Biological sequence analysis

Probabilistic models of proteins and nucleic acids

- R. Durbin
- S. Eddy
- A. Krogh
- **G.** Mitchison

Markov Chains

M+ M-

	Α	C	G	T		Α	C	G	T
Α	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
C	0.171	0.368	0.274	0.188	C	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
T	0.079	0.355	0.384	0.182	Т	0.177	0.239	0.292	0.292

β	A	С	G	T
Α	-0.740	0.419	0.580	-0.803
C	-0.913	0.302	1.812	-0.685
G	-0.624	0.461	0.331	-0.730
Т	-1.169	0.573	0.393	-0.679

Figure 3.2 The histogram of the length-normalised scores for all the sequences. CpG islands are shown with dark grey and non-CpG with light grey.

Loaded/Fair Coin Hidden Markov Models (HMM)

Loaded/Fair Coin Hidden Markov Models (HMM)

Occasionally Dishonest Casino

Occasionally Dishonest Casino

Occasionally Dishonest Casino

```
Rolls
  31511624644664424531132163116415213362514454363165662656666
Die
  Rolls
  651166453132651245636664631636663162326455236266666625151631
Die
  Rolls
  222555441666566563564324364131513465146353411126414626253356
Die
  Rolls
  366163666466232534413661661163252562462255265252266435353336
Die
  Rolls
  233121625364414432335163243633665562466662632666612355245242
Die
```

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.