25 An electromagnetic wave is travelling through a vacuum.

What could be the wavelength and period of the electromagnetic wave?

|   | wavelength                       | period                           |  |
|---|----------------------------------|----------------------------------|--|
| Α | $1.2 \times 10^{-10}  \text{Tm}$ | 2.5 Ms                           |  |
| В | 1.2 pm                           | $2.5 \times 10^{11}  \text{Gs}$  |  |
| С | $1.2 \times 10^2 \text{pm}$      | $4.0 \times 10^{-10}  \text{ns}$ |  |
| D | $1.2\times10^3\mu m$             | 4.0 ns                           |  |

26 Light of frequency  $6.7 \times 10^{14}\,\text{Hz}$  in a vacuum is incident normally on a diffraction grating that contains  $4.0 \times 10^5\,\text{lines m}^{-1}$ .

What is the angle between the adjacent second and third order intensity maxima?

- **A** 12°
- **B** 21°
- **C** 33°
- **D** 54°
- 27 The siren of a moving police car emits a sound wave with a frequency of 440 Hz. A stationary observer hears sound of frequency 494 Hz. The speed of sound in the air is 340 m s<sup>-1</sup>.

What could be the speed and the direction of movement of the car?

- A 37 m s<sup>-1</sup> directly away from the observer
- **B** 37 m s<sup>-1</sup> directly towards the observer
- C 42 m s<sup>-1</sup> directly away from the observer
- $\mathbf{D}$  42 m s<sup>-1</sup> directly towards the observer
- **28** The diagram shows the shape at one instant in time of part of a stretched string as a wave travels along it from left to right.



What are the directions of the velocities of the points 1, 2 and 3 on the string at this instant in time?

|   | point 1       | point 2       | point 3       |
|---|---------------|---------------|---------------|
| Α | $\rightarrow$ | $\rightarrow$ | $\rightarrow$ |
| В | $\rightarrow$ | <b>←</b>      | $\rightarrow$ |
| С | <b>↑</b>      | $\downarrow$  | <b>↑</b>      |
| D | $\downarrow$  | $\uparrow$    | $\downarrow$  |