# Algoritmos y Estructuras de Datos - Curso 2023 - Parcial Módulo 1 Sábado 6 de Mayo de 2023

### TEMA 2

| Apellido | Nombre | Legajo | Corrigió |  |  |
|----------|--------|--------|----------|--|--|
|          |        |        |          |  |  |

| Ejercicio 1 | Ejercicio 2 | Ejercicio 3 | Ejercicio 4 | Total |  |  |
|-------------|-------------|-------------|-------------|-------|--|--|
|             |             |             |             |       |  |  |

# Ejercicio 1 -- 5 puntos

Escribir en una clase **ParcialArboles** que contiene <u>UNA ÚNICA</u> variable de instancia de tipo ArbolBinario de valores enteros **NO** repetidos. El método público debe tener la siguiente firma:

public Boolean isTwoTree (int num)

El método devuelve true si el subárbol cuya raíz es "num", tiene en su subárbol izquierdo la **misma** cantidad de árboles con dos **hijos** que en su subárbol derecho. Y falso en caso contrario.

#### Consideraciones:

- Si "num" no se encuentra en el árbol, devuelve false.
- Si el árbol con raíz "num" no cuenta con una de sus ramas, considere que en esa rama hay -1 árboles con dos **hijos**.

Por ejemplo, con un árbol como se muestra en la siguiente imagen:



Si **num = 2** devuelve **true** ya que en su rama izquierda hay 2 árboles con dos hijos (árbol con raíz 7 y árbol con raíz 55) y en la rama derecha también hay 2 (árbol con raíz -5 y árbol con raíz 18).

Si **num = 7** devuelve **false**, ya que en su rama izquierda hay 0 árboles con dos hijos y en la rama derecha hay 1 (árbol con raíz 55).

Si **num = -3** devuelve **true**, ya que al no tener rama izquierda y rama derecha retorna para ambas -1.

Si **num = 4** devuelve **false**, ya que al no tener rama izquierda tiene -1 árboles con dos hijos y en su rama derecha hay 1 árbol (árbol con raíz 18) con dos hijos.

Si **num = 55** devuelve **true**, ya que en su rama izquierda hay 0 árboles con dos hijos y en la rama derecha también hay 0 árboles con 2 hijos.

### Tenga en cuenta que:

- 1. No puede agregar más variables de instancia ni de clase a la clase ParcialArboles.
- 2. Debe respetar la clase y la firma del método indicado.
- 3. Puede definir todos los métodos y variables locales que considere necesarios.
- 4. Todo método que no esté definido en la sinopsis de clases debe ser implementado.
- 5. Debe recorrer la estructura solo 1 vez para resolverlo

## Ejercicio 2 -- 2 puntos

Construya el árbol de expresión a partir de la siguiente expresión, muestre cada uno de los pasos seguidos hasta completarlo



### Ejercicio 3 -- 1 punto

- a.- ¿Cuál es la cantidad mínima de nodos en un árbol general COMPLETO de grado 4 y altura 3?
  - (a) 85
- (b) **21**
- (c) 22
- (d) **64**
- (e) Ninguna de las anteriores
- b. Dada la Máx-Heap 91, 63, 70, 49, 22, 25, 14, 21, 18, 11. ¿Cuál es la clave del hijo izquierdo de la clave 63, luego de haber insertado la clave 75 ?
  - (a) 25
- (b) 11
- (c) 22
- (d) 49
- c.- Dado el siguiente **árbol general**, ¿Cuál de las siguientes opciones representa el recorrido **Inorden**?



- (a) t f m n b a c g o p h d s q j e k
- (b) t f m n b a o g p c h d s q j e k
- (c) t f m n b a c o g p h d s q j e k
- (d) t f m n b o g p c a h d s q j e k
- (e) Ninguna de las anteriores

| <ul> <li>(a) Exactamente 2<sup>h</sup> nodos hojas</li> <li>(b) Como mínimo 2<sup>h</sup> nodos hojas</li> <li>(c) Como máximo 2<sup>h</sup> nodos hojas</li> <li>(d) Ninguna de las otras opciones</li> </ul> |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|------|--------|--------|--------|--------------|-------|-------------------|---------|---------|--------|----------|
| Ejercicio                                                                                                                                                                                                      | 4  | 2 pı | ınto | S      |        |        |              |       |                   |         |         |        |          |
| Aplique 2 resultado d                                                                                                                                                                                          |    |      |      | nda fa | se del | algori | tmo <b>F</b> | leapS | <b>Sort</b> en la | a sigui | ente Mi | nHeap, | que es e |
|                                                                                                                                                                                                                | 21 | 27   | 23   | 40     | 34     | 29     | 25           | 53    | ]                 |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       | J                 |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |
|                                                                                                                                                                                                                |    |      |      |        |        |        |              |       |                   |         |         |        |          |

d.- Un árbol binario COMPLETO de altura h,  $h \ge 0$  tiene: