TD 2 : Topologie des espaces vectoriels normés

Exercice 1: Montrer que les ensembles suivants sont ouverts :

1.
$$A = \{(x, y) \in \mathbb{R}^2; \ 0 < |x - 1| < 1\}.$$

2.
$$B = \{(x, y) \in \mathbb{R}^2; \ x^2 + y^2 < 4\}.$$

1.
$$A = \{(x, y) \in \mathbb{R}^2; \ 0 < |x - 1| < 1\}.$$
 2. $B = \{(x, y) \in \mathbb{R}^2; \ x^2 + y^2 < 4\}.$ 3. $C = \{(x, y) \in \mathbb{R}^2; \ x^2 < \exp(\sin y) + 12\}.$ 4. $D = \{(x, y) \in \mathbb{R}^2; \ -1 < \ln(x^2 + 1) < 1\}.$

4.
$$D = \{(x, y) \in \mathbb{R}^2; -1 < \ln(x^2 + 1) < 1\}.$$

Exercice 2: Montrer que les ensembles suivants sont fermés :

1.
$$A = \{(x, y) \in \mathbb{R}^2; \ 0 \le x \le y\}.$$

2.
$$B = \{(x, y) \in \mathbb{R}^2; -1 \le x + y \le 1\}.$$

Exercice 3:

1. Montrer que les ensembles suivants ne sont pas ouverts :

1.
$$A = \{(x, y) \in \mathbb{R}^2; \ 0 \le x \le y\}.$$

2.
$$B = \{(x, y) \in \mathbb{R}^2; |x| < 1, |y| \le 1\}.$$

2. Montrer que les ensembles suivants ne sont pas fermés :

1.
$$A = \{(x, y) \in \mathbb{R}^2; \ 0 < |x - 1| < 1\}.$$
 2. $B = \{(x, y) \in \mathbb{R}^2; \ |x| < 1, \ |y| \le 1\}.$

2.
$$B = \{(x, y) \in \mathbb{R}^2; |x| < 1, |y| \le 1\}.$$

Exercice 4: On considère les parties A et B de \mathbb{R}^2 définies par :

$$A = \{(x, y) \in \mathbb{R}^2; \ x \in \mathbb{Q} \text{ et } y \in \mathbb{Q}\}$$

$$B = \{(x, y) \in \mathbb{R}^2; \ x \notin \mathbb{Q} \text{ ou } y \notin \mathbb{Q}\}.$$

Soit (r_n) la suite récurrente définie par $r_0 = 2$ et pour tout $n \in \mathbb{N}$, $r_{n+1} = \frac{1}{2}(r_n + \frac{2}{r_n})$.

1. Montrer que la suite $((r_n,0))_n$ est dans A.

2. On admet que $((r_n, 0))_n$ converge. Calculer sa limite.

3. En déduire que A n'est pas fermé. Que peut-on dire de B?

Exercice 5: Soit E un espace vectoriel normé, et A et B deux parties de E. On définit :

$$A + B = \{ z \in E; \ \exists x \in A, \ \exists y \in B, \ z = x + y \}.$$

1. On suppose que A est ouvert.

(a) Soit $b \in B$. Montrer que $A + \{b\}$ est un ouvert.

(b) Déduire que A + B est un ouvert.

2. On suppose que $E = \mathbb{R}^2$. On considère les parties $A = \{(x,y) \in \mathbb{R}^2; xy = 1\}$ et $B = \{0\} \times \mathbb{R}$.

(a) Montrer que A et B sont fermés.

(b) En déduire que A + B n'est pas fermé.

On pourra utiliser la caractérisation séquentielle des fermés.

Exercice 6: Soit E un espace vectoriel normé, et V un sous-espace vectoriel de E.

1. Montrer que \overline{V} est un sous-espace vectoriel de E.

2. Montrer que si $\overset{\circ}{V} \neq \emptyset$, alors V = E.

Exercice 7: Soit (E; N) un espace vectoriel normé. On note par B la boule unité ouverte de E.

On considère l'application $f: E \to B$ définie pour tout $x \in E$ par $f(x) = \frac{x}{1 + N(x)}$

1. Montrer que f est bien définie de E dans B.

2. Montrer que f est bijective et déterminer f^{-1} .

3. Montrer que l'application N est 1-lipschitzienne. En déduire que f et f^{-1} sont continues et que Eet B sont homéomorphes.

Exercice 8: Déterminer si l'application linéaire T est continue dans les cas suivants :

1.
$$E = \mathcal{C}([0,1],\mathbb{R})$$
 et $T:(E,N_1) \longrightarrow (E,N_1)$ où $g \in E$ est fixé. $f \longmapsto fg$

2.
$$E = \mathbb{R}_n[X]$$
 et $T: (E, N_1) \longrightarrow (E, N_1)$ où $N_1(\sum_{k=0}^n a_k X^k) = \sum_{k=0}^n |a_k|$.

3.
$$E = \mathcal{C}([0,1], \mathbb{R}^+)$$
 et $T: (E, N_2) \longrightarrow (E, N_1)$ où $g \in E$ est fixé. $f \longmapsto fg$

GitHub