Chapter 2 Categories

\$2.1 Functor and Natural Transformation

- Functor
- · Natural transformation
- (I) Functor

cortegory
$$C$$
 $\xrightarrow{\text{functor } F}$ $Category $D$$

object A,B
$$\longmapsto$$
 objects F(A), F(B)
map $A \xrightarrow{f} B \longmapsto$ map F(A) $\xrightarrow{F(f)}$ F(B)

Functors are morphisms in the category of all categories.

Def 2.1 For two categories C and D, a covariant functor $F:C\longrightarrow D$ consists of

- (i) Maps on objects: $A \longrightarrow F(A)$
- (ii) Maps on morphisms: $f \in Hom_{\mathcal{B}}(A, B) \mapsto F(f) \in Hom_{\mathcal{B}}(F(A), F(B))$.

They satisfy:

- ① $F(id_A) = id_{F(A)}$
- \mathfrak{S} $F(g \circ f) = F(g) \circ F(f)$.

Def. 2.2 G: C \longrightarrow B is called contravariant functor if it maps $f \in Hom_B(A,B)$ to $G(f) \in Hom_B(G(B), G(A))$ such that

- 1 G(idA) = id G(A).
- \mathfrak{D} $\mathsf{G}(\mathfrak{g} \circ \mathsf{f}) = \mathsf{G}(\mathsf{f}) \circ \mathsf{G}(\mathsf{g}).$

Remark. C Duality). Dual category $C^{op}: \textcircled{O} \otimes C^{op} = ob C \otimes Hom_{Cop}(A \cdot B) = Hom_{C}(B \cdot A)$. $cf \cdot g)^{op} = g^{op} \cdot f^{op}.$

- A contravariont function $F: \mathbb{C} \longrightarrow \mathbb{D}$ is a covariont function $\widetilde{F}: \mathbb{C}^{\operatorname{op}} \longrightarrow \mathbb{D}$.
- A contravariont functor $F: \mathcal{C} \longrightarrow \mathcal{B}$ is a covariant functor $\widetilde{F}: \mathcal{C} \longrightarrow \mathcal{B}^{\circ p}$.

For two functors $F:C\to B$, $G:D\to E$, we can define their composition $G\circ F$. The ide functor can also be defined naturally.

$$\begin{array}{cccc}
A & \xrightarrow{f} & B & & A & \xrightarrow{f} & B \\
\downarrow id \downarrow & & \downarrow id & & \downarrow F \downarrow & & \downarrow F \\
A & \xrightarrow{f} & B & & F(A) & \xrightarrow{F(f)} & F(B) \\
Q \downarrow & & \downarrow G \\
GF(A) & & & GF(B)
\end{array}$$

Def 2.3. For functor $F: C \rightarrow B$, it is called:

- (i) full, iff F is surjective on Hom see F: Homo (A, B) ->> Homo (F(A), F(B)).
- (ii) faithful, iff F is injective on Homes F: Home (A, B) >--> Homes (FCA), FCB)).
- Exp 2.1. Let B be a subcategory of C, we can define embedding by embedding of objects class and Hom set.

The guarrent group G/CG, GI is called Abelianization of G.

This includes a functor $F: Grp \longrightarrow Ab$. (Check this !!)

This functor is left adjoint of inclusion function $L: Ab \longrightarrow Grp$.

Exp 2.3 For any set $X \in Set$. Define a free R module $<\times>$ with basis X. This gives a functor $F\colon Set \longrightarrow {}_R Mod$.

Similarly, we have $F: Set \longrightarrow Vect_{\mathbf{E}}$. (Free functor)

Exp2.4 Forgetful function

 $\omega: {}_{R}Mod \longrightarrow Set$

w: RMod - Ab

- (II) Hom functor and tensor functor
 - Hom $(\bullet, X) : C \longrightarrow Set$ contravariant functor injective module
 - Hom (X, •) : € → Set covarions functor projective module
 - Tensor functor A⊗_R : RMod_R → RMod_R covariant functor flat module
- (II) Natural transformation

Natural transformation is maps betweed functors.

Def 2.4. For two functors $F,G:C\longrightarrow \mathcal{B}$, a natural transformation is a set of morphisms

 $T: F \longrightarrow G = \{ T_A \in Hom(F(A), G(A)) \mid A \in C \}$

such that for any $f \in Hom_{\mathcal{C}}(A,B)$, the following diagram commutes

$$\begin{array}{c|c}
F(A) & F(G) \\
\hline
T_A & & T_B \\
\hline
G(A) & G(G) \\
\hline
G(B) & G(B)
\end{array}$$

If all TA are isomorphisms, T is called natural isomorphism.

Exp 2.5. For Vert IF, define doube-dual function

$$F: Vect_{\mathbf{F}} \longrightarrow Vect_{\mathbf{F}}$$

$$V \longmapsto V^{W}$$

Then $\{\theta_V: V \longrightarrow V^{VV}\}$ is a natural transformation

0: id Vect F.

For Vector, 0 is natural isomorphism.