MVA: Kernel methods in machine learning (2022/2023)

Assignment 1

Solution by Matias Etcheverry

January 30, 2023

1 Exercise 1

Let K_1 and K_2 be two positive definite kernels on a set \mathcal{X} with corresponding RKHS's \mathcal{H}_1 and \mathcal{H}_2 , and α , β two positive scalars.

1. Show that $\alpha K_1 + \beta K_2$ is positive definite.

Let $n \in \mathbb{N}, x_1, \dots, x_n \in \mathcal{X}, a_1, \dots, a_n \in \mathbb{R}$:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K(x_i, x_j) = \underbrace{\alpha \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K_1(x_i, x_j)}_{>0} + \underbrace{\beta \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K_2(x_i, x_j)}_{>0}$$

because K_1 and K_2 are positive definite. Moreover, K is symmetric. In the end, K is a positive definite kernel.

2. Express the norm of the RKHS \mathcal{H} in terms of the norms of both RKHS \mathcal{H}_1 and \mathcal{H}_2 and describe \mathcal{H} in terms of elements in \mathcal{H}_1 and \mathcal{H}_2 .

This answer is inspired from Aronszajn [1950].

Let's consider \mathcal{A} the Hilbert space made of elements (g', g'') with $g' \in \mathcal{H}_1$ and $g'' \in \mathcal{H}_2$. We define the following norm on \mathcal{A} :

$$\|(g',g'')\|_{\mathcal{A}} = \frac{1}{\alpha} \|g'\|_1^2 + \frac{1}{\beta} \|g''\|_2^2$$

We consider \mathcal{H}_0 the class of functions belonging to \mathcal{H}_1 and to \mathcal{H}_2 . We denote \mathcal{A}_0 the space of couples $(f, -f), f \in \mathcal{H}_0$.

 \mathcal{A}_0 is closed. Indeed, let $(f_n, -f_n) \to (f', -f'')$, with $f_n \in \mathcal{H}_0$. Then $f_n \to f'$ and $f_n \to f''$. The convergence in \mathcal{H}_0 implies a pointwise convergence, resulting in f' = f'', i.e. $f' \in \mathcal{H}_0$. Then, $(f', -f'') \in \mathcal{A}_0$.

Then, we can construct \mathcal{A}' such that $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}'$. We also construct $\boxed{\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2}$. \mathcal{H} is a Hilbert space. Finally, we also construct a correspondence between \mathcal{A} and \mathcal{H} : for any $(f_1, f_2) \in \mathcal{A}$, $f(x) = \alpha f_1(x) + \beta f_2(x)$. The elements of \mathcal{A} transformed into the 0 function are elements of \mathcal{A}_0 . Consequently, this correspondence transforms \mathcal{A}' in a one-to-one way into \mathcal{H} . The inverse correspondence transforms every function $f \in \mathcal{H}$ into an element $(g'(f), g''(f)) \in \mathcal{A}'$. We define the inner product and the norm on \mathcal{H} :

$$\langle s \mid t \rangle_{\mathcal{H}} = \frac{1}{\alpha} \langle g'(s) \mid g'(t) \rangle_{1} + \frac{1}{\beta} \langle g''(s) \mid g''(t) \rangle_{2}$$

$$\boxed{ \| f \|_{\mathcal{H}}^{2} = \| (g'(f), g''(f)) \|_{\mathcal{H}}^{2} = \frac{1}{\alpha} \| g'(f) \|_{1}^{2} + \frac{1}{\beta} \| g''(f) \|_{2}^{2} }$$

We notice that:

(a) for $x \in \mathcal{X}$ fixed

$$K_x: y \longmapsto K(x,y) = \alpha K_1(x,y) + \beta K_2(x,y)$$

belongs to \mathcal{H}

(b) Reproducing property: for $y \in \mathcal{X}$, let

$$f' = g'(f)$$
 $f'' = g''(f)$
 $K'(x,y) = g'(K(x,y))$ $K''(x,y) = g''(K(x,y))$

i.e.

$$f(y) = f'(y) + f''(y)$$

$$K(x, y) = K'(x, y) + K''(x, y) = \alpha K_1(x, y) + \beta K_2(x, y)$$

Thus, $K''(x,y) - \beta K_2(x,y) = -[K'(x,y) - \alpha K_1(x,y)]$, which means that $(K''(x,y) - \beta K_2(x,y), -[K'(x,y) - \alpha K_1(x,y)]) \in \mathcal{A}_0$. Finally,

$$\begin{split} f(y) &= f'(y) + f''(y) \\ &= \langle f' \mid K_1(x,y) \rangle_1 + \langle f'' \mid K_2(x,y) \rangle_2 \\ &= \langle (f',f'') \mid (\alpha K_1(x,y), \beta K_2(x,y)) \rangle_{\mathcal{H}} \\ &= \langle (f',f'') \mid (K'(x,y),K''(x,y)) \rangle_{\mathcal{H}} + \langle \underbrace{(f',f'')}_{\in \mathcal{A}'} \mid \underbrace{(\alpha K_1(x,y) - K'(x,y), \beta K_2(x,y) - K''(x,y))}_{\in \mathcal{A}_0} \rangle_{\mathcal{H}} \\ &= \langle (f',f'') \mid (K'(x,y),K''(x,y)) \rangle_{\mathcal{H}} \end{split}$$

We can also construct a norm on \mathcal{H} without going through the g' and g'' functions. We can define directly:

$$\|f\|_{\mathcal{H}}^{2} = \min_{f_{1} \in \mathcal{H}_{1}, f_{2} \in \mathcal{H}_{2}} (\alpha \|f_{1}\|_{1}^{2} + \beta \|f_{2}\|_{2}^{2})$$

In order to prove that this new definition corresponds to the previous one, we notice that:

$$\beta f_2 - q''(f) = -[\alpha f_1 - q'(f)]$$

Thus, $((\beta f_2 - g''(f)), -(\alpha f_1 - g'(f))) \in \mathcal{A}_0$. We then have

$$||f||_{\mathcal{H}}^{2} = ||(\alpha f_{1}, \beta f_{2})||_{\mathcal{H}}^{2}$$

= $||(g'(f), g''(f))||_{\mathcal{H}}^{2} + ||(\alpha f_{1} - g'(f), \beta f_{2} - g''(f))||_{\mathcal{H}}^{2}$

The very last term is minimum when $g'(f) = \alpha f_1$ and $g''(f) = \beta f_2$.

2 Exercise 2

Let \mathcal{X} be a set and \mathcal{F} be a Hilbert space. Let $\Psi: \mathcal{X} \to \mathcal{F}$, and $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be:

$$\forall x, x' \in \mathcal{X}, K(x, x') = \langle \Psi(x) \mid \Psi(x') \rangle_{\mathcal{F}}$$

1. Show that K is a positive definite kernel on X. K is symmetric.

Let
$$n \in \mathbb{N}$$
, $x_1, \dots, x_n \in \mathcal{X}$, $a_1, \dots, a_n \in \mathbb{R}$:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K(x_i, x_j) = \left\| \sum_{i=1}^{n} a_i \Psi x_i \right\|_{\mathcal{F}}^2 \ge 0$$

Thus, K is a positive definite kernel.

2. Express the norm of the RKHS \mathcal{H} in terms of the norm in \mathcal{F} and describe \mathcal{H} in terms of elements in \mathcal{F} .

Let's define $g: z \in \mathcal{F} \mapsto \langle z \mid \Psi \rangle_{\mathcal{F}}$. We also define $\mathcal{H} = \{g(z) | z \in ker(g)^{\perp}\}$. \mathcal{H} is a space of function. By definition, g is injective and surjective on \mathcal{H} (unless Ψ is the zero function. We assume it is not). \mathcal{H} is a Hilbert space:

- it is linear.
- for $f, f' \in \mathcal{H}$, we give the inner product:

$$\langle f \mid f' \rangle_{\mathcal{H}} = \langle g^{-1}(f) \mid g^{-1}(f') \rangle_{\mathcal{F}}$$

• \mathcal{H} is complete for the above inner product. Let $(f_n)_{n\geq 0}$ be a Cauchy sequence in \mathcal{H} . Then, for $n\in\mathbb{N}, m\geq n$, $\|f_n-f_m\|_{\mathcal{H}}=\|g^{-1}(f_n)-g^{-1}(f_m)\|_{\mathcal{F}}$. Thus $(g^{-1}(f_n))_{n\geq 0}$ is a Cauchy sequence in \mathcal{F} . \mathcal{F} being an Hilbert space, the Cauchy sequence $(g^{-1}(f_n))_{n\geq 0}$ converges to z in \mathcal{F} . Thus, the Cauchy sequence $(f_n)_{n\geq 0}$ converges to $g(z)\in\mathcal{H}$.

We finally need to show that \mathcal{H} is a RKHS of K:

• for $x \in \mathcal{X}$ fixed

$$K_x: y \longmapsto K(x,y) = \langle \Psi(x) \mid \Psi(y) \rangle_{\mathcal{F}} = g(\Psi(x))(y)$$

belongs to \mathcal{H}

• Reproducing property: for $y \in \mathcal{X}$ and $f \in \mathcal{H}$,

$$\begin{split} f(y) &= \left\langle g^{-1}(f) \mid \Psi(y) \right\rangle_{\mathcal{F}} \\ &= \left\langle f \mid g(\Psi(y)) \right\rangle_{\mathcal{H}} \\ &= \left\langle f \mid \left\langle \Psi(\cdot) \mid \Psi(y) \right\rangle_{\mathcal{F}} \right\rangle_{\mathcal{H}} \\ &= \left\langle f \mid K(\cdot,y) \right\rangle_{\mathcal{H}} \end{split}$$

References

N. Aronszajn. Theory of reproducing kernels. *Transactions of the American Mathematical Society*, 68 (3):337-404, 1950. ISSN 00029947. URL http://www.jstor.org/stable/1990404.