MATH 416 Abstract Linear Algebra

Week 5 - Homework 4

Assigned: Fri. Sept. 26, 2025

Due: Fri. Oct. 3, 2025 (by 8pm)

Reminder: I encourage you to work together and use resources as needed. Please remember to state who you collaborated with and what resources you used.

Exercise 1 (6 points): Injectivity and surjectivity

Let V be a (finite-dim.) vector space over a field \mathbb{F} . Let $v_1, \ldots, v_m \in V$ and define the linear map

$$T \colon \mathbb{F}^m \to V, \quad \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \mapsto \sum_{i=1}^m x_i v_i.$$

- (i) Prove that T is injective if and only if $\{v_1, \ldots, v_m\}$ are linearly independent.
- (ii) Prove that T is surjective if and only if $V = \text{span}\{v_1, \dots, v_m\}$.

Exercise 2 (4 points): Linear maps as matrices I

Let V, W be finite-dimensional vector spaces over a field \mathbb{F} , and fix bases $\mathcal{B}_V = \{v_1, \dots, v_n\}$ for V and $\mathcal{B}_W = \{w_1, \dots, w_m\}$ for W. In the following, we abbreviate $\mathcal{M}(\cdot) = \mathcal{M}(\cdot)_{\mathcal{B}_V, \mathcal{B}_W}$. Show that:

- (i) $\mathcal{M}(S+T) = \mathcal{M}(S) + \mathcal{M}(T)$ for $S, T \in \mathcal{L}_{\mathbb{F}}(V, W)$.
- (ii) $\mathcal{M}(aT) = a\mathcal{M}(T)$ for $a \in \mathbb{F}$ and $T \in \mathcal{L}_{\mathbb{F}}(V, W)$.

Exercise 3 (4 points): Linear maps as matrices II

Consider the following linear map:

$$T: \mathbb{R}^3 \to \mathbb{R}^4, \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 - x_2 + x_3 \\ x_1 - x_2 - x_3 \\ x_1 + x_2 \\ x_2 - x_3 \end{pmatrix}$$

- (i) Determine $\mathcal{M}(T)_{\mathcal{S}_3,\mathcal{S}_4}$, where \mathcal{S}_3 and \mathcal{S}_4 are the standard bases in \mathbb{R}^3 and \mathbb{R}^4 , respectively.
- (ii) Let now

$$\mathcal{B}_{V} = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\} \qquad \qquad \mathcal{B}_{W} = \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$$

1

and determine $\mathcal{M}(T)_{\mathcal{B}_V,\mathcal{B}_W}$.

Remark: You do not need to show that \mathcal{B}_V and \mathcal{B}_W are indeed bases for \mathbb{R}^3 and \mathbb{R}^4 , respectively.

(optional) Bonus Question (2 points): Projection Operators

Let $P \in \mathcal{L}(V)$ such that $P^2 = P$. Such operators are called *projection operators* or *projectors* and they play a fundamental role in linear algebra, representation theory, quantum mechanics, data science, and many more fields.

(i) Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$.