

Unsupervised state representation learning with robotic priors: a robustness benchmark

Timothée Lesort, Mathieu Seurin, Xinrui Li, Natalia Díaz-Rodríguez* and David Filliat, U2IS, ENSTA ParisTech, Inria FLOWERS team, Université Paris Saclay, Palaiseau, France {timothee.lesort, mathieu.seurin, xinrui.li, natalia.diaz, david.filliat}@ensta-paristech.fr

(1) First two authors contributed equally

Motivation

Our goal is to learn a relevant state from images, actions and rewards. We train a neural network in unsupervised manner using prior knowledge about the physical world in form of robotic priors.

Figure 1: Left: Baxter's camera view for Static-Button-Distractors dataset 2. Right: Baxter's left hand ground truth position and its coded reward

Method: Robotic Priors

Robotic Priors [1] provide the model with basic knowledge about the environment dynamical features. Each prior is encoded as a loss function:

► Temporal coherence Prior: Two states close to each other in time are also close to each other in the state representation space.

$$L_{Temp}(D, \hat{\phi}) = \mathsf{E}[\|\Delta \hat{s}_t\|^2], \qquad (1)$$

▶ **Proportionality Prior**: Two identical actions should result in two proportional magnitude state variations.

$$L_{Prop}(D, \hat{\phi}) = \mathsf{E}[(\|\Delta \hat{s}_{t_2}\| - \|\Delta \hat{s}_{t_1}\|)^2 | a_{t_1} = a_{t_2}], \qquad (2)$$

▶ Repeatability Prior: Two identical actions applied at similar states should provide similar state variations, not only in magnitude but also in direction.

$$L_{Rep}(D, \hat{\phi}) = \mathsf{E}[e^{-\|\hat{s}_{t_2} - \hat{s}_{t_1}\|^2} \| \Delta \hat{s}_{t_2} - \Delta \hat{s}_{t_1} \|^2 | a_{t_1} = a_{t_2}], \qquad (3)$$

► Causality Prior: If two states on which the same action is applied give two different rewards, they should not be close to each other in the state representation space.

$$L_{Caus}(D,\hat{\phi}) = \mathsf{E}[e^{-\|\hat{s}_{t_2} - \hat{s}_{t_1}\|^2} \mid a_{t_1} = a_{t_2}, r_{t_1+1} \neq r_{t_2+1}] , \tag{4}$$

► Reference point Prior: Two states corresponding to the same reference point should be close to each other

$$L_{Ref}(D, \hat{\phi}) = \mathsf{E}[\| \hat{s}_{t_i} - \hat{s}_{t_i} \|^2 | s_{t_i} = s_{t_i} = s_{Ref}]$$
 (5)

where s_{Ref} is the embedded state of a fixed reference point.

Contributed Benchmark Dataset

The goal is to discover a state space allowing Baxter robot to push a button (in which case he gets a positive reward) [2]. We created environments with moving and static distractors and domain randomization.

Figure 2: A sample of each dataset (1-4), created for our benchmark with increasing complexity

Experiments on task: Baxter pushing button (4 datasets)

Figure 3: Learned state space on Static-Button-Distractors (dataset 2): Left: Denoising Autoencoder. Middle: 4 Priors. Right: 5 Priors. A red reward (value +1) state means the button is being pushed, gray (-1) if the hand is out of sight, and blue (reward 0) if hand is elsewhere.

Figure 4: Nearest neighbor evaluation of robotic priors against supervised learning and Autoencoders on (the domain randomization) Colorful75 dataset using the fixed ref. point prior. The auto-encoder-learnt nearest state's observation is far from the ground truth position.

Criterion	GT	Superv	4 Priors	5 Priors	AE	5 Priors 0f
KNN-MSE	0.024	0.03	0.079	0.053	0.099	0.047
NIEQA local	0	0.239	0.66	0.50	0.599	0.52
NIEQA global	0	0.048	0.41	0.20	0.465	0.21

Conclusions

Robotic Priors ignore distractors, learn representations more relevant to the task than autoencoders, and provide performance close to the one learnt with supervision. We contributed^a:

- ► A dataset benchmark on Baxter robot on the *button pushing* task
- ➤ A quantitative and qualitative evaluation metric based on KNN-MSE testing the limits of the robotic priors
- \triangleright A 5th fixed reference point prior to overcome the vulnerabilities found on the original priors

Future work should focus on transfer learning from simulation to reality.

^aDREAMProject:www.robotsthatdream.eu

References

- [1] R. Jonschkowski and O. Brock.

 Learning state representations with robotic priors.

 Autonomous Robots, 39(3):407–428, 2015.
- [2] T. Lesort, M. Seurin, X. Li, N. Díaz-Rodríguez, and D. Filliat.

 Unsupervised state representation learning with robotic priors: a robustness benchmark.

CoRR, abs/1709.05185, 2017.