Programming Report

Task1: US Startups Founded per Year

Objective:

To count the number of US startups founded per year between 1985 and 2015, using the first patent grant year as the foundation year of the startup. A startup is defined as an organization with a patent application granted in a specific year.

Main Assumptions:

- 1. We consider the first patent grant date of each assignee as the foundation date for the startup. This is done by identifying the first patent granted to each assignee in the data set.
- 2. US startups are defined by their state of incorporation, which we inferred from the state provided in the g_location_disambiguated.csv. Only startups whose state is listed in the US states whitelist (e.g., CA for California, NY for New York, etc.) are considered.
- 3. Any company listed in the data set can have multiple patents; thus, we aggregate by unique assignees to count the startups accurately.

Results:

/Users/zhangshuhai/miniconda3/envs/research/bin/python /Users/zhangshuhai/Desktop/Research Bias/PythonProject/task1.py

=== US startups (unique assignees) founded per year (1985–2015) ===

	founding_year	num_startups
0	1985	2945
1	1986	2884
2	1987	3461
3	1988	3337
4	1989	4079
5	1990	3765
6	1991	3772
7	1992	3745
8	1993	3718
9	1994	4029
10	1995	3915
11	1996	4205
12	1997	4008
13	1998	5445
14	1999	5388
15	2000	5396
16	2001	5312
17	2002	4993
18	2003	5051
19	2004	4803

20	2005	4050
21	2006	4796
22	2007	4103
23	2008	3953
24	2009	3991
25	2010	5254
26	2011	5070
27	2012	5618
28	2013	6358
29	2014	6457
30	2015	6255

Saved files:

- CSV: /Users/zhangshuhai/Desktop/Programming Test Task1/task1_startup_counts_us_by_assignee_20250923-113745.csv
- TXT: /Users/zhangshuhai/Desktop/Programming Test Task1/task1_console_output_20250923-113745.txt
- FIG: /Users/zhangshuhai/Desktop/Programming Test Task1/task1_startup_counts_us_by_assignee_20250923-113745.png

Process finished with exit code 0

Suggestions:

Many startups may not have filed patents in the early stages of their operations. While the first patent date is used for the analysis, considering startups without patents could offer a more holistic view of startup formation and innovation trends.

While using the first patent date is a reasonable definition for a "startup," further refinement could include distinguishing between different types of startups (e.g., tech vs. non-tech startups).

Task2: Share of Startups' First Patents Among All Patents (1985–2015)

Objective:

We need to compute, for each calendar year from 1985 to 2015, the share of patents that are first patents of U.S. startups.

Main Assumptions:

- 1. The task focuses on U.S. startups. We operationalize "U.S." via the assignee location on the relevant patent
- 2. A startup is founded in the grant year of its first patent. We identify each assignee's earliest (min) grant and call that patent its first patent; the grant year is the founding year.
- 3. A patent is treated as U.S. if at least one assignee location on that patent is in the United States
- 4. A U.S. startup is an assignee for which its first patent has at least one U.S. assignee location.

Results:

/Users/zhangshuhai/miniconda3/envs/research/bin/python /Users/zhangshuhai/Desktop/Research Bias/PythonProject/task2.py

Computing per-year stats (US only): 100% 47/47 [00:00<00:00, 137.04it/s]

Share of US startups' first patents among ALL US patents (1985–2015):

year	all_patents_us first_patents_u	s share_first	
1985	32924	2870	0.087170
1986	31107	2852	0.091684
1987	35424	3415	0.096404
1988	32814	3293	0.100354
1989	40301	4013	0.099576
1990	37906	3713	0.097953
1991	41123	3735	0.090825
1992	42222	3687	0.087324
1993	43720	3670	0.083943
1994	46054	3948	0.085725
1995	45847	3847	0.083910
1996	50606	4087	0.080761
1997	52116	3905	0.074929
1998	68376	5290	0.077366
1999	71718	5350	0.074598
2000	73193	5232	0.071482
2001	76719	5259	0.068549
2002	76287	4924	0.064546

2003	77418	4900	0.063293
2004	75074	4630	0.061672
2005	66712	3959	0.059345
2006	80633	4678	0.058016
2007	72030	4023	0.055852
2008	71143	3901	0.054833
2009	76154	3934	0.051658
2010	99314	5123	0.051584
2011	101199	4967	0.049082
2012	113660	5522	0.048583
2013	126782	6259	0.049368
2014	138596	6361	0.045896
2015	135614	6165	0.045460

Saved files:

- Console output: /Users/zhangshuhai/Desktop/Programming Test Task2/task2_console_output_20250923-114009.txt
- Figure: /Users/zhangshuhai/Desktop/Programming Test Task2/task2_figure_20250923-114009.png

Process finished with exit code 0

Suggestions:

Any residual disambiguation error in assignee_id (splits/merges) can bias the counts. If time permits, spot-check large assignees for ID stability.

We accepted all state values when country == "US". A stricter filter could whitelist only valid U.S. state/territory codes to drop rare miscodings.

Multiple first patents on same day: Extremely rare ties (same-day grants) could be broken deterministically (e.g., min patent_id) to ensure exactly one first patent per startup.

Task3: Top U.S. States by Startup Count (1985–2015)

Objective:

We calculated the number of startups founded in each U.S. state between 1985 and 2015 based on their first patent grant date (which is assumed to be the startup's founding year).

Assumptions:

- 1. A startup is defined as an assignee (company) whose first patent grant (patent with earliest grant date) is considered its founding year. Each assignee's first patent is identified using the first patents function.
- 2. If a startup's first patent lacks location information (i.e., missing location_id), it is excluded from the analysis, as the state cannot be determined without the location data.
- 3. We define a U.S. startup as an assignee whose first patent has at least one U.S. location.
- 4. U.S. locations are filtered using the state abbreviations to ensure proper mapping of states.

Results:

/Users/zhangshuhai/miniconda3/envs/research/bin/python /Users/zhangshuhai/Desktop/Research Bias/PythonProject/task3.py

[Info] Startups without location_id on their first patent: 2533

=== Top US States by Startup Count (Founding years 1985-2015) ===

state	num	startups

0	CA	26887
1	TX	8241
2	NY	7766
3	FL	6161
4	MA	5993
5	IL	5921
6	MI	5014
7	NJ	4968
8	ОН	4959
9	PA	4936

Saved files:

- TXT: /Users/zhangshuhai/Desktop/Programming Test Task3/task3_console_output_20250923-115213.txt
- FIG: /Users/zhangshuhai/Desktop/Programming Test Task3/task3_top_states_20250923-115213.png

Process finished with exit code 0

^{***} State with the most startups: CA (26887 startups) ***

Suggestions:

If a first patent has multiple assignees, pick one deterministic primary state (e.g., the assignee with the lowest assignee_id or earliest address record) to avoid multi-state double counting; log the count of multi-state cases.

Add a per-capita view (normalize by 1990/2000 population) or at least show share (%) next to counts; annotate bars with values to make rank differences obvious.

Task 4 CPC Classes with the Largest Number of US Startups (1985–2015)

Objective:

Identify the CPC technology classes associated with the largest number of U.S. startups founded between 1985 and 2015, where a "startup" is defined as an assignee whose first granted patent (grant date = founding date) falls in the window. The output is a ranking of CPC classes by the count of distinct startups.

Assumptions:

- 1. Founding = first grant date of the first patent (as specified in the assignment).
- 2. US status is determined by the assignee's location on the first patent; other co-assignees or later relocations are ignored.
- 3. If CPC primary is available it is authoritative; if not, we treat the first patent as a multi-label record but prevent double counting of the same firm within a class.
- 4. If a startup's first patent lacks any CPC entry, we cannot credibly assign a technology class, so it is omitted from the CPC tally (but its count is reported).

Results:

/Users/zhangshuhai/miniconda3/envs/research/bin/python /Users/zhangshuhai/Desktop/Research Bias/PythonProject/task4.py

[Info] Startups without location_id on their first patent: 2533

[Info] Non-US startups dropped: 122102

[Info] Startups without CPC class on their first patent: 100

=== CPC classes with the largest number of US startups (1985–2015) ===

cpc class num startups

A61	14834
G06	12589
H04	8380
G01	7154
H01	4668

A63	4432
B65	4377
A47	4109
A01	3589
F16	3420

[Saved] Console summary → /Users/zhangshuhai/Desktop/Programming Test Task4/task4 console output 20250923-120711.txt

Saved files:

- task4_startups_by_cpc_class.csv
- task4 top10 cpc class.csv

[Sanity] US startups in window (input): 134,347

[Sanity] US startups with mappable CPC: 133,786

[Info] CPC counting used deduplicated multi-label mode (startup may appear in multiple classes, but counted at most once per class).

Process finished with exit code 0

Suggestions:

Sensitivity analyses: (a) use the first 3–5 years of patents per startup to define a majority CPC; (b) compare primary-only vs. multi-label outcomes.

State robustness: when location_id is missing on the first patent, fall back to the earliest available assignee location within $\pm 1-2$ years.

Task5 Average innovation quantity & quality by founding year (US only)

Objective: Visualize the average quantity and quality of startups' innovative output by founding year.

Assumptions:

- 1. Startup definition & timing. A startup is an assignee; its founding year is the grant year of its first patent. This aligns with Tasks 1–4.
- 2. US filter. We keep only US startups, determined from the assignee row on the startup's first patent. Non-US or missing-location first patents are excluded to keep the state logic consistent with earlier tasks.
- 3. Windows. Innovation quantity counts the startup's patents within 0–5 years after the first grant (same-assignee filings). Innovation quality counts forward citations to the first patent within 0–5 years from grant.
- 4. Citations input. Citations are streamed from the two large files to avoid memory issues; only citations that land within 5 years of the first grant are counted.
- 5. Aggregation. For each founding year we compute means across startups (not per-patent averages). Missing metrics are treated as 0 so cohorts include startups with no follow-on patents and/or no early citations.

Results:

[START] Load g_patent, g_assignee_disambiguated, g_location ... [DONE] Load g_patent, g_assignee_disambiguated, g_location in 73.9s pat shape: (7403393, 2) | asg shape: (6926219, 3) | loc shape: (77755, 3)

[START] Identify first patent per assignee ...
[DONE] Identify first patent per assignee in 8.6s

[START] US-filter on the assignee row of the FIRST patent ...
[DONE] US-filter on the assignee row of the FIRST patent in 2.9s

[START] Apply safe cohort window (full 5y coverage) ... Founding years used: 1985–2015 (full 5y windows)
[DONE] Apply safe cohort window (full 5y coverage) in 0.2s

[START] Compute innovation QUANTITY (0–5y) ... [DONE] Compute innovation QUANTITY (0–5y) in 2.4s

[START] Compute innovation QUALITY via streaming citations ...
[DONE] Compute innovation QUALITY via streaming citations in 246.7s

[START] Assemble per-startup table and aggregate means by year ...

	rounding_year avg_	innov_quantity avg_inno	ov_quanty
0	1985	1.973184	2.362525
1	1986	2.680872	2.727331
2	1987	2.991128	2.974242
3	1988	2.209946	2.930316
4	1989	1.914483	2.818092

[DONE] Assemble per-startup table and aggregate means by year in $0.3\mathrm{s}$

=== Average Startup Innovation Quantity & Quality by Founding Year (1985–2015, US only)

===

(Computed on cohorts 1985–2015 with a 5-year window after the first patent)

founding_year	avg_innov_quantity	avg_innov_quality
1985	1.97318	34 2.362525
1986	2.68087	72 2.727331
1987	2.99112	28 2.974242
1988	2.20994	2.930316
1989	1.91448	2.818092
1990	2.13868	3.020348
1991	2.27432	3.032088
1992	2.11075	3.445421
1993	2.62188	3.603558
1994	2.95661	16 4.234273

1995	2.522881	4.440458
1996	4.233782	4.787271
1997	3.442491	5.110246
1998	3.181853	5.520587
1999	4.552005	5.479009
2000	3.786214	5.004272
2001	3.582857	4.729524
2002	3.033818	4.342898
2003	4.374415	3.805369
2004	2.742544	3.749561
2005	2.069113	3.395828
2006	2.961771	4.272570
2007	2.963822	3.971058
2008	4.041625	4.215898
2009	3.451820	4.059713
2010	3.940980	4.167421
2011	3.560649	4.301623
2012	3.541020	4.036360
2013	3.383439	3.976086
2014	5.346337	3.728671
2015	3.699541	3.388907

[Saved] Files:

- TXT: /Users/zhangshuhai/Desktop/Programming Test

 $Task5/task5_console_output_20250923\text{-}163748.txt$

- FIG: /Users/zhangshuhai/Desktop/Programming Test Task5/task5_avg_qty_quality_20250923-163748.png

_ -----

Process finished with exit code 0

Suggestions:

Self-citation check. Exclude assignee self-citations to the first patent as a robustness test.

Include vs exclude first patent. Show both versions of quantity (± 1) in a small compare table.

This setup keeps Task 5 aligned with Tasks 1–4 (same startup definition, US filter, and first-patent anchor), while guarding against right-truncation and mechanical inflation of quantity.

Objective:

Compare the quantity and quality of startup innovation by startups founded between 1995 and 1999 and by startups founded between 2003 and 2007.

Assumptions(aligned with Tasks 1–5):

- 1. Startup definition: a unique assignee; founding year is the grant year of its first patent.
- 2. US filter: The assignee is treated as US if, on the specific assignee row of its first patent, the linked location maps to disambiguated_country $\in \{US, USA\}$ and has a non-missing state. Startups with missing location_id at the first patent are excluded (can't be attributed to US).
- 3. Windows: Fixed 0–5 years after the first patent grant for both metrics.
- 4. Quantity: We exclude the first patent from the 0–5y count, avoiding mechanical inflation of year-0 activity.
- 5. Quality (citations): All forward citations to the first patent within 5 years are counted; missing or none \rightarrow 0. (Self-citations not removed unless explicitly flagged in source; see suggestions.)
- 6. Robustness: Because patent/citation distributions are heavy-tailed, we supplement mean-based tests with Mann–Whitney U and robust summaries.

Results:

/Users/zhangshuhai/miniconda3/envs/research/bin/python /Users/zhangshuhai/Desktop/Research Bias/PythonProject/task6.py

[START] Load g patent, g assignee disambiguated, g location ...

[DONE] Load g patent, g assignee disambiguated, g location in 74.5s

[START] Identify first patents per assignee (startups) ...

[DONE] Identify first patents per assignee (startups) in 8.7s

[START] US-filter on the assignee row of the FIRST patent ...

[DONE] US-filter on the assignee row of the FIRST patent in 3.2s

Cohorts used (safe): A=1995-1999, B=2003-2007 [DONE] Apply safe 5y window (avoid right truncation) in 0.2s [START] Compute innov quantity (0–5y patents) ... [DONE] Compute innov quantity (0–5y patents) in 2.3s [START] Compute innov quality (0–5y citations to FIRST patent) ... [DONE] Compute innov quality (0–5y citations to FIRST patent) in 238.4s [START] Assemble per-startup dataset (US-only) ... [DONE] Assemble per-startup dataset (US-only) in 0.1s [START] Cohort summary & significance tests ... === Task 6: Cohort Comparison (US-only; 1995–1999 vs 2003–2007) === metric A mean A sd B mean A n B sd Welch p MWU U B nWelch t MWU p innov quantity (0-5y patents) 3.629394 48.236560 22447 3.070517 61.603381 22094 1.064921 2.869177e-01 253795855.5 2.555631e-06 innov quality (0-5y citations) 5.119481 8.786917 22447 3.848058 7.048689 22094 16.857559 1.481491e-63 292499516.5 2.185627e-241 [DONE] Cohort summary & significance tests in 0.0s

=== Robust Checks (median/IQR, 5% trimmed mean, mean log(1+x)) ===

[START] Apply safe 5y window (avoid right truncation) ...

	metric cohort	median	IQR	trimmed_mean_5pct	mean_log1p
n					
innov_quantity (0	(-5y) A	0.0	2.0	1.285552	0.654723 22447
innov_quantity (0	9–5y) B	0.0	2.0	1.152268	0.611914 22094
innov_quality (0	(-5y) A	3.0	5.0	3.822997	1.340648 22447
innov_quality (0	9–5y) B	2.0	4.0	2.722317	1.068847 22094

[START] Save outputs ...

Saved to Desktop (or fallback) folder:

- /Users/zhangshuhai/Desktop/Programming Test Task6/task6 console output 20250923-165040.txt

Saved:

- task6 per startup metrics us only.csv
- task6_cohort_comparison_summary_us_only.csv
- task6_robust_checks_us_only.csv

[DONE] Save outputs in 0.1s

Process finished with exit code 0

Suggestions:

Industry controls: Compare within CPC buckets or weight cohorts to a common CPC mix.

Survival & size: Condition on survival (still patenting after y years) or control for early portfolio size.

Distributional visuals: Add ECDFs/quantile plots or violin plots to illustrate heavy tails.

Task 7: Share of Acquired Startups by Founding Year (1985–2010)

Objective:

Visualize the share of acquired startups by founding year.

Assumptions (Aligned with 1-6):

- 1. Founding proxy: first-grant date \approx startup founding year.
- 2. US attribution: US status is determined at first patent (assignee row); later relocations are ignored.
- 3. Acquisition proxy: USPTO assignment/merger filings within 10y capture acquisitions. We assume our keyword/regex cleaning removes most non-M&A admin filings.
- 4. Event coverage: if an acquisition lacks a corresponding USPTO assignment filing (or if it's miscoded), it will be missed.
- 5. Window integrity: cohorts after safe end (2010) are excluded to avoid under-measuring the 10-year horizon.
- 6. One startup, one outcome: if multiple qualifying events occur, the startup is counted once as acquired (no double counting).

Results:

/Users/zhangshuhai/miniconda3/envs/research/bin/python /Users/zhangshuhai/Desktop/Research Bias/PythonProject/task7.py

[START] Load patents, assignees, locations ...

[DONE] Load patents, assignees, locations in 79.2s

[START] Identify first patents per assignee ...

[DONE] Identify first patents per assignee in 8.8s

[START] US-only on the FIRST-patent assignee row ...

[DONE] US-only on the FIRST-patent assignee row in 3.1s

[START] Scan pa.csv for max exec dt (safe window) ...

[DONE] Scan pa.csv for max exec dt (safe window) in 2.5s

[START] Build per-startup patent set within 0–10y window ...

[DONE] Build per-startup patent set within 0–10y window in 5.1s

[START] Flag acquisitions from pa.csv (streaming) ...

[DONE] Flag acquisitions from pa.csv (streaming) in 4.3s

[START] Aggregate acquisition share by founding year ...

[DONE] Aggregate acquisition share by founding year in 0.1s

=== Task 7: Share of Acquired US Startups by Founding Year (1985–2010) ===

Mode: ALL patents within 10y

(Safe-end based on pa.csv max exec_dt year = 2020)

founding_year	startups	acquired	acquired_share(%)	
1985	282	24	723	25.60
1986	280	02	802	28.62
1987	33	14	971	29.30
1988	322	20	950	29.50
1989	393	34 1	1156	29.38
1990	363	30 1	1113	30.66
1991	36.	34 1	1072	29.50
1992	36	13 1	1119	30.97
1993	35′	79 1	1112	31.07
1994	38:	54 1	1196	31.03
1995	374	48 1	1237	33.00
1996	398	82 1	1318	33.10
1997	379	97 1	1267	33.37
1998	514	48 1	1717	33.35
1999	514	45 1	1743	33.88
2000	50:	59 1	1697	33.54
2001	508	86 1	1736	34.13
2002	470	69 1	1610	33.76
2003	47	79 1	1570	32.85

2004	4504	1490	33.08
2005	3883	1211	31.19
2006	4567	1535	33.61
2007	3938	1295	32.88
2008	3801	1271	33.44
2009	3820	1178	30.84
2010	5020	1479	29.46

[Saved] Files:

- TXT: /Users/zhangshuhai/Desktop/Programming Test Task7/task7_console_output_20250923-170028.txt

- FIG: /Users/zhangshuhai/Desktop/Programming Test Task7/task7_acquisition_share_20250923-170028.png

Saved table: task7 acquisition share by year.csv

Saved figure: task7_acquisition_share_by_year.png

Process finished with exit code 0

Suggestions:

Estimate Kaplan–Meier curves for time-to-acquisition and report cohort-specific hazards; avoids arbitrary fixed windows and handles censoring transparently.

Break out by state or CPC class (from Task 3/4), and by founding-year bins (pre-/post-1998, pre-/post-2001, etc.).

Cross-check a sample against Crunchbase/PitchBook/Orbis deal tags to quantify precision/recall of the USPTO-based proxy.

Task 8: Estimate linear regression models

Objective: explain which startup characteristics (measured from patents) correlate with being acquired. Outcome is a binary indicator for whether a startup is acquired within 10 years of its first patent grant.

Assumptions (aligned with Tasks 1–7):

- 1. Startup definition: a unique assignee; its founding year is the grant year of its first patent.
- 2. US-only cohort: keep startups whose first patent's assignee row maps to a U.S. location (country = "US/USA/United States" and a valid state).
- 3. Windows: innovation quantity and quality use a 0–5 year window after the first patent; acquisition uses 0–10 years after the first patent.
- 4. Acquisition signal: from pa.csv, we treat events whose normalized type contains "assignment" or "merger" as acquisitions; others (e.g., name changes, security interests) are ignored.
- 5. Timing guard: we check the max exec_dt in pa.csv and restrict founding years to ensure the full 10-year window is observable.
- 6. Missing values: innovation metrics are numeric; missing values are set to 0 before modeling.
- 7. Model: Linear Probability Model (OLS) with HC1 robust SE; include centered founding year (year c), tech and state dummies (drop-first).
- 8. Tech field = top CPC class of first patent; rare classes collapsed to "Other".
- 9. State = state attached to the first-patent assignee row; rare states collapsed to "Other".

Results:

/Users/zhangshuhai/miniconda3/envs/research/bin/python /Users/zhangshuhai/Desktop/Research Bias/PythonProject/task8.py OLS Regression Results

0.342 Dep. Variable: acquired R-squared: Model: **OLS** Adj. R-squared: 0.342 Method: Least Squares F-statistic: 1046. Date: Tue, 23 Sep 2025 Prob (F-statistic): 0.00 Time: 17:22:04 Log-Likelihood: -81658. No. Observations: 196035 AIC: 1.637e+05 Df Residuals: 195867 BIC: 1.654e + 05Df Model: 167 Covariance Type: HC1

0.0751	coef	std err	Z	P> z	[0.025
0.975]					
const	0.1160	0.027	4.367	0.000	0.064
0.168					
innov_quantity 0.001	0.0004	0.000	2.344	0.019	6.25e-05
innov quality	0.0033	0.000	13.878	0.000	0.003
0.004					
year_c	0.0008	0.000	5.111	0.000	0.001
0.001	0.6960	0.016	12 055	0.000	0.656
tech_slim_A21 0.718	0.6869	0.016	43.855	0.000	0.656
tech slim A22	0.1001	0.027	3.684	0.000	0.047
0.153					
tech_slim_A23	0.1184	0.013	9.046	0.000	0.093
0.144 tech slim A24	0.0461	0.043	1.086	0.278	-0.037
0.129	0.0401	0.043	1.000	0.278	-0.037
tech_slim_A41	0.0734	0.014	5.356	0.000	0.047
0.100					
tech_slim_A42	0.0026	0.021	0.125	0.900	-0.038
0.044 tech slim A43	0.0843	0.021	4.033	0.000	0.043
0.125	0.0013	0.021	1.055	0.000	0.015
tech_slim_A44	-0.0013	0.021	-0.063	0.949	-0.043
0.040	0.0252	0.010	2044	0.002	0.010
tech_slim_A45 0.059	0.0352	0.012	2.944	0.003	0.012
tech slim A46	0.0055	0.020	0.270	0.787	-0.034
0.045					
tech_slim_A47	-0.0054	0.007	-0.800	0.423	-0.019
0.008	0.1417	0.006	24.027	0.000	0.120
tech_slim_A61 0.153	0.1417	0.006	24.037	0.000	0.130
tech_slim_A62	0.0090	0.015	0.611	0.541	-0.020
0.038					
tech_slim_A63	-0.0412	0.006	-6.925	0.000	-0.053
-0.030	0.1105	0.010	11 520	0.000	0.099
tech_slim_B01 0.140	0.1195	0.010	11.538	0.000	0.033

tech_slim_B02 0.048	0.0090	0.020	0.457	0.648	-0.030
tech_slim_B03 0.154	0.0848	0.035	2.402	0.016	0.016
tech_slim_B04 0.269	0.1563	0.057	2.722	0.006	0.044
tech_slim_B05 -0.148	-0.1619	0.007	-23.059	0.000	-0.176
tech_slim_B07	-0.0031	0.026	-0.119	0.905	-0.054
tech_slim_B08	0.0893	0.026	3.453	0.001	0.039
tech_slim_B09 0.385	0.3194	0.034	9.471	0.000	0.253
tech_slim_B21 0.024	-0.0009	0.013	-0.073	0.942	-0.026
tech_slim_B22 0.170	0.1171	0.027	4.362	0.000	0.064
tech_slim_B23 0.103	0.0809	0.012	7.005	0.000	0.058
tech_slim_B24 -0.061	-0.0811	0.010	-8.072	0.000	-0.101
tech_slim_B25 0.661	0.6440	0.009	75.170	0.000	0.627
tech_slim_B26 0.048	0.0199	0.014	1.388	0.165	-0.008
tech_slim_B27 0.021	-0.0163	0.019	-0.846	0.398	-0.054
tech_slim_B28 0.070	0.0235	0.024	0.986	0.324	-0.023
tech_slim_B29 0.188	0.1616	0.014	11.811	0.000	0.135
tech_slim_B30 0.023	-0.0282	0.026	-1.070	0.285	-0.080
tech_slim_B31 0.230	0.1409	0.045	3.118	0.002	0.052
tech_slim_B32 0.229	0.1897	0.020	9.412	0.000	0.150
tech_slim_B41 0.202	0.1657	0.019	8.880	0.000	0.129
tech_slim_B42 0.035	0.0031	0.016	0.190	0.849	-0.028
tech_slim_B43 -0.004	-0.0367	0.017	-2.189	0.029	-0.070

tech_slim_B44 0.049	0.0082	0.021	0.394	0.694	-0.033
tech_slim_B60 0.068	0.0527	0.008	6.554	0.000	0.037
tech_slim_B61 0.004	-0.0341	0.019	-1.768	0.077	-0.072
tech_slim_B62 -0.043	-0.0575	0.007	-7.935	0.000	-0.072
tech_slim_B63 0.075	0.0512	0.012	4.160	0.000	0.027
tech_slim_B64 0.166	0.1286	0.019	6.781	0.000	0.091
tech_slim_B65 0.078	0.0636	0.007	8.732	0.000	0.049
tech_slim_B66 0.150	0.1121	0.019	5.828	0.000	0.074
tech_slim_B67 0.097	0.0593	0.019	3.057	0.002	0.021
tech_slim_B68 -0.023	-0.0583	0.018	-3.270	0.001	-0.093
tech_slim_B82 0.164	0.0875	0.039	2.249	0.025	0.011
tech_slim_C01 0.083	0.0417	0.021	1.963	0.050	6.17e-05
tech_slim_C02 0.110	0.0843	0.013	6.420	0.000	0.059
tech_slim_C03 0.130	0.0750	0.028	2.664	0.008	0.020
tech_slim_C04 0.104	0.0630	0.021	2.995	0.003	0.022
tech_slim_C05 -0.123	-0.1442	0.011	-13.525	0.000	-0.165
tech_slim_C07 0.167	0.1440	0.011	12.539	0.000	0.121
tech_slim_C08 0.174	0.1402	0.017	8.190	0.000	0.107
tech_slim_C09 0.179	0.1421	0.019	7.601	0.000	0.105
tech_slim_C10 0.182	0.1367	0.023	5.944	0.000	0.092
tech_slim_C11 0.061	0.0220	0.020	1.117	0.264	-0.017
tech_slim_C12 0.155	0.1281	0.014	9.446	0.000	0.102

tech_slim_C21 -0.073	-0.0913	0.009	-9.856	0.000	-0.109
tech_slim_C22 0.228	0.1716	0.029	5.975	0.000	0.115
tech_slim_C23 0.177	0.1279	0.025	5.089	0.000	0.079
tech_slim_C25	-0.1609	0.009	-17.716	0.000	-0.179
tech_slim_C30 0.276	0.1750	0.051	3.407	0.001	0.074
tech_slim_D01 0.167	0.0873	0.041	2.137	0.033	0.007
tech_slim_D02 0.285	0.1649	0.061	2.700	0.007	0.045
tech_slim_D04 -0.025	-0.0406	0.008	-5.228	0.000	-0.056
tech_slim_D05 0.085	0.0345	0.026	1.338	0.181	-0.016
tech_slim_D06 0.100	0.0611	0.020	3.109	0.002	0.023
tech_slim_D21 0.273	0.2043	0.035	5.824	0.000	0.136
tech_slim_E01 0.072	0.0435	0.015	2.991	0.003	0.015
tech_slim_E02 0.064	0.0359	0.014	2.495	0.013	0.008
tech_slim_E03 0.012	-0.0162	0.014	-1.118	0.264	-0.044
tech_slim_E04 0.244	0.2259	0.009	24.721	0.000	0.208
tech_slim_E05 0.032	0.0085	0.012	0.696	0.487	-0.015
tech_slim_E06 -0.003	-0.0217	0.010	-2.255	0.024	-0.041
tech_slim_E21 0.196	0.1687	0.014	12.127	0.000	0.141
tech_slim_F01 0.092	0.0624	0.015	4.137	0.000	0.033
tech_slim_F02 0.507	0.4814	0.013	36.978	0.000	0.456
tech_slim_F03 0.304	0.2438	0.031	7.891	0.000	0.183
tech_slim_F04 -0.030	-0.0494	0.010	-4.871	0.000	-0.069

tech_slim_F15 0.190	0.1080	0.042	2.581	0.010	0.026
tech_slim_F16 -0.001	-0.0163	0.008	-2.143	0.032	-0.031
tech_slim_F17 0.214	0.1334	0.041	3.244	0.001	0.053
tech_slim_F21 0.040	0.0134	0.014	0.983	0.325	-0.013
tech_slim_F22 0.199	0.0815	0.060	1.362	0.173	-0.036
tech_slim_F23	0.1577	0.019	8.145	0.000	0.120
tech_slim_F24 0.248	0.2193	0.015	15.040	0.000	0.191
tech_slim_F25 0.241	0.1976	0.022	8.941	0.000	0.154
tech_slim_F26 0.692	0.6668	0.013	51.081	0.000	0.641
tech_slim_F27 0.163	0.0869	0.039	2.238	0.025	0.011
tech_slim_F28	0.0684	0.023	2.930	0.003	0.023
tech_slim_F41 -0.068	-0.0826	0.007	-11.139	0.000	-0.097
tech_slim_F42 0.038	-0.0017	0.020	-0.083	0.934	-0.042
tech_slim_G01 0.087	0.0740	0.006	11.525	0.000	0.061
tech_slim_G02 0.145	0.1212	0.012	10.063	0.000	0.098
tech_slim_G03 0.109	0.0741	0.018	4.165	0.000	0.039
tech_slim_G04 0.054	-0.0053	0.030	-0.175	0.861	-0.064
tech_slim_G05 0.097	0.0677	0.015	4.514	0.000	0.038
tech_slim_G06 0.232	0.2179	0.007	30.224	0.000	0.204
tech_slim_G07 0.150	0.1221	0.014	8.657	0.000	0.094
tech_slim_G08 0.432	0.4071	0.013	32.190	0.000	0.382
tech_slim_G09 0.051	0.0305	0.010	2.969	0.003	0.010

tech_slim_G10	0.0912	0.018	5.013	0.000	0.056
0.127 tech_slim_G11	0.1288	0.015	8.530	0.000	0.099
0.158 tech_slim_G16	0.1187	0.031	3.861	0.000	0.058
0.179 tech_slim_G21	0.0607	0.028	2.137	0.033	0.005
0.116 tech_slim_H01	0.1308	0.008	15.651	0.000	0.114
0.147 tech_slim_H02	0.0754	0.012	6.499	0.000	0.053
0.098 tech_slim_H03	0.1655	0.017	9.996	0.000	0.133
0.198 tech_slim_H04	0.6071	0.006	100.188	0.000	0.595
0.619 tech_slim_H05	0.1354	0.014	9.483	0.000	0.107
0.163 tech_slim_Other 0.198	0.1335	0.033	4.024	0.000	0.068
state_slim_AL -0.022	-0.0830	0.031	-2.682	0.007	-0.144
state_slim_AR 0.153	0.0879	0.033	2.668	0.008	0.023
state_slim_AZ -0.001	-0.0554	0.028	-2.003	0.045	-0.110
state_slim_CA 0.154	0.1024	0.026	3.881	0.000	0.051
state_slim_CO 0.087	0.0331	0.028	1.197	0.231	-0.021
state_slim_CT 0.062	0.0075	0.028	0.267	0.789	-0.047
state_slim_DC -0.025	-0.0990	0.038	-2.628	0.009	-0.173
state_slim_DE 0.138	0.0776	0.031	2.509	0.012	0.017
state_slim_FL 0.103	0.0508	0.027	1.897	0.058	-0.002
state_slim_GA 0.059	0.0044	0.028	0.158	0.875	-0.050
state_slim_HI -0.067	-0.1297	0.032	-4.068	0.000	-0.192
state_slim_IA 0.172	0.1112	0.031	3.607	0.000	0.051

state_slim_ID 0.193	0.1291	0.032	3.974	0.000	0.065
state_slim_IL 0.054	0.0015	0.027	0.054	0.957	-0.051
state_slim_IN 0.028	-0.0265	0.028	-0.958	0.338	-0.081
state_slim_KS 0.120	0.0657	0.028	2.373	0.018	0.011
state_slim_KY -0.007	-0.0638	0.029	-2.183	0.029	-0.121
state_slim_LA 0.183	0.1243	0.030	4.178	0.000	0.066
state_slim_MA 0.059	0.0061	0.027	0.226	0.821	-0.047
state_slim_MD 0.015	-0.0400	0.028	-1.435	0.151	-0.095
state_slim_ME 0.119	0.0449	0.038	1.183	0.237	-0.030
state_slim_MI 0.056	0.0033	0.027	0.122	0.903	-0.049
state_slim_MN 0.067	0.0136	0.027	0.500	0.617	-0.040
state_slim_MO 0.114	0.0595	0.028	2.129	0.033	0.005
state_slim_MS 0.018	-0.0438	0.032	-1.388	0.165	-0.106
state_slim_MT 0.422	0.3476	0.038	9.165	0.000	0.273
state_slim_NC -0.038	-0.0907	0.027	-3.356	0.001	-0.144
state_slim_ND -0.089	-0.1554	0.034	-4.597	0.000	-0.222
state_slim_NE -0.032	-0.0897	0.029	-3.071	0.002	-0.147
state_slim_NH 0.058	-0.0023	0.031	-0.076	0.939	-0.062
state_slim_NJ 0.016	-0.0370	0.027	-1.374	0.169	-0.090
state_slim_NM 0.028	-0.0332	0.031	-1.065	0.287	-0.094
state_slim_NV 0.067	0.0091	0.030	0.307	0.759	-0.049
state_slim_NY -0.017	-0.0685	0.027	-2.586	0.010	-0.120

state_slim_OH	0.0142	0.027	0.525	0.599	-0.039
0.067 state_slim_OK 0.082	0.0242	0.029	0.819	0.413	-0.034
state_slim_OR 0.013	-0.0395	0.027	-1.476	0.140	-0.092
state_slim_PA 0.032	-0.0208	0.027	-0.774	0.439	-0.074
state_slim_PR 0.018	-0.0920	0.056	-1.640	0.101	-0.202
state_slim_RI 0.165	0.0973	0.034	2.823	0.005	0.030
state_slim_SC 0.074	0.0160	0.030	0.541	0.589	-0.042
state_slim_SD 0.050	-0.0316	0.042	-0.754	0.451	-0.114
state_slim_TN 0.040	-0.0151	0.028	-0.539	0.590	-0.070
state_slim_TX 0.135	0.0828	0.026	3.130	0.002	0.031
state_slim_UT -0.011	-0.0641	0.027	-2.377	0.017	-0.117
state_slim_VA -0.010	-0.0642	0.028	-2.305	0.021	-0.119
state_slim_VT 0.080	0.0044	0.039	0.114	0.909	-0.071
state_slim_WA 0.126	0.0736	0.027	2.735	0.006	0.021
state_slim_WI 0.030	-0.0228	0.027	-0.840	0.401	-0.076
state_slim_WV -0.015	-0.0749	0.030	-2.461	0.014	-0.135
state_slim_WY 0.046	-0.0368	0.043	-0.867	0.386	-0.120
Omnibus: 1.657		19771.646	Durbin-Wa	atson:	
Prob(Omnibus): Skew:		0.000 0.855	Jarque-Bera Prob(JB):	(JB):	26380.167
0.00 Kurtosis:		3.551	Cond. No.		6.97e+03

Notes:

- [1] Standard Errors are heteroscedasticity robust (HC1)
- [2] The condition number is large, 6.97e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Key coefficients (Δ acquisition probability; 'coef(pp)' = percentage points):

```
term coef se coef(pp)

const 0.1160 0.0266 11.6050

innov_quantity 0.0004 0.0002 0.0381

innov_quality 0.0033 0.0002 0.3277

year_c 0.0008 0.0002 0.0841
```

[Saved] Programming Test Task8 outputs:

- /Users/zhangshuhai/Desktop/Programming Test Task8/task8 key coefficients 20250923-172204.csv

- /Users/zhangshuhai/Desktop/Programming Test Task8/task8 model summary 20250923-172204.txt

- /Users/zhangshuhai/Desktop/Programming Test Task8/task8_design_matrix_cols_20250923-172204.txt

Process finished with exit code 0

Interpretations:

We analyzed which startups get acquired and how that relates to their early innovation, the year, technology field, and state. The model is a linear probability model, so each coefficient is the change in acquisition probability measured in percentage points, holding other factors constant. It explains a meaningful share of variation for a yes/no outcome ($R^2 \approx 0.34$). The baseline probability for a reference startup is about 11.6%.

Innovation quality matters far more than quantity. Each additional forward citation to a startup's early patent(s) is associated with about +0.33 percentage points higher chance of acquisition (coef ≈ 0.0033). Ten more citations correspond to roughly +3.3 points. In contrast, each extra patent adds only about +0.04 points (coef ≈ 0.0004), so five more patents add about +0.2 points. Buyers seem to value impactful ideas—signaled by citations—more than simply having more patents.

Acquisition likelihood rises slightly over time (about +0.08 points per calendar year; coef ≈ 0.0008), consistent with a long-run increase in M&A activity and market depth. Technology fields differ substantially even after controlling for innovation: some sectors show very large positive associations, suggesting hotter M&A demand there. States also vary, implying local ecosystems and networks matter beyond industry mix.

Uncertainty is quantified with heteroscedasticity-robust (HC1) standard errors. The high condition number indicates multicollinearity among some variables, which can make certain estimates noisier, though the broad patterns—quality over quantity, modest upward trend, clear tech and location differences—are robust.

In short, a startup with more highly cited early patents is meaningfully more likely to be acquired; piling up additional patents helps much less. Timing, sector, and place still shape the odds.

Suggestions:

Link-function robustness: replicate with Logit/Probit and report marginal effects; compare signs and magnitudes with LPM.

Variance robustness: compute clustered SE (e.g., by state or founding year) to account for within-group correlation.

Distributional robustness: re-estimate with winsorized or log(1+x) versions of quantity/quality; also report median/IQR contrasts.

Event-type sensitivity: (i) mergers only; (ii) assignment+merger excluding strings like "name change"/"security"; check stability of coefficients.

Heterogeneity: interact quality \times tech field and quantity \times founding-year to see if effects differ across technologies and over time.