

Práctica 1

1er cuatrimestre 2022

Algoritmos y Estructuras de Datos 1

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

$$\label{eq:fax: problem} \begin{split} & \text{Tel/Fax: (++54 +11) 4576-3300} \\ & \text{http://www.exactas.uba.ar} \end{split}$$

${\rm \acute{I}ndice}$

3.	Práctica 1	2
	3.1. Ejercicio 1	2
	3.2. Ejercicio 2	2
	3.3. Ejercicio 3	3
	3.4. Ejercicio 4	3
	3.5. Ejercicio 5	3
	3.6. Ejercicio 6	5
	3.7. Ejercicio 7	5
	3.8. Ejercicio 8	6
	3.9. Ejercicio 9	6
	3.10. Ejercicio 10	6
	3.11. Ejercicio 11	7

3. Práctica 1

3.1. Ejercicio 1

Me piden determinar si dados p y q variables preposicionales, las expresiones son formulas bien formadas. \bigstar Rdo.: una formula está bien formada si cumple:

- 1. True y False son fórmulas
- 2. Cualquier variable proposicional es una fórmula
- 3. Si A es una fórmula, $\neg A$ es una fórmula
- 4. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \land A_2 \land \cdots \land A_n)$ es una fórmula
- 5. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \lor A_2 \lor \cdots \lor A_n)$ es una fórmula
- 6. Si A y B son fórmulas, $(A \rightarrow B)$ es una fórmula
- 7. Si A y B son fórmulas, $(A \leftrightarrow B)$ es una fórmula

3.1.A. Pregunta A

- (a) $(p \neg q)$ no es una fórmula bien formada.
- (b) $p \lor q \land True$ no es una fórmula bien formada pues da lugar a ambigüedad por la falta de paréntesis.
- (c) $p \lor q \land True$ no es una fórmula bien formada pues da lugar a ambigüedad por la falta de paréntesis.
- (d) $\neg(p)$ no es una fórmula bien formada pues el paréntesis es redundante.
- (e) $(p \lor \neg q \land q)$ no es una fórmula bien formada ya que la falta de paréntesis da lugar a ambigüedad.
- (f) $(True \lor True \lor True)$ es una formula bien formada.
- (g) $(\neg p)$ no es una formula bien formada ya que no hacen falta los paréntesis.
- (h) $(p \lor False)$ es una formula bien formada.
- (i) (p = q) es una formula bien formada.

3.2. Ejercicio 2

- (a) Bien definida
- (b) Bien definida
- (c) Mal definida. El conector lógico \vee solo acepta variables del tipo Bool pero x e y son $\mathbb Z$
- (d) Bien definida
- (e) Mal definida. (z = 0) y (z = 1) no tipa correctamente dado que z es de tipo Bool.
- (f) Mal definida. No tipa correctamente dado que (y < 0) es de tipo Bool y la suma solo acepta números.

3.3. Ejercicio 3

Primero se evalúa $\alpha = (3 + 7 = \pi - 8)$ que al ser una igualdad devuelve un valor del tipo Bool. Luego $\alpha \in \{True, False\}$ y la fórmula resulta $\alpha \wedge True$ que está bien formada.

3.4. Ejercicio 4

Se que a = True, b = True, c = True, x = False, y = False

- (a) True
- (b) True
- (c) False
- (d) True
- (e) True
- (f) True
- (g) False

3.5. Ejercicio 5

★ Rdo.: Ua fórmula es **tautología** si siempre toma el valor True, es **contradicción** si siempre toma el valor False, es **contingencia** si no es ni tautología ni contradicción.

3

3.5.A. Inciso A

$$\begin{array}{c|c} p & (p \lor \neg p) \\ V & V \\ V & V \\ F & V \\ \end{array}$$

Es una tautología

3.5.B. Inciso B

$$\begin{array}{c|c}
p & (p \land \neg p) \\
V & F \\
F & F
\end{array}$$

Es una contradicción

3.5.C. Inciso C

Es una tautología. Recordar para usar como propiedad.

3.5.D. Inciso D

q	$(p \lor q)$	$((p \lor q) \to p)$
V	V	V
\mathbf{F}	V	V
V	V	\mathbf{F}
F	F	V
	q V F V F	$ \begin{array}{c c} {\rm q} & ({\rm p} \vee {\rm q}) \\ {\rm V} & {\rm V} \\ {\rm F} & {\rm V} \\ {\rm V} & {\rm V} \\ {\rm F} & {\rm F} \\ \end{array} $

Es una contingencia.

3.5.E. Inciso E

Sean $\alpha = \neg(p \land q); \beta = (\neg p \lor \neg q)$

Es una tautología. Demostración de DeMorgan.

3.5.F. Inciso F

$$\begin{array}{c|c} p & (p \to p) \\ V & V \\ F & V \end{array}$$

Es una tautología.

3.5.G. Inciso G

p V	q V	$(p \land q)$	$((p \land q) \rightarrow p)$
	V	V	V
V	F	F	V
F F	V	F	V
F	F	F	V

Es una tautología.

3.5.H. Inciso H

Sean $\alpha = (q \vee r)$; $\beta = (p \wedge q)$; $\sigma = (p \wedge r)$

Es una tautología.

3.5.I. Inciso I

Sean
$$\alpha = (q \to r)$$
; $\beta = (p \to q)$; $\sigma = (p \to r)$

p	q	r	α	$(p \to \alpha)$	β	σ	$(\beta \to \sigma)$	$((p \to \alpha) \to (\beta \to \sigma))$
V	V	V	V	V	V	V	V	V
V	V	F	F	\mathbf{F}	V	F	F	V
V	F	V	V	V	F	V	V	V
V	\mathbf{F}	F	V	V	F	F	V	V
F	V	V	V	V	V	V	V	V
F	V	F	F	V	V	V	V	V
F	F	V	V	V	V	V	V	V
F	F	F	V	V	V	V	V	V

Es una tautología.

3.6. Ejercicio 6

- (a) False es más fuerte que True.
- (b) $(p \land q)$ es más fuerte que $(p \lor q)$.
- (c) True es más fuerte que True (Consultar).
- (d) $(p \wedge q)$ es más fuerte que p.
- (e) False es más fuerte que False.
- (f) p es más fuerte que $(p \lor q)$.
- (g) No hay relación de fuerza.
- (h) No hay relación de fuerza.

La proposición más fuerte es False y la más débil es True

3.7. Ejercicio 7

3.7.A. Inciso A

$$(\neg p \vee \neg q) \vee (p \wedge q) \to (p \wedge q)$$
 Por DeMorgan:
$$((\neg (p \wedge q)) \vee (p \wedge q)) \to (p \wedge q)$$

3.7.B. Inciso B

★ Rdo. Def PROP: $(a \rightarrow b) \leftrightarrow (\neg a \lor b)$

$$\neg p \to (p \land r)$$
 por PROP: $p \lor (q \land r)$
Dist: $(p \lor q) \land (p \lor r)$

Luego $(p \lor q) \land (p \lor r) \leftrightarrow \neg p \rightarrow (p \land r)$

3.7.C. Inciso C

$$\neg(\neg p) \to (\neg(\neg p \land \neg q))$$
 Por DeMorgan: $p \to (\neg(\neg(p \lor q)))$ Cancelando: $p \to (p \lor q)$

No son equivalentes pues si p=True; q=False entonces $(p \rightarrow (p \lor q))=True$ pero q=False

3.7.D. Inciso D

TODO

3.7.E. Inciso E

$$\begin{aligned} p \vee (\neg p \wedge q) \\ \text{Dist: } (p \vee \neg p) \wedge (p \vee q) \\ \text{PROP: } \neg p \rightarrow q \end{aligned}$$

Pues $(p \lor \neg p)$ es siempre True. Luego solo hay que averiguar el valor de verdad de $(p \lor q)$, el cual verifica la equivalencia.

3.7.F. Inciso F

$$\neg (p \land (q \land s))$$
Conmutatividad:
$$\neg (s \land (p \land q))$$
DeMorgan:
$$\neg s \lor \neg (p \land q)$$

$$\neg s \lor \neg p \lor \neg q$$
Asocitividad:
$$\neg s \lor (\neg p \lor \neg q)$$
PROP:
$$s \to (\neg p \lor \neg q)$$

3.7.G. Inciso G

TODO

3.8. Ejercicio 8

TODO

3.9. Ejercicio 9

3.9.A. Inciso A

(a)
$$f \to (e \lor m) \land \neg (e \land m)$$

(b)
$$\neg f \rightarrow \neg e$$

(c)
$$(f \wedge e) \rightarrow m$$

3.9.B. Inciso B

TODO

3.10. Ejercicio 10

Defino j = Conocen a Juan; c = Conocen a Camila; g = Conocen a Gonzalo

j	c	g	$(j \rightarrow c)$	$(c \rightarrow g)$	$((j \to c) \lor (c \to g))$	$(j \rightarrow g)$	$(((j \to c) \lor (c \to g)) \to (j \to g))$
F	F	F	V	V	V	V	V
F	F	V	V	V	V	V	V
F	V	F	V	F	\mathbf{F}	V	V
F	V	V	V	V	V	V	V
V	F	F	F	V	\mathbf{F}	F	V
V	F	V	F	V	\mathbf{F}	V	V
V	V	F	V	F	\mathbf{F}	F	V
V	V	V	V	V	V	V	V

3.11. Ejercicio 11

Si p = pelea y o = ojo morado. Luego se que $p \to o$ pero si o es verdadero, puede darse como resultado de p = True/False Si por ejemplo digo çada vez que nieva hace frio", veo que hace frio y determino que está nevando es un pensamiento incorrecto porque puede hacer frio sin estar nevando.