Tarea VII

Román Contreras

21 de abril de 2018

1. Dilatación e invertibilidad

1.1. La dilatación de una transformación lineal

Sea $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ una base ortonormal y T una transformación lineal. Recuerda que definimos la *dilatación* de T como el número

$$dil(T) := V(T(\vec{w}_1), T(\vec{w}_2), T(\vec{w}_3))$$

Así mismo, demostramos las siguientes proposiciones:

Proposicion 1.1. Sean S y T dos transformaciones lineales. Entonces

$$dil(S \circ T) = dil(S) dil(T)$$

Proposicion 1.2. Sean T una transformación lineal y $\vec{v}, \vec{w}, \vec{z}$ tres vectores. Entonces

$$V(T(\vec{v}), T(\vec{w}), T(\vec{z})) = \operatorname{dil}(T)V(\vec{v}, \vec{w}, \vec{z})$$

Ejercicio 1.1. Sea T una transformación lineal y sean $\vec{v}, \vec{w}, \vec{z}$ tres vectores tales que $V(\vec{v}, \vec{w}, \vec{z}) \neq 0$. Demuestra que la dilatación de T se puede calcular como

$$\operatorname{dil}(T) = \frac{V(T(\vec{v}), T(\vec{w}), T(\vec{z}))}{V(\vec{v}, \vec{w}, \vec{z})}$$

Ejercicio 1.2. Es posible que exista una transformación lineal T tal que

$$T(\vec{w}_1) = \vec{w}_2$$
$$T(\vec{w}_2) = \vec{w}_1$$

$$dil(T) = 1$$

Da un ejemplo, o demuestra que no puede existir.

Ejercicio 1.3. Da un ejemplo explícito de dos transformaciones lineales S y T tales que

$$dil(T) = dil(S) = 1$$
$$S \circ T \neq T \circ S$$

Ejercicio 1.4. Sea T una transformación lineal y sean $\vec{v}, \vec{w}, \vec{z}$ tres vectores tales que $V(\vec{v}, \vec{w}, \vec{z}) \neq 0$.

Si T satisface que:

$$T(\vec{z}) = \lambda \vec{z}$$

$$T(\vec{v}) = a\vec{v} + b\vec{w}$$

$$T(\vec{w}) = c\vec{v} + d\vec{w}$$

demuestra que $dil(T) = \lambda(ad - bc)$.

1.2. Transformaciones inversas

En clase demostramos las siguientes proposiciones:

Proposicion 1.3. Sean T una transformación lineal. Entonces T es invertible si y solo si tiene dilatación no nula. En ese caso, se cumple que

$$[T^{-1}]_{\beta} = \frac{1}{\operatorname{dil}(T)} \operatorname{cof}([T]_{\beta})^{T}.$$

Es decir, la matriz inversa de $[T]_{\beta}$ es la matriz transpuesta de la matriz de cofactores de $[T]_{\beta}$ dividada entre la dilatación de T.

Proposicion 1.4. Si una matriz cuadrada M tiene inversa izquierda o derecha, entonces es invertible, es decir, toda inversa izquierda (derecha) de M es también derecha (izquierda).

Ejercicio 1.5. Sea T una transformación lineal. Demuestra que si T satisface que $T \circ T = T$ entonces, o bien dil(T) = 0, o bien T = Id.

Ejercicio 1.6. ¿Puede existir una transformación lineal T tal que $T^3 = 0$ pero $T^2 \neq 0$? Exhibe un ejemplo, o demuestra que no puede existir.

Ejercicio 1.7. (4 puntos) Considera las siguientes transformaciones lineales:

- H_{λ} la homotecia de factor λ , es decir $H(\vec{v}) = \lambda \vec{v}$ para todo vector \vec{v}
- $R_{1\alpha}$ la rotación de angulo α con eje de rotación dado por el vector \vec{w}_1 , es decir

$$R_{1\alpha}(\vec{w}_1) = \vec{w}_1$$

$$R_{1\alpha}(\vec{w}_2) = \cos(\alpha)\vec{w}_2 + \sin(\alpha)\vec{w}_3$$

$$R_{1\alpha}(\vec{w}_3) = -\sin(\alpha)\vec{w}_2 + \cos(\alpha)\vec{w}_3$$

- análogamente definimos $R_{2\alpha}$ y $R_{3\alpha}$ como las rotaciones con ejes de rotación dados por los vectores \vec{w}_2 y \vec{w}_3 respectivamente.
- La transformación T dada por:

$$T(\vec{w}_1) = \vec{w}_1$$

$$T(\vec{w}_2) = a\vec{w}_1 + \vec{w}_2$$

$$T(\vec{w}_3) = b\vec{w}_1 + c\vec{w}_2 + \vec{w}_3$$

lacksquare La transformación D dada por:

$$D(\vec{w}_1) = \lambda \vec{w}_1$$

$$D(\vec{w_2}) = \mu \vec{w_2}$$

$$D(\vec{w}_3) = \nu \vec{w}_3$$

 $\label{lag} Calcula\ las\ matrices,\ dilataciones\ y\ transformaciones\ inversas\ de\ las\ siguientes\ transformaciones:$

- 1. T
- 2. T^2
- 3. D
- 4. $R_{1\alpha} \circ H_{\lambda} \circ R_{1\alpha}^{-1}$
- 5. $R_{1\alpha} \circ D \circ R_{1\alpha}^{-1}$
- 6. $R_{1\alpha} \circ R_{2\beta} \circ R_{1\alpha}^{-1}$
- 7. $R_{1\alpha} \circ R_{2\beta} \circ R_{3\gamma}$
- 8. $R_{1\alpha} \circ T \circ R_{1\alpha}^{-1}$