Motor Trend

MATIAS, V. A.

30/03/2021

Summary

This relatory is the final project of the Regression Models Course offered by Johns Hopkings University in the Coursera Plataform

The objective of the paper is review a collection of cars and explore the relationship that explains in a quantitative way the miles per gallon spent. To do this, will be used strategies of Exploratory Data Analysis and Regression Models.

Data

The data set used can be retrieved in the base R software by the lines below:

```
library(dplyr)

data("mtcars")
mtcars <- as_tibble(mtcars)

mtcars</pre>
```

```
## # A tibble: 32 x 11
##
         mpg
               cyl
                     disp
                              hp
                                   drat
                                                                     gear
                                                                            carb
                                            wt
                                                 qsec
                                                          vs
                                                                 am
##
       <dbl> <dbl>
                    <dbl> <dbl> <dbl>
                                        <dbl>
                                                <dbl>
                                                       <dbl>
                                                             <dbl>
                                                                    <dbl>
                                                                           <dbl>
##
    1
       21
                  6
                     160
                             110
                                   3.9
                                          2.62
                                                 16.5
                                                           0
                                                                         4
##
    2
       21
                  6
                     160
                             110
                                   3.9
                                          2.88
                                                 17.0
                                                           0
                                                                  1
                                                                                4
##
    3
       22.8
                     108
                              93
                                   3.85
                                          2.32
                                                 18.6
                                                                  1
                                                                         4
                                                                                1
                                                           1
       21.4
##
    4
                  6
                     258
                             110
                                   3.08
                                          3.22
                                                 19.4
                                                                  0
                                                                         3
                                                           1
                                                                                1
##
    5
       18.7
                  8
                     360
                             175
                                   3.15
                                          3.44
                                                 17.0
                                                                  0
                                                                         3
                                                                                2
                                                                         3
##
    6
       18.1
                  6
                     225
                             105
                                   2.76
                                          3.46
                                                 20.2
                                                           1
                                                                  0
                                                                                1
##
       14.3
                     360
                             245
                                   3.21
                                                 15.8
                                                                  0
                                                                         3
                                                                                4
    7
                  8
                                          3.57
                                                           0
                                                                                2
                                                 20
##
       24.4
                  4
                     147.
                              62
                                   3.69
                                          3.19
                                                                  0
                                                                         4
    8
                                                           1
                  4
                                                                  0
                                                                         4
                                                                                2
##
    9
        22.8
                     141.
                              95
                                   3.92
                                          3.15
                                                 22.9
                                                           1
## 10
       19.2
                  6
                     168.
                             123
                                   3.92
                                          3.44
                                                 18.3
                                                                                4
     ... with 22 more rows
```

So we have 32 observations with 11 numeric attributes for each. Let's see the correlation between the attributes.

```
library(corrplot)

corrplot(cor(mtcars),
    method = "color",
    type = "upper",
    addCoef.col = TRUE,
    diag = FALSE,
    number.cex = 0.7)
```


The figure shows that mpg has a strong negative correlation for cyl, disp, hp and wt (more intense red). Positive correlation can be found, mainly, with drat, vs and am. This variables can be

Trends

Apendix

mtcars attributes