

Estudo de simulação Monte Carlo para testes post hoc

André Felipe B. Menezes andrefelipemaringa@gmail.com

Vinícius Basseto Félix felix_prot@hotmail.com

Introdução

Por meio do método de simulação Monte Carlo avaliamos neste trabalho a taxa do erro Tipo I por experimento e o poder de dez testes de comparação múltipla de médias. O estudo foi conduzido no ambiente estatístico R com três grupos balanceados, variando seus tamanhos $\{2,3,5,10\ e\ 20\}$ e variâncias $\{1,4\ e\ 9\}$. Sem perdas de generalidades fixamos o parâmetro de locação $\mu=0$ e para cada cenário foram geradas M=5000 amostras pseudoaleatórias da distribuição normal. Os testes avaliados foram: LSD, t-Bonferroni, Tukey, SNK, Duncan, Scheffé, Nemenyi, Dunn, Conover e vanWaerden.

Erro Tipo I por experimento

O erro tipo I por experimento, ou em inglês family-wise Type I error, representa a probabilidade de cometer pelo menos um erros do Tipo I em um conjunto (família) de hipóteses. Para estimar ele geramos amostras independentes sob a hipótese nula e calculamos a proporção de vezes que H_0 foi rejeitada erradamente. Formalmente temos:

Número de vezes em que H_0 foi rejeitada em pelo menos uma hipótese $\mid H_0$ é verdadeira

Poder do Teste

Um dos principais problemas em estudo do poder do teste é o número ilimitado de hipóteses alternativas que podem ser formuladas. Neste trabalho foi considerado um tratamento com média diferente dos demais. Assim sendo, o poder empírico do teste foi obtido por:

Número de vezes em que H_0 é rejeitada nas hipóteses específicas \parallel

Resultados

				Taxa de erro	Гіро I _{0.00}	0.05	0.10	0.15	0.20		
	$\sigma = 1$						$\sigma = 2$				
vanWaerden-	0.067 ^(5.5)	0.046 ⁽³⁾	0.043 ⁽⁴⁾	0.044 ⁽³⁾	0.046 ^(3.5)		0.067 ^(5.5)	0.042 ⁽⁴⁾	0.048 ⁽¹⁾	0.047 ⁽³⁾	0.047 ^(3.5)
Conover-	0.067 ^(5.5)	0.054 ⁽²⁾	0.047 ⁽²⁾	0.046 ⁽²⁾	0.047 ⁽²⁾		0.067 ^(5.5)	0.049 ⁽¹⁾	0.054 ⁽³⁾	0.051 ⁽¹⁾	0.048 ⁽¹⁾
Dunn-	0 ^(9.5)	0.009 ^(7.5)	0.037 ⁽⁷⁾	0.038 ⁽⁷⁾	0.045 ⁽⁵⁾		0 ^(9.5)	0.013 ^(7.5)	0.042 ⁽⁶⁾	0.044 ^(5.5)	0.045 ⁽⁵⁾
Nemenyi-	0 ^(9.5)	0.009 ^(7.5)	0.029 ⁽⁸⁾	0.033 ⁽⁸⁾	0.037 ⁽⁸⁾		0 ^(9.5)	0.013 ^(7.5)	0.033 ⁽⁸⁾	0.038 ⁽⁸⁾	0.039 ⁽⁸⁾
Ocheffé Scheffé	0.034 ⁽⁴⁾	0.04 ⁽⁵⁾	0.038 ^(5.5)	0.043 ⁽⁴⁾	0.046 ^(3.5)		0.035 ⁽⁴⁾	0.041 ⁽⁵⁾	0.045 ⁽⁴⁾	0.048 ⁽²⁾	0.047 ^(3.5)
Scheffé-	0.044 ⁽²⁾	0.045 ⁽⁴⁾	0.038 ^(5.5)	0.039 ⁽⁵⁾	0.039 ⁽⁷⁾		0.047 ⁽²⁾	0.046 ⁽³⁾	0.044 ⁽⁵⁾	0.044 ^(5.5)	0.042 ⁽⁶⁾
Duncan-	0.095 ⁽⁷⁾	0.104 ⁽⁹⁾	0.098 ⁽⁹⁾	0.098 ⁽⁹⁾	0.1 ⁽⁹⁾		0.098 ⁽⁷⁾	0.105 ⁽⁹⁾	0.101 ⁽⁹⁾	0.104 ⁽⁹⁾	0.105 ⁽⁹⁾
Tukey-	0.05 ⁽¹⁾	0.053 ⁽¹⁾	0.048 ⁽¹⁾	0.053 ⁽¹⁾	0.053 ⁽¹⁾		0.052 ⁽¹⁾	0.053 ⁽²⁾	0.053 ⁽²⁾	0.056 ⁽⁴⁾	0.053 ⁽²⁾
SNK-	0.059 ⁽³⁾	0.061 ⁽⁶⁾	0.057 ⁽³⁾	0.062 ⁽⁶⁾	0.061 ⁽⁶⁾		0.059 ⁽³⁾	0.061 ⁽⁶⁾	0.063 ⁽⁷⁾	0.062 ⁽⁷⁾	0.061 ⁽⁷⁾
LSD-	0.096 ⁽⁸⁾	0.117 ⁽¹⁰⁾	0.117 ⁽¹⁰⁾	0.117 ⁽¹⁰⁾	0.124 ⁽¹⁰⁾		0.099 ⁽⁸⁾	0.114 ⁽¹⁰⁾	0.121 ⁽¹⁰⁾	0.127 ⁽¹⁰⁾	0.126 ⁽¹⁰⁾
	2	3	5	10	Z ₀ Tamanho a	most	ral do grupo	3	5	10	20

Conclusão

- A medida que o tamanho da amostra aumenta os testes ficam mais poderosos. No entanto, o aumento da variabilidade implica em diminuição de poder dos testes;
- Os testes mais poderosos foram LSD, Duncan, SNK e Tukey. Os testes não paramétricos mostraram-se menos poderosos;
- Em relação a taxa do erro Tipo I por experimento os testes de **Tukey** e **Conover** foram os melhores;
- Ao se considerar ambos os critérios o teste de Tukey obteve a melhor performance.