k-Plane Clustering

Introduction

Research Paper: k-Plane Clustering

Authors : Bradley and Mangasarian

Paper Link : https://doi.org/10.1023/A:1008324625522

Goal

- Our goal is to cluster m given points in n-dimensional real space into k clusters by generating k hyperplanes.
- We iteratively repeat cluster assignment and cluster update until the algorithm finally converges and we get the minimum sum of squares of distances of each point to its nearest plane.

Dataset

- The algorithm is implemented for the Wisconsin Prognostic Breast Cancer (WPBC)
 Dataset. It can be found at
 https://archive.ics.uci.edu/dataset/16/breast+cancer+wisconsin+prognostic
- The features we use are Tumor Size and Lymph Node Status, both normalised to have o mean and 1 standard deviation.
- We have a total of 198 points in the dataset and we will be dividing them into 3 clusters.

Notation

- m total number of data points (198)
- n dimensions (2)
- k number of clusters (3)
- A collection of all datapoints in a m x n matrix
- w collection of all weights (norm = 1) in a k x n matrix
- **b** collection of all bias terms in a k length array
- <u>m_cluster</u> number of datapoints belonging to a particular cluster
- A_cluster collection of all datapoints belonging to a particular cluster in a m_cluster
 x n matrix

Algorithm

• Cluster Assignment

- o assigning points to the nearest cluster plane
- o for each point, our goal is to determine the index of plane closest to it

$$egin{aligned} &\circ |A_iw^j_{l(i)}-\gamma^j_{l(i)}|=min_{l=1,2\ldots k}|A_iw^j_l-\gamma^j_l|, \end{aligned}$$
 where $l(i)$ is the index of closest plane for A_i

ones of appropriate dimension

Cluster Update

 for each cluster, we collect all its datapoints and try to find the plane which minimises the sum of squares of distances of each point to itself

$$\circ \ \ B(l)=A(l)'*(I-rac{ee'}{m(l)})*A(l),$$
 where $A(l)$ is the collection of all datapoints in cluster l and e is a vector of

 $\circ~$ Then, corresponding to the smallest eigenvalue for B, we find the eigenvector and set the value of w as

$$w_l^{j+1}=v$$
 (v = eigenvector corresponding to smallest eigenvalue) $\gamma_l^{j+1}=rac{e^{\cdot *A(l)*w_l^{j+1}}}{m(l)}$

Finite Termination

 The kPC algorithm terminates in finite step at a locally optimal cluster assignment.

3

Extra

• Similar to k-means, we can use the "elbow method" to find the ideal number of clusters to use for our dataset

