

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

1 特性

- 通过 USB PD3.0 认证 (TID: 3479)
- 支持 USB Type -C 协议
 - 配置为 DFP (Source)
 - 广播 3A/1.5A 电流
- 支持 USB Power Delivery (PD) 2.0 和 3.0 以及 PPS 协议
 - 集成完整 PD 分层通信协议
 - PDO 可配置: 5V, 9V, 12V, 15V, 20V
 - 输出功率高至 65W
 - APDO 可配置: 5V Prog, 9V Prog, 15V Prog, 20V Prog
- 支持 Quick Charge 3.0+/3.0/2.0 协议
 - 支持小米 CHARGE TURBO 27W 协议
- 支持华为 FCP/SCP/HVSCP 协议
- 支持三星 AFC 协议
- 支持 USB BC1.2 DCP
- 支持 Apple 2.4A 充电规范
- 集成恒压 (CV) 环路控制
- 集成 10mΩ VBUS 通路功率开关管

- 集成 10mΩ电流检测电阻
- 内置 VPWR 和 VBUS 双放电通路
- 支持线损补偿功能
- 支持 USB Type-A 和 Type-C 双口工作模式
 - 独立工作都有快充, 同时工作回 5V
 - A 口连接苹果充电线但未接入苹果手机时, C口仍然有快充
- A 口充饱关断电流阈值 10mA, 小电流充电
- 安全性
 - 过压/欠压保护
 - 过流保护
 - 过温保护
- CC1/CC2/DP1/DM1/DP2/DM2 过压保护
- ESD 特性± 4KV
- Package: TSSOP-16

应用

- AC-DC 话配器
- USB 充电设备

3 应用简图

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

4 概述

XPD738 是一款集成 USB Type-C、USB Power Delivery (PD) 2.0/3.0 以及 PPS、QC3.0+/QC3.0/QC2.0 快充协议、华为 FCP/SCP/HVSCP 快充协议、三星 AFC 快充协议、BC1.2 DCP 以及苹果设备 2.4A 充电规范的多功能 USB Type-C 和 Type-A 双端口控制器。

XPD738 内置的 Type-C 协议可以支持 Type-C 设备插入自动唤醒,智能识别插头的正插与反插,并实现连接。XPD738 集成的 PD 协议支持双向标记编码(BMC),集成硬件的物理层协议和协议引擎,无需软件参与编解码。

当 Type-C 和 Type-A 其中一个端口接入设备时,Type-C 或 Type-A 端口都可以实现独立的快充功能。当 Type-C 和 Type-A 都接入设备时,XPD738 会将输出电压降至 5V 给设备供电。特别的,当 Type-A 口一直连接苹果充电线但未接入苹果手机时,Type-C 口仍然有快充功能。作为充电器应用时,充电线会经常与充电器连接在一起。XPD738 完美解决了 Type-A 和 Type-C 口连接充电线应用时的快充难题。此外,Type-A 口充饱关断电流阈值低至 10mA,可支持智能穿戴设备小电流充电。

XPD738 通过一路可 Sink/Source 的电流源,连接到 AC-DC 或 DC-DC 的反馈引脚实现动态调节电压。不管是启动还是调压过程,都具备软启动功能,实现电压平顺过渡。

XPD738 内建多种保护机制确保设备安全:包括动态过压/欠压/过流保护(可根据设备请求的工作电压/电流按照比例调整保护点);启动监测(VBUS 输出前会监测端口电压是否处于安全状态)。

XPD738 集成 10mΩ VBUS 功率开关管,集成 10 mΩ 电流检测电阻,内置 VPWR 和 VBUS 双放电通路,节省了外围器件,发生错误时可以快速关闭输出并恢复到安全状态。 XPD738 采用 TSSOP16 封装,外围简洁,很容易通过 USB PD 认证测试。

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

5 引脚定义

引脚序号	名称	描述		
1/2	VPWR	输入电源		
3	OPTO	光耦驱动		
4	VFB	电压调节端口 (接到系统电压反馈点)		
5	GND	电源地		
6	ISP2	Type-A 口电流检测端口		
7	GD2	Type-A 口电源通路上 PMOS 开关驱动		
8	VBUSA	Type-A 口输出电源		
9	DP2	Type-A □ DP		
10	DM2	Type-A □ DM		
11	DP1	Type-C □ DP		
12	DM1	Type-C □ DM		
13	CC1	Type-C 检测引脚 CC1		
14	CC2	Type-C 检测引脚 CC2		
15/16	VBUS	VBUS 输出		

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

6 订购信息

料号	USB Type-C 端口 PDO 和 APDO 配置	QC 配置	印字	封装
XPD738A	PDO : 5V/3A, 9V/2.22A	ClassA		
XPD738B	PDO : 5V/3A, 9V/2.22A, 12V/1.67A	ClassA		
	PDO: 5V/3A, 9V/2.22A, 12V/1.67A	ClassA		
XPD738BP	APDO1: 3.3-5.9V/3A			
	APDO2 : 3.3-11V/1.8A			
	PDO : 5V/3A, 9V/2.77A	ClassA		
XPD738APS25	APDO1: 3.3-5.9V/3A			
	APDO2: 3.3-11V/2.25A			
	PDO : 5V/3A, 9V/2.77A	ClassA		
XPD738APS30	APDO1: 3.3-5.9V/3A			
	APDO2: 3.3-11V/2.75A			
XPD738D30	PDO : 5V/3A, 9V/3A, 12V/2.5A, 15V/2A,	ClassB		
XFD/36D30	20V/1.5A			
	PDO : 5V/3A, 9V/3A, 12V/2.5A, 15V/2A,	ClassB	XPD738	TSSOP16
XPD738DP30	20V/1.5A		XXXXX	1330F10 3K/盘
XFD/36DF30	APDO1: 3.3-11V/3A		70000	31ty iiii.
	APDO2: 3.3-16V/2A			
XPD738D45	PDO : 5V/3A, 9V/3A, 12V/2.5A, 15V/3A,	ClassB		
XFD/36D43	20V/2.25A			
	PDO : 5V/3A, 9V/3A, 12V/3A, 15V/3A,	ClassB		
XPD738DP45	20V/2.25A			
APD/36DP43	APDO1: 3.3-11V/3A			
	APDO2: 3.3-21V/2.15A			
XPD738D60	PDO:5V/3A, 9V/3A, 12V/2.5A, 15V/3A,	ClassB		
XPD/38D60	20V/3A			
	PDO: 5V/3A, 9V/3A, 12V/3A, 15V/3A,	ClassB		
XPD738DP60	20V/3A			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	APDO1: 3.3-11V/3A			
	APDO2: 3.3-21V/2.85A			
可定制	可定制			

印字说明:

第一行, XPD738: 芯片型号;

第二行,XXXXX: Lot Number, XX: 版本信息。

注 1: 以上料号 A 口默认不开启 SCP, 如需要支持 SCP, 需要定制, 且如果开启为更好兼容 SCP, 5V 初始电压需设置为 5.2V,同时 Type-A 口电流检测电阻需改成 8mΩ。

注 2: QC 支持的最高电压与 PDO 广播的最高电压一致,而与 APDO 广播电压无关。

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

选型参考

	QC3.0	FCP/SCP	AFC	PD3.0	PPS	CV	A+C	SR	SR MOS	XPD-LINK
XPD618	√	√	√	√						
XPD636	√	√	√	√			√			
XPD720	√	√	√	√	√	√				
XPD738	√	√	√	~	√	√	√			
XPD737	√	√	√	√	√					√
XPD767	√	√	√	√	√		√			√
XPD818	√	√	√	~		√		√	√	
XPD819	√	√	√	√	·	√		√	√	
XPD865	√	√	√	√		√		√		

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

7 规格参数

7.1 极限工作参数(1)

参数		最小值	最大值	单位
耐压值	VPWR, VBUS, VBUSA, CC1, CC2, DP1, DM1, DP2, DM2, OPTO	-0.3	28	٧
	其他	-0.3	7	V
结温		-40	150	°C
存储温度		-65	150	°C

⁽¹⁾ 超出极限工作范围值可能会造成器件永久性损坏。长期工作在极限额定值下可能会影响器件的可靠性。

7.2 ESD 性能

符号	参数	值	单位
V _{ESD}	НВМ	±4000	V

ESD 测试基于人体放电模型(HBM)。

7.3 推荐工作条件

	参数	最小值	典型值	最大值	单位
VPWR	输入电压	3.6		21	V
C _{VBUS}	VBUS 电容		1		μF
C _{VPWR}	VPWR 电容	4.7	10		μF
R _{FB1}	系统电压分压电阻		100		kΩ
R _{FB2}	系统电压分压电阻		33		kΩ
Rs	Type-A 口电流检测电阻		10		mΩ
T _A	工作环境温度	-40		85	°C

7.4 热阻值

符号	参数	值	单位
$R_{\theta JA}$	结温和周围温度之间的热阻(1)	100	
R _{0JCtop}	结温和封装外壳表面温度之间的热阻	36	°C/W
R _{ӨЈВ}	结温和板温度之间的热阻	45	

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

7.5 电气特性

如无特殊说明,下述参数均在该条件下取得: T」= 25℃, 3.3V≤VPWR≤16V

3H 7L 1177/N 10L 197	,一定多数构正的小	「水付: IJ- ZJ C , 3.3V SV F VV N S .	LOV			
	参数	测试条件	最小	典型	最大	单位
	ન <i>ય</i>	芯片供电相关(VPWR,VBUS)				
		Rising edge		3.3		
V_{VPWR_TH}	VPWR UVLO 门限	Falling edge		2.9		V
		Hysteresis		0.4		
I _{SUPP}	典型工作电流	VPWR=5V, VBUS=5V		2		mA
	·	Voltage Protection (VBUS)				•
V_{FOVP}	Fast OVP 门限, always enabled	Ref to target voltage		+20%		V
V _{SOVP}	Slow OVP 门限	Ref to target voltage		+15%		V
V _{SUVP}	VBUS UVP 门限	Ref to target voltage		-22%		V
		Switch MOSFET				
R _{DSON}				10		mΩ
	-	A 口轻载电流	l			Į.
Ith	小电流关断阈值	10mohm 1%采样电阻	2.5	12.5	22.5	mA
		Transmitter (CC1, CC2)	•			
R _{TX}	Output resistance	During transmission		50		Ω
V _{TXHI}	Transmit HIGH			1.15		V
V _{TXLO}	Transmit LOW		-75		75	mV
tuı	Bit unit interval			3.3		us
t _{BMC}	Rise/fall time of BMC	R _{load} =5.1k,C _{load} =1nF	300		600	ns
	·	Receiver (CC1, CC2)				•
V _{RXHI}	Receive HIGH		800	840	885	
V _{RXLO}	Receive LOW		485	525	570	mV
	CC1/CC2	3A DFP mode, $0 \le V_{CCX} \le 2.5V$	304	330	356	uA
I _{RP_SRC}	Broadcasting current	1.5A DFP mode, $0 \le V_{CCX} \le$ 1.5V	166	180	194	uA
		ОСР				
V _{ITRIP}		Ref to Power Capability(pd)		+30%		Α
		OTP (internal)	I.	1		I
		Temperature rising edge	135	145	155	$^{\circ}$ C
T_{J1}	Die temperature	Hysteresis		20		$^{\circ}$
		HVDCP interface (DP, DM)	I	I		I
V _{DAT(REF)}	数据线检测电压	, , ,	0.25	0.325	0.4	V
V _{SEL(REF)}	输出电压选择		1.8	2	2.2	V
T _{GLITCH(DP)HIGH}	D+高电平扰动滤 波时间		1	1.25	1.5	S
$T_{GLITCH(DM)LOW}$	D-低电平扰动滤 波时间			1		ms

Version 1.7

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

	输出电压扰动滤					
$T_{GLITCH(V)CHANGE}$	波时间		20	40	60	ms
	连续模式的扰动					
T _{GLITCH} (CONT)CHANGE	滤波时间		100	150	200	us
R _{DAT(LKG)}	D+漏泄电阻		300	500	800	ΚΩ
R _{DM(DWN)}	D-下拉电阻		14.25	19.53	24.5	ΚΩ
R _{ON(N1)}	开关 N1 导通电 阻			40	100	Ω
V _{TH(PD)}	受电设备连接检 测电压阈值		0.25	0.325	0.4	V
TD_PD	受电设备连接检 测滤波时间		120	160	200	ms
$\Delta I_{T(UP)}$	电压升高时电流 源阶跃步长	R _{IREF} =100KΩ		2		uA
$\Delta I_{T(DO)}$	电压降低时电流 源阶跃步长	R _{IREF} =100KΩ		2		uA
		Apple 2.4A 充电模式				
V _{DAT(2.7V)}	D+/D-数据线电压		2.57	2.7	2.84	V
R _{DAT(2.7V)}	D+/D-数据线输出 阻抗			15		ΚΩ
		FCP 充电模式				
V _{TX-VOH}	D- FCP TX Valid High			2.7		V
V_{TX-VOL}	D- FCP TX Valid Low				0.3	V
V _{RX-VIH}	D- FCP RX Valid High			1.2		V
V _{RX-VIL}	D- FCP RX Valid High			0.9		V
Trise	FCP Pulse Rise Time	10% - 90%			2.5	us
Tfall	FCP Pulse Fall Time	90% - 10%			2.5	us

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

8 应用信息

8.1 功能模块图

Copyright©2020,云矽半导体

8.2 VPWR、VBUS 和 VBUSA

VPWR 是 USB Type-C 口 VBUS 和 USB Type-A 口 VBUSA 的输入电源,也是芯片的供电电源。VPWR 连接前级 AC-DC 或者 DC-DC 的电源输出端。建议靠近 VPWR 接对地电容 C_{VPWR},推荐 C_{VPWR} 典型值为 10μF。根据 USB 组织要求,Type-C 口 VBUS 需要接对地电容 C_{VBUS},C_{VBUS} 值不能大于 10μF。Type-A 口 VBUSA 无需接对地电容。

8.3 恒压环路与 OPTO、VFB

XPD738 内部集成恒压运算放大器,通过 OPTO 和 VFB 形成恒压环路(CV),如下图所示。OPTO 端口直接驱动光耦,可以省掉传统的 TL431。OPTO 可以耐压至 25V 以上。

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

恒压环路(CV)需要在外部进行补偿,补偿电阻 R_{CMP} 和补偿电容 C_{CMP} 由具体应用决定。VFB 内部的基准电压为 1.24V。VPWR 上的反馈电阻网络的分压电阻 R_{FB1} 必须接 100 $k\Omega$ 。

如果初始输出电压设定为 5V,则另一个分压电阻 R_{FB2} 为 33k。可通过下面公式计算得到:

$$R_{FB2} = \frac{1.24 * R_{FB1}}{V_{PWR} - 1.24}$$

通过调整 Repz 的值可以改变初始输出电压。

反馈电阻网络的分压电阻 R_{FB1}和 R_{FB2}的精度影响 VBUS 电源精度,推荐使用 1%精度电阻。

8.4 电流检测

XPD738 有两路电流检测电路,分别对应 USB Type-C 口和 Type-A 口。Type-C 口电流检测完全内置,过流保护点默认为 PDO 广播电流的 120%。

Type-A 口通过外部 10mΩ 采样电阻检测电流。10mΩ 电阻对应的充饱关断电流阈值为 10mA,当 A 口设备抽电小于 10mA 时会断开 A 口电源。Type-A 口过流保护点可以根据 具体应用需求配置。10mΩ 采样电阻需采用开尔文连接,一端为 ISP2,另一端为芯片的 GND。

8.5 线损补偿

XPD738 具有线损补偿功能,可以根据输出电流按比例(即补偿系数)增加输出电压。补偿系数可以内部配置。例如 XPD738 的补偿系数配置为 60mV/A,前端电源空载时输出电压为 5V,当输出电流为 3A 时,前端电源的输出电压会增加至 5.18V。

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

8.6 USB Type-C 和 Type-A 双口应用

XPD738 只需要外围简单连接少量元器件,便可以实现 USB Type-C 和 Type-A 双口应用,具体应用电路参考第 9 节。下图单独给出 USB Type-A 口的应用示意图,便于理解 Type-A 口的工作原理。Type-A 口 VBUSA 电源通路上需要 PMOS 作为开关,数据线 DM2、DP2 用于协议通信,GND 通路上连接一个电流检测电阻 Rs。

当 Type-C 和 Type-A 只有其中一个端口接入设备(包括充电线缆)时, Type-C 或 Type-A 端口都可以实现独立的快充功能。

当 Type-C 和 Type-A 都接入设备时,XPD738 会将输出电压降至 5V 给设备供电。特别的,当 Type-A 口一直连接苹果充电线但未接入苹果手机时,Type-C 口仍然有快充功能。作为充电器应用时,充电线会经常与充电器连接在一起。XPD738 完美解决了 Type-A 和 Type-C 口连接充电线应用时的快充难题。

当 Type-A 口设备充电电流低于充饱关断电流阈值时,VBUSA 断开供电。XPD738 具有 10mA 以内的充饱关断电流阈值,从而可以支持智能穿戴等小电流设备充电。

8.7 可靠性

由于 CC1/CC2/DP/DM 引脚直接连接到 USB 端口,使用过程中容易和电源短路对芯片造成损坏,XPD738 为了增强产品安全可靠性,对 CC1/CC2/DP/DM 引脚的耐压值特别提高到 25V 以上。

XPD738 具有完备的 OVP/OCP/UVP 保护功能。OVP/OCP/UVP 保护阈值会根据设备选择的电压进行调整,最大限度保护设备安全。

XPD738 内置 VPWR 和 VBUS 能量泄放通路,在特定情况下会开启并分别泄放 VPWR 和 VBUS 电源能量。

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

XPD738的芯片结温到达 145℃后会关闭输出,降到 125℃后解除保护重新开始工作。

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

9 应用电路

9.1 AC-DC 应用图

图中所示元器件参数供参考,可以根据实际应用进行调整。

参考 8.3 节内容设置反馈网络分压电阻 R_{FB1} 和 R_{FB2} 的值。根据实际应用电路的环路稳定性设置补偿网络 R_{CMP} 和 C_{CMP} 的值。Type-A 口 VBUSA 通路上的 PMOS 推荐选用耐压值 20V 以上,电流能力 3A 以上。Type-A 口的电流检测电阻 R_S 可以选择 5%精度电阻。

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

9.2 DC-DC 应用图

图中所示元器件参数供参考,可以根据实际应用进行调整。

前端电源的反馈电阻网络的分压电阻 R_{FB1} 必须接 100 $k\Omega$ 。Type-A 口 VBUSA 通路上的 PMOS 推荐选用耐压值 20V 以上,电流能力 3A 以上。Type-A 口的电流检测电阻 R_S 可以选择 5%精度电阻。

9.3 PCB layout 注意事项

- 1. 10mohm 采样电阻的走线采用开尔文连接方式,注意芯片管脚 GND 与该电阻的连接时应先连接到电阻末端然后再与整个 PCB 的 GND 网络连在一起,走线尽量粗而短;
- 2. 输入电容 CVPWR 以及输出电容 CVBUS 尽量靠近芯片;
- 3. PCB 布局时尽量避免与主发热器件摆放在一起;
- 4. 尽量避免 VFB 连线受到干扰;
- 5. USB Type-A 口的外壳禁止连接到 PCB 板上的 GND 网络。

XPD738(文件编号: S&CIC1911)

USB Type-C PD 和 Type-A 双口控制器

10 封装信息

SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
A	-	1.09	1. 19	
A1	0.02	_	0. 15	
A2	0. 95	1.00	1. 05	
b	0.14	0. 22	0.30	
С	0.08	0. 13	0.18	
D	4. 90	5. 00	5. 10	
Е	6. 20	6. 40	6.60	
E1	4. 30	4. 40	4. 50	
е		0.65BS0	C	
L	0. 50	0.60	0. 70	
L1	1.05BSC			
θ	0°	4°	8°	