DEVOIR MAISON 2

Exercice 1 – On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^x}{1 + e^x}$.

Soit \mathcal{C} la représentation graphique de f dans un repère (O, \vec{i}, \vec{j}) d'unité 2cm.

- 1. Calculer $\lim_{x \to -\infty} f(x)$. Que pouvez-vous en déduire sur la représentation graphique $\mathcal C$ de f?
- 2. (a) Montrer que pour tout réel x, on a $f(x) = \frac{1}{1 + e^{-x}}$.
 - (b) En déduire $\lim_{x \to +\infty} f(x)$. Comment interpréter graphiquement ce résultat?
- 3. (a) Montrer que la dérivée de f vérifie, pour tout réel x, la relation $f'(x) = \frac{e^x}{(1+e^x)^2}$.
 - (b) Déterminer le sens de variation de f. Dresser son tableau de variation en y faisant figurer les limites calculées aux questions 1. et 2. ainsi que f(0).
 - (c) Déterminer l'équation de la tangente \mathcal{T} à \mathcal{C} au point d'abscisse 0.
- 4. On admet que pour tout réel x, on a $f''(x) = \frac{e^x(1-e^x)}{(1+e^x)^3}$. Étudier la convexité de f.
- 5. Tracer \mathcal{C} et \mathcal{T} .

Exercice 2 – Dans cet exercice, on suppose que l'on dispose de deux urnes \mathcal{U}_1 et \mathcal{U}_2 . L'urne \mathcal{U}_1 contient 4 boules rouges, tandis que l'urne \mathcal{U}_2 contient deux boules rouges et deux boules blanches. On commence par lancer une pièce non truquée. Si l'on obtient PILE on choisit de faire une succession de tirages dans l'urne \mathcal{U}_1 . Dans le cas contraire, on choisit de faire les tirages dans l'urne \mathcal{U}_2 . On note F l'évènement "la pièce amène FACE". L'évènement "la pièce amène PILE" est donc \overline{F} . On définit également, pour tout entier $k \geqslant 1$, l'évènement R_k "le k-ème tirage dans l'urne choisie amène une boule rouge".

- 1. On lance la pièce, on choisit l'urne puis on effectue un tirage. Montrer, en utilisant la formule des probabilités totales, que la probabilité de tirer une boule rouge est $\frac{3}{4}$.
- 2. On lance la pièce, on choisit l'urne puis on effectue deux tirages *sans remise*. C'est-à-dire que la boule tirée lors du premier tirage n'est pas remise dans l'urne avant de procéder au deuxième tirage dans la même urne.
 - (a) Calculer $P_F(R_1 \cap R_2)$ et $P_{\overline{F}}(R_1 \cap R_2)$. En déduire que la probabilité que le tirage amène deux boules rouges de suite est $\frac{7}{12}$.
 - (b) On remarque *a posteriori* que les deux boules tirées sont rouges. Quelle est la probabilité que la pièce ait amené PILE?
- 3. On lance la pièce, on choisit l'urne puis on décide de faire des tirages *sans remise* dans l'urne choisie jusqu'à ce que l'on soit en mesure de déterminer avec certitude dans quelle urne l'on se trouve. On note *Y* la variable aléatoire égale au nombre de tirages effectués.
 - (a) Justifier que l'ensemble $Y(\Omega)$ des valeurs prises par Y est égal à [1,3].
 - (b) Expliquer pourquoi $[Y = 1] = F \cap B_1$. En déduire P(Y = 1).
 - (c) Calculer de même P(Y = 2).
 - (d) En déduire la valeur de P(Y = 3).
 - (e) Calculer E(Y).

Exercice 3 – Pour tout couple (a, b) de \mathbb{R}^2 , soit M la matrice carrée d'ordre 2 définie par

$$M = \begin{pmatrix} 1 & a \\ 1 & b \end{pmatrix}.$$

- 1. Dans cette question, on choisit a = b = -1.
 - (a) La matrice *M* est-elle inversible?
 - (b) Calculer pour tout entier $n \ge 2$, la matrice M^n .
- 2. Dans cette question, on choisit a = b.
 - (a) La matrice *M* est-elle inversible?
 - (b) Montrer que pour tout entier $n \ge 2$, on a $M^n = (1+a)^{n-1}M$.
- 3. On revient au cas général où a et b sont des réels quelconques. Montrer que la matrice M est inversible si et seulement si $a \neq b$.
- 4. Dans cette question, on considère deux variables aléatoires X et Y indépendantes et suivant toutes les deux la loi géométrique de paramètre p avec 0 . On pose <math>q = 1 p.

Soit N la matrice définie par $N = \begin{pmatrix} 1 & X \\ 1 & Y \end{pmatrix}$ et A l'événement : "la matrice N est inversible".

- (a) Établir la relation $P(X = Y) = \sum_{k=1}^{+\infty} P(X = k) \times P(Y = k)$.
- (b) Calculer $\sum_{k=1}^{+\infty} p^2 q^{2k-2}.$
- (c) En déduire P(A) en fonction de q.
- 5. Soit n un entier supérieur ou égal à 1. Dans cette question, on considère deux variables aléatoires X et Y indépendantes et suivant toutes les deux la loi binomiale de paramètres n et $\frac{1}{2}$. Soit N la matrice définie par $N = \begin{pmatrix} 1 & X \\ 1 & Y \end{pmatrix}$ et A l'événement : "la matrice N est inversible".
 - (a) Pour x réel, écrire les développements de $(x+1)^n$ et $(x+1)^{2n}$ à l'aide de la formule du binôme.
 - (b) En utilisant l'identité $(x+1)^{2n} = (x+1)^n (x+1)^n$, montrer que l'on a

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k}.$$

- (c) En déduire la relation $P(X = Y) = \frac{1}{4^n} \binom{2n}{n}$.
- (d) Calculer P(A) en fonction de n.