Første Aflevering OR1

Nikolaj Dybdahl Rathcke (rfq695)

February 23, 2015

Opgave 1

\mathbf{a}

Vi lader x_1 være antal 100 liter vin og x_2 være antal 100 liter øl og skriver da P som.

Hvor vi vil maksimere den negative objektfunktion da det er et minimerings problem. Vi har desuden multipliceret nogle af bibetingelser med -1 så problemet er på standard form.

b

Det duale problem bliver da

Min:
$$\xi = 2y_1 - \frac{1}{2}y_2 - \frac{5}{2}y_3$$

u.b. $y_1 - y_3 \ge -1$
 $y_2 - y_3 \ge -2$
 $y_1, y_2, y_3 \ge 0$ (2)

 \mathbf{c}

Her er problemet, P, skitseret

Hvor den stiplede linje er object funktionen.

\mathbf{d}

Først omskriver vi P med slackvariablene w_i .

Max:
$$-x_1 - 2x_2$$

u.b. $x_1 + w_1 = 2$
 $-x_2 + w_2 = -\frac{1}{2}$
 $-x_1 - x_2 + w_3 = -\frac{5}{2}$
 $x_1, x_2, w_1, w_2, w_3 \ge 0$ (3)

Herefter skriver viDmed slackvariablene z_i

Min:
$$\xi = 2y_1 - \frac{1}{2}y_2 - \frac{5}{2}y_3$$

u.b. $y_1 - y_3 - z_1 = -1$
 $-y_2 - y_3 - z_2 = -2$
 $y_1, y_2, y_3, z_1, z_2 \ge 0$ (4)

 \mathbf{e}

Hvis vi observerer billedet fra (c), kan vi finde $(x, w) = (x_1, x_2, x_3, w_1, w_2)$ til

$$a = \left(0, \frac{1}{2}, 2, 0, -2\right)$$

$$b = \left(0, \frac{5}{2}, 2, 2, 0\right)$$

$$c = \left(2, 0, 0, -\frac{1}{2}, -\frac{1}{2}\right)$$

$$d = \left(2, \frac{1}{2}, 0, 0, 0\right)$$

$$e = \left(\frac{5}{2}, 0, -\frac{1}{2}, -\frac{1}{2}, 0\right)$$

Ligeledes finder vi $(z, y) = (z_1, z_2, y_1, y_2, y_3)$ til

$$a = (1,0,0,2,0)$$

$$b = (-1,0,0,0,2)$$

$$c = (0,2,-1,0,0)$$

$$d = (0,0,1,0,2)$$

$$e = (0,1,0,0,1)$$

f

Nedenfor ses et skema for om de er primtalt/dualt brugbare eller ej.

Punkterne b og c er primalt brugbare, og vi kan bestemme det optimale punkt da et af disse må være det. Vi ser værdien for punktet b giver $-2 \cdot \frac{5}{2} = -5$ og for d får vi $-2 \cdot 1 - 2 \cdot \frac{1}{2} = -3$. Altså er d optimalt. Desuden er b dualt ubrugbar.

Nu skal vi finde ud af om punkterne a, c, e er dualt brugbare. Fra opgave (e) ser vi at ingen af basis variablene er negative for a og e, altså er de brugbare. Dog er der negative basis variable for c og den er derfor ikke brugbar

Punkt	Primalt brugbar	Dualt brugbar	Optimal
a	%	✓	%
b	✓	%	%
c	%	%	%
d	✓	✓	✓
е	%	✓	%

 \mathbf{g}

Eftersom punktet d er den optimale funktion, ser vi, at 200 liter vin og 50 liter øl er optimalt og derfor billigst.

Opgave 2

 \mathbf{a}

Vi vil løse følgende hjælpeproblem med simplex metoden

$$\frac{\text{Max: } -x_0}{\text{u.b. } x_1 \qquad -x_0 \leq 2} \\
-x_2 - x_0 \leq -\frac{1}{2} \\
-x_1 - x_2 - x_0 \leq -\frac{5}{2} \\
x_1, x_2, x_0 \geq 0$$
(5)

Vi starter med at tilføje slack variablene og får

$$\frac{\xi = -x_0}{w_1 = 2 - x_1 + x_0}
w_2 = -\frac{1}{2} + x_2 + x_0
w_3 = -\frac{5}{2} + x_1 + x_2 + x_0$$
(6)

Indgående: x_0 Udgående: w_3

Isolering af x_0 i ligningen for w_3 giver

$$x_0 = \frac{5}{2} - x_1 - x_2 + w_3$$

Dette giver os at ξ , w_1 og w_2 er

$$\xi = -\frac{5}{2} + x_1 + x_2 + w_3$$

$$w_1 = \frac{9}{2} - 2x_1 - x_2 + w_3$$

$$w_2 = 2 - x_1 + w_3$$

Dette giver os det nye tableau

$$\frac{\xi = -\frac{5}{2} + x_1 + x_2 - w_3}{w_1 = \frac{9}{2} - 2x_1 - x_2 + w_3} \\
w_2 = 2 - x_1 + w_3 \\
x_0 = \frac{5}{2} - x_1 - x_2 + w_3$$
(7)

Indgående: x_2

Ratio: $\left(-\frac{-1}{\frac{9}{2}}, 0, -\frac{-1}{\frac{5}{2}}\right) = \left(\frac{2}{9}, 0, \frac{2}{5}\right)$

Max: $\frac{2}{5}$

Udgående: x_0

Isolering af x_2 i x_0 giver

$$x_2 = \frac{5}{2} - x_1 + w_3 - x_0$$

Som giver os vores tredje tableau

$$\frac{\xi = -x_0}{w_1 = 2 - x_1 + x_0}
w_2 = 2 - x_1 + w_3
x_2 = \frac{5}{2} - x_1 + w_3 + x_0$$
(8)

Variablen x_0 forsvinder da det er optimalt. Nu introducerer vi den originale object funktion og vi får følgende tableau.

$$\frac{\xi = -5 + x_1 - 2w_3}{w_1 = 2 - x_1}
w_2 = 2 - x_1 + w_3
x_2 = \frac{5}{2} - x_1 + w_3$$
(9)

Indgående: x_1 Ratio: $\left(-\frac{-1}{2}, -\frac{-1}{2}, -\frac{-1}{\frac{5}{2}}\right) = \left(\frac{1}{2}, \frac{1}{2}, \frac{2}{5}\right)$

Max: $\frac{1}{2}$

Udgående: w_1

Isolering af x_1 i w_1 giver

$$x_1 = 2 - w_1$$

Som giver os følgende tableau

$$\frac{\xi = -3 - w_1 - 2w_3}{x_1 = 2 - w_1}
w_2 = w_1 + w_3
x_2 = \frac{1}{2} + w_1 + w_3$$
(10)

Nu er den optimal idet der kun er negative koefficient i objektfunktionen.

b

Den gennemløb først punktet bi (9) som lægger i $(0,\frac{5}{2})$ og herefter ramte den punktet d (10) $i(2,\frac{1}{2}).$

\mathbf{c}

Nu løses det duale problem med simplex metoden.

Min:
$$\xi = 2y_1 - \frac{1}{2}y_2 - \frac{5}{2}y_3$$

u.b. $y_1 - y_3 \ge -1$
 $y_1 - y_2 - y_3 \ge -2$
 $y_1, y_2, y_3 \ge 0$ (11)

Det skriver vi om så vi får

$$\frac{-\xi = -2y_1 + \frac{1}{2}y_2 + \frac{5}{2}y_3}{z_1 = 1 + y_1 - y_3} \\
z_2 = 2 - y_2 - y_3$$
(12)

Indgående: y_3

Ratio: $\left(-\frac{-1}{1}, -\frac{-1}{2}\right) = \left(1, \frac{1}{2}\right)$

Max: 1

Udgående: z_1

Isolering af y_3 i z_1 giver

$$y_3 = 1 + y_1 - z_1$$

Som giver os følgende tableau

$$\frac{-\xi = \frac{5}{2} + \frac{1}{2}y_1 + \frac{1}{2}y_2 - \frac{5}{2}z_1}{y_3 = 1 + y_1 - z_1}
z_2 = 1 - y_1 - y_2 + z_1$$
(13)

Indgående: y_1

Ratio: $\left(-\frac{1}{1}, -\frac{-1}{1}\right) = (-1, 1)$

Max: 1

Udgående: z_2

Isolering af y_1 i z_2 giver

$$y_1 = 1 - y_2 + z_1 - z_2$$

Dette giver det næste tableau

$$\frac{-\xi = 3 - \frac{1}{2}z_1 - 2z_2}{y_3 = 2 - y_2 - z_2}
y_1 = 1 - y_2 + z_1 - z_2$$
(14)

Og nu er den optimal.

\mathbf{d}

Den gennemløb punkt e i (13) med $(z_1, z_2, y_1, y_2, y_3) = (0, 1, 0, 0, 1)$ samt punktet d i (14) med $(z_1, z_2, y_1, y_2, y_3) = (0, 0, 1, 0, 2)$.

\mathbf{e}

Variablene (x, w) kan aflæses fra skemaerne ved at kigge på konstanterne i rækkerne under objektfunktionen, så i (9) får vi at: $w_1 = 2, w_2 = 2$ og $x_2 = \frac{5}{2}$ for punktet b.

Desuden kan variablene (z, y) aflæses ud fra objektfunktionen hvor i vores tilfælde vi har $(x_1, x_2, w_1, w_2, w_3) = (z_1, z_2, y_1, y_2, y_3)$. Her er det koefficienterne negeret. Altså fra (9) får vi at $x_1 = z_1 = -1$ og $w_3 = y_3 = 2$.

De variable der ikke indgår bliver sat til 0 i begge tilfælde.

\mathbf{f}

Dette er egentligt bare det omvendte af (e). Så (x, w) aflæses ved at kigge på objektfunktionen. I (13) har vi derfor at $y_1 = w_1 = -\frac{1}{2}, y_2 = w_2 = -\frac{1}{2}$ og $z_1 = x_1 = \frac{5}{2}$ Ligeledes har vi at (z, y) i (13) er (0, 1, 0, 0, 1) - aflæst direkte fra rækkerne.

\mathbf{g}

Det var lettest at løse D idet der ikke var brug for et hjælpeproblem og derved var der færre iterationer.

Opgave 3

\mathbf{a}

Eftersom dette svarer til en ændring af tredje begrænsning, b_3 , fra $-x_1-2x_2 \leq -\frac{5}{2}$ til $-x_1-2x_2 \leq -5$ får vi at $\Delta b_3 = -\frac{5}{2} - (-5) = \frac{5}{2}$. Idet vores optimale basis var (1,0,2) må det betyde at vi får en ændring i vores objektfunktion på $\Delta b_3 y_3 = \frac{5}{2} \cdot 2 = 5$ - altså en objektværdi på 3+5=8 da objektværdien var 3 før.

b

2

 \mathbf{c}

3