We claim

1. Compounds of the general formula (I)

wherein

5 A represents an aryl or heteroaryl ring,

R¹, R² and R³ independently from each other represent hydrogen, halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

10 R⁴ represents

15

20

- C₁-C₆-alkyl which can be substituted by up to three radicals independently selected from the group consisting of hydroxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,
- C₃-C₈-cycloalkylcarbonyl which can be substituted by up to three radicals independently selected from the group consisting of C₁-C₆-alkyl, hydroxy, oxo, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,
- C₁-C₆-alkylcarbonyl which is substituted by phenyl-C₁-C₆-alkoxy or phenyl-C₁-C₆-alkoxycarbonyl which for their part, in the phenyl moiety, can be substituted by halogen, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,

- C₆-C₁₀-arylcarbonyl which is substituted by one, two or three radicals independently selected from the group consisting of halogen, cyano, nitro, C₁-C₆-

10

15

20

25

30

1

alkyl, trifluoromethyl, hydroxy, C_1 - C_6 -alkoxy, trifluoromethoxy, amino, C_1 - C_6 -alkoxycarbonyl, hydroxycarbonyl and phenyl,

- C₁-C₆-alkoxycarbonyl which is substituted by one or two radicals independently selected from the group consisting of phenyl-C₁-C₆-alkoxy, phenyl-C₁-C₆-alkoxycarbonyl, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonylamino and 5- or 6-membered heterocyclyl, wherein C₁-C₆-alkoxy is further substituted by C₁-C₆-alkoxycarbonyl or hydroxycarbonyl, and 5- or 6-membered heterocyclyl is further substituted by hydroxy, oxo, C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,
- heteroarylcarbonyl which is substituted by one or two radicals independently selected from the group consisting of hydroxy, amino, halogen, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl, and which can additionally be substituted by C₁-C₆-alkyl,
- mono- or di-C₁-C₆-alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by C₆-C₁₀-aryl which for its part can be further substituted by up to three radicals independently selected from the group consisting of halogen, cyano, trifluoromethyl, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy, trifluoromethoxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,
- C₆-C₁₀-arylaminocarbonyl or N-(C₁-C₆-alkyl)-N-(C₆-C₁₀-aryl)aminocarbonyl wherein aryl is substituted by one, two or three radicals independently selected from the group consisting of halogen, cyano, trifluoromethyl, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy, trifluoromethoxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl, and wherein alkyl, when present, can be substituted by up to three radicals independently selected from the group consisting of hydroxy, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,
- C₃-C₈-cycloalkylaminocarbonyl or N-(C₁-C₆-alkyl)-N-(C₃-C₈-cycloalkyl)aminocarbonyl wherein cycloalkyl can be substituted by up to three radicals independently selected from the group consisting of C₁-C₆-alkyl, hydroxy, oxo, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl, and wherein alkyl, when present, can be substituted by up to three radicals independently selected from the group consisting of hydroxy, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,
- heterocyclylcarbonyl which is substituted by one, two or three radicals independently selected from the group consisting of C₁-C₆-alkyl, hydroxy, oxo, C₁-

10

15

20

25

30

 C_6 -alkoxy, C_1 - C_6 -alkoxycarbonyl, phenyl- C_1 - C_6 -alkoxycarbonyl, hydroxycarbonyl, 5- or 6-membered heterocyclyl, 5- or 6-membered heterocyclyl, 5- or 6-membered heterocyclyl, wherein C_1 - C_6 -alkyl is further substituted by hydroxy, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxycarbonyl or hydroxycarbonyl, and wherein C_6 - C_{10} -aryl can be further substituted by up to three radicals independently selected from the group consisting of halogen, cyano, trifluoromethyl, C_1 - C_6 -alkyl, hydroxy, C_1 - C_6 -alkoxy, trifluoromethoxy, C_1 - C_6 -alkoxycarbonyl and hydroxycarbonyl,

- N-(heterocyclyl)aminocarbonyl wherein heterocyclyl can be further substituted by up to three radicals independently selected from the group consisting of C₁-C₆alkyl, hydroxy, oxo, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl, hydroxycarbonyl and phenyl-C₁-C₆-alkyl,
- a group of the formula -C(=O)-NR^a-SO₂-R^b wherein R^a represents hydrogen or C₁-C₆-alkyl, and R^b represents C₁-C₆-alkyl which can be substituted by trifluoromethyl, or R^b represents C₆-C₁₀-aryl which can be substituted by C₁-C₆-alkyl, halogen, cyano, nitro or trifluoromethyl,

or

- a group of the formula -P(=O)(OR^c)₂ wherein R^c represents hydrogen or C₁-C₆-alkyl,
- R⁵ represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C₁-C₆-alkoxy, C₂-C₆-alkenoxy, C₁-C₆-alkylthio, amino, mono- and di-C₁-C₆-alkylamino, arylamino, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl and the radical -O-C₁-C₄-alkyl-O-C₁-C₄-alkyl,
- R⁶ represents hydrogen, C₁-C₆-alkyl, formyl, aminocarbonyl, mono- or di-C₁-C₄-alkyl-aminocarbonyl, C₃-C₈-cycloalkylcarbonyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxy-carbonyl, N-(C₁-C₄-alkylsulfonyl)-aminocarbonyl, N-(C₁-C₄-alkylsulfonyl)-N-(C₁-C₄-alkyl)-aminocarbonyl, heteroaryl, heteroarylcarbonyl or heterocyclylcarbonyl, wherein C₁-C₆-alkyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, heteroaryl and heterocyclyl can be substituted with one to three identical or different radicals selected from the group consisting of aryl, heteroaryl, hydroxy, C₁-C₄-alkoxy, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, amino,

mono- and di- C_1 - C_4 -alkylamino, C_1 - C_4 -alkylcarbonylamino, tri- $(C_1$ - C_6 -alkyl)-silyl, cyano, N-(mono- or di- C_1 - C_4 -alkylamino- C_1 - C_4 -alkyl)-aminocarbonyl, N-(C_1 - C_4 -alkyl)-aminocarbonyl and halogen,

or

5

R⁶ represents a moiety of the formula

*
$$N$$
 or N $(CH_2)_n$

wherein

R^d is selected from the group consisting of hydrogen and C₁-C₆-alkyl, and

n represents an integer of 1 or 2,

10 or

R⁶ represents a group of the formula -T-U wherein

T represents a C₁-C₆-alkanediyl or C₂-C₆-alkenediyl group

and

U represents

15

C₆-C₁₀-aryl or 5- or 6-membered heteroaryl each of which is substituted by one, two or three radicals independently selected from the group consisting of halogen, C₁-C₆-alkyl, 5- or 6-membered heteroaryl and a group of the formula -V-W wherein V represents a bond or a C₁-C₆-alkanediyl or C₂-C₆-alkenediyl group both of which can be further substituted by C₃-C₈-cycloalkyl, and W represents C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,

20

• a group of the formula -C(=O)-NR^e-SO₂-R^f wherein R^e represents hydrogen or C₁-C₆-alkyl, and R^f represents C₁-C₆-alkyl which can be substituted by trifluoromethyl, or R^f represents C₆-C₁₀-aryl which can be substituted by C₁-C₆-alkyl, halogen, cyano, nitro or trifluoromethyl,

15

- a group of the formula -C(=O)-NR^gR^h wherein R^g represents hydrogen or C₁-C₆-alkyl, and R^h represents C₆-C₁₀-aryl which can be substituted by C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,
- a group of the formula -C(=O)-NRⁱ-OR^k wherein Rⁱ and R^k independently from each other represent hydrogen or C₁-C₆-alkyl,

or

C₆-C₁₀-arylalkoxy which, in the aryl part, can be substituted by halogen,
 C₁-C₆-alkyl, C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,

or

10 R⁶ represents

- C₃-C₈-cycloalkyl which can be substituted by up to three radicals independently selected from the group consisting of C₁-C₆-alkyl, hydroxy, oxo, C₁-C₆-alkoxy-carbonyl and hydroxycarbonyl,
- C₂-C₆-alkenyl which can be substituted by C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,
- C₁-C₆-alkylcarbonyl which is substituted by C₁-C₆-alkoxycarbonylamino,
- C₁-C₆-alkoxycarbonyl which is substituted by phenyl-C₁-C₆-alkoxycarbonyl which for its part, in the phenyl moiety, can be further substituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,

20 or

- a group of the formula -SO₂-R^m wherein R^m represents C₁-C₆-alkyl which can be substituted by trifluoromethyl, or R^m represents C₆-C₁₀-aryl which can be substituted by C₁-C₆-alkyl, halogen, cyano, nitro, trifluoromethyl, C₁-C₆-alkoxy-carbonyl or hydroxycarbonyl,
- 25 R⁷ represents halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

and

Y¹, Y², Y³, Y⁴ and Y⁵ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms,

and their salts, hydrates and/or solvates and their tautomeric forms.

- 5 2. Compounds of general formula (I) according to Claim 1, wherein
 - A represents an aryl or heteroaryl ring,
 - R¹, R² and R³ independently from each other represent hydrogen, halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

R⁴ represents

10

15

20

25

- C₁-C₆-alkyl which can be substituted by up to three radicals independently selected from the group consisting of hydroxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,
- C₃-C₈-cycloalkylcarbonyl which can be substituted by up to three radicals independently selected from the group consisting of C₁-C₆-alkyl, hydroxy, oxo, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,
- C₆-C₁₀-arylcarbonyl which is substituted by one, two or three radicals independently selected from the group consisting of halogen, cyano, C₁-C₆-alkyl, trifluoromethyl, hydroxy, C₁-C₆-alkoxy, trifluoromethoxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,
- C₁-C₆-alkoxycarbonyl which is substituted by one or two radicals independently selected from the group consisting of phenyl-C₁-C₆-alkoxy, phenyl-C₁-C₆-alkoxycarbonyl, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonylamino and 5- or 6-membered heterocyclyl, wherein C₁-C₆-alkoxy is further substituted by C₁-C₆-alkoxycarbonyl or hydroxycarbonyl, and 5- or 6-membered heterocyclyl is further substituted by hydroxy, oxo, C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,
- heteroarylcarbonyl which is substituted by one or two radicals independently selected from the group consisting of hydroxy, amino, halogen, C₁-C₆-alkoxy, C₁-

10

15

20

25

30

 C_6 -alkoxycarbonyl and hydroxycarbonyl, and which can additionally be substituted by C_1 - C_6 -alkyl,

- mono- or di-C₁-C₆-alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by C₆-C₁₀-aryl which for its part can be further substituted by up to three radicals independently selected from the group consisting of halogen, cyano, trifluoromethyl, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy, trifluoromethoxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,
- heterocyclylcarbonyl which is substituted by one, two or three radicals independently selected from the group consisting of C₁-C₆-alkyl, hydroxy, oxo, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl, phenyl-C₁-C₆-alkoxycarbonyl, hydroxycarbonyl, 5- or 6-membered heterocyclyl, 5- or 6-membered heteroaryl and C₆-C₁₀-aryl, wherein C₁-C₆-alkyl is further substituted by hydroxy, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl or hydroxycarbonyl, and wherein C₆-C₁₀-aryl can be further substituted by up to three radicals independently selected from the group consisting of halogen, cyano, trifluoromethyl, C₁-C₆-alkyl, hydroxy, C₁-C₆-alkoxy, trifluoromethoxy, C₁-C₆-alkoxycarbonyl and hydroxycarbonyl,

or

- a group of the formula -C(=O)-NH-SO₂-R^b wherein R^b represents C₁-C₆-alkyl which can be substituted by trifluoromethyl, or R^b represents C₆-C₁₀-aryl which can be substituted by C₁-C₆-alkyl, halogen, cyano, nitro or trifluoromethyl,
- R⁵ represents C₁-C₄-alkyl, which can be substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy, C₁-C₆-alkoxy, C₂-C₆-alkenoxy, C₁-C₆-alkylthio, amino, mono- and di-C₁-C₆-alkylamino, arylamino, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl and the radical -O-C₁-C₄-alkyl-O-C₁-C₄-alkyl,
- represents hydrogen, C₁-C₆-alkyl, aminocarbonyl, mono- or di-C₁-C₄-alkylamino-carbonyl, C₃-C₈-cycloalkylcarbonyl, C₁-C₆-alkylcarbonyl, C₁-C₆-alkoxycarbonyl, N-(C₁-C₄-alkylsulfonyl)-aminocarbonyl, N-(C₁-C₄-alkylsulfonyl)-N-(C₁-C₄-alkyl)-aminocarbonyl, heteroarylcarbonyl or heterocyclylcarbonyl, wherein C₁-C₆-alkyl, mono- and di-C₁-C₄-alkylaminocarbonyl, C₁-C₆-alkylcarbonyl and C₁-C₆-alkoxy-carbonyl can be substituted with one to three identical or different radicals selected from the group consisting of aryl, heteroaryl, hydroxy, C₁-C₄-alkoxy, hydroxy-

carbonyl, C_1 - C_6 -alkoxycarbonyl, aminocarbonyl, mono- and di- C_1 - C_4 -alkylamino-carbonyl, amino, mono- and di- C_1 - C_4 -alkylamino, C_1 - C_4 -alkylamino, N-(mono- or di- C_1 - C_4 -alkylamino- C_1 - C_4 -alkyl)-aminocarbonyl, N-(C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)-aminocarbonyl and halogen,

5 or

R⁶ represents a moiety of the formula

wherein

R^d is selected from the group consisting of hydrogen and C₁-C₆-alkyl, and

n represents an integer of 1 or 2,

or

10

20

R⁶ represents a group of the formula -T-U wherein

T represents a C₁-C₄-alkanediyl or C₂-C₄-alkenediyl group

and

U represents

- C₆-C₁₀-aryl or 5- or 6-membered heteroaryl each of which is substituted by one, two or three radicals independently selected from the group consisting of halogen, C₁-C₆-alkyl, 5- or 6-membered heteroaryl and a group of the formula -V-W wherein V represents a bond, a C₂-C₆-alkenediyl group or a C₁-C₆-alkanediyl group the latter of which can be further substituted by C₃-C₈-cycloalkyl, and W represents C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,
- a group of the formula -C(=O)-NH-SO₂-R^f wherein R^f represents C₁-C₆-alkyl which can be substituted by trifluoromethyl, or R^f represents C₆-C₁₀-

aryl which can be substituted by C_1 - C_6 -alkyl, halogen, cyano, nitro or trifluoromethyl,

or

a group of the formula -C(=O)-NHR^h wherein R^h represents C₆-C₁₀-aryl which can be substituted by C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,

or

5

10

15

20

R⁶ represents

C₃-C₈-cycloalkyl which can be substituted by up to three radicals independently selected from the group consisting of C₁-C₆-alkyl, hydroxy, oxo, C₁-C₆-alkoxy-carbonyl and hydroxycarbonyl,

or

- C₂-C₆-alkenyl which can be substituted by C₁-C₆-alkoxycarbonyl or hydroxycarbonyl,
- R⁷ represents halogen, nitro, cyano, C₁-C₆-alkyl, hydroxy or C₁-C₆-alkoxy, wherein C₁-C₆-alkyl and C₁-C₆-alkoxy can be further substituted with one to three identical or different radicals selected from the group consisting of halogen, hydroxy and C₁-C₄-alkoxy,

and

Y¹, Y², Y³, Y⁴ and Y⁵ independently from each other represent CH or N, wherein the ring contains either 0, 1 or 2 nitrogen atoms.

- 3. Compounds of general formula (I) according to Claim 1, wherein
 - A represents a phenyl, naphthyl or pyridyl ring,
 - R¹, R² and R³ independently from each other represent hydrogen, fluoro, chloro, bromo, nitro, cyano, methyl, ethyl, trifluoromethyl or trifluoromethoxy,
- 25 R⁴ represents

- C₁-C₄-alkyl which can be substituted by up to two radicals independently selected

from the group consisting of hydroxy, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl,

C₃-C₆-cycloalkylcarbonyl which can be substituted by up to two radicals independently selected from the group consisting of C₁-C₄-alkyl, hydroxy, oxo, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl,

 benzoyl which is substituted by one, two or three radicals independently selected from the group consisting of fluoro, chloro, bromo, cyano, C₁-C₄-alkyl, trifluoromethyl, hydroxy, C₁-C₄-alkoxy, trifluoromethoxy, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl,

— C₁-C₄-alkoxycarbonyl which is substituted by one or two radicals independently selected from the group consisting of benzyloxy, benzyloxycarbonyl, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonylamino, pyrrolidinyl, piperidinyl and morpholinyl, wherein C₁-C₄-alkoxy is further substituted by C₁-C₄-alkoxycarbonyl or hydroxycarbonyl, and wherein pyrrolidinyl, piperidinyl and morpholinyl is further substituted by hydroxy, oxo, C₁-C₄-alkoxycarbonyl or hydroxycarbonyl,

- furylcarbonyl, thienylcarbonyl, oxazolylcarbonyl, thiazolylcarbonyl, pyridylcarbonyl or pyrimidinylcarbonyl each of which is substituted by one or two radicals independently selected from the group consisting of hydroxy, amino, fluoro, chloro, bromo, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl, and each of which can additionally be substituted by C₁-C₄-alkyl,

- mono- or di-C₁-C₄-alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by phenyl which for its part can be further substituted by up to three radicals independently selected from the group consisting of fluoro, chloro, bromo, cyano, trifluoromethyl, C₁-C₄-alkyl, hydroxy, C₁-C₄-alkoxy, trifluoromethoxy, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl,

tetrahydrofurylcarbonyl, tetrahydropyranylcarbonyl, piperidinylcarbonyl, piperazinylcarbonyl or morpholinylcarbonyl each of which is substituted by one or two radicals independently selected from the group consisting of C₁-C₄-alkyl, hydroxy, oxo, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, benzyloxycarbonyl, hydroxycarbonyl, piperidinyl, morpholinyl, pyridyl and phenyl, wherein C₁-C₄-alkyl is further substituted by hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl or hydroxycarbonyl, and wherein phenyl can be further substituted by up to three radicals independently

10

5

15

20

25

30

selected from the group consisting of fluoro, chloro, bromo, cyano, trifluoromethyl, C_1 - C_4 -alkyl, hydroxy, C_1 - C_4 -alkoxy, trifluoromethoxy, C_1 - C_4 -alkoxy-carbonyl and hydroxycarbonyl,

or

5

- a group of the formula $-C(=O)-NH-SO_2-R^b$ wherein R^b represents C_1-C_4 -alkyl which can be substituted by trifluoromethyl, or R^b represents phenyl which can be substituted by C_1-C_4 -alkyl, fluoro, chloro, bromo, cyano, nitro or trifluoromethyl,
- R⁵ represents methyl or ethyl,

represents hydrogen, C₁-C₆-alkyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₁-C₆-alkyl alkylcarbonyl, C₁-C₆-alkoxycarbonyl or heterocyclylcarbonyl, wherein C₁-C₆-alkyl and C₁-C₆-alkoxycarbonyl can be substituted with one to three identical or different radicals selected from the group consisting of hydroxy, C₁-C₄-alkoxy, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylamino,

15 or

Oi

 R^6

represents a moiety of the formula

*
$$N$$
 or N $(CH_2)_n$

wherein

R^d is selected from the group consisting of hydrogen and C₁-C₄-alkyl, and

n represents an integer of 1 or 2,

or

20

R⁶ represents a group of the formula -T-U wherein

T represents a C₁-C₄-alkanediyl group

and

WO 2005/082864 PCT/EP2005/001486

U represents

 phenyl, furyl, thienyl, oxazolyl, thiazolyl or pyridyl each of which is substituted by one or two radicals independently selected from the group consisting of fluoro, chloro, bromo, C₁-C₄-alkyl, thienyl, pyridyl and a group of the formula -V-W wherein V represents a bond or a C₁-C₄-alkanediyl or C₂-C₄-alkenediyl group, and W represents C₁-C₄-alkoxycarbonyl or hydroxycarbonyl,

• a group of the formula -C(=O)-NH-SO₂-R^f wherein R^f represents C₁-C₄-alkyl which can be substituted by trifluoromethyl, or R^f represents phenyl which can be substituted by C₁-C₄-alkyl, fluoro, chloro, bromo, cyano, nitro or trifluoromethyl,

or

• a group of the formula -C(=O)-NHR^h wherein R^h represents phenyl which can be substituted by C₁-C₄-alkoxycarbonyl or hydroxycarbonyl,

15 or

5

10

R⁶ represents

C₃-C₆-cycloalkyl which can be substituted by up to two radicals independently selected from the group consisting of C₁-C₄-alkyl, hydroxy, oxo, C₁-C₄-alkoxy-carbonyl and hydroxycarbonyl,

20 or

- C₂-C₄-alkenyl which is substituted by C₁-C₄-alkoxycarbonyl or hydroxycarbonyl,

R⁷ represents halogen, nitro, cyano, trifluoromethyl, trifluoromethoxy, methyl or ethyl,

and

- 25 Y¹, Y², Y³, Y⁴ and Y⁵ each represent CH.
 - 4. Compounds of general formula (I) according to Claim 1, wherein
 - A represents a phenyl or a pyridyl ring,

R¹ and R³ each represent hydrogen,

R² represents fluoro, chloro, bromo, nitro or cyano,

R⁴ represents

- C₁-C₄-alkyl which can be substituted by up to two radicals independently selected from the group consisting of hydroxy, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl,
- C₃-C₆-cycloalkylcarbonyl which can be substituted by up to two radicals independently selected from the group consisting of C₁-C₄-alkyl, hydroxy, oxo, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl,
- benzoyl which is substituted by one, two or three radicals independently selected from the group consisting of fluoro, chloro, bromo, cyano, C₁-C₄-alkyl, trifluoromethyl, hydroxy, C₁-C₄-alkoxy, trifluoromethoxy, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl,
- C₁-C₄-alkoxycarbonyl which is substituted by one or two radicals independently selected from the group consisting of benzyloxy, benzyloxycarbonyl, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonylamino, pyrrolidinyl, piperidinyl and morpholinyl, wherein C₁-C₄-alkoxy is further substituted by C₁-C₄-alkoxycarbonyl or hydroxycarbonyl, and wherein pyrrolidinyl, piperidinyl and morpholinyl is further substituted by hydroxy, oxo, C₁-C₄-alkoxycarbonyl or hydroxycarbonyl,
- furylcarbonyl, oxazolylcarbonyl, thiazolylcarbonyl or pyridylcarbonyl each of
 which is substituted by one or two radicals independently selected from the group
 consisting of hydroxy, amino, fluoro, chloro, bromo, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl, and each of which can additionally be substituted
 by C₁-C₄-alkyl,
- mono- or di-C₁-C₄-alkylaminocarbonyl wherein the alkyl moiety or at least one alkyl moiety, respectively, is substituted by phenyl which for its part can be further substituted by up to three radicals independently selected from the group consisting of fluoro, chloro, bromo, cyano, trifluoromethyl, C₁-C₄-alkyl, hydroxy, C₁-C₄-alkoxy, trifluoromethoxy, C₁-C₄-alkoxycarbonyl and hydroxycarbonyl,
- piperidinylcarbonyl, piperazinylcarbonyl or morpholinylcarbonyl each of which is substituted by one or two radicals independently selected from the group con-

10

5

15

20

25

30

10

15

sisting of C_1 - C_4 -alkyl, hydroxy, oxo, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, benzyloxycarbonyl, hydroxycarbonyl, piperidinyl, morpholinyl, pyridyl and phenyl, wherein C_1 - C_4 -alkyl is further substituted by hydroxy, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl or hydroxycarbonyl, and wherein phenyl can be further substituted by up to three radicals independently selected from the group consisting of fluoro, chloro, bromo, cyano, trifluoromethyl, C_1 - C_4 -alkyl, hydroxy, C_1 - C_4 -alkoxy, trifluoromethoxy, C_1 - C_4 -alkoxycarbonyl and hydroxycarbonyl,

or

a group of the formula -C(=O)-NH-SO₂-R^b wherein R^b represents C₁-C₄-alkyl which can be substituted by trifluoromethyl, or R^b represents phenyl which can be substituted by C₁-C₄-alkyl, fluoro, chloro, bromo, cyano, nitro or trifluoromethyl,

R⁵ represents methyl,

R⁶ represents hydrogen, C₁-C₄-alkyl, mono- or di-C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylcarbonyl or C₁-C₄-alkoxycarbonyl, wherein C₁-C₄-alkyl and C₁-C₄-alkoxycarbonyl can be substituted with a radical selected from the group consisting of hydroxy, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, hydroxycarbonyl, aminocarbonyl, mono- and di-C₁-C₄-alkylaminocarbonyl, amino, mono- and di-C₁-C₄-alkylamino,

or

R⁶ represents a moiety of the formula

*
$$N$$
 or N N

20

wherein

R^d is selected from the group consisting of hydrogen and methyl,

or

R⁶ represents a group of the formula -T-U wherein

T represents a -CH₂- group

WO 2005/082864 PCT/EP2005/001486

and

U represents

phenyl, furyl or oxazolyl each of which is substituted by one or two
radicals independently selected from the group consisting of fluoro,
chloro, bromo, C₁-C₄-alkyl and a group of the formula -V-W wherein V
represents a bond, a -CH₂- group or a -CH=CH- group, and W represents
C₁-C₄-alkoxycarbonyl or hydroxycarbonyl,

• a group of the formula -C(=O)-NH-SO₂-R^f wherein R^f represents C₁-C₄-alkyl which can be substituted by trifluoromethyl, or R^f represents phenyl which can be substituted by C₁-C₄-alkyl, fluoro, chloro, bromo, cyano, nitro or trifluoromethyl,

or

• a group of the formula -C(=O)-NHR^h wherein R^h represents phenyl which can be substituted by C₁-C₄-alkoxycarbonyl or hydroxycarbonyl,

15 or

5

10

20

R⁶ represents

 C₃-C₆-cycloalkyl which can be substituted by C₁-C₄-alkoxycarbonyl or hydroxycarbonyl,

or

 a -CH=CH- group which is substituted by C₁-C₄-alkoxycarbonyl or hydroxycarbonyl,

R⁷ represents trifluoromethyl or nitro,

and

Y¹, Y², Y³, Y⁴ and Y⁵ each represent CH.

25 5. Compounds of general formula (I) according to any of the preceding claims, wherein A is phenyl or pyridyl.

- 6. Compounds of general formula (I) according to any of the preceding claims, wherein R¹ is hydrogen.
- 7. Compounds of general formula (I) according to any of the preceding claims, wherein R² is cyano.
- 5 8. Compounds of general formula (I) according to any of the preceding claims, wherein R³ is hydrogen.
 - 9. Compounds of general formula (I) according to any of the preceding claims, wherein R⁵ is methyl.
- 10. Compounds of general formula (I) according to any of the preceding claims, wherein R⁷ is trifluoromethyl or nitro.
 - 11. Compounds of general formula (IA)

$$R^{1}$$
 R^{4}
 R^{6}
 R^{3}
 CF_{3}
(IA),

wherein

Z represents CH or N, and

- R^1 , R^3 , R^4 and R^6 have the meaning indicated in any of the preceding claims.
 - 12. Process for synthesizing the compounds of general formula (I) according to Claim 1 by condensing compounds of general formula (II)

$$R^{1}$$
 A
 CHO
 $(II),$

wherein A, R^1 and R^2 have the meaning indicated in Claim 1, with compounds of general formula (III)

wherein R⁴ and R⁵ have the meaning indicated in Claim 1, and compounds of general formula (IV)

$$\begin{array}{c}
NH_2 \\
HN O \\
Y_1^1 \longrightarrow Y^5 \\
Y_2^2 \longrightarrow Y^4 \longrightarrow R^7
\end{array}$$
(IV),

wherein R^3 , R^7 , and Y^1 to Y^5 have the meaning indicated in Claim 1,

in the presence of an acid or acid anhydride to give compounds of the general formula (IB)

$$R^{1}$$
 A
 R^{4}
 NH
 R^{5}
 N
 N
 Y^{1}
 Y^{5}
 Y^{3}
 Y^{3}
 Y^{4}
 Y^{3}
 Y^{4}
 Y^{5}
 Y^{7}
 Y^{3}
 Y^{4}
 Y^{5}
 Y^{7}
 Y^{7}
 Y^{8}
 Y^{8}

wherein A, R¹ to R⁵, R⁷, and Y¹ to Y⁵ have the meaning indicated in Claim 1,

optionally followed, in case R⁶ does not represent hydrogen, by reaction of the compounds of general formula (IB) with compounds of the general formula (V)

$$R^{6*}-X$$
 (V),

5 wherein

j

R^{6*} has the meaning of R⁶ as indicated in Claim 1, but does not represent hydrogen, and

X represents a leaving group,

in the presence of a base.

- 10 13. The composition containing at least one compound of general formula (I) according to Claim 1 and a pharmacologically acceptable diluent.
 - 14. A composition according to Claim 13 for the treatment of acute and chronic inflammatory, ischaemic and/or remodelling processes.
- 15. The process for the preparation of compositions according to Claim 13 or 14 characterized in that the compounds of general formula (I) according to Claim 1 together with customary auxiliaries are brought into a suitable application form.
 - 16. Use of the compounds of general formula (I) according to Claim 1 for the preparation of medicaments.
- 17. Use according to Claim 16 for the preparation of medicaments for the treatment of acute and chronic inflammatory, ischaemic and/or remodelling processes.
 - 18. Use according to Claim 17, wherein the process is chronic obstructive pulmonary disease, acute coronary syndrome, acute myocardial infarction or development of heart failure.
- 19. Process for controlling chronic obstructive pulmonary disease, acute coronary syndrome, acute myocardial infarction or development of heart failure in humans and animals by administration of a neutrophil elastase inhibitory amount of at least one compound of general formula (I) according to Claim 1.