Lecture 1: Laying the Foundations + Terminology

Chapters 1.1-1.2

Goals for Today

- ► Go over the syllabus
- ► Show some fun examples
- ▶ Discuss how to evaluate the efficacy of a treatment
- ▶ Describe the different kinds of variables we'll consider

What is statistics?

(Direct from text) The general scientific process of investigation can be summed up as follows:

- 1. Identify the scientific question or problem
- 2. Collect relevant data on the topic
- 3. Analyze the data
- 4. Form a conclusion and communicate it

Statistics concerns itself with points 2 through 4.

2/22

Your Majors

Biology	Biochem and Molecular Biology				
8	4				
Psychology	Economics				
3	2				
Environmental Studies	Biology/Psychology				
2	1				
English	Environmental Studies-Biol				
1	1				
Environmental Studies-Hist	Physics				
1	1				
Political Science					
1					

Example: 2012 Election - Nate Silver's Predictions vs Actual Results

Example: Brain & Breast Cancer in Western Washington

My PhD dissertation involved detecting cancer "clusters": areas of residual spatial variation of disease risk.

We modeled the (Bayesian) probability of cluster membership for each of the n=887 census tracts in Western Washington in 2000, using cancer data from 1995–2005, controlling for age, race, and gender.

Example: Social Network Display of a Recent Party I Had

Math Colloquium

- What: "Mathematical Models for HIV Transmission Networks"
- ► Who: UW Statistics and Sociology Prof. Martina Morris (Reed '80 sociology alum)
- ▶ Where: Physics 123
- ▶ When: Thursday January 29th

Say we want answer the following questions:

- Does a new kind of cognitive therapy alter levels of depression in patients?
- Or you question the effectiveness of antioxidants in preventing cancer.
- Will reassuring potential new users to a gambling website that we won't spam them increase the sign-up rate?

.

Evaluating the efficacy of a 'treatment'

In all the above cases, you are questioning the efficacy of a treatment/intervention. One way to evaluate the efficacy is via an experiment where you define

- A control group: the "business as usual" baseline group
- ► A treatment group: the group that receives/is subject to the treatment/intervention

and make comparisons.

Website Experiments

Treatment:

Example of a treatment vs control

Two other examples in the media of late

- ► Facebook's tinkering with user's emotions (link)
- $\qquad \qquad \textbf{OkCupid's admission that they experiment on human beings} \\ \textit{(link)} \\$

Variables

A variable is a description of any characteristic whose value may change from one unit in the population to the next:

Data

At its simplest, data are presented in a data table or matrix where (almost always) each

- ▶ row corresponds to cases or units of observation/analysis
- column represents the variables corresponding to a particular observation

It is almost always the case that

- n is the number of observations
- p is the number of variables

Data Summaries

Consider the variable "federal spending per capita" in each of the 3,143 counties in the US. One can hardly digest this:

[1]	6.068095	6.139862	8.752158	7.122016	5.130910	9.973062	9.311835	15.439218
[9]	8.613707	7.104621	6.324061	10.640378	9.781442	8.982702	6.840035	20.330684
[17]	9.687698	11.080738	7.839761	9.461856	9.650295	7.760627	25.774791	13.948106
[3121]	7.520731	10.246400	3.106800	17.679572	4.824044	7.247212	8.484211	8.794626
[3129]	9.829593	8.100945	17.090715	4.855849	6.621378	22.587359	10.813260	11.422522

19 / 23

Data Summaries

We can't interpret all the data at once; we need to boil it down via summary statistics, single numbers summarizing a large amount of data

Using the summary() command in R:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.000 6.964 8.669 9.991 10.860 204.600 4
```

Relationships between variables

We can best display the relationship between two variables using a scatterplot AKA bivariate plot:

Relationships between variables

Almost always we are interested in the relationship between two or more variables

A pair of variables are either related in some way (associated) or not (independent). No pair of variables are both associated and independent.

We can have either a negative association (as the value of one variable increases, the other decreases) or a positive association.

