

Ciência da Computação Algoritmos Bioinspirados

Parte Escrita Entrega 3

Davi dos Reis de Jesus

1 Introdução

Algoritmos genéticos são técnicas de otimização inspiradas no processo de seleção natural da biologia. Eles utilizam mecanismos como reprodução, mutação, cruzamento e seleção para encontrar soluções aproximadas para problemas complexos, especialmente aqueles em que métodos tradicionais não são eficientes. A ideia central é manter uma população de soluções candidatas que evoluem ao longo das gerações, buscando melhorar continuamente com base em um critério de aptidão (fitness).

Esses algoritmos são amplamente utilizados em áreas como engenharia, inteligência artificial, economia e bioinformática, devido à sua capacidade de explorar grandes espaços de busca de forma eficiente. A simplicidade de implementação aliada à flexibilidade para lidar com diferentes tipos de problemas torna os algoritmos genéticos uma ferramenta poderosa na resolução de desafios computacionais.

2 Implementações

2.1 Cruzamento

Neste trabalho, utilizou ☐ se o crossover por corte (one ☐ point crossover), no qual dois indivíduos "pais" trocam blocos de genes a partir de um ponto de divisão pré-definido, gerando dois "filhos" que combinam características de ambos. Essa estratégia permite explorar novas regiões do espaço de soluções ao preservar sequências de genes que já demonstraram bom desempenho, ao mesmo tempo em que promove diversidade genética para evitar convergência prematura. Conforme ilustrado na Figura 1.

Figura 1: Representação do cruzamento

2.2 Seleção dos pais

Um passo fundamental na implementação do algoritmo genético é a seleção dos pais responsáveis por gerar a próxima geração de indivíduos. Diferentemente da implementação anterior, nesta abordagem a escolha dos pais é realizada por meio do método da roleta com suavização (rank), no qual a probabilidade de seleção está diretamente relacionada ao valor de aptidão (fitness) de cada indivíduo, a partir de uma ordenação dos valores de fitness e uma suavização dada as relações matemáticas de proporção de probabilidade dada a ordenação.

3 Resultados

Para avaliar o desempenho das implementações, foram realizados testes para quantificar a efetividade das soluções na prática e promover uma comparação entre as abordagens. Os testes abrangeram a variação de diversos parâmetros, sendo realizadas 20 execuções para cada conjunto de parâmetros. As variações foram:

• Seleção de pais: {roullette_rank, tournament}

• Cálculo de Fitness: {inviavel_penalizada, penalidade_severa}

• **Tamanho da População:** {100, 200}

• **Gerações:** {100, 200}

Após a execução dos testes, foi elaborado uma tabela com todos os dados de acordo com as combinações de parâmetros possíveis a serem utilizados. Os dados completos das execuções para o teste 08 estão dispostos na tabela abaixo.

Selection	Type	n_gen	pop_size	Mean	Std	Best	Worst
roulette_rank	inviável_penalizada	100	100	13 065 078.9	119 221.33	13 234 086	12 846 978
roulette_rank	inviável_penalizada	100	200	13 196 942.4	141 705.46	13 415 655	12 991 117
roulette_rank	inviável_penalizada	200	100	13 100 781.5	72 680.15	13 209 635	12 962 863
roulette_rank	inviável_penalizada	200	200	13 212 389.3	145 985.65	13 482 886	13 028 852
roulette_rank	penalidade_severa	100	100	13 123 707.1	84 515.40	13 252 167	12 953 967
roulette_rank	penalidade_severa	100	200	13 186 147.4	111 568.14	13 415 655	13 069 614
roulette_rank	penalidade_severa	200	100	13 110 318.6	97 158.42	13 234 524	12 971 198
roulette_rank	penalidade_severa	200	200	13 177 576.7	103 672.77	13 415 655	13 062 244
tournament	inviável_penalizada	100	100	13 105 852.7	93 931.55	13 234 086	12 974 978
tournament	inviável_penalizada	100	200	13 168 982.4	81 070.16	13 279 916	13 081 345
tournament	inviável_penalizada	200	100	13 110 925.1	98 614.24	13 234 086	12 963 224
tournament	inviável_penalizada	200	200	13 214 704.1	65 898.73	13 279 916	13 085 301
tournament	penalidade_severa	100	100	13 108 474.2	89 742.35	13 229 276	12 963 224
tournament	penalidade_severa	100	200	13 208 815.7	73 325.50	13 301 007	13 093 873
tournament	penalidade_severa	200	100	13 077 042.6	95 215.30	13 234 086	12 963 224
tournament	penalidade_severa	200	200	13 187 735.6	66 563.02	13 279 916	13 113 200

Tabela 1: Estatísticas de desempenho para cada configuração de parâmetros.

A comparação mais correta entre as execuções pode ser feita analisando as configurações de parâmetros em que, ao final, possuem a mesma quantidade total de "iterações de exploração" (calculado por: número de gerações * tamanho da população), dado que, com essa mesma quantidade, as configurações tiveram a mesma quantidade de oportunidades para explorar o espaço de busca. Os dados estão dispostos na tabela abaixo:

Selection	Type	n_gen	pop_size	Mean	Std	Best	Worst
roulette_rank	inviável_penalizada	100	200	13 196 942.4	141 705.46	13 415 655	12 991 117
roulette_rank	inviável_penalizada	200	100	13 100 781.5	72 680.15	13 209 635	12 962 863
roulette_rank	penalidade_severa	100	200	13 186 147.4	111 568.14	13 415 655	13 069 614
roulette_rank	penalidade_severa	200	100	13 110 318.6	97 158.42	13 234 524	12 971 198
tournament	inviável_penalizada	100	200	13 168 982.4	81 070.16	13 279 916	13 081 345
tournament	inviável_penalizada	200	100	13 110 925.1	98 614.24	13 234 086	12 963 224
tournament	penalidade_severa	100	200	13 208 815.7	73 325.50	13 301 007	13 093 873
tournament	penalidade_severa	200	100	13 077 042.6	95 215.30	13 234 086	12 963 224

Tabela 2: Desempenho das configurações similares

Dentre os resultados acima, a configuração que obteve a maior média de resultados, com o menor desvio-padrão, foi: *tournament, penalidade_severa, n_gen = 100, pop_size = 200*, com média de 13 208 815.7 e desvio-padrão de 73 325.50. Entretanto, como se pode observar, a configuração com maior valor obtido foi 13 415 655, evidenciando a melhor solução, dentre todas as possibilidades exploradas neste trabalho.

Ao observar os resultados de cada arquivo de teste separadamente, é possível notar que, com a utilização do algoritmo genético, é possível obter a solução ótima mais facilmente sem muito esforço. Entretanto, para problemas muito grandes e complexos, o AG possui menor probabilidade de alcançar a solução ótima, mas consegue fornecer uma solução muito próxima da solução ótima com um custo excessivamente menor do que testar todas as possibilidades existentes (força bruta). Os resultados podem ser vistos na tabela abaixo, em que há uma comparação do melhor resultado obtido pelo AG e o melhor valor real (solução ótima).

Teste	Melhor valor obtido	Solução ótima		
1	309	309		
2	51	51		
3	150	150		
4	107	107		
5	900	900		
6	1735	1735		
7	1456	1458		
8	13 482 886	13 549 094		

Tabela 3: Resultados dos testes com melhor valor e solução ótima.

TODAS AS TABELAS COM OS RESULTADOS SE ENCONTRAM NA PASTAS **results** NO ARQUIVO .zip ENVIADO!!!