Pizzaseminar zur Kategorientheorie

2. Übungsblatt

Aufgabe 1: Sei X ein Objekt einer Kategorie \mathcal{C} .

a) Zeige: Besitzt \mathcal{C} ein terminales Objekt 1, so gilt

$$X \times 1 \cong X$$
.

Diese Aussage ist nicht wörtlich zu verstehen: Genauer ist zu zeigen, dass X (mit welchen Morphismen?) als Produkt von X und 1 dienen kann.

b) Was ist die duale Aussage zu a)?

Aufgabe 2: Seien X und Y Objekte einer Kategorie C. Wir definieren folgende Kategorie der $M\"{o}chtegern$ -Produkte von X und Y:

Objekte: Diagramme der Form $X \leftarrow Q \rightarrow Y$ in \mathcal{C}

Morphismen: $\operatorname{Hom}(X \leftarrow Q \to Y, X \leftarrow R \to Y) :=$

- a) Zeige: Terminale Objekte beliebiger Kategorien sind "eindeutig bis auf eindeutige Isomorphie", d. h. zwischen je zwei terminalen Objekten einer Kategorie existiert genau ein Isomorphismus.
- b) Mache dir klar: Die Angabe eines Produkts von X und Y in \mathcal{C} ist gleichwertig zur Angabe eines terminalen Objekts in der Kategorie der Möchtegern-Produkte von X und Y. Was folgt daher in Kombination mit Teilaufgabe a)?

Aufgabe 3: Eine *Quasiordnung* besteht aus einer Menge X und einer reflexiven und transitiven (aber nicht unbedingt antisymmetrischen) Relation \leq auf X. Zum Beispiel bildet die Menge der ganzen Zahlen mit der Teilbarkeitsrelation eine Quasiordnung.

- a) Bastele auf sinnvolle Art und Weise aus X eine Kategorie. Weshalb sind die Kategorienaxiome erfüllt?
- b) Wann sind zwei Objekte dieser Kategorie zueinander isomorph?
- c) Ein Infimum zweier Elemente $a, b \in X$ ist ein Element $p \in X$ mit

$$\forall x \in X: \quad x \leq a \text{ und } x \leq b \iff x \leq p.$$

Zeige: Die Angabe eines Infimums von a und b ist gleichwertig mit der Angabe eines Produkts von a und b in dieser Kategorie.

Aufgabe 4: Seien X, Y und Z Objekte einer Kategorie \mathcal{C} . Existiere ein Produkt $X \times Y$ von X und Y und existiere ein Produkt $(X \times Y) \times Z$ von $X \times Y$ und Z.

- a) Zeige: Dann existiert auch ein Dreier-Produkt $X \times Y \times Z$.
- b) Welches Assoziativ- und Kommutativgesetz folgt damit?