Dataset Drift Report

Train Embeddings: (4078, 768)
Valid Embeddings: (1935, 768)
Test Embeddings: (780, 768)

Embedding Distance (Original Dimension)

PCA Reduced Dimension: 100

Embedding Distance after PCA

Embedding Visualization after PCA

Quantitative Drift Scores

- MMD: score = 0.0005, drift = False
- Wasserstein Distance: score = 0.0600, drift = True
- KL Divergence: score = 0.0100, drift = False
- JensenShannon Divergence: score = 0.0600, drift = True
- Energy Distance: score = 0.0000, drift = False

Drift Analysis Summary

- MMD(Mean Absolute Error) 0.0005의 값이 매우 작아, 모델과 실제 데이터 간의 평균적인 절대 오차가 극히 낮음을 의미합니다.
- -터스 거리 0.0600은 데이터 분포가 거의 동일함을 나타내며, 이는 데이터를 정렬했을 때 가장 먼 두 점 사이의 거리가 아주 작다는 것을 의미합니다.
- -KL 분할 0.0100의 값이 작아, 모델과 실제 데이터 간의 정보 일치도가 높음을 나타냅니다.
- -젠슨 샤논 분할 0.0600은 페이터스 거리와 동일한 값을 가지지만 부호가 반대이며, 이는 데이터 분포가 거의 동일하지만 약간의 차이가 있음을 의미합니다.

에너지 거리 0.0000의 값이 가장 작아, 모델과 실제 데이터 간의 오차가 매우 적음을 나타냅니다.	