1. Sketch a graph of a differentiable function f(x) over the closed interval [-2, 7], where f(-2) = f(7) = -3 and f(4) = 3. The roots of f(x) occur at x = 0 and x = 6, and f(x) has the properties indicated in the table below. (fra = 0

					100)-01	7107-0)
X	-2 < x < 0	x = 0	0 <x<2< th=""><th>x = 2</th><th>2<x<4< th=""><th>x = 4</th><th>4<x<7< th=""></x<7<></th></x<4<></th></x<2<>	x = 2	2 <x<4< th=""><th>x = 4</th><th>4<x<7< th=""></x<7<></th></x<4<>	x = 4	4 <x<7< th=""></x<7<>
f'(x)	positive	0	positive	(1)	positive	0	negative
f"(x)	negative	0	positive	0	/negative	0	negative
$f(\mathbf{x})$	V concave	point of	VIncreasing)	point of	VIncreasing)		Decreasing
	Increasing	own inflecti	in concave 2	10 01			concave 4
	Δ		up		down		down

2. a) as x=0, > h(0)=-h(0) $\Rightarrow h(0) + h(0) = 0 \Rightarrow 2h(0) = 0$ $\Rightarrow h(0) = 0.$

- 2. Sketch function h(x) from the following information:
 - a) h(-x) = -h(x)
 - lim h(x)=∞ => Vertical asymptote b)
 - lim h(x) = 0c)
 - d)
 - e)

