

Report No: CCISE170804403

FCC REPORT

(WIFI)

Applicant: Interglobe Connection Corp.

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: POP S50

Trade mark: SOLE

FCC ID: 2AC7ISOLEPOPS50

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 22 Jun., 2017

Date of Test: 22 Jun., to 11 Jul., 2017

Date of report issued: 12 Jul., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	12 Jul., 2017	Original

Tested by:

Mike OU Date: 12 Jul., 2017

Test Engineer

Reviewed by: Date: 12 Jul., 2017

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
J	GEN	IERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	48
7	TES	T SETUP PHOTO	55
8	EUT	CONSTRUCTIONAL DETAILS	56

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Conducted and Radiated Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp.
Address of Applicant:	8228 NW 30th Terrace. Doral, Miami, FL 33122
Manufacturer / Factory:	Interglobe Connection Limited
Address of Manufacturer / Factory:	UNIT 1302(A),13/F,PROSPERITY COMMERCIAL CENTRE,982 CANTON ROAD,MONGKOK,KOWLOON,HONG KONG

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	POP S50
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-3.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: 113D-5010X Input: AC100-240V, 50/60Hz, 0.15 A Output: DC 5.0V, 1000mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No: CCISE170804403

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE170804403

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018		
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018		
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018		
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018		
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -3.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kl	 Hz			
Limit:	Frequency range	Limit (dBuV)		
Littit.	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the loga	arithm of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:	AUX Equipment Test table/Insula Remark: E.U.T: Equipment Under: LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power		
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.2.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)			Limit(dBm)	Result
1631 011	802.11b	802.11g	802.11n(H20)		Pass
Lowest	15.24	13.95	11.09		
Middle	15.21	14.24	11.26	30.00	
Highest	15.60	14.82	11.76		

Test plot as follows:

Date: 7.JUL.2017 11:23:18 Date: 7.JUL.2017 11:23:48

Lowest channel Middle channel

Date: 7.JUL.2017 11:24:40

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	6dB Eı	mission Bandwid	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	Liiiii(Ki iz)	resuit	
Lowest	10.24	16.00	17.36			
Middle	10.24	16.00	17.53	>500	Pass	
Highest	10.24	16.00	17.28			
Test CH	99% Occupy Bandwidth (MHz)			Limit(kHz)	Result	
1031 011	802.11b	802.11g	802.11n(H20)	Limit(Ki iz)	Rosuit	
Lowest	12.64	16.48	17.60			
Middle	12.64	16.48	17.60	N/A	N/A	
Highest	12.72	16.40	17.68			

Date: 7.JUL.2017 11:56:30

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Power	Spectral Dens	Limit(dBm)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	Elithit(GBIH)	Nosuit	
Lowest	5.81	1.68	-5.29		Pass	
Middle	5.73	1.64	-5.00	8.00		
Highest	6.05	2.27	-4.41			

Date: 7.JUL.2017 13:46:27

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	E.U.T			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

6.6.2 Radiated Emission Method

 Z Natiated Emission Wethou							
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency Detector RBW VBW Remark						
reconver octup.	Above 1GHz	Peak	1MF		MHz	Peak Value	
		RMS	1MF	lz 3	MHz	Average Value	
Limit:	Frequenc	у	Limit (dBu\			Remark	
	Above 1GH	Hz	54.0		Average Value		
Test Procedure:	1. The EUT w		74.0			Peak Value 5 meters above	
Toot setup:	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
Test setup:		AE EUT (Turntable)	Ground Rafer Test Receiver	Pra	Antenna Tow	er	
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	ection 15.2	209 and 15.205					
Test Method:	ANSI C63.10:201	13						
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Dis	stance: 3m	า					
Receiver setup:	Frequency Detector RBW VBW Remark							
·	30MHz-1GHz	Quasi-pea	ak 120KHz	300)KHz	Quasi-peak Value		
	Above 1GHz	Peak			ИHz	Peak Value		
		RMS	1MHz		ЛHz	Average Value		
Limit:	Frequency		Limit (dBuV/m @3	m)		Remark		
	30MHz-88MH		40.0			uasi-peak Value		
	88MHz-216MH		43.5			uasi-peak Value		
	216MHz-960M		46.0			uasi-peak Value		
	960MHz-1GH	Z	54.0			uasi-peak Value		
	Above 1GHz	<u> </u>	54.0			Average Value		
Test Procedure:	1. The EUT wa	م ماممما م	74.0 on the top of a rota	- ti	tabla 0	Peak Value		
	1GHz)/1.5m The table wa highest radia 2. The EUT wa antenna, wh tower. 3. The antenna the ground the Both horizon make the me 4. For each suscase and the meters and to find the m 5. The test-reconspecified Base 6. If the emission the limit spen of the EUT whave 10dB m.	(above 1G as rotated 3 ation. It is set 3 me ich was more than and very assurement and the rota taken aximum receiver system and word the rota taken aximum receiver system on level of cified, then would be remargin would server system argin would serve	SHz) above the gr 360 degrees to deters away from the counted on the top varied from one maximum vartical polarization ont. In the maximum vartical polarization on the maximum vartical polarization on the counter of	nound eterm he into of a meter value s of the was a condition of the	at a 3 sine the erferent variable to four of the fine ante errange phts from degree tect Funde. Example was 1 poed and emission one us	meter chamber. e position of the ace-receiving le-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees anction and l'OdB lower than d the peak values ions that did not sing peak, quasi-		

Above 1GHz

	Test mode: 802.11b											
Test channel: Lowest channel												
	Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	47.28	30.94	6.81	41.82	43.21	74.00	-30.79	Vertical				
4824.00	47.75	30.94	6.81	41.82	43.68	74.00	-30.32	Horizontal				
			А	verage Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	41.18	30.94	6.81	41.82	37.11	54.00	-16.89	Vertical				
4824.00	40.75	30.94	6.81	41.82	36.68	54.00	-17.32	Horizontal				

Test channel: Middle channel												
Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	47.04	31.20	6.85	41.84	43.25	74.00	-30.75	Vertical				
4874.00	47.38	31.20	6.85	41.84	43.59	74.00	-30.41	Horizontal				
			А	verage Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	40.04	31.20	6.85	41.84	36.25	54.00	-17.75	Vertical				
4874.00	40.50	31.20	6.85	41.84	36.71	54.00	-17.29	Horizontal				

Test channel: Highest channel												
Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4924.00	47.39	31.46	6.89	41.86	43.88	74.00	-30.12	Vertical				
4924.00	47.41	31.46	6.89	41.86	43.90	74.00	-30.10	Horizontal				
			А	verage Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4924.00	38.92	31.46	6.89	41.86	35.41	54.00	-18.59	Vertical				
4924.00	39.11	31.46	6.89	41.86	35.60	54.00	-18.40	Horizontal				

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Test mode: 802.11g											
Test channel: Lowest channel												
	Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	47.36	30.94	6.81	41.82	43.29	74.00	-30.71	Vertical				
4824.00	47.64	30.94	6.81	41.82	43.57	74.00	-30.43	Horizontal				
			Av	erage Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	41.09	30.94	6.81	41.82	37.02	54.00	-16.98	Vertical				
4824.00	40.68	30.94	6.81	41.82	36.61	54.00	-17.39	Horizontal				

	Test channel: Middle channel											
	Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	47.06	31.20	6.85	41.84	43.27	74.00	-30.73	Vertical				
4874.00	47.33	31.20	6.85	41.84	43.54	74.00	-30.46	Horizontal				
			Av	verage Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	40.08	31.20	6.85	41.84	36.29	54.00	-17.71	Vertical				
4874.00	40.31	31.20	6.85	41.84	36.52	54.00	-17.48	Horizontal				

	Test channel: Highest channel											
	Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4924.00	47.37	31.46	6.89	41.86	43.86	74.00	-30.14	Vertical				
4924.00	47.49	31.46	6.89	41.86	43.98	74.00	-30.02	Horizontal				
			Av	erage Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4924.00	38.97	31.46	6.89	41.86	35.46	54.00	-18.54	Vertical				
4924.00	39.19	31.46	6.89	41.86	35.68	54.00	-18.32	Horizontal				

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test m	ode: 802.11n	(H20)			
			Test char	nnel: Lowest	channel			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	47.33	36.06	6.81	41.82	48.38	74.00	-25.62	Vertical
4824.00	47.51	36.06	6.81	41.82	48.56	74.00	-25.44	Horizontal
			Α	verage Value	9			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	41.06	36.06	6.81	41.82	42.11	54.00	-11.89	Vertical
4824.00	40.72	36.06	6.81	41.82	41.77	54.00	-12.23	Horizontal
				nnel: Middle	channel			
				Peak Value	1		1	1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	47.03	36.32	6.85	41.84	48.36	74.00	-25.64	Vertical
4874.00	47.39	36.32	6.85	41.84	48.72	74.00	-25.28	Horizontal
			А	verage Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	40.06	36.32	6.85	41.84	41.39	54.00	-12.61	Vertical
4874.00	40.28	36.32	6.85	41.84	41.61	54.00	-12.39	Horizontal
			Test char	nnel: Highest	channel			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.

41.86

41.86

Preamp

Factor

(dB)

41.86

41.86

Average Value

48.92

49.04

Level

(dBuV/m)

40.53

40.77

Remark:

4924.00

4924.00

Frequency

(MHz)

4924.00

4924.00

(dBuV)

47.31

47.43

Read

Level

(dBuV)

38.92

39.16

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.89

6.89

Cable

Loss

(dB)

6.89

6.89

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

36.58

36.58

Antenna

Factor

(dB/m)

36.58

36.58

Project No.: CCISE1708044

(dB)

<u>-2</u>5.08

-24.96

Over

Limit

(dB)

-13.47

-13.23

Vertical

Horizontal

Polar.

Vertical

Horizontal

74.00

74.00

Limit Line

(dBuV/m)

54.00

54.00

Test Setup Photo

8 EUT Constructional Details

Reference to the test report No. CCISE170804401

-----End of report-----