GRAPH ALGORITHMS

CSX3009 DATA STRUCTURE AND ALGORITHMS KWANKAMOL NONGPONG, PH.D.

REPRESENTATION OF GRAPHS

- Recall that a graph G = (V, E)
- Collection of adjacency lists
 - a compact way to represent sparse graphs.
 - |E| << |V|²
- Adjacency matrix
 - Preferred when the graph is dense.
 - |E| is close to |V|²

ADJACENCY-LIST REPRESENTATION

- An array adj of |V| lists, one for each vertex in V.
- For each $u \in V$, adj[u] contains pointers to all vertices v such that an edge $(u, v) \in E$.
 - adj[u] consists of all vertices adjacent to u in G.

EXAMPLE: UNDIRECTED GRAPH

EXAMPLE: DIRECTED GRAPH

ADJACENCY MATRIX

- Assume that the vertices are numbered 1, 2, 3, ..., |V|
- |V| x |V| matrix
- $A = (a_{ij})$ such that

$$a_{ij} = \begin{cases} 1, & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}$$

EXAMPLE: UNDIRECTED GRAPH

	I	2	3	4	5
I	0	I	0	0	I
2	I	0			I
3	0		0	_	0
4	0	I	I	0	I
5	0	Ī	0	Ī	0

EXAMPLE: DIRECTED GRAPH

	I	2	3	4	5	6
I	0	I	0	I	0	0
2	0	0	0	0	I	0
3	0	0	0	0	I	I
4	0	I	0	0	0	0
5	0	0	0	I	0	0
6	0	0	0	0	0	

BREADTH-FIRST SEARCH

- Given a graph G = (V, E) and a distinguished source vertex s, BFS systematically explores the edges of G to discover every vertex that is reachable from s.
- It computes the distance (fewest number of edges) from s to all reachable vertices.
- It also produces a breadth-first tree with the root s that contains all reachable vertices.
- Which data structure should be used in BFS?

EXAMPLE: BREADTH-FIRST SEARCH

ALGORITHM: BREADTH-FIRST SEARCH

BFS(G, s)

- 1. for each vertex $u \in V(G) \{s\}$
- 2. do color[u] \leftarrow WHITE
- 3. $d[u] \leftarrow \infty$
- 4. $\pi[u] \leftarrow \text{NIL}$
- 5. $color[s] \leftarrow GRAY$
- 6. $d[s] \leftarrow 0$
- 7. $\pi[s] \leftarrow NIL$
- 8. $Q \leftarrow \{s\}$

- 9. while $Q \neq \emptyset$
- 10. do $u \leftarrow \text{head}[Q]$
- 11. for each $v \in Adj[u]$
- 12. do if color[v] = WHITE
- 13. then $color[v] \leftarrow GRAY$
- 14. $d[v] \leftarrow d[u] + 1$
- 15. $\pi[v] \leftarrow u$
- 16. ENQUEUE(Q, v)
- 17. DEQUEUE(Q)
- 18. $\operatorname{color}[u] \leftarrow \operatorname{BLACK}$

DEPTH-FIRST SEARCH

- Unlike BFS, DFS searches deeper in the graph whenever possible.
- In DFS, edges are explored out of the most recently discovered vertex v that still has unexplored (outgoing) edges.
- When all of v's edges have been explored, the search backtracks to explore edges leaving the vertex from which v was discovered.
- The process continues until all vertices that are reachable from the original source have been discovered.
- Which data structure should be used in DFS?

EXAMPLE: DEPTH-FIRST SEARCH

EXAMPLE: DEPTH-FIRST SEARCH

ALGORITHM: DEPTH-FIRST SEARCH

DFS(G)

- I. for each vertex $u \in V(G)$
- 2. do color[u] \leftarrow WHITE
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. time $\leftarrow 0$
- 5. for each vertex $u \in V(G)$
- 6. do if color[u] = WHITE
- 7. then DFS-Visit(u)

$\mathsf{DFS}\text{-}\mathsf{Visit}(u)$

- I. $Color[u] \leftarrow GRAY$
- 2. $d[u] \leftarrow time \leftarrow time + 1$
- 3. For each $v \in Adj(u)$
- 4. do if color[v] = WHITE
- 5. then $\pi[v] \leftarrow u$
- 6. DFS-Visit(v)
- 7. $color[u] \leftarrow BLACK$
- 8. $f[u] \leftarrow time \leftarrow time + 1$

APPLICATIONS OF BFS

APPLICATIONS OF BFS

- Shortest paths
- Minimum spanning trees
- Crawlers in search engines
- Broadcasting in the network
- Social networks
 - Find people within the given distance *k*
- and etc.

SHORTEST PATH

SHORTEST PATH

- Shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
- Given a weighted graph G = (V, E) and a source vertex v
- Goal
 - Find shortest paths from a source vertex v to all other vertices in the graph.

PATH

SHORTEST PATH

EXAMPLE

ALGORITHM DEMONSTRATION

DIJKSTRA'S ALGORITHM: SHORTEST PATH

```
for each node i to n
    distance[i] = ∞
    previous[v] = undefined

for each node i to n
    visited[i] = false

distance[s] = 0

current = s

Q = set of all nodes in the graph G
```

Let s be the source node

```
while Q is not empty
    u = vertex in Q with smallest distance in distance[]
    Q = Q - \{u\}
    if distance[u] = ∞
        break;
    endif
    for each neighbor v of u
        alternative = distance[u] + distance between(u, v)
        if alternative < distance[v]</pre>
            distance[v] = alternative
            previous[v] = u
       endif
    endfor
 endwhile
 return distance
```

ALGORITHM: ALL-PAIR SHORTEST PATH

```
(Floyd-Warshall)
for k := 1 to n
    for i := 1 to n
        for j := 1 to n
            if path[i][k] + path[k][j] < path[i][j]</pre>
                path[i][j] := path[i][k]+path[k][j];
                next[i][j] := k;
            endif
function Path (i,j)
    if path[i][j] is infinity
        return "no path";
    int intermediate := next[i][j];
    if intermediate is null then 1
        return " "; /* there is an edge from i to j, with no vertices between */
    else
        return Path(i, intermediate) + intermediate + Path(intermediate, j);
```

APPLICATIONS OF DFS

TOPOLOGICAL SORT

- Topological sort of directed acyclic graphs (DAGs) G = (V, E)
 - Linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.
 - Can be viewed as an ordering of its vertices along a horizontal line so that all directed edges go from left to right.

EXAMPLE: TOPOLOGICAL SORT

ALGORITHM: TOPOLOGICAL SORT

Topological-Sort(G)

- I. Call DFS(G) to compute finishing times f[v] for each vertex v
- 2. As each vertex is finished, insert in onto the front of a linked list
- 3. Return the linked list of vertices

STRONGLY CONNECTED COMPONENTS

A strongly connected component of a directed graph G = (V, E) is a maximal set of vertices UV such that for every pair of vertices u and v in U, the vertices u and v are reachable from each other.

BASIC CONCEPTS OF TREE SEARCH

Breadth-First Search(G,A)

```
s = A
while not Goal(s)
for each successor x of s
    enqueue(x)
s = dequeue()
```

Depth-First Search(G, A)

```
s = A
while not Goal(s)
for each successor x of s
   push(x)
s = pop()
```

EXERCISES

- Implement an algorithm that performs a breadth-first search on a given graph and a source node.
- Implement an algorithm that performs a depth-first search on a given graph.
- Give an efficient algorithm to determine if an undirected graph is bipartite.
 - Sample graphs

