- 1. For any vector $\bar{\mathbf{x}}$, a positive-definite matrix satisfies the property $\bar{\mathbf{x}}^T \mathbf{A} \bar{\mathbf{x}} > 0$ Ans c
- 2. Convex combination of points $\bar{\mathbf{x}}_1$, $\bar{\mathbf{x}}_2$ is $\theta_1\bar{\mathbf{x}}_1 + \theta_2\bar{\mathbf{x}}_2$, for all non-negative values θ_1 , θ_2 with $\theta_1 + \theta_2 = 1$ Ans a
- 3. Affine combination of points $\bar{\mathbf{x}}_1$, $\bar{\mathbf{x}}_2$ is $\theta \bar{\mathbf{x}}_1 + (1 \theta) \bar{\mathbf{x}}_2$, for all values of θ .
- 4. Matrix inversion identity states that $(A + UCV)^{-1}$ equals $A^{-1} A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$
- 5. The eigenvalues λ of a matrix **A** are given by the equation $|\mathbf{A} \lambda \mathbf{I}| = 0$ Ans d
- 6. As shown in lectures, the quantity $(\mathbf{I} + \overline{\mathbf{x}}\overline{\mathbf{x}}^T)^{-1}$ is given as

$$\mathbf{I} - \frac{\bar{\mathbf{x}}\bar{\mathbf{x}}^T}{1 + ||\bar{\mathbf{x}}||^2}$$

Ans a

7. Given a vector $\bar{\mathbf{x}}$, its l_1 , l_2 and l_{∞} norms satisfy the property $\|\bar{\mathbf{x}}\|_1 \ge \|\bar{\mathbf{x}}\|_2 \ge \|\bar{\mathbf{x}}\|_{\infty}$

Ans b

8. The l_{∞} norm of a vector $\overline{\mathbf{x}}$, denoted by $\|\overline{\mathbf{x}}\|_{\infty}$, is defined as $\max\{|x_1|,|x_2|,...,|x_n|\}$

Ans c

- 9. Given the matrix $\begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$. A basis for its null space is $u_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$, $u_2 = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^T$ since both vectors give 0 when multiplied with the matrix and are orthogonal to each other. Hence, they are linearly independent Ans c
- 10. Given the matrix $\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$. The row echelon form is evaluated as follows $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

As can be seen, its rank is 3

Ans d