

Regression Analysis

Regression analysis is a statistical technique used to model and analyze the relationship between a dependent variable (or target) and one or more independent variables (or predictors). Regression analysis is a mathematical approach that helps us to identify the variables that truly influence a situation.

It addresses essential questions:

- ➤ Which factors are the most significant?
- ➤ Which ones can be disregarded?
- ➤ How do these factors interrelate?
- ➤ Moreover, it allows us to determine the level of confidence associated with these variables

Types of Regression Analysis

Here are some common types of regression analysis based on different types of relationships and modeling scenarios

- 1. Linear Regression
- 2. Logistic Regression
- 3. Polynomial Regression
- 4. Ridge Regression
- 5. Lasso Regression

- 7. Ordinal Regression
- 8. Poisson Regression
- 9. Time Series Regression
- 10. Quantile Regression
- 11. Nonlinear Regression

Linear Regression

Linear regression is used when the relationship between the dependent variable and the independent variables is linear. It's the most basic and widely used form of regression analysis.

Logistic Regression

Logistic Regression: Logistic regression is used when the dependent variable is binary or categorical, representing a probability of one of two outcomes. It's commonly used for classification tasks and estimating probabilities.

Polynomial Regression

Polynomial regression is an extension of linear regression that models the relationship between variables as a polynomial equation. It's used when a linear relationship is not sufficient to capture the underlying patterns in the data.

Ridge Regression

Ridge regression is a form of linear regression that includes L2 regularization to prevent overfitting. It's used when multicollinearity (high correlation between independent variables) is present.

In other words, by starting with a slightly worse fit,

Lasso Regression

Lasso regression is similar to ridge regression but uses L1 regularization. It's often used for feature selection and can drive some regression coefficients to zero, effectively selecting a subset of important features.

Ordinal Regression

Ordinal regression is used when the dependent variable is ordinal, meaning it has ordered categories but the exact numerical difference between the categories is not defined.

Poisson Regression

Poisson regression is used when the dependent variable represents count data and follows a Poisson distribution, such as the number of events or occurrences.

Time Series Regression

Time series regression is used when the data is collected over time, and the goal is to model and forecast timedependent patterns and trends.

Quantile Regression

Quantile regression allows
you to estimate different
quantiles of the dependent
variable, not just the mean,
making it useful for analyzing
data with heteroscedasticity.

Non-linear Regression

Non-linear regression is used when the relationship between variables is non-linear. It can involve various types of nonlinear functions and modeling techniques.

Non-linear Regression

Non-linear regression is used when the relationship between variables is non-linear. It can involve various types of nonlinear functions and modeling techniques.

Thank you Roksana Parvin