第一章 实数集与函数

§1 实数

一、集合

集合是现代数学一个最基本的概念。集合论的奠基人是 Cantor。数学的各个分支普遍地运用集合的符号和方法,我们要养成用集合的语言来表述数学命题的习惯。

1、集合的概念

具有某种性质的事物的全体称为一个<u>集合</u>,组成集合的每一个事物称为该集合的<u>元素</u>。 解释下面记号: $a \in A, a \notin A, \emptyset$

"集合"和"元素"是不定义的名词,"属于"也是不定义的关系。

2、集合的关系

解释下面记号: $A \subset B(B \supset A)$, A = B (定义是 $A \subset B, B \subset A$)

3、映射

设V和V'是任意两个非空集合,如果存在某个对应关系T,使得对 $\forall \alpha \in V$,在V'中有唯一的元素 α' 与之对应,则称T是V到V'的一个映射。记为

$$T: V \to V', \alpha \mapsto \alpha'$$
.

称 α' 为 α 在 T 下的象,记为 $T(\alpha) = \alpha'$,并称 α 为 α' 在 T 下的一个原象。

记

$$T(V) = \{T(\alpha) \mid \alpha \in V\} \subset V'$$

它表示V在映射T下象的集合。

记

$$T^{-1}(\alpha') = \{ \alpha \mid T(\alpha) = \alpha' \} \subset V$$

它表示 $\alpha' \in V'$ 在映射T下原象的集合。

如果T(V) = V', 即V'中的所有元素都有原象,则称 $T \in V$ 到V'的满射。

如果V 中任意两个不同的元素在V' 中的象也不同,即当 $T(\alpha) = T(\beta)$ 时,必有 $\alpha = \beta$,

则称 $T \in V$ 到V'的单射。

如果T既是满射又是单射,则称T是V到V'的双射或——对应。

当T是V到V'的一一对应,则对 $\forall \alpha' \in V'$,则有唯一的 $\alpha \in V$ 与之对应,这样定义了V'的映射,称为T的逆映射,记为 $T^{-1}: V' \to V, \alpha' \mapsto \alpha$ 。

4、可数集与不可数集

引例: 古阿拉伯人,只会数 1,如何知道谁口袋里的贝壳(钱)多?对于两个无穷集,如何比较"多少"?

凡是能建立——对应关系的两个集合,我们说它们"一样多"。比如,正整数 $\{1,2,3,\cdots\}$ 与偶数 $\{2,4,6,\cdots\}$ "一样多"。

凡是能与正整数 {1,2,3,…} 建立一一对应的集合,称为<u>可数(无穷)集</u>,也称<u>可列(无穷)集</u>。如果一个无穷集不能与正整数建立——对应关系,则称为<u>不可数集</u>,或<u>不可列集</u>。可以证明:

- (1) 有理数是可数的;
- (2) 无理数与实数不可数;
- (3) 任何区间中的无理数或实数与全体实数"一样多";

5、集合的运算及运算律

定义:

$$A \cup B \triangleq \{x | x \in A \text{ or } x \in B\}$$

$$A \cap B \triangleq \{x \mid x \in A \text{ and } x \in B\}$$

$$A \setminus B \triangleq \{x | x \in A \text{ and } x \notin B\}$$
 (也记为 $A - B$)

 $A^{c} \triangleq \Omega \setminus A (\Omega \text{ 是全集}) (也记为 \overline{A})$

推广: (设I是一指标集,可以不可数)

$$\bigcup_{\alpha \in I} A_{\alpha} \triangleq \left\{ x \middle| \text{存在某个} \, \alpha \in I \,, \, \text{使得} \, x \in A_{\alpha} \right\}, \, \, \text{特别地}, \, \, \bigcup_{n=1}^{N} A_{n}, \bigcup_{n=1}^{\infty} A_{n}$$

运算律:

$$1^{\circ}$$
 $A \cup A = A, A \cap A = A$ (幂等律)

$$2^{\circ}$$
 $A \cup B = B \cup A, A \cap B = B \cap A$ (交换律)

- 3° $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$ (结合律)
- $4^{\circ} \quad (A \cup B) \cap C = (A \cap C) \cup (B \cup C), (A \cap B) \cup C = (A \cup C) \cap (B \cup C) \quad (分配律)$
- 5° $\left(\bigcup_{\alpha\in I}A_{\alpha}\right)^{c}=\bigcap_{\alpha\in I}A_{\alpha}^{c},\left(\bigcap_{\alpha\in I}A_{\alpha}\right)^{c}=\bigcup_{\alpha\in I}A_{\alpha}^{c}$ (de Morgan 律,对偶律)【作为作业】

6、常用符号

- ⇒: "蕴涵", "推得", "若...,则..."
- ⇔:"充分必要","当且仅当","等价"
- ∀: "任意", "任一个", "对任一个", Any
- ∃: "存在", "能找到", Exist
- э: 使得[不常用]
- R: 实数全体
- Q: 有理数全体
- Z: 整数全体
- N_{\perp} : 正整全体

$$\sum_{i=1}^{n} x_{i} = x_{1} + x_{2} + \dots + x_{n}$$

$$\prod_{i=1}^n x_i = x_1 x_2 \cdots x_n$$

二、实数及其性质

1、实数公理

实数是满足(I)域公理、(Ⅱ)序公理和(Ⅲ)连续性公理的集合。

- (I) 域公理:加法公理、乘法公理和分配律
- (A) 加法公理:
- $(A_1) \ \forall x, y \in R \Rightarrow x + y \in R \ (對闭性)$
- $(A,) \forall x, y \in R \Rightarrow x + y = y + x$ (交換律)
- $(A_3) \forall x, y, z \in R \Rightarrow (x+y)+z=x+(y+z)$ (结合律)

- (A_4) 存在唯一零元 $0 \in R$, $\forall x \in R$, 满足0 + x = x
- $(A_5) \forall x \in R$,存在唯一负元 $-x \in R$,满足x+(-x)=0
- (M) 乘法公理:
- $(M_1) \ \forall x, y \in R \Rightarrow xy \in R \ ($ 封闭性)
- $(M_2) \ \forall x, y \in R \Rightarrow xy = yx \ (交換律)$
- (A_3) $\forall x, y, z \in R \Rightarrow (xy)z = x(yz)$ (结合律)
- (A_4) 存在唯一单位元 $1 \in R$, $\forall x \in R$, 满足1x = x
- $(A_5) \forall x \neq 0 \in R$,存在唯一逆元 $x^{-1} \in R$,满足 $xx^{-1} = 1$
- (D) 分配律: x(y+z) = xy + xz
- (II) 序公理
- (1) 三歧性: x < v, x = v, x > v 三者必居其一,也只居其一
- (2) 传递性: $x < y, y < z \Rightarrow x < z$
- (3) 保序性: $x < y \Rightarrow x + z < y + z, x < y, c > 0 \Rightarrow xc < yc$,
- (III) 连续性公理(见第2节)

2、绝对值

实数a的绝对值定义为

$$|a| = \begin{cases} a, a \ge 0 \\ -a, a < 0 \end{cases}$$

从数轴上看,数a的绝对值|a|就是点a到原点的距离.

实数的绝对值有如下一些性质:

- 1° $|a| = |-a| \ge 0$; 当且仅当a = 0时有|a| = 0
- 2° $-|a| \le a \le |a|$
- 3° $|a| < h \Leftrightarrow -h < a < h; |a| \le h \Leftrightarrow -h \le a \le h(h > 0)$
- 4° 对于任何a、b ∈ **R** 有如下的三角形不等式**:**

$$||a| - |b|| \le |a \pm b| \le |a| + |b|$$

$$5^{\circ}$$
 $a \le c \le b \Rightarrow |c| \le \max(|a|,|b|)$

$$6^{\circ}$$
 $|ab| = |a||b|$

$$7^{\circ}$$
 $\left| \frac{a}{b} \right| = \frac{|a|}{|b|} (b \neq 0)$

3、常用不等式 (暂不证)

1° **伯努利(Bernoulli)不等式**: 设 $x \ge -1, n \in N_+$,则

$$(1+x)^n \ge 1 + nx$$

证明:用数学归纳法。当n=1时,上式显然以是等式的形式成立。假设成立不等式

$$(1+x)^{n-1} \ge 1 + (n-1)x, x \ge -1$$

则

$$(1+x)^n = (1+x)^{n-1}(1+x) \ge [1+(n-1)x](1+x)$$
$$= 1+nx+(n-1)x^2 \ge 1+nx, \forall x \ge -1$$

说明对正整数n伯努利不等式成立。

 2° <u>柯西-许瓦兹(Cauchy-Schwarz)不等式</u>:设 $x_1, x_2, \cdots, x_n; y_1, y_2, \cdots, y_n$ 是两组实数,则

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right)$$

当且仅当 $y_i = kx_i (i = 1, 2, \dots, n)$ 时,等号成立。

证明:由

$$\sum_{i=1}^{n} (x_i t + y_i)^2 = \left(\sum_{i=1}^{n} x_i^2\right) t^2 + 2\left(\sum_{i=1}^{n} x_i y_i\right) t + \left(\sum_{i=1}^{n} y_i^2\right) \ge 0 \quad (\forall t \in \mathbf{R})$$

得判别式

$$\Delta = 4 \left(\sum_{i=1}^{n} x_i y_i \right)^2 - 4 \left(\sum_{i=1}^{n} x_i^2 \right) \left(\sum_{i=1}^{n} y_i^2 \right) \le 0$$

移项便得证。

如果 $x_i = ky_i (i = 1, 2, \dots, n)$, 则不等式显然以等号形式成立。

反之,如果等号成立,则 $\Delta = 0$,上面二次函数(抛物线)有零点(与x有交点),即

存在
$$t \in \mathbf{R}$$
 使 $\sum_{i=1}^{n} (x_i t + y_i)^2 = 0$,于是 $y_i = -tx_i = kx_i$ 。

3° **平均值不等式**:设 x_1, x_2, \cdots, x_n 是n个正实数,则(几何平均 \leq 算术平均)

$$\sqrt[n]{x_1 x_2 \cdots x_n} \le \frac{x_1 + x_2 + \cdots + x_n}{n}$$

当且仅当 x_1, x_2, \dots, x_n 都相等时,等号成立。

证明:用数学归纳法证明. 当n=1时,上式显然以等式形式成立。假设对n-1上式成立,现考虑n个正数 x_1,x_2,\cdots,x_n 。不妨假设 x_n 是最大的。记

$$A = \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1}$$

则

$$x_n \ge A = \frac{x_1 + x_2 + \dots + x_{n-1}}{n-1} \ge \sqrt[n-1]{x_1 x_2 \cdots x_{n-1}}$$

于是

$$\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)^n = \left(\frac{(n-1)A + x_n}{n}\right)^n = \left(A + \frac{x_n - A}{n}\right)^n$$

$$\geq A^n + nA^{n-1} \left(\frac{x_n - A}{n} \right) = A^n + A^{n-1} (x_n - A) = A^{n-1} x_n \geq x_1 x_2 \cdots x_n$$

即

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}$$

如果 x_1, x_2, \cdots, x_n 都相等,则显然等号成立。

反之,如果 x_1, x_2, \dots, x_n 不都相等,则上面 $x_n > A$

$$\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)^n = \left(A + \frac{x_n - A}{n}\right)^n > A^n + nA^{n-1}\left(\frac{x_n - A}{n}\right)$$

与上完全一样, 推得严格不等号成立。

推论: 设 x_1, x_2, \dots, x_n 是n个正实数,则(调和平均 \leq 几何平均)

$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} \le \sqrt[n]{x_1 x_2 \cdots x_n}$$

在平均值不等式中用 $\frac{1}{x_i}$ 换 x_i ($i=1,2,\cdots,n$) 即得证。

4° 三角函数不等式

$$\sin x < x < \tan x , \quad 0 < x < \frac{\pi}{2}$$

推论: $|\sin x| \le |x|$, 其中等号仅当x = 0时成立。

证 [见教材 P44]

$$S_{\Delta OCD} < S_{ar{eta} \mathcal{B}OAD} < S_{\Delta OAB}, \quad \frac{1}{2} \sin x < \frac{1}{2} x < \frac{1}{2} \tan x$$

又当 $x \ge \frac{\pi}{2}$ 时有 $\sin x \le 1 < x$,故对一切x > 0都有 $\sin x < x$

当
$$x < 0$$
时,由 $\sin(-x) < -x$ 得- $\sin x < -x$

综上, 我们又得到不等式

$$|\sin x| \le |x|, \ x \in R$$

其中等号仅当x = 0时成立.

4、区间与邻域[一些记号]

$$(a,b) \triangleq \{x \mid a < x < b\}, [a,b] \triangleq, (a,b] \triangleq, [a,b] \triangleq$$

$$(a, +\infty) \triangleq$$
, $[a, +\infty) \triangleq$, $(-\infty, a) \triangleq$, $(-\infty, a] \triangleq$, $(-\infty, +\infty) \triangleq$ **R**

$$U(a,\delta) \triangleq \{x | |x-a| < \delta\} = (a-\delta, a+\delta)$$

$$U^{\circ}(a,\delta) \triangleq \{x \mid 0 < |x-a| < \delta\} = (a-\delta,a+\delta) \setminus \{a\}$$

$$U_{+}(a,\delta) \triangleq [a,a+\delta), U_{+}^{\circ}(a,\delta) \triangleq (a,a+\delta)$$

$$U_{-}(a,\delta) \triangleq \cdots, U_{-}^{\circ}(a,\delta) \triangleq \cdots$$

$$U(a), U_{\perp}(a), \cdots$$

$$U(\infty) \triangleq \{x | |x| > M\}$$
, 其中 M 为某个正数

$$U(+\infty) \triangleq \cdots, U(-\infty) \triangleq \cdots$$

【例 1】[P3 例 2]: 设 $a,b \in R$ 。证明: 若对 $\forall \varepsilon > 0$ 有 $a < b + \varepsilon$,则 $a \le b$ 。

证 用反证法.若结论不成立,即 a>b. 令 $\varepsilon_0=a-b>0$,于是 $a=b+\varepsilon_0$ 。这与假设对 $\forall \varepsilon>0$ 成立 $a<b+\varepsilon$ 相矛盾。从而必有 $a\leq b$ 。

【**例 2**】[P4 习题 1]: 设 $a \in Q, x \in R \setminus Q$ (无理数)。证明 $a + x \in R \setminus Q$ 。

证 用反证法. 假设 $a+x \in Q$, 令a+x=q,则 $x=q-a \in Q$,与假设矛盾。

§ 2 实数的连续性公理

一、有界集与无界集,上(下)确界

定义 设 S 为 R 中的一个数集. 若存在数 M (L), 使得对一切 $x \in S$, 都有 $x \le M$ ($x \ge L$), 则称 S 为**有上界(下界)的数集**,数 M (L) 称为 S 的一个上界(下界)。 若数集 S 既有上界又有下界,则称 S 为**有界集**. 若 S 不是有界集,则称 S 为**无界集**.

【提问】

- (1) S有界 $\Leftrightarrow \exists G > 0, \forall x \in S, |x| \leq G$ 。
- (2) S 无界 $\Leftrightarrow S$ 无上界或 S 无下界。
- (3) 叙述: S 无上界? S 无下界?

【注】S无上界可用下面诗来形象描述。

南宋诗人叶绍翁的《游园不值》

应怜屐齿印苍苔, 小扣柴扉久不开。春色满园关不住, 一枝红杏出墙来。

【例如】

(1) $S = \{x_1, x_2, \dots, x_n\}$ (有限集),则S是有界集

 $L = \min(x_1, x_2, \dots, x_n), M = \max(x_1, x_2, \dots, x_n)$

- (2) S = [0,1) 是有界集。 L = 0, M = 1
- (3) $S = \{y | y = \sin x, x \in R\}$ 是有界集。 $|y| \le 1$
- (4) $N_{+} = \{1, 2, 3, \cdots\}$ 有下界但无上界。

证: $\forall M > 0$, $\exists n_0 \in N_+, n_0 > M$ (如 $n_0 = [M] + 1$)

(5)
$$S = \left\{ x \middle| x = -\frac{1}{t}, t > 0 \right\}$$
有上界,无下界。

证:
$$\forall M>0$$
,取 $0< t_0< rac{1}{M}$,则 $x_0=-rac{1}{t_0}<-M$

引例 1: 叙述 S 中有最大数 (无最大数),有最小数 (无最小数)。

答: S 中有最大数: $\exists \beta \in S, \forall x \in S, \exists x \leq \beta$,则 β 就是S 中的最大数。

S 中无最大数: $\forall x \in S, \exists y \in S, \exists x < y$

例如: (1) S = [0,1] 中有最大数1, $\max S = 1$ 。

(2) S = [0,1) 中没有最大数,符号 $\max S$ 不能使用。

引例 2: 证明 S = [0,1) 的最大下界是 $\alpha = 0$,最小上界是 $\beta = 1$ 。

证: $\alpha = 0$ 显然是 S 的一个下界。如何说明 α 是 S 的最大下界? 这就要证明比 α 大的任何一个数都不是 S 的下界。

$$\forall \alpha' : 1 > \alpha' > \alpha$$
, $\mathbb{R} x_0 = \frac{\alpha + \alpha'}{2}$, $\mathbb{R} x_0 \in S \perp x_0 < \alpha'$, $\mathbb{R} \times \mathbb{R} \times \mathbb{$

类似可证 $\beta = 1$ 是 S 的最小上界。

定义 设 $S \in \mathbb{R}$ 中的一个数集. 若数 η 满足:

- (i) 对一切 $x \in S$, 有 $x \le \eta$, 即 $\eta \in S$ 的上界;
- (ii) 对任何 $\alpha < \eta$, 存在 $x_0 \in S$, 使得 $x_0 > \alpha$, 即 η 又是S的最小上界,

则称数 η 为数集S的**上确界**,记作 $\eta = \sup S$ 。(supremum)

【注 1】(ii) 又可写成: (ii)' $\forall \varepsilon > 0$, $\exists x_0 \in S$, $\ni x_0 > \eta - \varepsilon$ 。

【注 2】上确界也记为 lub S (least upper bound)

定义 设S是R中的一个数集. 若数 ξ 满足:

- (i) 对一切 $x \in S$, 有 $x \ge \xi$, 即 $\xi \in S$ 的下界
- (ii) 对任何 $\beta > \xi$, 存在 $x_0 \in S$, 使得 $x_0 < \beta$, 即 ξ 又是 S 的最大下界,

则称数 ξ 为数集S的**下确界**,记作 $\xi = \inf S$ 。(infimum)

- 【注 1】(ii) 又可写成: (ii)' $\forall \varepsilon > 0$, $\exists x_0 \in S$, $\ni x_0 < \xi + \varepsilon$ 。
- 【注 2】下确界也记为 $\mathsf{glb}\,S$ (greatest lower bound)

上确界与下确界统称为确界.

- 【注1】上(下)确界如果存在,则是唯一的。
- 【注 2】显然 $\inf S \leq \sup S$
- **例1** 设数集 S 有上确界. 证明: $\eta = \sup S \in S \Leftrightarrow \eta = \max S$
- 证 \Rightarrow) 设 $\eta = \sup S \in S$,则对一切 $x \in S$ 有 $x \le \eta$,而 $\eta \in S$,故 η 是数集S中最大的数,即 $\eta = \max S$.
 - \Leftarrow) $\eta = \max S$, 则 $\eta \in S$; 下面验证 $\eta = \sup S$.
 - (i) 对一切 $x \in S$,有 $x \le \eta$,即 η 可是S 的上界;
 - (ii) 对任何 $\alpha < \eta$, 只须取 $x_0 = \eta \in S$, 则 $x_0 > \alpha$, 从而满足 $\eta = \sup S$ 的定义.

二、戴德金切割原理与确界原理

毕达哥拉斯(Pythagoras, 572 BC—497 BC)学派认为"一切数均可表成整数或整数之比"。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理(勾股定理)却成了毕达哥拉斯学派数学信仰的"掘墓人"。

正方形的边长为 1, 那么,对角线是多少呢?这就是数学史上最著名的事件:第一次数学危机。第一次危机的产生最大的意义导致了无理数地产生。

戴德金切割原理也称实数的连续性公理,它形象地描述了"实数是连续不断的,无空隙"。通俗地说:如果将实数集看作一条直线,并用一把没有厚度的理想的刀来砍它,那么不论砍在哪里,总要碰着直线上的一个点。[参见 P294]。

戴德金(Dedekind)切割原理

设 $A, A' \subset R$ 满足:

- $1^{\circ} A \neq \emptyset$, $A' \neq \emptyset$
- 2° $A \cup A' = R$
- $3^{\circ} \forall x \in A, \forall x' \in A' \Rightarrow x < x'$

则称 $(A \mid A')$ 是 R 的一个切割。对于 R 的任何一个切割 $(A \mid A')$,都存在唯一的 $x^* \in R$,使得对 $\forall x \in A, \forall x' \in A'$,都有 $x \leq x^* \leq x'$ 。

确界原理

设S为非空数集. 若S有上界,则S必有上确界;若S有下界,则S必有下确界.

记 A' 为 S 的上界全体, $A' \neq \Phi$, $A = R \setminus A'$, $A \neq \Phi$, $(A \mid A')$ 为 R 的一个切割。由 戴德金切割原理,存在唯一的数 x^* ,对 $\forall x \in A, \forall x' \in A'$,都有

$$x \le x^* \le x' \tag{1}$$

下证 x^* 为 S 的上界。若不然, $\exists x_0 \in S$ 使得 $x^* < x_0$, 令 $z = \frac{x^* + x_0}{2}$, 则

$$x^* < z < x_0 \tag{2}$$

z 不是 S 的上界,所以 $z \in A$ 。由(1) $z \le x^*$ 。这与(2)矛盾。所以, x^* 为 S 的上界,即 $x^* \in A'$ 。

再由(1)知, $\forall x' \in A'$, $x^* \leq x'$ 。因此, $x^* \not\in A'$ 中的最小元, 即 A的上确界。

【注】确界原理⇒切割原理

设 $(A \mid A')$ 为R的一个切割,由确界原理,A有上确界 x^* ,按定义 $\forall x \in A$,有 $x \le x^*$ 。又按切割的定义, $\forall x' \in A'$ 都是A的上界,从而 $x^* \le x'$ 。

下证唯一性。若还有 $x_0 \neq x^*$,满足 $\forall x \in A, \forall x' \in A'$,都有 $x \leq x_0 \leq x'$,不妨设 $x^* < x_0$,于是令 $z = \frac{x^* + x_0}{2}$,有

$$x^* < z < x_0$$

从而 $z \notin A, z \notin A'$,矛盾。

例 2 设 A,B 为非空数集,满足:对一切 $x \in A$ 和 $y \in B$ 有 $x \le y$. 证明:数集 A 有上确界,数集 B 下确界,且 $\sup A \le \inf B$

证 由假设,数集B中任一数y都是数集A的上界,A中任一数x都是B的下界,故由确界原理推知数集A有上确界,数集B有下确界.

对任何 $y \in B$, y 是数集 A 的一个上界,而由上确界的定义知, $\sup A$ 是数集 A 的最小上界,故有 $\sup A \le y$. 而此式又表明数 $\sup A$ 是数集 B 的一个下界,故由下确界定义证得 $\sup A \le \inf B$.

例3 设A, B为非空有界数集, $S = A \cup B$. 证明:

- (i) $\sup S = \max \{ \sup A, \sup B \}$;
- (ii) $\inf S = \min \{\inf A, \inf B\}$.

证 由于 $S = A \cup B$ 显然也是非空有界数集,因此S的上、下确界都存在.

(i) 对任何 $x \in S$,有 $x \in A$ 或 $x \in B \Rightarrow x \le \sup A$ 或 $x \le \sup B$,从而有 $x \le \max\{\sup A, \sup B\}$,故得 $\sup S \le \max\{\sup A, \sup B\}$.

另一方面,对任何 $x \in A$,有 $x \in S \Rightarrow x \le \sup S \Rightarrow \sup A \le \sup S$; 同理又有 $\sup B \le \sup S$.所以 $\sup S \ge \max \{ \sup A, \sup B \}$.

综上,即证得 $\sup S = \max \{ \sup A, \sup B \}$.

(ii)可类似地证明. (作为作业)

【规定】

若把 $+\infty$ 和 $-\infty$ 补充到实数集中,并规定任一实数a与 $+\infty$ 、 $-\infty$ 的大小关系为: $a < +\infty$, $a > -\infty$, $-\infty < +\infty$,则确界概念可扩充为:

若数集S 无上界,则定义 $+\infty$ 为S 的**非正常上确界**,记作 $\sup S = +\infty$;

若S无下界,则定义 $-\infty$ 为S的非正常下确界,记作 $\inf S = -\infty$.

推广的确界原理: 任一非空数集必有上、下确界(正常的或非正常的).

***例 4** [P290 引理 1]证明实数具有阿基米德(Archimedes)性,即 $\forall a,b \in R,b > a > 0$,则 $\exists n \in N_{+}$, $\ni na > b$ 。

证:用反证法。假设 $\{na\}, n=1,2,\cdots$ 中没有一项大于b,则b是 $\{na\}$ 的一个上界。

由确界原理, $\left\{na\right\}$ 有上确界, 记为 λ 。即 $\forall n\in N_+, na\leq \lambda$, $\exists n_0\in N_+, \ni n_0a>\lambda-a$, 即 $\lambda<(n_0+1)a$ 。从而

$$(n_0 + 2)a \le \lambda < (n_0 + 1)a$$

由于a > 0,上式不可能成立。矛盾。

证: 由阿基米德性,
$$\exists N \in N_+, \ni N(b-a) > 1$$
或 $\frac{1}{N} < b-a$ 。 $\diamondsuit d = \frac{1}{N}$,则
$$d \in O, 0 < d < b-a$$

再任取一个有理数 $r_0 < a$,在有理等差数列中 $\left\{r_0 + nd\right\}$,由阿基米德性,总有某项大于 a ,设在该数列中第一个大于 a 的项是 $r = r_0 + n_0 d$,则 a < r ,又

$$r_0 + (n_0 - 1)d < a \Rightarrow r_0 + n_0 d \le a + d < a + (b - a) = b$$

即r < b。所以 $r = r_0 + n_0 d$ 即为所求。

§3 函数

(包括教材中的第3节与第4节)

一、函数

定义 映射 $f: D \subset R \to R, x \mapsto y = f(x)$ 称为数集 D 上的函数。

相应的概念: 自变量, 因变量, 定义域 (D), 值域 $(f(D) \subset R)$, 反函数等。

函数的四则运算(略)

复合函数: 设有两函数

$$y = f(u), u \in D,$$

$$u = g(x), x \in E.$$
(1)

记 $E^* = \{x \mid g(x) \in D\} \cap E$. 若 $E^* \neq \phi$,则对每一个 $x \in E^*$,可通过函数 g 对应 D 内唯一的一个值 u,而 u 又通过函数 f 对应唯一的一个值 v. 这就确定了一个定义在 E^* 上的函数,

它以x为自变量,y为因变量,记作

$$y = f(g(x)), x \in E^* \vec{\boxtimes} y = (f \circ g)(x), x \in E^*$$

称为函数 f 和 g 的 g 合函数. 并称 f 为 f 为 f 函数, g 为 f 函数, f 和 g 的 g 合运算也可简单地写作 $f \circ g$.

反函数: 函数 $f: D \to f(D), x \mapsto y = f(x)$ 是一一对应,则存在反函数

$$f^{-1}: f(D) \to D$$
, $y \mapsto x$

或

$$x = f^{-1}(y), y \in f(D)$$

注1 函数 f 也是函数 f^{-1} 的反函数. 或者说, $f = f^{-1}$ 互为反函数. 并有

$$f^{-1}(f(x)) \equiv x, x \in D ; f(f^{-1}(y)) \equiv y, y \in (D)$$

注 2 上面反函数 f^{-1} 的表示式中,是以 y 为自变量, x 为因变量.若按习惯仍用 x 作为自变量的记号, y 作为因变量的记号,则反函数可改写为

$$y = f^{-1}(x), x \in f(D)$$

例如,接习惯记法,函数 $y = ax + b(a \neq 0)$, $y = a^x(a > 0, a \neq 1)$ 与 $y = \sin x$,

$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
的反函数分别是

$$y = \frac{x - b}{a}, y = \log_a x = 3y = \arcsin x$$
.

例 1 函数 $y = f(u) = \sqrt{u}$, $u \in D = [0, +\infty)$ 与函数 $u = g(x) = 1 - x^2$, $x \in E = R$ 的复合函数为

$$y = f(g(x)) = \sqrt{1 - x^2}$$
, $\vec{x}(f \circ g)(x) = \sqrt{1 - x^2}$

其定义域 $E^* = [-1,1] \subset E$.

例 2 符号函数

$$sgn(x) = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$$

例3 Dirichlet 函数

$$D(x) = \begin{cases} 1, x \in Q \\ 0, x \notin Q \end{cases}$$

例4 Riemann 函数

$$R(x) = \begin{cases} \frac{1}{q}, \exists x = \frac{p}{q}, p, q \in N_{+}, \frac{p}{q} \end{pmatrix}$$
 既约真分数
$$0, \exists x = 0, 1$$
 和 $(0, 1)$ 中的无理数

定义域为[0,1]

例 5 取整函数

$$f(x) = [x]$$
 (不超过 x 的最大整数)

即[x]为整数且满足

$$x-1<[x] \le x$$

例如:
$$[0] = 0,[2] = 2,[2.5] = 2,[-\pi] = 4$$

例6 求函数

$$f(x) = \begin{cases} -x, -1 \le x \le 0 \\ x+1, 0 < x \le 1 \end{cases}$$

的反函数。

解: 反函数为

$$y = f^{-1}(x) = \begin{cases} -x, 0 \le x \le 1\\ x - 1, 1 < x \le 2 \end{cases}$$

二、具有某些特性的函数

1. 有界函数

定义:设 $f: D \to R$,如果f(D)有上界,则称f为有上界的函数。

类似地: 有下界, 有界, 无界, 无上界, 无下界

定义:
$$\sup_{x \in D} f(x) = \sup f(D), \inf_{x \in D} f(x) = \inf f(D)$$

例7 证明
$$f(x) = \frac{1}{x}$$
为(0,1]上的无上界函数.

证 对任何正数 M,取 (0,1]上一点 $x_0 = \frac{1}{M+1}$,则有

$$f(x_0) = \frac{1}{x_0} = M + 1 > M$$
.

故按上述定义,f为(0,1]上的无上界函数.

例8 设f, g为D上的有界函数.证明:

(i)
$$\inf_{x \in D} f(x) + \inf_{x \in D} g(x) \le \inf_{x \in D} \{f(x) + g(x)\}$$
;

(ii)
$$\sup_{x \in D} \{f(x) + g(x)\} \le \sup_{x \in D} f(x) + \sup_{x \in D} g(x)$$
.

证 (i)对任何 $x \in D$ 有

$$\inf_{x \in D} f(x) \le f(x), \inf_{x \in D} g(x) \le g(x) \Rightarrow \inf_{x \in D} f(x) + \inf_{x \in d} g(x) \le f(x) + g(x).$$

上式表明,数 $\inf_{x\in D} f(x) + \inf_{x\in D} g(x)$ 是函数f+g在D上的一个下界,从而

$$\inf_{x \in D} f(x) + \inf_{x \in D} g(x) \le \inf_{x \in D} \{ f(x) + g(x) \}.$$

(ii)可类似地证明(略).

例 9[P21-12] 设f,g为D上的有界函数. 证明:

$$\sup_{x \in D} f(x) + \inf_{x \in D} g(x) \le \sup_{x \in D} \{ f(x) + g(x) \}$$

【证法 1】 $\forall x_0 \in D$

$$f(x_0) + \inf_{x \in D} g(x) \le f(x_0) + g(x_0) \le \sup_{x \in D} \{f(x) + g(x)\}$$
$$f(x_0) \le \sup_{x \in D} \{f(x) + g(x)\} - \inf_{x \in D} g(x)$$

说明 $\sup_{x \in D} \{f(x) + g(x)\} - \inf_{x \in D} g(x)$ 是 f(x) 的一个上界,而 $\sup_{x \in D} f(x)$ 是 f(x) 的最小上界。

从而

$$\sup_{x \in D} f(x) \le \sup_{x \in D} \{ f(x) + g(x) \} - \inf_{x \in D} g(x)$$

移项即得证。

【证法 2】
$$\forall \varepsilon > 0$$
, $\exists x_0 \in D$, 使得 $f(x_0) > \sup f(x) - \varepsilon$ 。 因此

$$\sup f(x) - \varepsilon + \inf g(x) \le f(x_0) + g(x_0) \le \sup \{f(x) + g(x)\}\$$

$$\sup f(x) + \inf g(x) \le \sup \{f(x) + g(x)\} + \varepsilon$$

由 ε 的任意性

$$\sup f(x) + \inf g(x) \le \sup \{ f(x) + g(x) \}$$

例 10[P21-16] 设 f(x) 在区间 I 上有界,记 $M = \sup_{x \in I} f(x)$, $m = \inf_{x \in I} f(x)$,证明

$$\sup_{x',x'\in I} |f(x') - f(x'')| = M - m .$$

证 只证m < M的情况,否则f为常数结论显然成立。

一方面,由
$$m \le f(x) \le M$$
,知 $|f(x') - f(x'')| \le M - m$ ($x', x'' \in I$)

于是

$$\sup_{x',x''\in I} |f(x') - f(x'')| \le M - m$$

另一方面,由确界的定义,对 $\forall \varepsilon > 0$ (不妨 $\varepsilon < M - m$), $\exists x', x'' \in I$ 使

$$f(x') > M - \frac{\varepsilon}{2}$$
, $f(x'') < m + \frac{\varepsilon}{2}$

这时
$$f(x') - f(x'') > M - \frac{\varepsilon}{2} - (m + \frac{\varepsilon}{2}) = (M - m) - \varepsilon$$

综上两个方面,得 $\sup_{x',x''\in I} |f(x')-f(x'')| = M-m$ 。

2. 单调函数

定义 设 f 为定义在 D 上的函数. 若对任何 $x_{1,}x_{2} \in D$,当 $x_{1} < x_{2}$ 时,总 有

- (i) $f(x_1) \le f(x_2)$, 则称 f 为 D 上的**增函数**,特别当成立严格不等式 $f(x_1) < f(x_2)$ 时,称 f 为 D 上的**严格增函数**;
- (ii) $f(x_1) \ge f(x_2)$,则称 f 为 D 上的**减函数**,特别当成立严格不等式 $f(x_1) > f(x_2)$ 时,称 f 为 D 上的**严格减函数**;

增函数和减函数统称为单调函数,严格增函数和严格减函数统称为严格单调函数.

例 3.11[P19-3(2)] $y = \sin x$ 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 严格递增;

证 设
$$-\frac{\pi}{2} \le x_1 < x_2 \le \frac{\pi}{2}$$
,则

$$f(x_1) - f(x_2) = 2\cos\frac{x_1 + x_2}{2}\sin\frac{x_1 - x_2}{2} < 0$$

这是由于 $-\frac{\pi}{2} < \frac{x_1 + x_2}{2} < \frac{\pi}{2}$, $\cos \frac{x_1 + x_2}{2} > 0$, $-\frac{\pi}{2} \le \frac{x_1 - x_2}{2} < 0$, $\sin \frac{x_1 - x_2}{2} < 0$

所以 $f(x_1) < f(x_2)$, f(x) 严格递增。

定理[P18] 设 $y = f(x), x \in D$ 为严格增(减) 函数,则 f 必有反函数 f^{-1} ,且 f^{-1} 在其定义域 f(D) 上也是严格增(减)函数.

证 设 f 在 D 上严格增. 对任一 $y \in f(D)$,有 $x \in D$ 使 f(x) = y . 下面证明这样的 x 只能有一个。事实上,对于 D 内任一 $x_1 \neq x$,由 f 在 D 上的严格增性,当 $x_1 < x_2$ 时 $f(x_1) < y$,当 $x_1 > x$ 时有 $f(x_1) > y$,总之 $f(x_1) \neq y$ 。这就说明,对每一个 $y \in f(D)$,都只存在唯一的一个 $x \in D$,使得 f(x) = y ,从而函数 f 存在反函数 $x = f^{-1}(y)$, $y \in f(D)$.

现证 f^{-1} 也是严格增的. 任取 $y_1,y_2 \in f$ (D), $y_1 < y_2$ • 设

 $x_1 = f^{-1}(y_1), x_2 = f^{-1}(y_2)$,则 $y_1 = f(x_1), y_2 = f(x_2)$. 由 $y_1 < y_2$ 及 f 的严格增性,显然有 $x_1 < x_2$,即 $f^{-1}(y_1) < f^{-1}(y_2)$.所以反函数 f^{-1} 是严格增的.

3. 奇 (偶) 函数: 要求D对称于原点

例 12 [P20-6(3)] 证明 [-a,a] 上任何一个函数都可写成一个偶函数与一个奇函数的和。

4. 周期函数: 周期定义为正数,最小周期又称基本周期(如果有的话)。

例 13 考察 Dirichlet 函数的周期性

三、初等函数

由基本初等函数经过有限次四则运算与复合运算所得到的函数,统称为<u>初等函数</u>.不是初等函数的函数,称为非初等函数.

基本初等函数有以下六类:

常量函数 y = c (c 是常数);

幂函数 $y = x^{\mu} (\mu \text{为实数});$

$$\mu$$
 偶数, $D_f = (-\infty, +\infty), R_f = [0, +\infty)$, 偶函数

$$\mu$$
 奇数, $D_f = (-\infty, +\infty), R_f = (-\infty, +\infty)$, 奇函数

$$\mu$$
 负整数, $D_f = (-\infty, +\infty) \setminus \{0\}, R_f \oplus |\mu|$ 的奇偶性定

$$\mu$$
任意数, $D_f = (0, +\infty), R_f = (0, +\infty)$

【注】这里我们要指出,幂函数 $y = x^a$ 和指数函数 $y = a^x$ 都涉及乘幂,而在中学数学课程中只给出了有理数乘幂的定义。下面我们借助确界来定义无理数幂,使它与有理数幂一起构成实指数乘幂,并保持有理数幂的基本性质。[暂且承认这些结论]

给定实数a>0,设x为无理数,我们规定

$$a^{x} = \begin{cases} \sup\{a^{r} \mid r \text{为有理数}\}, & \exists a > 1 \text{时}, \\ \inf_{r < x} \{a^{r} \mid r \text{为有理数}\}, & \exists 0 < a < 1 \text{时}. \end{cases}$$

幂函数的反函数仍是幂函数

$$y = x^{\mu}, y = x^{\frac{1}{\mu}}$$

指数函数 $y = a^x (a > 0, a \ne 1); x \in (-\infty, +\infty)$

对数函数 $y = \log_a x(a > 0, a \neq 1); x \in (0, +\infty)$

三角函数

正弦函数 $y = \sin x$, $x \in (-\infty, +\infty)$, $y \in [-1, 1]$

余弦函数 $y = \cos x$, $x \in (-\infty, +\infty)$, $y \in [-1, 1]$

正切函数 $y = \tan x$, $x \neq k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$, $y \in (-\infty, +\infty)$

余切函数 $y=\cot x, x\neq k\pi, k\in Z, y\in (-\infty,+\infty)$

反三角函数

反正弦函数 $y = \arcsin x, x \in [-1,1], y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

反余弦函数 $y = \arccos x, x \in [-1,1], y \in [0,\pi]$

反正切函数 $y = \arctan x$, $x \in (-\infty, +\infty)$, $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

反余切函数 $y = \operatorname{arccot} x$, $x \in (-\infty, +\infty)$, $y \in (0, \pi)$

例 [P16-11] 问 y = |x| 是初等函数吗?

答: $y = |x| = \sqrt{x^2}$ 是初等函数。

注: y = |x|还可表示为 $y = x \operatorname{sgn}(x)$

例 [P20-2] 问 $M(x) = \max\{f(x), g(x)\}$ 是初等函数吗?