Lecture 14th: Splay Trees

Splay Trees are **Binary Search Trees**

separated

- items stored only at internal nodes
- keys stored at nodes in the left subtree of ν are less than or equal to the key stored at ν
- keys stored at nodes in the right subtree of vare greater than or equal to the key stored at ν
- An inorder traversal will return the keys in order

Searching in a Splay Tree: Starts the Same as in a BST

- Search proceeds down the tree to found item or an external node.
- Example: Search for time with key 11.

Example Searching in a BST, continued

search for key 8, ends at an internal node.

Splay Trees do Rotations after Every Operation (Even Search)

- new operation: splay
 - splaying moves a node to the root using rotations
- right rotation
 - makes the left child x of a node y into y's parent; y becomes the right child of x
- left rotation
 - makes the right child y of a node x into x's parent; x becomes the left child of y

Splaying Example

- \bullet let x = (8,N)
 - x is the right child of its parent, which is the left child of the grandparent
 - left-rotate around p, then rightrotate around g

(14,J)

(10,A)

(10,U)

(8,N)

(7,P)

(5,G)

(6,Y)

(7,T)

(5,H)

(5,I)

(1,Q)

(2,R)

(1,C)

(20,Z)

(35,R)

(36,L)

(after first rotation)

(37,P)

(40,X)

(21,0)

Splaying Example, Continued

Example Result of Splaying

- tree might not be more balanced
- e.g. splay (40,X)
 - before, the depth of the shallowest leaf
 3 and the deepest is 7
 - after, the depth of shallowest leaf is 1 and deepest is 8

Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs O(h), where h is height of the tree
 - which is still O(n) worst-case
 - O(h) rotations, each of which is O(1)

Splay Trees & Ordered Dictionaries

eration?

which nodes are splayed after each operation?

method	splay node
findElement	if key found, use that node if key not found, use parent of ending external node
insertElement	use the new node containing the item inserted
removeElement	use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Amortized Analysis

- Def: Amortized running time of an operation within a series of operations is the worst running time of the series of operations divided by a number of those operations
- Section 1.5.1

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v.
- ◆ Costs: zig = \$1, zig-zig = \$2, zig-zag = \$2.
- ◆ Thus, cost for playing a node at depth d = \$d.
- Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).

Cost per zig

- Lemma: Doing a zig at x costs at most rank'(x) rank(x):
 - cost = rank'(x) + rank'(y) rank(y) rank(x)

 < rank'(x) rank(x).</pre>

Cost per zig-zig and zig-zag

- Doing a zig-zig or zig-zag at x costs at most
 3(rank'(x) rank(x)) 2.
 - Proof: See Theorem 3.9, Page 192.

Cost of Splaying (Search)

- Cost of splaying a node x at depth d of a tree rooted at r:
 - at most 3(rank(r) rank(x)) d + 2:
 - Proof: Splaying x takes d/2 splaying substeps:

$$cost \le \sum_{i=1}^{d/2} cost_{i}$$

$$\le \sum_{i=1}^{d/2} (3(rank_{i}(x) - rank_{i-1}(x)) - 2) + 2$$

$$= 3(rank(r) - rank_{0}(x)) - 2(d/2) + 2$$

$$\le 3(rank(r) - rank(x)) - d + 2.$$

Cost of Insertion

- Cost of inserting a node x at depth d of a tree rooted at r:
 - v is inserted the ranks of all ancestors of v are increased
 - Let $v_0,...,v_d$ be the ancestors of v_i , where $v_0=v_i$, v_{i+1} is the parent of v_i and v_d is the root
 - n(v_i) size of the v_i before the node insertion
 - n'(v_i) size of the v_i after the node insertion
 - $n'(v_i)=n(v_i)+2$
 - $n(v_{i+1}) \ge n(v_i) + 2$
 - $r'(v_i) = log(n'(v_i)) = log(n(v_i) + 2) \le log(n(v_{i+1})) = r(v_{i+1})$

$$r'(v_i) \le r(v_{i+1})$$

$$cost = \sum_{i=1}^{d} (r'(v_i) - r(v_i)) + r'(v_0) \le$$

$$\leq r'(v_d) - r(v_d) + \sum_{i=1}^{d-1} (r(v_{i+1}) - r(v_i)) + r'(v_0)$$

$$= r'(v_d) - r(v_d) + \sum_{i=1}^{d-1} (r(v_{i+1}) - r(v_i)) + r'(v_0) =$$

$$= r'(v_d) - r(v_1) + r(v_0) \le r'(v_d) + r(v_0) = \log(2n + 1 + 2) + 3$$

 $O(\log n)$

Performance of Splay Trees

- Recall: rank of a node is logarithm of its size.
- Thus, amortized cost of any splay operation is O(log n).
- Splay trees can actually adapt to perform searches on frequently-requested items much faster than O(log n) in some cases. (See Theorems 3.10 and 3.11.)