Customer Default Identification Report

Problem:

An increase in customer default rates is bad for Credit One since its business is approving customers for loans in the first place. This is likely to result in the loss of Credit One's business customers.

Results

1. We can identify customers who will default 66% of the time.

Figure 1: Actual Results vs Model

Figure 2: Confusion Matrix

2. Our model overestimates the customers who willd default. It fits the term "Better Safe than Sorry". However, out of the customers who did not default, our model predicted that

- 23% of them defaulted. This can be a significant loss of revenue. However, our biggest concern right now is approving customers who end up defaulting. We can find them 66% of the time. This means that about 33% of our customers that we approve based on this model will default.
- 3. We removed outliers. These are customer with limit amounts greater than \$525,000, and with monthly payments generally above \$9,500.
 - Figure 3: Boxplot of Limit distribution. Most customers have balances below \$250,000.

- 4. Statistically significant attributes in the data:
 - a. The customer's pay status in the last 3 months
 - b. The amount of the first bill
 - c. Limit balance

Feature ranking:	Feature Number:	Feature Name	Percent Used
1	5	pay1	21.12%
2	6	pay2	9.15%
3	7	pay3	6.85%

4	11	bill1	5.27%
5	0	limit	4.74%
6	17	paid1	4.70%
7	18	paid2	4.48%
8	8	pay4	4.46%
9	12	bill2	4.18%
10	19	paid3	3.81%
11	20	paid4	3.68%
12	13	bill3	3.55%
13	14	bill4	3.37%
14	15	bill5	3.24%
15	16	bill6	3.23%
16	10	pay6	3.21%
17	4	age	3.12%
18	9	pay5	2.89%
19	21	paid5	2.65%
20	2	edu	0.96%
21	3	marriage	0.71%
22	1	sex	0.62%

It is interesting that age, education, marriage, and sex were not the most important features. Rather, a customer's payment history and loan amount was. It is crucial to collect customer payment history in order to use this model to approve a customer.

For future studies, we recommend preparing more customer data that reflects customer behavior over time. This may strengthen the model since the most important features were those that described customer behavioral patterns (payment status, and the amount that a customer chose to pay).

Model Performance Metrics

Gradient Tree Boosting

Gradient Tree Boosting					
	F1 Recall Precision Accu				
Out of the Box:	0.46220	0.35408	0.66539	0.82056	
Multicollinearity:	0.46220	0.35408	0.66539	0.82056	
RFE:	N/A	N/A	N/A	N/A	
Outliers:	0.49413	0.38831	0.67922	0.79727	
Oversampling	0.52643	0.61990	0.45745	0.75711	
Undersampling	0.52537	0.62602	0.45260	0.75367	
Outliers, Undersampling	0.55867	0.63877	0.49641	0.74266	
Outliers, Undersampling, Bagged	0.56186	0.64554	0.49739	0.74329	

Ada Boost

Ada Boost					
	F1	Recall	Precision	Accuracy	
Out of the Box:	0.43496	0.32245	0.66808	0.81756	
Multicollinearity:	0.43496	0.32245	0.66808	0.81756	
RFE:	N/A	N/A	N/A	N/A	
Outliers:	0.44748	0.33292	0.68222	0.79037	
Oversampling	0.51784	0.60714	0.45144	0.75378	
Undersampling	0.52087	0.61122	0.45379	0.75511	
Outliers, Undersampling	0.54437	0.61723	0.48689	0.73654	

Random Forest

Random Forest					
	F1	Recall	Precision	Accuracy	
Out of the Box:	0.31292	0.20204	0.69352	0.80678	
Multicollinearity:	0.30616	0.19643	0.69369	0.80611	
RFE:	0.28443	0.17806	0.70648	0.80489	
Outliers:	0.37562	0.256	0.70508	0.78299	
Oversampling	0.52106	0.57449	0.47671	0.77000	
Undersampling	0.52316	0.57347	0.48096	0.77233	
Outliers,	0.54190	0.59692	0.49616	0.74266	

Oversampling				
Outliers,	0.54400	0.50045	0.50404	0.74565
Undersampling	0.54196	0.59015	0.50104	0.74565

Random Forest parameter tuning:

{'n_estimators': 200, 'min_samples_split': 35, 'min_samples_leaf': 4, 'max_features': 'auto', 'max_depth': 20, 'bootstrap': False}

K-Nearest Neighbor

K-Nearest Neighbor					
	F1	Recall	Precision	Accuracy	
Out of the Box:	0.27176	0.22704	0.3384	0.735	
Multicollinearity	0.26833	0.21939	0.34538	0.73944	
RFE:	N/A	N/A	N/A	N/A	
Outliers:	0.31157	0.26277	0.38262	0.70391	
Oversampling	0.34831	0.46071	0.28000	0.62456	
Undersampling	0.35044	0.46684	0.28050	0.62311	
Outliers, Undersampling	0.40617	0.58338	0.31153	0.56504	

Guassian Naive Bayes

Guassian Naive Bayes					
	F1	Recall	Precision	Accuracy	
Out of the Box	0.38326	0.86429	0.24622	0.39422	
Multicollinearity	0.38323	0.89541	0.24378	0.37233	
RFE	N/A	N/A	N/A	N/A	
Outliers	0.42385	0.54031	0.34869	0.62545	
Oversampling	0.37503	0.93010	0.23486	0.32489	
Undersampling	0.37488	0.93214	0.23462	0.32300	
Outliers, Undersampling	0.42746	0.76246	0.29698	0.47921	

Least Squares Support Vector Machine

Least Squares Support Vector Machine				
F1 Recall Precision Accuracy				
Out of the Box	0.08544	0.05	0.29341	0.76689

All Models, after Outliers and Undersampling					
	F1	Recall	Precision	Accuracy	
KNN	0.40617	0.58338	0.31153	0.56504	
Random Forest	0.54196	0.59015	0.50104	0.74565	
Ada Boost	0.54437	0.61723	0.48689	0.73654	
Gradient TB	0.55867	0.63877	0.49641	0.74266	
Gaussian NB	0.42746	0.76246	0.29698	0.47921	
stacked_models	0.55122	0.62585	0.49249	0.74015	
stacked_models_t unedRF	0.55921	0.65969	0.48529	0.73482	
stacked_rf_tuned_ gtb_bagged	0.56237	0.65600	0.49282	0.74015	