





Data Science in Action #1

## Performing Headcount Survival Analysis for Employee Retention



Gerhard Svolba Data Scientist, SAS Austria



#### Data Science Applications and Case Studies



















Data Science in Action: #1

Performing Headcount Survival Analysis for Employee Retention

Can assumptions about the average length of time intervals be made, even if most of the endpoints have not yet been observed?





Survival analysis methods: Kaplan-Meier estimates
Cox Proportional Hazards regression
Survival Data Mining



#### Example from the "Human Resources" Area

- Retention time of employees in a company
- Data Collection: 01/2009 to 12/2016, first employee in 2004
- By department: Marketing, Admin, Sales, TechSupport, Sales Engineer

| <b>⊚</b> EmpNo | FirstName  | Department     | Gender | Start     | End (     | Status | Duration |
|----------------|------------|----------------|--------|-----------|-----------|--------|----------|
| 1021           | Mary       | MARKETING      | F      | 01JUL2009 | 01AUG2012 | 0      | 37       |
| 1022           | Frank      | SALES_REP      | M      | 01JUL2009 | 01JUN2010 | 0      | 11       |
| 1023           | Alan       | SALES_ENGINEER | M      | 01JUL2009 |           | 1      | 90       |
| 1024           | Frencesca  | ADMINSTRATION  | F      | 01AUG2009 | 01FEB2012 | 0      | 30       |
| 1025           | Karl       | SALES_ENGINEER | M      | 01AUG2009 | 01DEC2013 | 0      | 52       |
| 1026           | Hana       | ADMINSTRATION  | F      | 01AUG2009 | 01APR2010 | 0      | 8        |
| 1027           | Brian      | SALES_REP      | M      | 01NOV2009 | 01NOV2010 | 0      | 12       |
| 1028           | Pawel      | SALES_REP      | M      | 01NOV2009 | 01APR2012 | 0      | 29       |
| 1029           | Alessandro | TECH_SUPPORT   | M      | 01FEB2010 |           | 0      | 83       |

## Performing Descriptive Analyses and Creating Dashboards

#### Durschnittliche Verweildauer nach Kategorien

| Department ▼   | TechKnowHow 🔺 | Gender 🔺 | Resigned 🔺 | Frequency | Duration |
|----------------|---------------|----------|------------|-----------|----------|
|                | NO            | M        | 0          | 2         | 13       |
|                |               | IVI      | 1          | 6         | 29       |
| TECH_SUPPORT   |               | _        | 0          | 5         | 35       |
| TECH_SUFFORT   | YES           | r        | 1          | 1         | 37       |
|                | 153           | M        | 0          | 8         | 52       |
|                |               | IVI      | 1          | 8         | 32       |
|                |               | F        | 1          | 3         | 15       |
| SALES_REP      | NO            |          | 0          | 7         | 14       |
|                |               | IVI      | 1          | 18        | 24       |
| SALES_ENGINEER | YES           | М        | 0          | 5         | 40       |
| SALES_ENGINEER |               | IVI      | 1          | 6         | 33       |
|                | NO            | E        | 0          | 3         | 26       |
| MARKETING      |               | F        | 1          | 1         | 37       |
| MARKETING      |               |          | 0          | 1         | 57       |
|                |               | IVI      | 1          | 3         | 83       |
|                |               | _        | 0          | 4         | 35       |
| ADMINSTRATION  | NO            | F        | 1          | 8         | 40       |
|                |               | M        | 0          | 2         | 72       |

#### Frequency of Start\_Year grouped by Gender





## We do not have an event date for all employees (luckily <sup>⊕</sup>)!

- Observe Careers per Employee
  - Different length
  - "Left company" or "censored"



#### **Business Questions**

- What is the average retention period for employees in the company?
  - How can the important fact that the employment end date is known only for those who already left the company, be adequately considered in the analysis?
- How can the retention period be visualized and compared between different subgroups?
- Are there influential factors for the length of the retention period?
- How can these factors be ranked by magnitude of their influence?
- Can the expected survival period for an employee be predicted?



## How can we deal with missing endpoints?

#### → Kaplan-Meier Analysis

Sales-Engineer Department

| Duration | Left | Resigned | Censored | Survival | Comment                              |
|----------|------|----------|----------|----------|--------------------------------------|
| 0        | 11   |          |          | 1,000    | Start of Observation                 |
| 6        | 10   | 1        | 0        | 0,909    | John resigns                         |
| 6        | 9    | 0        | 1        |          | Brady is censored from the analysis  |
| 10       | 8    | 0        | 1        |          | Lucas is censored from the analysis  |
| 27       | 7    | 1        | 0        | 0,795    | Rainer resigns                       |
| 29       | 6    | 1        | 0        | 0,682    | Vincenz resigns                      |
| 32       | 5    | 1        | 0        | 0,568    | George resigns                       |
| 36       | 4    | 0        | 1        |          | Mark is censored from the analysis   |
| 51       | 3    | 1        | 0        | 0,426    | Viktor resigns                       |
| 52       | 2    | 1        | 0        | 0,284    | Karl resigns                         |
| 59       | 1    | 0        | 1        |          | Eugene is censored from the analysis |
| 90       | 0    | 0        | 1        | 0,284    | Alan is censored from the analysis   |



## Kaplan-Meier Analysis allows you to estimate the median and average rentention period

```
proc lifetest data=employees ;
  time Duration*Status(1);
  where Department='SALES_ENGINEER';
run;
```

| Quartile Estimates |                               |           |         |         |  |  |  |  |
|--------------------|-------------------------------|-----------|---------|---------|--|--|--|--|
|                    | Point 95% Confidence Interval |           |         |         |  |  |  |  |
| Percent            | Estimate                      | Transform | [Lower  | Upper)  |  |  |  |  |
| 75                 |                               | LOGLOG    | 32.0000 |         |  |  |  |  |
| 50                 | 51.0000                       | LOGLOG    | 27.0000 |         |  |  |  |  |
| 25                 | 29.0000                       | LOGLOG    | 6.0000  | 51.0000 |  |  |  |  |

Mean Error 39.9489 5.2333





## Looking at the retention period for all employees. Interpretating the Survival Kurve

| Quartile Estimates |                         |           |        |       |  |  |  |  |  |
|--------------------|-------------------------|-----------|--------|-------|--|--|--|--|--|
|                    | 95% Confidence Interval |           |        |       |  |  |  |  |  |
| Perce              | Point                   |           |        | Upper |  |  |  |  |  |
| nt                 | Estimate                | Transform | [Lower | )     |  |  |  |  |  |
| 75                 | 72.000                  | LOGLOG    | 51.00  |       |  |  |  |  |  |
| 50                 | 37.000                  | LOGLOG    | 30.00  | 51.00 |  |  |  |  |  |
| 25                 | 23.000                  | LOGLOG    | 14.00  | 29.00 |  |  |  |  |  |
|                    |                         |           |        |       |  |  |  |  |  |

|        | Standard |
|--------|----------|
| Mean   | Error    |
| 46.757 | 3.813    |



# Can we compare the analysis between departments?



#### Running the analysis per Department

```
PROC LIFETEST DATA=employees;
  TIME Duration*Status(1);
  STRATA department;
RUN;
```



## Comparing selected departments and studying the hazard curve per department



Kaplan Meier Methods and Cox Proportional Hazards Regression: Sales engineers have a better survival time than sales representatives.



Studying the Hazard Curves: There is high risk to lose your sales engineers after 26 and after 50 months.



# In the "good old times" everything has been better! Employees were more loyal and stayed longer.

#### Really?

Consider how your data have been collected!



#### Stratifying the analysis per "Start Period"

- Data Collection: 01/2009 to 12/2016, first employee in 2004
- "Pre-Selection" of the data





## What are the most influential factors for employee retention?

Can we perform predictive modeling on censored data?



## How long will Gerhard still stay in our company?

Given certain risk factors, what is the expected survival in 6 months and the probability to resign within the next 6 months. TechKnowH... EM SURVFCST **EM SURVEVENT** T FCST EmpNo Department Gender 1003 TECH SUPPORT YES 128 0.240 0.000 134 1010 TECH SUPPORT M YES 109 0.240 0.011 115 SALES ENGINEER YES 90 0.108 0.313 96 M TECH SUPPORT YES 83 0.386 0.133 89 1031 TECH SUPPORT 0.219 YES 82 0.17788 ADMINSTRATION 0.066 M NO 74 0.471 80 1045 ADMINSTRATION Μ NO 70 0.494 0.053 76 1054 TECH SUPPORT YES 59 0.316 0.102 65 1055 SALES ENGINEER YES 0.313 0.103 65



## Use the Cox-Proportional-Hazard Regression to perform regression analysis on censored data

RUN:

| Analysis of Maximum Likelihood Estimates |                |    |          |          |            |            |        |  |  |
|------------------------------------------|----------------|----|----------|----------|------------|------------|--------|--|--|
| Par                                      |                |    |          | Standard |            |            | Hazard |  |  |
| Parameter                                |                | DF | Estimate | Error    | Chi-Square | Pr > ChiSq | Ratio  |  |  |
| Department                               | MARKETING      | 1  | -1.15513 | 0.47794  | 5.8414     | 0.0157     | 0.606  |  |  |
| Department                               | SALES_ENGINEER | 1  | 0.82336  | 0.52244  | 2.4838     | 0.1150     | 4.380  |  |  |
| Department                               | SALES_REP      | 1  | 0.62976  | 0.29224  | 4.6436     | 0.0312     | 3.609  |  |  |
| Department                               | TECH_SUPPORT   | 1  | 0.35572  | 0.29940  | 1.4117     | 0.2348     | 2.744  |  |  |
| TechKnowHow                              | YES            | 1  | -0.63474 | 0.27370  | 5.3781     | 0.0204     | 0.281  |  |  |

Watch my webinar
Interpreting Machine Learning Models,
to see how to display the value for the
reference category!



## The model allows you to output the predicted Survival for 24 months in the future for the existing employees

|    | ⊕ EmpNo |            |                |     |   | <b>⊞</b> Start | i End ▲ | ⊕ S_Duration_4 |
|----|---------|------------|----------------|-----|---|----------------|---------|----------------|
| 1  | 1088    | Simone     | TECH_SUPPORT   | YES | F | 2016-09-01     |         | 0.8264229844   |
| 2  | 1091    | Guido      | SALES_REP      | NO  | М | 2016-11-01     |         | 0.5661954848   |
| 3  | 1087    | Serge      | SALES_REP      | NO  | М | 2016-07-01     |         | 0.5661954848   |
| 4  | 1080    | Nina       | TECH_SUPPORT   | YES | F | 2016-03-01     |         | 0.8264229844   |
| 5  | 1059    | Verena     | MARKETING      | NO  | F | 2012-07-01     |         | 0.8593533102   |
| 6  | 1074    | Manuel     | TECH_SUPPORT   | NO  | М | 2015-06-01     |         | 0.6361124813   |
| 7  | 1084    | Jean       | TECH_SUPPORT   | NO  | М | 2016-07-01     |         | 0.6361124813   |
| 8  | 1023    | Alan       | SALES_ENGINEER | YES | М | 2009-07-01     |         | 0.8188481424   |
| 9  | 1075    | Olivier    | TECH_SUPPORT   | YES | М | 2015-07-01     |         | 0.9049068956   |
| 10 | 1031    | Lisa       | TECH_SUPPORT   | YES | F | 2010-03-01     |         | 0.8264229844   |
| 11 | 1003    | Jim        | TECH_SUPPORT   | YES | М | 2006-05-01     |         | 0.9049068956   |
| 12 | 1079    | Francesca  | ADMINSTRATION  | NO  | F | 2016-03-01     |         | 0.8303156037   |
| 13 | 1056    | Bob        | MARKETING      | NO  | М | 2012-04-01     |         | 0.9236297793   |
| 14 | 1072    | Bettina    | TECH_SUPPORT   | YES | F | 2015-05-01     |         | 0.8264229844   |
| 15 | 1085    | Joshua     | TECH_SUPPORT   | YES | М | 2016-07-01     |         | 0.9049068956   |
| 16 | 1067    | Joseph     | TECH_SUPPORT   | YES | М | 2014-03-01     |         | 0.9049068956   |
| 17 | 1068    | Timon      | TECH_SUPPORT   | YES | М | 2014-05-01     |         | 0.9049068956   |
| 18 | 1081    | Anja       | MARKETING      | NO  | F | 2016-03-01     |         | 0.8593533102   |
| 19 | 1045    | Malcolm    | ADMINSTRATION  | NO  | М | 2011-03-01     |         | 0.9071383626   |
| 20 | 1010    | Paul       | TECH_SUPPORT   | YES | M | 2007-12-01     |         | 0.9049068956   |
| 21 | 1029    | Alessandro | TECH_SUPPORT   | YES | М | 2010-02-01     |         | 0.9049068956   |
| 22 | 1061    | Alice      | ADMINSTRATION  | NO  | F | 2012-08-01     |         | 0.8303156037   |



#### Conclusion

- Data Science methods provide insight where simple descriptive methods fail: "Censored Data".
- You can study the findings between subgroups and compare them.
- Cox-Prop. Hazard Regression allows to perform regression analysis on censored data.
- Make sure that you understand how your data is collected!



#### Analytics and Data Science is there to help you!

- Get a clearer, more objective picture of your data and your analysis subjects
- Get explicit results instead of searching the needle in the haystack
- Make your data talk to you!
- Receive findings automatically instead of manually
- Do it again! treat models as an asset and repeat your analysis







#### Get access to more content:

SAS DACH @Youtube: https://www.youtube.com/user/SASsoftwareGermany

Blogs on LinkedIn: https://www.linkedin.com/in/gerhardsvolba/

Twitter: https://twitter.com/gsvolba

Content on Github: https://github.com/gerhard1050

Books @SAS-Press: https://support.sas.com/svolba







