COMPSCI/SFWRENG 2FA3

Discrete Mathematics with Applications II Winter 2020

Week 02 Exercises

Dr. William M. Farmer McMaster University

Revised: January 8, 2020

Background Definitions

1. The notation $\sum_{i=m}^{n} f(i)$ is defined by:

$$\sum_{i=m}^{n} f(i) = \begin{cases} 0 & \text{if } m > n \\ f(n) + \sum_{i=m}^{n-1} f(i) & \text{if } m \le n \end{cases}$$

2. The Fibonacci sequence $\mathsf{fib} : \mathbb{N} \to \mathbb{N}$ is defined by:

$$\mathsf{fib}(n) = \left\{ \begin{array}{ll} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ \mathsf{fib}(n-1) + \mathsf{fib}(n-2) & \text{if } n \geq 2 \end{array} \right.$$

3. Let $a, b \in \mathbb{Z}$. a divides b, written $a \mid b$, if b = ac for some $c \in \mathbb{Z}$.

Exercises

- 1. Prove the following statements:
 - a. The sum of two odd integers is an even integer.
 - b. If x is an even integer, then x^2 is also even.
 - c. Let $a, b, c, d \in \mathbb{Z}$. If $a \mid b$ and $c \mid d$, then $ac \mid bd$.

1

- d. The square root of 2 is an irrational number.
- 2. Prove the following statements by weak induction:

a.
$$\sum_{i=0}^{n} 2i = n(n+1)$$
 for all $n \in \mathbb{N}$.

b.
$$\sum_{i=1}^{n} (2i-1) = n^2$$
 for all $n \in \mathbb{N}$.

c.
$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
 for all $n \in \mathbb{N}$.
d. $\sum_{i=0}^{n-1} 2^i = 2^n - 1$ for all $n \in \mathbb{N}$.

d.
$$\sum_{i=0}^{n-1} 2^i = 2^n - 1$$
 for all $n \in \mathbb{N}$.

- e. $\sum_{i=0}^{n} \mathsf{fib}(i) = \mathsf{fib}(n+2) 1 \text{ for } n \in \mathbb{N}.$
- f. $\sum_{i=0}^{n} (\mathsf{fib}(i))^2 = \mathsf{fib}(n) * \mathsf{fib}(n+1)$ for all $n \in \mathbb{N}$.
- 3. Prove the following statements by strong induction:
 - a. If $n \in \mathbb{N}$ with $n \geq 2$, then n is a product of prime numbers.
 - b. $fib(n) < 2^n$ for all $n \in \mathbb{N}$.
 - c. It takes n-1 divisions to break up a rectangular chocolate bar containing n squares into individual squares.
- 4. Let t_n, s_n, o_n be the *n*th triangle, square, and oblong numbers, respectively, where $n \in \mathbb{N}$.
 - a. Define t_n, s_n, o_n by recursion.
 - b. Prove by induction that every triangle number is exactly half of an oblong number.
 - c. Prove by induction that the sum of every two consecutive triangle numbers is a square number.