QI LING

https://qiling07.github.io qiling@umich.edu | (734) 834-7174 1857 Shirley LN Apt A1, MI 48105

RESEARCH INTERESTS

I want to make computer systems more efficient and secure. Currently, my work focuses on computer micro-architecture, but my interest spans many other fields in computer architecture and operating systems.

EDUCATION

University of Michigan
 Bachelor's Degree in CS
 College of Engineering

 Shanghai Jiao Tong University
 Expected graduation date: 2024
 Expected graduation date: 2024

Bachelor's Degree in ECE UM-SJTU Joint Institute

AWARDS AND HONORS

• ACM Student Research Competition 2nd Place Award	2023
Presented a poster and gave a 10min talk at MICRO'23	
• Dean's Honor List	2023
• Jackson and Murial Lum Scholarship	2022
• SJTU Undergraduate Excellence Scholarship	2021

PEER-REVIEWED WORKS

• Dike: Accurate Detection and Assessment of Spectre-PHT Gadget
Qi Ling and Yi Ren, Baris Kasikci, Shuwen Deng
Won 2nd Place at MICRO'23 Student Research Competition
Submitted to ASPLOS'24

• Towards Fine-Grained, High-Coverage Internet Monitoring at Scale
Hongyu Wu, Qi Ling, Penghui Mi, Chaoyang Ji, Yinliang Hu, Yibo Pi
Accepted by APNet'23

RESEARCH EXPERIENCE

• EFESLAB, University of Michigan Advisors: Shuwen Deng and Baris Kasikci January 2023 - August 2023

Overall GPA: 3.79/4

- Detecting and evaluating Spectre-PHT gadgets in programs.
 - Improved modelling of Spectre-PHT gadget by accounting for Windowing Primitive.
 - Identified limitations of existing Spectre-PHT gadget scanners.
 - Proposed and implemented a new approach, which models Windowing Primitive at runtime.
 - Validated our approach and evaluated it against SOTA scanners on 8 programs.
- Network Measurement and System Lab, SJTU
 Advisor: Yibo Pi

 August 2021 August 2022

Optimizing the accuracy and coverage of large-scale network monitoring.

- Challenged two root assumptions of conventional network monitoring practice with experiments.

- Proposed and implemented a greedy end-to-end network monitoring approach.
- Evaluated the accuracy, coverage and overhead of our approach.

TECHNICAL SKILLS

- \bullet Programming Languages: C/C++, Rust, Elm, Python, Matlab, Mathematica, Latex, JavaScript, Verilog, Assembly, Bash
- Software Tools: LLVM, Honggfuzz, Syzkaller, Linux Perf, Gem5, Git, Docker, Zmap

RELEVANT COURSE WORK

• Math Courses	
– Linear Algebra	A^+
- Discrete Mathematics	A^+
 Probabilistic Methods in Engineering 	A^+
• Computer Science Courses	
 Data Structures and Algorithms 	A^+
 Introduction to Computer Organization 	A^+
- Introduction to Computer Security	A^+
 Introduction to Operating Systems & Advanced Projects 	A^+
 Introduction to Cryptography 	A^{-}
- Compiler Construction	
- Introduction to Machine Learning	