RELACIÓN DE EJERCICIOS DEL TEMA 1.

JUAN MANUEL URBANO BLANCO

1. Dados los conjuntos $A = \{2,3\}$, $B = \{1,2,4,5\}$ y $C = \{2,5,6\}$, calcule los siguientes conjuntos:

$$(A \cup B) \cap C, \ A \cup (B \cap C), \ A \cap B \cap C, \ B - (A \cup C), \ \overline{B} \cap \overline{C}, \ \mathcal{P}(B) - \mathcal{P}(C), \ \mathcal{P}(B - C).$$

- 2. Utilice las leyes del álgebra de conjuntos para simplificar las siguientes expresiones sobre conjuntos:
 - *a*) $(A \cup \overline{B}) \cap (C \cup A \cup \overline{B})$
 - b) $(A \cup B) \cap (A \cup \overline{B})$
 - c) $((A \cup B) \cap (A \cup \overline{B})) \cup ((A \cap B) \cup (\overline{A} \cap B))$
 - $d) \quad (\overline{A} \cap \overline{B}) \cap \left(\left((A \cup B) \cap (A \cup \overline{B}) \right) \cup \left((A \cap B) \cup (\overline{A} \cap B) \right) \right)$
- 3. Sean los conjuntos $A, B \subseteq X$. El conjunto $(A \cup B) \cap (\overline{A} \cup \overline{B})$ es igual a:
 - a) \varnothing b) $(A \cap B) \cup (\overline{A} \cap \overline{B})$ c) $(A \cap \overline{B}) \cup (\overline{A} \cap B)$ d) $(A \cup \overline{B}) \cap (\overline{A} \cup B)$
- 4. Si $A, B \subseteq X$ son conjuntos, entonces A (A B) es igual a:
 - a) A b) B c) $A \cap B$ d) $A \cup B$
- 5. Dados los conjuntos $A, B, C \subseteq X$, compruebe las siguientes identidades:
 - *a*) $X = (A \cap B) \cup (\overline{A} \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$
 - b) $(A \cup B) \cap (\overline{A} \cup C) = (A \cap C) \cup (\overline{A} \cap B)$
 - c) $(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C$
- 6. Sean los conjuntos $A, B \subseteq X$. Pruebe que cada una de las afirmaciones siguientes equivale a cada una de las restantes:
 - a) $A \subseteq B$.
 - *b*) $\overline{B} \subseteq \overline{A}$.
 - c) $A \cap B = A$.
 - d) $A \cup B = B$.
 - e) $A-B=\varnothing$.
- 7. Si tenemos los conjuntos $A, B \subseteq X$, compruebe que $(A \cup B) (A \cap B) = (A B) \cup (B A)$. El conjunto $(A B) \cup (B A)$ se denomina la *diferencia simétrica* de los conjuntos A y B, y se denota por $A \triangle B$ así como por $A \oplus B$. Compruebe las siguientes propiedades, donde $A, B, C \subseteq X$:

1

- a) $A \oplus A = \emptyset$.
- b) $A \oplus \emptyset = A$.

- c) $A \oplus B = B \oplus A$.
- $A \oplus (B \oplus C) = (A \oplus B) \oplus C$
- e) $A \oplus B = A \oplus C \Rightarrow B = C$.
- f) $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
- 8. Estudie la veracidad ó faseldad de las siguientes afirmaciones sobre conjuntos:
 - a) $A \times \emptyset = \emptyset$.
 - b) Si $A \times B = \emptyset$, entonces $A = \emptyset$ ó $B = \emptyset$.
 - c) Si $A_1 \times A_2 = B_1 \times B_2$, entonces $A_1 = B_1$ y $A_2 = B_2$.
- 9. Dados los conjuntos $A, B \subseteq X$ y $C, D \subseteq Y$, demuestre las siguientes propiedades:
 - a) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
 - b) $(A \cup B) \times C = (A \times C) \cup (B \times C)$
 - c) $(A \times C) \cap (B \times D) = (A \cap B) \times (C \cap D)$
 - *d*) $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$. Proporcione un ejemplo en el que la inclusión anterior sea estricta.
 - $e) \quad (A \times C) \setminus (B \times D) = (A \times (C \setminus D)) \cup ((A \setminus B) \times C)$
- 10. Demuestre las siguientes propiedades sobre conjuntos:
 - a) Si $A \cup B \subseteq A \cup C$ y $A \cap B \subseteq A \cap C$, entonces $B \subseteq C$.
 - b) $A \cup B = B \cap C$ si y sólo si $A \subseteq B \subseteq C$.
- 11. Indique cuales de las siguientes afirmaciones sobre conjuntos son verdaderas:
 - a) Si $A \subseteq B$ y $B \not\subseteq C$, entonces $A \not\subseteq C$.
 - b) Si $a \in A$ y $A \in B$, entonces $\{a\} \in B$.
 - c) Si $a \in A$ y $A \subseteq B$, entonces $\{\{a\}\}\subseteq \{B\}$.
 - d) Si $a \in A$ y $A \subseteq B$, entonces $\{\{a\}\}\subseteq \mathcal{P}(B)$.
 - e) Si $A \in B$ y $A \subseteq B$, entonces $A = \emptyset$.
 - f) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.
 - g) Si $A \times B = C \times D$, entonces A = C y B = D.
 - h) Si $a \in A$, entonces $\{a\} \subseteq \{A\}$.
 - i) Si $A = \{a, b, c, \{a, c, d, \{a\}\}\}\$, entonces $\{\{a\}\}\} \in A$ y $\{a, b\} \subseteq A$.
- 12. Si $X = \{\{\emptyset\}\}\$, entonces $\mathcal{P}(X)$ es igual a
 - $a) \; \{\{\varnothing\}, \{\{\{\varnothing\}\}\}\} \qquad b) \; \{\varnothing, \{\varnothing\}\} \qquad c) \; \{\varnothing, \{\{\varnothing\}\}\} \qquad d) \; \{\{\varnothing\}, \{\{\varnothing\}\}\} \\$
- 13. Construya todas las particiones del conjunto $X = \{1, 2, 3\}$.
- 14. Consideramos las aplicaciones $f,g:\mathbb{R}\to\mathbb{R}$ definidas por

$$f(x) = \frac{x}{a}, \ g(x) = ax^2,$$

con $a \neq 0$. Obtenga expresiones lo más simples posibles para las aplicaciones siguientes:

$$f \circ f$$
, $f \circ f \circ f$, $g \circ g$, $g \circ g \circ g$.

Si n es un número entero positivo, obtenga una expresión para la aplicación que resulta de componer f n veces consigo misma. A continuación haga el mismo cálculo para g.

15. Para las aplicaciones $f: \mathbb{R}_0^+ \to \mathbb{R}, g, h: \mathbb{R} \to \mathbb{R}$ definidas por

$$f(x) = \sqrt{x}, \ g(x) = \frac{x}{4}, \ h(x) = 4x - 8,$$

la aplicación $h \circ g \circ f(x)$ es igual a:

(A)
$$\sqrt{x-2}$$
 (B) $\sqrt{x-8}$ (C) $2\sqrt{x}-8$ (D) $\sqrt{x}-8$ (E) $\sqrt{x}-2$

- 16. Sean $f: \mathbb{R} \to \mathbb{R}$ y $g: \mathbb{R} \to \mathbb{R}$ dos aplicaciones tales que $(g \circ f)(x) = 16x^2 1$ y f(x) = 2x + 3. Entonces g(x) es igual a
 - a) $4x^2 24x + 35$ b) $8x^2 2$ c) $64x^2 + 192x + 143$ d) $32x^2 + 1$
- 17. Sean dos aplicaciones $f: X \to Y$ y $g: Y \to Z$. Demuestre las siguientes propiedades:
 - a) Si f y g son inyectivas, entonces $g \circ f$ es inyectiva.
 - b) Si f y g son sobreyectivas, entonces $g \circ f$ es sobreyectiva.
 - c) Si f y g son biyectivas, entonces $g \circ f$ es biyectiva.
- 18. Supongamos que para una aplicación $f: X \to Y$, existen dos aplicaciones $g: Y \to X$ y $h: Y \to X$ tales que $g \circ f = 1_X$ y $f \circ h = 1_Y$. Demuestre que g = h. Como consecuencia para una aplicación $f: X \to Y$ puede existir a lo sumo una aplicación $g: Y \to X$ tal que $g \circ f = 1_X$ y $f \circ g = 1_Y$. Cuando ello ocurre, se dice que la aplicación g es la inversa de f y se escribe $g = f^{-1}$.
- 19. Si $f: X \to Y, g: Y \to Z$ son aplicaciones biyectivas, demuestre que

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

20. Para cada una de las siguientes aplicaciones estudie si es inyectiva, sobreyectiva y/o biyectiva, y dé su aplicación inversa cuando ésta exista:

$$f: \mathbb{Q} \to \mathbb{R}$$

$$f(x) = 2x$$

a)

 $f: \mathbb{Q} \to \mathbb{Q}$ $f(x) = \frac{2x+1}{3} - \frac{1}{2}$

c)
$$f: \mathbb{Z} \to \mathbb{Q}$$

$$f(x) = x^2 + 2x + 1.$$

 $f: \mathbb{N} \to \mathbb{N}$ f(n) = n + 1

$$f: \mathbb{Z} \to \mathbb{Z}$$
 $f(n) = n + 1$

$$f: \mathbb{Z} \to \mathbb{Z}$$

$$f(n) = n(-1)^{n}$$

$$g)$$

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

$$f(x,y) = 2x + 3y$$

$$h)$$

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

$$f(x,y) = (x + y, xy)$$

$$i)$$

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

$$f(x,y) = (2x + y, x + y)$$

$$j)$$

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

$$f(x,y) = (x + y, x - y)$$

- 21. Obtenga la imagen para las aplicaciones de los apartados (a)-(g) en el ejercicio anterior.
- 22. Dada la aplicación $f: \mathbb{N} \to \mathbb{Q}$ definida por $f(n) = \frac{n}{2n+1}$, $\forall n \in \mathbb{N}$, entonces:
 - a) f es sobreyectiva y no es inyectiva.
 - b) f es inyectiva y no es sobreyectiva.
 - c) f es biyectiva.
 - d) f no es inyectiva ni sobreyectiva.
- 23. La aplicación $f: \mathbb{Z} \to \mathbb{Z}$ definida por $f(n) = n + (-1)^n$,
 - a) no es inyectiva ni sobreyectiva,
 - b) es biyectiva,
 - c) es inyectiva, pero no sobreyectiva,
 - d) es sobreyectiva, pero no inyectiva.
- 24. La aplicación $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definida por f(x,y) = (x-1,x+y+1)
 - a) es inyectiva pero no es sobreyectiva.
 - b) es sobreyectiva pero no es inyectiva.
 - c) es biyectiva.
 - d) no es inyectiva ni sobreyectiva.
- 25. Sobre una aplicación $f : \mathbb{R} \to \mathbb{R}$ de la forma f(x) = ax + b se sabe que $(f \circ f)(x) = 4x + 2$. Entonces $f^{-1}(x)$ puede ser igual a:

a)
$$2x + \frac{1}{2}$$
 b) $\frac{1}{4}x - \frac{1}{2}$ c) $\frac{1}{2}x - \frac{1}{3}$ d) $\frac{-1}{2}x + \frac{1}{8}$

- 26. *a*) Dado un conjunto $X = \{x_1, x_2, x_3\}$, defina una aplicación biyectiva de $\mathcal{P}(X)$ en el conjunto $A = \{0, 1\} \times \{0, 1\} \times \{0, 1\}$.
 - b) Generalice el apartado anterior para el conjunto $X = \{x_1, x_2, \dots, x_n\}$.
 - c) Utilice el apartado (b) para deducir que $|\mathcal{P}(X)| = 2^n$.

- 27. Sean $f: X \to Y$ y $g: Y \to X$ dos aplicaciones tales que $g \circ f = 1_X$. Justifique que f es inyectiva y g es sobreyectiva.
- 28. Defina una aplicación biyectiva de \mathbb{N} en \mathbb{Z} .
- 29. Consideramos la aplicación $f: \mathbb{N} \to \mathbb{N}$ definida por

$$f(n) = \begin{cases} n-3 & \text{si } n \ge 1000 \\ f(f(n+6)) & \text{si } n < 1000 \end{cases}$$

Calcule el valor exacto de f(1).

- 30. Si $\varphi: X \to Y$ y $\psi: Y \to Z$ son dos aplicaciones, demuestre las siguientes propiedades:
 - a) Si $\psi \circ \varphi$ es inyectiva, entonces φ es inyectiva.
 - b) Si $\psi \circ \varphi$ es inyectiva y φ sobreyectiva, entonces ψ es inyectiva.
 - c) Si $\psi \circ \varphi$ es sobreyectiva, entonces ψ es sobreyectiva.
 - d) Si $\psi \circ \varphi$ es sobreyectiva y ψ es inyectiva, entonces φ es sobreyectiva.
- 31. Dada una aplicación $f: X \to Y$, siempre podemos definir dos nuevas aplicaciones que presentamos a continuación.
 - La aplicación imagen directa, $f_*: \mathcal{P}(X) \to \mathcal{P}(Y)$, la cual viene dada por: Si $A \in \mathcal{P}(X)$ (es decir, $A \subseteq X$), entonces

$$f_*(A) = \{ f(a) \in Y \mid a \in A \}.$$

Obsérvese que $Im(f) = f_*(X)$.

■ La aplicación imagen inversa, $f^* : \mathcal{P}(Y) \to \mathcal{P}(X)$, la cual viene dada por: Si $B \subseteq Y$, se define

$$f^*(B) = \{x \in X \mid f(x) \in B\}.$$

Si $X = \{a, b, c, d\}, Y = \{1, 2, 3\}$ y consideramos la aplicación $f: X \to Y$ definida por

$$f(a) = 2$$
, $f(b) = 1$, $f(c) = 2$, $f(d) = 2$,

calcule $f_*(\{a,b\}), f_*(\{a,d\}), f_*(\emptyset), f^*(\{2\}), f^*(\{3\}), f^*(\{1,3\}), f^*(\emptyset).$

- 32. Dados conjuntos $A_1, A_2 \subseteq X$ y $B_1, B_2 \subseteq Y$, así como una aplicación $f: X \to Y$, demuestre las siguientes propiedades:
 - a) $f_*(A_1 \cup A_2) = f_*(A_1) \cup f_*(A_2)$
 - b) $f_*(A_1 \cap A_2) \subseteq f_*(A_1) \cap f_*(A_2)$
 - c) $A_1 \subseteq f^*(f_*(A_1))$, y se tiene la igualdad si f es inyectiva.
 - d) $f^*(B_1 \cup B_2) = f^*(B_1) \cup f^*(B_2)$
 - e) $f^*(B_1 \cap B_2) = f^*(B_1) \cap f^*(B_2)$
 - f) $f^*(B_2 \setminus B_1) = f^*(B_2) \setminus f^*(B_1)$
 - g) $f^*(\overline{B_1}) = \overline{f^*(B_1)}$
 - h) $f_*(f^*(B_1)) \subseteq B_1$, y se da la igualdad si f es sobreyectiva.
 - i) Si f es inyectiva entonces f_* es inyectiva y f^* es sobreyectiva.
 - j) Si f es sobreyectiva entonces f_* es sobreyectiva y f^* es inyectiva.
- 33. Sea *X* el conjunto de todas las rectas del plano. Estudie cuáles de las siguientes relaciones binarias definidas sobre *X* son de equivalencia:

- 6
- a) $r_1 R_1 r_2$ si y solo si $r_1 || r_2$, es decir, r_1 y r_2 son paralelas.
- b) $r_1 R_2 r_2$ si y solo si $r_1 \cap r_2 \neq \emptyset$.
- Para cada una de las relaciones binarias siguientes, estudie si es una relación de equivalencia, y en caso afirmativo obtenga una descripción del conjunto cociente:
 - \mathcal{R} definida sobre \mathbb{R} : $a \mathcal{R}$ $b \Longleftrightarrow x y \in \mathbb{Z}$.
 - b) \mathcal{R} definida sobre \mathbb{Z} : $a \mathcal{R}$, $b \iff \exists k \in \mathbb{Z}$, tal que $a-b=k \cdot m$, siendo m un número entero fijo.
 - c) \mathcal{R} definida sobre \mathbb{N} : $a \mathcal{R}$ $b \iff E(\sqrt{a}) = E(\sqrt{b})$, con E(x) = parte entera de x.
 - d) \mathcal{R} definida sobre \mathbb{R} : $a \mathcal{R}$, $b \iff a \cdot b \ge 0$.
 - *e*) \mathcal{R} definida sobre $\mathbb{R} \{1\}$:

$$a\mathcal{R}b \Longleftrightarrow \frac{a^2}{a-1} = \frac{b^2}{b-1}.$$

- f) \mathcal{R} definida sobre $\mathbb{Z} \times \mathbb{Z}$: $(a,b) \mathcal{R}$ $(c,d) \iff a \cdot d = b \cdot c$.
- g) \mathcal{R} definida sobre $\mathbb{Z} \times \mathbb{Z}$: $(a,b) \mathcal{R}$, $(c,d) \iff a \cdot b = c \cdot d$.
- h) \mathcal{R} definida sobre \mathbb{Q} : $a \mathcal{R}$ $b \iff f(a) = f(b)$, siendo $f(x) = -3x^2 + 5x 8$. i) \mathcal{R} definida sobre \mathbb{R} : $a \mathcal{R}$ $b \Leftrightarrow a^2 5a = b^2 5b$.
- Dado el conjunto $X = \{1, 2, 3, 4, 5\}$ y el subconjunto $Y = \{1, 2, 3\}$, consideramos las relaciones de equivalencia siguientes definidas sobre $\mathcal{P}(X)$.
 - a) $A R B \Leftrightarrow A \cap Y = B \cap Y$
 - b) $ARB \Leftrightarrow A \cup Y = B \cup Y$

Describa el conjunto cociente para cada una de ellas.

36. Para un número real x denotamos por |x| el valor absoluto de x, es decir,

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Consideramos la siguiente relación de equivalencia R definida sobre el conjunto X = R $\{0,1,2,3,\ldots,98,99,100\}$:

$$a R b \Leftrightarrow |a-8| = |b-8|.$$

Entonces el cardinal del conjunto cociente X/R es igual a

- a) 13 b) 56 c) 93 d) 85
- Para cada una de las relaciones binarias siguientes definidas sobre $\mathbb{N} \times \mathbb{N}$, estudie si es de orden, y en caso afirmativo estudie si es un orden total:
 - a) $(a,b) R (c,d) \iff a2^b < c2^d$.
 - b) $(a,b) R(c,d) \iff a2^d < c2^b$.
 - c) $(a,b) R(c,d) \iff (2a+1)2^b \le (2c+1)2^d$.
 - d) $(a,b) R(c,d) \iff (3a+1)2^b \le (3c+1)2^d$.
 - e) $(a,b) R(c,d) \iff (2a+1)2^d \le (2c+1)2^b$.
 - f) $(a,b) R(c,d) \iff (3a+1)(3b+2) < (3c+1)(3d+2)$.

Construya el diagrama de Hasse del conjunto siguiente ordenado por inclusión:

$$X = \left\{ \{1\}, \{1,4\}, \{1,2,3\}, \{1,4,5\}, \{1,2,3,4,5\}, \{1,2,3,4,5,6\} \right\}.$$

Construya el diagrama de Hasse del subconjunto siguiente de \mathbb{R}^2 ordenado por el orden producto cartesiano:

$$X = \left\{ (-1, -2), (-1/2, 0), (0, 1), (2, 1/2), (3, 2), (4, 5) \right\}.$$

- Calcule los elementos distinguidos de cada uno de los subconjuntos siguientes de $\mathbb{R} \times \mathbb{R}$ con el orden producto cartesiano:
 - a) $\{(-2,-1),(1,2),(4,3)\}.$
 - b) $\{(-1,2),(0,1),(1,0)\}.$

 - c) $\{(-1,1),(0,0),(1,-1)\}.$ d) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 9\}.$
- Calcule los elementos distinguidos de cada uno de los subconjuntos siguientes de $\mathbb{R} \times \mathbb{R}$ con el orden lexicográfico a izquierda:
 - a) $\{(-2,-1),(1,2),(4,3)\}.$
 - b) $\{(-1,2),(0,1),(1,0)\}.$

 - c) $\{(-1,1),(0,0),(1,-1)\}.$ d) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 9\}.$
- Sea X un conjunto no vacío y $f: X \to \mathbb{N}$ una aplicación. Definimos sobre X la siguiente relación binaria: $x_1 R x_2 \iff f(x_1) \le f(x_2)$. Dar un ejemplo que ponga de manifiesto que R en general no es una relación de orden sobre el conjunto X. ¿ Qué propiedad ha de verificar la aplicación f para que R sea una relación de orden sobre X?
- Un conjunto ordenado (A, <) se dice que está bien ordenado si todo subconjunto no vacío de A tiene elemento mínimo. En tal caso, se dice que la relación de orden "≤" es un buen orden sobre A. Estudie cuáles de los siguientes conjuntos ordenados son bien ordenados.
 - $\{1,4,18,32,49\}$ con el orden usual de N.
 - $(\mathbb{N}, <)$. *b*)
 - c) (\mathbb{Z}, \leq) .
 - d) [0,1] con el orden usual de \mathbb{R} .
 - *e*) $(\mathcal{P}(\{1,2,3\}),\subseteq)$.
 - f) ({{1,2},{1,2,3},{1,2,3,5}}, \subseteq).