PHOTOCATALYTIC MATERIAL WITH THIN TITANIUM DIOXIDE FILM

Patent Number:

JP2001347162

Publication date:

2001-12-18

Inventor(s):

OKUNO HARUMI;; MIYATA AKIO;; NOJIMA HIDEO

Applicant(s):

SHARP CORP

Requested Patent: JP2001347162

Application

Number:

JP20000170259 20000607

Priority Number(s):

IPC Classification: B01J21/06; B01J23/42; B01J23/46; B01J35/02; B32B9/00; C01G23/047;

C04B41/50; C30B29/10

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalytic material which performs the clean-up of environmental pollutants and water decomposition while irradiating with light. SOLUTION: A thin film of anatase type titanium dioxide having at least one of (004) and (112) faces as a crystal orientation face in a direction perpendicular to the crystal surface is formed on a substrate. The thickness of the thin film is preferably >=500 nm from the viewpoint of further enhancement of the catalytic activity. A metal or metal oxide is preferably carried on the surface of the thin film from the viewpoint of further enhancement of the catalytic activity by the acceleration of charge separation and ruthenium oxide is particularly desirably used as the metal oxide so as to enhance the photocatalytic activity in water decomposition.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-347162 (P2001-347162A)

(43) 公開日 平成13年12月18日(2001.12.18)

(51) Int.Cl. ⁷		識別記号	F I	デーマコート*(参考)		
B01J	21/06		B 0 1 J 21/06	M 4F100		
	23/42		23/42	M 4G047		
	23/46	3 0 1	23/46	301M 4G069		
	35/02	ZAB	35/02	ZABJ 4G077		
B 3 2 B	9/00	22	B32B 9/00	A 4K030		
B32B	5,00	審査請求		OL (全 7 頁) 最終頁に続く		
(21)出願番号 特顯		特顧2000-170259(P2000-170259)	(11) (11)	000005049 シャープ株式会社		
(22)出顧日		平成12年6月7日(2000.6.7)		大阪市阿倍野区長池町22番22号		
				爾夫 大阪市阿倍野区長池町22番22号 シ 株式会社内		
			!	昭雄 大阪市阿倍野区長池町22番22号 シ 株式会社内		
			(74)代理人 1000855 弁理士	501 佐野 静夫		
				最終頁に続く		

(54) 【発明の名称】 酸化チタン薄膜を有する光触媒材

(57)【要約】

【課題】 酸化チタン薄膜を有する光触媒材の光触媒活性を高める。

【解決手段】 結晶表面と垂直方向に(004)及び(112)の少なくとも一方の結晶配向面を持つアナターゼ型酸化チタンの薄膜を基材上に形成する。このとき光触媒活性をより向上させる観点から、前記薄膜の膜厚は500nm以上であるのがよい。また電荷分離を促進させて光触媒活性をさらに向上させる観点からは、前記薄膜の表面に金属または金属酸化物を担持させるのが好ましく、水分解における光触媒活性を向上させるには、金属酸化物の中でも酸化ルテニウムが特に望ましい。

【特許請求の範囲】

【請求項1】 結晶表面と垂直方向に、(004)及び(112)の少なくとも一方の結晶配向面を持つアナターゼ型酸化チタンの薄膜を基材上に形成したことを特徴とする光触媒材。

【請求項2】 前記薄膜の膜厚が500nm以上である 請求項1記載の光触媒材。

【請求項3】 前記薄膜の表面に金属又は金属酸化物を 担持させた請求項1又は2記載の光触媒材。

【請求項4】 前記金属酸化物が酸化ルテニウムである 10 請求項3記載の光触媒材。

【請求項5】 前記基材がケイ素を主成分とするものである請求項1~4のいずれかに記載の光触媒材。

【請求項6】 ケイ素を主成分とする基板上にチタン薄膜を形成し、その上に前記酸化チタンの薄膜を形成した 請求項5記載の光触媒材。

【請求項7】 前記チタン薄膜上に白金薄膜をさらに形成し、その上に前記酸化チタンの薄膜を形成した請求項6記載の光触媒材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は酸化チタン薄膜を有する光触媒材に関し、より詳細には光照射により環境汚染物質の浄化や水分解などを行う光触媒材に関するものである。

[0002]

【従来の技術】光触媒を用いて、雰囲気中の臭気成分を分解して脱臭したり、あるいは水を分解して水素を製造することは従来から行われている。このような光触媒としては酸化チタン、酸化亜鉛、酸化タングステン、酸化 30 鉄、チタン酸ストロンチウム、硫化カドミウム、セレン化カドミウムなどの金属化合物半導体が挙げられ、中でも酸化チタンが最も広く利用されている。酸化チタンを光触媒として用いる研究はこれまでから数多くなされている。例えば特開平10-152396号公報には、特定方向に配向した酸化チタンからなる結晶配向膜を基材表面に形成して、抗菌性などの諸特性を得る技術が提案されている。

[0003]

【発明が解決しようとする課題】ところで、環境汚染物 40 質の浄化や水分解による水素製造などにおいて、特に水分解の分野において、酸化チタンの触媒活性の向上が実用上切望されているところであるが、充分に高い触媒活性を有する酸化チタンは未だ得られていないのが現状である。本発明はこのような従来の問題に鑑みてなされたものであり、その目的は光触媒活性の高い光触媒材を提供することにある。

[0004]

【課題を解決するための手段】本発明によれば、結晶表面と垂直方向に、(004)及び(112)の少なくと 50

も一方の結晶配向面を持つアナターゼ型酸化チタンの薄膜を基材上に形成したことを特徴とする光触媒材が提供 される。

【0005】このとき光触媒活性をより向上させるの観点から、前記薄膜の膜厚は500nm以上であるのがよい

【0006】また電荷分離を促進させて光触媒活性をさらに向上させる観点からは、前記薄膜の表面に金属又は金属酸化物を担持させるのが好ましく、水分解における光触媒活性を向上させる観点からは、金属酸化物の中でも酸化ルテニウムが特に望ましい。

【0007】さらにアナターゼ型酸化チタンの薄膜が形成しやすいことから、前記基材としてケイ素を主成分とするものを用いるのが好ましい。また酸化チタン薄膜の剥離防止の観点からは、ケイ素を主成分とする基板上にチタン薄膜を形成し、その上に前記酸化チタンの薄膜を形成するのが好ましい。光触媒活性を一層向上させるには酸化チタン薄膜とチタン薄膜の間に白金薄膜をさらに形成するのがよい。

20 [0008]

【発明の実施の形態】本発明者等は、実用上充分に高い 触媒活性を有する酸化チタンを得るため鋭意検討を重ね た結果、酸化チタンでは特定の結晶配向が触媒活性と密 接な関係があることを突き止め本発明をなすに至った。

【0009】すなわち本発明の光触媒材の大きな特徴は、結晶表面と垂直方向に(004)及び(112)の少なくとも一方の結晶配向面を持つアナターゼ型酸化チタンの薄膜を基材上に形成したことにある。なお、本発明において酸化チタンの薄膜とは、単結晶または多結晶からなる薄膜を意味する。また、前記単結晶の薄膜は、膜全体が単一の結晶からなるもの、及び3次元方向の結晶方位が一致する多数の結晶からなるものを含む。

【0010】本発明の光触媒材において基板上に形成する酸化チタンは、アナターゼ型であることがまず必要である。酸化チタンの結晶構造には、アナターゼ型、ルチル型、ブロッカイト型が知られているが、最も高い触媒活性を示すことから本発明ではアナターゼ型の酸化チタンを使用する。このような光触媒材による分解は次のような作用により行われる。すなわち、バンドギャップ以上のエネルギーを持つ波長の光が光触媒に照射されると、光触媒材表面で励起が生じ、価電子帯にあった電子はバンドギャップを飛び越えて伝導帯に移動する。これにより、価電子帯には電子が不足した正孔が生じて酸化反応に寄与し、他方伝導帯には電子が移動して還元反応に寄与する。

【0011】また基板上に形成する酸化チタンは、結晶表面と垂直方向に(004)及び(112)の少なくとも一方の結晶配向面を持つことが必要である。(004)及び(112)の少なくとも一方の結晶配向面を持たせることにより、光触媒活性が著しく向上し、環境汚

染物質の浄化や水分解を実用上まったく問題なく行うこ とができる。

【0012】このような特定方向に配向した結晶面を有 する酸化チタン薄膜は、化学蒸着(CVD)法により形 成することができ、中でも有機金属錯体分解法(MOC VD) により好適に形成することができる。 具体的に は、気化させたチタンアルコキシドを不活性ガスと共 に、大気圧開放下で、加熱された基材表面に吹き付ける ことにより形成する。基材表面に形成する酸化チタン薄 膜の結晶構造や結晶配向、膜厚、結晶粒径、粒径分布を 10 所望のものに制御するには、有機金属錯体の気化温度や 供給量、不活性ガスの流量、基材温度などをそれぞれ調 整すればよい。

【0013】酸化チタン薄膜を形成する材料として使用 するチタンアルコキシドとしては、チタンテトラメトキ シドやチタンテトラエトキシド、チタンテトライソプロ ポキシド、チタンテトラブトキシド、チタンジエトキシ ジイソプロポキシド、チタンジメトキシジブトキシド、 チタンテトラキス (2-エチルヘキシルオキシド)、チ タンテトラステアリルオキシドなどが好適に使用でき る。また使用する不活性ガスとしては、窒素ガスやアル ゴンガス、ヘリウムガスなど従来公知のものが使用でき るが、経済性等の点で窒素ガスを使用することが好まし く、中でも液体窒素を通して水分を除去した窒素ガスを 使用することが特に好ましい。原料であるチタンアルコ キシドの気化温度は、原料の種類に応じて適宜決定すれ ばよいが、70~150℃の範囲とすることが好まし ٧١.

【0014】酸化チタン薄膜の膜厚としては500nm 以上であることが好ましい。膜厚が500mm未満の場 30 合、充分な光触媒活性が得られないおそれがあるからで ある。より好ましい膜厚としては1,000 n m以上で ある。また好ましい上限値は2,000nmである。ま た薄膜を形成する形成する結晶粒径は100nm以下の 範囲が好ましい。結晶粒径を照射光の波長と同程度とす ることにより光触媒反応の効率が向上するからである。 【0015】電荷分離を促進させて光触媒活性をさらに

向上させるために、酸化チタンの薄膜の表面に金属又は これらの酸化物を担持させてもよい。このような金属お よび金属酸化物としては、Pt、Rh、Pd、Os、I r、Ru、Au、Ag、Cu、Cr、Baなどの金属お よびこれらの酸化物が挙げられ、中でも化学的に安定な 貴金属(Pt、Rh、Pd、Os、Ir、Ru、Au、 Ag) 及びこれらの酸化物が好ましい。水分解における 光触媒活性を向上させるには、前記の金属酸化物の中で も酸化ルテニウムが特に望ましい。これらの金属又は金 属酸化物を薄膜表面に担持すると光触媒活性が向上する のは、光照射によって酸化チタン薄膜に生成した電子が これらの金属部分に容易に流れ込み、そこに吸着してい た物質を還元する働きをするためと考えられる。薄膜表 50 面に担持させる量は、還元する物質や光触媒材の用途な どから適宜決定すればよいが、光触媒材に対して0.1 ~3wt%の範囲が好ましい。また酸化チタンの薄膜上 に前記金属または金属酸化物を担持するには、コーティ ング法、浸漬法、スパッタリング法、熱CVD法、MO CVD法など従来公知の方法を用いればよい。

【0016】本発明で使用する基材としては、CVD法 による薄膜形成時の加熱に耐えるものであれば特に制限 はなく、例えば金属やガラス、陶磁器、セラミック、プ ラスチック、木材およびこれらの複合体などを使用する ことができる。この中でも、アナターゼ型酸化チタンの 薄膜が形成しやすいことから、ケイ素を主成分とするも のが好ましい。ケイ素を主成分とする基材としては、例 えばシリコーン、酸化シリカなどが挙げられる。また酸 化チタン薄膜の剥離防止の観点からは、ケイ素を主成分 とする基板上にチタン薄膜を形成し、その上に前記酸化 チタンの薄膜を形成するのが好ましい。また光触媒活性 を一層向上させるには酸化チタン薄膜とチタン薄膜の間 に白金薄膜をさらに形成するのがよい。光照射で生成し た正孔は酸化チタン薄膜上で酸化反応に使われる一方、 生成した電子は白金薄膜に移行して、そこで還元反応に 使われる。このように酸化・還元反応の場所が分離され ることにより、電子と正孔の再結合が抑制され光触媒反 応の効率の向上するからである。前記の各薄膜の形成 は、コーティング法、浸漬法、スパッタリング法、熱C VD法、MOCVD法など従来公知の方法を用いればよ

【0017】基材の形状としては特に限定はなく、球状 物、円柱物、円筒物、タイル・壁材・床材などの板状物 といった単純形状;衛生陶器、洗面台、浴槽、流し台と いった複雑形状のものであってもよい。その他、カーブ ミラーや標識、反射板、トンネル内塗装・照明、外壁、 屋根、サッシ、鏡、ショーケース、ショーウインドウ、 看板、ディスプレイ、太陽電池、眼鏡、光学レンズ、内 視鏡レンズ、塗料、内装部材などに用いることができ る。なお基材表面は多孔質であっても緻密質であっても よい。

【0018】本発明の光触媒体に、光触媒である酸化チ タンのバンドギャップ以上のエネルギーを有する波長の 光が照射されると、光触媒材の近くに存在する環境汚染 物質は酸化や分解されて除去され、また水中に配設され ていれば水分解が生じて水素が生成される。光触媒反応 により酸化あるいは分解されて除去される環境汚染物質 としては、例えば種々の生物学的酸素要求物質や大気汚 染物質のみならず、除草剤・殺菌剤・殺虫剤などの農 薬、細菌・放射菌・菌類・藻類・カビ類などの微生物な どが挙げられる。

【0019】光源としては、太陽光や蛍光灯、ブラック ライト、水銀灯などを用いることができる。酸化チタン は紫外線しか吸収できないため、酸化クロムなどの無機

物質を添加して可視光をも吸収できるようにしてもよい。なおこの場合添加した無機物質が不純物として作用して、光照射で生じた電子・正孔対を再結合させることもあるので、クロムやバナジウムといった原子をイオン注入により酸化チタンに打ち込んで可視域に吸収帯を作るようにしてもよい。

【0020】また光吸収域を広げる他の方法としては、可視域に吸収帯を有する物質(色素)を酸化チタン表面に付ける方法が挙げられる。例えばエオシンやローダミンBなどの有機化合物、ルテニウム錯体などの金属錯体 10などの色素は、可視域の光を吸収して電子が高いエネルギー状態となる。そして、この電子が酸化チタンの伝導帯へ移動すると、酸化チタン自身がその光を吸収したと*

*同じ状態となって、光触媒反応が起こるのである。

[0021]

【実施例】以下、実施例および比較例によって本発明を さらに詳細に説明するが、もちろん本発明はこれらによ り何ら限定されるものではない。

【0022】(サンプルの作製) 表1に示す材料および 温度の基板の片側面上に、MOCVD(有機金属化学蒸着) 法により酸化チタンの薄膜を形成しサンプルA~C とした。形成した薄膜の結晶構造および優先配向面を表1に併せて示す。

[0023]

【表1】

サンブル	基材	基村温度	結晶構造	優先配向面
A	Pt/Ti/Si/Ti/Pt	580°C	アナターゼ型	(004)
В	Pt/Ti/Si/Ti/Pt	400℃	アナターゼ型	(112)
С	Pt/Ti/Pt	580℃	ルテル型	(110)

【0024】(環境汚染物質の分解性能評価)空気を入れた21の袋の中に、上記作製したサンプルA、B、C 20をそれぞれ入れ、そこに環境汚染物質であるアセトアルデヒドを注射器により注入した。そして約80kW/c m²の紫外光を照射し、北川式アセトアルデヒド検知器を用いてアセトアルデヒドの袋中の濃度を一定時間毎に測定した。結果を図1に示す。図1から明らかなように、サンプルA、B、Cのいずれもアセトアルデヒドを分解したが、アナターゼ型酸化チタンであるサンプルA及びBは、ルチル型酸化チタンであるサンプルCに比べ分解性能が良好であった。なお触媒活性が低いとされるルチル型酸化チタンでも今回比較的良好な触媒活性が見 30られたのは、ルチル型と共にアナターゼ型やブロッカイト型の結晶構造が混在していたためと考えられる。

【0025】(光触媒活性の性能評価)ボルタンメトリー法を用いてサンプルA,B,Cの光触媒活性を評価した。図2に、用いた装置の概略図を示す。サンプル1、白金電極3、参照電極4を電解槽中に配設し、それぞれをポテンショスタット2に接続した後、サンプル1に紫外線照射して、サンプルー参照電極間の電圧V1、白金電極-参照電極間の電圧V2をそれぞれ測定すると共に、サンプルー白金電極間の電流Iを測定した。また比較のために、紫外線照射を行わなわずに前記電圧および電流を測定した。電圧V1とV2との差を横軸とし、電流Iを縦軸として結果を図3に示す。図3によれば、紫外線を照射しない場合には電位が大きくなっても電流は流れない、すなわち触媒活性が得られないことがわかる。またサンプルA,BはサンプルCに比べ多くの電流が流れる、すなわち触媒活性が高いことがわかった。

【0026】 (水分解の性能評価) 塩化ルテニウム (RuCl4) の濃度が0.5 mMの溶液中に、サンプルA、B、Cを浸漬した後焼成することにより、サンプル 50

A, B, Cの表面に酸化ルテニウムを担持させた。こら らをサンプルA', B', C'とした。石英ガラス管内 に純水10mlを入れ、サンプルA、B、C及びこれら のサンプルA', B', C'を、それぞれ 2×2 c m² の大きさに成形して純水中に配設した後、紫外光を照射 し純水中の溶存酸素量を測定した。結果を図4および図 5に示す。図4によれば、アナターゼ型酸化チタンであ るサンプルA及びBでは、ルチル型酸化チタンであるサ ンプルCに比べて、紫外線照射直後の最大溶存酸素濃度 が高かった。すなわちサンプルA及びBはサンプルCに 比べ水分解に優れていた。このことは酸化ルテニウムを 表面に担持されたサンプルでも同様であって、図5によ れば、サンプルA'及びB'はサンプルC'に比べ水分 解に優れていた。また図4と図5の結果を比べると、酸 化ルテニウムを担持させたサンプルの方がそれを担持し ないサンプルよりも水分解性能に優れていることがわか った。なお、紫外線照射後、溶存酸素濃度が最高値を示 した後、時間と共に徐々に減少しているのは、紫外線照 射によってサンプルに生成した正孔と電子が照射直後は 水分解を促進させるので溶存酸素濃度は高くなるが、そ の後純水中の溶存酸素がサンプル表面の電子を取り込ん で酸素イオンとなり、サンプル表面に吸着するため、時 間と共に溶存酸素濃度が低くなると推測される。

[0027]

【発明の効果】請求項1の発明では、結晶表面と垂直方向に(004)及び(112)の少なくとも一方の結晶配向面を持つアナターゼ型酸化チタンの薄膜を基材上に形成したので、従来に比べ高い光触媒活性が得られた。請求項2の発明では、酸化チタン薄膜の膜厚を500 nm以上としたので、光触媒活性をより向上させることができた。請求項3の発明では、酸化チタン薄膜の表面に金属または金属酸化物を担持させたので、電荷分離を促

進させて光触媒活性をさらに向上させることができた。 請求項4の発明では、前記金属酸化物の中でも酸化ルテニウムを酸化チタン薄膜の表面に担持させたので水分解 における光触媒活性を向上させることができた。請求項 5の発明では、基材としてケイ素を主成分とするものを 用いるので、アナターゼ型酸化チタンが形成しやすくな る。請求項6の発明では、ケイ素を主成分とする基板上 にチタン薄膜を形成し、その上に酸化チタンの薄膜を形成するので、酸化チタン薄膜の剥離を有効に防止することができた。請求項7の発明では、ケイ素を主成分とす 10 る基板上に白金薄膜を形成し、その上にチタン薄膜を形成し、そしてその上に酸化チタンの薄膜を形成するの で、光触媒活性を格段に向上させることができた。

【図面の簡単な説明】

【図1】 アセトアルデヒドの分解性能結果を示す図である。

【図2】 ボルタンメトリー法を用いた測定装置の概略 構成図である。

【図3】 図2の測定装置で測定した結果を示す図である。

【図4】 水分解の性能評価を示す図である。

【図5】 水分解の性能評価を示す図である。 【符号の説明】

11 - 11 - -0.0

- 1 サンプル
 - 2 ポテンショスタット
 - 3 白金電極
 - 4 参照電極

【図1】

【図2】

【図3】

【図4】 【図5】

フロントページの続き

(51) Int.Cl.7	識別記号	FI		テーマコード(参考)
C 0 1 G 23/047		C01G	23/047	
C 0 4 B 41/50 ·		C 0 4 B	41/50	
C30B 29/10		C30B	29/10	
// C23C 16/40		C23C	16/40	

(72)発明者 野島 秀雄

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内

Fターム(参考) 4F100 AA17B AA20A AA21B AB01B AB12C AB24D AH06A AK52A

ATOOA BAO2 BAO3 BAO4
BAO7 BA10A BA10B EH66
JA11B JL08 JM02B JM02C

4G047 CA02 CB04 CB08 CC03 CD02 CD07

JMO2D YYOOB

4G069 AA03 BA04A BA04B BA18
BA48A BB02A BB02B BB04A
BB04B BC50A BC50B BC70A
BC70B BC75A BC75B CA10
CA17 CC33 EA07 EB15X
EB15Y EC22X EC22Y EC28
EE06 FA03 FA04 FB03

4G077 AA03 BB04 DB06 ED06 HA20 4K030 BA01 BA18 BA42 BA46 BB01 BB03 CA04 CA12 LA11