CS170–Spring 2019 — Homework 3 Solutions

Ran Liao, SID 3034504227

February 7, 2019

Collaborators: Yilin Wu, Jingyi Xu, Renee Pu

1 Study Group

Name	SID
Ran Liao	3034504227
Yilin Wu	3034503863
Jingyi Xu	3032003885
Renee Pu	3032083302

2 Maximum Subarray Sum

(a) **Description**

This algorithm will scan the array twice to find the answer.

Assume index starts with 0. Let A[i] be the *i*th element in input array, and d[i] be the maximum sum of subarrays that ends with index *i*. This array will be calculated during the first scan. First, let d[0] equals to A[0]. Then, iterate variable *i* from 1 to n-1. If the sum of d[i-1] and A[i] is larger than A[i], assign d[i] with d[i-1] + A[i]. Otherwise, assign it with A[i]. In the second scan, we can retrieve the maximum value in *d* array, and that is the answer.

(b) Proof of Correctness

Before iteration, d[0] equals to A[0]. This is indeed the maximum sum of subarray that ends with index 0, which contains only the first element. During iteration, there're only two possible situations. Either (1) append A[i] to the maximum subarray that ends with A[i-1] will result a larger sum, or (2) a subarray that contains only A[i] itself will result to a better solution. Therefore, by taking the maximum value between d[i-1] + A[i] and A[i], we will guarantee the correctness of d[i]. Therefore, we can guarantee the correctness of first scan. And in the second scan, the largest value in array d will be considered as the final answer. This value must be correct because it is the maximum possible sum of subarrays no matter where it ends.

(c) Runtime Analysis

This algorithm takes only 2 scan, each of them will cost O(n) time. So the total runtime is O(n).

3 Modular Fourier Transform

(a)
$$1*1*1*1=1\equiv 1 (\text{mod})5$$

$$2*2*2*2=16\equiv 1 (\text{mod})5$$

$$3*3*3*3=81\equiv 1 (\text{mod})5$$

$$4*4*4=256\equiv 1 (\text{mod})5$$

$$1+\omega+\omega^2+\omega^3=1+2+4+8=15\equiv 0 (\text{mod})5$$

(b)
$$\vec{u} = M_4(\omega)\vec{v} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 \\ 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^3 & \omega^6 & \omega^9 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 3 \\ 1 & 4 & 1 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 2 \\ 2 \end{bmatrix}$$

$$\vec{v} = \frac{1}{4} M_4(\omega^{-1}) \vec{u} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 2 \\ 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 2 \\ 1 & 4 & 1 & 4 \\ 1 & 2 & 4 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 2 \\ 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0 \\ 4 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix}$$

(d) The given two polynomials can be written into the following form.

$$2x^{2} + 3 \equiv (3 + 0x + 2x^{2} + 0x^{3}) \pmod{5}$$
$$-x + 3 \equiv (3 + 4x + 0x^{2} + 0x^{3}) \pmod{5}$$

Let \vec{a} be $[3,0,2,0]^T$, and \vec{b} be $[3,4,0,0]^T$.

First, perform FT with \vec{a} and \vec{b} .

(c)

$$\vec{a}' = M_4(\omega)\vec{a} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 \\ 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^3 & \omega^6 & \omega^9 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 3 \\ 1 & 4 & 1 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
$$\vec{b}' = M_4(\omega)\vec{b} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 \\ 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^3 & \omega^6 & \omega^9 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 3 \\ 1 & 4 & 1 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 4 \\ 0 \end{bmatrix}$$

Second, multiply \vec{a}' and \vec{b}' elementwise.

$$\vec{c}' = \vec{a}' * \vec{b}' = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} * \begin{bmatrix} 2 \\ 1 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Then, perform inverse FT with \vec{c}' .

$$\vec{c} = \frac{1}{4} M_4(\omega^{-1}) \vec{c}' = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 2 \\ 1 & 4 & 1 & 4 \\ 1 & 2 & 4 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ 3 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \\ 3 \end{bmatrix}$$

Therefore, we get the answer $4 + 2x + x^2 + 3x^3$, which of course is with respective to module 5.

4 Polynomial from roots

(a) Main Idea

This problem is equivalent to compute coefficients of expression $\prod_{i=1}^{n}(x-r_i)$, which is actually the product of n polynomials. The idea is split this expression into 2 components with equal length recursively, solve these 2 subexpressions and multiply them together to get the final answer.

(b) Runtime Analysis

The algorithm will use divide and conquer strategy. Specifically, it will split the original expression into 2 equal length subexpressions. And it will use FFT to multiply 2 sub-expression together, which will cost $O(\frac{n}{2}\log\frac{n}{2})$ time. Therefore, we have the following recursive formula:

$$\begin{split} T(n) &= 2T(\frac{n}{2}) + \frac{n}{2}\log\frac{n}{2} \\ &= 2^2T(\frac{n}{2^2}) + \frac{n}{2}\log\frac{n}{2} + \frac{n}{2}\log\frac{n}{2^2} \\ &= 2^kT(\frac{n}{2^k}) + \frac{n}{2}\log\frac{n}{2} + \frac{n}{2}\log\frac{n}{2^2} + \ldots + \frac{n}{2}\log\frac{n}{2^k} \\ &= 2^{\log n}T(\frac{n}{2^{\log n}}) + \frac{n}{2}\log\frac{n}{2} + \frac{n}{2}\log\frac{n}{2^2} + \ldots + \frac{n}{2}\log\frac{n}{2^{\log n}} \\ &= n + \frac{n}{2}(\log\frac{n}{2} + \log\frac{n}{2^2} + \ldots + \log\frac{n}{2^{\log n}}) \\ &= n + \frac{n}{2}\log(\frac{n^{\log n}}{2^{\frac{(1+\log n)\log n}{2}}}) \\ &= n + \frac{n\log n}{2}\log(\frac{n}{2^{\frac{(1+\log n)\log n}{2}}}) \\ &= n + \frac{n\log n}{2}(\log n - \frac{(1+\log n)}{2}\log 2) \\ &= n + \frac{n\log^2 n}{2} - \frac{n\log n(1+\log n)}{4} \\ &= n + \frac{n\log^2 n}{4} - \frac{n\log n}{4} \\ &= O(n\log^2 n) \end{split}$$

5 Triple sum

(a) Main Idea

We can construct the following polynomial P base on elements in array A.

$$P = \sum_{i=0}^{n-1} x^{A[i]}$$

Then we compute P^3 using FFT. Index i, j, k exists if and only if the coefficient of x^n in P^3 is not 0.

(b) Pseudocode

```
\begin{split} &\text{IF-INDEX-EXIST}(A) \{\\ &n \leftarrow \text{LEN}(A)\\ &P \leftarrow \text{empty array with length } n, \text{ and initialize them with } 0\\ &\text{for } (i=0;i < n;i++) \{\\ &P[A[i]]++\\ &\}\\ &P^2 \leftarrow \text{FFT}(P,P)\\ &P^3 \leftarrow \text{FFT}(P^2,P)\\ &\text{if } (\ P_3[n] \neq 0\ )\ \{\\ &\text{RETURN } True\\ &\} \text{ else } \{\\ &\text{RETURN } False\\ &\} \ \} \end{split}
```

(c) Runtime Analysis

Construct polynomial P will cost O(n) time, and compute P^3 by perform FFT twice will cost $O(n \log n)$ time. Therefore, the total runtime is $O(n \log n)$.

(d) Proof of Correctness

$$P^{3} = \sum_{a=0}^{n-1} \sum_{b=0}^{n-1} \sum_{c=0}^{n-1} P[a] \cdot P[b] \cdot P[c] \cdot x^{a+b+c}$$

All coefficients in P is larger than or equal to 0. Therefore, if the coefficient of x^n in P^3 is not 0, there exists a, b, c such that a + b + c = n and both P[a], P[b], P[c] are not 0. Notice that if P[x] is not 0, original array A must contain a value that equals to x. Hence, the original array must contain value that equals to a, b, c respectively, and these three values have sum equals to n.

6 Searching for Viruses

(a) (i) Main Idea

This is a brute force algorithm. Possible match of s_1 in s_2 can start with every position from 0 to m-n. Therefore, I can just iterate through all of it, and check whether the next n characters differ in at most k locations.

(ii) Runtime Analysis

There're at most m possible starting locations, and checking each of them will cost O(n) time. Therefore, the runtime is O(nm).

(iii) Proof of Correctness

The correctness of a brute force algorithm is obvious and trivial.

(b) (i) **Description**

I will assume string s_1 and s_2 are binary string that contain only 0 and 1. This will not affect the correctness of this algorithm, since all real word characters can be interpreted as a 8-bits binary sequence.

First, I'd like to define this problem more formally. Denote P(x) as a function that receive an integer index x and give us another integer. The following is the formal expression of P(x).

$$P(x) = \sum_{i=0}^{n-1} (s_1[i] - s_2[x - n + 1 + i])^2$$

Therefore, we have the following deduction:

$$P(x) \le k \iff s_2 \text{ matches } s_1 \text{ from index } x - n + 1 \text{ to } x$$
 (1)

This is true because I assume all characters are either 0 or 1. Therefore, each time s_2 differs from s_1 will increase the value of corresponding P(x) by 1.

The whole problem is hence equivalent to find all possible x that make $P(x) \leq k$.

To simplified P(x), denote s_m as the string that is mirror with s_1 . This property can be expressed like this:

$$s_m[i] = s_1[n-1-i] \quad \forall \ 0 \le i \le n-1$$

Therefore P(x) can be expressed like this:

$$P(x) = \sum_{i=0}^{n-1} \left[s_m[n-1-i] - s_2[x-n+1+i] \right]^2$$

$$= \sum_{i=0}^{n-1} \left[(s_m[n-1-i])^2 - 2s_m[n-1-i]s_2[x-n+1+i] + (s_2[x-n+1+i])^2 \right]$$

$$= \sum_{i=0}^{n-1} (s_m[n-1-i])^2 - 2\sum_{i=0}^{n-1} \left[s_m[n-1-i]s_2[x-n+1+i] \right] + \sum_{i=0}^{n-1} (s_2[x-n+1+i])^2$$

$$= \sum_{i=0}^{n-1} (s_m[n-1-i]) - 2\sum_{i=0}^{n-1} \left[s_m[n-1-i]s_2[x-n+1+i] \right] + \sum_{i=0}^{n-1} (s_2[x-n+1+i])$$

The last step is correct because I assume s_1 and s_2 are binary string, so their squares are equals to themself.

In this long expression, $\sum_{i=0}^{n-1} (s_m[n-1-i])$ is irrelevant to x and can be computed within O(n) time.

Denote s_{ps} to be an array that $s_{ps}[i]$ is $\sum_{j=0}^{i} s_2[j](ps)$ stands for prefix sum). s_{ps} can be computed with the following formula:

$$s_{ps}[i] = s_{ps}[i-1] + s_2[i]$$

This can be done by scanning s_2 once. Therefore, it will cost O(m) time. And $\sum_{i=0}^{n-1} (s_2[x-n+1+i])$ will be equal to $s_{ps}[x] - s_{ps}[x-n]$

 $\sum_{i=0}^{n-1} \left[s_m[n-1-i] s_2[x-n+1+i] \right] \text{ is hard to compute and needs true inspiration. Notice that the sum of the index of } s_m \text{ and } s_2 \text{ is } x. \text{ This is the property I will use later.}$

Suppose A and B are the following polynomials. Let C be the product of them.

$$A = a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1}$$
$$B = b_0 + b_1 x + b_2 x^2 + \dots + b_{m-1} x^{m-1}$$

The coefficient of C can be expressed like this:

$$c_x = \sum_{i=0}^{x} (a_i \cdot b_{x-i})$$

Notice that the sum of subscripts of a and b is x, which is exactly identical with the property I mentioned early except that A and B have equal length. Therefore, I define the string s_m as follows.

$$s\prime_m[i] = \begin{cases} s_m[i] & i < n \\ 0 & n \le i < m \end{cases}$$

Hence, we can consider st_m and s_2 to be the coefficients of two polynomial respectively. Then use FFT and IFFT to compute the coefficient of their product. c_x is the value of $\sum_{i=0}^{n-1} \left[s_m[n-1-i]s_2[x-n+1+i] \right].$ This will cost $O(m\log m)$ time.

By now P(x) is fully calculable. Then, deduction (1) will give the final answer.

(ii) Runtime Analysis

Compute the first part of P(x) will cost O(n) time, and compute the third part will cost O(m) time. Perform FFT and IFFT with problem size m will cost $O(m \log m)$ time. In conclusion, the total runtime is $O(m \log m)$

7 Breadth-First Search

Step	Node Processed	Queue
1		A
2	A	B-D
3	В	D-C-E
4	D	C-E
5	С	E-F
6	E	F
7	F	

Figure 1: BFS Tree

8 Breadth-First Search

(a) Main Idea

First compute the meta-graph G^M of the original graph G. This can be done by first compute the strong connected components and then construct new graph correspondingly. Then construct the reverse graph of G^M and denote it as G^{MR} . Run DFS algorithm on G^{MR} and record the vertex that has **largest** post number. Denote such vertex as v_s . Run **single** explore() function on v_s in graph G^M . Vertex v exists if and only if v_s can reach all vertices in G^M within this explore.

(b) **Proof of Correctness**

Every pair of vertices can reach each other if they're in the same strong connected component. Therefore, the original proposition is equivalent to check whether a vertex in G^M exists that can reach all other vertices within G^M . The vertex with largest post number in G^{MR} is a sink and hence is a source in graph G^M . Obviously, this source vertex is the only vertex that be possible to reach all other vertices. So just run another explore() to check whether it can.

(c) Runtime Analysis

Compute the meta-graph G^M will cost O(|V|+|E|) time. Construct the reverse graph G^{MR} also will cost O(|V|+|E|) time. Run DFS search on graph G^M and G^{MR} will still cost O(|V|+|E|) time. Therefore the total runtime is O(|V|+|E|)