

# Private optimization without constraint violations



Andrés Muñoz Medina, Umar Syed, Sergei Vassilvitskii, and Ellen Vitercik

# Private, linearly-constrained optimization

**Goal:** Privately find  $\overrightarrow{x}$  maximizing  $g(\overrightarrow{x})$  such that  $A\overrightarrow{x} \leq \overrightarrow{b}(D)$ 

Private database

### **Example:**

- Hospital branches need drug to treat patients with specific disease
- Goal: Determine which pharmacies supply which branches
- Minimize total transportation cost
- Linear program, but...

Constraints reveal number of sick patients at each branch

• Constraints are critical: ensure hospitals receive enough drugs



How to privately find nearly-optimal point satisfying constraints?

# **Differential privacy**

Each dataset D consists of individuals' records

D and D' neighboring ( $D \sim D'$ ) if differ on single record

Sensitivity: 
$$\Delta = \max_{D \sim D'} \left\| \overrightarrow{b}(D) - \overrightarrow{b}(D') \right\|_{1}$$

 $\overrightarrow{x}(D)$  is output given:

$$g: \mathbb{R}^n \to \mathbb{R}$$
 (*L*-Lipschitz),  $A \in \mathbb{R}^{m \times n}$ ,  $\overrightarrow{b}(D) \in \mathbb{R}^m$ 

Algorithm is  $(\epsilon, \delta)$ -differentially private (DP) if:

For all 
$$D \sim D'$$
 and all  $V \subseteq \mathbb{R}^n$ ,  $\mathbb{P}\left[\overrightarrow{x}(D) \in V\right] \le e^{\epsilon} \cdot \mathbb{P}\left[\overrightarrow{x}(D') \in V\right] + \delta$ 

**Theorem:** There is no non-trivial  $(\epsilon,0)$ -DP algorithm for this problem

## **Algorithm**

Challenge: Can't satisfy constraints if feasible regions vary too much

**Assumption:**  $\bigcap_D \left\{ \overrightarrow{x} : A\overrightarrow{x} \leq \overrightarrow{b}(D) \right\} \neq \emptyset$  (e.g., contains origin)

#### **Algorithm:**

1. Map  $\overrightarrow{b}(D)$  to another vector  $\overrightarrow{d}(D)$  such that  $\overrightarrow{d}(D) \leq \overrightarrow{b}(D)$  w.p. 1 using the Truncated Laplace Mechanism



2. Return  $\overrightarrow{x}(D) = \operatorname{argmax} \left\{ g\left(\overrightarrow{x}\right) : A\overrightarrow{x} \leq \overrightarrow{d}(D) \right\}$ 

**Fact:**  $\overrightarrow{Ax}(D) \leq \overrightarrow{b}(D)$  with probability 1

**Theorem [privacy]:** Preserves  $(\epsilon, \delta)$ -DP

**Theorem [quality]:** Let  $\overrightarrow{x}^*$  be an optimal solution to original problem  $g\left(\overrightarrow{x}(D)\right) \geq g\left(\overrightarrow{x}^*\right) - \frac{2L\Delta}{\epsilon} \cdot \underline{\alpha(A)} \cdot \ln\left(\frac{m(e^{\epsilon}-1)}{\delta} + 1\right)$ 

Linear system's condition number [Li '93]

Specifically,

$$\alpha(A) = \inf_{p \ge 1} \sqrt[p]{m} \cdot \sup_{\overrightarrow{u} \ge 0} \left\{ \begin{aligned} & \left\| \overrightarrow{u} \right\|_{p^*} = 1 \text{ and the rows of } A \\ & \left\| \overrightarrow{u} \right\|_{p^*} : \text{ corresponding to the nonzero entries} \\ & \text{of } \overrightarrow{u} \text{ are linearly independent} \end{aligned} \right\}$$

where  $\|\cdot\|_q$  is the norm under which g is L-Lipschitz

**Ex.:** If A is invertible and g is L-Lipschitz under the  $\ell_2$ -norm,  $\alpha(A) \leq \frac{\sqrt{m}}{\sigma_{\min}(A)}$ 

# Matching lower bound (up to log factors)

**Theorem:** There exists an infinite family of matrices  $A \in \mathbb{R}^{n \times n}$ , a 1-Lipschitz function  $g : \mathbb{R}^n \to \mathbb{R}$ , and a mapping from databases D to vectors  $\overrightarrow{b}(D)$  for any  $\Delta > 0$  s.t.:

- 1. The sensitivity of  $\overrightarrow{b}(D)$  equals  $\Delta$ , and
- 2. For any  $(\epsilon, \delta)$ -DP mech. returning  $\overrightarrow{\mu}(D)$  s.t.  $A\overrightarrow{\mu}(D) \leq \overrightarrow{b}(D)$  w.p. 1,  $\mathbb{E}\left[g\left(\overrightarrow{\mu}(D)\right)\right] \leq g\left(\overrightarrow{x}^*\right) \frac{\Delta}{4\epsilon} \cdot \alpha(A) \cdot \ln\left(\frac{e^{\epsilon} 1}{2\delta} + 1\right)$

Proof idea when n = 1:

- Let  $t = \frac{1}{\epsilon} \ln \left( \frac{e^{\epsilon} 1}{2\delta} + 1 \right)$  and g(x) = x
- ullet  $\forall i \in \mathbb{Z}$ , let  $D_i$  be a database where  $D_i \sim D_{i+1}$  and  $b\left(D_i\right) = \Delta i$



## **Experiments**

- Individuals pool money to invest
- ullet Total amount b(D) private except to investment manager
- ullet Stock returns have mean  $\overrightarrow{p}$  and covariance  $\Sigma$
- Goal: Minimize variance subject to minimum expected return  $r \min\left\{\overrightarrow{x}^{\mathsf{T}}\Sigma\overrightarrow{x}:\overrightarrow{p}\cdot\overrightarrow{x}\geq r, \sum_{i=1}^{n}x_{i}\leq b(D)\right\}$
- Data from Dow Jones Industrial Average stocks

