Asymptotic Efficiency of Recurrences

- Find the asymptotic bounds of recursive equations.
 - Substitution method
 - domain transformation
 - Changing variable
 - Recursive tree method
 - Master method (master theorem)
 - Provides bounds for: T(n) = aT(n/b) + f(n) where
 - $-a \ge 1$ (the number of subproblems).
 - -b>1, (n/b) is the size of each subproblem).
 - f(n) is a given function.

Recurrences

MERGE-SORT

– Contains details:

•
$$T(n) = \Theta(1)$$
 if $n=1$

$$T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) \text{ if } n > 1$$

• Ignore details, $T(n) = 2T(n/2) + \Theta(n)$.

$$-T(n) = \Theta(1) \quad \text{if } n=1$$

$$2T(n/2) + \Theta(n) \quad \text{if } n > 1$$

The Substitution Method

- Two steps:
 - 1. Guess the form of the solution.
 - By experience, and creativity.
 - By some heuristics.
 - If a recurrence is similar to one you have seen before.
 - $T(n)=2T(\lfloor n/2\rfloor+17)+n$, similar to $T(n)=2T(\lfloor n/2\rfloor)+n$, guess $O(n \lg n)$.
 - Prove loose upper and lower bounds on the recurrence and then reduce the range of uncertainty.
 - For $T(n)=2T(\lfloor n/2 \rfloor)+n$, prove lower bound $T(n)=\Omega(n)$, and prove upper bound $T(n)=O(n^2)$, then guess the tight bound is $T(n)=O(n \lg n)$.
 - By recursion tree.
 - 2. Use mathematical induction to find the constants and show that the solution works.

Solve
$$T(n)=2T(\lfloor n/2 \rfloor)+n$$

- Guess the solution: $T(n)=O(n \lg n)$,
 - i.e., $T(n) \le cn \lg n$ for some c.
- Prove the solution by induction:
 - Suppose this bound holds for $\lfloor n/2 \rfloor$, i.e.,
 - $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg (\lfloor n/2 \rfloor)$.
 - $T(n) \le 2(c \lfloor n/2 \rfloor \lg (\lfloor n/2 \rfloor)) + n$
 - \leq cn lg (n/2)+n
 - = $\operatorname{cn} \lg n \operatorname{cn} \lg 2 + n$
 - = $\operatorname{cn} \operatorname{lg} n \operatorname{cn} + n$
 - \leq cn lg n (as long as $c \geq 1$)

Question: Is the above proof complete? Why?

Boundary (base) Condition

- In fact, T(n) = 1 if n = 1, i.e., T(1) = 1.
- However, $cn \lg n = c \times 1 \times \lg 1 = 0$, which is odd with T(1)=1.
- Take advantage of asymptotic notation: it is required $T(n) \le cn \lg n$ hold for $n \ge n_0$ where n_0 is a constant of our choosing.
- Select $n_0 = 2$, thus, n = 2 and n = 3 as our induction bases. It turns out any $c \ge 2$ suffices for base cases of n = 2 and n = 3 to hold.

Subtleties

- Guess is correct, but induction proof not work.
- Problem is that inductive assumption not strong enough.
- Solution: revise the guess by subtracting a lower-order term.
- Example: $T(n)=T(\lfloor n/2 \rfloor)+T(\lceil n/2 \rceil)+1$.
 - Guess T(n)=O(n), i.e., T(n) ≤ cn for some c.
 - However, $T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1 = cn+1$, which does not imply $T(n) \le cn$ for any c.
 - Attempting T(n)=O(n^2) will work, but overkill.
 - New guess T(n) ≤ cn b will work as long as $b \ge 1$.
 - (Prove it in an exact way).

Avoiding Pitfall

- It is easy to guess T(n)=O(n) (i.e., $T(n) \le cn$) for $T(n)=2T(\lfloor n/2 \rfloor)+n$.
- And wrongly prove:

$$-T(n) \le 2(c \lfloor n/2 \rfloor) + n$$

- $\leq cn+n$
- =O(n).

- ← wrongly !!!!
- Problem is that it does not prove the *exact* form of $T(n) \le cn$.

Find bound, ceiling, floor, lower term—domain transformation

- Find the bound: T(n)=2T(n/2)+n (O(nlogn))
- How about $T(n)=2T(\lfloor n/2 \rfloor)+n$?
- How about $T(n)=2T(\lceil n/2 \rceil)+n$?
 - $T(n) \le 2T(n/2+1) + n$
 - Domain transformation
 - Set S(n)=T(n+a) and assume $S(n) \le 2S(n/2)+O(n)$ (so $S(n)=O(n\log n)$)
 - $S(n) \le 2S(n/2) + O(n) \rightarrow T(n+a) \le 2T(n/2+a) + O(n)$
 - $T(n) \le 2T(n/2+1) + n$ $\rightarrow T(n+a) \le 2T((n+a)/2+1) + n + a$
 - Thus, set n/2+a=(n+a)/2+1, get a=2.
 - so $T(n)=S(n-2)=O((n-2)\log(n-2))=O(n\log n)$.
- How about T(n)=2T(n/2+19)+n?
 - Set S(n)=T(n+a) and get a=38.
- As a result, ceiling, floor, and lower terms will not affect.
 - Moreover, the master theorem also provides proof for this.

Changing Variables

- Suppose $T(n)=2T(\sqrt{n})+\lg n$.
- Rename $m=\lg n$. so $T(2^m)=2T(2^{m/2})+m$.
- Domain transformation:
 - $S(m)=T(2^m)$, so S(m)=2S(m/2)+m.
 - Which is similar to T(n)=2T(n/2)+n.
 - So the solution is $S(m)=O(m \lg m)$.
 - Changing back to T(n) from S(m), the solution is $T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n)$.

The Recursion-tree Method

• Idea:

- Each node represents the cost of a single subproblem.
- Sum up the costs with each level to get level cost.
- Sum up all the level costs to get total cost.
- Particularly suitable for divide-and-conquer recurrence.
- Best used to generate a good guess, tolerating "sloppiness".
- If trying carefully to draw the recursion-tree and compute cost, then used as direct proof.

Recursion Tree for $T(n)=3T(\lfloor n/4 \rfloor)+\Theta(n^2)$

Solution to $T(n)=3T(\lfloor n/4 \rfloor)+\Theta(n^2)$

- The height is $\log_4 n$,
- #leaf nodes = $3^{\log 4^n} = n^{\log 4^3}$. Leaf node cost: T(1).
- Total cost $T(n) = cn^2 + (3/16) cn^2 + (3/16)^2 cn^2 + \cdots + (3/16)^{\log} 4^{n-1} cn^2 + \Theta(n^{\log} 4^3)$ = $(1+3/16+(3/16)^2 + \cdots + (3/16)^{\log} 4^{n-1}) cn^2 + \Theta(n^{\log} 4^3)$ = $(1/(1-3/16)) cn^2 + \cdots + (3/16)^m + \cdots + (3/1$

Prove the above Guess

- $T(n)=3T(\lfloor n/4\rfloor)+\Theta(n^2)=O(n^2)$.
- Show $T(n) \le dn^2$ for some d.
- $T(n) \le 3(d(\lfloor n/4 \rfloor)^2) + cn^2$ $\le 3(d(n/4)^2) + cn^2$ $= 3/16(dn^2) + cn^2$ $\le dn^2$, as long as $d \ge (16/13)c$.

One more example

- T(n)=T(n/3)+T(2n/3)+O(n).
- Construct its recursive tree (Figure 4.2, page 71).
- $T(n)=O(cn\lg_{3/2}^n)=O(n\lg n).$
- Prove $T(n) \le dn \lg n$.

Recursion Tree of T(n)=T(n/3)+T(2n/3)+O(n)

Master Method/Theorem

- Theorem 4.1 (page 73)
 - for T(n) = aT(n/b) + f(n), n/b may be $\lceil n/b \rceil$ or $\lfloor n/b \rfloor$.
 - where $a \ge 1$, b > 1 are positive integers, f(n) be a nonnegative function.
 - 1. If $f(n) = O(n^{\log_b a_{-\epsilon}})$ for some $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
 - 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_a n)$.
 - 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Implications of Master Theorem

- Comparison between f(n) and $n^{\log_b a}$ (<,=,>)
- Must be asymptotically smaller (or larger) by a polynomial, i.e., n^{ε} for some $\varepsilon > 0$.
- In case 3, the "regularity" must be satisfied, i.e., $af(n/b) \le cf(n)$ for some c < 1.
- There are gaps
 - between 1 and 2: f(n) is smaller than $n^{\log_b a}$, but not polynomially smaller.
 - between 2 and 3: f(n) is larger than $n^{\log_b a}$, but not polynomially larger.
 - in case 3, if the "regularity" fails to hold.

Application of Master Theorem

- T(n) = 9T(n/3) + n;- a=9,b=3, f(n) = n- $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$ - $f(n) = O(n^{\log_3 9} - \epsilon)$ for $\epsilon = 1$ - By case 1, $T(n) = \Theta(n^2)$.
- T(n) = T(2n/3) + 1
 - a=1,b=3/2,f(n)=1
 - $n^{\log_b a} = n^{\log_{3/2} 1} = \Theta(n^0) = \Theta(1)$
 - By case 2, $T(n) = \Theta(\lg n)$.

Application of Master Theorem

- $T(n) = 3T(n/4) + n \lg n$;
 - $-a=3,b=4, f(n)=n \lg n$
 - $-n^{\log_b a} = n^{\log_4 3} = \Theta(n^{0.793})$
 - $-f(n) = \Omega(n^{\log_4 3 + \varepsilon})$ for $\varepsilon \approx 0.2$
 - Moreover, for large n, the "regularity" holds for c=3/4.
 - $af(n/b) = 3(n/4)\lg(n/4) \le (3/4)n\lg n = cf(n)$
 - By case 3, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$.

Exception to Master Theorem

- $T(n) = 2T(n/2) + n \lg n$;
 - $-a=2,b=2, f(n)=n \lg n$
 - $-n^{\log_b a} = n^{\log_2 2} = \Theta(n)$
 - -f(n) is asymptotically larger than $n^{\log_b a}$, but not polynomially larger because
 - $-f(n)/n^{\log_b a} = \lg n$, which is asymptotically less than n^{ε} for any $\varepsilon > 0$.
 - Therefore, this is a gap between 2 and 3.

Where Are the Gaps

Note: 1. for case 3, the regularity also must hold.

- 2. if f(n) is $\lg n$ smaller, then fall in gap in 1 and 2
- 3. if f(n) is $\lg n$ larger, then fall in gap in 3 and 2
- 4. if $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $f(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$. (as exercise)

Proof of Master Theorem

- The proof for the exact powers, $n=b^k$ for $k \ge 1$.
- Lemma 4.2

- for
$$T(n) = \Theta(1)$$
 if $n=1$
- $aT(n/b)+f(n)$ if $n=b^k$ for $k \ge 1$

- where $a \ge 1$, b > 1, f(n) be a nonnegative function,
- Then \log_b^{n-1} $T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{n-1} a^j f(n/b^j)$
- Proof:
 - By iterating the recurrence
 - By recursion tree (See figure 4.3)

Recursion tree for T(n)=aT(n/b)+f(n)

Proof of Master Theorem (cont.)

• Lemma 4.3:

- Let $a \ge 1$, b > 1, f(n) be a nonnegative function defined on exact power of b, then
- $-g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j) \text{ can be bounded for exact power of } b \text{ as:}$
- 1. If $f(n) = O(n^{\log_b a_{-\varepsilon}})$ for some $\varepsilon > 0$, then $g(n) = O(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $g(n) = \Theta(n^{\log_b a} \log_a n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$ and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large $n \ge b$, then $g(n) = \Theta(f(n))$.

Proof of Lemma 4.3

• For case 1: $f(n) = O(n^{\log_b a_{-\varepsilon}})$ implies $f(n/b^j) = O((n/b^j)^{\log_b a_{-\varepsilon}})$, so

•
$$g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(\sum_{j=0}^{\log_b n_{-1}} a^j (n/b^j)^{\log_b a_{-\varepsilon}})$$

• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(\sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b a_{-\varepsilon}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b a_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j))$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b a_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b n_{-1}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b a_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b n_{-1}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b a_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b n_{-1}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b n_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b n_{-\varepsilon}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b n_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b n_{-\varepsilon}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b n_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b n_{-\varepsilon}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b n_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b n_{-\varepsilon}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b n_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b n_{-\varepsilon}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b n_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)^{\log_b n_{-\varepsilon}})$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b n_{-\varepsilon}} \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b n_{-\varepsilon}} a^j f(n/b^j)$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j) = O(n^{\log_b n_{-\varepsilon}} a^j f(n/b^j)$
• $g(n) = \sum_{j=0}^{\log_b n_{-1}} a^j f(n/b^j)$

Proof of Lemma 4.3(cont.)

• For case 2: $f(n) = \Theta(n^{\log_b a})$ implies $f(n/b^j) = \Theta((n/b^j)^{\log_b a})$, so

•
$$g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j) = \Theta(\sum_{j=0}^{\log_b^{n-1}} a^j (n/b^j)^{\log_b^a})$$

•
$$= \Theta(n^{\log_b a} \sum_{j=0}^{\log_b a-1} a^{j/(b^{\log_b a})^j}) = \Theta(n^{\log_b a} \sum_{j=0}^{\log_b a-1} 1)$$

•
$$= \Theta(n^{\log_b a} \log_b^n) = \Theta(n^{\log_b a} \log_n)$$

Proof of Lemma 4.3(cont.)

• For case 3:

- Since g(n) contains f(n), $g(n) = \Omega(f(n))$
- Since $af(n/b) \le cf(n)$, $a^{i}f(n/b^{i}) \le c^{i}f(n)$, why???

$$-g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) \le \sum_{j=0}^{\log_b n-1} c^j f(n) \le f(n) \sum_{j=0}^{\infty} c^j$$

$$-$$
 = $f(n)(1/(1-c)) = O(f(n))$

- Thus, $g(n) = \Theta(f(n))$

Proof of Master Theorem (cont.)

• Lemma 4.4:

```
- for T(n) = \Theta(1) if n=1
- aT(n/b)+f(n) if n=b^k for k \ge 1
```

- where $a \ge 1$, b > 1, f(n) be a nonnegative function,
- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Proof of Lemma 4.4 (cont.)

- Combine Lemma 4.2 and 4.3,
 - For case 1:
 - $T(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a}) = \Theta(n^{\log_b a}).$
 - For case 2:
 - $T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \lg n) = \Theta(n^{\log_b a} \lg n)$.
 - For case 3:
 - $T(n) = \Theta(n^{\log_b a}) + \Theta(f(n)) = \Theta(f(n))$ because $f(n) = \Omega(n^{\log_b a + \varepsilon})$.

Floors and Ceilings

- $T(n)=aT(\lfloor n/b \rfloor)+f(n)$ and $T(n)=aT(\lceil n/b \rceil)+f(n)$
- Want to prove both equal to T(n)=aT(n/b)+f(n)
- Two results:
 - Master theorem applied to all integers n.
 - Floors and ceilings do not change the result.
 - (Note: we proved this by domain transformation too).
- Since $\lfloor n/b \rfloor \le n/b$, and $\lceil n/b \rceil \ge n/b$, upper bound for floors and lower bound for ceiling is held.
- So prove upper bound for ceilings (similar for lower bound for floors).

Upper bound of proof for $T(n)=aT(\lceil n/b \rceil)+f(n)$

- consider sequence n, $\lceil n/b \rceil$, $\lceil \lceil n/b \rceil/b \rceil$, $\lceil \lceil n/b \rceil/b \rceil/b \rceil$, ...
- Let us define n_i as follows:
- $n_j = n$ if j=0
- = $\lceil n_{j-1}/b \rceil$ if j > 0
- The sequence will be $n_0, n_1, ..., n_{\lfloor \log_b n \rfloor}$
- Draw recursion tree:

Recursion tree of $T(n)=aT(\lceil n/b \rceil)+f(n)$

The proof of upper bound for ceiling

$$-T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor - 1} a^j f(n_j)$$

 Thus similar to Lemma 4.3 and 4.4, the upper bound is proven.

The simple format of master theorem

• $T(n)=aT(n/b)+cn^k$, with a, b, c, k are positive constants, and $a \ge 1$ and $b \ge 2$,

$$O(n^{\log ba}), \text{ if } a > b^k.$$

$$T(n) = \begin{cases} O(n^k \log n), \text{ if } a = b^k. \\ O(n^k), \text{ if } a < b^k. \end{cases}$$

Summary

Recurrences and their bounds

- Substitution
- Recursion tree
- Master theorem.
- Proof of subtleties
- Recurrences that Master theorem does not apply to.