

What is claimed is:

- 1 1. A flip flop comprising:
 - 2 a state retention portion to store a bit of digital data, said state retention portion
 - 3 having a first storage node and a second storage node; and
 - 4 a clocking portion to transfer a new bit of digital data to said state retention
 - 5 portion in response to a clock signal, said clocking portion including:
 - 6 a first stack of transistors coupled to said first storage node to draw
 - 7 current from said first storage node when a first digital data value is being
 - 8 transferred to said state retention portion, said first stack of transistors including
 - 9 a first transistor having a gate terminal coupled to receive said clock signal and
 - 10 a second transistor having a gate terminal coupled to receive a delayed, inverted
 - 11 version of said clock signal.
- 1 2. The flip flop of claim 1, wherein:
 - 2 said first and second transistors are N-type insulated gate field effect transistors
 - 3 (IGFETs).
- 1 3. The flip flop of claim 1, wherein said clocking portion further comprises:
 - 2 a second stack of transistors coupled to said second storage node to draw current
 - 3 from said second storage node when a second digital data value is being transferred to
 - 4 said state retention portion, said second digital data value being different from said first
 - 5 digital data value, said second stack of transistors including a third transistor having a
 - 6 gate terminal coupled to receive said clock signal and a fourth transistor having a gate
 - 7 terminal coupled to receive a delayed, inverted version of said clock signal.
- 1 4. The flip flop of claim 3, wherein:
 - 2 said third and fourth transistors are N-type insulated gate field effect transistors
 - 3 (IGFETs).

- 1 5. The flip flop of claim 3, wherein:
 - 2 said gate terminal of said first transistor is connected to said gate terminal of
 - 3 said third transistor and said gate terminal of said second transistor is connected to said
 - 4 gate terminal of said fourth transistor.

 - 1 6. The flip flop of claim 1, wherein said clocking portion comprises:
 - 2 a clock node to receive said clock signal; and
 - 3 an inversion device coupled between said clock node and said gate of said
 - 4 second transistor.

 - 1 7. The flip flop of claim 6, wherein:
 - 2 said inversion device includes a conventional inverter.

 - 1 8. The flip flop of claim 6, wherein:
 - 2 said inversion device includes a NOR gate having first and second input
 - 3 terminals and an output terminal, said first input terminal being connected to said clock
 - 4 node, said output terminal being connected to said gate terminal of said second
 - 5 transistor, and said second input being an enable input of said flip flop.

 - 1 9. The flip flop of claim 1, wherein:
 - 2 said state retention portion includes a single latch.

 - 1 10. The flip flop of claim 9, wherein:
 - 2 said single latch includes first and second inverters in a cross coupled
 - 3 configuration.

 - 1 11. The flip flop of claim 10, wherein:
 - 2 said state retention portion includes a first pull up circuit connected between
 - 3 said first inverter and a power supply node and a second pull up circuit connected

4 between said second inverter and said power supply node, said first pull up circuit
5 having a first pull up transistor and a second pull up transistor connected in parallel to
6 provide two separate pull up paths for said first inverter.

1 12. The flip flop of claim 11, wherein:
2 said first pull up transistor is larger than said second pull up transistor.

1 13. The flip flop of claim 3, further comprising:
2 a next state generation portion, connected to said clocking portion, to receive
3 said new bit of digital data from an external source before it is transferred to said state
4 retention portion by said clocking portion.

1 14. The flip flop of claim 13, wherein:
2 said next state generation portion includes at least one inversion device to invert
3 a digital signal.

1 15. The flip flop of claim 14, wherein:
2 said next state generation portion includes an input node and a first inversion
3 device connected between said input node and an end of said first stack of transistors.

1 16. A flip flop comprising:
2 a state retention portion to store a bit of digital data, said state retention portion
3 including:
4 first and second inverters arranged in a cross-coupled configuration;
5 a first pull up circuit connected between said first inverter and a power
6 supply node; and
7 a second pull up circuit connected between said second inverter and said
8 power supply node;

9 wherein said first pull up circuit includes a first pull up transistor and a
10 second pull up transistor connected in parallel to provide two separate pull up
11 paths for said first inverter.

1 17. The flip flop of claim 16, wherein:
2 said first pull up transistor is larger than said second pull up transistor.

1 18. The flip flop of claim 16, comprising:
2 a next state generation portion to receive, at an input node thereof, a new bit of
3 digital data to be stored in said state retention portion; and
4 a clocking portion to transfer said new bit of digital data from said next state
5 portion to said state retention portion in response to a clock signal.

1 19. The flip flop of claim 18, wherein said clocking portion comprises:
2 a first stack of transistors connected to an input of said first inverter, said first
3 stack of transistors including a first transistor having a gate terminal coupled to receive
4 said clock signal and a second transistor having a gate terminal coupled to receive a
5 delayed, inverted version of said clock signal.

1 20. The flip flop of claim 19, wherein said clocking portion comprises:
2 a second stack of transistors connected to an input of said second inverter, said
3 second stack of transistors including a third transistor having a gate terminal coupled to
4 receive said clock signal and a fourth transistor having a gate terminal coupled to
5 receive a delayed, inverted version of said clock signal.

1 21. The flip flop of claim 18, wherein:
2 said next state generation portion includes a first inversion device coupled
3 between said input node and an end of said first stack of transistors and a second

4 inversion device coupled between said end of said first stack of transistors and an end
5 of said second stack of transistors.

1 22. A method comprising:
2 providing a memory cell having first and second complementary storage nodes;
3 providing a first transistor stack coupled to said first storage node of said
4 memory cell, said first transistor stack having first and second transistors;
5 providing a second transistor stack coupled to said second storage node of said
6 memory cell, said second transistor stack having third and fourth transistors; and
7 clocking a new data bit to said memory cell, wherein clocking includes:
8 turning on said first and third transistors at a first instant in time; and
9 turning off said second and fourth transistors a short period of time after
10 said first instant in time.

1 23. The method of claim 22, wherein:
2 clocking a new data bit to said memory cell includes:
3 applying a clock signal to gate terminals of said first and third
4 transistors; and
5 applying a delayed, inverted version of said clock signal to gate
6 terminals of said second and fourth transistors.

1 24. The method of claim 23, wherein:
2 applying a delayed, inverted version of said clock signal to gate terminals of
3 said second and fourth transistors includes applying said clock signal to an input of an
4 inverter that has an output coupled to said gate terminals of said second and fourth
5 transistors.

1 25. The method of claim 22, wherein:
2 applying a delayed, inverted version of said clock signal to gate terminals of
3 said second and fourth transistors includes applying said clock signal to an input of a
4 NOR gate that has an output coupled to said gate terminals of said second and fourth
5 transistors.

1 26. The method of claim 22, wherein:
2 providing a memory cell includes providing first and second inverters in a cross
3 coupled configuration, wherein said first complementary storage node includes an input
4 to said first inverter and said second complementary storage node includes an input to
5 said second inverter.

1 27. A computing system comprising:
2 a digital processing device having at least one flip flop including:
3 a state retention portion to store a bit of digital data, said state retention
4 portion having a first storage node and a second storage node, and
5 a clocking portion to transfer a new bit of digital data to said state
6 retention portion in response to a clock signal, said clocking portion including
7 a first stack of transistors coupled to said first storage node to draw current from
8 said first storage node when a first digital data value is being transferred to said
9 state retention portion, said first stack of transistors including a first transistor
10 having a gate terminal coupled to receive said clock signal and a second
11 transistor having a gate terminal coupled to receive a delayed, inverted version
12 of said clock signal; and
13 a flash memory coupled to said digital processing device.

1 28. The computing system of claim 27, wherein:
2 said clocking portion further comprises a second stack of transistors coupled to
3 said second storage node to draw current from said second storage node when a second

4 digital data value is being transferred to said state retention portion, said second digital
5 data value being different from said first digital data value, said second stack of
6 transistors including a third transistor having a gate terminal coupled to receive said
7 clock signal and a fourth transistor having a gate terminal coupled to receive a delayed,
8 inverted version of said clock signal.

1 29. The computing system of claim 27, wherein:
2 said clocking portion comprises a clock node to receive said clock signal and an
3 inversion device coupled between said clock node and said gate of said second
4 transistor.

1 30. The computing system of claim 27, wherein:
2 said state retention portion includes a single latch.