

ACKNOWLEDGEMENT

"Every successful project has the complete effort of a number of people working continuously and effectively together."

Keeping this in mind, we express our sincere gratitude towards our instructor, <u>Dr. Mohit Law</u>, for providing us with this opportunity to do this project and express our ideas more creatively and constructively.

We are also grateful to Mr. Kuldeep Vishwakarma, our project guide, whose guidance, encouragement, suggestions and constructive criticisms have contributed immensely in the shaping and completion of our project.

We would also like to extend our thanks to the Lab staff at the TA202 Lab for lending us a hand at various stages of the project. Their efforts are highly appreciated.

MOTIVATION

As TA202 students, we are eager to get our hands on practical application of concepts and process we learn about in class in our group Project. The construction of this Tower Crane is an exciting opportunity for us to apply what we've learned because involves everything we were exposed to in first 5 labs.

We hope to gain hands-on experience in these processes through the project, which will help us understand the benefits and constraints of each method, as well as how they can be used in achieving specific goals. This hands on experience will be useful as we progress through our engineering studeis.

Furthermore, brainstorming the design for the tower crane will allow us to demonstrate our creativity as well as Knowledge of mechanics and gears while taking the constraints into account.

In a nutshell, this project will be a valuable leaning opportunity for us allowing us to gain practical experience in various process while also demonstrating our creativity and understanding of mechanical systems which will help us understand how these processes work in real life and how we can apply our knowledge to design.

INTRODUCTION

The Tower Crane is heavy equipment carefully designed to control and guide heavy equipment at heights. The word "Tower" is used in the name because it is tall and often installed on a tower-like structure, providing the crane with the necessary height to lift objects to great heights.

In this Project, we have made a working model of a Tower Crane and simplified some complex components to understand its working.

Our Project contains two vertical bars mounted on a circular disc which rotates using a worm and worm wheel mechanism allowing Tower Crane to whole circular movement.

The vertical bars are also connected to two support rods and a lead screw where a box slides in a radial direction allowing radial coverage to the crane.

The box contains a rope and a motor which can move up and down, allowing movement in the vertical direction. This component will help us to pick any load and move it in the vertical direction.

PARTS LIST				
ITEM NO.	QTY	PART NAME	DESCRIPTION	
1	2	VerticalPlate	mild steel, Flat	
2	5	L support	mild steel, Angle	
3	2	Guide	mild steel, angle	
4	1	Back Plate	mild steel, flat	
5	1	Front Plate	mild steel, flat	
6	1	Lead Screw	mild steel, threaded Mx16	
7	1	Flat Moving Base	mild steel, flat	
8	2	Worm	mild steel	
9	2	Worm Gear	mild steel	
10	1	Worm Shaft Holder	mild steel, cylinder	
11	1	Motor2	provided	
12	1	Motor Holder	3D printed	
13	1	Circular base	mild steel, flat circular	
14	1	collor	mild steel, cylinder	
15	1	base plate	mild steel, flat rectangle	
16	2	vertical bar small	mild steel, flat	
17	1	main shaft	mild steel,dylinderical rod	
18	1	wormShaft	mild steel, cylindircal rod	
19	1	handle	mild steel, flat	
20	1	pulley shaft	mild steel, cylindrical rod	
21	1	pulley	mild steel	
22	1	hook	mild steel	

Project Overview

The objective of this college project is to create a working model of a Tower Crane by designing and assembling a mechanism that can control and guide heavy equipment at heights. The aim is to simplify some complex components of the Tower Crane to understand its working and demonstrate its ability to lift objects to great heights through a model that replicates its functions.

In this project we modified and manufactured around 30 parts.

On analyzing we found that total cost of our project is ₹ 23,495.87.

We could have used a motor instead of handle to drive the lower worm wheel and the two motors placed on the guide could be controlled by a remote control as an alternative to Arduino.

PART NAME	QUANTITY	MATERIAL USED	MANUFACTURED/ BROUGHT	MACHINING PROCESS
Vertical Plate	2	Mild Steel	Manufactured	Cutting, Drilling, Filing
L Support	4	Mild Steel	Manufactured	Cutting, Drilling, Filing
Collar	1	Mild Steel	Manufactured	Boring, Extrusion
Back Plate	2	Mild Steel	Manufactured	Cutting, Filing, Drilling
Front Plate	1	Mild Steel	Manufactured	Drilling, Cutting, Filing
Lead Screw	1	Mild Steel	Manufactured	Turning, Drilling, Sandpapering
Flat Moving Box	1	Mild Steel	Manufactured	Cutting, Welding, Drilling
Worm and Worm Wheel (BIG)	1	Mild Steel	Manufactured	Cutting, Turning, Drilling, Milling, Filing
Worm and Worm Wheel (SMALL)	1	Mild Steel	Manufactured	Cutting, Turning, Drilling, Milling, Filing
Motor-1	1		Brought	
Motor-2	1		Brought	
Motor Holder-1	1	Poly Lactic Acid (PLA)	Manufactured	3D Printing
Motor Holder-2	1	Poly Lactic Acid (PLA)	Manufactured	3D Printing
Circular Base	1	Mild Steel	Manufactured	Drilling
Angular Guide	1	Mild Steel	Manufactured	Cutting, Drilling
Base Plate	1	Mild Steel	Manufactured	Drilling, Sandpapering
Vertical bar Small	2	Mild Steel	Manufactured	Cutting, Filing, Drilling
Main Shaft	1	Mild Steel	Manufactured	Cutting, Extrusion, Filing
Worm Shaft	2	Mild Steel	Manufactured	Cutting, Extrusion, Filing
Handle	1	Mild Steel	Manufactured	(Recycled)
Hook	1	Mild Steel	Manufactured	Cutting, Folding
Roller	2	Mild Steel	Manufactured	Drilling, Extrusion, Filing
Wooden Block	1	Mild Steel	Manufactured	Cutting
Base Screw	4	Mild Steel	Collected	(Recycled)
Nuts	2	Mild Steel	Collected	(Recylced)

QTY: 1		SCALE:	
PART NAME: WORM AND WORM GEAR		Units: All dimensions are in mm	
Description:		Tolerances: +-1 mm	
Material: MILD STEEL		Made by: HIMANSHU YADAV	
		RM GEAR Units: All dime Tolerances: +-	

GEAR CALCULATIONS

(a) Worm and Worm Wheel - 01

Module	m	1.5
Number Of Teeth	N	40
Pitch of the Single Start	p ₁	4.7 mm
Worm		
Outside Diameter of Worm	d ₁	22 mm
Ratio Of Worm and Worm		40:1
Wheel	_	
Face Ange	θ	60°
Lead Of Worm	p _{1*No. of start}	4.7
Appendum of Worm (a)	0.3183*Pitch	1.496 mm
Pitch Diameter of the Worm	d₀-2a	19.008 mm
(d)		
Depth of Worm Tooth (h _t)	0.6866*pitch	3.227 mm
Root Diameter of Worm (d _r)	d _o -2 h _t	15.546 mm
Pitch Diameter of the Wheel	(N+P)/π	59.842 mm
(D)		
Centre distance between	(D+d)/2	39.451 mm
Worm and Worm Wheel		
Throat Diameter of the	D+2a	62.834 mm
Wheel (D _o)		
Throat radius of the Worm	d₀/2-2a	8.008 mm
Wheel (r)		
Diameter of the Wheel over	2r(1-cos(Θ/2))	64.980 mm
sharp Corners (D _o ')		
Face Width of the Wheel	2.38p + 6.35	17.536 mm
Helix Angle of the Worm (α_h)	tan(α _h) =	tan(α _h) =12.7054
	πd/lead	α _h = 85.30°
Gashing Angle of Worm	$\alpha_g = 90 - \alpha_h$	4.30 °
Wheel (α _g)		

Ø6.50 through hole

PART NO.	QTY: 1		SCALE:
PART NAME: WORM AND WORM GEAR		Units: All dimensions are in mm	
Description:		Tolerances: ± 1mm	
Material: MILD STEEL		Made by: MADHAV KUMAR	

COST ANALYSIS

Material: Steel

Cost = ₹ 100/kg

Total Weight of Steel used = 22kg 500 gm

Total cost of Steel used = ₹ 2250

Cost of Electric Kit = ₹ 1000

Cost of additional Motor used = ₹ 1300

Process	Price (₹/hr)	Total Hours	Total Cost
Drilling	75	1.5	112.5
Milling	250	3	750
Turning	150	8	1200
3D Printing	100	2	200

Labour Cost = ₹ 650/day (8 hours)

Total Working Time = 18 hours 40 minutes

Number of team members = 11

Total Labour Cost = ₹ 16683.37

Total Cost = ₹ 23495.87

