

LOG1810 STRUCTURES DISCRÈTES

TD 2 : LOGIQUE DES PRÉDICATS

H2024

SOLUTIONNAIRE

Exercice 1:

Soit l'univers des humains. Formalisez les affirmations suivantes en utilisant les fonctions propositionnelles indiquées.

- L(x): x est un ingénieur logiciel
- M(x): x est un mathématicien
- P(x): x est paresseux
- A(x,y): x aime y
- 1. Tous les ingénieurs logiciels sont paresseux.

Réponse :
$$\forall x (L(x) \rightarrow P(x))$$
 (suggérée) $\forall x (L(x) \land P(x))$ (acceptée)

2. Les personnes paresseuses sont des ingénieurs logiciels.

Réponse :
$$\forall x (P(x) \rightarrow L(x))$$

3. Les ingénieurs logiciels sont les seules personnes paresseuses.

```
Réponse : \forall x (P(x) \leftrightarrow L(x))
```

4. Il existe des ingénieurs logiciels paresseux.

Réponse :
$$\exists x (P(x) \land L(x))$$

5. Il n'existe pas d'ingénieur logiciel paresseux.

Réponse :
$$\forall x (P(x) \rightarrow \neg L(x))$$

6. Il existe un ingénieur logiciel paresseux qui aime tous les mathématiciens.

```
Réponse : \exists x [(L(x) \land P(x)) \land \forall y (M(y) \rightarrow A(x,y))]
```

Exercice 2:

L'univers du discours est l'ensemble des entiers naturels. Formalisez les affirmations suivantes en utilisant les fonctions propositionnelles indiquées.

Prédicat	Signification		
Pair(x)	x est un entier pair		
Prem(x)	x est un nombre premier		
Div(x,y)	x divise y		
Egal(x,y)	x est égal à y		
PP(x,y)	x est plus petit que y		

1. 15 est impair.

Réponse : ¬Pair(15)

2. Il existe un nombre premier et pair

Réponse :
$$\exists x (Prem(x) \land Pair(x))$$

3. Seuls les nombres pairs sont divisibles par deux.

Réponse :
$$\forall x (Div(2,x) \leftrightarrow Pair(x))$$

4. Tout diviseur d'un nombre doit lui être égal ou inférieur.

Réponse :
$$\forall x \forall y [Div(x, y) \rightarrow (Egal(x, y) \lor PP(x, y))]$$

5. a, b, c sont des nombres distincts.

Réponse :
$$\neg Egal(a,b) \land \neg Egal(a,c) \land \neg Egal(c,b)$$

Exercice 3:

Traduisez en langage courant (avec des phrases simples) chacune des propositions suivantes à partir des définitions suivantes :

- Chat(x): x est un chat
- Chien (x): x est un chien
- Oiseau(x) : x est un oiseau
- Perroquet(x) : x est un perroquet
- Vole(x) : x sait voler
- Connait(x,y) : x et y se connaissent
- Aime(x,y) : x aime y
- 1. $\forall x (Chat(x) \rightarrow \exists y (Chien(y) \land Connait(x,y) \land \neg Aime(y,x)))$

Réponse :

- Chaque chat connait un chien qui le déteste.
- Tous les chats connaissent un chien qui ne les aiment pas.
- 2. $\forall x ((Oiseau(x) \land \neg Perroquet(x)) \rightarrow \forall y (Chat(y) \rightarrow Aime(x, y)))$

Réponse :

- Tous les oiseaux sauf les perroquets aiment les chats.
- Tous les oiseaux qui ne sont pas des perroquets aiment les chats
- 3. $\neg (\forall x (Oiseau(x) \rightarrow Vole(x)))$

Réponse :

- Tout oiseau ne sait pas voler
- Il existe au moins un oiseau qui ne sait pas voler

Exercice 4:

a) Soit les domaines et fonctions propositionnelles ci-dessous. Quelle est la valeur de vérité de chaque proposition ? Justifiez votre réponse.

1. $\forall x \exists y \ (x \cdot y = 1)$ où x et y sont des nombres réels.

Réponse : Faux Pour x=0, nous avons : $x \cdot y = 0$ pour tout y

2. $\forall x \exists y (x + y = 0)$ où x et y sont des nombres naturels.

Réponse : Faux Pour x > 0, y < 0 pour satisfaire l'équation, or y doit être un naturel

3. $\forall x \exists y (x - y = 19)$ où x et y sont des entiers.

Réponse : Vrai Pour tout x, y=x-19 satisfait l'équation.

4. $\exists x \exists y \ \exists z \ (x^2 + y^2 = z^2)$ où x, y et z sont des entiers différents de 0.

Réponse : Vrai Exemple, x=3, y=4 et z=5.

5. $\forall x ((x^2 + 3x - 10 = 0) \rightarrow (x > 0))$ où x est un réel.

Réponse : Faux $x^2 + 3x - 10 = 0$ (x + 5)(x - 2) = 0 $\Rightarrow x = 2 \text{ ou } x = -5$ Ainsi, x = -5 < 0 **LOG1810-H2024** Travaux dirigés 2 - 5 -

b) Soit P(x, y) une fonction propositionnelle pour laquelle les valeurs possibles de x et y sont : 1, 2, 3, 4. Le tableau suivant indique la valeur de vérité de P(x, y) pour chaque valeur x et y.

y/x	1	2	3	4
1	F	٧	٧	٧
2	F	V	F	F
3	F	V	F	F
4	F	V	V	F

Utilisez le tableau pour déterminer sur la vérité de chacun des énoncés suivants. Justifiez votre réponse.

1. $\forall x \exists y P(x, y)$

Réponse : Faux

Nous avons P(1,y) faux pour toutes les valeurs de y.

2. $\forall y \exists x P(x, y)$

Réponse : Vrai

Pour chaque y (ligne), nous avons au moins une valeur de x (colonne) vrai.

3. $\forall y \neg P(1, y)$

Réponse : Vrai

Nous avons $\neg P(1, y)$ vrai pour toutes les valeurs de y.

4. $\forall y \ P(1,y) \rightarrow \forall x \ P(x,2)$

Réponse : Vrai

Nous avons P(1, y) faux pour toutes les valeurs de y, donc l'implication est toujours vraie.

Exercice 5:

Soit les fonctions propositionnelles suivantes :

```
P(x): « x a un portable »M(x): « x est Manon »
```

Où le domaine pour x se compose de tous les étudiants de la classe. Pour exprimer le fait que « tous les étudiants de la classe sauf Manon a un portable» nous pouvons écrire :

```
A: \forall x [(\neg M(x) \land P(x)) \lor (M(x) \land \neg P(x))]
De plus, la négation de l'expression A peut s'écrire :
B: \exists x [(M(x) \land P(x)) \lor (\neg M(x) \land \neg P(x))]
```

 a) Démontrez que ¬A ≡ B (indice : utilisez la distributivité ou les équivalences de la bidirectionnelle). Justifiez toutes les étapes par le nom de la propriété utilisée.

```
Réponse :
\neg A \equiv \exists x \neg [(\neg M(x) \land P(x)) \lor (M(x) \land \neg P(x))]
                                                                                                                                 De Morgan
      \equiv \exists x \left[ \neg (\neg M(x) \land P(x)) \land \neg (M(x) \land \neg P(x)) \right]
                                                                                                                                 De Morgan
      \equiv \exists x \left[ (\neg(\neg M(x)) \lor \neg P(x)) \land (\neg M(x) \lor \neg(\neg P(x))) \right]
                                                                                                                                 De Morgan
      \equiv \exists x [(M(x) \lor \neg P(x)) \land (\neg M(x) \lor P(x))]
                                                                                                                                 Double négation
      \equiv \exists x \ [(M(x) \land \neg M(x)) \lor (M(x) \land P(x)) \lor (\neg P(x) \land \neg M(x)) \lor (\neg P(x) \land P(x))]
                                                                                                                                 Distributivité
      \equiv \exists x [FAUX \lor (M(x) \land P(x)) \lor (\neg P(x) \land \neg M(x)) \lor FAUX]
                                                                                                                                 Négation
      \equiv \exists x [(M(x) \land P(x)) \lor (\neg P(x) \land \neg M(x))]
                                                                                                                                 Identité
                                                                                                                                 Définition
      ≡ B
```

b) Traduisez en français l'expression B

Réponse:

CQFD

Manon a un portable ou il existe un étudiant autre que Manon qui n'a pas de portable.

LOG1810-H2024 Travaux dirigés 2 - 7 -

Exercice 6:

a) Déterminez si l'équivalence suivante est valide :

$$\exists x (P(x) \lor Q(x)) \equiv (\exists x P(x)) \lor (\exists x Q(x))$$

Justifiez votre réponse.

Réponse : L'équivalence est valide.

Posons:

$$A: \exists x (P(x) \lor Q(x))$$
 $B: (\exists x P(x)) \lor (\exists x Q(x))$

Nous souhaitons montrer que $A \leftrightarrow B$ est une tautologie. Nous avons aussi que $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$.

Montrons d'abord $A \rightarrow B$:

Assumons A vrai. Alors pour un v donné, P(v) ou Q(v) est vrai. De cette façon, nous avons le 1^{er} cas ou P(v) est vrai et Q(v) faux. Dans ce cas B est vrai car $\exists x \ P(x)$ est vrai. Nous avons un 2^e cas ou P(v) est faux et Q(v) est vrai. Dans ce cas, B est aussi vrai car $\exists x \ Q(x)$ est vrai. Finalement, nous avons le 3^e cas ou P(v) et Q(v) sont vrai. Dans ce cas B est vrai car $\exists x \ P(x)$ et $\exists x \ Q(x)$ sont vrais. Ainsi, si A est vrai alors B est vrai, nous obtenons bien $A \to B$.

Montrons ensuite $B \rightarrow A$:

Assumons B vrai. Alors pour un u et v donné, nous avons P(v) ou Q(u) vrai. Ainsi, comme précédemment, nous avons un 1^{er} cas où P(v) est Q(u) faux. Dans ce cas-là, nous avons A vrai car P(v) ou Q(v) est vrai. Le 2^e cas est celui ou Q(u) est vrai et P(v) est faux. Dans ce cas, A est aussi vrai car P(u) ou Q(u) est vrai. Finalement, nous avons le cas où P(v) et Q(u) sont vrais. Dans ce cas A est vrai car P(u) ou Q(u) est vrai ainsi que P(v) ou Q(v). De cette façon, si B est vrai alors A est vrai, nous obtenons bien $B \to A$.

Comme nous avons monté que $A \leftrightarrow B$ est une tautologie, nous avons montrer l'équivalence.

CQFD

b) Déterminez si l'équivalence suivante est valide quelle que soit les fonctions propositionnelles P(x) et Q(x):

$$\exists x (P(x) \land Q(x)) \equiv (\exists x P(x)) \land (\exists x Q(x))$$

Justifiez votre réponse.

Réponse : L'équivalence n'est pas valide.

Il suffit de trouver un contre-exemple. Si nous choisissons l'univers des entiers ainsi que les fonctions propositionnelles suivantes :

• P(x): x est pair

• Q(x) : x est impair

Posons:

$$A: \exists x \big(P(x) \land Q(x) \big) \qquad B: \big(\exists x P(x) \big) \land \big(\exists x Q(x) \big)$$

Pour que l'équivalence soit valide il faut que $A \leftrightarrow B$ soit une tautologie. Nous avons aussi que $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$.

D'abord, nous remarquons que A est toujours faux. Effectivement, il n'existe pas d'entier à la fois pair et impair. Ainsi, $(A \to B)$ est toujours vrai. Cependant, il est possible de montrer que $(B \to A)$ est faux. Effectivement, B est vrai (Exemple : $P(2) \land Q(3)$ est vrai), or comme expliqué précédemment A est faux ce qui implique que $(B \to A)$ est faux. Nous montrons donc que $A \leftrightarrow B$ n'est pas une tautologie.

Ainsi, l'équivalence n'est pas valide.

CQFD