Aproksymacja rozwiązań układów równań metodą Jacobiego i Seidla

Bartosz Zasieczny

26 stycznia 2014

Spis treści

1	Tre	sc zada	anıa																	1
2	Algorytmy														2					
	2.1												2							
	2.2		la Gaussa-																	2
3	Przykładowe rozwiązania															2				
	3.1	Macie	rz Pei																	2
		3.1.1	Metoda J	Jacobie	go															3
		3.1.2	Metoda S																	3
	3.2	Macie	rz Hillbert	a																3
		3.2.1																		3
		3.2.2	Metoda S		_															3
4	Kompilacja i obsługa programu														3					
	4.1	Wyma	gania																	3
	4.2		ilacja																	3
	4.3	_	ga progran																	3

1 Treść zadania

Za pomocą metod Jacobiego i Siedla wyznaczyć przybliżone rozwiązanie \tilde{x} układu równań liniowych Ax=b $(A=[a_{i,j}]\in\mathbb{R}^{n\times n})$, przyjmując że $\tilde{x}=x^{(k)}$, gdzie k jest najmniejszą liczbą naturalną dla której zachodzi nierówność:

$$\frac{\|x^{(k)} - x^{(k-1)}\|_{\infty}}{\|x^{(k)}\|_{\infty}} < \epsilon.$$

Wykonać obliczenia kontrolne m. in. dla macierzy Pei i Hillberta i omówić wyniki, podając wartość $\|b-A\tilde{x}\|_{\infty}$, gdzie \tilde{x} jest obliczonym rozwiązaniem,

jak również przyjmując różne wartości parametrów n i d. Można założyć, że rozwiązaniem dokładnym jest wektor $e:=[1,1,...,1]^T$ lub, inaczej mówiąc, że b:=Ae. Obliczenia wykonać dla $\epsilon=5\cdot 10^{-5}$ i $\epsilon=5\cdot 10^{-7}$.

2 Algorytmy

2.1 Metoda Jacobiego

Metoda Jacobiego jest metodą iteracyjną, gdzie kolejne przybliżenia rozwiązania układu równań Ax = b znajdujemy poprzez rozwiązanie poniższego równania na macierzach:

 $x_{k+1} = Mx_k + Nb$

gdzie:

$$N = D^{-1}$$

$$M = -N(L+U)$$

$$D_{ij} = \begin{cases} A_{ij} & i = j \\ 0 & \text{w p. p.} \end{cases}$$

$$L_{ij} = \begin{cases} A_{ij} & i < j \\ 0 & \text{w p. p.} \end{cases}$$

$$U_{ij} = \begin{cases} A_{ij} & i > j \\ 0 & \text{w p. p.} \end{cases}$$

Natomiast x^0 jest wektorem zerowym.

2.2 Metoda Gaussa-Seidla

Metoda Gaussa-Seidla różni się od poprzedniej tylko wzorem, za pomocą którego wyznaczamy następne iteracje:

$$x_{k+1} = Nb + -NLx_k - NUx_k$$

3 Przykładowe rozwiązania

3.1 Macierz Pei

Macierz Pei jest zdefiniowana w następujący sposób:

$$P_{ij} = \begin{cases} d & i = j \\ 1 & \text{w p. p.} \end{cases}$$

, gdzie d jest podanym parametrem rzeczywistym, a (i, j = 1, 2, ..., n).

- 3.1.1 Metoda Jacobiego
- 3.1.2 Metoda Seidla
- 3.2 Macierz Hillberta

Macierz Hillberta jest dana następujacym wzorem:

- 3.2.1 Metoda Jacobiego
- 3.2.2 Metoda Seidla

4 Kompilacja i obsługa programu

4.1 Wymagania

Aby skompilować program należy spełnić następujące wymagania dotyczące oprogramowania:

- kompilator G++ w wersji 4.7 lub późniejszej kompilator musi obsługiwać standard $C^{++}11$,
- obecność narzędzia GNU Make

Powyższe wymagania powinny być automatycznie spełnione w każdej aktualnej dystrybucji GNU/Linux.

4.2 Kompilacja

Należy przejść do katalogu prog i wykonać polecenie make - kompilacja wykona się automatycznie. W pliku Makefile podane są polecenia, które należy wykonać aby skompilować program ręcznie.

4.3 Obsługa programu

Program uruchamiamy za pomocą pliku **program**, po jego nazwie podając ciąg będący kombinacją ponizszych parametrów:

- -peya <d> użycie macierzy Pei z parametrem d
- -hillbert użycie macierzy Hillberta
- -p <e> definicja wielkości ϵ
- -j użycie metody Jacobiego
- -gs użycie metody Gaussa-Seidla
- -v <n> b_0 b_1 ... b_n podanie rozmiaru macierzy kwadratowej/wektora b i podanie wartości wektora b

Przykład: szukamy przybliżonego rozwiązania dla macierzy hillberta, gdzie $n=4,\ b=[465,6,7,-55]^T,$ używając metody Gaussa-Seidla i precyzji $\epsilon=5\cdot 10^{-5}.$

./program -hillbert -p 0.00005 -v 4 465 6 7 -55 -gs