CIVENG 3C03 Assignment 3

Raeed Hassan hassam41

November 11, 2022

Question 1

The optimal solution to the provided LP solution was found using the Microsoft Excel Solver. The LP model setup in Excel can be seen in Figure 1. The optimal solution is found using the Excel Solver with Simplex LP Solving Method. The optimal solution is $[X_1 = 0, X_2 = 11.5, X_3 = 14.8, X_4 = 10.4]$ with Max Z = 889.3, as seen in Figure 2.

The acceptable range for the cost coefficients are:

$$-\infty \le C_1 \le 29.1$$

 $6.8 \le C_2 \le 86.4$
 $33.17 \le C_3 \le \infty$
 $-\infty \le C_4 \le 32.5$

The acceptable range for the stipulations are:

$$153.33 \le B_1 \le 230$$

$$50.01 \le B_2 \le \infty$$

$$0 \le B_3 \le 35.33$$

$$33 \le B_4 \le 56.57$$

The Excel spreadsheet is included with the assignment submission as question1.xlsx.

Variables	X1	X2	Х3	X4			
Values	0	0	0	0			
Cost Coefficients	25	15	40	12		0	
Struct Coeff	3	4	4	7	#1	0 <=	178
	4.2	1.5	0	3.15		0 <=	112
	1	2	0	0		0 >=	23
	0	0	1	3		0 >=	46

Figure 1: Excel Solver Model

Cell	Name	Original Value	Final Value
\$J\$4 Cc	st Coefficients	0	889.3

Cell	Name	Original Value	Final Value	Integer
\$D\$3 Va	lues X1	0	0	Contin
\$E\$3 Va	lues X2	0	11.5	Contin
\$F\$3 Va	lues X3	0	14.8	Contin
\$G\$3 Va	lues X4	0	10.4	Contin

Figure 2: Excel Solver Solution

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$D\$3	Values X1	0	-4.1	25	4.1	1E+30
\$E\$3	Values X2	11.5	0	15	71.4	8.2
\$F\$3	Values X3	14.8	0	40	1E+30	6.83333333
\$G\$3	Values X4	10.4	0	12	20.5	1E+30

	Final	Shadow	Constraint	Allowable	Allowable
Name	Value	Price	R.H. Side	Increase	Decrease
#1	178	21.6	178	52	24.6666667
	50.01	0	112	1E+30	61.99
	23	-35.7	23	12.3333333	23
	46	-46.4	46	10.5714286	13
		Name Value #1 178 50.01 23	Name Value Price #1 178 21.6 50.01 0 23 -35.7	#1 178 21.6 178 50.01 0 112 23 -35.7 23	Name Value Price R.H. Side Increase #1 178 21.6 178 52 50.01 0 112 1E+30 23 -35.7 23 12.3333333

Figure 3: Excel Solver Sensitivity

Question 2

The unbalanced transportation problem was solved using the MODI Method, with all iterations shown in Figures 4–6. The optimal solution can be seen in Figure 6.

(a) The optimal allocation is shown in Table 1. As the demand exceeds supply, there is a shortage of 30m³ for both locations B and C that must be fulfilled by external sources.

Table 1: Optimal Solution

Route	Allocation
I-A	45
I-B	75
II-C	120
II-D	135

(b) The transportation cost corresponding to the solution obtained in part (a) is shown in Table 2.

Table 2: Transportation Cost

Route	Allocation	Unit Cost	Total Cost
I-A	45	9	405
I-B	75	10	750
II-C	120	6	720
II-D	135	3	405
Total C	Cost		2280

Figure 4: Initial Iteration

			Loca	ation				
		Α	В	С	D			
Quarry	Vj Ui	9	10	8	5	Available	Non-basic Cell	Improvement Index
	0	45	75			120	I-C	7
'	U	9 45	10	15	11	120	I-D	6
П	-2		30	150	75	255	II-A	5
"	-2	12	8 30	6 150	3 /5	255	III-A	-4
	-5					60	III-B	-5
III	-5	0	0	0	0 60	60	III-C	-3
Demand		45	105	150	135	435		

Figure 5: First Iteration

			Loca	ation				
		Α	В	С	D			
Quarry	Vj Ui	9	10	13	10	Available	Non-basic Cell	Improvement Index
	0	45	75			120	I-C	2
'	U	9 43	10	15	11	120	I-D	1
1	-7			150	105	255	II-A	10
"	-/	12	8	6	3	233	III-A	1
III	-10		30		30	60	II-B	5
- ""	-10	0	0	0	0	00	III-C	-3
Demand		45	105	150	135	435		

Figure 6: Second Iteration

			Loca	ition				
		Α	В	С	D			
Quarry	Vj Ui	9	10	10	7	Available	Non-basic Cell	Improvement Index
	0	45	75			120	I-C	5
'	U	9 43	10	15	11	120	I-D	4
1 11	-4			120	135	255	II-A	7
"	-4	12	8	6	3	233	III-A	1
III	-10		30	30		60	II-B	2
- ""	-10	0	0 30	0 30	0	60	III-D	3
Demand		45	105	150	135	435		

Question 3

The develop a plan for returning the four vehicles to the four local offices, we can identify the problem as an Assignment Problem and solve the problem using the Hungarian method. As the distances are not provided between each drop-off location and office, Google Maps was used to get these distances. The shortest distance for each route was used and rounded down to be an integer. The setup of the Hungarian method and initial two steps are shown in Figure 7. After the first two steps, optimality is not reached, therefore we find an improved solution in Figure 8 which we discover is an optimal solution. The optimal solution for returning the four vehicles to the four local offices is shown in Table 3.

Figure 7: Hungarian Method Setup

	Office Location						
Drop-off Location	Hamilton	Square One	Toronto	Kitchener			
YYZ	64	16	27	88			
BUF	118	153	172	184			
YXU	119	161	182	94			
Milton GO	38	28	52	57			

	Office Location						
Drop-off Location	Hamilton	Square One	Toronto	Kitchener			
YYZ	26	0	0	31			
BUF	80	137	145	127			
YXU	81	145	155	37			
Milton GO	0	12	25	0			

	Office Location			
Drop-off Location	Hamilton	Square One	Toronto	Kitchener
YYZ	26	0	0	31
BUF	0	57	65	47
YXU	44	108	118	0
Milton GO	0	12	25	0

Figure 8: Hungarian Method Optimal Solution

	Office Location			
Drop-off Location	Hamilton	Square One	Toronto	Kitchener
YYZ	38	0	0	43
BUF	0	45	53	47
YXU	44	96	106	0
Milton GO	0	0	13	0

Table 3: Optimal Solution

Drop-off Location	Return Location
YYZ	Downtown Toronto
BUF	Hamilton
YXU	Kitchener
Milton GO	Square One