The Bibi Graph

A social network analysis of leaders' autobiography via NER, language models, and graph algorithms

Gal Engelberg, January 2023

Motivation

An autobiography represents a first-person narrative that covers the writer's life from their own perspective.

Leaders' autobiographies usually express their agenda, and a narrative that the leaders want to be remembered according to.

Could this narrative be quantified? Is there a way to encode the textual information in a way that will uncover global insights about the leader's perspective?

The proposed approach & questions

Approach:

Extracting named entities out of the autobiography to the form of a social network and analyze the resulting graph via social network analysis algorithms. This will uncover insights such as:

Questions:

What are the cardinal persons according to the writer?

What are the cardinal events according to the writer?

Can we discover meaningful communities in the graph?

Challenges

- > How to recognize named entities within the autobiography?
- ➤ How to perform entity resolution?
 - "Barack Obama", "Obama" => "Barack Obama"
- > How to represent the extracted entities in a graphical structure?
- > How to analyze the graph to uncover insights from the book?

Methodology

Data source

Named entity recognition

- ➤ Language model: Spacy English core web transformer (Roberta-based) spacy/en_core_web_trf
- ➤ NER was trained via OntoNote project
 - ➤ Multiple genres news, conversational telephone speech, weblogs, usenet newsgroups, broadcast, talk shows
 - > Three languages (English, Chinese, and Arabic)
 - > Mapping to shallow semantics (ontology and coreference)

Entity resolution (clustering) Events

- > Events named entity represented as word count vectors
- ➤ We run a DBSCAN clustering algorithm with the following parameters:
 - ➤ Maximum distance: 0.3
 - > Similarity measure: cosine similarity

Entity resolution (clustering)

Persons

- > Persons named entity represented as 3-gram character level count vectors
- > We performed two steps:
 - ➤ Step 1: discovery of anchor persons

 Clustering of named entities which are mentioned with their <u>full names</u>

 (DBSCAN, maximal distance = 0.25, Similarity measure: cosine similarity)
 - Step 2: discovery of anchor persons' mentions in the text foreach named_entity within a chapter:
 a = anchor_with_min_distance(named_entity, chapter_level_anchors) //cosine similarity if a.distnace > threshold: //threshold = 0.5

 map (named_entity, a)
 else:
 b = anchor_with_min_distance(named_entity, book_level_anchors) //cosine similarity if a.distnace > threshold: //threshold = 0.5

 map (named_entity, a)

Evaluation measures

Measure	Description
Adjusted Mutual Information Score	The Mutual Information is a measure of the similarity between two labels of the same data. Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared.
Adjusted Rand Score	The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). The adjusted Rand index is bounded below by -0.5 for especially discordant clusterings.
Completeness Score	A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster.
Homogeneity Score	A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class.
V Measure Score	The V-measure is the harmonic mean between homogeneity and completeness

Evaluation results

> Evaluation was performed by comparing the entity resolution resulted partitions with the ground truth partitions

Measure	Events clustering	Persons clustering
Adjusted Mutual Information Score	0.96	0.92
Adjusted Rand Score	0.92	0.82
Completeness Score	0.98	0.96
Homogeneity Score	0.97	0.95
V Measure Score	0.97	0.95

Results are high across all measures and entity types

Graph Structure and Statistics

Graph structure **Relations Nodes** > CO_OCCUR_WITH: Co-occurrence of two Chapter entities in a chapter. An entity could have Person maximum single outgoing edge to another Event entity, where number of joint chapters is defined as a weight on the edge. **CHAPTER** MENTIONED_IN: Whether an entity was mentioned within the chapter. An entity could have maximum single outgoing edge to a chapter, where the amount of mentions of the entity within the chapter is defined as a weight on the edge. CO_OCCUR_WITH **PERSON EVENT** CO_OCCUR_WITH CO OCCUR

Graph statistics

of persons: 635

of events: 66

of mentioned_in edges: **1590**

of co_occurrence edges: **39,146**

Network diameter: 4

Degree (min = 0, max = 509, average = 55)

Entities degree

based on CO_OCCUR_WITH edges

What are the cardinal persons according to the writer?

Cardinal persons

Page rank (based on CO_OCCUR_WITH edges, weighted)

#	name	score	
1	Yoni Netanyahu	Í	11.93
2	Sara Netanyahu		9.36
3	SHIMON PERES		7.81
4	Yitzhak Rabin		7.59
5	Ariel Sharon		7.26
6	Benzion Netanyahu		6.95
7	Barack Obama		6.05
8	Zeev Jabotinsky		5.75
9	Yair Lapid		5.64
10	Iddo Netanyahu		5.50
11	Ron Dermer		5.24
12	Yasser Arafat		5.06
13	Avner Schur		4.74
14	Menachem Begin		4.72
15	Ehud Barak		4.71
16	Ben Gurion.1		4.30
17	Bill Clinton		4.23
18	Yitzhak Shamir		3.87
19	Ehud Olmert		3.80
20	Benjamin Netanyahu		3.67
21	Mahmoud Abbas		3.60
22	Ronald Reagan		3.54
23	Moshe Arens		3.37
24	Melania Trump		3.31
25	Theodore Herzl		3.01

Cardinal persons

Betweenness (based on CO_OCCUR_WITH edges, weighted)

#	name	score
1	Yoni Netanyahu	55,003
2	Sara Netanyahu	32,617
3	SHIMON PERES	20,744
4	Ariel Sharon	20,347
5	Benzion Netanyahu	18,772
6	Yitzhak Rabin	18,631
7	Barack Obama	12,613
8	Iddo Netanyahu	12,126
9	Zeev Jabotinsky	11,420
10	Benjamin Netanyahu	9,725
11	Ehud Barak	9,555
12	Yasser Arafat	8,554
13	Menachem Begin	8,332
14	Yair Lapid	8,169
15	Ron Dermer	8,078
16	Bill Clinton	7,420
17	Ben Gurion.1	6,716
18	Avner Schur	5,989
19	Saddam Hussein	5,026
20	Ronald Reagan	4,694
21	Yitzhak Shamir	4,111
22	Winston Churchill	3,995
23	Melania Trump	3,968
24	Vladimir Putin	3,950
25	Mahmoud Abbas	3,564

What are the cardinal events according to the writer?

Cardinal events

Page rank (based on CO_OCCUR_WITH edges, weighted)

Cardinal events

Betweenness(based on CO_OCCUR_WITH edges, weighted)

# name		score
1 World War I		24,197
2 Holocaust		21,477
3 the Six-Day \	War	1 5,711
4 The Yom Kip	pur War	7,063
5 War of Inde	pendence (1948	5,586
6 the Arab Spr	ing	1,208
7 the Lebanon	War	1,198
8 Suez		1,070
9 Second Intifa	ada	635
10 Operation Pr	rotective Edge.9	562
11 Madrid Peac	e Conference	403
12 Entebbe		385
13 the Gulf War	r	385
14 the Washing	ton Conference	214
15 the Vietnam	War	211
Jerusalem Co	onference on	
16 Internationa	l Terrorism	208
17 Operation Pi	llar	199
18 New Year		122
19 Operation D	efensive Shield	98
20 the Arlosoro	ff Affair	84

Can we discover meaningful communities in the graph?

Community Detection

Louvain (based on CO_OCCUR_WITH edges)

	# of	% of	Avg. page	
ID	entities	total	rank	Top 10 entities In terms of Page-Rank
51	63	9.0%	1.59	Zeev Jabotinsky,Ben Gurion.1,War of Independence (1948,Yitzhak Shamir,Ronald
				Reagan, Moshe Arens, Theodore Herzl, Jonathan Pollard, Vladimir Hitler, Jonathan Liss
74	67	9.6%	1.11	World War I, Menachem Begin, Saddam Hussein, Margaret Thatcher, George Will, the
				Lebanon War,Paul Johnson,the Gulf War,Uzi Yairi,Jerusalem Conference on
				International Terrorism
22	37	5.3%	0.97	Yoav Leventer, Miki (Miriam) Weissman, George Schultz, the Lubavitcher Rebbe, the Arab
				Spring, Fleur Cates, Jeane Kirkpatrick, the Washington Conference, Vladimir Bukovsky, Amir
				Ofer
466	101	14.4%	0.91	Ariel Sharon, Yasser Arafat, Ehud Barak, Bill Clinton, Hussein Agha, Hosni Mubarak, Hafez
				Assad, Elizabeth Gentieu, Madrid Peace Conference, Benny Begin
372	201	28.7%	0.90	Sara Netanyahu,Benzion Netanyahu,Holocaust,Barack Obama,Yair Lapid,Ron
				Dermer,Avner Schur,Ehud Olmert,Mahmoud Abbas,Melania Trump
18	147	21.0%	0.83	Yoni Netanyahu,SHIMON PERES,Yitzhak Rabin,the Six-Day War,Iddo Netanyahu,The
				Yom Kippur War,Idi Amin,Motta Gur,Levi Eshkol,Suez
50	82	11.7%	0.81	Benjamin Netanyahu,Sarah Mileikowsky-Netanyahu,Joseph Klausner,Herod the
				Great,Itzik Molcho,Jesus of Nazareth,Abraham Marcus,Dan Meridor,Saeb Erekat,Ami
				Ayalon
197	1	0.1%	0.15	Yitzhak Navon
430	1	0.1%	0.15	Danny Mat
676	1	0.1%	0.15	Meir Har Zion

- ➤ The graph has a reasonable modularity of **0.38**
- Communities have reasonable distribution in terms of number of entities and average page-rank
- ➤ There are three communities of a single entity (these entities does not have co occurrence with other entities)
- ➤ It seems that communities are arranged by epochs. For example, Zeev Jabotinsky and Ben Gurion, Ariel Sharon and Yasser Arafat.

Most "intensive" chapters

Page rank (based on MENTIONED_IN edges, weighted)

#	name	title	score
1	20	Father	5.46
2	29	Ambassador 1984–1988	4.11
3	28	Diplomat 1982–1984	4.11
4	26	Terrorism 1976–1980	3.65
5	38	First Skirmish 1996	3.60
6	30	Politics 1988–1993	3. ₀₅
7	32	Leader of the Opposition	2.68
8	39	Wye River 1998	2.67
9	19	Hasbara 1973–1976	2.45
10	72	New Path to Peace 2020	2.41

*Intensive chapters in terms of persons and events that mentioned in these chapters

Distribution of co occurrence between Yoni Netanyahu to other persons

Nodes similarity

- The Node Similarity algorithm compares a set of nodes based on the nodes they are connected to. Two nodes are considered similar if they share many of the same neighbors. Node Similarity computes pairwise similarities based on the Jaccard metric, also known as the Jaccard Similarity Score.
- Given two sets A and B, the Jaccard Similarity is computed using the following formula:

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}$$

Persons similarity

(based on CO_OCCUR_WITH edges)

Top 40 similarities

Name1	Name2	Similarity			
Paul Nitze	Elmo Bud Zumwalt	97.92%	Zvi Marom	Amnon Goldenberg	93.55%
Peter Lubin	Elie Kedourie	97.75%	Nancy Pelosi	Avshalom Kor	93.33%
Moshe Katsav	David Levy	97.67%	the Vilna Gaon	Binyamin Ronn	93.10%
Warren Christopher	Arthur Finkelstein	97.33%	Zalman Shazar	Alex Davidi	92.86%
William Ormsby-Gore	Arthur Schlesinger Jr.	97.22%	Tony Blinken	Eyal Yifrah	92.31%
Jared Kushner	David Friedman	97.06%	Yossi Cohen	Alfred Dreyfus	92.00%
Leah Rabin	Aaron Miller	96.77%	Zohar Linik	Ahmad Shukeiri	91.30%
William Safire	Bernard Lewis	96.36%	William Ormsby-Gore	Abba Eban	90.91%
Yelena Bonner	Ahmed Jibril	96.30%	Ron Kampeas	Hiroo Onoda	90.48%
Yossi Sarid	Alexander the Great	96.15%	Zachary Baumel	Aharon Mordechai Freeman	90.00%
Yossi Beilin	Alexander Zeid	96.08%	Zalman Shazar	Avi Dichter	89.66%
Yitzhak Itzik Molcho	Al Buraq	95.92%	[Pinchas] Bukhris	Amos Goren	89.47%
Vladimir Nabokov	Aldo Moro	95.83%	Yoram Lass	Albert Bourla	88.89%
Yaakov Amidror	Boyko Borisov	95.45%	Yaakov Neeman	Albert Einstein	88.24%
Ronald Lauder	Abu Allah	94.74%	Ramat Shlomo	David Axelrod	87.50%
Sleepy Joe.	Abdel Fattah al-Burhan	94.44%	Shlomo Mordechai	Avichai Mandelblit	86.67%
the Thin Man	Ori Yogev	94.12%	Yoram Cohen	Angel Gurra	85.71%
alte kaker	Al Gore	93.94%	Jeane Kirkpatrick	George Schultz	84.68%
Warren Buffett	Alex Ferguson	93.75%	Xi Jinping	Adolf Eichmann	84.62%

Events similarity

(based on CO_OCCUR_WITH edges)

Top 15 similarities

Name1	Name2	Similarity
the Russo-Japanese War of 1905	the Great War	0.97222222
a G7 Summit	Second Conference	0.963636364
post-Oslo flood	San Remo Conference	0.960784314
the Tunnel War	the End of Days	0.959183673
preSix-Day War	Versailles Peace Conference	0.939393939
Wannsee Conference	Green Revolution	0.933333333
Shabbat	Kiddush	0.931034483
Operation Northern Shield	Operation Guardian	0.923076923
the Zionist Congress of 1905	the First Zionist Congress	0.92
The Syrian civil war	Lollapalooza	0.913043478
Jerusalem Day, an annual celebration	Guardian of the Walls	0.866666667
the Russo-Japanese War of 1905	Operation Defensive Shield	0.823529412
the Arlosoroff Affair	San Remo Conference	0.710144928
the Abraham Accords	New Year	0.684931507
Watergate	Entebbe	0.670886076

Recap

We automatically extracted persons and events via language models.

We automatically performed clustering with high accuracy.

We represented the extracted entities as a social network

We analyzed the network, to achieve the following insights:

- > Cardinal persons
- > Cardinal events
- > Communities
- > Intensive chapters
- > Co-occurrence distribution
- Persons similarity
- > Events similarity

Thanks!