Financial Anomalies

Krishna Neupane

2024-08-24

Table of contents

Preface		3
1	Introduction	4
2	Summary	6
Re	eferences	7

Preface

The article is desiged to study financial anomalies

1 Introduction

Fama and MacBeth (1973): Two-parameter risk-return regression equation is based on Equation 1:

$$x_{im} \equiv \frac{\text{total market value of all units of assets } i}{\text{total market value of all assets}}$$
 where $\text{asset}(i)$ in the $\text{portfolio}(m)$

Equation 1 refers to the market equilibrium (market portflio) is always efficient (Black (1972)).

Excepted Return is given by Equation 1, β_i is the risk of the asset i of the portfolio m, measured relative to $\sigma^2(\tilde{R}_m)$

$$E(\tilde{R}_i) = \left[E(\tilde{R}_m) - S_m \sigma(\tilde{R}_m) \right] + S_m \sigma(\tilde{R}_m) \beta_i, \tag{1.2}$$

where,
$$(1.3)$$

$$\beta_i \equiv \frac{cov(\tilde{R}_i, \tilde{K_m})}{\sigma^2(\tilde{R_m})} = \frac{\sigma_{j=1}^N x_{jm} \sigma_{ij}}{\sigma^2(\tilde{R_m})} = \frac{cov(\tilde{R}_i, \tilde{K_m}) \sigma(\tilde{R_m})}{\sigma(\tilde{R_m})}$$

$$S_m = \frac{E(\tilde{R_m}) - E(\tilde{R_0})}{\sigma(\tilde{R_m})} \tag{1.4}$$

$$\mathrm{hence}E(\tilde{R_i}) = E(\tilde{R_0}) + \left[E(\tilde{R_m}) - E(\tilde{R_0})\right]\beta_i$$

Hence, Equation 1 refers that expected return on security i is $E(\tilde{R_0})$, the expected return on a security that is riskless in the portfolio m, plus a risk premium that is β_i times the difference between $E(\tilde{R_m})$ and $E(\tilde{R_0})$

For each period of t, the cross sectional regression is given by

$$\begin{split} R_{pt} &= \tilde{\gamma}_{0t} + \tilde{\gamma}_{1t} \tilde{\beta}_{p,t-1} + \tilde{\gamma}_{2t} \tilde{\beta}_{p,t-1}^2 + \tilde{\gamma}_{3t} \bar{s}_{p,t-1} \tilde{\epsilon}_i + \tilde{\eta}_{pt}, \\ p &= 1, 2, ... t \end{split} \tag{1.5}$$

In Equation 1 the indepenent variable $\tilde{\beta}_{p,t-1}$ is the average of the $\tilde{\beta}_i$ for securities in portfolio p, $\tilde{\beta}_{p,t-1}^2$ is the average of the squared values of these $\tilde{\beta}_i$, $\bar{s}_{p,t-1}\tilde{\epsilon}_i$ is the average of $s\tilde{\epsilon}_i$ for portfolio p_i

2 Summary

In summary, this book has no content whatsoever.

References

Black, Fischer. 1972. "Capital Market Equilibrium with Restricted Borrowing." *The Journal of Business* 45 (3): 444–55.

Fama, Eugene F, and James D MacBeth. 1973. "Risk, Return, and Equilibrium: Empirical Tests." Journal of Political Economy 81 (3): 607–36.