

Subcampaign j

Advertising

Update the GP for the current day in the classical way

Retrieve from the real curve the number of click,given the budget above

 $N_j(y_{j,t})$

 $(n_i(.))$

Number of clicks of the current day $N_j(y_{j,t)}$

Pricing

Update the TS for the current context in the classical way, given the daily number of clicks above

Extract the daily reward $(r_{j,t})$

Calculate the daily regret as: $P_{j,t} = (N_j(Y_{j,t}) * R_{j,t}) - (N_j(y_{j,t}) * r_{j,t})$

Prepare the value of $n_j(.)$ and v_j for the update of the budget allocator (v_j is derived from the cumulative reward of this subcampaign)

Legend:

t = current day

 $N_i(.)$ = Real distribution function for advertising

 $n_j(.)$ = Learned (from GP) distribution function for advertising

Y_{i,t} = Real best budget allocation

 $y_{j,t}$ = Learned best budget allocation for the budget allocator

 $R_{j,t}$ = Best daily reward

 $r_{i,t}$ = Learned daily reward

v_i = Value per click

Same for the other subcampaigns

New Knapsack problem to solve:

$$\max_{y_{j,t}} \sum_{j=1}^{N} v_j \ n_j(y_{j,t})$$
s.t.
$$\sum_{j=1}^{N} y_{j,t} \le \overline{y}_t$$