# **DIGITAL COMMUNICATIONS PRESENTATION OF PROGRAMMING WORK** SUBJECT: CRC IMPLEMENTATION

### Cyclic Redundancy Check (CRC)

- For each data block D of k bits, the transmitter
   generates a Frame Check Sequence (FCS) of n-k bits,
  - such that <u>the resulting total sequence T of n bits</u> is exactly divisible by a predetermined number P of n-k+1 bits.
- When the sequence T of n bits reaches the receiver,
  - then its correctness is checked by dividing it by the predefined number.
  - If this division does not result in a balance, then the box is <u>accepted</u>.
  - If there is a remainder, then it is concluded that the frame has been corrupted and a retransmission is requested.

- It is worth noting that modulo-2 arithmetic is used to calculate the FCS as well as to verify the correctness of the received frame.
  - That is, binary arithmetic in which there are no prisoners or loans.

### Reasons for using modulo-2 arithmetic

- the simplicity that characterises this arithmetic and the resulting ease of implementation.
- The modulo-2 division leaves a remainder 1 bit smaller than the normal division
  - which leads to a slight reduction in transmitted bits
     error control errors that overload the communication system.

## ERROR DETECTION CODES modulo-2 arithmetic

- Binary addition/subtraction without a prisoner
  - This is essentially the XOR operation

| 1111  | 1111  | 11001  |
|-------|-------|--------|
| +1010 | -1010 | x11    |
|       |       |        |
| 0101  | 0101  | 11001  |
|       |       | 11001  |
|       |       |        |
|       |       | 101011 |

### ERROR DETECTION CODES CRC calculation

- Let's say:
  - D is the sequence of k bits of data to be transmitted,
  - F is the FCS sequence of n-k bits,
  - T is the sequence of n bits to be transmitted
  - P is the predefined number of n-k+1 bits by which the sequence T should be divisible.
    - OThe first and last bit should obviously be 1
- o The sequence T can be written as: T = 2<sup>n-k</sup> D+ F
  - Before the T sequence is transmitted, a control sequence F must be calculated.



## ERROR DETECTION CODES CRC calculation

- To calculate the error control sequence F
   the following algorithm is used:
  - We place n-k zeros to the right of D so as to obtain
  - Divide 2<sup>n-k</sup> D by P
  - We use as F the remainder R of the above division

$$\frac{2^{n-k}D}{P} = Q + \frac{R}{P}$$

$$T = 2^{n-k}D + R$$

## ERROR DETECTION CODES CRC calculation

## EXAMPLE OF CALCULATION OF THE FCS AT THE TRANSMITTER AND CORRECTNESS CHECK AT THE RECEIVER

### Let's say:

$$D = 1010001101 (10 \text{ bits})$$

$$P = 110101 (6 \text{ bits})$$

$$n = 15, k = 10$$

$$(n-k)=5.$$

**TRANSMITTER:** CALCULATION OF R (5 bits) TO BE USED AS ERROR CONTROL BITS **F** 

#### CALCULATION OF THE FCS AT THE TRANSMITTER



### **CONTROL ON THE RECIPIENT**



## PRONOUNCEMENT OF PROGRAMMING WORK

- As part of the assignment, you are asked to implement the CRC error detection algorithm.
- O Build a program in the programming language of your choice, which includes the following functions:
  - Generation of randomly selected binary messages of k bits, in the transmitter (data blocks of k bits, in each bit of which 0 and 1 have equal probability of occurrence).
  - Calculation of the CRC (FCS) corresponding to each message. A binary number P given by the user will be used as a template for calculating the CRC.
  - Transmission of the message and the CRC through an open channel with Bit Error Rate BER and reception of the "corrupted" message at the receiver.
  - Check the CRC on the receiver.

### **WORK STATEMENT**

- O Deliverables: Report which will include:
  - a) The program you built, examples of how it works and a brief description of the most important parts of your code.
  - o b) For *k*=20, P=110101 and BER=10⁻³ , calculate:
    - The percentage of messages that arrive with an error (in the data block or CRC) to the recipient.
    - The percentage of messages detected as incorrect by the CRC.
    - The percentage of messages that arrive with an error at the recipient and are not detected by the CRC.

Tip: To get reliable results, create as many messages as possible.