Computation for Public Policy Course Introduction

Jen Helsby and Eric Potash
Computation for Public Policy
Lecture 1: January 5, 2016
computationforpolicy.github.io

Today

- Course Overview
- Assignment
- Introductions
- Case Study

Lead Poisoning: Impacts

- Lead causes irreversible neurological damage
 - reduced IQ
 - psychiatric disorders
- Hundreds of thousands of infants poisoned each year in the U.S.
 - Billions of dollars in damages.

Lead Poisoning: Causes

- Lead was in paint, pipes, gasoline, etc.
- Banned in the 70's but still found in older buildings.
- Infants are susceptible to poisoning due to
 - physiology
 - o "hand-mouth" behavior.

Chicago Lead Protocol

 CDPH has a periodic blood lead level (BLL) testing schedule.

 Children entering Chicago Public Schools are required to be screened for lead.

Chicago Lead Protocol

- A test over the threshold (currently 5 ug/dL) is considered poisoning.
- Over 10 ug/dL triggers a home investigation.
- Hazards found are legally required to be remediated, but enforcement is scarce.

Birth Cohort Incidence

Birth Cohort Incidence

Birth Cohort Incidence by Tract: 2011

Birth Cohort Incidence by Tract: 2012

Birth Cohort Incidence by Tract: 2013

Predicting Lead Poisoning

Interventions: Continuous

- Integrate with EMR to give health workers risk information.
- Mailing campaign to provide parents with information about lead hazards, inspections, funds for remediation.

Interventions: Preventative

- Applicable to infants under 12 months, including in utero.
- Investigate (and remediate) home before child is susceptible to poisoning.

Predictive Approach

Predictive Approach

Predictive Approach

What is Machine Learning?

- Models optimized for predictive performance, rather than explanatory power.
- Primarily interested in predictions (y), rather than regression coefficients (β) or variance (Σ).

Model Data

Data Quality: Record Linkage

First	Last	Date of Birth	
Eric	Potash	1/1/2010	
Erc	Potash	2/1/2010	
Joe	Walsh	1/1/2010	
Joe	Walsch	2/1/2010	

Lead Level Trajectories

Lead Levels at a Single Address

Spatial Levels

Spatial Levels: ~600k addresses

Spatial Levels: ~500k complexes

Spatial Levels: ~40k census blocks

Spatial Levels: ~40k census blocks

Spatial Levels: 800 census tracts

Spatial Levels: 800 census tracts

Spatial Levels: 50 wards

Spatio-temporal Aggregation

- 5 spatial levels
 - Address, Complex, Block, Tract, Ward

- 6 time periods
 - 1,3,5,7,9 years and all time
- 5*6= 30 spacetime aggregations levels

Spatio-temporal Variables

~2k potential features, use ~1k features

feature	re description	
count	number of tests	
tested	whether there has been a test	
poisoned	whether there has been a poisoned test	
ebll_count	number of poisoned tests	
ebll_prop	proportion of poisoned tests	
avg_bll	average blood lead level	
median_bll	median blood lead level	
max_bll	maximum blood lead level	
min_bll	minimum blood lead level	
std_bll	standard deviation of blood lead level	
kid_count	number of children tested	
kid_ebll_here_count	number of children with poisoned tests	
kid_ebll_here_prop	proportion of children with poisoned tests	
kid_ebll_first_count	number of children with first poisoned test	
$kid_ebll_first_prop$	proportion of children with first poisoned test	

Cross Validation

- Use a temporal cross validation.
 - Historical reenactment
- Train the model on data until "today", e.g. 2013-01-01.
- Test on kids who are as of 2013-01-01 under 12 months

Evaluation Metrics

- Our partners have limited resources for interventions.
- A useful metric is the "precision at k"
 - e.g. we take our k=1000 highest risk scores and predict them as poisoned and calculate precision.

- Compare model's performance with a random baseline
 - e.g. predict random 1000 children as poisoned.

Model Evaluation

Model Evaluation

Appendix: Feature Selection

	С
name	
tract_acs_health_pct_insured_public	0.054714
tract_acs_health_pct_uninsured	0.057941
kld_sex_M	0.064409
tract_cumulative_test_count	0.075659
address_inspection_init_days	0.080799
address_test_ebll_kld_ratio	0.169231

	С
name	3
kld_birth_days	-0.932934
address_bullding_year	-0.198676
tract_cumulative_ebil_kid_count	-0.084628
tract_buildings_avg_year_built	-0.073164
tract_acs_edu_pct_advanced	-0.065776

	Importance
feature	
kld_blrth_days	0.016776
kld_test_number	0.012587
kld_date_of_blrth_month	0.007908
census_tract_tests_3y_kld_ebil_ever_prop	0.007549
census_tract_tests_3y_kld_ebil_here_prop	0.006996
census_tract_tests_1y_kld_ebil_ever_prop	0.006376
census_tract_tests_3y_ebll_prop	0.006236
census_tract_tests_3y_kld_ebll_future_prop	0.006179
census_tract_tests_3y_kld_ebil_first_prop	0.006031
census_tract_tests_3y_address_ebll_prop	0.005950
census_block_tests_5y_kld_max_bll_avg	0.005675
census_tract_tests_3y_kld_max_bll_avg	0.005451
building_assessor_age_min	0.005109
bulldIng_assessor_age	0.005091
building_assessor_age_max	0.005080