

Entity Summarization with User Feedback

Qingxia Liu¹, Yue Chen¹, Gong Cheng¹, Evgeny Kharlamov^{2,3}, Junyou Li¹, and Yuzhong Qu¹

¹ National Key Laboratory for Novel Software Technology, Nanjing University, China

² Department of Informatics, University of Oslo, Norway

³ Bosch Center for Artificial Intelligence, Robert Bosch GmbH, Germany

Entity Summarization

- RDF Dataset: T
 - triple t∈T: <subj, pred, obj>
- Entity Description: Desc(e)
 - Desc(e) = $\{t \in T: \text{subj}(t) = e \text{ or obj}(t) = e\}$
 - t∈Desc(e): <e, prop, value>
- Entity Summarization: S(e, k)
 - $S \subseteq Desc(e)$, $|S| \le k$

Solson Publications

Comics company

Solson Publications was a New York-based black-and-white comic book publisher active in the 1980s. The company was founded by Gary Brodsky, son of long-time Marvel Comics executive Sol Brodsky; the name of the company was derived from Brodsky's name: "Sol's son" = Solson. Wikipedia

Founder: Gary Brodsky

Founded: 1986

Headquarters: Brooklyn, New York, United States

Defunct: 1987

Key person: Rich Buckler

Entity Summarization Methods

Goal

to satisfy users' information needs

Limitations

- have large diff from user-created (F1<0.6)
 - => do not meet users' expectations
- summaries are static
 - => cannot adjust to users

A lack of mechanisms for improving an entity summary when its quality could not satisfy users' information needs.

F-measure of Entity Summarizers on ESBM Benchmark

	DB_1	pedia	LinkedMDB		
	k = 5	k = 10	k = 5	k = 10	
RELIN	0.242	0.455	0.203	0.258	
DIVERSUM	0.249	0.507	0.207	0.358	
FACES	0.270	0.428	0.169	0.263	
FACES-E	0.280	0.488	0.313	0.393	
CD	0.283	0.513	0.217	0.331	
LinkSUM	0.287	0.486	0.140	0.279	
ORACLE	0.595	0.713	0.619	0.678	

Adding User in the Loop

ummarizer

- involve users in the summarization process
- ask users for feedback
- utilize user's feedback when computing summaries

User

Adding User in the Loop

Summarizer

Research Challenges

[C1] Cooperative process of 2 agents

– How to represent the process?

[C2] Combining <u>results of actions</u> of 2 agents

How to represent interdependence between summary and feedback?

Cross-Replace Scenario

- Cooperation Process
 - Summarizer: presents (current) summary S_i
 - User: crosses off an irrelevant triple as negative feedback f_i
 - Summarizer: replaces it with a new triple r_i ,

 presents an improved summary S_{i+1}
 - User: ... (repeated)

Our Approach: DRESSED

- [C1] Representation of the Cross-Replace Scenario
 - Markov Decision Process (MDP) based modeling
 - Summarizer = reinforcement learning agent

Setting:

- agent: summarizer
- environment: Desc(e), user

state:
$$Z_i = \langle S_i, F_i, C_i, f_i \rangle$$
, action: $A_i = r_i$,
$$\begin{cases} \text{policy:} & \pi_{\theta}(t|Z_i) = \frac{\exp(\text{score}(t|Z_i, \theta))}{\sum_{t' \in C_i} \exp(\text{score}(t'|Z_i, \theta))}, \end{cases}$$
 reward: $R_{i+1} = \rho(Z_i, A_i) = \frac{\text{rel}(r_i)}{\log(i+2)},$ transition: $Z_{i+1} = \tau(Z_i, A_i) = \langle S_{i+1}, F_{i+1}, C_{i+1}, f_{i+1} \rangle$, initialization: $Z_0 = \langle S_0, \emptyset, (\text{Desc}(e) \setminus S_0), f_0 \rangle$.

Our Approach: DRESSED

[C2] Representation of Triple Interdependence

- Policy Network
 - Encoding triples
 - Encoding sets of triples
 - Encoding triple interdependence and scoring candidates
 - Selecting replacement triple

policy:
$$\pi_{\theta}(t|Z_i) = \frac{\exp(\mathsf{score}(t|Z_i, \theta))}{\sum_{t' \in C_i} \exp(\mathsf{score}(t'|Z_i, \theta))}$$

Fig. 2. Policy network.

Our Approach: DRESSED

Policy Learning

Learning task: to find a policy that maximize the expected reward

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\xi} \sim \pi_{\boldsymbol{\theta}}} \left[\sum_{i=1}^{I} \gamma^{i-1} R_i \right],$$

- REINFORCE: a standard policy gradient method in reinforcement learning
 - to maximize the expected reward

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \gamma^i G_i \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_i|Z_i), \text{ where } G_i = \sum_{j=i+1}^I \gamma^{j-i-1} R_j.$$

Baselines Adapted for Evaluation

- Entity Summarization (not utilize user feedback)
 - FACES-E: rank triples and select top-k as summary
- Interactive Document Summarization (Re-compute doc summaries utilizing user feedback)
 - IPS
 - positive feedback
- Interactive Document Retrieval (Re-rank retrieved documents based on user feedback)
 - NRF
 - negative relevance feedback
 - query-based
 - *PDGD* -L, -N
 - positive feedback
 - SOTA online learning to rank
 - utilize user feedback for model selection (not as input of the model)

Experiment 1: User Study

Setting

- 24 participants
- train: Entity Summarization Benchmark (ESBM)
- test: re-sampled entities from DBpedia and LinkedMDB

Metrics:

- *I* = number of iterations
- Q_{rplc} = user rating of suggested replacements (1-5)
- Q_{stop} = user rating of the final summary after all iterations (1-5)

Results

- DRESSED: in general best-performing
- with FACES-E and DRESSED
 - users stop quickly: I < 4
 - obtain reasonably good results: Q_stop > 4
 - replacement triples selected by DRESSED significantly better than the ones of FACES-E

	I	Q _{stop}	$Q_{ m rplc}$
FACES-E	3.26±2.83 - • °	4.25±0.85 - • °	3.51±1.05 - ▲▼
			3.09±1.22 ▼-▼
DRESSED	3.05±2.70 ° • -	4.25±0.87 °▲-	3.65±1.04 * -

Experiment 2: Offline Evaluation

- Benchmarks
 - ESBM (ESBM-D, ESBM-L), FED
- Metrics
 - NDCF: for summary sequence
 - Normalized Discounted Cumulative F1
 - NDCG: for replacement sequence
 - Normalized Discounted Cumulative Gain

Results

DRESSED outperforms

- all baselines
- on all datasets

DRESSED significantly outperforms

in most cases

	ESBM-D		ESBM-L		FED	
	NDCF@I	NDCG@I	NDCF@I	NDCG@I	NDCF@I	NDCG@I
FACES-E	.435±.022 - ****	.620±.017 - ****	.373±.028 - ****	.585±.027 - ****	.263±.067 - ****	.573±.063 -****
IPS	.405±.026 ▼-°▼▼▼	.553±.023 V-0VVV	.278±.030 V-VVV	.410±.042 V-VVV	.212±.027 V-0VVV	.497±.009 V-VVV
NRF	.407±.021 VO-VVV	.554±.016 VO-VVV	.325±.029 VA-VVV	.503±.034 VA-VVV	.218±.033 VO-VVV	.510±.019 VA-VVV
PDGD-L	.445±.037 ▲▲▲-∘⊽	.632±.029 ***-°*	.446±.027 ***-°*	.699±.030 ***-°*	.300±.031 ▲▲▲-○▼	.628±.025 ▲▲▲-°▼
PDGD-N	.447±.037 ***	.636±.030 ***°-	.446±.025 ▲▲▲○-▼	.698±.034 ***	.303±.033 ▲▲▲○-▼	.630±.030 ▲▲▲○-▼
DRESSED	.455±.032 *** △ ○ -	.645±.028 *** 4-	.481±.030 ****-	.760±.029 ****-	.316±.038 ****-	.644±.042 ****-

Experiment 2: Offline Evaluation

Iterations

- DRESSED is consistently above all the baselines
- DRESSED better exploits early feedback to quickly improve computed summaries

Fig. 3. Results of offline evaluation over varying numbers of iterations (NDCF@i).

Fig. 4. Results of offline evaluation over varying numbers of iterations (NDCG@i).

Conclusion and Future Work

- Our Approach: DRESSED
 - showed better performance than baselines
 - has the potential to replace static entity cards

Future Work

- cross-replace scenario
 - can be extended to support other scenarios:
 - » multi-feedback, without replacement, positive feedback
- extend the scope of entity summary
 - deal with paths, more complex structures, RDF sentence

Take-home Message

Contributions

- The first research effort to improve entity summarization with user feedback.
- A representation of entity summarization with iterative userfeedback.
 - cross-replace scenario, MDP
- A representation of set of triples and their interdependence as a novel DNN.
 - DRESSED, solve by RL
- The first empirical study of entity summarization with user feedback.
 - based on real users and simulated users

DRESSED

- Deep Reinforced Entity Summarization with uSer fEedback
- GitHub Repository: <u>nju-websoft/DRESSED</u>

Thank you!

Questions?