Surname	Other nam	nes
Pearson Edexcel GCE	Centre Number	Candidate Number
Core Mat Advanced Subsidia		5 C1
Wednesday 18 May 2016 Time: 1 hour 30 minute	•	Paper Reference 6663/01

Calculators may NOT be used in this examination.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 6 7 1 5 A 0 1 2 8

Turn over ▶

1. Find $\int \left(2x^4 - \frac{4}{\sqrt{x}} + 3\right) \mathrm{d}x$	
giving each term in its simplest form.	(4)

Q1

(Total 4 marks)

(Total 2 marks)		Express 9^{3x+1} in the form 3^y , giving y in the form $ax + b$, where a and b are constants. (2)	3)
			-
			_
			_
			_
			-
			_
			_
			_
			_
			_
			-
			_
			_
			_
			_
			_
	_		-
			-
			_
			_
			_
			_
			-
			-
			_
			_
			_
			_

PhysicsAndMathsTutor.com

3. (a) Simplify

$$\sqrt{50} - \sqrt{18}$$

giving your answer in the form $a\sqrt{2}$, where a is an integer.

(2)

(b) Hence, or otherwise, simplify

$$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}}$$

giving your answer in the form $b\sqrt{c}$, where b and c are integers and $b \neq 1$	
	(3)

DO NOT WRITE IN THIS AREA

Figure 1

Figure 1 shows a sketch of part of the curve with equation y = f(x). The curve has a maximum point A at (-2, 4) and a minimum point B at (3, -8) and passes through the origin O.

On separate diagrams, sketch the curve with equation

(a)
$$y = 3f(x)$$
,

(2)

(b)
$$y = f(x) - 4$$

(3)

On each diagram, show clearly the coordinates of the maximum and the minimum points and the coordinates of the point where the curve crosses the *y*-axis.

y + 4x + 1 = 0	
$y^2 + 5x^2 + 2x = 0$	
y + 3x + 2x = 0	(6

6. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = 4$$
,

$$a_{n+1} = 5 - ka_n, \quad n \geqslant 1$$

where k is a constant.

(a) Write down expressions for a_2 and a_3 in terms of k.

(2)

Find

(b) $\sum_{r=1}^{3} (1 + a_r)$ in terms of k, giving your answer in its simplest form,

(3)

(c)
$$\sum_{r=1}^{100} (a_{r+1} + ka_r)$$

(1)

7. Given that

$$y = 3x^2 + 6x^{\frac{1}{3}} + \frac{2x^3 - 7}{3\sqrt{x}}, \quad x > 0$$

find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	Give each	term in	your	answer	in its	simplified	form
--	-----------	---------	------	--------	--------	------------	------

(6)

equation $y = 2px^2 - 6px + 4p$, where p is a constant.	
(a) Show that $4p^2 - 20p + 9 < 0$	(4)
(b) Hence find the set of possible values of <i>p</i> .	(4)

- 9. On John's 10th birthday he received the first of an annual birthday gift of money from his uncle. This first gift was £60 and on each subsequent birthday the gift was £15 more than the year before. The amounts of these gifts form an arithmetic sequence.
 - (a) Show that, immediately after his 12th birthday, the total of these gifts was $\pounds 225$

(1)

(b) Find the amount that John received from his uncle as a birthday gift on his 18th birthday.

(2)

(c) Find the total of these birthday gifts that John had received from his uncle up to and including his 21st birthday.

(3)

When John had received n of these birthday gifts, the total money that he had received from these gifts was £3375

(d) Show that $n^2 + 7n = 25 \times 18$

(3)

(e) Find the value of n, when he had received £3375 in total, and so determine John's age at this time.

(2)

	Leave
	blank
Question 9 continued	

PhysicsAndMathsTutor.com

10.

Figure 2

The points $P\left(0,2\right)$ and $Q\left(3,7\right)$ lie on the line l_{1} , as shown in Figure 2.

The line l_2 is perpendicular to l_1 , passes through Q and crosses the x-axis at the point R, as shown in Figure 2.

Find

(a) an equation for l_2 , giving your answer in the form ax + by + c = 0, where a, b and c are integers,

(5)

(b) the exact coordinates of R,

(2)

(c) the exact area of the quadrilateral ORQP, where O is the origin. (5)

	Leave
	blank
Question 10 continued	

- 11. The curve C has equation $y = 2x^3 + kx^2 + 5x + 6$, where k is a constant.
 - (a) Find $\frac{dy}{dx}$

(2)

The point P, where x = -2, lies on C.

The tangent to C at the point P is parallel to the line with equation 2y - 17x - 1 = 0

Find

(b) the value of k,

(4)

(c) the value of the y coordinate of P,

(2)

(d) the equation of the tangent to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(2)

Question 11 continued	

