RR-TB Updates: September 28, 2023

Project Aim

- Back out trends in the prevalence of Rifampicin resistant TB (RR-TB) over time using Xpert testing data in Sinan
- Develop a relatively simple model that accounts for variation in roll-out of Xpert over time and across geographies (e.g. by state), as well as potential bias in who is getting tested with Xpert

Helpful context: Trends in Xpert testing overtime

• As of 2019:

- $-\sim40\%$ of cases were being tested with Xpert, compared to $\sim3\%$ in 2014 and 23.5% in 2015, on average
- Mato Grosso, Pará, and Pernambuco had the lowest average testing coverage
- Roraima, Amazonas, and Rondônia had the highest average testing coverage

Model Specification

Overview

- State-level hierarchical generalized additive model (GAM) that models the prevalence of RR-TB positive cases per quarter among incident TB cases between 2014-2019
- Fit smoothing functions to reduce the noise we were seeing in previous models
- Models risk of positivity by characteristics of patient and municipality where they reside
 - Note: Between 2014-2019, ~3,300 cases diagnosed outside of patient's state of residence; ~88,000 cases diagnosed outside patient's municipality of residence
- Separate models for new TB cases, re-entry cases, and relapsed cases

Set Up

```
result ~ s(state, bs = "re") + s(time) + s(time, by = state, id = 1) + age_cat +
hiv_status + sex + health_unit + bf_cat + urban_cat + has_prison
```

- Random intercept for each state (patient state of residence)
- A different smooth function for time by state with a shared smoothing parameter
- Each state-level smoothing parameter varies around a grand smooth function for time to allow for pooling across states
- Fixed effects for patient-level characteristics:
 - Age
 - HIV status
 - Sex
 - Level of health unit of diagnosis Based on CNES merge
- Fixed effects for municipality-level characteristics:
 - Urbanicity (cat) Percent of the population in urban setting (2010 census)
 - Bolsa Familia coverage (cat) Percent of the population benefiting from BF (BF: SAGICAD, 2018
 - earliest year available; Denominator: 2010 Census)
 - Presence of prison during year (SISPEN)
 - FHS Coverage Number of health teams per 4,000 people (Forthcoming)

Specifications

- Model 1 Adjusted:
 - Patient-level: HIV status, sex, age, health unit level
 - Municipality: BF coverage, urbanicity, presence of prison
- Model 2 Adjusted; Restricted > 2015
- Run separately by case type (e.g. new, relapse, re-entry) and for all cases

Model Output

New cases

- Model A Adjusted:
 - Patient-level: HIV status, sex, age (cat), health unit
 - Municipality: Pct average BF coverage (cat), pct pop in urban area, presence of prison
- Model B Model A + interaction term (HIV, sex, age)
- Model C Model A, restricted to >2015

- Time trends in RR-TB positivity (Model A Adjusted):
 - 2017:
 - * Average: 0.0404
 - * Range: 0.0146 (Sao Paulo) 0.0894 (Maranhão)
 - * São Paulo: 0.0146
 - 2018:
 - * Average: 0.033
 - * Range: 0.0118 (Rio Grande do Norte) 0.0682 (Maranhão)
 - * São Paulo: 0.0149
 - 2019:
 - \ast Average: 0.026
 - \ast Range: 0.009 (Sergipe) 0.0455 (Maranhão)
 - \ast São Paulo: 0.0158

Re-Entry Cases

Note: The following figures show the same model output, only the Y axis changes to show variation within each state.

Fixed Axes

Varied Axes

- Time trends in RR-TB positivity (Model A Adjusted):
 - 2017:
 - * Average: 0.0609
 - * Range: 0.0289 (Rio Grande do Norte) 0.1138 (Rio Grande do Sul)
 - \ast São Paulo: 0.0405
 - 2018:
 - * Average: 0.0601
 - * Range: 0.0268 (Rio Grande do Norte) 0.1222 (Maranhão)
 - * São Paulo: 0.0464
 - 2019:
 - * Average: 0.0543
 - \ast Range: 0.0162 (Sergipe) 0.1925 (Amapá)
 - * São Paulo: 0.0315

Relapse Cases

Note: The following figures show the same model output, only the Y axis changes to show variation within each state.

Fixed axes by state

Varied axes by state

- Time trends in RR-TB positivity (Model A Adjusted):
 - 2017:
 - \ast Average: 0.0634
 - \ast Range: 0.0264 (Mato Grosso do Sul) 0.1176 (Roraima)
 - $\ast\,$ São Paulo: 0.0391
 - 2018:
 - * Average: 0.0609
 - * Range: 0.0326 (Pernambuco) 0.1002 (Distrito Federal)
 - \ast São Paulo: 0.0407
 - 2019:
 - * Average: 0.0482
 - * Range: 0.0092 (Roraima) 0.1785 (Distrito Federal)
 - $\ast\,$ São Paulo: 0.03

All cases (e.g. Diagnoses types combined)

- Time trends in RR-TB positivity (Model A Adjusted):
 - 2017:
 - * Average: 0.0405
 - \ast Range: 0.017 (Goiás) 0.0796 (Maranhão)
 - * São Paulo: 0.0195
 - 2018:
 - * Average: 0.0358
 - * Range: 0.0149 (Rio Grande do Norte) 0.069 (Maranhão)
 - * São Paulo: 0.0201
 - 2019:
 - \ast Average: 0.0281
 - * Range: 0.0118 (Rio Grande do Norte) 0.0509 (Maranhão)
 - \ast São Paulo: 0.0183

Going Forward:

- Add in FHS coverage
 Try aggregating data to health region (to overcome noise when working with small municipalities)