Nanopore automata

Ian $\mathrm{Holmes}^{1,2,\ast}$

1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2 Department of Bioengineering, University of California, Berkeley, CA, USA

Contents

1	Abs	stract	2	
2	Spe	ecification	2	
	2.1	Parameterization algorithm	2	
	2.2	Reference search algorithm	3	
	2.3	Implementation	3	
	2.4	Evaluation	3	
3	Me	thods	3	
	3.1	Null model	3	
	3.2	Homology model	5	
	3.3	Basecalling model	6	
4	Res	sults	7	
5	Dis	cussion	7	
6	Ack	knowledgments	8	
7	Fig	ure Legends	9	
8	8 Appendix			
	8.1	Exponential distribution	10	
	8.2	Gamma distribution	10	
	8.3	Normal distribution	10	

8.4	Transition table for nanopore transducer	12
8.5	Transition table for basecalling HMM	14

1 Abstract

State machine algorithms for aligning Nanopore reads.

2 Specification

Initial goal (Preliminary Results) is simple reusable code for aligning a segmented nanopore read (with segment currents summarized) to a reference sequence.

Longer-term goals (Specific Aims) include

- quasi-hierarchical series of models for processed \rightarrow raw data (raw, FAST5, FASTQ, FASTA)
- transducer intersection-style models for read-pair alignment, suitable for long-read assemblers
- systematic strategies for approximation/optimization algorithms, climbing the hierarchy (starting with k-mer or FM-index approaches)
- transducer intersection models for aligning reads from different sequencing technologies, for improved assembly
- transducer-based versions of Rahman & Pachter's CGAL

2.1 Parameterization algorithm

Given the following inputs

- Reference genome (FASTA)
- Segment-called reads (FAST5/HDF5)

Perform the following steps

• Perform Baum-Welch to fit a rich model

Rich model incorporates segment statistics.

2.2 Reference search algorithm

Given the following inputs

- Reference genome
- Segment-called reads (FAST5/HDF5)
- Parameterized rich model

Perform the following steps

• Perform Viterbi alignment

2.3 Implementation

Libraries etc.

HDF5...

2.4 Evaluation

Strategy...

Data sets...

3 Methods

Model & inference algorithms.

3.1 Null model

 \bullet Output alphabet: \Re (real numbers signifying current readings)

- K current samples (ticks). Sequence is $y_1 \dots y_K$
 - partitioned into a sequence of L events: $E_1 \dots E_L$
- Parameters: $p^{\text{NullEvent}}, p^{\text{NullTick}}, \mu^{\text{Null}}, \tau^{\text{Null}}$
- Gaussian emissions: $y_n \sim \text{Normal}(\mu^{\text{Null}}, \tau^{\text{Null}})$
- Probability is

$$\begin{split} P(E_1 \dots E_L, y_1 \dots y_K) dy_1 \dots dy_K \\ &= (1 - p^{\text{NullEvent}}) \prod_{\text{events:} E_l} p^{\text{NullEvent}} \left(1 - p^{\text{NullTick}}\right) \prod_{\text{ticks:} y_k \in E_l} p^{\text{NullTick}} P(y_k | \mu^{\text{Null}}, \tau^{\text{Null}}) dy_k \end{split}$$

3.2 Homology model

- \bullet Order-N Mealy transducer.
- Input alphabet: $\Omega = \{A, C, G, T\}$ (nucleotides)
- Output alphabet: real numbers partitioned into events, as with null model
- States: Start, End, { Match_{x_1...x_N}, Delete_{x_1...x_N}: x_1...x_N \in \Omega^N}
- $$\begin{split} \bullet \ \ & \text{Parameters: } p^{\text{StartEvent}}, p^{\text{BeginDelete}}, p^{\text{ExtendDelete}}, \\ & \{p^{\text{Skip}}_{x_1...x_N}, p^{\text{MatchEvent}}_{x_1...x_N}, p^{\text{MatchTick}}_{x_1...x_N}, \mu^{\text{Match}}_{x_1...x_N}, \tau^{\text{Match}}_{x_1...x_N} : x_1 \dots x_N \in \Omega^N \} \end{split}$$

Transducer can *skip* an individual base (no event emissions for that base), or can *delete* a run of bases (no event emissions during the run).

The transition weights for this transducer are shown in Section 8.4.

3.3 Basecalling model

- \bullet Order-N HMM.
- Unobserved transition labels: $\Omega = \{A, C, G, T\}$ (nucleotides)
- Output alphabet: real numbers partitioned into events, as with null & transducer models
- States: Start, End, { $\text{Emit}_{x_1...x_N}$
- Parameters: same as transducer model, plus length parameter p^{Emit} , and kmer probability distribution $q(x_1 \dots x_N)$ together with associated conditional distributions $q(x_{N+1}|x_2 \dots x_N)$ and $q(x_{N+1}, x_{N+2}|x_2 \dots x_N) = q(x_{N+1}|x_2 \dots x_N)q(x_{N+2}|x_3 \dots x_{N+1})$. Also define

$$\begin{array}{lcl} p^{\text{\tiny Long Delete}} & = & (p^{\text{\tiny Emit}})^N p^{\text{\tiny Begin Delete}} (p^{\text{\tiny Extend Delete}})^{N-1} (1-p^{\text{\tiny Extend Delete}}) \\ p^{\text{\tiny Short Delete}}_{x_1...x_{N+1}} & = & (p^{\text{\tiny Emit}})^2 (1-p^{\text{\tiny Begin Delete}}) p^{\text{\tiny Skip}}_{x_1...x_N} (1-p^{\text{\tiny Skip}}_{x_2...x_{N+1}}) \\ p^{\text{\tiny No Delete}}_{x_1...x_N} & = & p^{\text{\tiny Emit}} (1-p^{\text{\tiny Begin Delete}}) (1-p^{\text{\tiny Skip}}_{x_1...x_N}) \end{array}$$

The transition weights for this HMM are shown in Section 8.5.

- 4 Results
- 5 Discussion

6 Acknowledgments

7 Figure Legends

8 Appendix

8.1 Exponential distribution

$$x \sim \text{Exponential}(\kappa)$$

$$P(x|\kappa) = \kappa \exp(-\kappa x)$$

$$E[x] = \kappa^{-1}$$

$$Var[x] = \kappa^{-2}$$

Rate parameter κ .

8.2 Gamma distribution

$$x \sim \operatorname{Gamma}(\alpha, \beta)$$

$$P(x|\alpha, \beta) = \frac{x^{\alpha-1}\beta^{\alpha} \exp(-x\beta)}{\Gamma(\alpha)}$$

$$\operatorname{E}[x] = \alpha/\beta$$

$$\operatorname{Var}[x] = \alpha/\beta^{2}$$

Shape parameter α , rate parameter β . $\Gamma()$ is the gamma function

$$\Gamma(\alpha) = \int_0^\infty z^{\alpha - 1} \exp(-z) dz$$

Note $\Gamma(n) = (n-1)!$ for positive integer n.

8.3 Normal distribution

$$x \sim \text{Normal}(\mu, \tau)$$

Mean μ , precision τ (precision is reciprocal of variance).

$$P(x|\mu,\tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau}{2}(x-\mu)^2\right)$$

8.4 Transition table for nanopore transducer

The following table gives the transition weights for the transducer introduced in Section 3.2.

Source	Destination	Weight	Absorbs	Emits
Start	Start	$p^{ m Start Event}$		$\{y_s^{(k)}: 1 \le k \le K_s\},$
		$\times (p^{\text{NullTick}})^{K_s} (1 - p^{\text{NullTick}})$		$K_s \sim \text{Geometric}(p^{\text{NullTick}}),$
		$\times \prod_{k=1}^{K_s} P(y_s^{(k)} \mu^{\text{Start}}, \tau^{\text{Start}}) dy_s^{(k)}$		$y_s^{(k)} \sim \text{Normal}(\mu^{\text{Null}}, \tau^{\text{Null}})$
Start	Start	1	$x\in \Omega$	
Start	$\mathrm{Match}_{x_1x_N}$	$(1-p^{ ext{StartEvent}})$	$x_1 \dots x_N \in \Omega^N$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (p_{x_1x_N}^{\text{MatchTick}})^{K_m} (1 - p_{x_1x_N}^{\text{MatchTick}})$		$K_m \sim \text{Geometric}(p_{x_1x_N}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_1\dots x_N}^{\text{Match}}, \tau_{x_1\dots x_N}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_1x_N}^{\text{Match}}, \tau_{x_1x_N}^{\text{Match}})$
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Match}_{x_1x_N}$	$p_{x_1x_N}^{ ext{MatchEvent}}$		$\{y_m^{(k)}: 1 \le k \le K_m\},\$
		$\times (p_{x_1x_N}^{\text{MatchTick}})^{K_m} (1 - p_{x_1x_N}^{\text{MatchTick}})$		$K_m \sim \text{Geometric}(p_{x_1x_N}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_1\dots x_N}^{\text{Match}}, \tau_{x_1\dots x_N}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_1x_N}^{\text{Match}}, \tau_{x_1x_N}^{\text{Match}})$
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Skip}_{x_2x_{N+1}}$	$(1-p_{x_1x_N}^{ ext{MatchEvent}})$	$x_{N+1} \in \Omega$	
		$\times (1 - p^{\text{BeginDelete}}) p_{x_2x_{N+1}}^{\text{Skip}}$		
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Match}_{x_2x_{N+1}}$	$(1 - p_{x_1x_N}^{\text{MatchEvent}})$	$x_{N+1} \in \Omega$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (1-p^{\text{BeginDelete}})(1-p^{\text{Skip}}_{x_2x_{N+1}})$		$K_m \sim \text{Geometric}(p_{x_2x_{N+1}}^{\text{MatchTick}}),$
		$\times (p_{x_2x_{N+1}}^{\text{MatchTick}})^{K_m} (1 - p_{x_2x_{N+1}}^{\text{MatchTick}})$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}})$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}}) dy_m^{(k)}$		
$\mathrm{Match}_{x_1x_N}$	$\mathrm{Delete}_{x_2x_{N+1}}$	$(1 - p_{x_1x_N}^{\text{MatchEvent}})$	$x_{N+1} \in \Omega$	
		$ imes p^{ ext{BeginDelete}}$		
$\mathrm{Match}_{x_1x_N}$	End	$1-p_{x_1\dots x_N}^{ ext{MatchEvent}}$		
$\mathrm{Skip}_{x_1x_N}$	$\mathrm{Skip}_{x_2x_{N+1}}$	$p_{x_2x_{N+1}}^{ ext{Skip}}$	$x_{N+1} \in \Omega$	
$\operatorname{Skip}_{x_1x_N}$	${\rm Match}_{x_2x_{N+1}}$	$(1-p^{\mathrm{Skip}}_{x_2x_{N+1}})$	$x_{N+1} \in \Omega$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (p_{x_2x_{N+1}}^{\text{MatchTick}})^{K_m} (1 - p_{x_2x_{N+1}}^{\text{MatchTick}})$		$K_m \sim \text{Geometric}(p_{x_2x_{N+1}}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}})$
$\mathrm{Delete}_{x_1x_N}$	$\mathrm{Delete}_{x_2x_{N+1}}$	$p^{^{ m ExtendDelete}}$	$x_{N+1} \in \Omega$	
$\mathrm{Delete}_{x_1x_N}$	$\mathrm{Match}_{x_2x_{N+1}}$	$(1-p^{ m\scriptscriptstyle ExtendDelete})$	$x_{N+1} \in \Omega$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (p_{x_2x_{N+1}}^{\text{MatchTick}})^{K_m} (1 - p_{x_2x_{N+1}}^{\text{MatchTick}})$		$K_m \sim \text{Geometric}(p_{x_2x_{N+1}}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}})$
End	End	1	$x\in\Omega$	

8.5 Transition table for basecalling HMM

The following table gives the transition weights for the transducer introduced in Section 3.3.

Source	Destination	Weight	Unobserved	Observed
Start	$\operatorname{Emit}_{x_1x_N}$	$q(x_1 \dots x_N)$	$x_1 \dots x_N \in \Omega^N$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (p_{x_1x_N}^{\scriptscriptstyle{\mathrm{MatchTick}}})^{K_m} (1-p_{x_1x_N}^{\scriptscriptstyle{\mathrm{MatchTick}}})$		$K_m \sim \text{Geometric}(p_{x_1x_N}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_1x_N}^{\text{Match}}, \tau_{x_1x_N}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_1x_N}^{\text{\tiny Match}}, \tau_{x_1x_N}^{\text{\tiny Match}})$
$\mathrm{Emit}_{x_1x_N}$	$\mathrm{Emit}_{x_1x_N}$	$p_{x_1x_N}^{ ext{MatchEvent}}$		$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times (p_{x_1x_N}^{\scriptscriptstyle{\text{MatchTick}}})^{K_m} (1-p_{x_1x_N}^{\scriptscriptstyle{\text{MatchTick}}})$		$K_m \sim \text{Geometric}(p_{x_1x_N}^{\text{MatchTick}}),$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_1x_N}^{\text{Match}}, \tau_{x_1x_N}^{\text{Match}}) dy_m^{(k)}$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_1x_N}^{\text{Match}}, \tau_{x_1x_N}^{\text{Match}})$
$\mathrm{Emit}_{x_1x_N}$	$\mathrm{Emit}_{x_2x_{N+1}}$	$(1-p_{x_1x_N}^{ ext{MatchEvent}})$	$x_{N+1} \in \Omega$	$\{y_m^{(k)}: 1 \le k \le K_m\},\$
		$\times q(x_{N+1} x_2\dots x_N)p_{x_2\dots x_{N+1}}^{\text{NoDelete}}$		$K_m \sim \text{Geometric}(p_{x_2x_{N+1}}^{\text{\tiny MatchTick}}),$
		$\times (p_{x_2x_{N+1}}^{\text{MatchTick}})^{K_m} (1 - p_{x_2x_{N+1}}^{\text{MatchTick}})$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_2x_{N+1}}^{\text{\tiny Match}}, \tau_{x_2x_{N+1}}^{\text{\tiny Match}})$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_2x_{N+1}}^{\text{Match}}, \tau_{x_2x_{N+1}}^{\text{Match}}) dy_m^{(k)}$		
$\mathrm{Emit}_{x_1x_N}$	$\mathrm{Emit}_{x_3x_{N+2}}$	$(1 - p_{x_1x_N}^{\text{MatchEvent}})$	$x_{N+1}x_{N+2} \in \Omega^2$	$\{y_m^{(k)}: 1 \le k \le K_m\},$
		$\times q(x_{N+1}, x_{N+2} x_2 \dots x_N)p_{x_2 \dots x_{N+2}}^{\text{ShortDelete}}$		$K_m \sim \text{Geometric}(p_{x_3x_{N+2}}^{\text{MatchTick}}),$
		$\times (p_{x_3x_{N+2}}^{\text{MatchTick}})^{K_m} (1 - p_{x_3x_{N+2}}^{\text{MatchTick}})$		$y_m^{(k)} \sim \text{Normal}(\mu_{x_3x_{N+2}}^{\text{\tiny Match}}, \tau_{x_3x_{N+2}}^{\text{\tiny Match}})$
		$\times \prod_{k=1}^{K_m} P(y_m^{(k)} \mu_{x_3x_{N+2}}^{\text{Match}}, \tau_{x_3x_{N+2}}^{\text{Match}}) dy_m^{(k)}$		
$\operatorname{Emit}_{x_1x_N}$	Start	$p^{ m Long Delete}$		
$\operatorname{Emit}_{x_1x_N}$	End	$1-p^{ m\scriptscriptstyle Emit}$		