ACCQ 202 - Information theory

1 Source coding

Def. Source d'information : v.a. $X \in \mathcal{X}, |\mathcal{X}| < \infty$ telle que $X \sim P$ avec probabilités $\forall i \in [1; |\mathcal{X}|], p_i = P(X = i)$.

Def. Code pour une source $X : \mathcal{C} : \mathcal{X} \to \{0,1\}^*$.

Def. Longueur moyenne d'un code $\mathcal{C}: \mathcal{L}(\mathcal{C}) = \sum_i p_i l_i$ avec l_i la longueur du i^e mot codé.

Def. Un code est **non singulier** si $\forall x_i \neq x_j, C(x_i) \neq C(x_j)$.

Def. L'extension d'un code C est $\forall n, \forall x_1, \dots, x_n, C(x_1, \dots, x_n) \triangleq C(x_1) * C(x_2) \cdots * C(x_n)$.

Def. Un code est à décodage unique si son extension est non singulière.

Def. Un code est dit **instantané** si aucun mot code n'est le préfixe d'un autre. On dit alors qu'il s'auto-ponctue car on peut décoder en temps réel, symbole par symbole.

Th (**Inégalité de Kraft**). Soit C un code instantané avec longueurs (l_i) . Alors $\sum_i l_i \leqslant 1$. Inversement, soit (l_i) une famille de longueurs. Si elle satisfait l'inégalité de Kraft alors il existe un code à décodage unique avec ces longueurs.

Th (de McMillan). Le théorème précédent reste valable si l'on remplace décodage instantané par décodage unique.

Cor. $\min_{\mathcal{C} \ \hat{a} \ d\acute{e}codage \ unique} \mathcal{L}(\mathcal{C}) = \min_{\mathcal{C} \ \hat{a} \ d\acute{e}codage \ instantan\acute{e}} \mathcal{L}(\mathcal{C}).$

Th (Borne entropique). Pour tout \mathcal{C} à décodage unique, $\mathcal{L}(\mathcal{C}) \geqslant H(X)$, où $H(X) = -\sum_i pi \log_2(p_i)$ est l'entropie de la source, avec égalité si et seulement si $\forall i, p_i = 2^{-l_i}$.

Th (Inégalité de Jensen). Si f est convexe, alors $\mathbf{E}(f(X)) \geqslant f(\mathbf{E}(X))$. Si la convexité est stricte alors $(\mathbf{E}(f(X))) \geqslant f(\mathbf{E}(X))$ (f est constante).

Def. La divergence de Kullback-Leibler, ou entropie relative, de deux probabilités P et Q est définie par $D_{KL}(P||Q) = \sum_i p_i \log\left(\frac{p_i}{q_i}\right)$.

C'est une mesure de dissimilarité entre les deux distributions de probabilités.

Cor. On a $D_{KL}(P||Q) \geqslant 0$ avec égalité si et seulement si $\forall i, p_i = q_i$.