Solution Série de TD N° 03

Exercice 1 Utiliser la méthode de résolution pour prouver ou infirmer les affirmations suivantes.

On met les formules (des hypothèses et la négation de la conséquence) sous forme de clauses, et on applique ensuite le principe de résolution à partir de ses clauses obtenues

- 1. $\{q \Rightarrow (\neg q \lor r), q \Rightarrow (p \land \neg r)\} \models q \Rightarrow r$
 - $q \Rightarrow (\ \neg \ q \ \lor \ r) \equiv \neg q \lor (\ \neg \ q \ \lor \ r) \equiv (\neg q \lor \ \neg \ q) \ \lor \ r \equiv \ \neg \ q \lor \ r \equiv C1$

$$q \Rightarrow (p \land \neg r) \equiv \neg q \lor (p \land \neg r) \equiv (\underline{\neg q \lor p}) \land (\underline{\neg q \lor \neg r})$$

$$\neg (q \Rightarrow r) \equiv \neg (\neg q \lor r) \equiv q \land \neg r$$

$$C1 = \neg qV r$$

$$C2 = \neg q \lor p$$

$$C3 = \neg q \lor \neg r$$

$$C4 = q$$

$$C5 = \neg r$$

$$C6 = r$$
 (résolution (C1,C4)

$$C7 = []$$
 (résolution (C6,C5)

Donc on a montré que $\{ q \Rightarrow (\neg q \lor r), q \Rightarrow (p \land \neg r), \neg (q \Rightarrow r) \} \models []$

Donc par réfutation $\{ q \Rightarrow (\neg q \lor r), q \Rightarrow (p \land \neg r) \} \models q \Rightarrow r$

2. $\{p \Rightarrow q, q \Rightarrow r, p \lor \neg r\} \models p \land q \land r$.

Il faut montrer que $\{p \Rightarrow q, q \Rightarrow r, p \lor \neg r, \neg (p \land q \land r)\} \models []$

$$p \Rightarrow q \equiv \neg p \lor q \equiv C1$$

$$q \Rightarrow r \equiv \neg p \lor r \equiv C2$$

$$p \lor \neg r \equiv C3$$

$$\neg (p \land q \land r) \equiv \neg p \lor \neg q \lor \neg r \equiv C4$$

$$C1 = \neg p \lor q$$

$$C2 = \neg p \lor r$$

$$C3 = p V \neg r$$

$$C4 = \neg p \lor \neg q \lor \neg r$$

$$C5 = \neg q \lor \neg r$$
 (résolution (C3,C4)

$$C6 = \neg p$$
 (résolution (C5,C2)

$$C7 = q \lor \neg r$$
 (résolution (C3,C1)

$$C8 = \neg r$$
 (résolution (C7,C6)

On ne peut pas ajouter ni des nouveaux clauses ni la clause vide []

Alors la conséquence n'est pas vérifiée

 $3. \mid = p \Rightarrow p$

$$\neg (p \Rightarrow p) \equiv \neg (\neg p \lor p) \equiv p \land \neg p$$

$$C1 \land C2$$

$$C1 = p$$

$$C2 = \neg p$$

Donc par réfutation $|= p \Rightarrow p$

A vous de montrer les restes conséquences

- 4. $\{q \Rightarrow (\neg q \lor r), q \Rightarrow (p \land \neg r)\} \models q \land r$
- 5. $\{p \Rightarrow q, q \Rightarrow r, p \lor \neg r\} \models (p \land q \land r) \lor (\neg p \land \neg q \land \neg r).$
- 6. $\mid = ((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
- 7. $\models ((s \Rightarrow r) \land p \land \neg r) \Rightarrow \neg r \land \neg s \land p$
- 8. $\models [(p \land q) \lor (r \land q)] \Rightarrow (p \lor r)$

Exercice 2 prenez les formules de l'exercice 4 de la série 2, et vérifier si ces formule sont satisfiables ou pas en utilisant la méthode de résolution.

Par la méthode de résolution, on dit qu'une formule F est satisfiable si S= clause de F

- On définit S0:=S
- On calcule une séquence S1, S2, . . . avec la règle
 - * soient C1 et C2 deux clauses de Si dont le résolvant est C
 - * on définit $S_{i+1} := Si \cup \{C\}$
 - * si au cours de résolution on trouve un C = [] alors S0 était inconsistant (insatisfiable)
 - * si $S_{i+1} = Si$ pour tout choix de C1 et C2, alors S0 était satisfiable

$$FNC(F) \equiv (\neg (A \leftrightarrow B) \lor (B \land C) \rightarrow C)$$

$$\equiv (((\neg (A \leftrightarrow B)) \lor (B \land C)) \rightarrow C)$$

$$\equiv \neg ((\neg (A \leftrightarrow B)) \lor (B \land C)) \lor C$$

$$\equiv ((A \leftrightarrow B) \land \neg (B \land C)) \lor C$$

$$\equiv ((\neg A \lor B) \land (\neg B \lor A) \land (\neg B \lor \neg C)) \lor C$$

$$\equiv (\neg A \lor B \lor C) \land (\neg B \lor A \lor C) \land (\neg B \lor \neg C \lor C)$$

$$\equiv (\neg A \lor B \lor C) \land (\neg B \lor A \lor C)$$

$$C1 \qquad C2$$

 $C1 = \neg A \lor B \lor C$

$$C2 = \neg B \lor A \lor C$$

Impossible d'ajouter des nouveaux clauses puisqu'il faut tjs un seul variable à résolu

Donc impossible de trouver []

Donc F est satisfiable

Exercice 3 : Soit la théorie T du calcul propositionnel :

A1 : A
$$\rightarrow$$
 (B \rightarrow A)
A2 : (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))

$$A3: (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$

Montrer dans la théorie T que :

1. A + A→A	b0: A (hypothèse)
	b1: $A \rightarrow (A \rightarrow A)$ (A1)
	b2: $A \rightarrow A (MP(b0,b1))$
$2. + \alpha \rightarrow \alpha$	b0: $(\alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha)) \rightarrow ((\alpha \rightarrow (\alpha \rightarrow \alpha)) \rightarrow (\alpha \rightarrow \alpha))$ (A2)
	b1: $\alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha)$ (A1)
	b2: $(\alpha \rightarrow (\alpha \rightarrow \alpha)) \rightarrow (\alpha \rightarrow \alpha)$, (MP b0, b1)
	b3: $\alpha \rightarrow (\alpha \rightarrow \alpha)$, (A1)
	b4: $\alpha \rightarrow \alpha$ (MP b2, b3)
3. $\alpha \rightarrow \beta$, $\beta \rightarrow \gamma + \alpha \rightarrow \gamma$	$b0: \alpha \rightarrow \beta$ (hypothèse)
	$b2: β \rightarrow γ (hypothèse)$
(transitivité)	b3: $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$ (A2)
	$b4: (\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow (\beta \rightarrow \gamma)) (A1)$
	b 5: $(\alpha \rightarrow (\beta \rightarrow \gamma))$ MP(b4,b2)

et la règle du Modus Ponens(MP) : A, A \rightarrow B \vdash B.

	b6: $((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$ MP(b5,b3) b7: $\alpha \rightarrow \gamma$ MP(b6,b0)
4. $\alpha \rightarrow (\beta \rightarrow \gamma), \beta \vdash \alpha \rightarrow \gamma$	b0: $\alpha \rightarrow (\beta \rightarrow \gamma)$ (hypothèse) b2: β (hypothèse) b3: $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$ (A2) b4: $((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$ MP(b0,b3) b5: $(\beta \rightarrow (\alpha \rightarrow \beta))$ (A1) b6: $\alpha \rightarrow \beta$ MP(b5,b2) b7: $\alpha \rightarrow \gamma$ MP(b6,b4)
 ¬¬β + β 	b0: $\neg \neg \beta$ (hypothèse) b1: $(\neg \beta \rightarrow \neg \neg \neg \beta) \rightarrow (\neg \neg \beta \rightarrow \beta)$ A3 b2: $(\neg \neg \neg \beta \rightarrow \neg \neg \beta) \rightarrow (\neg \beta \rightarrow \neg \neg \neg \beta)$ A3 b3: $(\neg \neg \neg \beta \rightarrow \neg \neg \beta) \rightarrow (\neg \neg \beta \rightarrow \beta)$ Transitivité (b2.b1) b4: $\neg \neg \beta \rightarrow (\neg \neg \neg \beta \rightarrow \neg \neg \beta)$ A1 b5: $\neg \neg \beta \rightarrow (\neg \neg \beta \rightarrow \beta)$ Transitivité (b4.b3) b6: β MP(b0,b5)
6. β⊦¬¬β	b0: β (hypothèse) b1: $(\neg\neg\neg\beta \rightarrow \neg\beta) \rightarrow (\beta \rightarrow \neg\neg\beta)$ A3 b2: $\neg\neg\neg\beta \rightarrow \neg\beta$ exp 5 b3: $\beta \rightarrow \neg\neg\beta$ MP (b1. b2) b4: $\neg\neg\beta$ MP (b0. B3)
7. $\alpha \rightarrow \beta$, $\neg \beta \vdash \neg \alpha$	b0: $\alpha \rightarrow \beta$ (hypothèse) b1: $\neg \beta$ (hypothèse) b2: $(\neg \neg \alpha \rightarrow \neg \neg \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha)$ A3 b3: $(\neg \neg \alpha \rightarrow (\beta \rightarrow \neg \neg \beta)) \rightarrow ((\neg \neg \alpha \rightarrow \beta) \rightarrow (\neg \neg \alpha \rightarrow \neg \neg \beta))$ A2 b4: $(\beta \rightarrow \neg \neg \beta) \rightarrow (\neg \neg \alpha \rightarrow (\beta \rightarrow \neg \neg \beta))$ A1 b5: $(\beta \rightarrow \neg \neg \beta)$ application TD sur exp 6 b6: $(\neg \neg \alpha \rightarrow (\beta \rightarrow \neg \neg \beta))$ MP(b5,b4) b7: $((\neg \neg \alpha \rightarrow \beta) \rightarrow (\neg \neg \alpha \rightarrow \neg \neg \beta))$ MP(b6,b3) b8: $(\neg \neg \alpha \rightarrow (\alpha \rightarrow \beta)) \rightarrow ((\neg \neg \alpha \rightarrow \alpha) \rightarrow (\neg \neg \alpha \rightarrow \beta))$ A2 b9: $(\alpha \rightarrow \beta) \rightarrow (\neg \neg \alpha \rightarrow (\alpha \rightarrow \beta))$ A1 b10: $(\neg \neg \alpha \rightarrow (\alpha \rightarrow \beta))$ MP(b0,b9) b11: $(\neg \neg \alpha \rightarrow (\alpha \rightarrow \beta))$ MP(b0,b9) b12: $(\neg \neg \alpha \rightarrow \alpha) \rightarrow (\neg \neg \alpha \rightarrow \beta)$ MP(b10, b8) b12: $(\neg \neg \alpha \rightarrow \beta)$ MP(b12,b11) b14: $(\neg \neg \alpha \rightarrow \neg \beta)$ MP(b13,b7) b15: $(\neg \beta \rightarrow \neg \alpha)$ MP(b14,b2) b16: $\neg \alpha$ MP(b15,b1)
8. $\alpha \rightarrow (\beta \rightarrow \gamma) + \beta \rightarrow (\alpha \rightarrow \gamma)$,	Exp 4, on a montré que : $\alpha \rightarrow (\beta \rightarrow \gamma), \beta \vdash \alpha \rightarrow \gamma$ On applique théorème de Déduction (TD) $\alpha \rightarrow (\beta \rightarrow \gamma) \vdash \beta \rightarrow (\alpha \rightarrow \gamma)$
9. α ⊦ β→α	b0 : α (hypothèse) b1 : $\alpha \rightarrow (\beta \rightarrow \alpha)$ A1 b2 : $\beta \rightarrow \alpha MP$ (b0. b1)

Exercice 4 : Montrer dans la théorie T que :

2. $\alpha \rightarrow \beta, \neg \alpha \rightarrow \gamma \vdash \neg \beta \rightarrow \gamma$	Il suffit de démontrer que : $\alpha \rightarrow \beta, \neg \alpha \rightarrow \gamma, \neg \beta + \gamma$
	b0: $\alpha \rightarrow \beta$ (hypothèse)
	b1: $\neg \alpha \rightarrow \gamma$ (hypothèse)
	b2 : ¬β (hypothèse)
	b3 : $\neg \alpha$ application de exp 7 exo 3 ($\alpha \rightarrow \beta$, $\neg \beta \vdash \neg \alpha$)
	b4: γ MP(b3,b1)
	alors on a démontrer : $\alpha \rightarrow \beta, \neg \alpha \rightarrow \gamma, \neg \beta + \gamma$
	on applique TD: $\alpha \rightarrow \beta, \neg \alpha \rightarrow \gamma + \neg \beta \rightarrow \gamma$
3. $\alpha \rightarrow \beta$, $\neg \alpha \rightarrow \gamma \vdash \neg \gamma \rightarrow \beta$	Il suffit de démontrer que : $\alpha \rightarrow \beta, \neg \alpha \rightarrow \gamma, \neg \gamma + \beta$
	b0: $\alpha \rightarrow \beta$ (hypothèse)
	b1: $\neg \alpha \rightarrow \gamma$ (hypothèse)
	b2: ¬γ (hypothèse)
	b3: $\neg\neg\alpha$ application de exp 7 exo 3 ($\neg\alpha\rightarrow\gamma$, $\neg\gamma$ + $\neg\neg\alpha$)
	b4: $\neg\neg\alpha\rightarrow\alpha$ TD sur exp $\neg\neg\alpha + \alpha$
	$b5: \alpha MP(b3,b4)$
$4. + (\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$	b0: $(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$ A3
$4. + (\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$	b6 : β MP(b5,b0) alors on a démontrer : $\alpha \rightarrow \beta, \neg \alpha \rightarrow \gamma, \neg \gamma + \beta$ on applique TD : $\alpha \rightarrow \beta, \neg \alpha \rightarrow \gamma + \neg \gamma \rightarrow \beta$

Le même exp 7 de exo 3 sauf au lieu de α c'est β et vise ver ça

Exercice 5: Montrer que les formules suivantes sont des théorèmes :

- 1. $(A \rightarrow A)$
- 2. $(\neg B \rightarrow (\neg B \rightarrow (B \rightarrow A)))$
- 3. $(\neg B \rightarrow (B \rightarrow A))$
- $4. \qquad ((\neg A \to A) \to A)$

1. $\beta \rightarrow \alpha$, $\neg \alpha \vdash \neg \beta$

Exercice 6: Soient les deux formules F1, F2 et suivantes :

$$F1 \equiv (A \to (A \to B)) \to (A \to B)$$

$$F2 \equiv ((A \rightarrow B) \rightarrow C) \rightarrow (B \rightarrow C)$$

Montrer, à l'aide du théorème de déduction, que F1 et F2 sont des théorèmes.

Solution:

$$\vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

Il suffit de démontrer $A \to (A \to B) \vdash A \to B$ et appliquer TD une fois pour obtenir $\vdash F1$

 $b0 : A \rightarrow (A \rightarrow B)$ (hypothèse)

$$b1: (A \rightarrow (A \rightarrow B)) \rightarrow ((A \rightarrow A) \rightarrow (A \rightarrow B)) \ A2$$

b2: $((A \rightarrow A) \rightarrow (A \rightarrow B))$ MP(b0, b1)

b3: $A \rightarrow A \exp 2 \exp 3$

b4: $(A \rightarrow B)$ MP(b3, b2)

alors: $A \rightarrow (A \rightarrow B) \vdash A \rightarrow B$

appliquer TD: $\vdash A \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow B)$

Ou Il suffit de démontrer $A \rightarrow (A \rightarrow B)$, $A \vdash B$ et appliquer TD deux fois pour obtenir \vdash F1

 $b0: A \rightarrow (A \rightarrow B)$ (hypothèse)

b1: A (hypothèse)

b2: $(A \rightarrow B) MP(b0, b1)$

b3: B MP(b3, b1)

alors: $A \rightarrow (A \rightarrow B)$, $A \vdash B$

appliquer TD: $A \rightarrow (A \rightarrow B) \vdash (A \rightarrow B)$

appliquer TD une deuxième fois : $\vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$