

RAMRAO ADIK INSTITUTE OF TECHNOLOGY, NERUL

(D Y Patil Deemed to be University)

Program: B.Tech/SE/IV/IT/MAY 2022

End Semester Examination: B.Tech. Semester IV

Course Code: ITC404 Course Name: Design and Analysis of Algorithms

Time: 2 hour Max. Marks: 60

Instructions: 1. All three questions are compulsory

Que.	Question	Max.	CO	BT
No.		Marks		
Q1	Solve any Four			
i)	Explain Binary Search with an example.	5	CO1	BT2
ii)	Solve the following recurrence relation using Master's	5	CO1	BT3
	theorem.			
	T(n) = 2T(n/2) + nlogn			
iii)	Explain in brief the concept of Multistage Graphs?	5	CO4	BT2
iv)	Differentiate between P and NP.	5	CO6	BT4
v)	Differentiate between Prims and Kruskals Algorithm.	5	CO3	BT4
vi)	Explain the asymptotic notations.	5	CO1	BT2

Que.	Question				Max.	CO	BT		
No.							Marks		
Q2 A	Solve any Two								
i)	Write and explain sum of subset algorithm for n=5					5	CO5	BT3	
	W={2,7,8,9,15} M=17								
ii)	Explain the difference between greedy method and						5	CO3	BT2
	dynamic programming.								
iii)	Explain the concept of backtracking with an example.						5	CO5	BT2
iv)	Explain Matrix chain multiplication algorithm with an						5	CO4	BT2
	example.								
Q 2 B	Solve any One								
i)	Solve the following Job Sequencing with deadline problem						10	CO2	BT3
	using greedy approach.								
	Job No	1	2	3	4				
	Profit	100	10	15	27				
	Deadline	2	1	2	1				
ii)	Explain Travelling Salesman Problem using Branch and				10	CO5	BT2		
	Bound.								

RAMRAO ADIK INSTITUTE OF TECHNOLOGY, NERUL

(D Y Patil Deemed to be University)

Que. No.	Question	Max. Marks	CO	BT
Q3	Solve any Two			
i)	Explain Huffman coding? Construct a Huffman Tree and	10	CO3	BT6
	determine the code for the following characters and			
	frequencies given.			
	a=10,e=15,i=12,o=3,u=4,s=13,t=1			
ii)	Solve the following using fractional knapsack where	10	CO3	BT3
	n=5, M=60,			
	Profits/values are			
	(P1,P2,P3,P4,P5) = (30,20,100,90,160) and			
	weights are			
	(W1,W2,W3,W4,W5) = (5, 10, 20, 30, 40).			
	Find the maximum profit.			
iii)	Write a short note on(any 2)	10	CO6	BT3
	(1) N Queen Problem			
	(2) Randomized Algorithms			
	(3) Strassen's Matrix Multiplication			

Course Outcomes (CO) -Learner will be able to:

- CO1: Analyze the time and space complexity of algorithms.
- CO2. Apply the divide-and-conquer technique to solve the problems.
- CO3. Apply the greedy programming technique to solve the problems.
- CO4. Apply the dynamic programming technique to solve the problems
- CO5. Apply the Solution-space search-based methods to solve the problems
- CO6. Analyze problems and apply techniques to solve problems that are not covered by classical algorithm techniques studied earlier.

BT1- Remembering, BT2- Understanding, BT3- Applying, BT4- Analyzing, BT5- Evaluating, BT6- Creating