Experimento #2

Lâmpada Elétrica de Filamento

Objetivo: Caracterização elétrica de uma lâmpada de filamento com o levantamento da curva de corrente e tensão. Compreensão do conceito de resistividade em metais como função da temperatura. Observação da relação entre temperatura e a cor (espectro de emissão) do filamento.

Material: - Multímetro Digital - Modelo:	R_1
- Resistor $R_2(1\Omega, 2W)$	$V_{\rm B}$
- Fonte DC - Modelo:	$R_2 \bigcup \bigcup I$
- Lâmpada de Filamento R_1 (6V / 0,5A)	

1) Monte o circuito da figura, alimentado pela fonte DC, para medidas de tensão com o multímetro, e para o cálculo da corrente I em função do valor de R_2 , e para o cálculo do valor da resistência R_1 da lâmpada.

V _{DC} [V]	V _A [V]	$V_B[V]$	V _{AB} [V]	I[A]	$R_1[\Omega]$	P[W]	Cor
0							
1							
2							
3							
4							
5							
6							
7							

$\mathbf{R}_2 = \underline{\hspace{1cm}} +/-\underline{\hspace{1cm}} [\Omega]$ (Medida com multímetro

- 2) Obtenha o gráfico de pontos experimentais para curva I x V_{AB} . Onde I é a corrente que passa pelo filamento e $V_{AB} = (V_A V_B)$ é o potencial sobre a lâmpada.
- 3) No mesmo gráfico do item-2, ajuste por mínimos quadrados e plote a curva I x V_{AB} do modelo da lâmpada incandescente.

4) Questionário:

- a) Assumindo um espectro de radiação aproximadamente de corpo negro, calcule a eficiência de lâmpadas incandescentes. Utilize a temperatura tabelada de diferentes lâmpadas comerciais, citando suas fontes. Considere que o espectro de emissão é útil apenas entre 390 nm e 700 nm.
- **b) Pesquisa:** Qual a maior temperatura de operação que pode ser obtida na prática com lâmpadas de filamento incandescente <u>especiais</u>? Cite as suas fontes.

Grupo: