'cs229'—Notes

Malcolm

Started 1st October 2024

Chapter 1

Supervised learning

Given a dataset of n training examples $\{(x^{(i)}, y^{(i)}); i = 1\}, \ldots, n\}$ —a training set—where \boldsymbol{x} represents the features and \boldsymbol{y} the "output" or target variable we are trying to predict. If not already obvious, we denote the vector space of \boldsymbol{x} as \mathcal{X} and that of the outputs \boldsymbol{y} as \mathcal{Y} .

Our goal is, given a training set, to learn a function $h: \mathcal{X} \mapsto \mathcal{Y}$ so that h(x) is a "good" predictor for the corresponding y. This function h is called a *hypothesis*.

When trying to predict a continuous target variable, we call this a regression problem; whereas when y can take on only a small number of discrete values we call that a classification problem.

1.0.1 Linear Regression

Say we decide to approximate y as a linear function of x:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

Where θ represents the parameters/weights (parametrising the space of linear functions mapping from \mathcal{X} to \mathcal{Y}). We can simplify our notation as such: (by convention letting $x_0 = 1$, aptly named the intercept term)

$$h(x) = \sum_{i=0}^{d} \theta_i x_i = \boldsymbol{\theta}^T \boldsymbol{x}$$

In order to formalise a measure of proximity between the predicted value h(x) and the target y, we define a cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

This particular cost function implies an ordinary least squares regression model.

1.0.2 LMS algorithm

Our cost function $J(\theta)$ gives us a measure of prediction accuracy. We want to choose θ so as to minimise $J(\theta)$. Starting with an initial set of θ , we need a search algorithm that repeatedly changes θ in an attempt to minimise $J(\theta)$. Here we consider the *gradient descent* algorithm, which, given some initial θ , repeatedly performs the update:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Where the update is simultaneously performed for all values of $j=0,\ldots,d$. α is called the *learning rate* (how much we move in the direction the gradient points in).

Intuition

Consider attempting to minimise the least mean squares (LMS) cost function for a single training example:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} \left(\sum_{i=0}^d \theta_i x_i - y \right)$$

$$= (h_{\theta}(x) - y) x_j$$

This gives us the update rule:

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

(we use the notation a := b to denote (in a script) overwriting a with b) Notice the property of the LMS update rule that the magnitude of the update is proportional to the *error* term $(y^{(i)} - h_{\theta}(x^{(i)}))$ (this means that predictions further off the mark result in a greater correction to θ). (next page)

Batch Gradient Descent