	_ Uiedh \
Name:	A
Roll No. :	As Aganga (Y Kanadada Stad Espectad
Invigilator's Signature :	

DIGITAL SIGNAL PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) If $x_1(n)$ and $x_2(n)$ are finite length sequences of sizes L and M respectively, their linear convolution has the length
 - a) L + M 2
- b) L + M 1

c) L + M

- d) none of these.
- ii) The digital systems in $y(n) = x(n^2)$ is
 - a) linear and causal
 - b) non-linear and causal
 - c) linear and non-causal
 - d) non-linear and non-causal.

6004 [Turn over

- iii) Zero padding of a signal
 - a) reduces aliasing
 - b) increases frequency
 - c) increases time resolution
 - d) has no effect.
- iv) In a system y(-n) = x(n-1)
 - a) the system is causal for all
 - b) the system is linear and causal for all
 - c) the system is stable, linear and causal for all
 - d) none of these.
- v) If $x [n] = \{1, 0, 0, 1\}$, the DFT value X(0) is
 - a) 2

b) 1 + j

c) 0

- d) 1 j.
- vi) The Fourier transform of an aperiodic discrete time sequence is
 - a) discrete and periodic function of frequency
 - b) discrete and aperiodic function of frequency
 - c) continuous and periodic function of frequency
 - d) continuous and aperiodic function of frequency.

6004

a) 5

b) 2

c) 1

d) 0.

viii) A digital filter is said to be IIR

- a) if present output depends on previous output only
- b) if system function H (z) has one or more non-zero denominator co-efficients
- c) if all the poles lie outside the unit circle
- d) if system function has only zeros.
- ix) FIR filter is
 - a) recursive and linear
 - b) non-recursive and linear
 - c) recursive and non-linear
 - d) none of these.
- x) System function of digital filter expressed as $H(z) = b_k z^{-k}$ represents
 - a) IIR filter
- b) FIR filter
- c) Butterworth filter
- d) Chebyshev filter.
- xi) Stability criteria for a discrete time LTI system is
 - a) h(n) > 1
- b) h(n) < 1
- c) h(n) = 1
- d) h(n) = 0.

- xii) A digital filter has $h(n) = \{-3, -2, 0, 2, 3\}$ then it has
 - a) no linear phase
 - b) symmetric linear phase
 - c) anti-symmetric linear phase
 - d) none of these.

xiii)
$$\left(\frac{1}{2}\right)^n u(n)$$
 is

- a) energy signal
- b) power signal
- c) both (a) and (b)
- d) none of these.
- xiv) The system y(n) = x(n) + nx(n+1) is
 - a) linear time invariant
 - b) non-linear time invariant
 - c) linear time variant
 - d) none of these.
- xv) The mapping from analog to digital domain in impulse invariant method is
 - a) one to many
- b) many to one
- c) one to one
- d) none of these.

6004

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

2. Given the following transfer function T (z) of a DSP system, write the difference equation :

$$T(z) = \frac{3 + 2z^{-1} + z^{-2}}{1 - 4z^{-1} + 5z^{-2}}$$
.

- 3, If Fourier transform of x (n) is X ($j\omega$), then prove that
 - a) $x(-t) \times X(-i\omega)$,
 - b) $x(at) \times \frac{1}{|a|} X(\frac{j\omega}{a})$.
- 4. State the properties of convergence for the *Z*-transform.
- 5. Apply bilinear transformation to $H(s) = \frac{2}{(s+1)(s+3)}$ with T = 0.1 s.
- 6. Define phase delay and group delay.

The length of an FIR filter is 13. If the filter has a linear phase, show that

$$\sum_{n=0}^{\frac{M-1}{2}} h(n) \sin \omega (\tau - n) = 0.$$

GROUP – C(**Long Answer Type Questions**) Answer any *three* of the following.

- 7. a) What is ROC? State its properties.
 - b) Find the system function and impulse response of the system described by

$$y(n) = x(n) + 2x(n-1) - 4x(n-2) + x(n-3)$$

c) Find the inverse *Z*-transform of

$$X(z) = z(z^2 - 4z + 5) / (z - 3)(z - 2)(z - 1); 2 < z < 3$$

- d) Prove that an LTI system is BIBO stable if the ROC of system function includes the unit circle. 2 + 5 + 5 + 3
- 8. a) Sketch the magnitude response of Butterworth LPF filter and derive an expression for order of such a filter.
 - b) Design a digital Butterworth filter using the following specifications using Impulse Invariant method

$$0.9 < H(j\omega) < 1$$
 for $0 < \omega < 0.2$ pi

$$H\left(\,j\omega\,\right)<0{\cdot}2$$
 for 0·4 pi < $\omega<$ pi

- c) What are the advantages and disadvantages of bilinear transformation? 5 + 5 + 5
- 9. a) Compute 8-point DFT of the sequence

 $x(n) = \{0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0\}$ using any FFT algorithm.

6004

b) Find the linear convolution using circular convolution for the two sequences

$$x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$$

 $h(n) = \{1, 2\}$

c) Compute the circular convolution of two sequences

$$x(n) = \{1, 2, 0, 1\}$$

 $x(n) = \{2, 2, 1, 1\}$

6 + 5 + 4

- 10. a) Obtain the mapping formula for the approximation of derivatives method using backward difference :
 - b) Determine H (z) for a Butterworth filter satisfying the following constraints :

$$\begin{split} \sqrt{0.5} & \leq \left| H\left(e^{j\omega}\right) \right| \leq 1, \, 0 \leq \omega \leq \pi/2 \\ & \left| H\left(e^{j\omega}\right) \right| \leq 0.2, \, 3 \, \pi/4 \leq \omega \leq \pi \end{split}$$

with T=1s. Apply impulse invariant transformation.

6 + 9

- 11. Write short notes on any *three* of the following :
- 3×5

- a) Gibbs phenomenon
- b) CCS6713 architecture
- c) IIR and FIR filters
- d) Periodic and aperiodic signals.