UltraGroth: Interactive Groth16

August 29, 2025

Dmytro Zakharov Distributed Lab

distributedlab.com/

github.com/rarimo/ultragroth

Why we should care?

Problem

Write a circuit that checks whether x is a 128-bit integer.

Problem

Write a circuit that checks whether x is a 128-bit integer.

Current R1CS (and, consequently, Circom's) approach is to conduct the following steps:

• Find bit decomposition of x off-circuit: say, $x = \sum_{i=0}^{127} x_i 2^i$.

Problem

Write a circuit that checks whether x is a 128-bit integer.

Current R1CS (and, consequently, Circom's) approach is to conduct the following steps:

- Find bit decomposition of x off-circuit: say, $x = \sum_{i=0}^{127} x_i 2^i$.
- Check that $x_i \in \{0, 1\}$: impose 128 constraints $x_i(1 x_i) = 0$.

Problem

Write a circuit that checks whether x is a 128-bit integer.

Current R1CS (and, consequently, Circom's) approach is to conduct the following steps:

- Find bit decomposition of x off-circuit: say, $x = \sum_{i=0}^{127} x_i 2^i$.
- Check that $x_i \in \{0,1\}$: impose 128 constraints $x_i(1-x_i)=0$.

Result: 128 constraints per 128-bit range check.

Problem

Write a circuit that checks whether x is a 128-bit integer.

Current R1CS (and, consequently, Circom's) approach is to conduct the following steps:

- Find bit decomposition of x off-circuit: say, $x = \sum_{i=0}^{127} x_i 2^i$.
- Check that $x_i \in \{0,1\}$: impose 128 constraints $x_i(1-x_i)=0$.

Result: 128 constraints per 128-bit range check.

Question

Suppose one needs to conduct 10000 such range checks. How many constraints does one need to implement this?

Problem

Write a circuit that checks whether x is a 128-bit integer.

Current R1CS (and, consequently, Circom's) approach is to conduct the following steps:

- Find bit decomposition of x off-circuit: say, $x = \sum_{i=0}^{127} x_i 2^i$.
- Check that $x_i \in \{0, 1\}$: impose 128 constraints $x_i(1 x_i) = 0$.

Result: 128 constraints per 128-bit range check.

Question

Suppose one needs to conduct 10000 such range checks. How many constraints does one need to implement this?

Using quite unsophisticated math, $128 \times 10000 = 1.28 \text{ mln}$.

Using lookup checks, we can implement the same logic in just $\approx 100 k$ constraints! Here is how.

Using lookup checks, we can implement the same logic in just $\approx 100 k$ constraints! Here is how.

Assumption. Assume we can check whether the given signal s is the w-bit integer in a single constraint. But this requires a one-time cost of 2^w constraints. How does it help us?

Using lookup checks, we can implement the same logic in just $\approx 100 k$ constraints! Here is how.

Assumption. Assume we can check whether the given signal s is the w-bit integer in a single constraint. But this requires a one-time cost of 2^w constraints. How does it help us?

Suppose we use w := 16. Then, our algorithm proceeds as follows:

Using lookup checks, we can implement the same logic in just $\approx 100 k$ constraints! Here is how.

Assumption. Assume we can check whether the given signal s is the w-bit integer in a single constraint. But this requires a one-time cost of 2^w constraints. How does it help us?

Suppose we use w := 16. Then, our algorithm proceeds as follows:

• We pay $2^{16} \approx 65.5 k$ for a one-time commitment.

Using lookup checks, we can implement the same logic in just \approx 100k constraints! Here is how.

Assumption. Assume we can check whether the given signal s is the w-bit integer in a single constraint. But this requires a one-time cost of 2^w constraints. How does it help us?

Suppose we use w := 16. Then, our algorithm proceeds as follows:

- We pay $2^{16} \approx 65.5 \text{k}$ for a one-time commitment.
- We find w-width decomposition of x: say, $x = \sum_{i=0}^{7} x_i 2^{wi}$.

Using lookup checks, we can implement the same logic in just \approx 100k constraints! Here is how.

Assumption. Assume we can check whether the given signal s is the w-bit integer in a single constraint. But this requires a one-time cost of 2^w constraints. How does it help us?

Suppose we use w := 16. Then, our algorithm proceeds as follows:

- We pay $2^{16} \approx 65.5 \text{k}$ for a one-time commitment.
- We find w-width decomposition of x: say, $x = \sum_{i=0}^{7} x_i 2^{wi}$.
- We check whether x_i is a 16-bit integer. Since we have 8 chunks, this costs 8 constraints.

Using lookup checks, we can implement the same logic in just \approx 100k constraints! Here is how.

Assumption. Assume we can check whether the given signal s is the w-bit integer in a single constraint. But this requires a one-time cost of 2^w constraints. How does it help us?

Suppose we use w := 16. Then, our algorithm proceeds as follows:

- We pay $2^{16} \approx 65.5 \text{k}$ for a one-time commitment.
- We find w-width decomposition of x: say, $x = \sum_{i=0}^{7} x_i 2^{wi}$.
- We check whether x_i is a 16-bit integer. Since we have 8 chunks, this costs 8 constraints.

Result: We pay 65.5k constraints once and then every 128-bit range checks costs only 8 constraints instead of 128!

Illustration

Let us illustrate this visually for a 16-bit range check over x!

Illustration

Let us illustrate this visually for a 16-bit range check over x!

4 constraints + one-time 2⁴ commitment

Illustration

Let us illustrate this visually for a 16-bit range check over x!

Example: 10000 such range checks would cost $16 \times 10000 = 160k$ constraints for a regular R1CS while $2^4 + 4 \times 10000 \approx 40k$ constraints over ZK system with lookups.

Applications

• Wrappings of non-native ZKP verifications: e.g., zk-STARKs, sumcheck-based approaches.

Applications

- Wrappings of non-native ZKP verifications: e.g., zk-STARKs, sumcheck-based approaches.
- Non-native field arithmetic: e.g., optimized ECDSA verification for Rarimo passport verification.

Applications

- Wrappings of non-native ZKP verifications: e.g., zk-STARKs, sumcheck-based approaches.
- Non-native field arithmetic: e.g., optimized ECDSA verification for Rarimo passport verification.
- And surely, zero-knowledge Machine Learning Bionetta.

	Constraints #	68.4K							
		00.41	66.7K	106.8K	126.8K	108.4K	187.7K	1.03M	2.50M
Bionetta P.	Proof Size (KB)	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
	PK (MB)	48.40	50.60	80.60	106.30	81.90	156.20	0.95GB	1.90GB
(Citradion)	/K (KB)	3.78	3.79	3.78	3.78	3.78	3.78	4.05	4.20
P.	Prove (s)	0.57	0.73	0.74	1.08	0.89	1.79	6.27	15.22
V	/erify (s)	0.006	0.005	0.005	0.006	0.006	0.005	0.006	0.006
C	Constraints #	29.0K	5.9K	522.4K	779.4K	543.0K	1.56M	12.01M	31.78M
Bionetta P.	Proof Size (KB)	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
(Groth16)	PK (MB)	21.30	10.20	396.20	560.20	409.30	1.2GB	≈9.0GB	≈23.8GB
(Grounto)	/K (KB)	3.65	3.65	3.65	3.65	3.65	3.65	≈ 4.0	≈ 4.0
P	Prove (s)	0.12	0.27	2.19	2.20	2.22	4.72	≈180	≈ 480
V	/erify (s)	0.006	0.006	0.006	0.006	0.006	0.005	≈0.005	≈0.006

Up to x12.7 boost in # of constraints!

Surprising result: if the circuit consists of L range-checks, each costing b constraints, using lookup protocol, you can reduce $\mathcal{O}(n)$ constraints (n = Lb) down to $\mathcal{O}(n/\log n)$.

Surprising result: if the circuit consists of L range-checks, each costing b constraints, using lookup protocol, you can reduce $\mathcal{O}(n)$ constraints (n = Lb) down to $\mathcal{O}(n/\log n)$.

Key question: how do we implement it in **Groth16?** Since PlonK and SumCheck already have them! (see plookup+logup).

Surprising result: if the circuit consists of L range-checks, each costing b constraints, using lookup protocol, you can reduce $\mathcal{O}(n)$ constraints (n = Lb) down to $\mathcal{O}(n/\log n)$.

Key question: how do we implement it in **Groth16?** Since PlonK and SumCheck already have them! (see plookup+logup).

Theorem (Some stuff from ZKDL Camp)

The inclusion check $\{z_i\}_{i\in[n]}\subseteq\{t_i\}_{i\in[v]}$ is satisfied if and only if there exists the set of multiplicities $\{\mu_i\}_{i\in[v]}$ where $\mu_i=\#\{j\in[n]:z_j=t_i\}$ such that for $\gamma\leftarrow$ \$ \mathbb{F} :

$$\sum_{i \in [n]} \frac{1}{\gamma + z_i} = \sum_{i \in [\nu]} \frac{\mu_i}{\gamma + t_i}$$

Surprising result: if the circuit consists of L range-checks, each costing b constraints, using lookup protocol, you can reduce $\mathcal{O}(n)$ constraints (n = Lb) down to $\mathcal{O}(n/\log n)$.

Key question: how do we implement it in **Groth16?** Since PlonK and SumCheck already have them! (see plookup+logup).

Theorem (Some stuff from ZKDL Camp)

The inclusion check $\{z_i\}_{i\in[n]}\subseteq\{t_i\}_{i\in[v]}$ is satisfied if and only if there exists the set of multiplicities $\{\mu_i\}_{i\in[v]}$ where $\mu_i=\#\{j\in[n]:z_i=t_i\}$ such that for $\gamma\leftarrow$ \$ \mathbb{F} :

$$\sum_{i \in [n]} \frac{1}{\gamma + z_i} = \sum_{i \in [v]} \frac{\mu_i}{\gamma + t_i}$$

High-level idea: We can: (1) compute $\{\mu_i\}_{i\in[v]}$ off-circuit, (2) write circuit in n+2v constraints, given γ signal is passed randomly.

Circom-like Implementation

```
signal input t[M];
                               // The lookup table
1
        signal random input gamma; // Random challenge value
        signal input z[N]; // The array of values to check
3
4
5
        var sum_z, sum_t = 0;
        for (var i = 0: i < N: i++) {
6
            inv_z[i] \le 1 / (z[i] + gamma);
            sum_z += inv_z[i]; // Compute the left-hand side
8
        }
9
10
11
        for (var j = 0; j < M; j++) {
12
            mu[j] <-- 0; // Compute the multiplicities off-circuit
            for (var k = 0: k < N: k++) {
13
                mu[j] += (t[j] == z[k]);
14
15
            inv_t[i] <== mu[j] / (t[j] + gamma);</pre>
16
            sum_t += int_v[i]; // Compute the right-hand side
17
18
19
        sum_z === sum_t; // Check both sides are equal
20
```

Problem

```
signal input t[M];
                           // The lookup table
1
        signal random input gamma; // Random challenge value
 2
        signal input z[N];
                           // The array of values to check
3
4
5
        var sum_z, sum_t = 0;
        for (var i = 0: i < N: i++) {
6
            inv_z[i] <== 1 / (z[i] + gamma);
            sum z += inv z[i]: // Compute the left-hand side
8
        }
9
10
        for (var j = 0; j < M; j++) {
11
            mu[j] <-- 0; // Compute the multiplicities off-circuit
12
            for (var k = 0; k < N; k++) {
13
14
                mu[j] += (t[j] == z[k]);
15
            inv_t[i] <== mu[j] / (t[j] + gamma);
16
17
            sum_t += int_t[i]; // Compute the right-hand side
        }
18
19
        sum_z === sum_t; // Check both sides are equal
20
```

UltraGroth Explained

 First paper on this problem is "MIRAGE: Succinct Arguments for Randomized Algorithms with Applications to Universal zk-SNARKs", published in 2020.

- First paper on this problem is "MIRAGE: Succinct Arguments for Randomized Algorithms with Applications to Universal zk-SNARKs", published in 2020.
- Unaware of this protocol, in 2023 Lev Soukhanov published the post on UltraGroth, where he invented multi-round MIRAGE.

- First paper on this problem is "MIRAGE: Succinct Arguments for Randomized Algorithms with Applications to Universal zk-SNARKs", published in 2020.
- Unaware of this protocol, in 2023 Lev Soukhanov published the post on UltraGroth, where he invented multi-round MIRAGE.
- Likely, unaware of Lev Soukhanov's blog, Alex Ozdemir, Evan Laufer, Dan Boneh published "Volatile and persistent memory for zkSNARKs via algebraic interactive proofs" paper in 2025.

- First paper on this problem is "MIRAGE: Succinct Arguments for Randomized Algorithms with Applications to Universal zk-SNARKs", published in 2020.
- Unaware of this protocol, in 2023 Lev Soukhanov published the post on UltraGroth, where he invented multi-round MIRAGE.
- Likely, unaware of Lev Soukhanov's blog, Alex Ozdemir, Evan Laufer, Dan Boneh published "Volatile and persistent memory for zkSNARKs via algebraic interactive proofs" paper in 2025.
- Well... Their construction, called MIRAGE+, is exactly an **UltraGroth**, published back in 2023.

- First paper on this problem is "MIRAGE: Succinct Arguments for Randomized Algorithms with Applications to Universal zk-SNARKs", published in 2020.
- Unaware of this protocol, in 2023 Lev Soukhanov published the post on UltraGroth, where he invented multi-round MIRAGE.
- Likely, unaware of Lev Soukhanov's blog, Alex Ozdemir, Evan Laufer, Dan Boneh published "Volatile and persistent memory for zkSNARKs via algebraic interactive proofs" paper in 2025.
- Well... Their construction, called MIRAGE+, is exactly an **UltraGroth**, published back in 2023.

One important consequence

The protocol is **safe**. It is sound and zero-knowledge! And it is now proven in **three** different independent papers.

UltraGroth Performance

Now, let us recap the **Groth16** performance over the circuit of size n and statement size ℓ .

• Prover work: MSM of size $\mathcal{O}(n)$ over \mathbb{G}_1 and \mathbb{G}_2 .

UltraGroth Performance

Now, let us recap the **Groth16** performance over the circuit of size n and statement size ℓ .

- Prover work: MSM of size $\mathcal{O}(n)$ over \mathbb{G}_1 and \mathbb{G}_2 .
- Proof size: $2\mathbb{G}_1 + \mathbb{G}_2$.

UltraGroth Performance

Now, let us recap the **Groth16** performance over the circuit of size n and statement size ℓ .

- Prover work: MSM of size $\mathcal{O}(n)$ over \mathbb{G}_1 and \mathbb{G}_2 .
- Proof size: $2\mathbb{G}_1 + \mathbb{G}_2$.
- Verifier work: 3 pairings $+ \mathcal{O}(\ell) \mathbb{G}_1$ exps.

UltraGroth Performance

Now, let us recap the **Groth16** performance over the circuit of size n and statement size ℓ .

- Prover work: MSM of size $\mathcal{O}(n)$ over \mathbb{G}_1 and \mathbb{G}_2 .
- Proof size: $2\mathbb{G}_1 + \mathbb{G}_2$.
- Verifier work: 3 pairings + $\mathcal{O}(\ell)$ \mathbb{G}_1 exps.

UltraGroth performance in turn:

• Prover work: MSM of size $\mathcal{O}(n/\log n)$ over \mathbb{G}_1 and \mathbb{G}_2 .

UltraGroth Performance

Now, let us recap the **Groth16** performance over the circuit of size n and statement size ℓ .

- Prover work: MSM of size $\mathcal{O}(n)$ over \mathbb{G}_1 and \mathbb{G}_2 .
- Proof size: $2\mathbb{G}_1 + \mathbb{G}_2$.
- Verifier work: 3 pairings + $\mathcal{O}(\ell)$ \mathbb{G}_1 exps.

UltraGroth performance in turn:

- Prover work: MSM of size $\mathcal{O}(n/\log n)$ over \mathbb{G}_1 and \mathbb{G}_2 .
- Proof size: $3\mathbb{G}_1 + \mathbb{G}_2$ (additional 64 bytes).

UltraGroth Performance

Now, let us recap the **Groth16** performance over the circuit of size n and statement size ℓ .

- Prover work: MSM of size $\mathcal{O}(n)$ over \mathbb{G}_1 and \mathbb{G}_2 .
- Proof size: $2\mathbb{G}_1 + \mathbb{G}_2$.
- Verifier work: 3 pairings + $\mathcal{O}(\ell)$ \mathbb{G}_1 exps.

UltraGroth performance in turn:

- Prover work: MSM of size $\mathcal{O}(n/\log n)$ over \mathbb{G}_1 and \mathbb{G}_2 .
- **Proof size:** $3\mathbb{G}_1 + \mathbb{G}_2$ (additional 64 bytes).
- Verifier work: 4 pairings $+ \mathcal{O}(\ell) \mathbb{G}_1 \exp s + 1$ hashing.

Problem: Compared to PlonK or SumCheck, *Groth16* itself is not derived from the interactive protocol (via Fiat-Shamir).

Problem: Compared to PlonK or SumCheck, *Groth16* itself is not derived from the interactive protocol (via Fiat-Shamir).

Recap: Proof in Groth16 consists of three points $g_1^{a(\tau)}$, $g_1^{c(\tau)}$, $g_2^{b(\tau)}$:

$$a(X) = \alpha + \sum_{i \in [n]} z_i \ell_i(X) + r\delta, \quad b(X) = \beta + \sum_{i \in [n]} z_i r_i(X) + s\delta,$$

$$c(X) = \delta^{-1} \left(\sum_{i \in \mathcal{I}_W} z_i \zeta_i(X) + h(X)t(X) \right) + a(X)s + b(X)r - rs\delta.$$

Problem: Compared to PlonK or SumCheck, *Groth16* itself is not derived from the interactive protocol (via Fiat-Shamir).

Recap: Proof in Groth16 consists of three points $g_1^{a(\tau)}$, $g_1^{c(\tau)}$, $g_2^{b(\tau)}$:

$$a(X) = \alpha + \sum_{i \in [n]} z_i \ell_i(X) + r\delta, \quad b(X) = \beta + \sum_{i \in [n]} z_i r_i(X) + s\delta,$$

$$c(X) = \delta^{-1} \left(\sum_{i \in \mathcal{I}_W} z_i \zeta_i(X) + h(X) t(X) \right) + a(X) s + b(X) r - r s \delta.$$

The verification equation is:

$$e(\pi_A, \pi_B) = e(g_1^{\alpha}, g_2^{\beta}) \cdot e(g_1^{i(\tau)}, g_2^{\gamma}) \cdot e(\pi_C, g_2^{\delta}).$$

for $\pi_A = g_1^{a(\tau)}$, $\pi_C = g_1^{c(\tau)}$, $\pi_B = g_2^{b(\tau)}$, i(X) is a polynomial derived from the public statement.

• Do not touch a(X) and b(X).

- Do not touch a(X) and b(X).
- Split R1CS into two rounds: *round 0* computes the circuit without lookup check, *round 1* imposes lookup check.

- Do not touch a(X) and b(X).
- Split R1CS into two rounds: *round 0* computes the circuit without lookup check, *round 1* imposes lookup check.
- Split c(X) into $c_0(X)$ and $c_1(X)$.

- Do not touch a(X) and b(X).
- Split R1CS into two rounds: *round 0* computes the circuit without lookup check, *round 1* imposes lookup check.
- Split c(X) into $c_0(X)$ and $c_1(X)$.
- $c_0(X)$ is derived from *round 0*'s witness.

- Do not touch a(X) and b(X).
- Split R1CS into two rounds: *round 0* computes the circuit without lookup check, *round 1* imposes lookup check.
- Split c(X) into $c_0(X)$ and $c_1(X)$.
- $c_0(X)$ is derived from *round 0*'s witness.
- Form point $\pi_C^{\langle 0 \rangle} \leftarrow g_1^{c_0(\tau)}$ and sample randomness $\gamma \leftarrow \mathcal{H}(\pi_C^{\langle 0 \rangle})$.

- Do not touch a(X) and b(X).
- Split R1CS into two rounds: *round 0* computes the circuit without lookup check, *round 1* imposes lookup check.
- Split c(X) into $c_0(X)$ and $c_1(X)$.
- $c_0(X)$ is derived from *round 0*'s witness.
- Form point $\pi_C^{\langle 0 \rangle} \leftarrow g_1^{c_0(\tau)}$ and sample randomness $\gamma \leftarrow \mathcal{H}(\pi_C^{\langle 0 \rangle})$.
- Compute witness for round 1 using γ , form $c_1(X)$ and thus compute $\pi_C^{\langle 1 \rangle} \leftarrow g_1^{c_1(\tau)}$.

- Do not touch a(X) and b(X).
- Split R1CS into two rounds: *round 0* computes the circuit without lookup check, *round 1* imposes lookup check.
- Split c(X) into $c_0(X)$ and $c_1(X)$.
- $c_0(X)$ is derived from *round 0*'s witness.
- Form point $\pi_C^{\langle 0 \rangle} \leftarrow g_1^{c_0(\tau)}$ and sample randomness $\gamma \leftarrow \mathcal{H}(\pi_C^{\langle 0 \rangle})$.
- Compute witness for round 1 using γ , form $c_1(X)$ and thus compute $\pi_C^{\langle 1 \rangle} \leftarrow g_1^{c_1(\tau)}$.
- Output proof as $\pi \leftarrow (\pi_A, \pi_C^{\langle 0 \rangle}, \pi_C^{\langle 1 \rangle}, \pi_B)$.

- Do not touch a(X) and b(X).
- Split R1CS into two rounds: *round 0* computes the circuit without lookup check, *round 1* imposes lookup check.
- Split c(X) into $c_0(X)$ and $c_1(X)$.
- $c_0(X)$ is derived from *round 0*'s witness.
- Form point $\pi_C^{\langle 0 \rangle} \leftarrow g_1^{c_0(\tau)}$ and sample randomness $\gamma \leftarrow \mathcal{H}(\pi_C^{\langle 0 \rangle})$.
- Compute witness for round 1 using γ , form $c_1(X)$ and thus compute $\pi_C^{\langle 1 \rangle} \leftarrow g_1^{c_1(\tau)}$.
- Output proof as $\pi \leftarrow (\pi_A, \pi_C^{\langle 0 \rangle}, \pi_C^{\langle 1 \rangle}, \pi_B)$.

The verification equation is:

$$e(\pi_A, \pi_B) = e(g_1^{\alpha}, g_2^{\beta}) \cdot e(g_1^{i(\tau)}, g_2^{\gamma}) \cdot e(\pi_C^{\langle 0 \rangle}, g_2^{\delta_0}) \cdot e(\pi_C^{\langle 1 \rangle}, g_2^{\delta}).$$

- Do not touch a(X) and b(X).
- Split R1CS into two rounds: *round 0* computes the circuit without lookup check, *round 1* imposes lookup check.
- Split c(X) into $c_0(X)$ and $c_1(X)$.
- $c_0(X)$ is derived from *round 0*'s witness.
- Form point $\pi_C^{\langle 0 \rangle} \leftarrow g_1^{c_0(\tau)}$ and sample randomness $\gamma \leftarrow \mathcal{H}(\pi_C^{\langle 0 \rangle})$.
- Compute witness for round 1 using γ , form $c_1(X)$ and thus compute $\pi_C^{\langle 1 \rangle} \leftarrow g_1^{c_1(\tau)}$.
- Output proof as $\pi \leftarrow (\pi_A, \pi_C^{\langle 0 \rangle}, \pi_C^{\langle 1 \rangle}, \pi_B)$.

The verification equation is:

$$e(\pi_A, \pi_B) = e(g_1^{\alpha}, g_2^{\beta}) \cdot e(g_1^{i(\tau)}, g_2^{\gamma}) \cdot e(\pi_C^{\langle 0 \rangle}, g_2^{\delta_0}) \cdot e(\pi_C^{\langle 1 \rangle}, g_2^{\delta}).$$

Note: This construction can be easily generalized for d > 1 rounds.

 Implemented a single-round UltraGroth (essentially, a Mirage protocol). Credits to Artem Sdobnov, Vitalii Volovyk, Yevhenii Sekhin, and Illia Dovgopoly.

- Implemented a single-round UltraGroth (essentially, a Mirage protocol). Credits to Artem Sdobnov, Vitalii Volovyk, Yevhenii Sekhin, and Illia Dovgopoly.
 - o Forked rapidsnark.

- Implemented a single-round UltraGroth (essentially, a Mirage protocol). Credits to Artem Sdobnov, Vitalii Volovyk, Yevhenii Sekhin, and Illia Dovgopoly.
 - o Forked rapidsnark.
 - Forked snarkjs for witness export/verify functions and smart-contract autogeneration.

- Implemented a single-round UltraGroth (essentially, a Mirage protocol). Credits to Artem Sdobnov, Vitalii Volovyk, Yevhenii Sekhin, and Illia Dovgopoly.
 - o Forked rapidsnark.
 - Forked snarkjs for witness export/verify functions and smart-contract autogeneration.
 - Thanks to Ivan Lele, we even have a Swift SDK for that!

- Implemented a single-round UltraGroth (essentially, a Mirage protocol). Credits to Artem Sdobnov, Vitalii Volovyk, Yevhenii Sekhin, and Illia Dovgopoly.
 - o Forked rapidsnark.
 - Forked snarkjs for witness export/verify functions and smart-contract autogeneration.
 - o Thanks to Ivan Lele, we even have a Swift SDK for that!
- Proved completeness, soundness, and zero-knowledge for general d-round UltraGroth. Formalized everything properly.

- Implemented a single-round UltraGroth (essentially, a Mirage protocol). Credits to Artem Sdobnov, Vitalii Volovyk, Yevhenii Sekhin, and Illia Dovgopoly.
 - o Forked rapidsnark.
 - Forked snarkjs for witness export/verify functions and smart-contract autogeneration.
 - o Thanks to Ivan Lele, we even have a Swift SDK for that!
- Proved completeness, soundness, and zero-knowledge for general d-round UltraGroth. Formalized everything properly.
- Applied UltraGroth to Bionetta and obtained incredible results.

Any Questions?

