

University of Luxembourg

THESIS FOR THE BACHELOR OF MATHEMATICS

High Dimensional Regression Models

BY JORIS LIMONIER

Supervisor: Mark PODOLSKIJ Submitted: June 4, 2021

Abstract

Abstract goes here.

Contents

0	Not	es	1
	0.1	Notes for chapter 1	1
	0.2	Notes for chapter 2	1
		0.2.1 Linear models	1
		0.2.2 The least squares method	2
	0.3	Notes for chapter 3	3
		0.3.1 Section 6.2	3
		0.3.2 Section 6.3	8
1	Introduction		13
2	Classical theory of Linear Regression		15
3	The	ory for LASSO in high dimensions	17

vi *CONTENTS*

Chapter 0

Notes

0.1 Notes for chapter 1

To be added

- how to get \hat{b} on page 101.
- where the χ^2 distribution comes from in page 101

0.2 Notes for chapter 2

0.2.1 Linear models

We consider the setting of having a sample of n observations

$$(\mathbf{X}_1,\mathbf{Y}_1),\ldots,(\mathbf{X}_n,\mathbf{Y}_n)$$

where $X_i \in \mathscr{X} \subseteq \mathbb{R}^p$, i = 1, ..., n and $Y_i \in \mathscr{Y} \subseteq \mathbb{R}$, i = 1, ..., n. In other words, each of the observations contains p covariates. In the real world this could mean having n patients, p observations per patient and trying to predict an outcome such as having a certain type of cancer.

Definition 0.1 (The linear model). The relationship between an observation $\mathbf{X}_i \in \mathscr{X}$ and its outcome $\mathbf{Y}_i \in \mathscr{Y}$ can be established by a linear model, that is

$$i = 1, \dots, n$$
 $\mathbf{Y}_i = \sum_{j=1}^p \boldsymbol{\beta}_j \mathbf{X}_i^{(j)} + \boldsymbol{\varepsilon}_i$ (1)

Instead of seeing each observation individually we can deal with all of them together by expressing the linear model in matrix notation

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{2}$$

Definition 0.2. (a) **X** is called the **design matrix**. It has dimension $n \times p$.

X consists of stacking the vectors relative to each observation

$$X = \begin{bmatrix} - & X_1^T & - \\ & \vdots & \\ - & X_n^T & - \end{bmatrix}$$

- (b) β is called the **parameter vector**. It has dimension $p \times 1$.
- (c) ε is called the **error vector**. It has dimension $n \times 1$.
- (d) Y is called the **response vector**. It has dimension $n \times 1$.

Without loss of generality, and after centering and scaling if necessary, we can assume that

$$\forall j = 1, \dots, p \quad \begin{cases} \bar{\mathbf{Y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{i} = 0\\ \hat{\boldsymbol{\sigma}}_{j}^{2} := \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{X}_{i}^{(j)} - \bar{\mathbf{X}}^{(j)} \right)^{2} = 1 \end{cases}$$

0.2.2 The least squares method

The least squares problem consists of finding the minimizing vector $\hat{\boldsymbol{\beta}}$ the following function

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} \varepsilon_i^2 = \boldsymbol{\varepsilon}^T \boldsymbol{\varepsilon} = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
(3)

which may be rewritten as

$$S(\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= \mathbf{Y}^T \mathbf{Y} - \mathbf{Y}^T \mathbf{X}\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{Y} - \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{Y}^T \mathbf{Y} - 2\hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{Y} - \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\beta}$$

0.3 Notes for chapter 3

0.3.1 Section 6.2

We define $\hat{\beta}$ as follows

$$\hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} \left\{ \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}\|_{1} \right\}$$
(4)

Lemma 0.3 (Basic Inequality).

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le 2 \frac{\varepsilon^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

Proof. By definition of $\hat{\beta}$, we have that

$$\forall \boldsymbol{\beta} \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}\|_{1}$$

In particular for $\beta = \beta^0$ we have

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^0\|_2^2}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

We now replace \mathbf{Y} using equation (2).

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \boldsymbol{\beta}^{0}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\langle \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}})\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\langle \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

Let

$$\mathscr{T} := \left\{ \max_{1 \le j \le p} 2 \frac{\left| \varepsilon^T \mathbf{X}^{(j)} \right|}{n} \le \lambda_0 \right\}$$

Lemma 0.4 (Lemma 6.2.). For all t > 0 and

$$\lambda_0 := 2\boldsymbol{\sigma} \sqrt{\frac{t^2 + 2\log p}{n}}$$

we have

$$\mathbb{P}(\mathscr{T}) \ge 1 - 2\exp\left[-t^2/2\right]$$

Proof. We define

$$V_j := \frac{\varepsilon^T \mathbf{X}^{(j)}}{\sqrt{n\boldsymbol{\sigma}^2}}$$

Then we have

$$\mathbb{P}(\mathscr{T}) = \mathbb{P}\left(\max_{1 \leq j \leq p} 2 \frac{\left|\varepsilon^{T} \mathbf{X}^{(j)}\right|}{n} \leq 2\boldsymbol{\sigma}\sqrt{\frac{t^{2} + 2\log p}{n}}\right)$$

$$= \mathbb{P}\left(\max_{1 \leq j \leq p} \left|\frac{\varepsilon^{T} \mathbf{X}^{(j)}}{\sqrt{n\boldsymbol{\sigma}^{2}}}\right| \leq \sqrt{t^{2} + 2\log p}\right)$$

$$= \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| \leq \sqrt{t^{2} + 2\log p}\right)$$

$$= 1 - \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| > \sqrt{t^{2} + 2\log p}\right)$$

$$= 1 - \mathbb{P}\left(\bigcup_{j=1}^{p} |V_{j}| > \sqrt{t^{2} + 2\log p}\right)$$

$$\geq 1 - \sum_{j=1}^{p} \mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right)$$

$$\geq 1 - p \,\mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right)$$
(5)

Now, let us define $\zeta := \sqrt{t^2 + 2 \log p}$. Since V_j is $\mathcal{N}(0,1)$ -distributed and $\zeta > 0$.

$$\mathbb{P}(V_j > \zeta) = \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} e^{-y^2/2} dy$$

$$< \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} \frac{y}{\zeta} * e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} \int_{\zeta}^{\infty} y * e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} e^{-\zeta^2/2}$$

We note that $p \geq 2 \implies \zeta \sqrt{2\pi} \geq 1$ therefore

$$\mathbb{P}(V_j > \zeta) < e^{-\zeta^2/2}$$

Moreover by symmetry of the $\mathcal{N}(0,1)$ distribution,

$$\mathbb{P}(|V_j| > \zeta) = \mathbb{P}(V_j > \zeta) + \mathbb{P}(-V_j < -\zeta)$$
$$= 2\mathbb{P}(V_j > \zeta)$$
$$< 2e^{-\zeta^2/2}$$

Thus by definition of ζ

$$\mathbb{P}(|V_j| > \zeta) < 2e^{-\zeta^2/2}$$

$$= 2 \exp\left[\frac{-\sqrt{t^2 + 2\log p}^2}{2}\right]$$

$$= 2 \exp\left[\frac{-t^2}{2} - \log p\right]$$

$$= 2 \exp\left[\frac{-t^2}{2}\right] \exp\left[\log \frac{1}{p}\right]$$

$$= \frac{2}{p} \exp\left[\frac{-t^2}{2}\right]$$

Inserting this result into (5) we obtain

$$\mathbb{P}(\mathscr{T}) \ge 1 - p \, \mathbb{P}\left(|V_j| > \sqrt{t^2 + 2\log p}\right)$$
$$\ge 1 - p \, \frac{2}{p} \exp\left[\frac{-t^2}{2}\right]$$
$$= 1 - 2 \exp\left[\frac{-t^2}{2}\right]$$

Corollary 0.5 (Consistency of the LASSO). Assume $\sigma^2 = 1$ for all j. We define the regularization parameter as

$$\lambda = 4\hat{\boldsymbol{\sigma}}^2 \sqrt{\frac{t^2 + 2\log p}{n}}$$

where $\hat{\boldsymbol{\sigma}}$ is some estimator of $\boldsymbol{\sigma}$.

Then with probability at least $1-\alpha$, where $\alpha:=2\exp(-t^2/2)+\mathbb{P}(\hat{\boldsymbol{\sigma}}\leq \boldsymbol{\sigma})$ we have

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} \le 3\lambda \|\boldsymbol{\beta}^0\|_1$$

Lemma 0.6 (Lemma 6.3.). We have on \mathscr{T} , with $\lambda \geq 2\lambda_0$,

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_0^c}\|_1 \le 3\lambda \|\hat{\boldsymbol{\beta}}_{S_0} - \boldsymbol{\beta}_{S_0}^0\|_1$$
 (6)

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le 2 \frac{\varepsilon^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

Now since we are on \mathcal{T} and since $2\lambda_0 \leq \lambda$

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda_{0} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{2} + 2\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

Let $\beta_{j,S} := \beta_j 1\{j \in S\}$. We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}}\|_{1} &= \|\hat{\boldsymbol{\beta}}_{S_{0}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \\ &= \|\boldsymbol{\beta}_{S_{0}}^{0} - \boldsymbol{\beta}_{S_{0}}^{0} + \hat{\boldsymbol{\beta}}_{S_{0}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \\ &\geq \|\boldsymbol{\beta}_{S_{0}}^{0}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} &= \|(\hat{\boldsymbol{\beta}}_{S_{0}} + \hat{\boldsymbol{\beta}}_{S_{0}^{c}}) - (\boldsymbol{\beta}_{S_{0}}^{0} + \underbrace{\boldsymbol{\beta}_{S_{0}^{c}}^{0}}_{=0})\|_{1} \\ &= \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \end{split}$$

Injecting these two results, we get that

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \left(\|\boldsymbol{\beta}_{S_{0}}^{0}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1}\right) + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \|\underbrace{\boldsymbol{\beta}_{S_{0}^{c}}^{0}}_{=\boldsymbol{\beta}^{0}}\|_{1} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1}$$

Definition 0.7 (Compatibility condition). We say that the compatibility condition is met for the set S_0 , if for some $\phi_0 > 0$, and for all $\boldsymbol{\beta}$ satisfying $\|\boldsymbol{\beta}_{S_0^c}\|_1 \leq 3\|\boldsymbol{\beta}_{S_0}\|_1$, it holds that

$$\|\boldsymbol{\beta}_{S_0}\|_1^2 \le \left(\boldsymbol{\beta}^T \hat{\boldsymbol{\sigma}} \boldsymbol{\beta}\right) \frac{s_0}{\phi_0^2} \tag{7}$$

Theorem 0.8 (Theorem 6.1.). Suppose the compatibility condition holds for S_0 . Then on \mathcal{T} , we have for $\lambda \geq 2\lambda_0$,

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} \le 4\lambda^{2} \frac{s_{0}}{\phi_{0}^{2}}$$

Proof. Using lemma 6 we have that

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} + \hat{\boldsymbol{\beta}}_{S_{0}^{c}} - \boldsymbol{\beta}_{S_{0}}^{0} - \underline{\boldsymbol{\beta}}_{S_{0}^{c}}^{0}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \quad (by \ lemma \ 6)$$

$$\leq 4\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1}$$

$$\leq 4\lambda \sqrt{\left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right)^{T}} \hat{\boldsymbol{\sigma}} \left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right) s_{0}/\phi_{0}^{2}$$

$$\leq \sqrt{\left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right)^{T}} \mathbf{X}^{T} \mathbf{X} \left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right) \frac{4\lambda \sqrt{s_{0}}}{\phi_{0}\sqrt{n}}}$$

$$\leq \|\mathbf{X}(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0})\|_{2}^{2} \frac{4\lambda \sqrt{s_{0}}}{\phi_{0}\sqrt{n}}$$

$$\leq \|\mathbf{X}(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0})\|_{2}^{2} + \frac{4\lambda^{2}s_{0}}{\phi_{0}^{2}n}$$

Where the last inequality follows from $4uv \le u^2 + 4v^2$.

0.3.2 Section 6.3

Now $\mathbf{Y} := \mathbf{f}^0 + \boldsymbol{\varepsilon}$, therefore $\mathbb{E}[\mathbf{Y}] := \mathbf{f}^0$.

Lemma 0.9 (New version of the Basic Inequality). $\forall \boldsymbol{\beta}^* \in \mathbb{R}^p$ we have

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
(8)

Proof. By definition of $\hat{\beta}$, we have that

$$\forall \boldsymbol{\beta} \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2}{n} + \lambda \|\boldsymbol{\beta}\|_1$$

In particular for $\beta = \beta^*$ we have

$$\forall \boldsymbol{\beta}^* \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2}{n} + \lambda \|\boldsymbol{\beta}\|_1$$

We since
$$\mathbf{Y} = \mathbf{f}^0 + \boldsymbol{\varepsilon}$$

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{f}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{f}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\langle(\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, (\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1}$$

$$\leq \frac{\langle(\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}, (\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\leq \frac{\|\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\langle\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1} + \frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*})}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1} + \frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Lemma 0.10 (New version of Lemma 6.3.). We have on \mathcal{T} , with $\lambda \geq 4\lambda_0$,

$$\frac{4\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_*^c}\|_1 \le 5\lambda \|\hat{\boldsymbol{\beta}}_{S_*} - \boldsymbol{\beta}_{S_*}^*\|_1 + \frac{4\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
(9)

where $S_* := \{j : \beta_j^* \neq 0\}.$

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$

Now since we are on \mathcal{T} and since $4\lambda_0 \leq \lambda$

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*})}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1} + \frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda_{0} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*}\|_{1} + \lambda \|\boldsymbol{\beta}^{*}\|_{1} + \frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4 \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*}\|_{1} + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4 \frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}}\|_{1} &= \|\hat{\boldsymbol{\beta}}_{S_{*}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \\ &= \|\boldsymbol{\beta}_{S_{*}}^{*} - \boldsymbol{\beta}_{S_{*}}^{*} + \hat{\boldsymbol{\beta}}_{S_{*}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \\ &\geq \|\boldsymbol{\beta}_{S_{*}}^{*}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S^{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\|\hat{m{eta}} - m{eta}^*\|_1 = \|(\hat{m{eta}}_{S_*} + \hat{m{eta}}_{S_*^c}) - (m{eta}_{S_*}^* + \underbrace{m{eta}_{S_*^c}^*}_{=0})\|_1$$

$$= \|\hat{m{eta}}_{S_*} - m{m{eta}}_{S_*}^*\|_1 + \|\hat{m{eta}}_{S^c}\|_1$$

Injecting these two results, we get that

$$4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*}\|_{1} + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \left(\|\boldsymbol{\beta}_{S_{*}}^{*}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{c}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1}\right) + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\underbrace{\boldsymbol{\beta}_{S_{*}^{*}}^{*}}\|_{1} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}^{*}\|_{1}$$

$$\leq 5\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}^{*}\|_{1} \leq 5\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Definition 0.11 (Compatibility condition for general sets). We say that the compatibility condition holds for the set S, if for some constant $\phi(S) > 0$, and for all β , with $\|\beta_{S^c}\|_1 \leq 3 \|\beta_S\|_1$, one has

$$\|\boldsymbol{\beta}_S\|_1^2 \leq \left(\boldsymbol{\beta}^T \hat{\boldsymbol{\sigma}} \boldsymbol{\beta}\right) \frac{|S|}{\phi^2(S)}$$

We define ${\mathscr S}$ as the collection of sets S for which the compatibility condition holds.

11

Definition 0.12 (The oracle). We define the oracle $\boldsymbol{\beta}^*$ as

$$\boldsymbol{\beta}^* = \arg\min_{\boldsymbol{\beta}: S_{\boldsymbol{\beta}} \in \mathscr{S}} \left\{ \frac{\|\mathbf{X}\boldsymbol{\beta} - \mathbf{f}^0\|_2^2}{n} + \frac{4\lambda^2 s_{\boldsymbol{\beta}}}{\phi^2(S_{\boldsymbol{\beta}})} \right\}$$

where $S_{\beta} := \{j : \beta_j \neq 0\}$, $s_{\beta} := |S_{\beta}|$ denotes the cardinality of S_{β} and the factor 4 in the right hand side comes from choosing $\lambda \geq \lambda_0$.

Chapter 1 Introduction

Chapter 2

Classical theory of Linear Regression

Chapter 3

Theory for LASSO in high dimensions