Language Models are Few-Shot Learners

Tom B. Brown, et al

OpenAI

NeurIPS 2020

Abstract

- Task-specific
 - Different models for different tasks
- Task agnostic (Fine-tuning)
 - One model fine-tuning for different tasks
- Task agnostic (Prompting)
 - No weight update in the few-shot setting
 - We train GPT-3 with 175B parameters

Introduction

- GPT-2 showed trend in performance and model size
 - However, it was zero-shot and far from supervised SOTA
- We suggest GPT-3 with 175B parameters, few-shot settings
 - Larger models make efficient use of in-context information

Approach

- Fine-Tuning (FT)
 - Updates the weights with thousands of supervised labels
- Few-Shot (FS)
 - K examples of context and completion are given
- One-Shot (1S)
 - Similar to few-shot but with K = 1
- Zero-Shot (0S)
 - Natural language description of the task instead of examples

Model and Architectures

Model Name	n_{params}	n_{layers}	d_{model}	$n_{ m heads}$	d_{head}	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

- Same model and architecture as GPT-2 [1]
 - Modified initialization and normalization
 - New feature: alternating dense sparse attention in the layers
- We train 8 different sizes of model
 - From 125M parameters to 175B parameters
 - Measured gradient noise scale to optimize hyperparameters

^[1] Alec Radford et al. "Language models are unsupervised multitask learners". In: *OpenAI blog* 1.8 (2019), p. 9.

Training Dataset

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

- · Common Crawl dataset
 - Constituting nearly a trillion words
 - Low quality, which can degrade the performance
- Improving Dataset Quality
 - Filtering based on similarity to high-quality corpora
 - Fuzzy Deduplication to prevent overfitting
 - Added known high-quality reference corpora

Few-Shot Settings

- Give *K* examples from the task dataset
 - $-0 \le K \le 2048$ but typically $10 \le K \le 100$ fits
- Natural language prompt in addition to the examples
 - e.g., "Translate this sentence:"

Task types

- Multiple-Choice Tasks
 - ARC, OpenBookQA, and RACE
 - It predicts the likelihood of each completion
 - Normalizing $\frac{P(completion|context)}{P(completion|answer_context)}$
 - Answer context is "Answer: "
- Free-Form Completion Tasks
 - LAMBADA, TriviaQA, PiQA
 - Beam search: width of 4, length penalty $\alpha = 0.6$

Experiment - LAMBADA

- LAMBADA: Predicting last word of sentences
 - In recent studies, scaling up was not helpful on LAMBADA
- · GPT-3 Results
 - GPT-3 showed significant improvements

Experiment - Story prediction

Setting	LAMBADA (acc)	LAMBADA (ppl)	StoryCloze (acc)	HellaSwag (acc)
SOTA GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	68.0 ^a 76.2 72.5 86.4	8.63 ^b 3.00 3.35 1.92	91.8 ^c 83.2 84.7 87.7	85.6 ^d 78.9 78.1 79.3

- HellaSwag
 - Slightly below the fine-tuned SOTA (ALUM)
- StoryCloze
 - Slightly below the fine-tuned SOTA (BERT Based)

Experiment - Closed book QA

Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

- NaturalQS: Real queries submitted to Google Search
 - Large gain from zero-shot to few-shot
 - Far from fine-tuned performace
 - Q&A style may be out-of-distribution for GPT-3
- WebQS: Questions sourced from web queries
 - Close to RAG Performance
- TriviaQA: Focusing on fact-based questions
 - Outperformed fine-tuned models

Experiment - Translation

Setting	En→Fr	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA (Supervised)	45.6 ^a	35.0 ^b	41.2 ^c	40.2^{d}	38.5^{e}	39.9^{e}
XLM [LC19] MASS [STQ ⁺ 19] mBART [LGG ⁺ 20]	33.4 <u>37.5</u>	33.3 34.9	26.4 28.3 29.8	34.3 35.2 34.0	33.3 35.2 35.0	31.8 33.1 30.5
GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	25.2 28.3 32.6	21.2 33.7 <u>39.2</u>	24.6 26.2 29.7	27.2 30.4 <u>40.6</u>	14.1 20.6 21.0	19.9 38.6 <u>39.5</u>

- 7% of training data is non-English
 - In GPT-2, less than 0.1% was French data
 - We expand translation to French, German, Romanian
- Language Directionality
 - Better performance when translating into English
 - Poor performance when translating from English

Experiment - Winograd Tasks

- · Significant gains from zero-shot to few-shot settings
- · Still lags behind fine-tuned models and human performance

Experiment - Commonsense Reasoning

Setting	PIQA	ARC (Easy)	ARC (Challenge)	OpenBookQA
Fine-tuned SOTA GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	79.4 80.5 * 80.5 * 82.8 *	92.0 [KKS ⁺ 20] 68.8 71.2 70.1	78.5 [KKS ⁺ 20] 51.4 53.2 51.5	87.2 [KKS ⁺ 20] 57.6 58.8 65.4

- PIQA (PhysicalQA)
 - Understanding of how the physical world works
 - "How would you dry wet clothes faster?"
- ARC (AI2 Reasoning Challenge)
 - Multiple-choice science questions
- OpenBookQA
 - Reasoning about facts taught in elementary science class
 - "Why do humans sweat?"

Experiment - Reading Comprehension

Setting	CoQA	DROP	QuAC	SQuADv2	RACE-h	RACE-m
Fine-tuned SOTA	90.7 ^a	89.1 ^b	74.4 ^c	93.0^{d}	90.0 ^e	93.1 ^e
GPT-3 Zero-Shot	81.5	23.6	41.5	59.5	45.5	58.4
GPT-3 One-Shot	84.0	34.3	43.3	65.4	45.9	57.4
GPT-3 Few-Shot	85.0	36.5	44.3	69.8	46.8	58.1

- · Performs exceptionally well on CoQA
 - Free form text, which is in-context for GPT-3
- · Other datasets are more advanced
 - DROP requires numerical reasoning
 - QuAC has structured dialog and span selection
 - SQuAD includes unanswerable questions
 - RACE is multiple choice question in school

Experiment - SuperGLUE

	SuperGLUI Average	E BoolQ Accuracy	CB y Accurac	CB y F1	COPA Accuracy	RTE Accuracy
Fine-tuned SOTA	89.0	91.0	96.9	93.9	94.8	92.5
Fine-tuned BERT-Large	69.0	77.4	83.6	75.7	70.6	71.7
GPT-3 Few-Shot	71.8	76.4	75.6	52.0	92.0	69.0
	WiC Accuracy	WSC Accuracy	MultiRC Accuracy	MultiRC F1a	ReCoRD Accuracy	ReCoRD F1
Fine-tuned SOTA	76.1	93.8	62.3	88.2	92.5	93.3
Fine-tuned BERT-Large	69.6	64.6	24.1	70.0	71.3	72.0
GPT-3 Few-Shot	49.4	80.1	30.5	75.4	90.2	91.1

- Near-SOTA on COPA, ReCoRD
 - Reasoning cause-and-effect relationship
- Matching or outperforming Fine-tuned BERT
 - BoolQ, RTE, WSC, MultiRC
- Weak on WiC (Word-in-Context)
 - Tests whether a word is used with the same meaning

Experiment - NLI

- NLI (Natural Language Inference)
 - Determine the logical relationship between two sentences
 - Entailment, Contradiction, Neutral
 - GPT-3 performs near random chance (Accuracy 33%)

Experiment - Arithmetic

- Significant jump from 13B to 175B
 - Strong proficiency when the number of digits is small
 - Still struggles with larger digit, multiplication

Experiment - Word Scrambling

Setting	CL	A1	A2	RI	RW
GPT-3 Zero-shot GPT-3 One-shot	21.7	8.62	25.9	45.4	0.48
GPT-3 Few-shot	37.9	15.1	39.7	67.2	0.44

- · Model recovers word distortion
 - Cycle letters in word (CL)
 - Anagrams of all but first and last characters (A1)
 - Anagrams of all but first and last 2 characters (A2)
 - Random insertion in word (RI)
 - Reversed words (RW)

Experiment - SAT Analogies

- Choose which word pair has the same relationship as the original
 - The average score among college applicants was 57%
 - GPT-3 outperforms human college students on average

Experiment - News Article Generation

- Objective
 - Generate short "news-style" articles using GPT-3
 - Assess whether humans can distinguish GPT-3 from real one
- Setup
 - Title and subtitle is given
 - Three example news articles in the same style
 - Model generates 200-word article
- Prompting Dataset
 - 25 real articles sourced from the website newser.com
- Participants
 - Around 80 US-based participants took a quiz
 - Participants rated each article from 1 to 5

Experiment - News Article Generation

	Mean accuracy	95% Confidence Interval (low, hi)	t compared to control (p -value)	"I don't know" assignments
Control (deliberately bad model)	86%	83%-90%	-	3.6 %
GPT-3 Small	76%	72%-80%	3.9(2e-4)	4.9%
GPT-3 Medium	61%	58%-65%	10.3~(7e-21)	6.0%
GPT-3 Large	68%	64%-72%	7.3 (3e-11)	8.7%
GPT-3 XL	62%	59%-65%	$10.7\ (1e-19)$	7.5%
GPT-3 2.7B	62%	58%-65%	10.4~(5e-19)	7.1%
GPT-3 6.7B	60%	56%-63%	11.2 (3e-21)	6.2%
GPT-3 13B	55%	52%-58%	15.3 (1e-32)	7.1%
GPT-3 175B	52%	49%-54%	16.9 (1 <i>e</i> -34)	7.8%

· Results

- GPT-article is difficult for humans to distinguish
- In longer articles (500 words) results was similar
- Models like GROVER and GLTR were better at detection

Experiment - Learning Novel Words

A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is:

We were traveling in Africa and we saw these very cute whatpus.

A "Burringo" is a car with very fast acceleration. An example of a sentence that uses the word Burringo is:

In our garage we have a Burringo that my father drives to work every day.

- Objective
 - Understand a new word after being given a definition
 - Use the new word correctly in a sentence
- Results
 - GPT-3 consistently generates plausible sentences
 - GPT-3 also uses proper conjugations ("screeg" → "screeged")
- Insights
 - GPT-3 generalizes the meaning of a new word well
 - However, it may lack the creativity seen in human writing

Preventing Memorization of Benchmarks

- Key issues
 - LLMs learned internet-scale datasets
 - They may have seen portions of benchmark
 - Detecting test contamination is new area of research
- · Efforts
 - Remove overlaps by detecting 13-gram overlaps

Misuse of Language Models

Language models may help automating the creation of spam, propaganda. As seen in the article generation experiment, it is difficult to distinguish machine-generated content with the content written by human.

- Threat Analysis
 - There were few instances of successful deployment
 - Better existing tools for generating disinformation
 - However, as models improve, threat level may increase
- Future Challenges
 - Researching safeguards
 - Prototyping security measures

Fairness and Bias

GPT-3 reflects biases in its internet-scale training data. Thus model may generate stereotyped or prejudiced content.

- Gender
 - Given prompt "The occupation was a ..."
 - 83% of answer was a male identifier
- Race
 - Given prompt "The race man was very ..."
 - Positive for Asian, Negative for Black
- Religion
 - Given prompt "Religion practitioners are ..."
 - For Islam, "violent", "terrorist" frequently appeared

Energy Usage

- Energy Costs of Pre-Training
 - It required thousands of petaflop/s-days of compute power
- Improving Efficiency
 - Techniques such as model distillation
 - Create smaller versions of large models for specific tasks
 - Once pre-trained, usage for task is energy-efficient

Conclusion

- We presented GPT-3
 - Strong performance on many NLP tasks
 - Nearly matching the performance of SOTA fine-tuned systems
 - Predictable trends of scaling in performance without using fine-tuning