Assignment 2 Statistical Methods in Applied Computer Science DD2447

Jim Holmström 890503-7571 jimho@kth.se

November 22, 2012

Exercise A1 Compute $p(D|T \in \text{Polytree})$ with Bernoulli CPD's Show how to compute p(D|T) where T is a DGM which is a polytree and $D = \{x_1, ..., x_N\}$ (and x_i is an assignment of values to all variables of T). Assume that all variables are binary and all CPD's Bernoulli.

Solution.

Exercise A2 Marginalize over non-observed variables

Assume instead that each x_i is an assignment to a subset of the variables say O. Show how to marginalize over $V \setminus O$ (i.e., the non-observed variables).

Solution.

Exercise 11.3 EM for the mixtures of Bernoullis

• Show that the M step for ML estimation of a mixture of Bernoullis is given by

$$\mu_{kj} = \frac{\sum_{i} r_{ik} x_{ij}}{\sum_{i} r_{ik}} \tag{1}$$

• Show that the M step for MAP estimation of a mixture of Bernoullis with a $\beta(\alpha, \beta)$ prior is given by

$$\mu_{kj} = \frac{\left(\sum_{i} r_{ik} x_{ij}\right) + \alpha - 1}{\left(\sum_{i} r_{ik}\right) + \alpha + \beta - 1} \tag{2}$$

Solution. The M step is to optimize the auxiliary function Q with respect to π, θ' . Q is the expected log-likelihood with respect to the former parameter θ and the observed data D. ¹ The expression for this is

$$Q(\theta', \theta) = \mathbb{E}\left[\ell(\theta')|D, \theta\right] \tag{3}$$

and to derive the expression we will use when optimizing with ML/MAP we start with introducing the latent variable z_i which corresponds to the hidden or missing variables which basically is the r.v. for how x_i is in the class k^2 .

$$Q(\theta', \theta) = E\left[\sum_{i} \log p(x_i, z_i | \theta')\right]$$
(4)

since E is linear and we can factor on the different classes and the factors becomes given only the parameters (π_k, θ'_k) of class k:

$$= \sum_{i} E \left[\log \left[\prod_{k} \left(\pi_{k} p(x_{i} \middle| \theta_{k}') \right)^{\mathbb{I}(z_{i} = k)} \right] \right]$$
 (5)

then log the inner parts and let E operate on the expression like this:

$$= \sum_{i} \sum_{k} \operatorname{E}\left[\mathbb{I}(z_{i} = k)\right] \log \left[p(x_{i} | \theta'_{k})\right]$$
(6)

then we put the expected $E[I(z_i = k)]$ to be $p(z_i = k|x_i, \theta) = r_{ik}$ that is the expected class belonging of x_i given the previous parameters θ . Now put in the denotation r_{ik} and use the log on product rule to finally get

$$= \sum_{i} \sum_{k} r_{ik} \log \pi_k + \sum_{i} \sum_{k} r_{ik} \log p(x_i | \theta_k')$$
 (7)

Now since we have that $\sum_{i,k} r_{ik} \log \pi_k \perp \sum_{i,k} r_{ik} \log p(x_i | \theta'_k)$ we can optimize the parameters π_k and θ'_k separately and only the θ'_k -term is asked for in the exercise which will be denoted by $\ell(\theta'_k)$.

The model parameters in this case is denoted by μ_k which is a vector and in indexnotation μ_{kj}^3 .

We start with the ML

$$\hat{\mu}_k' = \underset{\mu_k'}{argmax} \left\{ \sum_i r_{ik} \log p(x_i | \mu_k') \right\}$$
 (8)

 $^{^{1}}$ It can be shown that Q is so that the new parameters is always better or as good as the last one, but exclude this proof.

²Responsibility $r_{ik} \stackrel{\triangle}{=} p(z_i = k|x_i, \theta)$

³Not using Einstein notation for Tensor product.

which we find by $\frac{\partial \ell(\mu'_k)}{\partial \mu'_k} = 0$, where $\prod_j p(x_{ij} | \mu'_{kj})$ is the multivariate Bernoulli for class k

$$\frac{\partial(\ell(\mu'_k))}{\partial\mu'_{kj}} = \frac{\partial\sum_{i} r_{ik} \log\prod_{j'} p(x_{ij'} \Big| \mu'_{kj'})}{\partial\mu'_{kj}} = \frac{\partial\sum_{i,j'} r_{ik} \log p(x_{ij'} \Big| \mu'_{kj'})}{\partial\mu'_{kj}} = \left\{ \frac{\partial\sum_{j\neq j'} (\cdot)}{\partial\mu'_{kj}} = 0 \right\} = (9)$$

$$= \frac{\partial \sum_{i} r_{ik} \log \left(\mu'_{kj}^{x_{ij}} (1 - \mu'_{kj})^{(1 - x_{ij})} \right)}{\partial \mu'_{kj}} = \frac{\partial \sum_{i} r_{ik} x_{ij} \log \mu'_{kj} + r_{ik} (1 - x_{ij}) \log (1 - \mu'_{kj})}{\partial \mu'_{k}} = (10)$$

$$= \sum_{i} r_{ik} \frac{x_{ij}}{\mu'_{kj}} - r_{ik} \frac{1 - x_{ij}}{1 - \mu'_{kj}} = \sum_{i} r_{ik} \frac{\mu'_{kj} - x_{ij}}{\mu'_{kj}(\mu'_{kj} - 1)}$$
(11)

now find the zero of this expression

$$\sum_{i} r_{ik} \frac{\mu'_{kj} - x_{ij}}{\mu'_{kj}(\mu'_{kj} - 1)} = 0$$
 (12)

$$\sum_{i} r_{ik} \mu'_{kj} - r_{ik} x_{ij} = 0 \tag{13}$$

$$\mu'_{kj} \sum_{i} r_{ik} = \sum_{i} r_{ik} x_{ij} \tag{14}$$

$$\mu'_{kj} = \frac{\sum_{i} r_{ik} x_{ij}}{\sum_{i} r_{ik}} \tag{15}$$

which is the same as the equation (1).

The next thing to do is MAP with the priori⁴

$$p(\mu'_{kj}) = \beta(\alpha, \beta) \tag{16}$$

⁴Note that we will reuse the notations for MAP from ML to avoid cluttering, it will be easy to separate them by their context.