Lecture 1, 4/4/23

We use the following two books:

- 1. Linear Analysis, by B. Bolobás
- 2. Analysis, by E. Lieb and M. Loss

We begin with metric spaces

Definition 0.1. Let X be a nonempty set and let $\rho: X \times X \to [0, \infty)$. Then $\rho(x, y)$ is called a metric on X if

- (i) $\rho(x,y) \ge 0$ for all $x,y \in X$ and $\rho(x,y) = 0$ iff x = y.
- (ii) $\rho(x,y) = \rho(y,x)$ for all $x,y \in X$
- (iii) $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$ for any $x,y,z \in X$. This is called the <u>triangle inequality</u>

 ρ is also called a <u>distance</u>. As in, $\rho(x,y)$ is the distance between x and y.

Example 0.1. Let $X = \mathbb{R}^n$, and define $\rho(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{\frac{1}{2}}$. We can in fact replace 2 in this expression with any real $r \geq 1$, or with ∞ (in which case we just take the maximum)

Example 0.2. Let X = C[a, b], the set of continuous $f: [a, b] \to \mathbb{R}$, and define $\rho(x, y) = \max_{x \in [a, b]} |f(x) - g(x)|$

Definition 0.2. Let (X, ρ) be a metric space. For all $x \in X$ and r > 0, we defined the open ball centered at x and having radius r as

$$B_r(x) \stackrel{\text{def}}{=} \{ y \in X \mid \rho(x, y) < r \}$$

The closed ball is

$$\overline{B_r}(x) \stackrel{\text{def}}{=} \{ y \in X \mid \rho(x, y) \le r \}$$

Definition 0.3. Let (X, ρ) be a metric space and let $A \subseteq X$. Then $a \in A$ is

- (i) an interior point of A if there is some r > 0 such that $B_r(a) \subseteq A$
- (ii) The set of all interior points of A is called the <u>interior of A</u> and is denoted by int A, or A°
- (iii) A set A is said to be <u>open</u> if $A = A^{\circ}$

Example 0.3. Let $X = \mathbb{R}^3$, $A = \{(x, y, 0) \mid x, y \in \mathbb{R}\}$. We can see that $A^{\circ} = \emptyset$.

Proposition 1. For any $x, r, B_r(x)$ is open.

Proof. Let $y \in B_r(x)$. Let $r_1 = r - \rho(x, y) > 0$. Consider $z \in B_{r_1}(y)$. By the triangle inequality, $\rho(x, z) \leq \rho(z, y) + \rho(y, x) < r_1 + \rho(x, y) = r$. So $z \in B_r(x)$, so $B_{r_1}(y) \subseteq B_r(x)$, so y is an interior point. y was arbitrary, so we are done.

Definition 0.4. $A \subseteq X$ is closed if $A^c = X \setminus A$ is open.

Definition 0.5. The point $x \in X$ is a <u>limit point</u> of A if there exists a sequence $\{x_n\}_{n=1}^{\infty} \subseteq A$ such that $\rho(x, x_n) \to 0$ as $n \to \infty$

Definition 0.6. Let $\{x_n\} \subseteq X$, $x \in X$. Then we we say $\underline{x_n \text{ converges to } x}$, or $x_n \to x$, if $\rho(x_n, x) \to 0$ as $n \to \infty$. In this case, $\{x_n\}_{n=1}^{\infty}$ is said to be convergent, with limit x.

Theorem 0.1. If a limit of a sequence $\{x_n\} \subseteq X$ exists, then it is unique.

Proof. Think

Definition 0.7. A sequence $\{x_n\}_{n=1}^{\infty} \subseteq X$ is called a Cauchy sequence if $\rho(x_n, x_m) \to 0$ as $n, m \to \infty$. That is, for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$, such that if $n, m \geq N$, then $\rho(x_n, x_m) < \varepsilon$

Theorem 0.2. Any convergent sequence is Cauchy

Proof. Think

Definition 0.8. A metric space (X, ρ) is called <u>complete</u> if every Cauchy sequence converges to some point in X. A metric space which is not complete is called incomplete.

Example 0.4. $X = \mathbb{R}^n$ or X = C[a, b] with the metrics above are complete.

Example 0.5. \mathbb{Q} is incomplete.

Definition 0.9. Let (X, ρ) and $(Y, \tilde{\rho})$ be metric spaces. Then X and Y are <u>isometric</u> if there exist a bijection $f: X \to Y$ such that $\rho(x_1, x_2) = \tilde{\rho}(f(x_1), f(x_2))$ for all $x_1, x_2 \in X$.

Definition 0.10. Let (X, ρ) be a metric space and let $A, B \subseteq X$. Then we say that A is dense in B if $B \subseteq \overline{A}$, where $\overline{A} = \{\text{all limit points of } A\}$

Definition 0.11. Let (X, ρ) and $(\tilde{X}, \tilde{\rho})$ be metric spaces. Then $(\tilde{X}, \tilde{\rho})$ is a completion of $(X, \tilde{\rho})$ if

- (i) $X \subseteq \tilde{X}$, and $\tilde{\rho}(x,y) = \rho(x,y)$ for any $x,y \in X$
- (ii) X is dense in \tilde{X} in the $\tilde{\rho}$ metric

(iii) $(\tilde{X}, \tilde{\rho})$ is complete

Theorem 0.3. Any incomplete metric space (X, ρ) admits a completion which is unique up to isometry.

Proof. Think

Theorem 0.4. (The nested ball theorem)

Let (X, ρ) be a complete metric space, and let $\overline{B_n} = \overline{B_{r_n}}(x_n) \subseteq X$ be a sequence of nested closed balls (meaning $\overline{B_{n+1}} \subseteq \overline{B_n}$) such that $r_n \to 0$. Then $\bigcap_{n=1}^{\infty} \overline{B_n} \neq \emptyset$.

Proof. Consider the centers $\{x_n\}_{n=1}^{\infty} \subseteq X$.

Claim. $\{x_n\}$ is Cauchy

Proof. If $m \ge n$, then $\overline{B_m} \subseteq \overline{B_m}$, so $x_m \in \overline{B_m}$, so $\rho(x_m, x_n) \le r_n$, so $\rho(x_n, x_m) \to 0$ as $m, n \to \infty$.

Lecture 2, 4/6/23

Definition 0.12. Let (X, ρ) be a metric space, and let $A \subseteq X$. Then A is <u>nowhere dense</u> if $\operatorname{int}(\overline{A}) = \emptyset$

Definition 0.13. Let (X, ρ) be a metric space, and A a set. $A \subseteq X$ is of Baire first category if $A = \bigcup_{n=1}^{\infty} A_n$, where A_n are nowhere dense. Otherwise, A is of Baire second category

Theorem 0.5. (Baire Category Theorem)

A complete space is of Baire second category.

Proof. Towards contradiction, assume $X = \bigcup_{n=1}^{\infty} A_n$, where $A_n \subseteq X$ are nowhere dense.

Let $B_1 = B(X_1, 1)$ be a ball in X.

Since A_1 is nowhere dense, there exists $\overline{B}_2 = \overline{B}(x_2, r_2) \subseteq \overline{B}_1$ such that $\overline{B}_2 \cap A_1 = \emptyset$. Without loss of generality, assume $r_2 < \frac{1}{2}$. Now there exists $\overline{B}_3 = \overline{B}(x_3, r_3) \subseteq \overline{B}_2$ such that $\overline{B}_2 \cap A_1 = \emptyset$.

Without loss of generality, assume $r_3 < \frac{1}{3}$.

At the kth step, there exists $\overline{B}_{k+1} = \overline{B}(x_{k+1}, r_{k+1}) \subseteq \overline{B}_k$ such that $\overline{B}_{k+1} \cap A_k = \emptyset$, $r_{k+1} \leq \frac{1}{k+1}$.

By the nested balls theorem, $\bigcap_{n=1}^{\infty} \overline{B}_n = \{x\}$. By construction, $x \notin A_n$ for all $n \in \mathbb{N}$. So $X \neq \bigcup_{n=1}^{\infty} A_n$, a contradiction.

Definition 0.14. Let (X, ρ) be a metric space and let $A \subseteq X$. A collection $\{U_{\alpha}\}_{{\alpha} \in A}$ of open subsets of X is an open cover of A if $A \subseteq \bigcup_{{\alpha} \in A} U_{\alpha}$

A set $K \subseteq X$ is called compact if any open cover of K has a finite subcover.

Equivalently, $K \subseteq X$ is compact if any sequence $\{x_n\} \subseteq K$ has a limit point $x \in K$.

Theorem 0.6. (Nested compact set theorem)

Let (X, ρ) be a metric space and let $\{K_n\}_{n=1}^{\infty}$ be a sequence of nonempty and nested compact sets. Then $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.

Proof. Consider $\{x_n\}_{n=1}^{\infty}$ with $x_n \in K_n$.

Note for all $n, x_n \in K_1$. Thus there exists a subsequence $\{x_{n_k}\}$ converging to some $x \in K_1$.

We claim that $x \in \bigcap_{n=1}^{\infty} K_n$.

Fix $m \in \mathbb{N}$. $x_{n_m}, x_{n_{m+1}}, x_{n_{m+2}}, \dots \in K_m$.

The only limit point is x, thus $x \in K_m$.

Definition 0.15. Let (X, ρ) be a metric space and let $A \subseteq X$. Then A is bounded if $A \subseteq B(x, r)$ for some $x \in X, r > 0$.

Theorem 0.7. A compact set in (X, ρ) is closed and bounded.

Proof. think

Normed Spaces

Definition 0.16. Let X be a vector space. A function $\|\cdot\|: X \to \mathbb{R}$ is called a norm on X if

- (i) $||x|| \ge 0$ for all $x \in X$. Further, $||x|| = 0 \iff x = 0$
- (ii) $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in X, \alpha \in \mathbb{C}$.
- (iii) $||x + y|| \le ||x|| + ||y||$

 $(X, \|\cdot\|)$ is called a normed space

Remark:

If one defines $\rho(x,y) = ||x-y||$, then (X,ρ) is a metric space.

Lecture 3, 4/11/23

Return to metric spaces

Definition 0.17. Let (X, d) be a metric space. Let $T: X \to X$ be a mapping. Then T is said to be a contraction if there exists $\alpha \in (0,1)$ such that $\rho(Tx,Ty) \leq \alpha \rho(x,y)$ for all $x, y \in X$.

Theorem 0.8. (Contraction mapping principle)

Let (X, ρ) be a complete metric space and let $T: X \to X$ be a contraction. Then T has a unique fixed point, i.e. there exists a unique $x \in X$ such that Tx = x.

Proof. Proven in 221A

Claim. $(0,1) \neq \bigcup_{n=1}^{\infty} [a_n,b_n], [a_n,b_n] \text{ are disjoint.}$

Proof. Assume $(0,1) = \bigcup_{n=1}^{\infty} [a_n, b_n]$ We claim the set $X = \bigcup_{n=1}^{\infty} \{a_n, b_n\} \cup \{0\} \cup \{1\}$ is closed. Thus X is a complete metric space. Next, we claim that $\{a_n\}, \{b_n\}, \{0\}, \{1\}$

Alternative proof:

Assume $(0,1) = \bigcup_{n=1}^{\infty} [a_n, b_n].$

We construct a function $f:(0,1)\to\mathbb{R}$ continuous that takes countably many values. blah blah blah

Return to normed spaces

Definition 0.18. A complete normed space is called a Banach Space

Definition 0.19. Let X, Y be normed spaces on $K = \mathbb{R}$ or \mathbb{C} . A mapping $T: X \to Y$ is <u>linear</u> if $T(\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2$ for all $x_1, x_2 \in X$ and all $\alpha, \beta \in K$.

Definition 0.20. Let X, Y be normed spaces on $K = \mathbb{R}$ or \mathbb{C} . Let $T: X \to Y$ be linear. Then

- **1.** T is bounded if there exists M > 0 such that for all $x \in X$, $||Tx|| \le M||x||$
- 2. The operator norm is

$$||T|| \stackrel{\text{def}}{=} \sup_{x \in X, x \neq 0} \frac{||Tx||}{||x||}$$

If T is bounded, then ||T|| < M

Definition 0.21. Let X and Y be normed spaces on $K = \mathbb{R}$ or \mathbb{C} . Let $T: X \to Y$ be linear. T is continuous at $x_0 \in X$ if $x \to x_0$ implies $Tx \to Tx_0$.

Theorem 0.9. Let X, Y be normed spaces on $K = \mathbb{R}$ or \mathbb{C} . Let $T : X \to Y$ be linear. Then the following are equivalent:

- **1.** T is continuous at some $x_0 \in X$.
- **2.** T is continuous at 0
- **3.** T is continuous on X
- **4.** T is bounded
- **5.** T is Lipschitz

Proof.

$$(3) \Rightarrow (1), (2)$$

This is obvious

$$(1) \Rightarrow (3)$$

Assume T is continuous at some x_0 . We want to show continuity at y_0 . Suppose $(y_n) \to y$. Define $x_n = y_n - y_0 + x_0$. Note $x_n \to x_0$. So $Tx_n \to Tx_0$. Thus

$$||Ty_n - Ty_0|| = ||Tx_n + Ty_0 - Tx_0 - Ty_0|| \to 0$$

Letting $x_0 = 0$, we get $(2) \Rightarrow (3)$

$$(4) \Rightarrow (2)$$

Suppose $||Tx|| \le M||x||$ for all $x \in X$. Then as $x \to 0$, $||Tx - T0|| = ||Tx|| \le M||x|| \to M||0|| = 0$.

$$(2) \Rightarrow (4)$$

For all $\varepsilon > 0$, there exists $\delta > 0$ such that $||x|| < \delta \implies ||Tx|| < \varepsilon$. Choose $\varepsilon = 1$. Then there exists $\delta > 0$ such that $||x|| < \delta \Rightarrow ||Tx|| < 1$ For any $x \in X, x \neq 0 \implies Tx = \frac{||x||}{\delta}T(\frac{x}{||x||}\delta)$ Set $\overline{x} = \frac{x}{||x||}\delta$.

Thus $||Tx|| = \frac{||x||}{\delta} ||T\overline{x}|| \le \frac{||x||}{\delta} = \frac{1}{\delta} ||x||$ So $||Tx|| \le \frac{1}{\delta} ||x||$ for all $x \in X$, i.e. $M = \frac{1}{\delta}$.

Lecture 4, 4/13/23

$$(4) \Rightarrow (5)$$

 $||Tx_1 - Tx_2|| = ||T(x_1 - x_2)|| \le M||x_1 - x_2||$. Thus T is Lipshitz. Clearly, $(5) \Rightarrow (3)$.

Definition 0.22. For X, Y normed spaces, the set of all bounded linear operators $T: X \to Y$ is denoted by B(X, Y).

Theorem 0.10. Let X, Y be normed spaces and let $T \in B(X, Y)$. Then

$$||T|| = \sup_{\|x\| \le 1} ||Tx|| = \sup_{\|x\| = 1} ||Tx|| = \sup_{\|x\| < 1} ||Tx||$$

 $\begin{array}{l} \textit{Proof.} \ \, \|T\| = \sup_{x \in X, x \neq 0} \frac{\|Tx\|}{\|x\|} = \sup_{x \in X, x \neq 0} \|T(\frac{x}{\|x\|})\|. \\ \textit{So, letting } \overline{x} = \frac{x}{\|x\|}, \ \, \|T\| = \sup_{x \in X, x \neq 0} \|T\overline{x}\| \leq \sup_{\|x\| = 1} \|Tx\| \\ \textit{Similarly, } \|T\| \leq \sup_{\|x\| \leq 1} \|Tx\| \\ \|T\| = \sup_{x \in X, x \neq 0} \frac{\|Tx\|}{\|x\|} \geq \sup_{x \in X, \|x\| = 1} \frac{\|Tx\|}{\|x\|}, \ \, \text{so we get equality.} \\ \textit{We could prove } < \textit{using limits.} \end{array}$

Theorem 0.11. Let X and Y be normed spaces and let $T: X \to Y$ be linear. Then T is bounded iff T maps bounded sets to bounded sets.

Proof. Later

Note: $||Tx|| \le ||T|| ||x||$. Also, a convergent sequence in a metric space is bounded.

Theorem 0.12. Let X and Y be normed spaces. Then B(X,Y) is a normed space endowed with the operator norm ||T||. Moreover, if Y is Banach, then B(X,Y) is Banach.

Proof. B(X,Y) is a vector space:

Choose $\alpha, \beta \in K, T_1, T_2 \in B(X, Y)$. Then $\alpha T_1 + \beta T_2$ is linear and continuous. Hence, $\alpha T_1 + \beta T_2 \in B(X, Y)$.

Now we show that (B(X,Y), ||T||) is a normed space.

- **1.** $||T|| \ge 0$ for all $T \in B(X,Y)$ clearly, and ||T|| = 0 means Tx = 0 for any $x \in X$, so T = 0.
- **2.** $\|\alpha T\| = |\alpha| \|T\|$

3. Triangle inequality: Choose $x \in B(X,Y)$. Then

$$||(T_1 + T_2)x|| = ||T_1x + T_2x||$$

$$\leq ||T_1x|| + ||T_2x||$$

$$\leq ||T_1|| ||x|| + ||T_2|| ||x||$$

$$= ||x|| (||T_1|| + ||T_2||)$$

Thus, $||T_1 + T_2|| = \sup_{x \in X, x \neq 0} ||(T_1 + T_2)x|| \le \sup_{||x|| \le 1} (||T_1|| + ||T_2||) ||x|| \le ||T_1|| + ||T_2||$

Now assume Y is a Banach space.

Let $\{T_n\} \subseteq B(X,Y)$ be a Cauchy sequence.

We construct an operator $T: X \to Y$ as follows.

For all $x \in X$, $\{T_n x\}$ is a Cauchy sequence in Y.

Since Y is complete, $\{T_n x\}$ converges to some Tx

We want to show T is linear and bounded.

For all $n \in \mathbb{N}$, $\alpha, \beta \in K$, $x_1, x_2 \in X$, $T_n(\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2$.

Thus $T(\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2$

Now we show T is bounded.

Since a Cauchy sequence in a metric space is bounded, $||T_n|| \leq M$ for all $n \in \mathbb{N}$.

For all $x \in \overline{B(0,1)}, (T_n x) \to Tx$.

Thus $||Tx|| = \lim_{n \to \infty} ||T_n x|| \le \lim_{n \to \infty} M ||x|| \le M$.

Hence $||T|| \leq M$.

Finally, we show $(T_n) \to T$.

Choose $\varepsilon > 0$. There exists N such that for all $n \geq N$, for all $k \in \mathbb{N}$, $||T_n - T_{n+k}|| < \varepsilon$.

For all $x \in \overline{B(0,1)}$, $||T_n x - T_{n+k} x|| \le \varepsilon ||x||$.

Fix $n \geq N$, and let $k \to \infty$ to get $||T_n x - Tx|| \leq \varepsilon ||x||$. Thus, $||T_n - T|| \leq \varepsilon$ for all $n \in \mathbb{N}_{\mathcal{E}}$

So $(T_n) \to T$ in B(X,Y)

Definition 0.23. Let X be a normed space over a field $K = \mathbb{R}$ or \mathbb{C} . Then $B(X, K) = X^*$ is called the dual space of X. $T \in X^*$ is called a <u>functional</u>.

Special case: $X = L^p(\Omega)$, we will characterize X^* .

When $1 \le p < \infty$, then $(L^p(\Omega))^* = L^q(\Omega)$, where $\frac{1}{p} + \frac{1}{q} = 1$ (when $p = 1, q = \infty$)

Theorem 0.13. Let X be a normed space and Y a Banach space. Assume $A \subseteq X$ is a dense subspace of X and $T \in B(A,Y)$. Then T admits a unique extension $\overline{T} \in B(X,Y)$. Moreover, $\|\overline{T}\| = \|T\|$.

Proof. Chose $x \in X \setminus A$.

There exists $\{a_n\} \in A$ converging to x because A is dense. Define $Tx = \lim_{n \to \infty} Ta_n$.

First we show this limit exists.

Note $\{Ta_n\}$ is Cauchy, since $||Ta_n - Ta_m|| \le ||T|| ||a_n - a_m|| \to 0$.

Since Y is Banach, $\{Ta_n\}$ conveges.

Now we show the limit does not depend on choice of sequence $\{a_n\}$.

Assume $\{b_n\} \to X$. Then

$$||Ta_n - Tb_n|| = ||T|| ||a_n - b_n|| \le ||T|| (||a_n - x|| + ||b_n - x||) \to 0$$

Thus $\lim_{n\to\infty} Ta_n = \lim_{n\to\infty} Tb_n$

Next we show \overline{T} is linear.

Choose $\alpha, \beta \in K, x_1, x_2 \in X$.

Let $\{a_n\} \to x_1, \{b_n\} \to x_2$ where $\{a_n\}, \{b_n\} \subseteq A$.

 $\alpha a_n \to \alpha x_1, \beta b_n \to \beta x_2$

Thus $\alpha a_n + \beta b_n \to \alpha x_1 + \beta x_2$

So

$$\overline{T}(\alpha x_1 + \beta x_2) = \lim_{n \to \infty} T(\alpha x_1 + \beta x_2) = \lim_{n \to \infty} T(\alpha x_n) + \lim_{n \to \infty} T(\beta b_n) = \alpha \overline{T} x_1 + \beta \overline{T} x_2$$

Lecture 5, 4/18/23

Theorem 0.14. Let X be a normed space, and Y a Banach space. Assume $A \subseteq X$ is a dense subspace of X and $T \in B(A,Y)$. Then T admits a unit extension $\overline{T} \in B(X,Y)$. Moreover, $\|\overline{T}\| = \|T\|$

Proof. If $x \notin A$, choose $a_n \in A$ such that $a_n \to x$. Define $\overline{T}x = \lim_{n \to \infty} Ta_n$. Then $\{Ta_n\}$ is Cauchby, and Y is Banach.

- 1. \overline{T} is linear
- **2.** \overline{T} is bounded, with $||\overline{T}|| \le ||T||$.

For any $x \in B(0,1)$, there exists $a_n \in B(0,1)$ such that $a_n \to x, a_n \in A$.

$$\|\overline{T}x\| \le \|\overline{T}x - \overline{T}a_n\| + \|Ta_n\|$$

$$\le \|\overline{T}x - Ta_n\| + \|T\| \|a_n\|$$

$$\le \|\overline{T}x - Ta_n\| + \|T\|$$

As $n \to \infty$, we get $\|\overline{T}x\| \le \|T\|$ for all $x \in B(0,1)$. Thus $\|T\| = \sup_{x \in B(0,1)} \|\overline{T}x\| \le \|T\|$

Theorem 0.15. Let X be a normed space, and let $A = \{x_1, \ldots, x_n\}$, where $\{x_i\}_{i=1}^n$ is linearly independent. Then

- **1.** A is closed
- **2.** Let $a_k = \sum_{i=1}^n \alpha_i x_i \in A$, and $a_k \to x \in X$. Then by 1, $x \in \langle A \rangle$, i.e. $x = \sum_{i=1}^n \alpha_i x_i$. Then $\alpha_i^k \to \alpha_i$ for i = 1, 2, ..., n.

(Convergence in A is equivalent to convergence of coordinates).

Proof. First, assume X is a Euclidean space. Define $T : \mathbb{R}^n \to \langle A \rangle$ given by $T(c_1, \dots, c_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$. Note that

- T is linear on \mathbb{R}^n .
 - T is continuous:

$$||T(c_1, \dots, c_n)|| = ||c_1x_1 + \dots + c_nx_n||$$

$$\leq |c_1|||x_1|| + \dots + |c_n|||x_n||$$

$$\leq |c| \max_{i} ||x_i||$$

$$||T(c_1, \dots, c_n) - T(b_1, \dots, b_n)|| = ||T(c_1 - b_1, \dots, c_n - b_n)||$$

$$\leq \sum_{i=1}^n |c_i - b_i| ||x_i||$$

$$\leq n|c - b| \left(\sum_{i=1}^n ||x_i||^2 \right)^{\frac{1}{2}}$$

Thus T is continuous.

 $S^{n-1} = \partial B(0,1) = \{(c_1,\ldots,c_n) \mid ||c|| = 1\}.$ $S^{n-1} \text{ is compact, so } f(c) = ||Tc||, c \in S^{n-1} \text{ attains its minimal value on } S^{n-1}.$ $|||x|| - ||y||| \le ||x - y|| \text{ for all } x, y \in X.$ $\min_{c \in S^{n-1}} ||Tc|| = ||Tc_0||, \text{ where } c_0 = (c_1^{\circ},\ldots,c_n^{\circ}) \in S^{n-1}$ $I \text{ claim now that } ||Tc_0|| > 0.$ $Tc_0 = c_0^1 x_1 + \cdots + c_0^n x_n \neq 0, \text{ so } ||Tc_0|| > 0.$ $r = ||Tc_0|| = \min_{c \in S^{n-1}} ||Tc|| > 0$

 $||Tc|| \ge r > 0$ for all $c \in S^{n-1}$. For all $b \in \mathbb{R}^n$, $b \neq 0$,

$$||Tb|| = |||b|T(\frac{b}{|b|})||$$
$$= |b|||T(\frac{b}{|b|})||$$
$$\geq r|b|$$

Thus $||Tb|| \ge rb$ for all $b \in \mathbb{R}^n$.

Assume now $a_k = \sum_{i=1}^n \alpha_i^k x_i \to x \in X$. $a_k = T(\alpha_1^k, \dots, \alpha_n^k), x = \sum_{i=1}^n \alpha_i x_i$.

$$a_k = T(\alpha_1^k, \dots, \alpha_n^k), x = \sum_{i=1}^n \alpha_i x_i.$$

Since $a_k \to a$, $||a_k|| \le M$.

So
$$|(\alpha_1^k, \dots, \alpha_n^k)| \leq \frac{1}{r} ||T(\alpha_1^k, \dots, \alpha_n^k)|| \leq \frac{M}{r}$$

So $|(\alpha_1^k, \dots, \alpha_n^k)| \leq \frac{1}{r} ||T(\alpha_1^k, \dots, \alpha_n^k)|| \leq \frac{M}{r}$ By Bolzano-Weierstrass, there exists $(\alpha_1^{k_\ell}, \dots, \alpha_n^{k_\ell}) \to (\alpha_1, \dots, \alpha_n)$ as $\ell \to \infty$ Since T is continuous,

$$\alpha_{k_{\ell}} = T(\alpha_1^{k_{\ell}}, \dots, \alpha_n^{k_{\ell}}) = \alpha_1 x_1 + \dots + \alpha_n x_n \in \langle A \rangle$$

Theorem 0.16 (Uniform Boundedness Principle, Banach-Steinhaus Theorem). Let X be a banach space, and let Y be a normed space. Let $\{T_{\alpha}\}_{{\alpha}\in A}\subseteq B(X,Y)$ be a family such that the set $\{T_{\alpha}x\}_{\alpha\in\triangle}$ is bounded for all $x\in X$. Then $\{T_{\alpha}\}$ is bounded in B(X,Y), i.e. there exists M>0 such that $||T_{\alpha}|| \leq M$ for all $\alpha \in \Delta$

Proof. Consider the sets $A_n = \{x \in X \mid ||T_\alpha x|| \le n \forall \alpha \in \Delta\} \subseteq X$

- **1.** $\bigcup_{n=1}^{\infty} A_n = X$.
- **2.** Each A_n is closed in X.

Let $x_k \in A_n, x_k \to x \in X$.

We want to show $x \in A_n$.

$$\forall \alpha \in \triangle, ||T_{\alpha}x_k|| \leq n, k = 1, 2, \dots$$

As $k \to \infty$, we have that $||T_{\alpha}x|| \le n$

So $x \in A_n$.

By Baire Category Theorem, there exists some A_N not nowhere dense.

$$\operatorname{int} \overline{A_n} = \operatorname{int} A_n \neq \emptyset.$$

So there exists $x_0 \in X, r > 0$ such that $B(x_0, r) \subseteq A_N$.

Thus
$$\overline{B}(x_0, \frac{r}{2}) \subseteq A_N$$
. Let $R = \frac{r}{2}$

$$||T_{\alpha}(\overline{B}(x_0, R))|| \leq N \forall \alpha \in \Delta$$

Let $x \in X$, $||x|| < R$. $x = x_0 + x - x_0$
 $x_0 + x \in \overline{B}(x_0, R)$.

$$||T_{\alpha}x|| = ||T_{\alpha}(x + x_0) - T_{\alpha}x_0||$$

$$\leq ||T_{\alpha}(x + x_0)|| + ||T_{\alpha}x_0||$$

$$\leq 2N$$

$$\forall x \in \overline{B}(0,R), \forall \alpha \in \triangle, \|T_{\alpha}x\| \leq 2N$$

$$\forall x \in \overline{B}(0,1), \forall \alpha \in \triangle, \|T_{\alpha}x\| = \|\frac{1}{R}T_{\alpha}(Rx)\| = \frac{1}{R}\|T_{\alpha}(Rx)\| \leq \frac{1}{R}2N = \frac{2N}{R} = M$$

$$\forall x \in \overline{B}(0,1), \forall \alpha \in \triangle, \|T_{\alpha}x\| \leq M \implies \|T_{\alpha}\| \leq M$$

Lecture 6, 4/20/23

Open Mapping Theorem

Definition 0.24. Let X and Y be normed spaces and let $A: X \to Y$. Then A is open if it maps open sets in X to open sets in Y.

Theorem 0.17. (Open Mapping Theorem) Let X and Y be Banach spaces and let $T \in B(X,Y)$ be onto. Then T is open.

Proof. omitted from these notes

Theorem 0.18. (Bounded Inverse Theorem) Let X and Y be Banach spaces and let $T \in B(X,Y)$ be a bijection. Then $T^{-1} \in B(Y,X)$.

Proof. omitted from these notes

Composition of Operators

Assume X, Y, Z are noremd spaces. Assume $T \in B(X, Y), S \in B(Y, Z)$. Then $S \circ T : X \to Z$ satisfies the properties

- 1. $S \circ T \in B(X,Z)$
- **2.** $||S \circ T|| \le ||T|| \cdot ||S||$

Linearity:

$$S \circ T(\alpha x_1 + \beta x_2) = S(T(\alpha x_1 + \beta x_2))$$

$$= S(\alpha T x_1 + \beta T x_2)$$

$$= \alpha(S \circ T)x_1 + \beta(S \circ T)x_2$$

Boundedness: choose $x \in X$. Then

$$||(S \circ T)x|| = ||S(T(x))||$$

 $\leq ||S|| ||Tx||$
 $\leq ||S|| ||T|| ||x||$

Product space and its norm

Let X and Y be normed vector spaces. Then $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$ is a vector space.

Theorem 0.19. $X \times Y$ becomes a normed space with the norm $\|(x,y)\| = \|x\| + \|y\|$. Moreover, if X and Y are Banach, then $X \times Y$ is Banach.

Proof. omitted

Lecture 7

Theorem 0.20. (Product space as a normed space) Let X and Y be normed space. Then

- **1.** $(X \times Y, \|(\cdot, \cdot)\|)$ is a normed space.
- **2.** Convergence in $X \times Y$ is equivalent to convergence in coordinates.
- **3.** If in addition X and Y are equivalent, then $(X \times Y, \|(\cdot, \cdot)\|)$ is complete.

Theorem 0.21. (Closed graph theorem)

Let X, Y be Banach spaces and let $A: X \to Y$ be linear. Then A is continuous (bounded) iff the graph of A is closed in $X \times Y$.

Proof.

Definition 0.25. Given X and Y sets and an operator $A: X \to Y$, we define the graph of A to be the set $Gr\{(x, Ax) \mid x \in X\} \subseteq X \times Y$.

Assume now that X, Y are normed spaces. What does it mean for $\operatorname{Gr} A \subseteq X \times Y$ to be closed?

 $\operatorname{Gr} A$ is closed if it contains all its limit points.

Assume $(x_n, Ax_n) \to (x, y)$.

Thus $x_n \to x$, $Ax_n \to y$ We require that $(x, y) \in Gr A$, so y = Ax.

In sum, whenever $x_n \to X$ and $Ax_n \to y$, y = Ax.

The Hahn-Banach Theorems

Definition 0.26. Let X be a vector spaces over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

- (a) A map $q: X \to \mathbb{R}$ is called a quasi-seminorm if
 - (i) $q(x+y) \le q(x) + q(y)$ for all $x, y \in X$ (triangle inequality)
 - (ii) q(tx) = tq(x) for all $t > 0, x \in X$.
- (b) A map $P: X \to |R|$ is called a <u>seminorm</u> if P is a quasi-seminorm and in addition $P(\alpha x) = |\alpha| P(x)$ for all $\alpha \in K, x \in X$.

Theorem 0.22. (Hahn-Banach, \mathbb{R} -version)

Let X be a real vector space and let $Y \subseteq X$ be a subspace. Assume $\phi: Y \to \mathbb{R}$ is a linear function and $q: X \to \mathbb{R}$ is a quasi-seminorm such that $\phi(y) \leq q(y)$ for all $y \in Y$. Then there exists a linear extension ψ of ϕ onto X such that it is dominated by q in X.

- (i) $\psi: X \to \mathbb{R}$ is linear
- (ii) $\psi(y) = \phi(y)$ for all $y \in Y$
- (iii) $\psi(x) \leq q(x)$ for all $x \in X$

Theorem 0.23. (\mathbb{C} -version, first version)

Let X be a vector space on \mathbb{C} and let $Y \subseteq X$ be a subspace. Assume $\phi : Y \to \mathbb{C}$ is a \mathbb{C} -linear map and $q : X \to \mathbb{R}$ is a quasi-seminorm such that $\operatorname{Re} \phi(y) \leq q(y)$ for all $y \in Y$. Then there exists a linear map $\psi : X \to \mathbb{C}$ such that

- (i) $\psi(y) = \phi(y)$ for all $y \in Y$
- (ii) $\operatorname{Re} \psi(x) \leq q(x)$ for all $x \in X$.

Lemma 1. Let X be a \mathbb{C} -vector space and let $\phi: X \to \mathbb{C}$ be given by $\phi(x) = u(x) + iv(x)$, where $u, v: X \to \mathbb{R}$. $u(x) = \operatorname{Re} \phi(x)$, $v(x) = \operatorname{Im} \phi(x)$. Then ϕ is \mathbb{C} -linear iff u is \mathbb{R} -linear and v(x) = -u(ix).

Proof. omitted

Lecture 8, 5/2/23

Definition 0.27. $f: D \to D$ is <u>convex</u> if for all $\lambda \in [0,1]$, $x,y \in D$, $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$.

Recall a quasi-seminorm is convex, since $q(x+y) \le q(x) + q(y)$, q(tx) = tq(x) for all t > 0.

Theorem 0.24. (Hahn-Banach)

Let X be a vector space on $K \in \{\mathbb{C}, \mathbb{R}\}$ and let $Y \subseteq X$ be a nonempty subspace. Assume $\phi: Y \to K$ is a K-linear map and $q: X \to \mathbb{R}$ is a seminorm such that $|\phi(y)| \leq q(y)$ for all $y \in Y$. Then there eixsts a linear map $\psi: X \to K$ such that

- (i) $\psi(y) = \phi(y)$ for all $y \in Y$.
- (ii) $|\psi(x)| \le q(x)$ for all $x \in X$.

Proof. omitted

Definition 0.28. A Banach space X is called <u>reflexive</u> if $X^{**} = \{F_x\}_{x \in X}$, where F_x is the evaluation operator, $f \mapsto f(x)$.

Lecture 9, 5/4/23

Let X be a normed space. For all $x \in X$, $F_x \in (X^*)^*$, $F_x(f) = f(x)$, for all $f \in X^*$. Then $F: X \to \{F_x \mid x \in X\} \subseteq (X^*)^*$

1. The mapping F is an isometry

Definition 0.29. A Banach space X is called <u>reflexive</u> if $(X^*)^* = \{F_x \mid x \in X\}$. One identifies the subspace $\{F_x \mid x \in X\}$ with X. One sets $X \subseteq (X^*)^*$. We will prove later that $(L^p(\mathbb{R}^n))^* = L^q(\mathbb{R}^n)$ for all 1 where <math>q > 0 and $\frac{1}{q} + \frac{1}{q} = 1$. In this case q is called the <u>dual exponent</u> of p. Then $((L^p(\mathbb{R}^n))^*)^* = (L^q(\mathbb{R}^n))^* = L^p(\mathbb{R}^n)$, so $L^p(\mathbb{R}^n)$ is reflexive.

Geometric Hahn-Banach theorems, separation of convex sets

Definition 0.30. Let X be a vector space.

- **1.** A set $C \subseteq X$ is called <u>convex</u> if $\lambda x + (1 \lambda)y \in C$ for all $\lambda \in [0, 1]$, whenever $x, y \in C$.
- **2.** A set $A \subseteq X$ is called <u>absorbing</u> if for every $x \in X$, there exists t > 0 such that $tx \in A$. This is equivalent to $X = \bigcup_{t>0} t \cdot C$

Example 0.6. For X a normed space, then any open or closed ball is convex.

Example 0.7. Any open set containing the origin is absorbing.

Definition 0.31. Let X be a real vector space and let $C \subseteq X$ be a convex and absorbing set containing the origin. So $0 \in C$, $X = \bigcup_{t>0} t \cdot C$.

For every $x \in X$, define $M_c(x) = \inf\{t > 0 \mid x \in t \cdot C\}$. So $M_c: X \to [0, \infty)$. This is called the Minkowski functional of C

Theorem 0.25. Under the conditions of the previous definition, M_c is a quasi-seminorm.

Proof.

Claim. Define $I_C(x) = \{t > 0 \mid x \in t \cdot C\} \subseteq \mathbb{R}$ for all $x \in X$. $I_c(x)$ has the following properties

- **1.** $I_C(\lambda x) = \lambda \cdot I_C(x)$ for all $x \in X, \lambda > 0$.
- **2.** $I_C(x) + I_C(y) \subseteq I_C(x+y)$ for all $x, y \in X$.

Proof.

1. Let's prove that $I_C(\lambda x) \leq \lambda \cdot I_C(x)$ for all $\lambda > 0$ and all $x \in X$.

Then
$$I_C(x) = I_C(\frac{1}{\lambda} \cdot (\lambda x)) \subseteq \frac{1}{\lambda} \cdot I_C(\lambda x)$$

So
$$\lambda \cdot I_C(x) \subseteq I_C(\lambda x)$$
.

Let $t \in I_C(\lambda x)$. Then $\lambda x \in t \cdot C$, $x \in \frac{t}{\lambda} \cdot C$. So $\frac{t}{\lambda} \in I_C(x)$, $t \in \lambda \cdot I_C(x)$, so $I_C(\lambda x) \subseteq \lambda I_C(x)$

2. Let $T \in I_C(x)$ and $s \in I_C(y)$. We need to prove $s + t \in I_C(x + y)$. We know $x \in t \cdot C$, and $y \in s \cdot C$.

For some $t, s > 0, c_1, c_2 \in C$, $x = t \cdot c_1, y = s \cdot c_2$. Consider the convex combination $\frac{t}{t+s} \cdot c_1 + \frac{s}{t+s} \cdot c_2 \in C$. So $\frac{1}{t+s}(x+y) \in C$.

Thus $t + s \in I_C(x + y)$

So $M_C(\lambda \cdot X) = \lambda \cdot M_C(x)$ for all $\lambda > 0, x \in X$. Suppose $A + B \subseteq D$. Then inf $A + \inf B \ge \inf D$. So $M_C(x + y) \le M_C(x) + M_C(y)$ for all $x, y \in X$.

Theorem 0.26. Under the conditions of the definition, one has

$$\{x \in X \mid M_C(x) < 1\} \subseteq C \subseteq \{x \in X \mid M_C(x) \le 1\}$$

Proof.

- **1.** $C \subseteq \{x \in X \mid M_C(x) \le 1\}$. Assume $x \in C$. Then $1 \cdot x \in C$. So $1 \in I_C(x)$, so inf $I_C(x) \le 1$, so $M_C(x) \le 1$
- **2.** $\{x \in X \mid M_C(x) < 1\} \subseteq C$. Let $x \in \{x \in X \mid M_C(x) < 1\}$. $M_C(x) < 1$, so inf $I_C(x) < 1$.

So there exists t < 1 such that $x \in t \cdot C$.

So $t \in I_C(x)$. $x = t \cdot c$, $c \in C$. So $x = t \cdot c + (1 - t) \cdot 0 \in C$ because C is convex.

Theorem 0.27. Let X be a real normed space and let $C \subseteq X$ be an open, convex set containing the origin.

Then
$$C = \{x \in X \mid M_C(x) < 1\}$$

Proof. By previous theorem, we have $\{x \in X \mid M_C(x) < 1\} \subseteq X$.

We need to prove that if $M_C(x) = 1$, then $x \notin C$.

Assume $x \in C$. There exists $\overline{B}_{\delta}(x) \subseteq C$, $\delta > 0$.

$$y = x \frac{\|x\| + \delta}{\|x\|} \in \overline{B}_{\delta}(x), \|y - x\| = \|\frac{\delta x}{\|x\|}\| = \delta$$

So
$$||y|| = ||x|| + \delta > ||x||$$

So
$$t = \frac{\|x\|}{\|x\| + \delta} < 1$$
, so $x \in t \cdot C$, so $x = t \cdot y, y \in C$.

So
$$M_C(x) \le t < 1$$

Lecture 10, 5/9/23

Theorem 0.28. (Separation of a convex set from a point)

Let X be a real normed space, let $C \subseteq X$ be an open convex set and let $x_0 \notin C$. There exists a linear continuous functional $\varphi : X \to \mathbb{R}$ such that

1.
$$\varphi(x_0) = 1$$

2. $\varphi(c) < 1$ for all $c \in C$.

In Euclidean space, $\varphi(x) = \sum_{i=1}^{n} a_i x_i$. $\varphi(x) = 1$ - hyperplane.

Proof. C open and $0 \in C \Rightarrow C$ is absorbing.

Thus the Minkowski functional of C, $M_C(x)$, is a quasi-seminorm.

Theorem 3 gives $C = \{x \in X \mid M_C(x) < 1\}.$

Consider the subspace $Y = \{tx_0 \mid t \in \mathbb{R}\} \subseteq X$.

Define $\phi: Y \to \mathbb{R}$ linear functional as $\phi(t \cdot x_0) = t$, for all $t \in \mathbb{R}$, or for all $tx_0 \in Y$.

Claim 1: $\phi(y) \leq M_c(y)$ for all $y \in Y$.

Let $y = tx_0$. We want to show that $t = \phi(y) \leq M_c(tx_0)$.

If y < 0, this is obvious, since $M_C(y) \ge 0$ for all $y \in Y$.

Now assume t > 0.

 M_C is a quasi-seminorm, so $M_C(tx_0) = tM_C(x_0)$.

Since $x_0 \notin C = \{x \in X \mid M_C(x) < 1\}$, we have $M_C(x_0) \ge 1$.

So $M_C(tx_0) \geq t$.

By Hahn-Banach, we can extend ϕ to X as a linear functional that $\leq M_C$.

Further, $\phi: X \to \mathbb{R}$ is linear, $\phi(x_0) = 1$.

I'm not finishing this

Theorem 0.29. (Separation of two convex sets)

Let X be a real normed space and let A, B be disjoint convex sets with A open. There exists a continuous linear functional $\phi: X \to \mathbb{R}$ such that $\phi(a) < \alpha \le \phi(b)$ for all $a \in A, b \in B$, where $\alpha = \inf_{b \in B} \phi(b)$

Proof.

Theorem 0.30. (Separation of Two convex sets)

Let X be a complex normed space and let A, B be disjoint convex sets with A open. There exists a continuous linear functional $\phi: X \to \mathbb{C}$ such that $\operatorname{Re} \phi(a) < \alpha \leq \operatorname{Re} \phi(b)$ for all $a \in A, b \in B$, where $\alpha = \inf_{b \in B} \operatorname{Re} \phi(b)$

L^p spaces

Definition 0.32. Assume Ω is an open set, $p \in [1, \infty]$. For a measurable (Lebesgue-measurable) function $f : \Omega \to \mathbb{C}$, define

$$||f||_{L^p(\Omega)} = \begin{cases} \left(\int_{\Omega} |f(x)|^p \, dx \right)^{\frac{1}{p}} & p \in [1, \infty) \\ \operatorname{esssup}_{x \in \Omega} |f(x)| & p = \infty \end{cases}$$

We define $\operatorname{esssup}_{x \in \Omega} |f(x)| = \inf\{M : |\{x \in \Omega : |f(x)| > M\}| = 0\}$

Here |A| = Lebesgue measure of A.

Define the set $L^p(\Omega) = \{f : \Omega \to \mathbb{C} : f \text{ measurable, } ||f||_{L^p(\Omega)} < \infty.$

Theorem 0.31. $L^p(\Omega)$ is a banach space with norm $||f||_{L^p(\Omega)}$ (modulo almost everywhere agreement of functions).

Proof.

General setting: X a nonempty set, μ a measure on X. Choose $1 \leq p \leq \infty$. For $f: X \to \overline{\mathbb{R}}$ μ -measurable, define

$$||f||_{L^p(X,\mu)} = \begin{cases} \left(\int_X |f(x)|^p \, dx \right)^{\frac{1}{p}} \, 1 \le p < \infty \\ \operatorname{esssup}_{x \in X} |f(x)| & p = \infty \end{cases}$$

Definition 0.33. $\operatorname{esssup}_{x \in X} |f(x)| = \inf\{M : \mu\{x \in X : |f(x)| > M\} = 0\}$

Proposition 2. Denote $M_0 = \operatorname{esssup}_{x \in X} |f(x)|$. Then $\mu\{|f(x)| > M_0\} = 0$.

Proof.

Definition 0.34. Define for $1 \le p \le \infty$,

$$\underline{L^p(X,\mu)} = L^p(X) \stackrel{\text{def}}{=} \{ f : X \to \overline{\mathbb{R}}, f\mu - \text{measurable }, ||f||_p < \infty \}$$

For a function f, denote by \hat{f} the equivalence class of f under μ -almost everywhere equivalence.

From now on, we identify two functions that agree μ -almost everywhere in X.

Theorem 0.32. $\{\hat{f}\}$ with the norm $\|\cdot\|_p$ is a Banach space, called the Lebesgue space.

Lemma 2. (Young's Inequality)

Assume $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$ for all $a, b \ge 0$. Equivalently, $a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b$ for all $\lambda \in [0,1]$, $a,b \ge 0$. Convention is to take $0^0 = 0$, or $\lambda \in (0,1)$.

Theorem 0.33. If $\phi \in C^2(\mathbb{R})$, then ϕ is convex iff $\phi''(t) \geq 0$.

Proof.

Lecture 11, 5/16/23

Definition 0.35. Let X be a normed space and let $(x_n) \subseteq X, x \in X$. (x_n) converges weakly to x if $\phi(x_n) \to \phi(x)$ for all $\phi \in X^*$.

Note strong convergence implies weak convergence.

Definition 0.36. Let X be a normed space and let $(f_n) \subseteq X^*$, $f \in X^*$. (f_n) converges weak-* to f if $f_n(x) \to f(x)$ for all $x \in X$. If X is reflexive, the above two definitions are equivalent.

Theorem 0.34. 9Alaoglu's Theorem)

Let X be a normed space. The closed unit ball in X^* is weak-* compact.