EE568 Project 2: Motor Winding Design & Analysis

Baris Kuseyri

$March\ 29,\ 2020$

Contents

1	Inte	gral-Slot Winding Design	2
	1.1	Winding Diagram	2
	1.2	Distribution, Pitch and Winding Factors	2
2	Frac	ctional-Slot Winding Design	2
	2.1	27-slot/22-pole EM	2
		2.1.1 Phase Angle of Induced Voltage in each Slot	2
		2.1.2 Phasor Diagram	2
		2.1.3 Distribution, Pitch and Winding Factors	2
		2.1.4 Phase Angle of Induced Voltage in each Slot	2
	2.2	24-slot/22-pole EM	2
3	2-D	FEA Modelling	2

1 Integral-Slot Winding Design

1.1 Winding Diagram

Figure 1: Winding Diagram: 1 pole-

102 Distribution, Pitch and Winding Factors

2 Fractional-Slot Winding Design

- 2.1 27-slot/22-pole EM
- 2.1.1 Phase Angle of Induced Voltage in each Slot
- 2.1.2 Phasor Diagram
- 2.1.3 Distribution, Pitch and Winding Factors
- 2.1.4 Phase Angle of Induced Voltage in each Slot
- 2.2 24-slot/22-pole EM

3 2-D FEA Modelling

adasdsa[1]

Figure 2: Winding Diagram: 1 pole pair

References

 D. C. Hanselman, Brushless Permanent Magnet Motor Design. 3000 M Henkle Drive, Lebanon, Ohio 45036: Magna Physics Publishing, 2 ed., 2006.