102046706 – Data Mining & Business Intelligence

Unit-5 Concept Description and Association Rule Mining

Outline

- What is concept description?
- Market basket analysis
- Association Rule Mining
- Generating Rules
- Improved apriori algorithm
- Incremental ARM (Association Rule Mining)
- Associative Classification
- Rule Mining

Concept description

- Data mining can be classified into two categories: descriptive data mining and predictive data mining.
- Descriptive data mining describes the data set in a concise and summative manner and presents interesting general properties of the data.
- Predictive data mining analyzes the data in order to construct one or a set of models, and attempts to predict the behavior of new data sets.
- Database is usually storing the large amounts of data in great detail. However users often like to view sets of summarized data in concise, descriptive terms.

Concept description (Cont..)

The simplest kind of descriptive data mining is called concept description.

- A concept usually refers to a collection of data such as frequent_buyers, graduate_students etc.
- As a data mining task, concept description is not a simple enumeration (number of things done one by one) of the data.
- Concept description generates descriptions for characterization
 and comparison of the data it is also called class description.

Concept description (Cont..)

- Characterization provides a concise and brief summarization of the data.
- While concept or class comparison (also known as discrimination) provides discriminations (inequity) comparing two or more collections of data.

Example

- Given the ABC Company database, for example, examining individual customer transactions.
- Sales managers may prefer to view the data generalized to higher levels, such as summarized by customer groups according to geographic regions, frequency of purchases per group and customer income.

Market basket analysis

- Frequent itemset mining leads to the discovery of associations and correlations among items in large transactional or relational data sets.
- With massive amounts of data continuously being collected and stored, many industries are becoming interested in mining such patterns from their databases.
- The discovery of interesting correlation relationships among huge amounts of business transaction records can help in many business decision-making processes such as
 - √ catalog design,
 - ✓ cross-marketing, and
 - ✓ customer shopping behavior analysis.

Market basket analysis (Cont..)

- An example of frequent itemset mining is market basket analysis.
- This process analyzes customer buying habits by finding associations between the different items that customers place in their "shopping baskets".
- The discovery of these associations can help retailers develop marketing strategies by gaining insight into which items are frequently purchased together by customers.
- For instance, if customers are buying milk, how likely are they to also buy bread on the same trip.

Market basket analysis (Cont..)

Association rule mining

- Given a set of transactions, we need rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.
- Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Chocolate, Pepsi, Eggs
3	Milk, Chocolate, Pepsi, Coke
4	Bread, Milk, Chocolate, Pepsi
5	Bread, Milk, Chocolate, Coke

Example of Association Rules

```
{Chocolate} → {Pepsi},
{Milk, Bread} → {Eggs, Coke},
{Pepsi, Bread} → {Milk}
```

Itemset

- A collection of one or more items
 - o E.g. : {Milk, Bread, Chocolate}
- k-itemset

An itemset that contains k items

- Support count (σ)
 - Frequency of occurrence of an itemset
 - \circ **E.g.** σ ({Milk, Bread, Chocolate}) = 2

1	Bread, Milk
2	Bread, Chocolate, Pepsi, Eggs
3	Milk, Chocolate, Pepsi, Coke
4	Bread, Milk, Chocolate, Pepsi
5	Bread, Milk, Chocolate, Coke

Items

Support

- Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Chocolate}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minimum support threshold

- Association Rule
 - An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
 - \circ **E.g.**: {Milk, Chocolate} \rightarrow {Pepsi}
- Rule Evaluation
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Chocolate, Pepsi, Eggs
3	Milk, Chocolate, Pepsi, Coke
4	Bread, Milk, Chocolate, Pepsi
5	Bread, Milk, Chocolate, Coke

Example:

Find support & confidence for {Milk, Chocolate} ⇒ Pepsi

$$s = \frac{\sigma(Milk,Chocolate,Pepsi)}{|T|} = \frac{2}{5} = \mathbf{0.4}$$

$$c = \frac{\sigma(Milk,Chocolate,Pepsi)}{\sigma(Milk,Chocolate)} = \frac{2}{3} = 0.67$$

Association rule mining - Example

TID	Items
1	Bread, Milk
2	Bread, Chocolate, Pepsi, Eggs
3	Milk, Chocolate, Pepsi, Coke
4	Bread, Milk, Chocolate, Pepsi
5	Bread, Milk, Chocolate, Coke

```
Calculate Support & Confidence:

{Milk, Chocolate} → {Pepsi}

{Milk, Pepsi} → {Chocolate}

{Chocolate, Pepsi} → {Milk}

{Pepsi} → {Milk, Chocolate}

{Chocolate} → {Milk, Pepsi}

{Milk} → {Chocolate, Pepsi}
```

Answer

```
Support (s): 0.4

{Milk, Chocolate} \rightarrow {Pepsi} c = 0.67

{Milk, Pepsi} \rightarrow {Chocolate} c = 1.0

{Chocolate, Pepsi} \rightarrow {Milk} c = 0.67

{Pepsi} \rightarrow {Milk, Chocolate} c = 0.67

{Chocolate} \rightarrow {Milk, Pepsi} c = 0.5

{Milk} \rightarrow {Chocolate, Pepsi} c = 0.5
```

A common strategy adopted by many association rule mining algorithms is to decompose the problem into two major subtasks:

1. Frequent Itemset Generation

- The objective is to find all the item-sets that satisfy the minimum support threshold.
- These itemsets are called **frequent itemsets**.

2. Rule Generation

- The objective is to extract all the high-confidence rules from the frequent itemsets found in the previous step.
- These rules are called strong rules.

Apriori algorithm

- **Purpose**: The Apriori Algorithm is an influential algorithm for mining **frequent itemsets** for Boolean **association rules**.
- Key Concepts:
 - Frequent Itemsets:

The sets of item which has minimum support (denoted by L_i for ith-Itemset).

Apriori Property:

Any subset of frequent itemset must be frequent.

Join Operation:

To find L_k , a set of candidate k-itemsets is generated by joining L_{k-1} itself.

Apriori algorithm (Cont..)

Find the frequent itemsets

- The sets of items that have minimum support and a subset of a frequent itemset must also be a frequent itemset (Apriori Property).
- E.g. if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset.
- Use the frequent item sets to generate association rules.

The Apriori Algorithm : Pseudo code

- Join Step: C_k is generated by joining L_{k-1}with itself
- Prune Step: Any (k-1) itemset that is not frequent cannot be a subset of a frequent k-itemset

Apriori algorithm steps (Cont..)

Step 1:

Start with itemsets containing just a single item (Individual items).

Step 2:

- Determine the support for itemsets.
- Keep the itemsets that meet your minimum support threshold and remove itemsets that do not support minimum support.

Step 3:

• Using the itemsets you have kept from Step 1, generate all the possible itemset combinations.

Step 4:

Repeat steps 1 & 2 until there are no more new itemsets.

Apriori algorithm - Pseudo code (Cont..)

```
C<sub>k</sub>: Candidate itemset of size k
L<sub>k</sub>: Frequent itemset of size k
L_1= {frequent items};
        for (k = 1; L_k != \emptyset; k++) do begin
                C_{k+1} = candidates generated from L_k;
        for each transaction t in database do
                Increment the count of all candidates in C_{k+1}
                That are contained in t
                L_{k+1} = candidates in C_{k+1} with min_support
        end
        return U_k L_k;
```

Apriori algorithm - Example

Minimum Support = 2

TID	Items	$\boldsymbol{\mathcal{C}_{1}}$	ItemSet	Min. Sup	L_1	ItemSet	Min. Sup
100	134		{1}	2		{1}	2
200	2 3 5	Scan D	{2}	3	\longrightarrow	{2}	3
300	1235		{3}	3		{3}	3
400	2 5		{4}	1	X	{5}	3
			{5}	3			

			I	C_2	Itemset	Min. Sup		Itemset
L ₂	ItemSet	Min. Sup		X	{1 2}	1		{1 2}
	{1 3}	2			{1 3}	2	Scan D	{1 3}
	{2 3}	2	_	X	{1 5}	1		{1 5}
	{2 5}	3		•	{2 3}	2		{2 3}
	{3 5}	2			{2 5}	3		{2 5}
					{3 5}	2		{3 5}

Apriori algorithm - Example

Minimum Support = 2

	ItemSet	Min. Sup		ItemSet	Min. Sup				
L_2	{1 3}	2	C ₃	{1 2 3}	1	X	,		
	{2 3}	2	Scan D	{1 2 5}	1	X	<i>-</i> 3	Items	Sup
	{2 5}	3		{1 3 5}	1	X		{2 3 5}	2
	{3 5}	2		{2 3 5}	2				

Rules generation

Association Rule	Support	Confidence	Confidence (%)	
2 ^ 3 > 5	2	2/2 = 1	100 %	1
$3 \land 5 \rightarrow 2$	2	2/2 = 1	100 %	1
2 ^ 5 → 3	2	2/3 = 0.66	66%	
2 = 3 ^ 5	2	2/3 = 0.66	66%	
3 = 2 ^ 5	2	2/3 = 0.66	66%	
5 = 2 ^ 3	2	2/3 = 0.66	66%	

Improve apriori's efficiency

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent.
- Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans.
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.
- Sampling: Mining on a subset of given data, lower support threshold + a method to determine the completeness.
- Dynamic itemset counting: Add new candidate itemsets only when all of their subsets are estimated to be frequent.

Incremental Mining of Association Rules

- It is noted that analysis of past transaction data can provide very valuable information on customer buying behavior, and thus improve the quality of business decisions.
- With the increasing use of the record-based databases whose data is being continuously added, updated, deleted etc.
- Examples of such applications include Web log records, stock market data, grocery sales data, transactions in e-commerce, and daily weather/traffic records etc.
- In many applications, we would like to mine the transaction database for a fixed amount of most recent data (say, data in the last 12 months).

Incremental Mining of Association Rules

• Mining is not a one-time operation, a naive approach to solve the incremental mining problem is to re-run the mining algorithm on the updated database.

FP-Growth Algorithm

- The FP-Growth Algorithm is proposed by Han.
- It is an efficient and scalable method for mining the complete set of frequent patterns.
- Using prefix-tree structure for storing information about frequent patterns named frequent-pattern tree (FP-tree).
- Once an FP-tree has been constructed, it uses a recursive divideand-conquer approach to mine the frequent item sets.

FP-Growth Algorithm (Cont..)

Building the FP-Tree

- 1. Scan data to determine the support count of each item.
 - Infrequent items are discarded, while the frequent items are sorted in decreasing support counts.
- 2. Make a second pass over the data to construct the FP-tree.
 - As the transactions are read, before being processed, their items are sorted according to the above order.

FP-Growth Algorithm - Example

FP-Tree Generation

TID	Transactions
1	ABCEFO
2	ACG
3	ΕI
4	ACDEG
5	ACEGL
6	EJ
7	ABCEFP
8	ACD
9	ACEGM
10	ACEGN

Step:1

Freq. 1-Itemsets.

 $Min_Sup \ge 2$

Transactions

A:8

C:8

E:8

G:5

B:2

D:2

F:2

Remaining all O,I,J,L,P,M & N

is with

 $min_sup = 1$

Step:2

Transactions with items sorted based on frequencies, and ignoring the infrequent items.

ACEBF

A C G

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 1st transaction

ACEBF

ACG

F

ACEGD

ACEG

E

ACEBF

ACD

ACEG

FP-Tree after reading 2nd transaction

ACEBF

ACG

E

ACEGD

ACEG

Ε

ACEBF

ACD

ACEG

FP-Tree after reading 3rd transaction

ACEBF

ACG

ACEGD

ACEG

E

ACEBF

ACD

ACEG

FP-Tree after reading 4th transaction

ACEBF

ACG

F

ACEGD

ACEG

E

ACEBF

ACD

ACEG

FP-Tree after reading 5th transaction

ACEBF

ACG

F

ACEGD

ACEG

Ε

ACEBF

ACD

ACEG

FP-Tree after reading 6th transaction

ACEBF

ACG

F

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 7th transaction

ACEBF

ACG

E

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 8th transaction

ACEBF

ACG

F

ACEGD

ACEG

E

ACEBF

A C D

ACEG

FP-Tree after reading 9th transaction

ACEBF

ACG

E

ACEGD

ACEG

E

ACEBF

ACD

A C E G

FP-Tree after reading 10th transaction

ACEBF

ACG

F

ACEGD

ACEG

E

ACEBF

ACD

ACEG

FP-Growth algorithm - Example

Minimum Support >= 2

TID	Items
1	АВ
2	BCD
3	ACDE
4	ADE
5	ABC
6	ABCD
7	ВС
8	ABC
9	ABD
10	ВСЕ

Header				
ltem	Support			
В	8			
Α	7			
С	7			
D	5			
E	3			

FP-Growth Example (Try it) Minimum Support = 3

TID	Items Bought
100	FACDGIMP
200	ABCFLMO
300	BFHJOW
400	BCKSP
500	AFCELPMN

FP-Growth Example - Answer

FP-Tree Construction

