# Structure and Reactivity of Calcium Alumino-Silicate Glass Surfaces

#### Liaoyuan Wang<sup>1</sup>

Prof. Alastair N Cormack<sup>1</sup>

Dr. Robert Manley<sup>2</sup>

Dr. Nicholas Smith<sup>2</sup>

Dr. Gabriel Agnello<sup>2</sup>

1. The New York State College of Ceramics at the Alfred University

2. Corning Incorporated

06/11/2019

#### Outline

- Introduction
- Modeling and methodology
  - Four models (presented in molar ratio of  $SiO_2$ :  $Al_2O_3$ : CaO): (80:10:10), (70:15:15), (60:20:20) and (50:25:25)
- Surface structures of water-free models
  - > CN/Q<sub>n</sub> distribution of bulk vs. surface
- ❖ Observation of structure moieties formed on the surface up to 5ns
  - $\triangleright$  CN/Q<sub>n</sub> distribution as a function of time
  - > Target species distribution as a function of time
  - > Species distribution as a function of component ratio
- Dynamic surface reactivity of water models (movie)
- Summary

#### Introduction

- Properties of materials are highly determined by their structures, particularly for glass materials
  - > correlation between the properties and structures
  - > mechanism behind such correlations
- **❖** Goal
  - > Explore such correlation using data and figures
  - Understand the mechanism behind it
- Challenges
  - lack of periodicity and long-range order
  - complex composition
  - > Reactivity
  - ➤ No existing tool to track the transition of species
  - **>** ...
- Methods
  - > MD methods
  - > Self-written programs

## Modeling & Methodology

❖ Gromacs was employed to build CAS models with different molar ratios of components



#### Simulations Overview

- **❖** LAMMPS simulations
  - Reax/c potential
  - > NVT (300K) ensemble
  - > Simulated time: 5ns
  - > Time steps: 0.25fs
  - > Dump time steps:
    - 100 timesteps/frame  $\rightarrow$  dump one trajectory/frame every 25fs (0.25x100=25fs)
  - > Total # of trajectories: 200,000

# Comparison of Components between Bulk & Interface

| composition | Si mol% in interface<br>#_of_Si/∑#_of_species | Al mol% in interface<br>#_of_Al/∑#_of_species |
|-------------|-----------------------------------------------|-----------------------------------------------|
| (80:10:10)  | ~81%                                          | 10%                                           |
| (70:15:15)  | ~65%                                          | ~17%                                          |
| (60:20:20)  | ~57%                                          | ~22%                                          |
| (50:25:25)  | ~51%                                          | ~24%                                          |

## Surfaces "expand"



- > Surfaces for all compositions expand to the vacuum layers
- The expansion mainly occurred within 1ns
- ➤ Each composition expands 1-2 Å
  - Composition (60:20:20) has the maximum expansion

## Initial focus on 60 mol% silica composition



- Most charging @ 60mol%
- DRIFTS trend: as [NBO] increases, [H<sub>2</sub>O] increases
- But: < 60 mol% silica trend reverses
- Associated above slides, we would focus on (60:20:20) first

#### Comparison of CN Distribution for Formers in Bulk and Surface

|     | Si       |          |          |          | Al       |          |          |          |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| CN  | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 |
| CB1 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| CB2 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| CB3 | 0.00     | 0.00     | 0.00     | 0.00     | 1.15     | 0.46     | 0.14     | 0.09     |
| CB4 | 100.00   | 100.00   | 100.00   | 100.00   | 97.54    | 98.19    | 99.16    | 98.62    |
| CB5 | 0.00     | 0.00     | 0.00     | 0.00     | 1.31     | 1.25     | 0.70     | 1.29     |
| CB6 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.10     | 0.00     | 0.00     |
| CS1 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| CS2 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| CS3 | 1.09     | 0.00     | 0.00     | 0.00     | 23.77    | 11.99    | 9.10     | 8.90     |
| CS4 | 98.91    | 100.00   | 100.00   | 100.00   | 75.68    | 87.92    | 89.76    | 90.56    |
| CS5 | 0.00     | 0.00     | 0.00     | 0.00     | 0.55     | 0.09     | 1.14     | 0.55     |
| CS6 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |

#### Comparison of Q<sub>n</sub> Distribution for Formers in Bulk and Surface

|     | Si       |          |          |          | Al       |          |          |          |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| Qn  | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 |
| QB1 | 0.00     | 0.04     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| QB2 | 0.21     | 0.21     | 0.51     | 1.09     | 0.00     | 0.00     | 0.00     | 0.00     |
| QB3 | 7.54     | 9.24     | 15.09    | 17.78    | 2.70     | 2.11     | 2.28     | 3.64     |
| QB4 | 92.25    | 90.51    | 84.40    | 81.13    | 95.99    | 96.54    | 97.02    | 95.07    |
| QB5 | 0.00     | 0.00     | 0.00     | 0.00     | 1.31     | 1.25     | 0.70     | 1.29     |
| QB6 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.10     | 0.00     | 0.00     |
| QS1 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| QS2 | 0.01     | 1.74     | 0.00     | 0.56     | 0.00     | 0.90     | 0.00     | 0.00     |
| QS3 | 8.84     | 14.16    | 13.26    | 21.37    | 23.77    | 16.50    | 14.26    | 13.61    |
| QS4 | 91.16    | 84.11    | 86.74    | 78.06    | 75.68    | 82.51    | 84.61    | 85.85    |
| QS5 | 0.00     | 0.00     | 0.00     | 0.00     | 0.55     | 0.09     | 1.14     | 0.55     |
| QS6 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |

### Surface CN/Q<sub>n</sub> distribution of Formers

|                   | Si       |          |          |          | Al       |          |          |          |
|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| CN/Q <sub>n</sub> | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 |
| CS1               | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| CS2               | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| CS3               | 1.09     | 0.00     | 0.00     | 0.00     | 23.77    | 11.99    | 9.10     | 8.90     |

100.00

0.00

0.00

0.00

0.56

21.37

78.06

0.00

0.00

75.68

0.55

0.00

0.00

0.00

23.77

**75.68** 

0.55

0.00

87.92

0.09

0.00

0.00

0.90

16.50

82.51

0.09

0.00

89.76

1.14

0.00

0.00

0.00

14.26

84.61

1.14

0.00

90.56

0.55

0.00

0.00

0.00

13.61

85.85

0.55

0.00

CS4

CS5

CS6

QS1

QS2

QS3

QS4

QS5

QS6

98.91

0.00

0.00

0.00

0.01

8.84

91.16

0.00

0.00

100.00

0.00

0.00

0.00

1.74

14.16

84.11

0.00

0.00

100.00

0.00

0.00

0.00

0.00

13.26

86.74

0.00

0.00

## Time Evolution of Target Species



## Reactivity of Surface Defects

|                    | [3]Si    |          |          |          | [5]Si    |          |          |          |
|--------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|                    | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 |
| Total              | 4        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Si-OH              | 6        | 6        | 5        | 3        | 0        | 0        | 0        | 0        |
| Si-OH <sub>2</sub> | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                    | [3]AI    |          |          |          | [5]AI    |          |          |          |
|                    | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 | 80:10:10 | 70:15:15 | 60:20:20 | 50:25:25 |
| Total              | 16       | 15.5     | 13       | 14       | 2.5      | 5.5      | 6.5      | 4        |
| Al-OH              | 0        | 0        | 0        | 0        | 0        | 3        | 5        | 1        |
| Al-OH <sub>2</sub> | 9        | 6        | 7        | 10       | 0        | 0        | 0        | 0        |

|             | NBO         |                                     |    |    |  |  |  |  |  |  |
|-------------|-------------|-------------------------------------|----|----|--|--|--|--|--|--|
|             | 80:10:10    | 80:10:10 70:15:15 60:20:20 50:25:25 |    |    |  |  |  |  |  |  |
| # @ t = 0   | 25          | 44                                  | 37 | 53 |  |  |  |  |  |  |
| # @ t = 1ns | 18 39 31 37 |                                     |    |    |  |  |  |  |  |  |
| Δ           | 7           | 7 5 6 16                            |    |    |  |  |  |  |  |  |

- ✓ Si-OH formed from NBO
- ✓ AI-OH associated with [5]AI
- ✓ AI-OH<sub>2</sub> associated with [3]AI
- √ No Si-OH₂ observed











## Target species distribution in (60:20:20) surface



- NBO is intrinsic species in glasses and can be observed downwards to the bulk glass
- All primary target species are ONLY observed within 5-6 Å from the top surfaces in 5 ns. The "unchanging" configurations indicate all these species only form in the surface range. These species can be called "surface species"

## Hydrogen hop through NBO



### Summary

- ❖ CN/Q<sub>n</sub> distribution for water-free models shows
  - > Apparent difference
  - More defects exist in the surface structure
  - > Defects vary with the change of component ratio
- $\bullet$  CN/Q<sub>n</sub> distribution as time of function displays
  - Species change greatly at the first ~25ps
  - the active [3]Al capture oxygen atoms in water so the concentration of [3]Al decreases while [4]Al increase
  - > the first 30ps is the most active phase
  - $\triangleright$  CN/Q<sub>n</sub> of Si shows the tendency is similar except for (50:25:25)
  - ▶ # of TBO increases with the decrease of SiO<sub>2</sub>; TBO shows higher activity in the first 1ns but the total amount keeps a stable level after first ~25ps
- ❖ AlOH species are suppressed at lower or higher SiO₂ percentage
- ❖ AlOH<sub>2</sub> species are suppressed at 60 and 70% of SiO<sub>2</sub>
- ❖ SiOH species are positively correlated to SiO₂ content
- ❖ All primary target species ONLY form within 5-6 Å from the top surface.

# Thank you!