Audio Event Detection

ELEC-E5510 Speech Recognition project
Anand Umashankar, Anssi Moisio

Introduction

- Audio event detection aims to isolate and detect discrete incidents from audio
- Sound event detection can be utilized in a variety of applications
 - o indexing multimedia databases
 - o monitoring in health care
 - o surveillance
- detected events can be used as mid-level-representation in other tasks
 - recognition of audio context (acoustic environment)
- Our aim is to classify audio events using two different classifiers
 - Support Vector Machine
 - Convolutional Neural Network

Outline

- Introduction
- Dataset
- Feature extraction
- Classifiers
 - Support Vector Machines
 - Deep Neural Networks
- Results
- Conclusion

Dataset

- Audioset A large-scale dataset of manually annotated audio events
- The dataset consists of annotated youtube videos of the audio events
- The dataset has 2.1 million annotated videos, 5.8 thousand hours of audio,
 527 classes of annotated sounds

YTID	start_seco	end_seco	positive_labels
0rnm40dII	350	360	"/m/01j3sz"
0rrDTv-DK	30	40	"/m/042v_gx
0ry6MOZn	30	40	"/m/01hsr_"
0sb5UXdX	0	5	"/m/014zdl"
0tEX2Pdlg	30	40	"/m/042v_gx
0tJRyAzkr	30	40	"/m/042v_gx
0tQOcpVF	30	40	"/m/01hsr_

Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., ... & Ritter, M. (2017, March). Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 776-780). IEEE.

Dataset Preparation

- We have chosen 8 classes and 9713 audio files.
- The script for downloading the dataset has three steps
- Download the video from Youtube
- Extract audio from the downloaded video
- Cut the audio file based on the start time and end time of the audio events

Dataset Sample: The following sample audio is merged file of all the 8 classes that we have selected. The classes are Acoustic Guitar, Bark, Bell, Explosion, Laughter, Siren, Sneeze, Thunder.

Data Preprocessing and Feature extraction

- for the CNN:
 - mel frequency spectrogram
- for the SVM:
 - MFCC
 - deltas and delta-deltas
 - total spectrum power
 - sub-band powers

Babaee, Elham, et al. "An overview of audio event detection methods from feature extraction to classification." Applied Artificial Intelligence 31.9-10 (2017): 661-714. Cakır, Emre, et al. "Convolutional recurrent neural networks for polyphonic sound event detection." IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.6 (2017): 1291-1303.

Dang, A., Vu, T. H., and Wang, J.-C. (Dec 2017). A survey of deep learning for polyphonic soundevent detection. pages 75–78. IEEE.

Support Vector Machines (SVM)

- supervised learning
- divide data space into two subspaces with the hyperplane that maximises the margin between the hyperplane and the nearest data point
- multiclass classification problem can be solved by multiple one-vs-one or one-vs-rest classifications
- radial basis function kernel

Features for SVM

- evaluation of features still on-going
- the best result so far with MFCCs using
 - 40 mel bands
 - window length of about 40ms
 - frequency range from 0 to 22kHz
- delta and delta-delta features don't improve the results
 - temporal features are probably not as important as spectral features in this task

Results: SVM

- the SVM classifier has achieved an F1 score of 0.63, 65% precision
 - training set of about 400
 samples of each class (except for thunder, 140 samples)
- improvements still expected
 - more data
 - experiments with different features

0.6

0.4

0.2

Convolutional Neural Networks

- CNN is a architecture developed to overcome drawbacks of NNs when dealing with spatial structure data.
- The audio samples are converted into Mel Spectrogram Image and used for training the CNN.
- The image size is 256*128, where the image has 128 mel features for each time window.
- A CNN consists of three basic components: convolutional layers, pooling layers, and fully-connected layers.

Network Architecture

- The CNN network has around 12M parameters
- 5 layers of convolutions intertwined with pooling layers and feeds into a fully connected layer
- A dropout layer with ratio
 0.5 to avoid overfitting is
 added

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	256, 128, 32)	320
conv2d_2 (Conv2D)	(None,	254, 126, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	127, 63, 64)	0
conv2d_3 (Conv2D)	(None,	125, 61, 128)	73856
max_pooling2d_2 (MaxPooling2	(None,	62, 30, 128)	0
conv2d_4 (Conv2D)	(None,	60, 28, 256)	295168
max_pooling2d_3 (MaxPooling2	(None,	30, 14, 256)	0
conv2d_5 (Conv2D)	(None,	28, 12, 512)	1180160
max_pooling2d_4 (MaxPooling2	(None,	14, 6, 512)	0
conv2d_6 (Conv2D)	(None,	12, 4, 1024)	4719616
max_pooling2d_5 (MaxPooling2	(None,	6, 2, 1024)	0
dropout_1 (Dropout)	(None,	6, 2, 1024)	0
flatten_1 (Flatten)	(None,	12288)	0
dense_1 (Dense)	(None,	500)	6144500
dense_2 (Dense)	(None,	8)	4008

Results (CNN)

- CNN has achieved an accuracy of 83.53% on the test set
- Training was performed on 5200 audio samples and tested on 1950 samples (80:20 split).
- The CNN was trained with multiple hyperparameter configurations to obtain high accuracy (learning_rate, epochs, max_pool_stride length, batch-normalisation, dropout_ratio).
- Experiments were also done to try out different configurations for generating the Mel Spectrum (n_mels, n_fft)

Accuracy Analysis

Conclusion

- CNNs perform better than SVMs in this task
- an SVM needs selected features as the input whereas a CNN learns to extract features from the spectrogram
 - selecting the features for the SVM is tricky because the sound events are varied in length and other properties
- Results are not (yet) fairly comparable between SVM and CNN
 - different training set sizes
 - different features as inputs

Q&A