Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° Semestre 2019

Ayudantía 22

30 de Mayo MAT1106 - Introducción al Cálculo

- 1) Pruebe que las siguientes proposiciones son equivalentes:
 - s es el supremo de A.
 - Para todo $\varepsilon > 0$, existe $a \in A$ tal que

$$s - \epsilon < a \le s$$

• s es cota superior y existe una sucesión $\{x_n\}$ de elementos de A tal que $x_n \to s$.

Demostraci'on. Sabemos que la primera implica la segunda (visto en clases). Para ver que la segunda implica la tercera, notar que si reemplazamos ε por $\frac{1}{k}$, existe un $a_k \in A$ tal que

$$s - \frac{1}{k} < a_k \le s$$

Estos a_k forman una sucesión que converge a s (por teorema del Sandwich). Así, la segunda implica la tercera.

Para ver que la tercera implica la primera, veamos que s es cota superior. Luego, solo basta ver que es la más pequeña. Para esto, supongamos que hay una cota M < s. Como tenemos una sucesión x_n de elementos que converge a s, tomando $\varepsilon = s - M$, tenemos que desde un n_0 en adelante se cumple

$$|x_n - s| < s - M$$

Luego, desarrollando el valor absoluto y simplificando se tiene

$$M < x_n < 2s - M$$

Esto implica que M no es cota superior, $\rightarrow \leftarrow$.

Por lo tanto, tenemos que la tercera implica la primera, y por lo tanto (junto lo anterior) las tres son equivalentes.

2) Sean A, B conjuntos no vacíos. Se define

$$A + B = \{a + b : a \in A \land b \in B\}$$

Pruebe que A+B tiene máximo si y solo si A tiene máximo y B tiene máximo.

Demostración. Veamos primero la implicancia de derecha a izquierda. Sea M_A el máximo de A y sea M_B el máximo de B. Luego, esto implica que para todos $a \in A$ y $b \in B$, se tiene $a \leq M_A$ y $b \leq M_B$. Así, sumando ambas llegamos a

$$a+b \le M_A + M_B$$

Esto implica que M_A+M_B es cota superior de A+B. Como además $M_A\in A$ y $M_B\in B$ (pues son máximos), tenemos que M_A+M_B es el máximo de A+B.

Para probar la otra implicancia, supongamos que A+B tiene máximo pero algún conjunto no. Sin perder generalidad, digamos que es A. Si A no tiene cota superior, la conclusión es directa (dado un $b \in B$, el subconjunto $A + \{b\}$ tampoco tiene cota superior).

Luego, digamos que A está acotado superiormente. Como no tiene máximo, tenemos que para todo $a \in A$, existe un $x \in A$ tal que

(si no existiese, significa que existe algún $a \in A$, tal que para todo $x \in A$ se tiene $a \geq x$, lo que significaría que a es máximo de A). Luego, consideremos el máximo de A+B y llamémoslo M_{A+B} . Como es máximo, esto implica que existe un $a \in A$ y un $b \in B$ tal que $a+b=M_{A+B}$. Pero, como $a \in A$, existe un $x \in A$ tal que a < x. Luego,

$$x + b > a + b = M_{A+B},$$

lo que es una contradicción. Por lo tanto, ambos conjuntos tienen máximo. Habiendo probado ambas implicancias, tenemos lo pedido.

3) Sea $\{x_n\}$ una sucesión creciente y acotada. Pruebe que converge al supremo del conjunto

$$X = \{x_n : n \in \mathbb{N}\}$$

Demostración. Sea L el límite de x_n , y sea $M = \sup X$. Luego, sabemos que $x_n \leq L$ para todo $n \in \mathbb{N}$, por lo que L es cota superior. Como M es supremo, esto nos dice que $M \leq L$. Si M < L, como $x_n \to L$, tomando $\varepsilon = L - M > 0$, tenemos que desde un n_0 en adelante se cumple

$$|x_n - L| < L - M$$

Desarrollando esta expresión se llega a

$$M - L < x_n - L < L - M$$

lo que implica

$$M < x_n$$

Luego, M no es cota superior, $\rightarrow \leftarrow$. Por lo tanto, M = L y así tenemos lo pedido.