Consider the problem of finding a solution to the following equation:

$$3w_1 + 4w_2 = 12$$

the line crosses the axes w1 and w2 respectively at:

- (A) 3 and 4
- (B) [Ans] 4 and 3
- (C) 6 and 6
- (D) 12 and 12
- (E) None of the above

$$\min_{\mathbf{w}} (3w_1 + 4w_2 - 12)^2 + \lambda g(\mathbf{w})$$

If $g(\mathbf{w})$ is L0 norm of \mathbf{w} , and $\lambda = 1$, what is the optimal value of \mathbf{w}

- (A) **[Ans]** $[0,3]^T$
 - (B) **[Ans]** [4, 0]^T
 - (D) [Ans] [4,0]
 - (C) $[1,1]^T$
- (D) $[3,4]^T$
- (E) None of the above

$$\min_{\mathbf{w}}(3w_1+4w_2-12)^2+\lambda g(\mathbf{w})$$

If $g(\mathbf{w})$ is L1 norm of \mathbf{w} and $\lambda=1$, what is the optimal value of \mathbf{w} (if the true answer is very close to one given, do round/approximate for simplifying the answer here)

- (A) **[Ans]** $[0,3]^T$
- (B) $[4,0]^T$
- (C) $[1,1]^T$
- (D) $[3,4]^T$
- (E) None of the above

$$\min_{\mathbf{w}}(3w_1+4w_2-12)^2+\lambda g(\mathbf{w})$$

If $g(\mathbf{w})$ is L2 norm of \mathbf{w} and $\lambda = 1$, what is the optimal value of \mathbf{w}

- (A) $[0,3]^T$
- (B) $[4,0]^T$
- (C) $[1,1]^T$
- (D) $[3,4]^T$
- (E) [Ans] None of the above

$$\min_{\mathbf{w}}(3w_1+4w_2-12)^2+\lambda g(\mathbf{w})$$

If $g(\mathbf{w})$ is L1 norm of \mathbf{w} and $\lambda=2$, what is the optimal value of \mathbf{w} (if the true answer is very close to one given, do round/approximate for simplifying the answer here)

- (A) **[Ans]** $[0,3]^T$
- (B) $[4,0]^T$
- (C) $[1,1]^T$
- (D) $[3,4]^T$
- (E) None of the above