

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8a

Fig. 8b

Fig. 8c

Fig. 8d

Modification	Monoisotopic Mass	Average Mass
4-Phosphopantetheine	339.0780	339.3294
9-A den csylation	329.0525	329.2091
Acetylation	42.0106	42.0373
ADP-ribosylation (from NAD)	541.0611	541.3052
Biotinylation (amide bond to lysine)	226.0776	226.2994
Carb cxylation of Asp and Clu	43.9898	44.0098
G terminal amide formed from Cly	-0.9840	0.9847
Cysteinylation	119.0041	119.1 44 2
Dearnidation of Asn and Cln	0.9840	0.9847
Deckyhexosas (Fug. Kha)	146.0579	146.1430
Disulphide bond formation	-2.0157	2.0159
Farnesylation	204.1878	204.3556
Formylation	27.9949	28.0104
Geranyl stion .	272.2504	272.4741
Clutath ionylation .	305.0682	305.3117
Hexosamines (CalN, ClcN)	161.0688	161.1577
Hexoses (Fru, Gal, Glo, Man)	162.0528	162.1424
Homoserine formed from Met by CNBr treatment	-29.9928	30.0935
Hydr cxylation	15.9949	15.9994
Lipoic soid (smide bond to lysine)	188.0330	188.3147
Methylsti on	14.0157	14.0269
Myristoylation	210.1984	210.8598
N-acetylhexosamines (GalNAq-GldNAq)	203.0794	203.1950
N acetylneuraminic acid (Sialic acid, NeuAc, NANA, SA)	291.0954	291.2579
N-glycolylneuraminic acid (NeuCd)	307.0903	307.2573
Oxidation of Met	15,9949	15.9994
Palmitoyistion	238.2297	238,4136
Pentoses (Ara, Rib, Xyl)	132,0423	132.1161
Phophorylation	79.9663	79.9799
Protectysis of a single peptide bond	18.0106	18.0153
Pyridoxal phosphate (Schiff Base formed to lysine)	231,0297	231.1449
Pyroglutamic soid formed from Cln	-17.0265	17.0306
Stearoylation	266,2610	266,4674
Sulphation	79.9568	80.0642

Fig. 9

Motif	Enzyme/ Reaction	Mass difference(average mass)
W	photochemical	+16
w	photochemical	+32
W	photochemical	+4
[ST]-X-[RK]	Protein kinase C	+79.9799

<u>Fig. 10</u>

Symbo	ols	Monoisotopic Mass	Average Mass
Gly	G	57.02146	57.05
Ala	A	71.03711	71.08
Ser	S	87.03202	87.08
Pro	P	97.05276	97.12
Val	V	99.06841	99.07
Thr	T	101.0476	101.1
Cys	С	103.0091	103.1
Leu	L	113.0840	113.2
Пе	I	113.0840	113.2
Asn	N	114.0429	114.1
Asp	D	115.0269	115.1
Gln	Q	128.0585	128.1
Lys	K	128.0949	128.2
Glu	E	129.0425	129.1
Met	M	131.0404	131.2
His	H	137.0589	137.1
Phe	F	147.0684	147.2
Arg	R	156.1011	156.2
Tyr	Y	163.0633	163.2
Trp	w	186.0793	186.2

Fig. 11

	Composition	Monoisotopic Mass	Average Mass
N-Terminal Groups			
Hydrogen	H	1.00782	1.0079
N-Formyl	HCO	29.00274	29.0183
N-Acetyl	CH₃CO	43.01839	43.0452
C-Terminal Groups			
Free acid	OH	17.00274	17.0073

Fig. 12

Additional Amino acid	+/- Fraction numbers
Additional familio acts	1, 1,4203 011112112
E, Clutamic acid	+ 0.47
F, Phenylalanine	+ 5.54
H, Histidine	- 3.82
I, Isoleucine	+ 2.86
V Lycin o	-1.72
K, Lysine	-1.72
L, Leudine	+ 5.15
	0.05
Q, Glutamine	- 0.85
S, Serine	- 0.45
V, Valine	+ 2.2
M/ Trestonbana	+ 5.35
W, Tryptophane	T 3.33
Y, Tyrosine	+ 2.92

Fig. 13

AminoAcid Before First Cleavage					
		% Cleavage	% Present	Δ	
A	24	15.5%	8.4%	184%	
R	32	20.6%	6.3%	329%	
M	4	2.6%	1.5%	171%	
W	. 3	1.9%	1.2%	168%	
Р	14	9.0%	6.2%	145%	
N	7	4.5%	3.3%	135%	
F	6	3.9%	3.2%	122%	
K	10	6.5%	6.0%	107%	
G	11	7.1%	6.6%	107%	
L.	12	7.7%	8.5%	91%	
Н	3	1.9%	2.7%	71%	
V	5	3.2%	5.3%	61%	
D	5	3.2%	5.5%	58%	
Q	3	1.9%	4.6%	42%	
С	1	0.6%	1.8%	36%	
1	1	0.6%	2.1%	31%	
T [*]	2	1.3%	4.7%	27%	
S	3	1.9%	7.8%	25%	
E	4	2.6%	11.5%	22%	
Y	0	0.0%	2.6%	0%	
PrecursorStart	. 5	3.2%			

<u>Fig. 14a</u>

AminoAcid				
		% Cleavage	% Present	Δ
S	26	16.8%	7.8%	214%
D	18	11.6%	5.5%	210%
V	13	8.4%	5.3%	158%
Н	6	. 3.9%	2.7%	143%
G	14	9.0%	6.6%	136%
M	3	1.9%	1.5%	128%
1	4	2.6%	2.1%	124%
A	16	10.3%	8.4%	122%
K	9	5.8%	6.0%	97%
P	9	5.8%	6.2%	93%
Q	6	3.9%	4.6%	84%
L	11	7.1%	8.5%	83%
Τ	6	3.9%	4.7%	82%
N	3	1.9%	3.3%	58%
Υ	2	1.3%	2.6%	50%
С	1	0.6%	1.8%	36%
E R F	5	3.2%	11.5%	28%
R	2	1.3%	6.3%	21%
F	1	0.6%	3.2%	20%
W	0	0.0%	1.2%	0%

Fig. 14b

AminoAcid Before Last Cleavage						
		% Cleavage	% Present	Δ		
R	26	16.8%	6.3%	267%		
E	29	18.7%	11.5%	162%		
N	7	4.5%	3.3%	135%		
D	11	7.1%	5.5%	128%		
A	16	10.3%	8.4%	122%		
Q	8	5.2%	4.6%	111%		
R	10	6.5%	6.3%	103%		
F	5	3.2%	3.2%	102%		
L	13	8.4%	8.5%	98%		
G	10	6.5%	6.6%	97%		
K	9	5.8%	6.0%	97%		
М	2	1.3%	1.5%	85%		
T	6	3.9%	4.7%	82%		
S	9	5.8%	7.8%	74%		
С	2	1.3%	1.8%	72%		
V	5	3.2%	5.3%	61%		
Υ	2	1.3%	2.6%	50%		
Н	2	1.3%	2.7%	48%		
P	2	1.3%	6.2%	21%		
<u> </u>	0	0.0%	2.1%	0%		

Fig. 14c

AminoAcid				
		% Cleavage	% Present	Δ
Precursor end	30	19.4%		
R	26	16.8%	6.3%	267%
K	19	12.3%	6.0%	204%
W	3	1.9%	1.2%	168%
F	8	5.2%	3.2%	162%
G	12	7.7%	6.6%	117%
٧	9	5.8%	5.3%	110%
Т	. 7	4.5%	4.7%	96%
1	2	1.3%	2.1%	62%
A	7	4.5%	8.4%	54%
P	5	3.2%	6.2%	52%
Υ	2	1.3%	2.6%	50%
М	1	0.6%	1.5%	43%
Q	3	1.9%	4.6%	42%
S	5	3.2%	7.8%	41%
N	2	1.3%	3.3%	39%
L	5	3.2%	8.5%	. 38%
D	3	1.9%	5.5%	35%
D E C	6	3.9%	11.5%	34%
	0	0.0%	1.8%	0%
Н	. 0	0.0%	2.7%	0%

Fig. 14d

Fig. 15

Fig. 16

Fig. 17

G 17	Fraction 54 m/z	Fraction 54	Fraction 56	Fraction 20 m/z	Ţ
Case No.	2743.0	m/z 1371.5	m/z 2927.2	11143	
	k=20	k=19	k=16	k=19	
1	21648	712	2620	1452	
2	1830	1320	1199	2554	
3	21353	2022	3159	2139	
4	24223	2454	2431	2169	
5	3725	2719	982	1038	
6	13548	2956	1689	1300	
7	16606	3260	1402	2213	
8	20902	3435	624	887	
9	10321	3444	427	2145	
10	31047	3498	2238	1516	
11	31142	3592	4405	1255	
12	37241	3745	2785	1739	
13	22656	3822	2264	2576	
14	24366	3852	1752	1139 .	
15	16638	3935	1147	2182	
16	37171	4092	2393	1069	
17	33188	4115	1578	1681	
18	27596	4127	3228	1463	
19	39668	4348	3604	318	
20	12983	4362	1048	3039	
21	14420	4488	899	2676	
22	23261	4634	1965	3071	
23	30507	4710	2715	1247	
24	41494	4928	5343	1238	
25	36664	5107	3914	3156	
26	42465	5135	2729	1768	
27	42551	5135	3010	2500	
28	35473	5201	2242	1978	
29	48611	5906	2381	1075	
30	28413	5914	1855	3189	
31	35258	5954	3368	2140	
32	44774	605 6	4167	670	
33	46137	6465	7640	1719	
34	40892	6531	1630	1241	
35	48202	7076	11222	3826	
36	43760	7183	4771	1565	
37	50211	7316	5443	2060	

Fig. 18a

	Fraction 54 m/z	, ,	Fraction 56		Fraction 20
Case No.	2743.0	m/z 1371.5	m/z 2927.2		m/z 1114.3
38	49824	7410	3004		1113
39	50785	7752	6412		1616
40	46200	7821	3689		3725
41	52471	7949	5395		1837
42	49299	8280	4623		1207
43	45032	8483	4881		1566
44	51224	8562	6481		2194
45	51901	8638	10081		2047
46	51084	8776	14193		1478
47	50928	8852	6635		287
48	50707	10097	8877		1458
49	52304	10259	6244		1860
50	48355	10661	5195	<u> </u>	3695
51	51363	10685	11403		1261
52	54423	10846	11299		2067
53	55167	11041	12868		1545
54	55091	11539	5597		2381
55	56825	11912	7718		2409
56	53173	12022	8865		1969
57	51649	12057	7855		1295
58	51328	12095	9035		2043
59	53464	12641	6408		856
60	54542	12891	10363		1858
61	56950	13172	7586		1802
62	43273	14559	20080		596
63	57335	14922	12288		2916
64	55118	14997	10078		1761
65	57147	16164	7726		2626
66	55584	16216	17106		2623
67	59414	16550	15122		539
68	57093	16689	19689		2078
69	57841	18254	16079		1659
70	54084	18734	19524		395
71	56325	22730	10828		2326
72	58386	24159	16681		1631
73	54843	26671	44356		3183
74	53935	27937	30189		1403

Fig. 18b

	Fraction 54 m/z 2743.0 and					
			· /			
Measure of	Fraction 54 m/z	Fraction 56 m/	Fraction 20 m/z			
Association	1371.5	2927.2	1114.3			
Spearman's rank	0.9298	0.8761	-0.0044			
order correlation			·			
Pearson's	0.7318	0.5855	-0.0781			
product						
moment						
∞rrelation						
Kendall's rank	0.7704	0.6919	0.0107			
correlation tau						
MST diameter	50	40	29			

Fig. 19

Fig. 20

Hub	Corre-	Related peptide	Relative	Amino Acid Sequence
-	lation		Mono-	
Pept			isotopic	
ide			mass [Da]	
Chromogranin A 97 - 131			3905.764	HSGF EDELSEVLEN
				QSSQAELKEA VEEPSSKDVM
				E
	r=0.67	Secretogranin I 88-132	4605.025	DPADASEAHESSSR GEAGAP
				GEEDIQGPTKADTEKWAEGG
				GHSRE
	r=0.71	Secretogranin II 529-566	4152.921	G QGSSEDDLQEE
		·	ļ ·	eqieqaikeh lnqgssqetd
				KLAPVS
	r=0.72	Secretogranin V 181-202	2448.334	SVNPYLQGQRLDNVVAKKSV
				PH

Fig. 21

Signal intensity [au] of peptide coordinate Chromogranin A 97-131

Fig. 22

	Fraction 54 m/z	Fraction 54 m/z	Fraction 56 m/z		Fraction 20 m/z	
	2743.0	1371 5	2927.2		1114.3	
	k=0	k=1	k=2		k=19	
case 1	21648	3747	7051		1452	
case 2	1830	4355	5630		2554	
case 3	21353	5057	7590		2139	
case 4	24223	5489	6862		2169	
case 5	3725	5754	5413		1038	
case 6	13548	5991	6120		1300	
case 7	16606	6295	5833		2213	
case 8	20902	6470	50.55		887	
case 9	10321	6479	4858		2145	
case 10	31047	6533	6669		1516	
case 11	31142	6627	8836		1255	
case 12	37241	6780	7216		1739	
case 13	22656	6857	6695		2576	
case 14	24366	6887	6183		1139	
case 15	16638	6970	5578		2182	
case 16	3717 1	7127	6824		1069	
case 17	33188	7150	6009		1681	
case 18	27596	7162	7659		1463	
case 19	39668	7383	8035	· _	318	
case 20	12983	7397	5479		3039	
case 21	14420	7523	5330		2676	
case 22	23261	7669	6396		3071	
case 23	30507	7745	7146		1247	
case 24	41-49-4	7963	9774		1238	
case 25	36664	8142	8345		3156	
case 26	42465	8170	7160		1768	
case 27	42551	8170	7441		2500	
case 28	35473	8236	6673		1978	
case 29	4 8611	8941	6812		1075	
case 30	28413	8949	6286		3189	
case 31	3 5258	8989	7799		2140	
case 32	44774	9091	8598		670	
case 33	46137	9500	12071		1719	
case 34	40892	9566	6061		1241	
case 35	48202	10111	15653		3826	
case 36	43768	10218	9202		1565	

Fig. 23a

	Fraction 54 m/z	Fraction 54 m/z	Fraction 56 m/z	Fraction 20 m/z	
	2743.0	1371 <i>5</i>	2927.2	1114.3	
case 37	50211	10351	9874	1113	
casa 38	4987.4	10445	7435	1ศาศ	
case 39	58785	10787	10843	3725	
case 40	46200	10856	8120	1837	
case 41	52471	10984	9826	1207	
case 42	49209	11315	9054	1566	
case 43	45032	11518	9312	2194	
case 44	51224	11597	10912	2047	•
case 45	51901	11673	14512	1478	
case 46	51084	11811	18624	287	
case 47	50928	11887	11066		
c ase 48	50707	13132	13308		
case 49	52304	13294	10675	3695	
case 50	48355	13696	9626	1261	
case 51	51363	13720	15834	2067	
case 52	54423	13881	15730	1545	
case 53	55167	14076	17299	2381	
case 54	55891		10028	2409	
case 55	-56825	14947	12149	1969	
c ase 56	53173	15057	13296	1295	
case 57	51649	15092	12286	2043	
case 58	5132 8	15130	13466	856	
case 59	53464	15676	10839	1858	
case 60	54542	15926	14794	1802	<u></u>
case 61	5695 0	1620	12017	596	
case 62	43273	17594	24511	2916	
case 63	5733 5	1795	16719	1761	
case 64	55118	18032	14509	2626	
case 65	57147	1	12157	2623	
case 66	55584		21537	539	
case 67	5941-		19553		
case 68	5700	1972	24120	1659	
case 69	5784		20510	395	
case 70	5408 4		23955	2326	
case 71	56325			1631	
case 72	58386				
case 73	5484				
case 74	5393				

Fig. 23b

Fig. 24a

Fig. 24b

Fig. 24c

Fig. 25a

Fig. 25b

Fig. 25c

	n									
m/z	1	2	3	4						
1371.5	-1371.5	0.0	1371.5	2743.0						
2927.3	183.3	3109.6	6035.9	8962.2						

Fig. 26

PCT/EP2005/000090

WO 2005/069187

Fig. 27

AACLLPKLDE LRDEGKASSA KQRLKCASLQ KFGERAFK

Fig. 28

Fig. 29

OTPENGPEAS DPSEELEALA SLLQELRDFS PSSAKRQQET AAAETETRTH TLTRVNLESP GPERVWRASW GEFQARVPER APLPPPAPSQ FQARMPDSGP ALAAVLLQAL DRPASPPAPS GSQQGPEEEA AEALLTETVR SQTHSLPAPE SPEPAAPPRP # 2 VGF 177-191, r=0.74 161

EAGERLLOOG LAQVEAGRRO AEATROAAAO EAEEAERARQ -#12 VGF 373-417, r=0.73 RRGGEERVGE EDEEAAEAEA LPETHKFGEG VSSPKTHLGE ALAPLSKAYQ GVAAPFPKAR RPESALLGGS LLLQYLLQGG ARQRGLGGRG LQEAAEERES AREEEEAEQE VGF 350-370, r=0.76 + m EERLADLASD

KRKKNAPPEP VPPRAAPAP THVRSPOPPP PAPAPARDEL PDWNEVLPPW DREEDEVYPP GPYHPFPNYI RPRTLQPPSA #12 VGF 485-522, r=0.81-

NALLFAEEED GEAGAEDKRS QEETPGHRRK EAEGTEEGGE EEDDEEMDPQ TIDSLIELST KLHLPADDVV SIIEEVEEKR

401

561 LRRRHYHHAL PPSRHYPGRE AQARRAQEEA EAEERRLQEQ EELENYIEHV LLRRP

Fig. 30

Fig. 31

		D			
r ≥	Correct Precursor Predictions	False Precursor Predictions	All Predictions	Percentage of Correct Predictions	
0.95	18	0	18	100%	
0.90	40	4	44	91%	
0.85	58	10	68	85%	
0.80	104	26	130	80%	
0.75	. 178	76	256	70%	
0.70	314	192	506	62%	
0.65	512	456	968	53%	
0.60	756	990	1746	43%	
0.55	964	1872	2836	34%	
0.50	1186	3086	4272	28%	

Fig. 32

Fig. 33

	Number and Percentage of Amino Acid Found at Position of Interest										of A	d Change mino Acid General C	d Compa	red to
Amino Acid	n(N-1)	n(N+1)	n(C-1)	n(C+1)	(A	n Any ition)	x(N-1)	x(N+1)	x(C-1)	x(C+1)
A	16	12%	18	13%	16	12%	5	5%	5612	8.2%	1.4	1.6	1.4	0.6
\mathbf{C}	1	1%	1	1%	2	1%	0	0%	1109	1.6%	0.4	0.4	0.9	0.0
D .	5	4%	22	16%	8	6%	4	4%	3994	5.8%	0.6	2.8	1.0	0.6
${f E}$	4	3%	5	4%	30	22%	3	3%	8069	11.8%	0.2	0.3	1.8	0.2
F	5	4%	4	3%	3	2%	7	7%	2195	3.2%	1.1	0.9	0.7	2.0
\mathbf{G}	6	4%	12	9%	7	5%	7	7%	4171	6.1%	0.7	1.4	0.8	1.1
\mathbf{H}	3	2%	4	3%.	2	1%	1	1%	1955	2.9%	0.8	1.0	0.5	0.3
I	0	0%	1	1%	3	2%	2	2%	1592	2.3%	0.0	0.3	0.9	0.8
\mathbf{K}	7	5%	8	6%	12	9%	22	21%	4235	6.2%	0.8	0.9	1.4	3.4
L	9	7%	11	8%	10	7%	8	8%	5982	8.7%	0.7	0.9	0.8	0.9
\mathbf{M}	5	4%	5	4%	0	0%	0	0%	1120	1.6%	2.2	2.2	0.0	0.0
\cdot N	4	3%	4	3%	8	6%	0	0%	2365	3.5%	0.8	0.8	1.7	0.0
P	15	11%	9	6%	1	1%	1	1%	4310	6.3%	1.7	1.0	0.1	0.1
Q	0	0%	7	5%	5	4%	3	3%	3334	4.9%	0.0	1.0	0.7	0.6
R	42	31%	0	0%	9	6%	28	27%	4142	6.0%	5.1	0.0	1.1	4.4
S	4	3%	20	. 14%	10	7%	3	3%	5154	7.5%	0.4	1.9	1.0	0.4
T	4	3%	3	2%	4	3%	3	3%	3150	4.6%	0.6	0.5	0.6	0.6
v	5	4%	3	2%	6	4%	5	5%	3581	5.2%	0.7	0:4	0.8	0.9
W	1	1%	2	1%	1	1%	3	3%	720	1.1%	0.7	1.4	0.7	2.7
Y	0	0%	0	.0%	2	1%	0	0%	1726	2.5%	0.0	0.0	0.6	0.0
Sum	136	100 %	139	100 %	139	100%	105	100%	68516	100%				

Fig. 34

Pair of Amino Acid	# of Peptides	% of Peptides	# of Amino Acid pairs in all Precursors	% of Amino Acid pairs in all Precursors	x-fold Increase	
Before Amino-	RR	18	12.9%	398	0.58%	22,2
Terminal Cleavage	KR	13	9.4%	351	0.51%	18.2
After Amino-	DA	15	10.8%	170 ·	0.25%	43.4
Terminal Cleavage	GR	5	3.6%	215	0.31%	11.4
Before Carboxy-	QK	7	5.0%	169	0.25%	20.4
Terminal Cleavage	VN	. 6	4.3%	188	0.27%	15.7
1 ci minai Cleavage	GA	6	4.3%	293	0.43%	10.1
After Carboxy- Terminal Cleavage	KR	. 16	11.5%	351	0.51%	22.4

Fig. 35

Hub peptide VGF 26-58

- * predicts unknown peptide with m/z = 3688.03 as VGF 26-62
 - + calculated m/z matches found m/z (prerequisite condition)
 - + same start position as hub peptide (+ 69 bonus points)
 - + R as amino acid after end position (+ 4 bonus points)
- * predicts unknown peptide with m/z = 2419.41 as VGF 350-370
 - + calculated m/z matches found m/z (prerequisite condition)
 - + R as amino acid before start position (+ 5 bonus points)
 - + RR as amino acids before start position (+22 bonus points)

<u>Fig. 36</u>

Fig. 37

	Any proposal						Proposal With Most Bonus Points						
r ≥ 0. 75	Precursor Correct Start- or End Position Correct		Precursor Correct Start- or End Position False		Precursor False Start- or End Position False		Precursor Correct Start- or End Position Correct		Precursor Correct Start- or End Position False		Precursor False Start- or End Position False		
Model 1: No rules	-5	6%	61	75%	15	19%	3	11%	19	70%	5	19%	
Model 2: Only Rules Considering Single Amino Acids at Cleavage Sites	13	16%	58	72%	10	12%	10	37%	14	52%	3	11%	
Model 3: Only Rules Considering Pairs of Amino Acid Pairs	18	22%	54	67%	11	14%	1.5	56%	9	33%	3	11%	
Model 4: Only Rules Considering Common Start- or End Position	17	21%	51	63%	13	16%	13	48%	11	41%	3	11%	
Model 5: Combination: Only Rules Considering Single Amino Acids & Pairs of Amino Acid	19	23%	54	67%	8	10%	18	67%	6	22%	3	11%	
Model 6: Combination: all rules	28	35%	45	56%	8	10%	23	85%	1	4%	3	11%	

Fig. 38

							•
	Sequence	DAHKSEVAHRFKDLGEENFKALVL		HKSEVAHRFKDLGEENFKALVLIA	DAHKSEVAHRFKDLGEENFKALVLIA	DAHKSEVAHRFKDLGEENFKALVLIAF	LMIEQNTKSPLFMGKVVNPTQK
Monoisoton	Mass	2752.4		2750.5	2936.6	3085.5	2502.3
	Hub:	Albumin 25-48 2752.4	related Peptide to Alb. 25-48:	Albumin 27-50	Albumin 25-50	Albumin 25-51	alpha-1- Antitrypsin 397-418
Correlation to:	Alb. 25-48			r=0.77	r=0.75	r=0.75	r=0.75
Correla	Albumin Alb. 25-48	r=0.73		r=0.80	67.0=1	r=0.76	г=0.83

Fig. 39

Fig. 40