Instituto Federal de Educação, Ciência e Tecnologia Coordenação de Matemática Equações diferenciais Primeira lista em 28/11/2011 Prof. Stálio

1. Encontre a solução do problema de valor inicial dado.

a)
$$y' + 2y = te^{-2t}$$
, $y(1) = 0$.

b)
$$y' + (\frac{2}{t})y = \frac{\cos t}{t^2}, y(\pi) = 0, t > 0.$$

c)
$$y' - 2y = e^{2t}$$
, $y(0) = 2$.

d)
$$t^{3}y' + 4t^{2}y = e^{-t}$$
, $y(-1) = 0$, $t > 0$.

2. Encontre o valor de y_0 para o qual a solução do problema de valor inicial

$$y' - y = 1 + 3 \operatorname{sen} t, \ y(0) = y_0$$

permanece finita quando $t \to \infty$.

3. Mostre que, se a e λ são constantes positivas e se b é qualquer número real, então toda solução da equação

$$y^{'} + ay = be^{-\lambda t}$$

tem a propriedade $\lim_{t\to\infty} y = 0$.

4. Para o problema de valor inicial

$$y' = \frac{3x^2 - e^x}{2y - 5}, \ y(0) = 1$$

- a) Encontre a solução do problema de valor inicial em forma explicita.
- b) Desenhe o gráfico da solução.
- $c)\,$ Determine, pelo menos aproximadamente, o intervalo no qual a solução está definida.
- 5. Resolva a equação

$$\frac{dy}{dx} = \frac{ay+b}{cy+d}$$

onde a, b, c e d são constantes.

6. Suponha que é investida uma quantia S_0 a uma taxa de rendimento anual r composto continuamente.

- a) Encontre o tempo T necessário, em função de r para a qual a quantia original dobre o seu valor.
- b) Determine T se r = 7%.
- c) Encontre a taxa de rendimento que tem que ser usado para que o investimento inicial dobre em 8 anos.
- 7. A população de mosquitos em determinada área cresce a uma taxa proporcional à população atual e, na ausência de outros fatores, a população dobra a cada semana. Existem inicialmente 200.000 mosquitos na área e os predadores (pássaros, morcegos, etc.) comem 20 mosquitos por dia. Determine a população de mosquitos na área em qualquer instante t.
- 8. Suponha que uma determinada população satisfaz o problema de valor inicial

$$\frac{dy}{dx} = r(t)y - k, \ y(0) = y_0$$

onde a taxa de crescimento r(t) é dada por

$$r\left(t\right) = \frac{1 + \sin t}{5}$$

- e k representa a taxa predatória.
 - a) Estime a população inicial crítica y_c abaixo da qual a população se torne extinta.
 - b) Escolha outros valores para k e encontre o y_c correspondente para cada um deles.
- 9. Suponha que a temperatura de uma xícara de café obedece à lei do resfriamento de Newton. Se o café estava a uma temperatura de $200^{\circ}F$ ao ser colocado na xícara e, 1 minuto depois, esfriou para $190^{\circ}F$ em uma sala a $70^{\circ}F$, determine quando o café atinge a temperatura de $150^{\circ}F$.
- 10. Sejam v(t) e w(t), respectivamente,
as componentes horizontal e vertical da velocidade de uma bola de beise
bol rebatida (ou jogada). Na ausência de resistência do ar,
v e w satisfazem as equações diferenciais

$$\frac{dv}{dt} = 0 e \frac{dw}{dt} = -g$$

- a) Mostre que $v=u\cos A$ e $w=-gt+\sin A$, onde u é a velocidade inicial da bola e A é o ângulo inicial de elevação.
- b) Sejam x(t) e y(t), respectivamente, as coordenadas horizontal e vertical da bola no instante t. Se x(0) = 0 e y(0) = h, encontre x(t) e y(t) em qualquer instante t.