On constructing permutation-fair dice

Steven Clontz

April 15, 2018

By convention, $n = \{0, 1, ..., n-1\}$ for each natural number n.

Definition 1. A function $F: n \to S$ is called a **formula** for a set S of dice, where F(k) returns which die in the set S has a face with the number k < n.

For example, the formula $F: 4 \to \{A, B\}$ defined by ABBA represents an assignment of values to the faces of dice in the set $\{A, B\}$. In particular A has two sides $\{0, 3\}$ while die B has sides $\{1, 2\}$.

Definition 2. Given a formula $F: n \to S$ and $T \subseteq S$, let $F_T: m \to T$ be the **subformula** obtained by removing the dice in $S \setminus T$ from the sequence.

So for $F: 7 \to \{A,B,C\}$ defined by $ABCACBA, F_{\{A,C\}}$ is defined by ACACA.

Definition 3. Given a sequence $F : n \to S$ and $m \le n$, let $F \upharpoonright m : m \to S$ be the **restriction sequence** where $(F \upharpoonright m)(k) = F(k)$ for k < m.

So for $F: 7 \to \{A, B, C\}$ defined by ABCACBA, $F \upharpoonright 4$ is defined by ABCA.

Definition 4. A sample for a formula $F: n \to S$ is a function $s: S \to n$ such that F(s(A)) = A for all $A \in S$. Let $\sigma(F)$ collect all samples for the formula F.

Definition 5. The **result** of a sample $s: S \to n$ is a permutation $r_s: |S| \to S$ of S such that $i \leq j$ if and only if $f(r_s(i)) \leq f(r_s(j))$.

So for the formula ABCACBA, a sample might be defined by f(A) = 3, f(B) = 2, f(C) = 4, yielding the result BAC. Note that the highest-valued die in the sample s is given by $r_s(|S| - 1)$.

Definition 6. A formula $F: n \to S$ is called **permutation-fair** if for all permutations p, q of S, $|\{s \in \sigma(F) : r_s = p\}| = |\{s \in \sigma(F) : r_s = q\}|$.

Definition 7. A formula $F: n \to S$ is called **go-first-fair** if for all $A, B \in S$, $|\{s \in \sigma(F): r_s(|S|-1) = A\}| = |\{s \in \sigma(F): r_s(|S|-1) = B\}|$.

Proposition 8. Suppose $F: n \to S$ is a permutation-fair (resp. go-first-fair) formula. Then F_T is permutation-fair (resp. go-first-fair) for all $T \subseteq S$.

Theorem 9. Suppose $F: n \to S \cup \{X\}$ is a go-first-fair formula such that F_S is permutation fair, and for each $m \le n$ where f(m) = X, $(F \upharpoonright m)_S$ is permutation-fair. Then F is permutation-fair.

Proof. Since go-first-fair implies permutation-fair in the base case |S| = 0, assume the theorem holds when $|S| \le k$, and let |S| = k + 1.

For each $T \subsetneq S$, we note that $F_{T \cup \{X\}}$ is a go-first-fair formula such that for each $m \leq |F_{T \cup \{X\}}|$ where $F_{T \cup \{X\}}(m) = X$, $F_{T \cup \{X\}} \upharpoonright m = F \upharpoonright m'$ for some $m \leq m' < n$ and F(m') = X. Thus $(F_{T \cup \{X\}} \upharpoonright m)_T = (F \upharpoonright m')_T = ((F \upharpoonright m')_S)_T$ is permutation-fair, and since $|T| \leq k$, $F_{T \cup \{X\}}$ is permutation-fair.

So let p,q be permutations of $S \cup \{X\}$; we aim to show that $|\{s \in \sigma(F) : r_s = p\}| = |\{s \in \sigma(F) : r_s = q\}|$.

First, suppose p(|S|) = q(|S|) = X. Thus

$$|\{s \in \sigma(F) : r_s = p\}| = \sum \left\{ \left| \{s \in \sigma((F \upharpoonright m)_S) : r_s = p \upharpoonright |S|\} \right| : f(m) = X \right\}$$

and likewise for q. Since $(F \upharpoonright m)_S$ is permutation-fair,

$$|\{s \in \sigma((F \upharpoonright m)_S) : r_s = p \upharpoonright |S|\}| = |\{s \in \sigma((F \upharpoonright m)_S) : r_s = q \upharpoonright |S|\}|$$

so the result follows in this case.