Address Space Utilization

Kameswari Chebrolu

Recap

- Hierarchical addressing based on classes (A,B,C) to handle scalability and different network sizes
 - IP address has a network part and a host part
 - Routers maintain entries corresponding to network portion
- What can potentially go wrong now?

Problem Statement

- Network part uniquely identifies a physical network

 2 hosts

 1 raddress - 32 bilis

 class 5 address - 32 bilis

 1 raddress - 32 bilis
 - 8 bit 28
 - Efficiency: $2/2^8 = 0.7\%$
 - Network with 256 hosts needs w Class B address

2 ~ Gbillionhost

- Efficiency: $256/2^{16} = 0.4 \%$

Problem Statement

- Class B addresses in high demand (keeping future needs in mind)

 24 host ~ very few
 - Host addresses ~ 4 billion (2⁽³⁵²⁾) → t
 - Class B networks: 2¹⁴ (~16000)
 - Out of class B addresses, out of addresses to hand out
- Need to solve "Address assignment inefficiency"
 - Challenge: Within IP framework (using 32-bits)

"The gem cannot be polished without friction, nor man perfected without trials."

---Chinese proverb

"You see a mousetrap; I see free cheese and a

****** challenge!"

---Scroobius Pip

Specific Scenario –1

- An organization has 30 different physical networks, each network has about 2000 hosts
- Current Allocation: Allocate 30 class B addresses
 - Efficiency = $2000/2^{16} = 3\%$
- Will one class B address suffice?
 - Can support $2^{16} = 65536 \text{ hosts} > 30*2000$

Solution: Subnetting

- Introduce another level of hierarchy
 - Divide host part into subnet id and host id

16 host bits divided into 5 subnet bits (32 physical networks) and 11 host bits (2048 hosts)

- Address format: a.b.c.d/x, where x is # bits in net portion of address
- Example: 190.23.12.17, mask is 255.255.248.0 (/21) if config eth 0,190.23.12.17 netmask [90.23.8.0 /2]
- 255.255.240 248

 The bit-wise end of the IP address and the subnet

• All hosts on a given physical network have the same subnet number and mask

mask give the subnet number of the host

- All routers outside organization have one entry (190.23.0.0/16)
- Routers within organization have more detailed entries corresponding to different subnets

Forwarding at a Router

D = Destination IP Address

For each forwarding table entry

T = D & SubnetMask

If T == SubnetNum

If Nexthop is an interface

deliver datagram directly to destination

Else

deliver datagram to NextHop (router)

Example

kameswari@asterix:~\$ route						
Kernel IP routing table						
Destination	Gateway	Genmask	Flags	Metric	Ref	Use Iface
10.129.0.0	*	255.255.0.0	U	1	0	0 eth0
link-local	*	255.255.0.0		1000	0	0 eth0
default	router.it.iitb.	0.0.0.0	UG	0	0	0 eth0
kameswari@asterix:~\$						
kameswari@asterix:~\$						
kameswari@asterix:~\$ route -n						
Kernel IP routir	ng table					
Destination	Gateway	Genmask	Flags	Metric	Ref	Use Iface
10.129.0.0	0.0.0.0	255.255.0.0	U	1	0	0 eth0
169.254.0.0	0.0.0.0	255.255.0.0	U	1000	0	0 eth0
0.0.0.0	10.129.250.1	0.0.0.0	UG	0	0	0 eth0
kameswari@aster	ix:~\$					

Specific Scenario -- 2

- An organization has a physical network with 4000 hosts
- Current Solution: Give a class B address
 - Efficiency: $4000/2^{16} = 6\%$
- How about assigning multiple class C addresses?
- Problem: 16 entries for same organization in the routing table

Solution--2

- Assign multiple contiguous class C addresses
 & aggregate
- 222.7.16.* through 222.7.31.*, top 20 bits in this range are the same (0001 bits, 20-bit network number)
 - Advertise 222.7.16/20 as the organization's network address
 - Goes by the name supernetting

Conclusions

- Subnetting: One class address shared among many physical networks
- Supernetting: Multiple class addresses shared among one physical network (Autonomous system -- AS)
- Network portion can take on any length

Classless Interdomain Routing (CIDR)

- Use a new notation to represent network numbers (also called IP prefixes)
- Address block represented as <u>A/X</u>, where A is the address <u>prefix</u> and X is the <u>prefix length</u>
 - X can range from 2 till 32 /2|

 Y is represented as a network mask as well 255.255.248
 - X is represented as a network mask as well 255-255-248-0
- E.g. 222.7.16/20 (Mask 255.255.240.0) represents addresses in the range 222.7.16.0 to 222.7.31.255

Longest Prefix Match

- Routers do a prefix match.
 - Does destination address fall in the range of addresses captured by prefix?

190.23.8.0/21

- Prefix match works if Internet topology is a tree
 - Shortest path between networks is unique
- Internet is a graph
 - Many networks multi-home
 - Many matching prefixes

Example

• Two prefixes in a forwarding table 190.23.8.0/21 and $190.23.0.0/16 \rightarrow \ ^{RL}$

• Go with the longest prefix match (e.g 190.23.8.0/21)

- Address 190.23.8.1 matches both

• Challenge: Longest match between destination IP address and variable length prefixes in forwarding

Lot of research in this space

table

Summary

- Class based addressing was found not to be scalable
- Subnetting: Share a single class address among multiple networks
- Supernetting: Share multiple class addresses on a single network
- Lead to CIDR (classless addressing) and Longest prefix match --- widely used now