Part I

导角法

Exercise 0.1. 在四边形 WXYZ 中,对角线相互垂直,已知 $\angle WZX=30^\circ$, $\angle XWY=40^\circ$, $\angle WYZ=50^\circ$ 。(a) 求 $\angle WZY$; (b) 求 $\angle WXY$ 。

Exercise 0.2. 设 ABCDE 是一个凸五边形,其中 BCDE 是正方形,中心为 O, $\angle A=90^\circ$ 。证明:AO 平分 $\angle BAE$ 。

Exercise 0.3. (BAMO 1999/2) 设 O=(0,0), A=(0,a), B=(0,b), 其中实数 0 < a < b。设 Γ 是直径为 AB 的圆, P 是 Γ 上另一点。直线 PA 与 x 轴交于点 Q。证明: $\angle BQP = \angle BOP$ 。

Exercise 0.4. 在圆内接四边形 ABCD 中,设 I_1, I_2 分别是 $\triangle ABC, \triangle DBC$ 的内心。证明: I_1, I_2, B, C 四点共圆。

Exercise 0.5. (CGMO 2012/5) 设 $\triangle ABC$ 的内切圆分别与边 AB,AC 相切于点 D,E,O 是 $\triangle BCI$ 的外心。证明: $\angle ODB = \angle OEC$ 。

Exercise 0.6. (加拿大 1991/3) 设 P 是圆 ω 内一点,考虑 ω 的所有经过 P 的弦。证明: 这些弦的中点都在一个圆上。

Exercise 0.7. (俄罗斯 1996) 点 E 和 F 在凸四边形 ABCD 的边 BC 上(E 在 B 和 F 之间)。已知 $\angle BAE = \angle CDF$,且 $\angle EAF = \angle FDE$ 。证明: $\angle FAC = \angle EDB$ 。

Exercise 0.8. 设锐角 $\triangle ABC$ 的外接圆为 Γ , X 是劣弧 $\stackrel{\frown}{BC}$ 的中点,类似地定义 Y,Z,证明: $\triangle XYZ$ 的垂心是 $\triangle ABC$ 的内心。

Exercise 0.9. (JMO 2011/5) 点 A,B,C,D,E 在圆 ω 上,而点 P 在圆 ω 外。这些点满足: (i) 直线 PB,PD 与圆 ω 相切; (ii) P,A,C 共线; (iii) $DE \parallel AC$ 。证明: BE 平分 AC。

Exercise 0.10. 设锐角 $\triangle ABC$ 中,BE,CF 是高,D 是 BC 的中点。证明: DE,DF 和过 A 与 BC 平行的直线均与圆 (AEF) 相切。

Exercise 0.11. (内切圆弦上的直线) 设 $\triangle ABC$ 的内切圆在边 BC,CA,AB 上的切点分别是 D,E,F,内切圆圆心为 I。设 M,N 分别是 BC,AC 的中点。射线 BI 与直线 EF 相交于 K。证明: $BK \perp CK$,并且 K 在直线 MN 上。

Exercise 0.12. (加拿大 1997/4) 点 O 在平行四边形 ABCD 的内部,使得 $\angle AOB + \angle COD = 180^\circ$ 。证明: $\angle OBC = \angle ODC$ 。

Exercise 0.13. (IMO 2006/1) 设 $\triangle ABC$ 的内心为 I,P 在三角形内部,满足 $\angle PBA + \angle PCA = \angle PBC + \angle PCB$ 。证明: $AP \geq AI$,等号成立当且仅当 P = I。

Exercise 0.14. (西姆松线) 如图 1.8D,设 P 是 $\triangle ABC$ 外接圆上任一点,X,Y,Z 分别是从 P 到直线 BC,CA,AB 的投影。证明: X,Y,Z 共线。

Exercise 0.15. (USAMO 2010/1) 设凸五边形 AXYZB 内接于以 AB 为直径的半圆。记 P,Q,R,S 分别是 Y 到直线 AX,BX,AZ,BZ 上的投影。证明:直线 PQ 和 RS 形成的锐角 是 $\angle XOZ$ 的一半,其中 O 是线段 AB 的中点。

Exercise 0.16. (IMO 2013/4) 设锐角 $\triangle ABC$ 的垂心为 H, W 是边 BC 上一点,位于 BC 中间。点 M,N 分别是从 B,C 引出的三角形的高的垂足。 ω_1 是 $\triangle BWN$ 的外接圆,点 X 满足 WX 是 ω_1 的直径,类似地,点 Y 满足 WY 是 $\triangle CWM$ 外接圆 ω_2 的直径。证明:点 X,Y,H 共线。(如果改为 $\triangle BWM$, $\triangle CWN$ 的外接圆,结论变为 X,Y,A 共线。)

Exercise 0.17. (IMO 1985/1) 某个圆的圆心在圆内接四边形 ABCD 的边 AB 上,并且与另外三边相切。证明: AD+BC=AB。

