Raport

Skuteczność Modeli Drzewa Decyzyjnego (DT)

Znalezione przez Grid Search Parametry DT:

o max_depth: 30

min_samples_leaf: 4min_samples_split: 2

• DT Oryginalne:

Accuracy: 75.2%F1 Score: 0.411ROC AUC: 0.622

• DT po RUS:

Accuracy: 64.2%F1 Score: 0.426ROC AUC: 0.625

• DT po Over-Sampling:

Accuracy: 72.8%F1 Score: 0.415ROC AUC: 0.622

• DT po SMOTE:

Accuracy: 72.0%F1 Score: 0.414ROC AUC: 0.621

Skuteczność Modeli Lasu Losowego (RF)

Znalezione przez Grid Search Parametry RF:

max_depth: None
min_samples_leaf: 4
min_samples_split: 100
n_estimators: 300

• RF Oryginalne:

Accuracy: 82.1%F1 Score: 0.480ROC AUC: 0.660

• RF po RUS:

Accuracy: 75.5%F1 Score: 0.539ROC AUC: 0.713

• RF po Over-Sampling:

Accuracy: 80.5%F1 Score: 0.538ROC AUC: 0.699

• RF po SMOTE:

Accuracy: 79.9%F1 Score: 0.531ROC AUC: 0.696

Wnioski:

Las Losowy (RF) vs Drzewo Decyzyjne (DT):

 Modele RF generalnie wykazują lepszą skuteczność niż DT, szczególnie pod względem Accuracy i F1 Score.

Wpływ Balansowania Danych:

- DT: Zastosowanie metod zbalansowania danych przynosi różne efekty.
 Wzrost skuteczności nie jest znaczący, choć Over-Sampling i SMOTE oferują lepsze wyniki niż RUS pod względem Accuracy.
- RF: Metody balansowania danych znacznie poprawiają wyniki dla modeli RF, zwłaszcza RUS i SMOTE, które zwiększają wartości F1 Score i ROC AUC, sugerując lepsze radzenie sobie z niezbalansowanymi danymi.

Podsumowanie:

- Modele RF generalnie przewyższają DT we wszystkich zastosowaniach, z wyjątkową poprawą w przypadku metod balansowania danych.
- W przypadku DT, wybór metody balansowania danych powinien być starannie rozważony, ponieważ różnice w skuteczności są mniej znaczące niż w przypadku RF.