安徽大学 20 09 - 20 10 学年第 1 学期

《离散数学 (上)》(A卷)考试试题参考答案及评分标准

一、单项选择题(每小题2分,共20分)

1. C; 2. C; 3. A; 4. B; 5. B; 6. B; 7. D; 8. D; 9. D; 10. D.

二、判断题(每空2分,共10分)

1. $\sqrt{}$; 2. \times ; 3. $\sqrt{}$; 4. $\sqrt{}$; 5. $\sqrt{}$

三、填空题(每小空2分,共20分)

- 1. $\forall x(Q(x) \to R(x)) \land \exists x(R(x) \land \neg Q(x))$ 或 $\forall x(Q(x) \to R(x)) \land \neg \forall x(R(x) \to Q(x))$; $\neg \exists x(I(x) \land \neg Q(x))$ 或 $\forall x(I(x) \to Q(x))$;
- 2. $\{\{c\},\{a,c\},\{b,c\},\{a,b,c\}\}\}$; $\{\phi,\{c\}\}\}$;

3.
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} ; \quad \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} ; \quad 4. \quad \begin{cases} 1 & x \in [0, \frac{1}{4}) \cup (\frac{1}{2}, 1] \\ 0 & x \in [\frac{1}{4}, \frac{1}{2}] \end{cases}$$

$$I\left(\left[0,\frac{1}{4}\right)\cup\left(\frac{1}{2},1\right]\right); \begin{cases} 1 & x\in\left[\frac{1}{4},\frac{1}{2}\right]\cup\left[\frac{3}{4},1\right] \\ 0 & x\in\left[0,\frac{1}{4}\right)\cup\left(\frac{1}{2},\frac{3}{4}\right) \end{cases} \overrightarrow{\mathbb{E}}I\left(\left[\frac{1}{4},\frac{1}{2}\right]\cup\left[\frac{3}{4},1\right]\right).$$
 5. =, >.

四、解答题 (每小题 10 分, 共 20 分)

1. 哈斯图 2 分,表中每空 1 分。 (1) < A, R > 的哈斯图为

集合	最大元	最小元	极大元	极小元
$B = \{2, 3, 4\}$	无	4	2,3	4
集合	上界	下界	上确界	下确界
$C = \{3, 4, 5\}$	1,3	无	3	无

2.
$$(P \to Q \land R) \land (\neg P \to (\neg Q \land \neg R)) \Leftrightarrow (\neg P \lor Q \land R) \land (P \lor \neg Q \land \neg R)$$
 2 $$

$$\Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R) \land (P \lor \neg Q) \land (P \lor \neg R)$$

$$4 \,$$

$$\Leftrightarrow (P \lor Q \lor \neg R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R)$$

$$\wedge (\neg P \vee Q \vee R) \wedge (\neg P \vee Q \vee \neg R) \wedge (\neg P \vee \neg Q \vee R)$$

$$\Leftrightarrow \Sigma(0,7)$$
 (主析取范式) 10 分

五、证明题(每小题10分,共30分)

1. 证明:根据 CP 规则,原式等价于

$$\forall x (P(x) \to Q(x)) \land \forall x (R(x) \to \neg Q(x)) \Rightarrow (R(x) \to \neg P(x))$$
 2 \(\frac{1}{2}\)

而

 $\forall x (P(x) \rightarrow Q(x)) \land \forall x (R(x) \rightarrow \neg Q(x))$

$$\Leftrightarrow \forall x((P(x) \to Q(x)) \land (R(x) \to \neg Q(x)))$$
 Q_{10}

$$\Leftrightarrow \forall x ((\neg Q(x) \to \neg P(x)) \land (R(x) \to \neg Q(x))) \qquad E_5, E_{24} \qquad 6 \, \text{ fb}$$

$$\Rightarrow (\neg Q(x) \rightarrow \neg P(x)) \land (R(x) \rightarrow \neg Q(x)) \qquad Q_1 \qquad 8 分$$

$$\Rightarrow R(x) \rightarrow \neg P(x)$$
 I_6

所以,
$$\forall x (P(x) \to Q(x)) \Rightarrow \forall x (R(x) \to \neg Q(x)) \to (R(x) \to \neg P(x))$$
 10 分

2. 证明: 对 $\forall < a,b > \in A \times B$,

由 R_1 是 A 上的等价关系可得 $< a, a > \in R_1$,由 R_2 是 B 上的等价关系可得 $< b, b > \in R_2$ 。

再由 R 的定义,有 $<< a,b>,< a,b>> \in R$,所以 R 是自反的。

3分

对 \forall < a,b >,< c,d >∈ A×B , 若 << a,b >,< c,d >>∈ R , 则 < a,c >∈ R, , < b,d >∈ R, 。

由 R_1 对称得 $< c, a > \in R_1$, 由 R_2 对称得 $< d, b > \in R_3$ 。

再由
$$R$$
 的定义,有 $<< c,d>,< a,b>>\in R$,所以 R 是对称的。

对 $\forall \langle a,b \rangle, \langle c,d \rangle, \langle e,f \rangle \in A \times B$,

若 $<< a,b>,< c,d>>\in R$ 且 $<< c,d>,< e,f>>\in R$,

则 $< a,c > \in R_1$ 且 $< b,d > \in R_2$, $< c,e > \in R_1$ 且 $< d,f > \in R_2$ 。

由 R_1 和 R_1 的传递性得 $< a, e > \in R_1$ 且 $< b, f > \in R_2$,

再由 R 的定义,有 $<< a,b>,< e,f>>\in R$,所以 R 是传递的。

综上可得, $R \in A \times B$ 上的等价关系。

10 分

3. 证明:因为 1_x 为X上的恒等函数,所以 1_x 为X上的双射函数。

2 分

因为 $f^n = f^{n-1} f = 1_x$ 为双射函数, 所以 f 为单射函数。

6分

因为 $f^n = ff^{n-1} = 1_v$ 为双射函数, 所以 f 为满射函数。

综上所述,f是双射函数。

10 分