

ABTOMATUЗАЦИЯ ПОДБОРА ИНДЕКСОВ ДЛЯ SQL ЗАПРОСОВ В СУБД MYSQL

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Студент: Петухов Илья Сергеевич

Научный руководитель: Просуков Евгений Алексеевич

1. Цели и задачи работы

Цель - разработка инструмента для автоматизированного индексирования таблиц по заданному SQL запросу.

Задачи:

- изучить возможности современных СУБД и их инструментов для индексирования таблиц
- изучить правила использования индексов в выбранной СУБД
- разработать алгоритм, рекомендующий индексы для SQL запросов
- провести эксперименты, проверяющие
 - о применение рекомендуемых индексов
 - о выигрыш во времени при использовании этих индексов.

Целью работы является ... Были поставлены следующие задачи: ...

2. Анализ возможностей СУБД и их инструментов для индексирования

СУБД/возможность	Oracle	MS SQL Server (Azure)	PostgreSQL	MySQL
автоматический процесс создания индексов	да	да	нет	нет
автоматический процесс удаления индексов	да	да	нет	нет
отчет о рекомендуемых для создания индексов	да	да	да	нет
отчет о рекомендуемых для удаления индексов	да	да	да	да
отчет о найденных дубликатах индексов	да	да	да	да
анализ использования индекса для запроса	да	да	да	да

Из результатов анализа возможностей СУБД и их инструментов для индексирования видно, что в одной из самых популяр-ных СУБД MySQL отсутствует возможность получения отчетов о рекомендациях по созданию индексов, что становится причиной отсутствия в данной СУБД инстру-мента по автоматизированному управлению индексами (для создания, применения, удаления индексов)

Поэтому принято решение для СУБД MySQL разработать инструмент для определения индексов по заданному SQL запросу.

3. Аналог Index Advisor в PostgreSQL

Соответствующие требования к разрабатываемому ПО:

- поддержка Btree индексов
- считывание текстового файла с набором SQL запросов
- анализ простых и сложных запросов
- создание файла с инструкциями CREATE INDEX для создания рекомендуемых индексов

В качестве аналогичного инструмента рассмотрим Index Advisor для СУБД PostgreSQL. Процесс работы инструмента представлен на схеме.

По аналогии с этим инструментом можно предъявить следующие требования к разрабатываемому ПО:

Что подразумевается под сложным запросом рассмотрим на следующем слайде.

4. Вид сложного запроса

```
SELECT * FROM
t1 {INNER | LEFT | RIGHT} JOIN t2 ON conditional_definition
     [\![ \textbf{WHERE} \ \mathtt{where\_definition} \,]\!]
     [ORDER BY col name [ASC | DESC]]
where\_definition:
     where _{\mathrm{expression}} or
     where expression [AND] where expression
where\_expression:
     column_name [> | >= | = | <> | <= | < ] constant or
    {\tt column\_name} \ {\bf LIKE} \ {\tt constant} \ \ {\bf or}
     where\_definition
conditional\_definition:
     conditional_expression or
     conditional\_expression \ \ \textbf{[AND]} \ \ conditional\_expression
conditional_expression:
     column_name = column_name  or
     conditional\_expression
```

На данном слайде представлен вид сложного запроса, который поддерживается разработанным ПО.

В результате объектно-ориентированного анализа можно выделить следующие сущности:

Диаграмма классов представлена на рисунке

8. Планирование эксперимента

Параметры и значения:

- join:
 - o left, right, inner
- where:
 - o -,
 - t1.a = const, t2.a = const,
 - o t1.a <> const, t2.a <> const
- order by:
 - o -,
 - o t1.a,
 - o t2.a

Кол-во экспериментов: 3 * 5 * 3 = 45

По методу всех пар: =15

21-	Join	order by	where
1	inner	-	-
2	inner	t1.c	t1.b = const
3	inner	t2.c	t2.b = const
4	inner	-	t1.b > const
5	inner	t1.c	t2.b > const
6	left	t2.c	_
7	left	-	t1.b = const
8	left	t1.c	t2.b = const
9	left	t2.c	t1.b > const
10	left	(SE)	t2.b > const
	_		

№ | ioin | order by | where

Таблица 1

11 right

15 right

t2.b > const

t1.c

t2.c

Когда было разработано ПО, нужно было протестировать его.

Для планирования эксперимента необходимо выделить параметры, которые могут изменяться и значе-ния, которые они могут принимать (одно значения из одного класса эквивалентности). На слайде представлены параметры и их значения.

Получается что необходимо провести 45 экспериментов.

Однако по методу всех пар, т.к. большинство ошибок проявляются либо при конкретных значениях одного параметра, либо взаимным влиянием значений двух па-раметров, то получилось, что достаточно провести всего 15 экспериментов.

План экспериментов пред-ставлен в таблице

9. Результаты эксперимента

В 47% экспериментов, ускорение времени выполнения запроса было больше, чем на порядок (в среднем в 4777 раз)

Таблица 2

Результат	номера экспериментов	кол-во	%
Индексы уменьшили время	2, 3, 5, 8, 12, 14, 15	7	47
больше, чем на порядок			
Индексы уменьшили время	1, 6, 9, 10, 11, 13	6	40
меньше, чем на порядок			
Индексы увеличили время	4, 7	2	13
меньше, чем на порядок			
Индексы увеличили время боль-	泰	0	0
ше, чем на порядок			

Результаты эксперимента представлены в таблице 2.

10. Результаты

В результате работы удалось решить поставленные задачи и разработать соответствующее программное обеспечение.

Правильность работы ПО подтверждается серией поставленных экспериментов.

11. Направления дальнейшего развития

Развитие инструмента:

- увеличить поддержку возможного синтаксиса SQL запросов;
- учесть больше возможных оптимизаций запросов;
- добавить другие типы индексов, отличных от B+tree;
- поддерживать новые версии СУБД.

Использование инструмента в дальнейшей автоматизации процесса индексирования. Такое ПО должно:

- наблюдать за запросами;
- определять какие индексы необходимо построить
- наблюдать за построенными индексами;
- удалять невостребованные индексы

Хотелось бы выделить направления дальнейшего развития.

Во первых, это само развитие инструмента:

А также использование инструмента для дальнейшей автоматизации процесса индексирования.

Спасибо за внимание!