Проверка статистических гипотез

Версия 2

Определение

 Статистическая гипотеза — утверждение о распределении вероятностей случайной величины (или случайного вектора).

- Гипотеза нуждается в проверке.
- Проверка основывается на результатах эксперимента, на наблюдениях.

 Обсудим наиболее важные статистические гипотезы.

1. Гипотеза согласия.

- Обозначим F_x(t) функцию распределения случайной величины X.
- Пусть F₀(t) некоторая заданная функция распределения.
- Гипотеза : функции распределения совпадают, то есть $F_x(t) = F_0(t)$

 Кому и когда приходится проверять гипотезу согласия?

Пример гипотезы согласия

- Гипотеза о нормальности распределения
- В этом случае

$$F_0(t) = \frac{1}{\sqrt{2\pi\sigma_X^2}} \int_{-\infty}^t \exp\left(-\frac{\left(s - a_X\right)^2}{2\sigma_X^2}\right) ds$$

Почему гипотеза нормальности важна?

 1. Нормальное распределение часто встречается (вспомним центральную предельную теорему).

Почему гипотеза нормальности важна?

- 2. Когда распределение нормальное, экономим деньги, действительно
- A) Если распределение можно считать нормальным и
- Б) если задана необходимая погрешность результата,
- то при проведении анализа можно обойтись меньшим числом наблюдений.
- Например, опросить меньше покупателей.

Пример гипотезы согласия 2

- Гипотеза об экспоненциальности распределения.
- В этом случае функция распределения

$$F_0(t) = \begin{cases} 1 - e^{-\lambda t}, t > 0 \\ 0, t < 0 \end{cases}$$

Почему важна гипотеза экспоненциальности?

 Экспоненциальное распределение часто встречается, когда изучается «время ожидания».

Например,

- Время до аварии (нужно для расчета страховой премии).
- Время обслуживания покупателя кассиром (нужно для определения числа касс в супермаркете).
- Время до поломки изделия (нужно для планирования расходов на гарантийный ремонт).

2. Гипотеза однородности.

- Обозначим F_x(t) функцию распределения случайной величины X.
- Обозначим $F_{y}(t)$ функцию распределения случайной величины Y
- Гипотеза : функции распределения совпадают, то есть $F_{_{Y}}(t) = F_{_{Y}}(t)$

 Кому и когда приходится проверять гипотезу согласия?

Например,

- Распределение продаж до рекламной акции и после нее.
- Если распределение продаж не изменилось, то улучшения нет.

 Может сравниваться распределение покупателей по возрасту. Например, если реклама была нацелена на конкретный сегмент, например, на молодых мам.

3. Гипотеза независимости.

 Гипотеза : случайные величины X и Y независимы

Кому и когда приходится проверять гипотезу независимости?

Например,

 Если возраст покупателей и объем покупки зависимы, то возраст надо учитывать при сегментации покупателей.

- Иногда зависимость бывает неочевидной.
- Длина волос и рост людей зависимые переменные.

Вопрос:

наличие балкона влияет на цену квартиры?

На шаг дальше...

 В эконометрике редко интересен сам факт зависимости. Обычно идут дальше, пытаются описать зависимость.

- Подобные задачи решаются, в частности, методами регрессионного анализа.
- О регрессионном анализе позднее.

4. Гипотезы о параметре распределения.

 Очень часто не так важно распределение случайной величины. Интересна лишь одна характеристика распределения.

Если анализируются продажи магазина, то в первую очередь интересно...

Математическое ожидание

- Так как математическое ожидание вероятностная модель для среднего значения.
- В данном случае для средних продаж.

 Гипотеза. Математические ожидания случайных величин X и Y одинаковы.

Если сравниваются медианы:

 Гипотеза. Медианы случайных величин Х и Y одинаковы.

Основные условия применения статистических тестов

- Вопрос должен касаться какой-либо характеристики массового явления.
- Характеристика меняется случайным образом от наблюдения к наблюдению.
- Вопрос должен быть относительно простым и четко сформулированным

- В обычных условиях зафиксирован некоторый уровень продаж. Затем была проведена рекламная акция.
- Руководству фирмы надо оценить результат.
- Для этого нужно выяснить, было ли существенное увеличение продаж. В частности, окупились ли затраты на рекламу.

Основная проблема:

- Увеличение продаж могло быть вызвано случайными факторами.
- Продажи все время меняются, случайным образом отклоняются от заданного значения.
- Статистически значимое отклонение должно превышать эти случайные отклонения.

- Разработан новый варианта упаковки товара.
- Требуется проверить предположение, что товар в новой упаковке имеет в данном регионе больший уровень продаж, чем вариант в старой упаковке.

- Верно ли, что основной конкурент действует на том же сегменте рынка, что и фирма «Х»?
- При ответе на этот вопрос может потребоваться проверить, одинаково ли распределение по возрасту у покупателей товаров фирмы «Х» и ее основного конкурента.

- Фирма изучает постоянных покупателей своей продукции, чтобы увеличить их лояльность и количество.
- В рамках этой задачи аналитик проверяет, зависит ли лояльность потребителя от его пола, возраста, уровня образования.

Пример 4. Часть 2

- Статистическая формулировка: проверить гипотезы о независимости уровня лояльности и
- а) пола покупателя;
- б) возраста покупателя;
- в) уровня образования покупателя.
- Далее, можно проверить, различаются ли средние значения изучаемых показателей у лояльных и не лояльных покупателей.

Выбираем из двух гипотез!

- Анализ данных начинают с переформулировки вопроса.
- Надо, чтобы ответ на вопрос заключался в выборе между двумя утверждениями.
- Оба утверждения должны быть статистическими гипотезами.

Определение

 Проверку гипотез на основе выборочных статистических данных называют статистической проверкой гипотез.

Основная и альтернативная гипотезы

- Одну из гипотез называют основной и обозначают, как правило, Н, а другую альтернативной (конкурирующей) и обозначают К.
- Если не уточняется, о какой гипотеза идет речь, то имеется в виду основная гипотеза.
- Чаще всего (но не всегда) одна гипотеза утверждает, что предположение верно, другая – что нет.

Стандартная терминология

- Вместо «...выбрана основная гипотеза...» или «...выбрана альтернативная гипотеза...»,
- обычно говорят
- «...основная гипотеза принята...» или «основная гипотеза отвергнута...».

Важное уточнение.

- Правильно говорить
- «основная гипотеза отвергнута…» и
- «основная гипотеза не отвергнута…».

 Так как обычно проверяют лишь достаточное условие.

Комментарий 1:

Гипотеза: число делится на 4 нацело.

 Фактически проверяем, делится ли число на 2 нацело.

Комментарий 2:

Часто случается, что у аналитика недостаточно данных, чтобы проявился изучаемый эффект.

- Например,
- фармацевтическая компания выпускает лекарство, аналогичное уже существующему, так называемый "дженерик" (generic) вместо оригинального, производимого разработчиком ("brand-named").
- Компания проводит исследование, проверяющее, что лекарство-аналог эквивалентно уже существующему.

Отвергнуть гипотезу недостаточно

- Основная гипотеза при анализе: отличия между лекарствами нет.
- Но когда дело касается здоровья людей, не отвергнуть гипотезу недостаточно.
 Необходимы более жесткие требования к процедуре. Надо проверить еще и побочные эффекты у лиц страдающих заболеванием «x1», «x2», и так далее...

Вывод

 Хотя часто можно прочитать, что (основная) гипотеза принята, такое выражение неточно.

 Точнее говорить, что (основная) гипотеза не отвергнута

Ошибки первого и второго рода

- Ошибка первого рода состоит в том, что отвергается основная гипотеза, когда на самом деле она верна.
- Ошибка второго рода состоит в том, что отвергается конкурирующая гипотеза, когда она верна.

Аналогия

 В больнице врач принимает решение, направлять пациента на операцию, или нет. Когда врач делает ошибку первого рода? Когда врач делает ошибку второго рода?

- Может ли врач свести частоту (вероятность) ошибок первого рода к нулю?
- Может ли врач свести частоту (вероятность) ошибок второго рода к нулю?

Есть исключения

- Например,
- если мы будем вакцинацию считать операцией, то получается, что врачи действуют по первому сценарию: делать маленькую "превентивную" операцию всем, чтобы в будущем свести ошибку первого рода к нулю.

Последствия ошибок могут быть различными

 Ошибка первого рода опаснее, но полностью избежать ее не удастся.

 При проверке статистических гипотез исходят именно из этой предпосылки

Уровень значимости

- Долю ошибок первого рода ограничивают сверху числом, называемым уровень значимости.
- Исторически сложилось так, что в качестве уровня значимости чаще всего выбирают одно из чисел 0.005, 0.01, 0.05.
- То есть аналитик допускает, что (в среднем) одна проверка из 200, 100, 20 будет давать неверный результат.

Для новичков!

 Чаще всего уровень значимости равен 0,05

 Для продвинутых: выбор уровня значимости – большая проблема!

Смотрите литературу

- «медицинский» пример
- На что влияет выбор уровня значимости?

Проектирование атомной электростанции

Ошибка второго рода и мощность

- Как добиться того, чтобы вероятность ошибки второго рода была малой?
- Очень сложно.
- Ее можно уменьшить, если увеличить число анализируемых наблюдений.
- Состоятельные критерии.
- Необходимы большие выборки.

Дополнительно

- Если выборка маленькая (часто границей между большой и маленькой выборкой рекомендуют считать 30 наблюдений), проверить гипотезу по малой выборке удастся.
- Ho
- Платой за малый размер будет неприемлемо большая вероятность ошибки второго рода.
- Большинство практиков игнорируют ошибку второго рода.
- Это неверно.
- Профессиональные статистики в таких ситуациях часто увеличивают уровень значимости (например до 0.15 или 0.2), чтобы сделать вероятности ошибок сопоставимыми.

Задача.

- Модифицируем "медицинский" пример.
- Вместо врача рассмотрим банковского служащего, принимающего решение, выдавать заем или нет.
- Как будут интерпретироваться статистические понятия в этом случае?

Алгоритм проверки статистических гипотез

 1. Имеются п наблюдений, то есть п чисел, полученных, например, в результате опроса.

 2. Заранее задан уровень значимости α.
 Обычно это одно из чисел 0.005, 0.01, 0.05.

- 3. Задан статистический критерий, то есть функция от наблюдений.
- Значение этой функции называются рзначение.
- В пакете SPSS оно называется
 Significance, сокращенно записывается как
 Sig. (Знч в русском переводе) и часто
 переводится как значимость.

 4. Проверяются все условия, при которых критерий будет работать.

Условия – как их узнать? Из справочника.

 Несколько важных критериев будет рассмотрено далее 5. Если p< α - гипотезу отвергаем,
 если p> α - не отвергаем.

Напомним: α – уровень значимости.

Комментарии

 Наблюдения не обязательно являются числами.

 Выбор того статистического критерия, который подходит для задачи – важная и сложная задача

Проверка условий применимости

 Например, для применения t – критерия Стьюдента или для проверка гипотезы независимости с помощью критерия Пирсона надо проверить близость распределения переменных к нормальному.

Статистика критерия или тестовая статистикой

- Иногда важна еще одна функция, которая называется статистикой критерия или тестовой статистикой.
- Изредка она важна сама по себе (например, коэффициент корреляции), в таких конкретных случаях мы будем ее указывать.

Интерпретация статистики критерия

 Значение статистики критерия измеряет, насколько данные согласуются с гипотезой.

- Маленькие значения статистики критерия указывают, что данные «ведут себя» в соответствии с гипотезой.
- В этом случае гипотеза не отвергается.

- Если получились большие значения статистики критерия, данные не соответствуют гипотезе, противоречат ей.
- Гипотеза отвергается.

Пример (дополнительно)

- Нормальное распределение с дисперсией
 1
- Имеется п наблюдений
- Гипотеза: математическое ожидание равно 10
- Альтернативная гипотеза: математическое ожидание равно 20

Напоминание из теории вероятностей

 Среднее арифметическое п независимых одинаково распределенных случайных величин с общим нормальным распределением N(a, b) имеет нормальное распределение N(a, b/n)

Вопрос:

 Где на графике ошибка первого рода, где ошибка второго рода?

Интерпретация статистики критерия

- В статистике существует традиция, что именно задавать в качестве основной гипотезы.
- Примеры.

Проверка нормальности распределения случайной величины

- Чтобы проверить, можно ли считать, что случайная величина имеет нормальное распределение,
- формулируем основную и конкурирующую гипотезы.

Статистическая формулировка

- Гипотеза: Случайная величина имеет нормальное распределение, значения параметров распределения заранее не известны.
- Конкурирующая гипотеза: Распределение случайной величины отличается от нормального.

Два критерия

 Колмогорова-Смирнова (с поправкой Лилиефорса) или

Шапиро-Уилка.

Число наблюдений

- если анализируется меньше 60 наблюдений, рекомендуется использовать критерий Шапиро-Уилка,
- если больше 60, то критерий Колмогорова-Смирнова.

- Правило не надо абсолютизировать, число 60 только лишь ориентир.
- Если у Вас 65 наблюдений, и неудержимо хочется применить критерий Шапиро-Уилка, это не будет ошибкой.
- С другой стороны, имея 15 наблюдений, нехорошо применять критерий
 Колмогорова-Смирнова.

Можно ли использовать эти критерии одновременно?

Можно...

 допустим известно, что распределение случайной величины не нормальное.

В каком случае отклонение от нормальности не существенное?

- Как оказалось, для тех методов, которые рассматриваются в книге далее, требование нормальности распределения можно заметно ослабить.
- Эти методы работают не только когда переменные имеют нормальное распределение, но и когда, как говорят, «распределение данных несущественно отличается от нормального».

Итак,

 гипотеза о нормальности распределения изучаемой переменной уже отвергнута.

Существенные отклонения

- 1. Наличие выбросов в данных.
- 2. Явная асимметрия гистограммы.
- 3. Очень сильное отклонение формы гистограммы от колоколообразной формы.

Рекомендуется

- строго относиться к присутствию выбросов,
- снисходительно к отклонениям от симметрии.
- Наше отношение к колоколообразной форме гистограммы зависит от числа наблюдений. Если имеется меньше 30 наблюдений, наше отношение в высшей степени либерально, если число наблюдений находится между 30 и 150, мы относимся к отклонениям снисходительно, если имеется больше 150 наблюдений строго.

Histogram

Histogram

Histogram

Пример 1

Население городов России в 1959 году

- Исходные данные
- Логарифм населения

Пример 2

Альбукерк – продажи домов

Сравнение центров распределений

- Центр распределения то одно единственное число, которое описывало, характеризовало бы выборку.
- В качестве центра чаще всего используют среднее арифметическое, медиану или усеченное среднее.

Среднее арифметическое или медиана?

- Если распределение хотя бы одной из выборок существенно отличается от нормального, в качестве центра предлагается использовать медиану.
- В остальных случаях, то есть если распределение каждой выборки можно считать нормальным или несущественно отличающимся от нормального, в качестве центра предлагается использовать среднее арифметическое.

Выбор критерия

- Если центром распределения выбрана медиана, центры сравниваются с помощью критерия Манна – Уитни или критерия Вилкоксона.
- Если центром распределения выбрано среднее арифметическое, центры сравниваются с помощью одной из версий критерия Стьюдента.

Парные и независимые выборки

 В случае парных выборок имеются пары наблюдений (измерений) одного и того же объекта.

 Вариант: пары измерений делались в один и тот же момент.

Примеры

- Обучение менеджеров
- Магазины

Независимые выборки

 В случае независимых выборок каждое наблюдение соответствует отдельному объекту, т.е. измеряются разные объекты.

 Принадлежность объектов выборкам определяется по значениям дополнительной переменной. В SPSS она называется группирующей.)

Примеры

- Время в магазинах
- Альбукерк

Сравнение медиан выборок

Гипотеза: Медианы равны.

 Альтернативная гипотеза: Медианы различаются.

Выбор статистического критерия

- Если выборки парные, рекомендуется использовать критерий Вилкоксона.
- Если выборки независимые, рекомендуется использовать критерий Манна-Уитни.

Дополнительно

- Строго говоря, эти критерии проверяют не равенство медиан, а другое утверждение.
- Имеются две выборки наблюдений случайных величин X и Y, соответственно.
- Гипотеза: Случайные величины X и Y таковы, что P{X>Y}=1/2.
- Альтернативная гипотеза: Случайные величины X и Y таковы, что P{X>Y}≠1/2.
- Для практических целей различие, тем не менее, несущественно

Примеры

- Время в магазинах
- Альбукерк

Сравнение средних значений выборок

 Гипотеза: Математические ожидания равны.

Альтернативная гипотеза:
 Математические ожидания различны.

Выбор статистического критерия

- Если выборки парные, рекомендуется использовать парный t-критерий Стьюдента.
- Если выборки независимые, рекомендуется использовать t-критерий Стьюдента для 2-х независимых выборок.

Надо еще сравнить дисперсии

 Критерий Ливиня для проверки гипотезы равенства дисперсий

Примеры

- Время в магазинах
- Альбукерк

Гипотеза независимости

- Основная гипотеза:
- Случайные величины X и Y независимы

- Альтернативная гипотеза:
- Случайные величины X и Y зависимы

На практике:

 Отвечаем на вопрос: переменная X влияет на переменную Y?

Комментарий

- Если неизвестно, что на что влияет:
- Х на Y или
- Y на X
- статистический критерий не поможет!

Пример Бернарда Шоу

Диаграмма рассеивания

Иногда пишут - диаграмма рассеяния

Пример – швейцарские банкноты.

Зависимость -1

- X в количественной шкале
- Y в количественной шкале

- Применяется коэффициент корреляции Пирсона
- Или Спирмена
- Иногда Кендалла

Функциональная зависимость

Статистическая зависимость двух переменных

- Обобщение функциональной зависимости.
- Одному и тому же значению х могут соответствовать разные значения у.
- Например, один и тот же товар (например, телефон) может продаваться в разных магазинах по разной цене, то есть одному и тому же товару соответствуют разные цены.

статистическая зависимость

- Определение статистическая зависимость это функциональная зависимость СРЕДНЕГО значения переменной у от значения переменной х.
- Откуда появляется среднее значение? Проводятся эксперименты (или наблюдается явление) при одном и том же значении х, при этом регистрируются разные значения у, затем эти значения усредняются.
- На практике не всегда заметно, что одному и тому же значению переменной х может соответствовать много значений у, например когда повторные наблюдения при одном значении х не делались.

среднее значение переменной у равно натуральному логарифму значения х.

среднее значение переменной у равно натуральному логарифму значения х.

 Коэффициент корреляции как «градусник», измеряющий степень зависимости

Формула для коэффициента корреляции

Выбор коэффициента

- Если распределение каждой переменной несущественно отличается от нормального, применяется коэффициент корреляции Пирсона
- В остальных случаях коэффициент корреляции Спирмена
- Вместо коэффициента корреляции
 Спирмена используют коэффициент корреляции Кендалла

Интервал значений коэффициента корреляции	Интерпретация
0 - 0,2	Очень слабая
	корреляция
0,2 - 0,5	Слабая корреляция
0,5-0,7	Средняя корреляция
0,7-0,9	Высокая корреляция
0,9 - 1	Очень высокая
	корреляция

 Как проявляется зависимость на диаграмме рассеивания

 Проблемы и ошибки при использовании коэффициента корреляции

Данные без выброса коэффициент корреляции равен -0.81

Добавлен выброс в точке (10,10). Коэффициент корреляции упал до -0,55.

Выброс сдвинут в точку (18,5, 18,5) Коэффициент равен 0

Выброс сдвинут в точку (53, 53). Корреляция равна +0,81

■ Ложная корреляция

Зависимость -2

- X в количественной шкале
- Y в номинальной шкале

- Сравниваем средние или медианы в группах
- Или перекодируем количественную переменную, переводим ее в номинальную шкалу

Зависимость -3

- X в порядковой шкале
- Y в порядковой шкале

- Используем коэффициент корреляции Спирмена
- Или Кендалла

Зависимость -4

- X в номинальной шкале
- Y в номинальной шкале

■ Таблица сопряженности и критерий х²

Критерий хи-квадрат

Формула для статистики

Статистика хи-квадрат как коэффициент корреляции

- Коэффициент Пирсона
- Коэффициент Чупрова

- Действительно ли использование Internet связано с полом?
- Все опрошенные пользуются Интернетом.
 Тех из них, кто использует Интернет пять часов в месяц или меньше, отнесли к мало пользующимся, остальных к активным пользователям.

- sex = пол.
- Кодировка: "1" мужчина, "0" женщина.
- internet = использование Internet.
- Кодировка: "0" использует мало, "1" использует активно.

Имеется 30 наблюдений (опрошенных).

		Internet-a	Total	
		мало много		
		пользуется	пользуется	
пол	женский	10	5	15
	мужской	5	10	15
Total		15	15	30

 В результате изучения связи между покупкой модной одежды и семейным положением получены, среди прочих, следующие данные.

 Имеется 1000 наблюдений (опрошенных).

- Переменные.
- sex = пол.
- Кодировка: "1" мужчина, "0" женщина.
- marriage = семейное положение.
- Кодировка: "1" женат/замужем, "0" не женат/не замужем.
- fashion = покупка модной одежды.
- Кодировка: "0" покупает мало, "1" покупает много.

***************************************		семейное г	Total	
		не в браке	в браке	
покупка модной	мало	48,0%	69,3%	62,9%
одежды	много	52,0%	30,7%	37,1%
Total	***************************************	100,0%	100,0%	100,0%

***************************************		семейное г	Total	
		не в браке	в браке	
покупка модной	мало	40,0%	75,0%	61,9%
одежды	много	60,0%	25,0%	38,1%
Total	***************************************	100,0%	100,0%	100,0%

а пол = женский

***************************************		семейное г	Total	
		не в браке	в браке	
покупка модной	мало	60,0%	65,0%	63,8%
одежды	много	40,0%	35,0%	36,2%
Total		100,0%	100,0%	100,0%

а пол = мужской

- Маркетолог проводит исследование для рекламного агентства, разрабатывающего рекламу для автомобилей стоимостью свыше 30 тысяч долларов.
- Он пытается проанализировать факторы, влияющие на владение дорогими автомобилями.

- Переменные.
- high_edu = образование.
- Кодировка: "1" высшее образование, "0" нет высшего образования.
- expe_car = наличие дорогого автомобиля.
- Кодировка: "0" дорогого автомобиля нет, "1" дорогой автомобиль есть.
- income = доход.
- Кодировка: "0" низкий доход, "1" высокий доход.
- Имеется 1000 наблюдений (опрошенных).

	-	высшее об	Total	
		нет		
дорогой	нет	78,7%	68,0%	76,0%
автомобиль	есть	21,3%	32,0%	24,0%
Total		100,0%	100,0%	100,0%

	•	высшее об	Бразование	Total
		не высшее высшее обр		
		обр		
дорогой	нет	80,0%	80,0%	80,0%
автомобиль	есть	20,0%	20,0%	20,0%
Total		100,0%	100,0%	100,0%

а доход = низкий

		высшее об	Бразование	Total
		не высшее высшее обр		
		обр		
дорогой	нет	60,0%	60,0%	60,0%
автомобиль	есть	40,0%	40,0%	40,0%
Total		100,0%	100,0%	100,0%

а доход = высокий

- Маркетолог, исследующий сферу туристических поездок за границу, предположил, что на желание путешествовать влияет возраст.
- Имеющиеся в его распоряжении данные содержат, среди прочего, следующую информацию.

- Переменные.
- desire = желание совершить путешествие за границу.
- Кодировка: "1" желание есть, "0" желания нет.
- sex = пол.
- Кодировка: "0" женщина, "1" мужчина.
- age = возраст.
- Кодировка: "0" –до 45 лет, "1" 45 лет или старше.
- Имеется 1000 наблюдений (опрошенных).

		возг	возраст	
		до 45	после 45	
желание	нет	50,0%	50,0%	50,0%
путешествовать	да	50,0%	50,0%	50,0%
Total		100,0%	100,0%	100,0%

		ВОЗ	возраст	
		до 45	после 45	
желание	нет	65,0%	35,0%	50,0%
путешествовать	да	35,0%	65,0%	50,0%
Total		100,0%	100,0%	100,0%

а пол = женщина

***************************************		воз	возраст	
		до 45	после 45	
желание	нет	40,0%	60,0%	50,0%
путешествовать	да	60,0%	40,0%	50,0%
Total		100,0%	100,0%	100,0%

а пол = мужчина

	,		желание путешествовать		Total
пол			нет	да	
женщина	возраст	до 45	65,0%	35,0%	50,0%
	***************************************	после 45	35,0%	65,0%	50,0%
	Total		100,0%	100,0%	100,0%
мужчина	возраст	до 45	40,0%	60,0%	50,0%
***************************************	***************************************	после 45	60,0%	40,0%	50,0%
	Total	***************************************	100,0%	100,0%	100,0%

- Результаты анкетирования о проведении семейного досуга содержат, среди прочего, следующую информацию.
- Переменные.
- fastfood = частота посещения ресторанов быстрого питания.
- Кодировка: "1" часто, "0" редко.
- income = доход семьи.
- Кодировка: "1" высокий, "0" низкий.
- family = размер семьи.
- Кодировка: "1" большая семья, "0" малая семья.

***************************************	***************************************	размер семьи		Total
		малая	большая	
ресторан	редко	35,0%	35,0%	35,0%
быстрого питания	часто	65,0%	65,0%	65,0%
Total		100,0%	100,0%	100,0%

*	*********	размер семьи		Total
		малая	большая	
ресторан	редко	35,0%	35,0%	35,0%
быстрого питания	часто	65,0%	65,0%	65,0%
Total		100,0%	100,0%	100,0%

а доход = низкий

***************************************	*******	размер семьи		Total
		малая	большая	
ресторан	редко	35,0%	35,0%	35,0%
быстрого питания	часто	65,0%	65,0%	65,0%
Total		100,0%	100,0%	100,0%

а доход = высокий