Decomposition algorithm

Introduction

- we now show that, given a relation schema R and a set of functional dependencies F there **always** exists a decomposition $\rho = R_1, R_2, ..., R_k$ of R such that:
 - for each $i = 1, ..., k, R_i \in \rho, R_i$ is in 3NF
 - ρ preserves F
 - ρ has a lossless join
- and that such a decomposition can be computed in polynomial time

How do we proceed?

the decomposition algorithm, given a relational schema R and a set of functional dependencies F on R, which is a minimal cover, allows us to compute in polynomial time a decomposition

$$\rho = R_1, R_2, ..., R_k \text{ of } R \text{ such that:}$$

- for each $i = 1, ..., k, R_i$ is in 3NF
- ρ preserves F

We can consider **any** minimal cover F defined on the schema R if there are more than one.

Decomposition Algorithm

Algorithm - decomposition of a relational schema

Input: a relational schema R and a set F of functional dependencies on R, which is a **minimal cover**

Output: a decomposition of R that preserves F and such that for each subschema in is in 3NF **begin**

$$S = \emptyset$$

$$\rho = \emptyset$$

for each A∈R, such that A is not involved in any functional dependency in F do

$$S = S \cup A$$

if $S \neq \emptyset$ then:

$$R = R - S$$

$$\rho = \rho U \{S\}$$

if there is a functional dependency in F that involves all the attributes in R

then:
$$\rho = \rho \cup \{R\}$$

else:

for each $X \rightarrow A \in F$ do

$$\rho = \rho U \{XA\}$$

end

Theorem

Theorem: let R be a relational schema and F a set of functional dependencies on R, which is a minimal cover; the Decomposition Algorithm computes (in polynomial time) a decomposition ρ of R such that:

- each relational schema in ρ is in 3NF
- ρ preserves F

Proof

ρ preserves F

let $G=\bigcup_{i=1}^k \pi_{Ri}(F)$; since for each **functional dependency** $X \to A \subseteq F$ (all of **them!**) we have **that** $XA \subseteq \rho$ (it is one of the subschemas), we have that this dependency **of** F **will be in** G, hence $F \subseteq G$ and $F^+ \subseteq G^+$; the inclusion $G^+ \subseteq F^+$, as we already know, is trivially true as, **by definition**, $G \subseteq F^+$

Theorem

each schema in is in 3NF.

let's analyze the different cases that can arise:

- 1. if $S \in \rho$, each attribute in S is part of the key, and so trivially, S is in 3NF
- 2. if R∈ρ, there is a functional dependency in F involving all attributes of R; as F is a minimal cover, this dependency will have the form R-A→A; as F is a minimal cover, it cannot exist a functional dependency X→A in F, such that X⊆R-A and, then, R-A is a key of R; let Y→B be a dependency in F; if B=A and F is a minimal cover, then Y=R-A (i.e., Y is a superkey); if B≠A, then B∈R-A and so B is prime
- 3. if XA∈ρ, as F is a minimal cover, it cannot exist a functional dependency X'→A in F, such that X'⊂X and, hence, X is key of XA; let Y→B be any dependency in F, such that YB⊆XA; if B=A then, as F is a minimal cover, Y=X (i.e., Y is a superkey); if B≠A then B∈X, so, B is prime

it can be either 1+2, or 1+3, or 3 only

Anything missing?

- what about the lossless join?
- . it can be demonstrated that, to have a lossless join, we just need to add to ρ a subschema containing one of the keys of R

To sum up

- there are schemas that are not "good"
- they are those in which many concepts are represented in a single schema:
 - **Curriculum** (Matr, TC, SurN, Name, DateB, Town, Prov, C#, Tit, Teacher, DateP, Grade)
- they have redundancy, update, insertion and deletion anomalies

QUESTION 1:

 is it possible to formalize the concept of a "good" relational schema?

QUESTION 2:

• is it always possible to represent the reality of interest with a relational DB in which each relation schema is "good"?

yes!

a schema is good if it is in 3rd Normal Form (3NF)

yes!

there is a polynomial algorithm that, given a relational schema R and a set of dependencies F on R, computes a decomposition of R such that:

- each relation schema in the decomposition is in 3NF
- the decomposition preserves F
- the decomposition has a lossless join