```
In [1]:
         import numpy as np
         import pandas as pd
In [2]: df = pd.DataFrame(np.arange(1,26))
In [3]:
         df
Out[3]:
              0
           0
              1
           1
              2
           2
              3
              4
           3
              5
           5
              6
              7
           6
           7
              8
           8
              9
           9
             10
          10
             11
             12
          11
          12
             13
          13
            14
          14
             15
          15
            16
            17
          16
          17
             18
          18
             19
          19
             20
          20 21
             22
          21
          22
             23
          23 24
          24 25
         df = pd.DataFrame(np.linspace(1, 20, num=50))
```

In [5]: df

Out[5]:

	0
0	1.000000
1	1.387755
2	1.775510
3	2.163265
4	2.551020
5	2.938776
6	3.326531
7	3.714286
8	4.102041
9	4.489796
10	4.877551
11	5.265306
12	5.653061
13	6.040816
14	6.428571
15	6.816327
16	7.204082
17	7.591837
18	7.979592
19	8.367347
20	8.755102
21	9.142857
22	9.530612
23	9.918367
24	10.306122
25	10.693878
26	11.081633
27	11.469388
28	11.857143
29	12.244898
30	12.632653
31	13.020408
32	13.408163
33	13.795918
34	14.183673

```
temp-163759522588539055
                     0
          35
             14.571429
             14.959184
          36
             15.346939
          37
          38
             15.734694
             16.122449
          39
             16.510204
          40
             16.897959
          41
             17.285714
             17.673469
             18.061224
             18.448980
          45
             18.836735
          46
              19.224490
              19.612245
          48
             20.000000
In [6]:
         my_dict = {
              'a':np.arange(1,11),
              'b':np.linspace(1,50, num=10),
              'c':np.ones(10),
              'd':np.zeros(10),
              'e':np.empty(10),
              'f':np.linspace(1,100, num=10),
              'g':np.arange(4,41,4)
         df = pd.DataFrame(my_dict)
In [7]:
         print(df)
In [8]:
             а
                          b
                               c
                                     d
                                                      e
                                                              f
                                                                  g
             1
                  1.000000
                             1.0
                                   0.0
                                        3.952525e-323
                                                           1.0
                                                                  4
         1
             2
                  6.44444
                                                          12.0
                             1.0
                                   0.0
                                         0.000000e+00
                                                                  8
         2
              3
                 11.888889
                             1.0
                                   0.0
                                        7.862656e-312
                                                          23.0
                                                                 12
         3
             4
                 17.333333
                             1.0
                                   0.0
                                        7.862656e-312
                                                          34.0
                                                                 16
                             1.0
             5
                 22.777778
                                   0.0
                                        7.862656e-312
                                                          45.0
                                                                 20
                 28.22222
                             1.0
                                  0.0
                                        7.862656e-312
                                                          56.0
                                                                 24
                                                          67.0
         6
                 33.666667
                             1.0
                                   0.0
                                        7.862656e-312
                                                                 28
```

```
https://htmtopdf.herokuapp.com/ipynbviewer/temp/bd7b79f31b882ecd50dcb9c9f7d08cf4/Pandas-checkpoint.html?t=1637595221446
```

7

8

In [11]:

8

9

10

39.111111

44.555556

50.000000

1.0

1.0

1.0

help(np.linspace(1,20,num=10))

0.0

0.0

0.0

7.862656e-312

7.862656e-312

7.862679e-312

78.0

89.0

100.0

32

36

40

```
In [12]:
          df = pd.DataFrame(np.array([[10,20,30],[40,50,60],[70,80,90]]), columns=['c1',
          'c2', 'c3'])
In [13]:
Out[13]:
                c2 c3
             с1
                 20
                    30
             10
             40
                 50
                    60
           2 70
                80 90
In [14]: df.loc[1]
Out[14]: c1
                40
          c2
                50
          с3
                60
          Name: 1, dtype: int32
In [15]: | df.loc[0]
Out[15]: c1
                10
          c2
                20
          с3
                30
          Name: 0, dtype: int32
In [17]: df['c1']
Out[17]: 0
               10
               40
               70
          Name: c1, dtype: int32
In [18]: df['c2']
Out[18]:
               20
               50
               80
          Name: c2, dtype: int32
In [19]:
         df['Total'] = df['c1'] + df['c2']
In [20]:
          df
Out[20]:
                c2 c3 Total
             с1
             10
                 20
                    30
                          30
             40
                 50
                    60
                          90
           2 70
                80
                    90
                         150
```

Out[21]:

	Name_of_Company	Unit_cars	Sales	Prod_Cost	Price
0	TATA	10000	6000	600000	800000
1	MAHINDRA	20000	12000	600000	900000
2	TESLA	15000	7500	600000	1000000
3	FORD	5000	2500	600000	800000
4	TOYATO	7000	3500	600000	600000
5	BMW	4000	2000	600000	1100000

```
In [22]: df['Profit'] = df['Price'] - df['Prod_Cost']
```

In [23]: df

Out[23]:

	Name_of_Company	Unit_cars	Sales	Prod_Cost	Price	Profit
0	TATA	10000	6000	600000	800000	200000
1	MAHINDRA	20000	12000	600000	900000	300000
2	TESLA	15000	7500	600000	1000000	400000
3	FORD	5000	2500	600000	800000	200000
4	TOYATO	7000	3500	600000	600000	0
5	BMW	4000	2000	600000	1100000	500000

```
In [25]: df['Percent']= df['Profit'] / df['Prod_Cost'] * 100
```

In [26]: df

Out[26]:

	Name_of_Company	Unit_cars	Sales	Prod_Cost	Price	Profit	Percent
0	TATA	10000	6000	600000	800000	200000	33.333333
1	MAHINDRA	20000	12000	600000	900000	300000	50.000000
2	TESLA	15000	7500	600000	1000000	400000	66.666667
3	FORD	5000	2500	600000	800000	200000	33.333333
4	TOYATO	7000	3500	600000	600000	0	0.000000
5	BMW	4000	2000	600000	1100000	500000	83.333333

```
In [27]: | neq_df = df.to_csv('car_data.csv')
```

In [28]: df1 = pd.read_csv('car_data.csv')

In [29]: df1.head()

Out[29]:

	Unnamed: 0	Name_of_Company	Unit_cars	Sales	Prod_Cost	Price	Profit	Percent
0	0	TATA	10000	6000	600000	800000	200000	33.333333
1	1	MAHINDRA	20000	12000	600000	900000	300000	50.000000
2	2	TESLA	15000	7500	600000	1000000	400000	66.666667
3	3	FORD	5000	2500	600000	800000	200000	33.333333
4	4	TOYATO	7000	3500	600000	600000	0	0.000000

In [30]: df1.tail()

Out[30]:

	Unnamed: 0	Name_of_Company	Unit_cars	Sales	Prod_Cost	Price	Profit	Percent
1	1	MAHINDRA	20000	12000	600000	900000	300000	50.000000
2	2	TESLA	15000	7500	600000	1000000	400000	66.666667
3	3	FORD	5000	2500	600000	800000	200000	33.333333
4	4	TOYATO	7000	3500	600000	600000	0	0.000000
5	5	BMW	4000	2000	600000	1100000	500000	83.333333

In [31]: df1.head(2)

Out[31]:

	Unnamed: 0	Name_of_Company	Unit_cars	Sales	Prod_Cost	Price	Profit	Percent
0	0	TATA	10000	6000	600000	800000	200000	33.333333
1	1	MAHINDRA	20000	12000	600000	900000	300000	50.000000

In [34]: new_json = df.to_json('car_data1.json')

```
In [35]:
          df2 = pd.read_json('car_data1.json')
In [36]:
Out[36]:
                                                                    Profit
              Name of Company Unit cars
                                         Sales Prod Cost
                                                             Price
                                                                            Percent
           0
                          TATA
                                   10000
                                          6000
                                                   600000
                                                           800000
                                                                   200000
                                                                          33.333333
           1
                     MAHINDRA
                                   20000
                                         12000
                                                   600000
                                                           900000
                                                                   300000
                                                                          50.000000
           2
                        TESLA
                                   15000
                                          7500
                                                   600000
                                                          1000000
                                                                   400000
                                                                          66.666667
                         FORD
                                          2500
                                                   600000
                                                                   200000
           3
                                    5000
                                                           800000
                                                                          33.333333
           4
                       TOYATO
                                    7000
                                          3500
                                                   600000
                                                           600000
                                                                           0.000000
           5
                          BMW
                                    4000
                                          2000
                                                   600000
                                                          1100000
                                                                   500000 83.333333
          new html = df.to html('car data.html')
In [37]:
          df = pd.read_html('car_data.html')
In [38]:
In [39]:
          df
Out[39]:
               Unnamed: 0 Name_of_Company
                                             Unit_cars
                                                         Sales
                                                                Prod_Cost
                                                                               Price Profit
                        0
                                                           6000
                                                                              800000
           0
                                       TATA
                                                  10000
                                                                     600000
                                                                                       200000
           1
                        1
                                  MAHINDRA
                                                  20000
                                                         12000
                                                                     600000
                                                                              900000
                                                                                       300000
           2
                        2
                                                           7500
                                                                                       400000
                                      TESLA
                                                  15000
                                                                     600000
                                                                             1000000
           3
                        3
                                                           2500
                                       FORD
                                                   5000
                                                                     600000
                                                                              800000
                                                                                       200000
           4
                        4
                                                   7000
                                                           3500
                                     TOYATO
                                                                     600000
                                                                              600000
                                                                                             0
           5
                         5
                                        BMW
                                                   4000
                                                           2000
                                                                     600000
                                                                             1100000
                                                                                       500000
                 Percent
              33.333333
           1
              50.000000
           2
              66.666667
           3
              33.333333
           4
                0.000000
           5
              83.333333
          df = pd.read csv(r'C:/Users/shyam.DESKTOP-3EM50G2/Desktop/Data Science Batch
In [40]:
          V/Datasets/1_Regression/2_Multivariate_Linear_Regression/autos_dataset.csv')
```

In [41]: df.head()

Out[41]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6
1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6
2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94.5
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4

5 rows × 26 columns

In [42]: df.tail()

Out[42]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	•
200	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1	_
201	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1	
202	-1	95	volvo	gas	std	four	sedan	rwd	front	109.1	
203	-1	95	volvo	diesel	turbo	four	sedan	rwd	front	109.1	
204	-1	95	volvo	gas	turbo	four	sedan	rwd	front	109.1	

5 rows × 26 columns

In [43]: df.shape

Out[43]: (205, 26)

In []: