

Data Preprocessing ——Data Cleaning——

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

Data Preprocessing

- About data
- Why preprocess the data?
- Descriptive data summarization
- Data cleaning
- Data integration and transformation
- Data reduction
- Discretization and concept hierarchy generation
- Summary

Data Cleaning

- Importance
 - "Data cleaning is one of the three biggest problems in data warehousing" —Ralph Kimball
 - "Data cleaning is the number one (No.1) problem in data warehousing" —DCI survey
- Data cleaning tasks
 - Fill in missing values
 - Identify outliers and smooth out noisy data
 - Correct inconsistent data
 - Resolve redundancy caused by data integration

3

Missing Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - not register certain data may not be considered important at the time of entry
 - history or changes of the data
- Missing data may need to be inferred.

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (assuming the tasks in classification—not effective when the percentage of missing values per attribute varies considerably.
- Fill in the missing value manually: tedious(冗余) + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown" , a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

5

Noisy Data

- Noise: random error or variance in a measured variable
- Incorrect attribute values may due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - ◆ inconsistency in naming convention (命名约定)
- Other data problems which requires data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to handle noisy data?

- Binning (分箱)
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)
- Regression
 - smooth by fitting the data into regression functions

7

Simple Discretization Methods: Binning

- Equal-width (distance) partitioning:
 - ◆ Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well.
- Equal-depth (frequency) partitioning:
 - ◆ Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky.

200 200 30 30 30 40 50 60 70 80

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
 - Partition into equal-frequency (equal-depth) bins:
 - · Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - · Bin 3: 26, 28, 29, 34
 - Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
 - Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - · Bin 3: 26, 26, 26, 34

Data Cleaning as a Process

- Data discrepancy (不符/异常) detection
 - Use metadata (e.g., domain, range, dependency, distribution)
 - Check field overloading
 - Check uniqueness rule, consecutive rule and null rule
 - Use commercial tools
 - Data scrubbing(数据清洗): use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing(数据审查): by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)
- Data migration and integration
 - Data migration tools: allow transformations to be specified
 - ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
- Integration of the two processes
 - ◆ Iterative and interactive (迭代和互动 e.g., Potter's Wheels)

