"Classical" Factor Analysis and PCA

Francis J. DiTraglia

February 26, 2014

These notes draw on material from Chapters 11–12 of Murphy's *Machine Learning: A Probabilistic Perspective*, Andrew Ng's lecture notes for CS229 at Stanford, and Jolliffe's *Principal Component Analysis*.

1 EM Algorithm

1.1 The Idea behind the EM Algorithm

For simplicity, we'll consider an iid setup for now although the EM can be used in situations with dependence. We'll also suppose that the latent variable is continuous. If it's discrete the idea is exactly the same but the integral is replaced by a sum.

$$\ell(\theta) = \sum_{t=1}^{T} \log p(\mathbf{x}_t; \theta) = \sum_{t=1}^{T} \log \left(\int p(\mathbf{x}_t, \mathbf{z}_t; \theta) \ d\mathbf{z} \right)$$

where \mathbf{x}_t is observed and \mathbf{z}_t is unobserved. In many interesting models there is no explicit formula for the MLE in terms of the marginal density $p(\mathbf{x}_t; \theta)$ but there is an explicit formula in terms of the joint density $p(\mathbf{x}_t, \mathbf{z}_t; \theta)$. This is exactly the setting in which the EM algorithm is useful. Rather than directly maximizing $\ell(\theta)$, the EM algorithm proceeds iteratively over the following two steps:

(E-step) Construct a lower bound for $\ell(\theta)$

(M-step) Optimize the lower bound over θ

Roughly speaking, the EM algorithm converts a single complicated optimization problem into a sequence of simple optimization problems. The trick is to ensure that the resulting sequence of estimators converges to the MLE. Jensen's Inequality is the key so I'll briefly remind you of a few important facts before proceeding.

Figure 1: Picture of the EM Algorithm

1.2 Jensen's Inequality

Recall that a function is called *convex* if its Hessian matrix is positive semidefinite and *strictly convex* if its Hessian matrix is positive definite. For functions of a single variable the condition is $f''(x) \geq 0 \quad \forall x \in \mathbb{R}$ for *convex* and $f''(x) > 0 \quad \forall x \in \mathbb{R}$ for *strictly convex*. In statistics, one of the most useful results concerning convex functions is *Jensen's Inequality*

Proposition 1.1 (Jensen's Inequality). Let f be a convex function and X be a random variable. Then $E[f(X)] \ge f(E[X])$. If f is strictly convex then the inequality is strict unless P(X = E[X]) = 1, i.e. X is a constant. For the equivalent results for concave functions, simply reverse the inequality.

1.3 A Lower Bound for the Likelihood

Let $f_t(\mathbf{z}_t)$ be some arbitrary density function over the support of \mathbf{z}_t , that is any function satisfying $f_t(\mathbf{z}_t) \geq 0$ and

$$\int f_t(\mathbf{z}_t) \ d\mathbf{z}_t = 1$$

We have

$$\ell(\theta) = \sum_{t=1}^{T} \log p(\mathbf{x}_{t}; \theta) = \sum_{t=1}^{T} \log \left(\int p(\mathbf{x}_{t}, \mathbf{z}_{t}; \theta) d\mathbf{z}_{t} \right)$$
$$= \sum_{t=1}^{T} \log \left(\int f_{t}(\mathbf{z}_{t}) \left[\frac{p(\mathbf{x}_{t}, \mathbf{z}_{t}; \theta)}{f_{t}(\mathbf{z}_{t})} \right] d\mathbf{z}_{t} \right)$$

Now we use Jensen's inequality and the fact that log is a concave function over its domain to find that

$$\log \left(\int f_t(\mathbf{z}_t) \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{f_t(\mathbf{z}_t)} \right] d\mathbf{z}_t \right) \ge \int f_t(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{f_t(\mathbf{z}_t)} \right] d\mathbf{z}_t$$

What's going on here? Since f_t is a density the integral inside the parentheses is an expectation of a particular function of the argument of integration \mathbf{z}_t . The parameter θ and the observed vector of realizations \mathbf{x}_t are constants with

respect to the integration. Substituting the preceding inequality into the sum, we have established that

$$\ell(\theta) \ge \sum_{t=1}^{T} \left(\int f_t(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{f_t(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

for any density function f_t . This is the lower bound for the likelihood that we will use in the E-step. The question is, how should we choose f_t ?

The key idea is to turn the *inequality* into an *equality* at a particular value of θ . Intuitively, we want to ensure that, in a given iteration of the algorithm, the actual likelihood and the lower bound *agree* at the value of θ that emerged from the *preceding* iteration. In this way, our sequence of approximating functions will "trace out a path" along the true likelihood, ultimately ensuring that the EM algorithm will converge to the MLE. Since log is in fact *strictly* concave, the only way for Jensen's inequality to hold with equality is if

$$\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{f_t(\mathbf{z}_t)} = c$$

for some constant c that does not depend on \mathbf{z}_t . The question is, how should we choose f_t to achieve this? Rearranging, integrating, and using the fact that f_t is a density,

$$cf_t(\mathbf{z}_t) = p(\mathbf{x}_t, \mathbf{z}_t; \theta)$$

$$c \int f_t(\mathbf{z}_t) d\mathbf{z}_t = \int p(\mathbf{x}_t, \mathbf{z}_t; \theta) d\mathbf{z}_t$$

$$c = p(\mathbf{x}_t; \theta)$$

Substituting for c, solving for f_t and using the definition of a conditional density we have

$$f_t(\mathbf{z}_t) = \frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{p(\mathbf{x}_t; \theta)} = p(\mathbf{z}_t | \mathbf{x}_t; \theta)$$

In other words, to make the lower bound hold with equality at a particular value of θ , say θ^* , it suffices to set f_t equal to the *conditional* density of \mathbf{z}_t given \mathbf{x}_t evaluated at θ^* . Crucially this is a both a probability density and a function of \mathbf{z}_t only since we plug in the observed value of \mathbf{x}_t .

1.4 The Algorithm

In the previous subsection we showed that if we set $f_t(\mathbf{z}_t) = p(\mathbf{z}_t|\mathbf{x}_t;\theta^*)$ then

$$\ell(\theta^*) = \sum_{t=1}^{T} \left(\int f_t(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta^*)}{f_t(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

and, more generally for any value of θ

$$\ell(\theta) \ge \sum_{t=1}^{T} \left(\int f_t(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{f_t(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

by Jensen's Inequality. Now we are ready to state the EM algorithm:

Algorithm 1.1 (EM Algorithm). First select a starting value $\theta^{(1)}$. Then repeat the following two steps repeatedly until convergence

(E-step) For each t set $f_t^{(j-1)}(\mathbf{z}_t) = p(\mathbf{z}_t|\mathbf{x}_t;\theta^{(j-1)})$ where $\theta^{(j-1)}$ is the solution from the M-step of the *preceding* iteration.

$$(\mathbf{M\text{-}step}) \ \theta^{(j)} = \underset{\theta \in \Theta}{\arg\max} \sum_{t=1}^{T} \left(\int f_t^{(j-1)}(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{f_t^{(j-1)}(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

If j = 2 then $\theta^{(j-1)}$ is simply the starting value $\theta^{(1)}$.

Note that in the M-step the argument θ over which we maximize only enters the expression $p(\mathbf{x}_t, \mathbf{z}_t; \theta)$. The density $f^{(j-1)}(\mathbf{z}_t)$ does not depend on θ , it depends on the constant $\theta^{(j-1)}$ that solved the M-step of the previous iteration. The amazing thing about the EM algorithm is that it is guaranteed to converge to a local maximum of the likelihood function: each successive iteration monotonically improves the likelihood as we will see below. This fact along the the way we constructed our lower bound to hold with equality at the value of θ from the previous M-step gives us an excellent tool for debugging our code: simply plot

$$\ell(\theta^{(j)}) = \sum_{t=1}^{T} \left(\int f_t^{(j)}(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta^{(j)})}{f_t^{(j)}(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

against j. The preceding expression is the *objective function* from the (j+1)th M-step evaluated at the *solution* from the jth M-step. By construction, this If the is equal to the likelihood evaluated at $\theta^{(j)}$. If the plot is *not* increasing monotonically in j, then there must be a bug in your code.

1.5 Why Does the EM Algorithm Converge?

Let $\theta^{(j)}$ and $\theta^{(j+1)}$ be two succesive solutions to the M-step of the EM algorithm. We will now show that $\ell(\theta^{(j)}) \leq \theta^{(j+1)}$. In other words, the EM algorithm monotonically improves the likelihood in each iteration. Since $\{\theta^{(j)}\}$

is a monotonic sequence, it converges as long as it is bounded (Rudin Theorem 3.14). Since $\ell(\theta^{(1)})$ is a lower bound, if follows that the EM algorithm is guaranteed to converge to a local maximum of the likelihood function provided that the likelihood function is bounded above. All that remains is to actually demonstrate that $\ell(\theta^{(j)}) \leq \theta^{(j+1)}$.

By definition,

$$\theta^{(j+1)} = \operatorname*{arg\,max}_{\theta \in \Theta} \sum_{t=1}^{T} \left(\int f_t^{(j)}(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{f_t^{(j)}(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

Now let $\tilde{\theta}$ be some arbitrary value of θ . Since $\theta^{(j+1)}$ is the arg max, evaluating the objective function at $\tilde{\theta}$ cannot yield a greater value than evaluating it at $\theta^{(j+1)}$. Since this holds for any $\tilde{\theta}$ it holds in particular for $\theta^{(j)}$. Hence,

$$\sum_{t=1}^{T} \left(\int f_t^{(j)}(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \boldsymbol{\theta}^{(j+1)})}{f_t^{(j)}(\mathbf{z}_t)} \right] d\mathbf{z}_t \right) \geq \sum_{t=1}^{T} \left(\int f_t^{(j)}(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \boldsymbol{\theta}^{(j)})}{f_t^{(j)}(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

$$= \ell(\boldsymbol{\theta}^{(j)})$$

since we chose $f_t^{(j)}(\mathbf{z}_t)$ to make Jensen's Inequality strict at $\theta^{(j)}$. Now, recall from above that for any density $f_t(\mathbf{z}_t)$ and any value of θ ,

$$\ell(\theta) \ge \sum_{t=1}^{T} \left(\int f_t(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{f_t(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

by Jensen's Inequality. Since this holds in general, it also holds in particular for $\theta = \theta^{(j+1)}$ and $f_t(\mathbf{z}_t) = f_t^{(j)}(\mathbf{z}_t)$. Hence,

$$\ell(\theta^{(j+1)}) \ge \sum_{t=1}^{T} \left(\int f_t^{(j)}(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta^{(j+1)})}{f_t^{(j)}(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

Combining the two inequalities gives $\ell(\theta^{(j+1)}) \ge \ell(\theta^{(j)})$ as claimed.

2 Factor Analysis

Before we proceed, I'll just remind you of some key facts about normal distributions and we'll need below.

2.1 Facts about the Multivariate Normal Distribution

2.1.1 Linear Combinations

Suppose that $X \sim N(\mu, \Sigma)$ and Y = a + BX where a is a vector and B a matrix of constants. Then $Y \sim (a + B\mu, B\Sigma B')$.

2.1.2 Marginals and Conditionals

Let X_1 and X_2 be random vectors such that $(X_1', X_2') \sim N(\mu, \Sigma)$ where

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

Then,

$$X_1 \sim N(\mu_1, \Sigma_{11})$$

 $X_2 \sim N(\mu_2, \Sigma_{22})$
 $X_1 | X_2 \sim N(\mu_{1|2}, \Sigma_{1|2})$

where,

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (X_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

2.2 The Factor Analysis Model

Classical Factor Analysis specifies a joint distribution on the observable random p-vector X and an unobserved or "latent" random k-vector Z, as follows

$$Z \sim N_k(0_k, \mathbf{I}_k)$$

$$\epsilon \sim N_p(0_p, \Psi)$$

$$Z \perp \epsilon$$

$$X = \mu + \Lambda Z + \epsilon$$

where μ is a $p \times 1$ vector of parameters, Λ is a $p \times k$ matrix of parameters called the factor loading matrix, and Ψ is a $p \times p$ diagonal matrix of parameters. Factor Analysis can be viewed as a "low rank parameterization" of a multivariate normal distribution. The idea ois that, while X is a random p-vector, its realizations lie close to a k-dimensional affine subspace: Λ maps Z from \mathbb{R}^k to a linear subspace of \mathbb{R}^p , μ shifts this subspace away from the origin,

Figure 2: Picture of Factor Analysis

and ϵ adds axis-aligned Gaussian noise. Hence it makes sense to require that k is strictly less than both p, the dimension of X, and T, the sample size.

The intution is as follows: Factor Analysis "forces" Z to "explain" the correlation structure of X. This is why Ψ is required to be diagonal. The diagonal elements of Ψ are sometimes called the *idiosyncratic variance terms*, since each corresponds to a *single* component of X.

The factor analysis model implies that the joint distribution of Z and X is normal. Specifically,

$$\begin{bmatrix} Z \\ X \end{bmatrix} = \begin{bmatrix} 0_k \\ \mu \end{bmatrix} + \begin{bmatrix} \mathbf{I}_k & 0_{k \times p} \\ \Lambda & I_p \end{bmatrix} \begin{bmatrix} Z \\ \epsilon \end{bmatrix}$$
$$= \begin{bmatrix} 0_k \\ \mu \end{bmatrix} + \begin{bmatrix} \mathbf{I}_k & 0_{k \times p} \\ \Lambda & I_p \end{bmatrix} N \begin{pmatrix} \begin{bmatrix} 0_k \\ 0_p \end{bmatrix}, \begin{bmatrix} \mathbf{I}_k & 0_{k \times p} \\ 0_{p \times k} & \Psi \end{bmatrix} \end{pmatrix}$$
$$\sim N \begin{pmatrix} \begin{bmatrix} 0_k \\ \mu \end{bmatrix}, \begin{bmatrix} I & \Lambda' \\ \Lambda & \Lambda \Lambda' + \Psi \end{bmatrix} \end{pmatrix}$$

The algebra for the variance matrix calculation is as follows:

$$V = \begin{bmatrix} \mathbf{I}_{k} & 0_{k \times p} \\ \Lambda & I_{p} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{k} & 0_{k \times p} \\ 0_{p \times k} & \Psi \end{bmatrix} \begin{bmatrix} \mathbf{I}_{k} & 0_{k \times p} \\ \Lambda & I_{p} \end{bmatrix}'$$

$$= \begin{bmatrix} \mathbf{I}_{k} & 0_{k \times p} \\ \Lambda & \Psi \end{bmatrix} \begin{bmatrix} \mathbf{I}_{k} & \Lambda' \\ 0_{p \times k} & I_{p} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{I}_{k} & \Lambda' \\ \Lambda & \Lambda \Lambda' + \Psi \end{bmatrix}$$

2.3 The Factor Analysis Model is Not Identified

Suppose we want to estimated the parameters μ , Λ , Ψ of the factor analysis model. The first natural question is whether this model is even identified. The mean vector μ doesn't provide any problems for identification since we can always demean X before proceeding. Excluding μ , the factor analysis model has k(p+1) free parameters: Λ is a $p \times k$ matrix and Ψ is a diagonal $p \times p$ matrix.

Unfortunately the Factor Analysis is not identified as given above. To see why, suppose that R is an orthogonal matrix, i.e. RR' = R'R = I. Geometrically, R is a rotation: it leaves the length of any vector v unchanged since

$$||Rv|| = \sqrt{(Rv)'(Rv)} = \sqrt{v'R'Rv} = \sqrt{v'v} = ||v||$$

And it leaves the distance between any two vectors v and w unchanged since

$$||Rv - Rw|| = ||R(v - w)|| = \sqrt{[R(v - w)]'[R(v - w)]}$$
$$= \sqrt{(v - w)'R'R(v - w)} = \sqrt{(v - w)'(v - w)} = ||v - w||$$

From the joint distribution for X and Z that we derived above it follows that the marginal distribution of X is $N(\mu, \Lambda \Lambda' + \Psi)$. Thus if we observe realizations $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T$ of a sequence of iid random vectors X_1, X_2, \dots, X_T generated from the Factor Analysis model the log-likelihood is given by

$$\ell(\mu, \Lambda, \Psi) = \log \left[\prod_{t=1}^{T} \frac{\exp\left\{-\frac{1}{2} \left(\mathbf{x}_{t} - \mu\right)' \left(\Lambda \Lambda' + \Psi\right)^{-1} \left(\mathbf{x}_{t} - \mu\right)\right\}}{(2\pi)^{p/2} \left|\Lambda \Lambda' + \Psi\right|^{1/2}} \right]$$

Now suppose that we evaluate the log-likelihood at $\widetilde{\Lambda}R$ rather than Λ . Since Λ only enters through the outer product $\Lambda\Lambda'$ the likelihood is *unchanged*:

$$\widetilde{\Lambda}\widetilde{\Lambda}' = (\Lambda R)(\Lambda R)' = \Lambda R R' \Lambda' = \Lambda \Lambda'$$

We have shown that the matrix of factor loadings is only identified up to a rotation. Another way to think about this is in terms of the latent variable Z, Since $X = \mu + \Lambda Z + \epsilon$, post-multiplying Λ by R is the same as pre-multiplying Z by R. As explained above, this constitutes a rotation of the vector Z. But since Z is a spherical normal distribution, rotating it cannot change the likelihood.

If we merely plan to use Factor Analysis for prediction this lack of identification is irrelevant: it does not affect the predictive performance of the model in any way. If we ultimately hope to interpret the latent factors, however the lack of identification becomes problematic. There are various ways to get a unique solution for the factor loadings Λ that involve making various restrictions on the matrix of factor loadings Λ . The first question is: so how many restrictions do we need?

Since the lack of identication comes from rotational invariance, we need to count the number of free parameters in a $k \times k$ rotation matrix. Start with the first column: it has k-1 free parameters since the only constraint is that it have length one. The second column must also have length one, but it has the further restriction that it must be orthogonal to the first column. Hence it has k-2 free parameters. Continuing in this way, we see that there are $(k-1)+(k-2)+\ldots+(k-k+1)=k(k-2)/2$ free parameters in a general $k \times k$ rotation matrix.

There are a number of possible solutions to the lack of identification:

- Constraining the columns of Λ to be orthonormal This is essentially how PCA works, as we'll see below.
- Constraining Λ to be lower triangular This constraint imposes that the first element of X only depends on the first factor, the second element of X only depends on the first two factors, and so on. In this choice of which variables to list as the first elements of X can make a big difference.
- Imposing Sparsity on Λ There are a number of proposals for "sparse factor analysis," including using LASSO and imposing an ℓ_1 penalty on the factor loadings. Although this might not completely solve the identification problem, setting many of the elements of Λ to exactly zero can partially resolve it.
- Choosing an Informative Rotation Matrix If you read old textbooks on multivariate statistics, you'll see a number of suggestions, including something called the "varimax" method. Typically, these solutions involve some kind of sparsity condition.
- Use a Non-Gaussian Distribution for the Factors The lack of identification in the Factor Analysis Model comes from the rotational invariance of a multivariate normal distribution with an identity covariance matrix. Using a distribution other than the normal can partially eliminate this problem: a Laplace distribution, for example, has diamond-shaped contours. This is the idea behind "Independent Components Analysis" (ICA).

2.4 The Latent Factors

The unobserved random variables Z_1, \ldots, Z_T that generate X_1, \ldots, X_T under the Factor Analysis Model are called the *latent factors* or the *latent scores*. In some settings the factor scores are given a particular interpretation and we may wish to infer them from the observable data. (Warning: interpreting the factors can be very difficult because of the lack of idenfication of the factor model!) Because this model is Gaussian, we can easily work out the conditional distribution of the latent factors using joint distribution of (Z', X')'. Indeed, this is precisely what we'll need to do to implement the EM algorithm, as we'll see below.

2.5 EM for Classical Factor Analysis

Why is this a great problem for EM? If Z were observed this would just a standard multivariate regression problem!

2.5.1 The E-step: Inferring the Latent Factors

In this step we set $f_t^{(j-1)}(\mathbf{z}_t) = p(\mathbf{z}_t|\mathbf{x}_t;\theta^{(j-1)})$ for each t where $\theta^{(j-1)}$ is the value of θ that solved the optimization problem from the *preceding* M-step or, if j=2, the starting value. In the notation of the factor analysis problem we need to calculate:

$$f_t^{(j-1)}(\mathbf{z}_t) = p(\mathbf{z}_t|\mathbf{x}_t; \mu^{(j-1)}, \Lambda^{(j-1)}, \Psi^{(j-1)})$$

As we showed above,

$$\begin{bmatrix} Z \\ X \end{bmatrix} \sim N \left(\begin{bmatrix} 0_k \\ \mu \end{bmatrix}, \begin{bmatrix} I & \Lambda' \\ \Lambda & \Lambda \Lambda' + \Psi \end{bmatrix} \right)$$

Hence, using the properties of the normal distribution reviewed earlier in this document:

$$Z|X \sim N_k(\mu_{Z|X}, \Sigma_{Z|X})$$

 $\mu_{Z|X} = \Lambda'(\Lambda\Lambda' + \Psi)^{-1}(X - \mu)$
 $\Sigma_{Z|X} = \mathbf{I}_k - \Lambda'(\Lambda\Lambda' + \Psi)^{-1}\Lambda$

2.5.2 The M-Step: Optimizing the Lower Bound

In this step, we solve

$$\theta^{(j)} = \operatorname*{arg\,max}_{\theta \in \Theta} \sum_{t=1}^{T} \left(\int f_t^{(j-1)}(\mathbf{z}_t) \log \left[\frac{p(\mathbf{x}_t, \mathbf{z}_t; \theta)}{f_t^{(j-1)}(\mathbf{z}_t)} \right] d\mathbf{z}_t \right)$$

Before carrying out the optimization problem, we'll first manipulate the objective function to simplify it and remove constant terms that don't depend on the model parameters. Substituting the notation of the Factor Analysis Model and rearranging, we can write the objective function for the jth M-step

as follows:

$$\begin{split} Q^{(j)}(\mu, \Lambda, \Psi) &= \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log \left[\frac{p(\mathbf{x}_{t}, \mathbf{z}_{t}; \mu, \Lambda, \Psi)}{f_{t}^{(j-1)}(\mathbf{z}_{t})} \right] d\mathbf{z}_{t} \\ &= \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \left[\log p(\mathbf{x}_{t}, \mathbf{z}_{t}; \mu, \Lambda, \Psi) - \log f_{t}^{(j-1)}(\mathbf{z}_{t}) \right] d\mathbf{z}_{t} \\ &= \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log p(\mathbf{x}_{t}, \mathbf{z}_{t}; \mu, \Lambda, \Psi) d\mathbf{z}_{t} - \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log f_{t}^{(j-1)}(\mathbf{z}_{t}) d\mathbf{z}_{t} \\ &= \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log p(\mathbf{x}_{t}, \mathbf{z}_{t}; \mu, \Lambda, \Psi) d\mathbf{z}_{t} + C \\ &= \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log p(\mathbf{x}_{t}, \mathbf{z}_{t}; \mu, \Lambda, \Psi) d\mathbf{z}_{t} - \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log f_{t}^{(j-1)}(\mathbf{z}_{t}) d\mathbf{z}_{t} \\ &= \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log \left[p(\mathbf{x}_{t}|\mathbf{z}_{t}; \mu, \Lambda, \Psi) p(\mathbf{z}_{t}) \right] d\mathbf{z}_{t} + C \\ &= \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log p(\mathbf{x}_{t}|\mathbf{z}_{t}; \mu, \Lambda, \Psi) d\mathbf{z}_{t} + \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log p(\mathbf{z}_{t}) d\mathbf{z}_{t} + C \\ &= \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \log p(\mathbf{x}_{t}|\mathbf{z}_{t}; \mu, \Lambda, \Psi) d\mathbf{z}_{t} + C \end{split}$$

where C denotes an arbitrary constant and we have used the fact that $p(\mathbf{z}_t)$ does not depend on any of the model parameters since $Z \sim N_k(0, I)$.

Writing the joint distribution with X as the first block rather than Z, we have

$$\left[\begin{array}{c}X\\Z\end{array}\right] \sim N\left(\left[\begin{array}{c}0_k\\\mu\end{array}\right],\left[\begin{array}{c}\Lambda\Lambda'+\Psi&\Lambda\\\Lambda'&I\end{array}\right]\right)$$

Hence, using the properties of normal distributions

$$X|Z \sim N_p(\mu_{X|Z}, \Sigma_{X|Z})$$

 $\mu_{X|Z} = \mu + \Lambda Z$
 $\Sigma_{X|Z} = \Psi$

SO

$$p(\mathbf{x}_t|\mathbf{z}_t; \mu, \Lambda, \Psi) = \frac{\exp\left\{-\frac{1}{2}(\mathbf{x}_t - \mu - \Lambda \mathbf{z}_t)'\Psi^{-1}(\mathbf{x}_t - \mu - \Lambda \mathbf{z}_t)\right\}}{(2\pi)^{p/2} |\Psi|^{1/2}}$$

and hence

$$\log p(\mathbf{x}_t|\mathbf{z}_t; \mu, \Lambda, \Psi) = -\frac{1}{2} \left[\log |\Psi| + p \log(2\pi) + (\mathbf{x}_t - \mu - \Lambda \mathbf{z}_t)' \Psi^{-1} (\mathbf{x}_t - \mu - \Lambda \mathbf{z}_t) \right]$$

Exchanging integral and derivative in the objective function, deal with terms one at a time, f doesn't depend on parameters, etc...

Updating Λ : Differentiating,

$$\nabla_{\Lambda} \log p(\mathbf{x}_{t}|\mathbf{z}_{t}; \mu, \Lambda, \Psi) = \nabla_{\Lambda} \left[\frac{1}{2} (\mathbf{x}_{t} - \mu)' \Psi^{-1} \Lambda \mathbf{z}_{t} + \frac{1}{2} \mathbf{z}_{t}' \Lambda' \Psi^{-1} (\mathbf{x}_{t} - \mu) - \frac{1}{2} \mathbf{z}_{t}' \Lambda' \Psi^{-1} \Lambda \mathbf{z}_{t} \right]$$

$$= \nabla_{\Lambda} \left[\mathbf{z}_{t}' \Lambda' \Psi^{-1} (\mathbf{x}_{t} - \mu) - \frac{1}{2} \mathbf{z}_{t}' \Lambda' \Psi^{-1} \Lambda \mathbf{z}_{t} \right]$$

$$= \nabla_{\Lambda} \left[\operatorname{tr} \left\{ \mathbf{z}_{t}' \Lambda' \Psi^{-1} (\mathbf{x}_{t} - \mu) \right\} - \frac{1}{2} \operatorname{tr} \left\{ \mathbf{z}_{t}' \Lambda' \Psi^{-1} \Lambda \mathbf{z}_{t} \right\} \right]$$

$$= \nabla_{\Lambda} \operatorname{tr} \left\{ \Lambda' \Psi^{-1} (\mathbf{x}_{t} - \mu) \mathbf{z}_{t}' \right\} - \frac{1}{2} \nabla_{\Lambda} \operatorname{tr} \left\{ \Lambda' \Psi^{-1} \Lambda \mathbf{z}_{t} \mathbf{z}_{t}' \right\}$$

where we have used the fact that each term is a scalar, and thus equals its trace, and tr(AB) = tr(BA) with \mathbf{z}_t playing the role of A.

It remains to calculate two matrix derivatives. For the first term we need to calculate $\nabla_X \operatorname{tr}(X'A)$ where Λ plays the role of X and $\Psi^{-1}(\mathbf{x}_t - \mu)\mathbf{z}_t'$ plays the role of A. It turns out that¹

$$\nabla_X \operatorname{tr}(X'A) = A$$

For the second term we need to calculate $\nabla_A \operatorname{tr}(X'BXC)$ where Λ plays the role of X, Ψ^{-1} plays the role of B, and $\mathbf{z}_t \mathbf{z}_t'$ plays the role of C. It turns out that²

$$tr(X'BXC) = BXC + BXC'$$

Finally, we have,

$$\nabla_{\Lambda} \log p(\mathbf{x}_{t}|\mathbf{z}_{t}; \mu, \Lambda, \Psi) = \Psi^{-1}(\mathbf{x}_{t} - \mu)\mathbf{z}_{t}' - \frac{1}{2} \left(\Psi^{-1}\Lambda \mathbf{z}_{t}\mathbf{z}_{t}' + \Psi^{-1}\Lambda \mathbf{z}_{t}\mathbf{z}_{t}'\right)$$
$$= \Psi^{-1}(\mathbf{x}_{t} - \mu)\mathbf{z}_{t}' - \Psi^{-1}\Lambda \mathbf{z}_{t}\mathbf{z}_{t}'$$

¹See, inter alia, Peterson & Pederson (2012) *The Matrix Cookbook*, Section 2.5.1 or the Wikipedia article on Matrix Calculus.

²See, inter alia, Peterson & Pederson (2012) *The Matrix Cookbook*, Section 2.5.2 or the Wikipedia article on Matrix Calculus.

Thus, the first order condition for Λ is

$$\sum_{t=1}^{T} \int f_t^{(j-1)}(\mathbf{z}_t) \left[\Psi^{-1}(\mathbf{x}_t - \mu) \mathbf{z}_t' - \Psi^{-1} \Lambda \mathbf{z}_t \mathbf{z}_t' \right] d\mathbf{z}_t = 0$$

Rearranging,

$$\Psi^{-1} \sum_{t=1}^{T} (\mathbf{x}_{t} - \mu) \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \, \mathbf{z}'_{t} \, d\mathbf{z}_{t} = \Psi^{-1} \Lambda \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \, \mathbf{z}_{t} \mathbf{z}'_{t} \, d\mathbf{z}_{t}$$

$$\sum_{t=1}^{T} (\mathbf{x}_{t} - \mu) \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \, \mathbf{z}'_{t} \, d\mathbf{z}_{t} = \Lambda \left(\sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \, \mathbf{z}_{t} \mathbf{z}'_{t} \, d\mathbf{z}_{t} \right)$$

Solving for Λ and substituting the result of the E-step,

$$\Lambda^{(j)} = \left(\sum_{t=1}^{T} (\mathbf{x}_{t} - \mu) \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \mathbf{z}_{t}' d\mathbf{z}_{t}\right) \left(\sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \mathbf{z}_{t} \mathbf{z}_{t}' d\mathbf{z}_{t}\right)^{-1}$$

$$= \left(\sum_{t=1}^{T} (\mathbf{x}_{t} - \mu) \int \mathcal{N}\left(\mathbf{z}_{t} | \mu_{\mathbf{z}_{t} | \mathbf{x}_{t}}^{(j-1)}, \Sigma_{\mathbf{z}_{t} | \mathbf{x}_{t}}^{(j-1)}\right) \mathbf{z}_{t}' d\mathbf{z}_{t}\right) \left(\sum_{t=1}^{T} \int \mathcal{N}\left(\mathbf{z}_{t} | \mu_{\mathbf{z}_{t} | \mathbf{x}_{t}}^{(j-1)}, \Sigma_{\mathbf{z}_{t} | \mathbf{x}_{t}}^{(j-1)}\right) \mathbf{z}_{t}' d\mathbf{z}_{t}\right)^{-1}$$

$$= \left[\sum_{t=1}^{T} (\mathbf{x}_{t} - \mu) \left(\mu_{\mathbf{z}_{t} | \mathbf{x}_{t}}^{(j-1)}\right)'\right] \left[\sum_{t=1}^{T} \left\{\left(\mu_{\mathbf{z}_{t} | \mathbf{x}_{t}}^{(j-1)}\right) \left(\mu_{\mathbf{z}_{t} | \mathbf{x}_{t}}^{(j-1)}\right)' + \left(\Sigma_{\mathbf{z}_{t} | \mathbf{x}_{t}}^{(j-1)}\right)\right\}\right]^{-1}$$

where $\mathcal{N}(\mathbf{z}|\mu, \Sigma)$ denotes a multivariate normal density with argument \mathbf{z} , mean μ and variance matrix Σ and

$$\mu_{\mathbf{z}_{t}|\mathbf{x}_{t}}^{(j-1)} = \left(\Lambda^{(j-1)}\right)' \left[\Lambda^{(j-1)} \left(\Lambda^{(j-1)}\right)' + \Psi^{(j-1)}\right]^{-1} \left(\mathbf{x}_{t} - \mu^{(j-1)}\right)$$

$$\Sigma_{\mathbf{z}_{t}|\mathbf{x}_{t}}^{(j-1)} = \mathbf{I}_{k} - \left(\Lambda^{(j-1)}\right)' \left[\Lambda^{(j-1)} \left(\Lambda^{(j-1)}\right)' + \Psi^{(j-1)}\right]^{-1} \Lambda^{(j-1)}$$

Notice that the M-step update for Λ looks what would be the multivariate OLS estimator if Z were observed: $\Lambda' = (Z'Z)^{-1}Z'X$. Since we don't observe Z we substitute its conditional mean given X. The only twist is the conditional variance term in the term that serves as the analogue of $(Z'Z)^{-1}$. This accounts for the uncertainty in our estimate of Z based on observing X.

Updating Ψ : Recall from above that Ψ is a diagonal matrix. Let ψ_{ii} denote its *i*th diagonal element. Since the determinant of a diagonal matrix is simply

the product of its diagonal elements and the log of a product equals the sum of the logs, it follows that $\log |\Psi| = \sum_{i=1}^p \log \psi_{ii}$. Similarly, if c is a $p \times 1$ vector then $c'\Psi^{-1}c = \sum_{i=1}^p c_i^2/\psi_{ii}$. It follows that

$$\nabla_{\Psi} \log |\Psi| = \Psi^{-1}$$

and

$$\nabla_{\Psi} c' \Psi^{-1} c = -\Psi^{-1} c c' \Psi^{-1} = \Psi^{-2} c c'$$

hence

$$\nabla_{\Psi} \log p(\mathbf{x}_t | \mathbf{z}_t; \mu, \Lambda, \Psi) = -\frac{1}{2} \left[\Psi^{-1} - \Psi^{-2} (\mathbf{x}_t - \mu - \Lambda \mathbf{z}_t) (\mathbf{x}_t - \mu - \Lambda \mathbf{z}_t)' \right]$$

Multiply through to eliminate -1/2 and one of the Ψ^{-1} then should be relatively straightforward to plug in the M-step as before. Just need to impose diagonality at the end since we're carrying around the full Ψ matrix.

Updating μ : Differentiating and rearranging,

$$\nabla_{\mu} \log p(\mathbf{x}_{t}|\mathbf{z}_{t}; \mu, \Lambda, \Psi) = -\frac{1}{2} \nabla_{\mu} \left(-\mu' \Psi^{-1} \mathbf{x}_{t} + \mu' \Psi^{-1} \mu + \mu' \Psi^{-1} \Lambda \mathbf{z}_{t} - \mathbf{x}_{t}' \Psi^{-1} \mu + \mathbf{z}_{t}' \Lambda' \Psi^{-1} \mu \right)$$

$$= \nabla_{\mu} \left(\mathbf{x}_{t}' \Psi^{-1} \mu - \mathbf{z}_{t}' \Lambda' \Psi^{-1} \mu - \frac{1}{2} \mu' \Psi^{-1} \mu \right)$$

$$= \left(\mathbf{x}_{t}' \Psi^{-1} \right)' - \left(\mathbf{z}_{t}' \Lambda' \Psi^{-1} \right)' - \Psi^{-1} \mu$$

$$= \Psi^{-1} \left(\mathbf{x}_{t} - \Lambda \mathbf{z}_{t} - \mu \right)$$

where we have used the results $\nabla_{\mathbf{x}} \mathbf{a}' \mathbf{x} = \mathbf{a}$ and $\nabla_{\mathbf{x}} \mathbf{x}' A \mathbf{x} = (A + A') \mathbf{x}$ along with the fact that Ψ^{-1} is symmetric.³ Hence the first-order condition for μ is

$$\sum_{t=1}^{T} \int f_t^{(j-1)}(\mathbf{z}_t) \left[\Psi^{-1} \left(\mathbf{x}_t - \Lambda \mathbf{z}_t - \mu \right) \right] d\mathbf{z}_t = 0$$

³See, inter alia, Peterson & Pederson (2012) *The Matrix Cookbook*, Section 2.4.1–2 or the Wikipedia article on Matrix Calculus.

Left-multiplying both sides by Ψ , using the fact that $f_t^{(j-1)}(\mathbf{z}_t)$ is a density, and substituting the E-step gives

$$\sum_{t=1}^{T} \left(\mathbf{x}_{t} - \Lambda \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \, \mathbf{z}_{t} \, d\mathbf{z}_{t} - \mu \right) = 0$$

$$T\bar{\mathbf{x}} - \Lambda \sum_{t=1}^{T} \int f_{t}^{(j-1)}(\mathbf{z}_{t}) \, \mathbf{z}_{t} \, d\mathbf{z}_{t} = T\mu$$

$$\bar{\mathbf{x}} - \Lambda \left(\frac{1}{T} \sum_{t=1}^{T} \mu_{\mathbf{z}_{t}|\mathbf{x}_{t}}^{(j-1)} \right) = \mu$$

We see that, provided that conditional expectations $\mu_{\mathbf{z}_t|\mathbf{x}_t}^{(j-1)}$ sum to zero over t, the M-step update for μ is simply $\mu^{(j)} = \bar{\mathbf{x}}$ which doesn't depend on j. From above,

$$\mu_{\mathbf{z}_{t}|\mathbf{x}_{t}}^{(j-1)} = \left(\Lambda^{(j-1)}\right)' \left[\Lambda^{(j-1)} \left(\Lambda^{(j-1)}\right)' + \Psi^{(j-1)}\right]^{-1} \left(\mathbf{x}_{t} - \mu^{(j-1)}\right)$$

and hence, summing over t

$$\sum_{t=1}^{T} \mu_{\mathbf{z}_{t}|\mathbf{x}_{t}}^{(j-1)} = \left(\Lambda^{(j-1)}\right)' \left[\Lambda^{(j-1)} \left(\Lambda^{(j-1)}\right)' + \Psi^{(j-1)}\right]^{-1} T \left(\bar{\mathbf{x}} - \mu^{(j-1)}\right)$$

So as long as $\mu^{(j-1)} = \bar{\mathbf{x}}$, the conditional expectations will sum to zero so that $\mu^{(j)} = \bar{\mathbf{x}}$. This makes perfect sense: we know that $\bar{\mathbf{x}}$ is the MLE for the mean of a normal distribution and we have shown that if we set $\mu^{(1)} = \bar{\mathbf{x}}$, the M-step will never update μ . This is just a very complicated way of saying that we can demean \mathbf{x}_t before carrying out Factor Analysis and then proceed as though μ were zero.

2.5.3 EM for Factor Analysis: Summary of the Algorithm

3 Principal Components Analysis

If asked to summarize a k-dimensional random vector \mathbf{x} our first inclination might be to examine its moments: the mean vector $\boldsymbol{\mu}$ and variance-covariance matrix Σ . As mentioned above, it might be difficult or impossible to estimate Σ if k is large relative to the sample size. More fundamentally, however, even if it were *known* rather than estimated, Σ would still be challenging to interpret unless k is fairly small. Principal Components Analysis (PCA) is a

classical statistical technique that is designed to help us discover "structure" in a variance-covariance matrix by considering particular linear combinations of the elements of **x**. We can apply PCA either to a population covariance matrix or a sample covariance matrix: the basic idea is the same in either case. To bring out some important relationships between ideas we will examine PCA from several different, but equivalent perspectives. To begin, we will consider what is sometimes called the "analysis view" of PCA which amounts to solving a simple optimization problem.

3.1 The "Analysis View" of PCA

Suppose that α is a constant vector. Then $\alpha'\mathbf{x}$ is a scalar random variable that summarizes \mathbf{x} via a weighted average. The question is, what weights provide an "interesting" summary of \mathbf{x} ? One idea would be to choose α to maximize the variance of the linear combination $\alpha'\mathbf{x}$. Although this idea is appealing, there is an obvious problem: we can make the variance of the linear combination arbitrarily large! To turn this into a well-defined problem, we need to constrain α in some way. There are many possible constraints we could use. PCA imposes a particularly simple one by requiring that α has unit norm, in other words $\alpha'\alpha = 1$.

The First Principal Component The linear combination $\alpha_1 \mathbf{x}$ formed from the solution to

$$\max_{\alpha} Var(\alpha_1'\mathbf{x})$$
 subject to $\alpha_1'\alpha_1 = 1$

is called the *first principal component* of Σ . For a general linear combination of \mathbf{x} we have

$$Var(\boldsymbol{\alpha}'\mathbf{x}) = E[\boldsymbol{\alpha}'\mathbf{x}\mathbf{x}'\boldsymbol{\alpha}] - E[\boldsymbol{\alpha}'\mathbf{x}]E[\mathbf{x}'\boldsymbol{\alpha}]$$
$$= \boldsymbol{\alpha} ('E[\mathbf{x}\mathbf{x}'] - E[\mathbf{x}]E[\mathbf{x}']) \boldsymbol{\alpha}'$$
$$= \boldsymbol{\alpha}'\boldsymbol{\Sigma}\boldsymbol{\alpha}$$

Thus, to find α_1 we maximize the Lagrangian

$$\mathcal{L}(\boldsymbol{\alpha}_1, \lambda) = \boldsymbol{\alpha}_1' \boldsymbol{\Sigma} \boldsymbol{\alpha}_1 - \lambda (\boldsymbol{\alpha_1}' \boldsymbol{\alpha_1} - 1)$$

where λ is a *scalar* Lagrange Multiplier since there is only a *one* constraint. The first-order condition for α_1 is

$$2(\Sigma \boldsymbol{\alpha}_1 - \lambda \boldsymbol{\alpha}_1) = \mathbf{0}$$

since Σ is a symmetric matrix.⁴ Rearranging,

$$(\Sigma - \lambda \mathbf{I}_k)\boldsymbol{\alpha}_1 = \mathbf{0}$$

so we see at once that α_1 must be an *eigenvector* of Σ and λ the corresponding *eigenvalue*. But which one? Rearranging the first-order condition for α_1 gives

$$\Sigma \alpha_1 = \lambda \alpha_1$$

Substituting this into the objective function,

$$Var(\alpha_1'\mathbf{x}) = \alpha_1' \Sigma \alpha_1 = \alpha_1' \lambda \alpha_1 = \lambda \alpha_1' \alpha_1 = \lambda$$

since λ is a scalar and $\alpha'_1\alpha_1 = 1$. In other words, the variance of the first principal component equals λ . Since this is what we want to maximize, we should make λ as large as possible. But λ must be one of the eigenvalues of Σ . Therefore, α_1 is the eigenvector corresponding to the largest eigenvalue of Σ . Recall that since Σ is a variance-covariance matrix, is must be positive semi-definite hence all its eigenvalues must be non-negative.

The Second Principal Component

3.2 Probabilistic PCA

Talk about the link between factor analysis and PCA. How they can give different results, etc. Relate via PPCA and the restrictions that lead to ordinary PCA.

⁴In general, $\nabla_{\mathbf{x}}\mathbf{x}'A\mathbf{x} = (A + A')\mathbf{x}$. See, for example, Harville (1997) section 15.3.