#### **Genetic Variant Classification**



Predicting whether a variant will have conflicting clinical classifications

### Summary

- Introduction
- Data
- Preprocessing
- Methods and Processes
- Results and comparison
- Conclusion



### Introduction

- Genetic variants is an alteration in the DNA sequence.
- These variants are classified by clinical laboratories into different categories: benign, likely benign, uncertain significance, likely pathogenic, and pathogenic. From laboratory to laboratory this variant classification is not consistent which means that a laboratory A can consider a given variant as likely benign whereas a laboratory B can consider it likely pathogenic.
- The goal of this project is to predict whether a variants will have conflicting clinical classification.

#### Conflicting Variant Classification - Class: 1



Clinical Significance

### Data

The source of the data I used in this project is ClinVar platform. The data is also published on kaggle platform.

The Data set contains over 65,000 rows and 46 columns.

|   | AF_ESP | AF_EXAC | AF_TGP | Protein_position | CDS_position | cDNA_position | PolyPhen | CADD_PHRED | POS    | INTRON | EXON | CLASS |
|---|--------|---------|--------|------------------|--------------|---------------|----------|------------|--------|--------|------|-------|
| 0 | 0.0000 | 0.00000 | 0.0000 | 11.0             | 11.0         | 61.0          | 0        | 11.390     | 955563 | 0      | 1    | 0     |
| 1 | 0.0000 | 0.42418 | 0.2826 | 45.0             | 45.0         | 95.0          | 0        | 8.150      | 955597 | 0      | 1    | 0     |
| 2 | 0.0000 | 0.03475 | 0.0088 | 67.0             | 67.0         | 117.0         | 0        | 3.288      | 955619 | 0      | 1    | 1     |
| 3 | 0.0318 | 0.02016 | 0.0328 | 261.0            | 261.0        | 311.0         | 0        | 12.560     | 957640 | 0      | 2    | 0     |
| 4 | 0.0000 | 0.00022 | 0.0010 | 526.0            | 526.0        | 576.0         | 0        | 17.740     | 976059 | 0      | 4    | 1     |
|   |        |         |        |                  |              |               |          |            |        |        |      |       |

### Preprocessing

- I dropped the columns contained over 90% of NAs.
- For the position columns, I replaced the null values with the mean of the adjacent values.
- I parsed the Intron and Exon columns to extract their length and position.
- I dropped some highly correlated features.
- I mapped the ordinal features
- I created dummy variables for the nominal variables



### **Methods and Processes**

- A) For feature selection I used:
  - Random Forest
- B) For prediction I used:
  - Random Forest
  - XGBoost
  - Logistic Regression
  - SGDClassifier
  - Gaussian Naive Bayes

### Results and Comparison

- A) Feature selection
- Allele Frequency from ExAC is the most important feature.
- I selected a subset of 65 variables for predictions.



## Results and Comparison

#### B) predictions

| Model     | XGBoost | Random<br>Forest | Logistic<br>Regression | GaussianNB | SGDClassifier |  |
|-----------|---------|------------------|------------------------|------------|---------------|--|
| Accuracy  | 0.7565  | 0.7574           | 0.7461                 | 0.675      | 0.7459        |  |
| ROC curve | 0.55    | 0.58             | 0.5                    | 0.55       | 0.5           |  |

Random Forest classifier outperformed the other models in terms of accuracy, and ROC curve.



### Conclusion

- Allele frequency, variant position in the chromosome, and deleteriousness score of the SNV(single nucleotide variant) are the most important features.
- The models in this project didn't perform well, but I believe with a more sophisticated models and more relevant features the performance can be improved substantially. Therefore, there is a possibility to solve this problem with machine learning algorithms.

# Questions???

