

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS Divinópolis		
DISCIPLINA : Microprocessadores e Microcontroladores	CÓDIGO: G05MMIC0.03	

Início: 03/2024

Carga Horária: Total: 30 horas/aula Semanal: 02 aulas/aula Créditos: 02

Natureza: Teórica / Obrigatória Área de Formação - DCN: Específica

Competências/habilidades a serem desenvolvidas C03, C10, C11, C12, C13, C16,

C17, C18

Departamento que oferta a disciplina: DECOM-DV

Ementa:

Arquitetura de microprocessadores. Unidade de controle, memória, entrada e saída. Dispositivos periféricos, interrupção, acesso direto à memória. Barramentos padrões. Ferramentas para análise, desenvolvimento e depuração. Microprocessadores comerciais. Aplicações

Curso(s)	Período	Eixo	Obrigatória	Optativa
Engenharia da	7°	Sistemas de Automação e Hardware	X	
Computação		-		

INTERDISCIPLINARIDADES

Prerrequisitos		
-Arquitetura e Organização de Computadores II		
-Laboratório de Arquitetura e Organização de Computadores II		
Correquisitos		
- Laboratório de Microprocessadores e Microcontroladores		

Objetivos: A disciplina deverá possibilitar ao estudante 1 Entender as diferenças entre microprocessadores e microcontroladores 2 Conhecer os elementos de hardware que integram sistemas microprocessadores e computadores de placa única. 3 Conhecer e avaliar modelos comerciais de microcontroladores, microprocessadores e computadores de placa única. 4 Entender os parâmetros operacionais (presentes nos catálogos) de microprocessadores e microcontroladores. 5 Conhecer as ferramentas de desenvolvimento e depuração para construção de aplicações em microcontroladores / microprocessadores 6 Conhecer módulos e dispositivos de entrada e saída para a resolução de problemas no mundo real passíveis de interfaceamento junto a microcontroladores, microprocessadores (computadores genéricos) e computadores de placa única. 7 Conhecer problemas passíveis de resolução através de microcontroladores, microprocessadores e computadores de placa única.

Unidades de ensino	Carga-horária Horas/aula
1 Introdução	2
- Histórico dos computadores e microprocessadores	
- Arquiteturas Van Neumann e Harvard – Conjunto Complexo de Instruções de	

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

1 land ut Elisino	
Computação (CISC), Conjunto Reduzido de Instruções de Computação (RISC)	
- Diferenças entre microcontroladores e microprocessadores	
- Single Board Computers (Computadores de placa única) Raspberry Pi, Banana Pi	
Zero, Rock Pi, Lichee Pi, etc.	
- Microcontroladores ATMEGA 328P, ESP8266, ESP32, dentre outros.	
- Apresentação revisória sobre elementos de memória;	
2 Microprocessadores e Microcontroladores	10
- Ambientes de Desenvolvimento Integrado (IDEs) e linguagens de programação	
para microcontroladores (processadores) e computadores de placa única.	
- Entrada e saída digital de dados (GPIO).	
- Interrupções.	
- Temporizadores (timers).	
- Protocolos para comunicação de dados – I2C, SPI, USB, Serial, etc.	
- Interfaces paralelas.	
- Conversão de sinais analógico-digitais, digitais-analógicos.	
3 Interface com dispositivos periféricos externos de entrada/saída e módulos diversos:	12
- Resistores Pull-Up, Pull-Down;	
- Construção de teclado numérico com push buttons;	
- Acionamento de elementos de baixa tensão com transistores;	
- Acionamento de elementos de média (e alta tensão) com relés e contatores;	
- Interfaces com dispositivos de sensoriamento de distância, temperatura,	
obstáculos, luminosidade, rotação, nível, fim de curso, identificação via rádio	
frequência (RFID), etc.	
- Acionamento de motores de corrente contínua (baixa tensão) através de	
modulação por largura de pulso (PWM)	
4 Projeto multidisciplinar	6
- Projeto final de resolução de um problema do mundo real (preferencialmente do	
CEFET-MG) através de microcontroladores ou computadores de placa única com	
integração à disciplina de eletrônica (e lab eletrônica).	
Total	30

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Bibliografia Básica

- 1 ALMEIDA, R. M., Morais, C. H. V., SERAPHIM, T. F. P. Programação de Sistemas Embarcados Desenvolvimento de Software para Microcontroladores em Linguagem C. 1ª edição. Editora: LTC, 2016
- 2 OLIVEIRA, A. S., ANDRADE, F. S. Sistemas embarcados: Hardware e Firmware na prática. 1ª edição. Editora: Erica, 2009.
- 3 MIYADAYIRA A. N. Microcontroladores PIC18 Aprenda e Programe em Linguagem C. 4ª edição. Editora: Erica, 2009.

Bibliografia Complementar

- 1 FRIED, LIMOR. **Adafruit Learning System**. Disponível em: https://learn.adafruit.com/. Acesso em: 8 de Dezembro de 2023.
- 2 ARDUINO. **Arduino Docs | Arduino Documentation.** Disponível em: https://docs.arduino.cc/. Acesso em: 8 de Dezembro de 2023.
- 3 OSHANA, Robert. **Software Engineering for Embedded Systems**. Disponível em: https://www.sciencedirect.com/science/book/9780128094488. Acesso em: 8 de Dezembro de 2023.
- 4 BERGER, Arnold S. **Debugging Embedded and Real Time Systems.** Disponível em: https://www.sciencedirect.com/science/book/9780128178119. Acesso em: 8 de Dezembro de 2023.