Data Structures and Algorithms

Tutorial 6. Counting, radix, and bucket sorting

Today's topic is covered in detail in

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press 2009.

	Introduction 147
6	Heapsort 151 6.1 Heaps 151 6.2 Maintaining the heap property 154 6.3 Building a heap 156 6.4 The heapsort algorithm 159 6.5 Priority queues 162
7	Quicksort 170 7.1 Description of quicksort 170 7.2 Performance of quicksort 174 7.3 A randomized version of quicksort 179 7.4 Analysis of quicksort 180
8	Sorting in Linear Time 191 8.1 Lower bounds for sorting 191 8.2 Counting sort 194 8.3 Radix sort 197 8.4 Bucket sort 200
9	 Medians and Order Statistics 213 9.1 Minimum and maximum 214 9.2 Selection in expected linear time 215 9.3 Selection in worst-case linear time 220

Objectives

- Counting sort
- Radix sort
- Bucket sort

	1	2	3	4	5	6	7	8
Input	2	5	3	0	2	3	0	3

We want to sort an array of integers.

All values are in range from 0 to 5.

We want to sort an array of integers. All values are in range from 0 to 5.

We want to sort an array of integers.

All values are in range from 0 to 5.

We want to sort an array of integers. All values are in range from 0 to 5.

We want to sort an array of integers.

All values are in range from 0 to 5.

We want to sort an array of integers.

All values are in range from 0 to 5.

We want to sort an array of integers.

All values are in range from 0 to 5.

We want to sort an array of integers.

All values are in range from 0 to 5.

Counting sort: what about satellite data?

	2	5	3	0	2	3	0	3
Input	a	b	c	d	e	f	g	h
			\gg					
Count		2	0	2	3	0	1	
A]
Accum		_	_	_	_	_	_	
	_	_	_	_	_	_	_	_
Output	_	_	_	_	_	_	_	_

	2	5	3	0	2	3	0	3
Input	a	b	c	d	e	f	g	h
Count		2	0	2	3	0	1	
		0	1	2	3	4	5	
Accum		0	2	3	4	7	7	
Output	0	0	2	2	3	3	3	5
	d	g	a	e	c	f	h	b

Counting sort is stable


```
COUNTING-SORT(A, B, k)
    let C[0..k] be a new array
 2 for i = 0 to k
   C[i] = 0
   for i = 1 to A. length
        C[A[j]] = C[A[j]] + 1
    // C[i] now contains the number of elements equal to i.
   for i = 1 to k
        C[i] = C[i] + C[i-1]
    // C[i] now contains the number of elements less than or equal to i.
10
    for j = A. length downto 1
        B[C[A[j]]] = A[j]
11
        C[A[j]] = C[A[j]] - 1
12
```

```
COUNTING-SORT(A, B, k)
    let C[0..k] be a new array
   for i = 0 to k
                                                     Count elements
     C[i] = 0
   for j = 1 to A. length
        C[A[j]] = C[A[j]] + 1
    // C[i] now contains the number of elements equal to i.
    for i = 1 to k
        C[i] = C[i] + C[i-1]
    // C[i] now contains the number of elements less than or equal to i.
10
    for j = A. length downto 1
        B[C[A[j]]] = A[j]
11
        C[A[j]] = C[A[j]] - 1
12
```

```
COUNTING-SORT(A, B, k)
    let C[0...k] be a new array
    for i = 0 to k
                                                     Count elements
        C[i] = 0
    for j = 1 to A. length
        C[A[j]] = C[A[j]] + 1
    ||C|i| now contains the number of elements equal to i.
    for i = 1 to k
                                                        Accumulate
        C[i] = C[i] + C[i-1]
    // C[i] now contains the number of elements less than or equal to i.
10
    for j = A. length downto 1
        B[C[A[j]]] = A[j]
11
        C[A[j]] = C[A[j]] - 1
12
```

```
COUNTING-SORT(A, B, k)
    let C[0...k] be a new array
    for i = 0 to k
                                                    Count elements
       C[i] = 0
    for j = 1 to A. length
        C[A[j]] = C[A[j]] + 1
    ||C|i| now contains the number of elements equal to i.
    for i = 1 to k
                                                      Accumulate
        C[i] = C[i] + C[i-1]
    // C[i] now contains the number of elements less than or equal to i.
10
    for j = A. length downto 1
                                                   Populate output array
        B[C[A[j]]] = A[j]
        C[A[j]] = C[A[j]] - 1
```

Counting sort: time complexity

```
COUNTING-SORT(A, B, k)
    let C[0..k] be a new array
    for i = 0 to k
                                                       O(k)
        C[i] = 0
    for j = 1 to A.length
                                                       O(n)
        C[A[j]] = C[A[j]] + 1
    // C[i] now contains the number of elements equal to i.
                                                                             O(n+k)
    for i = 1 to k
                                                       O(k)
        C[i] = C[i] + C[i-1]
    // C[i] now contains the number of elements less than or equal to i.
    for j = A. length downto 1
                                                       O(n)
        B[C[A[j]]] = A[j]
        C[A[j]] = C[A[j]] - 1
```

Counting sort: exercise

Exercise 6.1. Suppose that we were to rewrite

the **for** loop in line 10 of the COUNTING- SORT as

for j = 1 to A.length

- 1. Is the algorithm still correct?
- 2. If yes, it is stable?

```
COUNTING-SORT(A, B, k)
1 let C[0..k] be a new array
2 for i = 0 to k
   C[i] = 0
4 for j = 1 to A. length
   C[A[j]] = C[A[j]] + 1
  // C[i] now contains the number
7 for i = 1 to k
       C[i] = C[i] + C[i-1]
    // C[i] now contains the number
   for j = A. length downto 1
       B[C[A[j]]] = A[j]
       C[A[j]] = C[A[j]] - 1
```

Counting sort: exercise

Exercise 6.2. Describe an algorithm that, given n integers in the range from 0 to k, preprocesses its input and then answers any query about how many of the n integers fall into a range (a, b) in O(1) time. Your algorithm should use O(n + k) preprocessing time.

Radix sort: idea

Assumptions:

- 1. Input is a sequence of "numbers" (strings of digits)
- 2. Each number has d digits
- 3. Each digit can range from 0 to k

Radix sort: idea

Assumptions:

- 1. Input is a sequence of "numbers" (strings of digits)
- 2. Each number has d digits
- 3. Each digit can range from 0 to k

Radix sort idea:

- 1. Sort numbers by least significant digit first using a stable sort
- 2. Then sort again, by second least significant digit using a stable sort
- 3. ..
- 4. Sort by most significant digit using a stable sort
- 5. We have a sorted sequence of numbers!

329 457 657 839 436	720 355
-----------------------------	---------

329	457	657	839	436	720	355
329	35 5	436	457	657	720	839

329	457	657	839	436	720	355
329	355	436	457	657	720	839
720	35 5	436	457	657	329	839

329	457	657	839	436	720	355
329	35 5	436	457	657	720	839
720	355	436	457	657	329	839

329	457	657	839	436	720	355
329	35 5	436	457	657	720	839
72 0	3 5 5	436	457	6 5 7	3 2 9	839

329	457	657	839	436	720	355
329	35 5	436	457	657	720	839
72 0	3 5 5	436	457	6 5 7	3 2 9	839
72 0	3 2 9	43 6	839	3 5 5	457	6 5 7

329	457	657	839	436	720	355
329	35 5	436	457	657	720	839
72 0	3 5 5	436	457	6 5 7	3 2 9	839
720	329	436	839	355	457	657

329	457	657	839	436	720	355
329	35 5	436	457	657	720	839
72 0	3 5 5	436	457	6 5 7	3 2 9	839
720	3 29	4 36	839	355	457	657

329	457	657	839	436	720	355
329	35 5	436	457	657	720	839
72 0	3 5 5	43 6	457	6 5 7	3 2 9	839
720	3 29	4 36	839	355	457	657
3 29	355	4 36	457	657	720	839

329	457	657	839	436	720	355
329	35 5	436	457	657	720	839
72 0	3 5 5	43 6	457	65 7	3 2 9	839
720	3 29	4 36	839	3 55	457	657
329	355	436	457	657	720	839

Radix sort: time complexity

```
RADIX-SORT(A, d)

1 for i = 1 to d

2 use a stable sort to sort array A on digit i
```

Radix sort: time complexity

```
RADIX-SORT(A, d)

1 for i = 1 to d

2 use a stable sort to sort array A on digit i
```

Assuming that sorting on digit **i** takes $\Theta(n+k)$, time complexity of radix sort is $\Theta(d(n+k))$.

Radix sort: exercise

Exercise 6.3.

Sort n integers in the range from 0 to (n^3-1) in O(n) time.

Attendance

https://baam.duckdns.org

Bucket sort: idea

Assumptions:

- 1. Input comes from a uniform distribution (e.g. over a real interval).
- 2. Input values can be easily truncated to discrete values (e.g. via floor/ceiling).
- 3. Truncated values fit in a small range from 0 to k.

Bucket sort: idea

Assumptions:

- 1. Input comes from a uniform distribution (e.g. over a real interval).
- 2. Input values can be easily truncated to discrete values (e.g. via floor/ceiling).
- 3. Truncated values fit in a small range from 0 to k.

Bucket sort idea:

- 1. Split input values into lists (buckets) by their truncated values.
- 2. Sort each bucket using comparison-based sorting algorithm.
- 3. Concatenate sorted buckets to produce final sorted result.

Bucket sort: example with real numbers in [0,1)

Figure 8.4 The operation of BUCKET-SORT for n = 10. (a) The input array A[1..10]. (b) The array B[0..9] of sorted lists (buckets) after line 8 of the algorithm. Bucket i holds values in the half-open interval [i/10, (i+1)/10). The sorted output consists of a concatenation in order of the lists $B[0], B[1], \ldots, B[9]$.

Bucket sort: algorithm for real numbers in [0,1)

Bucket sort: complexity analysis

Let $\mathbf{n_i}$ be a random variable denoting the number of elements placed in bucket i.

Then overall running time of bucket sort is
$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

We then compute **expected** running time to be (see details in 8.4)

$$\Theta(n) + n \cdot O(2 - 1/n) = \Theta(n)$$

Thus, average running time of bucket sort is $\Theta(n)$.

Bucket sort: exercise

Exercise 6.4. Explain why the worst-case running time for bucket sort is $O(n^2)$. What simple change to the algorithm preserves its linear average-case running time and makes its worst-case running time $O(n \lg n)$?

Summary

- Sorting algorithms do not have to rely (only) on comparison, if we know extra information about input
- We can achieve $\Theta(1)$ sorting for many situations:
 - Counting sort for small integers (and enumerations)
 - Radix sort for big integers (and sequences of enumerations)
 - Bucket sort for uniformly distributed "continuous" data

Summary

- Sorting algorithms do not have to rely (only) on comparison, if we know extra information about input
- We can achieve $\Theta(1)$ sorting for many situations:
 - Counting sort for small integers (and enumerations)
 - Radix sort for big integers (and sequences of enumerations)
 - Bucket sort for uniformly distributed "continuous" data

See you next week!