Trường Đại Học Bách Khoa Tp.HCM Hệ Đào Tạo Từ Xa Khoa Khoa Học và Kỹ Thuật Máy Tính

Mạng máy tính căn bản

Bài giảng 11: Tầng Liên Kết và LAN

Tham khảo:

Chương 5: "Computer Networking – A top-down approach" Kurose & Ross, 5th ed., Addison Wesley, 2010.

Chương 5: Tầng liên kết

Muc tiêu:

- hiểu rõ các nguyên tắc đằng sau các dịch vụ tầng liên kết dữ liệu:
 - phát hiện và sữa lỗi
 - chia sẻ một kênh quảng bá: đa truy cập
 - đánh địa chỉ tầng liên kết
 - truyền tải dữ liệu tin cậy, kiểm soát lượng
- Diễn giải và hiện thực của các công nghệ tầng liên kết

Tầng liên kết

- 5.1 Giới thiệu và dịch vụ
- 5.2 Sự phát hiện và Sửa lỗi
- 5.3 Các giao thức đa truy cập
- 5.4 Đánh địa chỉ tầng-Liên kết
- 5.5 Ethernet

 5.6 Các bộ chuyển mạch tầng-liên kết

Tầng liên kết: Giới thiệu

Vài thuật ngữ:

- máy tính và BĐT là các nốt
- các kênh liên lạc mà kết nối các nốt liền kề dọc theo đường liên lạc đó gọi là các liên kết
 - liên kết có dây
 - o liên kết không dây
 - LANs
- gói tin tầng-2 là một khung (frame), bọc bên trong nó gói tin tầng-3

tầng liên kết-dữ liệu có trách nhiệm truyền tải gói tin từ một nốt sang nốt liền kề trên một liên kết

Tầng liên kết: ngữ cảnh

- gói tin được chuyển đi bởi nhiều giao thức liên kết khác nhau qua các liên kết khác nhau:
 - vd, Ethernet trên liên kết đầu, 802.11 trên liên kết tiếp theo v.v..
- mỗi giao thức liên kết cung cấp những dịch vụ khác nhau
 - vd: có thể hoặc không cung cấp truyền tải dữ liệu tin cậy qua liên kết

vd tương đồng: vận tải

- chuyến đi từ Sa Pa tới Tháp Mười
 - ngựa: từ bản tới Sa Pa
 - ô tô: SaPa tới Hà Nội
 - tàu: Hà Nội tới HCM
 - o ô tô: HCM tới Đồng Tháp
 - o ghe: Đồng Tháp tới T. Mười
- người, hàng = gói tin
- đoạn đường đi = liên kết
- □ loại vận tải = g/t tầng liên kết
- Công ty du lịch = giải thuật định tuyến

Dịch vụ tầng liên kết

- dien chia khung, truy cập liên kết:
 - o đóng gói gói tin vào các khung, thêm mào đầu, đuôi
 - o truy cập kênh truyền nếu môi trường chia sẻ
 - địa chỉ "MAC" dùng trong mào đầu của khung để xác định nguồn,
 đích
 - khác với địa chỉ IP!
- truyền tải tin cậy giữa các nốt cận kề
 - chúng ta đã biết về vấn đề này ở tầng truyền tải!
 - hiếm khi dùng trên một liên kết ít xảy ra lỗi (sợi quang, các loại cáp xoắn)
 - o các liên kết không dây: tần số lỗi cao
 - Hỏi: tại sao cần có tính tin cậy ở cả tầng-liên kết và đầu cuốiđầu cuối?

Dịch vụ tầng liên kết (tt)

- kiểm soát lưu lượng:
 - o đi từng bước giữa các nốt gửi và nhận kề nhau
- phát hiện lỗi:
 - o lỗi gây ra bởi sự suy giảm của tín hiệu, nhiễu.
 - o bên nhận phát hiện ra sự tồn tại của lỗi:
 - thông báo bên gửi để gửi lại hoặc là bỏ khung
- □ sửa lỗi:
 - bên nhận xác định và sửa các lỗi bit mà không yêu cầu sự gửi lại
- de cơ chế một-chiều và hai-chiều (half-, full-duplex)
 - với một-chiều các nốt tại hai đầu không thể truyền tải cùng một lúc

Tầng liên kết được hiện thực ở đâu?

- trong mỗi máy
- ở cạc mạng (hay network interface card NIC)
 - Cac Ethernet, cac PCMCI, cac 802.11
- gắn vào đường buýt của hệ thống
- tổ hợp bao gồm phần cứng, phần mềm và firmware

Giao tiếp giữa cạc mạng

□ bên gửi:

- đóng gói gói tin trong khung dữ liệu
- thêm vào các bit kiểm tra lỗi, truyền tải tin cậy, kiểm soát lưu lượng, v.v..

bên nhận

- kiểm tra lỗi, truyền tải tin cậy, kiểm soát lưu lượng, v.v..
- tháo gói tin ra, đẩy lên tầng trên của bên nhân

10

Tầng liên kết

- 5.1 Giới thiệu và dịch vụ
- 5.2 Sự phát hiện và Sửa lỗi
- 5.3 Các giao thức đa truy cập
- 5.4 Đánh địa chỉ tầng-Liên kết
- 5.5 Ethernet

 5.6 Các bộ chuyển mạch tầng-liên kết

Cơ chế phát hiện lỗi

EDC (error detection code) = các bit bổ sung dùng cho phát hiện và sửa lỗi

- D = Dữ liệu được bảo vệ bằng cách kiểm tra lỗi, có thể bao gồm các trường mào đầu
- Cơ chế phát hiện lỗi không đáng tin cậy 100%!
 - giao thức có thể bỏ sót vài lỗi, nhưng rất hiếm khi
 - trường EDC càng lớn thì khả năng phát hiện và sửa lỗi càng cao

Trường Đai Học Bác

MANG MÁY TÍNH CĂN BẢN

Kiểm tra tính chẵn lẻ

Một bit chẵn lẻ:

Phát hiện các lỗi 1 bit

bit chẵn lẻ hai chiều:

Phát hiện và sửa các lỗi 1 bit

Tổng kiểm tra Internet (xem lại)

Muc đích: phát hiện "các lỗi" (vd: nhảy bit) trong gói tin được truyền tải (chú ý: *chỉ* sử dụng ở tầng truyền tải)

Người gửi:

- xem một đoạn dữ liệu (segment) như là một chuỗi các số nguyên 16-bit
- □ tổng kiểm tra: tổng bù 1 (1's complement sum) của đoạn dữ liêu
- người gửi đặt giá trị TKT vào trường "checksum" của mào đầu UDP

Người nhân:

- tính toàn TKT của đoạn nhận được
- kiểm tra xem TKT tính được có bằng giá trị trong trường TKT không:
 - KHÔNG có lỗi
 - CÓ không phát hiện ra lỗi. Nhưng vẫn có khả năng có lỗi?

Tính tổng kiểm tra: CRC (Cyclic Redundancy Check)

- xem các bit dữ liệu, D, như là số nhị phân
- chọn r+1 bit mẫu (bộ phát), G
- mục đích: chọn r bit CRC, R, sao cho
 - <D,R> chia hết cho G (mô-đun 2)
 - người nhận biết G, chia <D,R> cho G. nếu số dư khác 0: có lỗi!
 - o có thể phát hiện tất cả các lỗi chùm ngắn hơn r+1 bit
- được sử dụng rộng rãi trong thực tế (Ethernet, 802.11
 WiFi, ATM)

D: data bits to be sent R: CRC bits

bit pattern

D*2^r XOR R

mathematical formula

Ví dụ CRC

Cần:

 $D \cdot 2^r XOR R = nG$

tương đương:

 $D \cdot 2^r = nG XOR R$

tương đương:

nếu chúng ta chia D·2^r cho G, cần có số dư là R

$$R = s\tilde{o} du \left[\frac{D \cdot 2^r}{G} \right]$$

Tầng liên kết

- 5.1 Giới thiệu và dịch vụ
- 5.2 Sự phát hiện và Sửa lỗi
- 5.3 Các giao thức đa truy cập
- 5.4 Đánh địa chỉ tầng-Liên kết
- 5.5 Ethernet

 5.6 Các bộ chuyển mạch tầng-liên kết

Các giao thức và liên kết đa truy cập

Hai loại "liên kết":

- □ điểm-điểm (PPP)
 - PPP dùng cho truy cập quay số
 - o liên kết PPP giữa bộ chuyển mạch Ethernet và máy
- quảng bá (đường dây/môi trường truyền chia sẻ)
 - Ethernet cổ điển
 - đường tải lên HFC
 - LAN không dây 802.11

đường đây chia sẻ(vd: Ethernet đi cáp)

tần số radio chia sẻ (vd: 802.11 WiFi)

tần số radio chia sẻ (vệ tinh)

mọi người tại một buổi tiệc đứng (âm thanh chia sẻ)

Các giao thức Đa Truy Cập

- một kênh quảng bá chia sẻ chung
- có nhiều sự truyền tải đồng tời tại các nốt: giao thoa, nhiều
 - đụng độ nếu nốt nhận được hơn 1 tín hiệu tại môt thời điểm

giao thức đa truy cập

- là giải thuật phân tán mà xác định cách thức các nốt chia sẻ kênh, như là, xác định khi nào nốt có thể truyền tải
- sự liên lạc về chia sẻ phải sử dụng chính kênh đó!
 - o không có kênh riêng dành cho sự điều phối

Giao thức Đa Truy Cập Lý Tưởng

Kênh quảng bá với tốc độ R bps

- 1. khi một nốt muốn truyền, nó có thể truyền với vận tốc R.
- 2. khi M nốt muốn truyền, mỗi nốt có thể truyền với vận tốc trung bình là R/M
- 3. phân tán một cách hoàn toàn:
 - không có nốt riêng dành cho việc điều phối truyền tải
 - không có sự đồng bộ hóa đồng hồ, ô thời gian
- 4. đơn giản !!!

Các giao thức MAC: phân loại

Ba lớp lớn:

- Phân chia kênh
 - o chia kênh thành những "phần" nhỏ hơn (ô thời gian, tần số, mã)
 - o phân phối các phần cho các nốt có nhu cầu sử dụng riêng biệt
- Truy cập ngẫu nhiên
 - không chia kênh, cho phép xảy ra đụng độ
 - "khôi phục lại" từ đụng độ
- "Theo lượt"
 - các nốt truyền theo lượt, nhưng nốt nào có nhiều dữ liệu hơn có thể có lượt dài hơn

Giao thức MAC phân chia kênh: TDMA

TDMA: đa truy cập phân chia thời gian (time division multiple access)

- □ truy cập kênh theo "vòng"
- mỗi trạm có một ô thời gian có độ dài xác định (độ dài = t/g gửi 1 gói) trong mỗi vòng
- những ô không dùng sẽ rỗi
- □ ví dụ: LAN 6-trạm, 1,3,4 có gói tin, ô 2,5,6 rỗi

Giao thức MAC phân chia kênh: FDMA

FDMA: đa truy cập phân chia tần số (frequency division multiple access)

- phổ của kênh được chia thành những băng tần
- mỗi trạm được gán một băng tần cố định
- các băng tần không sử dụng sẽ bị rỗi
- □ ví dụ: LAN 6-trạm, 1,3,4 có gói tin, các băng 2,5,6 rỗi

Giao thức Truy cập Ngẫu nhiên (Random Access)

- Khi nốt có gói tin để gửi
 - o gửi ở vận tốc cao nhất của kênh R.
 - o không có sự điều phối ưu tiên nào giữa các nốt
- □ nhiều hơn 1 nốt cùng truyền tải → "đụng độ",
- giao thức MAC truy cập ngẫu nhiên chỉ rõ:
 - o cách phát hiện đụng độ
 - o cách phục hồi lại từ đụng độ (vd, thông qua truyền lại sau đó)
- □ Ví dụ của các g/thức MAC truy cập ngẫu nhiên:
 - ALOHA
 - ALOHA chia ô
 - CSMA, CSMA/CD, CSMA/CA

ALOHA thuần túy (không chia ô)

- Aloha không chia ô: đơn giản, không đồng bộ hóa
- khi có khung dữ liệu thì nốt sẽ
 - gửi đi ngay lập tức
- xác suất đụng độ tăng cao:
 - khung gửi tại t/điểm t₀ đụng độ với các khung gửi trong [t₀-1,t₀+1]

Hiệu quả của Aloha thuần túy

```
P(1 nốt thành công) = P(truyền tải của nốt) · P(không có nốt khác truyền trong [p_0-1,p_0] · \\ P(không có nốt khác truyền trong [p_0,p_0+1] \\ = p · (1-p)^{N-1} · (1-p)^{N-1} \\ = p · (1-p)^{2(N-1)}
```

... lựa chọn p tối ưu và sau đó cho n -> vô cùng ...

$$= 1/(2e) = .18$$

ALOHA chia ô

Các giả định:

- tất cả các khung có cùng kích thước
- thời gian được chia thành những ô bằng nhau (bằng t/g để truyền 1 khung)
- các nốt bắt đầu truyền tại thời điểm bắt đầu của ô
- các nốt có đồng bộ hóa
- nếu hơn 1 nốt truyền trong1 ô thì tất cả nốt phát hiệnra đụng độ

Thực hiện:

- khi nốt có một khung mới nó sẽ truyền đi ở ô tiếp theo
 - nếu không đụng độ: nốt có thể gửi khung mới trong ô tiếp theo
 - nếu đụng độ: nốt gửi lại khung trong mỗi ô sau đó với xác suất là p cho đến khi thành công

ALOHA chia ô

<u>Ưu điểm</u>

- một nốt hoạt động có thể liên tục truyền tải ở vận tốc tối đa của kênh
- phân tán cao: chỉ có các
 ô trong nốt cần phải
 đồng bô
- đơn giản

Nhược điểm

- đụng độ, lãng phí ô
- các ô rỗi
- các nốt có thể phát hiện đụng độ trong t/g ngắn hơn t/g để truyền gói
- □ đồng bộ hóa đồng hồ

Hiệu quả của Aloha chia ô

Hiệu quả: phần trăm của những ô thành công trong toàn quá trình (nhiều nốt, tất cả đều có nhiều khung)

- giả sử: N nốt với nhiều khung để gửi, mỗi nốt gửi với xác suất p
- □ Xác suất mà một nốt nào
 đó gửi thành công trong
 một ô là = p(1-p)^{N-1}
- □ Xác suất mà bất kì nốt nào gửi được 1 lần = Np(1-p)^{N-1}

- □ hiệu quả t/đa: tìm p* sao cho tối đaNp(1-p)^{N-1}
- □ với nhiều nốt, lấy giới hạn của Np*(1-p*)^{N-1} khi N tiến tới vô cùng, thu được:

h/quả tối đa = 1/e = .37

Tốt nhất: kênh được sử dụng hiệu quả trong 37% thời gian!

Đa truy cập kiểm tra đường truyền - CSMA (Carrier Sense Multiple Access)

CSMA: lắng nghe trước khi truyền:

Nếu thấy kênh rỗi: gửi toàn ven khung

□ Nếu kênh bận, hoãn việc truyền tải lại

ví du tương đồng ở con người: không chen ngang người khác!

Đụng độ CSMA

đụng độ vẫn *có thể* xảy ra

độ trễ lan truyền nghĩa là hai nốt có thể không nghe được sự truyền tải của nhau

đụng độ:

toàn bộ thời gian truyền tải gói tin bị lãng phí

chú ý:

vai trò của khoảng cách và độ trễ lan truyền trong việc xác định xác suất đụng độ

CSMA/CD phát hiện đụng độ (Collision Detection)

CSMA/CD: kiểm tra đường truyền, trì hoãn như trong CSMA

- o phát hiện đụng độ trong khoảng t/g ngắn
- các truyền tải đụng độ sẽ bị bỏ qua, giảm sự hoang phí kênh
- □ phát hiện đụng độ:
 - tương đối dễ trong LAN đi dây: đo cường độ của tín hiệu, so sánh tín hiệu gửi đi và nhận được.
 - khó trong LAN không dây: cường độ tín hiệu nhận được bị bị áp đảo bởi cường độ truyền tải cục bộ

CSMA/CD phát hiện đụng độ

Giao thức MAC "Theo lượt"

giao thức MAC phân chia kênh:

- o chia sẻ kênh *hiệu quả* và *công bằng* khi tải cao
- không hiệu quả khi tải thấp: trễ khi truy cập kênh, được sử dụng
 1/N băng thông nếu thâm chí chỉ có 1 nốt làm việc!

giao thức MAC truy cập ngẫu nhiên

- hiệu quả khi tải thấp: một nốt có thể sử dụng hoàn toàn băng thông
- tải cao: đụng độ bị quá tải

giao thức "theo lượt"

sử dụng một cách tốt nhất ưu điểm của cả 2!

G/thức MAC "Theo lượt"

Chỉ định:

- nốt chủ trì "mời" các nốt thành viên truyền tải theo lượt
- thông thường được dùng với những thiết bị thành viên "câm"
- □ vấn đề:
 - o độ trễ do việc chỉ định
 - nguy cơ hỏng tại một điểm (nốt chủ trì)

G/thức MAC "Theo lượt"

Truyền thẻ:

- thẻ điều khiển được truyền từ nốt này sang nốt khác theo thứ tự.
- ☐ thông điệp thẻ
- □ vấn đề:
 - o độ trễ do truyền thẻ
 - hỏng tại một điểm (nốt giữ thẻ)

Tổng kết về các giao thức MAC

- phân chia kênh, theo t/g, tần số hoặc mã
 - Phân chia Thời Gian, Phân chia Tần Số
- □ truy cập ngẫu nhiên (động),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - kiểm tra đường truyền: dễ trong dây dẫn, khó trong m/trường không dây
 - CSMA/CD được dùng trong Ethernet
 - CSMA/CA được dùng trong 802.11
- □ theo lượt
 - o sự chỉ định từ nốt chủ trì, sự truyền thẻ
 - Bluetooth, FDDI, IBM Token Ring