5 Mayıs 2021 Çarşamba

08:02

04 DAC

Giriş

- DAC, "Digital-to-Analog Converter" dijital sinyalleri analog sinyallere dönüştürmek için kullanılır. Genellikle mikrodenetleyiciler, bilgisayarlar, ses sistemleri ve diğer dijital cihazlar gibi dijital veri kaynaklarından gelen dijital verileri, analog çıkış cihazlarına (örneğin hoparlörler veya ses sistemleri) uygun bir şekilde aktarmak için kullanılırlar.
- STM32F407, 0-3.3 V arasında tüm gerilimleri çıkış olarak vermemizi sağlar.
- STM32F407 mikrodenetleyicisi içerisinde dahili olarak 12 bit tampona sahip, iki adet DAC birimi bulunur. Bu birimler sayesinde dijital bir veriyi analog bir veriye dönüştürerek çıkış üretilebilir.
- STM32F407'ye ait DAC birimleri 8 bit veya 12 bit değerinde çıkış üretilebilirler.
- 12 bit değerinde kullanılırken, veri 16 bitlik kaydedici içerisinde sola veya sağa dayalı şekilde kullanılabilir.
- DAC biriminin önemli özelliklerinden bir tanesi, gürültü veya sinyali üretebilme özelliğidir.
- Üçgen dalga üretebilme özelliğine sahiptir.
- DAC birimleri APB1 veri yoluna bağlıdır, kullanmak için aktif etmek gereklidir.
- DAC için hangi pin/pinler kullanılacaksa ilgili pin/pinler GPIOA->CRL registerından analog moda alınmalıdır.

Cözünürlük

 STM32'de DAC çözünürlüğünü arttırmak için Vref+ girişi bulunmaktadır fakat bu pin yüksek işlemcilerde bulunmaktadır. Vref+ ve Vref- pini bulunmayan işlemcilerde bu pinler dahili olarak VDDA ve VSSA' ya bağlıdır. VDDA ve VSSA ise VDD ile VSS'ye bağlanması zorunludur. Buradanda Vref+ geriliminin besleme gerilimini geçemeyeceğini anlıyoruz.

DACoutput =
$$V_{REF} \times \frac{DOR}{4096}$$

- Yukarıdaki ifade ile DAC çıkış voltajı hesaplanır. Biz DAC değerlerimizi DHR registerina yazarız ve tetikleme sonucunda DHR'deki veri DOR registerina aktarılır, DOR registerini sadece okuyabiliriz.
- 12 bitlik çözünürlüğe sahip bir DAC biriminin referans gerilimleri Vssa = 0 V, Vdda = +3 V ele alınır ise, adım başına üreteceği voltaj şu şekilde hesaplanır; DACoutput = Vref/4095

 Buradan adım başına düşen voltaj, DACoutput=3V/4095 = 732,600732
 Örneğin 1V elde etmek isteniyorsa:, 1/0,000732600 = 1365 değeri elde edilir.

Çalışma Modları

- STM32 mikrodenetleyicilerinde DAC modülü genellikle tek kanal, çift kanal, üçgen dalga ve gürültü oluşturma modları gibi farklı çalışma modlarına sahiptir.
- **Tek Kanal Modu**, Tek bir DAC kanalı üzerinden analog çıkış sağlar. Örneğin, STM32 mikrodenetleyicilerinde "DAC_Channel_1" kullanarak tek kanal modunda DAC'ı kullanabilirsiniz.
- Çift Kanal Modu, iki DAC kanalı üzerinden bağımsız olarak analog çıkış sağlar. Örneğin, STM32 mikrodenetleyicilerinde "DAC_Channel_1" ve "DAC_Channel_2" kullanarak çift kanal modunda DAC'ı kullanabilirsiniz.
- Üçgen Dalga Modu, DAC, üçgen dalga formunu üretebilir. Bu modda, DAC çıkışı belirli bir frekansta bir üçgen dalga formunu takip eder.
- **Gürültü Oluşturma Modu**, DAC, belirli bir frekansta gürültü sinyali üretebilir. Bu modda, DAC çıkışı belirli bir frekansta rasgele değerler üreterek bir gürültü sinyali oluşturur.

Tetikleme İşlemleri

- Genellikle yazılımsal ve harici tetikleme (triggering) yöntemleri ile kullanılabilir. Bu yöntemler, DAC'nin çıkışını kontrol etmek ve çıkış verisini belirli bir zamanlama veya olaya bağlamak için kullanılır.
- **Software Triggering**, Yazılımsal tetikleme, mikrodenetleyici yazılımı tarafından kontrol edilen bir tetikleme yöntemidir. Yazılım, DAC çıkışını başlatmak veya durdurmak için özel bir komut kullanır. Bu yöntem, zamanlama ile ilgili hassas kontrol gerektiren durumlarda kullanışlıdır. Örneğin, bir zamanlayıcı kesmesi veya belirli bir durum gerçekleştiğinde DAC çıkışını güncellemek için yazılımsal tetikleme kullanılabilir.
- External Triggering, DAC modülünü dış bir olaya (örneğin, bir zamanlayıcı kesmesi, bir GPIO değişikliği veya başka bir harici sinyal) bağlamak anlamına gelir. Harici bir sinyal algılandığında veya belirli bir durum gerçekleştiğinde, DAC çıkışını güncellemek için harici bir sinyal kullanılabilir.

Farklılıkları

- DAC ve PWM, her ikisi de dijital sinyalleri analog sinyallere dönüştürmek için kullanılan yöntemlerdir, ancak farklı çalışma prensiplerine sahiptirler.
- DAC, doğrudan dijital değerleri analog voltaj veya akıma dönüştürürken, PWM, darbe genişliği modülasyonu yoluyla bir analog etki oluşturur.
- DAC, genellikle doğrudan analog çıkış sağlar ve daha hassas bir çözünürlük sunabilir. PWM ise daha çok göreceli ve yaklaşık bir çözünürlük sağlar.
- DAC, genellikle özel bir entegre devre içerirken, PWM, genellikle bir mikrodenetleyici tarafından kontrol edilir.
- DAC, yüksek hassasiyet gerektiren ses uygulamalarında daha tercih edilebilirken, PWM, motor hız kontrolü gibi uygulamalarda daha uygun olabilir.

Birim Yapısı

Register

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	6	2	1	0
0x00	DAC_CR	Reserved DMAUDRIEZ DMAENZ [0:0:2]274								WAVE 2[2:0] TSEL2[2:0] N N N N N N N N N N N N N N N N N N N						EN2	Beserved	no locovi	DMAUDRIE1	DMAEN1	MAMP1[3:0]			WAVE 1[2:0] TSEL1				TEN1	BOFF1	EN1			
0x04	DAC_ SWTRIGR	Reserved																							SWTRIG2	SWTRIG1							
0x08	DAC_ DHR12R1	Reserved															DACC1DHR[11:0]																
0x0C	DAC_ DHR12L1	Reserved													DACC1DHR[11:0]											Reserved							
0x10	DAC_ DHR8R1	Reserved													DACC1DHR[7:0]										٦								
0x14	DAC_ DHR12R2	Reserved																DACC2DHR[11:0]															
0x18	DAC_ DHR12L2	Reserved														DACC2DHR[11:0]									Reserved								
0x1C	DAC_ DHR8R2	Reserved														DACC2D								2DH	IR[7	R[7:0]							
0x20	DAC_ DHR12RD	Reserved DACC2DHR[11:0]													F	Rese	erve	ed DACC1DHR[11:0]															
0x24	DAC_ DHR12LD	DACC2DHR[11:0] Reserved												DACC1DHR[11:							0]				F	Reserved							
0x28	DAC_ DHR8RD	Reserved													DACC2DHR[7:0]							DACC1DHR[7:0]											
0x2C	DAC_ DOR1	Reserved													Di								ACC1DOR[11:0]										
0x30	DAC_ DOR2		Reserved														DACC2DOR[11:0]												\neg				
0x34	DAC_SR	Reserved Reserved														Reserved																	

- DAC_CR (Control Register), DAC'nin genel kontrolünü sağlayan bu register, örneğin çıkış voltaj seviyesi, çıkış güçlendirme ve trigger seçeneklerini içerir.
- DAC_SWTRIGR (Software Trigger Register), yazılım tetikleme işlemlerini kontrol etmek için kullanılır.
- DAC_DHR (Data Holding Register), bu register'lar, DAC'ye gönderilecek dijital veriyi içerir.
- DAC_SR (Status Register), DAC durumunu izlemek için kullanılır.
- DAC_DOR (Data Output Register), DAC'nin çıkışından okunan gerçek zamanlı dijital çıkış verisini temsil eder. Dönüştürülen analog sinyalin temsil ettiği dijital değeri içerir.