1 Vectors and Vector Spaces

§ 1.1 Vector Space: Definitions

Definition 1.1 (Vector spaces). Let F be a field (such as \mathbb{R} , \mathbb{C} , etc.). Suppose that there is a set V equipped with addition $+: V \times V \to V$ and scalar multiplication $\cdot: F \times V \to V$. If V satisfies the following 8 properties (for $a, b \in F$ and $u, v, w \in V$),

- (1) (u+v)+w=u+(v+w)
- (2) v + w = w + v
- (3) $\exists 0 \in V \text{ such that } v + 0 = 0 + v = v$
- (4) For given $v \in V$, $\exists -v \in V$ such that v + (-v) = 0
- (5) (a+b)v = av + bv
- (6) a(v + w) = av + aw
- (7) a(bv) = (ab)v
- (8) $1 \cdot v = v$

then *V* is a **vector space** over *F*. Elements of *F* and *V* are called **scalars** and **vectors**, respectively.

Sets such as F^n (or something like \mathbb{R}^n) are familiar example of vector spaces.

Exercise 1.2. Prove the following.

- (1) The **identity element** $0 \in V$ exists uniquely.
- (2) For $v \in V$, **inverse element** $-v \in V$ exists uniquely.

Proof. (1) Let 0' be another identity element. Then

$$0 = 0 + 0'$$
 (0' is an identity)
= 0' (0 is an identity)

(2) Let w be another inverse element (v + w = 0). Then

$$-v = -v + 0 = -v + (v + w) = (-v + v) + w = 0 + w = w$$

Fall 2024, SNU

Exercise 1.3. Prove the following. $(v \in V, a \in F)$

- (1) 0v = 0
- (2) a0 = 0
- (3) -v = (-1)v
- (4) If $v \neq 0$ and $a \neq 0$, then $av \neq 0$.

Proof. (1) $0v = (0+0)v = 0v + 0v \implies 0v = 0$

- (2) $a0 = a(0+0) = a0 + a0 \implies a0 = 0$
- (3) $v + (-1)v = 1v + (-1)v = (1-1)v = 0v = 0 \implies -v = (-1)v$
- (4) Suppose that av = 0. Then

$$v = 1v = \left(\frac{1}{a} \cdot a\right)v = \frac{1}{a}(av) = \frac{1}{a}0 = 0 \implies \Leftrightarrow$$

Definition 1.4 (Subspaces). Let W be a subset of F-vector space V. If W becomes a F-vector space for the addition and scalar multiplication operations inherited from V, W is a **subspace** of V. We denote this by $W \le V$.

Observation 1.5. For $\emptyset \neq W \subseteq V$, $W \leq V$ if and only if

- (1) $w_1, w_2 \in W \implies w_1 + w_2 \in W$
- (2) $a \in F$, $w \in W \implies aw \in W$

The proof is almost trivial (you may check it by yourself). In short, W becomes a subspace of V if it is closed for the addition and scalar multiplication.

∙જેકુ∾

Lastly, we introduce an extremely important concept.

Definition 1.6 (Isomorphisms). Let V and V' be F-vector spaces. If there exists a bijection $\varphi: V \to V'$ such that

$$\varphi(v+w) = \varphi(v) + \varphi(w), \quad \varphi(av) = a\varphi(v) \quad (a \in F, v, w \in V)$$

then *V* and *V'* are **isomorphic** ($V \simeq V'$). The bijection φ is called an **isomorphism**.

Remark. Isomorphism φ preserves the addition and scalar multiplication, as you can see in its definition. Moreover, if there is an isomorphism between two vector spaces, those two spaces are **identical** *de facto*.

Definition 1.7. Basis of a vector space A non-empty subset of V, $\mathfrak{B} \subseteq V$ is called a **basis** of V if it satisfies the following properties.

- (1) $\langle \mathfrak{B} \rangle = V$, where $\langle \mathfrak{B} \rangle$ denotes the set of all linear combinations of vectors in \mathfrak{B} . In other words, \mathfrak{B} generates (or **spans**) V.
- (2) B is linearly independent.

Remark. When we say a set of vectors v_1, \dots, v_n are *linearly independent*, this implies

If
$$a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$$
, then all $a_i = 0$ $(i = 1, 2, \dots, n)$

Example 1.8. Consider $F = \mathbb{R}$ and $V = \mathbb{R}^3$. Then we have **standard (Euclidean) basis**

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

The basis is not unique; actually, there exists multiple different basis that spans \mathbb{R}^3 .

We often denote a vector in \mathbb{R}^3 as $v = [5, 2, 3]^\mathsf{T}$. In fact, this means

$$v = 5 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 5e_1 + 2e_2 + 3e_3$$

where 5, 2 and 3 indicates the **components** of v.

Definition 1.9 (Components of vectors). Let $\mathfrak{B} = \{e_1, \dots e_n\}$ be a *F*-basis of *V*. Then any vector $v \in V$ can be represented by the linear combination of $\{e_\mu\}_{\mu=1}^n$ (by definition).

$$v = v^{1}e_{1} + v^{2}e_{2} + \dots + v^{n}e_{n} = \sum_{\mu=1}^{n} v^{\mu}e_{\mu}$$

We call these v^{μ} 's as **components**.

Remark. Note that basis of a vector space, e_{μ} , has lower index, while component of a vector v^{μ} has upper index.

Remark. In differential geometry, we often encounter summations on overlapping indices.

Einstein notation simplies this by (simply) omitting summation signs.

$$\sum_{\mu=1}^n v^\mu e_\mu := v^\mu e_\mu$$

If we encounter overlapping indices - one in superscript and one in subscript, we assume there is an omitted summation.

Definition 1.10 (Dimension). dim $V = |\mathfrak{B}|$.

§ 1.2 Linear Maps and Dual Vector Spaces

Definition 1.11 (Linear map). Let V and W be F-vector spaces. If a map $L:V\to W$ satisfies

$$L(v+w) = L(v) + L(w), \quad L(av) = a \cdot L(v) \quad (a \in F, v, w \in V)$$

we call L a linear map.

Exercise 1.12. Let *L* be a linear map and $u, v \in V$. Prove the followings.

- (1) L(0) = 0
- (2) L(-v) = -L(v)
- (3) L(u-v) = L(u) L(v)

Proof. (1) $L(0) = L(0+0) = L(0) + L(0) \implies L(0) = 0$

(2)
$$L(0) = L(v - v) = L(v) + L(-v) \implies -L(v) = L(-v)$$

(3)
$$L(u-v) = L(u) + L(-v) = L(u) - L(v)$$

While talking about maps, we should mention these two.

Definition 1.13 (Kernel and image). Let $L: V \to W$ be a linear map.

- (1) The **kernel** of *L* is defined by $\ker L = L^{-1}(0) = \{v \in V \mid L(v) = 0\}.$
- (2) The **image** of *L* is defined by im $L = L(V) = \{L(V) \in W \mid v \in V\}$.

Exercise 1.14. Show that (1) ker $L \leq V$ and (2) im $L \leq W$.

Proof. By **Observation 1.3**, it suffices to show that ker *L* and im *L* are closed.

(1) Let $v, w \in \ker L$. Then

$$L(v+w) = L(v) + L(w) = 0 + 0 = 0$$
, $L(av) = aL(v) = 0$ $(a \in F)$

Hence, v + w, $av \in \ker L \implies \ker L \le V$.

(2) Let $L(v), L(w) \in \text{im } L$. Then

$$L(v) + L(w) = L(\underbrace{v + w}_{\in V}) \in \operatorname{im} L, \quad aL(v) = L(\underbrace{av}_{\in V}) \in \operatorname{im} L \ (a \in F)$$

gives im $L \leq W$.

Theorem 1.15 (Dimension theorem). *Let* V *be a finite dimensional vector space and* L *be a linear map* $L:V\to W$. *Then*

$$\dim V = \dim \ker L + \dim \operatorname{im} L$$

Proof. Let basis of ker *L* be $\{e_1, \dots, e_r\}$ (in other words, dim ker L := r).

Since ker $L \leq V$, we can *extend* the basis of ker L to the basis of V^1 as following.

$$\mathfrak{B} = \{e_1, \cdots, e_r, e_{r+1}, \cdots, e_n\}$$

Here, note that $L(e_1) = \cdots = L(e_r)$ (they are elements of ker L).

WTS: $\{L(e_{r+1}), \dots, L(e_n)\}$ is a basis of im L.

(1) $\{L(e_{r+1}), \dots, L(e_n)\}$ are linearly independent. In the following equation, we expect all a^k ($k = r + 1, \dots, n$) should be zero.

$$\sum_{k=r+1}^{n} a^{k} L(e_{k}) = 0 = L\left(\sum_{k=r+1}^{n} a^{k} e_{k}\right)$$

The last equal sign holds since L is a linear map. Since substituting $a^k e_k^2$ into L yields zero, $a^k e_k \in \ker L$. Hence, $a^k e_k$ can be represented by the linear combination of $\{e_1, \dots, e_r\}$.

$$\sum_{k=r+1}^{n} a^k e_k = \sum_{k=1}^{r} b^k e_k$$

This equation can be arranged into a single summation.

$$\sum_{k=1}^{n} c^k e_k = 0$$

where $c^k = b^k$ for $k = 1, \dots, r$ and $c^k = -a^k$ for $k = r + 1, \dots, n$. Since $\{e_k\}_{k=1}^n$ is a basis of V, these vectors are linearly independent - hence, all c^k are zero. Therefore, all a^k $(k = r + 1, \dots, n)$ becomes zero automatically.

(2) $\langle L(e_{r+1}), \cdots, L(e_n) \rangle = \operatorname{im} L.$

This is straightforward; for arbitrary $L(v) \in \text{im } L$,

$$L(v) = L\left(\sum_{k=1}^{n} v^{k} e_{k}\right)$$

$$= L\left(\sum_{k=1}^{r} v^{k} e_{k} + \sum_{k=r+1}^{n} v^{k} e_{k}\right)$$

$$= L\left(\sum_{k=1}^{r} v^{k} e_{k}\right) + L\left(\sum_{k=r+1}^{n} v^{k} e_{k}\right) \quad (\because \sum_{k=1}^{r} v^{k} e_{k} \in \ker L)$$

$$= \sum_{k=r+1}^{n} v^{k} L(e_{k})$$

¹. Basis extension theorem, which we neither mentioned nor proved.

²This is written in Einstein notation.

Definition 1.16 (Vector space of linear maps). Let $\mathfrak{L}(V, W)$ be the set of all linear maps from V to W.

$$\mathfrak{L}(V, W) = \{L : V \to W \mid L \text{ is linear}\}\$$

By defining addition and scalar multiplication of linear maps as following,

addition : (L+M)(v) := L(v) + M(v)

scalar multiplication : (aL)(v) := aL(v)

 $(L, M \in \mathfrak{L}(V, W), v \in V, a \in F) \mathfrak{L}(V, W)$ becomes a **vector space** of linear maps.

Definition 1.17 (Dual vector space). Especially,

$$\mathfrak{L}(V,F) := V^*$$

is called a **dual vector space**. The element of V^* , $w \in V^*$ is called a **dual vector** (or a **covector**).

Remark. An element of a dual vector space is actually a *linear map*. In other words, for $w \in V^*$ and $v \in V$,

$$w: V \to F$$
 and $w(v) \in F$

Now we prove an important theorem that helps us grasp concepts of dual basis and components of dual vectors.

Theorem 1.18. dim $V^* = \dim V$.

Proof. Let $\mathfrak{B} = \{e_1, \dots, e_n\} = \{e_\mu\}$ be a basis of V (dim V := n).

Define some linear maps (or dual vectors) $e^{\mu}: V \to F$ as

$$e^{\mu}(e_{\nu}) = \delta^{\mu}_{\nu}$$

where δ^{μ}_{ν} is the usual Kroenecker delta³.

WTS: $\mathfrak{B}^* = \{e^{\mu}\}$ is a basis of V^{*4} .

(1) \mathfrak{B}^* is linearly independent: let's start from $a_{\mu}e^{\mu}=0$. Then

$$(v \in V)$$
 $a_u e^{\mu}(v) = 0$

However, since e^{μ} is a linear map, it suffices to check their behavior at the basis of V, e_{nu}^{5} . Hence

$$a_{\mu}e^{\mu}(e_{\nu}) = a_{\mu}\delta^{\mu}_{\nu} = a_{\nu} = 0$$

(2) $\langle \mathfrak{B}^* \rangle = V^*$? For arbitrary $w \in V^*$, it can be expanded into

$$w = w(e_1)e^1 + w(e_2)e^2 + \dots + w(e_n)e^n := w_{\mu}e^{\mu}$$

³You may wonder why one index is superscripted while the other is subscripted. This will be clarified in the next week's lecture.

Fall 2024, SNU

6

⁴Proving this statement gives our original claim immediately.

⁵This has deeper context in standard linear algebra course, and can be shown. However, we skip the detail.

Remark. In the last line of proof, we defined the **component** of a dual vector, $w(e_{\mu}) = w_{\mu}$. Both the basis and component of dual vectors are closely related to the basis e_{μ} of original vector space V.

In summary,

- Let V be a F-vector space, and $v \in V$ be a vector. Then v can be expanded into the linear combination of basis vectors.

$$v = v^{\mu}e_{\mu}$$

- The concept of dual space naturally follows from the original vector space V. The dual vector space $V^* = \mathfrak{L}(V,W)$ has dual vectors (or covectors) as elements: $w \in V^*$ and $w: V \to F$. The dual vector can be expanded into dual basis.

$$w = w_{\mu}e^{\mu}$$

where $w_{\mu} := w(e_{\mu})$.