Module 2, Lecture 4 Chemical Kinetics Part 1

 $T(K) = T(^{\circ}C)+273$ (given on formula sheet)

Learning Objectives:

- Understand what is meant by the term 'rate of reaction'
- Write a rate expression for a given reaction and understand how the rate is related to the stoichiometry of the reaction
- Write a general rate law for a reaction, give the correct unit for the rate constant, *k*, and appreciate that the complete rate law can only be obtained experimentally.
- · Understand the method of initial rates
- Use experimental data to determine the rate law and rate constant for a reaction

Textbook: Chapter 14

1

Thermodynamics and Kinetics

Two important things about a chemical reaction:

- how far it goes (thermodynamics)
- how fast it goes (kinetics)

The two are NOT related!!!

How quickly does a reaction reach equilibrium?

Many reactions with $\Delta G < 0$ do not occur – too slow

 $C(s) + O_2(g) \Rightarrow CO_2(g) \triangle G^{\circ} = -394 \text{ kJ mol}^{-1}$

2

_

Thermodynamics and Kinetics

There are a very wide range of reaction rates (speeds):

Study of reaction rates important!

e.g. understanding atmospheric processes, designing new drugs, industrial processes.

2

Chemical Kinetics: The study of reaction speed

Two parts:

Experimental	Measure reaction rates Study factors influencing rates
Theoretical	Understand rates in molecular terms Use experimental data to probe reaction mechanisms

4

Rate and its measurement

Rate is the same as the speed of a reaction – how does the concentration change with time?

$$N_2O_4(g) \Rightarrow 2NO_2(g)$$

- At start only N₂O₄ present
- [N₂O₄] falls rapidly at first slows to no change at equilibrium
- [NO₂] rises rapidly at first slows to no change at equilibrium.

5

5

slope = "rise over run"

$$N_2O_4(g) \Rightarrow 2NO_2(g)$$

• Speed (velocity) found from **gradient** of plot of either $[N_2O_4]$ or $[NO_2]$ with time.

Such a gradient (or slope) is called a **rate**.

• Rate of loss of N_2O_4 is half the rate of formation of NO_2 – from stoichiometry.

In symbols:

Use methods of calculus (where Δt becomes very small):

$$rate = -\frac{\Delta[N_2O_4]}{\Delta t} = \frac{1}{2} \frac{\Delta[NO_2]}{\Delta t}$$

rate =
$$-\frac{d[N_2O_4]}{dt} = \frac{1}{2}\frac{d[NO_2]}{dt}$$

• Cannot have negative rate

So put -ve sign in front of term for reactants where concentration decreases.

Rate and its measurement

For a general reaction: $a A + b B \rightarrow c C + d D$

rate =
$$-\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt} = \frac{1}{d}\frac{d[D]}{dt}$$

- Definition of rate involves stoichiometric coefficients
 a, b, c, d.
- [A], [B] are concentrations of reactants, [C], [D] are concentrations of products.
- Can express rate in terms of **any** reactant or product.

• Units for rate <u>always</u> = $\frac{\text{conc}}{\text{time}}$ i.e. mol L-1 s-1 (compare with velocity = distance/time)

7

POP Quiz!!

For the reaction

$$2NOBr(g) \ \rightarrow \ 2NO(g) \ + \ Br_2(g)$$

which of the following defines the rate of reaction?

(A)
$$-\frac{d[NOBr]}{dt}$$

(B)
$$-\frac{1}{2}\frac{d[NOBr]}{dt}$$

(C)
$$\frac{1}{2} \frac{d[NOBr]}{dt}$$

(D)
$$-2\frac{d[NOBr]}{dt}$$

What factors affect reaction rate?

- 1. Chemical nature of reaction
- 2. Physical states of reactants and products
- 3. Concentration of reactants
- 4. Temperature, *T*
- 5. Sometimes substances not involved in the stoichiometric equation:

catalyst - increases rate (e.g. enzyme) inhibitor - decreases rate

These substances undergo no net change.

9

q

Reaction rate and concentration

Concentration does not affect all reactions in the same way.

• For some reactions, increasing the concentration increases the rate:

e.g. the oxidation of steel wool:

Steel wool heated in air (about 20% O_2) glows red-hot but oxidises to Fe_2O_3 slowly

Red-hot steel wool in 100% O₂ burns vigorously, forming Fe₂O₃ quickly

10

Reaction rate and concentration

• For other reactions, increasing the concentration has no effect on the rate: e.g. oxidation of ethanol in the liver:

To understand the kinetics of a reaction we need to understand how the rate depends on concentration.

11

11

Rate law, rate order and rate constant

The **rate law** describes how rate depends on concentration:

$$a A + b B \rightarrow c C + d D$$

The rate law takes the form:

rate =
$$k [A]^x [B]^y$$

```
    order with respect to A (x = 0, 1, 2 ...)
    order with respect to B (y = 0, 1, 2 ...)
    overall order of the reaction
    rate constant
```

Rate law must be determined experimentally, we CANNOT know this from the equation.

... what about **a**, **b**, **c**, **d**? **Ignore them!**

(The one time you can ignore stoichiometry!)

Examples

1. $2N_2O_5(g) \to 4NO_2(g) + O_2(g)$ rate = $k [N_2O_5]$ 1st order

2. $NO_2(g) + CO(g) \rightarrow CO_2(g) + NO(g)$ rate = $k [NO_2]^2$ 2nd order

3. $C_2H_5Br + OH^- \rightarrow C_2H_5OH + Br^$ rate = $k [C_2H_5Br][OH^-]$ 2nd order

4. $(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH + Br$ rate = $k [(CH_3)_3CBr]$ 1st order rate = $k [A]^x [B]^y$

Rate laws are all determined experimentally

x and y are usually 0, 1 or 2 but can be negative or fractions.

x and y are NOT related to stoichiometric coefficients a, b, c, d.

13

First-order reactions

rate = $k [A]^x [B]^y$

Processes which are first order overall

Only one reactant A
 a A → products

1st order in A

e.g. example 1

 $2N_2O_5(g) \to 4NO_2(g) + O_2(g)$ rate = $k [N_2O_5]$

2. Two or more reactants

a A + b B + ... \rightarrow products

1st order in A

e.g. example 4

zero order in all other reactants

 $(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH + Br$ rate = k [$(CH_3)_3CBr$]

Pseudo first-order reactions

Suppose for some reaction the rate law is

rate =
$$k$$
 [A][B]

and

when [A] changes, [B] may not change much

- ∴ [B] is approximately constant
- ∴ rate = *k*'[A]

k' (= k[B]) called pseudo first-order rate constant

See kinetics lab experiment!

15

15

Rate order affects how rate changes with conc.

Order	Rate law	Effect as [A] doubles
0	rate = <i>k</i>	No change
1	rate = <i>k</i> [A]	Rate doubles
2	rate = $k[A]^2$ or rate = $k[A][B]$	Rate increases x 4 if rate= $k[A]^2$
		Rate increases x 2 if rate = k[A][B]

Rate Constant, k

- independent of concentration
- · increases with T

Units for k depend on overall order x + y

x + y	units of k	
0	mol L ⁻¹ s ⁻¹	
1	s ⁻¹	
2	L mol ⁻¹ s ⁻¹	
3	L ² mol ⁻² s ⁻¹	

Relationship between rate and time taken

Rate of a reaction and time take are inversely related.

e.g. Dunedin and Christchurch are ~400 km apart

- If it takes 4 hours to get there, how fast are we driving?
- · How fast are we driving if it takes 8 hours?

If a reaction takes twice as long then the rate is half as fast.

17

17

Rate constant example

e.g. second order

rate =
$$\frac{\Delta[]}{\Delta t}$$
 = $k[A][B]$ $\frac{\text{mol } L^{-1}}{s}$

Remember, unit for rate is always mol L-1 s-1

What is the unit for k?

$$k = \frac{\text{rate}}{[A][B]}$$

$$= \frac{\text{mol } L^{-1} s^{-1}}{\text{mol}^{2} L^{-2}} = \frac{s^{-1}}{\text{mol } L^{-1}} = L \text{ mol}^{-1} s^{-1}$$

Careful! Units of k change depending on the order of reaction

18

Experimental measurement of reaction rate

Isolation Method

- · Based on initial rates of reaction
- Vary concentration of one reactant, while all others held constant

$$aA+bB \rightarrow cC+dD$$

rate =
$$k[A]^x[B]^y$$

See kinetics lab experiment!

19

19

Initial rates

initial rate = $k[A]_0^x [B]_0^y$

 $[A]_0$ and $[B]_0$ – initial concentrations (i.e. at time = 0)

- these are set by the experimenter and are therefore known

orders x and y - unknown

To find x – measure initial rates for different values of $[A]_0$ while holding $[B]_0$ constant

To find y – measure initial rates for different values of $[B]_0$ while holding $[A]_0$ constant

Why measure initial rates?

As reaction proceeds [A] and [B] decrease

- : rate will decrease.
- ∴ examine reaction rate over a short time scale, so that [A] and [B] remain close to [A]₀ and [B]₀

i.e. study **initial rates** for which the change in [A] and [B] with time is linear.

- no tricky calculus!

21

Calculating the rate constant, k

initial rate = $k[A]_0^x[B]_0^y$

- 1. Obtain values of x and y from experiment
- 2. Calculate *k* from any set of rate measurements

$$k = \frac{\text{initial rate}}{[A]_0^x [B]_0^y}$$

3. Remember to work out the correct units for k!

Careful! Units of k change depending on the order of reaction

22

Example

What is the experiment rate law for the reaction?

$$S_2O_8^{2-} + 3I^- \rightarrow 2SO_4^{2-} + I_3^-$$

initial rate = $k [S_2O_8^2]_0^x [I]_0^y$

Compare Expts 1 and 2 [l⁻]₀ **constant** in both Expts [S₂O₈²-]₀ doubled and initial rate doubles $\therefore x = 1$

 $[S_2O_8^{2-}]_0$ Initial rate Expt $[I^{-}]_{0}$ / mol L-1 s-1 / mol L-1 / mol L-1 1 0.15 0.21 1.14 2 0.30 2.28 0.21 3 0.15 0.42 2.28

Compare Expts 1 and 3 $[S_2O_8^{2-}]_o$ constant in both Expts $[I^-]_o$ doubled and initial rate doubles $\therefore y = 1$

Careful! Must remember to state that you are holding one reactant constant

23

23

Rate law

Having determined x and y we can write the **rate law**:

rate =
$$k[S_2O_8^2][I]$$

Q: What is the overall order of the reaction? overall order = x + y = 2 so 2^{nd} order

Q: What is the rate constant at 298 K? (using data from Expt 1)

(can use data from any of the Expts 1, 2 or 3 to calculate k)

$$k = \frac{\text{initial rate}}{[S_2O_8^{2-}]_0[l^-]_0}$$

$$= \frac{1.14 \text{ mol L}^{-1} \text{ s}^{-1}}{(0.15 \text{ mol L}^{-1}) \text{ x } (0.21 \text{ mol L}^{-1})}$$

$$= 36 \text{ L mol}^{-1} \text{ s}^{-1}$$

POP Quiz!!

For the gaseous reaction $2ICI(g) + H_2(g) \rightarrow I_2(g) + 2HCI(g)$ the following data were obtained at 500 K:

Expt	[ICI] ₀ / mol L ⁻¹	[H ₂] ₀ / mol L ⁻¹	Initial rate/ mol L ⁻¹ s ⁻¹
1	1.5 x 10 ⁻³	1.5 x 10 ⁻³	3.7 x 10 ⁻³
2	3.0 x 10 ⁻³	1.5 x 10 ⁻³	7.4 x 10 ⁻³
3	3.0 x 10 ⁻³	4.5 x 10 ⁻³	22 x 10 ⁻³

The rate law is

(A) rate = $k[ICI][H_2]$

(B) rate = $k[ICI][H_2]^2$

(C) rate = k[ICI]

(D) rate = $k[H_2]$

25

25

* Homework *

Chemistry – the central science 15th Ed

Brown et al.

Problems 14.7 14.8a 14.12 14.13 14.14

Answers on Blackboard