Machine Learning Homework Week 1

Trinh Thi Huong Lien

August 2022

1 Question 1

a. We have the marginal probability mass function here: b. We first note that

	x1	x2	x3	x4	x5	Row sum = P(Y = y)
y1	0.01	0.02	0.03	0.1	0.1	0.26
y2	0.05	0.1	0.05	0.07	0.2	0.47
у3	0.1	0.05	0.03	0.05	0.04	0.27
Column sum = P(X = x)	0.16	0.17	0.11	0.22	0.34	1

$$p_Y(Y = y1) = 0.26 \tag{1}$$

Besides, we have the fomula below:

$$p_{X|Y}(x|y_1) = P(X = x|Y = y_1) = \frac{P(X = x, Y = y_1)}{P(Y = y_1)}$$
(2)

Hence

$$p_{X|Y}(x_1|y_1) = P(X = x_1|Y = y_1) = \frac{P(X = x_1, Y = y_1)}{P(Y = y_1)} = \frac{0.01}{0.26} = 0.038$$
 (3)

$$p_{X|Y}(x_2|y_1) = P(X = x_2|Y = y_1) = \frac{P(X = x_2, Y = y_1)}{P(Y = y_1)} = \frac{0.02}{0.26} = 0.077$$
 (4)

$$p_{X|Y}(x_3|y_1) = P(X = x_3|Y = y_1) = \frac{P(X = x_3, Y = y_1)}{P(Y = y_1)} = \frac{0.03}{0.26} = 0.115$$
 (5)

$$p_{X|Y}(x_4|y_1) = P(X = x_4|Y = y_1) = \frac{P(X = x_4, Y = y_1)}{P(Y = y_1)} = \frac{0.1}{0.26} = 0.385$$
 (6)

$$p_{X|Y}(x_5|y_1) = P(X = x_5|Y = y_1) = \frac{P(X = x_5, Y = y_1)}{P(Y = y_1)} = \frac{0.1}{0.26} = 0.385$$
 (7)

We do similarly with the probability of X given that Y = y_3, so wehave :P(X = x_1|Y = y_3) = $\frac{0.1}{0.27}=0.37(8)$

$$P(X = x_2 | Y = y_3) = \frac{0.05}{0.27} = 0.185$$
(9)

$$P(X = x_3 | Y = y_3) = \frac{0.03}{0.27} = 0.11 \tag{10}$$

$$P(X = x_4 | Y = y_3) = \frac{0.05}{0.27} = 0.185$$
 (11)

$$P(X = x_5 | Y = y_3) = \frac{0.04}{0.27} = 0.148$$
 (12)

2 Question 2

We have 2 cases to prove this fomula:

• Case 1: Y is a discrete random variable, so we have:

$$E_X(X) = \sum_{y} E(X|Y=y) * P(Y=y)$$
 (13)

$$E_X(X) = \sum_{y} \sum_{x} P(X = x | Y = y) * P(Y = y)$$
 (14)

$$E_X(X) = \sum_{y} \sum_{x} x * \frac{P(X = x, Y = y)}{P(Y = y)} * P(Y = y)$$
 (15)

$$E_X(X) = \sum_{y} \sum_{x} x * P(X = x, Y = y)$$
 (16)

$$E_X(X) = \sum_{x} x \sum_{y} P(X = x, Y = y)$$
 (17)

$$E_X(X) = \sum_{x} x * P(X = x) = E(X)$$
 (18)

• Case 2: Y is a continuous random variable, so we have:

$$E(X) = \int_{-\infty}^{\infty} E(X|Y=y)f(y)dy \tag{19}$$

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \times f_{X|Y}(x|y) dx \times f(y) dy$$
 (20)

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \times f_{X|Y}(x|y) \times f(y) dx dy$$
 (21)

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \times f_{X,Y}(x,y) \times f(y) dx dy$$
 (22)

$$E(X) = \int_{-\infty}^{\infty} x \times \int_{-\infty}^{\infty} f_{X,Y}(x,y) \times f(y) dy dx$$
 (23)

$$E(X) = \int_{-\infty}^{\infty} x \times f(x) dx = E(X)$$
 (24)

3 Question 3

We have P(X) = 0.0207 , P(Y) = 0.5 , P(X |Y) = 0.365

$$a.P(X,Y) = P(XjY) \times P(Y) = 0.365 \times 0.5 = 0.1825$$

$$b.P(Y|\overline{X}) = \frac{P(\overline{X} \times Y)}{p(\overline{X})} = \frac{P(Y) - P(X \times Y)}{1 - P(X)} = \frac{0.5 - 0.1825}{1 - 0.207} = 0.4$$

4 Question 4

Firstly, we have the standard definition of the variance is:

$$Var(X) = E[(X - E(X)^2]$$
(25)

$$Var(X) = E(X^{2} - 2XE(X) + E(X)^{2})$$
(26)

$$Var(X) = E(X^{2}) - E(2XE(X) + E[E(X)^{2}]$$
(27)

$$Var(X) = E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$
(28)

$$Var(X) = E(X^{2}) - 2E(X)^{2} + E(X)^{2}$$
(29)

$$Var(X) = E(X^2) - E(X)^2$$
 (30)

5 Question 5

Event A: 'The car is in the door number 1.'

Event B: 'The car is in the door number 3.'

Event C: 'Monty will open the door number 2.'

So we have the probability that the car is in the door number 1 is $P(A) = \frac{1}{3}$ We have $P(C|A) = \frac{1}{2}$ is the probability that Monty will open the door number 2 (event C happened) when the car is in the door number 1 (event A happened) and he will only open the door number 2 or number 3. We have $P(C) = \frac{1}{2}$ is the probability that Monty will open the door number 2 since the door number 1 is opened.

Therefore, we have: $P(A|C) = \frac{P(C|A) \times P(A)}{P(C)} = \frac{1}{3}$

is the probability that the car is in the door number 1 (event A happened) given that Monty will open the door number 2. The probability that the car is in the door number 3 is: $P(B) = 1 - P(A) = \frac{2}{3}$

We can easily see that the probability that the car is in the door number 3 is bigger that that in the door number 1, therefore, we should change the decision.