E6893 Big Data Analytics:

Community Detection in Social Networks

Team Members (with UNI): Siyu Liu(sI4262), Tianyao Hua(th2706), Anke Xu(ax2127)

Motivation

• What is Community Detection?

Reveal the organizational structure of social networks

Advantage of Community Detection over Other Clustering

- Clustering only considers attributes of nodes
- CD also considers the structure of edges
 to detect underlying relationship and explainable insights

Wide range of application

- Targeted advertising
- Detect suspicious groups in Anti-Money Laundering
- Healthcare Infectious Disease Outbreak
- Business Intelligence

Dataset, Algorithm, and Tools

Dataset

Main Source: Stanford Large Network Dataset Collection - Email-Eu-core network

 All incoming and outgoing email data between members from a large European research institution with 1005 nodes, 25571 edges and 42 labeled communities

Other Option: Kaggle Competition - Synthetic Financial Datasets For Fraud Detection

A simulated dataset about mobile money transactions based on a sample of real transactions
 Other Option: Facebook, Twitter social network data sets (Still finding)

Tools

- Python
- PySpark
- Hadoop
- Hive

Algorithm

Community from Edge Structure and Node Attributes - CESNA (See Next)

Algorithm-CESNA

Probabilistic Network Model

Model

- Network denoted by G(V, E), has C communities
- Each node has attributes *X*, a vector
- ullet Each node has affiliation weight $\{F_{uc}\}$
- Network Adjacency Matrix

$$P_{uv}=1-e^{(-\Sigma_c F_{uc} F_{vc})}$$

$$A_{uv}$$
 Bernoulli (P_{uv})

Attributes

$$Q_{uk}=rac{1}{1+e^{-\Sigma_c W_{kc} F_{uc}}}$$

$$X_{uk}$$
~Bernoulli (Q_{uk})

Algorithm-CESNA

Probabilistic Network Model

Maximize likelihood

The optimal estimation of F and W is

$$\hat{F}, \hat{W} = \operatorname{argmax} \log P(G, X|F, W)$$

$$\log P(G,X|F,W) = \mathcal{L}_G + \mathcal{L}_X$$

$$egin{aligned} \mathcal{L}_G &= \Sigma_{(u,v) \in E} \log(1 - e^{-F_u F_v^T}) - \Sigma_{(u,v)
otin E} F_u F_v^T \ \mathcal{L}_X &= \Sigma_{u,k} (X_{uk} {\log} Q_{uk} + (1 - X_{uk}) {\log} (1 - Q_{uk})) \end{aligned}$$

- Solution-block coordinate ascent
 - Initial guess F and W
 - Fix W, optimize F
 - Fix F, optimize W
 - Repeat until change is small

Algorithm-CESNA

Probabilistic Network Model **Determine Membership**

- ullet u belongs to c if $F_{uc} > \delta$
- Choose threshold?

$$rac{1}{N} < 1 - e^{-\delta^2}$$

What's the number of *C*?

Reserve a holdout set

Algorithm-CESNA

Method class	Overlapping	Hard membership	Structure+Att ributes	nodes per 10 hours
Heuristic	No	Yes	No	100,000
LDA-based	Yes	No	Yes	85,000
Clique-based	Yes	Yes	No	100,000
Social circles	Yes	Yes	No	5,000
CESNA	Yes	Yes	Yes	1,000,000

Ref: Jaewon Yang, Julian McAuley, Jure Leskovec. Community Detection in Networks with Node Attributes. 2013, Community Detection in Networks with Node Attributes.

Expected Contributions and Timeline

Expected Contributions

We will implement the CESNA algorithm and test it on several social network data sets, and improve it if possible.

The final results will be a website for visualizing the results.

Timeline of the Project

- Literature review: Look through literatures 11.1-11.8
- Implementation: Code the algorithm 11.9-11.23.
- Test & Visualization: Test algo. and Visualize the results of the community detection.
 11.23-11.30
- Report: 12.1-12.6.
- Further Work: We will extend the application of community detection in Anti-money Laundering dataset. (*If time permits)

Youtube link: https://youtu.be/v8HZH7oLGQg

