Physics Questions

1. Find the equivalent resistance between points A and B in the given network of resistors.

2. Find the equivalent resistance between points A and D in the given network of resistors.

3. Find the equivalent resistance between points A and B in the given network of resistors.

4. Find the equivalent resistance between points A and B in the given network of resistors.

5. Find the equivalent resistance between points A and B in the given network of resistors.

6. Determine the current supplied by the battery in the circuit as shown.

7. Find the currents in the resistances $2\,\Omega$ and $4\,\Omega$ in the given circuit.

8. Calculate the current shown by the ammeter A in the circuit shown in the figure.

9. Find the equivalent resistance between points P and Q in the given network of resistors.

10. Find the equivalent resistance between points P and Q in the given network of resistors.

11. Find the equivalent resistance between points A and B in the given network of resistors.

12. Find the current drawn from a cell of emf 2 V and internal resistance 2Ω connected to the network given below.

13. In the circuit shown in the figure, $E_1 = 10 \,\mathrm{V}$, $E_2 = 4 \,\mathrm{V}$, $r_1 = r_2 = 1 \,\Omega$, and $R = 2 \,\Omega$. Find the potential difference across battery 1 and battery 2.

14. Find the emf and internal resistance of a single battery which is equivalent to a combination of three batteries as shown in the figure.

15. The potential difference between points A and B of the following figure is

(a) $\frac{2}{3}$ V

- (b) $\frac{8}{9}$ V
- (c) $\frac{4}{3}$ V
- (d) 2 V
- 16. In the figure given below the current passing through the $6\,\Omega$ resistor is:

- (a) $0.40 \, \text{A}$
- (b) $0.48\,\mathrm{A}$
- (c) $0.72 \,\mathrm{A}$
- (d) 0.80 A
- 17. In the figure given below the current passing through the 3Ω resistor is 0.8 A. The potential drop across the 4Ω resistor is:

- (a) $9.6 \, V$
- (b) 2.6 V
- (c) $4.8\,\mathrm{V}$
- (d) 1.2 V
- 18. Current i as shown in the circuit will be:

- (a) 10 A
- (b) $\frac{10}{3}$ A
- (c) ZERO
- (d) INFINITE
- 19. In the figure given below the current flowing through the $10\,\Omega$ resistance is:

- (a) 12 A
- (b) 1.2 A
- (c) $0.8 \, \text{A}$
- (d) 0.4 A
- $20. \ \,$ The current drawn from the battery in the circuit diagram shown is:

- (a) 1 A
- (b) 2 A
- (c) $1.5 \,\mathrm{A}$
- (d) 3A
- 21. In the circuit shown

the point B is earthed. The potential at the point A is:

- (a) 14 V
- (b) 24 V
- (c) 26 V
- (d) 50 V
- 22. Two batteries of emf 4 V and 8 V with internal resistances $1\,\Omega$ and $2\,\Omega$ are connected in a circuit with a resistance of $9\,\Omega$ as shown in the figure

The current and potential difference between the points P and Q are:

- (a) $\frac{1}{3}$ A and 3 V
- (b) $\frac{1}{9}$ A and 9 V
- (c) $\frac{1}{6}$ A and 4 V
- (d) $\frac{1}{2}$ A and 12 V
- 23. The current flowing through the $5\,\Omega$ resistance in the given circuit is:

- (a) 10 A
- (b) 1 A

- (c) $2.5 \, \text{A}$
- (d) 0.4 A
- 24. Find the currents in different branches of the electric circuit shown in the figure

- 25. A letter 'A' consists of a uniform wire of resistance $0.2\,\Omega$ per cm. The sides of the letter are each $20\,\mathrm{cm}$ long and the cross-piece in the middle is $10\,\mathrm{cm}$ long while the apex angle is 60° . Find the resistance of the letter between the two ends of the legs.
- 26. A voltmeter of resistance $994\,\Omega$ is connected across a cell of emf 1 V and internal resistance $6\,\Omega$. Find the potential difference across the voltmeter, that across the terminals of the cell, and the percentage error in the reading of the voltmeter.
- 27. Two identical cells of emf 1.5 V each joined in parallel provide supply to an external circuit consisting of two resistances of 17Ω each joined in parallel. A very high resistance voltmeter reads the terminal voltage of the cells to be 1.4 V. Calculate the internal resistance of each cell.
- 28. Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance of 30Ω . Given that the emf of each cell is $1.5 \,\mathrm{V}$ and internal resistance is $1.0 \,\Omega$.
- 29. 136 cells, each of internal resistance $0.5\,\Omega$ and emf of $1.5\,\mathrm{V}$, are used to send maximum current through an external circuit of $2\,\Omega$ resistance. Find the best mode of grouping them and the maximum current through the external circuit.