# Queueing Model M/M/s Using Birth & Death process

Ishita Gupta, Rohith Krishna, Shravanth J, Karnam Yogesh.

Madras School of Economics

October 21, 2020

## Introduction to the M/M/s queueing model

- Customers are generated over time by an input process. They arrive at the queue in a Poisson process.
- The time between consecutive arrivals is called **interarrival time**.
- The time elapsed between commencement of service to a customer to its completion is called service time.
- The interarrival times and service times are exponentially distributed.
- There are a finite number of servers in the queue.
- The queue discipline is the order in which customers are selected for service, usually assumed to be first-come-first-served.
- The queue has an infinite system capacity and can accommodate infinite customers.
- The population from which arrivals occur are called calling population size, which is assumed to infinite.

# M/M/s queueing model



Figure: M/M/s queueing model.

## Notations and Terminology

- State of system = number of customers in queueing system
- Queue length = number of customers waiting for service to begin
   state of system minus number of customers being served
- N(t) = number of customers in queueing system at time t
- $P_n(t)$  = probability of exactly n customers in the system at time t, given customers at time 0
- s = number of servers (parallel service channels) in the system
- $\lambda_n$  = mean arrival rate (expected number of arrivals per unit time) of new customers when n customers are in the system
- $\mu_n=$  mean service rate for overall system (expected number of customers completing service per unit time) when n customers are in the system
- $\rho=\lambda/s\mu=$  utilisation factor for the service facility or the traffic intensity factor

#### Notations and Terminology

- The system is under **steady-state condition** (meaning, state is independent of the initial state and time elapsed).
- Thus,  $P_n$  = probability of exactly n customers in the system.
- L = expected number of customers in the queueing system.
- $L_q$  = expected queue length (excluding the customers currently being served).
- w = waiting time in system (including service time) for each individual customer
- W = E(w) = average waiting time in system.
- $w_q$  = waiting time in system (excludes service time) for each individual customer
- $W_q = E(w_q) =$  average waiting time in the queue (excluding the service time).

#### Little's formula

• Assume that  $\lambda_n$  is a constant for all n. Under steady state queueing process, it can be proved that:

$$\boxed{L = \lambda W}$$

- If the  $\lambda_n$  are not equal, then it can be replaced by long run average arrival rate  $\bar{\lambda}$ .
- If  $\mu$  is a constant, then the mean service time is a constant  $1/\mu$  for all  $n \ge 1$ . Then,

$$oxed{W=W_q+rac{1}{\mu}}$$

- Balk: customers refusing to enter the system because the queue is too long.
- Renege: customers leaving the system without being served.
- We assume that balking and reneging do not occur in the system.

#### Birth & Death Process

- Birth arrival of a new customer into the queueing system.
- Death departure of a served customer from the system.
- Birth and Death process describes *probabilistically* how N(t) changes as t increases.
- Individual births and deaths occur randomly, but mean occurrence rates depend only upon the current state of the system.
- Assumptions:
  - Given N(t) = n, the current probability distribution of interarrival times (remaining time until next birth) and service completion times (remaining time until next death) are exponentially distributed.
  - Interarrival: M with parameter  $\lambda_n$ .
  - Service: M with parameter  $\mu_n$ .
  - Interarrival times and service completion times are mutually independent.

#### Birth & Death Process

- In queueing systems with n customers,  $\lambda_n$  denotes mean arrival rate and  $\mu_n$  denotes mean service completion rate.
- When  $n \to n+1$  then single birth occurs (arrival).
- When  $n \rightarrow n-1$  then single death occurs (departure).
- If  $\lambda_n$  depends on n arriving customers likely to balk.
- If  $\mu_n$  depends on n waiting customers likely to renege.



Figure: Rate diagram for the Birth & Death process

## Rate In = Rate Out Principle

Let the system be in state n (n = 0, 1, 2, ...). We count the number of times that the process (queue) enters and the number of times it leaves the state:

 $E_n(t)$  = number of times that process enters state n by time t  $L_n(t)$  = number of times that process leaves state n by time t

The system can go in state n only from state n-1 (arriving of a customer) or from state n+1 (departure of a customer). Hence, the two types of events (entering and leaving) alternate. These must always either be equal or differ by just 1:

$$|E_n(t) - L_n(t)| \le 1 \xrightarrow[t \to \infty]{\text{divide by } t} \left| \frac{E_n(t)}{t} - \frac{L_n(t)}{t} \right| \le \frac{1}{t}$$

$$\lim_{t \to \infty} \left| \frac{E_n(t)}{t} - \frac{L_n(t)}{t} \right| \le 0$$

## Rate In = Rate Out Principle

Dividing by t and let  $t \to \infty$  gives us the mean rate of events per unit time.

$$\lim_{t\to\infty}\frac{E_n(t)}{t}=\text{mean rate at which process enters state }n$$

$$\lim_{t\to\infty}\frac{L_n(t)}{t}=\text{mean rate at which process leaves state }n$$

Thus,

which is the Rate In = Rate Out Principle. This equation is called the **balance equation** for state n.

# **Balance Equations**

| State | $Rate\;In=Rate\;Out$                                                    |  |
|-------|-------------------------------------------------------------------------|--|
| 0     | $\mu_1 P_1 = \lambda_0 P_0$                                             |  |
| 1     | $\lambda_0 P_0 + \mu_2 P_2 = (\lambda_1 + \mu_1) P_1$                   |  |
| 2     | $\lambda_1 P_1 + \mu_3 P_3 = (\lambda_2 + \mu_2) P_2$                   |  |
| 3     | $\lambda_2 P_2 + \mu_4 P_4 = (\lambda_3 + \mu_3) P_3$                   |  |
| :     | :                                                                       |  |
| n - 1 | $\lambda_{n-2}P_{n-2} + \mu_n P_n = (\lambda_{n-1} + \mu_{n-1})P_{n-1}$ |  |
| n     | $\lambda_{n-1}P_{n-1} + \mu_{n+1}P_{n+1} = (\lambda_n + \mu_n)P_n$      |  |
| :     | :                                                                       |  |

#### Recursion Relations

State 0:

$$P_1 = \frac{\lambda_0}{\mu_1} P_0$$

State 1:

$$P_{2} = \frac{\lambda_{1}}{\mu_{2}} P_{1} + \frac{1}{\mu_{2}} (\mu_{1} P_{1} - \lambda_{0} P_{0})$$

$$P_{2} = \frac{\lambda_{1}}{\mu_{2}} P_{1} = \frac{\lambda_{1} \lambda_{0}}{\mu_{2} \mu_{1}} P_{0}$$

State 2:

$$P_{3} = \frac{\lambda_{2}}{\mu_{3}} P_{2} + \frac{1}{\mu_{3}} (\mu_{2} P_{2} - \lambda_{1} P_{1})$$

$$P_{3} = \frac{\lambda_{2}}{\mu_{3}} P_{2} = \frac{\lambda_{2} \lambda_{1} \lambda_{0}}{\mu_{3} \mu_{2} \mu_{1}} P_{0}$$

#### Recursion Relations

State n-1:

$$P_{n} = \frac{\lambda_{n-1}}{\mu_{n}} P_{n-1} + \frac{1}{\mu_{n}} (\mu_{n-1} P_{n-1} - \lambda_{n-2} P_{n-2})$$

$$P_{n} = \frac{\lambda_{n-1}}{\mu_{n}} P_{n-1} = \frac{\lambda_{n-1} \lambda_{n-2} \dots \lambda_{0}}{\mu_{n} \mu_{n-1} \dots \mu_{1}} P_{0}$$

State n:

$$P_{n+1} = \frac{\lambda_n}{\mu_{n+1}} P_n + \frac{1}{\mu_{n+1}} (\mu_n P_n - \lambda_{n-1} P_{n-1})$$

$$P_{n+1} = \frac{\lambda_n}{\mu_{n+1}} P_n = \frac{\lambda_n \lambda_{n-1} \dots \lambda_0}{\mu_{n+1} \mu_n \dots \mu_1} P_0$$

#### Steady-state probabilities

Let 
$$C_n=rac{\lambda_{n-1}\lambda_{n-2}\dots\lambda_0}{\mu_n\mu_{n-1}\dots\mu_1}$$
 for  $n=1,2,\dots$  and

Define  $C_n = 1$  for n = 0.

The steady-state probabilities are

$$P_n = C_n P_0 \quad \text{for } n = 1, 2, \dots$$

We require that

$$\sum_{n=0}^{\infty} P_n = 1 \implies \left(\sum_{n=0}^{\infty} C_n\right) P_0 = 1$$

$$P_0 = \left(\sum_{n=0}^{\infty} C_n\right)^{-1}$$

#### Cost Equations

The probability that there are n customers in the queueing system  $P_n$  is computed using the recursion relation for the birth and death process. We obtain our cost equations using:

$$L = \sum_{n=0}^{\infty} n P_n$$
  $L_q = \sum_{n=s}^{\infty} (n-s) P_n$   $W = \frac{L}{\bar{\lambda}}$   $W_q = \frac{L_q}{\bar{\lambda}}$ 

where,  $\bar{\lambda}$  is the *long run average arrival rate*. The mean arrival rate of the system in state n is  $\lambda_n$  is associated with a probability  $P_n$ . Thus the long run average arrival rate is the weighted average over all n.

$$\bar{\lambda} = \sum_{n=0}^{\infty} \lambda_n P_n$$

# Assumptions of M/M/s model

- M/M/s queueing model is a special case of the birth & death process.
- Interarrival and service times are independent and identically distributed according to an exponential distribution (*M*).
- Arrival of customers is a Poisson process.
- The queueing system's mean arrival rate and mean service rate per busy server are constant ( $\lambda$  and  $\mu$  respectively) regardless of the state of the system.
- System has finite multiple servers s > 1 with service rates:

$$\mu_n = n\mu$$
, when  $n \le s$   
 $\mu_n = s\mu$ , when  $n \ge s$ ,

• When  $s\mu$  exceeds the mean arrival rate  $\lambda$ , queueing system eventually reaches steady-state,

$$ho = rac{\lambda}{s\mu} < 1$$
  $ho$  — utilization factor

# M/M/s as a Birth & Death process



Figure: M/M/s as a Birth & Death process

# Results for multiple-server case (s > 1)

As the  $\lambda$ 's are equal, we find the value of  $C_n$  reduces to:  $C_0 = 1$  for n = 0 case

$$C_n = \begin{cases} \frac{\lambda}{\mu} \frac{\lambda}{2\mu} \frac{\lambda}{3\mu} \dots \frac{\lambda}{n\mu}, & \text{for } n = 1, 2, \dots, s \\ \frac{\lambda}{\mu} \frac{\lambda}{2\mu} \frac{\lambda}{3\mu} \dots \frac{\lambda}{s\mu} \frac{\lambda}{s\mu} \frac{\lambda}{s\mu} \dots \frac{\lambda}{s\mu}, & \text{for } n = s, s + 1, \dots \end{cases}$$

$$C_n = \begin{cases} \frac{(\lambda/\mu)^n}{n!}, & \text{for } n = 1, 2, \dots, s \\ \frac{(\lambda/\mu)^s}{s!} \left(\frac{\lambda}{s\mu}\right)^{n-s} = \frac{(\lambda/\mu)^n}{s!s^{n-s}}, & \text{for } n = s, s+1, \dots \end{cases}$$

## Results for the multiple server case

We substitute the values for  $C_n$  in the expression  $P_0 = 1/(\sum_{n=0}^{\infty} C_n)$ 

$$P_0 = 1 / \left[ \sum_{n=0}^{s-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^s}{s!} \sum_{n=s}^{\infty} \left( \frac{\lambda}{s\mu} \right)^{n-s} \right]$$

The summation in the last term is a geometric series,

$$P_0 = 1 / \left[ \sum_{n=0}^{s-1} \frac{(\lambda/\mu)^n}{n!} + \frac{(\lambda/\mu)^s}{s!} \frac{1}{1 - \lambda/(s\mu)} \right]$$

These  $C_n$  factors also give,

$$P_n = \begin{cases} \frac{(\lambda/\mu)^n}{n!} P_0, & \text{if } 0 \le n \le s \\ \frac{(\lambda/\mu)^n}{s! s^{n-s}} P_0 & \text{if } n \ge s \end{cases}$$

# Average number of customers in the queue, $L_q$

$$L_{q} = \sum_{n=s}^{\infty} (n-s)P_{n} = \sum_{j=0}^{\infty} jP_{s+j}, \quad j = n-s \text{ is the dummy index}$$

$$L_{q} = \sum_{j=0}^{\infty} j \frac{(\lambda/\mu)^{s}}{s!} \rho^{j} P_{0} = P_{0} \frac{(\lambda/\mu)^{s}}{s!} \rho \sum_{j=0}^{\infty} \frac{d}{d\rho} (\rho^{j})$$

$$L_{q} = P_{0} \frac{(\lambda/\mu)^{s}}{s!} \rho \frac{d}{d\rho} \left( \sum_{j=0}^{\infty} \rho^{j} \right) = P_{0} \frac{(\lambda/\mu)^{s}}{s!} \rho \frac{d}{d\rho} \left( \frac{1}{1-\rho} \right)$$

$$L_{q} = \frac{P_{0} (\lambda/\mu)^{s} \rho}{s! (1-\rho)^{2}}$$

# Results for $W_q$ , W & L

Average waiting time in the queue  $W_q$ ,

$$W_q = \frac{L_q}{\lambda}$$

Average time spent in the system W,

W = Avg. time in the queue + Avg. service time

$$W = W_q + rac{1}{\mu}$$

Average number of customers in the system L,

$$L = \lambda \left( W_q + \frac{1}{\mu} \right) = L_q + \frac{\lambda}{\mu}$$

## Problem: County Hospital emergency room

- The County Hospital has an emergency room with one doctor always on duty. Due to the increase in emergency patient arrivals, the hospital is considering hiring a second doctor. The hospital's management models this problem as an M/M/s queueing model and gathers relevant information.
- They find that patients arrive on an average of 2 every hour. A doctor requires 20 minutes to treat a patient. Thus  $\lambda=2$  patients per hour and  $\mu=3$  patients per hour.
- If 1 hour is the unit of time,  $1/\lambda=1/2$  hours per patient and  $1/\mu=1/3$  patients per hour.
- The alternatives considered are whether to hire an extra doctor (s = 2) or not (s = 1).
- In both cases the utilization factor ho < 1 so that system approaches steady-state condition.

#### **Problem Solution**

|                     | s = 1                             | s = 2           |  |
|---------------------|-----------------------------------|-----------------|--|
| ρ                   | 2/3                               | 1/3             |  |
| $P_0$               | 1/3                               | 1/2             |  |
| $P_1$               | 2/9                               | 1/3             |  |
| $P_n$ for $n \ge 2$ | $\frac{1}{3} \cdot \frac{2}{3}^n$ | $\frac{1}{3}^n$ |  |
| $L_q$               | 4/3                               | 1/12            |  |
| L                   | 2                                 | 3/4             |  |
| $W_q$               | 2/3 hour                          | 1/24 hour       |  |
| W                   | 1 hour                            | 3/8 hour        |  |

Efficiency of the hospital increases with an additional doctor.

#### References

- Hillier, Lieberman. Introduction to Operations Research. 9th Edition.
- Sheldon Ross. Introduction to Probability Models. 10th Edition.

Thank you!