

- exing University
∑题课#4(Oct.04)
1) 求白量组权大元关组和秩
2) 求矩阵的铁、包含不定礼
3) 求一个白量旬生成于空间的一组基和维数 Pist-136 \$
A 经性相关性、铁等基本事实的证明.
考定的空间下了其经有限接触的集合。月前一个一可起
pan A := { \(\overline{\chi} \) \(k_i \) \(\overline{\chi} \) \
Lem & A STABLES BY SPENA
Lem A能被B线性表出 iff. spanA SspanB (A,BEPM(F))
女命定义如下序关系(preorder)
A S B iff. span A S span B.
* 田教村P32定义2可得上述关系满足反身性 (reflexivity). 传递性 (transitivity)
预序(Pan(F),≲)可自然按导出一个等价关系
A~B iff A SB &B SA.
Rem. A~B iff. A与B作为两个向量组等价.
自然的想法: ϕ 作为 $(P_{fin}(F''), \lesssim)$ 的唯一的最小元 $(\forall A (\phi \leq A))$
6之(Pfin(F), S)是否在最大元M(VA(ASM))?

例如 {e,...,en}可作爆炸,是否唯一? {e,...+en,e,...,en}抓 猜如:在集合元素,大小的意义下催一.事实上,由于最大元之间从定互相等价, 可转而考虑证明如下令题:

Prop. A ≤ B > A ≤ B .
进一步思考后可以发现当人可能分性相关对上述命题将很可能不成立。
一种解决方式是限定A与B本身即线性无关,即
P_{np1} $P' = \{C \in P_{fm}(F') C 经性元美\} = \{C \in P(F') C 经性元美\}$ $P' (A \in B \Rightarrow A \neq B \}$
P'继承3 Pfulf")上的preorder S,在(P,S)中,ASB⇒IA[\$B]
另一种解决就是计算A或B中极大无美国的数目而不是全体元素人数 即
Prop2 & A ' = max { S S \(\sigma \), S \(\frac{1}{2} \)
= S for some SCA, SHIETE =: rank A.
共中第二个等号的良定义性需要数对Po推论与保证
有 A S B ⇒ rank A ≤ rank B.
结合成本分析可知:
OASB=> rankA StrankB
2) A~B => rankA=rankB
BM为(Pfin(FT), S)最大元=> rankM=n.
△矩阵的铁 (矩阵运算见数耐Potrex2与Pots会律 Pils性流经知的矩阵交流
首先定义行例向量的铁为行例组 Pra-Pra转置的运算) Radistrict
基本事实:初等行变换均可逆 (PTPA=A)
初等行变换不改变任意多个列向量的条性相关性(PAx=ox=>Ax=o
3的等行变换可能改变某些位置行向量的线性相关性,
但不改变整体的线性相关性及行秩 $(x^TA=0\Leftrightarrow P^Tx)^TPA=0$
观察行為心价梯形矩阵得到行秩与引秋相等
上述推导可立即得到矩阵行跃始终与引铁相等,进一步可得其也与非零子式的最高阶级相等

1) 含A E F SXM A, 为其前 (S-1) 行构成的子矩阵。
若以Ai为系数矩阵的翻都是方程 $a_{si}x_{i}+a_{si}x_{i}+a_{si}x_{n}=0$ 的解,
那么 A 的第5行可由 A 的前(5-1)行线性表出。
Proof. 利用翻空间的维数与矩阵铁的关系可知: rank A=rank A,
若不能表出,则 rankA >rankA, 矛盾.
2)(扩充的向量组的铁的变化关系) 考虑 公,…, cx EF". 下面研究
rank(di,,d)与 rank(di,,d, B) 及 rank(di,,ds, B1,, B1)的关系
① rank($\alpha_1, \dots, \alpha_s$), rank($\alpha_1, \dots, \alpha_s, \beta$), rank($\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_t$) $\leq \dim F^n = n$.
2 rank (x,, x) + rank (B1,, Bt) > rank (x,, xs, B1,, Bt).
全 di,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
见由定义和 rank(以,,以, B.)= P+g., 匠
公主,…,公,给性无关; Bi,…, Bi, 发性无关, 继不
rank (x1,, xs) > P; rank (B1, Bt) > 9.
最终得到 rank(x,,ds, B,, B+) = p+g ≤ rank(x,,de)+rank(B,,B+).
③ 103 43 1地: rank(x,···, x, B) = (rank(x,···,x)+1) An 1(s+1)
rank(x1,, ds, B1,, Bx) = (rank(x1,, ds) + rank (B1, Bx) 11 1
< (rank (x,, de)+t) An A (s+t).
(中 rank(x),, xs, B)= { rank(x1,, xs), B可由x1,, xs, xs, xs, xs, xs, xs, xs, xs, xs, xs
(不好人,…, 处线性无关,)
⑤ rank (xi,, xi, β,, β) = rank (xi,, xi) 拼. β1,, β 可由 xi, xi 经性类性

$(1\lambda + 2)$
大矩阵的铁: (2-12 5) 及机应的极大无关组.
1 2 /1 /1 / -1 2
(2 -1 25) -> (-12) 2+2 -> (-10 5)
(110-61) 10-1-5-11 122+1-2-1/
去 x=10:上式即为 5 1 积为3.第1,2,3个到面影响的好美
2/-12-1/
1 1 1 2 1 2 · \
表入丰(O:上文可化为) ~ 10 5 1
-7-2-5 716 -1- 7-16
芸入七十5200 有(1+5)(43)=0.1年(3本5)
当入=3时原矩阵的 (-7 5 1) 総2.第1.2例健
1 5 - 2 构成一组相关注意
当入=→时原矩阵可化为 +3 5 1 A的3.第1.2.41310量
一般一构成极大无关组、
苦入北村学生 +0.有入村3或5.原短车份3.第123个月的量的成功处理
4 ACEMAN rankA=r. 今 A.为A的前s行组成的2阵。则
4) AEFMAN rankA=r. 全人为A的前s行组成的3件。则
$rankA_1 \ge r+s+m$.
类似地全A.为A的前s引组成的子阵。见
rank ALZ r+s-n.
Prof.上述命题等行对何量级 以…, 以, B1…, B4.
$rank(\alpha_1,,\alpha_s) \ge rank(\alpha_1,,\alpha_s,\beta_1,,\beta_t) + s - (srt)$
$(=)$ rank $(\alpha_1, \dots, \alpha_s, \beta_1, \dots, \beta_t) \leq \text{rank}(\alpha_1, \dots, \alpha_s) + t$
这可由 rank(α,,α,β, ω,β) ≤ rank(α,,α)+rank(β,β) = 即得到

文矩阵的较: (24 19 36 72 38) 25 21 37 75 -42 73 59 98 29 -118
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
铁为3. 第1,2,3个到6量构成松大无关组。
6) Recall: 对于三对 Toeplitz程即 (ab ab b) (a a b) b)
试分析矩阵的铁及极大无关组、
D. のよるように復
カー (カーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカーカー
(1,-1) (1, 12 (a-bc-na) - 1, 12 x - ax+bc=060
当 D, ≠ O 时矩阵满张 全体到向量为极大无关组、
当D=Ord 若 b+o或 c+o.考虑(n-1)介于不为o.有张为(n-1).且后(n-1)个
到向量或前 (四)个列向量为机大关组
否则 b=c=0.曲D=0=an知 a=0.矩阵换为 D. ◆为极大无美国、
$D_{2} = \begin{cases} (a-b)^{n+1} (a+(n-1)b) & b=c. \\ (b-c)^{-1} (b(a-c)^{n}-c(a-b)^{n}) & b+c. \end{cases}$
分析同上,仅讨论 D=0的情形.

当a=b。of a=b=c.短阵般为1,任一向最构成极大无关组,

去 b=c,有 a=b或a+(n+)b=0.

÷ c- (,)
当 a= (1-n)b 时矩阵为(不能)对自6论.
当5年0时前(四)行(四)列构成严格对面如心行到或不为〇
得此对矩阵状为(n-1)前(n-1)引为机大王美国
当 b=0 时 G=0. 少の村 G=b=(=) 原知政株为0. 中分が大大道
表b≠c.有 b(a-c) ⁿ =c(a-b) ⁿ .
若 b(a-c)"+c(a-t)", 于是左上角(m)的子式不为0
节C=0.由为+C=042 G=C=0.得后(m)引向量为权大天美国。
苦(+o. l) a-c+o. 至则 a-c= a-b=o.这与b+c矛盾.
于是有 b/c=(a-b)/(a-c)=(a-b)~/(a-c)~
$(a-b)/(a-c)=1$ $\frac{3}{2}$ 0
(a-b)/(a-c)= 蕴含著 b= c.矛盾
((4-1)/(4-1)=の枝分養のトーのはは(1) ギルトリストリ
第二所述: U a=b=c: 秩1.任一向最构成对社主的。 天观
② Q=(1-n)=(1-n)=(1-n)=(n-1)3 为极大天美妇
③ G=b= C=o:积0. ②为极大无关组.
@ D+C=a=0:秩(n+)后(n+)列加大元美组
⑤ b = c, Q = c或 Q = 0. 积(n+).前(n+)对加大主美组
The first war for the