D-ULPSM Rev 0.3 LMP91000 Settings

Vref = 2.048V

Part Number	GAS	TIA_GAIN	RLOAD	REF_SOURCE	INT_Z	BIAS_SIGN	BIAS	FET_SHORT	OP_MODE
110-102	СО	Ext	10	Ext	20% (0.41V)	+	1% (20.5 mV)	0	3-lead
110-202	EtOH	120k	10	Ext	20% (0.41V)	+	4% (81.9 mV)	0	3-lead
110-303	H2S ¹	Ext	10	Ext	20% (0.41V)	+	0% (0 mV)	0	3-lead
110-601	SO2 ¹	Ext	10	Ext	50% (1.024V)	+	10% (205 mV)	0	3-lead
110-501	NO2 ²	Ext	10	Ext	50% (1.024V)	-	10% (205 mV)	0	3-lead
110-401	O3 ²	Ext	10	Ext	50% (1.024V)	-	1% (20.5 mV)	0	3-lead
110-801	IAQ ³	Ext	10	Ext	20% (0.41V)	+	8% (163.8 mV)	0	3-lead
110-901	RESP ⁴	Ext	10	Ext	50% (1.024V)	-	10% (205 mV)	0	3-lead

- SO₂ is cross sensitive with H₂S and NO
 - H₂S is cross sensitive with SO₂ but selective among NO
- 2 NO₂ is cross sensitive with O₃
 - O₃ is cross sensitive with NO₂
- ³ IAQ is sensitive to most oxidizing gases but has strong response to H₂S and CO
- ⁴ RESP is sensitive to most reducing gases but has strong response to NO₂, O₃, and Cl₂
- CO, ALC, H2S, SO2, and IAQ will have increasing signals with increasing gas concentration.
- O3, NO2, and RESP will have decreasing signals with increasing gas concentration.