1 Матричная экспонента, ее свойства и применение к решению нормальных линейных систем

1.1 Матричная экспонента

Необходимо решить ОЛДУ вида:

$$\frac{d\vec{x}}{dt} = A\vec{x}, \ \vec{x}(t_0) = \vec{x_0},\tag{1}$$

Если $A(t) = ||a^i_j||, \, a^i_j \in \mathbf{R}, \, i,j = 1, \ldots, \, n,$ тогда:

$$\vec{x_0} = E\vec{x_0}, \ \vec{x_1} = E\vec{x_0} + \frac{t - t_0}{1!} A\vec{x_0} = \left(E + \frac{t - t_0}{1!} A\right) \vec{x_0},$$
$$\vec{x_n} = \left(E + \frac{t - t_0}{1!} A + \dots + \frac{(t - t_0)^n}{n!} A^n\right) \vec{x_0},$$

Этот процесс будет сходиться к задаче Коши с решением:

$$\vec{x} = \left(E + \frac{t - t_0}{1!}A + \dots + \frac{(t - t_0)^n}{n!}A^n + \dots\right)\vec{x_0} = \left(\sum_{n=0}^{\infty} \frac{(t - t_0)^n}{n!}A^n\right)\vec{x_0},$$

при условии, что $A^0 = E$.

Определение 1.1. Матричной экспонентой называют следующий степенной ряд:

$$e^{(t-t_0)A} = E + \frac{t-t_0}{1!}A + \dots + \frac{(t-t_0)^n}{n!}A^n + \dots = \sum_{n=0}^{\infty} \frac{(t-t_0)^n}{n!}A^n.$$

1.2 Свойства матричной экспоненты

Это квадратная матрица, по размерам аналогична матрице A, и каждый элемент этой матрицы представляет из себя степенной ряд с радиусом сходимости $+\infty$.

1. Решение задачи Коши для (1.1), если A = const:

$$\vec{x}(t) = e^{(t-t_0)A} \vec{x_0}, \ (\vec{x}(t_0) = \vec{x_0}).$$

- 2. $e^{0A} = E$.
- 3. $e^{(t_1+t_2)A} = e^{t_1A}e^{t_2A} \Rightarrow e^{t_1A}e^{t_2A} = e^{t_2A}e^{t_1A}$ (коммутативность).
- 4. $(e^{tA})^{-1} = e^{-tA}$.
- 5. $(e^{tA})' = Ae^{tA} = e^{tA}A$.

Доказательство. Так как квадратные матрицы составляют определенное кольцо, то $A^{n+m} = A^n A^m = A^m A^n$.

1.

2.
$$e^{tA} = E + \frac{t - t_0}{1!}A + \dots + \frac{(t - t_0)^n}{n!}A^n + \dots$$
, если $t = 0$:

$$e^{0A} = E + 0 + \dots = E$$

- 1 МАТРИЧНАЯ ЭКСПОНЕНТА, ЕЕ СВОЙСТВА И ПРИМЕНЕНИЕ К РЕШЕНИЮ
- 1.3 Применение к решению нормальных лине**йног мистеы**ных ЛИНЕЙНЫХ СИСТЕМ
 - 3. рассматриваем (1.1), если $\vec{x}(t)$ решение этого ДУ, то $\vec{x}(t+t_0)$ тоже решение этого ДУ $\forall t_0 \in \mathbf{R}. \ (u=t+t_0)$:

$$\frac{d\vec{x}(t+t_0)}{dt} = \frac{d\vec{x}}{du}\frac{du}{dt} = \frac{d\vec{x}}{du} = A\vec{x}(u) = A\vec{x}(t+t_0).$$

Тогда (1.1), с задачей Коши $\vec{x}(0) = \vec{x_0}$ имеет решение:

$$ec{x}(t)=e^{tA}ec{x_0},$$
 $ec{x}(t+t_0)=e^{(t+t_0)}ec{x_0}$ - решение $\dfrac{dec{x}}{dt}=Aec{x}.$

Рассмотрим тогда тоже самое уравнение для функции z(t):

$$\frac{d\vec{z}}{dt} = A\vec{z}$$
, с задачей Коши $\vec{z}(0) = e^{t_0 A} \vec{x_0} \Rightarrow \vec{z}(t) = e^{tA} (e^{t_0 A} \vec{x_0}) = (e^{tA} e^{t_0 A}) \vec{x_0}$.

Рассмотрим это решение в нуле:

$$\vec{x}(0+t_0) = e^{t_0 A} \vec{x_0},$$

из основной теоремы следует, что $\vec{x}(t+t_0) = \vec{z}(t) \ \forall t.$

Тогда и получается основная формула:

$$\vec{x}(t+t_0) = e^{(t+t_0)A}\vec{x_0} = (e^{tA}e^{t_0A})\vec{x_0}$$

- 4. $E = e^{0A} = e^{(t-t)A} = e^{tA}e^{-tA} = E \Rightarrow (e^{tA})^{-1} = e^{-tA}$.
- 5. Берем представление матричной экспоненты в виде степенного ряда, который можно дифференцировать, тогда получаем:

$$(e^{tA})' = A + tA^2 + \dots + \frac{t^{n-1}}{(n-1)!}A^n + \dots = A\left(E + tA + \dots + \frac{t^{n-1}}{(n-1)!}A^{n-1}\right),$$
$$(e^{tA})' = Ae^{tA} = e^{tA}A.$$

Примечание. Формула $e^{t(A+B)} = e^{tA}e^{tB}$ не имеет места, кроме случая, если AB = BA (т.е. матрицы коммутативны).

1.3 Применение к решению нормальных линейных систем

Теорема 1.1. Пусть S - матрица перехода от исходного базиса κ новому базису. Тогда в новой базисе $\overline{A} = S^{-1}AS$, или $A = S\overline{A}S^{-1}$. И главное:

$$e^{tA} = S^{-1}e^{t\overline{A}}S.$$

1 МАТРИЧНАЯ ЭКСПОНЕНТА, ЕЕ СВОЙСТВА И ПРИМЕНЕНИЕ К РЕШЕНИЮ

1.3 Применение к решению нормальных линейн ОРМАСТНЫНЫХ ЛИНЕЙНЫХ СИСТЕМ

Доказательство.

$$e^{tA} = \left(E + tA + \dots + \frac{t^n}{n!}A^n\right) = \left(E + tS^{-1}e^{t\overline{A}}S + \dots + \frac{t^n}{n!}(S^{-1}e^{t\overline{A}}S)^n\right),$$
$$(S\overline{A}S^{-1})^n = S\overline{A}^nS^{-1}, SES^{-1} = SS^{-1} = E$$
$$e^{tA} = S^{-1}e^{t\overline{A}}S.$$

Для решения нормальных линейных систем методом матричной экспоненты мы будем находить собственные вектора.

Матрица *А* в базисе из собственных векторов (если они соответствуют действительным собственным значениям) будет иметь диагональный вид. Произведение диагональной матрицы на диагональную – диагональная. Тогда для случая без кратных корней:

$$e^{tA} = E + t \cdot diag(\lambda_1, \dots, \lambda_n) + \frac{t^n}{n!} \cdot diag(\lambda_1^n, \dots, \lambda_n^n).$$
$$e^{tA} = diag(e^{t\lambda_1}, \dots, e^{t\lambda_n}).$$

Если λ – корень кратности l, то матрица A приводится к Жордановой клетке (диагональная матрица с единицами над главной диагональю).

$$A = \lambda E + B \Rightarrow B = A - \lambda E.$$

$$e^{tA} = e^{t(\lambda E + B)} = e^{t\lambda E}e^{tB}, \ e^{t\lambda E} = diag(e^{t\lambda}, \dots, e^{t\lambda}), e^{tB} = E + tB + \dots + \frac{t^{l-1}}{(l-1)!}B^{l-1} + 0$$

тогда
$$e^{tA}=e^{\lambda t}egin{pmatrix} 1 & t & \dots & \frac{t^{l-1}}{(l-1)!} \\ 0 & 1 & t & \dots & \frac{t^{l-2}}{(l-2)!} \\ & & \dots & & 1 \end{pmatrix}$$

Метод решения линейных неоднородных уравнений с постоянными коэффициентами (матричный метод вариации постоянной)

$$\frac{d\vec{x}}{dt} = A\vec{x} + \vec{f}(t), \quad \text{решение будем искать в виде} \quad \vec{x}(t) = e^{tA}\vec{C}(t),$$
 тогда $Ae^{tA}\vec{C}(t) + e^{tA}\dot{\vec{C}}(t) = Ae^{tA}\vec{C} + \vec{f}(t),$
$$e^{tA}\dot{\vec{C}}(t) = \vec{f}(t) \ \Rightarrow \dot{\vec{C}}(t) = (e^{tA})^{-1}\vec{f}(t) = e^{-tA}\vec{f}(t).$$

- 2 ТЕОРЕМЫ СУЩЕСТВОВАНИЯ И ЕДИНСТВЕННОСТИ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ НОРМАЛЬНОЙ ЛИНЕЙНОЙ СИСТЕМЫ УРАВНЕНИЙ И ДЛЯ ЛИНЕЙНОГО УРАВНЕНИЯ N-ГО ПОРЯЛКА В НОРМАЛЬНОМ ВИЛЕ
- 2 Теоремы существования и единственности решения задачи Коши для нормальной линейной системы уравнений и для линейного уравнения n-го порядка в нормальном виде

Постановка задачи

Задача Коши для нормальной системы ОДУ

$$\dot{\vec{x}} = \vec{f}(t, \vec{x}) \tag{2}$$

состоит в отыскании решения $\vec{x} = \vec{x}(t)$, удовлетворяющего начальным условиям

$$\vec{x}(t_0) = \vec{x_0}.$$

Предположим, что выполнены следующие условия.

- (У1) Пусть $\vec{f}(t,\vec{x}) \in C(G)$, т.е. существует постоянная $M = \max_G |\vec{f}(t,\vec{x})|$, следовательно $|\vec{f}(t,\vec{x})| \leq M$ равномерно ограничена в G.
- (У2) Пусть $\vec{f}(t,\vec{x})$ в любой замкнутой ограниченной подобласти $\bar{g} \subset G$ удовлетворяет условию Липиица по переменой \vec{x} , т.е. существует постоянная Липиица N > 0 (не зависящая ни от \vec{x} , ни от \vec{y}) такая, что для всех $(t,\vec{x}),(t,\vec{y}) \in \bar{g}$ выполняется неравенство

$$|\vec{f}(t, \vec{x}) - \vec{f}(t, \vec{y})| \le N|\vec{x} - \vec{y}|.$$

Замечание. Это условие будет выполнено, в частности, если существуют частные производные $\frac{\partial f^i(x,y)}{\partial x^j} \in C(G)$.