COMS20011 – Data-Driven Computer Science

Frequency Domain Fundamentals (and Frequencies as Features)

March 2023

Majid Mirmehdi

Next in DDCS

Feature Selection and Extraction

- Signal basics and Fourier Series
- > 1D and 2D Fourier Transform
- Another look at features
- Convolutions

Viewing Magnitude and Phase - reminder

Periodic Spectrum

Symmetry

Important property of the FT: *Conjugate Symmetry*The FT of a real function f(x,y) gives:

$$F(u,v) = F^*(-u,-v)$$
 $|F(u,v)| = |F^*(-u,-v)|$

Before shift After shift

Separability

Important property of the FT: *Separability*If a 2D transform is separable, the result can be found by successive application of two 1D transforms.

Faster Computation: convolving an $M \times N$ image with an $m \times n$ filter would require $\mathcal{O}(M.N.m.n)$ operations. In 1D separable form, only $\Rightarrow \mathcal{O}(M.N.(m+n))$

Separability

Important property of the FT: Separability

If a 2D transform is separable, the result can be found by successive application of two 1D transforms. This is a principle aspect of the Fast Fourier Transform (FFT).

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} F(x,v) \quad e^{\frac{-j2\pi ux}{N}} \text{ where } F(x,v) = \frac{1}{N} \sum_{y=0}^{N-1} f(x,y) \quad e^{\frac{-j2\pi vy}{N}}$$

Rotation

Important property of the FT: *Rotation*Rotate the image and the Fourier space rotates.

Importance of Phase

Changing the frequency values! By hand!

Manipulating the Fourier Frequencies

COMS20011 - DDCS

Filtering the Fourier Frequencies

Filtering → to manipulate the (signal/image/etc) data.

1D:
$$G(u) = F(u)H(u)$$
 2D: $G(u, v) = F(u, v)H(u, v)$

Low Pass Filtering

1D: turning the "treble" down on audio equipment!

2D: smooth image

 $H(u,v) \ = \left\{ \begin{array}{ll} 1 & r(u,v) \leq r_0 \\ 0 & r(u,v) > r_0 \end{array} \right. \label{eq:hamiltonian}$

 $r(u,v) = \sqrt{u^2 + v^2}$, r_0 is the filter radius

Butterworth's Low Pass Filter

After applying filter to freq. domain

$$H(u,v) =$$

of order n

Butterworth's High Pass Filter

1D: turning the bass down on audio equipment!

2D: sharpen image

$$H(u,v) = \frac{1}{1 + [r_0/r(u,v)]^{2n}} \quad \text{of order } n$$

Order of n=3

Butterworth's Low and High Pass Filtering Examples

Low Pass

High Pass

Low and High Pass Filtering

Filtering Examples

Filtering to Remove Periodic Noise

Butterworth's Notch Reject Filtered

COMS20011 - DDCS

Spectral Features from Spectral Regions

Fourier space, with origin at z=(u=0,v=0).

$$a \le u \le b$$
$$c \le v \le d$$

box

$$-r_b \le u \le r_b$$

$$\pm \sqrt{r_a^2 - u^2} \le v \le \pm \sqrt{r_b^2 - u^2}$$

ring

$$u^{2} + v^{2} = r^{2}$$

$$\theta_{1} \le \tan^{-1} \frac{v}{u} \le \theta_{2}$$
sector

Sum the magnitudes for $u, v \in \Re$

Next in DDCS

22

Feature Selection and Extraction

- Signal basics and Fourier Series
- ➤ 1D and 2D Fourier Transform
- Another look at features
- Convolutions