0		70 M		M 06		M 20
Schädig 1	3 Wochen										٠.
	Getreide- art		Mais		Mais		Mais		Mais		Mais
	Anwendungs- verbältnis g/m ²		0,014		0,014		ı				0,014
egenmittel	Verbin- dung Nr.		9 .		9		ı		i		9
ʊ	wendungs- srhältnis g/m ²	0,672 +	0,224	0,336 +	0,112	0,336 +	0,112	0,672	0,112	0,672 +	0,112
	Ar Herbizid ve	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-Ethyl- amino-6-isopropyl-	amino-s-triazin	S-Propyldipropyl- thiologrhemet + 2-Ghlor-4-äthyl-	amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiologrhemst + 2-Chlor-4-Ethyl-	amino-6-isopropyl- amino-s-triszin	S-Propyldipropyl- thiologrbemet + 2-Chlor-4-sthyl-	amino-6-isopropyl- amino-s-triazin	S-Propy: dipropyl- thiologrammat 2-chlor-4.6-bis-	(äthylamino)-s- triazin
	Gegenmittel Schädigung der Pflanzen in % nach	Gegenmittel Anwendungs- Verbin- Anwendungs- Getreide- verhältnis dung verhältnis art 8/m² 8/m²	Gegenmittel awendungs- Verbin- Anwendungs- Getreide- srhältnis dung verhältnis art g/m² g/m² O,672 +	Anwendungs- Verbin- Anwendungs- Getreide- 3 Wochen g/m^2 Nr. g/m^2	Anwendungs- Verbin- Anwendungs- Getreide- g/m^2 Nr. g/m^2 Nr. g/m^2 0,672 + 0,224 6 0,014 Mais 0 Schädigung der Pflanzen in % nach in % n	Anwendungs- Verbin- Anwendungs- Getreide- 3 Wochen 4 Wochen 6 Wochen 6 Go. 224 6 0.014 Mais 0.336 + 0.012 6 0.014 Mais 0.014 Mais 0.014 Mais 0.014 Mais 0.014 Mais 0.0014 Mais	Anwendungs- Verbin- Anwendungs- Getreide- 3 Wochen 4 Wochen 6 Wochen 6,672 + 6 0,014 Mais 0,336 + 0,33	Anwendungs- Verbin- Anwendungs- Getreide- 3 Wochen 4 Wochen 6 Wochen verhältnis art g/m²	Anwendungs- Verbin- Anwendungs- Getreide- 3 Wochen 4 Wochen 6 Wochen e/m²	Anwendungs- Verbin- Anwendungs- Getreide- verhältnis dung verhältnis art 8/m² Nr. 8/m² Nr. 8/m² 0,672 + 0,324 6 0,014 Mais 0 0,356 + 1- 0,112 6 0,014 Mais 0 0,356 + 0,356 + 1- 0,112 Mais 70 M 1- 0,112 Mais 90 M	Anwendungs- Verbin- Anwendungs- Getreide- 3 Woohen 6 Woohen 7 Wooh

••
(Fortsetzung)
lle II
Tabel

			•	•
0	м о		. 0	
		,		•
Mais	Mais	•.	Meis	
0,224	•	<i>₹</i>	0,014	in the
 9		**************************************	9	
0,112 0,672 +	0,112	0,672 +	1 0,112	S-Propyldipropyl- thiolcarbamat + 0,672 + 2(4-chlor-6-äthyl- amino-s-triagin-2-
	0,112 6 0,224 Mais - 0,672 +	0,112 6 0,224 Mais 0,672 + Mais	0,112 6 0,224 Mais 0,672 + Mais 0,672 + Mais	0,112 6 0,224 Mais 0,672 + Mais 0,672 + Mais 0,672 + Mais

80k

_	107	_
---	-----	---

				- 1	-97 -					
	Schädigung der Pflanzen in % nach	3 Wochen 4 Wochen 6 Wochen		0			92 M		0	60 V, М
(Fortsetzung:		Getreide- art		Mais			Mais	Mais	Mais	Mais
Tabelle II (F	tel	Anwendungs- verhältnis g/m^2		0,014		•	ı	0,014	0,224	
2-1	Gegenmittel	Verbin- dung Nr.	٠	9			1	9	9	ı
		Anwendungs- verhältnis g/m ²	0,672 +	0,112	0,672		0,112	0,672 + 0,112	.0,672 + 0,112	0,672 + 0,112
		Anw Herbizid ver	S-Propyldipropyl- thiolcarbamat + 2-chlor-4-cyclo-	propylamino-s- triazin	S-Propyldipropyl- thiolcarbamat +	2-Chlor-4-cyclo- propylamino-6-iso-	propylamino-s- triazin	S-Propyldipropyl- thiolcarbamat + 2,4-D	S-Propyldipropyl- thiolearbamat + 2,4-D	S-Propyldipropyl- thiolcarbamat + 2,4-D

LOS -

S-Propyldipropyl- thioloarbamat S-Propyldipropyl- thioloarbamat S-Propyldipropyl- thioloarbamat thioloarbamat + 2-Chlor-4-äthyj- amino-s-triazin S-Äthyldiisobutyl- thioloarbamat + 2-Chlor-4-äthyj- amino-s-triazin S-Äthyldiisobutyl- thioloarbamat + 2-Chlor-4-äthyj- amino-s-triazin S-Äthyldiisobutyl- thioloarbamat + 2-Chlor-4-äthyl- amino-s-triazin O,112	Anwendungs- Herbizid verhältnis g/m^2	Gegenmittel - Verbin- Andung ver	tel Anwendungs- verhältnis 8/m	Getreide- art	Schädigung in 5 Wochen 4 Wo		der Pflanzen % nach
0,672 6 0,224 Mais 0,672 Mais 0,896 + 6 0,014 Mais 0,122 6 0,224 Mais 0,896 + Mais	ipropyl- mat 0,672	.0	0,014	Mais	• •	· •	٠.
0,672 Mais 0,896 + 0,112 6 0,014 Mais 0,132 6 0,224 Mais 0,896 + Mais		9	0,224	Mais		0	
0,896 + 0,112 6 0,014 Mais 0,826 + 0,112 6 0,224 Mais 0,896 +		1	J	Majs	·	M 06	
0,112 6 0,014 Mais 0,224 Mais 0,896 + Mais							
0,896 + Mais 0,112 6 0,224 Mais 0,896 + Mais	sopropyl- riazin 0,112	9	0,014	Mais		. 0	
0,112 6 0,224 Mais 0,896 + Mais			. 2				
0,896 +		9/	0,224	Mais	,	0	٠.
0,112							· .
	**	+ . • •	1	Mais		· · · · · · · · · · · · · · · · · · ·	*

209845/1180

					- 1 89 -	•				
	lanzen	6 Wochen								
	Schädigung der Pflanzen in % nach	4 Wochen		0		0		0		0
	Schädig	3 Wochen								
(Fortsetzung):		Getreide- art		Mais		Mais		Mais		Mais
Tabelle II (Fort	ittel	Anwendungs- verhältnis g/m ²		0,014		0,224		,		0,014
Tab	Gegenmittel	Verbin- dung Nr.		. 9		9		ı		9
		Anwendungs- verhältnis g/m	+ 968.0	0,112	+ 968.0	0,112	+ 968.0	0,112	+ 968*0	'1- 0,112
		Herbizid v	S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis-	(athylamino)-s- triazin	S-Athyldiisobutyl- thiolograpsmat + 2-Chlor-4,6-bis-	(ëthylamino)-e- triazin	S-Äthyldilsobutyl- thiolcarbamat + 2-Chlor-4,6-bis-	(äthylamino)-s- triazin	S-Athyldiisobutyl- thiologramst + 2(4-chlor-6-Ethyl-	amino-s-triazin- 2-yl-amino)-2-methyl- propionitril

		H	Tabelle II (Fortsetzung)	rtsetzung):	•		· .	
		Gegenmittel	ttel		Schädigung in %	ng der Pflanzen % nach	anzen	
Herbizid	Anwendungs- verhältnis g/m	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
S-Athyldiisobutyl- thiolcarbamat + 2(4-Chlor-6-sthyl-	+ 968.0	•					•. •	
<pre>amino-s-triazin- 2-yl-amino)-2- methylpropionitril</pre>	0,112	ı	•	Mais	•	20 M		-
S-Athyldilsobutyl- thiolcarbamat + 2-Chlor-4-cyclo-	+ 968.0						MA	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
propylamino-6-180- propylamino-8- triazin	0,112	9	0,014	Mais		0		
S-Athyldilsobutyl- thiologrammat + 2-Chlor-4-cyclo-	+ 968.0			•	•			
propylamino-6-1so- propylamino-8- triazin	0,112	3	•	Mais		10 M		
S-Athyratisobury:- thiolearbamat + 2,4-D	0,896 + 0,112	9	0,014	Mais		0		

1112

	21.1	~
_	ייי	_

				-	111	.				
	lanzen	6 Wochen								
	Schädigung der Pflanzen in % nach	4 Wochen	0	0	0	0	20 V	10 V	30 V	70
	Schädigu	3 Wochen							·	
(Fortsetzung):		Getreide- art	Mais	Mais	Mais	Mais	Mais	Wais	Mais	Weizen
Tabelle II (For	tel	Anwendungs- verhältnis g/m ²	0,224	1	0,014	0,224	•	0,014		0,560
TR	Gegenmittel	Verbin- dung Nr.	φ.	ı	9	9	1	9	1	9
		Anwendungs- verhältnis g/m ²	0,896 +	0,896 + 0,112	968.0	968,0	968,0	968.0	968.0	925.0.
		Herbizid	S-Äthyldiisobutyl- thiolcarbamat + 2,4-D	S-Athyldiisobutyl- thiolcarbamat + 2,4-D	S-Athyldiisobutyl- thiolcarbamat	S-Äthyldiisobutyl- thiolcarbamat	S-Äthyldiisobutyl- thiolcarbamat	S-2,3,5-Trichlor-allyl-disopropyl-thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat

		Ta	Tabelle II (Fo	(Fortsetzung):			
		Gegenmittel	tel		Schädigung in % ne	der	Pflanzen
Herbizid	Anwendungs- verbältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m	Getreide- art	3 Wochen	4 Wochen	6 Wochen
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbémat	9220	ı	· .	Teizen		95	
S-2,3,3-Trichlor- allyl-difsopropyl- thiolcarbamat	0,336	. 9	0,560	Mohrenhirse		Ç	
S-2,3,3-Trichlor- allyl-disopropyl- thiolcarbamat	9220			Nobrenhirse	da ra	G	
2-Ghlor-2',6'-di- äthyl-N-(methoxy- methyl)-acetanilid	0,336	9	0,560	Wohrenhirse	·. ·	. 50	
2-Chlor-2',6'-di- äthyl-N-(methoxy- methyl)-acetanilid	9\$26	1	t	Mohrenhirse	•	70	
S-Athylhexahydro- lH-azepin-l-carbo- thioat	0,336	9	0,560	Reis		· · · o	
S-Athylhexahydro- lH-azepin-l-carbo- thioat	0,336	, I .	1	Reis	÷	50	

		·	Tabelle II (F	II (Fortsetzung):			
•		Gegenmittel	tel	Sch	Schädigung der Pflanzen in % nach	lanzen	•
Herbizid	Anwendungs- verhältnis g/m	Verbin- dung Nr.	Anwendungs- verhältnis g/m^2	Getreide- art 3 Wochen	nen 4 Wochen	6 Wochen	
2-Chlor-N-iso- propylacetanilid	0,336	vo	0,560	Weizen	20		
2-Chlor-N-iso- propylacetanilid	. 926.0		ı	Weizen	40		
N,N-Diallyl-2- chloracetamid	0,448	9	0,560	Mohrenhirse	50		-
N,N-Diallyl-2- chloracetamid	0,448	ı	ŧ	Mohrenhirse	70		117 -
S-4-chlorbenzyl- diäthylthiol- cerbemat	0,672	ı	i	Reis	20		
S-4-chlorbenzyl- dizthylthiol- carbamat	0,672	9	0,560	Reis	30		
S-4-chlorbenzyl- diäthylthiol- carbamat	1,344		1	Reis	06		

114

(Fortsetzung):	
Tabelle II	

		Gegenmittel	tel		Schädi	Schädigung der Pflanzen in %nach	flanzen
Herbizid	Anvendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	3 Wochen 4 Wochen 6 Wochen	6 Wochen
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	9	0,560	Reis		30	
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	1	1	Mais		40	
S-4-Chlorbenzyl- diäthylthiol- carbamat	1,344	9	095,0	Маis	· ·	0	
S-Äthylcyclohexyl- äthylthiocarbamat	0,672	9	0,011	Wais		50 M	
S-Äthyloyolohexyl- äthylthiocarbamat	0,672	. •	•	Mais	•	ж 90	

EPTC = S-Athyl-N,N-dipropylthiocarbamat

- Verkümmerung

= MiBbildung;

2,4-Dichlorphenoxyessigsaure

116

Versuch 2: Behandlung des Getreidesaatguts

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Zu diesem Zeitpunkt wurde das Herbizid in den Boden eingebracht. Die Erde eines jeden Kastens wurde in einen 19-Liter-Zementmischer gefüllt und darin gemischt, während das Herbizid in Form einer Vorratslösung, die durch Verdünnen von etwa 1 g eines Wirkstoffkonzentrats mit 100 ml Wasser hergestellt worden war, eingearbeitet wurde. Dabei wurde jeweils 1 ml Vorratslösung in einer Vollpipette pro gewünschte 0,112 g Herbizid pro m² in die Erde eingebracht. 1 ml Vorratslösung enthielt 7 mg Herbizid, was bei der Anwendung auf den Boden in den 20,32 x 30,48 x 7,62 cm großen Kästen 0,112 g/m² entsprach. Nach Einarbeitung des Herbizids wurde der Boden in die Kästen zurückgebracht.

Kästen mit durch das Herbizid vorbehandelter Erde und mit unbehandelter Erde standen nun bereit für die Einsaat. Zuvor wurde jedem Kasten etwa ein halber Liter Boden hetnommen und zur späteren Verwendung zum Abdecken der Samenkörner neben den Kasten gelegt. Dann ebnete man die Erde ein und legte 12,7 mm tiefe Rillen an. Abwechselnd wurden die Rillen mit behandeltem und mit unbehandeltem Getreidesaatgut eingesät. Bei jedem Versuch wurden 6 oder mehr Samenkörner in jede Reihe gelegt. Im Kasten betrug der Reihenabstand etwa 3,8 cm. Zur Behandlung des Saatguts mit dem Gegenmittel bzw. Saatschutzmittel füllte man 50 mg dafür vorgesehenen Verbindung und 10 g Saat in einen geeigneten Behälter und schüttelte, bis die Körner gleichmäßig damit bedeckt waren. Die Verbindungen (Saatschutz-

114

mittel) zur Saatgutbehandlung wurden als flüssige Aufschlämmungen und als Pulver- oder Staubgut aufgebracht. Manchmal wurde Aceton verwandt, um pulverisierte oder feste Verbindungen zu lösen, so daß sie wirksamer auf das Saatmaterial aufgebracht werden konnten.

Nach der Einsaat wurden die Kästen mit der kurz zuvor entnommenen und auf die Seite gelegten Erde bedeckt. Sie wurden auf Bänke ins Gewächshaus bei 21 - 32°C gestellt und so besprengt, wie es gutes Pflanzenwachstum erforderte. Die prozentualen Auswertungen der Schädigung erfolgten zwei bis vier Wochen nach den Behandlungen.

Bei jedem Versuch wurde einmal das Herbizid allein, einmal das Herbizid in Verbindung mit dem Saatschutzmittel und schließlich das Saatschutzmittel allein angewandt, um die Phytotoxizität feststellen zu können. Die Ergebnisse dieser Versuche sind in Tabelle III zusammengestellt.

_	117	_

	1	Gegenmittel	te]	Sch	Schädigung in %	1 %		·	
Herbizid	Anwendungs- verbältnis g/m ²	Verbin- dung Nr.	Behand- lungsver- hältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Unbehandeltes Saatg in der benachbarten Reibe	tes Saatgut achbarten	4
***************************************					2 Wochen	4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	н	0,5	Mais	20 選	60 V, M			
EPTC	0,672	8	0,5	Mais	10 V	40 V, M			
EPTC	0,672	n	0,5	Mais	0	W , W 09			
EPTC	0,672	4	0,5	Mais	10 V	70 V, M			
EPTC	0,672	7	0,5	Mais	0	30 V, M			J
EPTC	0,672	9	0,5	Mais	0	0	0	0	14 8
EPTC	0,672	-	0,5	Mais		30 V			?
EPTC	0,672	89	0,05	Mais		0			
EPTC	0,672	σ	0,5	Mais	10 V		30 M		
EPTC	0,672	10	0,5	Mais	10 V		N M		
EPTC	0,672	11	0,5	Mais	10 V		N OI		
EPTC	0,672	12	0,5	Mais	100 K		ω Σ		
BPTC	0,672	13	0,5	Mais	100 K		15 14		
EPTC	0,672	14	0,5	Mais	10 V		50 №		
EPTC	0,672	15	0,5	Mais	100 K		5.		
EPTC	0,672	16	0,5	Mais	10 V		5 4		

209845/1180

Tabelle III (Fortsetzung):

		Gegenmitte]	tel	ωl	Schädigung in	8 · in %		
Herbi- zid	Anwendungs- verhältnis	Ver- bindung Nr.	Behand- lungsver- hältnis	Getrei-	Behandeltes gut	ndeltes Saat- gut	Unbehandeltes in der benach Reihe	deltes Saatgut benachbarten
	11 / 50		% Сеж./Сеж.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 Wochen	4 nochen	2 Wochen	4 Wochen
EPTC	0,672	17	0,5	Mais	20 V	· .	35 M	
BPTC	0,672	18	0,5	Mais	0		5 4	•
EPTC	0,672	19	6,0	Mais	0		50 M	
BPTC	0,672	20	0,5	Mais	10 V	10 V	30 脳	. W 59
EPTC	0,672	21	0,5	Mais	0		NO M	55 M
EPTC	0,672	22	0,5	Mais	W 09	₩ 0 <i>L</i>	85 M	80 M
EPTC	0,672	23	0,5	Mais	20 M	40 M	85 M	80 M
BPTC	0,672	24	0,5	Mais	10 V	10 V	75 M	. 80 ™
EPTC	0,672	25	0,5	Mais		30 M	M 09	. W 09
BPTC	0,672	56	. 5.0	Mais	0	10 M	83 M	80 M
EPTC	0,672	27	0,5	Mais	70 M		м 09	
EPTC	0,672	28	0,5	Mais	30 V, 1		75 M	
EPTC	0,672	59	0 , 5	Mais	M 09		70 M	• .
BPTC	0,672	30	0,5	Mais	₩ 09	•	70 M	
EPTC	0,672	31	0,5	Mais	70 M		80 M	
EPTC	0,672	32	0,5	Mais	M 09		75 M	

120

- 119 -

Unbehandeltes Saatgut in der benachbarten 4 Wochen 65 M 80 M 2 Wochen Reihe Behandeltes Saat-2 Wochen 4 Wochen Tabelle III (Fortsetzung): 50 ¥ 50 ™ Schädigung in gut 10 V H Getrei-Mais Mais deart % Gew./Gew. lungsver-hältnis Behand-0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel bindung Anwendungs- Ververhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC **EPTC** EPTC EPTC EPTC EPTC EPTC EPTC EPTC zid

209845/1180

121

			<u>rabelle</u>	II	(Fortsetzung:	: 23		•
	-1	Gegenmittel	el		Schädigung in	in %		
Herbi- zid	4 ₽	Ver- bindung	Behand- lungsver-	Getrei-	Behandeltes gut	Saat-	Unbehandeltes gut in der ber ten Reihe	es Saat- benachbar-
	g/m ^c	• 4 4	% Gew./Gew.	1 1800	2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	49	6,5	Mais	м 09		70 M	
EPTC	0,672	20	0,5	Mais	₩ 09		₩ 06	
BPTC	. 219,0	51	5,0	Mais	₩ 09		70 M	
EPTC	0,672	52	0,5	Mais	M. V 09		80 M	
EPTC	0,672	53	0,5	Mais	50 M		7o M	
EPTC	0,672	54	0,5	Kais	M 09		70 M	
EPTC	0,672	55	0,5	Mais	M 09		¥ 08	
EPTC	0,672	26	0,5	Mais	頭 09		80 M.	
EPTC	0,672	57	0,5	Mais	№ 09	- •	.65.M	
EPTC	0,672	58	0,5	Mais	50 №		75 M	
EPTC	0,672	59	0,5	Meis	M, V 09	-	₩ 08	
EPTC	0,672	09	0,5	Mais	M, V 0∂		75 M	
EPTC	0,672	· 19	0,5	Mais	₩ 09		85 M	
EPTC	0,672	62	0,5	Mais	40 V,M	M 09	80 M	70 M
EPTC	0,672	63	0.5°	Mais	30 4 萬	M 09	70 M	70 M
DPTC	0,672	64	0,5	Mais	M ₄ ∇ 0€	50 K	65 M	70 M

122

Tabelle III (Fortsetzung:

	ტ	Gegenmittel	el		Schädigung in	g in %		
Herbi- sid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart		tes Saat-	Unbehande gut in de barten Re	Unbehandeltes Saat- gut in der benach- barten Reihe
EPTC	0,672	65	0,5	Mais	2 Wochen	4 Wochen	2 Wochen	4 Wochen 80 M
EPTC	0,672	99	0,5	Mais	M, V 0€	·	70 M	
EPTC	0,672	L9	0,5	Mais	40 V,M		180 14	•
EPIC	0,672	69	0,5	Mais	₩ 09		80 M	
EPTC	0,672	69	0,5	Mais	20 V,M	50 M	70 M	州 02
EPTC	0,672	20	.0.5	Mais	40 V,™	Me V 02	80 M	M 08
BPTC	0,672	7.7	0,5	Mais	40 V,M		80 M	
EPTC	0,672	72	0,5	Mais	M 09		65 M	
EPTC	0,672	73	0,5	Mais	M 09		80 M	
EPIC	0,672	74	0,5	Mais	№ 09		80 M	
EPTC	0,672	75	0,5	Mais	м 4 О О 9		80 M	
Drai	0,672	92	0,5	Mais	50 V,M		75 M	
EPTC	0,672	7.7	0,5	Mais	M 09		75 M	
EPTC	0,672	18	0,5	Mais	M. V 09		75 M	
DLAS	0,672	79	0,5	Mais	№ 1 05		75 M	
EPTC	0,672	80	0,5	Mais	¥ 09	M 09	W 59	70
EPTC	0,672	81	0,5	Mais	10 V	20 k	50 M	50 M
EPTC	0,672	82	0,5	Mais	30 V	30 S	50 M	50 M

Tabelle III (Fortsetzung):

	ظ اق	Gegenmittel	1	-	Schädigung in %	ng in %		
	Anwendungs- verbältnis g/m	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	tes Sast-	Unbehandeltes gut in der ber barten Reihe	deltes Sast- der benach- Reihe
-					2 Wochen	4 Wochen	2 Wochen	4 Wochen
	0,672	83	0,5	Mais	20 V	20 S	20 M	25 M
	0,672	84	0,5	Mais	ΤΟ Λ	10 V	15 M	20 K
	0,672	85	0,5	Mais	30 V	10 V	35 M	45 M
	0,672	98	6,0	Mais	50 V,M	-	75 M	
	0,672	87	0,5	Mais	30 V,M		75 M	
	0,672	98	0,5	Mais	M, V 0≷		70 M	
	0,672	. 68	0,5	Mais	80		80 M	
	0,672	8	0,5	Majs	20 V,M	30 V,M	80 M	80 M
	0,672	91	0,5	Mais	M, V 04	٠.	80 M	
	0,672	95	0,5	Meis	50 V,M	•	80 M	
	0,672	93	0,5	Mais	Δ 09	20 V	75 居	M 57
	0,672	46	0,5	Mais	30 V,M		90 M	
	0,672	95	5.0	Mais	100 K		M 06	·
	0,672	96	0,0	Mais	M. V 0€	÷.	80 M	
	0,672	16	0,5	Mais	30 V,M		75 M	

- 123 -

Unbehandeltes Saatgut in der benach-4 Wochen 80 M 80 M 80 M 80 kk barten Reihe 2 Wochen 80 № 75 M 85 M 85 M BO M 90 M 85 M 85 M 80 · M 85 65 75 8 85 85 9 Behandeltes Saat-4 Wochen Schädigung in % 30 V,M 20 V,M 50 kk 30 M Tabelle III (Fortsetzung): 2 Wochen M. V 09 40 V,™ 40 V,M 60 V,K 50 V,M 30 V,M 40 V,M 30 V,M 30 V,™ 50 V,M 40 V,M 40 V.M 30 V,™ 30 V 50 kg 30 V 9 Getreideart Mais Verbin- Behandlungs-% Gew./Gew. verhältnis 0,5 0,5 0,5 0,5 Gegenmittel dung 100 102 103 105 106 108 109 110 112 114 101 104 107 113 111 Anwendungsverhältnis g/m^2 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-zid EPTC EPTC EPTC. EPTC EPTG

209845/1180

125 - 124 -

		Georgia tto			48400	,		
Herbî-	Anwendungs- verbältnis g/m ²	Verbin- dung	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Beban	Schangeng in % Behandeltes Saat- gut	Unbehandeltes gut in der be barten Reihe	deltes Saat- der benach- Reihe
210					2 Wochen	en 4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	11,5	0,5	Mais	м, и ор		№	
BPTC	0,672	911	0,5	Mais	30 V	30 V	75 M	BO M
BPTC	0,672	לדנ	٥ تار د	Mais	20 V,M	· .	70 M	
BPTC	0,672	118	0,5	Mais	30 V,M		70 M	
EPTC	0,672	119	0,5	Mais	M. V O€		70 M	
EPTC	0,672	120	0,5	Mais	M, V 0€		75 M	
SPTC	0,672	121	0,5	Mais	40 V,M		75 M	
SPTC	0,672	122	6,0	Mais	20 V,™	•	.35 M	\$
SPTC	0,672	123	0,5	Mais	20 V	20 V	10 M	20 M
SPTC	0,672	124	0,5	Mais	M. V O€	` .	75 M	
SPIC	0,672	125	0,5	Mais	40 V,M		₩ 08	
EPTC.	0,672	126	0,5	Mais	40 V,M	· .	80 M	
BPTC	0,672	127	0,5	Mais	₩ 09		100 日	
SPTC .	0,672	128	0,5	Mais	≥0 M		55 M	• • •
EPTC	0,672	129	0,5	Mais	30 V,B	30 V,B	50 M	⊠ 09

Tabelle III (Fortsetzung):

		Gegenmittel	tel	-	Schädigung in %	in %		
Herbi- zid	Anwendungs-verhältnis g/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	Saat-	Unbehandeltes gut in der ber barten Reihe	deltes Saat- der benach- Reibe
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	130	0,5	Kais	30 V	30. A	40 M	A 09
EPTC	0,672	131	0,5	Mais	10 V	0	25 M	55 M
EPTC	0,672	132	0,5	Mais	0	0	45 K	
西でで	0,672	133	0.5	Mets	40 M		65 M	
EPTC	0,672	134	0,5	Meis	30 V,M		70 M	
EPTC	0,672	135	0,5	Mais	40 V.M		70 M	
EPTC	0,672	136	0,5	Mais	№ 4 05		80 M	
EPTC	0,672	157	0,5	Mais	M. V O€		85 M	
EPTC	0,672	138	6.0	Mais	30 V M	-	75 M	
西子江の	0,672	139	0,5	Maio	N 05	•	M 08	
DEAE	0,672	140	0,5	Mais	50 V M		75 M	
BPTC	0,672	141	0,5	Maje	20 V,M	30 V,M	80 M	80 M
EPIC	0,672	142	0,5	Mais	20 V.M	20 H	75 M	70 M
EPTC	0,672	143	0,5	Mais	N. V OI	50 k	85 %	
DLAE	2.19,0	144	0,5	Meis	50 V,M		85 M	
DLG	0,672	145	. 5*0	Mais	20 V,M		80 M	
EPTC	0,672	146	0,5	Mais	20 V,M	20 V, M	65 M	70 M

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Sohädigung in	2		
Herbi-	Anwendungs- verhältnis	Verbin- dung Nr.	Behandlunge- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes S gut	SS	Unbehandeltes gut in der be barten Reihe	tes Saat- benach- he
nra	m/9				2 Wochen 4 Wc	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	147	0.5	Mais	O . A OT		75 M	80 M
EPTC	0,672	148	٥ د. د	Mais	M 09		75 M	•
BPTC	0,672	149	0°0	Meis	40 V,M		75 M	
EPTC.	0,672	150	0,5	Mede	M, V O∂		70 M	
BPTC	0,672	151	0,5	Mais	50 M	٠	70 M	
EPTC	0,672	152	0,5	Meis	40 M	••	≱ 08	
BPTC	0,672	153	5,0	Mais	50 M		85 M	
EPTC	0,672	154	0,5	Mais	30 V,M		75 M	
EPTC	0,672	155	0,5	Mais	20 V,M 40	×	85 M	80 M
BPTC	0,672	156	0 8	Mais	60 M		85 M	•
EPTC	0,672	157	ر و	Mais	50 V,M		N 08	
BPTC	0,672	158	0,5	Mais	20 V,M	: 	₩ 0 <i>L</i>	
EPTC	0,672	159	0,5	Mais	30 V,M	• .	75 M	
EPTC	0,672	160	0,5	Mais	50 V,M	,	75 M	
EPIC	0,672	191	0,5	Mais	50 V.M		70 M	:
EPTC	0,672	162	0,5	Mais	30 V,M		65 M	
EPTC	0,672	163	0,5	Mais	№ 1 09		M 09	

Tabelle III (Fortsetzung):

		Gegenmittel	tel	1	Schädig	Schädigung in %		
Herbi- zid	Anwendungs- verhältnis «/m²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	ltes Saat- t	Unbehandeltes Saatgut in de nachbarten Re	ltes n der be- n Reihe
					2 Wochen	4 Wochen	2 Wochen	
EPTC	0,672	164	0,5	Mais	м 09		70 M	
EPTC	0,672	165	0,5	Mais	M 09	-	75 M	
EPTC	0,672	99 L	0,5	Mais	40 V M	M 09	75 M	M 09
EPTC	0,672	167	0,5	Mais	50 V,M		75 国	
EPTC	0,672	168	0,5	Mais	M. V 09		80 M	
EPTC	0,672	169	0,5	Mais	30 V	30 V	80 M	80 M
EPTC	0,672	170	0,5	Mais	M, V 0ξ		80 M	
EPTC	0,672	171	0,5	Mais	M 09		75 M	
EPTC	0,672	172	0,5	Mais	40 M		75 M	
EPTC	0,672	173	0,5	Mais	30 V,M	50 M	₩ 08	80 M
EPTC	0,672	174	0,5	Mais	M, V 09		N 08	
EPTC	0,672	. 175	0,5	Mais	30 V,M		85 M	
EPTC	0,672	176	0,5	Mais	40 V,M		85 M	
EPTC	0,672	¥77	0,5	Mais	30 V,M		M 58	
EPTC	0,672	178	0,5	Mais	M, V 05		80 M	

Tabelle III (Fortsetzung):

		Gegenmittel	te]	• .	Schädig	Schädigung in %			
Anwendungs- Verbin- Behandlungs- verhältnis dung verhältnis / 2 Nr. % Gew./Gew.	-u-	Behandlu verbältn % Gew./G	# 8 8 # 8 # 8 # 8 # 8 # 8 # 8 # 8 # 8 #	Getreide- ant	Behandeltes gut	tes Saat-	Unbehandeltes gut in der be barten Reihe	ideltes Saat- der benach- Reibe	
					2 Wochen	4 Wochen	2 Wochen	4 Wochen	
0,672 179 0,5		0,5		Meis	0	0	0	S Z	
0,672 180 0,5	-	0,5		Mais	0	0	0		
0,672 181 0,5		0,5		Mais	0		0		
182	.•	0,5		Mais	0	0	0	0	
0,672 183 0,5	٠	9.0		Mais	0	0	0	0	
0,672 184 0,5		0,5	,	Mais	0	0	5 M	15 M	
0,672 185 0,5		0,5		Mais		0	3 M	30 M	
0,672 186 0,5		0,5	-	Mais	0		o	O :	
0,672 187 0,5		0,5		Mais	0	0	S E	45 M	
0,672 188 0,5		0,5		Mais	0	0	13 M	45 M	
0,672 189 0,5		0,5		Mais			5 24	35 ™	
0,672 190 0,5		0,5		Mais	0	0	0	15 ·M	
0,672 191 0,5		0,5		Mais	0	ō	34 K	50 度	
0,672 192 0,5		0,5		Mais	0	ο.	5 Z	40 ₩	
0,672 193 0,5		0,5		Mais	0	0	N OI	35 班	
0,672 194 0,5		0,0		Mais	0	0	0	25 M	

130

Unbehandeltes Saatgut in der benach-4 Wochen 图 区 40 M barten Reihe S 52 2 Wochen 55 M 55 M 8 Behandeltes Saat-2 Wochen 4 Wochen Schädigung in 20 V, M 30 区 10 V Tabelle III (Fortsetzung) 0 gut 30 V,M 50 V,M M, V 05 40 V,M 30 V E 20 V 1 M. V 09 100 K 100 K ₩ 90 ≅ 90 20 20 2 2 2 20 V Getreideart Mais Behandlungs % Gew./Gew. verhäl tnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 o, 0,0 0,5 0,5 Gegenmittel Verbindung 195 198 199 200 197 201 202 203 204 205 207 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPIC EPTC EPEC BPTC EPTC EPTC EPTC zid BPTC EPTC

209845/1180

131

- 130 -

		Gegenmittel	 		Sohëdigung in %	18 in %			
Herbi	Anvendunge- verhältnis	Verbin- dung Nr.	Behandlungs verhältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	4	Unbehandeltes gut in der be barten Reihe	bi	Saat- lach-
740	æ/æ				2 Woohen	4 Wochen	2 Wochen	4 Woch	ue
EPEC	0,672	210	Q.	Mais	0	ν οτ	S. M	35 M	•
EPTC	0,672	211	0,5	Mais	0	0	25 M	50 M	
EPTC	0,672	212	0,5	Mais		10 A	18 M	50 M	٠,
EPTC	0,672	213		Meis	50. V	30 ₹	70 M	70 M	•
EPTC	0,672	214	0,5	Mais	Ο,	10 V	50 kg	65 k	٠.
EPTC	0,672	215	0,5	Mais	10 4	0	85 M	70 M	•
EPTC	0,672	216	0,5	Mais	10 V	M. V OL	№ 36	90	
EPTC	0,672	217	0,5	Mais.	100 K	100 K	30 M	45 K	· :
日子石田	0,672	218	0,5	Mais	10 V	10 V	20 M	15 M	÷
E	0,672	219	0,5	Mais	100 K		45 M	. ·	
EPTC	0,672	220	0,5	Mets	0	10 V	0	0	
EPTC	0,672	221	0,5	Meis		10 V	15 曜	35 图	
БРТС	0,672	222	0,5	Mais	100 K			• .	
EPTC	0,672	223	6,0	Mais	10 T	20 V	70 M	70 M	
EPTC	0,672	224	0,5	Mais	50 ₹	30 V	45 M	₩ 90	
EPTC	0,672	225	0,5	Mais	30 V	≥0 V	70 M	₩ 180	· · ·

Tabelle III (Fortsetzung):

- 171 -

Behandeltes Saat- Unbehandeltes Saatgut in der benach-barten Reihe 2 Wochen 4 Wochen 80 M 80 M ₩ 09 65 M 45 M 65 M 55 国 45 M 9 93 M 85 M 93 M a 206 95 区 88 M 55 M 70 区 55 M 70 区 30 M 65 K 75 M 208 2 Wochen 4 Wochen Schädigung in % 10 V 10 4 20 ₹ 10 12 . 임 9 0 0 0 gut 40 V M 40 V,M 40 V,M 40 V,M 30 V,M 30 V,M 50 V,™ 20 V 20 V 10 V 0 0 0 Getreideart Mais Behandlungs-% сет./сет. verhältnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel Anwendungs- Verbindung 228 229 230 231 232 233 234 235 236 238 239 240 227 237 verbältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPIC EPTC

Tabelle III (Fortsetzung):

209845/1180

Tabelle III (Fortsetzung):

•		Gegenmittel	te]	ì	Schädigung in %	in %	-		-
Herbi-	Anwendungs- verhältnis. , 2	Verbin- dung	Behandlungs- verhältnis % Gew./Gew.	Getrei-	Behandeltes gut	4 4	Unbehandeltes gut in der be barten Reihe	ltes Saat- r benach- lhe	
zid	g/m				2 Wochen 4	Wochen	2 Wochen	4 Wochen	
EPTC	0,672	242	. 540	Mais	30 V 3M		50 M		
EPTC	0,672	243	6,0	Mais	M, V OL	30 M	75 M	70 M	
EPTC	0,672	244	0,5	Mais	0		20 M		
EPTC	0,672	245	6,0	Mais	TO V		28 M		
EPTC	0,672	246	0,5	Mais	0		8 M		
EPTC	0,672	247	0,5	Mais	10 V		M 2	•	
EPTC	0,672	248	0,5	Mais	20 V		™ 07		
EPTC	0,672	249	0,5	Mais	TO A		70 ™		
EPTC	0,672	250	0,5	Mais	O		№ 69		
EPTC	0,672	251	0,5	Mais	o [.]		. ₩ 02		
EPTC	0,672	252	5.0	Mais			15 M		
EPTC	0,672	253	0,5	Mais	0		№ 8		
EPIC	0,672	254	0,5	Mais	5 K		50 M	·	
EPTC	0,672	255	0,5	Mais			5 M		
EPTC	0,672	256	0,5	Mais	0	·	15 M		
EPTC	0,672	257	0,5	Mais	0		70 M		
EPTC	0,672	258	5,0	Mais			10 M	•	-
	•				_			-	•

Unbehandeltes Saat-4 Wochen gut in der benachbarten Reihe 2 Wochen Schädigung in Behandeltes Saat-2 Wochen 4 Wochen Tabelle III (Fortsetzung): Getreide-Mais Mais art Verbin- Behandlungs-% Gew./Gew. verhältnis 0,5 0,5 0,5 0,5 0,5 0,5 0.0000 0,5 0,5 0,5 **Gegenmittel** dung 266 261 262 263 264 265 267 268 269 Anwendungs-verbältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-

209845/1180

E IC EPIC EPTC EPTC

EPTC

ziq

EPIC

EPTC

BPTC EPTC EPTC EPTC EPTC EPTC EPTC EPIC

Tabelle III (Fortsetzung):

	Gegenmittel	ttel		Schädigung in %	
Anwendungs- verhältnis g/m	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sast- gut 2 Wochen 4 Wochen	Unbehandeltes Saatgut in der benachbarten Reihe 2 Wochen 4 Wochen
0,672	275	0,5	Mais		40 M
0,672	276	0,5	Mais		40 M
0,672	277	0,5	Mais	10 Ф	35 M
0,672	278	. 0,5	Meja	0	40 M
0,672	279	0,5	Mais		33 M
0,672	280	0,5	Mais	0	20 №
0,672	281	0,5	Mais	0	65 M
0,672	282	0,5	Mais	10 B	38 M
0,672	283	0,5	Mais	0	80 M
0,672	284	0,5	Mais	0	35 M
0,672	285	0,5	Mais		75 M
0,672	. 982	0,5	Mais	10 V	Д О №
0,672	287	0,5	Mais	10 Φ	75 M
0,672	288	5.0	Mais	10 V	35 斑
0,672	289	0,5	Mais	0	35 M
0,672	290	0,5	Mais	0	50 M
0,672	291	0,5	Mais	0	50 M
		•			

Tabelle III (Fortsetzung):

		Gegenmittel	ttel		Schädigung in %	%
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbin- dung Kr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
					2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	262	0,5	Mais	0	30 M
EPTC	0,672	293	6,0	Mais	0	55 M
EPTC	0,672	294	0,5	Mais	0	ж 09
EPTC	0,672	295	0,5	Mais	0	25 M
EPTC	0,672	296	0,5	Mais	0	15 M
EPTC	0,672	297	0,5	Mais	0	10 M
EPTC	0,672	298	0,5	Mais	0	. M 2
EPTC	0,672	299	0,5	Mais	0	20 M
EPTC	0,672	300	0,5	Mais	0	0
EPTC	0,672	301	0,5	Mais	0	25 M
EPIC	0,672	302	0,5	Mais		25 M
EPIC	0,672	303	0,5	Mais	0	15 M
EPTC	0,672	304	0,5	Mais	0	40 M
EPTC	0,672	305	6,0	Mais	0	35 M
BPTC	0,672	306	0,5	Mais	0	15 M
EPTC	0,672	307	0,5	Mais		15 M

Tabelle III (Fortsetzung):

:		Gegenmittel	tel		Schädigung in %	%
Herbi- zid	Anvendungs- Verhältnis _{v'm} 2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der benachbarten Reihe
	m/9				2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	308	. 5.0	Mais	0.	M. 60
EPTC	0,672	309	0,5	Mais	0	25 M
EPTC	0,672	310	0,5	Mais	0	45 M
BPTC	0,672	311	0,5	Mais	0	30 M
EPTC	0,672	312	0,5	Kais		70 M
EPIC	0,672	313	0,5	Kais	0	₩ 5 9
EPTC	0,672	314	0,5	Mais	30 V,M	7 09
EPTC	0,672	315	. 5.0	Mais	₹ 05 M	70 M
EPIC	0,672	316	0,5	Mais	0	. 0
EPTC	0,672	317	.0.5	Wais	0	₩ OL.
RPTC	0,672	318	0,5	Mais	M. v o€	ж 09
EPTC	0,672	319	0,5	Mais	№ Д 05	ж 09
EPTC	0,672	320	0,5	Mais	0	0
EPTC	0,672	321	0,5	Mais	0	M 59
EPTC	0,672	322	0,5	Mais	10 V	10 м
EPTC	0,672	323	0,5	Mais	10 V	40 M

Tabelle III (Fortsetzung):

		Gegenmittel	tel	•	Schädigung in %	
Herbi- zid	Anvendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sast- gut	Unbehandeltes Saatgut in der benachbarten Reibe
	11/20				2 Wochen 4 Wochen	2 Wochen 4 Wochen
BPTC	0,672	324	0,5	Mais	м 09	75 M
EPTC	0,672	325	. 5.0	Mais	₩ 09	M 08
EPTC	0,672	326	0,5	Mais	20 V	₩ 0 <i>L</i>
EPTC	0,672	327	0,5	Mais	π° Λ 0€	75 M
EPTC	0,672	328	0,5	Mais	т• л 09	75 M
EPTC	0,672	329	0,5	Kais	0	я 09
DEAR	0,672	330	0,5	Kais	№ 10 0€	₹ 59 M
EPTC	0,672	331	0,5	Mais	10 V	70 M
RPTC	0,672	352	0,5	Mais	0	5 K
EPTC	0,672	333	6,0	Mais	0	15 M
EPTC	0,672	334	0,5	Mais	0	25 M
EPTC	0,672	335	0,5	Mais	20 V,B	35 M
EPTC	0,672	336	6,0	Mais	95 V	30 M
EPTC	0,672	337	0,5	Mais	0	. Z
EPIC	0,672	338	. 5.0	Mais	0	м 09
EPTC	0,672	339	0,5	Mais	30 M	₩ 5L

Tabelle III (Fortsetzung):

		Gegenmittel	te1		Schädigung in %	
Herbi-	∢ ₽.	Verbin- dung Mr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	n/29				2 Woohen 4 Woohen	2 Wochen 4 Wochen
EPIC	0,672	340	540	Kate		25 M
BPTC	0,672	341	0,5	Mais	0	30 M
EPTC	0,672	342	0,5	Mais	M 09	M. 08
BPTC	0,672	343	0,5	Meis	Ö	45 M
EPTC	0,672	344	0,5	Mats	IO V	75 M
DPTG	0,672	345	0,5	Mais	0	75 M
EPTC	0,672	346	0,5	Mais	10 V	65 M
EPIC	0,672	347	0,5	Mais	50 V,M	₩ 08
EPTC	0,672	348	0,5	Mais	0	65 м
EPTC	0,672	349	. 540	Mais	м• д 09	75 M
EPTC	0,672	350	6,0	Mais	M 09	ж 08
EPTC	0,672	351	0,5	Mais	M. V 09	75 M
EPTC	0,672	352	5.0	Mais	M. V 03	₩ 08
EPTC	0,672	353	5,0	Mais	М, ч ОЭ	75 M
EPTC	0,672	354	0,5	Mais	50 V,M	80 M
EPTC	0,672	355	0,5	Mais	ж. т. о9	м 07

Tabelle III (Fortsetzung):

		Gegenmittel	tel	ĺ	Schädigung in %	in %	•	
Herbi- zid	Anwendungs- verhältnis g/π^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes (gut	Saat- Wochen	Unbehandeltes Saatgut in der be nachbarten Reihe 2 Wochen 4 Wochen	pe - eu
EPTC	0,672	356	0,5	Mais	50 V,B		70 M	1
EPTC	0,672	357	0,5	Mais				
кртс	0,672	358.	6,0	Mais	30 V			
EPTC	0,672	559	0,5	Mais	30 V,M		. W 52	
EPTC	0,672	360	0,5	Mais	M. V 05		70 M	
EPTC	0,672	361	0,5	Mais	M. V 05		75 M	
EPTC	0,672	362	0,5	Mais	30 V		75 M	
EPTC	0,672	363	0,5	Mais	30 V,M		W 08	
BPTC	0,672	364 ··	6,5	Mais	10 V		55 M	
SPTC	0,672	365	0,5	Mais	50 V.M		65 M	•
EPTC	0,672	996	0,5	Mais	0		65 M	
EPTC	0,672	267	0,5	Mais	0		75 M	
BPTC	0,672	368	0,5	Mais	0		30 M	
BPTC	0,672	369	0,5	Mais			25 M	
LPTC.	0,672	370	0,5	Mais	70 B 70 M	5	80 M 80 M	
EPTC	0,672	371	0,5	Mais	40 V 50 M	4	85 M 80 M	

_	140	-

		Gegenmittel	tte1		Schädigung in %	g in %	•		
Herbi- zid	Anwendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	Saat-	Unbehandeltes gut in der ber barten Reihe	deltes Saat- der benach- Reihe	
	8/田	.			2 Wochen	4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	372	0,5	Mais	30 V	40 V,M	M 08	™ .08	
EPTC	0,672	373	0,5	Mais	50 V, M,		75_M	•	
EPTC	0,672	374	0,5	Mais	M 09		85 M		
EPTC	0,672	375	0,5	Mais	50 V,B	30 M	№ 06	80 M	
EPTC	0,672	376'	0,5	Mais	¥ 0€		м 06	· .	
EPTC	0,672	377	0,5	Mais	40 V,M	• • • • • • • • • • • • • • • • • • • •	₩ 0L		
EPTC	0,672	378	0,5	Mais	80 M	· .			
EPTC	0,672	379	0,5	Mais	50 №		85 M.		
EPTC	0,672	380	0,5	Mais	10 V	20 M	M 06	M 08	
EPTC	0,672	381	6,0	Mais	30 V	40 M	85 M	M 08	
EPTC	0,672	382	0,5	Mais	50 M		80 №		
EPTC.	0,672	383	0,5	Mais	€ V 05	30 V	. 東 06	BO M	
EPIC	0,672	384	5,0	Mais	20 V	10. A	™ 0 <i>L</i>	80 M	
EPTC .	0,672	385	0,5	Mais	₩ 09		85 M	: : :.	
EPIC	0,672	386	U. 0	Mais	10 V	30 減	15 ₩		
EPTC	0,672	387	0,5	Mais	№ 09		80 M		

Tabelle III (Fortsetzung):

- 141 -

142

	·	٠	Tab	Tabelle III	(Fortsetzung):	: (Bun	•	
		Gegenmittel	tel		Schädigung in %	ng in %		
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Unbehandeltes Saat- gut in der benach- barten Reihe 2 Wochen 4 Wochen	
EPTC	0,672	388	0,5	Mais	100 K			
EPTC	0,672	389	0,5	Mais	10 V	0	75 M	
EPTC	0,672	390	0,5	Mais	15 V,M		M 08	
EPTC	0,672	391	0,5	Mais	10 V	0	80 M	
EPTC	0,672	392	0,5	Mais	M. v 09		75 M	
EPTC	0,672	393	0,5	Mais	M 09		80 M	
EPTC	0,672	394	0,5	Mais	50 V,M	~	80 M	
EPTC	0,672	395	0,5	Mais	10 V	10 M	65 M	
EPTC	0,672	396	0,5	Mais	10 V	0	75 M	
EPTC	0,672	397	0,5	Mais	10 V	20 M	. 09	
EPTC	0,672	398	0,5	Mais	M 09		80 M	
EPTC	0,672	399	0,5	Mais	¥ 09		80 M	
EPTC	0,672	400	0,5	Mais	м 09		75. M	
EPTC	0,672	401	0,5	Mais	M 09		. M 08	
EPTC	0,672	402	0,5	Mais	40 V,M		75 M	
SPTC	0,672	403	0,5	Mais	M. V 09		₩ 08	

- 342 -

143

ngs- Verbin- solutions Behandlungs- deart deart Behandlungs- gut mate solut Dehandlungs- gut mate solut Perhandlungs- gut mate solut To Meast to Meast solut To Meast to Meast solut To Meast solution deart solut To Meast solution deart so			Gegenmittel	19		Schädigung in %	-
404 0,5 Mais 70 M 80 M 405 0,5 Mais 70 M 80 M 406 0,5 Mais 70 M 80 M 407 0,5 Mais 70 M 80 M 408 0,5 Mais 70 M 80 M 409 0,5 Mais 70 M 80 M 410 0,5 Mais 70 M 80 M 411 0,5 Mais 70 M 80 M 412 0,5 Mais 70 M 80 M 414 0,5 Mais 70 M 80 M 415 0,5 Mais 70 M 80 M 416 0,5 Mais 70 M 80 M 418 0,5 Mais 70 M 80 M 419 0,5 Mais 70 M 80 M 420 0,5 Mais 70 M 80 M 420 0,5 Mais 70 M 80 M	Anwendu Herbi- verhält zid R/m^2	lungs- tnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart		Unbehandeltes Saatgut in der be- nachbarten Reihe
404 0,5 Mais 70 M 80 405 0,5 Mais 70 M 80 406 0,5 Mais 70 M 80 408 0,5 Mais 70 M 80 409 0,5 Mais 70 M 80 410 0,5 Mais 70 M 80 412 0,5 Mais 70 M 80 413 0,5 Mais 70 M 80 414 0,5 Mais 70 M 80 415 0,5 Mais 70 M 80 416 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80		ŀ				Wochen 4	Wochen
405 Mais 70 M 80 406 0,5 Mais 70 M 80 407 0,5 Mais 70 M 80 408 0,5 Mais 70 M 80 410 0,5 Mais 70 M 80 412 0,5 Mais 70 M 80 413 0,5 Mais 70 M 80 414 0,5 Mais 70 M 80 415 0,5 Mais 70 M 80 416 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80	9,0	. 22	404	0,5	Mais	70 M	
406 0,5 Mais 70 M 80 408 0,5 Mais 70 M 80 408 0,5 Mais 70 M 80 410 0,5 Mais 70 M 80 411 0,5 Mais 70 M 80 412 0,5 Mais 70 M 80 413 0,5 Mais 70 M 80 414 0,5 Mais 70 M 80 415 0,5 Mais 70 M 80 416 0,5 Mais 70 M 80 418 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80	0,67	2	405	0,5	Mais		
408 0,5 Mais 70 M 80 408 0,5 Mais 70 M 80 410 0,5 Mais 70 M 80 411 0,5 Mais 70 M 80 412 0,5 Mais 70 M 80 414 0,5 Mais 70 M 80 415 0,5 Mais 70 M 80 416 0,5 Mais 70 M 80 418 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80 420 0,5 Mais 70 M 80	0,67	. 2	406	0,5	Mais	70 M	
408 0,5 Mais 70 M 80 409 0,5 Mais 70 M 80 410 0,5 Mais 70 M 80 411 0,5 Mais 70 M 80 412 0,5 Mais 70 M 80 414 0,5 Mais 70 M 80 415 0,5 Mais 70 M 80 416 0,5 Mais 70 M 80 418 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80	9.0	. 21	407	0,5	Mais	70 M	
409 0,5 Mais 70 M 80 410 0,5 Mais 70 M 80 411 0,5 Mais 70 M 80 412 0,5 Mais 70 M 80 413 0,5 Mais 70 M 80 414 0,5 Mais 70 M 80 415 0,5 Mais 70 M 80 417 0,5 Mais 70 M 80 418 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80	9,0	72	408	0,5	Mais	70 М	
410 0,5 Mais 70 M 80 411 0,5 Mais 70 M 80 412 0,5 Mais 70 M 80 414 0,5 Mais 70 M 80 415 0,5 Mais 70 M 80 416 0,5 Mais 70 M 80 418 0,5 Mais 70 M 80 419 0,5 Mais 70 M 80 420 0,5 Mais 70 M 80	9,0	72	409	0,5	Mais	.70 M	
411 0,5 Mais 60 M 412 0,5 Mais 70 M 413 0,5 Mais 70 M 414 0,5 Mais 70 M 416 0,5 Mais 70 M 417 0,5 Mais 70 M 418 0,5 Mais 70 M 419 0,5 Mais 70 M 420 0,5 Mais 70 M	9,0	72	410	0,5	Mais	70 M	
412 0,5 Mais 70 M 413 0,5 Mais 70 M 414 0,5 Mais 70 M 415 0,5 Mais 70 M 417 0,5 Mais 70 M 418 0,5 Mais 70 M 419 0,5 Mais 70 M 420 0,5 Mais 70 M	9.0	72	411	0,5	Mais	M 09	
413 0,5 Mais 70 M 414 0,5 Mais 70 M 415 0,5 Mais 70 M 416 0,5 Mais 70 M 418 0,5 Mais 70 M 419 0,5 Mais 70 M 420 0,5 Mais 70 M	9.0	72	412	0,5	Mais	70 M	
414 0,5 Mais 70 M 415 0,5 Mais 70 M 416 0,5 Mais 60 M 417 0,5 Mais 70 M 419 0,5 Mais 70 M 420 0,5 Mais 70 M	9,0	72.	413	0,5	Mais		
415 0,5 Mais 70 M 8 416 0,5 Mais 60 M 8 417 0,5 Mais 70 M 418 0,5 Mais 70 M 420 0,5 Mais 70 M	9,0	. 72	414	0,5	Mais		80 M
416 0,5 Mais 70 M 8 417 0,5 Mais 60 M 418 0,5 Mais 70 M 419 0,5 Mais 70 M	0,6	572	415	0,5	Mais		
417 0,5 Mais 60 M 418 0,5 Mais 70 M 419 0,5 Mais 70 M 420 0,5 Mais 70 M	9,0	572	416	0,5	Mais	M	80 M
418 0,5 Mais 70 M 419 0,5 Mais 70 M 420 0,5 Mais 70 M	0,6	572	417	0,5	Mais		
419 0,5 Mais 70 M 80 420 0,5 Mais 70 M 80	9,0	72	418	0,5	Mais		80 M
420 0,5 Mais 70 M 80	9.0	72	419	0,5	Mais		
	9,0	72	420	0,5	Mais		80 M

Tabelle III (Fortsetzung):

- 143-

144

			Ta	belle II	Tabelle III (Fortsetzung):	
		Gegenmittel	ittel	1	Schädigung in %	
Herbi- zid	Anwendungs- verhältnis	Verbin dung Nr.	Verbin- Behandlungs dung verhältnis Nr. % Gew./Gew.	1	Behandeltes Saat- gut	Unbehandeltes Saat- gut in der benach- barten Reibe
	#/0			deart	2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	421	. 0 . 5	Mais	У О М	м 08
EPTC	0,672	422	0,5	Mais	TO M	80 M
EPTC	0,672	.423	. 5.0	Mais	70 M	80 M
SPIC	0,672	424	0,5	Mais	70 M	80 M
EPTC	0,672	425	0,5	Mais	70 M	₩ 08
EPTC	0,672	426	0,5	Mais	M. V 09	75 M
EPTC	0,672	427	0,5	Mais	70 M	75 M
EPTC	0,672	428	0,5	Mais	70 M	75 M
PTC	0,672	429	0,5	Mais	M, V OY	80 M
SPTC	0,672	430	0,5	Mais	70 V,M	75 M
PLC	0,672	431	0,5	Mais	M, V O7	80 M
PTC	0,672	432	0,5	Mais	M, V OY	80 M
3PTC	0,672	433	2,0.	Mais	70 M	80 M
SPTC	0,672	434	0,5	Mais	Me V or	80 M
Prc	0,672	435	0,5	Mais	70 M	75 M
SPTC	0,672	436	0,5	Meis	M. V 09	75. M

- *** - 145

	J,	Gegenmittel	tel		Sobädigung in %	
Herbi- zid	4 2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei	Behandeltes Saat- gut	Unbehandeltes Saat- gut in der benach- barten Reihe
	m/9			מפפון ני	2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	437	0,5	Mais	50 V,M	75 M
EPTC	0,672	438	0,5	Mais	M. V OY	80 M
EPTC	0,672	439	0,5	Mais	20 V	75 M
EPTC	0,672	440	0,5	Mais	A OT	65 M
EPTC	0,672	441	0,5	Mais	30 V	m 52
EPTC	0,672	442	0,5	Mais	10 T	70 м
EPTC	0,672	443	0,5	Mais	10 Ψ	80 派
EPTC	0,672	444	0,5	Wais	A OT	, in 59
EPTC	0,672	445	0,5	Mais	₩ 0 <i>L</i>	75 M
EPTIC	0,672	446	0,5	Mais	20 V	У 29 Т
EPTC	0,672	447	0,5	Wais	₩ 09	80 M
EPTC	0,672	448	0,5	Wais	№ 10 05	₩ 02
EPTC	0,672	449	0,5	Mais	70 M	80 M
EPTC	0,672	450	0,5	Mais	м, ч 09	80 M
EPTC	0,672	451	0 الري	Mais	20 V	70 M

- 149 -

146

	51	Gegenmittel	te]		Schädigung in %	
Herbi- zid	Anwendungs-verhältnis g/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut 2 Wochen 4 Wochen	Unbehandeltes Saat gut in der benach- barten Reihe 2 Wochen 4 Wochen
EPTC	0,672	452	0,5	Mais	м, ∨ оγ	. W 08
EPTC	0,672	453	0,5	Mais	20 V	N 09
EPTC	0,672	454	0,5	Mais	70 M	75 M
EPTC	0,672	455	0,5	Mais	20 V	65 M
EPTC	.0,672	456	0,5	Mais	M, V 09	75 M
EPTC	0,672	457	0,5	Mais	М, Ф О Г	80 M
EPTC	0,672	458	. 0,5	Mais	M, v o €	70 M
EPTC	0,672	459	0,5	Mais	40 V,M	80 M
EPTC	0,672	460	0,5	Mais	м, и оэ	80 M
EPTC	0,672	461	0,5	Mais	10 V	80 M
EPTC	0,672	462	0,5	Mais	. M. V Oξ	75 M
EPTC	0,672	463	0,5	Mais	70 对 0.2	80 M
EPTC	0,672	464	0,5	Mais	70 M	80 M
EPTC	0,672	465	0,5	Mais	50 V,M	80 M
EPTC	0,673	466	0,5	Mais	. м. по	70 M

209845/1180

- 146 -

147

	•					
	- -	Gegenmittel	:e1		Schädigung in %	-
Herbi- zíd	Anwendungs- verhältnis g/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saat- gut in der benach- barten Reihe
EPTC	0,672	467	0,5	Mais		H 11 ·
EPTC	0,672	468	0,5	Mais	м. и 09	80 M
EPTC	0,672	469	0,5	Mais	10 V	M 08
EPTC	0,672	470	0,5	Mais	м 09	75 M
EPTC	0,672	471	0,5	Mais	№ м об	65 座
EPTC	0,672	472	.0.5	Mais	20 V,M	25 M
EPTC	0,672	473	0,5	Mais	70 M	80 M
EPTC.	0,672	474	5.0.	Mais	. мо2	₩ 08
EPTC	0,672	475	0,5	Mais	20 V,M	70 M
EPTC	0,672	476	0,5	Mais	10 V.	75 M
EPTC	0,672	477	0,5	Mais	30 V,M	80 M
EPTC	0,672	478	0,5	Mais.	20 V,M	80 M
EPTC	0,672	479	5.0	Mais	м. ч. оэ	80 M
EPTC	0,672	480	0,5	Mais	70 V,M	M 08
BPTC	0,672	481	. 0 5	Mais	70 M	80 M
EPTC	0,672	482	0,5	Mais	м, т оэ	80 M

- 347 -148

		Gegenmittel	tel		Schädigung in %	ing in %		
Herbi- zid	Anwendungs- verhältnis g/m^2	Verbin- dung Nr.	Behandlungs. verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut 2 Wochen 4 V	tes Saat-		Unbehandeltes Saat- gut in der benach- barten Reihe 2 Wochen 4 Wochen
EPTC	0,672	483	0,5	Mais	M, V O7		80 M	
EPTC	0,672	484	0,5	Mais	M 09		7.5 M	
EPTC	0,672	485	0,5	Mais	7o M		₩ 08	
EPTC	0,672	486	0,5	Mais	10 V	٠	25 M	
EPTC	0,672	487	0,5	Mais	10 V		40 M	
EPTC	0,672	488	0,5	Mais	50 V,M		55 M	
EPTC	0,672	489	0,5	Mais	0		0	
EPTC	0,672	490	0,5	Mais	10 V	30 V	70	N OL
EPTC	0,672	491	0,5	Mais	20	50 V,M	70	10 所
EPTC	0,672	492	0,5	Mais	50	75 V,M	M 08	
EPTC	0,672	493	0,5	Mais	40 V,M		80 V,M	
EPTC	0,672	494	0,5	Mais	0	50 V,™	75 14	85 M
EPTC	0,672	495	0,5	Mais	10 V	0	77 M	75 M
EPTC	0,672	496	0,5	Mais	м, ч о€	M. V 09	95 M	м 86
EPTC	0,672	497	0,5	Mais	50 M		₩ 86	
EPTC	0,672	498	0.5	Mais	30 V.M		M 76	

209845/1180

EPTC

94<u>4</u> - 146 -

Unbehandeltes Saatgut in der benachbarten Reibe 2 Wochen 4 Wochen ¥ 05 ₩ 09 6 94 97 2 № .68 65 ⋈ № 87 ₩ 86 78 M 55 M 30 k 58 🕏 4 Wochen Behandeltes Saat-Tabelle III (Fortsetzung): 100 K 100 K 100 K 100 K Schädigung in 30 V 20 V 20 V 100 gut 2 Wochen 40 V,M 20 V,M 100 K 100 K 100 K 100 K 10 V ¥ 9 10 🔻 10 V 100 õ 2 Getreideart Mais Behandlungs-% Сем./Сем. verhältnis 0,5 0,5 ۍ**,** ٥ 0,5 0,5 0,5 0,5 0,5 Gegenmittel Verbingung 506 508 509 510 500 502 503 504 505 507 511 501 Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672

209845/1180

EPTC EPTC EPTC EPTC EPTC

Herbi-

zid

Tabelle III (Fortsetzung):

-			Tabelle III (Fortsetzung):	(Forts	etzung):	
		Gegenmittel	tel		Schädigung in %	
Herbizid	Anwendungs- verhältnis ø/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	1 /0				2 Wochen 4 Wochen	2 Wochen 4 Wochen 2 Wochen 4 Wochen
EPTC	0,672	1		Mais	M 06	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	- 0,112	9	0,25	Weizen	5 V	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	. 0,112	9	0,5	Weizen	20 V	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	. 0,112	, i	ı	Weizen	M 06	
EPTC +	0,672 +					•
2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	0,112	9	1,0	Wais	0	. 0
EPIC +	0,672 +					
2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	0,112	9	0,01	Mais	0	

Tabelle III (Fortsetzung):

		Gegenmittel	te]		Schädigung in %	n %	·	
Herbizid	Anwendungs- verhältnis	Verbin- dung	Behandlungs- verhältnis	Getrei-	Behandeltes gut	Saat-	Unbehandeltes Saatgut in de	ltes n der be- n Reibe
	8/m ²	Nr.	% Gew./Gew.	deart	2 wochen 4 W	Wochen	2 Wochen 4	4 Wochen
EPTC +	0,672 +					•		-
2-Chlor-4,6-bis (Athylamino)-s-	٥		C				. · c	. c
EPIC +	0,672 +) 1				, ,	•
2-Chlor-4,6-bis äthylamino)-s- triazin	0,112	9	0,01	Mais	0	o		
EPEC +	0,672 +		•				•	
2(4-Chlor-6- äthylamino-s- triazin-2-yl-					· · · · · · ·			
<pre>amino)-2-methyl- propionitril</pre>	0,112	'	1,0	Wais	0 0		Ò	
EPTC +	0,672 +	- -				,		-
2(4-chlor-6- äthylamino-s- triszin-2-v1-	•		· · · · · · · · · · · · · · · · · · ·					
amino)-2-methyl- propionitril	0,112	9	0,01	Mais	0	:		

Tabelle III (Fortsetzung):

		Gegenmittel	te]		Schädigung in %		
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat-gut		Unbehandeltes Saat- gut in der benach- barten Reihe
S B C C			-		2 Wochen 4 Wochen	2 Woohe	4 Wochen
FFTC +	0,072 +						
2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s- triazin	0.112	٠. ٧	<u>-</u>	('1 ()			
EPTC +	0,672 +	,	0	1 1 1 1	0	0	0
2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-			·				
triazin	0,112	9	0,01	Mais	0		
EPTC + 2,4-D	0,672 +	9	-	ر د. د.		•	
EPTC +	0,672 +) h	0	0	.	0
2,4-D	0,112	9	0,01	Mais	0		
S-Propyldipro- pylthiol-carbamat + 0,672 2-Chlor-4-äthyl- amino-6-isonronyl-	+ 0, 672 +			•			
amino-s-triazin	0,112	9	1,0	Mais	0	C	c
S-Propyldipropyl- thiolcarbamat	0,672	1	ı	Mais	м		

Tabelle III (Fortsetzung)

		•		÷ 1	.52 -	153		• .		
	ltes n der en Reihe	4 Wochen	:	0		0		. o .		
	Unbehandeltes Saatgut in der benachbarten Reihe	2 Wochen		o ·	.:	0		٥.		0
ing in %	Saat.	4 Wochen	·	0	_	· o	.*	0		0
Schädigung	Behandeltes gut	2 Wochen 4		ó		· 0		0		0
1	Getrei- deart		·	Mais		Mais		Mais	•	Mais
-	Behandlungs verhältnis % Gew./Gew.			0,01		1,0		0,01		1,0
Gegenmittel	Verbin- dung Nr.			•		9		, 9		•
며	Anwendungs- verhältnis g/m ²		0,672 +	0,112	0,672 +	0,112	0,672	0,112	0,672 +	hyl- 0,112
	Herbizid Ar ve 8/		S-Propyldipropyl- thiolcarbamet + 2-Chlor-4-äthyl-	amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiologrhamat +	2-chlor-4,6-bis (äthylamino)-s- triazin	S-Propyldipropylthiolcarbamat + 2-Chlor-4.6-bis	(äthylamino)-s- triazin	S-Propyldipropyl- thiologrbsmat + 2(4-Chlor-6-äthyl-	<pre>amino-s-triazin- 2-y1-amino)-2-methyl- propionitril 0</pre>
	•									

Tabelle III (Fortsetzung):

					7 7 -					
	Unbehandeltes Saatgut in der be- nachbarten Reihe 2 Wochen 4 Wochen				0				•	0
Schädigung in %	Behandeltes Saat- gut 2 Wochen 4 Wochen		0		0			0	C	>
Schäd	Beha 2 Wo		0		0			0	c)
	Getrei- deart		Mais		Mais			Wais	,	2 + 5
	Behandlungs- verhältnis % Gew./Gew.		0,01	·	1,0		•	0,01	. 0,1	
Gegenmittel	Verbin- dung Nr.	•	9		9			9	v	•
B	Anwendungs- verhältnis g/m ²	ı	2115	0,672 +	0,112	0,672 +	ı	0,112	0,672 +	•
	Herbizid v	S-Propyldipropyl- thiolcarbamat + 2(4-Chlor-6-\text{\text{d}} \text{thyl.} amino-s-triazin- 2-yl-amino)-2- methylpropioni-	1110	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo-	propylamino-6- isopropylamino- s-triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo-	propylamino-6-iso- propylamino-s-	triazin	S-Propyldipropyl- thiolcarbamat + 2,4-D	

Tabelle III (Fortsetzung):

			,	155				•
	Unbehandeltes Saatgut in der be- nachbarten Keihe 2 nochen 4 nochen		0			0		
Schädigung in %	Behandeltes Saat- gut 2 "oonen 4 "oohen	0 0	0	0		0		0
000	Getrei- deart	Mais	Mais	Mais		Mais		Mais
tel	n- Behandlungs verhältnis % Gew./Gew.	0,01	1,0	0,01		1,0	•	0,01
Gegenmittel	Verbin- dung	. 49	. 9	. 9		9		. 0
8	Anwendungs-verhältnis	0,672 +	0,672	0,672	+ 968,0	0,112	+ 968*0	0,112
	Herbizid v	S-Propyldipro- pylthiol- carbamat + 2,4 D	S-Propyldipro- pylthiol- carbamat +	S-Propyldipro- pylthiol- carbamat	S-Athyldiiso- butylthiol- carbamat +	2-Chlor-4- äthylamino-6- isopropylamino- s-triazin	S-Athyldiiso- butylthiol- carbamat +	athylamino-6- isopropylamino- s-triazin

belle III (Fortsetzung):

	·			- 255 - 156				
	Unbehandeltes Saatgut in der be- nachbarten Reihe		0			0		
	Unbehandeltes Saatgut in de nachbarten Re		0	·		0		
Schädigung in %	Behandeltes Saat- gut Wochen 4 Wochen		0	0		0		>
Schäd	Behan E ¹		0	0		0	c	>
	Getrei- deart		Mais	Mais		Mais	0 	0 T D
tel	Behandlungs- verhältnis % Gew./Gew.		1,0	0,01	·	1,0	5	40°0
Gegenmittel	Verbin- dung Nr.		Q	9		9	v	>
8	Anwendungs- verhältnis g/m ²	+ 968.0	0,112	0,896+	+ 968.0	11.0,112	- 0;896+ -yl- ro-	1116)
	An Herbizid ve	S-Athyldiisobu- tylthiol- carbamat + 2-Chlor-4,6-bis (äthylamino)-s-	utzetin	S-Äthyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis (äthylamino)-s- triazin	S-Äthyldiisobutyl- thiolcarbamat + 2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2-	methyl-propionitril 0,112	S-Äthyldiisobutyl- thiolcarbamat + 0 2(4-Chlor-6-äthyl- amino-s-triazin-2-yl- amino)-2-methyl-pro-	

- 156 -

	9	Gegenmittel		Ω̈́	Schädigung in %	1%		
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandel tes gut	ស ង ម ក	Unbehandeltes Saatgut in de benachbarten Reibe	eltes in der rten
S-Athyldiisobutyl-	1- 0-896 +			. '	2 Wochen 4	4 Wochen	1 '	4 Wochen
2-Chlor-4-cyclo- propylamino-6-iso-				-		. •		
propylamino-s-tri- azin	i- 0,112	9	1,0	Mais		0	0	. 0
S-Athyldiisobutyl- thiol-carbamat + 2-Chlor-4-cyclo*	1- 0,896 +							٠.
propylamino-6-iso- propylamino-s- triazin	0-0,112	. 9	0,01	Mais	0			•
S-Athyldiisobutyl- thiolcarbamat + 2,4-D	1- 0,896 + 0,112	9	1,0	Mais	0		.0	0
S-Athyldiisobutyl- thiolcarbamat + 2,4-D	1- 0,896 + 0,112	9	0,01	Mais	0	0		
S-Athyldiisobutyl- thiolcarbamat	.1- 0,896	9 .	1,0	Mais	0		0	

Tabelle III (Fortsetzung):

	Фĺ	Gegenmittel	1		Schädigung in %	n %		
Herbizia	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs. verhältnis % Gew./Gew.	- Getrei- deart	Behandeltes gut	Saat-	Unbehandeltes Saatgut in der benachbarten	eltes in der rten
S-Äthyldiiso-					2 Wochen 4 W	4 Wochen	2 Wochen	4 Wochen
butylthiol- carbamat	O	9	0,01	Mais	0	0	0	c
S-2,3,3-Tri- chlorally1-di- isopropy1-thiol-		٠					,	
carbamat	ω	9	1,0	Mais	0	0	.0	0
S-2,3,3-Trichlor- allyldiisopropyl- thiolcarbamat	ی ر	9	0,01	Mais	0	0	0	0
S-Äthyldiiso- butylthiol - carbamat	ω	ı	1	Mais	80 80			
S-2,3,3-Trichlor- allyl-diisopro- pyl-thiolcarbamat	σ 4 ι	ı	1	Mais	30 V			
EPTC = S-AV	<pre>= S-Athyl-N,N-dipropylthiocarbamat; = Verkümmerung; = MiBbildung; = Keimhemmung; = Blattverbrennung (leaf burn).</pre>	propylthics.	ocarbamat; ourn).					

Die erfindungsgemäß eingesetzten Gegenmittel können in jeder geeigneten Form angewandt werden. So können sie beispielsweise zu emulgierbaren Flüssigkeiten, emulgierbaren Konzentraten, zu einer Flüssigkeit, zu einem benetzbaren Pulver, zu Staubmitteln, zu einem Granulat oder zu einer anderen zweckmäßigen Form verarbeitet werden. Vorzugsweise die Gegenmittel den Thiolcarbamaten beigemischt und vor oder nach dem Einsäen der Saat in den Boden eingearbeitet. Doch kann natürlich auch zuerst das Thiolcarbamat-Herbizid und danach das Gegenmittel in den Boden eingearbeitet werden. Des weiteren kann das Saatgut mit dem Gegenmittel behandelt und im Boden eingesät werden, der entweder bereits mit Herbizid versehen oder nicht damit behandelt wurde und anschließend einer Herbizid-Behandlung unterzogen wird. Durch die Art und Weise, wie das Gegenmittel zugesetzt wird, wird die herbizide Wirksamkeit der Carbamat-Verbindungen nicht beeinträchtigt.

Die Menge des Gegenmittels kann zwischen etwa 0,0001 und etwa 30 Geg-Teilen gew.-Teil Thiolcarbamat-Herbizid schwanken, wird jedoch gewöhnlich exakt danach ermittelt, welches Verhältnis sich im Hinblick auf die wirksamste Quantität als wirtschaftlich erweist.

In den Ansprüchen der vorliegenden Anmeldung soll der Ausdruck "wirksame herbizide Verbindung" die wirksamen Thiol-carbamate als solche oder die Thiolcarbamate umfassen, die mit anderen wirksamen Verbindungen, wie z.B. den s-Triazinen und der 2,4-Dichlorphenoxyessigsäure oder den wirksamen Acetaniliden und dergl. vermischt sind. Außerdem ist die wirksame herbizide Verbindung von der als Gegenmittel eingesetzten Verbindung verschieden.

Die Klassen der vorliegend beschriebenen und erläuterten herbiziden Mittel sind als wirksame, solche Wirkung aufweisende Herbizide charakterisiert. Der Grad dieser herbiziden Wirkung ist bei den spezifischen Verbindungen und Kombinationen spezifischer Verbindungen innerhalb der Klassen unterschiedlich. Der Wirkungsgrad ist auch bei den einzelnen Pflanzensorten, für die eine spezifische herbizide Verbindung oder Kombination verwandt werden kann, bis zu einem gewissen Grade unterschiedlich. Eine spezifische herbizide Verbindung oder Kombination zur Bekämpfung unerwünschter Pflanzensorten läßt sich also leicht auswählen. Erfindungsgemäß läßt sich die Schädigung einer gewünschten Nutzpflanze (crop species) in Gegenwart einer spezifischen herbiziden Verbindung oder Kombination verhindern. Durch die spezifischen, in den Beispielen verwandten Nutzpflanzen sollen die Nutzpflanzen, die mit diesem Verfahren geschützt werden können, nicht beschränkt werden.

Die im erfindungsgemäßen Verfahren verwädten herbiziden Verbindungen sind wirksame Herbizide allgemeiner Art. D.h. die Mittel dieser Klasse weisen gegenüber einem großen Bereich von Pflanzensorten eine herbizide Wirksamkeit auf, ohne daß ein Unterschied zwischen erwünschten oder unerwünschten Pflanzensorten gemacht wird. Zur Bekämpfung des Pflanzenwuchses wird eine herbizid wirksame Menge der hier beschriebenen herbiziden Verbindungen auf die Fläche oder dort, wo eine Bekämpfung von Pflanzen erwünscht ist, aufgebracht.

Unter "Herbizid" versteht man vorliegend eine Verbindung,

mit der Pflanzenwachstum bekämpft oder modifiziert wird. Zu solchen Formen der Bekämpfung oder Modifizierung gehören alle Abweichungen von der natürlichen Entwicklung, z.B. Vernichtung, Entwicklungsverzögerung, Entblätterung, Austrocknung, Regulierung, Verkümmerung, Bestockung (tillering), Stimulierung, Zwergwuchs und dergl. Unter "Pflanzen" versteht man keimende Samen, auflaufende Sämlinge und vorhandenen Pflanzenwuchs einschließlich der Wurzeln und der über dem Boden befindlichen Teile.

Die in den Tabellen genannten Herbizide wurden in solchen Mengen verwandt, mit denen der unerwünschte Pflanzen-wuchs wirksam bekämpft wird. Die Mengen liegen innerhalb des vom Hersteller empfohlenen Bereichs. Die Unkrautbekämpfung ist aus diesem Grunde innerhalb der gewünschten Menge in jedem Fall kommerziell annehmbar.

In der vorstehenden Beschreibung der als Gegenmittel eingesetzten Verbindungen gilt folgendes für die verschiedenen Substituentengruppen: Zu den Alkylresten gehören, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen Reste mit 1 bis 20 Kohlenstoffatomen, zu den Alkenylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine olefinische Doppelbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12, Kohlenstoffatomen, und zu den Alkinylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine acetylenische Dreifachbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12 Kohlenstoffatomen.

Patentansprüche:

1. Herbizides Mittel, gekennzeichnet durch einen Gehalt an einem herbiziden Wirkstoff und einem Gegenmittel der Formel

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-Nalkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkinoxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxyhalogenalkyloxyalkyl-, Hydroxyalkylcarboalkoxyalkyl-, Hydroxyalkyl-, Alkoxysulfonoalkyl-, Furyl-, Thienyl-, Alkyldithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyl- oder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-. Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-,

cingegangen am 18.5.72 16, 14. 209845/1180

Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R1 und R2 gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptealkyl-, Alkylaminoalkyl-, Alkoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-4,5-polyalkylen-thienyl-, a-Halogenalkylacetamidophenylalkyl-, \alpha-Halogenalkylacetamidonitrophenylalkyl-, α-Halogenalkylacetamidohalogenphenylalkyl-, oder Cyano-

alkenylreste bedeuten können oder auch R_1 und R_2 zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azobicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylaminoalkenylrest bilden können, wobei R_2 kein Wasserstoffatom oder Halogenphenylrest ist, wenn R_1 ein Wasserstoffatom darstellt.

- 2. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R ein Wasserstoffatom, ein Halogenatom, einen Alkyl-, Halogenalkyl-, Cycloalkyl-, Cycloalkylalkyl-, Alkenyl-, Halogenalkenyl-, Halogenalkoxy-, Alkinoxy-, Hydroxyalkyl-, Alkylthioalkyl- oder einen Hydroxyhalogenalkoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkenyl-, Halogenalkenyl-, Alkinyl-, Hydroxy-alkyl-, Hydroxyhalogenalkyl-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl- oder Cycloalkenylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 3. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkylrest bedeutet und R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azabicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl oder einen Alkylaminoalkenylrest bilden können.

- 4. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy- oder Nitroreste, Carbonsäuren und deren Salze oder Carbamyl- oder Halogenalkyl-carbamylreste substituierten Phenylrest, einen Phenylalkenylrest oder einen durch Halogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl- oder einen Halogenphenoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 5. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 6. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin
 R einen Halogenalkylrest oder ein Wasserstoffatom bedeutet
 und R₁ und R₂ gleich oder verschieden sein und jeweils

Alkyl- oder Alkenylreste, Wasserstoffatome, Alkoxyalkyloder Phenylreste oder durch Alkylreste, Halogenatome,
Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Pthalamido-,
Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido oder Alkylcarboalkenylreste
substituierte Phenylreste, Phenylalkamylreste oder durch
Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn
R₄ ein Wasserstoffatom darstellt.

- 7. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkyl-, Alkyl-, Cyanoalkyl-, Thiocyanatoalkyl-, Cyanatoalkyl-, Cycloalkyl-, Bicycloalkyl-, Halogenphenyl-, Phenylalkenyl- oder einen Halogenphenyl-alkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Cyanoalkylreste, Wasserstoffatome, Alkenyl- oder Alkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 8. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es als herbiziden Wirkstoff S-Äthyl-N,N-dipropylthiolcarbamat, S-Äthyldiisobutylthiol-carbamat, S-Propyldipropylthiolcarbamat, S-2,3,3-Trichlor-allyl-diisopropylthiolcarbamat, S-Äthylcyclohexyläthylthio-carbamat, 2-Chlor-2',6'-diäthyl-N-(methoxymethyl)-acet-anilid, S-Äthylhexahydro-1H-azepin-1-carbothioat, 2-Chlor-N-isopropylacetanilid, N,N-Diallyl-2-chloracetamid, S-4-Chlorbenzyldiäthylthiolcarbamat, 2-Chlor-4-äthylamino-6-isopropylamino-s-triazin, 2-Chlor-4,6-bis-(äthylamino)-s-triazin, 2(4-Chlor-6-äthylamino-s-triazin-2-yl-amino)-2-methylpropionitril, 2-Chlor-4-cyclopropylamino-6-isopropyl-

amino-s-triazin, 2,4-Dichlorphenoxyessigsäure oder deren Gemische enthält.

- 9. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Gegenmittel in einer Menge im Bereich von etwa 0,0001 bis etwa 30 Gew.-Teile pro Gew.-Teil des herbiziden Wirkstoffs vorliegt.
- 10. Verfahren zur Bekämpfung von Unkrautarten, dadurch gekennzeichnet, daß man dem Boden, in dem sich die Unkrautarten befinden, eine herbizid wirksame Menge des herbiziden Mittels nach einem der Ansprüche 1 bis 9 zusetzt.

Filr: Stauffer Chemical Company New York, N.Y., V.St.A.

(Dr.H.J.Wolff)
Rechtsanwalt