1. Multi dimensional random walk

Definition 1 (Type II random walk in \mathbb{Z}^m)

Let $m \in \mathbb{N}$. $\forall n \in \mathbb{N}$, let $X_n = \begin{pmatrix} x_1^x & x_2^x & \dots, x_m^x \end{pmatrix}^T$, where $\{x_i^x\}_{i=1}^m$ are $\forall n \in \mathbb{N}$ independent. **check english** NEVÍM JAK TO NAPSAT LÍP Let $\forall i \in \{1, 2, \dots, m\}x_i^x$ have values in $\{-1, +1\}$ with probabilities $P(x_i^x = +1) = p_i \in (0, 1)$ and $P(x_i^x = -1) = q_i = 1 - p_i \in (0, 1)$.

Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically distributed random variables. Let $S_0 = \mathbf{0}$ and $\forall n \in \mathbb{N} : \mathbf{S_n} = \sum_{i=1}^n X_i$ and $\mathbf{p} = (p_1, p_2, \dots, p_m)^T$. Then the pair $(\{\mathbf{S_n}\}_{n=0}^{+\infty}, \mathbf{p})$ is called Type II random walk in \mathbb{Z}^m .

If $\forall i \in \{1, 2, ..., m\}$: $p_i = q_i = \frac{1}{2}$ we call the **check english** element $\{\mathbf{S_n}\}_{n=0}^{+\infty}$ Symmetric type II random walk \mathbb{Z}^m .

Remark. Type II random walk can be interpreted as m simple random walks in \mathbb{Z} happening at a time, each of them parallel to an axis of \mathbb{Z}^m .

Theorem 1

Let $m \in \mathbb{N}$ and $(\{\mathbf{S_n}\}_{n=0}^{+\infty}, \mathbf{p})$ be a Type II random walk in \mathbb{Z}^m . Let $\mathbf{y} = (y_1, y_2, \dots, y_m)^T \in \mathbb{Z}^m$. Then following equation stands:

$$P(S_n = x) = \begin{cases} \prod_{i=1}^m {n \choose \frac{y_i + n}{2}} p_i^{\frac{n + y_i}{2}} q_i^{\frac{n - y_i}{2}}, & \text{if } \forall i \in \{1, 2, \dots, m\} : y_i \in A_n, \\ 0, & \text{if } \exists i \in \{1, 2, \dots, m\} : y_i \notin A_n. \end{cases}$$

Proof.
$$P(\mathbf{S_n} = \mathbf{y}) = P(S_1^x = y_1, S_2^x = y_2, \dots, S_m^x = y_m) \stackrel{\perp}{=} \prod_{i=1}^m P(S_n^x = y_i)$$

 $=\prod_{i=1}^{m} {n\choose \frac{y_i+n}{2}} p_i^{\frac{n+y_i}{2}} q_i^{\frac{n-y_i}{2}}.$ The second equation comes from the independency of $\{\mathbf{S_i}\}_{i=1}^{m}$ which comes easily from independency of X_n^i . The second equation comes from the theorem of probability of position and time from the first chapter (??).

Remark. Due to the the aim of this thesis which is reasearching occupation time of a set of random walks we are going to concern only on symmetric random walks.

Definition 2 (Orthant-je to potřeba?)

Let $m \in \mathbb{Z}$. Then $O \subset \mathbb{Z}^m$ is called an open orthant in \mathbb{Z}^m if $\forall o \in O, \forall i \in \{1, 2, ..., m\} : o = <math>(o_1, o_2, ..., o_m)^T : o_i \varepsilon_i > 0$, where $\varepsilon_i \in \{-1, +1\}$. $C \subset \mathbb{Z}^m$ is called a closed orthant in \mathbb{Z}^m if $\forall c \in C, \forall i \in \{1, 2, ..., m\} : o = <math>(o_1, o_2, ..., o_m)^T : o_i \varepsilon_i \geq 0$, where $\varepsilon_i \in \{-1, +1\}$.

Remark. The statement $\mathbf{x} > \mathbf{y}$ will mean $\forall i \in \{1, 2, ..., m\} : x_i > y_i$. Same applies to $<, \leq, \geq$.

Theorem 2 (Probability of being in an open orthant) Let $\{\mathbf{S_n}\}_{n=0}^{+\infty}$ be a Symmetric type II random walk in \mathbb{Z}^m . Let O be an open orthant in \mathbb{Z}^m . $P(\mathbf{S_n} \in C) = \left(\frac{1}{2}u_{2n}\right)^m$.

Proof. Without loss of generality we can assume that in the definition of C we choose $\forall i \in \{1, 2, \dots, m\} \varepsilon_i := +1$ then: $\mathsf{P}\left(\mathbf{S_n} \in O\right) = \mathsf{P}\left(S_1^x > 0, S_2^x > 0, \dots, S_m^x > 0\right) = \prod_{i=1}^m \mathsf{P}\left(S_i^x > 0\right) = \left(\mathsf{P}\left(S_n^x > 0\right)\right)^m = \left(\frac{1}{2}u_{2n}\right)^m$. Where the last equation comes from Lemma ??.

Theorem 3 (Probability of being in a closed orthant) Let $\{\mathbf{S_n}\}_{n=0}^{+\infty}$ be a Symmetric type II random walk in \mathbb{Z}^m . Let C be a closed orthant in \mathbb{Z}^m . $P(\mathbf{S_n} \in C) = (u_{2n})^m$.

Proof. Without loss of generality we can again assume that in the definition of C we choose $\forall i \in \{1, 2, ..., m\} \varepsilon_i := +1$ then: $\mathsf{P}\left(\mathbf{S_n} \in C\right) = \mathsf{P}\left(S_1^x \geq 0, S_2^x \geq 0, ..., S_m^x \geq 0\right) = \prod_{i=1}^m \mathsf{P}\left(S_i^x \geq 0\right) = \left(\mathsf{P}\left(S_n^x \geq 0\right)\right)^m = \left(u_{2n}\right)^m$. Where the last equation comes from Lemma ??.