Algoritmos de Dijkstra e Bellman-Ford

Prof. Celso A. W. Santos

J702 :: Teoria de Grafos

celso. santos @docente.unip.br

24/04/2020

- Avaliações serão realizadas por listas de exercícios, disponibilizadas em meu site todas as sextas-feiras.
 - ▶ Prazo de entrega: até a quinta-feira da semana seguinte, às 23h59m
 - Submissão deve ser feita em formato PDF

```
[J702 - Lista X] Matrícula XXXXXXXX \leftarrow tudo maiúsculo! Exemplo: [J702 - Lista 3] Matrícula D648H12
```

- ▷ Sim... eu vou zerar estudos submetidos fora do padrão :)
- Todas as listas deverão ser entregues presencialmente ao retorno das atividades!

Se você não tem impressora..

- Avaliações serão realizadas por listas de exercícios, disponibilizadas em meu site todas as sextas-feiras.
 - ▷ Prazo de entrega: até a quinta-feira da semana seguinte, às 23h59m
 - ▷ Submissão deve ser feita em formato PDF
 - ▷ Enviar com assunto no e-mail:

[J702 - Lista
$$X$$
] Matrícula $XXXXXXXX \leftarrow$ tudo maiúsculo

- ▷ Sim... eu vou zerar estudos submetidos fora do padrão :)
- Todas as listas deverão ser entregues presencialmente ao retorno das atividades!

Se você não tem impressora..

- Avaliações serão realizadas por listas de exercícios, disponibilizadas em meu site todas as sextas-feiras.
 - ▷ Prazo de entrega: até a quinta-feira da semana seguinte, às 23h59m
 - ▷ Submissão deve ser feita em formato PDF
 - ▷ Enviar com assunto no e-mail:

$$[\mathsf{J702-Lista}\ X]\ \mathsf{Matr\'{i}cula}\ XXXXXXX \leftarrow \mathsf{tudo}\ \mathsf{mai\'u}\mathsf{\'sculo}!$$

Exemplo: [J702 - Lista 3] Matrícula D648H12

- ▷ Sim... eu vou zerar estudos submetidos fora do padrão :)
- Todas as listas deverão ser entregues presencialmente ao retorno das atividades!

Se você não tem impressora..

- Avaliações serão realizadas por listas de exercícios, disponibilizadas em meu site todas as sextas-feiras.
 - ▶ Prazo de entrega: até a quinta-feira da semana seguinte, às 23h59m
 - ▷ Submissão deve ser feita em formato PDF
 - ▷ Enviar com assunto no e-mail:

$$[\mathsf{J702}\text{ -}\mathsf{Lista}\ X]\ \mathsf{Matr\'{i}cula}\ XXXXXXX \leftarrow \mathsf{tudo}\ \mathsf{mai\'{u}sculo!}$$

Exemplo: [J702 - Lista 3] Matrícula D648H12

- Sim... eu vou zerar estudos submetidos fora do padrão :
- Todas as listas deverão ser entregues presencialmente ao retorno das atividades!

Se você não tem impressora..

- Avaliações serão realizadas por listas de exercícios, disponibilizadas em meu site todas as sextas-feiras.
 - ▶ Prazo de entrega: até a quinta-feira da semana seguinte, às 23h59m
 - ▷ Submissão deve ser feita em formato PDF
 - ▷ Enviar com assunto no e-mail:

$$[\mathsf{J702}\text{ - Lista }X]\text{ Matrícula }XXXXXXX \leftarrow \mathsf{tudo}\text{ maiúsculo!}$$

- ▷ Sim... eu vou zerar estudos submetidos fora do padrão :)
- Todas as listas deverão ser entregues presencialmente ao retorno das atividades!

Se você não tem impressora..

- Avaliações serão realizadas por listas de exercícios, disponibilizadas em meu site todas as sextas-feiras.
 - ▶ Prazo de entrega: até a quinta-feira da semana seguinte, às 23h59m
 - ▷ Submissão deve ser feita em formato PDF
 - ▷ Enviar com assunto no e-mail:

$$[\mathsf{J702}\text{ - Lista }X]\text{ Matrícula }XXXXXXX \leftarrow \mathsf{tudo}\text{ maiúsculo!}$$

- ▷ Sim... eu vou zerar estudos submetidos fora do padrão :)
- Todas as listas deverão ser entregues presencialmente ao retorno das atividades!

Se você não tem impressora...

- Avaliações serão realizadas por listas de exercícios, disponibilizadas em meu site todas as sextas-feiras.
 - ▶ Prazo de entrega: até a quinta-feira da semana seguinte, às 23h59m
 - ▷ Submissão deve ser feita em formato PDF
 - ▷ Enviar com assunto no e-mail:

$$[\mathsf{J702}\text{ - Lista }X]\text{ Matrícula }XXXXXXX \leftarrow \mathsf{tudo}\text{ maiúsculo!}$$

- ▷ Sim... eu vou zerar estudos submetidos fora do padrão :)
- Todas as listas deverão ser entregues presencialmente ao retorno das atividades!

Se você não tem impressora...

Na aula passada...

Grafos ponderados

Definição. Um grafo ponderado é uma tripla G=(V,U,w) tal que V é um conjunto de vértices, E é um conjunto de arestas, e $w:E\to\mathbb{R}$ é uma função peso que atribui um valor real a cada aresta do grafo.

Caminho Mínimo

Caminho Mínimo

Entrada: Um grafo ponderado G=(V,U,w), um vértice fonte $s\in V$ e um vértice destino $t\in V$.

Pergunta: Qual é o menor caminho entre s e t? E qual é o seu custo?

Ę

Caminho Mínimo

Caminho Mínimo

Entrada: Um grafo ponderado G=(V,U,w), um vértice fonte $s\in V$ e um vértice destino $t\in V$.

Pergunta: Qual é o menor caminho entre s e t? E qual é o seu custo?

Caminho Mínimo

Caminho Mínimo

Entrada: Um grafo ponderado G=(V,U,w), um vértice fonte $s\in V$ e um vértice destino $t\in V$.

Pergunta: Qual é o menor caminho entre s e t? E qual é o seu custo?

Algoritmo de Dijkstra

- Single-source
- \triangleright Dados vértices $s,t\in V$, encontra o menor caminho entre s e t
- ▶ Tem um problema!

Algoritmo de Bellman-Ford

- Single-source
- "Resolve" o problema!

- All-pairs
 - Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- \triangleright Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.

Algoritmo de Bellman-Ford

- ▷ Single-source
- "Resolve" o problema

- > All-pairs
- Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- \triangleright Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.

Algoritmo de Bellman-Force

- ▶ Single-source
- "Resolve" o problema

- All-pairs
 - Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- ightarrow Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.
- ▶ Tem um problema!

Algoritmo de Bellman-Ford

- Single-source
- ▷ "Resolve" o problema

- > All-nairs
- Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- \triangleright Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.
- ▶ Tem um problema!

Algoritmo de Bellman-Force

- Single-source
- "Resolve" o problema

- > All-pair
- Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- ightharpoonup Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.
- ▶ Tem um problema!

Algoritmo de Bellman-Ford

- ▷ Single-source
- → "Resolve" o problema.

- > All-pairs
- Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- ightharpoonup Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.
- ▶ Tem um problema!

Algoritmo de Bellman-Ford

- ▷ Single-source
- → "Resolve" o problema.

- ▷ All-pair
- ▶ Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- ightarrow Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.
- ▶ Tem um problema!

Algoritmo de Bellman-Ford

- ▷ Single-source
- ▷ "Resolve" o problema!

- ▷ All-pair
- ▶ Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- ightharpoonup Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.
- ▶ Tem um problema!

Algoritmo de Bellman-Ford

- ▷ Single-source
- ▷ "Resolve" o problema!

- > All-pairs
- Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- ightharpoonup Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.
- ▶ Tem um problema!

Algoritmo de Bellman-Ford

- ▷ Single-source
- ▷ "Resolve" o problema!

- ▷ All-pairs
- Mais rápido que executar Single-source para todos os vértices

Algoritmo de Dijkstra

- ▷ Single-source
- ightharpoonup Dados vértices $s,t\in V$, encontra o menor caminho entre s e t.
- ▶ Tem um problema!

Algoritmo de Bellman-Ford

- ▷ Single-source
- ightharpoonup "Resolve" o problema!

Algoritmo de Floyd-Warshall

- ▷ All-pairs
- ▶ Mais rápido que executar Single-source para todos os vértices

```
\begin{aligned} \text{Inicializa-Single-} \\ \text{Source}(G,s) &: \\ \textbf{para todo } \text{ v\'ertice } v \in V \\ d[v] &= \infty; \\ \pi[v] &= \bot; \\ d[s] &= 0; \end{aligned}
```

```
\begin{aligned} \text{Relaxa}(u,v,w) \colon \\ & \textbf{se} \ d[v] > d[u] + w(u,v) \colon \\ & d[v] = d[u] + w(u,v) \colon \\ & \pi[v] = u; \end{aligned}
```

```
DIJKSTRA(G, s):

INICIALIZA-SINGLE-SOURCE(G, s)
S = \emptyset;
Q = V;
enquanto Q \neq \emptyset faça:
u = \text{Extrai-Min}(Q);
S = S \cup \{u\};
p/ todo vértice v \in N(u) faça:
\text{Relaxa}(u, v, w);
```

```
\begin{aligned} & \text{para todo } \text{v\'ertice } v \in V \colon \\ & d[v] = \infty; \\ & \pi[v] = \!\!\! \perp; \\ & d[s] = 0; \end{aligned} \text{Relaxa}(u, v, w) \colon \\ & \text{se } d[v] > d[u] + w(u, v) \colon \\ & d[v] = d[u] + w(u, v); \\ & \pi[v] = u; \end{aligned}
```

INICIALIZA-SINGLE-SOURCE(G, s):

```
\begin{aligned} \text{Dijkstra}(G,s) \colon \\ & \text{Inicializa-Single-Source}(G,s) \\ & S = \emptyset; \\ & Q = V; \\ & \text{enquanto } Q \neq \emptyset \text{ faça:} \\ & u = \text{Extrai-Min}(Q); \\ & S = S \cup \{u\}; \\ & \text{p/ todo } \text{v\'ertice } v \in N(u) \text{ faça:} \\ & \text{Relaxa}(u,v,w); \end{aligned}
```

```
\begin{split} \text{Inicializa-Single-} \\ \text{Source}(G,s) &: \\ \textbf{para todo } \text{ v\'ertice } v \in V \\ d[v] &= \infty; \\ \pi[v] &= \bot; \\ d[s] &= 0; \end{split}
```

```
\begin{aligned} \text{Relaxa}(u,v,w) \colon \\ & \textbf{se} \ d[v] > d[u] + w(u,v) \colon \\ & d[v] = d[u] + w(u,v); \\ & \pi[v] = u; \end{aligned}
```

```
\begin{split} \text{Dijkstra}(G,s) \colon \\ & \text{Inicializa-Single-Source}(G,s) \\ & S = \emptyset; \\ & Q = V; \\ & \text{enquanto } Q \neq \emptyset \text{ faça:} \\ & u = \text{Extrai-Min}(Q); \\ & S = S \cup \{u\}; \\ & \text{p/ todo v\'ertice } v \in N(u) \text{ faça:} \\ & \text{Relaxa}(u,v,w); \end{split}
```


Encontrando a Resposta

```
DEVOLVE-MENOR-CAMINHO(G,s):
   DIJKSTRA(G,s);
   imprime "Custo: " + d[t];
   imprime "Caminho: t \leftarrow "
   v = \pi[t];
   enquanto v \neq \bot faça:
   imprime: "v \leftarrow";
   v = \pi[v];
```

 O algoritmo de Dijkstra funciona mesmo quando existem pesos negativos nas arestas.

... mas quebra quando existem ciclos negativos

 O algoritmo de Dijkstra funciona mesmo quando existem pesos negativos nas arestas.

... mas quebra quando existem ciclos negativos

 O algoritmo de Dijkstra funciona mesmo quando existem pesos negativos nas arestas.

... mas quebra quando existem ciclos negativos!

 O algoritmo de Dijkstra funciona mesmo quando existem pesos negativos nas arestas.

... mas quebra quando existem ciclos negativos!

 O algoritmo de Dijkstra funciona mesmo quando existem pesos negativos nas arestas.

... mas quebra quando existem ciclos negativos!

O Algoritmo de Bellman-Ford

Algoritmo de Bellman-Ford

```
\begin{aligned} \text{Bellman-Ford}(G,s) \colon \\ &\text{Inicializa-Single-Source}(G,s); \\ &\textbf{de } i = 1 \text{ at\'e } n-1 \text{ fa\'ea:} \\ &\text{para toda aresta } uv \in E \text{ fa\'ea:} \\ &\text{Relaxa}(u,v,w); \\ &\text{para toda aresta } uv \in E \text{ fa\'ea:} \\ &\text{se } d[v] > d[u] + w(u,v) \text{ ent\~ao:} \\ &\text{devolve } \text{False} \end{aligned}
```

Exemplo de Execução :: Algoritmo de Bellman-Ford

Exemplo de Execução :: Algoritmo de Bellman-Ford

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e
π		\vdash	Т	1	

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e	
d	0	4	3	6	∞	

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e
π	Т	s	s	c	Т

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e
π		s	s	c	c

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e	
d	0	4	3	6	5	

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e
π	Т	s	s	c	d

	s	b	c	d	e
d	0	4	3	6	5

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e
d	0	4	3	6	5

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e
d	0	4	2	6	5

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e
π	Т	s	b	c	d

	s	b	c	d	e
d	0	4	2	6	5

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e
d	0	4	2	5	5

Ordem das Arestas:

 $1^a:de$

 $2^a:bd$

 $3^a:sc$

 $4^a:bc$

 $5^a:sb$

 $6^a:cd$

	s	b	c	d	e
π	Т	s	b	c	d

Ordem das Arestas: $1^a : de$

 $2^{a}:bd$ $3^{a}:sc$ $4^{a}:bc$ $5^{a}:sb$ $6^{a}:cd$ $7^{a}:ce$

Ordem das Arestas: $1^a : de$

 $2^{a}:bd$ $3^{a}:sc$ $4^{a}:bc$ $5^{a}:sb$ $6^{a}:cd$

Exemplo de Execução (Ruim) :: Algoritmo de Bellman-Ford

Exemplo de Execução (Ruim) :: Algoritmo de Bellman-Ford

- Algoritmo de Dijkstra
 - ▶ Single-source
 - \triangleright Complexidade: $\mathcal{O}(n \log n + m)$
- Algoritmo de Bellman-Ford
 - ▶ Single-source
 - \triangleright Complexidade: $\mathcal{O}(nm)$
- Algoritmo de Floyd-Warshall
 - All-pairs
 - \triangleright Complexidade: $\mathcal{O}(n^3)$

Algoritmos para resolver CAMINHO MÍNIMO

Algoritmo de Dijkstra

- ▷ Single-source
- \triangleright Complexidade: $\mathcal{O}(n \log n + m)$

Algoritmo de Bellman-Ford

- ▷ Single-source
- \triangleright Complexidade: $\mathcal{O}(nm)$

- All-pairs
 - \triangleright Complexidade: $\mathcal{O}(n^3)$

- Algoritmo de Dijkstra
 - ▷ Single-source
 - \triangleright Complexidade: $\mathcal{O}(n \log n + m)$
- Algoritmo de Bellman-Ford
 - ▷ Single-source
 - \triangleright Complexidade: $\mathcal{O}(nm)$
- Algoritmo de Floyd-Warshall
 - All-pairs
 - \triangleright Complexidade: $\mathcal{O}(n^3)$

Algoritmos para resolver CAMINHO MÍNIMO

Algoritmo de Dijkstra

- ▷ Single-source
- ightharpoonup Complexidade: $\mathcal{O}(n\log n + m)$

Algoritmo de Bellman-Ford

- ▶ Single-source
- \triangleright Complexidade: $\mathcal{O}(nm)$

- All-pairs
 - \triangleright Complexidade: $\mathcal{O}(n^{\circ})$

- Algoritmo de Dijkstra
 - ▷ Single-source
 - ightharpoonup Complexidade: $\mathcal{O}(n\log n + m)$
- Algoritmo de Bellman-Ford
 - ▷ Single-source
 - \triangleright Complexidade: $\mathcal{O}(nm)$
- Algoritmo de Floyd-Warshall
 - All-pairs
 - \triangleright Complexidade: $\mathcal{O}(n^3)$

- Algoritmo de Dijkstra
 - ▷ Single-source
 - ightharpoonup Complexidade: $\mathcal{O}(n\log n + m)$
- Algoritmo de Bellman-Ford
 - ▷ Single-source
 - \triangleright Complexidade: $\mathcal{O}(nm)$
- Algoritmo de Floyd-Warshal
 - All-pairs
 - \triangleright Complexidade: $\mathcal{O}(n^{\circ})$

Algoritmos para resolver CAMINHO MÍNIMO

Algoritmo de Dijkstra

- ▷ Single-source
- ightharpoonup Complexidade: $\mathcal{O}(n\log n + m)$

Algoritmo de Bellman-Ford

- ▷ Single-source
- ightharpoonup Complexidade: $\mathcal{O}(nm)$

- All-pairs
- \triangleright Complexidade: $\mathcal{O}(n^{\circ})$

Algoritmos para resolver CAMINHO MÍNIMO

Algoritmo de Dijkstra

- ▷ Single-source
- \triangleright Complexidade: $\mathcal{O}(n \log n + m)$

Algoritmo de Bellman-Ford

- ▷ Single-source
- \triangleright Complexidade: $\mathcal{O}(nm)$

- ▷ All-pairs
- \triangleright Complexidade: $\mathcal{O}(n^3)$

Algoritmos para resolver CAMINHO MÍNIMO

Algoritmo de Dijkstra

- ▷ Single-source
- \triangleright Complexidade: $\mathcal{O}(n \log n + m)$

Algoritmo de Bellman-Ford

- ▷ Single-source
- \triangleright Complexidade: $\mathcal{O}(nm)$

- ▷ All-pairs
- \triangleright Complexidade: $\mathcal{O}(n^3)$

Algoritmos para resolver CAMINHO MÍNIMO

Algoritmo de Dijkstra

- ▷ Single-source
- \triangleright Complexidade: $\mathcal{O}(n \log n + m)$

Algoritmo de Bellman-Ford

- ▷ Single-source
- \triangleright Complexidade: $\mathcal{O}(nm)$

- ▷ All-pairs
- \triangleright Complexidade: $\mathcal{O}(n^3)$

Dúvidas?

Aula que vem...

Árvore Geradora Mínima

ÁRVORE GERADORA MÍNIMA

Entrada: Um grafo ponderado G = (V, U, w).

Pergunta: Qual é a árvore $T \subseteq G$ de custo mínimo que gera G?

Árvore Geradora Mínima

ÁRVORE GERADORA MÍNIMA

Entrada: Um grafo ponderado G = (V, U, w).

Pergunta: Qual é a árvore $T \subseteq G$ de custo mínimo que gera G?

9