MATEMATIK 2 - OPVARIMNING 12

a) Befragt systemet $\dot{x} = \lambda x + u_n(t)$ med $u_n(t) = e^{int}$. Hvad skal der golde om egenværdien $\lambda \in C$ for at der findes en løsning at formen $x = H(in)e^{int}$? Sol Hvis $x(t) = H(in)e^{int}$ er en løsning, så får man

ved indsattelse i differentialligningen

in. $H(in)e^{int} = \lambda(H(in)e^{int}) + e^{int} \iff H(in)(in-\lambda) = 1$

Hvortra vi ser at $\lambda \neq in$ hvis der skal vare en løsning på formen $x(t) = H(in)e^{int}$.

Med andre ord: s=in må ikke være en rod i det karakteristiske polynomium. b) Hvilke betingelser skal egenværdierne for A (2) optylde, for at Fourierrækkernetoden kan anvendes

På ethvert system $\dot{x}(t) = A \dot{x}(t) + b u(t)$ Som ikke er asymptotisk stabilt og hvor u(t) er

211 periodisk, stykvis differentiabel og kontinuert?

Sol

Softning 2.21 siger: softes $u(t) = e^{st}$ hvor s ikke er rod i det karakteristiske polynomium for t er løsningen af formen $x(t) = H(s)e^{st}$.

I Fourierroldemetoden har løsningen tormen $x(t) = \sum_{n=-\infty}^{\infty} c_n H(in) e^{int}$

Da Fourierrokkemetoden udspringer tra sætning 221, blot hvor s=im, tristes man til at sige, at Fourier-rokkemetoden tor et ikke asymptotisk stabilt system kræver, at in ikke er en rod i det karakteristiske Polynomium for A.

Altså skal systemet enten være asymptotisk stabilt eller ustabilt for at Fourierrækhemetoden skal leume anvendes.