Adaptive Video Streaming for Device-to-Device Mobile Platforms

Greedy Pull with Minimum Delay

Students (USC):

Joongheon Kim, Feiyu Meng, Peiyao Chen, Hilmi E. Egilmez, Dilip Bethanabhotla **Professors (USC):**

Dr. Andreas F. Molisch, Dr. Giuseppe Caire, Dr. Michael J. Neely, Dr. Antonio Ortega

Outline

Push-Strategic Device-to-Device Video Streaming

Implementation Limitation of Push-Strategic Streaming

Greedy Pull with Minimum Delay

Outline

Push-Strategic Device-to-Device Video Streaming

Implementation Limitation of Push-Strategic Streaming

Greedy Pull with Minimum Delay

Video Contents

System Model for Push Strategic D2D Video Streaming

Helpers (Wireless/Mobile Video Server)

- Operation: Transmission Scheduling
 - Determining which user will be served
- Maintain Multiple Queues for Individual Users

Users (Smartphone Users)

- Operation: Admission Control
 - Determining the quality mode for each chunk based on DPP algorithm for network utility maximization
- Download chunks from Helpers

[Reference] D. Bethanabhotla, G. Caire, and M. J. Neely, "Joint Transmission Scheduling and Congestion Control for Adaptive Streaming in Wireless Device-to-Device Networks," Proc. Asilomar 2012. (Journal Version: http://arxiv.org/abs/1304.8083)

USC University of

Outline

Push-Strategic Device-to-Device Video Streaming

Implementation Limitation of Push-Strategic Streaming

Greedy Pull with Minimum Delay

Implementation Limitation

Implementation Platform: **Android Mobile Open Platforms**

Issue #1 (Scheduling) In this scenario, two helpers always select one same user. h_1 h_2 In single-channel WiFi, the single user will always randomly select one helper. Then, max-weight scheduling becomes random scheduling. u_1 (Solution) Greedy Pull for Minimum Delay

Outline

Push-Strategic Device-to-Device Video Streaming

Implementation Limitation of Push-Strategic Streaming

Greedy Pull with Minimum Delay

Basic Concept

User WiFi-Station

[Greedy Pull with Minimum Delay]

Basic Concept:

User receives sub-chunks from helpers. In terms of playback order, user knows

- (1) which sub-chunk should be downloaded in next time slot
- (2) who has the sub-chunk among the given helpers.

Thus, instead of doing transmission scheduling at helpers, User can *request* desired sub-chunk to the helper who has the one (**Greedy Pull for Minimum Delay**).

Explanation Settings:

- Two Helpers and One User
- A video consists of 3 Chunks (c1, c2, c3) and Each chunk consists of 3 Sub-Chunks, i.e., s11, s12, s13, s21, s22, s23, s31, s32, s33 where s23 means the 3rd subpart of 2nd chunk, etc. Assume that the sizes of all sub-chunks are same for the simplicity of explanation.

The quality mode selection is equivalent to

Push-based algorithm. Thus, this example is not including the function for simplicity.

USCUniversity of

Southern California

[Example-Based Explanation]

• User requests desired video to two helpers.

- User requests desired video to two helpers.
- Both helpers will reply zero (which is current backlog size).

- User requests desired video to two helpers.
- Both helpers will reply zero (which is current backlog size).
- User does the random selection (helper 1 is selected). And the user lets helper 1 know that it should place the sub-chunks of chunk 1 (i.e., s11, s12, s13).

- User requests desired video to two helpers.
- Both helpers will reply zero (which is current backlog size).
- User does the random selection (helper 1 is selected). And the user lets helper 1 know that it should place the sub-chunks of chunk 1 (i.e., s11, s12, s13).
- User requests next chunks (i.e., c2) to two helpers.

- User requests desired video to two helpers.
- Both helpers will reply zero (which is current backlog size).
- User does the random selection (helper 1 is selected). And the user lets helper 1 know that it should place the sub-chunks of chunk 1 (i.e., s11, s12, s13).
- User requests next chunks (i.e., c2) to two helpers.
- Helper 1 will reply 3 and helper 2 will reply 0.

- User requests desired video to two helpers.
- Both helpers will reply zero (which is current backlog size).
- User does the random selection (helper 1 is selected). And the user lets helper 1 know that it should place the sub-chunks of chunk 1 (i.e., s11, s12, s13).
- User requests next chunks (i.e., c2) to two helpers.
- Helper 1 will reply 3 and helper 2 will reply 0.
- User selects the one which has the smallest queue backlog size. Thus, helper 2 is selected. And the user lets helper 2 know that it should place the sub-chunks of chunk 2.

- User requests desired video to two helpers.
- Both helpers will reply zero (which is current backlog size).
- User does the random selection (helper 1 is selected). And the user lets helper 1 know that it should place the sub-chunks of chunk 1 (i.e., s11, s12, s13).
- User requests next chunks (i.e., c2) to two helpers.
- Helper 1 will reply 3 and helper 2 will reply 0.
- User selects the one which has the smallest queue backlog size. Thus, helper 2 is selected. And the user lets helper 2 know that it should place the sub-chunks of chunk 2.
- Now, instead of doing transmission scheduling,
 User selects helper 1 because user needs s11
 in terms of playback order and user knows that helper 1
 has the one (Greedy Pull for Minimum Delay).

[Example-Based Explanation]

• Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is bad, so, helper 1 can transmit only one, i.e., s11.

- Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is bad, so, helper 1 can transmit only one, i.e., s11.
- User requests next chunk (i.e., c3) to two helpers.

- Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is bad, so, helper 1 can transmit only one, i.e., s11.
- User requests next chunk (i.e., c3) to two helpers.
- Helper 1 will reply 2 and helper 2 will reply 3.

- Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is bad, so, helper 1 can transmit only one, i.e., s11.
- User requests next chunk (i.e., c3) to two helpers.
- Helper 1 will reply 2 and helper 2 will reply 3.
- User selects the one which has the smallest queue backlog size. Thus, helper 1 is selected. And the user lets helper 1 know that it should place the sub-chunks of chunk 3.

- Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is bad, so, helper 1 can transmit only one, i.e., s11.
- User requests next chunk (i.e., c3) to two helpers.
- Helper 1 will reply 2 and helper 2 will reply 3.
- User selects the one which has the smallest queue backlog size. Thus, helper 1 is selected. And the user lets helper 1 know that it should place the sub-chunks of chunk 3.

- Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is bad, so, helper 1 can transmit only one, i.e., s11.
- User requests next chunk (i.e., c3) to two helpers.
- Helper 1 will reply 2 and helper 2 will reply 3.
- User selects the one which has the smallest queue backlog size. Thus, helper 1 is selected. And the user lets helper 1 know that it should place the sub-chunks of chunk 3.
- Now, instead of doing transmission scheduling,
 User selects helper 1 again because user needs s12
 in terms of playback order and user knows that helper 1
 has the one (<u>Greedy Pull for Minimum Delay</u>).

[Example-Based Explanation]

• Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is bad, so, helper 1 can transmit only one, i.e., s12.

- Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is bad, so, helper 1 can transmit only one, i.e., s12.
- (User doesn't request chunks because c3 was the last one)
- Now, instead of doing transmission scheduling,
 User selects helper 1 again because user needs s13
 in terms of playback order and user knows that helper 1
 has the one (Greedy Pull for Minimum Delay).
- Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is good, so, helper 1 can transmit three.

- Now, instead of doing transmission scheduling,
 User selects helper 2 because user needs s21
 in terms of playback order and user knows that helper 2
 has the one (Greedy Pull for Minimum Delay).
- Helper 2 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is good, so, helper 2 can transmit three.

- Now, instead of doing transmission scheduling,
 User selects helper 1 because user needs s33
 in terms of playback order and user knows that helper 1
 has the one (Greedy Pull for Minimum Delay).
- Helper 1 transmits sub-chunks for the given time. If RSSI is good, then it can transmit more. Now, suppose that the channel is good, so, helper 1 can transmit the all of remaining sub-chunks.

Outline

Push-Strategic Device-to-Device Video Streaming

Implementation Limitation of Push-Strategic Streaming

Greedy Pull with Minimum Delay

- Design and Implementation of D2D Video Streaming on top of Android
- Modifying Current Scheme for the Implementation
- Designing a New Scheme for Downloading Chunks from Different Helpers

