Lecture-10 Main Points

- Heyting Algebra $H = (H, \leq, \vee, \wedge, \rightarrow, 0, 1)$
 - $-(H, \leq, \vee, \wedge)$ is a distributive lattice.
 - $-a \rightarrow b$ is the largest x s.t. $a \land x \leq b$. (such a x must exist for each a, b in H for it to be a HA)
 - -0,1 are the smallest and the largest elements respectively, of H.
- Examples
 - 1. Every BA is a HA. $a \to b \text{ defined as } \neg a \lor b \text{ in BA satisfies the property of `--' in HA}.$
 - 2. A five element linear order is a HA. $A \lor \neg A$ is not true in this HA, for any $A \neq 0, 1$.
- Soundness of \vdash_i w.r.t. HA.
 - Given $(H, \llbracket \cdot \rrbracket_H)$, for any proposition A, $\llbracket A \rrbracket_H$ is defined as for a Boolean algebra except for $\llbracket A_1 \to A_2 \rrbracket_H = \llbracket A_1 \rrbracket_H \to \llbracket A_2 \rrbracket_H$ (instead of $\neg \llbracket A_1 \rrbracket_H \vee \llbracket A_2 \rrbracket_H$).
 - Truth and validity extend as in the case of BA.
 - Soundness Theorem: If $\Gamma \vdash_{N_i} A$ then for any $(H, \llbracket \cdot \rrbracket_H)$, $\llbracket \Gamma \rrbracket_H \leq \llbracket A \rrbracket_H$.
 - * Proof is the same as in BA case, except for treating $\rightarrow i$ and $\rightarrow e$ rules. These rules are easily handled as per definition of $a \rightarrow b$ given above for a HA.

- \bullet Completeness of \vdash_i w.r.t. HA
 - Completeness Theorem: If $\Gamma \vdash A$ is true in all HA then $\Gamma \vdash_{Ni} A$.
 - Proof steps are completely analogous to the BA case.
 - * Define Lindenbaum algebra for \vdash_i .
 - * Show it to be a Heyting algebra.
 - \ast Define canonical valuation for Lindenbaum algebra and prove its property.
 - $\ast\,$ Complete the proof as in BA case.