

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Моделирование"

Тема	Программная реализация различных методов при решении задачи Коши для ОДУ.
Студе	нт Пересторонин П.Г.
Групп	иа _ ИУ7-63Б
Оцень	ca
Препо	одаватель Градов В.М.

Оглавление

1	Теоретические сведения								
	1.1	Цель работы	2						
	1.2	Задача	2						
		1.2.1 Метод Пикара	2						
		1.2.2 Метод Эйлера	3						
		1.2.3 Метод Рунге-Кутта	3						
2	Pea	еализация 4							
3	Рез	Результат работы программы							
4	Ответы на контрольные вопросы								
	4.1	Укажите интервалы значений аргумента, в которых можно							
		считать решением заданного уравнения каждое из первых 4-							
х приближений Пикара. Точность результата оцениват									
	второй цифры после запятой. Объяснить свой ответ								
	4.2	Пояснить, каким образом можно доказать правильность по-							
		лученного результата при фиксированном значении аргумен-							
		та в численных методах	10						
	4.3	.3 Каково значение функции при $x=2$, т.е. привести значение							
		u(2)	10						

1 Теоретические сведения

1.1 Цель работы

Получение навыков решения задачи Коши при помощи метода Пикара, метода Эйлера и метода Рунге-Кутты 2-го порядка.

1.2 Задача

Имеем ОДУ, у которого отсутствует аналитическое решение:

$$\begin{cases} u'(x) = f(x, u) \\ u(\xi) = \eta \end{cases}$$
 (1.1)

Для решения данного ОДУ были использованы 3 алгоритма.

1.2.1 Метод Пикара

Имеем:

$$u(x) = \eta + \int_{\xi}^{x} f(t, u(t)) dt$$
 (1.2)

Строим ряд функций:

$$y^{(s)} = \eta + \int_{\xi}^{x} f(t, y^{(s-1)}(t)) dt, \qquad y^{(0)} = \eta$$
 (1.3)

Построим 4 приближения для уравнения (1.2):

$$y^{(1)}(x) = 0 + \int_0^x t^2 dt = \frac{x^3}{3}$$
 (1.4)

$$y^{(2)}(x) = 0 + \int_0^x (t^2 + \left(\frac{t^3}{3}\right)^2) dt = \frac{x^3}{3} + \frac{x^7}{63}$$
 (1.5)

$$y^{(3)}(x) = 0 + \int_0^x \left(t^2 + \left(\frac{t^3}{3} + \frac{t^7}{63}\right)^2\right) dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$
 (1.6)

$$y^{(4)}(x) = 0 + \int_0^x \left(t^2 + \left(\frac{t^3}{3} + \frac{t^7}{63} + \frac{2t^{11}}{2079} + \frac{t^{15}}{59535}\right)^2\right) dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535} + \frac{2x^{15}}{93555} + \frac{2x^{19}}{3393495} + \frac{2x^{19}}{2488563} + \frac{2x^{23}}{86266215} + \frac{x^{23}}{99411543} + \frac{2x^{27}}{3341878155} + \frac{x^{31}}{109876902975}$$

$$(1.7)$$

1.2.2 Метод Эйлера

$$y^{(n+1)}(x) = y^{(n)}(x) + h \cdot f(x_n, y^{(n)})$$
(1.8)

Порядок точности: O(h).

1.2.3 Метод Рунге-Кутта

$$y^{n+1}(x) = y^n(x) + h((1-\alpha)R_1 + \alpha R_2)$$
(1.9)

где
$$R1 = f(x_n, y^n), R2 = f(x_n + \frac{h}{2\alpha}, y^n + \frac{h}{2\alpha}R_1), \alpha = \frac{1}{2}$$
 или 1

Порядок точности: $O(h^2)$.

2 Реализация

Ниже представлены исходные коды программы на языке Elixir.

Листинг 2.1: Основной модуль приложения

```
defmodule Picard. Application do
    Oprecision_order 4
    use Application
    import Picard.Solvers.Main
    import Picard.Solvers.Other
    def start(_, _) do
      run()
      {:ok, self()}
10
    end
11
12
    def run() do
13
      case Picard.Parser.read_input() do
14
        [xmax, step] ->
15
          Picard.Helper.float_range_generator(0, xmax + step / 2, step)
16
          |> (fn xlist -> {xlist, generate_picard_vals_with_names(@precision_order, xlist)}
17
              end).()
          |> (fn {xs, pvals} ->
18
                [["X" | xs] | pvals ++ generate_other_vals_with_names(xmax, step)]
19
              end).()
          |> Picard.Helper.pretty_print()
21
22
          IO.puts("Wrong input data")
24
25
    end
  end
```

Листинг 2.2: Функции для работы с многочленами

```
def clean(polynom), do: :maps.filter(fn d, c -> d >= 0 and c != 0 end, polynom)
13
14
    def sum(pol1, pol2), do: Map.merge(pol1, pol2, fn _k, v1, v2 -> v1 + v2 end)
15
16
    def pow(polynom, deg) do
17
      _pow(polynom, polynom, deg)
18
19
20
    defp _pow(result, polynomial, deg) do
21
      cond do
22
        deg <= 1 ->
23
          result
24
25
        true ->
26
          _pow(mult(result, polynomial), polynomial, deg - 1)
28
    end
29
30
    def mult(pol_1, pol_2) when is_map(pol_1) do
31
32
      |> Enum.flat_map(fn {d1, c1} -> Enum.map(pol_2, fn {d2, c2} -> {d1 + d2, c1 * c2}
33
          end) end)
      |> Enum.reduce(%{}, fn {d, c}, acc -> Map.update(acc, d, c, fn ec -> ec + c end) end)
34
35
    end
36
    def mult(number, pol) when is_number(number) do
37
      Enum.reduce(pol, %{}, fn {deg, coeff}, acc -> Map.put(acc, deg, coeff * number) end)
38
    end
39
40
    def value(polynom, arg) do
41
      Enum.reduce(polynom, 0.0, fn {deg, coeff}, acc -> coeff * :math.pow(arg, deg) + acc
42
          end)
43
    end
44
    def values_list(polynom, list) do
45
      Enum.map(list, &value(polynom, &1))
46
    end
47
48 end
```

Листинг 2.3: Модуль реализации метода Пикара

```
defmodule Picard.Solvers.Main do
alias Picard.Polynomial

@x_degree 2

@x_coeff 1

@y_degree 2

@y_coeff 1

def f(x, y), do::math.pow(@x_coeff * x, @x_degree) + :math.pow(y, @y_degree)
```

```
def generate_picard_vals_with_names(precision_order, xlist) do
10
      generate_picard_values(precision_order, xlist)
11
      > Enum.with_index(1)
12
      |> Enum.map(fn {vals, index} -> ["Picard #{index} precision order" | vals] end)
13
    end
14
15
    def generate_picard_values(precision_order, xlist) do
16
      picard_solvers_list(precision_order)
17
      |> Enum.map(&Polynomial.values_list(&1, xlist))
18
    end
19
20
    def picard_solvers_list(precision_order) do
21
      Enum.reverse(picard_solvers(%{}), precision_order, []))
22
    end
23
24
    defp picard_solvers(polynom_y, precision_order, lst) do
25
26
      case precision_order do
        0 ->
27
          lst
28
29
30
          polynom_y = new_picard_solver(polynom_y)
31
          picard_solvers(polynom_y, precision_order - 1, [polynom_y | lst])
32
      end
33
    end
34
35
    defp new_picard_solver(polynom_y) do
36
      %{@x_degree => @x_coeff}
37
      |> Polynomial.sum(Polynomial.mult(@y_coeff, Polynomial.pow(polynom_y, @y_degree)))
38
      > Polynomial.integral()
39
    end
40
41
  end
```

Листинг 2.4: Модуль реализации методов Эйлера и Рунге-Кутта

```
rk_func = fn xn, ys ->
14
        yn = hd(ys)
15
        k1 = f(xn, yn)
16
        k2 = f(xn + step / 2 / alpha, yn + step / 2 / alpha * k1)
17
        yn + step * ((1 - alpha) * k1 + alpha * k2)
18
      end
19
20
      float_range_map(from, to + step / 2, step, [0], rk_func)
21
      > Enum.reverse()
23
24
    def generate_euler_values(from, to, step) do
      float_range_map(from, to + step / 2, step, [0], fn xn, ys -> hd(ys) + step * f(xn,
26
          hd(ys)) end)
      > Enum.reverse()
    end
28
29 end
```

Листинг 2.5: Вспомогательный модуль чтения ввода

```
defmodule Picard.Parser do
def read_input do
    IO.gets(" X : ")
    |> String.trim()
    |> String.split()
    |> Enum.map(&(Float.parse(&1) |> elem(0)))
end
end
end
```

Листинг 2.6: Модуль со вспомогательными функциями

```
defmodule Picard.Helper do
    @round_precision 5
    def float_range_generator(from, to, step \\ 1) do
      float_range_map(from, to, step, [], fn n, _lst -> Float.round(n / 1,
          @round_precision) end)
      > Enum.reverse()
    def float_range_map(from, to, step, lst, func) do
      if from > to do
       lst
10
11
        float_range_map(from + step, to, step, [func.(from, lst) | lst], func)
12
      end
13
14
    end
15
    def pretty_print(lst) do
16
17
      lst
```

```
|> Enum.zip()
18
      |> Enum.map(&Tuple.to_list/1)
19
      |> Enum.map(
        &Enum.map(&1, fn elem ->
21
          cond do
22
            is_binary(elem) -> :io_lib.format("~20s", [elem])
23
            true -> :io_lib.format("~20g", [Float.round(elem / 1, @round_precision)])
24
25
        end)
26
27
      |> Enum.map(&Enum.join(&1, " | "))
28
      |> Enum.join("\n")
      |> IO.puts()
30
    \quad \text{end} \quad
31
32 end
```

3 Результат работы программы

Ниже приведена таблица с вычисленными значениями. Значения вычислены для шага 10^{-4} , выведено каждое 500 значение.

				Picard 4 precision o		
0.00000e+0						
5.00000e-2						
0.100000						3.30000e-4
0.150000						1.12000e-3
0.200000						2.66000e-3
0.250000						5.21000e-3
0.300000						9.00000e-3
0.350000						
0.400000						2.13500e-2
0.450000						3.04200e-2
0.500000						4.17800e-2
0.550000						5.56900e-2
0.600000						7.24300e-2
0.650000						9.23100e-2
0.700000						0.115630
0.750000						0.142760
0.800000						0.174050
0.850000						0.209920
0.900000						0.250860
0.950000						0.297400
1.00000	0.333330	0.349210	0.350190	0.350230	0.350230	0.350170
1.05000						0.409920
1.10000						0.477530
1.15000						0.554100
1.20000						0.640960
1.25000			0.738410			0.739790
1.30000	0.732330	0.831930	0.850030	0.852570	l 0.852880 l	0.852710
1.35000	0.820130	0.949840	0.977470	0.982050	0.982720	0.982520
1.40000						1.13287
1.45000						1.30874
1.50000						1.51705
1.55000			1.71385	1.75523	1.76829	1.76777
1.60000	1.36533	1.79142	1.98002	2.04946	1 2.07642	2.07572
1.65000	1.49737	1 2.02588	1 2.29401	2.40932	l 2.46510 l	2.46411
1.70000						
1.75000				l 3.42159		3.66602
1.80000	1.94400	I 2.91578	I 3.64736	4.14864	4.68813	4.68410
1.85000	2.11054	1 3.28777	1 4.29442	5.10121	6.34652	6.33839
1.90000	1 2.28633	l 3.70518	I 5.08081	6.37221	l 9.56699 l	9.54567
1.95000	2.47162	4.17340	6.04115			18.6449
2.00000	1 2.66667	4.69841	I 7.21899	10.4839	l 317.490 l	270.068

Рис. 3.1: Таблица с вычисленными значениями

4 Ответы на контрольные вопросы

4.1 Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.

Ответ на данный вопрос даётся с опорой на значения из таблицы выше (Шаг равен 10^{-4}). Учитывая тот факт, что i-ое приближение имеет порядок точности = $O(h^i)$, можно сделать вывод, что метод Пикара i-ого порядка точности будет точен до тех пор, пока его значение совпадает (с определенной степенью точности, в нашем случае - 2 цифры после запятой) с методом Пикара (i+1)-ого порядка точности. Как только это значение начинает отклоняться, учитывая тот факт, что более высокое приближение имеет меньшую погрешность, метод нельзя считать решением.

Таким образом:

- 1. 1 приближение считается решением на полуинтервале [0;0.85), потому что в точке 0.85 его значение отличиается во 2 цифре после запятой;
- 2. 2 приближение считается решением на полуинтервале [0; 1.20);
- 3. 3 приближение считается решением на полуинтервале [0; 1.40);
- 4. 4 приближение считается решением на отрезке [0; 1.40], при этом дать более точную оценку для этого интервала без наличия 5 приближения невозможно;

4.2 Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

Чтобы доказать правильность полученного численными методами результата, требуется устремить шаг к 0 до тех пор, пока не получится ситуации, когда при изменении шага значение функции не будет меняться (или будет меняться незначительно, в пределах допустимых в задачи пределов). При достижении такой ситуации, полученное значение можно считать правильным.

4.3 Каково значение функции при x=2, т.е. привести значение u(2).

Otbet: ≈ 317 .