Machine Learning Cheat Sheet

1. Key ML Algorithms

Supervised Learning - Classification

Cons		Pros	Key Parameters	Use Cases	Algorithm
andle non-linear data, Assumes independence	Can't ha	Simple & fast, Interpretable, Good for Iinear data	C, penalty, solver	Binary classification, Spam detection, Risk assessment	Logistic Regression
overfit, Unstable, ased to dominant classes		Easy to visualize, Handles non-linear data, No scaling needed	max_depth, min_samples_split, criterion	Multi-class classification, Feature importance, Non- linear data	Decision Trees
Black box model, utationally heavy		Reduces overfitting, Handles missing values, Feature importance	n_estimators, max_features, bootstrap	Complex classification, Ensemble learning, Feature selection	Random Forest
to scaling, Slow Hard to interpret		Works in high dimensions, Memory efficient, Versatile kernels	kernel, C, gamma	High-dimensional data, Text classification, Image recognition	SVM

Supervised Learning - Regression

Algorithm	Use Cases	Key Parameters	Pros	Cons
Linear Regression	Simple prediction, Baseline model, Feature importance	fit_intercept, normalize, n_jobs	Simple & interpretable, Fast training, Feature importance	Assumes linearity, Sensitive to outliers
Ridge (L2)	Multicollinearity, Continuous prediction, Feature selection	alpha, solver, normalize	Handles multicollinearity, Reduces overfitting, Stable solutions	Assumes linearity, Keeps all features
Lasso (L1)	Sparse solutions, Feature selection, Automated selection	alpha, selection, normalize	Feature selection, Sparse solutions, Handles high dimensions	Unstable with correlated features, Needs tuning

Unsupervised Learning

Cons	Pros	Key Parameters	Use Cases	Algorithm
Needs k value, Sensitive to outliers	Simple & fast, Scalable, Easy to understand	n_clusters, init, n_init	Clustering, Segmentation, Grouping	K-Means
Sensitive to parameters, Struggles with varying densities	Finds any shape, Handles noise, No preset clusters	eps, min_samples, metric	Density clustering, Noise detection, Variable shapes	DBSCAN
Linear assumptions, Loss of interpretability	Reduces dimensions, Handles multicollinearity, Unsupervised	n_components, svd_solver, whiten	Dimension reduction, Feature extraction, Visualization	PCA

2. Evaluation Metrics

Classification Metrics

_	Implementation	When to Use	Formula	Metric
	metrics.accuracy_score()	Balanced datasets	(TP + TN)/(TP + TN + FP + FN)	Accuracy
	metrics.precision_score()	Minimize false positives	TP/(TP + FP)	Precision
	metrics.recall_score()	Minimize false negatives	TP/(TP + FN)	Recall
	metrics.f1_score()	Balance precision/recall	$2\times(P\times R)/(P+R)$	F1 Score
	metrics.roc_auc_score()	Binary classification	Area under ROC curve	ROC-AUC

Regression Metrics

Implementation	When to Use	Formula	Metric
metrics.mean_squared_error()	General purpose	Σ (y_true - y_pred) 2 /n	MSE
np.sqrt(metrics.mean_squared_error())	Same units as target	√(MSE)	RMSE
metrics.mean_absolute_error()	Robust to outliers	Σ y_true - y_pred /n	MAE
metrics.r2_score()	Model fit quality	1 - (MSE/Var(y))	R²

3. Essential Python Code Snippets

Data Loading & Preprocessing

```
import pandas as pd

df = pd.read_csv('data.csv')

df.dropna(inplace=True)

df = pd.get_dummies(df)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)
```

Model Training & Evaluation

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=5)
```

Hyperparameter Tuning

```
from sklearn.model_selection import GridSearchCV
params = {'C': [0.1, 1, 10], 'kernel': ['rbf', 'linear']}
grid = GridSearchCV(model, params, cv=5)
grid.fit(X_train, y_train)
print("Best params:", grid.best_params_)
```

4. Feature Engineering Techniques

Technique	Purpose	Implementation
Scaling	Normalize features	StandardScaler(), MinMaxScaler()
Encoding	Handle categories	LabelEncoder(), OneHotEncoder()
Selection	Reduce dimensions	SelectKBest(), RFE()
Creation	Make new features	PolynomialFeatures()
Binning	Group continuous data	pd.cut(), pd.qcut()

5. Common Errors & Solutions

Solutions	Symptoms	Problem
More data, Regularization, Reduce complexity	High train score, Low test score	Overfitting
More features, Less regularization, More complex model	Low train score, Low test score	Underfitting
Proper CV splits, Feature scaling after split	Unrealistic high scores	Data Leakage
SMOTE, Class weights, Stratification	High accuracy, low recall	Class Imbalance

6. Best Practices

- 1. Data Preprocessing:
 - · Handle missing values first
 - Scale features appropriately
 - · Check for class imbalance
 - · Split data before scaling
- 2. Model Selection:
 - · Start simple
 - Use cross-validation
 - Consider computational cost
 - · Check assumptions
- 3. Model Evaluation:
 - Use multiple metrics
 - · Check for overfitting
 - Consider business impact
 - Validate on holdout set
- 4. Production:

- · Save preprocessing steps
- · Version control models
- · Monitor performance
- · Plan for updates

7. Key Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn import (
    preprocessing,
    model_selection,
    metrics,
    ensemble,
    linear_model,
    svm,
    tree
)
```

Remember:

- Start with simple models
- · Always split data properly
- · Use cross-validation
- Check assumptions
- · Document everything
- · Monitor performance

Citations: [1] https://ppl-ai-file-upload.s3.amazonaws.com/web/direct-files/15813152/d6066d59-2144-4ba4-acb3-5816e9292679/paste.txt (https://ppl-ai-file-upload.s3.amazonaws.com/web/direct-files/15813152/d6066d59-2144-4ba4-acb3-5816e9292679/paste.txt)

You're right. Let me reformat the SVM cheat sheet with proper table formatting where all content stays within columns. Here's the corrected version:

Support Vector Machine (SVM) Cheat Sheet

1. Types of SVM

Туре	Description	Use Cases	Key Parameters
Linear SVM	Uses linear hyperplane for separation; Maximizes margin between classes	Text classification; High dimensional data; Linear separable data	C: regularization strength; max_iter: iterations; tol: tolerance
Non-linear SVM	Uses kernel trick; Transforms data to higher dimensions	Image classification; Complex patterns; Non-linear data	kernel: kernel type; C: regularization; gamma: coefficient
SVM Regression	Predicts continuous values; Uses epsilon-tube	Price prediction; Time series; Continuous data	epsilon: margin width; C: regularization; kernel: type

2. Kernel Types

Parameters	Use Case	Formula	Kernel
None needed	High dimensional data; Text classification; Simple datasets	$K(x,y) = x^T y$	Linear
gamma: kernel coefficient	Non-linear data; Image processing; General purpose	$K(x,y) = \exp(-\gamma x-y ^2)$	RBF (Gaussian)
degree: polynomial degree; gamma: scale; coef0: constant	Image processing; Natural language; Feature interactions	$K(x,y) = (\gamma x^T y + r)^d$	Polynomial
gamma: scale; coef0: constant	Neural network alternative; Binary classification	$K(x,y) = tanh(\gamma x^T y + r)$	Sigmoid

3. Important Parameters

Parameter	Purpose	Typical Values	Effect
С	Controls regularization strength	0.1 to 100; Default: 1.0	Large C: Less regularization; Small C: More regularization
gamma	Controls influence range	scale, auto, 0.001 to 1	Large: Close influence; Small: Far influence
kernel	Defines transformation type	rbf, linear, poly, sigmoid	Changes data transformation; Affects complexity
degree	Sets polynomial complexity	2 to 5; Default: 3	Higher: More complex; Lower: Simpler

4. Advantages and Disadvantages

Advantages	Disadvantages

5. Best Practices

Recommendations	Area
Scale all features; Handle missing values; Remove outliers; Convert categorical data	Data Preparation
Start linear; Try RBF for non-linear; Use polynomial for interactions; Cross-validate	Kernel Selection
Grid search C and gamma; Start with defaults; Use logarithmic scales; Monitor time	Parameter Tuning
Use approximation for large data; Consider feature selection; Monitor support vectors	Optimization

6. Common Issues and Solutions

Solutions	Symptoms	Issue
Decrease C; Use simpler kernel; Add regularization	High train, low test scores	Overfitting
Increase C; Try different kernel; Add features	Low train and test scores	Underfitting
Use linear kernel; Reduce dataset; Select features	Long convergence time	Slow Training
Scale features; Change kernel; Tune parameters	Low accuracy, unstable	Poor Performance

7. Basic Implementation

```
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler

# Preprocessing
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Basic SVM
svm = SVC(kernel='rbf', C=1.0, gamma='scale')
svm.fit(X_scaled, y)

# Grid Search
params = {
    'C': [0.1, 1, 10],
    'gamma': ['scale', 'auto', 0.1],
    'kernel': ['rbf', 'linear']
}
grid_search = GridSearchCV(SVC(), params, cv=5)
```

Key Points to Remember:

- 1. Always scale features
- 2. Start with simple models
- 3. Use cross-validation
- 4. Monitor training time
- 5. Check support vectors

Would you like me to adjust the formatting of any particular section or add more details to any topic?

Complete Naive Bayes Cheat Sheet

1. Basic Concepts

Meaning	Symbol	Term	
Probability of A given B	P(A B)	Posterior	
Probability of B given A	P(B A)	Likelihood	
Initial probability of A	P(A)	Prior	
Multiply sequence of terms	П	Product	
Average of distribution	μ	Mean	
Spread of distribution	σ	Std Dev	

2. Types of Naive Bayes

Туре	Data Type	Best For	Example Data
Gaussian	Continuous	Physical measurements	Height: 175.5 cm
Multinomial	Count data	Text classification	Word appears 3 times
Bernoulli	Binary data	Presence/absence	Word exists: yes/no

3. Formulas and Smoothing

A. Gaussian NB

```
P(x|class) = 1/(\sqrt{2\pi\sigma^2})) \times e^{-(x-\mu)^2/2\sigma^2} Where: x = feature \ value \mu = class \ mean \sigma = class \ standard \ deviation
```

B. Multinomial NB

```
With vocabulary smoothing: P(word|class) = (count + \alpha)/(total + \alpha|V|) Where: count = word \ occurrences \ in \ class total = all \ words \ in \ class |V| = vocabulary \ size \alpha = smoothing \ parameter
```

C. Bernoulli NB

```
With class smoothing: P(word|class) = (count + \alpha)/(total + \alpha k) Where: count = documents \ with \ word \ in \ class total = documents \ in \ class k = number \ of \ classes \alpha = smoothing \ parameter
```

4. Practical Examples

A. Gaussian Example (Height Classification)

```
Given: Male: \mu = 175cm, \sigma = 10  
Female: \mu = 162cm, \sigma = 8  
New height = 168cm  
P(\text{height}|\text{male}) = 1/(\sqrt{(2\pi \times 10^2)}) \times e^{-(-(168-175)^2/(2\times 10^2))} = 0.0312  
P(\text{height}|\text{female}) = 1/(\sqrt{(2\pi \times 8^2)}) \times e^{-(-(168-162)^2/(2\times 8^2))} = 0.0376  
Result: Classify as Female (0.0376 > 0.0312)
```

B. Multinomial Example (Text Classification)

C. Bernoulli Example (Spam Detection)

```
Given:
- Word 'money' appears in 20 spam emails
- Total spam emails: 100
- Number of classes: 2
- α = 1

P(money|spam) = (20 + 1)/(100 + 1×2)
= 21/102
≈ 0.206
```

5. Implementation in Python

```
# Gaussian NB
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train, y_train)

# Multinomial NB
from sklearn.naive_bayes import MultinomialNB
mnb = MultinomialNB(alpha=1.0)
mnb.fit(X_train, y_train)

# Bernoulli NB
from sklearn.naive_bayes import BernoulliNB
bnb = BernoulliNB(alpha=1.0)
bnb.fit(X_train, y_train)
```

6. When to Use Each Variant

Variant	Use When	Don't Use When
Gaussian	Features are continuous	Data is discrete
Multinomial	Working with word counts	Features are binary
Bernoulli	Features are binary	Need to count occurrences

7. Problem-Solving Steps

- 1. Identify data type:
 - Continuous → Gaussian
 - Count data → Multinomial
 - Binary data → Bernoulli
- 2. Check assumptions:
 - Feature independence
 - · Distribution assumptions
 - · Data quality

3. Preprocess data:

- Handle missing values
- Scale if needed (Gaussian)
- · Convert to appropriate format

4. Choose smoothing:

- · Multinomial: vocabulary size
- · Bernoulli: number of classes
- Set α value (typically 1)

5. Calculate probabilities:

- · Use log for numerical stability
- · Apply appropriate formula
- · Compare results

8. Common Issues and Solutions

Solution	Zero probabilities Numerical underflow Feature scaling	
Apply Laplace smoothing		
Use log probabilities		
Standardize for Gaussian		
Adjust prior probabilities	Class imbalance	

Remember:

- · Always scale features for Gaussian NB
- Use log probabilities for stability
- · Consider class balance
- Validate independence assumption
- · Choose appropriate smoothing

Naive Bayes Detailed Problems and Solutions

1. Gaussian Naive Bayes Problem

Problem: Classify students as Pass/Fail based on study hours and sleep hours.

Given Data:

```
Training Data:
    Pass students:
    - Study hours: \mu = 8, \sigma = 1
    - Sleep hours: \mu = 6, \sigma = 0.5
    Fail students:
    - Study hours: \mu = 4, \sigma = 1.5
    - Sleep hours: \mu = 8, \sigma = 1
    Prior probabilities:
    P(Pass) = 0.6
    P(Fail) = 0.4
    New student:
    - Study hours = 7
    - Sleep hours = 7
Solution:
    1. Calculate P(features | Pass):
        P(\text{study}=7 | \text{Pass}) = 1/(\sqrt{(2\pi \times 1^2)}) \times e^{-(-(7-8)^2/(2\times 1^2))}
                             = 0.242
        P(sleep=7|Pass) = 1/(\sqrt{(2\pi \times 0.5^2)}) \times e^{-(-(7-6)^2/(2\times 0.5^2)})
                             = 0.107
    2. Calculate P(features | Fail):
        P(\text{study=7}|\text{Fail}) = 1/(\sqrt{(2\pi \times 1.5^2)}) \times e^{-(-(7-4)^2/(2\times 1.5^2))}
                             = 0.027
        P(sleep=7|Fail) = 1/(\sqrt{(2\pi \times 1^2)}) \times e^{-(-(7-8)^2/(2\times 1^2))}
                             = 0.242
    3. Final probabilities:
        P(Pass | features) \propto 0.6 \times 0.242 \times 0.107 = 0.0155
        P(Fail|features) \propto 0.4 \times 0.027 \times 0.242 = 0.0026
    Result: Student likely to Pass (0.0155 > 0.0026)
```

2. Multinomial Naive Bayes Problem

Problem: Classify email as Spam/Not Spam based on word frequencies.

Given Data:

```
Training Data:
   Total emails:
    - Spam: 100 emails
    - Not Spam: 200 emails
   Word frequencies in Spam:
    - 'money': 50 occurrences
    - 'win': 40 occurrences
    - 'free': 60 occurrences
   Word frequencies in Not Spam:
    - 'money': 10 occurrences
    - 'win': 5 occurrences
    - 'free': 15 occurrences
   Vocabulary size = 1000 words
   \alpha = 1 (Laplace smoothing)
   New email contains: "free money money"
Solution:
   1. Calculate priors:
       P(Spam) = 100/300 = 0.333
       P(Not Spam) = 200/300 = 0.667
    2. Calculate P(word|Spam) with vocabulary smoothing:
       P(money|Spam) = (50 + 1)/(150 + 1000) = 0.0444
       P(free|Spam) = (60 + 1)/(150 + 1000) = 0.0530
   3. Calculate P(word Not Spam):
       P(money | Not Spam) = (10 + 1)/(30 + 1000) = 0.0107
       P(free | Not Spam) = (15 + 1)/(30 + 1000) = 0.0155
   4. Final calculation:
       P(Spam | email) \propto 0.333 \times 0.0444^2 \times 0.0530 = 3.46 \times 10^{-5}
       P(Not Spam | email) \propto 0.667 \times 0.0107^2 \times 0.0155 = 1.19 \times 10^{-6}
   Result: Classify as Spam (3.46 \times 10^{-5} > 1.19 \times 10^{-6})
```

3. Bernoulli Naive Bayes Problem

Problem: Classify document based on presence/absence of keywords.

Given Data:

```
Training Data:
   Documents:
    - Technical: 150 documents
    - Non-Technical: 250 documents
   Word presence in Technical docs:
    - 'code': 120 documents
    - 'data': 100 documents
    - 'algorithm': 90 documents
   Word presence in Non-Technical docs:
    - 'code': 20 documents
    - 'data': 50 documents
    - 'algorithm': 10 documents
   \alpha = 1 (Laplace smoothing)
   Number of classes (k) = 2
   New document contains: 'code' and 'data' (but no 'algorithm')
Solution:
   1. Calculate priors:
       P(Technical) = 150/400 = 0.375
       P(Non-Technical) = 250/400 = 0.625
    2. Calculate P(word Technical) with class smoothing:
       P(\text{code}|\text{Tech}) = (120 + 1)/(150 + 2) = 0.7894
       P(data|Tech) = (100 + 1)/(150 + 2) = 0.6645
       P(\neg algorithm | Tech) = 1 - (90 + 1)/(150 + 2) = 0.4013
   3. Calculate P(word | Non-Technical):
       P(\text{code}|\text{Non-Tech}) = (20 + 1)/(250 + 2) = 0.0833
       P(data|Non-Tech) = (50 + 1)/(250 + 2) = 0.2024
       P(\neg algorithm | Non-Tech) = 1 - (10 + 1)/(250 + 2) = 0.9562
   4. Final calculation:
       P(Tech | doc) \propto 0.375 \times 0.7894 \times 0.6645 \times 0.4013 = 0.0791
       P(Non-Tech|doc) \propto 0.625 \times 0.0833 \times 0.2024 \times 0.9562 = 0.0101
   Result: Classify as Technical (0.0791 > 0.0101)
```

Key Points to Remember:

- 1. Gaussian NB:
 - · Use for continuous data
 - · Calculate mean and standard deviation
 - Apply Gaussian formula
- 2. Multinomial NB:

- Use for word frequencies
- · Apply vocabulary smoothing
- Count total occurrences

3. Bernoulli NB:

- Use for presence/absence
- · Apply class smoothing
- Consider both presence and absence

Common Steps for All:

- 1. Calculate priors
- 2. Apply appropriate smoothing
- 3. Calculate conditional probabilities
- 4. Multiply probabilities (or add logs)
- 5. Compare final values

Complete Statistical Tests Guide

Common Acronyms and Terms

Acronym/Term	Full Form	Meaning
ANOVA	Analysis of Variance	Statistical method to analyze differences among group means
SS	Sum of Squares	Measure of variation from the mean
SST	Total Sum of Squares	Total variation in the data
SSB/SSA	Between Groups Sum of Squares	Variation between different groups
SSW/SSE	Within Groups Sum of Squares/Error	Variation within groups
df	Degrees of Freedom	Number of values free to vary
MS	Mean Square	Sum of squares divided by degrees of freedom
SE	Standard Error	Standard deviation of a sampling distribution
H₀	Null Hypothesis	Statement of no effect or difference
H_1	Alternative Hypothesis	Statement of effect or difference
α	Alpha	Significance level (Type I error rate)
μ	Mu	Population mean
σ	Sigma	Population standard deviation
Σ̄	x-bar	Sample mean
S	s	Sample standard deviation

Test Selection Guide

Test	When to Use	Required Assumptions	Example Scenario
One-way ANOVA	Compare means of 3+ groups	Normal distribution, Equal variances	Compare multiple teaching methods
Two-way ANOVA	Compare effects of 2 factors	Normal distribution, Equal variances	Effect of gender & teaching method
F-test	Compare variances	Normal distribution	Compare method variabilities
t-test	Compare means of 2 groups	Normal distribution	Compare control vs treatment
z-test	Compare with known population	Known population σ, Large sample	Compare to population mean

1. One-Way ANOVA

Core Formulas

- SST (Total) = $\Sigma(x \bar{x})^2$
- SSB (Between) = $\Sigma n_i(\bar{x}_i \bar{x})^2$
- SSW (Within) = SST SSB
- F = (SSB/dfb)/(SSW/dfw)
- dfb = k 1, dfw = N k

Problem Example

```
Compare three teaching methods: Method A: 75, 82, 78, 85, 81 Method B: 65, 71, 68, 73, 70 Method C: 85, 88, 90, 87, 86 \alpha = 0.05
```

Detailed Solution Steps

1. Calculate Group Means:

```
Method A: \bar{x}A = (75 + 82 + 78 + 85 + 81)/5 = 80.2
Method B: \bar{x}B = (65 + 71 + 68 + 73 + 70)/5 = 69.4
Method C: \bar{x}C = (85 + 88 + 90 + 87 + 86)/5 = 87.2
Grand Mean: \bar{x} = (80.2 + 69.4 + 87.2)/3 = 78.93
```

2. Calculate SSB:

SSB =
$$\Sigma n_i (\bar{x}_i - \bar{x})^2$$

= $5(80.2 - 78.93)^2 + 5(69.4 - 78.93)^2 + 5(87.2 - 78.93)^2$
= $5(1.27^2 + (-9.53)^2 + 8.27^2)$
= $5(1.61 + 90.82 + 68.39)$
= 804.31

3. Calculate SST:

SST =
$$\Sigma(x - \bar{x})^2$$

= $(75 - 78.93)^2 + (82 - 78.93)^2 + \dots + (86 - 78.93)^2$
= 894.11

4. Calculate SSW:

5. Calculate Degrees of Freedom:

dfb =
$$k - 1 = 3 - 1 = 2$$

dfw = $N - k = 15 - 3 = 12$

6. Calculate Mean Squares:

MSB = SSB/dfb =
$$804.31/2 = 402.16$$

MSW = SSW/dfw = $89.8/12 = 7.48$

7. Calculate F-statistic:

Conclusion

Since F(53.76) > F-critical(3.89), reject H₀. Teaching methods have significantly different effects on performance.

2. Two-Way ANOVA

Core Formulas

- SST = SSA + SSB + SS(AB) + SSE
- FA = MSA/MSE
- FB = MSB/MSE
- FAB = MSAB/MSE

Problem Example

Effect of Gender and Teaching Method:

Traditional Online Male: 72,75,71 65,68,63 Female: 78,82,80 70,73,71 $\alpha = 0.05$

Detailed Solution Steps

1. Calculate Cell Means:

```
Male Traditional (MT): \bar{x}MT = (72+75+71)/3 = 72.67
Male Online (MO): \bar{x}MO = (65+68+63)/3 = 65.33
Female Traditional (FT): \bar{x}FT = (78+82+80)/3 = 80.00
Female Online (FO): \bar{x}FO = (70+73+71)/3 = 71.33
```

2. Calculate Main Effect Means:

```
Males: \bar{x}M = (72.67+65.33)/2 = 69.00

Females: \bar{x}F = (80.00+71.33)/2 = 75.67

Traditional: \bar{x}T = (72.67+80.00)/2 = 76.33

Online: \bar{x}O = (65.33+71.33)/2 = 68.33

Grand Mean: \bar{x} = (69.00+75.67)/2 = 72.33
```

3. Calculate Sum of Squares:

```
SSG (Gender) = 135.37
SSM (Method) = 192.67
SSI (Interaction) = 4.17
SSE (Error) = 313.12
SST = 645.33
```

4. Calculate F-ratios:

```
F_Gender = MSG/MSE = 135.37/39.14 = 3.46

F_Method = MSM/MSE = 192.67/39.14 = 4.92

F_Interaction = MSI/MSE = 4.17/39.14 = 0.11

F-critical(0.05,1,8) = 5.32
```

Conclusions

- 1. Gender Effect (F = 3.46 < 5.32): Not significant
- 2. Method Effect (F = 4.92 < 5.32): Not significant
- 3. Interaction (F = 0.11 < 5.32): No significant interaction

3. F-Test

Core Formula

 $F = s_1^2/s_2^2$ (larger variance/smaller variance)

Problem Example

```
Compare machine variances: Machine 1: 10.2, 10.4, 10.1, 10.3, 10.2 Machine 2: 10.3, 10.1, 10.4, 10.2, 10.3 \alpha = 0.05
```

Detailed Solution Steps

1. Calculate Means:

```
\bar{x}_1 = (10.2 + 10.4 + 10.1 + 10.3 + 10.2)/5 = 10.24
\bar{x}_2 = (10.3 + 10.1 + 10.4 + 10.2 + 10.3)/5 = 10.26
```

2. Calculate Variances:

```
s_1^2 = [(10.2-10.24)^2 + ... + (10.2-10.24)^2]/4 = 0.0130

s_2^2 = [(10.3-10.26)^2 + ... + (10.3-10.26)^2]/4 = 0.0115
```

3. Calculate F-statistic:

```
F = 0.0130/0.0115 = 1.13
F-critical(0.05,4,4) = 6.39
```

Conclusion

Since F(1.13) < F-critical(6.39), cannot reject H₀. No significant difference in variances.

4. t-Test

Core Formula

```
t = (\bar{x}_1 - \bar{x}_2)/\sqrt{(s^2p(1/n_1 + 1/n_2))} where s^2p = [(n_1-1)s_1^2 + (n_2-1)s_2^2]/(n_1+n_2-2)
```

Problem Example

Compare treatments: Control: 68, 72, 70, 71, 65 Treatment: 75, 82, 78, 80, 76 $\alpha = 0.05$

Detailed Solution Steps

1. Calculate Means:

```
Control: \bar{x}_1 = (68 + 72 + 70 + 71 + 65)/5 = 69.2
Treatment: \bar{x}_2 = (75 + 82 + 78 + 80 + 76)/5 = 78.2
```

2. Calculate Sample Variances:

$$s_1^2 = [(68-69.2)^2 + ... + (65-69.2)^2]/4 = 7.7$$

 $s_2^2 = [(75-78.2)^2 + ... + (76-78.2)^2]/4 = 8.7$

3. Calculate Pooled Variance:

$$s^2p = [(4\times7.7) + (4\times8.7)]/8 = 8.2$$

4. Calculate t-statistic:

t =
$$(69.2 - 78.2)/\sqrt{[8.2(2/5)]}$$
 = -4.97
t-critical(0.05,8) = ±2.306

Conclusion

Since |t| > t-critical, reject H₀. Treatment has significant effect.

5. z-Test

Core Formula

$$z = (\bar{x} - \mu)/(\sigma/\sqrt{n})$$

Problem Example

```
Population: \mu = 100, \sigma = 15
Sample (n=36): mean = 96
\alpha = 0.05
```

Detailed Solution Steps

1. Calculate Standard Error:

$$SE = \sigma/\sqrt{n} = 15/\sqrt{36} = 2.5$$

2. Calculate z-statistic:

```
z = (96 - 100)/2.5 = -1.6
z-critical(0.05) = ±1.96
```

Conclusion

Since |z| < z-critical, cannot reject H₀. Sample mean not significantly different from population mean.

Key Points to Remember

- 1. Test Selection:
 - n ≥ 30: Consider z-test
 - Compare 2 groups: t-test
 - Compare 3+ groups: ANOVA
 - Compare variances: F-test
- 2. Critical Values:
 - $\alpha = 0.05$ (common)
 - · Two-tailed vs One-tailed
 - · Consider degrees of freedom
- 3. Assumptions:
 - Normality
 - Equal variances (when applicable)
 - Independence
 - · Random sampling
- 4. Decision Rules:
 - If test statistic > critical value: Reject H₀
 - If p-value < α: Reject H₀
 - · Consider practical significance
- 5. Effect Size Measures:
 - ANOVA: η² = SSB/SST
 - t-test: Cohen's $d = (\bar{x}_1 \bar{x}_2)/s$ _pooled
 - z-test: $d = (\bar{x} \mu)/\sigma$