

TEORIA DOS GRAFOS

Prof^a Laura Pacifico

2025 | SETEMBRO

Agenda

O Problema das Pontes de Konigsberg

No início do curso, estudamos o problema das Pontes de Konigsberg, representado pelo grafo ao lado.

A questão era: É possível fazer um passeio pela cidade, começando e terminando no mesmo lugar, passando por cada ponte apenas uma vez?

Em outras palavras, queríamos encontrar um trajeto fechado que incluísse todas as arestas do grafo.

Definições Fundamentais

Trajeto Euleriano

Um trajeto que inclui todas as arestas de um dado grafo G(V, A) é chamado de trajeto euleriano.

Grafo Euleriano

Seja G um grafo conexo. Dizemos que G é euleriano se possui um trajeto euleriano fechado.

Grafo Semi-Euleriano

Um grafo G não-euleriano é dito ser semi-euleriano se possui um trajeto euleriano.

Observação: Em um grafo euleriano cada aresta é percorrida uma, e uma única, vez.

Exemplos de Grafos

Euleriano

Possui um trajeto euleriano fechado

Semi-Euleriano

Possui um trajeto euleriano (não fechado)

Não-Euleriano

Não possui trajeto euleriano

Exemplos de Grafos

Euleriano

Possui um trajeto euleriano fechado

a d g

$$a \rightarrow c \rightarrow d \rightarrow f \rightarrow g \rightarrow e \rightarrow d \rightarrow b$$

 $\rightarrow c \rightarrow f \rightarrow e \rightarrow b \rightarrow a$

Semi-Euleriano

Possui um trajeto euleriano (não fechado)

$$b \rightarrow e \rightarrow f \rightarrow c \rightarrow b \rightarrow d \rightarrow e$$

 $\rightarrow g \rightarrow f \rightarrow d \rightarrow c$

Não-Euleriano

Não possui trajeto euleriano

Teorema de Euler (1736)

Um grafo conexo G(V, A) é euleriano se, e somente se, o grau de cada vértice de G é par.

Teorema de Euler (1736)

Um grafo conexo G(V, A) é euleriano se, e somente se, o grau de cada vértice de G é par.

Corolário do Teorema de Euler

Corolário

Um grafo conexo é semi-euleriano se, e somente se, possui exatamente dois vértices de grau ímpar.

Algoritmo de Fleury

Considere um grafo conexo G(V, A), onde d(v) é par $\forall v \in V$.

Início

Comece em qualquer vértice v e percorra as arestas de forma aleatória.

Regras

- Exclua as arestas depois de passar por elas
- Exclua os vértices isolados, caso ocorram
- Passe por uma ponte¹ somente se n\u00e3o houver outra alternativa

Conclusão

Continue até percorrer todas as arestas do grafo

¹Uma aresta é dita ser uma ponte se a sua remoção torna o grafo desconexo.

Exemplo de Aplicação do Algoritmo de Fleury

Aplique o Algoritmo de Fleury para encontrar um trajeto euleriano no grafo ao lado a partir do vértice 5.

Seguindo as regras do algoritmo:

- 1. Comece no vértice 5
- 2. Escolha arestas que não sejam pontes sempre que possível
- 3. Exclua cada aresta após percorrê-la
- 4. Continue até percorrer todas as arestas

Exemplo de Aplicação do Algoritmo de Fleury

$$\textbf{5} \rightarrow \textbf{1} \rightarrow \textbf{4} \rightarrow \textbf{5} \rightarrow \textbf{2} \rightarrow \textbf{6} \rightarrow \textbf{3} \rightarrow \textbf{7} \rightarrow \textbf{6} \rightarrow \textbf{5}$$

Exercício: Verificação de Grafos Eulerianos

Verifique se o grafo ao lado é euleriano. Se possível, exiba um trajeto euleriano.

Para verificar se um grafo é euleriano:

- 1. Verifique se o grafo é conexo
- 2. Verifique se todos os vértices têm grau par
- 3. Se ambas as condições forem satisfeitas, o grafo é euleriano

Definições para Digrafos

Trajeto Euleriano Orientado

Um trajeto orientado que inclua todas as arestas de um dado digrafo G(V, A) é chamado de trajeto euleriano.

Digrafo Euleriano

Seja G um digrafo conexo (fortemente ou fracamente). Dizemos que G é euleriano se possui um trajeto euleriano fechado.

Digrafo Semi-Euleriano

Um digrafo G não-euleriano é dito ser semi-euleriano se possui um trajeto euleriano.

Exemplos de Digrafos

Exemplos de digrafos com diferentes propriedades eulerianas. Note a direção das arestas, que é fundamental para a análise de digrafos.

Teorema de Euler para Digrafos

Teorema

Um digrafo D(V, A) é euleriano se, e somente se, D é balanceado (i.e., $d_s(v) = d_s(v) \forall v \in V$).

Onde:

- d_e(v) = grau de entrada do vértice v
- d_s(v) = grau de saída do vértice v

Em outras palavras, para cada vértice, o número de arestas que entram deve ser igual ao número de arestas que saem.

Corolário para Digrafos Semi-Eulerianos

Corolário

Um digrafo D(V, A) é semi-euleriano se, e somente se, existem dois vértices $x, y \in V$ tais que:

$$d_s(x) - d_e(x) = 1$$
, $d_e(y) - d_s(y) = 1$

e

$$d_e(v) = d_s(v) \forall v \in V \setminus \{x, y\}.$$

Isso significa que em um digrafo semi-euleriano:

- Um vértice tem uma aresta de saída a mais que de entrada (início do trajeto)
- Um vértice tem uma aresta de entrada a mais que de saída (fim do trajeto)
- Todos os outros vértices são balanceados

Exercícios sobre Digrafos Eulerianos

Determine se os grafos ao lado são eulerianos ou semi-eulerianos. Em caso positivo, exiba os trajetos euleriano e semi-euleriano.

Aplicações Práticas

Coleta de Lixo

Otimização de rotas para caminhões de lixo que precisam percorrer todas as ruas de um bairro.

Limpeza de Ruas

Definição de trajetos eficientes para máquinas de limpeza urbana.

Entregas

Planejamento de rotas para entregadores que precisam visitar várias ruas em uma área.

Checagem de Páginas da Internet

Verificação de links em websites para manutenção e controle de qualidade.

Dúvidas?

Laura Alves Pacifico
laps@cesar.school
Slack: Laura Pacifico