Improved Quantum Circuits for AES: Reducing the Depth and the Number of Qubits 논문리뷰

https://youtu.be/PneTVFnJ_oU

정보컴퓨터공학과 송경주

Contribution

- Improved structure of S-box
 - 120개의 ancilla qubit과 T-depth 4로 S-box를 구현한 Huang et al.[1]의 연구결과를 개선함
 - mixing-XOR 기법을 사용하여 linear transformation 내에서 idle qubit를 식별하여 중간값 저장에 사용함
 - 해당 기법을 통해 depth와 qubit을 줄여 83개의 ancilla qubit와 T-depth 4로 AES S-box을 구현함
- Combination of S-box and S-box[†] (reverse of S-box)
 - 240개의 ancilla qubit을 사용한 shallowed pipeline 구조의 Jang et al.[2]의 연구결과를 개선함
 - combined pipeline 구조를 사용하여 ancilla qubit를 98개로 59% 감소시킴
- Improved quantum circuit for reduced circuit complexity.
 - AES-128, AES-192, AES-256에 대해 깊이 730, 876, 1018 만을 가짐
 - Jang et al[2] 결과와 비교하여 큐비트 수 및 DW-cost가 AES-128, AES-192, AES-256에서 각각 42.4%, 41.2%, 36.5% 감소했다.

Contribution

- Introducing AND gates into the zig-zag architecture.
 - Huang et al.[1]이 ASIACRYPT 2022에서 소개한 양자회로를 수정함
 - 개선된 회로를 통해 양자회로 depth가 증가함에 따라 큐비트 수의 상당한 감소를 이룸
 - round-in-place zig-zag 구조를 적용하므로써 Huang et al 연구결과와 비교했을 때 DW-cost가 204,800에서 132,800으로 감소하였다.

AES (Advanced Encryption Standard)

- AES는 NIST에서 표준화 한 128-bit (16 bytes) state 의 블록암호
- AES family: AES-128(10 round, 128-bit key), AES-192(12 rounds, 192-bit key), AES-256 (14 rounds, 256-bit key)
- 연산: AddRoundKey MixColumns ShiftRows SubBytes

AES (Advanced Encryption Standard)

- AddRoundKey: 각 state에 대해 round key를 XOR함
- ShiftRows: i-th row (i = 0,1,2,3)에 대해 i만큼 왼쪽으로 shift 시킴
- **SubBytes**: 각 byte 크기의 state에 대해 8-bit S-box를 병렬로 수행함 (128bit의 state는 16개의 S-box lookup을 통해 변환됨)
- **MixColumns**: 특정 행렬을 사용하여 각 column에 대해 linear transformation 수행 $(4 \times 4 \text{ byte } \text{ 상태의 state 행렬과 특정 행렬의 각 column에 대해 갈루아 필드 <math>GF(2^8)$ 상에서 곱셈 진행)

$$M = egin{pmatrix} 0 \text{x02 } 0 \text{x03 } 0 \text{x01 } 0 \text{x01} \\ 0 \text{x01 } 0 \text{x02 } 0 \text{x03 } 0 \text{x01} \\ 0 \text{x01 } 0 \text{x01 } 0 \text{x02 } 0 \text{x03} \\ 0 \text{x03 } 0 \text{x01 } 0 \text{x01 } 0 \text{x02} \end{pmatrix}$$

- **Key Schedule**: mater key: W_0 , W_1 ... W_{s-1} (s: AES-128(4), AES-192(6), AES-256(8))
 - RotWord: 4byte에 대해 주기적으로 한 위치씩 왼쪽으로 회전
 - Rcon: word의 각 byte와 상수 XOR
 - SubWord: word의 4byte에 대해 4개의 S-box를 병렬로 적용

<AES S-box quantum circuit>

- Jaques et al.[1]가 제안한 S-box 는 120개의 ancilla qubit와 T-depth 6을 가진다.
- Huang et al.[2]에서 이를 개선하여 120개의 ancilla qubit와 T-depth 4를 가진다.
- → 위의 논문들의 결과를 개선하기 위해 mixing-XOR(m-XOR) 기술을 사용함

<m-XOR Technique>

- creating operation이 포함된 양자회로를 updating operation으로 변환하여 일부 큐비트를 재사용
 - creating: $a \oplus b$ 결과를 큐비트 c에 저장(out-of-place)
 - updating: a⊕b 결과를 큐비트 b에 저장(in-place)
- m-XOR: 최소한의 큐비트 사용을 위해 updating operation과 creating operation mix Ex) 두개의 큐비트 q_a, q_b 에 대해 sub-operation이 creating operation: $q_c = q_c \oplus (q_a \oplus q_b)$ 일 때,
- 만약 q_a 가 재사용되지 않는다면 updating operation: $q_a = q_a \oplus q_b$ 을 통해 q_a 로 대체해서 사용할 수 있다.
- : 다음과 같이 연산하기 위해서는 해당 조건을 만족해야 함.
 - 1) q_a 가 subsequent circuit 에서 사용되지 않아야 함
 - 2) q_c 가 이전 회로에서 사용되지 않아야 함 (0 상태여야 하므로)
- → idle qubit detection이 해당 기술의 핵심

```
Algorithm 1 Transformation from creating operations into updating operations
Input: A sequentially written quantum circuit \mathcal{C} in sequence
Output: The optimized quantum circuit with a reduced number of qubits and gates,
    as well as less quantum depth
 1: for each gate g \in \mathcal{C} do
       if g is creating operation t_c = t_c \oplus (t_a \oplus t_b) then
           if t_c appears in the previous circuit then
               Continue
           end if
           Check the subsequent circuit and count the number n_a that t_a is used
           Check the subsequent circuit and count the number n_b that t_b is used
           if n_i = 0 (i = a \text{ or } b) then
               Replace t_c with t_i in g and in the subsequent circuit
           end if
       end if
12: end for
13: return \mathcal{C}
```

<AES S-box에 m-XOR Technique 적용>

[이전 AES S-box: m-XOR 적용 전]

- 연산: AND operation: 34개, creating operation: 120개, X gate: 4개
- 8-bit input $u_0, ..., u_7$ 에 대해 8-bit output $s_0, ..., s_7$
- S-box에서 120개의 ancilla qubit 사용: $t_0, ..., t_{26}, m_0, ..., m_{62}, l_0, ..., l_{29}$

[이전 AES S-box에 m-XOR 적용]

- 46개의 필요 없는 큐비트 발견
- 74 ancilla qubits을 통해 S-box 최적화: $q_0, q_1 \dots, q_{73}$.
- 오른쪽 표: 74 ancilla qubits로 구현된 AES S-box
- Ex) line 2: 이전의 CNOT2 (u_7, u_1, t_2) 연산에 대해 CNOT (u_1, u_7) 로 변경
 - $\blacksquare u_7$ 이 이후에 사용되지 않음

 ancilla + input qubit

 Source
 Width
 #Toffoli
 #CNOT
 #1qCliff
 Toffoli depth

 [23]
 16+16
 55
 314
 4
 40

 [34]
 6+16
 52
 326
 4
 41

 [34]
 7+16
 48
 330
 4
 39

 [34]
 8+16
 46
 332
 4
 37

 [26]
 5+16
 57
 193
 4
 24

 [26]
 6+16
 57
 195
 4
 22

 [19]
 120+16
 34
 186
 4
 6

 [16]
 120+16
 34
 214
 4
 4

 This paper
 74+16
 34
 168
 4
 4

	[19]	120 + 16	34	186	4	6	
	[16]	120 + 16	34	214	4	4	
	This paper	74 + 16	34	168	4	4	
Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings,	Part III. Lecture Notes in	Computer Science, vol	. 13793, pp. 6	14-644. Springe	r (2022), https://doi.	2 - 28th International Conference on the Theory and Application of Cryptology and org/10.1007/978-3-031-22969-5_21 e Theory and Applications of Cryptographic Techniques. pp. 280–310. Springer (2	

No.	Gate	No.	Gate		Gate
0	$CNOT2(u_7, u_4, q_0)$	53	$AND(q_{15}, q_9, q_{26})$	106	$CNOT(q_{25}, q_{63})$
1	$CNOT2(u_7, u_2, q_1)$	54	$AND(q_{61}, q_{21}, q_{32})$	107	$\mathrm{CNOT}(q_{40},q_{64})$
2	$CNOT(u_1, u_7)$	55	$AND(q_{16}, q_{60}, q_{35})$	108	$CNOT(q_{36}, q_{65})$
3	$CNOT2(u_4, u_2, q_2)$	56	$CNOT(q_{25}, q_{63})$	109	$CNOT(q_{21}, q_{66})$
4	$CNOT(u_1, u_3)$	57	$CNOT2(q_{16}, q_{26}, q_{27})$	110	$CNOT(q_{39}, q_{67})$
5	$CNOT2(q_0, u_3, q_3)$	58	$CNOT2(q_9, q_{16}, q_{28})$	111	$\text{CNOT}(q_{33}, q_{68})$
6	$CNOT2(u_6, u_5, q_4)$	59	$CNOT(q_{28}, q_{62})$	112	$CNOT(q_{16}, q_{69})$
7	$CNOT2(u_0, q_3, q_5)$	60	$CNOT2(q_{21}, q_{26}, q_{29})$	113	$\text{CNOT}(q_{38}, q_{70})$
8	$CNOT2(u_0, q_4, q_6)$	61	$CNOT2(q_{28}, q_{26}, q_{34})$	114	$\mathrm{CNOT}(q_{41},q_{71})$
9	$\text{CNOT2}(q_3, q_4, q_7)$	62	$\mathrm{AND}(q_{29}, q_{28}, q_{30})$	115	$\mathrm{CNOT}(q_{37},q_{72})$
10	$CNOT(u_2, u_6)$	63	$AND(q_{27}, q_{25}, q_{31})$	116	$\text{CNOT2}(q_{57}, q_{58}, q_{60})$
11	$\mathrm{CNOT}(u_2,u_5)$	64	$AND(q_{62}, q_{32}, q_{33})$	117	$CNOT2(q_{46}, q_{52}, q_{61})$
12	$CNOT2(u_7, q_2, q_8)$	65	$\mathrm{AND}(q_{63}, q_{35}, q_{36})$	118	$\text{CNOT2}(q_{42}, q_{44}, q_{62})$
13	$\text{CNOT2}(q_3, u_6, q_9)$	66	$CNOT(q_{25}, q_{26})$	119	$CNOT2(q_{43}, q_{51}, q_{63})$
14	$CNOT(u_3, u_6)$	67	$\text{CNOT}(q_{30}, q_{16})$	120	$CNOT2(q_{50}, q_{54}, q_{64})$
15	$\mathrm{CNOT}(u_5,u_3)$	68	$CNOT(q_{34},q_{33})$	121	$\text{CNOT2}(q_{45}, q_{57}, q_{65})$
16	$\mathrm{CNOT2}(q_6,u_3,q_{10})$	69	$\mathrm{CNOT}(q_{31},q_{21})$	122	$\text{CNOT2}(q_{58}, q_{65}, q_{66})$
17	$\mathrm{CNOT}(u_0,u_4)$	70	$CNOT(q_{26}, q_{36})$	123	$CNOT2(q_{42}, q_{63}, q_{67})$
18	$\mathrm{CNOT}(q_4,u_4)$	71	$\text{CNOT2}(q_{33}, q_{36}, q_{37})$	124	$\text{CNOT2}(q_{47}, q_{55}, q_{68})$
19	$\mathrm{CNOT2}(q_0,u_4,q_{11})$	72	$\text{CNOT2}(q_{16}, q_{21}, q_{38})$	125	$CNOT2(q_{48}, q_{49}, q_{69})$
20	$\mathrm{CNOT}(u_0,u_1)$	73	$\text{CNOT2}(q_{16}, q_{33}, q_{39})$	126	$\text{CNOT2}(q_{49}, q_{64}, q_{70})$
21	$\mathrm{CNOT}(u_1,q_4)$	74	$CNOT2(q_{21}, q_{36}, q_{40})$	127	$CNOT2(q_{56}, q_{62}, q_{71})$
22	$\mathrm{CNOT2}(q_1,q_4,q_{12})$	75	$CNOT2(q_{38}, q_{37}, q_{41})$	128	$\text{CNOT2}(q_{44}, q_{47}, q_{72})$
23	$\mathrm{CNOT2}(q_1,q_7,q_{13})$	76	$\mathrm{CNOT}(q_{40},q_{64})$	129	$\text{CNOT2}(q_{66}, q_{70}, q_{73})$
24	$CNOT2(q_{11}, q_{10}, q_{14})$		$CNOT(q_{36}, q_{65})$	130	$\text{CNOT}(q_{60}, q_{46})$
25	$\text{CNOT2}(u_7, u_3, q_{15})$	78	$\mathrm{CNOT}(q_{21},q_{66})$	131	$\mathrm{CNOT}(q_{57},q_{48})$
26	$\mathrm{CNOT}(q_0,u_5)$	79	$\mathrm{CNOT}(q_{39},q_{67})$	132	$\mathrm{CNOT}(q_{61},q_{51})$
27	$\mathrm{AND}(q_8,q_3,q_{16})$	80	$CNOT(q_{33}, q_{68})$	133	$\mathrm{CNOT}(q_{60},q_{52})$
28	$AND(q_{12}, q_5, q_{17})$	81	$CNOT(q_{16}, q_{69})$	134	$CNOT(q_{61}, q_{53})$
29	$\mathrm{AND}(u_4,u_0,q_{18})$	82	$CNOT(q_{38}, q_{70})$	135	$CNOT(q_{68}, q_{54})$
30	$\mathrm{AND}(u_7, u_3, q_{19})$	83	$CNOT(q_{41}, q_{71})$	136	$CNOT(q_{64}, q_{59})$
31	$\operatorname{AND}(q_4, q_6, q_{20})$	84	$CNOT(q_{37}, q_{72})$	137	$CNOT(q_{61}, q_{60})$
32	$AND(q_{11}, q_{10}, q_{21})$	85	$AND(q_{40}, q_3, q_{42})$	138	$CNOT2(q_{61}, q_{67}, s_4)$
33	$\mathrm{AND}(q_0, u_6, q_{22})$	86	$AND(q_{36}, q_5, q_{43})$	139	$CNOT2(q_{63}, q_{72}, s_3)$
34	$\operatorname{AND}(q_2, u_5, q_{23})$	87	$AND(q_{21}, u_0, q_{44})$	140	CNOT2 (q_{54}, q_{62}, s_0)
35	$AND(q_1, q_7, q_{24})$	88	$AND(q_{39}, u_3, q_{45})$	141	$\text{CNOT2}(q_{51}, q_{69}, s_7)$
36	$CNOT(q_{16}, q_9)$	89	$AND(q_{33}, q_6, q_{46})$	142	CNOT2 (q_{67}, q_{69}, s_6)
37	$CNOT(q_{18}, q_{16})$	90	$AND(q_{16}, q_{10}, q_{47})$	143	CNOT2 (q_{68}, q_{70}, s_1)
38	$CNOT(q_{19}, q_{15})$	91	$AND(q_{38}, u_6, q_{48})$	144	$CNOT2(q_{71}, q_{48}, s_5)$
39	$CNOT(q_{19}, q_{21})$	92	$AND(q_{41}, u_5, q_{49})$	140	$CNOT2(q_{71}, q_{53}, s_2)$
40	$CNOT(q_{22}, q_{23})$	93	$AND(q_{37}, q_7, q_{50})$	140	$CNOT(q_{66}, s_7)$
$\frac{41}{42}$	$CNOT(q_{22}, q_{24})$	94	$AND(q_{64}, q_8, q_{51})$	147	$CNOT(q_{52}, s_6)$
	$CNOT(q_{17}, q_9)$	95	$AND(q_{65}, q_{12}, q_{52})$		$\mathrm{CNOT}(q_{59}, s_5)$
43	$CNOT(q_{13}, q_{16})$	96	$AND(q_{66}, u_4, q_{53})$	1	$X(s_6)$ $X(s_5)$
44	$CNOT(q_{20}, q_{15})$	97	$AND(q_{67}, u_7, q_{54})$		
45	$CNOT(q_{24}, q_{21})$	98	$AND(q_{68}, q_4, q_{55})$		$CNOT(q_{66}, s_4)$
46	$CNOT(q_{23}, q_9)$	99	$AND(q_{69}, q_{11}, q_{56})$		$CNOT(q_{60}, s_3)$
47	$CNOT(q_{24}, q_{16})$	100	$AND(q_{70}, q_0, q_{57})$		$CNOT(q_{73}, s_2)$
48 49	$CNOT(q_{23}, q_{15})$	102	$AND(q_{71}, q_2, q_{58})$		$CNOT(q_{46}, s_1)$
50	$CNOT(q_{14}, q_{21})$	102	$AND(q_{72}, q_1, q_{59})$ $CNOT(q_{72}, q_{72}, q_{72})$	l .	$CNOT(q_{66}, s_0)$ $X(s_1)$
50 51	$CNOT2(q_{15}, q_{21}, q_{25})$	104	$ \begin{array}{l} \text{CNOT}(q_{15}, q_{60}) \\ \text{CNOT}(q_9, q_{61}) \end{array} $	1	$X(s_1)$ $X(s_0)$
52	$CNOT(q_{15}, q_{60})$	104	$CNOT(q_9, q_{61})$ $CNOT(q_{28}, q_{62})$	101	$\Lambda(\delta 0)$
32	$\mathrm{CNOT}(q_9,q_{61})$	100	O11O1 (428, 462)		

- 85 AND (q_{40}, q_3, q_{42})
- 86 AND (q_{36}, q_5, q_{43})
- 87 AND (q_{21}, u_0, q_{44})
- 88 AND (q_{39}, u_3, q_{45})
- 89 AND (q_{33}, q_6, q_{46})
- 90 AND (q_{16}, q_{10}, q_{47})
- 91 AND (q_{38}, u_6, q_{48})
- 92 AND (q_{41}, u_5, q_{49})
- 93 AND (q_{37}, q_7, q_{50})
- 94 AND (q_{64}, q_8, q_{51})
- 95 AND (q_{65}, q_{12}, q_{52})
- 96 AND (q_{66}, u_4, q_{53})
- 97 AND (q_{67}, u_7, q_{54})
- 98 AND (q_{68}, q_4, q_{55})
- 99 AND (q_{69}, q_{11}, q_{56})
- 100 AND (q_{70}, q_0, q_{57})
- 101 AND (q_{71}, q_2, q_{58})
- 102 AND (q_{72}, q_1, q_{59})

- 기존: 18개의 ancilla qubit 사용했음
- 16개의 parallel AND 게이트 후 $\rightarrow q_{73}, s_0, s_1 \dots s_7$ (9개) 큐비트가 0으로 설정됨을 발견
- 따라서 9개의 ancilla qubit만 사용 가능

Source	Width	#CNOT	#1qCliff	#T	#M	#TD	#FD
[19]	136	664	205	136	34	6	117
[16]	136	718	208	136	34	4	109
This paper	99	$\bf 624$	204	136	34	4	101

<AND gate를 사용하여 구현한 S-box 자원 비교>

- Improved Combination of S-box and S-box[†]
 - Jaques et al. : pipeline architecture AES
 - Jang et al. : shallowed pipeline architecture [120+120=240 ancilla qubit]
 - This paper: combined architecture [74+24=98 ancilla qubit] (combined pipeline architecture with share technique to combine the S-box and S-box †)

Pipeline Architecture for AES

- 첫번째 SB에서 사용한 120개의 ancilla qubit를 두번째 SB 동작과 동시에 첫번째 SB를 inverse하여 Depth를 증가시키지 않음과 동시에 사용한 ancilla qubit을 리셋 시켜 세번째 SB에서 사용할 수 있도록 하여총 사용 큐비트 수를 줄임
- 즉, 홀수 S-box/ 짝수 S-box 는 같은 ancilla qubit을 clean up 해서 사용함 (2세트*120개의 ancilla qubit 사용)

- Combined pipeline S-box
 - 기존 기법에서는 S-box* 실행 중에 큐비트가 clean up 되며 이러한 큐비트는 S-box에서 바로 사용x → clean up 된 큐비트를 바로 사용할 수 있는 기법 "share technique"
 - Original pipeline: S-box / S-box*+MixColumns
 - Shallowed pipeline: S-box+S-box* / MixColumns
 - Combined: S-box+S-box* (Combined) / MixColumi

Table 5: Comparison of different pipeline architectures.

Architecture	Width	#FD
Original architecture[19] Shallowed architecture[18] Combined architecture	$(r+1) \cdot q_r + q_s + q_m$ $(r+1) \cdot q_r + \max(2q_s, q_m)$ $(r+1) \cdot q_r + \max((1+\epsilon) \cdot q_s, q_m)$	$d_s + \max(d_s, d_m)$ $d_s + d_m$ $d_s + d_m$

Fig. 5: Combined structure to execute S-box and S-box[†] simultaneously.

Fig. 6: The combined pipeline architecture, where C is the combined S-box and S-box[†].

Q&A