Building Robust ETL Pipelines with Apache Spark

Xiao Li Spark Summit | SF | Jun 2017

About Databricks

TEAM

Started Spark project (now Apache Spark) at UC Berkeley in 2009

MISSION

Making Big Data Simple

PRODUCT

Unified Analytics Platform

About Me

- Apache Spark Committer
- Software Engineer at Databricks
- Ph.D. in University of Florida
- Previously, IBM Master Inventor, QRep, GDPS A/A and STC
- Spark SQL, Database Replication, Information Integration
- Github: gatorsmile

Overview

- 1. What's an ETL Pipeline?
- 2. Using Spark SQL for ETL
 - Extract: Dealing with Dirty Data (Bad Records or Files)
 - Extract: Multi-line JSON/CSV Support
 - Transformation: High-order functions in SQL
 - Load: Unified write paths and interfaces
- 3. New Features in Spark 2.3
 - Performance (Data Source API v2, Python UDF)

What is a Data Pipeline?

- 1. Sequence of transformations on data
- 2. Source data is typically semi-structured/unstructured (JSON, CSV etc.) and structured (JDBC, Parquet, ORC, the other Hive-serde tables)
- 3. Output data is integrated, structured and curated.
 - Ready for further data processing, analysis and reporting

Example of a Data Pipeline

ETL is the First Step in a Data Pipeline

- 1. ETL stands for EXTRACT, TRANSFORM and LOAD
- 2. Goal is to clean or curate the data
 - Retrieve data from sources (EXTRACT)
 - Transform data into a consumable format (TRANSFORM)
 - Transmit data to downstream consumers (LOAD)

An ETL Query in Apache Spark

```
spark.read.json("/source/path")
    .filter(...)
    .agg(...)
    .write.mode("append")
    .parquet("/output/path")
```


An ETL Query in Apache Spark

```
val csvTable = spark.read.csv("/source/path")
val jdbcTable = spark.read.format("jdbc")
 .option("url", "jdbc:postgresql:...")
 .option("dbtable", "TEST.PEOPLE")
 .load()
csvTable
 .join(jdbcTable, Seq("name"), "outer")
 .filter("id <= 2999")
 write
 .mode("overwrite")
 .format("parquet")
 .saveAsTable("outputTableName")
```


What's so hard about ETL Queries?

Why is ETL Hard?

- 1. Various sources/formats
- 2. Schema mismatch
- 3. Different representation
- 4. Corrupted files and data
- 5. Scalability
- 6. Schema evolution
- 7. Continuous ETL

- 1. Too complex
- 2. Error-prone
- 3. Too slow
- 4. Too expensive

This is why ETL is important

Consumers of this data don't want to deal with this messiness and complexity

Using Spark SQL for ETL

Spark SQL's flexible APIs, support for a wide variety of datasources, build-in support for structured streaming, state of art catalyst optimizer and tungsten execution engine make it a great framework for building end-to-end ETL pipelines.

Data Source Supports

- 1. Built-in connectors in Spark:
 - JSON, CSV, Text, Hive, Parquet, ORC, JDBC
- 2. Third-party data source connectors:
 - https://spark-packages.org
- 3. Define your own data source connectors by Data Source APIs
 - Ref link: https://youtu.be/uxuLRiNoDio

Schema Inference – semi-structured files

```
{"a":1, "b":2, "c":3}
{"e":2, "c":3, "b":5}
{"a":5, "d":7}
```

```
spark.read
.json("/source/path")
.printSchema()
```

```
root
|-- a: long (nullable = true)
|-- b: long (nullable = true)
|-- c: long (nullable = true)
|-- d: long (nullable = true)
|-- e: long (nullable = true)
```

Schema Inference – semi-structured files

```
{"a":1, "b":2, "c":3.1}
{"e":2, "c":3, "b":5}
{"a":"5", "d":7}
                              root
                               |-- a: string (nullable = true)
spark.read
                               |-- b: long (nullable = true)
 .json("/source/path")
                               -- c: double (nullable = true)
                               -- d: long (nullable = true)
 .printSchema()
                               |-- e: long (nullable = true)
```


User-specified Schema

```
{"a":1, "b":2, "c":3}
{"e":2, "c":3, "b":5}
{"a":5, "d":7}
```

```
val schema = new StructType()
 .add("a", "int")
 .add("b", "int")
spark.read
 .json("/source/path")
 .schema(schema)
 .show()
```

User-specified DDL-format Schema

```
{"a":1, "b":2, "c":3}
{"e":2, "c":3, "b":5}
{"a":5, "d":7}
```

```
spark.read
.json("/source/path")
.schema("a INT, b INT")
.show()
```

Dealing with Bad Data: Skip Corrupt Files

java.io.IOException. For example, java.io.EOFException: Unexpected end of input stream at org.apache.hadoop.io.compress.DecompressorStream.decompress

java.lang.RuntimeException: file:/temp/path/c000.json is not a Parquet file (too small)

[SPARK-17850] If true, the Spark jobs will continue to run even when it encounters corrupt files. The contents that have been read will still be returned.

spark.sql.files.ignoreCorruptFiles = true

Dealing with Bad Data: Skip Corrupt Records

[SPARK-12833][SPARK-13764] TextFile formats (JSON and CSV) support 3 different ParseModes while reading data:

- 1. PERMISSIVE
- DROPMALFORMED
- 3. FAILFAST

Json: Dealing with Corrupt Records

```
{"a":1, "b":2, "c":3}
                                      |_corrupt_record| a| b|
                                       -----+
{"a":{, b:3}
                                              null| 1| 2| 3|
{"a":5, "b":6, "c":7}
                                       {"a":{, b:3}|null|null|null|
spark.read
.option("mode", "PERMISSIVE")
.option("columnNameOfCorruptRecord", "_corrupt_record")
.json(corruptRecords)
.show()
                              The default can be configured via
                          spark.sql.columnNameOfCorruptRecord
```

Json: Dealing with Corrupt Records

```
{"a":1, "b":2, "c":3}
{"a":{, b:3}
{"a":5, "b":6, "c":7}
spark.read
 .option("mode", "DROPMALFORMED")
 .json(corruptRecords)
 .show()
```

```
+---+---+
| a| b| c|
+---+---+
| 1| 2| 3|
| 5| 6| 7|
+---+
```


Json: Dealing with Corrupt Records

```
{"a":1, "b":2, "c":3}
{"a":{, b:3}
{"a":5, "b":6, "c":7}
```

```
spark.read
.option("mode", "FAILFAST")
.json(corruptRecords)
.show()
```

```
org.apache.spark.sql.catalyst.json
.SparkSQLJsonProcessingException:
Malformed line in FAILFAST mode:
{"a":{, b:3}
```

```
year, make, model, comment, blank
"2012", "Tesla", "S", "No comment",
1997, Ford, E350, "Go get one now they",
2015, Chevy, Volt
spark.read
                              java.lang.RuntimeException:
 .option("mode", "FAILFAST")
                              Malformed line in FAILFAST mode:
                              2015, Chevy, Volt
 .csv(corruptRecords)
 .show()
```



```
year, make, model, comment, blank "2012", "Tesla", "S", "No comment", 1997, Ford, E350, "Go get one now they", 2015, Chevy, Volt
```

```
spark.read.
.option("mode", "PERMISSIVE")
.csv(corruptRecords)
.show()
```



```
year, make, model, comment, blank "2012", "Tesla", "S", "No comment", 1997, Ford, E350, "Go get one now they", 2015, Chevy, Volt
```

```
spark.read
.option("header", true)
.option("mode", "PERMISSIVE")
.csv(corruptRecords)
.show()
```

year	 make	model	 comment	blank
			"No comment" "Go get one now null	


```
val schema = "col1 INT, col2 STRING, col3 STRING, col4 STRING, " +
 "col5 STRING, __corrupted_column_name STRING"
spark.read
 .option("header", true)
 .option("mode", "PERMISSIVE")
 .csv(corruptRecords)
 .show()
               |col1|
                       col2| col3|
                                               col4|col5|__corrupted_column_name|
               |2012| "Tesla"|
                            "S"|
                                        "No comment" | null |
                                                                        null
               1997
                       Ford | E350 | "Go get one now ... | null |
                                                                        null
                      Chevy| Volt|
                                               null|null|
                                                             2015, Chevy, Volt
               2015
```



```
year, make, model, comment, blank
"2012", "Tesla", "S", "No comment",
1997, Ford, E350, "Go get one now they",
2015, Chevy, Volt
spark.read
 .option("mode", "DROPMALFORMED")
 .csv(corruptRecords)
                       |year| make|model|
                                               comment|blank|
 .show()
                       |2012|Tesla| S| No comment| null|
                       |1997| Ford| E350|Go get one now th...| null|
```


Functionality: Better Corruption Handling

badRecordsPath: a user-specified path to store exception files for recording the information about bad records/files.

- A unified interface for both corrupt records and files
- Enabling multi-phase data cleaning
- DROPMALFORMED + Exception files
 - No need an extra column for corrupt records
 - Recording the exception data, reasons and time.

Availability: Databricks Runtime 3.0

Functionality: Better JSON and CSV Support

[SPARK-18352] [SPARK-19610] Multi-line JSON and CSV Support

- Spark SQL currently reads JSON/CSV one line at a time
- Before 2.2, it requires custom ETL

```
spark.read spark.read
.option("multiLine",true) .option("multiLine",true)
.json(path) .json(path)
```

Transformation: Higher-order Function in SQL

Transformation on complex objects like arrays, maps and structures inside of columns.

```
tbl_nested
|-- key: long (nullable = false)
|-- values: array (nullable = false)
| -- element: long (containsNull = false)
```

UDF? Expensive data serialization

Transformation: Higher order function in SQL

Transformation on complex objects like arrays, maps and structures inside of columns.

```
1) Check for element existence
```

```
SELECT EXISTS (values, e -> e > 30) AS v FROM tbl nested;
```

2) Transform an array

tbl_nested

|-- key: long (nullable = false)

|-- values: array (nullable = false)

| |-- element: long (containsNull = false)

SELECT TRANSFORM(values, e -> e * e) AS v FROM tbl_nested;

Transformation: Higher order function in SQL

3) Filter an array

SELECT FILTER(values, e -> e > 30) AS v FROM tbl_nested;

4) Aggregate an array

tbl_nested |-- key: long (nullable = false) |-- values: array (nullable = false)

|-- element: long (containsNull = false)

SELECT REDUCE(values, 0, (value, acc) -> value + acc) AS sum FROM tbl_nested;

Ref Databricks Blog: http://dbricks.co/2rUKQ1A

More cool features available in DB Runtime 3.0: http://dbricks.co/2rhPM4c

Availability: Databricks Runtime 3.0

New Format in DataframeWriter API

Users can create Hive-serde tables using DataframeWriter APIs

```
df.write.format("hive")
   .option("fileFormat", "avro")
   .saveAsTable("tab")
```

df.write.format("parquet")
 .saveAsTable("tab")

CREATE Hive-serde tables

CREATE data source tables

Unified CREATE TABLE [AS SELECT]

CREATE TABLE t1(a INT, b INT)
STORED AS ORC

CREATE TABLE t1(a INT, b INT)
USING hive
OPTIONS(fileFormat 'ORC')

CREATE TABLE t1(a INT, b INT) USING ORC

CREATE Hive-serde tables

CREATE data source tables

Unified CREATE TABLE [AS SELECT]

Apache Spark preferred syntax

```
CREATE [TEMPORARY] TABLE [IF NOT EXISTS]
  [db name.] table name
USING table provider
[OPTIONS table property list]
[PARTITIONED BY (col name, col name, ...)]
[CLUSTERED BY (col name, col name, ...)
  [SORTED BY (col name [ASC|DESC], ...)]
  INTO num buckets BUCKETS]
[LOCATION path]
[COMMENT table comment]
[AS select statement];
```


Apache Spark 2.3+

Massive focus on building ETL-friendly pipelines

[SPARK-15689] Data Source API v2

- 1. [SPARK-20960] An efficient column batch interface for data exchanges between Spark and external systems.
 - Cost for conversion to and from RDD[<u>Row</u>]
 - Cost for serialization/deserialization
 - Publish the columnar binary formats
- 2. Filter pushdown and column pruning
- 3. Additional pushdown: limit, sampling and so on.

Target: Apache Spark 2.3

Performance: Python UDFs

- 1. Python is the most popular language for ETL
- Python UDFs are often used to express elaborate data conversions/transformations
- 3. Any improvements to python UDF processing will ultimately improve ETL.
- 4. Improve data exchange between Python and JVM
- 5. Block-level UDFs
 - Block-level arguments and return types.

Target: Apache Spark 2.3

Recap

- 1. What's an ETL Pipeline?
- 2. Using Spark SQL for ETL
 - Extract: Dealing with Dirty Data (Bad Records or Files)
 - Extract: Multi-line JSON/CSV Support
 - Transformation: High-order functions in SQL
 - Load: Unified write paths and interfaces
- 3. New Features in Spark 2.3
 - Performance (Data Source API v2, Python UDF)

Try Apache Spark in Databricks!

UNIFIED ANALYTICS PLATFORM

- Collaborative cloud environment
- Free version (community edition)

DATABRICKS RUNTIME 3.0

- Apache Spark optimized for the cloud
- Caching and optimization layer DBIO
- Enterprise security DBES

Try for free today. databricks.com

Questions?

Xiao Li (<u>lixiao@databricks.com</u>)

