Project: "Multigrid Convergence of Geometrical moments"

Introduction

The objective of this project is to implement and evaluate geometrical moments computation on digital data.

We expect from you:

- A short report with answers to the "formal" questions and a description of the your implementation choices and results.
- A C++ project (CMakeLists.txt plus several commented cpp program files).

1 Properties of moments

We are interest in the analysis of geometrical moment of order $m_{p,q}$ defined as follows for $X \subset \mathbb{R}^2$:

$$m_{p,q}(X) = \int \int_X x^p y^q \, dx dy$$

On a digital object $Z \in \mathbb{Z}^2$, we will use the following approximation:

$$\hat{m}_{p,q}(Z) = \sum_{(i,j)\in Z} i^p j^q$$

Similarly, we will also consider central geometrical moments defined by:

$$\mu_{p,q}(X) = \int \int_X (x - \mu_x)^p (y - \mu_y)^q \, dx \, dy$$
$$\hat{\mu}_{p,q}(Z) = \sum_{(i,j) \in Z} (i - \mu_i)^p (p - \mu_j)^q$$

where (μ_x, μ_y) (resp. (μ_i, μ_j)) is the centroid of X (resp. Z).

Question 1 Express (μ_x, μ_y) coordinates as function of $m_{a,b}$ for some $a, b \in \mathbb{Z}$

Question 2 Express first $\mu_{p,q}$ central moments $(p+q \leq 2)$ as functions of $m_{p,q}$.

Question 3 Geometrical moments are not scale-invariant. We consider a scaling X by a factor k (denoted $k \cdot X$), express $m_{p,q}(k \cdot X)$ as a function of $m_{p,q}(X)$

Similarly, you also have $\mu_{p,q}(k \cdot X)$ as a function of $\mu_{p,q}(X)$. We can use the previous result to design moments $\eta_{p,q}$ with scale invariant properties.

Question 4 • Express $m_{0,0}(k \cdot X)$ from $m_{0,0}(X)$.

• Find the α such that

$$\frac{m_{p,q}(k \cdot X)}{m_{0,0}(k \cdot X)^{\alpha}} = \frac{m_{p,q}(X)}{m_{0,0}(X)^{\alpha}}$$

• Define $\eta_{p,q}$ as a function of $\mu_{p,q}$ and $\mu_{0,0}$. Conclude on the fact that $\eta_{p,q}$ are translation and scale invariant.

2 Multigrid Analysis

Here, we evaluate the multigrid convergence of \hat{m}_{pq} estimators. First, remember that we consider here Gauss digitization at gridstep h of $X \subset \mathbb{R}^2$:

$$Z = Dig(X,h) = \left(\frac{1}{h} \cdot X\right) \cap \mathbb{Z}^2 = X \cap (h \cdot \mathbb{Z}^2)$$

As discussed above, we denote

$$\hat{m}_{pq}(Z) = \sum_{(i,j)\in Z} i^p j^q$$

and define

$$\hat{m}_{pq}(Z,h) = \hat{m}_{pq}(h \cdot Z)$$

Question 5 From the definition and using the result of Question 4, express $\hat{m}_{pq}(Z,h)$ as a function of $\hat{m}_{pq}(Z)$ and h.

Question 6 Implement in DGTAL geometrical moments $\hat{m}_{pq}(Z,h)$ computations in 2D. In this multigrid context, please consider the digitization of a parametric shape (e.g. an ellipse).

Question 7 Perform a multigrid analysis of $\hat{m}_{pq}(Dig(X,h),h)$

- Implement function which constructs the digitization of an Euclidean ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at grid step h
- For the first moments $(p+q \le 3)$, output $|\hat{m}_{pq}(Dig(X,h),h) m_{pq}(E)|$ values for h tending to 0.
- Plot error graphs $h \times Error$ in logscale using gnuplot

See Appendix A for first geometrical moments of the ellipse.

Question 8 We guess that \hat{m}_{pq} has an error in $O(h^{\alpha_{pq}})$ for some $\alpha_{pq} \in \mathbb{R}$ depending only on p and q. Experimentally, can you estimate such α_{pq} for first moments? (Hint: the slope β of linear fitting in logscale gives you the exponent of something on x^{β}). Can you guess the general form for the error of m_{pq} .

So far, we saw in the lectures that \hat{m}_{00} is convergent with speed at least O(h) ([Gauss] with general convex hypothesis on X). Hence, we have $\alpha_{00} = 1$. Adding hypothesis on ∂X (e.g. being C^3), we have $\alpha_{00} = \frac{15}{11} - \epsilon$ [Huxley]

3 Extensions

Question 9 In dimension 3, are the convergence speeds different?

Question 10 Are moments m_{pq} or \hat{m}_{pq} rotational invariant? Can you construct rotational invariant shape descriptor from m_{pq} or \hat{m}_{pq} ?

A Geometrical moments of a General Ellipse

Notations:

- a length of the semi-major axis
- \bullet b length of the semi-minor axis
- x_0, y_0 coordinate of the center of the ellipse
- λ angle of the major axis with the x-axis

$$m_{00} = \pi a b \tag{1}$$

$$m_{10} = \pi a b x_0 \tag{2}$$

$$m_{01} = \pi a b y_0 \tag{3}$$

$$m_{20} = \pi ab \left(\frac{a^2 \cos^2 \lambda + b^2 \sin^2 \lambda}{4} + x_0^2 \right) \tag{4}$$

$$m_{02} = \pi ab \left(\frac{a^2 \sin^2 \lambda + b^2 \cos^2 \lambda}{4} + y_0^2 \right)$$
 (5)

$$m_{11} = \pi ab \left(\frac{(a^2 - b^2)\cos\lambda\sin\lambda}{4} + x_0 y_0 \right) \tag{6}$$

$$m_{30} = \pi ab \left(\frac{3x_0(a^2 \cos^2 \lambda + b^2 \sin^2 \lambda)}{4} + x_0^3 \right)$$
 (7)

$$m_{03} = \pi ab \left(\frac{3y_0(a^2 \sin^2 \lambda + b^2 \cos^2 \lambda)}{4} + y_0^3 \right)$$
 (8)

$$m_{21} = \pi ab \left(\frac{y_0(a^2 \cos^2 \lambda + b^2 \sin^2 \lambda)}{4} + \frac{x_0(a^2 - b^2) \sin \lambda \cos \lambda}{2} + x_0^2 y_0 \right)$$
(9)

$$m_{12} = \pi ab \left(\frac{x_0(a^2 \sin^2 \lambda + b^2 \cos^2 \lambda)}{4} + \frac{y_0(a^2 - b^2) \sin \lambda \cos \lambda}{2} + x_0 y_0^2 \right)$$
(10)