Lab 11 (Mini Project 02)

Part1: gm/id Design chart

Nmos

Pmos

Part2: OTA Design

Parameter	Gm/id	id	L	W	VGS	V*
M8&M11	17	20u	0.2u	10u	572.78m	118.39m
M0&M1&M2&M4	10	20u	1u	17.051u	609.12m	201m
M3	10	40u	1u	34.102u	609.12m	201m
M7&M10	15	20u	0.7u	20.895u	649.3m	131m
M6&M19	15	20u	0.7u	5.4106u	643.2m	134.25m
M15&,18	10	40u	1u	8.5u	614m	200m
M16	10	20u	1i	4.32u	615m	200.76m

• gm/id of input pair = 17 instead of 15, L of cascade = 0.7 instead of 0.5 to meet specs.

PART 3: Open-Loop OTA Simulation (Behavioral CMFB)

1) Schematic of the OTA and bias circuit with DC node voltages:

- VOCM=911.4m
- VCTRLP

- Relation: they exactly equal because we use VCCS with gain=1
- 2) Diff small signal ccs:

Test	Output	Nominal
lab11:TB:1	NODIFF	<u>~</u>
lab11:TB:1	ymax(mag(VF("/VODIFF")))	3.214k
lab11:TB:1	dB20(ymax(mag(VF("/VODIFF	70.14
lab11:TB:1	gainBwProd(VF("/VODIFF"))	50.06M
lab11:TB:1	unityGainFreq(VF("/VODIFF"))	49.89M
lab11:TB:1	phaseMargin(VF("/VODIFF"))	84.64

Hand Anaalysis

Gain= GM8*ROUT

$$\label{eq:ro10*} \begin{split} \text{ROUT} = & ro10*(ro4(gm10+gmb10)+1)//ro19*((gm19+gmb19)(ro18//ro1)+1) = & 79.48\text{M}//10.78\text{M} = 9.492\text{M} \end{split}$$

Gain=9.492M*350.3u=3.325k

Gain(db)=70.436

Bandwidth=
$$\frac{1}{2\pi*Rout*CL}$$
=16.77k

GBW=16.77k*3.325k=55.76M

UGF=55.76M

$$PM = 90 - tan^{-1} \left(\frac{wu}{wp2} \right) = 90 - tan^{-1} \left(\frac{wu}{\frac{gm6 + gmb6}{(css6 + cdd11 + cdd15)}} \right) = 90 - tan^{-1} \left(\frac{50M}{3.37G} \right) = 89.06$$

$$Css6 = 81.18fF, Cdd11 = 14.1fF, cdd15 = 11.64fF$$

Parameter	Hand analysis	Simulation
Gain	3.325k	3.214k
Gain(db)	70.436	70.14
Bandwidth	16.77k	15.54k
GBW	55.76M	50.06M
UGF	55.76M	49.89M
PM	81.87	89

PART 4: Open-Loop OTA Simulation (Actual CMFB)

Parameter	Gm/id	Id	W	L	VGS	V*
M0&M2&M5&M4	10	10u	8.45u	1u	608.67m	200.97m
M1&M3	15	10u	3.126u	1u	597.36m	134.3m
M6&M8	15	10u	5.656u	1u	535.09m	134.06m
M7	10	20u	4.2u	1u	614.04m	200.83m

- VOUTmax= VDD V* | VGSP|=1.8-200.97m-597.36m=1.0175V
- VOUTmin= v*+v*=134.35m+200.76m=0.3351V
- VREF=middle value+ |VGSP|=1.27V

1) Schematic of the OTA and CMFB circuit with DC node voltages and transistors OP parameters (id, vgs, vds, vdsat, vth, gm, gds, region) clearly annotate

• VOCM=711m

- the CM level at the output=0.71V, we force Vcm to equal VREF-VGSP=0.7
- the relation between them= CM gain of 5t-OTA which equal

to
$$\frac{1}{2(gm5+gmb5)RSS} = \frac{1}{2(93.07u+29.87u)*(\frac{1}{1.723u})} = 7m$$

2) Diff small signal ccs:

Test	Output	Nominal
lab11:TB:1	NODIFF	<u>~</u>
lab11:TB:1	ymax(mag(VF("/VODIFF")))	2.903k
lab11:TB:1	dB20(ymax(mag(VF("/VODIFF	69.26
lab11:TB:1	bandwidth(VF("/VODIFF") 3 "I	17.21k
lab11:TB:1	gainBwProd(VF("/VODIFF"))	50.07M
lab11:TB:1	unityGainFreq(VF("/VODIFF"))	49.8M
lab11:TB:1	phaseMargin(VF("/VODIFF"))	84.63

PART 5: Closed Loop Simulation (AC and STB Analysis)

- CM level at the OTA output = 696.1mV, as we adjusted vref at this level thus Vocm should be equal to Vref to minimize the input error.
- CM level at the OTA input = 696.1mV, we put vicm= 0.55 V but since we are using high resistance in the feedback 1T the input node follow the output voltage.

Dc op

2) Differential closed-loop response:

• Gain(db)

Use Measures or cursors to calculate circuit parameters (DC gain, CL BW, CL GBW)

Test	Output	Nominal
lab11:part5:1	NODIFF	<u>~</u>
lab11:part5:1	ymax(mag(VF("/VODIFF")))	1.998
lab11:part5:1	dB20(ymax(mag(VF("/VODIFF	6.011
lab11:part5:1	bandwidth(VF("/VODIFF") 3 "I	11.2M
lab11:part5:1	gainBwProd(VF("/VODIFF"))	22.15M
lab11:part5:1	unityGainFreq(VF("/VODIFF"))	19.85M

3) Differential and CMFB loops stability (STB analysis):

• Phase margin

/phaseMargin ×			
_ vicm	/phase (Deg)		
1 0.000	88.96		
gainBwProd(value(mag(getData			
_ Expression	Value		
1 gainBwProd(v	15.40E6		

- GBW diff < GBW CM , PM diff> PM CM
- Compare DC LG and GBW of the diff loop with those obtained from open-loop simulation. Comment

Parameter	Diff LG	Diff Open loop
DC gain	59.36 db	69.26 db
GBW	10.15M	50.07M

- As $\beta=1/3 \rightarrow Diff LG=1/3*AOL=59.36db$
- GBW=gain*BW ,as gain decreases by factor 1/3 so GBW decreases by 1/3

PART 6: Closed Loop Simulation (Transient Analysis)

1) Differential and CMFB loops stability (transient analysis):

No, ringing in time domain, yes both are stable

• Set differential input to zero and apply the same previous pulse at the balun CM input

• Yes there are CM ringing in time domain, since CM PM in stp analysis = 63.3 which is smaller than 67 so the CM is underdamped.

2) output swing

Voutdiff vs vindiff

