EJEMPLO 6: Un Sistema No Lineal... Helicóptero de 2DOF

Análisis de cuerpo libre

ODEs

$$(J_p + m_h l_{cm}^2)\ddot{\theta} = K_{pp}\omega_p + K_{py}\omega_y - m_h g l_{cm}\cos\theta$$
$$-b_p\dot{\theta} - m_h l_{cm}^2\sin\theta\cos\theta\dot{\psi}^2$$
$$(J_y + m_h l_{cm}^2\cos^2\theta)\ddot{\psi} = K_{yy}\omega_y + K_{yp}\omega_p - b_y\dot{\psi}$$
$$+2m_h l_{cm}^2\sin\theta\cos\theta\dot{\psi}\dot{\theta}$$

Diseñe un controlador para que los ángulos heta y ψ sigan las referencias

$$\theta_{ref} = \cos(2t) \, \mathbf{y} \, \psi_{ref} = \sin(2t)$$

Obteniendo una representación en espacio de estados... No lineal

Echémosle un ojo a las ecuaciones diferenciales...

$$(J_p + m_h l_{cm}^2)\ddot{\theta} = K_{pp}\omega_p + K_{py}\omega_y - m_h g l_{cm}\cos\theta - b_p\dot{\theta} - m_h l_{cm}^2\sin\theta\cos\theta\dot{\psi}^2$$

$$(J_y + m_h l_{cm}^2 \cos^2 \theta) \ddot{\psi} = K_{yy} \omega_y + K_{yp} \omega_p - b_y \dot{\psi} + 2m_h l_{cm}^2 \sin \theta \cos \theta \, \dot{\psi} \dot{\theta}$$

¿Cuáles variables de estado propondrían y porqué? ¿cuáles serían las entradas del sistema?

Usando el criterio de las variables con derivadas y las variables que inyectan energía al sistema, podemos proponer

$$x_1 = \theta$$
, $x_2 = \psi$, $x_3 = \dot{\theta}$, $x_4 = \dot{\psi}$, $u_1 = \omega_p$, $u_2 = \omega_y$, $y_1 = x_1$, $y_2 = x_2$

Sustituyendo en las ecuaciones originales resulta en:

$$(J_p + m_h l_{cm}^2)\dot{x}_3 = K_{pp}u_1 + K_{py}u_2 - m_h g l_{cm}\cos x_1 - b_p x_3 - m_h l_{cm}^2\sin x_1\cos x_1 x_4^2$$

$$(J_y + m_h l_{cm}^2 \cos^2 x_1)\dot{x}_4 = K_{yy}u_2 + K_{yp}u_1 - b_y x_4 + 2m_h l_{cm}^2 \sin x_1 \cos x_1 x_4 x_3$$

Lo que nos da un modelo no lineal en espacio de estados como:

$$\dot{x}_{1} = x_{3}
\dot{x}_{2} = x_{4}
\dot{x}_{3} = \frac{-m_{h}gl_{cm}\cos x_{1} - b_{p}x_{3} - m_{h}l_{cm}^{2}\sin x_{1}\cos x_{1}x_{4}^{2}}{J_{p} + m_{h}l_{cm}^{2}} + \frac{K_{pp}u_{1} + K_{py}u_{2}}{J_{p} + m_{h}l_{cm}^{2}}
\dot{x}_{4} = \frac{-b_{y}x_{4} + 2m_{h}l_{cm}^{2}\sin x_{1}\cos x_{1}x_{4}x_{3}}{J_{y} + m_{h}l_{cm}^{2}\cos^{2}x_{1}} + \frac{K_{yy}u_{2} + K_{yp}u_{1}}{J_{y} + m_{h}l_{cm}^{2}\cos^{2}x_{1}}$$

Organizando en bloques no lineales...

Podemos organizar el sistema en forma matricial como

Primer Bloque →
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$$

Segundo Bloque → $\begin{bmatrix} \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} f_3(X) \\ f_4(X) \end{bmatrix} + G(X) \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$

donde

$$f_3(X) = \frac{-m_h g l_{cm} \cos x_1 - b_p x_3 - m_h l_{cm}^2 \sin x_1 \cos x_1 x_4^2}{J_p + m_h l_{cm}^2}, f_3(X) = \frac{-b_y x_4 + 2m_h l_{cm}^2 \sin x_1 \cos x_1 x_4 x_3}{J_y + m_h l_{cm}^2 \cos^2 x_1}$$

$$y G(X) = \begin{bmatrix} \frac{K_{pp}}{J_p + m_h l_{cm}^2} & \frac{K_{py}}{J_p + m_h l_{cm}^2} \\ \frac{K_{yp}}{J_y + m_h l_{cm}^2 \cos^2 x_1} & \frac{K_{yy}}{J_y + m_h l_{cm}^2 \cos^2 x_1} \end{bmatrix}.$$

De sistema a bloques podemos ver que **no se puede usar retro. de error** porque las entradas $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ no afectan directamente a las salidas $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Pero, si podemos usar control por bloques si plantemos que:

- Con
$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 controlaremos a $\begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$ (bloque 2).

- Con
$$\begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$$
 controlaremos a $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ (bloque 1).

Ahora sí, empezamos el diseño de control por bloques ©

Definimos la variable de error para el primer bloque como $e_1 = \begin{bmatrix} y_{1ref} \\ y_{2ref} \end{bmatrix} - \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Luego, obtenemos su dinámica y la igualamos a la dinámica deseada $\dot{e}_1 = K_1 e_1$, resultando en:

$$\dot{e}_1 = \begin{bmatrix} \dot{y}_{1ref} \\ \dot{y}_{2ref} \end{bmatrix} - \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \dot{y}_{1ref} \\ \dot{y}_{2ref} \end{bmatrix} - \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = K_1 e_1,$$

definimos $K_1 < 0$ para tener una dinámica estable y que $\dot{e}_1 \rightarrow 0$.

Después, despejamos $\begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$, los cuales se convertirán en la referencia del siguiente bloque

$$\begin{bmatrix} x_{3ref} \\ x_{4ref} \end{bmatrix} = \begin{bmatrix} \dot{x}_{1ref} \\ \dot{x}_{2ref} \end{bmatrix} - K_1 e_1.$$

Entonces, definimos el error para el segundo bloque como $e_2 = \begin{bmatrix} x_3ref \\ x_4ref \end{bmatrix} - \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$, e igualamos su dinámica con la dinámica deseada $\dot{e}_2 = K_2e_2$ con $K_2 < 0$, resultando en

$$\dot{e}_2 = \begin{bmatrix} \dot{x}_{3ref} \\ \dot{x}_{4ref} \end{bmatrix} - \begin{bmatrix} \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} \dot{x}_{3ref} \\ \dot{x}_{4ref} \end{bmatrix} - \begin{bmatrix} f_3(X) \\ f_4(X) \end{bmatrix} - G(X) \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = K_2 e_2.$$

De aquí, despejamos las señales de control como

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = G(X)^{-1} \left(\begin{bmatrix} \dot{x}_{3ref} \\ \dot{x}_{4ref} \end{bmatrix} - \begin{bmatrix} f_3(X) \\ f_4(X) \end{bmatrix} - K_2 e_2 \right)$$

Podemos ver que nos hace falta obtener $\begin{bmatrix} \dot{x}_{3ref} \\ \dot{x}_{4ref} \end{bmatrix}$, lo calculamos en seguida...

Calculamos los términos que nos faltan:

$$\begin{bmatrix} \dot{x}_{3ref} \\ \dot{x}_{4ref} \end{bmatrix} = \begin{bmatrix} \ddot{x}_{1ref} \\ \ddot{x}_{2ref} \end{bmatrix} - K_1 \dot{e}_1 = \begin{bmatrix} \ddot{x}_{1ref} \\ \ddot{x}_{2ref} \end{bmatrix} - K_1 \begin{pmatrix} \begin{bmatrix} \dot{x}_{1ref} \\ \dot{x}_{2ref} \end{bmatrix} - \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} \end{pmatrix}$$

Finalmente, obtenemos las derivadas de las referencias (recuerden que necesitamos tantas derivadas como bloques utilizados)

$$\begin{bmatrix} x_{1ref} \\ x_{2ref} \end{bmatrix} = \begin{bmatrix} \cos(2t) \\ \sin(2t) \end{bmatrix}, \quad \begin{bmatrix} \dot{x}_{1ref} \\ \dot{x}_{2ref} \end{bmatrix} = \begin{bmatrix} -2\sin(2t) \\ 2\cos(2t) \end{bmatrix}, \quad \begin{bmatrix} \ddot{x}_{1ref} \\ \ddot{x}_{2ref} \end{bmatrix} = \begin{bmatrix} -4\cos(2t) \\ -4\sin(2t) \end{bmatrix}.$$

Ahora vamos a Matlab...


```
function Heli2DOF_BLOQUES_plot(tspan, x0, K)
    global K1 K2
    K1=K(1); K2=K(2);
    %RESUELVE LAS ECUACIONES DIFERENCIALES ORDINARIAS (ODE'S)
   [t, X] = ode45(@Heli2DOF_BLOQUES_sys, tspan, x0);
 %Grafico los estados
    figure; subplot(4,1,1); plot(t, X(:,1)); title('ESTADO 1'); grid;
   subplot(4,1,2); plot(t, X(:,2)); title('ESTADO 2'); grid;
    subplot(4,1,3); plot(t, X(:,3)); title('ESTADO 3'); grid;
    subplot(4,1,4); plot(t, X(:,4)); title('ESTADO 4'); grid;
 %Grafico salida y referencia
    figure; subplot(2,1,1); plot(t,X(:,1),t,pi*sin(t)/4,'r'); title('SALIDA 1 Y REF'); grid;
           subplot(2,1,2); plot(t,X(:,2),t,pi*cos(t)/4,'r'); title('SALIDA 2 Y REF'); grid;
 %Gráfica en 3D
    Draw Heli2DOF(t,X(:,1:2),0);
 end
```



```
\Box function dX = Heli2DOF BLOQUES sys(t, X)
    global K1 K2
    %Parámetros del sistema
    m=2;l=0.3;g=9.81;Jy=0.02;Jp=0.02;by=0.005;bp=0.005;Kpp=1;Kyy=1;Kyp=0.1;Kpy=0.1;
    %Funciones del sistema
    f3=(-m*q*l*cos(X(1))-bp*X(3)-m*l*2*sin(X(1))*cos(X(1))*X(4)*2)/(Jp+m*l*2);
    f4=(-by*X(4)+2*m*I^2*sin(X(1))*cos(X(1))*X(4)*X(3))/(Jy+m*I^2*cos(X(1))^2);
    G=[Kpp/(Jp+m*l^2) Kpy/(Jp+m*l^2); Kyp/(Jy+m*l^2*cos(X(1))^2) Kyy/(Jy+m*l^2*cos(X(1))^2)];
    %Referencias y sus derivadas
    Y1r = pi*sin(t)/4; dY1r = pi*cos(t)/4; ddY1r = -pi*sin(t)/4;
    Y2r = pi*cos(t)/4; dY2r = -pi*sin(t)/4; ddY2r = -pi*cos(t)/4;
    %1er Bloque
    e1 = [Y1r; Y2r] - [X(1); X(2)];
    de1=[dY1r;dY2r]-[X(3);X(4)];
    aux=[dY1r;dY2r]-K1*e1;
    x3ref=aux(1); x4ref=aux(2);
                                                       Veamos los resultados de simulación en
    % 2do bloque
                                                       clase ©
    e2 = [x3ref; x4ref] - [X(3); X(4)];
    aux2=[ddY1r;ddY2r]-K1*de1;
    dx3ref=aux2(1); dx4ref=aux2(2);
    U = G^{-1*}([dx3ref;dx4ref]-[f3;f4]-K2*e2);
    %ODE's
    dX = [X(3);X(4);f3;f4]+[0 0;0 0;G]*U;
```

end

Problema: Considere el siguiente sistema:

$$\dot{X} = \begin{bmatrix} -4 & 4 & 0 & 2 \\ 0 & -3 & 3 & 0 \\ 0 & 2 & -5 & 0 \\ 1 & 1 & -4 & -5 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 10 \\ 0 \end{bmatrix} u$$

$$Y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} X$$

Diseñe un controlador para que la salida siga la referencia

$$y_{ref}(t) = -3 + 2\cos(2t)$$

Solución:

¿Podemos utilizar retroalimentación de error en este caso? No ya que CB=0

Entonces, control por bloques suena a una buena opción © ¿Cuáles bloques sería conveniente definir? ¿Es una opción única la elección de los bloques?

Identificamos 4 bloques de la siguiente manera (recordemos que $y=x_1$)

(BLOQUE 1)
$$\dot{x}_1 = -4x_1 + 4x_2 + 2x_4$$

(BLOQUE 2)
$$\dot{x}_2 = -3x_2 + 3x_3$$

(BLOQUE 3)
$$\dot{x}_3 = 2x_2 - 5x_3 + 10u$$

(BLOQUE 4)
$$\dot{x}_4 = x_1 + x_2 - 4x_3 - 5x_4$$

Opción 1 de Control por Bloques [3 bloques]

A x_1 lo controlamos con x_4 , a x_4 con x_3 , y a x_3 con u.

Opción 2 de Control por Bloques [3 bloques]

A x_1 lo controlamos con x_2 , a x_2 con x_3 , y a x_3 con u.

Opción 3 de Control por Bloques [4 bloques]

A x_1 lo controlamos con x_4 , a x_4 con x_2 , a x_2 con x_3 , y a x_3 con u.

¿Cuál creen que convenga utilizar?

Entre menos bloques, mejor ©

<u>Usando la opción 2:</u>

(BLOQUE 1)
$$\dot{x}_1 = -4x_1 + 4x_2 + 2x_4$$

(BLOQUE 2) $\dot{x}_2 = -3x_2 + 3x_3$
(BLOQUE 3) $\dot{x}_3 = 2x_2 - 5x_3 + 10u$
(BLOQUE 4) $\dot{x}_4 = x_1 + x_2 - 4x_3 - 5x_4$

Empecemos con nuestro procedimiento de control por bloques.

Definimos el error para la salida como: $e_1 = y_{ref} - x_1$.

Su dinámica se obtiene como:

$$\dot{e}_1 = \dot{y}_{ref} - \dot{x}_1 = \dot{y}_{ref} + 4x_1 - 4x_2 - 2x_4$$

De aquí hay dos opciones: usar x_2 para controlar este bloque o usar x_4 ¿Cuál es más conveniente? ¿Porqué?

Supongamos que elegimos x_2 , entonces definimos la dinámica que queremos en el error e_1 como:

$$\dot{e}_1 = \dot{y}_{ref} + 4x_1 - 4x_2 - 2x_4 = \mathbf{k_1} \mathbf{e_1}$$

Entonces, la referencia para el siguiente bloque sería:

$$x_{2,ref} = \frac{1}{4} (\dot{y}_{ref} + 4x_1 - 2x_4 - k_1 e_1)$$
 49

Entonces ya tenemos la referencia para el siguiente bloque, por lo que podemos definir la siguiente variable de error como: $e_2 = x_{2,ref} - x_2$.

Su dinámica se obtiene como:

$$\dot{e}_2 = \dot{x}_{2,ref} - \dot{x}_2 = \dot{x}_{2,ref} + 3x_2 - 3x_3$$

Aquí solo queda usar x_3 para controlar este bloque. Entonces definimos la dinámica que queremos en el error e_2 como:

$$\dot{e}_2 = \dot{x}_{2,ref} + 3x_2 - 3x_3 = \mathbf{k_2} \mathbf{e_2}$$

Entonces, la referencia para el siguiente bloque sería:

$$x_{3,ref} = \frac{1}{3} (\dot{x}_{2,ref} + 3x_2 - k_2 e_2)$$

Sin embargo, no hemos calculado aún $\dot{x}_{2,ref}$, derivando el término obtenido en el paso anterior obtenemos

$$\dot{x}_{2,ref} = \frac{1}{4} \left(\ddot{y}_{ref} + 4\dot{x}_1 - 2\dot{x}_4 - k_1\dot{e}_1 \right)$$

$$= \frac{1}{4} \left(\ddot{y}_{ref} - k_1\dot{y}_{ref} + (4 + k_1)\dot{x}_1 - 2\dot{x}_4 \right)$$

Y terminamos con el segundo bloque ©.

Finalmente, definimos la variable de error del siguiente bloque como: $e_3 = x_{3,ref} - x_3$.

Su dinámica se obtiene como:

$$\dot{e}_3 = \dot{x}_{3,ref} - \dot{x}_3 = \dot{x}_{3,ref} - 2x_2 + 5x_3 - 10u$$

Sabemos que este es el último bloque porque ya apareció la señal de control u. Entonces definimos la dinámica que queremos en el error e_3 como:

$$\dot{e}_3 = \dot{x}_{3,ref} - 2x_2 + 5x_3 - 10u = \mathbf{k_3}\mathbf{e_3}$$

Entonces, la señal de control del sistema quedaría como:

$$u = \frac{1}{10} (\dot{x}_{3,ref} - 2x_2 + 5x_3 - k_3 e_3)$$

De nuevo, no hemos calculado aún $\dot{x}_{3,ref}$, derivando el término obtenido en el paso anterior obtenemos

$$\dot{x}_{3,ref} = \frac{1}{3} \left(\ddot{x}_{2,ref} + 3\dot{x}_2 - k_2 \dot{e}_2 \right)$$
$$= \frac{1}{3} \left(\ddot{x}_{2,ref} + 3\dot{x}_2 - k_2 (\dot{x}_{2,ref} - \dot{x}_2) \right)$$

Pero nos falta $\ddot{x}_{2,ref}$ la cual obtenemos del bloque anterior como:

$$\begin{split} \ddot{x}_{2,ref} &= \frac{1}{4} \left(\ddot{y}_{ref} - k_1 \ddot{y}_{ref} + (4 + k_1) \ddot{x}_1 - 2 \ddot{x}_4 \right) \\ &= \frac{1}{4} \left(\ddot{y}_{ref} - k_1 \ddot{y}_{ref} + (4 + k_1) (-4 \dot{x}_1 + 4 \dot{x}_2 + 2 \dot{x}_4) - 2 (\dot{x}_1 + \dot{x}_2 - 4 \dot{x}_3 - 5 \dot{x}_4) \right) \\ &= \frac{1}{4} \left(\ddot{y}_{ref} - k_1 \ddot{y}_{ref} + (4 + k_1) (-4 \dot{x}_1 + 4 \dot{x}_2 + 2 \dot{x}_4) \\ &- 2 (\dot{x}_1 + \dot{x}_2 - 4 (2 x_2 - 5 x_3 + 10 u) - 5 \dot{x}_4) \right) \\ &= \frac{1}{4} \left(\ddot{y}_{ref} - k_1 \ddot{y}_{ref} + (4 + k_1) (-4 \dot{x}_1 + 4 \dot{x}_2 + 2 \dot{x}_4) \\ &- 2 (\dot{x}_1 + \dot{x}_2 - 4 (2 x_2 - 5 x_3) - 5 \dot{x}_4) \right) + 20 u \\ &= \Delta + 20 u \\ &\text{donde } \Delta = \frac{1}{4} \left(\ddot{y}_{ref} - k_1 \ddot{y}_{ref} + (4 + k_1) (-4 \dot{x}_1 + 4 \dot{x}_2 + 2 \dot{x}_4) - 2 (\dot{x}_1 + \dot{x}_2 - 4 (2 x_2 - 5 x_3) - 5 \dot{x}_4) \right). \end{split}$$

Como apareció $oldsymbol{u}$ en $\ddot{x}_{2,ref}$, sustituimos en $\dot{x}_{3,ref}$

$$\dot{x}_{3,ref} = \frac{1}{3}(\Delta + 20u + 3\dot{x}_2 - k_2\dot{e}_2)$$
$$= \frac{1}{3}(\Delta + 3\dot{x}_2 - k_2\dot{e}_2) + \frac{20}{3}u$$

Y luego sustituimos $\dot{x}_{3,ref}$ en $oldsymbol{u}$

$$u = \frac{1}{10} \left(\frac{1}{3} (\Delta + 3\dot{x}_2 - k_2\dot{e}_2) + \frac{20}{3} u - 2x_2 + 5x_3 - k_3e_3 \right)$$
$$= \frac{1}{10} \left(\frac{1}{3} (\Delta + 3\dot{x}_2 - k_2\dot{e}_2) - 2x_2 + 5x_3 - k_3e_3 \right) + \frac{2}{3} u$$

De donde despejamos nuestra **u** final como

$$u = \frac{3}{10} \left(\frac{1}{3} (\Delta + 3\dot{x}_2 - k_2\dot{e}_2) - 2x_2 + 5x_3 - k_3e_3 \right)$$

Con lo que concluimos el diseño de nuestro controlador a bloques. Veamos que dice Matlab.

UPSSS ... debido a razones injustificadas no tengo simulaciones hechas, pero...

TPE 2.2: Implementación y simulación de Control con 3 bloques

RESUMEN: Controladores en Lazo Cerrado

Tipo de Control	Condiciones	Ventajas	Desventajas
Retro. de Edos. $u = Kx$	 Sistema Controlable rank(M_C) = n Requiere conocer todo x. 	 Ubicar Polos Estabilizar Todos los Estados Definir transitorio (t_s y M_P) Puedo usar Ackerman y LQR 	 Solo estabiliza, no sigue referencias.
Seg. de Ref. Cte. $u = Kx + Fr$	Igual que anterior.SISO	Igual que anterior.Seg. de Ref. Ctes.	- Solo ref. ctes.
Retro. de Error $u = (CB)^{-1}$ $[\dot{y}_{ref} - CAx - Ke]$	 Que (CB)⁻¹ exista. Requiere sensar todo x. Mismo no. de entradas y salidas. 	- MIMO - Seg. Ref. Var.	 No controlo todos los sistemas. Controla solo las salidas.
Cont. por Bloques	- Requiere encontrar camino entre u y y .	Seg. Ref Var.MIMO	No controlo todos los sistemas.Controla solo las salidas.