

Join on GPUs

Ahmedur Rahman Shovon

PhD student

Department of Computer Science

Email: ashov@uic.edu

Website: arshovon.com

Roadmap

- Introduction to GPU
- GPGPU
- Recap to Join operation
- Parallel join
- Off-the-shelf parallel join
- Parallel hash join

Introduction to GPU

GPU

- Graphics processing unit (GPU)
 accelerates graphics and data processing
- Work together with CPU
- GPU is designed for parallel processing
- Use cases:
 - ✓ Graphics and video rendering
 - ✓ Gaming
 - ✓ Machine learning, AI, Deep learning
 - ✓ Scientific computing
- Major manufacturers: Nvidia, AMD, Intel

Advancements in GPU

CPU vs GPU (A Sample Machine)

CPU

- 13th Gen Intel® Core™ i9-13900H
- 14 cores (6 P-cores + 8 E-cores)
- Total 20 threads
- Suitable for serial workloads
- Access to system memory (RAM)

GPU

- NVIDIA GeForce RTX 4070, 8 GB GDDR6
- 5888 CUDA cores
- Total 94,208 threads
- Suitable for parallel workloads
- Access to dedicated VRAM

GPGPU

GPGPU

- General Purpose computing using GPU
- Influenced the scientific computing paradigms
- Offers thousands of cores
- Power efficiency TFlop per Watt

GPGPU Advantages

Massive parallel processing: Scientific simulations

Efficient large dataset handling: Machine learning algorithms

Real-time processing: Gaming and streaming

Accelerated financial modeling: Risk assessment and pricing

GPU Programming Model

- CUDA proprietary to Nvidia GPUs but most mature and established
- **HIP** targets AMD GPUs
- SYCL open standard for cross-platform portability
- DPC++ Intel's implementation of SYCL
- OneAPI Intel's unified programming model across devices

GPU and CPU communication

CUDA Programming Model

- Globally Sequential Locally Parallel programming pattern
- Invokes parallel kernels that execute across a set of threads
- CUDA spawns the threads from a hierarchy of grid (3D) and block (3D)
- Each thread executes an instance of the kernel
- Supports C/C++, Fortan, Python

Sequential Execution (Program initialization)

Parallel Execution
Host and Device runs in parallel

Sequential Execution

Parallel Execution
Host waits for GPU completion

Sequential Execution (Program termination)

GPGPU Challenges

- Algorithm adaptation for GPU: Sequential to parallel
- Parallelism synchronization: Putting barrier
- Memory management: Host to device and device to host data transfer
- Portability: Portability to different GPU devices

Recap to Join operation

Recap to Relational Data

- Relation: 2-dimensional structure
- Attribute: Represents characteristics
- Row: Represents unique record
- Join (⋈): Combines data from relations
- Projection (Π): Select specific columns

Why Join is Important?

FIND PATTERNS IN DATA

CLEAN DATA

CREATE NEW DATA SETS

User

UserID	UserName	UserEmail
101	Alice	alice@example.com
102	Bob	bob@example.com
103	Eve	eve@example.com

UserID	OrderTotal	Items
101	25.69	2
102	145.66	3
103	12.11	1
103	44.00	2

User

UserID	UserName	UserEmail
101	Alice	alice@example.com
102	Bob	bob@example.com
103	Eve	eve@example.com

Order

UserID	OrderTotal	Items
101	25.69	2
102	145.66	3
103	12.11	1
103	44.00	2

UserID	UserName	UserEmail	OrderTotal	Items
101	Alice	alice@example.com	25.69	2

User

UserID	UserName	UserEmail
101	Alice	alice@example.com
102	Bob	bob@example.com
103	Eve	eve@example.com

Order

UserID	OrderTotal	Items
101	25.69	2
102	145.66	3
103	12.11	1
103	44.00	2

UserID	UserName	UserEmail	OrderTotal	Items
101	Alice	alice@example.com	25.69	2
102	Bob	bob@example.com	145.66	3

User

UserID	UserName	UserEmail
101	Alice	alice@example.com
102	Bob	bob@example.com
103	Eve	eve@example.com

Order

UserID	OrderTotal	Items
101	25.69	2
102	145.66	3
103	12.11	1
103	44.00	2

UserID	UserName	UserEmail	OrderTotal	Items
101	Alice	alice@example.com	25.69	2
102	Bob	bob@example.com	145.66	3
103	Eve	eve@example.com	12.11	1

User (Outer Relation)

UserID	UserName	UserEmail
101	Alice	alice@example.com
102	Bob	bob@example.com
103	Eve	eve@example.com

Order (Inner Relation)

UserID	OrderTotal	Items
101	25.69	2
102	145.66	3
103	12.11	1
103	44.00	2

UserID	UserName	UserEmail	OrderTotal	Items
101	Alice	alice@example.com	25.69	2
102	Bob	bob@example.com	145.66	3
103	Eve	eve@example.com	12.11	1
103	Eve	eve@example.com	44.00	2

User (Outer Relation)

UserID	UserName	UserEmail
101	Alice	alice@example.com
102	Bob	bob@example.com
103	Eve	eve@example.com

Order (Inner Relation)

UserID	OrderTotal	Items
101	25.69	2
102	145.66	3
103	12.11	1
103	44.00	2

UserID	UserName	UserEmail	OrderTotal	Items
101	Alice	alice@example.com	25.69	2
102	Bob	bob@example.com	145.66	3
103	Eve	eve@example.com	12.11	1
103	Eve	eve@example.com	44.00	2

Duplicates on Join Result

User ⋈ Order

UserID	UserName	UserEmail	OrderTotal	Items
101	Alice	alice@example.com	25.69	2
102	Bob	bob@example.com	145.66	3
103	Eve	eve@example.com	12.11	1
103	Eve	eve@example.com	44.00	2

Π(_{UserName,UserEmail})(User ⋈ Order)

UserName	UserEmail
Alice	alice@example.com
Bob	bob@example.com
Eve	eve@example.com
Eve	eve@example.com

Parallel Join

How can we do join in parallel?

User (Outer Relation)

UserID	UserName	UserEmail
101	Alice	alice@example.com
102	Bob	bob@example.com
103	Eve	eve@example.com

Order (Inner Relation)

UserID	OrderTotal	Items
101	25.69	2
102	145.66	3
103	12.11	1
103	44.00	2

Parallel Join ⋈

101

User (Outer Relation)

UserID UserName UserEmail alice@example.com Alice

bob@example.com Bob 102

eve@example.com 103 Eve

Order (Inner Relation)

	UserID	OrderTotal	Items
-	101	25.69	2
>	102	145.66	3
*	103	12.11	1
*	103	44.00	2

Parallel Join

What: Perform relational join operation simultaneously on a number of processors or machines

When: Useful when input data is enormous and the join is computationally costly

How: Divide the data into partitions and assign each partition to a different processor

Off-the-shelf Parallel Join

Off-the-shelf Data Structure for Join Operation

DataFrame: 2D labeled tabular data structure

DataFrame has RA primitives APIs

[•] Chen, D. Y. (2017). Pandas for everyone: Python data analysis. Addison-Wesley Professional.

[•] Singh, R. (2020, July 1). Merging DataFrames with Pandas: Pd.merge(). Medium. Retrieved April 8, 2023, from https://medium.com/swlh/merging-dataframes-with-pandas-pd-merge-7764c7e2d46d

Off-the-shelf Python Libraries

Both supports join operation with similar APIs

Reback, J., McKinney, W., Van Den Bossche, J., Augspurger, T., Cloud, P., Klein, A., ... & Seabold, S. (2020). pandas-dev/pandas: Pandas 1.0. 5. Zenodo.

[•] Chen, D. Y. (2017). Pandas for everyone: Python data analysis. Addison-Wesley Professional.

[•] Green, O., Du, Z., Patel, S., Xie, Z., Liu, H., & Bader, D. A. (2021, December). Anti-Section Transitive Closure. In 2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC) (pp. 192-201). IEEE.

[•] Fender, A., Rees, B., & Eaton, J. RAPIDS cuGraph. In Massive Graph Analytics (pp. 483-493). Chapman and Hall/CRC.

CPU (Pandas) and GPU (cuDF)

```
CPU Environment
import pandas as pd
import cudf
                           GPU Environment
def get read csv(filename, method='cudf', n):
    column names = ['column 1', 'column 2']
   if method == 'df':
        return (pd. read_csv(filename, sep='\t', header=None,
                          names=column names, nrows=n)
    return (cudf).read_csv(filename, sep='\t', header=None,
                         names=column names, nrows=n)
def get join(relation 1, relation 2):
    column names = ['column 1', 'column 2']
    return relation 1.merge(relation 2, on=column names[0],
                            how="inner".
                            suffixes=(' relation 1', ' relation 2'))
```


Performance Improvement of using GPU

Parallel Hash Join

Parallel Join: Algorithms

Popular algorithms

Sort-Merge Join (SMJ)

Hash Join (HJ)

SMJ is suitable for small to medium-sized tables HJ is suitable for large tables

Chengxin Guo, Hong Chen, Feng Zhang, and Cuiping Li. Parallel hybrid join algorithm on gpu. 2019IEEE 21st International Conference on High Performance Computing and Communications; IEEE17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 1572–1579, 2019.

Hash Join Process

Key - Value

Hash Join Process

Hash Table (Open Addressing, Linear Probing)

Performing Hash Join on GPU

Performing Hash Join on GPU

Performing Hash Join on GPU

CUDA Advantages over cuDF

Fuse operations

Thread-block configuration

Memory management

Optimize data structure

Join Performance Comparison: CUDA vs cuDF

Limitations

Limited to a single GPU that dictates scaling by available VRAM on the GPU

Memory overflow error for larger graphs

Open addressing based hash table causes memory overhead

Publications

Shovon, A. R., Gilray, T., Micinski, K., & Kumar, S. (2023). Towards iterative relational algebra on the {GPU}. In 2023 USENIX Annual Technical Conference (USENIX ATC 23) (pp. 1009-1016).

Performing Hash Join on GPU

Shovon, A. R., Dyken, L. R., Green, O., Gilray, T., & Kumar, S. (2022, November). Accelerating Datalog applications with cuDF. In 2022 IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms (IA3) (pp. 41-45). IEEE.

Summary

GPU provides performance enhancement

Python based cuDF can be a head start to GPU programming

Low level CUDA has a learning curve but improves performance

