Sheaves and their cohomology

Date: 2023-08-25 8:00-10:00 AM Lecturer: Nithi Rungtanapirom Transcriber: Kittapat Ratanaphupha

Recall: geometric tangent space

$$T_p^{\mathrm{geo}}M = \{(I,c) \,|\, 0 \in I \mathring{\subseteq} K, c : I \to K, c(0) = p\}$$

Observation Let M be a premanifold, $p \in M$, $\gamma := [(I, c)] \in T_p^{geo}M$.

 \mathbb{K} -linear map $D_{\gamma}: \mathcal{O}_{M,p} \to \mathbb{K}$, $f \mapsto (f \circ c)'(0)$ ([(U,f)]) for $I \supseteq c^{-1}(U) \to \mathbb{K}$ with the property that $\forall f, g \in \mathcal{O}_{M,p}: D_{\gamma}(f \cdot g) = ((f \circ c)(g \circ c))'(0)$ which holds the product rule of derivative.

Def Let R be a ring, A be an R-algebra (commutative with unit), M be a model. An R-derivation on A with values in M is an R-linear map, $\partial: A \to M$ such that $\forall f, g \in A: \partial (fg) = f \partial (g) + g \partial (f)$.

Notation. $Der_R(A, M) = \{R\text{-derivations } A \to M\}$. This is an A-module.

Example D_{γ} from before $D_{\gamma}: \mathcal{O}_{M,p} \to \mathbb{K}$. Here \mathbb{K} is an $\mathcal{O}_{M,p}$ -module under the evaluation homomorphism $\operatorname{ev}_p: \mathcal{O}_{M,p} \to \mathbb{K}, f \mapsto f(p) \ (\mathcal{O}_{\ell}M, p) \times \mathbb{K} \to \mathbb{K}, f, a \mapsto f \cdot a := f(p) \cdot a)$

By this way, we obtain an injective k-linear (!) map $T_p^{\text{geo}}M \to \text{Der}(\mathcal{O}_{M,p},\mathbb{K})$ such that $\gamma = [(I,c)] \mapsto D_{\gamma} : f \mapsto (f \circ c)'(0)$.

Exercise. Verify this one (well-definedness and linearity)

Interlude: Locally ringed spaces

Let R be a ring (as usual commutative with unit)

Def. An R-ringed space is a pair (X, \mathcal{O}_X) consisting of a topological space X and a sheaf of R-algebras \mathcal{O}_X on X. A morphism of R-ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a pair $\varphi = (\varphi, \varphi^{\flat})$ consisting of a continuous map $\varphi : X \to Y$ and a morphism of sheaves of R-algebras $\varphi^{\flat} : \mathcal{O}_Y \to \varphi_* \mathcal{O}_X$ (structure morphism.)

 $U \overset{\circ}{\subset} Y$:

$$\varphi_U^{\flat}: \mathcal{O}_Y(U) \longrightarrow \mathcal{O}_X(\varphi^{-1}U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\varphi_{U'}^{\flat}\mathcal{O}_Y(U') \longrightarrow \mathcal{O}_X(\varphi^{-1}U')$$

Remark.

• In an earlier discussion of concrete k-spaces (where k is a field), the structure morphism of $\varphi:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ is given by $\varphi_U^{\flat}:\mathcal{O}_Y(U)\to\mathcal{O}_X(\varphi^{-1}U)$ such that $f\mapsto f\circ\varphi|_{\varphi^{-1}U}$.

- By adjointness of $(\varphi^{-1}, \varphi_*)$, we obtain a morphism $\varphi^{\sharp} : \varphi^{-1}\mathcal{O}_Y \to \mathcal{O}_X$, hence also $\varphi_a^{\sharp} : \mathcal{O}_{Y,\varphi(a)} \to \mathcal{O}_{X,a}$ for all $a \in X$. In case of concrete k-spaces, φ_a^{\sharp} is again given by the composition with φ .
- $R = \mathbb{Z}$ (ringed spaces)

Def Let $\varphi = (\varphi, \varphi^{\flat}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ and $\psi = (\psi, \psi^{\flat}) : (Y, \mathcal{O}_Y) \to (Z, \mathcal{O}_Z)$ be morphisms of R-ringed spaces. The composition $\psi \circ \varphi : (X, \mathcal{O}_X) \to (Z, \mathcal{O}_Z)$ is given by the compositions $X \xrightarrow{\varphi} Y \xrightarrow{\varphi} Z$ and $(\psi \circ \varphi)^{\flat} : \mathcal{O}_Z \xrightarrow{\psi^{\flat}} \psi_* \mathcal{O}_Y \xrightarrow{\psi_*(\varphi)} \psi_* (\varphi_* \mathcal{O}_X) = (\psi \circ \varphi)_* \mathcal{O}_X$

Def

- 1. A local ring is a ring A with exactly one maximal ideal, or equivalently, $\mathfrak{m} := A \setminus A^*$ is an ideal of A. In this case, $\kappa := A/\mathfrak{m}$ is called the residue field of A.
- 2. Let A and B be localring with maximal ideals \mathfrak{m}_A and \mathfrak{m}_B respectively. A local ring homomorphism $(A \to B)$ is a ring homomorphism $\varphi : A \to B$ such that $\varphi(\mathfrak{m}_A) \subseteq \mathfrak{m}_B$, or equivalently $(!) \varphi^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$.

Examples.

- Every field is a local ring.
- Let (M, \mathcal{O}_M) be a premanifold, $p \in M$. (Claim that $\mathcal{O}_{M,p}$ is local.) Consider the evaluation homomorphism

$$\operatorname{ev}_p:\mathcal{O}_{M,p}\to\mathbb{K}, f\mapsto f(p)$$

that $\updownarrow_{M,p} := \ker(\operatorname{ev}_p) = \{ f \in \mathcal{O}_{M,p} \mid f(p) = 0 \}$ is a maximal ideal of $\mathcal{O}_{M,p}$! (Apply the first isomorphism theorem, $\mathcal{O}_{M,p}/\mathfrak{m}_{M,p} \cong \mathbb{K}$ since ev_p is a surjective.) Furthermore, $\forall f \in \mathcal{O}_{M,p} \backslash \mathfrak{m}_{M,p}, \exists V \subseteq M, p \in V : f(x) \neq 0 \text{ for all } x \in V.$ ([(v, 1/f)] is a multiplicative inverse of f in $\mathcal{O}_{M,p}$!) This means that $\mathcal{O}_{M,p} \backslash \mathfrak{m}_{M,p} = \mathcal{O}_{M,p}^{\times}$. Hence $\mathcal{O}_{M,p}$ is a local ring.

• Let $F: M \to N$ be a morphism of premanifolds, $a \in M$: $F_a^{\sharp}: \mathcal{O}_{N,F(a)} \to \mathcal{O}_{M,a}$ is given by composition with F. We see that F_a^{\sharp} is a local ring homomorphism.

Def

- A locally R-ringed space is an R-ringed space (X, \mathcal{O}_X) such that $\forall a \in X : \mathcal{O}_{X,a}$ is a local ring.
- A morphism of locally R-ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of R-ringed spaces $(\varphi, \varphi^{\flat})$ such that $\forall a \in X : \varphi_a^{\sharp} : \mathcal{O}_{Y,\varphi(a)} \to \mathcal{O}_{X,a}$ is a local ring homomorphism.

Example morphisms of premanifolds.

Remark. The category of locally R-ringed spaces is a subset of the one of R-ringed spaces but not a full one!

Exercise Let k be a field. Show that a concrete k-space (X, \mathcal{O}_X) is a locally k-ringed space if $\forall U \subseteq X, \forall f \in \mathcal{O}_X(U)$: f nowhere also on U: $\frac{1}{f} \in \mathcal{O}_X(U)$.

Proposition. Let k be a field, $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ be locally ringed concrete k-spaces, $\varphi:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ be a morphism of k-ringed spaces.

Then
$$\forall U \subseteq Y, \forall f \in \mathcal{O}_Y(U) : \varphi_U^{\flat}(f) = f \circ \varphi|_{\varphi^{-1}U}$$

In particular, every such a morphism of locally k-ringed spaces.

Proof. Let $U \subseteq Y$, $f \in \mathcal{O}_Y(U)$. (To show: $\forall a \in \varphi^{-1}(U), \varphi_U^{\flat}(f)(a) \stackrel{!}{=} f(\varphi(a))$). Let $a \in \varphi^{-1}U$.

The commutative diagram \rightarrow

Claim. $\operatorname{ev}_a \circ \varphi_a^{\sharp} = \operatorname{ev}_{\varphi}(a) : \mathcal{O}_{Y,\varphi(a)} \to k$. In fact, $\operatorname{ev}_a \circ \varphi_a^{\sharp}$ is k-linear and surjective, then $\ker(\operatorname{ev}_a \circ \varphi_a^{\sharp})$ is a maximal ideal of $\mathcal{O}_{Y,\varphi_a}$. Hence, $\ker(\operatorname{ev}_a \circ \varphi_a^{\sharp}) = \mathfrak{M}_{Y,\varphi(a)} (= \{ f \in \mathcal{O}_{Y,\varphi(a)} \mid f(\varphi(a)) = 0 \}.$ By then, $\operatorname{ev}_a \circ \varphi_a^{\sharp}$ and $\operatorname{ev}_{\varphi(a)}$ factor through a unique k-linear isomorphisms

 $\mathcal{O}_{Y,\varphi(a)}/\mathfrak{M}_{Y,\varphi(a)} \stackrel{\sim}{\to} k.$ Therefore, $\operatorname{ev}_a = \varphi_a^\sharp = \operatorname{ev}_a.$

Therefore,
$$ev_a = \varphi_a^{\sharp} = ev_a$$
.

Remark. For an example of a morphism of ringed spaces between locally ringed spaces which is not a morphism of locally ringed spaces, see (Hartshorne, Ch II. Example 2.3.2)

Back to the tangent spaces (Recall: $T_p^{\text{geo}}M \hookrightarrow \text{Der}_{\mathbb{K}}(\mathcal{O}, \mathbb{K})$)

Def Let M be a C^{∞}/C^{ω} /complex-premanifold, $p \in M$, the algebraic tangent space of M at p

$$T_p^{\mathrm{alg}}M = \mathrm{Der}_{\mathbb{K}}(\mathcal{O}_{M,p},\mathbb{K})$$

Let $F: M \to N$ be a morphism of (\dots) -premanifolds, $a \in M$, then the tangent map is

 $T_p^{\mathrm{alg}}(F): T_p^{alg}(M) \to T_p^{alg}(N)$, that $\partial \mapsto \partial \circ F_a^{\sharp}$ (Check that it is a K-derivation.)

Remark. Comparing T_p^{geo} and T_p^{alg}

Still to show that $T_p^{\text{geo}}M \cong T_p^{\text{alg}}M$ (so that in future, we can just write T_pM)

Lemma. Let k be a field, A be a k-algebra which is a local ring with maximal ideal \mathfrak{m} and residue field $A/\mathfrak{m} \cong k$. There is an isomorphism of k-vector spaces.

$$\operatorname{Der}_k(A,k) \stackrel{\sim}{\to} \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2,k) = (\mathfrak{m}/\mathfrak{m}^2)^{\vee} \text{ that } \partial \mapsto \partial|_{\mathfrak{m}}.$$

k can be interpreted as A-model via A/\mathfrak{m} . ($\mathfrak{m}^2 = \text{ideal}$ of A generated by $f \circ g : f, g \in \mathfrak{m}$.)

Proof

- Well-definedness: why is $\partial(\mathfrak{m}^2) = 0$? Let $f, g \in \mathfrak{m}$. Then $\partial(fg) = [f]\partial(g) + [g]\partial(f) = 0$ $(f, g \in \mathfrak{m})$. Hence $\partial|_{\mathfrak{m}}$ factors through $\mathfrak{m}/\mathfrak{m}^2$.
- k-linear: easy
- inverse map: $(\mathfrak{m}/\mathfrak{m}^2)^{\vee} \to \operatorname{Der}_k(A,k)$ that $\varphi \mapsto (D_{\varphi} : A \to k, f \mapsto \varphi(f \bar{f}))$ $(A \to A/\mathfrak{m} \cong k \hookrightarrow A, \lambda \mapsto \lambda \cdot 1)$ Check that D_{φ} is really a derivation, $\partial \mapsto \partial|_{\mathfrak{m}}$ and $\varphi \mapsto D_{\varphi}$ are inverse to each other.

Def Let A be a local ring with maximal ideal \mathfrak{m} and residue field k. We say that A satisfies the tangent space condition if

- 1. \exists inclusion homomorphism $\iota: k \hookrightarrow A$ such that $(k \stackrel{\iota}{\hookrightarrow} A \twoheadrightarrow A/\mathfrak{m} \cong k)$ is id_k .
- 2. \mathfrak{m} is finitely generated.

Example

- $k[[x_1, x_2, ..., x_n]] = \{\text{power series over } k \text{ in } x_1, ..., x_n\}. \ \mathfrak{m} = (x_1, x_2, ..., x_n).$
- Claim. $a \in \mathbb{R}^n$: $\mathcal{C}^{\infty}_{\mathbb{R}^n,a}$, $\mathcal{C}^{\omega}_{\mathbb{R}^n,a}$ satisfy the tangent space condition, also with $a \in \mathcal{C}^n$, so is $\mathcal{O}^h_{\mathbb{C}^n,a}$ (exercise: verify this. Arapura, 2.5.18)

In fact, we can show that

- $\mathfrak{m}_{\mathcal{C}_{\mathbb{D}n}^{\infty},a},\mathfrak{m}_{\mathcal{C}_{\mathbb{D}n}^{\omega},a}$ are both generated by $\{x_1-a_1,x_2-a_2,\ldots,x_n-a_n\}.$
- $\mathfrak{m}_{\mathcal{O}_{\mathbb{C}^n}^h,a}$ is generated by $\{z_1-a_1,z_2-a_2,\ldots,z_n-a_n\}$.

(Hint: Arapura, Exercise 2.5.18)

Based on this observation, we can show that

$$\dim T_p^{\operatorname{alg}}M=\dim M=\dim T_p^{\operatorname{geo}}M$$

The injective k-linear map $T_p^{\text{geo}}M \hookrightarrow T_p^{\text{alg}}M = \text{Der}_{\mathbb{K}}(\mathcal{O}_{M,p},\mathbb{K})$ is in fact an isomorphism! Remark. To see what goes wrong with C^{α} , $\alpha < \infty$ see (Wedhorn, Problem 5.3)

Def Let (A, \mathfrak{m}, k) be a local ring which satisfies the tangent space condition. The *Zariski cotangent space* of A is $T_A^{\vee} := \mathfrak{m}/\mathfrak{m}^2$ (This is a k-vector space.) The Zariski tangent space is $T_A := (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$ which $(T_A^{\vee})^{\vee} \cong T_A$.

Hence by the previous discussion, we see that

$$T_{\mathcal{O}_{M,p}} \cong T_p^{\mathrm{alg}} M \cong T_p^{\mathrm{geo}} M.$$

(Quiz, 8 Sep.)