행렬과 연립일차방정식

권현우

September 4, 2021

선형대수학은 많은 문제에서 자연스럽게 나온다.

- 시계열 문제 (시간이 지나면 어떤 상태로 상황이 변할까?)
- 최적화 문제 (한정된 재화에서 최대의 효용을 구하기)
- 신호처리 (손상된 이미지의 복구)
- 선호도 문제 (어떤 웹사이트가 유용한 정보를 많이 담고 있을 것인가? 구글의 페이지랭크 알고리즘)
- 기하학적 문제 (4차원 공간의 원소를 시각화하기)
- 이 모든 이야기들은 연립일차방정식

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

을 푸는 문제와 연관이 있다.

7월 아이폰 사용자 79% "다시 아이폰 선택하겠다"...삼성사용자 재구매 의사는 63%

진상 기자

□ □ □ 기

입력 2017.08.28 20:12

질문. 2021년 현재 권현우 중위는 삼성 핸드폰을 쓰고 있다. 5년 후에 어떤 핸드폰을 사용할 확률이 높을까?

1 행렬의 정의

이를 표로 표현하면

기존 신규	애플	삼성
애플	0.8	0.4
삼성	0.2	0.6

정의 1.1. 다음과 같이 mn개의 숫자를 m개의 행과 n개의 열을 갖도록 직사각형 모양으로 나열한 것을 크기가 $m \times n$ 인 행렬이라고 한다.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \quad \text{E-} \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

여기서 $a_{11}, a_{12}, \cdots, a_{mn}$ 을 행렬의 원소 또는 성분이라 한다. 행렬을 표기할 때 $A=(a_{ij})_{m\times n}$ 라 쓴다. 또는 간단히 $A=(a_{ij})$ 와 같이 나타낸다.

특히 행의 수와 열의 수가 같은 행렬, 즉, m=n이면, n차 정방행렬 또는 n차 정사각행렬이라고 한다.

예제 1.1. 다음 행렬 A는 3×3 행렬, B는 3×2 행렬, 그리고 C는 2×3 행렬이다.

$$A = \begin{bmatrix} -1 & 7 & 2 \\ 3 & 4 & 5 \\ 2 & 5 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & -2 \\ \sqrt{3} & 1 \\ 5 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 3 & 4 \\ 2 & -2 & 1 \end{bmatrix}$$

특히 행렬 A는 3차 정방행렬이다.

예제 1.2. 도입부분에서 제시한 표

기존	애플	삼성
애플	0.8	0.4
삼성	0.2	0.6

를 바탕으로 행렬로 나타내면 다음과 같다.

$$\begin{bmatrix} 0.8 & 0.4 \\ 0.2 & 0.6 \end{bmatrix}$$

- n차 정방행렬 $A=(a_{ij})$ 의 성분 $a_{11},\,a_{22},\,...,\,a_{nn}$ 을 A의 주대각선성분 또는 대각성분이라 부른다.
- 특히 대각성분을 제외한 나머지 성분이 모두 0일 때 A를 대각행렬이라 한다.
- 특별히 n차 대각행렬의 대각성분이 모두 1인 행렬을 n차 **단위행**렬이라 하고, 기호로 I_n 이라 쓴다.

예제 1.3. 다음 행렬 A는 3차 정방행렬이고 대각성분을 1, 2, 3으로 갖는 행렬이다. 특히 대각성분을 제외한 나머지 성분이 모두 0이므로 대각행렬이다.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

2 행렬의 합과 스칼라배

정의 2.1. 행렬 $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{m \times n}$ 에서 대응되는 성분이 모두 같을 때, 두 행렬이 서로 같다고 정의하고, 이것을 A = B로 표시한다.

즉 두 행렬의 크기가 같고, 모든 $i, j (1 \le i \le m, 1 \le j \le n)$ 에 대하여 $a_{ij} = b_{ij}$ 일 때, 두 행렬은 같다고 한다.

정의 2.2. 행렬 $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{m \times n}$ 에 대하여 대응되는 성분끼리 더하여 얻은 새로운 행렬의 (i,j)성분이 $a_{ij} + b_{ij}$ 인 행렬을 두 행렬의 합이라 하며, 이를 A + B로 표시한다.

k가 임의의 실수일 때, 행렬 A의 각 성분에 k를 곱하여 얻은 새로운 행렬을 행렬 A의 스칼라배(scalar multiple) 또는 실수배라 정의하고 kA로 표시한다. 즉

$$A + B = (a_{ij} + b_{ij})_{m \times n}, \quad kA = (ka_{ij})_{m \times n}$$

예제 **2.1**. 행렬 $A=\begin{bmatrix} 3 & 1 & 4 \\ 2 & -1 & 3 \end{bmatrix}$, $B=\begin{bmatrix} 2 & 1 & -1 \\ 1 & -2 & 4 \end{bmatrix}$ 에서 A+B와 2A를 구하여라.

(풀이) 합의 정의에 의하여

$$A + B = \begin{bmatrix} 3 & 1 & 4 \\ 2 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 1 & -1 \\ 1 & -2 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & -3 & 7 \end{bmatrix}$$

이고. 행렬 A의 실수 2에 의한 스칼라배는

$$2\begin{bmatrix}3&1&4\\2&-1&3\end{bmatrix}=\begin{bmatrix}2\times3&2\times1&2\times4\\2\times2&2\times(-1)&2\times3\end{bmatrix}.$$

정의 2.3. 행렬의 모든 성분이 0인 행렬을 **영행렬**이라 한다. 영행렬은 O로 나타내며 특별히 크기가 $m \times n$ 인 영행렬을 $O_{m \times n}$ 으로 표기한다.

정리 2.1. $m \times n$ 행렬 A, B, C와 임의의 실수 r, s에 대하여 다음이 성립한다.

(a)
$$A + B = B + A$$
 (교환법칙)

(b)
$$A + (B + C) = (A + B) + C$$
 (결합법칙)

(c)
$$A + O = O + A = A$$

(d)
$$A + (-1)A = (-1)A + A = O$$

(e)
$$r(A+B) = rA + rB$$
 (분배법칙)

(f)
$$(r+s)A = rA + sA$$
 (분배법칙)

$$(g)$$
 $(rs)A = r(sA)$ (스칼라배의 결합법칙)

(h) 1A = A

• (-1)A + A = O이므로 (-1)A는 A의 합에 대한 역원이다. 이제 편의상 (-1)A = -A라 쓰자.

이제 $m \times n$ 행렬 A, B에 대해 두 행렬의 차 A - B를

$$A - B = A + (-B)$$

라 정의하자.

3 행렬의 곱셈

정의 3.1. 행렬 $A=(a_{ij})_{m\times k}$, $B=(b_{ij})_{k\times n}$ 에 대하여 A의 열의 수와 B의 행의 수가 같을 때, 두 행렬의 곱을 AB로 나타낸다. AB를 행렬 $C=(c_{ij})_{m\times n}$ 라고 할 때, 행렬 C의 성분 c_{ij} 는 행렬 A의 i행과 행렬 B의 j열의 서로 대응되는 성분끼리 곱하여 모두 더한 값으로 정의한다. 즉,

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj} \quad (1 \le i \le m, 1 \le j \le n)$$

이다.

$$i \stackrel{\text{def}}{=} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2k} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{ik} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{ij} & \cdots & b_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{kj} & \cdots & b_{kn} \end{bmatrix}$$

$$C = AB$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj} \quad (1 \le i \le m, 1 \le j \le n)$$

예제 3.1. 다음 두 행렬 A, B에 대하여 AB를 구하여라.

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 0 \\ 5 & -1 & 0 \end{bmatrix}$$

예제 3.2. 다음 두 행렬 A, B에 대해 AB와 BA를 각각 구하시오.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

정리 3.1. 합과 곱이 정의되는 세 행렬 A, B, C에 대하여 다음이 성립한다.

(a)
$$(AB)C = A(BC)$$
 (곱의 결합법칙)

(b)
$$A(B+C) = AB + AC$$
, $(A+B)C = AC + BC$ (분배법칙)

(c)
$$k(AB) = (kA)B = A(kB)$$
 (단, k는 실수) (스칼라배의 결합법칙)

참고. 행렬을 이용하면 연립일차방정식을 보다 간편하게 표현할 수 있다. 즉

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = y_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = y_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = y_m \end{cases} \iff \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

정의 3.2. n차 정방행렬 A의 거듭제곱을 아래와 같이 정의한다.

$$A^0 = I_n$$
, $A^1 = A$, $A^2 = AA$, $A^3 = AAA$, ...

$$A^k = AAA \cdots A \quad (A7 \mid k7 \mid)$$

예제 3.3. $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ 일 때, A^2 와 A^3 을 각각 구하여라.

예제 3.4. 권현우 중위가 올해 삼성 핸드폰을 사용하고 있다. 다음의 표는 올해 2000 명을 대상으로 '핸드폰 구매희망에 대한 설문조사' 를 한 결과를 정리한 것이다.

기존신규	애플	삼성
애플	0.8	0.4
삼성	0.2	0.6

권현우 중위가 매년 핸드폰을 바꾸고, 표에 제시된 선호도를 따른다고 가정할 때, 5년 후에 권현우 중위가 어떤 회사의 핸드폰을 쓸 가능성이 높은지 분석하라.

기존신규	애플	삼성
애플	0.8	0.4
삼성	0.2	0.6

n년이 지난 후 애플 핸드폰 구매를 희망하는 확률을 p_n , 삼성 핸드폰으로 구매를 희망하는 확률을 q_n 이라 하자. 현재 권현우 중위가 삼성 핸드폰을 쓰고 있으므로 $p_0=0,\ q_0=1$ 이다. 그러면 (n+1)년에 애플 핸드폰을 구매할 확률 p_{n+1} 과 삼성 핸드폰을 구매할 확률 q_{n+1} 을 구하면 다음과 같다.

$$p_{n+1} = 0.8p_n + 0.4q_n$$
$$q_{n+1} = 0.2p_n + 0.6q_n$$

이다. 답은

$$A^5 = \begin{bmatrix} 0.67008 & 0.65984 \\ 0.32992 & 0.34016 \end{bmatrix}$$

$$\begin{bmatrix} p_5 \\ q_5 \end{bmatrix} = A^5 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.65984 \\ 0.34016 \end{bmatrix}$$

4 가역행렬

정의 4.1. n차 정방행렬 A와 n차 단위행렬 I에 대하여

$$AB = BA = I$$

가 되는 n차 정방행렬 B가 존재하면 A를 가역invertible 또는 정칙nonsingular이라하고, 이때의 행렬 B를 A의 역행렬이라하며, A^{-1} 으로 나타낸다. 이러한 B가 존재하지 않으면 A를 비가역noninvertible 또는 비정칙singular이라 한다.

예제 **4.1**. 행렬 $A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$ 의 역행렬은

$$\begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -2 & 1 \end{bmatrix}$$

이다.

정리 **4.1**. $ad-bc \neq 0$ 일 때 행렬 $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 는 가역행렬이고 A의 역행렬은

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

예제 **4.2**. 행렬 $A = \begin{bmatrix} 4 & -2 \\ 2 & 1 \end{bmatrix}$ 일 때 역행렬 A^{-1} 를 구하여라.

정리 4.2. 정방행렬 A의 역행렬이 B와 C이면 항상 B = C이다.

위 정리는 기호 A^{-1} 의 정당성을 부여한다.

증명. C는 A의 역행렬이므로 AC=I이다. 그런데 B도 A의 역행렬이므로 BA=I이다. 따라서

$$B = BI = B(AC) = (BA)C = C$$

이다.

정리 4.3. 행렬 A, B가 n차 정방행렬이면 다음 성질들이 성립한다.

- (i) 단위행렬 I는 가역이고, $I^{-1} = I$ 이다.
- (ii) 행렬 A가 가역이면. A의 역행렬 A^{-1} 도 가역이고 $(A^{-1})^{-1} = A$ 이다.
- (iii) 행렬 A, B가 가역이면, AB도 가역이고 $(AB)^{-1} = B^{-1}A^{-1}$ 이다.
- (iv) 행렬 A가 가역이면, 0이 아닌 실수 r의 스칼라배 rA도 가역이고, $(rA)^{-1}=\frac{1}{r}A^{-1}$ 이다.

5 전치행렬과 대각합

정의 5.1. 행렬 A의 거듭제곱을 아래와 같이 정의한다.

$$A^{0} = I$$
, $A^{1} = A$, $A^{2} = AA$, $A^{3} = AAA$, ..., $A^{k} = AAA \cdots A$

특히 행렬 A가 가역일 때. A^{-1} 에 대한 거듭제곱을 다음과 같이 정의한다.

$$A^{-2} = (A^{-1})^2 = A^{-1}A^{-1}, \quad A^{-3} = (A^{-1})^3, \dots, A^{-k} = (A^{-1})^k$$

정의 5.2. $m \times n$ 행렬 $A = [a_{ij}]$ 에서 행과 열을 바꾸어 놓은 $n \times m$ 행렬을 A의 전치행렬transpose matrix이라 하고, 이 행렬을 A^T 로 나타낸다.

예제 **5.1.**
$$A=\begin{bmatrix}1&2&4\\-4&-9&2\\7&1&-2\end{bmatrix}$$
의 전치행렬은 $A^T=\begin{bmatrix}1&-4&7\\2&-9&1\\4&2&-2\end{bmatrix}$ 이다.

정리 5.1. 행렬 A와 B는 연산이 가능하고 r이 임의의 실수이면 다음 성질들이 성립한다.

(i)
$$(A^T)^T = A$$

(ii)
$$(A+B)^T = A^T + B^T$$

(iii)
$$(rA)^T = rA^T$$

(iv)
$$(AB)^T = B^T A^T$$

증명 (4). A를 $m \times n$ 행렬, B를 $n \times p$ 행렬이라고 하자. 전치행렬의 정의에 의하여 $(AB)^T$ 의 (i,j) 원소는 AB의 (j,i) 원소다. 행렬의 곱셈의 정의에 의하여

$$(AB)_{ji} = \sum_{k=1}^{n} A_{jk} B_k = \sum_{k=1}^{n} A_{kj}^T B_{ik}^T = \sum_{k=1}^{n} B_{ik}^T A_{ki}^T = (B^T A^T)_{ij}$$

이다. 따라서 $(AB)^T = B^T A^T$ 이다.

정의 5.3. n차 정방행렬 $A=(a_{ij})$ 의 대각원소 $a_{11},\,a_{22},\,...,\,a_{nn}$ 을 모두 더한 합을 A의 대각합(trace)이라 하고, 이것을 tr A로 나타낸다. 즉

$$\operatorname{tr} A = a_{11} + a_{22} + \dots + a_{nn}$$

정리 5.2. 행렬 A, B가 n차 정방행렬이면 다음 성질들이 성립한다.

(i)
$$tr(A+B) = tr A + tr B$$

(ii) tr(kA) = k tr A (단, k는 임의의 실수)

(iii)
$$\operatorname{tr}(A^T) = \operatorname{tr} A$$

(iv)
$$tr(AB) = tr(BA)$$

참고: A, B, C가 n차 정방행렬일때 tr(ABC) = tr(CAB) = tr(BCA)는 성립.

예제 5.2. 관계식 $AB-BA=I_n$ 을 만족하는 n차 정방행렬 A,B는 존재하지 않는다.

풀이. $AB - BA = I_n$ 을 만족하는 행렬 A, B가 있다고 하자. 그러면

$$0 = \operatorname{tr}(AB) - \operatorname{tr}(BA) = \operatorname{tr}(AB - BA) = \operatorname{tr}(I_n) = n$$

이므로 이는 모순이다. 따라서 $AB-BA=I_n$ 을 만족하는 n차 정방행렬 A,B는 존재하지 않는다.