Project Proposal: Facial Expression Recognition

Team

Our group, *Emo for Short*, consists of Deepak Kumar Srivastava, Marcelino Bautista, and Xinyi Zhu.

Task Objective

The goal is to perform facial expression classification, identifying emotions from facial images. This task has broad real-world applications—for example, emotion recognition can support targeted advertising strategies, enabling companies to adapt their offerings to customer sentiment.

Dataset

We will use the FER-2013 Facial Expression Dataset from Kaggle.

A few example images are attached for reference.

Dataset Description

- Image size: 48×48 pixels
- Color channels: 1 (grayscale)
- **Variation**: The dataset includes a wide range of facial expressions, head poses, lighting conditions, and occlusions.
- Consistency: The faces have been automatically registered so that the face is more or less centred and occupies about the same amount of space in each image.

Labels / Emotion Categories

The dataset provides seven emotion categories, defined as below:

- $0 = \text{Angry } \checkmark$
- 1 = Disgust 😥
- $2 = \text{Fear } \bigcirc$
- $3 = \text{Happy} \stackrel{\text{\tiny ω}}{\rightleftharpoons}$
- 4 = Sad 😢
- 5 = Surprise 😲
- $6 = Neutral \stackrel{\square}{=}$

Dataset Composition

Emotion	Training Set (28,709 images)	Public Test Set (3,589 images)
Angry 😠	13.9% (3,995 images)	26.7% (958 images)
Disgust 😂	1.5% (436 images)	3.1% (111 images)
Fear 😨	14.3% (4,097 images)	28.5% (1,024 images)
Нарру 😀	25.1% (7,215 images)	49.4% (1,774 images)
Sad 😢	16.8% (4,830 images)	34.8% (1,247 images)
Surprise 😲	11.0% (3,171 images)	23.2% (831 images)
Neutral :	17.3% (4,965 images)	34.4% (1,233 images)

Proposed Approach

- Traditional Feature Extraction Methods
 We will begin with two classical computer vision feature descriptors to establish a strong
 baseline
 - a. **Histogram of Oriented Gradients (HOG)**: Captures edge orientations and overall facial structure (e.g., raised eyebrows, frowns, smiles).
 - b. **Local Binary Patterns (LBP)**: Captures local texture details such as wrinkles or furrows that reflect micro-expressions and subtle emotional cues.
 - c. These features will be used to train conventional classifiers such as Support Vector Machines (SVM) or Random Forests.
- 2. Deep Learning with Transfer Learning We will leverage pretrained convolutional neural networks (CNNs) for high-level feature extraction.
 - a. **ResNet-18:** A neural network with 18 layers that uses skip connections to make training easier. Lightweight and works well on smaller datasets like FER-2013. *Pros: fast to train and reliable; Cons: may miss very complex features.*
 - b. **EfficientNet-B0:** A modern neural network that balances layers, width, and image resolution to achieve high accuracy efficiently. *Pros: accurate and resource-efficient; Cons: slightly more complex to fine-tune.*
 - c. Grayscale images will be converted to 3-channel format to match pretrained ImageNet weights.