производные

ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ РЕШЕНИЯ ПРИМЕРОВ ПО ТЕМЕ ПРОИЗВОДНЫЕ

Таблица Производных

1.
$$c' = 0$$
, $c = \text{const}$

$$2. \left(x^n\right)' = nx^{n-1}$$

$$3. \left(a^{x}\right)' = a^{x} \cdot \ln a$$

$$4. \left(e^{x}\right)' = e^{x}$$

$$5. \left(\log_a x\right)' = \frac{1}{x \ln a}$$

6.
$$(\ln x)' = \frac{1}{x}$$

$$7. \left(\sin x\right)' = \cos x$$

$$8. (\cos x)' = -\sin x$$

$$9. \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

10.
$$(tgx)' = \frac{1}{\cos^2 x}$$

11.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

13.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

14.
$$(\arctan x)' = \frac{1}{1+x^2}$$

15.
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$

16.
$$(\sinh x)' = \cosh x$$

$$17. \left(\operatorname{ch} x \right)' = \operatorname{sh} x$$

18.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

19.
$$(\operatorname{th} x)' = -\frac{1}{\operatorname{sh}^2 x}$$

основные формулы

Формула Лагранжа	$\frac{f(b)-f(a)}{b-a}=f(c)$, где $a \le c < b$
Правило Лопиталя	$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)},$ $\lim_{x \to a} f(x) = 0 \lim_{x \to a} g(x) = 0, \lim_{x \to a} f(x) = \infty$ $\lim_{x \to a} g(x) = \infty.$

Производная сложной функции

 $\mathbb{E}_{\mathsf{CЛИ}}\ y = F(u),$ $_{\mathsf{ГДе}}u = \phi(x),$ $_{\mathsf{ТОГДа}}y^{[]} = F_{u}^{[]}(u)u^{[]}$

Основные правила дифференцирования 1. (c) \subseteq = 0, где c- постоянное число 2. (cu) $\square = cu$ \square где c- постоянное число 3. (u+v) $\square = u$ $\square + v$ \square 4. (uv) $\square = u$ $\square + uv$ \square 5. $\square u$ $\square u$