Homework 5

1)

	10,1161 (10,000)
11	a) 0x45652000
	0100 0101 0110 0101 0010 0000 0000 0000
	138-127=11
	normalized representation: 1.1100101001.2"
	number in decimal: 1110010100102 = 3666
	Significand in decimal: 0.7900390625 7900
	0.1003.202
	b)0x00070000
	0000 0000 0000 0111 0000 0000 0000 0000
	0-127=-127
	normalized representates: (2000111 0-127-111, 0-131
	normalized representation: 0.000111.2-127= 1.11.2-131 number in decimal: 1.75.2-131
	number in decimal: 1.75.2
	significand in decimal: 0.0546875

2) a) -15.82.2-10

: 0||11.110||000|||||010||1000.2-10

: 1.111||01000||||010||1000.2-7

-7.1127=120

sign exponent fraction

1 0||11000 ||1110||000||110||0100

single-precision: 0xBC7DIFB8

b) -831.9

=1100||1111||1100||00||1010

=1.100||1111||1100||00||1010

-1.100||1111||1100||00||1010

Sign exponent fraction

1 1000||000 ||00|||111||11||00||00||00|

Single-precision: 0xC444FF994

3) Largest add integer 17725
in decimal: 16777215
in hex: 0x4B7FFFFF
We set the sign bit to 8 for positive numbers and
maximize the significand by setting all bits to 1 to
ensure it is odd. Then we determine the exponent
that places the binary point right of the significand maximizing the integer value which is 23 thus our normalized representation is: 1.11111111111111111111111111111111111
maximizing the integer value which is 23 thus our
normalized representation is: 1.11111111111111111111.223
Therefore:
sign exponent fraction
0 10010110 1111111111111111111111111111

```
4)
  67 dot product:
              # TODO
  68
              # use one of the fcvt instructions to convert
  69
              # integer 0 to SP 0
  70
              fcvt.s.w ft0, t0
                                    # ft0 = 0.0
  71
              fcvt.s.w fs0, t0
                                   # fs0 = 0.0
  72
      loop:
  73
                     t0, a2, f_exit # if(i >= n) goto f exit
  74
              bge
  75
                     tl, t0, 2
                                    # t1 = i * 4
  76
              slli
  77
              add
                     t2, t1, a0
                                    \# t2 = x[i]
                      t3, t1, al
  78
              add
                                    \# t3 = y[i]
  79
  80
              flw
                      ft1, 0(t2)
                                   # load value at x[i] to ft1
                     ft2, 0(t3)
  81
              flw
                                    # load value at y[i] to ft2
  82
              fmul.s ft3, ft1, ft2
  В3
              fadd.s fs0, fs0, ft3
                                    # sum += x[i] * y[i]
  84
  85
              addi
                     t0, t0, 1
                                    # i += 1
  86
                     x0, x0, loop
                                    # goto loop
  87
              beq
      f exit:
   88
              fadd.s fa0, ft0, fs0 # set return value to fs0
   89
              jalr x0, ra, 0
                                    # return
   90
```

5)	a) (1.0.1)+(2.0.2)+(3.0.5)+(3.0.2) =(2.6)
	b) (1.0.1)+(1.0.2)+(4.0.5)+(5.0.2)
•	c) CPUcTime, - CPI, -26-13 ClockRote, 2
3	CPUTime 2 = CPI - 3.3 = 1.1 Clock Pate 3 n = CPUTime, = 1.3 = (P2 is 1.18 times faster than P1)
3	d) (1.0.417.)+(1.0.166)+(4.0.417)
	e) Speedup = CPI before = 3.3 (1.47) CPI after 2.25
9 9	Consider 2.23

6)	a) Speedup = 1.25
	b) Speedup - 1 - 1.44) 0.65+0.2/10+0.15
	c) Speedup- 1 = (2.012)
The second	d) Best Speedup. 0.497 = (1.1049)