Solutions to Hartshorne's Algebraic Geometry

Notes taken by 89hao

October 21, 2020 — May ?, 2020

Contents

1	Varieties			
	1.1	Affine Varieties	5	
	1.2	Projective Varieties	10	

4 CONTENTS

Chapter 1

Varieties

1.1 Affine Varieties

Solution 1.1.1. a. $A(Y) = k[x, y]/(y - x^2) = k[x, x^2] = k[x].$

- b. Suppose there is an isomorphism $\phi: A(Z) \to k[x]$, then $\phi(x)$ and $\phi(y)$ are polynomials of positive degree in k[x]. But $\phi(x)\phi(y) = \phi(xy) = 1$ implies $\deg(\phi(x)) = \deg(\phi(y)) = 0$, hence a contradiction.
- c. Let

$$f(x,y) = ax^2 + 2bxy + cy^2 + dx + ey + f.$$

It is easy to verify that for a = b = 0, it can be rewritten as

$$f(x,y) = \widetilde{x}\widetilde{y} - 1,$$

otherwise f(x,y)=0 would be a line or two lines not a conic. Hence we assume $a\neq 0$.

(a) If $b^2 - ac = 0$, choose $b = \sqrt{ac}(b = -\sqrt{ac}$ is similar), then $f(x, y) = (\sqrt{ax} + \sqrt{cy})^2 + dx + ey + f$. Let $t = \sqrt{ax} + \sqrt{cy}$, then

$$f(x,y) = t^2 + \widetilde{d}t + \widetilde{e}y + \widetilde{f}.$$

Take t as $t - \frac{\tilde{d}}{2}$, we can drop \tilde{d} , i.e.,

$$f(x,y) = t^2 + \widetilde{e}y + \widetilde{f}.$$

Here \widetilde{e} and \widetilde{f} is not the same as before. If $\widetilde{e} = 0$, then f(x, y) denotes a line or two lines, not a conic. Hence $\widetilde{e} \neq 0$, define $s = -(\widetilde{e}y + \widetilde{f})$, then

$$f(x,y) = g(t,s) = t^2 - s.$$

It implies that A(W) is isomorphic to A(Y).

(b) If $b^2 - ac \neq 0$, by some linear transformation (diagonalize matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ and translation) we can get

$$f(x,y) = u^2 + v^2 + d.$$

Here we notice that $d \neq 0$, without loss of generality let d = -1. Let t = u + iv, s = u - iv, we get

$$f(x,y) = g(t,s) = ts - 1.$$

This implies that A(W) is isomorphic to A(Z).

Remark. In fact it is an exercise to diagonalize the quadric form.

Solution 1.1.2. Let $x = t, y = t^2, z = t^3$, then we have the relation

$$y = x^2, z = x^3.$$

It is direct to check $Y = Z(y - x^2, z - x^3)$, hence $A(Y) = k[x, y, z]/(y - x^2, z - x^3)$. Define the map

$$\phi: A(Y) \longrightarrow k[t]$$

$$f(x, y, z) \longmapsto \phi(f(x, y, z)) = f(t, t^2, t^3).$$

It is an isomorphism and $\dim A(Y) = \dim k[t] = 1$.

Remark. From now on, we will write $A(Y) = k[x, y, z]/(y - x^2, z - x^3) = k[x, x^2, x^3] = k[x]$ directly.

- **Solution 1.1.3.** a. If $x \neq 0$, then z 1 = 0 and $x^2 y = 0$, let $Y_1 = I(x^2 y, z 1)$. $A(Y_1) = k[x, y, z]/(x^2 y, z 1) = k[x, x^2, 1] = k[x]$, k[x] is integral hence $A(Y_1)$ is prime, i.e., Y_1 is irreducible.
 - b. If x=0, then yz=0, let $Y_2=I(x,y)$ and $Y_3=I(x,z)$. $A(Y_2)=k[x,y,z]/(x,y)=k[z]$ is integral hence Y_2 is irreducible, Y_3 the same as Y_2 . Then

$$Y = Y_1 \cup Y_2 \cup Y_3$$

where Y_1, Y_2, Y_3 are irreducible.

Solution 1.1.4. Let Z(xy-1) be a closed set in Zariski topology. Closed sets in \mathbb{A}^1 are finite points or the whole space, hence closed sets in product topology are union of finite points and finite lines or the whole space. But Z(xy-1) is not like this, hence not closed in product topology.

7

Solution 1.1.5. The "only if" part is obvious. Suppose B is a finitely generated k-algebra with no nilpotent lements and generated by $\{a_1, a_2, \dots, a_n\}$, Define the map

$$\phi: k[x_1, x_2, \cdots, x_n] \longrightarrow B$$
$$f(x_1, x_2, \cdots, x_n) \longmapsto f(a_1, a_2, \cdots, a_n).$$

Denote $I = \ker \phi$, then $k[x_1, x_2, \dots, x_n]/I \cong B$. Since B has no nilpotent elements, I is a radical ideal and $k[x_1, x_2, \dots, x_n]/I$ is an affine coordinate ring.

Solution 1.1.6. Suppose U is an open subset of an irreducible topological space X. If $\overline{U} \neq X$, then $X = \overline{U} \cup (X \setminus U)$, this makes a contradiction, hnce U is dense in X.

Let Y be a subset of X and irreducible in its induced topology. Let $\overline{Y} = Y_1 \cup Y_2$ where Y_1, Y_2 are closed in X. We have $Y = (Y_1 \cap Y) \cup (Y_2 \cap Y)$, by assumption $Y_1 \cap Y = \emptyset$ or $Y_2 \cap Y = \emptyset$. Without loss of generality, we choose $Y_2 \cap Y = \emptyset$, then $Y = Y_1 \cap Y$. This implies $Y \subset Y_1$ hence $\overline{Y} \subset Y_1$. Since we did not make further assumptions except closedness for Y_1 and Y_2 , it simply says that \overline{Y} can not be the union of two proper closed subsets, hence \overline{Y} is irreducible.

Solution 1.1.7. a. (i) \Leftrightarrow (iii) and (ii) \Leftrightarrow (iiii) are obvious. We only need to prove (i) \Leftrightarrow (ii).

(i) \Rightarrow (ii) Let \mathcal{U} be a nonempty family of closed subsets. Choose $X_1 \in \mathcal{U}$, if it is not minimal, then there exists X_2 such that $X_1 \supset X_2$, again if X_2 is not minimal, there exists X_3 such that $X_1 \supset X_2 \supset X_3$. Doing it repeatedly we get a descending chain $X_1 \supset X_2 \supset X_2 \supset \cdots$. Since X is noetherian, there must be $X_n = X_{n+1} = \cdots$ for some positive interger n. Then X_n is a minimal element of \mathcal{U} . (ii) \Rightarrow (i) Let $X_1 \supset X_2 \supset \cdots$ be a descending chain of closed subsets of X. By (ii), there exists a minimal element, say X_n , since $X_m \subset X_n$ for $m \geq n$, we must have $X_n = X_m$. Hence the chain is stationary.

- b. Let $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ be an open cover. Let $\mathcal{M}:=\{\bigcup_{{\lambda}\in\Lambda'}U_{\lambda}|\Lambda' \text{ is a finite subset of }\Lambda\}$. By (a)(iv) there exists a maximal element $U\in\mathcal{M}$. It is sufficient to illustrate that U=X. If not, there must be an open subset $U_{\lambda'}\not\subset U$. Then $U\cup U_{\lambda'}\in\mathcal{M}$ and $U\subsetneq U\cup U_{\lambda'}$. This contradicts to the choice of U.
- c. Let Y be a subset of X. If not, there exists an infinite descending chain of closed subsets of Y

$$Y_1 \supseteq Y_2 \supseteq Y_3 \supseteq \cdots$$

Since $Y_i, i \in \mathbb{N}$ is a closed subset of Y induced by the topology of X, there exists a closed subset X_i' of X such that $Y_i = X_i' \cap Y$. Let $X_i = \bigcap_{j=1}^i X_j'$, we have $Y_i = X_i \cap Y$ and

$$X_1 \supseteq X_2 \supseteq X_3 \supseteq \cdots$$
.

Otherwise, say $X_n = X_{n+1}$, then $Y_n = Y_{n+1}$. This implies that X is non-noetherian.

d. Suppose X is noetherian and Hausdorff. Let Y be a closed subset of X, then X-Y is open. For all $x\in X-Y$ and $y\in Y$, there exists open neighbourhoods U_{xy} and V_{yx} of x and y such that $U_{xy}\cap V_{yx}=\varnothing$. Since $U_{xy}\cap (X-Y)$ is still open, we can assume $U_{xy}\subset X-Y$. Now fix $y\in Y$, $\{U_{xy}\}_{x\in X-Y}$ is an open cover of X-Y. By (c) and (d) we know that there exists a finite subcover, denoted by $\{U_{x_1y},U_{x_2y},\cdots,U_{x_ny}\}$. Then $V_y:=\bigcap_{i=1}^n V_{yx_i}$ has no commen points with X-Y, hence $V_y\subset Y$ and open. Then $Y=\bigcup_{y\in Y}V_y$ is open. Hence any closed subset of X is also open. Consider a single point set $\{x\}$, it is closed by Hausdorff condition, hence open. Then the topology of X is discrete.

If X is infinite, consider the following open ascending chain

$$\{x_1\} \subsetneq \{x_1, x_2\} \subsetneq \cdots$$
.

This chain is not stationary, this makes a contradiction.

Solution 1.1.8. Let H = Z(f), f by definition is an irreducible polynomial. Let W be an irreducible component of $Y \cap H$. Then I(W) is a minimal prime ideal of the principal ideal (f) in A(Y). By Krull's Hauptidealsatz, such I(W) has height one, so by dimension theorem A(Y)/I(W) has dimension r-1, by Proposition 1.7 $\dim W = r-1$. Hence $\dim Y \cap H = r-1$.

Solution 1.1.9. We need to prove that any minimal prime ideal \mathfrak{p} of \mathfrak{a} has height no more than r. We prove it by induction. For r=1 case, it is exactly Krull's Hauptidealsatz. Assume it is true for $r \leq n-1$, we show it is true for r=n. If not, we have a chain of prime ideals

$$\mathfrak{p} = \mathfrak{p}_{n+1} \supsetneq \mathfrak{p}_n \supsetneq \cdots \supsetneq \mathfrak{p}_1 \supsetneq \mathfrak{p}_0.$$

Since \mathfrak{p}_n is a minimal prime ideal of \mathfrak{a} . Let $\mathfrak{a} = (x_1, x_2, \dots, x_n)$. If $x_1 \in \mathfrak{p}_1$, then \mathfrak{p} is also a minimal prime ideal of $\mathfrak{p}_1 + \mathfrak{a}$, and this implies that $\mathfrak{p}/\mathfrak{p}_1$ is a minimal prime ideal of the ideal generated by $x_2 + \mathfrak{p}_1, x_3 + \mathfrak{p}_1, \dots, x_n + \mathfrak{p}_1$. The chain

$$\mathfrak{p}_{n+1}/\mathfrak{p}_1\supsetneq \mathfrak{p}_n/\mathfrak{p}_1\cdots\supsetneq \mathfrak{p}_1/\mathfrak{p}_1$$

then contradicts the induction hypothesis. Hence we only need to show that the chain

$$\mathfrak{p} = \mathfrak{p}_{n+1} \supsetneq \mathfrak{p}_n \supsetneq \cdots \supsetneq \mathfrak{p}_1 \supsetneq \mathfrak{p}_0.$$

can be modified such that $x_1 \in \mathfrak{p}_1$. Suppose that $x_1 \in \mathfrak{p}_k$ but not in \mathfrak{p}_{k-1} for $k \geq 2$. It will suffice to show that there exists a prime ideal strictly between \mathfrak{p}_k and \mathfrak{p}_{k-2}

that contain x_1 , then we may use this prime ideal instead of \mathfrak{p}_{k-1} . By doing this repeatedly we can get a chain such that $x_1 \in \mathfrak{p}_1$.

To find such a prime ideal, we work in the local domain

$$D = R_{\mathfrak{p}_k}/\mathfrak{p}_{k-2}R_{\mathfrak{p}_k}.$$

The element x_1 has nonzero and nonunit image \overline{x}_1 in D. Let \mathfrak{p}' be a minimal prime of \overline{x}_1D . \mathfrak{p}' cannot be \mathfrak{p}_kD , for that ideal has height at least 2, and \mathfrak{p}' has height at most one by Krull's Hauptidealsatz. Then the inverse image of \mathfrak{p}' in R gives the required prime. Hence we can modify the chain such that $x_1 \in \mathfrak{p}_1$. This completes the proof.

Remark. It is the general version of Krull's Hauptidealsatz or called principal ideal theorem. In fact, the converse is also true: for a prime ideal \mathfrak{p} of height n, we can choose $x_1, x_2, \dots, x_n \in \mathfrak{p}$ such that \mathfrak{p} is a minimal prime ideal of (x_1, x_2, \dots, x_n) .

Solution 1.1.10. a. Let

$$Y_n \supseteq Y_{n-1} \supseteq \cdots \supseteq Y_1 \supseteq Y_0$$

be a chain of distinct irreducible closed subsets of Y. Let \overline{Y}_i be closure of Y_i in X for $i=0,1,\cdots,n$, then $\overline{Y}_n\cap Y=Y_n, \overline{Y}_{i+1}\supsetneq \overline{Y}_i$, and \overline{Y}_i is irreducible in X by Exercise 1.6. Therefore

$$\overline{Y}_n \supseteq \overline{Y}_{n-1} \supseteq \cdots \supseteq \overline{Y}_1 \supseteq \overline{Y}_0$$

b. Let

$$X_n \supseteq X_{n-1} \supseteq \cdots \supseteq X_1 \supseteq X_0$$

be a chain of distinct irreducible closed subsets of X. Since $\{U_i\}_{\in I}$ is an open cover of X, there exists an open set U_j such that $U_j \cap X_0 \neq 0$. By Exercise 1.6 U_j is dense in for $i = 0, 1, \dots, n$, and every $U_j \cap X_i$ is a closed irreducible subset of U_j . Therefore U_j has a chain

$$U_j \cap X_n \supseteq U_j \cap X_{n-1} \supseteq \cdots \supseteq U_j \cap X_1 \supseteq U_j \cap X_0.$$

This implies $\dim U_j \geq n$. Since the chain we choose is arbitrary, we have $\sup \dim U_i \geq \dim X$. Combining (a) we complete the proof.

- c. Let $X = \mathbb{Z}$ equipped with the discrete topology and $U_i = \{i\}$.
- d. Let

$$Y \supset Y_n \supseteq Y_{n-1} \supseteq \cdots \supseteq Y_0.$$

If $Y \subsetneq X$, then we can extend the above chain by adding X into the leading term, which leads to $\dim X > \dim Y$, a contradiction.

e. Let $X = \mathbb{Z}$ equipped with the topology such that every finite subset is closed.

Solution 1.1.11. Define a morphism

$$\phi: \mathbb{A}^1 \longrightarrow Y$$
$$t \longmapsto (t^3, t^4, t^5).$$

Then we get a cooresponding homomorphism

$$\phi^* : A(Y) \longrightarrow k[t]$$

$$f(x, y, z) \longmapsto f \circ \phi(t) = f(t^3, t^4, t^5).$$

It is an isomorphism. Therefore $\dim A(Y) = 1$ and $\dim I(Y)$ is prime of height 2. Now we will prove that I(Y) cannot be generated by 2 elements. Let $f = \sum_{i,i,k>0} a_{ijk} x^i y^j z^k$. Since $f(t^3, t^4, t^5) = 0$ we have

$$\sum_{i,j,k>0} a_{ijk} t^{3i+4j+5k}.$$

Hence for any integer $s \geq 0$.

$$\sum_{3i+4i+5k=s} a_{ijk} = 0.$$

Choose s=3 we get $a_{100}=0$, hence $x \notin I(Y)$. By doing the similar calculation we get $y,z\notin I(Y)$. Let s=8 we have

$$y^2 - xz \in I(Y).$$

It cannot be generated by two elements of I(Y) since $x, y, z, y^2, xz \notin I(Y)$.

Solution 1.1.12. Since \emptyset is not considered to be irreducible, we can choose $f = x^2 + y^2 + 1$. Or choose $f = (x^2 - 1)^2 + y^2$, it is irreducible and has two points, hence the zero set is not irreducible.

1.2 Projective Varieties

Solution 1.2.1. We use $Z_{\text{affine}}(\cdot)$ to denote the affine zero set of subset of S. Since f(P) = 0 for all $P \in Z(\mathfrak{a})$, we get f(p) = 0 for all $p \in Z_{\text{affine}}(\mathfrak{a})$. By the usual Nullstellensatz, we get $f \in \sqrt{\mathfrak{a}} \Rightarrow f^q \in \mathfrak{a}$ for some q > 0.

Solution 1.2.2. (i) \Leftrightarrow (ii) we notice that

$$Z(\mathfrak{a}) = \emptyset \iff Z_{\text{affine}}(\mathfrak{a}) = \{0\} \text{ or } Z_{\text{affine}}(\mathfrak{a}) = \emptyset.$$

If $Z_{\text{affine}}(\mathfrak{a}) = \{0\}$, then $\sqrt{\mathfrak{a}} = (x_0, x_1, \dots, x_n) = \bigoplus_{d>0} S_d$. If $Z_{\text{affine}}(\mathfrak{a}) = \emptyset$, then $\sqrt{\mathfrak{a}} = S$.

(ii) \Rightarrow (iii) If $\sqrt{\mathfrak{a}} = \bigoplus_{d>0} S_d$ or S, then for x_i there exists $q_i > 0$ such that $x_i^{q_i} \in \mathfrak{a}, i = 0, 1, \dots, n$. Let $d = \sum_{i=0}^n q_i$, then $S_d \subset \mathfrak{a}$. (iii) \Rightarrow (i) is obvious.

Solution 1.2.3. (a), (b) and (c) are obvious. For (d), since $Z(\mathfrak{a}) \neq 0$ and \mathfrak{a} is homogeneous, we get $I(Z_{\text{affine}}(\mathfrak{a})) \supset I(Z(\mathfrak{a})$. Since $I(Z_{\text{affine}}(\mathfrak{a})) = \sqrt{\mathfrak{a}}$, we only need to prove $I(Z_{\text{affine}}(\mathfrak{a})) \subset I(Z(\mathfrak{a}))$. Assume $f \in I(Z_{\text{affine}}(\mathfrak{a}))$, write $f = f_d + f_{d-1} + \cdots + f_1 + f_0, f_i \in S_i, i = 0, 1, \cdots, d$. Then $f(\lambda x) = f_d(x)\lambda^d + f_{d-1}(x)\lambda^{d-1} + \cdots + f_1(x)\lambda + f_0$. Let $x \in Z_{affine}(\mathfrak{a})$ and fix it, $g(\lambda) := f(\lambda x) = 0$ for all $\lambda \neq 0$, this implies $f_0 = f_1(x) = f_2(x) = \cdots = f_d(x) = 0$. It is true for all $x \in Z_{\text{affine}}(\mathfrak{a})$, hence $f_i(x) \in I(Z(\mathfrak{a}))$ for $i = 0, 1, \dots, n$. Hence $f \in I(Z(\mathfrak{a}))$.

For (e), it is obvious that $Z(I(Y)) \supset \overline{Y}$. Let W be a closed subset and $Y \subset W$. Then $W = Z(\mathfrak{a})$ for some ideal \mathfrak{a} . By (b) we get $I(Z(\mathfrak{a})) \subset I(Y)$. But certainly $\mathfrak{a} \subset I(Z(\mathfrak{a}))$, so by (a) we have $W = Z(\mathfrak{a}) \supset Z(I(Y))$. Thus we have $Z(I(Y)) = \overline{Y}$.

Remark. We did not differentiate $I(\cdot)$ and $I_{\text{affine}}(\cdot)$ here, because they are identical with respect to the set A who satisfies (i) $(x_0, x_1, \dots, x_n) \in A \Leftrightarrow (\lambda x_0, \lambda x_1, \dots, \lambda x_n) \in A$, $\forall \lambda \in k^*$ and (ii) $0 \in A$.

Solution 1.2.4. a. It is a direct result of Exercise 2.3(d).

- b. The proof is the same as Corollary 1.4.
- c. Same as Example 1.4.1.

Solution 1.2.5. a. Because $S = k[x_0, x_1, \dots, x_n]$ is noetherian.

b. Same as Proposition 1.5.

Solution 1.2.6. Choose an affine piece U_i of \mathbb{P}^n such that $U_i \cap Y \neq \emptyset$. Let Y_1 be the affine variety $\varphi_i(Y \cap U_i)$, and let $A(Y_i)$ be its affine coordinate ring. There is a natural isomorphism between $A(Y_i)$ and subring of elements of degree 0 of the localized ring $S(Y)_{x_i}$:

$$\psi: A(Y_i) \longrightarrow S(Y)_{x_i}$$

$$f(x_0, x_1, \cdots, \hat{x}_i, \cdots, x_n) \longmapsto x_i^e f\left(\frac{x_0}{x_i}, \frac{x_1}{x_i}, \cdots, \frac{\widehat{x_i}}{x_i}, \cdots, \frac{x_n}{x_i}\right)$$

where $e = \deg f$. Then we have

$$S(Y)_{x_i} \cong A(Y_i)[x_i, x_i^{-1}].$$

Let $\dim A(Y_i) = r$, choose f_1, f_2, \dots, f_r such that $A(Y_i)$ is the algebraic extension of $k[f_1, f_2, \dots, f_r]$. Then $A(Y_i)[x_i, x_i^{-1}]$ is the algebraic extension of $k[f_1, f_2, \dots, f_r, x_i, x_i^{-1}]$. It is easy to verify that x_i is transcendent over $A(Y_i)$ and x_i^{-1} is transcendent over $A(Y_i)[x_i]$, hence in particular $f_1, f_2, \dots, f_r, x_i, x_i^{-1}$ are algebraically independent over k. This implies

$$\dim S(Y)_{x_i} = r + 2 = \dim A(Y_i) + 2.$$

On the other hand, we have $\dim S(Y)_{x_i} = \dim S(Y)[x_i^{-1}]$, by similar analysis we have

$$\dim S(Y)_{x_i} = \dim S(Y) + 1.$$

Combining the above two equalities we get

$$\dim S(Y) = \dim A(Y_i) + 1 = \dim Y_i + 1.$$

Using Exercise 1.10(b) the desired equation can be established. We can also get the relation $\dim Y = \dim Y_i$ whenever Y_i is nonempty.

Solution 1.2.7. a. By Exercise 2.6, we have

$$\dim S = \dim \mathbb{P}^n + 1.$$

Since $\dim S = n + 1$, we obtain

$$\dim \mathbb{P}^n = n.$$

b. Before proving the projective version, we consider the affine versio: do we have $\dim Y = \dim \overline{Y}$? The answer is certainly yes. By definition Y can be written as $Y = V \setminus W$ with V, W closed. Then we have $\overline{Y} = V$. Let

$$X_n \supseteq X_{n-1} \supseteq \cdots \supseteq X_0$$

be a chain of V, since Y is open in V, hence dense and irreducible, we get

$$X_n \cap Y \supseteq X_{n-1} \cap Y \supseteq \cdots \supseteq X_0 \cap Y \neq \emptyset.$$

It is exactly the proof or Exercise 1.10(b), hence $\dim Y = \dim \overline{Y}$.

Now we go back to the projective version. Assume Y be a quasi-projective variety, then we get some $Y_i = \varphi\left(Y \cap U_i\right) \neq \emptyset$ and the corresponding $W_i = \varphi\left(\overline{Y} \cap U_i\right)$. Then $\overline{Y}_i = W_i$, this is an affine version, we have $\dim Y_i = \dim W_i$. Then combining the last sentence of the previous solution of Exercise 2.6 we complete the proof.

13

Remark. After completing the proof, I saw the proof of the affine version. It is Proposition 1.10 at page 6 of Hartshorne's book, feel happy for my excellent memory.

Solution 1.2.8. Same as Propositioon 1.13.

Solution 1.2.9. a. Let $f(x_0, x_1, \dots, x_n)$ be a homogeneous element of $I(\overline{Y})$, then

$$f(x_0, x_1, \cdots, x_n) = \beta \left(x_0^{\deg f} g(\frac{x_1}{x_0}, \cdots, \frac{x_n}{x_0}) \right)$$

where $g(x_1, x_2, \dots, x_n) = f(1, x_1, x_2, \dots, x_n)$. We need to prove $f(1, x_1, x_2, \dots, x_n) \in I(Y)$. If not, there exists a point $p = (p_1, p_2, \dots, p_n) \in Y$ such that $f(1, p_1, p_2, \dots, p_n) \neq 0$, then $(1 : p_1 : p_2 : \dots p_n) \notin \overline{Y}$, which is a contradiction. Hence every homogeneous element of $I(\overline{Y})$ is generated by $\beta(I(Y))$. $I(\overline{Y})$ is a homogeneous ideal, i.e., generated by homogeneous elements, hence generated by $\beta(I(Y))$.

b. Recall $I(Y)=(y-x^2,z-x^3),\ y-x^2$ and $z-x^3$ are generators of I(Y). Elements in $I(\overline{Y})$ are of the form

$$(w:x:y:z) = (s^3:s^2t:st^2:t^3).$$

Then we have generators $y^3 = z^2w$, $x^3 = w^2z$, $x^2 = yw$, $y^2 = xz$ for $I(\overline{Y})$. But $y^3 - z^2w$ cannot be generated by $yw - x^2 = \beta(y - x^2)$ and $zw^2 - x^3 = \beta(z - x^3)$.

Solution 1.2.10. a. $I(Y) \subset I(C(Y))$ is obvious. Let $f \in I(C(Y))$, write it as

$$f(x_0, x_1, \dots, x_n) = f_d + f_{d-1} + \dots + f_0$$

where $f_i \in S_i, i = 0, 1, \dots, n$. Fix $x \neq 0$, then

$$f(\lambda x) = f_d \lambda^d + f_{d-1} \lambda^{d-1} + \dots + f_0, \quad \lambda \in k^*.$$

This implies $f_d = f_{d-1} = \cdots = f_0 = 0$. Since x can be chosen arbitrarily in Y, we get $f_0, f_1, \cdots, f_d \in I(Y)$. Therefore $f \in I(Y)$. Hence We have proved I(C(Y)) = I(Y).

$$f(x_0, x_1, \dots, x_n) = 0 \quad \forall f \in I(Y)$$

$$\iff (x_0 : x_1 : \dots : x_n) \in Y \text{ or } x_0 = x_1 = \dots = x_n = 0$$

$$\iff (x_0, x_1, \dots, x_n) \in C(Y)..$$

The second line uses the fact that Y is a nonempty algebraic set. This implies $Z_{\text{affine}}(C(Y)) = C(Y)$, i.e., C(Y) is an algebraic set in \mathbb{A}^{n+1} .

- b. It is obvious since an algebraic affine or projective set is irreducible if and only if its corresponding ideal is prime.
- c. It is enought to prove it under the irreducible case. By Exercise 2.6 we have $\dim S(Y) = \dim Y + 1$. On the other hand, $\dim S(Y) = \dim A(C(Y)) = \dim C(Y)$. Hence

$$\dim C(Y) = \dim Y + 1.$$

Solution 1.2.11. a. (i) \Rightarrow (ii) If $I(Y) = (f_1, f_2, \dots, f_r)$ and f_1, f_2, \dots, f_r are linear polynomials, then

$$Y = Z(I(Y)) = Z(f_1, f_2, \dots, f_r) = Z(f_1) \cap Z(f_2) \cap \dots \cap Z(f_r).$$

(ii)
$$\Rightarrow$$
(i) If $Y = Y_1 \cap Y_2 \cap \cdots \cap Y_r$ and $Y_1 = Z(f_1), Y_2 = Z(f_2), \cdots, Y_r = Z(f_r),$ then

$$I(Y) = I(Z(f_1) \cap Z(f_2) \cap \cdots \cap Z(f_r)) = I(Z(f_1, f_2, \cdots, f_r)) = \sqrt{(f_1, f_2, \cdots, f_r)}.$$

In fact $\sqrt{(f_1, f_2, \dots, f_r)} = (f_1, f_2, \dots, f_r)$ since f_1, f_2, \dots, f_r are linear polynomials.

- b. Since Y is a linear variety, by definition $I(Y) = (f_1, f_2, \dots, f_s)$. By principal ideal theorem every minimal prime ideal \mathfrak{p} containing I(Y) has height less than or equal to s, i.e., height $\mathfrak{p} \leq s$. This implies the dimension of the irreducible component of Y corresponding to \mathfrak{p} is at least n-s, hence $r \geq n-s$. Thus we get $s \geq n-r$. The equality holds if f_1, f_2, \dots, f_r are linearly independent.
- c. Let $Y = Z(f_1, f_2, \dots, f_{n-r})$ and $Z = Z(g_1, g_2, \dots, g_{n-s})$. Then $Y \cap Z = (f_1, f_2, \dots, f_{n-r}, g_1, g_2, \dots, g_{n-s})$. Then by (b) we obtain $n r + n s \ge n \dim Y \cap Z \Rightarrow \dim Y \cap Z \ge r + s n \ge 0$. Consider linear polynomials all 2n r s polynomials above as polynomials defined in \mathbb{A}^{n+1} , then there must exists nonzero x such that all 2n r s polynomials at this point is nonzero since $2n r s \le n < n + 1$. Here $Y \cap Z \ne \emptyset$.
- **Solution 1.2.12.** a. \mathfrak{a} is prime since $k[y_0, y_1, \dots, y_N]/\mathfrak{a} \cong k[x_0, x_1, \dots, x_n]$. For any $f \in \mathfrak{a}$, write it as

$$f = f_d + f_{d-1} + \dots + f_0, \quad f_i \in S_i, i = 0, 1, \dots, d.$$

Then we must have $\theta(f_i) = 0$ for $i = 0, 1, \dots, d$. Hence \mathfrak{a} is homogeneous.

- b. $\rho_d(\mathbb{P}^n) \subset Z(\mathfrak{a})$ is obvious. We only prove the converse inclusion. Let $M_{ij} = M_{ji} = x_0^{d-2} x_i x_j$, then there exists an y_k such that $\theta(y_k) = M_{ij}$. we rewrite y_k as $y_{ij} := y_k$. Then every monomial can be determined by $y_{00}, y_{01}, y_{02}, \cdots, y_{0n}$. Define $x_0 = 1, x_1 = y_{01}, \cdots, x_n = y_{0n}$. Then $\rho_d((x_0 : x_1 : \cdots : x_n)) = (y_0 : y_1 : \cdots : y_N)$.
- c. Since ρ_d is injective and continuous, by invariance of domain ρ_d is a homeomorphism between \mathbb{P}^n and its image.
- d. Twisted cubic curve in \mathbb{P}^3 is $(x_0^3:x_0^2x_1:x_0x_1^2:x_1^3)$, hence the 3-uple embedding of \mathbb{P}^1 in \mathbb{P}^3 .

Solution 1.2.13. Let φ be the Veronese map

$$\varphi: \mathbb{P}^2 \longrightarrow \mathbb{P}^5$$

$$(x_0: x_1: x_2) \longmapsto (x_0^2: x_0x_1: x_0x_2: x_1^2: x_1x_2: x_2^2).$$

Let $M_{ij} = x_i x_j$. Then the veronese surface is $Z(\{M_{ij}M_{kl} = M_{ik}M_{jl}|i, j = 0, 1, 2\})$. Since φ is a homeomorphism, $\varphi^{-1}(Z)$ is a variety of dimension 1. Hence there exists an irreducible homogeneous polynomial $f(x_0, x_1, x_2)$ such that $\varphi^{-1}(Z) = Z(f)$ and $g = f \circ \varphi^{-1} \in S = k[x_0, x_1, \dots, x_5]$. Therefore

$$Z = V(g) \cap Y$$
.

Solution 1.2.14. In the hint, it is easy to check that

$$\mathfrak{a} = \{ z_{ij} z_{kl} - z_{il} z_{kj} | 0 \le i, k \le r, 0 \le j, l \le s \}.$$

We need to show $\operatorname{Im} \psi = Z(\mathfrak{a})$. It is obvious that $\operatorname{Im} \psi \subset Z(\mathfrak{a})$. For the converse inlusion, consider a point $z \in \mathbb{P}^N$ with homogeneous coordinates $z_{00}, z_{01}, \dots, z_{rs}$. At least one of these coordinates must be non-zero; we can assume without loss of generality that it is z_{00} . Let us pass to affine coordinates by setting $z_{00} = 1$. Then we have $z_{ij} = z_{i_0} z_{0j}$ for all $i = 0, \dots, r$ and $j = 0, \dots, s$. Hence by setting $x_i = z_{i_0}$ and $y_j = z_{0j}$ we obtain a point of $\mathbb{P}^r \times \mathbb{P}^s$ that is mapped to z by ψ .

Solution 1.2.15. The Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 is

$$\psi: \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$$
$$(x_0: x_1) \times (y_0: y_1) \longmapsto (w: x: y: z) = (x_0y_0: x_0y_1: x_1y_0: x_1y_1).$$

- a. It is obvious by definition.
- b. $L_t = \psi(\mathbb{P}^1 \times t), M_t = \psi(t \times \mathbb{P}^1).$

c. Denote the curve x - y = 0 in Q as Y, then $Y = \psi(Z(x_0y_1 - x_1y_0))$. $Z(x_0y_1 - x_1y_0)$ is not closed in product topology of $\mathbb{P}^1 \times \mathbb{P}^1$.

Solution 1.2.16. a. If $p = (w : x : y : z) \in Q_1 \cap Q_2$, then:

- if w = 0, then x = 0;
- otherwise, let w = 1, then $y = x^2$, $z = xy = x^3$.
- b. $C \cap L = \{(0:0:1)\}$. $I(C) + I(L) = (x^2, y) \neq I(P)$, where P = (0:0:1).

Solution 1.2.17. a. By Exercise 1.9, we have

$$\dim C(Y) \ge n + 1 - q.$$

By Exercise 2.10(c), we obtain

$$\dim Y \ge n - q.$$

b. Let $I(Y)=(f_1,f_2,\cdots,f_{n-r})$, let $Y_i=Z(f_i), i=1,2,\cdots,n-r$. Since Y is a variety, f_1,\cdots,f_{n-r} are irreducible. Then

$$Y = \bigcap_{i=1}^{n-r} Y_i.$$

c. By Exercise 2.9 we have $I(Y)=(xy-wz,x^3-w^2z,y^2-xz)$. Let $H_1=Z(xy-wz)$ and $H_2=Z(x^3-w^2z)$, then we have $Y=H_1\cap H_2$.