

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Aeronáutica e Aeroespacial

LABORÁTORIO DE PRJ-22 PROJETO CONCEITUAL DE AERONAVE Laboratório 06

Aluna:

Tatiana Pasold

Data do laboratório: 25/05/2025

1 Contexto

O presente relatório tem como objetivo analisar os requisitos de desempenho de uma aeronave de referência. Os parâmetros geométricos dessa aeronave estão detalhados na Seção 4.

É importante destacar que os parâmetros de enflechamento e área da asa poderão sofrer ajustes ao longo das análises, de acordo com os requisitos de desempenho avaliados.

As condições operacionais, de missão e de voo consideradas estão sintetizadas na Tabela 1.

Tabela 1: Parâmetros de projeto

Parâmetro	Valor
Peso máximo de decolagem	422712.9 N
Tração de decolagem inicial	125600 N
Deflexão de flap na decolagem	0.3491 rad
Deflexão de flap no pouso	0.6981 rad
Deflexão de slat na decolagem	0.0 rad
Deflexão de slat no pouso	0.0 rad
Altura da pista	$10.668~\mathrm{m}$
Altitude de cruzeiro	$11000 \mathrm{m}$
Mach de cruzeiro	0.77
Alcance no cruzeiro	$2390000 \ \mathrm{m}$
Altitude de cruzeiro alternado	$4572~\mathrm{m}$
Mach no cruzeiro alternado	0.4
Alcance no cruzeiro alternado	$370000~\mathrm{m}$
Tempo de espera $(loiter)$	$2700 \mathrm{\ s}$
Altitude de decolagem	$0 \mathrm{m}$
Distância de decolagem	$1520~\mathrm{m}$
Altitude de pouso	$0 \mathrm{m}$
Distância de pouso	$1520~\mathrm{m}$
Fator de MLW	0.84

2 Variação da área de asa

2.1 Requisitos de trações

A Figura 1 apresenta os requisitos de tração em função da área de asa.

Figura 1: Tração necessária em função da área de asa para os diferentes requisitos de desempenho.

Ao analisar a variação dos requisitos de tração em função da área de asa, observa-se que, para valores menores de área (de $80m^2$ até aproximadamente $100m^2$), o requisito mais crítico é o de decolagem. Isso ocorre porque uma asa menor implica uma carga alar mais alta, o que dificulta a aceleração e a sustentação durante a corrida de decolagem. Como consequência, é necessária uma tração significativamente maior para que a aeronave consiga atingir a velocidade de rotação (V_R) — velocidade na qual se inicia a elevação do nariz e a transição para o voo — dentro do comprimento de pista disponível. Este comportamento é evidenciado pela curva da decolagem, que apresenta uma tendência descendente à medida que a área de asa aumenta.

Por outro lado, quando a área de asa ultrapassa $100m^2$, o requisito de decolagem deixa de ser o mais restritivo, dando lugar às limitações associadas às subidas com falha de motor, principalmente o segmento definido pelo FAR 25.121b - com um motor inoperante

(OEI). Esse requisito possui comportamento praticamente constante em relação à área de asa, pois é dominado pela relação tração/peso (T/W), não diretamente pela carga alar, conforme Equação 1. Mesmo que aumentar a área de asa ajude na decolagem e na redução da velocidade de stall, isso não altera significativamente a capacidade da aeronave de cumprir o gradiente mínimo de subida em caso de falha de motor. Assim, para asas maiores, é o requisito do FAR 25.121b que passa a determinar o dimensionamento da tração e, consequentemente, o tamanho necessário dos motores.

$$\gamma = \frac{T - D}{W} = \frac{T}{W} - \frac{1}{(L/D)} = \frac{T}{W} - \frac{C_D}{C_L} \tag{1}$$

Onde:

 γ — Gradiente de subida (adimensional)

T — Tração total (N)

D — Arrasto total (N)

W — Peso da aeronave (N)

T/W — Razão tração-peso (adimensional)

L/D — Razão aerodinâmica (sustentação sobre arrasto, adimensional)

 C_L — Coeficiente de sustentação

 C_D — Coeficiente de arrasto

3 Variação do enflechamento

3.1 Tração mínima requerida

A Figura 2 apresenta a tração mínima requerida em função da área de asa, com a indicação do requisito limitante em cada ponto.

Figura 2: Tração necessária em função do enflechamento da asa, com indicação do requisito limitante.

A análise da influência do enflechamento da asa sobre a tração necessária revela que, quanto maior o ângulo de enflechamento, maior é a tração requerida para satisfazer os requisitos operacionais. Esse aumento está diretamente relacionado à redução do coeficiente de sustentação máximo $(C_{L_{max}})$ à medida que o enflechamento cresce.

Para todos os valores de enflechamento analisados, o requisito de desempenho mais restritivo é a decolagem. Isso porque a queda do $C_{L_{max}}$ compromete a geração de sustentação durante a corrida de decolagem, tornando esse requisito determinante no dimensionamento da tração.

Esse comportamento é explicado pelo Take-Off Parameter (TOP), que relaciona carga alar, razão tração/peso e $C_{L,\max,TO}$. Quanto menor o $C_{L,\max,TO}$, maior deve ser a tração para cumprir a distância de decolagem, conforme a Equação 2.

$$TOP = \frac{\frac{W_{TO}}{S_{ref}}}{\sigma \cdot C_{L,\text{max,TO}} \cdot \frac{T_{TO}}{W_{TO}}}$$
 (2)

Onde:

TOP — Take-Off Parameter (m)

 W_{TO}/S_{ref} — Carga alar (N/m²)

 σ — Densidade relativa (adimensional)

 $C_{L,\max,\mathrm{TO}}$ — Coeficiente de sustentação máximo na decolagem

 T_{TO}/W_{TO} — Razão tração-peso na decolagem

3.2 Área de asa necessária para pouso

A Figura 3 apresenta a variação da área de asa necessária para atender ao requisito de pouso em função do enflechamento.

Figura 3: Área de asa necessária para pouso em função do enflechamento da asa.

O gráfico da Figura 3 mostra que a área de asa necessária para pouso (S_{wlan}) cresce com o aumento do enflechamento da asa. Esse comportamento está associado à redução do coeficiente de sustentação máximo em configuração de pouso $(C_{L_{max,LD}})$. À medida que o enflechamento aumenta, a eficiência da asa na geração de sustentação se deteriora, exigindo uma área maior para que a aeronave continue atendendo aos requisitos de velocidade de aproximação e distância de pista.

Portanto, ambos os gráficos — das Figuras 2 e 3 — que mostram o aumento da tração e da área de asa em função do enflechamento, são explicados pelo mesmo fenômeno físico: a

degradação do $C_{L_{max}}$ resultante do aumento do enflechamento da asa. Esse efeito penaliza as fases de voo de baixa velocidade, como decolagem e pouso, evidenciando um trade-off no projeto aeronáutico. Isto é, embora asas enflechadas tragam benefícios em regimes transônicos e supersônicos, seu impacto negativo sobre o $C_{L_{max}}$ exige compensações no projeto, seja por meio do aumento da tração, da área de asa ou de ambos, dependendo dos requisitos operacionais da aeronave.

4 Apêndice

Tabela 2: Parâmetros Geométricos da Asa

Parâmetro	Valor
Área (S_w)	93.5 m^2
Alongamento (AR_w)	8.43
Afilamento (λ_w)	0.235
Enflechamento (Λ_w)	17.45°
Diedro (Γ_w)	5°
Corda na raiz $(c_{r,w})$	$13.5 \mathrm{m}$
Posição vertical $(z_{r,w})$	$0.0 \mathrm{m}$
Espessura relativa na raiz $((t/c)_{r,w})$	12.3%
Espessura relativa na ponta $((t/c)_{t,w})$	9.6%

Tabela 3: Parâmetros Geométricos da Empenagem Horizontal

Parâmetro	Valor
Coeficiente de volume (C_{ht})	0.94
Alongamento (AR_h)	4.64
Afilamento (λ_h)	0.39
Enflechamento (Λ_h)	26°
Diedro (Γ_h)	2°
Braço aerodinâmico (L_c)	$4.83~\mathrm{m}$
Posição vertical $(z_{r,h})$	$0.0 \mathrm{m}$
Espessura relativa na raiz $((t/c)_{r,h})$	10%
Espessura relativa na ponta $((t/c)_{t,h})$	10%

Tabela 4: Parâmetros Geométricos da Empenagem Vertical

Parâmetro	Valor
Coeficiente de volume (C_{vt})	0.088
Alongamento (AR_v)	1.27
Afilamento (λ_v)	0.74
Enflechamento (Λ_v)	41°
Braço aerodinâmico (L_b)	$0.55~\mathrm{m}$
Posição vertical $(z_{r,v})$	$0.0 \mathrm{m}$
Espessura relativa na raiz $((t/c)_{r,v})$	10%
Espessura relativa na ponta $((t/c)_{t,v})$	10%

Tabela 5: Parâmetros da Fuselagem e Naceles

Parâmetro	Valor
Comprimento da fuselagem (L_f)	32.8 m
Diâmetro da fuselagem (D_f)	$3.3 \mathrm{m}$
Comprimento da nacele (L_n)	$4.3 \mathrm{m}$
Diâmetro da nacele (D_n)	$1.5~\mathrm{m}$
Posição longitudinal da nacele (x_n)	$23.2 \mathrm{m}$
Número de motores (n_{eng})	2

Tabela 6: Parâmetros do Trem de Pouso e Outros

Parâmetro	Valor
Posição do trem dianteiro (x_{nlg})	3.6 m
Posição do trem principal (x_{mlg})	$17.8~\mathrm{m}$
Posição lateral do trem principal (y_{mlg})	$2.47~\mathrm{m}$
Altura do trem (z_{lg})	$-2.0 \mathrm{m}$
Fator de excrescência (k_{exc})	0.03
C_{Lmax} do aerofólio	2.3

Referências Bibliográficas

DANTAS, João. **Aula 07 – Desempenho**. [Apresentação de aula]. São José dos Campos: Instituto Tecnológico de Aeronáutica, 2025.

DANTAS, João A. D. de J.; SILVA, Roberto G. A. da. **PRJ-22 – Projeto Conceitual de Aeronave: Lab 06**. São José dos Campos: Instituto Tecnológico de Aeronáutica, 2025.

ROSKAM, Jan. **Airplane Design: Part I to Part VIII**. 6. ed. Lawrence, Kansas: DARcorporation, 1985-2002. 8 v.