File System

- data and programs are kept on secondary storage
- conceptual unit: file
- a container of files: folder
- also called: *directory*
- it is also a file
- folders can be nested inside other folders
- top level folder: root

Unix File System

Paths

- how to refer to a file?
- path: sequence of folders, followed by the file
- absolute path: start from the root
- relative path: start from the "current" folder
- current folder: .
- parent folder (immediately above the current): ...

File Manager

- utility for file operations
- move around the file system
- create, delete
- copy, move, rename, ...

File Types

- two types of files
- text: (mostly) human-readable, easier to work with
- binary: only machine-readable, more efficient

File Extensions

- file names have an extension part
- for example: .pdf

MIME

standard categorization of file types

https://www.iana.org/assignments/media-types/media-types.xhtml

• format: type/subtype

• types: image, audio, video, text, ...

MIME Examples

- image/jpeg, image/png
- audio/mpeg
- video/mp4, video/x-matroska
- application/pdf, application/zip
- text/html, text/plain

Text Editor

• application for creating and modifying text files

Archiving and Compression

- combine files and folders into one archive file
- compress a file for smaller file size
- extract archive file to get the original structure
- tar (archiving)
- gzip, bzip2 (compression)
- zip (both)

User Interfaces

- how users interact with applications
- graphical environment: windows, mouse, ...
- GUI: graphical user interface
- terminal: type command, see result
- CLI: command line interface

Bistate Objects

• some objects are always in one of two states

• coins: heads/tails

• switches: on/off

• transistors: on/off

Binary Numbers

- computers represent information using *binary* numbers
- bit: binary digit
- one of two values: 0, 1

Representing Numbers

• digits correspond to powers of 2

2^4	2^3	2^2	2^1	2^0
16	8	4	2	1

Binary Value Examples

decimal	binary
2	10
3	11
4	100
5	101
13	1101
22	10110

Octets and Bytes

- 8 bits: octeta byte is 8 bits (now)
- smallest unit of information
- values: [0..255]

Byte Value Examples

decimal binary

- 0 00000000
- 1 00000001
- 22 00010110
- 65 01000001
- 128 10000000
- 255 11111111

Binary Value Notation

• is a value written in decimal or in binary?

• 101: is it 101 or 5?

• notation: binary values start with 0b

• 0b101

Larger Units

- 1 Kio (kibioctet) = 1024 octets
- 1 Mio (mebioctet) = 1024 Kio
- 1 Gio (gibioctet) = 1024 Mio
- 1 Tio (tebioctet) = 1024 Gio
- 1 kB (kilobyte) = 1024 bytes
- 1 MB (megabyte) = 1024 kB
- 1 GB (gigabyte) = 1024 MB
- 1 TB (terabyte) = 1024 GB

Hexadecimal Numbers

- reading binary numbers is difficult
- hexadecimal: base 16
- digits correspond to powers of 16

$$\begin{array}{c|cccc} 16^3 & 16^2 & 16^1 & 16^0 \\ 4096 & 256 & 16 & 1 \end{array}$$

Hexadecimal Digits

dec	bin	hex	dec	bin	hex
8	1000	8	12	1100	С
9	1001	9	13	1101	D
10	1010	A	14	1110	E
11	1011	В	15	1111	F

Hexadecimal Notation

- 1 hex digit: 4 bits
- 1 octet: 8 bits, 2 hexits (hex digits)
- notation: hex values start with 0x

Hexadecimal Value Examples

```
    dec
    bin
    hex

    16
    00010000
    10

    30
    00011110
    1E

    255
    11111111
    FF
```

Hex-Binary Conversion

• match hexadecimal digits and groups of 4-bits

```
F 3 C 0
1111 0011 1100 0000

1111001111000000

11001111000000

0011 0011 1100 0000
3 3 C 0
```

Octal Numbers

- Not common
- octal: base 8
- digits correspond to powers of 8
- each octal digit is represented by 3 bits
- octal values start with 00

Character Sets

- how to represent letters, punctuation signs, ...?
- assign a number to each character
- a set of all such assignments: character set
- also called an "encoding"

ASCII Character Set

- 128 characters
- English letters
- digits
- punctuation signs
- special characters (some of them are commands)

ASCII Table

chai	r #	cha	r #
!	0x21	А	0x41
#	0x23	В	0x42
7	0x37	Z	0x5A
?	0x3F	а	0x61
@	0x40	z	0x7A

Case Sensitivity

- 'A' and 'a' have different numbers
- most programs consider these as different letters

ISO8859 Sets

- ASCII only for English
- use 8 bits per character: 256 characters
- ISO8859-1: Western European
- first 128 same as ASCII
- ISO8859-9: Turkish
- Turkish instead of Icelandic

ISO8859-1 and ISO8859-9

#	ISO8859-1	ISO8859-9
0x3F	?	?
0x41	Α	Α
0xC7	Ç	Ç
0xE7	Ç	Ç
0xD0	Ý	Ğ
0xF0	ð	ğ

Unicode

- a way of encoding all characters in all writing systems
- UTF-32: 32 bits per character
- UTF-16: 16/24/32 bits per character
- UTF-8: 8/16/24/32 bits per character

UTF Examples

char	#
ļ	0x0021
Α	0x0041
Ç	0x00C7
∞	0x221E
举	0x4E3E

Metadata

- two types of data associated with a file
- actual data: content of the file
- metadata: data describing the content

Metadata Examples

- photo file:
- actual data: photograph
- metadata: who, where, when, image format, ...
- song file
- actual data: song
- metadata: title, artist, lyrics, audio format, ...

Text File Metadata

- actual data: text in the file
- metadata: copyright, author, ...
- character set

Providing Metadata

- in some file formats, metadata is stored in the file along with the actual data
- cameras store technical metadata in photograph file
- music files can contain title, artist, ...
- in some file formats, metadata has to be provided externally
- character set of a text file