Indian Institute of Technology Jodhpur MAL1010, End exam, Part-2, 04 Mar'22

Time: 3:00PM to 4:45PMMarks: 25

Instructions: (1). This question paper contains FIVE questions. Answer **ALL** questions.

- (2). Write your Name & Roll no. on top of each page.
- (3). Answers of subparts of a question should appear together.
- (4). Support your calculations/conclusions always with proper explanation. (5). All the best!

Q.1. (i) Evaluate $\int_C (2x^3 - y^3) dx + (x^3 + y^3) dy$, where C is the unit circle $x^2 + y^2 = 1$ with counter

clockwise orientation.

(ii) Let D be the region cutout of the solid $S=\{(x,y,z)\in\mathbb{R}^3: 2x^2+y^2+z^2\leq 4\}$ by the elliptic cylender $E=\{(x,y,z)\in\mathbb{R}^3: 2x^2+y^2=1\}$, i.e., Let D be the region inside the solid S and the cylender E. Find the volume of D.

[3+3]

Q.2. (i) Show that the vector Field $\vec{F} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$ on \mathbb{R}^3 is conservative. Also find the work done by F in moving an object from (1, -2, 1) to (3, 1, 4)

(ii) Compute the line integral

$$\int_C \frac{dx + dy}{|x| + |y|}$$

where C is the square with vertices (1,0),(0,1),(-1,0), and (0,-1) traversed in once in the clockwise direction.

[3+3]

Q.3. Let $F(x, y, z) = (-y^3, x^3, -z^3)$ for $(x, y, z) \in \mathbb{R}^3$. Let C denote the intersection of the cylender $x^2 + y^2 = 1$ and the plane x + y + z = 1, oriented by the anticlockwise motion on the projection $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ of C on the xy plane. By using Stokes theorem, find $\int \vec{F} dS$.

[4]

Q.4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) := \begin{cases} (x^2 + y^2)\cos(\frac{1}{x^2 + y^2}), & if \ (x,y) \neq (0,0), \\ 0, & if \ (x,y) = (0,0). \end{cases}$$

- (i) Do the partial derivatives f_x and f_y exist at every point of \mathbb{R}^2 ?
- (ii) Discuss the continuity of f_x and f_y at (0,0).
- (iii) Is the function f differentiable at (0,0)? Justify your answers.

|5|

Q.5. Let $p, q \in \mathbb{R}$ such that p > 1, q > 1. Use Lagrangers multiplier method to show that

$$\frac{1}{p} + \frac{1}{q} \le \frac{x^p}{p} + \frac{y^q}{q}, \quad for \ all \ \ x, y \in (0, \infty)$$

with xy = 1.

[4]