STEROWANIE RUCHEM W SIECIACH TELEKOMUNIKACYJNYCH

Monitorowanie stanu sieci telekomunikacyjnej

Mechanizmy QoS

Ref: Architectural Framework for for QoS Support (ITU-T Y.1291)

Monitorowanie stanu sieci

- Cele monitorowania stanu sieci
 - ✓ dostarczenie informacji o bieżącym stanie sieci niezbędnych dla wspierania procesu zarządzania siecią i sterowania przepływani ruchu
 - ✓ ocena zdolności sieci do świadczenia usług zgodnie z kontraktem SLS

Monitorowane parametry

- > opóźnienie transferu jednostek danych (transfer delay)
- zmienność opóźnienia (jitter)
- współczynnik strat jednostek danych (loss ratio)

> Parametry ruterów

- ✓ długość kolejki pakietów w buforze wyjściowym
- ✓ czas oczekiwania pakietów w buforze wyjściowym
- ✓ liczba wysłanych (obsłużonych) pakietów
- ✓ liczba pakietów straconych
- ✓ liczba pakietów nieprzyjętych (odrzuconych)
- ✓ liczba oznaczonych pakietów

Parametry tras

- ✓ przepustowość trasy
- ✓ obciążenie trasy
- ✓ liczba przekazanych pakietów
- ✓ liczba straconych pakietów

Tabl. 1. Mapowanie aplikacji i klas usług "koniec-koniec" na klasy usług w systemie IP QoS, wymagania QoS oraz opis ruchu

	Klasy usług "koniec-koniec"	Klasy usług	W				
Typ aplikacji		w systemie IP QoS	IPLR	wartość średnia IPTD	IPDV	Opis ruchu	
Voice over IP (VoIP) Interactive games	Telephony RT Interactive	Real Time (RT)	10-3	100 ms	50 ms	(PBR, PBRT)*)	
Video on Demand (VoD)	MM Streaming	MM Streaming	10 ⁻³	ls nie jest krytyczne	nie jest krytyczne	(PBR, PBRT)	
File Transfer Protocol	High Throughput Data (HTD)	High Throughput Data (HTD)	10 ⁻³	1s nie jest krytyczne	nie jest krytyczne	(PBR, PBRT)	
(FTP)	Standard (STD)	Standard (STD)	nie jest krytyczne	nie jest krytyczne	nie jest krytyczne	brak	

^{*)} PBR – *Peak Bit Rate*, PBRT – *Peak Bit Rate Tolerance*: parametry opisu ruchu właściwe dla pojedynczego mechanizmu *token bucket* (maksymalna szybkość bitowa, tolerancja dla maksymalnej szybkości bitowej).

Scenariusz obsługi połączenia w systemie IP QoS

Projekt AQUILA

RCA – Resource Control Agent
EAT – End-user Aplikation Toolkit
ACA – Admission Control Agent
BGRP – Border Gateway Routing Protocol

AQUILA - architektura systemu pomiarowego (DMA - Distributed Measurement Architecture)

AQUILA – komponenty systemu DMA

AQUILA – emulacja ruchu użytkowego

AQUILA – monitoring parametrów QoS

AQUILA – monitorowanie ruterów

← ← ← → Monitoring requests and Result Reporting

Wymagane wartości parametrów QoS

TU-T Recommendation Y.1541

TACOMS Specification

~		PACKET TRANSFER DELAY [ms]	PACKET DELAY VARIATION [ms]	PACKET LOSS RATIO	PACKET ERROR RATIO
r	Class 0 eal time, jitter sensitive, highly interactive	100	50	1×10 ⁻³	1×10 ⁻⁴
~.	Class 1 real time, jitter sensitive, interactive	400	50	1×10 ⁻³	1×10 ⁻⁴
	Class 2 transaction data, highly interactive	100	U	1×10 ⁻³	1×10 ⁻⁴
~.·	Class 3 transaction data, interactive	400	U	1×10 ⁻³	1×10 ⁻⁴
lo	Class 4 ow loss, short transaction, bulk data, video streaming	1000	U	1×10 ⁻³	1×10 ⁻⁴
	Class 5 other applications	U	U	U	U

I	SLS Class			END-TO-END PERFORMANCE PARAMETER										
	0,033			Delay (ms)			Delay Variation (ms)			B.E.R.		Loss Ratio		
l			со		CL		СО		CL		СО		CL	
				down		down		down		down		down		down
l			min	grade	min	grade	min	grade	min	grade	min	grade	min	grade
	SLS1	Telephony	200	600		-	50	100			10 ⁻⁶	10 ⁻⁴		
	SLS2	Real-time Data Transfer, Critical C4I Messages, SMCS alarms	200	600	300	800	70	120	90	140	10 ⁻⁶	10 ⁻⁵	10 ⁻⁶	10 ⁻⁴
	SLS3	Videoconference	300	900	400	NG	50	100	300	900	10 ⁻⁶	10 ⁻⁴	10 ⁻⁵	10 ⁻⁴
	SLS4	Streaming Video	500	2000	700	NG	200	500	500	2000	10 ⁻⁶	10 ⁻⁴	10-4	NG
	SLS5	WEB standard email non-real time data transfer			NG	NG			NG	NG			10 ⁻⁴	NG

Opóźnienie pakietu "typu P" (RFC 2679)

Definicja

Opóźnienie pakietu typu P jest określone jako różnica czasu pomiędzy chwilą wysłania pakietu ze źródła, a chwilą odbioru pakietu w ujściu. Oznacza to, że źródło wysyła pierwszy bit pakietu w chwili T (wire time), a ujście odbiera ostatni bit pakietu w chwili T+dT (wire-time)

<u>Uwaga:</u>

Opóźnienie pakietu wysłanego od źródła do ujścia w chwili T jest nieokreślone (formalnie – nieskończone) jeżeli źródło wysłało pierwszy bit pakietu w chwili T, a ujście nie odebrało pakietu

Wire Time (RFC 2330)

Definicja

- 1) Dla danego pakietu (P), czas przyjścia pakietu do węzła (H) na linii (L) jest określony jako pierwsza chwila w której dowolny bit P pojawi się w H na L
- 2) Dla danego pakietu (P), czas wyjścia pakietu z węzła (H) na linii (L) jest określony jako pierwsza chwila w której wszystkie bity P pojawią się w H na L

Opóźnienie pakietu typu P (RFC 2679)

Metodyka pomiaru

- 1. Zapewnij synchronizację źródła (Src) i ujścia (Dst)
- 2. W węźle źródłowym (Scr) ustal wejściowe i wyjściowe adresy IP oraz utwórz pakiet typu P. W węźle docelowym (Dst) zapewnij gotowość do odbioru pakietu
- 3. W węźle Src dodaj znacznik czasu do przygotowanego pakietu i wyślij go do węzła Dst
- 4. Jeżeli pakiet dotarł w sensownym czasie, zanotuj wartość znacznika czasu natychmiast po odbiorze pakietu. Określ opóźnienie pakietu odejmując wartości znaczników czasu
- 5. Jeżeli pakiet nie dotarł w sensownym czasie przyjmij, że opóźnienie jest nieokreślone (formalnie nieskończone)

Zmienność opóźnienia pakietu typu P (RFC 3393)

Definicja

Zmienność opóźnienia pakietu typu P jest określana jako różnica opóźnienia wybranych pakietów

Dla pakietów P(i) oraz P(k):

ddT = dTk - dTi

Zmienność opóźnienia pakietu typu P (RFC 3393)

Metodyka pomiaru

- 1. Początek pomiaru po czasie II. W węźle źródłowym wybierz adresy źródła i ujścia ora utwórz pakiet typu P
- 2. Przygotuj ujście do odbioru pakietów. Pakietowi typu P nadaj w źródle znacznik czasu i wyślij do ujścia
- 3. Jeżeli pakiet dotrze do ujścia w sensowym przedziale czasu, zanotuj wartość znacznika czasu natychmiast po odbiorze pakietu. Określ opóźnienie pakietu odejmując wartości znaczników czasu
- 4. Jeżeli pakiet spełnia kryterium selekcji, zanotuj wartość czasu opóźnienia. W przeciwnym przypadku kontynuuj generację strumienia pakietów do spełnienia kryterium selekcji lub warunku końca pomiarów (I2)
- 5. Generuj kolejne pakiety typu P od źródła do ujścia
- 6. Jeżeli kolejny pakiet dotrze do ujścia w sensowym przedziale czasu, zanotuj wartość znacznika czasu natychmiast po odbiorze pakietu. Określ opóźnienie pakietu odejmując wartości znaczników czasu
- 7. Jeżeli kolejny pakiet spełnia kryterium selekcji drugiego pakietu, zanotuj wartość czasu opóźnienia. W przeciwnym przypadku kontynuuj generację strumienia pakietów do spełnienia kryterium selekcji lub warunku końca pomiarów (12)
- 8. Jeżeli jeden lub oba pakiety nie dotrą w sensownym czasie to wartość ipvd przyjmuję się jako nieokreśloną

Strata pakietu typu P (RFC 2680)

Definicja

Wartość metryki straty pakietu typu P przesyłanego od źródła (Src) do ujścia (Dst) wynosi 0, gdy Scr wysyła pierwszy bit pakietu typu P do ujścia w chwili T (wire time), a Dst odbiera ten pakiet

Wartość metryki straty pakietu typu P przesyłanego od źródła (Src) do ujścia (Dst) wynosi 1, gdy Scr wysyła pierwszy bit pakietu typu P do ujścia w chwili T (wire time), a Dst nie odbiera tego pakietu

Uwaga:

Wartość metryki straty pakietu typu P jest dokładnie równa 0, gdy czas opóźnienia pakietu typu P jest skończony, oraz dokładnie równa 1, gdy czas opóźnienia pakietu typu P jest nieokreślony

Strata pakietu typu P (RFC 2680)

Metodyka pomiaru

- 1. Zapewnij synchronizację źródła i ujścia
 - 2. W węźle źródłowym (Scr) ustal wejściowe i wyjściowe adresy IP oraz utwórz pakiet typu P.
 - 3. W węźle docelowym (Dst) zapewnij gotowość do odbioru pakietu
 - 4. W węźle Src dodaj znacznik czasu do przygotowanego pakietu i wyślij go do węzła Dst
 - 5. Jeżeli pakiet dotarł do Dst w sensownym czasie, przyjmij wartość metryki straty pakietu równą 0
 - 6. Jeżeli pakiet nie dotarł do Dst w sensownym czasie, przyjmij wartość metryki straty pakietu równą 1.

<u>Uwaga:</u>

Wartość progowa "sensownego czasu" jest parametrem metodyki

Przepustowość

⇒ Bandwidth

Przepływ

⇒ Throughput

Gwarantowany przepływ

⇒ Goodput