MAT4003 Assignment 2

1

Assume $x\in \cup_{X\in C}X$. Then $x\in X$ for some $X\in C$. It follows that $x\in [a]$ for some $a\in S$. By definition of an equivalence class, $x\in S$. On the other hand assume $x\in S$. Then by property 1, $x\sim x$, so $x\in [x]\in C$, whence $x\in \cup_{X\in C}X$. This shows $\cup_{X\in C}X=S$.

To show the second equality, assume that some $x \in X \cap Y$ with $X \neq Y$. Suppose X = [a], Y = [b]. Then $x \sim a$ and $x \sim b$. By property 2 $x \sim a \implies a \sim x$. Then $a \sim x \wedge x \sim b \implies a \sim b$ by property 3. Similarly $b \sim a$. Now suppose $y \in X$. Then $y \sim a \wedge a \sim b \implies y \in Y$ by property 3 and the definition of Y. Similarly $y \in Y \implies y \sim b \wedge b \sim a \implies y \in X$, which implies X = Y, a contradiction. Therefore $X \cap Y = \emptyset$. \square

2

Lemma 1. Suppose (a, b) = 1. Then $a, b|c \implies ab|c$.

```
Proof. Let n be the largest integer s.t. p_n, the n^{\text{th}} prime, divides either a,b, or c. By FTA, a=\prod_{i=1}^n p_i^{\alpha_i}; b=\prod_{i=1}^n p_i^{\beta_i}; c=\prod_{i=1}^n p_i^{\theta_i}. Then (a,b)=\prod_{i=1}^n p_i^{\min\{\alpha_i,\beta_i\}}=1 \Longrightarrow \min\{\alpha_i,\beta_i\}=0 for 1\leq i\leq n. Therefore ab=\prod_{i=1}^n p_i^{\alpha_i+\beta_i}=\prod_{i=1}^n p_i^{\max\{\alpha_i,\beta_i\}}. Also since both a,b divides c, (a,c)=\prod_{i=1}^n p_i^{\min\{\alpha_i,\theta_i\}}=a and (b,c)=\prod_{i=1}^n p_i^{\min\{\beta_i,\theta_i\}}=b. Hence \alpha_i,\beta_i\leq\theta_i for 1\leq i\leq n. It follows that (ab,c)=(\prod_{i=1}^n p_i^{\max\{\alpha_i,\beta_i\}},\prod_{i=1}^n p_i^{\theta_i})=\prod_{i=1}^n p_i^{\min\{\max\{\alpha_i,\beta_i\},\theta_i\}}=\prod_{i=1}^n p_i^{\max\{\alpha_i,\beta_i\}}=ab. Therefore ab|c. \square
```

```
"(a) \Longrightarrow (b)": We prove by induction on r. r=1 is tautology. Assume x\equiv y\pmod{m_1}...\pmod{m_k}\implies x\equiv y\pmod{m_1m_2...m_k}. Then x\equiv y\pmod{m_1}...\pmod{m_k}\pmod{m_{k+1}}\implies x\equiv y\pmod{m_1m_2...m_k} (mod m_{k+1})\implies m_1m_2...m_k, m_{k+1}|(x-y). Since m_1,\ldots,m_k are all pairwise coprime to m_{k+1}, by FTA (m_1m_2\ldots m_k,m_{k+1})=1. Then m_1m_2\ldots m_km_{k+1}|(x-y) by Lemma 1, whence x\equiv y\pmod{m_1m_2\ldots m_{k+1}}.
```

```
"(b) \Longrightarrow (a)": Proceed by induction on r. r = 1 is again tautology. Assume x \equiv y \pmod{m_1 m_2 \dots m_k} \Longrightarrow x \equiv y \pmod{m_1} \pmod{m_2} \dots \pmod{m_k}. Then x \equiv y \pmod{m_1 m_2 \dots m_{k+1}} \Longrightarrow m_1 m_2 \dots m_k m_{k+1} | (x-y). Therefore m_1 m_2 \dots m_k | (x-y). By induction hypothesis x \equiv y \pmod{m_1} \dots \pmod{m_k}. Also m_{k+1} | (x-y). So x \equiv y \pmod{m_{k+1}}. This completes the proof. \square
```

3

Suppose otherwise. Let $p_1=3 < p_2 < \ldots < p_n$ be all the primes of the form 4k+3. Then $N:=4p_2\ldots p_n+3>p_n$ is not such a prime. But $N\not\equiv 1\pmod 4$ either. Thus N cannot be a prime. By FTA $N=\prod q_i$, where q_i are primes. We claim $q\not\equiv 3\pmod 4$ for all N's prime factors q. If $q\equiv 3\pmod 4$ we argue as follows. If q=3, then $3|4p_2\ldots p_n$. By Lemma $(1.14),3|p_i$ with $2\le i\le n$, which is impossible. If $q\not\equiv 3$, then $q|N\implies q|3$, which is also impossible. Therefore $q\not\equiv 3\pmod 4$, whence $q\equiv 1\pmod 4$. Then $N=\prod q_i\equiv 1\pmod 4$. However $N\equiv 3\pmod 4$ by definition, the desired contradiction. \square

4

Use proof by contradiction. Suppose there exists some integer n s.t.

$$1 + \frac{1}{2^1} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{5} + \dots + \frac{1}{2^k} + \dots + \frac{1}{n} = m \in \mathbb{N}$$
 (1)

where $2^k \le n < 2^{k+1}$. Multiplying both sides of (1) by 2^{k-1} yields

$$2^{k-1} + 2^{k-2} + \frac{2^{k-1}}{3} + 2^{k-3} + \frac{2^{k-1}}{5} + \ldots + \frac{1}{2} + \ldots + \frac{2^{k-1}}{n} = 2^{k-1}m.$$

Rearranging,

$$-\frac{1}{2} = (2^{k-1} + 2^{k-2} + \dots + 2 + 1 - 2^{k-1}m) + 2^{k-1}(\frac{1}{3} + \frac{1}{5} + \frac{1}{6} + \dots + \frac{1}{n})$$

$$= \frac{N}{1} + \frac{2^{k-1}}{3} + \frac{2^{k-1}}{5} + \frac{2^{k-1}}{6} + \dots + \frac{2^{k-1}}{n}.$$

where $N=2^{k-1}+2^{k-2}+\ldots+2+1-2^{k-1}m$ is an integer. All the following terms $\frac{2^{k-1}}{3},\frac{2^{k-1}}{5},\frac{2^{k-1}}{6},\ldots,\frac{2^{k-1}}{n}$ ($\frac{2^{k-1}}{3},\frac{2^{k-1}}{5},\frac{2^{k-1}}{6},\ldots,\frac{2^{k-1}}{n-1}$ in the case $n=2^k$) can be reduced to $\frac{2^p}{d}$ where the denominator d is odd. Therefore their sum will have an odd denominator in reduced form as well, as $1\cdot 1\cdot \dots \cdot 1\equiv 1\pmod{2}$. But then $\frac{1}{2}=\frac{a}{b}$, equivalently b=2a, with b odd. This is clearly absurd. \square

5

By FTA $n!=p^{\alpha}\prod_{i=1}^{n}p_{i}^{\alpha_{i}}$ with $p\neq p_{i}$ for all i. Since $(p,p_{i})=1,(p^{u},\prod_{i=1}^{n}p_{i}^{\alpha_{i}})=1$. Hence by Euclid's Lemma $p^{u}|n!\iff p^{u}|p^{\alpha}\iff u\leq \alpha$. So $v=\max u=\alpha$.

Assume $n = p^{m+\epsilon}$, with $0 < \epsilon < 1$. Rewrite

$$s := \sum_{i=1}^{\infty} \left[\frac{n}{p^i} \right] = \sum_{i=1}^m \left[p^{m+\epsilon-i} \right] = \sum_{i=0}^{m-1} \left[p^{\epsilon+i} \right].$$

We need to prove $\alpha=s.$ To find $\alpha,$ consider all terms in n! with prime factor $p^i:$

$$P_i := \{j \cdot p^i : 1 \leq j \leq n/p^i = p^{m-i+\epsilon}, p \not\mid j\}.$$

 $1 \le j \le p^{m-i+\epsilon}$ gives $[p^{m-i+\epsilon}]$ terms. But we need to rule out terms with p|j:

$$i = cp \le p^{m-i+\epsilon} \iff c \le p^{m-i-1+\epsilon} \iff c = 1, 2, \dots, [p^{m-i-1+\epsilon}].$$

Thus $|P_i|=[p^{m-i+\epsilon}]-[p^{m-i-1+\epsilon}].$ Multiplying all the terms in P_i contribute

$$E_i:=i([p^{m-i+\epsilon}]-[p^{m-i-1+\epsilon}])$$

to the exponent α . Adding up E_i for $1 \leq i \leq m$, we obtain

$$egin{aligned} lpha &= \sum_{i=1}^m E_i \ &= \sum_{i=1}^m i([p^{m-i+\epsilon}] - [p^{m-i+\epsilon-1}]) \ &= m[p^{\epsilon+m-1}] - \sum_{i=1}^{m-1} i([p^{\epsilon+i}] - [p^{\epsilon+i-1}]) \ &= m[p^{\epsilon+m-1}] + \sum_{i=0}^{m-2} [p^{\epsilon+i}] - (m-1)[p^{\epsilon+m-1}] \ &= \sum_{i=0}^{m-1} [p^{\epsilon+i}] = s. \quad \Box \end{aligned}$$

6

By Euler's Theorem, $3^{\phi(100)}=3^{40}\equiv 1\pmod{100}$. Therefore $3^{1000}=(3^{40})^{25}\equiv 1^{25}=1\pmod{100}$. So the last two digits are 01.

7

The system is equivalent to:

$$\begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \end{cases}$$

Let x=2k+1. Then 2k+1=3t+2. Thus 2k-3t=1. So k=2+3j; t=1+2j. It follows that x=6j+5. Then 6j+5=5u+3. So 5u-6j=2, yielding u=4+3h; j=3+5h. Hence x=30h+23, i.e.,

$$x \equiv 23 \pmod{30}$$
.

8

For m = 1, there is exactly one solution $x \equiv 0 \pmod{1}$.

Assume $m \geq 2$. Let $f(x) := x^2 - x \cdot p$ prime. Note that

$$f(0) \equiv f(1) \equiv 0 \pmod{p}$$
.

Also

$$\begin{cases} f'(0) = -1 \\ f'(1) = 1 \end{cases} \not\equiv 0 \pmod{p}.$$

Applying Hensel's Lemma and induction, solutions $x\equiv 0,1\pmod p$ can be uniquely lifted to $x_n\equiv x_1,x_2\pmod p^n$ respectively; in this case, $x_n\equiv 0,1\pmod p^n$, for all $n\geq 2$. Hence the solutions to the congruence are $x\equiv 0,1\pmod p^n$ for all $n\in \mathbb{N}$.

Now suppose m has prime factorization $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$ with all $\alpha \neq 0$. By CRT solving $f(x) \equiv 0 \pmod{m}$ is equivalent to solving the congruent system

$$\left\{egin{aligned} f(x) \equiv 0 \pmod{p_1^{lpha_1}} \ f(x) \equiv 0 \pmod{p_2^{lpha_2}} \ dots \ f(x) \equiv 0 \pmod{p_n^{lpha_n}} \end{aligned}
ight..$$

Based on the previous discussion, the system yields

$$\left\{egin{array}{l} x\equiv 0,1\pmod{p_1^{lpha_1}}\ x\equiv 0,1\pmod{p_2^{lpha_2}}\ dots\ x\equiv 0,1\pmod{p_n^{lpha_n}} \end{array}
ight..$$

Taking either congruence to 0 or to 1 for each modulo $p_1^{\alpha_1},\ldots,p_n^{\alpha_n}$, we obtain 2^n possible solutions. We claim that these solutions are pairwise incongruent modulo m. For, if $0 \equiv x_1 \not\equiv x_2 \equiv 1 \pmod{p_i^{\alpha_i}}$ for some $i,x_1 \not\equiv x_2 \pmod{m}$ by Lemma (2.6). Therefore,

of incongruent solutions = $2^{\omega(m)}$.

9

First note that $(a^{-1})^2 \equiv (a^2)^{-1} \pmod{m}$, as

$$a^2 \cdot (a^{-1})^2 = (a \cdot a^{-1})(a \cdot a^{-1}) \equiv 1^2 = 1 \pmod{m}.$$

Since $p\equiv 3\pmod 4$, by Theorem (2.14) $x^2\equiv -1\pmod p$ has no solution. Suppose $x_0^2\equiv a\pmod p$ with 0< a< p. Then $y_0^2\equiv -a\pmod p$. It follows that $y_0^2a^{-1}\equiv y_0^2(x_0^2)^{-1}\equiv y_0^2(x_0^{-1})^2=(y_0x_0^{-1})^2\equiv -1\pmod p$. A contradiction. Therefore $x_0^2\equiv y_0^2\equiv 0\pmod p$. Since $a^2\neq p$ for all $0\le a< p$, it follows that $x_0\equiv 0\pmod p$. Similarly $y_0\equiv 0\pmod p$. \square

10

Assume p, p + 2 both prime greater than 2. Then by Wilson's Theorem,

$$(p-1)! \equiv -1 \pmod{p};$$

 $(p+1)! \equiv -1 \pmod{p+2}.$

Note that $(p+1)^{-1} \equiv -1, p^{-1} \equiv (-2)^{-1}$. Therefore

$$4((p-1)!+1)+p\equiv 0\pmod p;$$
 $4((p-1)!+1)+p\equiv 4(-2)^{-1}+2\equiv -2+2\equiv 0\pmod {p+2}.$

Since (p, p + 2) = 1, by Lemma (2.6)

$$4((p-1)!+1)+p\equiv 0\pmod{p(p+2)}.$$

Conversely, assume n > 1 is odd. And

$$4((n-1)!+1)+n\equiv 0\pmod{n(n+2)}.$$

Since (n, n + 2) = (n, 2) = 1, again by Lemma (2.6)

$$4((n-1)!+1)+n\equiv 0\pmod n; \ 4((n-1)!+1)+n\equiv 0\pmod {n+2}.$$

Hence

$$(n-1)!+1\equiv 0\pmod n;$$
 $2(n-1)!+1\equiv 2(n+1)!+2\equiv (n+1)!+1\equiv 0\pmod {n+2}.$

By Theorem (2.13), n and n+2 are both primes. \square