Часть 2. Теорема Безу

Определение 1. Плоской алгебраической кривой называют множество точек плоскости, координаты x_0, y_0 которых удовлетворяют уравнению $A(x_0, y_0) = 0$, где A(x, y) — некоторый многочлен из $\mathbb{R}[x, y]$. Говорят, что многочлен A задает эту кривую.

Задача 1. Нарисуйте плоские кривые, задающиеся следующими многочленами:

а) x-y; б) x^2-y^2 ; в) $y-x^2$; г) x^2+y^2-1 ; д) xy-1; е) x^2y-xy^2+y-x ; ж) ax^2+by^2-1 , где a,b— такие числа, что a>b>0; з) ax^2-by^2-1 , где a,b— такие числа, что a>b>0; и) y^2-x^3 ; к) $y-1-x^3$; л) y^2-1-x^3 ; м) y^2-x-x^3 ; н) $y^2-x^2-x^3$.

Задача 2*. (*P.Хартсхорн*) Какому из уравнений соответствует каждая из кривых, изображённых на рис. справа:

- a) $x^2 = x^4 + y^4$;
- **6)** $xy = x^6 + y^6;$
- **B)** $x^3 = y^2 + x^4 + y^4$;
- $\mathbf{r)} \ \ x^2y + xy^2 = x^4 + y^4.$

Задача 3. Пусть A(x,y) — такой многочлен из $\mathbb{R}[x,y]$, что $A(x_0,y_0)=0$ при всех $x_0,\ y_0\in\mathbb{R}$. Докажите, что тогда A(x,y) — нулевой многочлен.

Задача 4. Пусть A, B — различные многочлены из $\mathbb{R}[x,y]$. Может ли система A(x,y) = 0, B(x,y) = 0 иметь конечное число решений, бесконечное число решений?

Задача 5. Дайте определение взаимно простых многочленов в $\mathbb{R}[x,y]$ и в $\mathbb{R}(y)[x]$.

Задача 6. а) Верно ли, что для любых двух взаимно простых многочленов A, B из $\mathbb{R}[x,y]$ найдутся такие многочлены U, V из $\mathbb{R}[x,y]$, что AU+BV=1? 6) Верно ли, что для любых двух взаимно простых многочленов A, B из $\mathbb{R}(y)[x]$ найдутся такие многочлены U, V из $\mathbb{R}(y)[x]$, что AU+BV=1? в) Докажите, что для любых двух взаимно простых многочленов A, B из $\mathbb{R}[x,y]$ найдутся такие многочлены U, V из $\mathbb{R}(y)[x]$, что AU+BV=1.

Соглашение. Все рассматриваемые далее многочлены принадлежат $\mathbb{R}[x,y]$.

Задача 7. Докажите, что если многочлены A(x,y) и B(x,y) взаимно просты, то система A(x,y)=0, B(x,y)=0 имеет конечное число решений.

Задача 8. Решите систему уравнений

$$\begin{cases} 6y^2 + 2x^2 - 23xy + 39y + 6x &= 0, \\ 6y^3 + 2x^3 - 2xy^2 + 6x^2 - 9xy - 6y^2 - 27y &= 0. \end{cases}$$

Задача 9. Пусть A(x,y), B(x,y) — ненулевые многочлены. Докажите, что если система A(x,y) = 0, B(x,y) = 0 имеет бесконечное число решений и B неприводим, то A делится на B.

Задача 10. Можно ли на плоскости задать многочленом ветвь гиперболы?

Задача 11. Еще Исаак Ньютон заметил следующий интересный факт, называемый теоремой Безу: если A(x,y) и B(x,y) — ненулевые взаимно простые многочлены, то система A(x,y)=0, B(x,y)=0 имеет не более $\deg A \cdot \deg B$ решений. Докажите теорему Безу для произвольного ненулевого многочлена A, взаимно простого с многочленом B, если B —

а) ненулевое число; б) многочлен первой степени; в) произведение нескольких многочленов первой степени; г) многочлен $x-y^2$; д) многочлен xy-1; е) многочлен y^2-x^3 ;

ж)* многочлен $x^2 + y^2 - 1$; з)* неприводимый многочлен второй степени.

Задача 12**. Докажите теорему Безу в общем случае.

Задача 13. (M.Берже, C.В.Маркелов) На плоскости даны парабола $y=x^2$ и окружность, имеющие ровно две общие точки: A и B. Оказалось, что касательные к окружности и параболе в точке A совпадают. Обязательно ли тогда касательные к окружности и параболе в точке B также совпадают?