- A (hyper-)plane is a set of points $x \in \mathbb{R}^d$ such that $\theta \cdot x + \theta_0 = 0$. Vector θ is normal to the plane. The signed distance of any point x from the plane is $(\theta \cdot x + \theta_0)/\|\theta\|$. The value of distance is positive on the side where θ points to, and negative on the other side.
- A linear classifier with offset: $h(x; \theta) = \text{sign}(\theta \cdot x + \theta_0)$
- Training error (classification error): $\epsilon_n(h) = \frac{1}{n} \sum_{i=1}^n [[y^{(i)} \neq h(x^{(i)})]]$
- Loss functions:

$$z = y(\theta \cdot x + \theta_0)$$
 (agreement)

$$Loss_{0,1}(z) = [[z \le 0]]$$

$$Loss_h(z) = \max\{1 - z, 0\}$$

- SVM: Finds a large margin classifier by minimizing
 - $\frac{1}{n}\sum_{i} \text{Loss}_{h}(y^{(i)}(\theta \cdot x^{(i)} + \theta_{0})) + \frac{\lambda}{2}||\theta||^{2}$ which can be done using stochastic gradient descent (Pegasos).
- Linear regression: finds the parameters of a linear predictor $\theta \cdot x + \theta_0$ by minimizing $\frac{\lambda}{2}||\theta||^2 + \frac{1}{n}\sum_{i=1}^n (y^{(i)} - \theta \cdot x^{(i)} - \theta_0)^2/2$

- Low-rank matrix factorization for collaborative filtering: Minimize $J(U,V) = \sum_{(a,i)\in D} (Y_{ai} [UV^T]_{ai})^2/2 + \frac{\lambda}{2} \sum_{a=1}^n \sum_{j=1}^k U_{aj}^2 + \frac{\lambda}{2} \sum_{i=1}^m \sum_{j=1}^k V_{ij}^2$ Can be solved iteratively by fixing one matrix and using linear regression to find the other.
- Kernels: $K(x, x') = \phi(x) \cdot \phi(x')$

Kernel	form
Linear	$x \cdot x'$
Quadratic	$x \cdot x' + (x \cdot x')^2$
Radial basis	$\exp(- x - x' ^2/2)$

- Kernel Perceptron (with offset): Cycles through each point t=1,...n and checks if $y^{(t)}(\sum_{i=1}^{n} \alpha_i y^{(i)}[K(x^{(i)}, x^{(t)}) + 1]) \leq 0$. If true, $\alpha_t = \alpha_t + 1$.
- Neural Nets:
 - unit i in layer l evaluates its aggregate input based on the previous layer as $z_i^l = \sum_{j=1}^m f(z_j^{l-1}) w_{ji}^l + w_{0i}^l$ and its activation as $f(z_i^l)$
 - common activation functions include ReLU $(f(z) = \max\{0, z\})$, tanh, and the identity function
 - backpropagation: $\delta_j^{l-1} = f'(z_j^{l-1}) \sum_i w_{ji}^l \delta_i^l$
- RNN equations are given if used
- Good luck! ¨