[308	a)Slice the string to obtain first 6 elements. b)Extract the elements from index 6 to index 13 c)Extract last 5 characters of the string d)Create a new string by sclicing and concatinating the first 4 and last 3 characters of the string text="PythonProgramming" #a) to obtain first 6 elements #Note: indexing begins from 0 to n-1 t1=text[0:6] print(t1)
	<pre>print(t1) #b)elements from index 6 to index 13 t2=text[6:14] print(t2) #c) last 5 characters t3=text[-5:] print(t3) #d)sclicing and concatinating the first 4 and last 3 characters of the string t4=text[0:4]+text[-3:] print(t4) Python Programm mming Pything</pre>
[309	Q4: Write a python programme to create two data frames namely d1,d2. Construct d1 utilizing a two dimensional list and create d2 using dictionary lst=[['Raman',18,50000],['Aryan',20,45000],['Vinay',24,55000]] dict={'Name':['Krish','Ayush','Sandy'],
	[['Raman', 18, 50000], ['Aryan', 20, 45000], ['Vinay', 24, 55000]] {'Name': ['Krish', 'Ayush', 'Sandy'], 'Age': [22, 25, 28], 'Salary': [60000, 25000, 35000]} Name Age Salary Raman 18 50000 Aryan 20 45000 Vinay 24 55000 Name Age Salary Krish 22 60000 Ayush 25 25000 Sandy 28 35000 Q5: Write a python code to discuss in detail about the variance, standard deviation, covariance, correlation
[310	#loding a csv file with data in it data=pd.read_csv('rawdata.csv') print(data) print('\n') v=np.var(data) print('Variance in x,y:\n',v) s=np.std(data) print('Standard Deviation in x,y:\n',s) c=np.cov(data)[0,1] print('Covariance b/w x and y:',c) d=np.corrcoef(data)[0,1] print('Correlation b/w x and y:',d) x y 0 2.5 2.4
	1 0.5 0.7 2 2.2 2.9 3 1.9 2.2 4 3.1 3.0 5 2.3 2.7 6 2.0 1.6 7 1.0 1.1 8 1.5 1.6 9 1.1 0.9 Variance in x,y: x 0.5549 y 0.6449 dtype: float64
	dtype: float64 Standard Deviation in x,y: x 0.744916 y 0.803057 dtype: float64 Covariance b/w x and y: -0.01000000000000000005 Correlation b/w x and y: -0.999999999999999999999999999999999999
[311	Q6: Write a python programme to explain the concept of standardization and normalization. Discuss the circumstances under which it is appropriate to utilize these techniques in data processing d = np.array([[1, 2],
	#Standardization is appropriate when: # *The features in the dataset have different units or scales. # *The dataset contains outliers that may affect the performance of the model. # *The algorithm being used assumes that the features are normally distributed. #Normalization is appropriate when: # *The algorithm being used relies on the magnitude of features rather than their distribution. # *The features have different ranges and units. # *The dataset does not contain significant outliers. [[1 2] [3 4] [5 6]] Standardized data:
	[[-1.22474487 -1.22474487] [0.
[312	c)Displays the total null entries in "Precipitation" and "Humidity" d)Displays all the rows by removing an instance of missing values e)Find the dimentions of dataframe f)Fill the missing values in "humidity" and "prescipition" with the mean of the columns. #loading the weather csv file d1=pd.read_csv('Weather.csv') print(d1) Unnamed: 0 City_name Wind Speed Precipitation Highest_temp Lowest_temp \ 0 NaN Jammu 10 km/h 6% 47 3
	1 NaN Kashmir 13 km/h 10% 39 -9 2 NaN Udhampur 10 km/h 6% 45 2 3 NaN Rajouri 11 km/h 8% 40 -3 4 NaN Akhnoor 15 km/h 6% 44 4 5 NaN Reasi 13 km/h NaN 43 5 6 NaN Pulwama 14 km/h 8% 36 -5 7 NaN Gulmarg 15 km/h 12% 30 -7 8 NaN Kargil 16 km/h 3% 35 -10 9 NaN Leh 17 km/h 4% 38 -19 10 NaN Baramula 18 km/h NaN 29 -10 11 NaN Shopian 19 km/h 10% 27 -4 12 NaN Poonch 20 km/h 11% 25 -7 13 NaN Samba 21 km/h 7% 45 4 14 NaN Kathua 22 km/h NaN 46 6 15 NaN Siot 23 km/h 8% 40 3
	16 NaN Lamberi 24 km/h 8% 42 2 17 NaN Nowshera 25 km/h 7% 39 4 18 NaN Mendar 26 km/h 6% 40 -1 Humidity Atmospheric_pressure 0 22% 1007hPa 1 38% 1007hPa 2 NaN 1007hPa 3 25% 1007hPa 4 19% 1007hPa 5 25% 1007hPa 6 NaN 1007hPa 7 25% 1007hPa 8 25% 1007hPa
[314	10
[315	1 Kashmir 3 Rajouri 5 Reasi 7 Gulmarg 9 Leh Name: City_name, dtype: object #first 5 city names s=d1.head(5) print(s) Unnamed: 0 City_name Wind Speed Precipitation Highest_temp Lowest_temp 0 NaN Jammu 10 km/h 6% 47 3 1 NaN Kashmir 13 km/h 10% 39 -9 2 NaN Udhampur 10 km/h 6% 45 2 3 NaN Rajouri 11 km/h 8% 40 -3 4 NaN Akhnoor 15 km/h 6% 44 4
[316	Humidity Atmospheric_pressure 0 22% 1007hPa 1 38% 1007hPa 2 NaN 1007hPa 3 25% 1007hPa 4 19% 1007hPa #total null entries in precipitation and humidity f=pd.isnull(d1['Precipitation']).sum() g=pd.isnull(d1['Humidity']).sum() print('Null values in Precipitation:',f) print('Null values in Humidity:',g) Null values in Precipitation: 3
[317	Null values in Humidity: 4
[318	10 Baramula 18 km/h 29 -10 1007hPa 11 Shopian 19 km/h 27 -4 1007hPa 12 Poonch 20 km/h 25 -7 1007hPa 13 Samba 21 km/h 45 4 1007hPa 14 Kathua 22 km/h 46 6 1007hPa 15 Siot 23 km/h 40 3 1007hPa 16 Lamberi 24 km/h 42 2 1007hPa 17 Nowshera 25 km/h 39 4 1007hPa 18 Mendar 26 km/h 40 -1 1007hPa
	Q8: Explain Following with suitable example a) Supervised learning and Unsupervised learning b)Nominal and Ordinal Variable c)Normalise the following data using min-max normalization by setting min=0, max=1: 1000,2000,3000,9000 Ans: a) In supervised learning, the algorithm learns from labeled data, meaning that each training example in the dataset is paired with an associated label or output. The goal of supervised learning is to learn a mapping from input variables (features) to output variables (labels) based on the labeled training data Example: linear regression, logistic regression, decision trees
	b)Nominal variables are categorical variables that represent categories or groups with no inherent order or ranking between them. In nominal variables the ord does not matters. Example: Colour, Gender, Type of fruits Ordinal variables are categorical variables with distinct, ordered categories or groups. Unlike nominal variables, ordinal variables have a natural order or ranking between their categories, but the differences between the categories may not be uniformly meaningful. Here a hierchy is followed Examples: Very Hot - Hot - Cold - Very Cold, Grades(10,9,8,7) c) To normalize the given data using min-max normalization with the range [0, 1], you can use the following formula: x(normalized) =(x - x(min))/ (x(max) - x(min))/ (x(min))/
	For 1000 x=1000 x(min)=0 x(max)=1 So, x(normalized) i.e. 1000(normalized) = (1000 - 0)/(1 - 0) = 1000 For 2000 x=2000
	x(min)=0 x(max)=1 So, x(normalized) i.e. 2000(normalized) = (1000 - 0)/(1 - 0) = 2000 For 3000 x=3000 x(min)=0 x(max)=1
	So, x(normalized) i.e. 3000(normalized) = (3000 - 0)/(1 - 0) = 3000 For 9000 x=9000 x(min)=0 x(max)=1 So, x(normalized) i.e. 9000(normalized) = (9000 - 0)/(1 - 0) = 9000 Q9: Provide a detailed explanation of the PCA technique for dimensionality reduction including its methology and application
[319 [320 t[320	<pre>import pandas as pd from sklearn.decomposition import PCA import matplotlib.pyplot as plt from numpy.linalg import eig #Step 1: Imported a data sheet data = pd.read_csv('rawdata.csv') data</pre>
	1 0.5 0.7 2 2.2 2.9 3 1.9 2.2 4 3.1 3.0 5 2.3 2.7 6 2.0 1.6 7 1.0 1.1
	<pre>8 1.5 1.6 9 1.1 0.9 #ploted the actal given data plt.scatter(data["x"], data["y"]) plt.xlabel('x') plt.ylabel('y') Text(0, 0.5, 'y')</pre> 3.0 -
	2.5 - 2.0 - > 1.5 -
[322	1.0 - 0.5 1.0 1.5 2.0 2.5 3.0 x #finding(mean centric) mean = np.mean(data.T,axis=1) print(mean) x 1.81 y 1.91 dtype: float64
[324 t[324	<pre>std1 = np.std(data, axis=0) print(std1) x 0.744916 y 0.803057 dtype: float64 #step 2 i.e. Scaling data scale_data = (data - mean) scale_data</pre> x y
	 0 0.69 0.49 1 -1.31 -1.21 2 0.39 0.99 3 0.09 0.29 4 1.29 1.09 5 0.49 0.79 6 0.19 -0.31 7 -0.81 -0.81
[325	cov_matrix=np.cov(scale_data.T) print(cov_matrix) [[0.61655556 0.61544444] [0.61544444 0.71655556]] #step 4 :finding eigen values and eigen vector Eval, Evec=eig(cov_matrix) print('eigen values are', Eval)
[327	<pre>print('eigen vector are\n',Evec) eigen values are [0.0490834 1.28402771] eigen vector are [[-0.73517866 -0.6778734] [0.6778734 -0.73517866]] #step 5: projecting data to new axis project_data= Evec.T.dot(scale_data.T) print(project_data.T) [[-0.17511531 -0.82797019] [0.14285723 1.77758033] [0.38437499 -0.99219749] [0.13041721 -0.27421042] [-0.20949846 -1.67580142]</pre>
	[0.17528244 -0.9129491] [-0.3498247
t [329	[0.09910944, -0.3498247], [1.14457216, 0.04641726], [0.43804614, 0.01776463], [1.22382056, -0.16267529]]) #variance ratio of each PCA i.e. which PCA gives more information pca.explained_variance_ratio_ array([0.96318131, 0.03681869]) PCDF=pd.DataFrame(data=pca.fit_transform(data),columns=['PCA1','PCA2']) PCDF
	0 -0.827970 -0.175115 1 1.777580 0.142857 2 -0.992197 0.384375 3 -0.274210 0.130417 4 -1.675801 -0.209498 5 -0.912949 0.175282 6 0.099109 -0.349825
	7 1.144572 0.046417 8 0.438046 0.017765 9 1.223821 -0.162675 #ploting pca data plt.scatter(PCDF['PCA1'], PCDF['PCA2']) plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.title('PCA: Reduced-dimensional Space') Text(0.5, 1.0, 'PCA: Reduced-dimensional Space') PCA: Reduced-dimensional Space
	PCA: Reduced-dimensional Space 0.4 - 0.3 - 0.2 - 0.1 - 0.0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
[332	-0.20.31.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Principal Component 1 #now lets see how much weight each variable has in principal components loadings = pd.DataFrame(pca.componentsT,columns=['PCA1','PCA2'],index=["x","y"])
t [332	<pre>loadings = pd.DataFrame(pca.componentsT,columns=['PCA1','PCA2'],index=["x","y"]) loadings</pre>
	2: Face Recognition: In facial recognition systems, PCA can be used to reduce the dimensionality of facial features. This helps in focusing on the most imported components for distinguishing faces, leading to more efficient and accurate recognition algorithms. 3: Speech Recognition: PCA can be applied to reduce the dimensionality of speech signals. This can improve the efficiency of speech recognition algorithms be focusing on the most relevant features for distinguishing different phonemes and words. 4: Quality Control in Manufacturing: PCA can be applied to analyze data from manufacturing processes to identify the most important factors contributing to product quality. This can help streamline production processes and improve overall product quality. 5: Climate Science: PCA can be used to analyze climate data, such as temperature and precipitation patterns. It helps identify the principal components of variability in climate data, aiding in understanding and modeling climate phenomena.
	Q10: a)Write a python programme illustrating box plot. Explain how box plot aid in understanding outliers in data b) Why is the normal distribution important in statistic, and how can it be visualized with a diagram? Define skewness and describe the characteristics of left a right skewed distributions ### (Creating a box plot) ### (Creating a box plot) ### (Creating a box plot) ### (Since Plot) ### (Box Plot) ### (Pata) ### (P
	Box Plot
	Box plots provide a visual summary of the distribution of the data and help in identifying outliers. In a box plot, the central rectangle represents the interquartile range (IQR) of the data, with the median value marked as a line inside the rectangle. The "whiskers" extending from the box indicate variability outside the up
n []:	and lower quartiles, and any points beyond the whiskers are considered outliers. Outliers are identified as individual data points that fall outside the "whiskers" the box plot. By visualizing the distribution of data using a box plot, it becomes easier to identify extreme values that may be erroneous or unusual compared the rest of the data. Box plots provide a clear and concise summary of the data's central tendency, spread, and presence of outliers, making them valuable to for exploratory data analysis and outlier detection. b) The normal distribution, also known as the Gaussian distribution or bell curve, is one of the most important concepts in statistics for several reasons: Common Occurrence in Nature: Many natural phenomena follow a normal distribution. Examples include the heights of individuals in a population, IQ scores, measurement errors, and many more. Understanding the normal distribution allows statisticians to model and analyze various real-world processes accurately.
[334	Central Limit Theorem: The normal distribution plays a crucial role in the Central Limit Theorem, which states that the distribution of the sample means approaches a normal distribution as the sample size increases, regardless of the shape of the population distribution. This theorem is fundamental in inferential statistics and hypothesis testing. Statistical Inference: Many statistical methods, such as hypothesis testing, confidence intervals, and regression analysis, rely on assumptions of normality. Who data approximate a normal distribution, these methods tend to be more reliable and powerful. Simplicity and Symmetry: The normal distribution is characterized by its simplicity and symmetry, making it mathematically tractable and easier to work with the other distributions. # Generate random data following a normal distribution data = np.random.normal(loc=0, scale=1, size=1000)
	<pre># Plot a histogram plt.hist(data, bins=30, density=True, color='skyblue', edgecolor='black') # Plot the probability density function (PDF) xmin, xmax = plt.xlim() x = np.linspace(xmin, xmax, 100) p = stats.norm.pdf(x, 0, 1) plt.plot(x, p, 'k', linewidth=2) plt.title('Normal Distribution') plt.xlabel('Value') plt.ylabel('Density') plt.show()</pre> Normal Distribution
	Normal Distribution 0.4 0.3 Age of the second of the se
	Skewness: Skewness measures the asymmetry of the probability distribution of a real-valued random variable. It indicates whether the data is concentrated monomore side of the mean than the other.
	on one side of the mean than the other. Negative Skewness (Left Skew): The distribution has a longer left tail and is skewed towards the lower end of the range. The mean is less than the median, at the mode is greater than the median. Positive Skewness (Right Skew): The distribution has a longer right tail and is skewed towards the higher end of the range. The mean is greater than the median, and the mode is less than the median. Characteristics of Left and Right Skewed Distributions: Left Skewed Distribution: Also known as negatively skewed distribution. The mean is less than the median. The tail of the distribution extends towards the left. The bulk of the data points are concentrated on the right side of the distribution. In a left skewed distribution, outliers tend to be on the left side of the histogram Right Skewed Distribution: Also known as positively skewed distribution. The mean is greater than the median. The tail of the distribution extends towards the
	Right Skewed Distribution: Also known as positively skewed distribution. The mean is greater than the median. The tail of the distribution extends towards the right. The bulk of the data points are concentrated on the left side of the distribution. In a right skewed distribution, outliers tend to be on the right side of the histogram. Q12: Explain the concept of hypothesis testing in statistical analysis? Define the p-value in the context of hypothesis testing and explain its significance
	Hypothesis testing is a fundamental concept in statistical analysis used to make decisions or inferences about a population based on sample data. It involves testing a hypothesis or claim about a population parameter, such as a population mean or proportion, using sample data. The general process of hypothesis testing involves the following steps: 1)Formulate Hypotheses:
	testing a hypothesis or claim about a population parameter, such as a population mean or proportion, using sample data. The general process of hypothesis testing involves the following steps: