Abstract Harmonic Analysis

Ikhan Choi

November 3, 2022

Contents

Ι	Fourier analysis on groups	3
1	Locally compact groups 1.1 Topological groups	4 4 4 5 7 7
2	Pontryagin duality 2.1 Dual group	9 9 9
3	Spectral synthesis 3.1 Closed ideals of the colvolution algebra	10 10
II	Representation theory	11
4	Unitary representations 4.1	12 12 12 12
5	Compact groups 5.1 Peter-Weyl theorem	13 13 13 13
6	Mackey machine 6.1 Example of non-compact Lie groups	14 14
ΙI	I Kac algebras	15
IV	V Topological quantum groups	16
7	Compact quantum groups	17

8	Locally compact quantum groups	18
	8.1 Multiplicative unitaries	. 18

Part I Fourier analysis on groups

Locally compact groups

1.1 Topological groups

1.2 Haar measures

- In $C_0(\Omega)$ theory for metrizable Ω , it was enough to consider **finite measures**: most applications including PDE, probability theory, spectral theory of single operators.
- In $C_0(\Omega)$ theory for non-metrizable Ω , it is enough to consider **regular finite measures** since a σ -finite Radon measure is regular: Choquet theory, spectral theory of general C*-algebras.
- In $C_c(\Omega)$ theory for non-metrizable Ω , we need general **Radon measures**, which may not be σ -finite: Haar measures on general locally compact groups.
- 1.1 (Non- σ -finite measures). Following technical issues are important
 - (a) Positive linear functionals on C_c
 - (b) The Fubini theorem
 - (c) The Radon-Nikodym theorem
 - (d) The dual space of L^1 space
- **1.2** (Radon measures). Let Ω be a locally compact Hausdorff space. A *Radon measure* is a Borel measure μ on Ω such that
 - (i) μ is outer regular for every Borel set: for every Borel set E we have

$$\mu(E) = \inf{\{\mu(U) : E \subset U, U \text{ open}\}},$$

(ii) μ is inner regular for every open set: for every open set U we have

$$\mu(U) = \inf{\{\mu(K) : K \subset U, K \text{ compact}\}},$$

(iii) μ is locally finite.

Radon measures generalize finite regular Borel measures which corresponds to positive linear functionals on $C_0(\Omega, \mathbb{R})$, but may be infinite. This infiniteness makes them define positive linear functionals on $C_0(\Omega, \mathbb{R})$, not $C_0(\Omega, \mathbb{R})$.

(a) A σ -finite Radon measure is regular.

- (b) If every open subset of Ω is σ -compact, then a locally finite measure is Radon.
- (c) $C_c(\Omega)$ is dense in $L^p(\mu)$ for $1 \le p < \infty$.
- **1.3** (Riesz-Markov-Kakutani representation theorem for C_c). Let Ω be a locally compact Hausdorff space and Consider the following map:

{Radon measures on
$$\Omega$$
} $\overset{\sim}{\to}$ {positive linear functionals on $C_c(\Omega, \mathbb{R})$ }, $\mu \mapsto (f \mapsto \int f \, d\mu).$

(a) a

1.4 (Existence of the Haar measure).

1.2.1 Measures on locally compact Hausdorff spaces

compact closed set not containing infty open open not containing infty closed closed set containing infty

for a measure that "vanishes at infty" = tight two definitions of inner regularity is equivalent.

IRK -> IRF IRK + sigma finite -> tight

Thm. The measure contructed by RMK is If and regular(cpt version). 1. open set is approx by cpt sets (by def of rho, if X is LCH) 2. meas set is approx by opn sets (by def of outer meas) 3. sigma finite set is approx by cpt sets (by thm)

Consider

for locally compact Hausdorff *X* .

 $\mathsf{Borel}_{locfin} \to \mathsf{pos} \ \mathsf{lin} \ \mathsf{on} \ C_c \ \mathsf{is} \ \mathsf{surjective} \ \mathsf{for} \ \mathsf{all} \ \mathsf{topological} \ \mathsf{spaces}.$

 $\operatorname{regBorel}_{fin} \to C_b^{*+}$ is injective for normal spaces.

regBorel_{locfin} $\rightarrow C_c^{*+}$ is injective for locally compact Hausdorff spaces.(maybe)

Lemma 1.2.1. Let μ be a Borel measure on a LCH X. Then, μ is inner regular on open sets iff

$$\mu(U) = \|\mu\|_{C_*(U)^*}$$

for every open U in X.

Proof. (\Leftarrow) (\geq) For $f \in C_c(U)$, we have

$$|\int f d\mu| = |\int_{U} f d\mu| \le \mu(U) ||f||.$$

(\leq) Since μ is inner regular on U, there is a compact set $K \subset U$ such that $\mu(U) - \mu(K) < \varepsilon$ (for the case $\mu(U) = \infty$, we can deal with separately). We can find a nonnegative function $f \in C_c(U)$ with $f|_K \equiv 1$ and $f \leq 1$ by the construction of Urysohn. Then, for all $\varepsilon > 0$ we have

$$\mu(U) < \mu(K) + \varepsilon \leq \int f \, d\mu + \varepsilon \leq \|\mu\|_{C^*_\epsilon(U)} + \varepsilon.$$

(⇒) Let $f ∈ C_c(U)$ be a function such that ||f|| = 1 and

$$\mu(U)-\varepsilon<\int f\,d\mu.$$

Let K = supp(f). Then

$$\mu(K) \ge \int f > \mu(U) - \varepsilon.$$

Proposition 1.2.2. A Radon measure is inner regular on all σ -finite Borel sets. (Folland's)

Proof. First we approximate Borel sets of finite measure, with compact sets. Let E be a Borel set with $\mu(E) < \infty$ and U be an open set containing E. By outer regularity, there is an open set $V \supset U - E$ such that

$$\mu(V) < \mu(U-E) + \frac{\varepsilon}{2}.$$

By inner regularity, there is a compact set $K \subset U$ such that

$$\mu(K) > \mu(U) - \frac{\varepsilon}{2}.$$

Then, we have a compact set $K - V \subset K - (U - E) \subset E$ such that

$$\begin{split} \mu(K-V) &\geq \mu(K) - \mu(V) \\ &> \left(\mu(U) - \frac{\varepsilon}{2}\right) - \left(\mu(U-E) + \frac{\varepsilon}{2}\right) \\ &\geq \mu(E) - \varepsilon. \end{split}$$

It implies that a Radon measure is inner regular on Borel sets of finite measures.

Suppose E is a σ -finite Borel set so that $E = \bigcup_{n=1}^{\infty} E_n$ with $\mu(E_n) < \infty$. We may assume E_n are pairwise disjoint. Let K_n be a compact subset of E_n such that

$$\mu(K_n) > \mu(E_n) - \frac{\varepsilon}{2^n},$$

and define $K = \bigcup_{n=1}^{\infty} K_n \subset E$. Then,

$$\mu(K) = \sum_{n=1}^{\infty} \mu(K_n) > \sum_{n=1}^{\infty} \left(\mu(E_n) - \frac{\varepsilon}{2^n} \right) = \mu(E) - \varepsilon.$$

Therefore, a Radon measure is inner regular on all σ -finite Borel sets.

Theorem 1.2.3. If every open set in X is σ -compact(i.e. Borel sets and Baire sets coincide), then every locally finite Borel measure is regular.

Proposition 1.2.4. In a second countable space, every open set is σ -compact(i.e. Borel sets and Baire sets coincide).

Two corollaries are presented as follows:

1.5. Let *X* be compact. A positive linear functional ρ on C(X) is bounded with norm $\rho(1)$.

Proof. Since
$$0 \le \rho(\|f\| \pm f) = \|f\| \rho(1) \pm \rho(f)$$
, we have $|\rho(f)| \le \rho(1) \|f\|$.

- **1.6.** Let *X* be a locally compact Hausdorff space.
 - (a) The Baire σ -algebra is generated by compact G_{δ} sets.
 - (b) If *X* is second countable, then every Baire set is Borel.

Solution. (b) (A second countable locally compact space is σ -compact.

Since X is σ -compact and Hausdorff, every closed set is a countable union of compact sets, so the Borel σ -algebra on X is generated by compact sets.)

Since locally compact Hausdorff space is regular, the Urysohn metrization implies X is metrizable, and every closed sets in metrizable space is G_{δ} set.

1.7. Let X be compact. There is a map from the set of finite Baire measures to the set of positive linear functionals on C(X).

Solution. A function in C(X) is Baire measurable and bounded. Thus the integration is well-defined. \Box

1.8. Let X be compact. There is a map from the set of positive linear functionals on C(X) to the set of finite regular Borel measures.

Solution. i. and ii. and iii. of Theorem 7.2.

1.9. Let *X* be compact. Let ρ be a positive linear functional on C(X). Let ν be the regular Borel measure associated to ρ . Then, $\rho(f) = \int f \, d\nu$.

Solution. iv. of Theorem 7.2.

1.10. Let *X* be compact. Let ν be a finite regular Borel measure. Let ν' be the regular Borel measure associated to the positive linear functional $f \mapsto \int f \, d\nu$. Then, $\nu = \nu'$ on Borel sets.

Solution. Theorem 7.8.

The two results above establish the correspondence between positive linear functionals and regular Borel measures. The following is an additional topic: Borel extension of Baire measures.

1.11. Let X be compact. Let μ be a finite Baire measure. Let ν be the regular Borel measure associated to the positive linear functional $f \mapsto \int f d\mu$. Then, $\mu = \nu$ on Baire sets.

Solution. Let μ , ν be finite Baire measures. Enough to show if $\int f d\mu = \int f d\nu$ then $\mu = \nu$ according to the preceding two results.

Enough to show the regularity of Baire measures.

1.3 Group algebra

- 1.12 (Modular functions).
- 1.13 (Convolution).

1.4 Structure theorems

Exercises

1.14.

Problems

1. Let Ω be a topological space. For every positive linear functional I on $C_c(\Omega, \mathbb{R})$, show that there exists a Borel measure μ on Ω such that $I(f) = \int f \, d\mu$ for all $f \in C_c(\Omega, \mathbb{R})$. (Hint: Consider the uncountable wedge sum of circles as an example.)

Solution. 1. The constructed Carathéodory measure μ on Ω is outer regular Borel measure, but we do not have local finiteness. Everything is same to when Ω is locally compact Hausdorff except that $\mu(\operatorname{supp} f)$ may be infinite. Now it is enough to show $I(\min\{f,\frac{1}{n}\})$ converges to zero as $n \to \infty$ for $f \in C_c(\Omega,[0,1])$.

Let $U:=f^{-1}((0,1])$. For $g\in C_0(U,[0,1])$, it clearly has compact support, and and it is also continuous because $g^{-1}((a,1])$ is open in U and $g^{-1}([a,1])$ is closed in K for any $0< a \le 1$, so that we have $C_0(U)\subset C_c(X)$. We also have $f_1\in C_0(U)$ since $f_1^{-1}([\varepsilon,1])$ is a compact set in U for every $\varepsilon>0$. Therefore, I is a positive linear functional on $C_0(U)$. Assume that I is not bounded; there is no constant C such that $g\in C_0(U,[0,1])$ implies $I(g)\le C$. Construct a sequence $(h_k)_{k=1}^\infty$ in $C_0(U,[0,1])$ such that $I(h_k)\ge 2^k$, and define $h:=\sum_{k=1}^\infty h_k/2^k$ so that $h\in C_0(U,[0,1])$. Then, $I(h)\ge \sum_{k=1}^m I(h_k)/2^k\ge m$ for every m>0, it contradicts to the assumption, which means that there is a constant C such that $I(g)\le C$ for all $g\in C_0(U,[0,1])$, and it proves $I(f_1)\le C/n\to 0$ as $n\to\infty$. Therefore, $I(f)=\int f\,d\mu$.

Pontryagin duality

- 2.1 Dual group
- 2.2
- 2.3 Fourier inversion
- 2.1 (Positive definite functions).
- 2.2 (Bochner's theorem).
- **2.3** (Fourier inversion theorem).
- **2.4** (Plancherel's theorem).

Spectral synthesis

3.1 Closed ideals of the colvolution algebra

Part II Representation theory

Unitary representations

4.1

4.1 (Schur's lemma).

4.2 Group C*-algerbas

4.2 (Operator-value Fourier transform).

4.3 Functions of positive type

- **4.3** (Functions of positive type).
- 4.4 (Fourier-Stieltjes algebra).
- **4.5** (GNS construction for locally compact groups). Let G be a locally compact group. By a state of $C^*(G)$, we could construct the GNS representation of G. An analog of GNS construction for $L^1(G)$ without completion is doable, when given a function of positive type on G, instead of a state.

Compact groups

- 5.1 Peter-Weyl theorem
- 5.2 Tannaka-Krein duality
- 5.3 Example of compact Lie groups

Mackey machine

6.1 Example of non-compact Lie groups

Wigner classification

Part III Kac algebras

Part IV Topological quantum groups

Compact quantum groups

Locally compact quantum groups

8.1 Multiplicative unitaries