НИУ ИТМО факультет ПИ и КТ

Учебно-исследовательская работа 2 (УИР 2) «Марковские модели систем массового обслуживания»

1. Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей — систем массового обслуживания (СМО) с однородным потоком заявок.

2. Содержание работы

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности.

В процессе исследований для расчета характеристик функционирования СМО используется программа MARK.

3. Этапы работы

- 3.1. Разработка марковских моделей исследуемых систем.
- 3.2. Освоение программы MARK.
- 3.3. Проведение расчетов по разработанным моделям и обработка результатов.
 - 3.4. Анализ полученных результатов.
- 3.5. Выбор наилучшего варианта организации системы из двух вариантов в соответствии с заданным критерием эффективности.

4. Порядок выполнения работы

- 4.1. Получить вариант работы.
- 4.2. Построить графы переходов для заданных СИСТЕМЫ_1 и СИСТЕМЫ 2.
- 4.3. С использованием программы MARK рассчитать характеристики марковского процесса для СИСТЕМЫ 1 и СИСТЕМЫ 2.
 - 4.4. Проанализировать характеристики функционирования системы.
- 4.5. Выбрать и обосновать наилучший способ организации системы в соответствии с заданным критерием эффективности.

5. Описание программы MARK

Программа MARK предназначена для расчета характеристик марковских процессов с непрерывным временем по заданным значениям интенсивностей переходов и матрице интенсивностей переходов.

Результатами расчетов являются:

- стационарные вероятности состояний марковского процесса;
- значения характеристик марковской модели, вычисленные на основе стационарных вероятностей по заданным формулам.

ниу итмо факультет ПИ и КТ

Предусмотрена возможность варьирования значений интенсивностей переходов и вывод результатов варьирования в виде таблиц или графика зависимостей характеристик марковской модели от варьируемых параметров.

Результаты расчетов могут быть выведены на экран или на печать.

6. Содержание отчета

- 6.1. Постановка задачи и исходные данные.
- 6.2. Описание исследуемой системы.
- 6.3. Перечень состояний марковского процесса для исследуемой системы.
- 6.4. Результаты работы:
 - размеченный граф переходов марковского процесса;
 - матрица интенсивностей переходов;
 - значения стационарных вероятностей, сведенные в таблицу (форма 1);
 - формулы, используемые для расчета характеристик системы и значения характеристик системы, сведенные в таблицы (форма 2);
 - результаты (графики и выводы) сравнительного анализа характеристик функционирования исследуемых систем;
 - обоснование выбора наилучшего варианта организации системы в соответствии с заданным критерием эффективности.

Теоретический материал по марковским случайным процессам можно найти в учебном пособии: «Основы моделирования дискретных систем», раздел 5 «Численное моделирование (модели случайных процессов)».

<u>НИУ ИТМО</u> факультет ПИ и КТ

7. Варианты заданий

<u>Номер варианта УИР 2</u> выдается *преподавателем* в виде *N*1/*N*2/*NG*, где *N*1 − номер варианта 1 (СИСТЕМЫ_1) из таблицы 1 для СИСТЕМЫ_1; *N*2 − номер варианта 2 (СИСТЕМЫ_2) из таблицы 1 для СИСТЕМЫ_2, *N*G - номер варианта из таблицы 2 (две последние цифры в номере группы).

Таблица 1 - Параметры структурной и функциональной организации

Вариант	СИСТ	EMA_1	Вариант	СИСТІ	EMA_2	Критерий
1	П	EH	2	П	EH	эффект.
1	3	2/0/0	1	2 (H ₂)	3/1	(a)
2	2	2/1	2	1 (H _{1,5})	2	(б)
3	2	3/0	3	2 (E ₃)	1/1	(B)
4	3	1/0/1	4	2 (E ₂)	1/0	(г)
5	2	3/2	5	1 (H _{1,4})	4	(д)
6	2	4/1	6	1 (E ₂)	2	(a)
7	2	3/1	7	2 (H _{1,8})	2/1	(б)
8	2	3	8	1 (H _{2,4})	3	(B)
9	3	1/1/0	9	2 (E ₂)	0/1	(г)
10	2	1/5	10	2 (H _{2,2})	1/3	(д)
11	2	2/2	11	1 (E ₂)	3	(a)
12	2	5/2	12	3 (H ₂)	1/0/0	(б)
13	3	1/1/1	13	2 (E ₃)	3	(B)
14	3	2/0/0	14	2 (E ₂)	2/0	(г)
15	3	3	15	3 (H _{1,6})	2/1/0	(д)
16	3	1/1/0	16	2 (H _{2.5})	2/2	(a)
17	2	1/0	17	3 (E ₂)	2/1/0	(б)
18	3	0/0/1	18	2 (E ₂)	0/3	(B)
19	3	0/0/2	19	2 (H ₃)	1/2	(r)
20	2	0/1	20	3 (H ₂)	0/3/0	(д)
21	3	0/4/0	21	$3(E_3)$	1/1/1	(a)
22	2	0/3	22	$3(E_2)$	1/0/0	(6)
23	3	0/2/0	23	2 (H _{2,4})	0/1	(B)
24	3	0/1/1	24	$2(E_2)$	1/0	(r)
25	2 2	6	25	$1 (E_2)$	3	(д)
26		1/4	26	2 (H _{2,8})	2	(a)
27	3	1/2/1	27	2 (H _{2,8})	1/0	(6)
28	2	1/2	28	$1(E_2)$	2	(B)
29	3	1/1/0	29	2 (H _{1,8})	1/0	(r)
30	2	5	30	1 (H _{2,2})	2	(д)
31	2	1/1	31	2 (H ₂)	2	(a)
32	2	7	32	2 (E ₃)	3/1	(б)
33	2	2/1	33	3 (H ₃)	1/0/0	(B)
34	3	2/0/0	34	2 (H _{1,5})	6	(r)
35	3	0/3/0	35	2 (E ₂)	0/2	(д)
36	3	0/2/0	36	2 (H ₂)	1/1	(a)
37	2	1	37	$2(H_{1,2})$	2/0	(б)

<u>НИУ ИТМО</u> факультет ПИ и КТ

Таблица 1 (продолжение)

Вариант	СИСТЕМА_1		Вариант	СИСТІ	EMA_2	Критерий
1	П	EH	2	П	EH	эффект.
38	3	0/1/1	38	2 (E ₃)	1/1	(B)
39	2	3/1	39	3 (E ₂)	0/1/0	(r)
40	2	4	40	3 (H ₂)	2/0/0	(д)
41	3	1/0/1	41	2 (E ₃)	0/3	(a)
42	3	1/1/0	42	2 (H _{2,1})	1/2	(6)
43	3	0/2/0	43	2 (H _{2,6})	2/1	(B)
44	3	1/1/1	44	2 (E ₂)	1/0	(r)
45	2	2/2	45	1 (H ₃)	3	(д)
46	2	1/3	46	2 (E ₂)	4	(a)
47	3	1/0/0	47	2 (H ₄)	1/3	(б)
48	2	1/2	48	1(E ₃)	2	(B)
49	3	1/1/0	49	2 (E ₂)	1/1	(г)
50	2	5	50	3 (H _{1,5})	0/1/0	(д)
51	2	2/2	51	1 (E ₃)	3	(a)
52	3	2/0/0	52	2 (H _{1,4})	4	(б)
53	3	3	53	2 (E ₂)	3	(B)
54	3	3/0/0	54	$2(E_3)$	2	(L)
55	3	1/0/1	55	3 (H _{2,3})	2	(д)
56	3	1/1/0	56	2 (E ₂)	1/1	(a)
57	2	2/1	57	3 (E ₃)	1/0/0	(б)
58	3	0/0/1	58	2 (E ₂)	0/2	(B)
59	3	0/0/2	59	2 (H _{1,4})	1/1	(r)
60	3	0/3/0	60	$2(E_2)$	0/3	(д)
61	2	4/0	61	3 (E ₃)	1/0/0	(a)
62	3	2/0/0	62	$2(E_2)$	2/0	(б)
63	3	1/0/1	63	$2(H_{2,1})$	2	(B)
64	3	1/1/0	64	$2(E_2)$	1/0	(r)
65	2	6	65	2 (H _{1,2})	1/3	(д)
66	2	4/1	66	$1 (E_3)$	2	(a)
67	2	3/1	67	$1 (H_2)$	4	(6)
68	2	1/3	68	$2(E_3)$	1/1	(B)
69	3	0/1/1	69	$2(E_2)$	1/1	(r)
70	2	5	70	$2(E_3)$	1/3	(д)
71	2	6	71	2 (H _{1,5})	2/1	(a)
72	2	3/2	72	2 (H _{2,8})	3	(б)
73	2	2/0	73	3 (E ₂)	1/0/1	(B)
74	2	6	74	3 (H _{2,1})	2/0/0	(r)
75	3	0/3/0	75	$2(E_3)$	0/2	(д)
76	2	3/3	76	3 (H _{1,7})	0/2/0	(a)
77	2	2/3	77	$3(E_2)$	3	(б)
78	3	0/1/1	78	2 (E ₃)	1/1	(B)
79	3	0/1/0	79	2 (H _{2,6})	0/2	(r)
80	3	2/1/1	80	$3(H_{3,5})$	3	(д)

<u>НИУ ИТМО</u> факультет ПИ и КТ

Обозначения в таблице 1:

- **П** число обслуживающих **Приборов** в системе;
- Π (**E**_k) в одном из **Приборов** (*любом*) длительность обслуживания распределена *по закону Эрланга k-го порядка*;
- Π (**H**_v) в одном из **Приборов** (любом) длительность обслуживания распределена по гиперэкспоненциальному закону *с коэффициентом вариации*, равным *v*;
- **ЕН Емкости Накопителей**: X/Y/Z (X перед первым прибором, Y перед вторым прибором и Z перед третьим прибором);

Указания: 1) заявка, поступившая в систему, с заданной вероятностью занятия прибора направляется к соответствующему прибору и ставится в очередь, либо теряется, если накопитель заполнен или отсутствует;

- 2) емкость накопителя, представленная одним числом, означает общий накопитель перед всеми приборами;
- 3) **критерий эффективности** выбирается в соответствии с номером варианта N1, если сумма N1+N2 величина *нечетная*, и в соответствии с номером варианта N2, если сумма N1+N2 величина *четная*:
 - а) максимальная производительность системы;
 - б) минимальные потери заявок;
 - в) максимальная загрузка системы;
 - г) минимальное время пребывания в системе заявок;
 - д) минимальная суммарная длина очередей заявок.

Таблица 2 - Параметры нагрузки

Номер	Интенс.	Ср.длит.	Вероятности занятия		
варианта	потока	обслуж.	прибора		
(группы)	$\lambda_{1/c}$	<i>b</i> , c	П1	П2	П3
6	0,1	25	0,5	0,3	0,2
7	0,2	20	0,4	0,5	0,1
8	0,3	15	0,5	0,15	0,35
9	0,4	10	0,6	0,1	0,3
10	0,5	10	0,7	0,2	0,1
11	0,6	5	0,75	0,2	0,05
12	0,7	5	0,8	0,05	0,15
13	0,8	5	0,3	0,45	0,25
14	0,9	4	0,55	0,25	0,2
15	1,0	2	0,6	0,25	0,15
16	0,1	40	0,7	0,05	0,25
17	0,2	25	0,8	0,15	0,05
18	0,3	20	0,4	0,25	0,35
19	0,4	15	0,5	0,15	0,35
30	0,5	10	0,65	0,2	0,15
31	0,6	10	0,75	0,15	0,1

ниу итмо факультет ПИ и КТ

32	0,7	8	0,85	0,1	0,05
33	0,8	4	0,3	0,6	0,1
34	0,9	2	0,55	0,15	0,3
100	2,0	4	0,65	0,25	0,1

Указания к табл.2

Вероятности занятия прибора определяются следующим образом:

- в случае трехканальной СМО выбираются из таблицы 2 (см. вероятности занятия приборов П1, П2 и П3);
- в случае двухканальной СМО вероятность занятия прибора П1 выбирается из табл.2, а вероятность занятия прибора П2 принимается равной сумме вероятностей занятия приборов П2 и П3;
- в случае одноканальной СМО вероятность прибора принимается равной 1.

8. Рекомендуемые формы таблиц

Форма 1 Стационарные вероятности состояний

Номер	СИСТ	EMA_1	СИСТЕМА_2		
состояния	Обозн.	Вер-ть	Обозн.	Вер-ть	
1					
2					
•••					
20					

Указание к форме 1:

В столбце "Обозн." указываются обозначения всех состояний марковского процесса, принятые в соответствии с выбранной кодировкой.

ниу итмо факультет ПИ и КТ

Форма 2 Характеристики СИСТЕМ

Хар-ка	Прибор	Расчетная формула	СИСТ.1	СИСТ.2
	П1			
Нагрузка	П2			
	П3			
	Сумм.			
	П1			
Загрузка	•••			
	Сумм.			
Длина	П1			
очереди				
	Сумм.			
	П1			
Число	•••			
Заявок	Сумм.			
	П1			
Время				
ожидания	Сумм.			
	П1			
Время	•••			
пребывания	Сумм.			
	П1			
Вероятность	•••			
потери	Сумм.			
	П1			
Производительность	•••			
	Сумм.			
•••				

Указание: расчет характеристик обслуживания заявок должен проводиться через вероятности состояний марковского процесса без использования фундаментальных зависимостей (формул Литтла и т.п.); последние могут и должны использоваться для проверки полученных результатов.

Замечание. Если количество состояний марковского случайного процесса более 20 допускается обоснованное изменение числа приборов или емкости одного из накопителей (на усмотрение студента по минимуму).