RBE 500 Midterm

Arjan Gupta

Problem 1

Derive the rotation matrix \mathbb{R}^1_2 (you can leave sines and cosines as is).

Solution

Since the x-axis remains the same in the rotation, we know this is a basic 3D rotation matrix representing a rotation about the x-axis. However, using the right-hand screw rule, we see that the angle θ here is negative. So, by using equation (2.7) of our main textbook, the rotation matrix is given by,

$$R_{2}^{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(-\theta) & -\sin(-\theta) \\ 0 & \sin(-\theta) & \cos(-\theta) \end{bmatrix}$$

$$R_{2}^{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix}$$

Problem 2

Find the coordinates of point p expressed in frame 1 (i.e. p^1) given the following.

$$H_1^2 = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0.9553 & 0.2955 & -0.9553 \\ 0 & -0.2955 & 0.9553 & 0.2955 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ p^2 = \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$$

Solution

From our knowledge of homogeneous transformations, we know that

$$P^2 = H_1^2 P^1$$

Where
$$P^2 = \begin{bmatrix} p^2 \\ 1 \end{bmatrix}$$
 and $P^1 = \begin{bmatrix} p^1 \\ 1 \end{bmatrix}$.

However, we want to find

We use the following MATLAB code for this computation.

Problem 3