POLITECHNIKA WARSZAWSKA

Wydział Elektroniki i Technik Informacyjnych

Systemy Agentowe

Wieloagentowy system giełdowy

Sprawozdanie końcowe

Autorzy:
Jacek Sosnowski
Maciej Suchecki
Jacek Witkowski

 $\label{eq:prowadzący:} Prowadzący: dr inż. Piotr Andruszkiewicz$

1 Treść zadania

Tytuł Wieloagentowy system gieldowy

Opis Celem projektu jest stworzenie systemu symulacji giełdowej, w której udział biorą dwa typy agentów:

- grające indywidualnie,
- grające w grupie.

Celem każdego z agentów jest podejmowanie takich decyzji o kupnie lub sprzedaży akcji, by uzyskać jak największy zysk. Agenty grające w grupie aby osiągnąć większy zysk niż inne agenty tworzą bański spekulacyjne. Z tego powodu wymieniają ze sobą informacje o aktualnej strategii działania.

2 Opis rozwiązania

System składać się będzie z trzech modułów:

- serwera symbolizującego giełdę,
- agenta indywidualnego,
- agenta grupowego.

Po uruchomieniu symulacji program będzie uruchamiał serwer giełdowy, a następnie inicjalizował zdefiniowaną przez użytkownika liczbę agentów indywidualnych oraz grupowych. Każdy z agentów, po uruchomieniu będzie próbował zarejestrować się w serwerze giełdowym, przy czym agenty grupowe będą automatycznie nawiązywały połączenia również między sobą. Następnie jeden z agentów grupowych zostanie koordynatorem grupy. Potem w pętli wykonują się kolejne iteracje symulacji.

Przebieg iteracji

- 1. Agenty pytają o cenę akcji w poprzedniej iteracji.
- 2. Na podstawie historii cen akcji agenty podejmują decyzje o kupnie lub sprzedaży akcji.
- 3. Agenty zgłaszają serwerowi oferty.
- 4. Agenty czekają na zakończenie iteracji i pobierają rezultat ich transakcji z serwera, aktualizując dane.

Iteracje są powtarzane, dopóki nie zostanie przekroczony ich – zdefiniowany wcześniej – limit, lub użytkownik przerwie wykonywanie symulacji ręcznie.

2.1 Pozostałe założenia

- dostępny jest tylko jeden typ akcji,
- każdy z agentów przy otrzymuje początkowo taką samą ilość pieniędzy i taką samą liczbę akcji,
- każdy z agentów zgłasza tylko jedną ofertę na iterację.

2.2 Opis modułów

2.2.1 Serwer giełdowy

Serwer symbolizujący w symulacji giełdę został napisany w języku Python z wykorzystaniem biblioteki Flask. Biblioteka ta zostałą wykorzystana do obsługiwania zapytań REST, które są używane do komunikacji z agentami. Serwer ma cztery główne zadania:

• komunikacja z agentami,

- nawiązywanie transakcji,
- wyliczanie aktualnej ceny akcji,
- prezentacja przebiegu symulacji.

Serwer giełdy, po uruchomieniu, ustala liczbę dostępnych akcji oraz tworzy historię zmian cen (na podstawie cen akcji firmy Google).

Kontrolowanie przebiegu symulacji W celu kontroli przebiegu symulacji, serwer udostępnia API zgodne ze specyfikacją REST. Dostępne są następujące metody:

Typ oraz	Parametry	Zwracana	Opis
adres		wartość	
GET	-	kod HTML	Metoda służąca wyświetlania
/			aktualnych danych o symulacji
			w przeglądarce.
POST	-	-	Metoda służąca do uruchomie-
/step			nia jednego przebiegu symula-
			cji.
POST	-	-	Metoda służąca do automatycz-
/run			nego uruchomienia symulacji –
			kolejne kroki (sesje) będą wy-
			konywane w równych odstępach
			czasu.

Komunikacja z agentami W celu komunikacji z agentami, serwer również udostępnia *API* zgodne ze specyfikacją *REST*. Dostępne są następujące metody:

Typ oraz	Parametry	Zwracana	Opis
adres		wartość	
GET	-	aktualna iteracja	Metoda służąca do pobierania
/day			aktualnego numeru iteracji sy- mulacji.
POST	_	dane zarejestro-	Metoda służąca do rejestrowa-
/traders		wanego agenta	nia nowego agenta w symulacji.
/ traders		(ID, ilość dostęp-	ma nowego agenta w symulacji.
		nych pieniędzy	
		oraz liczba akcji)	
GET	id identyfikator	• /	Metada alvisas da nabiana
_		9	Metoda służąca do pobiera-
/traders/id	agenta	wanego agenta	nia aktualnego stanu agenta
		(ID, ilość dostęp-	(w szczególności ilości dostęp-
		nych pieniędzy	nych pieniędzy i liczby posiada-
		oraz liczba akcji)	nych akcji).
GET	day numer iteracji	cena akcji w danej	Metoda służąca do pobierania
/stock/price		iteracji	historycznej ceny akcji.
GET	-	tabela z histo-	Metoda służąca do pobierania
/stock/history		rycznymi cenami	całej dostępnej historii cen ak-
			cji.
POST	price cena,	-	Metoda służąca do złożenia
/stock/buy	stocks liczba akcji		oferty zakupu akcji przez agen-
			ta.
POST	price cena,	-	Metoda służąca do złożenia
/stock/sell	stocks liczba akcji		oferty sprzedaży akcji przez
,			agenta.

Wyliczanie ceny akcji Aktualna cena akcji (w danej iteracji) jest wyznaczana na podstawie aktualnych ofert (czyli popytu oraz podaży dla danej akcji) jako średnia cena z transakcji zawartych w danym kroku symulacji.

Prezentacja przebiegu symulacji W trakcie trwania symulacji, serwer będzie udostępniał stronę internetową dostępną z poziomu przeglądarki. Będą na niej dostępne dane nt. aktualnego przebiegu symulacji.

2.2.2 Agent indywidualny

Strategia Jedyne informacje, jakie wpływają na decyzje o kupnie lub sprzedaży akcji przez agenta indywidualnego, to historia zmian cen akcji. W realizowanym projekcie przyjęto, że agent kupuje akcje, jeśli ich cena w ciągu ostatnich k iteracji wzrosła i sprzedaje, jeśli ich cena w ciągu ostatnich k iteracji spadła.

2.2.3 Agent grupowy

Strategia W przeciwieństwie do agentów indywidualnych agenty grupowe podejmują decyzję zarówno na podstawie informacji o zmianach cen akcji, jak i na podstawie informacji o zamiarach innych agentów grupowych. Wszystkie agenty grupowe tworzą jedną grupę, która stara się maksymalizować średni zysk przypadający na członka grupy, poprzez tworzenie baniek spekulacyjnych.

Koordynator podejmuje decyzje o tworzeniu bańki spekulacyjnej od razu po otrzymaniu kompletu informacji o członkach grupy. Wówczas rozgłasza informację o kupowaniu akcji przez k kolejnych iteracji. Po upływie k iteracji agenty otrzymują polecenie sprzedaży wszystkich posiadanych akcji. Następnie, gdy koordynator zauważy, że w ciągu ostatnich n iteracji cena akcji nie spadła bardziej niż o 5%, wysyła polecenie utworzenia kolejnej bańki spekulacyjnej itd.

Komunikacja agentów Agenty grupowe muszą się ze sobą porozumiewać po to, by koordynować swoje akcje dotyczące kupna lub sprzedaży akcji. O akcjach podejmowanych przez agenty grupowe decyduje samodzielnie GroupMaster. Konieczne było zdefiniowanie interfejsu komunikacyjnego właściwego dla tego typu agentów.

Wiadomość	Parametry	Opis
Init	-	wiadomość przesyłana do agenta w celu zainicjo-
		wania go (znak by zaczął działać).
Trade	-	Wysyłana cyklicznie przez agentów do samych
		siebie po to, by wznawiać akcję kupowania-
		/sprzedawania co określony czas.
Buy	część pie-	Wiadomość przesyłana do agenta grupowego
	niedzy jaką	przez GroupMastera w celu nakazania mu ku-
	należy wydać;	powania akcji.
	cena po jakiej	
	należy kupić	
Sell	część akcji jaką	Wiadomość przesyłana do agenta grupowego
	należy sprze-	przez GroupMastera w celu nakazania mu sprze-
	dać; cena po	dawania akcji.
	jakiej należy	
	sprzedać	

Platforma MAS Do implementacji agentów postanowiono wykorzystać język Scala. Do zapewnienia komunikacji pomiędzy agentami grupowymi wykorzystano platformę Akka.