2012 年全国硕士研究生入学统一考试 计算机科学与技术学科联考

计算机学科专业基础综合试题

(科目代码 408)

(牧雨出品,必属精品)

一、单项选择题:第1~40 小题,每小题 2分,共80分。下列每题给出的四个选项中,只有一个选项最符合试题要求。

求整数 n(n≥0)阶乘的算法如下,其时间复杂度是int fact(int n)
{
 if (n<=1)return 1;
 return n*fact(n-1);

- A. $O(log_2n)$
- B. O(n)
- C. $(nlog_2n)$
- D. $O(n^2)$

2. 已知操作符包括'+'、'-'、'*'、'/'、'('和')'。将中缀表达式 a+b-a*((c d)/e-f)+g 转换为等价的后缀表达式 ab+acd+e/f-*-g+时,用栈来存放暂时还不能确定运算次序的操作符,若栈初始时为空,则转换过程中同时保存在栈中的操作符的最大个数是

- A. 5
- B. 7

C. 8

D. 11

3.若一棵二叉树的前序遍历序列为 a, e, b, d, c, 后序遍历序列为 b, c, d, e, a, 则根结点的孩子结点

- A. 只有 e
- B. 有e、b
- C. 有e、c
- D. 无法确定

4. 若平衡二叉树的高度为6, 且所有非叶结点的平衡因子均为1, 则该平衡二叉树的结点总数为

- A. 10
- B. 20
- C. 32
- D. 33

5. 对有 n 个结点、e 条边且使用邻接表存储的有向图进行广度优先遍历, 其算法时间复杂度是

- A. O(n)
- B. O(e)
- C. O(n+e)
- D. O(n*e)

6. 若用邻接矩阵存储有向图,矩阵中主对角线以下的元素均为零,则关于该图拓扑序列的结论是

A. 存在, 且唯一

B. 存在, 且不唯一

C. 存在,可能不唯一

D. 无法确定是否存在

7. 对如下有向带权图,若采用迪杰斯特拉(Dijkstra)算法求源点 a 到其他各顶点的最短路径,则得到的第一条最短路径的目标顶点是 b,第二条最短路径的目标顶点是 c,后续得到的其余各最短路径的目标顶点依次是

A.d,e,f

B.e,d,f

C. f,d,e

D.f,e,d

- 8. 下列关于最小生成树的说法中,正确的是
- I. 最小生成树树的代价唯一
- II. 权值最小的边一定会出现在所有的最小生成树中
- III. 用普里姆(Prim)算法从不同顶点开始得到的最小生成树一定相同
- IV. 普里姆算法和克鲁斯卡尔(Kruskal)算法得到的最小生成树总不相同

A. 仅 I

B. 仅II

C. 仅 I、III

D. 仅II、IV

9. 设有一棵 3 阶 B 树,如下图所示。删除关键字 78 得到一棵新 B 树,其最右叶结点所含的关键字是

A. 60

B. 60, 62

C. 62, 65

D. 65

10. 在内部排序过程中,对尚未确定最终位置的所有元素进行一遍处理称为一趟排序。下列排序方法中,每一趟排序结束都至少能够确定一个元素最终位置的方法是

- I. 简单选择排序
- Ⅱ. 希尔排序
- III. 快速排序
- IV 堆排序
- V. 二路归并排序

A. 仅 I、III、IV

B. 仅 I、III、V

C. 仅II、III、IV

- D. 仅III、IV、V
- 11. 对一待排序序列分别进行折半插入排序和直接插入排序,两者之间可能的不同之处是

A. 排序的总趟数

B. 元素的移动次数

C. 使用辅助空间的数量

D. 元素之间的比较次数

12. 假定基准程序 A 在某计算机上的运行时间为 100 秒,其中 90 秒为 CPU 时间,其余为 I/O 时间。若 CPU 速度提高 50%, I/O 速度不变,则运行基准程序 A 所耗费的时间是

A. 55 秒

B. 60 秒

C. 65 秒

D. 70 秒

13. 假定编译器规定 int 和 short 类型长度占 32 位和 16 位,执行下列 C 语言语句 unsigned short x=65530;

unsigned int y = x;

得到y的机器数为

A. 0000 7FFA	B. 0000 FFFA	C. FFFF 7	FFA	D. FFFF FFFA
14. float 类型(即 IEEE7	54 单精度浮点数格式	式) 能表示的最大正整	数是	
A. 2 ¹²⁶ -2 ¹⁰³	B. 2 ¹²⁷ -2 ¹⁰⁴	C. 2 ¹²⁷ -2 ¹⁰	03	D.2 ¹²⁸ -2 ¹⁰⁴
并且数据按边界对齐存储 struct{ int a; char b; short c; } record; record.a=273;	。某 C 语言程序段如			型长度分别为 32 位和 16 位,
A. 0x00、0xC00D		B.	0x00、0xC00E	
C. 0x11、0xC00D		D.	0x11、0xC00E	
16. 下列关于闪存(Flash	n Memory)的叙述中	,错误的是		
A. 信息可读可写, 并且语	卖、写速度一样快			
B. 存储元由 MOS 管组成	,是一种半导体存储	省器		
C. 掉电后信息不丢失,是	是一种非易失性存储	器		
D. 采用随机访问方式, F	可替代计算机外部存金	储器		
				若 Cache 的内容初始为空, 1,8 时,命中 Cache 的次数是
A. 1	B. 2	C. 3	D	0.4
18. 某计算机的控制器采构成 5 个互斥类,分别包				编码法,共有 33 个微命令,
A. 5 位 B.	6位	C.15 位	D. 33 位	
19. 某同步总线的时钟频 周期。若该总线支持突发				欠地址或者数据占用一个时钟 据所需要的时间至少是
A. 20ns E	3. 40ns	C. 50ns	D. 80ns	
20. 下列关于 USB 总线特	寺性的描述中,错误	的是		

A. 可实现外设的即插即	用和热拔插		
B. 可通过级联方式连接	多台外设		
C. 是一种通信总线,连	接不同外设		
D. 同时可传输 2 位数据	,数据传输率高		
)总线的数据线上传输的f II. I/O 接口中	信息包括 中的状态字 III.中	断类型号
A. 仅I、II	B. 仅I、III	C. 仅II、III	D. I、II、III
		操作,除保护断点外,还包裹 F III.形成中断服务	
A. 仅I、II	B. 仅I、III	C. 仅II、III	D. I、II、III
23. 下列选项中,不可能	能在用户态发生的事件是		
A. 系统调用	B. 外部中断	C. 进程切换	D. 缺页
24. 中断处理和子程序记	周用都需要压栈以保护现:	场,中断处理一定会保存而	子程序调用不需要保存其内容的是
A. 程序计数器		B. 程序状态字	寄存器
C. 通用数据寄存器		D. 通用地址寄存	字器
25. 下列关于虚拟存储器	器的叙述中,正确的是		
A. 虚拟存储只能基于连	续分配技术	B. 虚拟存储只能基于非连约	卖分配技术
C. 虚拟存储容量只受外	存容量的限制	D. 虚拟存储容量只受内存?	 字量的限制
26. 操作系的 I/O 子系约 是	充通常由四个层次组成, 名	每一层明确定义了与邻近层没	次的接口,其合理的层次组织排列顺序
A. 用户级 I/O 软件、设	备无关软件、设备驱动程	上 序、中断处理程序	
B. 用户级 I/O 软件、设	备无关软件、中断处理程	序、设备驱动程序	
C. 用户级 I/O 软件、设	备驱动程序、设备无关软	件、中断处理程序	
D. 用户级 I/O 软件、中	断处理程序、设备无关软	7件、设备驱动程序	
27. 假设 5 个进程 P0、	P1、P2、P3、P4 共享三氢	类资源 R1、R2、R3,这些资	资源总数分别为 18、6、22。T0 时刻的

资源分配情况如下表所示,此时存在的一个安全序列是

2012 年全国硕士研究生入学统一考试—计算机专业基础综合试题

进程	Ē	已分配资源	Ŕ	资源最大需求			
红牡	R1	R2	R3	R1	R2	R3	
P0	3	2	3	5	5	10	
P1	4	0	3	5	3	6	
P2	4	0	5	4	0	11	
P3	2	0 4		4	2	5	
P4	3	3 1		4	2	4	

A. P0, P2, P4, P1, P3

B. P1, P0, P3, P4, P2

C. P2, P1, P0, P3, P4

D. P3, P4, P2, P1, P0

- 28. 若一个用户进程通过 read 系统调用读取一个磁盘文件中的数据,则下列关于此过程的叙述中,正确的是
- I. 若该文件的数据不在内存,则该进程进入睡眠等待状态
- II. 请求 read 系统调用会导致 CPU 从用户态切换到核心态
- III. read 系统调用的参数应包含文件的名称
- A. 仅I、II
- B. 仅 I、III
- C. 仅II、III
- D. I、II 和 III
- 29. 一个多道批处理系统中仅有 P1 和 P2 两个作业, P2 比 P1 晚 5ms 到达,它的计算和 I/O 操作顺序如下:
- P1: 计算 60ms, I/O 80ms, 计算 20ms
- P2: 计算 120ms, I/O 40ms, 计算 40ms
- 若不考虑调度和切换时间,则完成两个作业需要的时间最少是

A. 240ms

B. 260ms

C. 340ms

- D. 360ms
- 30. 若某单处理器多进程系统中有多个就绪态进程,则下列关于处理机调度的叙述中错误的是
- A. 在进程结束时能进行处理机调度
- B. 创建新进程后能进行处理机调度
- C. 在进程处于临界区时不能进行处理机调度
- D. 在系统调用完成并返回用户态时能进行处理机调度
- 31. 下列关于进程和线程的叙述中,正确的是
- A. 不管系统是否支持线程, 进程都是资源分配的基本单位
- B. 线程是资源分配的基本单位,进程是调度的基本单位
- C. 系统级线程和用户级线程的切换都需要内核的支持
- D. 同一进程中的各个线程拥有各自不同的地址空间
- 32. 下列选项中,不能改善磁盘设备 I/O 性能的是

A. 重排 I/O 请求次序			B. 在一个磁盘上	设置多个分区	
C. 预读和滞后写			D. 优化文件物理	1的分布	
33. 在 TCP/IP 体系结构	中,直接为 ICMP	提供服务协议的是			
A. PPP B. IP	C. UDP	D. TCP			
34. 在物理层接口特性中	1,用于描述完成每	每种功能的事件发	生顺序的是		
A. 机械特性 B	. 功能特性	C.过程特性	D.电气特性		
35. 以太网的 MAC 协议	提供的是				
A. 无连接的不可靠的服	务	B. 无连接的 ^元	可靠的服务		
C. 有连接的可靠的服务		D. 有连接的 ⁷	下可靠的服务		
				为 16 kbps, 单向传播时延为 270r p使信道利用率达到最高,帧序列	
A. 5	B. 4	C.	3	D. 2	
37. 下列关于 IP 路由器 I. 运行路由协议,设备路 II. 监测到拥塞时,合理丢 III. 对收到的 IP 分组头进 IV. 根据收到的 IP 分组的	由表 弃 IP 分组 行差错校验,确保	传输的 IP 分组不			
A. 仅III、IV	B. 仅I、II、II	Π (C. 仅I、II、IV	D. I、II、III、IV	
38. ARP 协议的功能是					
A. 根据 IP 地址查询 MA	C地址	В.	根据 MAC 地址查	旬 IP 地址	
C. 根据域名查询 IP 地址		D.	根据 IP 地址查询均	或名	
39. 某主机的 IP 地址为 址可以是	180.80.77.55,子网	对掩码为 255.255.2 <u>5</u>	52.0。若该主机向其	:所在子网发送广播分组,则目的	力地
A. 180.80.76.0	B.180.80.76.255	5 C	.180.80.77.255	D.180.80.79.255	
40. 若用户 1 与用户 2 之 可以是	间发送和接收电子	子邮件的过程如下	图所示,则图中①、	②、③阶段分别使用的应用层协	水议

A. SMTP, SMTP, SMTP

B. POP3, SMTP, POP3

C. POP3、SMTP、SMTP

D. SMTP、SMTP、POP3

二、综合应用题:第41~47题,共70分。请将答案写在答题纸指定位置上。

41.(10分)设有6个有序表A、B、C、D、E、F,分别含有10、35、40、50、60和200个数据元素,各表中元素按升序排列。要求通过5次两两合并,将6个表最终合并成1个升序表,并在最坏情况下比较的总次数达到最小。请问答下列问题。

- (1)给出完整的合并过程,并求出最坏情况下比较的总次数。
- (2) 根据你的合并过程, 描述 n (n≥2) 个不等长升序表的合并策略, 并说明理由。

42. (13 分)假定采用带头结点的单链表保存单词,当两个单词有相同的后缀时,则可共享相同的后缀存储空间,例如,"loading"和"being"的存储映像如下图所示。

设 str1 和 str2 分别指向两个单词所在单链表的头结点,链表结点结构为 data next ,请设计一个时间上尽可能高效的算法,找出由 str1 和 str2 所指向两个链表共同后缀的起始位置(如图中字符 i 所在结点的位置 p)。要求:

- (1) 给出算法的基本设计思想。
- (2) 根据设计思想,采用 C 或 C++或 JAVA 语言描述算法,关键之处给出注释。
- (3) 说明你所设计算法的时间复杂度。

- 43. (11 分)假设某计算机的 CPU 主频为 80MHz,CPI 为 4,并且平均每条指令访存 1.5 次,主存与 Cache 之间交换的块大小为 16B,Cache 的命中率为 99%,存储器总线宽度为 32 位。请回答下列问题。
- (1) 该计算机的 MIPS 数是多少? 平均每秒 Cache 缺失的次数是多少? 在不考虑 DMA 传送的情况下。主存带宽至少达到多少才能满足 CPU 的访存要求?
- (2) 假定在 Cache 缺失的情况下访问主存时,存在 0.0005%的缺页率,则 CPU 平均每秒产生多少次缺页异常?若页面大小为 4KB,每次缺页都需要访问磁盘,访问磁盘时 DMA 传送采用周期挪用方式,磁盘 I/O 接口的数据缓冲寄存器为 32 位,则磁盘 I/O 接口平均每秒发出的 DMA 请求次数至少是多少?
- (3) CPU 和 DMA 控制器同时要求使用存储器总线时,哪个优先级更高?为什么?
- (4) 为了提高性能,主存采用 4 体低位交叉存储器,工作时每 1/4 周期启动一个存储体,每个存储体传送周期为 50ns,则主存能提供的最大带宽是多少?

44. (12 分) 某 16 位计算机中,带符号整数用补码表示,数据 Cache 和指令 Cache 分离。题 44 表给出了指令系统中部分指令格式,其中 Rs 和 Rd 表示寄存器,mem 表示存储单元地址,(x)表示寄存器 x 或存储单元 x 的内容。

题 44 表指令系统中部分指令格式

名称	指令的汇编格式	指令功能
加法指令	ADD Rs, Rd	(Rs)+(Rd)->Rd
算术/逻辑左移	SHL Rd	2*(Rd)->Rd
算术右移	SHR Rd	(Rd)/2->Rd
取数指令	LOAD Rd, mem	(mem)->Rd
存数指令	STORE Rs, mem	Rs->(mem)

该计算机采用 5 段流水方式执行指令,各流水段分别是取指(IF)、译码/读寄存器(ID)、执行/计算有效地址(EX)、访问存储器(M)和结果写回寄存器(WB),流水线采用"按序发射,按序完成"方式,没有采用转发技术处理数据相关,并且同一寄存器的读和写操作不能在同一个时钟周期内进行。请回答下列问题。

- (1) 若 int 型变量 x 的值为-513, 存放在寄存器 R1 中,则执行"SHL R1"后,R1 中的内容是多少? (用十六进制表示)
- (2) 若在某个时间段中,有连续的4条指令进入流水线,在其执行过程中没有发生任何阻塞,则执行这4条指令所需的时钟周期数为多少?
- (3) 若高级语言程序中某赋值语句为 x=a+b, x、a 和 b 均为 int 型变量,它们的存储单元地址分别表示为[x]、[a] 和[b]。该语句对应的指令序列及其在指令流中的执行过程如题 44 图所示。

I 1	LOAD	R1, [a]
I2	LOAD	R2, [b]
I3	ADD	R1, R2
I 4	STORE	R2, [x]

		时间单元														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
I1	1F	ID	EX	M	WB											
12		IF	ID	EX	M	WB										
I3			IF				ID	EX	M	WB			S 0			
I4							IF				ID	EX	M	W		

题 44 图 指令序列及其执行过程示意图

则这 4 条指令执行过程中 I3 的 ID 段和 I4 的 IF 段被阻塞的原因各是什么?

(4) 若高级语言程序中某赋值语句为 x=x*2+a,x 和 a 均为 unsigned int 类型变量,它们的存储单元地址分别表示为[x]、[a],则执行这条语句至少需要多少个时钟周期?要求模仿题 44 图画出这条语句对应的指令序列及其在流水线中的执行过程示意图。

45.(7分)某请求分页系统的页面置换策略如下:

从 0 时刻开始扫描, 每隔 5 个时间单位扫描一轮驻留集(扫描时间忽略不计)且在本轮没有被访问过的页框将被系统回收,并放入到空闲页框链尾,其中内容在下一次分配之前不清空。当放发生缺页时,如果该页曾被使用过且还在空闲页链表中,则重新放回进程的驻留集中;否则,从空闲页框链表头部取出一个页框。

忽略其它进程的影响和系统开销。初始时进程驻留集为空。目前系统空闲页的页框号依次为 32、15、21、41。进程 P 依次访问的<虚拟页号,访问时刻>为<1,1>、<3,2>、<0,4>、<0,6>、<1,11>、<0,13>、<2,14>。请回答下列问题。

- (1) 当虚拟页为<0,4>时,对应的页框号是什么?
- (2) 当虚拟页为<1,11>时,对应的页框号是什么?说明理由。
- (3) 当虚拟页为<2,14>时,对应的页框号是什么?说明理由。
- (4) 这种方法是否适合于时间局部性好的程序?说明理由。

- 46. (8分)某文件系统空间的最大容量为 4TB(1TB= 2^{40}),以磁盘块为基本分配单位。磁盘块大小为 1KB。文件控制块(FCB)包含一个 512B 的索引表区。请回答下列问题。
- (1)假设索引表区仅采用直接索引结构,索引表区存放文件占用的磁盘块号,索引表项中块号最少占多少字节?可支持的单个文件最大长度是多少字节?
- (2) 假设索引表区采用如下结构: 第 0~7 字节采用<起始块号,块数>格式表示文件创建时预分配的连续存储空间。其中起始块号占 6B,块数占 2B,剩余 504 字节采用直接索引结构,一个索引项占 6B,则可支持的单个文件最大长度是多少字节?为了使单个文件的长度达到最大,请指出起始块号和块数分别所占字节数的合理值并说明理由。

47. (9分) 主机 H 通过快速以太网连接 Internet, IP 地址为 192.168.0.8, 服务器 S 的 IP 地址为 211.68.71.80。H 与 S 使用 TCP 通信时,在 H 上捕获的其中 5个 IP 分组如 题 47-a 表所示。

题 47-a 表

编号		IP 分组的前	40字节内容	(十六进制)	
1	45 00 00 30	01 9b 40 00	80 06 1d e8	c0 a8 00 08	d3 44 47 50
1	0b d9 13 88	84 6b 41 c5	00 00 00 00	70 02 43 80	5d b0 00 00
2	43 00 00 30	00 00 40 00	31 06 6e 83	d3 44 47 50	c0 a8 00 08
2	13 88 0b d9	e0 59 9f ef	84 6b 41 c6	70 12 16 d0	37 e1 00 00
2	45 00 00 28	01 9c 40 00	80 06 1d ef	c0 a8 00 08	d3 44 47 50
3	0b d9 13 88	84 6b 41 c6	e0 59 9f f0	50 f0 43 80	2b 32 00 00
4	45 00 00 38	01 9d 40 00	80 06 1d de	c0 a8 00 08	d3 44 47 50
4	0b d9 13 88	84 6b 41 c6	e0 59 9f f0	50 18 43 80	e6 55 00 00
5	45 00 00 28	68 11 40 00	31 06 06 7a	d3 44 47 50	c0 a8 00 08
3	13 88 0b d9	e0 59 9f f0	84 6b 41 d6	50 10 16 d0	57 d2 00 00

回答下列问题。

- (1) 题 47-a 表中的 IP 分组中,哪几个是由 H 发送的?哪几个完成了 TCP 连接建立过程?哪几个在通过快速以太网传输时进行了填充?
 - (2) 根据题 47-a 表中的 IP 分组,分析 S 已经收到的应用层数据字节数是多少?
 - (3) 若题 47-a 表中的某个 IP 分组在 S 发出时的前 40 字节如题 47-b 表所示,则该 IP 分组到达 H 时经过了多

少个路由器?

题 47-b 表

来自S的分组	45 00 00 28	68 11 40 00	40 06 ec ad	d3 44 47 50	ca 76 01 06
	13 88 a1 08	e0 59 9f f0	84 6b 41 d6	50 10 16 d0	b7 d6 00 00

注: IP 分组头和TCP 段头结构分别如题 47-a 图,题 47-b 图所示。

题 47-a 图 IP 分组头结构

题 47-b 图 TCP 段头结构

计算机专业基础综合试题参考答案

- 一、单项选择题:每小题 2 分,共 80 分。
- 1 5 BAABC 6-10 CCADA 11-15 DDBDD 16-20 ACCCD
- 21-25 DBCBB 26-30 ADABC 31-35 ABBCA 36-40 BCADD
- 二、综合应用题: 41~47 小题, 共 70 分。

41.【解析】

(1) 对于长度分别为 m, n 的两个有序表的合并过程,最坏情况下需要一直比较到两个表尾元素,比较次数为 m+n-1 次。已知需要 5 次两两合并,故可设总比较次数为 X-5, X 就是以 N 个叶子结点表示升序表,以升序表的表长表示结点权重,构造的二叉树的带权路径长度。故只需设计方案使得 X 最小。这样受哈夫曼树和最佳归并树思想的启发,设计哈夫曼树如下:

这样,最坏情况下比较的总次数为:

$$N = (10 + 35) \times 4 + (40 + 50 + 60) \times 3 + 200 - 5 = 825$$

(2) N(N≥2) 个不等长升序表的合并策略:

以 N 个叶子结点表示升序表,以升序表的表长表示结点权重,构造哈夫曼树。合并时,从深度最大的结点所代表的升序表开始合并,依深度次序一直进行到根结点。

理由: N 个有序表合并需要进行 N-1 次两两合并,可设最坏情况下的比较总次数为 X-N+1, X 就是以 N 个叶子结点表示升序表,以升序表的表长表示结点权重,构造的二叉树的带权路径长度。根据哈夫曼树的特点,上述设计的比较次数是最小的。

42.【解析】

- (1) 算法思想: 顺序遍历两个链表到尾结点时,并不能保证两个链表同时到达尾结点。这是因为两个链表的长度不同。假设一个链表比另一个链表长 k 个结点,我们先在长链表上遍历 k 个结点,之后同步遍历两个链表。这样我们就能够保证它们同时到达最后一个结点了。由于两个链表从第一个公共结点到链表的尾结点都是重合的。所以它们肯定同时到达第一个公共结点。于是得到算法思路:
- ① 遍历两个链表求的它们的长度 L1, L2:
- ② 比较 L1, L2, 找出较长的链表, 并求 L=|L1-L2|;
- ③ 先遍历长链表的 L 各结点;

- ④ 同步遍历两个链表,直至找到相同结点或链表结束。
 - (2) 算法的 C 语言代码描述

```
LinkList Search_First_Common(LinkList L1,LinkList L2) {
   //本算法实现线性时间内找到两个单链表的第一个公共结点
   int len1=Length(L1);,len2=Length(L2);
   LinkList longList, shortlist; //分别指向较长和较短的链表
   if(len1>len2){
       longList=L1->next;
       shortlist=L2->next;
       L=len1-len2;//表长之差
   else{
       longList=L2->next;
       shortlist=L1->next;
       L=len2-len1;//表长之差
   While (L--)
       longList=longList->next;
   while(longList!=NULL){
       if(longList==shortList)//同步寻找共同结点
          return longList;
       else{
           longList=longList->next;
           shortlist=shortlist->next;
   }//while
   return NULL;
```

(3) 算法的时间复杂度为 O(len1+len2), 空间复杂度为 O(1)。

43.【解析】

- (1) MIPS=CPU 主频×10⁻⁶/CPI=80M/4=20; 平均每条指令访存 1.5 次, Cache 的命中率为 99%, 故每秒 Cache 缺失的次数=20M×1.5×1%=300000 (次);
- (2) 在不使用 DMA 传送的情况下,所有主存的存取操作都需要经过 CPU,所以主存带宽至少应为 20M/s×1.5×4B=120MB/s。

由于页式虚拟存储方式的页表始终位于内存,则产生缺页异常的只能是指令的访存。每秒产生缺页中断 20M/s×1.5×0.0005%=150 次。因此平均每秒发出的 DMA 请求次数至少是 150×4KB/4B=150K 次。

- (3) 优先响应 DMA 请求。DMA 通常连接高速 I/O 设备,若不及时处理可能丢失数据。
- (4) 当 4 体低位交叉存储器稳定运行时,能提供的最大带宽为 4×4B/50ns=320MB/s。

44. 【解析】

- (1) x 的机器码为[x]_№=1111 1101 1111B,即指令执行前(R1)=FDFFH,右移 1 位后位 1111 1110 1111 1111B,即指令执行后(R1)=FEFFH。
 - (2) 至少需要 4+ (5-1) =8 个时钟周期数。
 - (3) I3的 ID 段被阻塞的原因: 因为 I3与 I1和 I5都存在数据相关,需等到 I1和 I5将结果写回寄存器后,I3才能

读寄存器内容,所以I3的ID段被阻塞。

I4的IF段被阻塞的原因:因为I4的前一条指令I3在ID段被阻塞,所以I4的IF段被阻塞。

(4) 因 2*x 操作有左移和加法两种实现方法, 故 x=x*2+a 对应的指令序列为

I1 LOAD R1, [x]I2 LOAD R2, [a]

I3 SHL R1 //或者 ADD R1, R1

I4 ADD R1, R2

15 STORE R2, [x]

这5条指令在流水线中执行过程如下图所示。

		时间单元															
指令	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
l1	IF	ID	EX	М	WB												
12		IF	ID	EX	М	WB											
13			IF			ID	EX	М	WB								
14						IF				ID	EX	М	WB				
15										IF				ID	EX	М	WB

故执行 x=x*2+a 语句最少需要 17 个时钟周期。

45.【解析】

- (1) 页框号为 21。因为起始驻留集为空,而 0 页对应的页框为空闲链表中的第三个空闲页框(21),其对应的页框号为 21。
- (2) 页框号为32。理由: 因11>10 故发生第三轮扫描,页号为1的页框在第二轮已处于空闲页框链表中,此刻该页又被重新访问,因此应被重新放回驻留集中,其页框号为32。
- (3) 页框号为 41。理由: 因为第 2 页从来没有被访问过,它不在驻留集中,因此从空闲页框链表中取出链表头的页框 41,页框号为 41。
- (4) 合适。理由:如果程序的时间局部性越好,从空闲页框链表中重新取回的机会越大,该策略的优势越明显。

46.【解析】

- (1) 文件系统中所能容纳的磁盘块总数为 4TB/1KB=2³²。要完全表示所有磁盘块,索引项中的块号最少要占 32/8=4B。而索引表区仅采用直接索引结构,故 512B 的索引表区能容纳 512B/4B=128 个索引项。每个索引项对应 一个磁盘块,所以该系统可支持的单个文件最大长度是 128×1KB=128KB。
- (2) 这里的考查的分配方式不同于我们所熟悉的三种经典分配方式,但是题目中给出了详细的解释。所求的单个文件最大长度一共包含两部分:预分配的连续空间和直接索引区。

连续区块数占 2B,共可以表示 2^{16} 个磁盘块,即 2^{26} B。直接索引区共 504B/6B=84 个索引项。所以该系统可支持的单个文件最大长度是 $2^{26}B+84KB$ 。

为了使单个文件的长度达到最大,应使连续区的块数字段表示的空间大小尽可能接近系统最大容量 4TB。分别设起始块号和块数分别占 4B,这样起始块号可以寻址的范围是 2³² 个磁盘块,共 4TB,即整个系统空间。同样的,块数字段可以表示最多 2³² 个磁盘块,共 4TB。

47.【解析】

(1) 由于题 47-a 表中 1、3、4 号分组的原 IP 地址均为 192.168.0.8(c0a8 0008H), 所以 1, 3, 4 号分组是由 H 发送的。

题 47-a 表中 1 号分组封装的 TCP 段的 FLAG 为 02H(即 SYN=1, ACK=0),seq=846b 41c5H, 2 号分组封装的 TCP 段的 FLAG 为 12H(即 SYN=1, ACK=1),seq=e059 9fefH, ack=846b 41c6H, 3 号分组封装的 TCP 段的 FLAG 为 10H(即 ACK=1),seq=846b 41c6H, ack=e059 9ff0H, 所以 1、2、3 号分组完成了 TCP 连接建立过程。

2012年全国硕士研究生入学统一考试—计算机专业基础综合试题

由于快速以太网数据帧有效载荷的最小长度为 46 字节,表中 3、5 号分组的总长度为 40(28H)字节,小于 46字节,其余分组总长度均大于 46字节。所以 3、5号分组通过快速以太网传输时进行了填充。

- (2) 由 3 号分组封装的 TCP 段可知,发送应用层数据初始序号为 seq=846b 41c6H,由 5 号分组封装的 TCP 段可知, ack 为 seq=846b 41d6H,所以 5 号分组已经收到的应用层数据的字节数为 846b 41d6H 846b 41c6H=10H=16。
- (3) 由于 S 发出的 IP 分组的标识=6811H, 所以该分组所对应的是题 47-a 表中的 5 号分组。S 发出的 IP 分组的 TTL=40H=64, 5 号分组的 TTL=31H=49, 64-49=15, 所以,可以推断该 IP 分组到达 H 时经过了 15 个路由器。