Electric Vehicle (EE60082)

Lecture 12: BMS part2

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Basic terminology (recap)

Cell: the most basic element of a battery;

Block: a collection of cells wired directly in parallel;

Battery: a collection of cells or blocks wired in series;

Pack: a collection of batteries.

C-rate(recap)

- C-rate is unit of current (relative to battery charge capacity)
- > 1 C-rate = the current needed to discharge the battery fully in 1 hour

• Examples:

- 40 Ah Battery, 20 A discharge.
 - Find the C-rate of discharge
- 10 Ah, being discharged at C/2.
 - Find the time to discharge completely

Battery Chemistry (recap)

Galvanic cell

Battery Charge Density (recap)


```
Li + MnO<sub>2</sub> \rightarrow LiMnO<sub>2</sub> (discharge)
6,94 86,9
```

- 1. Generated charge Q: one electron (-1.602*10⁻¹⁹C)
- 2. Used mass M: (6.94+86.9)*1.667*10⁻²⁷kg
- 3. Charge Density: Q/M/3600=284Ah/kg
- 4. How to calculate energy density?

Battery OCV (recap)

Theoretical Open Circuit Voltage:

- Defined by positive and negative electrode active materials
- Calculated from standard potentials of each electrode

```
Example: Li + MnO₂ → LiMnO₂ (discharge reaction – Li primary cell)
```

Negative Electrode (oxydation) : Li \rightarrow Li⁺ + 1 e⁻ -3,04V/ENH Positive Electrode (reduction) : MnO₂ + Li⁺ + e⁻ \rightarrow LiMnO₂ 0,25V/ENH

$$V^{\text{theo}}_{\text{cell}} = 0.25 - (-3.04) = 3.29 \text{ V}$$

of TECHNOLOGY AND STREET OF THE STREET OF TH
योगः कर्मसु कौशलम्

	Reduction Half-Reaction		E° (V)	
Stronger	$F_2(g) + 2e^-$	\longrightarrow 2 F (aq)	2.87	Weaker
oxidizing	$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	\longrightarrow 2 H ₂ O(l)	1.78	reducing
agent	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^-$	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(l)	1.51	agent

Weaker agent

reducing agent

Power density (recap)

Battery power = battery terminal voltage x discharge current

> Power density = Maximum power per unit volume or weight

Unit of power density = W/kg or W/l

- Power density depends on
 - loss inside the battery
 - Maximum permissible temperature in battery
 - >Thermal management of battery pack

Battery Evolution (recap)

	Lead-Acid		Nickel-Metal Hydride		Lithium-Ion	
	SLI	Advanced	HEV	BEV	HEV	PHEV-BEV
V	2.0	2.0	1.2	1.2	3.3-3.8	3.3-3.8
Wh/l	60	7 5	100	250	150	200-400
Wh/kg	25	40	50	100	90	120-200
W/I	1200	600	2000 - 2500	500-800	3500-9000	800-2200
W/kg	500	250	1000-1300	200-400	2000-4000	500-1200

Lead-Acid Battery (recap)

Discharging

Negative Plate: $Pb + HSO_4^- \rightarrow PbSO_4 + H^+ + 2e^-$

Positive Plate: $PbO_2 + HSO_4^- + 3H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$

Overall: $PbO_2+Pb+2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$

Lead-Acid Battery (recap)

Question 1: What's the theoretical gravimetric charge density (Ah/kg)

Overall:

 $PbO_2+Pb+2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$

Charge

2e-

Mass

239 207 196

Relative mass:

Other info:

Pb: 207

1. One electron: -1.602*10⁻¹⁹C

O:16

2. One hydrogen atom: $1.667*10^{-27}$ kg

S: 32

To transfer Q= $2*1.602*10^{-19}$ C charge, we need the mass M= $(239+207+196)*1.667*10^{-27}$ kg, yielding Q/M/3600=83Ah/kg

Lead-Acid Battery (recap)

Question 2: What's the theoretical gravimetric energy density (Wh/kg)

Charge density of lead-acid battery is 83Ah/kg;

Energy density of lead-acid battery is 2.1V*83Ah/kg=174Wh/kg

Not competitive in terms of the terminal voltage.

Water hydrolysis during charging (recap)

Oxidation reaction at the positive electrode

$$2H_2O <=> O_2 + 4H^+ + 4e^-$$

Reduction reaction at negative electrode

$$H^+ + e^- <=> \frac{1}{2} H_2$$

Li-ion cells

Li-metal battery

Ex: Li-Sulfur battery

$$2Li+S o Li_2S$$

- High energy density
- Dendrite formation

- Dendrite formation, leading to shortcircuit and thermal runaway
- ➤ Shorter life-span

Intercalation electrode

Li-Ion Battery

Many Li-Ion chemistries are available. They are usually named according to the composition of the *cathode* (*positive electrode*).

- LiCoO₂: Standard lithium-cobalt-oxide;
- LiMnNiCo: Lithium-manganese-nickel-cobalt;
- LiFePO₄: lithium-iron-phosphate;
- LiMnO₂: Lithium-manganese-oxide;
- Li₄Ti₅O₁₂: Lithium-titanate;
- LiMn₂O₄: Lithium-manganese-oxide;
- LiNiO₂: Lithium-nickel-oxide.

Li-Ion Battery

Lithiated Metal Oxide:

Cobalt (LiCoO2)

NCA (LINICOAIO2)

Manganese (LiMn₂O₄)

NMC (LiNiMnCoO₂)

Iron Phosphate (LiFePO₄)

Graphite

Hard Carbone

Titanate

Li-Alloy (Si, Sn...)

Li-Ion cell reaction

Positive Electrode: <M>

Negative Electrode: <HLi>

LiFePO₄ cell reactions

Example – LiCoO2 cells

A fully charged Li-ion battery has positive electrode as CoO_2 and negative electrode as LiC_6

Here $M = CoO_2$, $\langle HLi \rangle = LiC_6$

Therefore the overall chemical reaction when discharging is

$$CoO_2$$
 + LiC_6 \rightarrow $LiCoO_2$ + 6C

Relative mass:

Li: 6.9

Co:59

0:16

C: 12

Other info:

1. One electron: -1.602*10⁻¹⁹C

2. One hydrogen atom: $1.667*10^{-27}$ kg

3. Cell OCV 3.4V

Example – LiCoO2 cells

$$CoO_2 + LiC_6 \rightarrow LiCoO_2 + 6C$$

Relative mass 59+16*2 6.9+12*6

To generate Q= $1.602*10^{-19}$ C, we need M= $169.9*1.667*10^{-27}$ kg. Therefore the gravimetric charge density is Q/M/3600=157Ah/kg.

The energy density is 3.4V*151Ah/kg=534Wh/kg

What are those parameters of the Pb-Acid Battery?

83Ah/kg 174Wh/kg

Battery chemistry	Energy density (Wh/kg)			
	Theoretical	Practical		
Pb-acid	174	60-75		
Li-ion	534	120-200		

Example – LiFePO₄ cells

A fully charged Li-ion battery has positive electrode as FePO₄ and negative electrode as LiC₆

Relative mass:

Li: 6.9

Fe: 55.9

0:16

P: 31

Other info:

1. One electron: -1.602*10⁻¹⁹C

2. One hydrogen atom: $1.667*10^{-27}$ kg

3. Cell OCV is 3.2V

Find out the charge density and energy density of the cells.

Example – LiFePO₄ cells

$$FePO_4 + LiC_6 \rightarrow LiFePO_4 + 6C$$

Relative mass 55.9+31+16*4 6.9+12*6

To generate $Q=1.602*10^{-19}C$, we need $M=229.8*1.667*10^{-27}kg$. Therefore the gravimetric charge density is Q/M/3600=116Ah/kg.

The energy density is 3.2V*116Ah/kg=372Wh/kg

How do those parameters compare with LiCoO2 chemistry?

Battery chemistry	Charge density (Ah/kg)	Energy density (Wh/kg)
LiCoO2	157	534
LiFePO4	116	372

Use of LiFePO₄ cells

Advantages of LiFePO₄ cells

- ➤ Longer life (3000-5000 cycles vs. 500-1500 cycles in case of other Li-ion chemistries)
- Thermally stable: do not catch fire like other Li-ion cells
- ➤ Wider temperature range (-20°C to 60°C)
- ➤ Lower self-discharge rate
- ► Eco-friendly and non-toxic

Tesla Model 3 Standard Range LFP battery pack

Comparison of Li-ion chemistries

Key Active Material	Lithium-Iron Phosphate	Lithium Nickel Manganese Cobalt Oxide	Lithium Manganese Oxide	Lithium Nickel Cobalt Aluminum	Lithium Titanate
Technology Short Name	LFP	NMC	LM0	NCA	LT0
Cathode	LiFeP04	LiNi _x Mn _y Co _{-x-y} O₂	LiMn ₂ 0 _{4(spinel)}	LiNiCoAlO ₂	variable
Anode	C (graphite)	C (graphite)	C (graphite)	C (graphite)	Li4Ti5O12
Safety					
Power Density					
Energy Density					
Cell Costs Advantage					
Lifetime					
BESS Performance					

Source: International Renewable Energy Agency (IRENA), 2017

Li-Ion Cell Packages

Cylindrical

Prismatic (convenient)

Pouch

Cylindrical (Hard Can)

Prismatic (Hard Can)

Pouch

Li-polymer cells

Li-polymer cells use gel-like or solid polymer electrolyte (in flexible pouch packaging)

- > Advantages:
 - >Slim & Lightweight Design
 - ➤ Better Safety & Stability
 - Customizable Shapes
 - ► Improved Fast Charging
- **Limitations:**
 - Lower Energy Density
 - ➤ Shorter Lifespan (about half)
 - ➤ Higher Cost

Thank you!