Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

http://eisc.univalle.edu.co/~oscarbed/MD/

- * Lógica de predicados
- * Concepto de predicado
- * Cuantificadores
- * Cuantificadores anidados

Indique el valor de verdad para la siguiente expresión: "x es mayor que 3"

"x es mayor que 3" es una expresión que se puede dividir en dos partes:

- "x" que es el sujeto de la oración
- "es mayor que 3", que es el predicado

"x es mayor que 3" es una expresión que se puede dividir en dos partes:

- "x" que es el sujeto de la oración
- "es mayor que 3", que es el predicado

• P(x): "x es mayor que 3"

"x es mayor que 3" es una expresión que se puede dividir en dos partes:

- "x" que es el sujeto de la oración
- "es mayor que 3", que es el predicado

"
$$x = y + 3$$
"

"x = y + 3" es una expresión que se puede dividir en dos partes:

- "x" y "y" que conforman el sujeto de la oración
- "x es igual a y mas 3", que es el predicado

"x = y + 3" es una expresión que se puede dividir en dos partes:

- "x" y "y" que conforman el sujeto de la oración
- "x es igual a y mas 3", que es el predicado

"x es una persona que habla inglés"

"x es una persona que habla inglés" es una expresión que se puede dividir en dos partes:

- "x" que es el sujeto de la oración
- "es una persona que habla inglés", que es el predicado

"x es una persona que habla inglés" es una expresión que se puede dividir en dos partes:

- "x" que es el sujeto de la oración
- "es una persona que habla inglés", que es el predicado

R(x): "x habla inglés"

"x es la madre de y"

"x es la madre de y" es una expresión que se puede dividir en dos partes:

- "x" y "y" que conforman el sujeto de la oración
- "x es la madre de y", que es el predicado

"x es la madre de y" es una expresión que se puede dividir en dos partes:

- "x" y "y" que conforman el sujeto de la oración
- "x es la madre de y", que es el predicado

• M(x,y): "x es la madre de y"

- P(x): "x es mayor que 3"
- Q(x,y): "x = y + 3"
- R(x): "x habla inglés"
- M(x,y): "x es la madre de y"

- P(x): "x es mayor que 3"
- Q(x,y): "x = y + 3"
- R(x): "x habla inglés"
- M(x,y): "x es la madre de y"

¿Cuál es el valor de verdad de P(x)?

- P(x): "x es mayor que 3"
- Q(x,y): "x = y + 3"
- R(x): "x habla inglés"
- M(x,y): "x es la madre de y"

Para conocer el valor de verdad de un predicado se debe especificar el sujeto

Sea P(x): "x es mayor que 3",

- P(10) indica la proposición "10 es mayor que 3"
- P(2) indica la proposición "2 es mayor que 3"

Sea P(x): "x es mayor que 3",

- P(10) indica la proposición "10 es mayor que 3"
- P(2) indica la proposición "2 es mayor que 3"

- ¿Cuál es el valor de verdad de P(10)?
- ¿Cuál es el valor de verdad de P(2)?

Sea P(x): "x es mayor que 3",

- P(10) indica la proposición "10 es mayor que 3"
- P(2) indica la proposición "2 es mayor que 3"

- P(10) es verdadero
- P(2) es falso

Sean:

- P(x): "x es mayor que 3"
- Q(x,y): "x = y + 3"
- R(x): "x habla inglés"
- M(x,y): "x es la madre de y"

Indique el valor de verdad de las siguientes proposiciones:

- P(0), P(100)
- Q(7,4), Q(3,2)
- R(AlvaroUribe), R(BarackObama)
- M(María, Jesús), M(AmparoGrisales, AlvaroUribe)

Expresar en lógica de predicados los siguientes enunciados y mostrar ejemplos de expresiones que sean falsas y otras que sean verdaderas:

$$\bullet x + y = z$$

- x es un mes de 31 días
- x + 1 > x

$$P(x,y,z)$$
: "x + y = z"

- P(2,3,5) es verdadero
- P(1,2,0) es falso

Q(x): "x es un mes de 31 días"

- · Q(diciembre) es verdadero
- Q(febrero) es falso

$$R(x)$$
: "x + 1 > x"

- R(2) es verdadero
- No hay una expresión que sea falsa

Dominio

Cada variable lógica en un predicado tiene asociado un dominio o Universo del discurso, esto es, un conjunto de posibles valores

Dominio

Cada variable lógica en un predicado tiene asociado un dominio o Universo del discurso, esto es, un conjunto de posibles valores

• M(x): "x es un mes de 31 días"

Los posibles valores que puede tomar x son:

{Enero, Febrero, Marzo, Abril, Mayo, Junio, Julio, Agosto, Septiembre, Octubre, Noviembre, Diciembre}

D(x): "x es un número entero diferente de 1"

El dominio de x son los números enteros Z

Considere el siguiente predicado M(x) donde x tiene como dominio los números enteros $Z=\{-\infty,...,-3,-2,-1,0,1,2,3,...,\infty\}$

M(x): "x+1>x"

Considere el siguiente predicado M(x) donde x tiene como dominio los números enteros $Z=\{-\infty,...,-3,-2,-1,0,1,2,3,...,\infty\}$

$$M(x)$$
: "x+1>x"

Indique el valor de verdad de las siguientes expresiones:

- M(-2)
- M(-1)
- M(0)
- M(1)
- M(2)

Considere el siguiente predicado M(x) donde x tiene como dominio los números enteros $Z=\{-\infty,...,-3,-2,-1,0,1,2,3,...,\infty\}$

$$M(x): "x+1>x"$$

M(-2): "-1>-2" es verdadero

M(-1): "0>-1" es verdadero

M(0): "1>0" es verdadero

M(1): "2>1" es verdadero

M(2): "3>2" es verdadero

Considere el siguiente predicado M(x) donde x tiene como dominio los números enteros $Z=\{-\infty,...,-3,-2,-1,0,1,2,3,...,\infty\}$

$$M(x): "x+1>x"$$

M(x) es cierto para todos los elementos del dominio de x, esto se expresa por medio del cuantificador universal

$$\forall x M(x)$$

Cuantificación universal

La cuantificación universal de P(X), expresada como $\forall x P(x)$, es la proposición:

"P(x) es verdadero para todos los valores de x en el universo del discurso"

Indique el valor de verdad de las siguientes expresiones:

• $\forall x M(x)$, donde M(x): "x>2", dominio los enteros

Indique el valor de verdad de las siguientes expresiones:

- $\forall x M(x)$, donde M(x): "x>2", dominio los enteros
- $\forall x \ N(x)$, donde N(x): " $x^2 \ge x$ ", dominio los reales

Indique el valor de verdad de las siguientes expresiones:

- $\forall x M(x)$, donde M(x): "x>2", dominio los enteros
- $\forall x \ N(x)$, donde N(x): " $x^2 \ge x$ ", dominio los reales
- $\forall x P(x)$, donde P(x): "x ve Discretas por primera vez", dominio los estudiantes de este salón
- $\forall x \ E(x)$, donde E(x): "x tiene el promedio sobre 3.2", dominio los estudiantes de este salón
- $\forall x \ T(x)$, donde T(x): "x trabaja", dominio los estudiantes de este salón

Cuantificación universal

Expresión	¿Cuándo es cierta?	¿Cuándo es falsa?
∀x P(x)	P(x) es verdadera para cada x del dominio	Por lo menos hay un valor de x para el cual no se cumple P(x)

Cuantificación existencial

La cuantificación existencial de P(X), expresada como $\exists x P(x)$, es la proposición:

"P(x) es verdadero para alguno de los valores de x en el universo del discurso"

Indique el valor de verdad de las siguientes expresiones:

 $\exists x \ M(x)$, donde M(x): "x>3", dominio los enteros

Indique el valor de verdad de las siguientes expresiones:

 $\exists x \ M(x)$, donde M(x): "x>3", dominio los enteros

 $\exists x \ N(x)$, donde N(x): "x=x+1", dominio los enteros

Indique el valor de verdad de las siguientes expresiones:

```
\exists x \ M(x), \ donde \ M(x): "x>3"
```

$$\exists x \ N(x), \ donde \ N(x): "x=x+1"$$

 $\exists x P(x)$, donde P(x): "x ve Discretas por primera vez"

 $\exists x \ E(x)$, donde E(x): "x tiene el promedio sobre 4.7"

 $\exists x \ T(x)$, donde T(x): "x trabaja"

Cuantificación existencial

Expresión	¿Cuándo es cierta?	¿Cuándo es falsa?
	P(x) es verdadera para algún x	P(x) es falsa para todos los x del dominio

Cuantificadores anidados

Se pueden utilizar varios y diferentes cuantificadores en la misma proposición

- ∀x∀y (x+y=y+x)
- ∀x∃y (x+y=0)
- ∃x∀y (x·y=1)
- ∃x∃y (x+y=x-y)

Dada la expresión

 $\forall x \forall y \ (x+y=y+x)$, dominio los enteros indica "para todo x y para todo y, se cumple que x+y=y+x"

Dada la expresión

 $\forall x \forall y \ (x+y=y+x)$, dominio los enteros indica "para todo x y para todo y, se cumple que x+y=y+x"

· La expresión es verdadera

Indique el valor de verdad de la expresión $\forall x \forall y (x+y=x-y)$, dominio los enteros

Indique el valor de verdad de la expresión

 $\forall x \forall y (x+y=x-y)$, dominio los enteros

La expresión es falsa porque para x=1, y=2 no se cumple

Indique el valor de verdad de la expresión $\forall x \forall y (x \cdot y = y \cdot x)$, dominio los enteros

Indique el valor de verdad de la expresión $\forall x \forall y \ (x \cdot y = y \cdot x)$, dominio los enteros La expresión es **verdadera**

Indique el valor de verdad de la expresión

 $\forall x \forall y ((x>0 \land y<0) \rightarrow x\cdot y<0)$, dominio los enteros

Indique el valor de verdad de la expresión

 $\forall x \forall y ((x>0 \land y<0) \rightarrow x\cdot y<0)$, dominio los enteros

La expresión es verdadera

Indique el valor de verdad de la expresión

 $\forall x \forall y ((x>0 \land y>0) \rightarrow x-y>0)$, dominio los enteros

Indique el valor de verdad de la expresión

 $\forall x \forall y ((x>0 \land y>0) \rightarrow x-y>0)$, dominio los enteros

La expresión es **falsa** porque para x=1, y=2, x-y=-1 no es positivo

Expresión	¿Cuándo es cierta?	¿Cuándo es falsa?
∀x∀yP(x,y)	para todos los	Hay al menos un par x, y para el cual P(x,y) es falso

Indique el valor de verdad de la expresión

 $\exists x \exists y (x+y=x-y)$, dominio los enteros

Representa la expresión

"Existe x, existe y tal que x+y=x-y"

Indique el valor de verdad de la expresión

 $\exists x \exists y (x+y=x-y)$, dominio los enteros

La expresión es **verdadera** porque para x=1, y=0 se cumple que 1+0=1-0=1

Indique el valor de verdad de la expresión $\exists x \exists y (x+y \cdot x-y)$, dominio los enteros

Indique el valor de verdad de la expresión

 $\exists x \exists y (x+y < x-y)$, dominio los enteros

La expresión es verdadera porque para x=1, y=-5 se cumple que -4<6

Indique el valor de verdad de la expresión

$$\exists x \exists y \sqrt{(x+y)} = (x+y)$$
, dominio los reales

Indique el valor de verdad de la expresión

$$\exists x \exists y \sqrt{(x+y)} = (x+y)$$
, dominio los reales

La expresión es verdadera porque para x=0.6, y=0.4 se cumple que $\sqrt{(0.6+0.4)} = (0.6+0.4) = 1.0$

Indique el valor de verdad de la expresión $\exists x \exists y (x+y=6 \land x-y=5)$, dominio los reales

Indique el valor de verdad de la expresión $\exists x \exists y (x+y=6 \land x-y=5)$, dominio los reales La expresión es **verdadera**, x=11/2, y=1/2

Indique el valor de verdad de la expresión $\exists x \exists y (x+y=2 \land x-y=0)$, dominio los enteros

Indique el valor de verdad de la expresión

$$\exists x \exists y (x+y=2 \land x-y=0)$$
, dominio los enteros

La expresión es **verdadera** porque para x=1, y=1 se cumple que $1+1=2 \land 1-1=0$

Expresión	¿Cuándo es cierta?	¿Cuándo es falsa?
∃ x ∃ y P(x , y)	Existe al menos un par x,y para el cual P(x,y) es verdadera	P(x,y) es falso para todos los pares x, y

Indique el valor de verdad de la expresión $\forall x \exists y (x+y=0)$, dominio los enteros

Indique el valor de verdad de la expresión

 $\forall x \exists y (x+y=0)$, dominio los enteros

La expresión representa la frase:

Para todo x, existe un y tal que x+y=0

Indique el valor de verdad de la expresión

 $\forall x \exists y (x+y=0)$, dominio los enteros

La expresión representa la frase:

Para todo x, existe un y tal que x+y=0

x=1, existe y tal que x+y=0?

x=2, existe y tal que x+y=0?

x=-5, existe y tal que x+y=0?

Indique el valor de verdad de la expresión

$$\forall x \exists y (x+y=0)$$

La expresión representa la frase:

Para todo x, existe un y tal que x+y=0

x=1, existe y=-1 tal que x+y=0

x=2, existe y=-2 tal que x+y=0

x=-5, existe y=5 tal que x+y=0

Indique el valor de verdad de la expresión

$$\forall x \exists y (x+y=0)$$

La expresión es **verdadera** porque para todo x existe un y tal que se cumple x+y=0

Indique el valor de verdad de la expresión $\forall x \exists y (x \cdot y = 1)$, dominio los reales

Indique el valor de verdad de la expresión

 $\forall x \exists y (x \cdot y = 1)$, dominio los reales

x=1, existe y tal que $x\cdot y=1$?

x=2, existe y tal que $x\cdot y=1$?

x=-5, existe y tal que $x\cdot y=1$?

x=0, existe y tal que $x\cdot y=1$?

Indique el valor de verdad de la expresión

$$\forall x \exists y (x \cdot y = 1)$$
, dominio los reales

$$x=1$$
, existe $y=1$ tal que $x\cdot y=1$

$$x=2$$
, existe $y=1/2$ tal que $x\cdot y=1$

$$x=-5$$
, existe $y=-1/5$ tal que $x\cdot y=1$

$$\dot{c}$$
Se cumple $\forall x \exists y (x \cdot y = 1)$?

Indique el valor de verdad de la expresión

 $\forall x \exists y (x \cdot y = 1)$, dominio los reales

La expresión es **falsa** porque para x=0 no existe y tal que $x\cdot y=1$

Indique el valor de verdad de la expresión $\forall x \exists y \ (x=y^2)$, dominio los reales

Indique el valor de verdad de la expresión

 $\forall x \exists y (x=y^2)$, dominio los reales

x=1, existe y tal que $x=y^2$?

x=2, existe y tal que $x=y^2$?

x=-1, existe y tal que $x=y^2$?

x=-2, existe y tal que $x=y^2$?

Indique el valor de verdad de la expresión

 $\forall x \exists y (x=y^2)$, dominio los reales

x=1, existe y=1 tal que $x=y^2$?

x=2, existe y= $\sqrt{2}$ tal que x=y²?

x=-1, no existe y tal que $x=y^2$?

x=-2, no existe y tal que $x=y^2$?

Indique el valor de verdad de la expresión

 $\forall x \exists y (x=y^2)$, dominio los reales

La expresión es **falsa** porque para x=-1, no existe y tal que $x=y^2$

Indique el valor de verdad de la expresión $\forall x \exists y (x^2 < y)$, dominio los enteros

Indique el valor de verdad de la expresión

 $\forall x \exists y (x^2 < y)$, dominio los enteros

x=1, existe y=2 tal que $x^2 < y$

x=2, existe y=5 tal que $x^2 < y$

x=3, existe y=10 tal que $x^2 < y$

x=-1, existe y=2 tal que $x^2 < y$

Indique el valor de verdad de la expresión $\forall x \exists y \ (x^2 < y)$, dominio los enteros La expresión es **verdadera**

Indique el valor de verdad de la expresión

$$\forall x \exists y \left(\frac{x}{y} = 1\right), \text{ dominio los enteros}$$

Indique el valor de verdad de la expresión

$$\forall x \exists y \left(\frac{x}{y} = 1\right), \text{ dominio los enteros}$$

x=1, existe y tal que x/y=1?

x=2, existe y tal que x/y=1?

x=-1, existe y tal que x/y=1?

Indique el valor de verdad de la expresión

$$\forall x \exists y \left(\frac{x}{y} = 1\right), \text{ dominio los enteros}$$

$$x=1$$
, existe $y=1$ tal que $1/1=1$

$$x=2$$
, existe $y=2$ tal que $2/2=1$

$$x=-1$$
, existe $y=-1$ tal que $1/-1=1$

x=-1, existe y=-1 tal que 1/-1=1
¿Se cumple
$$\forall x \exists y \left(\frac{x}{y} = 1\right)$$
?

Indique el valor de verdad de la expresión

$$\forall x \exists y \left(\frac{x}{y} = 1\right)$$
, dominio los enteros

La expresión es **falsa**, porque para x=0 no existe y que cumpla la condición

Expresión	¿Cuándo es cierta?	¿Cuándo es falsa?
∀x∃y P(x,y)		Hay al menos un x para el cual no existe y tal que se cumpla P(x,y)

Indique el valor de verdad de la expresión

$$\exists x \forall y (x+y=0)$$

La expresión representa la frase:

Existe un x (el mismo x) para todo y tal que x+y=0

Indique el valor de verdad de la expresión

$$\exists x \forall y (x+y=0)$$

La expresión representa la frase:

Existe un x (el mismo x) para todo y tal que x+y=0

- x=-1 sirve para y=1
- *x=-2 sirve para y=2*
- *x=-3 sirve para y=3*
- x=-4 sirve para y=4

Indique el valor de verdad de la expresión

La expresión representa la frase:

Existe un x (el mismo x) para todo y tal que x+y=0

No hay un solo x que sirva para todo y

Indique el valor de verdad de la expresión

$$\exists x \forall y (x+y=0)$$

La expresión representa la frase:

Existe un x (el mismo x) para todo y tal que x+y=0No hay un mismo valor de x que sirva para todo y, por lo tanto la sentencia es **falsa**

Indique el valor de verdad de la expresión $\exists x \forall y (x \cdot y = 0)$

Indique el valor de verdad de la expresión $\exists x \forall y (x \cdot y = 0)$

x=0 sirve para y=1 porque 0.1=0

x=0 sirve para y=2 porque 0.2=0

x=0 sirve para y=3 porque 0.3=0

x=0 sirve para y=4 porque 0.4=0

Indique el valor de verdad de la expresión $\exists x \forall y (x \cdot y = 0)$

$$x=0$$
 sirve para $y=1$ porque $0.1=0$

$$x=0$$
 sirve para $y=2$ porque $0.2=0$

$$x=0$$
 sirve para $y=3$ porque $0.3=0$

$$x=0$$
 sirve para $y=4$ porque $0.4=0$

Es el mismo x el que sirve para todo y

Indique el valor de verdad de la expresión

$$\exists x \forall y (x \cdot y = 0)$$

x=0 sirve para todo y.

$$0.2=0$$

$$0.3=0$$

Indique el valor de verdad de la expresión

$$\exists x \forall y (x \cdot y = 0)$$

x=0 sirve para todo y.

0.0=0

0.1=0

0.2=0

0.3=0

· La expresión es verdadera

Indique el valor de verdad de la expresión

$$\exists x \forall y \left(\frac{y}{3} + x = \frac{y}{3}\right), \text{ dominio son los enteros}$$

Indique el valor de verdad de la expresión

$$\exists x \forall y \left(\frac{y}{3} + x = \frac{y}{3}\right), \text{ dominio son los enteros}$$

x=0 sirve para todo y. La expresión es verdadera

Indique el valor de verdad de la expresión $\exists x \forall y (x \cdot y = y)$

Indique el valor de verdad de la expresión

$$\exists x \forall y (x \cdot y = y)$$

x=1 sirve para todo y

$$1.1=1$$

· La expresión es verdadera

Indique el valor de verdad de la expresión $\exists x \forall y (y+x=y-x)$

Indique el valor de verdad de la expresión

$$\exists x \forall y (y+x=y-x)$$

x=0 sirve para todo y

· La expresión es verdadera

Expresión	¿Cuándo es cierta?	¿Cuándo es falsa?
∃x∀y P(x,y)	Hay un x para el cual P(x,y) es verdadero para todos los valores de y	No existe un mismo x que sirva para todo y

Sea Q(x,y): "x+y=x-y". Si el dominio para ambas variables consiste de los enteros, indique el valor de verdad de las siguientes sentencias:

- Q(1,1)
- Q(2,0)
- ∀y Q(1,y)
- ∃x Q(x,2)
- ∀x∃y Q(x,y)

Sea Q(x,y): "x+y=x-y". Si el dominio para ambas variables consiste de los enteros, indique el valor de verdad de las siguientes sentencias:

- Q(1,1), falso $(2 \neq 0)$
- Q(2,0), verdadero (2=2)
- $\forall y \ Q(1,y)$, falso (para y=2, $3\neq -1$)
- $\exists x \ Q(x,2)$, falso (no existe x tal que x+2=x-2)
- $\forall x \exists y \ Q(x,y)$, verdadero (y=0)

Determine el valor de verdad de cada una de las siguientes sentencias tomando como dominio los números enteros:

- ∃x∃y (x+y=4 ∧ x-y=1)
- $\exists x \exists y (x+y=4 \land x-y=2)$
- ∃x∃y (x+y≠y+x)
- ∀x∃y (x+y=1)
- ∃x∀y (x+y=1),
- $\exists x \forall y (x^2+y^2=y^2)$

Determine el valor de verdad de cada una de las siguientes sentencias tomando como dominio los números enteros:

- $\exists x \exists y (x+y=4 \land x-y=1)$, **falso** (no existen los enteros)
- $\exists x \exists y (x+y=4 \land x-y=2)$, verdadero (x=3, y=1)
- $\exists x \exists y (x+y\neq y+x)$, falso (no existen x y y)
- $\forall x \exists y (x+y=1)$, verdadero (dado un x, existe y)
- $\exists x \forall y (x+y=1)$, falso (el mismo x no sirve en todos los casos)
- $\exists x \forall y (x^2+y^2=y^2)$, verdadero (x=0 sirve en todos los casos)

Pruebe la equivalencia, $(p\rightarrow q)\land (p\rightarrow r) \equiv p\rightarrow (q\land r)$

Pruebe la equivalencia, $(p\rightarrow q)\land (p\rightarrow r) \equiv p\rightarrow (q\land r)$

р	q	r	p→q	p→r	(p→q)∧(p→r)	q∧r	p→q∧r
V	\	٧	V	V	V	V	V
V	\	Œ	V	F	F	F	F
V	۴	٧	F	V	F	F	F
V	Œ	Œ	F	F	F	۴	F
F	>	>	V	V	V	V	V
F	>	Œ	V	V	V	F	V
F	4	٧	V	V	V	F	V
F	F	F	V	V	V	F	V

Pruebe la equivalencia, $\neg [(p \land q) \rightarrow (p \rightarrow q)] \equiv F$

Pruebe la equivalencia, $\neg [(p \land q) \rightarrow (p \rightarrow q)] = F$

$$\neg[(p \land q) \Rightarrow (p \Rightarrow q)] \equiv \neg[\neg(p \land q) \lor (p \Rightarrow q)] \qquad p \Rightarrow q \equiv \neg p \lor q$$

$$\equiv \neg[(\neg p \lor \neg q) \lor (p \Rightarrow q)] \qquad \text{De Morgan}$$

$$\equiv \neg[(\neg p \lor \neg q) \lor (\neg p \lor q)] \qquad p \Rightarrow q \equiv \neg p \lor q$$

$$\equiv \neg[(\neg p \lor \neg q) \lor (q \lor \neg p)] \qquad \text{Conmutativa}$$

$$\equiv \neg[\neg p \lor (\neg q \lor q) \lor \neg p] \qquad \text{Asociativa}$$

$$\equiv \neg(\neg p \lor V \lor \neg p) \qquad \text{Negación}$$

$$\equiv \neg(V) \qquad \text{Dominación}$$

$$\equiv F \qquad \neg V \equiv F$$