AGT; Sheet 11; More Have, Ando Brade; 04.01.2025 Exercise 2: (et Vo= (, (y Le and \$\phi(\bar{x}) = \frac{1}{1/\internet} e ch'\bar{x}. 1. Boundary conditions: \$\dis(x, y, z) = \$\dis(x + L, y, z) = \$\dis(x, y + L, z) = \$\dis(x, y + L, z) = \$\dis(x, y + L_z) = \$\ Thus for x: \$\dis(x,y,z) = \$\dis(x+(x,y,z)\$ => eillix + by. y+ bz. E) = eillik + L) > by. y+ bz. E) => explibx] = explib (x+L)] | multiplying by 1 = eizanx => 2 1 · nx + 6x · x = 6x (x+ L) 2 Tr. nx = 6x. Cx $L_{x} = 2 \frac{n_{x}}{L_{x}}$ Analogously this is done for y and z. Thus: h = 2 Ta (1/2 / 1/2) (φ, |φ,) = | dx φ, (x) φ, (x) | boundary conditions: 12 = S = Vo = \ dx \ \frac{1}{1\infty'} e^{-i\vec{L}^2 \tilde{x}} \ \frac{1}{1\infty'} e^{i\vec{L}^2 \tilde{x}} $= \frac{1}{V_0} \int_{V_0} dx^2 e^{i\vec{x}\cdot(\vec{k}-\vec{k})}$ \mathcal{I} : = 1 / dx exp(i[x(ni-nx)+y (nj-nj)+ t (ni-nz)]) $=\frac{1}{L_0}\int_{L_x}e^{i\frac{\pi}{L_x}(u_x^2-n_x)}dx\int_{L_y}e^{i\frac{\pi}{L_y}(u_y^2-n_y)}dy\int_{L_y}e^{i\frac{\pi}{L_y}(u_y^2-u_y)}dz\int_{L_y}e^{i\frac{\pi}{L_y}(u_y^2-n_y)}dz\int_{L_y}e^{i\frac{\pi}{L_y}(u_y^2-n_y)}dz\int_{L_y}e^{i\frac{\pi}{L_y}(u_y^2-n_y)}dz\int_{L_y}e^{i\frac{\pi}{L_y}(u_y^2-u$ = 1 (x 5 (n'x-nx) (y 5 (n'y-ny) (x 3 (n'z-nz) / n; 6/1 => 6 (n'z-ni) = 8 n'z = i = Six ux Sning Sniuz From (I) we could all ready see, that (\$41/\$4 >= 544

```
3. Let T+ v= A= = A+ V(x), Ehres T=- = A
                                    => <(1/1/6)=(6/1(- == ) A16> 1 A/x>=/x>A
                                                                                                                                                = - \frac{\frac{\k}{2}}{2m} \left( \frac{\k'}{1} \times \Delta \left( \times \left) \Delta \left( \times \left) \Delta \left( \times \reft) \D
                                                                                                                                                 = - th (6/12) A 1 cilit
                                                                                                                                                 = \frac{h}{2m} (h/x) \( \bar{1} \bar{1} \bar{1} \bar{1} \bar{1} \bar{1} \bar{2} \bar{1} \bar{2} \bar{1} \bar{2} \bar{1} \bar{2} \bar{2} \bar{1} \bar{2} \bar{2
                                                                                                                                                = = = [ (4/16)
                                                                                                                                                = 1 - 2 Spile
              4.,
                                          1 U2-27 (61416)
                                                                                                             = July di (x) (x) di (x) | boundary conditions
                                                                                                            = \int_{V} dx \frac{1}{V} \left( \mathcal{U}(x) e^{i x (\vec{\zeta} - \vec{L}')} \right)
                                                                                                             =\int_{ID} dx^2 (L(x)) e^{-cx^2(\vec{L}-\vec{L}')}
                                                                                                             = F[U(x)]([-[")
           ()ith (x1p, 6) = 9p, (x) = 100 e (xp e x and (x-x)) = 100 & e iq (i-x) follows:
\langle \bar{p}', \bar{l}'' | U(\bar{x}' - \bar{x}') | \bar{p}', \bar{l}' \rangle = \int_{-\infty}^{\infty} d\bar{x} \frac{1}{U_0} e^{i\bar{x}(\bar{p}'' - \bar{p}')} e^{i\bar{x}(\bar{l}'' - \bar{l}')} \frac{1}{U_0} \sum_{z_z}^{\infty} U_z e^{i\bar{q}''(\bar{x}' - \bar{x}')}
                                                                                                                                                                                                                         = 1 ( ) dxe (p'-p) eix (l'-l') eiq (x'-x')

Vo [ ] IR i dout exectly home what is hoppoint a mith this toom
                                                                                                                                                                                                                           - 1 2 V S q p - p' Sq, 6-6
```

6. Let A = T + Q + C Find 7: (1/1/1/2) = \frac{k^2}{2m} (1/5/1/2) = \ = 2 1 2m h Sails and a = 2 (46) å å å å = 2 1 U 1 1 an an = Loguinant au Find $V: \langle \bar{p}', \bar{h}' | V(\bar{x} - \bar{x}') | \bar{p}', \bar{h}' \rangle = \frac{1}{v_0} \frac{1}{q'} \frac{1}{q'} \frac{1}{p'} \frac{1}{p'} \frac{1}{q'} \frac{1}{p'} \frac{1}{q'} \frac{1}{p'} \frac{1}{q'} \frac{1}{p'} \frac{1}{q'} \frac{1}{p'} \frac{1}{q'} \frac{1}$ = 200 L. p. q q . ât át át át á. â. Finally we construct 4: $\hat{H} = \frac{1}{2} \frac{(k\vec{h})}{2m} \hat{a}_{h}^{\dagger} \hat{a}_{h}^{\dagger} + \frac{1}{2} \underbrace{U_{l}}_{l} \underbrace{\hat{a}_{h}^{\dagger}}_{l} \hat{a}_{h}^{\dagger} + \frac{1}{2V_{0}} \underbrace{V_{l}}_{l, \vec{p}, \vec{q}} \hat{a}_{l}^{\dagger} \hat{a}_{l$ T, the binetic energy, is independent of other particles, thus only dependent at the own wave vector to. an artitrary extend potantial, can be dependent at atte particles, thus beeing also departant on the other wave vectors li In particular it is dependent of its our wave vector. This is not the case for U, the two paticle-productial. V describes the forces created by the obbor particle, thus there could be any if the other paticle would be identical in every way.