

IGBT vs. MOSFET: Which Device to Select?

Renesas Electronics America Inc.

Renesas Technology & Solution Portfolio

'Enabling The Smart Society'

Challenge:

"The challenge of the smart society is to create energy efficient solutions for today's needs."

Solution:

Our solution is to show you how to select best suited MCU, power devices and sensors for a given application

Discrete and Integrated Power Products

30V-1500V in Application Optimized Processes

- Low voltage family optimized for Qgd x Rds(on)
- Separate family optimized for pure Rds(on) performance
- 600V Super Junction MOSFETs for SMPS

SiC, Fast Recovery, SBD and Others

- SiC Schottky barrier diodes for very high switching speeds
- 3A to 30A, 600V parts available
- SBD optimized for high switching speeds

300V-1350V Discrete Devices

- Class-leading turn-off loss
- High-speed, short-circuit rated, and low Vce(on) optimized using thin wafers
- Multiple package options and bare die option available

Optimized for Highest Efficiency & Compactness

- Dr MOS solutions for > 93% peak efficiency, up to 1.5MHz
- PFC ICs for solutions up to 98% peak efficiency
- Smallest CSP packages for POL, Battery Charger and Fuel Gauge Applications

Broad Line-up of Packages and Devices

- Current ratings from 0.8A to 30A rms
- Voltage ratings from 600V to 1500V
- Junction temperature to 150° C

Agenda

- Section I: Quick Comparison of 600 V MOSFETs and IGBTs
- Section II: The Appliance Motor Inverter
- Section III: Device Selection for a 1 kW Motor Inverter
- Section IV: Conclusion and Q/A

Section I: Quick Comparison of 600 V MOSFETs & IGBTs

Comparison of 600 V MOSFETs and IGBTs:

- Device Structures
- Key Datasheet Specifications and Significance
- The Underlying Tradeoffs
- Gate Drive Requirements and Considerations
- MOSFET Body Diode Considerations
- When to Use Summary (IGBTs or HV FETs)

Device Structures

600 V SJ-MOSFET cross section

Symbol

600 V G6H Trench IGBT cross section

Symbol

Source: Renesas

Key Datasheet Specifications: Similarities

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	ì	Symbol	Ratings	Unit
Drain to source voltage		V _{DSS}	600	V
Gate to source voltage		V _{GSS}	+30, -20	V
Drain current	Ta = 25°C	I _D Note1	55	A
	Ta = 100°C	I _D Note1	34.8	A
Drain peak current		I _{D (pulse)} Note1	110	A
Body-drain diode reverse	drain current	I _{DR} Note1	55	A
Body-drain diode reverse	drain peak current	I _{DR (pulse)} Note1	110	A
Channel dissipation		Pch Note2	416.6	W
Channel to case thermal impedance		θch-c	0.3	°C/W
Channel temperature		Tch	150	°C
Storage temperature		Tstg	-55 to +150	°C

Notes: 1. Limited by Tch max.

2. Value at Tc = 25°C

MOSFET (RJK60S8DPK)

Key Datasheet Specifications: Similarities

Absolute Maximum Ratings

 $(Tc = 25^{\circ}C)$

Item		Symbol	Ratings	Unit
Collector to emitter voltage		V _{CES}	600	V
Gate to emitter voltage		V _{GES}	±30	٧
Collector current	Tc = 25°C	Ic	90	A
	Tc = 100°C	Ic	50	A
Collector peak current		ic(peak) Note1	180	A
Collector to emitter diode forward peak current		i _{DF} (peak) Note2	100	A
Collector dissipation		Pc	328.9	W
Junction to case therm	al impedance (IGBT)	θј-с	0.38	°C/W
Junction to case thermal impedance (Diode)		θј-с	2.0	°C/W
Junction temperature		Tj	150	°C
Storage temperature		Tstg	-55 to +150	°C

Notes: 1. Pulse width limited by safe operating area.

2. PW \leq 5 μ s, duty cycle \leq 1%

IGBT (RJH60F7DPK)

Key Datasheet Specifications: Differences

Electrical Characteristics

IGBT (RJH60F7DPK)

The Key Underlying Tradeoffs

A key MOSFET design goal is to minimize Rds(on) * Qgd

=> Minimum conduction + Switching Loss

MOSFET Optimization

A key IGBT design goal is to minimize Vce(sat) * Eoff

=> Minimum conduction + Switching Loss

IGBT Optimization

Gate Drive Requirements and Considerations

- Total Gate Charge (Qg)
 - Generally higher for HV MOSFETs (larger die compared to IGBT, for same current rating)
- Turn on gate resistors
 - Generally higher values used for IGBT (lower input capacitance compared to HV MOSFETs)
- Gate Drive Voltage
 - Higher (15 V) preferred for IGBT, 10 V is ok for HV MOSFETs
- Negative Gate Drive Voltage
 - Generally not needed for HV MOSFETs, sometimes used for older process IGBTs

MOSFET Body Diode dv/dt Considerations

Use of the MOSFET body diode:

- Initially Q1 and Q4 are conducting
- Q1 is turned off, body diode of Q2 starts to conduct
- Q1 is switched on again at the next pulse, Q2 body diode has to recover
- This adds to the switching loss in the devices (Q1 and Q2), and causes ringing on the current and voltage waveforms
- Also, the rate at which Q1 turns on has to be controlled or limited (to be within the specified diode recovery dv/dt)

Typical H bridge Motor Drive Circuit

When to Use Summary: Device Perspective

When to Use Summary: Conditions Based

- Low Switching Frequency (<20kHz)</p>
- High Power levels (above say 3 kW)
- High dv/dt needed to be handled by the diode
- High full load Efficiency is needed

- High Switching Frequency (>100kHz)
- Wide line and load conditions
- dv/dt on the diode is limited
- High light load efficiency is needed

When to Use Summary: Applications Based

- Motor Drives (>250W)
- UPS and Welding H Bridge inverters
- High power PFCs (>3kW)
- High Power Solar/Wind Inverters (>5kW)

- Motor Drives (<250W)
- Universal input AC-DC flyback and forward converter power supplies
- Low to Mid power PFCs (75W to 3 kW)
- Solar Micro Inverters

Section II: The Appliance Motor Inverter

The Appliance Motor Inverter:

- Typical Motor Inverter Block Diagram
- The PFC stage:
 - Types of PFC Designs: CCM and CRM; Single and Interleaved
 - IGBT or MOSFET Selection for the PFC Stage
- The Inverter Power Stage:
 - Key Power Components
 - IPM (Intelligent Power Module vs. Discrete Approach)
 - The Fast Body Diode MOSFET
 - IGBT vs. MOSFET for the Inverter Stage
 - Some General Comments

Typical Appliance Motor Inverter Block Diagram

The PFC Stage: IGBT or SJ-MOSFET

Some Key Application Conditions and Device Requirements CCM (Continuous Conduction Mode) Topology

Application Conditions	Device Requirements
Typical Power Range is 1 kW to 4 kW	High average currents, large die/package devices
Typical Switching Frequency : 25 kHz to 150 kHz	At lower levels IGBTs, at higher levels MOSFETs preferred
Typically Devices are Hard switched	Fast switching capabilities essential
Typically lower inductor current ripple	Less stressful for the device

CRM (Critical Conduction Mode) Topology

Application Conditions	Device Requirements
Typical Power Range is 100 W to 1 kW	Relatively smaller die/package devices could be considered
Typical Switching Frequency range is wide (50 kHz to 300 kHz)	Almost always MOSFETs are used
Typically Devices are Soft switched at turn on and hard switched turn off	Low Rdson is as important as gate charge
Typically higher inductor current ripple	More stressful for the device

The Inverter Stage: IGBT or FET

Some Key Application Conditions and Device Requirements

Application Conditions/Requirements				
	75 W to 200W			
Power Level	500 W to 5 kW			
	200 W to 500 W			
D) A / B A	Few kHz to say 25 kHz			
PWM Frequency	Above say 25 kHz			

IGBT (with FRD) or HV FET
Fast Body Diode FET preferred
IGBT is preferred
Could be either, based on cost, target efficiency, etc.
IGBT is generally preferred
Also depends on power level, but a Fast body diode FET may be preferred

The Inverter Stage: IGBT or FET

Some Key Application Conditions and Device Requirements

Application Conditions/Requirements

Diode Recovery Loss Important

High Light load efficiency requirement

Lowest device cost

IGBT (with FRD) or HV FET

IGBT (with fast recovery diode co-packaged) preferred

Fast Body Diode FET preferred

IGBT (with FRD) typically preferred

Section III: A 1 kW Appliance Motor Inverter

A 1 kW Appliance Motor Inverter:

- Defining The Design Requirements:
 - The PFC Stage
 - The Inverter Stage
- Device Selection for the PFC stage:
 - Understanding the Design Requirements
 - A loss Analysis Exercise
 - Selecting a suitable device
- Device Selection for the Inverter Power Stage:
 - Understanding the Design Requirements
 - A loss Analysis Exercise
 - Selecting a suitable device

Defining the Design Requirements: PFC Stage

PFC Application Details						
Parameter/Specification	Value	Units	Comments			
Vin_min	85	Vrms	minimum ac input voltage			
Vin_max	265	Vrms	maximum ac input voltage			
P_out	1000	W	Rated Output Power			
V_dc	400	Vdc	DC Bus Voltage			
Fsw	100	kHz	PWM switching frequency			
Circuit Topology Preference	Single		One phase OR dual phase interleaved			
Circuit Mode (CCM, CRM)	ССМ		CCM = Continuos Conduction Mode, CRM = Critical Conduction Mode)			
Package Preference for IGBT/FET and Diode	TO247		TO220, TO247, D2pak, etc.			
Worst case ambient temperature	45	deg C				
Worst case heat sink temperature	100	deg C				
Target Efficiency at 20% load	90	%				
Target Efficiency at 50% load	> 90	%				
Target Efficiency at 100% load	> 90	%				
Any Special Requirements?			Tight Board layout, yes/no air flow, inrush current withstanding needed,			

User Inputs

- Understanding the Design Requirements and First Pass Selection:
 - The Topology is CCM => Hard switching, High Speed capability needed
 - The switching Frequency is 100kHz => High for an IGBT, better suited for MOSFET
 - The Power Level is 1kW => Better suited for MOSFET
 - The DC bus voltage is 400V (nominal) =>600V rated device would be advisable

Looking at the Product Matrix of 600V, SJ-MOSFETs in TO247 package, we select the RJK60S5DPQ, and RJK60S7DPQ:

PKG	P/N	VDSS	ID	$RDS(on)\left[\Omega\right]$	Qg typ.
		[V]	[A]	Typ./Max	[nC]
TO-247	RJK60S5DPQ-E0	600	20	0.15/0.178	27
	RJK60S7DPQ-E0	600	30	0.10/0.125	39

Datasheet Comparison:

BVdss	P/N	Rdson,max	Qg,typ	Qgd,typ	Rthjc,max	FOM1	FOM2
(V)		(mOhm)	(nC)	(nC)	(C/W)	Rds*Qg	Rds*Qgd
600	RJK60S5DPQ	178	27	8.5	0.65	4806	1513
600	RJK60S7DPQ	125	39	11	0.55	4875	1375

Notes:

- 1. FOM1,2 = Figures of Merit 1 => this reflects the impact of the on resistance and gate charge on the total losses (Rdson -> conduction loss; Qg, Qgd -> switching loss)
- 2. The lower the FOM, the lower the total loss, and potentially the better the device performance (in terms of overall system efficiency and device operating temperature)

Estimated Device Loss and Operating Tj Summary:

RJK60S7DPQ				
Pout	Loss (W)	Tj (deg C)		
1000	39.8	121.9		
750	26.2	114.4		
500	15.1	108.3		
250	6.32	103.5		

RJK60S5DPQ				
Pout	Loss (W)	Tj (deg C)		
1000	39.8	125.9		
750	25.1	116.3		
500	13.5	108.8		
250	5.14	103.3		

Summary:

- 1. The S7 is a larger die, with lower Rdson, and benefits by way of its lower thermal impedance in terms of lower operating Tj.
- 2. The losses are about the same at full load but actually lower for the S5 device at lighter loads; this is due to lower gate charge => lower switching loss.
- 3. If lowest operating Tj is the key design goal (for longest operating life expectancy), then the S7 is a better option.
- 4. In terms of loss and for a lower cost target, the S5 is a better option to consider.

Defining the Design Requirements: Inverter Stage

Motor Inverter Application Details					
Parameter/Specification	Value	Units	Comments		
Motor Type	3 ph, ACIM		AC Induction, BLDC, PMSM		
Rated Power	1 kW	kW/hp	1 hp = 0.75 kW		
Rated rms current/phase	2.6	Arms			
Rated rms voltage/phase	127	Vrms			
PWM switching frequency	20	kHz			
Maximum DC bus voltage	400	Vdc			
Maximum Ambient Temperature	45	deg C			
Maximum Heat Sink*/PCB Copper Temperature	105	deg C	*In case devices are heat sinked		
Package preference for the IGBT/FET	D2pak		TO220, TO247, D2pak, Dpak, etc.		
Gate Driver sourcing/sinking current rating	1	А	This is usually specified on the gate driver's datasheet		
Maximum or Biocked Rotor current	10	Arms			
Maximum or Blocked Rotor current duration	1	S			
Any Special Requirements, Considerations	5	us	No/Yes Air flow available, 10 us short circuit rating needed, etc.		
Notes:					
BLDC = Brushless DC		K			
PMSM = Permanent Magnet Synchronous Motor					

User Inputs

Device Selection for the Inverter Stage

- Understanding the Design Requirements and First Pass Selection:
 - Power level is 1kW => IGBT preferred
 - Fsw is 20kHz => Better suited for IGBT
 - DC bus voltage is 400V (nominal) => 600V rated device is advisable
 - Diode recovery loss important => IGBT (with FRD) preferred
 - A 5 us short circuit capability is desired => A SC rated IGBT (or MOSFET)
 - Lower Device Cost is needed => IGBT is preferred

Looking at the Product Matrix of 600V, G6H Trench, 5 us rated IGBTs in D2pak (LDPAK-S) package, we select the RJH60D2DPE, and RJH60D2DPE:

	VCEC			IGBT				Diode				
P/N	VCES (V)	Ic	(A)	V _{CE(\$}	sat) (V)	tf((ns)	tsc(µs)	IF(A)	V _F (V)	trr (ns)	Package
		25℃	100℃	typ.	Ic(A)	typ.	Ic(A)	typ.	25℃	typ.	typ.	
RJH60D2DPE	600	25	12	1.7	12	80	12	5	12	1.2	100	LDPAK-S
RJH60D3DPE	600	35	17	1.6	17	80	17	5	17	1.3	100	LDPAK-S

Device Selection for the Inverter Stage

Estimated Device Loss and Operating Tj Summary:

RJH60D2DPE						
Pout	Pout Loss (W) Tj (deg C)					
1000	2.5	109.9				
750	1.6	108.2				
500	0.96	106.9				
250	0.46	105.9				

RJH60D3DPE						
Pout Loss (W) Tj (deg C)						
1000	2.2	107.4				
750	1.5	106.7				
500	1.0	106.1				
250	0.6	105.7				

Summary:

- 1. The D3 is a larger device and benefits by way of its lower thermal impedance in terms of lower operating Tj.
- The losses are about the same at half load but lower for the S5 device at lighter loads; this is due to lower switching loss component compared to conduction loss.
- 3. Given the similar loss and operating Tj at > 50% load and lower loss at lighter loads with similar operating Tj, the D2 is a better option to consider, particularly if cost is a key factor as well.

Section IV: Conclusion and Q/A

Conclusion:

- IGBTs and HV MOSFETs are similar in many ways but differ from a performance and application perspective
- A one size fits all approach does not work
- The best device is the one that best meets the application needs in terms of size, efficiency and Amps/\$ capability..!

Questions?

'Enabling The Smart Society'

Challenge:

"The key challenge is to enable a smart and energy efficient solution for a given application using the best suited MCU, Power Devices and sensors."

Conclusion:

This class showed you how to select best suited Power Device for a typical 1 kW appliance inverter application

Appendix Slides:

- 1. Loss Analysis Tool for PFC switch selection
- 2. Loss Analysis Tool for Inverter Switch selection

	А	В	С	D	Е		
1	PFC switch Loss Calculator for RJK60S7DPQ						
2	Parameter	Value	Units	Comments			
3	Vin(min)	85	Vac	Minimum ac rms line voltage			
4	Vin(max)	265	Vac	Maximum ac rms line voltage			
5	Vdc(nominal)	400	Vdc	DC Bus voltage			
6	Theatsink/pcb	100	deg C	Maximum heat sink or PCB copper temperature			
7	Fsw	100	kHz	PWM Switching Frequency			
8	Pout	1000	W	Rated Output Power			
9	Target η	95	%	Target Efficiency at rated load			
10	Pin	1052.631579	W	Calculated input power (maximum)			
11	lac_rms_max	12.38390093	Arms	Maximum input ac rms current			
12	Isw_rms	10.68606696	Arms	MOSFET maximum rms current			
13	Isw_peak	15.11009869	Adc	MOSFET maximum peak current			
14	Isw_peak_ave	5.036699562	Apeak	MOSFET equivalent peak current (for switching loss calcution)			
15	Rds_hot	170	mOhm	MOSFET On resistance at 150 C			
16	Qg_typ	39	nC	Typical Gate Charge From Datasheet			
17	Qg_max	50.7	nC	Estimated Maximum Gate Charge (30% guard banding assumed)			
18	lg_min_src	1.5	Α	From IC or gate driver datasheet			
19	Ig_min_sink	1.5	Α	From IC or gate driver datasheet			
20	Trise	33.8	ns	Calculated Rise Time			
21	Tfall	33.8	ns	Calculated Fall Time			
22	Pcond	19.41264461	W	Calculated Conduction loss in MOSFET			
23	Psw	20.42885342	W	Calculated Switching Loss in MOSFET			
24	Ptot	39.84149804	W	Total Loss in MOSFET (Pcond+Psw)			
25	Rthjc	0.55	deg C/W	From MOSFET datasheet			
26	Tj_calc	121.9128239	deg C	Calculated Junction Temperature			
27	Tj_max	150	deg C	Allowed Maximum junction Temperature			
28	Check	YES	Yes/No	Device temperature within allowed maximum?			
29							
30	Notes:						
31	1) Reference for Equations: Table 18.3, Fundamentals of Power Electronics, 2nd Ed, Robert W. Erickson						
32	2) Color Code:						
33	User Inputs						
	From Datasheet						
35	Calculation/Result						
26	3) For nurnoses of the	ewitching loss calcu	lation Los	timated an average switch current value of 1/3 of the neak switch i	current		

36 3) For purposes of the switching loss calculation, I estimated an average switch current value of 1/3 of the peak switch current

Loss Estimator Tool (example snapshot of S7DPQ at 100% load)

RJH60D2DPE

Device Selection for the Inverter Stage

Appliance Motor Inv	erter IGBT Selector and Lo	oss Estimator	Γool
Prated	1000	W	
Vbus	400	V	
Vrms_phase	127	Vrms	
Irms_max_phase		Arms	If provided
PF	0.9		
lrms_calc_phase	2.916302129	Arms	Estimated
Ipeak_calc_phase	4.12365121	Apeak	Estimated
Fsw	20	kHz	
V_test	300	V	
MI	0.8		Modulation Index
Iswitch_ave	1.027342996	А	
lswitch_rms_square	14.94831525	A ²	
ldc_for_loss_calc	1.312428775	А	
Vcezero	1	V	
Vcesat_hot	2.2	V	
lcsat_hot	25	A	
Rceon	0.088	Ohms	
Eon_25C_DS_Iswpeak	2	uJ	
Eoff_25C_DS_Iswpeak	18	uJ	
Eon_hot_est_Vscaled	3	uJ	
Eoff_hot_est_Vscaled	2.8125	uJ	
Psw	0.11625	W	
Pcond	2.342794738	W	
Ptot	2.459044738	W	
Tcase	105	С	
Rthjc	1.98	C/W	
Тј	109.8689086	С	

A Loss Analysis Tool

