Lecture 8: data preprocessing

Lecture 8: data preprocessing Introduction to Machine Learning

Sophie Robert

L3 MIASHS — Semestre 2

2022-2023

Removing outliers Motivation Tukey's fence

- 1 Introduction
- 2 Dealing with missing values
 - Classification of missing values
 - Imputing missing values
- 3 Feature scaling
 - Motivation
 - Min-max scaling
 - Standardization
 - Use-cases
- 4 Removing outliers
 - Motivation
 - Tukey's fence

Lecture 8: data preprocessing

Introduction

Dealing with missing values

Classification of missing values Imputing missing values

Feature scaling

Min-max scaling Standardization Use-cases

Removing outliers

Motivation Tukev's fence Some times, for optimum performance, the dataset needs to be *pre-processed* further than simply with visual aid and statistical estimators:

Lecture 8: data preprocessing

Introduction

Dealing with missing values

Classification of missing values Imputing missing values

scaling

Motivation

Min-max sc

Min-max scaling Standardization Use-cases

Removing outliers

Motivation

Some times, for optimum performance, the dataset needs to be *pre-processed* further than simply with visual aid and statistical estimators:

Dealing with missing data

Lecture 8: data preprocessing

Introduction

Dealing with missing values Classification of missing values Imputing missing

Feature scaling

Motivation Min-max scaling Standardization Use-cases

Removing outliers

Motivation

Some times, for optimum performance, the dataset needs to be *pre-processed* further than simply with visual aid and statistical estimators:

- Dealing with missing data
- Feature scaling

Lecture 8: data preprocessing

Introduction

Dealing with missing values Classification of missing values

Imputing missin values
Feature

scaling

Motivation

Min-max scal

Use-cases

Removing

Removing outliers

Motivation
Tukey's fence

Some times, for optimum performance, the dataset needs to be *pre-processed* further than simply with visual aid and statistical estimators:

- Dealing with missing data
- Feature scaling
- Outlier removal

In practice, most of *Data science* consists in cleaning up datasets.

Lecture 8: data preprocessing

iie Robert

Dealing with missing values

Classification of missing values Imputing missing values

Feature scaling

Min-max scaling Standardization Use-cases

Removing outliers

Motivation

Tukey's fence

During lab, we encountered the problem of missing values in a dataset.

Height	Weight
52	11
12	10
52	?

Question

Do you remember what were the suggested solutions?

In this lecture, we are going to go a bit further.

Classification of missing values

Lecture 8: data preprocessing

Sophie Rober

Introduction

Dealing with missing values Classification of missing values Imputing missing

Feature scaling

Motivation Min-max scaling Standardization Use-cases

Removing outliers

Motivation

Missing values can be classified into three categories (*Rubin*, 1976):

■ MCAR: Missing Completely at Random

■ MAR: Missing At random

■ MNAR: Missing Not At Random

Data Missing Completely at Random

Lecture 8: data preprocessing

Sophie Robe

Introductio

Dealing with

Classification of missing values Imputing missing

Imputing values

scalin

Motivation
Min-max scaling
Standardization

Removing outliers

Iviotivation Tukev's feni

Missing Completly at Random

Data is said to be **Missing Completely at Random** (MCAR) if the probability of being missing is the same for each observation.

Data Missing Completely at Random

Lecture 8: data preprocessing

Sophie Robe

Introductio

Dealing with missing values Classification of missing values

Feature

Motivation Min-max scaling Standardization Use-cases

Removing outliers Motivation

Missing Completly at Random

Data is said to be **Missing Completely at Random** (MCAR) if the probability of being missing is the same for each observation.

Example: The measuring tool misfunctioned

Data Missing at Random

Lecture 8: data preprocessing

Soprile Rober

Dealing with missing values Classification of

missing values
Imputing missing values

Motivation

Standardization Use-cases

Removing outliers

Motivation Tukev's fence

Missing at Random

Data is said to be **Missing at Random** (MAR) if the missing probability depends on some **observed** variables.

Data Missing at Random

Lecture 8: data preprocessing

Sophie Robei

Dealing with missing values Classification of missing values Imputing missing values

Feature scaling

Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers

Motivation
Tukev's fence

Missing at Random

Data is said to be **Missing at Random** (MAR) if the missing probability depends on some **observed** variables.

Example:

- A participant in a poll is most likely to not question 2 if they did not answer question 1.
- Some participants do not have measures because of socio-ecoomic variables.

Data Missing Not at Random

Lecture 8: data preprocessing

Sophie Robe

Introductio

Dealing with missing values

Classification of missing values Imputing missing values

Feature scaling

Motivation
Min-max scaling
Standardization

Removing outliers

Motivation Tukev's fenc

Missing at Random

Data is said to be **Missing Not at Random** (MNAR) if the missing probability depends on some **unobserved** variables.

Data Missing Not at Random

Lecture 8: data preprocessing

Sophie Robei

Introduction

Dealing with missing values

Classification of missing values

Feature scaling

Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers Motivation

Missing at Random

Data is said to be **Missing Not at Random** (MNAR) if the missing probability depends on some **unobserved** variables.

Example: A participant in a poll did not answer 1 because of their gender (which we do not know).

Lecture 8: data preprocessing

Sophie Rober

Dealing with missing values

Classification of missing values Imputing missing values

Feature scaling

Motivation Min-max scaling Standardization Use-cases

Removing outliers

Motivation

A simple solution can be to drop the records with the missing values (or the feature if too many missing values) but:

- May not have enough data to afford dropping it
- Missing values can bring information too

Lecture 8: data preprocessing

Imputing missing

- MCAR: when dropping random values:
 - No bias
 - Reduce the quality of the model if dropping too much data

Lecture 8: data preprocessing

Imputing missing

- MCAR: when dropping random values:
 - No bias
 - Reduce the quality of the model if dropping too much data
- MAR:
 - Removing missing values introduces bias
 - Missing values should be imputed

Lecture 8: data preprocessing

Dealing with missing values

Classification of missing values Imputing missing values

Caling
Motivation
Min-max scaling
Standardization

Removing outliers Motivation Tukey's fence

- MCAR: when dropping random values:
 - No bias
 - Reduce the quality of the model if dropping too much data
- MAR:
 - Removing missing values introduces bias
 - Missing values should be imputed
- MNAR:
 - Removing missing values introduces bias
 - Impute missing values is more difficult since we have no information about the generative process

Question

How can be handle missing data?

Imputing missing values

Lecture 8: data preprocessing

Dealing with missing values Classification of missing values

Feature scaling

Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers Motivation

Several methods are possible:

- With a unique value (mean, median, etc.)
- By the centroid* of the group (see in later lectures)
- Using k nearest neighbors

Using a unique value

Lecture 8: data preprocessing

ohie Robert

Dealing with missing value Classification of missing values Imputing missing

=eature scaling

Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers Motivation

Unique value imputation

Unique value imputation consists in giving a unique value to the missing values.

For quantitative variables: mean (not robust), median, mode

. . .

For qualitative variables: separate category, most frequent class

. . .

Using a unique value

Lecture 8: data preprocessing

...

Dealing with missing value Classification of

MISSING VAILE: Classification of missing values Imputing missing values

caling Motivation Min-max scaling Standardization

Removing outliers Motivation

Unique value imputation

Unique value imputation consists in giving a unique value to the missing values.

For quantitative variables: mean (not robust), median, mode

. . .

For qualitative variables: separate category, most frequent class

. . .

Advantages:

- Easy to understand
- Easy to compute

Using a unique value

Lecture 8: data preprocessing

Sonhie Robert

Dealing with missing value Classification of missing values Imputing missing

Acaling

Motivation

Min-max scaling

Standardization

Removing outliers Motivation Tukey's fence

Unique value imputation

Unique value imputation consists in giving a unique value to the missing values.

For quantitative variables: mean (not robust), median, mode

. . .

For qualitative variables: separate category, most frequent class

. . .

Advantages:

- Easy to understand
- Easy to compute

Limits:

- If many missing value, feature becomes unusable
- Not very suitable for MAR

Using k-nearest neighbors

Lecture 8: data preprocessing

Copine Rober

. . . .

Dealing with missing values Classification of missing values Imputing missing

Feature scaling

Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers

Motivation Fukey's fence

Imputing missing values using KNN

KNN imputation consists in imputing the missing feature is imputed using values from the k nearest neighbors that have a value for the feature.

Using k-nearest neighbors

Lecture 8: data preprocessing

Sopnie Rober

Dealing with missing values Classification of missing values

caling

Motivation

Min-max scaling

Removing outliers Motivation

Imputing missing values using KNN

KNN imputation consists in imputing the missing feature is imputed using values from the k nearest neighbors that have a value for the feature.

Advantages:

■ Takes into account dependence between variables

Using k-nearest neighbors

Lecture 8: data preprocessing

Sopnie Rober

Dealing with missing values Classification of missing values Imputing missing

caling

Motivation

Min-max scaling Standardization Use-cases

Removing outliers

Motivation
Tukey's fence

Imputing missing values using KNN

KNN imputation consists in imputing the missing feature is imputed using values from the k nearest neighbors that have a value for the feature.

Advantages:

■ Takes into account dependence between variables

Limits:

 \blacksquare Adds a new hyperparameter k, hard to evaluate

K-nearest neighbor: example

Lecture 8: data preprocessing

phie Robert

Dealing with missing values Classification of missing values

Feature scaling

Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers

Motivation

Motivation Tukey's fence

Question

Impute missing values using:

- Using unique values: mean, median . . .
- For k = 3 and k = 1, use the K-nearest neighbor algorithm to impute the missing value.

	Height	Weight
ID1	10	1
ID2	12	2.5
ID3	14	3
ID4	9	2
ID5	N/A	1

Lecture 8: data preprocessing

Feature scaling

Feature scaling* is a method used to normalize the range of features.

Motivation

Lecture 8: data preprocessing

Lancard Control

Dealing with missing value Classification of missing values

Classification of missing values Imputing missing values

Motivation
Min-max scaling
Standardization

Removing outliers Motivation

Feature scaling

Feature scaling* is a method used to normalize the range of features.

Feature scaling can be useful in the case of:

Algorithms that make assumptions regarding feature distribution

Lecture 8: data preprocessing

Lanca de la Cara

Dealing with missing values Classification of missing values Imputing missing values

Feature
scaling
Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers

Motivation

Feature scaling

Feature scaling* is a method used to normalize the range of features.

Feature scaling can be useful in the case of:

- Algorithms that make assumptions regarding feature distribution
- Algorithms that take into account the values of the features (distance based)

Lecture 8: data preprocessing

Dealing with missing value Classification of missing values Imputing missing values

Feature
scaling
Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers Motivation Tukey's fence

Feature scaling

Feature scaling* is a method used to normalize the range of features.

Feature scaling can be useful in the case of:

- Algorithms that make assumptions regarding feature distribution
- Algorithms that take into account the values of the features (distance based)
- Algorithms that use gradient descent

Min-max scaling

Lecture 8: data preprocessing

Dealing with missing value

Classification of missing values Imputing missing values

Feature scaling

Min-max scaling Standardization

outliers

Motivation Tukey's fence

Min-max scaling

Min-max scaling* (rescaling) consists in rescaling the range of features to scale in the range [0, 1]:

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Min-max scaling

Lecture 8: data preprocessing

Dealing with missing value

Classification of missing values Imputing missing values

Feature scaling Motivation

Min-max scaling Standardization Use-cases

Removing outliers

Motivation

Min-max scaling

Min-max scaling* (rescaling) consists in rescaling the range of features to scale in the range [0, 1]:

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Question

Apply rescaling to the vector [1, 3, 4, 2].

Standardization

Lecture 8: data preprocessing

Dealing with missing value

Classification of missing values Imputing missing values

Feature scaling

Min-max scaling
Standardization

Removing outliers

Motivation

Standardization

Standardization consists in transforming the feature to have zero-mean and unit-variance:

$$x' = \frac{x - \bar{x}}{\sigma}$$

with \bar{x} the average and σ the standard error.

Standardization

Lecture 8: data preprocessing

.

Dealing with missing values Classification of

Classification of missing values Imputing missing values

Feature scaling

Motivation

Min-max scaling

Standardization

Use-cases

Removing outliers

Motivation

Standardization

Standardization consists in transforming the feature to have zero-mean and unit-variance:

$$x' = \frac{x - \bar{x}}{\sigma}$$

with \bar{x} the average and σ the standard error.

Question

Standardize the vector [1, 3, 4, 2].

Example on Wine dataset

Lecture 8: data preprocessing

Introduction

Dealing with missing values Classification of missing values Imputing missing

Feature scaling Motivation Min-max scaling Standardization

Removing outliers

Motivation

Great examples at:

https://scikit-learn.org/stable/auto_examples/ preprocessing/plot_scaling_importance.html# sphx-glr-auto-examples-preprocessing-plot-scaling-imp

Possible data leak

Lecture 8: data preprocessing

Data leaking between train and test set

Dealing with missing values Classification of missing values

Feature scaling

Motivation
Min-max scaling
Standardization

Removing outliers

Data leaking between train and test set consists in propagating information from the train set to the test set, rendering the results void.

Possible data leak

Lecture 8: data preprocessing

Dealing with missing value Classification of missing values Imputing missing

Feature

scaling

Motivation

Min-max scaling

Standardization

Removing outliers Motivation

Data leaking between train and test set

Data leaking between train and test set consists in propagating information from the train set to the test set, rendering the results void.

Question

Why do you think feature scaling can cause data leak and how can you prevent it ?

Possible data leak

Lecture 8: data preprocessing

Dealing with missing values Classification of missing values Imputing missing

Scaling

Motivation

Min-max scaling

Standardization

Removing outliers Motivation Tukey's fence

Data leaking between train and test set

Data leaking between train and test set consists in propagating information from the train set to the test set, rendering the results void.

Question

Why do you think feature scaling can cause data leak and how can you prevent it ?

Data leak between train and test dataset when scaling is a very frequent mistake. Be careful!

Lecture 8: data preprocessing

Use-cases

When should we scale features:

Lecture 8: data preprocessing

Introduction

Dealing with missing values Classification of missing values

Feature scaling

Motivation
Min-max scaling

Use-cases

outliers

Motivation Tukev's fend

When should we scale features:

 Model sensitive to amplitude (distance based algorithms for example)

Lecture 8: data preprocessing

Sophie Robert

Dealing with
missing values
Classification of

missing values
Classification of
missing values
Imputing missing
values

Feature scaling

Min-max scali

Use-cases

outliers

Motivation

When should we scale features:

- Model sensitive to amplitude (distance based algorithms for example)
- Gradient based algorithm (saves training time)

Lecture 8: data preprocessing

Sophie Rober

When should we scale features:

- Model sensitive to amplitude (distance based algorithms for example)
- Gradient based algorithm (saves training time)
- When transforming variables

missing values

Classification of missing values

Imputing missing values

Feature scaling

Motivation

Min-max scaling

Standardization

Use-cases

Removing outliers

Motivation Tukey's fence

Lecture 8: data preprocessing

Sophie Rober

When should we scale features:

- Model sensitive to amplitude (distance based algorithms for example)
- Gradient based algorithm (saves training time)
- When transforming variables
- When doing PCA

Feature scaling

Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers Motivation

Lecture 8: data preprocessing

Sophie Robe

Introduction

Dealing with

missing values

missing values Imputing missing values

Feature scaling

Motivation
Min-max scaling

Use-cases

Removing outliers

Motivation Tukev's fence Feature scaling may not be a good idea in the case of:

Lecture 8: data preprocessing

Sophie Robe

Introduction

Dealing with

Classification of missing values Imputing missing values

Feature scaling

Motivation
Min-max scaling

Use-cases

Removin outliers

Motivation Tukev's fence Feature scaling may not be a good idea in the case of:

■ Models we want to interprete

Lecture 8: data preprocessing

Sophie Robe

Dealing with missing values Classification of missing values

Feature scaling

Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers

Motivation

Feature scaling may not be a good idea in the case of:

- Models we want to interprete
- Some models do not care and simply take into account proportionality

Outliers

Lecture 8: data preprocessing

Dealing with missing value

Classification of missing values Imputing missing values

Feature scaling

Min-max scaling Standardization Use-cases

outliers

Motivation

Outliers

An outlier is a data point that **differs significantly from other observations**.

Outliers

Lecture 8: data preprocessing

Sopille Robei

Dealing with missing value Classification of missing values

Feature scaling

Motivation Min-max scaling Standardization Use-cases

Removing outliers

Motivation

Tukev's fence

Outliers

An outlier is a data point that **differs significantly from other observations**.

Outliers can be caused by:

- A measuring issue
- A variability in the measurement
- A novel, unexpected behavior

Why should we care outliers?

Lecture 8: data preprocessing

Sophie Rober

Dealing with missing value

Classification of missing values Imputing missing values

Feature scaling

Min-max scaling Standardization Use-cases

outliers Motivation

Tukev's fen

Outliers can be:

- Due to a measuring error
- Due to the features and bear information ... non-gaussian distribution for example !

Why should we care outliers?

Lecture 8: data preprocessing

·

Introduction

Dealing with

missing values
Classification of
missing values
Imputing missing
values

Scaling

Motivation

Min-max scaling

Standardization

Removing outliers Motivation

Outliers can be:

- Due to a measuring error
- Due to the features and bear information ... non-gaussian distribution for example !

Dealing with outliers

Possibility to deal with outliers:

- Remove them from the dataset
- Replace the outlier value using imputation
- Use robust measuring metrics (median instead of mean)
- Adapt models accordingly

Why should we care outliers?

Lecture 8: data preprocessing

Dealing with missing value Classification of missing values Imputing missing values

Scaling

Motivation

Min-max scaling

Standardization

Removing outliers Motivation

Outliers can be:

- Due to a measuring error
- Due to the features and bear information ... non-gaussian distribution for example !

Dealing with outliers

Possibility to deal with outliers:

- Remove them from the dataset
- Replace the outlier value using imputation
- Use robust measuring metrics (median instead of mean)
- Adapt models accordingly

Be careful before removal, as they can bear useful information!

Outlier detection using Tukey's fence

Lecture 8: data preprocessing

Tukey's fence

Tukey's fence is an usual method for outlier detection, that considers as outliers observations outside the range:

$$[Q_1 - k(Q_3 - Q_1), Q_3 + k(Q_3 - Q_1)]$$

Tukev's fence

Outlier detection using Tukey's fence

Lecture 8: data preprocessing

Sophie Rober

Introduction

Dealing with missing values Classification of missing values Imputing missing values

Feature scaling Motivation

Motivation
Min-max scaling
Standardization
Use-cases

Removing outliers Motivation Tukev's fence

Tukey's fence

Tukey's fence is an usual method for outlier detection, that considers as outliers observations outside the range:

$$[Q_1 - k(Q_3 - Q_1), Q_3 + k(Q_3 - Q_1)]$$

Tukey suggests using k = 1.5 to flag individuals as *outliers* and k = 3 as *far-out*.

Questions

Lecture 8: data preprocessing

Questions?