Cpre 530 - Assignment 2

Fall 2011

Suganya Baskaran

1. Do Homework problems 5,6,9 from Chapter 6 in book.

Problem 5: The route tables for all the devices are as follows

пΤ	L		1	
	_	7		

Destination	Next hop	Interface	
129.186.5.0/24	129.186.5.30	Eth0	
127.0.0.1	127.0.0.1	Loopback	
Default	129.186.5.254	En0	
H2	•		
Destination	Next hop	Interface	
129.186.100.0/24	129.186.100.40	Eth0	
127.0.0.1	127.0.0.1	Loopback	
Default	129.186.100.252	En0	
129.186.5.0/24	129.186.100.254	En1	
H3			
Destination	Next hop	Interface	
129.186.4.0/24	129.186.4.133	Eth0	
127.0.0.1	127.0.0.1	Loopback	
Default	129.186.4.254	En1	
R1	•		
Destination	Next hop	Interface	
129.186.5.0/24	129.186.5.254	En0	
129.186.100.0/24	129.186.100.254	En1	
127.0.0.1	127.0.0.1	Loopback	
Default	129.186.100.252	En0	
R2			
Destination	Next hop	Interface	
129.186.100.0/24	129.186.100.252	En0	
Default	10.0.0.5	En1	
127.0.0.1	127.0.0.1	Loopback	
R3			
Destination	Next hop	Interface	
129.186.5.0/24	129.186.100.254	En1	
129.186.100.0	129.186.100.253	En0	
Default	129.186.100.252	En0	
127.0.0.1	127.0.0.1	Loopback	
129.186.4.0	129.186.4.254	En1	

Problem 6: The fragment for the network segment between the two routers is as follows:

Layer	Filed name	Original	Fragment 1	Fragment 2
	Destination	N/A	00:88:88:38:12:EC	00:88:88:38:12:EC
Ethernet	Source	N/A	00:86:40:34:45:00	00:86:40:34:45:00
	Type/field	N/A	N/A	N/A
	Ver/HL	4/5	4/5	4/5
	Туре	0	0	0
	Len	2740	1536	1244
	Id	3486	3486	3486
	Flags	000	001	000
IP	Offset	0	0	187
	Protocol	17	17	17
	TTL	Computed	Computed	Computed
	Checksum	Computed	Computed	Computed
	Source Ip	129.186.5.4	129.186.5.4	129.186.5.4
	Destination Ip	68.10.7.4	68.10.7.4	68.10.7.4
Data		2700	1496	1204

Problem 9:

9a. How many entries would be there in H1's ARP table due to the messages?

Two

 $H1 \rightarrow H5 \rightarrow Arp for H5$

 $H1 \rightarrow H2 \rightarrow Arp for R2$

 $H1 \rightarrow H3,H4,Int,Ibm.com \rightarrow Arp for R2.$

There are two ARP entries one for H5 and other for R2.

9b. Assume all caches are cleared before H3 sends a single ping request to H1

9c. How many packets are transmitted on the network segment NET 1 (including ping and reply)?

Six

- 2 ARP (to and from H1)
- 2 ICMPS (to and from H1)
- 1 ping + 1 reply (to and from H1)

9d. How many packets are transmitted on the network segment NET 3(including ping and reply)?

Six (same as above)

9e. How many packets are transmitted on the network segment NET 2 (including ping and reply)?

Six (same as above)

9.f Same questions for hosts H6 and H7

For H6:

- a) Four \rightarrow ARP for R2, ARP for H2, ARP for R3, ARP for R1.
- c) Zero
- d) Six →2 ARP, 2 ICMPS, 1 ping and 1 reply
 Since Arp cache is lost, H3 does not know about H6
- e) Four → 2 ICMPS, 1 ping and 1 reply on N3 H3 knows about R3)

For H7:

- a) Two → ARP for H3, ARP for R3
- c) Zero
- d) Zero
- e) Six \rightarrow 2 ARP, 2 ICMPS, 1 ping and 1 reply

2. Do lab experiments 1-8 from Chapter 6 in the book.

Problem 1:

Network address → 129.186.251.0

Netmask → 255.255.255.0

Problem 2: IP address of following machines

2a. www.nasa.gov

Addresses: 209.56.124.24, 209.56.124.25

Aliases: www.nasa.gov, www.nasa.gov.speedera.net

www.nasa.gov.edgesuite.net **2b**. www.iac.iastate.edu Name: iac.ece.iastate.edu Address: 129.186.105.22

Aliases: www.iac.iastate.edu

2c. www.cnn.com Name: www.cnn.com

Addresses: 157.166.226.25, 157.166.226.2, 157.166.224.25, 157.166.224.26

2d. www.iseage.org Name: www.iseage.org Address: 129.186.105.37 **2e.** www.iastate.edu

Address: 129.186.140.50

Aliases: www.iastate.edu **2f.** Spock.ee.iastate.edu

Name: Spock.ee.iastate.edu Address: 129.186.215.40

Problem 3: Ping to find average delay for above machines

www.nasa.gov → Time – 1ms; TTL -59 www.iac.iastate.edu → Time < 1ms; TTL -62 www.cnn.com → Request Timed out www.iseage.org → Time < 1ms; TTL -62 www.iastate.edu → Time < 1ms; TTL -62 Spock.ee.iastate.edu → Time – 1ms; TTL -61

Problem 4: Dump the route table for the machine used

Netstat - r -n

```
C:\Users\suganya>netstat -r -n
 Interface List
 IPv4 Route Table
Active Routes:
Network Destination
0.0.0.0
127.0.0.1
27.0.0.1
2127.255.255.255
229.186.181.62
224.0.0.0
224.0.0.0
255.255.255.255
2
255.255.255.255
                       ------
                                                    Gateway
129.186.181.254
On-link
On-link
On-link
On-link
On-link
On-link
On-link
On-link
On-link
                                                                                Interface
129.186.181.62
127.0.0.1
127.0.0.1
                                                                                                      Metric
20
306
                                        Netmask
                            306
306
276
276
276
306
276
306
276
                                                                                127.0.0.1
127.0.0.1
129.186.181.62
129.186.181.62
129.186.181.62
127.0.0.1
129.186.181.62
127.0.0.1
Persistent Routes:
None
IPv6 Route Table
 Active Routes:
If Metric Net
13 36 ::/
          Metric Network Destination
36 ::/0
 1
13
13
 13
                                                      On-link
On-link
          306 ff00::/8
276 ff00::/8
                                                      On-link
 Persistent Routes:
   None
```

Problem 5: Ethernet address of Gateway

```
C:\Users\suganya>arp -a 129.186.181.254
Interface: 129.186.181.62 --- 0xd
Internet Address Physical Address Type
129.186.181.254 00-05-dc-1d-b0-00 dynamic
```

Problem 6: nslookup for IP addresses of mail servers in Problem 2

```
C:\Users\suganya>nslookup
Default Server: ns-3.iastate.edu
Address: 129.186.142.200
> set type=MX
> www.nasa.gov
Server: ns=3.iastate.edu
Address: 129.186.142.200
 Non-authoritative answer:
www.nasa.gov.speedera.net
www.nasa.gov.speedera.net
canonical name = www.nasa.gov.edgesuite.ne
canonical name = a1718.x.akamai.net
x.akamai.net
    primary name server = n0x.akamai.net
    responsible mail addr = hostmaster.akamai.com
    serial = 1317684552
    refresh = 1000 (16 mins 40 secs)
    retry = 1000 (16 mins 40 secs)
    expire = 1000 (16 mins 40 secs)
    default TTL = 1800 (30 mins)

> www.iac.iastate.edu

Server: ns-3.iastate.edu

Address: 129.186.142.200
  x.akamai.net
 www.iac.iastate.edu
ece.iastate.edu
                                                                                     canonical name = iac.ece.iastate.edu
                           tate.edu
primary name server = dns-1.iastate.edu
responsible mail addr = hostmaster.iastate.edu
serial = 476159678
refresh = 36000 (10 hours)
retry = 3600 (1 hour)
expire = 604800 (7 days)
default TTL = 360000 (4 days 4 hours)
 > www.cnn.com
Server: ns-3.iastate.edu
Address: 129.186.142.200
 *** No mail exchange (MX) records available for www.cnn.com
> www.iseage.org
Server: ns-3.iastate.edu
Address: 129.186.142.200
iseage.org
    primary name server = romulan.ee.iastate.edu
    responsible mail addr = dougj.romulan.ee.iastate.edu
    serial = 10903092
    refresh = 43200 (12 hours)
    retry = 14400 (4 hours)
    expire = 720000 (8 days 8 hours)
    default TTL = 36000 (10 hours)
  > www.iastate.edu
Server: ns-3.iastate.edu
Address: 129.186.142.200
www.iastate.edu canonical name = webslinger-ur.its.iastate.edu
its.iastate.edu
primary name server = dns-1.iastate.edu
responsible mail addr = hostmaster.iastate.edu
serial = 476177774
refresh = 36000 (10 hours)
retry = 3600 (1 hour)
expire = 604800 (7 days)
default TTL = 360000 (4 days 4 hours)
> spock.ee.iastate.edu
Server: ns-3.iastate.edu
Address: 129.186.142.200
 ee.iastate.edu
primary name server = romulan.ee.iastate.edu
responsible mail addr = dougj.romulan.ee.iastate.edu
serial = 11006140
refresh = 43200 (12 hours)
retry = 14400 (4 hours)
expire = 720000 (8 days 8 hours)
default TTL = 36000 (10 hours)
```

Problem 7: Use nslookup to find the machine name of several IP addresses.

Address: 129.186.179.254

Name: router-129-186-176-0.iastate.edu

Address: 129.186.177.160 Name: pub402.lib.iastate.edu

Problem 8: Use traceroute to determine addresses of first five routers between test lab and www.cnn.com.

traceroute to www.cnn.com (157.166.226.25), 64 hops max, 52 byte packets

1 r62 (129.186.215.62) 0.830 ms 0.851 ms 0.791 ms

2 router-129-186-105-0.iastate.edu (129.186.105.254) 1.488 ms 0.541 ms 0.526 ms

3 b31gb1-vlan254.tele.iastate.edu (129.186.254.131) 0.612 ms 0.547 ms 0.527 ms

4 b31gb2-438.tele.iastate.edu (192.245.179.52) 0.528 ms 0.637 ms 0.615 ms

5 te-1-3-212.car2.KansasCity1.Level3.net (4.53.34.13) 4.907 ms 4.894 ms 4.820 ms

Packet Size	Machine Address	Average delay
Size =50	129.186.215.62	0.771 ms
No. of packets=5	129.186.105.254	0.853 ms
	129.186.254.131	0.774 ms
	192.245.179.52	2.320 ms
	4.53.34.13	5.102 ms
Size = 100	129.186.215.62	0.821 ms
No. of packets = 5	129.186.105.254	0.906 ms
	129.186.254.131	0.649 ms
	192.245.179.52	0.776 ms
	4.53.34.13	79.234 ms

Reference:

- 1. Network Security Dr. Douglas W. Jacobson
- 2. http://www.mediacollege.com/internet/troubleshooter/traceroute.html