Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №1 з дисципліни «Методи наукових досліджень» на тему

«Загальні принципи організації експериментів з довільними значеннями факторів»

Виконав:

студент II курсу ФІОТ

групи IB – 91

Вігор Дмитро

Номер залікової книжки: 9106

Варіант: 6

Перевірив:

асистент Регіда П.Г.

Мета: Вивчити основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчити побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпити отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Завдання на лабораторну роботу

- 1) Використовуючи програму генерації випадкових чисел, провести трьох факторний експеримент в восьми точках (три стовбці і вісім рядків в матриці планування заповнити її випадковими числами). Рекомендовано взяти обмеження до 20 при генерації випадкових чисел, але врахувати можливість зміни обмеження на вимогу викладача. Програма створюється на основі будь-якої мови високого рівня.
- Визначити значення функції відгуків для кожної точки плану за формулою лінійної регресії:
 Y = a0 + a1 X1 + a2 X2 + a3 X3,
 де a0, a1, a2, a3 довільно вибрані (для кожного студента різні) коефіцієнти, постійні протягом усього часу проведення експерименту.
- 3) Виконати нормування факторів. Визначити значення нульових рівнів факторів. Знайти значення відгуку для нульових рівнів факторів і прийняти його за еталонне Уэт.
- 4) Знайти точку плану, що задовольняє критерію вибору оптимальності (див. табл.1). Варіанти обираються по номеру в списку в журналі викладача.

Варіант завдання:

106	$\min((Y-Y_{\supset T})^2)$
-----	-----------------------------

Лістинг програми:

```
from random import randint
import prettytable
import numpy as np

size_x = 20
size_a = 10
a = [randint(1, size_a) for _ in range(4)]

# заповнення таблички по X та розражунок Y
X1 = np.array([randint(1, size_x) for _ in range(8)])
X2 = np.array([randint(1, size_x) for _ in range(8)])
X3 = np.array([randint(1, size_x) for _ in range(8)])
Y = np.array([(a[0] + a[1]*X1[i] + a[2]*X2[i] + a[3]*X3[i]) for i in range(8)])
```

```
x01 = (max(X1) + min(X1))/2
x02 = (max(X2) + min(X2))/2
x03 = (max(X3) + min(X3))/2
y0 = (max(Y) + min(Y))/2
# інтервал зміни фактора
dx1 = max(X1) - x01
dx2 = max(X2) - x02

dx3 = max(X3) - x03
# нормоване значення
Xn1 = np.array([round((X1[i] - x01)/dx1, 3) for i in range(8)])
Xn2 = np.array([round((X2[i] - x02)/dx2, 3) for i in range(8)])
Xn3 = np.array([round((X3[i] - x03)/dx3, 3) for i in range(8)])
# формуємо всю табличку
table = prettytable.PrettyTable()
table.field_names = ["#", "X1", "X2", "X3", "Y", "Xn1", "Xn2", "Xn3"]
for i in range(8):
    table.add_row([i, X1[i], X2[i], X3[i], Y[i], Xn1[i], Xn2[i], Xn3[i]])
table.add_row(["x0", x01, x02, x03, y0, "--", "--", "--"])
table.add_row(["dx", dx1, dx2, dx3, "--", "--", "--"])
print(table)
Ye = a[0] + a[1]*x01 + a[2]*x02 + a[3]*x03
print("Еталонне значення Y =", Ye)
sh = [(i - Ye)**2 for i in Y]
print(sh)
print("Шукане мінімальне =", min(sh))
```

Результати роботи програми:

"C:\Program Files\Anaconda2019\python.exe" "D:/Vihor/4. Метод	ди на		
++			
# X1 X2 X3 Y Xn1 Xn2 Xn3			
++			
0 8 3 19 113 -0.286 -0.857 1.0			
1 11 8 5 118 0.143 -0.143 -0.75			
2 14 16 17 222 0.571 1.0 0.75			
3 9 4 11 100 -0.143 -0.714 0.0			
4 17 16 7 204 1.0 1.0 -0.5			
5 3 2 14 71 -1.0 -1.0 0.375			
6 4 4 3 56 -0.857 -0.714 -1.0			
7 6 7 5 91 -0.571 -0.286 -0.75			
x0 10.0 9.0 11.0 139.0			
dx 7.0 7.0 8.0			
++			
Еталонне значення Y = 139.0			
[676.0, 441.0, 6889.0, 1521.0, 4225.0, 4624.0, 6889.0, 2304.0]			
Шукане мінімальне = 441.0			
Process finished with exit code 0			

Відповіді на контрольні запитання:

1. З чого складається план експерименту?

План експерименту складається з усіх точок плану. План експерименту описується матрицею, яка містить N рядків та К стовпців, кожен рядок означає точку плану експерименту, а кожен стовпець — фактор експерименту.

2. Що називається спектром плану?

Спектром плану називається сукупність усіх точок плану, що відрізняються рівнем хоча б одного фактору. Матриця, отримана із усіх різних рядків плану, називається матрицею спектра плану.

3. Чим відрізняються активні та пасивні експерименти?

В активному експерименті ми ϵ адміністраторами нашої системи, а в пасивному експерименті ми не можемо втручатися у хід проведення експерименту і виступаємо у ролі пасивного користувача.

4. Чим характеризується об'єкт досліджень? Дайте визначення факторному простору.

Об'єкт дослідження розглядається як «чорний ящик».

Характеризується вектором змінних величин, які називають факторами та залежністю реакції об'єкта від точки факторного простору -

функцією відгуку. Факторний простір - простір незалежних змінних (факторів), діапазон значень факторів.

Висновок:

Виконавши цю лабораторну роботу я вивчив основні значення теорії планування експерименту та закріпив їх практичними використанням виконуючи завдання. Визначив функцію відгуку для кожного набору факторів та знайшов точку плану.