Introductory Microeconomics

Tutorial 9 Nhan La

Production functions

Market competition

- Perfectly competitive market:
 - Total revenue:

$$TR = P \times Q$$

- Marginal/Average revenue: $AR = MR = \frac{TR}{Q} = P$
- Imperfectly competitive market:
 - Total revenue: $TR(Q) = P(Q) \times Q$
 - Average revenue: $AR(Q) = \frac{TR(Q)}{Q} = \frac{P(Q) \times Q}{Q} = P(Q)$
 - Marginal revenue:

$$MR(Q) = \frac{\partial TR(Q)}{\partial Q} = \frac{\partial P(Q) \times Q}{\partial Q} = P(Q) + Q \frac{\partial P(Q)}{\partial Q} = AR(Q) + Q \frac{\partial P(Q)}{\partial Q}$$

• By applying:
$$\frac{\partial f(x)g(x)}{\partial x} = f(x)\frac{\partial g(x)}{\partial x} + g(x)\frac{\partial f(x)}{\partial x}$$

Price and quantity decision

- P(Q) = AR
 - Market demand curve
- $TR(Q) = P(Q) \times Q = AR(Q) \times Q$ - Concave TR(Q)
- $MR(Q) = AR(Q) + Q \frac{\partial P(Q)}{\partial Q}$ - MR(Q) < AR(Q)
- $$\begin{split} \bullet & \quad MR(Q) > 0 \Rightarrow \varepsilon_D < -1 \\ & \quad P(Q) + Q \frac{\partial P(Q)}{\partial Q} > 0 \\ & \quad \Rightarrow P(Q) > -Q \frac{\partial P(Q)}{\partial Q} \Rightarrow \frac{P}{Q} \frac{\partial Q}{\partial P} < -1 \end{split}$$

Profit maximisation

• Perfectly competitive market:

$$MR = P = MC(Q)$$

Imperfectly competitive market:

$$MR(Q) = MC(Q)$$

Dead weight loss

a/

Q	Р	TR	MR
		$(P \times Q)$	$(TR_{t+1} - TR_t)$
0	80	$0 \times 80 = 0$	
1	70	$1 \times 70 = 70$	70-0=70
2	60	120	120-70=50
3	50	150	30
4	40	160	10
5	30	150	-10
6	20	120	-30
7	10	70	-50

b/	Q	FC	MC	VC (Q x MC)	SRTC (VC + FC)	SRATC $\left(\frac{TC}{Q}\right)$
	0	60			60	
	1	60	20	$1 \times 20 = 20$	60+20=80	80
·	2	60	20	$2 \times 20 = 40$	60+40=100	50
	3	60	20	60	120	40
	4	60	20	80	140	35
	5	60	20	100	160	32
	6	60	20	120	180	30
	7	60	20	140	200	28.57
	8	60	20	160	220	20

b/

Q	FC	AFC	VC	AVC	SRATC (AFC +AVC)
0	60				
1	60	60	20	20	80
2	60	30	40	20	50
3	60	20	60	20	40
4	60	15	80	20	35
5	60	12	100	20	32
6	60	10	120	20	30
7	60	8.6	140	20	28.57
8	60	7.5	160	20	20

c/

Q	$\frac{MR}{(TR_{t+1} - TR_t)}$	MC
0		
1	70	20
2	50	20
3	30	20
4	10	20
5	-10	20
6	-30	20
7	-50	20

Demand:
$$Q = 20 - 0.5P \Rightarrow 0.5P = 20 - Q$$

Inverse demand: $AR = P(Q) = 40 - 2Q$
Total revenue: $TR(Q) = P(Q) \times Q = 40Q - 2Q^2$
Total cost: $TC(Q) = 4 - Q + 0.5Q^2$

a/MC(Q) =
$$\frac{\partial TC(Q)}{\partial Q}$$
 = -1 + Q
MR(Q) = $\frac{\partial TR(Q)}{\partial Q}$ = 40 - 4Q

In monopoly market, to maximise profit firm sets:

$$MR(Q) = MC(Q)$$

$$40 - 4Q = -1 + Q$$

$$Q_{m} = 8.2; P_{m} = 40 - 2 \times 8.2 = 23.6$$

$$\Pi = TR(Q) - TC(Q) = 8.2 \times 23.6 - (4 - 8.2 + 0.5 \times 8.2^{2}) = 164.1$$

Demand: Q = 20 - 0.5P

Inverse demand: P(Q) = 40 - 2Q

Total revenue: $TR(Q) = P(Q) \times Q = 40Q - 2Q^2$

Total cost: $TC(Q) = 4 - Q + 0.5Q^2$

$$MC(Q) = \frac{\partial TC(Q)}{Q} = -1 + Q$$

b/ In competitive market, to maximise profit firm sets:

$$MC(Q) = P(Q)$$

$$\Rightarrow$$
 -1 + Q = 40 - 2Q

$$Q_c = 13.7$$

$$P_{c} = MC = -1 + 13.7 = 12.7$$

c/
i)
$$Q_c = 13.7 > 8.2 = Q_m$$

 $P_c = 12.7 < 23.6 = P_m$

ii)

- Monopoly: MR = private marginal benefit
- Competitive: P(Q) = social marginal benefit
- Total surplus gain = DWL

$$DWL = \frac{(23.6 - 7.2) \times (13.7 - 8.2)}{2} = 45.1$$

c/ iii)

• Consumer surplus: A + B

$$-A = \{(23.6 - 12.7) \times 8.2\} = 90.2$$

$$- B = \frac{(23.6 - 12.7) \times (13.7 - 8.2)}{2} = 30.25$$

- Consumer surplus = 120.45
- Producer surplus: -A + C

$$- C = \frac{(12.7 - 7.2) \times (13.7 - 8.2)}{2} = 14.85$$

- Producer surplus = -75.35

- Again, it shows:
 - Total surplus gain = CS + PS = (A + B) + (-A + C) = B + C = DWL

d/ Average pricing

d/ Average pricing

- E1: Market efficient p=MC
 - Subsidy for firm loss
- E2: Monopoly
 - Substantial dead weight loss
- E3: Set P = ATC
 - Firm makes no profit. Why?

$$\Pi = TR(Q) - TC(Q)$$

$$\Rightarrow \Pi = P \times Q - ATC \times Q$$

$$\Rightarrow \Pi = Q(P - ATC) = 0$$

e/ Tax on the product produced, or supply side

Monopoly

Competitive

e/

Monopoly

$$MC(Q)_t = MC(Q) + t$$

Profit maximisation:

$$MC(Q)_t = MR(Q)$$

Solve for $Q_{m,t}$ and $P_{m,t}$

e/

Competitive

$$MC(Q)_t = MC(Q) + t$$

Profit maximisation:

$$MC(Q)_t = P(Q)$$

Solve for $Q_{c,t}$ and $P_{c,t}$

