Pontificia Universidad Javeriana Facultad de Ciencias Departamento de Matemáticas Análisis numéricos: Ejercicios

Eddy Herrera Daza

Aclaraciones:

El taller se debe enviar al correo <u>eherrera@javeriana.edu.co</u> con la solución de los 2 puntos asignados y el 20 septiembre se entrega el ejercicio 9 ó 10 según sea caso, junto con la presentación en clase de la solución

El formato de del documento donde esta solución es libre y debe adjuntarse el .py o el archivo. r donde está la implementación

El plazo para la entrega del documento del taller es hoy 9 septiembre hasta 2 pm hora local , no olvide incluir en el correo el nombre de todos los integrantes del grupo

1. Dado el sistema:

i.
$$u - 8v - 2w = 1$$
 $u + 4v = 5$ $u + 3v - w = 18$
i. $u + v + 5w = 4$ ii. $v + w = 2$ iii. $4u - v + w = 27.34$
 $3u - v + w = -2$ $2u + 3w = 0$ $u + v + 7w = 16.2$

- a) Es la matriz A de coefcientes diagonal dominante? se puede reorganizar con operaciones entre filas para que sea diagonalmente dominante?
- b) Encuentre la matriz de transición por el método de Jacobi y determine si el método converge.
- c) Compare la solución entre la solución de Jacobi y Gauss Seidel. Utilice una tolerancia de 10⁻⁶, genere varias iteraciones
- d) Evalue la matriz de transición del métdo **SOR** y determine varias soluciones aproximadas, para 10 valores de ω . Utilice una tolerancia de 10^{-16}
- e) Construya una función $f(\omega)$ que determine el valor óptimo de ω para que el método**SOR** converja
- 2. Dado el sistema lineal de la forma AX = b donde la matriz de coeficientes inicialmente esta dado por:

a) Si
$$A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$
, es diagonalmente dominante

- b) Calcule el radio espectral $\rho(\lambda)$ de la matriz de transición por el método de Gauss-Seidel.
- c) Utilice el método de Gauss-Seidel para aproximar la solución con una tolerancia de 10–16, determine el número de máximo de iteraciones. Tenga en cuenta que $b = \begin{bmatrix} 0.254 \\ -1.425 \\ 2.978 \end{bmatrix}$
- d) Que pasa con la solución anterior si $a_{13} = -2$, explique su respuesta
- e) Evalue la matriz de transición del mét
do SOR y determine varias soluciones aproximadas, para 10 valores de ω . Utilice una tolerancia de 10^{-5}
- 3. Suponga que en el siguiente modelo f(x) describe la cantidad de personas que son infectadas por un virus, en donde t es el tiempo en días

$$f(t) = k_1 t + k_2 t^2 + k_3 e^{0.15t}$$
 Se conocenlos siguientes datos: $f(10) = 25$; $f(15) = 130$; $f(20) = 650$

Determine de forma aproximada el día más cercano donde la cantidad de personas infectadas supera los 1500;1800;2000.

Pontificia Universidad Javeriana Facultad de Ciencias Departamento de Matemáticas Análisis numéricos: Ejercicios

Eddy Herrera Daza

4. Dado el sistema AX = B, utilice el método de **SOR** con una precisión de 10^{-5} , donde $\mathbf{b} = b_i = \pi, \forall i = 1, \dots, d$ 1,...,80 y las entradas de la matriz A estan dadas por

$$a_{i,j} = \begin{cases} 2i, & \text{when } j = i \text{ and } i = 1, 2, \dots, 80, \\ 0.5i, & \text{when } \begin{cases} j = i + 2 \text{ and } i = 1, 2, \dots, 78, \\ j = i - 2 \text{ and } i = 3, 4, \dots, 80, \end{cases} \\ 0.25i, & \text{when } \begin{cases} j = i + 4 \text{ and } i = 1, 2, \dots, 76, \\ j = i - 4 \text{ and } i = 5, 6, \dots, 80, \end{cases} \\ 0, & \text{otherwise,} \end{cases}$$

Figura 1: Matriz A

5. Sea I una imagen en blanco y negro, digamos con valores en una gama de 0 a 1 de 800×600 píxeles. Se considera la transformación de desenfoque que consiste en que el valor de gris de cada píxel se cambia por una combinacion lineal de los valores de los píxeles adyacentes y el mismo, segun la caja

a_{11}	a_{12}	a_{13}
a_{21}	a_{22}	a_{23}
a_{31}	a_{32}	a_{33}

Figura 2: I

Donde se supone que a_{22} (la ponderación del propio pixel) es mayor que la suma de todos los demás valores a_{ij} en valor absoluto. Se pide:

- a) Si se desea realizar la operación inversa (enfocar), ¿se puede utilizar el algoritmo de Gauss-Seidel o el de Jacobi? ¿Piensas que es mejor usar uno de estos (si es que se puede) o, por ejemplo, la factorización LU? ¿Por qué?
- b) ¿Qué condiciones se han de dar para que la matriz de la transformación sea simétrica? ¿Y definida positiva?
 - 6. Dado el siguiente sistema:

$$\begin{aligned} 2x - z &= 1\\ \beta x + 2y - z &= 2\\ -x + y + \alpha z &= 1 \end{aligned}$$

- a. Encuentre el valor de α y β para asegura la convergencia por el metodo de Jacobi y para Gauss Seidel. Sugerencia: utilice el teorema convergencia
- b. Genere una tabla que tenga 10 iteraciones, del metodo de Jacobi con vector inicial $x_0 = [1, 2, 3]^t$
- 7. Dada la matriz A (del punto 1) verificar si:
- i. Se puede descomponer de la forma LU, entonces utilice el resultado para resolver el sistema, teniendo en cuenta que la máquina admite cuatro dígitos significativos; ¿cómo afecta esto la respuesta?
- ii. Se puede descomponer utilizando el método de Cholesky?, entonces utilice el resultado para resolver el sistema y encuentre el número de operaciones que se necesita para aplicar el algoritmo.
- 8. Dados los sistemas del punto 1, evaluar el error hacia atrás, hacia delante y el número de condición cuando el sistema se soluciona por el método de:

Pontificia Universidad Javeriana Facultad de Ciencias Departamento de Matemáticas Análisis numéricos: Ejercicios

Eddy Herrera Daza

i. Gauss con pivoteo parcial ii. Gauss iii. Cramer iv. Factorización LU

- 9. **fecha de entrega 21 septiembre**: Dado un sistema cualquiera que está asociada a una matriz dispersa con *n*=10000 implemente el método del gradiente conjugado para resolver el problema.
- 10. **fecha de entrega 21 septiembre**: Dado un sistema de ecuaciones no lineales, implemente el método de Newton Multivariado (es decir para varias variables) para resolver el problema:

Determinar numericamente la interseccion entre la circunferencia $x^2+y^2=1$ y la recta y=x. Usamos una aproximacion inicial (1,1).