DOCUMENT RESUME

ED 438 164 SE 063 163

AUTHOR Grim, Nancy C.

TITLE A Force Concept Correlation Study with Instructional

Methods, Anxiety, Perceptions of Difficulty and Student

Background Variables.

PUB DATE 1999-06-15

NOTE 84p.

PUB TYPE Reports - Research (143) -- Tests/Questionnaires (160)

EDRS PRICE MF01/PC04 Plus Postage.

DESCRIPTORS Anxiety; Constructivism (Learning); *Educational Background;

*Force; Higher Education; Knowledge Level; Mechanics (Physics); *Misconceptions; Parent Education; *Physics; Science Teachers; Scientific Concepts; Sex Differences;

Teacher Education; Teaching Methods

ABSTRACT

This paper reports on a study that used Hestenes' Force Concept Inventory (FCI) to describe Newtonian force concepts and misconception belief systems held by preservice teachers in physical science and physics students attending an urban university in Chicago, Illinois. Results indicate that constructivist instruction in force concepts was of higher quality than traditional instruction. Several significant correlations are also reported between FCI scores and parental education level, the number of science and math courses taken in high school or college, gender, science/math anxiety, and perception of difficulty scores in science and math. An annotated bibliography and copies of questionnaires used in the study are included in the appendices. (Contains 35 references.) (WRM)

Running head: FORCE CONCEPT CORRELATIONS

SCOPE OF INTEREST NOTICE

The ERIC Facility has assigned this document for processing

SE) TM

In our judgment, this document is also of interest to the Clearinghouses noted to the right. Indexing should reflect their special points of view.

A Force Concept Correlation Study with Instructional Methods, Anxiety,

Perceptions of Difficulty and Student Background Variables

Nancy C. Grim

Department of Chemistry and Physics

Chicago State University

Chicago, IL

U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

CENTER (ERIC)
This document has been reproduced as feceived from the person or organization originating it.

- Minor changes have been made to improve reproduction quality.
- Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.

June 15, 1999

SO TOO CERIC

PERMISSION TO REPRODUCE AND

DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES

INFORMATION CENTER (ERIC)

BEST COPY AVAILABLE

Table of Contents							
Abstract	3						
Introduction	4						
Method	10						
• Participants	10						
• Materials	12						
• Procedure	13						
Analysis and Results	15						
Discussion	19						
References	20						
Appendices	23						

Force Concept Correlations

Abstract

This study (1) used Hestenes' Force Concept Inventory (FCI) to describe Newtonian force concept and misconception belief systems held by preservice teachers in physical science and physics students attending an urban university in Chicago, Illinois; (2) found that force concept constructivist instruction was of higher quality (n=48); and (3) determined several significant correlations between the FCI scores and parental educational level, the number of science and math courses taken in high school or college, gender, science/math anxiety and perception of difficulty scores in science and math. Algebra and educated mothers led to the most significant correlations. The FCI, Student Background Survey, Perception of Difficulty and Anxiety questionnaires, and an annotated bibliography on force concept misconceptions are included.

A Force Concept Correlation Study with Instructional Methods, Anxiety, Perceptions of Difficulty and Student Background Variables

There are a number of educators who are concerned about the presence of student misconceptions prior to, during, and even after the process of instructional intervention. This project will examine a narrow part of this educational crisis: the common-sense misconceptions of the scientifically accepted Newtonian concept of force.

Several researchers have shown that students of various educational levels in several countries of the world hold notions that do not agree with officially appropriate views of the concepts that explain force. This body of research includes work at the college level by Arditzogolu and Crawley (1990); Crawley and Arditzogolu (1988); Ginns and Watters (1995); Hake (1998); Hestenes, Wells, and Swackhammer (1992); Pilburn, Baker, and Treagust (1988); Preece (1997); and Trumper (1997). Crawley and Arditzogolu (1988) in particular have shown that misconceptions are "systematic, intelligently conceived, and quite reasonable theories" based on an individual's experience. Although studies by Basili and Sanford (1991), Hestenes et al. (1992), and Lawrenz (1987) show that a change in the number and types of force concept misconceptions can be accomplished, these unacceptable theories continue to exist.

The interested reader may choose to examine the writings of researchers who have investigated the sources, outcomes, and implications of students and teachers who hold several types of force concept misconceptions. Appendix A is an annotated bibliography of current work in this area for various age groups and education levels.

The focus of this empirical research study is three-fold in nature. The first goal is to provide a description of the types of scientifically correct Newtonian force concept or common-sense misconception beliefs held by students in the research sample. The second goal is to compare the quality of force concept instruction (measured pre/post by the Force Concept Inventory, Appendix B, developed by Hestenes et al. (1992)) given to the three classroom samples. The third goal is to determine whether or not there are any significant correlations between the force concept competency levels and variables yet to be discussed.

The multi-correlational part of the study will structured as follows: The independent variable will be the Force Concept Inventory scores for Physical Science 110: Physical Science for Pre-service Elementary and Middle School Teachers and for Physics 211: Introduction to Mechanics for Physics and Engineering Majors. The dependent variables include parental educational level, the number of science and math courses taken in high school or college, gender, science/math anxiety and perception of difficulty scores in science and math.

A number of research studies address these variable relationships. The most relevant empirical education studies at the post-secondary level include works by Bitner (1992 a, b) as well as Hestenes, Wells, and Swackhammer (1992); Hake (1998); Everson, Tobias, and Hartman (1993); and Farmer (1990). A brief examination of other supporting studies will follow.

Bitner (1992 b) wanted to identify any significant relationships between misconceptions in physical science and the following factors: formal reasoning scores, ACT Science Scores, and Process Skills. Her subjects of interest were Teacher Education Program students at a midwestern university of approximate enrollment of 20,000. Bitner chose a causal-comparative study

in which frequency and two-way ANOVA (p<0.01) were used to analyze the data. The results indicate that a higher percentage of pre-service secondary science methods teachers (85%) were formal reasoners than the pre-service elementary science methods teachers (68%). Secondary teachers were more able to identify and state an hypothesis and demonstrated fewer physical science misconceptions than their elementary counterparts. In addition, the ACT Science scores were higher for the secondary group.

Bitner (1992 a) presented a companion casual-comparative study using the same student population pool as above. Her research indicates that no significant gender-related differences (p<0.01) in aptitude, achievement, or attitudes about science and science teaching were found in elementary preservice teachers (n=80).

Hestenes et al. (1992) published an extensive work on the contrast between Newtonian physics and common-sense student-held belief systems based on studies with over 1500 high school students, 500 university students, seven professors, and 19 high school teachers from Arizona, Illinois, and Massachusetts. Results indicated that math background and socioeconomic levels (particularly ethnicity, income level, and gender) were independent of post-test Force Concept Inventory scores. Severe deficiencies in the English language was found to have a negative impact on scores. Strong pedagogy was positively correlated to scores. The study provided substantial evidence to support the claim that the use of "technology by itself" cannot improve the instructional quality. Rather, the supplemental use of technology was found to enhance good pedagogy as long as it did not replace quality instruction.

The Hestenes et al. (1992) research indicated that students lack certain concepts and modes of reasoning needed to be successful in a traditional problem-solving course structure. In the traditional physics or physical

science course, students are not being exposed to kinematics using graphing skills to diagram the relationships of motion—speed, distance, and acceleration—and forces. Instructors and textbooks fail to address this issue adequately. Therefore, the researchers were able to positively correlate the quality of instruction in this area with the scores on the Force Concept Inventory.

Hake (1998) compiled an extensive study from a nationally diverse sample (n=6542) that includes test results from the leading instruments on force concepts: the Force Concept Inventory (FCI), the Halloun-Hestenes Mechanics Diagnostic test (MD), and the Mechanics Baseline test (MB). The MD test was developed by Halloun and Hestenes (1985) and is the original instrument that was later adapted into the well-respected FCI. The problem-solving MB instrument developed by Hestenes and Wells (1992) is a companion of the MD test.

To investigate the impact of course instruction, Hake arranged the student data into two sets: traditional (n=2084) and interactive-engagement (n=4458). He defines interactive-engagement (IE) as those teaching methods in which use "heads-on (always) and hands-on (usually) activities" that encourage discussion. Hake defines traditional courses as those that do not employ IE methods and that rely on "passive-student lectures, recipe labs, and algorithmic-problem exams." His research suggests that the use of IE activities is much more effective than traditional instructional methods. In addition, results based on the Mechanics Baseline (n=3259) test show that problem-solving ability is enhanced by IE strategies. Hake's analysis supports Hestenes' work in that Hestenes' "quality of instruction" may very well include interactive-engagement activities.

Everson et al. (1993) wanted to develop empirical support for the claim that rigorous subjects such as mathematics and science produce more anxiety than the humanities. The subjects were first-year college students from a large urban university. The sample (n=196) was ethnically diverse: 41% African American, 31% Hispanic, 18% Asian American, 5% White, and 5% others. The ages ranged from 17 to 38 years old with a mean age of 21. Everson et al. chose to randomly assign treatment groups in a 4 X 3 factorial design. Students in the study group were more anxious about Mathematics and Physical Science courses than with English or Social Studies. Physical Science was the highest. Student perceptions about difficulty was positively correlated with anxiety although the data suggests other factors may be involved. Students who were asked to give precise/accurate answers had no significant difference on the perception of difficulty than students required to give conceptual/less rigorous answers. Gender also did not have a significant effect on the perceptions of difficulty in any subject matter.

Farmer (1990) reported the assessment results of a newly revised program to improve student achievement and preparedness in physical science instruction at a technical college in South Carolina. It was determined that male students scored 12.3% higher on the American Testronic's High School Subject Test (HSST) in physical science than female students. A positive correlation between the number of high school science courses taken and students' scores on the HSST was found, although there was no significant effect noted if students took less than three science courses at the college level. Students in the Associate Degree and College Transfer Programs seemed to obtain higher HSST scores than all other programs. One-fourth of the sample (n=219) scored below the HSST 50th percentile. In addition, Farmer believes that the scores were low because few of the student sample

population took high school physics. He noted that the lowest concept area scores consisted of topics that should have been taught in high school physics.

Navarro (1989) conducted a study (n=1,829) which concluded that apparent gender differences on the Math portion of the Scholastic Aptitude Test were really an effect of how many math, computer science and physics courses had been taken. In addition, Santiago and Einarson (1996) found that academic outcomes were not dependent on gender and ethnicity. These two works, developed independently of Farmer's research (1990), echoes his themes.

An interesting minor variable to investigate is a correlation between parental education level with Force Concept Inventory scores. Young and Smith (1997) of the National Center for Educational Statistics issued a report that found, among other things, that student achievement is closely related to the level of education of their parents—mothers in particular. However, these researchers did not single out physical science instruction as an individual variable.

The literature does not always clearly define what topics belong in a course entitled "Physical Science." A scientist doing research in the physical science field studies physical and chemical processes of matter and not the life processes of matter that would be studied by biologists. Literature that refers to physics, chemistry, earth science/geology, and astronomy are equally valid subtopics within physical science. In order to maintain clarity for this project, the subjects in this study are being taught force concepts from Newtonian physics using different instructional techniques.

The study will investigate a number of hypotheses. (1) It is expected that the Physical Science 110 classes will receive a higher quality level of instruction using a guided-inquiry/constructivist approach with hands-on

laboratory activities than the Physics 211 verification-style lecture and laboratory exercises. This hypothesis will be considered valid if the Physical Science 110 classes exhibit a larger change in the pre/post-instruction Force Concept Inventory scores. This would indicate that more correct Newtonian force concepts and fewer incorrect force concepts (misconceptions) are presently held by students. (2) It is surmised that student's with college-educated parents or a course history background that includes more than 3 science classes in high school or college will have a positive correlation with the Force Concept Inventory scores. (3) A high anxiety level or a high perception of difficulty in science and math is hypothesized to have a negative correlation with the Force Concept Inventory scores. In addition, (4) gender is not expected to play a significant role.

Method

• Participants

The subjects of the study (n= 48) were drawn from an urban university in Chicago, Illinois. As of the Fall 1998, the student population consisted of 92% African Americans, 6% Hispanic, 1% other minority groups, and 1% Caucasian. The campus supports mainly commuter students although a few students now live in a single on-campus dormitory. The typical range of student ages at this university are between 18 and 45. Currently, there is an open enrollment policy. The average number of years required to finish a bachelor's degree is six years. This average is attributed to the large number of students who arrive under-prepared for college courses from the local city school system.

The three student groups in this multi-correlational study were chosen ex post facto. Two of the groups were technically the same course although

the time of class (evening versus afternoon) seemed to have generated slightly different student compositions. This course, Physical Science 110, has been developed for pre-service elementary and middle school teachers. The third group of students were enrolled from Physics 211 entitled: Introduction to Mechanics for Science Majors. Occasionally students other than those for which these courses were intended have enrolled in these courses. These students were kept in the study.

The pooled data included 48 subjects (12 male and 36 female). The group ethnicity was 79.2% African American, 0.00% Caucasian, 14.6% Hispanic, 1.4% Native American, and 2.8% Other. The subjects' range in ages were 18 to 45.

The Physical Science 110 evening class, PS 110-61, had 20 subjects (3 male and 17 female) of which 70% were African American, 25% were Hispanic, and 5% were Native American. The afternoon class, PS 110-01, has 16 subjects (2 male and 14 female) of which 81.25% were African American, 6.25% were Hispanic, and 12.5% were other. The subjects' range in ages for the evening and afternoon sections were 20 to 38 and 18 to 45, respectively.

The Physics 211 course, Phy 211-01, was designed for physics and engineering majors although other science and math majors participate in the instruction. This class of 12 students (7 male and 5 female) consisted of 91.67% African American and 8.33% Hispanic. The subjects ages in this course were 18 to 25 and one 31-year old.

Materials

The most important instrument that was used in this study is the Force Concept Inventory developed by Hestenes et al.(1992). It was designed to elicit information about the belief systems of force concepts held by an individual or group—not intelligence levels. This 29 question, multiple-forced-choice instrument required students to select either a scientifically accepted Newtonian belief answer or a common-sense misconception response. It was tested with over 2000 subjects. It is considered in the literature as valid and reliable although no coefficients have been published. A copy of the Force Concept Inventory can be found in Appendix B. Appendix C contains a table that categorically compares Newtonian force concepts and their corresponding common-sense misconceptions.

The force concept inventory results can be used to look at the quality of an individual's force concept belief system. Using the baseline data provided by Hestenes et al. (1992), five distinct benchmark levels were developed for this project: expert, practitioner, high school/first-year physics course student, a junior high general science student, and a novice. An expert in Newtonian physics would need to score 29/29 (100%). False-positive and false-negative responses bring the practitioner threshold to 23/29 (80%). A physics course student, either in high school or first-year college is shown to realistically score 17/29 (60%). The general science student would most likely reach the 12/29 (40%) benchmark. Novices have been shown to use common-sense beliefs through experiences to attain a 6/29 (20%) score.

Three survey/questionnaire forms were developed for this investigation. A Student Background survey was modified from an example published by Farmer (1990). A Likert-scale type survey to examine the student perceptions of difficulty in science, math, and humanities was modeled after

and adapted from Everson (1993). A scalar questionnaire to explore the anxiety levels of students taking science and math courses was also adapted from the Worry-Emotionality Questionnaire in Everson's work (1993). Non-participant science and non-science major students were asked to check their comprehension of the instruments prior to distribution. In addition, participant-students were questioned after distribution to clarify any possible misunderstandings, especially the (English-as-second-language) bilingual Hispanic population. These instruments can be located in Appendices D to F, respectively.

Procedure

Students were given the Force Concept Inventory as a pre-test and the three survey/questionnaires. This occurred approximately 5 or 6 weeks into the semester-long courses. The students were then given their respective Newtonian force concept instruction. The Physical Science 110 course used guided-inquiry and constructivist approaches to instruction with hands-on laboratory activities. The two instructors of this course worked closely with each other and frequently visited each others classes to maintain the common goals and quality of instruction of the course. (The evening class met once a week for four hours and the afternoon class met the equivalent number of hours twice a week.)

The Physics 211 course followed a traditional lecture approach that included verification-style lectures and laboratory experiments with problem solving sessions. All three classes received the equivalent of one week of instruction and one week of occasional review prior to a mid-term examination for the course. The week after the mid-term examinations, the students were given the Force Concept Inventory as a post-test.

Collected data was then examined. Potential problems were identified and addressed by interviewing the individual students who submitted the surveys. Decisions had to be made about students who gave more than one variable the same rank. (The word 'rank' was a particular problem for the bilingual students.) In those cases in which there was given, for example: 2, 3, 4, 5, 5; The recorded rank became 1, 2, 3, 5, 5. Similarly the set: 1, 1, 1, 2, 2 was recorded as: 1, 1, 1, 4, 4. This kind of problem happened only occasionally.

Upon re-examination of the literature to develop a plan for calculating variables such as the Anxiety scores and the Perception of Difficulty scores in Science or Math, it was discovered that there were no existing explanations. The Perception of Difficulty and Anxiety scales were developed using the following equation: $[(n \times v) - n = \text{score}]$ where n equals the total number of questions and v equals the Likert scale maximum/minimum value. For example, the Perception of Difficulty scores have five questions (n=5) which has a maximum value of 5 and a minimum value of 1 for each question. Therefore, the maximum score is 20 and the minimum score is zero. Likewise, the range of Anxiety scores are between zero and 40. High scores indicate high perception of difficulty or anxiety.

The total scores were calculated as follows. The Perception of Difficulty in science was tabulated using a positive Likert Scale (1 to 5) for questions 3 and 7, a reversed scale for question 5, the ranking of Physical Science in question 9, and the ranking of physics in question 10. Questions used for math include 4, 6, 8, 9 (math), and 10 (scientific math). The science/math Anxiety scores used positive Likert-scale values for questions 1-9 and used a reverse scale on question 10.

There was a concern that the Force Concept Inventory Pre/Post scores might not accurately reflect the concepts taught. Indeed, only kinematics and

Newton's first three Laws were explicitly taught in the Physical Science 110 classes. In hindsight, the Physics 211 instructor implicitly decided that his students were adequately prepared and quickly moved into more difficult areas of force concepts beyond the first three laws. As a precaution for later data analysis, an adjusted Force Concept Inventory score was calculated using the students results for only the Kinematics and first three Laws scores. The data will show that this precaution, although useful, was not entirely necessary. In addition, the change of Force Concept Inventory scores was calculated as well.

Analysis and Results

The resulting analyses will be presented in a logical order that hopefully will lead to a clear picture of the project. Each of the four separate hypotheses will be addressed by examining the data. Lastly, additional relationships that were discovered will be discussed.

There are several appendices provided that contain summary data of the population sample. Appendix G presents the means of the pre-/post-Force Concept Inventory scores and the scores for each force correct concept or misconception category. Pooled data are summarized in Appendices H, I and J for the Perception of Difficulty in Science and Math, Anxiety in Science, and Anxiety in Math; respectively.

There is clear evidence in Appendix G and in the ANOVA analysis in Appendix K that the Physical Science 110 classes did receive a higher quality of instruction than the Physics 211 course (Hypothesis 1). There is proof that a greater change in the understanding of force concepts did occur. However, it is important to note that the classes did not start at the same level. The average pre-test level of force concept beliefs in the Physical Science 110

classes is below the novice threshold at 5.36/29 (18.5%) and 4.25/29 (14.7%). The Physics 211 students are between the novice stage and the general science student benchmarks at 8.45/29 (29.1%). The students in this population are below the national standards in this area.

Appendix G also shows that the Physics 211 class was better prepared for the force instruction. Yet, there was a smaller improvement in correct force concepts displayed by those students. The quality of instruction is thought to be attributed to teaching style. Further study to include a constructivist approach for the Physics 211 course is warranted.

Appendix L contains the descriptive statistics of the student's course background, the parental education level and the Force Concept Inventory scores. Pearson correlations for these variables are found in Appendix M. The number of high school math courses, particularly algebra, was found to have a significant positive correlation (p<0.05) with the pre-test Force Concept Inventory Scores (both regular and adjusted scores). Appendix M also indicates that there were several slightly positive although not significant correlations between the number of high school/post-high school science courses or post-high school math courses taken and the post-instruction Force Concept Inventory Scores: post-high school science > post-high school math, high school math(algebra) > high school science, post-high school science > high school science, and post-high school math < high school math.

It appears that this study supports that general literature consensus that high school algebra (and to a lesser degree math) is the first gateway for success and post-high school science courses are possibly the second (Hypothesis 2). Quality instruction cannot totally compensate for the lack of preparedness, however the constructivist teaching style has shown a stronger

impact (p= 0.08) on post-instruction Force Concept Inventory scores than the verification teaching style, if not yet significant at p<0.05 (Hypothesis 1).

Positive, yet not significant, Pearson correlations exist between the education level of parents and the Force Concept Inventory scores. (See Appendix M.) Although not significant, a mother's educational level has double the impact on the pre-test scores. This early influence may partially explain why this effect nearly disappears for both parents on the post-test. There are most likely additional confounding variables. (Hypothesis 2).

Anxiety and Perception of Difficulty scores (Appendix N) produced unexpected results (Appendix O). The pre-test Force Concept Inventory (FCI) scores were positively and significantly correlated (p < 0.05) to the Anxiety of Science scores. Although Anxiety of Math is not significant there is a positive effect shown. (The value is just slightly smaller.) The science and math Anxiety scores have slightly positive non-significant correlations to the post-FCI scores. These positive correlations between high FCI scores and high Anxiety scores is somewhat surprising, but may indicate a positive use of anxiety (Hypothesis 3).

The Perception of Difficulty in math is slightly more negative than science when correlated to the pre-test FCI scores. Interestingly, there was a stronger negative post-correlation of Perception of Difficulty scores in science with the FCI scores than in the Perception of Difficulty scores in Math to the post-FCI scores. The students appear to show an inverse relationship between Perception of Difficulty and the Force Concept Inventory scores. In other words, a high FCI score may be a result of a low Perception of Difficulty and vice versa (Hypothesis 3).

The role of gender was expected to have no effect on the Force Concept Inventory scores. The pre-test Chi-Square values in Appendix P was verified

to be significant to the p=0.0025 level. The post-test values are not significant. However, considering that there were so few males in this study, more data needs collected in the future to validate this result.

Additional conclusions were drawn from this study. (1) A mother's educational level was positively and significantly correlated to the number of post-high school science and math courses taken (both p<0.01). Although not significant, there was also a positive impact on the number of high school science and math classes taken. (2) A father's educational level was significantly and positively correlated to the number of post-high school science and math courses taken (both p<0.05). His educational level had strong although not significant effects on the number of high-school science and math courses taken. (3) Educated women and educated men become educated parents (p<0.01). (4) A father's educational level leads to more anxiety in math (p<0.06) yet his offspring seem to perceive math as less difficult. (5) A mother's educational level may influence the offspring to perceive science and math as less difficult and has a strong yet not significant influence over math anxiety. (6) Science anxiety positively correlates to math anxiety (p<0.01). (7) The Perception of Difficulty in Science has a small negative correlation to the Perception of Difficulty in Math. (8) The Perception of Difficulty in Science has a significant negative correlation with Anxiety in Science (p<0.05). (9) The Perception of Difficulty in Math was negatively correlated to the Anxiety in Math (p<0.01).

Discussion

This research project should be considered a preliminary investigation into these variables. Further examination is needed. In particular, the culture in which these minority students have been raised has an impact on their anxiety and perception of difficulty levels as well as their achievement and level of comprehension of the concepts of Force. Is this sample truly unique in preparedness levels for force concept instruction at the college level in comparison to other schools around the country?

Evidence of gateways for development of correct Newtonian force concepts needs additional study. Algebra has already been identified as the most likely first gateway. But to what extent does the skills needed for chemistry and biology classes or advanced mathematics modify the belief systems from Aristotelian physics to Newtonian physics?

The extent to which the type of instructional method chosen to teach the force concepts has an impact on the force concept belief systems needs explored. In addition, the preservice teachers in this study have been affected by the constructivist method of teaching. Will that modeled teaching style be transferred and have an effect on future students?

Additional investigations might include a comparison between the change of Force Concept Inventory scores for students who scored at the extremes. Will a high pre-test score move into an even higher post-test score? How much of a change is likely to occur for a student with a low pre-test score? Is there an impact from the collaborative process used in the constructivist teaching approach? And lastly, what are the relationships between all of these questions and the variables of Anxiety, Perception of Difficulty, student background, course history, and parental education level?

References

- Arditzogolu, S. Y., & Crawley, F. E. (1990, Apr). A descriptive study of alternative life and physical science conceptions of preservice elementary teachers. (ERIC Document Reproduction Service No. ED 324 225)
- Basili, P. A. & Sanford, J. P. (1991). Conceptual change strategies and cooperative group work in chemistry. <u>Journal of Research in Science Teaching</u>, 28 (4), 293-304.
- Bitner, B. L. (1992 a). Gender comparisons: attitudes of preservice elementary science methods teachers toward science and science teaching. Paper presented at the annual meeting of the National Association for the Research in Science Teaching, Boston, MA. (ERIC Document Reproduction Service No. ED 344 782)
- Bitner, B. L. (1992 b). Preservice elementary and secondary science methods teachers: comparison of formal reasoning, ACT science, process skills, and physical science misconception scores. Paper presented at the annual meeting of the National Association for the Research in Science Teaching, Boston, MA. (ERIC Document Reproduction Service No. ED 344 781)
- Crawley, F. E., & Arditzogolu, S. Y. (1990, Apr). Life and physical science misconceptions of preservice elementary teachers. (ERIC Document Reproduction Service No. ED 302 416)
- Everson, H. T., Tobias, S., Hartman, H., & Gourgey, A. (1993). Test anxiety and the curriculum: The subject matters. The College Board, New York, NY. (ERIC Document Reproduction Service No. ED 366 598)
- Farmer, M. H. (1990). Assessing the preparedness and achievement of
 Greenville Technical College students enrolled in a first year physical
 science course: A preliminary report. Greenville Technical College,
 Greenville, S.C. (ERIC Document Reproduction Service No. ED 341 439)

- Ginns, I. S., & Watters, J. J. (1995, Feb). An analysis of scientific understandings of preservice elementary teacher education. <u>Journal of Research in Science Teaching</u>, 32 (2), 205-222.
- Halloun, I., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53, 1043-1055.
- Hestenes, D., Wells, M., & Swackhammer, G. (1992, Mar). Force concept inventory. The Physics Teacher, 30 (3), 141-158.
- Hestenes, D., & Wells, M. (1992, Mar). A mechanics baseline test. The Physics Teacher, 30 (3), 159-166.
- Lawrenz, F. (1987). Evaluation of a teacher inservice training program in physical science. Science Education, 71 (2), 251-258.
- Navarro, C. (1989, Mar). Why do women have lower SAT-Math scores than men? A paper presented at the annual meeting of the American Educational Research Association. (ERIC Document Reproduction Service No. ED 312 277)
- Piburn, M. D., Baker, M. D., & Treagust, D. F. (1988, Apr). Misconceptions about gravity held by college students. A paper presented at the 61st annual meeting of the National Association for Research in Science Teaching. (ERIC Document Reproduction Service No. ED 292 616)
- Preece, P. F. W. (1997, May). Force and motion: Pre-service and practising secondary science teachers' language and understanding. Research in Science & Technological Education, 15 (1), 123-128.
- Santiago, A. M., & Einarson, M. K. (1996, Apr). The graduate experience in engineering and the physical sciences: Gender and ethnic differences in initial expectations and departmental incorporation. A paper presented at the Annual Meeting of the American Educational Research Association. (ERIC Document Reproduction Service No. ED 398 806)

- Trumper, R. (1997, Summer). The need for change in elementary school teacher training: The case of the energy concept as an example.

 <u>Educational Research</u>, 39 (2), 157-174.
- Young, B. A., & Smith, T. M. (1997). The social context of education. Findings from "The condition of education, 1997," No. 10. National Center for Education Statistics (ED), Washington, DC. (ERIC Document Reproduction Service No. ED 413 396)

Appendices

Table of Contents

Appendix A: Annotated Bibliography on Force Concept Misconceptions	
Research	24
Appendix B: Force Concept Inventory	29
Appendix C: A Categorical Comparison of the Force Concept Inventory	
Measured Variables	34
Appendix D: Student Background Survey	35
Appendix E: Perception of Difficulty in Science and Math	36
Appendix F: Anxiety Questionnaire in Science and Math	37
Appendix G: Force Concept Inventory Score Results	38
Appendix H: Perception of Difficulty Results	47
Appendix I: Anxiety in Science Results	48
Appendix J: Anxiety in Math Results	49
Appendix K: ANOVA Analysis on Quality of Instruction	50
Appendix L: Descriptive Statistics of Course Background, Parental	
Education, and Force Concept Inventory Scores	51
Appendix M: Pearson Correlations: Course Background, Parental	
Education, and Force Concept Inventory Scores	52
Appendix N: Descriptive Statistics of Perception of Difficulty, Anxiety,	
Parental Education Level, and Force Concept Inventory Scores	58
Appendix O: Pearson Correlations: Perception of Difficulty, Anxiety,	
Parental Education Level, and Force Concept Inventory Scores	59
Appendix P: Chi-square Analysis of Gender with Force Concept	
Inventory Scores	63

Appendix A: Annotated Bibliography on Force Concept Misconceptions Please note: This appendix includes references at all educational levels.

- Arditzoglou, S. Y., & Crawley, F. E. (1990, Apr). A descriptive study of alternative life and physical science conceptions of preservice elementary teachers. (ERIC Document Reproduction Service No. ED 324 225) Designed the Life Science Misconceptions Test and the Physical Science Misconceptions Test.

 Preservice elementary science teachers were found to hold a total of 36 life science and 50 physical science misconceptions.
- Bitner, B. L. (1992 Mar). Preservice elementary and secondary science methods teachers: comparison of formal reasoning, ACT science, process skills, and physical science misconception scores. Paper presented at the annual meeting of the National Association for the Research in Science Teaching, Boston, MA. (ERIC Document Reproduction Service No. ED 344 781) Determined that pre-service secondary teachers demonstrated fewer physical science misconceptions, had more formal reasoning skills, and earned higher ACT science scores than their elementary counterparts.
- Boeha, B. B. (1990, Sept). Aristotle, alive and well in Papua New Guinea science classrooms. Physics Education, 25 (5), 280-283. Results indicate

 Aristolean-like beliefs persist in student's force conceps rather than scientifically accepted Newtonian physics.
- Brown, D. E. (1989, Nov). Students' concepts of force: the importance of understanding Newton's third law. Physics Education, 24 (5), 353-358. High school students show misconceptions of Newton's third law.
- Brown, W. J. (1992). Physical science in general education curriculum reform.

 (ERIC Document Reproduction Service No. ED 250 171) Argued the need to develop guided-inquiry curriculum to encourage the students to use decision-making/critical thinking strategies to solve a series of open-ended problems.

- Crawley, F. E., & Arditzoglou, S. Y. (1990, Apr). Life and physical science misconceptions of preservice elementary teachers. (ERIC Document Reproduction Service No. ED 302 416) Reported that misconceptions are systematic, intelligently conceived, reasonable theories based on experience, although not always scientifically accepted. Elementary teachers with misconceptions are found to have difficulty transfering scientifically acceptable concepts to their students.
- Eckstein, S. G., & Shemesh, M. (1993, Oct). Development of children's ideas on motion: Impetus, the straight-down belief and the law of support.

 School Science & Mathematics, 39 (6), 299-305. Elementary childrens' misconceptions about projectile motion can be remediated through proper instruction.
- Gair, J., & Stancliffe, D. (1988). Talking about toys: An investigation of children's ideas about force and energy. Research in Science & Technological Education, 6 (2), 167-180. Eleven-year old children's concepts of force and energy are explored and presented in three frameworks of thought of which only one is scientifically accepted. Gender differences in framework type are reported.
- Gamble, R. (1989, Mar). Force. <u>Physics Education</u>, <u>24</u> (2), 79-82. Reports misconceptions on the meaning of force, force and motion in one- and two-dimensions, and Newton's second law.
- Ginns, I. S., & Watters, J. J. (1995, Feb). An analysis of scientific understandings of preservice elementary teacher education. <u>Journal of Research in Science Teaching</u>, 32 (2), 205-222. Found that pre-service elementary teachers hold misconceptions about scientifically-accepted concepts.
- Halloun, I., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53, 1043-1055. Contains the original instrument, the Mechanics Diagnostic Test, which was later modified into the well-respected Force Concept Inventory.

- Hestenes, D., Wells, M., & Swackhammer, G. (1992, Mar). Force concept inventory. The Physics Teacher, 30 (3), 141-158. Studied the contrast between Newtonian physics and common-sense Aristotlean belief systems from an extensive and nationally diverse pool of high-school and college students. Results also indicated that strong pedagogy was positively correlated to scores, language deficiencies had a negative impact, and that "technology by itself" does not replace quality instruction. Math background and socioeconomic levels were independent of the scores. The Force Concept Inventory is included in this publication.
- Hestenes, D., & Wells, M. (1992, Mar). A mechanics baseline test. The Physics

 Teacher, 30 (3), 159-166. Reported that students at the high-school and college levels
 lack certain concepts and modes of reasoning needed to be successful in a problem-solving
 course structure. Includes the companion instrument to the Mechanic Diagnostic test or its'
 revised successor, the Force Concept Inventory.
- Lawrenz, F. (1987). Evaluation of a teacher inservice training program in physical science. Science Education, 71 (2), 251-258. Reported that a change in the number and types of force concept misconceptions can be accomplished although some unacceptable theories continue to exist.
- Liang, L. L. (1997). Resistance to the implementation of a new constructivist science curriculum for prospective elementary teachers.. A paper presented at the annual meeting of the American Educational Research Association. (ERIC Document Reproduction Service No. ED 406 209) Preservice elementary science teachers resisted new constructivist science curriculum. Transfer success was related to the number of positive experiences in conceptual change concept teaching.
- Koval, D. B., & Staver, J. R. (1985, Mar). What textbooks don't teach.

 ScienceTeacher, 52 (3), 49-52. High school technology-training textbooks were found to be inadequate preparation for success in college physical science courses.

- Palmer, D. H., & Flanagan, R. B. (1997, Jun). Readiness to change the conception that "motion-implies-force": a comparison of 12-year-old and 16-year-old students. Science Education, 81 (3), 317-331. Older students were found to resist changing alternate misconceptions even though no evidence was found to indicate that older students may be less capable to do so.
- Piburn, M. D., Baker, M. D., & Treagust, D. F. (1988, Apr). Misconceptions about gravity held by college students. A paper presented at the 61st annual meeting of the National Association for Research in Science Teaching. (ERIC Document Reproduction Service No. ED 292 616)
 - Reported that although most physical science college students had reasonable conceptions about gravity, misconceptions were prevalent.
- Preece, P. F. W. (1997, May). Force and motion: Pre-service and practising secondary science teachers' language and understanding. Research in Science & Technological Education, 15 (1), 123-128. Found that unacceptable views of force and motion concepts are present and that it may lead to the lack of clarity in science instruction.
- Salyachivin, S. et al. (1985, Jun). Students' conceptions on force. <u>Iournal of Science & Mathematics Education in Southeast Asia</u>, <u>8</u> (1), 28-31.•

 Researchers indicate that results of force conceptual frameworks are similar to reported results in western countries.
- Summers, M., & Kruger, C. (1993, Sept). Long term impact of a new approach to teacher education for primary science. A paper presented at the Annual Meeting of the British Educational Research Association. (ERIC Document Reproduction Service No. ED 362 504) Reported primary school teachers made significant progress towards the reduction of force and energy misconceptions with proper inservice instruction. Evidence showed that most of the instruction was retained after 6 and 12 months.

- Terry, C. et al. (1985). Children's conceptual understanding of forces and equilibrium. Physics Education, 20 (4), 162-165. Children with three to five years of physics instruction were tested about their conceptions of forces and equilibrium. The investigators also explored the issue of maturity in connection to their conceptual framework.
- Thijs, G. D. (1992, Apr). Evaluation of an introductory course on "force" considering students' preconceptions. Science Education, 76 (2), 155-174. Constructivist approach instruction effectively changed Dutch secondary school students misconceptions about force in rest and frictional situations.
- Trumper, R. (1997, Summer). The need for change in elementary school teacher training: The case of the energy concept as an example.

 Educational Research, 39 (2), 157-174. Reported that many preservice elementary school teachers hold non-scientifically accepted views on energy and force concepts.
- Trumper, R., & Gorsky, P. (1996, Jul). A cross-college age study about physics students' conceptions of force in pre-service training for high school teachers. Physics Education, 31 (4), 227-236. Reported that preservice high school teachers hold serious non-scientifically accepted views on force concepts.
- Watts, D. M., & Gilbert, J. K. (1983). Enigmas in school science: Students' conceptions for scientifically associated words. Research in Science & Technological Education, 1 (2), 161-171. Students were found to exhibit non-scientifically accepted views of force and energy. Science instruction and instructional strategy implications are discussed.
- Yager, R. E., & Bonnstetter, R. J. (1984). Student perceptions of science teachers, classes and course content. School Science and Mathematics, 84
 (5), 406-414 in Blosser, P. E., Ed., & Helgeson, S. L., Ed., (1986)
 Investigations in Science Education, 12 (4). Elementary teachers admit to not knowing answers to student's questions.

Chanting Ming Continues of encayoù, g

o metat balls are the same size, but one weights twice as much as the other. The balls depped from the top of a two story burkfing at the Same mstant of time. The tune it takes the balls to reach the g ound below will be

- **3805**

- about half as long for the heavier ball.
 About half as king for the lighter ball.
 About half as sure time for hoth balls.
 Considerably less for the hoten half, but not necessarily half as hung consulurably less for the hyliter ball, but not necessarily hall as bong
- Imagine a head on colision between a large truck and a small compact car. During the
- neither exerts a for to on the other, the car gets smushed simply hecause it gets in the the truck exerts a greater aniount of force on the car than the cur exerts on the truck. the car oxeits a greater amount of force on the truck than the truck events on the cirr. SEQ
 - the buck exerts a fixee or the car but the car doesn't exert a fixus on the truck. The buck exerts the same amount of force on the car as the car exeits on the truck way of the truck. 36
 - I we steet balls, one of which veighs twice as auch as the other, rell off of a horizontal table with the same speeds. In this situation:
- both balls ingract the fixor at approximately the same horizontal distance from the ₹
- the besiver ball imports the floor at about half the herizontal distance from the base of the table than does the by nor. €
 - the lighter ball legacts the floor of about half the horizontal distance from the base of the treavier ball fits cours terably closer to the base of the table than the higher, but the table than doos the heavior.
 - The lighter ball hits considerably closer to the base of the table than the heaver, but not necessarily half the hwizontal distance. not necessarily half the horizontal distance.

- A kay throws a stead tool shought up. Plstegaithing any effects of all resistance, the forests) acting on the tool and discuss to the ground is (ace)
- its weight vertically chiwinzard along with a steachty decreasing upwant lonce a steachty decreasing upward force from the moment it haves the hand und it reaches 32
 - its highest point beyond which there is a steacht increasing downward lorce of gravit, as the object gots claser to the earth. as the object gots claser to the earth. a constant downward force of gravity along with an upward force that steachty doctoasos until the ball in whos its laghast point, after which there is anly the constant

©

- downward face of gravity
- a constant downward long a of gravity only none of the attoys, the half falls hack down to the earth sumply because that is ds natural action ≘
- The diagram depicts a ho key puck sliding, with a constant yelocity, from point "a"to point "th" along a frictionisss. horizontal surface. When the puck reaches point "b", it receives an instantaneous horizontal "kick" in the the statement and diagram below to unswer the next four direction of the heavy print arrow.

Aking which of this paths bubay will the hockey puck move after receiving the

The speed of the park just affet it receives the "kick"?

- Equal to the speed "v," it had below it received the "his h"
- Equal to the speed "v" if acquires from the "kick", and nutryendent of the speed "vo" Equal to the aritmetic sum of speeds "vo" and " ψ ".
- SEGEE
- Smaller than either of speeds 'vo' or 'v' Grader than either of speeds 'vo' or 'v', but smaller than either of speeds 'vo' or 'v', but smaller than the authmetic sum of these two spoods.

THE PHYSICS TEACHER | VOL. 30, MARCH 1992

"Force Concept Inventory"

Ç C

- Alang the fffcijoniess path you have choson, how does the speed of the pack vary affer receiving the "Nek"?
- **3505**@
- Continuously increasing
- increasing for a while, and discreasing thereafter. Continuously decreasing
 - Constant for a while, and decreasing thereafter.
- the man forces acting, giter the "Nest", on the puck along the path you have chosen are:
- the downward force d. 6 to gravity and the effect of air pressure. The downward force of gravity and the horizontal force of momentum fit the 33
- Ç
- offection, of intollon.

 In downward force of gravit, the upward force evented by the table, and a huntounal force acting on the prek till the difference acting on the prek till the difference acting force of gravity and an upward force evented on the prek by the table gravity does not exert in force on the puck, it talls because of the intensic tendency of the object to fall to its natural place. ΞΞ
- The accompanying diagram depitcis a semicircular channul that has been securely attached, in a hot/lightlat plans, to a table top. A bill enters the channel at 11 and exits at 27. Which of the path representations would most nearly correspond to the path of the ball as it exist the channel at 27 and rolls across thu table top.

2

Two students, student "a" who has a mass of 95 kg and student "b" who tass as mass of 77 kg sit in Menical office chairs facing each other. Student "i" places his bare feet on student "b's" knees, as shown below. Student "a" then suddenty pushes outward with has feet, causing both chairs to move.

- to this situation, =
- (A) neither student exens a force on the other. (B) student a exerts a force on 'b', but 'b' shudord a exerts a force on "b", but "b"
- each student exerts a force on the other but doesn't exert any force on "a" 'b' exerts the larger larce. <u>©</u>
 - 3
- each student exerts a lorce on the other but
 "a" exerts the triger force.
 each student exerts the same amount of lorce on the other

- 12. A book is at rest on a table top. Which of the following force(s) is(an) active on the book?
- A downward force this to (provily, The upward force by the folkle.
- A net downward force thin to on pressing

 - A not upwant hace due to oir pressure
- l only
 - I tith 2
- 1, 2, and 3 1, 2, and 4
- nong of these, since the book is at rest there are no forces acting on d
- feter to the following statement and diagram white answering the next two questions.

road and receives a push back into town by a small compact car. A terge fruck breaks down out on the

- While the car, still pushing the truck, is speeding up to get up to cruising speed. Ξ.
- (A) the amount of force of the car pushing against the truck is equal to that of the truck pushing back against the car.
- The amount of force of the car pushing against the fruck is less than that of the fruck Ξ
 - pushing back against the car. the amount of force of the car pushing against the truck is greater than that of t ie truck pushing against the car. ਹੁ
- (1) the car's online is mining so it applies a force as it pushes against the truck tau the liucks angina is not running so it can't push back against the car, the fruck is pushed forward slingly because it is in it.o way of the car.
 - neither the car nor the truck exert any force on the other. The truck is pushed torward simply because it is in the way of the car. 9
- After the person in the car, while pushing the truck, reaches the cruising speed at which he/sha wishes to continue to travel at a constant spend, Ĭ
- pustuing back against the car. The amount of lower is less than that of the fruck the amount of lower of the car pustuing against the fruck is less than that of the fruck $\bar{\mu}$ the amount of force of the car pushing against the truck is equal to that of the fruck 3
 - pushing back against the car. The amount of force of the car pushing against the truck is greater than that of the Ω
- the car's engine is running so it applies a force as it pushes against the truck but the truck pushing against the car.
- Inicks engine is not running so it can't push back against the car, the fruck is pushed larward simply because it is in the way of the car.
 - nodhar tha car nar tha track overt any force on the refrer, the track is pushed forward Simply because a is in the way of the car

Force Concept Inventory

VOL. 30, MARCH 1992 THE PHYSICS TEACHER

15. When a ridder ball dropped how rest bounces off the floor, its discusor of malion is reversed because;

When responding to the following question, assume that any filetional folges due to air resistance are so small that they gail be lyngled.

- encigy of the ball is consorted monotoning the ball is conserved. He floor enerts a force on the ball that stops its fall and then direct a upward the floor is in the way and the ball his to hoop moving
 - nand of the above
- Which of the paths in the dagram to the right best represents the path of the cannon ball? 9

Ξ

- 12. A stone fating from the reel of a surgle story building to the surface of the earth;
- (A) reaches its marimum spaed quite soon after release and then falls at a constant
- speeds up as 4 falls, primarily because the closer the stone gots to the earth, the €
- stronger the gravitational ellu rition.
 speeds up because of the constant gravitational fusce acting on it.
 lasts because of the intrinsic lendency of all objects to fall tuward. The canth.
 talts because of the intrinsic lendency of all objects to fall tuward. In earth.

is loss than the down ward lorce of gravity. shortened, not because of the force being (D) Il gous up because the cable is being

3

oscending of constant speed

(ii) A. (C) <u>₹</u>

(10g) hand as they can on two topes attached to a crate as thistrated in the diagram to the right. Which of the indicated paths (A-E) would must thety 19. Two people, a large man and a boy, are pulling as correspond to the path of the crate as they pull h

represented by the numbered squares in the diagram below. The blocks are moving toward the right. The positions of two blocks of successive 0.20 second time intervals are

(continued on the next page)

THE PHYSICS TEACHER VOL. 30, MARCH 1993

Force Concept Inventory

36

တ က

26. At 'c' the rocket's angine is turned off. Which of the paths below will the rocket fullow beyond 'c'? (-- - (V) - -- 3

27. Bayond "c", the speed of the rockol is;

(A) constant. (B) continuou (C) continuou (D) increasing (E) constant f

continuously increasing.
continuously decreasing.
increasing for a white and constant thereafter.
constant for a white and decreasing thereafter.

28. A large box is being pushed across the floor at a constant speed of 4.0 m/s. What can you conclude about the forces acting on the box

to 8.0 m/s.
(b) The amount of louce applied to move the box at a constant speed must be more than (A) If the lorce applied to the box is doubled, the constant speed of the box will increase

The amount of force applied to move the box at a constant speed must be organited the amount of the lifetional forces that resist its motion. S

The emount of force applied to move the box at a constant speed must be more than the amount of the frictional forces that resist its motion. 9

There is a force being applied to the box to make it move but the external forces such as triction are not 'real' forces they just resist motion. Œ

٤.

29. Il the torce being applied to the box in the preceding problem is suuttenly discontinued. the box will;

≲€05€€

continue at a constant speed for a very short period of time and then slow to a stop immediately start slowing to a stop. Continue at a constant velocity.

increase its speed for it very short period of time, then start slowing to a stop.

"Force Concept Inventory"

158 THE PHYSICS TEACHER VOL. 30, MARCH 1992

Appendix C: A Categorical Comparison of the Force Concept Inventory Measured Variables

Newtonian Force Concepts	Common-sense Misconceptions		
Beliefs accepted by scientific community	Beliefs not-accepted by scientific community		
Correct Scores	Error Scores		
Kinematics	Kinematics		
First Law	Impetus		
Second Law	Active Force		
Third Law	Action-Reaction Pairs		
Superposition of Forces	Concatenation of Influences		
Other Forces	Other Influences		

Appendix D: Student Background Survey

Please Note: This survey is intended to collect information to be analyzed in a educational research study. The information that you provide will be kept confidential and will have no bearing on your grade in the course. Your participation is greatly appreciated. Thank you for your help.

Course N	lame:		I	Day & Time of	Class:	
Name			8	Student ID #:		
Age:	Gender:	Ethnic	ity:			
Major/S	pecialization:			Current G	.P.A:	
Please ci	rde your educational	level at this p	oost-secondary	school:		
First	year Sophomoi	e Junior	Senior	Fifth-year	Sixth-ye	ar
How ma	ny years have you atte	ended college?	1			
Did you	transfer into this univ	ersity from ar	other post-seco	ondary school?	(circle) Y	/ N
List the r	names of any science a	nd math cours	es you are curi	rently taking (ii	ncluding thi	s course):
List the	names of any science o	ourses you ha	ve taken beyon	d high school (prior to this	course):
					-	
List the	names of any math co	urses you have	taken beyond	high school (p	rior to this c	ourse):
List the	name, city, and state o	of the High Sci	hool from whic	ch you received	l your diplo	ma:
Place a c	heck by the courses ta Science Physical Science Biology I Biology II	_	A	Math AlgebraI Algebra II Trigonometry		
	AP Biology Chemistry I Chemistry II AP Chemistry Physics AP Physics		P	Analytic Geometr Pre-Calculus Calculus Computer Program		<u> </u>
Circle th	e highest level of edu	cation your pa	arents complete	ed:		
Mother	Less than high school	high school	2 yrs. college	4 yrs. college	Masters	Ph.D.
Father	Less than high school	high school	2 yrs. college	4 yrs. college	Masters	Ph.D.

Appendix E: Perception of Difficulty in Science and Math

Please Note: This survey is intended to collect information to be analyzed in a educational research study. The information that you provide will be kept confidential and will have no bearing on your grade in the course. Your participation is greatly appreciated. Thank you for your help. Course Name: _____ Day & Time of Class:_____ _____ Student ID #:____ 1. Consider all of the courses you have been taking in college. How much time do you spend studying and doing homework in science? (circle) Lot of time Not much time Least time of all no opinion Most of the time 2. Consider all of the courses you have been taking in college. How much time do you spend studying and doing homework in math? (circle) Lot of time Not much time Least time of all Most of the time no opinion 3. Would you choose to take a course in science if it was not required of you? (circle) Unlikely Very unlikely Probably no opinion Very likely Would you choose to take a course in math if it was not required of you? (circle) Unlikely Very unlikely Probably no opinion Very likely 5. Compared to other subjects, how difficult do you feel science is? (circle) Fairly easy Very easy Very difficult Fairly difficult no opinion Compared to other subjects, how difficult do you feel math is? (circle) Very easy Fairly easy Very difficult Fairly difficult no opinion 7. How likely are you to choose to complete a college degree with an emphasis in science? Very unlikely no opinion Unlikely (circle) Very likely Probably 8. How likely are you to choose to complete a college degree with an emphasis in math? Unlikely Very unlikely Very likely Probably no opinion (circle) 9. Please rank the following subjects from 1 (best liked) to 5 (least liked): ___Physical Science Social Studies ___English Math Arts 10. Physical science is an overview (mixture) of physics, chemistry, scientific math, astromony and earth science. Please rank the following subjects from 1 (best liked) to 5 (least liked):

____Astronomy _____Chemistry ____Earth Science _____Physics _____Scientific Math

Appendix F: Anxiety Questionnaire in Science and Math

Please Note: This survey is intended to collect information to be analyzed in a educational research study. The information that you provide will be kept confidential and will have no bearing on your grade in the course. Your participation is greatly appreciated. Thank you for your help.

Course Name:	Day & Time of Class:
Name	Student ID #:

Instructions: When answering the questions below, imagine that you are taking a test in science or math. Indicate in the appropriate column what your feelings, attitudes, or thoughts would be. <u>Use the following scale to answer the questions</u>:

- 1 = very strongly
- 2 = strongly
- 3 = medium degree
- 4 = little
- 5 = not at all

Comp	lete the following statement with the phrases that follow:	Science	Math
1.	my heart beating fast.		1,124,11
2.	regretful.		
3.	tense and my stomach would be upset.		
4.	that I should have studied more for that test.		
5.	uneasy and upset.		
6.	that others would be disappointed in me.		
7.	nervous.		
8.	that I may not do as well on that test as I could have.		.,
9.	panicky.		
10.	very confident about my performance on that test.		

Appendix G: Force Concept Inventory Score Results

		Ęļ		- 21	12	8	4	- 82		30	5 6	41	41	33	17	99	9	0				6				2		0		0	_	2	_
	Maximi	Maximum				34.48	24.14	41.38	41.38	9	2	4	4	3	_	Ó	99	50	38	20	50	20	50	50	50	25	20	100	100	50	50	75	
	Minimin	Minimum	٠ +	- 4	_	06.9	3.45	13.79	3.45	0	0	6	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	
nce Interval ean	Upper	Bound 6.50	6.33	10.73	7.22	22.4247	21.8416	37.0002	24.8856	17.52	20.54	31.35	20.19	16.82	16.10	32.73	17.77	28.68	20.16	41.41	27.19	18.07	33.53	25.18	18.79	19.99	28.30	53.18	27.24	40.45	28.30	35.13	
95% Confidence Interval for Mean	Lower	DOUING A 21	2.17	6.18	5.03	14.5212	7.4687	21.3070	17.3296	8.13	3.96	16.43	12.55	2.32	06.	3.82	6.65	11.89	-1.66	22.22	15.72	21	3.97	2.09	96.9	5.01	-3.30	10.45	10.64	20.26	-3.30	5.78	-
	Std. Frror	53	88	1.02	.54	1.8292	3.0392	3.5216	1.8548	2.17	3.51	3.35	1.88	3.36	3.21	6.49	2.73	3.88	4.61	4.31	2.82	4.23	6.25	5.18	2.90	3.47	6.68	9.59	4.08	4.67	6.68	6.59	
	Std. Deviation	1 98	2.49	3.39	3.09	6.8443	8.5960	11.6798	10.6548	8.13	9.95	11.11	10.78	12.56	60.6	21.51	15.68	14.54	13.05	14.28	16.17	15.83	17.68	17.19	16.68	12.97	18.90	31.80	23.41	17.48	18.90	21.85	
	Mean	5.36	4.25	8.45	6.12	18.4729	14.6552	29.1536	21.1076	12.82	12.25	23.89	16.37	9.57	8.50	18.27	12.21	20.29	9.25	31.82	21.45	8.93	18.75	13.64	12.88	12.50	12.50	31.82	18.94	30.36	12.50	20.45	
	2	4	. œ	11	33	14	& 	1	33	14	80	11	33	14	8	11	33	14	80	7	33	14	80	11	33	14	8	11	33	14	8	11	
		Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Sclence 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Sclence 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Sclence 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-61	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	
		Force Concept Inventory	Total Raw Score Pre-test			Force Concept Inventory	Total % Score Pre-test			Force Concept Inventory	Adjusted % Score Pre-test Physical Science 110-0			Kinematic Concepts	(Correct) Pre-test			First Law Concepts	(Correct) Pre-test			Second Law Concepts	(Correct) Pre-test			Third Law Concepts	(Correct) Pre-test			Superposition of Forces	(Correct) Pre-test		

Grim, Nancy C. Fall 1998

Appendix G: Force Concept Inventory Results

V

						95% Confidence Interval	nce interval		
				3			-		
		z	Mean	Std. Deviation	Std. Error	Lower	Upper Bound	Minimum	Maximum
Forces (Correct) Pre-test	Physical Science 110-61	14	20.64	14.77	3.95	12.12	29.17	3	58
	Physical Science 110-01	8	13.88	12.18	4.31	3.69	24.06	0	32
	Physics 211-01	1	48.82	94.38	28.46	-14.59	112.23	ဇ	330
	Total	33	28.39	55.92	9.73	8.56	48.22	0	330
Kinematics	Physical Science 110-61	14	41.57	16.91	4.52	31.81	51.34	17	83
(Misconceptions) Pre-test	Physical Science 110-01	8	25.00	26.55	9.39	2.80	47.20	0	83
	Physics 211-01	11	33.27	23.62	7.12	17.41	49.14	0	.79
	Total	33	34.79	22.13	3.85	26.94	42.63	0	83
Impetus (Misconceptions)	Physical Science 110-61	14	36.93	13.53	3.62	29.12	44.74	22	63
Pre-lest	Physical Science 110-01	8	37.00	10.69	3.78	28.06	45.94	23	58
	Physics 211-01	1	27.82	12.12	3.66	19.67	35.96	8	45
	Total	33	33.91	12.82	2.23	29.36	38.46	8	63
Active Force	Physical Science 110-61	14	29.00	14.32	3,83	20.73	37.27	4	45
(Misconceptions) Pre-test	Physical Science 110-01	8	16.13	8.22	2.91	9.25	23.00	0	25
_	Physics 211-01	=	17.64	8.69	2.62	11.80	23.47	0	29
	Total	33	22.09	12.58	2.19	17.63	26.55	0	45
Action Reaction Pairs	Physical Science 110-61	14	38.29	12.91	3.45	30.83	45.74	25	62
(Misconceptions) Pre-test	Physical Science 110-01	8	34.88	20.94	7.40	17.37	52.38	. 12	29
	Physics 211-01	11	39.73	23.59	7.11	23.88	55.57	0	75
-	Total	33	37.94	18.47	3.21	31,39	44.49	0	75
Concantenation of	Physical Science 110-61	14	23.50	10.39	2.78	17.50	29.50	0	38
Influences Missessessions, Dr. 1951	Physical Science 110-01	80	29.63	14.75	5.22	17.29	41.96	7	20
(wisconceptions)	Physics 211-01	7	28.73	9.42	2.84	22.40	35.06	17	42
	Total	33	26.73	11.28	1.96	22.73	30.73	0	20
Other Influences	Physical Science 110-61	14	29.71	10.02	2.68	23.93	35.50	12	46
(Misconceptions) Pre-test	Physical Science 110-01	80	29.63	10.78	3.81	20.61	38.64	7	43
	Physics 211-01	7	25.55	11.40	3.44	17.89	33.20	7	47
	Total	33	28.30	10.52	1.83	24.57	32.03	7	47
Force Concept Inventory	Physical Science 110-61	14	8.50	1.91	.51	7.40	09.6	4	12
lotal Kaw Score Post-test	Physical Science 110-01	80	7.75	2.96	1.05	5.27	10.23	4	12
	Physics 211-01	=	11.18	2.60	.78	9.43	12.93	8	17
	Total	33	9.21	2.76	.48	8.23	10.19	4	17

		_	-	_			T		_		1				1				<u> </u>			one	-ch			116	.1a		. -		_	<u> </u>		_
		Maximum	41.38	41.38	58.62	58.62	43.75	32.50	55.25	55.25	50	17	33	50	50	62	62	62	50	50	50	50	75	50	100	100	50	20	20	50	47	40	22	57
		Minimum	13.79	13.79	27.59	13.79	3.00	3.00	12.50	3.00	0	0	0	0	12	12	. 25	12	0	0	0	0	0	0	0	0	0	0	0	0	12	8	12	8
ice Interval ean	Upper	Bound	33.1161	35.2691	44.5827	35.1389	31.8216	30.3178	39.9313	30.7684	25.93	16.10	31.10	21.59	38.72	43.30	53.35	40.01	39.69	35.27	35.13	31.07	42.27	40.80	62.51	41.03	33.75	36.17	41.23	31.27	30.51	37.55	45.51	33.31
95% Confidence Interval for Mean	Lower	Bound	25.5046	18.1792	32.5333	28.3930	20.4284	12.1822	22.9778	22.6710	10.07	06.	11.08	11.86	20.00	15.95	33.38	28.17	17.45	8.48	5.78	17.42	14.87	9.20	19.31	22.61	12.68	13.83	13.31	18.73	17.20	17.45	24.67	23.66
		Std. Error	1.7616	3.6136	2.7039	1.6559	2.6369	3.8348	3.8044	1.9876	3.67	3.21	4.49	2.39	4.33	5.78	4.48	2.91	5.15	5.66	6.59	3.35	6.34	6.68	9.70	4.52	4.88	4.72	6.27	3.08	3.08	4.25	4.68	2.37
	Std.	Devlation	6.5914	10.2209	8.9679	9.5124	9.8663	10.8463	12.6179	11.4181	13.74	9.09	14.90	13.72	16.21	16.36	14.87	16.70	19.26	16.02	21.85	19.25	23.73	18.90	32.16	25.98	18.25	13.36	20.78	17.68	11.52	12.02	15.51	13.61
		Mean	29.3103	26.7241	38.5580	31.7659	26.1250	21.2500	31.4545	26.7197	18.00	8.50	21.09	16.73	29.36	29.63	43.36	34.09	28.57	21.88	20.45	24.24	28.57	25.00	40.91	31.82	23.21	25.00	27.27	25.00	23.86	27.50	35.09	28.48
	_	z	14	ω	1	33	14	8	11	33	14	8	11	33	14	8	Ξ	33	14	æ	=	33	14	8	Ξ	33	14	8	1	33	7	80	Ξ	33
			Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total	Physical Science 110-61	Physical Science 110-01	Physics 211-01	Total
		11	Force Concept Inventory	10tal % Score Post-test	-		Force Concept Inventory	Adjusted % Score	103-1631		Kinematic Concepts	Correct) Post-test			First Law Concepts	(Correct) Post-test		-	Second Law Concepts	(Correct) Post-test			Third Law Concepts	(Correct) Post-test			Superposition of Forces	(Correct) Post-test		. !	Forces (Correct) Post-test			

٩	=	
9	S	,

						OF0/ Confidence Interval	level and		
						for Mean	ean		
				Std.		Lower	Upper		
		z	Mean	Devlation	Std. Error	Bound	Bound	MinImum	Maximum
Kinematics	Physical Science 110-61	14	37.93	12.21	3.26	30.88	44.98	. 17	29
(Misconceptions) Post-test	Physical Science 110-01	8	41.63	26.68	9.43	19.32	63.93	0	83
	Physics 211-01	11	30.18	23.22	7.00	14.58	45.78	0.	83
	Total	33	36.24	20.15	3.51	29.10	43.39	0	83
Impetus (Misconceptions)	Physical Science 110-61	14	32.21	8.78	2.35	27.14	37.28	15	45
Post-test	Physical Science 110-01	8	31.25	4.10	1.45	27.82	34.68	27	40
	Physics 211-01	11	21.18	10.72	3.23	13.98	28.39	æ	40
	Total	33	28.30	986	1.72	24.81	31.80	8	45
Active Force	Physical Science 110-61	14	21.00	13.55	3.62	13.17	28.83	2	20
(Misconceptions) Post-test	Physical Science 110-01	80	19.75	15.27	5.40	6.99	32.51	0	36
	Physics 211-01	1	22.64	12.15	3.66	14.47	30.80	4	40
	Total	33	21.24	13.15	2.29	16.58	25.91	0	50
Action Reaction Pairs	Physical Science 110-61	14	31.79	18.26	4.88	21.25	42.33	0	58
(Misconceptions) Post-test	Physical Science 110-01	8	39.00	15.29	5.41	26.22	51.78	17	58
	Physics 211-01	7	. 33.64	22.21	6.70	18.72	48.56	0	75
	Total	33	34.15	18.68	3.25	27.53	40.78	0	75
Concantenation of	Physical Science 110-61	14	31.21	12.94	3.46	23.74	38.68	8	52
Influences	Physical Science 110-01	8	23.63	13.96	4.94	11.96	35.29	7	48
(Misconceptions) Post-test	Physics 211-01	=	35.27	12.17	3.67	27.10	43,45	15	22
	Total	33	30.73	13.29	2.31	26.01	35.44	7	57
Other Influences	Physical Science 110-61	14	22.93	8.07	2.16	18.27	27.59	&	33
(Misconceptions) Post-test	Physical Science 110-01	89	21.38	7.71	2.73	14.93	27.82	12	35
	Physics 211-01	11	26.09	8.07	2.43	20.67	31.51	10	4
	Total	33	23.61	7.96	1.39	20.78	26.43	8	41
Force Concept Inventory	Physical Science 110-61	14	47.43	35.92	9.60	26.70	68.17	0	111
Score Change	Physical Science 110-01	8	67.73	35.69	12.62	37.89	97.57	13	120
	Physics 211-01	7	32.41	39.81	12.00	5.66	59.16	-18	106
	Total	33	47.35	38.46	6.69	33.71	60.98	-18	120

	Levene			
	Statistic	df1	df2	Sig.
Force Concept Inventory Total Raw Score Pre-test	3.309	2	30	.050
Force Concept Inventory Total % Score Pre-test	3.309	2	30	.050
Force Concept Inventory Adjusted % Score Pre-test	. 1.305	2	30	.286
Kinematic Concepts (Correct) Pre-test	.952	2	30	.397
First Law Concepts (Correct) Pre-test	.312	2	30	.734
Second Law Concepts (Correct) Pre-test	.203	2	30	.817
Third Law Concepts (Correct) Pre-test	2.537	2	30	.096
Superposition of Forces (Correct) Pre-test	.049	2	30	.952
Forces (Correct) Pre-test	2.938	2	30	.068
Kinematics (Misconceptions) Pre-test	.616	2	30	.547
Impetus (Misconceptions) Pre-test	.663	2	30	.523
Active Force (Misconceptions) Pre-test	3.088	2	30	.060
Action Reaction Pairs (Misconceptions) Pre-test	1.952	2	30	.160
Concantenation of Influences (Misconceptions) Pre-test	.750	2	30	.481
Other Influences (Misconceptions) Pre-test	.136	. 2	30	.873
Force Concept Inventory Total Raw Score Post-test	1.473	2	30	.245
Force Concept Inventory Total % Score Post-test	1.473	. 2	30	.245
Force Concept Inventory Adjusted % Score Post-test	.239	2	30	.789
Kinematic Concepts (Correct) Post-test	1.170	2	30	.324
First Law Concepts (Correct) Post-test	.236	2	30	.791
Second Law Concepts (Correct) Post-test	1.216	. 2	30	.311
Third Law Concepts (Correct) Post-test	2.096:	2	30	.141
Superposition of Forces (Correct) Post-test	1.816	2	30	.180
Forces (Correct) Post-test Kinematics	.513	2	30	.604
(Misconceptions) Post-test	2.202	2	30	.128

	Levene Statistic	df1	df2	Sig.
Impetus (Misconceptions) Post-test	3.167	2	30	.057
Active Force (Misconceptions) Post-test	.630	2	30	.539
Action Reaction Pairs (Misconceptions) Post-test	.391	2	30	.680
Concantenation of Influences (Misconceptions) Post-test	.125	2	30	.883
Other Influences (Misconceptions) Post-test	:194	2	30	.824
Force Concept Inventory Score Change	.036	2	30	.965

ANOVA

		Sum of		Mean		
		Squares	df	Square	F	Sig.
Force Concept Inventory Total Raw Score Pre-test	Between Groups	96.074	2	48.037	6.881	.003
Total Raw Score Pre-test	Within Groups	209.442	30	6.981		
	Total	305.515	32	}		
Force Concept Inventory	Between Groups	1142.373	2	571.187	6.881	.003
Total % Score Pre-test	Within Groups	2490.387	30	83.013		
	Total	3632.760	32			
Force Concept Inventory	Between Groups	933.541	2	466.771	5.033	.013
Adjusted % Score Pre-test	Within Groups	2782.474	30	92.749		
<u> </u>	Total	3716.015	32			
Kinematic Concepts	Between Groups	611.905	2	305.952	1.265	.297
(Correct) Pre-test	Within Groups	7257.610	30	241.920	1	
	Total	7869.515	32			
First Law Concepts	Between Groups	2392.188	2	. 1196.094	6.002	.006
(Correct) Pre-test	Within Groups	5977.994	30	199.266		
	Total	8370.182	32			
Second Law Concepts	Between Groups	500.541	2	250.271	.894	.420
(Correct) Pre-test	Within Groups	8400.974	30	280.032		
<u> </u>	Total	8901.515	32		+	
Third Law Concepts	Between Groups	2736.742	2	1368.371	2.774	.078
(Correct) Pre-test	Within Groups	14801.136	30	493.371		
	Total	17537.879	32			
Superposition of Forces	Between Groups	1708.604	2	854.302	2.279	.120
(Correct) Pre-test	Within Groups	11245.942	30	374.865	ľ	
<u> </u>	Total	12954.545	32			
Forces (Correct) Pre-test	Between Groups	7116.153	2	3558.077	1.148	.331
	Within Groups	92957.726	30	3098.591		
	Total	100073.879	32			
Kinematics	Between Groups	1435.905	. 2	717.952	1.514	.236
(Misconceptions) Pre-test	Within Groups	14229.610	30	474.320		
	Total	15665.515	32			
Impetus (Misconceptions)	Between Groups	612.162	2	306.081	1.975	.156
Pre-test ·	Within Groups	4648.565	30	154.952		
	Total	5260.727	32			;

ANOVA

		Sum of		Mean		
Active Force		Squares	df	Square	F .	Sig.
(Misconceptions) Pre-test	Between Groups	1171.307	2	585.653	4.513	.019
(wisconceptions) i re-lest	Within Groups	3893.420	30	129.781		
A-41	Total	5064.727	32		. [
Action Reaction Pairs	Between Groups	111.965	2	55.982	.156	.857
(Misconceptions) Pre-test	Within Groups	10799.914	30	359.997		.001
·	Total	10911.879	32			
Concantenation of	Between Groups	256.989	2	128.494	1,010	.376
Influences (Misseppentiane) Des 45-4	Within Groups	3815.557	30	127.185	1.010	.570
(Misconceptions) Pre-test	Tota!	4072.545	32	127.100		
Other Influences	Between Groups	125.510	2	62.755	.551	.582
(Misconceptions) Pre-test	Within Groups	3417.459	30	113.915	.551	.502
	Total	3542.970	32	113.313		
Force Concept Inventory	Between Groups	66.879	2	33.439	5.679	.008
Total Raw Score Post-test	Within Groups	176.636	30	5.888	3.679	.006
	Total	243.515	32	3.000		
Force Concept Inventory	Between Groups	795.229	2	397.615	5.679	.008
Total % Score Post-test	Within Groups	2100.313	30	70.010	3.679	.006
	Total	2895.543	32	70.010		
Force Concept Inventory	Between Groups	490.899	2	245.449	2.000	.153
Adjusted % Score Post-test	Within Groups	3681.071	30	122.702	2.000	.153
Post-lest	Total	4171.970	32	122.702		4
Kinematic Concepts	Between Groups	773.636	2	386.818	2.210	.127
(Correct) Post-test	Within Groups	5250.909	30	175.030	2.210	.127
	Total	6024.545	32	175.030		
First Law Concepts	Between Groups	1419.093	2	709.546	2.838	.074
(Correct) Post-test	Within Groups	7501.635	30	250.054	2.030	.074
	Total	8920.727	32	250.054		
Second Law Concepts	Between Groups	465.030	2	232.515		
(Correct) Post-test	Within Groups	11391.031	30	379.701	.612	.549
•	Total	11856.061	30	3/9./01		
Third Law Concepts	Between Groups	1428.571	2	714 200	4.000	
(Correct) Post-test	Within Groups	20162.338	30	714.286	1.063	.358
	Total	21590.909	30	672.078		

Appendix H: Perception of Difficulty Results

ANOVA

Superposition of Forces	Between Groups	Sum of Squares	df	Mean Square	F	Sig.
(Correct) Post-test		101.461	2	50.731	.154	.858
	Within Groups	9898.539	30	329.951		
Forces (Correct) Donate	Total	10000.000	32			
Forces (Correct) Post-test	Between Groups	787.619	2	393.810	2.297	.118
	Within Groups	5142.623	30	171.421		
12:	Total	5930.242	32		ļ	
Kinematics (Misconceptions) Post-test	Between Groups	675.621	2	337.810	.823	.449
(Wisconceptions) Post-test	Within Groups	12314.440	30	410.481	.025	.445
	Total	12990.061	32			
Impetus (Misconceptions) Post-test	Between Groups	841.476	2	420.738	5.562	.009
	Within Groups	2269.494	30	75.650	5.562	.009
· · · ·	Total	3110.970	32	7 0.000		
Active Force	Between Groups	40.015	2	20.008	.109	.897
(Misconceptions) Post-test	Within Groups	5496.045	30	183.202	.109	.697
	Total	5536.061	32	100.202	1	
Action Reaction Pairs	Between Groups	269.340	2	134.670	.371	.693
(Misconceptions) Post-test	Within Groups	10900.903	30	363.363	.3/1	.093
	Total	11170.242	32	303.303		
Concantenation of	Between Groups	634,131	2	317.066	1.895	400
Influences	Within Groups	5020.414	30	167.347	1.695	.168
(Misconceptions) Post-test	Total	5654.545	32	107.347		
Other Influences	Between Groups	114.166	2	57.083		
Misconceptions) Post-test	Within Groups	1913.713	30	i	.895	.419
	Total	2027.879	30	63.790		
orce Concept Inventory	Between Groups	5778.442	. 2	2880 224		
Score Change	Within Groups	41542.818	30	2889.221	2.086	.142
	Total	47321.260	30	1384.761		•

Appendix H: Perception of Difficulty Results

Class Code: Total

	Mean	Std. Deviation	Median	Minimum	Maximum	Std. Error of Mean	Variance
Likely to do science homework?	2.7917	1.1101	2.0000	Most of the time	Least time of all	.1602	1.232
Likely to do math homework?	2.7500	1.1760	2.0000	Most of the time	Least time of all	.1697	1.383
Likely to take science courses?	3.0417	1.3362	2.0000	Very likely	Very unlikely	.1929	1.785
Likely to take math courses?	2.6458	1.4065	2.0000	Very likely	Very unlikely	.2030	1.978
Perception of science difficulty	3.3542	1.1202	4.0000	Very difficult	Very easy	.1617	1.255
Perception of math difficulty	3.2500	1.2116	4.0000	Very difficult	Very easy	.1749	1.468
Likely to eam a science-emphasis degree?	3.0833	1.5957	3.5000	Very likely	Very unlikely	.2303	2.546
Likely to eam a math-emphasis science degree?	3.1458	1.5157	4.0000	Very likely	Very unlikely	.2188	2.297
Arts	2.8125	1.5527	2.5000	1.00	5.00	.2241	2.411
English	2.5833	1.4415	2.0000	1.00	5.00	.2081	2.078
Math	3.0417	1.5568	3.0000	1.00	5.00	.2247	2.424
Physical Science	3.1667	1.4192	3.0000	1.00	5.00	.2048	2.014
Social Studies	.3.4167	1.3501	4.0000	1.00	5.00	.1949	1.823
Astronomy	3.6250	3.0640	3.5000	1.00	22.00	.4423	9.388
Chemistry	3.2292	1.5743	3.0000	1.00	5.00	.2272	2.478
Earth Science	2.8750	1.4964	3.0000	1.00	5.00	.2160	2.239
Physics	3.0417	1.4136	3.0000	1.00	5.00	.2040	1.998
Scientific Math	2.8958	1.4621	3.0000	1.00	5.00	.2110	2.138
Perception of Science Difficulty Score	10.6875	4.3670	9.5000	4.00	20.00	.6303	19.070
Perception of Math Difficulty Score	9.9792	4.5779	10.0000	.00	19.00	.6608	20.957

Appendix I: Anxiety in Science Results

Class Code: Total

	Mean	Std. Deviation	Median	Minimum	Maximum	Std. Error of Mean	Variance
my heart beating fast.	3.1458	1.4290	3.0000	Very strongly	Not at all	.2063	2.042
regretful.	3.8542	1.3989	4.5000	Very strongly	Not at all	.2019	1.957
tense and my stomach would be upset.	3.6250	1.3934	4.0000	Very strongly	Not at all	.2011	1.941
that I should have studied more for the test.	2.6042	1.1803	2.0000	Very strongly	Not at all	.1704	1.393
uneasy and upset.	3.6250	1.3625	4.0000	Very strongly	Not at all	.1967	1.856
that others would be disappointed in me.	4.0208	1.1758	4.5000	Very strongly	Not at all	.1697	1.383
nervous	3.0417	1.4136	3.0000	Very strongly	Not at all	.2040	1.998
that I may not do as well on that test as I could have.	2.7708	1.1713	3.0000	Very strongly	Not at all	.1691	1.372
panicky.	3.5833	1.4267	4.0000	Very strongly	Not at all	.2059	2.035
very confident about my performance on that test.	2.9583	1.1843	3.0000	Very strongly	Not at all	.1709	1.402
Anxiety of Science Score	23.2292	9.4266	25.5000	1.00	39.00	1.3606	88.861

Appendix J: Anxiety in Math Results

Class Code: Total

	Mean	Std. Deviation	Median	Minimum	Maximum	Std. Error of Mean	Variance
my heart beating fast.	3.1458	1.3682	3.0000	Very strongly	Not at all	.1975	1.872
regretful.	3.9583	1.3040	4.5000	Very strongly	Not at all	.1882	1.700
tense and my stomach would be upset.	3.7708	1.2922	4.0000	Very strongly	Not at all	.1865	1.670
that I should have studied more for that test.	2.6250	1.2138	2.0000	Very strongly	Not at all	.1752	1.473
uneasy and upset.	3.6458	1.4065	4.0000	Very strongly	Not at all	2030	1.978
that others would be disappointed in me.	4.0833	1.1077	4.5000	Very strongly	Not at all	.1599	1.227
nervous.	3.0417	1.3832	3.0000	Very strongly	Not at all	.1996	1.913
that I may not do as well on that test as I could have.	2.8125	1.2318	3.0000	Very strongly	Not at all	.1778	1.517
panicky.	3.7500	1.3605	4.0000	Very strongly	Not at all	.1964	1.851
very confident about my performance on that test.	3.2083	1.2021	3.0000	Very strongly	Not at all	.1735	1.445
Anxiety in Math Score	24.0417	9.1441	25.0000	5.00	40.00	1.3198	83.615

Appendix K: ANOVA Analysis on Quality of Instruction

		Sum of Squares	df	Mean Square	F	Sig.
Force Concept Inventory	Between Groups	1142.373	2	571.187	6.881	.003
Total Score Pre-test	Within Groups	2490.387	30	83.013		
	Total	3632.760	32		1	
Force Concept Inventory	Between Groups	933.541	2	466.771	5.033	.013
Adjusted Score Pre-test	Within Groups	2782.474	30	92.749		
	Total ·	3716.015	32	}		
Force Concept Inventory	Between Groups	795.229	2	397.615	5.679	.008
Total Score Post-test	Within Groups	2100.313	30	70.010		
	Total	2895.543	32			
Force Concept Inventory	Between Groups	490.899	. 2	245.449	2.000	.153
Adjusted Score Post-test	Within Groups	3681.071	30	122.702		
	Total	4171.970	32			
Force Concept Inventory	Between Groups	5778.442	2	2889.221	2.086	.142
Score Change	Within Groups	41542.818	30	1384.761		
	Total	47321.260	32			

Appendix L: Descriptive Statistics of Course Background, Parental Education, and Force Concept Inventory Scores

	Mean	Std. Deviation	N
Number of post-high school science courses	2.1000	1.8071	30
Number of post-high school math courses	2.6667	2.0229	30
Number of high school science courses	2.5667	1.5906	30
Number of high school physics courses	.4333	.6261	30
Number of high school math courses	3.1333	1.6761	30
Number of high school algebra courses	1.6667	.4795	30
Mother's Education Level	12.7333	3.2582	30
Father's Education Level	12.4667	2.9094	30
Force Concept Inventory Total Score Pre-test	20.8046	10.4231	30
Force Concept Inventory Adjusted Score Pre-test	16.10	10.64	30
Force Concept Inventory Total Score Post-test	31.4943	9.9089	30
Force Concept Inventory Adjusted Score Post-test	26.6833	11.7581	30
Force Concept Inventory Score Change	47.62	37.78	30

Appendix M: Pearson Correlations: Course Background, Parental

Education, and Force Concept Inventory Scores

												ep —		1170	ento	- J		OLE						
Mother's Education Level	.514":	.004	87.800	3,028	.488	900.	93.333	3.218	.143	.450	21.533	.743	094	.623	-5.533	191	.335	.070	53.067	1.830	.250	.182	11.333	.391
Number of high school algebra courses	159	.401	-4.000	138	960.		2.667	9.195E-02	.166	.381	3.667	.126	.153	.419	1.333	4.598E 02	107.	000.	16.333	.563	1.000	٠	6.667	.230
Number of high school math courses	.212	.261	18.600	.641	.197	.298	19.333	.667	540**	.002	41.733	1.439	.469+	600	14.267	.492	1.000	٠	81.467	2.809	.701**	000	16.333	.563
Number of high school physics courses	.082	999.	2.700	9.310E-02	.064	.739	2.333	8.046E-02	089.	000	19.633	.677	1.000	•	11.367	392	.469**	600.	14.267	.492	.153	.419	1.333	4.598E-02
Numbe high sc sclen cours	.208	.271	17.300	.597	.093	.625	8.667	.299	1.000	•	73.367	2.530-	089	000	19.633	.677	.540**	200.	41.733	1.439	.166	.381	3.667	.126
Number of post-high school math courses	.200	900.	53.000	1.828	1.000	٠	118.667	4.092	.093	.625	8.867	.299	.064	.739	2.333	8.046E-02	.197	.298	19.333	799.	.095	.618	2.667	9.195F-02
Number of post-high school science courses	1.000	•	94.700	3.266	.2004	.005	53,000	1.828	.208	.271	17.300	765.	.082	999.	2.700	9.310E-02	.212	.261	18.600	.641	159	.401	4.000	. 138
	Pearson Correlation	Sig. (2-tailed)	Sum of Squares and Cross-products	Covarlance	Pearson Correlation	Sig. (2-tailed)	Sum of Squares and Cross-products	Covarlance	Pearson Correlation	Sig. (2-tailed)	Sum of Squares and Cross-products	Covarlance	Pearson Correlation	Sig. (2-talled)	Sum of Squares and Cross-products	Covarlance	Pearson Correlation	Sig. (2-tailed)	Sum of Squares and Cross-products	Covarlance	Pearson Correlation	Sig. (2-tailed)	Sum of Squares and	Covarlance
	Number of post-high	school science courses			Number of post-high	school math courses			Number of high school	science courses			Number of high school	physics courses			Number of high school	math courses			Number of high school	algebra courses	-	

Grim, Nancy C. Fall 1998

Appendix M: Pearson Correlations

		Number of	Number of					
		post-high	post-high	Number of	Number of	Number of	Number of	:
		school	school	high school	high school	high school	loohos hglu	Mother's
		science	math courses	science	pnysics	math	aigebra courses	Education Level
Mother's Education Level	Pearson Correlation	.514**	.488**	.143	094	.335	.250	1.000
	Slg. (2-talled)	.004	900.	.450	.623	.070	.182	
	Sum of Squares and Cross-products	87.800	93.333	21.533	5.533	53.067	11.333	307.867
	Covarlance	3,028	3,218	.743	191	1.830	.391	10,616
Father's Education Level	Pearson Correlation	.437*	.379*	.209	.037	.185	990.	.748**
	Sig. (2-talled)	.016	680.	.267	.848	.328	.729	000
	Sum of Squares and Cross-products	009:99	64.667	28.067	1.933	26.133	2.667	205.733
	Covariance	2.297	2.230	996.	6.667E-02	901	9.195E-02	7.094
Force Concept Inventory	Pearson Correlation	.094	722.	.290	.284	.407*	.436*	.215
Total Score Pre-test	Sig. (2-tailed)	.621	722.	.120	.129	.025	.016	.255
	Sum of Squares and Cross-products	51.379	139.080	139.425	53.678	206.437	63.218	211.264
	Covarlance	1.772	4.796	4.808	1.851	7,119	2.180	7.285
Force Concept Inventory	Pearson Correlation	.085	.215	.149	190.	.379*	.455*	.322
Adjusted Score Pre-test	Sig. (2-tailed)	.655	.255	.432	.725	.039	.012	.083
	Sum of Squares and Cross-products	47.450	134.000	73.050	12.950	196.100	67.250	323.800
	Covarlance	1.636	4.621	2.519	.447	6.762	2.319	11.166
Force Concept Inventory	Pearson Correlation	.270	.221	620.	.235	.261	.284	.063
Total Score Post-test	Slg. (2-talled)	.150	.240	.700	.211	.163	.129	.741
	Sum of Squares and Cross-products	140.000	128.736	33.563	42.299	125.747	39.080	58.851
	Covariance	4.828	4.439	1.157	1.459	4.336	1.348	2.029
Force Concept Inventory	Pearson Correlation	.119	.271	062	.140	.217	.270	.100
Adjusted Score Post-test	Slg. (2-tailed)	.530	.148	.745	.461	.250	.150	.598
	Sum of Squares and Cross-products	73.450	186.583	-33.617	29.867	123.767	44.083	111.467
	Covarlance	2.533	6.434	-1.159	1.030	4.268	1.520	3.844

		Number of	Number of				-	
		post-high	post-high	Number of	Number of	Number of	Number of	
· .		school	school	high school	high school		high school	Mother's
		sclence	math	sclence	physics	math	algebra	Education
		courses	conrses	courses	courses	courses	courses	Level
Force Concept Inventory	Pearson Correlation	.118	149	268	204	334	294	118
Score Change	Sig. (2-tailed)	.533	.431	.152	279	170.	.115	.533
	Sum of Squares and Cross-products	234.442	-330.961	-467.583	-139.999	-612.863	-154.250	-422.375
	Covarlance	8.084	-11.412	-16.124	-4.828	-21.133	-5.319	-14.565

99

				Force		Force	
			Force	Concept	Force	Concept	Force
			Concept	Inventory	Concept	Inventory	Concept
		Father's	Inventory	Adjusted	Inventory	Adjusted	Inventory
		Education	Total Score	Score	Total Score	Score	Score
		Level	Pre-test	Pre-test	Post-test	Post-test	Change
Number of post-high	Pearson Correlation	.437	.094	.085	.270	.119	.118
school science courses	Sig. (2-tailed)	910.	.621	.655	.150	.530	.533
	Sum of Squares and Cross-products	009'99	51.379	47.450	140.000	73.450	234.442
	Covarlance	2.297	1.772	1.636	4.828	2.533	8.084
Number of post-high	Pearson Correlation	.379*	.227	.215	.221	.271	149
school math courses	Slg. (2-talled)	620,	722.	.255	.240	.148	.431
	Sum of Squares and Cross-products	64.667	139.080	134.000	128.736	186.583	-330.961
	Covariance	2.230	4.796	4.621	4.439	6.434	-11.412
Number of high school	Pearson Correlation	.209	.290	.149	.073	062	268
science courses	Sig. (2-talled)	.267	.120	.432	.700	.745	.152
	Sum of Squares and Cross-products	28.067	139.425	73.050	33.563	-33.617	-467.583
	Covariance	896	4.808	2.519	1.157	-1.159	-16.124
Number of high school	Pearson Correlation	760.	.284	790.	.235	.140	204
physics courses	Sig. (2-talled)	.848	.129	.725	.211	.461	.279
	Sum of Squares and Cross-products	1.933	53.678	12.950	42.299	29.867	-139,999
_	Covariance	6.667E-02	1.851	.447	1.459	1.030	4.828
Number of high school	Pearson Correlation	.185	.407*	.379*	.261	.217	334
math courses	Sig. (2-tailed)	.328	.025	039	.163	.250	.071
	Sum of Squares and Cross-products	26.133	206.437	196.100	125.747	123.767	-612.863
	Covarlance	.901	7.119.	6.762	4.336	4.268	-21.133
Number of high school	Pearson Correlation	990.	-436*	.455*	.284	.270	294
algebra courses	Sįg. (2-talled)	.729	.016	.012	.129	.150	115
	Sum of Squares and Cross-products	2.667	63.218	67.250	39.080	44.083	-154.250
	Covarlance	9.195E-02	2.180	2.319	1.348	1.520	-5.319

α **3**

			Force	Force	00.00	Force	0000
			Concent	Inventory	Concent	Inventory	Longe
		Father's	Inventory	Adjusted	Inventory	Adjusted	Inventory
		Education	Total Score	Score	Total Score	Score	Score
		Levei	Pre-test	Pre-test	Post-test	Post-test	Change
Mother's Education Level	Pearson Correlation	.748**	.215	.322	.063	100	118
	Sig. (2-tailed)	000.	.255	.083	.741	.598	.533
	Sum of Squares and Cross-products	205.733	211.264	323.800	58.851	111.467	-422.375
	Covariance	7.094	7.285	11.166	2.029	3.844	-14.565
Father's Education Level	Pearson Correlation	1.000	025	.187	060	090	.088
·	Sig. (2-tailed)		.894	.323	.636	.753	.644
	Sum of Squares and Cross-products	245.467	-22.299	167.600	-75.402	59.433	280.183
	Covariance	8.464	769	5.779	-2.600	2.049	9.661
Force Concept Inventory	Pearson Correlation	025	1.000	.749*	869	.499**	771**
Total Score Pre-test	Sig. (2-tailed)	.894	•	000	000	.005	000
	Sum of Squares and Cross-products	-22.299	3150.614	2409.138	2091.161	1774.368	-8803.492
	Covarlance	769	108.642	83.074	72.109	61.185	-303.569
Force Concept Inventory	Pearson Correlation	.187	.749**	1.000	.448*	4410	667*
Adjusted Score Pre-test	Sig. (2-tailed)	.323	000	•	.013	.015	900
	Sum of Squares and Cross-products	167.600	2409.138	3282.200	1369.310	1599.450	-7774.648
	Covariance	5.779	83.074	113.179	47.218	55.153	-268.091
Force Concept Inventory	Pearson Correlation	060	869.	.448*	1.000	.759**	164
lotal Score Post-test	Sig. (2-talled)	969.	000	.013	•	000	.388
	Sum of Squares and Cross-products	-75.402	2091.161	1369.310	2847.404	2565.575	-1776.449
	Covarlance	-2.600	72.109	47.218	98.186	88.468	-61.257
Force Concept Inventory	Pearson Correlation	090	.499**	.441*	.759**	1.000	101
Adjusted Score Post-test	Sig. (2-tailed)	.753	500.	.015	000	•	.594
	Sum of Squares and Cross-products	59.433	1774.368	1599.450	2565.575	4009.367	-1305.162
	Covariance	2.049	61.185	55.153	88.468	138.254	-45.006

70

				Force		Force	
			Force	Concept	Force	Concept	Force
			Concept	Inventory	Concept	Inventory	Concept
		Father's	Inventory	Adjusted	Inventory	_	Inventory
		Education	Total Score	•	Total Score		Score
	:	Level	Pre-test	Pre-test	Post-test		Change
Force Concept Inventory	Pearson Correlation	880.	771**	667**	164	101	1.000
Score Change	Sig. (2-tailed)	.644	000	000.	.388	.594	
.	Sum of Squares and Cross-products	280.183	-8803.492	-7774.648	-1776.449	-1305.162	41385.527
-	Covarlance	9.661	-303.569	-268.091	-61.257	-45.006	1427.087
** Correlation is significan	** Correlation is significant at the 0.01 level (2 talled)						

. Correlation is significant at the 0.01 level (2-talled).

^{*} Correlation is significant at the 0.05 level (2-tailed).

a. Listwise N=30

Appendix N: Descriptive Statistics of Perception of Difficulty, Anxiety, Parental Education Level, and Force Concept Inventory Scores

	Mean	Std. Deviation	N
Perception of Science Difficulty Score	10.9000	4.6635	30
Perception of Math Difficulty Score	10.0000	3.8237	30
Anxiety of Science Score	21.0333	10.0875	30
Anxiety in Math Score	22.5667	9.6013	30
Force Concept Inventory Total Score Pre-test	20.8046	10.4231	30
Force Concept Inventory Adjusted Score Pre-test	16.10	10.64	30
Force Concept Inventory Total Score Post-test	31.4943	9.9089	30
Force Concept Inventory Adjusted Score Post-test	26.6833	11.7581	30
Force Concept Inventory Score Change	47.62	37.78	30
Mother's Education Level	12.7333	3.2582	30
Father's Education Level	12.4667	2.9094	30

Appendix O: Pearson Correlations: Perception of Difficulty, Anxiety, Parental Education Level, and Force Concept Inventory Scores

Perception Perception
of Math A
Difficulty Difficulty Science Score
1.000095435*
. 618
630.700 -49.000 -592.900
21.748 -1.690 -20.445
095 1.000102
.618592
-49.000 424.000 -114.000
-1.690 14.621 -3.931
435*102 1.000
.016 .592
-592.900 -114.000 2950.967
-20.445 -3.931 101.757
002541** .525**
.993 .002
-2.300 -576.000 1474.433
-7.931E-02 -19.862 50.843
235307 .383*
.212 .037
-330.690 -355.172 1168.851
-11,403 -12,247 40,305
012241 .192
.949 .309
-17.700 -284.500 597.650
610 -9.810 20.609

	_																				
Force Concept Inventory Total Score	Post-test	1.000	•	2847.404	98.186	.759*	000	2565.575	8	1	.388	-1776.449	-61.257	.063	.741	58.851	2.029	060'-	.636	-75.402	-2.600
Force Concept Inventory Adjusted Score	Pre-test	.448*	.013	1369.310	47.218	.441*	.015	1599.450	55.153	667	000	-7774.648	-268.091	.322	.083	323.800	11.166	.187	.323	167.600	5.779
Force Concept Inventory Total Score	Pre-test	869.	000	2091.161	72.109	.488·	.005	1774.368	61.185	771**	000	-8803.492	-303.569	.215	.255	211.264	7.285	025	.894	-22.299	769
Anxlety in	Math Score	980.	.652	237.011	8.173	022	206.	-72,617	-2.504	227	.227	-2389.313	-82.390	.224	.233	203.533	7.018	.299	.109	242.067	8.347
Anxlety of Science	Score	.162	.394	468.506	16.155	008	796.	-27.433	946	300	.107	-3315.666	-114.333	090	.752	57.267	1.975	.032	.865	27.533	.949
Perception of Math Difficulty	Score	119	.530	-131.034	4.518	167	.377	-218.000	-7.517	.253	177	1060.143	36.557	310	.095	-112.000	-3.862	205	.278	-66.000	-2.276
Perception of Science Difficulty	Score	213	.259	-284.828	-9.822	112	.554	-178.700	-6.162	080	.674	409.727	14.129	140	.460	-61.800	-2,131	860	909.	-38.600	-1.331
		Pearson Correlation	Sig. (2-tailed)	Sum of Squares and Cross-products	Covariance	Pearson Correlation	Sig. (2-tailed)	Sum of Squares and Cross-products	Covarlance	Pearson Correlation	Sig. (2-tailed)	Sum of Squares and Cross-products	Covarlance	Pearson Correlation	Sig. (2-tailed)	Sum of Squares and Cross-products	Covarlance	Pearson Correlation	Sig. (2-tailed)	Sum of Squares and	Covarlance
		Force Concept Inventory	Total Score Post-test			Force Concept Inventory	Adjusted Score Post-test			Force Concept Inventory	Score Change			Mother's Education Level				Father's Education Level			

		- 50,00			
		Concept	Force		
		Inventory	Concept		
		Adjusted	Inventory	Mother's	Father's
		Score	Score	Education	Education
Perception of Science	Pearson Correlation	112	080	140	098
Difficulty Score	Slg. (2-tailed)	.554	.674	.460	909.
	Sum of Squares and Gross-products	-178.700	409.727	-61.800	-38.600
	Covarlance	-6.162	14.129	-2.131	-1.331
Perception of Math	Pearson Correlation	167	.253	310	205
Difficulty Score	Sig. (2-tailed)	.377	177	.095	.278
·	Sum of Squares and Cross-products	-218.000	1060.143	-112.000	-66.000
	Covarlance	-7.517	36.557	-3.862	-2.276
Anxlety of Science Score	Pearson Correlation	008	300	090.	.032
	Sig. (2-tailed)	196.	.107	.752	.865
	Sum of Squares and Cross-products	-27.433	-33.15.666	57.267	27.533
	Covarlance	946	-114.333	1.975	.949
Anxlety in Math Score	Pearson Correlation	022	227	.224	.299
	Slg. (2-talled)	206.	.227	.233	109
	Sum of Squares and Cross-products	-72.617	-2389.313	203.533	242.067
	Covarlance	-2.504	-82.390	7.018	8.347
Force Concept Inventory	Pearson Correlation	. 499**	771**	.215	025
Total Score Pre-test	Sig. (2-tailed)	.005	000	.255	.894
	Sum of Squares and Cross-products	1774.368	-8803.492	211.264	-22.299
	Covarlance	61.185	-303.569	7.285	769
Force Concept Inventory	Pearson Correlation	.441*	667**	.322	.187
Adjusted Score Pre-test	Slg. (2-talled)	.015	000.	.083	.323
	Sum of Squares and Cross-products	1599.450	-7774.648	323.800	167.600
	Covarlance	55.153	-268.091	11.166	5.779

		Force			
		Concept	Concept		
		Adlusted	Inventory	Mother's	Father's
		Score	Score	Education	Education
		Post-test	Change	Level	Level
Force Concept Inventory	Pearson Correlation	.759**	164	690	060
Total Score Post-test	Slg. (2-tailed)	000	.388	.741	969.
	Sum of Squares and	2565 575	-1776.449	58.851	-75.402
	Cross-products	20002			
	Covarlance	88.468	-61.257	2.029	-2.600
Force Concept Inventory	Pearson Correlation	1.000	101	.100	090
Adjusted Score Post-test	Slg. (2-talled)		.594	.598	.753
	Sum of Squares and Cross-products	4009.367	-1305.162	111.467	59.433
	Covarlance	138.254	-45.008	3.844	2.049
Force Concept Inventory	Pearson Correlation	101	1.000	118	.088
Score Change	Sig. (2-tailed)	.594	•	.533	.644
	Sum of Squares and Cross-products	-1305.162	41385.527	422.375	280.183
	Covariance	-45.006	1427.087	-14.565	9.661
Mother's Education Level	Pearson Correlation	.100	118	1.000	.748**
	Sig. (2-tailed)	.598	.533	•	000
	Sum of Squares and Cross-products	111.467	-422.375	307.867	205.733
`	Covarlance	3.844	-14.565	10.616	7.094
Father's Education Level	Pearson Correlation	090`	.088	.748**	1.000
	Sig. (2-tailed)	.753	.644	000.	•
	Sum of Squares and Cross-products	59.433	280.183	205.733	245.467
	Covarlance	2.049	9.661	7.094	8.464

. Correlation is significant at the 0.05 level (2-tailed).

^{**.} Correlation is significant at the 0.01 level (2-tailed).

a. Listwise N=30

Appendix P: Chi-square Analysis of Gender with Force Concept Inventory Scores

Force Concept Inventory Total Score Pre-test * Gender

Crosstab

Count

		Gen	der	
		Male	Female	Total
Force	3.45		2	2
Concept	6.90		5	5
inventory Total	10.34		1	1
Score	13.79		7	7
Pre-test	17.24	3	3	6
	20.69	1	6	7
	24.14	1	5	6
	31.03	2	1	3
	34.48		2	2
	41.38	3		3
	55.17	1		1
Total		11	32	43

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	22.739 ^a	10	.012
Likelihood Ratio	25.617	10	.004
Linear-by-Linear Association	12.162	1	.000
N of Valid Cases	43		

a. 20 cells (90.9%) have expected count less than 5. The minimum expected count is .26.

Force Concept Inventory Total Score Post-test * Gender

Crosstab

Count

		Gen	der	
	_	Male	Female	Total
Force	10.34	•	1	1
Concept	13.79		2	2
Inventory Total	17.24	1	1	2
Score	20.69		3	3
Post-test	24.14		5	5
, , , , , , ,	27.59	1	4	5
	31.03	1	4	5
	34.48		4	4
	37.93	2	2	4
	41.38	1	2	3
	44.83	1	1	2
	58.62	1		1
Total	_	8	29	37

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.823a	11	.377
Likelihood Ratio	13.716	11	.249
Linear-by-Linear Association	4.973	1	.026
N of Valid Cases	37		

a. 24 cells (100.0%) have expected count less than 5. The minimum expected count is .22.

U.S. Department of Education

Office of Educational Research and Improvement (OERI)
Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE

(Specific Document)

I.	DOC	UMENT	IDENT	FICA	TION:
----	-----	-------	-------	------	-------

	ept Correlation Study with Instructi s of Difficulty and Student Backgrou	
Author(s): Nancy C.	Grim	
CH	partment of Chemistry and Physics icago State University O1 S. King Drive, Chicago, IL 60628	Publication Date: 6/15/99

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following two options and sign at the bottom of the page.

× ×

Check here
For Level 1 Release:
Permitting reproduction in
microfiche (4° x 6° film) or
other ERIC archival media
(e.g., electronic or optical)
and paper copy.

The	sample	sticke	r show	n below	will be
	affixed !	to all L	evel 1	docume	ents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 1

The sample sticker shown below will be affixed to all Level 2 documents

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN OTHER THAN PAPER COPY HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Level 2

Check here
For Level 2 Release:
Permitting reproduction in
microfiche (4° x 6° film) or
other ERIC archival media
(e.g., electronic or optical),
but not in paper copy.

Documents will be processed as indicated provided reproduction quality permits. If permission to reproduce is granted, but neither box is checked, documents will be processed at Level 1.

"Thereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronio/optical media by persons other than ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries."

Sign here→ piesse

inion	mation needs of educators in resp	onse to discrete inquines."
Signature:	Printed Name/Position/Title:	
Mancy C. Grim	Nancy C. Grim, Ins	tructor
Organization/Address:	Telephone:	FAX:
Department of Chemistry and Physics	(773) 995-2180	(773) 995-3809
Chicago State University	E-Mail Address:	Date:
9501 S. King Drive, Chicago, IL 60628	n-grim@CSU.edu	6/15/99

