Contents

1	Двойной и тройной интегралы: определение на языке интегральных сумм Римана. Определение площади и объёма.	4
2	Определение п-мерного бруса (параллелепипеда) и разбиения бруса.	5
3	Суммы Дарбу и их основные свойства. Нижний и верхний интегралы Дарбу и их свойства.	6
4	Определение кратного интеграла на языке интегралов Дарбу. Критерий интегрируемости (на языке сумм Дарбу).	7
5	Свойства интеграла по п-мерному параллелепипеду.	9
6	Множество меры 0. Основные свойства. Примеры.	12
7	Критерий интегрируемости функции на языке множества меры 0	14
8	Измеримые по Жордану множества. Определение интеграла от функции по измеримому множеству.	15
9	Свойства аддитивности и усиленной аддитивности интеграла по измеримым множествам.	17
10	Сведение кратного интеграла к повторному.	18
11	Теорема Фубини (формулировка). Примеры: двойной и тройной интегралы.	19
12	Объём цилиндрического тела.	22
13	Дифференциальные уравнения (ДУ1) 1-го порядка: определение, формы записи ДУ1. Примеры.	23
14	Общее, частное и особое решения ДУ1. Теорема существования и единственности решения задачи Коши (формулировка).	ı 24
15	ДУ 1-го порядка с разделенными и разделяющимися переменными: определение, формы записи, общий интеграл, решение задачи Коши.	26
16	Однородные ДУ первого порядка: определение, формы записи, общий интеграл, решение задачи Коши.	27
17	Линейные ДУ 1-го порядка. Метод вариации произвольной постоянной	28
18	Линейные ДУ 1-го порядка. Метод Бернулли.	29
19	Уравнение Бернулли.	30

20	ДУ высших порядков, задача Коши. Теорема существовании и единственности решения задачи Коши.	32
21	ДУ, допускающие понижение порядка. Примеры	33
22	Линейные однородные ДУ высших порядков: основные определения	34
23	Линейная независимость решений, определитель Вронского.	35
24	Фундаментальная система решений (ФСР) линейного ДУ.	36
25	Примеры построения ФСР для линейных ДУ с постоянными коэффициентами.	37
26	Теорема о структуре общего решения однородного ДУ. Теорема о структуре общего решения неоднородного ДУ.	40
27	Линейные неоднородные ДУ n-го порядка, решение методом вариации произвольных постоянных.	42
28	Метод вариации произвольных постоянных для линейного ДУ 2-го порядка. Примеры.	44
29	Линейные неоднородные ДУ с постоянными коэффициентами и правой частью специального вида. Построение частного решения методом неопределенных коэффициентов	
30	Системы линейных ДУ: определение формы записи, задача Коши	47
31	Системы линейных ДУ первого порядка с постоянными коэффициентами. Нормальная форма записи системы	50
32	Система линейных ДУ и её матричная форма записи. Однородная система линейных ДУ первого порядка	51
33	Решение системы линейных ДУ для случаев различных вещественных корней, различных комплексных корней, кратных вещественных корней характеристического уравнения	
34	ФСР линейной системы. Фундаментальная матрица (ФМ) линейной системы. Свойства ФСР и ФМ	54
35	Нормальная фундаментальная матрица линейной системы. Свойства.	56
36	Метод вариации произвольной постоянной для решения неоднородных линейных систем	57
37	Числовой ряд. Сходимость и сумма ряда. Необходимый признак сходимости.	60

38	Свойства сходящихся числовых рядов.	62
39	Ряды с положительными членами. Признаки сравнения в разных формах и следствия. Примеры.	64
40	Признак Даламбера, радикальный признак Коши, интегральный признак Коши.	66
41	Достаточный признак сходимости знакопеременного ряда. Абсолютная и условная сходимость.	68
42	Знакочередующиеся ряды. Признак Лейбница. Оценка остатка знакочередующе ряда (теорема Лейбница).	гося 69
43	Определение функционального ряда. Поточечная сходимость. Область сходимости функционального ряда.	70
44	Равномерная сходимость функционального ряда. Свойства равномерно сходящихся функциональных рядов.	71
45	Признак Вейерштрасса.	72
46	Степенные ряды. Первая теорема Абеля.	73
47	Интервал и радиус сходимости степенного ряда. Формулы для радиуса сходимости.	74
48	Свойства радиуса сходимости степенных рядов при их интегрировании и дифференцировании.	76
49	Ряды Тейлора и Маклорена.	77
50	Теорема о представлении функции сходящимся рядом Тейлора.	78
51	Разложение основных элементарных функций в ряд Маклорена.	79
52	Ортогональная система функций (ОГС). Разложение функции в ряд по ортогональной системе. Ряд Фурье. Коэффициенты Фурье.	81
53	Полнота и замкнутость ОГС. Неравенство Бесселя, Равенство Парсеваля.	83
54	Основная система тригонометрических функций. Ее ортогональность. Разложение функции в тригонометрический ряд Фурье.	84
55	Теорема Дирихле. Ряды Фурье для четной и нечетной функций. Ряд Фурье для функций произвольного периода.	86

Двойной и тройной интегралы: определение на языке 1 интегральных сумм Римана. Определение площади и объёма.

Figure 1: Разбиение области

$$D=\bigcup_{k=1}^n D_k,\ D_i\cap D_j=\emptyset\ (i\neq j)$$
 Разбиением называется: $\lambda=\{D_1...D_n\}$ Ранг разбиения (т.е. наибольшее из диаметров $D_i,\ D_j$): $|\lambda|=\max_{1\leq i\leq n}D_i$ Составим интегральную сумму Римана: $s(f,\Lambda)=\sum_{i=1}^n f(x_i,y_i)S(D_i),\ (x,y)\in D$ Двойной интеграл-предел интегральных сумм:
$$\iint\limits_D fds=\lim_{|\lambda|\to 0}s(f,\Lambda), \Lambda=\{(D_1,\ x_1,\ y_1),...,(D_n,\ x_n,\ y_n)\}\Leftrightarrow \forall \varepsilon>0\ \exists \delta>0: |\lambda|<\delta\Rightarrow |s(f,\Lambda)-\iint\limits_D fds|<\varepsilon\ \forall (x_i,y_i)\in D_i$$
 Тройной интеграл-предел интегральных сумм:

$$\iiint f dv \ = \ \lim_{|\lambda| \to 0} s(f,\Lambda), \ s(f,\Lambda) \ = \ \sum_{i=1}^n f(x_i,y_i) V(D_i), \ V(D_i)$$
 — объем области $D_i.$

Геометрический смысл двойного и тройного интегралов:] $f(x,y) \geq 0$ $S(D) := \iint\limits_{D} dxdy; \ V(D) := \iiint\limits_{C} dxdydz$

2 Определение п-мерного бруса (параллелепипеда) и разбиения бруса.

2.1 Определение

Замкнутый прямоугольный параллепипед или п-мерный интервал $D\subset \mathbb{R}^n$ определен условием $P\{x_1,...,x_n\}\in D\Leftrightarrow a_i\leq x_i\leq b_i,\ i=1,...,\ n$ При этом пишут

 $D=[a_1,\ b_1] imes\dots imes[a_n,\ b_n]$ Такие параллепипеды называются брусами. Объем V(D) бруса определяется равенством $V(D)\stackrel{\mathrm{Onp}}{=}\prod_{i=1}^n(b_i-a_i)=(b_1-a_1)\cdot\dots\cdot(b_n-a_n)$

Figure 2: К определению 1.2

Разбиением α интервала [a,b] удобно называть множество точек $\{t_0,t_1,...,t_k\}$ таких, что $a=t_0 < t_1 < ... < t_k = b$

Множество λ действительно делит интервал [a,b] на k интервалов $[t_{i-1},t_i],\; i=1,...,k.$

2.2 Определение

Разбиением λ бруса D называется кортеж $\lambda=(\lambda_1,...,\lambda_n)$ одномерных разбиений λ_i интервалов $[a_i,b_i].$

3 Суммы Дарбу и их основные свойства. Нижний и верхний интегралы Дарбу и их свойства.

Схожими билетами являются билеты №4, 5, поэтому советую посмотреть их тоже, там могут быть важные детали.

$$D=[a_1,b_1] imes ... imes [a_n,b_n], D\subset \mathbb{R}^n,\ f$$
 ограничена по $[a,b]$ $orall A\subset D: M_A(f)=\sup_{x\in A}f(x),\ m_A(f)=\inf_{x\in A}f(x)$ —верхняя и нижняя границы на отрезке A.
$$\mu(A)=\prod_{i=1}^n(b_k-a_k)$$
—мера бруса A.

3.1 Определение

Пусть λ -разбиение бруса D и $f\colon D\to \mathbb{R}$ —ограниченная функция. Верхняя и нижняя суммы Дарбу определяются, соответсвенно, равенствами $\sigma^*(f,\lambda)=\sum_{\text{по A из }\lambda} M_A(f)\mu(A),\ \sigma_*(f,\lambda)=\sum_{\text{по A из }\lambda} m_A(f)\mu(A),$ суммирование ведется по всем параллепипедам A из разбиения λ . По построению, очевидно, $\sigma_*(f,\lambda)\leq \sigma^*(f,\lambda)$

3.2 Свойства:

- 1. Для произвольного разбиения λ и ν , где $|\lambda|<|\nu|$ $\sigma_*(f,\lambda)\leq\sigma_*(f,\nu)$
- 2. Нижние суммы Дарбу ограничены сверху, а верхние снизу.
- 3. При добавлении к имеющемуся разбиению новых точек σ_* никак не может уменьшиться, а σ^* никак не может увеличиться.

$$\begin{split} &\sigma_*(f,\tau) \geq \sigma_*(f,\lambda) \\ &\sigma^*(f,\tau) \leq \sigma^*(f,\lambda) \\ &\tau\text{—изменения } \lambda. \\ &\text{Величины } I_*(f,D) = \sup_{\lambda} \sigma_*(f,\lambda) \text{—нижний интеграл Дарбу.} \\ &I^*(f,D) = \inf_{\lambda} \sigma^*(f,\lambda) \text{—верхний интеграл Дарбу.} \\ &I_*(f,D) \leq I^*(f,D) \\ &\sigma_* \leq I_* \leq I^* < \sigma^* \ \forall \lambda, \mu\text{—произвольные разбиения.} \end{split}$$

4 Определение кратного интеграла на языке интегралов Дарбу. Критерий интегрируемости (на языке сумм Дарбу).

Схожими билетами являются билеты №3, 5, поэтому советую посмотреть их тоже, там могут быть важные детали.

4.0.1 Определение

Если $\sup_{\lambda}\sigma_*(f,\lambda)=\inf_{\lambda}\sigma^*(f,\lambda)$ (точные границы берутся по всем разбиениям λ), функция f называется интегрируемой по брусу D и величина $I=\sup_{\lambda}\sigma_*(f,\lambda)=\inf_{\lambda}\sigma^*(f,\lambda)$ называется интегралом от функции f по D. при этом пишут $\int\limits_D f=I.$ Величины $I_*(f,D)=\sup\limits_\lambda \sigma_*(f,\lambda)$ и $I^*(f,D)=\inf\limits_\lambda \sigma^*(f,\lambda)$ всегда существуют и

называются, соответсвенно, нижним и верхним интегралами Дарбу. $I_{*}(f,D) \leq I^{*}(f,D).$

Функция интегрируема тогда и только тогда, когда нижний и верхний интегралы Дарбу равны между собой и их общее значение называется интегралом (Дарбу) функции f.

Если в обозначении интеграла нужно подчеркнуть размерность пространства, вместо $\int f$ пишут

$$\int\limits_{D}^{D}$$
 n раз $\int_{D}f$ или $\int\limits_{D}...\int\limits_{D}f(x_{1},...,x_{n})dx_{1}...dx_{n}.$

Например, интеграл по прямоугольнику $D=[a_1,b_1] imes [a_2,b_2]$ будет обозначаться $\iint f(x,y) dx dy$ и называется тройным интегралом, а интеграл по параллелепипеду

$$D=[a_1,b_1] imes[a_2,b_2] imes[a_3,b_3]$$
 будет обозначаться $\iiint\limits_D f(x,y,z)dxdydz$ и называется

тройным интегралом. Возможны и другие естественные модификации обозначений, как $\int\limits_D f(P)d\mu$ или $\int\limits_D f(P)dP.$

Теорема (Критерий интегрируемости)

f—интегрируема $\iff \forall \varepsilon > 0 \ \exists \lambda : \ \sigma^*(f,\lambda) < \varepsilon.$

Доказательство:

$$\exists \nu: \smallint_D f - \sigma_*(f,\nu) < \tfrac{\varepsilon}{2}$$

Если λ продолжэпет разбиения u, au, то тем более

$$\sigma^*(f,\lambda) - \int\limits_D f < \tfrac{\varepsilon}{2} \, \operatorname{in} \int\limits_D f - \sigma_*(f,\lambda) < \tfrac{\varepsilon}{2},$$

что ведет к оценке $\sigma^*(f,\lambda) - \sigma_*(f,\lambda) < \varepsilon.$

 $orall arepsilon > 0: \ I^*(f,D) - I_*(f,D) < arepsilon$, то есть равенство верхнего и нижнего интегралов.

4.0.2.0.1 Пример
$$f(P)=c=Const$$
 $\sigma_*(f,\lambda)=\sigma^*(f,\lambda)=\sum_{\text{по A из }\lambda}c\mu(A)=c\sum_{\text{по A из }\lambda}\mu(A)=c\mu(D)$, откуда $\int\limits_D f=c\mu(D)$.

Свойства интеграла по п-мерному параллелепипеду. 5

5.1 1. Линейность.

5.1.1 Теорема

Если функции f и g интегрируемы на брусе D, то функции f+g и αf $(\alpha=Const)$ также интегрируемы, причем $\int\limits_{D}(f+g)=\int\limits_{D}f+\int\limits_{D}g$,

$$\int\limits_{D} \alpha f = \alpha \int\limits_{D} f.$$

Доказательство.

A—произвольный параллепипед из разбиения λ . Тогда $\forall P \in A$

$$m_A(f)+m_A(g) \leq f(P)+g(P) \leq M_A(f)+M_A(g)$$
, откуда

$$m_A(f)+m_A(g) \leq m_A(f+g) \leq M_A(f+g) \leq M_A(f)+M_A(g).$$

Умножая на $\mu(A)$ и суммируя по всем ячейкам разбиения, приходим к неравенствам

$$\sigma_*(f,\lambda) + \sigma_*(g,\lambda) \leq \sigma_*(f+g,\lambda) \leq \sigma^*(f+g,\lambda) \leq \sigma^*(f,\lambda) + \sigma^*(g,\lambda).$$

Далее, как следствие,

$$\sigma_*(f,\lambda) + \sigma_*(g,\lambda) \leq I_*(f+g,D) \leq I^*(f+g,D) \leq \sigma^*(f,\lambda) + \sigma^*(g,\lambda).$$

Отсюда (в силу интегрируемости f и q)

Отсюда (в силу интегрируемости
$$f$$
 и g)
$$\int\limits_D f + \int\limits_D g = I_*(f,D) + I_*(g,D) \leq I_*(f+g,D) \leq I^*(f+g,D) \leq I^*(f,D) + I^*(g,D) = \int\limits_D f + \int\limits_D g,$$
 что доказывает равенства

что доказывает равенства
$$I_*(f+g,D) = I^*(f+g,D) = \int\limits_D f + \int\limits_D g$$

и, как следствие, равенство

$$\int_{D} (f+g) = \int_{D} f + \int_{D} g.$$

Докажем теперь однородность интеграла (возможность вынести множитель за знак интеграла). Если $\alpha > 0$, то

$$m_A(\alpha f) = \alpha m_A(f)$$
 и $M_A(\alpha f) = \alpha M_A(f)$,

откуда (при $\alpha > 0$)

$$I_*(\alpha f,D)=\alpha I_*(f,D)$$
 и $I^*(\alpha f,D)=\alpha I^*(f,D)$

в частности,

$$\int_{d} \alpha f = \alpha \int_{D} f.$$

Далее заметим, что

$$m_A(-f)=-M_A(f)$$
 и $M_A(-f)=-m_a(f)$,

$$I_*(-f,D) = -I^*(f,D)$$
 и $I^*(-f,D) = -I_*(f,D)$,

то есть в случе интегрируемости функции f

то есть в случе интегрируемости ф
$$I_*(-f,D)=I^*(-f,D)=-\int\limits_D f$$

и, следовательно,

$$\int_{D} (-f) = -\int_{D} f.$$

5.2 2. Монотонность

5.2.1 Теорема

] функции
$$f$$
 и g интегрируемы на брусе D. Тогда $f \leq g \Rightarrow \int\limits_D f \leq \int\limits_D g$. Доказательство $\sigma_*(f,\lambda) \leq \sigma_*(g,\lambda) \leq \int\limits_D g$, откуда $\int\limits_D f \leq \int\limits_D g$. Как следствие, отметим свойство ограниченности интеграла, выраженное неравенством:

Как следствие, отметим свойство ограниченности интеграла, выраженное неравенством: $m_D(f)\mu(D) \leq \int\limits_D f \leq M_D(f)\mu(D),$

где f-произвольная функция, интегрируемая на брусе D.

5.3 3. Теорема

Если f—интегрируема на брусе D, то |f|—также интегрируема, причем $|\int\limits_D f| \leq \int\limits_D |f|$. Доказательство $M_A(|f|) - m_A(|f|) = \sup\limits_{x \in A} |f(x)| - \inf\limits_{y \in A} |f(y)| = \sup\limits_{x \in A} |f(x)| + \inf\limits_{y \in A} -|f(y)|$ $= \sup\limits_{x,y \in A} (|f(x)| - |f(y)|) = \sup\limits_{x,y \in A} ||f(x)| - |f(y)|| \leq \sup\limits_{x,y \in A} |f(x) - f(y)| = \sup\limits_{x,y \in A} (f(x) - f(y))$ $= \sup\limits_{x \in A} f(x) + \sup\limits_{y \in A} (-f(y)) = \sup\limits_{x \in A} f(x) - \inf\limits_{y \in A} f(y) = M_A(f) - m_A(f),$ и, как следствие, $I^*(|f|,D) - I_*(|f|,D) \leq I^*(f,D) - I_*(f,D)$ что влечет за собой интегрируемость |f| при условии, что f-интегрируема. Оценка интеграла по абсолютной величине вытекает из манотонности интегралла: $\int\limits_D f \leq \int\limits_D |f|$ и $\int\limits_D f = \int\limits_D (-f) \leq \int\limits_D |f|.$

5.4 4. Теорема

Если f и g—интегрируемы на брусе D, то произведение fg—также интегрируемая функция. Доказательство

Прежде всего докажем, что квадрат интегрируемой функции-также интегрируемая функция. Действительно, полагая $M=M_D(|f|)$, находим

$$\begin{split} &M_A(f^2) - m_A(f^2) = \sup_{x \in A} f^2(x) - \inf_{y \in A} f^2(y) = \sup_{x \in A} f^2(x) + \sup_{y \in A} (-f^2(y)) \\ &\sup_{x,y \in A} (f^2(x) - f^2(y)) = \sup_{x,y \in A} |f^2(x) - f^2(y)| = \sup_{x,y \in A} |f^2(x) - f^2(y)| = \sup_{x,t \in A} (|f(x) + f(x)|) \\ &f(y) ||f(x) - f(y)|) \end{split}$$

$$\leq 2M\sup_{x,y\in A}(f(x)-f(y))=2M[\sup_{x\in A}f(x)+\sup_{y\in A}(-f(x))]$$

$$=2M[\sup_{x\in A}f(x)-\inf_{y\in A}f(y)]=2M[M_A(f)-m_A(f)],$$
 откуда
$$\sigma^*(f^2,\lambda)-\sigma_*(f^2,\lambda)\leq 2M[\sigma^*(f,\lambda)-\sigma_*(f,\lambda)]$$
 и, как следствие,
$$I^*(|f|,D)-I_*(|f|,D)\leq 2M[I^*(f,D)-I_*(f,D)],$$
 что влечет интегрируемость f^2 , при условии, что f —интегрируема. Остается заметить, что
$$fg=\frac{(f+g)^2-(f-g)^2}{4},$$
 то есть fg —линейная комбинация интегрируемых функций.

6 Множество меры 0. Основные свойства. Примеры.

6.1 Определение1

Множество $A\subset\mathbb{R}^n$ имеет объем-ноль(vol A=0), если для любого фиксированного $\varepsilon>0$ существует покрытие множества A брусами $B_1...B_k$, суммарный объем которых меньше ε :

$$\begin{aligned} vol A \subset 0 & \Longleftrightarrow^{def} \forall \varepsilon > 0 \exists \bigcup_{j=1}^k B_j \supset A : \\ \sum_{j=1}^k V(B_j) < \varepsilon \end{aligned}$$

Figure 3: Площадь-ноль гладкой кривой

В этом определении покрытие замкнутыми брусами может быть заменено на открытое покрытие:

6.2 Лемма

в определении покрытие замкнутыми брусами может быть заменено на открытое покрытие

$$volA = 0 \Leftrightarrow \forall \varepsilon > 0 \exists \bigcup_{j=1}^{k} \overset{o}{B}_{j} \supset A : \sum_{j=1}^{k} V(B_{J}) < \varepsilon,$$

здесь $\overset{o}{B}_{j}$ — внутренность бруса B_{j} , т.е. открытый брус.

6.3 Док-во:

Фиксируем $\varepsilon > 0$ и пусть

$$\bigcup_{j=1}^k B_j \supset A: \sum_{j=1}^k V(B_j) < \varepsilon/2$$

Пусть брус C_j концентричен брусу B_j и подобен ему с некоторым коэффициентом подобия, строго больше единицы (т.е. брус C_j является растяжением бруса B_j во всех направлениях), при этом $B_j \subset \overset{\circ}{C_j}$. Коэффициент подобия фиксируем таким чтобы было выполнено неравенство:

$$V(C_i) \leqslant V(B_i) + \varepsilon/2k$$

Тогда открытые брусы $\overset{o}{C}_{i}$ покрывают множество A, причем

$$\sum_{j=1}^k V(C_j) \leqslant \sum_{j=1}^k V(B_j) + k \frac{\varepsilon}{2k} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

6.4 Определение2

Множество $A\subset\mathbb{R}^n$ имеет меру ноль (mesA=0), если для любого фиксированного $\varepsilon>0$ существует покрытие множества A последовательностью брусов $B_j, j\in\mathbb{N},$ суммарный объем которых меньше ε

$$mes A = 0 \iff \forall \varepsilon > 0 \exists \bigcup_{j=1}^{\infty} B_j \supset A : \sum_{j=1}^{\infty} V(B_j)$$

6.5 Теорема

Пусть D - брус в \mathbb{R}^n Ограниченная функция $f:D\to\mathbb{R},$ множество точек разрыва(I рода) которой имеет объем ноль, то $f\in R(B)$

6.6 Лемма

Как и в случае объема ноль в определении покрытие замкнутыми брусами может быть заменено на открытое покрытие

$$mesA = 0 \Leftrightarrow \forall \varepsilon > 0 \exists \bigcup_{j=1}^{k} \overset{o}{B}_{j} \supset A : \sum_{j=1}^{k} V(B_{J}) < \varepsilon$$

6.7 Объединение последовательности множеств меры-ноль если мера ноль:

$$A = \bigcup_{i=1}^{\infty} A_i, mesA_i = 0 \Rightarrow mesA = 0$$

6.8 Теорема

 $]B\subset \mathbb{R}^n$ —брус f: B o R если множество точек разрыва f имеет меру 0 то $f\in R(B)$

7 Критерий интегрируемости функции на языке множества меры 0

7.1 Th1

Пусть D- брус \mathbb{R}^n и E— множество точек разрыва ограниченной функции $f:D\to\mathbb{R}$. Тогда f—интегрируема на $D\iff mesE=0$, т.е. ограниченная функция интегрируема тогда и только тогда, когда множество ее точек разрыва имеет меру-ноль.

8 Измеримые по Жордану множества. Определение интеграла от функции по измеримому множеству.

]D- произвольное множество на \mathbb{R}^n Характеристической функцией множества D называется функция X_D определенная равентсвом

$$X_D(P) = \begin{cases} 1, P \in D, \\ 0, P \not\in D \end{cases}$$

8.1 Определение 1

Пусть A- брус в \mathbb{R}^n и $f:A\to\mathbb{R}-$ ограниченная функция на A Пусть $D\supset A$ Тогда

$$\int_D f \stackrel{def}{=} \int_A f * X_D,$$

если функция интегрируема

8.2 Определение 2(скорее как доп инфа)

Пусть $D\subset \mathbb{R}^n$ и $f:D\to \mathbb{R}-$ ограниченная функция на множестве D. Пусть D- ограничено и A- произвольный брус в \mathbb{R}^n , содержащий $D:D\subset A,$ Тогда

$$\int_{D} f \stackrel{def}{=} \int_{-\infty}^{\infty} f$$

$$(f(P), P \in I)$$

$$\tilde{f} = \begin{cases} f(P), P \in D, \\ 0, P \notin D \end{cases}$$

продолжение фукнции f нулем

Эти определения не зависят от выбора бруса A, содержащео множество D Функция f будет интегрируемой на множестве D всегда, если она (или ее продолжение нулем) и характеристическая функция X_D интегрируемы на брусе $A\supset D$

8.3 Теорема

Пусть D- ограниченное множество в \mathbb{R} . Тогда

$$X_D$$
 — интегрируема $\iff \mu(\delta D) = 0$

8.3.1 Док-во:

Элементраное следствие из теоремы о критерии интегрируемости(из прошлого билета), поскольку множество точек рарыва характеристической функции совпадает с границей множества.

8.4 Определение 3

Ограниченное множество $D \in \mathbb{R}^n$ называется измеримым по Жордану если $\mu(\delta D) = 0$, значение интеграла

$$\int_D 1 = V(D)$$

называется объемом множества D. Одномерный объем называется длиной множества, а двумерный площадью

8.5 Теорема

D— жорданово тогда и только тогда, когда $\exists v\geqslant 0: \forall \varepsilon>0:$

1. В D можно заключить брусы $B_1...B_k$ с непересекающимися внутреностями(объединение брусов целиком лежит в D)

$$D\supset \bigsqcup_{j=1}^k B_j$$
 — разбиение

2.
$$IntB_s \bigcap IntB_j = \oslash(s \neq j): \sum_{j=1}^k \mu(B_j) > v - \varepsilon$$
 где $v = \mu(D)$

8.5.1 Док-во

$$\mu(D) = \int_D X_D, D \subset B$$

8.6 Следствия

1. Если $\forall \varepsilon>0$ \exists жордановы мно-ва X и $Y:(X\subset D,D\subset Y)\wedge (\mu(Y)-\mu(X))<\varepsilon)$ $\Rightarrow D$ жорданово множество

$$[2.]D\in\mathbb{R}^n\Rightarrow\mu(D)=0$$
, если ($D-$ жорданово) $\wedge(D\supset\bigsqcup_{j=1}^kB_j)$, где $\mu(B_j)=0$

9 Свойства аддитивности и усиленной аддитивности интеграла по измеримым множествам.

9.1 Теорема

 $]D_1,D_2$ жордановы и $D_1\cap D_2=\emptyset$, то $D=D_1\cup D_2-$ тоже жорданово и:

$$\int_D f = \int_{D_1} f + \int_{D_2} f$$

9.2 Следствие (Усиленная аддитивность)

Если внутренности жордановых множеств не пересекаются ($\overset{o}{D}_1\cap \overset{o}{D}_2\neq \varnothing$), то $D_1\cup D_2=D$ тоже жорданово

$$\int_D f = \int_{D_1} f + \int_{D_2} f$$

9.2.1 Пример

с-ва усиленной аддитивности обладает V(D) :

$$\overset{o}{D}_1\cap \overset{o}{D}_2\neq \oslash \Rightarrow V(D_1\cup D_2)=V(D_1)+V(D_2)$$

10 Сведение кратного интеграла к повторному.

$$\begin{split}]A \subset \mathbb{R}^n - \mathrm{брус}, B \subset \mathbb{R}^m - \mathrm{брус} \\ A \times B \subset \mathbb{R}^{n+m} \\ f: A \times B \to \mathbb{R} \\ x = (x_1...x_n) \in A \subset \mathbb{R}^n, y = (y_1, ..., y_m) \in B \subset \mathbb{R}^m \\ x^o = (x_1^o...x_n^o), y^o = (y_1^o...y_m^o) - \mathrm{точки} \\ \mathrm{Paccm} \ f(x,y), \\ (.)x_0; f(x_0,y) = f_{x_0}(y), x_0 \in A \\ \{f_{x_0}(y)\}_{x_0 \in A} - \mathrm{семействo} \\ (.)y_0: f(x,y_0) = f_{y_0}(x), y_0 \in B \\ \{f_{y_0}(x)\}_{y_0 \in B} \\ \varphi_*, \varphi^*: A \to \mathbb{R} \\ \varphi_*(x) = I_*(f_{y_0}(x)) = \sup_{\lambda_b} (f_y, \lambda_B) \\ \varphi^*(x) = I^*(f_{y_0}(x)) = \inf_{\lambda_b} (f_y, \lambda_B) \\ \lambda_B - \mathrm{разбиениe} \ \mathrm{брусa} \ B \\ \lambda_A - \mathrm{разбиениe} \ \mathrm{брусa} \ B \\ \lambda_A - \mathrm{разбиениe} \ \mathrm{брусa} \ A \\ \varphi_*(x) \leq \varphi(x), \forall x \in A \end{split}$$

см. некст вопрос

11 Теорема Фубини (формулировка). Примеры: двойной и тройной интегралы.

11.1 Теорема

$$]f\in R(A imes B),\;$$
 то $arphi_*,arphi^*\in R(A)$ и
$$\int_{A imes B}f=\int_Aarphi_*=\int_Aarphi^*$$

11.1.1 Примеры двойной тройной интеграл

11.2 $D \subset \mathbb{R}^2$:

$$\begin{split} D &= \{(x,y) \in \mathbb{R}^2 : a \leq x \leq b, \\ h_1(x) \leq y \leq h_2(x)\}, h_1, h_2 \in C_{[a,b]} \\ \forall x \in [a,b] : c \leqslant h_1(x) \leqslant h_2(x) \leqslant d \\ \iint_D f(x,y) dx dy &= \iint_{[a,b] \times [c,d]} f(x,y) X_D(x,y) dx dy = \\ &= \int_A dx \int_B dy f(x,y) * X_D(x,y) \\ \int_a^b dx \int_c^d dy f(x,y) X_D(x,y) = \\ &\int_a^b dx \int_{h_2(x)}^{h_2(x)} dy f(x,y) \end{split}$$

$$D = \{(x, y) \in \mathbb{R} : g(y) \le x \le g_2(y)\}\$$

11.3 $D \subset \mathbb{R}^3$:

$$D=\{(x,y,z)\in\mathbb{R}^3:(x,y)\in\Omega, \varPhi(x,y)\leq z\leq \Psi(x,y)\}$$

$$f:D\to\mathbb{R}, f\in R(D)$$

$$A=[a_1,b_1]\times[a_2,b_2]\times[a_3,b_3]\supset D$$

$$B=[a_1,b_1]\times[a_2,b_2]\supset\Omega-\text{проекция A на }xOy$$

$$\iiint_D f(x,y,z)dxdydz=\iiint_A f(x,y,z)X_D(x,y,z)dxdydz=$$

$$\iint_B dxdy\int_{a_3}^{b_3} dz f(x,y,z)X_D(x,y,z)=$$

$$\iint_\Omega dxdy\int_{\varPhi(x,y)}^{\Psi(x,y)} dz f(x,y,z)=\iint_\Omega g(x,y)dxdy$$

12 Объём цилиндрического тела.

12.0.1 Теорема

Пусть D-брус в \mathbb{R}^n и f-неотрицательная функция $D \to \mathbb{R}$. Пусть O_f —подграфик функции f, то есть

$$O_f = \{Q \in \mathbb{R}^{n+1} : Q = (P, u), \ P \in D, \ 0 \le u \le f(P)\}.$$

Тогда

 O_f —жарданово множество в $\mathbb{R}^{n+1}\iff f$ — интегрируема на D, при этом

$$V(O_F) = \int_D f.$$

Доказательство

Предположим, что f-интегрируема и пусть E- множество точек разрыва. Пусть $M=\sup_{P\in D}|f(P)|$ и $A_1,A_2,...$ -брусы такие, что

$$E\subset \bigcup_{k=1}^{\infty} \overset{o}{A_k}, \, \sum_{k=1}^{\infty} V(A_k)<\tfrac{\varepsilon}{2M}.$$

Тогда брусы $B_k = A_k imes [0,M], \; k=1,2,...$ покрывают часть графика функции f, где f-разрывна и

$$\sum\limits_{k=1}^{\infty}V(B_k)=\sum\limits_{k=1}^{\infty}V(A_k)\cdot M\leq \frac{\varepsilon}{2}$$

(подчеркнем, что здесь в левой части равенства суммируются (n+1)-мерный объемы, а справа n-мерные).

Отметим далее, что множество $F=D\setminus\bigcup_{k=1}^\infty \overset{o}{A_k}$ —замкнутое и, следовательно, компактное, причем на нем функция f непрерывна и, следовательно, -равномерно непрерывна. Пусть число $\delta>0$ характеризуется условием:

$$|P_1P_2| < \delta \Rightarrow |f(P_2) - f(P_1)| < \frac{\varepsilon}{2V(D)}$$
.

Пусть ранг разбиения λ руса D сделан меньше δ . Если через S обозначить произвольную ячейку разбиения λ , то брусы $S \times [m_S(f), M_S(f)]$ будут покрывать оставшуюся часть графика функции f, при этом

графика функции
$$f$$
, при этом
$$\sum_{\text{по S из }\lambda}V(S\times[m_S(f),M_S(f)])\leq\sum_{\text{по S из }\lambda}V(s)\cdot\frac{\varepsilon}{2V(D)}=\frac{\varepsilon}{2}.$$

Таким образом верхнаяя часть границы подграфика функции f оказывается покрыта системой брусов, суммарный объем которых не превосходит произвольно взятого положительного ε , то есть имеет меру-ноль. С учетом того факта, что гиперплоские грани подграфика O_f имеют (n+1)-мерный объем-ноль, получаем, что граница подграфика O_f имеет меру ноль, то есть характеристическая функция χ_{O_f} -интегрируема, а подграфик O_f -является жордановым множеством.

Предположим, теперь, O_f -измеримо по Жордану. Тогда по теореме Фубини

$$V(O_f) = \int\limits_{D\times[0,M]} \chi_{O_f} = \int\limits_{D} dp \int\limits_{0}^{M} \chi_{O_f}(P,u) du = \int\limits_{D} f(P) dP = \int_{D} f(P) dP = \int_{D$$

Дифференциальные уравнения (ДУ1) 1-го порядка: **13** определение, формы записи ДУ1. Примеры.

13.1 Определение

ДУ называется уравнение, которое кроме неизвестных переменных и неизвестных функций содержит ещё и производные неизв. функций или их дифференциалы.

 $\mathbf{Д}\mathbf{Y}_1$ называется уравнение

где F - некоторая заданная функция 3-х переменных, $y \in C^1_{< a,b>}$ - интервал.

Формы записи **13.2**

- 1. **Неявная**: F(x, y, y') = 0
- 2. Нормальная: y' = f(x,y) 3. Симметричная: P(x,y)dx + Q(x,y)dy = 0

14 Общее, частное и особое решения ДУ1. Теорема существования и единственности решения задачи Коши (формулировка).

14.1 Общее решение

Семейство функций $\{y=\phi(x,C)\}_{C\in R}$ задаёт общее решение ДУ в области D, если: - для $\forall C=C_0$ - допустимого соотв. функ. $y=\phi(x,C_0)$ – решение:

$$\phi'(x,C_0) \equiv f(x,\phi(x,C_0))$$

• $\forall (x_0,y_0)\in D$ $\exists !\ C_0\in R:y_0=\phi(x_0,C_0)$, т.е функция $y=\phi(x,C_0)$ - Решение задачи Коши с начальными условиями $y(x_0)=y_0$

14.2 Частное решение

Частным решением $ДУ_1$ наз решение, полученное из общего решения фиксацией произвольной постоянной C.

14.3 Особое решение

Решение у = $\tilde{\phi}(x)$ ДУ $_1$ называется особым решением ДУ, если через каждую точку $(x_0\tilde{\phi}(x_0))$ соответствующей итегральной кривой проходит другая инт.кривая — график решения у = $\tilde{\phi}(x)$

Figure 4: К определению особого решения

14.4 Теорема (∃ и ! решения задачи Коши)

$$(1)\left\{\begin{array}{c} F(x,y,y')=0\\ y(x_0)=y_0 \end{array}\right.$$

$$(2)\left\{\begin{array}{l} y'=f(x,y)\\ y(x_0)=y_0 \end{array}\right.$$

Если f непр в $U(x_0,y_0)$ то задача Коши (1),(2) имеет единственное решение в $V(x_0)$

- 15 ДУ 1-го порядка с разделенными и разделяющимися переменными: определение, формы записи, общий интеграл, решение задачи Коши.
- 15.1 ДУ с разделенными переменными

$$P(x)dx + Q(y)dy = 0$$

$$\int P(x)dx + \int Q(y)dy = C$$
 — общий интеграл

15.2 ДУ с разделяющимися переменными

Ду вида:

$$\begin{split} (1)\; M_1(x) N_1(y) dx + M_2(x) N_2(y) dy &= 0 \\ (2)\; y' &= f(x) * g(y) \end{split}$$

15.3 Общие интегралы ДУ с разделяющимися переменными

$$(1') \ \int \frac{M_1(x)}{M_2(x)} dx + \int \frac{N_2(y)}{N_1(y)} dy = C$$

$$(2') \int \frac{dy}{g(y)} = \int f(x)dx + C$$

15.4 Решение задачи Коши

$$(1) \left\{ \begin{array}{l} y' = f(x,y) \\ y(x_0) = y_0 \end{array} \right.$$

$$(2) \ \left\{ \begin{array}{l} M_1(x)N_1(y)dx + M_2(x)N_2(y)dy = 0 \\ y(x_0) = y_0 \end{array} \right.$$

$$(1') \int_{y_0}^{y} \frac{ds}{g(s)} = \int_{x_0}^{x} f(t)dt$$

$$(2')\ \int_{x_0}^x \frac{M_1(t)}{M_2(t)} dt + \int_{y_0}^y \frac{N_2(s)}{N_1(s)} ds = 0$$

16 Однородные ДУ первого порядка: определение, формы записи, общий интеграл, решение задачи Коши.

16.1 Определение

Функция наз однородной степени $m \in R$ для любого

$$\forall \lambda \neq 0 : f(\lambda x, \lambda y) = \lambda^m \cdot f(x, y)$$

ДУ наз однородным, если в НФ оно имеет вид

$$y' = f(\frac{y}{x})$$

В симметричной форме:

$$P(x,y)dx + Q(x,y)dy = 0$$

если, P и Q однородные функции одного порядка

16.2 Общий интеграл

$$\int \frac{du}{f(u)-u} = \ln(C|x|), u = \frac{y}{x}$$

$$dy = udx + xdu$$

$$y' = u'x + x'u = u'x + u$$

17 Линейные ДУ 1-го порядка. Метод вариации произвольной постоянной

17.1 Определение

ДУ вида
$$y'+p(x)y=q(x)$$
, где $y\in C'(X), p,q\in C(X), X\subset R$ ЛНДУ: $y'+py=q$ ЛОДУ: $y'+py=0$

17.2 Метод Лагранжа

Решаем ЛОДУ от данного:

$$y = C(x)e^{-\int p(x)dx}$$
 — общее решение ЛОДУ,

где C заменено на C(x)

От получившегося берём производуную и подставляем в исходное уравнение

$$\begin{split} y' &= C'(x)e^{-\int p(x)dx} - p(x)C(x)e^{-\int p(x)dx} \\ C'(x)e^{-\int p(x)dx} - p(x)C(x)e^{-\int p(x)dx} + p(x)C(x)e^{-\int p(x)dx} = q(x) \\ C'(x) &= q(x)e^{\int p(x)dx} \Rightarrow C(x) = \int q(x)e^{\int p(x)dx}dx + C1 \\ y &= \left(\int q(x)e^{\int p(x)dx}dx + C1\right)\cdot e^{-\int p(x)dx} \end{split}$$

18 Линейные ДУ 1-го порядка. Метод Бернулли.

$$y' + p(x)y = q(x)$$

Замена y = uv

$$y' = u'v + uv'$$

$$u'v + uv' + p(x)uv = q(x)$$

$$v(u' + p(x)u) + uv' = q(x)$$

$$\left\{ \begin{array}{c} u'+p(x)u=0 \\ v'=\frac{q(x)}{u} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \dot{u}=e^{-\int p(x)dx} \\ v'=q(x)e^{\int p(x)dx} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \dot{u}=e^{-\int p(x)dx} \\ v=\int q(x)e^{\int p(x)dx}dx + C_1 \end{array} \right.$$

Потом подставляем в y=uv

19 Уравнение Бернулли.

ДУ вида
$$y'+p(x)y=q(x)y^a$$
, где а $\neq 1, a \neq 0, a \in Q$

19.1 Метод Бернулли

$$\begin{aligned}]y &= uv, u' + p(x)u = 0 \Rightarrow u(x) = Ce^{-\int p(x)dx} \\ u'v + v'u + puv &= qu^av^a \Leftrightarrow \\ &\Leftrightarrow \left\{ \begin{array}{l} u' + pu = 0 \\ v'u = qu^av^a \end{array} \right. \\ &\Leftrightarrow \left\{ \begin{array}{l} u_0 = e^{-\int p(x)dx} \\ v' &= qu^{a-1}v^a \end{array} \right. \\ dv &= v'dx \Rightarrow dv = qu^{a-1}v^adx \Rightarrow \frac{dv}{v^a} = q(x)e^{(1-a)\int p(x)dx}dx \Rightarrow \end{aligned}$$

$$\frac{v^{1-a}}{1-a} = \int (q(x)e^{(1-a)\int p(x)dx})dx + C_1 \Rightarrow v(x) = C_1 + \left[(1-a)\int (q(x)e^{(1-a)\int p(x)dx})dx \right]^{\frac{1}{1-a}}$$

$$y = uv = \dots$$

19.2 Метод вариации

$$\begin{split} y'+p(x)y&=q(x)y^a\\ y'+p(x)y&=0\Rightarrow y=C(x)e^{-\int p(x)dx}\Rightarrow\\ y'&=C'(x)e^{-\int p(x)dx}-C(x)p(x)e^{-\int p(x)dx}\Rightarrow C'(x)=q(x)C^a(x)e^{1-a\int p(x)dx} \end{split}$$

19.3 Пример

$$y' + \frac{1}{x}y = xy^2$$

Метод бернулли:

$$y = uv \Rightarrow u' + \frac{1}{x}u = 0 \Leftrightarrow u = \frac{C}{x}$$

$$u'v + uv' + \frac{1}{x}uv = xu^2v^2 \Leftrightarrow \left\{ \begin{array}{c} u = \frac{C}{x} \\ v' = xuv \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} u_0 = \frac{1}{x} \\ v' = v^2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} u_0 = \frac{1}{x} \\ v = \frac{1}{C_1 - x} \end{array} \right. \Rightarrow y = uv$$

Метод вариации:

$$\begin{split}]y &= \frac{C(x)}{x} \Rightarrow y' = \frac{C'(x)}{x} - \frac{C(x)}{x^2} \Rightarrow \\ &\frac{C'(x)}{x} - \frac{C(x)}{x^2} + \frac{C(x)}{x^2} = xC^2(x)\frac{1}{x^2} \Rightarrow \\ &C'(x) = C^2(x) \Rightarrow C(x) = \frac{1}{C_1 - x} \Rightarrow y = \frac{1}{x(C_1 - x)} \end{split}$$

20 ДУ высших порядков, задача Коши. Теорема существовании и единственности решения задачи Коши.

20.1 Определение

 $\mathbf{Д}\mathbf{Y}_n$ - $\mathbf{Д}\mathbf{Y}$ имеющие производные высших порядков

20.2 Задача Коши

$$\left\{ \begin{array}{c} y^{(n)} = f(x,y,y',...,y^{(n-1)}) \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ ... \\ y^{(n-1)}(x_0) = y_0^{(n-1)} \in D \subset R^n \end{array} \right.$$

20.3 Теорема (∃ и ! решения задачи Коши)

Если
$$f \in C(U(x_0,y_0,y_0',...,y_0^{(n-1)}))$$

и имеет
$$\dfrac{\partial f}{\partial y},\dfrac{\partial f}{\partial y'},...,\dfrac{\partial f}{\partial y^{(n-1)}}\in C(U(x_0,y_0,y_0',...,y_0^{(n-1)})),$$

то в окрестности $U(x_0)$, задача Коши иеет единственное решение, удовлетворяющее начальным условиям

21 ДУ, допускающие понижение порядка. Примеры

21.1 Не содержащиее производной до к-той

$$F(x,y^{(k)},y^{(k+1)},...,y^{(n)})=0,n>0$$

$$y^{(n)}=f(x,y,...,y^{(n-1)})$$

Замена для решения: $z=y^k$

21.2 Не содержащиее независимой переменной

$$F(y,y^{\prime},...,y^{(n)})=0$$

$$y^{(n)} = f(y, y^{\prime}, ..., y^{(n-1)})$$

Замена для решения:

$$z = y' : y' = z(y),$$

$$y'' = \frac{d}{dx}z(y) = z'(y)y' = zz'$$

и т.д. до $y^{(n)}$

21.3 Однородное относительно искомой ф-ии и её производных

$$F(x,y,y',...,y^{(n)}) = 0, \mathrm{где} F(x,\lambda y,\lambda y',...,\lambda y^{(n)}) = \lambda^k * F(x,y,y',...,y^{(n)})$$

Замена для решения:

$$z = \frac{y'}{y}, y'' = (yz)'$$

и т.д. до $y^{(n)}$

22 Линейные однородные ДУ высших порядков: основные определения

22.1 Определение

 $ЛОДУ_n$:

$$y^{(n)} + P_1(x)y^{(n-1)} + P_2(x)y^{(n-2)} + \ldots + P_{n-1}(x)y' + P_n(x)y = 0,$$

где
$$y \in C^n(X), p_k \in C(X), k = \overline{1,n}$$

22.2 Линейный диф. оператор п-го порядка

$$L := \frac{d^n}{dx^n} + P_1(x) \frac{d^{n-1}}{dx^{n-1}} + \ldots + P_{n-1}(x) \frac{d}{dx} + \ldots + P_n(x) I$$

$$L: C^n(X) \to C(X)$$

$$\frac{d^k}{dx^k} \equiv D^k : y^{(k)} = D_y^k, k = \overline{0, n}, D^0 = I : D_y^0 = I_y = y$$

22.3 Ядро оператора

$$\ker L = \{y \in C^n(X) : Ly = 0\}$$
 — множество решений ЛОДУ $_n$

 $\dim \ker L = n$ – размерность ядра

23 Линейная независимость решений, определитель Вронского.

23.1 Определение (Вронскиан)

Определитель Вронского системы функций (вронскиан):

$$W(x) := \begin{vmatrix} \phi_1(x)...\phi_n(x) \\ \phi_1'(x)...\phi_n'(x) \\ ... \\ \phi_1^{(n-1)}(x)...\phi_n^{(n-1)}(x) \end{vmatrix}$$

23.2 Теорема

Для того, чтобы ЛК $\alpha_1y_1+\ldots+\alpha_ny_n$, где y_k - решение ($k=\overline{1,n}$) являлось общим решением ЛОДУ $_n\Leftrightarrow$

$$\Leftrightarrow W(x) = \begin{vmatrix} y_1(x)...y_n(x) \\ y_1'(x)...y_n'(x) \\ ... \\ y_1^{(n-1)}(x)...y_n^{(n-1)}(x) \end{vmatrix} \neq 0$$

23.3 Определение (Линейная независимость)

Функции $\phi_1(x), \phi_2(x), ..., \phi_n(x)$ называются **линейно зависимыми** на промежутке X, если существуют такие $\alpha_1, \alpha_2, ..., \alpha_n \in R$, одновременно не обращающиеся в 0, что

$$(1) \alpha_1 \phi_1(x) + \dots + \alpha_n \phi_n(x) = 0, \forall x \in X$$

Если (1) справедливо **только** при $\alpha_1=\alpha_2=...=\alpha_n=0$, то $\phi_1(x),...,\phi_n(x)$ называются **линейно независимыми** на X

24 Фундаментальная система решений (ФСР) линейного ДУ.

$$(1) \alpha_1 \phi_1(x) + \ldots + \alpha_n \phi_n(x) = 0, \forall x \in X$$

Если (1) справедливо **только** при $\alpha_1=\alpha_2=...=\alpha_n=0$, то $\phi_1(x),...,\phi_n(x)$ наз **ЛНЗ** на X

 \forall совокупность (набор, система) n ЛН3 решений ЛОДУ $_n$ называется его ФСР

24.1 Теорема 1

$$\forall y_1,...,y_n - \Phi \mathsf{CP} \Leftrightarrow W(y_1,...,y_n) = \begin{vmatrix} y_1...y_n \\ y_1'...y_n' \\ ... \\ y_1^{(n-1)}...y_n^{(n-1)} \end{vmatrix} \neq 0$$

24.2 Теорема 2

Для любого ЛОДУ существует ФСР

Найдём n решений дифференциального уравнения, удовлетворяющих следующим начальным условиям:

$$\begin{split} y_1(x_0) &= 1, y_1'(x_0) = \ldots = y_1^{(n-1)}(x_0) = 0 \\ y_2(x_0) &= 0, y_2'(x_0) = 1, y_2''(x_0) = \ldots = y_2^{(n-1)}(x_0) = 0 \\ &\qquad \qquad \ldots \\ y_n(x_0) &= \ldots = y_n^{(n-2)}(x_0) = 0, y_n^{(n-1)}(x_0) = 1 \end{split}$$

$$W(x) = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ & & \dots & & \\ 0 & 0 & 0 & \dots & 1 \end{vmatrix} = 1 \Rightarrow$$
 решения ЛНЗ \Rightarrow образуют Φ CP \Rightarrow

$$\Rightarrow y = C_1 y_1(x) + \ldots + C_n y_n(x) \qquad \blacksquare$$

25 Примеры построения ФСР для линейных ДУ с постоянными коэффициентами.

$$(1)y^{(n)}+a_1y^{(n-1)}+\ldots+a_ny=0, a_k\in R;\; k=\overline{1,n};\; y\in C^n(X)$$

$$L=D^n+a_1D^{n-1}+\ldots+a_{n-1}D+a_nI$$

$$(2)Ly=0$$

$$\exists \Phi \mathrm{CP}\{y_k\}_{k=1}^n-\text{ частные ЛНЗ решения}$$

 $\dot{y} = C_1 y_1 + \dots + C_n y_n$

Ищем частные решения (1), (2) в виде $y = e^{\lambda x}$

Метод Эйлера

25.1

$$\begin{split} D^k e^{\lambda k} &= (e^{\lambda k})^{(k)} = \lambda^k e^{\lambda k} \\ L e^{\lambda k} &= (\lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n) e^{\lambda x} \equiv 0 \Leftrightarrow \\ & \Leftrightarrow \lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n = 0 \end{split}$$

$$P_n(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \ldots + a_{n-1} \lambda + a_n -$$
 характеристический полином

$$Le^{\lambda x} = P_n(\lambda)e^{\lambda x}$$

$$Le^{\lambda x}=0\Leftrightarrow P_n(\lambda)=0\Rightarrow \lambda\in \Lambda$$
 — множество корней

$$\Rightarrow \Lambda = \{\lambda_k \in C: mult(\lambda_k) = m_k, k = \overline{1,l}\}; m_1 + m_2 + \ldots + m_l = n$$

25.2 Структура ФСР и общее решение

25.2.1 Вид 1.

Структура Λ

$$\begin{split} & mult(\lambda_n) = 1 \\ \lambda_k \in RP_n(\lambda) = \prod_{k=1}^n (\lambda - \lambda_k) \end{split}$$

Структура ФСР и общее решение

$$\begin{split} & \Phi \mathrm{CP}\{y_k = e^{\lambda_k x}\}_{k=1}^n \\ & \dot{y} = C_1 e^{\lambda_1 x} + \ldots + C_n e^{\lambda_n x} \end{split}$$

25.2.2 Вид 2.

Структура Λ

$$\lambda_k : mult(\lambda_n) = m_k$$

Структура ФСР и общее решение

$$\begin{split} \lambda_1(m_1):y_1^{(1)} &= e^{\lambda_1 x},\\ y_1^{(2)} &= x e^{\lambda_1 x},...,y_1^{(m_1)} = x^{m_1-1} e^{\lambda_1 x}\\ \lambda_2(m_2):y_2^{(1)} &= e^{\lambda_2 x},y_2^{(2)} = x e^{\lambda_2 x},...,y_2^{(m_2)} = x^{m_2-1} e^{\lambda_2 x} \end{split}$$

• • • • • •

$$\lambda_l(m_l): y_l^{(1)} = e^{\lambda_l x}, y_l^{(2)} = x e^{\lambda_l x}, ..., y_l^{(m_l)} = x^{m_l - 1} e^{\lambda_l x}$$

$$\dot{y} = (C_1 + C_2 x + \ldots + C_{m_1} x^{m_1 - 1}) e^{\lambda_1 x} + \ldots + (C_{n - m_l} + C_{n - m_l + 1} x + \ldots + C_n) x^{m_l - 1}) e^{\lambda_l x}$$

25.2.3 Вид 3.

Структура Λ

$$\begin{split} &\lambda_k = \alpha_k + i\beta_k \\ &\overline{\lambda_k} = \alpha_k - i\beta_k \\ &mult(\lambda_n) = 1 \end{split}$$

Структура ФСР и общее решение

ФСР:
$$\{y_k^{(1)} = e^{\alpha_k x} cos \beta_k x; \ y_k^{(2)} = e^{\alpha_k x} sin \beta_k x\}_{k=1}^{2n}$$

$$\dot{y} = e^{\alpha_1 x} (C_1 cos\beta_1 x + D_1 sin\beta_1 x) + \ldots + e^{\alpha_m x} (C_m cos\beta_n x + D_n sin\beta_n x)$$

25.2.4 Вид 4.

Структура Λ

$$\lambda_k = \alpha_k + i\beta_k$$
$$mult(\lambda_n) = r_n$$

Структура ФСР и общее решение

$$\begin{split} & \Phi \text{CP: } \{y_k^{(1)} = e^{\alpha_k x} \cos \beta_k x; \ z_k^{(1)} = e^{\alpha_k x} \sin \beta_k x, \ ..., y_k^{(r_n)} = \\ & x^{r_n - 1} e^{\alpha_k x} \cos \beta_k x; \ z_k^{(r_n)} = e^{\alpha_1 x} (C_1 \cos \beta_1 x + x^{r_n - 1} e^{\alpha_k x} \sin \beta_k x)_{k = 1}^n \end{split}$$

$$\dot{y} = \ldots + C_{r_1} x^{r_1-1} \cos \beta_1 x) + e^{\alpha_1 x} (D_1 \sin \beta_1 x + \ldots + D_{r_1} x^{r_1-1} \sin \beta_1 x) + \ldots$$

26 Теорема о структуре общего решения однородного ДУ. Теорема о структуре общего решения неоднородного ДУ.

26.1 Для однородного

Общее решение представляется в виде $y=\overset{\circ}{y}$, где $L\overset{\circ}{y}=0,\overset{\circ}{y}$ - общее решение

26.1.1 Теорема

Если все коэфф. ЛОДУ: $y^{(n)}+a_{n-1}(x)y^{(n-1)}+\ldots+a_1(x)y'+a_0(x)y=0$ непрерывны на [a,b], а $y_1(x),y_2(x),\ldots,y_n(x)$ образуют ФСР этого уравнения, то $\mathring{y}=C_1y_1(x)+\ldots+C_ny_n(x)$

26.2 Для неоднородного

26.2.1 Теорема Общее решение представляется в виде

 $y=\overset{\circ}{y}+\overset{\cdot}{y}$, где $L\overset{\circ}{y}=0,\overset{\circ}{y}$ - общее решение ЛОДУ, $\overset{\cdot}{y}$ - частное решение Ly=f

$$\sphericalangle Ly = L(\mathring{y} + \dot{y}) = L\mathring{y} + L\dot{y} = o + f = f$$

Требуется проверить, что $\overset{\circ}{y} + \overset{\cdot}{y}$ - даёт общее решение ЛНДУ

$$\overset{\circ}{y}=C_1y_1(x)+...+C_ny_n(x),$$
где $y_1...y_n-\Phi$ СР $\Rightarrow y=C_1y_1(x)+...+C_ny_n(x)+\dot{y}$

$$](\cdot)x_0\in X:y(x_0)=y_0,\overset{\cdot}{y}'(x_0)=y_0',...,y^{(n-1)}(x_0)=y_0^{(n-1)}$$

Составим систему:

$$\left\{ \begin{array}{c} C_1 y_1(x_0) + \ldots + C_n y_n(x_0) + \overset{.}{y}(x_0) = y_0 \\ C_1 y_1'(x_0) + \ldots + C_n y_n'(x_0) + \overset{.}{y}(x_0) = y_0' \\ & \cdots \\ C_1 y_1^{(n-1)}(x_0) + \ldots + C_n y_n^{(n-1)}(x_0) + \overset{.}{y}^{(n-1)}(x_0) = y_0^{(n-1)} \end{array} \right.$$

Запишем в матричной форме.

$$\begin{pmatrix} y_1(x_0)...y_n(x_0) \\ y_1'(x_0)...y_n'(x_0) \\ \\ y_1^{(n-2)}(x_0)...y_n^{(n-2)}(x_0) \\ y_1^{(n-1)}(x_0)...y_n^{(n-1)}(x_0) \end{pmatrix} \begin{pmatrix} C_1 \\ \\ \\ C_n \end{pmatrix} = \begin{pmatrix} y_0 - \dot{y}(x_0) \\ y_0' - \dot{y}'(x_0) \\ \\ \\ y_0^{(n-1)} - \dot{y}^{(n-1)}(x_0) \end{pmatrix}$$

Т.к.
$$W[y_1...y_n](x_0) \neq 0 \Rightarrow \left\{ egin{array}{ll} C_1 = C_1^0 \\ & \text{ опредялется однозначно } \blacksquare \\ C_n = C_n^0 \end{array} \right.$$

27 Линейные неоднородные ДУ n-го порядка, решение методом вариации произвольных постоянных.

$$Ly=f, L\dot{y}=0\Rightarrow\dot{y}=C_1y_1+...+C_ny_n\Rightarrow\{y_1,...,y_n\}-\Phi$$
СР
$$|y=C_1(x)y_1+...+C_n(x)y_n|$$

$$Ly = f \Leftrightarrow L(\sum_{k=1}^n C_k(x)y_k) = f \Leftrightarrow \sum_{k=1}^n [LC_k(x)y_k + C_k(x)Ly_k] = f \Leftrightarrow \sum_{k=1}^n (LC_K)y_k = f$$

Имеем n неизв. ф-и $C_k(x), k=\overline{1,n}$, они должны быть выбраны т.е., чтобы y удовлетв. ЛНДУ, поэтому n-1 условий можно задать произвольно Выберем эти n-1 условий так, чтобы производные от у имели такой вид.

$$\left\{ \begin{array}{l} \sum_{k=1}^{n}C_{k}'(x)y_{k}=0\\ \sum_{k=1}^{n}C_{k}'(x)y_{k}'=0\\\\ \sum_{k=1}^{n}C_{k}'(x)y_{k}^{(n-2)}=0 \end{array}\right. (n-1)-\text{усл}$$

n-ое условие
$$\displaystyle\sum_{k=1}^n C_k'(x) y_k^{(n-1)} = f$$

Запишем систему в матричном виде:

$$\begin{pmatrix} y_1...y_n \\ y_1'...y_n' \\ \\ y_1^{(n-2)}...y_n^{(n-2)} \\ y_1^{(n-1)}...y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} C_1'(x) \\ \\ \\ C_n'(x) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ ... \\ f \end{pmatrix} W(x) \neq 0$$

$$\begin{pmatrix} C_1'(x) \\ \dots \\ \dots \\ C_n'(x) \end{pmatrix} = \begin{pmatrix} y_1 \dots y_n \\ y_1' \dots y_n' \\ \dots \\ y_1^{(n-2)} \dots y_n^{(n-2)} \\ y_1^{(n-1)} \dots y_n^{(n-1)} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \dots \\ f \end{pmatrix}$$

$$C_k'(x) = \phi_k(x)$$

$$C_k(x)=\int \phi_k(x)dx+\sim C_k$$

$$y=\sum_{k=1}^n C_k(x)y_k=\sum_{k=1}^n (\sim C_k+\int \phi_k(x)dx)y_k=\sum_{k=1}^n \sim C_ky_k+\sum_{k=1}^n (\int \phi_k(x)dx)y_k,$$
 где
$$\sum_{k=1}^n \sim C_ky_k=\dot{y}-\text{ общ. реш},$$

$$\sum_{k=1}^n (\int \phi_k(x)dx)y_k=\dot{y}-\text{ частн. реш}$$

28 Метод вариации произвольных постоянных для линейного ДУ 2-го порядка. Примеры.

$$I) \ y'' + y = \frac{1}{\cos x}$$

$$\lambda^2 + 1 = 0 \Leftrightarrow \lambda_{1,2} = \pm i$$

$$\Lambda = \{\lambda_{1,2} = \pm i, m_{1,2} = 1\} \Rightarrow \Phi \text{CP:} \{y_1 = \cos x, y_2 = \sin x\}$$

$$\mathring{y} = C_1 \cos x + C_2 \sin x$$

$$|y = C_1(x) \cos x + C_2(x) \sin x$$

$$\left(\frac{\cos x \sin x}{-\sin x \cos x}\right) \left(\frac{C_1'}{C_2'}\right) = \left(\frac{0}{\frac{1}{\cos x}}\right) W(x) = \cos^2 x + \sin^2 x = 1$$

$$\left(\frac{C_1'}{C_2'}\right) = \left(\frac{\cos x - \sin x}{\sin x \cos x}\right) \left(\frac{0}{\frac{1}{\cos x}}\right) = \left(\frac{-\sin x}{\cos x}\right)$$

$$C_1(x) = \int \frac{d\cos x}{\cos x} + \tilde{C}_1 = \ln(\cos x) + \tilde{C}_1$$

$$C_2(x) = x + \tilde{C}_2$$

$$y = \tilde{C}_1 \cos x + \tilde{C}_2 \sin x + \cos x * \ln(\cos x) + x \sin x$$

29 Линейные неоднородные ДУ с постоянными коэффициентами и правой частью специального вида. Построение частного решения методом неопределенных коэффициентов

29.1 Определение

$$f(x)=e^{
u x}[P_n(x)\cos\mu x+Q_m(x)\sin\mu x]$$
, где $\mu,
u\in R,\ n=deq P_n,\ m=deg Q_m$ наз. правой частью специального вида (Квазиполиномом)
$$I.\ \nu=\mu=0\Rightarrow f(x)=P_n(x)$$
 $II.\ \mu=0,
u\neq0\Rightarrow f(x)=e^{
u x}P_n(x)$

Правая часть

$$]\xi=
u+i\mu$$
 - тестовое число
$$1)\xi\in\Lambda(mult\xi=r)$$

$$2)\xi
otin\Lambda(r=0)$$

Вид частного решения

$$\begin{split} s &= max(n,m) \\ 1)\dot{y} &= x^r e^{\nu x} (\tilde{P}_s(x)\cos\mu x + \tilde{Q}_s(x)\sin\mu x) \\ \tilde{P}_s(x) &= p_0 + p_1 x + \ldots + p_s x^s \\ \tilde{Q}_s(x) &= q_0 + q_1 x + \ldots + q_s x^s \\ 2)\dot{y} &= e^{\nu x} (\tilde{P}_s(x)\cos\mu x + \tilde{Q}_s(x)\sin\mu x) \end{split}$$

29.2 Метод неопр. коэф

Пример:
$$\dot{y}'' + y' = x + 2$$

$$\lambda^2 + \lambda = 0$$

$$\Lambda = \{\lambda_1 = 0(m_1 = 1), \lambda_2 = -1(m_2 = 1)\} \subset R$$

$$\dot{y} = C_1 + C_2 e^{-x}$$

$$f(x) = x + 2$$

$$n = 1, \xi = 0 \Rightarrow \xi \in \Lambda \Rightarrow r = 1$$

$$\dot{y} = x(Ax + B) = Ax^{2} + Bx$$

$$\dot{y}' = 2Ax + B$$

$$\dot{y}'' = 2A$$

Подставляем в исходное

$$2A+2Ax+B=x+2 \Leftrightarrow \left\{ \begin{array}{l} A=\frac{1}{2} \\ B=1 \end{array} \right. \Rightarrow \dot{y}=0.5x^2+x$$

$$y=\overset{\circ}{y}+\dot{y}=C_1+C_2e^{-x}+0.5x^2+x$$

30 Системы линейных ДУ: определение формы записи, задача Коши

30.1 Обозначения и соглашения

 $t\in T\subset R$ — интервал $x_1(t),x_2(t)...$ -функции (t) $y_1(t),y_2(t)...$

$$X = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \in M^{n,t} = \mathbb{R}^n(C^n)$$

 $X:t\in T->X(t)\in\mathbb{R}^n$ вектор ф-я = векторозначная функция если, $x_k\in C^1(T,\mathbb{R}^n)<=>X\in C^1(T,R^n)$ k=1...n

$$\frac{dx}{dt} = \dot{X}, \dot{X}(t) = \begin{pmatrix} \dot{x}_1(t) \\ \vdots \\ \dot{x}_n(t) \end{pmatrix}$$

$$\int X(t)dt = \int \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} dt = \begin{pmatrix} \int x_1(t) \\ \vdots \\ \int x_n(t) \end{pmatrix}; \int_{t_0}^t X(\tau)d\tau$$

$$X(t) + Y(t) : \begin{pmatrix} x_1(t) + y_1(t) \\ \vdots \\ x_n(t) + y_n(t) \end{pmatrix}$$

$$\alpha \in \mathbb{R} : \alpha * X(t) = \begin{pmatrix} \alpha x_1(t) \\ \vdots \\ \vdots \\ \alpha x_n(t) \end{pmatrix}$$

$$\begin{array}{lll} X^T(t) = (x_1(t),...,x_n(t)) \ X \in M^{n,1}; Y^T \in M^{1,n} => \\ => \ X \, * \, Y^T \ = \ M^n \ X^T \ =< \ X, Y \ >_{\mathbb{R}^n} = \ x_1(t) y_1(t) \ + \ ... x_n(t) y_n(t) \ ||X|| \ = \end{array}$$

$$\sqrt{< X, X>_{\mathbb{R}^n}} = \sqrt{x_1^2(t) + ... x_n^2(t)}$$

$$\begin{bmatrix} l_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, ..., l_2 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \end{bmatrix}$$

ОНБ в \mathbb{R}^n

$$\frac{d}{dt}(X^T * Y = \frac{d}{dt} < X, Y>_{\mathbb{R}^n} = \frac{d}{dt}(\sum_{k=1}^n) x_k(t) y_k(t)) = <\dot{X}, Y> + < X, \dot{Y}> + < X, \dot{Y}>$$

- **30.2** Опр 1 СДУ называется система связывающая t неизв. фу-ции $x_1(t)...x_n(t)$ и их производные $x_1'(t),x_1''(t)...x_1^{m_1}(t),x_2'(t)...x_2^{m_2}(t),x_n'(t)...x_n^{m_r}$ $F_k(t,x_1(t),...,x_1^{m_1}(t),x_2(t),...,x_2^{m_2}(t),...,x_n^{m_n}(t)))=0$
- **30.2.1** $max(m_1...m_n)$ наз порядком СДУ

$$F_k(t, \dot{X}(t), \ddot{X}(t)...,) = \mathbb{O}, k = 1...l$$

если $m_1=m_2=\ldots=m_n=1$ то СДУ $_1$

$$\begin{cases} x_1(t) := f_1(t,x_1(t)...(x_n(t))) \\ & - \text{нормальная форма СДУ}_1 \\ x_n(t) := f_n(t,x_1(t)...(x_n(t))) \end{cases}$$

 $\dot{X}(t)=F(t,X(t))(1')$ — Векторная(матричная) форма записи СДУ $_1$ в нормальной форме $F:T imes \mathbb{R}^n$ — $>\mathbb{R}$ (Векторное поле)

 $X:T->\mathbb{R}^n$ —вектор функция

- **30.2.2** Если F = F(x), то СДУ $_1 : \dot{X} = F(x)$ называется автономной
- 30.2.3 Опр2 Если F(t,X(t))=A(t)*X(t)+B(t), где $A\in M^n;A:T->M^n;B:T->\mathbb{R}$ то СДУ $_1$ наз Линейной Системой Дифференциальных Уравнений 1 порядка ЛСДУ $_1$

 $\dot{X} = A(t)X + B(t)$ - неоднородная ЛСДУ $_1$

 $\dot{X} = A(t)X$ - однородная ЛСДУ₁

 $A \in M^n$:

 $\dot{X} = AX + B(t),\; \mbox{ЛСДУ}_1$ с постоянными коэффициентами неоднородная

 $\dot{X} = AX,\; \mbox{ЛСДУ}_1$ с постоянными коэффициентами однородная

30.2.4 Опр3 Решением системы ДУ:

 $F(t,X,\dot{X})=\mathbb{O}$ называется набор из n-функций $x_1(t),x_2(t)...x_n(t)$ или в-р фукнция $X(t)X\in C^1(T,\mathbb{R}^n)$; когда при подстановку в СДУ обращает в тожд $F[t,X(t),\dot{X}(t)=\mathbb{O}]$

30.2.5 Задача Коши

$$\begin{cases} F(t,x_1(t)...x_n(t),\dot{x}_1(t)...\dot{x}_n(t)) = \mathbb{O} \\ x_1(t_0) = x_1^0 \\ x_2(t_0) = x_2^0 \ (2) \\ & \dots \\ x_n(t_0) = x_n^0 \end{cases}$$

$$F(t, X, \dot{X}) = \mathbb{C}$$

$$X|_{t=t_0} = X_0$$

$$X_0 = \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix} (2')$$

(2)(2') — Задача Коши для СДУ $_1$

30.2.6 $Th1(\exists n!$ решения задачи Коши)

Задача Коши:

$$\begin{cases} \dot{X}=F(t,X)\\ X_{|t=t_0}=X_0 \end{cases}$$
 — имеет единственное решение в $D=V(t_0)\times U\subset \mathbb{R}^{n+1}$

a) $F \in C(\overline{D})$;

б)
$$F \in C^1(D)$$
 и $||\frac{\partial F}{\partial x_k}|| \leqslant C_k, k = \overline{1,n}(C_k > 0)$

в)
$$(t_0,X_0)\in D$$

N.B.

- $1)\;a,b)\Leftrightarrow a')F\in C^1(\underline{D})\cap C(\overline{D})$
- $|E(x)| \le C_k$ (том во разовие) $|E(x)| \le C_k$ (том во разовие) $|E(x)| \le C_k$ (том в разовие) Пинница (более сильное условие, чем условие ограничен $|E(x)| \le C_k$ (том разовие) $|E(x)| \le$

31 Системы линейных ДУ первого порядка с постоянными коэффициентами. Нормальная форма записи системы

31.0.1 Опр2 Если F(t,X(t))=A(t)*X(t)+B(t), где $A\in M^n;A:T->M^n;B:T->\mathbb{R}$ то СДУ $_1$ наз Линейной Системой Дифференциальных Уравнений 1 порядка ЛСДУ $_1$

$$\dot{X} = A(t)X + B(t)$$
- неоднородная ЛСДУ $_1$

$$\dot{X} = A(t) X$$
- однородная ЛСДУ $_1$

$$A \in M^n$$
:

 $\dot{X} = AX + B(t), \; \mbox{ЛСДУ}_1$ с постоянными коэффициентами неоднородная

 $\dot{X} = AX,\; \Pi \text{СДУ}_1$ с постоянными коэффициентами однородная

$$\begin{cases} x_1(t) := f_1(t,x_1(t)...(x_n(t))) \\ & - \text{нормальная форма СДУ}_1 \\ x_n(t) := f_n(t,x_1(t)...(x_n(t))) \end{cases}$$

32 Система линейных ДУ и её матричная форма записи. Однородная система линейных ДУ первого порядка

32.0.1 Опр2 Если F(t,X(t))=A(t)*X(t)+B(t), где $A\in M^n;A:T->M^n;B:T->\mathbb{R}$ то СДУ $_1$ наз Линейной Системой Дифференциальных Уравнений 1 порядка ЛСДУ $_1$

 $\dot{X}=A(t)X+B(t)$ - неоднородная ЛСДУ $_1$ $\dot{X}=A(t)X$ - однородная ЛСДУ $_1$ $A\in M^n:$

 $\dot{X} = AX + B(t), \; \Pi$ СДУ $_1$ с постоянными коэффициентами неоднородная

 $\dot{X} = AX,\; \Pi \mathsf{C} \Pi \mathsf{Y}_1$ с постоянными коэффициентами однородная

 $\dot{X}(t)=F(t,X(t))(1')$ — Векторная(матричная) форма записи СДУ1 в нормальной форме $F:T imes\mathbb{R}^n$ — $>\mathbb{R}$ (Векторное поле)

- 33 Решение системы линейных ДУ для случаев различных вещественных корней, различных комплексных корней, кратных вещественных корней характеристического уравнения
- 33.0.1 Метод собственных векторов и собственных значений матрицы коэффициентов

$$\dot{X} = AX, A \in M^n, X \in C^1(T, R^n)$$

$$\begin{split}]X(t) &= e^{\lambda*t}*h, h \in \mathbb{R}^n: h \neq 0, \lambda \in \mathbb{R}(\mathbb{C}) \\ \dot{X} &= \lambda*e^{\lambda t}h \Rightarrow \lambda e^{\lambda t}h = A(e^{\lambda t}*h) \end{split}$$

$$\Leftrightarrow Ah = \lambda h, h \neq 0$$

h - собственный вектор, A отвечающ. с. з. λ

$$(A - \lambda)h = \mathbb{O}$$

$$\Rightarrow h \neq 0$$
, to $det(A - \lambda I) = 0 \Leftrightarrow$

$$\Leftrightarrow rang(A - \lambda I) = r < n$$

 $P_a(\lambda) := det(A - \lambda I)$ - характеристический полином матрицы

$$det(A - \lambda I) = (-1)^n * (\lambda - \lambda_1)^{k_1} * (\lambda - \lambda_2)^{k_2} * \dots * (\lambda - \lambda_m)^{k_m}$$

$$k_1 + k_2 + \ldots + k_m = n, k_i = mult(\lambda_i)$$

33.0.2 Опр1 Число k_j наз алгебраической кратностью с.з. $\lambda_j(\lambda-\lambda_j)k_j$ Число $s_j=n-r_j=n-rang(A-\lambda_jI)$ -геометрическая кратность λ_j - количество ЛНЗ с. векторов, отвечающих λ_j

$$\lambda_j \leftrightarrow \{h_{1j}, h_{2j}, ..., h_{s_j j}\}$$

$$s_j=\dim Span\{h_1,...,h_{s_jj}\}$$

33.0.3 Th1
$$0 < s_j \le k_j$$

33.0.4
$$I$$
 случай $: s_j = k_j = 1$

$$I.1. \lambda_1 \neq \lambda_2 \neq \dots \neq \lambda_n \in \mathbb{R}$$

$$\lambda_i \to h_j \Rightarrow \{X_j(t) = e^{\lambda_j t} h_j\} - \Phi \mathrm{CP}$$

$$X(t)=C_1e^{\lambda_1t}h_1+C_2e^{\lambda_2t}*h_2+\ldots+C_ne^{\lambda_nt}*h_n$$

$$I.2 \ \lambda = \alpha_j + ib_j, \overline{\lambda_j} = \alpha_j - ib_j \in C$$

Рассмотрим
$$X_j(t)=e^{(\alpha_j+ib_j)t}h_j=e^{\alpha_jt}e^{ib_jt}h_j=e^{\alpha_jt}cos(b_j)t*h_j+ie^{\alpha_jt}sin(b_j)t*h_j=h_j=u_j+iv_j$$

$$\begin{split} X_j(t) &= e^{\lambda_j t} (\cos(b_j) t * u_j - \sin(b_j) t v_j) + i e^{\alpha_j t} (\cos(b_j) t * v_j - \sin(b_j) t * u_j) = U_j(t) + i V_j(t) \\ \dot{X} &= AX \Leftrightarrow (D * I - A) X = 0 \Leftrightarrow LX = 0 \end{split}$$

$$LX_{j}(t)=0 \Leftrightarrow LU_{j}+iLV_{j}=0 \Leftrightarrow \begin{cases} LU_{j}=0 \\ LV_{j}=0 \end{cases}$$

 $U_j = Re(e^{\lambda_j t}h_j); V_j = Im(e^{\lambda_j t}h_j)$

$$X_j(t) = C_j^{(1)} Re(e^{\lambda_j t}h_j) + C_j^{(2)} Im(e^{\lambda_j t}h_j)$$

33.0.5 II случай : $s_j = k_j > 1$

$$II.1 \: \lambda \in \mathbb{R} : mult(\lambda_j) = k_j \\ \lambda_j \leftrightarrow \{h_1, h_2, ..., h_{kj}\}$$

$$X_j(t) = e^{\lambda_j t} (C_j^{(1)} h_1 + C_j^{(2)} h_2 + \ldots + C_j^{(k_j)} h_{kj})$$

 $II.\ 2\ mult(\lambda_j) = k_j, \lambda_j = \alpha_j + ib_j \in C$

$$X_{j}(t) = \sum_{k=1}^{k_{j}} C_{j}^{(k)} Re(e^{\lambda_{j}t}h_{j}) + \sum_{k=1}^{k_{j}} D_{j}^{(k)} Im(e^{\lambda_{j}t}h_{j})$$

33.0.6 III
$$s_j < k_j p_j := k_j - s_j$$

$$mult(\lambda_j) = k_j > s_j$$

$$X_j(t)=e^{\lambda_j t}(A_{j1}+A_{j2}t+\ldots+A_{jp_j}t^{p_j})$$

неопр. коэф-ты $A_{jq} \in \mathbb{R}^n$

34 ФСР линейной системы. Фундаментальная матрица (ФМ) линейной системы. Свойства ФСР и ФМ

34.1 ФСР

Фундаментальной системой решений однородного линейного дифференциального уравнения называется упорядоченный набор из п линейно независимых решений уравнения.

$$X_1,...,X_n$$
 — базис(ЛНЗ) в $KerL$

34.2 Св-ва ФСР

$$\begin{array}{l} \textbf{Lm1} \ \text{Если} \ \{X_1,...,X_n\}\text{- } \ \text{ЛН3} \Rightarrow \ W[X_1,...,X_n] \neq 0 \\ \textbf{Lm2} \ \text{Если} \ W[X_1,..,X_n] \neq 0 \Rightarrow \{X_k\}_{k=1}^n - \text{ЛН3} \\ \textbf{Lm3} \]X_1,...,X_n\text{- вектор фунции является решением } \dot{X} = A(t)X \end{array}$$

34.3 Th1 O структуре общего решения СЛОДУ₁

Если $X_1,...,X_n$ ЛНЗ реш $\dot{X}=A(t)X$, то $X(t)=C_1X_1(t)+...+C_nX_n(t)$ -общее решение системы; $C_1,...,C_n\in\mathbb{R}$

34.4 Опр2 ФМС

Фундаментальной матрицей системы(ФМС) или матрицантом $\dot{X} = A(t)X$ называется матрица , стобцы которой образованы ФСР

$$\begin{split} M(t) &= (X_1(t),...,X_n(t)) = \begin{pmatrix} x_{11}(t)...x_{1n}(t) \\ \\ x_{n1}(t)...x_{nn}(t) \end{pmatrix} : det M = W \\ X(t) &= M(t) * C, C = (C_1,...,C_n)^T \end{split}$$

34.5 Th2

М удовл системе ЛДУ: $\dot{M} = A(t) M$

34.5.1 Док-во:

$$\dot{X} = AX; \ \dot{X} = \dot{M}(t)C \Rightarrow \dot{M}C = A(MC) \Leftrightarrow \dot{M}C = (AM)C \Leftrightarrow \dot{M} = AM$$

34.5.2 Пример:

$$\begin{cases} \dot{x}_1(t) = x_2 \\ \dots \\ \dot{x}_n(t) = 0 \end{cases} \Leftrightarrow \begin{cases} \dot{x}_1(t) = C_2t + C_2 \\ \dots \\ \dot{x}_n(t) = 0 \end{cases}$$

$$X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} C_1 + C_2t \\ C_2 \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} t \\ 1 \end{pmatrix} M(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

34.6 Th3

$$]M(t)-\Phi$$
МС, $\dot{X}=AX\Rightarrow S(t)=M(t)*B,$ где $B\in M^n, det(B)
eq 0-\Phi$ МС $\dot{X}=AX$

34.6.1 Док-во:

$$\dot{S} = \dot{M}B = (AM)B = A(MB) = ASdetS = det(M(t)B) = detM*detB = W*detB \Rightarrow detB \neq 0$$

35 Нормальная фундаментальная матрица линейной системы. Свойства.

36 Метод вариации произвольной постоянной для решения неоднородных линейных систем

36.1 Метод вариации

$$(1)\dot{X} = A(t)X + B(t)$$

$$\dot{X} = AX, \ X(t) = M(t)C$$

$$]X(t) = M(t) * C(t) \Rightarrow (1)$$

$$\dot{X} = \dot{M}(t)C(t) + M(t)\dot{C}(t)$$

$$\dot{M}(t)C(t) + M(t)\dot{C}(t) = AM(t)C(t) + B(t)$$

$$\dot{M}(t) = AM(t)$$

$$AM(t)C(t) + M(t)\dot{C}(t) = AM(t)C(t) + B(t)$$

$$M(t)\dot{C}(t) = B(t)$$

$$det M = W \neq 0 \dot{C}(t) = M^{-1}(t)B(t)$$

$$\begin{split} \mathrm{I}) \dot{X} &= AX + B - \text{общее решение} \\ C(t) &= \int M^{-1}(t) B(t) \\ X(t) &= M(t) C_0 + M(t) * \int M^{-1}(t) B(t) dt \\ \overset{o}{X}(t) - M(t) C_0 \\ \overset{*}{X}(t) - \int M^{-1}(t) B(t) dt \end{split}$$

$$\text{II}) \begin{cases} \dot{X} = AX + B \\ \dot{X}_{|t=t_0} = X_0 \end{cases} (1) \ C(t) = \int_{t0}^t M^{-1}(\tau) B(\tau) d\tau$$

$$X(t) = M(t) * \int_{t_0}^t M^{-1}(au) B(au) d au$$
 — Решение задачи Коши

36.2 Пример:

$$\begin{cases} \dot{x} = x - y + 1/\sqrt{\frac{1}{t}} \\ \dot{y} = -2x + 2y + \sqrt{\frac{1}{t}} \end{cases} (2) \ A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix} B(t) = \begin{pmatrix} t^{\frac{-1}{2}} \\ t^{\frac{-1}{2}} \end{pmatrix}$$

$$\Leftrightarrow \lambda^2 - 3\lambda = 0 \Leftrightarrow \lambda(\lambda - 3) = 0$$

$$\Leftrightarrow \sigma(A) = \{\lambda_1 = 0(k_1 = 1); \lambda_2 = 3(k_2 = 1)\}$$

$$(A - \lambda_1 I)h_1 = 0 \Leftrightarrow \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}, \sim (1 - 1)$$

$$\Rightarrow h_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$(A - \lambda_2 I)h_2 = 0 \Leftrightarrow \begin{pmatrix} -2 & -1 \\ -2 & -1 \end{pmatrix}, \sim (2 1)$$

$$2x_1 = -x_2 \Leftrightarrow x_2 = -2x_1, x_1 = \alpha \neq 0$$

$$\Rightarrow h_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$X(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 * e^{3t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$X_1(t) = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$X_2(t) = C_2 * e^{3t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$M(t) = \begin{pmatrix} 1 & e^{3t} \\ 1 & -2e^{3t} \end{pmatrix}; W = -2^{3t} - e^{3t} = -3e^{3t} \neq 0$$

$$M^{-1}(t) = -1/3e^{-3t} \begin{pmatrix} -2e^{3t} & -e^{3t} \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3}e^{-3t} \\ \frac{1}{3}e^{-3t} & \frac{1}{3}e^{-3t} \end{pmatrix}$$

$$M^{-1}(t)B(t) = \begin{pmatrix} \frac{2}{3} & \frac{1}{3}e^{-3t} & \frac{1}{3}e^{-3t} \\ \frac{1}{3}e^{-3t} & \frac{1}{3}e^{-3t} \end{pmatrix} \begin{pmatrix} t^{-\frac{1}{2}} \\ t^{-\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} t^{-\frac{1}{2}} \\ 0 \end{pmatrix}$$

$$\int \begin{pmatrix} t^{-\frac{1}{2}} \\ 0 \end{pmatrix} dt + C_0 = \begin{pmatrix} 2\sqrt{t} \\ 1 \end{pmatrix} + C_0 =$$

$$\begin{pmatrix} 2\sqrt{t} + e^{3t} \\ 2\sqrt{t} - 2e^{3t} \end{pmatrix} + C_1^0 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2^0 e^{3t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = C_1^0 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 2\sqrt{t} + e^{3t} \\ 2\sqrt{t} - 2e^{3t} \end{pmatrix}$$

37 Числовой ряд. Сходимость и сумма ряда. Необходимый признак сходимости.

37.1 Определения

 $\{a_n\}$ – последовательность членов ряд $\{S_n\}$ – последовательность частных сумм

$$\begin{split} S_n &:= a_1 + \dots a_n = \sum_{k=1}^n a_k S_1 = a_1; \ S_2 = a_1; \ S_3 = a_1 + a_2 + a_3 \\ a_1 &= S_1; \ a_2 = S_2 - S_1; \ a_3 = S_3 - S_2 a_n = S_n - S_{n-1} \\ &\sum_{n=1}^{+\infty} a_n := a_1 + \dots + a_n + \dots \ (1) \\ &\sum_{n=1}^{+\infty} a_n := \lim \ S_n \end{split}$$

Если $\exists \lim S_n = S < \infty$, то ряд (1) называется сходящимся, а число $S \in \mathbb{R}$ называется его суммой, в противном случае (если $\overline{\exists} \lim S_n$ или $\lim S_n = \infty$) ряд называется расходящимся.

37.1.1 Пример

$$\sum_{n=1}^{+\infty}q^{n-1}=1+q+q^2+\ldots+q^{n-1}+q^n+\ldots$$

$$q^{n-1}=a_n\;S_n=a_1+\ldots+a_n=1+q+\ldots+q^{n-1}=\frac{1-q^n}{1-q}$$
 Рассмотрим $q^n\to\begin{bmatrix}0,\;|q|<1;\\+\infty,|q|>1,\end{bmatrix}$
$$S=\lim S_n=\lim\frac{1-q^n}{1-q}=\begin{bmatrix}\frac{1}{q-1},\;|q|<1;\\+\infty,|q|>1,\end{bmatrix}$$

$$\sum_{n=1}^{+\infty}1=1+1+\ldots=\infty$$

 $\{q^{n-1}\}_{n\in N}$ -геометрическая прогрессия.

$$\displaystyle \sum_{n=1}^{+\infty} q^{n-1}$$
 — геометрический ряд.

$$\sum_{n=1}^{+\infty} q^{n-1} \frac{1}{1-q}, \ |q| < 1$$

$$\sum_{n=m}^{+\infty} q^{n-1} \frac{q^m}{1-q}, \ |q| < 1$$

37.2 Теорема (необходимое условие сходимости)

Если
$$\sum_{n=1}^{+\infty} a_n$$
 сходится, то lim $\, a_n = 0 \; (a_n o 0) \,$

Доказательство:

$$\lim\ a_n=\lim\ (S_N-s_{n-1})=\lim\ S_n-\lim\ S_{n-1}=S-S=0$$

NB: Необходимое условие сходимости еще называют "достаточным условием расходимости".

37.2.1 Пример:

$$\sum_{n=1}^{+\infty}\frac{3n^2+1}{4n^2+7}a_n=\frac{3n^2+1}{4n^2+7}=\frac{n^2(3+\frac{1}{n^2})}{n^2(4+\frac{7}{n^2})}\rightarrow\frac{3}{4}]\neq0\Rightarrow\operatorname{ряд}\sum_{n=1}^{+\infty}\frac{3n^2+1}{4n^2+7}-\operatorname{расходится}.$$

38 Свойства сходящихся числовых рядов.

38.1 Основные свойства рядов

$$(1)\] \ \sum_{n=1}^{+\infty} a_n = S < \infty - \text{сходится}$$

$$\Rightarrow \sum_{n=1}^{+\infty} \alpha a_n = \alpha \sum_{n=1}^{+\infty} a_n \to \alpha S < \infty$$

$$(2)\,]\sum_{n=1}^{+\infty}a_n=A<\infty\sum_{n=1}^{+\infty}b_n=B<\infty\Rightarrow\sum_{n=1}^{+\infty}(\alpha a_n+\beta b_n)=\alpha\sum_{n=1}^{+\infty}a_n+\beta\sum_{n=1}^{+\infty}b_n=\alpha A+\beta B<\infty$$

Со сходящимися рядами можно работать как с конечными суммами.

(3)

Члены сходящегося ряда можно, не меняя их местами, группировать. От этого сходимость ряда не изменится, величина суммы тоже не изменится. (работает ассоциативность)

NB: в расходящихся рядах группировать члены нельзя.

$$\begin{array}{l} (1-1)+(1-1)+...=S=0 \\ 1-(1+1)-1+...\neq 0 \end{array}$$

$$(4)\sum_{n=1}^{+\infty}a_n,\ m\in\mathbb{N}\sum_{n=1}^{+\infty}a_n=a_1+\ldots+a_{m-1}+a_m+a_{m+1}+\ldots$$

$$a+1+..+a_{m-1}+a_m=S_ma_{m+1}+...=\sum_{n=m+1}^{+\infty}a_n=R_m$$
 – остаток (хвост)

38.2 Теорема (об остатке числового ряда / о "хвосте")

Ряд
$$\sum_{n=1}^{+\infty} a_n$$
 и его остаток $\sum_{n=m+1}^{+\infty} a_n$ сходятся и расходятся одновременно

(Отбрасывание/дописывание конечного числа членов на сходимость не влияет)

38.2.1 Пример

$$\sum_{n=1}^{+\infty}(\frac{c}{n^{\alpha}}+b_n),\;c\in\mathbb{R},\;\alpha\in\mathbb{Q},\;\sum_{n=1}^{+\infty}b_n=S<\infty$$

- $\alpha > 1$ сходится
- $\alpha < 1$ неопределен

39 Ряды с положительными членами. Признаки сравнения в разных формах и следствия. Примеры.

$$\sum_{n=1}^{+\infty}a_n,\;a_n\geq 0\;(1)$$

39.1 Теорема (Необходимое и достаточное словие сходимости ряда)

Для сходимости ряда (1) \Leftrightarrow (необходимо и достаточно) $\exists M>0: S_n\leq M\ \forall\ n\in N$ NB: Критерий сходимости знакопостоянного ряда по ограниченности частных сумм. $S_n\leq S_{n+1}\Rightarrow \{S_n\}\nearrow,\ S_n\in M\Rightarrow$ ряд сходится.

39.2 Теорема 2 (первый признак сравнения в форме неравенства)

$$]\sum_{n=1}^{+\infty}a_{n}\left(1\right)$$

$$\sum_{n=1}^{+\infty} b_n \ (2)$$

$$\exists \, a_n \leq b_n \, \forall \, n > N_0 \in \mathbb{N}$$

 $0 \leq A_n \leq B_n o B \Rightarrow$ 1) если (2) сходится, то (1) сходится

2) если (1) расходится, то (2) расходится

39.3 Теорема 3 (второй признак сравнения в предельной форме)

$$]\sum_{n=1}^{+\infty}a_{n}\left(1\right)\sum_{n=1}^{+\infty}b_{n}\left(2\right)]\exists\ l=\lim\ \frac{a_{n}}{b_{n}}(l\neq0,l\neq+\infty)$$

 \Rightarrow (1) и (2) сходятся и расходятся одновременно

39.3.1 Пример:

$$\sum_{n=1}^{+\infty}\frac{1}{n}$$
 — гармонический ряд $a_n=\frac{1}{n},\;b_n=\ln(1+\frac{1}{n})$

$$l=\lim\,\frac{a_n}{b_n}=\lim\,\frac{\frac{1}{n}}{\ln(1+\frac{1}{n})}=|\ln(1+\frac{1}{n})\sim\frac{1}{n};n\to\infty|=\lim\frac{\frac{1}{n}}{\frac{1}{n}}=1\Rightarrow\\ \Rightarrow\sum_{n=1}^{+\infty}b_n\Rightarrow\sum_{n=1}^{+\infty}a_n$$
—расходят

Следствия 39.4

- 1. $a_n=\overline{\overline{o}}(b_n)\Rightarrow$ (1) и (2) имеют одинаковую сходимость 2. $a_n\sim b_n\Rightarrow$ (1) и (2) имеют одинаковую сходимость

$$\begin{cases} p>1, \sum_{n=1}^{+\infty}a_n-\text{сходится}\\ \\ p\leq 1, \sum_{n=1}^{+\infty}a_n-\text{расходится} \end{cases}$$

4.
$$a_n \sim b_n \stackrel{def}{\iff} \lim \frac{a_n}{b_n} = 1$$

5.
$$a_n=\overline{\overline{o}}(b_n) \stackrel{def}{\Longleftrightarrow} \lim \frac{a_n}{b_n}=c \neq 0 \Leftrightarrow \exists \ \phi_n: |a_n| \leq \phi_n |b_n|, \ \phi_n$$
 — ограничена

40 Признак Даламбера, радикальный признак Коши, интегральный признак Коши.

40.1 Теорема (Признак Даламбера)

$$\sum_{n=1}^{+\infty}a_n\;(a_n>0)$$
если $\lim\frac{a_{n+1}}{a_n}=d\left\{\begin{array}{l} <\!1-\text{сходится}\\ >\!1-\text{расходится}\end{array}\right.$

40.2 Теорема (Признак Коши радикальный)

$$\sum_{n=1}^{+\infty}a_n\;(a_n>0)\;(1)$$
если $\lim\sqrt[n]{a_n}=c\left\{\begin{array}{c} <1-\text{сходится}\\ >1-\text{расходится}\end{array}\right.$

40.3 Теорема (Признак Коши интегральный)

$$\sum_{n=1}^{+\infty}a_n\ (a_n>0),\ f\searrow,\ x\in[m,\ +\infty)$$

$$f(n)=a_n$$

$$\Rightarrow \int_m^{+\infty}f(x)\ dx$$
 и
$$\sum_{n=0}^{+\infty}a_n-\text{сходится или расходится однолвременно}$$

40.4 Примеры:

1.

Признак Даламбера:
$$\sum_{n=1}^{+\infty} \frac{a^n}{n!},\ a_n=\frac{a^n}{n!},\ a_{n+1}=\frac{a*a^n}{n!(n+1)}$$

$$\lim \frac{a_{n+1}}{a_n}=\lim \frac{a}{n+1}=0<1\Rightarrow \text{сходится}$$

2.

Признак Коши радикальный:
$$\sum_{n=1}^{+\infty}(\frac{7n+1}{6n+5})^{3n+2},\ a_n=(\frac{7n+1}{6n+5})^{3n+2}$$

$$\lim\sqrt[n]{a_n}=\lim\sqrt[n]{(\frac{7n+1}{6n+5})^{3n+2}}=\lim(\frac{7n+1}{6n+5})^{\frac{3n+2}{n}}=\lim(\frac{n(7+1/n)}{n(6+5/n)})^{\frac{n(3+2/n)}{n}}=(\frac{7}{6})^3=\frac{343}{216}>1\Rightarrow$$
 рассходится

3.

Признак Коши интегральный:
$$\sum_{n=2}^{+\infty} \frac{1}{n \; ln^{\alpha}n}, \; a_n = \frac{1}{n \; ln^{\alpha}n} = f(n)$$

Рассмотрим
$$\int_2^{+\infty} \frac{dx}{x \ln^{\alpha} x} = \lim_{b \to +\infty} \int_2^b \frac{d(\ln x)}{\ln^{\alpha} x} = \lim_{b \to +\infty} \frac{(\ln b)^{1-\alpha} - (\ln 2)^{1-\alpha}}{1-\alpha} = \begin{bmatrix} +\infty, \ \alpha < 1 \\ \frac{(\ln 2)^{1-\alpha}}{\alpha - 1}, \alpha > 1 \end{bmatrix}$$

$$lpha=1:\,\int_{2}^{+\infty}rac{dx}{x\;lnx}=...=\lim_{b o +\infty}(ln(lnb)-ln(ln2))=+\infty$$
 — расходится

41 Достаточный признак сходимости знакопеременного ряда. Абсолютная и условная сходимость.

41.0.1 Определение

 $\sum_{n=1}^{+\infty}a_n,$ если a_n произвольного знака газывается знакопеременным.

Рассмотрим
$$\sum_{n=1}^{+\infty}\left|a_{n}\right|$$
 $(2);$ $\sum_{n=1}^{+\infty}a_{n}$ (1)

если (2) сходится, то (1) называется сходящимся абсолютно, если (2) расходится, а (1) сходится, то (1) называется сходящимся условно.

41.0.2 Теорема

Если знакопеременный ряд сходится абсолютно, то он сходится.

42 Знакочередующиеся ряды. Признак Лейбница. Оценка остатка знакочередующегося ряда (теорема Лейбница).

42.0.1 Определение

Ряд $\Sigma_{n=1}^\infty u_n$ - знакопеременный, если u_n произвольного знака.

42.0.2 Определение

Знакопеременный ряд $\Sigma_{n=1}^{\infty}u_n$ - знакочередующийся, если соседние члены ряда различного знака, то есть $u_n \cdot u_{n+1} < 0, \forall n \in \mathbb{N}$

Знакочередующийся ряд удобно записывать в виде $\sum_{n=1}^{\infty} (-1)^n a_n$, где $a_n > 0$.

42.0.3 Теорема (признак Лейбница)

Для того, чтобы знакочередующийся ряд сходился, достаточно выполнения следующих условий:

- 1. $a_n \ge a_{n+1}$ начиная с некоторого номера n;
- 2. $\lim a_n = 0$.

42.0.3.0.1 Пример: Ряд $\sum_{n=1}^{n} (-1)^n \frac{1}{n}$ - сходится, так как:

- 1. $1 \ge \frac{1}{2} \ge \frac{1}{4} \ge \frac{1}{4}$... 2. $\lim \frac{1}{n} = 0$

42.0.4 Теорема Лейбница

$$\begin{split} S &= \Sigma_{n=1}^{\infty} (-1)^n a^n \\ S &= S_n + R_n, \\ S_n &= \Sigma_{m=1}^n (-1)^m a^m \end{split}$$

Остаток сход. знакочередующегося ряда $R_n = S - S_n$ будет меньше по модулю его первого члена: $|R_n| < b_{n+1}$

(прим.: запись \limsup означает $\lim_{n\to\infty}$)

Доказательства теорем можно посмотреть тут. Если надо, оформлю в билете.

43 Определение функционального ряда. Поточечная сходимость. Область сходимости функционального ряда.

43.0.1 Определение

Пусть дана бесконечная последовательность $\{u_n(x)\}_{n=1}^\infty$, которая определена на множестве X. Функциональным рядом называется бесконечная сумма, соответствующая этой последовательности: $\Sigma_{n=1}^\infty u_n(x), x \in X$.

43.0.2 Определение

Каждой точке $x_0 \in X$ соответствует числовой ряд, который может сходиться или расходиться. Если ряд сходится, то x_0 – точка сходимости.

43.0.3 Определение поточечной сходимости

Пусть ряд сходится при всех $x\in X$. Тогда существует предел частичных сумм $\lim S_n(x)=S(x)$.

Более крутыми словами: $\forall \varepsilon>0 \exists N(x,\varepsilon): \forall n>N, |S_n(x)-S(x)|<\varepsilon, x\in X$

43.0.4 Определение

Множество всех точек сходимости называется областью сходимости ряда $X_{\rm cx}$. Понятно, что $X_{\rm cx}\subset X$

44 Равномерная сходимость функционального ряда. Свойства равномерно сходящихся функциональных рядов.

Пусть ряд $\Sigma_{n=1}^\infty u_n(x) = S(x)$ имеет область сходимости $X_{\mathrm{cx}}.$

44.0.1 Определение

Функциональный ряд $\Sigma_{n=1}^\infty u_n(x)=S(x)$ называется равномерно сходящимся на отрезке [a,b], если для любого $\varepsilon>0$ и всех точек $x\in[a,b]$ существует такое число $N_0(\varepsilon)$, что для любого $N>N_0(\varepsilon)$ справедливо: $|S(x)-\Sigma_{n=1}^N u_n(x)|<\varepsilon, x\in X_{\mathrm{cx}}.$

44.0.2 Свойства

- 1. Если ряд $\Sigma_{n=1}^\infty u_n(x)$ равномерно сходится на отвезке [a,b], то сумма ряда $S(x)=\Sigma_{n=1}^\infty u_n(x)$ непрерывна на этом отрезке.
- 2. Если ряд $\sum_{n=1}^{\infty}u_n(x)$ равномерно сходится на отвезке [a,b], то ряд можно почленно интегрировать, то есть справедливо равенство:

$$\int_a^x (\Sigma_{n=1}^\infty u_n(t)) dt = \Sigma_{n=1}^\infty \int_a^x u_n(t) dt$$

3. Если на отрезке [a,b] члены функционального ряда $\sum_{n=1}^{\infty}u_n(x)$ имеют непрерывные производные и ряд, составленный из производных $\sum_{n=1}^{\infty}u_n'(x)$ сходится равномерно, то справедливо равенство:

$$(\Sigma_{n=1}^{\infty}u_n(x))' = \Sigma_{n=1}^{\infty}u_n'(x)$$

45 Признак Вейерштрасса.

45.1 Определение (мажорантный ряд)

Ряд $\Sigma_{n=1}^\infty a_n, a_n>0$ называется мажорантным для функционального ряда $\Sigma_{n=1}^\infty u_n(x)$ на множестве X, если в каждой точке $x\in X$, выполняется неравенство $|u_n(x)|\leq a_n$.

45.2 Теорема Вейерштрасса

Функциональный ряд сходится **равномерно** на множестве X, если его мажорантный ряд сходится.

$$\Sigma_{n=1}^{\infty}a_{n}$$
 – cx $\Rightarrow \Sigma_{n=1}^{\infty}u_{n}(x)$ – cx равномерно, $x\in X$

Для доказательства достаточно проверить равномерную сходимость ряда по определению (критерий Коши).

45.2.1 Пример

Исследуем функциональный ряд $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ на равномерную сходимость на множестве X=[-1;1].

На этом множестве можно составить мажорантный ряд $\Sigma_{n=1}^\infty \frac{1}{n^2}$. Этот ряд сходится как гармонический с $\alpha>1$. Следовательно, ряд $\Sigma_{n=1}^\infty \frac{x^n}{n^2}$ – сходится равномерно на отрезке [-1;1].

46 Степенные ряды. Первая теорема Абеля.

46.1 Определение (степенной ряд)

Функциональный ряд вида $\sum_{n=0}^{\infty}a_{n}(x-x_{0})^{n}$ называется cmeneнным рядом.

Понятно, что заменой переменной $t=x-x_0$ можно свести степенной ряд к виду $\Sigma_{n=0}^\infty a_n(t)^n$, поэтому далее рассматриваются ряды вида $\Sigma_{n=0}^\infty a_n(x)^n$. Такой ряд полностью определяется последовательностью $\{a_n\}_{n=1}^\infty$.

46.2 Теорема Абеля

Если степенной ряд $\Sigma_{n=0}^{\infty}a_n(x)^n$ сходится в точке x_1 , то он сходится **абсолютно** в каждой точке интервала $(-|x_1|,|x_1|)$. Если ряд расходится в точке x_2 , то он расходится в каждой точке интервала $(-\infty,-|x_2|)\cup(|x_2|,+\infty)$.

Скорее всего её можно доказать с помощью признака сравнения в форме неравенства.

47 Интервал и радиус сходимости степенного ряда. Формулы для радиуса сходимости.

В этом ответе рассматривается степенной ряд $\sum_{n=0}^\infty a_n x^n$

47.1 Определение (радиус сходимости)

R>0 называют радиусом сходимости степенного ряда, если ряд сходится при всех x:|x|< R и расходится при всех x:|x|> R. Если ряд расходится во всех точках кроме x=0, то R=0. Если ряд сходится во всех точках $x\in\mathbb{R}$, то $R=\infty$.

47.2 Определение (интервал сходимости)

Интервал (-R,R) называюется интервалом сходимости степенного ряда.

Замечание: интервал сходимости не следует путать с областью сходимости $X_{\rm cx}$. Как следствие из теоремы Абеля: область сходимости степенного ряда совпадает с одним из следующих интервалов:

- 1. (-R; R);
- 2. [-R; R];
- 3. (-R; R];
- 4. [-R; R);

47.3 Теорема (формула Даламбера)

Радиус сходимости степенного ряда можно найти по формуле:

$$R = \lim \left| \frac{a_n}{a_{n+1}} \right|$$

Для доказательства этой формулы можно исследовать ряд из абсолютных величин $\sum_{n=0}^{\infty} |a_n x^n|$ с помощью признака Даламбера.

Ряд сходится абсолютно:

$$d = \lim \frac{|a_{n+1}x^{n+1}|}{|a_nx^n|} < 1 \Leftrightarrow |x| < \lim \left|\frac{a_n}{a_{n+1}}\right|$$

Ряд расходится:

$$d = \lim \frac{|a_{n+1}x^{n+1}|}{|a_nx^n|} > 1 \Leftrightarrow |x| > \lim \left|\frac{a_n}{a_{n+1}}\right|$$

47.4 Теорема (формула Коши-Адамара)

Радиус сходимости степенного ряда можно найти по формуле:

$$R = \frac{1}{\lim \sqrt[n]{|a_n|}}$$

Доказать эту формулу можно так же, как и формулу Даламбера: просто исследовать степенной ряд с помощью признака Коши.

48 Свойства радиуса сходимости степенных рядов при их интегрировании и дифференцировании.

48.1 Теорема

Радиус сходимости степенного ряда при его интегрировании или дифференцировании не изменяется.

Доказать это можно, если просто почленно проинтегрировать или продифференцировать ряд. В результате получится новый степенной ряд, у которого a_n будет такой же, как у исходного. По формуле Даламбера или формуле Коши-Адамара можно найти радиус сходимости нового ряда, и он совпадёт с областью сходимости исходного ряда.

Да, это весь билет. Тут написано даже больше, чем нужно

49 Ряды Тейлора и Маклорена.

Пусть f(x) - дифференцируемая бесконечная число раз функция в окрестности точки $x=x_0$. То есть $f(x)\in C^\infty_{U(x_0)}$.

49.1 Определение (ряд Тейлора)

Рядом Тейлора функции f(x) в точке $x=x_0$ называется степенной ряд:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

49.2 Определение (ряд Маклорена)

Ряд Тейлора функции f(x) в точке x=0 называется рядом Маклорена.

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n$$

Рекомендуется ознакомиться со следующими двумя билетами для более чёткого понимания темы.

Теорема о представлении функции сходящимся рядом Тейлора.

Пусть дана функция $f(x) \in C^\infty_{U(x_0)}$ и её ряд Тейлора в точке $x=x_0$: $\sum_{n=0}^\infty \frac{f^{(n)}(x)}{n!}(x-x_0)^n$.

50.1 Теорема

Если в интервале $(x_0-R;x_0+R)$ функция f(x) имеет производные любого порядка и все они по абсолютной величине ограничены одним и тем же числом, то есть $|f^{(n)}(x)| \leq M(n=1,2,...)$, то ряд Тейлора этой функции сходится к f(x) для любого x из интервала $(x_0-R;x_0+R)$.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} (x - x_0)^n, x \in (x_0 - R; x_0 + R).$$

Следует отметить, что если функция разлагается в степенной ряд, то этот ряд является рядом Тейлора. Такое разложение единственно.

50.2 Определение

Функция, для которой существует ряд Тейлора называется аналитической.

51 Разложение основных элементарных функций в ряд Маклорена.

51.1 Вывод ряда Маклорена для функции

Для примера разложим функцию e^x в ряд Тейлора в точке x=0 (то есть в ряд Маклорена):

$$f^{(n)}(x) = (e^x)^{(n)} = e^x; f^{(n)}(0) = 1$$

Получаем ряд:

$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Все производные e^x ограничены на любом отрезке [-a;a], то есть $|f^{(n)}(x)|=e^x\leq M=e^a$. Поэтому согласно о теореме о разложении можно записать:

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Радиус сходимости вычислим по формуле Даламбера.

$$R=\lim\left|\frac{a_n}{a_{n+1}}\right|=\lim\frac{(n+1)!}{n!}=\lim\frac{(n+1)\cdot n!}{n!}=\lim(n+1)=+\infty$$

Тогда интервал сходимости ряда – $(-\infty; +\infty)$

51.2 Разложения основных функций

Следующие разложения и интервалы их сходимости следует запомнить.

$$1. \ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in (-\infty; +\infty)$$

$$2. \ \sin x = \sum_{n=0}^{\infty} \frac{x^{2n-1}}{(2n-1)!}, x \in (-\infty; +\infty)$$

$$3. \ \cos x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, x \in (-\infty; +\infty)$$

$$4. \ (1+x)^m = \sum_{n=0}^{\infty} \frac{m(m-1)...(m-n+1)}{n!} \cdot x^n, x \in (-1; 1)$$

5.
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, x \in (-1; 1)$$
6.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, x \in (-1; 1)$$

7.
$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} \cdot x^n, x \in (-1;1)$$

52 Ортогональная система функций (ОГС). Разложение функции в ряд по ортогональной системе. Ряд Фурье. Коэффициенты Фурье.

52.1 Определение (ОГС)

Функции f_i и f_j называются $\mathit{opmorona}$ льными на измеримом множестве X, если:

$$\int_X f_i(x) \cdot f_j(x) dx = 0$$

Ортогональная система функция – множество попарно ортогональных функций на множестве.

52.1.1 Пример

Функции $\sin nx$ и $\cos kx$ образуют ОГС на отрезке $[-\pi,\pi]$.

$$\int_{-\pi}^{\pi} \sin nx \cdot \cos kx dx = 0$$

52.2 Определение (Ряд по ОГС)

Пусть φ_n образуют ОГС на множестве X. Тогде функциональный ряд

$$\sum_{n=1}^{\infty}a_{n}arphi_{n}(x)-$$
ряд по ОГС

52.3 Теорема

Пусть ряд по ОГС на множестве X сходится к функции $\varphi(x)$. Тогда коэффециенты a_n ряда по ОГС можно вычислить следующим образом:

$$a_n = \frac{\int_X f(x) \cdot \varphi_n(x) dx}{\int_X \varphi_n^2(x) dx}$$

А сама функция раскладывается в ряд:

$$f(x) = \sum_{n=1}^{\infty} a_n f_n(x), x \in X$$

В этом случае эти коэффециенты называются коэффециентами Φ урье, а сам ряд называется рядом Φ урье

53 Полнота и замкнутость ОГС. Неравенство Бесселя, Равенство Парсеваля.

53.1 Определение (замкнутость ОГС)

ОГС на множестве X называется замкнутой, если не существует такой функции f, что

$$\int f(x)\varphi_n(x)dx=0, \forall n$$

53.2 Определение (полнота ОГС)

Пусть дана ОГС $\varphi_1, \varphi_2, ..., \varphi_n$ на множестве X. Такая система называется полной, если каждая кусочно-неприрывная функция f её ряд Фурье сходится к этой функции на множестве X, т.е.:

$$\lim_{n\to\infty}\int_X\left[f(x)-\sum_{n=1}^\infty a_n\varphi_n(x)\right]dx=0$$

В действительности, если ОГС замкнутая, она является полной и наоборот: полная ОГС является замкнутой.

53.3 Определение (равенство Парсеваля)

$$\int_X f^2(x) dx = \sum_{n=1}^\infty a_n \int_X \varphi_n^2(x) dx$$

53.4 Теорема (критерий полноты ОГС)

Для того, чтобы ОГС являлась полной, необходимо и достаточно, чтобы для каждой функции f_n кусочно-непрерывной на множестве X выполнялось равенство Парсеваля.

53.5 Теорема (неравенство Бесселя)

$$||f||^2 \geq \sum_{n=1}^{\infty} \left| \left\langle f, \frac{\varphi_n}{||\varphi_n||} \right\rangle \right|$$

$$||f||^2 = \langle f, f \rangle$$

54 Основная система тригонометрических функций. Ее ортогональность. Разложение функции в тригонометрический ряд Фурье.

54.1 Определение (Основная система тригонометрических функций)

Система функций $1, \sin lx, \cos kx$ называется основной системой тригонометрических функций (далее ОСТФ).

54.2 Теорема (ортогональность ОСТФ)

ОСТФ является ортогональной на отрезке $[-\pi,\pi]$.

Для доказательства проверим попарную ортогональность функций.

$$\int_{-\pi}^{\pi} 1 \cdot \sin lx dx = -\frac{1}{l} \cos lx \Big|_{-\pi}^{\pi} = \frac{1}{l} - \frac{1}{l} = 0$$

$$\int_{-\pi}^{\pi} 1 \cdot \cos kx dx = \frac{1}{k} \sin kx \Big|_{-\pi}^{\pi} = 0 - 0 = 0$$

$$\int_{-\pi}^{\pi} \sin lx \cdot \cos kx dx = \frac{1}{2} \int_{-\pi}^{\pi} (\sin(lx + kx) + \cos(lx - kx)) dx = 0$$

$$= \frac{1}{2} \left[-\frac{1}{l+k} \cos(lx + kx) + \frac{1}{l-k} \sin(lx + kx) \right] \Big|_{-\pi}^{\pi} = 0$$

$$= \frac{1}{2} \left[-\frac{1}{l+k} + \frac{1}{l+k} \right] = 0$$

54.3 Определение (тригонометрический ряд)

Тригонометрическим рядом называется функциональный ряд вида:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

54.4 Определение (тригонометрический ряд Фурье)

Тригонометрический ряд сходится к f(x) на множестве $[-\pi,\pi]$, то он называется её тригонометрическим рядом Фурье

54.5 Разложение функции в тригонометрический ряд Фурье

Для разложение функции в тригонометрический ряд Фурье необходимо найти коэффециенты Фурье a_0, a_n, b_n .

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

Тогда f(x) можно представить в виде:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

55 Теорема Дирихле. Ряды Фурье для четной и нечетной функций. Ряд Фурье для функций произвольного периода.

55.1 Определение (условия Дирихле)

Функция f(x) называется удовлетворяющей условиям Дирихле на [a,b], если:

- 1. Непрерывна на [a, b] или имеет конечное число точек разрыва I-рода.
- 2. Кусочно-монотонная на [a,b], т.е. отрезок [a,b] можно разделить на конечное число отрезков, на которых f(x) монотонна.

55.2 Теорема Дирихле

Если функция f(x) с периодом 2π удовлетворяет на любом отрезке из $\mathbb R$ условиям Дирихле, то ряд Фурье этой функции сходится при любых x. При этом, в каждой точке непрерывности функции сумма ряда S(x)=f(x), а в каждой точке разрыва $x=\xi$ сумма $S(\xi)=\frac{f(\xi-0)+f(\xi+0)}{2}$, где запись $f(\xi-0)$ означает $\lim_{x\to \xi+0}f(x)$, а $f(\xi+0)$ означает $\lim_{x\to \xi+0}f(x)$.

55.3 Ряд Фурье для чётных и нечётных функций

Известно, что такое тригонометрический ряд Фурье:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \sin nx + b_n \cos nx)$$

Под знаком суммы мы видим чётную функцию соѕ и нечётную функцию sin. В действительности, если f(x) - чётная, то для её разложение будет содержать только косинусы, а если нечётная - только синусы. То есть:

$$f-\text{чётная}\Leftrightarrow f(-x)=f(x)\Leftrightarrow a_n=0$$

$$f-\text{нечётная}\Leftrightarrow f(-x)=-f(x)\Leftrightarrow b_n=0$$

Доказать это совсем несложно, если применить формулы для a_n и b_n для тригонометрического ряда и использовать свойство чётности f.

56 Комплексная форма ряда Фурье.

Известны следующие факты:

$$e^{inx} = \cos nx + i \sin$$

$$e^{-inx} = \cos nx - i \sin$$

Откуда можно получить:

$$\cos nx = \frac{e^{inx} + e^{-inx}}{2}$$

$$\sin nx = \frac{e^{inx} - e^{-inx}}{2i}$$

Подставим эту форму синуса и косинуса в тригонометрический ряд Фурье

$$\begin{split} f(x) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \frac{e^{inx} + e^{-inx}}{2} + b_n \frac{e^{inx} - e^{-inx}}{2i} \right) = \\ &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \frac{e^{inx} + e^{-inx}}{2} - ib_n \frac{e^{inx} - e^{-inx}}{2} \right) = \\ &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{a_n - ib_n}{2} e^{inx} + \frac{a_n + ib_n}{2} e^{inx} \right) = \\ &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(c_n e^{inx} + c_{-n} e^{inx} \right) \end{split}$$

где
$$c_n = rac{a_n - ib_n}{2}, c_{-n} = rac{a_n + ib_n}{2}.$$

Коэффециенты этого ряда можно найти по формулам для тригонометрического ряда Фурье:

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{inx} dx$$

$$c_{-n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

Таким образом, получается комплексная форма ряда Фурье:

$$f(x)=rac{a_0}{2}+\sum_{n=1}^{\infty}\left(c_ne^{inx}+c_{-n}e^{inx}
ight)$$
 или $\sum_{n=-\infty}^{+\infty}c_ne^{inx}$