Reinforcement Learning

Dr. Alireza Aghamohammadi

Optimality

Action-Value Function

- ❖ The action-value function, or Q-function, measures the expected return when:
 - \Box Starting in state s,
 - □ Taking action a,□ And following policy π thereafter.
- Mathematically, it is defined as:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} [G_t \mid S_t = s, A_t = a]$$

$$= \mathbb{E}_{\pi} [R_t + \gamma G_{t+1} \mid S_t = s, A_t = a]$$

$$= \sum_{s', r} P_r(s', r \mid s, a) [r + \gamma V_{\pi}(s')], \quad \forall s \in S, \ \forall a \in A(s)$$

This recursive relationship is known as the Bellman equation for action values.

Action-Advantage Function

The action-advantage function, or simply the advantage function, measures how much better it is to take action a in state s compared to the average action under policy π :

$$a_{\pi}(s,a) = q_{\pi}(s,a) - V_{\pi}(s)$$

 \diamond It quantifies the relative benefit of action a over others, as determined by the policy π .

Optimality

- Optimality in reinforcement learning refers to achieving the best possible policies, state-value functions, action-value functions, and advantage functions.
- * The optimal state-value function, $V^*(s)$, gives the maximum expected return achievable from state s under any policy:

$$V^{\star}(s) = \max_{\pi} V_{\pi}(s)$$

 \diamond Similarly, the optimal action-value function, $q^*(s,a)$, provides the maximum expected return for taking action a in state s:

$$q^{\star}(s,a) = \max_{\pi} q_{\pi}(s,a)$$

***** Knowing $q^*(s, a)$ allows us to derive the optimal policy:

$$\pi^{\star}[a \mid s] = \operatorname*{argmax}_{a} q^{\star}(s, a)$$