

Controllability - Accessibility

Some examples.

EX1. Consider the nonlinear $\dot{x}_1 = x_2^2$ system $\dot{x}_2 = u$

Problem of controllability

(it is not possible to reach a point located in the neighborhood of the initial point).

EX2. Consider the nonlinear $\dot{X}_1 = \cos{(X_2)}$ system $\dot{X}_2 = u$

- For all value of u, dynamics of x_1 can *only* be between -1 and 1 : x_1 is *constrained*.
- Problem of controllability

EX3. Mobile robot.

$$\dot{\mathbf{x}}_1 = \cos \mathbf{x}_3.\mathbf{u}_1$$

$$\dot{\mathbf{x}}_2 = \sin \mathbf{x}_3.\mathbf{u}_1$$

$$\dot{\mathbf{x}}_3 = \mathbf{u}_2$$

$$X3 = \pi/2$$

X3 = 0

The system is *generically controllable*: controllable except at the singularities.

2017-2018

What is ...

Controllability: possibility of steering a system from a point to an other point

- <u>Linear systems</u>: controllability = structural property [any system can be divided into a controllable part and an autonomous one.]
- Nonlinear systems : structural property : accessibility.

Definition. For a nonlinear system, a state x_1 is **reachable** from an initial state x_0 if there exists a finite time T and control input u(t) such that $x(T) = x_1$.

Definition. A system is said to be **controllable** at x_0 if there exists a neighborhood V of x_0 such that any state x_1 in V is reachable from x_0 .

Definition. A system is said to be **accessible** at x_0 if the set of reachable points from x_0 contains an open subset of \mathfrak{R}^n .

Some recalls (of linear theory).

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

Definition. The *relative degree* of the output y=C.x is equal to the degree of denominator of the transfer function minus the degree of its numerator.

Other definition. The relative degree is the minimal differentiation order k of the output such that

$$\frac{\partial y^{(k)}}{\partial u} \neq 0$$

Controllability matrix. The controllability matrix reads as

$$\begin{bmatrix} B & A & B & \dots & A^{n-1} B \end{bmatrix}$$

Theorem. Controllability criteria

Rang
$$\left(\begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}\right) = n$$

- $Rang\Big(\Big[B\quad AB\quad ..\quad A^{n-l}B\Big]\Big)=n$ No output with a relative degree $\ \ge \ n+1 \ (\frac{\partial y^{(n)}}{\partial u} \ne 0)$
- No output with an infinite relative degree
- There exists no output as a solution of an equation independent of u.

To summarize, if the system is not controllable, then there exists at least $w\neq 0$ such that an output y=w.x has a relative degree greater or equal to n+1.

- The relative degree of y is said infinite
- The output y is solution of a linear and autonomous (not depending on u) differential equation

Consider the linear system
$$\stackrel{\cdot}{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$
 Rank criteria not fulfilled

The output
$$y=-2x_1+x_2$$
 admits an infinite relative degree. $y=0$

Nonlinear systems.

Definition. The *relative degree* of the function $\varphi(x) \in K$ is defined as

$$r = \min \left\{ k \in N \left| \frac{\partial \varphi^{(k)}}{\partial u} \neq 0 \right\} \right\}$$

Example. Consider a mechanical system whose state = (position, velocity) and input = (force ou torque)

Relative degree = 2.

Definition. Relative degree of a 1-form $\omega \in \mathcal{E}$.

Consider
$$\omega := \sum\limits_{i=1}^n \alpha_i dx_i$$
 with $\forall i, \ \alpha_i \in K$

The relative degree equals $r = min\left\{k \in N \left| \omega^{(k)} \notin span\left\{dx\right\}\right\}\right\}$ with the time derivative of ω ,

$$\dot{\omega} = \sum_{i=1}^{n} \dot{\alpha}_{i} dx_{i} + \alpha_{i} d\dot{x}_{i}$$

Proposition. $\varphi(x) \in K$ is an autonomous element

$$\iff \text{ The relative degree of } \varphi \text{ is infinite : } \forall \, k \in N \, , \frac{\partial \, \varphi^{\left(k\right)}}{\partial u} \equiv 0$$

2017-2018

Definition. Controllability of a nonlinear system.

Given the nonlinear system $\dot{x}=f(x)+g(x)u$. This system is said « controllable » if $\forall x_0$ (the initial state) and $\forall x_1$ (forall state), $\exists \, u(t)$ and $\, T<\infty$ such that

$$x(x_0,u(t),T)=x_1$$

No way to characterize the controllability of nonlinear systems

Definition. Accessibility of a nonlinear system.

The nonlinear system $\dot{x} = f(x) + g(x)u$ is said « accessible » if there exists no autonomous element.

Property. For the linear systems *only*.

Controllable ⇔Accessible

Example. Consider the nonlinear system

$$\dot{\mathbf{x}}_1 = \mathbf{x}_2^2$$

$$\dot{\mathbf{x}}_2 = \mathbf{u}$$

This system is not controllable (x_1 cannot decrease), but is accessible $\forall \varphi(x_1, x_2), dr(\varphi) < \infty$

Property. For nonlinear systems, a nonlinear system is accessible

$$\Leftrightarrow \forall \varphi(x) \neq cte, dr(\varphi) < \infty$$

Algorithm allowing to evaluate the accessibility.

• Caracterization of the 1-forms $\omega \in \mathcal{E}$ such that the relative degree of ω is ≥ 2 .

$$-H_0 := \operatorname{span} \{ dx, du \} \quad \Rightarrow \quad \omega \in H_0 \quad \Leftrightarrow \quad d.r. \geq 0$$

$$-H_1 := \operatorname{span} \{ dx \} \subset H_0 \implies \omega \in H_1 \iff d.r. \ge 1$$

- H_2 is the space of the 1-forms ω (\in H_1) such that d.r.(ω) \geq 2. \Longrightarrow $H_2 \subset H_1$
- Computation of H_2 . Consider the 1-form $\omega \in H_1$

$$\omega = \sum_{i=1}^{n} \alpha_{i} dx_{i} \implies \dot{\omega} = \sum_{i=1}^{n} (\dot{\alpha}_{i} dx_{i} + \alpha_{i} d\dot{x}_{i})$$

 \Rightarrow Compute α_i s.t $\dot{\omega} \in H_1$

$$\Rightarrow \dot{\omega} = \sum_{i=1}^{n} \alpha_{i} d\dot{x}_{i} + \sum_{i=1}^{n} \dot{\alpha}_{i} dx_{i}$$
$$= \left[\alpha_{1}, ..., \alpha_{n}\right] .d\left(f(x) + g(x)u\right) + (" \in H_{1}")$$

Then
$$\dot{\omega} \in H_1 \Leftrightarrow \left[\alpha_1, ..., \alpha_n\right] . \left[g(x)\right] du = 0$$

 $\Leftrightarrow \left[\alpha_1, ..., \alpha_n\right] . \left[g(x)\right] = 0$

Result.
$$H_2 = g(x)^{\perp} = span \{ \omega \in H_1 | w.g \equiv 0 \}$$

Definition. Chain of subspaces of \mathcal{E} .

$$\begin{split} &H_0\supset H_1\supset H_2\supset...\supset H_k\supset H_{k+1}\supset...H_\infty\\ &H_0=span\left\{dx,du\right\}\\ &H_1=span\left\{dx\right\} \end{split}$$

$$H_2 = g^{\perp}$$

 $H_k = \text{Subspaces of all the linear 1-forms with a d.r.} \ge \textit{k}.$

$$H_{k+1} = \operatorname{span} \left\{ \omega \in H_k \mid \dot{\omega} \in H_k \right\}$$

$$\exists k^* \text{ limit s.t. } H_{k^*-2} = H_{k^*-1} \coloneqq H_{\infty}$$

Theorem. Accessibility of a nonlinear system.

A nonlinear system satisfies the accessibility condition if and only if $m\,H_{\infty}=0$

i.e. there is no autonomous element.

Example. Consider the nonlinear system
$$\dot{x} = \begin{bmatrix} -x_2^3 \\ u \end{bmatrix}$$
 . Is it accessible ?

Example. Consider the nonlinear system
$$\dot{x} = \begin{bmatrix} x_2(1-u) \\ x_3 \\ x_2u \end{bmatrix}$$
 . Is it accessible ?

Linear. Given the linear system $\dot{x} = Ax + Bu$

$$H_2 = B^{\perp}$$

$$H_{3} = \begin{bmatrix} B A B \end{bmatrix}^{\perp}$$

$$\vdots$$

$$H_{k} = \begin{bmatrix} B \cdots A^{k-2} B \end{bmatrix}^{\perp}$$

Example. Mobile robot.

$$\dot{\mathbf{x}} = \begin{bmatrix} \cos(\mathbf{x}_3) & 0 \\ \sin\mathbf{x}_3 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}, \quad \mathbf{f}(\mathbf{x}) \equiv 0$$