CONTENTS

PREFACE	,
I STRUCTURE OF BIMATERIAL INTERFACES	
Supermodulus effect in metallic superlattices of grain boundaries	
Elastic properties of Cu-Co multilayers	13
Structural and elastic property changes in Ag/Co superlattices induced by high energy ion irradiation E. Fullerton, I. K. Schuller (San Diego, CA, U.S.A.), R. Bhadra, M. Grimsditch (Argonne, IL, U.S.A.) and S. M. Hues (Washington, DC, U.S.A.)	19
Ion-beam-sputtered Cu/Ni and Fe/Ni multilayers	25
Model studies of composition-modulated Cu-Ni superlattices	29
Interface electronic structure of XD [™] titanium aluminide composites	33
The dislocation structure and energy of NiO-Pt interfaces	41
II MECHANICAL INTERROGATION OF COMPOSITE INTERFACES	
The fracture energy of bimaterial interfaces	53
Failure of bimaterial interfaces	65
An indentation method for measuring residual stresses in fiber-reinforced ceramics	95
Measurement of interface strength by laser-pulse-induced spallation	105
Measurement of residual stresses in graphite-Al and graphite-Mg composites by acoustic emission	119
techniques	119
Ultimate shear strengths of copper-silica and nickel-silica interfaces	125
Measurement of the interfacial strength of fibers and thin films	133
Wave propagation in the presence of interface layers in composites	141
Three methods for measuring the ultrasonic velocity in thin films	149
Determination of the properties of composite interfaces by an ultrasonic method	155
Creep deformation of alumina-SiC composites	165

CONTENTS (continued)

III REACTIONS AT COMPOSITE INTERFACE	. 5

Thermodynamics and kinetics of reactions at interfaces in composites	173
Interface reactions and wetting in carbon-fiber-reinforced glass matrix composites	191
Interfacial studies of chemical-vapor-infiltrated ceramic matrix composites	203
Interfacial reactions in Ti/SiC layered films with and without thin diffusion barriers	225
Residual microstructural chloride in graphite-aluminum metal matrix composites	231
IV RELATION BETWEEN MATRIX PROPERTIES AND INTERFACIAL BEHAVIOR IN ORGANIC COMPOSITES	
Surface characterization of carbon fibers and interphase phenomena in epoxy-reinforced composites C. Sellitti, J. L. Koenig and H. Ishida (Cleveland, OH, U.S.A.)	235
Non-destructive characterization of epoxy-dicyandiamide interphases using surface-enhanced Raman scattering	245
Solid state ¹⁵ N nuclear magnetic resonance of ¹⁵ N-labeled nylon 6 and nylon 11: observation of multiple crystalline forms and amorphous regions	253
Nuclear magnetic resonance studies of the hydrolysis and molecular motion of aminopropylsilane HJ. Kang, W. Meesiri and F. D. Blum (Rolla, MO, U.S.A.)	265
Matrices that expand on curing for high strength composites and adhesives	271
An examination of the strain-induced orientation of hard segment domains in 4,4'-methylenebis(phenyl isocyanate)-based polyurethane-diacetylene segmented copolymers	281
The effect of polymeric matrix mechanical properties on the fiber-matrix interfacial shear strength L. T. Drzal (East Lansing, MI, U.S.A.)	289
Prediction of fiber-matrix interphase properties and their influence on interface stress, displacement and fracture toughness of composite material	295
Properties of the interphase in organic matrix composites	305
AUTHOR INDEX	313
SUBJECT INDEX	315

L 6