Title

$Author^{1,2}$

¹ Affiliation 1 ² Affiliation 2

Hosting Site: Hosting Site

Mentor: Mentor²

<u>Collaborators</u>: Collaborator²

Mentors Signature:

Abstract

Abstract text

Introduction

Text

Description of the Research Project

Figure 1 is a PINN [RPK19].

Figure 1: An example figure.

Contributions Made to the Research Project

Text

Future Work

Text

What new skills and knowledge did you gain?

Text

Research Experience Impact on My Academic/Career Planning

Text

Relevance to the mission of NSF

Text

Acknowledgements

Student is funded through the National Science Foundation (NSF) Mathematical Sciences Graduate Internship (MSGI) program which is administered by ORAU through the Oak Ridge Institute for Science and Education (ORISE) under an agreement between NSF and the U.S. Department of Energy (DOE).

References

[RPK19] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378:686–707, 2019.