Собствени вектори. Собствени стойности.

Твърдение 1. Нека $f = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ е полином с цели коефициенти и нека $\alpha = \frac{u}{v}$ е рационален корен на $f, u, v \in \mathbb{Z}, (u, v) = 1$. Тогава $u \mid a_n, v \mid a_0$.

Доказателство. Имаме

$$f(\alpha) = f\left(\frac{u}{v}\right) = a_0 \left(\frac{u}{v}\right)^n + a_1 \left(\frac{u}{v}\right)^{n-1} + \dots + a_{n-1} \left(\frac{u}{v}\right) + a_n = \frac{a_0 u^n + a_1 u^{n-1} v + \dots + a_{n-1} u v^{n-1} + a_n v^n}{v^n} = 0,$$

следователно $a_0u^n+a_1u^{n-1}v+\cdots+a_{n-1}uv^{n-1}+a_nv^n=0$. Оттук $u(-a_0u^{n-1}-a_1u^{n-2}v-\cdots-a_{n-1}v^{n-1})=a_nv^n$ и значи $u\mid a_nv^n$. Тъй като (u,v)=1, то $u\mid a_n$. Аналогично $v\mid a_0$.

Забележка Ако f е полином с цели коефициенти и старши коефициент ± 1 и α е рационален корен на f, то α е цяло число, делящо свободния член на f.

Пример. Да се намерят рационалните корени на полинома

a)
$$f = 6x^4 + 23x^3 + 19x^2 - 8x - 4$$
.

Рационалните корени на f търсим измежду числата $\alpha=\frac{u}{v}$, където $(u,v)=1,\ u\mid 4,\ v\mid 6.$ Следователно $u=\pm 1,\pm 2,\pm 4,\ v=\pm 1,\pm 2,\pm 3,\pm 6$ и $\alpha\in\left\{\pm 1,\pm\frac{1}{2},\pm\frac{1}{3},\pm\frac{1}{6},\pm 2,\pm\frac{2}{3},\pm 4,\pm\frac{4}{3}\right\}.$

Следователно

$$f = \left(x - \frac{1}{2}\right) (6x^3 + 26x^2 + 32x + 8)$$
$$= \left(x - \frac{1}{2}\right) \left(x + \frac{1}{3}\right) (6x^2 + 24x + 24)$$
$$= 6\left(x - \frac{1}{2}\right) \left(x + \frac{1}{3}\right) (x + 2)^2.$$

6)
$$f = 4x^5 - 13x^3 - 8x^2 + 3x + 2$$
.

Рационалните корени на f търсим измежду числата $\alpha = \frac{u}{v}$, където $(u,v) = 1, \ u \mid 2, \ v \mid 4$. Следователно $u = \pm 1, \pm 2, \ v = \pm 1, \pm 2, \pm 4$ и $\alpha \in \left\{\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm 2\right\}$.

Следователно

$$f = (x+1)(4x^4 - 4x^3 - 9x^2 + x + 2)$$

$$= (x+1)^2(4x^3 - 8x^2 - x + 2)$$

$$= (x+1)^2(x-2)(4x^2 - 1)$$

$$= 4(x+1)^2(x-2)\left(x^2 - \frac{1}{4}\right)$$

$$= 4(x+1)^2(x-2)\left(x - \frac{1}{2}\right)\left(x + \frac{1}{2}\right).$$

Задача. Да се намерят собствените вектори и собствените стойности на линеен оператор φ , който в даден базис на V има матрица:

a)
$$A = \begin{pmatrix} 2 & -2 & 2 \\ -2 & -1 & 4 \\ 2 & 4 & -1 \end{pmatrix}$$

$$Peternue. \ f_A(\lambda) = \det(A - \lambda E) = \begin{vmatrix} 2 - \lambda & -2 & 2 \\ -2 & -1 - \lambda & 4 \\ 2 & 4 & -1 - \lambda \end{vmatrix} = \begin{vmatrix} 2 - \lambda & 0 & 2 \\ -2 & 3 - \lambda & 4 \\ 2 & 3 - \lambda & -1 - \lambda \end{vmatrix} = (3 - \lambda) \begin{vmatrix} 2 - \lambda & 0 & 2 \\ -2 & 1 & 4 \\ 2 & 1 & -1 - \lambda \end{vmatrix} = \begin{pmatrix} 3 - \lambda & 0 & 2 \\ -2 & 1 & 4 \\ 2 & 1 & -1 - \lambda \end{vmatrix}$$

$$(3-\lambda)\begin{vmatrix} 2-\lambda & 0 & 2 \\ -4 & 0 & 5+\lambda \\ 2 & 1 & -1-\lambda \end{vmatrix} = -(\lambda-3).1.(-1)^{3+2}[(2-\lambda)(5+\lambda)+8] = -(\lambda-3)(\lambda^2+3\lambda-18) = -(\lambda-3)^2(\lambda+6),$$
 следователно $\lambda_{1,2}=3,\ \lambda_3=-6.$

 $\lambda = 3$ Търсим ФСР на хомогенната система с матрица

$$A - 3E = \begin{pmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Полагаме $x_2 = p$, $x_3 = q$, тогава $x_1 = -2p + 2q$. Следователно множеството от решенията на системата е

$$\{(-2p+2q,p,q) \mid p,q \in F\}.$$

$$p = 1, q = 0: \quad \mathbf{v}_1 = (-2, 1, 0) \\ p = 0, q = 1: \quad \mathbf{v}_2 = (2, 0, 1)$$
 Φ CP.

Следователно всички собствени вектори на φ , съответстващи на $\lambda = 3$, са от вида $\mu_1 v_1 + \mu_2 v_2$, където $\mu_1, \mu_2 \in F$, $(\mu_1, \mu_2) \neq (0, 0).$

 $\lambda = -6$ Търсим ФСР на хомогенната система с матрица

$$A + 6E = \begin{pmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{pmatrix} \sim \begin{pmatrix} -2 & 5 & 4 \\ 0 & 9 & 9 \\ 0 & 18 & 18 \end{pmatrix} \sim \begin{pmatrix} -2 & 5 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Полагаме $x_3=p$, тогава $x_2=-p,\,x_1=-\frac{p}{2}$. Множеството от решенията на системата е $\left\{\left(-\frac{p}{2},-p,p\right)\mid p\in F\right\}$. При p=2: ${\pmb v}_3=(-1,-2,2)$ — ФСР. Следователно всички собствени вектори на φ , съответстващи на $\lambda=-6$, са от вида $\mu \boldsymbol{v}_3$, където $0 \neq \mu \in F$.

$$6) A = \begin{pmatrix} 5 & 4 & 2 \\ -3 & -2 & -2 \\ 3 & 4 & 4 \end{pmatrix}$$

$$Peшение. \ f_A(\lambda) = \det(A - \lambda E) = \begin{vmatrix} 5 - \lambda & 4 & 2 \\ -3 & -2 - \lambda & -2 \\ 3 & 4 & 4 - \lambda \end{vmatrix} \ = \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 2 - \lambda & 2 - \lambda \\ 3 & 4 & 4 - \lambda \end{vmatrix} \ = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} \ = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 3 & 4 & 4 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 5 - \lambda & 4 & 2 \\ 0 & 1 & 1 \end{vmatrix}$$

 $\lambda = 2$ | Търсим ФСР на хомогенната система с матрица

$$A - 2E = \begin{pmatrix} 3 & 4 & 2 \\ -3 & -4 & -2 \\ 3 & 4 & 2 \end{pmatrix} \sim \begin{pmatrix} 3 & 4 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Полагаме $x_2 = p, x_3 = q$, тогава $x_1 = \frac{-4p - 2q}{3}$ и множеството от решенията е

$$\left\{ \left(\frac{-4p - 2q}{3}, p, q \right) \mid p, q \in F \right\}.$$

$$p = 3, q = 0: \quad \mathbf{v}_1 = (-4, 3, 0) \\ p = 0, q = 3: \quad \mathbf{v}_2 = (-2, 0, 3)$$
 Φ CP.

Следователно всички собствени вектори на φ , съответстващи на $\lambda=2$, са от вида $\mu_1 v_1 + \mu_2 v_2$, $\mu_1, \mu_2 \in F$, $(\mu_1, \mu_2) \neq (0,0)$.

 $\lambda=3$ Търсим ФСР на хомогенната система с матрица

$$A - 3E = \begin{pmatrix} 2 & 4 & 2 \\ -3 & -5 & -2 \\ 3 & 4 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \\ 3 & 5 & 2 \\ 3 & 4 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & -2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Полагаме $x_3 = p$, тогава $x_2 = -p$, $x_1 = p$ и множеството от решенията на системата е $\{(p, -p, p) \mid p \in F\}$. При p = 1: $\mathbf{v}_3 = (1, -1, 1) - \Phi$ CP. Следователно всички собствени вектори на φ , съответстващи на $\lambda = 3$, са от вида $\mu \mathbf{v}_3$, където $0 \neq \mu \in F$.

Задача. В тримерното линейно пространство \mathbb{V} с базис \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 е даден линеен оператор φ , такъв че $\varphi(\mathbf{a}_i) = \boldsymbol{b}_i$, $1 \leq i \leq 3$, където

Намерете:

а) матрицата A на φ в базиса \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 и собствените стойности на φ ;

Pewenue. $egin{array}{c|cccc} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \end{array}
eq 0,$ следователно векторите $m{a}_1, m{a}_2, m{a}_3$ са линейно независими и значи са базис на V.

$$\begin{pmatrix} 1 & 1 & 0 & | & (-7, & 6, & 5) \\ 2 & 1 & 1 & | & (-14, & 14, & 8) \\ 1 & 1 & 1 & | & (-10, & 10, & 6) \end{pmatrix} \xrightarrow{-2}_{+}^{-1} \sim \begin{pmatrix} 1 & 1 & 0 & | & (-7, & 6, & 5) \\ 0 & -1 & 1 & | & (0, & 2, & -2) \\ 0 & 0 & 1 & | & (-3, & 4, & 1) \end{pmatrix} \xrightarrow{|..(-1)|}_{+} \sim \begin{pmatrix} 1 & 1 & 0 & | & (-4, & 4, & 2) \\ 0 & 1 & 0 & | & (-3, & 2, & 3) \\ 0 & 0 & 1 & | & (-3, & 4, & 1) \end{pmatrix}$$

Следователно $\varphi(e_1)=(-4,4,2)_e, \ \varphi(e_2)=(-3,2,3)_e, \ \varphi(e_3)=(-3,4,1)_e$ и φ има матрица

$$A = \begin{pmatrix} \varphi(\mathbf{e}_1) & \varphi(\mathbf{e}_2) & \varphi(\mathbf{e}_3) \\ \downarrow & \downarrow & \downarrow \\ -4 & -3 & -3 \\ 4 & 2 & 4 \\ 2 & 3 & 1 \end{pmatrix}$$

в базиса e_1, e_2, e_3 .

$$f_A(\lambda) = \det(A - \lambda E) = \begin{vmatrix} -4 - \lambda & -3 & -3 \\ 4 & 2 - \lambda & 4 \\ 2 & 3 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} -4 - \lambda & 0 & -3 \\ 4 & -2 - \lambda & 4 \\ 2 & 2 + \lambda & 1 - \lambda \end{vmatrix} = (\lambda + 2) \begin{vmatrix} -4 - \lambda & 0 & -3 \\ 4 & -1 & 4 \\ 2 & 1 & 1 - \lambda \end{vmatrix} = (\lambda + 2) \begin{vmatrix} -4 - \lambda & 0 & -3 \\ 4 & -1 & 4 \\ 2 & 1 & 1 - \lambda \end{vmatrix}$$

$$(\lambda + 2) \begin{vmatrix} -4 - \lambda & 0 & -3 \\ 6 & 0 & 5 - \lambda \\ -2 & 1 & 1 - \lambda \end{vmatrix} = (\lambda + 2)1(-1)^{2+3}[-(4+\lambda)(5-\lambda) + 18] = -(\lambda + 2)(\lambda^2 - \lambda - 2) = -(\lambda + 2)(\lambda - 2)(\lambda + 1).$$

Следователно $\lambda_1 = -2$, $\lambda_2 = -1$, $\lambda_3 = 2$ са характеристичните корени на φ . Тъй като те са цели числа, т.е. елементи на F, то те са собствените стойности на φ .

б) базис на V от собствени вектори на φ ;

Peшение. $\lambda = -2$. Търсим Φ CP на хомогенната система с матрица

$$A + 2E = \begin{pmatrix} -2 & -3 & -3 \\ 4 & 4 & 4 \\ 2 & 3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Полагаме $x_3 = p$, тогава $x_2 = -p$, $x_1 = 0$ и множеството от решенията е

$$\{(0, -p, p) \mid p \in F\}.$$

при
$$p = 1$$
: $\mathbf{v}_1 = (0, -1, 1) - \Phi \mathrm{CP}$

 $\lambda = -1$. Търсим ФСР на хомогенната система с матрица

$$A + E = \begin{pmatrix} -3 & -3 & -3 \\ 4 & 3 & 4 \\ 2 & 3 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Имаме $x_2 = 0$, полагаме $x_1 = p$, тогава $x_3 = -p$ и множеството от решенията е

$$\{(p,0,-p) \mid p \in F\}.$$

при
$$p=1: \ \boldsymbol{v}_2=(1,0,-1)-\Phi \mathrm{CP}$$

 $\lambda=2$. Търсим ФСР на хомогенната система с матрица

$$A - 2E = \begin{pmatrix} -6 & -3 & -3 \\ 4 & 0 & 4 \\ 2 & 3 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 2 & 3 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 3 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Полагаме $x_3 = p$, тогава $x_2 = p$, $x_1 = -p$ и множеството от решенията е

$$\{(-p, p, p) \mid p \in F\}.$$

при
$$p=1: \ \boldsymbol{v}_3=(-1,1,1)-\Phi \mathrm{CP}$$

Тъй като собствените вектори v_1, v_2, v_3 на φ съответстват на различни собствени стойности, то те са линейно независими и значи образуват базис на V.

в) матрица T, такава че $T^{-1}AT = D$ — диагонална матрица.

Peшениe. Матрицата на φ в базиса v_1, v_2, v_3 от собствени вектори е

$$D = \begin{pmatrix} \varphi(\mathbf{v}_1) & \varphi(\mathbf{v}_2) & \varphi(\mathbf{v}_3) \\ \downarrow & \downarrow & \downarrow \\ -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Нека

$$T = T_{e \to v} = \begin{pmatrix} v_1 & v_2 & v_3 \\ \downarrow & \downarrow & \downarrow \\ 0 & 1 & -1 \\ -1 & -0 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

Тогава $D = T^{-1}AT$.

 Γ) A^{2020} .

Peшение. От $D=T^{-1}AT$ получаваме $A=TDT^{-1}$. Следователно

$$A^{2020} = \underbrace{TDT^{-1}TDT^{-1}\dots TDT^{-1}}_{2020\text{ пъти}} = TD^{2020}T^{-1} = T\begin{pmatrix} 2^{2020} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{2020} \end{pmatrix} T^{-1}.$$

Задача. Нека \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 е базис на \mathbb{V} и $\varphi \in \mathrm{Hom}\,\mathbb{V}$. Да се намери базис на \mathbb{V} , в който φ има диагонална матрица, както и тази диагонална матрица, ако

а) φ има матрица

$$A = \begin{pmatrix} -2 & -2 & -2 \\ -2 & -1 & 0 \\ -2 & 0 & -3 \end{pmatrix}$$

в базиса e_1, e_2, e_3 .

$$f_A(\lambda) = -\lambda^3 - 6\lambda^2 - 3\lambda + 10 = -(\lambda - 1)(\lambda + 2)(\lambda + 5)$$

б) φ действа по правилото

 $\varphi(\alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 + \alpha_4 e_4) = (\alpha_1 + 2\alpha_2 + 3\alpha_4)e_1 + (-\alpha_1 - 2\alpha_2 - 3\alpha_4)e_2 + 2\alpha_3 e_3 + (\alpha_1 + 2\alpha_2 + 3\alpha_4)e_4$ за всяко $\alpha_1, \alpha_2, \alpha_3 \in F$.

Решение.

Следователно φ има матрица

$$A = \begin{pmatrix} \varphi(e_1) & \varphi(e_3) & \varphi(e_3) & \varphi(e_4) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ -1 & 2 & 0 & 3 \\ -1 & -2 & 0 & -3 \\ 0 & 0 & 2 & 0 \\ 1 & 2 & 0 & 3 \end{pmatrix}$$

в базиса e_1, e_2, e_3

$$f_{A}(\lambda) = \det(A - \lambda E) = \begin{vmatrix} 1 - \lambda & 2 & 0 & 3 \\ -1 & -2 - \lambda & 0 & -3 \\ 0 & 0 & 2 - \lambda & 0 \\ 1 & 2 & 0 & 3 - \lambda \end{vmatrix} = (2 - \lambda)(-1)^{3+3} \begin{vmatrix} 1 - \lambda & 2 & 3 \\ -1 & -2 - \lambda & -3 \\ 1 & 2 & 3 - \lambda \end{vmatrix} \stackrel{+}{\leftarrow} =$$

$$(2 - \lambda) \begin{vmatrix} -\lambda & -\lambda & 0 \\ -1 & -2 - \lambda & -3 \\ 1 & 2 & 3 - \lambda \end{vmatrix} = (2 - \lambda)\lambda \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 + \lambda & 3 \\ 1 & 2 & 3 - \lambda \end{vmatrix} = (2 - \lambda)\lambda \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 + \lambda & 3 \\ 1 & 2 & 3 - \lambda \end{vmatrix} = (2 - \lambda)\lambda [(1 + \lambda)(3 - \lambda) - 3] =$$

 $\lambda = 0$ Търсим ФСР на хомогенната система с матрица

$$A = \begin{pmatrix} 1 & 2 & 0 & 3 \\ -1 & -2 & 0 & -3 \\ 0 & 0 & 2 & 0 \\ 1 & 2 & 0 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Имаме $x_3=0$, полагаме $x_2=p,\,x_4=q,$ тогава $x_1=-2p-3q$ и множеството от решенията е

$$p = 1, q = 0: \quad \mathbf{v}_1 = (-2, 1, 0, 0)$$

 $p = 0, q = 1: \quad \mathbf{v}_2 = (-3, 0, 0, 1)$ Φ CP.

 $\lambda = 2$ Търсим ФСР на хомогенната система с матрица

$$A - 2E = \begin{pmatrix} -1 & 2 & 0 & 3 \\ -1 & -4 & 0 & -3 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 0 & -3 \\ 0 & -6 & 0 & -6 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 0 & -3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Полагаме $x_3 = p, x_4 = q,$ тогава $x_2 = -q, x_1 = q$ и множеството от решенията е

$$\{(q, -q, p, q) \mid p, q \in F\}.$$

$$p = 1, q = 0:$$
 $v_3 = (0, 0, 1, 0)$
 $p = 0, q = 1:$ $v_4 = (1, -1, 0, 1)$ Φ CP.

Следователно $m{v}_1, m{v}_2, m{v}_3, m{v}_4$ е базис на V от собствени вектори на φ и матрицата на φ в този базис е