

Lec. 3: Architectures, Hyperparameters

关键词

- Transformer Architectures
- Hyper-parameters

1. Pre-norm

几乎所有的现代模型使用pre-norm,BERT除外,它是post-norm。

post-norm训练没有那么稳定,需要learning rate warm up。

推测的原因: pre-norm使梯度大小恒定, post-norm会使梯度爆炸。

最初的优点在于不需要warm up,在大规模网络的今天,优点在于**pre-norm更稳定,能够使用更大的学习率**。

2. Double Norm

把Layer Norm放在残差流中不好,那么为什么不把LN放在Attention和FFN的后面? Grok和Gemma2不仅用了pre-norm,还在FFN和Multi-head Attention后面加了一层LN。

Layer Norm在Residual中不好的原因: Residual Stream是一个从上到下连通的结构,能很好地回传梯度,如果把LN放在这中间,可能会干扰这种梯度回传。

GPT:在 Post-Norm(把 LayerNorm 放在残差相加之后)里,每一层的残差分支都要经过一个 LayerNorm,这就意味着原本直接的恒等映射(identity path,也就

是"output=Sublayer(x)+x"里的"+x",能使梯度直通)不再是"纯粹"的恒等映射,梯度回传时要穿过 LayerNorm 的雅可比(所有偏导数组成的矩阵,当是恒等映射时,其为单位矩阵,如果有LN,其特征值通常 ≤ 1),长层网络里多次累积就容易造成梯度缩放或衰减,从而不够稳定。而 Pre-Norm 架构恰好把 LayerNorm 提到子层计算之前,只对子层输入做归一化,残差分支保持了纯粹的 identity,这样做能大幅提升深层网络的训练稳定性,也就允许用更大的学习率、更深的堆叠。

3. Layer Norm vs RMSNorm

LayerNorm vs RMSNorm

Original transformer: **LayerNorm** – normalizes the mean and variance across d_{model}

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

Many modern LMs: **RMSNorm** – does not subtract mean or add a bias term

$$y = \frac{x}{\sqrt{||x||_2^2 + \varepsilon}} * \gamma$$

Notable models:

GPT3/2/1, OPT, GPT-J, BLOOM

Notable models:

LLaMA-family, PaLM, Chinchilla, T5

RMSNorm 更快(更少的operation,不用减去平均值;更少的参数量)且效果同样好

4. Drop the bias

FFN架构去掉bias -> 更少的memory,优化更稳定

5. Activations

ReLU, GeLU, Swish, ELU, GLU, GeGLU, ReGLU, SeLU, SwiGLU, LiGLU

A ReLU ReLU(x) = max(0, x)

- **非线性**: x<0时将所有输入截断为0,使网络能学习复杂的非线性映射。
- 稀疏激活:输入为负时,输出恒为0,即 关闭了一部分神经元,产生了稀疏性,有 助于缓解过拟合并提高计算效率。
- 梯度简洁: x<0时梯度为0,x>0时梯度为1,边界点x=0处可取任意常数或0。简单的梯度计算既加快了反向传播的速度,也减少了梯度消失的风险。
- 优点: 收敛更快、计算高效、抗梯度消失
- 缺点:死亡ReLU问题(始终接收负输入,对应梯度恒为0,永远不活跃)、忽略负值信息(可能丢失一部分有用特征)
- 模型: Original transformer, T5, Gopher, Chinchilla, OPT

lacksquare B GeLU $GeLU(x)=x\Phi(x)$

- 其中 $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$ 是标准 正态分布的累积分布函数(随机变量X小 于等于x的概率)
- ・ 用anh近似时, $GeLU(x)=0.5x\Big(1+ Tanh[\sqrt{rac{2}{\pi}}(x+0.044715x^3)]\Big)$
- 平滑非线性:整个实数域上都具有连续的 一阶导数,优化过程更平滑
- 输入加权:通过乘 $\Phi(x)$,对正输入几乎保留原值,负输入近似置零,中间区间按照高斯概率平滑过渡
- **随机特性**: $\forall x \cup \Phi(x)$ 的概率进行保留, 否则置零,有一定类似Dropout的随机正 则化效果

优点:训练更稳定——平滑曲线和连续导数减少了梯度的噪声,尤其在超深和大规模模型中;性能提升;正则化效果,一定程度上缓解过拟合

• 缺点: 计算开销更大(现有库已高效实

现);可解释性不如ReLU直观

• 模型: GPT1/2/3, GPTJ, GPT-Neox,

BLOOM

st GLU: $max(0,xW_1) => max(0,xW_1) \otimes (xV) \,\,\, xV$ 作门控作用 \otimes 是逐元素相乘

ReGLU: $FF_{ReGLU}(x) = (max(0, xW_1) \otimes xV)W_2$

GeGLU: $FFN_{GEGLU}(x, W, V, W_2) = (GELU(xW) \otimes xV)W_2$

模型: T5 v1.1, mT5, LaMDA, Phi3, Gemma 2, Gemma 3

SwiGLU: (swish is x * sigmoid(x))

 $FFN_{SwiGLU}(x, W, V, W_2) = (Swish_1(xW) \otimes xV)W_2$

模型: LLaMa 1/2/3, PaLM, Mistral, OlMo, most models post 2023

带门控的模型, d_{ff} 的维度是原来的2/3

普通FFN的参数量是 $2*d_{model}*d_{ff}$

带门控的模型参数量是 $xW_1:d_{model}*d_{ff}, xV:d_{model}*d_{ff}, (...)W_2:d_{model}*d_{ff}$ 加起来是原来的3/2倍,所以维度是原来的2/3

优点:动态信息筛选——用门动态控制,有选择地放大或抑制特征;增强非线性建模;正则化效果——门控随机关闭部分通道,类似Dropout;性能提升——能够略微提升下游任务性能和收敛速度;

捕捉长期依赖关系: GLU 引入了「线性变换 × 门控」的结构,它既保留了一条近似恒等(或线性)信息通道,又让网络能够动态地选择哪些信息要"放行"到下一层,从而更好地捕捉和维护跨层、跨距离的信息。

缺点:参数和计算开销——增加了约50%的点乘/投影开销;逐元素相乘会改变梯度分布,对学习率和优化器更敏感

6. Serial vs Parallel

传统Transformer是serial的,一些模型尝试了并行——同时算MLP和Attention,然后把它们加起来(可以share参数)。(更多的还是选择串行)

7. Position Embedding

Sine embeddings: add sines and cosines that enable localization

$$Embed(x,i) = v_x + PE_{pos}$$

$$\begin{split} PE_{(pos,2i)} &= sin(pos/10000^{2i/d_{\rm model}}) \\ PE_{(pos,2i+1)} &= cos(pos/10000^{2i/d_{\rm model}}) \end{split}$$

Notable models:

Original transformer

Absolute embeddings: add a position vector to the embedding

$$Embed(x,i) = v_x + u_i$$

Notable models:

GPT1/2/3, OPT

Relative embeddings: add a vector to the attention computation

$$e_{ij} = \frac{x_i W^Q (x_j W^K + a_{ij}^K)^T}{\sqrt{d_z}}$$

Notable models:

T5, Gopher, Chinchilla

Notable models: GPTJ, PaLM, LLaMA Most 2024+ models

Rope embeddings (next slides..)

RoPE数学推导

作者讲解: https://zhuanlan.zhihu.com/p/359502624

Transformer的输入大小是 [batch size, sequence length, d model]

忽略batch_size, sequence中的每一个词都对应一个位置下标,下面用m、n代替, d model指embedding的维度,用i指代是embedding中的第几维, heta 是和i相关的函 数,指基础角度步长。

背景: 欧拉公式 $e_{ix} = cosx + isinx$ 复数: $z = x + iy = re^{i\phi}$ ϕ 是相位

假设d_model为2,那么 $q_m = \begin{pmatrix} q_m^0 \\ q_m^1 \end{pmatrix}$,可以表示成 $q_m = q_m^0 + i q_m^1$,旋转后 $q_m' = q_m e^{im heta} = (q_m^0 + iq_m^1)(cosm heta + isinm heta)$,展开后写成矩阵乘法就是:

$$\begin{pmatrix} q_m^{0'} \\ q_m^{1'} \end{pmatrix} = \begin{pmatrix} cosm\theta & -sinm\theta \\ sinm\theta & cosm\theta \end{pmatrix} \begin{pmatrix} q_m^0 \\ q_m^1 \end{pmatrix}$$

Transformer中用第m个词的 $ec{q}$ 乘其它词的 $ec{k}$,假设现在乘的是第n个词的key,为了乘出 来是标量,用 $ec{q}_{m}^{T'}$ 乘 $ec{k}_{n}'$ 。

$$egin{aligned} q_m'^T k_n' &= \left(q_m^0 \quad q_m^1
ight) egin{pmatrix} cosm heta & sinm heta \ -sinm heta & cosm heta \end{pmatrix} egin{pmatrix} cosn heta & -sinn heta \ sinn heta & cosn heta \end{pmatrix} egin{pmatrix} k_n^0 \ k_n^1 \end{pmatrix} = egin{pmatrix} \left(q_m^0 \quad q_m^1
ight) egin{pmatrix} cos(n-m) heta & -sin(n-m) heta \ sin(n-m) heta & cos(n-m) heta \end{pmatrix} egin{pmatrix} k_n^0 \ k_n^1 \end{pmatrix} = (k_0 q_0 + k_1 q_1) cos(n-m) heta - (k_1 q_0 - k_0 q_1) sin(n-m) heta \end{pmatrix} egin{pmatrix} k_n^1 \ k_n^2 \end{pmatrix} = a_0 \left(k_0 q_0 + k_1 q_1\right) cos(n-m) heta - a_0 \left(k_0 q_0$$

可以看到乘积和相对位置n-m有关。

核心思想:通过某种方式修改 query (查询) 和 key (键) 向量,使得它们的点积结果不仅包含词本身的信息,还包含它们之间的相对位置信息。

希望找到一个函数 f,它接收原始词向量 x 和它的绝对位置 m,然后输出一个新的向量。 这个函数需要满足以下性质:

$$\langle f(q,m), f(k,n) \rangle = g(q,k,m-n)$$

所以这个f在二维的时候就是:

$$f(q,m) = egin{pmatrix} cosm heta & -sinm heta \ sinm heta & cosm heta \end{pmatrix} egin{pmatrix} q_m^0 \ q_m^1 \end{pmatrix}$$

由于内积满足线性叠加性,因此任意偶数维的RoPE,我们都可以表示为二维情形的拼接,即

$$\begin{pmatrix} \cos m\theta_0 & -\sin m\theta_0 & 0 & 0 & \cdots & 0 & 0 \\ \sin m\theta_0 & \cos m\theta_0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cos m\theta_1 & -\sin m\theta_1 & \cdots & 0 & 0 \\ 0 & 0 & \sin m\theta_1 & \cos m\theta_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2-1} & -\sin m\theta_{d/2-1} \\ 0 & 0 & 0 & 0 & \cdots & \sin m\theta_{d/2-1} & \cos m\theta_{d/2-1} \end{pmatrix} \underbrace{\begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \\ \vdots \\ q_{d-2} \\ q_{d-1} \end{pmatrix}}_{W_m}$$

由于 W_m 的稀疏性,所以直接用矩阵乘法来实现会很浪费算力,对矩阵进行分解:

$$egin{pmatrix} q_0 \ q_1 \ q_2 \ q_3 \ dots \ q_{d-2} \ q_{d-1} \end{pmatrix} egin{pmatrix} \cos m heta_0 \ \cos m heta_0 \ \cos m heta_1 \ \cos m heta_1 \ \cos m heta_{d/2-1} \ \cos m heta_{d/2-1} \end{pmatrix} + egin{pmatrix} -q_1 \ q_0 \ -q_3 \ q_2 \ dots \ \vdots \ -q_{d-1} \ q_{d-2} \end{pmatrix} egin{pmatrix} \sin m heta_0 \ \sin m heta_0 \ \sin m heta_1 \ \sin m heta_1 \ dots \ \sin m heta_1 \ dots \ \sin m heta_{d/2-1} \ \sin m heta_{d/2-1} \ \end{pmatrix}$$

其中⊗是按位相乘。

🌟 为了更清楚地理解为什么要这样拼接 -> 尝试计算四维的情况

此时m=1, n=4

$$q = [q_0, q_1, q_2, q_3], k = [k_0, k_1, k_2, k_3]$$

第一组 (维度0, 1) 使用的旋转频率是 θ_0 ,第二组 (维度2, 3) 使用的旋转频率是 θ_1 , $\theta_0 \neq \theta_1$ 分别进行旋转:

对g在位置m=1进行旋转

第一组 (θ。):

$$\bullet \quad q_0' = q_0 cos(1 \cdot \theta_0) - q_1 sin(1 \cdot \theta_0)$$

•
$$q_1' = q_0 sin(1 \cdot \theta_0) + q_1 cos(1 \cdot \theta_0)$$

第二组 (θ₁):

•
$$q_2' = q_2 cos(1 \cdot \theta_1) - q_3 sin(1 \cdot \theta_1)$$

$$ullet q_3' = q_2 sin(1 \cdot heta_1) + q_3 cos(1 \cdot heta_1)$$

对k在位置n=4进行旋转

第一组 (θ。):

$$oldsymbol{k}_0' = k_0 cos(4 \cdot heta_0) - k_1 sin(4 \cdot heta_0)$$

$$oldsymbol{k} k_1' = k_0 sin(4 \cdot heta_0) + k_1 cos(4 \cdot heta_0)$$

第二组 (θ,):

•
$$k_2'=k_2 cos(4\cdot heta_1)-k_3 sin(4\cdot heta_1)$$

•
$$k_3' = k_2 sin(4 \cdot \theta_1) + k_3 cos(4 \cdot \theta_1)$$

计算 q'和k' 的内积

$$q_0'k_0' = q_0k_0[\frac{cos3\theta_0}{2} + \frac{cos5\theta_0}{2}] - q_1k_0[\frac{sin5\theta_0}{2} - \frac{sin3\theta_0}{2}] - q_0k_1[\frac{sin5\theta_0}{2} + \frac{sin3\theta_0}{2}] + q_1k_1[\frac{cos3\theta_0}{2} - \frac{cos5\theta_0}{2}]$$

 $q_1'k_1'$ 同理,和上式相加抵消掉了所有的 $5 heta_0$ 。

最后得到 $(q_0k_0+q_1k_1)cos(3\theta_0)-(q_0k_1-q_1k_0)sin(3\theta_0)$,和2维的时候算出来的一样。

对于第二组,同理:
$$q_2'k_2'+q_3'k_3'=(q_2k_2+q_3k_3)cos(3\theta_1)-(q_2k_3-q_3k_2)sin(3\theta_1)$$

$$heta_i = base^{-rac{2i}{d}}, base = 10000$$
(随着相对距离的变大,内积结果有衰减趋势的出现)

当i很小(即embedding前面部分的维度)时, θ_i 接近1,频率较大;

当i很大(即embedding后面部分的维度)时, θ_i 接近1/10000,频率较小。

不同频率捕捉不同距离的关系,高频部分对近距离的关系变化敏感,能精确捕捉词与词之间的精细、短程的相对位置关系。

低频部分对远距离的位置变化更敏感,能有效编码长程的、宏观的相对位置关系。

数据流:

Token A (位置 m) -> 原始 q 向量 -> 用位置 m 生成旋转矩阵 -> 旋转 q 得到 q'

Token B (位置 n) -> 原始 k 向量 -> 用位置 n 生成旋转矩阵 -> 旋转 k 得到 k'

计算注意力分数: $AttentionScore(A, B) = q' \cdot k'$

因为 q' 和 k' 都被各自位置的旋转矩阵 "注入" 了位置信息,所以它们的点积结果就自然而然 地包含了 m-n 这个相对位置信息。

8. Hyper-parameters

FFN中,**隐藏层的大小** $d_{ff}=4d_{model}$,GLU中是8/3倍的d_model,约为2.66

num heads, head dim: num heads * head dim / d model = 1

Aspect ratios: 宽度和深度的选择, d_model/n_layer=128

增加深度会使模型无法在多设备上并行,因为需要等待前一个layer计算完成后才能开始当前 layer,增加宽度可以轻松地并行。

Vocabulary sizes: 单语模型——35-50K,多语言——100-250K

Dropout & Weight Decay:在pre-training中,很难过拟合,除qwen外,大多选择只用weight decay

GPT:即便在训练大规模语言模型时我们仍然会使用诸如权重衰减(weight decay)、Dropout、LayerNorm、梯度裁剪(gradient clipping)等"正则化"手段,但它们对模型**泛化能力**(防止过拟合)的提升作用已经相对有限。相反,这些正则化技术现在主要是用来**调节训练过程**本身的动态特性,比如:

- 平滑梯度,减少突变
- 稳定学习率,防止学习率过大导致发散
- 控制参数更新幅度,避免训练初期的数值不稳定
- 。 **改善收敛速度**,在整体 loss 曲面更平滑、噪声更小的环境下更容易到达低点

总之,它们如今更多地被看作是"优化技巧"——让大模型在巨量数据和超大参数下的训练更加稳定、高效——而不是像在小模型/小数据集里那样,主要用来对抗过拟合、提升泛化。

Summary: hyperparameters

Feedforward

• Factor-of-4 rule of thumb (8/3 for GLUs) is standard (with some evidence)

Head dim

Head dim*Num head = D model is standard
 but low to no validation

Aspect ratio

Wide range of 'good' values (100-200).
 Systems concerns dictate the value

Regularization

 You still 'regularize' LMs but its effects are primarily on optimization dynamics

As Name	# Year	# MLP factor	Σ Aspect ratio (d/layer)	# weight decay	# drop_rate
Original transformer	2017		85		
GPT	2018		64		
T6 (11B)	2019	64			
GPT2	2019				
T6 (XXL 118) v1.1	2020	2.5			
mT5	2020				
GPT3 (1758)	2020		128		
GPTJ	2021		146		
LeMDA	2021		128		
Anthropic LM (not claude)	2021		128		
Gopher (2808)	2021		205		
GPT-NeoX	2022		140	0.01	
BLOOM (1768)	2022		205		
OPT (1758)	2022		128		
PaLM (5408)	2022		156		
Chinchilla	2022		102		
Balchuan 2	2023	2.68	128		
Mistral (78)	2023		128		
LLaMA2 (708)	2023	3.5	102		
LLaMA (658)	2023	2.6875	102		
GPT4	2023				
Olmo 2	2024	2.6875	128		
Gemma 2 (27B)	2024		100		
Nemotron-4 (340B)	2024		192		
Qwen 2 (72b) - same for 2.5	2024	3.609	102		
Falcon 2 11B	2024		68		
Phi3 (small) - same for phi4	2024		128		
Llama 3 (70B)	2024	3.5	102		
Reka Flash	2024				
Command R+	2024	2.75	192		
OLMo	2024	2.6875	128		
Qwen (148)	2024	2.675	128		
DeepSeek (678)	2024	2.6875	86		
Yi (348)	2024	2.857142	119		
Mixtral of Experts	2024				
Command A	2025				
Gemma 3	2025				
SmolLM2 (1.78)	2025		85		

9. Stability Tricks

Transformer中有两个Softmax,分别在attention中和最后输出的地方。Softmax的不稳定性主要来自于分母的计算,容易overflow导致整个计算结果无效,使梯度计算崩溃。

Z-loss (for output softmax) 引入一个辅助损失项,假设Softmax: $P(x) = e^{U(x)} / Z(x)$, $Z(x) = \Sigma e^{U(x)}$,这个损失项的目标是惩罚过大的Z(x)。 $z_{loss} = 10^{-4} * log^2(Z)$,在 log(Z) = 0 时取最小值,也就是Z=1,通过这个惩罚项,模型被"鼓励"去调整其输出的 logits U(x),使得它们的归一化项 $Z(x) = \Sigma e^{U(x)}$ 的值尽可能地接近 1。z-loss 就像一个正则化项,专门作用于 logits 的大小。

使用该loss的模型: Baichuan 2 (2023), DCLM (2024), OLMo 2 (2025)

QK norm (for softmax in attention): 把每个 query 向量和 key 向量都单独做 L2 归一化,然后再算attention score,送入softmax。这能固定score的范围,使softmax更平滑,训练更稳定。

模型: DCLM, OLMo2, Gemma 2, Qwen3

10. Reducing attention head cost

GQA/MQA

KV-Cache

Sparse/Sliding window attention

interleave 'full' and 'LR' attention

本节课详细介绍了transformer中架构上的改进,学习了激活函数以及相对位置编码。感觉大家有很认真地思考每一个模块到底选择哪一种,优缺点是什么,和小模型完全不一样。

GeLU推导:

$$\begin{split} &\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \, \mathrm{d}t \quad$$
误差函数 $erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-u^2} du \\ & \Leftrightarrow u = \frac{t}{\sqrt{2}} => t = \sqrt{2}u \\ &\Phi(x) = \int_{-\infty}^{\frac{x}{\sqrt{2}}} \frac{1}{\sqrt{\pi}} e^{-u^2} du = \int_{-\infty}^{0} \frac{1}{\sqrt{\pi}} e^{-u^2} + \int_{0}^{\frac{x}{\sqrt{2}}} \frac{1}{\sqrt{\pi}} e^{-u^2} = \frac{1}{2} + \int_{0}^{\frac{x}{\sqrt{2}}} \frac{1}{\sqrt{\pi}} e^{-u^2} = \frac{1}{2} [1 + erf(\frac{x}{\sqrt{2}})] \end{split}$

可以用一个三次多项式加权的tanh逼近erf(y)

$$egin{align} erf(y)pprox tanh(ay+by^3)=>\Phi(x)pprox rac{1}{2}[1+tanh(arac{x}{\sqrt{2}}+brac{x^3}{2\sqrt{2}})]\ a=\sqrt{rac{2}{\pi}},b=0.044715*2a \end{align}$$