(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-138420

(43)公開日 平成8年(1996)5月31日

FΙ	技術表示箇所
	FΙ

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出願番号	特願平6-274853	(71)出願人	000116736
			旭エンジニアリング株式会社
(22)出顧日	平成6年(1994)11月9日		大阪府大阪市北区堂島浜1丁目2番6号
		(71)出願人	391024722
			タイガー株式会社
			大阪府吹田市山田市場10番1号
		(71)出願人	000132688
			株式会社ゼニライトブイ
			大阪府池田市豊島南2丁目176番地の1
		(72)発明者	高橋 和利
			東京都港区高輪3丁目25番23号 旭エンジ
			ニアリング株式会社内
		(74)代理人	弁理士 渡辺 勤 (外1名)

(54) 【発明の名称】 レーザ光照射装置

(57)【要約】

【目的】 昼夜を問わず、又濃霧や積雪などの天候に関 係なく、遠くからレーザに照射された交通標識を識別す ることのできるレーザ光照射装置をうることを目的とす

【構成】 レーザ光源と、レーザ光を平行な光束にする 手段と、平行な光束を反射する回動ミラーと、被照射体 に光束を照射する多面体ミラーとで構成され、回動ミラ -と多面体ミラーの回動・回転を制御することにより被 照射体に残像として各種の模様を照射できるレーザ光照 射装置である。

【特許請求の範囲】

【請求項1】 レーザ光源と、該レーザ光源からのレーザ光を平行な光束にする手段と、該手段からの平行な光束を反射する回動ミラーと、該回動ミラーからの光束を被照射体に照射する多面体ミラーとで構成され、回動ミラーの回動と多面体ミラーの回転とを制御することにより、被照射体に残像として各種の模様を照射して被照射体の存在を識別し、確認することができることを特徴とするレーザ光照射装置。

【請求項2】 多面体ミラーの鏡面を $1/\tan\theta$ で表 10 示される曲線状の鏡面とすることにより被照射体に残像 として長い模様が照射できることを特徴とする請求項1 記載のレーザ光照射装置。

【請求項3】 多面体ミラーを1/tan θ で表示される曲線状に駆動体で回転駆動せしめることにより、被照射体に残像として長い模様が照射できることを特徴とする請求項1記載のレーザ光照射装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば積雪した道路上 20 の交通標識にレーザ光を照射して該標識の存在を識別し、確認することができるレーザ光照射装置に関する。 【0002】

【従来の技術】市街地の道路上に白線や黄線で表示された車の停止線・横断歩道・中央分離線などは、夜間の降雨時にヘッドライトで路面が光って見えにくく、また濃霧や積雪の折はその存在を確認し、識別するのが困難となり交通事故を誘発しやすい。とりわけ学童の横断歩道は識別しにくいと痛ましい事故を招きやすい。また、積雪地帯の山間道路の路肩にはボールなどを立てて危険区域を明示しているが、ポールに雪が被ったり、ポールが折損したりしていると道路の路肩を識別する術がなく、これらが原因となる車両の転落事故は後を絶たない。その対策として道路上の車の停止線や中央分離線に車両のヘッドライトで反射する板や、あるいは発光源を内蔵した標識を埋設するぐらいで、今まで道路の路肩を確実に識別できる安全な方法についてほとんど手が打たれていないのが現状である。

[0003]

【発明が解決しようとする課題】そこで本発明は上記問題点に鑑みてなされたものであって、人体に全く影響のない低パワーで、かつ視感度の高いレーザ光を、例えば交通標識に照射することによって、昼夜を問わず、また濃霧や積雪など天候に関係なく遠くからレーザに照射された交通標識を識別することができるレーザ光照射装置をうることを目的とするものである。

[0004]

【課題を解決するための手段】本発明は以上の目的を達 N、Sと変化し、これに応じて回動磁石(9)は吸引、成するため次のようなレーザ光照射装置を提供するもの 反発を交互に繰り返し回動を行う。交流電圧の周波数をである。すなわち、レーザ光源と、該レーザ光源からの 50 変えることにより、回動ミラー(8)の振れ角度を制御

レーザ光を平行な光東にする手段と、該手段からの平行な光東を反射する回動ミラーと、該回動ミラーからの光東を被照射体に照射する多面体ミラーとで構成され、回動ミラーの回動と多面体ミラーの回転とを制御することにより、被照射体に残像として各種の模様を照射して被照射体の存在を識別し、確認することができることを特徴とするレーザ光照射装置である。また、多面体ミラーの鏡面を $1/\tan\theta$ で表示される曲線状にするか、あるいは多面体ミラーを $1/\tan\theta$ で表示される曲線状に駆動せしめることにより被照射体に残像として長い模様が照射できることをその特徴とするものである。

2

[0005]

【作用】被照射体にレーザ光を照射する多面体ミラーは 回動ミラーで反射する平行なレーザ光束を受け、その回 動ミラーの回動と多面体ミラーの回転を制御することに より、被照射体に残像として各種の模様を照射して標識 等の被照射体の存在を識別し、確認することができる。

[0006] 【実施例】本発明の実施例を図面に基づいて説明する。 図1は本発明の一実施例を示すもので、図において、 (1)は道路側端に立設するポール先端に取りつけられ た本発明になるレーザ光照射装置で、(3)(4)は道 路上に表示されている車両の停止線と横断歩道である。 (2)は上記のレーザ光照射装置(1)から車両の停止 線上に照射されたレーザ光である。車両の停止線上には 後記するように残像として任意の模様、例えば鋸状の模 様が見えるようにレーザ光が照射されている。図2、 3、4はレーザ光照射装置を示す説明図で、図2は第1 実施例、図3は第2実施例、図4は第3実施例である。 まず図2に基づいて第1実施例について説明すると、 (5)は例えば視感度の高い赤色レーザのHe-Neガ スレーザや半導体レーザよりなるレーザ光源で、レーザ 光源(5)からでたレーザ光線は、ビームエキスパンダ ー(6)を通すことにより集光、あるいは拡散が生じな い5mm前後の平行な光束となる。(7)は反射ミラー で、上記光束は反射ミラー(7)で反射され、回動ミラ ー(8)に投入される。回動ミラー(8)は図5に示さ れており、その(9)は円筒状の回動磁石、(10)は 回動磁石(9)を中央にしてその周囲に固設する固定磁 石である。回動磁石(9)の頂部中央には回動ミラー (8)が固設する支柱が立設している。固定磁石(1 0)には複数の突起(10a)があり、対になるコイル (11)(12)に電流が流れると突起(10a)の一 端はNに、他の一端はSに磁化される。回動磁石(9) は固定磁石(10)の突起(10a)に対峠した磁石が 埋め込まれている。駆動コイル(11)(12)に交流 電圧を加えると、固定磁石(10)の突起はN、S、 N、Sと変化し、これに応じて回動磁石(9)は吸引、 反発を交互に繰り返し回動を行う。交流電圧の周波数を

することができる。

【0007】図2において、反射ミラー(7)から回動 ミラー(8)に投入された平行な光東は、回動ミラー (8)の回動によって扇状に左右に振られ、凹面ミラー (13)で平行な光束に変換される。凹面ミラー(1 3)の中方向のサイズは、レーザ光を照射する被照射体 の線巾によって任意に決められる。又(14)はモータ ー(15)で時計方向に回転自在な多面体ミラーであ る。凹面ミラー(13)で変換された平行な光東を時計 方向に所定の速度で回転している多面体ミラー(14) に投入すると、多面体ミラー(14)の回転につれて下 方の被照射体に所定の巾と長さの光束が照射される。す なわち、回動ミラー(8)の回動角度、凹面ミラー(1 3)の鏡面巾、多面体ミラー(14)の鏡面巾で被照射 体に照射する光束の巾が決められ、多面体ミラー(1 4)の1面の巾と照射装置が据えつけられた高さによっ て被照射体に照射する光束の長さが決められるので、例 えば図示するように道路上に車両停止線が鋸状に残像と して見えるように光束を照射する場合は、回動ミラー (8)を回動して光束を凹面ミラー(13)の鏡面端部 に投入したとき、該光束が多面体ミラー(14)に反射 して道路上のa、bを照射するように回動ミラー(8) の回動を制御し、多面体ミラー(14)の鏡面と鏡面の 一方の曲折部近傍に反射した光束が道路上のAを照射 し、多面体ミラー(14)の回転につれて鏡面と鏡面の 他方の曲折部近傍に反射した光束が道路上のBを照射す るように、多面体ミラー(14)の面数(360÷多面 体の面数×2=多面体ミラー(14)の照射角度)と多 面体ミラー(14)を据えつける高さを設定し、(実際 は多面体ミラー(14)を据えつける高さはほぼ一定と なると考えられるので、多面体ミラー(14)の形状を 調節することになる)、更に、回動ミラー(8)の回動 速度と多面体ミラー(14)の回転速度を調節すること により可能となる。

【0008】図3は第2実施例のレーザ光照射装置を示 すもので、同一機能を有する部材は同じ図番が付されて いる。第1実施例の回動ミラー(8)が第2実施例では 垂直方向に立設する多面体ミラー(16)となっている 他は第1実施例と同一である。(17)は多面体ミラー (16)を一方方向に回動せしめるモータである。多面 体ミラー(16)は一方方向に回動しているので、図示 するように道路上に照射された光束は残像として所定間 隔の不連続の斜線として見える。同様に図4は第3実施 例のレーザ光照射装置を示すもので、第1実施例の凹面 ミラー(13)を設けず、回動ミラー(8)から直接多 面体ミラー(14)に光束を投入する他は第1実施例と 同一である。光束が投入・反射する光路を遮蔽するの で、回動ミラー(8)を正転・反転せしめる駆動源(1 8)は回動ミラー(8)の上方に位置している。正転・ 反転を繰り返す回動ミラー(8)で反射した光東は、回 50 4

転する多面体ミラー(14)に投入され、多面体ミラー(14)の鏡面に反射して道路上に残像として背の高い 鋸状の模様を照射するものである。したがって、第1実 施例では道路上に道路に直交する方向に背の低い鋸状の 模様が、第2実施例では道路上に道路に直交する方向に 不連続の斜線の模様が、第3実施例では道路上に道路に 直交する方向で、第1実施例の鋸の向きを90°振った 背の高い鋸状の模様が、残像として見えるものである。 しかしてレーザ光は指向性が強く、光束の広がりが少な いので横からは見えない。ただし、空気中にレーザ光を 散乱させる物質があれば横からでもみることができる。 本装置でレーザ光の走査速度を30回/秒と速くするこ とにより残像効果によりあたかも光蛍が見えるようにな る。

【0009】上記第1、2、3実施例で道路上に道路に 直交する方向に光束を照射する際のレーザ光照射装置に ついて説明したが、例えば中央分離線や路肩を表示する ために道路上に道路に平行する方向にある程度長い、そ して遠い先での光束の輝度が劣化しないような光束を照 射する際のレーザ光照射装置について図6、図7、図8 で説明する。図6は多面体ミラー(14)と道路上に道 路に平行する方向にある程度長い光東を照射する原理を 示すもので、道路上(A)で高さ(h)のところにレー ザ光照射装置の多面体ミラー(14)が据え付けられ、 直線上の(A)から(B)までの照射距離はh×tan θ で表示される。そして多面体ミラー(14)は一定速 度で回転している。すなわち、角速度が一定になってい る状態でレーザ光が4m直下のA点から多面体ミラー (14)が1°動き、A'点まで移動したとすると、そ の移動距離は $4m \times tan\theta = 0.0698$ となる。 又、直下より角度80°の位置Bから1°動いたB'ま での移動距離は $4m \times (tan \theta_2 - tan \theta_1) =$ 2.5699mとなる。このように照射角度が大きくな ると単位時間当たりに移動するレーザ光の距離が異なる 結果、明るさも照射装置の直下は明るく、遠ざかるほど 暗くなる。この問題を解消する手段として多面ミラー (14)の鏡面を図7の(14a)の如く1/tan θ で表示されるような曲線状にするか、又は多面体ミラー の回転速度を制御する方法が考えられる。 図6にしめす ようにレーザ光の最大走査角度を θ とし、レーザ照射装 置の道路からの高さをhとすると。レーザ光の最大到達 距離は $X = h \times t a n \theta$ となる。レーザ光の走査角度が 最大角度 θ / n になったときに、レーザ光の到達距離 xがX/nになれば角速度の変化とレーザ光の到達距離の 変化が比例し、A-A′間とB-B′間の距離は等しく なり、明るさが一定となる。走査角度 θ /nのときのレ ーザ光の到達距離は $x = h \times t \cdot a \cdot n \cdot (\theta / n)$ となる。 レーザ光の走査角速度の変化と到達距離の変化を比例さ せるための係数をAとすると、X/n=A×h×tan (θ/n) が成立すればよい。Aを求めると、

を得る。

したがって多面体ミラーの表面をAの曲線で加工するこ とによりレーザ光の走査角度の変化と到達距離の変化が

比例し、同一輝度の線を道路上に描くことができる。 【0010】又、多面体ミラー(14)の鏡面を1/t an θ で表示されるような曲線状に加工するのは難しい ので、該多面体ミラー (14) は図8で示す1/tan θ で表示されるような回動を繰り返すようにモータ(1 5)を駆動せしめるが、そのとき前述した係数Aの如 く、モータ(15)の回転速度を変えることで実現でき る。したがって、第1実施例(図2)の多面体ミラー (14)を図7で示すような鏡面を有する多面体ミラー (14a)に置き換えるか、あるいは第1実施例の多面 体ミラーを駆動するモータに図8で示すような動きをす るように記憶させることにより、直線状の道路に平行し て道路端上に同一の輝度で背の低い鋸状の長い光束を照 射することができるのである。そして、第1実施例(図 2)の回動ミラー(8)の回動を停止すれば、直線状の 光束を照射することができ、例えばレーザ光照射装置を 設置した地点から15mの道路は直線状でその先から曲 折しているときは、多面体ミラー(14a)を回転して 光束が15m先を照射した時点で、該多面体ミラー(1 4 a)を該多面体ミラーに投入される平行な光東に対し て水平方向に所定角度、首を振ることにより光束は直線 状の道路端15mに続いて曲折した道路に沿って照射さ れるものである。すなわち図2において、多面体ミラー (14)を図7に示すような曲線状の鏡面を有する多面 体ミラー(14a)に置き換え、多面体ミラー(14 a)を駆動するモータ(15)以外に上記多面体ミラー (14a)をレーザ光に対して水平方向に首を振るため のモータを別に設けておき、15mの直線状道路の先か ら右方向に道が曲折している場合、直線状の道路15m についてはモータ(15)を作動して多面体ミラー(1 4 a) を回転してレーザ光を照射し、15m先にレーザ 光が到達したら別のモータを作動させることで直線状の 道路の路肩に連続して曲線状の道路の路肩にレーザ光を 照射することができる。又、回動ミラー(8)を停止さ せずに回動させながら多面体ミラー(14a)を所定角 度首を振らせることにより、鋸状の中を有する長い光東 を道路端に照射することもできる。 具体的な装置は図9 に示している。図9において (14a) は $tan\theta$ の鏡 面を有する多面体ミラーで、モータ(15)で回動す る。モータ(19)は全体を水平方向に正転・反転させ るモータでその軸にゴム製の円板(20)が軸支してい る。(21)は多面体ミラー(14a)、モータ(1 5)(19)が載置している取付台、(22)はその取 付台(21)の支柱であり、(23)は装置全体が取付 られている架台である。円板(20)は取付台(21)

*タ(19)を作動すると円板(20)は架台(23)上 を回動するので取付台(21)は支柱(22)を中心と して水平方向に正転・反転する。

6

【0011】本発明になるレーザ光照射装置は密閉した ボックスに内蔵されて道路端に立設する支柱に据えつけ られており、電源として、商用電源あるいは長時間の使 用に耐える、例えばリチウム電池などが使用されてい 10 る。又、多面体ミラーで反射した光束を被照射体に照射 するために、該多面体ミラーの下部の窓には透光性のよ いガラスや合成樹脂板が装着されている。本実施例では レーザ光源として識別がしやすくパワーの低い赤色レー ザのHe-Neガスレーザを使用しているが、これに限 定するものではない。レーザ光源や各種駆動源などを道 路の信号機と連動することにより、信号機の表示と同調 してレーザ光を照射することも可能となるものであり、 本発明の精神の範囲内において任意に設計変更しうるも のである。

【0012】以上何れにしても、本発明は被照射体にレ ーザ光を照射する多面体ミラーで回動ミラーから反射す る平行なレーザ光束を受け、その回動ミラーの回動と多 面体ミラーの回転を制御することにより、被照射体に残 像として各種の模様を照射して標識等の被照射体の存在 を識別し、確認することができることを特徴とするもの で、好ましい第1の実施態様としてはレーザ光をビーム エキスパンダで平行光束として反射ミラーを介して、回 動ミラーに投光する装置と、回動ミラーから凹面ミラー に投光して被照射体に多面体ミラーから所定の巾と長さ の光束を照射するような装置とからなるレーザ光照射装 置であり、第2の実施態様としては前記回動ミラーを多 面体ミラーとして回転駆動するようにしたものであり、 第3の実施態様としてはレーザ光をビームエキスパンダ で平行光束として回動ミラーに投光し、回動ミラーから 反射したレーザ光を多面体ミラーに直接投光して被照射 体に照射するレーザ光照射装置である。以上の実施態様 によれば、回動ミラーの回動と多面体ミラーの回転を制 御することにより、残像として各種の模様を照射できる し、被照射体の確認が容易なレーザ光照射装置をうる目 的を達成できるのみならず、回動ミラーの回動角度、多 面体ミラーの鏡面巾で被照射体の照射する光束の巾を決 めることができ、かつ多面体ミラーの面の巾と照射装置 が据えつけられた高さによって被照射体に照射する光束 の長さを決めることのできるレーザ光照射装置をうる目 的を達成できる。又、多面体ミラーの鏡面を 1/tan hetaで表示される曲線状の鏡面とするか、又は多面体ミラ ーを 1 / t a n θ で表示される曲線状に駆動体で回転駆 動せしめることにより直線状の道路に平行した道路端に 長い光束を照射することができるという目的を達成でき の外側に位置して架台(23)と接しているので、モー*50 る。更に回動ミラーの回動を停止した状態で多面体ミラ

7

ーを水平方向に所定角度首振りができるように構成する ことにより直線状の道路端に続いて曲折した道路に沿っ て照射できるレーザ光照射装置をうる目的を達成でき る。

[0013]

【発明の効果】本発明になるレーザ光照射装置は、パワ ーは低く、視感度の高い赤色レーザ光を用いて、積雪 時、あるいは濃霧の際に道路上の交通標識を照射した り、又は、積雪時、あるいは濃霧の際に道路の路肩を照 射することによって、昼夜を問わず遠くから交通標識や 10 を示す線図 道路の路肩を識別することができるもので、とくにレー ザ光は指向性が強く、光束の広がりが少ないので横方向 から見えないが、降雪時、あるいはスモッグがかかって いると微粒子にレーザ光が反射して面として見えて、こ れが効果的に識別でき、交通事故を未然に防ぐことがで きるものであり、標識の種類に応じて任意に照射形式を 採用することができ、更にレーザ光は上方から下方に照 射されるので人間の網膜に直接投入することがないので 人体への影響は皆無であり、交通標識や道路の路肩表示 にとどまらず危険物が存在する危険区域表示などにも有 20 効であり、また本装置は陸上だけでなく例えば危険区 域、航路表示など水上・海上などでの標識などにも大い に活用できるものであって、各分野へ及ぼす効果は著し いものがある。そして請求項1の発明によればレーザ光 照射系に加えて回動ミラーの回動と多面体ミラーの回転 を制御することにより被照射体に残像として各種の模様 を照射することができる。請求項2、3の発明によれば 道路上に道路に平行する方向にある程度長い、そして遠 い先での光束の輝度が変化しないような光束を照射でき るという特徴がある。

【図面の簡単な説明】

【図1】本発明レーザ光照射装置の使用状態を示す説明 図

【図2】第1実施例にかかる本発明レーザ光照射装置の 説明図

【図3】第2実施例にかかる本発明レーザ光照射装置の 説明図

【図4】第3実施例にかかる本発明レーザ光照射装置の 説明図

8

【図5】回動ミラーの回動装置の説明図

【図6】多面体ミラーと道路上に道路に平行な方向にあ る程度長い光束を照射する原理を示す説明図

【図7】(イ)(ロ)(ハ)は多面体ミラーの鏡面の説 明図と $tan\theta$ 及び $1/tan\theta$ の曲線図

【図8】図7と同様な鏡面照射ができるように多面体ミ ラーを駆動せしめるための回転速度と照射角度との関係

【図9】直線道路と曲折した道路からなる道路を照射す る装置を示す説明図

【符号の説明】

- レーザ光照射装置 1
- 2 レーザ光
- 3 道路上に表示されている車両の停止線
- 道路上に表示されている横断歩道 4
- 5 レーザ光源
- ビームエキスパンダ 6
- 7 反射ミラー
- 8 回動ミラー
- 9 回動磁石
- 10 固定磁石
- 駆動コイル 11
- 12 駆動コイル
- 13 凹面ミラー
- 14 多面体ミラー
- モータ 15
- 多面体ミラー 16
- 30 17 モータ
 - 18 モータ
 - 19 モータ
 - 20 円板
 - 21 取付台
 - 22 支柱
 - 架台 23

【図2】

【図4】

【図7】

PAT-NO: JP408138420A

DOCUMENT- JP 08138420 A

IDENTIFIER:

TITLE: LASER BEAM

RADIATING DEVICE

PUBN-DATE: May 31, 1996

INVENTOR-INFORMATION:

NAME COUNTRY

TAKAHASHI, KAZUTOSHI

ASSIGNEE-INFORMATION:

NAME COUNTRY

ASAHI ENG CO LTD N/A

TIGER KK N/A

KK ZENIRAITO V N/A

APPL-NO: JP06274853

APPL-DATE: November 9, 1994

INT-CL (IPC): F21S001/10, G02B026/10,

H01S003/00

ABSTRACT:

PURPOSE: To improve visibility by providing an optical system to two-dimensionally deflect a laser beam source and a laser beam, and radiating the laser beam to a traffic-control sign or the like as a desired two-dimensional diagram.

CONSTITUTION: A laser beam radiating device 1 is installed on a pillar on the road side end, and display on a road, for example, a stopping line 3 attached to a pedestrian, crossing 4 is irradiated with a laser beam 2. The laser beam radiating device 1 is provided with a laser beam source such as a gas laser and a semiconductor laser, and a red laser beam having a high luminosity factor is radiated, for example, as a laser beam of 5mm through a proper optical system such as a beam expander. An optical reflector such as a rotary mirror and a polyhedron rotary mirror is provided, and the laser beam is deflected in the desired direction in a waveform in a desired period over a desired angle amplitude range. For example, the laser beam is scanned along a length of the stopping line 3 by the polyhedron rotary mirror, and at the same time, the laser beam is reciprocatively deflected along a width of the stopping line 3 by the

rotary mirror, and an irradiation afterimage having a saw-toothed waveform is drawn on the stopping line 3.

COPYRIGHT: (C)1996,JPO