Self-Driving Cars (Final)

309611087 洪得瑜

2022 12/28

1 Competition Tracking

經由助教提供原始程式碼完成 greedy algorithm 程式碼及可為 baseline 基準,而在 baseline 的表現上總共追蹤 7 個物件 (bike,bus,car,motorcy,pedester,trailer,truck)。

1.1 Problem

由 Rviz 中透過視覺話的觀察中,由於本次使用的偵測模組並不是相當好,我在影像上看到偵測的畫面可能前一幀有 偵測到,而下一卻沒有偵測到示意圖如圖 1,但第一幀偵測到而下一幀沒有偵測且下下幀也沒有,因此第一幀實際 上並不是正確偵測,但已進入 tracking 中導致分數下降,而在精準度表示上腳踏車的 tracking 並不是特別的好相較於 其他物件,由圖 2 數據 AMOTA 可清楚觀察出差異,因此我目前想到的方法修改參數是否能提升性能?

RVIZ lidar detect result

Figure 1: Rviz 光達偵測結果示意圖

Baseline parameter	Result	AMOTA	AMOTOP
min_hits	1 bicycle	0.48	0.446
	bus	0.871	0.5
mag_age	6 car	0.844	0.343
	motorcy	0.664	0.469
det_th	0 pedestr	0.763	0.36
	trailer	0.45	0.987
del_th	0 truck	0.689	0.603
active_th	0		

Figure 2: baseline 實驗測試結果

1.2 Parameter

而可調參數部分共有 6 項 (min_hits,max_age,det_th,del_th,active_th),因此總共調整 6 個各別參數,由於前一問題偵測上的不連續,造成偵測結果不太好,因此我首先想到調整偵測閥值 (det_th) 有助於降低誤判率,能讓偵測敏感降低

進而提升 tracking 的效果。

1.2.1 det th

調整結果將 det_th 提高可增加追蹤上的表現,實驗結果如圖 3 所示調整到 1 後整體 AMOTA 皆有顯著的上升效果,可推測想法是正確的,但再向上提升到 2,3,5 以上並沒有持續提升,結果並沒有在變化,表示 1 為最終表現最好參數。

Baseline parameter	Result	AMOTA	AMOTOP
min_hits	1 bicycle	0.508	0.517
	bus	0.855	0.539
mag_age	6 car	0.839	0.384
	motorcy	0.684	0.509
det_th	1 pedestr	0.761	0.403
	trailer	0.46	1.021
del_th	0 truck	0.678	0.601
active_th	0		

Figure 3: baseline 調整 det_th=1 實驗測試結果

1.2.2 active_th

由於前面認為偵測敏感度問題而在此我降低 active_th=0.5 應該能在提高表現,但實際並不是如我想像,反而降低表現如圖 4 顯示,目前猜測原因主要 active_th 主要控制 tracking 的觸發,與偵測 detect 並沒有太大的關係,因此降低 active_th 反而降低啟動 tracking 啟動的機制,導致該 tracking 而沒有 tracking,除此之外我也將參數調等到 2 測試,同樣的參數也沒有表好但維持和 active th=1 及 3,6 的結果相同。

Baseline parameter	Result	AMOTA	AMOTOP
min_hits	1 bicycle	0.318	0.515
	bus	0.841	0.54
mag_age	6 car	0.833	0.384
	motorcy	0.539	0.468
det_th	1 pedestr	0.734	0.416
	trailer	0.409	0.996
del_th	0 truck	0.671	0.602
active_th	0.5		

Figure 4: baseline 調整 active th=0.5 實驗測試結果

1.2.3 max age

max_age 調整結果無論是增加或減少都無法提升效能,甚至效能皆低於 baseline 因此目前最佳參數設定為 6。

1.3 Result

經由實驗驗證結果我認為偵測上的 training 可能需要重新尋照更好的模型做偵測,除此之外還有一個問題就是 box 的位置是正確但 heading 不太正確,同常會旋轉一個角度,或許能改變這個小細節可在提高效能。

Figure 5: Rviz 上 heading 的問題

References

 $[1]\ https://github.com/cogsys-tuebingen/CBMOT$