Introdução aos Sistemas Digitais - Compilação de Exercícios Teste

Sistemas Numéricos | Lógica Booleana | Mapas Karnaugh

- *Considere a função booleana $F(x,y,z) = x' \cdot y' + z' \cdot x$. Esta função pode ser descrita pelo produto dos seguintes maxtermos:
- *Considere a função booleana F(x,y,z) = xy + xz + yzEsta função pode ser descrita pelo produto dos seguintes maxtermos:
- *Num contexto de representação em complemento para 2, considere a quantidade 10000000012. O valor absoluto dessa quantidade expresso em BCD8421 é:
- *Analise o circuito da figura. A função F(x,y) que realiza é:

$$F = x'.y' + x.y$$

$$F = x x or y$$

$$F=x.y' + x'.y$$

$$F = (x xor y)'$$

*Considere um contexto de representação de quantidades em complemento para 2 com 8 bits. Identifique os possíveis casos de overflow

(Com 8 bits em complemento para 2 são representáveis a gama de valores compreendida entre [-128,127].)

*Considere um contexto de representação de quantidades em complemento para 2 com 8 bits. Identifique os possíveis casos de overflow

 $7F_{16} + 20_{16}$

 $80_{16} + 7F_{16}$

4016 + 2016

4016 + 4016

*Seja $f(a,b,c) = a'.c+(a\oplus c)' + a.b' + b+ c.$ A expressão booleana mais simples para esta função é

*Tendo em conta a seguinte tabela de verdade da função F(x,y,z) a expressão algébrica da 2ª forma canónica é:

X	У	Z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

*Considere o número 57.34258 A sua representação hexadecimal é:

3F.715₁₆ 3F.517₁₆ 2F.71₁₆ 2F.715₁₆

*Considere a seguinte expressão algébrica:

$$x+(y \oplus z)^{D}.w+(y \oplus z).$$

Esta expressão pode ser simplificada para:

 $x+(y\oplus z)'+W$ $x+(y\oplus z)+W$ x+W $x+(y\oplus z)$

*Atendendo à identidade booleana

 $X.Y + X' \cdot Z + Y \cdot Z = X.Y + X' \cdot Z$ deduz-se, por dualidade, que:

$$X.Y + X' . Z + Y . Z = (X+Y) . (X' + Z)$$

 $(X+Y) . (X'+Z) . (Y+Z) = (X+Y) . (X' + Z)$
 $X.Y + X' . Z + Y . Z = X' . Y' + X . Z'$
 $(X+Y) . (X'+Z) . (Y+Z) = X+Y . X' + Z$

*Construindo o mapa de Karnaugh da função F(A,B,C,D) = D.(C'+A) podemos concluir que

Tem 4 implicantes Primos Tem 2 Implicantes Primos Essenciais Tem 1 Implicante Primo Essencial Não tem Implicantes Primos Essenciais * Seja F(x,y,z) a função definida pelo seguinte mapa de Karnaugh

F=x'.z'+y'.z+x.y é uma expressão mínima

F=(x'+y+z).(x+y'+z') é uma expressão mínima na forma soma de produtos

F=x'.y'+x.z+y.z' é uma expressão mínima

Existem duas formas mínimas em produto de somas

)		
1	0	
1	1	
0	1	yz
1	1	

*Dado o seguinte mapa de Karnaugh da função F(A,B,C,D) podemos concluir, após minimização correta, que

 $F = (B \times C)' + AB$

 $F = (B \times C)' + A.B'$

 $F = (B \operatorname{cor} C)' + A.B.C'$

	00	01	11	10	AB
00	1	0	1	1	
01	1	0	1	1	
11	0	1	1	0	
10	0	1	1	0	
CD					

*Seja f(x,y,z) = (x+y+z).(x'.y+z'.y). A partir desta expressão podemos concluir que

f não inclui o mintermo m₀ na sua 1ª forma canónica.

f inclui o mintermo mo na sua 1ª forma canónica.

f inclui o mintermo mona sua 2ª forma canónica,

f não inclui o maxtermo Mona sua 2ª forma canónica

*A função F(A,B,C) tem a seguinte tabela de verdade: Escolha os possíveis circuitos lógicos que a implementam

Α	В	С	F
А 0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

*Considere o seguinte sistema de equações booleanas:

A.B' = 0

C.B + A' = 0

A+C=D.A

Determine os valores corretos para A,B,C e D

$$A = 1, B = 1, C = 1, D = 1$$

$$A = 1, B = 1, C = 0, D = 1$$

$$A = 0$$
, $B = 1$, $C = 1$, $D = 1$

$$A = 1, B = 0, C = 0, D = 1$$

*Sejam A = 1101 e B = 11111101 numa representação em complemento para 2 com 4 e 8 bits respetivamente. Neste caso é verdade que

As quantidades não podem ser comparadas

A<B

A>B

A = B

*A expressão algébrica mais simples da função complementar de F(x,y,z) = x.y + z.(x'+y') + x.y + y.y

x' é

x'.y.z

x.y.z

x.y.z'

x.y'.z'

*Dado o seguinte mapa de Karnaugh da função F(A,B,C,D) podemos concluir, após minimização correta, que

×		00	01	11	10	AB
	00	0	1	1	1	
	01	0	1	0	1	
	11	0	1	0	1	
	10	0	1	1	~	
	CD					

*Considere o seguinte mapa de Karnaugh da função F(A,B,C,D) onde "x" designa um termo mínimo irrelevante

$$F = A'.C + A.C'$$

 $F = (A + C).(A'+C'+D).(A'+B'+C')$
 $F = (A+C).(A'+C'+D)$
 $F = A'.C + A.C' + C.D'$

*Dado o seguinte mapa de Karnaugh da função F(A,B,C,D) podemos concluir que

A soma de produtos mínima pode ser escrita como $F = A'.(C \times D)' + B.(C \times D)$

A soma de produtos mínima pode ser escrita como $F = A'.(C \times D)' + B.(C \times D) + A'.B$

Tem 5 Implicantes Primos Essenciais Tem 1 Implicante Primo não essencial

	00	01	11	10	AB
00	1	1	0	0	
01	0	1	1	0	
11	1	1	0	0	
10	0	1	1	0	
CD					

- *Dado o seguinte mapa de Karnaugh da função F(A,B,C,D) podemos concluir que existem
- 4 implicantes Primos
- 2 somas de produtos mínimas apenas uma soma de produtos mínima
- 4 implicantes Primos essenciais

	00	01	11	10	AB
00	0	1	1	1	8 93 8 9
01	0	1	0	1	
11	0	1	0	1	
10	0	1	1	1	F (5)
CD					40

- *Dado o seguinte mapa de Karnaugh da função F(A,B,C,D) podemos concluir que tem
- 3 Implicantes Primos
- 4 Implicantes Primos Essenciais
- 2 Implicantes Primos Essenciais
- 4 Implicantes Primos

	00	01	11	10	AB
00	1	0	1	1	
01	1	0	1	1	8 (8)
11	0	1	1	0	
10	0	1	1	0	
CD					

*Dado o seguinte mapa de Karnaugh da função F(A,B,C,D) podemos concluir, após minimização correta, que

```
F = (A xor C)' + A.B.C'
F = (A xor C) + A.B'.D
F = (A xor C) + C.D.B
F = (A xor C) + A.B.D
```

	00	01	11	10	AB
00	0	0	1	1	
01	0	0	1	1	
11	1	1	1	0	
10	1	1	0	0	
CD					

*A função booleana G = t.u' + r'.s.t.u'.v.x.y' pode ser simplificada para

```
G = t'.u

G = (t'+u)'

G = r'.s.t.u'.v.x.y'

G = t.u' + r's.v.x.y'
```

*Tendo em conta a seguinte tabela de verdade pode afirmar-se que

F xor
$$G = (x.y)$$
'
F. $G = x$ xor y
F = x.y
G' = x+y

X	у	F(x,y)	G(x,y)
0	0	0	1
0	1	1	1
1	0	1	1
1	1	1	0

*Seja f(x,y,z) = [(x'.y'.z')'.(x.y.z')'.(x.y'.z)']'. A segunda forma canónica de f pode ser escrita como:

```
\begin{split} f(x,y,z) &= \Sigma M(0,2,3,4,7) \\ f(x,y,z) &= \Sigma M(1,2,3,6,7) \\ f(x,y,z) &= \Sigma M(1,2,3,4,6) \\ f(x,y,z) &= \Sigma M(1,2,3,4,7) \end{split}
```

*Considere o seguinte mapa de Karnaugh da função F(A,B,C,D), onde "x" designa uma combinação de entrada irrelevante. Podemos concluir, após minimização correta, que

F = D + C'. (A
$$\oplus$$
B)
F = D + C.A.B + C.A'.B'
F = D + C.A.B + C'.A'.B'
F = D + C'. (A \oplus B)'

	00	01	11	10	AB
00	0	1	0	1	
01	1	1	1	1	
11	1	X	1	X	
10	X	0	X	0	
CD					·

* Seja $f(x,y,z) = x'.y + x'.z + yz$	7
A função dual de f é	
f	
x'.y+z	
f'	
(x'+y).(x'+z).(y'+z)	

*A expressão algébrica da $1^{\underline{a}}$ Forma Canónica de F(x,y,z) = x.y + x.z + y.z

$$x.y'.z' + x.y'.z + x.y'.z' + x.y'.z$$

$$X.y'.Z' + X.y'.Z + X.y'.Z' + X'.y'.Z'$$

$$X'.y.Z + X.y'.Z + X.y.Z' + X.y.Z$$

$$X.y'.Z' + X.y'.Z + X.y'.Z' + X'.y'.Z$$

* Considere a função booleana F(x,y,z) = xy + xz + yz. Esta função pode ser descrita pelo produto dos seguintes maxtermos: 0,1,2,4

*Seja F(x,y,z) a função definida pelo seguinte mapa de Karnaugh

F=x'.z'+y'.z+x.y é uma expressão mínima

F=x'.y'+x.z+y.z' é uma expressão mínima

Existem duas formas mínimas em produto de somas

F=(x'+y+z).(x.y'+z') é uma expressão mínima na forma soma de produtos

>	(
1	0	
1	1	
0	1	yz
1	1	

*O seguinte mapa de Karnaugh

Contém exactamente 6 implicantes primos

Não contém qualquer 'distinguished 1-cell" (não tem implicantes primos essenciais)

Contém exactamente 6 implicantes primos essenciais

Contém exactamente 6 implicantes

>		
1	0	
1	1	
0	1	yz
1	1	

*A expressão algébrica da função dual de F(x,y,z) = (x xor y) + (x+y.z) é

(x xor y)'.x.(y+z)

(x xor y)'.x'.(y+z)

(x xor y)'.x.(y'+z')

(x xor y).x.(y+z)

*A partir do seguinte mapa de Karnaugh a função F(A,B,C,D) pode ter a seguinte expressão booleana mínima

A'.B + D'.(A'+B)

A'.B + C.(A'+B')

A'.B + C'.(A'+B)

A'.B + C'.(A'+B')

	00	01	11	10	AB
00	1	1	1	0	
01	1	1	1	0	
11	0	1	0	0	
10	0	1	0	0	
CD					

*Dado o seguinte mapa de Karnaugh da função F(A,B,C,D) podemos concluir, após minimização correta, que

F = (A'+B).(A'+B'+D')

F = (A+B).(A'+B'+D)

F = (A+B).(A'+B'+D')

F = (A+B).(A+B+D)

	00	01	11	10	AB
00	0	1	1	1	
01	0	1	0	1	
11	0	1	0	1	
10	0	1	1	1	1 33
CD		8			33

*Considere a seguinte palavra em código binário natural: 11001100. A palavra correspondente em código de Gray é:

*Num código binário de 9 bits e com 29 palavras a Distância de Hamming máxima é:

*Seja f(x,y,w,z) = (x⊕z) + w.y. A função f tem

6 maxtermos

10 mintermos

4 mintermos

12 mintermos

*Seja f(x,y,w,z) = x.y + w.z. A função f tem

7 mintermos

8 maxtermos

9 maxtermos

8 mintermos

*Analise o circuito da figura. A tabela de verdade da função F(x,y,z) que ele realiza é:

0

 \bigcirc

0	X	У	Z	F
	0	0	0	0
	0	0	1	1
	0	1	0	1
	0	1	1	1
	1	0	0	1
	1	0	1	0
	1	1	0	0
	1	1	1	1

F	Z	у	X	
0	0	0	0	
1	1	0	0	
1	0	1	0	
1	1	1	0	
0	0	0	1	
1	1	0	1	
1	0	1	1	l
0	1	1	1	

0	X	У	Z	F
	0	0	0	0
	0	0	1	1
	0	1	0	1
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

F	Z	у	X	
1	0	0	0	
0	1	0	0	
0	0	1	0	
1	1	1	0	
0	0	0	1	
1	1	0	1	
0	0	1	1	
0	1	1	1	

* Analise o circuito da figura. A função F(x,y) que ele realiza é:

$$F = x'.y'+x.y$$

$$F = x.y' + x'.y$$
$$F = x + y'$$

$$F = x + y^{t}$$

$$F = x x or y$$

* Analise o circuito da figura. A função F(x,y) que ele realiza é:

$$F = (x xor y)'$$

$$F = x.y' + x'.y$$

$$F = x'.y' + x.y$$

$$F = x x or y$$

*Em complemento para 2 com 8 bits o valor decimal do resultado da operação 01000000 + 10000000 é

*Em complemento para 2 com 8 bits o valor decimal do resultado da operação 11111110 + 00000010 é

*Atendendo à identidade booleana

$$X.Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$$

deduz-se, por dualidade, que:

$$(X+Y) \cdot (X'+Z) \cdot (Y+Z) = (X+Y) \cdot (X'+Z)$$
 $X.Y + X'.Z + Y.Z = (X+Y) \cdot (X'+Z)$

$$X.Y + X'.Z + Y.Z = (X+Y).(X'+Z)$$

$$X.Y + X'.Z + Y.Z = X'.Y' + X.Z'$$

$$(X+Y) \cdot (X'+Z) \cdot (Y+Z) = X+Y \cdot X'+Z$$

* É conhecido que $123_x > 123_y$ com (x>3) e (y>3). Neste caso:

x>y desde que x=2y

X<Y

x>y

x=y

*O mapa de Karnaugh que corresponde à função F(A,B,C,D)=A.B + (C xor D)

0

0						
		00	01	11	10	AB
	00	0	1	0	0	
	01	1	1	1	1	
	11	0	1	0	0	
	10	1	1	1	1	

	00	01	11	10	AB
00	0	0	1	0	
01	1	1	1	1	
11	0	0	1	0	
10	1	1	1	1	
CD					

	00	01	11	10	AB
00	1	1	1	0	
01	1	1	1	1	
11	0	0	1	0	
10	1	1	1	1	
CD					

	00	01	11	10	AB
00	1	1	1	1	
01	0	0	1	0	
11	1	1	1	1	
10	0	0	1	0	
CD					

*A expressão algébrica mais simples da função complementar de F(x,y,z) = x.y + z.(x'+y')+x'

x'.y.z

x.y.z

x.y.z'

x.y'.z'

*Quantos comportamentos diferentes se podem definir num sistema digital combinacional com 2 entradas e 3 saídas?

*Considere um contexto de representação em complemento para 2 com 32 bits. Os limites mínimo e máximo da gama de números representável são

```
min = 7FFFFFF8, max=80000008
min = 8000000016, max = 7FFFFFF16
min = 0000000016, max = FFFFFFF16
min = FFFFFFF16, max = 80000000016
```

*Considere a seguinte expressão algébrica:

```
W.Z + X + y.W' + X'.(y'+W).Z.
```

A versão mais simples desta expressão é:

$$W.Z + X+W'.y$$

X+Z+W.y'

X+Z'+W'.y

X+Z+W'.y

*Dado o seguinte mapa de Karnaugh da função F(A,B,C,D)
podemos concluir que tem

- 5 Implicantes primos
- 5 Implicantes primos essenciais
- 4 Implicantes primos essenciais
- 6 Implicantes primos

	00	01	11	10	ΑB
00	0	1	0	1	
01	1	1	1	1	
11	1	0	1	0	
10	0	0	0	0	
CD					

^{*}Dado o seguinte mapa de Karnaugh da função F(A,B,C,D) podemos concluir que tem

- 2 Implicantes Primos Essenciais
- 4 Implicantes Primos Essenciais
- 4 Implicantes Primos
- 3 Implicantes Primos

*Dado o seguinte mapa de Karnaugh da função F(A,B,C,D)
podemos concluir, após minimização correta, que

F = (A xor C)' + A.B.C'

 $F = (A \times C) + A.B'.D$

 $F = (A \times C) + C.D.B$

 $F = (A \times C) + A.B.D$

	00	01	11	10	AB
00	0	0	1	1	
01	0	0	1	1	
11	1	1	1	0	
10	1	1	0	0	
CD					

		00	01	11	10	AB
	00	0	0	1	1	
	01	0	0	1	1	
	11	1	1	1	0	
	10	1	1	0	0	8
	CD					

w	X	y	Z	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

*A expressão algébrica da 2^{a} Forma Canónica de F(x,y,z) = (x xor y) + zy = (x+y+z).(x+y+z').(x+y'+z) (x+y+z).(x+y+z').(x+y'+z).(x'+y'+z') (x+y+z).(x+y+z').(x'+y'+z) (x+y+z).(x+y+z').(x'+y'+z')

*Analise o circuito da figura. A função F(x,y) que ele realiza é:

F = x xor y F = (x xor y)' F = x'.y' + x.y F = x.y' + x'.y

