

Projet Big Data

Manal MOUAYANI

Qi LI

Lucas MARIE

Confidentiel Personnalisé pour **Nom de l'entreprise** Version 1.0

SOMMAIRE

- Présentation et interprétation du sujet
- Etape du projet
 - Récupération des données sur Hadoop
 - Transfert des données sur AWS
 - Analyse des données
 - Stockage des données dans une base MangoDB
- Présentation des résultats

Contexte

But de l'entreprise d'assurance :

Présentation des données

- 2 set de données :
- un set de prédiction
- un set de train

• 129 caractéristiques par individu

Présentation et interprétation du sujet

Créer des dossiers et modifier les autorisations des utilisateurs

```
[root@sandbox-hdp ~]# sudo -u hdfs hadoop dfs -chown admin:hdfs /input
WARNING: Use of this script to execute dfs is deprecated.
WARNING: Attempting to execute replacement "hdfs dfs" instead.
[root@sandbox-hdp ~]# sudo -u hdfs hadoop fs -chmod 777 /input
[root@sandbox-hdp ~]# hadoop fs -ls /
Found 15 items
drwxrwxrwt - yarn hadoop
                                   0 2018-11-29 17:56 /app-logs
drwxr-xr-x - hdfs hdfs
                                   0 2018-11-29 19:01 /apps
drwxr-xr-x - yarn hadoop
                                   0 2018-11-29 17:25 /ats
drwxr-xr-x - hdfs hdfs
                                   0 2018-11-29 17:26 /atsv2
                                   0 2018-11-29 17:26 /hdp
drwxr-xr-x - hdfs hdfs
drwxrwxrwx - admin hdfs
                                   0 2020-01-27 08:17 /input
drwx----- - livv hdfs
                                   0 2018-11-29 17:55 /livy2-recovery
drwxr-xr-x - mapred hdfs
                                   0 2018-11-29 17:26 /mapred
drwxrwxrwx - mapred hadoop
                                   0 2018-11-29 17:26 /mr-history
drwxr-xr-x - hdfs hdfs
                                   0 2018-11-29 18:54 /ranger
drwxrwxrwx - spark hadoop
                                   0 2020-01-27 13:47 /spark2-history
drwxrwxrwx - hdfs hdfs
                                   0 2020-01-30 10:21 /test
drwxrwxrwx - hdfs hdfs
                                   0 2018-11-29 19:01 /tmp
drwxr-xr-x - hdfs hdfs
                                   0 2018-11-29 19:21 /user
drwxr-xr-x - hdfs
                    hdfs
                                    0 2018-11-29 17:51 /warehouse
```

PC Local -> Hadoop VM -> HDFS

```
liqi@wifiroam041176 ~/Desktop/BIG DATA scp -P 2222 predict.csv root@localhost:
root@localhost's password:
predict.csv
                                                                       100% 176KB 41.6MB/s
                                                                                             00:00
liqi@wifiroam041176 > ~/Desktop/BIG DATA > scp -P 2222 train.csv root@localhost:
train.csv
                                                                       100%
                                                                             20MB 91.0MB/s
                                                                                            00:00
         [root@sandbox-hdp \sim]# ls
         anaconda-ks.cfg dead.letter hadoop.pem ubuntu-AWS.pem
         [root@sandbox-hdp \sim]# ls
         anaconda-ks.cfg dead.letter hadoop.pem predict.csv ubuntu-AWS.pem
         [root@sandbox-hdp \sim]# ls
         anaconda-ks.cfg hadoop.pem
                                      train.csv
         dead.letter predict.csv ubuntu-AWS.pem
```

PC Local -> HDFS -> Hadoop VM


```
[root@sandbox-hdp ~]# hadoop fs -get /input/train.csv
[root@sandbox-hdp ~]# ls
anaconda-ks.cfg hadoop.pem train.csv
dead.letter predict.csv ubuntu-AWS.pem
```

Hadoop VM <-> AWS

```
[ec2-user@ip-172-31-35-61 ~]$ ls
[ec2-user@ip-172-31-35-61 ~]$ ls
predict.csv train.csv
```

2ème partie:

Cloud

Création de l'instance de EC2

Téléchargement du fichier resultats.csv sur le FileSystem de la VMAWS

3eme partie:

Analyse des données

Nombre des lignes: 58881 Nombre des colonnes:129

Pour les caractéristiques de type objet, nous avons besoin d'utiliser la numérisation.

Les differents types des donnees

Analyse des variables

Le types de produits_7:

Type de prosuit_7	Le taux
1	0.978142
2	0.021824
3	0.000034

Le niveau de risque:

Le niveau de risque	Le taux
8	0.328238
6	0.189127
7	0.134950
2	0.110307
1	0.104584
5	0.091541
4	0.024116
3	0.017136

La variance pour les caractéristiques numériques :

La variance pour les caractéristiques numériques:

La distribution des données :

D'après la table de variance et le diagramme de distribution, nous pouvons voir qu'il existe de nombreuses caractères avec une faible variance, les valeurs de ces caractères sont presque fixes, ce qui n'a aucun sens, nous pouvons supprimer certaines parmi eux.

Le pourcentages des valeurs manquantes dans le fichier du train:

Le pourcentages des valeurs manquantes dans le fichier du predict:

La corrélation entre la variable cible et les 10 valeurs les plus corrélés avec elle:

La corrélation entre la variable cible et les 10 valeurs les moins corrélés avec elle:

Traitement des données & Formation aux modèles

Traitement des données nécessaire:

- 1. Supprimer les lignes en double
- 2. Traitement de la valeur manquante
- 3. Numérisation des données
- 4. L'échantillonnage stratifié

Modèle de base : LinearSVC

Méthode utilisée: 1. Va

- 1. Variable de contrôle
- 2. Rasoir d'Ockham
- 3. Validation croisée

Traitement de la valeur manquante

Qui remplacer? et Comment?

Taux de valeur manquant > 0.5 ou > 0.7 ? Médiane ? Moyenne

Taux de valeur manquant > 0.7 Médiane

precision in	train set: 0	.39152396	48455196	
precision in	test set: 0.	391478662	6800761	
	precision	recall	f1-score	support
1	0.40	0.11	0.18	1539
2	0.20	0.49	0.28	1624
3	0.00	0.00	0.00	252
4	0.07	0.07	0.07	355
5	0.35	0.12	0.18	1347
6	0.28	0.02	0.04	2783
7	0.37	0.13	0.19	1986
8	0.50	0.89	0.64	4830
accuracy			0.39	14716
macro avg	0.27	0.23	0.20	14716
weighted avg	0.37	0.39	0.31	14716

Taux de valeur manquant > 0.5 Médiane

precision in train set: 0.395080184832835 precision in test set: 0.3925659146507203

	precision	recall	f1-score	support
1	0.50	0.03	0.05	1539
2	0.32	0.04	0.08	1624
3	0.00	0.00	0.00	252
4	0.00	0.00	0.00	355
5	0.83	0.00	0.01	1347
6	0.24	0.51	0.33	2783
7	0.54	0.00	0.01	1986
8	0.50	0.88	0.64	4830
accuracy			0.39	14716
macro avg	0.37	0.18	0.14	14716
weighted avg	0.45	0.39	0.29	14716

Average prediction score: 0.29346375188867685

Average prediction score: 0.32408257588891964

Traitement de la valeur manquante

Qui remplacer? et Comment?

Taux de valeur manquant > 0.5 ou > 0.7 ? Médiane ? Moyenne

Taux de valeur manquant > 0.7 Moyenne

	train set: 0			
precision in	test set: 0.	167980429	4645284	
	precision	recall	f1-score	support
1	0.67	0.01	0.03	1539
2	0.34	0.08	0.12	1624
3	0.00	0.00	0.00	252
4	0.21	0.01	0.02	355
5	0.10	0.92	0.18	1347
6	0.34	0.07	0.12	2783
7	0.27	0.07	0.11	1986
8	0.76	0.15	0.25	4830
accuracy			0.17	14716
macro avg	0.34	0.16	0.10	14716
weighted avg	0.47	0.17	0.15	14716

Taux de valeur manquant > 0.5 Moyenne

	est set: 0.12 precision	700462082 recall f	087524 1–score	support
the number	of iterations	. , conve	rgencewarr	iing)
/usr/local/lib		te-packag	es/sklearr	/metrics
predicted sar				
1	0.42	0.01	0.01	1539
'precision',	'predicted',	average,	warn_for)	
2	0.16	0.10	0.12	1624
3	0.00	0.00	0.00	252
4	0.00	0.00	0.00	355
5		0.92	0.17	1347
6	0.00	0.00	0.00	2783
7	1.00	0.00	0.00	1986
8	0.78	0.09	0.17	4830
accuracy			0.13	14716
macro avg	0.31	0.14	0.06	14716
weighted avg	0.46	0.13	0.09	14716

Average prediction score: 0.27721585818942307

Créer nouvelle caractères

Matrice creuse

D3	14200				
D4	10699				
A8	6775				
D1	6510				
D2	6234				
E1	2632				
A1	2335				
A6	2080				
A2	1959				
A7	1376				
B2	1114				
A3	971				
A5	769				
C3	303				
C1	282				
C4	218				
A4	210				
C2	160				
B1	54				
Name:	Product_	_Info_	2,	dtype:	int64

The second second	CD	CE	CF	CG	CH	Cl	CJ	CK	CL	CM	CN	CO	CP	CQ	CR	CS
Medical_Key M	∕ledical_Key	Medical_Key	Medical_Key I	Medical_Key N	Medical_Key	Medical_Ke										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0			0	0	0	0	0	0		0	0	0	0	0	0
0	0			0	0	0	0	0	0		0	0	0	0	0	
1	0		0	0	0	0	0	0	0		0	0	0	1	0	
0	0			0	0	0	0	0	0			0	0	0	0	
0	0			0	0	0	0	0	0		0	0	0	0	-	
0	0		0	0	0	0	0		0			0	0	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0			0	0	0	0	0	1	0		0	0	0	0	
0	0			0	0	0	0	0	0			0	0	1	0	
0	0			0	0	0	0		0			0	0	1	0	
0	0			0	0	0	0		0			0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	(
0	0			0	0	0	0	0	0		0	0	0	0	0	(
0	0			0	0	0	0	0	0	0	0	0	0	1	0	(
0	0		-	0	0	0	0	0	0	_	-	0	0	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0		0	0	0	0	0	0	0	_		0	0	0	-	
0	0			0	0	0	0	0	0			0	0	0	0	(
0	0			0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0		0	0	0	0	0		1	0		0	0	0		
0	0			0	0	0	0	0	0			0	0	1	0	(
1	0			0	0	1	0	0	1			0	0	0	0	(
0	0			0	0	0	0		0			0	0	0	1	(
0	0			0	0	0	0	0	0			0	0	0	0	(
0	0		0	0	0	0	0	0	0			0	0	0	0	
0	0		0	0	0	0	0	0	0			0	0	0	0	
0	0		0	0	0	0	0	0	0			0	0	0	0	
0	0		0	0	0	0	0	0	0			0	0	1	0	
0	0	0	0	0	0	0	0	0	0			0	0	1	0	
score	e: 0	.331	15402	27177	7113	35 0	0	0	0			0	0	1 0	0	

Average prediction

Standardization des données


```
variables_discrete =
['Medical_History_1',
'Medical_History_10',
'Medical_History_15',
```

'Medical_History_24', 'Medical_History_32']

PCA dimensionality reduction

caractères 128 - > 119

	train set: 0 test set: 0.			Ö
precision in	precision	recall	f1-score	support
1	0.29	0.09	0.13	1539
2	0.19	0.25	0.22	1624
3	0.03	0.53	0.05	252
4	0.37	0.02	0.04	355
5	0.38	0.06	0.10	1347
6	0.34	0.10	0.15	2783
7	0.25	0.17	0.20	1986
8	0.65	0.62	0.63	4830
accuracy			0.30	14716
macro avg	0.31	0.23	0.19	14716
weighted avg	0.41	0.30	0.31	14716

Average prediction score: 0.24033813857479225

Insurance_History_5	0.000054
Employment_Info_4	0.001083
Medical_History_35	0.004106
Medical_History_38	0.004817
Ht	0.005513
Medical_Keyword_13	0.005892
Medical_Keyword_9	0.006580
Employment_Info_1	0.006803
Medical_Keyword_38	0.006814
Product_Info_5	0.006898
Medical_Keyword_35	0.006898
InsuredInfo_2	0.007400
Medical_History_5	0.007401
Medical_Keyword_18	0.007417
Medical_Keyword_44	0.007467
Medical_Keyword_14	0.007785
Wt	0.007923
Medical_Keyword_20	0.008019
Medical_Keyword_46	0.008403
Medical_Keyword_5	0.008537
dtype: float64	

precision in train set: 0.33693485548609226
precision in test set: 0.33765969013318836

	precision	recall	f1-score	support	
1	0.52	0.02	0.04	1539	
2	0.19	0.62	0.29	1624	
3	0.00	0.00	0.00	252	
4	0.00	0.00	0.00	355	
5	0.32	0.02	0.04	1347	
6	0.26	0.48	0.33	2783	
7	0.49	0.02	0.04	1986	
8	0.63	0.53	0.57	4830	
accuracy			0.34	14716	
macro avg	0.30	0.21	0.16	14716	
weighted avg	0.43	0.34	0.30	14716	

Average prediction score: 0.2967050024909657

Resampling

precision in train set: 0.5516286350773677 precision in test set: 0.5289300981395629									
Average prediction score: 0.526862880190074									
3 1	precision		f1-score	support					
1	0 50	A 22	0.21	1530					
1	0.50	0.22	0.31	1539					
2	0.46	0.26	0.33	1624					
3	0.59	0.40	0.48	1023					
4	0.47	0.64	0.54	1477					
5	0.55	0.47	0.51	1347					
6	0.38	0.44	0.41	2784					
7	0.45	0.36	0.40	1986					
8	0.65	0.85	0.74	4829					
accuracy			0.53	16609					
macro avg	0.51	0.46	0.46	16609					
weighted avg	0.52	0.53	0.51	16609					

Sélection du modèle

RandomForestClassifier: Overfitting

```
precision in train set: 0.9917514600517792
precision in test set: 0.5518092600397375
Average prediction score: 0.5469323930128527
```

GradientBoostingClassifier

precision in train set: 0.5516085656371044 precision in test set: 0.5298332229514119 Average prediction score: 0.5283284303475009

XGBoost

precision in train set: 0.5268830152327052 precision in test set: 0.5109278102233729 Average prediction score: 0.5144804817310304

Grid Search & Prévision

```
loss function to be optimized. 'deviance' refers to
   boosting recovers the AdaBoost algorithm.
learning rate : float, optional (default=0.1)
   There is a trade-off between learning_rate and n_estimators.
   The number of boosting stages to perform. Gradient boosting
   is fairly robust to over-fitting so a large number usually
   The fraction of samples to be used for fitting the individual base
   learners. If smaller than 1.0 this results in Stochastic Gradient
   The function to measure the quality of a split. Supported criteria
   are "friedman mse" for the mean squared error with improvement
   score by Friedman, "mse" for mean squared error, and "mae" for
   the mean absolute error. The default value of "friedman mse" is
   some cases.
min_samples_split : int, float, optional (default=2)
   The minimum number of samples required to split an internal node:
      `ceil(min samples split * n samples)` are the minimum
     number of samples for each split.
      Added float values for fractions.
```

```
learning_rate=0.01,
n_estimators=1200,
max_depth=7,
min_samples_leaf=60,
min_samples_split=1200
```

Average prediction score: 0.6264816458570729

- 1, Former le modèle sur toutes les données
- 2. Générer des résultats de prédiction

MongoDB

Importation des données dans MongoDB

predict.csv

résultats du modèle

Response

string

Affichage de statistique

statistique pour le cas très peu risqué (classe 1):

InsuredInfo_7

string	Female	Male
	53 %	47 %

statistique pour le cas très risqué (classe 8):

InsuredInfo_7

string	Male	Female
	57 %	43 %

Détermination de critères importants

statistique pour le cas 1 :

Insurance_History_4

50 % 41 %

statistique pour le cas 2 :

Insurance_History_4

string

9 %

Merci de votre attention

