

Matemática Discreta

Leandro Colombi Resendo

Algoritmos para Grafos

- Grafos Direcionados e Relações Binárias; o Algoritmo de Warshall
- Caminho de Euler e Circuito Hamiltoniano
- Caminho Mínimo e Árvore Geradora Mínima
- Algoritmos de Percurso

O Problema do Caminho Mínimo

Principais Algoritmos de Solução:

- Dijkstra Obtém o caminho mínimo entre dois nós (<u>não aceita</u> <u>arestas negativas</u>).
- Ford-Bellman Obtém o caminho mínimo entre um nó e todos os outro (Admite a existência de arestas negativas).
- Floyd-Warshall Obtém o caminho mínimo entre todos os pares de nós (Admite a existência de arestas negativas).
- Yen encontra os *K* caminhos mínimos entre todos os pares de nós.

Algoritmo de Dijkstra

- 1. Ler G = (N,A), c_{ij} (não negativo) é a "distância" entre os nós e nó de origem s.
- **2.** Iniciar variáveis $S := \emptyset$; R := N;
- 3. $d(i) := \infty \ \forall i \in \mathbb{N}; \ d(s) := 0 \ \text{e pred}(s) := 0;$
- **4.** Enquanto |S| < n fazer
- 5. Seja $i \in N$ tal que $d(i) = min\{d(j): j \in R\}$;
- 6. $S:=S \cup \{i\}; R:=R \{i\};$
- 7. **Para** $j \in N \text{ com } (i,j) \in A \text{ fazer}$
- 8. se $d(j) > d(i) + c_{ij}$ então $d(j) = d(i) + c_{ij}$;
- 9. pred(j):=i;
- 10. Fim_Para
- 11.Fim_Enquanto

Algoritmo de Dijkstra

Por que funciona?

Note o seguinte trecho do código.

```
4. Enquanto |S| < n fazer

5. Seja i \in R tal que d(i) = min\{d(j): j \in R\};

6. S:=S \cup \{i\}; R:=R - \{i\};

7. Para j \in N \ com \ (i,j) \in A fazer

8. Se d(j) > d(i) + c_{ij} então d(j) = d(i) + c_{ij};

9. pred(j):=i;

10. Fim_Para

11. Fim_Enquanto
```

Resposta: A partir de um nó o algoritmo percorre, através dos caminhos mínimos, todas da redes buscando o nó de destino.

Exemplo:

Algoritmo de Dijkstra

Exemplo:

Algoritmo de Dijkstra

Árvores

Problema clássico: Árvore geradora minima.

Considere uma rede não-direcionada (grafo) e associado a cada arco um custo (distância, tempo, etc) não-negativo. O objetivo é encontrar o caminho mais curto de tal maneira que os arcos formem um caminho entre todos os pares de nós

Exemplos de aplicações:

- Projeto de redes de telecomunicações (redes de computadores, redes de fibra-óptica, telefonia, televisão a cabo, etc).
- Projeto de rodovias, ferrovias, etc.
- •Redes de transmissão de energia.

Árvores

Exemplo:

Árvores Geradora Mínima

Principais Algoritmos de Solução:

- Prim: monta a árvore mínima até inserir todos os nós.
- Complexidade $O(n^3)$.
- Kruskal : seleciona as arestas em ordem crescente até obter uma árvore com todos os nós.
- Complexidade *O(mlogm)*.

Prim

Exemplo:

- **1.** Ler G = (N,A), d_{ij} é a "distância" entre os nós vizinhos.
- 2. Escolha qualquer vértice i.
- **3.** Iniciar variáveis $T \leftarrow i$; $V \leftarrow N \{i\}$;
- 4. Enquanto $T \neq N$ Para todo $i \in T$ fazer
- 5. **Encontrar a menor aresta** $(i,k) \in A$ com $i \in T$ e $k \in V$.
- 6. $T \leftarrow T + \{k\}$
- 7. $V \leftarrow V \{k\}$
- 8. $S \leftarrow S + \{(i,k)\}$
- 9. Fim_Enquanto
- **10.Escrever** *S* (arestas da árvore geradora mínima)

Kruskal

Exemplo:

- **1.** Ler G = (N,A), d_{ij} é a "distância" entre os nós vizinhos.
- 2. Ordene os enlaces em ordem não-decrescente de distância (d_{ij}) no vertor $H=(h_i)$.
- **3.** Iniciar variáveis $T \leftarrow h_1$; $i \leftarrow 2$;
- 4. Enquanto |T| < n Tome $h_i \in H$ fazer
- 5. Se $T + h_i$ é um grafo acíclico (árvore) então

6.
$$T \leftarrow T + h_i$$

7.
$$i \leftarrow i+1$$

8. Caso Contrário

9.
$$i \leftarrow i+1$$

10.Fim_Enquanto

11.Escrever *T* (arestas da árvore geradora mínima)

Complexidade

Prim:

- 4. Enquanto $T \neq N$ Para todo $i \in T$ fazer
- 5. Encontrar a menor aresta $(i,k) \in A$ com $i \in T$ e $k \in V$.
- 6. $T \leftarrow T + \{k\}$

Como "Encontrar a menor aresta" tem tempo O(m) e m é $O(n^2)$, repetindo N vezes do "Enquanto", temos um complexidade $O(n^3)$.

Kruskal

- 2. Ordene os enlaces em ordem não-crescente de distância (d_{ij}) no vertor $H=(h_i)$.
- 3. Iniciar variáveis $T \leftarrow h_i$; $i \leftarrow 2$;
- 4. Enquanto |T| < n Tome $h_i \in H$ fazer
- A "ordenação" das arestas pode ser feita em O(mlogm), adicionando o O(m) no enquanto a complexidade se mantem O(mlogm).

Lista Mínima de Exercícios

Seção 6.3: 1, 5, 7, 9, 10, 11, 14, 15, 21, 27.