

Structural Causal Bandits under Markov Equivalence

Min Woo Park, Andy Arditi, Elias Bareinboim, Sanghack Lee

Advisor Prof. Sanghack Lee, Causality Lab, SNU

Apr 18th, 2025

Contents

- 1 Causality Lab
- 2 Background: Structural Causal Bandits
 - 3 Ours
- 4 Conclusion

Causality Lab

Causality Lab

- Causal Bandit
- Causal RL

Causal Discovery

- Causal Identification
- Causal Estimation

- Causal Representation Learning
- Causal NLP
- Causal Machine Learning

Causal Recommendation

Causal Fairness

Causal Explainability

Background

Multi-Armed Bandits

Graphical Understanding of Standard MAB

Multi-Armed Bandits through Causal Lens

Graphical Understanding of Standard MAB

Playing an arm A_t is setting X to x (called do), and observing Y.

Graphical Understanding of Standard MAB

Playing an arm A_t is setting X to x (called do), and observing Y.

Graphical Understanding of Causal MAB

 ${f Q}$. How many arms are there? (We can control 2 binary variables, X_1 and X_2).

Graphical Understanding of Causal MAB

- ${f Q}$. How many arms are there? (We can control 2 binary variables, X_1 and X_2).
- **A**. Nine. We need to choose a set among $\{\emptyset, \{X_1\}, \{X_2\}, \{X_1, X_2\}\}$.

Graphical Understanding of Causal MAB

- ${f Q}$. How many arms are there? (We can control 2 binary variables, X_1 and X_2).
- **A**. Nine. We need to choose a set among $\{\emptyset, \{X_1\}, \{X_2\}, \{X_1, X_2\}\}$.

$$1 + 2 + 2 + 4 = 9$$

Structural Causal Bandits

Intervention Sets all subsets of V except Y.

$$\emptyset$$
, $\{X_1\}$, $\{X_2\}$, $\{X_1, X_2\}$

all possible values for intervention sets

$$do(\emptyset), do(X_1 = 0), do(X_1 = 1), \dots$$

Reward
$$\mu_{\mathbf{x}} \triangleq \mathbb{E}[Y \mid do(\mathbf{x})] = \sum_{y} yP(y \mid do(\mathbf{x}))$$

Structural Causal Bandits

Goal: Remove actions that is (1) redundant or (2) cannot be optimal based on given causal diagram.

Structural Property 1: Equivalence

Implication: prefer playing $do(x_1)$ to playing $do(x_1, x_2)$.

Structural Property 1: Equivalence

Implication: prefer playing $do(x_1)$ to playing $do(x_1, x_2)$.

Definition: *Minimal* Intervention Set (MIS)

Graphical condition: All variables in X are ancesters of Y.

Minimal Intervention Set: Metal Picture

Minimal Intervention Set: Metal Picture

Structural Property 2: Partial-orderedness

Implication: prefer playing $do(x_2)$ to playing $do(\emptyset)$

Structural Property 2: Partial-orderedness

Implication: prefer playing $do(x_2)$ to playing $do(\emptyset)$

Definition: possibly-optimal Minimal Intervention Set (POMIS)

Graphical condition: All variables in ${f X}$ are parent of minimal closed mechanism

under (1) descendant and (2) confounded.

Possibly-Optimal Minimal Intervention Set: Metal Picture

Minimal Intervention Set: Metal Picture

Structural Relationships between Intervention Sets

Structural Relationships between Intervention Sets

Playing an arms $do(x_1)$ and $do(x_2)$ is sufficient!

Structural Relationships between Intervention Sets

Playing an arms $do(x_1)$ and $do(x_2)$ is sufficient!

Motivation

A key assumption is that the agent has access to a causal diagram representing the target system. **However**, this is often violated.

Contribution

A key assumption is that the agent has access to a causal diagram representing the target system. **However**, this is often violated.

We assume access to a graph represening a Markov Equivalence Class, called a PAG (Partial Ancestral Graph) rather then a causal diagram.

Markov Equivalence Class

They share (1) the same independence statement $X_1 \perp \!\!\! \perp_d X_2$.

Markov Equivalence Class

They share (1) the same independence statement $X_1 \perp \!\!\! \perp_d X_2$.

The graph is called as a PAG (Partial Ancestral Graph).

Structural Causal Bandits under Markov Equivalence

Goal: Remove unnecessary actions that cannot be optimal (i.e., non-POMIS) under any underlying causal diagram.

Definitely Minimal Intervention Sets for PAG

Definition: A set is a Definitely Minimal Intervention Set (DMIS) if there exists a causal diagram under which it is an MIS.

Definitely Minimal Intervention Sets for PAG

Definition: A set is a Definitely Minimal Intervention Set (DMIS) if there exists a causal diagram under which

it is an MIS.

Graphical condition: All variables in X are (1) possibly ancesters of Y.

and (2) not relevant.

Definitely Minimal Intervention Set: Metal Picture

Definitely Minimal Intervention Set: Metal Picture

Definitely Minimal Intervention Set: Metal Picture

Definitely Minimal Intervention Set: Example

Definitely Minimal Intervention Set: Example

Definitely Minimal Intervention Set: Example

Two nodes are relevant.
non-DMIS

Possibly-Optimal Minimal Intervention Sets for PAG

Definition: A set is a Possibly-Opimal Minimal Intervention Set (POMIS) if there exists a causal diagram under which it is an POMIS.

Possibly-Optimal Minimal Intervention Sets for PAG

Definition: A set is a Possibly-Opimal Minimal Intervention Set (POMIS) if there exists a causal diagram under which it is an POMIS.

Graphical condition: All variables in X are parent of minimal closed mechanism under (1) possibly descendant and (2) possibly confounded in a local transformed graph (around $X \cup \{Y\}$).

Possibly-Optimal Minimal Intervention Sets for PAG

Definition: A set is a Possibly-Opimal Minimal Intervention Set (POMIS) if there exists a causal diagram under which it is an POMIS.

Graphical condition: All variables in X are parent of minimal closed mechanism under (1) possibly descendant and (2) possibly confounded in a local transformed graph (around $X \cup \{Y\}$).

i.e., a graph in which all represented causal diagrams have ${f X}$ as a MIS.

Proposition: Every uncovered proper possibly-directed path ends with an arrowhead ••••••.

Conclusion

Given a PAG, you do not need to enumerate *all* causal diagrams conforming the PAG to compute POMIS!

Conclusion

Given a PAG, you do not need to enumerate *all* causal diagrams conforming the PAG to compute POMIS!

Playing *only* the arms corresponding to these POMISs is sufficient.

Reference

Structural Causal Bandits: Where to Intervene?

Sanghack Lee and Elias Bareinboim NeurlPS 2018, https://causalai.net/r36.pdf

Structural Causal Bandits under Markov Equivalence
Min Woo Park, Andy Ardity, Elias Bareinboim and Sanghack Lee
https://causalai.net/r122.pdf