Duração: 90 minutos

## Teste de Análise Matemática EE - versão A

Curso: MIEEIC Nr.: \_\_\_\_\_ Nome: \_

## GRUPO I

Em cada uma das perguntas seguintes, assinale a resposta correta no quadrado correspondente. Cada resposta correta vale 1 valor.

1. Qual dos seguintes pontos pertence à curva  $\vec{r}(t) = t \vec{e}_1 + t^2 \vec{e}_2 + (2+t) \vec{e}_3$  em  $\mathbb{R}^3$ ?

$$(1,4,4)$$
  $\square$ ;  $(2,4,4)$   $\square$ ; Nenhum dos anteriores.

2. Qual das seguintes curvas é representada pela função vetorial  $\vec{r}(t) = (t, 4 - t^2), t \in [0, 3]$ ?



Nenhuma das anteriores.

3. Qual das seguintes expressões representa a curva  $\mathcal{C}$  na figura, percorrida a partir do ponto (0,-2) e com fim no ponto (0,2)?



 $\vec{r}(t) = (2\cos t, 2\sin t), \ t \in [0, \pi]$ 

$$\vec{r}(t) = (2\sin(\pi - t), 2\cos(\pi - t)), \ t \in [0, \pi]$$

$$\vec{r}(t) = (2\sin t, 2\cos t), \ t \in [0, \pi]$$

$$\vec{r}(t) = (2\sin(\frac{\pi}{2} - t), 2\cos(\frac{\pi}{2} - t)), \ t \in [0, \pi]$$

Nenhuma das anteriores.

4. Qual das seguintes funções tem domínio  $D = ]0, +\infty[?]$ 

$$\vec{r}(t) = (\sqrt{t}, t)$$

$$\vec{r}(t) = (\frac{1}{t^2 + 1}, \ln t)$$

$$f(x,y) = \frac{1}{x^2 + y^2}$$

$$f(x,y) = \sqrt{xy}$$

Nenhuma das anteriores.

5. Considere a função real de duas variáveis reais,  $f(x,y) = \ln(x.y)$ . Qual destes domínios planos representa o domínio de f?



Nenhuma das anteriores.

6. Quais das seguintes curvas representam as curvas de nível da função  $f(x,y) = y + x^2$ ?





Nenhuma das anteriores.

7. Considere a função real de duas variáveis reais definida no seu domínio,  $f(x,y) = \frac{2x-y}{x+y}$  e o  $\lim_{(x,y)\to(0,0)} f(x,y)$ .

Indique qual a afirmação verdadeira:

Existe 
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 e é igual a zero .

Não existe 
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 pois  $\lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right) \neq \lim_{y\to 0} \left(\lim_{x\to 0} f(x,y)\right)$ .

Nada se pode concluir sobre o valor do limite.

Nenhuma das anteriores.

GRUPO II

## Apresente todos os cálculos efectuados.

- 1. Considere a função vetorial em  $\mathbb{R}^3$ ,  $\vec{r}(t) = \cos t \cdot \vec{u} \sin t \cdot \vec{v} + 4t \cdot \vec{w}$  onde  $\vec{u} = \vec{e}_2 + \vec{e}_1$ ,  $\vec{w} = \vec{e}_3$ ,  $\vec{v} = -\vec{e}_1 + \vec{e}_2$ .
  - (a) Escreva a função à custa das suas componentes.

(b) Se considerarmos a função vetorial  $\vec{r}(t)$  como a trajetória de uma partícula ao longo do tempo t, em que ponto do espaço está a partícula no instante t=0? E no instante  $t=4\pi$ ?

(c) Calcule a distância percorrida (em cm) pela partícula entre t=0 e  $t=4\pi$ ? **Sug**: Use a fórmula  $\int_a^b \|\vec{r}'(t)\|dt$ .

- 2. Considere a função vetorial  $\vec{r}(t) = (\frac{2t}{t+1}, \exp(3t-1))$ .
  - (a) Determine o vetor tangente à curva descrita por  $\vec{r}(t)$  no instante t=2.

(b) Determine a equação da reta tangente à curva representada por  $\vec{r}(t)$  no mesmo instante.

(c) Determine o ponto em que o vetor tangente à curva representada por  $\vec{r}(t)$  é paralelo à reta  $\left\{ \begin{array}{l} x(t)=2t\\ y(t)=\frac{3}{e}t \end{array} \right. \ t\in\mathbb{R}$ 

3. A partícula A segue a trajetória  $\vec{r}(t)=(1-2t,3t-1),$  com  $t\in[0,1]$  e a partícula B segue a trajetória  $\vec{s}(t)=(4t,2t-\frac{5}{6}),$  com  $t\in\mathbb{R}.$ 

Verifique se as partículas chocam uma com a outra. Se a resposta for afirmativa, indique o instante e o ponto de choque das duas partículas.

- 4. A corrente elétrica (C) de um aparelho, com uma determinada potência (P) e ligado com uma determinada voltagem (V) é dada por  $C(P,V)=\frac{P}{V}$ . Considere a unidade da corrente elétrica,  $Amp\`ere$ ; a unidade da potência, Watt e a unidade da voltagem, volt.
  - (a) Calcule C(450, 100) e diga qual o seu significado.

- (b) Determine o domínio da função C(P, V).
- (c) Determine  $\lim_{(P,V)\to(0,0)} C(P,V)$ .