Пошила 7

Лекция 7

Неразрешимость исчисления предикатов Аксиоматика Пеано и формальная арифметика

Общие результаты об исчислениях

	К.И.В.	И.И.В.	К.И.П.
корректность	да (лекция 1)	да (ДЗ IV.10)	да (лекці
непротиворечивость	да (очев.)	да (из непр. КИВ)	да (лекці
полнота	да (лекция 2)	да (лекция 4)	да (лекці
разрешимость	ла (лекция 2)	ла (лекция 4)	Нет (сейч

Машина Тьюринга

Определение

Машина Тьюринга:

- 1. Внешний алфавит q_1, \ldots, q_n , выделенный символ-заполнитель q_{ε}
- 2. Внутренний алфавит (состояний) s_1, \ldots, s_k ; s_s начальное, s_f допускающее, s_r отвергающее.
- 3. Таблица переходов $\langle k,s \rangle \Rightarrow \langle k',s',\leftrightarrow \rangle$

Определение

Состояние машины Тьюринга:

- 1. Бесконечная лента с символом-заполнителем q_{ε} , текст конечной длины.
- 2. Головка над определённым символом.
- 3. Символ состояния (состояние в узком смысле) символ внутреннего алфавита.

Машина, меняющая все 0 на 1, а все 1 — на 0

- 1. Внешний алфавит ε , 0, 1.
- 2. Внутренний алфавит s_s, s_f (начальное и допускающее состояния соответственно).
- 3. Переходы:

$$egin{array}{c|cccc} arepsilon & arepsilon & 1 & & & & & \\ \hline s_s & \langle s_f, arepsilon, \cdot
angle & \langle s_s, 1,
ightarrow
angle & \langle s_s, 0,
ightarrow
angle & \langle s_f, 0, \cdot
angle & \langle s_f, 1, \cdot
angle & & & & & & \\ \hline \end{array}$$

Пример

Головка — на первом символе 011, состояние s_s . $011 \Rightarrow 111 \Rightarrow 101 \Rightarrow 100\varepsilon$ Состояние s_f , допускающее.

Разрешимость

Определение

Язык — множество строк

Определение

Язык L разрешим, если существует машина Тьюринга, которая для любого слова w переходит в допускающее состояние, если $w \in L$, и в отвергающее, если $w \notin L$.

Неразрешимость задачи останова

Определение

Рассмотрим все возможные описания машин Тьюринга. Составим упорядоченные пары: описание машины Тьюринга и входная строка. Из них выделим язык останавливающихся на данном входе машин Тьюринга.

Теорема

Язык всех останавливающихся машин Тьюринга неразрешим

Доказательство.

От противного. Пусть S(x,y) — машина Тьюринга, определяющая, остановится ли машина x, примененная к строке y.

$$W(x) = if (S(x,x)) \{ while (true); return 0; \} else \{ return 1; \}$$

Что вернёт S(code(W), code(W))?

Кодируем состояние

- 1. внешний алфавит: n 0-местных функциональных символов $q_1, \ldots, q_n; q_{\varepsilon}$ символ-заполнитель.
- 2. список: ε и c(l,s); «abc» представим как $c(q_a,c(q_b,c(q_c,\varepsilon)))$.
- 3. положение головки: «abpq» как $(c(q_b, c(q_a, \varepsilon)), c(q_p, c(q_q, \varepsilon)))$.
- 4. внутренний алфавит: k 0-местных функциональных символов s_1, \ldots, s_k . Из них выделенные s_s начальное и s_f допускающее состояние.

Достижимые состояния

Предикатный символ $F_{x,y}(w_l, w_r, s)$: если у машины x с начальной строкой y состояние s достижимо на строке $rev(w_l)@w_r$. Будем накладывать условия: семейство формул C_m . Очевидно, начальное состояние достижимо:

$$C_0 := F_{x,y}(\varepsilon, y, s_s)$$

Кодируем переходы

- 1. Занумеруем переходы.
- 2. Закодируем переход т:

$$\langle k,s
angle \Rightarrow \langle k',s',
ightarrow
angle ,$$
 в случае $q_k
eq q_arepsilon$

$$C_m = \forall w_l. \forall w_r. F_{x,y}(w_l, c(q_k, w_r), s_s) \to F_{x,y}(c(q_{k'}, w_l), w_r, s_{s'})$$
 (здесь требуется, чтобы под головкой находился непустой символ q_k , потому мы обязательно требуем, чтобы лента была непуста)

3. Переход посложнее:

 $F_{x,y}(\varepsilon, c(q_{\varepsilon}, c(q_{k'}, w_r)), s_{s'})$

$$C_m = \forall w_l. \forall w_r. \forall t. F_{x,y}(c(t, w_l), c(q_k, w_r), s_s) \rightarrow F_{x,y}(w_l, c(t, c(q_{k'}, w_r)), s_{s'}) \& \forall w_l. \forall w_r. F_{x,y}(\varepsilon, c(q_k, w_r), s_s) \rightarrow F_{x,y}(s, c(q_k, w_r), s_s) \rightarrow$$

 $\langle k,s\rangle \Rightarrow \langle k',s',\leftarrow\rangle$, в случае $q_k\neq q_\varepsilon$

4. и т.п.

Итоговая формула

$$C = C_0 \& C_1 \& \cdots \& C_n$$

«правильное начальное состояние и правильные переходы между состояниями»

Теорема

Состояние s со строкой $rev(w_l)@w_r$ достижимо тогда и только тогда, когда $C \vdash F_{x,y}(w_l, w_r, s)$

Доказательство.

- (\Leftarrow) Рассмотрим модель: предикат $F_{x,y}(w_l,w_r,s)$ положим истинным, если состояние достижимо. Это модель для C (по построению C_m). Значит, доказуемость влечёт истинность (по корректности).
- (\Rightarrow) Индукция по длине лога исполнения.

Неразрешимость исчисления предикатов: доказательство

Теорема

Язык всех доказуемых формул исчисления предикатов неразрешим

Т.е. нет машины Тьюринга, которая бы по любой формуле α определяла, доказуема ли она.

Доказательство.

Пусть существует машина Тьюринга, разрешающая любую формулу. На её основе тогда несложно построить некоторую машину Тьюринга, перестраивающую любую машину S (с допускающим состоянием s_f и входом y) в её ограничения C и разрешающую формулу ИП $C \to \exists w_l. \exists w_r. F_{S,y}(w_l, w_r, s_f)$. Эта машина разрешит задачу останова.

Аксиоматика Пеано и формальная арифметика

Формализуем дальше: числа

«Бог создал целые числа, всё остальное— дело рук человека.» Леопольд Кронекер, 1886 г.

Рациональные (ℚ).

$$Q=\mathbb{Z} imes\mathbb{N}$$
 — множество всех простых дробей. $\langle p,q
angle$ — то же, что $rac{p}{q}$ $\langle p_1,q_1
angle\equiv\langle p_2,q_2
angle$, если $p_1q_2=p_2q_1$ $\mathbb{Q}=Q/\equiv$

- 2. Вещественные (\mathbb{R}). $X = \{A, B\}$, где $A, B \subseteq \mathbb{Q}$ дедекиндово сечение, если:
 - 2.1 $A \cup B = \mathbb{Q}$
 - 2.2 Если $a \in A$, $x \in \mathbb{Q}$ и $x \leq a$, то $x \in A$
 - 2.3 Если $b \in B$, $x \in \mathbb{Q}$ и $b \le x$, то $x \in B$
 - 2.4 А не содержит наибольшего.
 - \mathbb{R} множество всех возможных дедекиндовых сечений.

$$\sqrt{2} = \{ \{ x \in \mathbb{Q} \mid x < 0 \lor x^2 < 2 \}, \{ x \in \mathbb{Q} \mid x > 0 \& x^2 > 2 \} \}$$

Целые числа тоже попробуем определить

$$\mathbb{Z}: \cdots -3, -2, -1, 0, 1, 2, 3, \ldots$$

- $ightharpoonup Z = \{\langle x, y \rangle \mid x, y \in \mathbb{N}_0\}$
- ▶ Интуиция: $\langle x, y \rangle = x y$

$$\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$$

 $\langle a, b \rangle - \langle c, d \rangle = \langle a + d, b + c \rangle$

- lackbox Пусть $\langle a,b
 angle \equiv \langle c,d
 angle$, если a+d=b+c. Тогда $\mathbb{Z}=Z/_{\equiv}$

Натуральные числа: аксиоматика Пеано, 1889

 $\mathbb{N}:1,2,\ldots$ или $\mathbb{N}_0:0,1,2,\ldots$

Определение

N (или, более точно, $\langle N, 0, (') \rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено:

- 1. Операция «штрих» (') : $N \to N$, причём нет $a, b \in N$, что $a \neq b$, но a' = b'. Если x = y', то x назовём следующим за y, а y предшествующим x.
- 2. Константа $0 \in \mathbb{N}$: нет $x \in \mathbb{N}$, что x' = 0.
- 3. Индукция. Каково бы ни было свойство («предикат») P: N o V, если:
 - 3.1 P(0)
 - 3.2 При любом $x \in N$ из P(x) следует P(x') то при любом $x \in N$ выполнено P(x).

Как построить? Например, в стиле алгебры Линденбаума:

- 1. N язык, порождённый грамматикой $\nu := 0 \mid \nu \ll ">$
- 2. 0 970 < 0, x' 970 x ++ < 0

Примеры: что не соответствует аксиомам Пеано

- 1. \mathbb{Z} , где $x' = x^2$ Функция «штрих» не инъективна: $-3^2 = 3^2 = 9$
- 2. Кольцо вычетов $\mathbb{Z}/7\mathbb{Z}$, где x' = x + 1 6' = 0, что нарушает свойства 0
- 3. $\mathbb{R}^+ \cup \{0\}$, где x' = x + 1 Пусть P(x) означает $x \in \mathbb{Z}$:
 - 3.1 P(0) выполнено: $0 \in \mathbb{Z}$.
 - 3.2 Если P(x), то есть $x \in \mathbb{Z}$, то и $x+1 \in \mathbb{Z}$ так что и P(x') выполнено.

Однако P(0.5) ложно.

Пример доказательства

Теорема

0 единственен: если t таков, что при любом y выполнено $y' \neq t$, то t=0.

Доказательство.

- ▶ Определим P(x) как «либо x = 0, либо x = y' для некоторого $y \in N$ ».
 - 1. P(0) выполнено, так как 0 = 0.
 - 2. Если P(x) выполнено, то возьмём x в качестве y: тогда для P(x') будет выполнено x'=y'.

Значит, P(x) для любого $x \in N$.

Рассмотрим P(t): «либо t=0, либо t=y' для некоторого $y \in N$ ». Но так как такого y нет, то неизбежно t=0.

Обозначения и определения

Определение

$$1=0',\, 2=0'',\, 3=0''',\, 4=0'''',\, 5=0''''',\, 6=0'''''',\, 7=0''''''',\, 8=0'''''''',\, 9=0'''''''''$$

Определение

$$a+b=\left\{egin{array}{ll} a, & ext{ecли } b=0 \ (a+c)', & ext{ecли } b=c' \end{array}
ight.$$

Например,

$$2+2=0''+0''=(0''+0')'=((0''+0)')'=((0'')')'=0''''=4$$

Определение

$$a \cdot b = \left\{ egin{array}{ll} 0, & ext{если } b = 0 \ a \cdot c + a, & ext{если } b = c' \end{array}
ight.$$

Пример: коммутативность сложения (лемма 1)

Лемма (1)

$$a+0=0+a$$

$$a+b=\left\{ egin{array}{ll} a, & ext{если } b=0 \ (a+c)', & ext{если } b=c' \end{array}
ight.$$
 Доказательство.

Пусть P(x) — это x + 0 = 0 + x.

- 1. Покажем P(0). 0+0=0+0
- 2. Покажем, что если P(x), то P(x'). Покажем P(x'), то есть $x'+0=\dots$

$$\cdots = x'$$
 $a = x', b = 0$: $x' + 0 \Rightarrow x'$
 $\cdots = (x)'$
 $\cdots = (x + 0)'$ $a = x, b = 0$: $(x + 0) \Leftarrow (x)$
 $\cdots = (0 + x)'$ $P(x)$: $(x + 0) \Rightarrow (0 + x)$
 $\cdots = 0 + x'$ $a = 0, b = x'$: $0 + x' \Leftarrow (0 + x)'$

Значит, P(a) выполнено для любого $a \in N$.

Пример: коммутативность сложения (завершение)

Лемма (2)

$$a + b' = a' + b$$

Доказательство.

$$P(x)$$
 — это $a + x' = a' + x$

1.
$$a + 0' = (a + 0)' = (a)' = a' = a' + 0$$

2. Покажем, что P(x') следует из P(x): a + x'' = (a + x')' = (a' + x)' = a' + x'

Теорема

$$a + b = b + a$$

Доказательство индукцией по b: P(x) — это a+x=x+a.

- 1. a + 0 = 0 + a (лемма 1)
- 2. a + x' = (a + x)' = (x + a)' = x + a' = x' + a