Case Study Report 2 – Exercise 3

Attribution

This report will use both the seasonally adjusted (A84423043C) and original (A84423043C) datasets for total employment in Australia. This data has been collected from the ABS website, more specifically the dataset in Table 1 with catalogue number 6202001. The two datasets show the monthly data for the total number of employed Australians. For this report, a sample period from August 2014 to July 2022 will be used to generate forecasts regarding employment within Australia.

Scope

Multiple regression analysis is a causal forecasting model used to observe the relationship between a single dependent variable (Y) and various independent variables (X).

The data on total employment in Australia reveals seasonal and trend components, with higher values in certain periods. A simple regression model should not be used for forecasting future trends, as it doesn't account for seasonal aspects. A multiple regression analysis, specifically a quasi-explanatory model, is more effective as it can help accurately predict datasets that have seasonal components.

Application

Utilising a quasi-explanatory model as part of the multiple regression analysis can help provide a more accurate forecast in predicting future levels of total employment in Australia. Through the use of this model, explanatory variables (X) such as the time index "t" and seasonal dummies have been constructed to model the seasonal effects that could influence the time-series dataset. Since the dataset is monthly, 11 dummy variables from August to July have been used to model the seasonality effects in the data, as the original dataset has not been seasonally adjusted.

To generate forecasts of future time periods (Yt) beyond the sample period, the multiple linear regression equation below was utilised.

$$Y_t = \beta_0 + \beta_1 * t + \alpha_1 * D_1 + \alpha_2 * D_2 + \alpha_3 * D_3 + \varepsilon_t$$

B0 and B1 represent the intercept coefficient and the time coefficient (X1) respectively, these coefficients were generated from the regression analysis conducted in Excel. The time index "t" acts as a quasi explanatory variable to explain and forecast Yt, which is used to estimate B0 and B1. The coefficients for each of months used in the analysis are multiplied by the corresponding monthly dummy variable. This equation helps determine the slope of the trend line, which helps forecast future time series values (Yt)

Analysis

The above figure shows the recorded data for employment in Australia in the specified sample period, as well as the within sample forecasts for employment. Additionally, the figure also shows the predicted future values for total employment in Australia, or the out-of-sample forecast. The forecasts are consistent from August 2014 to February 2020. The forecasts from this graph are significantly different from the actual recorded values from March to October 2020 due to the effects of the unprecedented global COVID-19 pandemic, where there was a decrease in employment of 6.1% from Australia's first recorded COVID-19 case to the trough in the labour market in May 2020.

The figure above shows the comparison between the actual recorded total employment in Australia and the out-of-sample forecast for August 2022 - July 2023. Whilst there is a slight difference in terms of the values

recorded in the actual data and the forecast, the model is fairly accurate in predicting the future values of employment in Australia. The typical seasonality effects are also present in this figure, which indicate that employment in Australia continues to have similar patterns throughout each seasonal period.

Articulation of Issues

From the regression analysis, it can be determined that the model is a good fit for the sample data, as the R2 is very close to 1. The overall significance of the model can also be assessed using the multiple regression model in the form of an f-test. The F Significance (or p-value) is lower than 0.05, indicating that the model has some explanatory power and potential predictive ability.

Α	В	С	D	E	F	G	н	1
1 SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.949909224							
R Square	0.902327533							
Adjusted R Sq	0.888206212							
Standard Erro	187.543257							
Observations	96							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	12	26969509.76	2247459.147	63.8982403	1.0458E-36			
Residual	83	2919315.281	35172.47326					
Total	95	29888825.04						
	SUMMARY OU Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression Residual	Regression Statistics	Regression Statistics	Regression Statistics	SUMMARY OUTPUT Regression Statistics Multiple R 0.949909224 R Square 0.902327533 Adjusted R Sq 0.888206212 Standard Erro 187.543257 Observations 96 ANOVA SS MS F Regression 12 26969509.76 2247459.147 63.8982403 Residual 83 2919315.281 35172.47326	Regression Statistics	Regression Statistics	Regression Statistics

A t-test can be conducted to examine the effect of individual variables (X) on the dependent variable. From analysing the individual variables, it can be determined that time is significant as the p-value < 0.05, however the monthly seasonal dummies don't seem to have any significance or predictive ability on total employment.

16	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17 Intercept	11573.00306	76.22164317	151.8335551	2.919E-103	11421.4013	11724.6048	11421.4013	11724.6048
18 Time (x1)	18.80053873	0.696153386	27.00631658	7.1042E-43	17.4159176	20.1851598	17.4159176	20.1851598
19 August	-92.79673594	94.08378442	-0.986320188	0.32684258	-279.9256	94.3321272	-279.9256	94.3321272
20 September	-86.08902028	94.02968292	-0.915551532	0.36255453	-273.11028	100.932237	-273.11028	100.932237
21 October	-64.60866128	93.98070711	-0.687467282	0.4937049	-251.53251	122.315185	-251.53251	122.315185
22 November	46.02439923	93.936865	0.489950343	0.62546161	-140.81225	232.861046	-140.81225	232.861046
23 December	140.0548282	93.89816379	1.491560884	0.13960539	-46.704843	326.814499	-46.704843	326.814499
24 January	-137.7232963	93.86460984	-1.467254768	0.14608588	-324.41623	48.9696375	-324.41623	48.9696375
25 February	90.25431949	93.83620865	0.961828283	0.33892965	-96.382125	276.890764	-96.382125	276.890764
26 March	55.60223637	93.81296493	0.592692454	0.55499839	-130.98798	242.19245	-130.98798	242.19245
27 April	-14.9301012	93.79488249	-0.159178207	0.87391517	-201.48435	171.624148	-201.48435	171.624148
28 May	14.82760285	93.78196433	0.15810719	0.87475637	-171.70095	201.356158	-171.70095	201.356158
29 June	18.86086371	93.77421258	0.201130601	0.84108853	-167.65227	205.374001	-167.65227	205.374001

Critique

The multiple regression analysis model enables forecasters to analyse best and worse case scenarios, which can help provide greater strategy and scenario-based prediction. This allows the model to determine sources of risk to total employment in Australia, especially if there are any external factors that could influence the dataset. The WES (Multiplicative) model on the other hand does not account for any external factors that could influence the dataset such as the unprecedented COVID-19 pandemic. It can be said however that the regression method is expensive and time-consuming to conduct, which may not ultimately result in greater forecasting accuracy.

Position

When forecasting and analysing the dataset for total employment in Australia, it can be determined that multiple regression models provide the most effective method for forecasting. The model is an accurate predictor for this dataset due to the relatively high R2 and adjusted R2. Additionally, the p-value from the f-test is statistically significant, indicating that the model is a effective predictor. The model also provides greater strategy and scenario-based prediction compared to other forecasting models, which can be highly beneficial for forecasters and businesses.