CS2040S Final Summary

By Chen Yiyang, AY20/21 Sem 2

Order of Growth

O for upper bound, Ω for lower bound

$$T(n) = \Theta(f(n)) \iff T(n) = O(f(n)) = \Omega(f(n))$$

i.e. upper and lower bound the same

Some common ones:

$$T(n) = \log(n!) = O(n \log n)$$

$$T(\mathrm{fib}(n)) = O(\phi^n)$$
 , $\phi = 0.618...$ golden ratio

Master Theorem (extra)

$$egin{aligned} T(n) &= aT(rac{n}{b}) + f(n), & a \geq 0, b > 1 \ &= egin{cases} \Theta(n^{\log_b a}) & ext{if } f(n) < n^{\log_b a} ext{ polynomially} \ \Theta(n^{\log_b a} \log n) & ext{if } f(n) = n^{\log_b a} \ \Theta(f(n)) & ext{if } f(n) > n^{\log_b a} ext{ polynomially} \end{cases}$$

[Algo] Binary Search

Invariant:

[1] A[begin] <= key <= A[end]

[2] range <= n/2^k for iteration k

Criteria for using Binary Search: monotonic

Peak Finding --->

[Algo] Sorting

Quick Sort

~ Improvement 1 -

Probabilistic Quick Sort: repeat partitioning until an acceptably good pivot is found. E(X) ~ Geom r.v.

-> always O(nlogn)

~ Improvement 2 – Double Pivot -> 3 regions: smaller, equal, and larger than pivot

Quick Select

To find the k-th largest / smallest item. Similar to Quick Sort, but only need to recurse on one subarray every time.

~ Time: O(n), if probabilistic

[DS] AVL Tree

Balanced Tree: height of tree = O(logn) AVL: height-balanced, all nodes' children's height differ by at most 1

IF node.right != null THEN

child <- parent parent <- child.parent

WHILE ((parent != null) && (child == parent.right)

parent <- node.parent

ENDWHILE

Left/right Heavy: left/right child larger height

Operations

Successor -->

Rotate

left-/right-rotate == root goes to left / right (Remember to update height/weight/...) (intuition: treat the above 1 or 2 operations as 1 "rotate set", which reduces height difference by 1)

If v is out of balance and left-heavy:

- v.left is balanced or left-heavy: rightRotate(v)
- v.left is right-heavy: leftRotate(v.left) then rightRotate(v)

If v is out of balance and right-heavy:

- v.right is balanced or right-heavy: leftRotate(v)
- v.right is left-heavy: rightRotate(v.right) then leftRotate(v)

Insert

- ~ Time O(logn)
- ~ Rotations: 2 (i.e. "1 set") -> check upwards and adjust first unbalanced

Delete

First delete (using successor) then adjust

- ~ Time O(logn)
- ~ Rotations: O(logn) (i.e. "O(logn) sets") -> check all the way up till root & adjust all unbalanced delete(u) based on cases of 0. 1. 2 children.

[DS] Trie

Tree but not binary tree. Each node stores a char & a special char (for terminal of a string) -> Each root-to-leaf path represents a word

- ~ rationale: to minimize string comparisons
- ~ Time: O(L) for search/insert

Space: O(nL) = O(size of text * overhead)

L: max length, n: #strings

[DS] Augmented Tree

Augmented: modify ADT and add in extra data for certain features / functionality.

Order Statistics

Goal: find the k-th largest / smallest item in the

tree (i.e. search by rank)

Extra Data: weight of each node

- ~ rank in subtree = left.weight+1
- ~ Time: O(logn) for insert/delete/query

Interval Query

Goal: find an interval / range that covers the current query point

Extra Data: max endpoint of the subtree rooted at current node

FUNCTION intervalSearch(x): WHILE (c not null AND x not in interval of c) DO IF (c.left null OR x > c.left.max) THEM c <- c.right ELSE c <- c.left ENDIE ENDWHILE return c.interval

~ Intuition: always go left

unless it is obviously wrong to go left

- ~ Time: O(logn) for insert/delete/query
- ~ Limitations: 1) not find the smallest / most suitable interval 2) some (right) intervals will never be returned

Orthogonal Range Search (1D)

Goal: find all the points in a query interval (opposite of Interval Query)

Augmentation: each leaf node in a bBST stores data, and each non-leaf stores the largest value in its left subtree.

~ query(): find "split node" then do left and right traversal (both symmetric)

FUNCTION leftTraversal(v, low, high) // rightTraversal symmetric IF (low <= v.kev) THEN all-leaf-traversal(v.right) leftTraversal(v.left, low, high) leftTraversal(v.right, low, high)

~ Time: O(logn+k) query, O(logn) insert/delete n: #nodes in total, k: #nodes in range

[DS] Hashing

(notations: n #items, m #buckets) Symbol table

~ do not support predecessor/successor

~ keys are immutable and no duplicates

Collision: distinct keys hashed to same bucket Simple Uniform Hashing Assumption:

[1] Each key, equally likely to be mapped to each bucket (among all buckets)

[2] Each key is mapped independently Double Hashing (f, g hash functions)

 $h(k,i) = f(k) + (i \times g(k)) \bmod m$

~ g(k) = 1 for linear probing

Collision Solutions

Solution 1: Chaining

Every bucket is a linked list, not a var. (can insert even if n>m)

- ~ Time for insert O(1) (to front of LL)
- ~ Expected search time: 1+n/m = O(1)

Expected max cost for insert when n=m: O(logn)

~ Max. search time: O(n)

Solution 2: Open Addressing

Probe a seq. of buckets until an empty one is found and place the item there. (cannot insert once n==m)

- ~ Linear probing: probe linear seq.
- ~ Implementation
- ~ insert: probe until an empty or DELETED bucket and insert item there
- ~ search: probe until found or not found if probe one empty or all m probed.
- ~ delete: search for the item and mark the bucket as DELETED (not empty!!!)
- ~ Grow table size: m -> 2*m when full
- ~ Time: $<= 1/(1-\alpha)$ for all operations $\alpha = n/m$, **load** of hash table

More Hashing Techniques

Table Resizina

(assume chaining, Simple Hashing Assumption)

 \sim m *= 2. when n == m

 $m \neq 2$, when $n \leq m/4$

~ amortised cost O(1) for insertion, delete

Fingerprint Hash Table (FHT)

- ~ each item **Boolean**, array space O(logm)
- ~ possible false positives but no false negatives (don't have but say have, not the other way)

$$P(\text{no false} + \text{ve}) = (1 - \frac{1}{m})^n \approx (\frac{1}{e})^{n/m}$$

Bloom Filter

- ~ k FHTs, with different hashing functions
- ~ P(no false +ve) = P(no false +ve in FHT)^k
- ~ all operations now O(k)

[DS] Graph & SSSP

Searching

- ~ BFS (using Queue) / DFS (using Stack)
- ~ both time O(V+E) on adiList. O(V^2) on adiMatrix
- ~ if to find SP on unweighted graph, only BFS

relax(u,v): dist[v] = min(dist[v], dist[u] + e[u,v]):D

[Algo] SSSP - Bellman Ford

~ early stop when no relaxed

after |E| checks ~ works with -ve edge; can be

used to identify -ve cycle ~ invariant: after n iterations.

n-hops estimates correct ~ Time Complexity O(VE)

 $n = V_{*}length$ for i <- 1 TO n: for edge IN graph: relax(e) **ENDEOR ENDFOR**

[Algo] SSSP - Diikstra's

- ~ only works for non -ve edges
- ~ start w. empty Shortest-Path-Tree, repeat
- 1. consider vertex w. shortest estimate
- 2. add vertex to tree
- 3. relax all outgoing

Analysis

- ~ insert, extractMin V times each; relax E times
- ~ overall time O(ElogV), space O(V) (for pg.)

[Algo] Topological Ordering (DAG)

DAG always have topoOrder, but not necessarily unique.

[1] Post Order DFS

~ add elements from end to front

O(V+E) [2] Kahn's -O(ElogV)

~ time

S = nodes in G that have no incoming edges. Add nodes in S to the topo-order Remove all edges adjacent to nodes in S Remove nodes in S from the graph

~ use pq. for nodes, where key = # incoming edges

[3] Kahn's - O(E+V)

Use a queue. Enqueue nodes with in-deg. 0 then decrease its adjacent nodes' in-deg. & dequeue.

Other Graph Problems

Longest Path on DAG -> topoOrder Shortest Path on Tree -> BFS/DFS relax

^ assume tree edges undirected!!!

[Algo] Minimum Spanning Tree

MST Properties:

[1] No cycle

[2] If you cut a MST, 2 pieces are MST each

[3] Cycle property: for every cycle, max weight edge not in MST

~ min. weight edge of cycle might not in MST
[4] Cut property: for every partition/cut, min. edge of the cut in MST

MST Algorithms

Prim's

~ Start with a node, extend to others with shortest edge. DecreaseKey using **Heap**

~ each node insert & extractMin once, each edge decreaseKey once -> overall O(ElogV)

Kruskal's

~ "greedy" on edges.

~ Start with min.edge, connect components and skip edge connecting nodes of same component.

~ O(ElogE) sort, then UFDS -> overall O(ElogV)

Boruvka's

~ each Boruvka step, add every component's min. adjacent edge to MST. Start with each node one component, repeat.

~ O(V+E) DFS/BFS for all min. adjacent edges, O(V) for new components -> overall O(ElogV)

~ Boruvka good at parallelism

MST Variants

MST on DAG with one root

-> for every node except root, add min. incoming edge to MST

Max Spanning Tree

(Assume still |V|-1 edges in the tree in total)

[1] Run Kruskal's in reverse (max. heap) OR

[2] Negate all edges then run MST algorithms

Steiner Tree 2-Approx.

Goal: find a tree that must spans certain vertices. "Steps: [1] calculate APSP, [2] construct new graph on required nodes, [3] now do MST on new graph.

[DS] Heap

~ max/min heap: biggest/smallest @ root

~ impt. properties

[1] Heap Ordering

[2] Complete Binary Tree

~ stored as array. (index manip. -> parent-children)

~ max height: floor(logn)

Operations

~ bubbleUp, bubbleDown: O(logn) each

- ~ insert: to last index, then bubbleUp, O(logn)
- ~ increaseKey/decreaseKey: update &

bubbleUp/bubbleDown

~ delete: swap with last, delete, then bubbleDown the swapped element, O(logn)

~ extractMin == delete the root

Heap Sort

~ heap to sorted array: O(nlogn)

~ unsorted array to heap: O(n)!!!

[DS] Union Find Disjoint Set

Quick Find: componentId[] stores which component

~ O(1) find, O(n) union

Quick Union: parent[] stores direct parent

~ O(n) find, O(n) union

Weighted Union: parent[], size[]

~ merge smaller into larger -> "more balanced"

~ O(logn) find, O(logn) union

Path Compression – when traversing to root, set parent of each visited node to root

 \sim with weighted union: O(α (m, n)) find, union

[Algo] Dynamic Programming

Two properties:

[1] Optimal Substructure

[2] Overlapping subproblems

~ if [1] but no [2] -> divide & conquer

Example: Floyd-Warshall for APSP

Recitations

Rec. 03 – Fisher-Yates / Knuth Shuffle ---> PROCEDURE KnuthShuffle(A[1..n])
FOR i <- 2 TO n
 r <- random(1, i)
 swap(A, i, r)
ENDFOR
END</pre>

Rec. 04 - (a,b) Tree & B-Tree

B-Tree == (B, 2B) Tree

Definition of (a, b)-Tree

[1] Each non-leaf min. a (2 for root), max. b children.

[1.1] #children == #key+1 for non-leaf; min. (a-1), max (b-1) keys for leaf

[2] Key-ordering for children.

[3] All leaf nodes same height (growing upwards)

Basic Operations:

~ split: give 1 key to parent, and then split this node & its remaining keys to 2 new nodes.

~ merge: pull 1 key down from parent, and merge the two keys divided by this key into one new child node.

~ share: share == merge + split

Other Operations:

~ insert: insert, then check up to root, split if necessary

~ delete: delete, then check up to root, merge/share if necessary.

Analysis:

~ Height min O(log_b n), max O(log_b n)

~ Time: O(logn) for insert/delete/search

~ same order as normal bBST, but smaller coefficient -> shorter tree and better for caching / mem. Access.

Rec. 05 – Merkle Tree

A bBST where leaf nodes store hash of its data & each nonleaf node takes and concatenates the values of children

and hash, which is stored as its own value. Same root value indicates all info in subtree identical.

Tutorials

Tut. 03 – Order Maintenance

 \sim insertAfter(A, B): by insert B as successor of A in bBST, then rotate. Similar process for insertBefore(A, B)

~ isAfter(A, B): to check if B after A in tree, compare their ranks

Tut. 04 - kd-Tree

A tree structure that is used to describe points in a 2D plane. Each node is a (x, y) pair denoting a point and it divides horizontally or vertically (alternate by levels in tree) points into left and right children.

 \sim search: O(logn) - recursive alternate binary search on x- / y-values.

~ construct tree from unsorted array: O(nlogn) – QuickSelect median, partition.

 \sim smallest x / y: T(n) = 2T(n/4) + O(1) = O(\forall n)

Tut. 04 – Finger Search

Augmented bBST that supports search from one node to another (nearby one)

~ Use a B-Tree where each node has a parent point and is linked to nodes of same level. Record min & max of all values in subtree at each node.

~ search(x,y): from x to y (assume y>x), check whether to go up or go right neighbor (go right only when y in the neighbor's min-max range). Once go right or arrive at root, search for y normally in the subtree

~ Time: O(logd), d: diff. in x and y's rank.

Miscellaneous (Credits: Jovyn Tan)

2D Orthogonal Range Search

nsert(key),	<pre>insert(key)</pre>	$\Rightarrow 0$	$O(\log n)$
-------------	------------------------	-----------------	-------------

• 2D_query() $\Rightarrow O(\log^2 n + k)$ (space is $O(n \log n)$)

 build x-tree from x-coordinates; for each node, build a y-tree from y-coordinates of subtree

• 2D_buildTree(points[]) $\Rightarrow O(n \log n)$

Sorting Comparison

sort	best	average	worst	stable?	memory
bubble	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
selection	$\Omega(n^2)$	$O(n^2)$	$O(n^2)$	×	O(1)
insertion	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
merge	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	✓	O(n)
quick	$\Omega(n \log n)$	$O(n \log n)$	$O(n^2)$	×	O(1)
heap	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	×	O(n)

псар	22(12 TOB 12)	O(n log n)	$O(n \log n)$		O(n)	
e						
Sorting [sort	invariant (after k iterations)			s)
Invariar	nts	bubble	largest k elements are sorte		ed	
>		selection	smallest k	elemen	ts are sort	ted
DC/- T:-	[insertion	first k	slots are	e sorted	
DS's Tir	<u>ne</u>	merge	given s	ubarray	is sorted	
Comple	xity	quick	partition is	in the r	ight position	on

data structure	search	insert
sorted array	$O(\log n)$	O(n)
unsorted array	O(n)	O(1)
linked list	O(n)	O(1)
tree (kd/(a, b)/bst)	$O(\log n), O(h)$	$O(\log n), O(h)$
trie	O(L)	O(L)
heap	O(n)	$O(\log n), O(h)$
dictionary	$O(\log n)$	$O(\log n)$
symbol table	O(1)	O(1)
chaining	O(n)	O(1)
open addressing	$\frac{1}{1-\alpha} = O(1)$	O(1)
priority queue	(contains) $O(1)$	$O(\log n)$
skip list	$O(\log n)$	$O(\log n)$

T(n) = 2T(n/2) + O(n)	$\Rightarrow O(n \log n)$
T(n) = T(n/2) + O(n)	$\Rightarrow O(n)$
T(n) = 2T(n/2) + O(1)	$\Rightarrow O(n)$
T(n) = T(n/2) + O(1)	$\Rightarrow O(\log n)$
T(n) = 2T(n-1) + O(1)	$\Rightarrow O(2^n)$
$T(n) = 2T(n/2) + O(n\log n)$	$\Rightarrow O(n(\log n)^2)$
T(n) = 2T(n/4) + O(1)	$\Rightarrow O(\sqrt{n})$
T(n) = T(n-c) + O(n)	$\Rightarrow O(n^2)$