Matematická logika 3. přednáška

Rostislav Horčík

horcik@math.feld.cvut.cz
horcik@cs.cas.cz
www.cs.cas.cz/~horcik

POZOR!

Příští přednáška 24.3. odpadá z důvodu mojí nepřítomnosti.

Logika jako formální jazyk

Proč formální jazyk?

- Přirozené jazyky jsou složité a často nejednoznačné.
- Ve vědách jako je matematika, fyzika, informatika, naopak potřebujeme naše znalosti vyjadřovat přesným a jednoznačným způsobem.
- Komunikace s formálními nástroji musí být formální (logické databáze, umělá inteligence . . .)

Rysy formálního jazyka:

- Syntaxe (prvotní) jak se tvoří fráze jazyka.
- Sémantika co vytvořené fráze znamenají.

Výroky a logické spojky

Výrok – tvrzení o kterém lze rozhodnout, zda-li je pravdivé či nikoli.

Pomocí logických spojek vytváříme z výroků další výroky. Logické spojky jsou:

- není pravda, že; označujeme ji ¬ a nazýváme ji negace;
- a; označujeme ji ∧ a nazýváme ji konjunkce;
- nebo; označujeme ji ∨ a nazýváme ji disjunkce;
- jestliže ..., pak ...; označujeme ji ⇒ a nazýváme ji implikace;
- právě tehdy, když; označujeme ji ⇔ a nazýváme ji ekvivalence.

Nechť A je množina elementárních výroků (výrokových proměnných).

Konečnou posloupnost prvků z množiny A, logických spojek a závorek nazýváme výroková formule (zkráceně jen formule), jestliže vznikla podle následujících pravidel:

- Každá výroková proměnná (elementární výrok) $a \in A$ je výroková formule.
- ② Jsou-li α , β výrokové formule, pak $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \Rightarrow \beta)$ a $(\alpha \Leftrightarrow \beta)$ jsou také výrokové formule.
- Nic jiného než to, co vzniklo pomocí konečně mnoha použití bodů 1 a 2, není výroková formule.

Všechny formule, které vznikly z logických proměnných množiny A, značíme $\mathcal{P}(A)$.

Poznámka

Negace se nazývá unární spojka a ostatní spojky binární. Výrokové proměnné značíme malými písmeny např. a,b,c,\ldots , formule značíme malými řeckými písmenky např. $\alpha,\beta,\gamma,\ldots$

Úmluva

Nepíšeme vnejší závorky a ¬ váže nejsilněji.

Príklad

Je řetězec $(x \Rightarrow y) \Rightarrow ((\neg x \lor y) \land (y \Rightarrow \neg x))$ formule?

NE: x, y jsou neznámé symboly.

MOŽNÁ ANO: musí být $x, y \in A$ a řetezec musí být vytvořen podle pravidel syntaxe: ke zjištení používáme syntaktické stromy.

- Derivační strom formule kořenový strom jehož uzly obsahují logické spojky a listy výrokové proměnné.
- Podformule formule α formule odpovídající podstromům derivačního stromu formule α .
- Hloubka formule výška jejího derivačního stromu, např. formule

$$(x \Rightarrow y) \Rightarrow ((\neg x \lor y) \land (y \Rightarrow \neg x))$$

má hloubku 4.

Definice

Pravdivostní ohodnocení je zobrazení $u \colon \mathcal{P}(A) \to \{0,1\}$, které splňuje pravidla:

- $u(\neg \alpha) = 1$ právě tehdy, když $u(\alpha) = 0$;
- $u(\alpha \wedge \beta) = 1$ právě tehdy, když $u(\alpha) = 1$ a $u(\beta) = 1$;
- $u(\alpha \vee \beta) = 0$ právě tehdy, když $u(\alpha) = 0$ a $u(\beta) = 0$;
- $u(\alpha \Rightarrow \beta) = 0$ právě tehdy, když $u(\alpha) = 1$ a $u(\beta) = 0$;
- $u(\alpha \Leftrightarrow \beta) = 1$ právě tehdy, když $u(\alpha) = u(\beta)$.

Pravdivostní tabulky

Vlastnosti, které pravdivostní ohodnocení musí mít, znázorňujeme též pomocí tzv. pravdivostních tabulek logických spojek.

		α	β	$\mid \alpha \wedge \beta \mid$	$\alpha \vee \beta$	$\alpha \Rightarrow \beta$	$\alpha \Leftrightarrow \beta$
α	$\neg \alpha$	0	0	0	0	1	1
0	1	0	1	0	1	1	0
1	0	1	0	0	1	0	0
'		1	1	1	1	1	1

Věta

Každé zobrazení $u_0: A \to \{0,1\}$ jednoznačně určuje pravdivostní ohodnocení $u: \mathcal{P}(A) \to \{0,1\}$ takové, že $u(a) = u_0(a)$ pro všechna $a \in A$. Ohodnocení $u, v: \mathcal{P}(A) \to \{0,1\}$ jsou totožná právě tehdy, když pro všechny logické proměnné $x \in A$ platí u(x) = v(x).

Příklad pravdivostní tabulky formule

Napište pravdivostní tabulku formule

$$(x \Rightarrow y) \Rightarrow ((\neg x \lor y) \land (y \Rightarrow \neg x)).$$

X	y	$(x \Rightarrow y)$	\Rightarrow	$((\neg x \lor y)$	\wedge	$(y \Rightarrow \neg x))$
0	0	1	1	1	1	1
0	1	1	1	1	1	1
1	0 1 0 1	0	1	0	0	1
1	1	1	0	1	0	0

- Pravdivostní ohodnocení formule závisí pouze na ohodnocení těch logických proměnných, které obsahuje, a těch je konečně mnoho.
- Jakoukoli sémantickou otázku (o konečně mnoha formulích) ve výrokové logice lze řešit prohlížením pravd. tabulky (obecně neefektivní).

Tautologie, splnitelná formule, kontradikce

Definice

Formule se nazývá:

- tautologie, jestliže je pravdivá ve všech pravdivostních ohodnoceních, např x ∨ ¬x;
- kontradikce, jestliže je nepravdivá ve všech pravdivostních ohodnoceních, např. x ∧ ¬x;
- splnitelná, jestliže existuje aspoň jedno pravdivostní ohodnocení, ve kterém je pravdivá, např. $x \Rightarrow \neg x$ (není tautologie).

Množiny formulí

Definice

Řekneme, že množina formulí S je pravdivá v ohodnocení u, jestliže každá formule z S je pravdivá v u, tj. je-li $u(\varphi)=1$ pro všechna $\varphi\in S$. Zápis u(S)=1.

Řekneme, že množina formulí S je splnitelná, jestliže existuje pravdivostní ohodnocení u, ve kterém je S je pravdivá.

Semantický důsledek

Definice

Řekneme, že formule φ je sémantickým důsledkem (konsekventem) množiny formulí S, jestliže φ je pravdivá v každém ohodnocení u, v němž je pravdivá S.

Konsekvent $S \models \varphi$ platí, pokud pro všechna ohodnocení u platí: $u(S) \le u(\varphi)$.

Konsekvent $S \models \varphi$ neplatí, jestliže existuje ohodnocení u takové, že u(S) = 1 a $u(\varphi) = 0$.

Konvence

Pro jednoduchost píšeme $\alpha \models \beta$ místo $\{\alpha\} \models \beta$ a $\models \varphi$ místo $\emptyset \models \varphi$.

Tvrzení

Pro množinu formulí S a formuli φ platí:

- $S \models \varphi$ pro každou $\varphi \in S$.
- Tautologie je konsekventem každé množiny formulí S.
- Formule φ je tautologie právě tehdy, když $\models \varphi$.
- Každá formule je konsekventem nesplnitelné množiny formulí.

Tvrzení

Pro množinu formulí S a formuli φ platí

 $S \models \varphi$ právě tehdy, když $S \cup \{\neg \varphi\}$ je nesplnitelná.