Unsupervised Learning Assignment 1

This notebook contains all the code for the unsupervised learning assignment 1 implementation of Multidimensional Scaling on the UN_Statistics dataset.

Multidimensional scaling (MDS) is a unsupervised, multivariate data analysis technique that is used to visualize the similarity/dissimilarity between samples by plotting points in two dimensional plots.

MDS represents data in a lower-dimensional space, mapped from a higher dimentional space. In this notebook one and two dimentional representations are generated for a higher dimentional data set.

From an alorithmic perspective, MDS uses a dissimilarity matrix to represent the distances between pairs of objects. The input data to the MDS algorithm is this disimilarity matrix.

Environment Setup and Import data files

This notebook is set up to make the results at a reproducable as possible.

```
#setup work space, install packages and import libs
rm(list=ls())
suppressMessages(library(cluster))
suppressMessages(library(MASS))
suppressMessages(library(smacof))
suppressMessages(library(magrittr))
suppressMessages(library(dplyr))
suppressMessages(library(ggpubr))
suppressMessages(library(psych))

#import and sample data, apply seed and sample to get the set of 400 unique data points
statistics <- read.csv("UN_Statistics.csv")
X <- as.matrix(statistics[,-1])
rownames(X) <- statistics[,1]</pre>
```

#data exploration

Country Increase

Life

"factor" "numeric" "numeric" "integer" "numeric" "numeric"

```
rownames(X)
```

```
[1] "Albania"
                             "Argentina"
                                                 "Australia"
    [4] "Austria"
                            "Benin"
                                                 "Boliva"
    [7] "Brazil"
                             "Cambodia"
                                                 "China"
                            "Croatia"
                                                 "El Salvador"
## [10] "Colombia"
                            "Greece"
                                                 "Guatemala"
## [13] "France"
## [16] "Iran"
                             "Italy"
                                                 "Malawi"
                             "Pakistan"
                                                 "Papua new Guinea"
## [19]
       "Netherlands"
## [22] "Peru"
                            "Romania"
                                                 "USA"
## [25] "Zimbabwe"
sapply(statistics,class)
```

IMR

TFR

Classical MDS Scaling

First let's plot the data before we normalize it.

```
d <- dist(X) # euclidean distances between the rows</pre>
#preform clustering so we can allocate colours to the plot
cluster <- hclust(d,method="complete")</pre>
clusvec <- cutree(cluster, k=5)</pre>
scaledDistances <- cmdscale(d) # preform the multidimensional scalling
# create empty plot and then add text and colours. Colours added based on the clustor groups
plot (scaledDistances, xlab="Dimension.1", ylab="Dimension.2",
 main="Metric MDS, Not scaled", type="p", pch=20,ylim = c(-40,90), xlim = c(-7000,16000))
#ensure you list enough colours for the number of clusters
colvec <- c("mediumorchid",</pre>
            "red",
            "green3",
            "blue",
            "black",
            "gold",
            "indianred",
            "moccasin",
            "lightcyan",
            "skyblue")
```

Metric MDS, Not scaled

#Normalized MDS Next we can repeat the process but this time normalize the data scaling

```
# euclidean distances between the rows
d <- dist(scale(X, center=TRUE, scale=TRUE), method="euclidean")</pre>
#preform clustering so we can allocate colours to the plot
cluster <- hclust(d,method="complete")</pre>
clusvec <- cutree(cluster, k=5)</pre>
scaledDistances <- cmdscale(d, k = 2) # preform the multidimensional scalling
# create empty plot and then add text and colours. Colours added based on the clustor groups
plot (scaledDistances, xlab="Dimension.1", ylab="Dimension.2",
 main="Metric MDS, Scaled", type="p", pch=20)
for (i in 1:length(scaledDistances[,1]))
  text (scaledDistances[i,1],
        scaledDistances[i,2],
        rownames(X)[i],
        col=colvec[clusvec[i]],
        cex=0.7,
        pos = 3)
```

Metric MDS, Scaled

Dimentional Plot Generate a one dimentional representation of the data

```
d <- dist(scale(X)) # euclidean distances between the rows</pre>
#preform clustering so we can allocate colours to the plot
cluster <- hclust(d,method="complete")</pre>
clusvec <- cutree(cluster, k=5)</pre>
scaledDistances <- cmdscale(d, eig=TRUE, k=1) # preform the multidimensional scalling
x <- data.frame(scaledDistances$points[,1],1)</pre>
# create empty plot and then add text and colours. Colours added based on the clustor groups
plot (x, xlab="Dimension.1",
  main="Metric MDS 1D, scaled",
  type = 'o',
  pch = '|',
  ylab = ''
  yaxt='n',
  xlim=c(min(x),
         max(x)),
  ylim=c(0.95,1.1))
grid()
for (i in 1:length(x[,1]))
  text (x[i,1],
        1.05,
        rownames(X)[i],
        col=colvec[clusvec[i]],
        cex=0.8,
        srt=90)
```

Metric MDS 1D, scaled


```
# Cmpute MDS
mds <- scale(X) %>%
  dist() %>%
  cmdscale() %>%
  as_tibble()
```

Warning: `as_tibble.matrix()` requires a matrix with column names or a `.name_repair` argument. Using
This warning is displayed once per session.

We can add colours to the plots while clustering them together

```
# K-means clustering
clust <- kmeans(mds, 5)$cluster %>%
  as.factor()
mds <- mds %>%
  mutate(groups = clust)
# Plot and color by groups
ggscatter(mds, x = "Dimension.1", y = "Dimension.2",
          label = rownames(X),
          color = "groups",
          palette = "pal3",
          size = 1,
          ellipse = TRUE,
          ellipse.type = "convex",
          repel = TRUE) +
grids(axis = c("xy", "x", "y"), color = "grey92", size = NULL,
 linetype = NULL)
```


Non-metric MDS

Kruskal's non-metric multidimensional scaling

Sammon's non-linear mapping:

Visualizing a correlation matrix using Multidimensional Scaling

MDS can be also used to reveal a hidden pattern in a correlation matrix.

Correlation actually measures similarity, but it is easy to transform it to a measure of dissimilarity.

MDS Biplot

Visualize underlying variables along with MDS plot

```
d <- dist(scale(X, center=TRUE, scale=TRUE), method="euclidean")
countriesMds <- mds(delta = d, ndim = 2)
plot(countriesMds)
grid()</pre>
```

Configuration Plot


```
biplot <- biplotmds(countriesMds, extvar = X)
plot(biplot, vecscale = 0.3, vec.conf = list(col = "red", length = 0.1),main="")
grid()</pre>
```

