Math 412. §3.2, 3.2: Examples of Rings and Homomorphisms Professors Jack Jeffries and Karen E. Smith

DEFINITION: A **subring** of a ring R (with identity) is a subset S which is itself a ring (with identity) under the operations + and \times for R.

DEFINITION: An **integral domain** (or just **domain**) is a commutative ring R (with identity) satisfying the additional axiom: if xy = 0, then x or y = 0 for all $x, y \in R$.

DEFINITION: A **ring homomorphism** is a mapping $R \stackrel{\phi}{\longrightarrow} S$ between two rings (with identity) which satisfies:

- (1) $\phi(x+y) = \phi(x) + \phi(y)$ for all $x, y \in R$.
- (2) $\phi(x \cdot y) = \phi(x) \cdot \phi(y)$ for all $x, y \in R$.
- (3) $\phi(1) = 1$.

DEFINITION: A **ring isomorphism** is a bijective ring homomorphism. We say that two rings R and S are **isomorphic** if there is an isomorphism $R \to S$ between them.

You should think of a ring isomorphism as a renaming of the elements of a ring, so that two isomorphic rings are "the same ring" if you just change the names of the elements.

A. WARM-UP: Which of the following rings is an **integral domain**? Which is a field? Which is commutative? In each case, be sure you understand what the *implied ring structure* is: why is each below a ring? What is the identity in each?

- (1) \mathbb{Z}, \mathbb{Q} .
- (2) \mathbb{Z}_n for $n \in \mathbb{Z}$.
- (3) $\mathbb{R}[x]$, the ring of polynomials with \mathbb{R} -coefficients.
- (4) $M_2(\mathbb{Z})$, the ring of 2×2 matrices with \mathbb{Z} coefficients.
- (5) The subring $D_2(\mathbb{R})$ of diagonal matrices in the ring $M_2(\mathbb{R})$.
- B. SUBRINGS: Suppose that R is a ring¹ and S is a subset.
 - (1) Suppose $R = \mathbb{Z}$. Is the subset \mathbb{N} closed under + and \times . Is it is subring?
 - (2) Without writing out the proof, determine which of the following are subrings of \mathbb{C} : \mathbb{R} , \mathbb{N} , \mathbb{Q} , \mathbb{Z} , $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$, the set of even integers.
 - (3) Without writing out the proof, determine which of the following are subrings of $M_2(\mathbb{R})$: $M_2(\mathbb{N})$, $D_2(\mathbb{Z})$, $O_2(\mathbb{R}) = \{A \mid AA^T = I_2\}$, $GL_2(\mathbb{R}) = \{A \mid A \text{ is invertible}\}$,
 - (4) Which of the following are subrings of $\mathbb{R}[x]$: \mathbb{R} , \mathbb{Z} , the subset of $\mathbb{R}[x]$ consisting of polynomials with non-negative coefficients, the set of polynomials such that f(0) = 0.
 - (5) Define the phrase "the subset S of the ring R is **closed under addition, multiplication, and (additive) inverses.**" How can this idea be used to identify subrings?

C. ISOMORPHISM. Consider the set $S = \{a, b, c, d\}$, with the associative binary operations \heartsuit and \spadesuit listed below.

\bigcirc	a	b	c	d
a	a	a	a	a
b	a	b	c	d
c	a	c	a	c
d	a	d	c	b

	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

¹with identity

- (1) Prove that S has the structure of a commutative ring using these operations. Is it a domain? Is it is field?
- (2) Write down the addition and multiplication tables for the ring \mathbb{Z}_4 .
- (3) Find an **explicit** isomorphism showing that \mathbb{Z}_4 is isomorphic to $(S, \spadesuit, \heartsuit)$.
- D. PRODUCT RINGS. Let R_1 and R_2 be rings (with identity). Consider the set

$$R_1 \times R_2 := \{(r_1, r_2) \mid r_1 \in R_1, r_2 \in R_2\}.$$

- (1) Define a binary operation called + on $R_1 \times R_2$ by $(r_1, r_2) + (s_1, s_2) = (r_1 + s_1, r_2 + s_2)$. The three different plus signs in the preceding sentence have three different meanings; explain. Prove that this binary operation on $R_1 \times R_2$ is associative, commutative, and has an identity. Show finally that every $(r_1, r_2) \in R_1 \times R_2$ has an inverse under +.
- (2) Define multiplication on $R_1 \times R_2$ similarly. Explain why $R_1 \times R_2$ is a ring and identify its additive and multiplicative identities.
- (3) Let $R_1 = R_2 = \mathbb{Z}_2$. How many elements are in the ring $\mathbb{Z}_2 \times \mathbb{Z}_2$? List them out explicitly.
- (4) Make tables for the addition and multiplication in $\mathbb{Z}_2 \times \mathbb{Z}_2$. Identify zero and one.
- (5) Is $\mathbb{Z}_2 \times \mathbb{Z}_2$ a field? is it a domain?
- (6) Is $\mathbb{Z}_2 \times \mathbb{Z}_2$ isomorphic to \mathbb{Z}_4 ? If so, give an explicit isomorphism. If not, explain why no isomorphism exists.
- (7) Is $\mathbb{Z}_2 \times \mathbb{Z}_2$ isomorphic to the ring (S, \oplus, \otimes) , where $S = \{a, b, c, d\}$ and \oplus, \otimes are defined by the charts below? If so, give an explicit isomorphism. If not, explain why no isomorphism exists. Is your isomorphism the only possible isomorphism?

\oplus	a	b	c	d
a	a	b	c	d
b	b	a	d	c
С	С	d	a	b
d	d	c	b	a

\otimes	a	b	c	d
a	a	a	a	a
b	a	b	c	d
c	a	c	c	a
d	a	d	a	d

E. CANONICAL HOMOMORPHISM FOR \mathbb{Z}_n . Fix $n \in \mathbb{Z}$. Consider the mapping

$$\pi_n: \mathbb{Z} \to \mathbb{Z}_n, \quad a \mapsto [a]_n.$$

- (1) Prove that π_n is a **ring homomorphism.**
- (2) Is π_n surjective? Is it injective? What is the kernel? By definition, the **kernel** of a ring homomorphism f is the set of elements in the source that are mapped to 0 under f.
- (3) Is the map $\mathbb{Z}_6 \to \mathbb{Z}_2$ sending $[a]_6 \mapsto [a]_2$ a ring homomorphism? Is it an isomorphism?

F. TRUE or FALSE:

- (1) If S is a subring of R, then the inclusion map $S \hookrightarrow R$ is a ring homomorphism.
- (2) If R_1 and R_2 are rings, then the projection map $R_1 \times R_2 \to R_2 \to R_1$ sending $(r_1, r_2) \mapsto r_1$ is a ring homomorphism.
- (3) If S is a subring of R, then the inclusion map $S \hookrightarrow R$ is a ring homomorphism.
- (4) The map $\mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3$ sending $[a]_6 \mapsto ([a]_2, [a]_3)$ is a ring isomorphism.
- (5) The map $\mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_2$ sending $[a]_4 \mapsto ([a]_2, [a]_2)$ is a ring isomorphism.