Floating Point Representation

General Floating Format

IBM Format

No hidden bit in IBM Format

Mantissa, all right of BP Exponent of base 16 Sign $0 \le \text{mant} < 1$ excess 64 notation Implicit Binary Point 100 0001 1100 0000 Mantissa has 1/2 + 1/4Positive Excess 64, here sign bit is $65 \text{ so } 16^{+1}$ so .75 So value is $16^{+1} * .75 = 12.0$

IBM Format

0 100 0101
$$\rightarrow$$
 69 0110 ... 0000
16 +5 * .375 = + 393216.0
0 011 1111 \rightarrow 63 1010 ... 0000
16 -1 * .625 = + .0390 ...
1 011 1101 \rightarrow 61 1100 ... 0000
16 -3 * .75 = - .000183 ...

IEEE 754 Format

hidden bit always left of BP

1 bit	8 bits	23 bits
Sign	Exponent of base 2 excess 127 notation	Mantissa, one hidden bit $1 \le \text{mant} < 2 \text{ if N}$
		Implicit Binary Poin
0	1000 0001	1100 0000
†	†	†
	Excess 127, here M is 129 so 2 +2	antissa is 1(HB) + 1/2 + 1/4 so 1.75
So value is $2^{+2} * 1.75 = 7.0$		

IEEE 754 Format, Double Precision

hidden bit always left of BP

IEEE 754 Format

0 1000 0101
$$\rightarrow$$
 133 0110 ... 0000
 2^{+6} * 1.375 = +88.0
0 0111 1110 \rightarrow 126 1010 ... 0000
 2^{-1} * 1.625 = +.8125
1 0111 1100 \rightarrow 124 1100 ... 0000
 2^{-3} * 1.75 = -.21875

Floating Point Possibilities, IEEE 754

Least positive N 0 0000 0001 0000 ... 0000 = 2^{-126} , $\approx 10^{-38}$

Most positive 0 1111 1110 1111 ... 1111 \cong 2 +128, \cong 10 +38

Least negative N 1 0000 0001 0000 ... $0000 = -2^{-126}$, $\approx -10^{-38}$

Most negative 1 1111 1110 1111 ... 1111 \cong -2 +128, -10 +38

Least pos/neg DN $^{1}/_{0}$ 0000 0000 0000 ... 0001 = +/- 2 -149, $\approx 10^{-45}$

Zero 0 0000 0000 0000 ... 0000

Pos/neg infinity $\frac{1}{0}$ 1111 1111 0000 ... 0000 = +/- ∞

NAN $\frac{1}{0}$ 1111 1111 Any non-zero pattern = NAN

Floating Point Possibilities, IEEE 754 (cont'd)

0 1000 0101 ... 0000 ... 0000
$$2^{+6}$$
 * 1.375 = + 88.0
0 0000 0001 ... 0000 ... 0000 2^{-126} * 1.0 \cong + 1.175 * 10-38
0 0000 0000 .0000 ... 0000 = + 0.0
1 1111 1111 .0110 ... 0000 = NAN
1 1111 1111 .0000 = ... 0000
Un-normalized small 0 0000 0000 ... 00001 ... 0000 2^{-126} * 2^{-5} = + 2^{-131} \cong + 3.674 * 10 -40

please enter a floating point number and new-line: 234765.579335

mantissa: 0x654365 or: 110 0101 0100 0011 0110 0101

exponent: 0x90 or: 1001 0000

sign: 0x0 or: 0

in base 10: 234765.6 or: 0 1001 0000 110 0101 0100 0011 0110 0101

please enter a floating point number and new-line: 234765.579

mantissa: 0x654365 or: 110 0101 0100 0011 0110 0101

exponent: 0x90 or: 1001 0000

sign: 0x0 or: 0

in base 10: 234765.6 or: 0 1001 0000 110 0101 0100 0011 0110 0101

please enter a floating point number and new-line: 234765.571

the floating value for INPUT NUMBER is broken out as:

mantissa: 0x654365 or: 110 0101 0100 0011 0110 0101

exponent: 0x90 or: 1001 0000

sign: 0x0 or: 0

in base 10: 234765.6 or: 0 1001 0000 110 0101 0100 0011 0110 0101

please enter a floating point number and new-line: 234765.57

mantissa: 0x654364 or: 110 0101 0100 0011 0110 0100

exponent: 0x90 or: 1001 0000

 $sign: 0x0 \qquad or: 0$

in base 10: 234765.6 or: 0 1001 0000 110 0101 0100 0011 0110 0100

-bash-4.1\$./subtract

please enter a floating point number and new-line: 234765.579335 please enter a floating point number and new-line: 234765.571 the difference between the two numbers entered is: 0.000000

-bash-4.1\$./subtract

please enter a floating point number and new-line: 234765.579335 please enter a floating point number and new-line: 234765.57 the difference between the two numbers entered is: 0.015625

Adding 754 FP Numbers

```
1 HB
             1000 0101
                                                           0000
                                     .0110
   ()
                   2^{+6}
                                     1.375
                                                  + 88.0
                                 + 1 HB
                                                          0000
   ()
             0111 1110
                                    .1010
                  2^{-1}
                                    1.625
                                                   +.8125
                                    1 HB
                                                          0000
             0111 1110
                                    .1010
Shift mantissa of smaller number right 7 places, note hidden bit
             1000 0101
                                     .0000 0011 0100 ... 0000
             1000 0101
                                     .0110
                                                           0000
```

1 HB

0 1000 0101

Result is normalized as is:

$$2^{+6}$$

*

$$1 + 1/4 + 1/8 + 1/128 + 1/256 + 1/1024$$

$$1.3876953 = + 88.8125$$

Adding 754 FP Numbers (cont'd)

Adding 754 FP Numbers (cont'd)