MCTS Overview 687

Sean Folan

November 2024

1 Overview

Monte Carlo Tree Search (MCTS) is an online algorithm that attempts to estimate the q function of a state though random simulation. Everytime it visits a state, it builds an ExpectiMax search tree incrementally. The search can be terminated after a given amount of time or an amount of expanded nodes. Typically more useful for huge state spaces, famously used in AlphaGo (Go) and Pluribus (No limit Texas Hold'em Poker).

2 Algorithm

The Algorithm has four parts, which are repeated until the computational budget is met.

- 1. Selection Select an unexpanded node.
- 2. Expansion If we are not in a terminal state, we expand one or more of the children nodes
- 3. Simulation Choose one of the new nodes and perform Monte Carlo simulation of the MDP
- 4. Backpropagation The return is backpropagated up to the root

Steps one and two are defined by a TREEPOLICY which tells the algorithm how to select and expand and step three utilizes DefaultPolicy which encodes how the simulations are carried out.

2.1 Upper Confidence Trees

One of the most popular tree policies is Upper Confidence Trees (UCT). This strategy has us pick nodes to...

$$\arg\max_{a \in A} Q(s, a) + 2C_p \sqrt{\frac{2\ln N(s)}{N(s, a)}}$$

3 Pseudocode

Algorithm 1 MCTS Input: MDP $M = (S, A, p, d_0, R, \gamma)$, Time limit T, current state s_0 Output: Estimated Q function while time < T do node \leftarrow Select(s_0) $\qquad \triangleright$ Find a node that is not fully explored child \leftarrow Expand(node) $\qquad \triangleright$ Expand the node to get the node you will start the Simulation from $G \leftarrow$ Simulate(child) $\qquad \triangleright$ Run the episode getting return G Backpropagate(node, G) $\qquad \triangleright$ Return results all the way up to the parent node end while

4 Really Simple GridWorld

I first tested my MCTS algorithm on a domain called "Really_Simple_GridWorld" which was a gridworld with deterministic transitions. This made it simple to try different hyperparameters and see their effects in a easy to understand deterministic domain.

Figure 1: A Tree made MCTS starting at state (0,0) in Really_Simple_GridWorld

5 Hyperparameter Search

- Exploration Factor C_p
 - Very Little Exploration (0.5)
 - Little Exploration (1)
 - Average Exploration $(\sqrt{2})$
 - More Exploration (2)
 - Most Exploration (5)
- Default Policy

Default Policy is the way that that outcomes are simulated in the Simulate step of MCTS. A better Default policy allows for better estimates to be made of a state's reward. I tried three general types of policies Random, Majority AR/AD and State Score which gave each state a score and prioritized going to higher scored states. All three domains are similar so I will summarize the general idea of the policies below.

- Random
- Majority AR/AD

My second idea was that since in general the domains started in the top left and wanted to go to the bottom right, it should in general go down and right.

- State Score

The idea that works the best is giving states a score by some function. If a state is closer to the goal state, it gets plus points, closer to a monster state is minus points. I also made it so that transitioning into the same state is less desirable.

- Tree Size To tune the hyperparameter for Tree Size, I did a uniform random search over 1 to 200 tree expansions.
 - Really Simple GridWorld

There seems to be a slight correlations with Tree Size and the Length of the path being found by MCTS. Most of the time, even with a small tree it manages to find the shortest path but there are more outliers.

Figure 2:

6 Sources

- 1. https://gibberblot.github.io/rl-notes/single-agent/mcts.html
- $2. \ http://incomplete ideas.net/book/RLbook2020.pdf$
- $3. \ http://www.incompleteideas.net/609\%20dropbox/other\%20readings\%20and\%20resources/MCTS-survey.pdf$
- $4.\ https://courses.cs.washington.edu/courses/cse473/11au/slides/cse473au11-adversarial-search.pdf$