Chandra X-ray sources Classification using Machine Learning

Shivam Kumaran

Indian Institute of Space Science and Technology,

Thiruvananthapuram

To classify Globular cluster X-ray sources available in Chandra Source catalogue

Globular Cluster Gravitaionaly bound system of cluster of stars.

Large number of close encounters.

Classes -

- CV Cataclysmic variable : Binary system with accretion onto a White Dwarf
- LMXRB Accretion of a star onto BH or NS
- MSP Milli second pulsar : Periodic rotation
- Other classes AB , Stars

- X-ray sources:
 - 317,167 unique sources -
 - In 90 GC 8275 sources
- Instruments:
 - ACIS 5 energy bands
- broad band (b): 0.5-7.0 keV
- ultrasoft (u): 0.2-0.5 keV
- soft (\$): 0.5-1.2 keV
- medium (m): 1.2-2.0 keV
- hard (h): 2.0-7.0 keV
 - HRC
- Wide Band: 0.1-10 keV

Flux significance

So	urce Information		Source Fluxes		Spectral Properties	Hardness Ratio
•	RA-DEC	•	Photon flux	•	Black Body	 Source variability
•	Galactic- coordinates	•	Energy flux	•	Powerlaw	• Source Falgs $F(x) = F(y)$
•	Exposure timings			•	Bremsstrahlung	$hard_x y = \frac{F(x) - F(y)}{F(x) + F(y)}$

	Feature 1	Feature 2	Feature 3	• • •	Feature m	CLASS
Source 1						
Source 2	Nan	NAN				
Source n	NAN					

How do we get labels

Using Other catalogues
Find RA-DEC

Cross-Match with CSC

Cross match using HEASARC web tool Radius - 3 arcsec

Choose Best cross-match

Select sources , assign class labels

We got training data with labels

	Feature 1	Feature 2	Feature 3	 Feature m	CLASS
Source 1					
Source 2	Nan	NAN			
• • •					
Source n	NAN				

		Feature 1	Feature 2	Feature 3	• • •	Feature m	CLASS
Source 1	Obs 1			nan			
	Obs 2	Nan					
	Obs 3						
Source 2	Obs 1	Nan	NAN				
	•••						

Introduction	Problem	Using Other
Data Preprocessing		catalogues Find RA-DEC
11 001 000001115	Chandra Source catalogue	Cross-Match with
Training	Finding Labels	CSC
	Ideal Source list	
Result Analysis		Choose Best cross- match
		Select sources , assign class labels
Future Roadmap		

Cross match using HEASARC web tool Radius - 3 arcsec

Dataset

	Num Sources	Num obs
CV	66	516
NS	48	302
ВН	248	160
PULSAR	1118	319

Number of Features -56, not using model-fit parameters

- Photon flux (b,h,m,s,u)
- Energy flux (b,h,m,s,u)
- Variability
- Hardness ratio

Data Processing

Data Scaling

- No-scaling
- Normalisation
- Standardisatsation

Data Imputation

- Zero
- Mean
- Median
- Correlation
- Random Forest

Classifier

- LR
- KNN
- FC
- CNN
- RF

Data Processing

Data Scaling

• Standardisatsation

Data Imputation

• Random Forest

Classifier

• RF

Pipeline

Validation accuracy

- Mean 0.85
- Std 0.02

Validation accuracy -

- Mean 0.45
- Std 0.02

Combined observatios

Validation accuracy -

- Mean 0.73
- Std 0.08

Validation accuracy - 0.85+/- 0.02

Introduction Data Preprocessing Training Result Analysis Future Roadmap

Data Scaling

Data Imputation

Classifiers

Best Schematic

oul+

lata . Standardi

Data Scaling

- No-scaling
- Normalisation
- Standardisatsation

Data Imputation

- Zero
- Mean
- Median
- Correlation
- Random Forest

Classifier

- LR
- KNN
- FC
- CNN
- RF

Accuracy variations over data-scaling and classifier

Data Preprocessing

Training

Result Analysis

Future Roadmap

Problem

Chandra Source Catalogue

Data Preprocessing

Training

Result Analysis We got training data with labels

Chandra Source		Feature 1	Feature 2	Feature 3	 Feature m	CLASS
cata logue	Source 1					
	Source 2	Nan	NAN			
Finding Labels	• • •					
	Source n	NAN				
Ideal Source list						

Future Roadmap

Introduction
Data Preprocessing
Training
Result Analysis
Future Roadmap

Problem

Quiescent / Outburst / Persistent source

Chandra Source catalogue

Finding Labels

- In quiescent state LMXRB x-ray luminosity: 10³² erg/s
- During outburst luminosity : $10^{36} 10^{38}$ erg/s
- But we have only flux information and not luminosity
- We are considering only galactic sources, distance is constrained

Source List

$\overline{\text{Dist} \mid L_x}$	10^{36}	10^{38}
1kPc	8.4×10^{-9}	8.4×10^{-7}
$8 \mathrm{kPc}$	1.3×10^{-10}	8.4×10^{-8}
$15 \mathrm{kPc}$	3.7×10^{-11}	3.7×10^{-9}

- In quiescent state LMXRB x-ray luminosity: 1032 erg/s
- During outburst luminosity: $10^{36} 10^{38}$ erg/s
- We are considering only galactic sources
- 10⁻¹² erg/s/cm²

Introduction Data

Problem

Chandra Source

catalogue

Finding Labels

Source List

Data Preprocessing

Training

Result Analysis

Future Roadmap

Quiescent / Outburst / Persistent source

Globular cluster sources

Introduction	Problem	Quiescent / Outburst / Persistent source							
Data Preprocessing	Chandra Source catalogue	Master TabPer observa							
Training	Finding Labels								
Result	Source List			Feature 1	Feature 2	Feature 3		Feature m	CLASS
Analysis		Source 1	Obs 1						
			Obs 2						
			Obs 3						
		Source 2	Obs 1	Nan	NAN				
			• • •						
			Obs n						
		Source n		NAN					
Future Roadmap									

Introduction
Data Preprocessing
Training
Result Analysis
Future Roadmap

Quiescent / Outburst / Persistent source

- Filtering
- Flux filter
- Pileup- flag
- Streak source flag

Finding Labels

Chandra Source

catalogue

Problem

Source List

Table 3: Total collected sources and observations, before obs filtering

	Num of sources	Num of Obs
NS lmxrb	84	493
BH lmxrb	33	227

Table 4: Number of sources and corresponding observations after all the filters applied

	Num of sources	Num of Obs
NS lmxrb	48	302
BH lmxrb	27	158

Introduction Data Preprocessing Training Result Analysis

Future Roadmap

Data Scaling

Data Imputation

Classifiers

Order of Magnitude problem

		Feature 1	Feature 2	Feature 3	 Feature m	CLASS
Source 1	Obs 1					
	Obs 2					
	Obs 3					
Source 2	Obs 1					
	• • •					

• Magnitude scale difference:

• Flux features: 10⁻¹²

• Variance : 10¹

• Hardness: -1, 1

• Uneven weight for network based classifiers

• Incorrect feature importance

• Solution:

Data Normalization : xi = (xi - max)/(max - min)

Data Standardization : xi = (xi - mean)/var

Introducti	o

Data Scaling

Data Preprocessing

Data Imputation

Classifiers

Training

Result Analysis

Future Roadmap

Missing data problem

		Feature 1	Feature 2	Feature 3	 Feature m	CLASS
Source 1	Obs 1			nan		
	Obs 2	Nan				
	Obs 3					
Source 2	Obs 1	Nan	NAN			
	• • •					

- Data Sparsity > 50%
- Why missing data
- Not all obs are made in all bands
- Model fit not done for observations made in <= 2 bands
- Solution
- Impute with Zeros
- Impute with feature mean
- Impute with feature median
- Imputation using feat correlation
- Imputation using Random Forest

		1			
- 10	nt I	$r \cap c$	HO.	+ 1	on
		MAYA	10107		

Data Scaling

Data Preprocessing

Data Imputation

Classifiers

Training

Result Analysis

Future Roadmap

Missing data problem

		Feature 1	Feature 2	Feature 3	 Feature m	CLASS
Source 1	Obs 1			nan		
	Obs 2	Nan				
	Obs 3					
Source 2	Obs 1	Nan	NAN			
	• • •					

• Imputation Using correlation

- Find feature-feature correlation coefficient matrix
- For each obs, fill in missing value using highest available correlated feature

Data Scaling

Data Preprocessing Data Imputation

Classifiers

Training

Result Analysis

Future Roadmap

Missing data problem

		Feature 1	Feature 2	Feature 3	 Feature m	CLASS
Source 1	Obs 1			nan		
	Obs 2	Nan				
	Obs 3					
Source 2	Obs 1	Nan	NAN			
	• • •					

• Imputation Using Random Forest

- Fill in missing value with median
- Calculate proximity matrix
- Fill in missing value as weighted average of corresponding feature across all observation,
- Weighing factor is proximity values
- Recalculate proximity matrix
- .
- •

	x1	x2	 xn
x1	1.0		
x2			
• • •			
xn			

Introduction	Data Scaling
Data Preprocessing	Data Imputation Classifiers
Training	Best Schematic
Result Analysis	
Future Roadmap	

Classifiers

- Logistic Regression
- K- Nearest Neighbour
- Fully connected network
- Convolution Neural Network
- Random Forest classifier

Introduction Data Preprocessing | Training Result Analysis Future Roadmap

Data Scaling

Data Imputation

Classifiers

Best Schematic

Data Scaling

- No-scaling
- Normalisation
- Standardisatsation

Data Imputation

- Zero
- Mean
- Median
- Correlation
- Random Forest

Classifier

- LR
- KNN
- FC
- CNN
- RF

Accuracy variations over data-Imputation and classifier

Introduction Data Preprocessing Training Result Analysis Future Roadmap

Data Scaling

Data Scaling

Data Imputation

Classifiers

Best Schematic

- No-scaling
- Normalisation
- Standardisatsation

Data Imputation

- Zero
- Mean
- Median
- Correlation
- Random Forest

Classifier

- LR
- KNN
- FC
- CNN
- RF

Accuracy variations over data-Imputation for Random forest classifier

Introduction Data Preprocessing Training Best Schematic Result Analysis Future Roadmap

Best Classifier schematic

Data Scaling

No-scaling

Data Scaling

Data Imputation

Classifiers

- Normalisation
- Standardisatsation

Data Imputation

- Zero
- Mean
- Median
- Correlation
- Random Forest

Classifier

- LR
- KNN
- FC
- CNN
- RF

Normalisation

Random forest Imputation

Random Forest Classifier

Tuning RF

Classifier

Data Preprocessing

Training

Result

Analysis

Result qualifier

Result

Normalisation

Random forest Imputation

	fraction	Total obs	BH nos.	NS Nos.
Training sample	0.8	368	126	242
Test sample	0.2	92	32	60

- Random Forest classifier
- Hyper- Parameter tuning
- Number of decision trees
- Maximum depth
- Random search method
- Grid-search method

- Random Forest classifier
- Best Hyperparameters
- Number of trees 288
- Max depth 150

Future Roadmap

Introduction Data Preprocessing Training Result Analysis

Future Roadmap

Tuning RF

Result qualifier

Result

Prediction Scheme

- Probability threshold for reporting classification
- Reduce chances of miss-dassification
- Set probability threshold for classification
- Threshold is decided to keep false positive rate minimum
- Prediction classes :
- N
- BH
- Ambiguous
- Accuracy defined as

$$acc = \frac{(BH - BH) + (NS - NS)}{(BH - BH) + (NS - NS) + (BH - X) + (NS - X)}$$

Introduction	Tuning RF	Result
Data Preprocessing	Result qualifier	• Wit
	Result	• Tra • Tes
Training		
Result Analysis		• Tr • To • Tr • Ar
Future Roadmap		

- With probability threshold for true positive set as 0.8 accuracy is:
- Training accuracy: 96.2 %
- Test accuracy: 92.1%

- Training data
- Total predictions 368
- True prediction 354
- Ambiguous predictions 14
- Incorrect predictions 0

- Test data
- Total predictions 92
- True prediction 85
- Ambiguous predictions 7
- Incorrect predictions 0

Probability quality

Predicted probability quality

Data Preprocessing Feature Importace $\bullet \qquad \hbox{With probability threshold for true positive set as 0.8 accuracy is:} \\$

• Training accuracy: 96.2 %

Test accuracy: 92.1%

Training

Result Analysis

Future Roadmap

Probability quality

Data Preprocessing Feature Importace

Training

Result Analysis

Future Roadmap

Feature Importance

- RF gives feature importance to each feature
- Class-wise feature Importance :

Introduction
Data Preprocessin
Training
Result Analysis

Probability quality

ng

Feature Importance

Feature Importance

- Based on Gini Impurity
- Class-wise feature Importance:

$$I_{fk,A} = I_k \times mean(f_k(X_i \in A))$$

NS Photon flux -u band Energy flux - u band Photon flux -u band upper limit Photon flux - m band Photon flux - s band Lower limit Band average photon flux upper limit

BH Black body, column density lower limit Powerlaw column density upper limit Black body, column density upper limit powerlaw column density black body column density Powerlaw column density lower limit

Future Roadmap

Probability quality

Data Preprocessing Feature Importace

Training

Result Analysis

Future Roadmap

Feature Importance

• Black Hole Imxrb important features

Probability quality

Data Preprocessing Feature Importace

Training

Result Analysis

Future Roadmap

Feature Importance

Neutron Star important features

Data Preprocessing

Training

Result Analysis

Future Roadmap

Conclusion and Future

- Conclusion
- Identified best schematic for LMXRB classification into NS and BH
- Achieved test accuracy 92 %
- Future Work Plan
- Study feature-feature correlation to drop not-so important features
- Physical significane of the result
- Phase –02 :
- Add CVs and Mili second puldars to classification
- Phase –03:
- Try Unsupervised learning with observations of all the GC sources in CSC
- Phase –04 :
- Expand classification to non-gc and extraglactic sources also

Thank You

Probability quality

Why Probability improved

Data Preprocessing Feature Importace

Training

Result Analysis

Future Roadmap

Probability quality

Data Preprocessing Feature Importace

Training

Result Analysis

Future Roadmap

Feature Importance

- RF gives feature importance to each feature
- Class-wise feature Importance :

$$I_{fk,A} = I_k \times mean(f_k(X_i \in A))$$

