DWIT COLLEGE DEERWALK INSTITUTE OF TECHNOLOGY

Tribhuvan University

Institute of Science and Technology

DOCTOR'S TIME A PROJECT REPORT

Submitted to

Department of Computer Science and Information Technology

DWIT College

In partial fulfillment of the requirements for the Bachelor's Degree in Computer Science and Information Technology

Submitted by

Krishna Chauhan

August, 2016

DWIT College

DEERWALK INSTITUTE OF TECHNOLOGY

Tribhuvan University

SUPERVISOR'S RECOMMENDATION

I hereby recommend that this project prepared under my supervision by KRISHNA CHAUHAN entitled "DOCTOR'S TIME" in partial fulfillment of the requirements for the degree of B.Sc. in Computer Science and Information Technology be processed for the evaluation.

.....

Sarbin Sayami

Assistant Professor

Institute of Science and Technology

Tribhuvan University

DWIT College

DEERWALK INSTITUTE OF TECHNOLOGY

Tribhuvan University

LETTER OF APPROVAL

This is to certify that this project prepared by KRISHNA CHAUHAN entitled "**Doctor's Time**" in partial fulfillment of the requirements for the degree of B.Sc. in Computer Science and Information Technology has been well studied. In our opinion it is satisfactory in the scope and quality as a project for the required degree.

Sarbin Sayami [Supervisor]	Hitesh Karki
Assistant Professor	Chief Academic Officer
IOST, Tribhuvan University	DWIT College
Jagdish Bhatta [External Examiner] IOST, Tribhuvan University	Rituraj Lamsal [Internal Examiner] Lecturer DWIT College

ACKNOWLEDEMENT

It gives me immense pleasure to express my deepest sense of gratitude and sincere thanks to

our highly respected and esteemed project instructor Mr. Sarbin Sayami (Asst. Prof., IOST,

TU) for his valuable guidance and encouragement for completing this work. His useful

suggestions for this whole work and co-operative behavior are sincerely acknowledged.

I would like to express my sincere thanks to Mr. Hitesh Karki, CAO (Chief Academic Officer),

for giving me this opportunity to undertake this project. I am grateful to Mr. Sanjeev Budha

and Mr. Asim Regmi for their constant support and guidance. At the end, I would like to

express my sincere thanks to all friends and others who helped me directly or indirectly during

this project work.

Krishna Chauhan

TU Exam Roll no: 1801/069

ii

STUDENT'S DECLERATION

I hereby declare that I am the only author of this work and that no sources other than th
listed here have been used in this work.
Krishna Chauhan
Date: August, 2016

ABSTRACT

The project entitled "Doctor's Time" is based on doctor, hospital and user entity. It provide

platform for user to view list of hospital and doctor. User can search hospital and their

associated doctor with respect to location of hospital. Besides detail description on hospital

and doctor, user can request for appointment to doctor.

First come first service (FCFS) scheduling algorithm is implemented for scheduling the user

appointment.

Keywords: Doctor's time, first come first service

iv

TABLE OF CONTENTS

LETTE	R OF APPROVAL	i			
ACKN	OWLEDEMENT	ii			
STUDENT'S DECLERATION					
ABSTR	RACT	iv			
LIST O	F FIGURES	vii			
LIST O	F TABLES	viii			
LIST O	F ABBREVIATIONS	ix			
CHAPT	TER 1: INTRODUCTION	1			
1.1	Background	1			
1.2	Problem Definition	1			
1.3	Objectives	2			
1.4	Scope	2			
1.5	Limitation	2			
1.6	Outline of Document	2			
CHAPT	TER 2: REQUIREMNET ANALYSIS AND FEASIBILITY STUDY	4			
2.1 L	iterature Review	4			
2.1	.1 Scheduling	4			
2.1	.2 Comparative analysis on different scheduling algorithm	5			
2.2 R	elated Work	8			
2.2	2.1 Hospital Nepal	8			
2.3. I	Requirement Analysis	9			
2.3	3.2. Use case	10			
2.4. I	Feasibility Analysis	11			
2.4	1 Operational feasibility	11			
2.4	-2. Technical feasibility	12			

2.4.3. Schedule feasibility	12
CHAPTER 3: SYSTEM DESIGN	13
3.1 Methodology	13
3.1.1 Data Collection	13
3.1.2 Data preprocessing	13
3.1.3 Algorithm	14
3.1.4 Retrieving the information	14
3.1.5 Output variable	14
3.2 System Design	15
3.2.1 System requirement – hardware and software platform	15
3.2.2 Class diagram	15
3.2.3. Sequence diagram	17
CHAPTER 4: IMPLEMENTATION AND TESTING	19
4.1 Implementation	19
4.1.2 Listing of major classes / methods	20
4.2 Testing	22
4.2.1 Test Case 1	22
4.2.2 Test Case 2	23
4.2.3 Test Case 3	23
4.2.4 Test Case 4	24
4.2.5 Test Case 5	24
4.2.6 Test Case 6	25
4.2.7 Test Case 7	25
4.2.8 Test Case 8	26
CHAPTER 5: MAINTENANCE AND SUPPORT	27
5.1 Maintenance Plan	27
CHAPTER 6: CONCLUSION AND RECOMMENDATION	28
6.1 Conclusion	28
6.2 Recommendation	28
APPENDIX	29
REFERENCES	33

LIST OF FIGURES

Figure 1- Project outline	3
Figure 2- First come first service	7
Figure 3- Use case diagram	. 10
Figure 4- Use case diagram	. 11
Figure 5- Architecture of operational feasibility	. 11
Figure 6- Class diagram	. 15
Figure 7- Class diagram	. 16
Figure 8 - Sequence Diagram (User)	. 17
Figure 9- Sequence Diagram (Admin)	. 17
Figure 10- Sequence Diagram (Doctor)	18

LIST OF TABLES

Table 1- Comparative analysis on scheduling algorithm	5
Table 2- Functional requirement vs. Non –functional requirement	9
Table 3- Schedule feasibility	12
Table 4- Data format	13

LIST OF ABBREVIATIONS

SWOT Strength weakness opportunity threats

API Application program interface

SDLC Software development lifecycle

FCFS First come first service

CHAPTER 1: INTRODUCTION

1.1 Background

The development of medical science emerge the development of hospital system. Lots of research has been carried out in a scientific approach in order to diagnosis the human diseases hence people prefer hospital for treatment. In present context if person want to know about hospital and its associated doctor for treatment then he/she has to physically present over hospital. Every second of patient is precious and hence it is good to have a prior information about hospital and doctor. If all of the process could be done automated then it could be easier then above manual process and lots of time could be saved. Hence the treatment procedure could be efficient.

Doctor's Time is a web application where user can view list of hospital and doctor. Although lots of application exist over the android play store. Doctor's time provide the user friendly platform for searching the doctor according to the location of hospital beside description of hospital and doctor it provide virtual platform for user to request appointment to doctor.

This application ultimately helps people over the valley and hence remove the traditionally approach of going hospital for getting the information about the availability of doctor associated to hospital.

1.2 Problem Definition

With the increase in a number of hospital, people often get confused about the best-suited hospital according to their preferences. In addition to that, people face a hard time to find out the best hospital for treatment, especially when they are new to that place. Due to lack of information about the hospital and doctor many patient had to be in dilemma for getting service. Prior information on hospital and doctor is necessary before treatment. Today the era

of modern digital technology, all the work are automated and computed online. No need to present physically over a place to make things happens

(Daniel Lemire, 2013)

1.3 Objectives

The main objectives of Doctor's Time are as follows:

- a. To view information on hospital and its associated doctor.
- b. To search hospital and its associated doctor according to hospital location.
- c. To request appointment to doctor.

1.4 Scope

Doctor's Time can be used by people interested for prior information on hospital and doctor for treatment and requesting appointment to doctor. Hence this application reduce the effort of going hospital physically for getting information about doctor and hospital for treatment.

1.5 Limitation

- a. Appointment request by user may not be considered by the doctor.
- b. Only Selected registered Hospital with in a Kathmandu valley is listed.
- c. Only the registered user will be allowed to use the system

Outline of Document

The remaining part of the document is organized and represented in project block diagram as shown in Figure-1 below:

Preliminary

Section

- Title Page
- Abstract
- Table of Contents
- · List of figures and Tables

Background of Research Introduction Statements of Problems Objectives, Scope and limitation Section Literature review and Related Works Literature Review Functional vs. No-functional requirement Section Feasibility study Methodology System Design Data collection and preprocessing Section Class Diagram and Sequence Diagram Implementation and Task breakdown Tools and technology used **Testing** Testing Maintenance and support Maintenance type Frequent changes and updates Section Conclusion and Conclusion and recommendation Recommendation

Figure 1- Project outline

CHAPTER 2: REQUIREMNET ANALYSIS AND FEASIBILITY STUDY

2.1 Literature Review

2.1.1 Scheduling

Scheduling is one of the most primary and essential part of any operating system. It allow one to decide which threads are given to resource from moment to moment. It prioritizes processes to efficiently execute the user requests and help in choosing the appropriate process for execution. Round Robin (RR) & Priority Scheduling (PS), First Come First Service(FCFS) are one of the most widely used and acceptable CPU scheduling algorithm. CPU scheduling is similar to other types of scheduling, which have been studied over the years. CPU scheduling refers to the decision of allocating a single resource among multiple clients.

(Garg, 2009)

Oulu hospital wants to identify and reduce large waiting times at their outpatient clinic. For the past few years the clinic has used a self-service system whereby patients register on arrival and hospital use a patient call-in system. Appointment scheduling problems have received the attention of operations research (OR) scientists since Bailey's initial work in 1952, but the problem of long waiting times still exists in the outpatient clinic. The no-show behavior of patients has been identified as a key factor resulting in low efficiency in many field study papers. Attempts to cut down on no-shows by reminders, telephones, or emails play an important role in mitigating no-show phenomenon, but it cannot eliminate the negative effects entirely. A revolutionary appointment system named the open-access system has been introduced as an alternative method to reduce no-show behavior by giving some patients appointments on the day they call.

(Strahl, 2015)

In 'Sequential Appointment Scheduling', Chongjun Yan, Jiafu Tang, and Bowen Jiang perform in-depth analysis on sequential appointment algorithm considering walk-in patients, system capacity and no show patient. The objective is to determine the optimal booking number of patients and the optimal scheduling time for each patient to maximize the revenue of all the arriving patients minus the expenses of waiting time and overtime. Based on the assumption that the service time is exponentially distributed, this paper proves that the objective function is convex.

(Chongjun Yan, 2014)

2.1.2 Comparative analysis on different scheduling algorithm

Various process scheduling algorithms exist and focuses on the scheduling algorithms used for scheduling processes in a multiprogramming system namely First-Come-First-Served (FCFS), Round Robin (RR), Shortest Job First (SJF), Shortest Remaining Time First (SRTF) and Lottery scheduling. Each algorithm has been discussed and a comparison was made on the basis of eight parameters significant in processes scheduling. In fact, compared to other papers, this research made use of more parameters for the analysis. These parameters include CPU utilization, throughput, waiting time, response time, fairness, starvation, predictability and preemption.

Table 1- Comparative analysis on scheduling algorithm

Algorithms	FCFS	RR	SJF	SRTF	LOT
CPU	Low	Medium	Higher	Requires very	CPU time prop to
Utilization	Low	Tylediani	Tilgilei	little	the job number of
Cumzation					3
				overhead	tickets given to
					each job
Throughput	Traded off	Bad when	Traded off	Gives the	Probabilistic
	for better	the chosen	for better	highest	guarantee of
	Response	quantum is	Response	throughput of	throughput
	Time	small	Time	all scheduling	proportional to
				algorithms.	ticket allocation

Waiting	The	The	The	The average	Low waiting time
Time	average	average	average	waiting time	
	waiting	waiting	waiting	is large	
	time is	time is	time is		
	large	large as	small		
		compared	compared		
		to others	to other		
		algorithms	algorithms		
Response	Good	Time Bad	Good	Good	Good
		when the			
		number of			
		processes			
		is large			
Fairness	Unfair for	Fair	Unfair	Unfair	Fair
	long jobs				
	make short				
	jobs wait				
Predictability	More	Predictable	Impossible	Impossible to	Less predictable
	predictable		to predict	predict the	
			amount of	amount of	
			CPU time	CPU time a	
				job has left	

As shown in Table-1, different CPU scheduling algorithm has been analyzed and comparative differentiation on different scheduling algorithm based on different scheduling criteria is listed above.

(Adekunle1, 2014)

Many service systems provide appointments to customers in advance of their arrival. However, because service times are uncertain, the amount of time to allocate between customer arrivals is a challenging decision. Short inter-arrival times can lead to high service system utilization, but at the expense of long customer wait times. Long inter-arrival times, on the other hand,

tend to reduce customer waiting, but at the expense of lower resource utilization. When the number of customers to be scheduled is known in advance, schedules can be designed using stochastic optimization models. However, in many service systems appointment scheduling is complicated by the fact that the exact number of customers to be scheduled is not known in advance. Instead, customers request appointments sequentially over time, and appointments are quoted on-line, i.e. sequentially at the time of each appointment request. Since rescheduling of appointments is uncommon in most service industries it is necessary to make these on-line scheduling decisions in such a way that schedules are adaptable to variation in customer demand.

(Gupta, 2003)

Since much of the literature is in the context of health care so I use the terms patient and customer interchangeably. Most of the previous work on dynamic appointment scheduling has assumed a fixed first-come-first-served (FCFS) queue discipline. Figure 1 illustrates the evolution of an on-line appointment schedule over time for a specific example in which up to 5 customers are scheduled. Figure 1(A) illustrates the FCFS policy in a dynamic scheduling environment. Figure 1(B) illustrates the more general case, which we consider in this article, in which the sequence is not fixed a priori. Note that customers are scheduled in order of their appointment requests but their appointment times on the day of service do not necessarily follow that order.

Figure 2- First come first service

Figure-2, Illustration of the on-line scheduling problem for scheduling of up to 5 customers. Figure (A) illustrates the case in which the sequence of appointments is FCFS; Figure (B) illustrates the general case in which the FCFS sequence is relaxed.

(Alexander Gose, 2012)

2.2 Related Work

Some of the related project/work similar with "**Doctor's Time**" are listed below:

Omhospitalnepal

It is a web based system that provide platform for end user to view the detail description of doctor and schedule appointment to doctor associated with om hospital. User requested appointment is schedule according to the date of appointment. Doctor manually response the appointment request.

Hospital Nepal

The application provides health related news and articles at the fingertips of the user. Added to the features, it has database of doctors, hospitals, clinics, ambulance and blood donor's profile that can be a valuable asset for anyone in need or emergency

(java & Himalayan, 2015)

Doct Schedule

It is web based doc scheduling system—streamlines the scheduling process by improving dock productivity, expanding visibility on scheduled appointments and measuring vendor compliance.

2.3. Requirement Analysis

2.3.1. Functional requirement vs. non –functional requirement

A requirement analysis was done on the product and the following data was obtained:

Table 2- Functional requirement vs. Non –functional requirement

SN	Role	Task-Functional	Description-Non Functional	
		requirement	requirement	
1	Admin	Login	Admin should provide the valid	
			credential in order to use the	
			system.	
2	User	Sign up/login	User Should sign up first in	
			order to create the account and	
			login for using the system.	
3	User	Search	User can search for hospital	
			and their associate doctor on	
			the basis of hospital location.	
6	User	View details	User can view the details	
			information about hospital and	
			doctor.	
7	User	Set appointment	User can set the appointment to	
			the doctor through the system.	
8	Doctor	Login	Doctor should provide a valid	
			credential in order to use the	
			system.	
9	Doctor	View appointment	Doctor can view the	
			appointment request by the	
			user and set the date according	
			to their preference.	

As shown in Table-2, System provide interface to admin for constant information updating through the admin authentication. User should login in to the system followed by the sign up process. Information about the doctor, hospital and appointment are viewed on their respective dashboard of user. User can search the hospital according to the hospital location. The list of hospital and associated doctor are generated. User can request for appointment to doctor and doctor can view the request appointment by the user and set the date to user according to preference.

Register/ login View information/ search Request appointme nt Log out Admin Add Information

2.3.2. Use case

Figure 3- Use case diagram

Figure-3, shown above describe the activity of user and admin .Admin and user are the major role in this system. Admin is responsible for constant uploading and updating the information through valid credential and on the other side user can view the information through login followed by the registration/sign up process. User can even request for appointment to doctor.

Figure 4- Use case diagram

In figure-4, doctor activity are visualized via use case diagram shown above. Doctor plays a vital role in this system. Doctor and user are interconnected. Doctor is responsible for constant appointment response to the user. Doctor has to login for using the system and is created by admin.

2.4. Feasibility Analysis

The following result was obtained while performing a feasibility analysis:

2.4.1 Operational feasibility

Figure 5- Architecture of operational feasibility

Doctor's Time is based on client-server architecture where server store and serve the information added by admin, user and doctor. The application can be accessed from anywhere

at any time with an internet connection and hence it is easy to use. Thus, it is operationally feasible.

2.4.2. Technical feasibility

System can be supported on both windows and Linux platform for its operation. It is a web application that uses HTML/CSS and JavaScript at the front end and PHP and MySQL at the back end. All of the technology required for developing application are available and can accessed openly and freely, hence it was technically feasible.

2.4.3. Schedule feasibility

Sprint is planned based on the application requirement. The task covering in each sprint is figure out and the deadline for the sprint is estimated.

Table 3- Schedule feasibility

Legend	Activity	Duration	Precedence
A	Requirement analysis	2 week	A
В	Feasibility study and data crawling	1 week	A,B
С	Mentor help	2week	С
D	Coding	2 week	C,D
Е	Testing	1 week	A,B,C,,D
F	Documentation	3 week	A,B,C,D,E

The total time for the development of the application is 3 months. From the Table-3, above we can see that Doctor's Time is completed in 11 week.

CHAPTER 3: SYSTEM DESIGN

3.1 Methodology

To illustrate the problem shown in problem statement I choose to develop a web-based application using waterfall model. SQL tokenization is used for retrieving information from database and displaying information to user.

User can request for appointment to doctor. First come first service (FCFS) scheduling algorithm is implemented for scheduling the user appointment.

(Manya, 2015)

3.1.1 Data Collection

Data/information required for this application is collected manually from the two well recognized hospital named Medicare national hospital and OM hospital and research center. Other information on hospital and doctor is collected from internet visiting their respective website. The collected data are the raw data. Table-4 shown below define the sample format of data.

Table 4- Data format

Hospital Name	Hospital Location	Doctor Name	Specialist
Medicare	Chabhil	Dr. Arun Shrestha	Nephrology
Hospital		Dr. Arunima Shrestha	Neurology
		Dr. Abhani Upadhaya	Cardiologist

3.1.2 Data preprocessing

The collected data is stored and maintained via MySQL database management system using a relational model.

For appointment sequencing and scheduling, First come first service scheduling algorithm is implemented in which first come first service scheduling algorithm is implemented for scheduling the user appointment.

3.1.3 Algorithm

CRUD Operation

CRUD refers to the four major functions implemented in this applications. The CRUD functions are the user interfaces to databases, as they permit users to create, view, modify and alter data. CRUD works on entities in databases and manipulates these entities.

Scheduling algorithm

For scheduling the user appointment FCFS algorithm is implemented.

- a) Once doctor is fetched, appointment capacity for the respective doctor is allocated by admin.
- b) User request for appointment to doctor.
- c) If number of appointment request by user equal to doctor appointment capacity then set the appointment on the next consecutive day on FCFS basis.
- d) If number of appointment request by user exceed the doctor appointment capacity then set the remaining appointment after the first priority user is served.

3.1.4 Retrieving the information

SQL query is used for the retrieving the necessary information and displaying to the end user. FCFS is implemented for scheduling the user appointment.

3.1.5 Output variable

The output variable will be:

- a. List of doctor
- b. List of Hospital
- c. Search result
- d. Appointment response

3.2 System Design

3.2.1 System requirement – hardware and software platform

The hardware requirement for the application is:

- a. Device Type: Personal Computers (laptop or desktop).
- b. Operating System: Windows OS, Linux, MAC

3.2.2 Class diagram

Figure 6- Class diagram

Doctor and hospital are the main class in this project. As shown in figure-5, doctor id and hospital id both are used in each class that uniquely represent the doctor and hospital. Each doctor is associated with hospital and each hospital has a doctor. Individual doctor can be associated with the multiple hospital so the hospital id and doctor id both attribute is used in doctor and hospital entity. The function shown in figure-5, depict the different operation used in the class.

Figure 7- Class diagram

As shown in figure-6, user and appointment class is depict. User has a privilege to sign up and create an account. Individual user has a user id that uniquely represent the user. User has a direct relation with appointment, query and doctor class. User request for appointment via request class and appointment class create a unique appointment id for user. Different function in the class illustrated above depict the operation in each class.

3.2.3. Sequence diagram

Figure 8 - Sequence Diagram (User)

As shown in figure-7 user has to first login followed by registration in order use the system. User request the system for viewing and searching a related information on the other side admin manage and update the information through web app and ultimately user can view their required information. User can send the appointment and query request and hence application redirect the response.

Figure 9- Sequence Diagram (Admin)

Admin manages hospital and doctor department and all the information regarding the hospital and doctor and are updated instant as shown in Fig-8. User management is controlled and managed by admin.

Figure 10- Sequence Diagram (Doctor)

Doctor are the special entity and are responsible for managing the user appointment. As shown in figure-9, doctor has to login for using the system and is managed and created by admin. User appointment request are handle by the doctor and give response according to FCFS scheduling algorithm.

CHAPTER 4: IMPLEMENTATION AND TESTING

4.1 Implementation

Task Breakdown

Sprint is planned based on the application requirement. The task covering in each sprint is figure out and the deadline for the sprint is estimated.

This section describes about the technologies used in Doctor's Time. Doctor's Time is a web application. PHP framework is used for developing the application. MySQL is a Popular and most common choice of database for developing web application which is used for database management system. WAMP server is used for hosting the system locally. For client side, HTML is used for presentation of the content Similarly, CSS was used as a style sheet language to describe the look and Formatting of a document written in HTML.

Furthermore, Bootstrap is used as a CSS library. JavaScript and JQuery (library of JavaScript) is used as a client side scripting language for client side validation. Ajax, combo of JavaScript and XML used for asynchronous communication with server and client.

4.1.1 Tools Used

PHP

PHP is used as a programming language for developing the system and PHP storm is used as an IDE platform for developing the web application.

Creately

Creately was used to build use case diagram, class diagram, sequence diagram.

4.1.2 Listing of major classes / methods

```
require ('../config/databaseConnection.php');
require('../common/Common.php');
$objCommon = new Common();
if(isset($_REQUEST['action']) && !empty($_REQUEST['action']))
{
  sec{rs} = array();
  $method = $_REQUEST['action'];
  $result = $objCommon->$method($_REQUEST);
  $rs["data"] = $result;
  echo json_encode($rs);
}
Description of handler class
Handler are intermediary function which acts as link between web pages and common class.
The handler for this application are: -
```

doctorHandler

```
$objCommon = new Common();
if(isset($_POST['mode'])){
   if($_POST['mode'']==''add''){
      $doctor_name = $_POST['doctorName'];
      $specialist = $_POST['specialist'];
      $associated_hospital = implode('','',$_POST['associated_hospital']);
```

```
$address = $ POST['address']:
    $mobile_number = $_POST['mobileNumber'];
    $image = $ FILES['image']['name'];
    move_uploaded_file($image_tmp,"../images/$image");
    $result = $objCommon-
>createDoctor($doctor_name,$specialist,$associated_hospital,$address,$mobile_number,$im
age);
HospitalHandler
$objCommon = new Common();
if(isset($_POST['mode'])){
 if($ POST["mode"]=="add"){
    $hospital_name = $_POST['hospitalName'];
    $location = $_POST['hospitalLocation'];
    $associated_doctor = implode(",",$_POST['associatedDoctor']);
    $inquery = $_POST['inqueryDetail'];
    $hospital image = $ FILES['image']['name'];
    $image tmp = $ FILES['image']['tmp name'];
    move_uploaded_file($image_tmp,"../images/$hospital_image");
    $result = $objCommon-
>createHospital($hospital name,$hospital image,$location,$associated doctor,$inquery);
SerachHandler
session_start();
require('../common/Common.php');
$objCommon = new Common();
```

```
if(isset($_POST["search"])){
    $location = $_POST['location'];
    $result = array();
    $result = $objCommon->searchHospital($location);
    $_SESSION['hospitalList']= $result;
    header("Location:../views/searchList.php");
}
```

4.2 Testing

During testing following functional requirement of the system are tested.

4.2.1 Test Case 1

Test Case Id: 1
Test Case Description: Admin Login

Precondition	Input Data	Steps	Expected	Actual	Result
			Outcome	Result	
Admin	Account	1. Enter valid email	Redirect to	Successfully	Pass
should be	should be	address and valid	admin	login	
logged in.	registered	password.	dashboard.		
		2. Press login button.			

4.2.2 Test Case 2

Test Case Id: 2
Test Case Description: user registration

Precondition	Input Data	Steps	Expected	Actual	Result
			Outcome	Result	
For new user	Enter valid	1. Enter first	User	Successfully	Pass
	information	name	successfully	registered	
		2. Enter last	registered and		
		name	redirect to		
		3. Enter email	login page		
		address			
		4. Enter			
		password			
		5. select gender			
		6. click submit			

4.2.3 Test Case 3

Test Case Id: 3
Test Case Description: user login

Precondition	Input Data	Steps	Expected	Actual	Result
			Outcome	Result	
User should	Valid user	1. Enter valid	Redirect to	Successfully	Pass
be logged in.	email and	email address	user	login	
	password	2. Enter valid	dashboard		
		password			
		3. Click login			

4.2.4 Test Case 4

Test Case Id: 4
Test Case Description: Add doctor

Precondition	Input Data	Steps	Expected	Actual	Result
			Outcome	Result	
Admin	Enter valid	1. Enter doctor	Doctor	Doctor	Pass
should be	information	name,	created and	successfully	
logged in.	related to	associated	displayed on	created	
	doctor	hospital	user		
		name,	dashboard		
		specialty			
		2. Click add			
		doctor			

4.2.5 Test Case 5

Test Case Id: 5
Test Case Description: Add Hospital

Precondition	Input Data	Steps	Expected	Actual	Result
			Outcome	Result	
Admin	Enter valid	1. Enter hospital	Hospital	Hospital	Pass
should be	information	name, associated	created and	successf	
logged in.	related to	doctor name,	displayed on	ully	
	hospital	inquiry detail,	user	created	
		location	dashboard		

4.2.6 Test Case 6

Test Case Id: 6
Test Case Description: Search hospital

Precondition	Input Data	Steps	Expected	Actual	Result
			Outcome	Result	
User should	Enter valid	1. Enter	List of	Search	Pass
be logged in	location of	hospital	hospital is	result	
	hospital	location	generated	successfully	
		2. Click	with their	displayed	
		search	associated		
		button	doctor		

4.2.7 Test Case 7

Test Case Id: 7
Test Case Description: Appointment scheduling request

Precondition	Input Data	Steps	Expected	Actual Result	Result
			Outcome		
User should	Click	1. Login	Patient name	Appointment	Pass
be logged in	appointment	using user	with	request details	
	button	credential.	description is	schedule to	
		2. Click	registered for	respective	
		appointme	appointment	doctor	
		nt button	in respective	dashboard	
			doctor		
			dashboard		

4.2.8 Test Case 8

Test Case Id: 8

Test Case Description: Appointment response

Precondition	Input		Steps	Expected	Actual Result	Result
	Data			Outcome		
	** 11.1		.		**	
Doctor	Valid	1.	Login using	Schedule the	User	Pass
should be	email		doctor	user	appointment	
logged in	address		credential.	appointment on	is scheduled	
	and	2.	View the	FCFS basis	on FCFS	
	password		appointment	with respect to	basis, if	
			list of user	appointment	number of	
				capacity per	appointment	
				doctor defined	request	
				by admin	exceed the	
					appointment	
					capacity then	
					appointment	
					schedule on	
					next	
					consecutive	
					day	

CHAPTER 5: MAINTENANCE AND SUPPORT

5.1 Maintenance Plan

The application will be maintained and updated over the period of time and necessary support will be provided to adapt the system to the future needs. Doctor's Time will implement corrective maintenance, perfective maintenance and preventive maintenance. Different bugs and error that may occur when the project is hosted will be maintain and resolved. For increasing efficiency various implementation will be changed. To make sure from un-ethical attack, security mechanism will be added.

CHAPTER 6: CONCLUSION AND RECOMMENDATION

6.1 Conclusion

Doctor's Time provide a platform to the end user for searching doctor associated with hospital accordance to hospital location. Besides searching user can manually view the information on hospital and doctor from the respective tab in the dashboard of the application.

User can request for appointment to doctor. FCFS algorithm is implemented for scheduling the user appointment to doctor.

6.2 Recommendation

This application can be further enhanced to visualize the real time updates on the doctor and hospital. Interface will be created for doctors for constant uploading of dynamic data. The real time schedule of doctor associated with hospital like schedule and time will be updated in version 2.0.

APPENDIX

Snapshot of Application

Doctor's Time

Home	Doctors Hospitals Search About Us			
Photo	Hospital Name	Address	Associated Doctors	Inquery Details
	OM Hospital	Chabhil	• Dr Bhola Rijal	01-4482484
	TU Teaching Hospital	Maharajung	• Dr Puspha Sharma	· 01-4410911
The state of the s	Helping Hands	Chabhil	Dr Achyut Rajbhandari	9827727272
The second	Medicare National Hospital	Chabhil	Dr Anand Shrestha Dr Anil Shrestha	01423456

Location

Doctor's Time

REFERENCES

- Adekunle1, Y. Z. (2014, Nov 01). A Comparative Study of Scheduling Algorithms for Multiprogramming in Real-Time. International Journal of Innovation and Scientific Research, 1, 5-12.
- Alexander Gose, B. T. (2012, oct). On-line Appointment Sequencing and Scheduling. 1, 2-4.
- Chongjun Yan, J. T. (2014). Sequential Appoinment Scheduling Considering Walk in Patients. Mathematical Problems in Engineering, 2-5.
- Garg, D. R. (2009). Performance Analysis Of CPU Scheduling Algorithm. 3-7.
- Gupta, D. a. (2003). On-line Appointment Sequencing and Scheduling.
- java, H., & Himalayan, J. (2015). Hospital Nepal. Kathmandu: Hospital Nepal.
- Manya. (2015, JANUARY). Php. VOLUME 4(ISSUE 01), 3-7.
- Mnoj, J. (n.d.). Trust . 1-5.
- Strahl, J. P. (2015, May 27). Previous studies on reducing waiting times. Patient appointment scheduling system:, 4-6.