EIGENVALUE PROBLEMS

- Background on eigenvalues/ eigenvectors / decompositions 7.1
- Perturbation analysis, condition numbers.. 7.2
- Power method 7.3
- The QR algorithm 7.5
- Practical QR algorithms: use of Hessenberg form and shifts 7.4
- The symmetric eigenvalue problem. 8-

Eigenvalue Problems. Introduction

Let A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem:

$$egin{aligned} Ax &= \lambda x \ & \lambda \in \mathbb{C}: ext{ eigenvalue} \ & x \in \mathbb{C}^n: ext{ eigenvector} \end{aligned}$$

Types of Problems:

- ullet Compute a few λ_i 's with smallest or largest real parts;
- Compute all λ_i 's in a certain region of \mathbb{C} ;
- Compute a few of the dominant eigenvalues;
- Compute all λ_i 's.

0-2 _____ Csci 5304 - November 18, 2013

Eigenvalue Problems. Their origins

- Structural Engineering $[Ku = \lambda Mu]$
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
- Electronic structure calculations [Shrödinger equation..]
- Application of new era: page ranking on the world-wide web.

Basic definitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au=\lambda u$. The vector u is called an eigenvector of A associated with λ . The set of all eigenvalues of A is the 'spectrum' of A. Notation: $\Lambda(A)$.

- $ightharpoonup \lambda$ is an eigenvalue iff the columns of $A-\lambda I$ are linearly dependent.
- ightharpoonup ... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that

$$w^H(A - \lambda I) = 0$$

- \blacktriangleright w^H is a left eigenvector of A (u= right eigenvector)
- $ightharpoonup \lambda$ is an eigenvalue iff $\overline{\det(A \lambda I)} = 0$

10-4 ______ Csci 5304 – November 18, 2013

Basic definitions and properties (cont.)

➤ An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

- \triangleright So there are n eigenvalues (counted with their multiplicities).
- ightharpoonup The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.
- The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i .

10-5 _____ Csci 5304 – November 18, 2013

ightharpoonup Two matrices A and B are similar if there exists a nonsingular matrix X such that

$$B = XAX^{-1}$$

- ➤ Definition: A is diagonalizable if it is similar to a diagonal matrix
- ➤ THEOREM: A matrix is diagonalizable iff it has *n* linearly independent eigenvectors
- ightharpoonup THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any A there exists a unitary matrix Q and an upper triangular matrix R such that

$$A = QRQ^H$$

➤ Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).

- ➤ Geometric multiplicity is ≤ algebraic multiplicity.
- ➤ An eigenvalue is simple if its (algebraic) multiplicity is one.
- ➤ It is semi-simple if its geometric and algebraic multiplicities are equal.

Consider

$$A = egin{pmatrix} 1 & 2 & -4 \ 0 & 1 & 2 \ 0 & 0 & 2 \end{pmatrix}$$

Eigenvalues of A? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

- \triangle Same questions if a_{33} is replaced by one.
- **Same questions if** a_{12} is replaced by zero.

0-6 Csci 5304 – November 18, 2013

Schur Form - Proof

- Show that there is at least one eigenvalue and eigenvector of A: $Ax = \lambda x$, with $||x||_2 = 1$
- There is a unitary transformation P such that $Px=e_1$. How do you define P?
- Show that $PAP^H = \left(rac{\lambda \left| **
 ight.}{0 \left| A_2
 ight.}
 ight)$.
- \triangle Apply process recursively to A_2 .
- ightharpoonup What happens if A is Hermitian?
- \triangle Another proof altogether: use Jordan form of A and QR factorization

0.7 Csci 5304 – November 18, 2013

10.8 Csci 5304 – November 18, 20

Perturbation analysis

- ➤ General questions: If *A* is perturbed how does an eigenvalue change? How about an eigenvector?
- ➤ Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin]

$$orall \; \lambda \; \in \Lambda(A), \quad \exists \; i \quad ext{such that} \quad |\lambda - a_{ii}| \leq \sum_{\substack{j=1 \ j
eq i}}^{j=n} |a_{ij}| \; .$$

- ▶ In words: An eigenvalue λ of A is located in one of the closed discs of the complex plane centered at a_{ii} and with radius $\rho_i = \sum_{j \neq i} |a_{ij}|$.
- ➤ The proof is by contradiction.

10-9 Csci 5304 - November 18, 2013

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let $\tilde{\lambda}, \tilde{u}$ be an approximate eigenpair with $\|\tilde{u}\|_2=1$, and let $r=A\tilde{u}-\tilde{\lambda}\tilde{u}$ ('residual vector'). Assume A is diagonalizable: $A=XDX^{-1}$, with D diagonal. Then

$$\exists \; \lambda \in \; \Lambda(A) \quad ext{such that} \quad |\lambda - ilde{\lambda}| \leq ext{cond}_2(X) \|r\|_2 \; .$$

- Very restrictive result also not too sharp in general.
- ▶ Alternative formulation. If E is a perturbation to A then for any eigenvalue $\tilde{\lambda}$ of A+E there is an eigenvalue λ of A such that:

$$|\lambda - ilde{\lambda}| \leq \mathsf{cond}_2(X) \|E\|_2$$
 .

Prove this result from the previous one.

Gerschgorin's theorem - example

Find a region of the complex plane where the eigenvalues of the following matrix are located:

$$A = \left(egin{array}{cccc} 1 & -1 & 0 & 0 \ 0 & 2 & 0 & 1 \ -1 & -2 & -3 & 1 \ rac{1}{2} & rac{1}{2} & 0 & -4 \end{array}
ight)$$

- ➤ Refinement: if disks are all disjoint then each of them contains one eigenvalue
- ightharpoonup Refinement: can combine row and column version of the theorem (column version obtained by applying theorem to A^H).

0-10 Csci 5304 – November 18, 2013

Conditioning of Eigenvalues

► Assume that λ is a simple eigenvalue with right and left eigenvectors u and w^H respectively. Consider the matrices:

$$A(t) = A + tE$$

- **Eigenvalue** $\lambda(t)$, eigenvector u(t).
- ightharpoonup Conditioning of λ of A relative to E is $\left| \frac{d\lambda(t)}{dt} \right|_{t=0}$.
- ▶ Then multiply both sides to the left by w^H

$$w^H(A+tE)u(t)=\lambda(t)w^Hu(t)$$
 $ightarrow$

$$\lambda(t)w^Hu(t) = w^HAu(t) + tw^HEu(t) = \lambda w^Hu(t) + tw^HEu(t).$$

2 Csci 5304 – November 18, 20

$$ightarrow rac{\lambda(t)-\lambda}{t} w^H u(t) \ = w^H E u(t)$$

▶ Take the limit at t=0, $\lambda'(0)=\frac{w^HEu}{w^HEu}$

$$\lambda'(0) = rac{w^H E u}{w^H u}$$

- Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.
- Actual conditioning of an eigenvalue, given a perturbation "in the direction of E" is $|\lambda'(0)|$.
- In practice only estimate of ||E|| is available, so

$$|\lambda'(0)| \leq rac{\|Eu\|_2 \|w\|_2}{|(u,w)|} \leq \|E\|_2 rac{\|u\|_2 \|w\|_2}{|(u,w)|}$$

lacksquare $\Lambda(A)=\{1,2,3\}.$ Right and left eigenvectors associated with $\lambda_1 = 1$:

$$u = egin{pmatrix} 0.3162 \ -0.9487 \ 0.0 \end{pmatrix} \quad ext{and} \quad w = egin{pmatrix} 0.6810 \ 0.2253 \ 0.6967 \end{pmatrix}$$

So:

$$\mathsf{cond}(\lambda_1) pprox 603.64$$

Perturbing a_{11} to -149.01 yields the spectrum:

$$\{0.2287, 3.2878, 2.4735\}.$$

- as expected..
- ➤ For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since $cond(\lambda) = 1$.

Definition. The condition number of a simple eigenvalue λ of an arbitrary matrix A is defined by

$$\mathsf{cond}(\lambda) = rac{1}{\cos heta(u,w)}$$

in which u and w^H are the right and left eigenvectors, respectively, associated with λ .

Consider the matrix Example: |

$$A = \left(egin{array}{cccc} -149 & -50 & -154 \ 537 & 180 & 546 \ -27 & -9 & -25 \end{array}
ight)$$

Perturbations with Multiple Eigenvalues - Example

$$lacksymbol{
ightharpoonup} A = egin{pmatrix} 1 & 2 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{pmatrix} = I_3 + egin{pmatrix} 0 & 2 & 0 \ 0 & 0 & 2 \ 0 & 0 & 0 \end{pmatrix} = I + 2J$$

- ▶ Worst case perturbation is in 3,1 position: set $J_{31} = \epsilon$.
- Eigenvalues of perturbed J are the roots of $p(\mu) = \mu^3 - 2 \cdot 2 \cdot \epsilon$
- ▶ Hence eigenvalues of perturbed A are $1 + O(\sqrt[3]{\epsilon})$.
- ➤ In general, if index of eigenvalue (dimension of largest Jordan block) is k, then an $O(\epsilon)$ perturbation to A can lead to $O(\sqrt[k]{\epsilon})$ change in eigenvalue. Simple eigenvalue case corresponds to k=1.

The power method

- ▶ Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ then normalize.
- ➤ Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method

- 1. Choose a nonzero initial vector $v^{(0)}$.
- 2. For $k = 1, 2, \ldots$, until convergence, Do:
- 3. $v^{(k)}=\frac{1}{\alpha_k}Av^{(k-1)}$ where
- 4. $\alpha_k = \operatorname{argmax}_{i=1,\dots,n} |(Av^{(k-1)})_i|$
- 5. EndDo
- ightharpoonup $\operatorname{argmax}_{i=1,..,n}|\mathbf{x}_i|\equiv$ the component x_i with largest modulus

10-17 _____ Csci 5304 - November 18, 2013

ightharpoonup Note that $A^ku_i=\lambda_i^ku_i$

$$egin{aligned} v^{(k)} &= rac{1}{scaling} \; imes \; \sum_{i=1}^n \lambda_i^k \gamma_i u_i \ &= rac{1}{scaling} \; imes \; \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^n \lambda_i^k \gamma_i^k u_i
ight] \ &= rac{1}{scaling'} \; imes \; \left[u_1 + \sum_{i=2}^n \left(rac{\lambda_i}{\lambda_1}
ight)^k rac{\gamma_i}{\gamma_1} u_i
ight] \end{aligned}$$

- ➤ Second term inside bracket converges to zero. QED
- ➤ Proof suggests that the convergence factor is given by

$$ho_D = rac{|\lambda_2|}{|\lambda_1|}$$

where λ_2 is the second largest eigenvalue in modulus.

Convergence of the power method

THEOREM Assume there is one eigenvalue λ_1 of A, s.t. $\lambda_1 = \max_j |\lambda_j|$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in $\operatorname{Null}(A-\lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \to \lambda_1$.

Proof in the diagonalizable case.

- $ightharpoonup v^{(k)}$ is = vector $A^k v^{(0)}$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.
- **Decompose initial vector** $v^{(0)}$ in the eigenbasis as:

$$v^{(0)} = \sum_{i=1}^n \gamma_i u_i$$

 \triangleright Each u_i is an eigenvector associated with λ_i .

18 Csci 5304 – November 18, 2013

Example: Consider a 'Markov Chain' matrix of size n=55. Dominant eigenvalues are $\lambda=1$ and $\lambda=-1$ the power method applied directly to A fails. (Why?)

We can consider instead the matrix I+A The eigenvalue $\lambda=1$ is then transformed into the (only) dominant eigenvalue $\lambda=2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	0.639D-01	0.276D-01	1.02591636
40	0.129D-01	0.513D-02	1.00680780
60	0.192D-02	0.808D-03	1.00102145
80	0.280D-03	0.121D-03	1.00014720
100	0.400D-04	0.174D-04	1.00002078
120	0.562D-05	0.247D-05	1.00000289
140	0.781D-06	0.344D-06	1.00000040
161	0.973D-07	0.430D-07	1.00000005

19 Csci 5304 – November 18, 201

The Shifted Power Method

In previous example shifted A into B=A+I before applying power method. We could also iterate with $B(\sigma)=A+\sigma I$ for any positive σ

Example: With $\sigma=0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20			1.00524001
40	0.729D-03	0.210D-03	1.00016755
60	0.183D-04	0.509D-05	1.00000446
80	0.437D-06	0.118D-06	1.0000011
88	0.971D-07	0.261D-07	1.00000002

10-21 Csci 5304 – November 18, 2013

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

- ▶ Idea: use the power method on A^{-1} .
- ➤ Will compute the eigenvalues closest to zero.
- ► Shift-and-invert Use power method on $(A \sigma I)^{-1}$. ► will compute eigenvalues closest to σ .
- ➤ Advantages: fast convergence in general.
- ▶ Drawbacks: need to factor A (or $A \sigma I$) into LU.

- **Question:** What is the best shift-of-origin σ to use?
- ➤ Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

$$\lambda_1 > \lambda_2 \geq \lambda_2 \geq \cdots \geq \lambda_n$$

Then:

The value of σ which yields the best convergence factor is:

$$\sigma_{opt} = rac{\lambda_2 + \lambda_n}{2}$$

Plot a typical function $\phi(\sigma) = \rho(A - \sigma I)$ as a function of σ . Determine the minimum value and prove the above result.

0-22 _____ Csci 5304 - November 18, 2013