Probing the polarized gluon content of the proton through χ_2 hadroproduction¹

Bernard PIRE

Centre de Physique Théorique², Ecole Polytechnique, F91128 Palaiseau, France

Abstract

Determining how much spin is carried by gluon in a polarized proton is a fundamental problem which cannot be resolved by completely inclusive deep inelastic measurements. Hadroproduction of heavy flavors is very sensitive to the gluon content of hadrons. We show that $\chi_2(3555)$ production in polarized proton-proton collisions is a good candidate reaction to address this challenging question.

¹to be published in the proceedings of the 2nd Meeting on Possible Measurements of Singly Polarized pp and pn Collisions, Zeuthen (1995)

²Unité propre 14 du Centre National de la Recherche Scientifique.

Charmonium spectrum and decays are quite well understood in the framework of perturbative QCD because these states are small nonrelativistic systems of heavy quarks. The production of charmonia in hadron-hadron collisions is expected to be dominated by gluon fusion mechanisms. Whereas J/ψ production seems to be subject to important higher twist contributions [1], namely those where two gluons from a single hadron interact with a gluon from the other hadron, the production [2] of χ_j states is phenomenologically [1] well under control in the simple leading twist picture where two gluons (one from each hadron) fuse to give at leading order a 1⁺ $c\bar{c}$ state with zero transverse momentum. Among these states, $\chi_2(3555)$ is remarkably sensitive to incident gluon polarizations [3] and thus deserves careful investigation.

Neglecting $O(\alpha_S)$ corrections and internal transverse momenta in the proton, the production cross section (at zero transverse momentum) is given by [4]

$$\sigma(x_F \ge 0) = \frac{M^2}{s} \int \frac{dx_1}{x_1} G(x_1, M^2) G(\frac{M^2}{x_1 s}, M^2) \sigma_0(gg \to \chi_2)$$
 (1)

where M is the χ_2 mass and

$$\sigma_0(gg \to \chi_2) = 16\pi^2 \alpha_s^2 |R_P'(0)|^2 / M^7,$$
 (2)

reasonable estimates of the parameters being [1], $\alpha_S = 0.26$ and $|R'_P(0)|/M = 0.006 Gev^3$.

The helicity amplitudes for producing the χ_2 meson with $J_z = 0, \pm 1$ vanish (unless non leading internal transverse momentum effects are kept). Thus, χ_2 is only produced with $J_z = \pm 2$ and the sign of J_z is directly reminiscent of the helicities (μ and μ') of the incident gluons. Indeed the only non-vanishing amplitudes are those for

$$g(\mu = 1) + g(\mu' = -1) \to \chi_2(J_z = +2)$$
 (3)

and

$$g(\mu = -1) + g(\mu' = 1) \to \chi_2(J_z = -2)$$
 (4)

This makes χ_2 a beautiful probe of the gluon spin content of the proton.

When both beam and target are polarized, one measures cross sections $d\sigma_{ij}$ for incident hadron helicities i and j, and defines an asymmetry as

$$A(x_F) = \frac{\frac{d\sigma_{++}}{dx_F} - \frac{d\sigma_{+-}}{dx_F}}{\frac{d\sigma_{++}}{dx_F} + \frac{d\sigma_{+-}}{dx_F}}$$
(5)

which measures how much gluons remember the spin state of their parents through

$$A(x_F) = \frac{\Delta G(x_1, M^2)}{G(x_1, M^2)} \frac{\Delta G(x_2, M^2)}{G(x_2, M^2)}$$
(6)

with x_1 and x_2 determined from measurable quantities through the usual relations: $x_F = x_1 - x_2$ and $M^2/s = x_1x_2$.

When only the target is polarized, one needs to measure a transmitted asymmetry, *i.e.* to recognize a $J_z = +2 \chi_2$ state from a $J_z = -2$ one. This requires analizing χ_2 decay channels. The most interesting channel is the electromagnetic decay

$$\chi_2 \to J/\psi + \gamma$$
 (7)

the rate of which is around 13 per cent. In the heavy quark limit, this transition is of the electric dipole type, i.e. it preserves the quark spins. The angular decay distribution is thus known as

$$\frac{d\Gamma}{d\theta} = \frac{3}{16\pi} (1 + \cos^2 \theta) \tag{8}$$

and the polarization of the photon along the beam direction is simply given by [3]

$$\mathcal{P}_{\gamma} = -\frac{\mathcal{G}(\S_{\epsilon}, \mathcal{M}^{\epsilon})}{\mathcal{G}(\S_{\epsilon}, \mathcal{M}^{\epsilon})} . \tag{9}$$

Measuring this outgoing photon polarization is an experimental challenge but the rewards are high; it is worth considering it in more details.

Acknowledgements.

It is a pleasure to thank the organizers and particularly Wolf Dieter Nowak for this lively and fruitful workshop.

References

- [1] M. Vanttinen, P. Hoyer, S.J. Brodsky and W.K. Tang, Phys. Rev. **D51**, 3332 (1995).
- [2] Y. Lemoigne et.al., Phys. Lett. 113B, 509 (1982); L. Antoniazzi et.al., Phys. Rev. Lett. 70, 383 (1993).
- [3] J.L. Cortes and B. Pire, Phys. Rev. **D38**, 3586 (1988).
- [4] R. Baier and R. Ruckl, Z. Phys. C19, 251 (1983).