

Algorithm Complexity: An Introduction

Lesson Outcomes

At the end of this lesson, you should be able to:

- State the concept of time complexity in algorithm implementation
- Explain the Big O notation
- Describe how Big O can be used to compare time complexity of algorithms

Program Complexity Evaluation

Algorithms

step-by-step instructions given to computer on how to solve a given problem

multiple possible algorithms as well as implementations

- how to compare them?
- how to evaluate which is the 'better' algorithm?

Program Complexity Evaluation (Cont'd)

But execution time depends on many factors

- the speed of the computer
- the way the algorithm is implemented
 - pre-compute lookup table
 - loop unrolling technique
 - input data value and input data size

Instruction Steps

Count the number of instructions it takes to execute the algorithm

- independent of the computer
- more steps ⇒ longer execution time

But the number of steps may still depend on the data involved in the computation

```
def linearSearch(List, item_x):
    for i in range(len(List)):
        if List[i] == item_x:
            return i
    return -1
```

Asymptotic Behavior

More important to consider the worst case situation

- when item_x is not in the List
- number of instruction steps will be the most

As the number of entries in the List increases

number of steps under worst case situation also increases

Note that

'input' data size ≡ number of entries in the List

In time complexity analysis

- growth pattern of the number of steps as input data size increases indefinitely
- asymptotic behavior of running time Big O

```
def linearSearch(List, item_x):
    for i in range(len(List)):
        if List[i] == item_x:
            return i
    return -1
```

Big O

BIG O Notation

- measure and compare the time complexity of algorithms
- pattern of execution time of algorithm as input data size grows

Execution Time

- in terms of the number of instruction steps
- for worst case situation

Big O gives an upper bound on the asymptotic growth of an algorithm

Analysis of a Linear Search Algorithm

Assumption

 each line of the code statement can be executed in one step

Worst case

- item_x not in the list (of length n)
- T(n) = 2 + 4n + 1 = 3 + 4n

$$T(n) = 3 + 4n$$

Example

```
def linearSearch(List, item_x):
    max_pos = len(List)
    i = 0
    while i < max_pos:
        if List[i] == item_x:
            return i
        i = i + 1
        if i == max_pos:
            return - 1</pre>
```

```
1
1
n times
1 x n
-
1 x n
1 x n
```

n = 'Input' Data size ≡ number of entries in the List

Growth Order of T(n)

$$T(n) = 3 + 4n$$

- minimum value of T = 3
- when $n \gg 3$, $T \rightarrow 4n$
 - e.g. for n = 1000 $T = 3 + 4000 = 4003 \approx 4000$
- T(n) ≈ 4n for large n

Asymptotic behavior

- T(n) increases proportionally with n
 - e.g. T(n) doubles when n is doubled
- Growth order: f(n) = n

Complexity using Big O notation: O(f(n)) = O(n)

Linear complexity

Program Complexity Types

O(1)

Constant complexity, where f(n) = 1

Common
Types of

Complexity

O(n)

Linear complexity, where f(n) = n

O(log n)

Logarithmic complexity, where $f(n) = \log n$

O(n^K)

Polynomial complexity, where $f(n) = n^k$, with k = constant e.g. $O(n^2) = Quadratic complexity$

O(Kn)

Exponential complexity, where $f(n) = k^n$

Constant Complexity O(1)

O(1) ≡ Constant Complexity

Algorithm always uses the same amount of time to execute for all inputs

Example:

Pre-compute lookup table-based algorithm

Example 1

$$T(n) = 1 \equiv 1.1 \implies f(n) = 1;$$

 $O(fn) = O(1)$

Example 2

$$T(n) = 2 \equiv 2.1 \Rightarrow f(n) = 1; O(fn) = O(1)$$

Linear Complexity O(n)

O(n) ≡ Linear Complexity

Algorithm execution time increases linearly in proportion with (input) data size

```
def linearSearch(List, item_x):
    for i in range(len(List)):
        if List[i] == item_x:
            return i
    return -1
```

$$f(n) = len(List)$$
 $O(fn) = O(len(List)) = O(n)$

Polynomial Complexity O(nK)

O(n^K) ≡ Polynomial Complexity

Occurs for algorithm that contains nested loops

 execution time is proportional to the square of the input data size

Example: Quadratic Complexity O(n²)

$$f_{in}(n) = len(List2); f_{out}(n) = len(List2)$$

 $O(fn) = O(f_{in}(n), f_{out}(n)) \equiv O(n,n) = O(n^2)$

Logarithmic Complexity O(log n)

O(log n) ≡ Logarithmic Complexity

Execution time grows as the log of input

(n) = $log_2(len(List))$ O(fn) = $O(log_2(len(List))) \equiv O(log n)$

Exponential Complexity O(kn)

 $O(k^n) \equiv Exponential Complexity$

Occurs for algorithm that contains recursive call

Example:

Fibonacci sequence computation

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Each number can be derived based on the formula:

$$F(n) = F(n-1) + F(n-2)$$
, $n \ge 2$

```
def rFib (n):
    if (n == 0):
        return 0
    elif (n == 1):
        return 1
    elif (n > 1):
        return (rFib(n-1) + rFib(n-2))
    else:
        return -1
```

Recursion Fibonacci

def rFib (n): if (n == 0): return 0 elif (n == 1): return 1 elif (n > 1): return (rFib(n-1) + rFib(n-2))

return -1

else:

Rate of Growth

Iteration Fibonacci

An alternative algorithm for Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Computation based on iteration:

$$F(n) = F(n-1) + F(n-2)$$
, $n \ge 2$

```
def iFib(n):
    if (n == 0):
        return 0
    elif (n == 1):
        return 1
    elif (n == 2):
        return 1
    elif: # n > 2
    #continue in next
```

```
elif : # n > 2
    fn0 = 0
    fn1 = 1
    fn2 = 1
    for i in range(n-2):
        fn0 = fn1
        fn1 = fn2
        fn2 = fn0+fn1
    return fn2
```

$$T(n) = 4n + 4$$

 $f(n) = n$
 $\Rightarrow O(n)$
i.e. Linear Complexity

Iteration vs. Recursion Fibonacci Computation

Iteration vs. Recursion Fibonacci Computation (Cont'd)

▶ "Python 3.7.0 Shell" - □ ×	- □ Python 3.7.0 Shell*	×
Python 3.7.0 Shell X File Edit Shell Debug Options Window Help Python 3.7.0 (1)159co5093, Jun 27 2018, 04:06:47) [MSC v.1914 32 bit (Intel)] on win32 Type 'copyright', 'credite' or 'license()* for more information. **ESTART: Critorian Pibonacci - Input a number: Teration Fibonacci - Input a number:	Python 3.7.0 Shell' File Edit Shell Debug Options Window Help Python 3.7.0 (197.7.0) ILE90c5093, Jun 27 2018, 04:06:47) [MSC v.1914 32 bit (Intel)] on vin32 Type 'copyright', 'credite' or 'licomae()' for more information. ESTART: (Thesarylusselllownloads\rFibonacci.py Recursion Fibonacci - Input a number:	×

Summary

Algorithm complexity can be analyzed

time complexity

Big O

- worst case analysis
- order of growth pattern as input size grows

Asymptotic behavior of algorithms

useful for comparing and classifying algorithms

Different algorithms for same problem

compared based on Big O

References for Images

No.	Slide No.	Image	Reference
1	4	?	Question problem [Online Image]. Retrieved April 18, 2018 from https://pixabay.com/en/question-problem-think-thinking-622164/.
2	4	EQ	Search [Online Image]. Retrieved April 18, 2018 from https://pixabay.com/en/database-search-database-search-icon-2797375/.
3	5		Search [Online Image]. Retrieved April 18, 2018 from https://pixabay.com/en/stopwatch-timer-watch-seconds-34107/.