An Automated Triple Modular Redundancy EDA Flow for Yosys

Matt Young - Supervised by Assoc. Prof. John Williams

Introduction

Safety-critical sectors require Application Specific Integrated Circuit (ASIC) designs and Field Programmable Gate Array (FPGA) gateware to be fault-tolerant. In particular, high-reliability spaceflight computer systems need to mitigate the effects of Single Event Upsets (SEUs) caused by ionising radiation. One common fault-tolerant design technique is Triple Modular Redundancy (TMR), which mitigates SEUs by triplicating key parts of the design and using voter circuits. Leveraging the open-source Yosys Electronic Design Automation (EDA) tool, in this work, I present **TaMaRa**: a novel fully automated TMR flow, implemented as a Yosys plugin.

Single Event Upsets

SEUs are caused by ionising radiation striking a CMOS transistor on an integrated circuit, and inducing a small charge which can flip bits. This is dangerous, as it can invalidate the results of important calculations, potentially causing loss of life and/or property in safety-critical scenarios.

Triple Modular Redundancy

Triple Modular Redundancy (TMR) mitigates SEUs by triplicating key parts of the design and using voter circuits to select a non-corrupted result if an SEU occurs (see Figure 1).

Figure 1: Diagram demonstrating TMR being inserted into an abstract design

TaMaRa Methodology

The **TaMaRa** algorithm (Figure 2), introduced in this work, automates the insertion of TMR at the post-synthesis netlist level.

Figure 2: Description of the TaMaRa algorithm

Prior literature

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et.

Results: Circuits

Figure 3 shows a netlist schematic for a simple 2-bit multiplexer, and Figure 4 shows it after the application of TaMaRa TMR.

Figure 4: 2-bit multiplexer with TaMaRa TMR

Results: Reliability

TaMaRa demonstrates the capability of mitigating simulated SEU faults in a large-scale formally verified fault-injection campaign. When the voter is itself protected from faults (Figure 5), the algorithm performs well; but in more realistic unprotected scenarios, faults can still occur (Figure 6).

Figure 6: Unprotected voter