

RAPORT AL REZOLVĂRII PROBLEMEI SERVO FOLOSIND REȚELE NEURONALE ÎN PYTHON(MLP REGRESSOR)

Numele: Mocanu Vlad-Leonard

Grupa: 421A

1. PROBLEMA SERVO

În acest proiect se va rezolva problema sistemului Servo ce descrie un fenomen extrem de neliniar: prezicerea timpului de creștere a unui mecanism servo format dintr-un amplificator servo, un motor, un "șurub de plumb" (lead screw) si "un cărucior de alunecare" (a sliding carriage).

Datele furnizate sunt formate din 167 de exemple si 5 dimensiuni dintre care primele 2 reprezintă variabilele legăturii mecanice dintre motor si "șurubul de plumb" ("motor" si "screw"), urmatoarele 2 reprezintă variabilele amplificatorului ("pgain" si "vgain"), iar a 5-a dimensiune reprezinta timpul de creștere măsurat ("class").

Conform arhivei, acest sistem este unul de regresie, prin urmare se va folosi un perceptron Multi-Strat de regresie pentru rezolvare.

Link problemă: https://archive.ics.uci.edu/ml/datasets/Servo

Lead screw:

A sliding carriage:

1.1 OBSERVAŢIE

Observație: fișierul furnizat este in formatul ".data", pentru ușurință l-am transformat in fișier excel cu extensia ".csv".

2. LIBRĂRII SI MODULE FOLOSITE

Librăria folosită pentru realizarea algoritmului este "scikit-learn". In cadrul acestei librării au fost folosite modulele:

- · neural_network (responsabilă pentru crearea perceptronului Multi-Strat(MLP)),
- train test split (pentru impărțirea datelor in variabile de antrenare(train) si de validare(test) in proporție 75%, 25%),
- metrics (pentru a calcula eroarea pătratica medie (MSE)(funcția loss) si scorul regresării pentru a valida performanța),

De asemenea, a fost folosită si libraria pandas pentru a prelucra fișierul inițial.

3. REZULTATE

Pentru măsurarea performanței am folosit modulul "metrics" din cadrul librării "scikit-learn", mai exact funcția "metrics.r2_score(yValid, y_pred)"(scorul regresării), unde "yValid" reprezintă variabila ce conține etichetele de test, iar "ypred" reprezintă variabila ce conține etichetele prezise.

Variația parametrilor:

- · numărul de straturi 1 sau 2
- numărul de neuroni pe stratul ascuns:

egal cu stratul anterior sau jumătate

Learning rate: 0.1 sau 0.01

Variatia	Nr.straturi	Nr. neuroni		Avg r2.score(10 iteratii valide) (medie aritmetica)
1	. 1	125	0.1	0.757
2	1	125	0.01	0.838
3	2	125, 125	0.1	0.769
4	2	125, 125	0.01	0.919
5	2	125, 62	0.1	0.73
6	2	125, 62	0.01	0.902