Projet — Le problème du voyageur de commerce

Antoine de ROQUEMAUREL (Groupe 1.1)

1 Le projet

1.1 Compilation

- make ou make build Compile le projet
- make clean supprime les fichiers binaires (.o)

Une fois un make effectué le fichier exécutable est disponible en racine du projet, il se nomme voyageurDeCommerce.

1.2 Execution

Comme demandé dans le cahier des charges, le programme doit respecter une liste d'argument précis, exemples d'utilisation :

```
./voyageurDeCommerce -v -f resources/inputFiles/essai8.txt -bf
2 ./voyageurDeCommerce -f resources/inputFiles/essai8.txt -bf -lsr 50
3 ./voyageurDeCommerce -f resources/inputFiles/ulysse16.txt -lsnr 20 -lsr 50
4 ./voyageurDeCommerce -v -f resources/inputFiles/ulysse16.txt -ga 15 0.8
```

Listing 1 – Exemple d'execution du programme

1.3 Organisation des fichiers

Afin d'avoir une meilleur clarté, le projet est organisé en plusieurs fichiers, qui sont répartis dans différents dossiers, ci-dessous l'utilité de chacun des dossiers.

build Ce dossier contient les fichiers binaires (.o) du projet, ceux-ci seront supprimés en utilisant la commande make clean

doc Ce dossier contient la documentation générée à l'aide de doxygen du projet. ¹
La documentation du projet est également disponible à l'adresse suivante :

▷ http://documentation.joohoo.fr/L2/voyageurCommerce/

lib Ce dossier contient les fichiers headers (.h)

src Ce dossier contient les sources du projet (.c)

resources Ici sont entreposés les fichiers de ressources pouvant être utiles au programmes

2 Modifications apportés depuis la validation du 7 Janvier 2013

Les modifications depuis la validation :

 $^{1.\,}$ Celle-ci est disponible en format HTML ou pdf.

- Correction bug des recherches locales.
- Développement de la partie 3, algorithmes génétiques

Pour la partie sur les algorithmes génétiques, il n'est pas précisé dans le sujet que le nombrez N d'individus doit être passé en paramètre du programme, ainsi cette valeur n'est présente qu'en paramètre de la fonction genetic_bestPath afin de respecter le cahier des charges du point de vue des arguments.

3 Programmation avec preuve de util searchFirstOccurence

3.1 Spécification

3.2 Programmation

```
/* N > 0 */
     p = 0;
 2
     /* INV = \forall J : 0 \le J \le p \rightarrow T[J] \ne R */ while(p < N && T[p] != R) {
        /* p < N \land T[p] \neq R \land INV */
 5
 6
        /* INV */
 8
     /*~p~>~\text{N}~\wedge~\text{T[p]}~=~\text{R}~\wedge~\forall \text{J}\colon~\text{O}~\leq~\text{J}~<~p~\rightarrow~\text{T[J]}~\neq~\text{R}~*/
     if(p == N-1) {
10
        p = -1;
11
     /* (( \forall I: 0 \leq I < N \rightarrow T[I] \neq R) \rightarrow p = -1) \land
13
       * ((\exists p : 0 \le \langle N \land T[p] = R) \land \forall J : 0 \le J \langle p \rightarrow T[J] \ne R)
14
15
```

3.3 Preuve de programme

3.3.1 Initialisation

$$\begin{array}{cccc} N > 0 & \rightarrow & \texttt{pfp}("p = 0", \forall J : 0 \leq J 0 & \rightarrow & \underbrace{\forall J : 0 \leq J < 0}_{I} \rightarrow T[J] \neq R) \end{array}$$

 $-\ 2\ -$

L'initialisation est donc correct.