Modular Arithmetic

Modular Arithmetic is a system for dealing with restricted ranges of Integers. $x \mod n$ is the remainder when x is divided by n. So if

$$x = qn + r$$

then

$$x \mod n = r$$

Two numbers are said to be *conquent modulo* n if they differ by a multiple of n, that is

$$x \equiv y \mod n \iff n \text{ divides } (x - y)$$

This definition defines a set of n equivalence classes, where each class has the form i + kn for $k \in \mathbb{Z}$. For example, there are three equivalence classes modulo 3:

Where two elements in any one class are equivalent modulo 3.

Substitution Rule: if $x \equiv x' \mod n$ and $y \equiv y' \mod n$, then

$$x + y \equiv x' + y' \mod n$$
 and $xy \equiv x'y' \mod n$

Identities:

- Associativity: $x + (y + z) \equiv (x + y) + z \mod n$
- Communitivity: $xy \equiv yx \mod n$
- Distributivity: $x(y+z) \equiv xy + xz \mod n$

Modular exponentiation is a technique for taking large exponents $x^y \mod n$ quickly. It involves doing intermediate computations modulo n.

• Naive solution: Perform the operation in y steps by taking

$$first = x \mod n$$

$$first * (x \mod n) = x^2 \mod n$$

etc. This method involves taking O(y) multiplications, and if y is z bits long, we take $O(2^z)$ multiplications. This is pretty bad.

Charles Harrison (csharris)

CS 157 — Spring 2013 **Homework Study Guide**

March 16, 2013

ullet Better solution using divide and conquer. Start with x and square repeatedly modulo n

$$x = x \mod n$$

$$x^2 = x * x \mod n$$

$$x^4 = x^2 * x^2 \mod n$$

etc. We require $\log_2 y$ multiplications to generate $x^y \mod n$. See modular_exp.py for an implementation.

Modular division In arithmetic in \mathbb{R} , every number $a \neq 0$ has an inverse, $\frac{1}{a}$, and $\frac{n}{a} = na^{-1}$. We can do a similar thing with modular arithmetic.

x is the multiplicative inverse of a modulo n if $ax \equiv 1 \mod n$, denoted a^{-1} .

Modular division theorem: For any $a \mod n$, a has a multiplicative inverse modulo $n \iff$ it is relatively prime to n. When this inverse exists, it can be found in $O(n^3)$ time by running the extended Euclid's algorithm.