KU661-SM19		Dilatant Failu	ıre							
sic Informatio	n									
Engineer:	Samuel Hong,	James Bevitt								
Date:	7-Mar-22									
Software:	Patran/Nastra	n 201 8								
ecutive Summ	ary									
The objective	of this project is	to use the kn	owledge gaine	d from ME6 $\overline{61}$	and apply it i	to real life				
scenarios. In t	his case, FEA is ι	used to analyz	ze some part th	at attach to a	pilot's helmet	t using				
Patran/Nastro	an 2018. The mo	del was made	e by a KU team	to help with D	ilatant LLC, to	o make a				
	ill help reduce w		•	•	•					
	,	,	,		1	1				
oblem Statem	ent									
Two parts of t	he design were	isolated and d	observed using	Patran/Nastra	n2018. An an	alysis was				
required to se	e how the part's	d to see how the part's current geometry affects the stress concentrations in the part and								
•		mmendations to changes in the geometry.								
possibly provi	· ·	_			ntrations in th	ne part and				
possibly provi	· ·	_			ntrations in tr	ne part and				
. , ,	de recommenda	_			ntrations in th	ne part and				
stem Properti	de recommenda es	_			ntrations in th	ne part and				
stem Properti Component	de recommenda es Weight (lbs)	tions to chan			ntrations in th	ne part and				
stem Properti Component Cylinder	es Weight (lbs) 0.0028	tions to chan			ntrations in th	ne part and				
stem Properti Component	de recommenda es Weight (lbs)	tions to chan			ntrations in th	ne part and				
stem Properti Component Cylinder Total	weight (lbs) 0.0028 0.0028	Material Titanium			ntrations in th	ne part and				
stem Properti Component Cylinder Total Component	es Weight (lbs) 0.0028 0.0028 Weight (lbs)	Material Titanium - Material			ntrations in th	ne part and				
stem Properti Component Cylinder Total Component Ball Joint	weight (lbs) 0.0028 0.0028 Weight (lbs) 0.0107	Material Titanium			ntrations in th	ne part and				
stem Properti Component Cylinder Total Component	es Weight (lbs) 0.0028 0.0028 Weight (lbs)	Material Titanium - Material			ntrations in th	ne part and				
stem Properti Component Cylinder Total Component Ball Joint	weight (lbs) 0.0028 0.0028 Weight (lbs) 0.0107	Material Titanium - Material		netry.						
stem Properti Component Cylinder Total Component Ball Joint	weight (lbs) 0.0028 0.0028 Weight (lbs) 0.0107	Material Titanium - Material		Sultimate	Sallowable	Density(lb/in				
Stem Properti Component Cylinder Total Component Ball Joint Total	weight (lbs) 0.0028 0.0028 Weight (lbs) 0.0107 0.0107	Material Titanium - Material Titanium	ges in the geon	netry.						

Both models were made through SolidWorks2018. The cylinder, however, ran into some problems with it's original shape, so the model was then made through Patran/Nastran2018 by making a surface made with seven points, connected them with curves, then made into a surface by using the vertices option. It then had the mesh sweeped 360° to make the cylinder shape.

Mesh (figures located in Mesh worksheet)

The Cylinder was a troublesome model to deal with. The surface was made with a Quad4 with an AutoMesh Paver. It was then sweeped 360° to form a cylinder. Elements 1-304 forms the surface which has the Quad4 mesh. From 305-18544, the Elements have a Hex8 mesh.

The ball joint was created after applying a significant number of mesh seeds to the part. The hole and curved edge connecting to the sphere used 32 element mesh seeds, the short edgeconnecting to the sphere and long plate edges used 16 element mesh seeds. The outermost face opposite of the sphere has an 8 element mesh seed on the short edge and 16 element mesh seed on the long edges. After creating the mesh seeds, a Tetrahedral mesh was applied to the solid.

Case	Element Type	AutoMesh	# of Elements	Total	Nodes		
				Elements		Dof	
Cylinder1	Quad4/Hex8	Paver	40	4223	5680	17040	
Cylinder2	Quad8/Hex2 0	Paver	30	510	3720	11160	
Cylinder3	Quad8/Hex2 0	Paver	20	340	2480	7440	
Cylinder4	Quad8/Hex2 0	Paver	10	187	1240	3720	
Ball Joint 1	Tet4	Isomesh	8228	8228	1871	5613	
Ball Joint 2	Tet10	Isomesh	8228	8228	12854	38562	
Ball Joint							
Ball Joint							Ī
	-						Г

Loads and Restraints (mesh with boundary conditions shown in workshets LR1, LR2, etc.)

ı	Load Case 1: C	ylinder						1
	Load Type	Location	Magnitude	Direction	Notes			
	Force	Inner Lip Top Face	1	Positive Y	Force applied	on the edge	of lip	
								Ī
	Restraint Case	1: Cylinder			-	_		

Restraints	Location	Magnitude	Direction	Notes			
Displacement	Bottom Face	0	All				
Load Case 2: B	all Joint						
Load Type	Location	Magnitude	Direction	Notes			
Force	Inside Right Hole Node	1	Positive Z				
Restraint Case	2: Ball Joint						
Restraints	Location	Magnitude	Direction	Notes			
Displacement	Sphere	<0,0,0>	All	Displacement conditions in rough circular shape where cylinder contacts.			
MPCs	Right Half of Hole Nodes	Uz=Uz	N/A	Deforms hole evenly in Z-direction			

Analysis of Results (plots shown in worksheets Results 1, Results 2, etc.)

The effective stress concentration factor was determined by comparing the maximum stress to a reference stress, which is the stress the part would have had if the part had an axial load applied evenly over its smallest cross-sectional area. The reference area for the cylinder was taken at its base, with a cross-sectional area measured to be .043 sq in. The reference area for the ball-socket joint was taken at the thinnest cross-section of the beam where the hole is, determined to be .0116 sq in.

A quirk in the FEA program when dealing with total load resulted in much larger loads being applied than the intended unit loads. For the purpose of this lab, which is to estimate stress concentration factors, the reference stress is adjusted to the actual loads that were applied in the OLOAD section, so this should not significantly effect the resulting concentration factors.

					-
		Reference	Effective Stress		1
Load Case	Max Stress	Stress	Concentration Factor		
Cylinder 1	12000.0000	920	13		
Cylinder 2	18400.0000	690	27		
Cylinder 3	13900.0000	460	30	1	
Cylinder 4	8120.0000	460	18		
Ball Joint 1	102.0000	86.2	1.18	1	l
Ball Joint 2	387.0000	86.2	4.49		

Other Areas of Note							
Load Case	Notes						
Cylinder							
Ball Joint							

Model Verification	on Checks								
Case1: Cylinde	er1								
		Total Applied	d Loading vs R	esultant					
Load Type	Fx	Fy	Fz	Mx	Му	Mz			
OLOAD	0.00E+00	4.00E+01	0.00E+00	-2.24E-08	0.00E+00	9.31E-09			
SPCFORCE RESULTANT	3.75E-14	-4.00E+01	-1.80E-15	2.24E-08	1.59E-15	-9.31E-09			
RESOLIAIVI	3.73L 14	4.002101	-1.00L-13	2.24L-00	1.59L-15	-9.51L-09			
	l	Epsilon	vs External W	ork					
Epsilon									
		-3.09E-15							
External Work		1.62E-03							
Residual									
Work			-4.99E	-18					
Case2:									
Cylinder2		Total Applied		ocultant					
Load Type	Fx			i	N 4	N/-			
Load Type OLOAD	0.00E+00	Fy 2.005+01	Fz	Mx	My	Mz			
SPCFORCE	U.UUE+UU	3.00E+01	0.00E+00	1.27E-07	0.00E+00	6.89E-08			
RESULTANT	1.77E-13	-3.00E+01	-2.60E-14	-1.27E-07	-5.17E-15	-6.89E-08			
		Epsilon	vs External W	ork					
Epsilon			4.97E	-15					
External Work			1.00E-	-03					
Residual Work			4.98E	-18					

_	Π			ı	1	Ī	ı			
	Case3: Cylinde	r3				•				
			Total Applie	ed Loading vs R	esultant					
	Load Type	d Type Fx Fy Fz Mx My Mz								
	OLOAD	0.00E+00	2.00E+01	0.00E+00	3.35E-08	0.00E+00	7.45E-09			
	SPCFORCE RESULTANT	-5.92E-14	-2.00E+01	1.45E-13	-3.35E-08	-1.44E-14	-7.45E-09			
	Epsilon vs External Work									
	Epsilon -7.45E-09									
	External Work			4.82E	-04					
	Residual Work			-3.59E	E-12					
	Case4: Cylinde	r4				'				
			Total Applie	ed Loading vs R	esultant					
	Load Type	Fx	Fy	Fz	Mx	Му	Mz			
	OLOAD	0.00E+00	2.00E+01	0.00E+00	7.82E-08	0.00E+00	7.83E-09			
	SPCFORCE RESULTANT	-3.55E-14	-2.00E+01	-7.86E-14	-7.82E-08	-2.37E-14	-7.83E-09			
			Epsilor	n vs External W	ork .					
	Epsilon			7.42E	-15					

External Work		
	4.18E-04	
Residual		П
Work	3.10E-18	

		Case1	: Ball Joint	(Tot/1)		
		Casei	. Dan Jonit	(1614)		
	Т	otal Applie	d Loading v	vs Resultan	t	
Load						
Туре	Fx	Fy	Fz	Mx	My	Mz
OLOAD	0.00E+00	0.00E+00	1.00E+00	4.87E-02	5.80E-04	0.00E+00
SPCFORC						
Ε						
RESULTA			-1.00E+0	-4.86E-0	-5.80E-0	
NT	-2.44E-15	7.71E-16	0	2	4	4.39E-16
		Epsilon	vs Externa	l Work		
Epsilon						
			2.16	E-14		
External						
Work			4.95	E-07		
Residual						
Work			1.07	E-20		
Case2:						
Ball Joint						
(Tet10)						
	Т	otal Applie	d Loading v	vs Resultan	t	
Load						
Туре	Fx	Fy	Fz	Mx	My	Mz
OLOAD	0.00E+00	0.00E+00	1.00E+00	4.87E+02	5.80E-04	0.00E+00
SPCFORC						
Е						
RESULTA			-1.00E+0	-4.87E-0		-4.18E-1
NT	-4.69E-15	3.94E-16	0	2	-5.11E-04	6
		Epsilon	vs Externa	ıl Work		
Epsilon						
			-7.85	E-14		

External						
Work	7.25E-07					
Residual						
Work	-5.68E-20					

Conclusions/Recommendations

Under such loads, the cylinder would definitely not be able to withstand a impulse force of 15 G, judging by the fact that under a total point load of 40 lbs, the material yielded. The main reason could perhaps because of the thickness of the lip was not thick enough and not enough support around the edges. Different alloys could also perhaps strengthen the model. As for the ball joint, it withstood better than the cylinder, but at the end, it will not be enough to withstand a 15G impulse force.

Both models were terribly small and the group did predict that they would not be able to resist the force well enough. However, it did show how the models deformed and where improvements can be made.

Both the cylinder and the ball joint results had results with a somewhat mediocre results. However, not enough mesh analysis were made for the ball joint to see any convergence, and the cylinder's data had a big range because of the inconsistency of the loading.

The loading was down on each FEM node on the model in Patran/Nastran2018, which resulted in the data showing the y load being larger than 1. Each of the Y loads are the sum of all the node loads, so in a 30 element mesh, a total of 30 lbf was applied.

For the ball joint, the geometry was very difficult to handle, as well as the meshing on the spherical part.

There are definitely recommendations for future cases like these models. Having the same number of elements and changing the topology wouuld have brought out a more consistent data, and perhaps see the convergence. For the ball joint, saving multiple files with a basic model that will have the same loading but different mesh will save a lot more time and more efficient.