Novoptel

Laser Unit LU1000

Revision history

Version	Date	Remarks	Author
0.5.0 20.11.2015		Draft version	B. Koch

General description

- 1 or 2 lasers, tunable in steps of 50 GHz (or tbd)
- 10 dBm output power (or more tbd)
- C & L band available, optionally at common output
- Desktop unit
- Operation via control buttons or via USB using Graphical User Interface, Matlab, Labview or similar.

Ordering information

For example, the type LU1000-CL-A-D covers optical C and L band, has FC/APC connector(s), and comes as a desktop unit.

Novoptel GmbH EIM-E Warburger Str. 100 33098 Paderborn Germany www.novoptel.com

Novoptel reserves the right to change module and specifications.

Absolute maximum ratings

Parameter	Value	Remarks/Conditions
Supply voltage	−0.3+5.5 V	
Voltage at all logical ports	-0.3+3.6 V	
Storage temperature	−40+85°C	
Operating temperature	-10+70°C	

Characteristics

Parameter	Value	Remarks/Conditions
Supply voltage	+4.755.25 V	
Supply current	2 A or tbd	
Logical port levels	LVCMOS33	3.3 V CMOS logic

Connector types

Туре	Function
N	none
F	FC/UPC
Α	FC/APC
L	LC/UPC
S	SC/PC
Е	E2000

First letter specifies input connector, second letter specifies output connector(s).

Serial peripheral interface (SPI)

The module starts operation without SPI. The user doesn't have to use the SPI at all. While the module starts operation without SPI, this serial interface can be used to control function, modify parameters, read back these commands as well as debug register contents.

Transmission starts with falling edge of CS and ends with rising edge of CS. After falling edge of CS, the command is transmitted. SDI is sampled with rising edge of SCK. Maximum SCK frequency is 500 kHz. Command and data word length is 16 bit each. MSB of command and data word is sent first, LSB last. If a valid *register read* (RDREG) command is received, the SDO output register shifts with falling edge of SCK to transmit the requested data word. Otherwise SDO remains in high impedance state. Data transfer to the device continues directly after transmitting a *register write* (WRREG) command.

Each SPI register has 16 bit. Upon power-on, all registers are reset to default.

For a possible remote debugging, content of all defined registers needs to be read and sent to Novoptel.

All registers in the 12-bit address space that are not defined below are reserved, and should not be written into!

Serial peripheral interface (SPI) commands

Command Code Data		Data	Function
RDREG 0XXXh OUT		OUT	Read register XXXh (for definition see below)
WRREG 1XXXh IN		IN	Write register XXXh (for definition see below)

Register address coding

9					
Bits	Function				
119	Reserved. Leave "000".				
87	"00": Common registers				
"01": Laser 1 registers					
	"10": Laser 2 registers (optional)				
	"11": Laser 3 registers (optional)				
60	Register address 0127				

Common registers

Register address	Name	Bit(s)	Read/ Write	Function		
0	ALM		WIIIC	Internal alarm code. The alarm can be cleared by writing		
	, LIVI			"0" to this register. This is successful only if the alarm		
				condition is no longer present.		
		0	R/W	tbd.		
		1	R/W	tbd.		
		2	R/W	tbd.		
		4	R/W	Critical temperature.		
1	BUSY	0	R	"1": Controller module is busy		
2	NLAS	150	R	Number of installed laser modules		
19	UPDIS	0	R/W	"1" (default): Enable internal register update		
20	WRADDR	70	W	Write address for external register access		
21	WRDATA	150	W	Data word for external register access		
22	WRTRIG	0	W	"1": External write operation on registers of laser 1.		
		1	W	"1": External write operation on registers of laser 2.		
23	RDADDR	70	W	Read address for external register access		
24	RDTRIG	0	W	"1" triggers read operation on all installed lasers.		
25	DOUT1	150	R	Data word read from laser 1		
26	DOUT2	150	R	Data word read from laser 2		
51	TMPR	150	R	Controller module temperature in Celsiusx16		
64	FW	150	R	Firmware version as 4 digit BCD		
65	SN	150	R	Controller module serial number		
68	MODTYP	150	R	Module Type as 32 character string. Beginning at		
				512+144, each Register contains two bytes,		
83				representing two ASCII-coded characters.		
85	DDNA1	150	R	Device DNA word 3 (DNA bits 6348) (same as read		
				via JTAG)		
86	DDNA2	150	R	Device DNA word 2 (DNA bits 4732) (same as read		
	DDMAG	45.0		via JTAG)		
87	DDNA3	150	R	Device DNA word 1 (DNA bits 3116) (same as read		
	DDNA 4	45.0		via JTAG)		
88	DDNA4	150	R	Device DNA word 0 (DNA bits 150) (same as read		
				via JTAG)		

Laser control registers

Laser con	ti oi i egist	.013				
Register address	Name	Bit(s)	Read/ Write	Function		
0	NOP	158	R	Pending Operation Flags. 0 indicates that there are no currently pending operations		
	4 R "1" indicates that enabled		R	"1" indicates that the module is ready for its output to be enabled		
		30	R	Error condition according to OIF-ITLA-MSA-01.0		
1	LBUS	1	R	"1": Serial interface of laser is busy.		
		0	R	"1": Serial interface of laser is has a timeout exception.		
48	Channel	150	R/W	Sets or returns the laser module's current channel.		

49	PWR	150	R/W	Sets or returns the laser module's current optical power			
				in dBm*100			
50	ResEna	150	R/W	Sets or returns the laser module's current status.			
				Supported commands:			
				0x00: Laser output disabled			
				0x08: Laser output enabled			
52	GRID	150	R	Grid spacing in GHz*10			
53	FCF1	150	R	First channel's frequency, THz			
54	FCF2	150	R	First channel's frequency, GHz*10			
64	LF1	150	R	Returns channel's frequency as THz			
65	LF2	150	R	Returns channel's frequency as GHZ*10			
66	OOP	150	R	Returns the optical power encoded as dBm*100			
67	CTemp	150	R	Returns the current temperature encoded as °C*100.			
80	OPSL	150	R	Minimum possible optical power setting			
81	OPSH	150	R	Maximum possible optical power setting			
82	LFL1	150	R	Laser's first frequency, THz			
83	LFL2	150	R	Laser's first frequency, GHz*10			
84	LFH1	150	R	Laser's last frequency, THz			
85	LFH2	150	R	Laser's last frequency, GHz*10			
86	LGrid	150	R	Laser's minimum supported grid spacing, GHz*10			

Serial peripheral interface (SPI) timing

Fig. 1: Timing of SPI port.

Symbol	Description	Min	Max	Units
Tcsck	CS low to SDCK high	120	-	ns
T _{CKCS}	SDCK low to CS high	120	_	ns
T _{SDCKL}	SDCKL low time	1	_	μs
T _{SDCKH}	SDCKL high time	1	_	μs
T _{SETUP}	SDI egde to SDCK high (setup time)	30	_	ns
THOLD	SDCK to SDI edge (hold time)	30	_	ns
Тско	SDCK edge to stable SDO	_	100	ns

USB transfer protocol

All SPI registers described above can also be accessed via USB. All communication is initiated by the host, e.g. the connected PC. Writing to a register uses a 9 byte data packet. Each byte represents an ASCII-coded character. The packet starts with the ASCII-character "W" and ends with the ASCII-code for carriage return:

"W"	A(2)	A(1)	A(0)	D(3)	D(2)	D(1)	D(0)	^CR

The 12 bit register address A is sent using 3 bytes, each containing the ASCII-character of the hexadecimal numbers 0 to F which represents the 4 bit nibble. The character of the most significant

nibble is sent first. The 16 bit data, which should be written into the register, is sent with 4 bytes using the same coding as the register address.

Reading data from a register requires the host to send a request data packet to the instrument. The packet starts with the ASCII-character "R", followed by the register address coded the same way as in write data packets:

"R"	A(2)	A(1)	"0"	"0"	"0"	"0"	"0"	^CR

After receiving the request data packet, the instrument sends the requested data packet to the host:

D(3)
D(2)
D(1)
D(0)
^CR

Firmware upgrading

Via the JTAG port the user can upgrade the firmware. Note that the upgrading firmware must be obtained from Novoptel on a per-module basis because the firmware is encrypted and authenticated. For this purpose, Novoptel needs to be told the device DNA of the FPGA, which also serves as the serial number of the module. The user can find out the device DNA remotely via SPI (as long as the firmware is working) or via JTAG (in any case, which is therefore recommended). During firmware upgrading, polarization control is not possible.

The schematic and timing of the JTAG port correspond to that detailed in Spartan-3 Generation Configuration User Guide UG332 (v1.6) October 26, 2009 from Xilinx (www.xilinx.com). A schematic is given in Fig. 2.

Figure 5-6: Master BPI Mode Using Xilinx Parallel Platform Flash PROMs (XCFxxP)

- The diagram in Figure 5-6 shows an Extended Spartan-3A family FPGA, but the same approach also works with Spartan-3E FPGAs.
- The Xilinx Parallel Platform Flash PROM family is in-system programmable using JTAG, similar to the FPGA.
- See XAPP483, Multiple-Boot with Platform Flash PROMs
- The FPGA's LDC2, LDC1, LDC0, and HDC outputs actively drive during configuration. Use the LDC0 output to enable the Platform Flash PROM during

160 <u>www.xilinx.com</u> Spartan-3 Generation Configuration User Guide
UG332 (v1.6) October 26, 2009

Fig. 2: Schematic of JTAG port, adopted from Xilinx. However, instead of the Xilinx Cable Header the JTAG connections are part of the module connector.

JTAG Timing

Fig. 3 shows timing definitions of the JTAG port signals (source: Platform Flash Product Specification DS123 (v2.16) November 14, 2008 from XILINX (www.xilinx.com)).

Fig. 3: Timing of JTAG port, adopted from Xilinx.

Symbol	Description	Min	Max	Units
TCKMIN	TCK minimum clock period	67	_	ns
T _{MSS}	TMS setup time	8	_	ns
T _{MSH}	TMS hold time	25	_	ns
T _{DIS}	TDI setup time	8	_	ns
T _{DIH}	TDI hold time	25	-	ns
T _{DOV}	TDO valid delay	_	22	ns

Miscellaneous

This module is designed for industrial applications only. It must not be used if human life depends on its correct functioning (e.g., medical applications).

Installation and use of the module have to comply with the corresponding regulations for the operation of electrical and optical installations of the country where the module is to be used.

Diversion contrary to German law is prohibited. In addition, diversion contrary to USA law is prohibited. Module hardware is subject to compliance with all United States Export Administration Regularities. USA Regulations prohibit the transfer or reexport of module hardware, directly or indirectly, to restricted countries or entities.

You or anybody to whom you grant access may not reverse engineer, disassemble, decompile or decode the module, its hardware and software, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.

Fiber coatings are of Hytrel® or similar material. Module must therefore be protected against ultraviolet light exposure.