Momentum Contrast for Unsupervised Visual Representation Learning (CVPR, 2020)

- Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick

> Presentation Author MATHIEU RAVAUT

Nanyang Technological University

Table of content

- Introduction
- 2 Approach
- Results
- 4 Conclusion

Introduction

- Contrastive learning is a paradigm in machine learning which consists in matching together data points which are similar, and pushing apart the ones which are not.
- A query is being compared (with a similarity) to a set of **k** different **keys**, among which there is a **positive one** and many **negative** ones.

Introduction

- Contrastive learning does not necessarily need labels.
- Typically: use the rest of the batch as (easy) negatives.
- Here, the authors propose MoCo, a new contrastive learning objective to pre-train vision models in an unsupervised fashion.
- It breaks the **supervised pre-training on ImageNet** paradigm in vision.
- MoCo produces image representations which transfer very well on many downstream tasks: ImageNet linear classification protocol, PASCAL VOC, COCO, etc.

Introduction

Multiple questions and design choices arise:

- 1 How to build the (query, positive key) pair? This is referred to as the **pretext task**.
- 2 How many k negative samples to use? MAJOR CHOICE
- 3 How to store all these negative samples? MAJOR ISSUE
- 4 Which similarity function to use?
- 5 Which constrastive loss function to use?

[1] MoCo's pretext task is *instance discrimination*:

- Apply data augmentation on the images: a 224×224-pixel crop is taken from a randomly resized image, and then undergoes random color jittering, random horizontal flip, and random grayscale conversion. This gives us multiple views of each image.
- To build the queries and keys: final layer of a ResNet-50 encoder, add a few fully-connected layers with non-linearities (MoCo v2), and apply L2-norm.
- Same ResNet-50 architecture for both queries and keys encoders.
- A (query, key) pair is positive if they are encoded views of the same image.

- [2] & [3] MoCo's main novelty resides in the way it treats keys:
 - Store all keys in a dictionary.
 - This dictionary is a **queue** of data points from the recent batches: enqueue the current batch, dequeue the last one.
 - This decouples the number of negatives k from the batch size.

Concretely:

If the batch size is n, and we use k = p * n, the keys dictionary is the current batch + the previous (p-1) batches :

$$keys = \{x_0, ..., x_{n-1}, x_n, ...x_{2*n-1}, ..., x_{(p-1)*n}, ...x_{p*n-1}\}$$

There's a new issue: since the keys $\{x_n, ... x_{2*n-1}, ..., x_{(p-1)*n}, ... x_{p*n-1}\}$ were encoded at the previous iterations, the **encoder weights** were different, thus the keys representations are **inconsistent** with the representation of the queries and the current batch keys.

To alleviate this issue, the authors propose **momentum update**:

- The key encoder θ_k has the same architecture as the query encoder θ_q , but different weights.
- They key encoder is not updated by gradient descent.
- Instead, it is updated by momentum updates : $\theta_k \leftarrow m * \theta_k + (1-m) * \theta_q$
- m must be really high (0.999): slow updates.
- We thus have another neural network than the base model, in parallel with it and with the same architecture, but not updated via gradient descent: the **momentum model**.

The base model is updated with the contrastive loss:

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k_+ / \tau)}{\sum_{i=0}^K \exp(q \cdot k_i / \tau)}$$

One last issue: ResNet-50 uses Batch-Norm, but the model appears to learn the pretext task too easily with it.

Thus, MoCo uses **shuffling BatchNorm**: train with multiple GPUs and perform BN on the samples independently for each GPU. They shuffle the sample order in the current mini-batch for the key encoder before distributing it among GPUs, but NOT for the query encoder.

Model recap :

Linear protocol on ImageNet: train a linear classifier on the image representations obtained with the pre-training.

MoCo enables to use a very large k (65,536!), and accuracy keeps increasing: +2.9 point when k goes from 1024 to 16384.

Baselines:

- end-to-end: use negatives (keys) from the current mini batch only. Constrained by the batch size, which means GPU RAM. And optimization in large batch sizes is tricky.
- memory bank: store all data points in a dictionary (memory bank), sample them and update the representations of the sampled ones. No back-propagation. The representation of a sample is updated when it was last seen.

Comparison with other pre-training methods on the linear protocol on ImageNet :

Comparison with other pre-training methods on the linear protocol on ImageNet :

method	architecture	#params (M)	accuracy (%)
Exemplar [17]	R50w3×	211	46.0 [38]
RelativePosition [13]	R50w2×	94	51.4 [38]
Jigsaw [45]	R50w2×	94	44.6 [38]
Rotation [19]	Rv50w4×	86	55.4 [38]
Colorization [64]	R101*	28	39.6 [14]
DeepCluster [3]	VGG [53]	15	48.4 [4]
BigBiGAN [16]	R50	24	56.6
-	Rv50w4×	86	61.3
methods based on con	trastive learning	follow:	
InstDisc [61]	R50	24	54.0
LocalAgg [66]	R50	24	58.8
CPC v1 [46]	R101*	28	48.7
CPC v2 [35]	R170*	303	65.9
CMC [56]	R50 _{L+ab}	47	64.1 [†]
	R50w2× _{L+ab}	188	68.4 [†]
AMDIM [2]	AMDIM _{small}	194	63.5 [†]
	AMDIM _{large}	626	68.1 [†]
МоСо	R50	24	60.6
	RX50	46	63.9
	R50w2×	94	65.4
	R50w4×	375	68.6

On Pascal VOC, MoCo representations are better than supervised pre-training ones :

pre-train	AP ₅₀	AP	AP ₇₅
random init.	64.4	37.9	38.6
super. IN-1M	81.4	54.0	59.1
MoCo IN-1M	81.1 (-0.3)	54.6 (+ 0.6)	59.9 (+0.8)
MoCo IG-1B	81.6 (+0.2)	55.5 (+ 1.5)	61.2 (+ 2.1)

(a) Faster R-CNN, R50-dilated-C5

pre-train	AP ₅₀	AP	AP ₇₅
random init.	60.2	33.8	33.1
super. IN-1M	81.3	53.5	58.8
MoCo IN-1M	81.5 (+0.2)	55.9 (+2.4)	62.6 (+3.8)
MoCo IG-1B	82.2 (+0.9)	57.2 (+ 3.7)	63.7 (+ 4.9)

(b) Faster R-CNN, R50-C4

MoCo representations are great on multiple vision tasks (object detection on COCO, pose estimation, segmentation on LVIS) :

	COCO keypoint detection		
pre-train	AP ^{kp}	AP_{50}^{kp}	AP ^{kp}
random init.	65.9	86.5	71.7
super. IN-1M	65.8	86.9	71.9
MoCo IN-1M	66.8 (+1.0)	87.4 (+0.5)	72.5 (+0.6)
MoCo IG-1B	66.9 (+1.1)	87.8 (+0.9)	73.0 (+1.1)

	COCO dense pose estimation		
pre-train	AP ^{dp}	AP_{50}^{dp}	$\mathrm{AP^{dp}_{75}}$
random init.	39.4	78.5	35.1
super. IN-1M	48.3	85.6	50.6
MoCo IN-1M	50.1 (+1.8)	86.8 (+1.2)	53.9 (+3.3)
3. G TG 1B	50.64.00	07.0 (. 4.4)	540440

	LVIS v0.5 instance segmentation		
pre-train	AP ^{mk}	AP_{50}^{mk}	AP_{75}^{mk}
random init.	22.5	34.8	23.8
super. IN-1M [†]	24.4	37.8	25.8
MoCo IN-1M	24.1 (-0.3)	37.4 (-0.4)	25.5 (-0.3)
MoCo IG-1B	24.9 (+0.5)	38.2 (+0.4)	$26.4 (\pm 0.6)$

Conclusion

Takeaways:

- New method for unsupervised pretraining leveraging contrastive learning.
- Enables to scale the number of negatives very high thanks to the queue and the decoupling with the batch size, which drastically improves performance.
- Great performance on multiple vision tasks (classification, detection, etc). Even better than some supervised pre-training methods.
- Consistent gain when going from ImageNet (1M images) to InstaGram (1B images) as pre-training dataset. But still quite a small gain given the data size.

Conclusion

How can this be applied to NLP:

- I am currently pre-training a new unsupervised summarization method based on MoCo. There are gains from scaling k from 1024 to 16384.
- In generation tasks in NLP, we have an **encoder-decoder** model, not just a plain **encoder**. Thus, should we use representations from the encoder, decoder, or both?
- Exploring how to leverage the momentum encoder : use it for data augmentation?