

Sistemi meccatronici II

Progetto
Interfaccia Aptica
Introduzione al progetto e primi
obiettivi

Magistrale Meccanica

RELATORI

Prof. Paolo Righettini

SEDE

Kilometro Rosso

DATA

07/04/2020

Introduzione interfacce aptiche

- Sono dispositivi robotici
 - studiati per interagire direttamente con l'operatore umano
- Hanno funzionalità di indurre in quest'ultimo la percezione di forze
 - relativa ad esempio al contatto con un oggetto, a seguito di posizioni/velocità che ha imposto pilotando l'interfaccia stessa
- L'operatore impone movimenti per mezzo dell'interfaccia
 - Questi movimenti possono essere utilizzati per pilotare macchinari o strumenti
 - Comunicano sui canali cinestetico e tattile dell'uomo
- Il sistema pilotato dall'interfaccia
 - Reale (come il caso precedente)
 - Virtuale (simulato per mezzo di un software)
 - Un opportuno algoritmo converte i comandi dell'interfaccia in segnali di retroazione in forza

Introduzione interfacce aptiche

- Possono essere di due tipi
 - passive
 - sono in grado di programmare la dissipazione di energia, funzione del tempo o della posizione, ad esempio attraverso dei freni
 - le forze percepite dall'operatore sono realizzate dalle forze dissipative (sempre opposte al movimento)
 - Attive
 - utilizzano attuatori per introdurre energia nel sistema
 - Le forze percepite dall'operatore sono regolate per mezzo degli attuatori e possono quindi avere un verso indipendente dalla condizione di moto imposta
 - Attive retroazionate
 - Come le precedenti con un sensore di forza che per la lettura diretta della forza esercitata dall'operatore
- Un dispositivo aptico deve essere progettato per leggere e scrivere da e verso la mano umana

Introduzione interfacce aptiche

- L'ambiente virtuale è un algoritmo che
 - in relazione allo stato imposto (posizione e velocità)
 - fornisce una forza che deve essere percepita dall'operatore
 - F desiderata o F ambiente
- La figura presenta lo schema di un'interfaccia attiva e retroazionata
 - Con ambiente virtuale
 - La retroazione è data da un sensore di forza
- Il sistema meccanico rappresenta il dispositivo
- Sono presenti gli elementi salienti
 - Controllore
 - Ambiente virtuale
 - · Sensore di forza
 - operatore

Principali schemi di controllo

Non retroazionate

- Per mezzo di relazioni cinematiche
- J^t rappresenta l'inverso dei rapporti di trasmissione generalizzati
- La forza desiderata viene trasformata nelle coppie da applicare al dispositivo

Retroazionate

Relazioni cinematiche + controllore

Retroazionate con componenti di feed-forward

 Relazioni cinematiche + controllore + feedforward

Principali tipologie di controllo

Forza desiderata (ambiente)

- Impedenza \mathbb{Z}_d definisce una relazione fra forza e velocità dei giunti dell'interfaccia
- Fa riferimento all'impedenza meccanica: relazione fra forza e velocità In cui i coefficienti rappresentano massa, smorzamento e rigidezza

$$\frac{F\left(s\right)}{\dot{X}\left(s\right)} = Z_d\left(s\right)$$

 $Z_d(s) = M_d s + B_d + \frac{K_d}{s}$

Controllo in impedenza

• La coppia ai giunti dipende direttamente dall'errore in forza fra quella desiderata e la forza operatore

Controllo in ammettenza

• L'errore in forza definisce il setpoint di posizione/velocità dei giunti. Il controllore di posizione dei giunti calcolerà la coppia necessaria per seguire questo setpoint

Ibrido posizione-forza

utilizzano sia le posizioni che le forze applicate

Controllo in Impedenza

Ad anello aperto

- La forza calcolata viene proiettata direttamente sui giunti
- Le coppie applicate al sistema hanno due origini
 - Forza introdotta dall'operatore
 - Coppia generata dagli attuatori

Ad anello chiuso sulla forza

 Il segnale di coppia è proporzionale all'errore di forza

• È necessario un sensore di forza

Controllo in ammettenza

- Controllo di ammettenza con retroazione di posizione
 - Anello interno di posizione all'end-effector
 - Anello esterno in forza
 - È necessario un sensore in forza

- Il dispositivo consente di traslare l'endeffector lungo le tre direzioni nello spazio (3 g.d.l).
- E' dotato di quattro motori elettrici
- Questo permette di estendere il campo di funzionamento della struttura a delta

Struttura Delta:
Meccanismo a cinematica
parallela composto da 3
bracci attuati

Meccanismo inferiore:
Composto da tre
manovellismi di tipo
deviato

Configurazione della parte sperimentale

- Ogni motore ha un resolver
- Il resolver viene convertito in segnale encoder dagli azionamenti
- Gli azionamenti sono configurati in coppia
- Il sensore di forza permette di leggere le forze lungo tre direzioni

Tematiche di interesse

STRATEGIE DI **CONTROLLO**

DISPOSITIVO APTICO

AMBIENTE **VIRTUALE**

GESTIONE DELLA RIDONDANZA

Schema controllo in ammettenza

Sviluppo del progetto

- Il progetto è diviso in 3 passi principali
- Simulazione
 - Modello cinematico e dinamico del dispositivo
 - Sviluppo sistema di controllo della posizione e di gestione della ridondanza
 - Sviluppo sistema di controllo in forza (in ammettenza)
- Sviluppo della parte sperimentale
 - Validazione della strategia di controllo in posizione
 - Validazione del controllo in forza
 - Definizione dell'ambiente virtuale o reale per la generazione delle forza desiderata
- Analisi e confronto del sistema rispetto alle simulazioni
 - Test del sistema nel suo complesso

Sviluppo del progetto

 J_{p2} , R_p

- Avvicinamento alla tematica per mezzo di un sistema ad 1 dof
 - Interfaccia aptica lineare
 - modello rigido
 - Si sostituisce negli schemi a blocchi visti precedentemente $J=\tau$ e $J^t=\tau$
 - Introdurre un regolatore di forza proporzionale o PI
- Come primo passo definire il controllore di posizione
 - Utilizzare la tecnica di posizionamento dei poli
- Introduzione di elementi che avvicinano la simulazione al caso sperimentale
 - Quantizzazione del segnale di posizione
 - Discretizzazione dei segnali (aggiornamento periodico dei segnali alla frequenza di campionamento)
 - valutazione/stima della velocità a partire dalla misura della posizione

Prossimi Obiettivi

- Modello di interfaccia aptica ad 1 dof
 - Il modello è lineare e semplice
 - Analisi degli schemi a blocchi
- Progetto del sistema di controllo in posizione con il metodo di posizionamento dei poli
 - Questo servirà per il controllo in ammettenza
- Introduzione dei limiti del sistema reale nel modello simulink
 - Risoluzione degli encoder (4096 passi giro)
 - Rumore sui segnali di forza
- Calcolo della velocità a partire dal segnale di posizione
 - Filtri passabasso e/o filtro di Kalman
- Valutazione delle prestazioni attese
- Schema a blocchi del regolatore in forza in ammettenza
 - Rf puramente proporzionale

