15 WGAN新方案: 通过梯度归一化来实现L约束

Nov By 苏剑林 | 2021-11-15 | 16288位读者

当前,WGAN主流的实现方式包括参数裁剪(Weight Clipping)、谱归一化(Spectral Normalization)、梯度惩罚(Gradient Penalty),本来则来介绍一种新的实现方案:梯度归一化(Gradient Normalization),该方案出自两篇有意思的论文,分别是《Gradient Normalization for Generative Adversarial Networks》和《Gradient Normalization for Generative Adversarial Networks》。

有意思在什么地方呢?从标题可以看到,这两篇论文应该是高度重合的,甚至应该是同一作者的。但事实上,这是两篇不同团队的、大致是同一时期的论文,一篇中了ICCV,一篇中了WACV,它们基于同样的假设推出了几乎一样的解决方案,内容重合度之高让我一直以为是同一篇论文。果然是巧合无处不在啊~

基础回顾#

关于WGAN,我们已经介绍过多次,比如《互怼的艺术:从零直达WGAN-GP》和《从Wasserstein距离、对偶理论到WGAN》,这里就不详细重复了。简单来说,WGAN的迭代形式为:

$$\min_{G} \max_{\|D\|_{L} \le 1} \mathbb{E}_{x \sim p(x)} \left[D(x) \right] - \mathbb{E}_{z \sim q(z)} \left[D(G(z)) \right] \tag{1}$$

这里的关键是判别器D是一个带约束优化问题,需要在优化过程中满足L约束 $\|D\|_L \le 1$,所以WGAN的实现难度就是如何往D里边引入该约束。

这里再普及一下,如果存在某个常数C,使得定义域中的任意x,y都满足 $|f(x)-f(y)|\leq C||x-y||$,那么我们称f(x)满足Lipschitz约束(L约束),其中C的最小值,我们称为Lipschitz常数(L常数),记为 $||f||_L$ 。所以,对于WGAN判别器来说,要做到两步:1、D要满足L约束;2、L常数要不超过1。

事实上,当前我们主流的神经网络模型,都是"线性组合+非线性激活函数"的形式,而主流的激活函数是"近线性的",比如ReLU、LeakyReLU、SoftPlus等,它们的导函数的绝对值都不超过1,所以当前主流的模型其实都满足L约束,所以关键是如何让L常数不超过1,当然其实也不用非1不可,能保证它不超过某个固定常数就行。

方案简介#

参数裁剪和谱归一化的思路是相似的,它们都是通过约束参数,保证模型每一层的L常数都有界,所以总的L常数也有界;而梯度惩罚则是留意到 $\|D\|_L \le 1$ 的一个充分条件是 $\|\nabla_x D(x)\| \le 1$,所以就通过惩罚项 $(\|\nabla_x D(x)\| - 1)^2$ 来施加"软约束"。

本文介绍的梯度归一化,也是基于同样的充分条件,它利用梯度将D(x)变换为 $\hat{D}(x)$,使其自动满足 $\|\nabla_x\hat{D}(x)\|\leq 1$ 。具体来说,我们通常用ReLU或LeakyReLU作为激活函数,在这个激活函数之下,D(x)实际上是一个"分段线性函数",这就意味着,除了边界之外,D(x)在局部的连续区域内都是一个线性函数,相应 地, $\nabla_x D(x)$ 就是一个常向量。

于是梯度归一化就想着令 $\hat{D}(x) = D(x)/\|\nabla_x D(x)\|$,这样一来就有

$$\|\nabla_x \hat{D}(x)\| = \left\|\nabla_x \left(\frac{D(x)}{\|\nabla_x D(x)\|}\right)\right\| = \left\|\frac{\nabla_x D(x)}{\|\nabla_x D(x)\|}\right\| = 1$$
 (2)

https://kexue.fm/archives/8757

当然,这样可能会有除o错误,所以两篇论文提出了不同的解决方案,第一篇(ICCV论文)直接将|D(x)|也加到了分母中,连带保证了函数的有界性:

$$\hat{D}(x) = rac{D(x)}{\|
abla_x D(x)\| + |D(x)|} \in [-1, 1]$$
 (3)

第二篇 (WACV论文) 则是比较朴素地加了个 ϵ :

$$\hat{D}(x) = \frac{D(x) \cdot \|\nabla_x D(x)\|}{\|\nabla_x D(x)\|^2 + \epsilon} \tag{4}$$

同时第二篇也提到试验过 $\hat{D}(x) = D(x)/(\|\nabla_x D(x)\| + \epsilon)$,效果略差但差不多。

实验结果#

现在我们先来看看实验结果。当然,能双双中顶会,实验结果肯定是正面的,部分结果如下图:

Table 3: Inception Score and FID with unconditional image generation on CIFAR-10 and STL-10. We report the average and standard deviation of the results trained with 5 different random seeds. Note that "-" denotes that result is not reported by the original paper. Moreover, † represents that the original paper does not provide an evaluation on STL-10, so we provide a implementation for reference. ‡ denotes that we provide a re-implementation result for reliable comparison.

Method	C	IFAR-10		STL-1		
	Inception Score↑	FID(train)↓	FID(test)↓	Inception Score↑	FID(50k) ↓	$FID(10k)\downarrow$
Real data	11.24±.12	0	7.80	26.08±.26	0	0
Standard CNN						
SN-GAN [22]	$7.58 {\pm} .12$	-	25.50	$8.79 \pm .14$	-	43.20
SN-GAN [‡]	$7.86 {\pm} .09$	18.52	22.67	$8.87{\pm}.09$	32.90	35.10
SN-GAN-CR [35]	7.93	-	18.72	$8.69{\pm}.08^{\dagger}$	32.11^{\dagger}	34.14^{\dagger}
(our) GN-GAN	$7.71 \pm .14$	$19.31 \pm .76$	$23.52 {\pm}.80$	$9.00 \pm .15$	$30.18 {\pm} .82$	$32.41 \pm .73$
(our) GN-GAN-CR	$8.04 \pm .19$	$18.59 {\pm} 1.5$	$22.89 {\pm} 1.5$	$9.00 \pm .14$	$27.61 \pm .69$	$29.53 {\pm} .62$
ResNet						
WGAN-GP [10]	$7.86{\pm}.08$	-	-	-	-	-
SN-GAN	$8.22{\pm}.05$	-	$21.70 {\pm}.21$	$9.10 \pm .04$	-	$40.10 \pm .50$
SN-GAN [‡]	$8.48 \pm .11$	12.35	16.59	$9.18 \pm .10$	29.16	31.85
SN-GAN-CR	8.40	-	14.56	$9.38{\pm}.07^{\dagger}$	25.78^{\dagger}	28.4^{\dagger}
(our) GN-GAN	$8.49 \pm .11$	$11.13 \pm .18$	$15.33 \pm .16$	$9.60 \pm .14$	$26.14 \pm .7$	28.12 ± 0.61
(our) GN-GAN-CR	$\textbf{8.72} {\pm} \textbf{.11}$	$\textbf{9.55} {\pm} \textbf{.47}$	$\textbf{13.71} {\pm} \textbf{.40}$	$\textbf{9.74} {\pm} \textbf{.15}$	$\textbf{23.62} {\pm} \textbf{.89}$	$25.80 {\pm} 0.59$
Neural Architecture	e Search					
AutoGAN [8]	$8.55 {\pm} .10$	12.42	-	$9.16 {\pm} .12$	31.01	-
E ² GAN [28]	$8.51 \pm .13$	11.26	-	$9.51 {\pm} .09$	25.53	-

ICCV论文的实验结果表格

Table 2: Inception scores (IS), FIDs, and KIDs with unsupervised image generation on CIFAR-10, CIFAR-100, and STL-10. The best and the second best models per evaluation metric and GAN family (i.e., with discriminators or critics) are indicated by bold red and bold blue fonts. \dagger indicates modified baselines with an altered Lipschitz constant \mathcal{K} . The table is split comparing discriminators (top) and critics (bottom). We write "–" for cases where a model did not achieve a FID < 70.

Method	IS ↑			$\mathbf{FID}\downarrow$			KID (×1000) ↓		
	CIFAR-10	CIFAR-100	STL-10	CIFAR-10	CIFAR-100	STL-10	CIFAR-10	CIFAR-100	STL-10
NSGAN	7.655	6.611	7.920	23.750	30.842	44.179	14.5	20.5	40.0
NSGAN-GP	8.016	_	8.568	15.813	_	38.848	12.9	_	38.9
NSGAN-SN	7.792	7.258	8.167	20.998	25.564	38.669	15.7	18.4	35.7
NSGAN-GP†	8.019	7.892	8.623	15.911	20.894	40.110	13.1	17.0	39.8
NSGAN-SN†	7.814	7.526	8.135	20.323	24.200	39.013	15.3	17.7	36.7
GraND-GAN (Ours)	8.031	8.314	8.743	14.965	18.978	35.226	12.3	13.7	35.0
WGAN-GP	7.442	7.520	8.492	22.927	27.231	42.170	21.1	23.5	43.0
SNGAN	8.112	7.778	8.385	17.107	20.739	38.218	12.6	14.3	34.3
WGAN-GP†	7.344	7.684	8.466	22.705	25.211	42.595	20.6	21.2	44.7
SNGAN†	7.991	7.959	8.552	16.740	20.104	36.203	12.0	14.3	33.3
GraNC-GAN (Ours)	7.966	8.208	8.957	16.361	19.131	35.770	13.7	14.8	35.4

WACV论文的实验结果表格

Figure 1: Generated samples on CelebA-HQ 256 \times 256. FID=7.67.

Figure 2: Generated smaples on LSUN Church Outdoor 256×256 . FID=5.405.

3/4

ICCV论文的生成效果演示

尚有疑问#

结果看上去很好,理论看上去也没问题,还同时被两个顶会认可,看上去是一个好工作无疑了。然而,笔者的困惑才刚刚开始。

该工作最重要的问题是,如果按照分段线性函数的假设,那么D(x)的梯度虽然在局部是一个常数,但整体来看它是不连续的(如果梯度全局连续又是常数,那么就是一个线性函数而不是分段线性了),然而D(x)本身是一个连续函数,那么 $\hat{D}(x) = D(x)/\|\nabla_x D(x)\|$ 就是连续函数除以不连续函数,结果就是一个不连续的函数!

所以问题就来了,不连续的函数居然可以作为判别器,这看起来相当不可思议。要知道这个不连续并非只在某些边界点不连续,而是在两个区域之间的不连续,所以这个不连续是不可忽略的存在。在Reddit上,也有读者有着同样的疑问,但目前作者也没有给出合理的解释(链接)。

另一个问题是,如果分段线性函数的假设真的有效,那么我用 $\hat{D}(x)=\left\langle \frac{\nabla_x D(x)}{\|\nabla_x D(x)\|},x\right\rangle$ 作为判别器,理论上应该是等价的,但笔者的实验结果显示这样的 $\hat{D}(x)$ 效果极差。所以,有一种可能性就是,梯度归一化确实是有效的,但其作用的原因并不像上面两篇论文分析的那么简单,也许有更复杂的生效机制我们还没发现。此外,也可能是我们对GAN的理解还远远不够充分,也就是说,对判别器的连续性等要求,也许远远不是我们所想的那样。

最后,在笔者的实验结果中,梯度归一化的效果并不如梯度惩罚,并且梯度惩罚仅仅是训练判别器的时候用到了二阶梯度,而梯度归一化则是训练生成器和判别器都要用到二阶梯度,所以梯度归一化的速度明显下降,显存占用量也明显增加。所以从个人实际体验来看,梯度归一化不算一个特别友好的方案。

文章小结#

本文介绍了一种实现WGAN的新方案——梯度归一化,该方案形式上比较简单,论文报告的效果也还不错,但个人认为其中还有不少值得疑问之处。

更详细的转载事宜请参考:《科学空间FAQ》

如果您需要引用本文, 请参考:

苏剑林. (Nov. 15, 2021). 《WGAN新方案: 通过梯度归一化来实现L约束》[Blog post]. Retrieved from https://kexue.fm/archives/8757

https://kexue.fm/archives/8757 4/4