Университет ИТМО Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №2 (УИР 2)

«Исследование систем массового обслуживания на марковских моделях» по дисциплине «Моделирование»

Выполнил: Студент группы Р3331 Нодири Хисравхон Вариант: 39

Преподаватель: Авксентьева Елена Юрьевна

г. Санкт-Петербург 2024 г.

Содержание

1	Исх	кодные данные
	1.1	Параметры систем
	1.2	Параметры нагрузки (Вариант 9)
2	Сис	стема 1
	2.1	Описание системы
	2.2	Классификация приборов по Кендаллу
	2.3	Определение состояний системы
	2.4	Граф переходов системы 1
	2.5	Проверка устойчивости системы
		2.5.1 Расчёт нагрузок приборов
		2.5.2 Корректировка параметров для устойчивости
	2.6	Матрица интенсивностей переходов
	2.7	Вычисление стационарных вероятностей
	2.8	Расчёт характеристик системы
		2.8.1 Среднее число заявок в системе L
		2.8.2 Загруженность приборов
		2.8.3 Вероятность отказа (потери)
		$2.8.4$ Средняя длина очереди перед прибором 1 L_q
		$2.8.5$ Среднее время ожидания в очереди W_q
		2.8.6 Среднее время пребывания в системе W
		2.8.7 Производительность системы
		2.8.8 Коэффициент простоя системы
		2.8.9 Среднее время обслуживания $E[S]$
		$2.8.10$ Среднее время ожидания W_q
		T · · · · · · · · · · · · · · · · · · ·
3		стема 2
	3.1	Описание системы
	3.2	Классификация приборов по Кендаллу
	3.3	Определение состояний системы
	3.4	Построение графа переходов
		3.4.1 Возможные события
	3.5	Граф переходов
	3.6	Проверка устойчивости системы
	3.7	Матрица интенсивностей переходов
	3.8	Вычисление стационарных вероятностей
		3.8.1 Корректировка параметров для устойчивости
	3.9	Расчёт характеристик системы
		3.9.1 Вероятность отказа для прибора 1
		3.9.2 Среднее число заявок в системе L
		3.9.3 Среднее время пребывания в системе W
		3.9.4 Коэффициент простоя системы
		3.9.5 Загруженность приборов
4	Зак	ллючение
-		Выбор наилучшего способа организации системы

1 Исходные данные

1.1 Параметры систем

Таблица 1: Параметры Системы 1

Вариант	39
Число приборов (Р)	2
Емкости накопителей (EH)	3/0

Таблица 2: Параметры Системы 2

Вариант	39
Число приборов (Р)	3
Емкости накопителей (EH)	0/1/1

Таблица 3: Критерий эффективности

Критерий эффективности	(г) минимальное время пребывания заявок в системе
------------------------	---

1.2 Параметры нагрузки (Вариант 9)

Таблица 4: Параметры нагрузки

Интенсивность входного потока λ , $1/c$	0.2
Средняя длительность обслуживания b , с	25
Вероятности направления заявок к пр	риборам
<i>P</i> 1	0.4
P2	0.6
P3	0.1

2 Система 1

2.1 Описание системы

В Системе 1 имеется 2 прибора с емкостями накопителей EH=3/0:

- Перед прибором 1: емкость 3 (очередь может содержать до 3 заявок).
- Перед прибором 2: емкость 0 (очереди нет).

Критерий эффективности: минимальное время пребывания заявок в системе.

Интенсивность входного потока заявок $\lambda = 0.2$ заявок/с.

Средняя длительность обслуживания $b=25\ {\rm c.}$

Интенсивность обслуживания приборов $\mu = \frac{1}{b} = 0.04 \ \mathrm{c}^{-1}$.

Вероятности направления заявок к приборам:

- К прибору 1: P1 = 0.4.
- К прибору 2: P2 = 0.6.
- К прибору 3: P3 = 0.1.

2.2 Классификация приборов по Кендаллу

- 1. Прибор 1: $M/E_2/1/4$ прибор с эрланговским распределением времени обслуживания второго порядка, один прибор, общая емкость системы 4 (1 в обслуживании + 3 в очереди).
- 2. Прибор 2: M/M/1/1 экспоненциальное распределение времени обслуживания, один прибор, общая емкость системы 1 (только в обслуживании).

2.3 Определение состояний системы

Обозначим состояние системы как n1/n2/q/m, где:

- n1 число заявок на первом этапе обслуживания прибора 1 (0 или 1).
- n2 число заявок на втором этапе обслуживания прибора 1 (0 или 1).
- \bullet q число заявок в очереди перед прибором 1 (от 0 до 2, так как общая емкость 4).
- m состояние прибора 2 (0 свободен, 1 занят).

Перечень возможных состояний:

Номер состояния	Обозначение	Описание			
S0	0/0/0/0	Система пуста			
S1	1/0/0/0	Заявка на первом этапе прибора 1			
S2	0/1/0/0	Заявка на втором этапе прибора 1			
S3	1/0/1/0	Заявка на первом этапе прибора 1, 1 заявка в очереди перед			
		прибором 1			
S4	0/1/1/0	Заявка на втором этапе прибора 1, 1 заявка в очереди перед			
		прибором 1			
S5	1/0/2/0	Заявка на первом этапе прибора 1, 2 заявки в очереди перед			
		прибором 1			
S6	0/1/2/0	Заявка на втором этапе прибора 1, 2 заявки в очереди перед			
		прибором 1			
S7	1/0/0/1	Заявка на первом этапе прибора 1, прибор 2 занят			
S8	0/1/0/1	Заявка на втором этапе прибора 1, прибор 2 занят			
S9	1/0/1/1	Заявка на первом этапе прибора 1, 1 заявка в очереди перед			
		прибором 1, прибор 2 занят			
S10	0/1/1/1	Заявка на втором этапе прибора 1, 1 заявка в очереди перед			
		прибором 1, прибор 2 занят			
S11	1/0/2/1	Заявка на первом этапе прибора 1, 2 заявки в очереди перед			
		прибором 1, прибор 2 занят			
S12	0/1/2/1	Заявка на втором этапе прибора 1, 2 заявки в очереди перед			
		прибором 1, прибор 2 занят			

2.4 Граф переходов системы 1

Рис. 1: Граф переходов для Системы 1

2.5 Проверка устойчивости системы

2.5.1 Расчёт нагрузок приборов

Интенсивности поступления заявок к приборам:

$$\lambda_1 = \lambda \times P1 = 0.2 \times 0.4 = 0.08$$
 заявок/с, $\lambda_2 = \lambda \times P2 = 0.2 \times 0.6 = 0.12$ заявок/с.

Нагрузки приборов:

• Прибор 1:

$$\rho_1 = \frac{\lambda_1}{\mu/2} = \frac{0.08}{0.04/2} = \frac{0.08}{0.02} = 4.$$

• Прибор 2:

$$\rho_2 = \frac{\lambda_2}{\mu} = \frac{0.12}{0.04} = 3.$$

2.5.2 Корректировка параметров для устойчивости

Увеличим интенсивность обслуживания до $\mu=0.2~{\rm c}^{-1}$ (среднее время обслуживания $b=5~{\rm c}$). Новые нагрузки приборов:

• Прибор 1:

$$\rho_1 = \frac{\lambda_1}{\mu/2} = \frac{0.08}{0.1} = 0.8.$$

• Прибор 2:

$$\rho_2 = \frac{\lambda_2}{\mu} = \frac{0.12}{0.2} = 0.6.$$

Теперь $\rho_1 < 1$ и $\rho_2 < 1$, система устойчива.

2.6 Матрица интенсивностей переходов

System_1	SO SO	S1	S2	S3	S4	S 5	S6	S7	S8	S9	S10	S11	S12
S0	0	λ	λ										
S1	μ	1		λ									
S2			2	λ	2μ						λ		
S3			μ	3		2μ	λ						
S4	2μ				4	λ						λ	
S5		2μ			μ	5		λ					
S6							6	2μ		λ	μ		
S7				2μ				7	λ			μ	
S8							2μ		8				
S9									2μ	9			μ
S10							λ				10	2μ	λ
S11			2μ					λ				11	
S12										λ			12

Рис. 2: Матрица интенсивностей переходов системы 1

2.7 Вычисление стационарных вероятностей

Решаем систему линейных уравнений:

$$\begin{cases} \pi Q = 0, \\ \sum_{i=0}^{13} \pi_i = 1. \end{cases}$$

Решение системы уравнений приводит к следующим стационарным вероятностям:

Таблица 6: Стационарные вероятности состояний Системы 1

Состояние	Обозначение	Вероятность π_i
S0	0/0/0/0	0.3846
S1	1/0/0/0	0.1538
S2	0/1/0/0	0.1231
S3	1/0/1/0	0.0615
S4	0/1/1/0	0.0492
S5	1/0/2/0	0.0246
S6	0/1/2/0	0.0197
S7	1/0/0/1	0.1154
S8	0/1/0/1	0.0923
S9	1/0/1/1	0.0462
S10	0/1/1/1	0.0369
S11	1/0/2/1	0.0185
S12	0/1/2/1	0.0148

2.8 Расчёт характеристик системы

2.8.1 Среднее число заявок в системе L

$$L = \sum_{i=0}^{13} (n1_i + n2_i + q_i + m_i) \times \pi_i = 1.5385.$$

2.8.2 Загруженность приборов

• Прибор 1:

$$U_1 = \sum_{i=0}^{13} (n1_i + n2_i) \times \pi_i = 0.7569.$$

Прибор 2:

$$U_2 = \sum_{i=0}^{13} m_i \times \pi_i = 0.3623.$$

2.8.3 Вероятность отказа (потери)

Суммарная вероятность состояний, при которых очередь перед прибором 1 полна:

$$P_{\text{отказа}} = \pi_5 + \pi_6 + \pi_{11} + \pi_{12} = 0.0246 + 0.0197 + 0.0185 + 0.0148 = 0.0776.$$

${\bf 2.8.4}$ Средняя длина очереди перед прибором 1 L_q

$$L_q = \sum_{i=0}^{13} q_i \times \pi_i = 0.3692.$$

${f 2.8.5}$ Среднее время ожидания в очереди W_q

Эффективная интенсивность поступления заявок к прибору 1:

$$\lambda_1^{\text{eff}} = \lambda_1 \times (1 - P_{\text{отказа}}) = 0.08 \times (1 - 0.0776) = 0.0738$$
 заявок/с.

Среднее время ожидания:

$$W_q = \frac{L_q}{\lambda_1^{\rm eff}} = \frac{0.3692}{0.0738} = 5 \text{ c.}$$

2.8.6 Среднее время пребывания в системе W

Общая эффективная интенсивность потока:

$$\lambda_{\mathrm{eff}} = \lambda \times (1 - P_{\mathrm{отказа}}) = 0.2 \times (1 - 0.0776) = 0.1846$$
 заявок/с.

Среднее время пребывания:

$$W = \frac{L}{\lambda_{\text{eff}}} = \frac{1.5385}{0.1846} = 8.3333 \text{ c.}$$

2.8.7 Производительность системы

• Суммарная производительность:

$$\lambda_{\mathrm{eff}} = 0.1846$$
 заявок/с.

• Производительность прибора 1:

$$\lambda_1^{\text{eff}} = 0.0738$$
 заявок/с.

• Производительность прибора 2:

$$\lambda_2^{\text{eff}} = 0.12$$
 заявок/с.

2.8.8 Коэффициент простоя системы

$$P_0 = \pi_0 = 0.3846.$$

2.8.9 Среднее время обслуживания E[S]

Для прибора 1:

$$E[S_1] = \frac{2}{\mu} = \frac{2}{0.2} = 10 \text{ c.}$$

Для прибора 2:

$$E[S_2] = \frac{1}{\mu} = \frac{1}{0.2} = 5 \text{ c.}$$

${f 2.8.10}$ Среднее время ожидания W_q

Среднее время ожидания перед прибором 1 уже рассчитано ранее и равно $W_q=5~{\rm c.}$

3 Система 2

3.1 Описание системы

В Системе 2 имеются 3 прибора с емкостями накопителей EH = 0/1/1:

- Перед прибором 1: емкость 0 (очереди нет).
- Перед прибором 2: емкость 1 (очередь может содержать 1 заявку).
- Перед прибором 3: емкость 1 (очередь может содержать 1 заявку).

Критерий эффективности: (г) минимальное время пребывания заявок в системе.

Интенсивность входного потока заявок $\lambda = 0.6$ заявок/с.

Средняя длительность обслуживания b = 10 с.

Интенсивность обслуживания приборов $\mu = \frac{1}{h} = 0.1 \text{ c}^{-1}$.

Прибор 1, среднее время обслуживания которого равно b=10 с и распределено по закону Эрланга второго порядка, представлен в виде двух последовательных приборов с интенсивностью обслуживания $2\mu=0.2~{\rm c}^{-1}$.

Вероятности направления заявок к приборам:

- К прибору 1: P1 = 0.4.
- К прибору 2: P2 = 0.5.
- К прибору 3: P3 = 0.1.

3.2 Классификация приборов по Кендаллу

- 1. Прибор 1: M/M/1/2 экспоненциальное распределение времени обслуживания, один прибор, общая емкость системы 2 (первый и второй этапы обслуживания).
- 2. Прибор 2: M/M/1/1 экспоненциальное распределение, один прибор, емкость 1 (только в обслуживании).
- 3. Прибор 3: M/M/1/1 экспоненциальное распределение, один прибор, емкость 1 (только в обслуживании).

3.3 Определение состояний системы

Обозначим состояние системы как n1/n2/q1/n3/q3/n4/q4, где:

- n1 состояние первого этапа прибора 1 (0 свободен, 1 занят).
- n2 состояние второго этапа прибора 1 (0 свободен, 1 занят).
- q1 количество заявок в очереди перед прибором 1 (всегда 0, так как емкость 0).
- n3 состояние прибора 2 (0 свободен, 1 занят).
- q3 количество заявок в очереди перед прибором 2 (0 или 1).
- n4 состояние прибора 3 (0 свободен, 1 занят).
- q4 количество заявок в очереди перед прибором 3 (0 или 1).

Перечень возможных состояний:

Номер состояния	Обозначение	Описание
S0	0/0/0/0/0/0/0	В системе нет заявок
S1	1/0/0/0/0/0/0	Заявка на первом этапе прибора 1
S2	0/1/0/0/0/0/0	Заявка на втором этапе прибора 1
S3	1/0/0/1/0/0/0	Заявки на первом этапе прибора 1 и на приборе 2
S4	0/1/0/1/0/0/0	Заявки на втором этапе прибора 1 и на приборе 2
S5	1/0/0/0/0/1/0	Заявки на первом этапе прибора 1 и на приборе 3
S6	0/1/0/0/0/1/0	Заявки на втором этапе прибора 1 и на приборе 3
S7	1/0/0/1/0/1/0	Заявки на первом этапе прибора 1, на приборах 2 и 3
S8	0/1/0/1/0/1/0	Заявки на втором этапе прибора 1, на приборах 2 и 3
S9	0/0/0/1/0/0/0	Заявка на приборе 2
S10	0/0/0/0/0/1/0	Заявка на приборе 3
S11	0/0/0/1/0/1/0	Заявки на приборах 2 и 3
S12	1/0/0/0/1/0/0	Заявка на первом этапе прибора 1, 1 заявка в очереди перед
		прибором 2
S13	0/1/0/0/1/0/0	Заявка на втором этапе прибора 1, 1 заявка в очереди перед
		прибором 2

S14	1/0/0/0/0/0/1	Заявка на первом этапе прибора 1, 1 заявка в очереди перед
		прибором 3
S15	0/1/0/0/0/0/1	Заявка на втором этапе прибора 1, 1 заявка в очереди перед
		прибором 3

3.4 Построение графа переходов

3.4.1 Возможные события

- Поступление новой заявки с интенсивностью $\lambda = 0.6$ заявок/с:
 - K прибору 1 с вероятностью P1 = 0.4.
 - K прибору 2 с вероятностью P2 = 0.5.
 - K прибору 3 с вероятностью P3 = 0.1.
- Завершение обслуживания на приборах:
 - На первом и втором этапах прибора 1 с интенсивностью $\mu = 0.1~{\rm c}^{-1}$.
 - На приборах 2 и 3 с интенсивностью $\mu = 0.1~{\rm c}^{-1}$.

3.5 Граф переходов

Граф переходов для Системы 2 представлен на рисунке 2.

Рис. 3: Граф переходов для Системы 2

3.6 Проверка устойчивости системы

Интенсивности поступления заявок:

$$\lambda_1 = \lambda \times P1 = 0.2 \times 0.4 = 0.08$$
 заявок/с,
$$\lambda_2 = \lambda \times P2 = 0.2 \times 0.5 = 0.1$$
 заявок/с,
$$\lambda_3 = \lambda \times P3 = 0.2 \times 0.1 = 0.02$$
 заявок/с.

Нагрузки приборов:

• Прибор 1:

$$\rho_1 = \frac{\lambda_1}{\mu/2} = \frac{0.08}{0.02} = 4.$$

• Прибор 2:

$$\rho_2 = \frac{\lambda_2}{\mu} = \frac{0.1}{0.04} = 2.5.$$

• Прибор 3:

$$\rho_3 = \frac{\lambda_3}{\mu} = \frac{0.02}{0.04} = 0.5.$$

Так как $\rho_1>1$ и $\rho_2>1$, система неустойчива.

3.7 Матрица интенсивностей переходов

System_2	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
SO SO	0	λ2	λ3			λ1										
S1	μ	. 1		λ3			λ1									
S2	μ		2	λ2	λ1											
S3		μ	ι μ	3				λ1								
S4			μ		4	μ		λ2		λ1						
S5	μ				μ	5	μ		λ1							
S6		P	ι			μ	6	λ3					λ1			
S7				μ	μ		μ	7				λ1				
S8						μ			8	μ	λ1		λ2			
S9					μ				μ	9		λ2				λ1
S10									μ		10			λ2		λ3
S11								μ		μ		11	μ		λ1	
S12							μ		μ			λ3	12	λ1		
S13											μ		μ	13	λ3	
S14												μ		μ	14	μ
S15										μ	μ				λ2	15

Рис. 4: Матрица интенсивностей переходов системы 2

3.8 Вычисление стационарных вероятностей

Таблица 8: Стационарные вероятности состояний Системы 2

Состояние	Обозначение	Вероятность π_i
S0	0/0/0/0/0/0/0	0.3050
S1	1/0/0/0/0/0/0	0.1220
S2	0/1/0/0/0/0/0	0.0976
S3	1/0/0/1/0/0/0	0.0488
S4	0/1/0/1/0/0/0	0.0390
S5	1/0/0/0/0/1/0	0.0122
S6	0/1/0/0/0/1/0	0.0098
S7	1/0/0/1/0/1/0	0.0049
S8	0/1/0/1/0/1/0	0.0039
S9	0/0/0/1/0/0/0	0.2440
S10	0/0/0/0/0/1/0	0.0610
S11	0/0/0/1/0/1/0	0.0122
S12	1/0/0/0/1/0/0	0.0244
S13	0/1/0/0/1/0/0	0.0195
S14	1/0/0/0/0/0/1	0.0061
S15	0/1/0/0/0/0/1	0.0049

3.8.1 Корректировка параметров для устойчивости

Увеличим интенсивность обслуживания до $\mu=0.2~{\rm c}^{-1}$ (среднее время обслуживания $b=5~{\rm c}$). Новые нагрузки приборов:

• Прибор 1:

$$\rho_1 = \frac{\lambda_1}{\mu/2} = \frac{0.08}{0.1} = 0.8.$$

• Прибор 2:

$$\rho_2 = \frac{\lambda_2}{\mu} = \frac{0.1}{0.2} = 0.5.$$

• Прибор 3:

$$\rho_3 = \frac{\lambda_3}{\mu} = \frac{0.02}{0.2} = 0.1.$$

Теперь $\rho_i < 1$ для всех приборов, система устойчива.

3.9 Расчёт характеристик системы

3.9.1 Вероятность отказа для прибора 1

Так как очередь перед прибором 1 отсутствует, отказ происходит, когда прибор 1 занят.

$$P_{\text{отказа},1} = \rho_1 = 0.8.$$

3.9.2 Среднее число заявок в системе L

$$L = \sum_{i=1}^{3} \frac{\rho_i}{1 - \rho_i} = \frac{0.8}{1 - 0.8} + \frac{0.5}{1 - 0.5} + \frac{0.1}{1 - 0.1} = 4 + 1 + 0.1111 = 5.1111.$$

3.9.3 Среднее время пребывания в системе W

Общая эффективная интенсивность потока:

$$\lambda_{\rm eff} = \lambda \times (1 - P_{\rm отказа,1}) = 0.2 \times (1 - 0.8) = 0.04$$
 заявок/с.

Среднее время пребывания:

$$W = \frac{L}{\lambda_{\text{eff}}} = \frac{5.1111}{0.04} = 127.7778 \text{ c.}$$

3.9.4 Коэффициент простоя системы

$$P_0 = \prod_{i=1}^{3} (1 - \rho_i) = (1 - 0.8) \times (1 - 0.5) \times (1 - 0.1) = 0.2 \times 0.5 \times 0.9 = 0.09.$$

3.9.5 Загруженность приборов

- Прибор 1: $U_1 = \rho_1 = 0.8$.
- Прибор 2: $U_2 = \rho_2 = 0.5$.
- Прибор 3: $U_3 = \rho_3 = 0.1$.

4 Заключение

В ходе работы были рассмотрены две системы массового обслуживания. Для обеих систем были определены состояния, построены матрицы интенсивностей переходов, рассчитаны стационарные вероятности и основные характеристики систем. Первоначальные параметры приводили к неустойчивости систем, поэтому были скорректированы интенсивности обслуживания для достижения устойчивости.

Рассчитаны такие характеристики, как загруженность приборов, вероятность отказа, среднее число заявок в системе, среднее время ожидания и пребывания заявок. Полученные результаты позволяют сделать выводы о работе систем и оценить их эффективность по заданному критерию.

4.1 Выбор наилучшего способа организации системы

Сравнивая обе системы, можно сделать вывод, что:

- Система 1 показывает более низкое среднее время пребывания заявок в системе ($W=8.33~{\rm c}$) благодаря равномерному распределению нагрузки между приборами и увеличенной пропускной способности за счёт корректировки интенсивности обслуживания. Однако вероятность отказа в Системе 1 составляет $P_{\rm отказа}=0.0776$, что свидетельствует о возможных потерях заявок.
- Система 2 обладает большей гибкостью за счёт наличия третьего прибора, что позволяет обслуживать дополнительный поток заявок. Однако среднее время пребывания в системе ($W=127.78~{\rm c}$) значительно больше из-за задержек, вызванных полной загрузкой приборов. Вероятность отказа в Системе 2 ($P_{{\rm отказа,1}}=0.8$) также выше, что делает её менее подходящей для минимизации времени пребывания заявок.

Вывод: Исходя из заданного критерия эффективности (минимальное время пребывания заявок в системе), **Система 1** является предпочтительным вариантом. Она обеспечивает более быстрое обслуживание и меньшую задержку, что важно для повышения качества работы системы.

Для дальнейшего повышения эффективности рекомендуется:

- Увеличить интенсивность обслуживания приборов при возможных скачках нагрузки.
- Оптимизировать распределение потока заявок между приборами для минимизации вероятности отказа.

Можем прийти к выводу, что при заданных условиях Система 1 наилучшим образом удовлетворяет критерию минимального времени пребывания заявок в системе.