

Apellidos, Nombre: Grupo:

	No se permite el uso de ningún tipo de documentación ni de calculadora en todo el examen Test 2 ptos .
Re	spuesta correcta ⇒0,2
	El número A=11100110 está expresado en C2, en decimal es el número: a) 37 b) -26 c) -37 d) 230
2) [_] [_] [_]	El número B=37 en decimal expresado en C1 es el número: a) 10101001 b) 00101001 c) 00100101 d) Ninguno de los anteriores
[_] [_]	Siendo A=3B74 y B=82C8 en hexadecimal el resultado de la operación A + B en hexadecimal es: a) BE3C b) B49C c) DC4C d) Ninguno de los anteriores
[_] [_] [_]	Siendo A=11000011 y B=11000111, en C2 el resultado (en C2) de la operación A + B es: a) 10001011 b) 10000011 c) 10001010 d) 01110100
	¿El rango de los números para coma fija en C1 con 8 bits es: a) (-128, 128) b) (-127, 128) c) (-128, 127) d) (-127, 127)
	 En la arquitectura Von Neumann, el programa en ejecución debe: a) Estar almacenado en el disco duro b) Estar almacenado en una unidad de CD-ROM c) Ser cableado manualmente d) Ninguna de las anteriores
[_] [_]	¿En un contador asíncrono descendente activo por flanco de bajada , a qué está conectada la entrada de reloj del biestable que guarda el bit más significativo? a) Al reloj b) A la salida Q del biestable del segundo bit más significativo c) A la salida Q del biestable del segundo bit más significativo d) Ninguna de las anteriores

Apellidos, Nombre: Grupo:

- [_] a) 26 bits
- [_] b) 16 bits
- [] c) 36 bits
- [_] d) Ninguna de las anteriores
- 9) En una pastilla de memoria de 256 K x 16 queremos leer el rango de posiciones [68000h 6FFFFh]. Indique a qué valor fijo tenemos que conectar las líneas de dirección de mayor peso de la pastilla.:
- [] a) $A_{18}=1$, $A_{17}=1$, $A_{16}=0$, $A_{15}=1$
- [] b) $A_{18}=0$, $A_{17}=1$, $A_{16}=1$, $A_{15}=0$
- [_] c) $A_{18}=1$, $A_{17}=0$, $A_{16}=0$, $A_{15}=1$
- [_] d) Ninguna de las anteriores
- 10) ¿Cuál es la puerta lógica que **sólo** teniendo dos unos en la entrada da un 1 a la salida?
- [_] a) XNOR
- [_] b) AND
- [_] c) OR
- [_] d) XOR
- Problemas 8 ptos.
- No se permite el uso de ningún tipo de documentación ni de calculadora

EJERCICIO. 1 (Total 1.5 ptos.)

a) Dada la señal de reloj Clk del cronograma y utilizando el biestable **RS** de la figura. Realizar las conexiones necesarias para obtener la señal Q mostrada.

Apellidos, Nombre: Grupo:

EJERCICIO. 2 (Total 1.5 ptos.)

En una CPU con un bus de direcciones de 16 bits y un bus de datos de 16 bits, se quieren instalar 16K x 16 de ROM en las posiciones más altas y 32K x 16 de RAM en las posiciones más bajas. Para ello disponemos de las siguientes pastillas de memoria:

Pastillas de memoria ROM	Pastillas de memoria RAM
16K x 16	16K x 16

a) Dibuje el mapa de memoria, incluyendo en binario y en hexadecimal la primera y la última dirección de cada fila de memoria (0,75)

b) Realice el circuito (con puertas lógicas y/o decodificadores) como se deben conectar las entradas CS (chip select) de cada una de las pastillas utilizadas (0,75)

Apellidos, Nombre: Grupo:

EJERCICIO 3 (Total 1.7 ptos.)

Diseñar, un circuito combinacional con 4 líneas de entrada d,c,b,a, (siendo "d" la variable de mayor peso y "a" la de menor peso) y una sola línea de salida f, tal que se active dicha salida (f=1), cuando a la entrada aparezcan las combinaciones binarias 1,3,4,7,9,11,15.

- a) Simplificar el cto. empleando Karnaugh (1 pto.) (sólo la expresión, no hace falta dibujar las puertas)
- b) Pasar el cto. A puertas NAND **(0.7 ptos.)** (sólo la expresión, no hace falta dibujar las puertas)

Apellidos, Nombre: Grupo:

EJERCICIO 4 (1.5 ptos.)

c) Realizar, utilizando un multiplexor y un comparador y las puertas lógicas necesarias, un circuito que tenga como entrada dos números de 2 bits cada uno (A y B) y que tenga una salida de 2 bits que será el menor de A ó B. Realiza todas las conexiones (no dejar ninguna entrada al aire).

	Output Y				
Strobe	Select	Α	В	Output 1	
Н	X	X	X	L	
L	L	L	X	L	
L	L	Н	X	Н	
L	н	X	L	L	
L	Н	X	Н	Н	

 $H\,=\, \text{High Level, L}\,=\, \text{Low Level, X}\,=\, \text{Don't Care}$

Tabla de verdad del multiplexor

Apellidos, Nombre: Grupo:

EJERCICIO 5 (Total 1.8 ptos.)

Dado el siguiente grafo de una máquina Mealy

5.1) Con la entrada Y indicada, ¿Cuándo se activa la salida Z? (0.4 ptos.)

Y=00001100101110011011000100

Z=

- 5.2) Completar la tabla. (0.6 ptos.)
- 5.3) Simplificar empleando Karnaugh. (0.4 ptos.)
- 5.4) Dibujar el circuito que implementa dicha máquina. (0.4 ptos.)

Estado actual		Entrada	Salida	estado.		estado. T´s		ación
Q1	Q0	Υ	Z	Q1 T+1	Q0 T+1	T1	T0	