CMOS VLSI Design

2.CMOS Transistor Theory

Fu yuzhuo

outline

- Ideal I-V characteristics under static conditions
- Velocity Saturation
- Dynamic Characteristics
- Nonideal I-V effects

Digital IC 2: Device 2/41

A unified model for manual analysis

$$\begin{split} I_D &= 0 \ \text{ for } \ V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \Big(V_{GT} V_{min} - \frac{V_{min}^2}{2} \Big) (1 + \lambda V_{DS}) \ \text{for } V_{GT} \geq 0 \\ \text{with } \ V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}), \\ V_{GT} &= V_{GS} - V_T, \\ \text{and } \ V_T &= V_{T0} + \gamma (\sqrt{|-2\phi_F|} + V_{SB}| - \sqrt{|-2\phi_F|}) \end{split}$$

$$\beta = k' \frac{W}{L}$$

Parameters for manual model of generic 0.25um CMOS process(minimum length device)

	V _{T0} (V)	$\gamma(V^{0.5})$	V _{DSAT} (V)	k'(A/V ²))	λ(V ⁻¹)
NMOS	0.43	0.4	0.63	115X10-8	0.06
PMOS	-0.4	-0.4	-1	-30X10-6	-0.1

Simple Model versus SPICE

Digital IC 2: Device

Capacitance model

$$egin{aligned} C_{GS} &= C_{GSO} + C_{GCS} \ C_{GD} &= C_{GDO} + C_{GCD} \ C_{GB} &= C_{GCB} \ C_{SB} &= C_{Sdiff} \ C_{DB} &= C_{Ddiff} \end{aligned}$$

 \boldsymbol{G}

The Gate Capacitance

Digital IC 2: Device

Cross section

6/41

Gate channel Capacitance

 TABLE 2.1
 Approximation for intrinsic MOS gate capacitance

Parameter	Cutoff	Linear	Saturation	
C_{gb}	$\leq C_0$	0	0	
C_{gs}	0	$C_0/2$	2/3 C ₀	
C_{gd}	0	$C_0/2$	0	
$C_g = C_{gs} + C_{gd} + C_{gb}$	C_0	C_0	2/3 C ₀	

$$C_0 = WLC_{ox}$$

$$C_g = C_{gs} + C_{gd} + C_{gb} \approx C_0 + 2C_{gol} W$$

FIGURE 2.9 Intrinsic gate capacitance $C_{gc} = C_{gs} + C_{gd} + C_{gb}$ as a function of (a) V_{gs} and (b) V_{ds}

Most important regions in digital design: saturation and cut-off

Detail Diffusion Capacitance

$$C_{sb} = AS_sC_{jbs} + PS_sC_{jbssw}$$

面积电容+周长电容

$$C_{jbs} = C_J \left(1 + \frac{V_{sb}}{\psi_0} \right)^{-M_J}$$

$$\psi_0 = \frac{kT}{q} \ln \left(\frac{N_D N_A}{n_i^2} \right) = 0.026 \ln \left(\frac{N_D N_A}{n_i^2} \right)$$

$$C_{jbssw} = C_{JSW} \left(1 + \frac{V_{sb}}{\psi_0} \right)^{-M_{JSW}}$$

$$C_{jbsswg} = C_{JSW} \left(1 + \frac{V_{sb}}{\psi_0} \right)^{-M_{JSWG}}$$

FIG 2.13 Diffusion region geometry

Digital IC 2: Device 8/41

Example 2.2

Calculate the diffusion parasitic C_{db} of the drain of a unit-sized contacted nMOS transistor in a 65nm process when the drain is at 0V and again at V_{DD} =1.0V. Assume the substrate is grounded. The diffusion region conforms to the design rules with λ =25nm. The transistor characteristics are C_J =1.2fF/ μ m², M_J =0.33, C_{JSW} =0.1fF/ μ m, C_{JSWG} =0.36 fF/ μ m, M_{JSW} = M_{JSWG} =0.10, and ψ_0 =0.7V at room temperature.

SOLUTION: From Figure 2.8, we find a unit-size diffusion contact is $4 \times 5 \lambda$, or $0.1 \times 0.125 \mu m$. The area is $0.0125 \mu m^2$ and perimeter is $0.35 \mu m$ plus $0.1 \mu m$ along the channel. At zero bias, $C_{jbd} = 1.2 \text{ fF}/\mu m^2$, $C_{jbdsw} = 0.1 \text{ fF}/\mu m$, and $C_{jbdswg} = 0.36 \text{ fF}/\mu m$. Hence, the total capacitance is

$$C_{db}(0 \text{ V}) = \left(0.0125 \mu \text{m}^2\right) \left(1.2 \frac{\text{fF}}{\mu \text{m}^2}\right) +$$

$$\left(0.35 \mu \text{m}\right) \left(0.1 \frac{\text{fF}}{\mu \text{m}}\right) + \left(0.1 \mu \text{m}\right) \left(0.36 \frac{\text{fF}}{\mu \text{m}}\right) = 0.086 \text{ fF}$$
(2.21)

At a drain voltage of V_{DD} , the capacitance reduces to

$$C_{db}(1 \text{ V}) = \left(0.0125 \mu\text{m}^2\right) \left(1.2 \frac{\text{fF}}{\mu\text{m}^2}\right) \left(1 + \frac{1.0}{0.7}\right)^{-0.33} + \left[\left(0.35 \mu\text{m}\right) \left(0.1 \frac{\text{fF}}{\mu\text{m}}\right) + \left(0.1 \mu\text{m}\right) \left(0.36 \frac{\text{fF}}{\mu\text{m}}\right)\right] \left(1 + \frac{1.0}{0.7}\right)^{-0.10} = 0.076 \text{ fF}$$
(2.22)

An example of Diffusion Capacitance

NMOS: t_{ox} =6nm,L=0.24um,W=0.36um,L_D=L_S=0.625um, C_{OX}=5.7X10⁻³F/m², C_O=3X10⁻¹⁰F/m,C_{j0}=2X10⁻³F/m², and C_{jsw0}=2.75X10⁻¹⁰F/m, determine the zero-bias value of relevant capacitances

• $C_{gc}=WLC_{ox}=0.24*0.36*5.7=0.49fF$

 $1F=10^{15}fF$

- C_{overlap}=2*C_o*W=2*0.3*0.36=0.216fF
- $C_{diff-s}=WD_s*C_j+(2W+2D_s)C_{jsw}=$

0.36*0.625*2+(0.36*2+0.625*2)*0.275=0.539fF

	$C_{\rm ox}$ (fF/ μ m ²)	<i>C_O</i> (fF/μm)	$\frac{C_j}{(ext{fF}/ ext{ ext{m}}^2)}$	m_{j}		C _{jsw} (fF/μm)	m_{jsw}	$egin{array}{c} oldsymbol{\phi}_{bsw} \ (V) \end{array}$
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

Digital IC 2: Device

Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion

11/41

Diffusion Capacitance

- C_{sb}, C_{db}
- Undesirable, called parasitic capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g
 for contacted diff
 - ½ C_g for uncontacted
 - Varies with process

Digital IC

2: Device

Fringing Capacitance

Over the years, a steady reduction in the W/H ratio which has even dropped below 1

Perimeter?

$$c_{wire} = c_{pp} + c_{fringe} = \frac{w \varepsilon_{di}}{t_{di}} + \frac{2\pi \varepsilon_{di}}{\log(t_{di}/H)}$$

Another example

Calculate the diffusion parasitic C_{db} of the drain of a unit-sized contacted nMOS transistor in a 0.18um process when the drain is at 0 and at V_{dd} =1.8V, assume the substrate is grounded, the transistor characteristic are C_j =0.98fF/um², M_j =0.36, C_{JSW} =0.22fF/um, M_{JSW} =0.10, and D_0 =0.75V at room temperature

- AD=20unit²=20*0.081=0.162um²
- PD=10+4=14unit=14*0.09=1.26um
- $C_{db}(0)=0.162*0.98+1.26*0.22=0.43$
- $C_{db}(1.8)=0.162*0.98*(1+1.8/0.75)^{-0.36}$
- +1.26*0.22*(1+1.8/0.75)-0.10=0.1022+0.2788=**0.381**

The Transistor as a Switch

$$R_{eq} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

The Transistor as a Switch

Digital IC 2: Device

outline

- PN junction principle
- CMOS transistor introduction
- Ideal I-V characteristics under static conditions
- Velocity Saturation
- Dynamic Characteristics
- Nonideal I-V effects

Digital IC 2: Device 17/41

Nonideal characteristics

- Velocity saturation
- Channel length modulation
- Body effect
- Threshold Variations
- Parasitic Resistances
- Subthreshold Conduction
- Hot-carrier effects
- Latchup
- Process variations

Digital IC 2: Device 18/41

Channel length modulation

- Increasing V_{DS} decreases the effective channel length
- A is an empirical channel length, should not be confuse with the symbol used in layout design rules

$$I_{D} = I_{D}^{'}(1 + \lambda V_{DS})$$

FIGURE 2.18 Depletion region shortens effective channel length

2: Device

Nonideal characteristics

- Velocity saturation
- Channel length modulation
- Body effect
- Threshold Variations
- Parasitic Resistances
- Subthreshold Conduction
- Hot-carrier effects
- Latchup
- Process variations

Digital IC 2: Device 20/41

Body effect

$$V_{t} = V_{t0} + \gamma \left(\sqrt{\phi_{S} + V_{Sb}} - \sqrt{\phi_{S}} \right) \qquad \gamma = \frac{t_{ox}}{\varepsilon_{ox}} \sqrt{2q\varepsilon N_{A}} = \frac{\sqrt{2q\varepsilon N_{A}}}{C_{ox}}$$

$$\phi_{S} = \left| \frac{2kT}{a} \ln \left(\frac{N_{A}}{n_{i}} \right) \right| = \left| 0.052 \ln \left(\frac{N_{A}}{n_{i}} \right) \right|$$

nominal threshold voltage of 0.4V and doping level of $8*10^{17} \text{cm}^{-3}$, t_{ox} =4nm, the body is tied to ground with a substrate contact. how much does the threshold change at room temperature if the source is at 1.1V instead of 0, note, n_i = 1.45*10¹⁰cm⁻³, ε_0 =8.85*10⁻¹⁴, ε =11.7 ε_0 , ε_{ox} =3.9 ε_0 , q=1.6*10⁻¹⁰C

$$\gamma = \frac{40 * 10^{-8}}{3.9 * 8.85 * 10^{-14}} \sqrt{2 * (1.6 * 10^{-19}) * (11.7 * 8.85 * 10^{-14} * 8 * 10^{17})} = 0.6$$

$$V_t = 0.4 + 0.6 * (\sqrt{0.92 + 1.1} - \sqrt{0.92}) = 0.68$$

Digital IC 2: Device

Body effect Reverse bias voltage

$$V_t = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right)$$

$$V_t = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right) \qquad \gamma = \frac{t_{ox}}{\varepsilon_{ox}} \sqrt{2q\varepsilon N_A} = \frac{\sqrt{2q\varepsilon N_A}}{C_{ox}}$$

$$\phi_S = \left| \frac{2kT}{q} ln \left(\frac{N_A}{n_i} \right) \right| = \left| 0.052 ln \left(\frac{N_A}{n_i} \right) \right|$$

$$V_t = V_{t0} + k_{\gamma} V_{sb}$$

$$\phi_{s} = 2(0.026 \text{ V}) \ln \frac{8 \times 10^{17} \text{ cm}^{-3}}{1.45 \times 10^{10} \text{ cm}^{-3}} = 0.93 \text{ V}$$

$$\gamma = \frac{10.5 \times 10^{-8} \text{ cm}}{3.9 \times 8.85 \times 10^{-14} \frac{\text{F}}{\text{cm}}} \sqrt{2(1.6 \times 10^{-19} \text{ C})(11.7 \times 8.85 \times 10^{-14} \frac{\text{F}}{\text{cm}})(8 \times 10^{17} \text{ cm}^{-3})} = 0.16 \qquad (2.40)$$

$$V_{s} = 0.3 + \gamma \left(\sqrt{\phi_{s} + 0.6 \text{ V}} - \sqrt{\phi_{s}}\right) = 0.34 \text{ V}$$

Example 2.5

Consider the nMOS transistor in a 65 nm process with a nominal threshold voltage of 0.3 V and a doping level of 8×10^{17} cm⁻³. The body is tied to ground with a substrate contact. How much does the threshold change at room temperature if the source is at 0.6 V instead of 0?

SOLUTION: At room temperature, the thermal voltage $v_T = kT/q = 26$ mV and $n_i = 1.45$ \times 10¹⁰ cm⁻³. The threshold increases by 0.04 V.

Nonideal characteristics

- Velocity saturation
- Channel length modulation
- Body effect
- Threshold Variations
- Parasitic Resistances
- Subthreshold Conduction
- Hot-carrier effects
- Latchup
- Process variations

Digital IC 2: Device 23/41

Nonideal characteristics

- Velocity saturation
- Channel length modulation
- Body effect
- Threshold Variations
- Parasitic Resistances
- Subthreshold Conduction
- Hot-carrier effects
- Latchup
- Process variations

Digital IC 2: Device 24/41

Sub-Threshold Conduction

Digital IC 2: Device

Nonideal characteristics

- Velocity saturation
- Channel length modulation
- Body effect
- Threshold Variations
- Parasitic Resistances
- Subthreshold Conduction
- Junction Leakage
- Latchup
- Process variations

Digital IC 2: Device 26/41

Junction leakage

- I_s depends on doping levels and on the area and perimeter of the diffusion region
- V_d is the diode voltage(V_{sb} and V_{db})
- Generally in the 0.1-0.01fA/um₂

$$I_{d} = I_{s} (e^{\frac{V_{d}}{V_{T}}} - 1)$$

Leakage Sources

- Subthreshold conduction
 - Transistors can't abruptly turn ON or OFF
- Junction leakage
 - Reverse-biased PN junction diode current
- Gate leakage
 - Tunneling through ultrathin gate dielectric

Subthreshold leakage is the biggest source in modern transistors

