7th Meet

□ 오늘 공부할 것은

04	11.	스태킹 앙상불	
04		기본 스태킹 모델	
분류		CV 세트 기반의 스태킹	
	12	저리	

05	
회귀	

01.	회귀 소개	308
02.	단순 선형 회귀를 통한 회귀 이해	310
03.	비용 최소화하기 - 경사 하강법(Gradient Descent) 소개	312
04.	사이킷런 LinearRegression을 이용한 보스턴 주택 가격 예측	321
	LinearRegression 클래스 - Ordinary Least Squares	321
	회귀 평가 지표	322
	LinearRegression을 이용해 보스턴 주택 가격 회귀 구현	324
05.	다항 회귀와 과(대)적합/과소적합 이해	329
	다항 회귀 이해	329
	다항 회귀를 이용한 과소적합 및 과적합 이해	332
	편향-분산 트레이드오프(Bias-Variance Trade off)	336

Now, It's your turn P.P.P.

40min ~ 50min

Chapter 04

분류 (Classification)

[04-11] ムモリス! らけくけから (Stacking Ensemble)

https://data-science-blog.com/blog/2017/12/03/ensemble-learning/

https://iq.opengenus.org/stacking-in-machine-learning/

https://github.com/whatwant-school/python-ml/blob/main/07-week/07-week_01-Stacking.ipynb

```
knn_train, knn_test = get_stacking_base_datasets(knn_clf, train_X, train_y, test_X, 7)
rf train, rf test = get stacking base datasets(rf clf, train X, train y, test X, 7)
ada train, ada test = get stacking base datasets(ada clf, train X, train y, test X, 7)
dt train, dt test = get stacking base datasets(dt clf, train X, train y, test X, 7)
KNeighborsClassifier model 시작
        폴드 세트: 0 시작
        폴드 세트: 1 시작
       폴드 세트: 2 시작
        폴드 세트: 3 시작
        폴드 세트: 4 시작
        폴드 세트: 5 시작
        폴드 세트: 6 시작
RandomForestClassifier model 시작
        폴드 세트: 0 시작
        폴드 세트: 1 시작
        폴드 세트: 2 시작
        폴드 세트: 3 시작
        폴드 세트: 4 시작
        폴드 세트: 5 시작
        폴드 세트: 6 시작
AdaBoostClassifier model 시작
        폴드 세트: 0 시작
        폴드 세트: 1 시작
        폴드 세트: 2 시작
        폴드 세트: 3 시작
```

Chapter 05

धेन। (Regression)

[05-01] 到刊 公州

화귀

- 여러 개의 독일변수와 한 개의 증속변수 간의 상관관계를 모델링하는 기법

「일반 선형 회귀:RSS (Residual Sum of Squares) 최소화할 수 있도록 회귀 계수 최적화 릿지(Ridge): L2 Regularization(규제) 추가, 회귀 계수 값을 작게 만드는 규제 모델 라쏘(Lasso): LI Regularization. 여측 영향력이 작은 회귀 계수 이만들기 → 피처 선택 엘라스틱넷(ElasticNet): L2 니 결합 면델. 피처가 많은 Dataseton 주로 적용 _로지스틱 회귀(Logistic Regression): 회귀 명칭이지만, 실제는 분류

ग्रेमा ना4 (Regression coefficients)

「のんなた: Classification 」 できな: Regression

[05-02] 단순 선형 회귀를 통한 회귀 이해

□ 단순 선형 회귀

오류 절대값의 합

MAE (Mean Absolute Error) RSS (Residual Sum of Square)

오류 제곱의 합

실제값 $Y_i = \omega_0 + \omega_1 * X_i + Error$

 $f(x) = \omega_0 + \omega_1 * x$

주택 가격 모델

cost function / loss function

$$RSS(\omega_0, \omega_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (\omega_0 + \omega_1 * x_i))^2$$

평수 3.3 제곱m X

[05-03] り号 本位をかり なん すけば (Gradient Descent) なれ

$$RSS(\omega_0, \omega_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (\omega_0 + \omega_1 * x_i))^2$$

$$\frac{\partial RSS(\omega_{0}, \omega_{1})}{\partial \omega_{1}} = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - (\omega_{0} + \omega_{1} * x_{i}))(-2 x_{i}) \qquad \frac{\partial RSS(\omega_{0}, \omega_{1})}{\partial \omega_{0}} = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - (\omega_{0} + \omega_{1} * x_{i}))(-2)$$

$$= -\frac{2}{N} \sum_{i=1}^{N} x_{i} (y_{i} - (\omega_{0} + \omega_{1} * x_{i}))$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (y_{i} - (\omega_{0} + \omega_{1} * x_{i}))$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (2\pi i \text{ Tr}) (2\pi i \text{ Tr})$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (2\pi i \text{ Tr}) (2\pi i \text{ Tr})$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (2\pi i \text{ Tr}) (2\pi i \text{ Tr})$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (2\pi i \text{ Tr}) (2\pi i \text{ Tr})$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (2\pi i \text{ Tr}) (2\pi i \text{ Tr})$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (2\pi i \text{ Tr}) (2\pi i \text{ Tr})$$

$$= -\frac{2}{N} \sum_{i=1}^{N} (2\pi i \text{ Tr}) (2\pi i \text{ Tr})$$

$$\omega_{i+1} = \omega_i - \eta * (-\frac{2}{N} \sum_{i=1}^{N} x_i (실제값_i - 예측값_i))$$

$$= \omega_i + \eta \frac{2}{N} \sum_{i=1}^{N} x_i (실제값_i - 예측값_i)$$

 $Step \ / : w_0, w_1$ 은 임의의 값으로 설정하고 첫 비용 함수의 값은 계산

Step 2: wo, w,은 업데이트한 후 다시 비용 함수의 값은 계산

Step 3: 비용 함수가 감소하는 방향성으로 주어진 횟수만큼 Step 2 반복

https://github.com/whatwant-school/python-ml/blob/main/07-week/07-week 02-GradientDescent.ipynb

□ Stochastic Gradient Descent (확률적 경사 하강법)

https://github.com/whatwant-school/python-ml/blob/main/07-week/07-week 03-StochasticGradientDescent.ipynb

```
def stochastic_gradient_descent_steps(X, y, batch_size=10, iters=1000):
    w0 = np.zeros((1,1))
    w1 = np.zeros((1,1))

    prev_cost = 100000
    iter_index = 0

    for ind in range(iters):
        np.random.seed(ind)
        stochastic_random_index = np.random.permutation(X.shape[0])

        sample_X = X[stochastic_random_index[0:batch_size]]
        sample_y = y[stochastic_random_index[0:batch_size]]

        w1_update, w0_update = get_weight_updates(w1, w0, sample_X, sample_y, learning_rate=0.01)
        w1 = w1 - w1_update
        w0 = w0 - w0_update

        return w1, w0
```

[05-04] 사이킷컨 LinearRegression을 이용한 보스턴 주택 가격 여측

□ OLS (Ordinary Least Squares, 최소제곱법/최소자승법)

- 근사적으로 구하려는 해와 실제 해의 오차의 제곱의 합이 최소가 되는 해를 구하는 방법
- → 잔차제곱합(RSS: Residual Sum of Squares)을 최소화 하는 가중치 벡터를 구하는 방법
- → RSS 공식을 미분한 식의 결과가 0이 되도록 하는 벡터 값을 구하는 방법 But 다중공선성 상황(상관관계가 높은 경우)에서는 오류에 매우 민감해짐

□ 다중공선성 (Multicollinearity)

- 어떤 독립변수가 다른 독립변수들과 완벽한 선형 독립이 아닌 경우
- → 독립변수 間 상관관계가 높은 경우

□ 피어슨 상관 계수 (Pearson Correlation Coefficient ,PCC)

- 두 변수 간의 선형 상관 관계를 계량화한 수치

□ 회귀 평가 지표

평가 방법	사이킷런 API	Scoring 함수 적용 값	공식
MAE (Mean Absolute Error)	metrics.mean_absolute_error	'neg_mean_absolute_error'	$MAE = \frac{1}{n} \sum_{i=1}^{n} Y_i - \widehat{Y}_i $
MSE (Mean Squared Error)	metrics.mean_squared_error	'neg_mean_squared_error'	$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$
RMSE (Root Mean Squared Error)	metrics.mean_squared_error (단, squared=False)	'neg_root_mean_squared_error'	$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2}$

□ Boston Housing (Housing Values in Suburbs of Boston)

https://www.kaggle.com/c/boston-housing/overview

□ Boston Housing (Housing Values in Suburbs of Boston)

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

□ Boston Housing (Housing Values in Suburbs of Boston)

https://github.com/whatwant-school/python-ml/blob/main/07-week_04-BostonHousing.ipynb

```
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error, r2 score
import numpy as np
target y = df['PRICE']
data X = df.drop(['PRICE'],axis=1,inplace=False)
train X, test X, train y, test y = train test split(data X, target y, test size=0.3, random state=42)
lr = LinearRegression()
lr.fit(train X, train y)
predicts = lr.predict(test X)
mse = mean squared error(test y, predicts)
rmse = np.sqrt(mse)
print('MSE : {0:.3f} , RMSE : {1:.3F}'.format(mse , rmse))
print('Variance score : {0:.3f}'.format(r2 score(test y, predicts)))
MSE: 21.100 , RMSE: 4.593
Variance score : 0.725
print('절편 값:', lr.intercept )
print('회귀 계수값:', np.round(lr.coef , 1))
절편 값: 37.421623169243276
회귀 계수값: [ -0. -0.1 0.1 -0. 4.8 -15.9 3.7 -0. -2. 0.4 -0. -0.7
   0. -0.6
```

[05-05]
다항 회구의
자(대) 정항/과소정함
이해

□ 다항 회귀

$$y = \omega_{0} + \omega_{1} * x_{1} + \omega_{2} * x_{2} + \omega_{3} * x_{3} + \dots + \omega_{n} * x_{n}$$

$$z_{1} = z_{1} = z_{1$$

https://github.com/whatwant-school/python-ml/blob/main/07-week/07-week_05-polynomial.ipynb

☐ Underfitting vs. Overfitting

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

□ 편향-분산 트레이드오프 (Bias-Variance Trade off)

https://m.blog.naver.com/ckdgus1433/221594203319

You've really worked hard today

Next Week ~?

XII 목자		
	11. 스태킹 암상불	295
	기본 스테랑 모델	297
	CV 세트 기반의 스태킹	300
	12. 정리	306
	01. 회귀 소개	308
05	02. 단순 선형 회귀를 통한 회귀 이해	310
회귀	03, 비용 최소화하기 - 경사 하강법(Gradient Descent) 소개	312
	04, 사이킷런 LinearRegression을 이용한 보스턴 주택 가격 예측	321
	LinearRegression 퀄레스 - Ordinary Least Squares	321
	회귀 평가 지표	322
	LinearRegression을 이용해 보스턴 주택 가격 회귀 구현	324
	05. 다항 회귀와 과(대)적합/과소적합 이해	329
	다향 회귀 아해	329
	다항 회귀를 이용한 과소적합 및 과적합 이해	332
	편항-분산 트레이드오프(Bias~Variance Trade off)	336
	06. 규제 선형 모델 - 릿지, 라쏘, 엘라스틱넷	337
	규제 선형 모델의 개요	337
	릿지 회귀	339
	라쏘 회귀	342
	엘라스틱넷 회귀	345
	선형 회귀 모델을 위한 데이터 변환	347
	07. 로지스틱 회귀	350

	08. 회귀 트리	355
	09. 회귀 실습 - 자전거 대여 수요 예측	362
	데이터 클렌장 및 가공과 데이터 시각화	363
	로그 변환, 피처 안코딩과 모델 학습/예측/평가	368
	10. 회귀 실습 - 캐글 주택 가격: 고급 회귀 기법	375
	데이터 사전 처리(Preprocessing)	375
	선형 회귀 모델 학습/예측/평가	380
	회귀 트리 모델 학습/예측/평가	391
	회귀 모델의 예측 결과 혼합을 통한 최종 예측	392
	스태킹 암상불 모델을 통한 화귀 예측	394
	11. 정리	397
-	01. 차원 축소(Dimension Reduction) 개요	399
06		
VIBANA III V	92. PCA(Principal Component Analysis)	401
06		
VIBANA III V	92. PCA(Principal Component Analysis)	401
VIBANA III V	82. PCA(Principal Component Analysis) PCA 雅泉	401 401
VIBANA III V	02. PCA(Principal Component Analysis) PCA 雅요 03. LDA(Linear Discriminant Analysis)	401 401 415
VIBANA III V	02. PCA(Principal Component Analysis) PCA 滑泉 03. LDA(Linear Discriminant Analysis) LDA 滑泉	401 401 415 415
VIBANA III V	02. PCA(Principal Component Analysis) PCA 雅泉 03. LDA(Linear Discriminant Analysis) LDA 雅泉 04. SVD(Singular Value Decomposition)	401 401 415 415 418
VIBANA III V	02. PCA(Principal Component Analysis) PCA 雅弘 03. LDA(Linear Discriminant Analysis) LDA 雅弘 04. SVD(Singular Value Decomposition) SVD 雅弘	401 401 415 415 418 418
VIBANA III V	02. PCA(Principal Component Analysis) PCA 개요 03. LDA(Linear Discriminant Analysis) LDA 개요 04. SVD(Singular Value Decomposition) SVD 개요 사이킷런 TruncatedSVD 클래스를 이용한 변환	401 401 415 415 418 418 424

緊射 | XIII

Who ~?

See you Next Weekend ~?