Finite Rings and Fields Computer Algebra for Cryptography (B-KUL-H0E74A)

1 Rings

Rings are sets of elements with two operations + and \cdot , which are compatible, i.e. such that the distributive law holds. The formal definition is given in Appendix A.

Typical examples of well-known rings are the integers \mathbb{Z} and the integers modulo N, denoted as $\mathbb{Z}/N\mathbb{Z}$ or \mathbb{Z}_N . The most important distinction between a ring and a field, is that the operation \cdot does not have to be commutative (an example of this are 2×2 -matrices), and that not every non-zero element has to have an inverse.

In Magma, the above rings can be constructed as

```
Z := Integers(); // rings of integers
ZN := Integers(N); // integers modulo N
a := Random(ZN) // gives a random element in ZN
b := ZN ! 11; // forces the integer 11 into ZN
```

Exercise 1.

- Construct the ring of integers \mathbb{Z} and also the ring of integers modulo 105.
- Generate a couple of random elements in \mathbb{Z}_N and ask for their inverse. What do you see?
- Use the built-in XGCD function to compute the inverse via the greatest common divisor.
- Compute the inverse of an element using Lagrange's theorem from the lectures. What is $\varphi(N)$ in this case? What is the expression for the inverse as a power of the element? Verify that these methods all give the same answer.

2 Prime fields

When all non-zero elements are invertible, and the operation \cdot is commutative, the ring is called a field. Examples are \mathbb{Q} , \mathbb{R} , \mathbb{C} , which are all infinite. Note that \mathbb{Z} is not a field since the only invertible elements are ± 1 . We are mostly interested in **finite** fields. The *characteristic* of a field is the smallest integer n such that

$$\underbrace{1+1+\ldots+1}_{n \text{ times}}$$

equals zero if such n exists; if such n does not exist, we say that the field has characteristic zero. One can prove that the only possibilities for field charateristics are zero (such as \mathbb{Q} , \mathbb{R} and \mathbb{C}) and primes. The easiest fields with prime characteristic are \mathbb{Z}_p , for any prime p, which are typically denoted \mathbb{F}_p or GF(p). Computing in this field is simply the well-known modular arithmetic. The fastest way to construct a finite field in Magma is to use the command $GF(q:RngIntElt) \rightarrow FldFin$.

Exercise 2.

• Construct a finite field with 31 elements, and write a for loop that verifies Fermat's little theorem, i.e. that for all elements in \mathbb{F}_p one has $a^p \equiv a \mod p$.

As explained in the lectures, there exist finite fields of the form \mathbb{F}_{p^n} for every prime p and extension degree n. For this we will require polynomials over \mathbb{F}_p that are irreducible. You can construct a polynomial ring over any coefficient ring using the command PolynomialRing(R::Rng) -> RngUPol.

Exercise 3.

- Construct a polynomial ring over your finite field of 31 elements with variable name x. If the name of your ring is R, then you can always access x simply as R.1.
- Write a function GenRandomIrreduciblePol(K::FldFin, n::RngIntElt) -> pol:RngUPolElt which takes in a finite field K, constructs a polynomialring over the field and generates random monic polynomials of degree n until one is irreducible. You can use the Magma function IsIrreducible(f::RngUPolElt) -> BoolElt.

3 Extension fields

As explained in the lectures, we can construct finite fields of the form \mathbb{F}_{p^n} for every prime p and extension degree n.

Important remark: Although the finite field \mathbb{F}_p corresponds to computing with integers modulo p, the field \mathbb{F}_{p^n} does **not** correspond to computing modulo

 p^n . Indeed, it is easy to see that the element $p \mod p^n$ does not have an inverse modulo p^n , which shows that not all non-zero elements have an inverse.

To construct an extension field \mathbb{F}_{p^n} one can proceed in exactly the same way as the complex numbers \mathbb{C} are constructed from the reals \mathbb{R} , i.e. by adjoining a root of an irreducible polynomial:

$$\mathbb{C}\langle i \rangle \cong \frac{\mathbb{R}[x]}{(x^2+1)}$$
.

Here the quantity i is defined as a formal root of the irreducible polynomial $x^2 + 1 \in \mathbb{R}[x]$, i.e. $i^2 + 1 = 0$. In particular, we recover the well known identity $i^2 = -1$, which allows to reduce all powers of i higher than 1. Hence, \mathbb{C} is seen as a two-dimensional vectorspace over \mathbb{R} , and we can write $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$.

Similarly we can construct the field \mathbb{F}_{p^n} by adjoining a formal root of an irreducible polynomial of degree n over \mathbb{F}_p . If you have an irreducible polynomial f of degree n over \mathbb{F}_p , you can create the extension field as:

Fpn<w> := ext<Fp | f>;

The above notation means that w is the name of a formal root of f, just like in the case of the complexes above. In particular, if you would evaluate the polynomial f in w you would obtain 0. The elements in \mathbb{F}_{p^n} can therefore be represented as polynomials in w of degree strictly less than n and with coefficients in \mathbb{F}_p .

Exercise 4.

- Use the built-in Magma function RandomIrreduciblePolynomial(K::FldFin, n::RngIntElt) -> RngUPolElt to generate a polynomial f of degree 3 over \mathbb{F}_{31} which is irreducible.
- Construct the finite field \mathbb{F}_{31^3} as above, and verify that indeed w is a root of f. You can use the built-in function Evaluate to do so.
- Generate a random element in \mathbb{F}_{31^3} by calling the Random function, and print the element. You will see that the element is indeed represented as a polynomial in \mathbf{w} of degree less than n.
- Compute the inverse of the element using $^{-1}$ and also using the XGCD algorithm. Note that to be able to run XGCD, your element should be first represented as a polynomial over \mathbb{F}_p .
- If you run RandomIrreduciblePolynomial again you will see that there are many irreducible polynomials of degree 3 over \mathbb{F}_{31} . In general, there will be roughly p^n/n monic irreducible polynomials of degree n (when p is large compared to n).

The above exercise showed that in general there are many irreducible polynomials of degree n over \mathbb{F}_p . For each of these choices, you will get a finite field

with p^n elements. Let f and g be two irreducible polynomials of degree n over \mathbb{F}_p , then using Magma you can construct the two finite fields:

```
Fpn1<w1> := ext<Fp | f>;
Fpn2<w2> := ext<Fp | g>;
```

Here w1 is a formal root of f and w2 is a formal root of g.

An amazing property of finite fields is that if you create an extension field using an irreducible polynomial f as above, then **all** irreducible polynomials of degree n will split **completely** over \mathbb{F}_{p^n} . This shows that up to isomorphism there is only one finite field with p^n elements. Using the above notation, one of these isomorphisms is given by mapping w1 to w2, but mapping w1 to any root of g is also a valid isomorphism.

Exercise 5.

- Use the built-in Magma function RandomIrreduciblePolynomial(K::FldFin, n::RngIntElt) -> RngUPolElt to generate two polynomials f and g of degree 3 over F₃₁ which are irreducible.
- Construct the finite field \mathbb{F}_{31^3} using f, and ask for the roots of f and g in \mathbb{F}_{31^3} . For this you can use the built-in function Roots(f::RngUPolElt[FldRat], R::FldPad) -> SeqEnum which takes in a polynomial f and a field R and returns the roots of f in the field R. Note that both f as well as g split completely over \mathbb{F}_{31^3} , and that w1 is indeed one of the roots of f.
- Construct the finite field \mathbb{F}_{31^3} using g, and ask again for the roots of f and g. Now w2 will be a root of g. Since w2 is a root of g, and you already know the roots of g in terms of w1, you see that any isomorphism must map this root w2 to one of the three roots in terms of w1.

A Definitions

A ring $(R, +, \cdot)$ consists of a non-empty set R with two operations + and \cdot such that

- for all $a, b \in R$ we have $a + b \in R$ and $a \cdot b \in R$;
- for all $a, b, c \in R$ we have a + (b + c) = (a + b) + c and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
- there exists a $0 \in R$ such that for all $a \in R$ we have a + 0 = a = 0 + a;
- there exists a $1 \in R$ such that for all $a \in R$ we have $1 \cdot a = a = a \cdot 1$;
- for all $a \in R$ there exists a $-a \in R$ such that a + (-a) = 0 = (-a) + a;
- for all $a, b \in R$ we have a + b = b + a;

• for all $a,b,c \in R$ we have $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + a \cdot c$.

A field $(F,+,\cdot)$ is a ring with two additional properties:

- 1. for all $a, b \in F$ we have $a \cdot b = b \cdot a$;
- 2. for all $a \in F$ (with $a \neq 0$) there exists an element a^{-1} such that $a \cdot a^{-1} = 1$.