1 Зачет

- О. Индивидуальные задания:
 - 1. Решить линейное уравнение методом Гаусса.
 - 2. Найти базис в сумме и пересечении подпространств.
 - 3. Рассмотрим отображение $f_v \colon \binom{\mathrm{M}_2(\mathbb{R}) \to \mathbb{R}^2}{M \mapsto M v}$ для данного вектора $v \in \mathbb{R}^2$. Напишите матрицу этого отображение для двух предлагаемых базисов в $\mathrm{M}_2(\mathbb{R})$ и \mathbb{R}^2 .
- **А.** Пусть X множество. Рассмотрим 2^X множество всех подмножеств X, снабженное операцией Δ симметрической разности: для двух подмножеств $A, B \subseteq X$

$$A\Delta B = (A \cup B) \setminus (A \cap B).$$

- 1. Снабдите X структурой векторного пространства над полем из двух элементов \mathbb{F}_2 . Какова его размерность если X конечное?
- 2. Докажите, что для счетного X пространство его подмножеств не допускает счетный базис? Рассмотрим подпространство $\mathrm{Fin}(X) \leq 2^X$, порожденное всеми конечными множествами в X. Постройте в нем какой-нибудь базис.
- 3. Допускает ли $\operatorname{Fin}(X)$ базис, каждый элемент которого являтется подмножеством из 2 элементов? Для каких $m \in \mathbb{N}$ пространство $\operatorname{Fin}(X)$ допускает базис, состоящий из m-элементных подмножеств X?
- 4. Пусть $\operatorname{Fin}_m(X)$ подпространство $\operatorname{Fin}(X)$, порожденное всеми m-элементными множествами. Найдите размерность факторпространства $\operatorname{Fin}(X)/\operatorname{Fin}_m(X)$.
- **В.** Аффинным подпространством размерности m пространства V над полем F называется его подмножество вида $\{v \in V \mid v = a + w, w \in W\}$ для некоторых $a \in V$, и $W \leq V$, $\dim W = m$.
 - 1. Сколько разных одномерных аффинных подпространств пространства $V=\mathbb{F}_3^d$ содержат данный вектор $v\in\mathbb{F}_3^d$? Сколько есть разных аффинных подпространств размерности m, содержащих данный $v\in\mathbb{F}_3^d$?
 - 2. Для $V = \mathbb{F}_3^2$ какова максимальная мощность подмножества векторов V, не содержащего ни одного одномерного аффинного подпространства?
 - 3. Для $V = \mathbb{F}_3^3$ какова максимальная мощность подмножества векторов V, не содержащего ни одного одномерного аффинного подпространства?
 - 4. Пусть $V=F_3^d$, и $W_1,\dots,W_p\subset V$ для натурального p набор аффинных подпространств размерности m. Найдите сумму всех векторов, составляющих множество

$$V \setminus (W_1 \cup \ldots \cup W_p).$$

С. Пусть V — абелева группа, а F — поле.

- 1. Докажите, что, если $F = \mathbb{Q}$ или $F = \mathbb{Z}/p\mathbb{Z}$, где p простое число, то на V существует не более одной структуры векторного пространства над F.
- 2. Предъявите пример абелевой группы V и поля F таких, что на V имеется более одной структуры векторного пространства над F.
- **D.** Пусть V векторное пространство над полем F размерности не меньше 2.
- 1. Докажите, что, если $|F| = \infty$, то ни для какого $m \in \mathbb{N}$ не существует таких собственных подпрстранств V_1, \dots, V_m пространства V, что $V = \bigcup_{i=1}^m V_i$.
- 2. Пусть |F| = q. При каком минимальном $m \in \mathbb{N}$ существуют такие собственные подпространства V_1, \ldots, V_m пространства V, что $V = \bigcup_{i=1}^m V_i$.
- 3. Пусть |F| континуально, а V бесконечномерно. Может ли объединение счетного числа собственных подпространств V быть равным V?
- **Е.** Пусть A матрица над полем F с m строками и n столбцами. Через A^T обозначим матрицу n строками и m столбцами, у которой в позиции (i,j) стоит тот же элемент, что и у матрицы A в позиции (j,i).
 - 1. Докажите, что, если $A^{T}A$ обратимая матрица, то rank(A) = n.
 - 2. Докажите, что, если $F = \mathbb{R}$ и rank(A) = n, то $A^T A$ обратимая матрица.
 - 3. Приведите пример, когда rank(A) = n, но матрица $A^{T}A$ не обратима.