Name :	•••••	***************************************	•••••	•••
Roll No. :		•••••		•••
Invigilato	or's Signature :			••••
	M .	CS/BCA/SEM 2010-11 ATHEMATICS		01/2010-11
Time Allo	tted: 3 Hours		Fı	ull Marks : 70
	The figures in t	he margin indicat	e full mark	cs.
Candido	, –	to give their answ as far as practical		r own words
		GROUP – A		
	(Multiple	Choice Type Que	estions)	
1. Cho follo i)	owing: $\lim_{x \to 0} (1+x)^{1/x} = ?$ a) 1 b) 0 c) $\frac{2}{3}$ d) e.			10 × 1 = 10
1054				[Turn over

- iii) An element x in a ring R is zero divisor if
 - a) $x \cdot b = 0$
 - b) $x \cdot b = 0$, for some non zero element b in R
 - c) $x \cdot b \neq 0$, for all element b in R
 - d) none of these.
- iv) The value of $\int_{-1}^{2} |x| dx$ is
 - a) 3

b) 5

c) $\frac{5}{2}$

- d) 0.
- v) The value of $\frac{d}{dx}(\log_e x)$ is equals to
 - a) $\frac{1}{x}$

- b) $\log\left(\frac{1}{x}\right)$
- c) $\left(\frac{1}{n}\right)\log_a e$
- d) $a \log e$.
- vi) If $A = \{ 2, 4, 6 \}$ and $B = \{ 1, 3, 5, 7 \}$, then $A \cup B$ is
 - a) {0}

- b) {1, 2, 3, 4, 5, 6, 7}
- c) {1, 2, 4, 5, 6, 7}
- d) $\{0, 2\}.$
- vii) If A is a square matrix then
 - a) $A + A^T$ is symmetric
 - b) $A + A^T$ is skew symmetric
 - c) $A A^T$ is symmetric
 - d) $A A^T$ is skew symmetric.

viii) The matrix
$$A = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$
 is on

- a) orthogonal matrix
- b) idempotent matrix
- c) identity matrix
- d) none of these.

ix) If
$$y = 2$$
 at and $x = at^2$, then $\frac{dy}{dx}$ at $t = 1$ is

a) 1

b) 2a

c) - 1

d) $2a^2$.

x) The polar form of the equation
$$x^2 + y^2 - 8y = 0$$
 is

- a) $r = 8 \cos \theta$
- b) $r = 8 \sin \theta$
- c) $r^2 = 8 \cos \theta$
- d) none of these.

xi) If
$$A = \{ 1, 2, 3, 4, 8 \}, B = \{ 2, 4, 6, 7 \}$$
 then $A \Delta B$ is

- a) $\{2, 4\}$
- b) $\{1, 2, 3, 4, 6, 7, 8\}$
- c) **ф**
- d) {1, 3, 6, 7, 8}.

a) 1

b) -1

c) 2

d) 0.

1054

-3

[Turn over

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. A function f(x) is defined as follows

$$f(x) = x^2 \qquad \text{when } 0 < x < 1$$

= x when $1 \le x < 2$

=2-x when $2 \le x < 3$

Show that the f(x) is continuous at x = 2.

- 3. Evaluate $\int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$.
- 4. If α , β , γ be the roots of the cubic $x^3 + px + q = 0$, then find the equation whose roots are

$$\frac{\beta+\gamma}{\alpha^2}$$
, $\frac{\gamma+\alpha}{\beta^2}$, $\frac{\alpha+\beta}{\gamma^2}$.

- 5. Prove that the ring of matrices of the form $\begin{bmatrix} x & y \\ -y & x \end{bmatrix}$ of real number is a field.
- 6. In a survey concerning the smoking habits of consumers it was found that 55% smoke cigarette-A, 50% smoke cigarette-B, 42% smoke cigarette-C, 28% smoke cigarette-A & B, 20% smoke cigarette-A & C, 12% smoke cigarette-B & C and 10% smoke all the three cigarette. What percentage do not smoke?

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- $(m \sin^{-1} x),$ 7. sin then show that $(1-x^2)y_{n+2}-(2n+1)xy_{n+1}+(m^2-n^2)y_n=0.$
 - b) If α , β , γ are the 3 roots of $x^3 + px^2 + qx + r = 0$ obtain the value of $\sum (\alpha - \beta)^2$.
 - Evaluate $\int \frac{1}{x^2} e^{1/x} dx$.
- 8. a) If $u = \frac{y}{z} + \frac{z}{x} + \frac{z}{y}$ then prove that, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.
 - If by a rotation of rectangular co-ordinate axes without change of origin expressions ax + by and cx + dy are transformed into a' x' + b' y' and c' x' + d' y'. Show that a'd'-b'c'=ad-bc.
 - Reduce the following equation to its canonical form and c) determine the nature of the conic represented by it:

$$3x^2 - 8xy - 3y^2 + 10x - 13y + 18 = 0$$

9. a) Evaluate

$$\lim_{n \to \infty} \left[\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right].$$

b) Using mean value theorem prove the following inequality:

$$x \left\langle \sin^{-1} x \left\langle \frac{x}{\sqrt{1-x^2}} \right\rangle \right|$$
 if $0 < x < 1$

- c) Expand $\sin x$ in power of x in infinite series.
- 10. a) Solve the equation by Cardan's method:

$$2x^3 + 3x^2 + 3x + 1$$

b) Evaluate

$$\int \frac{x^2 \, \mathrm{d}x}{\left(x^2 + a^2\right)\left(x^2 + b^2\right)}$$

c) If $y = x^{x-1} \log x$, show that $y_x = \frac{(x-1)!}{x}$.

- 11. a) Prove that $|A \cup B| = |A| + |B| |A \cap B|$ where A and B are two non-empty sets.
 - b) If $A = \{a, b, c, d\} B = \{b, c, p, q\}$, then find out $A \times B$, $B \times A$ and $A \triangle B$.
 - c) Define power set. Find the power set of $\{a, b, c\}$.