DDR3 PHY

DDR3(LN28LPP)

Revision 1.21 September 2013

User's Guide

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind.

This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise.

Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

For updates or additional information about Samsung products, contact your nearest Samsung office.

All brand names, trademarks and registered trademarks belong to their respective owners.

© 2013 Samsung Electronics Co., Ltd. All rights reserved.

Important Notice

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior writ-

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

DDR3 PHY, DDR3(LN28LPP)USER GUIDE User's Guide, Revision 1.21

Copyright © 2013 Samsung Electronics Co., Ltd.

ten consent of Samsung Electronics.

Samsung Electronics Co., Ltd.

San #24 Nongseo-Dong, Giheung-Gu Yongin-City, Gyeonggi-Do, Korea 446-711

Contact Us: <u>e-mail@samsung.com</u>

TEL: (82)-(31)-209-9913 FAX: (82)-(31)-209-XXXX

Home Page: http://www.samsungsemi.com

Printed in the Republic of Korea

"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, for other applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use a Samsung product for any such unintended or unauthorized application, the Buyer shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Samsung was negligent regarding the design or manufacture of said product.

Warning

This document is intended only for the recipients designated by Samsung Electronics Co. Ltd. ("Samsung"). As it contains the trade secrets and confidential information of Samsung which are protected by Competition Law, Trade Secrets Protection Act and other related laws, this document may not be, in part or in whole, directly or indirectly publicized, distributed, photocopied or used (including in a posting on the Internet where unspecified individuals may access it) by any unauthorized third party. Samsung reserves its right to take legal measures and claim damages against any party that misappropriates Samsung's trade secrets or confidential information.

警告

本文件仅向经韩国三星电子株式会社授权的人员提供,其内容含有商业秘密保护相关法规规定并受其保护的三星电子株式会社商业秘密,任何直接或间接非法向第三人披露、传播、复制或允许第三人使用该文件全部或部分内容的行为(包括在互联网等公开媒介刊登该商业秘密而可能导致不特定第三人获取相关信息的行为)皆为法律严格禁止。此等违法行为一经发现,三星电子株式会社有权根据相关法规对其采取法律措施,包括但不限于提出损害赔偿请求。

Revision History

Revision No.	Date	Description	Author(s)
1.10	May 15, 2012	V6R0 DDR3 PHY initial Draft (Preliminary)	S.H. Kim
1.20	July 17, 2012	Add the jitter requirement(p12) Correct Skew Including Package and Board(p14)	S.H Kim
1.30		Add "Warning" about CK/CKB Skew Requirement(p14)	S.H Kim

Table of Contents

DD	DR3 PHY	
	EVISION 1.2	
US	SER'S GUIDE	1
IM	PORTANT NOTICE	2
CC	DPYRIGHT © 2012 SAMSUNG ELECTRONICS CO., LTD	2
	DME PAGE: HTTP://WWW.SAMSUNGSEMI.COM	
	RINTED IN THE REPUBLIC OF KOREA	
RE	EVISION HISTORY	IV
TA	ABLE OF CONTENTS	VI
LIS	ST OF FIGURES	8
LIS	ST OF TABLES	9
	ST OF EXAMPLES	
	ST OF CONVENTIONS	
	EGISTER RW ACCESS TYPE CONVENTIONS	
	GISTER VALUE CONVENTIONS	
	ESET VALUE CONVENTIONS	
	ST OF ACRONYMS	
1	OVERVIEW	
2	I/O SELECTION	
3	DFT GUIDE	
	3.1 Scan Insertion	3
4	CKE CONTROL	5
	4.1 CKE connection	5
	4.2 CKE Control	7
5	LAYOUT	9
	5.1 Layout Guide	9
	5.2 Pad Allocation	
	5.4 Clock Duty and Jitter	
	5.5 CLK_EN	
6		
_	PACKAGE AND BOARD GUIDE	14
	PACKAGE AND BOARD GUIDE	
	6.1 OFF-Chip Timing margin	14 14
	6.1 OFF-Chip Timing margin	14 14
	6.1 OFF-Chip Timing margin	14 15 16

7	LPDDR3 POWER CONSUMPTION	23
	6.6.1 SSN Simulation for LPDDR2/LPDDR3/DDR3	

List of Figures

Figure	Title	Page
Number		Number
Figure 4-1	External CKE Retention Control	5
Figure 4-2	Internal CKE Retention Control	6
Figure 4-3	External CKE Retention Control Timing Example for LN32LP I/O	7
Figure 4-4	CKEIN Connection Example for LN32LP I/O	7
Figure 5-1	Layout Guide	10
Figure 5-2	Clock shielding guide	10
	CTS	
Figure 5-4	Clock Duty	12
	Guide to meet the timing requirement for "clk_en"	
Figure 6-1	Connection between PADs and power ring	15
Figure 6-2	Package & Board Shielding Guide	17
Figure 6-3	Spice Simulation Pattern for SSN Simulation for LPDDR2/LPDDR3/DDR3	19
Figure 6-4	Check Points of SSN Simulation for LPDDR2/LPDDR3/DDR3	20
Figure 6-5	Spice Simulation Pattern for SSN Simulation for LPDDR3	21
•	Check Points of SSN Simulation for LPDDR3	22

List of Tables

Table	Title	Page
Number		Number
	Physical DDR PHY Specification	
Table 2-1	LN28LPP LPDDR2/DDR2/DDR3 Combo I/O Cell List	2
Table 3-1	Scan-chain Information for LPDDR3 PHY	4
Table 5-1	Layout Guide	9
Table 5-2	The requirement for the total on-chip jitter	12
Table 6-1	Skew Including Package and Board	14
Table 6-2	Signal List for Shielding	16
	DC Power Consumption (Simulation, Condition: NN, 25°C, 1.0V)	
	DC Power Consumption (Simulation, Condition: FF, 85°C, 1.1V)	
	AC Power Consumption (Simulation, Condition; NN, 25°C, 1.0V)	

List of Examples

Example	Title	Page
Number		Number
Example 3-1	SCAN Insertion	3

List of Conventions

Register RW Access Type Conventions

Туре	Definition	Description
R	Read Only	The application has permission to read the Register field. Writes to read-only fields have no effect.
W	Write Only	The application has permission to write in the Register field.
RW	Read & Write	The application has permission to read and writes in the Register field. The application sets this field by writing 1'b1 and clears it by writing 1'b0.

Register Value Conventions

Expression	Description
Х	Undefined bit
Х	Undefined multiple bits
?	Undefined, but depends on the device or pin status
Device dependent	The value depends on the device
Pin value	The value depends on the pin status

Reset Value Conventions

Expression	Description
0	
1	
Х	

Warning: Some bits of control registers are driven by hardware or write only. As a result the indicated reset value and the read value after reset might be different.

List of Acronyms

Acronyms	Descriptions
ACC	Adaptive Color Correction or Accurate Color Correction
BIST	Built In Self Test
GD	Gate Driver (Row Driver)
MB4	Mont Blanc 4 (GD Integration on LCD Panel)
SD	Source Driver (Column Driver)
CD	Column Driver (Source Driver)
SSCG	Spread Spectrum Clock Generation
TCON	Timing CONtroller
POR	Power On Reset
FRC	Frame Rate Control
DPRC	Data Processing
ATPG	Automatic Test Pattern Generation

OVERVIEW

Table shows the physical specification of PHY.

Table 1-1 Physical DDR PHY Specification

	Category	Description
	Size	V6R0_DDR3_72b_PHY(size:TBD) ctrl_slice(320umX320um) data_slice(290umX290um)
LN28LPP	Metal Option	6-metal
DDR3	Operation Frequency	≤ 800MHz (1600Mbps for DDR3)
PHY	Voltage	0.95V ~ 1.05V for 800MHz(DDR3 PHY)
	Dynamic Power	TBD
	Static Power	TBD
	Used Cell Type	RVT, LVT, LLP_RVT, LLP_LVT

2

I/O SELECTION

The following I/Os should be selected as SEC LPDDR2/DDR2/DDR3 Combo I/O set that is electrically and physically tuned to the LN28LPP low power process. This I/O uses 1.2V signaling when interfacing with LPDDR2 and 1.5V signaling when interfacing with DDR3 SDRAM.

The following Combo I/Os can be also used as CMOS receiver by setting high at "CMOSRCV" pin. This can be used to interface with LPDDR2 SDRAM under 200MHz.

Table 2-1 LN28LPP LPDDR2/DDR2/DDR3 Combo I/O Cell List

Cell Name	Туре	Description	Size with PAD
pblpddr3_dds	I/O	Bi-direction PAD for DQ Only for LPDDR3 w/o ODT feature	
pblpddr3_dds_ca	I/O	Bi-direction PAD for CA w/o ODT feature	
pblpddr3_dqs_dds	I/O	Differential bi-direction PAD for DQS Only for LPDDR3 w/o ODT feature	
pblpddr3	I/O	Bi-direction PAD for DQ	
pblpddr3_dqs	I/O	Differential bi-direction PAD for DQS	
polpddr3_cke	0	Output PAD for CKE(Clock Enable) Pin	
pvref_lpddr3	I/O	VREF supply PAD	
impcnt_new2_lpddr3	I/O	ZQ Calibration PAD	
pvddls_lpddr3	PWR	Power Pad for internal core & DDRx I/O's logic	
pvssls_lpddr3	GND	Ground pad for core & DDRx I/O's logic	
pdvdds_lpddr3	PWR	Power pad for DDRx I/O's output driver	
pdvsss_lpddr3	GND	Ground pad for DDRx I/O's output driver	
break_lpddr3_lpddr3	Slot	VDDQ/VSSQ Power separation in DDRx PHY	
pilpddr3_ckein	I	External retention mod control I/O	
decap_lpddr3	-	Filler cell with De-cap.	
impcnt_ext_lpddr3	-	Control cell for external impedance setting mode	
link_lpddr3_eg18	1	Link cell between DDR IOs and GPIOs, connect VDD/VSS/DVSS ring each other	
link_lpddr3_eg18_all	-	Link cell between DDR IOs and GPIOs, connect VDD/VSS/DVDD/DVSS ring each other	

3 DFT GUIDE

3 DFT GUIDE

3.1 SCAN INSERTION

ctldb should be used for scan-insertion instead of netlist.

Example 3-1 SCAN Insertion

```
STEP:
# read ctldb instead of netlist. (model name is different according to PHY type and bit width)
read_test_model LPDDR3_32b_PHY_SCAN.ctldb (or DDR3_72b_PHY_SCAN.ctldb)
.....
# stitch scan-chains of LPDDR3 PHY to top scan-chains.
set_scan_path "chain#0" { "DDR PHY Hierarchy"/c1 } -complete true
                                  В
set_scan_path "chain#1" { "DDR PHY Hierarchy"/c2 } -complete true
set_scan_path "chain#2" { "DDR PHY Hierarchy"/c3 } -complete true
set_scan_path "chain#69" { "DDR PHY Hierarchy"/70 } -complete true
set_scan_path "chain#70" { "DDR PHY Hierarchy"/71 } -complete true
set_scan_path "chain#71" { "DDR PHY Hierarchy"/72 } -complete true
*A: top scan chain name
*B: hierarchy of DDR3 PHY
*C: scan chain name of DDR3 PHY (refer to scanpath.rpt or table for scan chain information)
# remove black box design before write the final netlist.
remove design LPDDR3 32b PHY (or DDR3 72b PHY)
```


3 DFT GUIDE

Table 3-1 Scan-chain Information for LPDDR3 PHY

Scan Input	Scan Output	Scan Chain Name	Number of Chain
test_si[0]	test_so[0]	c1	230
test_si[1]	test_so[1]	c2	230
test_si[2]	test_so[2]	с3	230
test_si[3]	test_so[3]	c4	230
test_si[4]	test_so[4]	c5	230
test_si[5]	test_so[5]	c6	230
test_si[6]	test_so[6]	с7	230
test_si[7]	test_so[7]	c8	230
test_si71	test_so71	71	229
test_si72	PREADY	72	229

NOTE: Please refer to "V6R0_DDR3_72b_PHY_SCAN.txt.ctldb" for more information.

4

CKE CONTROL

4.1 CKE CONNECTION

CKE retention control input I/O(CKEIN I/O) should be connected internally to the retention control input of CKE[0]/CKE[1]/RESET. pilpddr3_ckein and polpddr3_cke are used for retention I/O. If you don't need to use pilpddr3_ckein as Figure 4-1, we recommend power or filler cell instead of pilpddr3_ckein.

Figure 4-1 External CKE Retention Control

Figure 4-2 Internal CKE Retention Control

DDR3 PHY_USER'S GUIDE_REV1.21

4.2 CKE CONTROL

Figure 4-3 External CKE Retention Control Timing Example for LN32LP I/O

Figure 4-4 CKEIN Connection Example for LN32LP I/O

Figure shows the timing example of CKE retention control.

Procedure

- Enter Self-Refresh mode.
- Set ctrl_ckstop to stop CK/CKB.
- Set CKEIN to enter CKE retention mode.
- Power-Off.
- Power-On.
- After reset is released, execute initialization.
- Clear ctrl_ckstop to make clock run again.
- Exit Self-Refresh mode.

5 LAYOUT

5.1 LAYOUT GUIDE

Layout guide is described in the table and figure.

Table 5-1 Layout Guide

Item	Description
Space between PHY and I/O	Should be less than 100um including routing channel.
Signal Routing between PHY and I/O	The skew between signals should be minimized. Crosstalk and MTTV should also be checked and constrained strictly.
I/O placement	Place the I/O according to I/O allocation guide. * Sequence of I/O can be flipped. In this case, LPDDR3 PHY should also be flipped.
Over-the-Cell Routing	Power: ≥ M7
Signal: ≥ Only DC signals can be routed with N 4 Power connection Connect all power ports to the power ring.	
Power connection	Connect all power ports to the power ring.
Clock Requirement	Clock should be generated by even-number division from PLL clock for almost 50:50 clock duty
CTS buffer	"Clock Inverter Cell" should be used CTS buffer
Clock Duty	Final duty of clock output I/O should be 47:53 ~ 53:47.
Placement of clock source	PLL should not be placed in the opposite side of PHY. Should be placed near for low clock jitter.
Clock Routing & Shielding	Should avoid noisy blocks like SRAM blocks and etc. Should not traverse the center of chip. Clock signal should be shielded with ground to prevent coupling noise and filled in de-coupling cell around clock cell on clock path (Figure 5-2)
	Signal Routing between PHY and I/O I/O placement Over-the-Cell Routing Power connection Clock Requirement CTS buffer Clock Duty Placement of clock source

Figure 5-1 Layout Guide

Figure 5-2 Clock shielding guide

DDR3 PHY_USER'S GUIDE_REV1.21

5.2 PAD ALLOCATION

Additional excel file is provided for PAD allocation. Please, refer to the excel sheet.

5.3 CTS

CTS(Clock Tree Synthesis) depth should be considered in synthesis and CTS phase. Because the PHY includes the internal CTS depth(tPHYCTS), CTS depth from the clock source to the clock port of PHY should be tCTS – tPHYCTS (tCTS is the clock network delay). This early-point CTS should be considered in synthesis and layout. And to get 50:50 clock duty at "clk2x", even-number division is mandatory. At the same time, to maintain the 50:50 duty at "clk2x", clock-inverter cells should be used for CTS buffer.

CTS depth information is provided in the README file in the DK.

Figure 5-3 CTS

5 LAYOUT

5.4 CLOCK DUTY AND JITTER

To meet the memory clock duty specification (45:55), right after the CTS phase, clock duty should be checked and corrected. Duty at the B point should be near to 50:50(at least, should be 49:51 ~ 51:49) to meet the 45:55 duty specification at the C and D point in any corner condition.

The duty of divider's output is nearly 50:50. So divider should be located as near as possible to the input clock port. (In this case, PLL fout frequency is necessary to double of clk2x frequency.)

Caution: Clock Duty in feedback test mode should be also 49:51 ~ 51:49 to meet the duty requirement Please check Clock Duty by using "PSI Jitter" instead of STA.

Figure 5-4 Clock Duty

The total on-chip jitter at "E" (including PLL, clock distribution network and DDRPHY jitter) should be under 3%. So please meet the following jitter margin for clock distribution network at 800MHz.

Table 5-2 The requirement for the total on-chip jitter

Clock Period	PLL(1%)	Clock Distribution Network	DDRPHY(1%)	Totall Jitter(RSS)
1250ps	12.5ps	33.1ps	12.5ps	37.5ps

5 LAYOUT

5.5 CLK_EN

Because "clk_en" is the signal with 800MHz interface timing, it is very difficult to meet the timing requirement during PnR stage. So, please make sure to meet the following guides in Figure 5-5.

Figure 5-5 Guide to meet the timing requirement for "clk_en"

PACKAGE AND BOARD GUIDE

6.1 OFF-CHIP TIMING MARGIN

The off-chip timing margin should be maximized through the PI/SI analysis. Please contact Design Technology team for more details about PI/SI Flow.

6.2 TRANSMISSION LINE SKEW MANAGEMENT

In Table 6-1, Skew in picoseconds is translated to physical length on the PCB.

Table 6-1 Skew Including Package and Board

Group	Signals	Skew	From	То
G0_1	CK/CKB	±10ps	Pad	Memory Pin
G0_2	PDQS[N]/NDQS[N]	±10ps	Pad	Memory Pin
G1	PDQS[N]/NDQS[N] DQ[(N+1)*8-1:N*8] DM[N]	±25ps from PDQS[0]/NDQS[0]	Pad	Memory Pin
G2	CK/CKB, RESET, ADCT[15:0], CS, RAS, CAS, BANK, CKE, WEN, ODT	±25ps from CK/CKB	Pad	Memory Pin
G3 (LPDDR2/LPDDR3)	CK/CKB, ADCT[9:0]	±25ps from CK/CKB	Pad	Memory Pin
G4	CK/CKB, P/NDQS[NS-1:0]	±1500ps from CK/CKB	Pad	Memory Pin
G5	P/NDQS[NS-1:0]	±625ps	Pad	Memory Pin

NOTE: N means 0,1 ... NS-1. NS is the number of data_slice. for example if using 72bit PHY, NS will be 9.

Caution: When CK/CKB is connected commonly to each rank, the skew between two ranks should follow

"G0_1" in Table 6-1.

6.3 PACKAGE

VDDQ/VSSQ is power/ground for 1.5V I/O and VDD/VSS is power/ground for the core. Those power pads will be connected to power ring. And it's recommended that VREF pads should be connected to VREF ring as shown Figure 6-1 to reduce the coupling noise between VREF and the other signals. Decoupling capacitor is recommended between power and ground to reduce SSN. VDDQZQ and VSSQZQ are analog power for ZQ IO. Thus, to isolate them from digital switching noise, they should not be connected to power ring but assigned to separate ballouts.

Wires of VREF, VDDQZQ, VSSQZQ and ZQ should have enough space away from adjacent signal wires to reduce the coupling noise

Figure 6-1 Connection between PADs and power ring

Please refer to "I/O Datasheet" for I/O power structure and break cell usage.

6.4 SHIELDING

Strobe and clock signals should be shielded with ground to prevent coupling noise.

Table 6-2 Signal List for Shielding

Signals	Description
PDQS/NDQS[0]	Ground shielding to prevent coupling noise
PDQS/NDQS[1]	Ground shielding to prevent coupling noise
PDQS/NDQS[2] (for 32-bit)	Ground shielding to prevent coupling noise
PDQS/NDQS[3] (for 32-bit)	Ground shielding to prevent coupling noise
PDQS/NDQS[4] (for 72-bit)	Ground shielding to prevent coupling noise
PDQS/NDQS[5] (for 72-bit)	Ground shielding to prevent coupling noise
PDQS/NDQS[6] (for 72-bit)	Ground shielding to prevent coupling noise
PDQS/NDQS[7] (for 72-bit)	Ground shielding to prevent coupling noise
PDQS/NDQS[8] (for 72-bit)	Ground shielding to prevent coupling noise
CK/CKB	Ground shielding to prevent coupling noise
VREF	Ground shielding to prevent coupling noise
VDDQZQ, VSSQZQ	Ground shielding to prevent coupling noise
ZQ	Ground shielding to prevent coupling noise

If the signal width is d, the ground shielding width and space should be equal or more than d. On the package, ground shield should have two vias, which connects to ground plane, on the each end side.

Figure 6-2 Package & Board Shielding Guide

6.5 GROUND PLANE OF THE PACKAGE

It is highly recommended to merge the ground plane to reduce the power and coupling noise.

6.6 SSN SIMULATION

6.6.1 SSN SIMULATION FOR LPDDR2/LPDDR3/DDR3

To prevent the power and signal integrity problem, package and board simulation should be conducted. For the worst write case, the input waveform pattern of the address, control and data should be input as shown in Figure 6-3.

Figure 6-3 Spice Simulation Pattern for SSN Simulation for LPDDR2/LPDDR3/DDR3

With the guided input pattern, tSKEW_C(control signal skew) and tSKEW_D0~D3(data skew) should be checked whether they are less than 600ps and 300ps, respectively. And Vd/Vr(signal voltage drop/rise) should be checked whether they meet the VIL(AC)/VIH(AC) requirement as shown in Figure 6-4. Generally, they are caused by power/ground fluctuation and coupling noise.

Figure 6-4 Check Points of SSN Simulation for LPDDR2/LPDDR3/DDR3

6.6.2 SSN SIMULATION FOR LPDDR3

For the worst write case, the input waveform pattern of LPDDR2 should be input as shown in Figure 6-5.

Figure 6-5 Spice Simulation Pattern for SSN Simulation for LPDDR3

With the guided input pattern, tSKEW_C(control signal skew) and tSKEW_D0~D3(data skew) should be checked whether they are less than 300ps. And Vd/Vr(signal voltage drop/rise) should be checked whether they meet the VIL(AC)/VIH(AC) requirement as shown in Figure 6-6. Generally, they are caused by power/ground fluctuation and coupling noise.

Figure 6-6 Check Points of SSN Simulation for LPDDR3

7

LPDDR3 POWER CONSUMPTION

Table 7-1 DC Power Consumption (Simulation, Condition: NN, 25°C, 1.0V)

Mode	NN, 25°C, 1.1V
Function Mode	TBD
IDLE (DLL-ON)	TBD
IDLE (DLL-OFF)	TBD

Table 7-2 DC Power Consumption (Simulation, Condition: FF, 85°C, 1.1V)

Mode	FF, 85°C, 1.2V
Function Mode	TBD
IDLE (DLL-ON)	TBD
IDLE (DLL-OFF)	TBD

Table 7-3 AC Power Consumption (Simulation, Condition: NN, 25°C, 1.0V)

Mode	NN, 25°C, 1.1V	
Function Mode	TBD	
IDLE (DLL-ON)	TBD	
IDLE (DLL-OFF)	TBD	

