Data Analysis of Titanic Dataset in a Jupyter Notebook

Didem B. Aykurt

Colorado State University Global

MIS542; Business Analytics

Dr.Emmanuel Tsukerman

June 18, 2023

Explore Titanic Dataset with Pandas Library in Jupyter

I will use Panda's library in Python to analyze the Titanic passenger data. I want to give some minor information about Pandas as an open-source relational and labeled data library. The library has fast and high-performance properties for data structures and operations that help manipulate and analyze numerical data and time series. Easy to load different target files such as SQL database, CSV file, and Excel file from existing storage and handling of missing data, both floating point and non-floating-point data. Have access to insert and delete columns into DataFrame and set margining and joining. Capable of quickly reshaping and pivoting dataset and time-series quality. The Pandas library quickly makes groups by functionality on a dataset. Pandas have analysis functions to create graphs and charts with big and heavy data. For example, Matplotlib has a process for plotting, SciPy can statistically analyze, and sci-kit-learn can use machine learning algorithms.

The library can run any text editor efficiently, so Jupyter is an excellent source for executing code in a specific cell more precisely than completing the entire file. Also, Jupyter has access to visualize data frames and plots.

I work with the titanic.csv dataset that is available in CSU global sources. The Titanic dataset contains passenger detail information, and the dataset includes 887 observations with eight variables listing Survived, Passenger Class, Name, Sex, Age, Siblings/Spouses Aboard, and Parents/Children Aboard. I aim to calculate the average cost of the first class in U.S. dollars, calculate passengers over 20 with siblings onboard, and find the median age of non-survive passengers. Create a pie chart to show a group of genders, a bar chart that helps compare gender survivors and a bar chart that helps calculate the total number of each age group with Pandas Library.

Figure 1: Import needs a library, loads the titanic.csv file, and explores the titanic dataset by getting information by info () function and seeing the dataset with the .head() process.

Figure 2: Check index and missing data with the isnull() function.

Figure 3: Calculate the average cost of a first-class ticket in U.S. dollars.

Figure 4: Calculate the total number of passengers over 20 with siblings onboard using the if else statement to differentiate sibling and spouse by lambda function, take two arguments, and return a string insert the two parameters first and last. Then, filter it over 20 with siblings, and the shape function returns a tuple with each index having the number of checking elements.

								Fare in
	Survived	Passenger Class	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	British Pounds
0	0	3	Mr. Owen Harris Braund	male	22.0	1	0	7.2500
1	1	1	Mrs. John Bradley (Florence Briggs Thayer) Cum	female	38.0	1	0	71.2833
2	1	3	Miss. Laina Heikkinen	female	26.0	0	0	7.9250
3	1	1	Mrs. Jacques Heath (Lily May Peel) Futrelle	female	35.0	1	0	53.1000
4	0	3	Mr. William Henry Allen	male	35.0	0	0	8.0500
880	0	3	Mr. Henry Jr Sutehall	male	25.0	0	0	7.0500
881	0	3	Mrs. William (Margaret Norton) Rice	female	39.0	0	5	29.1250
882	0	2	Rev. Juozas Montvila	male	27.0	0	0	13.0000
885	1	1	Mr. Karl Howell Behr	male	26.0	0	0	30.0000
886	0	3	Mr. Patrick Dooley	male	32.0	0	0	7.7500

:	Survived	Passenger Class	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare in Britis Pound
68	0	3	Mr. Vincenz Kink	male	26.0	2	0	8.662
84	1	3	Mrs. Karl Alfred (Maria Mathilda Gustafsson) B	female	33.0	3	0	15.850
87	1	1	Miss. Mabel Helen Fortune	female	23.0	3	2	263.000
103	0	3	Mr. Anders Vilhelm Gustafsson	male	37.0	2	0	7.925
119	0	2	Mr. Stanley George Hickman	male	21.0	2	0	73.500
244	0	1	Dr. William Edward Minahan	male	44.0	2	0	90.000
299	1	3	Mr. Bernard McCoy	male	24.0	2	0	23.250
322	0	3	Mr. George John Jr Sage	male	20.0	8	2	69.55
328	1	3	Miss. Agnes McCoy	female	28.0	2	0	23.25
339	1	1	Miss. Alice Elizabeth Fortune	female	24.0	3	2	263.00
390	0	3	Mr. Johan Birger Gustafsson	male	28.0	2	0	7.92
433	0	3	Miss. Doolina Margaret Ford	female	21.0	2	2	34.37
434	1	2	Mrs. Sidney (Emily Hocking) Richards	female	24.0	2	3	18.75
526	0	2	Mr. Richard George Hocking	male	23.0	2	1	11.50
562	0	3	Mr. Alfred J Davies	male	24.0	2	0	24.15
568	1	1	Mrs. Edward Dale (Charlotte Lamson) Appleton	female	53.0	2	0	51.47
597	1	2	Mrs. Sidney Samuel (Amy Frances Christy) Jacob	female	24.0	2	1	27.00
652	0	2	Mr. Leonard Mark Hickman	male	24.0	2	0	73.50
657	1	1	Dr. Henry William Frauenthal	male	50.0	2	0	133.65
662	0	2	Mr. Lewis Hickman	male	32.0	2	0	73.50
722	1	2	Mrs. Peter Henry (Lillian Jefferys) Renouf	female	30.0	3	0	21.00
8]:	len(o	ver_20_	with_siblings) # Coun	t th	ese			

The answer to question 2 is 24

Figure 5: Calculate the median age with the median() function by specific selection of non-survivors by filter function '==.'

```
In [51]:  #filter non-survived passenger
# and calculate the median age of non survivors
median_age_non_survivors = titanic[titanic['Survived'] == 0] ['Age'].median()
print('Median age of non-survivors: ',median_age_non_survivors)
pd.Timestamp.now()

Median age of non-survivors: 28.0
Out[51]: Timestamp('2023-06-14 15:31:11.664276')
```

Figure 6: Calculate the total number of males and females with value_counts() function returns a group count of unique values then display on the pie chart by matplotlib pie() part containing gender_counts exceptional value, label it by index and size it by autopsy.

Figure 7: Create a bar chart to show the total number of male and female survivors with value_counts() count unique values, then show the bar() function containing the field name and index label and title it.

```
#Count the number of male and female survivurs
survivor_counts = titanic[titanic['Survived']==1] ['Sex'].value_counts()

#Create bar chart
pp.bar(survivor_counts.index, survivor_counts)
pp.xlabel('Gender')
pp.ylabel('Gender')
pp.ylabel('Count')
pp.title('Count of Male and Female Survivors')
pp.show()
pd.Timestamp.now()
```


3]: Timestamp('2023-06-14 15:44:08.295506')

Figure 8: Create a histogram to show the total number of each age with hist() function containing field name age_counts include value_counts() process for calculating the unique value in series by 100 bins and x and y axis label and title it.

Conclusion

The survivors' passenger bar chart shows female survivors are higher than males; the number of male passengers is more elevated than that of female passengers. The non-survivor passenger age median of 28 also surprises me because most customers are babies and kids—the average cost of

the first class is \$107.7, which is a valuable price. Most passengers are between 20 and 30, and the number of passengers over 20 with siblings on board was 23.

References

McKinney, W. (n.d.). *Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython.*O'Reilly Media. ISBN- 1491957638.

Pandas.pydata.org,(2023). Pandas.Series.value_counts.

https://pandas.pydata.org/docs/reference/api/pandas.Series.value_counts.

Burgaud, A.,(n.d.). How to Use Python Lambda Functions. https://realpython.com/python-lambda/

Mohanty, A. (2020). Step By Step Exploratory Data Analysis Of Titanic DataSet.

https://medium.datadriveninvestor.com/step-by-step-exploratory-data-analysis-of-titanic-dataset-2d0fb09b0e86

Lindemann, A.,& Stolz, J.,(2021). Teaching Mixed Methods: Using the Titanic Dataset to Teach Mixed Methods Data Analysis. Institute of Social Sciences of Religions, University of Lausanne, Switzerland. 17(3),231-249, https://doi.org/10.5964/meth.4241

In [5]: first_class_only = df[df["Passenger Class"]==1] # Filter to first class ticket passengers only
first_class_only

Out[5]:

:		Survived	Passenger Class	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare in British Pounds
	1	1	1	Mrs. John Bradley (Florence Briggs Thayer) Cum	female	38.0	1	0	71.2833
	3	1	1	Mrs. Jacques Heath (Lily May Peel) Futrelle	female	35.0	1	0	53.1000
	6	0	1	Mr. Timothy J McCarthy	male	54.0	0	0	51.8625
	11	1	1	Miss. Elizabeth Bonnell	female	58.0	0	0	26.5500
	23	1	1	Mr. William Thompson Sloper	male	28.0	0	0	35.5000
	867	1	1	Mrs. Richard Leonard (Sallie Monypeny) Beckwith	female	47.0	1	1	52.5542
	868	0	1	Mr. Frans Olof Carlsson	male	33.0	0	0	5.0000
	875	1	1	Mrs. Thomas Jr (Lily Alexenia Wilson) Potter	female	56.0	0	1	83.1583
	883	1	1	Miss. Margaret Edith Graham	female	19.0	0	0	30.0000
	885	1	1	Mr. Karl Howell Behr	male	26.0	0	0	30.0000

216 rows × 8 columns

```
In [8]: fares_only = first_class_only["Fare in British Pounds"] # Pick out the fares
         fares_only
Out[8]: 1
             71.2833
              53.1000
         6
              51.8625
         11 26.5500
         23 35.5000
         867 52.5542
         868
               5.0000
         875
             83.1583
         883
             30.0000
         885 30.0000
         Name: Fare in British Pounds, Length: 216, dtype: float64
 In [9]: avg_in_pounds = fares_only.mean() # Calculate the mean fare in pounds
        avg_in_pounds
Out[9]: 84.1546875
In [10]: avg_in_usd = avg_in_pounds*1.28 # Convert to USD
         avg_in_usd
Out[10]: 107.71799999999999
```

The answer to question 1 is 107.7

In [21]: did_not_survive = df[df["Survived"]==0] # Narrow down to those who have not survived
 did_not_survive

Out[21]:

:		Survived	Passenger Class	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare in British Pounds
	0	0	3	Mr. Owen Harris Braund	male	22.0	1	0	7.2500
	4	0	3	Mr. William Henry Allen	male	35.0	0	0	8.0500
	5	0	3	Mr. James Moran	male	27.0	0	0	8.4583
	6	0	1	Mr. Timothy J McCarthy	male	54.0	0	0	51.8625
	7	0	3	Master. Gosta Leonard Palsson	male	2.0	3	1	21.0750
	880	0	3	Mr. Henry Jr Sutehall	male	25.0	0	0	7.0500
	881	0	3	Mrs. William (Margaret Norton) Rice	female	39.0	0	5	29.1250
	882	0	2	Rev. Juozas Montvila	male	27.0	0	0	13.0000
	884	0	3	Miss. Catherine Helen Johnston	female	7.0	1	2	23.4500
	886	0	3	Mr. Patrick Dooley	male	32.0	0	0	7.7500

545 rows × 8 columns

```
In [24]: age_of_non_survivors = did_not_survive["Age"] # Select the Age column
         age_of_non_survivors
Out[24]: 0
               22.0
         4
               35.0
         5
               27.0
         6
               54.0
         7
                2.0
         880
              25.0
         881 39.0
         882 27.0
         884
               7.0
         886
              32.0
        Name: Age, Length: 545, dtype: float64
In [26]: age_of_non_survivors.median() # Compute the median
Out[26]: 28.0
```

The answer to question 3 is 28

In [45]: survivors = df[df["Survived"]==1] # Narrow to the survivors
survivors

Out[45]:

	Survived	Passenger Class	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare in British Pounds
1	1	1	Mrs. John Bradley (Florence Briggs Thayer) Cum	female	38.0	1	0	71.2833
2	1	3	Miss. Laina Heikkinen	female	26.0	0	0	7.9250
3	1	1	Mrs. Jacques Heath (Lily May Peel) Futrelle	female	35.0	1	0	53.1000
8	1	3	Mrs. Oscar W (Elisabeth Vilhelmina Berg) Johnson	female	27.0	0	2	11.1333
9	1	2	Mrs. Nicholas (Adele Achem) Nasser	female	14.0	1	0	30.0708

871	1	3	Miss. Adele Kiamie Najib	female	15.0	0	0	7.2250
875	1	1	Mrs. Thomas Jr (Lily Alexenia Wilson) Potter	female	56.0	0	1	83.1583
876	1	2	Mrs. William (Imanita Parrish Hall) Shelley	female	25.0	0	1	26.0000
883	1	1	Miss. Margaret Edith Graham	female	19.0	0	0	30.0000
005	4	1	Ma Mad Hamali Balan		26.0	^	^	20,0000

In [55]: survivors["Sex"].value_counts().plot.bar(color=['green','yellow']) # Bar plot with chosen colors

Out[55]: <AxesSubplot: >

In [60]: df["Age"].plot.hist(bins=100) # Histogram plot

 $\texttt{Out[60]:} \quad \texttt{<AxesSubplot: ylabel='Frequency'>}$

