Machine Learning Overview, EDA and Clustering Brian Wright brianwright@virginia.edu

CLASSICAL MACHINE LEARNING

Example of K-Means

- Given $D:\{2,4,10,12,3,11,20,25,30\}$, and k=2 clusters
- Randomly assign the means: $m_1=3$, $m_2=4$
- $K_1 = \{2,3\}, K_2 = \{4,10,12,11,20,25,30\}, m_1 = 2.5, m_2 = 16$
- $K_1 = \{2,3,4\}, K_2 = \{10,12,11,20,25,30\}, m_1 = 3, m_2 = 18$
- $K_1 = \{2,3,4,10\}, K_2 = \{12,11,20,25,30\}, m_1 = 4.75, m_2 = 19.6$
- $K_1 = \{2,3,4,10,11,12\}, K_2 = \{20,25,30\}, m_1 = 7, m_2 = 25$
- $K_1 = \{2,3,4,10,11,12\}, K_2 = \{20,25,30\}, m_1 = 7, m_2 = 25$
 - Stop, since the clusters and the means found in all subsequent iterations will be the same.

Outline: Intro to Unsupervised ML

- 1. What is Machine Learning?
- 2. What is exploratory data analysis?
- 3. k-means clustering
 - Does Congress vote in patterns?
- 4. Multi-dimensional k-means clustering
 - Are NBA players compensated according to performance?

What is exploratory data analysis?

- Exploratory data analysis or "EDA" is an approach where the intent is to see what the data can tell us beyond modeling or hypothesis testing
 - Data visualization is one of the most common forms of EDA

Types of exploratory data analysis

When data is too big or complex to be analyzed just by visualizing it, these types of analysis can help:

- 1. <u>Clustering:</u> compare pieces of data by **measuring** similarity among them
- 2. <u>Network analysis:</u> analyze how people, places and entities are connected to evaluate the properties and structure of a network
- 3. <u>Text mining:</u> analyze what large bodies of unstructured or structured text say

Unsupervised machine learning

The data inputs have (x) no target outputs (y)

Output y:
Not given
(To be discovered)

We want to impose structure on the inputs (x) to say something meaningful about the data

What is clustering?

- 1. Technique for finding similarity between groups
- 2. Type of unsupervised machine learning
 - Not the only class of unsupervised learning algorithms
- 3. Similarity needs to be defined
 - Will depend on attributes of data
 - Usually a distance metric

Key assumption: data points that are "closer" together are related or similar

GE Capital case study: grouping clients

- Haimowitz and Schwarz 1997 paper on clustering for credit line optimization
 - http://www.aaai.org/Papers/Workshops/1997/ WS-97-07/WS97-07-006.pdf
- Cluster existing GE Capital customers based on similarity in use of their credit cards to pay bills and customers' profitability to GE Capital
- Resulted in five clusters of consumer credit behavior
- Created classification model to predict customer type and offer tailored products

New credit applicant, with external bureau data

Figure 1: Clustering-based framework for optimizing a credit policy.

Concept summary

Example use case	General question	Concept
Does Congress vote in patterns?	Is there a pattern? Is there structure in unstructured data?	k-means clustering
Are basketball players "priced" efficiently (based on performance)?	How to uncover trends with many variables that you can't easily visualize?	k-means clustering in many dimensions

Political clustering

Goal: to understand how polarized the US Congress is

- 1. Data set consists of 427 members (observations)
- 2. Members served a full year in 2013
- 3. Three vote types:
 - "Aye"
 - "Nay"
 - "Other"

The joint session of Congress on Capitol Hill in Washington

Finding voting patterns

Each data point represents a member of Congress

- How do we identify swing votes?
 - Lobbying
 - Bridging party lines
- Assumption:
 - Democrats and Republicans vote among partisan lines, which generates clusters

Intra vs. inter-cluster distance

Objective: minimize intra-cluster distance, maximize inter-cluster distance

k-means clustering is based on centroids

- The centroid is the average location of all points in the cluster
- Another definition: the centroid minimizes the distance between a central location and all the data points in the cluster

Note: Centroids are generally not existing data points, rather locations in space

1. Randomly choose k data poi to be centroids

- 1. Randomly choose k data points to be centroids
- 2. Assign each point to closest centroid

- 1. Randomly choose k data points to be centroids
- 2. Assign each point to closest centroid
- 3. Recalculate centroids based on current cluster membership

- 1. Randomly choose k data points to be centroids
- 2. Assign each point to closest centroid
- 3. Recalculate centroids based on current cluster membership

4. Repeat steps 2-3 with the new centroids until the centroids don't change anymore

Step 1: load packages and data

Step 1: load packages and data

Step 2: run k-means

```
# Define the columns to be clustered by subsetting the data
clust data Dem = house votes Dem[, c("aye", "nay", "other")]
                                                                      1. By placing the set of data we want
                                                                        after the comma, we tell R we're
                                                                        looking for columns
# Run an algorithm with 2 centers
                                                                      2. kmeans uses a different starting
set.seed(1)
                                                                        data point each time it runs. To
                                                                        make the results reproducible
kmeans obj Dem = kmeans(clust data Dem, centers = 2,
                                                                        make R start from the same point
                              algorithm = "Lloyd")
                                                                        every time with set.seed()
                                                                      3. We're not specifying the number
# What does the new variable kmeans obj contain?
                                                                        of iterations so R defaults to 10
kmeans obj Dem
                                                                      4. We'll see that kmeans produces a
                                                                        list of vectors of different
# View the results of each output of the kmeans
                                                                        lengths. As a result, we cannot use
# function
                                                                        the View () function
head (kmeans obj Dem)
```


Step 2: run k-means

kmeans outputs

- cluster: a vector indicating the cluster to which each point is allocated
- centers: a matrix of cluster centers
- totss: the total sum of squares (sum of distances between all points)
- withinss: vector of within-cluster sum of distances, one number per cluster
- tot.withinss: total within-cluster sum of distances, i.e. sum of withinss
- betweenss: the between-cluster sum of squares, i.e. totss tot.withinss
- size: the number of points in each cluster

To learn more about the kmeans function run ?kmeans

Intra vs. inter-cluster distance

Step 3: visualize plot

```
# Tell R to read the cluster labels as factors so that ggplot2 (the
# graphing package) can read them as category labels instead of
# continuous variables (numeric variables).
party_clusters_Dem = as.factor(kmeans_obj_Dem$cluster)

# What does party_clusters look like?
View(party_clusters_Dem)
View(as.data.frame(party_clusters_Dem))

# Set up labels for our data so that we can compare Democrats and
# Republicans.
party_labels_Dem = house_votes_Dem$party
```


Step 3: visualize plot

Step 3: visualize plot

Step 4: analyze results

What can we infer about the different clusters?

- Two groups exist
- Algorithm identifies voting patterns

Aye vs. Nay votes for Democrat-introduced bills

Cluster

- 1 Cluster 1
- 2 Cluster 2

Step 5: validate results

```
Script
 ggplot(house votes Dem, aes(x = yea,
                               y = nay
                               color = party labels Dem,
                               shape = party clusters Dem)) +
   geom\ point(size = 6) +
   ggtitle ("Aye vs. Nay votes for Democrat-introduced bills")
                                                                                Cosmetics layer
   xlab("Number of Aye Votes") +
   ylab("Number of Nay Votes") +
   scale shape manual(name = "Cluster",
                       labels = c("Cluster 1", "Cluster 2"),
                       values = c("1", "2")) +
   scale color manual(name = "Party",
                       labels = c("Democratic", "Republican"),
                       values = c("blue", "red")) +
   theme light()
```


Step 5: validate results

Step 6: interpret results

- Diffuse among Democrats
- Republicans more dense
- Can gauge "outliers"
- Can see the polarization between the two political parties 5

Aye vs. Nay votes for Democrat-introduced bills 160 Cluster Nay Votes Cluster 1 140 Cluster 2 Number 0 120 -Party Republican Democratic 100 120 Number of Aye Votes

Outliers?

Clustering vs. visualizing

- Clustering is more powerful than the human eye in 3D
- Clustering mathematically defines which cluster the peripheral points should be in when it's not obvious to the human eye
- Clustering is helpful when many dimensions / variables exist that you can't visualize at once
 - Whiskey similarity example from classification lecture

How good is the clustering?

- Goals of clustering:
 - Maximize the separation between clusters

How good is the clustering?

Assessing how well an algorithm performs

- Look at the variance explained by clusters
 - In particular, the ratio of inter-cluster variance to total variance
- How much of the total variance is explained by the clustering?

Variation explained by clusters

=

inter-cluster variance / total variance

kmeans outputs

- cluster: a vector indicating the cluster to which each point is allocated
- centers: a matrix of cluster centers
- totss: the total sum of squares (sum of distances between all points)
- withinss: vector of within-cluster sum of distances, one number per cluster
- tot.withinss: total within-cluster sum of distances, i.e. sum of withinss
- betweenss: the between-cluster sum of squares, i.e. totss tot.withinss
- size: the number of points in each cluster

To learn more about the kmeans function run ?kmeans

Intra vs. inter-cluster distance

How good is the clustering?

```
Script
# Inter-cluster variance,
  "betweenss" is the sum of the
 distances between points from
 different clusters
num Dem = kmeans obj Dem$betweenss
# Total variance
 "totss" is the sum of the distances
# between all the points in
# the data set
denom Dem = kmeans obj Dem$totss
# Variance accounted for by
# clusters
var exp Dem = num Dem / denom Dem
var exp Dem
[1] 0.7193405
```


How good is the clustering?

How do we choose the number of clusters (i.e. k)?

- It's easier when the number of clusters is known ahead of time, but what if we don't know how many clusters we should have?
- Since different starting points may generate different clusters, we need a way to assess cluster quality as well.

How to select k: two methods

1. Elbow method

- Computes the percentage of variance explained by clusters for a range of cluster numbers
- Plots a graph so results are easier to see
- Not guaranteed to work! It depends on the data in question

2. NbClust

 Runs 30 different tests and provides "majority vote" for the best number of clusters (k's) to use

Elbow method: measure variance

```
# Run algorithm with 3 centers
                                      Script
set.seed(1)
kmeans obj Dem = kmeans(clust data Dem,
                         centers = 3,
                     algorithm = "Lloyd")
# Inter-cluster variance
num Dem = kmeans obj Dem$betweenss
# Total variance
denom Dem = kmeans obj Dem$totss
# Variance accounted for by clusters
var exp Dem = num Dem / denom Dem
var exp Dem
[1] 0.7949741
```


Automating a step we want to repeat

- We want to repeat the variance calculation from the previous slide for several numbers of clusters automatically
- We can create a function that contains all the steps we want to automate

function(data, item to iterate through)

Automating a step we want to repeat

```
# The function explained variance wraps our code from previous slides. Script
explained variance = function(data in, k(
  # Running k-means algorithm
 set.seed(1)
 kmeans obj = kmeans(data in, centers = k,
                      algorithm = "Lloyd")
  # Variance accounted for by clusters
 var exp = kmeans obj$betweenss /
           kmeans obj$totss
  var exp
```

- 1. A new variable is created and set equal to our function()
- 2. The commands inside the function are wrapped in curly braces {}
- 3. Inside the parentheses, we specify the variables that the user will input and that will then be used inside the function where they appear

Automating a step we want to repeat

```
Script
# Recall the variable we are using for the
# data that we're clustering.
clust data Dem = house votes Dem[, c("aye", "nay", "other")]
View(clust data Dem)
                                                               1. sapply() applies a function to a
# The sapply() function plugs several values
                                                                 vector
# into explained variance.
                                  Function we create
                                                               2. We have to tell sapply () that
explained var Dem = sapply(1:10, explained variance,
                                                                 the we want the
                                data in = clust data Dem)
                                                                 explained variance function
                                                                 to use the clust data data
View (explained var Dem)
                                                               3. Next. we create a data frame that
                                                                 contains both the new variance
# Data for ggplot2
                                                                 variable (explained var Dem)
elbow data Dem = data.frame(k = 1:10,
                                                                 and the different numbers of k
                                  explained var Dem)
                                                                 that we used in the previous
View (elbow data Dem)
                                                                 function (1 through 10)
```


Elbow method: plotting the graph

Elbow method: measure variance

Looking for the kink in graph of inter-cluster variance / total variance

Elbow method

There are a number of ways to choose the right k.

NbClust runs 30 tests and selects k based on majority vote

```
• Library: "NbClust"

Functions: "NbClust"
```

```
NbClust(data, max.nc, method = "kmeans")
```

Inputs:

- data data array or data frame
- min.nc / max.nc minimum/maximum number of clusters
- method "kmeans"
- There are other, more advanced arguments that can be customized but are outside of the scope of this course and are note necessary to for NbClust to work


```
# Install the package.
install.packages("NbClust")
library(NbClust)

# Run NbClust.
nbclust_obj_Dem = NbClust(data = clust_data_Dem, method = "kmeans")

# View the output of NbClust.
nbclust_obj_Dem

# View the output that shows the number of clusters each
# method recommends.
View(nbclust_obj_Dem$Best.nc)
```


Note: additional information appears; the above information is most relevant to us for now

- nbclust obj Dem shows the outputs of NbClust
 - One of the outputs is Best.nc, which shows the number of clusters recommended by each test

 We want to visualize a histogram to make it obvious how many votes there are for each number of clusters


```
# Subset the 1st row from Best.nc and convert it
                                                      Script
# to a data frame, so ggplot2 can plot it.
freq k Dem = nbclust obj Dem$Best.nc[1,]
freq k Dem = data.frame(freq k Dem)
View (freq k Dem)
# Check the maximum number of clusters.
max(freq k Dem)
# Plot as a histogram.
ggplot(freq k Dem,
       aes(x = freq k Dem)) +
  geom bar() +
  scale x continuous (breaks = seq(0, 15, by = 1)) +
  scale y continuous (breaks = seq(0, 12, by = 1)) +
  labs(x = "Number of Clusters",
       y = "Number of Votes",
       title = "Cluster Analysis")
```


Number of Clusters

Application of results

- If you're a lobbyist, which congressperson can you influence for swing votes?
- If you're managing a campaign and your competitor is always voting along party lines, how can you use that information?
- If your congressperson is not an active voter, is she representing your interests?
- What do the voting patterns look like for Republican-introduced bills?

Implications of results

- Could see differences between the patterns of Reb lead bills and Democrat lead bills
- Could provide information on congressmen that might be see has swing votes.

DURLINGTON WAS AN EXPERT IN HIS FIELD.

UNFORTUNATELY, HIS FIELD WAS A TEN FOOT
SQUARE PLOT OF PASTURE IN IOWA.

Limitations of results

- We are assuming that the patterns correspond with the same bills being voted on perhaps some Congressmen have the same number of 'aye' and 'nay' votes, but voted on different bills
- Network analysis can help determine additional connections between Congressmen
- We haven't taken extenuating factors into account political initiatives, current events, etc.

This is a preliminary analysis that gives us initial insights and can help us direct further research

The good, bad, and evil

- The good and bad
 - + cheap NO LABELS, labels are expensive to create and maintain
 - +/- clustering always works
 - Many methods to choose from and knowing the right one can be nontrivial and the differences between many are almost zero, so you need to understand what you're doing
- The evil
 - Curse of dimensionality
 - Clusters may result from poor data quality
 - Non-deterministic (e.g. k-means) subject to local minimum. Since it works with averages, k-means does not get much better with Big Data (marginal improvements)
 - Non spherical data may result in poor clustering (depending on method used)
 - Unequal cluster sizes may result in poor clustering (depending on method used)

The good, bad, and evil

- Analysts need to ask the following questions
 - Do you want overlapping or non-overlapping clusters?
 - Does your data satisfy the assumptions of the clustering algorithm?
 - How was the distance measure identified?
 - How many clusters and why? Identifying the number of clusters is a difficult task if the number of class labels is not known beforehand
 - Does your method scale to the size of the data?
 - Is the compute time congruent with the temporal budget of your business need (i.e. do you get answers back in time to make meaningful decisions)