Приложение 2.

Расчет интеграла для всех сеток всех компонент для определения оптимальной по времени и точности.

Для всех уникальных компонент было рассмотрено 24 варианта сеток с разным шагом, с результатами точности и временем расчета можно ознакомится на графиках.

ratio cur.val./best.val. – отношение значения подынтегральной функции данной компоненты на данной сетке к значению подынтегральной функции на самой мелкой сетке для данной компоненты.

Как видно из приведенных графиков значение ratio cur.val./best.val может меняться в диапзоне от 10^{-3} до 10^4 , что говорит о том, что часть компонент устойчива к выбору сетки и распределение подынтегральной функции обладает меньшим количеством локальных участков резкого роста, а для некоторых компонент учет переменного шага необходим.

Log10(time) – десятичный логарифм времени расчета каждой компоненты на сетке, time – секунды.

Таблица кодов сеток:

	grid_tetta	grid_phi
0	[[0, 3.14, 0.01]]	[[0, 1.54, 0.01], [1.54, 1.6, 0.005], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0005], [4.74, 6.28, 0.01]]
1	[[0, 3.14, 0.01]]	[[0, 1.54, 0.01], [1.54, 1.6, 0.0005], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0005], [4.74, 6.28, 0.01]]
2	[[0, 3.14, 0.01]]	[[0, 1.54, 0.01], [1.54, 1.6, 0.00025], [1.6, 4.68, 0.01], [4.68, 4.74, 0.00025], [4.74, 6.28, 0.01]]
3	[[0, 3.14, 0.01]]	[[0, 1.5, 0.01], [1.5, 1.64, 0.005], [1.64, 4.64, 0.01], [4.64, 4.78, 0.0005], [4.78, 6.28, 0.01]]
4	[[0, 3.14, 0.01]]	[[0, 1.5, 0.01], [1.5, 1.64, 0.0005], [1.64, 4.64, 0.01], [4.64, 4.78, 0.0005], [4.78, 6.28, 0.01]]
5	[[0, 3.14, 0.005]]	[[0, 1.54, 0.01], [1.54, 1.6, 0.005], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0005], [4.74, 6.28, 0.01]]
6	[[0, 3.14, 0.005]]	[[0, 1.54, 0.01], [1.54, 1.6, 0.0005], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0005], [4.74, 6.28, 0.01]]
7	[[0, 3.14, 0.01]]	[[0, 1.5, 0.01], [1.5, 1.64, 0.00025], [1.64, 4.64, 0.01], [4.64, 4.78, 0.00025], [4.78, 6.28, 0.01]]
8	[[0, 3.14, 0.01]]	[[0, 1.54, 0.01], [1.54, 1.6, 0.0001], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0001], [4.74, 6.28, 0.01]]
9	[[0, 3.14, 0.005]]	[[0, 1.5, 0.01], [1.5, 1.64, 0.005], [1.64, 4.64, 0.01], [4.64, 4.78, 0.0005], [4.78, 6.28, 0.01]]
		[[0, 1.54, 0.01], [1.54, 1.6, 0.00025], [1.6, 4.68, 0.01], [4.68, 4.74, 0.00025], [4.74, 6.28, 0.01]]
		[[0, 1.5, 0.01], [1.5, 1.64, 0.0005], [1.64, 4.64, 0.01], [4.64, 4.78, 0.0005], [4.78, 6.28, 0.01]]
		[[0, 1.5, 0.01], [1.5, 1.64, 0.0001], [1.64, 4.64, 0.01], [4.64, 4.78, 0.0001], [4.78, 6.28, 0.01]]
		[[0, 1.5, 0.01], [1.5, 1.64, 0.00025], [1.64, 4.64, 0.01], [4.64, 4.78, 0.00025], [4.78, 6.28, 0.01]]
		[[0, 1.54, 0.01], [1.54, 1.6, 0.0001], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0001], [4.74, 6.28, 0.01]]
		[[0, 1.54, 0.01], [1.54, 1.6, 0.005], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0005], [4.74, 6.28, 0.01]]
		[[0, 1.54, 0.01], [1.54, 1.6, 0.0005], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0005], [4.74, 6.28, 0.01]]
		[[0, 1.5, 0.01], [1.5, 1.64, 0.005], [1.64, 4.64, 0.01], [4.64, 4.78, 0.0005], [4.78, 6.28, 0.01]]
		[[0, 1.54, 0.01], [1.54, 1.6, 0.00025], [1.6, 4.68, 0.01], [4.68, 4.74, 0.00025], [4.74, 6.28, 0.01]]
		[[0, 1.5, 0.01], [1.5, 1.64, 0.0005], [1.64, 4.64, 0.01], [4.64, 4.78, 0.0005], [4.78, 6.28, 0.01]]
		[[0, 1.5, 0.01], [1.5, 1.64, 0.0001], [1.64, 4.64, 0.01], [4.64, 4.78, 0.0001], [4.78, 6.28, 0.01]]
		[[0, 1.5, 0.01], [1.5, 1.64, 0.00025], [1.64, 4.64, 0.01], [4.64, 4.78, 0.00025], [4.78, 6.28, 0.01]]
		[[0, 1.54, 0.01], [1.54, 1.6, 0.0001], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0001], [4.74, 6.28, 0.01]]
		[[0, 1.5, 0.01], [1.5, 1.64, 0.0001], [1.64, 4.64, 0.01], [4.64, 4.78, 0.0001], [4.78, 6.28, 0.01]]
23	[[0, 3.14, 0.002]]	[[0, 1.3, 0.01], [1.3, 1.04, 0.0001], [1.04, 4.04, 0.01], [4.04, 4.70, 0.0001], [4.70, 0.20, 0.01]]

Рассмотрим пример сетки под номером 0, что значит запись в скобках:

Grid code = 0 - относительный номер сетки, соответствует 0 на графике.

Grid_tetta = [[0, 3.14, 0.01]] – шаг интегрирования по оси tetta составляет 0.01, приделы интегрирования от 0, до 3.14.

 $Grid_phi = [[0, 1.54, 0.01], [1.54, 1.6, 0.005], [1.6, 4.68, 0.01], [4.68, 4.74, 0.0005], [4.74, 6.28, 0.01]] - [1.54, 0.01]$

Шаг интегрирования на участках от 0 до 1.54, от 1.6 до 4.68 и от 4.74 до 6.28 составляет 0.01, на остальных участках шаг интегрирования составляет 0.005.

Компонента 1,1,1,1.

Компонента 1,1,1,2.

Компонента 1,1,1,3.

Компонента 1,1,2,2.

Компонента 1,1,2,3.

Компонента 1,1,3,3.

Компонента 1,2,1,2.

Компонента 1,3,1,2.

Компонента 2,2,1,2.

Компонента 2,2,1,3.

Компонента 2,2,2,2.

Компонента 2,2,2,3.

Компонента 2,2,3,3.

Компонента 2,3,1,2.

Компонента 2,3,1,3.

Компонента 2,3,2,3.

Компонента 3,3,1,2.

Компонента 3,3,1,3.

Компонента 3,3,2,3.

Компонента 3,3,3,3.

