Introduction to Smooth Manifolds: Chapter #3

Chris Phelps

Problem 1

Define $f: \mathbb{R} \mapsto \mathbb{R}$ by (Heaviside function)

Show that for every $x \in \mathbb{R}$, there are smooth coordinate charts (U,ϕ) containing x and (V,ψ) containing f(x) such that $\psi \cdot f \cdot \phi^{-1}$ is smooth as a map from $(\phi(U \cap f^{-1}(V)))$ to $\psi(V)$ but f is not smooth in the sense we have defined in this chapter.

For all $x \neq 0$ this is obvious by selecting and U not containing 0, then f_U is linear thus smooth.

For x=0, we have f(x)=1, so we can select the neighborhood $U=(-\delta,\delta)$ and the neighborhood $V=(-\epsilon,\epsilon)$, and let ϕ,ψ be the identity.

Then $f^{-1}(V)=(-\infty,0]$ so that $U\cap f^{-1}(V)=(-\epsilon,0]$ and $(\phi\circ f\circ\phi^{-1})_{U\cap f^{-1}(V)}=0$, so it is smooth. However, it is not $\phi\circ f\circ\phi^{-1}$ is not smooth on the open set U, so is not smooth in the context defined in the chapter.

As an aside, this is consistent with Proposition 2.5 because

- 1. In condition (a), it violates the openness part of the statement.
- 2. In condition (b), it violates the continuous.

Problem 2

Prove Proposition 2.12: Suppose $M_1 \times \ldots \times M_k$ and N are smooth manifolds with or without boundary, such that at most one of M_1, \ldots, M_k has nonempty boundary. For each i, let $pi_i: M_1 \times \ldots \times M_k \mapsto M_i$ denote the projection onto the M_i factor. A map $F: N \mapsto M_1 \times \ldots \times M_k$ is smooth if and only if each of the component maps $F_i = \pi_i \circ F: N$ M_i is smooth.

```
Observation: A function f: \mathbb{R}^n \mapsto \mathbb{R}^m is smooth if and only if its coordinate functions are
smooth. (p. 11).
Trivial.
Let p \in N. By Proposition 2.5 (a), there exists smooth chart (U_i, \psi_i), (V_i, \phi_i) such that
1. F_i(p) \in V_i 2. U_i \cap F_i^{-1} is open in N 3. \psi_i \circ F_i \circ \phi_i^{-1} is smooth on from \phi_i(U_i \cap F_i^{-1}) to
\psi_i(V_i)
Let U = \bigcap_i U_i and V = \prod_i V_i. First observe that for each i
a. \phi_i|_U = \phi
b. F_i|_U is smooth for each i.
Then let \psi_i^j be the j th coordinate map of \psi_i, and note that \psi|_U = (\psi_1^1, \dots, \psi_k^{n_k}) is a smooth
map with \phi_i^j the coordinate functions.
We then establish the following properties
1. F(p) \in V: clear from definition of V 2. U \cap F^{-1}(V) is open in N: note that F^{-1}(V) =
F^{-1}(\Pi_i V_i) = F^{-1}(\cap_i (V_i \times \Pi_{i \neq i} M_i)) \ 3. \ \psi \circ F \circ \phi^{-1}
By a-b above and the definition of \psi
\psi \circ F \circ \phi^{-1} = (\psi_1 \circ F_1 \circ \phi_1^{-1}, \dots, \psi_k \circ F_k \circ \phi_k^{-1}) is a function mathbb{R}^n : \mapsto \mathbb{R}^m, and is
smooth in each coordinate, therefore it is smooth.
```

Because 1-3 are satisfied, the statement follows from Proposition 2.5

Problem 3

For each of the following maps between spheres, compute sufficiently many coordinate representations to prove that it is smooth.

- 1. $p_n: \mathbb{S}^1 \mapsto \mathbb{S}^1$ is the nth power map $(p_n(z) = z^n)$
- **2.** $\alpha: \mathbb{S}^n \to \mathbb{S}^n$ is the antipodal map $(\alpha(x) = -x)$
- 3. $F: \mathbb{S}^3 \mapsto \mathbb{S}^2$ is given by $F(w,z) = (z\bar{w} + w\bar{z}, iw\bar{z} iz\bar{w}, z\bar{z} w\bar{w})$

Problem 4

Show that the inclusion map $\bar{\mathbb{B}}^n\mapsto \mathbb{R}^n$ is smooth when $\bar{\mathbb{B}}^n$ is regarded as a manifold with boundary.

Problem 5

Let $\mathbb R$ be the real line with its standard smooth structure, and let $\widetilde{\mathbb R}$ denote the same topological manifold with the smooth structure defined in Example 1.23. Let $f:\mathbb R\mapsto\mathbb R$ be a function that is smooth in the usual sense.

- 1. Show that f is also smooth as a map from \mathbb{R} to \mathbb{R} .
- 2. Show that f is smooth as a map from $\tilde{\mathbb{R}}$ to \mathbb{R} if and only if $f^{(n)}(0) = 0$ whenever n is not an integral multiple of 3.

Problem 6

Let $P:\mathbb{R}^n\setminus\{0\}\mapsto\mathbb{R}^{k+1}\setminus\{0\}$ be a smooth function, and suppose that for some $d\in\mathbb{Z}, P(\gamma x)=\gamma^d P(x)$ for all $\lambda\in\mathbb{R}\setminus\{0\}$ and $x\in\mathbb{R}^n\setminus\{0\}$. Show that the map $\tilde{P}:\mathbb{RP}^n\mapsto\mathbb{RP}^k$ defined by ([x])=[P(x)] is well-defined and smooth.

Problem 7

Let M be a nonempty smooth n-manifold with or without boundary, and suppose $n \geq 1$. Show that the vector space $C^{\infty}(M)$ is infinite-dimensional.

Problem 8

Define $F:\mathbb{R}^n\mapsto\mathbb{RP}^n$ by $F(x^1,\ldots,x^n)=[x^1,\ldots,x^n,1]$. Show that F is a diffeomorphism onto a dense open subset of \mathbb{RP}^n Do the same for $G:\mathbb{C}\to\mathbb{CP}^n$ defined by $G(z^1,\ldots,z^n)=[z^1,\ldots,z^n,1]$.

Problem 9

Problem 10

For any topological space M, let C(M) denote the algebra of continuous functions $f:M\mapsto \mathbb{R}$. Given a continuous map $F:M\mapsto \mathbb{N}$, define $F^*:C(N)\mapsto C(M)$ by $F^*(f)=f\circ F$.

- 1. Show that F^* is a linear map.
- 2. Suppose that M and N are smooth manifolds. Show that $F:M\mapsto N$ is smooth if and only if $F^*(C^\infty(N))\subseteq C^\infty(M)$.
- 3. Suppose $F: M \mapsto N$ is a homeomorphism between smooth manifolds. Show that it is a diffeomorphism if and only if F^* restricts to an isomorphism from $C^{\infty}(N)$ to $C^{\infty}(M)$.

Problem 11

Suppose V is a real vector space of dimension $n \geq 1$. Define the projectivization of V, denoted $\mathbb{P}(V)$, to be the set of 1-dimensional linear subspaces of V, with the quotient topology induced by the map $\pi:V\setminus\{0\}\mapsto\mathbb{P}(V)$ that sends x to its span. Show that $\mathbb{P}(V)$ is a topological (n-1)-submanifold, and has a unique smooth structure with the property that for each basis (E_1,\ldots,E_n) for V, the map $E:\mathbb{RP}^{n-1}\mapsto\mathbb{P}(V)$ defined by $E[v^1,\ldots,v^n]=[v^1E_i]$ (where brackes denote equivalence classes) is a diffeomorphism.

Problem 12

State and prove an anology of 2-11 in complex vector spaces.

Problem 13

Suppose M is a topological space with the property that for every indexed open cover $\mathcal X$ of M, there exists a partition of unity subordinate to $\mathcal X$. Show that M is paracompact.

Problem 14

Suppose that A and B are disjoint closed subsets of a smooth manifold M. Show that there exists $f \in C^{\infty}(M)$ such that $0 \le f(x) \le 1$ for all $x \in M, f^{-1}(0) = A$, and $f^{-1}(1) = B$.

We use without proof the fact that topological manifolds are T_4 .

Therefore for A, B disjoint closed sets there exist disjoint neighborhoods $U_A \supseteq A, U_B \supseteq B$. By Proposition 2.2.5 there exist smooth bump fuctinos $\psi_A, \psi_B : M \mapsto \mathbb{R}$ s.t.

1.
$$\phi_A^{-1}(1) = A$$

2.
$$\phi_B^{-1}(1) = B$$

3.
$$\operatorname{supp}\phi_A \subseteq U_A$$

4.
$$\operatorname{supp} \phi_B \subseteq U_B$$

Note that in particular this implies

1.
$$\phi_A(p) = 0$$
 for all $p \in B$

2.
$$\phi_B(p) = 0$$
 for all $p \in A$

Let $f = \frac{1}{2} (1 - \phi_A + \phi_B)$. f is smooth because it is a linear combination of smooth functions, and clearly $0 \le f(x) \le 1$ for all $x \in M$.

Then for all $x \in A$

$$f(x) = \frac{1}{2} (1 - \phi_A(x) + \phi_B(x))$$
$$= \frac{1}{2} (1 - 1 + 0)$$
$$= 0.$$

Similarly, for all $x \in B$

$$f(x) = \frac{1}{2} (1 - \phi_A(x) + \phi_B(x))$$

= $\frac{1}{2} (1 - 0 + 1)$
= 1.