Slot-queue - An optimized wait-free distributed MPSC

1. Motivation

A good example of a wait-free MPSC has been presented in [1]. In this paper, the authors propose a novel tree-structure and a min-timestamp scheme that allow both enqueue and dequeue to be wait-free and always complete in $\Theta(\log n)$ where n is the number of enqueuers.

We have tried to port this algorithm to distributed context using MPI. The most problematic issue was that the original algorithm uses load-link/ store-conditional (LL/SC). To adapt to MPI, we have to propose some modification to the original algorithm to make it use only compare-and-swap (CAS). Even though the resulting algorithm pretty much preserve the original algorithm's characteristic, that is wait-freedom and time complexity of $\Theta(\log n)$, we have to be aware that this is $\Theta(\log n)$ remote operations, which is very expensive. We have estimated that for an enqueue or a dequeue operation in our initial LTQueue version, there are about $2 * \log n$ to $10 * \log n$ remote operations, depending on data placements and the current state of the LTQueue.

Therefore, to be more suitable for distributed context, we propose a new algorithm that's inspired by LTQueue, in which both enqueue and dequeue only perform a constant number of remote operations, at the cost of dequeue having to perform $\Theta(n)$ local operations, where n is the number of enqueuers. Because remote operations are much more expensive, this might be a worthy tradeoff.

2. Structure

Each enqueue will have a local SPSC as in LTQueue [1] that supports dequeue, enqueue and readFront. There's a global queue whose entries store the minimum timestamp of the corresponding enqueuer's local SPSC.

Figure 1: Basic structure of slot queue

3. Pseudocode

3.1. **SPSC**

The SPSC of [1] is kept in tact, except that we change it into a circular buffer implementation.

Types

```
data_t = The type of data stored
spsc_t = The type of the local SPSC
    record
    First: int
    Last: int
    Capacity: int
    Data: an array of data_t of capacity
    Capacity
    end
```

Shared variables

First: index of the first undequeued entry

Last: index of the first unenqueued entry

Initialization

```
First = Last = 0
Set Capacity and allocate array.
```

The procedures are given as follows.

Procedure 1: spsc_enqueue(v: data_t) returns bool

- 1 if (Last + 1 == First)
 2 | return false
- 3 Data[Last] = v
- 4 Last = (Last + 1) % Capacity
- 5 return true

Procedure 2: spsc_dequeue() returns data_t

- 6 **if** (First == Last) **return** \perp
- 7 res = Data[First]
- 8 First = (First + 1) % Capacity
- 9 return res

Procedure 3: spsc readFront returns data t

- 10 if (First == Last)
- 11 | return \perp
- 12 return Data[First]

3.2. Slot-queue

The slot-queue types and structures are given as follows:

Types

data_t = The type of data stored
timestamp_t = uint64_t
spsc_t = The type of the local SPSC

Shared variables

slots: An array of timestamp_t with the number of entries equal the number of enqueuers spscs: An array of spsc_t with the number of entries equal the number of enqueuers counter: uint64_t

Initialization

| Initialize all local SPSCs.

Initialize slots entries to MAX.

The enqueue operations are given as follows:

Procedure 4: enqueue(rank: int, v: data_t)
returns bool

- 1 timestamp = FAA(counter)
- 2 value = (v, timestamp)
- 3 res = spsc_enqueue(spscs[rank], value)
- 4 if (!res) return false
- 5 if (!refreshEnqueue(rank, timestamp))
- 6 | refreshEnqueue(rank, timestamp)
- 7 return res

Procedure 5: refreshEnqueue(rank: int, ts:
timestamp_t) returns bool

- 8 old-timestamp = slots[rank]
- 9 front = spsc readFront(spscs[rank])
- new-timestamp = front == \(\perp \) ? MAX :
 front.timestamp
- 11 if (new-timestamp != ts)
- 12 | return true
- return CAS(&slots[rank], old-timestamp,
 new-timestamp)

The dequeue operations are given as follows:

Procedure 6: dequeue() returns data_t

- 14 rank = readMinimumRank()
- 15 if (rank == DUMMY || slots[rank] == MAX)
- 16 | return ⊥
- 17 res = spsc_dequeue(spscs[rank])
- 18 if (res == \perp) return \perp
- 19 if (!refreshDequeue(rank))
- 20 | refreshDequeue(rank)
- 21 return res

Procedure 7: readMinimumRank() returns int

```
22 rank = length(slots)
23 min-timestamp = MAX
24 for index in 0..length(slots)
     timestamp = slots[index]
25
     if (min-timestamp < timestamp)</pre>
26
       rank = index
2.7
       min-timestamp = timestamp
28
29 \text{ old-rank} = \text{rank}
30 for index in 0..old-rank
     timestamp = slots[index]
31
32
     \mathbf{if} (min-timestamp < timestamp)
        rank = index
33
       min-timestamp = timestamp
  return rank == length(slots) ? DUMMY :
35
   rank
```

Procedure 8: refreshDequeue(rank: int) returns bool

36 old-timestamp = slots[rank]

```
front = spsc_readFront(spscs[rank])
new-timestamp = front == \( \text{? MAX} : \)
front.timestamp

if (front != \( \text{L} ) \)

slots[rank] = new-timestamp
return true

return CAS(&slots[rank], old-timestamp,
new-timestamp)
```

4. Linearizability of the local SPSC

In this section, we prove that the local SPSC is linearizable.

Lemma 4.1 (*Linearizability of spsc_enqueue*) The linearization point of spsc_enqueue is right after line 2 or right after line 4.

Lemma 4.2 (*Linearizability of spsc_dequeue*) The linearization point of spsc_dequeue is right after line 6 or right after line 8.

Lemma 4.3 (*Linearizability of spsc_readFront*) The linearization point spsc_readFront is right after line 11 or right after line 12.

Theorem 4.4 (*Linearizability of local SPSC*) The local SPSC is linearizable.

Proof This directly follows from Lemma 4.1, Lemma 4.2, Lemma 4.3. □

5. ABA problem

Noticeably, we use no scheme to avoid ABA problem in Slot-queue. In actuality, ABA problem does not adversely affect our algorithm's correctness, except in the extreme case that the 64-bit global counter overflows, which is unlikely.

Notice that we only use CAS on:

- Line 13 of refreshEnqueue (Procedure 5), or an enqueue in general (Procedure 4).
- Line 42 of refreshDequeue (Procedure 8) or a dequeue in general (Procedure 6).

Both CAS all target a slot in the slots array.

5.1. ABA-safe

Not every ABA problem is unsafe. We formalize in this section which ABA problem is safe and which is not.

Definition 5.1.1 Consider a history of successful CAS-sequences and slot-modification operations targeted at the same slot. ABA problem is the phenomenon that there exists a successful CAS-sequence, during which there's some slot-modification operation that changes that slot's value.

Definition 5.1.2 Consider a history of successful **CAS-sequences** and **slot-modification operations** targeted at the same slot. A history is said to be ABA-safe if and only if:

- There's no **ABA problem** in the history.
- We can reorder the CAS-sequences and slotmodification operations in the current history

5.2. Proof of ABA-safety

We apply some domain knowledge of our algorithm to the above formalism.

Definition 5.2.1 A **CAS-sequence** of an enqueue is the sequence of instructions from line 8 to line 13 of its refreshEngueue.

Definition 5.2.2 A **slot-modification operation** of an enqueue is line 13 of refreshEnqueue.

Definition 5.2.3 A **CAS-sequence** of a dequeue is the sequence of instructions from line 36 to line 42 of its refreshDequeue.

Definition 5.2.4 A **CAS-sequence** is said to **observes a slot value s** if it loads s at line 8 of refreshEnqueue or line 36 of refreshDequeue.

Definition 5.2.5 A **slot-modification operation** of a dequeue is line 40 or line 42 of refreshDequeue.

We can now turn to our interested problem in this section.

Lemma 5.2.1 (*Concurrent accesses on a local SPSC and a slot*) Only one dequeuer and one enqueuer can concurrently modify a local SPSC and a slot in the slots array.

Proof This is trivial to prove based on the algorithm's definition.

Lemma 5.2.2 (Monotonicity of local SPSC timestamps) Each local SPSC in Slot-queue contains elements with increasing timestamps.

Proof Each enqueue would FAA the global counter (line 1 in Procedure 4) and enqueue into the local SPSC an item with the timestamp obtained from the counter. Applying Lemma 5.2.1, we know that items are enqueued one at a time into the SPSC. Therefore, later items are enqueued by later enqueues, which obtain increasing values

by FAA-ing the shared counter. The theorem holds.

Lemma 5.2.3 A refreshEnqueue (Procedure 5) can only changes a slot to a value other than MAX.

Proof For refreshEnqueue to change the slot's value, the condition on line 11 must be false. Then new-timestamp must equal to ts, which is not MAX. It's obvious that the CAS on line 13 changes the slot to a value other than MAX.

Theorem 5.2.4 (No ABA problem in dequeue)

Proof

Theorem 5.2.5 (No ABA problem in enqueue)

Proof

Theorem 5.2.6 (No ABA problem) Assume that the 64 bit global counter payer everyleys, there's

Theorem 5.2.6 (*No ABA problem*) Assume that the 64-bit global counter never overflows, there's no ABA problem in Slot-queue.

Proof This follows from Theorem 5.2.5 and Theorem 5.2.4. \Box

6. Linearizability of Slot-queue

7. Wait-freedom

8. Memory-safety

References

[1] P. Jayanti and S. Petrovic, "Logarithmic-time single deleter, multiple inserter wait-free queues and stacks," 2005, *Springer-Verlag*. doi: 10.1007/11590156_33.