Argomenti trattati

Analisi del funzionamento discontinuo del convertitore buck

- Equazioni fondamentali
- Forme d'onda
- Caratteristiche di controllo e di uscita
- Funzionamento con carico resistivo

Schema del convertitore Buck (Step-down)

Se cambia il carico, a parità di tensione di uscita, cambia la corrente di uscita. Però δ resta costante.

$$U'_{o} = U''_{o} = \delta U_{i}$$
 $I_{L} = I_{o}$

Anche l'ondulazione di corrente resta costante

$$\Delta I'_{L} = \Delta I''_{L} \longrightarrow \Delta I_{L} = f(U_{o}) = \frac{U_{i} \delta (1 - \delta)}{f_{S} L}$$

Se il carico si riduce ulteriormente, la corrente i_L può annullarsi, dando luogo al funzionamento discontinuo

Funzionamento limite

La corrente i_L si annulla esattamente nell'istante finale della fase di OFF

Se I_o < I_{olim} il funzionamento diventa discontinuo (DCM - Discontinuous Conduction Mode), cioè i_L rimane nulla per una certa porzione di t_{off}

Studio del funzionamento discontinuo Intervallo t_{on}

Valgono le equazioni del modo continuo, con l_{Lmin} = 0

Studio del funzionamento discontinuo Intervallo t_{on}

Studio del funzionamento discontinuo Intervallo t_{on}

Studio del funzionamento discontinuo Intervallo t'off -> Finche non arriva a

Valgono le equazioni del modo continuo, fino all'istante t'_{off} in cui $i_L = 0$

Studio del funzionamento discontinuo Intervallo t'off

$$U_L = -U_o$$

$$i_{L}(t) = I_{L_{max}} - \frac{U_{o}}{L}t$$

Studio del funzionamento discontinuo Intervallo t'off

Studio del funzionamento discontinuo Intervallo t" off IL= 0

La corrente i_L, non potendo invertirsi, rimane nulla fino alla successiva chiusura di S

Studio del funzionamento discontinuo Intervallo t" off

Forme d'onda complessive

A regime:

$$\Delta I_{Lon} = \Delta I_{Loff} \implies (U_i - U_o) t_{on} = U_o t'_{off}$$

Equazioni risolutive

a)
$$(U_i - U_o)t_{on} = U_o t'_{off}$$

a)
$$(U_i - U_o)t_{on} = U_o t'_{off}$$

b) $I_{Lmax} = \frac{U_i - U_o}{L}t_{on}$

c)
$$I_0 = I_L = I_{Lmax} \frac{t_{on} + t'_{off}}{2 \cdot T_S}$$

$$\frac{U_o}{U_i} = \frac{\delta^2}{\delta^2 + \frac{2f_S LI_o}{||U_i||}}$$

Equazioni risolutive

Nota 1:

La caratteristica di controllo è non-lineare e dipende dalla corrente d'uscita l_o

$$\frac{\mathsf{U_o}}{\mathsf{U_i}} = \frac{\delta^2}{\delta^2 + \frac{2\mathsf{f_SLI_o}}{\mathsf{U_i}}}$$

Nota 2 (per il dimensionamento):

$$I_o = I_L = I_{Lmax} \frac{t_{on} + t'_{off}}{2 \cdot T_S}$$

$$I_{Lmax} = 2 \cdot I_o \cdot \frac{T_S}{t_{on} + t'_{off}}$$

$$L_{\text{max}} = \frac{U_{\text{o}}}{L} \dot{t}_{\text{off}}$$

A parità di l_o, più l'intermittenza è spinta (t'_{off} ridotto) più cresce l_{Lmax}

Nota 2 (per il dimensionamento):

$$I_o = I_L = I_{Lmax} \frac{t_{on} + t'_{off}}{2 \cdot T_S}$$

$$I_{\text{Lmax}} = 2 \cdot I_o \cdot \frac{T_S}{t_{on} + t'_{off}}$$

$$I_{\text{max}} = \frac{U_o}{L} \ \dot{t}_{off}$$

A parità di l_o, più l'intermittenza è spinta (t'_{off} ridotto) più cresce l_{Lmax}

L'intermittenza aumenta le sollecitazioni di corrente del diodo e dell'interruttore

NOTA 3:

A vuoto (l_o =0) il convertitore non è controllabile

$$\frac{U_o}{U_i} = \frac{\delta^2}{\delta^2 + \frac{2f_SLI_o}{U_i}}$$

Se $I_o \longrightarrow 0$ allora $U_o \longrightarrow U_i$ per ogni δ

NOTA 3:

A vuoto (I_o =0) il convertitore non è controllabile

Se I_o = 0 non c'è assorbimento di energia dal carico. L'energia fornita dall'alimentazione si accumula nel condensatore C, la cui tensione U_o cresce fino a stabilizzarsi al valore $U_{i'}$

Rapporto di conversione
$$M = \frac{U_o}{U_i}$$

CCM DCM

$$| I_o | I_o$$

NOTA 1: Se il rendimento è unitario:

$$P_{o} = P_{i} \qquad \qquad U_{i} \mid_{i} = U_{o} \mid_{o}$$

$$U_{o} = M = \frac{I_{i}}{I_{o}}$$

N.B. Queste equazioni si riferiscono alle sole componenti continue di i_i e i_o

NOTA 2:

Il rapporto di conversione M (a parità di duty-cycle) è maggiore in funzionamento discontinuo (DCM) che in funzionamento continuo (CCM)

Dimostrazione: U_{oDCM} > U_{oCCM}

Dimostrazione: U_{oDCM} > U_{oCCM}

$$(U_i - U_{oDCM}) t_{on} = U_{oDCM} t_{off}$$

$$U_{i} t_{on} = U_{oDCM} (t_{on} + t'_{off})$$

Dimostrazione: U_{oDCM} > U_{oCCM}

$$U_i t_{on} = U_{occm} T_s$$
 $U_i t_{on} = U_{odcm} (t_{on} + t'_{off})$

$$\frac{U_{o_{DCM}}}{U_{o_{CCM}}} = \frac{T_{S}}{T_{S} - t_{off}''} > 1$$

DCM:

$$M = \frac{U_o}{U_i} = \frac{\delta^2}{\delta^2 + \frac{I_o}{I_N}}$$

$$I_N = \frac{U_i}{2 f_S L}$$

DCM:

$$M = \frac{U_o}{U_i} = \frac{\delta^2}{\delta^2 + \frac{I_o}{I_N}}$$

$$I_N = \frac{U_i}{2 f_S L}$$

CCM: $M = \delta$

Valgono le curve corrispondenti a U_o più elevata

Curve complessive

DCM:

$$M = \frac{U_o}{U_i} = \frac{\delta^2}{\delta^2 + \frac{I_o}{I_N}}$$

$$I_N = \frac{U_i}{2 f_S L}$$

CCM: $M = \delta$

DCM:

$$M = \frac{U_o}{U_i} = \frac{\delta^2}{\delta^2 + \frac{I_o}{I_N}}$$

$$I_N = \frac{U_i}{2 f_S L}$$

CCM: $M = \delta$

NOTA: a parità di I_0 il funzionamento è continuo per valori bassi o elevati di δ (ove ΔI_1 è minore)

Ondulazione di corrente

Ondulazione di corrente

Ondulazione di corrente

Ondulazione di corrente

A parità di I_o l'intermittenza si ha per elevati valori di ΔI_l , cioè con δ nell'intorno di 0.5

Caratteristiche di uscita $M = f(I_o/I_N)$

DCM:

$$M = \frac{U_o}{U_i} = \frac{\delta^2}{\delta^2 + \frac{I_o}{I_N}}$$

$$I_N = \frac{U_i}{2 f_S L}$$

Caratteristiche di uscita $M = f(I_o/I_N)$

Funzionamento limite:

$$M_{CCM} = M_{DCM}$$

$$\frac{I_o}{I_N} = M - M^2$$

Caratteristiche di uscita $M = f(I_o/I_N)$

DCM:

$$M = \frac{U_o}{U_i} = \frac{\delta^2}{\delta^2 + \frac{I_o}{I_N}}$$

$$I_N = \frac{U_i}{2 f_S L}$$

CCM:
$$M = \delta$$

Curve complessive

Funz. con carico resistivo: $I_o = \frac{U_o}{R_o}$

$$\square \qquad \square \qquad \square_{o} = \delta$$

$$DCM \longrightarrow M = \frac{U_o}{U_i} = \frac{\delta^2}{\delta^2 + \frac{2 f_S L I_o}{U_i}} = \frac{2}{1 + \sqrt{1 + \frac{4 k}{\delta^2}}}$$

$$k = \frac{2 f_S L}{R_o}$$

Funzionamento con carico resistivo Caso limite tra CCM e DCM

$$M_{CCM} = M_{DCM} \rightarrow k_{lim} = 1 - \delta$$

- Per avere funzionamento continuo per un certo δ basta imporre k > k_{lim} , ovvero $R_o < 2f_SL/(1-\delta)$
- Per avere funzionamento continuo in ogni condizione (0 < δ < 1) si pone k > 1 (R_o < 2f_SL)
- Connettendo un carico "zavorra" (bleeder) che soddisfi la condizione R_o < 2f_SL si ottiene un funzionamento sempre continuo

Carico resistivo Caratteristiche di controllo $M = f(\delta)$

DCM:

$$M = \frac{2}{1 + \sqrt{1 + \frac{4k}{\delta^2}}}$$

$$k = \frac{2 f_S L}{R_0}$$

Carico resistivo Caratteristiche di controllo $M = f(\delta)$

DCM:

$$M = \frac{2}{1 + \sqrt{1 + \frac{4k}{\delta^2}}}$$

$$k = \frac{2 f_S L}{R_o}$$

CCM:
$$M = \delta$$

Carico resistivo Caratteristiche di controllo $M = f(\delta)$

Il funzionamento è discontinuo per $U_o < U_i$ (1-k)

Caratteristiche di uscita M = f(k)

Caratteristiche di uscita M = f(k)

Caratteristiche di uscita M = f(k)

Funzionamento limite:

$$M_{CCM} = M_{DCM}$$

$$M = 1-k$$

Caratteristiche di uscita M = f(k)

Conclusioni

- La caratteristica di controllo del convertitore buck risulta lineare solo in CCM
- In DCM la caratteristica di controllo è nonlineare e dipendente dalla corrente di carico
- Il convertitore non è controllabile a vuoto
- Il controllo della tensione d'uscita può essere garantito applicando un carico zavorra
- Un opportuno dimensionamento del carico zavorra e dell'induttanza di filtro garantisce il funzionamento CCM in ogni condizione