	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	Electric Vehicle Type	Clean Alternative Fuel Vehicle (CAFV) Eligibility	Electric Range	Base MSRP	L
0	JTMEB3FV6N	Monroe	Key West	FL	33040	2022	тоуота	RAV4 PRIME	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	42	0	
1	1G1RD6E45D	Clark	Laughlin	NV	89029	2013	CHEVROLET	VOLT	Plug-in Hybrid Electric Vehicle (PHEV)	Clean Alternative Fuel Vehicle Eligible	38	0	
2	JN1AZ0CP8B	Yakima	Yakima	WA	98901	2011	NISSAN	LEAF	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	73	0	
3	1G1FW6S08H	Skagit	Concrete	WA	98237	2017	CHEVROLET	BOLT EV	Battery Electric Vehicle (BEV)	Clean Alternative Fuel Vehicle Eligible	238	0	
4	3FA6P0SU1K	Snohomish	Everett	WA	98201	2019	FORD	FUSION	Plug-in Hybrid Electric Vehicle (PHEV)	Not eligible due to low battery range	26	0	
4)	>

Univariate Analysis

Box Plot of Electric Range


```
In [8]: px.histogram(df,x = 'Base MSRP', title = 'Histogram of Base MSRP',nbins = 30,
    color_discrete_sequence = ['#EF553B']).update_layout(
    xaxis_title = 'Base MSRP',yaxis_title = 'Count',width = 800, height = 600).show()
```

Histogram of Base MSRP

Histograms for numerical features

```
In [9]: # Replace 'electric Range' with the actual column name if it contains spaces.
sns.histplot(df['Electric Range'],
bins = 30, kde = True).set_title("Histogram of electric Range")
plt.show()
```



```
In [10]: # use a darker color palette
sns.countplot(x = 'Model Year', data = df, palette = 'dark', hue = "Model Year", legend =False)
plt.title("Count of vehicles by model Year")
plt.xticks(rotation = 45)
plt.xlabel('Model Year')
plt.ylabel('Count')
plt.show()
```


Bivariate Analysis

Scatter plot using plotly.express Numerical vs Numerical A (Electric Range vs Make) Task - This is an open ended problem. apply exploratory data analysis (Univariate and Bivariate) on the dataset available above.

```
In [12]: px.scatter(df,x = 'Make',y = 'Electric Range')
```



```
In [13]: # Box plot using plotly.express
px.box(df, x = "Electric Vehicle Type",y = "Electric Range")
```


pie chart plot using plotly.express

```
In [14]: px.pie(df,names = 'Make',values = '2020 Census Tract')
```



```
In [18]: #use a darker color palette
sns.set_palette("dark")

top_cities = df['City'].value_counts().nlargest(10).index # top 10 cities
sns.countplot(y = 'City',data = df[df['City'].isin(top_cities)])
plt.title('Top 10 cities for electric vehicles')
plt.xlabel('Count')
plt.ylabel('City')
plt.show()
```


Type $\mathit{Markdown}$ and LaTeX : α^2

```
In [19]: # Pie chart for Electric Vehicle type
fig = px.pie(df, names = 'Electric Vehicle Type',title = 'Distribution of Electric Vehicle Types')
fig.show()
```

Distribution of Electric Vehicle Types


```
In [20]: import pandas as pd, plotly.express as px
         df = pd.read_csv("dataset.csv")
         state_nyc = df.groupby(['Postal Code', 'Model Year']).size().reset_index(name='Number_of_Vehicles')
         fig = px.choropleth_mapbox(state_nyc, geojson='https://raw.githubusercontent.com/python-visualization)
             locations='Postal Code', color='Number_of_Vehicles', featureidkey="properties.ZCTA5CE10", mapbo
             zoom=5, center={"lat": 47.7511, "lon": -120.7401}, animation_frame='Model Year')
         fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0}).show()
                                                                 Kelownay
                                      VANCOUVER.
                                          Victoria
                                                                                                 Kalispell*
                                                                              Spokane*
                                                             WASHINGTON
                                               Tacoma
                                                            Vakima-
                                                                                Lewiston
                                                                                                              But
```

EV Makes and Their Count Over the Years

In []: