EE224 Digital Circuits-Project

IIT-B CPU

Table of Contents

Team Members	1
Finite State Machines for Instructions	1
ADD, ADC, ADZ	3
NDU, NDC, NDZ	4
ADI	5
LHI	6
LW	6
SW	7
LM	8
SM	9
BEQ	11
JAL	12
JLR	13
State Transition Table	14
State Diagram	15
DataPath	15

Team Members:

- Archit Gupta 210100021
- Yashas M Salian 210070095
- Ananya Chinmaya 210070008
- Harsh Agarwal 210070032

Finite State Machines for Instructions:

1. ADD, ADC, ADZ.

S1

Operations	Control Signal
$RF_7 \rightarrow MEM_ADD$	MEM_RD
$MEM_DATA \rightarrow IR$	RF_7
$RF_7 \rightarrow ALU_A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$ALU_C \rightarrow RF_7$	ADD

S2

Operations	Control Signal
if(ins == 0001):	T1_E
$IR(8-6) \rightarrow RF_AD_OUT1$	T2_E
$RF_DA_OUT1 \rightarrow T1$	
elseif(ins == 0000 or ins ==	
0010 or ins == 1100):	
$IR(8-6) \rightarrow RF_AD_OUT_1$	
$RF_DA_OUT 1 \rightarrow T1$	
$IR(11-9) \rightarrow RF_AD_OUT_2$	
$RF_DA_OUT_2 \rightarrow T2$	
elseif(ins==0100 or ins==0101)	
$IR(8-6) \rightarrow RF_AD_OUT1$	
$RD_DA_OUT1 \rightarrow T1$	
$IR(5-0) \rightarrow SE16_6 \rightarrow T2$	

S3

Operations	Control Signal
$T1 \rightarrow ALU_A$	ADD
$T2 \rightarrow ALU_B$	T1_E
$ALU_C \rightarrow T1$	

Operations	Control Signal
If((C==0 && Z==0) (C==1&&	RF_WR
Z==0&&Cen==1) (Z==1&&Zen	
==1&&C==0))	
{	
IR $5-3 \rightarrow RF_AD_IN$	

$T1 \rightarrow RF_DA_IN$	
}	

2. NDU, NDC, NDZ

S1

Operations	Control Signal
$RF_7 \rightarrow MEM_ADD$	MEM_RD
$MEM_DATA \rightarrow IR$	RF_7
$RF_7 \rightarrow ALU_A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$ALU_C \rightarrow RF_7$	ADD

S2

Operations	Control Signal
if(ins == 0001):	T1_E
$IR(8-6) \rightarrow RF_AD_OUT1$	T2_E
$RF_DA_OUT1 \rightarrow T1$	
elseif(ins == 0000 or ins ==	
0010 or ins == 1100):	
$IR(8-6) \rightarrow RF_AD_OUT_1$	
RF_DA_OUT $1 \rightarrow T1$	
$IR(11-9) \rightarrow RF_AD_OUT_2$	
RF DA OUT $2 \rightarrow T2$	
elseif(ins==0100 or ins==0101)	
$IR(8-6) \rightarrow RF_AD_OUT1$	
$RD_DA_OUT1 \rightarrow T1$	
$IR(5-0) \xrightarrow{-} SE16 _6 \rightarrow T2$	

S5:

Operations	Control Signal
$T1 \rightarrow ALU_A$	NAND
$T2 \rightarrow ALU_B$	T1_E
$ALU_C \rightarrow T1$	

Operations	Control Signal
If((C==0 && Z==0) (C==1&&	RF_WR
Z==0&&Cen==1) (Z==1&&Zen	
==1&&C==0))	
{	
IR $5-3 \rightarrow RF_AD_IN$	
$T1 \rightarrow RF_DA_IN$	
}	

3. ADI

S1

Operations	Control Signal
$\begin{array}{c} RF_7 \rightarrow MEM_ADD \\ MEM DATA \rightarrow IR \end{array}$	MEM_RD RF 7
$RF_7 \rightarrow ALU_A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E ADD
$ALU_C \rightarrow RF_7$	ADD

S2

Operations	Control Signal
if(ins == 0001):	T1_E
$IR(8-6) \rightarrow RF_AD_OUT1$	T2_E
$RF_DA_OUT1 \rightarrow T1$	
elseif(ins == 0000 or ins ==	
0010 or ins == 1100):	
$IR(8-6) \rightarrow RF_AD_OUT_1$	
$RF_DA_OUT 1 \rightarrow T1$	
$IR(11-9) \rightarrow RF_AD_OUT_2$	
$RF_DA_OUT_2 \rightarrow T2$	
elseif(ins==0100 or ins==0101)	
$IR(8-6) \rightarrow RF_AD_OUT1$	
$RD_DA_OUT1 \rightarrow T1$	
$IR(\overline{5}-0) \xrightarrow{-} SE16 6 \rightarrow T2$	

Operations	Control Signal
$T1 \rightarrow ALU_A$	ADD
$T2 \rightarrow ALU_B$	T1_E
$ALU_C \rightarrow T1$	

Operations	Control Signal
$T1 \rightarrow RF_DA_IN$ $IR_{(8-6)} \rightarrow RF_AD_IN$	RF_WR

4. LHI

S1

Operations	Control Signal
$RF_7 \rightarrow MEM_ADD$	MEM_RD
$MEM_DATA \rightarrow IR$	RF_7
$RF_7 \rightarrow ALU_A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$ALU_C \rightarrow RF_7$	ADD

S7

Operations	Control Signal
$IR_{(8-0)} \rightarrow SE16_9 \rightarrow T1$	T1_E

S8

Operations	Control Signal
$IR(11-9)->RF_AD_IN$ $T1 \rightarrow RF_DA_IN$	RF_WR

5. LW

Operations	Control Signal
R7 → MEM_ADD	MEM_RD
$MEM_DATA \rightarrow IR$	PC_E
$PC \rightarrow ALU _A$	IR_E
$+1 \rightarrow ALU_B$	ADD
$ALU_C \rightarrow R7$	
ALU_C / K/	

Operations	Control Signal
if(ins == 0001):	T1_E
$IR(8-6) \rightarrow RF_AD_OUT1$	T2_E
$RF_DA_OUT1 \rightarrow T1$	
elseif(ins == 0000 or ins ==	
0010 or ins == 1100):	
$IR(8-6) \rightarrow RF_AD_OUT_1$	
$RF_DA_OUT 1 \rightarrow T1$	
$IR(\overline{11-9}) \rightarrow RF_AD_OUT_2$	
$RF_DA_OUT_2 \rightarrow T2$	
elseif(ins==0100 or ins==0101)	
$IR(8-6) \rightarrow RF_AD_OUT1$	
$RD_DA_OUT1 \rightarrow T1$	
$IR(\overline{5}-0) \rightarrow SE16 \underline{6} \rightarrow T2$	

S3

Operations	Control Signal
$T1 \rightarrow ALU_A$	ADD
$T2 \rightarrow ALU_B$	T1_E
$ALU_C \rightarrow T1$	

S9

Operations	Control Signal
$IR(11-9) \rightarrow RF_AD_IN$ $T1 \rightarrow MEM_ADD$ $MEM_DATA \rightarrow RF_DA_IN$	MEM_RD RF_W

6. <u>SW</u>

<u>S1</u>

Operations	Control Signal
R7 → MEM_ADD	MEM_RD
$MEM_DATA \rightarrow IR$	PC_E
$PC \rightarrow ALU _A$	IR_E
$+1 \rightarrow ALU_B$	ADD
$ALU_C \rightarrow R7$	

Operations	Control Signal
if(ins == 0001):	T1_E
$IR(8-6) \rightarrow RF_AD_OUT1$	T2_E
$RF_DA_OUT1 \rightarrow T1$	
elseif(ins == 0000 or ins ==	
0010 or ins == 1100):	
$IR(8-6) \rightarrow RF_AD_OUT_1$	
RF_DA_OUT $1 \rightarrow T1$	
$IR(\overline{11-9}) \rightarrow RF_AD_OUT_2$	
$RF_DA_OUT_2 \rightarrow T2$	
elseif(ins==0100 or ins==0101)	
$IR(8-6) \rightarrow RF_AD_OUT1$	
$RD_DA_OUT1 \rightarrow T1$	
$IR(\overline{5}-0) \rightarrow SE16 _6 \rightarrow T2$	

S3

Operations	Control Signal
$T1 \rightarrow ALU_A$	ADD
$T2 \rightarrow ALU_B$	T1_E
$ALU_C \rightarrow T1$	

S10

Operations	Control Signal
$IR(11-9) \rightarrow RF_AD_OUT$	MEM_W
T1→MEM_AD	
RF_DA_OUT→MEM_DATA	

7. <u>LM</u>

Operations	Control Signal
$RF_7 \rightarrow MEM_ADD$	MEM_RD
$MEM_DATA \rightarrow IR$	RF_7
$RF_7 \rightarrow ALU_A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$ALU_C \rightarrow RF_7$	ADD

S18

Operations	Control
	Signal
$IR(7-0) \rightarrow Zero_Checker$	
IF(Z=1)	
S1	
Elseif(Z=0)	
S19	

S19

Operations	Control
	Signal
$IR(7-0) \rightarrow PEN_I$	MEM_RD
$PEN_O \rightarrow RF_AD_IN$	RF_WR
$IR(11-9) \rightarrow RF_AD_OUT$	IR_E
$RF_DA_OUT \rightarrow MEM_AD,T1$	
$MEM_DATA \rightarrow RF_DA_IN$	
$IR(7-0),PEN_O \rightarrow LU_I$	
$LU-O \rightarrow IR(7-0)$	

S20

Operations	Control Signal
$T1 \rightarrow ALU _A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$IR(11-9) \rightarrow RF_AD_IN$	ADD
$ALU_C \rightarrow RF_DA_IN$	

Send to S18

8. <u>SM</u>

Operations	Control Signal
$RF_7 \rightarrow MEM_ADD$	MEM_RD
$MEM_DATA \rightarrow IR$	RF_7
$RF_7 \rightarrow ALU_A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$ALU_C \rightarrow RF_7$	ADD

Operations	Control
	Signal
$IR(7-0) \rightarrow Zero_Checker$	MEM_RD
IF(Z=1)	T3_E
S1	
Elseif(Z=0)	
S21	

S21

Operations	Control
	Signal
$IR(7-0) \rightarrow PEN_I$	MEM_WR
$PEN_O \rightarrow RF_AD_OUT1$	IR_WR
$IR(11-9) \rightarrow RF_AD_OUT_2$	
RF_DA_OUT_2→ MEM_AD	
RF_DA_OUT1→MEM_DATA	
$IR(7-0),PEN_O \rightarrow LU_I$	
$LU-O \rightarrow IR(7-0)$	

Operations	Control Signal
$T1 \rightarrow ALU _A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$IR(11-9) \rightarrow RF_AD_IN$	ADD
$ALU_C \rightarrow RF_DA_IN$	

Send to S22

9. <u>BEQ</u>

S1

Operations	Control Signal
$RF_7 \rightarrow MEM_ADD$	MEM_RD
$MEM_DATA \rightarrow IR$	RF_7
$RF_7 \rightarrow ALU_A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$ALU_C \rightarrow RF_7$	ADD

S2

Operations	Control Signal
if(ins == 0001):	T1_E
$IR(8-6) \rightarrow RF_AD_OUT1$	T2_E
$RF_DA_OUT1 \rightarrow T1$	
elseif(ins == 0000 or ins ==	
0010 or ins == 1100):	
$IR(8-6) \rightarrow RF_AD_OUT_1$	
$RF_DA_OUT 1 \rightarrow T1$	
$IR(11-9) \rightarrow RF_AD_OUT_2$	
$RF_DA_OUT_2 \rightarrow T2$	
elseif(ins==0100 or ins==0101)	
$IR(8-6) \rightarrow RF_AD_OUT1$	
$RD_DA_OUT1 \rightarrow T1$	
$IR(5-0) \rightarrow SE16 _6 \rightarrow T2$	

S11

Operations	Control Signal
T1→ALU.A	SUB
$T2 \rightarrow ALU.B$	
ALU.C →T1	

IF Z=1 THEN

Operations	Control Signal
RF_7→ALU A	SUB
+1→ALU.B	RF_WR
ALU.C →RF_7	

Operations	Control Signal
$IR(5-0) \rightarrow SE16_6 \rightarrow ALU B$	ADD
RF_7→ALU.A	RF_WR
ALU.C →RF_7	

10. <u>JAL</u>

S1

Operations	Control Signal
$RF_7 \rightarrow MEM_ADD$	MEM_RD
$MEM_DATA \rightarrow IR$	RF_7
$RF_7 \rightarrow ALU_A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$ALU_C \rightarrow RF_7$	ADD

S12

Operations	Control Signal
RF_7→ALU A	SUB
+1→ALU.B	RF_WR
$ALU.C \rightarrow RF_7$	

S14

Operations	Control Signal
$IR(11-9) \rightarrow RF_AD_IN$	RF_W
$RF_7 \rightarrow RF_DA_IN$	

Operations	Control Signal
$RF_7 \rightarrow ALU_A$	RF_W
$IR(0-8) \rightarrow SE16_9 \rightarrow ALU.B$	RF_S7
$ALU.C \rightarrow RF_7$	ADD

11. <u>JLR</u>

S1

Operations	Control Signal
$RF_7 \rightarrow MEM_ADD$	MEM_RD
$MEM_DATA \rightarrow IR$	RF_7
$RF_7 \rightarrow ALU_A$	RF_WR
$+1 \rightarrow ALU_B$	IR_E
$ALU_C \rightarrow RF_7$	ADD
$\begin{array}{c} \text{MEM_DATA} \rightarrow \text{IR} \\ \text{RF_7} \rightarrow \text{ALU_A} \\ +1 \rightarrow \text{ALU_B} \end{array}$	RF_7 RF_WR IR_E

S16

Operations	Control Signal	
RF_7→ALU A	SUB	
+1→ALU.B	RF_WR	
$IR(11-9) \rightarrow RF_AD_IN$		
ALU.C →RF_DA_IN		

Operations	Control Signal
$IR(8-6) \rightarrow RF_AD_OUT$ $RF_DA_OUT \rightarrow RF_7_IN$	RF_WR
_	

State Transition Table

Current	Next	Condition
S1	S2	(!IR15 and !IR14 and !IR13 and !IR12) or (!IR15 and !IR14 and !IR13
		and IR12) or (!IR15 and !IR14 and IR13 and !IR12) or (!IR15 and IR14
		and !IR13 and !IR12) or (!IR15 and IR14 and !IR13 and IR12) or (IR15
		and IR14 and !IR13 and !IR12)
S1	S7	!IR15 and !IR14 and IR13 and IR12
S1	S12	IR15 and !IR14 and !IR13 and !IR12
S1	S16	IR15 and !IR14 and !IR13 and IR12
S1	S18	!IR15 and IR14 and IR13 and !IR12
S1	S22	!IR15 and IR14 and IR13 and IR12
S2	S3	(!IR15 and !IR14 and !IR13 and !IR12) or (!IR15 and !IR14 and !IR13
		and IR12) or (!IR15 and IR14 and !IR13 and !IR12) or (!IR15 and IR14
		and !IR13 and IR12)
S2	S5	!IR15 and !IR14 and IR13 and !IR12
S2	S11	IR15 and IR14 and !IR13 and !IR12
S3	S4	!IR15 and !IR14 and !IR13 and !IR12
S3	S6	!IR15 and !IR14 and !IR13 and IR12
S3	S9	!IR15 and IR14 and !IR13 and !IR12
S3	S10	!IR15 and IR14 and !IR13 and IR12
S4	S1	unconditional
S5	S4	unconditional
S6	S1	unconditional
S7	S8	unconditional
S8	S1	unconditional
S9	S1	unconditional
S10	S1	unconditional
S11	S1	!Z
S11	S12	Z
S12	S13	IR15 and IR14 and !IR13 and !IR12
S12	S14	IR15 and !IR14 and !IR13 and !IR12
S13	S1	unconditional
S14	S15	unconditional
S15	S1	unconditional
S16	S17	unconditional
S17	S1	unconditional
S18	S1	Z
S18	S19	!Z
S19	S20	unconditional
S20	S18	!IR15 and IR14 and IR13 and !IR12
S20	S22	!IR15 and IR14 and IR13 and IR12
S22	S1	Z
S22	S21	!Z
S21	S20	unconditional

State Diagram

Datapath

W