BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-045503

(43) Date of publication of application: 23.02.1993

(51)Int.CI.

G02B 1/12

G02B 1/04

(21)Application number: 03-223704

(71)Applicant: KONICA CORP

(22)Date of filing:

09.08.1991

(72)Inventor: NAKANO TOMOHITO

OTA TATSUO

TOKUHIRO SETSUO

(54) OPTICAL ELEMENT AND PRODUCTION THEREOF

(57) Abstract:

PURPOSE: To provide the optical element which has excellent antireflection performance and increased reflection preventive performance, can deal with the high-accuracy optical element, is hardly crackable and has good durability.

CONSTITUTION: This optical element consists of a base material made of a high-polymer resin and a surface layer which is formed on the surface of this base material and has the optical characteristics different from the optical characteristics of the base material. The surface layer is a reformed layer formed by reforming the surface of the base material by irradiation with plasma or ion. A surface coating layer may be further formed on the surface layer. This process for production consists in

including a stage for forming the surface layer by irradiating the surface of the base material with the plasma or ion beam generated from an ion source 2.

LEGAL STATUS

[Date of request for examination]

02.10.1997

[Date of sending the examiner's decision of 07.08.2001 rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The base material made of macromolecule resin and said base material formed in the front face of this base material are an optical element which consists of a surface layer which has a different optical property, and is characterized by said surface layer being a reforming layer which reforming of the front face of a base material was carried out by a plasma exposure or ion irradiation, and was formed.

[Claim 2] The optical element according to claim 1 characterized by the refractive index of a surface layer differing from the refractive index of a base material.

[Claim 3] An optical element given in either claim 1 to which a surface layer is characterized by having a heterogeneous refractive-index property, or claim 2.

[Claim 4] The plasma or ion irradiated on the surface of the base material is an optical element according to claim 1 to 3 characterized by supplying the introductory gas which contains at least a kind of element chosen from the group which consists of oxygen, a fluorine, and carbon to the ion source, and occurring.

[Claim 5] It is the optical element which the base material made of macromolecule resin and said base material formed in the front face of this base material consist of a surface layer which has a different optical property, and a surface coating layer which consists of one layer formed on this surface layer, or two or more layers, and is characterized by said surface layer being a reforming layer which reforming of the front face of a base material was carried out by a plasma exposure or ion irradiation, and was formed.

[Claim 6] The optical element according to claim 5 characterized by the refractive index of a surface layer differing from the refractive index of a base material.

[Claim 7] An optical element given in either claim 5 to which a surface layer is characterized by having a heterogeneous refractive-index property, or claim 6.

[Claim 8] The plasma or ion irradiated on the surface of the base material is an optical element according to claim 5 to 7 characterized by supplying the introductory gas which contains at least a kind of element chosen from the group which consists of oxygen, a fluorine, and carbon to the ion source, and occurring.

[Claim 9] A part or all of a surface coating layer is an optical element according to claim 5 to 8 characterized by being formed under plasma-izing which contains at least a kind of element chosen from the group which consists of oxygen, a fluorine, and carbon, or the ionized gas ambient atmosphere. [Claim 10] The optical element according to claim 5 to 9 characterized by a surface coating layer consisting of a kind of low refractive-index layer at least.

[Claim 11] The optical element according to claim 10 characterized by being a kind of compound chosen from the group which the low refractive-index matter which forms a low refractive-index layer becomes from silicon oxide, magnesium fluoride, and an aluminum oxide at least.

[Claim 12] The optical element according to claim 5 to 9 characterized by a surface coating layer consisting of a layered product of a low refractive-index layer and a high refractive-index layer.

[Claim 13] It is a kind of compound chosen from the group which the low refractive-index matter which forms a low refractive-index layer becomes from silicon oxide, magnesium fluoride, and an aluminum oxide at least. The high refractive-index matter which forms a high refractive-index layer The mixture of titanium oxide, and a zirconium dioxide and titanium oxide, Titanium oxide, the mixture of oxidization PURASEOJIUMU, zinc sulfide, cerium oxide, The optical element according to claim 12 characterized by being a kind of compounds chosen from the group which consists of mixture of a zirconium dioxide, indium oxide, the tin oxide, and the indium oxide and the tin oxide, and mixture of the tin oxide and antimony, or such mixture at least.

[Claim 14] Are the approach of manufacturing one optical element of claims 5-13, and the base material made of macromolecule resin is arranged in the vacuum devices which come to have the ion source. The introductory gas which contains at least a kind of element chosen from the group which consists of oxygen, a fluorine, and carbon is supplied to the ion source. The surface layer formation process which irradiates the plasma or ion beam containing said element generated from the ion source on the front face of said base material, and forms a surface layer, By performing vacuum evaporationo processing or spatter coat processing, suspending the exposure of the plasma or an ion beam, or continuing an exposure The acceleration voltage of the ion source in said each process coming [the surface coating layer formation process which forms a surface coating layer on a surface layer] The manufacture approach of the optical element characterized by being less than [200V]. [Claim 15]

Drawing selection Representative drawing

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出順公開各号

特開平5-45503

(43)公開日 平成5年(1993)2月23日

(51)Int.CL⁵
G 0 2 B 1/12

1/04

識別記号

庁内整理番号 F I 7820-2K

7132-2K

技術表示首所

審査請求 未請求 請求項の数16(全 8 頁)

(21)出題登号

特類平3-223704

(22)出駐日

平成3年(1991)8月9日

(71)出題人 000001270

コニカ株式会社

泉京都新宿区西新宿1丁目26番2号

(72)発明者 中野 智史

東京都八王子市石川町2970香地コニカ株式

会社内

(72)発明者 太田 選男

東京都八王子市石川町2970香油コニカ株式

会社内

(72)発明者 徳弘 節夫

東京都八王子市石川町2970番油コニカ株式

会社内

(74)代理人 弁理士 大井 正彦

(54) 【発明の名称 】 光学素子およびその製造方法

(57)【要約】

【目的】 優れた反射防止性能および増反射防止性能を 有し、高精度の光学系に対応可能で、しかも、クラック などが発生しにくくて良好な耐久性を育する光学素子を 提供することにある。

【構成】 本発明の光学素子は、高分子樹脂製の基材と、この基材の表面に形成された前記基材とは異なる光学特性を有する表面層とよりなり、前記表面層は、ブラズで照射またはイオン照射により基材の表面が改置されて形成された改置層であることを特徴とする。また、表面層上に、更に表面被疑層が形成されていてもよい。本発明の製造方法は、イオン源から発生するブラズマまたはイオンビームを基材の表面に照射して表面層を形成する工程を含むことを特徴とする。

(2)

【特許請求の简囲】

【請求項1】 高分子樹脂製の基材と、この基材の表面 に形成された前記基材とは異なる光学特性を有する豪面 層とよりなり、

1

前記表面層は、プラズマ照射またはイオン照射により基 材の表面が改智されて形成された改智層であることを特 徴とする光学素子。

【請求項2】 表面層の屈折率が基村の屈折率とは異な ることを特徴とする請求項1に記載の光学素子。

とを特徴とする請求項1または請求項2のいずれかに記 載の光学素子。

【請求項4】 基材の表面に照射されたプラズマまたは イオンは、酸素、ファ素および炭素からなる群より選ば れた少なくとも一種の元素を含む導入ガスがイオン源に 供給されて発生したものであることを特徴とする語求項 1~3のいずれかに記載の光学素子。

【請求項5】 高分子樹脂製の基材と、この基材の表面 に形成された前記基材とは異なる光学特性を有する衰面 層と、この表面層上に形成された1層または複数層から 20 なる表面被覆層とよりなり、

前記表面層は、プラズマ照射またはイオン照射により基 材の表面が改賢されて形成された改賢層であることを特 徴とする光学素子。

【請求項6】 表面層の屈折率が基材の屈折率とは異な ることを特徴とする請求項5に記載の光学素子。

【請求項7】 表面層が不均質な層折率特性を有するこ とを特徴とする請求項5または請求項6のいずれかに記 戯の光学素子。

イオンは、酸素、フッ素および炭素からなる群より選ば れた少なくとも一種の元素を含む導入ガスがイオン額に 供給されて発生したものであることを特徴とする語文項 5~7のいずれかに記載の光学素子。

【語求項9】 表面被覆層の一部または全部は、酸素、 フッ素および炭素からなる群より選ばれた少なくとも一 穏の元素を含むプラズマ化またはイオン化されたガス雰 閏気下で形成されたことを特徴とする語求項5~8のい ずれかに記載の光学素子。

【譲求項10】 表面破覆層が、少なくとも一種の低屈 49 射防止性能、増反射防止性能、ビームスプリッター性 折率層からなることを特徴とする請求項5~9のいずれ かに記載の光学素子。

【論求項 1 1 】 低屈折率層を形成する低屈折率物質 が、酸化シリコン、フッ化マグネシウムおよび酸化アル ミニウムからなる群より遊ばれた少なくとも一種の化台 物であることを特徴とする請求項10に記載の光学素 구.

【請求項12】 表面被覆層が、低屈折率層と高屈折率 層との領層体からなることを特徴とする請求項5~9の いずれかに記載の光学素子。

【詰求項13】 低屈折率層を形成する低屈折率物質 が、酸化シリコン、ファ化マグネシウムおよび酸化アル ミニウムからなる群より遺ばれた少なくとも一種の化合 物であり、高屈折率層を形成する高屈折率物質が、酸化 チタン、酸化ジルコニウムと酸化チタンの混合物、酸化 チタンと酸化プラセオジウムの混合物、硫化亜鉛、酸化 セリウム、酸化ジルコニウム、酸化インジウム、酸化ス ズ、酸化インジウムと酸化スズの混合物および酸化スズ とアンチモンの混合物からなる群より選ばれた少なくと 【詰求項3】 表面層が不均質な層折率特性を育するこ 10 も一種の化合物またはこれらの複合物であることを特徴 とする請求項12に記載の光学素子。

> 【請求項14】 請求項5~13のいずれかの光学素子 を製造する方法であって、

> イオン額を具えてなる真空装置内に高分子樹脂製の基材 を配置し、酸素、ファ素および炭素からなる群より選ば れた少なくとも一種の元素を含む導入ガスをイオン源に 供給し、イオン源から発生する前記元素を含むプラズマ またはイオンビームを前記基材の表面に照射して表面層 を形成する表面層形成工程と、

- プラズマまたはイオンピームの照射を停止し、あるいは 照射を継続しながら、蒸着処理またはスパッタコート処 理を行うことにより、表面層上に表面複覆層を形成する 表面接穏層形成工程とを含んでなり.

前記各工程におけるイオン源の加速電圧が 2007以下で あることを特徴とする光学素子の製造方法。

【論求項15】 各工程におけるイオン源からの基材表 面でのイオン電流密度がSOμA/cri 以上であることを 特徴とする請求項14に記載の光学素子の製造方法。

【詰求項16】 プラズマまたはイオンビームを墓材の 【語求項8】 基材の表面に照射されたプラズマまたは 30 表面に照射するときにおける真空装置内の真空度が、 9.8×10 1~4×10 1 Torrであることを特徴とする請求 項14または請求項15に記載の光学素子の製造方法。 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は光学素子およびその製造 方法に関する。

[0002]

【従来の技術】従来、カメラ、テレビプロジェクター、 復写機などの光学系に搭載される光学素子において、反 能、透明導電性能、波長分解性能など各種の光学特性が 要求されている。

【0003】また、近年において、アクリル樹脂、ポリ カーボネート樹脂などの高分子樹脂製の基材と、この基 材の表面に形成された光学膜とからなる光学素子が知ら れている。しかして、このような光学素子を製造する場 台、 蟇材を構成する高分子樹脂の耐熱性がガラスより低 いことから、益村の表面に光学順を形成する手段として 真空中での加熱蒸着手段を適用することができない。従 50 来、高分子樹脂製の基材の表面に光学験例えば反射防止

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401=/N...

膜を形成する方法として、以下のような技術が提案され ている。

② 基材の表面に、酸化シリコンや酸化アルミニウムな どよりなる中間層を形成し、更に、この中間層上に反射 防止膜を形成する技術。

② シリコン樹脂などの有機物材料を基材の表面に塗布 してハードコート層を形成し、更に、このハードコート 屈上に反射防止膜を形成する技術。

[0004]

衛では、中間層の厚さが大きいものとなるために形成さ れる光学膜にクラックが発生しやすく、これにより光透 過率が低下する。という問題を有し、②の技術では、ハ ードコート層を均一に塗布することが困難であることか ら、カメラレンズやレーザ光学素子などの高精度レンズ には適用できない、という問題を有する。このように、 従来の技術では、良好な光学特性および耐久性を有する ものとして、満足できる光学素子は提供されていないの が現状である。

【0005】本発明は、以上のような事情に基づいてな 20 されたものであって、本発明の第1の目的は、優れた反 射防止性能および増反射防止性能を有し、高精度の光学 系に対応可能で、しかも、クラックなどが発生しにくく て良好な耐久性を有する光学素子を提供することにあ

【0006】本発明の第2の目的は、優れた反射防止性 能および増反射防止性能を有するとともに、ビームスプ リッター性能、反射ミラー性能、透明導電性能、バンド パスフィルターやダイクロイックフィルターなどの波長 分離性能などにも優れ、しかも、クラックが発生しにく 30 【0019】また、表面被覆層が、低屈折率層と高屈折 くて良好な耐久性を有する光学素子を提供することにあ

【0007】本発明の第3の目的は、上記の光学素子を 好適に製造する方法を提供することにある。

[0008]

【課題を解決するための手段】本発明は、高分子樹脂製 の基材の表面に、プラズマ照射またはイオン照射を施す ことにより、その表面状態が改置されて基材自体とは異 なる光学特性例えば屈折率を有する表面層が形成される ことを見出し、斯かる知見に基いてなされたものであ

【①①09】本発明の光学素子は、高分子樹脂製の基材 と、この基材の表面に形成された前記基材とは異なる光 学特性を有する表面層とよりなり、前記表面層は、ブラ ズマ照射またはイオン照射により基材の表面が改質され て形成された改智層であることを特徴とする。

【0010】また、表面層の屈折率が基材の屈折率とは 喜なることが好ましい。

【①①11】また、表面層が不均質な屈折率特性を有す ることが好ましい。

【0012】また、基材の表面に照射されたプラズマま たはイオンは、酸素、ファ素および炭素からなる群より 選ばれた少なくとも一種の元素を含む導入ガスがイオン 額に供給されて発生したものであることが好ましい。

【10013】更に、本発明の光学素子は、高分子樹脂製 の墓材と、この墓材の表面に形成された前記基材とは異 なる光学特性を有する表面層と、この表面層上に形成さ れた1層または複数層からなる表面複覆層とよりなり、 前記表面層は、プラズマ照射またはイオン照射により基 【発明が解決しようとする課題】しかしながら、〇の技 10 材の表面が改賢されて形成された改賢層であることを特 徴とする。

> 【0014】また、表面層の屈折率が基材の屈折率とは 異なることが好ましい。

> 【0015】また、表面層が不均質な屈折率特性を有す るととが好ましい。

> 【0016】また、基材の表面に照射されたプラズマま たはイオンは、酸素、フッ素および炭素からなる群より 選ばれた少なくとも一種の元素を含む導入ガスがイオン 源に供給されて発生したものであることが好ましい。

【0017】また、表面核覆層の一部または全部は、酸 素。フッ素および炭素からなる群より遺ばれた少なくと も一種の元素を含むプラズマ化またはイオン化されたガ ス雰囲気下で形成されたことが好ましい。

【0018】また、表面接覆層が、少なくとも一種の低 屈折率圏からなることが好ましく、この場合において、 低屈折率層を形成する低屈折率物質が、酸化シリコン、 フッ化マグネシウムおよび酸化アルミニウムからなる群 より選ばれた少なくとも一種の化合物であることが特に 好ましい。

率層との論層体からなることが好ましく、この場合にお いて、低屈折率層を形成する低屈折率物質が、酸化シリ コン、ファ化マグネシウムおよび酸化アルミニウムから なる群より選ばれた少なくとも一種の化合物であり、高 屈折率層を形成する高屈折率物質が、酸化チタン、酸化 ジルコニウムと酸化チタンの混合物、酸化チタンと酸化 プラセオジウムの混合物。 硫化亜鉛。 酸化セリウム、酸 化ジルコニウム、酸化インジウム、酸化スズ、酸化イン ジウムと酸化スズの混合物および酸化スズとアンチモン 40 の混合物からなる群より遺ばれた少なくとも一種の化合 物またはこれらの混合物であることが特に好ましい。

【0020】本発明の光学素子の製造方法は、高分子樹 脳製の基材と、この基材の表面に形成された前記基材と は異なる光学特性を有する表面層と、この表面層上に形 成された表面被覆層とよりなる上記の光学素子を製造す る方法であって、イオン源を具えてなる真空装置内に高 分子樹脂製の基材を配置し、酸素、ファ素および炭素か ちなる群より遺ばれた少なくとも一種の元素を含む導入 ガスをイオン源に供給し、イオン源から発生する前記元 50 素を含むプラズマまたはイオンビームを前記基村の表面

に照射して表面層を形成する表面層形成工程と、プラズ マまたはイオンビームの照射を停止し、あるいは照射を 継続しながら、蒸者処理またはスパッタコート処理を行 うことにより、表面層上に表面被覆層を形成する表面被 **福層形成工程とを含んでなり、前記各工程におけるイオ** ン源の加速電圧が 200V以下であることを特徴とする。 【0021】また、各工程におけるイオン源からの基材 表面でのイオン電流密度が50μA/cm 以上であること が好ましい。

の表面に照射するときにおける真空装置内の真空度が、 0.8×10 ~4×10 Torrであることが好ましい。

【0023】以下、本発明について具体的に説明する。 <第1の発明>本発明のうち第1の発明は、高分子樹脂 製の墓材と、との基材の表面に形成された前記墓材とは 異なる光学特性を有する表面層とよりなる光学素子であ る.

【0024】光学素子の基材を構成する高分子樹脂とし ては、例えばアクリル樹脂、ポリカーボネート樹脂、ポ リオレフィン樹脂などを挙げることができる。これらの うち、非晶質ポリオレフィン樹脂は、耐熱温度が他の樹 脂に比較して高く、また吸水率が低いことから、得られ る光学素子に優れた耐環境性を付与することができるの で好生しい。

【0025】光学素子を構成する表面層は、プラズマ昭 射またはイオン照射により基材の表面が改質されて形成 された改質層である。

【0026】墓村の表面へのプラズマ照射またはイオン る。図1において、1は真空装置、Aは高分子樹脂製の 基付よりなる基板、2は基板Aの表面にイオンビームを 照射するためのイオン額。3は基板Aを支持するホルダ ー、4はイオン源2に導入ガスを供給するための導入ガ ス供給額、5はガス流置調節弁、6は流置計、7は後述 する蒸着処理に用いる電子銃、8は水晶振動子膜厚計で

【0027】イオン源では真空装置1の内部に設けられ ているが、基板Aの表面にイオンビームを照射すること ができれば真空装置1の外部に設けられていてもよい。 【0028】との例においては、複数の基板Aがホルダ -3に支持されている。このように複数の基板Aの表面 に同時にイオンビームを照射する場合には、各基板Aの 表面をイオン源2から等距解に配置するかホルダー3を 回転させるなどして、各表面へのイオン照射費を均一に することが好ましい。これにより、得られる光学素子が 性能の鎖ったものとなる。

【0029】導入ガス供給源4からイオン額2に供給さ れる導入ガスとしては、酸素、ファ素および炭素からな

ることが好ましく、例えば酸素ガス(○)、炭酸ガス (CO。)、水蒸気(H。O)、四フッ化炭素ガス(C F。) などを単独でもしくは混合して用いることができ る。また、必要に応じて異なる種類のガスを複合して用 いてもよく、更に、アルゴンガス(Aェ)、窒素ガス (N.) などの不活性ガスを混合してもよい。特に、酸 素元素を含むガスを供給する場合には、アルゴンなどの 不活性ガスとの混合状態で供給することが好ましい。こ れにより、イオン顔2のフィラメント寿命が酸素ガスを 【0022】また、プラズマまたはイオンビームを基材 10 単独で供給する場合に比べて2~3倍に延び、例えば連 続して50時間程度の照射が可能となる。この場合におい て、酸素ガスとアルゴンガスの混合比は、容置比で Oz:Ar=8:2~3:7であることが好ましい。 【0030】導入ガスの流量は、真空装置1内における 真空度が 0.8×10°~4×10°Torrを維持するように設 定することが好ましい。

【0031】イオン源2へ供給された導入ガスは、イオ ン源2においてイオン化される。ここで、イオン源2の 加速電圧は、基村Aの表面のチャージアップを防止し、 リステレン樹脂。ボリエーテルスルホン樹脂、非晶質ボ 20 表面へのイオン照射を均一化させる観点から低い方が好 ましく、具体的には 200V以下であることが好ましい。 ここに例えば、導入ガスとして酸素ガスを流置30500Mで 供給し、真空度が2~3×15 *Torrの状態において、イ オン源2の加速電圧を 2007を超える値に設定してイオ ン照射またはプラズマ照射を行うと、形成される表面層 が均一な特性のものとならず、反射率で±0.5%の不均 一性を生じ、光学素子として使用上問題となる。加速電 圧を 200V以下の値に設定することにより、形成される 表面層の均一性が維持され、特定波長の反射率は 0.1% 照射は、図1に示すような真空装置内で行うことができ、30、以下となり、光学素子として使用上の問題は生じない。 【0032】イオン瀕2からのイオン電流は、照射時間 の短縮化、照射の均一化の観点から大きい方が好まし く、具体的には、基材表面におけるイオン電流密度が50 μA/cm 以上であることが好ましい。ここに例えば、 加速電圧を 150Vに設定し、イオン電流密度を50μΑ/ or 未満とすると、1時間の照射によっても十分な衰面 層が形成されず、斯かる表面層では反射率の低下が平均 0.5%未満に止まり、光学素子として実用上不十分であ る。イオン電流密度を50µA/cm 以上とすることによ り、約20分間の照射で反射率の低下が平均1~2%の表 面層が形成され、真用上十分な反射防止性能が得られ

【0033】イオン顔2から発生したイオンビームは、 ホルダー3に支持されている基材Aに照射される。イオ ンピームの照射は連続的に行うことが効率的であるが、 イオン類2のフィラメントからの放射熱によって真空袋 置1内の温度が上昇し、とれにより光学素子の形状精度 やイオン照射効果などに影響を及ぼす場合には間欠的に 照射を行ってもよい。照射時間はイオン電流の設定値に る群より選ばれた少なくとも一種の元素を含むガスであ 50 よっても異なるが、所望の反射防止性能が得られる範囲

特開平5-45503

で自由に設定することができる。但し、実質的に反射防 止性能を得るためには少なくとも1分間程度の照射が必 要となる。

【0034】これら一連の処理を行うことにより、通常 の蒸着処理やスパッタコート処理などの手段を用いるこ となく、良好な反射防止性能および増反射防止性能を有 する光学素子を得ることができる。

【0035】なお、イオン照射中において、イオンビー ムの照射強度、イオン電流、イオン間の加速電圧、導入 ガスの流量などの処理条件を適宜変更することによっ て、不均質な表面層を形成させることもできる。ここに 例えば、イオンまたはプラズマの加速電圧が 200V以 下、イオン電流密度が50μA/cm/以上の低電圧高電流 の条件で照射すると、基材の表面には不均質な表面層が 形成されやすい。上記の低電圧高電流条件で照射処理 後、照射された元素イオンの濃度を表面分析(ESCA 分析)により測定したところ、表面付近が最も高速度 で、内部へいくほど低濃度となる不均質性が顕著にみち れた。不均質な表面層が形成されてなる光学素子は、広 質な表面層では得られない光学特性が発現される点で好 ましい。

【0036】〈第2の発明〉本発明のうち第2の発明 は、上記算!の発明を構成する表面層上に、夏に1層ま たは複数層からなる表面被覆層が形成されてなる光学素 子である。

【10037】第2の発明において、光学素子を構成する 表面接種層は 少なくとも一種の低屈折率層または低層 折率層と高屈折率層との積層体からなることが好まし

【0038】表面铍程層が、少なくとも一種の低屈折率 層からなる場合には、更に優れた反射防止性能および増 反射防止性能を光学素子に付与することができる。ここ に、 低屈折率層を形成する好ましい低屈折率物質として は、酸化シリコン、ファ化マグネシウム、酸化アルミニ ウムなどを挙げることができる。

【0039】表面被覆層が、低層折率層と高層折率層と の積層体からなる場合には、更に優れた反射防止性能も よび増反射防止性能を光学素子に付与することができ、 10 また低屈折率層および高屈折率層を構成する物質を適宜 選定することにより、ビームスプリッター性能、反射ミ ラー性能、透明導電性能。バンドパスフィルターやダイ クロイックフィルターなどの波長分解性能を光学素子に 付与することができる。また、形成された表面接覆層 は、基材との密着性が良好で剥離やクラックが発生しに くく、従って斯かる光学素子は良好な耐久性を育するも のとなる。ことに、低層折率層を形成する好ましい低層 折率物質としては、酸化シリコン、フッ化マグネシウ ム、酸化アルミニウムなどを挙げることができ、高屈折 い光波長領域において反射防止性能が得られ、更に、均 20 率層を形成する好ましい高屈折率物質としては、酸化チ タン、酸化ジルコニウムと酸化チタンの混合物、酸化チ タンと酸化プラセオジウムの混合物。硫化亜鉛 酸化セ リウム、敵化ジルコニウム、酸化インジウム、酸化ス ズ、酸化インジウムと酸化スズの混合物および酸化スズ とアンチモンの混合物などを挙げることができる。

【①①4①】低屈折率物質および高屈折率物質の特に好 ましい組み合わせ、並びに斯かる組合せによって発現さ れる光学特性を表しに示す。

[0041]

36 【表1】

铃開平5-45503

10

				TA	
低屈折率物質	高屈折率物質	光学特性			
	网 杰列		I	Ш	IV
フッ化マグネシウム		0			
酸化シリコン		0			
フッ化マグネシウム	酸化セリウム	0			
酸化シリコン	酸化セリウム	0	0		
酸化シリコン	酸化ジルコニウム	0	0		
酸化シリコン	酸化ジルコニウム+酸化チタン	0	0		0
酸化シリコン	酸化インジウム+酸化スズ	0		0	
酸化シリコン	酸化チタン+酸化プラセオジウム	0	0		0
酸化シリコン	酸化チタン+酸化ジルコニウム	0	0		0
フッ化マグネシウム	酸化チタン+酸化プラセオジウム	0	0		Q
酸化アルミニウム	酸化チタン	0	0		0
酸化アルミニウム	酸化チタン+酸化プラセオジウム	0	0		0

【0042】表1中、「は反射防止性能および増反射性 能、IIはビームスプリッター性能、III は透明導電性 能、IVはバンドパスフィルターやダイクロイックフィル ターなどの波長分離性能を示す。

【0043】表1からも理解されるように、表面接護層 を構成する層のうち、表面層の直上に形成される層が、 金属酸化物、酸化シリコン、ファ化マグネシウムからな ることが好ましい。

【0044】表面皱覆層は、蒸着処理、スパッタコート 処理のいずれの手段によっても形成することができる が、光学素子の結度を保つという観点からは蒸着処理に よって形成することが好ましい。

【①045】蒸着処理は、表面磨彩成工程が終了した 後、図1に示した真空装置内で行うことができる。この 場合において、蒸着処理はイオンビームの照射を停止し てから行ってもよいし、イオンビームの照射を継続しな がら行ってもよい。イオンビームの照射を継続しながら 種類や流量、イオン源の加速電圧、イオン電流を適宜変 更しながら行ってもよい。なお、蒸着材料として酸化シ リコンを用いる場合には酸素元素を含むガスを供給しな がら蒸君処理を行うことが好ましく、蒸君材料としてフ ッ化マグネシウムを用いる場合には酸素元素および/ま たはフッ素元素を含むガスを供給しながら蒸者処理を行 うことが好ましい。斯かるガスの存在下で蒸着処理を行 うことにより、ガスがイオン化されているか否かに関わ ちず、表面被覆層の膜質を向上させることができる。 [0046]

【実施例】以下、本発明の実施例を説明するが、本発明 はこれらに限定されるものではない。

【0047】(実施例1) ポリメチルメタアクリレート 樹脂(以下「PMMA樹脂」という)製の基板を、図1 に示した真空装置1内に複数配置した。真空装置1の内 部にはイオン類2として「MarkII」(米国コモンウ ェルス社製)が配置されており、イオン源2には、導入 30 ガス供給源4からガス流量調節弁5.流置計6を通って 導入ガスが供給される。

【0048】真空度が1×15 'Torrになるまで真空装置 1内を排気した後、流量30500Aで酸素ガスをイオン源2 に供給した。更に、イオン源2のカソード電圧(イオン 瀕の觚速電圧)を 120V. アノード電流を2Aに設定し てイオンビームを発生させ、ホルダー3に支持されてい る墓板の表面にイオンビームを10分間照射して本発明の 光学素子を得た。イオン照射を停止し、光学素子を取り 出したところ、その表面はややアンバー色を呈してい 蒸着処理を行う場合には、蒸着材料に応じて導入ガスの 40 た。分光光度計で反射率を測定したところ、図2に示す ような反射率特性が得られた。なお、同図において破線 はイオン照射処理を行わなかった基板における反射率特 性を示したものである。 図2の結果から、本真能例の光 学素子は、可視光の全領域において、照射処理を行わな かった基板よりも低い反射率特性を示していることが選 解される。

> 【0049】(実施例2)アノード電流を 1.5Aに設定 したこと以外は実施例1と同様にしてイオンビームを発 生させ、ホルダー3に支持されている基板の表面にイオ 50 ンピームを照射した。3分間経過後、イオン照射を継続

1?

したまま、真空鉄置1内に配置された電子銃7により薬 着処理を開始した。蒸着材料としては酸化シリコン (S 10.) を用い、蒸着速度を 0.5mm/秒とし、水晶振動 子膜厚計8の表示が 199mmに達したところで蒸着処理を 停止して本発明の光学素子を得た。光学素子を取り出 し、分光光度計で反射率を測定したところ、図3に示す ような反射率特性が得られた。図3の結果から、本実施 例の光学素子は非常に優れた反射防止性能を示している ことが理解される。また、非晶質ポリオレフィン樹脂 基板を用いた場合も実施例2と同等の効果が得られた。 【0050】(実施例3) PMMA樹脂製の基板に代え て、非晶質ポリオレフィン樹脂 (日本合成ゴム社製) よ りなる基板を真空装置内に複数配置した。真空度が1× 10° Torrになるまで真空装置1内を排気した後、流置30 SCONで四フッ化炭素ガス(CF,)をイオン源2に供給 した。 更に、イオン源2のカソード電圧を 1367、アノ ード電流を2Aに設定してイオンビームを発生させ、ホ ルダー3に支持されている基板の表面にイオンビームを 照射した。3分間経過後、イオン照射を継続したまま、 真空装置1内に配置された電子銃7により蒸者処理を開 始した。蒸着材料としてはフッ化マグネシウムを用い、 蒸着速度を 0.6mm/秒とし、水晶振動子膜厚計 8 の表示 *

11

*が 110mに達したところで蒸着処理を停止して本発明の 光学素子を得た。光学素子を取り出し、分光光度計で反 射率を測定したところ、図4に示すような反射率特性が 得られた。図4の結果から、本実施例の光学素子は非常 に優れた反射防止性能を示していることが理解される。 【0051】(比較例)PMMA制脂製の基板を、図1 に示した真空装置内に複数配置した。真空度が1×10° Torrになるまで真空装置1内を排気した後、液量305CQM で酸素ガスを供給しながら真空装置1内の電子銃7によ (例えば日本合成ゴム社製商品名「ARTON」) 製の 10 り蒸着処理を行った。蒸着材料としては酸化シリコンを 用い、蒸着速度を 0.5mm/秒とし、水晶振動子膜厚計 8 の表示が 125mmに達したところで蒸着処理を停止して光 学素子を得た。光学素子を取り出し、分光光度計で反射 率を測定したところ、図5に示すような反射率特性が得 られた。

> 【0052】上記真施例1~3および比較例により得ら れた光学素子の各々について、テープテストによる付着 力の評価、並びに高温乾燥保存テスト(60°C×3時間) によるクラックの発生の有無を調べたところ、表2に示 20 すように、本実施例の光学素子はいずれも良好な性能を 示した。

[0053]

【表2】

	付着力(10回中 テープ剝離回数)	クラックの発生 (光透過率への影響)	
実施例1	3 त	徴量(光透過率低下なし)	
実施例2	1 🗇	被量 (光透過率低下なし)	
実施例3	0回	全くなし	
比較例	3回	あり (2 %以上の光透過率低下)	

[0054]

【発明の効果】第1の発明の光学素子は、優れた反射防 止性能および増反射防止性能を有し、レーザ光学素子な どの高精度の光学系に対応可能である。しかも、表面層 は、基材の表面上に直接無機物が領層されたものでな く、プラズマ照射またはイオン照射により基材の表面が 改賢されて形成された改賢層であるので、基材との密着 40 性が良好で、熱膨張率の差に起因する機制離やクラック が発生しにくく良好な耐久性を有する。

【0055】第2の発明の光学素子は、更に優れた反射 防止性能および増反射防止性能を有するとともに、衰面 **被覆層を構成する物質を適宜選定することにより、ビー** ムスプリッター性能、反射ミラー性能、透明導電性能、 バンドパスフィルターやダイクロイックフィルターなど の波長分離性能等の光学特性を発現することができる。 しかも、表面接種層は、表面層を介して基材との密着性 が良好で、熱膨張率の差に超因する瞬割離やクラックが 50 計

発生しにくく良好な耐久性を有する。

【0056】本発明の光学素子の製造方法によれば、通 常の蒸着処理やスパッタコート処理などの手段を用いる ことなく、良好な反射防止性能および増反射防止性能を 有する光学素子を得ることができる。

【図面の簡単な説明】

- 【図1】真空装置の概略を示す説明図である。
- 【図2】真施例1の反射率特性曲線である。
- 【図3】実施例2の反射率特性曲線である。
- 【図4】 真施例3の反射率特性曲線である。
- 【図5】比較例の反射率特性曲線である。

【符号の説明】

- 1 真空装置
- 2 イオン源
- 3 ホルダー
- 4 導入ガス供給源
- 5 ガス流置調節弁
- 6 流置計
- 7 電子銃
- 8 水晶振動子膜厚

