Converting assembly language to machine language

The general instruction for converting assembly language into machine code is given below:

+												Byte 3					
7	6	5	4	3	2	1	0	7	6	5	4	3	2	10	Low Disp	High Disp	
	oprode					M			4				-		The state of the s		

Opcode: Operation code

Operation	Opcode
MOV	100010
ADD	000000
SUB	010010
XOR	001100
IN	111001

D: Direction to register or from register

=1 if destination is considered

=0 if source is considered

W: Word or byte

=0 for 8 bit register

=1 for 16 bit register

MOD: Register mode or memory mode with displacement

MOD	Indication
00	Memory mode, no displacement
01	Memory mode, with 8 bit displacement.
	For example: [BX]+12H
10	Memory mode, with 16 bit displacement.
	For example: [BX]+1234H
11	Register mode, no displacement

REG: Identifies a register which is one of the instruction operands.

REG	W=0	W=1
000	AL	AX
001	CL	CX
010	DL	DX
011	BL	BX, DS
100	АН	SP
101	СН	BP
110	DH	SI
111	ВН	DI

R/M: Register/Memory coding

- Depends on the MOD field
- If MOD = 11, then R/M field acts as a REG field (used for register to-register operations and other cases).
- If MOD ≠ 11, then R/M indicates how the effective address of the operand is calculated.

MOD	00	01	10	11	
RIM	0.1.000-1	2623 44	Gi	W=0	W=1
000	[6x]+[s1] (=p)	→ P + D8	→ P + D16	AL	AX
001	[BX]+[DI]	+ Dg	+ D16	CL	сх
010	[80]+[55]	+ D8	+D16	DL	DX
077	[BP] + [OI]	+ DB 0	+ D16	BL	ВX
100	[51]	+ Dg	+ D16	AH	50
101	[DI]	+08	+016	CH	ВР
170	Direct	[SP]+08	[SP] + D16	DH	SI
770	[BX]	+08	+016	ВН	DI

Example-1: Convert the following assembly language into machine language.

MOV BL,AL

Solution:

Here, opcode: MOV

Assume, destination register is considered (BL)

hence, Opcode: 100010

D=1

W=0

REG: 011

MOD: 11

R/M: 000

			Byt	e 1				Byte 2										
1	0	0	0	1	0	1	0	1	1	0	1	1	0	0	0			
		Орс	ode			D	W	M	od		REG			R/M				

Example-2: Repeat example-1 considering register as source.

Solution:

Here, AL is source register.

Here, opcode: MOV

Assume, source register is considered (AL)

hence, Opcode: 100010

D=0

W=0

REG: 000

MOD: 11

R/M: 011

			Byt	e 1				Byte 2										
1	1 0 0 0 1 0 0 0									1 1 0 0 0 0 1								
		Орс	ode			D	W	M	od		REG			R/M				

Example-3: ADD AX,[SI]

Solution:

Here, opcode: ADD

Assume, destination register is considered (AX)

Hence, Opcode: 000000

D=1

W=1

REG: 000

MOD: 00

R/M: 100

			Byt	e 1				Byte 2										
0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0			
		Орс	ode			D	W	M	od		REG			R/M				

Example-4: ADD AX, [SI] + 12H

Solution:

Here, opcode: ADD

Assume, destination register is considered (AX)

Hence, Opcode: 000000

D=1

W=1

REG: 000

MOD: 01

R/M: 100

			Byte 1		Byte 2									Byte 3													
0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	0	1	0	0	1	0				
	Opcode D W								lod		REC	ĵ		R/M				Disp	lace	eme	Displacement						

Assignment:

Example-5: ADD AX, [SI]+1234H

Example-6: XOR CL, [1234H]

Solution: Here, opcode: XOR

Destination register is CL

Hence, Opcode: 001100

D=1

W=0

REG: 001

MOD: 00

R/M: 110

			Byte 1	L				Byte 2									Byte 3						
0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	0	0	0	1	1	0	1	0	0
		Opco	ode			D	W	N	lod		REG	ì		R/M	Lower byte								
		Byte 4																					
0 0	0	1 0	0 1	0																			
	Hig	her by	/te																				