PH 201 OPTICS & LASERS

Lecture_Lasers_1

LASER

L: LIGHT

A: AMPLIFICATION by

S: STIMULATED

E: EMISSION of

R: RADIATION

Laser is a device that amplifies light and produces a high direction, high-intensity beam that most often has a very pure frequency or wavelength.

LASER

Power : 10⁻⁹ to 10²⁰ W

Wavelengths: Microwave to soft X-rays (10¹¹ to 10¹⁷ Hz)

Pulse duration: As short as 5×10^{-15} s

Applications: Drill holes in most durable of materials

Weld detached retinas within human eye

Photograph needle (CD/DVD)

Treatment of high-strength materials

Special surgical knife for medical procedures

Target designators for military weapons

Supermarket

Laser Inventors

Invention: 1960 Nobel Prize: 1964

Charles Hard Townes
July 28, 1915
USA

Nicolay Gennadiyevich Basov 14.12.1922 – 01.07.2001 Russia

Alexander Prokhorov 11.07.1916 – 08.01.2000 Russia

Light sources

Light source	Light Power	Power density
Sun	10 ²⁶ Watt	5 x 10 ² W/cm ²
100 W Filament-lamp	3 Watt	10 ⁻² W/cm ²
He-Ne- Laser	1 mWatt	4 x 10 ⁴ W/cm ²
CO ₂ Laser	60 Watt	5 x 108 W/cm ²
Pulsed Laser	1 GWatt	10 ¹⁴ W/cm ²

LASER: Properties

Lasers generally have

- a narrower frequency distribution
- much high intensity
- much greater degree of collimation
- much shorter pulse duration

Properties of laser light

Laser light cannot:

- · be perfectly monochromatic
- · be perfectly directional
- · have perfect coherence

However...

Laser light is far more coherent than light from any other source.

Properties of LASER light

Monochromaticity:

Nearly monochromatic light

Example:

He-Ne Laser	Diode Laser
$\lambda_o = 632.5 \text{ nm}$	$\lambda_0 = 900 \text{ nm}$
$\Delta \lambda = 0.2 \text{ nm}$	$\Delta \lambda = 10 \text{ nm}$

Comparison of the wavelengths of red and blue light

Properties of LASER light

Directionality:

Conventional light source

Properties of LASER light

Coherence:

Incoherent light waves

Coherent light waves

Laser emitting process include:

- Stimulated emission (natural effect) &
- Optical feedback (provided by mirrors)

Laser; Brief History

Charles Townes developed stimulated emission process to construct a microwave amplifier, MASER (coherent beam of microwave λ ~ 1.25 cm to be used for communications).

1960: Theodore Maiman from Hughes Res. Lab. produced 1st laser using a Ruby crystal

4 1961: A. Javan, W. Bennet, & D. Hariott from Bell Lab. Developed 1st Gas laser (He + Ne)

❖ 1962: R. Hall from General Electric Res. Lab. demonstrated 1st semiconductor laser

1963: C.K.N. Patel from Bell Lab. discovered infrared carbon dioxide laser

Wave-Particle duality of light

Evidence for Wave Nature of Light

Diffraction & Interference

Evidence for Particle Nature of Light

Photoelectric effect & Compton effect

When UV light is shone on a metal plate in a vacuum, it emits charged particles (Hertz 1887), which were later shown to be electrons by J.J. Thomson (1899).

In 1923 Prince Louis de Broglie postulated that ordinary matter can have wave-like properties, with wavelength λ related to momentum p in same way as for light.

Particles have a momentum

The momentum can be also classified by the wavelength

Louis de Broglie(1923):

$$\lambda = \mathbf{h}/\mathbf{m} \cdot \mathbf{v} = \mathbf{h}/\mathbf{p}$$

Atomic transitions

Almost all electronic transitions that occur in atoms that involve photons fall into one of three categories:

$$\Delta E = h f$$

Atomic transitions

Spontaneous emission

Energy of the emitted photon = hf = AE

Stimulated emission

1 Photon with $\Delta E = hf$ produces two photons with the same energy

_

Atomic transitions

The frequency of the emitted photon going from Level 2 to 1 is given by:

$$\nu = \frac{E_2 - E_1}{h}$$

Defining Ni as the electron population of level i and considering the Boltzman equation which describes the relation between the electrons in level 1 and 2 at thermal equilibrium:

$$N_2 - N_1 = \exp\left(-\frac{E_2 - E_1}{k_B T}\right)$$

$$(k_B = Boltzman constant)$$

giving that $E_2 > E_1$ and $T > 0 \Rightarrow N_1 > N_2$!