

planetmath.org

Math for the people, by the people.

box topology

Canonical name BoxTopology

Date of creation 2013-03-22 12:46:55 Last modified on 2013-03-22 12:46:55

Owner yark (2760) Last modified by yark (2760)

Numerical id 9

Author yark (2760) Entry type Definition Classification msc 54A99

Synonym box product topology
Related topic ProductTopology
Defines box product

Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in A}$ be a family of topological spaces. Let Y denote the generalized Cartesian product of the sets X_{α} , that is

$$Y = \prod_{\alpha \in A} X_{\alpha}.$$

Let \mathcal{B} denote the set of all products of open sets of the corresponding spaces, that is

$$\mathcal{B} = \left\{ \prod_{\alpha \in A} U_{\alpha} \mid U_{\alpha} \in \mathcal{T}_{\alpha} \text{ for all } \alpha \in A \right\}.$$

Now we can construct the *box product* (Y, \mathcal{S}) , where \mathcal{S} , referred to as the *box topology*, is the topology the base \mathcal{B} .

When A is a http://planetmath.org/Finitefinite set, the box topology coincides with the product topology.

Example

As an example, the box product of two topological spaces (X_0, \mathcal{T}_0) and (X_1, \mathcal{T}_1) is $(X_0 \times X_1, \mathcal{S})$, where the box topology \mathcal{S} (which is the same as the product topology) consists of all sets of the form $\bigcup_{i \in I} (U_i \times V_i)$, where I is some index set and for each $i \in I$ we have $U_i \in \mathcal{T}_0$ and $V_i \in \mathcal{T}_1$.