Grafos Orientados

Um grafo orientado (ou dígrafo) D = (V,E)
consiste de um conjunto V (vértices) e de
um conjunto de E (arestas) de pares
ordenados de vértices distintos.

Representação:

$$V(G) = \{v_1, v_2, v_3, v_4\}$$

$$V_1$$
 V_2
 V_3
 V_4

$$E(G) = \{(v_1, v_2); (v_3, v_1); (v_2, v_3); (v_3, v_4); (v_4, v_3)\}$$

Grafos Orientados

Em um grafo <u>orientado</u>, cada aresta e = (x, y) possui uma <u>única direção</u> de x para y.
 Diz-se que (x, y) é divergente de x e convergente a y. Assim:

 (v_3,v_1) é divergente de v_3 (v_3,v_1) é convergente a v_1

Grafos Orientados

- Em grafos orientados, em (x,y) tem-se que y é adjacente a x, mas não oposto.
- Se o grafo é orientado ou não, x e y são "vizinhos"

 (v_3,v_1) v_1 é adjacente a v_3 (v_3,v_1) v_1 e v_3 são vizinhos

Grafos Grau

 O Grau d(v) de um vértice v corresponde ao número de vértices adjacentes a v(ou ao número de arestas incidentes a v).

Exemplo:

$$d(v_6) = 0$$

 $d(v_3) = d(v_4) = d(v_7) = 1$
 $d(v_1) = d(v_2) = 2$
 $d(v_5) = 3$

Grafos Grau

Em um grafo orientado:

- O Grau de Saída d_{out}(v) de um vértice v corresponde ao número de arestas <u>divergentes</u> (que saem) de v.
- O Grau de Entrada d_{in}(v) de um vértice v corresponde ao número de arestas convergentes (que chegam) a v.

$$d_{in}(v_3) = 2$$
 e $d_{out}(v_3) = 2$
 $d_{in}(v_1) = d_{in}(v_2) = d_{in}(v_4) = 1$
 $d_{out}(v_1) = d_{out}(v_2) = d_{out}(v_4) = 1$

Grafos Grau

- Um vértice com grau de <u>saída</u> nulo, ou seja, $d_{out}(v) = 0$, é chamado de <u>sumidouro</u> (ou <u>sorvedouro</u>)
- Um vértice com grau de <u>entrada</u> nulo, ou seja,
 d_{in}(v) = 0, é chamado de fonte
- Diz-se que um grafo é regular se todos os seus vértices tiverem o mesmo grau

Grafos Exercício de Fixação

- O grafo (a) é regular? Por quê?
- Existe alguma fonte ou sumidouro no grafo (b)?