

Thermal Non-Line-of-Sight Imaging

Tomohiro Maeda^{*1}, Yiqin Wang^{*2}, Ramesh Raskar¹, Achuta Kadambi² MIT Media Lab¹, Visual Machines Group, UCLA²

Non-Line-of-Sight Imaging

http://web.media.mit.edu/~raskar/cornar/

Related Works

Time-of-flight

Velten et al. 2012

O'Toole et al. 2018

Coherence

Smith et al. 2018

Batarseh et al. 2018

Intensity

Bouman et al. 2017

Saunder et al. 2019

Related Works

Time-of-flight

Velten et al. 2012

O'Toole et al. 2018

Coherence

Smith et al. 2018

Batarseh et al. 2018

Intensity

Bouman et al. 2017

Saunder et al. 2019

Related Works

Time-of-flight

Velten et al. 2012

O'Toole et al. 2018

Coherence

Smith et al. 2018

Batarseh et al. 2018

Intensity

Bouman et al. 2017

Saunder et al. 2019

More Complex BRDF

Kadambi et al. 2016

Results – Localization without Occlusions

Results – Fast Pose Estimation

Long-wave IR

Two Photon Bounces with Visible Light

Ambient Photons with Visible Light

Single Specular Reflection with Long-wave IR

Temperature and Long-wave IR Emission

Stefan-Boltzmann Law

$$E = \epsilon \sigma T^4$$

- E: Radiance (W/m²)
- ϵ : Emissivity
- σ : Stefan-Boltzmann Constant
- T: Temperature (K)

Temperature and Long-wave IR Emission

With background subtraction, object's radiance is

$$E_{obj} = \epsilon_{obj} \sigma (T_{obj}^4 - T_{amb}^4)$$

- Thermal measurement can be translated to the intensity information
- Radiance of the object can be estimated with temperature and emissivity

BRDF and Wavelength

- Diffuse $\propto 1/\lambda^4$
- Specular $\propto 1/\lambda^2$

[Bennett and Porteus, 1960]

BRDF in the Long-wave IR Spectrum

BRDF in the long-wave IR can be well approximated with specular models

Specular BRDF Model

$$f(\vec{l}, \vec{v}, \vec{n}) = \frac{D(\vec{h}, \vec{n}) F(\vec{v}, \vec{h}) G(\vec{l}, \vec{v}, \vec{h}, \vec{n})}{4(\vec{l} \cdot \vec{n})(\vec{v} \cdot \vec{n})}$$

 $D\left(\vec{h},\vec{n}\right)$: Normal distribution function parameterized by roughness α

 $G\left(\vec{l},\vec{v},\vec{h},\vec{n}\right)$: Shadowing function parameterized by roughness α

 $F(\vec{v}, \vec{h})$: Fresnel term ≈ 1 for narrow specular reflection

Light Transport Model

Irradiance at the wall

$$L(o,w) = \frac{E_{obj}}{\pi ||o-w||^2},$$

Intensity that camera sees

$$I(W_i) = \int \int \int (1 - \epsilon) L(o, w) f(\vec{l}, \vec{v}, \vec{n}) d\vec{v} dw do$$

w: point on a wall surface

o: point on a object surface

 ϵ : emissivity (1-albedo)

Thermal NLOS Imaging – Passive Localization

Thermal NLOS Imaging – Passive Localization

Corner Setup

Intensity Measurement from Marble Wall

Size-depth Ambiguity

Intensity Measurement from Marble Wall

Size depth Ambiguity

BRDF to Disambiguate Size and Depth

BRDF Estimation

(a) BRDF estimation experimentl setup

(b) Plot of measured reflection intensity and fitted simulation

Localization Steps

Localization Results

NLOS Imaging – Pose Estimation

Denoising for Robust Pose Estimation

Raw Frames

Proposed Methods

Human Detection via Score Thresholding

Without Threshold

With Threshold

Limitations and Applications

- Limitations
 - Limited object type
 - Absorption of long-wave IR at surfaces

- Applications
 - Passive localization
 - Real-time computer vision algorithms

Conclusions

- Novel NLOS imaging with long-wave IR
- Passive 3D localization
- Pose Estimation around corners

Tomohiro Maeda Yiqin Wang Ramesh Raskar Achuta Kadambi

tomotomo@mit.edu yiqinwang926@g.ucla.edu

