References:	M. Artin Algebra Chapter 2
Common prope Objects like	re that helps us model the rhies of concrete mathematic numbers, permutations, linear symmetries etc.
2. Définition (Group)	
$\star : S \times S \rightarrow S$	of a set S along win n as law of composition) e following axioms:
	<u> </u>
Remark: e is	e = ea = a simply means a * e) unique! (Prove it)
	$3b \in S$ s.t. $ab = ba = e$ Write $b = a^{-1}$
(iii) Associativity Just	$\forall a,b,c \in S$ $(ab) c = a(bc)$ when abc

Group Theory (Handout 1)

Remark: D'Associativity implies cancellation law! ¥a,b, c ∈ S ab = ac = 2b = c $frosf: a^{-1}(ab) = a^{-1}(ac)$ = 2b = ec = 2b = c2) technically the group is a pair G = (5, *) but we'll just write G for the set and talk about elements of G. Note: (i) Negled the 2nd awiom (Invents)

=) Monoid (ii) Onit the first and second action (keep 3rd)

=> Semi-group (iii) To the composition law is commutative i.e., $\forall a,b \in S$, $a \neq b = b \neq a$ then G is Abelian. 3. Examples: 0) Trivial group G = Ae?

e.e=e

1) Number Systems (Z,+) or Q, T, RRomark: (IN,+) is a semi-group.

2) (Exercise) Come up with an example of a
2) (Exercise) Come of aith an example of a group with 2 elements.
3) Z/n or Z/nz or Z/n
:= \(0, \& n - 1 \)
Cronf law: Addition avodulo n. i.e.,
$ \begin{array}{cccc} (a,b) & \longrightarrow & \begin{array}{ccccccccccccccccccccccccccccccccccc$
atb-n else
Similarly, IR/ := S= [0,1) CIR with addition
with addition
(a,b) + of a+b ib a+b <
a+b-1 else
4) Non-zero numbers
$Q^* := Q \setminus \{o\}, R^*, C^*$
with multiplication
Identity = 1 Inverse (of x) = 1/x
,
Inside t^* the unit circle $S^{-1} = \sqrt{z \in t z } = 1$ is also a group for multiplication.
is also a group for multiplication.
These are still Abelian, except 14t
(non-zero
(non-zero quaternory)

5) Symmetries and Permutations:

Recall, $f: A \rightarrow B \quad is \quad (i) \quad injective \quad ib$ $\forall x, y \in A$ $x \neq y \Rightarrow f(n) \neq f(y)$ (ii) surjedine :6 $\forall b \in B$, $\exists x \in A$ s.t. f(n) = b

(iii) bijecine ib (i) and (ii) holy

A permutation of a set A is a bijection $f:A \rightarrow A$.

The set of permutations of A, with operation = composition is a group learn (A).

The symmetric group on n elements on

 $S_n = \text{Rem}(\{1, 2, \dots, n\})$

'Sz has a geometric interpretation.

- Think of symmetries of an equilateral transle = Rotations which presence it (3 includy identity) and reflections (3 of these)

- Symmetries permute the herbies, and energy permutation of the set of vertices arises from exactly one symmetry (+ composition laws agree) So, Sz also occurs as the group of symmetries (other groups arise from Symmetries of other grometric figures in 12 and 183). 6) Groups of matrices (nL C/R) = of invertible nxn matrices with real coels. }

"heneral linear group"

(with matrix multiplichion) also SLn (IR) = of nxn real matrices with det=13 11 Special Wheer group " also GL, (4), SL, (1) for matrius complia coeff. a a ar W/n ays 4. Product of groups:

(g and H, the

GXH.

- (riven two groups

product group is

$$(n \times H) := \{(g,h)\} g \in G, h \in H\}$$
with composition law

- Sinilarly, for product of a groups:

Example:
$$Z^n = \langle (a_1, a_2, ... a_n) | a_i \in Z_i \rangle$$

$$(a_1, a_2 - a_n) + (b_1, b_2 - b_n)$$

= $(a_1 + b_1, - a_n + b_n)$

Similarly Qn, IRn, th with componentaise addition

1) Direct product

$$\frac{\partial}{\partial x} \left(\alpha_1, \alpha_2, \alpha_3 \right) = \frac{\partial}{\partial x} \left(\alpha_1, \alpha_2, \alpha_3 \right)$$

$$= 1$$

(a) $G_1 = A(a_1, a_2, ...)$ $A_1 \in G_1$ and $A_2 \in G_1$ and $A_1 \in G_2$ $A_2 \in G_1$ and $A_2 \in G_2$ $A_1 \in G_2$ $A_2 \in G_1$ $A_2 \in G_2$ $A_1 \in G_1$ $A_2 \in G_2$ $A_2 \in G_1$ $A_2 \in G_2$ $A_1 \in G_1$ $A_2 \in G_1$ $A_2 \in G_2$ $A_1 \in G_1$ $A_2 \in G_1$ $A_2 \in G_2$ $A_1 \in G_1$ $A_2 \in G_1$ $A_2 \in G_2$ $A_1 \in G_1$ $A_2 \in G_2$ $A_2 \in G_1$ $A_1 \in G_2$ $A_2 \in G_1$ $A_2 \in G_2$ $A_1 \in G_2$ $A_2 \in G_1$ $A_2 \in G_2$ $A_1 \in G_2$ $A_2 \in G_2$ Example: Consider (90 = 6, = -- = (1R, +) Denote (ao, a, , a2---) by Zaja' Then Tomed Power Series

Formed Power Series

Ta; at (w/ addition)

i=0

PIR = IRT x) polynomials

i=0 Za;xi finite 5. Subgroups and Homomorphisms 5.1. (Dela) (Subgroup)

A subgroup H of a group (q is a non-empty subset H C G which is closed order composition (i.e., a,b CH =) ab cH) and inversion (i.e., acH =) a-1 cH).

50, H (with same operation) is a group.

- We say to is a proper subgroup of G if 5.2. (Defn) (Homomorphinn) Given 2 groups Gr, H, a homomorphism
4: 4 -1 H is a map which respects the composition law: Ha, b & G (ab) = Q(a) Q(b) (This implies $g(e_q) = e_H$, and g(a-1) = g(a)) - An isomorphism is a bijective homomorphism. [16 Cr and H are isomorphic, then they are "senetly" the "same" group even it different hames). Examples: (Subgroups) 1. (21,+) C(Q,+) C(R,+) C(C,+) 2. $(Q^*, \times) \subset (\mathbb{R}^*, \times) \subset (\mathbb{C}^*, \times)$ 3. (e) C G (Trivial subgroup) 4, A; CG; => H, xH2x--- Hn CG, x62--x6n 5. Dhi C Thi