Class Test (PH 1101)

Section A (Civil Engineering)

Answer all questions.

Duration: One hour

- 1. Two headlights of a distant truck are 1.4 m apart. If the diameter of the pupil 4 of the eye is a = 3 mm and $\lambda = 5 \times 10^{-7}$ m for the headlight, what is the maximum distance at which two headlights can be resolved by eye?
- Motion of a spring-mass system is given by a differential equation of the 4 form $\frac{1}{4}\ddot{x} + \dot{x} + x = 0$. Show, whether the system is weakly-damped, overdamped or critically damped? Write the possible general solution.
 - 3. Which among A and B represents a solution to one-dimensional wave 4 equation, where $A(x,t) = Ce^{-\alpha(x-vt)^2}$ and $B(x,t) = Ce^{-(\alpha x^2-vt)}$ and how?
 - Suppose a 35-kW radio station emits EM waves uniformly in all directions. 4 What is the rms magnitude of the electric field at 1.0 km away from the station, assuming the station is operating at full power?
 - Find the directional derivative of $\phi = 4xz^3 3x^2y^2z$ at (2, -1, 2) along the direction of 2i-3j+6k. How much it differs from the maximum value of the directional derivative of \emptyset , at that point?

7. Using Newton-Raphson method, find a root of the equation $x^4 + x^3 - 7x^2 - x + 5 = 0$ correct to the three decimal places which is near to $x_0 = 2$.

8. Apply Runge-Kutta fourth order method, to find an approximate value of $\frac{dy}{dy} = \frac{u^2 - x^2}{u^2 - x^2}$

Subject Code: MA-1102, Subject: Mathematics-II

Semester: 2nd, Branch: B.Tech. (All) Duration: One Hour, Total Marks: 30

Figure in the right hand margin indicates full marks for the question.

Find the inverse of
$$A = \begin{pmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{pmatrix}$$
 by using Cayley-Hamilton's theorem. (6)

2 Solve the following system of equations by using Gauss Elimination Method:

$$2x + 2y - z = 6$$

$$4x + y - 3z = 7$$

$$2x + y - 2z = 3$$
(6)

2. Evaluate the integral $\int_C [(3x - 8y^2)dx + (4y - 6xy)dy]$ by using Green's theorem, where C is the boundary of the region bounded by x = 0, y = 0, and x + y = 1.

4. Evaluate the integral $\iiint 24xdxdydz$ over the volume in the first octant bounded by $y = 1 - x^2$ and z = y.

Verify Stoke's theorem for $F = -y\mathbf{i} + x\mathbf{j} + z\mathbf{k}$ over the upper half surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy-plane. (6)

6. Using Newton's forward interpolation formula, find the value of f(4.8), if

7. Using Newton-Raphson method, find a root of the equation $x^4 + x^3 - 7x^2 - x + 5 = 0$ correct to the three decimal places which is near to $x_0 = 2$.

(6)

National Institute of Technology, Silchar End-Semester (UG) Examination, April-May '2015

Subject Code: MA-1102, Subject: Mathematics-II

Semester: 2nd, Branch: B.Tech. (All) Duration: Two Hours, Total Marks: 50

Figure in the right hand margin indicates full marks for the question.

1. Find the eigenvalues and eigenvectors of the matrix
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 3 & 2 \end{pmatrix}$$
. Hence, find the eigenvalues and eigenvectors of the matrix $\tilde{A} = P^{-1}AP$, where $P = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 5 \end{pmatrix}$.

2. Evaluate the integral
$$\iiint 2y dx dy dz$$
 over the volume bounded by xz -plane and the surfaces $x^2 + z^2 = 1$, $x^2 + z^2 = y^2$.

Determine
$$a, b$$
 such that the function $u(x, y) = ax^3 + by^3 + x^2 - y^2 + y$ is harmonic, and then find its harmonic conjugate. (6)

4. Evaluate
$$\oint_C \left(\frac{z^2 - 2z + 2}{z^3 - 4z^2 + 5z - 2} + z^2 e^{\pi/z} \right) dz$$
, where C is the circle $|z| = 3$. (7)

5 Evaluate
$$\int_0^{2\pi} \frac{\cos \theta}{13 - 12 \cos 2\theta} d\theta \tag{7}$$

6. Using Newton's forward interpolation formula, find the value of
$$f(4.8)$$
, if (6)

\boldsymbol{x}	2	4	6	8	10	12
f(x)	1	2	4	9	14	18

7. Using Newton-Raphson method, find a root of the equation
$$x^4 + x^3 - 7x^2 - x + 5 = 0$$
 correct to the three decimal places which is near to $x_0 = 2$.

8. Apply Runge-Kutta fourth order method, to find an approximate value of
$$y$$
 when $x = 0.2$ given that $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ and $y(0) = 1$.

National Institute of Technology, Silchar End Semester UG examination, May-2015 Subject: Chemistry Subject Code: CH-1101 Semester: 2nd

	(1. (a)	What is cement? Write the chemical composition of Portland cement	3
	1(b)	What are the reasons for the decaying of cement? How is it prevented?	3
	1(0)	Define setting of cement? What are the reactions involved in initial setting of cement?	4
1	-2.(a)	How do we classify polymers on the basis of their structure? Give examples of each type.	3
,	(b)	Which type of polymer cannot be reprocessed? Give reasons.	1
((e)	Define "number average molecular weight" of polymer with its expression	2
	(d)	Mention the methods of preparation of the given polymers:	4
		, j. HDPE	-
	_	ji. PTFE	
	3. (a)	What is air pollution? Give basic chemical reactions leading to formation of	3
	\vee	carbon monoxide pollutant.	
	(b)	Write the chemical reaction involved in photochemical dissociation of NO ₂ in the atmosphere.	3
	(6)	What are the consequences of green house effect?	3
	(et)	Describe the chemical reactions involved in the formation of peroxyacyl nitrate (PAN) from aldehyde.	2
	(é)	Write the principle and working of electrostatic precipitator with the help of a neat diagram	4
	4. (a)	water containing the following salts per liter	7
		$Ca(HCO_3)_2 = 16.1 \text{ mg}$; $Mg(HCO_3)_2 = 15 \text{ mg}$; $CaSO_4 = 27.2 \text{ mg}$; $MgSO_4 = 24 \text{ mg}$; $MgCl_2 = 4 \text{ mg}$ and $NaCl = 9.4 \text{ mg}$	
		Calculate total lime and soda requirement for above data.	
F	(p)	What is physical and chemical adsorption? Derive an expression for Langmuir's Theory of adsorption.	5
	(c)	What is Break point chlorination?	3
1			3