Chapter 4

Probability Concepts

Chapter 4

Probability Concepts

Section 4.1 **Probability Basics**

Definition 4.1

Probability for Equally Likely Outcomes (f/N) Rule)

Suppose an experiment has N possible outcomes, all equally likely. An event that can occur in f ways has probability f/N of occurring:

Number of ways event can occur

Probability of an event
$$=\frac{f}{N}$$
.

Total number of possible outcomes

Figure 4.1

Possible outcomes for rolling a pair of dice

Figure 4.2

Two computer simulations of tossing a balanced coin 100 times

Key Fact 4.1

Basic Properties of Probabilities

Property 1: The probability of an event is always between 0 and 1, inclusive.

Property 2: The probability of an event that cannot occur is 0. (An event that cannot occur is called an **impossible event.**)

Property 3: The probability of an event that must occur is 1. (An event that must occur is called a **certain event.**)

Section 4.2 **Events**

Definition 4.2

Sample Space and Event

Sample space: The collection of all possible outcomes for an experiment.

Event: A collection of outcomes for the experiment, that is, any subset of the sample space. An event occurs if and only if the outcome of the experiment is a member of the event.

Figure 4.9

Venn diagrams for (a) event (not E), (b) event (A & B), and (c) event (A or B)

Definition 4.3

Relationships Among Events

(not E): The event "E does not occur"

(A & B): The event "both A and B occur"

(A or B): The event "either A or B or both occur"

Definition 4.4

Mutually Exclusive Events

Two or more events are **mutually exclusive events** if no two of them have outcomes in common.

Figure 4.14

- (a) Two mutually exclusive events;
- (b) two non-mutually exclusive events

Figure 4.15

- (a) Three mutually exclusive events;
- (b) three non-mutually exclusive events;
- (c) three non-mutually exclusive events

Section 4.3 Some Rules of Probability

Definition 4.5

Probability Notation

If E is an event, then P(E) represents the probability that event *E* occurs. It is read "the probability of *E*."

The Special Addition Rule

If event A and event B are mutually exclusive, then

$$P(A \text{ or } B) = P(A) + P(B).$$

More generally, if events A, B, C, \ldots are mutually exclusive, then

$$P(A \text{ or } B \text{ or } C \text{ or } \cdots) = P(A) + P(B) + P(C) + \cdots$$

The Complementation Rule

For any event E,

$$P(E) = 1 - P(\text{not } E)$$
.

The General Addition Rule

If A and B are any two events, then

$$P(A \text{ or } B) = P(A) + P(B) - P(A \& B).$$

Section 4.4 Contingency Tables; Joint and Marginal Probabilities

Table 4.6

Contingency table for age and rank of faculty members

	Rank									
		Full professor R_1	Associate professor R_2	Assistant professor R_3	Instructor R ₄	Total				
	Under 30 A ₁	2	3	3 57		68				
	30–39 A ₂	52	170	163	17	402				
Age (yr)	40–49 A ₃	156	125	61	6	348				
F F	50–59 A ₄	145	68	36	4	253				
	60 & over A ₅	75	15	3	0	93				
	Total	430	381	320	33	1164				

Table 4.7

Joint probability distribution corresponding to Table 4.6

Rank								
		Full professor R_1	Associate professor R_2	Assistant professor R_3	Instructor R ₄	$P(A_i)$		
	Under 30 A_1	0.002	0.003	0.049	0.005	0.058		
Age (yr)	30–39 A ₂	0.045 0.146		0.140	0.015	0.345		
	40–49 A ₃	0.134 0.107		0.052	0.005	0.299		
	50–59 A ₄	0.125	0.058	0.031	0.003	0.217		
	60 & over A ₅	0.064 0.013		0.003	0.000	0.080		
	$P(R_j)$	0.369	0.327	0.275	0.028	1.000		

Section 4.5 **Conditional Probability**

Definition 4.6

Conditional Probability

The probability that event B occurs given that event A occurs is called a conditional probability. It is denoted **P(B | A)**, which is read "the probability of B given A." We call A the given event.

The Conditional Probability Rule

If A and B are any two events with P(A) > 0, then

$$P(B \mid A) = \frac{P(A \& B)}{P(A)}.$$

Table 4.9

Joint probability distribution of marital status and gender

	Marital status										
		Single Married M_1 M_2		Widowed M_3	Divorced M_4	$P(S_i)$					
Gender	Male S_1	0.147 0.281		0.013	0.044	0.485					
	Female S_2	0.121 0.284		0.050	0.060	0.515					
	$P(M_j)$	0.268	0.565	0.063	0.104	1.000					

Section 4.6 The Multiplication Rule; Independence

The General Multiplication Rule

If A and B are any two events, then

$$P(A \& B) = P(A) \cdot P(B | A).$$

Figure 4.25

Tree diagram for student-selection Event Probability

Definition 4.7

Independent Events

Event *B* is said to be **independent** of event *A* if $P(B \mid A) = P(B)$.

The Special Multiplication Rule (for Two Independent Events)

If A and B are independent events, then

$$P(A \& B) = P(A) \cdot P(B),$$

and conversely, if $P(A \& B) = P(A) \cdot P(B)$, then A and B are independent events.

The Special Multiplication Rule

If events A, B, C, ... are independent, then

$$P(A \& B \& C \& \cdots) = P(A) \cdot P(B) \cdot P(C) \cdots$$

Section 4.7 Bayes's Rule

The Rule of Total Probability

Suppose that events A_1 , A_2 ,..., A_k are mutually exclusive and exhaustive; that is, exactly one of the events must occur. Then for any event B,

$$P(B) = \sum_{j=1}^{k} P(A_j) \cdot P(B \mid A_j).$$

Table 4.11 & 4.12

Percentage distribution for region of residence and percentage of seniors in each region

Region	Percentage of U.S. population	Percentage seniors		
Northeast	17.9	14.1		
Midwest	21.7	13.5		
South	37.1	13.0		
West	23.3	11.9		
	100.0			

Probabilities derived from Table 4.11

$$P(R_1) = 0.179 \ P(S \mid R_1) = 0.141$$

 $P(R_2) = 0.217 \ P(S \mid R_2) = 0.135$
 $P(R_3) = 0.371 \ P(S \mid R_3) = 0.130$
 $P(R_4) = 0.233 \ P(S \mid R_4) = 0.119$

Tree diagram for calculating

P(S), using the rule of

total probability

Bayes's Rule

Suppose that events A_1 , A_2 ,..., A_k are mutually exclusive and exhaustive. Then for any event B,

$$P(A_i \mid B) = \frac{P(A_i) \cdot P(B \mid A_i)}{\sum_{j=1}^k P(A_j) \cdot P(B \mid A_j)},$$

where A_i can be any one of events A_1, A_2, \ldots, A_k .

Section 4.8 Counting Rules

Key Fact 4.2

The Basic Counting Rule (BCR)

Suppose that r actions are to be performed in a definite order. Further suppose that there are m_1 possibilities for the first action and that corresponding to each of these possibilities are m_2 possibilities for the second action, and so on. Then there are $m_1 \cdot m_2 \cdots m_r$ possibilities altogether for the r actions.

Definition 4.8

Factorials

The product of the first k positive integers (counting numbers) is called k factorial and is denoted k!. In symbols,

$$k! = k(k-1) \cdots 2 \cdot 1.$$

We also define 0! = 1.

Table 4.14

Possible permutations of three letters from the collection of five letters

abc	abd	abe	acd	ace	ade	bcd	bce	bde	cde
acb	adb	aeb	adc	aec	aed	bdc	bec	bed	ced
bac	bad	bae	cad	cae	dae	cbd	cbe	dbe	dce
bca	bda	bea	cda	cea	dea	cdb	ceb	deb	dec
cab	dab	eab	dac	eac	ead	dbc	ebc	ebd	ecd
cba	dba	eba	dca	eca	eda	dcb	ecb	edb	edc

The Permutations Rule

The number of possible permutations of r objects from a collection of m objects is given by the formula

$$_{m}P_{r}=\frac{m!}{(m-r)!}.$$

The Special Permutations Rule

The number of possible permutations of m objects among themselves is m!.

The Combinations Rule

The number of possible combinations of r objects from a collection of m objects is given by the formula

$$_{m}C_{r}=\frac{m!}{r!(m-r)!}.$$

Number of Possible Samples

The number of possible samples of size n from a population of size N is ${}_{N}C_{n}$.

Figure 4.29

Calculating the number of outcomes in which exactly 2 of the 5 TVs selected are defective

