Задача 1

На лекции мы выписали двойственный функционал для задачи регрессии:

$$Q(a) = ||\Phi\Phi^T a - y||^2 + \frac{\lambda}{2}a^T \Phi\Phi^T a = ||Ka - y||^2 \frac{\lambda}{2}a^T Ka \longrightarrow \min,$$

где $K = \Phi \Phi^T$ – матрица Грама. Покажите, что решение данной задачи достигается в

$$a = (K + \lambda I)^{-1} y,$$

где I – единичная матрица.

Задача 2

Рассмотрим следующую задачу условной оптимизации:

$$x^2 + 1 \longrightarrow \min,$$

 $(x-2)(x-4) \le 0,$

 $x \in \mathbb{R}$.

- 1. Найдите допустимое множество, оптимальное значение x_* и оптимальное решение $f(x_*)$;
- 2. Постройте график минимизируемой функцию x^2+1 по переменной x. На том же графике отметьте допустимое множество, оптимальные значения и решение, постройте график лагранжиана $L(x,\lambda)$ для 2-3 положительных значений λ . Убедитесь, что выполенено неравенство $f(x_*) \geq \inf_x L(x,\lambda)$. Нарисуйте эскиз двойственной функции g.
- 3. Запишите двойственную задачу оптимизации, найдите двойственное оптимальное значение λ^* и двойственное оптимальное решние $g(\lambda^*)$. Выполнена ли строгая двойственность?
- 4^* Обозначим через $f_u(x_*)$ оптимальное решение прямой задачи

$$x^2 + 1 \longrightarrow \min$$

 $(x-2)(x-4) < u$,

как функцию от параметра u. Постройте график $f_u(x_*)$ по переменной u и докажите, что

$$\frac{\partial f_u(x_*)}{\partial u} = -\lambda.$$

Задача 3

Покажите, что функция

$$K(x,z) = \sin(x-z)$$

является ядром.

Задача 4

Покажите, что функция

$$K(x,z) = \frac{1}{1 + e^{-xz}},$$

где $x, z \in \mathbb{R}$ не является ядром.

Задача 5

Пусть даны два ядра $K_1(x,z)=(1+xz)^2$ и $K_2(x,z)=(1+xz+x^2z^2)$. Найдите спрямляющие проостранства для ядер K_1,K_2,K_1+K_2 .