MRA: Multi Resolution Analysis

Denoising-Pyramids & Subbands

Dr. Tushar Sandhan

sandhan@iitk.ac.in

Image analysis at different resolutions

Image analysis at different resolutions

Image analysis at different resolutions

Image analysis at different resolutions

Image analysis at different resolutions

Image analysis at different resolutions

Image analysis

- Image statistics
 - o change locally
 - o info. is distributed at various scales
 - o noise is present throughout the image

Image analysis

- Image statistics
 - change locally
 - o info. is distributed at various scales
 - o noise is present throughout the image

Larger objects can be analyzed @ coarse/low resolution

Smaller ones can be analyzed @ fine/high resolution

image: C. Nikou

MRA: Image Pyramid

- Image pyramid
 - a collection of images
 - o gradually decreasing resolution
 - o arranged in the shape of pyramid
 - o researcher use Level numbers interchangeably

e.g. Level-0 might be bottom or top!

MRA: Image Pyramid

- Image pyramid
 - a collection of images
 - o gradually decreasing resolution
 - o arranged in the shape of pyramid
 - o researcher use Level numbers interchangeably

e.g. Level-0 might be bottom or top!

MRA: Image Pyramid

- Image pyramid
 - a collection of images
 - o gradually decreasing resolution
 - o arranged in the shape of pyramid
 - researcher use Level numbers interchangeably
 e.g. Level-0 might be bottom or top!
- Top level?
 - o it is not necessary to go till summit of the pyramid
 - pyramid can be truncated at any level L+k
 - o requirement of speed & accuracy determines k

- Pixel correspondence among levels
 - any image patch at lower level directly
 corresponds to a smaller patch at upper level
 - o levels can be of color image or grey scale
 - pyramid consistency
 - uniformly apply image operations (e.g. crop, rotation) on all levels

- Pixel correspondence among levels
 - any image patch at lower level directly corresponds to a smaller patch at upper level
 - o levels can be of color image or grey scale
 - pyramid consistency
 - uniformly apply image operations (e.g. crop, rotation) on all levels

What is the space complexity?

- Pixel correspondence among levels
 - any image patch at lower level directly
 corresponds to a smaller patch at upper level
 - o levels can be of color image or grey scale
 - pyramid consistency
 - uniformly apply image operations (e.g. crop, rotation) on all levels

What is the space complexity?

$$= N + \frac{N}{4} + \frac{N}{4^2} + \dots + \frac{N}{4^k}$$
 $N = H \times W$

$$\leq \frac{4N}{3}$$

- Tiled Multi-Resolution (or Tiled Pyramidal) TIFF
 - o it is simply a tiled multi-page TIFF image
 - o each resolution is stored as a separate layer within the TIFF
 - o it's standard TIFF extension supported by most image proce applications including photoshop
 - o 'libtiff' library is capable of reading & writing such pyramids

ref: http://www.libtiff.org

- Tiled Multi-Resolution (or Tiled Pyramidal) TIFF
 - o it is simply a tiled multi-page TIFF image
 - o each resolution is stored as a separate layer within the TIFF
 - o it's standard TIFF extension supported by most image proce applications including photoshop
 - 'libtiff' library is capable of reading & writing such pyramids
 ref: http://www.libtiff.org

- Image pyramid processing
 - o while using pyramid MRA, construct your own pyramids inside that image processing algorithm

Pyramid construction

- Build the pyramid using below cornerstones
 - 1. Approximation filter
 - Gaussian filter
 - Averaging/mean filter
 - Low pass filter
 - Detailed filter
 - Bilinear interpolation
 - Bicubic interpolation
 - Upsampler

Gaussian Pyramid

Approximation pyramid

Residual pyramid

- We mostly use residual format
 - o note level-0 is same in approximation & residual
 - efficient representation

$$I_0 = L_0$$

$$L_j = I_j - \text{upsample}(I_{j-1})$$

- We mostly use residual format
 - o note level-0 is same in approximation & residual
 - efficient representation

$$I_0 = L_0$$

$$L_j = I_j - \text{upsample}(I_{j-1})$$

$$I_j = L_j + \text{upsample}(I_{j-1})$$

- We mostly use residual format
 - o note level-0 is same in approximation & residual
 - efficient representation

$$I_0 = L_0$$

$$L_j = I_j - \text{upsample}(I_{j-1})$$

$$I_j = L_j + \text{upsample}(I_{j-1})$$

$$I_i = L_i + upsample(L_{i-1} + upsample(I_{i-2}))$$

- We mostly use residual format
 - o note level-0 is same in approximation & residual
 - efficient representation

$$I_0 = L_0$$

$$L_j = I_j - \text{upsample}(I_{j-1})$$

$$I_j = L_j + \text{upsample}(I_{j-1})$$

$$I_j = L_j + \text{upsample}(L_{j-1} + \text{upsample}(I_{j-2}))$$

Entire approximation pyramid can be obtained via residual pyramid

Pyramid processing

IEEE CVPR, HA.Rowley 1996

Sub-bands

- Sub-bands are the bandpass filters
 - o a series of bandpass filters also known as filter bank
 - Equi-rate: equal bandwidth sub-bands
 - Multi-rate: different bandwidth sub-bands
 - o similar to image pyramid, we use below corner stones:

1. Analysis

decompose image into set of images of different freq bands

2. Synthesis

original image should be reconstructed from bands of analysis stage

Sub-bands

- Double bands
 - 2 band decomposition
 - o filtering + 2↓

Sub-bands

- sub-band coding
 - 2 band decomposition expanded recursively

Approximation subband

Vertical subband

Horizontal subband

Diagonal subband

Sub-band decomposition

Sub-band denoise

- Different bit-rates or different coding technique can be used for each sub-band
 - o useful in compression as well
- Denoise
 - noise types
 - uniform
 - speckle
 - band-limited
 - sub-band denoise
 - different bands show different response to noise types
 - it allows errors to be distributed across sub-bands
 - filter each sub-band image separately with specific filtering parameters dedicated to those bands

Sub-band denoising

original

noisy

denoised

Multiresolution BF

Results

input

Multiresolution BF

Results

input

BF (psnr 29.6)

Multiresolution BF

Results

input BF (psnr 29.6) MRBF (psnr 31.4)

- Denoising
- Multiresolutions
 - Pyramids
 - Sub-bands

BF

MRBF

Conclusion

- Denoising
- Multiresolutions
 - Pyramids
 - Sub-bands

- Multiresolutions
 - Pyramids
 - Sub-bands

Denoising

 Even minute imperceptible improvement in the denoising is very important for scientific images

BF

EE604: IMAGE PROCESSING

Conclusion

- Denoising
- Multiresolutions
 - Pyramids
 - Sub-bands

- Multiresolutions
 - Pyramids
 - Sub-bands

Denoising

 Even minute imperceptible improvement in the denoising is very important for scientific images

BF

EE604: IMAGE PROCESSING