Policy Gradients & Actor-Critic Algorithm

Artificial Intelligence

Zool Hilmi Ismail Tokyo City University

Policy Gradients

The goal of reinforcement learning

$$\underbrace{p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T)}_{p_{\theta}(\tau)} = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

The goal of reinforcement learning

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

$$\theta^{\star} = \arg\max_{\theta} E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})}[r(\mathbf{s}, \mathbf{a})] \qquad \qquad \theta^{\star} = \arg\max_{\theta} \sum_{t=1}^{\mathbf{z}} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})}[r(\mathbf{s}_{t}, \mathbf{a}_{t})]$$
 infinite horizon case

Evaluating the objective

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

$$J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

sum over samples from π_{θ}

Direct policy differentiation

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

$$J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)] = \int p_{\theta}(\tau)r(\tau)d\tau$$
$$\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\underline{p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau)} = p_{\theta}(\tau)\frac{\nabla_{\theta}p_{\theta}(\tau)}{p_{\theta}(\tau)} = \underline{\nabla_{\theta}p_{\theta}(\tau)}$$

$$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta} p_{\theta}(\tau)} r(\tau) d\tau = \int \underline{p_{\theta}(\tau)} \nabla_{\theta} \log p_{\theta}(\tau) r(\tau) d\tau = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$

Direct policy differentiation

$$\theta^* = \arg \max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

$$\log \text{ of both sides } p_{\theta}(\tau)$$

$$\log p_{\theta}(\tau) = \log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$

$$\nabla_{\theta} \left[\log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \right]$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

Evaluating the policy gradient

recall:
$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Understanding Policy Gradients

Evaluating the policy gradient

recall:
$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$
 what is this?

 \mathbf{a}_t

Comparison to maximum likelihood

policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

maximum likelihood:
$$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right)$$

Example: Gaussian policies

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

example: $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t) = \mathcal{N}(f_{\text{neural network}}(\mathbf{s}_t); \Sigma)$

$$\log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t) = -\frac{1}{2} ||f(\mathbf{s}_t) - \mathbf{a}_t||_{\Sigma}^2 + \text{const}$$

$$\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2} \Sigma^{-1} (f(\mathbf{s}_t) - \mathbf{a}_t) \frac{df}{d\theta}$$

REINFORCE algorithm:

2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$

3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Iteration 2000

What did we just do?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$abla_{ heta} J(heta) pprox rac{1}{N} \sum_{i=1}^{N} rac{\nabla_{ heta} \log \pi_{ heta}(au_i) r(au_i)}{\sum_{t=1}^{N} \nabla_{ heta} \log_{ heta} \pi_{ heta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})}$$
good stuff is made more likely

maximum likelihood:
$$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_i)$$

bad stuff is made less likely

simply formalizes the notion of "trial and error"!

REINFORCE algorithm:

2.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

Partial observability

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{o}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

Markov property is not actually used!

Can use policy gradient in partially observed MDPs without modification

What is wrong with the policy gradient?

Review

- Evaluating the RL objective
 - Generate samples
- Evaluating the policy gradient
 - Log-gradient trick
 - Generate samples
- Understanding the policy gradient
 - Formalization of trial-and-error
- Partial observability
 - Works just fine
- What is wrong with policy gradient?

Actor-Critic Algorithm

Recap: policy gradients

REINFORCE algorithm:

1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)

2.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}^{i}, \mathbf{a}_{t'}^{i}) \right) \right)$$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}^{\pi}$$

"reward to go"

Improving the policy gradient

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
"reward to go"

$$\hat{Q}_{i,t}$$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$ can we get a better estimate?

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

What about the baseline?

$$Q(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]: \text{ true } expected \text{ reward-to-go}$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - V(\mathbf{s}_{i,t}) \right)$$

$$b_{t} = \frac{1}{N} \sum_{i} Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \quad \text{average what?}$$

$$V(\mathbf{s}_{t}) = E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t})} [Q(\mathbf{s}_{t}, \mathbf{a}_{t})]$$

State & state-action value functions

$$Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t}]: \text{ total reward from taking } \mathbf{a}_{t} \text{ in } \mathbf{s}_{t}$$

$$V^{\pi}(\mathbf{s}_{t}) = E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t})} [Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t})]: \text{ total reward from } \mathbf{s}_{t}$$

$$A^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) - V^{\pi}(\mathbf{s}_{t}): \text{ how much better } \mathbf{a}_{t} \text{ is}$$
generate samples (i.e.

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

fit a model to

estimate return

the better this estimate, the lower the variance

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) - b \right)$$

unbiased, but high variance single-sample estimate

Value function fitting

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$

$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$$

$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t},\mathbf{a}_{i,t})$$

fit what to what?

$$Q^{\pi}, V^{\pi}, A^{\pi}$$
?

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \sum_{t'=t+1}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t \right]$$

$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \approx r(\mathbf{s}_t, \mathbf{a}_t) + V^{\pi}(\mathbf{s}_{t+1}) \stackrel{V}{V}^{\pi}(\mathbf{s}_t)$$

let's just fit $V^{\pi}(\mathbf{s})!$

Policy evaluation

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

$$J(\theta) = E_{\mathbf{s}_1 \sim p(\mathbf{s}_1)}[V^{\pi}(\mathbf{s}_1)]$$

how can we perform policy evaluation?

Monte Carlo policy evaluation (this is what policy gradient does)

$$V^{\pi}(\mathbf{s}_t) \approx \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

$$V^{\pi}(\mathbf{s}_t) pprox \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

(requires us to reset the simulator)

Monte Carlo evaluation with function approximation

$$V^{\pi}(\mathbf{s}_t) pprox \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$$

not as good as this: $V^{\pi}(\mathbf{s}_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'})$

but still pretty good!

training data:
$$\left\{ \left(\mathbf{s}_{i,t}, \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right) \right\}$$

$$y_{i,t}$$

supervised regression:
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

Can we do better?

ideal target:
$$y_{i,t} = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{i,t} \right] \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + V^{\pi}(\mathbf{s}_{i,t+1}) \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}^{\pi}_{\phi}(\mathbf{s}_{i,t+1})$$

Monte Carlo target: $y_{i,t} = \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$

directly use previous fitted value function!

training data:
$$\left\{ \left(\mathbf{s}_{i,t}, r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) \right) \right\}$$

$$y_{i,t}$$

supervised regression:
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

sometimes referred to as a "bootstrapped" estimate

Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992

AlphaGo, Silver et al. 2016

Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-9, 6-5, to TD-Gammon's preference, 13-9, 24-23. TD-Gammon's analysis is given in Table 2.

Figure 1. An illustration of the multilayer perception architecture used in TD-Gammon's neural network. This architecture is also used in the popular backpropagation learning procedure. Figure reproduced from [9].

reward: game outcome

value function $\hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$:

expected outcome given board state

reward: game outcome

value function $\hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$:

expected outcome given board state

From Evaluation to Actor Critic

An actor-critic algorithm

batch actor-critic algorithm:

3. evaluate
$$\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') - \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$$

4.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$$

5.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

$$y_{i,t} pprox \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

Aside: discount factors

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

what if T (episode length) is ∞ ?

 \hat{V}_{ϕ}^{π} can get infinitely large in many cases

episodic tasks

continuous/cyclical tasks

simple trick: better to get rewards sooner than later

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\uparrow$$
discount factor $\gamma \in [0, 1]$ (0.99 works well)

 γ changes the MDP:

Aside: discount factors for policy gradients

$$y_{i,t} \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1})$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t}) \right)$$

what about (Monte Carlo) policy gradients?

option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
option 2:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} \gamma^{t-1} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'} \mathbf{O}(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
(later steps matter less)

Which version is the right one?

option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

option 2:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

later steps don't matter if you're dead!

this is what we actually use... why?

Iteration 2000

 $\tilde{p}(\mathbf{s'}|\mathbf{s}, \mathbf{a}) = \gamma p(\mathbf{s'}|\mathbf{s}, \mathbf{a})$

 $\widetilde{p}(\mathbf{s}'|\mathbf{s}, \mathbf{a}) = (1 - \gamma)$

Actor-critic algorithms (with discount)

batch actor-critic algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$