Fluid: A Programming Language for Explorable, Transparent Research Outputs

Roly Perera

Institute of Computing for Climate Science, University of Cambridge School of Computer Science, University of Bristol

research papers

Open science is increasingly the norm..

research papers

Open science is increasingly the norm..

research papers

Open science is increasingly the norm..

research papers

Open science is increasingly the norm..

research papers

Open science is increasingly the norm..

research papers

Open science is increasingly the norm..

research papers

Open science is increasingly the norm..

research papers

Open science is increasingly the norm..

visual journalism

interactive simulation

research papers

Open science is increasingly the norm..

visual journalism

interactive simulation

research papers

interactive simulation

Open science is increasingly the norm..

But research outputs remain opaque: disconnected from the data and computations used to produce them

visual journalism

research papers

Open science is increasingly the norm..

visual journalism

interactive simulation

research papers

Open science is increasingly the norm..

But research outputs remain opaque: disconnected from the data and computations used to produce them

What can we do to make these artifacts more transparent and self-explanatory?

visual journalism

interactive simulation

Demo: non-renewable energy charts

```
let countries = ["BRA", "EGY", "IND", "JPN"];
let totalFor year country =
   let [ row ] = [ row | row \leftarrow nonRenewables, row.year = year, row.country = country ]
   in row.nuclearOut + row.gasOut + row.coalOut + row.petrolOut;
let stack year = [ \{ y : country, z : totalFor year country \} | country <math>\leftarrow countries ];
let yearData year = [row \mid row \leftarrow nonRenewables, row.year = year, row.country `elem` countries ]
in MultiView {
   "bar-chart" := BarChart {
      caption: "Non-renewables output",
      size: { width: 275, height: 185 },
      stackedBars: [ { x: numToStr year, bars: stack year } | year \leftarrow [2014..2018] ]
   "scatter-plot" := ScatterPlot {
      caption: "",
      points: [ {
         x: sum [ row.nuclearOut | row \leftarrow yearData year ],
         y: sum [ row.nuclearCap | row ← yearData year ]
      \} \mid \text{year} \leftarrow [2014..2018],
      xlabel: "Nuclear capacity",
      ylabel: "Nuclear output"
```

Demo: non-renewable energy charts

```
let countries = ["BRA", "EGY", "IND", "JPN"];
let totalFor year country =
   let [ row ] = [ row | row \leftarrow nonRenewables, row.year = year, row.country =
   in row.nuclearOut + row.gasOut + row.coalOut + row.petrolOut;
let stack year = [ \{ y : country, z : totalFor year country \} | country <math>\leftarrow countrie.
let yearData year = [row \mid row \leftarrow nonRenewables, row.year = year, row.country `elem` countries ]
in MultiView {
   "bar-chart" := BarChart {
      caption: "Non-renewables output",
      size: { width: 275, height: 185 },
      stackedBars: [ { x: numToStr year, bars: stack year } | year \leftarrow [2014..201{
   "scatter-plot" := ScatterPlot {
      caption: "",
      points: [ {
         x: sum [ row.nuclearOut | row \leftarrow yearData year ],
         y: sum [ row.nuclearCap | row ← yearData year ]
      \} \mid \text{year} \leftarrow [2014..2018] ],
      xlabel: "Nuclear capacity",
      ylabel: "Nuclear output"
```

Programmer describes how to map data to visual elements

Runtime analyses dependencies and provides interactions

User formulates queries by interacting with output

Demo: convolution

```
let zero n = const n;
    wrap n n_{max} = ((n - 1) mod n_{max}) + 1;
    extend n = min (max n 1);
let convolve image kernel method =
    let ((m, n), (i, j)) = (dims image, dims kernel);
        (half_i, half_j) = (i `quot` 2, j `quot` 2);
        area = i * j
    in [| let weightedSum = sum [
           image!(x, y) * kernel!(i' + 1, j' + 1)
           |(i', j') \leftarrow range(0, 0)(i - 1, j - 1),
              let x = method (m' + i' - half_i) m,
              let y = method (n' + j' - half_j) n,
              x \geqslant 1, x \leqslant m, y \geqslant 1, y \leqslant n
         ] in weightedSum `quot` area
          (m', n') in (m, n) \square;
```

Demo: convolution

```
let zero n = const n;
    wrap n n_{max} = ((n - 1) mod n_{max}) + 1;
    extend n = min (max n 1);
let convolve image kernel method =
    let ((m, n), (i, j)) = (dims image, dims kernel);
        (half_i, half_j) = (i `quot` 2, j `quot` 2);
        area = i * j
    in [| let weightedSum = sum [
            image!(x, y) * kernel!(i' + 1, j' + 1)
            |(i', j') \leftarrow range(0, 0)(i - 1, j - 1),
              let x = method (m' + i' - half_i) m,
              let y = method (n' + j' - half_j) n,
              x \geqslant 1, x \leqslant m, y \geqslant 1, y \leqslant n
          ] in weightedSum `quot` area
           (m', n') in (m, n) \square;
```

Programmer implements convolution in a conventional way

Runtime provides interactions that reveal behaviour of convolution

User formulates
hypotheses and tests
them through various
interactions

Demo: moving average

```
let nthPad n xs =
      nth (min (max n 0) (length xs - 1)) xs;
    movingAvg ys window =
      [ sum [ nthPad n ys | n \leftarrow [ i - window \cdot \cdot \cdot i + window ] ] / (1 + 2 * window)
      | i \leftarrow [0 .. length ys - 1];
    movingAvg' rs window =
      zipWith
         (fun x y \rightarrow {x: x, y: y})
         (map (fun r \rightarrow r.x) rs)
         (movingAvg (map (fun r \rightarrow r.y) rs) window);
let points =
      [ { x: r.year, y: r.emissions } | r \leftarrow methane, r.type = "Agriculture" ]
in LineChart {
   tickLabels: { x: Rotated, y: Default },
   size: { width: 330, height: 285 },
   caption: "SSP5-8.5 projected methane emissions (Agriculture)",
   plots: [ LinePlot { name: "Moving average", points: movingAvg' points 1 },
            LinePlot { name: "Original curve", points: points } ]
```


Enrich outputs with computational explanations (how, not just what)

cf. moving average example

IPCC Sixth Assessment Report (AR6) WG1, Summary For Policymakers (2021)

Panel (b) Warming contributions by groups of anthropogenic drivers and by scenario are shown as the change in global surface temperature (°C) in 2081–2100 relative to 1850–1900, with indication of the observed warming to date. Bars and whiskers represent median values and the *very likely* range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C; 'total' bar) (see Table SPM.1); warming contributions (°C) from changes in CO₂ ('CO₂' bar) and from non-CO₂ greenhouse gases (GHGs; 'non-CO₂ GHGs' bar: comprising well-mixed greenhouse gases and ozone); and net cooling from other anthropogenic drivers ('aerosols and land use' bar: anthropogenic aerosols, changes in reflectance due to land-use and irrigation changes, and contrails from aviation) (see Figure SPM.2, panel c, for the warming contributions to date for individual drivers). The best estimate for observed warming in 2010–2019 relative to 1850–1900 (see Figure SPM.2, panel a) is indicated in the darker column in the 'total' bar. Warming contributions in panel (b) are calculated as explained in Table SPM.1 for the total bar. For the other bars, the contribution by groups of drivers is calculated with a physical climate emulator of global surface temperature that relies on climate sensitivity and radiative forcing assessments.

{Cross-Chapter Box 1.4; 4.6; Figure 4.35; 6.7; Figures 6.18, 6.22 and 6.24; 7.3; Cross-Chapter Box 7.1; Figure 7.7; Box TS.7; Figures TS.4 and TS.15}

IPCC Sixth Assessment Report (AR6) WG1, Summary For Policymakers (2021)

Panel (b) Warming contributions by groups of anthropogenic drivers and by scenario are shown as the change in global surface temperature (°C) in 2081–2100 relative to 1850–1900, with indication of the observed warming to date. Bars and whiskers represent median values and the *very likely* range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C; 'total' bar) (see Table SPM.1); warming contributions (°C) from changes in CO₂ ('CO₂' bar) and from non-CO₂ greenhouse gases (GHGs; 'non-CO₂ GHGs' bar: comprising well-mixed greenhouse gases and ozone); and net cooling from other anthropogenic drivers ('aerosols and land use' bar: anthropogenic aerosols, changes in reflectance due to land-use and irrigation changes, and contrails from aviation) (see Figure SPM.2, panel c, for the warming contributions to date for individual drivers). The best estimate for observed warming in 2010–2019 relative to 1850–1900 (see Figure SPM.2, panel a) is indicated in the darker column in the 'total' bar. Warming contributions in panel (b) are calculated as explained in Table SPM.1 for the total bar. For the other bars, the contribution by groups of drivers is calculated with a physical climate emulator of global surface temperature that relies on climate sensitivity and radiative forcing assessments.

{Cross-Chapter Box 1.4; 4.6; Figure 4.35; 6.7; Figures 6.18, 6.22 and 6.24; 7.3; Cross-Chapter Box 7.1; Figure 7.7; Box TS.7; Figures TS.4 and TS.15}

Policy reports, scientific papers and news articles make important claims using **text**

IPCC Sixth Assessment Report (AR6) WG1, Summary For Policymakers (2021)

Panel (b) Warming contributions by groups of anthropogenic drivers and by scenario are shown as the change in global surface temperature (°C) in 2081–2100 relative to 1850–1900, with indication of the observed warming to date. Bars and whiskers represent median values and the *very likely* range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C; 'total' bar) (see Table SPM.1); warming contributions (°C) from changes in CO₂ ('CO₂' bar) and from non-CO₂ greenhouse gases (GHGs; 'non-CO₂ GHGs' bar: comprising well-mixed greenhouse gases and ozone); and net cooling from other anthropogenic drivers ('aerosols and land use' bar: anthropogenic aerosols, changes in reflectance due to land-use and irrigation changes, and contrails from aviation) (see Figure SPM.2, panel c, for the warming contributions to date for individual drivers). The best estimate for observed warming in 2010–2019 relative to 1850–1900 (see Figure SPM.2, panel a) is indicated in the darker column in the 'total' bar. Warming contributions in panel (b) are calculated as explained in Table SPM.1 for the total bar. For the other bars, the contribution by groups of drivers is calculated with a physical climate emulator of global surface temperature that relies on climate sensitivity and radiative forcing assessments.

{Cross-Chapter Box 1.4; 4.6; Figure 4.35; 6.7; Figures 6.18, 6.22 and 6.24; 7.3; Cross-Chapter Box 7.1; Figure 7.7; Box TS.7; Figures TS.4 and TS.15}

Policy reports, scientific papers and news articles make important claims using **text**

- graded adjectives
- iteration
- mereleogy (whole-part)
- quantitative expressions

IPCC Sixth Assessment Report (AR6) WG1, Summary For Policymakers (2021)

Panel (b) Warming contributions by groups of anthropogenic drivers and by scenario are shown as the change in global surface temperature (°C) in 2081–2100 relative to 1850–1900, with indication of the observed warming to date. Bars and whiskers represent median values and the very likely range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C; 'total' bar) (see Table SPM.1); warming contributions (°C) from changes in CO₂ ('CO₂' bar) and from non-CO₂ greenhouse gases (GHGs; 'non-CO₂ GHGs' bar: comprising well-mixed greenhouse gases and ozone); and net cooling from other anthropogenic drivers ('aerosols and land use' bar: anthropogenic aerosols, changes in reflectance due to land-use and irrigation changes, and contrails from aviation) (see Figure SPM.2, panel c, for the warming contributions to date for individual drivers). The best estimate for observed warming in 2010–2019 relative to 1850–1900 (see Figure SPM.2, panel a) is indicated in the darker column in the 'total' bar. Warming contributions in panel (b) are calculated as explained in Table SPM.1 for the total bar. For the other bars, the contribution by groups of drivers is calculated with a physical climate emulator of global surface temperature that relies on climate sensitivity and radiative forcing assessments.

{Cross-Chapter Box 1.4; 4.6; Figure 4.35; 6.7; Figures 6.18, 6.22 and 6.24; 7.3; Cross-Chapter Box 7.1; Figure 7.7; Box TS.7; Figures TS.4 and TS.15}

Policy reports, scientific papers and news articles make important claims using **text**

- graded adjectives
- iteration
- mereleogy (whole-part)
- quantitative expressions

IPCC Sixth Assessment Report (AR6) WG1, Summary For Policymakers (2021)

Panel (b) Warming contributions by groups of anthropogenic drivers and by scenario are shown as the change in global surface temperature (°C) in 2081–2100 relative to 1850–1900, with indication of the observed warming to date. Bars and whiskers represent median values and the *very likely* range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C; 'total' bar) (see Table SPM.1); warming contributions (°C) from changes in CO₂ ('CO₂' bar) and from non-CO₂ greenhouse gases (GHGs; 'non-CO₂ GHGs' bar: comprising well-mixed greenhouse gases and ozone); and net cooling from other anthropogenic drivers ('aerosols and land use' bar: anthropogenic aerosols, changes in reflectance due to land-use and irrigation changes, and contrails from aviation) (see Figure SPM.2, panel c, for the warming contributions to date for individual drivers). The best estimate for observed warming in 2010–2019 relative to 1850–1900 (see Figure SPM.2, panel a) is indicated in the darker column in the 'total' bar. Warming contributions in panel (b) are calculated as explained in Table SPM.1 for the total bar. For the other bars, the contribution by groups of drivers is calculated with a physical climate emulator of global surface temperature that relies on climate sensitivity and radiative forcing assessments.

{Cross-Chapter Box 1.4; 4.6; Figure 4.35; 6.7; Figures 6.18, 6.22 and 6.24; 7.3; Cross-Chapter Box 7.1; Figure 7.7; Box TS.7; Figures TS.4 and TS.15}

Policy reports, scientific papers and news articles make important claims using **text**

- graded adjectives
- iteration
- mereleogy (whole-part)
- quantitative expressions

IPCC Sixth Assessment Report (AR6) WG1, Summary For Policymakers (2021)

Panel (b) Warming contributions by groups of anthropogenic drivers and by scenario are shown as the change in global surface temperature (°C) in 2081–2100 relative to 1850–1900, with indication of the observed warming to date. Bars and whiskers represent median values and the *very likely* range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C; 'total' bar) (see Table SPM.1); warming contributions (°C) from changes in CO₂ ('CO₂' bar) and from non-CO₂ greenhouse gases (GHGs; 'non-CO₂ GHGs' bar: comprising well-mixed greenhouse gases and ozone); and net cooling from other anthropogenic drivers ('aerosols and land use' bar: anthropogenic aerosols, changes in reflectance due to land-use and irrigation changes, and contrails from aviation) (see Figure SPM.2, panel c, for the warming contributions to date for individual drivers). The best estimate for observed warming in 2010–2019 relative to 1850–1900 (see Figure SPM.2, panel a) is indicated in the darker column in the 'total' bar. Warming contributions in panel (b) are calculated as explained in Table SPM.1 for the total bar. For the other bars, the contribution by groups of drivers is calculated with a physical climate emulator of global surface temperature that relies on climate sensitivity and radiative forcing assessments.

{Cross-Chapter Box 1.4; 4.6; Figure 4.35; 6.7; Figures 6.18, 6.22 and 6.24; 7.3; Cross-Chapter Box 7.1; Figure 7.7; Box TS.7; Figures TS.4 and TS.15}

Policy reports, scientific papers and news articles make important claims using **text**

- graded adjectives
- iteration
- mereleogy (whole-part)
- quantitative expressions

IPCC Sixth Assessment Report (AR6) WG1, Summary For Policymakers (2021)

Panel (b) Warming contributions by groups of anthropogenic drivers and by scenario are shown as the change in global surface temperature (°C) in 2081–2100 relative to 1850–1900, with indication of the observed warming to date. Bars and whiskers represent median values and the *very likely* range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C; 'total' bar) (see Table SPM.1); warming contributions (°C) from changes in CO₂ ('CO₂' bar) and from non-CO₂ greenhouse gases (GHGs; 'non-CO₂ GHGs' bar: comprising well-mixed greenhouse gases and ozone); and net cooling from other anthropogenic drivers ('aerosols and land use' bar: anthropogenic aerosols, changes in reflectance due to land-use and irrigation changes, and contrails from aviation) (see Figure SPM.2, panel c, for the warming contributions to date for individual drivers). The best estimate for observed warming in 2010–2019 relative to 1850–1900 (see Figure SPM.2, panel a) is indicated in the darker column in the 'total' bar. Warming contributions in panel (b) are calculated as explained in Table SPM.1 for the total bar. For the other bars, the contribution by groups of drivers is calculated with a physical climate emulator of global surface temperature that relies on climate sensitivity and radiative forcing assessments.

{Cross-Chapter Box 1.4; 4.6; Figure 4.35; 6.7; Figures 6.18, 6.22 and 6.24; 7.3; Cross-Chapter Box 7.1; Figure 7.7; Box TS.7; Figures TS.4 and TS.15}

Policy reports, scientific papers and news articles make important claims using **text**

- graded adjectives
- iteration
- mereleogy (whole-part)
- quantitative expressions

Research question:

How can we facilitate natural language discourse that is "data-driven"?

- explorable, explainable, verifiable

IPCC Sixth Assessment Report (AR6) WG1, Summary For Policymakers (2021)

Panel (b) Warming contributions by groups of anthropogenic drivers and by scenario are shown as the change in global surface temperature (°C) in 2081–2100 relative to 1850–1900, with indication of the observed warming to date. Bars and whiskers represent median values and the *very likely* range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C; 'total' bar) (see Table SPM.1); warming contributions (°C) from changes in CO₂ ('CO₂' bar) and from non-CO₂ greenhouse gases (GHGs; 'non-CO₂ GHGs' bar: comprising well-mixed greenhouse gases and ozone); and net cooling from other anthropogenic drivers ('aerosols and land use' bar: anthropogenic aerosols, changes in reflectance due to land-use and irrigation changes, and contrails from aviation) (see Figure SPM.2, panel c, for the warming contributions to date for individual drivers). The best estimate for observed warming in 2010–2019 relative to 1850–1900 (see Figure SPM.2, panel a) is indicated in the darker column in the 'total' bar. Warming contributions in panel (b) are calculated as explained in Table SPM.1 for the total bar. For the other bars, the contribution by groups of drivers is calculated with a physical climate emulator of global surface temperature that relies on climate sensitivity and radiative forcing assessments.

{Cross-Chapter Box 1.4; 4.6; Figure 4.35; 6.7; Figures 6.18, 6.22 and 6.24; 7.3; Cross-Chapter Box 7.1; Figure 7.7; Box TS.7; Figures TS.4 and TS.15}

Policy reports, scientific papers and news articles make important claims using **text**

- graded adjectives
- iteration
- mereleogy (whole-part)
- quantitative expressions

Research question:

How can we facilitate natural language discourse that is "data-driven"?

- explorable, explainable, verifiable

Working hypothesis (2 key ingredients):

- transparent programming languages
- generative AI for authoring text programmatically

IPCC Sixth Assessment Report (AR6) WG1, Summary For Policymakers (2021)

Panel (b) Warming contributions by groups of anthropogenic drivers and by scenario are shown as the change in global surface temperature (°C) in 2081–2100 relative to 1850–1900, with indication of the observed warming to date. Bars and whiskers represent median values and the *very likely* range, respectively. Within each scenario bar plot, the bars represent: total global warming (°C; 'total' bar) (see Table SPM.1); warming contributions (°C) from changes in CO₂ ('CO₂' bar) and from non-CO₂ greenhouse gases (GHGs; 'non-CO₂ GHGs' bar: comprising well-mixed greenhouse gases and ozone); and net cooling from other anthropogenic drivers ('aerosols and land use' bar: anthropogenic aerosols, changes in reflectance due to land-use and irrigation changes, and contrails from aviation) (see Figure SPM.2, panel c, for the warming contributions to date for individual drivers). The best estimate for observed warming in 2010–2019 relative to 1850–1900 (see Figure SPM.2, panel a) is indicated in the darker column in the 'total' bar. Warming contributions in panel (b) are calculated as explained in Table SPM.1 for the total bar. For the other bars, the contribution by groups of drivers is calculated with a physical climate emulator of global surface temperature that relies on climate sensitivity and radiative forcing assessments.

{Cross-Chapter Box 1.4; 4.6; Figure 4.35; 6.7; Figures 6.18, 6.22 and 6.24; 7.3; Cross-Chapter Box 7.1; Figure 7.7; Box TS.7; Figures TS.4 and TS.15}

Policy reports, scientific papers and news articles make important claims using **text**

- graded adjectives
- iteration
- mereleogy (whole-part)
- quantitative expressions

Thank you!

Collaborators

Joe Bond ¹

Haofei Chen 4

Colin Crawford 4

Cristina David 1

Thomas Frith ²

Harleen Gulati 1

Hana Iza Kim²

Minh Nguyen ¹

Dominic Orchard 5, 2

Roly Perera 2, 1

Tomas Petricek ³

Achintya Rao 6, 2

Meng Wang ¹

¹University of Bristol ²University of Cambridge ³Charles University ⁴University of Edinburgh ⁵University of Kent ⁶University of West of England

https://f.luid.org

https://github.com/explorable-viz/fluid

