Sub Code: BECT604B ROLL NO......

EVEN SEMESTER EXAMINATION, 2023 – 24 3rd yr B.Tech. – Electronics & Communication Engineering CMOS Design

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.	Answer any four parts of the following.	5x4=20
	a) Discuss the VLSI design flow.	
	b) Define the terms regularity, modularity, and locality.	
	c) What is CMOS n-well process?	
	d) Explain LOCOS technique and its importance in fabrication process.	
	e) Mention the short-channel effects in ultra-nanoscale regime.	
	f) Discuss the MOSIS layout design rules in detail.	
Q 2.	Answer any four parts of the following.	5x4=20
	a) Calculate the V _{out} , as shown in figure if VDD is 5V and threshold voltage of each	
	device is 1V.	
	VDD — Vout	
	VDD — — —	
	VDD — J	
	VDD	
	b) Write a SPICE netlist for a CMOS inverter.	
	c) Explain Mealy and Moore machines with examples.	
	d) Sketch the transfer characteristics of a <i>p</i> -channel enhancement-type MOSFET if	
	threshold voltage is -5 V and $k = 0.45 \times 10^{-3} \text{ A/V}^2$.	
	e) Design 3-input NAND gate using CMOS logic.	
	f) Derive the expression of output impedance for CE configured BJT using hybrid	
0.2	parameter model.	102 20
Q 3.	Answer any two parts of the following.	10x2=20
	a) Define the complete IC fabrication flow in details with schematics.	
	b) Explain the working of Czochralski crystal growth process with diagrams.	
	c) Determine <i>vo</i> for the network, as shown in the figure for the input indicated.	
	$f = 1000 \text{ Hz}$ $C = 1 \mu\text{F}$	
	o 1 o o	
	0 t ₁ t ₂ t ₃ t ₄ t	
	v_i + $R \ge 100 \text{ k}\Omega \cdot v_o$	
	v=5v	
	-20	
Q 4.	Answer any two parts of the following.	10x2 = 20
₹	a) Design a 101 sequence detector using Moore's non-overlapping method.	10.12 20

b) What are the different CVD methods? Details the APCVD method.
c) A sequential circuit has one flip-flop, two inputs x and y, and one output S. It consists of a full-adder circuit connected to a D flip-flop, as shown in figure. Derive the state table and state diagram of the sequential circuit.

Q 5. Answer any two parts of the following.
a) Write the IC production steps in detail.
b) Derive the formula for junction depth for pre-deposition case of Fick's second law.
c) A synchronous Moore FSM has a single input, x_in, and a single output y_out. The machine is to monitor the input and remain in its initial state until a second sample of x_in is detected to be 1. Upon detecting the second assertion of x_in y_out is to asserted and remain asserted until a fourth assertion of x_in is detected. When the fourth assertion

of x_i is detected the machine is to return to its initial state and resume monitoring of

 x_i . Draw the state diagram of the machine.