Trabalho 1 - Programação Inteira e Otimização em Redes - 15/09/2021 Data de Entrega no TEAMS 12/10/2021 Prof. Cassius Tadeu Scarpin - PPGMNE

Instruções

- Caso o aluno julgue que um exercício esteja com falta de dados do enunciado, escreva o que falta, justificando a sua posição e de prosseguimento no exercício até quando for possível prosseguir.
- Entregue todos os arquivos que for possível para aumentar a qualidade da resolução do exercício. Programas (códigos), planilhas, pdfs, word, etc. aquilo que for produzido para resolução.

Considerando o GRAFO dado, responda as seguintes perguntas:

1)Faça o que se pede:

- a) Encontre, através do algoritmo de Dijkstra, o menor caminho entre os pontos 1 e 2. Redesenhe o grafo e escreva a sequência de pontos avaliados de acordo com o algoritmo.
- b) Encontre o caminho mínimo, pelo Algoritmo de Floyd, entre os pontos 3 e 10, utilizando o Sub-Grafo formado pelos pontos 3, 4, 5, 6, 7, 8, 9 e 10.
- c) Escreva o modelo Matemático referente ao problema resolvido no item b).
- 2) Resolva o problema do caixeiro viajante nos seguintes casos (não é necessário resolver o algoritmo de Floyd previamente), utilizando o Sub-Grafo formado pelos pontos 3, 4, 5, 6, 7, 8, 9 e 10:
- a) Pelo algoritmo que utiliza a variante do Branch-and-Bound. Apresente apenas os resultados obtidos por um software ou faça manualmente, como queira, montando a árvore B&B. (utilizando um algoritmo de solução do problema de designação em cada nó e fazendo a ramificação com a inserção da impossibilidades (custo = infinito) nas ligação entre os pontos da menor rota). Omaterial está na apostila Curso 2, e tem fotos de exercícios resolvidos.
- b) Por um algoritmo de Inserção à sua escolha.
- c) Programe e resolva o Modelo de Dantzig (em qualquer software: python, C#, Excel, R, utilizando qualquer solver (open solver, Gurobi, Cplex, etc)). Apresente a rota ótima e o tempo de execução.
- d) Programe e resolva o Modelo de MTZ. (em qualquer software: python, C#, Excel, R, utilizando qualquer solver (open solver, Gurobi, Cplex, etc)). Apresente a rota ótima e o tempo de execução.
- e) Refaça os modelos do item c) e d) , porém a entrada da distância altere para a distância obtida após a aplicação do algoritmo de Floyd. Discuta os resultados.
- 3) Resolva o problema da mínima arborescência para o Grafo com os 12 pontos por Prim e por Kruskal, escrevendo a sequência de decisões feitas em cada um dos dois algoritmos. Apresente a árvore obtida para cada um dos casos.
- 4) Considere Grafo completo formado pelos 12 pontos. Resolva o problema do Máximo Fluxo, pelo Algoritmo de Ford e Fulkerson, e escreva o modelo matemático para este problema. Considere que o

custo dado é a capacidade do arco e que o nó fonte é o ponto 1 e o nó destino é o nó 12. Apresenta todos os passos feitos no algoritmo. Considere o Grafo direcionado, com os seguintes sentidos nos arcos: (1,2), (1,3), (2,4), (3,4), (3,5), (3,6), (4,5), (4,9), (5,9), (5,8), (5,6), (6,7), (7,10), (7,11), (8,9), (8,10), (9,10), (10,12), (11,12)

5) Resolva o problema do Carteiro Chinês, pelo algoritmo de "Matchings" apresentado em sala, considerando o Sub-Grafo formado pelos pontos 3, 4, 5, 6, 7, 8, 9 e 10.

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	10	7	inf								
2	10	0	inf	4	inf							
3	7	inf	0	6	8	5	inf	inf	inf	inf	inf	inf
4	inf	4	6	0	9	inf	inf	inf	8	inf	inf	inf
5	inf	inf	8	9	0	7	inf	10	20	inf	inf	inf
6	inf	inf	5	inf	7	0	22	inf	inf	inf	inf	inf
7	inf	inf	inf	inf	inf	22	0	inf	inf	9	6	inf
8	inf	inf	inf	inf	10	inf	inf	0	7	4	inf	inf
9	inf	inf	inf	8	20	inf	inf	7	0	7	inf	inf
10	inf	inf	inf	inf	inf	inf	9	4	7	0	inf	13
11	inf	inf	inf	inf	inf	inf	6	inf	inf	inf	0	11
12	inf	13	11	0								
		_				_		_		-		_

Sub-Grafo	3	4	5	6	7	8	9	10
3	0	6	8	5				
4	6	0	9				8	
5	8	9	0	7		10	20	
6	5		7	0	22			
7				22	0			9
8			10			0	7	4
9		8	20			7	0	7
10					9	4	7	0

Floyd até a 4 ª iteração – Matriz de distâncias (vazio significa infinito)

	3	4	5	6	7	8	9	10
3	0	6	8	5	17	18	14	
4	6	0	9	11	33	19	8	
5	8	9	0	7	29	10	17	
6	5	11	7	0	22	17	19	
7	17	33	29	22	0	39	41	9
8	18	19	10	17	39	0	7	4
9	14	8	17	19	41	7	0	7
10					9	4	7	0

Floyd até a 4 ª iteração – Matriz de Trajetos

	3	4	5	6	7	8	9	10
3	3	3	3	3	6	5	4	3
4	4	4	4	3	6	5	4	4
5	5	5	5	5	6	5	4	5
6	6	3	6	6	6	5	4	6
7	6	6	6	7	7	6	6	7
8	5	5	8	5	6	8	8	8
9	4	9	4	4	6	9	9	9
10	10	10	10	10	10	10	10	10