

Running the "TCPIP MDD Demo App" (Beta Release)

Required Hardware	2
Configuration 1: Explorer 16 + ENC28J60 + PIC24FJ256GB110 + USB Thumb Drive	2
Configuration 2: Explorer 16 + ENC28J60 + PIC24FJ128GA010 + SD Card	2
Configuring the Hardware	2
Configuration 1: Explorer 16 + ENC28J60 + PIC24FJ256GB110 + USB Thumb Drive	
Configuration 2: Explorer 16 + ENC28J60 + PIC24FJ128GA010 + SD Card	5
Firmware:	7
Running the Demo:	7
Modifying the Demo:	8
Note:	9
Limitations:	10
Trademarks:	10

Required Hardware

To run this demonstration project, you will require one of the following sets of hardware.

Configuration 1: Explorer 16 + ENC28J60 + PIC24FJ256GB110 + USB Thumb Drive

Explorer 16 (DM240001)

USB PICtail™ Plus Daughter Board (AC164131)

PIC24FJ256GB110 Plug-In-Module (PIM) (MA240014)

Ethernet PlCtail Plus Daughter Board (AC164123)

Configuration 2: Explorer 16 + ENC28J60 + PIC24FJ128GA010 + SD Card

Explorer 16 (DM240001)

PICtail Daughter Board for SD & MMC Cards (AC164122)

PIC24FJ128GA010 Plug-In-Module (PIM) (MA240011)

Ethernet PICtail Plus Daughter Board (AC164123)

A second 120-pin female card edge connector (CON0197)

Configuring the Hardware

This section describes how to set up the various configurations of hardware to run this demo.

Configuration 1: Explorer 16 + ENC28J60 + PIC24FJ256GB110 + USB Thumb Drive

1. Before attaching the PIC24FJ256GB110 PIM to the Explorer 16 board, insure that the processor selector switch (S2) is in the "PIM" position as seen in the image below.

2. Short the J7 jumper to the "PIC24" setting

- 3. Before connecting the PIC24FJ256GB110 PIM to the Explorer 16 board, remove all attached cables from both boards. Connect the PIC24FJ256GB110 PIM to the Explorer 16 board. Be careful when connecting the boards to insure that no pins are bent or damaged during the process. Also insure that the PIM is not shifted in any direction and that all of the headers are properly aligned.
- 4. On the USB PICTail Plus board, short jumpers JP2 and JP3. Open all other jumpers on the board.

- 5. Connect the USB PICTail Plus board to either of the female PICTail Plus connectors or on the card edge connector (J9) at the edge of the Explorer 16 board.
- 6. Connect the Ethernet PICtail Plus Daughter Board to the female card-edge connector J5 on the Explorer 16 board. The card-edge connector should be inserted in the slot closest to the prototyping area. This will connect the Ethernet PICtail Plus board to SPI1.

7. Complete Hardware Configuration Setup as below

Configuration 2: Explorer 16 + ENC28J60 + PIC24FJ128GA010 + SD Card

1. Before attaching the PIC24FJ128GA110 PIM to the Explorer 16 board, insure that the processor selector switch (S2) is in the "PIM" position as seen in the image below.

2. Short the J7 jumper to the "PIC24" setting

- 3. Before connecting the PIC24FJ128GA010 PIM to the Explorer 16 board, remove all attached cables from both boards. Connect the PIC24FJ128GA010 PIM to the Explorer 16 board. Be careful when connecting the boards to insure that no pins are bent or damaged during the process. Also insure that the PIM is not shifted in any direction and that all of the headers are properly aligned.
- 4. Connect the Ethernet PICtail Plus Daughter Board to the female card-edge connector J6 on the Explorer 16 board. The card-edge connector should be inserted in the slot closest to the prototyping area. This will connect the Ethernet PICtail Plus board to SPI1. If J6 is not populated with a female PICtail Plus connector, you must solder one to the board.

5. Connect the PICtail Daughter Board for SD & MMC Cards to the female card-edge connector J5 on the Explorer 16 board. The card-edge connector should be inserted in the center slot, with the card socket facing the microcontroller.. This will connect the PICtail Plus board to SPI2.

6. Complete Hardware Configuration Setup as below

Firmware

To run this project, load the corresponding firmware into the devices. There are two methods available for loading the demos: pre-compiled demos and source code projects.

Precompiled demos are available in the "\Microchip Solutions\TCPIP MDD Demo App" folder. The hex files for each demo contain descriptions of the hardware platform that the demo was built for. Select the hex file that matches the hardware configuration and the demo to run, import it into MPLAB, and program it to the target processor.

The source code for this demo is available in the "Microchip Solutions\TCPIP MDD Demo App" directory. This directory contains all of the user level source and header files as well as project and workspace files for each of the hardware platforms. Find the project (*.mcp) or workspace (*.mcw) file that corresponds to the hardware platform you are using. Compile the code and program the output to the hardware platform. For more help on how to compile and program projects, please refer to the MPLAB® help available through the help menu of MPLAB (Help->Topics...->MPLAB IDE).

Running the Demo:

For this demo, you must copy all of the demo web page files and subfolders from the directory "\Microchip Solutions\TCPIP MDD Demo App\WebPages2" to a target directory of an SD card or USB thumb drive. You must also copy the files DynRcrd.bin and FileRcrd.bin files from "\Microchip Solutions\TCPIP MDD Demo App" to the same target directory.

The precompiled hex files use the root directory of the SD Card or USB thumb drive as target path for web page storage.

Connect a CAT-5 Ethernet cable to the ENC28J60 stand-alone Ethernet PICtail plus connector on the demo board.

The LCD screen should show the revision number of the MCHP TCPIP Stack and the IP address assigned to the board.

Open an HTTP client browser like Microsoft Internet Explorer (IE), Mozilla Firefox, or Google Chrome at a workstation in the same LAN. Type in the IP address shown in the LCD of the board to access the web pages stored in the SD card or the USB thumb drive. The HTTP client browser should be served with the Microchip TCPIP Stack HTTP2 Server demo web page. Set the different LEDs on board to ON/OFF. Change the Potentiometer on the Explorer 16 board and check the corresponding reading in the web page. Use the SMTP client feature to send email about the board status from the "Send E-mail" link in the navigation frame. You can also explore the dynamic DNS feature by opening the "Dynamic DNS" page.

Do follow "Modifying the Demo" section if web pages in the existing demo are be modified.

Modifying the Demo:

1. Storing web pages to a non-root target directory on your flash device

Copy the demo web pages and the binary files DynRcrd.bin and FileRcrd.bin to your desired target path on the SD card or on the USB thumb drive. Change the following macro in "Microchip Solutions\TCPIP MDD Demo App\TCPIPConfig.h" file to the new path:

#define MDD ROOT DIR PATH "\\"

Note that the backslash character begins an escape sequence in C, so you will have to include two backslashes in your path to separate directory names.

Select the MPLAB workspace that corresponds to your hardware setup, compile the code using the modified copy of TCPIPConfig.h, and program the result to your board.

The LCD screen should display the revision number of the MCHP TCPIP Stack and the IP address assigned to the board. All the demos described in the previous section should work as specified.

2. Adding a new web page or changing an existing web page

Whenever the content of a web page changes (text changes, adding/removing dynamic variables, etc) the two binary files included in the web page installation (DynRcrd.bin and FileRcrd.bin) must be regenerated.

FileRcrd.bin contains information about which web pages contain dynamic variables. DynRcrd.bin provides the information about the dynamic variables in each of the web pages and their offsets in the respective web page.

These two files are used by the HTTP2 server to process dynamic variables. Hence, any change in the web pages or addition of new web pages calls for regeneration of these two files. These files are generated using the MPFS2 utility.

Run "Microchip Solutions\Microchip\TCPIP Stack\Utilities\MPFS2.exe" and select the "MDD" option and the Source and Project directories.

After all of the files in the source directory have been successfully processed and the two binary files have been successfully generated, you will see the following window:

Copy the updated web pages and the regenerated binary files to the path defined by "MDD_ROOT_DIR_PATH" in TCPIPConfig.h. Insert the SD Card or USB thumb drive into the respective PICtail board (connected to the Explorer 16).

Select the MPLAB workspace/project that corresponds to your hardware profile and compile and program the new hex image to the target processor.

The LCD screen should show the revision number of the MCHP TCPIP Stack and the IP address assigned to the board. All the demos explained in the previous section should work as specified

Note

The "TCPIP MDD Demo App" directory is added to the "Microchip Solutions" with HTTP2 Server with MDD support. This is the Beta Release of this project. This enables the PIC and Microchip TCP/IP Stack HTTP2 server users to store the web pages on an external hot pluggable memory

interface such as SD card or USB thumb drive with MDD support. This feature eliminates the need to use an EEPROM, external SPI Flash or Internal Program memory to store web pages.

Limitations:

- 1. This demo is currently supported only with the two hardware configurations specified in this document.
- Only the HTTP2 server is integrated with MDD file system. SNMPv2c agent does not work in this demo.
- 3. The TCPIPConfig.exe tool available in the "Microchip Solutions\Microchip\TCPIP Stack\Utilities" directory should not be used to configure the stack for this demo.
- 4. If the Explorer 16 development board is to be used with MPFS classic or MPFS2, make sure that SD card PICtail or USB PICtail Plus board is not connected.
- 5. This demo works only with dynamic FSFILE object allocation options enabled in FSconfig.h file. FSconfig.h file can be found in "Microchip Solutions\TCPIP MDD Demo App".
- 6. With this Beta Release, only one TCP Socket initialization is supported. The HTTP2 server will still cater to multiple http client connections.

Trademarks:

The Microchip name and logo, the Microchip logo, MPLAB, and PIC are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

PICDEM is a trademark of Microchip Technology Incorporated in the U.S.A. and other countries. Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.