Graphes et algorithmes: Fiche

Sommaire

- Graphes et algorithmes: Fiche
 - Sommaire
 - 1. Introduction
 - 2. Définitions et terminologie
 - 2.1. Graphe
 - 2.2. Hypothèses
 - 2.2.1. Conséquences
 - 2.3. Sommets, arcs et arêtes
 - 2.4. Exemple
 - 2.5. Graphes denses et creux
 - 2.6. Voisins et degrés
 - 2.7. Sommet isolé
 - 2.8. Chaînes et cycles
 - 2.9. Chemins et circuits
 - 2.10. Chaîne élémentaire et chaîne simple
 - 2.11. Distance et diamètre
 - 2.12. Connexité, forte connexité et composantes connexes
 - 2.13. Graphes spéciaux
 - 2.13.1. Graphe complet
 - 2.13.2. Graphe \$k-\$régulier
 - 2.13.3. Hypercube Q_n
 - 2.13.4. Arbre
 - 2.13.5. Graphe biparti
 - 2.13.6. Graphe planaire
 - 2.13.7. Graphe eulérien
 - 2.13.8. Graphe hamiltonien

1. Introduction

- Théorie des graphes : combine les mathématiques et l'informatique pour étudier les graphes.
- Graphe: ensemble de points réliés par un ensemble de lignes ou de flèches.
- Réseau: graphe pondéré (graphe + informations).

2. Définitions et terminologie

2.1. Graphe

Un graphe est un **couple** G=(S,A) :

- S est un ensemble de n sommets
- A est une famille de m éléments du produit cartésien $S imes S = \{(i,j): i,j \in S\}$

2.2. Hypothèses

- G est fini (n et m sont positifs)
- G est 1-graphe : (i,j) n'apparaît qu'une fois. Donc A devient un sous ensemble de $\{(i,j):i,j\in S\}$.
- (i,i) est une **boucle**
- ullet G est **simple** s'il est 1-graphe et sans boucle

2.2.1. Conséquences

- ullet Un graphe est une **relation binaire** A sur l'ensemble S
- Si la relation A est **symétrique**, le graphe G est appelé un **graphe non orienté**, sinon G est **orienté**

2.3. Sommets, arcs et arêtes

Sommet: Elément de base (maillon, noeud, point, objet, tâche).

• Représenté par un point, cercle, carré, noeud, forme...

Arc : Lien entre deux éléments, avec un sens. Un arc reliant i à j est noté (i,j).

• Représenté par une flèche.

Arête : Lien entre deux éléments, sans sens. Une arête reliant i à j est noté $\{i,j\}$ ou [i,j] ou (i,j).

• Représenté par une ligne ou corde

2.4. Exemple

Graphe orienté

Graphe non orienté

2.5. Graphes denses et creux

- S(G) ou S est l'ensemble des sommets du graphe G.
 - $\circ \ \ n$ est le nombre de sommets (|S|)
- A(G) ou A est l'ensemble des arcs/arêtes.
 - $\circ \hspace{0.1in} m$ est le nombre d'arc/arêtes (|A|)

G est dense si $m \simeq n^2$

G est creux si $m << n^2$

2.6. Voisins et degrés

Dans un graphe orienté:

- ullet Successeurs à $i\left(V^+(i)
 ight)$: tous les j tels que $\{j\in S:(i,j)\in A\}$
 - $\circ\;$ demi-degré extérieur d'un sommet i : $d^+(i) = |V^+(i)|$
- Successeurs à i $(V^-(i))$: tous les j tels que $\{j \in S: (j,i) \in A\}$
 - \circ demi-degré intérieur d'un sommet i : $d^-(i) = |V^-(i)|$
- Voisins à i : $V(i) = V^+(i) \cup V^-(i)$
 - $\circ\;\;$ degré d'un sommet i : d(i) = |V(i)|

Dans un **graphe non-orienté** il n'y a que des **voisins de sommets** et donc des **degrés de sommets**.

2.7. Sommet isolé

Un sommet est **isolé** si d(i)=0

2.8. Chaînes et cycles

Dans un graphe non-orienté:

Une **chaîne** est une **séquence** $\pi=(s_1,...,s_p)$ de p sommets dont s_1 et s_p sont les **extrémités**.

Un **cycle** est une **chaîne** dont les extrémités coïncident : $s_1=s_p$

2.9. Chemins et circuits

Dans un graphe orienté:

Un **chemin** est une **séquence** $\pi=(s_1,...,s_p)$ de p sommets dont s_1 est l'**extrémité initiale** et s_p l'**extrémité finale**.

Un **circuit** est un **chemin** dont les extrémités coïncident : $s_1=s_p$

2.10. Chaîne élémentaire et chaîne simple

Chaîne élémentaire : chaîne ne passant pas deux fois par le même sommet

Chaîne simple : chaîne ne passant pas deux fois par la même arête

2.11. Distance et diamètre

Distance entre deux sommets : longueur du plus court chemin (ou de la plus courte chaîne) entre ces deux sommets.

 ${f Diamètre}$ d'un graphe : la plus grande ${f distance}$ possible qui puisse exister entre deux de ses sommets, noté Diam(G)

2.12. Connexité, forte connexité et composantes connexes

Un graphe **non-orienté** est **connexe** si deux sommets quelconque sont connectés par une **chaîne**.

Un graphe **orienté** est **fortement connexe** s'il existe un **chemin** de n'importe quel sommet vers n'importe quel autre sommet.

Chaque graphe **non-connexe** peut être divisé en plusieurs **composantes connexes**

2.13. Graphes spéciaux

ullet Graphe Nul : $S=\emptyset$ donc $A=\emptyset$

ullet Graphe Vide : $A=\emptyset$

2.13.1. Graphe complet

ullet Graphe **simple** G=(S,A)

2.13.2. Graphe \$k-\$régulier

- Graphe connexe
- Pour tout $i \in S, d(i) = k$
- Un graphe est dit **régulier** si $\delta(G) = \Delta(G)$ avec
 - $\circ \ \delta(G) = min\{d(i): i \in S\}$
 - $\circ \ \Delta(G) = max\{d(i): i \in S\}$

2.13.3. Hypercube Q_n

- Chaque sommet porte une $\operatorname{\acute{e}tiquette}$ de longueur n sur un $\operatorname{alphabet} B = \{0,1\}$
- Deux sommets sont **adjacents** si leurs étiquettes ne diffèrent que d'un **symbole**.

2.13.4. Arbre

ALED

2.13.5. Graphe biparti

ullet S peut être partitionné en 2 c

2.13.6. Graphe planaire

- On peut le dessiner sur un plan sans que les arêtes se croisent.
- K_4 est le plus grand graphe complet planaire.

2.13.7. Graphe eulérien

- Un cycle (circuit) eulérien est un cycle (circuit) qui passe exactement une fois par chaque arête (arc) du graphe.
- Un graphe est eulérien s'il admet un cycle (circuit) eulérien.s
- Un graphe eulérien peut être tracer "sans lever le crayon"

2.13.8. Graphe hamiltonien

- Un cycle (circuit) hamiltonien est un cycle (circuit) qui passe une fois par chaque sommet du graphe.
- Un graphe est eulérien s'il admet un cycle (circuit) hamiltonien.