Лекция 07.02.22

Note 1

662fhe59ca984f5h820ad1041f1eh840

Пусть $f(x):D\subset\mathbb{R}\to\mathbb{R}, a\in D$. Многочлен p(x) степени n такой, что

$$f(x) = p(x) + o((x - a)^n),$$

$$f(a) = p(a),$$

у называется (кли многочленом Тейлора функции f порядка n в точке a.)

Note 2

738279ec323b45e29a170a4e41b4bce0

Если многочлен Тейлора функции f порядка n в точке a существует, то $\{c$ он единственен. $\}$

Note 3

8f605243b193465799ba06e1576d171

В чём ключевая идея доказательства единственности многочлена Тейлора?

Пусть коэффициент r_m при $(x-a)^m$ — первый ненулевой коэффициент в многочлене p-q. Тогда

$$\frac{p-q}{(x-a)^m} \xrightarrow[x\to a]{} r_m,$$

но при этом

$$\frac{p-q}{(x-a)^m} = o((x-a)^{n-m}) \underset{x \to a}{\longrightarrow} 0 \implies r_m = 0.$$

Note 4

f4110a9h63c640he96d810d835d0d1fd

 $_{\{\{c2::\}}$ Многочлен Тейлора функции f порядка n в точке $a_{\{\}}$ обозначается $_{\{\{c1::\}}T_{a,n}f_{\cdot,\}\}}$

«(ксз.: Формула Тейлора для многочленов))»

Пусть $p-\{\{c2\}\}$ многочлен степени не более $n.\}\}$ Тогда $\{\{c1\}\}$

$$p(x) = \sum_{k=0}^{n} \frac{p^{(k)}(a)}{k!} (x - a)^{k}.$$

Note 6

97c12315facb454e987cb94fae99be75

$$|f(x)|_{x=a} \stackrel{\text{def}}{=} \{\{\text{clif} f(a).\}\}$$

Note 7

cf7e5ab30b564c139557fd0a940f8204

$$\left. \left((x-a)^k \right)^{(n)} \right|_{x=a} = \left\{ \begin{bmatrix} 0, & n \neq k, \\ n!, & n = k. \end{bmatrix} \right\}$$

Note 8

9b6c61f4867142bea860ca4d00c07174

В чем основная идея доказательства истинности формулы Тейлора для многочленов?

Записать p(x) с неопределенными коэффициентами и вычислить $p^{(k)}(a)$ для $k=0,1,2,\ldots,n$.

Note 9

7597b782ce5f4e92998cc6445ce6f40e

«псз.: Свойство п раз дифференцируемой функции в »

Пусть {{c2:: $f:D\subset R o \mathbb{R}, a\in D, n\in \mathbb{N}$ и

$$f(a) = f'(a) = \dots = f^{(n)}(a) = 0.$$

 $f(x) = o((x-a)^n), x \to a$

«Определение o-малого в терминах ε, δ .»

Пусть $f,g:D\subset\mathbb{R} o\mathbb{R},$ a — предельная точка D. Тогда

$$\begin{split} f(x) &= o(g(x)), \quad x \to a \iff \\ &\iff \\ &\text{for } \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \cap \dot{V}_\delta(a) \quad |f(x)| \leqslant \varepsilon |g(x)|. \end{split}$$

Note 11

b7ddf1bbcdf84c769dd7b409e5be494d

Какой метод используется в доказательстве свойства n-раз дифференцируемой функции?

Индукция по n.

Note 12

f04179797fd64614827341d42561634

Какова основная идея в доказательстве свойства n-раз дифференцируемой функции (базовый случай)?

Подставить f(a) = f'(a) = 0 в определение дифференцируемости.

Note 13

7a10e93958724ee6b93bc1637a13773f

Каков первый шаг в доказательстве свойства n-раз дифференцируемой функции (индукционный переход)?

Заметить, что из индукционного предположения

$$f'(x) = o((x-a)^n)$$

и расписать это равенство в терминах $\varepsilon, \delta.$

Какие ограничения накладываются на δ в доказательстве свойства n-раз дифференцируемой функции (индукционный переход)?

 $V_{\delta}(a)\cap D$ есть невырожденный промежуток.

Note 15

2506d5781f234e13a94358880699831a

Почему в доказательстве свойства n-раз дифференцируемой функции (индукционный переход) мы можем сказать, что $\exists \delta>0$ такой, что $V_{\delta}(a)\cap D$ есть невырожденный отрезок?

По определению дифференцируемости функции.

Note 16

3ed2cdbb8b444ce991d587d9ed279ed

В чем ключевая идея доказательства свойства n-раз дифференцируемой функции (индукционный переход)?

Выразить $f(x) = f'(c) \cdot (x-a)$ по симметричной формуле конечных приращений и показать, что $|f'(c)| < \varepsilon |x-a|^n$.

Note 17

a08796d96ad841bd91a8e7daaab1857d

Откуда следует, что $|f'(c)|<\varepsilon|x-a|^n$ в доказательстве свойства n-раз дифференцируемой функции (индукционный переход)?

$$|c-a| < \delta \implies |f'(c)| < \varepsilon |c-a|^n < \varepsilon |x-a|^n$$

Note 18

957fd9747bd84545bd6b1cca723d72ba

Пусть
$$f:D\subset\mathbb{R} o\mathbb{R},a\in D,n\in\mathbb{N}$$
, (сел $f(a)=0,$
$$f'(x)=o((x-a)^n),\quad x o a.$$

Тогда
$$f(x)=\{\{c: co((x-a)^{n+1}), \quad x o a.\}\}$$

«{{с3:: Формула Тейлора-Пеано}}»

Пусть $\{(c2): f: D\subset R \to \mathbb{R}, a\in D, n\in \mathbb{N} \text{ и } f \text{ } n \text{ раз дифференцируема в точке } a.$ $\}$ Тогда $\{(c1): n\in \mathbb{N} \text{ и } f \text{ } n \text{ раз дифференцируема } n \text{ раз дифферен$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{n}).$$

Лекция 11.02.22

Note 1

8c823210f5c94ab99024c3e8c3d6778a

$$\{(can \Delta_{a,b})\} \stackrel{\mathrm{def}}{=} \{(can \Delta_{a,b})\} \stackrel{\mathrm{def}}{=} \{(can \Delta_{a,b}), \quad a \leqslant b, \\ [b,a], \quad a \geqslant b. \}$$

Note 2

9755fb6343494fa9b0034b4542e518d3

$$\max \widetilde{\Delta}_{a,b} \triangleq \left\{ (a,b), \quad a \leqslant b, \\ (b,a), \quad a \geqslant b. \right\}$$

Note 3

dbb25fcd6e834aa2ae54ec6ddc0c6787

$$\{\text{(c2::}\ R_{a,n}f\}\} \stackrel{\mathrm{def}}{=} \{\text{(c1::}\ f - T_{a,n}f\}\}$$