

Predicción de Enfermedades Cardíacas a través del Análisis de Hábitos de Vida

DATA SCIENCE II - CODER

MaríaLaura Zulatto - 2024

Indice

MOTIVACIÓN Y AUDIENCIA

MOTIVACIÓN

- Problema Global: Enfermedades cardíacas como principal causa de muerte.
- Complejidad de los Factores:
 Interacción de múltiples hábitos y factores.
- Innovación en Prevención: Uso de aprendizaje automático para identificar patrones clave.

AUDIENCIA

- Profesionales de la Salud
- Instituciones de Salud Pública
- Investigadores en Aprendizaje Automático
- Público General
- Aficionados del sistema cardiovascular (Como yo)

HIPÓTESIS Y PREGUNTAS DE INTERÉS

¿Cuál es el modelo de aprendizaje que mejor se ajusta a nuestro conjunto de datos?

METADATA Y DATA WRANGLING.

DATASETS

Fuente 1: Kaggle Muestras:8763 Variables: 26

Dataset extremadamente balanceado, no útil para análisis completo por sí solo.

Fuente 2: Kaggle Muestras: 4239 Variables: 16

Complemento para las variables de interés de nuestro análisis.

Numérica

continua

Binaria

Input data

METADATA: 12947 rows × 16 columns

- Age
- Heart Rate
- Systolic
- Diastolic
- Cholesterol
- Triglycerides
- Glucose
- BMI
- Exercise Hours Per Week
- Sedentary Hours Per Week
- Prevalent Cardiovascular
- Diabetes
 - Medical Use
- Smoking
- Sex

Output

Heart Attack Risk

1: Yes 0: No

Análisis bivariado : Factores Demográficos en enfermedades cardíacas \odot 7922 Distribución de Pacientes por Edad, Sexo y Riesgo de Ataque Cardíaco Riesgo de Ataque Cardíaco: No Riesgo de Ataque Cardíaco: Yes 1200 -5025 1000 Número de Pacientes 800 Female Male 200 40-50 <30 30-40 40-50 50-60 60-70 >70 <30 30-40 50-60 60-70 >70

Insight:

Grupo de Edad

- Los hombres en el conjunto de datos tienen una mayor prevalencia de factores de riesgo asociados con enfermedades cardíacas
- mayor número de pacientes en los rangos de edad de 40-70 años podría correlacionarse con un aumento en el riesgo de ataque cardíaco con la edad.

Grupo de Edad

Análisis bivariado : Niveles de colesterol y triglicéridos.

Diagrama de Cajas y Bigotes para Lípidos en sangre

Insight: La población maneja niveles de triglicéridos y colesterol por arriba de los límites normales.

Implicancia directa a formación de placas de ateroma

Se imputaron los triglicéridos con una distribución uniforme, manteniendo su distribución original.

Análisis bivariado : Gluscosa y Diabetes

Insight: Los niveles de glucosa están relacionadas directamente a la condición de diabetes.

Como se imputaron los faltantes?

A través de la media según la zona de diabetes en la que se encontrara el paciente.

Correlación

Alta correlación positiva:

- Glucose Smoking Diabetes - Glucosa
- Medication use Glucose
- **Diabetes Medication Use**

- Sex Smoking
- Sex Diabetes

Alta correlación negativa:

Diabetes - Smoking

Recomendaciones poblacionales

Factores Demográficos

- Enfocar las campañas en hombres y personas mayores de 40 años para reducir la prevalencia de factores de riesgo de enfermedades cardíacas.
- Promover estilos de vida saludables y el control regular de salud en estos grupos de mayor riesgo.

Colesterol y Trigl.

- Implementar programas de intervención para manejar los niveles de colesterol y triglicéridos elevados.
- Recomendaciones
 Nutricionales y
 medicamentos según las
 necesidades individuales
 para mantener los niveles
 dentro de los límites
 saludables.

Diabetes vs glucosa

- Fomentar el monitoreo regular de la glucosa para identificar y manejar la pre diabetes la diabetes.
- Educación sobre la gestión de la diabetes, incluyendo cambios en la dieta y la actividad física, para mantener los niveles de glucosa bajo control.

Etapas de Modelado

01

Modelos de clasificación con parámetros predeterminados

Resultados no motivadores.

02

Balanceo de datos

Se realiza un subsampling del grupo mayoritario para balancear las etiquetas. **→** 03

Selección de modelos, optimización y validación

A través de RandomizedSearchCV y GridSearchCV.

Que analizamos para comparar los modelos?

Mide el porcentaje de predicciones correctas (positivas y negativas). Es intuitiva, pero **puede ser engañosa si las clases están desbalanceadas.**

Mide la capacidad del modelo para distinguir entre las clases. **Un valor más alto indica mejor discriminación**.

Comparación de entrenamientos

Modelos entrenados	Recall		F1 - Score		Accuracy	ROC AUC
	0 (No riesgo de ataque cardiaco)	1 (Si riesgo de ataque cardiaco)	0 (No riesgo de ataque cardiaco)	0 (No riesgo de ataque cardiaco)		AUC
Random Forest	0.49	0.90	0.61	0.74	0.69	0.88
Gradient Boosting	0.50	0.86	0.61	0.72	0.68	0.77
Logistic Regression	0.46	0.73	0.54	0.64	0.59	0.63
Support-vector machines	0.22	0.95	0.35	0.69	0.58	0.90

Cuales son los modelos que elegimos de nuestro entrenamiento?

RANDOM FOREST

Ventajas:

- → Buen equilibrio entre precision y recall, especialmente en la clase 1 (ataques cardíacos).
- → La alta AUC sugiere que el modelo es bastante efectivo en distinguir entre las clases.

Desventajas:

→ Aunque la precisión y recall en la clase 0 son moderadas.

SVM

Ventajas:

- → Alta AUC
- → Buen porcentaje de Recall

Desventajas

→ Muestra un recall bajo en la clase 0, no identifica bien los casos negativos. Esto podría ser preocupante dependiendo del costo de los falsos positivos.

Algunos problemas durante el proceso..

01 Distribución de Variables

Fue necesario complementar el dataset original para aplicar variabilidad a los datos, e imputar los faltantes evaluando cuidadosamente cada caso.

O2 PCA

Utilizarlo concluye en una pérdida significativa de la información.

03 Desbalanceo de datos

Se resolvió entrenando con un subsampling de la clase mayoritaria.

04 Validación cruzada y K-Fold

No fue óptimo para todos los modelos.

05 Escalado de datos.

No fue necesario en todos los modelos.

