I Définition et étude de la fonction cube

Définition n°1.

La fonction cube est la fonction
$$g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x \end{cases}$$

Définition n°2.

Soit
$$f$$
 une fonction sur D_f .
« f est impaire » signifie que : **Pour tout** $x \in D_f$, $f(-x)=-f(x)$

Propriété n°1.

La fonction cube est impaire

preuve:

Notons
$$g$$
 la fonction cube.
Soit $x \in \mathbb{R}$ (car $D_g = \mathbb{R}$)
 $g(-x) = (-x)^3 = -x \times (-x) \times (-x) = -x^3 = -g(x)$
Ainsi g est impaire.

EXERCICE N°1

- 1) Démontrer que la fonction f définie sur \mathbb{R} par $f(x)=3x^3+2x$ est impaire.
- 2) Démontrer que la fonction g définie sur \mathbb{R} par $g(x)=x^3+1$ n'est pas impaire.
- 3) Conjecturer les conditions sur les réels a, b, c et d pour que la fonction h définie sur \mathbb{R} par $h(x)=ax^3+bx^2+cx+d$ soit impaire.

Remarque n°1.

Si une fonction est impaire, alors son domaine de définition est symétrique par rapport à zéro.

Propriété n°2. Variations de la fonction cube

La fonction est strictement croissante sur R

preuve:

Nous allons montrer que la fonction cube est strictement croissante sur $]-\infty$; 0] et strictement croissante sur $[0;+\infty[$ (Cela suffira car les deux intervalles ont un point commun).

• Soient $a < b \le 0$

Nous devons montrer que $a^3 < b^3$ ce qui équivaut à $a^3 - b^3 < 0$.

Remarquons que : $a^3-b^3=(a-b)(a^2+ab+b^2)$

Comme $a < b \Leftrightarrow a-b < 0$

De plus $a^2 > 0$, $b^2 \ge 0$ et $ab \ge 0$ (car a et b sont de même signe)

Ainsi $a^2 + ab + b^2 > 0$

D'après la règle des signes : $(a-b)(a^2+ab+b^2) < 0$

Et donc $a^3 - b^3 < 0$.

La fonction cube bien strictement croissante sur $]-\infty$; 0].

• La stricte croissance sur $[0; +\infty[$ se démontre de la même manière et est laissée à titre d'exercice.

Propriété n°3. La représentation graphique de la fonction cube

Remarque n°2. Parité, imparité et représentation graphique

Dans un repère orthogonal, on donne $\ C_f$ la courbe représentative de la fonction $\ f$ définie sur $\ D_f$.

- Si f est paire alors C_f est symétrique par rapport à l'axe des ordonnées.
- Si f est **impaire** alors C_f est **symétrique** par rapport au **centre** du repère.

En images: fonction paire, fonction impaire

EXERCICE N°2

On considère ci-contre la courbe représentative de la fonction cube dans un repère $\ (O\ ;\ I\ ;\ J)\$.

- 1) Lire graphiquement le(s) antécédent(s) du nombre 2 . On donnera le résultat au dixième près.
- 2) Quel est l'antécédent du nombre réel -2 ? Justifier la réponse.

EXERCICE N°3

On considère la fonction f définie pour tout réel x par $f(x)=-2x^3$.

- 1) Démontrer que cette fonction est impaire.
- 2) Que peut-on en déduire sur sa courbe représentative ?
- 3) Sans calcul, donner la valeur de f(200)+f(-200) .

II Comparaison des fonctions identité, carré et cube

Propriété n°4.

Pour
$$x \in]0$$
; $1[$, $x > x^2 > x^3$
Pour $x \in]1$; $+\infty[$, $x < x^2 < x^3$
Et bien sûr $0=0^2=0^3$ et $1=1^2=1^3$

preuve:

Comparons $x \mapsto x$ et $x \mapsto x^2$ pour $x \in]0$; 1[$x^2 - x = x(x-1)$ x > 0 et x - 1 < 0

d'après la règle des signes : x(x-1) < 0 et donc $x^2 - x < 0$ ce qui équivaut à $x^2 < x$

La comparaison pour $x \in]0$; 1[de $x \mapsto x^2$ et $x \mapsto x^3$ est laissée à titre d'exercice (la méthode est la même, faites le!). On a donc bien, pour $x \in]0$; 1[, $x > x^2 > x^3$

- Les comparaisons pour $x \in]1$; $+\infty[$ sont laissées à titre d'exercices (c'est encore la même méthode, faites le!) On a donc bien, pour $x \in]1$; $+\infty[$, $x < x^2 < x^3$
- Enfin les égalités sont évidentes.

EXERCICE N°4

Sans utiliser de calculatrice, comparer les nombres suivants :

1)
$$0.3 ; 0.3^2 ; 0.3^3$$

$$2) 5.6 ; 5.6^2 ; 5.6^3$$

3)
$$\frac{1}{3}$$
; $\left(\frac{1}{3}\right)^2$; $\left(\frac{1}{3}\right)^3$

4)
$$\frac{1}{\pi}$$
; $\left(\frac{1}{\pi}\right)^2$; $\left(\frac{1}{\pi}\right)^3$

EXERCICE N°1

On veut résoudre graphiquement l'équation $2x^3-8=0$.

- 1) Tracer la courbe représentative de la fonction cube.
- 2) Montrer que la résolution de l'équation donnée se ramène à résoudre l'équation $x^3=4$.
- 3) Résoudre graphiquement cette dernière équation et donner la(les) solution(s) au dixième près.

EXERCICE N°2

On considère la fonction f définie pour tout réel par $f(x)=x^3-x^2$.

On a tracé la courbe représentative de la fonction f dans le repère ci-contre.

- 2) Démontrer la conjecture précédente.
- 3) En utilisant le graphique, déterminer le signe de f(x).
- 4) Démontrer la conjecture graphique de la question 3.
- 5) Résoudre graphiquement l'équation f(x)=1
- 6) En utilisant le graphique, donner le tableau variation de la fonction f sur l'intervalle $[1; +\infty[$
- 7) Calculer les valeurs exactes de f(1,46) et f(1,47) En utilisant la question 6, justifier que la solution de l'équation f(x)=1 est comprise entre 1,46 et 1,47.
- 8) En utilisant la calculatrice, déterminer un intervalle d'amplitude 10^{-4} qui contient solution de l'équation f(x)=1.

EXERCICE N°3 Objectif Spé

- 1) Résoudre dans \mathbb{R} l'inéquation $2x^3 \le 8x$.
- 2) On souhaite résoudre dans \mathbb{R} l'inéquation $x^3 + x + 6 \ge 4x^2$.
- **2.a)** Développer et réduire l'expression (x+1)(x-2)(x-3).
- **2.b)** En déduire la résolution de l'inéquation proposée.
- 3) Inventez votre inéquation à résoudre et donnez-en la correction.