

SÍLABO ECUACIONES DIFERENCIALES

ÁREA CURRICULAR: ÁREA DE MATEMÁTICA Y CIENCIAS BÁSICAS

CICLO IV CURSO DE VERANO 2017

I. CÓDIGO DEL CURSO : 090412

II. CRÉDITOS : 04

III. REQUISITOS : 090656 Cálculo II (Ing. Industrial)

: 090053 Algoritmo y Estructura de Datos I (Ing. Industrial)

: 090656 Cálculo II (Ing. Electrónica)

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Ecuaciones Diferenciales forma parte de la formación de ciencias básicas; tiene carácter teórico, práctico y aplicativo a los cursos de las especialidades de Ingeniería. Le permite al estudiante desarrollar la capacidad de transformar los fenómenos físicos en modelos matemáticos (ecuaciones diferenciales) y utilizar en forma apropiada los métodos para su resolución.

El curso se desarrolla mediante las unidades de aprendizaje siguientes:

I. Ecuaciones diferenciales de primer orden. II. Ecuaciones diferenciales lineales de orden superior. III. Transformadas de Laplace. IV. Ecuaciones diferenciales con coeficientes variables. Serie de potencias. V. Serie de Fourier.

VI. FUENTES DE CONSULTA:

Bibliográficas

Borreli, R., Coleman, C. (2005). *Ecuaciones Diferenciales, una perspectiva de modelación.* México, D, F.: Alfaomega.

Blanchard P., Devaney R. L., Hall G.R. (2006) *Differential equations* 3rd Edition. Cengage Learning.

Penney, D. (1993). Ecuaciones Diferenciales Elementales y problemas con condiciones en la Frontera. México: Ed. Prentice Hall.

Zill,D. (1988). Ecuaciones Diferenciales con Aplicaciones. México: Ed. Grupo Editorial Iberoamérica.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: ECUACIONES DIFERENCIALES DE PRIMER ORDEN

OBJETIVOS DE APRENDIZAJE

- Transformar un problema de ciencias en general en un modelo matemático (ecuación diferencial).
- Emplear diversos métodos matemáticos en su resolución

PRIMERA SEMANA

Primera sesión:

Prueba de entrada. Motivación: Problemas físicos y geométricos. Definición, orden y grado de una ecuación diferencial. Solución de una ecuación diferencial: general, particular, singular, explícita, implícita y paramétrica.

Segunda sesión:

Origen de las ecuaciones diferenciales: Problemas geométricos y físicos. Existencia y unicidad de la solución de una ecuación diferencial.

SEGUNDA SEMANA

Primera sesión:

Ecuaciones diferenciales de variables separables. Ecuaciones homogéneas.

Segunda sesión:

Ecuaciones diferenciales exactas. Ecuaciones reducibles a exactas. Factor integrante

TERCERA SEMANA

Primera sesión:

Ecuación diferencial lineal de primer orden. Ecuaciones reducibles a lineales. Ecuación de Bernoulli.

Segunda sesión:

Trayectorias ortogonales. Aplicaciones físicas.

UNIDAD II: ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR

OBJETIVOS DE APRENDIZAJE:

- Clasificar las ecuaciones lineales en homogéneas y no homogéneas.
- Presentar los métodos de resolución de ecuaciones lineales de orden superior.
- Decidir el método a seguir para la resolución de las ecuaciones lineales de orden superior.

CUARTA SEMANA

Primera Sesión:

Ecuaciones diferenciales lineales de segundo orden. Principios de superposición. Existencia y unicidad. Independencia lineal de dos funciones. Wronskianos. Solución general.

Segunda Sesión:

Ecuaciones diferenciales lineales de segundo orden con coeficientes constantes. Ecuación homogénea. Ecuación característica.

QUINTA SEMANA

Primera sesión:

Soluciones generales de ecuaciones diferenciales lineales. Principio de superposición. Existencia y unicidad. Dependencia lineal de funciones. Wronskianos. Soluciones generales. Ecuaciones no homogéneas.

Segunda sesión:

Ecuaciones homogéneas con coeficientes constantes. Ecuación característica.

SEXTA SEMANA

Primera sesión:

Aplicaciones. Vibraciones mecánicas. Movimiento libre no amortiguado. Movimiento amortiguado libre

Segunda sesión:

Ecuaciones diferenciales no homogéneas y el método de coeficientes indeterminados. Casos especiales.

SÉPTIMA SEMANA

Primera sesión:

Reducción de orden y ecuaciones de Euler – Cauchy. Aplicaciones.

Variación de parámetros.

Segunda sesión:

Oscilaciones forzadas y resonancia. Oscilaciones forzadas no amortiguadas. Modelación de sistemas mecánicos. Oscilaciones y amortiguadas forzadas.

Circuitos eléctricos.

OCTAVA SEMANA

Examen parcial

NOVENA SEMANA

Primera sesión:

Métodos abreviados involucrando operadores.

Segunda sesión:

Revisión de métodos importantes. Métodos numéricos para las ecuaciones diferenciales de primer orden y segundo orden. Método de Runge-Kutta.

UNIDAD III: TRANSFORMADAS DE LAPLACE

OBJETIVOS DE APRENDIZAJE:

- Transformar una ecuación diferencial en una ecuación algebraica.
- Obtener directamente la solución particular de una ecuación diferencial con condiciones iniciales.
- Aplicar el método a vibraciones mecánicas, circuitos eléctricos

DÉCIMA SEMANA

Primera sesión:

Definición básica. Propiedad lineal. Existencia. Transformada inversa.

Segunda sesión:

Fracciones parciales.

UNDÉCIMA SEMANA

Primera sesión:

Propiedades operacionales. Teoremas de traslación y derivadas de una transformada.

Segunda sesión

La función escalón unitario. Segundo teorema de traslación. Derivadas de una transformada. Transformadas de derivadas e integrales.

DUODÉCIMA SEMANA

Primera sesión:

Aplicación de la transformada de Laplace en la resolución de ecuaciones diferenciales

Segunda sesión:

Convolución. Transformada de la función periódica.

DECIMOTERCERA SEMANA

Primera sesión:

Aplicaciones. Una ecuación Integro-Diferencial. Circuito RLC.

Segunda sesión:

La función delta de Dirac. El Impulso unitario. Problemas diversos. Sistemas de ecuaciones diferenciales.

UNIDAD I V: ECUACIONES DIFERENCIALES CON COEFICIENTES VARIABLES. SOLUCIONES EN SERIE DE POTENCIAS

OBJETIVOS DE APRENDIZAJE:

- Elaborar las bases teóricas de las series de potencias.
- Presentar el método de las series de potencias.
- Resolver la ecuación de Legendre, ecuación de Bessel y las reducibles a ellas.
- Emplear los polinomios de Legendre y las funciones de Bessel en problemas de aplicación.

DECIMOCUARTA SEMANA

Primera Sesión:

Soluciones en serie de potencias. Soluciones en torno a puntos ordinarios.

Soluciones en torno a puntos singulares.

Segunda Sesión:

Ecuación de Legendre, Polinomios de Legendre. Ecuación de Bessel. Funciones de Bessel de primera clase. Funciones de Bessel de segunda clase. Propiedades.

Ecuación paramétrica de Bessel.

UNIDAD V. SERIE DE FOURIER

OBJETIVOS DE APRENDIZAJE

- Establecer la base teórica de la serie de Fourier y deducir las fórmulas para hallar sus coeficientes.
- Presentar las aplicaciones físicas a la mecánica y a los circuitos eléctricos

DECIMOQUINTA SEMANA

Primera Sesión:

Funciones periódica. Serie trigonométrica. Fórmulas de Euler. Funciones con período arbitrario. Desarrollos de medio rango.

Segunda Sesión:

Resolución de ecuaciones diferenciales parciales

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General

IX. PROCEDIMIENTOS DIDÁCTICOS

Método Expositivo – Interactivo. Disertación docente.

Método de Demostración – Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar qué aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor, ecran, proyector de multimedia. **Materiales:** Manual universitario: Tomo I y Tomo II. Separatas y guía de problemas.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF = (2*PE + EF)/3

PC = (P1 + P2 + 2*P3 - MN)/3

Donde:

PE : Promedio de prácticas EF : Examen Final (escrito)

P1...P4 : Prácticas Calificadas (escrito).

MN : Menor nota entre las Prácticas Calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS.

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Industrial e Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	R
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d).	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	R
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	R

(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase: Teoría Práctica Laboratorio
3 2 0

b) Sesiones por semana: Dos sesiones.

c) Duración: 5 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

MSc. Edgar Salas Paulino

XV. FECHA

La Molina, enero de 2017