

Deployment of single-phase BESS inverters for voltage unbalance mitigation in distribution systems with high penetration of low-carbon technologies

Ioannis Mexis Swansea University, UK

EPSRC project website:

https://nms.kcl.ac.uk/future-power-grid/

Overview

- Introduction
- Control of single-phase BESSs for voltage unbalance mitigation
- Probabilistic framework
- Simulation results
- Conclusion

Introduction – background

- Increase of novel single-phase loads and generating units (EVs and PVs) on distribution systems.
- Voltage unbalance (VU) \uparrow due to their cumulative large power rating and variable output => power quality issues [1]:
 - Zero-sequence fundamental currents
 - ☐ Neutral conductor overloading.
 - Transformer overheating.
 - ➤ Voltage rms values ↑↓.
 - ➤ Network losses ↑.
 - \triangleright Effective utilization of line capacity \checkmark .

Introduction – VU mitigation methods

- <u>Common solution</u>: maintain load symmetry on the three phases => challenging in systems with large penetration of single-phase equipment.
- <u>Active mitigation techniques</u>: three-phase VSCs or CSCs (Series or shunt Active Filters, STATCOM devices etc.)
- <u>Distributed Generation inverters</u>: utilization of their available power rating, since not operating at full rating all the time.

Control of single-phase BESSs for voltage unbalance mitigation

- Coordinated operation of three independent single-phase power converters [2].
 - Upper level control system: coordinate the three units by sending active and reactive power reference signals.
 - ➤ <u>BESS control system</u>: regulate active and reactive power exchange between each single-phase inverter and the grid.
- Modelled as controlled current sources in the probabilistic study inject negative- and zero-sequence fundamental current components.
- Limit the voltage unbalance factor $k_{v2} = V_2 / V_1 < 2\%$ (based on IEC 61000-2-2) where V_2 , V_1 the negative-sequence and positive-sequence voltage fundamental component.

Probabilistic framework - overview

- Typical UK distribution system consisting of 100 single-phase loads - system parameters (equivalent impedance, transformer, line impedance) retrieved from [3].
- Data for the time-series profiles (residential demand and LCT) is retrieved from a public database [4], [5].
- Various penetration levels of low carbon technologies,
 i.e. single-phase PVs (P_{pv} = 1-4 kW) and EVs (P_{ev} = 3 kW), are considered.

^[3] I.Hernando-Gil, H. Shi, F. Li, S. Djokic, and M. Lehtonen, "Evaluation of Fault Levels and Power Supply Network Impedances in 230/400 V 50 Hz Generic Distr. Syst.," IEEE Trans. on Power Delivery. [4] Electricity North West, "Low Voltage Network Solutions (LVNS) - Project literature," https://www.enwl.co.uk/lvns.

^[5] A. Navarro-Espinosa and L. F. Ochoa, "Probabilistic Impact Assessment of Low Carbon Technologies in LV Distribution Systems," IEEE Trans. on Power Systems.

Probabilistic framework - overview

- Assess the impact of varying LCT penetration levels on VU in the distribution system:
 - busbar LV.
 - end of the distribution feeders.

Category	Simulated profiles	Time period [h]	Penetration levels	Number of days
PV	summer load, PVs	8:00 – 16:00	0%, 20%, 60%, 100%	30
EV	winter load, EVs	16:00 – 4:00	0%, 20%, 60%, 100%	30

- For each day, randomization of the LCTs:
 - 1. Size
 - 2. Location
- For each busbar, VU levels are evaluated using the 95th percentile k_{v2} values (based on IEEE Std 1250-2018, VU < 2% for 95% of the 10-min samples in 1 week) and compared:
 - 1. without compensation
 - 2. with compensation (placed at busbar LV)

Probabilistic framework – flowchart

Simulation results for 0% PV

- ➤ The 95th percentile is well below the limit of 2% for all busbars, with and without compensation.
- > The compensating units fully mitigate VU at busbar LV and reduce VU at the other busbars.
- \rightarrow Highest voltage unbalance levels at busbar C4, with $k_{v2} = 1.4 \%$.

Simulation results for 20% PV

- ➤ Increase of the 95th percentile compared to the 0% PV penetration level.
- > The compensating units mitigate VU at busbar LV and reduce VU at the other busbars.

Simulation results for 60% PV

➤ The additional PVs have a smoothing effect, thus leading to decreased VU levels compared to the 20% PV penetration level.

Simulation results for 100% PV

➤ Also in this case, the additional PVs have a smoothing effect, thus leading to decreased VU levels compared to the 60% PV penetration level.

Conclusion

- ➤ Higher VU was observed with increasing PV penetration, but above 60 % penetration, VU showed a steady decline.
- Effective mitigation of the VU levels by controlling the BESS units.
- > 95th percentile is below the limit of 2% for all busbars, even without compensation.
- A cursory study involving 30 simulated days was performed. A much larger set of simulations is required to identify the probability distribution more accurately and assess the impact of varying LCT levels on VU.

Acknowledgments

- Dr Grazia Todeschini
- Dr Zhongfu Zhou

Ioannis Mexis 943364@swansea.ac.uk

EPSRC project website:

https://nms.kcl.ac.uk/future-power-grid/