Hotel Reservations Prediction

August 29, 2024

1 Business Understanding

1.1 No perfect vacations?

The online hotel reservation channels have dramatically changed booking possibilities and customers' behavior. A significant number of hotel reservations are called-off due to cancellations or no-shows. The typical reasons for cancellations include change of plans, scheduling conflicts, etc. This is often made easier by the option to do so free of charge or preferably at a low cost which is beneficial to hotel guests but it is a less desirable and possibly revenue-diminishing factor for hotels to deal with.

1.2 Goals

So the goals of this project is (1) explore data to find insights about cancelations, and (2) to build a machine learning model capable of predicting cancelations or no-shows beforehand.

2 Data Understanding

2.1 The features

Feature	Description
Booking_ID	Unique identifier of each booking
${ m no_of_adults}$	Number of adults
no_of_children	Number of children
$no_of_weekend_nights$	Number of weekend nights (Saturday or
	Sunday) the guest stayed or booked to stay at the hotel
no_of_week_nights	Number of week nights (Monday to Friday) the guest stayed or booked to stay at the hotel
type_of_meal_plan	Type of meal plan booked by the customer
required_car_parking_space	Does the customer require a car parking space? (0 - No, 1 - Yes)
room_type_reserved	Type of room reserved by the customer. The values are ciphered (encoded) by INN Hotels
lead_time	Number of days between the date of booking and the arrival date
arrival_year	Year of arrival date
arrival_month	Month of arrival date

Feature	Description
arrival_date	Date of the month
market_segment_type	Market segment designation
repeated_guest	Is the customer a repeated guest? (0 - No, 1 -
	Yes)
${ m no_of_previous_cancellations}$	Number of previous bookings that were
	canceled by the customer prior to the current
	booking
$no_of_previous_bookings_not_canceled$	Number of previous bookings not canceled by
	the customer prior to the current booking
avg_price_per_room	Average price per day of the reservation; prices
	of the rooms are dynamic (in euros)
no_of_special_requests	Total number of special requests made by the
	customer (e.g. high floor, view from the room,
	etc)
booking_status	Flag indicating if the booking was canceled or
-	not

2.2 Libraries import and loading the data

```
[]: # Data manipulation
     import pandas as pd
     import numpy as np
     # EDA
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Machine Learning
     from lightgbm import LGBMClassifier
     # Pre-processing
     import optuna
     from sklearn import metrics
     from sklearn.model_selection import train_test_split, StratifiedKFold,__
      ⇔cross_val_score
     from sklearn.pipeline import Pipeline
     from sklearn.compose import ColumnTransformer
     from feature_engine.imputation import MeanMedianImputer, CategoricalImputer
     from category_encoders import TargetEncoder, OrdinalEncoder
     # Notebook config
     import warnings
     warnings.filterwarnings('ignore')
     plt.style.use('ggplot')
     sns.set_palette('Dark2')
```

```
pd.set_option('display.max_rows', 50)
     pd.set_option('display.max_columns', None)
[]: data = pd.read_csv("../data/raw/Hotel Reservations.csv")
    2.3 Data quality
[]: print(f"The dataset has {data.shape[0]} rows and {data.shape[1]} columns.")
    The dataset has 36275 rows and 19 columns.
[]: print(f"The dataset has: {len(data.select_dtypes(include = 'object').columns.

¬to_list())} categorical columns.")
     print(f"The dataset has: {len(data.select_dtypes(include = 'number').columns.
      ⇔to_list())} numeric columns.")
    The dataset has: 5 categorical columns.
    The dataset has: 14 numeric columns.
[]: data.nunique().sort_values()
[]: arrival_year
                                                 2
                                                  2
     repeated_guest
     required_car_parking_space
                                                  2
                                                  2
     booking_status
     type_of_meal_plan
                                                  4
                                                  5
    market_segment_type
    no_of_adults
                                                 5
    no_of_children
                                                  6
    no_of_special_requests
                                                 6
    room_type_reserved
                                                 7
    no_of_weekend_nights
                                                 8
    no_of_previous_cancellations
                                                 9
    arrival month
                                                12
    no_of_week_nights
                                                 18
                                                31
     arrival_date
    no_of_previous_bookings_not_canceled
                                                59
     lead_time
                                                352
     avg_price_per_room
                                              3930
                                             36275
     Booking_ID
     dtype: int64
[]: data.dtypes
[]: Booking_ID
                                              object
    no_of_adults
                                                int64
                                                int64
    no_of_children
    no_of_weekend_nights
                                                int64
```

```
no_of_week_nights
                                                int64
     type_of_meal_plan
                                               object
     required_car_parking_space
                                                int64
     room_type_reserved
                                               object
                                                int64
     lead_time
                                                int64
     arrival_year
     arrival_month
                                                int64
     arrival_date
                                                int64
    market_segment_type
                                               object
     repeated_guest
                                                int64
     no_of_previous_cancellations
                                                int64
     no_of_previous_bookings_not_canceled
                                                int64
     avg_price_per_room
                                              float64
     no_of_special_requests
                                                int64
     booking_status
                                               object
     dtype: object
[]: data.isnull().mean()
[]: Booking_ID
                                              0.0
                                              0.0
    no_of_adults
                                              0.0
     no_of_children
     no_of_weekend_nights
                                              0.0
     no_of_week_nights
                                              0.0
     type_of_meal_plan
                                              0.0
     required_car_parking_space
                                              0.0
     room_type_reserved
                                              0.0
     lead_time
                                              0.0
     arrival_year
                                              0.0
                                              0.0
     arrival_month
                                              0.0
     arrival date
     market_segment_type
                                              0.0
                                              0.0
     repeated_guest
     no_of_previous_cancellations
                                              0.0
     no_of_previous_bookings_not_canceled
                                              0.0
                                              0.0
     avg_price_per_room
     no_of_special_requests
                                              0.0
                                              0.0
     booking_status
     dtype: float64
[]: data.head()
[]:
      Booking_ID no_of_adults no_of_children no_of_weekend_nights
     0
         INN00001
                                                                      1
                               2
                                                                      2
     1
         INN00002
                                               0
                                                                      2
     2
         INN00003
                               1
                                               0
                               2
                                               0
     3
         INN00004
                                                                      0
```

```
4
         INN00005
                                2
                                                 0
                                                                         1
        no_of_week_nights type_of_meal_plan required_car_parking_space
     0
                         2
                                  Meal Plan 1
     1
                         3
                                 Not Selected
                                                                           0
     2
                         1
                                  Meal Plan 1
                                                                           0
     3
                         2
                                  Meal Plan 1
                                                                           0
     4
                         1
                                 Not Selected
                                                                           0
                            lead_time
                                        arrival_year
                                                        arrival_month
                                                                        arrival date
       room_type_reserved
     0
               Room_Type 1
                                   224
                                                 2017
                                                                    10
                                                                                    2
     1
               Room_Type 1
                                     5
                                                 2018
                                                                    11
                                                                                    6
     2
                                     1
                                                                     2
               Room_Type 1
                                                 2018
                                                                                   28
                                                                     5
     3
               Room_Type 1
                                   211
                                                 2018
                                                                                   20
     4
               Room_Type 1
                                    48
                                                 2018
                                                                                   11
                              repeated_guest
                                               no_of_previous_cancellations
       market_segment_type
     0
                    Offline
                                            0
                                            0
                                                                            0
                     Online
     1
                     Online
                                            0
                                                                            0
     2
     3
                     Online
                                            0
                                                                            0
     4
                     Online
                                            0
                                                                            0
        no_of_previous_bookings_not_canceled
                                                 avg_price_per_room \
     0
                                                               65.00
                                              0
                                                              106.68
     1
     2
                                              0
                                                               60.00
     3
                                              0
                                                              100.00
     4
                                              0
                                                               94.50
        no_of_special_requests booking_status
     0
                               0
                                   Not_Canceled
     1
                               1
                                   Not_Canceled
     2
                               0
                                       Canceled
     3
                               0
                                        Canceled
     4
                               0
                                       Canceled
    2.4 Exploratory Data Analysis
[]: data.describe().round(4).T
[]:
                                                count
                                                             mean
                                                                        std
                                                                                min
                                              36275.0
                                                           1.8450
                                                                     0.5187
                                                                                0.0
     no_of_adults
     no_of_children
                                              36275.0
                                                           0.1053
                                                                     0.4026
                                                                                0.0
                                                                                0.0
     no_of_weekend_nights
                                              36275.0
                                                           0.8107
                                                                     0.8706
                                                           2.2043
```

36275.0

36275.0

no_of_week_nights

required_car_parking_space

0.0

0.0

1.4109

0.1733

0.0310

```
2017.0
     arrival_year
                                           36275.0
                                                   2017.8204
                                                                0.3838
     arrival_month
                                           36275.0
                                                       7.4237
                                                                3.0699
                                                                           1.0
     arrival_date
                                           36275.0
                                                      15.5970
                                                                8.7404
                                                                           1.0
    repeated_guest
                                                       0.0256
                                                                0.1581
                                                                           0.0
                                           36275.0
    no_of_previous_cancellations
                                           36275.0
                                                       0.0233
                                                                0.3683
                                                                           0.0
    no_of_previous_bookings_not_canceled
                                                       0.1534
                                                                1.7542
                                                                           0.0
                                          36275.0
     avg_price_per_room
                                           36275.0
                                                     103.4235
                                                               35.0894
                                                                           0.0
    no_of_special_requests
                                                                0.7862
                                                                           0.0
                                           36275.0
                                                       0.6197
                                              25%
                                                       50%
                                                               75%
                                                                       max
    no_of_adults
                                              2.0
                                                      2.00
                                                               2.0
                                                                       4.0
    no_of_children
                                              0.0
                                                      0.00
                                                               0.0
                                                                      10.0
    no_of_weekend_nights
                                              0.0
                                                      1.00
                                                               2.0
                                                                       7.0
                                                      2.00
                                                               3.0
    no_of_week_nights
                                              1.0
                                                                      17.0
     required_car_parking_space
                                              0.0
                                                      0.00
                                                               0.0
                                                                       1.0
     lead_time
                                             17.0
                                                     57.00
                                                             126.0
                                                                     443.0
                                           2018.0 2018.00
                                                            2018.0 2018.0
     arrival_year
     arrival_month
                                              5.0
                                                      8.00
                                                              10.0
                                                                      12.0
     arrival_date
                                              8.0
                                                     16.00
                                                              23.0
                                                                      31.0
                                                                      1.0
    repeated_guest
                                              0.0
                                                      0.00
                                                               0.0
    no of previous cancellations
                                              0.0
                                                      0.00
                                                               0.0
                                                                      13.0
    no_of_previous_bookings_not_canceled
                                              0.0
                                                      0.00
                                                               0.0
                                                                      58.0
     avg price per room
                                             80.3
                                                     99.45
                                                             120.0
                                                                     540.0
    no_of_special_requests
                                              0.0
                                                      0.00
                                                               1.0
                                                                       5.0
[]: data.select_dtypes(exclude = 'number').describe().T
[]:
                          count unique
                                                 top
                                                       freq
                          36275 36275
                                                          1
    Booking_ID
                                            INN00001
     type of meal plan
                          36275
                                     4
                                         Meal Plan 1
                                                      27835
     room_type_reserved
                          36275
                                     7
                                         Room Type 1 28130
     market_segment_type
                          36275
                                     5
                                              Online
                                                      23214
     booking_status
                          36275
                                     2 Not_Canceled
                                                      24390
[]: fig, ax = plt.subplots(figsize = (12, 6))
     sns.countplot(x = data['booking_status'], hue = data['booking_status'], stat = 
      ax.set_title("Booking Status Distribution", fontsize = 16, pad = 5, loc = 1
      ax.set_xlabel("Booking Status", fontsize = 10)
     ax.set_ylabel("Proportion (%)", fontsize = 10)
     ax.set_xticklabels(['Not Canceled', 'Canceled'])
     plt.show()
```

36275.0

85.2326

85.9308

0.0

lead_time

2.4.1 Lead time x Cancelations

Bookings made far in advance of the arrival date may have a higher probability of cancellation. Trips are always susceptible to changes in plans and unforeseen events, let's work on this hypothesis:

- H_0 : Lead time does not have a significant effect on cancellations.
- H_1 : A higher lead time increases the probability of cancellation.

Reject HO: A higher lead time increases the probability of cancellation.

```
[]: fig, ax = plt.subplots(figsize = (12, 6))
sns.kdeplot(x = data['lead_time'], hue = data['booking_status'], fill = True)
```

```
ax.set_title("Lead time x Booking Status", fontsize = 16, pad = 5, loc = 'left')
ax.set_xlabel("Days", fontsize = 10)
ax.set_ylabel("Density", fontsize = 10)
ax.legend(title = 'Booking Status', labels = ['Canceled', 'Not Canceled'])
plt.show()
```


Bookings made between 150 and 300 days in advance have a higher probability of cancellation. It is advisable to create alerts and reservation confirmations starting from the 100-day mark.

2.4.2 Average Price per Room x Cancelations

Does a higher priced room have higher probability of cancellation? - H_0 : The average price per room has no significant effect on the probability of cancellations. - H_1 : A higher average price per room is associated with a higher probability of cancellations.

Reject HO: A higher average price per room is associated with a higher probability of cancellations.

2.4.3 Number of Children x Cancelations

A higher number of children makes travel planning more difficult, as children tend to get sick more often, among other possible unforeseen events.

- H_0 : Number of children not have a significant effect on cancellations.
- H_1 : A higher number of children increases the probability of cancellation.

```
[]: group_a = data[data['booking_status'] == 'Canceled']['no_of_children']
group_b = data[data['booking_status'] == 'Not_Canceled']['no_of_children']
_, p_value = mannwhitneyu(group_a, group_b, alternative = 'greater')
alpha = 0.05
```

Reject HO: A higher number of children increases the probability of cancellation.

2.4.4 Room Type x Cancelation

The room type may also be related to cancellations, let's investigate this.

- H_0 : Room Type is independent of Booking Status.
- H_1 : Room Type is not independent of Booking Status.

Reject HO: Room Type and Booking Status are related.

```
fig, ax = plt.subplots(figsize = (12, 6))

sns.heatmap(contigency_table, annot = True, linewidths=.5, fmt = 'd', cmap = 'Oranges', cbar=False)
ax.set_title("Contigency Table Heatmap (Room Type)", fontsize = 16, pad = 5, or continuous = 16, pad = 16, pad
```

Contigency Table Heatmap (Room Type)		
Room_Type 1 -	9072	19058
Room_Type 2 -	228	464
Room_Type 3 -	2	5
Room_Type 4 -	2069	3988
Room_Type 5 -	72	193
Room_Type 6 -	406	560
Room_Type 7 -	36	122
	Canceled	Not Canceled

- Room Type 1 is the most popular.
- Room Type 3 is the least popular.
- Room Type 6 has the highest cancelation rate.

As we can see, Room Type and the Booking Status are related.

2.4.5 Market Segment x Booking Status

- H_0 : Market Segment is independent of Booking Status.
- H_1 : Market Segment is not independent of Booking Status

Reject HO: Marketing Segment and Booking Status are related.

- Online segment is the most popular and also has the highest cancellation rate;
- Complementary segment has 0 cancellations;
- Corporate also has a low cancellation rate.

2.4.6 Correlation Matrix

```
[]: booking_status_Canceled
                                              1.000000
                                              0.438538
     lead_time
     arrival_year
                                              0.179529
     avg_price_per_room
                                              0.142569
    market_segment_type_Online
                                              0.106362
    no_of_week_nights
                                              0.092996
    no_of_adults
                                              0.086920
     type_of_meal_plan_Meal Plan 2
                                              0.086370
    no_of_weekend_nights
                                              0.061563
    no_of_children
                                              0.033078
```

```
room_type_reserved_Room_Type 6
                                             0.032652
     room_type_reserved_Room_Type 4
                                             0.013309
     arrival_date
                                             0.010629
     type_of_meal_plan_Not Selected
                                             0.003072
     room_type_reserved_Room_Type 2
                                             0.000548
     room_type_reserved_Room_Type 3
                                            -0.001241
     type_of_meal_plan_Meal Plan 3
                                            -0.003193
    market_segment_type_Aviation
                                            -0.003964
     room_type_reserved_Room_Type 5
                                            -0.010224
     arrival_month
                                            -0.011233
    room_type_reserved_Room_Type 7
                                            -0.014062
    room_type_reserved_Room_Type 1
                                            -0.020326
    no_of_previous_cancellations
                                            -0.033728
    market_segment_type_Offline
                                            -0.038351
    no_of_previous_bookings_not_canceled
                                            -0.060179
     type_of_meal_plan_Meal Plan 1
                                            -0.061267
    market_segment_type_Complementary
                                            -0.072867
     required_car_parking_space
                                            -0.086185
     repeated_guest
                                            -0.107287
    market_segment_type_Corporate
                                            -0.112993
    no_of_special_requests
                                            -0.253070
     booking_status_Not_Canceled
                                            -1.000000
     Name: booking_status_Canceled, dtype: float64
[]: fig, ax = plt.subplots(figsize = (20, 10))
     sns.heatmap(corr, annot = True, fmt = '.2f', linewidths=.5, cmap = 'Oranges')
     ax.set_title("Correlation Matrix",fontsize = 16, pad = 5, loc = 'left')
     plt.show()
```


3 Data Preparation

3.1 Data manipulation

3.2 Pre-processing

```
[]: features = df.drop(columns = 'booking_status', axis = 1).columns.to_list()
    target = 'booking_status'

X = df[features]
y = df[target]
```

```
[]: cat_features = ['type_of_meal_plan', 'room_type_reserved', _
    num_features = ['no_of_adults', 'no_of_children', 'no_of_weekend_nights',_

¬'no_of_special_requests']

   ordinal_features = ['arrival_date', 'arrival_month']
[]: cat_transformer = Pipeline([
       ('imput_cat', CategoricalImputer(imputation_method='frequent')),
       ('encoder_cat', TargetEncoder())
   1)
   num_transformer = Pipeline([
       ('imput num', MeanMedianImputer(imputation method='median'))
   ])
   ordinal_transformer = Pipeline([
       ('imput_or', MeanMedianImputer(imputation_method='median')),
       ('encoder_or', OrdinalEncoder())
   ])
   preprocessor = ColumnTransformer(
       transformers=[
          ('cat', cat_transformer, cat_features),
          ('num', num_transformer, num_features),
          ('ordinal', ordinal_transformer, ordinal_features)
       ]
   )
```

4 Modeling

4.1 Base model

```
[]: model = LGBMClassifier(random_state=21)

base_clf = Pipeline([
          ('preprocessor', preprocessor),
          ('classifier', model)
])
```

```
base_clf.fit(X_train, y_train)
    Warning: No categorical columns found. Calling 'transform' will only return
    input data.
    [LightGBM] [Info] Number of positive: 7163, number of negative: 14602
    [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of
    testing was 0.001211 seconds.
    You can set `force_row_wise=true` to remove the overhead.
    And if memory is not enough, you can set `force_col_wise=true`.
    [LightGBM] [Info] Total Bins 642
    [LightGBM] [Info] Number of data points in the train set: 21765, number of used
    features: 16
    [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.329106 -> initscore=-0.712230
    [LightGBM] [Info] Start training from score -0.712230
[]: Pipeline(steps=[('preprocessor',
                      ColumnTransformer(transformers=[('cat',
                                                        Pipeline(steps=[('imput_cat',
     CategoricalImputer(imputation_method='frequent')),
     ('encoder_cat',
     TargetEncoder())]),
                                                        ['type_of_meal_plan',
                                                         'room_type_reserved',
                                                         'market_segment_type',
                                                         'repeated_guest',
     'required_car_parking_space']),
                                                       ('num',
                                                        Pipeline(steps=[('imput_num',
     MeanMedianImputer(...
                                                         'no_of_weekend_nights',
                                                         'no_of_week_nights',
                                                         'lead_time',
     'no_of_previous_cancellations',
     'no_of_previous_bookings_not_canceled',
                                                         'avg_price_per_room',
                                                         'no_of_special_requests']),
                                                       ('ordinal',
                                                        Pipeline(steps=[('imput_or',
     MeanMedianImputer()),
                                                                        ('encoder_or',
     OrdinalEncoder())]),
                                                        ['arrival_date',
                                                         'arrival_month'])])),
                     ('classifier', LGBMClassifier(random_state=21))])
[]: y_proba_base = base_clf.predict_proba(X_val)[:,1]
     y_pred_base = (y_proba_base > 0.5).astype(int)
```

```
[]: print(f"Validation Set - Results\n{'-'*25}")
    print(f"Accuracy: {metrics.accuracy_score(y_val, y_pred_base):.4f}")
    print(f"F1 Score: {metrics.f1_score(y_val, y_pred_base):.4f}")
    print(f"ROC AUC: {metrics.roc_auc_score(y_val, y_proba_base):.4f}")
    Validation Set - Results
    _____
    Accuracy: 0.8815
    F1 Score: 0.8111
    ROC AUC: 0.9427
[]: print(f"{"="*15} Classification Report {"="*15}\n")
    print(metrics.classification_report(y_val, y_pred_base))
```

======== Classification Report =========

	precision	recall	f1-score	support
0	0.89	0.94	0.91	4854
1	0.86	0.77	0.81	2401
accuracy			0.88	7255
macro avg	0.87	0.85	0.86	7255
weighted avg	0.88	0.88	0.88	7255

In pursuit of balance and better results we will optimize our model around the F1 Score.

4.2 Optimized model

```
[]: def objective(trial):
         model = Pipeline([
         ('preprocessor', preprocessor),
         ('classifier', LGBMClassifier(
             verbosity = -1,
             n estimators = 1000,
             learning_rate = trial.suggest_float("learning_rate", 1e-3, 0.1, ___
      →log=True),
             num_leaves = trial.suggest_int("num_leaves", 2, 2**10),
             subsample = trial.suggest_float("subsample", 0.05, 1.0),
             colsample_bytree = trial.suggest_float("colsample_bytree", 0.05, 1.0),
             min_data_in_leaf = trial.suggest_int("min_data_in_leaf", 1, 100),
             random_state = 21
         ))
         1)
         model.fit(X_train, y_train)
         predictions = model.predict(X_val)
```

```
f1score = metrics.f1_score(y_val, predictions)
return f1score
```

```
[]: study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=30)
```

[I 2024-08-28 19:07:27,017] A new study created in memory with name: no-name-aba68665-add1-4220-8b18-be41fa816d11

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:07:33,767] Trial 0 finished with value: 0.780917929007461 and parameters: {'learning_rate': 0.01575481934825425, 'num_leaves': 693, 'subsample': 0.07257609479264933, 'colsample_bytree': 0.17125373138867628, 'min_data_in_leaf': 45}. Best is trial 0 with value: 0.780917929007461.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:07:42,222] Trial 1 finished with value: 0.6798418972332015 and parameters: {'learning_rate': 0.0019020911441208846, 'num_leaves': 694, 'subsample': 0.3050646418200134, 'colsample_bytree': 0.357559819519452, 'min_data_in_leaf': 77}. Best is trial 0 with value: 0.780917929007461.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:07:52,902] Trial 2 finished with value: 0.8106043585711076 and parameters: {'learning_rate': 0.00417997101589838, 'num_leaves': 264, 'subsample': 0.903619087320658, 'colsample_bytree': 0.5527726641354044, 'min_data_in_leaf': 38}. Best is trial 2 with value: 0.8106043585711076.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:08:03,012] Trial 3 finished with value: 0.1109362706530291 and parameters: {'learning_rate': 0.0014093559259069194, 'num_leaves': 434, 'subsample': 0.6025834173481727, 'colsample_bytree': 0.09841881011624212, 'min_data_in_leaf': 8}. Best is trial 2 with value: 0.8106043585711076.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:08:06,048] Trial 4 finished with value: 0.8253208614313683 and parameters: {'learning_rate': 0.026133115786975702, 'num_leaves': 45, 'subsample': 0.3963810355072208, 'colsample_bytree': 0.6399645675048041, 'min_data_in_leaf': 25}. Best is trial 4 with value: 0.8253208614313683.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:08:13,874] Trial 5 finished with value: 0.74645129711209 and parameters: {'learning_rate': 0.002246205011822298, 'num_leaves': 400,

'subsample': 0.6974639676180155, 'colsample_bytree': 0.42441623484664925, 'min_data_in_leaf': 86}. Best is trial 4 with value: 0.8253208614313683.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:08:30,775] Trial 6 finished with value: 0.7797177708682134 and parameters: {'learning_rate': 0.0016793179828671248, 'num_leaves': 792, 'subsample': 0.9954077702592083, 'colsample_bytree': 0.6217547791545509, 'min_data_in_leaf': 35}. Best is trial 4 with value: 0.8253208614313683.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:08:38,083] Trial 7 finished with value: 0.7997308813635344 and parameters: {'learning_rate': 0.010360282422196953, 'num_leaves': 573, 'subsample': 0.5083713046715959, 'colsample_bytree': 0.31037251024163015, 'min_data_in_leaf': 80}. Best is trial 4 with value: 0.8253208614313683.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:08:52,149] Trial 8 finished with value: 0.7175375064666322 and parameters: {'learning_rate': 0.0010248832698531638, 'num_leaves': 866, 'subsample': 0.5769135461206005, 'colsample_bytree': 0.5988747669613056, 'min_data_in_leaf': 46}. Best is trial 4 with value: 0.8253208614313683.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:09:09,791] Trial 9 finished with value: 0.8353378526131642 and parameters: {'learning_rate': 0.02331572881172912, 'num_leaves': 497, 'subsample': 0.7527103411997251, 'colsample_bytree': 0.7094172373716079, 'min_data_in_leaf': 21}. Best is trial 9 with value: 0.8353378526131642.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:09:30,957] Trial 10 finished with value: 0.8350583571900463 and parameters: {'learning_rate': 0.07236371629528207, 'num_leaves': 1017, 'subsample': 0.8039120859624059, 'colsample_bytree': 0.9235415040873682, 'min_data_in_leaf': 1}. Best is trial 9 with value: 0.8353378526131642.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:09:52,764] Trial 11 finished with value: 0.8369947275922671 and parameters: {'learning_rate': 0.06870145636595233, 'num_leaves': 997, 'subsample': 0.7862997832574106, 'colsample_bytree': 0.9347307739548064, 'min_data_in_leaf': 2}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:10:02,078] Trial 12 finished with value: 0.8320944468736335 and parameters: {'learning_rate': 0.06965497395540485, 'num_leaves': 254, 'subsample': 0.8044826565417111, 'colsample_bytree': 0.9323368611352647, 'min_data_in_leaf': 17}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:10:21,536] Trial 13 finished with value: 0.8332968236582694 and parameters: {'learning_rate': 0.03388057946718012, 'num_leaves': 563, 'subsample': 0.7467898498473614, 'colsample_bytree': 0.7820749504543442, 'min_data_in_leaf': 16}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:10:34,014] Trial 14 finished with value: 0.8326105810928014 and parameters: {'learning_rate': 0.03400848144017518, 'num_leaves': 1019, 'subsample': 0.9366177052029995, 'colsample_bytree': 0.7762377249892383, 'min_data_in_leaf': 62}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:10:44,418] Trial 15 finished with value: 0.8336970755128764 and parameters: {'learning_rate': 0.0711854874607767, 'num_leaves': 285, 'subsample': 0.6484383971849066, 'colsample_bytree': 0.7970522898684436, 'min_data_in_leaf': 22}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:11:17,849] Trial 16 finished with value: 0.8359392204360273 and parameters: {'learning_rate': 0.0057547881485521535, 'num_leaves': 905, 'subsample': 0.8513299039068081, 'colsample_bytree': 0.8518738044870688, 'min_data_in_leaf': 1}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:11:26,300] Trial 17 finished with value: 0.8138414367060884 and parameters: {'learning_rate': 0.005115963020062098, 'num_leaves': 901, 'subsample': 0.8816094583033557, 'colsample_bytree': 0.9791028516835338, 'min_data_in_leaf': 100}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:11:38,365] Trial 18 finished with value: 0.8226018396846255 and parameters: {'learning_rate': 0.005634941979453718, 'num_leaves': 905, 'subsample': 0.36272372200044944, 'colsample_bytree': 0.8688692435154237, 'min_data_in_leaf': 60}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:12:05,217] Trial 19 finished with value: 0.8343208251042352 and parameters: {'learning_rate': 0.010569089182296588, 'num_leaves': 744, 'subsample': 0.8378139502092883, 'colsample_bytree': 0.9989885763129266, 'min_data_in_leaf': 4}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:12:35,348] Trial 20 finished with value: 0.8342105263157895 and parameters: {'learning_rate': 0.0038046939695369933, 'num_leaves': 894, 'subsample': 0.4914044002693227, 'colsample_bytree': 0.8554287829901227, 'min_data_in_leaf': 10}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:12:55,418] Trial 21 finished with value: 0.8327153762268266 and parameters: {'learning_rate': 0.017067892448375963, 'num_leaves': 620, 'subsample': 0.740606410105164, 'colsample_bytree': 0.692806049214498, 'min_data_in_leaf': 28}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:13:09,960] Trial 22 finished with value: 0.8349769888231426 and parameters: {'learning_rate': 0.0395887904629496, 'num_leaves': 416, 'subsample': 0.6857375367321686, 'colsample_bytree': 0.7267485654384901, 'min_data_in_leaf': 11}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:13:26,397] Trial 23 finished with value: 0.8358143607705779 and parameters: {'learning_rate': 0.09546613210785125, 'num_leaves': 815, 'subsample': 0.9650988537449217, 'colsample_bytree': 0.8565370650086939, 'min_data_in_leaf': 1}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:13:43,902] Trial 24 finished with value: 0.8334433443344335 and parameters: {'learning_rate': 0.09167439419034766, 'num_leaves': 968, 'subsample': 0.9932367520659421, 'colsample_bytree': 0.8722914012228362, 'min_data_in_leaf': 1}. Best is trial 11 with value: 0.8369947275922671.

Warning: No categorical columns found. Calling 'transform' will only return input data.

[I 2024-08-28 19:14:09,922] Trial 25 finished with value: 0.8278742580786986 and parameters: {'learning_rate': 0.04947635285294934, 'num_leaves': 815,

```
'subsample': 0.8927404943074675, 'colsample_bytree': 0.5124175912309769,
    'min_data_in_leaf': 12}. Best is trial 11 with value: 0.8369947275922671.
    Warning: No categorical columns found. Calling 'transform' will only return
    input data.
    [I 2024-08-28 19:14:46,997] Trial 26 finished with value: 0.8360908890359585 and
    parameters: {'learning rate': 0.007301541653621315, 'num leaves': 960,
    'subsample': 0.8438933557474755, 'colsample_bytree': 0.8354528355029329,
    'min_data_in_leaf': 1}. Best is trial 11 with value: 0.8369947275922671.
    Warning: No categorical columns found. Calling 'transform' will only return
    input data.
    [I 2024-08-28 19:15:04,970] Trial 27 finished with value: 0.8316270964931387 and
    parameters: {'learning rate': 0.0074723146884285085, 'num leaves': 948,
    'subsample': 0.8533932837644331, 'colsample_bytree': 0.9342100440971319,
    'min_data_in_leaf': 37}. Best is trial 11 with value: 0.8369947275922671.
    Warning: No categorical columns found. Calling 'transform' will only return
    input data.
    [I 2024-08-28 19:15:28,042] Trial 28 finished with value: 0.8185448092280391 and
    parameters: {'learning rate': 0.0030149786777874076, 'num leaves': 1020,
    'subsample': 0.18347985925573962, 'colsample bytree': 0.8028469948382004,
    'min_data_in_leaf': 29}. Best is trial 11 with value: 0.8369947275922671.
    Warning: No categorical columns found. Calling 'transform' will only return
    input data.
    [I 2024-08-28 19:15:34,402] Trial 29 finished with value: 0.7760785208856426 and
    parameters: {'learning rate': 0.013604830616288404, 'num leaves': 704,
    'subsample': 0.7876599624848081, 'colsample_bytree': 0.206640688757194,
    'min_data_in_leaf': 56}. Best is trial 11 with value: 0.8369947275922671.
[]: print(f"Best hyperparameters: {study.best_params}")
    print(f"Best F1 Score: {study.best_value}")
    Best hyperparameters: {'learning_rate': 0.06870145636595233, 'num_leaves': 997,
    'subsample': 0.7862997832574106, 'colsample_bytree': 0.9347307739548064,
    'min_data_in_leaf': 2}
    Best F1 Score: 0.8369947275922671
[]: param dict = {'learning rate': 0.06870145636595233, 'num leaves': 997,
      ⇔'min data in leaf': 2}
    param_dict
[]: {'learning_rate': 0.06870145636595233,
      'num_leaves': 997,
      'subsample': 0.7862997832574106,
```

'colsample_bytree': 0.9347307739548064,

```
'min_data_in_leaf': 2}
[]: model = LGBMClassifier(**param_dict, n_estimators=1000, random_state=21)
     clf = Pipeline([
         ('preprocessor', preprocessor),
         ('classifier', model)
     ])
     clf.fit(X_train, y_train)
    Warning: No categorical columns found. Calling 'transform' will only return
    input data.
[]: Pipeline(steps=[('preprocessor',
                      ColumnTransformer(transformers=[('cat',
                                                        Pipeline(steps=[('imput_cat',
     CategoricalImputer(imputation_method='frequent')),
     ('encoder_cat',
     TargetEncoder())]),
                                                        ['type_of_meal_plan',
                                                         'room_type_reserved',
                                                         'market_segment_type',
                                                         'repeated_guest',
     'required_car_parking_space']),
                                                       ('num',
                                                        Pipeline(steps=[('imput_num',
    MeanMedianImputer(...
                                                         'no_of_special_requests']),
                                                       ('ordinal',
                                                        Pipeline(steps=[('imput_or',
    MeanMedianImputer()),
                                                                        ('encoder_or',
     OrdinalEncoder())]),
                                                        ['arrival_date',
                                                         'arrival_month'])])),
                     ('classifier',
                      LGBMClassifier(colsample_bytree=0.9347307739548064,
                                     learning_rate=0.06870145636595233,
                                     min_data_in_leaf=2, n_estimators=1000,
                                     num_leaves=997, random_state=21,
                                     subsample=0.7862997832574106))])
[]: y_proba_op = clf.predict_proba(X_val)[:,1]
     y_pred_op = (y_proba_op > 0.5).astype(int)
[]: print(f"Validation Set - Results (Optimized)\n{'-'*25}")
     print(f"Accuracy: {metrics.accuracy_score(y_val, y_pred_op):.4f}")
```

```
print(f"F1 Score: {metrics.f1_score(y_val, y_pred_op):.4f}")
    print(f"ROC AUC: {metrics.roc_auc_score(y_val, y_proba_op):.4f}")
    Validation Set - Results (Optimized)
    Accuracy: 0.8977
    F1 Score: 0.8370
    ROC AUC: 0.9514
[]: print(f"{"="*15} Classification Report {"="*15}\n")
    print(metrics.classification_report(y_val, y_pred_op))
    ======= Classification Report ========
                 precision
                             recall f1-score
                                                support
                               0.95
              0
                      0.90
                                         0.93
                                                   4854
                      0.89
                                0.79
                                         0.84
                                                   2401
                                         0.90
                                                   7255
       accuracy
                      0.89
                               0.87
                                         0.88
                                                   7255
      macro avg
                               0.90
                                         0.90
    weighted avg
                      0.90
                                                   7255
      Evaluation
    5.1 Metrics
[]: y_pred = clf.predict(X_test)
    y_proba = clf.predict_proba(X_test)[:,1]
[]: print(f"Test Set - Results\n{'-'*25}")
    print(f"Accuracy: {metrics.accuracy_score(y_test, y_pred):.4f}")
    print(f"F1 Score: {metrics.f1_score(y_test, y_pred):.4f}")
    print(f"ROC AUC: {metrics.roc_auc_score(y_test, y_proba):.4f}")
    Test Set - Results
    -----
    Accuracy: 0.8983
    F1 Score: 0.8359
    ROC AUC: 0.9539
[]: print(f"{"="*15} Classification Report {"="*15}\n")
    print(metrics.classification_report(y_test, y_pred))
    ======= Classification Report ========
```

support

recall f1-score

precision

0	0.91	0.94	0.93	4934
1	0.86	0.81	0.84	2321
accuracy			0.90	7255
macro avg	0.89	0.87	0.88	7255
weighted avg	0.90	0.90	0.90	7255

5.1.1 Best threshold

Let's find the best threshold for our main metric

```
thresholds = np.arange(0.0, 1.01, 0.01)

f1_scores = []

for threshold in thresholds:
    y_predict = (y_proba > threshold).astype(int)

f1 = metrics.f1_score(y_test, y_predict)
    f1_scores.append(f1)

best_threshold = thresholds[np.argmax(f1_scores)]
best_f1 = max(f1_scores)

print(f"Best threshold: {best_threshold}")
print(f"Best F1 Score: {best_f1:.4f}")
```

Best threshold: 0.6 Best F1 Score: 0.8369

5.2 Cross-validation

```
[]: scoring = metrics.make_scorer(metrics.f1_score)
    cv = StratifiedKFold(n_splits=5, shuffle = True, random_state=21)

scores = cross_val_score(clf, X_train, y_train, cv = cv, scoring = scoring)
    print(f"Mean F1 Score: {scores}")
    print(f"General Mean F1 Score: {scores.mean()}")
    print(f"F1 Score Standard Deviation: {scores.std()}")
```

Warning: No categorical columns found. Calling 'transform' will only return input data.

Warning: No categorical columns found. Calling 'transform' will only return input data.

Warning: No categorical columns found. Calling 'transform' will only return input data.

Warning: No categorical columns found. Calling 'transform' will only return input data.

Warning: No categorical columns found. Calling 'transform' will only return input data.

Mean F1 Score: [0.83842795 0.82335766 0.83083512 0.83543392 0.83062477]

General Mean F1 Score: 0.8317358850779228

F1 Score Standard Deviation: 0.005112723493107408

The model demonstrated excellent generalization ability, with no signs of overfitting.

5.3 Graphics

```
[]: precision, recall, thres = metrics.precision_recall_curve(y_test, y_pred)

fig, ax = plt.subplots(figsize = (12, 6))

sns.lineplot(x = precision, y = recall)
ax.set_title("Precision x Recall Curve", fontsize = 15, pad = 5, loc = 'left')
ax.set_xlabel("Precision", fontsize = 10)
ax.set_ylabel("Recall", fontsize = 10)
plt.show()
```



```
[]: curve = metrics.roc_curve(y_test, y_proba)

[]: fig, ax = plt.subplots(figsize = (12, 6))

sns.lineplot(x = curve[0], y = curve[1])
ax.set_title(f"ROC AUC Curve", fontsize = 16, pad = 5, loc = 'left')
ax.set_xlabel("False Positive Rate", fontsize = 10)
```

```
ax.set_ylabel("True Positive Rate", fontsize = 10)
plt.show()
```



```
[]: cf = metrics.confusion_matrix(y_test, y_pred)

fig, ax = plt.subplots(figsize = (12, 6))
sns.heatmap(cf, annot = True, fmt = 'd', linewidths=0.5, cmap = 'Oranges', cbaru = False)
ax.set_title("Confusion Matrix", fontsize = 15, pad = 5, loc = 'left')
plt.show()
```


6 Conclusions

6.0.1 Some insights

- Reservations with long lead times need to be closely tracked. Simple actions like periodic
 confirmation messages or emails can be a good plan, as we've seen that the probability of
 cancellation starts to rise with longer lead times.
- A higher number of children increases the probability of cancellation, so this is also something to keep track of.
- Room Type 1 is the most popular, while Room Type 6 has the highest number of cancellations.
- The Online segment is the most popular and also has the highest cancellation rate. The Complementary and Corporate segments have the lowest cancellation rates, so it may be a good idea to reward them.

6.0.2 About the model

The model achieved a good balance between precision and recall, as our main metric was the F1 Score. It demonstrated good generalization ability and strong metric results. To achieve a higher F1 Score, we can use a 0.6 threshold.