MATHEMATICIA GENERALLI

(By OP Gupta - 9650 350 480)

⇒ Logarithmic Relations

$$\mathbf{a)} \ log_a p = \frac{log_b p}{log_b a}$$

$$\mathbf{b)} \ log_a p = \frac{1}{log_p a}$$

c)
$$log_a(m^n) = nlog_a(m)$$

d)
$$log_a(m.n) = log_a(m) + log_a(n)$$

e)
$$log_a\left(\frac{m}{n}\right) = log_a(m) - log_a(n)$$

$$\mathbf{f)} \ log_a a = 1$$

g)
$$log_a a^p = plog_a a = p$$

$$\mathbf{h)} \ a^{\log_a f(x)} = f(x) \ .$$

⇒ Exponential Relations

a)
$$a^x = 1 + x.(log_e a) + \frac{x^2}{2!}.(log_e a)^2 + ... + \frac{x^n}{n!}.(log_e a)^n + ... + ...$$

b)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots \infty$$
 for all x.

⇒ Logarithmic Series

a)
$$log_e(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \infty, -1 < x \le 1$$

b)
$$log_e(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \infty, -1 \le x < 1$$

⇒ Binomial Expansions

a)
$$(a+b)^n = {}^nC_0a^{n-0}b^0 + {}^nC_1a^{n-1}b^1 + {}^nC_2a^{n-2}b^2 + ... + {}^nC_ra^{n-r}b^r + ... + {}^nC_na^{n-n}b^n$$
 if $n \in \mathbb{Z}^+$.

b)
$$(1+x)^n = 1 + {}^nC_1x + {}^nC_2x^2 + ... + {}^nC_rx^r + ... + {}^nC_nx^n$$
 if *n* is a *positive integer*.

c)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + ... \infty$$
 such that $-1 < x < 1$ and $n \in \mathbb{Z}^-$ or $n \in \mathbb{Q}$.

d)
$$\frac{x^n - a^n}{x - a} = x^{n-1} + a \cdot x^{n-2} + a^2 \cdot x^{n-3} + \dots + a^{n-1}$$
.

→ Trigonometric Series

a)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \infty$$

b)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \infty$$

c)
$$\tan x = x + \frac{x^3}{3} + \frac{2}{15}x^5 + ... \infty$$
.

⇒ Sum of Special Sequences

a) Sum of first *n* natural numbers:
$$1 + 2 + 3 + ... + n = \sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$

b) Sum of squares of first *n* natural numbers:
$$1^2 + 2^2 + 3^2 + ... + n^2 = \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$

c) Sum of cubes of first *n* natural numbers:
$$1^3 + 2^3 + 3^3 + ... + n^3 = \sum_{r=1}^{n} r^3 = \left[\frac{n(n+1)}{2}\right]^2$$

d) Sum of any constant
$$k$$
 to n times: $k + k + k + ... + k$ (to n times) = $\sum_{r=1}^{n} k = nk$.

□ List of formulae of Mensuration for using in the problems of Maxima and Minima

01. Circle:

Perimeter *i.e.* circumference = $2\pi r$

Area = πr^2

02. Equilateral triangle:

Perimeter = 3a

Area = $\frac{\sqrt{3}}{4}a^2$

03. Rectangle:

Perimeter = 2(l+b)

Area = lb

Perimeter

04. Square: Perimeter = 4a

Area = a^2

05. Cuboid:

Lateral surface area = 2(l+b).h

Total surface area = 2(lb + bh + hl)

Volume = lbh

06. Cube:

Lateral surface area = $4a^2$

Total surface area = $6a^2$

Volume = a^3

07. Sphere:

Surface area = $4\pi r^2$

 $Volume = \frac{4}{3}\pi r^3$

08. Hemisphere:

Curved surface area = $2\pi r^2$

Total surface area = $3\pi r^2$

Volume = $\frac{2}{3}\pi r^3$

09. Cylinder:

Curved surface area = $2\pi rh$

Total surface area = $2\pi r^2 + 2\pi rh$

Volume = $\pi r^2 h$

10. Cone:

Curved surface area = $\pi r l$, where $l^2 = r^2 + h^2$

Total surface area = $\pi r^2 + \pi r l$

 $Volume = \frac{1}{3}\pi r^2 h$

Followings are also of **importance**, though questions on them are **rarely** found in maxima and minima:

11. Frustum of a cone:

Curved surface area = $\pi l(R+r)$, where $l = \sqrt{h^2 + (R-r)^2}$

Total surface area = $\pi l(R+r) + \pi(R^2+r^2)$, where $l = \sqrt{h^2 + (R-r)^2}$

 $Volume = \frac{1}{3}\pi h \left(R^2 + r^2 + rR\right)$

12. Sector and segment of Circle:

Area of the sector of angle $\theta = \frac{\theta}{360} \times \pi r^2$

Length of the arc of a sector of angle $\theta = \frac{\theta}{360} \times 2\pi r$

Area of the segment of a circle = Area of the corresponding sector - Area of corresponding triangle

$$= \frac{\theta}{360} \times \pi r^2 - r^2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = \frac{\theta}{360} \times \pi r^2 - \frac{1}{2} r^2 \sin \theta$$

 \mathfrak{S} Circumference i.e. arc length of semicircle of radius $r = \pi r$

Perimeter of semicircle of radius $r = \pi r + 2r$

13. Area of a trapezium = $\frac{1}{2}$ (Sum of parallel sides) × (Distance between parallel sides)

14. Area of a rhombus = $\frac{1}{2}$ (Product of diagonals)

15. Area of a triangle $ABC = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B$

16. Area of a triangle by Heron's formula = $\sqrt{s(s-a)(s-b)(s-c)}$ where, $s = \frac{a+b+c}{2}$.

⇒ Algebraic Identities

a)
$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

b)
$$a^2 - b^2 = (a+b)(a-b)$$

c)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

c)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
 d) $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

e)
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

f) $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

f)
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

g)
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

h)
$$a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$
.

⇒ Concept of Infinity

We consider the existence of **two symbols** $-\infty$ and ∞ **outside** the set of real numbers R and would call them *minus infinity* and *plus infinity* respectively with the fact $-\infty < x < \infty$ for every $x \in \mathbb{R}$.

Thus $-\infty$ and ∞ are not real numbers but just the symbols (like we use x, y etc.).

When we write $x = \infty$, we mean that:

- a) x is larger than any real number however large.
- **b)** x is not a fixed number.

Also
$$c^{\infty} = \begin{cases} \infty, & \text{if } c > 1 \\ 0, & \text{if } 0 \le c < 1. \\ 1, & \text{if } c = 1 \end{cases}$$

⇒ Symbols and their meanings

S. No.	Symbol	Meaning
01.	N	Set of natural numbers
02.	I or Z	Set of integers
03.	Q	Set of rational numbers
04.	T	Set of irrational numbers
05.	R	Set of real numbers
06.	C	Set of complex numbers
07.	9	is an element of (or belongs to)
08.	∉	is not an element of (or does not belong to)
09.	S or ξ or U	Universal set
10.	: or /	Such that
11.	ф	Empty set or Null set
12.	⊆	is subset of
13.		is superset of
14.		is proper subset of
15.	n	is proper superset of
16.	\cup	Union
17.	\cap	Intersection
18.	A	For all
19.	\Rightarrow	Implies
20.	\Leftrightarrow	if and only if

TRIGONOMETRIC FORMULAE

Relation between trigonometric ratios

$$a) \tan \theta = \frac{\sin \theta}{\cos \theta}$$

b)
$$\tan \theta = \frac{1}{\cot \theta}$$

c)
$$\tan \theta \cot \theta = 1$$

$$d) \cot \theta = \frac{\cos \theta}{\sin \theta}$$

e)
$$\csc\theta = \frac{1}{\sin\theta}$$

$f) \sec \theta = \frac{1}{\cos \theta}$

Trigonometric identities

$$a) \sin^2 \theta + \cos^2 \theta = 1$$

$$b) 1 + \tan^2 \theta = \sec^2 \theta$$

c)
$$1 + \cot^2 \theta = \csc^2 \theta$$

Addition / subtraction formulae & some related results

a)
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

b)
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

c)
$$\cos(A+B)\cos(A-B) = \cos^2 A - \sin^2 B = \cos^2 B - \sin^2 A$$

d)
$$\sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A$$

e)
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$f) \cot(A \pm B) = \frac{\cot B \cot A \mp 1}{\cot B \pm \cot A}$$

Transformation of sums / differences into products & vice-versa

a)
$$\sin C + \sin D = 2\sin\frac{C+D}{2}\cos\frac{C-D}{2}$$

b)
$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$

c)
$$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$

d)
$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

e)
$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$f) 2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

g)
$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$h) 2\sin A \sin B = \cos(A - B) - \cos(A + B)$$

Multiple angle formulae involving 2A and 3A

a)
$$\sin 2A = 2\sin A\cos A$$

$$b) \sin A = 2\sin\frac{A}{2}\cos\frac{A}{2}$$

$$c)\cos 2A = \cos^2 A - \sin^2 A$$

d)
$$\cos A = \cos^2 \frac{A}{2} - \sin^2 \frac{A}{2}$$

$$e)\cos 2A = 2\cos^2 A - 1$$

$$\int 2\cos^2 A = 1 + \cos 2A$$

$$g)\cos 2A = 1 - 2\sin^2 A$$

h)
$$2\sin^2 A = 1 - \cos 2A$$

$$i) \sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$$

$$j \cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$k) \tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$I)\sin 3A = 3\sin A - 4\sin^3 A$$

$$m)\cos 3A = 4\cos^3 A - 3\cos A$$

n)
$$\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$$

Relations in Different Measures of Angle

3 Angle in Radian Measure = $(Angle in Degree Measure) \times \frac{\pi}{180}$

3 Angle in Degree Measure = $\left(\text{Angle in Radian Measure}\right) \times \frac{180}{\pi}$

Also followings are of importance as well:

3 *1 Right angle* = 90°

 $1^{\circ} = 60', 1' = 60''$

 $1 \text{ radian} = 57^{\circ}17'45'' \text{ or } 206265 \text{ seconds}.$

MATHEMATICIA Vol.1 for CLASS 12 by OP GUPTA - MG • (V)

General Solutions

- a) $\sin x = \sin y \implies x = n\pi + (-1)^n y$, where $n \in \mathbb{Z}$.
- b) $\cos x = \cos y \implies x = 2n\pi \pm y$, where $n \in \mathbb{Z}$.
- c) $\tan x = \tan y \implies x = n\pi + y$, where $n \in Z$.

Relation in Degree & Radian Measures

Angles in Degree	0°	30°	45°	60°	90°	180°	270°	360°
Angles in Radian	0^c	$\left(\frac{\pi}{6}\right)^c$	$\left(\frac{\pi}{4}\right)^c$	$\left(\frac{\pi}{3}\right)^c$	$\left(\frac{\pi}{2}\right)^c$	$(\pi)^c$	$\left(\frac{3\pi}{2}\right)^c$	$(2\pi)^c$

 $[\]mbox{\ensuremath{\belowdist}}$ In actual practice, we omit the exponent 'c' and instead of writing π^c we simply write π and similarly for others.

Trigonometric Ratio of Standard Angles

Degree /Radian (\rightarrow)	0°	30°	45°	60°	90°
T – Ratios (\downarrow)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	Y	$\sqrt{3}$	8
cosec	8	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	∞
cot	8	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Trigonometric Ratios of Allied Angles

		A STATE OF THE PERSON NAMED IN						
Angles (\rightarrow) T- Ratios (\downarrow)	$\frac{\pi}{2}-\theta$	$\frac{\pi}{2} + \theta$	$\pi - \theta$	$\pi + \theta$	$\frac{3\pi}{2} - \theta$	$\frac{3\pi}{2} + \theta$	$2\pi - \theta$ or $-\theta$	$2\pi + \theta$
sin	$\cos \theta$	$\cos \theta$	$\sin \theta$	$-\sin\theta$	$-\cos\theta$	$-\cos\theta$	$-\sin\theta$	$\sin \theta$
cos	$\sin \theta$	$-\sin\theta$	$-\cos\theta$	$-\cos\theta$	$-\sin\theta$	$\sin \theta$	$\cos \theta$	$\cos \theta$
tan	$\cot \theta$	$-\cot\theta$	$-\tan\theta$	$\tan \theta$	$\cot \theta$	$-\cot\theta$	$-\tan\theta$	$\tan \theta$
cot	$\tan \theta$	$-\tan\theta$	$-\cot\theta$	$\cot \theta$	$\tan \theta$	$-\tan\theta$	$-\cot\theta$	$\cot \theta$
sec	$\csc\theta$	$-\csc\theta$	$-\sec\theta$	$-\sec\theta$	$-\csc\theta$	$\csc\theta$	$\sec \theta$	$\sec \theta$
cosec	$\sec \theta$	$\sec \theta$	$\csc\theta$	$-\csc\theta$	$-\sec\theta$	$-\sec\theta$	$-\csc\theta$	$\csc\theta$

NUMBER SYSTEM

01. Natural numbers: The numbers used in ordinary counting *i.e.* 1,2,3,..., are called natural numbers (and *positive integers* as well). The set of natural nos. is denoted by N. Also if we include 0 to the set of natural numbers, we get set of the *whole numbers* which is denoted by the symbol W.

Therefore
$$N=\{1,2,3,...\}$$
 and, $W=\{0,1,2,3,...\}$.

02. Integers: The numbers ... -3, -2, -1, 0, 1, 2, 3, ... are called integers. The set of integers is denoted by I or Z. Though now we use Z instead of I to symbolize the set of integers.

Therefore, I *or*
$$Z=\{...-3,-2,-1,0,1,2,3,...\}$$
. Clearly $N \subset Z$.

- Also from the above discussion, it is evident that integers are of three types viz.:
- **a)** Positive integers i.e. $Z^{+} = \{1, 2, 3, ...\}$
- **b)** Negative integers i.e. $Z^- = \{-1, -2, -3, ...\}$
- c) Zero integer i.e. non-positive and non-negative integer.
- 03. Rational numbers: A number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$, is called a rational no. The set of rational nos. is denoted by Q.

Therefore
$$Q = \left\{ \frac{p}{q}; p, q \in Z \text{ and } q \neq 0 \right\}$$

Clearly $N \subset Z \subset Q$.

- Zero being an integer, is also a rational number.
- 04. Irrational numbers: An irrational number has a non-terminating and non-repeating decimal representation i.e. it can't be expressed in the form of $\frac{p}{a}$. The set of irrational nos. is denoted by T.

Few examples of irrational numbers are $\sqrt{2}$, $5\sqrt{7}$, $8+\sqrt{3}$, $\sqrt[3]{5}$, e, π ,... etc.

- Note that π is irrational while $\frac{22}{7}$ is rational.
- **05.** Real numbers: The set of all numbers either rational or irrational, is called real number. The set of real nos. is denoted by R.

Clearly
$$N \subset Z \subset Q \subset R$$
.

○ Solving of a Quadratic Equation:

Consider a quadratic equation of the form, $ax^2 + bx + c = 0$ then, its roots are given by

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and, $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ where $D = b^2 - 4ac$.