MATE10 Álgebra y Geometría

Prof: NN

SANTIAGO J. VASCONCELLO ACUÑA

Universidad Tecnica Federico Santamaria - Campus Vitacura

1. Fundamentos del Lenguaje Matemático

1.1. Nociones de lógica y teoría de conjuntos

1.1.1. Conectivos Lógicos y Tablas de Verdad

Lógica binaria Entiendase Verdadero, Si, 1 cómo los valores discretos positivos y Falso, No, 0 cómo los valores discretos negativos

		Conjunción	Disyunción	Implicación Condicional	Equivalencia Bicondicional	Negación	Disyunción exclusiva
p	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$	$ar{p}$	$p \veebar q$
1	1	1	1	1	1	0	0
1	0	0	1	0	0	0	1
0	1	0	1	1	0	1	1
0	0	0	0	1	1	1	0

1.1.2. Álgebra de Proposiciones

Nombre	Propiedad			
Identidad	$p \wedge V \equiv p, p \wedge F \equiv F, p \vee V \equiv V, p \vee F \equiv p$			
Idempotencia	$p \wedge p \equiv p, p \vee p \equiv p$			
Involución	$\overline{(\overline{p})} \equiv p$			
Complemento	$p \wedge \bar{p} \equiv F, p \vee \bar{p} \equiv V$			
Conmutatividad	$p \wedge q \equiv q \wedge p, p \vee q \equiv q \vee p$			
Asociatividad	$p \land (q \land r) \equiv (p \land q) \land r, p \lor (q \lor r) \equiv (p \lor q) \lor r$			
Distributividad	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r), p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$			
Leyes de Morgan	$\overline{p \vee q} \equiv \bar{p} \wedge \bar{q}, \overline{p \wedge q} \equiv \bar{p} \vee \bar{q}$			
Transitividad	$[(p \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$			
Absorción	$[p \land (p \lor q)] \equiv p, [p \lor (p \land q)] \equiv p$			
C. de la implicancia	$(p \Rightarrow q) \equiv \bar{p} \lor q$			
Equivalencia dividada	$(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$			
Por casos	$(p_1 \lor p_2 \lor \cdots \lor p_n \Rightarrow q) \equiv (p_1 \Rightarrow q) \land (p_2 \Rightarrow q) \land \cdots \land (p_n \Rightarrow q)$			

2. Conjuntos

Conjunto: Concepto primitivo, pero puede ser considerado como una colección de elementos u objetos

2.1. Definiciones Básicas

Unión de A y B
$$A \cup B = \{x \in \mathcal{U}/x \in A \lor x \in B\}$$
Intersección A y B
$$A \cap B = \{x \in \mathcal{U}/x \in A \land x \in B\}$$
Diferencia de A y B
$$A - B = \{x \in A/x \notin B\}$$
Complemento de A
$$A^c = \mathcal{U} - A = \{x \in \mathcal{U}/x \notin A\}$$

2.2. Proposición

Sean A, B y C conjuntos. Se tiene las siguientes propiedades:

Nombre	Propiedades			
Identidad	$A \cap U = A$, $A \cap \phi = \phi$, $A \cup \mathcal{U} = \mathcal{U}$, $A \cup \phi = A$			
Idempotencia	$A \cap A = A, A \cup A = A$			
Involución	$(A^c)^c = A$			
Complemento	$A\cap A^c=\phi, A\cup A^c=\mathcal{U}$			
Conmutatividad	$A \cap B = B \cap A, A \cup B = B \cup A$			
Asociatividad	$A \cap (B \cap C) = (A \cap B) \cap C, A \cup (B \cup C) = (A \cup B) \cup C$			
Distributividad	$A \cap (B \cup C) = (A \cap B) \cup (A \cap B), A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$			
Leyes de Morgan	$(A \cap B)^c = A^c \cup B^c, (A \cup B)^c = A^c \cap B^c$			

$$A \subseteq B \Leftrightarrow B^c \subseteq A^c$$

$$A \subseteq B \Rightarrow A \cap B = A \land A \cup B = B$$

$$A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$$

$$A \cap B \subseteq A \subseteq A \cup B$$

2.2.1. Cardinalidad

Llamaremos cardinalidad de un conjunto A (denotado por |A| o $\sharp A$), al número de elementos que lo forman. Si no existe un número natural que corresponda al número de elementos de un conjunto A, diremos que el conjunto tiene infinitos elementos, o que A es infinito. En caso contrario, diremos que A es finito.

Proposición	Propiedades
Sea $A, B \subseteq U$ tal que $ A , B < \infty$	$ A \cup B = A + B - A \cap B $
Sea A, B y C subconjuntos de un universo finito	$ A \cup B \cup C = A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $
Sean $A, B \subseteq U$ tal que $ A , B < \infty$	Si $A \subseteq B$, entonces $ A \le B $
	$ A^c = u - A $
	$ A - B = A - A \cap B $