Лабораторная работа № 3.4.5 "Петля гистерезиса (динамический метод)"

Петров Артём Антонович, группа 721

04 декабря 2018

Цель работы: Изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

В работе ипользуются: стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания(ВИП), источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Основные формулы:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}} \tag{1}$$

$$I_{iH} = 0,4neS\sqrt{\frac{2kT_e}{m_i}}$$
 (2)

$$\omega_p = \sqrt{\frac{n_e e^2}{\varepsilon_0 m_e}} \tag{3}$$

$$r_d = \sqrt{\frac{kT_i\varepsilon_0}{ne^2}} \tag{4}$$

$$N_d = n_i \frac{4}{3} \pi r_d^3 \tag{5}$$

$$P = nkT (6)$$

Ход работы:

Снимая вольтамперную характеристику разряда, получаем $(\sigma_U=0,01\mathrm{B},\,\sigma_{I_p}=0,2\mathrm{mA})$:

U_1 , B	$I_p,_{MA}$
33,76	0,6
33,06	0,8
32,51	1,0
32,13	1,2
31,82	1,4
31,01	1,6
30,09	1,8
29,66	2,0
29,10	2,2
28,61	2,4
28,25	2,6
27,96	2,8

II D	ΤΛ
U_1 , B	I_p , MA
27,78	3,0
27,60	3,2
27,42	3,4
27,35	3,6
27,22	3,8
27,18	4,0
27,22	4,2
27,25	4,4
27,25	4,6
27,22	4,8
27,18	5,0

Откуда находим, что $R_{max} = -3500$ Ом.

Далее проведем измерения зондовых характеристик при разных токах (во всех измерениях $\sigma_U=0,01$ В ,а $\sigma_I=0,1$ мкА):

Таблица 1: $I_p = 5$ мА

Таблица 2: $I_p = 4$ м
А Таблица 3: $I_p = 3$ м А

Таблица 4: $I_p = 1,48$ м А

U_2 , B	I_2 , мкА
25,08	118,7
22,04	115,7
19,01	112,5
15,97	108,8
12,99	103,5
10,02	94,8
8,00	86,1
6,00	74,2
4,06	59,1
2,08	34,3
0,17	16,3
-0,23	-9,4
-2,00	-12,3
-4,02	-34,3
-6,00	-51,8
-8 ,00	-65,1
-10,00	-74,8
-13,03	-84,2
-16,07	-89,7
-19,08	-93,3
-22,02	-96,6
-25,08	-99,6

U_2 , B	I_2 , MKA	U_2 , B	I_2 , мкА
-25,08	-72,4	-25,08	-51,3
-22,05	-70,1	-21,98	-49,5
-19,04	-67,9	-19,08	-48,1
-16,11	-65,9	-16,01	-46,3
-13,09	-62,0	-12,96	-43,9
-10,07	-55,6	-10,00	-39,7
-7,99	-48,2	-8,01	-34,6
-5,98	-37,9	-6,01	-27,1
-3,96	-24,0	-4,00	-16,8
-1,97	-7,2	-2,05	-4,5
-1,03	-1,5	-0,85	-4,1
0,74	19,5	0,84	16,4
1,98	30,8	2,00	24,2
4,01	46,7	3,98	35,8
5,95	58,7	6,05	45,1
8,00	68,0	8,03	51,5
10,00	74,3	10,08	55,9
12,95	80,4	12,97	59,6
16,02	84,3	15,97	62,2
18,96	87,1	18,98	64,3
22,02	89,8	21,98	66,4
25,08	92,5	25,08	68,6

U_2 , B	I_2 , MKA
25,08	36,1
21,98	34,7
19,10	33,5
16,01	32,2
12,93	30,8
10,03	28,9
8,07	26,8
6,03	23,6
4,00	19,1
2,01	13,1
0,48	9,6
-0,94	-2,6
-2,07	-1,3
-4,06	-7,7
-6,00	-12,7
-8,02	-16,5
-9,93	-18,8
-12,98	-20,7
-15,98	-21,6
-19,03	-22,3
-22,00	-23,1
-25,08	-23,7

Таблица 5: $\sigma_{I_p}=0,02$ мА

R_{max} , Om	I_p, MA	kT_e , эВ	$n_e, 10^{10}/{\rm cm}^3$	$\omega, 10^{10} \mathrm{pag/c}$	r_d , cm * 10^{-4}	N_d	$\alpha * 10^6$
-3500	5,00	$3,69 \pm 0,11$	$6,89 \pm 0,12$	$1,479 \pm 0,013$	$4,558 \pm 0,040$	$27, 3 \pm 0, 9$	$2,851 \pm 0,050$
	4,00	$3,68 \pm 0,11$	$5,23 \pm 0,08$	$1,288 \pm 0,010$	$5,233 \pm 0,040$	$31, 4 \pm 0, 9$	$2,164 \pm 0,034$
-5500	3,00	$3,47 \pm 0,11$	$3,76 \pm 0,07$	$1,093 \pm 0,010$	$6,170 \pm 0,058$	$37,0 \pm 1,3$	$1,556 \pm 0,029$
	1,48	$3,20 \pm 0,07$	$1,94 \pm 0,03$	$0,785 \pm 0,005$	$8,590 \pm 0,063$	$51, 5 \pm 1, 4$	$0,803 \pm 0,012$

Вывод:Таким образом, зондовый метод исследования плазмы является удобным. С помощью зондовых характеристик мы смогли узнать некоторые параметры плазмы.