Project Lifecycle

Project Lifecycle

- How a data scientist approaches a problem
- Which steps comprise the lifecycle of a data science problem

Overview of the Project Lifecycle

A typical data science project should follow these steps

- Define a problem
- Identify the desired outcome
- Determine which data is needed
- Evaluate possible solutions
- Measure effectiveness
- Make improvements
- Communicate results

The Entire Project Lifecycle is Iterative

Parts of the Project Lifecycle are Also Iterative

Defining a Problem

- The process begins by first clearly stating a problem
- This is often directly related to revenue
 - "People browse our site but don't buy anything"
 - "Too many customers abandon their shopping carts"
 - "Subscribers aren't renewing their service"
 - "Sponsors are donating less than ever before"
- In other cases, the problem is related to costs
 - "Our employees spend too much time searching for documents"
 - "An increase in support calls cost us \$400,000 last year"

Defining a Problem (cont'd)

Sometimes the approach is more exploratory

- "What can I learn about our users from this clickstream data?"
- "Why are customers abandoning purchases before checkout?"
- "How many more finish checkout when offered free shipping?"
- "Would offering free shipping on all orders increase profits?"

Identifying the Desired Outcome

- Given the problem, what's the preferred resolution?
- Again, these are often tied to revenue or costs
 - "Increase subscription renewals by 5% within two months"
 - "Decrease shopping cart abandonment by 10% in Q3"
 - "Reduce support call volume by 25% within one year"
- Be careful what you wish for
 - Problem: "An increase in support calls cost \$400,000 last year"
 - Goal: "Reduce support call volume by 25% within one year"
 - A reduction in support calls may not mean fewer problems
 - Could indicate customer frustration due to poor support

Determining Which Data is Needed

- What data must you capture to solve the problem you've defined?
 - And to determine if your solution meets the goals identified
- Further refinements may require additional data
- Consider the source, format, and quality of this data
 - Does your organization have everything you need?
 - If not, is it available from external sources?

Evaluate Possible Solutions

- Consider all solutions that could match desired outcome
- This typically involves a hypothesis about the root cause
 - What prompted the recent increase in support calls?
 - Why are customers abandoning their carts?
 - What causes customers to not renew subscriptions?
- Given several possible solutions, which should you invest in?
 - Most can be discounted quickly
 - Small-scale tests can help you choose
- The simplest solution is usually the best one to pursue first

Measuring Effectiveness

- Measuring effectiveness requires two things
 - Metrics: properties to measure
 - Method: a process for comparing these metrics

Making Improvements

- Measurement will illustrate how much improvement is required
- Consider what you might change
 - Was your hypothesis about the root cause correct?
 - Could adding an additional data set give more insight?
 - Should you try one of the solutions you originally discarded?
- Once you've implemented your improvements, test it again
 - Comparing measurements can help to refine your solution

Communicating Results

- Communication is an essential part of data science
- A data scientist must tell the story found within the data
 - Like any good story, it must be compelling
 - Be concise and focus on what's important for the audience
- Dashboards are a common tool for communicating results
 - Statistics
 - Summaries
 - Visualizations

Scenario Explanation

- Why are revenues down?
 - Existing customers aren't renewing their subscriptions
 - Prospective customers aren't joining our service
- Customers were surveyed when they called to cancel
 - Reason cited by 79% of customers
 - "You have lots of movies, just none that interest me."
- Movies has hired you to help solve this problem

Scenario Explanation (cont'd)

Problem Definition

- "Many customers are choosing not to renew their subscriptions"

Desired Outcome

"Decrease cancellation rate by 35% during next quarter"

Possible solutions

- Decrease subscription cost (discard: price is not the problem)
- Social media integration (discard: may violate privacy laws)
- Improve movie recommendations (we'll pursue this one)

Overview

There are many prerequisites to building a recommender system

- Acquiring the input data from various sources
- Identifying and correcting errors in the input data
- Transforming the data into the desired format for analysis

The work isn't finished even after you've built the recommender

- You need to test it
- You'll likely find ways to improve it
 - These may require additional data sources
 - The project lifecycle begins again

Essential Points

- The lifecycle of a data science project is iterative
- It's important to clearly state a problem
- The problem helps to establish the desired outcome
- Success is determined by measuring results