1 Mathematical Preliminaries and Notation

Sets

A set is a collection of elements, without any structure other than membership. The usual set operations are union (\cup) , intersection (\cap) , difference (-) and complementation defined as

$$S_{1} \cup S_{2} = \{ x : x \in S_{1} \text{ or } x \in S_{2} \},$$

$$S_{1} \cap S_{2} = \{ x : x \in S_{1} \text{ and } x \in S_{2} \},$$

$$S_{1} - S_{2} = \{ x : x \in S_{1} \text{ and } x \notin S_{2} \},$$

$$\overline{S} = \{ x : x \in U \text{ and } x \notin S \}.$$

DeMorgan's laws

$$\overline{S_1 \cup S_2} = \overline{S_1} \cap \overline{S_2},$$

$$\overline{S_1 \cap S_2} = \overline{S_1} \cup \overline{S_2}.$$

A set S_1 is said to be a **subset** of S if every element of S_1 is also an element of S. We write this as

$$S_1 \subseteq S$$
.

If $S_1 \subseteq S$, but S contains an element not in S_1 , we say that S_1 is a **proper subset** of S; we write this as

$$S_1 \subset S$$
.

If S_1 and S_2 have no common element, then the sets are said to be **disjoint**. We write this as

$$S_1 \cap S_2 = \emptyset$$
.

A set is said to be finite if it contains a **finite** number of elements; otherwise it is **infinite**. The set of all subsets of a set S is called the **powerset** of S and is denoted by S. If S is finite, then

$$|2^S| = 2^{|S|}$$
.

The sets whose elements are ordered sequences of elements from other sets are said to be the **Cartesian product** of other sets. For the Cartesian product of n sets, which itself is a set of ordered pairs, we write

$$S = S_1 \times S_2 \times \cdots \times S_n = \{ (x_1, x_2, \cdots, x_n) : x_i \in S_i \}.$$

Suppose that S_1, S_2, \dots, S_n are subsets of a given set S and that the following holds:

- 1. The subsets S_1, S_2, \dots, S_n are mutually disjoint;
- 2. $S_1 \cup S_2 \cup \cdots \cup S_n = S$;
- 3. none of the S_i is empty.

Then S_1, S_2, \dots, S_n is called a **partition** of S.