Pulmonary Vascular Diseases

R. Premaratna

Pulmonary Circulatuion

- Dual supply
 - Pulmonary arteries
 - Bronchial arteries
- Low pressure system
- Pulmonary artery receives entire cardiac output (a filter)

Low pressure system....

- Thin walled vessels
- Low incidence of atherosclerosis

Pulmonary oedema

Pulmonary Oedema

- Accumulation of fluid in the lung
 - Interstitium
 - Alveolar spaces
- Causes a restrictive pattern of disease

Pulmonary Oedema (causes)

- 1. Haemodynamic (| hydrostatic pressure)
- 2. Due to cellular injury
 - i. Alveolar lining cells
 - ii. Alveolar endothelium

Localised – pneumonia

Generalised – adult respiratory distress syndrome (ARDS)

Increased pulmonary venous pressure

- Left ventricular failure
- Mitral stenosis
- Mitral incompetence

Increased P. venous pressure forces fluid into interstitial space. Initially compensated by lymphatic drainage

Development of pulmonary oedema

- Fluid builds up first in interstitial space "stiff lung"
- Eventually gets into alveolar space

Pulmonary embolism

Pulmonary Embolism

- More common than one would think
- Almost ¾ of all deaths from PE; not suspected of PE prior to death.
- Reported 10-15% mortality rate among hospitalized patients
- Often under-diagnosed

Pulmonary Embolism

70% of patients with confirmed PE have DVT

40% of patients with DVT have silent PE

 DVT limited to calf veins (distal DVT) seldom results in clinically obvious PE

Risk

- ~6.5% of patients have DVT on admission to ICU
- further 20-30% develop DVT during ICU stay
- risk highest amongst patients who have suffered major trauma (40-70%) and spinal cord injury (60-80%)

Patients with high risk for PE

- Elderly
- Multiple injuries
- Immobilization
- Prolonged bed-rest
- Intra vascular catheters

How/Why do Thrombi form?

- Blood stasis
- Hyper-coagulable states
- Vessel wall abnormalities

Mechanism of risk

- Changes in blood flow
 - venous stasis
 - immobilization
 - raised CVP
 - valvular damage due to previous thromboembolic disease

Mechanism of risk

- Changes in properties of blood
 - increased coagulation and/or platelet activity eg lupus anticoagulant
 - decrease in physiological anticoagulants and/or fibrinolytic activity common in critically ill patients
 - antithrombin III, protein S and protein C deficiencies
 - acquired activated protein C resistance
 - high levels plasminogen activator inhibitor

Mechanism of risk

- Changes in vessel wall
 - endothelial damage triggers coagulation
 - trauma
 - central venous catheters

Predisposing factors

- LONG HAUL AIR TRAVEL
- OBESITY
- SMOKING
- OCP
- PREGNANCY
- HRT
- SURGERY

- TRAUMA
- MEDICAL CONDITIONS
 - ANTIPHOSPHOLIPID
 ANTIBODY SYNDROME
 - CANCER
 - SAH
 - COPD
- THROMBOPHILIA
 - FACTOR V LEIDEN
 - PT GENE MUTATION

Where do Emboli originate?

- Detached portions of venous thrombithat form in:
 - Deep veins of the lower extremities or pelvis
 - Right heart chamber
 - Superior vena cava

Where do emboli end up?

- R > L
- Lower lobes
- Pulmonary hemorrhage and infarction to ischemic area rare < 10% and occurs in the bases.
 - Lung has two blood supplies
 - Pulmonary arterial circulation
 - Bronchial circulation

Effects of PE

- Sudden death
- Severe chest pain/dyspnoea/haemoptysis
- Pulmonary infarction
- Pulmonary hypertension

Effects of PE depend on...

- Size of embolus
- Cardiac function
- Respiratory function

Effect of embolus size...

- Large emboli
 - Death
 - Infarction
 - Severe symptoms

- Small emboli
 - Clinically silent
 - Recurrentpulmonaryhypertension

What happens when an emboli occurs?

- Systemic hypotension is indicative of increased severity and probably pulmonary hypertension
- Death from massive P.E. is from cardiovascular collapse rather than respiratory failure
- Resolution occurs rapidly with only a small percentage suffering permanent perfusion defects

What happens when an emboli occurs?

- Reduced or total cessation of pulmonary blood flow to the affected distal zone
 - Pulmonary arterial pressure increases
 - Bronchoconstriction
 - Surfactant production decreases- resulting in atelectasis
 - Arterial hypoxemia
 - High and low V/Q mismatch, intrapulmonary shunting, cardiogenic shock.

What happens when an emboli occurs?

Increased PVR (50% occlusion necessary)

- Dependant on amount of surface area involved, underlying cardiopulmonary reserve, and neurohormonal response
- When mean PAP reaches >40 mmHg the RV will fail and collapse occurs

What do we look for clinically?

- No specific symptoms indicate presence of DVT
 - Pain and/or swelling of the extremity is most common.
- Dyspnea esp. sudden onset
- Pleuritic chest pain
- Cough

What do we look for clinically?

- Apprehension
- Hemoptysis
- Physical findings include tachycardia, tachypnea, rales, and an accentuated pulmonary component of the second heart sound (loudP₂)

WELLS diagnostic scoring system for suspected PE

		points
•	clinical s/sx of dvt(minimum of leg	3.0
	swelling and pain on palpation of deep veins	
•	alternative dx less likely	3.0
•	heart rate > 100/min	1.5
•	immobilization or surgery in the previous	1.5
	4 weeks	
•	previous dvt/pe	1.5
•	hemoptysis	1.0
•	Malignancy (on tx, tx in the past 6 mo.,	1.0
	or palliative)	

WELLS DIAGNOSTIC SCORING SYSTEM FOR SUSPECTED PE

- MAXIMUM OF 12 POINTS
- </= 4 POINTS → 8%

How do we diagnose P.E.

Diagnosis- Chest X ray

- Normal CXR + dyspnea may = P.E.
- CXR abnormal >80%
 - Dilation of the PA
 - RV cardiomegaly
 - Small pleural effusions
 - Increased density infarcted area
 - Hyperlucency distal to emboli (Westermark sign)
 - Elevation of the diaphragm

ECG changes

- ECG abnormal almost 90% of the time
- Help rule out MI
- Sinus tachycardia
- Atrial arrhythmia
- S1 Q3 T3
- Depressed ST segment

Will an ABG tell us anything?

- Hypoxemia and hypocapnea may be present.
- 15-25% have PaO2 > 80 mmHg and a normal (A-a)O2.

How do we diagnose DVT?

- Blood test
 - D-dimer ELISA >500ng/ml in 90%
 - Reflect plasmin's breakdown of fibrin and endogenous thrombolysis
 - Not specific
 - High negative predictive value
 - Elevated in MI, sepsis or any systemic illness

Diagnosis

Diagnostic studies for PE must be interpreted in conjunction with clinical suspicion .

- V/Q scan
- CT Angiography
- Pulmonary Angiography

Diagnosis of PE:

• PE is a very common and potentially life threatening problem.

The presenting symptoms and signs are nonspecific.

The clinician needs a high index of suspicion.

Diagnostic Tests: Pulmonary Angiography

Advantages:

- The "gold standard"; directly images pulmonary artery very effectively.
- Allows measurement of pulmonary artery pressures.

Disadvantages:

- Invasive
- Administration of intravenous radiocontrast.
- Expensive.
- Operator time/availability/skill.

Because of Disadvantages: Used as Last Resort in Difficult Cases

Radionucleotide V/Q Scan

 <u>Perfusion Scanning</u>: Venous injection with radiolabeledmacroaggregated albumin (technetium 99)

Diagnostic Tests: Radionucleotide V/Q Scan

- Ventilation Scanning: Inhalation of a gas mixture containing a different radiotracer (xenon 133)
 - In PE- areas of vascular obstruction should have loss of perfusion but preservation of ventilation
 - Processes such as pneumonia, COPD, obstructed large airway present as matched ventilation and perfusion defects

Diagnostic Tests: Radionucleotide V/Q Scan

Diagnostic Tests: Radionucleotide V/Q Scan

Abnormal Posterior Perfusion Normal Posterior Ventilation

Diagnostic Tests: CT Angiography

- Bolus radiocontrast injection given intravenously.
- High speed, multi-slice CT scanner takes thin section images.
- Excellent definition of main, lobar, and even segmental pulmonary arteries.
- May provide bonus information about the lungs and mediastinal structures.

Diagnostic Tests: CT Angiography

Saddle Embolus

Thrombolysis

Resolution

Diagnostic Algorithm for PE

History and Physical Exam

Laboratory Studies (ABG, Chest X-ray, EKG)

Suspicion for VTE

Lower Extremity Doppler Studies

Treat

CT Angiogram vs. V/Q Scan

Treat

Pulmonary Angiogram

No Pulmonary Embolism

Prevent PE?

Most immobile hospitalized patients need prophylaxis for DVT

heparin, warfarin, low MW heparin, hepariods, dextran

 Compression stockings, pneumatic calf compression, electrical calf stimulation.

Heparin & Warfarin

- Heparin inhibits coagulation, does not lyse existing clots
 - Dose should be titrated to maximize effect without increasing risk from bleeding. (aPTT > 1.5 X control 45 70 seconds)
 - Effect needs to be achieved within 48 hours and treatment should last 5-7 days
- Oral warafin should be started within a couple days.

Heparin:

- Unfractionated heparin
 - short half-life: continuous infusion required.
 - variability requiring frequent laboratory studies.
- Low molecular weight heparin-(enoxaparin, dalteparin)
 - longer half-life: twice daily subcutaneous injections.
 - standard dosing; no requirement for frequent lab monitoring.
 - stable patients without great physiologic compromise may be managed at home.

PE Management

- Depends on extent and status of pulmonary system
- Besides pharmacologic therapy, supportive therapy is used as needed.
 - O2 therapy to treat hypoxemia
 - Fluids and vasopressors for hypotension and shock.
 (dopamine may reduce PVR and increase CO)
 - Thrombolytic therapy streptokinase, urokinase, tissue plasminogen activator (TPA), retiplase
 - Embolectomy

Primary pulmonary hypertension

Primary pulmonary hypertension

- persistent elevation of pulmonary artery pressure w/o any demonstrable cause
- characterized by a mean pap>25 mmHg at rest & > 30 mmHg during exercise
- diagnosis of exclusion

Classification of PHN (WHO)

- PULMONARY ARTERIAL HYPERTENSION
 - IDIOPATHIC PAH
 - FAMILIAL PAH
 - PAH RELATED TO:
 - CONNECTIVE TISSUE DISEASE
 - HIV INFECTION
 - PORTAL HPN
 - DRUGS/TOXIN
 - CONGENITAL HEART DISEASE
 - PERSISTENT PAH OF THE NEWBORN
 - PAH WITH VENULAR/CAPILLLARY INVOLVEMENT

Classification of PHN (who)

- pulmonary hypertension with left heart disease
 - atrial or ventricular
 - valvular
- pulmonary HPN with lung disease/hypoxemia
 - COPD
 - ILD
 - sleep disordered breathing
 - developmental abnormalities

Classification of pulmonary HPN

- pulmonary HPN due to chronic thrombotic or embolic disease
 - thromboembolic obstruction of proximal pulmonary arteries
 - thromboembolic obstruction of distal pulmonary arteries
 - nonthrombotic pulmonary emboli
- miscellaneous

- Passive, active, and reactive (active superimposed on passive)
- Passive" pulmonary hypertension is due to post-pulmonary capillary elevation and is therefore associated with a high PCWP
- Active" is due to the constriction or obstruction of capillary and precapillary vessels resulting in increased resistance to flow

- Passive
 - LVF
 - mitral valve disease
 - congenital cardiac disease (eg cor triatriatum)
 - congenital pulmonary vein stenosis
 - acquired obstruction of major pulmonary veins
 - left atrial myxoma or thrombus

- Active
 - pulmonary embolus
 - Schistosomiasis
 - primary pulmonary hypertension
 - Eisenmenger syndrome
 - disorders of ventilation

Active

collagen-vascular disease
sickle haemaglobinopathies
portal hypertension
drugs and herbal remedies
diffuse pulmonary amyloidosis
pulmonary vasculitis

Epidemiology

- is more common in females
- familial disease present in 7% of cases
- rare & can occur @ any age
- often misdiagnosed

Pathogenesis of PPH

 develops as a result of abnormal proliferation of vascular smooth muscle cells affecting all 3 layers of vessel wall

 leads to hyperplasia, medial hypertrophy and adventitial proliferation

Pathogenesis OF PPH

- WHAT INITIATES → UNKNOWN
- CLUES
 - GENETIC PREDISPOSITION -
 - BMPR2 MUTATION
 - K_Y1.5 CHANNEL DEFECT

Pathogenesis of PPH

- damage to endothelium alters the balance between vasoconstrictive mediators & vasodilators
- resulting in vasoconstriction
- evidence shows this vasoconstriction resolves early & development of irreversible vascular damage progresses

MOST common symptoms

- dyspnea
- angina
- syncope
- cough
- hemoptysis
- hoarseness
- Raynaud's phenomenon

Most common symptoms

- dyspnea
 - cardinal symptom >95% of pts
 - breathlessness as presenting symptom in 60% esp. on exertion
 - cause: inadequacy of cardiac output relative to metabolic requirements
 - severity does not correlate w/ elevation of pulmonary artery pressure

- severe PPH
 - cold hands and feet
 - diminished peripheral pulse
 - low bp
 - reduced pulse pressure

- signs of systemic HPN
 - promonent jugular venous α wave, exagerqated by abdominal compression
 - prominent c-v wave tricuspid regurgitation

- loud 2nd heart sound
- palpable R ventricular heave & impulse of PA
- both pulmonary ejection & tricuspid regurgitation murmurs

- signs of right ventricular failure are common
- cyanosis
- no digital clubbing occurs in PPH

- blood studies impt part
 - FBC polycythemia, anemia, thrombocytopenia,
- CXR
 - suggests presence
 - clues of underlyng conditions
 - protrusion of main pulmonary artery,
 peripheral oligemia, increased c-t ratio

- Respiratory function tests
 - ABGs low PaCo2 and normal pH
 - PFT n exp. flow rates w/ n or mildly reduced lung volumes
 - exercise testing bring out physiologic abn; heart rate and anaerobic threshold at low levels of exercise

- electrocardiography
 - ECG shows right axis deviation & rv hypertrophy & strain
 - ECG criteria for RVH
 - QRS axis in frontal plane >/= 110
 - R wave in lead v1 > 5mm
 - RS ratio in v1 > 1
 - RS ratio in v6 < 1
 - right atrial enlargement

- ECHO cardiogram
 - documenting and rule out mitral valve disease, lv systolic or diastolic dysfunction

- scintigraphy
 - perfusion lung scan
 - pph vs. chronic pte
 - 3 patterns
 - large multiple segmental defects
 - multiple ill-defined defects
 - no defects

- cardiac catheterization
 - mandatory to
 - document presence and severity
 - rule out cardiac causes
 - det. acute vasoreactivity using pharmacologic agents
 - may reveal elevated r atrial pressure, increased pulm. arterial pressure, and depressed cardiac output

- most common & most important noninvasive test is v/q scan
- PFT's
- pulmonary angiography & open lung biopsy
- R heart catheterization is useful in determining degree of impairment & prognosis

- often fatal
- comprehensive medical approach
- avoid circumstances that may increase pulm. art. pressure and decrease cardiac output
- prevention of conception w/o ocp

- calcium channel antagonists
- iv epoprostenol (pg i₂)
- prostacyclin analogues
- endothelin receptor analogues

- calcium channel antagonists
 - 6% will benefit
 - acute reduction in pulm. art. pressure and pulm. vasc. resistance
 - nifedipine, diltiazem and amlodopine

- iv epoprostenol (pg i₂)
 - used either as primary mode of Rx or as a bridge to transplantation
 - produce sustained improvement in hemodynamics and exercise tolerance and prolonged survival

- prostacyclin analogues
 - treprostinil avail. sq injection
 - improve exercise tolerance and pulmonary hemodynamics
 - drawback: pain in infusion site

- endothelin receptor analogues
 - bosentan only oral agent
 - improve 6 minute walk distance and functional class
 - 125mg bid
 - adverse effect: elevated hepatic enzymes

- lung transplantation
 - tx for failing medical treatment
 - complication: immunosuppression,
 obliteration brochiolitis

Pulmonary hypertension in COPD

- frequent complication of COPD
- multifactorial
 - loss of vascular surface caused by destruction of lung parenchyema
 - compression of the vascular bed
 - alveolar hypoxemia
 - increased pap & vascular resistance

Physical examination

- presence of PHN in pts. w/COPD correlates well w/ severity of the disease
- pts. w/ severe hypoxemia (<55 mmHg) almost always have severe PHN

- treat underlying disease COPD
- bronchodilators
- oxygen
- oral vasodilators don't help