

planetmath.org

Math for the people, by the people.

existence of adjoints of bounded operators

Canonical name ExistenceOfAdjointsOfBoundedOperators

Date of creation 2013-03-22 17:33:44 Last modified on 2013-03-22 17:33:44 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 4

Author asteroid (17536)

Entry type Theorem Classification msc 47A05

Synonym bounded operators have (bounded) adjoints

Let \mathscr{H} be a Hilbert space and let $T: \mathscr{D}(T) \subset \mathscr{H} \longrightarrow \mathscr{H}$ be a densely defined linear operator.

Theorem - If T is http://planetmath.org/ContinuousLinearMappingbounded then its adjoint T^* is everywhere defined and is also bounded.

Proof: Since T is densely defined and bounded, it extends uniquely to a bounded (everywhere defined) linear operator on \mathcal{H} , which we denote by \widetilde{T} .

For each $z \in \mathcal{H}$, the function $f: \mathcal{H} \longrightarrow \mathbb{C}$ defined by $f(x) = \langle \widetilde{T}x, z \rangle$ defines a bounded linear functional on \mathcal{H} . By the Riesz representation theorem there exists $u \in \mathcal{H}$ such that

$$f(x) = \langle x, u \rangle$$

i.e.

$$\langle \widetilde{T}x, z \rangle = \langle x, u \rangle.$$

Since \widetilde{T} extends T, we also have that for every $z \in \mathscr{H}$ there exists $u \in \mathscr{H}$ such that

$$\langle Tx, z \rangle = \langle x, u \rangle$$
 for every $x \in \mathcal{D}(T)$.

We conclude that T^* is everywhere defined. To see that it is bounded one just needs to check that

$$\sup_{z \neq 0} \frac{\|T^*z\|}{\|z\|} = \sup_{\substack{z \neq 0 \\ T^*z \neq 0}} \frac{|\langle T^*z, T^*z \rangle|}{\|T^*z\|\|z\|} \leq \sup_{\substack{z \neq 0 \\ x \neq 0}} \frac{|\langle x, T^*z \rangle|}{\|x\|\|z\|} = \sup_{\substack{z \neq 0 \\ x \neq 0}} \frac{|\langle Tx, z \rangle|}{\|x\|\|z\|} \leq \|T\|$$

where the last inequality comes from the Cauchy-Schwarz inequality and the fact that T is bounded. \square

Remark - This theorem shows in particular that bounded linear operators $T: \mathcal{H} \longrightarrow \mathcal{H}$ have bounded adjoints $T^*: \mathcal{H} \longrightarrow \mathcal{H}$.