MFES/CSI — RELATION CALCULUS REFERENCE SHEET

RELATIONAL COMPOSITION

And the second state of the second se		- 175 A. P. St. St.
Pointwise def.	$B \underset{R \cdot S}{\longleftarrow} A \underset{S \cdot S}{\stackrel{S}{\smile}} C b(R \cdot S)c \equiv \langle \exists \ a : b \ R \ a : a \ S \ c \rangle$	(5.11)
Associativity	$R\cdot (S\cdot P)=(R\cdot S)\cdot P$	(5.12)
Identity	$\begin{cases} R = R \cdot id_A \\ R = id_B \cdot R \end{cases}$	(5.13)
Converse		
Pointwise def.	$bRa \Leftrightarrow aR^{\circ}b$	(5.14)
Universal-°	$X^{\circ} \subseteq Y \equiv X \subseteq Y^{\circ}$	(5.136)
Involution	$(R^{\circ})^{\circ} = R$	(5.15)
Contravariance	$(R \cdot S)^{\circ} = S^{\circ} \cdot R^{\circ}$	(5.16)
Isomorphism	$R\subseteq S\equiv R^{\circ}\subseteq S^{\circ}$	(5.137)
"Guardanapo"	$b(f^{\circ} \cdot R \cdot g)a \equiv (f b)R(g a)$	(5.17)
RELATION INCLUSION		4
Pointwise	$R \subseteq S$ iff $\langle \forall a, b :: b R a \Rightarrow b S a \rangle$	(5.19)
Reflexion	$R\subseteq R$	(5.21)
Transitivity	$R \subseteq S \land S \subseteq T \Rightarrow R \subseteq T$	(5.22)
Top and bottom	$\bot \subseteq R \subseteq T$	(5.25)
Absorption	$R \cdot \bot = \bot \cdot R = \bot$	(5.26)
RELATION EQUALITY	L'= L T°= T TT=T LL=L	
Pointwise	$R = S$ iff $\langle \forall a, b : a \in A \land b \in B : b R a \Leftrightarrow b S a \rangle$	(5.18)
Indirect equality	$R = S \equiv \langle \forall X :: (X \subseteq R \Leftrightarrow X \subseteq S) \rangle$ $\equiv \langle \forall X :: (R \subseteq X \Leftrightarrow S \subseteq X) \rangle$	(5.24)
"Ping-pong"	$R = S \equiv R \subseteq S \land S \subseteq R$	(5.20)

RELATION	TAXONOMY
TELETION	IMACINUINI

Kernel	$\ker R = R^{\circ} \cdot R$	(5.32)

Image
$$\lim_{n \to \infty} R \stackrel{\text{def}}{=} R \cdot R^{\circ} \tag{5.33}$$

Duality
$$\ker (R^{\circ}) = \operatorname{img} R$$

$$\operatorname{img} (R^{\circ}) = \ker R$$

$$(5.34, 5.35)$$

ReflexiveCoreflexiveker
$$R$$
entire R injective R img R surjective R simple R

FUNCTIONS

Equality
$$f \subseteq g \equiv f = g \equiv f \supseteq g$$
 (5.48)

CONSTANT FUNCTIONS

Natural property
$$\underline{k} \cdot R \subseteq \underline{k}$$
 (5.39)

Corollary
$$\ker ! = ! = \top$$
 (5.—)

Truth functions
$$true = \underline{TRUE} \\ false = \underline{FALSE}$$
 (5.40, 5.41)

FUNCTION DIVISION

Definition
$$\frac{f}{g} = g^{\circ} \cdot f \quad cf.$$
 $g = g^{\circ} \cdot f \quad cf.$ (5.49)

RELATION UNION

Pointwise definition
$$b(R \cup S) a \equiv b R a \vee b S a$$
 (5.57)

Universal property
$$R \cup S \subseteq X \equiv R \subseteq X \land S \subseteq X$$
 (5.59)

Right linearity
$$R \cdot (S \cup T) = (R \cdot S) \cup (R \cdot T)$$
 (5.60)

Left linearity	$(S \cup T) \cdot R = (S \cdot R) \cup (T \cdot R)$	(5.61)
Converse-∪	$(R \cup S)^{\circ} = R^{\circ} \cup S^{\circ}$	(5.65)
Тор-∪	$R \cup T = T$	(5.68)
Bottom-∪	$R \cup \bot = R$	(5.69)
Union simplicity	$M \cup N$ is simple $\equiv M, N$ are simple and $M \cdot N^{\circ} \subseteq id$	(5.70)
RELATION INTERSECTION		
Pointwise definition	$b(R\cap S) a \equiv bRa \wedge bSa$	(5.56)
Universal property	$X \subseteq R \cap S \equiv X \subseteq R \land X \subseteq S$	(5.58)
Distribution (1)	$(S \cap Q) \cdot R = (S \cdot R) \cap (Q \cdot R) \iff \begin{cases} Q \cdot \text{img } R \subseteq Q \\ V \\ S \cdot \text{img } R \subseteq S \end{cases}$ $R \cdot (Q \cap S) = (R \cdot Q) \cap (R \cdot S) \iff \begin{cases} (\text{ker } R) \cdot Q \subseteq Q \\ V \\ (\text{ker } R) \cdot S \subseteq S \end{cases}$	(5.62)
Distribution (2)	$R \cdot (Q \cap S) = (R \cdot Q) \cap (R \cdot S) \Leftarrow \begin{cases} (\ker R) \cdot Q \subseteq Q \\ \lor \\ (\ker R) \cdot S \subseteq S \end{cases}$	(5.63)
Distribution (3)	$g^{\circ} \cdot (R \cap S) \cdot f = g^{\circ} \cdot R \cdot f \cap g^{\circ} \cdot S \cdot f$	(5.71)
Converse-∩	$(R\cap S)^{\circ}=R^{\circ}\cap S^{\circ}$	(5.64)
Bottom-∩	$R \cap \bot = \bot$	(5.66)
Тор-∩	$R \cap T = R$	(5.67)
Misc.	$k^{\circ} \cdot (f \cup g) = \frac{f}{k} \cup \frac{g}{k}$, $k^{\circ} \cdot (f \cap g) = \frac{f}{k} \cap \frac{g}{k}$	(5.73)
RELATION DIVISION		and the
Universal-/	$Z \cdot Y \subseteq X \equiv Z \subseteq X/Y$	(5.157)
Pointwise-/	$c(X/Y) a \equiv \langle \forall b : a Y b : c X b \rangle$ $c \xrightarrow{X/Y} b$	(5.158)
Universal-\	$X \cdot Z \subseteq Y \Leftrightarrow Z \subseteq X \setminus Y$	(5.159)
Pointwise-\	$a(X \setminus Y)c \equiv \langle \forall b : b X a : b Y c \rangle$	(5.160)
Misc.	$X \cdot f = X/f^{\circ}$	(5.162)
	$f \setminus X = f^{\circ} \cdot X$	(5.163)
	$X/\bot = T$	(5.164)

$R \setminus (f^{\circ} \cdot S) = f \cdot R \setminus S$ $R \setminus T \cdot S = ! \cdot R \setminus ! \cdot S$ $R / (S \cup P) = R / S \cap R / P$ RELATION DIFFERENCE, IMPLICATION AND NEGATION Universal-(-) $X - R \subseteq Y \equiv X \subseteq Y \cup R$ Pointwise- \Rightarrow $b(R \Rightarrow S)a \equiv (b R a) \Rightarrow (b S a)$ Universal- \Rightarrow $R \cap X \subseteq Y \equiv X \subseteq (R \Rightarrow Y)$ Distribution $f^{\circ} \cdot (R \Rightarrow S) \cdot g = (f^{\circ} \cdot R \cdot g) \Rightarrow (f^{\circ} \cdot S \cdot g)$ Definition- \Rightarrow $\neg R = (R \Rightarrow \bot)$ Pointwise- \Rightarrow $b (\neg R) a \Leftrightarrow \neg (b R a)$	(5.166) (5.167) (5.168) (5.138) (5.147) (5.148) (5.154)
$R / (S \cup P) = R / S \cap R / P$ RELATION DIFFERENCE, IMPLICATION AND NEGATION Universal-(-) $X - R \subseteq Y \equiv X \subseteq Y \cup R$ Pointwise- \Rightarrow $b(R \Rightarrow S)a \equiv (b R a) \Rightarrow (b S a)$ Universal- \Rightarrow $R \cap X \subseteq Y \equiv X \subseteq (R \Rightarrow Y)$ Distribution $f^{\circ} \cdot (R \Rightarrow S) \cdot g = (f^{\circ} \cdot R \cdot g) \Rightarrow (f^{\circ} \cdot S \cdot g)$ Definition- \neg $\neg R = (R \Rightarrow \bot)$	(5.168) (5.138) (5.147) (5.148) (5.154)
RELATION DIFFERENCE, IMPLICATION AND NEGATION Universal-(-) $X - R \subseteq Y \equiv X \subseteq Y \cup R$ Pointwise- \Rightarrow $b(R \Rightarrow S)a \equiv (b R a) \Rightarrow (b S a)$ Universal- \Rightarrow $R \cap X \subseteq Y \equiv X \subseteq (R \Rightarrow Y)$ Distribution $f^{\circ} \cdot (R \Rightarrow S) \cdot g = (f^{\circ} \cdot R \cdot g) \Rightarrow (f^{\circ} \cdot S \cdot g)$ $\neg R = (R \Rightarrow \bot)$	(5.138) (5.147) (5.148) (5.154)
Universal-(-) $X - R \subseteq Y \equiv X \subseteq Y \cup R$ Pointwise- \Rightarrow $b(R \Rightarrow S)a \equiv (b R a) \Rightarrow (b S a)$ Universal- \Rightarrow $R \cap X \subseteq Y \equiv X \subseteq (R \Rightarrow Y)$ Distribution $f^{\circ} \cdot (R \Rightarrow S) \cdot g = (f^{\circ} \cdot R \cdot g) \Rightarrow (f^{\circ} \cdot S \cdot g)$ Definition- \neg $\neg R = (R \Rightarrow \bot)$	(5.147) (5.148) (5.154)
Pointwise- \Rightarrow $b(R \Rightarrow S)a \equiv (b R a) \Rightarrow (b S a)$ Universal- \Rightarrow $R \cap X \subseteq Y \equiv X \subseteq (R \Rightarrow Y)$ Distribution $f^{\circ} \cdot (R \Rightarrow S) \cdot g = (f^{\circ} \cdot R \cdot g) \Rightarrow (f^{\circ} \cdot S \cdot g)$ Definition- \neg $\neg R = (R \Rightarrow \bot)$	(5.147) (5.148) (5.154)
Universal- \Rightarrow $R \cap X \subseteq Y \equiv X \subseteq (R \Rightarrow Y)$ Distribution $f^{\circ} \cdot (R \Rightarrow S) \cdot g = (f^{\circ} \cdot R \cdot g) \Rightarrow (f^{\circ} \cdot S \cdot g)$ Definition- \neg $\neg R = (R \Rightarrow \bot)$	(5.148) (5.154)
Distribution $f^{\circ} \cdot (R \Rightarrow S) \cdot g = (f^{\circ} \cdot R \cdot g) \Rightarrow (f^{\circ} \cdot S \cdot g)$ Definition-\(\sigma R = (R \Rightarrow \pm)\)	(5.154)
Definition- $ \neg R = (R \Rightarrow \bot)$	
$-(\kappa \rightarrow \pm)$	
Pointwise- \neg $b(\neg R) a \Leftrightarrow \neg (b R a)$	(5.—)
(x) " \ (\(\text{V} \) (\(\text{V}	(5.—)
Complementation $R \cup \neg R = \top$	(5.152)
Difference versus implication $T - R \subseteq R \Rightarrow \bot$	(5.153)
de Morgan $\neg (R \cup S) = (\neg R) \cap (\neg S)$	(5.154)
Schröder's rule $\neg Q \cdot S^{\circ} \subseteq \neg R \iff R^{\circ} \cdot \neg Q \subseteq \neg S$	(5.151)
MONOTONICITY	
Composition $R \subseteq S \land T \subseteq U \Rightarrow R \cdot T \subseteq S \cdot U$	(5.78)
Converse $R \subseteq S \Rightarrow R^{\circ} \subseteq S^{\circ}$	(5.79)
Intersection $R \subseteq S \land U \subseteq V \Rightarrow R \cap U \subseteq S \cap V$	(5.80)
Union $R \subseteq S \land U \subseteq V \Rightarrow R \cup U \subseteq S \cup V$	(5.81)
ENDO-RELATION TAXONOMY	
Reflexive $id \subseteq R$	(5.84)
Coreflexive $R \subseteq id$	(5.85)
Transitive $R \cdot R \subseteq R$	(5.86)
Symmetric $R \subseteq R^{\circ} (\equiv R = R^{\circ})$	(5.87)
Coreflexive > Difuncional Difuncional: R. R	R=R
Coreflexive ⇒ Difuncional Difuncional: R. R°. (5234) thansitive ←> difuncional ← { reflexive	

(5.165)

Anti-symmetric	$R \cap R^{\circ} \subseteq id$	(5.88)
Irreflexive	$R \cap id = \bot$	(5.89)
Connected	$R \cup R^{\circ} = \top$	(5.90)
Pairing ("splits")		
Pairing-pointwise	$(a,b) \langle R,S \rangle c \Leftrightarrow a R c \wedge b S c$	(5.101)
Pairing-def	$\langle R,S\rangle = \pi_1^\circ \cdot R \cap \pi_2^\circ \cdot S$	(5.102)
Universal-pairing	$X \subseteq \langle R, S \rangle \Leftrightarrow \left\{ \begin{array}{l} \pi_1 \cdot X \subseteq R \\ \pi_2 \cdot X \subseteq S \end{array} \right.$	(5.103)
Pairing-fusion	$\langle R, S \rangle \cdot T = \langle R \cdot T, S \cdot T \rangle$ $\Leftarrow R \cdot (\text{img } T) \subseteq R \vee S \cdot (\text{img } T) \subseteq S$	(5.104)
Pairing-fusion (functions)	$\langle R, S \rangle \cdot f = \langle R \cdot f, S \cdot f \rangle$	(5.105)
Pairing and converse	$(R,S)^{\circ}\cdot(X,Y) = (R^{\circ}\cdot X)\cap(S^{\circ}\cdot Y)$	(5.108)
Kernel of pairing	$\ker \langle R, S \rangle = \ker R \cap \ker S$	(5.111)
Functor-× def	$R \times S = \langle R \cdot \pi_1, S \cdot \pi_2 \rangle$	(5.107)
Functor-×-id	$id \times id = id$	(5.112)
Functor-×-composition	$(R \times S) \cdot (P \times Q) = (R \cdot P) \times (S \cdot Q)$	(5.113)
Functor-× absorption	$(R \times S) \cdot \langle P, Q \rangle = \langle R \cdot P, S \cdot Q \rangle$	(5.106)
Functor-×-division	$\frac{f}{g} \times \frac{h}{k} = \frac{f \times h}{g \times k}$	(5.127)
Pairing division	$\frac{f}{g} \cap \frac{h}{k} = \frac{\langle f, h \rangle}{\langle g, k \rangle}$	(5.109)
COPRODUCTS		
Universal	$X = [R, S] \Leftrightarrow \begin{cases} X \cdot i_1 = R \\ X \cdot i_2 = S \end{cases}$	(5.114)
Definition	$[R,S] = R \cdot i_1^\circ \cup S \cdot i_2^\circ$	(5.117)
Reflexion	$img\ i_1 \cup img\ i_2 = id$	(5.115)
Disjointness	$i_1^{\circ} \cdot i_2 = \bot$	(5.116)
Either and converse	$[R,S]\cdot [T,U]^{\circ} = (R\cdot T^{\circ})\cup (S\cdot U^{\circ})$	(5.121)
Image of either	$img[R,S] = imgR \cup imgS$	(5.124)
Exchange law	$[\langle R, S \rangle, \langle T, V \rangle] = \langle [R, T], [S, V] \rangle$	(5.122)

Functor-+-def	$R+S=[i_1\cdot R,i_2\cdot S]$	(5.119)
Functor-+-converse	$(R+S)^{\circ}=R^{\circ}+S^{\circ}$	(5.123)
Functor-+-division	$\frac{f}{g} + \frac{h}{k} = \frac{f+h}{g+k}$	(5.128)
Injectivity preorder		
Definition	$R \leqslant S \equiv \ker S \subseteq \ker R$	(5.234)
Join	$\langle R,S\rangle\leqslant X \equiv R\leqslant X\wedge S\leqslant X$	(5.235)
Cancellation	$R \leqslant \langle R, S \rangle$ and $S \leqslant \langle R, S \rangle$.	(5.236)
Shunting	$R \cdot g \leqslant S \equiv R \leqslant S \cdot g^{\circ}$	(5.237)
Meet	$X \leqslant [R^{\circ}, S^{\circ}]^{\circ} \Leftrightarrow X \leqslant R \land X \leqslant S$	(5.238)
Either-injective	$id \leq [R,S] \Leftrightarrow id \leq R \wedge id \leq S \wedge R^{\circ} \cdot S = \bot$	(5.126)
THUMB RULES		
× (1)	A function f is a bijection iff its converse f° is a function g	(5.38)
	- converse of injective is simple (and vice-versa)	(5.43)
)	- converse of entire is surjective (and vice-versa)	(5.44)
	- smaller than injective (simple) is injective (simple)	
	the state of the state (smiles)	(5.82)
A CY	- larger than entire (surjective) is entire (surjective)	(5.82)
 Quantifier calculus	- larger than entire (surjective) is entire (surjective) $\langle R, id \rangle$ is always injective, for whatever R	(5.83)
Quantifier calculus Trading-∀	- larger than entire (surjective) is entire (surjective) $\langle R, id \rangle$ is always injective, for whatever R	(5.83)
	- larger than entire (surjective) is entire (surjective) (R, id) is always injective, for whatever R	(5.83) (5.111a)
Trading-∀	- larger than entire (surjective) is entire (surjective) $\langle R, id \rangle \text{ is always } injective, \text{ for whatever } R$ $\langle \forall k : R \land S : T \rangle = \langle \forall k : R : S \Rightarrow T \rangle$	(5.83) (5.111a) (A.1)
Trading-∀ Trading-∃ de Morgan	- larger than entire (surjective) is entire (surjective) $\langle R, id \rangle \text{ is always } injective, \text{ for whatever } R$ $S = \langle \forall k : R \land S : T \rangle = \langle \forall k : R : S \Rightarrow T \rangle$ $\langle \exists k : R \land S : T \rangle = \langle \exists k : R : S \land T \rangle$	(5.83) (5.111a) (A.1) (A.2) (A.3)
Trading-∀ Trading-∃	- larger than entire (surjective) is entire (surjective) $\langle R, id \rangle \text{ is always } injective, \text{ for whatever } R$ $\langle \forall k : R \land S : T \rangle = \langle \forall k : R : S \Rightarrow T \rangle$ $\langle \exists k : R \land S : T \rangle = \langle \exists k : R : S \land T \rangle$ $\neg \langle \forall k : R : T \rangle = \langle \exists k : R : \neg T \rangle$	(5.83) (5.111a) (A.1) (A.2) (A.3) (A.4)
Trading-∀ Trading-∃ de Morgan de Morgan	- larger than entire (surjective) is entire (surjective) $\langle R, id \rangle$ is always injective, for whatever R $ \langle \forall k : R \land S : T \rangle = \langle \forall k : R : S \Rightarrow T \rangle $ $ \langle \exists k : R \land S : T \rangle = \langle \exists k : R : S \land T \rangle $ $ \neg \langle \forall k : R : T \rangle = \langle \exists k : R : \neg T \rangle $ $ \neg \langle \exists k : R : T \rangle = \langle \forall k : R : \neg T \rangle $	(5.83) (5.111a) (A.1) (A.2)

Nesting-∃	$\langle \exists a, b : R \land S : T \rangle = \langle \exists a : R : \langle \exists b : S : T \rangle \rangle$ (A.3)	8)
Rearranging-	$\langle \forall k : R \vee S : T \rangle = \langle \forall k : R : T \rangle \wedge \langle \forall k : S : T \rangle \tag{A.S}$	9)
Rearranging-∀	$\langle \forall k : R : T \wedge S \rangle = \langle \forall k : R : T \rangle \wedge \langle \forall k : R : S \rangle$ (A.16)	0)
Rearranging-∃	$\langle \exists k : R : T \vee S \rangle = \langle \exists k : R : T \rangle \vee \langle \exists k : R : S \rangle$ (A.1)	1)
Rearranging-∃	$\langle \exists k : R \lor S : T \rangle = \langle \exists k : R : T \rangle \lor \langle \exists k : S : T \rangle$ (A.12)	2)
Splitting-∀	$\langle \forall j : R : \langle \forall k : S : T \rangle \rangle = \langle \forall k : \langle \exists j : R : S \rangle : T \rangle$ (A.13)	3)
Splitting-∃	$\langle \exists j : R : \langle \exists k : S : T \rangle \rangle = \langle \exists k : \langle \exists j : R : S \rangle : T \rangle$ (A.14)	4)

Endo-relations +

Shainking

Universal: X = RTS = X = R x X · R° = S

Definition: RIS = R N 5/R°

Fusion rules: (5.4) PR = (51R).f

(f.5) 1 R = f. (s1 (f°. R.f))

Chaotic: RIT = R

Impossible: RM = 1

Brute force: RI id = largest simple fragment of R

Oversiding

Definition: RTS = SURNI/5

Universal: X = R+S = X-S=R 1 (X-S).5°=L

Predicates

Bre restriction of R: R. 0 = RNT. 0

Pas restriction of R: $\phi_q \cdot R = R \cap \phi_q \cdot T$

Domain/Range

Domain: SR = Ker B N id

Range: $\rho R = img R \cap id$

SX SY = X ST.Y PR SY = RSY.T

(5.227)

FT

$$R_{t:=N} = R_N \qquad (6.1)$$

$$R_{t:=F(t_1,...,t_n)} = F(R_{t_1},...,R_{t_n})$$
 (6.2)

$$R_{t:=t'\to t''} = R_{t'} \to R_{t''}$$
 (6.3)

Reynolds arrow

f(R ← S) g = f. R ⊆ S.g