- 1. Se define $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(x,y,z) = (x+y+z, x+2y-z) y sean las bases $\alpha = \{(1,1,0), (1,-1,1), (0,1,2)\}$ y $\beta = \{(1,-2), (-3,4)\}$ de \mathbb{R}^3 y \mathbb{R}^2 respectivamente. Determine
 - (a) Ker T, dim(Ker T) y dim(Im T).
 - (b) $[T]^{\beta}_{\alpha}$
- 2. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por

$$T(a, b, c) = (a + b - c, a + c, a + 3b - c)$$

Encuentre $[T]_{B_1}^{B_2}$ donde B_1 es la base canónica y $B_2 = \{(1, -1, 0), (1, -1, 1), (2, 1, 0)\}$ y determine la transformación T^{-1} usando $[T]_{B_1}^{B_2}$.

- 3. La matriz $\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 2 \\ -4 & -3 & -5 \end{pmatrix}$ corresponde a la matriz de cambio de base de $B_1 = \{(1,1,1), (1,1,0), (1,0,0)\}$ a $B_2 = \{v_1, v_2, v_3\}$. Determine la base B_2
- 4. Sea Tuna transformación lineal de \mathbb{R}^2 a \mathbb{R}^3 tal que $[T]_e^f$ es

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 3 \end{pmatrix}, \text{ con } e = \{(1,1), (1,-1)\}$$

$$f = \{(1,2,1), (1,0,1), (-1,2-1)\}$$