

Please write clearly in	ı block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 Pure Mathematics

Thursday 12 January 2023 07:00 GMT Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
TOTAL		

FM03

A curve $\ C_1$ has polar equation $\ r=6+2\sin\theta$ where $\ 0\leq\theta\leq2\pi$ A circle $\ C_2$ has polar equation $\ r=3$ (a) Show that $\ C_1$ and $\ C_2$ do not intersect. [1 ma] (b) Show that the area of the region bounded by $\ C_1$ and $\ C_2$ is $\ 29\pi$ [4 mark]		Answer all questions in the spaces provided.	
A circle C_2 has polar equation $r=3$ Show that C_1 and C_2 do not intersect. [1 ma] (b) Show that the area of the region bounded by C_1 and C_2 is 29π		A curve C_1 has polar equation	
a) Show that C_1 and C_2 do not intersect. [1 ma] (b) Show that the area of the region bounded by C_1 and C_2 is 29π		$r = 6 + 2\sin\theta$ where $0 \le \theta \le 2\pi$	
[1 ma]		A circle C_2 has polar equation $r=3$	
	(a)	Show that C_1 and C_2 do not intersect.	[1 mark]
	(b)	Show that the area of the region bounded by $ C_{\! 1} $ and $ C_{\! 2} $ is $ 29\pi $	[4 mayles]
			[4 marks]

	$\begin{bmatrix} -3 & 1 \\ -16 & 5 \end{bmatrix}^n = \begin{bmatrix} 1-4n & n \\ -16n & 4n+1 \end{bmatrix}$	
		[5
<u> </u>		
-		

Do not write outside the box

	$x \mathrm{d}x = \frac{5\pi}{6} + 1$	[5
-		

[3 marks]

4	The position	vectors of	three	points	are
---	--------------	------------	-------	--------	-----

$$\mathbf{u} = \begin{bmatrix} 4 \\ 3 \\ 8 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} -1 \\ n \\ n \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} 5 \\ -1 \\ n \end{bmatrix}$$

where n is a constant.

The vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are coplanar.

4 (a) Use a scalar triple product to find the two values of
--

	Answer
For each value of	n found in part (a) , express u in terms of v and w
	[2 marks]
	Answer

Turn over ▶

5

4 (b)

5	A curve has Cartesian equation
	$4y^2 = (2+x)(2-3x)$
	Find the polar equation of the curve in the form
	$r = \frac{k}{f(\cos \theta)}$
	where k is a constant and $r > 0$ [4 marks]

Answer

	$\frac{\mathrm{d}y}{\mathrm{d}x} + (\tan x)y = \tan^3 x$	where	$0 \le x < \frac{\pi}{2}$	
	C.		_	[6]
Answ	or			

7		The quartic equation	
		$z^4 + pz + q = 0$	
		where p and q are constants, has roots $\alpha,\ \beta,\ \gamma$ and δ	
7	(a)	Write down the value of $\alpha + \beta + \gamma + \delta$	[1 mark]
		Answer	
7	(b)	It is given that $\alpha+\beta+\gamma=2-i$ and that both p and q are real.	
7	(b) (i)	Find the value of p	[4 marks]
		$p = \underline{\hspace{1cm}}$	

7	(b) (ii)	Show that $\alpha^4 + \beta^4 + \gamma^4 + \delta^4 = -220$	
			[3 marks]
		-	
		-	

8		ine matrix w i is defined as	
		$\mathbf{M} = \begin{bmatrix} 1 & 0 & -c \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	
		where c is a constant.	
8	(a) (i)	Find the value of c for which ${\bf M}$ is a singular matrix. [2 mark	(s]
		c =	
8	(a) (ii)	Given that ${\bf M}$ is a non-singular matrix, find ${\bf M}^{-1}$ in terms of c	_
8	(a) (ii)	Given that $ {\bf M} $ is a non-singular matrix, find $ {\bf M}^{-1} $ in terms of $ c $ [5 mark	(s]
8	(a) (ii)		(s]
8	(a) (ii)		(s]
8	(a) (ii)		(s]
8	(a) (ii)		(s]
8	(a) (ii)		(s]
8	(a) (ii)		(s]
8	(a) (ii)		(s]
8	(a) (ii)		(s]
8	(a) (ii)		(s]
8	(a) (ii)		(s]

		Do not write outside the box
	Answer	
8 (b)	Given that $\lambda = 1$ is the only real eigenvalue of M find all the possible values of c [5 marks]	
	Answer	12

9		The differential equation
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 2x$
		such that $y = -2$ and $\frac{dy}{dx} = 2$ when $x = 0$ has the solution $y = f(x)$
9	(a)	Find $f(x)$ [8 marks]

$f(x) =$ $\text{Hence, or otherwise, find the Maclaurin series expansion of } f(x) \text{ in ascending powers of } x \text{ up to and including the term in } x^4$ [3 marks]			
Hence, or otherwise, find the Maclaurin series expansion of $f(x)$ in ascending powers of x up to and including the term in x^4			De o
Hence, or otherwise, find the Maclaurin series expansion of $f(x)$ in ascending powers of x up to and including the term in x^4			
Hence, or otherwise, find the Maclaurin series expansion of $f(x)$ in ascending powers of x up to and including the term in x^4			
Hence, or otherwise, find the Maclaurin series expansion of $f(x)$ in ascending powers of x up to and including the term in x^4			
Hence, or otherwise, find the Maclaurin series expansion of $f(x)$ in ascending powers of x up to and including the term in x^4			
Hence, or otherwise, find the Maclaurin series expansion of $f(x)$ in ascending powers of x up to and including the term in x^4			
Hence, or otherwise, find the Maclaurin series expansion of $f(x)$ in ascending powers of x up to and including the term in x^4			
Hence, or otherwise, find the Maclaurin series expansion of $f(x)$ in ascending powers of x up to and including the term in x^4			
of x up to and including the term in x^4		f(x) =	
[3 marks])		
		[3 marks]	
			-

	$\cosh x \cos x$	$\sinh y + \sinh x \sinh y =$	$= \cosh(x+y)$	
				[4 n
-				
-				
A curve has ed	quation			
	<i>y</i> = 8	$\sinh(x+\ln 4)+4\cos$	$\cosh x - 7x$	
Prove that the	curve has exactly	one stationary point	P and show that	
the <i>y</i> -coordinate are prime num		pressed in the form	$u + v \ln w$ where u	u, v and
are prime nam				[9 n

_	

Do not write outside the box

11		The plane Π_1 has vector equation $\mathbf{r} \cdot \begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix} = 5$
		The plane Π_2 has Cartesian equation $x-3y+3z=3$
11	(a) (i)	Write down a vector equation of $\ \Pi_2$ in the form ${\bf r.n}=d$ [1 mark]
		Answer
11	(a) (ii)	Find the acute angle between the planes $~\Pi_{\rm 1}~$ and $~\Pi_{\rm 2}~$ giving your answer to the nearest 0.1° [4 marks]
		Answer

11	(b)	The line of intersection of $~\Pi_{\rm 1}~$ and $~\Pi_{\rm 2}~$ is $~L$	
11	(b) (i)	Find the direction ratios of the line <i>L</i>	2 marks]
		Answer	
11	(b) (ii)	Find Cartesian equations for the line <i>L</i>	3 marks]
		Answer	
11	(c)	The plane Π_3 has Cartesian equation $x + y = 5$	
		Using your answer to part (b)(ii) or otherwise, find the coordinates of the point of intersection of $~\Pi_1$, $~\Pi_2$ and $~\Pi_3$	f
			2 marks]
		Answer	

14	(a)	For real constants m and n given that, in exponential form
		$m+\mathrm{i}n=r\mathrm{e}^{\mathrm{i} heta}$ and $-n+\mathrm{i}m=r\mathrm{e}^{\mathrm{i}\phi}$
		express ϕ in terms of θ and π [2 marks]
		$\phi = $
12	(b)	In the Argand diagram opposite, the points P , Q and R represent the roots of the equation $z^3 = a + \mathrm{i} b$
		where a and b are real constants.
12	(b) (i)	Find, in terms of a and b , the radius of the circle on which $P,$ Q and R lie. [2 marks]
		Answer

12 (b) (ii) On the Argand diagram below, mark and label the approximate position of the point T which represents the root of the equation

$$z^3 = -b + ia$$

that is closest to the point P

[1 mark]

12 (c) In the case where

and
$$b = a\sqrt{3}$$
 where $a > 0$

find, in exponential form, the complex number which represents the midpoint of the ${f chord}$ ${\it TP}$

[6 marks]

	Do not write outside the box
	_ BOX
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	_
	_
	-
	_
	_
	_
	_
	_
	_
Answer	11

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

	nat $u = \sinh^{-1}\left(\frac{1}{x}\right)$ show that $\frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{1}{x\sqrt{1+x^2}}$
	C has equation $y = \ln x$ where $x > 0$ gth of the arc of C between the points on the curve where $x = \frac{7}{24}$ and to s
The leng	gth of the arc of C between the points on the curve where $x = \frac{7}{24}$ and
The leng	gth of the arc of C between the points on the curve where $x=\frac{7}{24}$ and to s he result in part (a) show that $s=p+\ln q$ where p and q are rational
The leng	gth of the arc of C between the points on the curve where $x=\frac{7}{24}$ and to s he result in part (a) show that $s=p+\ln q$ where p and q are rational
The leng	gth of the arc of C between the points on the curve where $x=\frac{7}{24}$ and to s he result in part (a) show that $s=p+\ln q$ where p and q are rational
The leng	gth of the arc of C between the points on the curve where $x=\frac{7}{24}$ and to s he result in part (a) show that $s=p+\ln q$ where p and q are rational

·
·
·

10

Do not write outside the box

14 (a)	By applying de Moivre's theorem to $(\cos \theta + i \sin \theta)^4$, express $\cos 4\theta$ in terms of $\sin \theta$
	[4 marks]
	Answer
14 (b)	Hence, show that the equation $\cos 4\theta = \cos \left(\frac{\pi}{2} - 3\theta\right)$ can be written in the form
	$8\sin^4\theta + 4\sin^3\theta + a\sin^2\theta + b\sin\theta + c = 0$
	where a , b and c are integers.
	[4 marks]

		Hence, prove that
[5 marks]	$\sin\left(\frac{\pi}{14}\right) + \sin\left(\frac{5\pi}{14}\right) = \frac{1}{2} + \sin\left(\frac{3\pi}{14}\right)$	

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet
	is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have
	been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

