Renormalization of SI-2PIEA gap equations in the Hartree-Fock approximation

Author: Michael Brown

Supplement to thesis Chapter 3

Mathematica notebook to compute couter-terms for two loop truncations of the two particle irreducible effective action

```
ClearAll[veom, geom, neom, divergentpartrules, mg2soln, cteq, cts, \delta m, \delta \lambda];
```

Hartree-Fock gap equations with counterterms

```
Goldstone equation of motion. Quantities in reference to the thesis are:
```

p is the four-momentum flowing through the propagators Δ_G^{-1} and Δ_N^{-1} ,

mg2 is the Goldstone mass squared m_G^2 ,

mn2 is the Higgs mass squared m_H^2 ,

Z and $Z\Delta$ are the wavefunction a propagator renormalization constants,

 m^2 is the (renormalized) Lagrangian mass parameter, δm_0^2 , δm_1^2 are its counter-terms,

 λ is the (renormalized) four point coupling,

 $\delta\lambda_0$, $\delta\lambda_{1a}$, $\delta\lambda_{1b}$, $\delta\lambda_{2a}$, $\delta\lambda_{2b}$ are the independent coupling counter-terms,

v is the scalar field vacuum expectation value.

ħ is the reduced Planck constant,

n is the number of fields in the O(n) symmetry group,

t∞g, t∞n are the divergent tadpole integrals for the Goldstone, Higgs resp.,

tfing, tfinn are the finite parts of the tadpoles for the Goldstone, Higgs resp.

Equations of motion

Vev equation of motion

```
\begin{split} & \left( \star \text{veom=} \right. \\ & \left. \left. \left( \text{m}^2 + \delta \text{m}_0{}^2 \right) \text{v} + \frac{\lambda + \delta \lambda_0}{6} \text{v}^3 + \frac{\hbar}{6} \text{Z} \Delta \left( \text{n} - 1 \right) \left( \lambda + \delta \lambda_{1a} \right) \text{v} \left( \text{t} \infty \text{g} + \text{tfing} \right) + \frac{\hbar}{6} \text{Z} \Delta \right. \\ & \left. \left( 3\lambda + \delta \lambda_{1a} + 2\delta \lambda_{1b} \right) \text{v} \left( \text{t} \infty \text{n} + \text{tfinn} \right) \right. \\ & \left. \left. \text{finveom=m}^2 \text{v} + \frac{\lambda}{6} \text{v}^3 + \frac{\hbar}{6} \left( \text{n} - 1 \right) \lambda \right. \\ & \left. \text{v} \right. \\ & \left. \text{tfing+} \frac{\hbar}{2} \lambda \right. \\ & \left. \text{v} \right. \\ & \left. \text{tfinn*} \right) \end{split} 
\text{veom = v mg2} \end{split}
```

Goldstone equation of motion

$$\begin{split} &\text{geom} = p^2 - mg2 = \text{Z} \; \text{Z}\Delta \; p^2 - m^2 - \delta m_1{}^2 - \text{Z}\Delta \; \frac{\lambda + \delta \lambda_{1\,a}}{6} \; v^2 - \\ &\frac{\hbar}{6} \; \left(\left(n+1 \right) \; \lambda + \left(n-1 \right) \; \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{t}\infty g + \text{tfing} \right) - \frac{\hbar}{6} \; \left(\lambda + \delta \lambda_{2\,a} \right) \; \text{Z}\Delta^2 \; \left(\text{t}\infty n + \text{tfinn} \right) \\ &\text{finmg2} = mg2 \; / \; . \; \text{Solve} \left[p^2 - mg2 = p^2 - m^2 - \frac{\lambda}{6} \; v^2 - \frac{\hbar}{6} \; \left(n+1 \right) \; \lambda \; \text{tfing} - \frac{\hbar}{6} \; \lambda \; \text{tfinn} \; , \; mg2 \right] \left[\left[1 \right] \right] \\ &\text{Higgs equation of motion} \\ &\text{neom} = p^2 - mn2 = \text{Z} \; \text{Z}\Delta \; p^2 - m^2 - \delta m_1{}^2 - \text{Z}\Delta \; v^2 \; \frac{\left(3 \; \lambda + \delta \lambda_{1\,a} + 2 \; \delta \lambda_{1\,b} \right)}{6} - \\ &\frac{\hbar}{6} \; \left(\lambda + \delta \lambda_{2\,a} \right) \; \left(n-1 \right) \; \text{Z}\Delta^2 \; \left(\text{t}\infty g + \text{tfing} \right) - \frac{\hbar}{6} \; \left(3 \; \lambda + \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{t}\infty n + \text{tfinn} \right) \\ &\text{finmn2} = mn2 \; / \; . \; \text{Solve} \left[p^2 - mn2 = p^2 - m^2 - v^2 \; \frac{\lambda}{2} - \frac{\hbar}{6} \; \lambda \; \left(n-1 \right) \; \text{tfing} - \frac{\hbar}{2} \; \lambda \; \text{tfinn} \; , \; mn2 \right] \left[\left[1 \right] \right] \end{split}$$

Infinite parts of tadpoles

c0, c1, Λ and μ are regularisation/renormalisation scheme dependent quantities

```
divergentpartrules = \{ \cos \rightarrow \cot \Lambda^2 + \cot mg2 \log \left[ \Lambda^2 / \mu^2 \right], \ \tan \rightarrow \cot \Lambda^2 + \cot mn2 \log \left[ \Lambda^2 / \mu^2 \right] \}
```

Sub in tadpole expressions, eliminate mn2 and solve for mg2

```
mn2fromneom = Solve[neom /. divergentpartrules, mn2][[1]]
mg2soln = mg2 /. (geom /. divergentpartrules /. mn2fromneom // Solve[#, mg2][[1]] &)
mn2soln = mn2 /. mn2fromneom /. mg2 → mg2soln // Simplify
```

Gather divergences proportional v, tfing and tfinn and set independently to zero

First we subtract the finite equation of motion, then gather coefficients of the remainder into a list and set each to zero (after some trimming and simplifying).

```
cteq = ((CoefficientList[mg2soln - finmg2, {p, v, tfing, tfinn}] // Flatten) //
        DeleteDuplicates // Simplify // FullSimplify) == 0 // Thread
cteq2 = ((CoefficientList[mn2soln - finmn2, {p, v, tfing, tfinn}] // Flatten) //
        DeleteDuplicates // Simplify // FullSimplify == 0 // Thread
```

Solve for counterterms

Find counter-terms from the gap equations

```
cteqs = {cteq, cteq2} // Flatten // FullSimplify // DeleteDuplicates
cts = \{\delta m_1^2, \delta \lambda_{1a}, \delta \lambda_{2a}, \delta \lambda_{1b}, \delta \lambda_{2b}, Z, Z\Delta\} /. Solve[cteqs,
          \{\delta m_1, \delta \lambda_{1a}, \delta \lambda_{2a}, \delta \lambda_{1b}, \delta \lambda_{2b}, Z, Z\Delta\}\} // FullSimplify // DeleteDuplicates
Z\Delta is redundant in this truncation, can remove it :
cts /. Z\Delta \rightarrow 1 // FullSimplify
```

Verify that the finite gap equations come out right

```
finmg2 ==
   (mg2soln /. Solve[cteqs, {\delta m_1, \delta \lambda_{1a}, \delta \lambda_{2a}, \delta \lambda_{2b}, Z, Z\Delta}] /. Z\Delta \rightarrow 1 // FullSimplify //
        DeleteDuplicates) [[2]] // Simplify
finmn2 = mn2 /.
   (neom /. divergentpartrules /. mg2 \rightarrow mg2soln /. Solve[cteqs, \{\delta m_1, \delta \lambda_{1a}, 
                   \delta\lambda_{2a}, \delta\lambda_{1b}, \delta\lambda_{2b}, Z, Z\Delta}] /. Z\Delta \rightarrow 1 // FullSimplify //
          DeleteDuplicates) // Solve[#, mn2] &) // FullSimplify
```

Verify counter-term expressions in text

```
\left\{\delta m_1^2 = \frac{-\hbar \lambda (n+2)}{6} \left(c0 \Lambda^2 + c1 m^2 Log\left[\frac{\Lambda^2}{u^2}\right]\right) \frac{\delta \lambda_{1a} + \lambda}{\delta \lambda_{1b} + \lambda}\right\} / .
              Solve[cteqs, \{\delta m_1, \delta \lambda_{1a}, \delta \lambda_{2a}, \delta \lambda_{1b}, \delta \lambda_{2b}, Z, Z\Delta\}] /. Z\Delta \rightarrow 1 //
        FullSimplify // Flatten // DeleteDuplicates
 \{\delta\lambda_{1a} == \delta\lambda_{2a}, \delta\lambda_{1b} == \delta\lambda_{2b}\}\ /.  Solve [\text{cteqs}, \{\delta m_1, \delta\lambda_{1a}, \delta\lambda_{2a}, \delta\lambda_{1b}, \delta\lambda_{2b}, Z, Z\Delta\}]\ /. 
           Z\Delta \rightarrow 1 // FullSimplify // Flatten // DeleteDuplicates
 \{\delta\lambda_{1\,a}\,/\,\delta\lambda_{1\,b}\} /. Solve[cteqs, \{\delta m_1,\,\delta\lambda_{1\,a},\,\delta\lambda_{2\,a},\,\delta\lambda_{1\,b},\,\delta\lambda_{2\,b},\,Z,\,Z\Delta\}] /. Z\Delta\to 1 //
        FullSimplify // Flatten // DeleteDuplicates
\delta\lambda_{1\,\mathrm{b}} /. Solve[cteqs, \{\delta\mathrm{m}_1,\,\delta\lambda_{1\,\mathrm{a}},\,\delta\lambda_{2\,\mathrm{a}},\,\delta\lambda_{1\,\mathrm{b}},\,\delta\lambda_{2\,\mathrm{b}},\,\mathrm{Z},\,\mathrm{Z}\Delta\}] /. \mathrm{Z}\Delta 	o 1 // FullSimplify //
   DeleteDuplicates
```

Total number of independent counter-term equations

```
Length[{cteqs} // Flatten // FullSimplify // DeleteDuplicates] -
 1 (* -1 because one of the "equations" is identically "True" *)
```