PATVIRTINTA

Nacionalinio egzaminų centro direktoriaus 2009-06-03 įsakymu Nr. (1.3.)-V1-83

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA

Pagrindinė sesija

1-6 uždavinių atsakymai

1 variantas

Užd. Nr.	1	2	3	4	5	6
Ats.	D	D	C	В	E	D

2 variantas

Užd. Nr.	1	2	3	4	5	6
Ats.	D	E	D	D	В	C

Kitų uždavinių sprendimo nurodymai ir atsakymai

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
7		4	
	7.1. $\log_3 x = 2$		
	Ats.: $x = 9$	• 1	Už teisingą atsakymą.
	7.2. $\log_2(x-3) - \log_2(x-1) = 3$		
	1 būdas.		
	$\log_2 \frac{x-3}{x-1} = 3$	• 1	Už teisingo sprendimo būdo pasirinkimą.
	$\frac{x-3}{x-1} = 8$		pasii iiikiiiią.
	$X = \frac{5}{7}$	• 1	Už teisingai išspręstą lygtį.
	$x = \frac{5}{7}$ netinka, nes apibrėžimo sritis $x > 3$.		
	Ats.: Sprendinių nėra.	• 1	Už gautą teisingą atsakymą.
	2 būdas.		
	$\log_2(x-3) = \log_2 8 + \log_2(x-1)$		
	$\log_2(x-3) = \log_2 8(x-1)$	• 1	Už teisingo sprendimo būdo
	x-3=8(x-1)		pasirinkimą.
	$X = \frac{5}{7}$	• 1	Už teisingai išspręstą lygtį.
	$x = \frac{5}{7}$ netinka, nes apibrėžimo sritis $x > 3$.		
	Ats.: Sprendinių nėra.	• 1	Už gautą teisingą atsakymą.

Pastaba: Sprendimas (x-3)-(x-1)=3

$$-2 = 3$$

Ats.: Sprendinių nėra.

vertinamas 0 taškų.

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
8		4	
	8.1. $Ats.: a_1 = -1,$		
	$a_2 = 2$.	• 1	Už teisingą atsakymą.
	8.2. $a_{n+1} - a_n = 3n - 1 - 3n + 4 = 3 = d$.	• 1	Už teisingą įrodymą.
	Ats.: Duota seka yra aritmetinė progresija, nes gretimų narių skirtumas lygus pastoviam skaičiui 3. 8.3.		
	$S_{200} = \frac{2 \cdot (-1) + (200 - 1) \cdot 3}{2} \cdot 200 = 59500$	• 1	Už teisingos pirmųjų <i>n</i> aritmetinės progresijos narių
	arba $S_{200} = \frac{-1 + 596}{2} \cdot 200 = 59500$	• 1	sumos formulės taikymą. Už gautą teisingą atsakymą.
	Ats.: 59500.		

Pastaba: jeigu mokinys, spręsdamas **8.3** uždavinį, aritmetinės progresijos pirmųjų narių sumą skaičiuoja taikydamas teisingą sumos formulę, bet naudoja **8.1** ir **8.2** neteisingai apskaičiuotas a_1 ir/ar d reikšmes, jam skiriami visi taškai.

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
9		3	
	9.1. $225000 \cdot 1,4 = 315000$ (Lt)	• 1	Už gautą teisingą atsakymą.
	Ats.: 315000 Lt.		
	9.2. Jei <i>x</i> - namų valdos žemės sklypo pirkimo kaina, tai (225000 – <i>x</i>) – ūkio		
	paskirties sklypo kaina $1,5 x+(225000-x)\cdot 1,25=315000$ x=135000 (Lt), todėl namų valdos žemės	• 1	Už teisingos lygties sudarymą.
	sklypo pardavimo kaina $135000 \cdot 1,5 = 202500$ Lt.	• 1	Už gautą teisingą atsakymą.

Pastaba: jei mokinys teisingai sudaro lygčių sistemą ir gauna teisingą atsakymą, jam skiriami visi taškai.

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
10		3	
	Pagal kosinusų teoremą		
	$BD^2 = AB^2 + AD^2 - 2 \cdot AB \cdot AD \cos \angle BAD$	• 1	Už teisingo sprendimo būdo pasirinkimą (pvz. teisingai
	$BD^2 = (3\sqrt{2})^2 + 7^2 - 2 \cdot 3\sqrt{2} \cdot 7\cos 45^\circ$		užrašytą kosinusų teoremą kraštinei <i>BD</i>).
	<i>BD</i> = 5	• 1	Už teisingai apskaičiuotą
	Pagal Pitagoro teoremą:	•	pagrindo įstrižainės <i>BD</i>
	$B_1D^2 = BD^2 + BB_1^2$		ilgį.
	$B_1 D^2 = 25 + 144 = 169$		
	$B_1 D = 13$ cm	• 1	
	Ats.: $B_1D=13$ cm.		Už gautą teisingą atsakymą.

Pastaba: jeigu mokinys neteisingai apskaičiuoja BD ilgį, pasirinkęs neteisinga BD skaičiavimo būdą, bet toliau su savo duomenimis teisingai apskaičiuoja B_1D ilgį, jam skiriamas 1 taškas.

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
11		6	
	11.1. $(x-2)(x+2) > 5$		
	1 būdas.		
	$x^2 - 4 > 5$		
	$x^2 - 9 > 0$ arba $x^2 > 9$	• 1	Už teisingai pertvarkytą
	\		nelygybę.
	$+$ $+$ \times	• 1	Už teisingo kvadratinės nelygybės sprendimo būdo
			pasirinkimą.
	Ats.: $x \in (-\infty; -3) \cup (3; +\infty)$.	• 1	Už gautą teisingą atsakymą.
	2 būdas.		
	$x^2 - 4 > 5$		
	$x^2 - 9 > 0$ arba $x^2 > 9$	• 1	Už teisingai pertvarkytą
	14.2		nelygybę.
	x > 3	• 1	Už teisingo kvadratinės nelygybės sprendimo būdo
	4. (2)11(2)	1	pasirinkimą.
	Ats.: $x \in (-\infty; -3) \cup (3; +\infty)$.	• 1	Už gautą teisingą atsakymą.
	11.2. $ 2x-3 \le 4$		
	1 būdas.	• 1	Už teisingo nelygybės
	$\int 2x - 3 \le 4$	▼ 1	sprendimo būdo pasirinkimą.
	$2x-3 \ge -4$		sprendinio oddo pasiriikinią.
	$\int X \le 3.5$	• 1	Už teisingai išspręstas tiesines
	$X \ge -0.5$		nelygybes.
	Ats.: $x \in [-0.5; 3.5]$.	• 1	Už gautą teisingą atsakymą.
	2 būdas.		
	$\int_{\mathbf{r}} 3$	1	
	$\begin{cases} x < \frac{3}{2} & \text{arba} \end{cases} \begin{cases} x \ge \frac{3}{2} \end{cases}$	• 1	Už teisingo nelygybės spren-
	$3-2x \le 4 \qquad 2x-3 \le 4$		dimo būdo pasirinkimą.
	$\begin{cases} x < \frac{3}{2} & \text{arba} \\ x \ge -0.5 \end{cases} \begin{cases} x \ge \frac{3}{2} \\ x \le 3.5 \end{cases}$		
	$\begin{cases} 2 & \text{arba} \end{cases} \begin{cases} 2 \\ 2 \end{cases}$	• 1	Už teisingai išspręstas tiesines
			nelygybes.
	Ats.: $x \in [-0.5; 3.5]$.	• 1	Už gautą teisingą atsakymą.
	3 būdas.		
	$(2x-3)^2 \le 16$	_	
	$(2x-3-4)(2x-3+4) \le 0$	• 1	Už teisingo nelygybės
	$(2x-7)(2x+1) \le 0$		sprendimo būdo pasirinkimą.
	/		
	+ X	• 1	Už teisingo kvadratinės
	-0,5 - 3,5	. 1	nelygybės sprendimo būdo
	5,5		pasirinkimą.
	Ats.: $x \in [-0.5; 3.5]$.	1	TT¥4- 4-* · · · · · · · · · · · · · · · · · · ·
	4 būdas.		Už gautą teisingą atsakymą.
	$ x-1,5 \le 2$		Už teisingo nelygybės
	Remiantis modulio savoka		sprendimo būdo pasirinkimą.
	Remailus modulio sąvoka		

	L / / / 1	1	Oz gautą tersnigą atsakynią.
Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
12		5	
	12.1. $2\cos^2(\pi - x) + 3\cos\left(\frac{\pi}{2} + x\right) - 2 =$		
	$= 2\cos^2 x - 3\sin x - 2 =$ $= 2(1 - \sin^2 x) - 3\sin x - 2 =$	• 1	Už teisingai redukuotas abi trigonometrines funkcijas.
	$= 2 - 2\sin^2 x - 3\sin x - 2 =$ $= -2\sin^2 x - 3\sin x$	• 1	Už teisingai pertvarkytą reiškinį.
	12.2. $2\sin^2 x + 3\sin x = 0$ $\sin x(2\sin x + 3) = 0$		
	$\sin x = 0 \text{arba} 2\sin x + 3 = 0$ $\sin x = -\frac{3}{2}$	• 1	Už teisingą lygties užrašymą dviejų lygčių visuma.
	$X = \pi k, k \in \mathbb{Z}$ nėra sprendinių $Ats.: \pi k, k \in \mathbb{Z}$.	• 2	Po vieną tašką už kiekvieną teisingai išspręstą lygtį.

Pastaba: sprendžiant 12.2 uždavinio lygtį pakanka bent vieną kartą paminėti, kad $k \in \mathbb{Z}$.

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
13		5	
	13.1. {(6;6),(2;10),(10;2)}	• 1	Už teisingai užrašytą aibę.
	13.2.		
	1 būdas.		
	P(X = 12) = P(6;6) + P(2;10) + P(10;2) =	• 1	Už teisingą nepriklausomų ir
	$= \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} = 3 \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3}, \text{ nes įvykiai}$		nesutaikomų įvykių savybių taikymą.
	nepriklausomi ir nesutaikomi.		
	2 būdas. Visų baigčių skaičius $n = 9$. Įvykiui palankių baigčių skaičius $m = 3$, todėl $P(X = 12) = \frac{3}{9} = \frac{1}{3}.$	• 1	Už teisingą klasikinio tikimybės apibrėžimo taikymą.

2003 1	/I. IVI/\ I LIVI/\	TIINOO V	ALOT I DIIV	IO DIVAN	JOO LOZAII	11110 02	.00011	ES VERTININO INSTRUNCIJA
13.3. 1 būda $P(X = \frac{2}{9})$		6;10)+	P(10;6)	$=\frac{1}{3}\cdot\frac{1}{3}$	$+\frac{1}{3}\cdot\frac{1}{3}=$	•	1	Už teisingą nepriklausomų ir nesutaikomų įvykių savybių taikymą.
	$\begin{vmatrix} 4 \\ \frac{1}{9} \end{vmatrix}$	8 2 9	$\begin{array}{c c} 12 \\ \hline \frac{1}{3} \end{array}$	$\frac{16}{\frac{2}{9}}$	20 1 9			
	$\begin{array}{c c} 3. \\ \hline 4 \\ \hline \hline \frac{1}{9} \\ \end{array}$	$\frac{8}{\frac{2}{9}}$	$\frac{12}{\frac{1}{3}}$	$\frac{16}{\frac{2}{9}}$	$\begin{array}{c c} 20 \\ \hline \frac{1}{9} \end{array}$	•	1	Už teisingai baigtą pildyti lentelę.
	13.4. $E(X) = 4 \cdot \frac{1}{9} + 8 \cdot \frac{2}{9} + 12 \cdot \frac{1}{3} + 16 \cdot \frac{2}{9} + 20 \cdot \frac{1}{9} =$ = 12 (Lt)					•	1	Už teisingą matematinės vilties apskaičiavimą.
Ats.: K	adangi 12	2 < 13,	žaidimo	žaisti 1	neverta.	•	1	Už teisingai argumentuotą išvadą.

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
14		3	
	14.1.	• 2	Po vieną tašką už kiekvieną teisingai nubraižytą grafiką $(y=2^x \text{ ir } y=-x^2+2x+3).$
	14.2. <i>Ats.:</i> Vienas teigiamas sprendinys.	• 1	Už teisingą atsakymą.

Pastabos:

- 1. Teisingais $y=2^x$ grafiko eskizais laikome tokius, kuriuose brėžiama rodiklinė kreivė per tašką (0;1) ir bet kuriuos pirmojo ir antrojo ketvirčio taškus.
- 2. Teisingais $y=-x^2+2x+3$ grafiko eskizais laikome tokius, kuriuose brėžiama parabolė eina per taškus (-1;0), (3;0), (0;3) ir yra simetrinė tiesės x=1 atžvilgiu.
- 3. Jeigu mokinys spręsdamas **14.2** uždavinį pagal neteisingai **14.1** nubrėžtus grafikus padaro teisingą išvadą apie teigiamų sprendinių skaičių, jam skiriamas 1 taškas.

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
15	•	4	
	15.1.		
	1 būdas.		
	$\triangle AED = \triangle AFD$ pagal kraštinę ir du kampus	• 1	Už įrodymą, kad
	prie jos (AD - bendra, o $\angle EAD$ = $\angle FAD$,		$\Delta AED = \Delta AFD$
	$\angle EDA = \angle FDA$), todėl $DE = DF$.	• 1	Už teisingą išvadą, jog lygių trikampių atitinkamos kraš-
	2 būdas.		tinės lygios.
	$\frac{ED}{AD} = \sin \angle EAD = \sin \angle FAD = \frac{FD}{AD}$	• 1	Už įrodymą, kad $\frac{ED}{AD} = \frac{FD}{AD}$.
	$\frac{ED}{AD} = \frac{FD}{AD}$		
	ED = FD	• 1	Už įrodymą, kad $ED = FD$.
	15.2.		
	1 būdas.		
	$\frac{S_{\triangle ACD}}{S_{\triangle ABD}} = \frac{\frac{1}{2}DE \cdot AC}{\frac{1}{2}DF \cdot AB} = \frac{AC}{AB}$	• 2	Už kiekvieną teisingai gautą plotų santykį.
	ir		
	$\frac{S_{\triangle ACD}}{S_{\triangle ABD}} = \frac{\frac{1}{2} h_{CB} \cdot CD}{\frac{1}{2} h_{CB} \cdot BD} = \frac{CD}{BD}$		
	todėl $\frac{AC}{AB} = \frac{CD}{BD}$.		
	2 būdas.		
	$\frac{S_{\triangle ACD}}{S_{\triangle ABD}} = \frac{\frac{1}{2} AC \cdot AD \sin \angle CAD}{\frac{1}{2} AB \cdot AD \sin \angle BAD} = \frac{AC}{AB}$	• 2	Už kiekvieną teisingai gautą plotų santykį.
	ir		
	$\frac{S_{\triangle ACD}}{S_{\triangle ABD}} = \frac{\frac{1}{2} CD \cdot DA \sin \angle CDA}{\frac{1}{2} BD \cdot DA \sin(180^{\circ} - \angle CDA)} =$		
	$=\frac{CD}{BD}$		
	todėl $\frac{AC}{AB} = \frac{CD}{BD}$.		

Pastabos:

- 1. Jeigu mokinys spręsdamas **15.1** uždavinį remiasi trikampių lygumu to neįrodydamas, jam skiriamas 1 taškas.
- 2. Jeigu mokinys įrodo, kad $\frac{AC}{AB} = \frac{CD}{BD}$ taikydamas sinusų teoremą, trikampių panašumą (papildžius brėžinį) ir pan., jam skiriamas 1 taškas.

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
16		4	
	1 būdas.		
	$40 - \frac{1}{30} x^2 = 25 - \frac{1}{60} x^2$		
	$x^2 = 900$ $x = \pm 30$	• 1	Už gautas teisingas parabolių susikirtimo taškų abscises.
	$S = 2 \int_{0}^{30} \left(40 - \frac{1}{30} x^{2} - 25 + \frac{1}{60} x^{2} \right) dx =$	• 1	Už teisingą ploto išreiškimą integralu.
	$= 2\left(15x - \frac{x^3}{180}\right)\Big _0^{30} = 600 \text{ (m}^2\text{)}.$	• 1	Už gautą teisingą pirmykštę funkciją.
	Ats.: 600 m^2 .	• 1	Už gautą teisingą atsakymą.
	2 būdas.		
	$40 - \frac{1}{30} x^2 = 25 - \frac{1}{60} x^2$		
	$x^2 = 900$ $x = \pm 30$	• 1	Už gautas teisingas parabolių susikirtimo taškų abscises.
	$S_1 = 2 \int_0^{30} \left(40 - \frac{1}{30} x^2 \right) dx = 2 \left(40 x - \frac{x^3}{90} \right) \Big _0^{30} =$	2	
	= 1800	• 2	Po vieną tašką už kiekvieną
	$S_2 = 2 \int_0^{30} \left(25 - \frac{1}{60} x^2 \right) dx = 2 \left(25 x - \frac{x^3}{180} \right) \Big _0^{30} =$		teisingai apskaičiuotą plotą.
	= 1200		
	$S = S_1 - S_2 = 600 \text{ (m}^2\text{)}.$		
	Ats.: 600 m ² .	• 1	Už gautą teisingą atsakymą.

Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
17		7	
	17.1. $\pi x^2 H = 300$ $H = \frac{300}{\pi x^2}$ $S = 3\pi x H + 3\pi x^2 - 3\pi x + 300 + 3\pi x^2$	• 1	Už gautą teisingą aukštinės išraišką spinduliu <i>x</i> .
	$S = 2\pi x H + 2\pi x^{2} = 2\pi \cdot x \cdot \frac{300}{\pi x^{2}} + 2\pi x^{2} =$ $= 2 \cdot \frac{300}{x} + 2\pi x^{2} = 2\left(\frac{300}{x} + \pi x^{2}\right)$	• 1	Už gautą teisingą ritinio viso paviršiaus priklausomybę nuo
	17.2. $S(x) = 2\left(-\frac{300}{x^2} + 2\pi x\right)$	• 1	spindulio <i>x</i> . Už teisingai surastą funkcijos <i>S(x)</i> išvestinę.
	$-\frac{300}{x^2} + 2\pi x = 0$ $-300 + 2\pi x^3 = 0$		
	$x^3 = \frac{300}{2\pi}$		
	$X = \sqrt[3]{\frac{150}{\pi}}$		

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

	2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAN	VIINO UZDUOTI	ES VERTINIMO INSTRUNCIJA
	S(X)		
	$0 \xrightarrow{3} \frac{150}{\pi} S(x)$	• 1	Už teisingai surastą <i>x</i> reikšmę, su kuria išvestinė
	S(2) < 0		lygi 0.
	S(5) > 0		
	Ats.: Kai $X = \sqrt[3]{\frac{150}{\pi}}$ paviršiaus plotas yra		
	mažiausias.		
		• 1	Už teisingą pagrindimą, kad
	17.3. Jei $X = \sqrt[3]{\frac{150}{\pi}}$, tai		su reikšme $X = \sqrt[3]{\frac{150}{\pi}}$
	H- 300		paviršiaus plotas yra
	$H = \frac{300}{\pi \left(\sqrt[3]{\frac{150}{\pi}}\right)^2}$		mažiausias.
	$C = \frac{H}{X} = \frac{300}{\pi \left(\sqrt[3]{\frac{150}{\pi}} \right)^2 \cdot \sqrt[3]{\frac{150}{\pi}}} = \frac{300}{\pi \cdot \frac{150}{\pi}} = 2$	• 1	Už teisingą aukštinės išraišką.
	$\binom{n}{\sqrt[4]{\pi}}$ $\binom{3}{\pi}$ $\frac{\pi}{\pi}$		
	Ats.: $C=2$.	• 1	Už gautą teisingą atsakymą.
Užd.	Sprendimas/Atsakymas	Taškai	Vertinimas
18	-	4	
_			
	x — greitis stovinčiame vandenyje y — upės tėkmės greitis, $x > y$ t_1 — irkluotojo, plaukiančio upe, sugaištas laikas $t_1 = \frac{5}{10} + \frac{5}{10} = \frac{10x}{2}$	• 2	Po vieną tašką už kiekvieno
	y - upės tėkmės greitis, $x > y$ t_1 - irkluotojo, plaukiančio upe, sugaištas laikas $t_1 = \frac{5}{x - y} + \frac{5}{x + y} = \frac{10x}{x^2 - y^2}$ t_2 - irkluotojo, plaukiančio ežeru, sugaištas laikas $t_2 = \frac{10}{x}$	• 2	Po vieną tašką už kiekvieno irkluotojo surastą teisingą laiko išraišką.
	y- upės tėkmės greitis, $x > y$ t_1 - irkluotojo, plaukiančio upe, sugaištas laikas $t_1 = \frac{5}{x - y} + \frac{5}{x + y} = \frac{10x}{x^2 - y^2}$ t_2 - irkluotojo, plaukiančio ežeru, sugaištas laikas $t_2 = \frac{10}{x}$ $\frac{t_1}{t_2} = \frac{\frac{10x}{x^2 - y^2}}{\frac{10}{x}} = \frac{x^2}{x^2 - y^2} > 1,$ nes $x^2 - y^2 < x^2$, arba $t_1 - t_2 = \frac{10x}{x^2 - y^2} - \frac{10}{x} = \frac{10y^2}{x(x^2 - y^2)} > 0,$	• 2	irkluotojo surastą teisingą
	y - upės tėkmės greitis, $x > y$ t_1 - irkluotojo, plaukiančio upe, sugaištas laikas $t_1 = \frac{5}{x - y} + \frac{5}{x + y} = \frac{10x}{x^2 - y^2}$ t_2 - irkluotojo, plaukiančio ežeru, sugaištas laikas $t_2 = \frac{10}{x}$ $\frac{t_1}{t_2} = \frac{\frac{10x}{x^2 - y^2}}{\frac{10}{x}} = \frac{x^2}{x^2 - y^2} > 1,$ nes $x^2 - y^2 < x^2$,	21	irkluotojo surastą teisingą laiko išraišką. Už teisingo palyginimo būdo pasirinkimą $\left(\frac{t_1}{t_2}\right)$ arba

Pastaba: Jeigu mokinys pasirenka bent vieną konkretų greitį ir gauna teisingą išvadą, jam skiriamas 1 taškas.