Teorema de Kleene I

Clase 07

IIC2223 / IIC2224

Prof. Cristian Riveros

Outline

NFA versus ϵ -NFA (clase anterior)

Desde Expresiones a Autómatas

Outline

NFA versus ϵ -NFA (clase anterior)

Desde Expresiones a Autómatas

Autómata finito no-determinista con ϵ -transiciones

Definición

Un autómata finito no-determinista con ϵ -transiciones (ϵ -NFA) es:

$$A = (Q, \Sigma, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- $I \subseteq Q$ es un conjunto de estados iniciales.
- $F \subseteq Q$ es el conjunto de estados finales (o aceptación).

+

■ $\Delta \subseteq Q \times (\Sigma \cup {\epsilon}) \times Q$ es la relación de transición.

Ejecución de ϵ -NFA

Para ϵ -NFA veremos una **forma alternativa** para definir las nociones de ejecución y aceptación.

Sea $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ un ϵ -NFA.

Definiciones

- Un par $(q, w) \in Q \times \Sigma^*$ es una configuración de A.
- Una configuración (q, w) es inicial si $q \in I$.
- Una configuración (q, w) es **final** si $q \in F$ y $w = \epsilon$.

"Intuitivamente, una configuración (q, aw) representa que $\mathcal A$ se encuentra en el estado q procesando la palabra aw y leyendo a."

Ejecución de ϵ -NFA

Sea $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ un ϵ -NFA.

Definición

Se define la relación $\vdash_{\mathcal{A}}$ de **siguiente-paso** entre configuraciones de \mathcal{A} :

$$(p,u) \vdash_{\mathcal{A}} (q,v)$$

si, y solo si, existe $(p, c, q) \in \Delta$ con $c \in \Sigma \cup \{\epsilon\}$ tal que $u = c \cdot v$.

Notar que
$$\vdash_{\mathcal{A}} \subseteq (Q \times \Sigma^*) \times (Q \times \Sigma^*)$$
.

Se define $\vdash_{\mathcal{A}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{A}}$:

para toda configuración
$$(q,w)$$
: $(q,w) \vdash_{\mathcal{A}}^{*} (q,w)$

si
$$(p, u) \vdash_{\mathcal{A}} (p', w)$$
 y $(p', w) \vdash_{\mathcal{A}}^{*} (q, v)$: $(p, u) \vdash_{\mathcal{A}}^{*} (q, v)$

 $(p,u) \vdash_{\mathcal{A}}^{*} (q,v)$ si uno puede ir de (p,u) a (q,v) en **0 o más pasos**.

Lenguaje aceptado por un ϵ -NFA

Sea
$$\mathcal{A} = (Q, \Sigma, \Delta, I, F)$$
 un ϵ -NFA y $w \in \Sigma^*$.

Definiciones

■ \mathcal{A} acepta w si existe una configuración inicial (q_0, w) y una configuración final (q_f, ϵ) tal que:

$$(q_0, w) \vdash_{\mathcal{A}}^* (q_f, \epsilon)$$

■ El lenguaje aceptado por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

OJO: si \mathcal{A} no tiene ϵ -transiciones, esta es una forma **alternativa** para definir ejecución para NFA y DFA.

Equivalencia entre NFA y ϵ -NFA

Teorema

Para todo autómata finito no-determinista con ϵ -transiciones \mathcal{A} , existe un autómata no-determinista \mathcal{A}' tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

En otras palabras, NFA $\equiv \epsilon$ - NFA.

¿cómo simulamos las ϵ -transiciones, esto es, sin leer el input?

Demostración

Para demostrar este teorema, mostraremos como construir un autómata no-determinista a partir de un ϵ -NFA removiendo las ϵ -transiciones.

Construcción

Dado un ϵ -NFA $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ se define el NFA:

$$\mathcal{A}^{\not =} = (Q, \Sigma, \Delta^{\not =}, I, F^{\not =})$$

- para todo $p, q \in Q$, $(p, a, q) \in \Delta^{\neq}$ si, y solo si, existe $p' \in Q$ tal que:
 - $(p,\epsilon) \vdash^*_{\mathcal{A}} (p',\epsilon)$ y

 $p \sim p \rightarrow q$

- $(p', a, q) \in \Delta$.
- $F^{\not \epsilon} = \left\{ p \in Q \mid \exists q \in F. (p, \epsilon) \vdash_{\mathcal{A}}^* (q, \epsilon) \right\}$

Por definición, si $(p, a, q) \in \Delta$ entonces $(p, a, q) \in \Delta^{\neq}$ para todo $a \in \Sigma$.

Teorema

Dado un ϵ -NFA $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ se tiene que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\not e})$$

Demostración

Demostrar que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
 si, y solo si, $\exists q' \in F^{\ell}. (p, w) \vdash_{\mathcal{A}^{\ell}}^{*} (q', \epsilon)$

De aquí **concluimos** que A acepta w si, y solo si, $A^{\not =}$ acepta w.

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\not l})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
 si, y solo si, $\exists q' \in F^{\not e}. (p, w) \vdash_{\mathcal{A}^{\not e}}^{*} (q', \epsilon)$

Por inducción sobre el largo de w.

Caso base: Para $w = \epsilon$:

- (\Rightarrow) Sea $q \in F$ tal que $(p,\epsilon) \vdash_{\mathcal{A}}^{*} (q,\epsilon)$.
 - Por definición de $F^{\not i}$, se tiene que $p \in F^{\not i}$.

Por lo tanto, $(p, \epsilon) \vdash_{A \notin}^{*} (p, \epsilon)$.

- (\Leftarrow) Sea $q' \in F^{\not \epsilon}$ tal que $(p, \epsilon) \vdash_{\mathcal{A}^{\not \epsilon}}^* (q', \epsilon)$.
 - Como $\mathcal{A}^{\not \epsilon}$ no tiene ϵ -transiciones, entonces p=q' y $p\in F^{\not \epsilon}$.

Por definición de F^{ℓ} , existe $q \in F$ tal que $(p, \epsilon) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$.

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\not l})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. \ (p,w) \vdash_{\mathcal{A}}^{*} (q,\epsilon) \quad \text{si, y solo si,} \quad \exists q' \in F^{\not \epsilon}. \ (p,w) \vdash_{\mathcal{A}^{\not \epsilon}}^{*} (q',\epsilon)$$

Caso inductivo: Sea $w = a \cdot u \ y \ p \in Q$:

$$(\Leftarrow)$$
 Sea $q' \in F^{\not =}$ tal que $(p, au) \vdash_{\mathcal{A}^{\not =}}^* (q', \epsilon)$.

Por definición de $\vdash_{\mathcal{A}^{\not i}}^*$ existen $p' \in Q$ tal que:

$$(p,au) \vdash_{\mathcal{A}^{\not \epsilon}} (p',u) \vdash_{\mathcal{A}^{\not \epsilon}}^* (q',\epsilon)$$

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{f})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
 si, y solo si, $\exists q' \in F^{\not e}. (p, w) \vdash_{\mathcal{A}^{\not e}}^{*} (q', \epsilon)$

Caso inductivo: Sea $w = a \cdot u \ y \ p \in Q$:

$$(\Leftarrow)$$
 Sea $q' \in F^{\not =}$ tal que $(p, au) \vdash_{\mathcal{A}^{\not =}}^* (q', \epsilon)$.

Por definición de $\vdash_{A \notin}^*$ existen $p' \in Q$ tal que:

$$(\textit{p},\textit{au}) \ \overset{(1)}{\vdash_{\mathcal{A}^{\not \epsilon}}} \ (\textit{p}',\textit{u}) \ \overset{(2)}{\vdash_{\mathcal{A}^{\not \epsilon}}} \ (\textit{q}',\epsilon)$$

Por (1) sabemos que
$$(p, \epsilon) \vdash_{\mathcal{A}}^{*} (p'', \epsilon) \ y \ (p'', a, p') \in \Delta.$$
 (3)

Por (3),
$$(p, au) \vdash_{\mathcal{A}}^{*} (p', u)$$
. (4)

Como
$$|u| < |au|$$
 y (2), **por HI** existe $q \in F$: $(p', u) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$. (5)

Juntando (4) y (5), tenemos que
$$(p, au) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
.

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{f})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. \ (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon) \quad \text{si, y solo si,} \quad \exists q' \in F^{\not \epsilon}. \ (p, w) \vdash_{\mathcal{A}^{\not \epsilon}}^{*} (q', \epsilon)$$

Caso inductivo: Sea $w = a \cdot u$ y $p \in Q$:

$$(\Rightarrow)$$
 Sea $q \in F$ tal que $(p, au) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$.

Por definición de $\vdash_{\mathcal{A}}^*$ existen $p', p'' \in Q$ tal que:

$$(p,au) \vdash_{\mathcal{A}}^{*} (p',au) \vdash_{\mathcal{A}} (p'',u) \vdash_{\mathcal{A}}^{*} (q,\epsilon)$$

Demostración $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{f})$

Demostraremos que para todo $p \in Q$ y $w \in \Sigma^*$:

$$\exists q \in F. (p, w) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$$
 si, y solo si, $\exists q' \in F^{\not \epsilon}. (p, w) \vdash_{\mathcal{A}^{\not \epsilon}}^{*} (q', \epsilon)$

Caso inductivo: Sea $w = a \cdot u \lor p \in Q$:

 (\Rightarrow) Sea $q \in F$ tal que $(p, au) \vdash_{\mathcal{A}}^{*} (q, \epsilon)$.

Por definición de $\vdash_{\mathcal{A}}^*$ existen $p', p'' \in Q$ tal que:

$$(\textit{p},\textit{au}) \overset{(1)}{\vdash_{\mathcal{A}}^{*}} (\textit{p}',\textit{au}) \overset{(2)}{\vdash_{\mathcal{A}}} (\textit{p}'',\textit{u}) \overset{(3)}{\vdash_{\mathcal{A}}^{*}} (\textit{q},\epsilon)$$

Por (1) tenemos que
$$(p, \epsilon) \vdash_{\mathcal{A}}^{*} (p', \epsilon)$$
. (4)

Por (2) tenemos que
$$(p', a, p'') \in \Delta$$
. (5)

Por (4) y (5), sabemos que
$$(p, a, p'') \in \Delta^{f}$$
 y $(p, a \cdot u) \vdash_{\mathcal{A}^{f}} (p'', u)$. (6)

Como
$$|u| < |au|$$
 y (3), **por HI** existe $q' \in F^{\not\in}$: $(p'', u) \vdash_{A \not\in}^* (q', \epsilon)$. (7)

Juntando (6) y (7), tenemos que
$$(p, au) \vdash_{A\ell}^* (q', \epsilon)$$
.

Outline

NFA versus ϵ -NFA (clase anterior)

Desde Expresiones a Autómatas

Para cada $R \in \text{Regex}$ construiremos un ϵ -NFA A_R inductivamente

Construcción inductiva

Para cada $R \in \text{Regex}$, construimos un ϵ -NFA A_R :

$$\mathcal{A}_R = (Q, \Sigma, \Delta, \{q_0\}, \{q_f\})$$
 tal que $\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$.

Expresiones regulares (recordatorio)

R es una expresión regular sobre Σ si R es igual a:

1. a para alguna letra $a \in \Sigma$. 2. ϵ 3. \varnothing 4. $(R_1 + R_2)$ donde R_1 y R_2 son expresiones regulares. 5. $(R_1 \cdot R_2)$ donde R_1 y R_2 son expresiones regulares. 6. (R_1^*) donde R_1 es una expresión regular.

Construcción inductiva

Para cada $R \in \text{Regex}$, construimos un ϵ -NFA A_R :

$$\mathcal{A}_R = (Q, \Sigma, \Delta, \{q_0\}, \{q_f\})$$

tal que
$$\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$$
.

Casos bases

1. si R = a, para alguna letra $a \in \Sigma$:

$$A_R: \rightarrow \bigcirc \rightarrow \bigcirc$$

2. si $R = \epsilon$:

$$A_R: \rightarrow \mathbb{C}$$

3. si $R = \emptyset$:

$$A_R: \quad o \bigcirc$$

Construcción inductiva

Para cada $R \in \text{Regex}$, construimos un ϵ -NFA A_R tal que $\mathcal{L}(R) = \mathcal{L}(A_R)$:

4. si $R = (R_1 + R_2)$ donde R_1 y R_2 son expresiones regulares.

¿cómo construimos un autómata $A_{R_1+R_2}$ para la expresión $R_1 + R_2$?

Construcción inductiva

Para cada $R \in \text{Regex}$, construimos un ϵ -NFA A_R tal que $\mathcal{L}(R) = \mathcal{L}(A_R)$:

4. si $R = (R_1 + R_2)$ donde R_1 y R_2 son expresiones regulares.

¿cómo construimos un autómata $A_{R_1+R_2}$ para la expresión R_1+R_2 ?

Construcción inductiva: $R = (R_1 + R_2)$

Por inducción, sea A_{R_1} y A_{R_2} los ϵ -NFA para R_1 y R_2 resp., tal que:

- $\mathcal{A}_{R_1} = (Q_1, \Sigma, \Delta_1, \{q_0^1\}, \{q_f^1\})$
- $\mathcal{A}_{R_2} = (Q_2, \Sigma, \Delta_2, \{q_0^2\}, \{q_f^2\})$

Definimos el ϵ -NFA $\mathcal{A}_{R_1+R_2}$ = $(Q, \Sigma, \Delta, \{q_0\}, \{q_f\})$ tal que:

- $Q = Q_1 \uplus Q_2 \uplus \{q_0, q_f\}$

Proposición

Si
$$R = (R_1 + R_2)$$
, entonces $\mathcal{L}(R_1 + R_2) = \mathcal{L}(\mathcal{A}_{R_1 + R_2})$.

Demostración: ejercicio.

Construcción inductiva

Para cada $R \in \text{Regex}$, construimos un ϵ -NFA A_R tal que $\mathcal{L}(R) = \mathcal{L}(A_R)$:

5. Si $R = (R_1 \cdot R_2)$ donde R_1 y R_2 son expresiones regulares.

¿cómo construimos un autómata $A_{R_1 \cdot R_2}$ para la expresión $R_1 \cdot R_2$?

Construcción inductiva

Para cada $R \in \text{Regex}$, construimos un ϵ -NFA A_R tal que $\mathcal{L}(R) = \mathcal{L}(A_R)$:

5. Si $R = (R_1 \cdot R_2)$ donde R_1 y R_2 son expresiones regulares.

¿cómo construimos un autómata $A_{R_1 \cdot R_2}$ para la expresión $R_1 \cdot R_2$?

Construcción inductiva: $R = (R_1 \cdot R_2)$

Por inducción, sea \mathcal{A}_{R_1} y \mathcal{A}_{R_2} los ϵ -NFA para R_1 y R_2 resp., tal que:

- $A_{R_1} = (Q_1, \Sigma, \Delta_1, \{q_0^1\}, \{q_f^1\})$
- $\mathcal{A}_{R_2} = (Q_2, \Sigma, \Delta_2, \{q_0^2\}, \{q_f^2\})$

Definimos el ϵ -NFA $\mathcal{A}_{R_1\cdot R_2}$ = $(Q, \Sigma, \Delta, \{q_0^1\}, \{q_f^2\})$ tal que:

- $Q = Q_1 \uplus Q_2$

Proposición

Si
$$R = (R_1 \cdot R_2)$$
, entonces $\mathcal{L}(R_1 \cdot R_2) = \mathcal{L}(\mathcal{A}_{R_1 \cdot R_2})$.

Demostración: ejercicio.

Construcción inductiva

Para cada $R \in \text{Regex}$, construimos un ϵ -NFA A_R tal que $\mathcal{L}(R) = \mathcal{L}(A_R)$:

6. si $R = (R_1^*)$ donde R_1 es una expresión regular.

¿cómo construimos un autómata $\mathcal{A}_{(R_1)^*}$ para la expresión $(R_1)^*$?

Construcción inductiva

Para cada $R \in \text{Regex}$, construimos un ϵ -NFA A_R tal que $\mathcal{L}(R) = \mathcal{L}(A_R)$:

6. si $R = (R_1^*)$ donde R_1 es una expresión regular.

¿cómo construimos un autómata $\mathcal{A}_{(R_1)^*}$ para la expresión $(R_1)^*$?

Construcción inductiva: $R = (R_1)^*$

Por inducción, sea \mathcal{A}_{R_1} el ϵ -NFA para R_1 , tal que:

Definimos el ϵ -NFA $\mathcal{A}_{(R_1)^*} = (Q, \Sigma, \Delta, \{q_0\}, \{q_0\})$ tal que:

- $Q = Q_1 \uplus \{q_0\}$
- $\Delta = \Delta_1 \uplus \{(q_0, \epsilon, q_0^1), (q_f^1, \epsilon, q_0)\}$

Proposición

Si
$$R = (R_1)^*$$
, entonces $\mathcal{L}((R_1)^*) = \mathcal{L}(\mathcal{A}_{(R_1)^*})$.

Demostración: ejercicio.

Regex $\subseteq \epsilon$ -NFA

Teorema

Para todo $R \in \text{Regex}$, existe un $\epsilon\text{-NFA}$ \mathcal{A}_R tal que:

$$\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$$

En otras palabras, Regex $\subseteq \epsilon$ - NFA.

¿de qué tamaño es A_R con respecto a R?

Cierre de clase

En esta clase vimos:

- 1. Como remover ϵ -transiciones de un ϵ -NFA.
- 2. Como convertir una expresión regular desde un ϵ -NFA.

Próxima clase: Como construir una expresión regular desde un NFA.