FH JOANNEUM GRAZ

Model Based Design

Balanbot

Training Unit 05

Authors
David B. Heer
Jakob Soukup
Graz, December 20, 2018

 $\begin{array}{c} Lecturer \\ {\rm Alfred\ Steinhuber} \end{array}$

Contents 1

Contents

Ι	Laboratory Sesseion 06	2
1	Model	2
2	Discretization from non-linear model2.1 Places for discretization2.2 Zero force response2.3 Positionstep	2 2 2 2
3	Linearization	2
4	Discretization linear model4.1Forward Euler	3 3
5	System analysis	3
6	Control function	3
П	Laboratory Sesseion 07	3
Li	st of Figures	4

Introduction

Part I

Laboratory Sesseion 06

1 Model

$$\ddot{x} = \frac{1}{M} \sum_{cart} F_x = \frac{1}{M} \left(F - N - b\dot{x} \right) \tag{1}$$

$$\ddot{\Theta} = \frac{1}{I} \sum_{pend} \tau = \frac{1}{I} \left(-Nlcos\Theta - Plsin\Theta \right)$$
 (2)

$$N = m\left(\ddot{x} - l\dot{\Theta}^2 sin\Theta + l\ddot{\Theta} cos\Theta\right) \tag{3}$$

$$P = m \left(l\ddot{\Theta}^2 cos\Theta + l\ddot{\Theta} sin\Theta \right) \tag{4}$$

[TODO - Figure of Model]

2 Discretization from non-linear model

- 2.1 Places for discretization
- 2.2 Zero force response
- 2.3 Positionstep
- 3 Linearization

$$x = \frac{4.126e - 06s^2 - 0.0001025}{2.3e06s^3 + 4.128e07s^2 - 7.172e - 05s - 1.025e - 05}$$
 (5)

$$\theta = \frac{1.045e - 05s}{2.3e - 06s^3 + 4.182e - 07s^2 - 7.172e - 05s - 1.025e - 05}$$
 (6)

4 Discretization linear model

4.1 Forward Euler

$$z = e^{sT} \approx 1 + sT \rightarrow s \approx \frac{z - 1}{T}$$
 (7)

$$hallo = hallo$$
 (8)

4.2 Backward Euler

$$z = e^{sT} \approx \frac{1}{1 + sT} \rightarrow s \approx \frac{z - 1}{Tz}$$
 (9)

$$hallo = hallo$$
 (10)

4.3 Trapezoidal or Tustin

$$z = e^{sT} \approx \frac{1 + sT/2}{1 - sT/2} \rightarrow s \approx \frac{2(z-1)}{T(z+1)}$$

$$\tag{11}$$

$$hallo = hallo$$
 (12)

- 5 System analysis
- 6 Control function

Part II

Laboratory Sesseion 07

List of Figures 4

List of Figures