The Barzilai-Borwein method

Chenglong Bao

YMSC, Tsinghua University

Acknowledgement: slides based on Prof. Wotao Yin(UCLA).

Main features of the Barzilai-Borwein (BB) method

$$X_{k+1} = X_k - \left(\nabla^2 f(X_k) \right)^{-1} \nabla f(X_k)$$
Newton.

- The BB method was published in a 8-page paper¹ in 1988
- It is a gradient method with special step sizes. The method is motivated by Newton's method but does not compute Hessian
- At nearly no extra cost over the standard gradient method, the method is
 often found to significantly outperform the standard gradient method
- The method is used along with non-monotone line search as a convergence safeguard for non-quadratic problems

¹ J. Barzilai and J. Borwein. Two-point step size gradient method. IMA J. Numerical Analysis 8, 141–148, 1988.

Background

Goal: minimize $\mathbf{x} \in \mathbb{R}^n$ $f(\mathbf{x})$, where f is a smooth function

Let
$$\boldsymbol{g}^{(k)} = \nabla f(\boldsymbol{x}^{(k)})$$
 and $\boldsymbol{F}^{(k)} = \nabla^2 f(\boldsymbol{x}^{(k)})$.

- gradient method: $oldsymbol{x}^{(k+1)} = oldsymbol{x}^{(k)} lpha_k oldsymbol{g}^{(k)}$
 - choice of α_k : fixed, exact line search, or backtracking line search
 - pros: simple
 - cons: no use of 2nd order information, relatively slow progress
- Newton's method: $x^{(k+1)} = x^{(k)} (F^{(k)})^{-1}g^{(k)}$
 - pros: 2nd-order information, 1-step for quadratic function, fast convergence near solution
 - cons: forming and computing $({m F}^{(k)})^{-1}$ is expensive, need modifications if ${m F}^{(k)}
 ot \succ 0$
- BB method: choose $lpha_k$ so that $lpha_k g^{(k)}$ "approximates" $(F^{(k)})^{-1} g^{(k)}$

Derive the BB method
$$\chi_{k+} = \chi_{k-} = f(x_k)$$

Consider quadratic optimization

where $m{A}\succ 0$ is symmetric. Gradient is $m{g}^{(k)}=m{A}m{x}^{(k)}-m{b}$. Hessian is $m{A}$

• Newton step:
$$d_{
m newton}^{(k)} = -A^{-1}g^{(k)}$$

• Goal: choose α_k so that $-\alpha_k {m g}^{(k)} = -(\alpha_k^{-1}I)^{-1}{m g}^{(k)}$ approximates ${m d}_{
m newton}^{(k)}$

 $\bullet \quad \mathsf{Define:} \ \ s^{(k-1)} := \underbrace{x^{(k)} - x^{(k-1)}}_{} \ \mathsf{and} \ \ y^{(k-1)} := \underbrace{g^{(k)} - g^{(k-1)}}_{}. \ \ A \ \mathsf{satisfies:}$

$$As^{(k-1)} = y^{(k-1)}$$
. \leftarrow Secant equation.

• Therefore, given $s^{(k-1)}$ and $y^{(k-1)}$, how about choose α_k so that

$$(\underline{\alpha_k^{-1}I)} s^{(k-1)} \approx \underline{y}^{(k-1)}$$

Goal:

$$\underbrace{(\alpha_k^{-1}I)s^{(k-1)} \approx y^{(k-1)}}_{\text{(k-1)}} \iff \mathsf{S}^{(k-1)} \mathcal{Z}(\mathsf{Q}_k \mathsf{I}) \mathsf{y}^{(k-1)}$$

- BB method:
 - Least-squares problem: (let $\beta = \alpha^{-1}$) (BB-1.).

$$\alpha_k^{-1} = \underset{\beta}{\arg\min} \ \frac{1}{2} \| \boldsymbol{s}^{(k-1)} \boldsymbol{\beta} - \boldsymbol{y}^{(k-1)} \|^2 \implies \alpha_k^1 = \underbrace{(\boldsymbol{s}^{(k-1)})^T \boldsymbol{s}^{(k-1)}}_{(\underline{\boldsymbol{s}^{(k-1)}})^T \boldsymbol{y}^{(k-1)}} \text{20}$$
Alternative Least-squares problem:

• Alternative Least-squares problem:

$$\alpha_k = \mathop{\arg\min}_{\alpha} \frac{1}{2} \| \boldsymbol{s}^{(k-1)} - \boldsymbol{y}^{(k-1)} \boldsymbol{\alpha} \|^2 \implies \alpha_k^2 = \frac{(\boldsymbol{s}^{(k-1)})^T \boldsymbol{y}^{(k-1)}}{(\boldsymbol{y}^{(k-1)})^T \boldsymbol{y}^{(k-1)}}$$

•
$$\alpha_k^1$$
 and α_k^2 are called the BB step sizes.
$$\langle y^{k-1} \rangle \rangle \circ \langle - \langle y^{k-1} \rangle \rangle = \langle y^{k-1} \rangle - \nabla f(x^{k-1}) \rangle$$

$$\leq \zeta^{(k-1)} = \chi^k - \chi^{k-1}$$

Apply the BB method

- At k=0, $\boldsymbol{x}^{(k-1)}$ and $\boldsymbol{g}^{(k-1)}$ (and thus $\boldsymbol{s}^{(k-1)}$ and $\boldsymbol{y}^{(k-1)}$) are unavailable, so apply 1 iteration of the standard gradient descent.
- Then, switch to the BB method at k=1
- We can use either α_k^1 or α_k^2 for all $k \geq 1$, or alternate between them
- We can also fix $\alpha_k=\alpha_k^1$ or $\alpha_k=\alpha_k^2$ for a few consecutive steps and then alternate.
- It performs very well on minimizing both quadratic and other differentiable functions
- However, f_k and $\|\nabla f_k\|$ are **not** monotonic!

Numerical: steepest descent vs BB on quadratic programming

Model:

$$\underset{\boldsymbol{x}}{\text{minimize }} f(\boldsymbol{x}) := \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \mathbf{b}^T \boldsymbol{x}.$$

• The template of a gradient iteration

$$\boldsymbol{x}^{k+1} \leftarrow \boldsymbol{x}^{(k)} - \alpha_k (\boldsymbol{A} \boldsymbol{x}^{(k)} - \mathbf{b}).$$

• Steepest descent selects $\alpha_k = \arg\min_{\alpha} f(x^{(k)} - \alpha_k (Ax^{(k)} - \mathbf{b}))$, so

$$\alpha_k = \frac{(\boldsymbol{r}^k)^T \boldsymbol{r}^{(k)}}{(\boldsymbol{r}^k)^T \boldsymbol{A} \boldsymbol{r}^{(k)}}$$

where $oldsymbol{r}^{(k)} := oldsymbol{b} - oldsymbol{A} oldsymbol{x}^{(k)}.$

• **BB** selects α_k as

$$\alpha_k^1 = \frac{(s^{(k-1)})^T s^{(k-1)}}{(s^{(k-1)})^T y^{(k-1)}}$$

Numerical example

- Set symmetric matrix ${\pmb A}$ to have the condition number ${\lambda_{\max}({\pmb A})\over\lambda_{\min}({\pmb A})}=50.$
- Stopping criterion:

$$\|\boldsymbol{r}^{(k)}\| < 10^{-8}$$

- Steepest descent took 90 iterations to stop
- BB took only 10 iterations to stop (went very far temporarily and then came back)

Properties of Barzilai-Borwein

For quadratic functions, it has R-linear convergence²

For 2D quadratic function, it has Q-superlinear convergence³

 No convergence guarantee for smooth convex problems. On these problems, we pair up BB with non-monotone line search.

BB on Laplace2: $\min \frac{1}{2} x^T A x - b^T x + \frac{h^2}{4} \sum_{ijk} u_{ijk}^4$.

²Dai and Liao [2002]

³Barzilai and Borwein [1988], Dai [2013]

Safeguard: nonmonotone line search

- Definition: line search that permits temporary growth but enforces overall descent of the function value
- For nonconvex problems, they improve the likelihood of global optimality
- Improve convergence speed when a monotone scheme is forced to creep along the bottom of a narrow curved valley
- Early nonmonotone line search method⁴ developed for Newton's methods

$$f(\mathbf{x}^{(k)}) < \mathbf{0} \qquad f(\mathbf{x}^{(k)} + \underline{\alpha} \mathbf{d}^{(k)}) \leq \max_{0 \leq j \leq m_k} f(\mathbf{x}^{k-j}) + c_1 \alpha \nabla f_k^T \mathbf{d}^{(k)}$$

However, it may still kill R-linear convergence. **Example**: $x \in \mathbb{R}$,

converges R-linear but fails to satisfy the condition for k large.

⁴Grippo, Lampariello, and Lucidi [1986]

Zhang-Hager nonmonotone line search⁵

- 1. initialize $0 < c_1 < c_2 < 1$, $C_0 \leftarrow f(x^0)$, $Q_0 \leftarrow 1$, $\eta < 1$, $k \leftarrow 0$
- 2. while not converged do
- 3a. compute α_k satisfying the modified Wolfe conditions OR
- find α_k by backtracking, to satisfy the modified Armijo condition: 3b.

sufficient decrease:
$$f(\boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}) \leq \underline{C_k} + c_1 \alpha_k \nabla f_k^T \boldsymbol{d}^{(k)} \checkmark$$

4.
$$\boldsymbol{x}^{k+1} \leftarrow \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}$$

5.
$$Q_{k+1} \leftarrow \eta Q_k + 1, C_{k+1} \leftarrow (\eta Q_k C_k + f(x^{k+1}))/Q_{k+1}.$$

- Since $\eta < 1$, C_k is a weighted sum of all past f_j , more weights on recent f_j .

⁵Zhang and Hager [2004]

Convergence (advanced topic)

The results below are left to the reader as an exercise.

If $f \in C^1$ and bounded below, $\nabla f_k^T \boldsymbol{d}^{(k)} < 0$, then

- $f_k \le C_k \le \frac{1}{k+1} \sum_{j=0}^{(k)} f_j$
- there exists α_k satisfying the modified Wolfe or Armijo conditions

In addition, if ∇f is Lipschitz with constant L, then

• $\alpha_k > C \frac{|\nabla f_k^T d^{(k)}|}{\|d^{(k)}\|}$ for some constant depending on c_1, c_2, L and the backing factor $d^{\frac{k}{2}} = -\nabla f(X^{\frac{k}{2}})$

Furthermore, if for all sufficiently large k, we have uniform bounds

$$\underbrace{\nabla f_k^T \boldsymbol{d}^{(k)} \le -c_3 \|\nabla f_k\|^2}_{\text{and}} \quad \text{and} \quad \underbrace{\|\boldsymbol{d}^{(k)}\| \le c_4 \|\nabla f_k\|}_{\text{and}}$$

then ullet $\lim_{k \to \infty} \nabla f_k = 0$

Once again, pairing with non-monotone linear search, Barzilai-Borwein gradient methods work every well on general unconstrained differentiable problems.

References:

- Yu-Hong Dai and Li-Zhi Liao. R-linear convergence of the Barzilai and Borwein gradient method. *IMA Journal of Numerical Analysis*, 22(1):1–10, 2002.
- J. Barzilai and J.M. Borwein. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8(1):141-148, 1988.
- Yu-Hong Dai. A new analysis on the barzilai-borwein gradient method. *Journal of the Operations Research Society of China*, pages 1–12, 2013.
- Luigi Grippo, Francesco Lampariello, and Stephano Lucidi. A nonmonotone line search technique for Newton's method. SIAM Journal on Numerical Analysis, 23(4): 707–716, 1986.
- Hongchao Zhang and William W Hager. A nonmonotone line search technique and its application to unconstrained optimization. *SIAM Journal on Optimization*, 14(4): 1043–1056, 2004.