Robotik Lab - Einführung in Physical Computing und Arduino

Ivan Iovine - 1.Einführung in Arduino und Arduino IDE - 07.06.22

Themen Vorlesung 8.6.22

- Einführung in Arduino und Arduino IDE
- Analoge und Digitale Pins in Arduino
- Serielle Schnittstelle und Debugging
- Betreuung

Arduino Hardware

Die typische Hardware eines Arduino-Boards basiert auf einem Microchip AVR-Mikrocontroller der megaAVR-Serie, wie dem ATmega328.

ATmega 328 wird bei Arduino UNO verwendet. Abweichungen davon gibt es unter anderem bei den Arduino-Boards

Alle Boards werden entweder über USB (5 V oder 3,3V) oder eine externe Spannungsquelle (7–12 V) versorgt.

Arduino UNO

Betriebsspannung 5V

Pins: 14 digital (6 PWM), 6 analog

Mikrocontroller: ATmega328P

ARDUINO IDE

- Code schreiben
- Code speichern und hochladen
- Einführung in die Arduino Sprache
- Serielle Schnittstelle und Debugging

Arduino IDE

Arduino bringt eine eigene integrierte Entwicklungsumgebung (IDE) mit. Sie basiert auf Processing. Die Arduino-IDE bringt einen Code-Editor mit, dort können zusätzlich weitere Arduino-Bibliotheken ("libraries") eingebunden.

Arduino IDE Link: https://www.arduino.cc/en/software

Code Referenz Link: https://www.arduino.cc/
reference/en/

Serial Communication (Serielle Schnittstelle)

Das Arduino-Board kann seriell mit einem angeschlossenen Computer kommunizieren. Dies ermöglicht z.B. die Steuerung von Software und ist damit ein wichtiger Bestandteil des Physical Computings.

Die Arduino-IDE verfügt über einen seriellen Monitor, mit dem serielle Daten, die über den USB-Anschluss des Arduino laufen, gelesen werden können.

Prototyping mit Arduino

- Sheet (Schaltplan)
- Breadboard (Steckplatine)
- Jumper Wires (Drahtbrücken)

Sheet (oder Schaltplan)

Sheet (oder Schaltplan)

Sheet (oder Schaltplan)

Sheet (oder Schaltplan) - Lochrasterplatine

Sheet (oder Schaltplan) - PCB Board

Breadboard (oder Steckplatine)

Jumper Wires (oder Drahtbrücken)

Jumper Wires (oder Drahtbrücken)

Analog, Digital, PWM Pins

- LED Blinken
- LED Faden (Via PWM PIN Pulsweitenmodulation)
- Potentiometer steuern

Code: 1_1_hfg_offenbach_robotik_lab_blink

Code: 1_2_hfg_offenbach_robotik_lab_fade_led

Code: 1_3_hfg_offenbach_robotik_lab_fade_led_poti

