Analysis I - Vorlesungs-Script

Prof. Dr. Camillo De Lellis

Basisjahr 10 Semester II

Mitschrift:

Simon Hafner

Inhaltsverzeichnis

1	\mathbf{Die}	reellen Zahlen	1
	1.1	Körperstrukturen	1
	1.2	Die Anordnung von \mathbb{R}	2
	1.3	Die Vollständigkeit der reellen Zahlen	3

1 Die reellen Zahlen

Beispiel 1. \mathbb{R} ist nicht genug

Satz 1. Es gibt kein $q \in \mathbb{Q}$ so dass $q^2 = 2$

Beweis 1. Falls $q^2=2$, $dann\ (-q)^2=2$ $OBdA\ q\geq 0$ Deswegen q>0. Set q>0 und $q\in\mathbb{Q}$ so $dass\ q^2=2$. $q=\frac{m}{n}$ mit m>0, >0. GGT(m,n)=1 (d.h. falls $r\in\mathbb{N}$ m und n dividiert, $dann\ r=1$!).

$$m^2=2n^2 \implies m \text{ ist gerade} \qquad \implies m=2k \text{ für } k \in \mathbb{N}$$
 $\{0\}$ $4k^2=2n^2 \implies n \text{ ist gerade} \qquad \implies 2|n(2 \text{ dividient } n)|$

 \implies Widerspruch! Weil 2 dividiert m und n! (d.h. es gibt <u>keine</u> Zahl $q \in \mathbb{Q}$ mit $q^2 = 2$

Beispiel 2.

$$\sqrt{2} = 1,414\cdots$$

Intuitiv:

$$1, 4^2 < 2 < 1, 5^2$$
 $1, 4 < \sqrt{2} < 1, 5$
 $1, 41^2 < 2 < 1, 42^2 \Longrightarrow 1, 41 < \sqrt{2} < 1, 42$
 $1, 414^2 < 2 < 1, 415^2$ $1, 414 < \sqrt{2} < 1, 415$

Intuitiv

- Q hat "Lücke"
- $\mathbb{R} = \{ \text{ die reellen Zahlen } \} \text{ haben "kein Loch"}.$

Konstruktion Die reellen Zahlen kann man "konstruieren". (Dedekindsche Schritte, Cantor "Vervollständigung"). Google knows more. Wir werden "operativ" sein, d.h. wir beschreiben einfach die wichtigsten Eigenschaften von \mathbb{R}

1.1 Körperstrukturen

K1 Kommutativgesetz

$$a+b = b+a$$
$$a \cdot b = b \cdot a$$

K2 Assoziativgesetz

$$(a+b)+c=$$
 $a+(b+c)$ $(a\cdot b)\cdot c=$ $a\cdot (b\cdot c)$

K3 Distributivgesetz

$$(a+b) \cdot c = \qquad \qquad a \cdot c + b \cdot c$$

K4

$$a+x=$$
 b $a\cdot x=$ b falls $a\neq 0$

1.2 Die Anordnung von \mathbb{R}

A
1 $\forall a \in \mathbb{R}$ gilt genau eine der drei Relationen:

$$-a < 0$$

$$-a = 0$$

$$-a > 0$$

A2 Falls $a > 0, b > 0, \text{ dann } a + b > 0, a \cdot b > 0$

A3 Archimedisches Axiom: $\forall a \in \mathbb{R} \exists n \in \mathbb{N} \text{ mit } n > a$

Übung 1. Beweisen Sie dass $a \cdot b > 0$ falls a < 0, b < 0

Satz 2.
$$\forall x > -1, \ x \neq 0 \ und \ \forall n \in \mathbb{N}$$
 {0,1} $gilt (1+x)^n > (1+nx)$

Beweis 2.

$$(1+x)^2 = 1 + 2x + \underbrace{x^2}_{>0} > 1 + 2x$$

weil $x \neq 0$.

Nehmen wir an dass

$$\underbrace{(1+x)^n}_{a} > \underbrace{(1+x)^n}_{c} > \underbrace{(1+x)(1+x)(weil(1+x) > 0)}_{d}$$

$$c > d \iff c - d > 0 \stackrel{A2}{\Longrightarrow} a(c - d) > 0 \stackrel{K4}{\Longrightarrow} ac - ad > 0 \stackrel{A2}{\Longrightarrow} ac > ad$$

$$(1 + x)^{n+1} > (1 + nx)(1 + x) = 1 + nx + x + nx^2 =$$

$$1 + (n+1)x + \underbrace{nx^2}_{>0} > 1 + (n+1)x$$

$$\implies (1 + x)^{n+1} > 1 + (n+1)x$$

Vollständige Induktion.

Definition 1. Für $a \in \mathbb{R}$ setzt man

$$|a| = \begin{cases} a & \text{falls} a \ge 0\\ -a & \text{falls} a < 0 \end{cases}$$

Satz 3. Es gilt (Dreiecksungleichung):

$$\begin{aligned} |ab| &= & |a||b| \\ |a+b| &\leq & |a|+|b| \\ ||a|-|b|| &\leq & |a-b| \end{aligned}$$

Beweis 3. • |ab| = |a||b| trivial

 $a+b \le |a|+|b|$

 $(a > 0 \ und \ b > 0 \implies a+b = |a|+|b| \ sonst \ a+b < |a|+|b| \ weil \ x \le |x| \ \forall x \in \mathbb{R} \ und \ die \ Gleichung \ gilt).$

$$-(a+b) = -a - b \le |-a| + |-b| = |a| + |b|$$

Aber

$$|a+b| = max \{a+b, -(a+b)\} \le |a| + |b|$$

•

$$||a| - |b|| \le |a - b|$$

Zuerst:

$$|a| = |(a - b) + b| \le |a - b| + |b|$$

$$\implies |a| - |b| \le |a - b|$$

$$|b| = |a + (b - a)| \le |a| + |b - a|$$

$$\implies |b| - |a| \le |b - a| = |a - b|$$

$$\implies (|a| - |b|) \le |a - b|$$

$$||a|-|b||=\max{\{|a|-|b|,-(|a|-|b|)\}}\leq |a-b|$$

Bemerkung 1.

$$|x| = \max\{-x, x\}$$

1.3 Die Vollständigkeit der reellen Zahlen

Für $a < b, a \in \mathbb{R}$, heisst:

- abgeschlossenes Intervall: $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$
- offenes Intervall: $]a, b[= \{x \in \mathbb{R} : a < x < b\}]$
- (nach rechts) halboffenes Intervall: $[a, b] = \{x \in \mathbb{R} : a \le x < b\}$
- (nach links) halboffenes Intervall: $[a, b] = \{x \in \mathbb{R} : a < x \le b\}$

Sei I=[a,b] (bzw. $]a,b[\ldots)$. Dann a,b sind die Randpunkte von I. Die Zahl |I|=b-a ist die Länge von I. (b-a>0)

Definition 2. Eine Intervallschachtelung ist eine Folge I_1, I_2, \cdots geschlossener Intervalle (kurz $(I_n)_{n \in \mathbb{N}}$ oder (I_n)) mit diesen Eigenschaften:

- I1 $I_{n+1} \subset I_n$
- I2 Zu jedem $\epsilon > 0$ gibt es ein Intervall I_n so dass $|I_n| < \epsilon$

Beispiel 3. $\sqrt{2}$

$$1, 4^2 < 2 < 1, 5^2$$
 $I_1 = [1, 4/1, 5]|I_1| = 0.1$
 $1, 41^2 < 2 < 1, 42^2 \Longrightarrow I_2 = [1, 41/1, 42]|I_2| = 0.01$
 $1, 414^2 < 2 < 1, 415^2$ $I_3 = [1, 414, 1, 415]|I_2| = 0.001$

Beweis 4. I1 und I2 sind beide erfüllt.

Axiom 1. Zu jeder Intervallschachtelung $\exists x \in \mathbb{R}$ die allen ihren Intervallen angehört.

Satz 4. Die Zahl ist eindeutig.

Beweis 5. Sei (I_n) eine Intervallschachtelung. Nehmen wir an dass $\exists \alpha < \beta$ so dass $\alpha, \beta \in I_n \forall n$. Dann $|I_n| \geq |\beta - \alpha| > a$. Widerspruch!

Satz 5. $\forall a > 0, a \in \mathbb{R} \ und \ \forall x \in \mathbb{N}$

 $\{0\}$, \exists eine einziges $x \geq 0$, $x \in \mathbb{R}$ s.d. $x^k = a$. Wir nennen $x = \sqrt[k]{a} = a^{\frac{1}{k}}$. Sei $m, n \in \mathbb{N}$, $a^{m+n} = a^m a^n$ und deswegen $a^{-m} = \frac{1}{a^m}$ für $m \in \mathbb{N}$ (so dass die Regel $a^{m-m} = a^0 = 1$.

 $n, m \in \mathbb{N}$

 $\{0\}$ n Mal.

$$(a^m)^n = \underbrace{a^m \cdot a^m \cdots a^m}_{n \ Mal} = a^{\overbrace{m + \cdots + m}^{n \ Mal}} = a^{nm}$$

Und mit $a^{-m} = \frac{1}{a^m}$ stimmt die Regel $(a^m)^n = a^{mn}$ auch $\forall m, n \in \mathbb{Z}!$

Bemerkung 2. $x^k = \left(a^{\frac{1}{k}}\right)^k = a\left(=a^{\frac{1}{k}k} = a^1\right)$

Definition 3. $\forall q = \frac{m}{n} \in \mathbb{Q}, \forall a > 0 \text{ mit definiertem } a^q = (\sqrt[n]{a})^m$

Beweis 6. Mit dieser Definition gilt $a^{q+q_2} = a^q a^{q_2} \ \forall a > 0 \ und \ \forall q, q_2 \in \mathbb{Q}$.