

SYSTEM FOR EXPRESSION OF GENES IN PLANTS

Cross-Reference to Related Application

[0001] This application claims priority to U.S. Provisional Patent Application No. 60/444,615, filed February 3, 2003, which is incorporated herein by reference.

Background of the Invention

[0002] In recent years, plants have been increasingly used as a host system for the expression of recombinant proteins. Such expression can be accomplished either by integrating the gene of interest into a plant genome, to create a transgenic plant that stably expresses the desired protein, or by introducing the gene of interest into a plant vector that can be introduced into, and transiently maintained in, plant cells. Viral vector systems have proven to be particularly useful.

[0003] However, there remains a need for developing improved systems for expressing transgenes in plants. For example, one disadvantage with existing viral vector systems is that the viruses may infect non-target plants, potentially posing significant environmental risks. Also, many available engineered plant viruses do not express transgenes at desired levels, and/or in desired target plants or tissues. The present invention addresses many of these problems, and others.

Summary of the Invention

[0004] The present invention encompasses the recognition that there is a need to develop expression systems for plants that present only a minimal risk of environmental contamination. The invention provides methods and reagents for expression of polynucleotide and polypeptide products in plants with a reduced risk of widespread contamination.

[0005] For example, in one aspect, the invention provides sets of viral expression vectors, each of which is incapable of establishing a systemic infection on its own, but which together allow for systemic infection. Cross-complementation (also referred to as trans-

complementation) by the vectors allows an initial local infection (e.g., established by inoculation) to move into uninoculated leaves and establish a systemic infection.

[0006] In specific embodiments, the invention provides a system including a producer vector that includes a polynucleotide of interest but lacks functional versions of one or more genes necessary for long-distance movement, together with a carrier vector that provides a functional long distance movement protein coding sequence. For example, the invention provides a system for expressing a polynucleotide of interest in a plant cell or whole plant, comprising: (i) a carrier vector that includes a coat protein encoding component from a first plant virus; and (ii) a producer vector that includes a polynucleotide of interest, and further includes at least one component from a second plant virus, but lacks a functional coat protein gene. The invention further provides a system for expressing a polynucleotide of interest in a plant cell or whole plant, comprising: (i) a carrier vector that includes a movement protein encoding component from a first plant virus; and (ii) a producer vector that includes a polynucleotide of interest, and further includes at least one component from a second plant virus, but lacks a functional movement protein gene.

[0007] In certain embodiments of the invention the carrier vector is defective for replication. For instance, the producer vector may include a replicase gene (e.g., an RNA polymerase gene) and a movement protein gene (so that the vector is competent for cell-to-cell movement), but may lack a coat protein gene (so that the vector is not competent for long-distance (systemic) movement). The carrier vector may include a coat protein gene (so that the vector is competent for long-distance movement), but may lack a replicase gene (so that the vector is unable to self-replicate). Alternatively, the carrier vector might include a replicase gene (so that the vector is replication competent), and might be used with a producer vector that lacks both replication and long-distance movement capability. Preferred vectors are viral vectors.

[0008] The invention further provides a variety of vectors that can be used as components of the inventive system(s) or for other purposes. For example, the invention provides a vector comprising: (a) one or more components from a first plant virus; and (b) a partial or complete 3' untranslated region from an RNA of a second plant virus. In certain embodiments of the invention the 3' untranslated region facilitates systemic spread of the virus. The 3' untranslated region may comprise a recognition site for complex formation with coat protein.

[0009] In other aspects, the invention also provides a variety of methods for expressing polynucleotides in plants, e.g., using the inventive vectors and systems described herein.

[0010] One advantage of the inventive system for expressing polynucleotides in plants is that it reduces or eliminates the risk that vectors, particularly recombinant vectors comprising the polynucleotide(s) to be expressed, will spread to non-target plants, thereby significantly improving the environmental safety of gene expression in plants and allowing more flexibility in the cultivation of recipient plants.

[0011] Another advantage associated with the present invention is that it allows the researcher to design a plant expression system with qualities of more than one plant virus. For instance, in certain embodiments of the invention the producer vector desirably has the polynucleotide of interest positioned such that its expression is controlled by the coat protein (“CP”) promoter. In many cases, therefore, it will be desirable to base the producer vector on a viral system with a strong CP promoter. However, viruses with strong CP promoters sometimes have limited host specificity, e.g., they may be unable to replicate and/or accomplish cell-to-cell movement or systemic movement within certain host plants. It may be desirable, therefore, to base the carrier vector on a viral system with a broad host specificity, so that the high-expressing characteristic of the viral system from which the producer vector is derived may be exploited in a host that is ordinarily inaccessible to that viral system.

[0012] This application refers to various patents, patent applications, and publications. The contents of all of these are incorporated herein by reference. In addition, the following publications are incorporated herein by reference: *Current Protocols in Molecular Biology*, *Current Protocols in Immunology*, *Current Protocols in Protein Science*, and *Current Protocols in Cell Biology*, all John Wiley & Sons, N.Y., edition as of July 2002; Sambrook, Russell, and Sambrook, *Molecular Cloning: A Laboratory Manual*, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001.

Brief Description of the Drawings

[0013] *Figure 1* shows representative examples of tobamovirus genomes.

[0014] *Figure 2* gives a representative list of accession codes for various TMV genome sequences.

- [0015] *Figure 3* presents a schematic representation of certain families of viruses that infect plants.
- [0016] *Figure 4* presents accession codes for a variety of AlMV genome sequences.
- [0017] *Figure 5* shows a Western blot of protoplasts infected with *in vitro* transcripts of Av/A4, an AlMV-based vector employed in certain studies described herein (Spitsin, S., et al., *Proc. Natl. Acad. Sci.* 96(5): 2549-2553, 1999). Samples were analyzed 24 hours post inoculation. C- is a negative control. The arrow indicates an AlMV CP band detected by AlMV CP-specific monoclonal antibodies.
- [0018] *Figure 6* shows pepper plants and *Nicotiana benthamiana* plants infected with wild type AlMV.
- [0019] *Figure 7* is a Western blot of *N. benthamiana* plants infected with *in vitro* transcripts of Av/A4. Samples were analyzed 12 days post inoculation. C- is extract from healthy plants. The arrow points to AlMV CP bands detected by AlMV CP-specific monoclonal antibodies.
- [0020] *Figure 8* presents a schematic diagram of the genomic organization of 125C (Figure 8A) and D4 following insertion of a polynucleotide of interest (Figure 8B). The 126/183 kDa protein is required for replication of the virus. The MP is the movement protein that mediates cell-to-cell movement. Arrows indicate positions of the subgenomic promoter. The shaded region represents TMV coat protein sequences that contain a *cis* element that may be required for optimal replication. The black box represents a polynucleotide of interest, e.g., a foreign gene.
- [0021] *Figure 9* shows a Western blot of protoplasts infected with *in vitro* synthesized transcripts of 125C/hGH (125C as shown in Figure 8A, in which the foreign gene encodes hGH). Samples were analyzed 24 hours post inoculation. 1 ug of purified hGH was loaded as a standard.
- [0022] *Figure 10* is a Western blot showing detection of hGH in *N. benthamiana* plants 11 days post infection (dpi).
- [0023] *Figures 11a-11d* presents schematics of various D4-related vectors. 126/183 kDa are the replicase proteins, MP is the movement protein required for cell-to-cell movement. Nucleotide numbers represent positions in the wild type TMV genome. C3GFP is the cycle3 mutant of green fluorescent protein (GFP) (Crameri A, Whitehorn EA, Tate E, Stemmer WP, *Nat Biotechnol.*, 14(3): 315-9, 1996). The asterisk indicates mutated C3GFP in which the *Nco*I

site and the *Xho*I sites in the ORF have been eliminated by mutation using PCR. *Pst*I-*Xho*I sites were used to introduce sequences from AlMV RNA3 that include the origin of assembly (OAS).

[0024] *Figures 12a-12c* show pictures of infected plants, demonstrating that AlMV complements D4GFP, which does not have a functional coat protein coding sequence and is limited in systemic spread, and facilitates its movement throughout the plant. *Figure 12a* shows a picture of a plant that was co-inoculated with SR27 (a TMV-based vector lacking CP coding sequence and including a GFP transgene under control of the subgenomic CP promoter) and AlMV. The image (taken under UV light) demonstrates spread of virus into the upper uninoculated leaves. *Figure 12b* (taken under UV light) shows a picture of a plant that was inoculated with SR27 only. Lack of fluorescence in the upper leaves indicates that virus infection was limited to locally inoculated leaves. *Figure 12c* shows the same plant as in Figure 12a, under normal light.

Definitions

[0025] *Gene*: For the purposes of the present invention, the term gene has its meaning as understood in the art. In general, a gene is taken to include gene regulatory sequences (e.g., promoters, enhancers, etc.) and/or intron sequences, in addition to coding sequences (open reading frames). It will further be appreciated that the definition of gene can include nucleic acids that do not encode proteins but rather provide templates for transcription of functional RNA molecules such as tRNAs, rRNAs, etc. For the purpose of clarity we note that, as used in the present application, the term “gene” generally refers to a nucleic acid that includes a portion that encodes a protein; the term may optionally encompass regulatory sequences such as promoters, enhancers, terminators, etc. This definition is not intended to exclude application of the term “gene” to non-protein coding expression units but rather to clarify that, in most cases, the term as used in this document refers to a protein coding nucleic acid.

[0026] *Gene product or expression product*: A gene product or expression product is, in general, an RNA transcribed from the gene or a polypeptide encoded by an RNA transcribed from the gene. Expression of a gene or a polynucleotide refers to (i) transcription of RNA from the gene or polynucleotide; (ii) translation of RNA transcribed from the gene or polynucleotide, or both (i) and (ii).

[0027] *Isolated*: As used herein, the term “isolated” refers to a compound or entity that is 1) separated from at least some of the components with which it is normally associated (e.g., purified); 2) synthesized *in vitro*; and/or 3) produced or prepared by a process that involves the hand of man.

[0028] *Naturally*: The term “naturally” or “naturally-occurring”, as used herein, refers to processes, events, or things that occur in their relevant form in nature. By contrast, “not-naturally-occurring” refers to processes, events, or things whose existence or form involves the hand of man.

[0029] *Operably linked*: As used herein, operably linked refers to a relationship between two nucleic acid sequences wherein the expression of one of the nucleic acid sequences is controlled by, regulated by, modulated by, etc., the other nucleic acid sequence. For example, the transcription of a nucleic acid sequence is directed by an operably linked promoter sequence; post-transcriptional processing of a nucleic acid is directed by an operably linked processing sequence; the translation of a nucleic acid sequence is directed by an operably linked translational regulatory sequence; the transport or localization of a nucleic acid or polypeptide is directed by an operably linked transport or localization sequence; and the post-translational processing of a polypeptide is directed by an operably linked processing sequence. Preferably a nucleic acid sequence that is operably linked to a second nucleic acid sequence is covalently linked, either directly or indirectly, to such a sequence, although any effective three-dimensional association is acceptable. It is noted that a single nucleic acid sequence can be operably linked to multiple other sequences. For example, a single promoter can direct transcription of multiple RNA species.

[0030] *Polynucleotide of interest*: As used herein, the term “polynucleotide of interest” refers to any target sequence to be expressed in plant cells, as described herein. In many embodiments, the polynucleotide of interest will be a protein-coding polynucleotide but may also be a sequence that provides a template for transcription of a structural RNA or an active RNA such as a ribozyme, interfering RNA, etc. Often, the polynucleotide will be a gene that is not expressed in nature in the relevant type of plant cell, or is not expressed at the level that the polynucleotide is expressed when expression is achieved by intervention of the hand of man, as described herein. In certain embodiments of the invention, the polynucleotide comprises gene sequences that are not naturally found in the relevant plant cell at all; often including gene

sequences that are naturally found in other cell types or organisms. Alternatively or additionally, a polynucleotide of interest is one that is not naturally associated with the vector sequences with which it is associated according to the present invention. The word polynucleotide is used interchangeably with “nucleic acid” or “nucleic acid molecule” herein.

[0031] *Self-replicate:* As used herein, “self-replicate” refers to the ability of a vector to copy itself inside a host cell. A vector that can “self-replicate” carries sufficient information in its own genetic elements that it does not rely on other genetic elements for its replication. In general, a vector that can self-replicate is one that includes at least one replicase gene such as an RNA polymerase and possibly additional replicase genes such as a helicase, methyltransferase, etc. In certain instances additional sequences, present in *cis* (i.e., as part of the vector sequence) are required or can facilitate self-replication.

[0032] *Vector:* “Vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked and can include a plasmid, cosmid or viral vector. The vector may be capable of autonomous replication. Alternatively or additionally, a vector may provide one or more components necessary or sufficient for self-replication, or for replication or integration of another piece of nucleic acid. Vectors are typically nucleic acids, and may comprise DNA and/or RNA. Preferred vectors are maintained extrachromosomally.

Detailed Description of Certain Preferred Embodiments of the Invention

[0033] *Inventive Vectors*

[0034] As noted above, the present invention provides systems for expressing a polynucleotide or polynucleotides of interest in plants. In preferred embodiments, these systems include one or more viral vector components. A wide variety of viruses are known that infect various plant species, and can be employed for polynucleotide expression according to the present invention. Figure 3 presents a schematic representation of certain families of viruses that infect plants. Appendix A provides a representative list of plant virus families, based on the type of nucleic acid (e.g., dsDNA, ssDNA, ssRNA, dsRNA, or unassigned) that makes up the viral genome. Additional information can be found, for example, in *The Classification and Nomenclature of Viruses*, Sixth Report of the International Committee on Taxonomy of Viruses” (Ed. Murphy et al.), Springer Verlag: New York, 1995, the entire contents of which are incorporated herein by reference (see also, Grierson et al., *Plant Molecular Biology*,

Blackie, London, pp. 126-146, 1984; Gluzman et al., *Communications in Molecular Biology: Viral Vectors*, Cold Spring Harbor Laboratory, NY, pp. 172-189, 1988; Mathew, *Plant Viruses Online* (<http://image.fs.uidaho.edu/vide/>).

[0035] In order to enter and infect a plant cell, plant viruses need to cross the cell wall, in addition to protective layers of waxes and pectins. Most or all plant viruses are thought to rely on mechanical breach of the cell wall, rather than on cell-wall-surface receptors, to enter a cell. Such a breach can be caused, for example, by physical damage to the cell, by an organism such as a bacterium, a fungus, a nematode, an insect, or a mite that can deliver the virus. In the laboratory, viruses are typically administered to plant cells simply by rubbing the virus on the plant.

[0036] Some plant viruses have segmented genomes, in which two or more physically separate pieces of nucleic acid together make up the plant genome. In some cases, these separate pieces are packaged together in the same viral capsid; in others (i.e., those with multipartite genomes), each genome segment is packaged into its own viral particle. Infection can typically be accomplished by delivery either of plant viral nucleic acid (e.g., RNA) or capsid.

[0037] Once the virus has entered (infected) a cell, it typically replicates within the infected cell and then spreads locally (i.e., from cell to cell within leaves that were infected initially). Following local spread, the virus may move into uninfected leaves, e.g., upper leaves of the plant, which is referred to as systemic infection or systemic spread. In general, cell-to-cell spread of many plant viruses requires a functional movement protein while systemic spread requires a functional coat protein (and, generally, also a functional movement protein). In addition to functional movement and coat protein encoding components, viruses may contain additional components that are either required for local or systemic spread or facilitate such spread. These *cis*-acting components may be either coding or noncoding components. For example, they may correspond to portions of a 3' untranslated region (UTR, also referred to as NTR) of a viral transcript (i.e., they may provide a template for transcription of a 3' untranslated region of a viral transcript). Thus important viral components for infection can be either coding or noncoding regions of a viral genome. By “functional protein encoding component” is meant a polynucleotide comprising a coding portion that encodes a functionally

active protein, operably linked to sufficient regulatory elements such as a promoter, so that expression is achieved.

[0038] In order to successfully establish either a local (intraleaf) or systemic infection a virus must be able to replicate. Many viruses contain genes encoding one or more proteins that participate in the replication process (referred to herein as replication proteins or replicase proteins). For example, many RNA plant viruses encode an RNA polymerase. Additional proteins may also be required, e.g., helicase or methyltransferase protein(s). The viral genome may contain various sequence components in addition to functional genes encoding replication proteins, which are also required for or facilitate replication.

[0039] Any virus that infects plants may be used to prepare a viral vector or vector system in accordance with the present invention. Particularly preferred viruses are ssRNA viruses, most desirably with a (+)-stranded genome. Techniques and reagents for manipulating the genetic material present in such viruses are well known in the art. Typically, for example, a DNA copy of the viral genome is prepared and cloned into a microbial vector, particularly a bacterial vector. Certain ssDNA viruses, including particularly geminiviruses, are also particularly preferred. It will be appreciated that in general the vectors and viral genomes of the invention may exist in RNA or DNA form. In addition, where reference is made to a feature such as a genome or portion thereof of an RNA virus, which is present within a DNA vector, it is to be understood that the feature is present as the DNA copy of the RNA form.

[0040] Viruses of a number of different types may be used in accordance with the invention. Preferred viruses include members of the *Bromoviridae* (e.g., bromoviruses, alfamoviruses, ilarviruses) and *Tobamoviridae*. Certain preferred virus species include, for example, Alfalfa Mosaic Virus (AlMV), Apple Chlorotic Leaf Spot Virus, Apple Stem Grooving Virus, Barley Stripe Mosaic Virus, Barley Yellow Dwarf Virus, Beet Yellow Virus, Broad Bean Mottle Virus, Broad Bean Wilt Virus, Brome Mosaic Virus (BMV), Carnation Latent Virus, Carnation Mottle Virus, Carnation Ringspot Virus, Carrot Mottle Virus, Cassava Latent Virus (CLV), Cowpea Chlorotic Mottle Virus, Cowpea Mosaic Virus (CPMV), Cucumber Green Mottle Mosaic Virus, Cucumber Mosaic Virus, Lettuce Infectious Yellow Virus, Maize Chlorotic Mottle Virus, Maize Rayado Fino Virus, Maize Streak Virus (MSV), Parsnip Yellow Fleck Virus, Pea Enation Mosaic Virus, Potato Virus X, Potato Virus Y, Raspberry Bushy Dwarf Virus, Rice Necrosis Virus (RVN), Rice Stripe Virus, Rice Tungro Spherical Virus, Ryegrass Mosaic

Virus, Soil-borne Wheat Mosaic Virus, Southern Bean Mosaic Virus, Tobacco Etch Virus (TEV), Tobacco Mosaic Virus (TMV), Tobacco Necrosis Virus, Tobacco Rattle Virus, Tobacco Ring Spot Virus, Tomato Bushy Stunt Virus, Tomato Golden Mosaic Virus (TGMV), and Turnip Yellow Mosaic Virus (TYMV).

[0041] Elements of these plant viruses are genetically engineered according to known techniques (see, for example, (see, for example, Sambrook et al., *Molecular Cloning*, 2nd Edition, Cold Spring Harbor Press, NY, 1989; Clover et al., *Molecular Cloning*, IRL Press, Oxford, 1985; Dason et al., *Virology*, 172:285-292, 1989; Takamatsu et al., *EMBO J.* 6:307-311, 1987; French et al., *Science* 231: 1294-1297, 1986; Takamatsu et al., *FEBS Lett.* 269:73-76, 1990; Yusibov and Loesch-Fries, *Virology*, 208(1): 405-7, 1995. Spitsin et al., *Proc Natl Acad Sci U S A*, 96(5): 2549-53, 1999, etc.) to generate viral vectors for use in accordance with the present invention. According to the present invention, at least two vectors are employed, one or both of which are incapable of systemic infection, but which together provide all functions needed to support systemic infection of at least one of the vectors and allow expression of a polynucleotide of interest throughout the plant. Thus the invention provides the recognition that viral components can complement each other in *trans*, to provide systemic infection capability.

[0042] In particular, according to the invention, a *producer vector* is prepared. This vector includes a polynucleotide of interest under control of regulatory sequences that direct expression in the relevant plant host. In preferred embodiments, the polynucleotide is placed under control of a viral promoter, for example the CP promoter. For instance, it will often be desirable to replace the natural viral CP gene with the polynucleotide of interest. The producer vector lacks one or more components required for systemic movement. For example, in certain preferred embodiments of the invention the producer vector does not contain sequences sufficient for expression of functional CP (e.g., a CP gene), but may include a gene encoding a cell-to-cell movement protein. The producer vector may contain one or more sequence elements, e.g., an origin of assembly, that may be required in *cis* to facilitate spread of the virus when present in *cis*. For example, the producer vector may contain an origin of assembly that is needed for or facilitates activity of a CP, either from the same type of virus as the producer virus or from another virus. Such sequence elements may comprise a recognition site for a CP. In other embodiments of the invention the producer vector may lack sequences sufficient for

expression of functional MP and/or replicase proteins. In these embodiments of the invention the producer vector may or may not lack sequences sufficient for expression of functional CP.

[0043] According to the invention, a *carrier vector* is also prepared. This vector complements the producer vector, i.e., it provides components needed for systemic infection that are missing in the producer vector. For example, certain preferred carrier vectors include a functional coat protein encoding component. These carrier vectors are suitable for complementing a producer vector that lacks a functional coat protein encoding component. The carrier vector may lack at least one viral component (e.g., a gene encoding a replicase or movement protein) required for successful systemic infection of a plant, provided that such component is not also absent in the producer vector. The carrier vector may include a polynucleotide of interest (which may be the same as or different from the polynucleotide of interest in the producer vector). In such cases it may be desirable to use a carrier vector that is defective for systemic infection, e.g., because it lacks one or more necessary *cis*-acting sequences, in order to minimize spread of the recombinant carrier vector to non-target plants.

[0044] The carrier vector may (but need not) include a cell-to-cell movement component (e.g., a gene encoding a cell-to-cell movement protein or a noncoding component that is needed for cell-to-cell movement) and/or may lack one or more replicase protein encoding components. In those embodiments of the invention in which the carrier vector does not include a cell-to-cell movement component (e.g., a functional MP encoding portion), such a component should be included in the producer vector.

[0045] A complete inventive vector set includes all components necessary for successful systemic viral infection and expression of a polynucleotide of interest. The term "component" is intended to include both protein coding sequences and non-coding sequences such as *cis*-acting sequences (e.g., promoters, origin of assembly, portions corresponding to untranslated regions in mRNA). Different vectors, or vector elements, may be derived from different plant viruses (see, for example, Examples 1 and 4). In fact, as discussed herein, it will often be desirable to prepare inventive vectors from elements of different viruses in order to take advantage of different viral characteristics (e.g., host range, promoter activity level, virion dimensions, etc.).

[0046] In one particularly preferred embodiment of the invention, a producer vector is provided that includes a polynucleotide of interest, a replicase gene, and a movement protein

gene and lacks a functional coat protein encoding component, and a carrier vector is provided that expresses a coat protein gene. For example, as described in more detail in the Examples, a producer vector may comprise a TMV-based vector in which the TMV CP coding sequence has been replaced by a polynucleotide of interest, under control of the TMV CP promoter. This producer vector is unable to move systemically. A wild type AlMV vector can serve as the carrier vector. The AlMV vector comprises a functional coat protein encoding component. Co-infection with both producer and carrier vectors allows the CP produced from the AlMV vector CP coding sequence to complement the TMV-based vector, resulting in systemic movement of the TMV-based vector and expression of the polynucleotide in leaves that were not initially infected. Alternately, an AlMV-based vector in which one or more viral components other than those required for expression of AlMV CP has been removed can be used (e.g., an AlMV-based vector lacking functional MP or replication protein coding components), provided that functional CP coding sequences and an operably linked promoter are present. The CP can be from AlMV or from another virus.

[0047] In certain embodiments of the invention the CP allows for systemic movement of the carrier vector, while in other embodiments a CP is selected that does not allow for systemic movement of the carrier vector but does allow for systemic movement of the producer vector. In those embodiments of the invention in which the carrier vector lacks one or more of the viral components other than those required for expression of AlMV CP, the producer vector may complement the carrier vector, i.e., the producer vector may supply a component such as a functional MP or replicase protein coding sequence that allows for cell-to-cell movement or replication, respectively, of the carrier vector (and, preferably, also the producer vector). It will be appreciated that where either the producer or the carrier is lacking a replication protein encoding component (e.g., a functional RNA polymerase coding component) and the other vector (carrier or producer, respectively) supplies the missing component, it will often be desirable to insert a promoter (e.g., a genomic promoter) from the vector that supplies the functional replication component into the vector lacking the functional replication protein coding component in order to achieve effective trans-complementation of replication function.

[0048] Another example of a preferred inventive viral vector system includes a producer vector in which a polynucleotide of interest is inserted into an AlMV vector, replacing the native AlMV CP encoding component. The polynucleotide of interest is placed under control

of the AlMV CP promoter. This producer vector is incapable of systemic infection since it lacks CP but is able to replicate and move cell-to-cell within an infected leaf. The system also includes a cauliflower mosaic virus (CMV)-based carrier vector in which an AlMV CP encoding portion, with or without the AlMV CP 3' UTR is inserted into a CMV vector, replacing the CMV CP encoding component found in the genome of naturally occurring CMV. The AlMV CP encoding component is placed under control of the CMV CP promoter. This vector expresses AlMV CP. Co-infection with the producer and carrier vectors allows CP expressed from the carrier vector to trans-complement the producer vector's lack of functional CP encoding components, allowing systemic movement of the producer vector. The AlMV CP also allows systemic movement of the carrier vector.

[0049] In certain embodiments of the invention it is desirable to insert a portion of coding or noncoding sequence from the carrier vector into the producer vector, or vice versa. For example, certain sequences may enhance replication or facilitate cell-to-cell or long distance movement. In particular, certain sequences may serve as recognition sites for formation of a complex between a viral transcript and a CP (e.g., an origin of assembly). In such a case, if systemic movement of a first viral vector is to be achieved using CP provided in trans from a second viral vector, it may be desirable to insert such sequences from the second viral vector that facilitate activity of the CP into the first viral vector. Such sequences may comprise, for example, part or all of a viral transcript 3' UTR. As described in Example 4, in certain embodiments of the invention part or all of the RNA3 3' UTR of AlMV is inserted into a different viral vector, e.g., a TMV-based vector. Including this component in the TMV-based vector facilitates the ability to AlMV CP to trans-complement a TMV-based vector that lacks a functional TMV CP encoding portion. It will be appreciated that this general principle may be applied to any viral vector system comprising trans-complementing vectors, e.g. trans-complementing producer and carrier vector systems.

[0050] As will be appreciated by those of ordinary skill in the art, so long as a vector set includes a producer vector that is incapable of systemic viral infection (i.e., lacking one or more functional replication protein, movement protein, or coat protein encoding components) and a carrier vector that provides the function(s) lacking in the producer vector, that set is appropriate for use in accordance with the present invention. In certain embodiments of the invention no individual vector is capable of systemic viral infection but, as a set, one or both of the vectors is

competent for such infection and expression of the polynucleotide of interest. Such a system offers a number of advantages. For example, it will be appreciated that if the producer vector infects a plant in the absence of the carrier vector, no systemic infection will result. This diminishes the risk that the polynucleotide of interest will be expressed in unintended (non-target) plants, even of the same species as the target plant. In particular, if the carrier vector is not competent for replication or cell-to-cell movement (because it lacks a component required for replication or cell-to-cell movement) or if it is incompetent for systemic infection (e.g., because it lacks a *cis*-acting sequence such as an origin of assembly that is required for long distance movement), the likelihood that both producer and carrier vectors will co-infect an unintended plant host are greatly reduced.

[0051] Generally, in order to preserve viral function and also simply for ease of genetic manipulation, inventive vectors will be prepared by altering an existing plant virus genome, for example by removing particular genes and/or by disrupting or substituting particular sequences so as to inactivate or replace them. In such circumstances, the inventive vectors will show very high sequence identity with natural viral genomes. Of course, completely novel vectors may also be prepared, for example, by separately isolating individual desired genetic elements and linking them together, optionally with the inclusion of additional elements. Also, it should be noted that where a particular vector is said to lack a given gene, protein, or activity (e.g., the producer vector lacks a coat protein gene), it is sufficient if no such protein or activity is expressed from the vector under conditions of infection, even though the vector may still carry the relevant coding sequence. In general, however, it is typically desirable to remove the relevant coding sequences from the vector.

[0052] Analogously, when an inventive vector is said to affirmatively express a particular protein or activity, it is not necessary that the relevant gene be identical to the corresponding gene found in nature. For instance, it has been found that the coat protein can sometimes tolerate small deletions (see, for example WO 00/46350, incorporated herein by reference). So long as the protein is functional, it may be used in accordance with the present invention. Very high sequence identity with the natural protein, however, is generally preferred. For instance, large deletions (e.g., greater than about 25 amino acids) should generally be avoided according to certain embodiments of the invention. Typically, viral proteins expressed in accordance with the present invention will show at least 50%, preferably 60%, 70%, 80%, 85%, 90%, 91%,

92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity with the corresponding natural viral protein. More particularly, the inventive viral protein should typically show 100% identity with critical functional portions (typically of at least several amino acids, often of at least 10, 20, 30, 40, 50 or more amino acids) of the relevant natural viral protein.

[0053] It is noted that in the case of many proteins a number of amino acid changes can be made without significantly affecting the functional activity and/or various other properties of the protein such as stability, etc. In particular, many proteins tolerate conservative amino acid changes, i.e., the substitution of an amino acid with a different amino acid having similar properties (conservative substitution) at many positions without significant reduction in activity. Conservative amino acid substitution is well known in the art and represents one approach to obtaining a polypeptide having similar or substantially similar properties to those of a given polypeptide while altering the amino acid sequence. In general, amino acids have been classified and divided into groups according to (1) charge (positive, negative, or uncharged); (2) volume and polarity; (3) Grantham's physico-chemical distance; and combinations of these. See, e.g., Zhang, J., *J. Mol. Evol.*, 50: 56-68, 2000; Grantham R., *Science*, 85: 862-864, 1974; Dagan, T., *et al.*, *Mol. Biol. Evol.*, 19(7), 1022-1025, 2002; *Biochemistry*, 4th Ed., Stryer, L., *et al.*, W. Freeman and Co., 1995; and U.S. Patent No. 6,015,692. For example, amino acids may be divided into the following 6 categories based on volume and polarity: special (C); neutral and small (A, G, P, S, T); polar and relatively small (N, D, Q, E), polar and relatively large (R, H, K), nonpolar and relatively small (I, L, M, V), and nonpolar and relatively large (F, W, Y). A conservative amino acid substitution may be defined as one that replaces one amino acid with an amino acid in the same group. Thus a variety of functionally equivalent proteins can be derived by making one or more conservative amino acid substitutions in a given viral protein.

Plants

[0054] Any plant susceptible to viral infection may be utilized in accordance with the present invention. In general, it will often be desirable to utilize plants that are amenable to growth under defined conditions, for example in a greenhouse and/or in aqueous systems. It may also be desirable to select plants that are not typically consumed by human beings or domesticated animals and/or are not typically part of the human food chain, so that they may be

grown outside without concern that the expressed polynucleotide may be undesirably ingested. In other embodiments, however, it will be desirable to employ edible plants.

[0055] Often, certain desirable plant characteristics will be determined by the particular polynucleotide to be expressed. To give but a few examples, when the polynucleotide encodes a protein to be produced in high yield (as will often be the case, for example, when therapeutic proteins are to be expressed), it will often be desirable to select plants with relatively high biomass (e.g., tobacco, which has the additional advantages that it is highly susceptible to viral infection, has a short growth period, and is not in the human food chain). Where the polynucleotide encodes a protein whose full activity requires (or is inhibited by) a particular post-translational modification, the ability (or inability) of certain plant species to accomplish the relevant modification (e.g., a particular glycosylation) may direct selection.

[0056] In certain preferred embodiments of the invention, crop plants, or crop-related plants are utilized. In some particularly preferred embodiments, edible plants are utilized.

[0057] Preferred plants for use in accordance with the present invention include Angiosperms, Bryophytes (e.g., Hepaticae, Musci, etc.), Pteridophytes (e.g., ferns, horsetails, lycopods), Gymnosperms (e.g., conifers, cycase, Ginko, Gnetales), and Algae (e.g., Chlorophyceae, Phaeophyceae, Rhodophyceae, Myxophyceae, Xanthophyceae, and Euglenophyceae). Particularly preferred are members of the family Leguminosae (Fabaceae; e.g., pea, alfalfa, soybean); Gramineae (Poaceae; e.g., corn, wheat, rice); Solanaceae, particularly of the genus *Lycopersicon* (e.g., tomato), *Solanum* (e.g., potato, eggplant), *Capsicum* (e.g., pepper), or *Nicotiana* (e.g., tobacco); Umbelliferae, particularly of the genus *Daucus* (e.g., carrot), *Apium* (e.g., celery), or *Rutaceae* (e.g., oranges); Compositae, particularly of the genus *Lactuca* (e.g., lettuce); Brassicaceae (Cruciferae), particularly of the genus *Brassica* or *Sinapis*. Particularly preferred Brassicaceae family members include *Brassica campestris*, *B. carinata*, *B. juncea*, *B. napus*, *B. nigra*, *B. oleracea*, *B. tournefortii*, *Sinapis alba*, and *Raphanus sativus*.

[0058] The inventive system may be employed to infect, and/or to express a polynucleotide in plants at any stage of development including, for example, mature plants, seedlings, sprouts, and seeds. The system may be employed to infect any part of a plant (e.g., roots, leaves, stems, etc.) In particularly preferred embodiments of the invention, the system is used to infect sprouts. Generally, a plant is considered to be a sprout when it is a seedling that does not require external nutrients or energy in the form of light or heat beyond what is required to

achieve normal germination temperatures. Often, a seedling that is less than two weeks old, preferably less than 10 days old, is considered to be a sprout.

Polynucleotides of Interest

[0059] The teachings of the present invention may be employed to deliver to and/or express in plant cells any polynucleotide of interest. For example, protein-coding polynucleotides may express enzymes, antibodies, hormones, cytokines, regulatory factors, structural proteins, or any other protein or polypeptide of interest. Encoded proteins may be naturally-occurring proteins, or may be designed or engineered proteins, including for instance fusion proteins (e.g., fusion proteins incorporating part or all of a plant virus protein such as MP or CP). In certain embodiments of the invention the polynucleotide of interest comprises a portion encoding a tag, e.g., a 6X-His tag, HA tag, Myc tag, FLAG tag, etc. Such tags may simplify the isolation and/or purification of the protein. In certain embodiments of the invention the tag is a cleavable tag, e.g., a tag cleavable by a protease such as thrombin, so that the tag can readily be removed after purification, resulting in a protein with wild type sequence.

[0060] In some instances, it may be desirable to utilize the inventive system to express more than one polypeptide chain in the same host plant (e.g., using two different producer vectors, inserting two different polynucleotides into one producer vector, or inserting one polynucleotide into the producer vector and one into the carrier vector), for example in order to produce a multimeric protein or to simultaneously produce two different proteins).

[0061] For instance, in certain preferred embodiments of the invention, the present invention employs a polynucleotide that encodes a therapeutically active protein. Exemplary proteins that have been approved for therapeutic uses include, for example, insulin, human growth hormone, interferons, albumin, tPA, erythropoietin, interleukins, factor VIII, DNase, factor IX, PDGF, FSH, TNF receptor (soluble form), calcitonin, and a variety of immunoglobulins. Of course, the invention is not limited to such approved proteins, but encompasses expression of any polynucleotide(s), whether protein-coding or not, and particularly encompasses expression of any polynucleotide encoding any therapeutically active protein, whether prokaryotic or eukaryotic in origin, etc.

[0062] Generally, the pharmaceutical proteins of interest include, but are not limited to, hormones (insulin, thyroid hormone, catecholamines, gonadotrophines, trophic hormones,

prolactin, oxytocin, dopamine, bovine somatotropin, leptins and the like), growth hormones (e.g., human growth hormone), growth factors (e.g., epidermal growth factor, nerve growth factor, insulin-like growth factor and the like), growth factor receptors, cytokines and immune system proteins (e.g., interleukins, colony stimulating factor (CSF), granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), erythropoietin, tumor necrosis factor (TNF), interferons, integrins, addressins, selectins, homing receptors, T cell receptors, immunoglobulins, soluble major histocompatibility complex antigens, immunologically active antigens such as bacterial, parasitic, or viral antigens or allergens), autoantigens, antibodies), enzymes (tissue plasminogen activator, streptokinase, cholesterol biosynthetic or degradative, steroidogenic enzymes, kinases, phosphodiesterases, methylases, de-methylases, dehydrogenases, cellulases, proteases, lipases, phospholipases, aromatases, cytochromes, adenylate or guanylase cyclases, neuramidases and the like), receptors (steroid hormone receptors, peptide receptors), binding proteins (steroid binding proteins, growth hormone or growth factor binding proteins and the like), transcription and translation factors, oncogenes or proto-oncogenes (e.g., cell cycle proteins), muscle proteins (myosin or tropomyosin and the like), myeloproteins, neuroactive proteins, tumor growth suppressing proteins (angiostatin or endostatin, both of which inhibit angiogenesis), anti-sepsis proteins (bactericidal permeability-increasing protein), structural proteins (such as collagen, fibronectin, fibrinogen, elastin, tubulin, actin, and myosin), blood proteins (thrombin, serum albumin, Factor VII, Factor VIII, insulin, Factor IX, Factor X, tissue plasminogen activator, Protein C, von Willebrand factor, antithrombin III, glucocerebrosidase, erythropoietin, granulocyte colony stimulating factor (G-CSF) or modified Factor VIII, anticoagulants such as hirudin) and the like.

[0063] In one particular example, the present invention may be utilized to produce vaccine components. In general, it is desirable to include in vaccines proteins, or portions of proteins, to which a human or animal immune system is exposed when the human or animal is infected with a pathogen, or suffering some other undesirable event (e.g., development of a tumor). Thus, proteins or polypeptides that may be formulated in a vaccine include, for example, viral coat proteins, viral G proteins, microbial cell wall proteins, microbial toxin proteins, tumor-specific antigens, etc.

[0064] In other embodiments, the inventive system may be used to express a polynucleotide encoding an enzyme that synthesizes or modifies a biologically active agent. For instance, certain enzymes (e.g., polyketide synthases, polypeptide synthetases, terpene synthases, etc.) synthesize small molecules with interesting biological activities, including therapeutic activities (e.g., antibiotic, anticancer, immunosuppressive activities, etc.). Also, a large number of enzymes that modify protein or small molecule substrates (e.g., kinases, hydrolases, transferases, etc.) is known. See U.S. Patent No. 6,500,644 for additional proteins that can be desirably expressed in plants using the inventive systems described herein.

[0065] In other embodiments, the inventive system may be used to produce diagnostic or research reagents including, for example, antibodies.

[0066] In yet other embodiments, the inventive system may be utilized to produce nutritionally relevant proteins or other products. Nutritionally relevant proteins include, for example, proteins that are found naturally in foods consumed by humans or domesticated animals (e.g., cats, dogs). Other examples include proteins having a balanced amino acid composition, e.g., proteins having a composition such as those used for total parenteral nutrition (TPN), etc.

[0067] In still other embodiments, the inventive system may be utilized to express polynucleotides that do not necessarily encode proteins, for example to produce active RNA species, e.g., ribozymes or interfering RNAs that silence gene expression (either long double-stranded RNAs or short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs). In some embodiments, ribozymes or interfering RNAs may be produced that target plant genes, so that an altered plant is created, for example that does not express a particular receptor for a plant pathogen, or a particular allergenic protein.

Introducing Vectors Into Plants

[0068] In general, inventive viral vectors may be delivered to plants according to known techniques. For example, the vectors themselves may be directly applied to plants (e.g., via abrasive inoculations, mechanized spray inoculations, vacuum infiltration, particle bombardment, or electroporation). Alternatively, virions may be prepared (e.g., from already infected plants), and may be applied to other plants according to known techniques.

[0069] As noted above, in particularly preferred embodiments of the present invention, viral vectors are applied to sprouts (e.g., through infiltration or mechanical inoculation [spray]).

[0070] Where infection is to be accomplished by direct application of a viral genome to a plant, any available technique may be used to prepare the genome. For example, many viruses that are usefully employed in accordance with the present invention have ssRNA genomes. ssRNA may be prepared by transcription of a DNA copy of the genome, or by replication of an RNA copy, either *in vivo* or *in vitro*. Given the readily availability of easy-to-use *in vitro* transcription systems (e.g., SP6, T7, reticulocyte lysate, etc.), and also the convenience of maintaining a DNA copy of an RNA vector, it is expected that inventive ssRNA vectors will often be prepared by *in vitro* transcription, particularly with T7 or SP6 polymerase.

Isolation and/or Formulation of Polynucleotide Expression Products

[0071] In many embodiments of the present invention, it will be desirable to isolate polynucleotide expression products from the plant tissues that express them. It may also be desirable to formulate such isolated products for their intended use (e.g., as a pharmaceutical or diagnostic agent, or as a reagent, etc.). In other embodiments, it will be desirable to formulate the products together with some or all of the plant tissues that express them.

[0072] Where it is desirable to isolate the expression product from some or all of the plant tissue that expresses it, any available purification techniques may be employed. Those of ordinary skill in the art are familiar with a wide range of fractionation and separation procedures (see, for example, Scopes et al., *Protein Purification: Principles and Practice*, 3rd Ed., Janson et al., *Protein Purification: Principles, High Resolution Methods, and Applications*, Wiley-VCH, 1998; Springer-Verlag, NY, 1993; Roe, *Protein Purification Techniques*, Oxford University Press, 2001, each of which is incorporated herein by reference). Often, it will be desirable to render the product more than about 50%, preferably more than about 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% pure.

[0073] Where it is desirable to formulate the product together with the plant material, it will often be desirable to have utilized a plant that is not toxic to the relevant recipient (e.g., a human or other animal). Relevant plant tissue (e.g., leaves) may simply be harvested and processed according to techniques known in the art, with due consideration to maintaining activity of the expressed product. In certain embodiments of the invention, it is desirable to have expressed

the polynucleotide in an edible plant (and, specifically in edible portions of the plant) so that the material can subsequently be eaten. For instance, where the polynucleotide encodes a nutritionally relevant protein, or a therapeutic protein that is active after oral delivery (when properly formulated), it may be desirable to produce the protein in an edible plant portion, and to formulate the expressed polynucleotide for oral delivery together with the some or all of the plant material with which the polynucleotide was expressed.

[0074] Where the polynucleotide encodes or produces a therapeutic agent, it may be formulated according to known techniques. For example, an effective amount of a pharmaceutically active product can be formulated together with one or more organic or inorganic, liquid or solid, pharmaceutically suitable carrier materials. A pharmaceutically active product produced according to the present invention may be employed in dosage forms such as tablets, capsules, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, powder packets, liquid solutions, solvents, diluents, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, and solid bindings, as long as the biological activity of the protein is not destroyed by such dosage form.

[0075] Materials that can serve as pharmaceutically acceptable carriers include, but are not limited to sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening agents, flavoring agents, and perfuming agents, preservatives, and antioxidants can also be present in the composition, according to the judgment of the formulator (see also *Remington's Pharmaceutical Sciences*, Fifteenth Edition, E.W. Martin (Mack Publishing Co., Easton PA, 1975). For example, the polynucleotide expression product may be provided as a pharmaceutical composition by means of conventional mixing, granulating, dragee-making, dissolving, lyophilizing, or similar processes.

[0076] In certain preferred embodiments, it may be desirable to prolong the effect of a pharmaceutical preparation by slowing the absorption of the pharmaceutically active product (e.g., protein) that is subcutaneously or intramuscularly injected. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the product then depends upon its rate of dissolution, which in turn, may depend upon size and form. Alternatively, delayed absorption of a parenterally administered product is accomplished by dissolving or suspending the product in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the protein in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of product to polymer and the nature of the particular polymer employed, the rate of release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations may be prepared by entrapping the product in liposomes or microemulsions, which are compatible with body tissues.

[0077] Enterally administered preparations of pharmaceutically active products may be introduced in solid, semi-solid, suspension or emulsion form and may be compounded with any pharmaceutically acceptable carriers, such as water, suspending agents, and emulsifying agents. The expression products may also be administered by means of pumps or sustained-release forms, especially when administered as a preventive measure, so as to prevent the development of disease in a subject or to ameliorate or delay an already established disease.

[0078] Pharmaceutically active products, optionally together with plant tissue, are particularly well suited for oral administration as pharmaceutical compositions. Harvested plant material may be processed in any of a variety of ways (e.g., air drying, freeze drying, extraction etc.), depending on the properties of the desired therapeutic product and its desired form. In preferred embodiments, such compositions as described above are ingested orally alone or ingested together with food or feed or a beverage. Compositions for oral administration include infected plants; extractions of the infected plants, and proteins purified from infected plants provided as dry powders, foodstuffs, aqueous or non-aqueous solvents, suspensions, or emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oil, fish oil, and injectable organic esters. Aqueous carriers include water, water-alcohol solutions, emulsions or suspensions, including saline and buffered medial parenteral vehicles including sodium chloride solution, Ringer's dextrose solution, dextrose plus sodium

chloride solution, Ringer's solution containing lactose or fixed oils. Examples of dry powders include any infected plant biomass that has been dried, for example, freeze dried, air dried, or spray dried. For example, the plants may be air dried by placing them in a commercial air dryer at about 120 degrees Fahrenheit until the biomass contains less than 5% moisture by weight. The dried plants may be stored for further processing as bulk solids or further processed by grinding to a desired mesh sized powder. Alternatively, freeze-drying may be used for products that are sensitive to air-drying. Products may be freeze dried by placing them into a vacuum drier and dried frozen under a vacuum until the biomass contains less than about 5% moisture by weight. The dried material can be further processed as described herein.

[0079] Infected plants of the present invention may be administered as or together with one or more herbal preparations. Useful herbal preparations include liquid and solid herbal preparations. Some examples of herbal preparations include tinctures, extracts (e.g., aqueous extracts, alcohol extracts), decoctions, dried preparations (e.g., air-dried, spray dried, frozen, or freeze-dried), powders (e.g., lyophilized powder), and liquid. Herbal preparations can be provided in any standard delivery vehicle, such as a capsule, tablet, suppository, liquid dosage, etc. Those skilled in the art will appreciate the various formulations and modalities of delivery of herbal preparations that may be applied to the present invention.

[0080] Those skilled in the art will also appreciate that a particularly preferred method of obtaining the desired pharmaceutically active products is by extraction. Infected plants may be extracted to remove the desired products from the residual biomass, thereby increasing the concentration and purity of the product. Plants may also be extracted in a buffered solution. For example, the fresh harvested plants may be transferred into an amount of ice-cold water at a ratio of one to one by weight that has been buffered with, e.g., phosphate buffer. Protease inhibitors can also be added as required. The plants can be disrupted by vigorous blending or grinding while suspended in the buffer solution and the extracted biomass removed by filtration or centrifugation. The transgene product carried in solution can be further purified by additional steps or converted to a dry powder by freeze-drying or precipitation. Extraction can also be carried out by pressing. Live plants can also be extracted by pressing in a press or by being crushed as they are passed through closely spaced rollers. The fluids expressed from the crushed plants are collected and processed according to methods well known in the art. Extraction by pressing allows the release of the products in a more concentrated form.

However, the overall yield of the product may be lower than if the product were extracted in solution.

[0081] Inventive infected plants, extractions, powders, dried preparations and purified protein products, etc., can also be in encapsulated form with or without one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active product may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such as magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.

[0082] In other particularly preferred embodiments, an infected plant expressing a pharmaceutically active product according to the present invention, or biomass of an infected plant, is administered orally as medicinal food. Such edible compositions are consumed by eating raw, if in a solid form, or by drinking, if in liquid form. In a preferred embodiment, the transgenic plant material is directly ingested without a prior processing step or after minimal culinary preparation. For example, the pharmaceutically active protein is expressed in a sprout of which can be eaten directly. For example, the polynucleotide is expressed in an alfalfa sprout, mung bean sprout, or spinach or lettuce leaf sprout, etc. In an alternative embodiment, the plant biomass is processed and the material recovered after the processing step is ingested.

[0083] Processing methods preferably used in the present invention are methods commonly used in the food or feed industry. The final products of such methods still include a substantial amount of the expressed pharmaceutically active polynucleotide and are preferably conveniently eaten or drunk. The final product may also be mixed with other food or feed forms, such as salts, carriers, flavor enhancers, antibiotics, and the like, and consumed in solid, semi-solid, suspension, emulsion, or liquid form. In another preferred embodiment, such methods include a conservation step, such as, e.g., pasteurization, cooking, or addition of

conservation and preservation agents. Any plant is used and processed in the present invention to produce edible or drinkable plant matter. The amount of pharmaceutically active polynucleotide expression product in an edible or drinkable sprout preparation may be tested by methods standard in the art, e.g., gel electrophoresis, ELISA, or Western blot analysis, using an antibody specific for the product. This determination may be used to standardize the amount of protein ingested. For example, the amount of therapeutically active product in a sprout juice determined and regulated, for example, by mixing batches of product having different levels of protein so that the quantity of juice to be drunk to ingest a single dose can be standardized. The contained, regulatable environment of the present invention, however, should minimize the need to carry out such standardization procedures.

[0084] A pharmaceutically active protein produced in an infected plant and eaten by a host is absorbed by the digestive system. One advantage of the ingestion of infected plant tissue that has been only minimally processed, is to provide encapsulation or sequestration of the protein in cells of the plant. Thus, the protein may receive at least some protection from digestion in the upper digestive tract before reaching the gut or intestine and a higher proportion of active would be available for uptake.

[0085] The pharmaceutical compositions of the present invention can be administered therapeutically or prophylactically. In certain preferred embodiments, the compositions may be used to treat or prevent a disease. For example, any individual who suffers from a disease or who is at risk of developing a disease may be treated. It will be appreciated that an individual can be considered at risk for developing a disease without having been diagnosed with any symptoms of the disease. For example, if the individual has a particular genetic marker identified as being associated with increased risk for developing a particular disease, that individual will be considered at risk for developing the disease. Similarly, if members of an individual's family have been diagnosed with a particular disease, e.g., cancer, the individual may be considered to be at risk for developing that disease.

[0086] Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl

alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

[0087] Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compositions of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active protein.

[0088] Dosage forms for topical or transdermal administration of a pharmaceutical composition of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active product, or preparation thereof, is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, eardrops, and eye drops are also contemplated as being within the scope of this invention. Additionally, the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a pharmaceutically active protein to the body. Such dosage forms can be made by suspending or dispersing the pharmaceutically active product in the proper medium. Absorption enhancers can also be used to increase the flux of the pharmaceutically active protein across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the pharmaceutically active protein in a polymer matrix or gel.

[0089] The compositions are administered in such amounts and for such time as is necessary to achieve the desired result. As described above, in certain embodiments of the present invention a "therapeutically effective amount" of a pharmaceutical composition is that amount effective for treating, attenuating, or preventing a disease in a host. Thus, the "amount effective to treat, attenuate, or prevent disease", as used herein, refers to a nontoxic but sufficient amount of the pharmaceutical composition to treat, attenuate, or prevent disease in any host. As but one example, the "therapeutically effective amount" can be an amount to treat, attenuate, or prevent diabetes.

[0090] The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the stage of the disease, the particular pharmaceutical mixture, its mode of administration, and the like. The infected plants of the invention and/or protein preparations thereof are preferably formulated in dosage unit form for ease of administration and uniformity of dosage. The expression "dosage unit form," as used herein, refers to a physically discrete unit of pharmaceutically active polynucleotide expression product appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compositions of the present invention is preferably decided by an attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient or organism may depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex of the patient, diet of the patient, pharmacokinetic condition of the patient, the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.

[0091] It will also be appreciated that the pharmaceutical compositions of the present invention can be employed in combination therapies, that is, the pharmaceutical compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, an inventive compound may be administered concurrently with another anti-cancer agent), or they may achieve different effects.

Exemplification

Example 1: Construction of Inventive Vectors

[0092] We have prepared vector systems that include components of two heterologous plant viruses in order to achieve a system that readily infects a wide range of plant types and yet

poses little or no risk of infectious spread. In certain preferred embodiments, this system includes components from Alfalfa Mosaic Virus (AlMV) and Tobacco Mosaic Virus (TMV).

[0093] AlMV is an *Alfamovirus*, closely related to the *Ilovirus* group and is a member of the *Bromoviridae* family. The genome of AlMV consists of three positive-sense RNAs (RNAs 1-3) (See Figure 4, which presents accession codes for a variety of AlMV genome sequences). RNAs 1 and 2 encode replicase proteins P1 and P2, respectively; RNA3 encodes the cell-to-cell movement protein P3. A subgenomic RNA, RNA4, is synthesized from RNA3. This subgenomic RNA4 encodes the viral coat protein (CP). CP participates in viral genome activation to initiate infection, RNA replication, viral assembly, viral RNA stability, long-distance movement of viral RNA, and symptom formation. AlMV depends on a functional P3 protein for cell-to-cell movement, and requires the CP protein throughout infection. Depending on the size of the CP-encapsidated viral RNA, virions of AlMV can vary significantly in size (e.g., 30- to 60-nm in length and 18 nm in diameter) and form (e.g., spherical, ellipsoidal, or bacilliform). The host range of AlMV is remarkably wide and includes the agriculturally valuable crops alfalfa (*Medicago sativa*), tomato (*Lycopersicon esculentum*), lettuce (*Lactuca sativa*), common bean (*Phaseolus vulgaris*), potato (*Solanum tuberosum*), white clover (*Trifolium repens*) and soybean (*Glycine max*). Particular susceptible host species include, for example, *Abelmoschus esculentus*, *Ageratum conyzoides*, *Amaranthus caudatus*, *Amaranthus retroflexus*, *Antirrhinum majus*, *Apium graveolens*, *Apium graveolens* var. *rapaceum*, *Arachis hypogaea*, *Astragalus glycyphyllos*, *Beta vulgaris*, *Brassica campestris* ssp. *rapa*, *Calendula officinalis*, *Capsicum annuum*, *Capsicum frutescens*, *Caryopteris incana*, *Catharanthus roseus*, *Celosia argentea*, *Cheiranthus cheiri*, *Chenopodium album*, *Chenopodium amaranticolor*, *Chenopodium murale*, *Chenopodium quinoa*, *Cicer arietinum*, *Cichorium endiva*, *Coriandrum sativum*, *Crotalaria spectabilis*, *Cucumis melo*, *Cucumis sativus*, *Cucurbita pepo*, *Cyamopsis tetragonoloba*, *Daucus carota* (var. *sativa*), *Dianthus barbatus*, *Dianthus caryophyllus*, *Emilia sagittata*, *Fagopyrum esculentum*, *Gomphrena globosa*, *Helianthus annuus*, *Lablab purpureus*, *Lathyrus odoratus*, *Lens culinaris*, *Linum usitatissimum*, *Lupinus albus*, *Macroptilium lathyroides*, *Malva parviflora*, *Matthiola incana*, *Medicago hispida*, *Melilotus albus*, *Nicotiana bigelovii*, *Nicotiana clevelandii*, *Nicotiana debneyi*, *Nicotiana glutinosa*, *Nicotiana megalosiphon*, *Nicotiana rustica*, *Nicotiana sylvestris*, *Nicotiana tabacum*, *Ocimum basilicum*, *Petunia × hybrida*, *Phaseolus lunatus*, *Philadelphus*, *Physalis floridana*, *Physalis peruviana*,

Phytolacca americana, Pisum sativum, Solanum demissum, Solanum melongena, Solanum nigrum, Solanum nodiflorum, Solanum rostratum, Sonchus oleraceus, Spinacia oleracea, Stellaria media, Tetragonia tetragonoides, Trifolium dubium, Trifolium hybridum, Trifolium incarnatum, Trifolium pratense, Trifolium subterraneum, Tropaeolum majus, Viburnum opulus, Vicia faba, Vigna radiata, Vigna unguiculata, Vigna unguiculata ssp. sesquipedalis, and Zinnia elegans.

[0094] TMV is the type member of the tobamovirus group. Tobamoviruses have single- (+)-stranded RNA genomes, and produce rod-shaped virions consisting of the RNA genome and coat protein (CP) polypeptides. Tobamovirus genomes encode 4-5 polypeptides. Two of the polypeptides are translated from the same 5'-proximal initiation codon and function in viral replication. These polypeptides include an RNA-dependent RNA polymerase,. In addition, polypeptides having methyltransferase and RNA helicase activity are typically encoded. The other encoded proteins typically include a movement protein and the coat protein, each of which is translated from a separate subgenomic RNA. Representative examples of tobamovirus genomes are depicted in Figure 1.

[0095] The TMV genome is 6395 nucleotides long and is encapsidated with a 17.5 kD CP, which produces 300 nm-long rods. In addition to CP, TMV has three nonstructural proteins: 183 and 126 kD proteins are translated from genomic RNA and are required for viral replication. The 30 kD movement protein provides for the transfer of viral RNA from cell-to-cell. A representative list of accession codes for TMV genome sequence information is included as Figure 2; Appendices B-F show sequence alignments for the tobamovirus helicase, RNA-dependent RNA polymerase (a replicase), movement protein, coat protein, and methyltransferase genes, respectively, from various tobamoviruses. Plant species susceptible to infection with TMV include *Beta vulgaris*, *Capsicum frutescens*, *Chenopodium amaranticolor*, *Chenopodium hybridum*, *Chenopodium quinoa*, *Cucumis melo*, *Cucumis sativus*, *Cucurbita pepo*, *Datura stramonium*, *Lactuca sativa*, *Lucopersicon esculentum*, *Lycopersicon pimpinellifolium*, *Nicotiana benthamiana*, *Nicotiana bigelovii*, *Nicotiana clevelandii*, *Nicotiana debneyi*, *Nicotiana glutinosa*, *Nicotiana rustica*, *Nicotiana sylvestris*, *Nicotiana tabacum*, *Papaver nudicaule*, *Phaseolus vulgaris*, *Physalis floridana*, *Physalis peruviana*, and *Solanum tuberosum*.

[0096] According to certain embodiments of the present invention, a replication-competent version of either the AlMV or the TMV is generated that lacks long distance mobility but includes a polynucleotide to be expressed in plant tissues, preferably under control of the CP promoter (e.g., in place of the CP gene, so that CP is not functional) as the producer vector. If plants are inoculated with this vector alone, its infection is limited to local tissues (i.e., to cells within the initially infected leaf).

[0097] This replication-competent producer vector is administered together with a separate carrier vector bearing a functional CP. Preferably, transcripts of these two vectors are mixed with one another and are mechanically applied to plant leaves. In other embodiments of the invention described in the detailed description, the carrier vector is incompetent for replication so that no systemic infection results. The producer vector replicates and provides replicase for trans-replication of the replication-defective carrier vector. Replication of (infection with) the producer vector results in the production of the polynucleotide expression product. Replication of the carrier vector provides CP, which supports the movement of both vectors into the upper un-inoculated leaves. Preferably, integration of the vectors into the host genome is avoided, so that transgenic plants are not produced, and the risk that genetic alterations are introduced into the environment is minimized.

[0098] We have constructed a vector based on the Tobacco Mosaic Virus that is adapted for insertion of a polynucleotide of interest to generate a producer vector according to the present invention. Specifically, we have generated vectors that are deficient in CP production (see Figures 8 and 11; vector D4 is represented with a generic polynucleotide inserted; vector SR-27 and related vectors are derived from D4 as described further in Example 4). We have demonstrated that infection with such vectors is limited to locally inoculated leaves. These vectors depends upon a second vector for systemic movement.

[0099] We have used a protoplast system to test vector replication, replication-dependent stability, and efficacy of protein production. We have also inoculated *Nicotiana benthamiana* plants to test the cell-to cell movement and stability of the vector, and have demonstrated systemic infection when this vector is administered together with a wild type AlMV vector including an AlMV CP gene.

[0100] An AlMV-based vector referred to as Av/A4, which contains a functional AlMV coat protein gene, has been constructed. As shown in Figure 5, we have established a tobacco

protoplast system and tested the components of this vector. Depicted is a Western blot showing accumulation of virus coat protein, indicating infection of protoplasts and verifying that we are able to reliably detect expression of CP in our protoplast system.

[00101] As shown in Figures 6 and 7, we have successfully infected two host plant species, *Nicotiana benthamiana* and pepper plants. Figure 6 shows the infected plants; Figure 7 shows a Western blot of upper leaves (not initially infected) analyzed 12 days after inoculation. AlMV CP protein is readily detectable, indicating that we are able to reliably detect expression of CP in infected plant hosts.

Example 2: Expression of a Polynucleotide Encoding Human Growth Hormone

[00102] Figure 8 shows two TMV-based vectors, 125C and D4, that were engineered to accept insertion of a polynucleotide of interest, following insertion of the polynucleotide (indicated as "foreign gene"). 125C includes TMV coat protein sequences (i.e. sequences extending downstream from nucleotide 5757 of the TMV genome) that contain a *cis* element that may be required for optimal replication. We inserted the gene for human growth hormone (hGH) into each of these vectors between the *Pac1* and *Xho1* sites. An AUG was introduced in the 5' primer used to amplify the gene from a plasmid, and the amino acids KDEL were introduced at the 3' end of the coding sequence in order to enhance translation due to retention in the ER. HGH was cloned with and without its native leader sequence; hGH2 lacks the leader and hGH4 includes the leader.

[00103] Primer SR22 (5'-CCG TTAATTAATG TTC CCA ACT ATT CCA) was used to clone hGH without its leader, and introducing a *Pac1* site at the 5' end; primer SR23 (5'-CCG TTAATTAATG GCA ACT GGA TCA AGG) was used to clone hGH with its leader. Primer SR24 (5'-CGG CTC GAG TTA AAA ACC ACA TGA) was used to clone the hGH gene without KDEL and introducing a *Xho1* site at the 3' end; primer SR25 (5'-CGG CTC GAG TTC ATC TTT AAA ACC TGA TCC) was used to clone the gene with KDEL.

[00104] *In vitro* transcripts of the 125C vector constructs including hGH were prepared by linearizing approximately 20 ug of DNA in 100 uL volume. Extent of linearization was assessed by gel electrophoresis of a 2 uL sample. Linearized DNA was cleaned using a PCT purification kit, from which it was eluted in 50 uL. A transcription mix was prepared in a 25 uL volume with 2.5 uL of 10x T7 buffer, 2.5 uL of 100mM DTT, 0.5 uL of RNAsin (Promega),

1.25 uL NTP mix (20 mM A, C, U; 2 mM G; Pharmacia-Amersham); 1.25 uL Cap (5 mM diguanosine triphosphate; Pharmacia-Amersham), and 4 uL 25 mM MgCl₂. The mixture was warmed to 37 °C for 1 minute. 1.5-2 ug DNA were added in 12 uL of water, and the combination was warmed at 37 °C for 2 minutes. 1 uL of T7 polymerase (50 U/uL; New England Biolabs) was added, and the reaction were incubated for 15 minutes. 2 ul of 12.5 mM GTP were added by touching the tip of a pipette to the liquid (do not pipette up and down). The reaction was incubated at 37 °C for 1h 15 minutes. A 2.5 uL aliquot was visualized on a gel; the remainder was frozen.

[00105] The resulting constructs were tested in both a protoplast system and in intact plants. Tobacco protoplasts were inoculated with each the various transcripts via electroporation (i.e., plants were inoculated with transcripts from individual constructs, not with a combination of different transcripts). Plant leaves were inoculated by diluting the transcription reaction through addition of 25 uL water and 50 uL FES. Plants were dusted with carborundum powder that acts as an abrasive. 25 uL aliquots of the transcription reaction/FES solution were then gently rubbed on the surface of each of two leaves. The plants were then maintained in the growth room at 21 °C under 12 hour light and 12 hour dark conditions.

[00106] *Nicotiana tabacum* suspension protoplasts were harvested at two time points: 24 and 48 hours post inoculation, so that each aliquot contained 500,000 protoplasts. Approximately 2 million protoplasts were used per inoculation of 25uL transcript. The protoplasts were pelleted by centrifugation and the pellet was resuspended in 50 uL buffer (a mixture of Bradley's protein extraction buffer and Laemmli loading buffer). The samples (10 uL) were analyzed by PAGE followed by Western blot hybridization analysis using antiserum to hGH from chicken and anti-chicken IgG conjugated to alkaline phosphatase. Standard hGH was run as a standard. NBT-BCIP was used to develop the blots. Figure 9 shows the results of the experiment.

[00107] The results indicate that a higher yield of hGH was obtained from tobacco suspension protoplasts at 24h than at 48h post inoculation. The position of the band corresponding to hGH from infected protoplasts indicates a slightly higher molecular weight than standard hGH. This could be due to the KDEL sequence attached to the 3' end of the hGH protein.

[00108] *Nicotiana benthamiana* plants were also inoculated with *in vitro* transcripts, and the plants were monitored for production of hGH. No signal specific to the protein could be

detected at 5 dpi, although at 11 dpi we could detect a signal for hGH in the upper leaves of inoculated plants (Figure 10).

Example 3: Transient Expression of a Human Insulin Transgene

[00109] We have made constructs to express insulin and proinsulin in plants using our plant virus-based transient expression vectors D4 and 125C. The following primers were used to clone proinsulin into 125C and D4, relying on *Pac1* and *Xho1* sites for cloning, and adding KDEL at the 3' end of each peptide:

1) *Pac1* site at 5' end of insulin ORF (B peptide):

SR30 5'-ccg tta att aatg ttt gtt aat caa cat-3'

2) *Xho1* site at 3' end of A peptide with KDEL

SR31 5'-cgg ctc gag tca gag ttc atc ttt gtt aca gta gtt ctc aag-3'

Example 4: Co-infection and Cross-Complementation of Viral Vectors

[00110] This example demonstrates that a coat protein defective TMV-based expression vector can be complemented by an AlMV vector that supplies CP in *trans*.

[00111] D4C3GFP is a TMV-based expression vector that is deficient in CP production (Shivprasad *et al.*, 1999: TTT-GFP) as a result of deletion of the TMV CP coding region and the its replacement with the C3GFP gene, which is placed under the control of the TMVCP subgenomic promoter (see Figure 11b). The C3GFP gene was recloned into D4 by overlapping PCR to eliminate the *Nco1* and *Xho1* sites in the C3GFP nucleotide sequence to facilitate further cloning steps. A polylinker *PstI-NotI-XhoI* was introduced at the 3'end of C3GFP gene. The PCR product digested with *PacI-XhoI* was cloned into D4 resulting in the version of D4C3GFP shown in Figure 11c.

[00112] The primers we used to modify the C3GFP gene and eliminate *Nco1* and *Xho1* sites are:

1) C3GFP.Pac1.For(N)

GGGAG.ATCTT.AATTA.ATGGC.TAGCA.AAGGA.GAAGA.A 36nt

2) C3GFP.Xho1.Rev(N)

CCCCT.CGAGC.GGCCG.CTGCA.GTTAT.TTGTA.GAGCT.CATCC.ATGCC 45nt

3) C3GFP.Nco1.For

GTTCC.CTGGC.CAACAC.TTGTC.CAC	23nt
4) C3GFP.Nco1.Rev	
TAGTG.ACAAG.TGTTG.GCCAG.GG	22nt
5) C3GFP.Xho1.For	
GGACA.CAAAC.TGGAG.TACAA.CTATA	25nt
6) C3GFP.Xho1.Rev	
AGTTA.TAGTT.GTACT.CCAGT.TTGTG	25nt
7) (BglII)-PacI	
>AUG...HindIII... <u>NcoI</u> ...NdeI...BsrGI...MluI... <u>XhoI</u> ...BamHI...MfeI(MunI)...SalI...SacI...	
TAA< PstI...NotI...XhoI	

[00113] Three constructs that contained full-length or portions of the 3'-untranslated region (3' UTR) of AlMV RNA3 were then generated. In each of these constructs, sequences encoding C3GFP under control of the subgenomic TMV CP promoter were present upstream of AlMV RNA3 3'-UTR sequences (either full-length or a portion of the UTR), to allow us to precisely identify the sequences of the AlMV RNA3 3' UTR required for assembly and movement of TMV genomic RNA (either in *trans* or in *cis*). The RNA3 sequences were inserted between the *Not*1 and *Xho*1 sites of the new D4C3GFP vector as *Not*1-*Sal*1 fragments, resulting in the constructs SR25 (nts 1859-1941 of RNA3), SR26 (nts. 1859-1969 of RNA3) and SR27 (nts. 1859-2037 of RNA3, i.e., the entire 3' UTR) (Figure 11d). In addition to sequences from the AlMV RNA3 3' UTR, SR25, SR26, and SR27 also include sequences from the TMV 3' UTR (i.e., the UTR from the TMV genomic transcript) downstream of the inserted AlMV sequences. These sequences are TMV nucleotides 6192-6395, as in the D4 construct. The TMV-based viruses (SR25, SR26, and SR27) are defective in long-distance movement because the TMV coat protein is essential for effective phloem-mediated long distance transport and systemic infection of TMV.

[00114] The primers used to generate D4-based constructs with AlMV RNA3 3'-UTR sequences were:

- 1) SR -52 5' primer with *Xho*1-*Pst*1 sites at nt 1859 (plus sense)
5'-CCGCTCGAGCTGCAGTGTACCCATTAAATTGG-3'
- 2) SR-53 3' primer at nt 1941 of AlMV RNA3 with *Not*1-*Sal*1 sites: minus sense
5'-CGGGTCGACGCCGCGAATAGGACTTCATACCT-3'

3) SR-54 3' primer with *Not1-Sal1* sites at nt 1969 of AlMV RNA3: minus sense

5'- CGGGTCGACGCCCGCAATATGAAGTCGATCCTA-3'

4) SR-55 3' primer with *Not1-Sal1* sites at nt 2037 (minus sense)

5'-CGGGTCGACGCCCGCGCATCCCTTAGGGCATT-3'.

[00115] The resulting plasmids were then transcribed using T7 polymerase and the *in vitro* transcripts used to inoculate *Nicotiana benthamiana* plants. *In vitro* transcripts of SR25, SR26, SR27, and a wild type AlMV construct were prepared by linearizing approximately 20 ug of DNA in 100 uL volume. Extent of linearization was assessed by gel electrophoresis of a 2 uL sample. Linearized DNA was cleaned using a PCT purification kit, from which it was eluted in 50 uL. A transcription mix was prepared in a 25 uL volume with 2.5 uL of 10x T7 buffer, 2.5 uL of 100mM DTT, 0.5 uL of RNasin (Promega), 1.25 uL NTP mix (20 mM A, C, U; 2 mM G; Pharmacia-Amersham); 1.25 uL Cap (5 mM diguanosine triphosphate; Pharmacia-Amersham), and 4 uL 25 mM MgCl₂. The mixture was warmed to 37 °C for 1 minute. 1.5-2 ug DNA were added in 12 uL of water, and the combination was warmed at 37 °C for 2 minutes. 1 uL of T7 polymerase (50 U/uL; New England Biolabs) was added, and the reaction was incubated for 15 minutes (SR25, SR26, SR27 constructs) or 2 hours (AlMV construct). 2 uL of 12.5 mM GTP were added by touching the tip of a pipette to the liquid (do not pipette up and down). The reaction was incubated at 37 °C for 1h 15 minutes (SR25, SR26, SR27 constructs) or 30 minutes (AlMV construct). A 2.5 uL aliquot was visualized on a gel; the remainder was frozen.

[00116] Plant leaves were inoculated with SR25, SR26, or SR27 by diluting the transcription reaction through addition of 25 uL water and 50 uL FES. Plants were dusted with carborundum powder that acts as an abrasive. 25 uL aliquots of the transcription reaction/FES solution were then gently rubbed on the surface of each of two leaves. The plants were then maintained in the growth room at 21 °C under 12 hour light and 12 hour dark conditions.

[00117] Two weeks post inoculation, when SR25, SR26, SR27 had spread in the inoculated leaves, which was visualized by exposing the plants to long-wave ultraviolet light (366nm), the same leaves were inoculated with wild type AlMV transcripts as described for the TMV-based vectors.

[00118] Two weeks post infection with AlMV, diffuse GFP fluorescence could be observed in upper leaves of plants infected with SR27 and AlMV but not with SR25 or SR26 and AlMV.

Figure 12a shows a picture of a plant that was co-inoculated with SR27 and AlMV. The image (taken under UV light) demonstrates spread of virus into the upper un-inoculated leaves. Fluorescence is caused by the accumulation of GFP. Figure 12c shows the same plant as in Figure 12a, under normal light. Figure 12b (taken under UV light) shows a picture of a plant that was inoculated with SR27 only. Lack of fluorescence in the upper leaves indicates that virus infection was limited to locally inoculated leaves. These results indicate that the CP-deficient TMV-based virus (SR27) containing the GFP transgene moved through the phloem into the upper leaves with the help of AlMV. Generally (e.g., in the absence of trans-complementation from another virus) D4C3GFP only moves into the major veins of the upper leaves 40-45 d.p.i., and SR27 requires similar or even longer periods of time to move into the upper leaves in this system. This result indicates that AlMV can be used as a source for the coat protein that will complement and allow movement of a viral vector that is deficient in one or more coat protein components systemically and provide expression of foreign proteins, including complex proteins such as antibodies. The complementing CP components can be from related (other alfamoviruses, ilarviruses, bromoviruses) or unrelated viruses (TMV, CMV, etc.)

[00119] Constructs related to SR27 but containing the hGH gene (described above in Example 2) instead of the gene encoding GFP have also been generated and are in the process of being tested.

Equivalents

[00120] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. The scope of the present invention is not intended to be limited to the above Description, but rather is as set forth in the following claims.

[00121] We claim: