《微积分A1》第九讲

教师 杨利军

清华大学数学科学系

2020年10月14日

函数 In |x| 的导数

Example

<u>例</u>: $(\ln |x|)' = \frac{1}{x}$, $\forall x \neq 0$.

证明: 设 $x \neq 0$, 则当 0 < |h| < |x| 时,

$$\frac{ln\,|x+h|-ln\,|x|}{h} = \frac{ln\left(1+\frac{h}{x}\right)}{x\cdot\frac{h}{x}} \to \frac{1}{x}, \quad h \to 0.$$

故
$$(\ln |x|)' = \frac{1}{x}$$
, $\forall x \neq 0$.

函数 x^{α} 的导数

Example

例:
$$(\mathbf{x}^{\alpha})' = \alpha \mathbf{x}^{\alpha-1}$$
, $\forall \mathbf{x} > \mathbf{0}$.

证明: $\forall x > 0$, $\forall h \neq 0$,

$$\frac{(x+h)^{\alpha}-x^{\alpha}}{h}=x^{\alpha}\cdot\frac{\left(1+\frac{h}{x}\right)^{\alpha}-1}{h}$$

$$= \mathsf{x}^\alpha \cdot \frac{\left(1 + \frac{\mathsf{h}}{\mathsf{x}}\right)^\alpha - 1}{\mathsf{x} \cdot \frac{\mathsf{h}}{\mathsf{x}}} \to \alpha \mathsf{x}^{\alpha - 1}, \quad \mathsf{h} \to 0.$$

故
$$(\mathbf{x}^{\alpha})' = \alpha \mathbf{x}^{\alpha-1}$$
, $\forall \mathbf{x} > \mathbf{0}$.

可导蕴含连续

$\mathsf{Theorem}$

定理: 若函数 f(x) 在点 x_0 处可导,则 f(x) 在点 x_0 处连续.

Proof.

<u>证明</u>: 由于 f(x) 在点 x_0 处可导, 即 $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ 存在, 故

$$\lim_{\mathsf{x}\to\mathsf{x}_0}[f(\mathsf{x})-f(\mathsf{x}_0)]=\lim_{\mathsf{x}\to\mathsf{x}_0}\frac{f(\mathsf{x})-f(\mathsf{x}_0)}{\mathsf{x}-\mathsf{x}_0}\cdot(\mathsf{x}-\mathsf{x}_0)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0) = f'(x_0) \cdot 0 = 0.$$

这表明f(x) 在x0 处连续. 证毕.

左导数与右导数

Definition

定义: (i) 若极限 $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}$ 存在, 则称极限值为函数 f(x) 在点 x_0 处的右导数, 记作 $f'_{\perp}(x_0)$;

(ii) 若极限 $\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}$ 存在, 则称极限值为函数 f(x) 在点 x_0 处的左导数, 记作 $f'_-(x_0)$.

Theorem

定理: 函数 f(x) 在点 x_0 处可导 \Leftrightarrow 左右导数 $f'_-(x_0)$ 和 $f'_+(x_0)$ 均存在且相等.

Proof.

证明: 依可导定义, 结论显然. 细节略.

例子

例: 考虑函数 f(x) = |x| 在点 x = 0 处左右导数,以及可导性. 解: 对于 x > 0,

$$\frac{\mathsf{f}(\mathsf{x})-\mathsf{f}(\mathsf{0})}{\mathsf{x}-\mathsf{0}} = \frac{\mathsf{x}-\mathsf{0}}{\mathsf{x}} = 1 \to 1, \quad \mathsf{x} \to \mathsf{0}^+.$$

故 |x| 在点 x=0 处的右导数存在且 $f'_{+}(0)=1$. 同理可得 |x| 在点 x=0 处的左导数存在且 $f'_{-}(0)=-1$. 根据上述定理可知函数 |x| 在点 x=0 处不可导. 根据函数 y=|x| 图像可知点 (0,0) 是尖点,无切线. 故不可导. 解答完毕.

微分(differentials)

Definition

定义:设函数 f(x) 在开区间 (a,b) 上定义. 若 f 在点 $x_0 \in (a,b)$ 处的改变量可表示为: 齐次线性部分 + 高阶部分, 即

$$f(x_0+\triangle x)-f(x_0)=\lambda\triangle x+o(\triangle x),\quad \triangle x\to 0,$$

其中 λ 为常数, \triangle x 代表变量x 的改变量(\triangle x 也是一个独立变量), 则称函数 f 在点 x_0 处可微(differentiable), 称齐次线性部分 λ \triangle x 为函数 f 在点 x_0 处的微分, 并记之为 df(x_0) = λ \triangle x.

可导与可微

$\mathsf{Theorem}$

定理: (i) f 在点 x_0 处可微 \iff f 在点 x_0 处可导.

(ii) 当f 在点 x_0 可微时, $df(x_0) = f'(x_0) \triangle x$.

证(i) 必要性: 设f(x) 在点 x_0 处可微, 即

$$f(x_0+\triangle x)-f(x_0)=\lambda\triangle x+o(\triangle x),\quad \triangle x\to 0.$$

故
$$\frac{f(x_0 + \triangle x) - f(x_0)}{\triangle x} = \lambda + \frac{o(\triangle x)}{\triangle x} \to \lambda, \quad \triangle x \to 0.$$

这表明函数 f 在点 x_0 处可导, 且导数就是 λ , 即 $f'(x_0) = \lambda$.

证明,续一

充分性:设f(x)在点x0处可导,即

$$\begin{split} \lim_{\triangle x \to 0} \frac{f(x_0 + \triangle x) - f(x_0)}{\triangle x} &= f'(x_0), \\ \Rightarrow \quad \lim_{\triangle x \to 0} \left[\frac{f(x_0 + \triangle x) - f(x_0)}{\triangle x} - f'(x_0) \right] &= 0, \\ \Rightarrow \quad \lim_{\triangle x \to 0} \frac{f(x_0 + \triangle x) - f(x_0) - f'(x_0) \triangle x}{\triangle x} &= 0, \\ \Rightarrow \quad f(x_0 + \triangle x) - f(x_0) - f'(x_0) \triangle x &= \sigma(\triangle x), \ \triangle x \to 0. \\ \Rightarrow \quad f(x_0 + \triangle x) - f(x_0) &= f'(x_0) \triangle x + \sigma(\triangle x), \ \triangle x \to 0. \end{split}$$

这表明 f(x) 在点 x_0 处可微. 结论(i)得证.

证明,续二

证(ii). 当 f 在点
$$x_0$$
 可微时,即 $f(x_0 + \triangle x) - f(x_0) = \lambda \triangle x$ $+o(\triangle x)$.已证 $\lambda = f'(x_0)$.因此 $df(x_0) = f'(x_0) \triangle x$.定理得证.

注记

 \underline{i} 一: 当 f(x)=x 时, f'(x)=1. 因此函数 f=x 在任意点 x_0 处的微分为 $dx\Big|_{x_0}=1\cdot\triangle x=\triangle x$. 因此常记 $\triangle x=dx$. 于是一般可导函数 f(x) 的微分可写作 $df(x_0)=f'(x_0)dx$.

<u>注二</u>:一元函数导数的概念不能直接推广到多元函数情形.但 微分概念则可以推广.下个学期将详细讨论.

导数的四则运算

$\mathsf{Theorem}$

<u>定理</u>: 设 f(x) 和 g(x) 在点 x_0 处可导,则 $f \pm g$, fg 及 f/g (假设 $g(x_0) \neq 0$) 在点 x_0 处可导,且

$$(i) \quad (f\pm g)'_{x_0} = f'(x_0) \pm g'(x_0),$$

$$(ii) \quad (fg)_{x_0}^\prime = (f^\prime g + fg^\prime)_{x_0},$$

(iii)
$$(f/g)'_{x_0} = \frac{f'g - fg'}{g^2}\Big|_{x_0}$$
.

证明: 结论(i)的证明简单. 略去. 只证(ii)和(iii).

证(ii)

$$\begin{split} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} \\ &= \frac{f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0} \\ &= f(x)\frac{g(x) - g(x_0)}{x - x_0} + g(x_0)\frac{f(x) - f(x_0)}{x - x_0} \\ &\to f(x_0)g'(x_0) + g(x_0)f'(x_0), \quad x \to x_0. \end{split}$$

结论(ii)得证.

证(iii)

证(iii). 利用结论(ii), 只需证
$$(\frac{1}{g})'_{x_0} = -(\frac{g'}{g^2})_{x_0}$$
.

$$\frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = -\frac{g(x) - g(x_0)}{g(x)g(x_0)(x - x_0)}$$

$$=-\frac{1}{g(x)g(x_0)}\frac{g(x)-g(x_0)}{x-x_0}\to -\frac{g'(x_0)}{g^2(x_0)},\quad x\to x_0.$$

结论(iii)得证. 定理证毕.

例子

Example

例: 求正切函数 tanx 的导数.

解:

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)'$$

$$= \frac{1}{\cos^2 x} \left([\sin x]' \cos x - \sin x [\cos x]' \right)$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

线性化

设函数 f(x) 在点a 处可微(或可导),则曲线 $\Gamma: y = f(x)$ 在点 (a,f(a)) 处的切线方程为 y = f(a) + f'(a)(x-a). 线性函数 L(x) = f(a) + f'(a)(x-a) 称为函数 f(x) 在点 x = a 处的线性 化.

微分的几何解释

设 P=(x,f(x)) 和 $Q=(x+\triangle x,f(x+\triangle x))$ 为曲线 y=f(x) 的两个点, 其中 $dx=\triangle x$ 为在点 P=(x,f(x)) 处的独立变量的增量,则函数改变量 $\triangle y=f(x+\triangle x)-f(x)$,以及函数 f 在点 x 处的微分 dy=f'(x)dx,如图所示.

微分应用于近似计算, 例一

Example

例一: 求 $\sin\left(\frac{\pi}{6} + 0.01\right)$ 的近似值.

解: 已证函数 $\sin x$ 在 IR 上处处可导. 为计算 $\sin \left(\frac{\pi}{6} + 0.01\right)$ 的近似值, 记 $a = \frac{\pi}{6}$, h = 0.01. 于是

$$\sin(a+h) = \sin a + [\sin x]_a'h + o(h) = \sin\frac{\pi}{6} + \left(\cos\frac{\pi}{6}\right)h + o(h)$$

$$\simeq\sinrac{\pi}{6}+\left(\cosrac{\pi}{6}
ight)\mathsf{h}=rac{1}{2}+rac{\sqrt{3}}{2} imes0.01\simeq0.50866.$$

例二

Example

例二: $\sqrt{3.98}$ 的近似值.

解: 记
$$a = 4$$
, $h = -0.02$. 于是

$$\sqrt{3.98} = \sqrt{a + h} = \sqrt{a} + (\sqrt{x})_a' h + o(h)$$

$$\simeq \sqrt{4} + \frac{1}{2\sqrt{x}} \bigg|_{x=4} \times (-0.02)$$

$$= 2 + \frac{1}{4} \times (-0.02) = 1.995.$$

复合函数的求导,链规则

Theorem

<u>定理</u> [链规则The chain rule]: 设 g(x) 于 x 可导, f(u) 于

$$u = g(x)$$
 可导, 则复合函数 $f(g(x))$ 于 x 处可导, 并且

$$[f(g(x))]'=f'(u)g'(x),\quad u=g(x)$$

$$\label{eq:dynamics} \mathring{\underline{\sl d}} \quad \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}, \quad y = f(u), \, u = g(x).$$

例一

Example

例一: 求导数 $[\sqrt{x^2+1}]'$.

解: 将函数 $\sqrt{x^2 + 1}$ 看作函数 $f(u) = \sqrt{u}$ 与 $g(x) = x^2 + 1$ 的

复合, 即 $\sqrt{x^2+1} = f(g(x))$. 于是根据链规则得

$$\left[\sqrt{x^2 + 1}\right]' = [f(g(x))]' = f'(u)g'(x) = (\sqrt{u})'(x^2 + 1)'$$
1 x

$$=\frac{1}{2\sqrt{u}}(2x)=\frac{x}{\sqrt{x^2+1}}.$$

例二

Example

例二: 求导数 [In tan (x²)]'.

解:函数 $\ln \tan (x^2)$ 可看作三个函数的复合,即 $f(u) = \ln u$, $u = g(v) = \tan v$, $v = \phi(x) = x^2$ 的复合。两次利用链规则得 $[\ln \tan (x^2)]' = [f(g(\phi(x)))]' = f'(u)g'(v)\phi'(x)$ $= [\ln u]'[\tan v]'[x^2]' = \frac{1}{u} \cdot \frac{1}{\cos^2 v} \cdot 2x = \frac{1}{\tan v} \cdot \frac{1}{\cos^2 v} \cdot 2x$ $= \frac{2x}{\sin v \cos v} = \frac{2x}{\sin(x^2)\cos(x^2)}.$

例三

Example

例: 设函数 u(x) 和 v(x) 可导, 且 u(x) > 0.

- (i) 设 a 为常数,则 $[u(x)^a]' = au(x)^{a-1}u'(x);$
- (ii) 设 b > 0 为正常数,则 $[b^{v(x)}]' = b^{v(x)}(\ln b)v'(x);$
- (iii) 考虑 [u(x)^{v(x)}]'.

$$\begin{split} \left[u(x)^{v(x)}\right]' &= \left[e^{v(x)\ln u(x)}\right]' = e^{v(x)\ln u(x)} \cdot \left[v(x)\ln u(x)\right]' \\ &= e^{v(x)\ln u(x)} \left(v'(x)\ln u(x) + v(x)\frac{u'(x)}{u(x)}\right). \end{split}$$

例四

例: 求导数 f'(x), 其中

$$f(x) = \left(\frac{x+1}{x-1}\right)^{\frac{1}{2}} \left[x^2(2x+3)\right]^{\frac{1}{3}}.$$

<u>解</u>:利用对数函数的性质(化乘除为加减),可简化多因子函数的 求导计算.如本例.

$$\ln |f(x)| = \frac{1}{2} (\ln |x+1| - \ln |x-1|) + \frac{1}{3} (2 \ln |x| + \ln |2x+3|)$$

$$\Rightarrow \frac{f'(x)}{f(x)} = \frac{1}{2} \left(\frac{1}{x+1} - \frac{1}{x-1} \right) + \frac{1}{3} \left(\frac{2}{x} + \frac{2}{2x+3} \right)$$

例四续

$$\frac{f'(x)}{f(x)} = \frac{-1}{x^2 - 1} + \frac{2}{3} \frac{2x + 3 + x}{x(2x + 3)} = \frac{2(x + 1)}{x(2x + 3)} - \frac{1}{x^2 - 1}.$$

$$\Rightarrow f'(x) = f(x) \left(\frac{2(x + 1)}{x(2x + 3)} - \frac{1}{x^2 - 1} \right).$$

解答完毕.

链规则回忆

Theorem

<u>定理</u> [链规则The chain rule]: 设 g(x) 于 x 可导, f(u) 于

u = g(x) 可导, 则复合函数 f(g(x)) 于 x 处可导, 并且

$$[f(g(x))]'=f'(u)g'(x),\quad u=g(x)$$

$$\label{eq:dynamics} \mathring{\underline{\sl d}}_{} \quad \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}, \quad y = f(u), \, u = g(x).$$

链规则定理证明

证明: 只要证明复合函数 f(g(x)) 在任意一个固定点 x_0 处可微, 并且 $[f(g(x))]'_{x_0}=f'(u_0)g'(x_0)$, $u_0=g(x_0)$ 即可. 定义

$$h(u) = \left\{ \begin{array}{ll} \frac{f(u) - f(u_0)}{u - u_0}, & u \neq u_0, \\ f'(u_0), & u = u_0, \end{array} \right.$$

则 h(u) 在 u₀ 处连续, 且 f(u) — f(u₀) = h(u)(u — u₀). 于是

$$\frac{f(g(x)) - f(g(x_0))}{x - x_0} = h(g(x)) \frac{g(x) - g(x_0)}{x - x_0} \to f'(u_0) g'(x_0),$$

当 $x \rightarrow x_0$ 时. 定理得证.

一阶微分形式的不变性

设函数 y = f(u) 可导,则它的微分为 dy = f'(u)du. 当 u = u(x) 是函数且可导时,复合函数 f(u(x)) 的微分为 dy = [f(u(x))]'dx = f'(u)u'(x)dx = f'(u)du.

这表明函数 f(u) 的微分总可以写作 dy = f'(u)du, 无论 u 是独立变量或是函数 u = u(x). 这个性质称为一阶微分形式的不变性. 这一性质对于高阶微分不再成立.

反函数导数

Theorem

定理:设f(x)在开区间(a,b)上严格单调,连续,且在点

 $x_0 \in (a,b)$ 处可导. 若 $f'(x_0) \neq 0$, 则反函数 $f^{-1}(y)$ 在点

 $y_0 = f(x_0)$ 处可导, 且

$$[f^{-1}(y)]_{y_0}' = \frac{1}{f'(x_0)}.$$

Example

例一: 熟知正弦函数 $y=\sin x$ 在开区间 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 上严格单调上升,并且 $\left[\sin x\right]'=\cos x\neq 0$, $\forall x\in \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. 根据反函数导数定理可知,反函数 $x=\arcsin y$ 在 $\left(-1,1\right)$ 上也可导,且

$$[\arcsin y]' = \frac{1}{[\sin x]'} = \frac{1}{\cos x}, \quad y = \sin x.$$

由于 $\cos x > 0$, $\forall x \in (-\frac{\pi}{2}, \frac{\pi}{2})$,故 $\cos x = \sqrt{1 - \sin^2 x}$ $= \sqrt{1 - y^2}$. 因此

$$[\arcsin y]' = \frac{1}{\cos x} = \frac{1}{\sqrt{1-y^2}}, \quad \forall y \in (-1,1).$$

例二

Example

例二: 类似可证余弦函数 $y = \cos x$, $x \in (0, \pi)$, 的反函数

x = arccosy 的导数为

$$[\arccos y]' = \frac{1}{[\cos x]'} = \frac{1}{-\sin x}$$

$$=\frac{-1}{\sqrt{1-y^2}},\quad \forall y\in (-1,1).$$

例三

Example

<u>例三</u>: 函数 y = tan x 在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ↑ 严格,且 $\left[\tan x\right]' = \frac{1}{\cos^2 x}$ $\neq 0$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. 根据反函数导数定理可知其反函数 $x = \arctan y$ 在 $\left(-\infty, +\infty\right)$ 上可导,并且

$$[\arctan y]' = \frac{1}{[\tan x]'} = \cos^2 x.$$

由于 y = tan x, 故 y² = $\frac{\sin^2 x}{\cos^2 x}$ = $\frac{1-\cos^2 x}{\cos^2 x}$ = $\frac{1}{\cos^2 x}$ - 1. 由此得 $\frac{1}{\cos^2 x}$ = 1 + y². 于是

$$[\arctan y]' = \cos^2 x = \frac{1}{1+v^2}, \quad \forall y \in (-\infty, +\infty).$$

反函数导数定理的证明

 \underline{ii} : 取 y_0 附近 y, 记 $x_0=f^{-1}(y_0)$, $x=f^{-1}(y)$, 则 $y_0=f(x_0)$, y=f(x). 于是

$$\begin{split} &\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{x - x_0}{f(x) - f(x_0)} \\ &= \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}} \to \frac{1}{f'(x_0)}, \quad y \to y_0. \end{split}$$

最后一步的解释: 当 y \to y₀ 时, 由反函数 x = f⁻¹(y) 的连续性知 f⁻¹(y) \to f⁻¹(y₀), 即 x \to x₀. 定理得证.

反函数导数的几何解释

如图所示, 函数 f(x) 在点 x_0 处的导数 $f'(x_0) = \tan \alpha$, 而反函数 $f^{-1}(y)$ 在点 y_0 处的导数 $[f^{-1}(y)]'_{y_0} = \tan \beta$. 而 $\alpha + \beta = \frac{\pi}{2}$,即 $\beta = \frac{\pi}{2} - \alpha$. 因此 $[f^{-1}(y)]'_{y_0} = \tan \beta = \tan (\frac{\pi}{2} - \alpha) = \cot \alpha$ $= \frac{1}{\tan \alpha} = \frac{1}{f'(x_0)}$.

隐函数导数

假设函数 y = y(x) 是由方程 F(x,y) = 0 确定的,且 y(x) 可导.考虑如何求导数 y'(x).至于函数方程 F(x,y) = 0 在何种条件下能够确定一个可导函数(称作隐函数),即隐函数存在唯一性问题,我们将在下个学期专门讨论.

Example

例一: 假设由方程 $y^2 + 2 \ln |y| = x^4$ 确定了一个可导函数 y(x),

即 $y^2(x) + 2 \ln |y(x)| \equiv x^4$. 对这个恒等式两边求导得

$$2yy' + \frac{2y'}{y} = 4x^3$$
, ## $y = y(x)$, $y' = y'(x)$

$$\Rightarrow \quad \mathsf{y}'\left(\mathsf{y}+\frac{1}{\mathsf{y}}\right)=2\mathsf{x}^3 \quad \Rightarrow \quad \mathsf{y}'=\frac{2\mathsf{x}^3}{\left(\mathsf{y}+\frac{1}{\mathsf{y}}\right)}=\frac{2\mathsf{x}^3\mathsf{y}}{1+\mathsf{y}^2}.$$

例二

例: 假设由方程 $x^2 + y \cos x - 2e^{xy} = 0$ 在点 (x,y) = (0,2) 附近确定了一个可导函数 y = y(x). 求曲线 y = y(x) 在点 (0,2) 处的切线方程.

解:注意点 (0,2) 满足方程 $x^2+y\cos x-2e^{xy}=0$. 因为将 (x,y)=(0,2) 代入方程得 $0^2+2\cos 0-2e^0=0$,即方程成立.求过点 (0,2) 处的切线方程,即要求切线的斜率即 y'(0).为此关于恒等式 $x^2+y(x)\cos x-2e^{xy(x)}\equiv 0$ 两边求导得

$$2x + y'\cos x + y(-\sin x) - 2e^{xy(x)}[y + xy'(x)] = 0.$$

例二续

将点
$$(x,y) = (0,2)$$
 代入上述方程得

$$2 \cdot 0 + y'(0) \cdot \cos 0 + 2 \cdot (-\sin 0) - 2e^{0 \cdot 2}[2 + 0 \cdot y'(0)] = 0.$$

此即
$$y'(0) - 2 \cdot 2 = 0$$
, 即 $y'(0) = 4$. 于是所求切线方程为 $y - 2 = 4(x - 0)$, 即 $y = 4x + 2$. 解答完毕.

参数式函数求导

设函数 y=y(x) 是由参数方程 $x=\phi(t)$, $y=\psi(t)$, $t\in(a,b)$ 确定, 其中函数 $\phi(t)$, $\psi(t)$ 均可导. 还是假设 $\phi(t)$ 严格单调, 且 $\phi'(t)\neq 0$, $\forall t\in(a,b)$. 故反函数 $\phi^{-1}(x)$ 可导. 从而函数 y=y(x) 可表为 $y(x)=\psi(\phi^{-1}(x))$. 根据链规则以及反函数求导定理得

$$\mathbf{y}'(\mathbf{x}) = \psi'(\mathbf{t}) \cdot [\phi^{-1}(\mathbf{x})]' = \frac{\psi'(\mathbf{t})}{\phi'(\mathbf{t})}, \quad \sharp \, \psi \quad \mathbf{t} = \phi^{-1}(\mathbf{x}).$$

例子: 由旋轮线方程确定的函数之导数

例: 考虑由旋轮线参数方程 $x=a(\theta-\sin\theta)$, $y=a(1-\cos\theta)$, $\theta\in(0,2\pi)$ 所确定的函数 y=y(x), 其中 a>0 为常数. 求导数 y'(x).

$$\underline{\underline{H}}$$
: 记 $\phi(\theta)=a(\theta-\sin\theta)$, $\psi(\theta)=a(1-\cos\theta)$. 易证 $\phi(\theta)$
$$=a(\theta-\sin\theta) \ \ \underline{\underline{A}} \ \ (0,2\pi) \ \ \bot \underline{\underline{A}} \ \ \underline{\underline{A}} \ \ \psi(\theta)=a(1-\cos\theta)$$
 $\neq 0$, $\forall \theta \in (0,2\pi)$. 于是

$$\mathsf{y}'(\mathsf{x}) = \frac{\psi'(\theta)}{\phi'(\theta)} = \frac{\mathsf{a} \sin \theta}{\mathsf{a} (1 - \cos \theta)} = \frac{\sin \theta}{1 - \cos \theta}.$$

旋轮线名字的由来

考虑半径为a的圆盘(轮子)在x轴上滚动,轮子的边缘上的任意一点的轨迹即为旋轮线.如图所示.

FIGURE 11

旋轮线性质一: 最速下降性质

最速下降问题: Johann Bernoulli 于1696 年在《教师学报》提出如下问题征解:考虑空间两点 A和B,用一根金属丝串上一个珠子,并连接点 A和B.再设 A高于B.如图所示.

问题: 当金属丝(可看作平面曲线)呈何种形状时,珠子沿着金属丝从点A滑向点B的时间最短?这样的平面曲线若存在,则称作最速下降曲线(路径). 猜测: 直线段? 圆弧? 抛物线?

最速下降曲线, 续

答案: 如图建立平面坐标系, 点 A 位于原点, y 轴的正向垂直向下. Bernoulli 兄弟, Newton 等证明最速下降曲线就是旋轮线, 即其参数方程可以表示为 $\mathbf{x}=\mathbf{a}(\theta-\sin\theta)$, $\mathbf{y}=\mathbf{a}(1-\cos\theta)$, $\theta\in(0,2\pi)$

FIGURE 10

旋轮线性质二: 等时性质

Christiaan Huygens (1629-1695) 证明旋轮线具有如下等时性 质: 将一根金属丝弯成如下旋轮线的形状, 即 $\mathbf{x} = \mathbf{a}(\theta + \sin\theta)$, $\mathbf{y} = \mathbf{a}(1-\cos\theta)$, $\theta \in (0,2\pi)$.

如果金属丝串上一个珠子,那么珠子从曲线上任意点开始,下滑至原点所需时间恒为常数,即与珠子下滑的位置无关.

作业

课本习题3.1 (pp. 73-74): 1(1)(3), 2(1)(3)(5), 3, 4, 5, 6, 7, 9, 11, 13, 14.

课本习题3.2 (pp. 83-84): 2(1)(3)(5)(7), 4(1)(3)(5)(7), 5(1)(3)(5), 6(1)(3)(5).