Pengolahan Data

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

April 23, 2017

Overview

- Jupyter Notebook
- 2 NumPy
 - Dasar
 - Komputasi dan Agregasi
 - Boolean Logic
- SciPy

Bahan Bacaan

- VanderPlas, J. (2016). Python Data Science Handbook. OReilly Media Inc.
 - https://github.com/jakevdp/PythonDataScienceHandbook
- Ookumentasi NumPy: https://docs.scipy.org/doc/numpy/reference/
- Ookumentasi SciPy: https://docs.scipy.org/doc/scipy/reference/

Jupyter Notebook

Interactive Python - IPython

- Untuk kebutuhan pengolahan data, kita perlu menyimpan masukan dan keluaran dari setiap perintah yang diberikan
- Sangat membantu bila visualiasi dapat tersimpan secara "permanen"
- IPython → Jupyter Notebook

IPython

```
aliakbars@javanhawk: ~
                                                                                ×
File Edit View Search Terminal Help
aliakbars@javanhawk:~$ ipython
Python 2.7.6 (default, Oct 26 2016, 20:30:19)
Type "copyright", "credits" or "license" for more information.
IPvthon 4.2.0 -- An enhanced Interactive Python.
          -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help
       -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
[n [1]: import math
 n [2]: math.sin(math.pi/2)
```

Gambar : IPython menyimpan masukan dan keluaran

Keunggulan IPython

- Profiling & timing
- Magic commands
- IPython & shell commands

Jupyter Notebook

Gambar: IPython dengan widgets interaktif

Jupyter Notebook

Gambar: Jupyter Notebook

NumPy

but first...

Example

$$>>> x = range(3)$$

?

Example

>>> x = range(3)

>>> x * 2

[0, 1, 2, 0, 1, 2]

Example

$$>>> x = range(3)$$

>>>
$$x + 2$$

3

```
Example
>>> x = range(3)
>>> x + 2
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list
```

Bagaimana untuk memudahkan pengolahan matriks-vektor?

Vektor dengan NumPy

Example >>> import numpy as np >>> >>> x = np.arange(3) >>> x array([0, 1, 2]) >>> x * 3 array([0, 3, 6]) >>> x + 2 array([2, 3, 4])

Arrays

- Tidak seperti lists, arrays harus memiliki tipe data yang sama
- ullet NumPy akan melakukan **upcasting**, e.g. integer o float
- Deklarasi dengan atribut dtype, e.g. np.array([1, 2, 3, 4], dtype='float32')

Apa yang dihasilkan saat membuat array dua dimensi?

...matrix!

Membuat Arrays

- np.zeros()
- np.ones()
- np.full()
- np.arange()
- np.linspace()
- np.random.random()
- np.random.randint()
- np.eye()

Indexing & Slicing

- Bekerja seperti pada lists
- Untuk multidimensi, dapat diakses dengan pemisah tanda koma,
 e.g. x[:2, :3]
- Akses baris atau kolom dengan titik-dua,
 e.g. x[:, 2]

Subarrays

- Subarrays diakses seperti membuat view, bukan membuat salinannya
- Gunakan metode .copy()

Reshaping

```
Example
grid = np.arange(1, 10).reshape((3, 3))
print(grid)
```

Concatenation

Example

```
x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
np.concatenate([x, y])
```

Alternatif:

- np.vstack()
- np.hstack()
- np.dstack()

Splitting

Example

```
x = [1, 2, 3, 99, 99, 3, 2, 1]
x1, x2, x3 = np.split(x, [3, 5])
print(x1, x2, x3)
```

Alternatif:

- np.vsplit()
- np.hsplit()
- np.dsplit()

Fungsi Matematis

Beberapa fungsi NumPy juga terdapat di modul math, contohnya:

- np.abs()
- np.sin(), np.cos(), np.tan()
- np.exp()
- np.log()
- np.power()

Agregat

Beberapa fungsi yang dapat digunakan untuk melakukan agregasi data:

- np.sum()
- np.prod()
- np.cumsum()
- np.cumprod()

Fungsi Agregat

Function Name	NaN-safe Version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute mean of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

Perbandingan Nilai

- Seperti halnya operasi aritmetika, perbandingan boolean juga dilakukan per elemen
- • Operator yang dapat digunakan mengikuti $\it bitwise\ logic\ operators$, i.e. &, |, ^, dan \sim
- e.g. np.sum((inches > 0.5) & (inches < 1))

Masking

SciPy

Subpackages

Subpackage	Description	
cluster	Clustering algorithms	
constants	Physical and mathematical constants	
fftpack	Fast Fourier Transform routines	
integrate	Integration and ordinary differential equation solvers	
interpolate	Interpolation and smoothing splines	
io	Input and Output	
linalg	Linear algebra	
ndimage	N-dimensional image processing	
odr	Orthogonal distance regression	
optimize	Optimization and root-finding routines	
signal	Signal processing	
sparse	Sparse matrices and associated routines	
spatial	Spatial data structures and algorithms	
special	Special functions	
stats	Statistical distributions and functions	

Aljabar Linear

Beberapa hal yang dapat dilakukan dengan scipy.linalg:

- Mencari inverse dari matriks
- Mencari determinan
- Menghitung eigenvalues-eigenvectors
- Algoritma Dijkstra
- dll.

Statistik

Beberapa hal yang dapat dilakukan dengan scipy.stats:

- PDF
- CDF
- dsb.

Terima kasih