Lógica

Mauro Polenta Mora

Ejercicio 7

Consigna

Considere un lenguaje de primer orden de tipo $\langle -, 2; 1 \rangle$ con un símbolo de función f_1 y un símbolo de constante c_1 . Verifique cuáles de las siguientes afirmaciones son correctas.

- (a) x_1 es libre para x_1 en la fórmula $x_2 = 'x_1$.
- (b) x_3 es libre para x_1 en la fórmula $x_1 = 'x_2$.
- (c) c_1 es libre para $f_1(x_1,c_1)$ en la fórmula $f_1(x_1,c_1)=^\prime c_1.$
- (d) $f_1(x_1,x_3)$ es libre para x_3 en la fórmula $x_2='c_1$.
- (e) x_1 es libre para $f_1(x_1,c_1)$ en la fórmula $((\forall x_1)\ f_1(x_1,c_1)='c_1)$.
- (f) $f_1(c_1,x_2)$ es libre para x_2 en la fórmula (($\exists x_2)~x_2='x_1$).
- (g) $f_1(c_1,x_2)$ es libre para x_1 en la fórmula (($\exists x_2)~x_2='x_1$).
- (h) $f_1(x_1,x_2)$ es libre para x_5 en la fórmula $((\forall x_3)\ x_3='x_4) \rightarrow ((\forall x_5)\ x_5='x_2).$
- (i) $f_1(x_1,x_2)$ es libre para x_3 en la fórmula (($\exists x_3)\ x_3='c_1) \vee ((\exists x_4)\ x_3='x_4).$

Resolución

Recordatorio

Consideramos la siguiente definición para trabajar en este ejercicio.

Sean $t \in TERM, \psi \in FORM$. t está libre para x en ψ si:

- 1. ψ es atómica.
- 2. $\psi = (\psi_1 \square \psi_2)$ y t está libre para x en ψ_1 y en ψ_2
- 3. $\psi = (\neg \psi_1)$ y t está libre para x en ψ_1
- 4. $\psi = ((\forall y)\psi_1)$ (o $\psi = ((\exists y)\psi_1))$ y se cumple alguna de las siguientes:
 - 1. $x \notin FV(((\forall y)\psi_1))$ y respectivamente para $((\exists y)\psi_1)$
 - 2. $y \notin FV(t)$ y t está libre para x en ψ_1

Afirmación a

 x_1 es libre para x_1 en la fórmula $x_2 = 'x_1$.

La afirmación es **VERDADERA** pues la fórmula $\phi = (x_2 = 'x_1)$ es atómica.

Afirmación b

 x_3 es libre para x_1 en la fórmula $x_1 = 'x_2$.

La afirmación es **VERDADERA** pues la fórmula $\phi = (x_1 = 'x_2)$ es atómica.

Afirmación c

 c_1 es libre para $f_1(x_1,c_1)$ en la fórmula $f_1(x_1,c_1)=^\prime c_1.$

La afirmación es **FALSA**, pues estamos evaluando si un **término** es libre para una **variable** en una **fórmula**. En este caso, no podemos evaluar la expresión pues $f_1(x_1, c_1)$ **NO** es una variable.

Afirmación d

 $f_1(x_1, x_3)$ es libre para x_3 en la fórmula $x_2 = c_1$.

La afirmación es **VERDADERA**, pues la fórmula $\phi = (x_2 = c_1)$ es atómica.

Afirmación e

 x_1 es libre para $f_1(x_1,c_1)$ en la fórmula (($\forall x_1)\ f_1(x_1,c_1)='c_1$).

La afirmación es **FALSA**, pues estamos evaluando si un **término** es libre para una **variable** en una **fórmula**. En este caso, no podemos evaluar la expresión pues $f_1(x_1, c_1)$ **NO** es una variable.

Afirmación f

 $f_1(c_1, x_2)$ es libre para x_2 en la fórmula $((\exists x_2) \ x_2 =' x_1)$.

La afirmación es **VERDADERA**, pues: - $x_2 \notin FV((\exists x_2) \ x_2 =' x_1)$ (Regla 4.1 en la definición)

Afirmación g

 $f_1(c_1,x_2)$ es libre para x_1 en la fórmula (($\exists x_2)\ x_2='x_1$).

La afirmación es $\mathbf{FALSA},$ pues: - $x_2 \in FV(f_1(c_1,x_2))$ - $x_1 \in FV((\exists x_2) \ x_2 =' x_1)$

Entonces se hace falsa por la regla 4 de la definición.

Afirmación h

 $f_1(x_1,x_2) \text{ es libre para } x_5 \text{ en la fórmula } ((\forall x_3) \ x_3 =' x_4) \to ((\forall x_5) \ x_5 =' x_2).$

Para este ejemplo vamos a tener que aplicar un paso de recursión, deberíamos evaluar las siguientes afirmaciones para verificar el resultado final:

• $f_1(x_1, x_2)$ es libre para x_5 en la fórmula $((\forall x_3) \ x_3 = 'x_4)$.

- Esta es VERDADERA, pues $x_3 \not\in FV(f_1(x_1,x_2))$ (Regla 4.2 en la definición)
- $f_1(x_1, x_2)$ es libre para x_5 en la fórmula $((\forall x_5) \ x_5 = x_2)$.
 - Esta es VERDADERA, pues $x_5 \notin FV((\forall x_5) \ x_5 =' x_2)$ (Regla 4.1 en la definición)

Por lo que podemos concluir que esta afirmación es VERDADERA.

Afirmación i

$$f_1(x_1,x_2)$$
es libre para x_3 en la fórmula (($\exists x_3)\ x_3='c_1)\vee((\exists x_4)\ x_3='x_4).$

Para este ejemplo vamos a tener que aplicar un paso de recursión, deberíamos evaluar las siguientes afirmaciones para verificar el resultado final:

- $f_1(x_1,x_2)$ es libre para x_3 en la fórmula $((\exists x_3)\ x_3='c_1)$. Esta es VERDADERA, pues $x_3\notin FV((\exists x_3)\ x_3='c_1)$ (Regla 4.1 en la defini-
- $f_1(x_1,x_2)$ es libre para x_3 en la fórmula $((\exists x_4)\ x_3='x_4)$. Esta es VERDADERA, pues $x_4\notin FV(f_1(x_1,x_2))$ (Regla 4.2 en la definición)

Por lo que podemos concluir que esta afirmación es VERDADERA.