Tercer Seminario

Andoni Latorre Galarraga

6. Sean $h \in H_1 \cap H_2$ y $g \in G$ como $h \in H_1$ y $H_1 \subseteq G$ $g^{-1}hg \in H_1$, además como $h \in H_2$ y $H_2 \subseteq G$ $g^{-1}hg \in H_2$ y se tiene que $g^{-1}hg \in H_1 \cap H_2$.

9. La condicion es que G sea abeliano.

abeliano \Rightarrow automorfismo

Es biyectivo porque el inverso siempre existe y es único Además,

$$\forall a, b \in G \quad f(ab) = b^{-1}a^{-1} = a^{-1}b^{-1} = f(a)f(b)$$
abeliano

abeliano \Leftarrow automorfismo

$$\forall a, b \in G \quad f(ab) = f(a)f(b) \Rightarrow b^{-1}a^{-1} = a^{-1}b^{-1} \Rightarrow ab(b^{-1}a^{-1})ba = ab(a^{-1}b^{-1})ba \Rightarrow ba = ab$$

12. Veamos que $f(ab) = f(a)f(b) \forall a, b \in G$.

n > 0

$$f(ab) = (ab)^n = \underbrace{ab \cdots ab}_{n} = \underbrace{a \cdots ab}_{n} \underbrace{b \cdots b}_{n} = a^n b^n = f(a)f(b)$$
abeliano

$$f(ab) = (ab)^{-n} = \underbrace{-(ab)\cdots - (ab)}_{n} = \underbrace{-a\cdots - a}_{n} \underbrace{-b\cdots - b}_{n} = a^{-n}b^{-n} = f(a)f(b)$$
abeliano

n = 0

$$f(ab) = (ab)^0 = 1 = 1 \cdot 1 = a^0b^0 = f(a)f(b)$$

No siempre es automorfismo. Sea $G = (\mathbb{Z}, +), f$ no es suprayectiva ya que con n = 2 se tiene que $f^{-1}(\{3\}) = \emptyset$