Nume si grupa:

Examen cu cărțile închise. Scrieți numele pe fiecare pagină. Scrieți clar și citeț. Explicați în cuvinte rezolvarea problemelor. Succes!

P1 (2.5p). Pentru sistemul din figură, cu k>0:

- A) (0.5p) Determinati functia de transfer echivalentă.
- **B)** (0.5p) Determinați valorile lui k pentru care sistemul închis este supra-amortizat.
- **C)** (0.5p) Alegeți o valoare pozitivă pentru k și calculați eroarea staționară pentru o intrare treaptă r(t)=1, $t\geq 0$.
- **D)** (1p) Pentru *k*=4, determinati un model în spatiul stărilor în forma standard matricială (scrieți ecuația de stare și ecuația de ieșire).

P2 (1.5p). Pentru un sistem cu reacție negativă unitară și ecuatia caracteristică:

$$1 + k \frac{1}{s(s^2 + 2s + 2)} = 0$$

A) (1p) Desenați locul rădăcinilor pentru $k \in [0, \infty)$. (Nu există puncte de desprindere. Calculați inclusiv asimptotele, intersectia cu axa imaginară, desenati locul rădăcinilor)

B) (0.5p) Determinați valorile lui k pentru care sistemul închis este stabil.

Nume si grupa:

Examen cu cărțile închise. Scrieți numele pe fiecare pagină. Scrieți clar si citet. Explicati în cuvinte rezolvarea problemelor. Succes!

P1 (2.5p). Pentru sistemul din figură, cu k>0:

- A) (0.5p) Determinati functia de transfer echivalentă.
- **B)** (0.5p) Determinați valorile lui *k* pentru care sistemul închis este supra-amortizat.
- **C)** (0.5p) Alegeți o valoare pozitivă pentru k și calculați eroarea staționară pentru o intrare treaptă r(t)=1, $t\geq 0$.
- **D)** (1p) Pentru k=4, determinati un model în spatiul stărilor în forma standard matricială (scrieți ecuația de stare și ecuația de ieșire).

P2 (1.5p). Pentru un sistem cu reacție negativă unitară și ecuatia caracteristică:

$$1 + k \frac{1}{s(s^2 + 2s + 2)} = 0$$

A) (1p) Desenați locul rădăcinilor pentru $k \in [0, \infty)$. (Nu există puncte de desprindere. Calculați inclusiv asimptotele, intersectia cu axa imaginară, desenati locul rădăcinilor)

B) (0.5p) Determinați valorile lui k pentru care sistemul închis este stabil.

Nume si grupa:

Examen cu cărțile închise. Scrieți numele pe fiecare pagină. Scrieți clar si citet. Explicați în cuvinte rezolvarea problemelor. Succes!

P1 (2.5p). Pentru sistemul din figură, cu k>0:

- **A)** (0.5p) Determinati functia de transfer echivalentă.
- **B)** (0.5p) Determinați valorile lui k pentru care sistemul închis este supra-amortizat.
- C) (0.5p) Alegeți o valoare pozitivă pentru k și calculați eroarea staționară pentru o intrare treaptă r(t)=1, $t\geq 0$.
- **D)** (1p) Pentru *k*=4, determinati un model în spatiul stărilor în forma standard matricială (scrieți ecuația de stare și ecuația de ieșire).

P2 (1.5p). Pentru un sistem cu reacție negativă unitară și ecuația caracteristică:

$$1 + k \frac{1}{s(s^2 + 2s + 2)} = 0$$

- **A)** (1p) Desenați locul rădăcinilor pentru $k \in [0, \infty)$. (Nu există puncte de desprindere. Calculați inclusiv asimptotele, intersectia cu axa imaginară, desenati locul rădăcinilor)
- **B)** (0.5p) Determinați valorile lui *k* pentru care sistemul închis este stabil.

Nume și grupa:

Examen cu cărtile închise. Scrieti numele pe fiecare pagină. Scrieti clar și citet. Explicați în cuvinte rezolvarea problemelor. Succes!

P1 (1.5p). Pentru un sistem cu funcția de transfer:

$$G(s) = \frac{s(10^{-3}s + 1)}{10^{-2}s^2 + 10^{-1}s + 1}$$

A) (1p) Desenati diagrama Bode.

B) (0.5p) Determinați pulsațiile pentru care sistemul amplifică semnalele de intrare sinusoidale.

P2. (1p) Se consideră un sistem de control cu reacție negativă unitară, cu funcția de transfer a procesului:

 $G(s) = \frac{1}{s^2(s+2)}$. Se cere să se calculeze un regulator PD ideal $G_{PD}(s) = K_P + K_D s$ astfel încât polii dominanți ai sistemului închis să fie $r_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} j$.

P3. (2.5p) Se consideră un proces descris în spatiul stărilor de:

$$\dot{x_1}(t) = x_2(t)
\dot{x_2}(t) = 9x_1(t) - 2u(t)$$

A) (0.5p) Analizați stabilitatea internă a acestui sistem și explicati rezultatul.

B) (0.5p) Arătați că sistemul este controlabil.

C) (1.5p) Stabilizați sistemul cu o lege de reglare după stare u(t)=-Kx(t) astfel încât polii sistemului închis să fie $r_1=-1$ si $r_2 = -3$.

$$G_1(z) = \frac{z-1}{z^2-4}, \quad G_2(z) = \frac{z+1}{z^2+3z+2}, G_3(z) = \frac{z}{z^2+\frac{1}{4}}$$

Nume și grupa:

Examen cu cărțile închise. Scrieți numele pe fiecare pagină. Scrieți clar și citeț. Explicati în cuvinte rezolvarea problemelor. Succes!

P1 (1.5p). Pentru un sistem cu funcția de transfer:

$$G(s) = \frac{s(10^{-3}s + 1)}{10^{-2}s^2 + 10^{-1}s + 1}$$

A) (1p) Desenati diagrama Bode.

B) (0.5p) Determinați pulsațiile pentru care sistemul amplifică semnalele de intrare sinusoidale.

P2. (1p) Se consideră un sistem de control cu reacție negativă unitară, cu funcția de transfer a procesului:

 $G(s) = \frac{1}{s^2(s+2)}$. Se cere să se calculeze un regulator PD ideal $G_{PD}(s) = K_P + K_D s$ astfel încât polii dominanți ai sistemului închis să fie $r_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}j$.

P3. (2.5p) Se consideră un proces descris în spatiul stărilor de:

$$\dot{x_1}(t) = x_2(t)
\dot{x_2}(t) = 9x_1(t) - 2u(t)$$

A) (0.5p) Analizați stabilitatea internă a acestui sistem și explicati rezultatul.

B) (0.5p) Arătați că sistemul este controlabil.

C) (1.5p) Stabilizați sistemul cu o lege de reglare după stare u(t)=-Kx(t) astfel încât polii sistemului închis să fie $r_1=-1$ si $r_2 = -3$.

P4. (1p) Analizați stabilitatea următoarelor sisteme discrete: **P4.** (1p) Analizați stabilitatea următoarelor sisteme discrete:

$$G_1(z) = \frac{z-1}{z^2-4}, \quad G_2(z) = \frac{z+1}{z^2+3z+2}, G_3(z) = \frac{z}{z^2+\frac{1}{4}} \qquad G_1(z) = \frac{z-1}{z^2-4}, \quad G_2(z) = \frac{z+1}{z^2+3z+2}, G_3(z) = \frac{z}{z^2+\frac{1}{4}} \qquad G_1(z) = \frac{z-1}{z^2-4}, \quad G_2(z) = \frac{z+1}{z^2+3z+2}, G_3(z) = \frac{z}{z^2+\frac{1}{4}} \qquad G_2(z) = \frac{z-1}{z^2+3z+2}, G_3(z) = \frac{z-1}{$$

Nume si grupa:

Examen cu cărtile închise. Scrieti numele pe fiecare pagină. Scrieti clar și citet. Explicați în cuvinte rezolvarea problemelor. Succes!

P1 (1.5p). Pentru un sistem cu funcția de transfer:

$$G(s) = \frac{s(10^{-3}s + 1)}{10^{-2}s^2 + 10^{-1}s + 1}$$

A) (1p) Desenati diagrama Bode.

B) (0.5p) Determinați pulsațiile pentru care sistemul amplifică semnalele de intrare sinusoidale.

P2. (1p) Se consideră un sistem de control cu reacție negativă unitară, cu funcția de transfer a procesului:

 $G(s) = \frac{1}{s^2(s+2)}$. Se cere să se calculeze un regulator PD ideal $G_{PD}(s) = K_P + K_D s$ astfel încât polii dominanți ai sistemului închis să fie $r_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}j$.

P3. (2.5p) Se consideră un proces descris în spatiul stărilor

$$\dot{x_1}(t) = x_2(t)$$

 $\dot{x_2}(t) = 9x_1(t) - 2u(t)$

A) (0.5p) Analizați stabilitatea internă a acestui sistem și explicati rezultatul.

B) (0.5p) Arătați că sistemul este controlabil.

C) (1.5p) Stabilizați sistemul cu o lege de reglare după stare u(t)=-Kx(t) astfel încât polii sistemului închis să fie $r_1=-1$ si $r_2 = -3$.

P4. (1p) Analizati stabilitatea următoarelor sisteme discrete:

$$G_1(z) = \frac{z-1}{z^2-4}, \quad G_2(z) = \frac{z+1}{z^2+3z+2}, G_3(z) = \frac{z}{z^2+\frac{1}{z^2}}$$

Nume și grupa:

Examen cu cărțile închise. Scrieți numele pe fiecare pagină. Scrieți clar și citeț. Explicați în cuvinte rezolvarea problemelor. Succes!

P1 (2.5p). Pentru sistemul din figură, cu k>0:

- **A)** (0.5p) Determinați funcția de transfer echivalentă.
- **B)** (0.5p) Determinați valorile lui k pentru care sistemul închis este sub-amortizat.
- C) (0.5p) Alegeți o valoare pozitivă pentru k și calculați eroarea staționară pentru o intrare rampă r(t)=t, $t\geq 0$.
- **D)** (1p) Pentru k=1, determinati un model în spatiul stărilor în forma standard matricială (scrieți ecuația de stare si ecuația de ieșire).

P2 (1.5p). Pentru un sistem cu reactie negativă unitară si ecuatia caracteristică:

$$1 + k \frac{s}{s^2 + 2s + 2} = 0$$

- A) (1p) Desenați locul rădăcinilor pentru $k \in [0, \infty)$. Calculați inclusiv asimptotele, punctul de prindere, desenați locul rădăcinilor)
- **B)** (0.5p) Analizați stabilitatea sistemului închis utilizând locul rădăcinilor, cu referire la polii sistemului închis pentru $k \in [0, \infty)$.

Nume si grupa:

Examen cu cărțile închise. Scrieți numele pe fiecare pagină. Scrieți clar și citeț. Explicati în cuvinte rezolvarea problemelor. Succes!

P1 (2.5p). Pentru sistemul din figură, cu k>0:

- **A)** (0.5p) Determinați funcția de transfer echivalentă.
- **B)** (0.5p) Determinați valorile lui *k* pentru care sistemul închis este sub-amortizat.
- C) (0.5p) Alegeți o valoare pozitivă pentru k și calculați eroarea staționară pentru o intrare rampă r(t)=t, $t\geq 0$.
- **D)** (1p) Pentru k=1, determinati un model în spatiul stărilor în forma standard matricială (scrieți ecuația de stare și ecuația de ieșire).

P2 (1.5p). Pentru un sistem cu reacție negativă unitară și ecuatia caracteristică:

$$1 + k \frac{s}{s^2 + 2s + 2} = 0$$

- **A)** (1p) Desenați locul rădăcinilor pentru $k \in [0, \infty)$. *Calculați* inclusiv asimptotele, punctul de prindere, desenați locul rădăcinilor)
- **B)** (0.5p) Analizati stabilitatea sistemului închis utilizând locul rădăcinilor, cu referire la polii sistemului închis pentru $k \in [0, \infty)$.

Nume si grupa:

Examen cu cărțile închise. Scrieți numele pe fiecare pagină. Scrieți clar și citeț. Explicați în cuvinte rezolvarea problemelor. Succes!

P1 (2.5p). Pentru sistemul din figură, cu k>0:

- A) (0.5p) Determinați funcția de transfer echivalentă.
- **B)** (0.5p) Determinați valorile lui k pentru care sistemul închis este sub-amortizat.
- C) (0.5p) Alegeți o valoare pozitivă pentru k și calculați eroarea stationară pentru o intrare rampă r(t)=t, $t\geq 0$.
- **D)** (1p) Pentru k=1, determinati un model în spatiul stărilor în forma standard matricială (scrieți ecuația de stare și ecuația de ieșire).

P2 (1.5p). Pentru un sistem cu reactie negativă unitară si ecuația caracteristică:

$$1 + k \frac{s}{s^2 + 2s + 2} = 0$$

- **A)** (1p) Desenați locul rădăcinilor pentru $k \in [0, \infty)$. *Calculați* inclusiv asimptotele, punctul de prindere, desenați locul rădăcinilor)
- **B)** (0.5p) Analizati stabilitatea sistemului închis utilizând locul rădăcinilor, cu referire la polii sistemului închis pentru $k \in [0, \infty)$.

Nume si grupa:

Examen cu cărtile închise. Scrieti numele pe fiecare pagină. Scrieti clar și citet. Explicați în cuvinte rezolvarea problemelor. Succes!

P1 (1.5p). Pentru un sistem cu funcția de transfer:

$$G(s) = \frac{10\dot{s}}{(10^{-1}s + 1)(10^{-2}s + 1)}$$

A) (1p) Desenati diagrama Bode.

B) (0.5p) Determinați pulsațiile pentru care sistemul amplifică semnalele de intrare sinusoidale.

P2. (1p) Se consideră un sistem de control cu reactie negativă unitară, cu funcția de transfer a procesului:

 $G(s) = \frac{1}{s(s+2)}$. Se cere să se calculeze un regulator PI ideal $G_{PI}(s) = K_P + K_I \frac{1}{s}$ astfel încât polii dominanți ai sistemului închis să fie $r_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} j$...

P3. (2.5p) Se consideră un proces descris în spațiul stărilor de:

$$\begin{cases} \dot{x_1}(t) = x_2(t) \\ \dot{x_2}(t) = 4x_1(t) - u(t) \end{cases}$$

A) (0.5p) Analizati stabilitatea internă a acestui sistem si explicați rezultatul.

B) (0.5p) Arătati că sistemul este controlabil.

C) (1.5p) Stabilizați sistemul cu o lege de reglare după stare u(t)=-Kx(t) astfel încât polii sistemului închis să fie $r_1=-1$ și $r_2 = -4$.

$$G_1(z) = \frac{z}{z^2 + 9}, \quad G_2(z) = \frac{z}{z^2 - \frac{1}{4}}, \quad G_3(z) = \frac{z}{z^2 + \frac{5}{2}z + 1} \\ G_1(z) = \frac{z}{z^2 + 9}, \quad G_2(z) = \frac{z}{z^2 - \frac{1}{4}}, \quad G_3(z) = \frac{z}{z^2 + \frac{5}{2}z + 1} \\ G_1(z) = \frac{z}{z^2 + \frac{5}{2}z + 1} \\ G_2(z) = \frac{z}{z^2 + \frac{5}{2}z + 1} \\ G_3(z) = \frac{z}{z^2 +$$

Nume si grupa:

Examen cu cărțile închise. Scrieți numele pe fiecare pagină. Scrieți clar și citeț. Explicati în cuvinte rezolvarea problemelor. Succes!

P1 (1.5p). Pentru un sistem cu funcția de transfer:

$$G(s) = \frac{10s}{(10^{-1}s + 1)(10^{-2}s + 1)}$$

A) (1p) Desenati diagrama Bode.

B) (0.5p) Determinați pulsațiile pentru care sistemul amplifică semnalele de intrare sinusoidale.

P2. (1p) Se consideră un sistem de control cu reactie negativă unitară, cu funcția de transfer a procesului:

 $G(s) = \frac{1}{s(s+2)}$. Se cere să se calculeze un regulator PI ideal $G_{PI}(s) = K_P + K_I \frac{1}{s}$ astfel încât polii dominanți ai sistemului închis să fie $r_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} j_{...}$

P3. (2.5p) Se consideră un proces descris în spațiul stărilor de:

$$\begin{cases} \dot{x_1}(t) = x_2(t) \\ \dot{x_2}(t) = 4x_1(t) - u(t) \end{cases}$$

A) (0.5p) Analizati stabilitatea internă a acestui sistem si explicați rezultatul.

B) (0.5p) Arătati că sistemul este controlabil.

C) (1.5p) Stabilizați sistemul cu o lege de reglare după stare u(t)=-Kx(t) astfel încât polii sistemului închis să fie $r_1=-1$ și $r_2 = -4$.

P4. (1p) Analizați stabilitatea următoarelor sisteme discrete: P4. (1p) Analizați stabilitatea următoarelor sisteme discrete: P4. (1p) Analizați stabilitatea următoarelor sisteme discrete:

$$G_1(z) = \frac{z}{z^2 + 9}, \ G_2(z) = \frac{z}{z^2 - \frac{1}{4}}, \ G_3(z) = \frac{z}{z^2 + \frac{5}{2}z + 1}$$

Nume și grupa:

Examen cu cărțile închise. Scrieți numele pe fiecare pagină. Scrieți clar si citet. Explicați în cuvinte rezolvarea problemelor. Succes!

P1 (1.5p). Pentru un sistem cu funcția de transfer:

$$G(s) = \frac{10s}{(10^{-1}s + 1)(10^{-2}s + 1)}$$

A) (1p) Desenati diagrama Bode.

B) (0.5p) Determinați pulsațiile pentru care sistemul amplifică semnalele de intrare sinusoidale.

P2. (1p) Se consideră un sistem de control cu reactie negativă unitară, cu funcția de transfer a procesului:

 $G(s) = \frac{1}{s(s+2)}$. Se cere să se calculeze un regulator PI ideal $G_{PI}(s) = K_P + K_I \frac{1}{s}$ astfel încât polii dominanți ai sistemului închis să fie $r_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} j$...

P3. (2.5p) Se consideră un proces descris în spațiul stărilor de:

$$\begin{cases} \dot{x_1}(t) = x_2(t) \\ \dot{x_2}(t) = 4x_1(t) - u(t) \end{cases}$$

A) (0.5p) Analizati stabilitatea internă a acestui sistem si explicați rezultatul.

B) (0.5p) Arătati că sistemul este controlabil.

C) (1.5p) Stabilizati sistemul cu o lege de reglare după stare u(t)=-Kx(t) astfel încât polii sistemului închis să fie $r_1=-1$ și $r_2 = -4$.

$$G_1(z) = \frac{z}{z^2 + 9}, \ G_2(z) = \frac{z}{z^2 - \frac{1}{4}}, \ G_3(z) = \frac{z}{z^2 + \frac{5}{2}z + 1}$$