

Cryptography

Dr Hai-Van Dang

Centre for Security, Communications and Network Research

What are these machines?

Learning outcome checklist

- LO1: Recognize cryptographic techniques
- LO2: Encrypt/ decrypt a message with symmetric encryption
- LO3: Encrypt/ decrypt a message with public key encryption
- LO4: Calculate hash value and use it
- LO5: Calculate Message Authentication Code and use it
- LO6: Sign/ verify a message
- LO7: Cryptanalyse (decipher)

Further reading

- LO1, LO2, LO7: Martin, K.M. (2017), Everyday Cryptography: Fundamental Principles and Applications – section 2.1.1, 2.1.2
- LO3: https://www.youtube.com/watch?v=GSIDS_lvRv4
- LO4: https://www.youtube.com/watch?v=8ZtInCIXe1Q,
 https://www.youtube.com/watch?v=b4b8ktEV4Bg
- LO5: https://www.youtube.com/watch?v=MKn3cxFNN1I
- LO6: https://www.youtube.com/watch?v=s22eJ1eVLTU

Session Content

Principles & Terminology

Cryptographic Algorithms

Applied Cryptography

Key Distribution

Cryptanalysis

Conclusions

Principles and Terminology

Introduction

- Transformation of information into an encrypted form that cannot be read by third parties
- Originally used almost exclusively for diplomatic and military communications
 - fundamental change due to public / commercial use of IT-based communications
- May be applied to data communications or stored information

Examples of data communication threats

Interception

A message may be obtained and read by a third party, thus affecting confidentiality

Modification or substitution

A message could be altered or entirely replaced, thus affecting integrity

Blocking

Someone may attempt to block a communication, thus affecting the *availability* of the data

Terminology

Plaintext

 the readable message or data which will be used by the cryptographic process

The quick brown fox jumped over the lazy dog

Ciphertext

 the un-readable message or data which is the outcome of the cryptographic process

%4kigi^5js89t-hlvkn Jp0"390\<0#;e,843of 9=2

Terminology

- Encryption [enciphering]
 - encryption is the process of turning plaintext into ciphertext

- Decryption [deciphering]
 - decryption is the process of turning ciphertext into plaintext.

Terminology

Cryptography

- a cipher system where plaintext is transformed into ciphertext using an algorithm
- at the recipient end, the message is deciphered to recover the original

Cryptanalysis

- used by an interceptor on the ciphertext to determine the plaintext information
- Cryptology = Cryptography + Cryptanalysis

Cryptographic Algorithms

Implementing Cryptography

- Simplest arrangements rely on secrecy of the cryptographic algorithm
 - once discovered all the information is insecure
- Security improved by using a key:
 - constant algorithm, but produces different output depending on key value
 - key can be changed if compromise suspected
 - Number of possible keys = 'key space'
 - problem with key distribution require secure protocols

Basic Cryptographic Techniques

Transposition

Symbols in the plaintext are moved into different positions in the ciphertext.

Substitution

Symbols in the plaintext are replaced with different (usually) symbols in the ciphertext.

Concealment

attack outpost at nine am

A treatise to analyze campus knowledge of undergraduate tenants portrays outright sympathy totally aimed toward regligent idiots notwithstanding elegant imoral mentalities.

Additional

symbols are placed in the ciphertext to conceal the content.

Cryptographic Techniques

Transposition

the method by which symbols in the plaintext are moved into different positions in the ciphertext.

Substitution

the method by which symbols in the plaintext are replaced with different (usually) symbols in the ciphertext.

Concealment

the method by which additional symbols are placed in the ciphertext to conceal the content.

Cryptographic Techniques Transposition

- Rearrangement of the order of bits in a data block according to a fixed permutation
- Only secure if each message has its own transposition
- Simple transposition may be target of brute force attack :
 - attempting each permutation of encrypted text

Transposition Methods

Exercise

1. Encrypt the below plaintext using Matrix Transposition encryption with 4 columns

YOU ARE GOOD

(if the matrix is not full, using X as padding/ to fill up the matrix)

 Decrypt the below ciphertext using Matrix Transposition encryption with 4 columns

GDOAOYDX

(if there is any X at the end of the plaintext, it is the padding that could be removed)

Cryptographic Techniques Substitution

- Systematic replacement of one symbol by another (monoalphabetic cipher)
- Uses a lookup table
- Vulnerable to statistical analysis
 - e.g. based upon frequency of character occurrence
- E.g. Caesar Cipher (3 place offset in alphabet)

Example of Substitution

(Ciphertext)

(Plaintext)

secretmessage

Encrypt

VHFUHWPHVVDJH (Ciphertext)

$$c_i = E(p_i) = p_i + 3$$

Exercise

Encrypt the below plaintext using Caesar cipher with key K=4

YOU ARE GOOD

Decrypt the below ciphertext using Caesar cipher with key K=2
 UVCA YGNN

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y
AABCDEFGHIJKLMNOPQRSTUVWXYZ
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
  F G H I J K L M N O P Q R S T U V W X Y Z A B C D
       J K L M N O P Q R S T U V W X Y Z A B
      J K L M N O P Q R S T U V W X Y Z A B C D E
      KLMNOPQRSTUVWXYZABCDE
    KLMNOPQRSTUVWXYZABCDEFGH
  KLMNOPQRSTUVWXYZABCDEFGHI
   L M N O P Q R S T U V W X Y Z A B C D E F G H
 LMNOPQRSTUVWXYZABCDEFGHI
M M N O P Q R S T U V W X Y Z A B C D E F G H I
N N O P Q R S T U V W X Y Z A B C D E F G H I J
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I
RRSTUVWXYZABCDEFGHIJKLMNOPQ
SSTUVWXYZABCDEFGHI
TTUVWXYZABCDEFGHIJKLMNOPQRS
UUVWXYZABCDEFGHIJKLMNOPQRST
VVWXYZABCDEFGHIJKLMNOPQRSTU
WWXYZABCDEFGHIJKLMNOPQRST
XXYZABCDEFGHIJKLMNOPQRSTUVW
YYZABCDEFGHIJKLMNOPQRSTUVWX
ZZABCDEFGHIJKLMNOPQRSTUVWXY
```

Cryptanalysis of Substitution Ciphers

THIS IS A TEST => WKLV LV D WHVW

- Spaces in ciphertext give sentence structure
- Substitute small words in ciphertext
- Guess repeated characters
- Apply logic to the rest of the message
- Easy to break based on rules of English

Letter frequencies in English text

Source: Wikipedia

Letter frequencies in English text

Source: Wikipedia

Cryptographic Techniques Polyalphabetic – Vigenere Cipher

YOU ARE GOOD


```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
AABCDEFGHIJKLMNOPQRSTUVWXYZ
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
CCDEFGHIJKLMNOPQRSTUVWXYZAB
DDEFGHIJKLMNOPQRSTUVWXYZABC
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
GGHIJKLMNOPQRSTUVWXYZABCDEF
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
IIIJKLMNOPQRSTUVWXYZABCDEFGH
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
LLMNOPQRSTUVWXYZABCDEFGHIJK
M M N O P Q R S T U V W X Y Z A B C D E F G H I
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
QQRSTUVWXYZABCDEFGHIJKLMNOP
RRSTUVWXYZABCDEFGHIJKLMNOPQ
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
TTUVWXYZABCDEFGHIJKLMNOPQRS
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
VVWXYZABCDEFGHIJKLMNOPQRSTU
WWXYZABCDEFGHIJKLMNOPQRSTUV
XXYZABCDEFGHIJKLMNOPQRSTUVW
YYZABCDEFGHIJKLMNOPQRSTUVWX
ZZABCDEFGHIJKLMNOPQRSTUVWXY
```

Cryptographic Techniques Concealment

- Introduces additional symbols in the ciphertext to conceal the content
- E.g. example below introduces a random character after every valid character

Plaintext	С		0		D		Е		D
Ciphertext	F		R		G		Ι		G
Concealment	F	X	R	С	G	D	Н	Z	G

 Can give considerable security, but can greatly expand the message

Scatyle cipher – what is the underlying cryptographic technique?

Encrypt (by sender Alice)

menti

Ciphertext

STDTPAETAURARNAC

Decrypt (by recipient Bob)

Decrypt

Cryptographic Techniques Product Ciphers

- Combine two or more of the basic methods
- Claude Shannon showed that alternating approaches can produce strong ciphers from weak components
 - provides the basis for more complex algorithms to be introduced later
- A very simple example, using just one instance of substitution, followed by one instance of transposition is as follows . . .

Product Cipher: Example

Т	Н		S		S	Ш	Z	С	R	Y	Р	Т	Е	D
W	K	L	V	L	V	Н	Ø	H	C	В	S	V	I	G

Substitution (using Caeser)

Transposition

W K L V
L V H Q
F U B S
W H G

WLFW KVUH LHBG VQS

Ciphertext

One-Time Pad

- A one-time pad is a key sequence at least as long as plaintext
- Each side of the communication has an identical pad
- It is a perfect cipher system, in the sense that no matter how much computational power you throw at the ciphertext, you cannot break the ciphertext
- However, it is difficult to use in applications which consume a large amount of key material
- OTPs also provide only confidentiality, not data integrity

Vernam Cipher or One-time pad

- By Gilbert Vernam in 1918 at AT&T.
- Against cryptanalysis of polyalphabetic ciphers
- Key length = message length
- No statistical relationship between key and plaintext.

- Resume at 12.00
- Check in: BD JQ UZ

Symmetric Algorithm

What symmetric encryption is being used?

- iCloud: 128-bit AES
- Facetime, iMessage: 256-bit AES in CTR mode
- Whatsapp: 256-bit AES in CBC mode
- Adobe Reader: supports 256-bit AES
- SSL/TLS: allows to use AES

https://support.apple.com/en-us/HT202303

Asymmetric Cryptography

- AKA Public Key Cryptography
- Solves the key distribution problem :
 - based on a pair of keys per user
 - messages for user are encrypted using freely available public key
 - can only be decrypted using private key known only to the user and never shared
 - knowledge of the public key does not give any clue to the private key

Public Key Cryptography

- Originally due to Diffie and Hellman (1976), and independently discovered by Ellis at GCHQ (1970)
- Secret key cryptography shares a secret, the key. This must be distributed somehow prior to any secured communications
- The essence of public key cryptography is that two related keys are used:
 - Alice produces two keys, the public key K_A , and the secret key K_A^{-1} . Although Alice can easily generate this keypair, it should be difficult for Charlie, who only has K_A , to compute K_A^{-1} .

Public Key Cryptography

- With this property in mind, Alice can publish the key with the legend "This is Alice's public key"
- Bob can then create a message M, which he encrypts using Alice's public key:

$$C=E_{KA}(M)$$

• Alice, as the sole possessor of K_A^{-1} computes:

$$M=D_{KA-1}(C)$$

• However, Charlie can publish K_x and mark it as 'this is Alice's public key'. Then when Bob creates:

$$C=E_{Kx}(M)$$

• Only Charlie (who holds K_X^{-1}) can decrypt it

Public Key Generation

- Public key systems commonly based on one of 3 types of mathematical problem computationally difficult):
 - Integer Factorisation Problem (e.g. RSA)
 - Discrete Logarithm Problem (e.g. DSA)
 - Elliptic Curve Discrete Logarithm Problem
- None of the underlying mathematical problems have been proven to be intractable
- However, they are believed to be intractable :
 - years of intensive study have failed to yield efficient algorithms to solve them.

Encrypt/ decrypt (confidentiality)

- Senders: students, recipient: lecturer
- Lecturer publishes public information: N=33, public key
 e=3
- Go to

https://people.cs.pitt.edu/~kirk/cs1501/notes/rsademo/bob.html

- Choose "Encryption Page"
- Encrypt using RSA with
- "Pick a letter to cipher" means your plaintext
- "Enter Alice' exponent key, E" means the recipient's public key e=3
- "Enter Alice N's value" means the public information N=33
- **Choose Encrypt**
- Write your ciphertext to Menti

Message authentication (integrity)

- Sender: lecturer, recipients: students
- Lecturer sends the combined information: (plaintext=B, encrypted message=32,N=65, public key=29)
- Go to

https://people.cs.pitt.edu/~kirk/cs1501/notes/rsademo/bob.html

- Choose "Decryption Page"
- Decrypt using RSA with
- "Enter the encrypted message": 32
- "Enter your N value": 65
- "Enter your private key": 29

Choose Proceed

Is the decrypted message similar to the received plaintext (B)? Write your plaintext to Menti

Message Integrity & Authentication

One Way Hash Function

- To ensure integrity a mechanism is required that can create a "fingerprint" of the data
- Hash functions allow us to take a variable length input and produce a fixed length output that "uniquely" fingerprints the input
- Key characteristics:
 - Given *M*, it is easy to compute *h*
 - Given h, it is hard to compute M such that H(M) = h
 - Given M, it is hard to find another message M', such that H(M)=H(M')

One-Way Property

One Way Hash Function

A hash function accepts a variable-size message M as input and produces a fixed-size output, referred to as a hash value/ hash code H(M)

Calculate hash

- Choose a message
- Calculate hash value using https://academo.org/demos/SHA-256-
 hash-generator/
- Change only 1 letter of your message
- Re-calculate hash value using https://academo.org/demos/SHA-256-
 hash-generator/
- Compare it with the previous hash value

Birthday Attack

- Two Brute Force attacks against one-way hash functions:
 - An adversary wants to find two random messages , M and M' such that H(M)=H(M')
 - Finding two messages that hash to the same value requires 2^{m/2} random messages
 - A 64-bit hash would take a machine capable of 1 million hashes per second could find a pair of messages in about an hour
- This is known as a Birthday attack.
- It is significantly different to the second attack:
 - Given the hash of a message, H(M), an adversary creates another message, M' such that H(M)=H(M')
 - This is a much more difficult task to achieve finding a message, *m* that hashes to a given hash requires hashing 2^m random messages
 - A 64-bit hash would take a machine capable of 1 million hashes per second 600,000 years to find a second message

Message Authentication Codes

- MAC a key dependent one-way hash function
 - Exactly the same operation as one-way hash functions except only someone with the key is able to verify the hash.
 - Provides authenticity of the message
 - Does not provide confidentiality
- A person could use a MAC to ensure his files have not been altered.
- Simple MAC use a one-way hash function with a symmetric key
- Any MAC can be made into a one-way hash function by simply making the key public

Message authentication (integrity)

- Sender: lecturer, recipients: students
- Lecturer sends the combined information: (plaintext="class at 11am", secret key=pass, hash code=
 61f44a70b686df32b7daa62346d661062fb118a6b8ea866a61049a30d8d74f36)
- Go to

https://academo.org/demos/SHA-256-hash-generator/

Calculate hash code of the combined message of plaintext and secret key (class at 11ampass)

Is the hash code similar to the received one?

- Message: asdfmovieisgreat
- Received Hash code:
 2a43fd82a10c447e171bf266f43c1be95e0c8ecb14d670ed19fd8dfc49ac6df7
- MITM

asdfmovieisgreat -> modify to asdfmovieisnotgreat

Does not know key

Received hash code:

76a2fa0af8d111dd0c66ea1d4addb24f35e16b6766caa2b1cc580182009aa8f9

E

Calculated hash code:

f43b237c30ac2c6024cc9663e2d9ea632b4cd3cd5ea5b6c27ac7e630381e3f36

Fake MAC

- Get the message of the volunteering group
- Calculate a hash value
- Compare it with the true hash value

Digital Signature

- If E and D are left and right inverses of each other, we can use them for message authenticity as well as confidentiality
- Alice can take her message and subject it to decryption: (encrypt using private key)

$$S=D_{KA-1}(M)$$

 Anyone with K_A can use it to recover M (decrypt using public key)

$$M=E_{KA}(S)$$

This decryption S is usually called a digital signature

Encryption and Signature

Sign the document

Alice

- Message: E
- Private key: 43
- Public: 85
- Sign(E) = Encrypt_RSA(E, key = 43) = 83 (signature)

Alice sends (E,83) to Bob

Bob: verify the signature

Verify(83): Decrypt_RSA(83, key=3)=E

Verify signature

- Menti
- Receive the public key
- Receive the message and its signature
- Verify the message by using RSA decryption with the provided key

Fake signature

- Given the message
- Can you fake the signature?

Using keys

Required action	Whose key	Key type
Send an encrypted message	Receiver's	Public
Sign a message	Sender's	Private
Decrypt an encrypted message	Receiver's	Private
Authenticate a signed message	Sender's	Public

Key Distribution

Key Management

- Where are keys generated?
- How are keys generated?
- Where are keys stored?
- How do they get there?
- Where are the keys actually used?
- How are keys revoked and replaced?
- Protect keys:
 - Systems security, access control mechanisms
- Cryptography is a translation mechanism, converting a communications security problem into a key management problem...and ultimately into a computer security problem

Cryptanalysis

Cryptanalysis

- Cryptanalysis is the science of recovering the plaintext of a message without access to the key
 - Although successful cryptanalysis may recover the key
- Fundamental assumption in cryptanalysis:
 - Secrecy must reside in the key not the algorithm
 - The cryptanalyst has complete details of the cryptographic algorithm
 - In a real-world situation it is unlikely that the cryptanalyst has so much information
 - However, if the cryptanalyst is unable to break the algorithm with knowledge of the system, they certainly are not going to be able to break the system without the knowledge

Cryptanalysis

- menti
- 1. Ciphertext: UUNAQMT
- 2. Cryptanalyse using Brute force attack https://www.dcode.fr/transposition-cipher
- 3. Write the plaintext to menti

Conclusions

Conclusions

- Cryptography enables you to construct a secure logical channel over an insecure physical connection
- Currently most attackers will seek to attack vulnerabilities other than cryptanalysis
- Cryptography is not the holy grail of security
- Only through careful systems planning can encryption operate effectively
- Systems security has an integral role to play in security provisioning

Dr Hai-Van Dang

hai-van.dang@plymouth.ac.uk

Centre for Security, Communications & Network Research www.plymouth.ac.uk/cscan