VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Ústav elektrotechnologie

LABORATORNÍ CVIČENÍ Z PŘEDMĚTU VYBRANÉ PARTIE Z OBNOVITELNÝCH ZDROJŮ A UKLÁDÁNÍ ENERGIE (BPC-OZU)

Číslo úlohy: 8

Název úlohy: Tepelné čerpadlo

Jméno a příjmení, ID:	Atmosférický tlak:	Teplota okolí:	Relativní vlhkost: 32.2%
Tomáš Vavrinec, 240893	1013 hPa	22.1°C	
Měřeno dne: 25.2.2023	Odevzdáno dne:	Ročník, stud. skupina: 2	Kontrola:

Spolupracovali:

Kateřina Koudelková

Zadání

Určete typ použitého Stirlingova motoru. Pomocí topného elementu zahřejte výměník tepla a sledujte napětí a proud generovaný Stirlingovým motorem, příkon a teplotu na výměníku při různých hodnotách proudu. Následně budou vypočteny výkony a účinnost pro jednotlivé příkony a bude sestaven graf výkonu motoru v závislosti na dosažené teplotě a příkonu. V druhé části úlohy připojíte ke hřídeli elektromotor a přiložením napětí ji roztočíte a budete sledovat, jak Stirlingův motor funguje jako tepelné čerpadlo při různých způsobech otáčení.

1 Měření

1.1 úkol 1

Proud do topného tělesa $I_{in}[A]$	9, 5	10, 1	11	12	13	14
Napětí na topném tělese $U_{in}[V]$	8,7	9,1	10, 1	10,8	11,6	12,5
Generovaný proud $I_{out}[mA]$	0,45	0,475	1, 1	1,45	1,6	0,8
Generované napětí $U[V]$	0, 4	0,9	1, 2	1,5	1,5	0, 5
Příkon $P_{in}[W]$	82,6	91,9	111,1	129,6	150,8	175
Výkon $P_{out}[mW]$	0,18	0,428	1,32	2,175	2,4	0,4
Účinnost η [‰]	$2 \cdot 10 - 3$	$5 \cdot 10 - 3$	$12 \cdot 10 - 3$	$17 \cdot 10 - 3$	$16 \cdot 10 - 3$	$2 \cdot 10 - 3$

Table 1: První úloha

Příklady výpočtů:

$$P_{in} = I_{in} \cdot U_{in} = (9, 5 \cdot 8, 7)[W] = 82, 6[W]$$

$$P_{out} = I_{out} \cdot U_{out} = (0, 45 \cdot 10^{-3} \cdot 0, 4)[W] = 0, 18^{-3}[W] = 0, 18[mW]$$

$$\eta = \frac{P_{out}}{P_{in}} = \frac{0,18 \cdot -3}{82,6} = 2,179 \cdot 10^{-6} = 2,179 \cdot 10 - 3[\%]$$

1.2 úkol 2

	80°C	$40^{\circ}C$
Doba chladnutí bez napájení $[s]$	510	1140
Doba chladnutí s napájením $10[V]$ - $[s]$	476	1032

Table 2: Ochlazování motoru po zahřátí na $300^{\circ}C$

Poslední měření jsme nemohli provést, protože při posledním zahřívání se vysunulo těsnění a motor tak nebyl schopen dalšího chodu.

1.3 Závěr

Měřený Stirlingův motor byla modifikace α

Námi naměřená účinnost Stirlingova motoru se blíží nule (maximální měřená účinnost $\eta = 16 \cdot 10 - 3[\%]$). Tato účinnost je ale účinnost celého systému, kde Stirlingův motor není sám, pravděpodobně však byla jeho účinnost i tak extrémně malá.