Atari Breakout with LTL_f/LDL_f Goals

Ivan Bergonzani, Michele Cipriano, Armando Nania

Professor: Giuseppe De Giacomo

Elective in Artificial Intelligence: Reasoning Robots Department of Computer, Control and Management Engineering Sapienza University of Rome

Introduction

Intro.

Non-Atari Breakout

Results of the paper and our starting point.

Non-Atari Breakout (6×18)

Our results on 6×18 non-Atari Breakout + video.

Atari Breakout

Introduction to Gym + ALE
Differences with non-Atari Breakout (initial hypotheses)

Q-Learning

Q-Learning brief description.

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

SARSA

SARSA brief description.

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \Big]$$

LTL_f/LDL_f Non-Markovian Rewards

 $\mathsf{LTL}_f/\mathsf{LDL}_f$ non-Markovian rewards + integration in our project.

Implementation

Robot Features Extraction

Algorithms.

Goal Features Extraction

Algorithms.

Temporal Goals

Algorithms.

Experiments

Experiments

All the experiments.

Conclusion

Conclusion.

References i

- G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, "OpenAl Gym," 2016.
- M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, "The Arcade Learning Environment: An Evaluation Platform for General Agents," *Journal of Artificial Intelligence Research*, vol. 47, pp. 253–279, jun 2013.
- R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

The MIT Press, second ed., 2018.

G. De Giacomo, L. Iocchi, M. Favorito, and F. Patrizi, "Reinforcement Learning for LTLf/LDLf Goals," CoRR, vol. abs/1807.06333, 2018.

References ii

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, "Human-level control through deep reinforcement learning," Nature, vol. 518, pp. 529-533, Feb. 2015.

"Montezuma's Revenge Solved by Go-Explore, a New Algorithm for Hard-Exploration Problems (Sets Records on Pitfall, Too)." https://eng.uber.com/go-explore/.

References iii

- "A Python Implementation of the FLLOAT library." https://github.com/MarcoFavorito/flloat.
- "A library for generating automata from LTL and LDL formulas with finite-trace semantics in Python." https://github.com/MarcoFavorito/pythomata.
- "Framework for Reinforcement Learning with Temporal Goals defined by LDLf formulas.."
 https://github.com/MarcoFavorito/rltg.

References iv

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, "OpenAI Baselines." https://github.com/openai/baselines, 2017.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, "Asynchronous methods for deep reinforcement learning," *CoRR*, vol. abs/1602.01783, 2016.