

UNIVERSITÄT Bern

2405 Betriebssysteme

1. Entwicklung und Typen

Thomas Staub, Markus Anwander Universität Bern

Inhalt

b Universität Bern

- 1. Einführung
 - 1. Definition Betriebssystem
 - 2. Ziele von Betriebssystemen
 - 3. Soft- und Hardware eines Rechners
 - 4. Rechnersystem
 - 5. Speicherhierarchie
- 2. Architektur von Rechnersystemen
 - 1. Einprozessorsysteme
 - 2. Multiprozessorsysteme
 - 3. Cluster-Systeme
 - 4. Verteilte Systeme
 - 5. Cloud Computing
- 3. Sichtweisen auf ein Betriebssystem
 - 1. Abstrakte Maschine
 - 2. Ressourcenverwaltung

- 4. Betriebssystementwicklung
- 5. Betriebssystemtypen
 - 1. Mainframe-Systeme
 - 1. Stapelverarbeitung
 - 2. Mehrprogrammbetrieb
 - 3. Spooling
 - 4. Dialogverarbeitung
 - 2. Server-Betriebssysteme
 - 3. Multiprozessor-Betriebssysteme
 - 4. PC-Betriebssysteme
 - 5. Handheld-Computer-Betriebssysteme
 - 6. Eingebettete Betriebssysteme
 - 7. Sensor-Betriebssysteme
 - 8. Echtzeit-Betriebssysteme
 - 9. Smart-Card-Betriebssysteme

1.1 Definition Betriebssystem

b UNIVERSITÄT BERN

> DIN 44300:

- Die Programme eines digitalen Rechensystems,
 - die zusammen mit den Eigenschaften dieser Rechenanlage die Basis der möglichen Betriebsarten des digitalen Rechensystems bilden und
 - die insbesondere die Abwicklung von Programmen steuern und überwachen.

Silberschatz:

- An operating system is like a government. ...
- Like a government, the operating system performs no useful function by itself.
- It simply provides an environment within which other programs can do useful work.

1.2 Ziele von Betriebssystemen

UNIVERSITÄT BERN

- > Programm als Bindeglied zwischen Computer-Benutzer und Computer-Hardware
- > Ziele
 - —Bequeme Bedienung eines Computers
 - Grafische Benutzerschnittstellen
 - Effizientes Ausnutzen der Computer-Hardware
 - Vermeiden von Überlastsituationen und Untätigkeitszeiten (idle)
 - Geringer Rechenaufwand

1.3 Soft- und Hardware eines Rechners

b Universität Bern

Anwendungsprogramme (Büro, Geschäft, Unterhaltung)	Anwendungs-Software
Systemprogramme (Compiler, Editoren, Browser, Shells)	O vata va Caftura va
Betriebssystem	System-Software
Maschinensprache	
Mikroprogramme	Hardware
Bauteile (ICs)	

u^{b}

1.4 Rechnersystem

D UNIVERSITÄT BERN

u^{b}

1.5 Speicherhierarchie

b UNIVERSITÄT BERN

$u^{^{\mathsf{b}}}$

2. Architektur von Rechnersystemen

UNIVERSITÄT RERN

- > Einprozessorsysteme
- Mehrprozessorsysteme
- > Cluster-Systeme
- Verteilte Systeme
- Cloud-Computing

2.1 Einprozessorsysteme

UNIVERSITÄT BERN

u^{b}

UNIVERSITÄT BERN

2.2 Mehrprozessorsysteme

- > Eigenschaften von Mehrprozessorsystemen
 - > 1 Prozessor
 - Enge Systemkopplung durch gemeinsamen Speicher
 - Synchronisation durch gemeinsamen Takt
- Typen
 - Symmetrisches Multiprocessing
 - Prozessoren führen identische Kopie des Betriebssystems aus.
 - Inter-Prozessor-Kommunikation
 - Probleme:
 - Ein-/Ausgabe (korrekte Zuordnung von Eingaben an Prozessoren)
 - gleichmässige Auslastung durch Benutzung gemeinsamer Datenstrukturen
 - Asymmetrisches Multiprocessing
 - ggf. heterogene Prozessor-Hardware
 - Zuweisung bestimmter Aufgaben (Tasks) auf Prozessoren
 - Master plant Tasks f
 ür Slave-Prozessoren (Scheduling).

$u^{^{\scriptscriptstyle b}}$

UNIVERSITÄT BERN

2.3 Cluster-Systeme

- Sammlung von eigenständigen Rechnern zur Durchführung von Berechnungen
- > Typische Definition:
 - Teilen von gemeinsamem Speicher und Verbindung über lokale Netze (local area networks, LANs)
- Üblicherweise hohe Verfügbarkeit durch gegenseitige Überwachung und Übernahme von Anwendungen (Cluster-Software)
 - Asymmetrisches Clustering
 - Ein Rechner befindet sich im Hot-Standby-Modus und überwacht anderen, verarbeitenden Rechner.
 - Symmetrisches Clustering
 - Zwei oder mehrere, sich gegenseitig überwachende Rechner verarbeiten Anwendungen.

u^{b}

UNIVERSITÄT BERN

2.4 Verteilte Systeme

- > Verteilung der Berechnungen auf mehrere (heterogene) Rechnersysteme
- Lose Kopplung über Kommunikationsnetze
- Vorteile
 - Lastausgleich
 - Erhöhung der Verarbeitungsleistung
 - Redundanz
- > Architekturkonzepte
 - Client/Server
 - Rechen-Server
 - Datei-Server
 - Peer-to-Peer
 - System = Client & Server
- > Betriebssystemansätze
 - Netzwerk-Betriebssysteme
 - Verteilte Betriebssysteme

2.5.1 Cloud Computing: Infrastructure as a Service (laaS)

UNIVERSITÄT BERN

2.5.2 Typen von Cloud-Computing

UNIVERSITÄT BERN

- > Public Cloud: im Internet verfügbar
- > Private Cloud: für interne Benutzer (z.B. innerhalb einer Firma)
- > Hybrid Cloud: Kombination Public/Private Cloud
- Software as a Service (SaaS)
 - Verfügbarkeit von Anwendungen
- > Platform as a Service (PaaS)
 - Verfügbarkeit von Middleware mit entsprechenden Schnittstellen zur Ausführung von Anwendungen, z.B. Datenbank-Server
- Infrastructure as a Service (laaS)
 - Bereitstellung von virtuellen Servern und Speicher

FS 2017 14

3. Sichtweisen auf ein Betriebssystem

UNIVERSITÄT BERN

- > Anwendersicht (abstrakte Maschine / top-down)
 - Einfaches Benutzen eines Computers
 - Maximieren der Systemleistung
- Systemsicht (Ressourcenverwalter / bottom-up)
 - Verwaltung von Systemressourcen (CPU, Speicher, E/A-Geräte usw.)
 - Robustes Ausführen von Anwendungsprogrammen
 - Sicherheit bzgl. unerlaubtem Zugriff und Ausfällen

3.1 Abstrakte Maschine

UNIVERSITÄT BERN

- Ein Betriebssystem stellt eine virtuelle Ablaufumgebung bereit.
- > Verdecken der Hardware vor Anwendungsprogrammen, z.B.
 - Adressraum: physikalisch vorhandener Hauptspeicher
 - Dateisystem: Zylinder, Sektoren, Datenblöcke
 - Kommunikation: Kommunikationsmedium
- > Anbieten einer schöneren, einfacheren, abstrakteren Schnittstelle
- → abstrakte Maschinen

3.2 Ressourcenverwaltung

b UNIVERSITÄT RERN

- Computersysteme bestehen aus verschiedenen Komponenten.
- > Betriebssystem verwaltet Komponenten / Ressourcen, z.B.
 - Prozessoren
 - Speicher
 - Festplatten und andere Peripheriegeräte
 - Kommunikationsadapter
- Schutz der Komponenten (Beispiel: Drucker) sowie der verschiedenen Programme untereinander
- > Teilen der Ressourcen → Zeit- und Raummultiplex

4. Betriebssystementwicklung

UNIVERSITÄT BERN

- 1. Generation: Vakuumröhren (1945-1955)
 - manuelle Programmierung durch Steckkarten
- 2. Generation: Transistoren (1955-1965)
 - automatische Stapelverarbeitung (Batch-Systeme)
- 3. Generation: integrierte Schaltungen (1965-1980)
 - Mehrprogrammbetrieb (Ausnutzen von Idle-Zeiten durch andere Programme)
 - Spooling
 - Dialogverarbeitung
- 4. Generation: VLSI-Integration (seit 1980)
 - Betriebssysteme f
 ür Personalcomputer und Workstations
 - Verteilte Systeme
 - Mehrprozessorunterstützung
- 5. Generation: Mobile Rechner (seit 1990)
 - Begrenzte Rechnerressourcen, z.B. CPU, Hauptspeicher, Sekundärspeicher
 - Energieverbrauch
 - Modifizierte Benutzerschnittstellen

5.1 Mainframe-Systeme

b UNIVERSITÄT RERN

Entwicklung

- Stapelverarbeitung (Batch-Systeme)
- Mehrprogrammbetrieb und Spooling
- > Dialogverarbeitung

5.1.1 Stapelverarbeitung (Batch-Systeme)

b UNIVERSITÄT RERN

- Schreiben der auszuführenden Programme auf ein Band
- Operator l\u00e4dt ein spezielles Programm (Vorfahr eines Betriebssystems)
 zum Lesen und sequenziellen Ausf\u00fchren der Programme
- > Ergebnisprotokollierung
- keine Interaktion zwischen Programm und Benutzer

b UNIVERSITÄT BERN

5.1.2 Mehrprogrammbetrieb

- > Multiprogramming
- > Ausnutzen von Wartezeiten auf Ende der Ein-/Ausgabe (E/A)
- > Speichern mehrerer Aufträge (Jobs) → Speicherverwaltung
- > Verteilen der CPU-Zeit → Scheduling

Speicher eines Mehrprogramm-Betriebssystems

$u^{^{\mathsf{b}}}$

5.1.3 Spooling

b UNIVERSITÄT RERN

- > Abfangen/Überlappen von Ein-/Ausgabe-Operationen
- > Während Verarbeitung eines Auftrags
 - Einlesen des nächsten Auftrags in Warteschlange auf Disk
 - Ausgabe des vorhergehenden Auftrags
- simultaneous peripheral operation on-line

FS 2017 22

5.1.4 Dialogverarbeitung

UNIVERSITÄT BERN

- > Time-Sharing-Systeme (auch Multitasking)
- > quasi-parallele Ausführung mehrerer Programme (Prozesse)
- > gleichzeitige Unterstützung mehrerer Benutzer
- kurze Zeitscheiben zur Unterstützung interaktiver Benutzer
- virtueller Speicher

Programmumschaltung (Zeitscheiben)

5.2 Server-Betriebssysteme

UNIVERSITÄT RERN

- Grössere Personalcomputer (PC), Arbeitsplatzrechner oder Mainframes
- > Bedienung mehrerer Benutzer über ein Netz
- > Bereitstellen von Soft- und Hardwareressourcen, z.B. Drucker, Dateidienst, Web-Dienst

FS 2017 24

5.3 Multiprozessor-Betriebssysteme

b UNIVERSITÄT RERN

- Varianten von Server-Betriebssystemen
- Spezielle Funktionen für
 - Kommunikation
 - Konnektivität
 - Konsistenz
- Betriebssysteme nutzen mehrere Prozessoren meist gut aus, Anwendungen eher weniger.

5.4 PC-Betriebssysteme

D UNIVERSITÄT RERN

- > Computer wird häufig von einem einzigen Benutzer zu einem Zeitpunkt genutzt.
- > Unterstützung vieler Ein-/Ausgabe-Geräte
- > Einfache Benutzeroberfläche notwendig
- > Nutzung von Technologien grösserer Betriebssysteme (Vereinfachung)

5.5 Handheld-Computer-Betriebssysteme

UNIVERSITÄT BERN

- > Persönliche Digitale Assistenten (PDA) und Mobiltelefone
- Unterstützung von multimedialen Anwendungen (Telefonie, Fotos usw.)
- > Keine Unterstützung von Festplatten erforderlich
- Spezielle Anforderungen wegen begrenzter Ressourcen (Display-Grösse, CPU, Speicher) und Leistungsaufnahme
- > Teilweise Realzeitanforderungen
- > Ereignisgesteuerte Verarbeitung
 - Ereignisse: Benutzereingaben, Zeitgeber, Nachrichtenempfang usw.
- > Beispiele: Windows Mobile/Phone, Symbian OS, iOS, Android

FS 2017 27

5.6 Eingebettete Betriebssysteme

UNIVERSITÄT BERN

- Betriebssysteme für kleine Geräte,
 z.B. Mikrocontroller in Autos, Haushalts- und Unterhaltungsgeräten
- Kein Herunterladen von unzuverlässiger Software, daher geringere Sicherheitsanforderungen
- Speichern der Software im ROM

5.7 Sensor-Betriebssysteme

b UNIVERSITÄT RERN

- Sensoren = kleine, batteriebetriebene Rechner mit drahtlosen Kommunikationseinrichtungen und kleinem RAM
- > Begrenzte Energieressourcen
- > Nicht überwachter Betrieb in möglicherweise rauer Umgebung
- > Unterschiedliche Energiesparzustände
- > Ereignisgesteuerte Verarbeitung
- > eher selten: Installieren unzuverlässiger Software (vgl. eingebettete Systeme)
- Beispiele: TinyOS, Contiki

5.8 Echtzeit-Betriebssysteme

UNIVERSITÄT RERN

- Verarbeitung innerhalb fester Zeitschranken
- > Zeitschrankengesteuerte Umschaltung zwischen Programmen durch Betriebssystem
- Zur Steuerung von Maschinen und Geräten,
 z.B. Messgeräte, Roboter, Multimedia-Systeme
- > Speichern der Daten oft in Hauptspeicher oder ROM bei sehr harten Zeitanforderungen
 - → hard real-time systems / strikte Echtzeitsysteme
- soft real-time systems / weiche Echtzeitsysteme
 - Prioritäten für Realzeitaufgaben
 - Seltenes Verfehlen der Zeitanforderungen akzeptabel

5.9 Smart-Card-Betriebssysteme

b UNIVERSITÄT RERN

- > Extreme CPU- und Speicherbegrenzungen
- > Wenige unterstützte Funktionen, manchmal Mehrprogrammbetrieb
- Oft Java-orientiert
 - Download von Java Applets und
 - Ausführung durch Java Virtual Machine (JVM) Interpreter (auf ROM)