09.04.03 Прикладная информатика
Профиль «Машинное обучение и анализ данных»
Дисциплина «Математические основы анализа данных»
Лекция 8

Численные методы многомерной оптимизации

План лекции

- Классификации методов оптимизации
- Метод прямого поиска (метод Хука-Дживса)
- Метод деформируемого многогранника (метод Нелдера-Мида)
- Метод вращающихся координат (метод Розенброка)
- Градиентные методы

Классификация методов оптимизации

Метод прямого поиска (метод Хука-Дживса)

- Суть метода (на примере минимизации): Задаются некоторой начальной точкой x[0]. Изменяя компоненты вектора x[0], обследуют окрестность данной точки, в результате чего находят направление, в котором происходит уменьшение значений функции f(x).
- В выбранном направлении осуществляют спуск до тех пор, пока значение функции уменьшается.
- После того как в данном направлении не удается найти точку с меньшим значением функции, уменьшают величину шага спуска.
- Если последовательные дробления шага не приводят к уменьшению функции, от выбранного направления спуска отказываются и осуществляют новое обследование окрестности и т. д.

Алгоритм метода Хука-Дживса

- 1. Задаются координаты $x_i[0]$, i=1,...,n , начальной (базисной) точки x[0], и вектор изменения координат Δx .
- 2. Вычисляется значение функции f(x[0]) в базисной точке x[0].
- 3. Каждая переменная по очереди изменяется прибавлением длины шага. Таким образом, вычисляем значение функции $f(x[0] + \Delta x_1)$, где Δx_1 –компонента вектора в направлении оси Ox.
- 4. Если это приводит к уменьшению значения функции, то x[0] заменяется на $x[0] + \Delta x_1$. В противном случае вычисляется значение функции $f(x[0] \Delta x_1)$, и если ее значение уменьшилось, то x[0] заменяем на $x[0] \Delta x_1$.

- Если ни один из проделанных шагов не приводит к уменьшению значения функции, то точка x[0] остается неизменной и рассматриваются изменения в направлении оси Oy, т. е. находится значение функции $f(x[0] + \Delta x_2)$ и т. д.
- Когда будут рассмотрены все n переменные, мы будем иметь новую базисную точку x[1].

- Если x[1] = x[0], т. е. уменьшение функции не было достигнуто, то исследование повторяется вокруг той же базисной точки x[0], но с уменьшенной длиной шага.
- На практике удовлетворительным является уменьшение шага (шагов) в десять раз от начальной длины.
- 4. Если $x[1] \neq x[0]$, то производится поиск по образцу с пункта 3.

Блок-схема данного метода

Недостаток метода прямого поиска

• В случае сильно вытянутых, изогнутых или обладающих острыми углами линий уровня целевой функции он может оказаться неспособным обеспечить продвижение к точке минимума.

Метод деформируемого многогранника (метод Нелдера-Мида)

- Для минимизации функции n переменных f(x) в n-мерном пространстве строится многогранник, содержащий (n+1) вершину.
- Каждая вершина соответствует некоторому вектору x.
- Вычисляются значения целевой функции f(x) в каждой из вершин многогранника, определяются максимальное из этих значений и соответствующая ему вершина x[h].
- Через эту вершину и центр тяжести остальных вершин проводится проецирующая прямая, на которой находится точка x[q] с меньшим значением целевой функции, чем в вершине x[h].

Геометрическая интерпретация метода деформируемого многогранника

Алгоритм

1) Пусть f(x,y) функция, которую необходимо оптимизировать.

На первом шаге выбираем три случайные точки и формируем симплекс (треугольник). Вычисляем значение функции в каждой точке: $f(V_1)$, $f(V_2)$, $f(V_3)$.

• Сортируем точки по значениям функции f(x,y) в этих точках, таким образом получаем двойное неравенство: $f(V_2) \le f(V_1) \le f(V_3)$.

 Для удобства обозначим точки следующим образом:

 $b=V_2$, $g=V_1$, $w=V_3$, где b=best, g=good, w=worst — соответственно.

- 2) На следующем шаге находим середину отрезка, точками которого являются g и b.
- Т.к. координаты середины отрезка равны полусумме координат его концов, получаем:

$$mid = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

• В более общем виде можно записать так:

$$mid = rac{1}{n} \sum_{i=1}^n x_i$$

3) Применяем операцию отражения: уаходим точку x_r следующим образом

$$x_r = mid + \alpha(mid - w)$$

- Т.е. фактически отражаем точку w относительно mid. В качестве коэффициента берут как правило 1.
- Проверяем нашу точку: если $f(x_r) < f(g)$, то это «хорошая» точка.
- А теперь попробуем расстояние увеличить в 2 раза, вдруг повезёт и найдём точку ещё лучше.

• 4) Применяем операцию растяжения: Находим точку x_{ρ} следующим образом:

$$x_e = mid + \gamma(x_r - mid)$$

- В качестве γ принимаем γ = 2, т.е. расстояние увеличиваем в 2 раза.
- Проверяем точку x_e : если $f(x_e) < f(b)$, то нам повезло и мы нашли точку лучше, чем есть на данный момент, если бы этого не произошло, мы бы остановились на точке x_r .

• Далее заменяем точку w на x_e , в итоге получаем:

5) Если же нам не повезло и мы не нашли хороших точек, пробуем операцию сжатия, т.е. будем уменьшать отрезок и искать хорошие точки внутри треугольника.

• Пробуем найти хорошую точку x_c :

$$x_c = mid + \beta(w - mid)$$

• Коэффициент β принимаем равным 0.5, т.е. точка x_c на середине отрезка от w до mid.

Алгоритм заканчивается, когда:

- 1)Было выполнено необходимое количество итераций.
- 2) Площадь симплекса достигла определенной величины.
- 3) Текущее лучшее решение достигло необходимой точности.
- Как и в большинстве эвристических методов, не существует идеального способа выбора инициализирующих точек.
- Можно брать случайные точки, находящиеся недалеко друг от друга для формирования симплекса.
- Реализация на языке программирования python: https://habr.com/ru/post/332092/

Метод вращающихся координат (метод Розенброка)

 Этот метод использует свойство квадратичной функции, заключающееся в том, что любая прямая, которая проходит через точку минимума функции x*, пересекает под равными углами касательные к поверхностям равного уровня функции в точках пересечения.

- Из начальной точки x[0] осуществляют спуск в точку x[1] по направлениям, параллельным координатным осям.
- На следующей итерации одна из осей должна проходить в направлении у1 = x[1] — x[0], а другая – в направлении, перпендикулярном к у1.
- Спуск вдоль этих осей приводит в точку х[2], что даёт возможность построить новый вектор х[2] х[1] и на его базе новую систему направлений поиска.
- В общем случае данный метод эффективен при минимизации овражных функций, так как результирующее направление поиска стремится расположиться вдоль оси оврага.

Алгоритм метода вращающихся координат:

1. Обозначим через $p_1[k]$, ..., $p_n[k]$ направления координатных осей в некоторой точке x[k] (на k-й итерации). Выполняют пробный шаг h_1 вдоль оси $p_1[k]$, т. е.

$$x[k_1] = x[k] + h_1 p_1[k].$$

- Если при этом $f(x[k_1]) < f(x[k])$, то шаг h умножают на величину $\alpha > 1$;
- Если $f(x[k_1]) > f(x[k])$, то на величину ($-\alpha$), $0 < |\alpha| < 1$;

$$x[k] = x[k] + \alpha h_1 p_1[k].$$

• Полагая h_1 = a1 .получают x[k] = x[k] + a1p1[k].

2. Из точки $x[k_1]$ выполняют шаг h_2 вдоль оси $p_2[k]$:

$$x[k_2] = x[k] + a_1p_1[k] + h_2p_2[k].$$

• Повторяют операцию п. 1, т. е.

$$x[k_2] = x[k] + a_1p_1[k] + a_2p_2[k].$$

• Эту процедуру выполняют для всех остальных координатных осей. На последнем шаге получают точку

$$x[k_n] = x[k+1] = x[k] + p_n[k]$$
.

3. Выбирают новые оси координат $p_1[k+1]$, ..., $p_n[k+1]$. В качестве первой оси принимается вектор $p_1[k+1] = x[k+1] - x[k]$.

- Коэффициенты α подбираются эмпирически. Хорошие результаты дают значения $\alpha = -0.5$ при неудачных пробах $(f(x[k_i]) > f(x[k]))$ и $\alpha = 3$ при удачных пробах $(f(x[k_i]) < f(x[k]))$.
- В отличие от других методов нулевого порядка алгоритм Розенброка ориентирован на отыскание оптимальной точки в каждом направлении, а не просто на фиксированный сдвиг по всем направлениям.
- Величина шага в процессе поиска непрерывно изменяется в зависимости от рельефа поверхности уровня.

Градиентные методы

- Направление наибольшего возрастания функции характеризуется её градиентом.
- Противоположное направление это направление наиболее крутого убывания.
- Если функция задана аналитически, то вычисление градиента не представляет принципиальных трудностей.
- Наряду с определением градиентного вектора основным вопросом, решаемым в методах градиента, является выбор шага движения по градиенту.
- Выбор величины шага в значительной степени зависит от вида поверхности.
- Если шаг слишком мал, это потребует продолжительных расчетов.
- Если наоборот размеры шага слишком велики, можно «проскочить» оптимум.

Метод градиента

- Пусть в начальный момент значения X₁ и X₂ соответствуют точке M₀. Цикл расчета начинается с серии пробных шагов.
- Сначала величине X₁ дается небольшое приращение > 0, причем в это время X₂ неизменно.
- Затем определяется полученное при этом приращение ∆f, величины f, которое можно считать пропорциональным значению величины частной производной.

Иллюстрация метода градиента

- Далее производится приращение величины X_2 . В это время X_1 = const.
- Получаемое при этом приращение величины f является мерой другой частной производной.
- После нахождения составляющих градиента делается рабочие шаги в направлении вектора градиента, если стоит задача определения максимума и в противоположном направлении, если решается задача поиска минимума.

На (k+1)-ом шаге применяется формула:

$$X_i^{k+1} = \dot{X}_i^k \pm h^k * S^k$$

• Здесь h^k — величина шага

$$S^{k} = \frac{\nabla f(X^{k})}{\left\|\nabla f(X^{k})\right\|}$$

• Норма градиента определяется как

$$\|\nabla f(X^k)\| = \sqrt{\left(\frac{\partial f}{\partial X_1}\right)^2 + \left(\frac{\partial f}{\partial X_2}\right)^2}$$

Пример:
$$f(X) = X_1^2 + 25 X_2 \rightarrow min$$

- Примем величину шага $h = 1, \Delta X_1 = \Delta X_2 = 0.05.$
- В качестве исходной точки поиска возьмём точку $X^0 = (2, 2)$

Шаг	X ₁	X ₂	$\nabla f(X_1^k)$	$\nabla f(X_2^k)$	$\left\ \nabla f(X^k) \right\ $		S ₁ ^k		S ₂ ^k		f	
1	2	2	4.050	101.25	101.250		-0.040		-0.999		104.00	
1	1.960	1.001	3.970	51.30	51.453		-0.	-0.077		0.997	28.89	
1	1.883	0.004	3.816	1.45	4.082	-0.		.035	-0.355		3.55	
1	0.948	-0.351	1.94	-16.30	16.41	.416		119	0.993		3.98	
Величина Δf>0,поэтому уменьшаем шаг вдвое.												
0.5	0.5		-0.174	2.882	-7.45	7.988		018	0	0.466	2.76	
0.5		1.236	0.292	2.552	15.85	16.049		-0.07	9	0.494	3.66	
Величина Δf >0,поэтому уменьшаем шаг вдвое.												
0.25	;	1.326	0.059	2.702	4.20	4.9	94	-0.13	5	-0.21	1.84	

Метод Коши (наискорейшего спуска или крутого восхождения)

- При использовании градиентного метода основной объем вычислении приходится на вычисление градиента целевой функции в каждой точке траектории спуска.
- Целесообразно уменьшить количество таких точек без ущерба для самого решения. Согласно этому методу Коши, после определения направления поиска оптимума в начальной точке, в этом направлении делают не один шаг, а двигаются до тех пор пока происходит улучшение функции, достигая таким образом, экстремума в некоторой

ые методы многомерной оптимизации

точке.

- В этой точке вновь определяют направление поиска (с помощью градиента) и ищут новую точку оптимума целевой функции и т.д.
- В этом методе поиск происходит более крупными шагами, и градиент функции вычисляется в меньшем числе точек.
- Метод наискорейшего спуска сводит многомерную задачу оптимизации к последовательности одномерных задач оптимизации, которые могут решаться, например, методом золотого сечения или половинного деления.

Метод наискорейшего спуска

• Величину шага h можно определить из условия минимума $f(\mathbf{X}_k + h^{k*}S^k)$:

$$h^k = -\frac{\nabla^T f(X_k) S^k}{\left(S^k\right)^T * \nabla^2 f(X_k)}$$

Пример:
$$f(X) = X_1^2 + 25 X_2 \rightarrow min$$

• Начальные параметры:

• war
$$h = 1, \Delta X_1 = \Delta X_2 = 0.05$$

исходная точка X⁰ =(2, 2)

Этап	Шаг	\mathbf{X}_1	X ₂	$\frac{\partial f}{\partial X_1}$	_ <i>∂f</i>	f
	h^k			∂X_1	∂X_2	
0		2	2	4.050	101.25	104.00
1	2.003	1.92	-0.003	3.84	-0.15	3.19
2	1.85	0.07	0.07	0.14	3.5	0.13
3	0.07	0.07	-0.000			0.0049

Метод сопряжённых градиентов

- Квадратичная целевая функция *п* независимых переменных, имеющая минимум, может быть минимизирована за *п* шагов (или менее), если шаги предпринимаются в так называемых сопряжённых направлениях.
- Два вектора х и у называют А-сопряженными (или сопряженными по отношению к матрице А), если скалярное произведение х и Ау равно нулю.

$$(x, Ay) = 0$$

• В качестве матрицы берется

$$\left[\nabla^{2} f(x_{0})\right] = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} f}{\partial x_{2}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} \end{bmatrix}$$

$$\begin{aligned} &\alpha_k = argmin_{\alpha_k} F(x_{k-1} + \alpha_k p_k) \\ &p_{k+1} = -F'(x_k) + \beta_k p_k \end{aligned}$$

 eta_{k} можно вычислять по одной из трёх формул:

1.
$$\beta_k = -\frac{\langle F'(x_k), F'(x_k) \rangle}{\langle F'(x_{k-1}), F'(x_{k-1}) \rangle}$$
 - Метод Флетчера - Ривса (Fletcher–Reeves method)

3.
$$\beta_k = \frac{\langle F''(x_k)p_k, F'(x_k)\rangle}{\langle F''(x_{k-1})p_k, p_k\rangle}$$

Справочная информация

- http://www.machinelearning.ru/wiki/index.ph
 p?title=Metod_conpяжённых градиентов
- В машинном обучении применяется градиентный бустинг:
- https://neurohive.io/ru/osnovy-datascience/gradientyj-busting/