Math 129 Problem Set 6

Lev Kruglyak

March 29, 2022

I collaborated with Ignasi Vicente for this problem set.

Problem (Spec).

- (a) Show that if $f: R \to S$ is any ring homomorphism (assuming f(1) = 1), there is an induced map of sets $\tilde{f}: \operatorname{Spec}(S) \to \operatorname{Spec}(R)$.
- (b) Find an example of a ring homomorphism that isn't an isomorphism of rings, but induces a bijection of spectrums.
- (c) Describe $\widetilde{f}: \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ when $R = \mathbb{C}[t]$ and $S = \mathbb{C}[t,s]/(s^2-t)$, where $f: \mathbb{C}[t] \to \mathbb{C}[t,s]/(s^2-t)$ is the natural inclusion.
- (a) Let $\mathfrak{q} \subset S$ be a prime ideal, and let $\mathfrak{p} = f^{-1}(\mathfrak{q})$. We claim that \mathfrak{p} is a prime ideal of R. To see this, let $ab \in \mathfrak{p}$. This means that $f(ab) = f(a)f(b) \in \mathfrak{q}$ so $f(a) \in \mathfrak{q}$ or $f(b) \in \mathfrak{q}$. This means that $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$, so \mathfrak{p} is a prime ideal. Thus, we can define $f : \mathfrak{q} \mapsto f^{-1}(\mathfrak{q})$.
- (b) Consider the natural reduction map from $\mathbb{Z}/4\mathbb{Z}$ to $\mathbb{Z}/2\mathbb{Z}$. The only prime ideal of $\mathbb{Z}/4\mathbb{Z}$ is (2) and the only prime ideal of $\mathbb{Z}/2\mathbb{Z}$ is (0). Thus the reduction map induces a bijection between $\{(0)\}$ and $\{(2)\}$.
- (c) First we'll calculate $\operatorname{Spec}(\mathbb{C}[t])$. Note that \mathbb{C} is a field so $\mathbb{C}[t]$ is a principal ideal domain. Thus every ideal is of the form (f(t)) for some polynomial $f(t) \in \mathbb{C}[t]$. Thus, the prime ideals in $\mathbb{C}[t]$ are (x-a) for $a \in \mathbb{C}$.

Claim. Let R be a ring and I an ideal in R. Let $f: R \to R/I$ be the natural surjection. Then $\widetilde{f}: \operatorname{Spec}(R/I) \to \operatorname{Spec}(R)$ is an inclusion mapping prime ideals in $\operatorname{Spec}(R/A)$ to prime ideals in $\operatorname{Spec}(R)$ containing I.

Proof. This follows from the correspondence theorem and the third isomorphism; note that $\mathfrak{p} \subset R/I$ then $f^{-1}(\mathfrak{p})$ is an ideal of R containing I. Since $(R/I)/\mathfrak{p}$ is an integral domain, so is $R/f^{-1}(\mathfrak{p}) = R/(If^{-1}(\mathfrak{p}))$.

Since Spec($\mathbb{C}[t,s]$) consists of ideals (t-a,s-b) for $a,b\in\mathbb{C}$, the claim implies that the spectrum Spec($\mathbb{C}[t,s]/(s^2-t)$) consists of the prime ideals of the form (s-a) for $a\in\mathbb{C}$. Note that $f^{-1}((s-a))=(t-a^2)$, so \widetilde{f} sends (t-a) to $(t-a^2)$ and obviously (0) is sent to (0).

Problem 3.28. Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, all $a_i \in \mathbb{Z}$, and let p be a prime divisor of a_0 . Let p^r be the exact power of p dividing a_0 , and suppose all a_i are all divisible by p^r . Assume moreover that f is irreducible over \mathbb{Q} (which is automatic if r = 1) and let α be a root of f. Let $K = \mathbb{Q}[\alpha]$.

- (a) Prove that $(p^r) = p^r \mathcal{O}_K$ is the n^{th} power of an ideal in \mathcal{O}_K .
- (b) Show that if r is relatively prime to n, then (p) is the n^{th} power of an ideal in R. Conclude that in this case p is totally ramified in \mathcal{O}_K .
- (c) Show that if r relatively prime to n, then Δ_K is divisible by p^{n-1} . What can you prove if (n,r)=m>1?
- (a) Since $f(\alpha) = 0$, we can write

$$\alpha^{n} = -a_{n-1}\alpha^{n-1} - \dots - a_{1}\alpha - a_{0} = p^{r} \left(-\frac{a_{n-1}}{p^{r}}\alpha^{n-1} - \dots - \frac{a_{1}}{p^{r}}\alpha - \frac{a_{0}}{p^{r}} \right).$$

Let's call this last term β so that $\alpha^n = p^r \beta$. Note that all of the terms a_i/p^r are integers, and $p \nmid a_0/p^r$. Let $\beta_i = -a_i/p^r$, so that $\beta = \beta_{n-1}\alpha^{n-1} + \cdots + \beta_1\alpha + \beta_0$. Note that $p \nmid \beta$, since otherwise we would have some polynomial $g(x) \in \mathbb{Z}[x]$ with $g(\alpha) = 0$ and $\deg g < \deg f$, a contradiction to the irreducibility of f. So (p^r) is coprime to (β) . Then since $(\alpha)^n = (p^r)(\beta)$, it follows that $(p^r) = I^n$ for some ideal $I \subset \mathcal{O}_K$.

- (b) Write $(p) = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_k^{e_k}$ for \mathfrak{p}_i prime. Then $(p^r) = (p)^r = \mathfrak{p}_1^{re_1} \cdots \mathfrak{p}_k^{re_k}$. Since $(p^r) = I^n$ for some ideal by (a), it follows that $n \mid re_i$ for all i. Since (n,r) = 1, we have $n \mid e_i$ for all i. Thus (p) is an n-th power of an ideal of \mathcal{O}_K . By the decomposition equation $\sum_{i=1}^k e_i f_i = n$ yet $n \mid e_i$ so $e_i \geq n$. This means that k = 1, $e_1 = n$, and $f_1 = 1$. Thus $p\mathcal{O}_K = \mathfrak{p}_1^n$ so p is totally ramified.
- (c) We'll address the case when r is relatively prime to n first. By (b), $p\mathcal{O}_K = \mathfrak{p}^n$ for a prime $\mathfrak{p} \subset \mathcal{O}_K$. By the decomposition equation we have $f(\mathfrak{p} \mid p) = 1$. By Problem 3.21b, Δ_K is divisible by p^k for $k = n f(\mathfrak{q} \mid p) = n 1$. So if r is relatively prime to n then $p^{n-1} \mid \Delta_K$.

In the case when (n,r)=m>1, let $p\mathcal{O}_K=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_k^{e_k}$. Then $n\mid e_ir$ so e_i is a multiple of n/m. By the decomposition equation $e_1f_1+\cdots+e_kf_k=n$. Then $\sum_i f_i\leq m$, and this maximum is achieved when all $e_i=n/m$. Then by Problem 3.21b, we have $p^{n-m}\mid \Delta_K$.

Problem 4.1. Show that $E(\mathfrak{q} \mid \mathfrak{p})$ is a normal subgroup of $D(\mathfrak{q} \mid \mathfrak{p})$ directly from the definition of these groups.

Let $\sigma \in E(\mathfrak{q} \mid \mathfrak{p})$ be some automorphism. By definition of the inertia group we have $\sigma(\alpha) - \alpha \in \mathfrak{q}$ for all $\alpha \in \mathcal{O}_L$. Then for any $\zeta \in D(\mathfrak{q} \mid \mathfrak{p})$ since $\zeta^{-1} \in \operatorname{Gal}(L/K)$, it follows that $\zeta^{-1}(\alpha) \in \mathcal{O}_L$ so $\zeta(\sigma^{-1}(\alpha)) - \sigma^{-1}(\alpha) \in \mathfrak{q}$. Since ζ preserves the prime \mathfrak{q} , we have $\zeta(\sigma(\zeta^{-1}(\alpha)) - \sigma^{-1}(\alpha)) = \zeta \sigma \zeta^{-1}(\alpha) - \alpha$. Thus $\zeta \sigma \zeta^{-1} \in E(\mathfrak{q} \mid \mathfrak{p})$. This proves the normality of $E(\mathfrak{q} \mid \mathfrak{p})$ in $D(\mathfrak{q} \mid \mathfrak{p})$.

Problem 4.2. Suppose $D(\mathfrak{q} \mid \mathfrak{p})$ is a normal subgroup of $\operatorname{Gal}(L/K)$. Then \mathfrak{p} splits into r distinct primes in $L_{D(\mathfrak{q}|\mathfrak{p})}$. If $E(\mathfrak{q} \mid \mathfrak{p})$ is also normal in $\operatorname{Gal}(L/K)$, then each of them remains prime (is "inert") in $L_{E(\mathfrak{q}|\mathfrak{p})}$. Finally, each one becomes an e^{th} power in L.

If $D(\mathfrak{q} \mid \mathfrak{p})$ is normal in $\operatorname{Gal}(L/K)$, then by the fundamental theorem of Galois theory, $L_{D(\mathfrak{q}|\mathfrak{p})}$ is a normal extension of K. We know that $\mathfrak{q}_{D(\mathfrak{q}|\mathfrak{p})}$ has ramification index and inertial degree 1 over \mathfrak{p} , hence so does every prime \mathfrak{p}' in $L_{D(\mathfrak{q}|\mathfrak{p})}$ lying over \mathfrak{p} . So there must be exactly r such primes. It follows that there are exactly r primes in $L_{E(\mathfrak{q}|\mathfrak{p})}$ lying over \mathfrak{p} since this is true in both $L_{D(\mathfrak{q}|\mathfrak{p})}$ and L. This implies that each \mathfrak{p} lies under a unique primes \mathfrak{p}'' in $L_{E(\mathfrak{q}|\mathfrak{p})}$; however \mathfrak{p}'' might be ramified over \mathfrak{p}' . If $E(\mathfrak{q} \mid \mathfrak{p})$ is normal in $\operatorname{Gal}(L/K)$, then $e(\mathfrak{p}'' \mid \mathfrak{p}) = e(\mathfrak{q}_{E(\mathfrak{q}|\mathfrak{p})}) = 1$ hence $e(\mathfrak{p}'' \mid \mathfrak{p}') = 1$. This proves that \mathfrak{p}' is inert in $L_{E(\mathfrak{q}|\mathfrak{p})}$, i.e. $\mathfrak{p}'' = \mathfrak{p}'(\mathcal{O}_L)_{E(\mathfrak{q}|\mathfrak{p})}$.

We claim that \mathfrak{p}'' becomes an e^{th} power in L. Let \mathfrak{q}'' be a prime of L lying over \mathfrak{p}'' . By transitivity, \mathfrak{q}'' lies over \mathfrak{p} so we have $e = e(\mathfrak{q}'' \mid \mathfrak{p}) = e(\mathfrak{q}'' \mid \mathfrak{p}')e(\mathfrak{p}'' \mid \mathfrak{p}')e(\mathfrak{p}'' \mid \mathfrak{p})$. Earlier, we showed that $e(\mathfrak{p}'' \mid \mathfrak{p}') = e(\mathfrak{p}' \mid \mathfrak{p}) = 1$; thus $e = e(\mathfrak{q}'' \mid \mathfrak{p}'')$. So $\mathfrak{p}''\mathcal{O}_L = (\mathfrak{q}_1 \cdots \mathfrak{q}_k)^e$ where \mathfrak{q}_i are the primes of L lying over \mathfrak{p}'' . Hence \mathfrak{p}'' is an e^{th} power in L.

Problem 4.10. Let K be a number field, and let L and M be two finite extensions of K. Assume that M is normal over K. Then the composite field LM is normal over L and the Galois group $\operatorname{Gal}(LM/L)$ is embedded in $\operatorname{Gal}(M/K)$ by restricting automorphisms to M. Let $\mathfrak{p} \subset \mathcal{O}_K$, $\mathfrak{n} \subset \mathcal{O}_L$, $\mathfrak{m} \subset \mathcal{O}_M$, and $\mathfrak{q} \subset \mathcal{O}_{LM}$ be primes such that \mathfrak{n} lies over \mathfrak{q} and \mathfrak{m} and \mathfrak{q} and \mathfrak{m} lie over p.

- (a) Prove that $D(\mathfrak{q} \mid \mathfrak{n})$ is embedded in $D(\mathfrak{m} \mid \mathfrak{p})$ by restricting automorphisms.
- (b) Prove that $E(\mathfrak{q} \mid \mathfrak{n})$ is embedded in $E(\mathfrak{m} \mid \mathfrak{p})$ by restricting automorphisms.
- (c) Prove that if \mathfrak{p} is unramified in M, then every prime of L lying over \mathfrak{p} is unramified in LM.
- (a) Firstly if $\sigma \in D(\mathfrak{q} \mid \mathfrak{n})$, then by definition $\sigma(\mathfrak{q}) = \mathfrak{q}$. Let $\overline{\sigma} \in \operatorname{Gal}(M/K)$ be the restriction of σ to $M \subset LM$. Then $\overline{\sigma}(\mathfrak{q} \cap M) = \mathfrak{q} \cap M$ however $\mathfrak{q} \cap M = \mathfrak{m}$ so $\overline{\sigma}(\mathfrak{m}) = \mathfrak{m}$. This gives us a well defined map $D(\mathfrak{q} \mid \mathfrak{n}) \to D(\mathfrak{m} \mid \mathfrak{p})$. To prove that this map is injective, suppose $\overline{\sigma}$ is the identity on M, then σ is the identity on M. Similarly, σ is the identity on M so it must be the identity on the composite field M. Thus there is an imbedding $D(\mathfrak{q} \mid \mathfrak{n}) \hookrightarrow D(\mathfrak{m} \mid \mathfrak{p})$.
- (b) By (a), the natural restriction map Gal(LM/L) to Gal(M/K) is an injective homomorphism, so it suffices to show that the image of $E(\mathfrak{q} \mid \mathfrak{n})$ under this map is $E(\mathfrak{m} \mid \mathfrak{p})$. Let $\sigma \in E(\mathfrak{q} \mid \mathfrak{n})$. Then if $\sigma(\alpha) \alpha \in \mathfrak{q}$ for all $\alpha \in \mathcal{O}_{LM}$, then for all $\alpha \in \mathcal{O}_{M} \subset \mathcal{O}_{LM}$ we have $\sigma(\alpha) \alpha \in \mathfrak{q} \cap M = \mathfrak{m}$. Thus $\overline{\sigma} \in E(\mathfrak{m} \mid \mathfrak{p})$, and we have our embedding.
- (c) Suppose $\mathfrak p$ is unramified in M. Let $\mathfrak n$ be a prime of $\mathcal O_L$ lying over $\mathfrak p$, and let $\mathfrak q$ be a prime of $\mathcal O_{LM}$ lying over $\mathfrak n$. Since M is Galois, Theorem 4.28 gives us the degree relation $e(\mathfrak m \mid \mathfrak p) = e(\mathfrak m \mid \mathfrak m_{E(\mathfrak m \mid \mathfrak p)}) = [M:M_{E(\mathfrak m \mid \mathfrak p)}]$ where $\mathfrak m = \mathfrak q \cap \mathcal O_M$. Since $\mathfrak p$ is unramified, $e(\mathfrak m \mid \mathfrak p) = 1$ so $[M:M_{E(\mathfrak m \mid \mathfrak p)}] = |E(\mathfrak m \mid \mathfrak p)| = 1$. By (b), $|E(\mathfrak q \mid \mathfrak n)| \leq |E(\mathfrak m \mid \mathfrak p)| = 1$ so $e(\mathfrak q \mid \mathfrak n) = 1$. Since LM is Galois over L, applying Theorem 4.28 gives us $e(\mathfrak q \mid \mathfrak n) = [LM:(LM)_{E(\mathfrak q \mid \mathfrak n)}] = |E(\mathfrak q \mid \mathfrak n)| = 1$. This proves that $\mathfrak n$ is unramified in LM.