Chapitre 7. Groupes

1 Magmas et monoïdes

1.1 Magmas

Définition 1.1. Une loi de composition interne sur un ensemble *E* est une application

$$*: \begin{cases} E \times E \to E \\ (x,y) \mapsto x * y \end{cases}$$

Un magma est un ensemble muni d'une composition interne.

Définition 1.2. Soit (M,*) un magma.

Un sous-magma de M est une partie N de M telle que $\forall x, y \in N$, $x * y \in N$

Définition 1.3. Soit (M, *) et (N, \circ) deux magmas.

Un morphisme de magmas de M dans N est une application $f: M \to N$ telle que $\forall x, y \in M, f(x*y) = f(x) \circ f(y)$

1.2 Monoïdes

Définition 1.4. Soit (M, *) un magma.

* On dit que * est <u>associative</u> si

$$\forall x, y, z \in M, x * (y * z) = (x * y) * z$$

* On dit que $e \in M$ est <u>élément neutre pour * si</u>

$$\forall x \in M, e * x = x * e = x$$

Définition 1.5.

- * Un <u>monoïde</u> est un ensemble *M* muni d'une loi de composition interne * associative et possédant un élément neutre.
- * Le monoïde (M,*) est dit $\underline{\operatorname{commutatif}}$ si

$$\forall x, y \in M, x * y = y * x$$

Proposition 1.6 (Unicité de l'élément neutre). Soit (M,*) un monoïde.

- * L'élément neutre de M est unique.
- * Plus précisément, si $e_1, e_2 \in M$ vérifient

 $\forall x \in M$, $e_1 * x = x$ (neutre à gauche) et $\forall x \in M$, $x * e_2 = x$ (neutre à droite) Alors $e_1 = e_2$

Définition 1.7. Soit (M, \cdot) un monoïde et $x \in M$

On dit que M est inversible si $\exists y \in M$, $xy = yx = 1_M$

Proposition 1.8. Soit (M, \cdot) un monoïde et $x \in M$

- * Si *x* est inversible, l'inverse de *x* est unique.
- * Mieux : si $y_1, y_2 \in M$ vérifient $y_1x = xy_2 = 1_M$ (càd : y_1 inverse à gauche, y_2 à droite) Alors $y_1 = y_2$

1

Définition 1.9. Soit (M, \cdot) un monoïde et $x \in M$

- * Pour tout $n \in \mathbb{N}$, on définit $x^n = \begin{cases} 1_M \text{ si } n = 0 \\ x \cdot x \cdot x \cdot \dots \cdot x \text{ si } n > 0 \end{cases}$ (n facteurs) * Si x est inversible, on note également, pour tout $n \in \mathbb{Z}_-$

$$x^{n} = (x^{-1})^{|n|} = \begin{cases} 1_{M} \text{ si } n = 0\\ x^{-1} \cdot x^{-1} \cdot \dots \cdot x^{-1} \text{ si } n < 0 \end{cases} \quad (|n| \text{ facteurs})$$

Proposition 1.10. Soit (M, \cdot) un monoïde.

- * On a $\forall \in M$, $\forall n, m \in \mathbb{N}$ $\begin{cases} x^{n+m} = x^n x^m \\ (x^n)^m = x^{nm} \end{cases}$
- * Ces propriétés s'étendent aux exposants négatifs si x est inversible.

Définition 1.11. Soit (M, \cdot) un monoïde.

Un sous-monoïde de *M* est une partie *N* de *M* telle que :

- * $\forall x, y \in N, xy \in N (N \text{ stable sous } \cdot)$
- * $1_M \in \mathbb{N}$

Définition 1.12. Soit (M, \cdot) et (N, *) deux monoïdes.

Un morphisme de monoïdes de M dans N est une application $f: M \to N$ telle que :

- $* \forall x, y \in M, f(x \cdot y) = f(x) * f(y)$
- $* f(1_M) = 1_N$

Groupes: généralités 2

Définition 2.1

Définition 2.1. Un groupe est un ensemble *G* muni d'une loi ⋅ telle que :

- * La loi · est associative.
- * Il existe un élément neutre 1_G pour ·
- * Tout élément de *G* est inversible :

$$\forall x \in G, \exists y \in G : xy = yx = 1_G$$

Un groupe est dit (commutatif) ou abélien si la loi est commutative.

2.2 Sous-groupes

Définition 2.2. Soit (G, \cdot) un groupe.

Un sous-groupe de *G* est une partie *H* de *G* telle que :

- * $\forall x, y \in H, xy \in H$ (*H* stable sous ·)
- * $1_G \in H$
- * $\forall x \in H, x^{-1} \in H$ (*H* est stable par inverse)

Proposition 2.3. Soit (G, \cdot) un groupe et $H \subseteq G$

Alors *H* est sous-groupe de *G* ssi *H* est non vide et stable sous $(x, y) \mapsto xy^{-1}$

Proposition 2.4. Soit *G* un groupe et $(H_i)_{i \in I}$ une famille de sous-groupes de *G* Alors $\bigcap H_i$ est un sous-groupe de G

Théorème 2.5 (Classification des sous-groupes de \mathbb{Z}). Soit H un sous-groupe de $(\mathbb{Z}, +)$ Alors il existe $n \in \mathbb{N}$ tel que $H = n\mathbb{Z} = \{kn \mid k \in \mathbb{Z}\}$

2

2.3 Morphismes

Définition 2.6. Soit (G_1, \cdot) et (G_2, \times) deux groupes.

Un <u>morphisme</u> (ou <u>homomorphisme</u>) de groupes de G_1 dans G_2 est une application $f: G_1 \to G_2$ telle que $\forall g, g' \in G_1, f(g \cdot g') = f(g) * f(g')$

Un endomorphisme de G est un morphisme $G \rightarrow G$

Un isomorphisme $G_1 \rightarrow G_2$ est un morphisme bijectif.

Un automorphisme de G est un isomorphisme $G \rightarrow G$

On note parfois $\text{Hom}(G_1, G_2)$ l'ensemble des morphismes $G_1 \to G_2$

Proposition 2.7 (Stabilité par composition). Soit $(G_1, \cdot), (G_2, \cdot), (G_3, \cdot)$ trois groupes et

 $f \in \text{Hom}(G_1, G_2), g \in \text{Hom}(G_2, G_3)$

Alors $g \circ f \in \text{Hom}(G_1, G_3)$

Proposition 2.8. Soit $f: G_1 \to G_2$ un isomorphisme de groupes.

Alors $f^{-1}: G_2 \to G_1$ est aussi un isomorphisme.

Proposition 2.9. Soit $f: G_1 \to G_2$ un morphisme.

* Soit H_1 un sous-groupe de G_1

Alors $f[H_1]$ est un sous-groupe de G_2

En particulier, im(f) est un sous-groupe de G_2

* Soit H_2 un sous-groupe de G_2

Alors $f^{-1}[H_2]$ est un sous-groupe de G_1

En particulier, ker(f) est un sous-groupe de G_1

Proposition 2.10. Soit $f: G_1 \to G_2$ un morphisme de groupes.

Alors f est surjective ssi im $f = G_2$

Et f est injective ssi ker $f = \{1_{G_1}\}$

Définition 2.11. Soit *G* un groupe.

Deux éléments g_1 et g_2 sont <u>conjugués</u> si $\exists h \in G : g_2 = hg_1h^{-1}$

Proposition 2.12. La relation "être conjugué" est une relation d'équivalence.

2.4 Ordre d'un élément

Définition 2.13. Soit *G* un groupe et $g \in G$

- * On dit que g est <u>d'ordre fini</u> si $\exists n \in \mathbb{N}^* : g^n = 1_G$ Dans ce cas son ordre est le plus petit entier $n \in \mathbb{N}^*$ tel que $g^n = 1_G$
- * On dit que *g* est d'ordre infini s'il n'est pas d'ordre fini.

Théorème 2.14. Soit G un groupe et $g \in G$ un élément d'ordre $n \in \mathbb{N}^*$

Alors $\forall k \in \mathbb{Z}, g^k = 1_G \iff n \mid k$

3 Parties génératrices

3.1 Sous-groupe engendré par une partie

Définition 3.1. Soit *G* un groupe et $A \subseteq G$

On appelle <u>sous-groupe</u> (de *G*) engendré par *A* l'intersection de tous les sous-groupes de *G* contenant *A* Autrement dit

$$\langle A \rangle = \bigcap_{\substack{H \text{ sous-groupe de } G \\ A \subseteq H}} H$$

Définition 3.2. Soit *G* un groupe et $A \subseteq G$

On dit que A engendre G (ou est génératrice de G) si $\langle A \rangle = G$

Théorème 3.3 (Prolongement des identités, version groupes).

Soit G_1 , G_2 deux groupes et φ , ψ : $G_1 \to G_2$ deux morphismes.

Soit $A \subseteq G_1$ génératrice de G_1

Alors si φ et ψ coïncident sur A (càd si $\forall a \in A$, $\varphi(a) = \psi(a)$), on a $\varphi = \psi$

3.2 Groupes monogènes et cycliques

Définition 3.4.

- * Un groupe *G* est dit monogène s'il est engendré par un de ses éléments.
- * Un groupe est dit cyclique s'il est monogène et fini.

Théorème 3.5. Soit *G* un groupe monogène et $x \in G$ tel que $G = \langle x \rangle$ Alors :

- * (Cas infini) : Si l'ordre de x est infini, on a un isomorphisme φ : $\begin{cases} \mathbb{Z} \to G \\ k \mapsto x^k \end{cases}$
- * (Cas cyclique) : Si l'ordre de x est fini et noté $n \in \mathbb{N}^*$, on a un isomorphisme $\varphi : \begin{cases} \mathbb{Z}/n\mathbb{Z} \to G \\ [k]_n \mapsto x^k \end{cases}$

4 Théorème de Lagrange

4.1 Énoncé

Définition 4.1. Soit *G* un groupe fini.

L'ordre de G est son cardinal |G|

Théorème 4.2 (Théorème de Lagrange). Soit G un groupe fini et H un sous-groupe de G Alors |H| divise |G|

Corollaire 4.3. Soit *G* un groupe fini et $x \in G$

Alors x est d'ordre fini et l'ordre de x divise |G|

4.2 Démonstration : Classes à gauche modulo un sous-groupe

Définition 4.4. Soit *G* un sous-groupe et *H* un sous-groupe de *G*

Une classe à gauche modulo H est un ensemble de la forme $gH = \{gh \mid h \in H\}$ où g est un élément de G

Proposition 4.5. * Soit $g_1, g_2 \in G$

Alors on a $g_1H = g_2H \iff g_2^{-1}g_1 \in H$

* La relation $\mathcal R$ définie sur G par

 $\forall g_1, g_2 \in G, g_1 \mathcal{R} g_2 \iff g_1 H = g_2 H$

est une relation d'équivalence.

Définition 4.6. L'ensemble des classes à gauche (qui est donc l'ensemble des classe de cette relation d'équivalence) est noté G/H

Proposition 4.7. Toutes les classes à gauche modulo H sont en bijection avec H

4.3 Cas d'un morphisme de groupes

Proposition 4.8. Soit G_1 , G_2 deux groupes finis et $f:G_1\to G_2$ un morphisme de groupe.

Alors $|G_1| = |\ker f| \times |\operatorname{im} f|$