2021 年多校联合训练

MSTI 2021

省选模拟赛

时间: 2021 年 3 月 17 日 8:30~13:00

题目名称	树与图	传统游戏	切蛋糕
题目类型	传统型	传统型	传统型
目录	tree	nim	cut
可执行文件名	tree	nim	cut
输入文件名	tree.in	nim.in	cut.in
输出文件名	tree.out	nim.out	cut.out
每个测试点时限	2 s	2 s	1 s
内存限制	512 MB	512 MB	512 MB
子任务数目	4	7	5

提交源程序文件名

-1 로 ~) 로스			
对于 C++ 语言	tree.cpp	nim.cpp	cut.cpp
\'\'\'\'\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ci cc.cpp	<u>+</u> • cpp	cac.cpp

编译选项

对于 C++ 语言	-lm -O2 -std=c++11
-----------	--------------------

注意事项

- 1. 测评时栈空间与内存限制相同。
- 2. 时间限制保证在标程的两倍以上,具体时限可随实际测评环境调整。
- 3. 函数 main() 的返回值类型必须是 int, 值必须为 0。
- 4. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格进行分隔。
- 5. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 6. 测评时在每个题目对应目录下收取答案,请对每个题目建立子文件夹。
- 7. 题目难度与题目顺序无关,请自行选择写题顺序。
- 8. 题目比较简单,请独立完成。请不要借助网络等工具。

MSTI2021 省选模拟赛 树与图(tree)

树与图 (tree)

【题目描述】

小 H 有一棵 n 个点且根为 1 的有根树小 T 。

小 H 还有一张 n 个点的无向图小 G 。

小 H 常年让小 T 和小 G 在一起玩,久而久之,她们之间产生了一些联系:对于 G 中的任意两个点 u,v(u < v),u,v 之间存在一条边当且仅当在 T 中 u,v 存在祖先关系,即 u 是 v 的祖先或 v 是 u 的祖先。

某天,小 G 学习了最小点覆盖算法,但是她对该算法的理解不深,所以想出了一个**错误的**算法来解决这个问题。她的解法是这样的:

- 1. 对于一张图 G , 她先随机的在所有点中选择一个点 x 。
- 2. 小 G 会删掉 x 节点及与它相邻的所有**节点**。
- 3. 删除后小 G 会得到一张新图 G' 。如果 G' 中还有节点,她将把这张图作为新的 G 并返回第一步,否则她就会结束这个算法。

在结束算法后,小 G 认为选择节点的次数就是这张图的最小点覆盖。

随后,小 G 拿自己来做实验,结果两次求出来的最小点覆盖并不相同。于是她去求助小 T,小 T发现了她的错误,并纠正了她的算法。

然而,这份错误的算法被小 H 发现了,小 H 对这份算法产生了兴趣。为了了解这个算法,小 H 需要枚举出这个算法可能产生的所有过程。不过,小 H 没有这个时间,因此她拜托你来帮她枚举。

具体地: 你需要在小 G 身上多次运行这个错误的算法,两次算法过程不一样当且仅当在某一次选择的点不一样,你需要求出所有可能的算法过程求出的最小点覆盖的大小。而为了检验你是否完成这项工程,小 H 设立了一种函数 f ,你需要输出所有不同的算法过程的f(最小点覆盖大小)的和对 998244353 取模后的结果。

【输入格式】

从文件 tree.in 中读入数据。

输入共3行。

第一行一个整数 n ,表示树和图的大小。

第二行共 n-1 个整数,第 i 个数为 fa_{i+1} ,表示在树中第 i+1 个点的父亲节点编号。 第三行共 n 个整数,第 i 个数为 f(i) ,表示小 H 的函数。

【输出格式】

输出到文件 tree.out 中。

MSTI2021 省选模拟赛 树与图(tree)

输出共一行,表示对 G 运行该算法后所有不同的算法过程的 f(最小点覆盖大小) 的和对 998244353 取模后的结果。

【样例 1 输入】

```
1 3 2 1 1 3 3 3 1 7
```

【样例 1 输出】

1 5

【样例1解释】

在这个样例中, 小 T 和小 G 长得一模一样。

总共有三种算法过程:

- 1. 第一次删除 1 号节点, 然后结束算法。
- 2. 第一次删除 2 号节点, 第二次删除 3 号节点。
- 3. 第一次删除 3 号节点,第二次删除 2 号节点。

因此答案为 f(1) + f(2) + f(2) = 5。

【样例 2 输入】

```
    1
    6

    2
    1
    2
    1
    2
    1

    3
    3
    3
    2
    3
    2
```

MSTI2021 省选模拟赛 树与图(tree)

【样例 2 输出】

1 69

【样例 3】

见选手目录下的 *tree/tree3.in* 与 *tree/tree3.ans*。

【数据范围与提示】

本题采用捆绑测试。

对于所有数据,满足 $2 \le n \le 10^5, 1 \le fa_i < i, 0 \le f(i) < 998244353$ 。每个子任务的具体限制见下表:

子任务编号	n	特殊性质	分值
1	≤ 2000	无	10
2		特殊性质 A	20
3	$\leq 10^5$	特殊性质 B	20
4		无	50

特殊性质 A: 若定义树 T 的根节点为高度 0 ,那么保证 T 中所有节点的高度都不超过 2 。

特殊性质 B: 对于所有 $i \in [2, n]$, fa_i 在 [1, i-1] 中随机。

MSTI2021 省选模拟赛 传统游戏 (nim)

传统游戏 (nim)

【题目描述】

寒假里,小 H 的表弟到小 H 家做客。由于小 H 的母亲觉得小 H 整天宅在房间里影响非常不好,于是下令小 H 陪表弟玩耍。

由于年龄差过大,小 H 并不想浪费自己的时间。她随便翻开一本书中一页,书上介绍了传统的 Nim 游戏。小 H 心生一计。

传统的 Nim 游戏是这样的:有 n 堆石子,第 i 堆石子有 a_i 个。博弈的双方轮流取石子,每一次每个人只能在一堆中取若干个,不能取的一方将会输掉游戏。

由于这个游戏非常好用计算机实现,因此小 H 决定写一个程序代替自己和表弟对战,这样一来她就可以做自己的事了。

小 H 先规定了一个巨大的数 m ,接着小 H 将选取一个大小为 n 的集合 S , S 中的每个数都是 $0 \sim m-1$ 的整数。接着,小 H 将会把这集合中的 n 个数作为一个局面。

由于表弟年龄较小,所以小 H 会让表弟先手。但是表弟又不是好糊弄的,所以小 H 需要有十足的把握保证自己能够获胜。因此,在游戏开始前,小 H 想知道,有多少种初始局面能够保证自己获胜。由于这个数比较大,你只需要输出其对 10⁹ + 7 取模后的结果。

注意:由于小 H 选的是集合,所以初始局面要求石子数互不相同,而且方案数与石子排列的顺序无关。

【输入格式】

从文件 nim.in 中读入数据。

输入共两行。

第一行为一个整数 n 。

第二行为数 m。由于 m 比较大,所以 m 将会使用二进制的形式给出,即输入将会是一个长度为 L 的字符串,字符串中只包含 0 和 1。

【输出格式】

输出到文件 nim.out 中。

输出一行一个非负整数,表示方案数对 109+7 取模后的结果。

【样例1输入】

1 3

2 100

MSTI2021 省选模拟赛 传统游戏(nim)

【样例1输出】

1 1

【样例 1 解释】

在这个样例中 n=3, m=4,可行的方案只用一种 $\{1,2,3\}$ 。

【样例 2 输入】

1 4

2 101010

【样例 2 输出】

1 1978

【样例 3】

见选手目录下的 nim/nim3.in 与 nim/nim3.ans。

【测试点约束】

本题采用捆绑测试。

对于所有测试点,满足 $1 \le n \le 3000, 1 \le L \le 5 \times 10^6, 1 \le nL \le 3.5 \times 10^7$ 。

保证 m 按二进制的形式给出。

每个子任务的具体限制见下表:

子任务编号	n	L	分值
1	≤ 10	≤ 8	5
2	7	$\leq 10^{5}$	10
3	≤ 7	$\leq 5 \times 10^6$	15
4	< 300	≤ 300	10
5	≤ 300	$\leq 10^{5}$	15
6	≤ 3000	≤ 20	15
7		≤ 10000	30

MSTI2021 省选模拟赛 切蛋糕(cut)

切蛋糕 (cut)

【题目描述】

为了给小 T 和小 G (第一题中的人物)过生日,小 H 买了一个凸 n 边形的蛋糕,并将其放在了二维平面上。

小 H 打算把这个蛋糕切一刀后平均分成两个凸多边形,小 T 和小 G 各拿一份。为了公平,小 H 先征求了小 T 和小 G 的意见。

小 T 比较关心蛋糕的面积, 所以小 T 要求切分后的两个凸多边形的面积需要相等。

小 G 比较关系蛋糕的周长, 所以小 G 要求切分后的两个凸多边形的周长需要相等。

小 H 希望找出一种既能满足小 T 的需求也能满足小 G 的需求的切分方案。

【输入格式】

从文件 cut.in 中读入数据。

输入共(n+1)行。

第一行一个正整数 n,表示蛋糕的边数。

接下来 n 行,按**逆时针顺序**给出蛋糕的每个端点 (x_i, y_i) ,保证 x_i, y_i 为整数。

【输出格式】

输出到文件 cut.out 中。

如果不存在切分方案,请输出 -1,否则你需要输出两个点坐标来表示你的切分方案。 不难证明一种切分方案与凸多边形只会交与两个点,你需要输出这两个点的坐标。

假设最后你求出的两个多边形的周长(或面积)为 a,b ,你只需要保证 $\frac{|a-b|}{\max\{a+b,1\}} \le 10^{-6}$ 即可 。

【样例 1 输入】

```
1 3 2 0 1 3 -1 0 4 1 0
```

【样例1输出】

```
1 0 1
2 0 0
```

MSTI2021 省选模拟赛 切蛋糕(cut)

【样例1解释】

原凸多边形为 ΔABC ,使用直线 AD 切分后会变成两个全等的三角形 ΔABD 和 ΔACD ,这两个多边形的周长和面积显然相等。

【样例 2 输入】

```
1 6
2 -8 7
3 -7 -5
4 -1 -6
5 5 -6
6 8 4
7 7 5
```

【样例 2 输出】

```
1 5.039455 -5.868482
2 -6.717206 6.828961
```

MSTI2021 省选模拟赛 切蛋糕 (cut)

【样例2解释】

如图所示,这是该样例的某一种切分方法。

【测试点约束】

本题采用捆绑测试。

对于所有测试点,满足 $1 \le n \le 10^5$, $-10^9 \le x_i, y_i \le 10^9$ 。每个子任务的具体限制见下表:

子任务编号	n	分值
1	= 3	15
2	= 4	15
3	≤ 10	20
4	≤ 2000	20
5	$\leq 10^{5}$	30