ELC 423, ELCN323 & ELCn323 ELECTROMAGNETIC FIELD THEORY

Summer Semester 2021/2022

CHAPTER 1

ELECTROSTATIC FIELD IN FREE SPACE

Week 1, Lecture 1

Dr. Ibrahim Amin

GRADES

Course Codes: ELC 423, ELCN323, ELCn323

Mid Term Exam 10 % 20 %

Semester work 20 % 40 %

4 Exercises2 % each5 % each

4 Quizzes
3 % each
5 % each

> Final Term Exam 70 % 40%

Weeks	Topics	Assessments	Grades
Week 1 Date 26/07/2022	CHAPTER 1 Electrostatic Field in Free Space Relevant Mathematics Coulomb's law and field intensity Electric potential Electric field due to continuous charge distribution Gauss's law and its applications Energy density in electrostatic fields Solved Examples	Quiz (1) Exercise (1)	3% or 5% 2% or 5%

-

Week 2 Date	CHAPTER 2 Electrostatic Boundary Value Problems Image method in the case of: A charge in front of an Infinite grounded surface A charge in front of two orthogonal infinite grounded surfaces A Charge in front of grounded sphere	Quiz (2)	3 % or 5 %
2/08/2022	Curl & Divergence of E Laplace & Poisson's equations Solution of Laplace's equation in Cartesian, Cylindrical and Spherical Coordinates Solved Examples Revision & Mid Term Preparation	Exercise (2)	2 % or 5 %

	Mid Term Exam	Covering weeks (1,2)	
Week 3	CHAPTER 3 Electrostatic Field in Material Space Properties of materials Convection and conduction currents Electric field in conductors Resistance, capacitance calculation Boundary conditions of 2 dielectric materials and 2 conducting materials Solved Examples		

CHAPTER 4 Magneto Static Fields Static fields analogy Ampere circuital's law Week 4 Date 16/08/2022 Magnetic Sector of potential A Boundary condition between two magnetic media The magnetic force Solved Examples	Quiz(3) Exercise (3)	3 % or 5 % or 5 %
---	-----------------------	-------------------

CHAPTER 5 Time Varying Field Maxwell's equations solution Plane wave equation Velocity of electromagnetic wave in free space Penetration depth in conductors Solved Examples	Quiz (4) Exercise (4)	3 % or 5 % or 5 %	
--	------------------------	-------------------	--

Week 6 Date 30/08/2022	Final Exam	70 % or 40 %
--------------------------------	------------	--------------------

References

- Sadiku, M. N. (1995), Elements of Electromagnetics, USA, Oxford University Press Inc.
- Hayt, . W. H., Buck, J. A, (2000) Engineering Electromagnetics, USA, McGraw-Hill.
- Nannapneni, R. N. (1997), Elements of Engineering Electromagnetic, USA, Prentice Hall, Inc.
- ☐ Cheng, D. K. (1989), Field and Wave Electromagnetics, USA, Addison Wesley Publishing Company Inc.
- El Wakil, M. M. (2012), Electromagnetic Field Theory Notes, Cairo, Modern Academy for Engineering and Technology Press.

COULOMB'S LAW OF FORCE

$$\mathbf{F}_{12} = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{Q}_1 \cdot \mathbf{Q}_2}{|\mathbf{R}_{12}|^2} \, \hat{\mathbf{R}}_{12} = K \, \frac{\mathbf{Q}_1 \cdot \mathbf{Q}_2}{|\mathbf{R}_{12}|^3} \, \mathbf{R}_{12} \quad [\text{Newton}]$$

$$\mathbf{R}_{12} = (\mathbf{r}_2 - \mathbf{r}_1) = (P_2 - P_1)$$
 (origin reference)

COULOMB'S LAW OF ELCTRIC FIELD

$$\mathbf{E} = \frac{\mathbf{F}}{\mathbf{Q}}$$

$$\therefore \mathbf{E}_{12} = \frac{K \mathbf{Q}_1}{|\mathbf{R}_{12}|^2} \mathbf{R}_{12} = \frac{K \mathbf{Q}_1}{|\mathbf{R}_{12}|^3} \mathbf{R}_{12} [N/C] \text{ or [v/m]}$$

$$\mathbf{E}_2 = \frac{KQ}{|\mathbf{R}|^2} \mathbf{R} = \frac{KQ}{|\mathbf{R}|^3} \mathbf{R} \qquad [N/C] \text{ or } [v/m]$$

POTENIAL's LAW

$$V = \frac{Q}{4\pi\epsilon_0 r} = \frac{KQ}{r} = \frac{KQ}{|R|} \qquad r = |R|$$

R ... Position vector = observation point – source point (origin reference)

r... Position Vector length = $\sqrt{\sum[(observation - source) points componentes]^2}$

Electric Field Lines Direction in the case of Point (Static) Charges

Outward in case of positive charge

Inward in case of negative charge

-

Lecture 1 Relevant Mathematics

The position Vector

The position vector $\mathbf{R} = (\mathbf{r}_2 - \mathbf{r}_1)$, $\mathbf{r}_2 = P_2 - (0, 0, 0)$ $\mathbf{r}_1 = P_1 - (0, 0, 0)$ $\widehat{R} = \text{unit vector given by} = \frac{R}{|R|} \text{ dimensionless.}$

Differential Lengths

$$d\mathbf{I} = dx \, \mathbf{a_x} + dy \, \mathbf{a_y} + dz \, \mathbf{a_z}$$

$$d\mathbf{I} = d\rho \, \mathbf{a_\rho} + \rho d\phi \, \mathbf{a_\phi} + dz \, \mathbf{a_z}$$

$$d\mathbf{I} = dr \, \mathbf{a_r} + rd\theta \, \mathbf{a_\theta} + r \sin_\theta d\phi \, \mathbf{a_\phi}$$

Vector Multiplication

A. B = AB
$$\cos \theta_{AB}$$
 scaler
Ax B = AB $\sin \theta_{AB}$ an vector

COULOMB'S LAW AND FIELD INTENSITY

one coulomb = 6×10^{18} electrons electron charge e= -1.6019×10^{-19} C.

$$\begin{split} \widehat{R}_{12} &= \text{unit vector given by} = \frac{R_{12}}{|R_{12}|} \text{ dimensionless.} \\ &\text{The vector } R_{12} = (\textbf{r}_2 - \textbf{r}_1), \text{ [meter]} \\ &\textbf{r}_2 = P_2 \text{ - (0, 0, 0)} \quad \textbf{r}_1 = P_1 \text{ - (0, 0, 0)} \\ &\text{The constant } K = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ [}\frac{\text{meter}}{\text{Farad}}\text{]} \end{split}$$

The notation F_{21} means that observation point at 2 and source point at 1.

$$\varepsilon_0 = \frac{10^{-4}}{36 \,\pi} = 8.85 \text{x} 10^{-12} \quad \left[\frac{\text{farad}}{\text{meter}} \right]$$
= free space dielectric constant.

-

COULOMB'S LAW FOR N POINT CHARGE

If there are N charges $Q_1, Q_2, ..., Q_N$ located at points with position vectors $r_1, r_2, ..., r_N$.

The resultant force **F** on the charge Q located at point r is the vector sum of the forces exerted on Q by each of these charges:

$$\mathbf{F} = \frac{Q}{4\pi\epsilon_0} \sum_{k=1}^{N} \frac{Q_k (\mathbf{r} - \mathbf{r}_k)}{|\mathbf{r} - \mathbf{r}_k|^3}$$

The electric field intensity **E** on the charge Q located at that point is:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \sum_{k=1}^{N} \frac{Q_k (\mathbf{r} - \mathbf{r_k})}{|\mathbf{r} - \mathbf{r_k}|^3}$$

SOLVED EXAMPLES

EXAMPLE 1.1

Force between two discrete charges.

A point charge Q_1 (-3, 7, 4)= 2 x 10⁻³ [C], Q_2 (2, 4, -1) = -5 x 10⁻³ [C].

Find the force on the charge Q₂.

SOLUTION

Using Coulomb's law: $F_{12} = K \frac{Q_1 \cdot Q_2}{|R_{12}|^3} R_{12}$

$$\mathbf{R}_{12} = (\mathbf{P}_2 - \mathbf{P}_1) = (2, 4, -1) - (-3, 7, 4) = (5, -3, -5)$$

$$|\mathbf{R}_{12}| = \sqrt{25 + 9 + 25} = \sqrt{59}$$

$$\mathbf{F}_{12} = \frac{9 \times 10^{9} \times (-10) \times 10^{-3} \times 10^{-3}}{\sqrt{59}^{3}} (5, -3, -5) [N]$$

SOLVED EXAMPLES

EXAMPLE 1.2 Force due to three point charges.

$$Q_1(-3, 7, -4) = 2 \times 10^{-3} [C], Q_2(2, 4, -1) = -5 \times 10^{-3} [C], Q_3(1, 3, 5) = 4 \times 10^{-3} [C].$$

Find the force acting on the charge Q_2 (2, 4, -1).

$$\mathbf{F_2} = \mathbf{F_{12}} + \mathbf{F_{32}} = K \frac{Q_2 Q_1}{|\mathbf{R}_{12}|^3} \mathbf{R}_{12} + K \frac{Q_2 Q_3}{|\mathbf{R}_{32}|^3} \mathbf{R}_{32}$$

$$\mathbf{R}_{12} = (\mathbf{P_2} - \mathbf{P_1}) = (2, 4, -1) - (-3, 7, -4) = (5, -3, 3)$$

$$\therefore |\mathbf{R}_{21}| = \sqrt{25 + 9 + 9} = \sqrt{43}$$

$$\mathbf{R}_{32} = (\mathbf{P_2} - \mathbf{P_3}) = (2, 4, -1) - (1, 3, 5) = (1, 1, -6)$$

$$\therefore |\mathbf{R}_{23}| = \sqrt{1 + 1 + 36} = \sqrt{38}$$

$$\mathbf{F_2} = (9 \times 10^9)(-5 \times 10^{-3}) \left[\left(\frac{2 \times 10^{-3}}{\sqrt{43}^3} \right) \times (5, -3, 3) + \left(\frac{4 \times 10^{-3}}{\sqrt{38}^3} \right) \times (1, 1, -6) \right] \quad [N]$$

-

SOLVED EXAMPLES

EXAMPLE 1.3

Two point charges -4 [μ C] and 5 [μ C] are located at (2,-1, 3) and (0, 4, -2), respectively. Find the potential at (1, 0, 1) assuming zero potential at infinity.

$$V(\mathbf{r}) = \frac{Q_1}{4\pi\epsilon_0|\mathbf{r}-\mathbf{r}_1|} + \frac{Q_2}{4\pi\epsilon_0|\mathbf{r}-\mathbf{r}_2|}$$

$$|\mathbf{r} - \mathbf{r}_1| = |(1, 0, 1) - (2, -1, 3)| = (-1, 1, -2) = \sqrt{6}$$

$$|\mathbf{r} - \mathbf{r}_2| = |(1, 0, 1) - (0, 4, -2)| = (1, -4, 3) = \sqrt{26}$$

$$V(1,0,1) = \frac{10^{-6}}{4\pi 10^{-9}} \left[\frac{-4}{\sqrt{6}} + \frac{5}{\sqrt{26}} \right]$$

$$= 9 \times 10^3 (-1.633 + 0.9806) = -5.872 [kV]$$

SOLVED EXAMPLES

EXAMPLE 1.4

Field and potential due to discrete charge:

Determine electric field **E** and potential V at the observation point P_0 (-0.2, 0.0, -1.3) due to charge Q_2 (0.2, 0.1, -1.5) = 5 [nC] in free space.

Apply the Coulomb's law for field and potential:

Lecture 1 Relevant Mathematics

Differential Areas

$$ds = dx dy a_z = dy dz a_x = dz dx a_y$$

$$d\mathbf{s} = \rho d\phi dz \mathbf{a}_{\rho} = d\rho dz \mathbf{a}_{\phi=} \rho d\phi d\rho \mathbf{a}_{\mathbf{z}}$$

$$d\mathbf{s} = r^2 \sin \theta \, d\theta \, d\phi \, \mathbf{a_r} = r \, dr \, d\theta \, \mathbf{a_{\phi}} = r^2 \sin \theta \, dr \, d\theta \, \mathbf{a_{\theta}}$$

Unit Vectors Relations

Cartesian vs. Cylindrical coordinates

$$\mathbf{a}_{\mathbf{p}} = \cos \varphi \, \mathbf{a}_{\mathbf{x}} + \sin \varphi \, \mathbf{a}_{\mathbf{y}}$$

$$\mathbf{a}_{\mathbf{\phi}} = -\sin \varphi \, \mathbf{a}_{x} + \cos \varphi \, \mathbf{a}_{y}$$

$$\mathbf{a}_{\mathbf{z}} = \mathbf{a}_{\mathbf{z}}$$
.

Lecture 1 Relevant Mathematics

Special Integrals

$$\int \frac{dx}{\sqrt{a^2 + x^2}^3} = \frac{x}{a^2 \sqrt{a^2 + x^2}}$$

$$\int \frac{x \, dx}{\sqrt{a^2 + x^2}} = \frac{-1}{\sqrt{a^2 + x^2}}$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln(x + \sqrt{x^2 + a^2})$$

$$\int \frac{x \, dx}{\sqrt{a^2 + x^2}} = \sqrt{a^2 + x^2}$$

ELECTRIC FIELD DUE TO CONTINUOUS CHARGE DISTRIBUTION

Various Charge Distributions

It is customary to denote:

The line charge density by: ρ_l [C/m] The surface charge density by: ρ_s [C/m²] The volume charge density by: ρ_v [C/m³]

ELECTRIC FIELD DUE TO CONTINUOUS CHARGE DISTRIBUTION

The electric field intensity due to each of charge distributions ρ_l , ρ_s , and ρ_v may be regarded as the summation of the field contributed by all point charges making up these distributions.

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \sum_{k=1}^{N} \frac{Q_k}{|\mathbf{r} - \mathbf{r}_k|^2} \, \boldsymbol{a}_R$$

By replacing Q_k with charge element $dQ = \rho_l$ dl or or ρ_s ds or ρ_v dv and integrating, you can get:

ELECTRIC FIELD DUE TO CONTINUOUS CHARGE DISTRIBUTION

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int \frac{dQ}{\mathbf{R}^2} \ \mathbf{a}_R = \begin{cases} \frac{1}{4\pi\epsilon_0} \int \frac{\rho_l \ dl}{\mathbf{R}^2} \ \mathbf{a}_R \\ \frac{1}{4\pi\epsilon_0} \int \frac{\rho_s \ ds}{\mathbf{R}^2} \ \mathbf{a}_R \\ \frac{1}{4\pi\epsilon_0} \int \frac{\rho_v \ dv}{\mathbf{R}^2} \ \mathbf{a}_R \end{cases}$$

Potential Due To Continuous Charge Distribution

For n point charges Q_1 , Q_2 ,... Q_n located at points with position vectors \mathbf{r}_1 , \mathbf{r}_2 ,... \mathbf{r}_n , then the potential at \mathbf{r} is:

$$V = \frac{1}{4\pi\epsilon_0} \sum_{k=1}^{n} \frac{Q_k}{|\mathbf{r} - \mathbf{r}_k|}$$

For continuous charge distributions

$$V = \frac{1}{4\pi\epsilon_0} \int \frac{\rho_l dl}{r}$$
 for line charge

$$V = \frac{1}{4\pi\epsilon_0} \int \frac{\rho_s ds}{r}$$
 for surface charge

$$V = \frac{1}{4\pi\epsilon_0} \int \frac{\rho_V dV}{r}$$
 for volume charge

EXAMPLE 1.5

Field and potential due to charge distribution on a circular ring.

Find the electric field \mathbf{E}_2 and potential V_2 at the axis of a charged ring P_2 (0, φ , z). The ring located at z = 0, with radius = r, and charge density = ρ_I (r, φ , z) [C/m]

SOLUTION

Observation point at P_2 (0, φ , z) on the z axis.

Line charge distribution on the ring is given by:

$$\rho_l(\mathbf{r}, \boldsymbol{\varphi}, 0) \left[\frac{\mathbf{C}}{\mathbf{m}}\right]$$
, where $0 \le \boldsymbol{\varphi} \le 2\pi$

Apply Coulomb's law to find the electric field and potential at P₂:

$$\mathbf{E}_2 = \mathbf{K} \int \frac{\mathrm{dQ}}{|\mathbf{R}|^3} \mathbf{R} \qquad \mathbf{V}_2 = \mathbf{K} \int \frac{\mathrm{dQ}}{|\mathbf{R}|}$$

$$dQ(r, \varphi, 0) = \rho_{l} dl = \rho_{l} r d\varphi$$

$$\mathbf{R} = (\mathbf{P}_2 - \mathbf{P}_1) = (0, \varphi, z) - (r, \varphi, 0) = (-r, 0, z),$$

$$|\mathbf{R}| = \sqrt{\mathbf{r}^2 + \mathbf{z}^2}$$

$$\therefore \mathbf{E}_2 = \mathbf{K} \int \frac{\rho_1 \mathbf{r} \, d\varphi}{\sqrt{\mathbf{r}^2 + \mathbf{z}^2}} \, (-\mathbf{r}, 0, \mathbf{z}) \qquad \mathbf{V}_2 = \mathbf{K} \int \frac{\rho_1 \mathbf{r} \, d\varphi}{\sqrt{\mathbf{r}^2 + \mathbf{z}^2}}$$

$$r = r \hat{r}$$

$$\mathbf{E}_{2} = -\mathbf{K} \frac{\rho_{1}(\mathbf{r}^{2})}{\sqrt{\mathbf{r}^{2} + \mathbf{z}^{2}}} \int_{0}^{2\pi} d\varphi \, \hat{\mathbf{r}} + \mathbf{K} \frac{\rho_{1} \, \mathbf{r} \, \mathbf{z}}{(\mathbf{r}^{2} + \mathbf{z}^{2})^{3/2}} \int_{0}^{2\pi} d\varphi \, \hat{\mathbf{z}}$$

$$\mathbf{E}_{2} = \frac{-K \frac{\rho_{1}(\mathbf{r}^{2})}{\sqrt{\mathbf{r}^{2} + \mathbf{z}^{2}}} \int_{0}^{2\pi} d\varphi \, \hat{\mathbf{r}} + K \frac{\rho_{1} \, \mathbf{r} \, \mathbf{z}}{(\mathbf{r}^{2} + \mathbf{z}^{2})^{3/2}} \int_{0}^{2\pi} d\varphi \, \hat{\mathbf{z}}$$

r is independent of φ , but \hat{r} is dependent on φ

$$\widehat{r} = \cos \varphi \ \widehat{x} + \sin \varphi \ \widehat{y}$$

$$\widehat{r} = \int_0^{2\pi} (\cos \varphi \ \widehat{x} + \sin \varphi \ \widehat{y}) \ d\varphi = 0,$$

$$\Rightarrow r \ component = 0$$

$$\mathbf{E}_2 = K \frac{\rho_1^2 \pi r}{(r^2 + z^2)} \frac{z}{\sqrt{r^2 + z^2}} = K \cdot \frac{2\pi r \rho}{R^2} \cdot \frac{z}{R} = K \cdot \frac{Q}{R^2} \left(\frac{z}{R}\right) \hat{z}$$

$$V_2 = \int_0^{2\pi} dV = K \int_0^{2\pi} \frac{\rho_1 r d\phi}{\sqrt{r^2 + z^2}} = K \cdot \frac{2\pi r \rho_1}{\sqrt{r^2 + z^2}} = K \frac{Q}{R}$$

Note that:

the relation bet. unit vectors \mathbf{a}_{x} , \mathbf{a}_{y} , \mathbf{a}_{z} ; \mathbf{a}_{ρ} , \mathbf{a}_{ϕ} , \mathbf{a}_{z} are:

$$\mathbf{a}_{\rho} = \cos \varphi \, \mathbf{a}_{x} + \sin \varphi \, \mathbf{a}_{y}$$

 $\mathbf{a}_{\phi} = -\sin \varphi \, \mathbf{a}_{x} + \cos \varphi \, \mathbf{a}_{y}$
 $\mathbf{a}_{z} = \mathbf{a}_{z}$.

EXAMPLE 1.6

Field and potential due to line charge distribution Find the electric field intensity \mathbf{E} and the potential V at the point $P_2(r,\phi,0)$ due to a charged line segment of density: $\rho_l = \rho(0,\phi,z) \left[\frac{c}{m}\right], \ z_1 \leq z \leq z_2, \ 0 \leq \phi \leq 2\pi.$

SOLUTION

The charge element on the line is $dQ = \rho dz$

Apply the coulomb's law for field and potential:

$$\mathbf{E}_2 = \mathbf{K} \int \frac{\mathrm{dQ}}{|\mathbf{R}|^3} \; \mathbf{R} \qquad \mathbf{V}_2 = \mathbf{K} \int \frac{\mathrm{dQ}}{|\mathbf{R}|}$$

$$\mathbf{R} = (\mathbf{P}_2 - \mathbf{P}_1) = (\mathbf{r}, \varphi, 0) - (0, \varphi, z) = (\mathbf{r}, 0, -\mathbf{z}),$$

$$|\mathbf{R}| = \sqrt{r^2 + z^2}$$

-

Solved Examples

:
$$\mathbf{E}_2 = K \int_{z_1}^{z_2} \frac{\rho \, dz}{\sqrt{(r^2 + z^2)^3}} (\mathbf{r}, 0, -\mathbf{z})$$
 $V_2 = K \int_{z_1}^{z_2} \frac{\rho \, dz}{\sqrt{r^2 + z^2}}$

Do the integrals for the three axes:

$$\mathbf{E}_{2} = K \rho r \int_{z_{1}}^{z_{2}} \frac{dz}{\sqrt{(r^{2} + z^{2})^{3}}} \hat{r} - K \rho \int_{z_{1}}^{z_{2}} \frac{z dz}{\sqrt{(r^{2} + z^{2})^{3}}} \hat{z}$$

$$= K \rho r \left[\frac{z}{r^2 \sqrt{r^2 + z^2}} \right]_{z_1}^{z_2} \hat{r} - K \rho \left[\frac{-1}{\sqrt{r^2 + z^2}} \right]_{z_1}^{z_2} \hat{z}$$

$$= \frac{K\rho}{r} \left(\frac{z_2}{R_2} - \frac{z_1}{R_1} \right) \hat{r} - K\rho \left(\frac{1}{R_2} - \frac{1}{R_1} \right) \hat{z}$$

$$V_2 = K \int_{z_1}^{z_2} \frac{\rho dz}{\sqrt{r^2 + z^2}} = K \rho \int_{z_1}^{z_2} \frac{dz}{\sqrt{r^2 + z^2}}$$

$$= K\rho \left| \ln(z + \sqrt{r^2 + z^2}) \right|_{z_1}^{z_2}$$

$$= K\rho \ln \left(\frac{R_2 + z_2}{R_1 + z_1}\right)$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}^3} = \frac{x}{a^2 \sqrt{a^2 + x^2}},$$

$$\int \frac{x \, dx}{\sqrt{a^2 + x^2}^3} = \frac{-1}{\sqrt{a^2 + x^2}},$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln(x + \sqrt{x^2 + a^2})$$

EXAMPLE 1.7

Field and Potential due to surface charge distribution Find the electric field intensity E_{2} , and the potential V_2 at $(0,\phi,z)$ on the \hat{z} axis due to a charged circular disk of uniform surface charge density $\rho_s=\rho\left(r,\phi,0\right)$ where of the disk radius $0< r < r_0$ and $0 \le \phi \le 2\pi$.

SOLUTION

The charge element on the surface is:

$$dQ = \rho_s dS = \rho \, r d\phi \, dr \,,$$

Apply the coulomb's law for field and potential:

$$\mathbf{E}_2 = \mathbf{K} \int \frac{\mathrm{dQ}}{|\mathbf{R}|^3} \mathbf{R} \qquad \mathbf{V}_2 = \mathbf{K} \int \frac{\mathrm{dQ}}{|\mathbf{R}|}$$

$$\mathbf{R} = (P_2 - P_1) = (0, \varphi, z) - (r, \varphi, 0) = (-\mathbf{r}, 0, \mathbf{z}),$$

$$|\mathbf{R}| = \sqrt{\mathbf{r}^2 + \mathbf{z}^2}$$

Solved Examples

$$\therefore \mathbf{E}_{2} = K \int \frac{dQ_{1}}{|R|^{3}} \mathbf{R} = K \int \rho \frac{r \, dr \, d\phi}{(r^{2} + z^{2})^{3/2}} (-\mathbf{r}, 0, \mathbf{z})$$

$$= \int_{0}^{2\pi} d\phi \int_{r=0}^{r_{\theta}} \frac{K \rho (-r^{2}) dr}{(r^{2}+z^{2})^{\frac{3}{2}}} \hat{\mathbf{r}} + \int_{0}^{2\pi} d\phi \int_{r=0}^{r_{0}} \frac{K \rho z r dr}{(r^{2}+z^{2})^{\frac{3}{2}}} \hat{\mathbf{z}}$$

$$E_{2z} = (2\pi) K \rho z \left[\frac{-1}{\sqrt{r^2 + z^2}} \right]_0^{r_0} = 2\pi K \rho \left(1 - \frac{z}{\sqrt{r_0^2 + z^2}} \right)$$

$$= \frac{\rho}{2\varepsilon_0} \left(1 - \frac{z}{R} \right)$$

Solved Examples

$$dV_2 = K \frac{dQ}{|R|} = K \rho \frac{r dr d\varphi}{\sqrt{r^2 + z^2}}$$

$$V_2 = K \rho \int_0^{2\pi} d\phi \int_{r=0}^{r_0} \frac{r dr}{\sqrt{r^2 + z^2}}$$

$$= 2\pi \ \text{K} \rho \left[\sqrt{r^2 + z^2} \right]_0^{r_0}$$

$$= \frac{\rho}{2\epsilon_0} \left(\sqrt{r_0^2 + z^2} - z \right)$$

4

Electric Field from Electric Potential

Another way to obtain **E** is from the electric scalar potential V.

$$V = -\int \mathbf{E} \cdot \mathbf{d} \boldsymbol{l}$$

$$\mathbf{E} = -\nabla V$$

This way of finding **E** is easier because it is easier to handle scalars than vectors.

-

Lecture 1 Relevant Mathematics

Vector Calculus Gradient of a Scalar

The gradient of V is expressed in Cartesian, Cylindrical, and Spherical coordinates as:

$$\nabla V = \left[\frac{\partial V}{\partial x} \mathbf{a_x} + \frac{\partial V}{\partial y} \mathbf{a_y} + \frac{\partial V}{\partial z} \mathbf{a_z} \right]$$

$$\nabla V = \left[\frac{\partial V}{\partial \rho} \mathbf{a}_{\rho} + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi} + \frac{\partial V}{\partial z} \mathbf{a}_{z}\right]$$

$$\nabla V = \left[\frac{\partial V}{\partial r} a_r + \frac{1}{r} \frac{\partial V}{\partial \theta} a_\theta + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} a_\phi \right]$$

Gauss's Law

In previous lectures, **E** due to any charge distribution was obtained from Coulomb's law.

In this lecture, when the charge distribution is symmetric, **E** can be calculated from **Gauss's law**.

Gauss's law states that the total electric flux Ψ through any closed surface is equal to the total charge enclosed by that surface. $\Psi = Q_{in}$

$$\Psi = \oint \mathbf{D} \cdot d\mathbf{s} = Q_{\rm in} = \int \rho_{\rm v} \, dv$$

D ...electric flux density ρ_v ...volume charge density

Gauss's Law

Symmetric charge distributions includes:

- Rectangular symmetry:
 if the charge distribution depends only on x
 or y or z
- Cylindrical symmetry: if the charge distribution depends only on ρ
- Spherical symmetry:
 if the charge distribution depends only on r

Vector Calculus Differential Areas

$$ds = dx dy a_z = dy dz a_x = dz dx a_y$$

$$d\mathbf{s} = \rho d\phi dz \mathbf{a}_{\rho} = d\rho dz \mathbf{a}_{\phi=} \rho d\phi d\rho \mathbf{a}_{\mathbf{z}}$$

$$d\mathbf{s} = r^2 \sin \theta \, d\theta \, d\phi \, \mathbf{a_r} = r \, dr \, d\theta \, \mathbf{a_\phi} = r^2 \sin \theta \, dr \, d\theta \, \mathbf{a_\theta}$$

Differential Volumes

$$dv = dx dy dz$$

$$dv = \rho d\rho d\phi dz$$

$$dv = r^2 \sin \theta dr d\theta d\phi$$

Differential normal areas in Cartesian coordinates

Differential normal areas in Cylindrical coordinates

Differential normal areas in Spherical coordinates

Field Density D and Intensity E Relation

Assuming a point charge *Q* located at the origin inside a sphere of radius r

The electric field at distance r by Coulomb Law is:

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \, \frac{\mathbf{Q}}{\mathbf{r}^2} \, \hat{\mathbf{r}}$$

Field Density D and Intensity E Relation

The field at the same distance by Gauss's Law assuming **D** is uniform is:

$$Q = \oint \mathbf{D} \cdot ds = D$$
. area of the sphere of raduis r

$$Q = \mathbf{D} \cdot 4\pi r^2$$

Therefore:

$$\mathbf{D} = \frac{\mathbf{Q}}{4\pi \mathbf{r}^2} \; \hat{\mathbf{r}}$$

Comparing equations **E** and **D** equations:

$$\mathbf{D} = \varepsilon_0 \mathbf{E} \qquad [\mathbf{C/m^2}]$$

Case 1: Point Charge

Q is a point charge located at the origin

To determine **D** at a point P, the spherical surface centered at the origin is chosen as the Gaussian surface

As **D** is out warding from the point charge **Q**, so it is normal to the assumed spherical Gaussian surface,

$$\mathbf{D} = \mathbf{D_r} \ \mathbf{a_r}$$

Applying Gauss's law ($\Psi = Q_{in}$) gives:

$$Q = \oint \mathbf{D} \cdot ds = D_r \oint ds$$

$$= D_{\mathbf{r}} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} r^2 \sin \theta \, d\theta \, d\phi = D_{\mathbf{r}}. 4\pi r^2$$

Therefore:

$$\mathbf{D} = \frac{Q}{4\pi r^2} \mathbf{a_r} \qquad \mathbf{E} = \frac{\mathbf{D}}{\varepsilon_0} = \frac{Q}{4\pi r^2 \varepsilon_0} \mathbf{a_r}$$

Case 2: Infinite Line Charge

Assume an infinite line of uniform charge p_l (C/m) lies along the z-axis.

To determine **D** at a point P, choose a cylindrical surface containing P to satisfy the symmetry condition

As **D** is normal to the charged line segment, so it is normal to the assumed cylindrical Gaussian surface,

$$\mathbf{D} = \mathbf{D_r} \, \mathbf{a_r}$$

Applying Gauss's law: $Q = \oint \mathbf{D} \cdot ds$

$$Q = \int \rho_l dl = \rho_l l \qquad Q = \oint \mathbf{D} . ds = D_r \oint ds$$
$$= D_r 2\pi r l$$

Therefore:

$$\mathbf{D} = \frac{\rho_{l}}{2\pi r} \mathbf{a_{r}} \qquad \mathbf{E} = \frac{\mathbf{D}}{\varepsilon_{0}} = \frac{\rho_{l}}{2\pi r \,\varepsilon_{0}} \mathbf{a_{r}}$$

Case 3: Infinite Sheet of Charge

Consider the infinite sheet of uniform charge p_s [C/m²] lying on the z = 0 plane.

To determine **D** at point P, choose a rectangular box that is cut symmetrically by the sheet of charge and has two of its faces parallel to the sheet

As **D** is normal to the sheet, so it is normal to the assumed Gaussian box surface,

$$\mathbf{D} = \mathbf{D}_{\mathbf{z}} \mathbf{a}_{\mathbf{z}},$$

Applying Gauss's law gives:

$$Q = \rho_s A = \oint \mathbf{D} \cdot ds = D_z \oint ds = \mathbf{D}_z \left[\int_{top} ds + \int_{bottom} ds \right]$$

Therefore:

$$\rho_s A = D_z [A + A]$$

$$\mathbf{D} = \frac{\rho_{\rm S}}{2} \mathbf{a_{\rm z}} \qquad \mathbf{E} = \frac{\mathbf{D}}{\varepsilon_{\rm 0}} = \frac{\rho_{\rm S}}{2\varepsilon_{\rm 0}} \mathbf{a_{\rm z}}$$

Case 4: Uniformly Charged Sphere

Consider a sphere of radius a with a uniform charge p_v (C/m³).

To determine \mathbf{D} everywhere, we construct spherical Gaussian surfaces for cases r < a and r > a separately.

-

Applications of Gauss's Law

For r < a, the total charge enclosed by spherical surface of radius r is:

$$Q = \int \rho_v \ dv = \rho_v \int \ dv$$

$$= \int_{0}^{2\pi} \int_{\theta=0}^{\pi} \int_{r=0}^{r} r^{2} \sin \theta \, dr \, d\theta \, d\phi = \frac{4}{3} \pi r^{3} \rho_{v}$$

$$= \oint \mathbf{D} \cdot ds = D_r \oint ds = \int_{\omega=0}^{2\pi} \int_{\theta=0}^{\pi} r^2 \sin \theta \, d\theta \, d\phi$$

$$= \mathbf{D} \cdot 4\pi r^2$$

Therefore:

$$\mathbf{D} = \frac{\mathbf{r}}{3} \rho_{\mathbf{v}} \mathbf{a_{\mathbf{r}}} \qquad \mathbf{E} = \frac{\mathbf{D}}{\varepsilon_{0}}$$

For r > a, the charge enclosed by the surface is the entire charge, that is:

$$Q = \int \rho_v dv = \rho_v \int dv$$

$$= \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{r=0}^{a} r^2 \sin\theta \ dr \ d\theta \ d\phi = \frac{4}{3}\pi \ ra^3 \ \rho_v$$

$$= \oint \mathbf{D} \cdot ds = D_r \oint ds = \int_{\omega=0}^{2\pi} \int_{\theta=0}^{\pi} r^2 \sin \theta \ d\theta \ d\phi$$

$$= \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} r^2 \sin \theta \, d\theta \, d\phi = D_r. \, 4\pi r^2$$

Therefore:

$$\mathbf{D} = \frac{\mathbf{a}^3}{3\mathbf{r}^2} \rho_{\mathbf{V}} \mathbf{a_r} \qquad \mathbf{E} = \frac{\mathbf{D}}{\varepsilon_0}$$

For
$$r < a$$

$$\mathbf{D} = \frac{\mathbf{r}}{3} \rho_{\mathbf{v}} \, \mathbf{a_r}$$

For
$$r > a$$

$$\mathbf{D} = \frac{\mathbf{a}^3}{3\mathbf{r}^2} \rho_{\mathbf{v}} \, \mathbf{a_r}$$

Energy Density In Electrostatic Fields

The energy required to bring a charge from a place to another place is:

$$W = Q V$$
 [Joule]

For N charges, the energy density in an electrostatic field is:

$$W = \frac{1}{2} \sum_{i=1}^{N} V_i Q_i$$

Where:

$$V_i = \sum_{j=1}^{N} \frac{K Q_j}{R i_j}$$
 for $j \neq i$

-

EXAMPLE 1.8

Two point charges $Q_1 = 2 \text{ mc}$, and $Q_2 = -5 \text{ [mC]}$, are located in free space at $P_1(-3,7,-4)$ and $P_2(2,4,-1)$ respectively.

Find the energy required to bring the charge $Q_3 = 4$ [mC], from infinity to the point $P_3(1, 3, 5)$.

SOLUTION

The energy required to bring Q_3 to P_3 is given by:

W =
$$[V_{31} + V_{32}] * Q_3 = Q_3 \left(\frac{KQ_1}{R_{31}} + \frac{KQ_2}{R_{32}} \right)$$
,

SPLVED EXAMPLES

$$R_{31} = |(\mathbf{P}_3 - \mathbf{P}_1)| = |(1, 3, 5) - (-3, 7, -4)|$$
$$= \sqrt{16 + 16 + 81} = \sqrt{113}$$

$$R_{32} = |(\mathbf{P}_3 - \mathbf{P}_2)| = |(1, 3, 5) - (2, 4, -1)|$$

= $\sqrt{1 + 1 + 36} = \sqrt{38}$

$$\therefore W = KQ_3 \left(\frac{Q_1}{R_{31}} + \frac{Q_2}{R_{32}} \right)$$

$$= 9.10^9. \ 4.10^{-3} \left(\frac{1.10^{-3}}{\sqrt{113}} + \frac{(-5).10^{-3}}{\sqrt{38}} \right)$$

$$= -29.8 * 10^3$$
 [Joul]

SPLVED EXAMPLES

EXAMPLE 1.9

For the above example (1.8) find the electrostatic energy of the field constructed from the three Q $_1$,Q $_2$ and Q $_3$.

SOLUTION

$$W = \frac{1}{2}(Q_1(V_{12} + V_{13}) + Q_2(V_{21} + V_{23}) + Q_3(V_{31} + V_{32}))$$

$$W = \frac{1}{2} \left(Q_1 \left(\frac{KQ_2}{R_{12}} + \frac{KQ_3}{R_{13}} \right) + Q_2 \left(\frac{KQ_1}{R_{21}} + \frac{KQ_3}{R_{23}} \right) + Q_3 \left(\frac{KQ_1}{R_{31}} + \frac{KQ_2}{R_{32}} \right) \right)$$

SPLVED EXAMPLES

$$R_{31} = R_{13} = \sqrt{113}$$
, $R_{32} = R_{23} = \sqrt{38}$

$$R_{12} = R_{21} = |(P_1 - P_2)| = |(-3.7 - 4) - (2.4. - 1)|$$

$$=\sqrt{25+9+9}=\sqrt{43}$$

$$W = \frac{1}{2} * 9.10^9$$

$$* 10^{-6} \left[2 \left(\frac{-5}{\sqrt{113}} + \frac{4}{\sqrt{113}} \right) + (-5) \left(\frac{2}{\sqrt{43}} + \frac{4}{\sqrt{38}} \right) \right]$$

$$+4\left(\frac{2}{\sqrt{113}}+\frac{-5}{\sqrt{38}}\right)$$

$$= 36.16 * 10^{-6}$$
 [Joul]

Vector Calculus Divergence of a Vector

$$\nabla \cdot \mathbf{A} = \frac{\partial \mathbf{A}_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{A}_{\mathbf{y}}}{\partial \mathbf{y}} + \frac{\partial \mathbf{A}_{\mathbf{z}}}{\partial \mathbf{z}}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \, \mathbf{A}_{\rho} \right) + \frac{1}{\rho} \frac{\partial \mathbf{A}_{\phi}}{\partial \phi} + \frac{\partial \mathbf{A}_{z}}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \mathbf{A_r}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\mathbf{A_\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial \mathbf{A_\phi}}{\partial \phi}$$

Quiz 1

2- Find the electric field inanity E anywhere inside and outside the hollow charged cylinder as shown in the Figure, with charge density $\rho = \rho_{\text{V}}$.

3- Three point charges $Q_1 = 1$ nC, $Q_2 = -2$ nC, and $Q_3 = 3$ nC are positioned one at a time and in that order at (0, 0, 0), (1, 0, 0) and (0, 0, -1) respectively. Calculate the energy in the system after each charge is positioned.