

Attribute Normalization, Standardization and Dimension Reduction of Data

Student's Name: Rashmi Mobile No: 7015331137

Roll Number: B19218 Branch: Engineering Physics

1 a.

Table 1 Minimum and Maximum Attribute Values Before and After Min-Max Normalization

S. No.	Attribute	Before Min-Max Normalization		After Min-Max Normalization	
		Minimum	Maximum	Minimum	Maximum
1	Temperature (in °C)	10.085	31.375	3.000	9.000
2	Humidity (in g.m ⁻³)	34.206	99.720	3.000	9.000
3	Pressure (in mb)	992.655	1037.604	3.000	9.000
4	Rain (in ml)	0.000	2470.500	3.000	9.000
5	Lightavgw/o0 (in lux)	0.000	10565.352	3.000	9.000
6	Lightmax (in lux)	2259.000	54612.000	3.000	9.000
7	Moisture (in %)	0.000	100.000	3.000	9.000

Inferences:

1. 'Rain' and 'Pressure' attributes have maximum number of outliers whereas 'Lightmax' and 'Moisture' have zero outliers.

2. After min-max normalization, data points are linearly transformed having range of 3-9.

b.

Table 2 Mean and Standard Deviation Before and After Standardization

S. No.	Attribute	Before Standardization		After Standardization	
		Mean	Std. Deviation	Mean	Std. Deviation
1	Temperature (in °C)	21.370	4.125	-0.000	1.000
2	Humidity (in g.m ⁻³)	83.992	17.566	-0.000	1.000
3	Pressure (in mb)	1014.761	6.121	-0.000	1.000
4	Rain (in ml)	168.400	399.689	0.000	1.000
5	Lightavgw/o0 (in lux)	2197.392	2220.820	0.000	1.000
6	Lightmax (in lux)	21788.623	22064.993	0.000	1.000
7	Moisture (in %)	32.386	33.653	0.000	1.000

Attribute Normalization, Standardization and Dimension Reduction of Data

Inferences:

1. In standardization, the distribution of data points as gaussian distribution is linearly transformed it into standard gaussian distribution with mean μ =0 and σ =1.

2 a.

Figure 1 Scatter Plot of 2D Synthetic Data of 1000 samples

- 1. Attributes are positively correlated.
- 2. Data points are highly dense around the mean (0,0). We can see that as distance from mean is increasing, their density is decreasing.
- 3. Shape of the distribution is elliptical.

Attribute Normalization, Standardization and Dimension Reduction of Data

Figure 2 Plot of 2D Synthetic Data and Eigen Directions

Inferences:

- 1. The data is highly spread in that eigen direction which corresponds to high eigen value.
- 2. Eigen axis intersects at origin. Here data points are highly dense. As we go away from it, density decreases.

c.

Figure 3 Projected Eigen Directions onto the Scatter Plot with 1st Eigen Direction highlighted

Attribute Normalization, Standardization and Dimension Reduction of Data

Figure 4 Projected Eigen Directions onto the Scatter Plot with 2nd Eigen Direction highlighted

Inferences:

- 1. Fig-3 corresponds to small eigen value and its projections lie in small range. On other hand, projection for Fig-4 lie on larger range, as it corresponds to larger eigen value.
- 2. Variance of projections is large on that eigen direction which has large eigen value.

d. Reconstruction Error = 1.009886618774658e-16 (approx. 0)

Inferences:

- 1. Here, l=d=2 i.e. lower dimension and actual dimension are same. Therefore, error is almost zero in this case.
- 2. As dimension of data decreases, the quality of reconstruction decreases.

3 a.

Table 3 Variance and Eigen Values of the projected data along the two directions

Direction	Variance	Eigen Value	
1	2.202	2.202	
2	1.421	1.421	

Attribute Normalization, Standardization and Dimension Reduction of Data

1. Variances of the projected data are almost same as their respective eigen values.

Figure 5 Plot of Landslide Data after dimensionality reduction

Inferences:

- 1. Data points are highly dispersed after dimensionality reduction.
- 2. It is comparably high dense in the origin region.

Figure 6 Plot of Eigen Values in descending order

- 1. The magnitude of eigen values is decreasing gradually after second eigen value. Initial change between 1st and 2nd eigen value is Sharp.
- 2. Rate of decrease has changed after second eigen values.
- 3. Therefore, use I=2 for dimension reduction, it will conserve most of the data.

Attribute Normalization, Standardization and Dimension Reduction of Data

C. Line Plot to demonstrate Reconstruction Error vs. Components

Figure 7 Line Plot to demonstrate Reconstruction Error vs. Components

- 1. Reconstruction error increases as we decrease the lower dimension.
- 2. I=3 or 4 is the best compensation between data loss and dimensionality reduction.