1) a) calling G.check_mode() in console returns true

```
1#!/usr/bin/env python3
 2 # -*- coding: utf-8 -*-
 4 Created on Fri Nov 15 14:59:40 2019
 6 @author: coleconstantino
 8
 9 from pgmpy.models import BayesianModel
10 from pgmpy.factors.discrete import TabularCPD
12 G = BayesianModel([('B', 'G'),( 'F', 'G')])
13 cpd_B = TabularCPD(variable = 'B', variable_card = 2, values = [[0.8,0.2]])
14 cpd_F = TabularCPD(variable = 'F', variable_card = 2, values = [[0.9,0.1]])
15 cpd_G = TabularCPD(variable = 'G', variable_card = 2, values = [[0.1,0.1,0.2,0.9]])
                                                                                                    [0.9,0.9,0.8,0.1]],
evidence = ['B', 'F'],
evidence_card = [2, 2])
16
17
18
19
20 G.add_cpds(cpd_B, cpd_F, cpd_G)
21 G. check_model()
```

b) P(F=0|G=0) =
$$\frac{F(G=0 \mid F=0)P(F=0)}{P(G=0)}$$

d)

```
#g_dist = infer.query(['F'], evidence={'G': '0'})
one_dist = infer.query(['F'])
two_dist = infer.query(['F'], evidence={'G': '0'})
three_dist = infer.query(['F'], evidence={'G': '0'})
print()
print(one_dist)
print()
print(two_dist)
print()|
print(three_dist)
```

infer = VariableElimination(G)

F	1	phi(F)
F(1)	ļ	0.9000
F(0)	į_	0.1000
F	<u>†</u>	phi(F)
F(1)	İ	0.7258
F(0)	<u>i</u>	0.2742
F	-	phi(F)
F(1)	!	0.9000
F(0)	i	0.1000

- **e)** When we read the gauge and see its empty we believe the gauge is empty. Its only when we see the battery is dead that we realize that's why the gauge read zero. So the probability(our belief) of the guage being empty goes back down.
- F) It would remain as .9 because it is independent.

b)

c)

```
6 @author: coleconstantino
7 """
8
9 from pgmpy.inference import VariableElimination
10 from pgmpy.models import BayesianModel
11 from pgmpy.factors.discrete import TabularCPD
12
13 G = BayesianModel([('B', 'G'), ('F', 'G')])
14 cpd_B = TabularCPD(variable = 'R', variable_card = 2, values = [[0.2,0.8]], state_names = {'B' : ['1','0']})
15
16
17 cpd_F = TabularCPD(variable = 'S', variable_card = 2, values = [[0.1,0.9]], state_names = {'F' : ['1','0']})
18
19
20 cpd_G = TabularCPD(variable = 'G', variable_card = 2, values = [[0,0.95,1,1], [1,0.05,0,0]], evidence = ['R', 'S'], evidence_card = [2, 2], state_names = { 'G' : ['1','0'], 'B' : ['1','0'], 'F' : ['1','0']})
19
20 cpd_G = TabularCPD(variable = 'G', variable_card = 2, values = [[0,0.95,1,1], [1,0.05,0,0]], evidence = ['R', 'S'], evidence_card = [2, 2], state_names = { 'G' : ['1','0'], 'B' : ['1','0'], 'F' : ['1','0']})
19
20 cpd_G = TabularCPD(variable = 'G', variable_card = 2, values = [[0,0.95,1,1], [1,0.05,0,0]], evidence = ['R', 'S'], evidence_card = ['R', S'], evidence_card =
```

d)

```
4 one_dist = infer.query(['G'], evidence={'R': '0','S': '0'})
5 two_dist = infer.query(['G'], evidence={'R': '0','S': '1'})
6 three_dist = infer.query(['G'], evidence={'R': '1','S': '0'})
7 four_dist = infer.query(['G'], evidence={'R': '1','S': '1'})
```

0it [00:0	00, ?it/s]+
G	phi(G)
G(1)	1.0000
G(0)	0.0000
G	phi(G)
G(1)	1.0000
G(0)	0.0000
G	phi(G)
G(1)	0.9500
G(0)	0.0500
G	phi(G)
G(1)	0.0000
G(0)	1.0000

(S really has nothing to do with j but kept it in there of simplicity's sake)

$$P(R = 1) = .20$$

$$P(S = 1) = .10$$

$$P(J = 1 | R = 0, S = 0) = 0.15$$

$$P(J = 1 | R = 0, S = 1) = 0.15$$

$$P(J = 1 | R = 1, S = 0) = 1$$

$$P(J = 1 | R = 1, S = 1) = 1$$

```
Cmd+I i
9 from pgmpy.inference import VariableElimination
10 from pgmpy.models import BayesianModel
11 from pgmpy.factors.discrete import TabularCPD
                                                                                                                                                                                                    Help can
13 G = BayesianModel([('R', 'G'),('S', 'G'),('R','J'),('S','J')])
14 cpd_B = TabularCPD(variable = 'R', variable_card = 2, values = [[0.2,0.8]], state_names = {'R' : ['1','0']})
15
                                                                                                                                                                                                        Vari
                                                                                                                                                                      00
                                                                                                                                                                      C X
                                                                                                                                                                                Console 1/A
16
17 cpd_F = TabularCPD(variable = 'S', variable_card = 2, values = [[0.1,0.9]], state_names = {'S' : ['1','0']})
                                                                                                                                                                       Eliminating: G: 100%
                                                                                                                                                                       Finding Elimination Order:
Eliminating: G: 100%
20 cpd_G = TabularCPD(variable = 'G', variable_card = 2, values = [[0,0.95,1,1],
Eliminating: G: 100%|
Finding Elimination Order:
Eliminating: G: 100%|
                                                                                                 !, evidence = ['R', 'S'],
evidence_card = [2, 2],
state_names = {'G': ['1', '0'],
'S': ['1', '0'],
'S': ['1', '0']})
                                                                                                                                                                       | J
                                                                                                                                                                                       phi(J) |
                                                                                                                                                                       | J(1) |
                                                                                                                                                                                       1.0000
                                                                                                                                                                       J (0)
                                                                                                                                                                                       0.0000
30
31
32
33
34
35
36
                                                                                                  [0.85,0.85,0,0]
                                                                                                 | J
                                                                                                                                                                                       phi(J)
                                                                                                                                                                       | J(1)
                                                                                                                                                                                       1.0000
37
38 G.add_cpds(cpd_B, cpd_F, cpd_G, cpd_J)
                                                                                                                                                                       J(0)
                                                                                                                                                                                       0.0000
                                                                                                                                                                       į J
                                                                                                                                                                                       phi(J)
41 infer = VariableElimination(G)
42

3 one_dist = infer.query(['J'], evidence={'R': '0', 'S': '0'})

44 two_dist = infer.query(['J'], evidence={'R': '0', 'S': '1'})

45 three_dist = infer.query(['J'], evidence={'R': '1', 'S': '0'})

46 four_dist = infer.query(['J'], evidence={'R': '1', 'S': '1'})
                                                                                                                                                                       | J(1)
                                                                                                                                                                                       0.1500
                                                                                                                                                                       J(0)
                                                                                                                                                                                       0.8500
 48 print(one_dist)
49 print()
50 print(two_dist)
                                                                                                                                                                       | J
                                                                                                                                                                                       phi(J)
51 print()
52 print(three_dist)
                                                                                                                                                                       J (1)
                                                                                                                                                                                       0.1500
53 print()
54 print(four_dist)
                                                                                                                                                                       1 J(0)
                                                                                                                                                                                       0.8500
```

f)
$$P(S = 1 | J = 1, G = 1)$$

final_dist = infer.query(['S'], evidence={'J': '1','G': '1'}) ⇒

į	S	1	phi(S)	1
Ī	S(1)	İ	0.0969	1
Ť	S(0)	i	0.9031	i

g) Because she/we now know that it definitely rained last night which makes sprinkler not matter.

EXTRA CREDIT:

You are trying to determine if your fantasy adventure character can defeat the Best Boss in the game.

How to beat the boss:

- If your combat level(L) is above 75, or your magic level(M) is above 90
- It is still possible with lower requirements but exponentially harder
- Your combat level is 75 or greater if your Attack Level(A) and Defense Level(D) are both 75 or greater

If a variable meets a level requirement its value is 1 else 0

$$P(A = 1) = .20$$

$$P(D = 1) = .30$$

$$P(M = 1) = .10$$

$$P(L=1|A=0,D=0)=0$$

$$P(L = 1 | A = 0, D = 1) = 0$$

$$P(L = 1 | A = 1, D = 0) = 0$$

```
P(B=1|L=0, M=0) = .01
                                                                                                                                                   L
                                                                                                                                                                       phi(L)
         P(B = 1 | L = 0, M = 1) = .45
         P(B = 1 | L = 1, M = 0) = .28
                                                                                                                                                   L(1)
                                                                                                                                                                       0.5600
         P(B = 1 | L = 1, M = 1) = .95
                                                                                                                                                   L(0)
                                                                                                                                                                       0.4400
                                                                                                                                                    В
                                                                                                                                                                       phi(B)
                                                                                                                                                    B(1)
                                                                                                                                                                       0.6159
9 from pgmpy.inference import VariableElimination
10 from pgmpy.models import BayesianModel
11 from pgmpy.factors.discrete import TabularCPD
                                                                                                                                                    B(0)
                                                                                                                                                                       0.3841
13 G = BayesianModel([('A', 'L'),( 'D', 'L'),('L', 'B'),('M', 'B')])
14 | 15 cpd_A = TabularCPD(variable = 'A', variable_card = 2, values = [[0.2,0.8]], state_names = {'A' : ['1','0']})  
16 cpd_D = TabularCPD(variable = 'D', variable_card = 2, values = [[0.3,0.7]], state_names = {'D' : ['1','0']})  
17 cpd_M = TabularCPD(variable = 'M', variable_card = 2, values = [[0.1,0.9]], state_names = {'M' : ['1','0']})
                                                                                                                                                    В
                                                                                                                                                                       phi(B)
20 cpd_L = TabularCPD(variable = 'L', variable_card = 2, values = [[0,0,0,1],
[1,1,1,0]
                                                                                                                                                    B(1)
                                                                                                                                                                       0.9500
                                                                                 l, evidence = ['A','D'],
evidence_card = [2, 2],
state_names = {'L': ['1','0'],
'A': ['1','0'],
'D': ['1','0']})
                                                                                                                                                    B(0)
                                                                                                                                                                       0.0500
В
                                                                                                                                                                       phi(B)
                                                                                 | vidence = ['L', 'M'],
| evidence_card = [2, 2],
| state_names = {'B': ['1','0'],
| 'M': ['1','0']})
                                                                                                                                                                       0.2800
                                                                                                                                                    B(1)
                                                                                                                                                    B(0)
                                                                                                                                                                       0.7200
38 G.add_cpds(cpd_A, cpd_D, cpd_M, cpd_L, cpd_B)
                                                                                                                                                    В
                                                                                                                                                                       phi(B)
                                                                                                                                                    B(1)
                                                                                                                                                                       0.4500
                                                                                                                                                                       0.5500
                                                                                                                                                    B(0)
l infer = VariableElimination(G)
2 l_dist = infer.query(['L'])
3 b_dist = infer.query(['B'])
ex1_dist = infer.query(['B'], evidence={'L': '0', 'M': '0'})
ex2_dist = infer.query(['B'], evidence={'L': '0', 'M': '1'})
ex3_dist = infer.query(['B'], evidence={'L': '1', 'M': '0'})
                                                                                                                                                    В
                                                                                                                                                                       phi(B)
                                                                                                                                                    B(1)
                                                                                                                                                                       0.0100
```

B(0) |

0.9900

7 ex4_dist = infer.query(['B'], evidence={'L': '1','M': '1'})

P(L = 1| A = 1, D = 1) = 1