La turbine Wells : pièce essentielle de la colonne d'eau oscillante

Ulysse THOMAS 35966 Alice BARBÉ 50902

Introduction

Turbine Wells

Problématique

Quels sont les paramètres qui influencent le rendement d'une turbine Wells dans le cadre de la production d'électricité à partir d'une colonne d'eau oscillante ?

Génératrice utilisée

Sélection de la génératrice:

Electrical Specifications

Model	Voltage	No-load Current	No- load Speed	Rated Current	Rated Speed	Rated Torque	Starting Torque	Starting Current
	VDC	Α	rpm	Α	rpm	mNm	mNm	Α
FF-130RH-11340	7.5	0.033	6100	0.14	4900	1.1	5.5	0.57
FF-130SH-14230	3	0.037	3600	0.13	2850	0.7	3.5	0.53
FK-130SH-09490	12	0.034	9000	0.12	7000	0.9	4.0	0.41

Puissance éolienne

Établissement de la puissance mécanique du flux d'air incident:

$$P = \dot{E}_c(x) = \frac{1}{2}\dot{m}(x)v^2(x)$$
 or div $(\vec{v}(M,t))$ = $\vec{0}$, donc $\dot{m}(x) = S\rho v$

donc
$$P = \frac{1}{2}S\rho v^3$$

La vitesse du vent est mesurée avec un anémomètre au niveau de la turbine.

Première manipulation

Support conçu et génératrice

Turbine Wells imprimée en 3D

Première manipulation

Mise en place d'une résistance aux bornes de la génératrice pour relever la puissance électrique fournie.

Premières mesures

Montage électrique réalisé avec la génératrice :

Premier relevé de puissance :

- $\bullet \ P_{\'electrique} = 5.1\,\mathrm{mW}$
- \bullet $P_{vent} = 13 \, \mathrm{W}$

Rendement : $\eta_1 = 0,039\%$

Deuxième turbine

Impression d'une deuxième turbine Wells en 3D :

Avantages:

- Moins de poids
- Pales plus grandes
- Noyau réduit

Deuxième turbine

Avec le même montage électrique et le même protocole, on a :

Deuxième relevé expérimental :

- $P_{électrique} = 33 \,\mathrm{mW}$
- $P_{vent} = 4.19 \, W$

$$\eta_2 = 0,8\%$$

Deuxième turbine

Paramètres importants identifiés :

- Surface d'écoulement
- Taille des pales
- Taille du noyau

Amélioration

Surface d'écoulement concentrée au centre avec le sèche-cheveux, fabrication d'un adaptateur :

Adaptateur devant la turbine

Schéma et photo de l'adaptateur réalisé

Amélioration

Relevé expérimental :

- $P_{électrique} = 26 \,\mathrm{mW}$
- $P_{\text{\'eolienne}} = 5.4 \text{ W}$

$$\eta_3=0,48\%$$
 donc $\eta_2>\eta_3$

Explication:

Le centre de l'adaptateur n'est pas profilé donc il y a beaucoup de pertes en charge.

Expérimentation d'un flux d'air bidirectionnel

Avec la première turbine, on obtient cette courbe :

Schéma de l'expérience

->: Flux d'air

Relevé expérimental

Expérimentation d'un flux d'air bidirectionnel

Explication du phénomène :

- Moins d'inertie sur la deuxième turbine
- épaisseur de chevauchement des pales

Tentative de rajout de poids sur l'axe avec la 2^e turbine :

Expérimentation d'un flux d'air bidirectionnel

Grâce à une simulation informatique, on relève l'inertie des deux turbines et on confirme l'observation précédente :

Moment d'inertie des turbines autour de leur axe de rotation :

Inertie de la 1ère turbine

Inertie de la 2^{ème} turbine

Paramètre important identifié :

• Inertie de la turbine

Simulations Informatiques

Simulations Informatiques

Simulations Informatiques

Résultats d'une analyse statique :

Meilleurs résultats qu'avec la maquette car :

- État de surface des pales différent
- Surface d'écoulement différente

Conclusion

Principaux paramètres identifiés :

- Génératrice utilisée
- Taille du noyau
- Surface du souffle
- Taille des pales
- État de surface des pales

Fin de la présentation

Annexe

Dispositif de colonne d'eau oscillante en Écosse (2000)

Ulysse THOMAS 35966 La Turbine Wells 1

Programme python permettant de réaliser les relevés expérimentaux et de les afficher :

```
# ce script effectue une acquisition sur une voie
   # et une analyse spectrale du signal
 4 import pycanum.main as pycan
 5 import matplotlib.pyplot as plt
 6 import numpy as np
 7 import os as os
9 # ouverture de l'interface pour SysamSP5
10 can = pycan.Sysam("SP5")
11 # configuration de l'entrée 1 avec un calibre 1.0 V
12 can.config entrees([1],[1.0])
14 # Période d'échantillonnage (minimum le-7 secondes)
15 te = 1e-3
16 # durée de l'acquisition
17 T = 3
18 # nombre d'échantillons (Max 260000 environ)
19 N = int(T/te)
20 print(N)
# configuration de l'échantillonnage. La période d'échantillonnage est donnée en
23 microsecondes
24 can.config echantillon(te*10**6,N)
25 # acquisition
26 can.acguerir()
27 # Lecture des instants et des tensions pour la voie 0
28 t0=can.temps()[0]
29 u0=can.entrees()[0]
30 # fermeture de l'interface
31 can.fermer()
32 # enregistrement dans un fichier texte pour un traitement ultérieur
33 np.savetxt('valeurs.txt',[t0,u0])
34
```

Annexe

```
35 # On relie la période d'échantillonnage et la durée à partir des données
36 # car il peut y avoir une différence avec les valeurs spécifiées au départ
37 te = t0[1]-t0[0]
38 fe = 1.0/te
39 N = t0.size
   T = t0[N-1]-t0[0]
41
   # Tracé temporel du signal et enregistrement de la figure dans un fichier pdf
   plt.figure()
44
   plt.plot(t0, u0, color="blue", lw=1, ls='-', marker='o', markersize=2.5)
   plt.title("Representation temporelle "+" Te="+str(te*1e6)+"$\mu$s")
46
   plt.xlabel("EA0 (s)")
47
   plt.ylabel("u (V)")
48 #plt.axis([0,0.01,-5.5,6.5])
   plt.grid()
50 plt.savefig("signal.pdf")
```

import numpy as np

Programme python permettant de filtrer les relevés expérimentaux et d'afficher les courbes résultantes, avec deux méthodes différentes :

```
import matplotlib.pyplot as plt
   t0,u0=np.loadtxt("Premier test 06-12-2024.txt",unpack=True) #importation du fichier source
   ##Lissage par moyenne glissante d'ordre n :
  #Chaque point est ramplacé par la moyenne des n points autour le lui.
   def lissage(n, sign b):
        sign l = np.copv(sign b)
        for i in range (1.len(sign b)-1):
           ord g = min(i,n)
           ord d = min(len(sign b)-i-1,n)
           ord i=min(ord_g,ord_d)
           sign l[i]=np.sum(sign b[i-ord i:i+ord i+1])/(2*ord i+1)
        return(sign 1)
17 ##Lissage par l'implémentation d'un filtre passe-bas:
   #Ce filtre a une fréquence de coupure fc et un pas de temps h
   def Filtrage(fc,S,h):
       Yexp=np.copy(S)
        for k in range(1,len(S)-1):
            Y = xp[k+1] = Y = xp[k] * (1-h*2*np.pi*fc) + h*2*np.pi*fc*S[k] #équation de récurrence
        return Yexp
  te = t0[1]-t0[0]
   sf=Filtrage(1.u0.te) #Création d'une liste correspondant au premier filtrage
   sf2=lissage(131.sf) #Création dd'une liste correspondant au deuxième filtrage
  #Affichage d'une des deux courbes obtenues aux lignes précédentes :
31 plt.figure()
32 plt.plot(t0,sf,ls='None',marker='+',markersize=3)
33 plt.tick params(axis = 'both', labelsize = 15)
34 plt.xlabel("Temps (en s)".fontsize=15)
  plt.ylabel("Tension (en V)", fontsize=15)
36 plt.title("Tension aux bornes de la résistance en fonction du temps", fontsize=25)
37 plt.arid()
38 plt.show()
```