ALGORITMO GENÉTICO DE CHAVES ALEATÓRIAS VICIADAS APLICADO AO PLANEJAMENTO DA PRODUÇÃO EM MANUFATURA FLEXÍVEL

Guilherme Maciel de Aguiar Nunes Coelho

Universidade Federal de Ouro Preto gui_coelho@hotmail.com

29 de março de 2017

Introdução

Introdução

Contexto Histórico

- Os grandes avanços tecnológicos nas linhas de produção tiveram como consequência o aumento da competitividade;
- Velocidade e Flexibilidade surgem como características indispensáveis para se sobressair no mercado;
- Surgem os Sistemas de Manufaturas Flexíveis (SMS) como solução para atender essas demandas.

Sistemas de Manufatura Flexível (SMS)

- Permite uma variabilidade dos produtos a serem produzidos;
- Baixo custo para produção de novos produtos;

Máquinas Flexíveis

- As máquinas flexíveis são como as grandes indústrias, principalmente metalúrgicas, automobilísticas e microeletrônica, adotam o SMS;
- A flexibilidade está atrelada a capacidade de operar em diversas funcionalidades sem precisar ser desligada;
- Cada máquina pode operar com diferentes configurações de ferramentas (e.g. brocas, lâminas de corte, etc) necessárias para a fabricação de diferentes produtos.

Máquinas Flexíveis

Figura: Exemplo de uma máquina flexível.

Características de uma Máquina Flexível

- Possui um compartimento de capacidade limitada para o carregamento de ferramentas;
- Para a fabricação de um produto é preciso carregar todas as ferramentas requeridas previamente com a máquina desligada;

O Problema

- Diferentes produtos de uma linha de produção podem demandar diferentes configurações de ferramentas;
- Entre a fabricação de diferentes produtos em sequência, eventualmente serão necessárias trocas de ferramentas e portanto é preciso desligar a máquina interrompendo a produção;

Descrição do Problema

A partir de uma demanda de fabricação de uma sequência de produtos é necessário a criação de um plano de produção para que uma máquina flexível seja capaz de operar e cumprir essa demanda.

O Plano de Produção

O plano de produção está divido em duas etapas:

- Determinar a ordem das tarefas a serem executadas; e
- Decidir quando realizar cada troca de ferramentas e quais ferramentas serão trocadas, de maneira a viabilizar a produção.

Determinar a ordem das tarefas

A primeira parte do plano de produção é conhecida como o **Problema de Minimização de Trocas de Ferramentas (MTSP)**.

Determinar o número mínimo de trocas de ferramentas para uma sequencia fixa de tarefas

A última parte do plano de produção pode ser determinada em tempo polinomial determinístico pelo algoritmo **Keep Tool Needed Soonest** (KTNS).

Características do MTSP

O MTSP é classificado como um problema NP-Difícil e geralmente é pensando considerando que as ferramentas possuem o mesmo tamanho e portanto o mesmo custo para realizar uma troca.

Instância do MTSP

Uma instância do MTSP é configurada por:

- O conjunto $T = \{1...n\}$ de tarefas que devem ser processadas;
- O conjunto $F = \{1...m\}$ de ferramentas disponíveis;
- Para cada tarefa $j \in T$, um conjunto de ferramentas $F_j \in F$ necessárias para processamento da mesma; e
- A capacidade C do compartimento de ferramentas da máquina.

Tabela: Exemplo de uma instância do MTSP.

Tarefas	1	2	3	4	5	
Ferramentas	1	1	3	2	1	
	2	3	4	3	4	
	4		5	5	6	
Capacidade da máquina: 3						

Função objetivo

$$\min Z_{MTSP} = \sum_{i=1}^{m} \sum_{j=1}^{n} p_{i,j} (1 - p_{i,j-1})$$
 (1)

Representação Computacional

O Problema de Minimização de Trocas de Ferramentas é representado computacionalmente por uma matriz

- As n colunas correspondem as tarefas; e
- As *m* linhas correspondem as ferramentas.

$$a_{i,j} = \begin{cases} 1 & \text{se a ferramenta } i \text{ está carregada} \\ & \text{na máquina durante a execução da tarefa } j; \\ 0 & \text{caso contrário.} \end{cases}$$
 (2)

1	2	3	4	5
1	1	0	0	1
1	0	0	1	0
0	1	1	1	0
1	0	1	0	1
0	0	1	1	0
0	0	0	0	1
	1 1 0 1 0	1 1 1 0 0 1 1 0 0 0	1 1 0 1 0 0 0 1 1 1 0 1 0 0 1	1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1

Tabela: Representação da matriz A para uma instância do MTSP.

Solução

Uma solução do MTSP é obtida pela permutação ϕ das colunas da matriz A, resultando na matriz permutação A^{ϕ} ; O número de trocas de ferramentas em uma solução A^{ϕ} é equivalente ao número de inversões em cada uma das linhas, e pode ser calculado utilizando o algoritmo KTNS.

Solução

Exemplo de uma solução $\phi = [1, 2, 3, 4, 5]$ para a instância exemplo:

\mathcal{A}^ϕ	1	2	3	4	5
	1	1	0	0	1
	1	0	0	1	0
	0	1	1	1	0
	1	1	1	0	1
	0	0	1	1	0
	0	0	0	0	1

Tabela: Possível solução para o MTSP com 9 trocas no total.

Motivação e Objetivos

Motivação

- O MTSP é um problema NP-Difícil;
- Grande aplicabilidade para a indústria nacional.

Objetivos

- Propor uma heurística para o a resolução do MTSP usando um algoritmo genético;
- Comparar os resultados obtidos com os dados presentes na literatura.

Metodologia

Metodologia

O método proposto

O Algoritmo Genético de Chaves Aleatórias Viciadas (*Biased Random-Key Genetic Algorithm* - BRKGA) é uma variação dos Algoritmos Genéticos, que se baseiam na teoria de *Darwin* sobre a evolução das espécies para resolver problemas de otimização combinatória.

Estrutura do algoritmo

Como em todo algoritmo genético o BRKGA possui 5 etapas bem definidas:

- Gerar a população inicial (os cromossomos);
- Decodificar os indivíduos gerados (Avaliar o valor da função objetivo);
- Classificar os novos indivíduos em grupos (elite e não-elite); e
- Criar novas populações (recombinação, geração de indivíduos mutantes e cópias de indivíduos elite).

Cromossomo no BRKGA;

Figura: Adaptado de Gonçalves e Resende (2011).

Decodificação;

Figura: Adaptado de Gonçalves e Resende (2011).

Exemplo da geração de uma população;

Figura: Adaptado de Gonçalves e Resende (2011).

Processo de recombinação de cromossomos com a probabilidade do gene ser proveniente do cromossomo elite de 70%;

Figura: Adaptado de Gonçalves e Resende (2011).

Aplicando o BRKGA ao MTSP

Para adaptar o BRKGA ao MTSP é preciso alterar o processo de decodificação do algoritmo e separá-lo em duas partes:

- Ordenar os cromossomos pelas chaves aleatórias geradas; e
- Contabilizar o número de trocas da solução.

Exemplo da decodificação de um cromossomo;

Figura: Adaptado de Gonçalves e Resende (2011).

Contabilizando as trocas de uma solução

O processo de avaliação de uma solução do MTSP utilizado nesse trabalho é o algoritmo determinístico polinomial KTNS proposto por Tang e Denardo (1988).

Configuração do computador

Foi utilizado um computador com processador *Intel Core i5* de 3.0 GHz com 8 GB RAM, utilizando o sistema operacional Ubuntu 15.10.

Instâncias

Foram testadas 1670 instâncias distintas separadas em três grupos.

Método comparado

Os resultados obtidos foram comparados com o método Busca Local Iterada (Iterated Local Search, ou ILS) proposto por Paiva e Carvalho (2016) para os mesmos conjuntos de instâncias.

Resultados

São apresentados a seguir os seguintes resultados:

- O número de instâncias (e);
- A solução média (S);
- O desvio padrão médio (σ) ;
- O tempo médio de execução em segundos (T); e
- A distância percentual entre os melhores resultados obtidos (gap).

Yanasse et al. (2009)

		ILS		BRKGA			
Conjunto	e	5	Τ	5	T	σ	gap
A	340	24,54	0,11	32,23	4,54	8,81	54,90
В	330	25,21	0,18	34,13	3,73	7,42	41,03
С	340	28,96	1,67	42,37	7,74	8,81	54,90
D	80	16,89	0,51	49,20	7,48	10,21	107,17
E	260	24,016	6,05	24,23	3,53	2,50	10,23

Crama et al. (1994)

		ILS		BRKGA			
Conjunto	e	S	T	S	T	σ	gap
<i>C</i> 1	40	11,75	0,07	14,72	16,49	1,44	33,94
<i>C</i> 2	40	22,05	1,03	31,19	33,55	3,28	46,59
<i>C</i> 3	40	79,57	175,10	167,78	65,91	8,05	104,90
C4	40	158,72	1097,28	324,66	123,35	9,25	110,04

Catanzaro et al. (2015)

		ILS		BRKGA			
Conjunto	e	S	T	S	T	σ	gap
datA	40	10,85	0,06	14,75	2,23	0,97	28,68
datB	40	21,77	1,00	32,50	11,95	4,16	50,96
datC	40	75,06	174,28	166,98	25,65	12,46	135,71
datD	40	158,81	1052,25	325,73	43,83	12,22	114,64

Conclusões

Conclusões

- Importante problema no contexto industrial e para a comunidade científica;
- Baixo tempo de execução para instâncias maiores, permitindo a inclusão métodos adicionais;
- Trabalhos futuros incluem o aprimoramento da heurística proposta com métodos de busca local.

Perguntas?