MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

September 4, 2024

Outline

- Real Analysis Lecture 3
 - Suprema and Infima

Outline

- Real Analysis Lecture 3
 - Suprema and Infima

Last time, we finished with the Completeness Axiom:

Last time, we finished with the Completeness Axiom:

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

• 3 is the supremum of (0,3)

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

- 3 is the supremum of (0,3)
- 1 is the supremum of

$$\left\{\frac{n}{n+1}:n\in\mathbb{Z}_+\right\}$$

Last time, we finished with the Completeness Axiom:

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

- 3 is the supremum of (0,3)
- 1 is the supremum of

$$\left\{\frac{n}{n+1}:n\in\mathbb{Z}_+\right\}$$

 \bullet π is the supremum of

$${3,3.1,3.14,3.141,3.1415,3.14159,3.141592,\dots}$$
.

Problem

Prove that if A is a set of integers that is bounded above, then A has a maximum.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b-1 is not an upper bound, so there exists $a \in A$ with b-1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b-1 is not an upper bound, so there exists $a \in A$ with b-1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$. Since b is an upper bound, $b \ge a + k > b - 1 + k$, making 0 > k - 1.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b-1 is not an upper bound, so there exists $a \in A$ with b-1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$. Since b is an upper bound, $b \ge a + k > b - 1 + k$, making 0 > k - 1.

Therefore $k \le 0$ and $a' \le a$.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b-1 is not an upper bound, so there exists $a \in A$ with b-1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$. Since b is an upper bound, $b \ge a + k > b - 1 + k$, making 0 > k - 1.

Therefore $k \le 0$ and $a' \le a$.

It follows that a is an upper bound of A, and since $a \in A$ it is a maximum.

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b.

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b. If $b \in S$ also, then b is called a **minimal element** of S.

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b. If $b \in S$ also, then b is called a **minimal element** of S. An **infimum** of a set S of real numbers is a real number $b \in \mathbb{R}$ such that

- b is a lower bound of S
- if b < b', then b' is not a lower bound of S

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b. If $b \in S$ also, then b is called a **minimal element** of S. An **infimum** of a set S of real numbers is a real number $b \in \mathbb{R}$ such that

- b is a lower bound of S
- if b < b', then b' is not a lower bound of S

In other words

an infimum is a greatest lower bound

Properties of Suprema

The first property of suprema is that they must be arbitrarily close to elements of the set.

Theorem (Approximation Property)

Let $S \subseteq \mathbb{R}$ be bounded above, and let $b = \sup(S)$. Then for all $\epsilon > 0$, there exists $a \in S$ with

$$b - \epsilon < a < b$$
.

Properties of Suprema

Proof.

Since $b - \epsilon < b$, the definition of a supremum implies $b - \epsilon$ cannot be an upper bound.

Properties of Suprema

Proof.

Since $b - \epsilon < b$, the definition of a supremum implies $b - \epsilon$ cannot be an upper bound.

Therefore thre must exist $a \in S$ with $a > b - \epsilon$.

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

Consider the set

$$S = \{s_n : n \in \mathbb{Z}_+\}.$$

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

Consider the set

$$S = \{s_n : n \in \mathbb{Z}_+\}.$$

For every *n*,

$$s_n \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 3 - \frac{1}{2^n} < 3$$

so S is bounded above by 3.

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

Consider the set

$$S = \{s_n : n \in \mathbb{Z}_+\}.$$

For every *n*,

$$s_n \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 3 - \frac{1}{2^n} < 3$$

so S is bounded above by 3. Therefore S has a supremum, $\sup(S)$.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S)$$
.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S)$$
.

This says $\sup(S)$ is *really* close to s_N .

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S)$$
.

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

Important example: The number e

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

If we remember Taylor series

Important example: The number e

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

If we remember Taylor series

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

Important example: The number e

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

If we remember Taylor series

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

We've just shown that $e^1 = e$ exists.

Also, suprema play nicely with addition.

Theorem (Additive Property)

Let $A, B \subseteq \mathbb{R}$ be bounded above set

$$C = \{x + y : x \in A, y \in B\}.$$

Then C is bounded above and

$$\sup(C) = \sup(A) + \sup(B).$$

Proof.

Let
$$a = \sup(A)$$
, $b = \sup(B)$, and $c = \sup(C)$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$. We will prove $c \le a + b$ and then $a + b \le c$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also b is an upper bound of b, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

It follows that $y \le c - a$ for all $y \in B$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

It follows that $y \le c - a$ for all $y \in B$.

Thus c - a is an upper bound of B, and it follows $b \le c - a$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

It follows that $y \le c - a$ for all $y \in B$.

Thus c - a is an upper bound of B, and it follows $b \le c - a$.

Therefore $a + b \le c$.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists The number b is an upper bound and if b' < b, then b' is not.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists The number b is an upper bound and if b' < b, then b' is not. Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists The number b is an upper bound and if b' < b, then b' is not. Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound. This means there exists $n \in \mathbb{Z}_+$ with b-1 < n.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists

The number b is an upper bound and if b' < b, then b' is not.

Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound.

This means there exists $n \in \mathbb{Z}_+$ with b - 1 < n.

It follows from Axiom 7 that b < n + 1.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists

The number b is an upper bound and if b' < b, then b' is not.

Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound.

This means there exists $n \in \mathbb{Z}_+$ with b-1 < n.

It follows from Axiom 7 that b < n + 1.

However, $n+1 \in \mathbb{Z}$, so this contradicts b being an upper bound.

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Proof.

If not, then x is an upper bound of \mathbb{Z}_+ .

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Proof.

If not, then x is an upper bound of \mathbb{Z}_+ .

Theorem (Archimedian Property of Reals)

For every $x, y \in \mathbb{R}$ with x > 0, there exists $n \in \mathbb{Z}_+$ with y < nx.

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Proof.

If not, then x is an upper bound of \mathbb{Z}_+ .

Theorem (Archimedian Property of Reals)

For every $x, y \in \mathbb{R}$ with x > 0, there exists $n \in \mathbb{Z}_+$ with y < nx.

Proof.

Replace x with y/x in the previous theorem.