Practical No.7

Title: - Introduction to R Graphics and Data Preprocessing

Aim: - To perform data preprocessing using R programming.

Lab Objectives: -

Students will understand following R programming concepts:

- I. Importing dataset
- II. Handling the Missing Data
- III. Encoding Categorical Data
- IV. Splitting the Dataset into the Training and Test sets
- V. Feature Scaling

```
> data <- read.csv("input.csv")</pre>
> data
        name salary start_date
                                    dept
  id
        Rick 623.30 2012-01-01 IT
Dan 515.20 2013-09-23 Operations
1
  3 Michelle 611.00 2014-11-15
                                      IT
        Ryan 729.00 2014-05-11
                                     HR
        Gary 843.25 2015-03-27
                                 Finance
5
  5
        Nina 578.00 2013-05-21
6
  6
                                     TT
       Simon 632.80 2013-07-30 Operations
8 8
        Guru 722.50 2014-06-17
                                 Finance
> data$dept
                "Operations" "IT"
                                         "HR"
                                                     "Finance"
                                                                  "IT"
[1] "IT"
[8] "Finance"
                                                                              "Operations"
> data <- read.csv("data.csv")</pre>
> data
  No Country Age Salary Purchased
   1 France 44
                  72000
       Spain
                  48000
                             Yes
3
   3 Germany
              30
                  54000
                              No
                 61000
       Spain
              38
                              No
   5 Germany
5
              40
                             Yes
                    NA
                  58000
   6 France
              35
                             Yes
                  52000
       Spain NA
                              No
   8 France 48
                  79000
                             Yes
   9 Germany 50
                 83000
                              No
10 10 France 37
                 67000
                             Yes
> View(data)
> nrow(data)
[1] 10
> dim(data)
[1] 10 5
> names(data)
[1] "No"
               "Country"
                          "Age"
                                      "Salary"
                                                 "Purchased"
> rownames(data)
              "3" "4" "5" "6" "7" "8" "9" "10"
 > dfdata = select(data, 'Country', 'Age', 'Purchased')
 > dfdata
    Country Age Purchased
 1
      France 44
 2
       Spain 27
                             Yes
 3
    Germany 30
                              No
       Spain 38
 4
                              No
 5
    Germany
                40
                             Yes
 6
      France 35
                             Yes
 7
       Spain NA
                             No
      France 48
 8
                             Yes
    Germany
                 50
                              No
 10 France 37
                             Yes
```

```
> dfdata1 = filter(dfdata,Country=='France')
> View(dfdata1)
```

^	Country	Age	Purchased	
1	France	44	No	
2	France	35	Yes	
3	France	48	Yes	
4	France	37	Yes	

```
> dfdata2 = filter(dfdata,Country=='France',Age<=40)
> View(dfdata2)
>
```

•	Country	[‡] Age [‡]	Purchased	
1	France	35	Yes	
2	France	37	Yes	

```
> is.na(NA)
[1] TRUE
>
> sum(is.na(data))
[1] 2
> sapply(data,is.numeric)
    No Country Age Salary Purchased
    TRUE FALSE TRUE TRUE FALSE
>
> sum(data$Age,na.rm = TRUE)
[1] 349
>
> View(data)
```

^	No	Country	Age	Salary	Purchased
1	1	France	44	72000	No
2	2	Spain	27	48000	Yes
3	3	Germany	30	54000	No
4	4	Spain	38	61000	No
5	5	Germany	40	NA	Yes
6	6	France	35	58000	Yes
7	7	Spain	NA	52000	No
8	8	France	48	79000	Yes
9	9	Germany	50	83000	No
10	10	France	37	67000	Yes

```
> data$Age <- ifelse(is.na(data$Age),ave(data$Age,FUN = function(x) mean(x,na.rm=TRUE)),data$Age)
> View(data)
> |
```

*	No ‡	Country	Age ‡	Salary	Purchased
1	1	France	44.00000	72000	No
2	2	Spain	27.00000	48000	Yes
3	3	Germany	30.00000	54000	No
4	4	Spain	38.00000	61000	No
5	5	Germany	40.00000	NA	Yes
6	6	France	35.00000	58000	Yes
7	7	Spain	38.77778	52000	No
8	8	France	48.00000	79000	Yes
9	9	Germany	50.00000	83000	No
10	10	France	37.00000	67000	Yes

> data\$Salary <- ifelse(is.na(data\$Salary),ave(data\$Salary,FUN = function(x) mean(x,na.rm=TRUE)),data\$Salary)
> View(data)

_	No ÷	Country	Age	Salary	Purchased
1	1	France	44.00000	72000.00	No
2	2	Spain	27.00000	48000.00	Yes
3	3	Germany	30.00000	54000.00	No
4	4	Spain	38.00000	61000.00	No
5	5	Germany	40.00000	63777.78	Yes
6	6	France	35.00000	58000.00	Yes
7	7	Spain	38.77778	52000.00	No
8	8	France	48.00000	79000.00	Yes
9	9	Germany	50.00000	83000.00	No
10	10	France	37.00000	67000.00	Yes