SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Foundation Mathematics Module Code: MS960Y

Course: Polytechnic Foundation Programme

No.	SOLUTION
1(a)	$\left(\frac{4xy^2h^6}{7}\right)\left(\frac{x^3}{12h}\right)$
	$= \left(\frac{1}{21}\right) \left(xy^2h^6\right) \left(\frac{x^3}{h}\right)$
	$=\frac{x^{3+1}y^2h^{6-1}}{21}$
	$=\frac{x^4y^2h^5}{21}$
1(b)	$(4d^4)^{-2}(2kd^{-1})^3$
	$= \left(\frac{1}{4d^4}\right)^2 \left(\frac{2k}{d}\right)^3$
	$= \left(\frac{1}{16d^8}\right) \left(\frac{8k^3}{d^3}\right)$
	$=\frac{k^3}{2d^{11}}$
1(c)	$\left(\sqrt{25\left(w+x\right)^{3a}}\right)^{6} \left(\frac{5^{-4}}{\left(w+x\right)^{2}}\right)$
	$= \left(5(w+x)^{\frac{3a}{2}}\right)^{6} \left(\frac{5^{-4}}{(w+x)^{2}}\right)$ $= \left(5^{6}(w+x)^{9a}\right) \left(\frac{5^{-4}}{(w+x)^{2}}\right)$
	$= \left(5^{6} \left(w+x\right)^{9a}\right) \left(\frac{5^{-4}}{\left(w+x\right)^{2}}\right)$
	$=5^{6-4}(w+x)^{9a-2}$
	$=25(w+x)^{9a-2}$

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Foundation Mathematics Module Code: MS960Y

No.	SOLUTION		
2(a)	$(5x+3y)^2-(5x-3y)^2$		
	= ((5x+3y)+(5x-3y))((5x+3y)-(5x-3y))		
	=(10x)(6y)		
	=60xy		
2(b)	$x^2 + x + 4$		
	$x-2$ x^3-x^2+2x+3		
	$-\underline{(x^3-2x^2)}$		
	$x^2 + 2x$		
	$-(x^2-2x)$		
	4x+3		
	$-\frac{(4x-8)}{11}$		
	11		
	$\therefore Q(x) = x^2 + x + 4 \text{and} R = 11$		
2(c)	$12p^4 - 4p^3 - 8p^2$		
	$=4p^2(3p^2-p-2)$		
	$=4p^2(3p+2)(p-1)$		
2(d)	Let $f(x) = 3x^3 + ax^2 + bx + 12$,		
	as $(x-3)$ is a factor of $3x^3 + ax^2 + bx + 12$,		
	f(3) = 0		
	$3(3)^3 + a(3)^2 + b(3) + 12 = 0$		
	81 + 9a + 3b + 12 = 0		
	9a + 3b = -93 $3a + b = -31$		
	Since $3x^3 + ax^2 + bx + 12$ has a remainder of -12 when divided by $(x+1)$,		
	f(-1) = -12		
	$3(-1)^{3} + a(-1)^{2} + b(-1) + 12 = -12$ $-3 + a - b + 12 = -12$ $a - b = -21$		
	-3+a-b+12=-12		
	a-b=-21		

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Foundation Mathematics Module Code: MS960Y

$$3a+b=-31 \qquad (1)$$

$$a-b=-21 \qquad (2)$$

$$(1)+(2): 4a=-52$$

$$a=-13$$
Subst $a=-13$ in $(1): 3(-13)+b=-31$

$$b=-31+39=8$$

$$3(a)(i) \qquad \frac{x^2+8x+12}{3x} \div \frac{x+6}{6x^3}$$

$$=\frac{x^2+8x+12}{3x} \times \frac{6x^3}{x+6}$$

$$=\frac{(x+6)(x+2)}{3x} \times \frac{6x^3}{x+6}$$

$$=2x^2(x+2)$$

$$3(a)(ii) \qquad \frac{1}{3-x} - \frac{x}{x^2-9}$$

$$=\frac{1}{3-x} - \frac{x}{(x+3)(x-3)}$$

$$=\frac{1}{3-x} + \frac{x}{(x+3)(3-x)}$$

$$=\frac{x+3}{(x+3)(3-x)} + \frac{x}{(x+3)(3-x)}$$

$$=\frac{2x+3}{(x+3)(3-x)}$$

$$3(a)(iii) \qquad \frac{2+\frac{2}{x-1}}{3+\frac{3}{x-1}}$$

$$=\frac{2(x-1)}{3(x-1)} + \frac{2}{x-1}$$

$$=\frac{x-1}{3(x-1)} + \frac{3}{x-1}$$

$$=\frac{2x-2+2}{3x-3+3}$$

$$=\frac{3x-3+3}{x-1}$$

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Foundation Mathematics Module Code: MS960Y

Course: Polytechnic Foundation Programme

2x
$=\frac{x-1}{3x}$
$\frac{3x}{x-1}$
2x
$={3x}$
$=\frac{2}{}$
$-\frac{-}{3}$

$$4 \qquad \frac{5x^2 + 3 - x}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$$

Multiply every term by $x(x^2 + 1)$,

$$5x^2 + 3 - x = A(x^2 + 1) + (Bx + C)x$$

$$5x^2 + 3 - x = Ax^2 + A + Bx^2 + Cx$$

Subst x = 0:

$$3 = A$$

Comparing coefficients of x^2 , 5 = A + B

$$5 = 3 + B$$

$$B = 2$$

Comparing coefficients of x,

$$-1 = C$$

$$\frac{5x^2 + 3 - x}{x^3 + x} = \frac{3}{x} + \frac{2x - 1}{x^2 + 1}$$

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Foundation Mathematics Module Code: MS960Y

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Foundation Mathematics Module Code: MS960Y

6(c)	The domain is $\{x \mid -\infty < x < \infty\}$.		
	The range is $\{f(x) \mid -\infty < f(x) < \infty\}$.		
6(d)	Based on the given graph, the roots are $x = -1$ and $x = 0$.		
	Since the polynomial is of degree 3, one of the roots has to be a repeated root.		
	$f(x) = (x)(x+1)^2$ or $f(x) = (x)^2(x+1)$		
	[reject because $f(-0.5) = -0.125$]		
	$\therefore f(x) = (x)(x+1)^2$		
	$= (x)(x^2 + 2x + 1)$		
	$=x^3+2x^2+x$		
7(a)	Monthly earnings = Basic salary + commission		
/(a)	Monthly earnings = $800 + \frac{m}{100} (50000)$ $3300 = 800 + \frac{m}{100} (50000)$		
	2500 = 500m		
	m = 5		
7(b)	 1. Understand the problem State the given conditions and quantities. Johnson's May earnings = Willy's May earnings 		
	2. Devise a plan Monthly earnings = Basic salary + commission		
	• Identify which are the relevant Let the sales amount be <i>x</i> ,		
	concepts that can be applied. Scenario 1 (sales amount > 30000)		
	$800 + \frac{5}{100}x = 1300 + \frac{4.5}{100}(x - 30000)$		
	Scenario 2 (sales amount < 30000)		
	$800 + \frac{5}{100}x = 1300$		
	3. Implement the Scenario 1 (sales amount > 30000)		
	• Carry out the $800 + 0.05x = 1300 + 0.045x - 1350$		

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 1 MST

Module Name: Foundation Mathematics Module Code: MS960Y

Course: Polytechnic Foundation Programme

	plan, showing $850 = -0.005x$		
	each step clearly. $x = -17000 \text{ (reject)}$	x = -17000 (reject) Scenario 2 (sales amount > 30000)	
	•		
	800 + 0.05x = 1300		
	0.05x = 500		
	x = 10000	$x = 10000$ Willy's June salary = 1300 $Johnson's June salary = 800 + \frac{5}{100}(10000) = 1300$	
	4. Look back Willy's June salary = 13		
	• Substitute your answer back and check if it satisfies the conditions. Johnson's June salary =		
7c			
	3500 3000 3000 2500 2500 1000 10000 20000 30000 40000 Sales Amount (\$)	Willy	

19/20_S1 Page 7 of 7