最小生成树

最小生成树

无向连通带权图

G = (V, E, W),

其中 $w(e) \in W$ 是边 e 的权.

G 的一棵生成树 T 是包含了G 的所有顶点的树,树中各边的权之和W(T) 称为树的权,具有最小权的生成树称为 G 的最小生成树.

最小生成树的实例

 $G=(V,E,W),V=\{1,2,3,4,5,6\},W$ 如图所示. $E=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,5\},\{3,4\},\{3,5\},\{3,6\},\{4,6\},\{5,6\}\}$

生成树的性质

命题1 设G是n 阶连通图,那么

- (1) $T \in G$ 的生成树当且仅当T 无圈且有 n-1条边.
- (2) 如果 $T \in G$ 的生成树, $e \notin T$,那 么 $T \cup \{e\}$ 含有一个圈C (回路).

生成树的性质 (续)

(3) 去掉圈C的任意一条边,就得到G的另外一棵生成树T'。

生成树性质的应用

- 算法步骤:选择边. 约束条件:不形成回路 截止条件:边数达到 *n*-1.
- 改进生成树 T 的方法
 在 T 中加一条非树边 e, 形成回路
 C, 在 C 中去掉一条树边 e_i, 形成一棵新的生成树 T'
 W(T')-W(T) = W(e)-W(e_i)
 若 W(e) ≤ W(e_i), 则 W(T')≤W(T)

求最小生成树

问题:

给定连通带权图 G = (V, E, W), $w(e) \in W$ 是边 e 的权. 求 G 的一棵最小生成树.

贪心法:

Prim 算法, Kruskal 算法

生成树在网络中有着重要应用

小结

- 生成树与生成树的权
- 最小生成树
- 生成树的性质