CLAIMS

What is claimed is:

1. A β -amino acid selected from the group consisting of Formula I:

wherein X and Y combined, together with the carbon atoms to which they are bonded, define a substituted or unsubstituted C₄-C₈ cycloalkyl, cycloalkenyl or heterocyclic ring having one or more nitrogen atoms as the sole heteroatom;

the substituents on carbon atoms of the rings being independently selected from the group consisting of linear or branched C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, - $(CH_2)_{n+1}$ - OR^4 , - $(CH_2)_{n+1}$ - SR^4 , - $(CH_2)_{n+1}$ -S(=O)- CH_2 - R^4 , - $(CH_2)_{n+1}$ -S(=O)- CH_2 - R^4 , - $(CH_2)_{n+1}$ - $NHC(=O)R^4$, - $(CH_2)_{n+1}$ -NHS(=O)- CH_2 - R^4 , - $(CH_2)_{n+1}$ -O- $(CH_2)_m$ - R^5 , - $(CH_2)_{n+1}$ -S- $(CH_2)_m$ -S- $(CH_2)_m$ -S- $(CH_2)_n$ - $(CH_2)_n$ -(C

wherein R⁴ is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, alkenyl, or alkynyl;

mono- or bicyclic aryl, mono- or bicyclic heteraryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

wherein R⁵ is selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁- C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylsulfonyl, heteroarylthio, arylthio, arylsulfinyl, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or N-alkyl-Ndiheteroarylamino, N-alkyl-N-arylamino, heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, Nalkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, diheteroarylsulfonamide, N-alkyl-Nor arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

m is an integer of from 2-6 and n is an integer of from 0-6;

the substituents on heteroatoms of the ring being independently selected from the group consisting of $-S(=O)_2-CH_2-R^4$

 $-C(=O)-R^4$ $-S(=O)_2-(CH_2)_m-R^5$, and $-C(=O)-(CH_2)_{n+1}-R^5$; wherein R^4 and R^5 are as defined hereinabove, and m is an integer of from 2-6 and n is an integer of from 0-6;

provided that when X & Y together with the carbons to which they are bonded define a five- or six-membered cycloalkyl or a five-membered heterocyclic ring having one nitrogen as the sole heteroatom, and the nitrogen is bonded to a carbon atom adjacent to the carboxy carbon of Formula I, the cycloalkyl or heterocyclic ring is substituted;

R¹ is selected from the group consisting hydrogen and an amino protecting group;

R² is selected from the group consisting of hydrogen and a carboxy protecting group;

racemic mixtures thereof, isolated or enriched enantiomers thereof; isolated or enriched diastereomers thereof;

and salts thereof.

- 2. The β -amino acid according to claim 1, wherein X and Y combined, together with the carbon atoms to which they are bonded, define a moiety selected from the group consisting of a substituted cycloalkyl, a substituted or unsubstituted C_4 - C_6 cycloalkenyl, and a substituted or unsubstituted heterocyclic ring having one nitrogen atom as the sole hetero atom.
- 3. The β -amino acid according to claim 1, wherein X and Y combined, together with the carbon atoms to which they are bonded, define a substituted or unsubstituted cyclopentenyl, cyclohexenyl, pyrrolidinyl, or piperidinyl ring.

- 4. The β -amino acid according to claim 1, wherein X and Y combined, together with the carbon atoms to which they are bonded, define a substituted cyclopentyl, cyclohexyl, cyclopentenyl, cyclohexenyl, pyrrolidinyl, or piperidinyl ring, wherein the substituent is selected from the group consisting of amino, mono- or di-C₁-C₆-alkylamino, carboxamido, sulfonamido, urea, thio, and C₁-C₆-alkylthio.
- 5. The β -amino acid according to claim 1, wherein X and Y combined, together with the carbon atoms to which they are bonded, define an amino-substituted cyclopentyl, cyclopexyl, cyclopentenyl, amino-substituted cyclohexenyl, amino-substituted pyrrolidinyl, or amino-substituted piperidinyl ring.
 - 6. A β -amino acid selected from the group consisting of:

$$\begin{array}{c} O \\ R^1-HN \\ C-O-R^2 \end{array}$$

and

R¹ is selected from the group consisting hydrogen and an amino protecting group;

R² is selected from the group consisting of hydrogen and a carboxy protecting group; and

when R^3 is bonded to a carbon atom, R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, -(CH_2)_{n+1}- OR^4 , -(CH_2)_{n+1}- SR^4 ,

$$\begin{split} -(CH_2)_{n+1}-S(=O)-CH_2-R^4, & -(CH_2)_{n+1}-S(=O)_2-CH_2-R^4, \\ -(CH_2)_{n+1}-NR^4R^4, & -(CH_2)_{n+1}-NHC(=O)R^4, & -(CH_2)_{n+1}-NHS(=O)_2-CH_2-R^4, & -(CH_2)_{n+1}-O-(CH_2)_m-R^5, & -(CH_2)_{n+1}-S-(CH_2)_m-R^5, & -(CH_2)_{n+1}-S-(CH_2)_m-R^5, & -(CH_2)_{n+1}-S(=O)_2-(CH_2)_m-R^5, & -(CH_2)_{n+1}-NH-(CH_2)_m-R^5, & -(CH_2)_{n+1}-NH-(CH_2)_m-R^5, & -(CH_2)_{n+1}-NHC(=O)-(CH_2)_{n+1}-R^5, & \text{and } -(CH_2)_{n+1}-NHS(=O)_2-(CH_2)_m-R^5; \end{split}$$

wherein R⁴ is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteraryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl, mono- or bicyclic heteroaryl-C₁-C₆-alkyl; and

wherein R^5 is selected from the group consisting of hydroxy, C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di- C_1 - C_6 -alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-

heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, Nalkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, diheteroarylsulfonamide, N-alkyl-Nmonoor arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

m is an integer of from 2-6 and n is an integer of from 0-6; and

when R^3 is bonded to a nitrogen atom, R^3 is independently selected from the group consisting of those listed above for when R^3 is attached to a carbon atom, and further selected from the group consisting of $-S(=O)_2-CH_2-R^4$, $-C(=O)-R^4-S(=O)_2-(CH_2)_m-R^5$, and $-C(=O)-(CH_2)_{n+1}-R^5$; wherein R^4 and R^5 are as defined hereinabove, and m is an integer of from 2-6 and n is an integer of from 0-6;

provided that when the β -amino acid is of formula

$$R^{1}$$
— HN
 C
 C
 C
 N

R³ is not hydrogen;

racemic mixtures thereof, isolated or enriched enantiomers thereof; isolated or enriched diastereomers thereof;

and salts thereof.

- 7. The β -amino acid according to Claim 6, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, hydroxy- C_1 - C_6 -alkyl, amino- C_1 - C_6 -alkyloxy, C_1 - C_6 -alkyloxy- C_1 - C_6 -alkyl, amino, and mono- or di- C_1 - C_6 -alkylamino.
- 8. The β -amino acid according to Claim 6, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, and hydroxy- C_1 - C_6 -alkyl.
- 9. The β -amino acid according to Claim 6, selected from the group consisting of:

wherein R^1 , R^2 and R^3 are as defined in Claim 6.

10. The β -amino acid according to Claim 9, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, hydroxy- C_1 - C_6 -alkyl, amino- C_1 - C_6 -alkyl, C_1 - C_6 -alkyloxy, C_1 - C_6 -alkyloxy- C_1 - C_6 -alkyl, amino, and mono- or di- C_1 - C_6 -alkylamino.

- 11. The β -amino acid according to Claim 9, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, and hydroxy- C_1 - C_6 -alkyl.
- 12. The β -amino acid according to Claim 6, selected from the group consisting of:

- 13. The β -amino acid according to Claim 12, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, hydroxy- C_1 - C_6 -alkyl, amino- C_1 - C_6 -alkyl, C_1 - C_6 -alkyloxy, C_1 - C_6 -alkyloxy- C_1 - C_6 -alkyl, amino, and mono- or di- C_1 - C_6 -alkylamino.
- 14. The β -amino acid according to Claim 12, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, and hydroxy- C_1 - C_6 -alkyl.
- 15. The β -amino acid according to Claim 6, selected from the group consisting of:

- 16. The β -amino acid according to Claim 15, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, hydroxy- C_1 - C_6 -alkyl, amino- C_1 - C_6 -alkyloxy, C_1 - C_6 -alkyloxy- C_1 - C_6 -alkyl, amino, and mono- or di- C_1 - C_6 -alkylamino.
- 17. The β -amino acid according to Claim 15, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, and hydroxy- C_1 - C_6 -alkyl.
- 18. The β -amino acid according to Claim 6, selected from the group consisting of:

wherein R^1 , R^2 and R^3 are as defined in Claim 6.

19. The β -amino acid according to Claim 18, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, hydroxy- C_1 - C_6 -alkyl, amino- C_1 - C_6 -alkyloxy, C_1 - C_6 -alkyloxy- C_1 - C_6 -alkyloxy-amino, and mono- or di- C_1 - C_6 -alkylamino.

- 20. The β -amino acid according to Claim 18, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, and hydroxy- C_1 - C_6 -alkyl.
- 21. The β -amino acid according to Claim 6, selected from the group consisting of:

- 22. The β -amino acid according to Claim 21, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, hydroxy- C_1 - C_6 -alkyl, amino- C_1 - C_6 -alkyloxy, C_1 - C_6 -alkyloxy- C_1 - C_6 -alkyloxy-amino, and mono- or di- C_1 - C_6 -alkylamino.
- 23. The β -amino acid according to Claim 21, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, and hydroxy- C_1 - C_6 -alkyl.
- 24. The β -amino acid according to Claim 6, selected from the group consisting of:

wherein R¹, R² and R³ are as defined in Claim 6.

- 25. The β -amino acid according to Claim 24, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, hydroxy- C_1 - C_6 -alkyl, amino- C_1 - C_6 -alkyloxy, C_1 - C_6 -alkyloxy, C_1 - C_6 -alkyloxy- C_1 - C_6 -alkyloxy, amino, and mono- or di- C_1 - C_6 -alkylamino.
- 26. The β -amino acid according to Claim 24, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, and hydroxy- C_1 - C_6 -alkyl.
- 27. The β -amino acid according to Claim 6, selected from the group consisting of:

- 28. The β -amino acid according to Claim 27, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, hydroxy- C_1 - C_6 -alkyl, amino- C_1 - C_6 -alkyloxy, C_1 - C_6 -alkyloxy- C_1 - C_6 -alkyl, amino, and mono- or di- C_1 - C_6 -alkylamino.
- 29. The β -amino acid according to Claim 27, wherein R^3 is selected from the group consisting of hydrogen, hydroxy, linear or branched C_1 - C_6 -alkyl, alkenyl, alkynyl, and hydroxy- C_1 - C_6 -alkyl.