Lecture 7: Interior Point Methods for Constrained Minimization

- brief intro of IP methods
- logarithmic barrier function
- central path
- SUMT
- feasibility phase
- summary

Introduction of IP methods

interior point methods

- smooth 'barrier' function replaces constraints
- solve sequence of smooth unconstrained problems
- initiated by Karmarkar (for LP)
- polynomial worst-case complexity
- work well in practice
- extended to general case by Nesterov & Nemirovsky 1988

Logarithmic barrier function

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

 f_i convex, differentiable; (no equality constraints for simplicity)

assume strict feasibility: $C = \{x \mid f_i(x) < 0, \ i = 1, \dots, m\} \neq \emptyset$

define **logarithmic barrier** ϕ as

$$\phi(x) = \begin{cases} -\sum_{i=1}^{m} \log(-f_i(x)) & x \in C \\ +\infty & \text{otherwise} \end{cases}$$

- \bullet ϕ is convex, smooth on C
- ullet $\phi o \infty$ as x approaches boundary of C

 $\operatorname{argmin} \phi$ (if exists) is called **analytic center** of inequalities $f_1(x) < 0, \ldots, f_m(x) < 0$

Central path

$$x^*(t) = \operatorname{argmin}(tf_0(x) + \phi(x)) \text{ for } t > 0$$

(we assume minimizer exists and is unique)

- curve $x^*(t)$ for $t \geq 0$ called **central path**
- ullet can compute $x^*(t)$ by solving smooth unconstrained minimization problem (given a strictly feasible starting point)
- t gives relative weight of objective and barrier
- ullet barrier 'traps' $x^*(t)$ in strictly feasible set
- ullet intuition suggests $x^*(t)$ converges to optimal as $t \to \infty$

 $x^*(t)$ characterized by

$$t\nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t)) = 0$$

Example: central path for LP

 $x \in \mathbf{R}^2$, $A \in \mathbf{R}^{6 \times 2}$, c points left

Force field interpretation

imagine a particle in C, subject to forces; ith constraint generates constraint force field

$$F_i(x) = -\nabla \left(-\log(-f_i(x))\right) = \frac{1}{f_i(x)} \nabla f_i(x)$$

- ullet ϕ is potential associated with constraint forces
- constraint forces push particle away from boundary of feasible set
- constraint forces trap particle in C

superimpose objective force field

$$F_0(x) = -t\nabla f_0(x)$$

- pulls particle toward small f_0
- t scales objective force

at $x^*(t)$, constraint forces balance objective force;

as t increases, particle is pulled towards optimal point, trapped in C by barrier potential

Central points and duality

recall $x^* = x^*(t)$ satisfies

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i \nabla f_i(x^*) = 0, \quad \lambda_i = \frac{1}{-f_i(x^*)t} > 0$$

so x^* also minimizes $L(x,\lambda) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$

i.e., λ is dual feasible and

$$f^* \ge g(\lambda) = \inf_x \left(f_0(x) + \sum_i \lambda_i f_i(x) \right) = f_0(x^*) + \sum_i \lambda_i f_i(x^*) = f_0(x^*) - m/t$$

summary: a point on central path yields dual feasible point and lower bound:

$$f_0(x^*(t)) \ge p^* \ge f_0(x^*(t)) - m/t$$

(which proves $x^*(t)$ becomes optimal as $t \to \infty$)

Central path and KKT conditions

KKT optimality conditions: x optimal $\iff \exists \lambda$ s.t.

$$f_i(x) \leq 0$$

$$\lambda_i \geq 0$$

$$\nabla f_0(x) + \sum_i \lambda_i \nabla f_i(x) = 0$$

$$\lambda_i f_i(x) = 0$$

centrality conditions: x central $\iff \exists \lambda, t > 0$ s.t.

$$f_i(x) \leq 0$$

$$\lambda_i \geq 0$$

$$\nabla f_0(x) + \sum_i \lambda_i \nabla f_i(x) = 0$$

$$\lambda_i f_i(x) = -1/t$$

- for t large, $x^*(t)$ 'almost' satisfies KKT
- central path is continuous deformation of KKT condition

Unconstrained minimization method

given strictly feasible x, desired accuracy $\epsilon > 0$

- 1. $t:=m/\epsilon$ 2. compute $x^*(t)$ starting from x3. $x:=x^*(t)$

- ullet computes ϵ -suboptimal point on central path (and certificate λ)
- solves constrained problem by solving one smooth unconstrained minimization (via Newton, BFGS, . . .)
- works, but can be slow

SUMT

(Sequential Unconstrained Minimization Technique)

given strictly feasible x, t>0, tolerance $\epsilon>0$ repeat

- 1. compute $\boldsymbol{x}^*(t)$ starting from \boldsymbol{x}
- 2. $x := x^*(t)$
- 3. if $m/t \leq \epsilon$, return(x)
- 4. increase t
- generates sequence of points on central path
- solves constrained problem via sequence of unconstrained minimizations (often, Newton)
- simple updating rule for t: $t^+ = \mu t$ (typical values $\mu \approx 10 \sim 100$)

steps 1–4 above called **outer iteration** step 1 involves **inner iterations** (e.g., Newton)

tradeoff: small $\mu \Longrightarrow$ few inner iters to compute $x^{(k+1)}$ from $x^{(k)}$, but more outer iters

Example: LP

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

 $A \in \mathbf{R}^{100 \times 50}$, Newton with exact line search

- (Left): duality gap reduced by 10^5 in few tens of Newton iters;
- ullet (Right): trade-off in choice of μ : #Newton iters required to reduce duality gap by 10^6

Bound on total # Newton iters

upper bound on total #Newton steps:

$$\left\lceil \frac{\log(m/t^{(0)}\epsilon)}{\log \mu} \right\rceil \left(c + \frac{m(\mu - 1 - \log \mu)}{\eta_2} \right)$$

$$(c = 5, \eta_2 = 1/20, m = 10, m/t^{(0)} \epsilon = 10^5)$$

- optimal μ depends on m, η_2 , c, $t^{(0)}$, ϵ

could use empirical values for η_2 , c to optimize average-case behavior

Phase I

to compute strictly feasible point (or determine none exists) set up auxiliary problem:

minimize
$$w$$
 subject to $f_i(x) \leq w, \ i = 1, \ldots, m$

- easy to find strictly feasible initial point (hence SUMT can be used)
- ullet can use stopping criterion with target value 0

Generalized inequalities

standard problem with generalized inequalities:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0, i = 1, \dots, L$

- $f_0: \mathbf{R}^n \to \mathbf{R}$ is convex, differentiable $f_i: \mathbf{R}^n \to \mathbf{R}^{m_i}$ are K_i -convex, differentiable

 ψ is a **log barrier** for cone $K \subseteq \mathbf{R}^m$ if

- dom $\psi = \operatorname{int} K$
- ullet ψ is convex and K-increasing
- there is a θ s.t. for all a>0, $z\succ_K 0$,

$$\psi(az) = \psi(z) - \theta \log a$$

generalizes logarithm from R_+ to cone K

example. $\psi(Z) = \log \det Z^{-1}$ is a log barrier for PSD cone $K \subseteq \mathbf{R}^{n \times n}$, with $\theta = n$

Minimization with equality constraint

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $Ax = b$

• Newton step for min $f(x) = tf_0(x) + \phi(x)$: min 2nd order expansion of $f(x + \Delta x)$,

minimize
$$f(x) + \nabla f(x)^T \Delta x + \tfrac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x$$
 subject to
$$A\Delta x = 0$$

solves KKT conditions:

$$0 = \nabla f(x) + \nabla^2 f(x) \Delta x + A^T w; \ A \Delta x = 0$$

• equality constrained Newton step Δx :

$$\left[\begin{array}{cc} \nabla^2 f(x) & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} \Delta x \\ w \end{array}\right] = \left[\begin{array}{c} -\nabla f(x) \\ 0 \end{array}\right]$$

Summary

- other IP methods similar to SUMT
- work very well in practice
- worst-case complexity theory (if self-concordant)

sophisticated variations:

- use predictor steps to follow central path, with aggressive step size rules (e.g., 99% to boundary!)
- primal-dual methods
- infeasible methods (combine phase I & II)
- incomplete centering