An introduction to the 2nd project

Poorya Omidi

Working Memory Enhances Cortical Representations via Spatially Specific Coordination of Spike Times

Zahra Bahmani, Mohammad Reza Daliri, 1,2,* Yaser Merrikhi, 1 Kelsey Clark, 3 and Behrad Noudoost 3,4,*

1School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran, P.O. Box 19395-5746, Tehran, Iran ²Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak,

³Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA

*Correspondence: daliri@iust.ac.ir (M.R.D.), behrad.noudoost@utah.edu (B.N.)

https://doi.org/10.1016/j.neuron.2018.01.012

LINK TO GOOGLE DRIVE

Quick reminder:

Quick reminder:

×

For each task:

1

2

3

EVENT

Spikes

LFP

Details about every trial and its relevant stimulus

Single and multi unit activities as binary numbers

LFP of recorded signal

TASKS - mgs

TASKS - vodr

8 random probes in each trial

100 – 200 ms for each probe

7

31	41	51	61	<mark>71</mark>	81	91
32	<mark>42</mark>	52	62	72	<mark>82</mark>	92
33	43	53	63	73	83	93
34	44	<mark>54</mark>	64	74	84	<mark>94</mark>
<mark>35</mark>	45	55	65	75	85	95
36	46	56	66	76	<mark>86</mark>	96
37	47	57	<mark>67</mark>	77	87	97

TASKS - vgabor

different angles

QUESTIONS – 1st

1- Explain the task and the data based on figure 1 of the attached paper.

QUESTIONS – 2nd

(Try to compare in & Out conditions like the example or using different colors)

QUESTIONS – 3rd – part a

- 3- Consider firing rate formulas and answer the questions:
 - a) Calculate the **time-dependent firing rate** of six location by applying 4 different kernels across all trials of each IN and OUT condition. (Try to compare in & Out conditions like question 2)

QUESTIONS – 3rd – part b

b) Measure the firing rate of one selected neuron for conditions IN (the condition with the highest response usually 51 in this date set) & OUT (condition 54 in this date set) during fixation (0-1000 ms), visual period (1000-2000 ms), memory period (2500-3500 ms) and over all firing rate (during the whole trial).

QUESTIONS – 4th – part a

- 4- Consider 3 periods of mgs task and answer the questions:
 - a) Find & plot the inter spike interval distribution of one selected neuron during fixation (0-1000 ms), visual period (1000-2000 ms) and over all firing rate (during the whole trial). What is you statement about the type of point process of this neuron?

QUESTIONS – 4th – part b

b) Measure Fanofactor & CV (coefficient of variation) of one selected neuron during fixation (0-1000 ms), visual period (1000-2000 ms) and over all firing rate (during the whole trial). What is you statement about the type of point process of this neuron?

Fanofactor: trial-fanofactor , CV:

QUESTIONS – 4th – part c

c) Measure Fanofactor & CV (coefficient of variation) across all neurons during fixation (0-1000 ms), visual period (1000-2000 ms) and over all firing rate (during the whole trial). What is you statement about the type of point process of neurons in area MT of monkey brain?

Fanofactor: trial-fanofactor , CV:

QUESTIONS – 5th

- 5- Generate spikes according the firing rates of section a using:
 - a) homogenous point process
 - b) Inhomogeneous point process

QUESTIONS – 6th

6- Create & plot receptive filed using average firing rate based on vodr

structure (RF mapping task).

QUESTIONS – 7th

- 7- Create & plot tuning curve using average firing rate:
 - a) based on different locations using mgs data
 - b) based on different orientations using vgabor data

what you are supposed to send

Report: output figures, codes, explanation

Code: write comments

