BIMU2004 Olasılık Teorisi ve İstatistik Final Sınavı

İstanbul Üniversitesi - Cerrahpaşa Bilgisayar Mühendisliği Bölümü - Güz 2021

27 Aralık 2021 11:10-12:20

LÜTFEN OKUYUN:

- Sınava sizin için belirlenen sınıfta giriniz.
- Bu sınavın süresi 70 dakikadır. Süre bittiğinde cevap kağıdını doldurmaya devam edenler kopya çekmiş sayılır.
- Lütfen soruları kurşun kalemle, TÜRKÇE, kısa ve anlaşılır olarak cevaplayınız. **Anlaşılmayan, muğlak** ifadeler kullanmak, kötü yazı yazmak notunuza negatif olarak etki edecektir.
- Sınavda 1 adet hesap makinasi kullanabilirsiniz. Bunların dışında her türlü defter, kitap, notlar, sözlük ve elektronik sözlük yasaktır.
- Hesap makinası ve silgi paylaşmak kopya sayılacaktır!
- Bilgisayar, PDA, cep telefonu türünden elektronik cihazlar kullanmak yasaktır.
- Soruları çözmeye başlamadan lütfen okuyun.
- Soru ve cevap kağıtlarına isim ve numaranızı yazınız.
- Soru ve cevap kağıtlarınızı çıkarken cevap kağıdınızla beraber teslim ediniz.
- Bu sınavda toplam 100 puanlık soru vardır.
- SINAVDA KOPYA ÇEKENLER, KOPYA VERENLER VE BUNLARA TEŞEBBÜS EDENLER SINAVDAN "0" ALACAKTIR VE DEKANLIĞA ŞİKAYET EDİLECEKLERDİR!.
- Çözümlerinizi ondalık sayı olarak verecekseniz noktadan sonra en az 3 basamak hassasiyet olmalıdır.
- Çözümleriniz kesirli ise sadeleştirin, mesela sonuç $\frac{2}{4}$ ise $\frac{1}{2}$ yapılmalıdır.

Başarılar. (Mustafa Dağtekin)

	Birikimli Standard Normal Dağılım Tablosu. $\phi(\mathbf{z})$									
z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7793	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

SORULAR

 ${\bf S1:}\;\;$ İki sürekli rastgele degişken X ve Y'nin Birleşik Olasılık Yoğunluk Fonksiyonu aşağıdaki gibi verilmiştir.

$$f(x) = \begin{cases} \alpha e^{-(x+y)}, & 0 < x < y \quad x, y \in \mathbb{R} \\ 0, & \text{diğer} \end{cases}$$

- (a) (10 puan) α 'nın değerini açıklayarak bulunuz.
- (b) (15 puan) X, Y'in bir fonksiyonu $g(X, Y) = \max(X, Y)$ olarak verilmişse, g(X, Y)'in beklenen değerini açıklayarak bulunuz.
- (c) (15 puan) Y=y olma şartı altında X'in şartlı olasılık yoğunluk fonksiyonunu açıklayarak bulunuz.
- **S2:** Bir yazıcı imalatçısı A markalı bir yazıcı üretmektedir. Bu yazıcıda zamanla oluşan teknik arızalar Poisson sürecini takip ediyor ve 1 yılda ortalama 0.25 arıza görülüyor. Aşağıdaki soruları cevaplayınız.
 - (a) (10 puan) Bir yazıcının 10 yılda 1 ile 3 arasında (1 ve 3 dahil) arıza görme ihtimali nedir? Açıklayarak çözünüz.
 - (b) (15 puan) Bir şirket aynı anda sadece 1 tanesini kullanmak üzere bu yazıcılardan n tane alıyor. Bir yazıcıda ilk arıza görüldüğünde yazıcı bozuldu varsayılıyor. Kullanılan yazıcı bozulunca yeni bir yazıcı açılıp kullanılmaya başlanıyor. İlk yazıcı başlatıldıktan itibaren n'inci yazıcı bozuluncaya kadar geçen sürenin 15 yıldan daha uzun olma ihtimalinin en az 0.50 olma şartını sağlayan en küçük yaklaşık n değeri ne olmalıdır? Açıklayarak çözünüz.
- S3: İki tane kavanozdan birinde 2 beyaz 4 kırmızı top var, diğerinde 1 beyaz 1 kırmızı top var. Bu kavanozlardan ilkinden rastgele bir top çekilip diğer kavanoza koyuluyor. Sonra bu ikinci kavanozdan rastgele bir top çekilip ilk kavanoza konuyor. Aşağıdaki soruları cevaplayınız.
 - (a) (10 $\,$ puan) İkinci kavanozdan beyaz top çekmiş olma olasılığı nedir? Açıklayarak çözünüz.
 - (b) (10 puan) İkinci kavanozdan beyaz top çekilmiş olması şartı altında ilk kavanozdan ikinci kavanoza aktarılan topun beyaz olmuş olma ihtimali nedir? Açıklayarak çözünüz.
- S4: (15 puan) Ahmet 7 tane seviyesi olan bir Bilgisayar Oyunu oynuyor. Ahmet'in bu oyunda j'inci seviyeden (j+1)'inci seviyeye atlama ihtimali p_j , j=1,2,...,6. Mesela: 1. seviyeden 2. seviyeye çıkma ihtimali p_1 , 2. seviyeden 3. seviyeye çıkma ihtimali p_2 , vs.. X, Ahmet'in ulaşabileceği en yüksek seviye ise, X'in Olasılık Kütle Fonksiyonu nedir? ($p_1, p_2,..., p_6$ cinsinden.) (Not: Açıklayarak çözünüz.)

LÜTFEN SINAV KAĞITLARINIZA İSİM YAZARAK CEVAP KAĞIDIYLA BERABER TESLİM EDİNİZ.