

Estimation of obesity levels based on eating habits and physical condition Data Set

Python for Data Analysis

Adam Dahmoul

Ferdinand Valancogne

DIA 1

										Gender	Age	Height	Weight
										Female	21.000000	1.620000	64.000000
										Female	21.000000	1.520000	56.000000
										Male	23.000000	1.800000	77.000000
										Male	27.000000	1.800000	87.000000
										Male	22.000000	1.780000	89.800000
											20.976842		131.408528
											21.982942		133.742943
											22.524036		133.689352
											24.361936		133.346641
										Female	23.664709	1.738836	133.472641
			manq			ı y	а ра	s de v	aleurs				
df.des		lude = 'obje		EAVC		MOKE	scc	CALC	MTDANS	NObovosdad			
	Gender fa		vith_overweight		CAEC S	MOKE 2111		CALC 2111	MTRANS	NObeyesdad			
count	Gender fa			2111		MOKE 2111 2	2111	CALC 2111 4	MTRANS 2111 5	NObeyesdad 2111 7			
	Gender fa 2111 2		vith_overweight	2111	CAEC S 2111	2111	2111	2111	2111	2111			
count	Gender fa		vith_overweight 2111 2	2111 2 yes So	CAEC S 2111 4	2111	2111 2 no S	2111	2111	2111			
count unique top	Gender fa		vith_overweight 2111 2 yes	2111 2 yes So	CAEC S 2111 4 metimes	2111 2 no	2111 2 no S	2111 4 ometimes Pu	2111 5 blic_Transportation	2111 7 Obesity_Type_I			
count unique top	Gender fa 2111 2 Male 1068	nmily_history_v	vith_overweight 2111 2 yes	2111 2 yes So	CAEC S 2111 4 metimes	2111 2 no 2067	2111 2 no S	2111 4 ometimes Pu	2111 5 blic_Transportation	2111 7 Obesity_Type_I			
count unique top	Gender fa 2111 2 Male 1068	amily_history_v Height	vith_overweight 2111 2 yes 1726	2111 2 yes So 1866	2111 4 metimes 1765	2111 2 no 2067	2111 2 no S 2015	2111 4 ometimes Pu 1401	2111 5 blic_Transportation 1580	2111 7 Obesity_Type_I			
count unique top free df.des	Gender fa : 2111 2	Height	vith_overweight 2111 2 yes 1726	2111 2 yes So 1866	CAEC S 2111 4 metimes 1765	2111 2 no 2067 CP	2111 2 no S 2015	2111 4 ometimes Pu 1401	2111 5 blic_Transportation 1580	2111 7 Obesity_Type_I			
count count	Gender fa 2111 2 Male 1068 cribe() Age	Height 2111.000000 1.701677	vith_overweight	2111 2 yes So 1866 FCVC 2111.000000	CAEC S 2111 4 metimes 1765 NC 2111.00000	2111 2 no 2067 CP	2111 2 no S 2015 CH2O	2111 4 ometimes Pu 1401 FAF 2111.000000	2111 5 blic_Transportation 1580 TUE 2111.000000	2111 7 Obesity_Type_I			
count unique top free	Gender fa 2 2 111 2 Male 1068 cribe() Age 2111.000000 24.312600	Height 2111.000000 1.701677 0.093305	vith_overweight	2111 2 yes So 1866 FCVC 2111.000000 2.419043	CAEC S 2111 4 metimes 1765 NC 2111.00000 2.68562	2111 2 no 2067 CP 00 211 28	2111 2 no S 2015 CH2O 11.000000 2.008011	2111 4 ometimes Pu 1401 FAF 2111.000000 1.010298	2111 5 blic_Transportation 1580 TUE 2111.000000 0.657866	2111 7 Obesity_Type_I			
count unique top free	Gender fa 2111 2 Male 1068 cribe() Age 2111.000000 24.312600 6.345968	Height 2111.000000 1.701677 0.093305 1.450000	with_overweight 2111 2 yes 1726 Weight 2111.000000 : 86.586058 26.191172	2111 2 yes So 1866 FCVC 2111.000000 2.419043 0.533927	CAEC S 2111 4 metimes 1765 NC 2111.00000 2.68562 0.77803	2111 2 no 2067 CP 00 211 28 39	2111 2 no S 2015 CH2O 11.000000 2.008011 0.612953	2111 4 ometimes Pu 1401 FAF 2111.000000 1.010298 0.850592	2111 5 blic_Transportation 1580 TUE 2111.000000 0.657866 0.608927	2111 7 Obesity_Type_I			
count unique top free	Gender fa 2111 2 Male 1068 cribe() Age 2111.000000 24.312600 6.345968 14.000000	Height 2111.00000 1.701677 0.093305 1.450000 1.630000	vith_overweight 2111 2 yes 1726 Weight 2111.000000 86.586058 26.191172 39.000000	2111 2 yes So 1866 FCVC 2111.000000 2.419043 0.533927 1.000000	CAEC S 2111 4 metimes 1765 NC 2111.00000 2.68562 0.77803 1.00000	2111 2 no 2067 2067 200 211 228 339 000 338	2111 2 no S 2015 CH2O 11.000000 2.008011 0.612953 1.000000	2111 4 ometimes Pu 1401 FAF 2111.000000 1.010298 0.850592 0.0000000	2111 5 blic_Transportation 1580 TUE 2111.000000 0.657866 0.608927 0.000000	2111 7 Obesity_Type_I			
count unique top free	Gender fa 2111 2 Male 1068 4 Cribe() Age 2111.000000 24.312600 6.345968 14.000000 19.947192	Height 2111.000000 1.701677 0.093305 1.450000 1.630000 1.700499	with_overweight 2111 2 yes 1726 Weight 2111.00000 86.586058 26.191172 39.00000 65.473343	2111 2 yes So 1866 FCVC 2111.000000 2.419043 0.533927 1.000000 2.0000000	CAEC S 2111 4 metimes 1765 NC 2111.00000 2.68567 1.00000 2.65873	2111 2 no 2067 CP 00 211 28 39 00 38	2111 2 no S 2015 CH2O 11.000000 2.008011 0.612953 1.000000 1.584812	2111 4 ometimes Pu 1401 FAF 2111.000000 1.010298 0.850592 0.000000 0.124505	2111 5 blic_Transportation 1580 TUE 2111.000000 0.657866 0.608927 0.000000 0.000000	2111 7 Obesity_Type_I			

Height

Weight family_history_with_overweight FAVC FCVC NCP

no

3.0 3.0 Sometimes Gender Age Height Weight FAVC FCVC NCP CAEC **SMOKE** CH20 SCC FAF TUE CALC MTRANS NObeyesdad

3.0 Sometimes print(df.isnull().sum()) family_history_with_overweight

dtype: int64

CAEC SMOKE

3.0 Sometimes

3.0 Sometimes

2.0 3.0 Sometimes

3.0 3.0 Sometimes

2.0 1.0 Sometimes

3.0

3.0 Sometimes

3.0 Sometimes

3.0 3.0 Sometimes

no 2.000000 no 1.728139 no 2.005130 no 2.054193 no 2.852339 no 2.863513

CH2O SCC

no 2.000000

yes 3.000000

no 2.000000

no 2.000000

no 1.676269 no 1.341390 no 1.414209 0.646288 no 1.139107 no 1.026452 0.714137 Sometime

Sometime Sometime Sometime

Frequent

Sometime

TUE

FAF

no 0.000000 1.000000

no 2.000000 0.000000

yes 3.000000 0.000000 Sometime

no 2.000000 1.000000 Frequent

no 0.000000 0.000000 Sometime

CAL

0

```
df['BMI'] = df['Weight']/(df['Height']**2)
```

- After studying the dataset, we decided to add a column containing the BMI of each individual. This will help us visualize some information.
- This choice is due to the fact that NObeyesdad is given according to the BMI. We still wanted to check that.

Here we see that individuals are tidy in the different classes in relation to their BMI.

• We also looked at the distribution of different individuals into the different categories.

- It is noted that individuals are fairly evenly distributed into different categories.
- Let's not forget that 77% of the data was generated synthetically.

.

- We now look at the distribution of individuals according to their gender.
- We almost notice that men in obesity_2 and almost women in obesity_3.

• Another way to visualize the distribution by gender.

There are fairly equivalent distributions in the different categories.

 We see here that men are generally heavier and taller than women.

• On the other hand, it can be said here that gender does not really have an influence on the category of the individual.

 Analysons maintenant les donnés numériques du dataset en fonction de la catégorie.

• On voit ici comme on s'en doutait que le poids est un indice important pour définir la catégorie.

• Now we wanna boxplot the categorical variables, in order to do that we're gonna build a frequency table

	Gender	family_history_with_overweight	FAVC	CAEC	SMOKE	scc	CALC	MTRANS	NObeyesdad
0	Female	yes	no	Sometimes	no	no	no	Public_Transportation	Normal_Weight
1	Female	yes	no	Sometimes	yes	yes	Sometimes	Public_Transportation	Normal_Weight
2	Male	yes	no	Sometimes	no	no	Frequently	Public_Transportation	Normal_Weight
3	Male	no	no	Sometimes	no	no	Frequently	Walking	Overweight_Level_I
4	Male	no	no	Sometimes	no	no	Sometimes	Public_Transportation	Overweight_Level_II
2106	Female	yes	yes	Sometimes	no	no	Sometimes	Public_Transportation	Obesity_Type_III
2107	Female	yes	yes	Sometimes	no	no	Sometimes	Public_Transportation	Obesity_Type_III
2108	Female	yes	yes	Sometimes	no	no	Sometimes	Public_Transportation	Obesity_Type_III
2109	Female	yes	yes	Sometimes	no	no	Sometimes	Public_Transportation	Obesity_Type_III
2110	Female	yes	yes	Sometimes	no	no	Sometimes	Public_Transportation	Obesity_Type_III
2109	Female	yes	yes	Sometimes	no	no	Sometimes	Public_Transportation	Obesity_Type

2111 rows × 9 columns

• We can see here that gender does not really have an impact on the category.

• Let's study whether smoking or eating fat often has an impact on the category.

• We notice that smoking has no real impact unlike eating caloric food often. But let's continue the analysis to be sure.

• We also see here that if there are weight problems in the family, it promotes obesity.

• Etudions la correlation entre les variables numérique.

• These plots show us that some categorical features have an impact on Obesity, let's now check the correlation between these variables and the target :

• Let's first turn all features into numerocal:

ıt	Weight	family_history_with_overweight	FAVC	FCVC	NCP	CAEC	SMOKE	CH2O	scc	FAF	TUE	CALC	MTRANS	NObeyesdad	ВМІ
0	64.000000	1	0	2.0	3.0	2	0	2.000000	0	0.000000	1.000000	3	3	2	24.386526
0	56.000000	1	0	3.0	3.0	2	1	3.000000	1	3.000000	0.000000	2	3	2	24.238227
0	77.000000	1	0	2.0	3.0	2	0	2.000000	0	2.000000	1.000000	1	3	2	23.765432
0	87.000000	0	0	3.0	3.0	2	0	2.000000	0	2.000000	0.000000	1	4	3	26.851852
0	89.800000	0	0	2.0	1.0	2	0	2.000000	0	0.000000	0.000000	2	3	4	28.342381
0	131.408528	1	1	3.0	3.0	2	0	1.728139	0	1.676269	0.906247	2	3	7	44.901475
4	133.742943	1	1	3.0	3.0	2	0	2.005130	0	1.341390	0.599270	2	3	7	43.741923
6	133.689352	1	1	3.0	3.0	2	0	2.054193	0	1.414209	0.646288	2	3	7	43.543817
0	133.346641	1	1	3.0	3.0	2	0	2.852339	0	1.139107	0.586035	2	3	7	44.071535
6	133.472641	1	1	3.0	3.0	2	0	2.863513	0	1.026452	0.714137	2	3	7	44.144338

• We can now see the correlation with NObeyesdad

Modelisation

- First, let's split our data
- We chose the variables to put in our model: Weight, CAEC, family history with overweight, age, CH2O, FAVC, CALC, FAF
- We did not select the BMI because it is directly related to the category.

	Weight	family_history_with_overweight	FAVC	CAEC	CH2O	FAF	CALC
C	64.000000	1	0	2	2.000000	0.000000	3
1	56.000000	1	0	2	3.000000	3.000000	2
2	77.000000	1	0	2	2.000000	2.000000	1
3	87.000000	0	0	2	2.000000	2.000000	1
4	89.800000	0	0	2	2.000000	0.000000	2
2106	131.408528	1	1	2	1.728139	1.676269	2
2107	133.742943	1	1	2	2.005130	1.341390	2
2108	133.689352	1	1	2	2.054193	1.414209	2
2109	133.346641	1	1	2	2.852339	1.139107	2
2110	133.472641	1	1	2	2.863513	1.026452	2

1st Model: SVM (Support Vector Machine) mode

```
from sklearn import metrics
print("Accuracy = ", metrics.accuracy score(y test, y pred SVM))
            0.6585365853658537
Accuracy =
print(classification report(y test, y pred SVM))
              precision
                           recall f1-score
                                                support
                   0.75
                              0.92
                                        0.83
                                                     90
                   0.65
                              0.49
                                        0.56
                                                    103
                                        0.58
                   0.55
                              0.61
                                                     94
                   0.53
                              0.57
                                        0.55
                                                     87
                   0.73
                              0.58
                                        0.64
                                                    114
                   0.68
                              0.61
                                        0.64
                                                     94
                   0.70
                              0.83
                                        0.76
                                                    115
                                        0.66
                                                    697
    accuracy
                    0.66
                              0.66
                                        0.65
                                                    697
   macro avg
weighted avg
                    0.66
                              0.66
                                        0.65
                                                    697
```

An accuracy of 66% is obtained.

2nd Model: boosting model

- The mean squared error (MSE on test set: 0,2891
- After plot the training deviance :

3rd model: Random forest classifier

• We have an accuracy is 82%

	precision	recall	f1-score	support
1	0.85	0.91	0.88	90
2	0.71	0.74	0.72	103
3	0.74	0.74	0.74	94
4	0.65	0.63	0.64	87
5	0.83	0.75	0.79	114
6	0.93	0.96	0.94	94
7	0.96	0.96	0.96	115
accuracy			0.82	697
macro avg	0.81	0.81	0.81	697
weighted avg	0.82	0.82	0.82	697

• The score obtained on the observations not seen by the trees during their construction is 0.8175.

model.oob_score_

0.8175388967468176

 We therefore notice that our models are reliable but that the Random Forest is more reliable than the SVM with 82% accuracy against 64%.

Thank you for your attention!