Pesquisa Operacional / Programação Matemática

Método Simplex:

Algoritmo e exemplo

Algoritmo simplex

■ Até agora, supomos que temos uma partição básica factível já determinada. Em alguns casos, será necessário efetuar alguns procedimentos para obtê-la.

Fase I:

 Determine inicialmente uma partição básica factível A = [B,N]. A rigor, precisamos de dois vetores de índices básicos e não-básicos:

$$(B_1, B_2, ..., B_m)$$
 e $(N_1, N_2, ..., N_{n-m})$.

Os vetores das variáveis básicas e não-básicas são, respectivamente:

$$\mathbf{x}_{\mathbf{B}}^{\mathsf{T}} = (x_{B_1} \ x_{B_2} \cdots x_{B_m}) \ \mathbf{e} \ \mathbf{x}_{N}^{\mathsf{T}} = (x_{N_1} \ x_{N_2} \cdots x_{N_{n-m}}).$$

Faça iteração = 1.

Ŋ.

Simplex - Fase II

Fase II:

{início da iteração simplex}

Passo 1: {cálculo da solução básica}

$$\begin{cases} \hat{\mathbf{x}}_{B} = \mathbf{B}^{-1}\mathbf{b} \text{ (equivalentemente, resolva o sistema } \mathbf{B}\mathbf{x}_{B} = \mathbf{b} \text{)} \\ \hat{\mathbf{x}}_{N} = \mathbf{0} \end{cases}$$

Passo 2: {cálculo dos custos relativos}

2.1) {vetor multiplicador simplex}

$$\lambda^{T} = \mathbf{c}_{B}^{T} \mathbf{B}^{-1}$$
 (equivalentemente, resolva o sistema $\mathbf{B}^{T} \lambda = \mathbf{c}_{B}$)

2.2) {custos relativos}

$$\hat{c}_{N_j} = c_{N_j} - \lambda^{\mathrm{T}} \mathbf{a}_{N_j}$$
 $j = 1, 2, ..., n - m$

2.3) {determinação da variável a entrar na base}

$$\hat{c}_{N_k} = \min\{\hat{c}_{N_j}, j = 1,...,n-m\}$$
 (a variável x_{N_k} entra na base)

M

Simplex - Fase II

Passo 3: {teste de otimalidade}

Se $\hat{c}_{N_k} \ge 0$, então: pare {solução na iteração atual é ótima}

Passo 4: {cálculo da direção simplex}

 $\mathbf{y} = \mathbf{B}^{-1} \mathbf{a}_{N_k}$ (equivalentemente, resolva o sistema: $\mathbf{B} \mathbf{y} = \mathbf{a}_{N_k}$)

Passo 5: {determinação do passo e variável a sair da base}

Se $\mathbf{y} \leq \mathbf{0}$, então: pare {problema não tem solução ótima finita: $f(\mathbf{x}) \rightarrow -\infty$ }

Caso contrário, determine a variável a sair da base pela razão mínima:

$$\hat{\varepsilon} = \frac{\hat{x}_{B_{\ell}}}{y_{\ell}} = \min \left\{ \frac{\hat{x}_{B_{i}}}{y_{i}} \text{ tal que } y_{i} > 0, i = 1, ..., m \right\} \text{ (a variável } x_{B_{\ell}} \text{ sai da base)}$$

M

Simplex - fase II

```
Passo 6: {atualização: nova partição básica, troque a \ell-ésima coluna de \boldsymbol{B} pela k-ésima coluna de \boldsymbol{N}}: matriz básica nova: \boldsymbol{B} = [\boldsymbol{a}_{\boldsymbol{B}_1} \cdots \boldsymbol{a}_{\boldsymbol{B}_{\ell-1}} \ \boldsymbol{a}_{N_k} \ \boldsymbol{a}_{\boldsymbol{B}_{\ell+1}} \cdots \boldsymbol{a}_{\boldsymbol{B}_m}] matriz não-básica nova: \boldsymbol{N} = [\boldsymbol{a}_{N_1} \cdots \boldsymbol{a}_{N_{k-1}} \ \boldsymbol{a}_{\boldsymbol{B}_\ell} \ \boldsymbol{a}_{N_{k+1}} \cdots \boldsymbol{a}_{N_{n-m}}] iteração = iteração + 1 Retorne ao passo 1 {fim da iteração simplex}
```

Exemplo 2.26 Considere o seguinte problema de otimização linear:

Minimizar
$$f(x_1, x_2) = -x_1 - 2x_2$$

 $x_1 + x_2 \le 6$
 $x_1 - x_2 \le 4$
 $-x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$.

Introduzindo variáveis de folga, temos:

Tabela 2.13 Dados do problema.

	x_1	x_2	x_3	x_4	x_5	b
	Ĩ	1	1	0	0	6
A	1	-1	0	1	0	4
	-1	1	0	0	1	4
$\operatorname{Min} f$	-1	-2	0	0	0	

Fase I:

$$(B_1, B_2, B_3) = (3, 4, 5),$$
 $(N_1, N_2) = (1, 2),$

Fácil, pois os coeficientes das variáveis de folga formam uma matriz identidade.

Tabela 2.14
Dados conforme partição na iteração 1.

	Índices					
		básicos		não-básicos		
	$B_1=3$	$B_2 = 4$	$B_{3} = 5$	$N_1 = 1$	$N_2 = 2$	b
[B N]	1	0	0	1	1	6
	0	1	0	1	-1	4
	0	0	1	-1	1	4
$[\mathbf{c}_{\mathrm{B}} \mid \mathbf{c}_{\mathrm{N}}]$	0	0	0	-1	-2	f = 0

Passo 1:

 $\{c\'alculo\ da\ solução\ b\'asica\} = \mathbf{x_B} = (x_3, x_4, x_5)$

Resolva o sistema
$$\mathbf{B}\mathbf{x}_{\mathbf{B}} = \mathbf{b}$$
 e obtenha $\hat{\mathbf{x}}_{\mathbf{B}} = \begin{pmatrix} 6 \\ 4 \\ 4 \end{pmatrix}$.

Passo 2: {Cálculo dos custos relativos}

2.1) {vetor multiplicador simplex}: $(\mathbf{c_B} = (c_{B_1}, c_{B_2}, c_{B_3}) = (c_3, c_4, c_5) = (0, 0, 0)$.

A solução do sistema $\mathbf{B}^{\mathrm{T}} \boldsymbol{\lambda} = \mathbf{c}_{\mathbf{B}} \in \boldsymbol{\lambda}^{\mathrm{T}} = (0, 0, 0).$

2.2) {custos relativos}: $(N_1 = 1, N_2 = 2)$

$$\hat{c}_1 = c_1 - \boldsymbol{\lambda}^T \mathbf{a}_1 = -1 - \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = -1,$$

$$\hat{c}_2 = c_2 - \lambda^T \mathbf{a}_2 = -2 - (0 \quad 0 \quad 0) \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = -2 \leftarrow k = 2.$$
 (a variável $x_{N_2} \neq x_2$ entra na base)

2.3) {determinação da variável a entra na base}

Como $\hat{c}_2 = \hat{c}_{N_2} = m$ ínimo $\{\hat{c}_{N_j}, j=1, 2\} = -2 < 0$, então a variável x_2 entra na base.

Passo 3: {teste de otimalidade}

Os custos relativos mostram a função objetivo em termos das variáveis não-básicas: $f(\mathbf{x}) = 0 - 1x_1 - 2x_2$. Como há custos relativos negativos, a solução atual não é ótima.

Passo 4: {cálculo da direção simplex}

Resolva o sistema
$$\mathbf{B}\mathbf{y} = \mathbf{a}_2$$
 e obtenha $\mathbf{y} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

Passo 5: {determinação do passo e variável a sair da base}

$$\hat{\varepsilon} = m inimo \left\{ \frac{\hat{x}_{B_1}}{y_1}, \frac{\hat{x}_{B_3}}{y_3} \right\} = m inimo \left\{ \frac{6}{1}, \frac{4}{1} \right\} = 4 = \frac{\hat{x}_{B_3}}{y_3}. \text{ (a variável } x_{B_3} = x_5 \text{ sai da base)}$$

Passo 6: {atualização: nova partição básica, troque a ℓ -ésima coluna de B pela k-ésima coluna de N}:

$$(B_1, B_2, B_3) = (3, 4, 2)$$
 $(N_1, N_2) = (1, 5),$

Tabela 2.15
Dados conforme partição na iteração 2.

	Índices					
	básicos			não-básicos		
	$B_1=3$	$B_2 = 4$	$B_3 = 2$	$\overline{N_1}=1$	$N_2 = 5$	b
$[B \mid N]$	1	0	1	1	0	6
	0	1	-1	1	0	4
	0	0	1	-1	1	4
$[c_{\scriptscriptstyle B} \mid c_{\scriptscriptstyle N}]$	0	0	-2	-1	0	f = -8

Exercício: continue até obter a solução ótima