Educational Ambition, Marital Sorting, and Inequality

Frederik Almar

Benjamin Friedrich

Ana Reynoso

Aarhus University

Northwestern University

University of Michigan, NBER

Bastian Schulz

Rune Vejlin

Aarhus University, IZA, CESifo

Aarhus University, IZA

BSE Summer Forum 2024 Income Dynamics and the Family

June 14, 2024

- 1. Increasing marital sorting \rightarrow increasing between-household inequality ?
- 2. Is marital sorting even increasing?

- 1. Increasing marital sorting \rightarrow increasing between-household inequality ?
- 2. Is marital sorting even increasing?
- Positive assortative matching (PAM) in the marriage market (MM).
 - Evidence for homophily in a number of dimensions.
 - Literature has focused on PAM on Education Levels

- 1. Increasing marital sorting \rightarrow increasing between-household inequality ?
- 2. Is marital sorting even increasing?
- Positive assortative matching (PAM) in the marriage market (MM).
 - Evidence for homophily in a number of dimensions.
 - Literature has focused on PAM on Education Levels
- $ightharpoonup \uparrow$ PAM on Education $\leftrightarrow \uparrow$ household income inequality..
- ► Some studies confirm this hypothesis while others do not. Literature

- 1. Increasing marital sorting \rightarrow increasing between-household inequality ?
- 2. Is marital sorting even increasing?
- Positive assortative matching (PAM) in the marriage market (MM).
 - Evidence for homophily in a number of dimensions.
 - Literature has focused on PAM on Education Levels
- $ightharpoonup \uparrow$ PAM on Education $\leftrightarrow \uparrow$ household income inequality..
- ► Some studies confirm this hypothesis while others do not. Literature
- We take a step back: what education-related traits guide the formation of couples?

▶ We show that the definition of education-based types is key for conclusions about the link between sorting and inequality trends.

- ▶ We show that the definition of education-based types is key for conclusions about the link between sorting and inequality trends.
- ▶ In Danish register data, we observe detailed education programs.
 - Four-digit program codes (over 1800 unique programs).
 - Examples: Carpenter, Nurse, Doctor, Architect, Business graduate.

- ▶ We show that the definition of education-based types is key for conclusions about the link between sorting and inequality trends.
- ▶ In Danish register data, we observe detailed education programs.
 - Four-digit program codes (over 1800 unique programs).
 - Examples: Carpenter, Nurse, Doctor, Architect, Business graduate.
- ▶ We construct a novel set of MM types that are clearly distinguished by:
 - their labor market (LM) and career prospects, and
 - ▶ signals about future career-family balance.

- ▶ We show that the definition of education-based types is key for conclusions about the link between sorting and inequality trends.
- ▶ In Danish register data, we observe detailed education programs.
 - Four-digit program codes (over 1800 unique programs).
 - Examples: Carpenter, Nurse, Doctor, Architect, Business graduate.
- ▶ We construct a novel set of MM types that are clearly distinguished by:
 - ▶ their labor market (LM) and career prospects, and
 - signals about future career-family balance.
- We call them Ambition types.

Ambition Types

- ▶ We think of the ambition type as a signal in the marriage market.
- ▶ It reflects the lifetime career prospects of pre-marital traits.
 - Expected career-investments.
 - Future time commitments to the family.
 - ▶ Important for partner choice.

Ambition Types

- ▶ We think of the ambition type as a signal in the marriage market.
- ▶ It reflects the lifetime career prospects of pre-marital traits.
 - Expected career-investments.
 - Future time commitments to the family.
 - Important for partner choice.
- ▶ We find that ambition-based PAM has increased.
- It accounts for a substantial share of growing income inequality.

Outline

- 1. The Construction of Marriage Market types
- 2. The Marriage Market Value of Educational Ambition
- 3. The Measurement of Sorting
- 4. Marriage Market Sorting and Inequality

Conceptual Framework

▶ Women and men are distinguished by their education program:

$$i \in \mathcal{P} = \{Program_1, Program_2, ..., Program_I\}$$

- \triangleright Programs are characterized by a vector of *selected* characteristics, \tilde{x} .
 - e.g.: length, field, average starting wage, average wage growth.
- ▶ A mapping that constructs T < I types by grouping programs based on \tilde{x} :

$$\mathcal{T}_{\tilde{x}}: \tilde{x} \rightarrow t = \{Type_1, Type_2, ..., Type_T\}$$

▶ Example 1: group based on $\tilde{x} = level_i$:

$$t_{Levels} = \{Primary, Secondary, Bachelor, Master \& PhD\}.$$

Example 2: group based on $\tilde{x} = field_i$:

$$t_{Fields} = \{Field_1, Field_2, ..., Field_T\}$$

Data

- Danish administrative register data
- ▶ All married or cohabiting residents aged 19-60 from 1980-2018
- On average 1,800,866 individuals either married or cohabiting per year
- ► Stable stock of couples ► Numbers and Ages
 - Downward trend in legal marriage
 - Upward trend in cohabitation
- Household income is joint labor income of spouses
 - Wages and income from self-employment

Education-Based Marriage Market Types

- ▶ Education program is valuable information in the MM.
- ▶ It captures lifetime income, *how it is generated*, and time use.
 - ► Lifetime Income (Altonji, Blom & Meghir, 2012; Altonji, Kahn & Speer, 2014, 2016; Kirkeboen, Leuven & Mogstad, 2016)
 - Career-family balance (Wiswall & Zafar, 2021; Goldin, 2014).
 - ▶ Meeting probabilities (Nielsen & Svarer, 2009; Kirkeboen, Leuven & Mogstad, 2022)
- Use program level data and define education-based MM types in 3 ways.
 - ambition types
 - according to their level of education Details Levels

Construction of Ambition Types

- ▶ We construct T = 4 MM types by grouping the I = 1800+ programs,
- based on programs' LM value: average starting wage and average wage growth:

$$\tilde{x}_i = (w_{0i}, g_i).$$

- Our mapping $t(w_0, g)$ clusters programs using k-means (Steinley, 2006):
 - ▶ Use information on life cycle career profiles of all graduates.
 - ▶ We focus on the first 10 years after graduation.
 - Deflated log hourly wages
 - $ightharpoonup w_0 = rac{1}{n_p} \sum_{i=1}^{n_p} w_{0i}, g = rac{1}{n_p} \sum_{i=1}^{n_p} g_i$
 - $w_{0i} = \frac{1}{5} \sum_{y=1}^{5} wage_{yi}, w_{10i} = \frac{1}{3} \sum_{y=9}^{11} wage_{yi}, g_i = (w_{10i} w_{0i})/w_{0i}$
 - ▶ Benchmark Results robust to alternative specifications

Ambition types successfully capture LM value of education

 $t_{Ambition} = \{(low \ w_0, low \ g), (high \ w_0, low \ g), (low \ w_0, high \ g), (high \ w_0, high \ g)\}.$

MM types based on level or field overlap in their LM value

► Levels and Ambition ► Fields and Ambition

Outline

- 1. The Construction of Marriage Market types
- 2. The Marriage Market Value of Educational Ambition
- 3. The Measurement of Sorting
- 4. Marriage Market Sorting and Inequality

The Marriage Market Value of Educational Ambition

- ► Key novelty: our MM types are unique in that they capture signals about the expected future balance between family and career.
- High life time income is not everything, it matters how you generate it.
- ➤ To show this, we construct seven proxies that emphasize the trade-off between time investments in career capital and in family responsibilities.
- Example: average ratio of full-time to part-time wages by type
- ► Measure of inflexibility or "part-time penalty" (Goldin, 2014)

Inflexibility $\left(w_{10}^{FT}/w_{10}^{PT}\right)$	1.052	1.066	1.113	1.119	1.085
	(0.0589)	(0.0755)	(0.0394)	(0.0685)	(0.0658)
Ever manager	0.0286	0.0523	0.0427	0.125	0.0505
	(0.167)	(0.223)	(0.202)	(0.330)	(0.219)
Participation	0.728	0.843	0.729	0.847	0.766
	(0.345)	(0.270)	(0.362)	(0.253)	(0.335)
Full-time if participating	0.770	0.889	0.807	0.850	0.824
	(0.324)	(0.223)	(0.326)	(0.256)	(0.300)
Age first child	29.58	31.37	30.55	31.68	30.70
	(6.163)	(6.321)	(6.878)	(4.832)	(6.342)
Wealth at 50 (mil)	0.198	0.326	0.190	0.679	0.260
,	(2.004)	(1.670)	(1.497)	(5.036)	(2.105)
Life-time earnings (mil)	4.772	6.315	5.240	11.39	6.124
3 ()	(12.33)	(3.227)	(3.307)	(9.454)	(7.336)

(low, low)

(high, low)

Ambition type (w_0, g)

(low, high)

(high, high)

All

^{► (}high, high)-program grads more career-focused than (low, low)-program grads.

Fix w_0 group, graduates from higher g programs are more career-focused.

FE model:	None	Levels Fields			None	Levels	Fields			
Controls:	None	None	None	LT Inc		None	None	None	LT Inc	
		(a) Infl	exibility							
w_0	-0.009	0.007	0.003	-0.001		0.023	0.025	0.013	0.008	
	(0.006)	(0.007)	(0.005)	(0.005)		(0.003)	(0.005)	(0.005)	(0.006)	
g	0.023	0.021	0.016	0.011		0.023	0.027	0.020	0.020	
	(0.006)	(0.005)	(0.005)	(0.005)		(0.002)	(0.002)	(0.002)	(0.003)	
Mean		1.098		1.081			0.050		0.065	
Obs.		985		438			1,837		491	
		(c) Part	icipation			(d) Full time work				
w ₀	0.054	0.040	0.031	0.016		0.036	0.098	0.087	0.064	
	(0.014)	(0.009)	(0.015)	(0.018)		(0.006)	(0.012)	(0.017)	(0.013)	
g	0.025	0.037	0.037	0.038		0.008	0.023	0.022	0.013	
	(0.009)	(0.007)	(0.009)	(0.012)		(0.008)	(800.0)	(0.010)	(800.0)	
Mean		0.766		0.806			0.820		0.853	
Obs.		1,837		491			1,837		491	
	(e) Age at first child					(f) Wealth at age 50				
w_0	0.305	0.603	0.631	0.106		0.134	0.143	0.133	0.121	
	(0.266)	(0.366)	(0.363)	(0.400)		(0.012)	(0.016)	(0.016)	(0.013)	
g	0.316	0.368	0.435	-0.022		0.095	0.095	0.087	0.073	
	(0.173)	(0.186)	(0.218)	(0.200)		(0.012)	(0.013)	(0.015)	(0.014)	
Mean		31.51		31.88			0.241M		0.291M	
Obs.		1,824		491			1,309		491	

 $^{ightharpoonup \uparrow w_0}$ or $\uparrow g$ associated with \uparrow career-focus, even within levels or fields.

Outline

- 1. The Construction of Marriage Market types
- 2. The Marriage Market Value of Educational Ambition
- 3. The Measurement of Sorting
- 4. Marriage Market Sorting and Inequality

The Measurement of Sorting

- ▶ We compare trends in sorting for marital types based on educational level, field, and ambition.
- Increased share of assortatively matched couples can occur for two reasons:
 - Marginal distributions vs. Conditional matching probabilities (preferences or frictions)
- ▶ We quantify the level of and change in sorting with the weighted sum of likelihood indices (Eika, Mogstad & Zafar, 2019)
- ▶ Weights make it possible to compare the trend in sorting over time by compensating for changing marginal distributions (Chiappori, Costa Dias & Meghir, 2020; Almar & Schulz, 2024)

Significant increase in sorting on ambition over time

- ▶ But sorting based on levels or fields does not increase much.
- ▶ MM types matter for the conclusion on whether sorting has increased or not.

Outline

- 1. The Construction of Marriage Market types
- 2. The Marriage Market Value of Educational Ambition
- 3. The Measurement of Sorting
- 4. Marriage Market Sorting and Inequality

Marriage Market Sorting and Inequality

- ➤ To study the link between marriage market sorting and inequality, we follow Eika, Mogstad & Zafar (2019) and implement a decomposition exercise inspired by DiNardo, Fortin & Lemieux (1996)
- ► To this end, we construct a stochastic matching algorithm to re-match married individuals under different counterfactual scenarios:
 - i Fixed marriage market sorting
 - ii Fixed labor market returns to educational types
 - iii Fixed composition in terms of educational types

▶ Observed increment in inequality between 1980 and 2018 in Denmark:

► Changes in sorting by levels of education contribute little:

Changes in sorting by fields of study contribute little:

▶ Increased sorting by ambition explains > 40% of the increase in inequality:

MM types matter for whether sorting and inequality trends are related.

Results remain with alternative Ambition types

MM types	N (1,	000s)	Sorting		Gini, data		Gini, (i)	$\frac{\Delta_{\textit{Gini},(i)}}{\Delta_{\textit{Gini},\textit{data}}}$	
	1980	2018	1980	2018	Change	1980	2018	2018	
Educational Level	1,758	1,653	1.45	1.50	4%	0.241	0.307	0.301	91%
Educational Field	1,758	1,653	1.44	1.52	6%	0.240	0.307	0.299	87%
Benchmark	1,758	1,653	1.17	1.48	25.9%	0.241	0.307	0.279	57%
Types by gender	1,757	1,651	1.05	1.27	21.0%	0.241	0.307	0.286	68%
Types by cohort	1,742	1,651	1.16	1.50	29.4%	0.240	0.307	0.284	65%
Sub-field level	1,854	1,630	1.19	1.45	21.8%	0.243	0.304	0.279	60%
Three types	1,756	1,653	1.16	1.31	12.7%	0.241	0.307	0.281	60%
Five types	1,756	1,653	1.20	1.58	32.1%	0.241	0.307	0.281	60%

- ▶ In all the solid-black alternatives $\tilde{x} = (w_0, g)$.
- ► Significant positive relationship between trends in sorting and in inequality when MM types capture LM and MM prospects.

25 / 48

Conclusion

- ► Conclusions about the link between sorting and inequality trends depend on the categorization of MM types.
- ▶ We construct 4 *ambition* types clearly distinct in their LM and MM values.
 - ▶ Cluster education *programs* by average starting wages and wage growth.
- Levels of education and fields of study mask important heterogeneity.
- ▶ Between 1980-2018 sorting on ambition increased by more than 25%.
- ▶ With fixed sorting in terms of educational ambition at 1980 level, growth of between-household inequality would have been mitigated by about 40%.
- ► Companion paper "Families' Career Investments and Firms' Promotion Decisions": structural model of MM matching based on ambition and families' career investments.

Educational Ambition, Marital Sorting, and Inequality

Frederik Almar Aarhus University Benjamin Friedrich
Northwestern University

Ana Reynoso
University of Michigan, NBER

Bastian Schulz

Rune Vejlin

Aarhus University, IZA, CESifo

Aarhus University, IZA

BSE Summer Forum 2024 Income Dynamics and the Family

June 14, 2024

Literature

- ► Relationship between sorting and inequality.
 - ► Fernandez and Rogerson, 2001; Greenwood, Guner, Kocharkov and Santos, 2014, 2016; Mare, 2016; Hryshko, Juhn and McCue, 2017; Ciscato and Weber, 2020; Calvo, Lindenlaub and Reynoso, 2022; Kremer, 1997; Breen and Salazar, 2011; Breen and Andersen, 2012; Eika, Mogstad and Zafar, 2019; Gihleb and Lang, 2020.
- Education-based marriage market types and value of degrees.
 - Nielsen and Svarer, 2009; Wiswall and Zafar, 2021; Kirkeboen, Leuven and Mogstad, 2022; Seiver and Sullivan, 2020; Han and Qian, 2022; Artmann, Ketel, Oosterbeek and van der Klaauw, 2021; Altonji, Kahn and Speer, 2014, 2016; Kirkeboen, Leuven and Mogstad, 2016.
- ► Measurements of sorting.
 - ▶ Eika, Mogstad and Zafar, 2019; Chiappori, Costa Dias and Meghir, 2020.

Appendix - Numbers and Ages

Common Categorizations - Levels of Education

- ► Four-digit codes identifying graduation from educational programs (HFAUDD)
- We construct a common categorization based on four levels of education, e.g., Eika, Mogstad & Zafar (2019)
 - Primary, secondary, bachelor, and master & PhD
- Large shift in marginal distributions of educational levels 1980-2018
 - ▶ Men: Share holding master/PhD multiplied by 3
 - Women: Share holding master/PhD multiplied by 13
 - ► Marginals Levels
- ▶ Back

Common Categorizations - Fields of Education

- ▶ Recent work suggest the importance of incorporating sorting by fields of study within post secondary education, e.g., Kirkeboen, Leuven & Mogstad (2022)
 - Search frictions are reduced within same field of study
- ▶ We keep primary and secondary levels
- ▶ We combine bachelor and master & PhD levels and split up into:
 - Education and Humanities
 - Social Science
 - Business
 - STEM
 - Health and Welfare
 - Other

Appendix - Marginals Ambition Types

Educational Ambition, 4 types, Men

Educational Ambition, 4 types, Women

Appendix - Marginals Education

Appendix - Basic Descriptives

Table: Basic Descriptives

Category (w_0, g)	(low, low)	(high, low)	(low, high)	(high, high)	Population
Population share	0.202	0.227	0.475	0.0965	
Female share	0.648	0.310	0.560	0.334	0.499
Starting wage	4.841	5.015	4.728	5.181	4.860
	(0.0613)	(0.0775)	(0.0488)	(0.134)	(0.170)
Wage growth	0.0807	0.118	0.211	0.301	0.172
	(0.0339)	(0.0436)	(0.0574)	(0.0756)	(0.0862)
Parental wealth	401,347.0	664,844.4	269,760.8	1,189,937.8	474,762.7
	(259668.7)	(1609532.9)	(307755.7)	(353775.9)	(858804.7)
Wage growth SD	0.323	0.298	0.430	0.365	0.359
	(0.0682)	(0.0536)	(0.0946)	(0.0731)	(0.0945)

Appendix - Cross Table - Levels and Ambition

Table: Levels and Ambition

Category (w_0, g)	(low, low)	(high, low)	(low, high)	(high, high)	Population
Primary	8.3%	0.5%	56.2%	0.2%	28.5%
Secondary	66.2%	57.3%	40.1%	10.3%	46.4%
Bachelor	24.1%	29.4%	3.1%	30.3%	15.9%
Master & PhD	0.8%	12.7%	0.5%	59.0%	9.0%

Appendix - Cross Table - Fields and Ambition

Table: Fields and Ambition

Category (w_0, g)	(low, low)	(high, low)	(low, high)	(high, high)	Population
Primary	8.3%	0.5%	56.2%	0.2%	28.5%
Secondary	66.2%	57.3%	40.1%	10.3%	46.4%
Humanities	2.2%	18.0%	1.2%	2.7%	5.4%
Social Science	0.1%	3.0%	0.5%	16.4%	2.5%
Business	0.3%	0.5%	0.3%	21.4%	2.4%
STEM	0.2%	3.9%	0.2%	34.3%	4.4%
Health & Welfare	18.5%	12.3%	1.1%	11.6%	8.2%
Other	3.7%	4.4%	0.3%	3.0%	2.2%

Appendix - The European Labor Force Survey

Table: Responses to The European Labor Force Survey

(low, low)	(high, low)	(low, high)	(high, high)	Population
0.172	0.229	0.219	0.332	0.228
(0.377)	(0.420)	(0.414)	(0.471)	(0.420)
0.375	0.428	0.328	0.580	0.402
(0.484)	(0.495)	(0.470)	(0.493)	(0.490)
0.254	0.365	0.298	0.600	0.350
(0.435)	(0.481)	(0.457)	(0.490)	(0.477)
0.0777	0.108	0.0962	0.158	0.104
(0.268)	(0.310)	(0.295)	(0.365)	(0.306)
	0.172 (0.377) 0.375 (0.484) 0.254 (0.435) 0.0777	0.172	0.172 0.229 0.219 (0.377) (0.420) (0.414) 0.375 0.428 0.328 (0.484) (0.495) (0.470) 0.254 0.365 0.298 (0.435) (0.481) (0.457) 0.0777 0.108 0.0962	0.172 0.229 0.219 0.332 (0.377) (0.420) (0.414) (0.471) 0.375 0.428 0.328 0.580 (0.484) (0.495) (0.470) (0.493) 0.254 0.365 0.298 0.600 (0.435) (0.481) (0.457) (0.490) 0.0777 0.108 0.0962 0.158

Appendix - The Weighted Sum of Likelihood Indices

Table: Contingency Table

$Male \backslash Female$	$t_{i,f}=1$	$t_{i,f}=2$		$t_{i,f} = N$	Marginal
$t_{i,m}=1$	P(1,1)	P(1,2)		P(1, N)	$P(t_{i,m}=1)$
$t_{i,m} = 2$	P(2,1)	P(2,2)		P(2, N)	$P(t_{i,m}=2)$
:	:	÷	٠.,	÷	:
$t_{i,m} = N$	P(N,1)	P(N,2)		P(N, N)	$P(t_{i,m}=N)$
Marginal	$P(t_{i,f}=1)$	$P(t_{i,f}=2)$		$P(t_{i,f} = N)$	1

Likelihood index

$$s(j,j') = \frac{P(t_{i,m} = j, t_{i,f} = j')}{P(t_{i,m} = j) P(t_{i,f} = j')}$$

The weighted sum of likelihood indices

$$S = s(1,1) \times w_1 + s(2,2) \times w_2 + \cdots + s(N,N) \times w_N$$

► Product of the marginals weights

Appendix - Likelihood Indices

Appendix - High Type Matches and Marginals

Appendix - Decomposition Method

Scenario (i) - Fixed Sorting

- Resample 2018 males and females according to the 1980 marginal distributions
- Rematching algorithm
 - ► Treat all (resampled) 2018 individuals as singles
 - ▶ Sample potential couples based on (1980) marginal distributions
 - ightharpoonup Decide if match or not by a draw from a binomial distribution with p being the matching probabilities of couples implied by the 1980 distribution
 - Non matched individuals returns to pool of singles
 - ▶ Reiterate until all have counterfactual match

Appendix - Decomposition Method

Scenario (ii) - Fixed Labor Market Returns to Educational Type

► Construct counterfactual household income distribution

$$\widehat{F}(y| au_y = 1980, au_x = 2018, au_p = 2018) = \int F_{Y|X}(y|x, au_y = 1980) \psi_y dF(x| au_x = 1980)$$

Where we estimate the couple type reweighting factor as follows

$$\widehat{\psi_y} = rac{P(au_x = 2018 | x, au_p = 2018)}{P(au_x = 1980 | x, au_p = 2018)} rac{P(au_x = 1980)}{P(au_x = 2018)}$$

lacksquare Use the rematching algorithm to get the 1980 couple distribution using $au_p=2018$

Appendix - Decomposition Method

Scenario (iii) - Fixed Composition in Terms of Educational Types

- ► For (iiia) and (iiib) start by resampling
- ► Construct counterfactual household income distribution

$$\widehat{F}(y|\tau_y = 2018, \tau_x = 1980, \tau_p = 2018) = \int F_{Y|X}(y|x, \tau_y = 2018) \psi_x dF(x|\tau_x = 2018)$$

▶ Where we estimate the couple type reweighting factor as follows

$$\widehat{\psi}_{\mathsf{x}} = rac{P(au_{\mathsf{x}} = 1980s | \mathsf{x}, au_{\mathsf{p}} = 2018)}{P(au_{\mathsf{x}} = 2018 | \mathsf{x}, au_{\mathsf{p}} = 2018)} rac{P(au_{\mathsf{x}} = 2018)}{P(au_{\mathsf{x}} = 1980)}$$

lacktriangle Use the rematching algorithm to get the 1980 couple distribution using $au_p=2018$

Appendix - Decomposition Table

Table: Changes in Income Inequality (1980–2018)

	(a)	Gini	(b) P	90/ _{P50}	(c) P	50/ _{P10}
Factual change (Δ_{Data})	0.066	100%	0.165	100%	0.573	100%
	Δ_{Gini}	$\frac{\Delta_{\mathit{Gini}}}{\Delta_{\mathit{Data}}}$	$\Delta_{P90/P50}$	$\frac{\Delta_{P90/P50}}{\Delta_{Data}}$	$\Delta_{P50/P10}$	$\frac{\Delta_{P50/P10}}{\Delta_{Data}}$
(i) Fixed sorting						
Educational Level	0.060	91%	0.182	110%	0.390	68%
Educational Field	0.057	87%	0.170	103%	0.383	67%
Educational Ambition	0.038	57%	0.089	54%	0.187	33%
(ii) Fixed returns						
Educational Level	0.010	15%	0.127	77%	-0.060	-10%
Educational Field	0.003	5%	0.092	56%	-0.059	-10%
Educational Ambition	0.007	11%	0.080	49%	-0.029	-5%
(iii) Fixed marginals (both)						
Educational Level	0.094	142%	0.197	119%	1.731	302%
Educational Field	0.091	137%	0.184	112%	1.711	298%
Educational Ambition	0.062	93%	0.110	67%	0.750	131%
(iiia) Fixed marginals (male)						
Educational Level	0.060	91%	0.109	66%	0.719	125%
Educational Field	0.058	88%	0.099	60%	0.726	127%
Educational Ambition	0.058	87%	0.121	74%	0.592	103%

Appendix - Matching Algorithm Performance

- The matching algorithm is one-dimensional, i.e., it takes only the education-based types into account
 Thus, we essentially assume random matching conditional on type
- ▶ If other dimensions correlate with the labor market outcomes that we use to categorize programs, sorting within cells could arise and bias the counterfactual inequality measures
- ightharpoonup To investigate this, we use the algorithm to rematch couples randomly (p=0.5) in 2018 within couple-type-combination cells and check how well the empirical inequality measures are reproduced

Table: Matching Algorithm Performance

	(a) Gini		(b) P90/P50		(c) P^{50}/P^{10}	
Data (2018)	0.307	100%	1.688	100%	2.518	100%

Appendix - Educational Ambition, 3 Types

Appendix - Educational Ambition, 5 Types

Appendix - Educational Ambition, Examples

- ▶ Business graduate "more ambitious" than architect, despite same level.
- ▶ Doctor "'more ambitious" than Nurse, despite same field.

