

Heterogeneity in evolutionary processes : structured processes

Joëlle Barido-Sottani

Tree models in Bayesian inference

Posterior

Likelihood

Probability of the tree model

Priors

Molecular alignment

Substitution model

Clock model

Phylodynamic models

· Birth-death models

· Coalescent models

Simple birth-death process

Parameters:

- λ birth rate (= new lineage appearing)
- μ death rate (= lineage disappearing)
- ρ extant species
 sampling probability

Birth-death for epidemiology

Processes:

- \bullet λ transmission rate
- $\mu = \delta(1-p)$ rate of recovery without sampling
- $\psi = \delta p$ rate of recovery with sampling

Heterogeneity in evolution

Bininda-Emonds et al. Nature 2007

- Size discrepancies are evidence of variations in evolutionary processes
- Many traits are proposed to drive variation:
 - body size, mating system, environment, etc.
 - host location, pathogen strain, host behaviour, etc.

Multi-type birth-death (MTBD) process

2 types, type 1 & type 2

 $\lambda_1 \& \lambda_2$ — birth rates

 $\mu_1 \& \mu_2$ — death rates

ρ — extant speciessampling probability

MTBD process (epidemiology)

Character-dependent or independent?

In a character-dependent model:

- The number of types is known
- The type at the tips is known

The BiSSE/MuSSE/BDMM model

Parameters of the model:

 λ_i – birth rates

 μ_i – death rates

q_{ii} – transition rates

 ρ/p – sampling probability

Maddison *et al.* **Sys. Bio. 2007**Fitzjohn *et al.* **Sys. Bio. 2009**Kühnert et al. **MBE 2016**

SSE/BDMM inference

Important assumption: the evolutionary processes in the complete phylogeny (including non-sampled parts) are identical to the processes in the reconstructed phylogeny.

BDMM extensions

 Integration with the skyline model: piecewise-constant rates per type

 Sampling proportion per type: p_i

· Cross-type birth events: $\lambda_{i,i}$

New: BDMM-Prime

- · Can estimate the full (unsampled) LTT
- Uses advanced computational techniques for faster performance
- · Can estimate the event history or integrate over it
- New improved BEAUti interface for setup

Bayesian Phylodynamic Inference of Multitype Population Trajectories Using Genomic Data

Timothy G. Vaughan (1) 1,2,* Tanja Stadler (1) 1,2

Model selection issues

Rabosky & Goldberg 2015, Sys. Bio.

The HiSSE model

- Hybrid model with a hidden character
 (A/B) added to the user-chosen trait (1/2)
- Allows to distinguish whether the userchosen character is linked to the rate variation
- Only single transitions are allowed (no diagonal)
- · Remaining issues:
 - The number of values for the hidden character is chosen by the user
 - Higher complexity of the model

Examples: character-driven diversification

Example: fitness of resistant tuberculosis

Pečerska et al. Epidemics 2021

Character-dependent or independent?

Character-independent
In a character-dependent model:

Type 2

Type 3

- The number of types is known
- The type at the tips is known

BAMM/MSBD model

- · Character-independent version of SSE
- New estimated parameters:
 - N total number of types
 - Types of edges and tips
- Simplified transition process:
 - Each transition is a new type (BAMM)
 - Constant transition rate γ (MSBD)
- Assumes that all types appear in the sampled tree – no unseen types

Rabosky *et al.* **Nat. Comm. 2013** Barido-Sottani *et al.* **Sys. Bio. 2020**

Simplifying the model

Character-dependent

$$\lambda_1 \approx \lambda_2$$

$$\mu_1 \approx \mu_2$$

$$\mu_3$$

 μ_1

Character-independent

RevBayes model

- Ordered types based on a Gamma distribution
- Fixed number of types N
- · Simplified model: rates are not estimated, but determined by the shape of the Gamma distribution

Going beyond types

ClaDS model

$$λ_1$$
 = LogNormal ($λ_0$ x α, σ)

$$\lambda_2 = \text{LogNormal} (\lambda_0 \times \alpha, \sigma)$$

Maliet *et al.* **Nat. Eco. Evo. 2019**Maliet & Morlon **Sys. Bio. 2021**Barido-Sottani & Morlon **Sys. Bio. 2023**

- Continuous evolution process driven by a lognormal distribution
- New estimated parameters:
 - Initial rates at the root λ_0 and μ_0
 - Lognormal parameters α and σ
 - Birth rates for each edge λ_i
- \cdot Two parameterizations for μ
 - Lognormal process with α_{μ} and σ_{μ}
 - Assumption of constant turnover: $\mu_i / \lambda_i = \mu_0 / \lambda_0$

Examples: character-driven diversification

Nat. Comm. 2020

No link between population isolation and speciation rate in squamate reptiles

Sonal Singhal^{a,1}, Guarino R. Colli^b, Maggie R. Grundler^{c,d}, Gabriel C. Costa^e, Ivan Prates^{f,g}, and Daniel L. Rabosky^{f,g,1}

So – character-dependent or independent?

Character-dependent / hybrid

- Allow more complex transition processes
- Are more easily interpreted
- Are very dependent on the choice and accuracy of trait

Character-independent

- Usually have to make simplifying assumptions
- · Do not give direct answers
- Are not constrained by trait information or hypothesis

What is your hypothesis? What are you trying to find out?

Integration of fossil/SA data

Parameters:

- λ birth rate
- μ death rate
- \bullet ψ fossilization rate
- ρ extant species
 sampling probability

Multi-type FBD/SA process

2 types, type 1 & type 2

 $\lambda_1 \& \lambda_2$ — birth rates

 $\mu_1 \& \mu_2$ — death rates

 $\psi_1 \& \psi_2$ — fossilization rates

ρ — extant speciessampling probability

In summary

- · Empirical data supports widespread variation in evolutionary processes, which can be modeled using multi-type birth-death processes
- · Multi-type birth-death processes come in two main categories:
 - Character-dependent: uses more information but subject to model selection issues
 - Character-independent: more powerful, more expensive and more difficult to interpret
- These models are still a very active area of research and development (extension to continuous processes, integration of fossils, interpretation of results, etc.)

In summary (BEAST2)

- Birth-Death-Migration Model (BDMM) package
 - Character-dependent SSE
 - Includes time-dependent changes (skyline model)
 - Includes sampled ancestors
- · Multi-State Birth-Death (MSBD) package
 - Character-independent SSE
 - Includes sampled ancestors, starting from v1.3.0
- · Cladogenetic Diversification rate Shift (ClaDS) package
 - Progressive autocorrelated rate variations
 - Inclusion of sampled ancestors in development

What about coalescent models?

 Basic coalescent model assumes exchangeability: all lineages can coalesce with each other

- · Structured coalescent model:
 - n subpopulations with sizes N_{e1}, ..., N_{en}
 - only lineages of the same subpopulation coalesce
 - adds migration events: one lineage moves from i to j

Example: source of a local outbreak

Outbreak of Influenza A/H5N8 in the south of France 2016-2017

Tarn is inferred as the most likely origin of the outbreak

Chakraborty et al. TBED 2022

In BEAST2

- MultiTypeTree (MTT): exact structured coalescent
 Vaughan et al. Bioinformatics 2014
- Structured COalescent Transmission Tree Inference (SCOTTI): approximate structured coalescent
 De Maio et al. PLoS Genetics 2015
 - assumes independence of lineages
 - assumes identical population sizes in subpopulations

- Marginal Approximation of the Structured CoalescenT (MASCOT):
 approximate structured coalescent
 Müller et al. Bioinformatics 2018
 - assumes independence of lineages

Key points to remember

- Structured models are designed to represent sub-populations within our dataset
- · Structured birth-death models
 - Focus on differences in dynamics between sub-populations
 - Can be character-dependent or independent
 - · Can be integrated with other BD models (skyline, FBD, etc)
- Structured coalescent models
 - Focus on the lack of interactions between sub-populations
 - Existing implementations are character-dependent

BD vs coalescent: the revenge

- Clearer choice due to differences in assumptions and underlying process
- Both structured models are sensitive to sampling
 - BD relies on defined sampling process
 - Coalescent is sensitive to sampling biases
- Estimating migration rates
 - Disease outbreak: BD is more accurate
 - Endemic disease: both accurate, coalescent more precise

Tutorial time

Character-dependent BD model (BDMM) https://taming-the-beast.org/tutorials/Structured-birth-death-model/

Character-independent BD models (MSBD, ClaDS) https://taming-the-beast.org/tutorials/MSBD-tutorial/https://taming-the-beast.org/tutorials/ClaDS-tutorial/

Structured coalescent (MASCOT) https://taming-the-beast.org/tutorials/Mascot-Tutorial/