INTRODUCTION TO COMPUTER SCIENCE

Week 9-8: Necursion 2 (Binary Search)

Giulia Alberini, Fall 2020

- More recursive Algoighment Project Exam Help
 - Decimal to Binary conversion https://powcoder.com
 - Power function

Binary Search

Add WeChat powcoder

RECALL: DECIMAL TO BINARY (ITERATIVE)

ALGORITHM Constructing Base 2 Expansions Assignment Project Exam Help procedure BinaryExpansion(n) k := https://powcoder.comWhile n > 0a deln We Chat powcoder n = n/2 $k \coloneqq k + 1$ **return** $(a_{k-1}, ..., a_1, a_0)$

Recall that a decimal number n requires approximately $\log_2 n$ bits for its binary representation.

DECIMAL TO BINARY (RECURSIVE)

ALGORITHM

Assignment Project Expansigns

proded by Approximation (n) If n > 0:

Bindely Expansion (n%2) oder print(n%2)

Also in this case, there are $\log_2 n$ recursive calls

POWER (x^n) – DEFINITION

Definition of power

$$x^{n} = x \cdot x \cdots x$$
Assignment Project Exam Help
$$n \text{ times}$$

- Inductive definition: https://powcoder.com
 - Base clause: Add WeChat powcoder

 $x^0 = 1$

Inductive clause:

$$x^n = x \cdot x^{n-1}$$

Let x a positive integer and let n be a positive number.

Assignment Project Exam Help

```
https://powcoder.com
power(x, n) {
    intAda WeChat powcoder
    for(int i=1; i<=n; i++) {
        result = result *x;
    }
    return result;
}</pre>
```

POWER (x^n) – RECURSIVE

```
Assignment Project Exam Help

power(x, n) {

if (nhttps://powcoder.com
    return 1;

} elAdd WeChat powcoder
    return x*power(x, n-1);

}

}
```

POWER() – CAN WE DO BETTER?

More interesting approach using recursion:

Assignment Project Exam Help $x^{18} = x^9 * x^9$ https://powcoder.com

$$x^4 = x^2 * x^2$$

$$x^2 = x * x$$

POWER (x^n) – RECURSIVE 2 -

```
power(x, n) {
  if (n == 0)
     return Assignment Project Exam Help
  else if (n == 1)
     return x; https://powcoder.com
  else{
     tmp = power Add We Chat powcoder
     if (n%2 == 0)
        return tmp*tmp; // one multiplication
     else
        return tmp*tmp*x; // two multiplications
```

A SIMILAR IDEA CAN BE IMPLEMENTED ITERATIVELY

IDEA: Let's use the binary expansion of n, say $n = (a_{k-1}, ..., a_1, a_0)_2$.

Assignment Project Exam Help

Note that:

$$\chi^n = \chi^{a_{k-1}} 2^k \text{httpsa/powcoder} x^{both} \cdot \chi^{a_1 2} \cdot \chi^{a_0}$$

This shows how to compated Weetaltypreed to compute the values of x, x^2 , $(x^2)^2 = x^4$, ..., x^{2^k} . Once we have these terms we multiply the terms x^{2^j} , where $a_i = 1$.

```
power(x, n) {
   result = 1;
  pow = x; Assignment Project Exam Help, ..., a_1, a_0)<sub>2</sub> if (n%2 == 1)
      result = x;https://powcoder.com
   n = n/2;
   while (n != 0) Add WeChat powcder(n) - 1 iterations
      pow = pow * pow; // 1 multiplication
      if(n%2 == 1)
         result = result * pow; // 1 multiplication
      n = n/2;
   return result;
```

```
power(x, n) {
   result = 1;
  pow = x; Assignment Project Exam [Help, ..., a_1, a_0)<sub>2</sub> if (n%2 == 1)
      result = x;https://powcoder.com
   n = n/2;
   while (n != 0) Add WeChat powcder(n) - 1 iterations
      pow = pow * pow; // 1 multiplication
      if(n%2 == 1)
         result = result * pow; // 1 multiplication
      n = n/2;
   return result;
```

```
power(x, n) {
   result = 1;
  pow = x; Assignment Project Exam [Melp, ..., a_1, a_0]<sub>2</sub> if (n%2 == 1)
      result = x;https://powcoder.com
   n = n/2;
   while (n != 0) Add WeChat powcder(n) - 1 iterations
      pow = pow * pow; // 1 multiplication
      if(n%2 == 1)
         result = result * pow; // 1 multiplication
      n = n/2;
   return result;
```

EXAMPLE: x^{243}

$$n = (243)_{10} = (11110011)_2$$

Assignment Project Exam Help

https://powcoder.com Q: How many multiplications do we need?

Add WeChat powcoder

EXAMPLE: x^{24}

$$n = (243)_{10} = (11110011)_2$$

Assignment Project Exam Help

https://powcoder.com Q: How many multiplications do we need?

Add WeChat powcoder

A: Recursive method: 5*2 + 2*1 = 12.

Iterative method: 7 + 5 = 12

The highest order bit in the recursive method is the base case, and doesn't require a multiplication.

The lowest order bit in the iterative method does not require multiplication.

EXAMPLE: x^{243}

$$n = (243)_{10} = (11110011)_2$$

Assignment Project Exam Help

https://powcoder.com Q: How many multiplications do we need?

Add WeChat powcoder

A: $O(\log n)$

OBSERVATIONS

The second approach we looked at uses fewer multiplications than the first one, and thus the second approach seems faster.

Assignment Project Exam Help

Q: Is this indeed the case? //powcoder.com

Add WeChat powcoder

A: No. Why not?

OBSERVATIONS

Hint: /Let x be a positive integer with M digits.

Assignment Project Exam Help

 $-x^2$ has about ? digits.

https://powcoder.com

• x^3 has about ? digits.

Add WeChat powcoder

• x^n has about ? digits.

OBSERVATIONS

Hint: Let x be a positive integer with M digits.

- Assignment Project Exam Help | x² has about 2M digits.
- x^3 has about 3M digits. */powcoder.com
- Add WeChat powcoder
- x^n has about n * M digits.

We cannot assume that multiplication takes 'constant' time.

Taking large powers gives very large numbers and multiplications becomes more expensive.

SEARCHING A LIST

Goal: find a given element in a list.

Assignment Project Exam Help

- Solution: go through attphe/elementleinthenlist and check whether the element is there (linear search).

 Add WeChat powcoder
- Could we do this any faster if the list was sorted to begin with?

Think of how you search for a term in an index. Do you start at the beginning and then scan through to the end? (No.)

Exponential inequality 185 Exponential running time 186,	See also Maxflow problem flow network 888	symbol tables 363 type parameter 122, 134
661, 911	inflow and outflow 888	Genomics 492, 498
Extended Church-Turing the-	residual network 895	Geometric data types 76-77
sis 910	st-flow 888	Geometric sum 185
Extensible library 101	st-flow network 888	getClass() method 101, 103
External path lengt 4555011	ment Project E	xam Help
	Floyd, R. W. 326	Global variable 113
F	Floyd's method 327	Gosper, R. W. 759
Factor on integer 010 htt	ps://powcoder.	Graph data type 522-527
Factor an integer 919 IIU Factorial function 185	Ford-Fulkerson 891–893	Graph isomorphism 561, 919
Fail-fast design 107	analysis of 900	Graph processing 514-693.
Fail-fast iterator 160, 171	maximum-capacity path 901	See also Directed graph;
Farthest pair 210	ld WeChat pow	COCE also Edge-weighted
Fibonacci heap 628, 682	Ford, L. 683	digraph; See also Edge-
Fibonacci numbers 57	Foreach loop 138	weighted graph; See
FIFO. See First-in first-out policy	arrays 160	also Undirected graph;
FIFO queue.	strings 160	See also Directed acyclic
See Queue data type	Forest	graph
File system 493	graph 520	Bellman-Ford 668-681
Filter 60	spanning 520	breadth-first search 538-541
blacklist 491	Forest-of-trees 225	components 543-546
dedup 490	Formatted output 37	critical-path method 664-666
whitelist 8, 491	Fortran language 217	depth-first search 530-537
Final access modifier 105–106	Fragile base class problem 112	Dijkstra's algorithm 652
Fingerprint search 774–778	Frazer, W. 306	Kosaraju's algorithm 586-590
Finite state automaton.	Fredman, M. L. 628	Kruskal's algorithm 624-627
rance state automaton.	Expertion call stack 146 415	language noting 011 017

BINARY SEARCH

- Inputs:
 - A sorted list.

Assignment Project Exam Help
The element we are looking for (the key)

- IDEA: First compare the key with the element on the middle of the list
 - If the key is less than the middle element cwelenly need to search the first half of the list, so we continue searching on this smaller list.
 - If the key is greater than the middle element, we only need to search the second half of the list, so we continue searching on this smaller list.
 - If the key equals the middle element, we have a match return its index.

Search for 25

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

 -4
 1
 5
 6
 14
 23
 31
 35
 52
 70

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

-4 1 5 6 14 23 31 35 52 70

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help
- If not equal: discard half of the list and keep searching on the other half https://powcoder.com

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help

https://powcoder.com

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help
- If not equal: discard half of the list and keep searching on the other half https://powcoder.com

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help

https://powcoder.com

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help
- If not equal: discard half of the list and keep searching on the other half https://powcoder.com

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help

https://powcoder.com

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help
- If not equal: discard half of the list and keep searching on the other half https://powcoder.com

- Search for 25
- There are no more elements in the list the element is not there! Return -1.

 Assignment Project Exam Help

https://powcoder.com

IMPLEMENT BINARY SEARCH

Idea: keep track of the left and right indices denoting the section of the list that needs to be searched.

https://powcoder.com

• What is the index of the element that we compare to the key as a function of the left and right indices?

BACK TO EXAMPLE

Search for 25 (initialize left and right)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

 -4
 1
 5
 6
 14
 23
 31
 35
 52
 70

left = 0 right = 9 right = size -1

BACK TO EXAMPLE

- Search for 25
- Look at the middle element and compare (compute mid)
 Assignment Project Exam Help

https://powcoder.com
mid = 4

Add WeChat powcoder

6 14 23 31 35 52 70

left = 0

right = 9

BACK TO EXAMPLE

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help
- If not equal: discard half of the list and keep searching on the other half (update left)

mid = 4

Add WeChat powcoder

$$left = 5 right = 9$$

$$left = mid + l$$

- Search for 25
- Look at the middle element and compare (cempute mid)
 Assignment Project Exam Help

https://powcoder.com/7 (left+right)/2

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help
- If not equal: discard half of the list and keep searching on the other half (update right) https://powcoder.com

$$left = 5 \quad right = 6$$

= mid -1

- Search for 25
- Look at the middle element and compare (cempute mid)
 Assignment Project Exam Help

$$left = 5 right = 6$$

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help
- If not equal: discard half of the list and keep searching on the other half (update left) https://powcoder.com

$$left = 6$$
$$right = 6$$

- Search for 25
- Look at the middle element and compare (cempute mid)
 Assignment Project Exam Help

- Search for 25
- Look at the middle element and compare Assignment Project Exam Help
- If not equal: discard half of the list and keep searching on the other half (update right)

right=
$$5$$
 left = 6

- Search for 25
- There are no more elements in the list (right Eleft)

 → the element is not there! Return -1.

https://powcoder.com

$$right=5$$
 left = 6

BINARY SEARCH (ITERATIVE)

```
binarySearch(list, key) {
   left = 0
                                  initialize left and right
   right = list.size() - 1
   while (left <= Assignment Project Exam Helplements to search
                     https://powcoder.com
                     Add WeChat powcoder
                       // key not in list
   return -1
```

BINARY SEARCH (ITERATIVE)

```
binarySearch(list, key) {
  left = 0
                           initialize left and right
  right = list.size() - 1
  if (list[mid] == kpy)ps://powcoder.compare element with key
       return mid
    else {
                 Add WeChat powcoder
         // update either left or right
             // key not in list
  return -1
```

BINARY SEARCH (ITERATIVE)

```
binarySearch(list, key) {
   left = 0
                                      initialize left and right
   right = list.size() - 1
   while (left <= Assignment Project Exam Help lements to search mid = (left + right)/2 Project Exam Help lements to search
      if (list[mid] == kpy)ps://powcoder.com element with key
          return mid
          Add WeChat powcoder if (key<list[mid])
      else {
             right = mid -1 // update right
          else
             left = mid + 1  // update left
                   // key not in list
   return -1
```

```
binarySearch(list, key) {
   left = 0
   right = list.size() - 1
   while (left <= Aight) { Project Exam Help mid = (left + right)/2
      if(list[mid] == kft)ps://powcoder.com
          return mid
         se { Add WeChat powcoder if (key<list[mid]) What should change?
       else {
             right = mid -1
          else
             left = mid + 1
   return -1
```

```
binarySearch(list, key, left, right) {
   while(left <= right) {</pre>
       mid = (left + right)/2
       if (list[mid] Assignment Project Exam Help
           return mid
                          https://powcoder.com
       else {
           if (key<list[mid])WeChat powcoder
right = mid -1</pre>
Pass left and right as
parameters to the method
           else
              left = mid + 1
   return -1
```

```
binarySearch(list, key, left, right) {
   if(left <= right) {</pre>
      mid = (left + right)/2
      if (list[mid] Assignment Project Exam Help
         return mid
                      https://powcoder.com
      else {
         if (key<list[midd)WeChat powCoder the while with an if
            right = mid - 1
         else
            left = mid + 1
   return -1
```

```
binarySearch(list, key, left, right) {
   if (left <= right) {</pre>
      mid = (left + right)/2
      if (list[mid] Assignment Project Exam Help
          return mid
                        https://powcoder.com
      else {
          if (key<list[mid])WeChat powcoder return binarySearch(list, key, left, mid-1)
          else
             return binarySearch(list, key, mid+1, right)
   return -1
```

OBSERVATIONS

How many imment digitale walle Holp? (iterative)

How many returns ive (recursive)

Add WeChat powcoder

A:

Q;

OBSERVATIONS

Q: How manysighesent Rugicule Walle Holp? (iterative)

How many returnsive calls de (recursive)

Add WeChat powcoder

A: Worst case: the element cannot be found. Then, worst case is $O(\log n)$ where n is size of the list. Why? Because each time we are approximately halving the size of the list.

Assignment Project Exam Help In the next videos:

https://powcoder.com
Quick sort

- Merge sort WeChat powcoder
- Recurrences