1

Control Systems

G V V Sharma*

	_					-~
(റ	N	П	3 N	JΊ	S

1	Signal Flow Graph	1
2	Gain of Feedback Circuits 2.1 Current Amplifiers	1
3	Bode Plot	3
4	Second order System	3
5	Routh Hurwitz Criterion	3
6	State-Space Model	3
7	Nyquist Plot	3
8	Compensators	3
9	Gain Margin	3
10	Phase Margin	3
11	Oscillator	3
12	Root Locus	3
13	Polar Plot	3
14	PID Controller	3

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

1 Signal Flow Graph

2 Gain of Feedback Circuits

2.1 Current Amplifiers

2.1.1. For the feedback current amplifier shown in 2.1.1, Draw the Small-Signal Model

Fig. 2.1.1

Solution: While drawing a Small-Signal Model, we ground all constant voltage sources and open all constant current sources. All Small-Signal paramters are obtained from DC-Analysis of the circuit.

Fig. 2.1.1

2.1.2. Describe how the given circuit is a Negetive Feedback Current Amplifier.

> **Solution:** For the feedback to be negative, I_f must have the same polarity as I_s . To ascertain that this is the case, we assume an increase in I_s and follow the change around the loop: An increase in I_s causes I_i to increase and the drain voltage of Q_1 will increase. Since this voltage is applied to the gate of the p-channel current of Q_2 , to decrease. Thus, the voltage across R_M will decrease, which will cause I_f to increase. This is the same polarity assumed for the initial change in I_s , verifying that the feedback is indeed negative.

2.1.3. Find the Expression for the Open-Loop Gain $G = \frac{I_o}{I_i}$, from the Small-Signal Model. For simplicity, neglect the Early effect in Q_1 and

Solution: In Small-Signal Model,

$$v_B = I_i R_D (2.1.3.1)$$

$$v_{gs_2} = v_B = I_i R_D (2.1.3.2)$$

In Small-Signal Analysis, P-MOSFET is modelled as a current source where current flows from Source to Drain. So, the value of current flowing from Source to Drain in P-MOSFET is,

$$I_o = -g_{m_2} v_{gs_2} = -g_{m_2} I_i R_D (2.1.3.3)$$

So, the Open-Circuit Gain is

$$G = \frac{I_o}{I_i} = -g_{m_2} R_D \tag{2.1.3.4}$$

2.1.4. Find the Expression of the Feedback Factor $H = \frac{I_f}{I_o}$, from Small-Signal Model. For simplicity, neglect the Early effect in Q_1 and Q_2 . **Solution:**

> I_o is fed to a current divider formed by R_M and R_F . R_F is a Large Resistance compared to Input resistance of Amplifier and so most of the current flows through it leaving a small current as input to Amplifier. Hence the voltage at point 'A' is very small and is considered, $v_A \simeq 0$. So R_F and R_M are parallel and Voltage

Drop across them is same.

$$(I_o + I_f)R_M \simeq -I_f R_F$$
 (2.1.4.1)

$$\frac{I_f}{I_o} \simeq -\frac{R_M}{R_F + R_M} \tag{2.1.4.2}$$

So, the Feedback Factor,

$$H \equiv \frac{I_f}{I_o} \simeq -\frac{R_M}{R_F + R_M} \tag{2.1.4.3}$$

device Q_2 , its increase will cause I_o , the drain 2.1.5. Find the Expression for the Closed-Loop Gain $T = \frac{I_o}{I_o}$. For simplicity, neglect the Early effect in Q_1 and Q_2 .

Solution:

From Open-Loop Gain and Feedback Factor,

$$I_s = I_i + I_f$$
 (2.1.5.1)

$$I_s = \frac{I_o}{G} + HI_o$$
 (2.1.5.2)

$$GI_s = I_o(1 + GH)$$
 (2.1.5.3)

$$\frac{I_o}{I_s} = \frac{G}{1 + GH}$$
 (2.1.5.4)

$$\frac{I_o}{I_s} = \frac{G}{1 + GH}$$
(2.1.5.4)
$$\frac{I_o}{I_s} = -\frac{g_{m_2} R_D}{1 + g_{m_2} R_D / \left(1 + \frac{R_F}{R_M}\right)}$$
(2.1.5.5)

So the Block Diagram of Feedback Current Amplifier is

where
$$G = -g_{m_2}R_D$$
 and $H = -\frac{R_M}{R_F + R_M}$

So, the value of Closed-Loop Gain is

$$T = \frac{I_o}{I_s} = -\frac{g_{m_2}R_D}{1 + g_{m_2}R_D/\left(1 + \frac{R_F}{R_M}\right)}$$
 (2.1.5.6)

- 3 Bode Plot
- 4 Second order System
- 5 Routh Hurwitz Criterion
 - 6 STATE-SPACE MODEL
 - 7 Nyquist Plot
 - 8 Compensators
 - 9 Gain Margin
 - 10 Phase Margin
 - 11 Oscillator
 - 12 Root Locus
 - 13 Polar Plot
 - 14 PID Controller