Capítulo 1

Introdução

1.1 Escopo do problema

Transferência de calor é uma das principais áreas da física ¹ e da engenharia. Seu comportamento foi especulado desde os primeiros filósofos, Aristóteles formula a teoria da matéria ser constituída por quatro elementos: o ar, a água, a terra e o fogo. Os estudos de transferência de calor tiveram grande ascensão no período de 1600 e 1800, sendo, posteriormente, dominados. Estes estudos contaram com a contribuição científica de diversos grandes nomes da física, como Newton e Fourier (?).

Qualquer definição de engenharia irá falar da transformação dos materiais usando energia.

"Aplicação da ciência e matemática através da qual as propriedades da matéria e as fontes de energia são tornadas úteis às pessoas (Dic. Merriam-Webster, 2001)."

É por isso que todos os cursos de engenharia incluem, no seu ciclo básico um conjunto de disciplinas de matemática, física e química que possibilitam o entendimento dos problemas associados a temperatura, o efeito da temperatura nos materiais e nos fenômenos estudados. Entre as suas disciplinas obrigatórias, podemos citar as disciplinas de materiais, física, termodinâmica², transferência de calor, algoritmos/programação e cálculo numérico. São disciplinas necessárias para garantir os conhecimentos mínimos para lidar com o desenvolvimento de novos produtos.

Muitos destes conceitos são apresentados para casos simplificados, unidimensionais e para funções bem comportadas. Isto permite ao aluno encontrar as soluções, plotar gráficos e analisar o comportamento dos sistemas em estudo.

Na prática, soluções analíticas para a condução de calor em regime transiente são obtidas para casos unidimensionais, com condições de contorno e iniciais bem definidas,

 $^{^{1}} Disponível\ em\ < http://lattes.cnpq.br/documents/11871/24930/TabeladeAreasdoConhecimento.pdf/d192ff6b-3e0a-4074-a74d-c280521bd5f7>$

²opcional em alguns cursos de engenharia

e com propriedades dos materiais constantes.

Para resolver problemas com objetos em duas ou três dimensões com geometria complexa e em regime transiente é necessário, na maior parte dos casos, a utilização da modelagem numérica computacional. A mesma demanda conhecimentos associados ao cálculo numérico, algoritmos, modelagem computacional e desenvolvimento de software. Por isso os cursos de engenharia incluem também disciplinas vinculadas às ciências da computação.

Na indústria do petróleo os conhecimentos dos fenômenos da transferência de calor são fundamentais , seja na etapa de exploração ou na etapa de produção.

Na exploração é buscado um óleo maturado sob temperaturas entre 65°C e 165°C, pois acima de 180°C, é propiciado a formação de gases leves, e acima de 210°C, a formação de grafite, (?). Essas temperaturas são obtidas devido ao soterramento da matéria orgânica, e pela proximidade com o manto terrestre.

Na produção, são utilizados trocadores de calor nas plataformas para auxiliar nas separações e no resfriamento do óleo para armazenamento.

Na engenharia de reservatórios, é utilizado vapor de água para aquecer o petróleo no reservatório como método de recuperação avançada (?), com o objetivo de diminuir a viscosidade do óleo e facilitar seu escoamento.

Desta forma, torna-se clara a importância do estudo da condução ou difusão de calor em regime transiente, em objetos 3D com geometria complexa, e constituído por diversos materiais com propriedades físicas variáveis.

Conforme a complexidade do problema for evoluindo, os cálculos exigem cada vez mais poder de processamento dos computadores, os quais, atualmente, possuem diversos núcleos lógicos capazes de resolverem cálculos independentemente, acelerando as simulações. Para permitir as divisões das tarefas para os processadores, é utilizada uma linguagem de programação com capacidade de programação paralela ou concorrente.

Neste trabalho utilizaremos métodos de interpolação, solução de matrizes. Métodos iterativos para aproximar as soluções das equações matriciais, tornando desnecessário os processos de inversão de matriz e multiplicação de matriz, etapas normais para o método BTCS (Backward Time, Centered Space). Em especial no simulador desenvolvido, como é permitido objetos com formas genéricas, seria impossível resolver o problema por inversão de matriz, pois grandes regiões da matriz teriam valores nulos, consequentemente, seus determinantes seriam zero e impossível de inverter.

Disciplina optativa Programação Paralela e Concorrente I, divisão dos cálculos da modelagem em operações que podem ser resolvidas independentemente e separadamente, e direcionar cada operação para um núcleo do processador, este processo é chamado de multithreading, e que acelera em muitas vezes a velocidade das simulações.

Por fim, o ensino de engenharia pode ser aperfeiçoado com a utilização de *softwares* livres, que abordem álgebra, modelagem numérica, programação orientada ao objeto, além do problema físico em si.

1.2 Objetivos

O objetivo deste projeto de engenharia é desenvolver um programa educacional que simula o processo de condução tridimensional de calor, no regime transiente, utilizando métodos numéricos, programação orientada ao objeto com a linguagem C++, mecanismos de paralelismos e *multithreading*, além de renderização 3D.

A finalidade deste projeto de engenharia é desenvolver um *software* capaz de resolver problemas de condução de calor em objetos 3D, constituídos por qualquer materiais com condutividade térmica dependente da temperatura. O software terá interface de usuário amigável e renderização 3D, permitindo a visualização do problema.

Os principais tópicos envolvidos neste projeto são o desenvolvimento de:

- Banco de dados de propriedades térmicas: A partir da literatura, definir padrões para as curvas de propriedades térmicas em função da temperatura e então montar uma estrutura de diretórios com propriedades de materiais conhecidos, normalmente utilizados em engenharia de petróleo. As propriedades térmicas poderão ser obtidas em laboratório, adicionadas ao software e utilizados para simulação. As propriedades podem ser calculadas por métodos de correlação ou por interpolação linear.
- Transferência de calor: entender as equações físicas, como o calor é propagado em objetos com diversos formas e composto de diferentes materiais, com propriedades termofísicas dependentes da temperatura.
- Modelagem numérica: solução da equação diferencial da condução ou difusão de calor por meio de diferenças finitas, com o método implícito BTCS, e com condições de contorno de Neumann que podem ser aplicadas em todo o sistema, permitindo geometrias 3D complexas. Além disso, devido à complexidade de encontrar uma solução utilizando sistemas matriciais, é utilizado um método iterativo para obter o resultado aproximado do problema. Por meio da utilização e combinação dessas ferramentas, é possível resolver qualquer problema de condução de calor, especialmente a solução simultânea de casos isolados, e objetos com grandes regiões vazias.
- Programação em C++: por meio da orientação o objeto em C++, o problema pode ser dividido em classes, paradigma este que melhora o controle e organização do das etapas de desenvolvimento do software, além de facilitar futuras adaptações e incrementos no simulador. Além disso, essa linguagem possui bibliotecas que auxiliam a utilização de paralelismos e multithreading.
- Interface do usuário: com integração total ao simulador, a interface gráfica permite que o usuário tenha liberdade para modificar as propriedades da simulação. E com a implementação de renderização 3D, é possível visualizar o objeto por diferentes ângulos.

1.3 Metodologia utilizada

O software a ser desenvolvido utiliza a metodologia de engenharia de software apresentada pelo Prof. André Bueno na disciplina de programação e ilustrado na Figura 1.1. Note que o "Ciclo de Concepção e Análise" é composto por diversas partes representadas neste trabalho em diferentes capítulos. Os "Ciclos de Planejamento/Detalhamento" e "Ciclo Construção", envolvem a construção das diferentes versões do software e serão brevemente descritos no capítulo de Projeto.

Esta metodologia é utilizada nas disciplinas:

• LEP01447 : Programação Orientada a Objeto em C++

• LEP01446 : Programação Prática

Figura 1.1: Etapas para o desenvolvimento do software - projeto de engenharia