

DIGITAL INTEGRATED CIRCUITS PRELIMINARY DATA

MN3101

Clock Generator / Driver for BBD's

The MN3101 is a CMOS integrated circuit designed to generate low impedance two clock phases required for driving BBD's. In addition, the MN3101 provides the optimum V_{GG} for BBD's when the MN3101 is used with BBD's on a common V_{DD} supply.

The self-contained oscillator can be controlled by an external R,C circuit, but an external oscillator can also be used. The clock frequency is 1/2 of the oscillation frequency.

* Matsushita Electronics Corporation's BBD product range: MN3001, MN3002, MN3003, MN3004, MN3005, MN3006, MN3007, MN3008, MN3009, MN3010, MN3011 (Developmental)

Note: The MN3003 is provided with an internal oscillator.

Features:

- BBD direct driving capability—up to two MN3005 types (equivalent to 8192 stages).
- Either internal or external oscillator can be used
- Two phases (1/2 duty) output
- Provided with V_{GG} supply circuit
- Operates on a single power supply: $-8 \sim -16 \text{V}$
- ●8-lead dual-in-line plastic package

Application

BBD clock generator/driver

Block Diagram

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Unit
Supply Voltage	V _{DD}	-18~+0.3 *	V
Input Terminal Voltage	V _I	V _{DD} -0.3~+0.3 *	V
Output Terminal Voltage	Vo	V _{DD} -0.3~+0.3 *	V
Power Dissipation	P _D	200	mW
Operating Temperature	Topr	−10~+70	°C
Storage Temperature	Tstg	−30~+125	°C

^{*} With respect to GND=OV.

Operating Conditions

Operating Conditions			
		Min. Ts	/p. Max. Unit
ltem Symbo	l Condition	and a second a second and a second a second and a second	/p. Max. Unit
			45 10 1 1/
	GND=OV	- 8	15 - 10 V I
Supply Voltage VDD	OND-OV		

Flectrical Characteristics (Ta=25°C, VDD=-15V, GND=OV)

ectrical Characteristics (18	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Current	IDD	Without load		3		mA
Power Consumption	Ptot	Clock output 40kHz		45		mW
OX1 Input Terminal						
Input Voltage "H" Level	Vih		0		-1	٧
Input Voltage "L" Level	VIL		V _{DD} +1		V_{DD}	V .
Input Leakage Current	ILK	$V_1 = 0 \sim -15V$			30	μΑ
OX2 Output Terminal	#/26/PREMING					
Output Current "H" Level	Тон1	$V_0 = -1.0V$	0.6			mA
Output Current "L" Level	I _{OL1}	Vo=-14V	0.5			mA
Output Leakage Current	ILOL1	$V_0 = V_{DD}$			30	μΑ
Output Leakage Current	Ілон1	V _O =GND			30	μΑ
OX3 Output Terminal	5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					
Output Current "H" Level	Іон2	$V_0 = -1.0V$	1.5			mA
Output Current "L" Level	lol2	$V_0 = -14V$	2.0			mA
Output Leakage Current	ILOL2	$V_0 = V_{DD}$			30	μΑ
Output Leakage Current	1 Ген 2	V _O =GND			30	μΑ
CP1, CP2 Output Termial	SSECTION (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					
Output Current "H" Level	Гонз	V ₀ =-1.0V	10			mA
Output Current "L" Level	Гогз	V ₀ =-14V	10			mA
Output Leakage Current	I _{LOL3}	$V_0 = V_{DD}$			30	μΑ
Output Leakage Current	Іьонз	V _O =GND			30	μA
V _{GG} Output Terminal*						
Output Voltage	V _{GG} OUT		A Table	-14.0		V

^{*}This terminal outputs V_{GG} voltage particularly suitable for the BBD's manufactured by Matsushita Electronics Corporation. The Voltage is not necessarily suitable for other manufacturers' products.

The $V_{\text{GG OUT}}$ changes depending on V_{DD} . The relationship between $V_{\text{GG OUT}}$ and V_{DD} is as follows:

$$V_{GG OUT} = \frac{14}{15} V_{DD}$$