Optimization methods. Seminar 9. Conjugate functions

Alexandr Katrutsa

Moscow Institute of Physics and Technology Department of Control and Applied Mathematics

August 19, 2018

Reminder

- Feasible direction cone
- Tangent cone
- Sharp extremum

Definition

Conjugacy again?

- Previously we introduced conjugate (dual) sets and in particular conjugate cones
- Today we consider conjugate (dual) functions
- Further we will introduce dual (conjugate) optimization problem

Definition

A function $f^*: \mathbb{R}^n \to \mathbb{R}$ is called conjugate function of function f and is defined as

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in dom\ f} (\mathbf{y}^\mathsf{T} \mathbf{x} - f(\mathbf{x})).$$

Domain of f^* is a set of y, such that the supremum is finite.

Properties

- Conjugate function f* is always convex as supremum of linear functions independently of convexity of f
- Young-Fenchel inequality:

$$\mathbf{y}^{\mathsf{T}}\mathbf{x} \leq f(\mathbf{x}) + f^{*}(\mathbf{y})$$

• If f is differentiable, then $f^*(y) = \nabla f^{\mathsf{T}}(x^*)x^* - f(x^*)$, where x^* is a supremum point.

Geometrical interpretation

Alexandr Katrutsa

Examples

- 1. Linear function: $f(x) = a^T x + b$
- 2. Negative entropy: $f(x) = x \log x$
- 3. Indicator function of the set S: $I_S(x) = 0$ iff $x \in S$
- 4. Norm: f(x) = ||x||.
- 5. Squared norm: $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$

Calculus rules

- Separable sum: $f(x_1, x_2) = g(x_1) + h(x_2)$ and $f^*(y_1, y_2) = g^*(y_1) + h^*(y_2)$
- Translation of argument: f(x) = g(x a) and $f^*(y) = a^T y + g^*(y)$
- Composition with linear invertible mapping: $f(\mathbf{x}) = g(\mathbf{A}\mathbf{x})$ and $f^*(\mathbf{y}) = g^*(\mathbf{A}^{-\mathsf{T}}\mathbf{y})$
- Infimal convolution: $f(x) = (h \square g)(x) = \inf_{u+v=x} (h(u) + g(v)) \text{ and}$ $f^*(y) = h^*(y) + g^*(y)$

Moreau-Yosida envelope

- f(x) is convex, but non-smooth
- Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}} (f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_2^2) = \left(f \Box \frac{1}{2\lambda} \|\cdot\|_2^2\right) (\mathbf{x})$$

- Huber function $M_{\lambda f}$ for module
 - f(x) = |x|
 - $M_{\lambda f}(x) = \begin{cases} \frac{x^2}{2\lambda} & |x| \le \lambda \\ |x| \lambda/2 & |x| \ge \lambda \end{cases}$

Exercise

- Draw in the one figure f(x) and $M_{\lambda f}(x)$
- Derive expression of $M_{\lambda f}$ for $f(\mathbf{x}) = \|\mathbf{x}\|_1$

Why do we get smooth function?

- $M_{\lambda f}(\mathbf{x})$ convex
- $M_{\lambda f}^*(\mathbf{y}) = f^*(\mathbf{y}) + \frac{\lambda}{2} ||\mathbf{y}||_2^2$ strongly convex with parameter λ
- $M_{\lambda f} = M_{\lambda f}^{**} = (f^* + \frac{\lambda}{2} \| \cdot \|_2^2)^*$
- Conjugate function of the strongly convex function is smooth $\Rightarrow M_{\lambda f}$ smooth and

$$M_{\lambda f}'(\mathbf{x}) = \frac{1}{\lambda}(\mathbf{x} - \mathbf{u}^*), \quad \mathbf{u}^* = \operatorname*{arg\,min}_{\mathbf{u}} \left(f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_2^2 \right)$$

Important property

Sets of minimizers of f and $M_{\lambda f}$ are the same.

Alexandr Katrutsa Seminar 9 9 / 10

Recap

- Conjugate functions
- Young-Fenchel inequality and other properties
- Smoothing of non-smooth functions
- Examples