

Notation

- Denote random variables (RV) by capitals X and observed instances by their lower case x.
- For discrete RVs we have probability mass functions (or pmfs), p(x), that give the probability that X is equal to some value, i.e.

$$P(X=x)=p(x)$$

For continuous RVs we have probability density functions (or pdfs). Rather than p(x) directly giving us the probabilities, we must integrate p(x) to give us the probability that X falls within some interval:

$$P(a \le X \le b) = (a < X < b) = \int_a^b p(x)dx$$

Notation

- For continuous random variables, we can view probability as area under the curve.
- For an infinitesimal (very small) range dx, we can calculate this probability geometrically using the $base \times height$:

Figure: Image source

Recall that P(X = x) = 0 for all values of x when X is a continuous random variable.

Discrete Random Variables

Discrete Uniform Distribution

A random variable X has a discrete uniform distribution if and only if each possible value of X are equally likely, that is, it has the probability distribution as

$$f(x) = \frac{1}{k}$$
, for $x = x_1, x_2, \dots, x_k$

where $x_i \neq x_i$ when $i \neq j$.

Eg. Rolling a die.

Bernoulli Distribution

- Suppose an experiment has only two possible outcomes: 1 ("success") and 0 ("fail"), with probabilities of p and 1-p respectively.
- We define a random variable X that takes values of 1 and 0 with probability p and 1-p.
- Then, we say X follows a Bernoulli distribution. with parameter p.

Eg. Flipping a coin and checking if it's heads.

Bernoulli Distribution

A random variable X has a $Bernoulli\ distribution$, denoted by $X \sim Bernoulli(p)$, if and only if it has probability distribution function as

$$f(x) = p^{x}(1-p)^{1-x}$$
 for $x = 0, 1$

where p = P(X = 1).

Binomial Distribution

- A so-called Bernoulli trial concerns the outcome of a <u>single</u> experiment having two possible outcomes.
- If we consider n independent repetitions of this trial and define X to count the number of success, X is said to follow a Binomial distribution with parameters (n, p).

Eg. Flipping a coin n times and counting the number of heads.

Binomial Distribution

A random variable X has a binomial distribution, denoted by $X \sim \text{Bin}(n,p)$ if and only if it has the probability distribution function

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

for $x = 0, 1, 2, \dots, n$.

Negative Binomial Distribution

- In connection with the repeated Bernoulli trial, we may be interested in the total number of trials in order to have k successes.
- If X counts the number of <u>trials</u> up to and including the k success it is said to follow a *Negative Binomial* distribution with parameters (k, p).

Eg. Counting the number of times you flip a coin until you see k heads.

Negative Binomial

A random variable X has a negative binomial distribution, denoted by $X \sim NB(k, p)$ if and only if it has the probability distribution function

$$f(x; k, p) = \begin{pmatrix} x - 1 \\ k - 1 \end{pmatrix} p^{k} (1 - p)^{x - k}$$

for
$$x = k, k + 1, k + 2, ...$$

Geometric Distribution

- In connection with the repeated Negative Binomial the geometric distribution counts the number of Bernoulli trials until the <u>first</u> success.
- In other words, the special case of the NB where k=1 is said to follow a *Geometric* distribution with paramet<u>er</u> p.

Eg. Counting the number of times you flip a coin until you see the first head.

Geometric Distribution

A random variable X is said to have a geometric probability distribution, denoted by $X \sim \mathcal{G}(p)$, if and only if it has the probability distribution function

$$f(x) = p(1-p)^{x-1}$$

for
$$x = 0, 1, 2, 3, ...$$

where $0 \le p \le 1$.

Poisson Distribution

- The Poisson distribution is used to model counts.
- Usually, the observation process is considered to be taking place over a <u>fixed</u> interval of time (or space) when events occur randomly and independently with constant rate λ .

Eg. number of fish caught in a hour of ice fishing.

Eg. number of flaws on a piece of fabric.

Poisson Distribution

A random variable X has a Poisson distribution, denoted by $X \sim \text{Poisson}(\lambda)$, if and only if it has the pmf

$$f(x;\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

for
$$x = 0, 1, 2, 3, \dots$$

 $\lambda > 0$

Continuous Random Variables

Continuous Uniform Distribution

- Similar to the idea of discrete uniform distribution, given the range of a continuous random variable X from α to β for $\alpha < \beta$.
- If all the possible values of X are equally likely in the sense of equal probability density, then we have the plot of probability density vs X as shown on the following slide.
- For continuous RV, probabilities correspond to areas under the curve.

Continuous Uniform Distribution

Photo from Wikipedia

Continuous Uniform Distribution

A random variable has a uniform distribution, denoted by, $X \sim \text{unif}(\alpha, \beta)$, if and only if it has the pdf

$$f(x; \alpha, \beta) = \frac{1}{\beta - \alpha},$$

for $\alpha < x < \beta$.

Eg. Assuming a clock represents the real numbers 0–12, spin the minute hand and seeing where points to (an example of an outcome: 2.098712346).

Gamma Distribution

• For a special case of the Gamma distribution (when α is an integer k) is the continuous analogue of the negative binomial distribution.

Eg. time until you catch your 5th fish.

Eg. area of fabric until you see the 2nd flaw.

Gamma Distribution

- If X is the length of time from the beginning of the experiment until the kth event X is said to follow a Gamma distribution with parameters α and β .
- $\alpha=k$ and $\beta=1/\lambda$, where λ is the rate from the Poisson (α need not be an integer, but it has a nice interpretation when it is.)

Gamma Distribution

A random variable X has a gamma distribution , denoted by $X\sim {\sf Gamma}(\alpha,\beta)$, if and only if it has the pdf

$$f(x; \alpha, \beta) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}$$
 for $x > 0$,

where $\alpha > 0$ and $\beta > 0$. The gamma function is defined as:

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy, \quad \text{for } y > 0.$$

Gamma Distribution: Exponential case

The gamma distribution is a *family* of distributions that includes the exponential and chi-square distributions.

- The RV $X \sim Exp(\beta=1/\lambda)$ is the length of time from the beginning of the experiment until the *first* event. (It is the continuous analogue of the geometric distribution.)
- In addition, $X \sim Exp(\beta)$ describes the **waiting time** between events in a Poisson process (i.e. the length of time between two successive events has the same exponential distribution.)

Exponential Distribution

A random variable X has exponential distribution, denoted by $X \sim \mathsf{Exp}(\beta)$, if and only if its pdf is in the form

$$f(x; \beta) = \frac{1}{\beta} e^{-x/\beta}, \quad \text{for } x > 0$$

where $\beta > 0$,

Exponential Distribution

Alternative parameterization: $X \sim \mathsf{Exp}(\lambda)$, if and only if its pdf is in the form

$$f(x; \lambda) = \lambda e^{-\lambda x}, \quad \text{for } x > 0$$

where $\lambda=1/\beta>0$. Straightforwardly, the mean and the variance of the exponential distribution are

$$\mu=\beta=rac{1}{\lambda}, \quad ext{ and } \quad \sigma^2=eta^2=rac{1}{\lambda^2}$$

Gamma Distribution: Chi-squared case

- The chi-square distribution is another special case of gamma distribution with $\alpha=\nu/2$, $\beta=2$.
- The parameter ν is referred to as the number of degrees of freedom (df).

Eg. the sum of the squares of k independent standard normal random variables.

Chi-squared Distribution

A random variable X has a chi-square distribution with ν df, denoted by $X \sim \chi^2_{\nu}$, if and only if it has the pdf as

$$f(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\frac{\nu}{2}-1} e^{-x/2},$$

for x > 0.

Beta Distribution

- A binomial distribution models the number of successes, X, among n trials given a constant probability of success p for each trial.
- If a probability p is not a constant but a random variable that its value could be different, what would be an appropriate distribution to model the distribution of p?
- Answer: the beta distribution is usually a good choice.

Beta Distribution

A random variable X has a beta distribution if and only if it has the pdf

$$f(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

for 0 < x < 1, where $\alpha > 0$, and $\beta > 0$ and the *beta function* given by

$$\mathsf{B}(\alpha,\beta) = \frac{\mathsf{\Gamma}(\alpha)\mathsf{\Gamma}(\beta)}{\mathsf{\Gamma}(\alpha+\beta)}.$$

Normal Distribution

- The normal distribution—also referred to as the Gaussian Distribution—is the most widely used continuous probability distribution in statistics.
- A normal distribution has a bell-shaped probability density function with two parameters: mean μ and the variance σ^2 .
- Its mean, μ , is located right at the centre of its density curve.

Normal Distribution

A random variable X is said to have a *normal distribution*, denoted by $X \sim N(\mu, \sigma^2)$ if and only if it has pdf in the form of

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\},$$

for $-\infty < x < \infty$, where $\sigma > 0$.