Group 6

Yinyin, Xinglong, Himanshu

AutoML Learning to Learn

AutoML Introduction

- 1. Machine Learning
- 2. What is AutoML
- 3. Types of Frameworks
- 4. Frameworks

Machine Learning

- 1. Preprocess and clean the data
- 2. Feature engineering
 - a. Select and construct appropriate features
- Model building
 - a. Select an appropriate model family
- 4. Hyperparameter optimization
 - a. Optimize model hyperparameters
- 5. Postprocess machine learning models
- 6. Analyze the results obtained

Machine Learning

Image from: https://www.datasciencecentral.com/profiles/blogs/soccer-and-machine-learning-2-hot-topics-for-2018

What is AutoML

Automated Machine Learning provides methods and processes to make Machine Learning available for non-Machine Learning experts, to improve efficiency of Machine Learning and to accelerate research on Machine Learning.

Automation of machine learning

Types of frameworks

- Automated feature engineering
 - feature selection
 - feature extraction
 - meta learning and transfer learning
 - Detection and handling of skewed data/missing values
- Hyperparameter optimization
- Model Selection

Well-known frameworks

- Full pipeline automation
 - Auto-WEKA
 - Auto-sklearn
- Hyperparameter optimization and Model Selection
 - H2O AutoML
- Deep Neural Network Architecture search
 - Google Cloud AutoML

Auto-WEKA

Auto-WEKA is a tool that performs combined algorithm selection and hyperparameter optimisation over the classification and regression algorithms implements in WEKA

Auto-WEKA explores hyperparameter settings for many algorithms and recommends to a user which method will likely have good generalisation performance, using model based optimisation techniques.

Weka is a collection of machine learning algorithms for data mining tasks. It contains tools for data preparation, classification, regression, clustering, association rules mining, and visualization.

SMAC (sequential model-based algorithm configuration) is a versatile tool for optimizing algorithm parameters (or the parameters of some other process we can run automatically, or a function we can evaluate, such as a simulation).

High-level overview of Auto-WEKA internal structure

User interface: AutoWEKAClassifier, AutoWEKAPanlel

SMAC optimization tool:

SMACExperimentConstructor, SubProcessWrapper

Optimization process:

SMACWrapper, ClassifierRunner, ClassifierResult

Reference: http://www.cs.ubc.ca/labs/beta/Projects/autoweka/manual.pdf

Hyper-parameter optimization and Model Selection

H2O AutoML - demo

- Although H2O has made it easy for non-experts to experiment with machine learning, there is still a fair bit of knowledge and background in data science that is required to produce high-performing machine learning models.
- H2O's AutoML can also be a helpful tool for the advanced user, by providing a simple wrapper function that
 performs a large number of modeling-related tasks that would typically require many lines of code, and by freeing
 up their time to focus on other aspects of the data science pipeline tasks such as data-preprocessing, feature
 engineering and model deployment.
- The current version of AutoML trains and cross-validates the following algorithms (in the following order): A default Random Forest (DRF), an Extremely Randomized Forest (XRT), three pre-specified XGBoost GBM (Gradient Boosting Machine) models, five pre-specified H2O GBMs, a near-default Deep Neural Net, a random grid of XGBoost GBMs, a random grid of H2O GBMs, and lastly if there is time, a random grid of Deep Neural Nets.

Deep Neural Network Architecture search

Google cloud autoML - demo on natural

Cloud AutoML Products

AutoML Natural Language

AutoML Natural Language enables you to train your own, custom machine learning models to classify documents according to labels that you define.

AutoML Translation

AutoML Translation enables you to create your own, custom translation models so that translation queries return results specific to your domain.

AutoML Vision

AutoML Vision enables you to train your own, custom machine learning models to classify your images according to labels that you define.

AutoML Natural Language

AutoML Vision

Azure Machine Learning

Step1: Load the Data, see thevisualization at a glance:

Step2: Prepare the Data

Remove the columns by column names by using Select column module and removing Losses

Additional Cleaning

- •Remove the rows with missing values by using Clean Missing Dataset module
- Visualize and see the clean dataset from the output port

Step 3: Define Features

Step 4: Choose and apply a learning algorithm

Add the Linear Regression module and Train model module into the experiment canvas

Step5: Predict new automobile prices

Evaluate Models

■ Metrics

Mean Absolute Error		1656.147651
Roo	t Mean Squared r	2456.983209
Rela	tive Absolute Error	0.276606
Relative Squared Error		0.089608
Coefficient of Determination		0.910392