Chalmers University of Technology

EME102: ACTIVE MICROWAVE CIRCUITS

Home Assignment

Transistor Modelling - Part I

Authors:
Pavel Gueorguiev
Joel Alexander

January 27, 2017

Contents

1	Abstract	3
2	Plots	3
3	Discrepancies	5
4	Extrinsic Parameters	5
5	References	G

List of Figures

1	Experimental setup	
2	Z parameters - Cold FET forward bias	4
3	Y parameters - Cold FET pinchoff bias	4
4	Capacitances at different frequencies	-
5	Table of parasitic inductances and resistances at 3 GHz	
6	Table of parasitic capacitances at 3 GHz	Į.

1 Abstract

To determine the parasitic resistances and inductances based on the forward bias method proposed in Dambrine¹ along with the parasitic capacitances using the forward pinch method proposed in Gao². The setup used is illustrated in the following diagram:

Figure 1: Experimental setup

The inductance and resistance values were determined from Dabrine's paper, particularly equations 15, 16 and 17. Since in equation 15 a term appears that depends on a few parameters, the following assumptions were made: n=2 (ideality factor of 2, since it is assumed a non-ideal device, T=25 degrees calculus (converted into Kelvin), $I_g=0.1$ from the file "Cold_FET_forward_bias.s2p". R_c was given to be 0.35 Ω .

The capacitances were calculated from Gao's paper, equations 1-6 with width of 1mm.

2 Plots

Below is the diagram for Z parameters of the transistor in state "Cold FET forward bias".

Figure 2: Z parameters - Cold FET forward bias

The diagram for the Y parameters used for determining the capacitances is as follows:

Figure 3: Y parameters - Cold FET pinchoff bias

The following figure shows the values of capacitances for a frequency sweep along with the equations:

Figure 4: Capacitances at different frequencies

3 Discrepancies

When we were deriving the expressions for the inductances, we found one of the inductors to be negative. This implies that, at that frequency the inductor is acting as a capacitor. Possible deviation from the expected model might arise from the S_{12} parameter. As the authors of the article state on bottom of page 8 (in the PDF) the biggest difference from the measured S parameters and the modelled S parameters occurred in S_{12} .

4 Extrinsic Parameters

The extrinsic parameters at 3 GHz are as follows:

freq	Ld	Lg	Ls	Rd	Rg	Rs
3.000 GHz	1.468E-10	6.525E-11	-3.654E-12	1.329	0.806	0.562

Figure 5: Table of parasitic inductances and resistances at 3 GHz

freq	Cpd	Cpg	Cpgd
3.000 GHz	6.710E-14	7.330E-14	6.706E-14

Figure 6: Table of parasitic capacitances at 3 GHz

5 References

- [1] Dambrine, Gilles, et al. "A new method for determining the FET small-signal equivalent circuit." IEEE Transactions on microwave theory and techniques 36.7 (1988): 1151-1159.
- [2] Gao, Jianjun, et al. "A new method for determination of parasitic capacitances for PHEMTs." Semiconductor science and technology 20.6 (2005): 586.