Conservation impact evaluation using remotely sensed data

UCSB ECON 290

Alberto Garcia and Robert Heilmayr June 11, 2021

Papers using econometric methods[†] that cite Hansen et al., 2013

† Google scholar search string: (econometric* or "causal inference" or "impact evaluation" or "fixed effects" or "regression discontinuity" or "instrumental variable")

Papers using econometric methods[†] that cite Hansen et al., 2013

Data characteristics

- Wall to wall data
- Fine spatial scales
- Relatively long time series

† Google scholar search string: (econometric* or "causal inference" or "impact evaluation" or "fixed effects" or "regression discontinuity" or "instrumental variable")

Papers using econometric methods[†] that cite Hansen et al., 2013

Data characteristics

- Wall to wall data
- Fine spatial scales
- Relatively long time series
- Binary
- Irreversible

† Google scholar search string: (econometric* or "causal inference" or "impact evaluation" or "fixed effects" or "regression discontinuity" or "instrumental variable")

Papers using econometric methods[†] that cite Hansen et al., 2013

Data characteristics

- Wall to wall data
- Fine spatial scales
- Relatively long time series
- Binary
- Irreversible

Do traditional econometric models generate unbiased estimates in this setting?

Papers using econometric methods[†] that cite Hansen et al., 2013

Data characteristics

- Wall to wall data
- Fine spatial scales
- Relatively long time series
- Binary
- Irreversible

Do traditional econometric models generate unbiased estimates in this setting?

- Importance of scale (Avelino et al., 2016)
- Nonclassical measurement error (Jain, 2020; Alix-Garcia and Millimet, 2020)

Results

Commonly used and suggested "robust" specification cannot identify ATT:

$$defor_{i,t} = eta D_{i,t} + \gamma_i + lpha_t + u_{i,t}$$

Aggregation as a solution

Aggregated fixed effects

Aggregation as a solution

Aggregated fixed effects

Aggregated units of observation

Benefits of property-level models $(\sigma_p=0.3)$

Aggregated fixed effects

Benefits of property-level models $(\sigma_p=0.3)$

Aggregated fixed effects

Aggregated units of analysis

Aggregation as a solution

Aggregated fixed effects

Aggregation as a solution

Aggregated fixed effects

Aggregated units of observation

Impacts of property-level disturbances on DID

Benefits of property-level models $(\sigma_p=0.3)$

Aggregated fixed effects

Benefits of property-level models $(\sigma_p=0.3)$

Aggregated fixed effects

Aggregated units of analysis

Thanks!

Albert Garcia (agarcia@bren.ucsb.edu) and Robert Heilmayr (rheilmayr@ucsb.edu)