LECTURE 2 TERM 2:

UCL SCHOOL OF MANAGEMENT

MSIN0097

PREDICTIVEs igninent Ploject Exam Help

https://powcoder.com

VIDEO 6: RECARIES PONAt powcoder

A P MOORF

CLASSIFICATION

A. ClAssification

B. Regression

Model requirements Assignment Project Exam Help

Classifiation

 $x \in [-\infty, \infty]$ $y \in \{0, N\}$

Regression

https://pbwcoger.com

Add WeChat powcoder

C. Clustering

Model requirements

Clustering

$$x \in [-\infty, \infty]$$

$$y \in \{0, N\}$$

D. Decomposition

Model requirements

Decomposition

$$x \in [-\infty, \infty]$$

 $y \in [-\infty, \infty]$

Supervised

Unsupervised

END-TO-END

- Discover
- Explore
- Visualize

- Clean
- Sample

- Documentation
- Presentation

Assignment Project Exam Help

- Encode
- https://spowcoder.com Launch
- Add_WeChat powcoder Maintain
 - Model Selection
 - Learning curves
 - Regularization
 - Degrees of freedom
 - Generalization

B. REGRESSION

UCL SCHOOL OF MANAGEMENT

REAL VALUED VARIABLE

LINEAR REGRESSION

REAL VALUED VARIABLE

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

LINEAR REGRESSION

Measured data **Features**

Inferred/Predicted/Estimated value

True initial value (world state)

Assignment Project Exam Help True target value

https://powcoder.com (world state)

$$\hat{y} = \theta_0 + Addy We Charpovy coder + \theta_n x_n$$

predicted value

parameter vector

$$\hat{\mathbf{y}} = h_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta}^{\mathsf{T}} \cdot \mathbf{x}$$
hypothesis function
feature vector

COST FUNCTION

https://powcoder.com
$$MSE(\mathbf{X}, h_{\theta}) = - \underbrace{\left(\mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(i)} - y^{(i)}\right)^{2}}_{\mathbf{Add}}$$
Add We Charles owcoder

$$\widehat{\mathbf{\theta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

POLYNOMIAL REGRESSION


```
m = 100
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)
```


POLYNOMIAL REGRESSION

DEGREES OF FREEDOM

LEARNING CURVES

10TH DEG POLYNOMIAL

LEARNING CURVES

BIAS-VARIANCE TRADEOFF

Bias

- due to wrong assumptions e.g. data is linear when it is actually quadratic.
- A high-bias model is most likely to underfit the training data. Assignment Project Exam Help

Variance

https://powcoder.com

- data dependency
- model's excessive sensitivity two pally an appropriet of the training data.
 A model with many degrees of freedom will overfit the training data.
- Irreducible error
- noisiness of the data
- Change, improve the measurement process

REGULARIZATION

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

REGULARIZATION

- Reduce the number of parameters
- Ridge Regressio Assignment Project Exam Help
- Lasso Regression
- Elastic Net https://powcoder.com

Add WeChat powcoder

RIDGE (REGULARIZED) REGRESSION

$$J(\mathbf{\theta}) = \text{MSE}(\mathbf{\theta}) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$

LASSO (REGULARIZED) REGRESSION

$$J(\mathbf{\theta}) = \text{MSE}(\mathbf{\theta}) + \alpha \sum_{i=1}^{n} |\theta_i|$$

LECTURE 2 TERM 2:

UCL SCHOOL OF MANAGEMENT

MSIN0097

PREDICTIVEs igninent Ploject Exam Help

https://powcoder.com

VIDEO 6: RECARIES PONAt powcoder

A P MOORF