Seite 1

Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014

Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München 10. September 2014

Drehimpuls und Spin

Drehimpuls

Aufgabe 1 (*) Beweise die Relationen

$$[L_+, L_-] = 2\hbar L_z, \quad [L_z, L_{\pm}] = \pm \hbar L_{\pm}, \quad [L^2, L_{\pm}] = 0$$

mithilfe von den Vertauschungsrelationen für den Drehimpuls: $[L_i, L_j] = i\hbar\epsilon_{ijk}L_k$

Aufgabe 2 (*) Wir bezeichnen die simultanen Eigenkets von L^2 und L_z mit $|l,m\rangle$, $l \in \mathbb{N}$ und $-l \leq m \leq +l$. Für die Auf- und Absteigeoperatoren des Drehimpulses $L_{\pm} = L_x \pm iL_y$ gilt

$$L_{\pm} |l, m\rangle = \hbar \sqrt{l(l+1) - m(m\pm 1)} |l, m\pm 1\rangle$$

Drücke L_x und L_y durch L_{\pm} aus und zeige die Relationen

$$\langle l, m | L_x L_y + L_y L_x | l, m \rangle = 0$$

$$\langle l,m|L_x^2-L_y^2|l,m\rangle=0$$

Seite 2

Aufgabe 3 (*) Der Hamiltonoperator eines starren Rotators in einem Magnetfeld ist gegeben durch

$$H = \frac{L^2}{2\Theta} + \gamma \vec{L} \cdot \vec{B}.$$

Dabei ist \vec{L} und \vec{B} das angelegte Magnetfeld. Θ (das Trägheitsmoment) und γ (der gyromagnetische Faktor) sind Konstanten. Das Magnetfeld ist konstant in z-Richtung: $\vec{B} = B\vec{e}_z$.

Wie lauten Energieeigenzustände des Systems? Berechne die Energieeigenwerte.

Aufgabe 4 (**) Wir betrachten ein System in einem Eigenzustand zu \vec{L}^2 mit Eigenwert $2\hbar^2$, d.h. l=1.

- 1. Bestimmen Sie, ausgehend von der bekannten Wirkung von Auf- und Absteigeroperatoren L_{\pm} , die Matrixdarstellung von L_x, L_y und L_z bezüglich der Standardbasis $|l,m\rangle$.
- 2. Gesucht ist die Wahrscheinlichkeitsdichte, ausgedrückt in Kugelkoordinaten mit θ und φ , für ein System in einem Eigenzustand zu \vec{L}^2 und L_x mit den Quantenzahlen l=1 und $m_x=1$.

Probleme in 3 Dimensionen

Aufgabe 5 (*) Die normierten Wasserstoffeigenfunktionen für maximalen Bahndrehimpuls l = n - 1 sind von der Form:

$$\Psi_{n,n-1,m}(\vec{r}) = \frac{u_{n,n-1}(r)}{r} Y_{lm}(\vartheta,\varphi), \quad u_{n,n-1}(r) = \sqrt{\frac{2}{n(2n)!a_B}} \left(\frac{2r}{na_B}\right)^n e^{-\frac{r}{na_B}}$$

 $mit \ a_B = \frac{\hbar}{m_e \alpha c}.$

- a) Bestimme den Abstand r_{max} an dem die radiale Wahrscheinlichkeitsdichte $P(r) = |u_{n,n-1}(r)|^2$ maximal wird und vergleiche r_m ax mit dem Mittelwert $\langle r \rangle$.
- b) Berechne $\Delta r = \sqrt{\langle r^2 \rangle \langle r \rangle^2}$. Wie hängt die relative Abweichung $\frac{\Delta r}{\langle r \rangle}$ von der Hauptquantenzahl n ab? Das Ergebnis verdeutlicht, dass für große n die Vorstellung einer Kreisbahn zulässig ist.

Tipp: $\int_0^\infty dx \, x^q e^{-x} = q!.$

Tag 3

Seite 3

(**) Behandlung des dreidimensionalen harmonischen Oszillators in Kugelkoordinaten: Der Hamiltonoperator lautet

$$H = -\frac{\hbar^2}{2M}\Delta + \frac{M}{2}\omega^2 r^2.$$

- a) Reduziere die stationäre Schrödingergleichung auf eine Radialgleichung mit dem üblichen Ansatz $\Psi(\vec{r}) = \frac{u(r)}{r} Y_{lm}(\vartheta, \varphi)$. Vereinfache sie durch die Substitution mit den dimensionslosen Größen $y = r\sqrt{\frac{M\omega}{\hbar}}$ und $\epsilon = \frac{E}{\hbar\omega}$.
- b) Zeige, dass das asymptotische Verhalten durch den Ansatz $u(y) = y^{l+1}e^{-y^2/2}v(y^2)$ berücksichtigt wird und bestimme die verbleibende Differentialgleichung für $v(y^2)$
- c) Schreibe die DGL aus b) um, in eine DGL für $v(\rho)$ mit der Variablen $\rho = y^2$.
- d) Setze eine Potenzreihe für $v(\rho)$ an. Die Abbruchbedingung liefert das Energiespektrum $E_{nl} = \hbar\omega(2n + l + \frac{3}{2})$ mit Quantenzahlen n, l.

Spin

(**) Wir betrachten den Spin eines Elektrons im magnetischen Feld B. Der Hamiltonoperator lautet

$$H = -\left(\frac{e}{m_e c}\right) \vec{S} \cdot \vec{B}$$

Wir wählen ein konstantes Magnetfeld in z-Richtung. Der Hamiltonoperator ist also gegeben durch

$$H = \omega S_z \quad mit \quad \omega = \frac{|e|B}{m_e c}.$$

- a) Was sind die Energieeigenwerte und Eigenzustände des Systems?
- b) $Zum\ Zeitpunktpunkt\ t=0$ befindet sich das System in dem Zustand

$$|\alpha; t=0\rangle = \frac{1}{\sqrt{2}} |+\rangle + \frac{1}{\sqrt{2}} |-\rangle$$

 $(dem | S_x; +)$ Eigenzustand der S_x -Komponente). Benutze die zeitabhängige Schrödingergleichung

$$i\hbar \frac{d}{dt} |\alpha; t\rangle = H |\alpha; t\rangle$$

 $um \mid \alpha; t \rangle$ zu bestimmen.

c) Was ist die Wahrscheinlichkeit, dass sich das Elektron zum Zeitpunkt t wieder im Zustand $|S_x;+\rangle = \frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle$ befindet. Wie groß ist also $|\langle S_x;+|\alpha;t\rangle|^2$?

Tag 3

(**)(Vgl. Vorlesung) Zeige, dass Aufgabe 8

$$|\vec{\Omega}, +\rangle = \cos\left(\frac{\theta}{2}\right)e^{-i\varphi/2}|+\rangle + \sin\left(\frac{\theta}{2}\right)e^{+i\varphi/2}|-\rangle$$

einen Eigenzustand zum Projektionsoperator

$$\vec{\sigma} \cdot \vec{\Omega}$$

darstellt.

Aufgabe 9 (*) Ein Elektron befinde sich in einem Spinzustand

$$\chi = A \begin{pmatrix} 1-2i \\ 2 \end{pmatrix} = A \left((1-2i) |+\rangle + 2 |-\rangle \right)$$

bezüglich zu den Eigenzuständen von S_z .

- 1. Bestimmen Sie die Konstante A, sodass χ korrekt normiert ist.
- 2. Messen Sie S_z bei diesem Elektron. Welche Werte können Sie prinzipiell erhalten? Wie groß ist die Wahrscheinlichkeit für jeden dieser möglichen Werte? Was ist $der\ Erwartungswert\ von\ S_z$?
- 3. Messen Sie S_x bei diesem Elektron. Welche Werte können Sie prinzipiell erhalten? Wie groß ist die Wahrscheinlichkeit für jeden dieser möglichen Werte? Was ist der Erwartungswert von S_x ?

(**) Wir koppeln zwei 1/2 Spins und bezeichnen die Eigenzustände zum Gesamtspinoperator S^2 mit $|s=0,1,m\rangle$. Wir definieren analoge Auf- und Ab $steiger S_{\pm} := S_{1\pm} + S_{2\pm}.$

- 1. Wenden Sie S_{-} auf den Triplet-Zustand $|s=1, m=0\rangle$ an und zeigen Sie damit, $dass \sqrt{2}\hbar |1, -1\rangle folgt.$
- 2. Wenden Sie S_{\pm} auf den Singlet-Zustand $|s=0,m=0\rangle$ an und zeigen Sie damit, dass es keine weiteren Singlett-Zustände gibt.
- 3. Zeigen Sie, dass $|1,1\rangle$ und $|-1\rangle$ Eigenzustände von S^2 mit den erwarteten Eigenwerten sind.