	<pre>import pandas # Loading data / handling data frames import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model as lm # Used for solving linear regression problems from sklearn.neural_network import MLPRegressor # Used for NAR model from tssltools_lab1 import acf, acfplot # Module available in LISAM - Used for plotting ACF</pre> 1.1 Loading, plotting and detrending data
,	In this lab we will build autoregressive models for a data set corresponding to the Global Mean Sea Level (GMSL) over the past few decades. The data is taken from https://climate.nasa.gov/vital-signs/sea-level/ and is avail on LISAM in the file sealevel.csv. Q1: Load the data and plot the GMSL versus time. How many observations are there in total in this data set? Hint: With pandas you can use the function pandas.read_csv to read the csv file into a data frame. Plotting the time series can be done using pyplot. Note that the sea level data is stored in the 'GMSL' column and to time when each data point was recorded is stored in the column 'Year'. A1: sea_level = pandas.read_csv('sealevel.csv')
	plt.plot(sea_level.Year, sea_level.GMSL) plt.title("Sea Level Vrs Year") plt.xlabel("Time") plt.ylabel("GMSL") Text(0, 0.5, 'GMSL') Sea Level Vrs Year
[3]:	\$\frac{1}{6} \cdot \frac{1}{200} \cdot \frac{1}{2000} \cdot \frac{2015}{2010} \cdot \frac{2015}{2010} \cdot \frac{2015}{2020}\$ \$\frac{1}{2000} \cdot \frac{1}{2015} \cdot \frac{2010}{2015} \cdot \frac{2020}{2020}\$ \$\frac{1}{2000} \cdot \frac{1}{2000} \cdot \frac{1}{2015} \cdot \frac{1}{2020}\$
[3]:	(997, 12) Q2: The data has a clear upward trend. Before fitting an AR model to this data need to remove this trend. Explain, using one or two sentences, why this is necessary. A2: It is easier to work with stationary AR model, but in the above plot, we see that it is a non stationary model as it has a upward trend is the mean or expected value is changing with time. On removing the trend, we can make this as a stationary process. Q3 Detrend the data following these steps: 1. Fit a straight line, $\mu_t = \theta_0 + \theta_1 u_t$ to the data based on the method of least squares. Here, u_t is the time point when obervation t was recorded. Hint: You can use $\lim_{t \to 0} \lim_{t \to 0} \int_{t}^{t} \int_{t$
	Before going on to the next step, plot your fitted line and the data in one figure. 1. Subtract the fitted line from y_t for the whole data series and plot the deviations from the straight line. From now, we will use the detrended data in all parts of the lab. Note: The GMSL data is recorded at regular time intervals, so that $u_{t+1} - u_t = \text{const.}$ Therefore, you can just as well use t directly in the linear regression function if you prefer, $\mu_t = \theta_0 + \theta_1 t$. A3:
[5]:	<pre>x = np.array(X).reshape(-1, 1) y = sea_level.GMSL.values lm_mod = lm.LinearRegression() lm_mod.fit(x,y) mean_trend = lm_mod.predict(x) plt.plot(sea_level.Year, mean_trend) plt.plot(sea_level.Year, sea_level.GMSL) plt.title("Sea_Level Vrs Year") plt.xlabel("Time") plt.xlabel("GMSL")</pre> Text(0, 0.5, 'GMSL')
	Sea Level Vrs Year 40 - 20 - 5 0 - -20 - 44 44 44 44 44 44 44 44 44 44 44 44 44
[6]:	#flat_trend = np.array([y[i] - mean_trend[i] for i in range(len(y))]) flat_trend = y - mean_trend plt.plot(x, flat_trend) plt.title("Detrended data") plt.xlabel("t") plt.ylabel("t") ptt.ylabel("Detrended GMSL") Text(0, 0.5, 'Detrended GMSL')
	Detrended data 15 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	Q4: Split the (detrended) time series into training and validation sets. Use the values from the beginning up to the 700th time point (i.e. y_t for $t = 1$ to $t = 700$) as your training data, and the rest of the values as your validated. Plot the two data sets. Note: In the above, we have allowed ourselves to use all the available data (train + validation) when detrending. An alternative would be to use only the training data also when detrending the model. The latter approach is resultable if, either: • we view the linear detrending as part of the model choice. Perhaps we wish to compare different polynomial trend models, and evaluate their performance on the validation data, or
	 we wish to use the second chunk of observations to estimate the performance of the final model on unseen data (in that case it is often referred to as "test data" instead of "validation data"), in which case we should no these observations when fitting the model, including the detrending step. In this laboration we consider the linear detrending as a predetermined preprocessing step and therefore allow ourselves to use the validation data when computing the linear trend. A4: y_train = flat_trend[0:700 ,] y_val = flat_trend[700: ,] x_train = X[0:700] x_val = X[700:] plt.plot(x_train,y_train) plt.title("training data")
[7]:	Text(0.5, 1.0, 'training data') training data 15 -
[8]:	-10 -15 -1992.5 1995.0 1997.5 2000.0 2002.5 2005.0 2007.5 2010.0 2012.5 plt.plot(x_val,y_val) plt.title("validation data") Text(0.5, 1.0, 'Validation data') Validation data 15
	10 - 5 5 10 - 2012 2013 2014 2015 2016 2017 2018 2019 2020
,	1.2 Fit an autoregressive model We will now fit an AR(p) model to the training data for a given value of the model order p. Q5: Create a function that fits an AR(p) model for an arbitrary value of p. Use this function to fit a model of order p = 10 to the training data and write out (or plot) the coefficients. Hint: Since fitting an AR model is essentially just a standard linear regression we can make use of lm.LinearRegression().fit() similarly to above. You may use the template below and simply fill in the missing code. A5: def fit_ar(y, p): """Fits an AR(p) model. The loss function is the sum of squared errors from t=p+1 to t=n.
	<pre>:param y: array (n,), training data points :param p: int, AR model order :return theta: array (p,), learnt AR coefficients """ # Number of training data points n = len(y) # <complete line="" this=""> # Construct the regression matrix Phi = np.zeros(shape = (n-p,p)) # <complete line="" this=""> for j in range(p): Phi[:,j] = y[p-j-1:n-j-1] # <complete line="" this=""></complete></complete></complete></pre>
L0]:	<pre># Drop the first p values from the target vector y yy = y[p:] # yy = (y_{t+p+1},, y_n) # Here we use fit_intercept=False since we do not want to include an intercept term in the AR model regr = lm.LinearRegression(fit_intercept=False) regr.fit(Phi,yy) return regr.coef_ #h = [1,2,3,4,5,6,7,8,9,10] #np.transpose(h[2:9]) p = 10 theta = fit_ar(y_train,p)</pre>
,	print(theta) [0.62156052 0.10763277 0.15104657 0.1745703 -0.02184709 -0.05955406
	<pre>one-step-ahead prediction. :param theta: array (p,), AR coefficients, theta=(a1,a2,,ap). :param y_target: array (n,), the data points used to compute the predictions. :return y_pred: array (n-p,), the one-step predictions (\hat y_{p+1},, \hat y_n) """ n = len(y_target) p = len(theta) # Number of steps in prediction m = n-p y_pred = np.zeros(m) for i in range(m):</pre>
L2]:	<pre># <complete block="" code="" this=""> Phi = np.flip(y_target[i:p+i])#pred = theta1*Yn + theta2*Yn-1+ thetap*Yn-p here i is n-p y_pred[i] = np.dot(np.transpose(theta),Phi) # <complete line="" this=""> return y_pred y_pred_whole = predict_ar_1step(theta,flat_trend) train_pred = y_pred_whole[:700-p] val_pred = y_pred_whole[700-p :] #residuals resid_whole = flat_trend[p:] - y_pred_whole plt.figure(figsize=(15,5))</complete></complete></pre>
L2]:	<pre>plt.plot(flat_trend, label = "Detrended data") plt.plot(np.arange(10,700), train_pred, 'r', label = "Train prediction") plt.plot(np.arange(700,997), val_pred, 'g', label = "validation prediction") plt.title('Time Series') plt.xlabel('t') plt.ylabel('GMSL') plt.legend() </pre> <pre></pre>
	10 - 5 - 5 5
L3]:	#ploting residuals fig , ax = plt.subplots(figsize = (15,5)) ax.plot(resid_whole) ax.set(title = "Residual plot", xlabel = "t") [Text(0.5, 1.0, 'Residual plot'), Text(0.5, 0, 't')] Residual plot
	10 - 5 - 6 - 6 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7
L4]:	Q7: Compute and plot the autocorrelation function (ACF) of the <i>residuals</i> only for the <i>validation data</i> . What conclusions can you draw from the ACF plot? Hint: You can use the function acfplot from the tssltools module, available on the course web page. A7: help(acfplot) Help on function acfplot in module tssltools_lab1:
L5]:	acfplot(x, lags=None, conf=0.95) Plots the empirical autocorralation function. :param x: array (n,), sequence of data points :param lags: int, maximum lag to compute the ACF for. If None, this is set to n-1. Default is None. :param conf: float, number in the interval [0,1] which specifies the confidence level (based on a central limit theorem under a white noise assumption) for two dashed lines drawn in the plot. Default is 0.95. :return: Empirical ACF 10
	Ideally we want residuals to be un correlated. That is to say it is good to have auto correlation factor near zero for all lags(except 0). 1.3 Model validation and order selection Above we set the model order $p = 10$ quite arbitrarily. In this section we will try to find an appropriate order by validation. Q8: Write a loop in which AR-models of orders from $p = 2$ to $p = 150$ are fitted to the data above. Plot the training and validation mean-squared errors for the one-step-ahead predictions versus the model order. Based on your results: • What is the main difference between the changes in training error and validation error as the order increases?
	• Based on these results, which model order would you suggest to use and why? Note: There is no obvious "correct answer" to the second question, but you still need to pick an order an motivate your choice! A8: from sklearn.metrics import mean_squared_error error_train = [] error_val = [] #for p in np.arange(2, 151): for p in range(2, 151): theta = fit_ar(y_train,p) y_pred_whole = predict_ar_1step(theta, flat_trend) train pred = y pred whole = [700-p]
L6]:	<pre>train_pred = y_pred_whole[:700-p] val_pred = y_pred_whole[700-p :] error_train.append(mean_squared_error(y_train[p:],train_pred)) error_val.append(mean_squared_error(y_val,val_pred)) #plotting fig , ax = plt.subplots(figsize = (15,5)) ax.plot(range(2,151),error_train,'c-',label = "Training Error") ax.set(title = "MSE", xlabel = "P", ylabel = "MSE") ax.plot(range(2,151),error_val,'m-',label = "Validation Error") ax.legend() <matplotlib.legend.legend 0x28298513a60="" at=""></matplotlib.legend.legend></pre>
	MSE Training Error Validation Error 7 - 5 - 5 - 6 - 5 - 6 - 6 - 6 - 6 - 6 - 6
	error_val.index(min(error_val)) + 2 #as p starts from 2 70 a) We can see that the training error keeps decreasing as the order increases. But validation error decreases initially and the starts to increase as the order increases. b) If we have to choose a model , we feels its better to the one with least validation error, in the above case its the one with p = 70.
	Q9: Based on the chosen model order, compute the residuals of the one-step-ahead predictions on the <i>validation data</i> . Plot the autocorrelation function of the residuals. What conclusions can you draw? Compare to the AC plot generated above for p=10. p = 70 theta = fit_ar(y_train, p) y_pred = predict_ar_1step(theta, flat_trend) y_pred_val = y_pred[700-p:] resid = y_val - y_pred_val acfplot(resid) #p is 70 Empirical ACF 10 95.0% confidence
	0.8 -
[9]:	acfplot(resid_whole[690:]) #when p was 10 Empirical ACF 10
;	When compared to acfplot of p = 10 , the new one(p = 70) has acf more closer to zero and within the CI. This is good , so we can say model with p = 70 performs better than p = 10 1.4 Long-range predictions So far we have only considered one-step-ahead predictions. However, in many practical applications it is of interest to use the model to predict further into the future. For intance, for the sea level data studied in this laboratit is more interesting to predict the level one year from now, and not just 10 days ahead (10 days = 1 time step in this data).
	Q10: Write a function that simulates the value of an AR(p) model m steps into the future, conditionally on an initial sequence of data points. Specifically, given $y_{1:n}$ with $n \geq p$ the function/code should predict the values $\hat{y}_{t n} = \mathbb{E}[y_t y_{1:n}], \qquad t=n+1,\ldots,n+m.$ Use this to predict the values for the validation data $(y_{701:997})$ conditionally on the training data $(y_{1:700})$ and plot the result. Hint: Use the pseudo-code derived at the first pen-and-paper session. A10: def simulate_ar(y, theta, m): """Simulates an AR(p) model for m steps, with initial condition given by the last p values of y :param y: array (n, n) with $n \geq p$. The last p values are used to initialize the simulation.
	<pre>:param theta: array (p,). AR model parameters, :param m: int, number of time steps to simulate the model for. p = len(theta) y_sim = np.zeros(m) phi = np.flip(y[-p:].copy()) # (y_{n-1},, y_{n-p})^T - note that y[ntrain-1] is the last training data point for i in range(m): y_sim[i] = np.dot(np.transpose(theta),phi) # <complete line="" this=""> phi = phi[:-1]#removing the bottom one to add y_sim[i] phi = np.concatenate((np.array(y_sim[i]).reshape((1,)),phi)) # <complete block="" code="" this=""></complete></complete></pre>
21]:	<pre>return y_sim theta = fit_ar(y_train,70) m = len(y_val) p = len(theta) y_sim = simulate_ar(y_train,theta,m) fig,ax = plt.subplots(figsize = (10,5)) ax.plot(y_sim,'c-',label = "Simulated") ax.plot(y_val,'m-',label = "True value") ax.legend() <matplotlib.legend.legend 0x282987fdcd0="" at=""></matplotlib.legend.legend></pre>
]	Simulated True value 5 -
;	Q11: Using the same function as above, try to simulate the process for a large number of time steps (say, $m = 2000$). You should see that the predicted values eventually converge to a constant prediction of zero. Is this something that you would expect to see in general? Explain the result. A11: $m = 2000$ y _sim = simulate_ar(y_train, theta, m)
	y_sim = simulate_ar(y_train, theta, m) fig. ax = plt.subplots(figsize = (10.5)) ax.plot(y_sim,'c-',label = "Simulated") ax.set(title = "Large simulation") ax.legend() <pre></pre>
	As this is a stationary AR process(we have removed the upward trend) on simulating this to large number , the seasonal component reduces and goes to zero ,as our theta is from -1 to 1(dot product ends up near zero). {n
	1.5 Nonlinear AR model In this part, we switch to a nonlinear autoregressive (NAR) model, which is based on a feedforward neural network. This means that in this model the recursive equation for making predictions is still in the form $\hat{y}_t = f_{\theta}(y_{t-1}, \dots, y_{t-p})$, but this time f is a nonlinear function learned by the neural network. Fortunately almost all of the work for implementing the neural network and training it is handled by the scikit-learn packwith a few lines of code, and we just need to choose the right structure, and prepare the input-output data. Q12: Construct a NAR(p) model with a feedforward (MLP) network, by using the MLPRegressor class from scikit-learn. Set p to the same value as you chose for the linear AR model above. Initially, you can use a MLP with a single hidden layer consisting of 10 hidden neurons. Train it using the same training data as above and plot the one-step-ahead predictions as well as the residuals, on both the training and validation data.
,	Hint: You will need the methods fit and predict of MLPRegressor . Read the user guide of scikit-learn for more details. Recall that a NAR model is conceptuall very similar to an AR model, so you can reuse of the code from above. A12: p = 80 #Using code from fit_ar # Number of training data points n = len(y_train) # <complete line="" this=""> # Construct the regression matrix Phi = np.zeros(shape = (n-p,p)) # <complete line="" this=""> for j in range(p): Phi[:,j] = y_train[p-j-1:n-j-1]# <complete line="" this=""></complete></complete></complete>
	<pre>Phi[:,j] = y_train[p-j-1:n-j-1]# <complete line="" this=""> # Drop the first p values from the target vector y yy = y_train[p:] # yy = (y_{t+p+1},, y_n) # Using MLPRegressor instead of linear regression mlp1_model = MLPRegressor(hidden_layer_sizes = (10,),activation = 'relu',shuffle = False,max_iter = 5000) mlp1_model.fit(Phi,yy) ## predicting #to use predict , we need input of shape(nsamples,nfeatures) nsamples = len(flat_trend) ip_x = np.zeros(shape = (nsamples-p,p))#inputs are the regressors for i in range(p):</complete></pre>
	<pre>ip_x[:,i] = flat_trend[p-i-1:nsamples-i-1] y_pred_whole = mlp1_model.predict(ip_x) train_pred = y_pred_whole[:700-p] val_pred = y_pred_whole[700-p :] resid_whole = flat_trend[p:] - y_pred_whole f = plt.figure() f.set_figwidth(15) f.set_figheight(5) plt.plot(flat_trend, label = "Detrended Data") plt.plot(range(p,700), train_pred,'r', label = "predicted training data") plt.plot(range(700,997), val_pred,'g', label = "predicted validation data") plt.title('Time Series')</pre>
23]:	
,	Section Detrended Data Detrended Data Detrended Validation data Detrended Data Detrended Validation data Detrended Dat
24]:	fig , ax = plt.subplots(figsize = (15,5)) ax.plot(resid_whole) ax.set(title = "Residual plot", xlabel = "t") [Text(0.5, 1.0, 'Residual plot'), Text(0.5, 0, 't')] Residual plot 10.0 7.5 5.0 2.5
25]:	2.5
	Empirical ACF 10 95.0% confidence Empirical ACF 06
ı	Q13: Try to expirement with different choices for the hyperparameters of the network (e.g. number of hidden layers and units per layer, activation function, etc.) and the optimizer (e.g. solver and max_iter). Are you satisfied with the results? Why/why not? Discuss what the limitations of this approach might be. A13: p = 80 #Using code from fit_ar # Number of training data points n = len(y_train) # <complete line="" this=""></complete>
	<pre>n = len(y_train) # <complete line="" this=""> # Construct the regression matrix Phi = np.zeros(shape = (n-p,p)) # <complete line="" this=""> for j in range(p): Phi[:,j] = y_train[p-j-1:n-j-1]# <complete line="" this=""> # Drop the first p values from the target vector y yy = y_train[p:] # yy = (y_{t+p+1},, y_n) # Using MLPRegressor instead of linear regression mlp2_model = MLPRegressor(hidden_layer_sizes = (10,10),activation = 'tanh',shuffle = False,max_iter = 1000, solver = 'adam') mlp2_model.fit(Phi,yy)</complete></complete></complete></pre>
	<pre>y_pred_whole = mlp2_model.predict(ip_x) train_pred = y_pred_whole[:700-p] val_pred = y_pred_whole[700-p :] resid_whole = flat_trend[p:] - y_pred_whole f = plt.figure() f.set_figwidth(15) f.set_figwidth(15) plt.plot(flat_trend, label = "Detrended Data") plt.plot(np.arange(p,700),train_pred,'r',label = "predicted training data") plt.plot(np.arange(700,997),val_pred,'g',label = "predicted validation data") plt.title('Time Series') plt.xlabel('t') plt.ylabel('fMSL') plt.ylabel('GMSL') plt.legend()</pre>
	I what will be the second of t
27]: 27]:	fig , ax = plt.subplots(figsize = (15,5)) ax.plot(resid_whole) ax.set(title = "Residual plot", xlabel = "t") [Text(0.5, 1.0, 'Residual plot'), Text(0.5, 0, 't')] Residual plot 10 5-
	0
	acfplot(resid_whole) Empirical ACF 95.0% confidence
28]:	0.4 - 0.2 - 0.2
	0.4
	0.4