Problem One: Shortest Path using Linear Programming

Programming Software/Language Used: Lindo

The distance between a given node and a direct parent are as follows (ordered from da to dg):

dg = 0	dc - db <= 4	de - dd <= 25
da - df <= 5	dc - df <= 3	de - df <= 2
da - dh <= 4	dd - dc <= 3	df - da <= 10
db - dh <= 9	dd - de <= 9	df - dd <= 18
db - da <= 8	dd - dg <= 2	dh - dg <= 3
db - df <= 7	de - db <= 10	dg - de <= 7

Solution and Code for Part A: The most optimal path to C starting from source G is <u>16 units</u>. The path is $G \Rightarrow H \Rightarrow B \Rightarrow C$.

Input:

```
max dc
ST
      dg = 0
      dc - db <= 4
      de - dd <= 25
      da - df <= 5
      dc - df <= 3
      de - df <= 2
      da - dh <= 4
      dd - dc <= 3
      df - da <= 10
      db - dh <= 9
      dd - de <= 9
      df - dd <= 18
      db - da <= 8
      dd - dg <= 2
      dh - dg <= 3
      db - df <= 7
      de - db <= 10
      dg - de <= 7
END
```

Output

```
LP OPTIMUM FOUND AT STEP 1
OBJECTIVE FUNCTION VALUE
1) 16.00000
```

VAI	RIABLE	VALUE	REDUCED COST
	DC	16.000000	0.000000
	DG	0.00000	0.000000
	DB	12.000000	0.000000
	DE	0.00000	0.000000
	DD	0.00000	0.000000
	DA	4.000000	0.000000
	DF	13.000000	0.000000
	DH	3.000000	0.000000
	ROW	SLACK OR SURPLUS	DUAL PRICES
	2)	0.00000	1.000000
	3)	0.00000	1.000000
	4)	25.000000	0.000000
	5)	14.000000	0.000000
	6)	0.00000	0.000000
	7)	15.000000	0.000000
	8)	3.000000	0.000000
	9)	19.000000	0.000000
	10)	1.000000	0.000000
	11)	0.00000	1.000000
	12)	9.000000	0.000000
	13)	5.000000	0.000000
	14)	0.00000	0.000000
	15)	2.000000	0.000000
	16)	0.00000	1.000000
	17)	8.000000	0.000000
	18)	22.000000	0.000000
	19)	7.000000	0.000000
NO.	ITERATIO	NS= 1	

Solution and Code for Part B: The following table outlines the shortest path from the source G to a given node in the directed graph:

Node	Path	Distance
G	Source	0
A	G => H => A	7
В	G => H => B	12
С	G => H => B => C	16
D	G => D	2
Е	G => H => A => F => E	19
F	G => H => A => F	17

Н	G => H	3
---	--------	---

Input:

```
max dc + dg + da + db + de + df + dh
ST
       dg = 0
       dc - db <= 4
       de - dd <= 25
       da - df <= 5
      dc - df <= 3
      de - df <= 2
      da - dh <= 4
      dd - dc <= 3
      df - da <= 10
      db - dh <= 9
      dd - de <= 9
      df - dd <= 18
      db - da <= 8
      dd - dg <= 2
       dh - dq \ll 3
       db - df <= 7
      de - db <= 10
      dg - de <= 7
END
```

Output:

LP OPTIMUM FOUND AT STEP OBJECTIVE FUNCTION VALUE 74.00000 VARIABLE VALUE REDUCED COST 16.000000 0.000000 DC DG 0.000000 0.000000 DA 7.000000 0.000000 DB 12.000000 0.000000 DE 19.000000 0.000000 17.000000 0.000000 DF 3.000000 0.000000 DH 2.000000 0.000000 DD DUAL PRICES ROW SLACK OR SURPLUS 0.000000 7.000000 2) 0.000000 1.000000 3) 4) 8.000000 0.000000 5) 15.000000 0.000000 6) 4.000000 0.000000 7) 0.000000 1.000000 0.000000 3.000000 8) 9) 17.000000 0.000000

```
10)
              0.000000
                              2.000000
              0.00000
                             2.000000
     11)
     12)
             26.000000
                             0.000000
     13)
              3.000000
                             0.000000
     14)
              3.000000
                              0.000000
     15)
              0.000000
                              0.000000
                              6.000000
     16)
              0.00000
             12.000000
                              0.000000
     17)
     18)
              3.000000
                              0.000000
     19) 26.000000
                              0.000000
NO. ITERATIONS=
```

Problem Two: Product Mix

Programming Software/Language Used: Excel w/ Excel Solver Plug-in

Excel File: Problem2-ProductMix.xlsx

The *objective function* below is what I used within Excel. A3, B3, C3 and D3 values correspond to a cell which holds the calculated value for the number of ties for each type. A3 = Silk, B3 = Polyester, C3 = Blend1, and D3 = Blend2.

Objective Function =

$$(6.7 * A3) + (3.55 * B3) + (4.31 * C3) + (4.81 * D3) - (0.75 * (A3 + B3 + C3 + D3)) - (0.125 * 20 * A3 + 0.08 * 6 * B3 + (0.05 * 6 + 0.05 * 9) * C3 + (0.03 * 6 + 0.07 * 9) * D3)$$

Excel Set-up:

Note - Ignore the decision variable results $(7,000, \ldots, 8500)$. They default to 0 before solving the problem using solver.

Decision Variable			
S	P	B1	B2
7000	13625	13100	8500
Constraints - From Sale Constraints			
=A3	>=	6000	
=A3	<=	7000	
=B3	>=	10000	
=B3	<=	14000	
=C3	>=	13000	
=C3	<=	16000	
=D3	>=	6000	
=D3	<=	8500	
Yards of Material Available			
=0.125*A3	<=	1000	
=0.08*B3+0.05*C3+0.03*D3	<=	2000	
=0.05*C3+0.07*D3	<=	1250	
	1		

Objective Function Set-up:

F G
Objective = (6.7 * A3) + (3.55 * B3) + (4.31 * C3) + (4.81 * D3) - (0.75 * (A3 + B3 + C3 + D3)) - (0.125 * 20 * A3 + 0.08 * 6 * B3 + (0.05 * 6 + 0.05 * 9) * C3 + (0.03 * 6 + 0.07 * 9) * D3)

Solver Window Set-up:

Note - There is no difference between using the GRG Nonlinear Engine or the Simplex LP engine. Both produce the same results.

Final Answer:

The company would need to produce each tie in quantities provided below:

Silk	Polyester	Blend1	Blend2
7,000	13,625	13,100	8,500

for a total maximized profit of \$120,196

Problem Three: Transshipment Model

Programming Software/Language Used: Excel /w Excel Solver Plug-in

Excel File: Problem3-TransshipmentModel.xlsx

--- PART A ---

Note - Refer to the tab "Transshipment Model - Part A" in the excel file for Part A's solution.

Objective Function: SUMPRODUCT(B2:D5, P3:R6)+SUMPRODUCT(B8:H10, P11:V13)

Excel Set-up:

Note - Increase view size to 200% or more to see the details better.

Solver Window Set-up & Constraints:

Final Answer for Part A:

Optimal shipping routes for Plants-to-Warehouses:

Supply to Warehouse	W1	W2	W3	Sup	Supply Contra	
P1	150	0	0	150	=	150
P2	200	250	0	450	25	450
P3	0	150	100	250	=	250
P4	0	0	150	150	2 .= 2	150
	350	400	250			

Optimal shipping routes for Warehouse-to-retailers:

Supply From Warehouse	R1	R2	R3	R4	R5	R6	R7			
W1	100	150	100	0	0	0	0	350	=	350
W2	0	0	0	200	200	0	0	400	=	400
W3	0	0	0	0	0	150	100	250	=	250
	100	150	100	200	200	150	100			
	=	=	=	=	=	=	=			
	100	150	100	200	200	150	100			

The optimal minimal cost will be \$17,100.

-- PART B --

Note - Refer to the tab "Transshipment Model - Part B" in the excel file for Part B's solution.

Objective Function = SUMPRODUCT(B2:C5, P3:Q6)+SUMPRODUCT(B8:H9, P11:V12)

First, there *technically* is an optimal solution where you minimize your shipping costs. However, you have to alter your constraints in order to allow for warehouses to have leftover surplus that doesn't get distributed (or it is distributed to a retailer that doesn't need it which is bad because it increases shipping costs).

To explain further, the problem with removing warehouse 2 is that you produce a surplus in Warehouse 1. As it goes along each of the retailer's it can provide to (R1...R4), it distributes as much as it can to meet the retailer's demand. However, the moment it hits R4 we hit a situation where it can meet the retailer's demand but it has leftover surplus.

Essentially, the inclusion of Warehouse 2 eliminated the possibility of having over-surplus.

You can see this situation in the provided excel solution here:

Decision Variable										
Supply to Warehouse	W1	W3		Sup	ply Contra	ints				
P1	150	0		150)=	150				
P2	450	0		450	=	450				
P3	0	250		250)=	250				
P4	0	150		150	=	150				
	600	400								
Decision Variables										
Supply From Warehouse	R1	R2	R3	R4	R5	R6	R7			
W1	100	150	100	200	0	0	0	550)=	600
W3	0	0	0	0	150	150	100	400	=	400
	100	150	100	200	150	150	100			
л.	=	=	1=	=)=	1=	=			
ф	100	150	100	200	200	150	100			

Solver Window Set-up & Constraints:

Final Answer for Part B:

If and only if you allow for surplus in warehouses, your optimal shipping cost will sit at around **\$18,200.** Your retailers will still meet their demanded numbers. However, if you require absolute efficiency in the supply line (i.e. no surplus or shortages) you will not be able to achieve it without Warehouse 2.

Please refer to "Transshipment Model - Part B" for the full details and code.

-- PART C --

Note - Refer to the tab "Transshipment Model - Part C" in the excel file for Part C's solution.

Objective Function: SUMPRODUCT(B2:D5, P3:R6)+SUMPRODUCT(B8:H10, P11:V13)

The excel set-up for part C is identical to part A. The only difference is that Warehouse 2's total stock must be equal to 100.

Solver Window Set-up and Constraints:

The constraints from Part A were also tightened up to prevent values from being inserted in routes that aren't viable between nodes.

Final Solution for Part C:

The final answer for part C is that there is indeed an optimal minimum cost when limiting warehouse 2 to 100 units. The optimal, minimal cost for shipping across all routes is **\$18,300**.

Problem Four: Making Change

Programming Software/Language Used: Excel /w Excel Solver Plug-in

Excel File: **Problem4-MakingChange.xlsx**

Objective Function: MIN(SUM(V1 + V2 + ... + VN))

Note - the objective function above is generalized to encapsulate any number of integers given in a list. In the case of Part A: our objective function would be =SUM(B4:E4) and for Part B it would be =SUM(B4:F4). These 2 values are then used in Excel's Solver to find the **minimum** number of coins.

-- Part A --

Note - Refer to tab Part A of the relevant spreadsheet for details.

Answer: 10 coins

Coin	1	5	10	25
Quantity	2	0	0	8

Excel Setup Window:

G7		* : ×	√ J	€ =SUN	1(B4:E4)		
4	А	В	С	D	E	F	G
1		Part A					
2		1	5	10	25		Change
3							202
4		2	0	0	8		Desired
5							202
6							Total Coins
7							10

Solver Setup Window & Constraints:

-- Part B --

Note - Refer to tab Part B of the relevant spreadsheet for details.

Answer: 14 coins

Coin	1	3	7	12	27
Quantity	0	0	2	3	9

Excel Setup Window:

H7		* : X	√ f _x =SUM(B4:F4)					
4	Α	В	С	D	E	F	G	Н
1		Part B						
2		1	3	7	12	27		Change
3								293
4		0	0	2	3	9		Desired
5								293
6								Total Coins
7								14

Solver Setup Window & Constraint

