Real Analysis

Cantor Set

August 18, 2021

$$\frac{1}{2} > \frac{7}{3}$$

$$0.4 = \frac{1}{3} + \dots$$

 $0.5 = \frac{1}{3} + \frac{1}{4} + \dots$

$$\frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

0.4999... = 0.49 = 0.5

1 Defining the Cantor set

For a set $S \subseteq \mathbb{R}$, we let $a \cdot S \coloneqq \{ax : x \in S\}$, $a + S \coloneqq \{a + x : x \in S\}$ for any $a \in \mathbb{R}$.

Start with $\mathscr{F}_0 \coloneqq [0,1]$. Inductively define $\mathscr{F}_{k+1} \coloneqq \left(\frac{1}{3}\mathscr{F}_k\right) \cup \left(\frac{2}{3} + \frac{1}{3}\mathscr{F}_k\right)$. For example, $\mathscr{F}_1 = \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right]$ and $\mathscr{F}_2 = \left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{3}{9}\right] \cup \left[\frac{6}{9},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right]$. By induction, \mathscr{F}_k is a union of 2^k disjoint closed intervals. We define $\mathscr{F} \coloneqq \bigcap_{k \in \mathbb{N}} \mathscr{F}_k$ to be the **Cantor set**. Note, $\mathscr{F}_k \supseteq \mathscr{F}_{k+1}$. So this is a decreasing sequence of nonempty compact sets, which means \mathscr{F} is nonempty. In fact, this is compact (closed because intersection of closed sets, bounded because contained in [0,1]). We will eventually show that \mathscr{F} is an uncountable set.

For now, note that \mathscr{F} is closed. Take any $a,b\in\mathbb{R}$ with a< b. Take $m\in\mathbb{N}$ to be such that $3^m>\frac{6}{b-a}$. For such a choice of m, $\left(\frac{3k+1}{3^m},\frac{3k+2}{3^m}\right)\subset(a,b)$. But, by the description of \mathscr{F} is is not hard to see that $\left(\frac{3k+1}{3^m},\frac{3k+2}{3^m}\right)\cap\mathscr{F}=\varnothing\forall k,m\geq 1$. It follows that \mathscr{F} cannot contain any open ball, whence $F^o=\varnothing$. By definition, \mathscr{F} is rare or nowhere dense.

2 Ternary expansions

Consider a sequence of numbers $\mathfrak{A}=(a_i)_{i\in\mathbb{N}}$ taking values in $\{0,1,2\}$. We define a rule $f(\mathfrak{A})\coloneqq\sum_{n=1}^\infty\frac{a_n}{3^n}$. Note that the sequence given by $S_n=\sum_{i=1}^n\frac{a_i}{3^i}$ is an increasing sequence. Further $S_n\leq\sum_{i=1}^n\frac{2}{3^i}\leq\frac{2}{3}\cdot\frac{1}{1-\frac{1}{3}}=1$ $\forall n$. So, $\sum_{n=1}^\infty\frac{a_n}{3^n}$ is a real number in [0,1]. So $f:\{0,1,2\}^\mathbb{N}\to[0,1]$ is a well defined function. We will show that f is surjective but not injective.

Proposition 1 f is not injective.

PROOF Consider the sequences $\mathfrak{A}_1=(1,0,0,0,\cdots), \mathfrak{A}_2=(0,2,2,2,\cdots)$. We note that $f(\mathfrak{A}_1)=\frac{1}{3}$ and that $f(\mathfrak{A}_2)=\sum_{i=2}^{\infty}\frac{2}{3}=\frac{2}{9}\cdot\frac{1}{1-\frac{1}{2}}=\frac{1}{3}$. So we have found $\mathfrak{A}_1\neq\mathfrak{A}_2$ with $f(\mathfrak{A}_1)=f(\mathfrak{A}_2)$.

We do a somewhat more general analysis and determine exactly what are the cases when curious things (as above happen). That is, we ask that if two sequences $\mathfrak{A}=(a_n),\mathfrak{B}=(b_n)$ satisfy that $f(\mathfrak{A})=f(\mathfrak{B})$, then what are the conditions on $\mathfrak{A},\mathfrak{B}$.

So we are assuming that $\sum_{i=1}^{\infty} \frac{a_i}{3^i} = \sum_{i=1}^{\infty} \frac{b_i}{3^i}$ and that $\mathfrak{A} \neq \mathfrak{B}$. So $\exists k \in \mathbb{N}$ such that $a_k \neq b_k$, and take k to be the least

$$4 |_{q} = \frac{a_{1}}{3} + \frac{a_{2}}{9} + \frac{a_{3}}{27} + a_{1} = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + a_{2} + \frac{1}{27} + \frac{1}{27}$$

$$\frac{1}{3^{1}} + \frac{0}{3^{2}} + \frac{2}{3^{3}} + \frac{2}{3^{4}} + \cdots = \frac{1}{3} + \frac{2}{3^{3}} \left[1 + \frac{1}{3} + \frac{1}{3^{2}} - \cdots \right] = \frac{1}{3} + \frac{2}{27} \times \frac{3}{2} = \frac{1}{3} + \frac{1}{9} = \frac{1}{9}$$

such. WLOG assume $a_k > b_k$. Now $\sum_{i=1}^{\infty} \frac{a_i}{3^i} = \sum_{i=1}^{\infty} \frac{b_i}{3^i} \implies \sum_{i=k}^{\infty} \frac{a_i}{3^i} = \sum_{i=k}^{\infty} \frac{b_i}{3^i} \implies \frac{a_k - b_k}{3^k} + \sum_{i=k+1}^{\infty} \frac{a_i}{3^i} = \sum_{i=k+1}^{\infty} \frac{b_i}{3^i}$. Note $\frac{1}{3^k} \le \frac{1}{3^k} + \sum_{i=k+1}^{\infty} \frac{a_i}{3^i} \le \frac{a_k - b_k}{3^k} + \sum_{i=k+1}^{\infty} \frac{a_i}{3^i} = \sum_{i=k+1}^{\infty} \frac{b_i}{3^i} \le \frac{2}{3^{k+1}} \cdot \frac{3}{2} = \frac{1}{3^k}$. This means $(a_i, b_i) = (0, 2) \forall i > k, a_k - b_k = 1$. So the only 'curious' cases is one of the following two types:

$$0.s_1 s_2 \cdots s_m 1000 \cdots = 0.s_1 s_2 \cdots s_m 0222 \cdots$$

$$0.s_1 s_2 \cdots s_m 2000 \cdots = 0.s_1 s_2 \cdots s_m 1222 \cdots$$

But the set of these numbers is just the set of all numbers of the form $\frac{t}{3^k}$.

Now define a function $g:[0,1] \to \{0,1,2\}^{\mathbb{N}}$. First we say that if $x = \frac{t}{3^k}$ for some integers $t, k \ge 0$ we take the ternary expansion which has lesser usage of 1's.

Now for any other $x \in [0,1]$, indutively define a sequence $\mathfrak{A} = (a_n) \in \{0,1,2\}^{\mathbb{N}}$ as follows: Let a_1 be largest so that $\frac{a_1}{3} \le x$; and we let a_{m+1} to be the largest so that $\frac{a_{m+1}}{3^{m+1}} \le x - \sum_{i=1}^m \frac{a_i}{3^i}$. By induction, it follows that $0 \le x - \sum_{i=1}^m \frac{a_i}{3^i} < \frac{1}{3^m}$. This gives a sequence \mathfrak{A} such that $\sum_{n=1}^\infty \frac{a_n}{3^n} = x$. It's not hard to see that $f(g(x)) = x \, \forall x \in [0,1]$.

In other words, we have proved the

Proposition 2 f is surjective.

3 Relation between \mathscr{F} and ternary expansion

From now on, whenever we say 'the ternary expansion of x' we always mean $\sum_{n=1}^{\infty} \frac{a_n}{3^n}$ where $(a_n) = g(x)$. And we will mean $\{1, \cdots, n\}$ when we write [n]. Also, for a sequence $\mathfrak{A} = (a_n)$ we define the i^{th} projection map as $\pi_i(\mathfrak{A}) \coloneqq a_i$. Let $\mathscr{G}_1 \coloneqq \left\{x \in [0,1] : \pi_j(g(x)) \neq 1 \forall j \in [1]\right\}$, that is, the set of all $x \in [0,1]$ such that the first term in its ternary expansion is not 1. It is not hard to see that $\mathscr{G}_1 = \mathscr{F}_1$. Indeed, $\pi_1(g(x)) = 1 \iff x \in \left(\frac{1}{3}, \frac{2}{3}\right)$. Similarly define $\mathscr{G}_2 \coloneqq \left\{x \in [0,1] : \pi_j(g(x)) \neq 1 \forall j \in [2]\right\}$ and observe that $\mathscr{G}_2 = \mathscr{F}_2$. In fact, it is true that $\mathscr{G}_n = \mathscr{F}_n \forall n \in \mathbb{N}$ where $\mathscr{G}_n \coloneqq \left\{x \in [0,1] : \pi_j(g(x)) \neq 1 \forall j \in [n]\right\}$. It is thus clear that $\mathscr{G} \coloneqq \bigcap_{k \in \mathbb{N}} \mathscr{G}_k = \bigcap_{k \in \mathbb{N}} \mathscr{F}_k = F$. But, $\mathscr{G} = f\left(\{0,2\}^{\mathbb{N}}\right)$. By our earlier discussion, we have seen exactly when f fails to be injective. In particular $f|_{\{0,2\}^{\mathbb{N}}\}}$ is injective. Uncountability of $\{0,2\}^{\mathbb{N}}$ implies the uncountability of \mathscr{F} .

Corollary 3 $\forall r > 0, a \in \mathcal{F}, \exists b \in \mathcal{F} \text{ such that } 0 < |b-a| < r. \text{ In other words, } \mathcal{F} \text{ has no isolated point.}$

PROOF Let
$$r > 0, a \in \mathcal{F}$$
. Take $m \in \mathbb{N}$ to be such that $3^m > \frac{2}{r}$. Say $g(a) = (a_n)$.

Define $\mathfrak{B} := (a_1, \dots, a_{m-1}, 2 - a_m, a_{m+1}, a_{m+2}, \dots)$ and $b := f(\mathfrak{B})$. Clearly $|b - a| = \frac{2}{3^m} \in (0, r)$.

Finally, we exhibit a surjection $\mathscr{F} \to [0,1]$. Note that $\tilde{g} \coloneqq g|_{\mathscr{G}} = g|_{\mathscr{F}}$ is a surjection whose image is $\{0,2\}^{\mathbb{N}}$. Next define $h: \{0,2\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ by $(a_n) \overset{h}{\mapsto} \left(\frac{\pi_n(a_n)}{2}\right)$. h is surjective as well. Lastly, notice that the map $\rho: \{0,1\}^{\mathbb{N}} \to [0,1]$ given by $(a_n) \mapsto \sum_{n=1}^{\infty} \frac{a_n}{2^n}$ is well defined and a surjection (by the same argument used to prove proposition 2). The surjectivity of all these maps proves the surjectivity of $(\rho \circ h \circ \tilde{g}) : \mathscr{F} \to [0,1]$. In short, if the ternary expansion of $x \in \mathscr{F}$ is $\sum_{n=1}^{\infty} \frac{a_n}{3^n}$ (so that each $a_n \in \{0,2\}$) then we map it to $\sum_{n=1}^{\infty} \frac{a_n/2}{2^n}$. This is well defined because the ternary representation of elements of \mathscr{F} is unique.

Let U be open l $x \in U$. Then there is a ball $B_{r}(a)$ s.t. $x \in B_{r}(a) \subseteq U$ with $a, r \in Q$.

Why? $\exists \ \epsilon \in \mathbb{R}$ s.t. $x \in B_{\epsilon}(x) \subseteq U$. $(x-\epsilon, x+\epsilon)$ $\forall \cap Q \neq \phi \text{ for open } V. \text{ So } \exists \ u \in (x-\epsilon, x) \cap Q,$ $\text{let } a = \frac{u+v}{Z} \in Q, \ \gamma = \frac{v-u}{Z} \in Q.$ Then $x \in (u, v) = B_{r}(a)$.

 $\mathcal{U} = \left\{ \begin{array}{l} B_{\mathcal{T}}(\alpha) : r \in \mathbb{Q}, \alpha \in \mathbb{Q} \right\} \text{ is a countable} \\ \text{Collection of open balls. Write this set as} \\ \mathcal{U} = \left\{ \begin{array}{l} T_{1}, T_{2}, \dots \end{array} \right\} \end{array}$

lindelöf covering theorem: let $S \subseteq \mathbb{R}$ I let V be an open cover for S. Then there is a countable subcover of V. Pf. let $X \in S$. So \exists $U_n \in V$ s.t. $X \in U_2 :: \exists T_k \in U$ s.t. $X \in T_k \subseteq U_n$ (take k to be the smallest such, and call this k(X)).

 $\mathcal{X} \in T_{k(x)} \subseteq U_n \subseteq S.$ $\mathcal{W} = \left\{ k(x) : x \in S \right\} \subseteq \mathbb{N}$ $\text{Now } S \subseteq \bigcup_{n \in S} T_{k(n)} = \bigcup_{k \in \mathcal{M}} T_k.$

CONNECTEDNESS

 \rightarrow X \subseteq R is connected if for any disjoint open sets U, V (in R),

 $X \subseteq UUV \Rightarrow X \subseteq U \text{ or } X \subseteq V \Leftrightarrow X \cap U = \emptyset \text{ or } X \cap V \neq \emptyset$

 $\Rightarrow \phi \neq X \subseteq \mathbb{R}$, X finite. X connected $\Leftrightarrow |X| = 1$.

7 Say X connected and $X \subseteq Y \subseteq \overline{X}$. Then Y connected. Pf: U, V are disjoint open sets in \mathbb{R} s.f.

Y S U U V

⇒ X ≤ U U V

(soy) $X \subseteq V$

 \Rightarrow \times \wedge \cup = ϕ

 $\Rightarrow \overline{X} \cap U = \phi \quad [: u \text{ open}]$

 \Rightarrow Y \cap U = ϕ

=> Y connected.

 \rightarrow $\{ X_A : A \in A \}$ is a collection of connected sets in IR s.t. $\prod_{A \in A} X_A \neq \emptyset$. Then $\bigcup_{A \in A} X_A$ connected.

HW.

Question: $\{X_{\lambda}: \lambda \in \Lambda\}$ collection of connected sets in \mathbb{R} s.t. $X_{\lambda} \cap X_{\mu} \neq \phi \quad \forall \quad \lambda, \mu \in \Lambda$. Is $\bigcup_{\lambda \in \Lambda} X_{\lambda}$ connected?

→ X connected ⇒ X is an interval

Pf: Suppose X is not interval. I a, b ∈ X s.t.

 $[a,b] \notin X. \quad \text{In particular} \quad \exists t \in [a,b] \text{ s.t.} t \notin X.$ $\therefore \quad X \subseteq (-\infty,t) \quad U(t,\infty)$

> X not connected.

→ X connected, open ⇒ X is open interval.

Thm: I SR an interval. Then I connected.