ANN

CNN - Convolutional Neural Network

Neural Network Neural Nets

Grayscale - 1 Channel

Image size = 1920 x 1080 X 3

First layer neurons = 1920 x 1080 X 3 ~ 6 million

Hidden layer neurons = Let's say you keep it 4 million

Weights between input and hidden layer = 6 mil * 4 mil = 24 million

- 1. Too much computation
- 2. Time consuming

ANN -> Digital Foramat -> Matrix -> Flatten the matrix -> Neural Nets -> Output

CNN -> Input -> CNN Layers -> ANN

CNN Layers/Steps

- 1. Convolution (Filter/Kernel) + ReIU ____ Convolutional Block
- 2. Pooling Max or Avg
- 3. Convolution (Filter) + RelU
- 4. Pooling Max or Avg
- 5. Convolution (Filter) + RelU
- 6. Pooling Max or Avg

Fully Connected Block

1. Convolutional (Filter/Kernel)

return x

0	1	0	0	0
0	1	1	1	0
1	O	1	2	1
1	4	2	1	0
0	٥	1	2	1

Input Image

Feature Detector

Feature Map

2. Pooling Layer (Max/Avg)

It will going to perform the process of extraction of particular values from the set of values, usually tha max value or avg value is used.

The motive is to reduce the size of the output matrix

$$7x7 -> 5x5 -> 3x3$$

ANN

CNN Explainer: https://poloclub.github.io/cnn-explainer/

CNN Kernel: https://setosa.io/ev/image-kernels/