CIND-221: Introducción a Procesos Estocásticos

Felipe Osorio

f.osoriosalgado@uandresbello.edu

Facultad de Ingeniería, UNAB

Definición 1:

Un proceso estocástico es una colección de variables aleatorias $\{X_t, t \in T\}$ definidas en un mismo espacio de probabilidades $(\Omega, \mathcal{F}, \mathsf{P})$. T es el conjunto de índices del proceso. 1

El conjunto de valores que adopta la variable X_t es llamado espacio de estados del proceso y es denotado por S, y cada elemento de S es un estado del proceso.

¹También llamado espacio paramétrico.

Observación:

Para cada $\omega \in \Omega$ fijo, tenemos que la transformación definida como:

$$X(\omega): T \to S$$

 $t \to X_t(\omega)$

es llamada trayectoria del proceso.²

Procesos estocásticos pueden clasificarse en 4 tipos, dependiendo de la naturaleza del espacio de estados y espacio paramétrico.

- Proceso estocástico de tiempo discreto y espacio de estado discreto
 - El número de individuos en una población al final del año t, que se puede modelar como $\{X_t:t\in T\}$, donde $T=\{0,1,2,\dots\}$ y $S=\{0,1,2,\dots\}$.

²o realización del proceso estocástico.

- Proceso estocástico de tiempo continuo y espacio de estado discreto
 - El número de llamadas entrantes X_t en un intervalo [0,t]. Es decir, para el proceso estocástico $\{X_t:t\in T\}$ tenemos $T=\{t:0\leq t<\infty\}$ y $S=\{0,1,\dots\}$.
- Proceso estocástico de tiempo discreto y espacio de estado continuo
 - El precio de cierre de una acción en el día t. De este modo el proceso $\{X_t:t\in T\}$, tiene $T=\{0,1,\dots\}$ y $S=\{x:0\leq x<\infty\}$.
- Proceso estocástico de tiempo continuo y espacio de estado continuo
 - El flujo de un río que se observa en un año.3 En este caso

$$T=\{t:0\leq t<\infty\}, \qquad S=\{x:0\leq x<\infty\}.$$

 $^{{}^{\}mathbf{3}}X_{t}$ es el flujo en el tiempo t.

Trayectoria del dólar observado vs. peso chileno desde Enero-2022 a Octubre-2025⁴

⁴Datos extraídos desde página del Banco Central.

Definición 2:

Si, para todo t_0, t_1, \ldots, t_n tal que $t_0 < t_1 < \cdots < t_n$, las variables aleatorias

$$X_{t_0}, X_{t_1} - X_{t_0}, X_{t_2} - X_{t_1}, \dots, X_{t_n} - X_{t_{n-1}},$$

son independientes, entonces el proceso $\{X_t:t\in T\}$ se dice un proceso con incrementos independientes.

Definición 3:

Un proceso estocástico $\{X_t:t\in T\}$ se dice con incrementos estacionarios si $X_{t+h}-X_{s+h}$ tiene las misma distribución que X_t-X_s para cualquier $t,s\in T$ y h>0.

Definición 4:

Si, para todo t_1, t_2, \dots, t_n la distribución conjunta de los vectores

$$(X_{t_1}, X_{t_2}, \dots, X_{t_n})^{\top}, \qquad (X_{t_1+h}, X_{t_2+h}, \dots, X_{t_n+h})^{\top},$$

es la misma, para todo h>0. Entonces, El proceso $\{X_t:t\in T\}$ se dice estacionario.

Notación:

Sea $\{X_t:t\in T\}$ un proceso estocástico. Entonces, denotamos:

- $ightharpoonup m(t) = \mathsf{E}(X_t), \ t \in T$ a la función de media del proceso.
- $lackbox{N}(s,t)=\operatorname{cov}(X_s,X_t)$, para $s,t\in T$ como la función de covarianza del proceso.

Definición 5:

Un proceso estocástico $\{X_t, t \in T\}$ se denomina de proceso de segundo orden si $\mathsf{E}(X_t^2) < \infty$, para todo $t \in T$.

Ejemplo:

Sea Z_1 y Z_2 variables aleatorias independientes normalmente distribuídas, cada una con media 0 y varianza σ^2 . Sea $\lambda \in \mathbb{R}$, y considere

$$X_t = Z_1 \cos(\lambda t) + Z_2 \sin(\lambda t), \quad t \in \mathbb{R}.$$

Entonces $\{X_t : t \in \mathbb{R}\}$ es un proceso estacionario de segundo orden.

Definición 6:

Un proceso estocástico de segundo orden $\{X_t, t \in T\}$ se dice débilmente estacionario si $m(t) = \mathrm{E}(X_t)$ es independiente de t y su función de covarianza K(s,t) depende sólo de la diferencia |t-s|, es decir,

$$\operatorname{cov}(X_s, X_t) = f(|t - s|).$$

Ejemplo:

Sea $\{X_n: n \geq 1\}$ variables aleatorias no correlacionadas con media 0 y varianza 1. Entonces

$$cov(X_r, X_n) = \mathsf{E}(X_r X_n) = \begin{cases} 0, & r \neq n, \\ 1, & r = n. \end{cases}$$

Entonces $\{X_n : n \ge 1\}$ es un proceso débilmente estacionario.

Definición 7 (Proceso de Markov):

Sea $\{X_t: t \geq 0\}$ un proceso estocástico definido sobre el espacio de probabilidad $(\Omega, \mathcal{F}, \mathsf{P})$ con espacio de estados S discreto. Se dice que $\{X_t: t \geq 0\}$ es un proceso de Markov si para cualquier $0 \leq t_1 < t_2 < \dots < t_{n-1} < t_n$ y para todo $x_1, x_2, \dots, x_{n-1}, y$, se tiene que

$$\mathsf{P}(X_{t_n} = y | X_{t_1} = x_1, \dots, X_{t_{n-1}} = x_{n_1}) = \mathsf{P}(X_{t_n} = y | X_{t_{n-1}} = x_{n-1}).$$

Observación:

Cualquier proceso estocástico que tenga incrementos independientes es un proceso de Markov.

Definición 8:

Si $\{X_t: t \geq 0\}$ es un proceso de Markov, a la probabilidad condicional

$$p_{st}(x,y) = \mathsf{P}(X_t = y | X_s = x),$$

se le denomina función de transición del proceso.

Observación:

Cualquier proceso estocástico que tenga incrementos independientes es un proceso de Markov.

A continuación supondremos que la función de transición será estacionaria,

$$p_t(x, y) = p_{uv}(x, y) = P(X_v = y | X_u = x),$$

 $con t = v - u \ge 0.$

Definición 9 (Cadena de Markov):

Sea S un conjunto discreto. Una cadena de Markov es una secuencia de variables aleatorias $\{X_n:n\in\mathbb{N}\}$ que satisface

$$\mathsf{P}(X_{n+1}=y|X_1=x_1,\dots,X_{n-1}=x_{n-1},X_n=x)=\mathsf{P}(X_{n+1}=y|X_n=x),$$
 para todo $x_1,\dots,x_{n-1},x,y\in S$ y $n\geq 1.$

Observación:

Podemos interpretar la propiedad anterior como: Si conocemos $X_n = x$, conocer la historia anterior $X_{n-1}, X_{n-2}, \dots, X_1$ no tiene influencia en el estado futuro X_{n+1} .

Definición 10 (Probabilidad de Transición):

Sea $\{X_n:n\geq 0\}$ una cadena de Markov. Las probabilidades

$$p_{ij} = \mathsf{P}(X_{n+1} = j | X_n = i),$$

son llamadas probabilidades de transición.

Definición 11:

Una cadena de Markov $\{X_n:n\geq 0\}$ es llamada homogenea si las probabilidades de transición no dependen de n. Esto es,

$$p_{ij} = P(X_1 = j | X_0 = i) = P(X_{n+1} = j | X_n = i).$$

Definición 12:

La distribución de probabilidades $\pi:=\{\pi_i\}_{i\in S}$, con

$$\pi_i = \mathsf{P}(X_0 = i),$$

es llamada distribución inicial.

Definición 13 (Matriz de Transición):

La matriz

$$P = (p_{ij}) = \begin{pmatrix} p_{00} & p_{01} & p_{02} & \cdots \\ p_{10} & p_{11} & p_{12} & \cdots \\ p_{20} & p_{21} & p_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

es llamada matriz de transición.

Note que una matriz de transición es una matriz estocástica⁵ que satisface:

- (i) $p_{ij} \geq 0$, para todo $i, j \in S$.
- (ii) $\sum_{j} p_{ij} = 1$, para todo $j \in S$.

⁵Una matriz de transición también es llamada matriz de probabilidad.

Ejemplo:

Considere la matriz

$$\mathbf{P} = \begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}.$$

En efecto, $p_{ij}>0$, $\forall\,i,j$, y

$$0.5 + 0.4 + 0.1 = 1,$$

 $0.3 + 0.4 + 0.3 = 1,$
 $0.2 + 0.3 + 0.5 = 1.$

Ejemplo (Secuencia IID):

Asuma que X_0, X_2, \ldots es una secuencia de variables aleatorias IID que toma valores en $\{1, \ldots, k\}$, con

$$\mathsf{P}(X_n=j)=p_j, \qquad \mathsf{para}\ j=1,\dots,k,\,\mathsf{y}\ n\geq 0,$$

donde $p_1+\cdots+p_k=1$. Por independencia, tenemos que

$$P(X_1 = j | X_0 = i) = P(X_1 = j) = p_j.$$

La matriz de transición es dada por:

$$\boldsymbol{P} = \begin{pmatrix} p_1 & p_2 & \cdots & p_k \\ p_1 & p_2 & \cdots & p_k \\ \vdots & \vdots & & \vdots \\ p_1 & p_2 & \cdots & p_k \end{pmatrix}.$$

Ejemplo (Caminata aleatoria):

Una cadena de Markov cuyo espacio de estados es dado por los enteros $i=0,\pm 1,\pm 2,\ldots$ se dice una caminata aleatoria si para 0< p<1, tenemos

$$p_{i,i+1} = p = p_{i,i-1}, \qquad i = 0, \pm 1, \pm 2, \dots,$$

con matriz de transición

Caminata aleatoria 1-D⁶

⁶En inglés, random walk.

Observación:

(a) Considere ${m P}$ matriz de transición, entonces la condición (ii) puede ser expresada como:

$$P1 = 1$$
.

(b) Cualquier fila de la matriz P es un vector de probabilidades.

Resultado 1:

Si $P \in \mathbb{R}^{n \times n}$ es matriz de transición y q es vector de probabilidades n-dimensional. Entonces $q^{\top}P$ es vector de probabilidades.

Resultado 2:

Si ${\bf P}=(p_{ij})$ y ${\bf Q}=(q_{ij})$ son matrices de transición $n\times n$. Entonces el producto ${\bf P}{\bf Q}$ es una matriz de transición.

Resultado 3:

Si P es matriz de transición $n \times n$, entonces P^2, P^3, \ldots, P^m son matrices de transición.

Resultado 4:

Si la secuencia de variables aleatorias $\{X_n:n\geq 0\}$ es una cadena de Markov y si k< m< n, entonces tenemos que para todo $h,j\in S$,

$$P(X_n = j | X_k = h) = \sum_{i \in S} P(X_n = j | X_m = i) P(X_m = i | X_k = k).$$

Definición 14:

Sea $\{X_n:n\in\mathbb{N}\}$ una cadena de Markov, la probabilidad de transición en m pasos desde el estado i al j, es dada por:

$$p_{ij}^{(m)} = P(X_m = j | X_0 = i).$$

La probabilidad $p_{ij}^{(m)}$ es estacionaria si y solo si,

$$p_{ij}^{(m)} = \mathsf{P}(X_{n+m} = j | X_n = i) = \mathsf{P}(X_m = j | X_0 = i).$$

Definición 15:

Una cadena de Markov cuyas probabilidades de transición en m pasos son todas estacionarias es llamada cadena de Markov homogénea.

Observación:

Las probabilidades de transición de m-pasos, puede ser escrita en la matriz de transición:

$$\boldsymbol{P}^{(m)}=(p_{ij}^{(m)}).$$

Proposición 1:

Las ecuaciones de Chapman-Kolmogorov proveen un procedimiento para calcular las probabilidades de transición de n-pasos. En efecto, sigue que:

$$p_{ij}^{(n+m)} = \sum_{k=0}^{\infty} p_{ik}^{(n)} p_{kj}^{(m)},$$

para todo $n, m \ge 0$ y todo $i, j \in S$.

Observación:

En forma matricial la Proposición 1 puede ser escrita como:

$$\mathbf{P}^{(n+m)} = \mathbf{P}^{(n)} \cdot \mathbf{P}^{(m)},$$

donde · denota multiplicación matricial.

Aquí ${m P}^{(n)}=(p_{ij}^{(n)})$ es la matriz consistente de las probabilidades de transición de n-pasos.

Note la condición inicial,⁷

$$P^{(2)} = P^{(1+1)} = P \cdot P = P^2,$$

continuando por inducción tenemos que la matriz de transición de n-pasos puede ser escrita como:

$$P^{(n)} = P^{(n-1+1)} = P^{(n-1)}P = P^n.$$

 $^{^{7}}$ Además $oldsymbol{P}^{1}=oldsymbol{P}^{1+0}=oldsymbol{P}\cdotoldsymbol{P}^{0}=oldsymbol{P}$.

Observación:

Si $\{X_n:n\in\mathbb{N}\}$ es una cadena de Markov con conjunto de estados $S=\{0,1,2,3\}$, con matriz de transición

$$\boldsymbol{P} = \begin{pmatrix} 1/5 & 1/5 & 0 & 3/5 \\ 0 & 1/3 & 2/3 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix},$$

que puede ser representada por una red con vértices que indican los estados y arcos indicando transiciones.

Ejercicio:

Considere

$$\mathbf{P} = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1/2 & 1/2 \\ 0 & 0 & 1 \end{pmatrix},$$

verifique por inducción que la n-ésima potencia de ${m P}$ es dada por:

$$\mathbf{P}^n = \begin{pmatrix} \frac{1}{2^n} & 0 & 1 - \frac{1}{2^n} \\ 0 & \frac{1}{2^n} & 1 - \frac{1}{2^n} \\ 0 & 0 & 1 \end{pmatrix}.$$