CSE 6010 HW1 - Wenyue Wang

- In the program, I first input mass and max-speed as two arrays, then traverse the array to calculate log() and save as two new arrays.
- Then based on equation, calculate terms in matrix M and b, here I use several double instead of a 2D array.
- Then calculate the inverse of M
- After that, I calculate the coefficient a and exponent c thru vector k
- And finally I write an extra test function to verify the correctness of my power law implementation, and put values into Excel for visualization

Verify results

Comparison of Original Speed and Calculated Speed

Here I used Excel to plot a scatter figure of original speed and calculated speed, as well as use terminal show their difference. We can see the general trend is similar and difference is acceptable.

```
difference of 1's velocity is: -14.990815
difference of 2's velocity is: -5.682154
difference of 3's velocity is: -5.283599
difference of 4's velocity is: 10.372396
difference of 5's velocity is: 1.270317
difference of 6's velocity is: 3.446264
difference of 7's velocity is: 2.052700
difference of 8's velocity is: 0.350022
difference of 9's velocity is: -1.855431
difference of 10's velocity is: -0.067789
difference of 11's velocity is: -0.603486
difference of 12's velocity is: -21.206976
difference of 13's velocity is: -18.909145
difference of 14's velocity is: 2.458952
difference of 15's velocity is: 6.782898
difference of 16's velocity is: 10.830012
difference of 17's velocity is: 11.910012
difference of 18's velocity is: 2.949094
difference of 19's velocity is: -8.574597
```

Challenges

- To list out the math formulas and relate speed and mass with x, y, log, M, b.
- To include second function in file, and the main function would call the sub-function. I first want to use array as output, but found to be complicated, so just print out values in sub function.