```
# 필요 라이브러리 로드
        from tqdm import tqdm
        # 필요 라이브러리 로드
        import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import matplotlib.dates as mdates
         import seaborn as sns
        #출력 그림 크기 조절
        sns.set(rc={'figure.figsize':(12,12)})
        plt.style.use('ggplot')
         from matplotlib import font_manager, rc
         font_path = "C:/Windows/Fonts/NGULIM.TTF"
         font = font_manager.FontProperties(fname=font_path).get_name()
         rc('font', family=font)
        import warnings
        warnings.filterwarnings("ignore")
In [3]: df = pd.read_csv("행정동_월별_배출량.csv",encoding = "cp949")
In [4]:
Out[4]:
                y_m emd_nm
                                  em_g
          0 2018-01
                      남원읍
                              42437700.0
                      대륜동
          1 2018-01
                              57612600.0
          2 2018-01
                      대정읍
                              38885550.0
          3 2018-01
                      대천동
                              53858550.0
          4 2018-01
                      동홍동 118701000.0
        1671 2021-02 알수없음
                               1985100.0
        1672 2021-03 알수없음
                               2153800.0
```

1676 rows × 3 columns

1673 2021-04 알수없음

1674 2021-05 알수없음

1675 2021-06 알수없음

날짜 지정 범위 생성과 시리즈 객체 변환

1936900.0

1910750.0

2157850.0

```
# 데이터프레임을 Series로 변환하는 함수 def time_series(df, i):
# 행정동별로 데이터를 뽑습니다.
| location = df[df['emd_nm']==i]
## 날짜 지정 범위는 시작 월부터 2021년 7월 전까지 기준
| index = pd.date_range(min(location['y_m']),'2021-07',freq='BM')
## 시리즈 객체로 변환
```

```
ts = pd.Series(location['em_g'].values,index=index)
return ts
```

변동 계수

배출량 변동 계수가 높은 행정동을 로그 정규화 시 예측 성능이 저하된다. 따라서 변동 계수가 0.3 이 하의 데이터 값만 로그 정규화하여 사용

```
# 배출량 변동 계수를 구하는 함수
def coefficient_variation(df, i):
    cv_data = df.groupby(['emd_nm']).em_g.std()/df.groupby(['emd_nm']).em_g.mean()
    cv = cv_data[i]
    return cv
```

행정동별 특성

계절성이 있는 행정동

adf - test는 통계학에서 실행하는 가설 검정의 절차를 따른다.

- 귀무가설:시계열 자료가 정상 시계열이 아니다.
- 대립 가설: 시계열 자료가 정상성을 만족한다.

pmdarima 패키지에 있는 ADFTest클래스 import

p-value 0.05보다 낮으면 대립가설이 채택 -> 정상시계열이다. -> 차분이 필요하지 않다.

0.05보다 높으면 귀무가설이 채택 -> 정상시계열이 아니다 -> 차분이 필요하다.

```
[n [7]: | new_df = df
        from pmdarima.arima import ADFTest
        ## ARIMA 모델의 차분 여부를 결정하기 위한 단위근 검정
        def adf_test(y):
            return ADFTest().should_diff(y)[0]
        adf_p = []
        count = 0
        skipped = []
         for i in tqdm(new_df['emd_nm'].unique()):
            ts = time_series(new_df,i)
            try:
                p_val = adf_test(ts)
                if p_{val} < 0.05:
                    count += 1
                adf_p.append(p_val)
            except:
                skipped.append(i)
        plt.figure(figsize=(8, 4))
        sns.boxplot(adf_p)
```

100%| 42/42 [00:00<00:00, 311.11it/s]


```
In [9]: # p-value가 0.05보다 작은 행정동의 개수 print(count)
```

9

```
In [10]: # ADF-Test 오류 행정동 개수
if skipped:
    print(f"WarningCount: {len(skipped)}, emd_nm_list:{skipped}")
```

42개의 행정동중 9개를 제외한 33개의 행정동이 정상시계열이 아니다.

모델 구축과 검증

파이썬에서 R 시계열 패키지 forecast를 통한 모델링

```
In [11]: #!pip install tzlocal

In [12]: # import rpy2
# from rpy2.robjects.packages import importr # rpy2 내의 패키지를 불러올 importr 클래스

# utils = importr('utils') # utils 패키지를 임포트
# utils.install_packages('forecast') # r의 forecast 패키지 설치.
# utils.install_packages('forecastHybrid') # r의 forecastHybrid 패키지 설치
```

시계열 모델 선택과 검증

1. 자기회귀누적이동평균(ARIMA) 모델

```
import rpy2.robjects as robjects # r 함수를 파이썬에서 사용 가능하게 변환하는 모듈 from rpy2.robjects import pandas2ri # 파이썬 자료형과 R 자료형의 호환을 도와주는 모듈 # pandas2ri를 활성화 pandas2ri.activate()

auto_arima = """
function(ts){
    library(forecast) # forecast 패키지 로드
    d_params = ndiffs(ts) # 시계열 자료의 차분 횟수 계산
    model = auto.arima(ts, max.p=2, d=d_params) # auto.arima 모델 생성 forecasted_data = forecast(model, h=2) # 이후 2개월(h=2)을 예측 out_df = data.frame(forecasted_data$mean) # 예측값을 R의 데이터프레임으로 변환
```

```
colnames(out_df) = c('em_g') # em_g 열로 이름을 지정
                out_df
         # r() 함수로 r 자료형을 파이썬에서 사용 가능
         auto_arima = robjects.r(auto_arima)# str 형식으로 정의된 auto_arima
         ts = robjects.r('ts')# r 자료형 time series 자료형으로 만들어주는 함수
         c = robjects.r('c') # r 자료형 벡터를 만들어주는 함수
         log = robjects.r('log') # 로그 변환 함수
         exp = robjects.r('exp')# 로그 역변환 함수
         loc_name = []
         final_pred1 = []
         final_pred2 = []
         for i in tqdm(new_df.emd_nm.unique()):
            location = new_df[new_df['emd_nm']==i]
            start_year = int(min(location['y_m'])[:4]) ## 시작 년도
            start_month = int(min(location['y_m'])[5:]) ##시작 월
            cv = coefficient_variation(new_df, i)
            # 배출량 변동 계수가 0.3 미만인 경우만 log를 씌움
            if cv < 0.3:
                train_log = ts(log(location['em_g']), start=c(start_year,start_month), frequency=
                # 자동회귀누적이동평균 model
                forecast_log = auto_arima(train_log)
                # 2개월 예상을 final_pred에 추가
                loc_name.append(i)
                final_pred1.append(pandas2ri.ri2py(exp(forecast_log)).values[0])
                final_pred2.append(pandas2ri.ri2py(exp(forecast_log)).values[1])
            # 배출량 변동 계수가 0.3 이상인 경우
            else:
                train = ts(location['em_g'], start=c(start_year,start_month), frequency=12)
                # 자동회귀누적이동평균 model
                forecast = auto_arima(train)
                # 2개월 예상을 final_pred에 추가
                loc_name.append(i)
                final_pred1.append(pandas2ri.ri2py(forecast).values[0])
                final_pred2.append(pandas2ri.ri2py(forecast).values[1])
        100%| 42/42 [00:14<00:00, 2.98it/s]
         # 7월 예상
In [14]:
         data_df1 = pd.DataFrame(data = final_pred1,index = loc_name)
         data_df1
                        0
```

```
Out [14]:0남원읍6.292705e+07대륜동4.674674e+07대정읍1.127091e+08대천동5.691631e+07동흥동8.776890e+07서흥동3.067016e+07성산읍8.568876e+07
```

<u> </u>	
3.083344e+07	송산동
5.004729e+07	안덕면
3.507470e+07	영천동
2.015822e+07	예래동
2.150644e+07	정방동
6.614025e+07	중문동
4.226452e+07	중앙동
3.089194e+07	천지동
4.683702e+07	표선면
2.755410e+07	효돈동
4.138948e+07	건입동
2.721451e+08	노형동
2.420012e+07	도두동
1.839151e+07	봉개동
6.974298e+07	삼도1동
2.610642e+07	삼도2동
1.119874e+08	삼양동
1.253091e+08	아라동
1.060982e+08	애월읍
2.118081e+08	연동
6.849602e+07	오라동
1.153234e+08	외도동
3.541969e+07	용담1동
7.291503e+07	용담2동
3.139730e+07	이도1동
2.556959e+08	이도2동
2.650823e+07	이호동
1.103652e+07	일도1동
1.757083e+08	일도2동
1.246829e+08	화북동
3.965382e+07	구좌읍
6.392775e+07	조천읍
	41 71 64

한경면 2.843817e+07

한림읍 8.698212e+07

알수없음 2.244207e+06

```
In [15]:
```

8월 예상

data_df2 = pd.DataFrame(data = final_pred2,index = loc_name)

data_df2

0

남원읍 6.292705e+07

대륜동 4.756361e+07

대정읍 1.144966e+08

대천동 6.020141e+07

동홍동 9.275622e+07

서홍동 3.528438e+07

성산읍 8.568876e+07

송산동 2.805486e+07

안덕면 5.634425e+07

영천동 3.507470e+07

예래동 2.054396e+07

정방동 2.165582e+07

중문동 6.614025e+07

중앙동 4.287803e+07

천지동 3.043457e+07

표선면 4.073980e+07

효돈동 2.755410e+07

건입동 4.062487e+07

노형동 2.756639e+08

도두동 2.387843e+07

봉개동 1.890242e+07

삼도1동 6.772057e+07

삼도2동 2.493213e+07

삼양동 1.075262e+08

아라동 1.229321e+08

애월읍 1.084399e+08

연동 2.139719e+08

```
오라동 6.909211e+07
 외도동 1.100592e+08
용담1동 3.521633e+07
용담2동 7.541880e+07
이도1동 3.003579e+07
이도2동 2.482691e+08
 이호동 2.742345e+07
일도1동 2.122039e+07
일도2동 1.724836e+08
 화북동 1.243458e+08
 구좌읍 4.150050e+07
 조천읍 6.392775e+07
 한경면 2.981619e+07
 한림읍 9.121725e+07
알수없음 2.244207e+06
```

로그정규화와 ARIMA를 활용한 최종 7,8월 행정동별 결과 예상 데이터 final = pd.merge(data_df1,data_df2,how = "left",on = data_df1.index) final.rename(columns = {"key_0" : "행정동명","0_x" : "2021-07","0_y" : "2021-08"},inplace

final

행정동명 2021-07 2021-08

0	남원읍	6.292705e+07	6.292705e+07
1	대륜동	4.674674e+07	4.756361e+07
2	대정읍	1.127091e+08	1.144966e+08
3	대천동	5.691631e+07	6.020141e+07
4	동홍동	8.776890e+07	9.275622e+07
5	서홍동	3.067016e+07	3.528438e+07
6	성산읍	8.568876e+07	8.568876e+07
7	송산동	3.083344e+07	2.805486e+07
8	안덕면	5.004729e+07	5.634425e+07
9	영천동	3.507470e+07	3.507470e+07
10	예래동	2.015822e+07	2.054396e+07
11	정방동	2.150644e+07	2.165582e+07
12	중문동	6.614025e+07	6.614025e+07
13	중앙동	4.226452e+07	4.287803e+07

	행정동명	2021-07	2021-08
14	천지동	3.089194e+07	3.043457e+07
15	표선면	4.683702e+07	4.073980e+07
16	효돈동	2.755410e+07	2.755410e+07
17	건입동	4.138948e+07	4.062487e+07
18	노형동	2.721451e+08	2.756639e+08
19	도두동	2.420012e+07	2.387843e+07
20	봉개동	1.839151e+07	1.890242e+07
21	삼도1동	6.974298e+07	6.772057e+07
22	삼도2동	2.610642e+07	2.493213e+07
23	삼양동	1.119874e+08	1.075262e+08
24	아라동	1.253091e+08	1.229321e+08
25	애월읍	1.060982e+08	1.084399e+08
26	연동	2.118081e+08	2.139719e+08
27	오라동	6.849602e+07	6.909211e+07
28	외도동	1.153234e+08	1.100592e+08
29	용담1동	3.541969e+07	3.521633e+07
30	용담2동	7.291503e+07	7.541880e+07
31	이도1동	3.139730e+07	3.003579e+07
32	이도2동	2.556959e+08	2.482691e+08
33	이호동	2.650823e+07	2.742345e+07
34	일도1동	1.103652e+07	2.122039e+07
35	일도2동	1.757083e+08	1.724836e+08
36	화북동	1.246829e+08	1.243458e+08
37	구좌읍	3.965382e+07	4.150050e+07
38	조천읍	6.392775e+07	6.392775e+07
39	한경면	2.843817e+07	2.981619e+07
40	한림읍	8.698212e+07	9.121725e+07
41	알수없음	2.244207e+06	2.244207e+06

In [17]: final.to_csv("final_1_20210708_log.csv",encoding = "cp949",index=False)

2. 지수평활법

In [18]: import rpy2.robjects as robjects # r 함수를 파이썬에서 사용 가능하게 변환하는 모듈 from rpy2.robjects import pandas2ri # 파이썬 자료형과 R 자료형의 호환을 도와주는 모듈

```
pandas2ri.activate()
ets = """
    function(ts){
       library(forecast) # forecast 패키지 로드
       model = ets(ts) # AIC가 낮은 지수평활 모델을 찾음
       forecasted_data = forecast(model, h=2) # 이후 2개월(h=2)을 예측
       out_df = data.frame(forecasted_data$mean) # 예측값을 R의 데이터프레임으로 변환
       colnames(out_df) = c('em_g') # amount라는 열로 이름을 지정
       out_df
0.00
# r() 함수로 r 자료형을 파이썬에서 사용 가능
ets = robjects.r(ets)# str 형식으로 정의된 ets
ts = robjects.r('ts')# r 자료형 time series 자료형으로 만들어주는 함수
c = robjects.r('c') # r 자료형 벡터를 만들어주는 함수
loc_name = []
final_pred1 = []
final_pred2 = []
for i in tqdm(new_df.emd_nm.unique()):
    location = new_df[new_df['emd_nm']==i]
    start_year = int(min(location['y_m'])[:4]) ## 시작 년도
    start_month = int(min(location['y_m'])[5:]) ##시작 월
   cv = coefficient_variation(new_df, i)
    # 배출량 변동 계수가 0.3 미만인 경우만 log를 씌움
    if cv < 0.3:
       train_log = ts(log(location['em_g']), start=c(start_year,start_month), frequency=
       # 지수평활 model
       forecast_log = ets(train_log)
       # 2개월 예상을 final_pred에 추가
       loc_name.append(i)
       final_pred1.append(pandas2ri.ri2py(exp(forecast_log)).values[0])
       final_pred2.append(pandas2ri.ri2py(exp(forecast_log)).values[1])
    # 배출량 변동 계수가 0.3 이상인 경우
    else:
       train = ts(location['em_g'], start=c(start_year,start_month), frequency=12)
       # 지수평활 model
       forecast = ets(train)
       # 2개월 예상을 final_pred에 추가
       loc_name.append(i)
       final_pred1.append(pandas2ri.ri2py(forecast).values[0])
       final_pred2.append(pandas2ri.ri2py(forecast).values[1])
100%
                         42/42 [00:20<00:00, 2.08it/s]
#7월 예상 데이터
data_df1 = pd.DataFrame(data = final_pred1,index = loc_name)
data_df1
```

```
0
남원읍 6.292673e+07
대륜동 4.674584e+07
```

	0
대정읍	1.131597e+08
대천동	5.617861e+07
동홍동	8.652512e+07
서홍동	2.976835e+07
성산읍	8.235627e+07
송산동	3.124332e+07
안덕면	4.643683e+07
영천동	3.495037e+07
예래동	1.875342e+07
정방동	2.158102e+07
중문동	6.614052e+07
중앙동	4.139117e+07
천지동	3.112833e+07
표선면	4.225807e+07
효돈동	2.755350e+07
건입동	4.463063e+07
노형동	2.771210e+08
도두동	2.333441e+07
봉개동	1.862837e+07
삼도1동	6.988849e+07
삼도2동	2.878435e+07
삼양동	1.151992e+08
아라동	1.313144e+08
애월읍	1.041952e+08
연동	2.229255e+08
오라동	6.836383e+07
외도동	1.181994e+08
용담1동	3.824637e+07
용담2동	7.604951e+07
이도1동	3.401428e+07
이도2동	2.613537e+08
이호동	2.579872e+07

일도1동 1.430455e+07

```
일도2동 1.732331e+08
화북동 1.272475e+08
구좌읍 3.968242e+07
조천읍 6.630366e+07
한경면 2.851632e+07
한림읍 8.591796e+07
알수없음 2.157825e+06
```

In [20]: #7월 예측 데이터

data_df2 = pd.DataFrame(data = final_pred2,index = loc_name)
data_df2

Out[20]:

남원읍 6.292673e+07

대륜동 4.674584e+07

대정읍 1.152269e+08

대천동 5.617861e+07

동홍동 8.652512e+07

서홍동 2.976835e+07

성산읍 8.235627e+07

송산동 3.124332e+07

안덕면 4.643683e+07

영천동 3.495037e+07

예래동 1.875342e+07

정방동 2.158102e+07

중문동 6.614052e+07

중앙동 4.139117e+07

천지동 3.112833e+07

표선면 4.225807e+07

효돈동 2.755350e+07

건입동 4.195097e+07

노형동 2.716150e+08

도두동 2.294715e+07

봉개동 1.811273e+07

삼도1동 6.810514e+07

```
삼도2동 2.776007e+07
 삼양동 1.094169e+08
 아라동 1.283313e+08
 애월읍 1.045455e+08
  연동 2.198668e+08
 오라동 6.676965e+07
 외도동 1.127852e+08
용담1동 3.792472e+07
용담2동 7.431380e+07
이도1동 3.401428e+07
이도2동 2.521712e+08
 이호동 2.552250e+07
일도1동 1.384453e+07
일도2동 1.676103e+08
 화북동 1.224492e+08
 구좌읍 4.156285e+07
 조천읍 6.867998e+07
 한경면 2.988752e+07
 한림읍 8.922889e+07
알수없음 2.157825e+06
```

| # 로그정규화와 지수평활법을 활용한 최종 7,8월 예측 데이터 | final = pd.merge(data_df1,data_df2,how = "left",on = data_df1.index) | final.rename(columns = {"key_0" : "행정동명","0_x" : "2021-07","0_y" : "2021-08"},inplaction | final

Out [21]: 행정동명 2021-07 2021-08 0 남원읍 6.292673e+07 6.292673e+07 대륜동 4.674584e+07 4.674584e+07 1 대정읍 1.131597e+08 1.152269e+08 2 대천동 5.617861e+07 5.617861e+07 3 동홍동 8.652512e+07 8.652512e+07 4 5 서홍동 2.976835e+07 2.976835e+07 성산읍 8.235627e+07 8.235627e+07 6 7 송산동 3.124332e+07 3.124332e+07 안덕면 4.643683e+07 4.643683e+07 8

	행정동명	2021-07	2021-08
9	영천동	3.495037e+07	3.495037e+07
10	예래동	1.875342e+07	1.875342e+07
11	정방동	2.158102e+07	2.158102e+07
12	중문동	6.614052e+07	6.614052e+07
13	중앙동	4.139117e+07	4.139117e+07
14	천지동	3.112833e+07	3.112833e+07
15	표선면	4.225807e+07	4.225807e+07
16	효돈동	2.755350e+07	2.755350e+07
17	건입동	4.463063e+07	4.195097e+07
18	노형동	2.771210e+08	2.716150e+08
19	도두동	2.333441e+07	2.294715e+07
20	봉개동	1.862837e+07	1.811273e+07
21	삼도1동	6.988849e+07	6.810514e+07
22	삼도2동	2.878435e+07	2.776007e+07
23	삼양동	1.151992e+08	1.094169e+08
24	아라동	1.313144e+08	1.283313e+08
25	애월읍	1.041952e+08	1.045455e+08
26	연동	2.229255e+08	2.198668e+08
27	오라동	6.836383e+07	6.676965e+07
28	외도동	1.181994e+08	1.127852e+08
29	용담1동	3.824637e+07	3.792472e+07
30	용담2동	7.604951e+07	7.431380e+07
31	이도1동	3.401428e+07	3.401428e+07
32	이도2동	2.613537e+08	2.521712e+08
33	이호동	2.579872e+07	2.552250e+07
34	일도1동	1.430455e+07	1.384453e+07
35	일도2동	1.732331e+08	1.676103e+08
36	화북동	1.272475e+08	1.224492e+08
37	구좌읍	3.968242e+07	4.156285e+07
38	조천읍	6.630366e+07	6.867998e+07
39	한경면	2.851632e+07	2.988752e+07
40	한림읍	8.591796e+07	8.922889e+07
41	알수없음	2.157825e+06	2.157825e+06

3. log 정규화와 앙상블을 적용

```
import rpy2.robjects as robjects # r 함수를 파이썬에서 사용 가능하게 변환하는 모듈
from rpy2.robjects import pandas2ri # 파이썬 자료형과 R 자료형의 호환을 도와주는 모듈
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.pyplot as plt
# pandas2ri를 활성화
pandas2ri.activate()
hybridModel = """
    function(ts){
       library(forecast)
       library(forecastHybrid)
       d_params=ndiffs(ts)
       hb_mdl<-hybridModel(ts, models="aes", # auto_arima, ets, stlm
                      a.arg=list(max.p=2, d=d_params), # auto_arima parameter
                      weight="equal") # 가중치를 동일하게 줌(평균)
       forecasted_data<-forecast(hb_mdl, h=2) # 이후 2개월(h=2)을 예측
       outdf<-data.frame(forecasted_data$mean)</pre>
       colnames(outdf)<-c('em_g')
       outdf
# r() 함수로 r 자료형을 파이썬에서 사용 가능
hybridModel = robjects.r(hybridModel)
ts = robjects.r('ts') # r 자료형 time series 자료형으로 만들어주는 함수
c = robjects.r('c') # r 자료형 벡터를 만들어주는 함수
log = robjects.r('log') # 로그 변환 함수
exp = robjects.r('exp')# 로그 역변환 함수
loc_name = []
final_pred1 = []
final_pred2 = []
for i in tqdm(new_df.emd_nm.unique()):
    location = new_df[new_df['emd_nm']==i]
    start_year = int(min(location['y_m'])[:4]) ## 시작 년도
    start_month = int(min(location['y_m'])[5:]) ##시작 월
    cv = coefficient_variation(new_df, i)
    # 배출량 변동 계수가 0.3 미만인 경우만 log를 씌움
    if cv < 0.3:
       train_log = ts(log(location['em_g']), start=c(start_year,start_month), frequency=
       # 앙상블 예측
       forecast_log = hybridModel(train_log)
       #2개월 예상, final_pred에 추가
       loc_name.append(i)
       final_pred1.append(pandas2ri.ri2py(exp(forecast_log)).values[0])
       final_pred2.append(pandas2ri.ri2py(exp(forecast_log)).values[1])
    # 배출량 변동 계수가 0.3 이상인 경우
    else:
       train = ts(location['em_g'], start=c(start_year,start_month), frequency=12)
       # 앙상블 예측
       forecast = hybridModel(train)
       # 2개월 예상, final_pred에 추가
       loc_name.append(i)
       final_pred1.append(pandas2ri.ri2py(forecast).values[0])
       final_pred2.append(pandas2ri.ri2py(forecast).values[1])
```

In [24]:

```
#7월 예측값
```

data_df1 = pd.DataFrame(data = final_pred1,index = loc_name)
data_df1

Out[24]:

0

남원읍 6.553753e+07

대륜동 4.867065e+07

대정읍 1.118872e+08

대천동 5.988741e+07

동홍동 9.269669e+07

서홍동 3.247225e+07

성산읍 8.263498e+07

송산동 3.166434e+07

안덕면 4.765261e+07

영천동 3.704528e+07

예래동 2.006579e+07

정방동 2.185843e+07

중문동 6.803979e+07

중앙동 4.456770e+07

천지동 2.900402e+07

표선면 4.499657e+07

효돈동 2.818456e+07

건입동 4.327484e+07

노형동 2.763369e+08

도두동 2.367409e+07

봉개동 1.853055e+07

삼도1동 6.942596e+07

삼도2동 2.774492e+07

삼양동 1.137781e+08

아라동 1.289673e+08

애월읍 1.062996e+08

연동 2.174559e+08

오라동 6.810568e+07

외도동 1.168914e+08

용담1동 3.692453e+07

In [25]:

#8월 예측값

data_df2 = pd.DataFrame(data = final_pred2,index = loc_name)
data_df2

Out[25]:

0

남원읍 6.597585e+07
대륜동 4.863175e+07
대정읍 1.148493e+08
대천동 6.185071e+07
동홍동 9.360114e+07
서홍동 3.521794e+07
성산읍 8.505648e+07
상산읍 3.007122e+07
양천동 3.897108e+07
영천동 3.897108e+07
여래동 2.019431e+07
정방동 2.322368e+07
중단동 6.839907e+07
중앙동 4.543420e+07

표선면 4.134267e+07

효돈동 3.064279e+07

```
건입동 4.140237e+07
 노형동 2.740171e+08
 도두동 2.331612e+07
 봉개동 1.823794e+07
삼도1동 6.762903e+07
삼도2동 2.635784e+07
 삼양동 1.085463e+08
 아라동 1.261625e+08
 애월읍 1.072021e+08
  연동 2.164382e+08
 오라동 6.729376e+07
 외도동 1.117165e+08
용담1동 3.666683e+07
용담2동 7.438727e+07
이도1동 3.308420e+07
이도2동 2.501876e+08
 이호동 2.610099e+07
일도1동 1.608391e+07
일도2동 1.670302e+08
 화북동 1.227588e+08
 구좌읍 4.153167e+07
 조천읍 6.630387e+07
 한경면 2.985185e+07
 한림읍 9.022307e+07
알수없음 2.755252e+06
```

```
| # 로그 정규화와 앙상블을 활용한 최종 7,8월 예측 데이터 프레임 생성 | final = pd.merge(data_df1,data_df2,how = "left",on = data_df1.index) | final.rename( columns = {"key_0" : "행정동명","0_x" : "2021-07","0_y" : "2021-08"},inplactional
```

```
Out [26]:행정동명2021-072021-080남원읍6.553753e+076.597585e+071대륜동4.867065e+074.863175e+072대정읍1.118872e+081.148493e+083대천동5.988741e+076.185071e+07
```

	행정동명	2021-07	2021-08
4	동홍동	9.269669e+07	9.360114e+07
5	서홍동	3.247225e+07	3.521794e+07
6	성산읍	8.263498e+07	8.505648e+07
7	송산동	3.166434e+07	3.007122e+07
8	안덕면	4.765261e+07	5.081169e+07
9	영천동	3.704528e+07	3.897108e+07
10	예래동	2.006579e+07	2.019431e+07
11	정방동	2.185843e+07	2.322368e+07
12	중문동	6.803979e+07	6.839907e+07
13	중앙동	4.456770e+07	4.543420e+07
14	천지동	2.900402e+07	3.215186e+07
15	표선면	4.499657e+07	4.134267e+07
16	효돈동	2.818456e+07	3.064279e+07
17	건입동	4.327484e+07	4.140237e+07
18	노형동	2.763369e+08	2.740171e+08
19	도두동	2.367409e+07	2.331612e+07
20	봉개동	1.853055e+07	1.823794e+07
21	삼도1동	6.942596e+07	6.762903e+07
22	삼도2동	2.774492e+07	2.635784e+07
23	삼양동	1.137781e+08	1.085463e+08
24	아라동	1.289673e+08	1.261625e+08
25	애월읍	1.062996e+08	1.072021e+08
26	연동	2.174559e+08	2.164382e+08
27	오라동	6.810568e+07	6.729376e+07
28	외도동	1.168914e+08	1.117165e+08
29	용담1동	3.692453e+07	3.666683e+07
30	용담2동	7.457584e+07	7.438727e+07
31	이도1동	3.413366e+07	3.308420e+07
32	이도2동	2.585902e+08	2.501876e+08
33	이호동	2.588528e+07	2.610099e+07
34	일도1동	1.339353e+07	1.608391e+07
35	일도2동	1.720541e+08	1.670302e+08
36	화북동	1.261422e+08	1.227588e+08

```
행정동명
                2021-07
                            2021-08
37
     구좌읍 3.966812e+07 4.153167e+07
38
     조천읍 6.511570e+07 6.630387e+07
39
     한경면 2.847724e+07 2.985185e+07
     한림읍 8.645004e+07 9.022307e+07
40
41 알수없음 2.552289e+06 2.755252e+06
```

```
In [27]: final.to_csv("final_3_20210708_hybrid.csv",encoding = "cp949",index=False)
```

예측 결과 제출 파일 생성

로그 정규화를 활용한 ARIMA 활용하여 예측

• 평가 지표를 분석하여 2개월치 예측 성능이 가장 좋은 로그 정규화를 활용한 ARIMA 이용

```
# 결과를 삽입할 데이터 프레임 로드
sub = pd.read_csv("submission.csv",encoding = "cp949")
sub.head()
```

```
Out[28]:
          NO 행정동명 7월 배출량(g) 8월 배출량(g)
        0
            1
                한림읍
                            NaN
                                      NaN
                애월읍
        1
            2
                            NaN
                                      NaN
        2
            3
               구좌읍
                            NaN
                                      NaN
        3
            4
               조천읍
                            NaN
                                      NaN
            5
                한경면
                            NaN
                                      NaN
```

```
In [29]: | # 로그 정규화를 활용한 ARIMA 결과치 로드
         pred = pd.read_csv("final_1_20210708_log.csv",encoding = "cp949")
         pred.head()
```

```
행정동명
              2021-07
                          2021-08
  남원읍 6.292705e+07 6.292705e+07
1
   대륜동 4.674674e+07 4.756361e+07
   대정읍 1.127091e+08 1.144966e+08
2
   대천동 5.691631e+07 6.020141e+07
3
    동홍동 8.776890e+07 9.275622e+07
```

```
# 두 데이터 프레임 결합
sub = pd.merge(sub,pred,how = "left", on = "행정동명")
sub.head()
```

NO 행정동명 7월 배출량(g) 8월 배출량(g) 2021-07 2021-08

	NO	행정동명	7월 배출량(g)	8월 배출량(g)	2021-07	2021-08
0	1	한림읍	NaN	NaN	8.698212e+07	9.121725e+07
1	2	애월읍	NaN	NaN	1.060982e+08	1.084399e+08
2	3	구좌읍	NaN	NaN	3.965382e+07	4.150050e+07
3	4	조천읍	NaN	NaN	6.392775e+07	6.392775e+07
4	5	한경면	NaN	NaN	2.843817e+07	2.981619e+07

In [32]:

```
#소수점 첫째자리까지 제시 sub = sub.drop(["7월 배출량(g)","8월 배출량(g)"],axis=1) sub.rename(columns = {"2021-07" : "7월 배출량(g)","2021-08" : "8월 배출량(g)"},inplace=T sub["7월 배출량(g)"] = sub["7월 배출량(g)"].apply(lambda x : round(x,1)) sub["8월 배출량(g)"] = sub["8월 배출량(g)"].apply(lambda x : round(x,1)) sub
```

Out [32]: NO	행정동명	7월 배출량(g)	8월 배출량(g)
---------------------	------	-----------	-----------

		0000	, 5 11 5 (A)	02 HE 0(9)
0	1	한림읍	86982118.4	91217246.8
1	2	애월읍	106098161.0	108439922.0
2	3	구좌읍	39653823.7	41500497.4
3	4	조천읍	63927750.0	63927750.0
4	5	한경면	28438171.1	29816192.1
5	6	일도1동	11036515.1	21220394.1
6	7	일도2동	175708254.5	172483638.6
7	8	이도1동	31397303.2	30035789.2
8	9	이도2동	255695888.2	248269083.6
9	10	삼도1동	69742982.6	67720570.1
10	11	삼도2동	26106419.8	24932132.6
11	12	용담1동	35419692.0	35216326.5
12	13	용담2동	72915032.7	75418795.7
13	14	건입동	41389475.8	40624871.2
14	15	화북동	124682884.1	124345833.9
15	16	삼양동	111987443.8	107526223.2
16	17	봉개동	18391509.1	18902417.0
17	18	아라동	125309113.7	122932070.6
18	19	오라동	68496017.6	69092108.4
19	20	연동	211808054.2	213971854.1
20	21	노형동	272145099.9	275663874.0
21	22	외도동	115323432.6	110059215.4
22	23	이호동	26508226.8	27423450.9

	NO	행정동명	7월 배출량(g)	8월 배출량(g)
23	24	도두동	24200120.3	23878433.0
24	25	대정읍	112709096.1	114496605.1
25	26	남원읍	62927050.0	62927050.0
26	27	성산읍	85688760.0	85688760.0
27	28	안덕면	50047290.6	56344248.3
28	29	표선면	46837019.5	40739801.3
29	30	송산동	30833442.4	28054863.4
30	31	정방동	21506441.0	21655820.1
31	32	중앙동	42264521.5	42878033.9
32	33	천지동	30891941.9	30434574.9
33	34	효돈동	27554100.0	27554100.0
34	35	영천동	35074700.0	35074700.0
35	36	동홍동	87768897.9	92756221.8
36	37	서홍동	30670163.7	35284377.7
37	38	대륜동	46746743.5	47563612.8
38	39	대천동	56916306.4	60201412.1
39	40	중문동	66140250.0	66140250.0
40	41	예래동	20158222.7	20543959.2
41	42	알수없음	2244207.2	2244207.2

In [33]: sub.to_csv("7_8월_배출량_예측결과.csv",encoding = "cp949", index = False)