Observed Response Patterns in Latent Class Analysis Adam Garber

Norwegian University of Science and Technology - A Course in MplusAutomation								
May $30, 2021$								
Lab preparation								
Change starting location to folder 21-response-patterns								
<pre>source("rep_functions.R")</pre>								
<pre>change_here(glue("{project_location}/21-response-patterns"))</pre>								
here()								
## [1] "/Users/agarber/github/NTNU-workshop/21-response-patterns"								
Data source: Longitudinal Study of American Youth, Science Attitudes See documentation about the LSAY here.								
Load packages								
<pre>library(tidyverse) library(glue) library(MplusAutomation) library(here) library(janitor) library(gt)</pre>								

library(DT) library(plotly) library(gg3D) library(gganimate) library(viridis) library(hrbrthemes)

Exploring observed response patterns

Load data

Use {DT::datatable()} to take a look at the data

Show 5	✓ entries			Search:			
Enjoy 🌲		Useful ⊜	Logical 🌲	Job ⊕	Adult 🌲		
All	All	All	All	All			
	1	1	1	1	1		
	0	0	1	0	0		
	1	1	0	0	0		
	0	0	0	1	1		
	0	1	1	0	0		
Showing 1 to	5 of 3,061 entries		Previous 1 2	3 4 5	613 Next		

Figure. Path diagram of science attitude indicators.

Save response frequencies for the 4 class model with response is ____.dat.

```
patterns <- mplusObject(
   TITLE = "C4 LCA - Save response patterns",
   VARIABLE =
   "categorical = Enjoy-Adult;
   usevar = Enjoy-Adult;

   classes = c(4);",

ANALYSIS =
   "estimator = mlr;
   type = mixture;
   starts = 500 100;",</pre>
```

```
SAVEDATA =
  "File=3step_savedata.dat;
   Save=cprob;
   Missflag= 999;
   !!!!!!!! Code to save response frequency data !!!!!!!!
   response is resp_patterns.dat;
   OUTPUT = "sampstat residual patterns tech10 tech11 tech14",
 PLOT =
   "type = plot3;
   series = Enjoy-Adult(*);",
 usevariables = colnames(lsay_data),
 rdata = lsay_data)
patterns_fit <- mplusModeler(patterns,</pre>
              dataout=here("resp_pattrn", "LSAY.dat"),
              modelout=here("resp_pattrn", "patterns.inp") ,
              check=TRUE, run = TRUE, hashfilename = FALSE)
```

Read in observed respnse pattern data

Order responses by highest frequency

```
order_highest <- patterns %>%
arrange(desc(Frequency))
```

```
loop_cond <- lapply(1:4, function(k) {
  order_cond <- patterns %>%
    filter(C_MODAL == k) %>%
    arrange(desc(Frequency)) %>%
    head(5)
  })

table_data1 <- bind_rows(loop_cond) %>%
    as.data.frame()

table_data2 <- rbind(order_highest[1:5,], table_data1)</pre>
```

Use {gt} to make a nicely formatted table

```
table_data2 %>%
  gt() %>%
  tab_header(
```

```
title = md("**Observed response patterns, estimated frequencies, estimated posterior
                class probabilities, and modal class assignment.**"),
  subtitle = md(" ")) %>%
 tab_source_note(
 source_note = md("Data Source: **Longitudinal Study of American Youth.**")) %>%
  cols label(
 ENJOY = "Enjoy",
 USEFUL = "Useful",
 LOGICAL = "Logical",
  JOB = "Job",
 ADULT = "Adult",
 CPROB1 = html("P<sub>k=1"),
 CPROB2 = html("P<sub>k=2"),
 CPROB3 = html("P < sub > k = 3"),
 CPROB4 = html("P<sub>k=4"),
 C_MODAL = md("*k*")) %>%
tab_row_group(
 group = "Unconditional response patterns ordered by highest frequency",
 rows = 1:5) %>%
tab_row_group(
  group = "k=1 conditional response pattern ordered by highest frequency",
 rows = 6:10) %>%
tab_row_group(
 group = "k=2 conditional response pattern ordered by highest frequency",
  rows = 11:15) %>%
tab_row_group(
 group = "k=3 conditional response pattern ordered by highest frequency",
 rows = 16:20) %>%
tab_row_group(
 group = "k=4 conditional response pattern ordered by highest frequency",
 rows = 21:25) %>%
 row_group_order(
   groups = c("Unconditional response patterns ordered by highest frequency",
               "k=1 conditional response pattern ordered by highest frequency",
               "k=2 conditional response pattern ordered by highest frequency",
               "k=3 conditional response pattern ordered by highest frequency",
               "k=4 conditional response pattern ordered by highest frequency")) %>%
tab_options(column_labels.font.weight = "bold")
```

Observed response patterns, estimated frequencies, estimated poprobabilities, and modal class assignment.

	Frequency	Enjoy	Useful	Logical	Job	Adult	P _{k=1}
Unconditional response patterns ordered by highest							
	558	0	0	0	0	0	0.000
	529	1	1	1	1	1	0.957
	313	1	0	0	0	0	0.000
	135	1	0	1	0	0	0.002
	94	1	1	1	0	1	0.687

k=1 conditional response pattern ordered by highest frequency

529	1	1	1	1	1	0.957		
94	1	1	1	0	1	0.687		
78	0	1	1	1	1	0.859		
62	1	1	0	1	1	0.580		
55	1	1	1	1	0	0.650		
k=2 conditional response pattern ordered by highest frequency								
135	1	0	1	0	0	0.002		
88	0	0	1	0	0	0.000		
74	1	1	1	0	0	0.063		
47	1	1	0	0	0	0.006		
44	1	0	0	1	0	0.004		
k=3 conditional response pattern ordered by highest frequency								
91	1	0	0	0	1	0.003		
88	1	0	1	1	1	0.337		
76	1	0	1	0	1	0.048		
70	1	0	0	1	1	0.031		
53	0	0	0	0	1	0.001		
k=4 conditional response pattern ordered by highest frequency								
558	0	0	0	0	0	0.000		
313	1	0	0	0	0	0.000		
53	0	0	0	1	0	0.000		
11	0	0	NA	0	0	0.000		
9	0	NA	0	0	0	0.000		

Data Source: Longitudinal Study of American Youth.

Visualizing observed response patterns

Order rows by modal assignment (K)

```
order_modal <- patterns %>%
  arrange(desc(C_MODAL)) %>%
  rownames_to_column() %>%
  rename('pat_num' = "rowname") %>%
  drop_na(ENJOY:ADULT)
```

Prepare plot data

<simpleError in startLine:endLine: NA/NaN argument>

```
# extract posterior probabilities
probs_c4 <- as.data.frame(</pre>
  out_c4[["gh5"]][["means_and_variances_data"]]
  [["estimated_probs"]][["values"]]
  [seq(2, 10, 2),])
rownames(probs_c4) <- c("ENJOY", "USEFUL", "LOGICAL", "JOB", "ADULT")</pre>
long_c4 <- probs_c4 %>% rownames_to_column() %>%
  rename('var' = "rowname") %>%
  pivot longer(`V1`:`V4`, # The columns I'm gathering together
               names_to = "c", # new column name for existing names
               values to = "value") %>% # new column name to store values
  mutate(Class = rep(1:4,5)) %>%
  arrange(Class) %>%
  mutate(obs = rep(33:36,each=5)) %>%
  mutate(Frequency = rep(c(829,782,619,833),each=5)) \%
  mutate(var = ordered(var,
                      levels = c("ENJOY", "USEFUL", "LOGICAL", "JOB", "ADULT"))) %>%
  select(6,1,3,5,4)
p2_long <- rbind(p1_long, long_c4) %>%
  mutate(Class = as.numeric(Class))
```

Visualize observed response patterns with {plotly}

Indicator Pattern 1

Make a 3D plot with packages {ggplot2}, {gg3D}, and {gganimate}.

```
# change perspective (tilt)
theta= 170
              # change perspective (rotation)
phi=40
resp3d <- ggplot(p1_long, aes(x=as.numeric(var),</pre>
                              y=as.numeric(value),
                              z = as.numeric(obs)),
                 alpha = .8) +
  axes_3D(theta=theta, phi=phi) +
  stat_3D(theta=theta, phi=phi, geom="path",
          aes(colour = Class, size = Frequency), alpha = .8) +
  scale_color_manual(values=c("#FDE725FF", "#DE7065FF", "#238A8DFF", "#482677FF")) +
  theme_void() +
  annotate("text", x = -.3, y = 0.05, label = "Indicators") +
  annotate("text", x = .35, y = -.4, label = "Probability") +
  annotate("text", x = .25, y = .42, label = "Pattern") +
  annotate("text", x = .2, y = 0, label = "0.0") +
  annotate("text", x = .34, y = -.33, label = "1.0") +
  annotate("text", x = -.05, y = 0, angle = 6,
           label = "Enjoy - Useful - Logical - Job - Adult") +
  transition_states(obs, transition_length=1, state_length=5) +
  shadow_mark(alpha = .1,) +
  labs(title = "Observed response pattern = {closest_state}")
animate(resp3d, fps = 2)
anim_save(here("figures", "responses_3d_anim.gif"), height = 6, width = 8, dpi = "retina")
```

Comparing model fit

Learning objective: Generate a comprehensive model fit summary table.

Information criteria: model is endorsed by lowest value:

```
• BIC: = -2*LL + Npar*LN(N) • aBIC: -2*LL + Npar*LN((N+2)/24) • CIAC: -2*LL + Npar*(LN(N)+1)) • AWE: -2*LL + 2*Npar*(LN(N)+1.5)
```

Run a quick enumeration

```
lca_k1_6 <- lapply(1:6, function(k) {</pre>
  lca_enum <- mplusObject(</pre>
    TITLE = glue("Class {k}"),
    VARIABLE = glue(
    "categorical = Enjoy-Adult;
    usevar = Enjoy-Adult;
     classes = c({k}); "),
  ANALYSIS =
   "estimator = mlr;
   type = mixture;
    starts = 200 50;
    processors = 10;",
  OUTPUT = "sampstat residual tech11 tech14;",
  PLOT =
    "type = plot3;
     series = Enjoy-Adult(*);",
  usevariables = colnames(lsay data),
  rdata = lsay_data)
lca_enum_fit <- mplusModeler(lca_enum,</pre>
    dataout=glue(here("enum_mplus", "lsay.dat")),
    modelout=glue(here("enum_mplus", "c{k}_lca.inp")) ,
    check=TRUE, run = TRUE, hashfilename = FALSE)
})
```

Create model fit summary table

Extract data and calculate indices derived from the Log Likelihood

```
all_output <- readModels(here("enum_mplus"), quiet = TRUE)</pre>
## <simpleError in startLine:endLine: NA/NaN argument>
n_size <- all_output[["c1_lca.out"]][["summaries"]][["Observations"]]</pre>
enum_extract <- LatexSummaryTable(all_output,</pre>
                keepCols=c("Title","Parameters", "LL", "BIC",
                           "aBIC", "BLRT_PValue", "T11_VLMR_PValue"),
                sortBv = "Title")
all_fit <- enum_extract %>%
  mutate(aBIC = -2*LL+Parameters*log((n_size+2)/24)) %>%
  mutate(CIAC = -2*LL+Parameters*(log(n_size)+1)) %>%
  mutate(AWE = -2*LL+2*Parameters*(log(n size)+1.5)) %>%
 mutate(SIC = -.5*BIC) \%>\%
  mutate(expSIC = exp(SIC - max(SIC))) %>%
  mutate(expSUM = sum(expSIC)) %>%
  mutate(BF = exp(SIC-lead(SIC))) %>%
  mutate(cmPk = expSIC/expSUM) %>%
  select(1:5,8:9,7,6,13,14)
```

Format table with package {gt}

```
all_fit %>%
  gt() %>%
   tab header(
   title = md("**Model Fit Summary Table**"), subtitle = md(" ")) %>%
   tab_source_note(
   source_note = md("Data Source: **Longitudinal Study of American Youth.**")) %>%
   cols_label(
   Title = "Classes",
   Parameters = md("*NPar*"),
   LL = md("*LL*"),
   T11_VLMR_PValue = html("VLMR"),
   BLRT PValue = html("BLRT"),
   BF = html("Bayes<br>>Factor"),
    cmPk = html("cmP<sub>k")) %>%
  tab_options(column_labels.font.weight = "bold") %>%
  fmt_number(10:11,decimals = 2,
             drop_trailing_zeros=TRUE,
             suffixing = TRUE) %>%
  fmt_number(2:9,decimals = 2)
```

Model Fit Summary Table

Classes	NPar	LL	BIC	aBIC	CIAC	AWE	VLMR	BLRT	Bayes Factor	C
Class 1	5.00	-10,250.60	20,541.34	20,525.45	20,546.34	20,596.47	NA	NA	0	
Class 2	11.00	-8,785.32	17,658.92	17,623.97	17,669.93	17,780.22	0.00	0.00	0	
Class 3	17.00	-8,693.57	17,523.59	17,469.57	17,540.59	17,711.04	0.00	0.00	0	
Class 4	23.00	-8,664.09	17,512.79	17,439.71	17,535.79	17,766.40	0.00	0.00	5.22B	
Class 5	29.00	-8,662.39	17,557.54	17,465.40	17,586.54	17,877.31	0.67	1.00	12.32B	
Class 6	35.00	-8,661.54	17,604.01	17,492.80	17,639.01	17,989.94	0.75	1.00	NA	

Data Source: Longitudinal Study of American Youth.

References

Drew A. Linzer, Jeffrey B. Lewis (2011). poLCA: An R Package for Polytomous Variable Latent Class Analysis. Journal of Statistical Software, 42(10), 1-29. URL http://www.jstatsoft.org/v42/i10/.

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Miller, J. D., Hoffer, T., Suchner, R., Brown, K., & Nelson, C. (1992). LSAY codebook. Northern Illinois University.

Muthén, B. O., Muthén, L. K., & Asparouhov, T. (2017). Regression and mediation analysis using Mplus. Los Angeles, CA: Muthén & Muthén.

Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686