Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Test 16

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$-3 < -\sqrt{5} < -2$ și $2 < \sqrt{7} < 3$, deci $A = \{-2, -1, 0, 1, 2\}$	3 p
	Mulțimea A are 5 elemente	2 p
2.	Parabolele asociate celor două funcții au același vârf, deci $\frac{2}{2} = \frac{-2b}{-2}$ și $\frac{4a-4}{4} = \frac{4b^2+4}{4}$	3 p
	b=1, deci $a=3$	2p
3.	$1 + x + 1 - x + 3 \cdot \sqrt[3]{1 + x} \cdot \sqrt[3]{1 - x} \left(\sqrt[3]{1 + x} + \sqrt[3]{1 - x} \right) = 8 \text{si, cum} \sqrt[3]{1 + x} + \sqrt[3]{1 - x} = 2 \text{obținem}$	3 p
	$2 + 6 \cdot \sqrt[3]{1+x} \cdot \sqrt[3]{1-x} = 8$	
	$\sqrt[3]{(1+x)(1-x)} = 1$, deci $x = 0$, care convine	2 p
4.	Numărul de submulțimi cu 2 elemente ale unei mulțimi cu n elemente, $n \ge 2$, este egal cu $C_n^2 = \frac{n(n-1)}{2}$	2p
	$\frac{n(n-1)}{2} = 12 \Leftrightarrow n^2 - n - 24 = 0$, care nu are nicio soluție număr natural	3 p
5.	$m_{AH} = 3$ și $m_{BC} = -\frac{1}{3} \Rightarrow m_{AH} \cdot m_{BC} = -1$, deci $AH \perp BC$	2p
	$m_{BH} = \frac{1}{2}$ și $m_{AC} = -2 \Rightarrow m_{BH} \cdot m_{AC} = -1$, deci $BH \perp AC$ și, cum $AH \cap BH = \{H\}$, obținem că H este ortocentrul triunghiului ABC	3 p
6.	$2(\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) = -1$, deci $2(2\cos^2 x - 1) = -1$	3p
	$\cos^2 x = \frac{1}{4}$ și, cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\cos x = \frac{1}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & 2 & 1 \\ 6 & 4 & 2 \\ 9 & 6 & 3 \end{vmatrix} = 36 + 36 + 36 - 36 - 36 - 36 = $	3p
	=108-108=0	2 p
b)	$A \cdot A = \begin{pmatrix} 30 & 20 & 10 \\ 60 & 40 & 20 \\ 90 & 60 & 30 \end{pmatrix} = 10A \Rightarrow \left(I_3 - \frac{1}{11}A\right) \cdot B = I_3 + A - \frac{1}{11}A - \frac{1}{11}A \cdot A = I_3 + \frac{10}{11}A - \frac{10}{11}A = I_3$	3p
	$B \cdot \left(I_3 - \frac{1}{11}A\right) = I_3 - \frac{1}{11}A + A - \frac{1}{11}A \cdot A = I_3 + \frac{10}{11}A - \frac{10}{11}A = I_3, \text{ deci matricea } I_3 - \frac{1}{11}A \text{ este inversa matricei } B$	2 p

c)	$(4 \ 2 \ 1) \qquad (0 \ 0 \ 0) \qquad (0 \ 0 \ 0)$	
	Considerăm $U = \begin{pmatrix} 4 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $V = \begin{pmatrix} 0 & 0 & 0 \\ 6 & 5 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ și $T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 9 & 6 & 4 \end{pmatrix}$, pentru care rang $U = 1$,	3 p
	$\operatorname{rang} V = 1 \text{ si rang } T = 1$	
	Cum $U + V + T = \begin{pmatrix} 4 & 2 & 1 \\ 6 & 5 & 2 \\ 9 & 6 & 4 \end{pmatrix}$ și $B = \begin{pmatrix} 4 & 2 & 1 \\ 6 & 5 & 2 \\ 9 & 6 & 4 \end{pmatrix}$, obținem că matricele $U, V, T \in \mathcal{M}_3(\mathbb{R})$ au rangul 1 și $U + V + T = B$	2p
2.a)	$(-1)*1 = (-1)\cdot 1 - 3\cdot (-1) - 3\cdot 1 + a = a - 1$	3р
	$a-1=0 \Leftrightarrow a=1$	2p
b)	Există $e \in \mathbb{R}$ astfel încât $x * e = e * x = x$, pentru orice număr real $x \Leftrightarrow xe - 3x - 3e + a = x$, pentru orice număr real x	2p
	$x(e-4)-3e+a=0$, pentru orice număr real $x \Leftrightarrow e=4$ și $a=12$	3p
c)	$x * y = xy - 3x - 3y + 9 + a - 9 = (x - 3)(y - 3) + a - 9$, pentru orice numere reale $x \neq y = xy - 3x - 3y + 9 + a - 9 = (x - 3)(y - 3) + a - 9$, pentru orice numere reale $x \neq y = xy - 3x - 3y + 9 + a - 9 = (x - 3)(y - 3) + a - 9$, pentru orice numere reale $x \neq y = xy - 3x - 3y + 9 + a - 9 = (x - 3)(y - 3) + a - 9$, pentru orice numere reale $x \neq y = xy - 3x - 3y + 9 + a - 9 = (x - 3)(y - 3) + a - 9$, pentru orice numere reale $x \neq y = xy - 3x - 3y + 9 + a - 9 = (x - 3)(y - 3) + a - 9$, pentru orice numere reale $x \neq y = xy - 3x - 3y + 9 + a - 9 = (x - 3)(y - 3) + a - 9 = (x - 3)(y - $	2p
	Pentru orice $x, y \in [3, +\infty)$, $x-3 \ge 0$ și $y-3 \ge 0$ și, cum $a \in [12, +\infty)$, obținem $x * y \ge 3$, deci mulțimea $[3, +\infty)$ este parte stabilă a lui $\mathbb R$ în raport cu legea de compoziție "*"	3 p

SUBIECTUL al III-lea (30 de puncte)

	SUBLETUL at III-lea (30 de punc		
1.a)	$f'(x) = \left(\sqrt{x+1}\right)' - \left(\sqrt{x}\right)' =$	2p	
	$= \frac{1}{2\sqrt{x+1}} - \frac{1}{2\sqrt{x}} = \frac{1}{2} \left(\frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{x}} \right), \ x \in (0, +\infty)$	3 p	
b)	$f'(1)+f'(2)+\ldots+f'(n)=\frac{1}{2}\left(\frac{1}{\sqrt{1+1}}-\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2+1}}-\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}}\right)=\frac{1}{2}\left(\frac{1}{\sqrt{n+1}}-1\right),$	2 p	
	pentru orice număr natural nenul n	ı	
	$\lim_{n \to +\infty} \left(\frac{3}{2} + f'(1) + f'(2) + \dots + f'(n) \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(\frac{3}{2} + \frac{1}{2\sqrt{n+1}} - \frac{1}{2} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}} \right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(1 + \frac{1}{2\sqrt{n+1}$	ı	
	$= \lim_{n \to +\infty} \left(\left(1 + \frac{1}{2\sqrt{n+1}} \right)^{2\sqrt{n+1}} \right)^{\frac{\sqrt{n}}{2\sqrt{n+1}}} = e^{\frac{1}{2}} = \sqrt{e}$	3 p	
c)	Pentru orice $x \in (0, +\infty)$, $\sqrt{x+1} > \sqrt{x} > 0$, deci $\frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{x}} < 0 \Rightarrow f'(x) < 0 \Rightarrow f$ este	2p	
	strict descrescătoare pe $(0,+\infty)$, deci f este injectivă	ı	
	$\lim_{x \to 0} f(x) = 1, \lim_{x \to +\infty} f(x) = 0, f \text{ monotonă și continuă pe } (0, +\infty), \text{ deci Im } f = (0, 1) \Rightarrow f$	3 p	
	este surjectivă, de unde obținem că f este bijectivă		
2.a)	$\int_{0}^{1} (x^{4} + 1) f(x) dx = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{1} =$	3 p	
	$=\frac{1}{3}-0=\frac{1}{3}$	2p	
b)	$x \in [0,1] \Rightarrow x^2 \le x$, deci $\int_0^1 f(x) dx = \int_0^1 \frac{x^2}{x^4 + 1} dx \le \int_0^1 \frac{x}{x^4 + 1} dx = \frac{1}{2} \int_0^1 \frac{(x^2)'}{(x^2)^2 + 1} dx = \frac{1}{2} \operatorname{arctg}(x^2) \Big _0^1 = \frac{1}{2} arctg$	3 p	
	$= \frac{1}{2} \arctan \left(1 - \frac{1}{2} \arctan \left(0 - \frac{1}{2} \cdot \frac{\pi}{4} - \frac{\pi}{8}\right)\right)$	2 p	

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

$$\begin{vmatrix} \mathbf{c} \\ \int_{0}^{1} F(x) dx = \int_{0}^{1} x' F(x) dx = xF(x) \Big|_{0}^{1} - \int_{0}^{1} x f(x) dx = F(1) - \int_{0}^{1} \frac{x^{3}}{x^{4} + 1} dx = \\ = -\frac{1}{4} \int_{0}^{1} \frac{(x^{4} + 1)'}{x^{4} + 1} dx = -\frac{1}{4} \ln(x^{4} + 1) \Big|_{0}^{1} = -\frac{1}{4} \ln 2$$

$$2\mathbf{p}$$