Understanding Vectors

How to represent samples geometrically? Vectors in n-dimensional space (\mathbb{R}^n)

- Assume that a sample/patient is described by n characteristics ("features" or "variables")
- Representation: Every sample/patient is a vector in \mathbb{R}^n with tail at point with 0 coordinates and arrow-head at point with the feature values.
- <u>Example:</u> Consider a patient described by 2 features:
 Systolic BP = 110 and Age = 29.

This patient can be represented as a vector in \mathbb{R}^2 :

How to represent samples geometrically? Vectors in n-dimensional space (\mathbb{R}^n)

Patient id	Cholesterol (mg/dl)	Systolic BP (mmHg)	Age (years)	Tail of the vector	Arrow-head of the vector
1	150	110	35	(0,0,0)	(150, 110, 35)
2	250	120	30	(0,0,0)	(250, 120, 30)
3	140	160	65	(0,0,0)	(140, 160, 65)
4	300	180	45	(0,0,0)	(300, 180, 45)

How to represent samples geometrically? Vectors in n-dimensional space (\mathbb{R}^n)

Since we assume that the tail of each vector is at point with 0 coordinates, we will also depict vectors as points (where the arrow-head is pointing).

1. Multiplication by a scalar

Consider a vector $\vec{a} = (a_1, a_2, ..., a_n)$ and a scalar c

Define: $c\vec{a} = (ca_1, ca_2, ..., ca_n)$

When you multiply a vector by a scalar, you "stretch" it in the same or opposite direction depending on whether the scalar is positive or negative.

2. Addition

Consider vectors $\vec{a} = (a_1, a_2, ..., a_n)$ and $\vec{b} = (b_1, b_2, ..., b_n)$

Define:
$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$$

Recall addition of forces in classical mechanics.

3. Subtraction

Consider vectors $\vec{a} = (a_1, a_2, ..., a_n)$ and $\vec{b} = (b_1, b_2, ..., b_n)$

Define: $\vec{a} - \vec{b} = (a_1 - b_1, a_2 - b_2, ..., a_n - b_n)$

What vector do we need to add to \vec{b} to get \vec{a} ? I.e., similar to subtraction of real numbers.

4. Euclidian length or L2-norm

Consider a vector $\vec{a} = (a_1, a_2, ..., a_n)$

Define the L2-norm:
$$\|\vec{a}\|_2 = \sqrt{a_1^2 + a_2^2 + ... + a_n^2}$$

We often denote the L2-norm without subscript, i.e. $\|\vec{a}\|$

$$||\vec{a}||_2 = \sqrt{5} \approx 2.24$$

L2-norm is a typical way to measure length of a vector; other methods to measure length also exist.

Unit Vector

Given the following vector: $\mathbf{q} = < -2, 1>$,

Find the unit vector **u** of the vector **q**.

First calculate its magnitude |q|:

$$|q| = \sqrt{(-2)^2 + 1^2} = \sqrt{5}$$

Now calculate the unit vector of q:

$$u = \frac{<-2,1>}{\sqrt{5}} = <-\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}}>$$

Dot Product

The dot product of a with unit vector u, denoted as a.u, is defined to be the projection of a in the direction of u:

Dot Product of two vectors

Another perspective of dot product

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n = \sum_{i=1}^{n} a_i b_i$$

