Slides 6 Page 1 of 11

# "Advanced Python Programming for Everybody"

Instructor: Ernest Bonat, Ph.D.

Senior Software Engineer

Senior Data Scientist

ebonat@15itresources.com

Cell: 503.730.4556

Slides 6 Page 2 of 11

#### **Module 6 Source Code**

https://github.com/ebonat/intel\_module\_6

# Module 6. "Python Data Ecosystem for Data Science Projects – Part 2"

What do you really need to know to become a Data Scientist?

- Probability and Statistics (undergraduate level)
- Python Programming Language (good level!)
- Python Data Ecosystem (good level!):
  - NumPy fundamental package for scientific computing (Numerical Python http://www.numpy.org/)
  - 2. **pandas** provides easy-to-use and high-performance data structures (<a href="https://pandas.pydata.org/">https://pandas.pydata.org/</a>)
  - 3. **SciPy** Python-based ecosystem of open-source software for mathematics, science, and engineering (<a href="https://www.scipy.org/">https://www.scipy.org/</a>)

Slides 6 Page 3 of 11

4. scikit-learn Machine Learning – a simple and efficient tool for data mining and data analysis (<a href="http://scikit-learn.org/">http://scikit-learn.org/</a>)

- 5. matplotlib a 2D plotting library which produces publication quality figures in a variety of hard copy formats and interactive environments across platforms (<a href="https://matplotlib.org/">https://matplotlib.org/</a>)
- 6. **seaborn** statistical data visualization (<a href="https://seaborn.pydata.org/">https://seaborn.pydata.org/</a>)
- 7.**scikit-image** a collection of algorithms for image processing (<a href="http://scikit-image.org/">http://scikit-image.org/</a>)

Slides 6 Page 4 of 11



Slides 6 Page 5 of 11

**Machine Learning (ML)** - at its most basic is the practice of using algorithms to parse data, learn from it, and then make a determination or prediction about something in the world.

Types of ML algorithms:

1. Supervised Learning (most popular today!)

Supervised learning can be explained as follows: use labeled training data to learn the mapping function from the input variables (X) to the output variable (Y).

### Two types:

1. **Classification**: To predict the outcome of a given sample where the output variable is in the form of categories. Examples include labels such as male and female, sick and healthy

Slides 6 Page 6 of 11

2. **Regression**: To predict the outcome of a given sample where the output variable is in the form of real values. Examples include real-valued labels denoting the amount of rainfall, the height of a person.

Popular Algorithms: Linear Regression, Logistic Regression, Decision Trees, Random Forest, Support Vector Machine, Naïve Bayes, K-Nearest Neighbors, XGBoost, Artificial Neuro Networks (ANN = Deep Learning)

### 2. Unsupervised Learning

Unsupervised learning problems possess only the input variables (X) but no corresponding output variables. It uses unlabeled training data to model the underlying structure of the data.

1. **Association**: To discover the probability of the co-occurrence of items in a collection. It is extensively used in market-basket analysis. Example: If a customer purchases bread, he is 80% likely to also purchase eggs.

Slides 6 Page 7 of 11

2. **Clustering**: To group samples such that objects within the same cluster are more similar to each other than to the objects from another cluster.

Popular Algorithms: K-Means Clustering, Principal Component Analysis (PCA), etc.

### 3. Reinforcement Learning

Reinforcement learning is a type of machine learning algorithm that allows the agent to decide the best next action based on its current state, by learning behaviors that will maximize the reward.

Popular Algorithms: Markov decision processes, Q-Learning, RL, Monte Carlo Simulation, etc.

Slides 6 Page 8 of 11

Best Supervised Learning algorithms to start to:

- 1. Random Forest (RF) <a href="https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd">https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd</a>,
  <a href="https://scikit-algorithm-d457d499ffcd">http://scikit-algorithm-d457d499ffcd</a>,
- <u>learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.ht</u> <u>ml</u>
- 2. **eXtreme Gradient Boosting** (XGBoost) <a href="https://xgboost.readthedocs.io/en/latest/">https://xgboost.readthedocs.io/en/latest/</a>. Winner of Kaggle competitions (<a href="https://www.kaggle.com/">https://www.kaggle.com/</a>)
- 3. **Artificial Neural Networks** (ANN) Multi-layer Perceptron <a href="http://scikit-learn.org/stable/modules/neural\_networks\_supervised.html">http://scikit-learn.org/stable/modules/neural\_networks\_supervised.html</a>

Slides 6 Page 9 of 11

# What are Artificial Neural Networks (ANNs)?

The inventor of the first neurocomputer, Dr. Robert Hecht-Nielsen, defines a neural network as:

"...a computing system made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs."



Slides 6 Page 10 of 11





Slides 6 Page 11 of 11

Good basic blog to read:

A Beginner's Guide to Neural Networks in Python and SciKit Learn 0.18 (<a href="https://www.springboard.com/blog/beginners-guide-neural-network-in-python-scikit-learn-0-18/">https://www.springboard.com/blog/beginners-guide-neural-network-in-python-scikit-learn-0-18/</a>)

**Exercise**: Apply ANN to Iris dataset (iris\_data.csv)