Supplemental Sheet for Polynomials and Rational Functions

This is a worksheet to supplement the material learned in class - it will go over some things you may see in the future that we do not have time to go over during lecture. The completion of this assignment is not required: it will not be turned in nor will it be graded, but you may find it useful to work through these problems.

1 Polynomials

Theorems concerning polynomials:

• Synthetic Division: Synthetic division can be used when dividing a polynomial by a binomial i.e, dividing some expression of the form $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x^1 + a_0$ by an expression of the form x - k. You <u>cannot</u> use synthetic division if the divisor is not a binomial of degree one with a leading coefficient of one.

We set up the division as seen in the table above, with the coefficients of the polynomial inside the division box and k outside. Then, we can compute as follows:

- 1. Pull down the a_n for the first entry beneath the box.
- 2. Multiply k by next entry below the box (first will be a_n , then $(a_{n-1} + k \cdot a_n)$ etc.)
- 3. Add the two rows within the division box, write sum in entry below the box (we first have $(a_{n-1} + k \cdot a_n)$, next would be $(a_{n-2} + k(a_{n-1} + k \cdot a_n))$ etc.)
- 4. Continue this process until we reach the final sum, $a_0 + \dots$ in the final, rightmost entry below the division box. If this quantity is equal to 0, we have no remainder. Otherwise, we must include this quantity as the remainder.
- 5. The entries below the division box are the coefficients of our answer, a polynomial of degree n-1 i.e., our answer will be of the form: $a_n x^{n-1} + (a_{n-1} + k \cdot a_n) x^{n-2} + \cdots + \frac{remainder}{x-k}$.
- Remainder Theorem: When a polynomial, p(x) is divided by some x-k, then the remainder of that division is equal to the value of the polynomial at the point x=k. So, if $\frac{p(x)}{x-k}$ has a remainder, then the remainder = p(k). If we use synthetic division, this theorem can make evaluating complicated polynomials at certain points much easier (and able to be done without a calculator)!
- Rational Root Theorem: For a polynomial equation $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x^1 + a_0 = 0$, the rational roots theorem states that the only possible rational solutions to the equation (the only possible rational roots of the polynomial) will be of the most simplified form of $\frac{p}{q}$, where p is an integer factor of the constant term a_0 and q is an integer factor of the leading coefficient a_n . We can formulate a list of all of the possible rational roots of a polynomial and test them. For example, if the polynomial $3x^3 + x + 4$ has any rational roots, they will be one of the following numbers: ± 1 , $\pm \frac{1}{3}$, ± 4 , $\pm \frac{4}{3}$, ± 2 , or $\pm \frac{2}{3}$. Note that some polynomials will have no rational roots.

• Conjugate Zeros Theorem: If a polynomial p(x) has a complex root a - ib, then the complex conjugate of the root, a + ib, is also a root of the same polynomial.

With this, answer the following:

- 1. Compute $\frac{3x^3+4x^2+5}{x+3}$ using synthetic division.
- 2. $p(x) = 7x^4 + 48x^3 120x^2 6$. Evaluate p(2) using the remainder theorem.
- 3. Find all of the roots of the following polynomials:
 - (a) $3x^3 4x^2 8x 1$
 - (b) $x^3 x^2 + 25x 25$ given that one of the roots is -5i

2 Functions

Function rules:

- Relations versus Functions: A relation may show the relationship between an input and an output, but a function is a more specific classification of a relation. While a relation can have multiple outputs for one input, a function must have exactly one output for a given input.
- Odd and Even Functions: We classify a function f(x) as odd if f(-x) = -f(x). We classify a function as even if f(-x) = f(x). Odd functions show symmetry across the x-axis Odd functions are symmetric about the origin, while even functions show symmetry across the y-axis. For example, x^3 is an odd function, while x^2 is an even function.
- Bijective Functions: We say that a function is bijective when it is both one-to-one and onto. A function is one-to-one if every element in the function's domain (each x value) is mapped to exactly one element in the function's range (each y value). In other words, if f(a) = f(b) and the function is one-to-one, then a = b. A function is onto if every element in the function's range (each y value) can be produced by an element in the function's domain (an x value).
- 1. Classify the following as one-to-one, onto, neither, or bijective:

(a)
$$f: \mathcal{R} \to \mathcal{R}$$
, (b) $f: \mathbf{R} \to \mathcal{R}$, (c) $f: \mathcal{R} \to \mathcal{R}$, (d) $f: \mathcal{R} \to \mathcal{R}$, $f(x) = e^x$ $f(x) = x^3 + 5x^2 + f(x) = x^3$ $f(x) = x^2$

2. Classify the following functions as even, odd, or neither:

(a)
$$\cos(x)$$
 (b) $\sin(x)$ (c) $|x|$ (d) $x + 7$

3. Classify the following as relations or functions:

3 More Inequalities

Some things to keep in mind:

• Square Roots: When dealing with an inequality similar to the form $x^2 > r$, we cannot simply write $x > \pm \sqrt{r}$. We simplify as such:

1.
$$x^2 > r \to x > \sqrt{r} \text{ OR } x < -\sqrt{r}$$

2.
$$x^2 < r \to -\sqrt{r} < x < \sqrt{r}$$

3.
$$x^2 \ge r \to x \ge \sqrt{r} \text{ OR } x \le -\sqrt{r}$$

4.
$$x^2 \le r \to -\sqrt{r} \le x \le \sqrt{r}$$

- Interval Notation: When we solve an inequality, we can write our solution in interval notation instead of using $>, <, \ge, \le$. Say a, b are positive constants and a < b. If we have a < or > we use parenthesis (and when we have a \le or \ge we use a bracket [. When we write two solutions, like x < 1 OR x > 4, we can unify these with the symbol \cup . Here are some examples of how we can change notations:
 - 1. $x > a \to x \in (a, \infty)$
 - $2. \ x < a \to x \in (-\infty, a)$
 - 3. $a < x \le b \to x \in (a, b]$
 - 4. $x \le -a \text{ OR } x \ge b \to (-\infty, -a] \cup [b, \infty)$

With this, answer the following:

- 1. Simplify $x^2 \ge 16$. Write your answer in interval notation.
- 2. Write the following in interval notation: $-43 < x \le 7$ OR $9 \le x \le 18$ OR x > 89.