# **MODEL REPORT:**

# **KEY PERFORMANCE VISUALIZATIONS**

#### **Confusion Matrix**

As we can see, the model perfectly classifies each example of the validation set into their true class. This might be because we're using a very powerful pre-trained model (VGG11) for a very simple problem.



### **Calibration Curve**

A perfectly calibrated model is one whose predicted probabilities match the actual likelihood of outcomes. For example, if the model predicts a 70% chance of a car, then in reality, 70% of such predictions are indeed cars.



In this case, the calibration curve lies exactly on the diagonal, indicating that the model's predicted probabilities are very reliable. When it predicts 80% confidence for a class, that class truly occurs roughly 80% of the time. This suggests the model not only distinguishes between cars and bikes correctly but also assigns probability estimates that can be trusted for downstream decisions.

## **Training Loss per Epoch**

Here we see that the training loss first decreases but then decreases over our 3 epochs. It isn't a good result, since we always want the error to decrease as epochs go by. Still, since we only have 3 epochs and our dataset is quite small, we still get really good results.



## **Validation Accuracy per Epoch**

We see that validation accuracy starts at 0.95 and goes up to 1.0 after just one epoch. In the end, our model perfectly classifies our validation data.

