Equations Found in our Code

James Lu, Denis Aslangil

Summer 2024

Change of Coordinate System

The Cartesian system uses x, y, z, and is most commonly used. We use spherical variables r, θ, ϕ in the Spherical system. Converting from Cartesian to Spherical requires use of these equations.

Cartesian to Spherical system conversion

Typically both θ and ϕ come in degrees, but conversion is simple.

$$x = r\cos(\theta)\sin(\phi)$$
$$y = r\sin(\theta)\sin(\phi)$$
$$z = r\cos(\phi)$$

Spherical to Cartesian system conversion

These conversions are used most in lines 116-120 of our Sphere3D code.

$$r = \sqrt{(x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2}$$
$$\theta = \arctan\left(\frac{y - y_c}{x - x_c}\right)$$
$$\phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

Figure 1: https://byjus.com/maths/spherical-coordinates/

New Velocity Terms

Our velocity terms come from Stanford AA200 - Applied Aerodynamics. It is in the Cartesian system and defines uniform flow past a sphere.

Direct terms from textbook

Equation 10.75

$$U_{x} = U_{\infty} \left(1 - \frac{3(R_{sphere})^{3} x^{2}}{2r^{5}} + \frac{(R_{sphere})^{3}}{2r^{3}}\right)$$

$$U_{y} = -U_{\infty} \frac{3(R_{sphere})^{3} xy}{2r^{5}}$$

$$U_{z} = -U_{\infty} \frac{3(R_{sphere})^{3} xz}{2r^{5}}$$

For our specific case

We used diameter as opposed to radius in our declaration of variables, giving a mathematically identical equation but one that looks slightly different.

$$U_{x} = U_{\infty} \left(1 - \frac{3(D_{sphere})^{3} x^{2}}{16r^{5}} + \frac{(D_{sphere})^{3}}{16r^{3}}\right)$$

$$U_{y} = -U_{\infty} \frac{3(D_{sphere})^{3} xy}{16r^{5}}$$

$$U_{z} = -U_{\infty} \frac{3(D_{sphere})^{3} xz}{16r^{5}}$$

These equations are declared, defined, and used in lines 193-195 of file UniformFlow3D.