

Matrix Multiply (Memory and Data Locality)

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Example – Matrix Multiplication

A Basic Matrix Multiplication


```
global void MatrixMulKernel(float* M, float* N, float* P, int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
  float Pvalue = 0;
  // each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k) {
    Pvalue += M[Row*Width+k]*N[k*Width+Col];
  P[Row*Width+Col] = Pvalue;
```

2D Index

Each thread maps to an output element

Example – Matrix Multiplication


```
global void MatrixMulKernel(float* M, float* N, float* P, int Width) {
// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;
if ((Row < Width) && (Col < Width)) {
  float Pvalue = 0;
  // each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k) {
    Pvalue += M[Row*Width+k]*N[k*Width+Col];
                                                                        Dot product
  P[Row*Width+Col] = Pvalue;
```

Each thread maps to an output element

A Toy Example: Thread to Output Data Mapping

We map each thread to an output element.

P_{Row,Col}

We map each thread to an output element.

TILED PARALLEL ALGORITHMS

Global Memory Access Pattern of the Basic Matrix Multiplication Kernel

Global Memory

Tiling/Blocking - Basic Idea Global Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number of tiles at each point in time

Tiling/Blocking - Basic Idea Global Memory

Outline of Tiling Technique

- 1. Identify a tile of global memory contents that are accessed by multiple threads
- 2. Load the tile from global memory into on-chip memory
- 3. Use barrier synchronization to make sure that all threads are ready to start the phase
- 4. Have the multiple threads to access their data from shared memory
- 5. Use barrier synchronization to make sure that all threads have completed the current phase
- 6. Move on to the next tile, repeat step 4.

TILED MATRIX MULTIPLICATION

Objective

- To understand the design of a tiled parallel algorithm for matrix multiplication
 - Loading a tile
 - Phased execution
 - Barrier Synchronization

Data access pattern

- Each thread access:
 - a row of M and a column of N
- Each thread block access:
 - a strip of M and a strip of N

N

Tiled Matrix Multiplication Phases

Break up the execution of each thread into *phases*

 data accesses by the thread block in each *phase* are focused on one tile of M and one tile of N

The tile is of BLOCK_SIZE elements in each dimension

Loading a Tile

- All threads in a block participate
- Each thread loads one M element and one N element in tiled code

Phase 0 Load for Block (0,0)

Phase 0 Use for Block (0,0) (iteration 0)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	$N_{0,3}$
$N_{1,0}$	N _{1,1}	$N_{1,2}$	$N_{1,3}$
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	$N_{2,3}$
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Phase 0 Use for Block (0,0) (iteration 1)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	$N_{0,3}$
$N_{1,0}$	N _{1,1}	$N_{1,2}$	$N_{1,3}$
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	$N_{2,3}$
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Phase 1 Load for Block (0,0)

Phase 1 Use for Block (0,0) (iteration 0)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	$N_{0,3}$
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	$N_{1,3}$
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	$N_{2,3}$
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$			

Phase 1 Use for Block (0,0) (iteration 1)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	$N_{0,3}$
$N_{1,0}$	N _{1,1}	$N_{1,2}$	$N_{1,3}$
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	$N_{2,3}$
$N_{3,0}$	$N_{3,1}$	$N_{3,2}$	$N_{3,3}$

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	$M_{2,3}$
$M_{3,0}$	$M_{3,1}$	$M_{3,2}$	$M_{3,3}$

Execution Phases of Toy Example

	Phase 0		Phase 1			
thread _{0,0}	$M_{0,0}$ \downarrow $Mds_{0,0}$	$N_{0,0}$ \downarrow $Nds_{0,0}$	$\begin{array}{l} PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0} \end{array}$	$\mathbf{M_{0,2}}$ \downarrow $\mathbf{Mds_{0,0}}$	$N_{2,0}$ \downarrow $Nds_{0,0}$	$PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0}$
thread _{0,1}	$\mathbf{M_{0,1}}$ \downarrow $\mathbf{Mds_{0,1}}$	$\begin{matrix} \mathbf{N_{0,1}} \\ \downarrow \\ \mathbf{Nds_{1,0}} \end{matrix}$	$\begin{array}{c} \text{PValue}_{0,1} += \\ \text{Mds}_{0,0} * \text{Nds}_{0,1} + \\ \text{Mds}_{0,1} * \text{Nds}_{1,1} \end{array}$	$\mathbf{M_{0,3}}$ \downarrow $\mathbf{Mds_{0,1}}$	$N_{2,1}$ \downarrow $Nds_{0,1}$	$\begin{array}{c} \text{PValue}_{0,1} += \\ \text{Mds}_{0,0} * \text{Nds}_{0,1} + \\ \text{Mds}_{0,1} * \text{Nds}_{1,1} \end{array}$
thread _{1,0}	$M_{1,0}$ \downarrow $Mds_{1,0}$	$\begin{matrix} \mathbf{N_{1,0}} \\ \downarrow \\ \mathbf{Nds_{1,0}} \end{matrix}$	$\begin{array}{l} \text{PValue}_{1,0} += \\ \text{Mds}_{1,0} * \text{Nds}_{0,0} + \\ \text{Mds}_{1,1} * \text{Nds}_{1,0} \end{array}$	$\mathbf{M}_{1,2}$ \downarrow $\mathbf{M}ds_{1,0}$	$N_{3,0}$ \downarrow $Nds_{1,0}$	$PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0}$
thread _{1,1}	$M_{1,1}$ \downarrow $Mds_{1,1}$	$N_{1,1}$ \downarrow $Nds_{1,1}$	$\begin{array}{l} \text{PValue}_{1,1} += \\ \text{Mds}_{1,0} * \text{Nds}_{0,1} + \\ \text{Mds}_{1,1} * \text{Nds}_{1,1} \end{array}$	$\mathbf{M}_{1,3}$ \downarrow $\mathbf{M}ds_{1,1}$	$N_{3,1}$ \downarrow $Nds_{1,1}$	$PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1}$

time

Execution Phases of Toy Example (cont.)

	Phase 0			Phase 1		
thread _{0,0}	$M_{0,0}$ \downarrow $Mds_{0,0}$	$N_{0,0}$ \downarrow $Nds_{0,0}$	$\begin{array}{c} PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0} \end{array}$	$\mathbf{M}_{0,2}$ \downarrow $\mathbf{M}ds_{0,0}$	$N_{2,0}$ \downarrow $Nds_{0,0}$	$PValue_{0,0} += \\ Mds_{0,0}*Nds_{0,0} + \\ Mds_{0,1}*Nds_{1,0}$
thread _{0,1}	$M_{0,1}$ \downarrow $Mds_{0,1}$	$N_{0,1}$ \downarrow $Nds_{1,0}$	$PValue_{0,1} += Mds_{0,1} *Nds_{0,1} + Mds_{0,1} *Nds_{1,1}$	$\mathbf{M_{0,3}}$ \downarrow $\mathbf{Mds_{0,1}}$	$N_{2,1}$ \downarrow $Nds_{0,1}$	$PValue_{0,1} += \\ Mds_{0,0}*Nds_{0,1} + \\ Mds_{0,1}*Nds_{1,1}$
thread _{1,0}	$M_{1,0}$ \downarrow $Mds_{1,0}$	$N_{1,0}$ \downarrow $Nds_{1,0}$	$\begin{array}{l} PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0} \end{array}$	$\mathbf{M}_{1,2}$ \downarrow $\mathbf{M}ds_{1,0}$	$N_{3,0}$ \downarrow $Nds_{1,0}$	$PValue_{1,0} += \\ Mds_{1,0}*Nds_{0,0} + \\ Mds_{1,1}*Nds_{1,0}$
thread _{1,1}	$M_{1,1}$ \downarrow $Mds_{1,1}$	$N_{1,1}$ \downarrow $Nds_{1,1}$	$\begin{array}{c} \text{PValue}_{1,1} += \\ \text{Mds}_{1,0} * \text{Nds}_{0,1} + \\ \text{Mds}_{1,1} * \text{Nds}_{1,1} \end{array}$	$\mathbf{M}_{1,3}$ \downarrow $\mathbf{M}ds_{1,1}$	$N_{3,1}$ \downarrow $Nds_{1,1}$	$PValue_{1,1} += \\ Mds_{1,0}*Nds_{0,1} + \\ Mds_{1,1}*Nds_{1,1}$

time

Shared memory allows each value to be accessed by multiple threads

Barrier Synchronization

- Synchronize all threads in a block
 - __syncthreads()
- All threads in the same block must reach the __syncthreads() before any of the them can move on
- Best used to coordinate the phased execution tiled algorithms
 - To ensure that all elements of a tile are loaded at the beginning of a phase
 - To ensure that all elements of a tile are consumed at the end of a phase

TILED MATRIX MULTIPLICATION KERNEL

Objective

- To learn to write a tiled matrix-multiplication kernel
 - Loading and using tiles for matrix multiplication
 - Barrier synchronization, shared memory
 - Resource Considerations
 - Assume that Width is a multiple of tile size for simplicity

Loading Input Tile 0 of M (Phase 0)

 Have each thread load an M element and an N element at the same relative position as its P element.

Loading Input Tile 0 of N (Phase 0)

 Have each thread load an M element and an N element at the same relative position as its P element.

Loading Input Tile 1 of M (Phase 1)


```
2D indexing for accessing Tile 1:

M[Row][1*TILE_WIDTH + tx]

N[1*TILE*WIDTH + ty][Col]
```


Loading Input Tile 1 of N (Phase 1)

M and N are dynamically allocated - use 1D indexing

- $M[Row][p*TILE_WIDTH+tx]$
- → M[Row*Width + p*TILE_WIDTH + tx]
 - N[p*TILE_WIDTH+ty][Col]
- N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

Tile (Thread Block) Size Considerations

- Each thread block should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads
 - TILE_WIDTH of 32 gives 32*32 = 1024 threads
- For TILE_WIDTH 16, in each phase, how many loads from global memory are performed?
- For TILE_WIDTH 16, in each phase, how many mul/add operations are performed?
- For 16, in each phase, each block performs 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations. (16 floating-point operations for each memory load)

Tile (Thread Block) Size Considerations

- Each thread block should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads
 - TILE_WIDTH of 32 gives 32*32 = 1024 threads
- For TILE_WIDTH 32, in each phase, how many loads from global memory are performed?
- For TILE_WIDTH 32, in each phase, how many mul/add operations are performed?
- For 32, in each phase, each block performs 2*1024 = 2048 float loads from global memory for 1024 * (2*32) = 65,536 mul/add operations. (32 floating-point operation for each memory load)

Shared Memory and Threading

- For an SM with 16KB shared memory
 - Shared memory size is implementation dependent!
- For TILE_WIDTH = 16,each thread block uses 2*16*16*4 Byte = 2KB of shared memory.
 - For 16KB shared memory, one can potentially have up to 8 thread blocks executing
- For TILE_WIDTH = 32,
 each thread block uses 2*32*32*4 Byte= 8KB of shared memory.
 - Allows 2 thread blocks active at the same time
- Each __syncthread() can reduce the number of active threads for a block
 - More thread blocks can be advantageous

HANDLING ARBITRARY MATRIX SIZES IN TILED ALGORITHMS

Objective

- To learn to handle arbitrary matrix sizes in tiled matrix multiplication
 - Boundary condition checking
 - Regularizing tile contents
 - Rectangular matrices

Handling Matrix of Arbitrary Size

- The tiled matrix multiplication kernel we presented so far can handle only <u>square</u> matrices whose dimensions (Width) are multiples of the tile width (TILE_WIDTH)
 - However, real applications need to handle arbitrary sized matrices.
- One could pad (add elements to) the rows and columns into multiples of the tile size, but would have significant space and data transfer time overhead.
- We will take a different approach.

Phase 1 Loads for Block (0,0) for a 3x3 Example

Threads (0,1) and (1,1) need special treatment in loading M tile

Phase 1 Use for Block (0,0) (iteration 0)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	
$N_{1,0}$	N _{1,1}	$N_{1,2}$	
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

Phase 1 Use for Block (0,0) (iteration 1)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	
$N_{1,0}$	N _{1,1}	$N_{1,2}$	
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

All Threads need special treatment. None of them should introduce invalidate contributions to their P elements.

Phase 0 Loads for Block (1,1) for a 3x3 Example

Threads (0,1) and (1,1) need special treatment in loading N tile

Threads (1,0) and (1,1) need special treatment in loading M tile

A "Simple" Solution

- When a thread is to load any input element, test if it is in the valid index range
 - If valid, proceed to load
 - Else, do not load, just write a 0
- Rationale: a 0 value will ensure that that the multiply-add step does not affect the final value of the output element
- The condition tested for loading input elements is different from the test for calculating output P element
 - A thread that does not calculate valid P element can still participate in loading input tile elements

Phase 1 Use for Block (0,0) (iteration 1)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	
$N_{1,0}$	N _{1,1}	$N_{1,2}$	
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

Boundary Condition for Input M Tile

- Each thread loads
 - M[Row][p*TILE_WIDTH+tx]
 - M[Row*Width + p*TILE_WIDTH+tx]

Need to test

- (Row < Width) && (p*TILE_WIDTH+tx < Width)</p>
- If true, load M element
- Else, load 0

Boundary Condition for Input N Tile

- Each thread loads
 - N[p*TILE_WIDTH+ty][Col]
 - N[(p*TILE_WIDTH+ty)*Width+ Col]

Need to test

- (p*TILE_WIDTH+ty < Width) && (Col< Width)</p>
- If true, load N element
- Else , load 0

Some Important Points

- For each thread the conditions are different for
 - Loading M element
 - Loading N element
 - Calculating and storing output elements
- The effect of control divergence should be small for large matrices

Handling General Rectangular Matrices

- In general, the matrix multiplication is defined in terms of rectangular matrices
 - j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix
- We have presented square matrix multiplication, a special case
- The kernel function needs to be generalized to handle general rectangular matrices.
 - The Width argument is replaced by three arguments: j, k, I
 - When Width is used to refer to the height of M or height of P, replace it with j
 - When Width is used to refer to the width of M or height of N, replace it with k
 - When Width is used to refer to the width of N or width of P, replace it with I