Project Development Phase Model Performance Test

Date	28 June 2025	
Team ID	LTVIP2025TMID45505	
Project Name		
	CleanTech: Transforming Waste Management with Transfer Learning	
Maximum Marks		

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.N	Parameter	Values	Screenshot
Ο.			
1. Model Summary	VGG16 pre-trained model with custom top layers GlobalAveragePooling		
		• Dense(128, relu)	
		• Dense(3, softmax)	
2.	Accuracy	Training Accuracy - 0.96	
		Validation Accuracy -0.99	
3.	Fine Tunning Result(if Done)	Validation Accuracy -0.99	

```
1.

# Step 4: Load Pre-trained VGG16
vgg = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
vgg.trainable = False

inputs = Input(shape=(224, 224, 3))
x = vgg(inputs, training=False)
x = Flatten()(x)
x = Dropout(0.5)(x)
outputs = Dense(3, activation='softmax')(x)

model = Model(inputs, outputs)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```