Transformaciones Lineales

Álgebra II

Definiciones:

- 1. Dado V y W dos espacios vectoriales, decimos que una función $f:V\to W$ es una transformación lineal u homomorfismo si:
 - a) $f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$
 - **b)** $f(\lambda \cdot \vec{v}) = \lambda \cdot f(\vec{v})$
- 2. Dada $f:V\to W$ una T.L. definimos:
 - a) $N_u(f) = \{ \vec{x} \in V / f(\vec{x}) = \vec{0}_w \}$
 - **b)** $Im(f) = \{ \vec{y} \in W \ / \ \exists \ \vec{x} \in V \ / \ f(\vec{x}) = \vec{y} \}$
 - c) Dado S subespacio de V,

$$f(S) = \{ \vec{y} \in W \ / \ \exists \ \vec{x} \in S \ / \ f(\vec{x}) = \vec{y} \}$$

d) Dado T subespacio de W,

$$f^{-1}(T) = \{ \vec{x} \in V / f(\vec{x}) \in W \}$$

3) Dado V y W e.v.s. y $f: V \to W / f$ es T.L. entonces $f(\vec{0}_v) = \vec{0}_w$

Hipótesis: V y W espacios vectoriales, $f:V\to W$ / f es T.L.

Tesis:
$$f(\vec{0}_v) = f(\vec{0}_w)$$

Demostración:

$$\vec{0}_v = 0 \cdot \vec{0}_v \Rightarrow$$

$$f(\vec{0}_v) = f(0 \cdot \vec{0}_v) = 0 \cdot f(\vec{0}_v)$$
 (¿Por qué?)

Pero
$$f(\vec{0}_v) \in W \Rightarrow 0 \cdot f(\vec{0}_v) = \vec{0}_w$$

4) Dado V, W e.v. y $f:V\to W$ entonces Im(f) es subespacio de W

Hipótesis: V y W espacios vectoriales, $f: V \to W \ / \ f$ es T.L.

Tesis: Im(f) es un subespacio de W

Demostración: Debemos probar las 3 condiciones para que sea subespacio .

a) Sean $\vec{x} \in \vec{y} \in Im(f)$,

Entonces existen \vec{a} y $\vec{b} \in \mathbf{V} \ / \ f(\vec{a}) = \vec{x}$ y $f(\vec{b}) = \vec{y}$

Algebra II Universidad Austral

Luego
$$f(\vec{a} + \vec{b}) = f(\vec{a}) + f(\vec{b})$$
 (¿Por qué?) = $\vec{x} + \vec{y}$

Como $\vec{a} + \vec{b} \in \mathcal{V}$ (¿Por qué?) entonces $\vec{x} + \vec{y} \in Im(f)$

b) Sea $\vec{x} \in Im(f)$, entonces $\exists \vec{a} \in V / f(\vec{a}) = \vec{x}$

Ahora
$$\alpha \cdot \vec{x} = \alpha \cdot f(\vec{a}) = f(\alpha \cdot \vec{a})$$
 (¿Por qué?)

Y como $\alpha \cdot \vec{a} \in V$ (¿Por qué?) $\Rightarrow \alpha \cdot \vec{x} \in Im(f)$

c) Como
$$f(\vec{0}_v) = \vec{0}_w \Rightarrow \vec{0}_w \in W$$

5) Si $f:V\to W$ es una T.L. entonces transforma una base de V en un S.G. de Im(f)

Hipótesis: $f: V \to W / f$ es T.L., $\{\vec{e}_1, \vec{e}_2, \dots \vec{e}_n\}$ base de V

Tesis: $\{f(\vec{e}_1), f(\vec{e}_2), \dots f(\vec{e}_n)\}$ es S.G. de Im(f)

Demostración: Sea $\vec{x} \in Im(f) \Rightarrow \exists \vec{a} \in V \ / \ f(\vec{a}) = \vec{x}$

Como $\vec{a} \in V$ está generado por los elementos de una base de V, se lo puede escribir como:

$$\vec{a} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \ldots + \alpha_n \vec{e}_n$$

Entonces también:

$$f(\vec{a}) = f(\alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \ldots + \alpha_n \vec{e}_n)$$

Como f es T.L. entonces aplico las dos propiedades y nos queda:

$$\vec{x} = f(\vec{a}) = \alpha_1 f(\vec{e}_1) + \alpha_2 f(\vec{e}_2) + \ldots + \alpha_n f(\vec{e}_n)$$

Entonces \vec{x} está generado por $\{f(\vec{e}_1), f(\vec{e}_2), \dots f(\vec{e}_n)\}$

6) Clasificación

Si $f:V\to W$ es una T.L. , entonces

- $\bullet \ f$ es un monomorfismo $\Leftrightarrow f$ es inyectiva
- f es un epimorfismo $\Leftrightarrow f$ es survectiva
- f es un isomorfismo $\Leftrightarrow f$ es biyectiva

7) f es monomorfismo $\Leftrightarrow Nu(f) = {\vec{0}}$

<u>___</u>

Hipótesis: V y W e.v.s. y $f: V \to W / f$ es T.L.

fes monomorfismo, o sea si $f(\vec{x}_1) = f(\vec{x}_2) \Rightarrow \vec{x}_1 = \vec{x}_2$

Tesis: $N_u(f) = {\vec{0}_v}$

Demostración: $\vec{0}_v \in N_u(f)$ porque $f(\vec{0}_v) = \vec{0}_w$.

Tomemos un $\vec{x} \in N_u(f)$, entonces $f(\vec{x}) = \vec{0}_w$.

Algebra II Universidad Austral

Luego, por ser monomorfismo, $\vec{x} = \vec{0}$. O sea $N_u(f) = {\vec{0}_v}$

 \Leftarrow

Hipótesis: V y W e.v.s. y $f: V \to W / f$ es T.L. y $N_u(f) = {\vec{0}_v}$

Tesis: f es monomorfismo, o sea si $f(\vec{x}_1) = f(\vec{x}_2) \Rightarrow \vec{x}_1 = \vec{x}_2$

Demostración: Sean \vec{x}_1 y $\vec{x}_2 \in V / f(\vec{x}_1) = f(\vec{x}_2)$

Entonces $f(\vec{x}_1)$ - $f(\vec{x}_2) = \vec{0}_w$

$$\Rightarrow f(\vec{x}_1 - \vec{x}_2) = \vec{0}_w$$
 (¿Por qué?)

$$\Rightarrow \vec{x}_1 - \vec{x}_2 \in N_u(f),$$
pero como $N_u(f) = \{\vec{0}_v\}$ resulta:

$$\vec{x}_1 - \vec{x}_2 = \vec{0}_v \Rightarrow \vec{x}_1 = \vec{x}_2$$

8) Si f es un monomorfismo, entonces transforma una base del dominio en una base de Im(f)

Hipótesis: $f: V \to W / f$ es monomorfismo (O sea es T.L. y $N_u(f) = \{\vec{0}_v\}$)

 $\{\vec{e}_1,\vec{e}_2,\dots\vec{e}_n\}$ base de V

Tesis: A= $\{f(\vec{e}_1), f(\vec{e}_2), \dots f(\vec{e}_n)\}$ es base de Im(f)

Demostración: Debemos probar que A es un conjunto L.I. y S.G. de Im(f)

Que es S.G. de Im(f) ya lo sabemos (¿Por qué?). Vamos a probar que A es un conjunto L.I.

Sea $\beta_1 f(\vec{e}_1) + \beta_2 f(\vec{e}_2) + \ldots + \beta_n f(\vec{e}_n) = \vec{0}_w \Rightarrow$

 $f(\beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \ldots + \beta_n \vec{e}_n) = \vec{0}_w$

Entonces $\beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \ldots + \beta_n \vec{e}_n \in N_u(f)$. Pero $N_u(f) = {\vec{0}_v}$

Por lo tanto $\beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \ldots + \beta_n \vec{e}_n = \vec{0}_v$

Y como $\{\vec{e}_1, \vec{e}_2, \dots \vec{e}_n\}$ es un conjunto L.I. \Rightarrow

$$\beta_1 = \beta_2 = \ldots = \beta_n = 0$$

Luego A es un conjunto L.I. y por lo tanto base de W.