Time: 80 Minutes

UE18CS303

Max Marks: 40

NOVEMBER 2020: IN SEMESTER ASSESSMENT B Tech CSE 5th SEMESTER TEST – 2

UE18CS303 - MACHINE INTELLIGENCE

Answer All Questions

1.	a)	(i) Explain how means clustering (ii) Is converge (iii) In the give	ng. Explain ence alway	what is an s guarante	elbow po ed in k-m	oint. (2+1) eans? (1)		of k in k-	5
		1800 1600 1400 1200 1000 1000 1000 1000							
		400 200	3	4 5 Val	5 lue of K	7 8	9 . 20		
	b)	Determine the support value or rules having a control of the support value of the support val	f 50%. Bu	ild the asso	ociate rule	graph and c	sactions with letermine any	a minimum two associate	5
		Transactions	Potato	Onion	Milk	Bread	Canned Drink		
		t1	1	1	0	1	0		
		12	1	0	1	1	0		

t3

t4

t5

t6

2.	a)	Find the frequent Build the fp-tree to be 50%.	at item sets ending with 'm' using FP Growth Algorithm. e and condition based pattern tree (cbp-tree) and assume the threshold	5				
		Items						
		tl f,a,c,d,g,i,m,p						
		t2 a,b,c,f,l,m,o						
		t3 b,f,h,j,o						
		t4	b,c,k,s,p					
		t5	a,f,c,e,l,p,m,n					
	b)	Find the singula	r values of the matrix	3				
		$B = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.					
	c)	Explain the Step	os of PCA	2				
3.	a)	(i) List the 5 ma	in features of genetic algorithms (1)	7				
		it by a GA? (2) (iii) What kind	quirements should a problem satisfy in order to be suitable for solving of a population is a genetic algorithm (GA) for optimisation most					
		likely to succeed (2)	d in? What should ideally be the crossover and mutation probability?					
		(iv) For a single point crossover with cross over point in the middle what will be the child chromosomes for the following two parent chromosomes 110111 and 100011 (2)						
	b)	crew can operat	e company operates 3 plains and employs 5 cabin crews. Only one e on any plane on a single day, and each crew cannot work for more a row. The company uses all planes every day. A Genetic Algorithm ork out the best combination of crews on any particular day.	3				
			chromosome could represent an individual in this algorithm? ess function for this problem.					
4.	a)	Suppose a genet	ic algorithm uses chromosomes of the form	7				
			th a fixed length of eight genes. Each gene can be any digit between 0	,				

	and 9. Let the fitness of individual x be calculated as:			
	f(x) = (a + b) - (c + d) + (e + f) - (g + h), and let the initial population consist of four			
	individuals with the following chromosomes:			
	x1 = 65413532			
	x2 = 87126601			
	x3 = 23921285			
	x4 = 4 1 8 5 2 0 9 4			
	a) Evaluate the fitness of each individual, showing all your workings, and arrange them in order with the fittest first and the least fit last. (2)			
	b)Perform the following crossover operations:			
	(i) Cross the fittest two individuals using one-point crossover at the			
	middle point. (1)			
	(ii) Cross the first and third fittest individuals (ranked 1st and 3rd)			
	using a uniform crossover. (1)			
	(iii) Evaluate the fitness of the new population consisting of the 4 offspring resulting from the crossover previous questions. Has the overall fitness improved? (3)			
b)	i) If the population size is N and the number of iterations is T, how many times the objective function is to be evaluated (including the initial objective function evaluations) in PSO?	2		
	ii) How many user defined parameters are required in PSO apart from the population size and number of iterations?			
C)	The VC dimension of hypothesis space H1 is larger than the VC dimension of hypothesis space H2. Which of the following can be inferred from this?	1		
	A) The number of examples required for learning a hypothesis in H1 is larger than the			
	number of examples required for H2.			
	B) The number of examples required for learning a hypothesis in H1 is smaller than the			
	number of examples required for H2.			
	C) No relation to number of samples required for PAC learning.			