МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ "БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

Кафедра ИИТ

ОТЧЁТ

По лабораторной работе №3

«Предобучение нейронных сетей с использованием автоэнкодерного подхода»

Выполнил: Студент группы ИИ-22 Кузьмич В.Н. Проверил: Крощенко А.А. **Цель работы:** научиться осуществлять предобучение нейронных сетей с помощью автоэнкодерного подхода

Общее задание

- 1. Взять за основу любую сверточную или полносвязную архитектуру с количеством слоев более 3. Осуществить ее обучение (без предобучения) в соответствии с вариантом задания. Получить оценку эффективности модели, используя метрики, специфичные для решаемой задачи (например, MAPE для регрессионной задачи или F1/Confusion matrix для классификационной).
- 2. Выполнить обучение с предобучением, используя автоэнкодерный подход, алгоритм которого изложен в лекции. Условие останова (например, по количеству эпох) при обучении отдельных слоев с использованием автоэнкодера выбрать самостоятельно.
- 3. Сравнить результаты, полученные при обучении с/без предобучения, сделать выводы.
- 4. Оформить отчет по выполненной работе, загрузить исходный код и отчет в соответствующий репозиторий на github.

Ход работы

No	Выборка	Тип задачи	Целевая
			переменная
9	https://archive.ics.uci.edu/dataset/850/raisin	классификация	Class

Результат обучения модели без предобучения:

тезультитосу тенни модели остпредосу тенни:							
модель без пр	едобучения:						
	precision	recall	f1-score	support			
0	0.85	0.84	0.84	86			
1	0.85	0.86	0.86	94			
accuracy			0.85	180			
macro avg	0.85	0.85	0.85	180			
weighted avg	0.85	0.85	0.85	180			

Точность модели составляет 85%.

Результат обучения модели с предобучением:

	, ,	- 1 - 7		
Модель с пред	обучением:			
	precision	recall	f1-score	support
0	0.86	0.83	0.84	86
	0.00	0.05	0.01	
1	0.85	0.87	0.86	94
accuracy			0.85	180
macro avg	0.85	0.85	0.85	180
weighted avg	0.85	0.85	0.85	180

Точность модели составляет 85%.

Точность модели без предобучения: 0.8500 Точность модели с предобучением: 0.8500

Вывод: научился осуществлять предобучение нейронных сетей с помощью автоэнкодерного подхода.