TD d'Optique 1

Optique Géométrique

11/09/2019

333

Préambule : compositions de physique récentes portant sur l'optique :

Année	Sujet	Parties d'optique
2019	Interférences	Partie E
2016	Polarisation, Interféromètres	Totalité du sujet
	Propagation d'ondes	
2015	Optique géométrique	1 : Etude géométrique du microscope,
	Diffraction	2 : Pouvoir séparateur du microscope
2007	Propagation d'une onde	I : Rayons lumineux,
	électromagnétique dans le	fibre optique
	domaine optique	III : Biréfringence
		IV : Milieux non linéaires
2005	Ondes en mécanique	1.A.: Cohérence des ondes
	classique et quantique	lumineuses
2000	Interféromètre de Michelson:	Totalité du sujet
	développements et applications	

Bibliographie de base :

- Sextant, *Optique expérimentale* (indispensable pour les montages)
- S. Houard, *Optique Une approche expérimentale et pratique* (intéressant également pour les montages)
- E. Hecht, Optics
- M. Bertin, J.P. Faroux & J. Renault, *Optique et physique ondulatoire* (Dunod, 3^{ième}édition, 1986)
- M. Françon, Vibration lumineuse Optique cohérente
- J.C. Hild, Éléments de cours et expériences d'optique

- J-Ph. Pérez, Optique
- B. Balland, Optique géométrique
- R. Taillet, Optique physique

Pour des précisions supplémentaires, quelques ouvrages plus difficiles d'accès :

- Born and Wolf, Principles of Optics
- G. Bruhat, Optique

EXERCICE I RAPPELS

1. Définitions

- 1.1 Rappeler les lois de Snell-Descartes qui gouvernent la réflexion/réfraction d'un rayon lumineux à la surface d'un dioptre.
- 1.2 Définir les notions de *stigmatisme rigoureux* et de *stigmatisme approché*. Donner des exemples de dispositifs optiques qui présentent un stigmatisme rigoureux.
- 1.3 Qu'appelle-t-on *grandissement*, *grossissement* et *grossissement* commercial d'un système optique?
- 1.4 Qu'appelle-t-on conditions de Gauss pour un système optique?

2. Lentille mince

- 2.1 Donner, dans les conditions de Gauss, les relations de conjugaison d'une lentille mince.
- 2.2 En déduire les relations de conjugaison aux foyers, dites relations de Newton, qui relient la distance de l'objet au foyer objet à la distance de l'image au foyer image.
- 2.3 Calculer le grandissement de la lentille en fonction de la distance objet foyer objet.
- 2.4 À focale fixée, dans quelle configuration minimise-t-on la distance objet image? Quel est le grandissement de la lentille dans cette configuration? Comment faut-il déplacer la lentille pour augmenter/diminuer le grandissement?
- 2.5 Si l'on fixe la position de l'objet et de l'écran sur lequel on souhaite en faire l'image, combien y a-t-il de positions possibles où l'on peut placer la lentille? Quelle est la focale maximale que l'on peut choisir?

3. Principe du microscope

Un microscope est constitué d'un objectif (représenté par une lentille convergente L_1 de focale f_1) et d'un oculaire (lentille convergente L_2 de focale f_2). Pour que l'œil n'ait pas à accommoder, il forme l'image à l'infini d'un objet AB à observer. L'objectif en forme une image intermédiaire A_1B_1 . On appelle intervalle optique Δ la distance entre le foyer image de l'objectif et cette image intermédiaire.

- 3.1 Quelle est la condition sur l'image intermédiaire pour que l'œil n'ait pas à accommoder?
- 3.2 Quel coefficient utiliser pour caractériser l'efficacité du microscope ? Le calculer et l'exprimer en fonction des propriétés de l'objectif et de l'oculaire.
- 3.3 On appelle *plans principaux* les plans conjugués pour lesquels le grandissement est unité. Donner la position de ces plans pour le microscope.
- 3.4 On appelle *points nodaux* les points conjugués de l'axe optique pour lesquels le grossissement est unité. Montrer que, dans le cas présent, les points nodaux sont situés dans les plans principaux.
- 3.5 Quels sont les plans principaux et les points nodaux d'une lentille simple?

4. Profondeur de champ

On modélise l'objectif d'un appareil photo par une lentille de focale f et de diamètre D.

- 4.1 Qu'appelle-t-on nombre d'ouverture? Profondeur de champ?
- 4.2 En considérant que l'image d'un point est nette lorsque son diamètre est inférieur à une valeur a, déterminer la profondeur de champ d'un objectif photographique, en fonction de p, distance lentille objet, et de l'ouverture numérique n.

EXERCICE II STIGMATISME ET APLANÉTISME

1. Lois de Snell-Descartes

- 1.1 Énoncer le principe de Fermat.
- 1.2 On considère le dioptre de la figure 2.1 et les deux points A_1 et A_2 , reliés par un rayon lumineux qui intercepte le dioptre au point I. On considère un second rayon, reliant A_1 et A_2 , mais interceptant le dioptre au point I', infiniment proche de I. Que peut-on dire de la différence de marche entre les chemins A_1IA_2 et $A_1I'A_2$?
- 1.3 Calculer cette différence en fonction des vecteurs unitaires $\mathbf{u_1}$ et $\mathbf{u_2}$ et en déduire la forme vectorielle des lois de Snell-Descartes. On introduira le vecteur unitaire \mathbf{N} normal au dioptre au point I, orienté vers A_2 .

Figure 2.1 – Réfraction sur un dioptre.

- 1.4 Montrer que $n_1 \sin i_1 = n_2 \sin i_2$.
- 2. Stigmatisme et aplanétisme
 - 2.1 Soit un dispositif optique Σ quelconque qui fait du point A_o l'image A_i (voir figure 2.2). Que peut-on dire des chemins A_oIJA_i et $A_oI'J'A_i$ si Σ est rigoureusement stigmatique?

Figure 2.2 – Dispositif optique stigmatique.

2.2 Condition des sinus d'Abbe Le système Σ est dit aplanétique s'il est stigmatique pour tout couple de points B_o et B_i , infiniment proches de A_o et A_i , contenus, respectivement, dans les plans normaux à l'axe optique en A_o et A_i . Montrer que, dans cette condition,

$$n_o \overline{A_o B_o} \sin \theta_o = n_i \overline{A_i B_i} \sin \theta_i. \tag{II.1}$$

- 3. Applications : points de Weierstrass
 - 3.1 On considère à nouveau le dioptre de la figure 2.1. Montrer qu'il est stigmatique pour les points A_1 et A_2 s'il est le lieu des points I vérifiant $n_1\overline{A_1I} + n_2\overline{IA_2} = a$, où a est une constante.
 - 3.2 Montrer que, si a = 0, ce lieu est un cercle dont on précisera le rayon et le centre.
 - 3.3 Identifier les points, appelés points de Weierstrass, pour lesquels un dioptre sphérique est rigoureusement stigmatique.
 - 3.4 Montrer qu'en ces points le dioptre sphérique est aussi aplanétique.

EXERCICE III ABERRATIONS DES LENTILLES

FIGURE 3.1 – Dioptre sphérique de rayon R.

- 1. On considère un dioptre sphérique, de rayon R, qui sépare un milieu d'indice n_1 d'un milieu d'indice n_2 . On note S_2 l'image du point S_1 par le dioptre (voir Fig. 3.1).
 - 1.1 Montrer, sans approximation, que

$$\frac{n_1}{l_1} + \frac{n_2}{l_2} = \frac{1}{R} \left(\frac{n_2 s_2}{l_2} - \frac{n_1 s_1}{l_1} \right). \tag{III.1}$$

1.2 Que devient l'équation (III.1) si l'on ne considère que des rayons proches de l'axe?

1.3 On associe deux dioptres sphériques, de rayons R et R', pour former une lentille. En supposant que la lentille est mince, qu'elle est utilisée dans l'air et dans les conditions de Gauss, retrouver la relation de conjugaison donnée au premier exercice. On montrera en particulier que sa focale, f, vérifie, en notant n l'indice du verre,

$$\frac{1}{f} = (n-1)\left(\frac{1}{R} - \frac{1}{R'}\right). \tag{III.2}$$

- 2. Aberrations chromatiques Les indices optiques des matériaux dépendent de la longueur d'onde. C'est notamment le cas des verres, typiquement la silice, utilisés pour former les lentilles.
 - 2.1 On utilise un verre borosilicate crown (BK7) d'indice n = 1,52867 à $\lambda = 400$ nm, n = 1,51571 à $\lambda = 590$ nm et n = 1,51166 à $\lambda = 800$ nm. On réalise une lentille biconvexe dont les faces ont pour rayon de courbure $R_1 = 73,2$ cm et $R_1' = 40$ cm. Calculer la focale aux trois longueurs d'onde considérées. Que constate-t-on?
 - 2.2 On envoie un faisceau de lumière blanche, parallèle à l'axe optique, et qui recouvre toute la lentille, de diamètre $D=8\,\mathrm{cm}$. Qu'observe-t-on au voisinage du foyer image «moyen» de la lentille ? Evaluer le diamètre minimum de la tache observée à l'écran.
 - 2.3 Pour corriger ces aberrations, on réalise un *doublet achromatique*. Pour cela, on accole à la lentille précédente une autre lentille faite d'un matériau différent, choisie telle que les foyers du doublet aux longueurs d'onde extrêmes soient confondus. On utilise un verre flint (SF2) d'indice n=1,68222 à $\lambda=400$ nm, n=1,64615 à $\lambda=590$ nm et n=1,63505 à $\lambda=800$ nm. Comment doit-on choisir cette seconde lentille? Calculer la focale du doublet achromatique.
- 3. Aberrations géométriques On considère une lentille plan-convexe, d'indice n, supposée achromatique, dont la face plane est éclairée par un faisceau collimaté parallèle à l'axe optique et centré. La face convexe est une surface sphérique de rayon R. On note C le centre du dioptre sphérique et, comme précédemment, O son sommet.
 - 3.1 On considère un rayon lumineux d'angle d'incidence i sur le dioptre sphérique. Ce rayon intercepte l'axe optique en sortie de la lentille au point noté F(i). Calculer CF(i) en fonction de R et de n.
 - 3.2 Ce dispositif est-il stigmatique? Où se concentrent les rayons lumineux? Sur quelle longueur?

3.3 Montrer que, dans les conditions de Gauss, CF(i) est indépendant de i et retrouver l'équation (III.2).

EXERCICE IV PROPAGATION DANS UN MILIEU D'INDICE CONTINÛMENT VARIABLE

- 1. Énoncer le principe de Fermat et faire une analogie avec le principe de moindre action qui gouverne les lois de la mécanique. Énoncer les équations de Lagrange qui découlent de ce principe de moindre action.
- 2. Quel est l'équivalent du lagrangien dans le cas de l'optique? En déduire l'équation dite des rayons lumineux qui gouverne la propagation de la lumière dans un milieu d'indice continûment variable

$$\frac{\mathrm{d}(n\vec{u})}{\mathrm{d}s} = \vec{\nabla}n,$$

où \vec{u} est le vecteur tangent au rayon.

EXERCICE V FIBRES OPTIQUES (AGREG A 2007)

1. Une fibre optique est fabriquée à base de verres ou de plastiques supposés transparents et isotropes. La fibre à saut d'indice est constituée d'un cœur cylindrique homogène de rayon r_1 , d'indice n_1 , d'axe Oz et d'une gaine cylindrique d'indice n_2 entourant le cœur et de même axe. On introduit

$$\Delta = \frac{n_1^2 - n_2^2}{2n_1^2}.$$

Dans la pratique, n_1 et n_2 ont des valeurs très voisines, et $|\Delta| \approx 10^{-2}$.

On considère, dans l'air d'indice 1, un rayon incident dont le plan d'incidence contient l'axe Oz, et qui arrive sur l'entrée de la fibre avec une incidence θ . Les calculs suivants, et les conclusions qui s'en suivent, ne s'appliquent qu'au cas des fibres dont le cœur est suffisamment grand, et donc nécessairement multimodes. La propagation dans les fibres de plus petit diamètre, en particulier les fibres monomodes, n'est correctement prédite qu'en optique ondulatoire.

1.1 Comment faut-il choisir n_1 et n_2 pour que la lumière soit guidée, c'est-à-dire pour que la réflexion totale puisse se produire?

- 1.2 Montrer alors que, si θ reste inférieur à un angle θ_{max} , un rayon peut être guidé dans le cœur. On appelle ouverture numérique O.N. la quantité sin θ_{max} . Exprimer l'O.N. en fonction de n_1 et Δ . Faire l'application numérique avec $\Delta = 10^{-2}$ et $n_1 = 1, 50$.
- 1.3 Que se passe-t-il si l'on courbe fortement la fibre?
- 1.4 Une impulsion lumineuse arrive à t=0, au point O d'entrée de la fibre précédente, sous la forme d'un faisceau conique convergent d'axe Oz, de demi-angle au sommet $\theta_i < \theta_{\text{max}}$. Pour une fibre de longueur L, calculer l'élargissement temporel Δt de cette impulsion à la sortie de la fibre. On donne L=10 m, $\theta_i=8^\circ$. Faire l'application numérique.
- 2. Extension à un milieu non homogène : loi fondamentale de l'optique géométrique

En utilisant les lois de Snell-Descartes relatives à la réfraction dans un milieu isotrope non homogène, on peut aboutir à la loi fondamentale de l'optique géométrique

$$\frac{\mathrm{d}(n\vec{u})}{\mathrm{d}s} = \vec{\nabla}n,$$

où \vec{u} est le vecteur unitaire tangent au rayon lumineux, n l'indice du milieu et s l'abscisse curviligne le long de ce rayon, en un point donné de ce dernier.

En introduisant \vec{v} , vecteur unitaire porté par la normale principale au rayon et orienté dans sa concavité, et R > 0, rayon de courbure de ce rayon au point considéré, on peut montrer que la loi fondamentale de l'optique géométrique permet d'aboutir à l'expression plus simple suivante

$$\frac{n}{R} = \vec{v} \cdot \vec{\nabla} n.$$

- 2.1 En s'appuyant sur un exemple concret bien choisi, discuter du sens physique de cette dernière formule. Décrire une expérience de laboratoire permettant une illustration simple de ce phénomène.
- 2.2 Application : fibre optique à gradient d'indice

On reprend le cadre de l'application précédente, mais, afin de remédier en particulier à l'élargissement des impulsions, on remplace le cœur par un milieu inhomogène d'indice $n(\vec{r})$ vérifiant l'équation suivante

$$n^2(r) = n_1^2 \left(1 - 2\Delta \left(\frac{r}{r_1} \right)^2 \right),$$

pour $r < r_1$, où r désigne la distance du point considéré à l'axe Oz. La gaine reste homogène d'indice n_2 , et on a encore $n_1 = n(r = 0) = 1,50$ et $\Delta = \frac{n_1^2 - n_2^2}{2n_1^2} = 10^{-2}$.

On considère un rayon lumineux pénétrant dans la fibre en O avec l'incidence θ et se propageant dans un plan axial (le plan d'incidence contient l'axe Oz) et dans le cœur.

- a. On introduit α , angle formé en un point par le rayon lumineux et l'axe Oz. Que peut-on dire de la quantité $n\cos\alpha$? Etablir alors l'équation de la trajectoire de ce rayon lumineux en fonction de r_1 , $\theta_0 = \arcsin\left(\frac{\sin\theta}{n_1}\right)$ et Δ . Quelle est la nature de cette trajectoire? Montrer que le rayon coupe l'axe (Oz) en des points régulièrement espacés d'une longueur d qu'on exprimera en fonction de r_1 , Δ et θ_0 .
- b. Dans les conditions précédentes, quelle est la condition sur θ pour que le rayon se propage effectivement dans le cœur de la fibre ? En déduire l'ouverture numérique en fonction de Δ et n_1 . Faire l'application numérique et commenter.
- c. En considérant une impulsion lumineuse identique à celle de l'application précédente, l'élargissement $\Delta t'$ de cette impulsion à la sortie d'une fibre à gradient d'indice de longueur L est donnée par

$$\Delta t' = \frac{n_1 L}{c} \left(\frac{1}{2\cos\theta_0} - 1 + \frac{\cos\theta_0}{2} \right).$$

Faire l'application numérique pour L = 10 m et $\theta_i = 8^{\circ}$ et conclure.

d. Donner des exemples pratiques d'utilisation des fibres optiques.