Motion in MRI

Challenges, Strategies & Quality Evaluation

Elisa Marchetto | Hannah Eichhorn

BIC-ISMRM Ed Talks April 4th, 2025

HELMHOLTZ MUNICI)

Outline

1a) Challenges

Motion types

Motion in k-space

1b) Strategies

Motion estimation

Prospective vs. retrospective

Learning-based correction

2) Image Quality Evaluation

Motion in different body parts

Gastrointestinal

• What: digestive system

• How: peristalsis, random

• Extent: depending on subject, digestion status

Motion in different body parts Abdomen/Torso

- What: involuntary body motion
- **How**: periodic (respiration) and random (reflex actions and postural adjustments)
- Extent: depending on subject and position

Motion in different body parts Upper abdominal organs

- What: diaphragm/lung motion
- How: periodic (respiration)
- Extent: highly depending on subject

Motion in different body parts Heart

• What: Muscle contractions

How: periodic (heartbeat)

• Extent: ~cm

Slide Courtesy by Laura Bortolotti (with adaptions)
Campbell-Washburn et al. JMRI (2017), Rashid et al. JMRI (2023)
https://commons.wikimedia.org/wiki/File:Cardiac_MRI_flow.gif

Motion in different body parts

Head and brain

- What: Rigid-body motion of the head
- How: random, mostly z-translation and x-rotation
- Extent: subject-dependent, up to 15 cm

Motion in different body parts Fetal MRI

Low spatial resolution 3D acquisition

Reconstruction (1mm isotropic)

Motion compensated

Slide Courtesy by Laura Bortolotti (with adaptions)
Roy et al. et al. ISMRM (2021), Uus et al. Brit. J. Radiol (2023)

Motion in different body parts – "It varies"

TYPE:

- Rigid (spatial relationships between points are maintained) - Head
- **Deformable** Abdomen, Heart

Categories of motion

OCCURRENCE:

- Inter-image (motion occurs between acquisitions of volumes)
- Inter-Scan (between excitation pulses within a volume)
- Intra- Scan (during a signal acquisition and signal excitation)

PATTERN:

- Random (Head)
- **Periodic** (Respiration, Heartbeat)
- Quasi-periodic (Head)
- Continuous (Abdomen, Head)

DIRECTION:

- In-plane (within the excited slice plane)
- Through-plane (perpendicular to the slice)

Motion in the k-space

Translations

$$s(\overline{k}) = F\{\rho(\overline{x})\}(\overline{k}) = \int_{-\infty}^{\infty} \rho(\overline{x})e^{-i2\pi\overline{k}\cdot\overline{x}} d\overline{x} \qquad \overline{a} = (\Delta_x, \Delta_y, \Delta_z)$$

$$F\{\rho(\overline{x} - \overline{a})\}(\overline{k}) = \int_{-\infty}^{\infty} \rho(\overline{x} - \overline{a}) e^{-i2\pi\overline{k}\cdot\overline{x}} d\overline{x}$$

$$F\{\rho(\overline{x}-\overline{a})\}(\overline{k}) = \int_{-\infty}^{\infty} \rho(\overline{x}-\overline{a}) e^{-i2\pi \overline{k}\cdot \overline{x}} d\overline{x}$$

Fourier Shift Theorem

$$F\{\rho(\overline{x}-\overline{a})\}(\overline{k})=e^{-i2\pi\overline{k}\cdot\overline{a}}\,F\{\rho(\overline{x})\}(\overline{k})$$

Motion in the k-space

Rotations

$$F\{\rho(R\overline{x})\}(\overline{k}) = \int_{-\infty}^{\infty} \rho(R\overline{x})e^{-i2\pi\overline{k}\cdot\overline{x}} d\overline{x}$$

$$= \int_{-\infty}^{\infty} \rho(\overline{y})e^{-i2\pi(R\overline{k})\cdot\overline{y}} d\overline{y}$$

$$F\{\rho(R\overline{x})\}(\overline{k}) = F\{\rho(\overline{x})\}(R\overline{k})$$

Linear phase in a rotated k-space: $F\{\rho(R\overline{x}-\overline{a})\}(\overline{k})=e^{-i2\pi\left(R\overline{k}\right)\cdot\overline{a}}\,F\{\rho(\overline{x})\}(R\overline{k})$

Motion in MRI Strategies

Motion Mitigation

Patient Positioning

Guidance / Training

Sedation / GA

Motion Estimation

- External Tracking Systems
- Navigators
- Navigators without Gradients

MoCo Virtual Seminars: Educational/Scientific Talks

Attached Sensors

- Physically attached
- Field detection methods
- RF markers or magnetometers to detect the scanner gradient fields changing

Niekerk et al. IEEE Trans Med Imaging (2019)

Norbeck et al. MRM (2020)

Camera systems using markers

Multi-camera systems

- Physically attached markers
 - Reflective markers
 - Pattern markers
 - e.g., Moiré Phase Tracking

Single camera systems

Maclaren et al. PLOS One (2012)

Camera systems without markers

- Tracking based on natural face or body features
 - Structured-light
 - o Stereo-camera

Tracoline TCL3.1
Image courtesy of Stefan
Glimberg

Kyme et al. Med. Phys. (2020)

K-space-based navigators

- Based on Fourier properties
 - Rotations affect the magnitude
 - Translations affect the phase
- Different k-space trajectories

Image-based navigators

- Motion estimates derived reconstructed low-resolution images
- Fast 2D/3D acquisition

Image-based navigators

- Motion estimates derived reconstructed low-resolution images
- Fast 2D/3D acquisition
- Highly accelerated 3D volumes
- Enables self-navigated motion correction
 - o PROPELLER (Pipe, MRM 1999)

FID-Navigators

- Measuring the Free Induction
 Decay signal after an excitation
 pulse
- Monitor the signal information coming from a multi-channel coils over time
- Model of the FID signal in presence of motion

Wallace et al. MRM (2019)

Motion Estimation

Motion in MRI Correction

Prospective Motion Correction

- Real-time motion correction
- Update of the scanner gradients
- Minimize latency
- Un-corrected image is not available

Retrospective Motion Correction

$$F\{\rho(R\overline{x}-\overline{a})\}(\overline{k})=e^{-i2\pi(R\overline{k})\cdot\overline{a}}F\{\rho(\overline{x})\}(R\overline{k})$$

- Applies Fourier properties
 - Fourier Shift Theorem
 - Rotation Theorem
- Uncorrected image is available
- Does not require any sequence adjustments

Retrospective Motion Correction

- Applies Fourier properties
 - o Fourier Shift Theorem
 - Rotation Theorem
- Uncorrected image is available
- Does not require any sequence adjustments
- Rotations can cause the pie-slice effect, which can cause striking and ghosting artifacts
- Requires NFFT to resample the kspace into a Cartesian grid.

Autofocusing

- Iterative correction based on Fourier shift and rotation theorems.
- Correct motion estimates minimize a cost-function (e.g., image entropy in Atkinson et al. MRM 1999)

Cons

- Incorrect motion estimates can introduce artifacts if errors propagate through kspace
- Computationally expensive

o Potential use

- Improve efficiency using prior information (e.g., navigators)
- Address residual artifacts remaining after initial motion correction

Deep Learning has shown capability to cope with complex problems

Various approaches for retrospective motion correction

Aspects of learning-based motion correction

Architectures: image-based vs. k-space-based

Training objectives: how much supervision?

Aspects of learning-based motion correction

Motion in MRI

Image Quality Evaluation

Types of image quality evaluation

Qualitative assessment

Task-based

Reference-based vs. reference free image quality metrics (IQMs)

Image quality metrics

- Large number of IQMs used in literature
 - → lack of standardization

- Most IQMs originally designed for natural images
- Medical image quality:
 How well can the desired clinical information be extracted?
 radiological evaluation gold standard

"To SSIM or not to SSIM?"

SSIM and PSNR most used IQMs

- fastMRI challenges:
 - 1. SSIM consistent with radiological evaluation
 - 2. SSIM failed to detect hallucinations
- Recent studies:
 - SSIM and PSNR perform worse than more advance IQMS (e.g. FSIM, VIF)
 - SSIM less sensitive to simulated motion than e.g. VIF

Perceptual metrics based on deep features

- Increasingly used in computer vision community
- First studies analyzing their potential in MRI (accelerated reconstruction)
- Comprehensive evaluation for motion in MRI missing

Reference-based vs. reference-free IQMs

- Reference-based IQMs rely on high-quality reference
 - "Hidden noise" problem
 - Reference not available for all applications

Reference-free image quality evaluation challenging

Agreement of Image Quality Metrics with Radiological Evaluation in the Presence of Motion Artifacts

Performance of ten commonly used IQMs

Selection of IQMs focused on **relevance & usage** in the MoCo field

Based on real motion data

Effect of common pre-processing steps

Preprint:

Code:

Methods

Image Quality Evaluation

Image Quality Metrics

- Comparison of 10 different image quality metrics
 - 5 Reference-Based: require a reference (ground-truth) image
 - Reference image without motion and without motion correction
 - Good quality is not always guaranteed
 - Not always available in clinical practice

Structural Similarity Index Measure (SSIM)	Wang et al., IEEE (2004)	
Peak Signal-to-Noise Ratio (PSNR)	Hore et al., 20 th ICPR (2010)	
Feature Similarity Index Measure (FSIM)	Zhang et al., IEEE (2011)	
Visual Information Fidelity (VIF)	Sheikh et al., IEEE (2006)	
Perceptual Image Patch Similarity (LPIPS)	Zhang et al., Proc. IEEE (2018)	

Code:

Image Quality Metrics

- Comparison of 10 different image quality metrics
 - 5 Reference-Free: no reference
 (ground-truth) image required

Tenengrad (TG)	Kecskemeti et al., Radiology (2018)	
Average Edge Strength (AES)	Pannetier et al., MRM (2016)	
Normalized Gradient Square (NGS)	McGee et al., JMRI (2000)	
Image Entropy (IE)	Atkinson ET AL., IEEE (1997)	
Gradient Entropy (GE)	McGee et al., JMRI (2000)	

Image Acquisition

Dataset 1 (NRU)

Dataset 2 (CUBRIC)

Datasets from 2 research institutes:

- Neurobiology
 Research Unit NRU (Copenhagen,
 Denmark)
- 2. Cardiff University
 Brain Research
 Imaging Centre CUBRIC (Cardiff,
 UK)

Scanner	Prisma 3T	Prisma 3T
Participants	22 healthy subjects	9 healthy subjects
Sequences	3D MP-RAGE, 3D T_2 FLAIR, 2D T_2 TSE, 2D T_1 TIRM	3D MP-RAGE
Motion	Nodding and shaking	Nodding, circular- motion and stepwise motion
Motion correction	Prospective motion correction with marker-based method	Retrospective motion correction with marker-based and navigator-based methods.
Total images	584	217
Image quality assessment	2 Radiologists and 2 Radiographers	1 Radiologist

Pre-Processing Evaluation

Correlation Analysis

Results

Image Quality Evaluation

Correlation Analysis

"Default" settings:

- Apply Mask:

Multiply:

- Normalization:

Percentile:

$$\frac{x-p(x)}{P(x)-p(x)}$$

- Reduction:

Worst slice min / max value

MP-RAGE

Dataset 1

Dataset 2

*could not be calculated because metric requires a certain range

No significant correlation

Effect of Normalization

*Calculated within the brain mask

Discussion

Image Quality Evaluation

Discussion

Reference-based IQMs more consistent than reference-free IQMS

Best reference-free IQMS: Average Edge Strength & Tenengrad

Normalization and masking proved essential

We recommend: percentile normalization and using a brain mask

Masking might beapplication-specific

Outlook & future work

→ quality inspection,
 clear documentation
 & code sharing

Distribution-based metrics & learning-based approaches promising

Thank you!

... also to L. Bortolotti, R. Frost and A. van der Kouwe for the slide courtesies.

Work together with **Melanie Ganz**, Daniel Gallichan, Julia A. Schnabel

Code:

We gratefully acknowledge funding by:

Let's start the discussion...

... What are key barriers for real-time quality evaluation in the clinical workflow and how to overcome them?

... What would be requirements for AI-based automated quality evaluation methods?

... How can we ensure AI-based methods remain interpretable and generalizable?

... How can the MR community establish standardized datasets and benchmarks to ensure consistent IQM comparisons across studies?

Preprint:

Code:

Work together with **Melanie Ganz**, Daniel Gallichan, Julia A. Schnabel

