Yapay Öğrenme ile Biyolojik Dizilerin Anlamlandırılması

Volkan Atalay ODTÜ

Bilgisayar Mühendisliği Bölümü

ve

Kanser Sistem Biyolojisi Laboratuvarı

Giriş-Temel kavramlar

- <u>DNA</u> (kalıtsal malzeme): Canlı organizmalarda biyolojik bilgiyi depolayan molekül
- <u>Gen</u>: Organizmada spesifik bir işlevi gerçekleştirmek için gerekli bilgiyi içeren DNA bölgesi
- Genom: Bir organizmanın tüm genlerini içeren paket
- <u>Protein</u>: Gen ifadesi denilen işlem ile gendeki bilgiyi kullanarak üretilen (amino asitlerden oluşan) molekül
- Proteinler bir organizmanın yaşamındaki tüm görevleri gerçekleştirirler
- Genler ifadeleninceye kadar işe yaramazdır
- <u>Gen/protein dizisi:</u> Yapı taşlarının (genler için nükleotidler ve proteinler için amino asitler) ardışık sıralamasından oluşmuş diziler

Gen (nükleik asit) dizisi: "ATCGGTCAGAGTAAC"

Protein (amino asit) dizisi: "MDFFVRLARE TGDRKREFLE LGRKAGRFPA"

Biyolojik Organizasyon

değişim ve etkileşim

David Goodsell, 2000

Bir escherichia coli hücresinin küçük bir kısmı-çok kalabalık

:::::::

Genlerimizin alfabesinde dört harf mevcut: A, C, G and T.

Bu harfler nasıl yaşayacağımızı, nasıl büyüyeceğimizi, nasıl öleceğimizi belirler.

Biyolojik süreçleri anlamak için atomik düzeyde çalışmamız gerekir

4 harfli alfabe proteinin 20 harfli alfabesine çevrilir

MQIFVKTLTGKTITLEVEPSDTIENVKAK IQDKEGIP PDQQ RLIF AGKQLEDGRTLS DYNIQKES TLHLVLRLRGG

Biyolojik veri birikiminde kilometre taşları ve İnsan Genom Projesi

Dizilenmesi yapılmış verinin birikme hızı

Growth of DNA Sequencing

Stephens Z.D., et al. (2015) Big Data: Astronomical or Genomical? PLoS Biol 13(7): e1002195

Ekibimiz

Resimde olmayanlar Ö. Sinan Saraç Ayşe Gül Yaman Alperen Dalkıran

EBIMaria Martin
Rabie Saidi

Heval Ataş

Rengül Çetin-Atalay Volkan Atalay

Ahmet Rıfaioğlu

Tunca Doğan

Biyoenformatik ve Dizi Analizi

Giriş

Biyoenformatik: Biyolojik veri analizi için yöntemler, araçlar ve servisler geliştirilmesi

- Gen ve protein dizileri
- Gen ifade verisi
- Protein-protein etkileşimleri
- Histolojik görüntüler

Büyük miktarlarda biriken veriyi analiz etmek için sofistike yöntemler gerekli

İşlemsel biyoloji: Bilimsel <u>çıkarımlar</u> yapabilmek için biyolojik verinin işlemsel analizi

Gen ve protein dizi analizi

- Biyolojik dizilerde birçok sinyal (işaret) gömülüdür
 - Örneğin: işlev, akitivite bölgesi, içinde yeraldığı metabolik süreç
- Bu örüntüler benzer işleve sahip ve geçmiş paylaşan (evrimsel ilintilik taşıyan) proteinlerde ortak olabilir
- Bu tür örüntülerin belirlenmesi yeni bulunan proteinlerin özelliklerinin bulunması açısından önemlidir
- Yapay öğrenme yöntemleri kullanmadan bu örüntüleri bulmak kolay değildir

Source: http://www.mynortherndiary.com/diary/scie nce-technology/designing-of-proteins/

Protein 1: IGPGDEGEYTCTARNQYGEAICSVYIQPEGAPMPALQPIQNLEKNIYSNG

Protein 2: YSYTSIEEEFRVDTFEYRLLREVSFREAITRRSGYEQDSQLSRNQYGEQELDRNQG

Protein 3: PARNQYGEQAPQISQKPRSSKLIEGSDAVFTARVGS

Protein 4: TLRVKNATARDGGHYTLLAENLQGRNQYGECVSAVLVEPA

Protein 5: AYEPKPVDVMAEQRNQYGELEAGKALPPAFVKAFGDREITEGRMTR

Gen ve protein dizi analizi

- Biyolojik dizilerde birçok sinyal (işaret) gömülüdür
 - Örneğin: işlev, akitivite bölgesi, içinde yeraldığı metabolik süreç
- Bu örüntüler benzer işleve sahip ve geçmiş paylaşan (evrimsel ilintilik taşıyan) proteinlerde ortak olabilir
- Bu tür örüntülerin belirlenmesi yeni bulunan proteinlerin özelliklerinin bulunması açısından önemlidir
- Yapay öğrenme yöntemleri kullanmadan bu örüntüleri bulmak kolay değildir

Source: http://www.mynortherndiary.com/diary/scie nce-technology/designing-of-proteins/

Protein 1: IGPGDEGEYTCTARNOYGEAICSVYIQPEGAPMPALQPIQNLEKNIYSNG

Protein 2: YSYTSIEEEFRVDTFEYRLLREVSFREAITRRSGYEQDSQLSRNQYGEQELDRNQG

Protein 3: PARNQYGEQAPQISQKPRSSKLIEGSDAVFTARVGS

Protein 4: TLRVKNATARDGGHYTLLAENLQGRNQYGECVSAVLVEPA

Protein 5: AYEPKPVDVMAEQRNQYGELEAGKALPPAFVKAFGDREITEGRMTR

Gen ve protein dizi analizi ve anlamlandırması

- Amaç: Henüz anlaşılmamış proteinlerin özelliklerinin benzerlerine bakarak belirlenmesi
- <u>Veri</u>: nükleik/amino asit dizileri, fizikokimyasal özellikler, işlevsel anlamlandırmalar
- <u>Yöntemler</u>: yapay öğrenme, sınıflandırma, kümeleme, öznitelik seçimi, boyut indirgeme
- <u>Dizi hizalama</u>: iki veya daha fazla dizinin paylaştığı bölgelerin bulunması-en temel dizi analizi yöntemi
- Popüler hizalama araçları: BLAST (ikili hizalama), Clustal series (çoklu dizi hizalama)

Kaynak:

http://statweb.stanford.edu/~nzhang/345_w eb/

Kaynak:

https://en.wikipedia.org/wiki/Sequence_anal ysis#/media/File:WPP_domain_alignment.PN G

(A) Sınıflandırma için izlenmesi gereken işlemler.

Dick de Ridder et al. Brief Bioinform 2013;14:633-647

İlgi duyanlar için yararlı yayınlar:

- Baldi, P., & Brunak, S. (2001). *Bioinformatics: the machine learning approach*. MIT press.
- Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., ... & Robles, V. (2006). Machine learning in bioinformatics. *Briefings in bioinformatics*, 7(1), 86-112.
- de Ridder, D., de Ridder, J., & Reinders, M. J. (2013). Pattern recognition in bioinformatics. *Briefings in bioinformatics*, 14(5), 633-647.
- Friedberg, I. (2006). Automated protein function prediction—the genomic challenge. *Briefings in bioinformatics*, 7(3), 225-242.

Diziden Öngörü

Anlamlandırma

- Biyolojik dizilerin anlamlandırılması (sequence annotation)
 DNA, RNA veya protein dizilerinin özgül özelliklerinin yapı veya işlev hakkında betimleyici bilgi ile işaretlenmesi işlemi
- Proteinlerin işlevlerinin bilinmesi
 - kanser gibi ölümcül süreçlerin önlenmesi ya da durdurulmasından,
 - her türlü hastalık için ilaç tasarımı

konularına kadar çok geniş bir yelpazede vazgeçilmez öneme sahiptir.

Anlamlandırma

Protein dizi an lamlandırması (protein sequence annotation)

Protein dizisinden işlev anlamlandırması (function annotation)

Protein dizisinden işlev öngörülmesi (function prediction)

Sunum İçeriği

- Çok sayıda proteinin işlevilerinin in silico (bilgisayar kullanarak) öngörmek için
 - geliştirdiğimiz yapay öğrenme ve derin öğrenme yöntemleri,
 - eğitim ve sınama **veri kümelerinin** oluşturulması,
 - **başarımlarının** değerlendirilmesi ve standart veri kümeleri üzerinde **karşılaştırılmalarının** yapılması,
 - servis olarak web üzerinden sunulması veya indirilebilir kodlar ve veri.

Proteinler

- Proteinler büyük moleküllerdir.
- Proteinler amino asitlerden oluşur.
- Proteinler birçok işlevi yerine getirir; örneğin:
 - biyikimyasal reaksiyonların katalize edilmesi
 - DNA'nın kopyalanması
 - hürelerarası taşıma
 - vücudun virüs ve bakterilerden korunması
- Binlerce işlev var-hangileri?

2PYQ proteinin yapısı http://godziklab.org/SSBC/modeling.html

Protein işlevi ve yapısı

- Proteinin işlevini belirleyen yapısıdır
- Yapısı belirlenmiş protein sayısı: 141.616 (PDB 2.Temmuz.2018)
- Dizisi bilinen protein sayısı: 116.030.110 (TrEMBL 2.Temmuz.2018)
- Diziden işlevi öngör

Problem

Problem tanımı

- Sadece az sayıda proteinin moleküler özellikleri deneyler sonucunda belirlenebilmiş (pahalı, emek yoğun ve zaman alan bir iş)
- Gün be gün daha fazla genom dizileniyor, sunucularda veri birikiyor
- Bu bilgilerin kullanılabilmesi için yeni dizilerin özellikleri belirlenmesi gerekiyor (örneğin, hastalıklara tedavi bulmak veya yeni biyoteknolojik ürün geliştirmek için)
- "protein işlev öngörüsü" problemi

Veri:

- Proteinlerin amino asit dizileri
- Bazı proteinlerin işlevsel anlamlandırmaları

Yöntem yaklaşımı:

- Yapay öğrenme-gözetimli yaklaşım (sınıflandırma)
- Eğitim için kullanılabilecek kıt sayıda güvenilir etiketlı veri
- Özellikleri bilinmeyen dizileri sorgula

Diziden İşlev Öngörmek-Zorluklar

- Doğrudan öngörülemiyor
- Farklı uzunluklar
- Vektör gösterimi bulmak-sabit uzunluk
- Çok fazla işlev var

Eğitme sistemi-genel bakış

Başlıklar-tekrar

- 1. Sınıflandırıcı oluşturmak
- 2. Eğitim, doğrulama ve sınama veri kümeleri oluşturmak
- 3. Başarım, karşılaştırma
- 4. Servis sunumu

Protein işlevinin sistematik tanımı

 Soyut bir kavram olmasından dolayı protein işlevinin işlemsel bir sisteme dahil edilmesi kolay değil

- Bu soruna çözüm için ve proteinlerin niteliklerini tanımlamak amacıyla kontrollü kelime hazneleri (ontolojiler) önerilmiş
- Gen Ontolojisi (GO) en popüler olanı: işlevlerin genelden özele doğru gösterildiği yönlendirilmiş asiklik çizge (DAG)
- Enzim Komisyonu (EC) enzimlerin katalize ettikleri reaksiyolara göre işlevsel organizasyonel sistem

Kaynak: http://waclawikgen677s10.weebly.com/gene-ontology.html

Kaynak: http://www.enzyme.chem.msu.ru/hcs/distributions/P-EC-directly-linked-proteins.html

Proteinin İşlevleri

GEN ONTOLOJÍSÍ (GO) http://www.geneontology.org/

- Kontrollü kelime haznesi (controlled vocabulary)
- Alan bilgisi
- İlişkilerle birbirine bağlanmış GO terimleri
- Üç kategori
 - Moleküler işlev (molecular function): bir genin işlevleri
 - Biyilojik süreç (biological process): birden fazla gen ürününün aktivitelerinden oluşan daha büyük süreçler ve yolaklar
 - Hücresel bileşen (cellular component): gen ürünlerinin aktif oldukları yer

EC Ağacı

Başlıklar-tekrar

- 1. Sınıflandırıcı oluşturmak
- 2. Eğitim, doğrulama ve sınama veri kümeleri oluşturmak
- 3. Başarım, karşılaştırma
- 4. Servis sunumu

Sınıflandırıcı

- Binlerce GO terimi: tek bir sınıflandırıcı ile hepsini öngörmek zor
 - Herbir terim için ikili sınıflandırıcı
 - 1 işlev var
 - 0 işlev yok
 - Birbirinden bağmsız sınıflandırıcılar
 - Çoklu sınıflandırıcı (multi-task)-birden fazla terim
 - Daha sonra

Eğitim ve sınama veri kümeleri

- Veri kümesi
 - Örnek: %80 eğitim ve geçerleme, %20 sınama
 - %80 eğitim ve geçerleme -> 4 veya 5 katmanlı çapraz geçerleme
 - Eğitim veri kümesi: öğrenilebilen parametrelerin belirlenmesi
 - Geçerleme veri kümesi: öğrenilemeyen parametrelerin seçimi
 - %20 sınama
 - Başarım ölçümü
 - Ayrıca tamamen bağımsız sınama veri kümeleri
 - Hangi model son olarak kullanılacak?

Eğitim Veri Kümeleri-ikili sınıfandırıcı

- Pozitif veri kümesi
 - İşleve sahip olarak etiketlenmiş protein dizileri
- Negatif veri kümesi
 - İşleve sahip olmayan protein dizileri
 - Veritabanlarında açıkça belirtilmiyor, raporlanmıyor
 - Kolay yolu: pozitif veri kümesi dışında kalan herşey
 - Sayı çok
 - Şimdiye kadar etiketlenmemiş olması, pozirif etiketlenmeyeceği anlamına gelmiyor
 - En uzak olasılıkları seç

Sınılandırıcı Oluşturma

Sınıflandırıcı-SPMAP

Diger Teknik Detaylar

- Vektör gösterimi
- Kodlama (encoding)

Vektör gösterimi

- Sorun: dizi uzunlukları 50-5000 arasında değişiyor
- Seçenekler
 - Amino asit kompozisyonu: herbir amino asitin sıklığı-20 boyutlu vektör
 - Sorun: dizi içindeki sıra, sıralama bilgileri kayboluyor
 - Amino asit ikilileri: 20x20=400 boyutlu vektör
 - k sayıda yanyana gelmiş amino asit altdizileri: 20k boyutlu vektör
 - Çoğunluğu 0, boş

Örnek *k*-mer

k=5

```
MSTNPKPQR
MSTNP
STNPK
TNPKP
NPKPQ
```

PKPQR

• *k*-mer = altdizi (subsequence)

k-mer'ler

- k tane amino asit içeren altdiziler: k-mer'ler (k-mers)
- Uzay: eğitim veri kümesinin k-mer'leri (tüm olası k-mer'ler yerine)
 - Bu uzayda k-mer'lerin dağılımı
- Uzayı daraltalim
 - eğitim veri kümesinin k-mer'lerini kümeleyelim (clustering)
 - Aynı kümeye düşen ve birbirine benzeyen k-mer'leri bir prototip k-mer ile gösterebiliriz

k-mer'ler ve benzerlik

- Pozitif eğitim veri kümesinde olan protein dizilerinden k-mer'ler cıkart
- Çıkartılmış olan k-mer'leri kümele
- Kümelemek için iki k-mer, x ve y arasında benzerlik tanımlayalım

$$s(x,y) = \sum_{k=1}^{5} M(x(k), y(k))$$

x(k): x k-mer'inin k. pozisyonundaki amino asit

Örneğin,
$$x = MSTNP$$
 and $y = STNPK$
 $s(x,y) = M(M,S) + M(S,T) + M(T,N) + M(N,P) + M(P,K)$

İki amino asitin benzerliği

BLOSSUM62

- İkame matrisi
- Dizilerin hizalanması için kullanıyor
- Herbir eleman: iki amino asit arasındaki benzerlik skoru

k-mer'ler ve benzerlik

$$s(x,y) = \sum_{k=1}^{5} M(x(k), y(k))$$

x(k): x k-mer'inin k. pozisyonundaki amino asit

Örneğin,
$$x = MSTNP$$
 and $y = STNPK$,
 $s(x,y) = M(M,S) + M(S,T) + M(T,N) + M(N,P) + M(P,K)$
 $= (-1) + 1 + 0 + (-2) + -1$
 $= -3$

BLOSSUM62 kullanınca

Kümeler ve benzerlik

c kümesi ve s altdizisi arasındaki benzerlik hesaplandıktan sonra,

- Eğer s(c,s) ≥ 8, s altdizisi c kümesine atanır
- Eğer s(c,s) < 8, yeni bir küme oluşturulur

PSSM

- Herbir küme için
 - Herbir pozisyondaki amini asitlerin sıklığını bul (PSSM)
 - Ve dolayısıyla bu pozisyonda bulunma olasılıklarıni çıkart (probability matrix)
- Herbir küme için pozisyona özel skor matrisi (position specific scoring matrix-PSSM) oluşturulur
 - 5 kolon (k-mer sayısı) ve 20 sıra (amino asit sayısı)

	1	2	3	4	5
Α	0	0	0	0	0
R	0	0	0	0	0
N	0	0	0	1	0
D	0	0	0	0	0
c	0	0	0	0	0
Q	0	0	0	0	0
E	0	0	0	0	0
G	0	0	0	0	0
Н	0	0	0	0	0
1	0	0	0	0	0
L	0	0	0	0	0
К	0	0	0	0	0
М	1	0	0	0	0
F	0	0	0	0	0
p	0	0	0	0	1
S	0	1	0	0	0
Т	0	0	1	0	0
W	0	0	0	0	0
Υ	0	0	0	0	0
V	0	0	0	0	0
	М	S	Т	N	Р

11	1	20	2	0	А	-2.84	-5.23	-2.25	-4.54	-9.85
2	2	1	0	108	R	-4.54	-4.54	-5.23	-9.85	-0.56
0	0	0	0	0	N	-9.85	-9.85	-9.85	-9.85	-9.85
0	0	0	0	0	D	-9.85	-9.85	-9.85	-9.85	-9.85
0	0	0	0	0	c	-9.85	-9.25	-9.25	-9.85	-9.85
0	0	0	0	1	۵	-9.85	-9.85	-9.85	-9.85	-5.23
1	3	0	2	0	E	-5.23	-4.14	-9.85	-4.54	-9.85
0	94	0	0	2	6	-9.85	-0.70	-9.85	-9.85	-4.54
0	0	0	0	1	н	-9.85	-9.85	-9.85	-9.25	-5.23
4	0	76	62	2	33	-3.25	-9 25	-0.91	-1.12	-4.54
5	0	13	8	2 Si = 100	L	-3.63	-9.85	-2.68	-3.16	-4.54
2	4	0	0	6	ĸ	-4.54	-3.85	-9.85	-9.85	-3.45
100	1	1	1	0	М	-0.64	-5.23	-5.23	-5.23	-9.85
1	0		0	0	F	-5.23	-9.25	-9.85	-9.85	-9.85
2	84			1	P	-4.54	-0.81	-9.85	-5.23	-5.23
				0	5	-2.47	-5.23	-9.85	-4.54	-9.85
	0			59	T	-1.84	-9.85	-9.85	-0.71	-1.17
0	0	0	0	0	w	-9.85	-9.85	-9.85	-9.85	-9.25
1025	0	53	459	1/3/i	γ	-3.63	-9.85	-9.85	-9.85	-9.85
11	0	79	19	8	٧	-2.84	-9.85	-0.87	-2.30	-3.15
	2 0 0 0 0 1 0 0 4 5 2 100 1 2 16 30 0 5	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 0 0 0 0	2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 94 0 0 0 0 4 0 76 5 0 13 2 4 0 100 1 1 1 0 0 2 84 0 16 1 0 30 0 0 0 0 5 0 0	2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 </td <td>2 2 1 0 108 0 1 1 3 0 2 0 0 0 0 1 4 0 0 0 2 0 0 0 1 4 0 76 62 2 5 0 13 8 2 Si = 190 2 4 0 0 6 100 1 1 1 1 0 1 0 0 0 0 0 2 84 0 1 1 16 1 0 2 0 30 0 0 93 59 0 0 0 0 0 0</td> <td>2 2 1 0 108 8 0 1 0 1 3 0 2 0 6 0 0 0 0 0 0 1 4 0 0 76 62 2 5 0 13 8 2 Si = 190 4 0 0 0 6 100 1 1 1 1 0</td> <td>2 2 1 0 108 8 454 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>2 2 1 0 108 8 454 454 0 0 0 0 0 0 0 9.85 9.85 0 0 0 0 0 0 0 9.85 9.85 0 0 0 0 0 0 0 9.85 9.85 1 3 0 2 0 6 9.85 9.85 1 3 0 2 0 6 9.85 9.85 1 3 0 2 0 6 9.85 9.85 1 3 0 2 0 6 9.85 9.85 1 3 0 0 2 0 6 9.85 9.85 4 0 76 62 2 1 3.25 9.85 2 4 0 0 6 2 2 1 3.63 9.85 2 4 0 0 0 0 0 0 0<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>2 2 1 0 108 8 454 454 523 -985 0 0 0 0 0 0 0 0 985 -985</td></td>	2 2 1 0 108 0 1 1 3 0 2 0 0 0 0 1 4 0 0 0 2 0 0 0 1 4 0 76 62 2 5 0 13 8 2 Si = 190 2 4 0 0 6 100 1 1 1 1 0 1 0 0 0 0 0 2 84 0 1 1 16 1 0 2 0 30 0 0 93 59 0 0 0 0 0 0	2 2 1 0 108 8 0 1 0 1 3 0 2 0 6 0 0 0 0 0 0 1 4 0 0 76 62 2 5 0 13 8 2 Si = 190 4 0 0 0 6 100 1 1 1 1 0	2 2 1 0 108 8 454 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 1 0 108 8 454 454 0 0 0 0 0 0 0 9.85 9.85 0 0 0 0 0 0 0 9.85 9.85 0 0 0 0 0 0 0 9.85 9.85 1 3 0 2 0 6 9.85 9.85 1 3 0 2 0 6 9.85 9.85 1 3 0 2 0 6 9.85 9.85 1 3 0 2 0 6 9.85 9.85 1 3 0 0 2 0 6 9.85 9.85 4 0 76 62 2 1 3.25 9.85 2 4 0 0 6 2 2 1 3.63 9.85 2 4 0 0 0 0 0 0 0 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>2 2 1 0 108 8 454 454 523 -985 0 0 0 0 0 0 0 0 985 -985</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 1 0 108 8 454 454 523 -985 0 0 0 0 0 0 0 0 985 -985

PSSM to Profile

Olasılıksal profil

PSSM ile amino asit sayıları elde edildikten sonra, herbir PSSM olasılıksal profile dönüştürülür.

- $P_k(i,j)$ i. pozisyonda j amino asitinin olma olasılığı
- $Aa_{count}(i,j)$ i. pozisyonda j amino asitinin sayısı
- S_i normalize etmek amaçlı

$$PP_k(i,j) = log \frac{Aa_{count}(i,j) + 0.01}{S_i}$$

- Bir altdizinin herbir profil (küme) tarafndan üretilmiş olma olasılığı
- Profil için en yüksek olasılık -> öznitelik vektörünün profile karşılık gelen elemanı
- s altdizisi için

$$P(s|PP_k) = \sum_{i=1}^{5} PP_k(i, s(i))$$

Öznitelik vektörünün j. elemanı

$$V(j) = max_{s_i \in E} P(s_i | PP_k)$$

e proteini için PP_k 'da bulunan en yüksek olasılık değeri (altdizi-k-mer)

- Vektörün boyutu = küme (cluster) sayısı
- k-mer'leri bul
 - Herbir *k*-mer için
 - Küme olasılık matrisi ile karşılaştırarak k-mer'in bu kümede bulunma olasılığını bul
 - Tüm kümeler için en yüksek olasılık değeri vektörün o pozisyona karşılık gelen değeri

For ex	kample, firs	t profile v	alues for e	each positi	on:	Secor	nd profile va	alues for e	ach positi	on:	
Α	-2.84	-5.23	-2.25	-4.54	-9.85	Α	-9.86	-3.17	-4.15	-3.86	-4.56
R	-4.54	-4.54	-5.23	-9.85	-0.56	R	-5.24	-4.15	-5.24	-1.62	-5.24
N	-9.85	-9.85	-9.85	-9.85	-9.85	N	-9.86	-9.86	-9.86	-4.56	-9.86
D	-9.85	-9.85	-9.85	-9.85	-9.85	D	-4.15	-9.86	-9.86	-9.86	-9.86
C	-9.85	-9.85	-9.85	-9.85	-9.85	C	-9.86	-9.86	-4.56	-9.86	-9.86
Q	-9.85	-9.85	-9.85	-9.85	-5.23	Q	-9.86	-9.86	-4.15	-3.86	-9.86
E	-5.23	-4.14	-9.85	-4.54	-9.85	E	-2.31	-9.86	-3.17	-2.61	-9.86
G	-9.85	-0.70	-9.85	-9.85	-4.54	G	-9.86	-3.86	-4.15	-5.24	-9.86
Н	-9.85	-9.85	-9.85	-9.85	-5.23	Н	-9.86	-9.86	-3.86	-5.24	-9.86
1	-3.85	-9.85	-0.91	-1.12	-4.54	1	-5.24	-3.06	-5.24	-9.86	-3.31
L	-3.63	-9.85	-2.68	-3.16	-4.54	L	-9.86	-1.82	-4.56	-3.86	-5.24
K	-4.54	-3.85	-9.85	-9.85	-3.45	K	-9.86	-9.86	-5.24	-2.95	-9.86
M	-0.64	-5.23	-5.23	-5.23	-9.85	M	-5.24	-5.24	-4.56	-0.55	-4.15
F	-5.23	-9.85	-9.85	-9.85	-9.85	F	-9.86	-9.86	-9.86	-9.86	-5.24
Р	-4.54	-0.81	-9.85	-5.23	-5.23	Р	-0.26	-5.24	-0.53	-5.24	-9.86
5	-2.47	-5.23	-9.85	-4.54	-9.85	S	-9.86	-9.86	-4.56	-4.56	-5.24
T	-1.84	-9.85	-9.85	-0.71	-1.17	T	-2.31	-9.86	-2.21	-9.86	-4.15
W	-9.85	-9.85	-9.85	-9.85	-9.85	w	-9.86	-9.86	-9.86	-9.86	-9.86
Y	-3.63	-9.85	-9.85	-9.85	-9.85	Y	-9.86	-9.86	-9.86	-9.86	-4.56
V	-2.84	-9.85	-0.87	-2.30	-3.16	V	-5.24	-0.35	-1.96	-5.24	-0.11
Now we	Now we calculate vector for MSTNP. It is -0.64 + -5.23 + -9.85 + -9.85 + -5.23 = -30.8					Now we calculate vector for MSTNP. It is -5.24 + -9.86 + -2.21 + -4.56 + -9.86 =-31					

 Herbir profil icin bu işlem tekrarlanır ve bir öznitelik vektörü elde edilir.

```
1
                                                     283
                                                             284
MSTNP
         -30.80 -31.73 -21.06 -11.15
                                                    -25.22
                                                             -10.11
STNPK
         -20.12 -15.21 -11.46 -16.23
                                                   -15.26
                                                             -19.65
TNPKP
         -15.41 -26.96 -19.29 -28.41
                                                    -19.45
                                                             -20.99
NPKPQ
         -24.16 -24.63 -28.43 -21.56
                                                   -11.09
                                                             -16.36
         -10.55 -19.58 -30.78 -19.89
PKPQR
                                                   -22.87
                                                            -31.21
```

Now, our vector becomes {-10.55,-15.21,-11.46,-11.15,, -11.09,-10.11}

Sınıflandırıcı

• Destek vektör makinası

Diğer sınıflandırıcılar

- BLAST-kNN
- PEPSTATS-SVM

Diğer sınıflandırıcılar: Blast-kNN

- Homolojiye (benzerlik) dayalı
- Hedef protein ile eğitim veri kümesindeki proteinlerin benzerlikleri

$$O_B = \frac{S_p - S_n}{S_p + S_n}$$

 \mathcal{S}_p pozitif eğitim veri kümesindek en yakınk komşunun skorlarının toplamı

 S_n negatif eğitim veri kümesindek en yakınk komşunun skorlarının toplamı

Diğer sınıflandırıcılar: Pepstats-SVM

```
PEPSTATS of MURI LISMH from 1 to 266
Molecular weight = 29175.76
                                     Residues = 266
Average Residue Weight = 109.683
                                     Charge
Isoelectric Point = 6.0474
A280 Molar Extinction Coefficients = 22920 (reduced)
                                                                (cystine bridges)
A280 Extinction Coefficients 1mg/ml = 0.786 (reduced)
                                                         0.794 (cystine bridges)
Improbability of expression in inclusion bodies = 0.518
Residue
            Number
                        Moles
                                     DayhoffStat
                                     0.918
A = Ala
                        7.895
C = Cvs
            4
                        1.504
                                     0.519
                                     1.025
D = Asp
                        5.639
                        7.143
                                     1.190
                                     0.835
            8
                        3.008
                        7.519
                                     0.895
G = Gly
            5
                        1.880
                                     0.940
            19
                                     1.587
I = Ile
                        7.143
                        7.519
                                     1.139
                                     1.321
L = Leu
                        9.774
                        2.632
                                     1.548
                                     0.787
N = Asn
            9
                        3.383
P = Pro
            11
                        4.135
                                     0.795
                                     0.482
                        1.880
                                     0.767
R = Ara
                        3.759
                                     0.752
                        5.263
                                     1.171
T = Thr
                        7.143
V = Val
            24
                        9.023
                                     1.367
W = Tro
                        0.752
                                     0.578
Y = Tyr
                        3.008
Property
            Residues
                                     Number
                                                 Moles
Tiny
             (A+C+G+S+T)
                                             29.323
Small
             (A+B+C+D+G+N+P+S+T+V)
                                     137
                                             51.504
Aliphatic
            (A+I+L+V)
                                             33.835
Aromatic
             (F+H+W+Y)
                                             8.647
                                             56.391
Non-polar
            (A+C+F+G+I+L+M+P+V+W+Y)
                                             43.609
Polar
             (D+E+H+K+N+Q+R+S+T+Z)
                                             25.940
Charged
             (B+D+E+H+K+R+Z)
                                     35
                                             13.158
Basic
             (H+K+R)
Acidic
             (B+D+E+Z)
```

Sınıflandırıcıların birleştirilmesi

Ağırlıkların öğrenilmesi

Doğrulama veri kümesi kullanılarak

$$W(m) = \frac{R_m^4}{R_{BLAST-kNN}^4 + R_{SPMap}^4 + R_{PEPSTATS-SVM}^4}$$

Veri

Universal Protein Resource Knowledge Base (UniProtKB)

- Proteinlerin dizi ve işlevsel bilgileri
- Küratörler literatür taraması yapıp bilgileri toplar
- Araştırmacıların erişimine sunulur

Pozitif ve Negatif Eğitim Veri Kümesi Oluşturulması

1.1.1.- sınıfı için örnek eğitim kümesi

Pozitif ve Negatif veri kümesi oluturulması

(A) X GO terimi için pozitif veri kümesi oluşturulması P1 diye hipotetik bir protein ve işlev (terim) atamaları sarı ile gösterilmiş olsun

X'in çocuk düğümündeki terim ile işlev ataması yapılmış olduğu için P1 X'in pozitif veri kümesinde yeralır

(B1) P2 X'in ebeveyniyle anlamlandırılmadığı için P2 X'in negatif veri kümesine dahil edilir

(B2) P3 X'in ebeveyniyle anlamlandırılmış ama aynı anda kardeşi ile de anlamlandırılmış (aynı düzeyde farklılaşmışlar). P3 X'in negatif veri kümesine dahil edilir

Veri

- Verinin eskisi gibi az değil, ama kirli
- Sayılar büyük
 - https://www.uniprot.org/
 116,030,110 dizisi bilinen ama anlamlandırılmamış protein
 - https://pubchem.ncbi.nlm.nih.gov/#

Compounds: 96,398,651 Substances: 246,968,148

BioAssays: 1,251,890

BioActivities: 236,710,461 Protein Targets: 10,854

• Bu verileri anlamlandırmak ve fazlalıkları (reduncany) gidermek için bir çok otomatik yöntem mevcut

Doğrulama, Başarım, Karşılaştırma,

Başarım ve Karşılaştırma

- Doğrulama
- Bağımsız test kümeleri
- Diğer benzer sistemlerle karşılaştırma
- Yarışmalar

- F1-skoru
- kesinlik (precision) ve duyarlılık (recall)

UniGOPred

UniGOPred

ECPred-Doğrulama sonuçları

Eğitimde kullanılmamış %20 veri

EC Level	F1-score	Recall	Precision
Level 0	0.96	0.96	0.96
Level 1	0.96	0.96	0.96
Level 2	0.98	0.97	0.99
Level 3	0.99	0.98	0.99
Level 4	0.99	0.99	0.99

Bağımsız test kümeleri

- Veritabanının iki sürümü arasında anlamlandırılan proteinler
 - Temporal Hold-out Dataset Test
- Başka sistemlerde kullanılmış olan veri kümeleri
 - Eğitim kümesinde olan proteinler kullaılmadı

Diğer benzer sistemlerle karşılaştırma

- Mutlaka yapılmalı
 - Saygın dergiler istiyor
- Verilen kodları veya web tabanlı servisleri kullanarak
- Veya kullandıkları test veri kümelerini kullanarak

Bağımsız test-zaman içinde değişen veriler

0. düzey-enzim and enzim değil

Method	LT-2COLE	Recall	Precision
ProtFun	0.79	0.87	0.72
EzyPred	0.15	0.13	0.16
EFICAz	0.42	0.30	0.69
DEEPre	0.53	0.43	0.68
ECPred	0.83	0.97	0.73

1. düzey-ana sınıf

Method	F1-score	Recall	Precision
ProtFun	0.12	0.10	0.15
EzyPred	0.15	0.13	0.16
EFICAz	0.42	0.30	0.69
DEEPre	0.50	0.40	0.67
ECPred	0.48	0.43	0.54

2. düzey-altsınıf

Method	F1-score	Recall	Precision
EzyPred	0.11	0.10	0.13
EFICAz	0.11	0.07	0.33
DEEPre	0.11	0.25	0.07
ECPred	0.26	0.20	0.35

3. düzey-alt altsınıf

Method	F1-score	Recall	Precision
EFICAz	0.00	0.00	0.00
DEEPre	0.05	0.03	0.14
ECPred	0.22	0.17	0.31

PFAM bölge (domain) içermeyen

	.,	,		
	Methods	F1-score	Recall	Precision
0. düzey-enzim and enzim değil	EzyPred	0.54	0.54	0.54
,	EFICAz	0.37	0.23	1.00
	DEEPre	0.60	0.4	0.85
	ECPred	0.85	0.82	0.89
	Methods	F1-score	Recall	Precision
1. düzey-ana sınıf	EzyPred	0.42	0.39	0.46
1. adzey and simi	EFICAz	0.33	0.20	1.00
	DEEPre	0.52	0.38	0.82
	ECPred	0.73	0.63	0.86
2 düzev eltereif	Methods	F1-score	Recall	Precision
2. düzey-altsınıf	EzyPred	0.30	0.26	0.36
	EFICAz	0.33	0.20	1.00
	DEEPre	0.40	0.27	0.77
	ECPred	0.60	0.47	0.82
3. düzey-alt altsınıf	Methods F-score Recall	Precision		
3. duzey-ait aitsiiii	EFICAz	0.33	0.20	1.00
	DEEPre	0.33	0.22	0.73
	ECPred	0.58	0.45	0.81
4 düzov substrat sıpıfı	Methods	F-score	Recall	Precision
4. düzey-substrat sınıfı	EFICAz	0.33	0.20	1.00
	DEEPre	0.33	0.22	0.73
	ECPred	0.39	0.26	0.74

CAFA http://biofunctionprediction.org/cafa/

Function Special Interest Group

About Meetings CAFA Publications

The CAFA Challenge:

The problem: There are many proteins in the databases for which the sequence is known, but the function is not. The gap between what we know and what we do not know is growing. A major challenge in the field of bioinformatics is to predict the function of a protein from its sequence or structure. At the same time, how can we judge how well these function prediction algorithms are performing?

The solution: The Critical Assessment of protein Function Annotation algorithms (CAFA) is an experiment designed to provide a large-scale assessment of computational methods dedicated to predicting protein function, using a time challenge. Bradily, CAFA organizers provide a large number of protein sequences. The predictors then predict the function of these proteins by associating them with Gene Ontology terms or Human Phenophye Chology terms (Blue* prediction* section of themsien). Following the prediction deadline, we wait for several months. During that time, some proteins whose function were unknown experimentally have received experimental verification (Green *annotation growth* section of timeline). Those proteins constitute the benchmark, against which the methods are tested (Orange* assessment* portion of timeline). You can read about CAFA 1 here and in the paper published in *Nature Methods*, and you can read about.

Job Opportunity

There is an opportunity for a postdoc / research scientist to run CAFA3. For position details see: https://careers.scb.org

Submission Deadline

000 : 00 : 00 : 00 Day Hrs Min Sec

CAFA PI open for registration!

Click to Participate

Target release date: December 1, 2017

Predictions deadline: April 20, 2018

Initial Evaluation: July 2018

CAFA sonuçları ile karşılaştırma

Çoklu sınıflandırıcı

- Derin öğrenme ile
- Ama tüm terimler degil-en fazla 5-7 terim icin bir sınıflandırıcı

Servisler

UniGOPred

- UniGOPred kapsamlı bir protein anlamlandırma sistemi-iki bileşen:
 - dizi tabanlı GO'ya dayalı ileri öngörü aracı
 - UniProtKB proteinleri için öngörülmüş GO terimlerinin veritabanı
- Hem sınıflandırma hem de transfer yaklaşımı ve üç yöntemin birleşimi
- Yeni bir veri hazırlama yaklaşımı
- http://cansyl.metu.edu.tr/unigopred.html

http://cansyl.metu.edu.tr/unigopred.html

GENE ONTOLOGY PREDICTION BY COMBINING CLASSIFIERS

Home About Help Contact

UniGOPred is an automated protein function prediction tool based on Gene Ontology (GO) terms and a database of GO term predictions for UniProtKB. You can get MP predictions for all UniProtKB sequences. BP and CC GO term predictions are also available for all sequences of Model Organisms. You can submit sequence(s) (up to 10) or UniProt accessions (up to 100) to get your predictions! Here is the valid input formats that UniGOPred accepts. Prediction scores for the trained GO terms will be sent to your e-mail address. Further information about UniGOPred and trained GO terms is available in About page.

Query Type: Pre-computed Database Predictions •	Sequence 🔘
Molecular Function Biological Process	Cellular Component
lease enter your e-mail address ;	
Please enter UniProt Accession(s):	
Accession(s)	
	Get

http://cansyl.metu.edu.tr/ECPred.html

ECPred

Prediction of enzymatic properties of protein sequences based on the EC Nomenclature

The automated prediction of the enzymetic functions of uncharacterized proteins is a crucial topic in bioinformatics. Although several methods and book have been proposed to classify enzymen, most of these studies were finited to specific functional states and there of the Enzyme Commission (EQ normalisation (EQ norm

To download ECPred stand-alone tool: <u>Click Here</u> ECPred github link: <u>github.com/cansyl/ECPred</u>

Here is the valid input formats that ECPred accepts. Prediction for the given sequence will be sent to your e-mail address.

Please enter your e-mail address :
Please enter your sequence here!

Get Predictions

Benzer çalışmalarımız

- İşlev Öngörüsü
 - ECPred http://cansyl.metu.edu.tr/ECPred.html
 - DEEPred
- Sanal Tarama
 - ConvNet

Yeni Yayınlar

- A.S. Rıfaioğlu, H. Atas, M.J. Martin, R. Cetin Atalay, V. Atalay, T. Dogan, "Recent Applications of Deep Learning and Machine Intelligence on In-silico Drug Discovery: Methods, Tools and Databases", <u>Briefings in Bioinformatics</u> to appear, 2018.
- A.S. Rıfaioğlu, V. Atalay, M.J. Martin, R. Cetin Atalay, T. Dogan, "Drug-Target Interaction Prediction with Deep Convolutional Neural Networks Using Compound Images", Oral presentation, Machine Learning in Computational and Systems Biology (MLCSB) COSI at ISMB 2018.
- T. Dogan, A.S. Rıfaioğlu, R. Saidi, M.J. Martin, V. Atalay, R. Cetin Atalay, "Automated Negative Gene Ontology Based Functional Predictions for Proteins with UniGOPred", Oral presentation, <u>Function-COSI</u> at ISMB 2018.
- H.F. Danaci, R. Cetin Atalay, V. Atalay, "Eclerize: A customized force-directed graph drawing algorithm for biological graphs with EC attributes", Int. Journal of Bioinformatics and Computational Biology, to appear, 2018.
- A.S. Rifaioglu, T. Doğan, Ö.S. Saraç, T. Ersahin, R. Saidi, M.V. Atalay, M.J. Martin, R. Cetin Atalay, "Large-scale automated function prediction of protein sequences and an experimental case study validation on PTEN transcript variants", Proteins: Structure, Function, and Bioinformatics, 2018;86:135–151. https://doi.org/10.1002/prot.25416
- A.S. Rıfaioğlu, T. Dogan, M.J. Martin, R. Cetin Atalay, V. Atalay, "Multi-task Deep Neural Networks in Automated Protein Function Prediction", preprint, arXiv:1705.04802.
- A.S. Rıfaioğlu, M.J. Martin, R. Cetin Atalay, V. Atalay, T. Dogan, "Investigation of Multi-task Deep Neural Networks in Automated Protein Function Prediction", Oral Presentation at Function COSI ISMB/ECCB 2017: 25th Annual International Conference on Intelligent Systems for Molecular Biology, Prague, Czech Republic, July 2017.
- A. Dalkıran, A.S. Rıfaioğlu, T. Dogan, V. Atalay, M.J. Martin, R. Cetin Atalay, "Prediction of Enzymatic Properties of Protein Sequences Based on the EC Nomenclature", Poster Presentation at ISMB/ECCB 2017: 25th Annual International Conference on Intelligent Systems for Molecular Biology, Prague, Czech Republic, July 2017.
- A.S. Rıfaioğlu, M.J. Martin, R. Cetin Atalay, V. Atalay, T. Dogan "Investigation of Multi-task Deep Neural Networks in Automated Protein Function Prediction", Oral Presentation at HIBIT 2017: The International Symposium on Health Informatics and Bioinformatics, METU Northern Cyprus Campus, June 28 – 30, 2017.
- H.F. Danacı, R. Cetin Atalay, V. Atalay, "EClerize: A Customized Force-Directed Layout Algorithm for Biological Networks with EC Attributes", Oral Presentation at *GLBIO 2017: Great Lakes Bioinformatics Conference*, Chicago, USA, May 15-17, 2017.
- A.S. Rıfaioğlu, T. Dogan, Ö.S. Sarac, R. Saidi, V. Atalay, M.J. Martin, R. Cetin Atalay, "UniGOPred: A Large Scale Automated GO Term Annotation System for UniProtKB", Poster presentation at GLBIO 2017: Great Lakes Bioinformatics Conference. Chicago. USA. May 15-17. 2017 (Best Poster Award).

- <u>Destek</u>: Newton-Kâtip Çelebi Fonu İkili İşbirliği Programı 2016 çağrısı British Council, UK and TÜBİTAK, Türkiye
- **Takvim**: 1 Kasım 2017 31 Ekim 2019
- Proje Başlığı:
 - "Derin Öğrenme Teknikleri Ve Ağ Analizi Yöntemleriyle Hazırlanmış Kapsamlı Biyomedikal İlişkiler Kaynağı"
 - "Comprehensive Resource of Biomedical Relations with Deep Learning and Network Representations"

Mehmet Volkan Atalay (PI)

Rengul Atalay
Tunca Doğan
Ahmet Rifaioğlu
Heval Ataş
Alperen Dalkıran

Nurcan Tunçbağ (akademik danışman)
Tuğba Süzek (akademik danışman)

Destekler

- TÜBİTAK EEEAG 116E930 Newton-Katip Çelebi British Council-TÜBİTAK İkili İşbirliği Projesi
- Kalkınma Bakanlığı

Home

Registration

Submission

Key Dates

Main Program

Travel & Lodging

Venue

Committees

Contact Us

Welcome to

The 11th HIBIT Conference

International Symposium on Health Informatics and Bioinformatics

October 25-27, 2018 - Antalya

Ekibimiz

Resimde olmayanlar Ö. Sinan Saraç Ayşe Gül Yaman Alperen Dalkıran

EBIMaria Martin
Rabie Saidi

Heval Ataş

Rengül Çetin-Atalay Volkan Atalay

Ahmet Rıfaioğlu

Tunca Doğan

