TÉCNICAS DE ESTÁTICA COMPARATIVA

APLICACIONES MATEMÁTICAS PARA ECONOMÍA Y NEGOCIOS (EAF2010)

FELIPE DEL CANTO

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

PRIMER SEMESTRE DE 2021

MOTIVACIÓN: "ESPIONAJE" CORPORATIVO

■ Una empresa A quiere determinar las ventas de una empresa B.

■ A supone que las ventas siguen el modelo que vimos antes:

$$V(p,A) = 1000(5 - pe^{-kA}).$$

- lacktriangle Pero la empresa A sabe que p y A varían con el tiempo t.
 - **E**s decir, debiéramos escribir A(t) y p(t).
 - ightharpoonup Para mostrar que son funciones del tiempo t.

MOTIVACIÓN: "ESPIONAJE" CORPORATIVO

■ ¿Cómo afecta el tiempo a las ventas de la empresa B?

 \blacksquare ¿Afecta más a través de p o de A?

Veremos una herramienta para descubrirlo.

 \blacksquare En el ejemplo anterior, V depende de t a través de p y A.

- Una opción para calcular $\frac{dV}{dt}$ es reemplazar las expresiones de p y A.
 - ightharpoonup Y nos quedaríamos con una función univariada V(t).

- Pero hay dos problemas:
 - ▶ Puede ser que no conozcamos p(t) y A(t).
 - ▶ Puede no interesarnos el valor, sino que una descripción.

Teorema (Regla de la cadena)

Sea $f(x_1,...,x_n)$ y supongamos que $x_i=x_i(t)$ (todas las variables x_i son funciones de t). Llamemos $g(t)=f(x_1(t),...,x_n(t))$. Entonces

$$\frac{dg}{dt} = \frac{\partial f}{\partial x_1} \cdot \frac{dx_1}{dt} + \dots + \frac{\partial f}{\partial x_n} \cdot \frac{dx_n}{dt}$$

- \blacksquare Aquí t no necesariamente es el tiempo, puede ser cualquier variable.
- A veces, cuando es claro, solo escribimos $\frac{df}{dt}$ y no $\frac{dg}{dt}$.

Ejemplo (Regla de la cadena)

Supongamos que una persona tiene una función de utilidad U(w,e), donde w es su salario y e es el esfuerzo que pone en el trabajo. Tiene sentido además pensar que el salario depende del esfuerzo, por lo que escribimos w(e). ¿Cuál es la utilidad marginal del esfuerzo?

Ejemplo (Regla de la cadena)

¿Qué signos se espera que tengan las derivadas w'(e), $\frac{\partial U}{\partial w}$ y $\frac{\partial U}{\partial e}$? ¿Cómo se interpreta entonces la derivada anterior?

Ejercicio

Repita el ejercicio anterior para $U(w,e) = \ln(w) - e^2$ y $w(e) = \sqrt{e}$. Interprete. ¿Puede encontrar el valor de e que maximiza la utilidad?

Teorema (Fórmula de Leibniz)

Sea f(t,x) una función bivariada, sean a(t) y b(t) funciones derivables. Supongamos que las dos derivadas parciales de f existen y definamos la función

$$F(t) = \int_{a(t)}^{b(t)} f(t, x) dx$$

Entonces, la derivada de F está dada por

$$F'(t) = f(t,b(t))b'(t) - f(t,a(t))a'(t) + \int_{a(t)}^{b(t)} \frac{\partial f}{\partial t}(t,x) dx$$

lacktriangle Notar que cuando t varía, los límites de integración y el integrando cambian.

"Demostración" (Fórmula de Leibniz)

Llamemos H(a,b,t) a la función

$$H(a,b,t) = \int_{a}^{b} f(t,x) dx$$

Según el teorema a y b dependen de t, así que por la regla de la cadena:

$$\frac{dH}{dt} = \underbrace{\frac{\partial H}{\partial a} \cdot a'(t)}_{\text{cambio en el límite inferior cambio en el límite superior cambio en el integrando}}_{\text{cambio en el límite inferior cambio en el límite superior cambio en el integrando}}$$

Las derivadas $\frac{\partial H}{\partial a}$ y $\frac{\partial H}{\partial b}$ se obtienen usando el teorema fundamental del cálculo y $\frac{\partial H}{\partial t}$ simplemente se obtiene derivando dentro de la integral.

Ejemplo (Fórmula de Leibniz)

En una empresa, la utilidad neta y(t) es una función del tiempo t, con $t \in [0, T]$. Para un punto de partida $s \in [0, T]$ el valor presente de las utilidades (futuras) de la empresa se calcula

$$V(s,r) = \int_{s}^{T} y(t)e^{-r(t-s)} dt,$$

donde r es la tasa de descuento. Encuentre $V_s(s,r)$.

Ejercicio

Considere la función N definida por

$$N(t) = \int_{t-T(t)}^{t} n(\tau) e^{-\delta(t-\tau)} d\tau,$$

donde T(t) es una función derivable y positiva, y δ es una constante. Encuentre N'(t).

MOTIVACIÓN: IMPUESTOS

- \blacksquare En el mercado de la bencina existe un impuesto específico t.
 - ► Este impuesto se aplica legalmente a los consumidores.

- Luego, la demanda de bencina es función del precio p y del impuesto, D(t,p).
 - ▶ Supongamos que la oferta solo depende de p, es decir, S = S(p).

Según lo anterior, el equilibrio viene dado por

$$D(t,p) = S(p)$$

MOTIVACIÓN: IMPUESTOS

■ ¿Cómo afecta el impuesto al precio de equilibrio?

■ En general para saber eso querríamos despejar p, ¿se puede?

■ Las respuestas no son obvias e intentaremos dar herramientas para verlo.

FUNCIONES IMPLÍCITAS

■ Cuando escribimos y = f(x), decimos que "y es función de x".

■ Lo vemos porque la relación es **explícita**.

- Pero a veces podemos encontrar funciones **implícitas**.
 - ► A partir de ciertas relaciones entre variables.

FUNCIONES IMPLÍCITAS

Ejemplo (función implícita)

Consideremos la ecuación $x^2+y^2=4$. Los puntos (x,y) que verifican esta relación forman un círculo en el plano.

Gráfico de
$$x^2 + y^2 = 4$$

Es claro que x e y no pueden tener cualquier valor y, de hecho, para un valor dado de x o y hay solo unas pocas opciones para el otro (dos en general). De alguna manera hay una relación **implícita** entre ambas variables

FUNCIONES IMPLÍCITAS

Ejemplo (función implícita)

Supongamos que las utilidades (B) de una empresa vienen dadas por

$$B^2 + \ln B - \sqrt{B_{-i}} = 0$$

donde B_{-i} es la suma de las utilidades de sus competidoras. Esta ecuación determina una relación **implícita** entre B y B_{-i} , pero no veo cómo podemos despejarla. La pregunta es:

¿Es cierto que para cada B_{-i} existe un único B que cumpla la relación? En otras palabras, ¿es la relación implícita una **función**?

FUNCIONES IMPLÍCITAS Y CURVAS DE NIVEL

- Antes de pasar al resultado relevante, pensemos en los ejemplos anteriores.
 - ► En el primero la relación era f(x,y) = 4.
 - ► En el segundo la relación era $g(B, B_{-i}) = 0$.

■ Pareciera ser que estas relaciones implícitas son **curvas de nivel**.

■ Esto será importante para interpretar el teorema principal de este capítulo.

Teorema (Teorema de la función implícita en \mathbb{R}^2)

Sea G(x,y) una función con primeras derivadas continuas. Supongamos que $G(x_0,y_0)=c$ en un cierto punto (x_0,y_0) y que en ese punto $G_y\neq 0$. Entonces, existe una función y(x) (que tiene derivada continua) definida alrededor de x_0 para la cual se cumple:

- 1. G(x,y(x)) = c.
- **2.** $y(x_0) = y_0$.
- 3. $y'(x_0) = -\frac{G_x(x_0,y_0)}{G_y(x_0,y_0)}$.
- ¡Ojo! El teorema dice "existe la función" pero no dice que podemos escribirla.
- Además, dice que la función existe *localmente*, cerca de (x_0, y_0) .

Ejemplo (Teorema de la función implícita, TFI)

Para la ecuación $G(x,y)=x^2+y^2=4$. Tenemos que $G_y(x,y)=2y$, que se anula solo cuando y=0. Luego, en todos los puntos (x_0,y_0) con $y_0\neq 0$, existe una función implícita y(x).

Gráfico de
$$x^2 + y^2 = 4$$

Ejercicio (Teorema de la función implícita)

Para las utilidades de la empresa dadas por $G(B,B_{-i})=B^2+\ln B-\sqrt{B_{-i}}=0$, determine si existe $B(B_{-i})$ y, de existir, calcule su derivada.

- El TFI nos dice cómo calcular la derivada en un punto.
 - Pero en todo punto donde la función implícita exista, la fórmula es la misma.
- También podemos calcularla usando la regla de la cadena:

$$G(x,y(x)) = c \qquad /\frac{d}{dx}$$

$$G_x \cdot \frac{dx}{dx} + G_y \cdot y'(x) = 0$$

$$y'(x) = -\frac{G_x}{G_y}$$

■ Aquí además vemos una razón por la cual queremos que $G_y \neq 0$.

■ El TFI nos dijo cómo es la derivada en un punto dado de la curva de nivel.

■ De aquí es directo encontrar la tangente a F(x,y) = c en (x_0,y_0) :

$$y - y_0 = -\frac{F_x(x_0, y_0)}{F_y(x_0, y_0)}(x - x_0)$$
 (2.1)

- Pero, ¿qué pasa con las curvas de nivel que no siempre son funciones?
 - Es decir, ¿qué pasa cuando $F_y(x_0, y_0) = 0$?

■ Notar que si reescribimos la ecuación anterior:

$$F_x(x_0, y_0) \cdot (x - x_0) + F_y(x_0, y_0) \cdot (y - y_0) = 0$$
(2.2)

entonces pareciera que no hay problemas si $F_y = 0$.

- Cuando $F_y \neq 0$ sabemos que (2.1) y (2.2) son idénticas.
- Pero cuando $F_y = 0$, (2.1) no es válida.
 - ▶ Pero en ese caso lo que ocurre es que la curva de nivel es localmente vertical.
 - ► Y, por lo tanto, (2.2) representa correctamente la recta tangente en ese punto:

$$F_x(x_0, y_0)(x - x_0) = 0$$
 ó $x = x_0$

23 | 5

Caso $F_y \neq 0$, la tangente no es vertical.

Caso $F_y = 0$, la tangente es vertical.

EL GRADIENTE Y LAS CURVAS DE NIVEL

■ Podemos reescribir (2.2) así

$$(x - x_0, y - y_0) \cdot (F_x(x_0, y_0), F_y(x_0, y_0)) = 0$$

donde · es el producto punto entre vectores (recuerden Álgebra Lineal).

■ ¡Pero el segundo término es $\nabla F(x_0, y_0)$!

■ Esto dice que $\nabla F(x_0, y_0)$ es perpendicular a la curva de nivel en (x_0, y_0) .

EL GRADIENTE Y LAS CURVAS DE NIVEL

EL GRADIENTE Y LAS CURVAS DE NIVEL

Proposición (El gradiente es perpendicular a la curva de nivel)

Sea f(x,y) una función con derivadas parciales continuas. Sea (x_0,y_0) un punto de la curva de nivel f(x,y)=c donde $\nabla f(x_0,y_0)\neq 0$. Entonces $\nabla f(x_0,y_0)$ es perpendicular a la tangente de la curva de nivel f(x)=c en el punto (x_0,y_0) .

- Este resultado también vale para funciones multivariadas.
 - ▶ Pero la interpretación geométrica no es tan directa como antes.
- Esto será importantísimo para los capítulos de optimización.

■ Recordemos el modelo de ventas basado en precios y gasto en publicidad

lacktriangle El número de ventas V dependía del precio p y el gasto en publicidad A.

■ La empresa se pregunta, ¿gasto un poco más en publicidad? ¿subo el precio?

■ Podrían calcular *V* para nuevos valores.

■ Pero si la relación es complicada, eso puede ser engorroso.

- ¿Se puede aproximar el resultado?
 - La respuesta es sí y ¡basta con usar derivadas!

■ Si p y A cambian a p + dp y A + dA, el cambio en V, ΔV , es

$$\Delta V = V(p + dp, A + dA) - V(p, A)$$

■ Si dp y dA son muy pequeños (en valor absoluto), entonces

$$\Delta V \approx V_p(p,A) \cdot dp + V_A(p,A) \cdot dA \tag{2.3}$$

■ El lado derecho tiene un nombre especial que definiremos a continuación.

Ejercicio: Muestre que (2.3) es correcta.

Definición (Diferencial total)

Sea $f(x_1,...,x_n)$ una función con derivadas parciales. Definimos el diferencial total de f en el punto x como

$$df = \frac{\partial f}{\partial x_1} \cdot dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$$

 \blacksquare Para una función bivariada f(x,y), su diferencial en un punto (x_0,y_0) es

$$df = f_x(x_0, y_0) \cdot dx + f_y(x_0, y_0) \cdot dy$$

 \blacksquare En el ejemplo anterior, teníamos que, cuando dp y dA eran pequeños,

$$\Delta V \approx dV$$

Ejemplo (Diferencial total)

Para el modelo de ventas que teníamos (con k = 1)

$$V(p,A) = 1000(5 - pe^{-A})$$

La empresa tiene p=1 y A=0 y se pregunta si aumentar p y/o A, ¿qué efectos tiene esto sobre V?

Ejemplo (Diferencial total)

Compare la aproximación dada por el diferencial con el valor real.

Ejercicio (Diferencial total)

Para una función F(x,y) cualquiera, encuentre la pendiente de la tangente a una curva de nivel usando el diferencial total.

- Una persona viraliza una idea que se le ocurrió.
 - ► A medida que pasa el tiempo la gente conoce más.
 - Pero los que la difunden olvidan los detalles.
 - ¿Cuánto sabe cada persona a cada momento?
- Pensemos que el conocimiento *C* de una persona se modela así:

$$C(x,t) = \frac{c}{\sqrt{t}}e^{-\frac{x^2}{at}}$$

- x es la distancia que tiene la persona con la creadora de la idea.
- ▶ t es el tiempo transcurrido desde la viralización.
- ► a y c son constantes.

- ¿Qué tan sensible es el conocimiento a la distancia al creador?
 - La derivada nos da una idea en niveles, pero no en sensibilidad.
 - Nos serviría ver la relación entre cambios porcentuales.

- Pero en dos variables, los cambios porcentuales no son claros.
 - ► De nuevo, debemos recurrir a la "parcialidad".
 - Es decir, a congelar variables.

■ El cambio porcentual en C entre los puntos (x_0,t_0) y (x_1,t_0) es

$$\frac{\overbrace{C(x_1,t_0) - C(x_0,t_0)}^{\Delta_x C}}{C(x_0,t_0)} \times 100$$

 \blacksquare El cambio porcentual en x en esa situación es

$$\underbrace{x_1 - x_0}_{\Delta x} \times 100$$

■ Y, por lo tanto, la razón de cambios porcentuales es

$$\frac{\frac{\Delta_x C}{C} \times 100}{\frac{\Delta x}{x_0} \times 100} = \frac{x_0}{C(x_0, t_0)} \times \frac{\Delta_x C}{\Delta x}$$

■ Si Δx es muy pequeño, entonces

$$\frac{\Delta_x C}{\Delta x} \approx \frac{\partial C}{\partial x}(x_0, t_0)$$

■ Y, por lo tanto, la sensibilidad a cambios en el tiempo es:

$$\frac{x_0}{C(x_0, t_0)} \times \frac{\partial C}{\partial x}(x_0, t_0) = \frac{x_0}{C(x_0, t_0)} \times -\frac{2x_0}{at_0}C(x_0, t_0) = -\frac{2x_0^2}{at_0}$$

■ Lo que se interpreta como

"cambio porcentual en C ante cambios porcentuales (pequeños) en x"

Definición (Elasticidad parcial)

Sea $y = f(x_1, ..., x_n)$ una función multivariada. Definimos la elasticidad parcial de y (ó f) con respecto a x_i en el punto $x^0 = (x_1^0, ..., x_n^0)$ como

$$\epsilon_{y,x_i} = \frac{x_i^0}{f(x_1^0, \dots, x_n^0)} \times \frac{\partial f}{\partial x_i}(x_1^0, \dots, x_n^0) = \frac{x_i^0}{y^0} \times \frac{\partial y}{\partial x_i}$$

donde $y^0 = f(x_1^0, ..., x_n^0)$.

- Observar que la elasticidad también es un concepto local.
 - ► Por lo que su interpretación es local.
 - ▶ Pero también puede verse como una función, si la calculamos en cada punto.

.0

Ejercicio (Elasticidad parcial)

La demanda por dinero real en el modelo Baumol-Tobin es una función

$$M^D(c,Y,i) = \frac{1}{2}\sqrt{\frac{2cY}{i}},$$

donde c es el costo de sacar dinero del banco, Y es el ingreso e i es la tasa de interés. ¿Cuál es la sensibilidad de la demanda de dinero al ingreso, cuando el Y=100, i=0.01 y c=1?

$$\epsilon_{M^D,Y} = \frac{100}{M^D(1,100,0.01)} \times \frac{\partial M^D}{\partial Y}(1,100,0.01).$$

Primero,

$$\frac{\partial M^D}{\partial Y} = \frac{1}{2} \sqrt{\frac{2c}{i}} \times \frac{1}{2\sqrt{Y}} = \frac{1}{4} \sqrt{\frac{2c}{Yi}} \Longrightarrow \frac{\partial M^D}{\partial Y}(1,100,0.01) = \frac{\sqrt{2}}{4}$$

Ejercicio (Elasticidad parcial)

Y como $M^D(1,100,0.01) = 50\sqrt{2}$, entonces

$$\epsilon_{M^D,Y} = \frac{100}{50\sqrt{2}} \times \frac{\sqrt{2}}{4} = \frac{1}{2}$$

Notar que si Y aumenta en 1%, entonces $M^D\approx 50,\!2494\sqrt{2}$, lo que corresponde a un cambio porcentual de

$$\frac{50,2494\sqrt{2} - 50\sqrt{2}}{50\sqrt{2}} \times 100 = 0,4988\%$$

¡que es casi la mitad de 1%!

Ejercicio (Elasticidad parcial)

Calcule $\epsilon_{C,t}(x,t)$ (elasticidad como función) para la función de la motivación:

$$C(x,t) = \frac{c}{\sqrt{t}}e^{-\frac{x^2}{at}}$$

Luego, calcúlela en el punto (1,100).

RELACIÓN CON LA "DERIVADA LOGARÍTMICA"

■ Los cambios porcentuales tienen directa relación con los logaritmos.

 \blacksquare Pensemos en la función univaridada ln(x), su diferencial total es

$$d\ln(x) = \frac{d\ln(x)}{dx} \cdot dx \Longleftrightarrow d\ln(x) = \frac{1}{x} \cdot dx \Longleftrightarrow 100 \cdot d\ln(x) = \frac{dx}{x} \cdot 100$$

 \blacksquare Es decir, el cambio porcentual en x es similar al cambio en su logaritmo.

RELACIÓN CON LA "DERIVADA LOGARÍTMICA"

■ Si la elasticidad es la razón de cambios porcentuales, entonces

$$\epsilon_{y,x_i}$$
 "=" $\frac{\partial ln(y)}{\partial ln(x_i)}$ (la derivada parcial de $\ln(y)$ con respecto a $\ln(x_i)$)

■ De hecho, la igualdad es cierta (veámoslo en 1 variable)

$$\begin{split} y &= f(x) \\ \ln y &= \ln \left\{ f\left(e^{\ln(x)}\right) \right\} \\ \frac{d \ln(y)}{d \ln(x)} &= \underbrace{\frac{1}{f\left(e^{\ln(x)}\right)}}_{\text{derivada del logaritmo}} \times \underbrace{\frac{df}{dx}}_{\text{derivada de } f} \times \underbrace{e^{\ln(x)}}_{\text{derivada de } e^{\ln(x)}} \\ &\stackrel{\text{derivada del logaritmo}}{\text{derivada de } f} \end{split}$$

RELACIÓN CON LA "DERIVADA LOGARÍTMICA"

 \blacksquare Y si reemplazamos $e^{\ln(x)} = x$ y f(x) = y, obtenemos

$$\frac{dy}{d\ln(x)} = \frac{x}{y} \times \frac{dy}{dx} = \epsilon_{y,x}$$

■ Lo mismo aplica para funciones multivariadas, cambiando d por ∂ :

$$\epsilon_{y,x_i} = \frac{x}{y} \times \frac{\partial y}{\partial x_i} = \frac{\partial \ln(y)}{\partial \ln(x)}$$

■ A comienzos de este capítulo hablamos de funciones compuestas.

■ ¿Qué pasa con la elasticidad para este tipo de funciones?

■ Tendremos que usar la regla de la cadena.

Ejemplo (Elasticidad de una función compuesta)

Recordemos el ejemplo de la regla de la cadena, donde la utilidad U depende del salario wy el esfuerzo e. Al mismo tiempo, w=w(e). Para calcular la elasticidad de U con respecto a e basta definir V como la versión univariada de U:

$$V(e) = U(w(e), e)$$

Luego

$$\epsilon_{U,e} = \epsilon_{V,e} = \frac{e}{V} \times \frac{dV}{de}.$$

Y por la regla de la cadena

$$\frac{dV}{de} = \frac{\partial U}{\partial w} \times \frac{dw}{de} + \frac{\partial U}{\partial e}$$

Ejemplo (Elasticidad de una función compuesta)

Juntando todo

$$\varepsilon_{U,e} = \frac{e}{U} \times \left(\frac{\partial U}{\partial w} \times \frac{dw}{de} + \frac{\partial U}{\partial e} \right)
= \frac{e}{U} \times \frac{\partial U}{\partial w} \times \frac{dw}{de} + \frac{e}{U} \times \frac{\partial U}{\partial e}
= \left(\frac{w}{U} \times \frac{\partial U}{\partial w} \right) \times \left(\frac{e}{w} \times \frac{dw}{de} \right) + \frac{e}{U} \times \frac{\partial U}{\partial e}
= \varepsilon_{U,w} \varepsilon_{w,e} + \varepsilon_{U,e}$$

■ Este resultado se puede generalizar.

Teorema (Elasticidad de funciones compuestas)

Sea $y = F(x_1,...,x_n)$ una función multivariada. Supongamos que cada x_i es a su vez una función, $x_i = f^i(t_1,...,t_n)$. Entonces, la elasticidad de y con respecto a t_i está dada por:

$$\epsilon_{y,t_j} = \sum_{i=1}^n \epsilon_{y,x_i} \epsilon_{x_i t_j}$$

Ejercicio (Elasticidad de funciones compuestas)

Suponga que la demanda por juegos de PS4, D, depende del precio de estos (p) y del precio de la consola (q). A su vez, ambos precios dependen del tiempo (t), pero solo el primero depende además del costo de transporte c. Encuentre $c_{D,t}$ y $c_{D,c}$.

- Hay situaciones donde un agente económico busca sustituir bienes o factores.
 - Mantequilla de maní o de avellanas para el desayuno.
 - ► Trabajo o capital para la producción de una empresa.
- \blacksquare Pensando en el segundo caso, digamos que la producción, dados L y K, es

$$F(L,K) = L^{0,7}K^{0,3}$$

- Pensemos que la empresa quiere producir 1 unidad del bien.
 - ► Todas las combinaciones de *K* y *L* que hacen eso se ven en la curva de nivel.

$$L^{0,7}K^{0,3} = 1$$

- \blacksquare La pendiente de la curva de nivel dice cómo sustituir (marginalmente) $K \vee L$.
 - Para mantenernos dentro de la curva de nivel.
- Esa pendiente es, según el TFI,

$$\frac{dK}{dL} = -\frac{\frac{\partial F}{\partial L}}{\frac{\partial F}{\partial K}}$$

■ Y definimos la tasa marginal de sustitución entre K y L como

$$TMS_{L,K} = -\frac{dK}{dL} = \frac{\frac{\partial F}{\partial L}}{\frac{\partial F}{\partial K}}$$

 \blacksquare La TMS nos dice cómo debemos intercambiar L y K para producir lo mismo.

■ Eso cambiará la razón $\frac{K}{L}$, pero ¿qué tan sensible es esta fracción?

- Esa sensibilidad es una elasticidad.
 - ► Específicamente, la de $\frac{K}{L}$ respecto a $TMS_{L,K}$.

Definición (Elasticidad de sustitución)

Sea $F(x_1,x_2)=c$ una curva de nivel de F. Definimos la elasticidad de sustitución entre x_i y x_i como

$$\sigma_{x_i,x_j} = \epsilon_{(x_i/x_j),TMS_{x_j,x_i}} = \frac{TMS_{x_j,x_i}}{(x_i/x_j)} \times \frac{\partial(x_i/x_j)}{\partial TMS_{x_j,x_i}},$$

donde

$$TMS_{x_j,x_i} = \frac{\frac{\partial F}{\partial x_j}}{\frac{\partial F}{\partial x_i}}$$

■ Notar que calculamos la derivada de la fracción $\frac{x_i}{x_i}$ con respecto a la TMS_{x_i,x_i} .

Eiemplo (Elasticidad de sustitución)

Para el ejemplo de la producción, donde $F(L,K) = L^{0,7}K^{0,3}$ tenemos

$$TMS_{L,K} = \frac{\frac{\partial F}{\partial L}}{\frac{\partial F}{\partial K}} = \frac{0.7 \left(\frac{K}{L}\right)^{0.3}}{0.3 \left(\frac{L}{K}\right)^{0.7}} = \frac{7}{3} \times \frac{K}{L}$$

Luego

$$\frac{K}{L} = \frac{3}{7}TMS_{L,K} \Longrightarrow \frac{\partial (K/L)}{\partial TMS_{L,K}} = \frac{3}{7}$$

Juntando todo

$$\sigma_{K,L} = \frac{TMS_{L,K}}{(K/L)} \times \frac{\partial (K/L)}{\partial TMS_{L,K}} = \frac{\frac{7}{3}(K/L)}{(K/L)} \times \frac{3}{7} = 1$$

Ejercicio (Elasticidad de sustitución)

Calcule la elasticidad de sustitución de la siguiente función

$$F(K,L) = A \left(aK^{-\rho} + bL^{-\rho} \right)^{-m/\rho}$$

donde A, a y b son constantes positivas y $\rho > -1$ pero no cero.

- La elasticidad de sustitución tiene implicancias geométricas.
 - ▶ Nos da una idea de la curvatura de la curva de nivel.

La idea es que a mayor σ , la curva de nivel debe estar más acostada.