Package 'CHMIpower'

July 22, 2019
Title Power analysis for Controlled Human Malaria Infection studies
Version 0.0.0.9000
Author Xiaowen Tian
Maintainer Xiaowen Tian <tianx3@uw.edu></tianx3@uw.edu>
Description Power calculation and data visualization for Controlled Human Malaria Infection studies.
License GPL-2
Encoding UTF-8
LazyData true
Imports survival, beeswarm, MASS, stats, graphics, grDevices
RoxygenNote 6.1.1
R topics documented:
cdfweibull
Index
cdfweibull CDF comparison of input data to a Weibull distribution
Description Maximum-likelihood fitting of input dataset and comparison of the ecdf and fitted cdf with a user defined Weibull distribution.
Usage

cdfweibull(obstime, lambda, k)

2 pdfsim

Arguments

obstime user input data of time to infection

lambda scale parameter of Weibull distribution

k shape parameter of Weibull distribution

Details

See powercal for details.

Value

A figure comparing the (empirical) cumulative function of the input dataset, fitted Weibull distribution and a user defined Weibull distribution.

An object returned by 'fitdistr' function in the 'MASS' package.

Examples

```
cdfweibull(rweibull(10,3,6),lambda=8,k=5)
```

pdfsim

PDF comparison of simulated dataset

Description

Comparison of probability density function for simulated treatment and control group.

Usage

```
pdfsim(beta, lambda0, k, rho, endstudy)
```

Arguments

beta hazard ratio between treatment and control group

lambda0 scale parameter of Weibull distribution for the control group

k shape parameter of Weibull distribution

rho full protection probability for the treatment group, fully protected observations

are set to be censored at the end of the study

endstudy time of administrative censoring

Details

See powercal for details.

Value

A figure comparing the probability density function of simulated treatment and control group. Mean and variance are also shown in the legend.

Examples

```
pdfsim(beta=0.2,lambda0=8,k=5,rho=0.2,endstudy=28)
```

powercal 3

Description

Power calculation for t-test, Wilconxon test, log-rank test, Lachenbruch test, and likelihood ratio test for mixture models.

Usage

```
powercal(beta, lambda0, k, rho, N, ratio, endstudy, testname, alpha, seed)
```

Arguments

beta	hazard ratio between treatment and control group
lambda0	scale parameter of Weibull distribution for the control group
k	shape parameter of Weibull distribution
rho	full protection probability for the treatment group, fully protected observations are set to be censored at the end of the study
N	total sample size
ratio	ratio of sample size between treatment and control group
endstudy	time of administrative censoring
testname	$name\ of\ statistical\ test\ chosen\ from\ "t-test","wilcox","logrank","lachenbruch","mixlrt".$
alpha	statistical significance level
seed	random seed

Details

The Weibull distribution with shape parameter k and scale parameter λ has density given by $f(x)=\frac{k}{\lambda}(\frac{x}{\lambda})^{k-1}e^{-(x/b)^a}$ for x>0. In our simulation studies, time to infection for control group is modeled by $Weibull(\lambda_0,k)$. Individuals in the treament group have probability ρ being fully protected and their observations are set to be censored. Time to infection for the individuals in the treatment group who don't get full protection from the vaccine will follow $Weibull(\lambda_1,k)$. Note that the shape parameter k for the Weibull distribution is same for the control and treatment group. Hence the hazard ratio β between treatment and control group is constant and has the form of $(\frac{\lambda_0}{\lambda_1})^k$.

Value

Power for the statistical tests calculated through 1000 simulations.

Examples

```
\label{eq:powercal} powercal(beta=0.2,lambda0=8,k=5,rho=0.2,\\ N=28,ratio=3,endstudy=28,testname=c('t-test','logrank'),alpha=0.05,seed=1)
```

4 simexample

simexample Example of simulated dataset

Description

This function visualize a simulated dataset using a boxplot and a Kaplan-Meier curve.

Usage

```
simexample(beta, lambda0, k, rho, N, ratio, endstudy, seed)
```

Arguments

beta	hazard ratio between treatment and control group
lambda0	scale parameter of Weibull distribution for the control group
k	shape parameter of Weibull distribution
rho	full protection probability for the treatment group, fully protected observations are set to be censored at the end of the study
N	total sample size
ratio	ratio of sample size between treatment and control group
endstudy	time of administrative sensoring

seed random seed

Details

See powercal for details.

Value

A boxplot and a Kaplan-Meier curve comparing the simulated treatment and control group

Examples

```
simexample(beta=0.2,lambda0=8,k=5,rho=0.2,
N=28,ratio=3,endstudy=28,seed=1)
```

Index

```
cdfweibull, 1
pdfsim, 2
powercal, 3
simexample, 4
```