Задача 2

 $|x-y| \leq 2^n$. Если $p_1, \cdots, p_k: \forall i=1,\cdots,k \hookrightarrow (|x-y|:p_i) \land (n \leq p_i \leq 2n) \Rightarrow |x-y| \geq p_1 \cdots p_k \geq n^k \Rightarrow 2^n \geq n^k \Rightarrow k \leq \ln 2 \frac{n}{\ln n}$ Учитывая, что при $n \to \infty \hookrightarrow \pi(n) \sim \frac{n}{\ln n}$, получаем оценку на вероятность ошибки

$$P_{err} \le \frac{k}{\pi(2n) - \pi(n)} \le \frac{\ln 2}{\frac{2\ln n}{\ln 2n} - 1} = \frac{\ln 2 \cdot \ln 2n}{\ln n - \ln 2} = \ln 2 \frac{\ln 2n}{\ln n/2}$$

$$P_{err} \leq rac{3}{4} \Rightarrow n \geq 2^{rac{3+\ln 16}{3-\ln 16}} pprox 2^{25.384}$$
 бит

Такая длины файлов достаточна для справедливости оценки вероятности ошибки. 32 мб равны $2^82^65^6$ бит $> 2^{26}$ бит $> n_0$, тогда оценка справедлива при такой длине файлов.

Задача 3

(i) Пусть BPP' — класс языков, распознаваемых вероятностной машиной Тьюринга с вероятностью ошибки не больше чем $p < \frac{1}{2}$, работающей полиномиальное в среднем число шагов.

Из определения BPP следует, что $BPP \subset BPP'$, т. к. $p=\frac{1}{3}<\frac{1}{2}$

Основываясь на *inequality for Bernoulli random variables* покажем $BPP' \subset BPP$: пусть MT $M' \in BPP'$, которая ошибается с вероятностью $P_{er} \leq p: p < \frac{1}{2}$. Построим с ее помощью MT M, вероятность ошибки которой меньше $\frac{1}{3}$. Для этого запустим машину M' n раз подряд, сохраняя ответы (да или нет на вопрос принадлежности слова языку) и затем вернем в качетсве результата работы машины M произвольный ответ из созраненных n штук. Вероятность ошибки машины M равна числу ошибочных ответов среди n сохраненных ответов, каждый из которых, в свою очередь, является ошибочным с вероятностью p. Тогда вероятность ошибки машины $M = P_{er}(M) \leq \frac{1}{3} \Leftrightarrow$ тому, что число ошибочных ответов меньше либо равно $\frac{n}{3}$ (*). В формуле

 $P((\text{number of errors among n results}) \le (p-e)n) \le exp(-2e^2n)$ положим $e = \frac{1}{6}$

Т. к. $p < \frac{1}{2}$, то $(p-e) < (0.5-e) = \frac{1}{3}$. Поскольку в этой формуле самое первое выражение есть вероятность ошибки, как сказано выше (*),

то при $exp(-2e^2n) < \frac{1}{3}$ получаем $BPP' \subset BPP$. Для этого достаточно запустить МТ количество раз $n > 18 \ln 3$. Например, сто раз. Т. к. на каждом из n шагов МТ M' работала в среднем полиномиально, то это свойство сохранится и для МТ M. В итоге, BPP = BPP'.

(ii) Покажем как осуществить замену полиномиальное в среднем числа шагов работы МТ на строго полиномиальное число шагов с сохранением того, что вероятность ошибки МТ строго меньше 0,5. Пусть есть МТ, ошибающаяся с вероятностью $e<\frac{1}{2}$, которая работает полиномиальное время с вероятностью p и неполиномиальное с вероятностью 1-p. Построим по ней МТ' для того же языка, которая работает как МТ, если число шагов меньше либо равно poly(|w|) (w есть слово языка), а иначе прекращает моделирование МТ и возвращает произвольно ответ про принадлежность слова языку ("да"или "нет"). Вероятность ошибки МТ' равна ep+0.5(1-p)=0.5+p(e-0.5)<0.5. Т. е. новая МТ' разрешает тот же язык за полиномиальное время и принадлежит BPP.

Задача 4

(i) $ABx = Cx \Leftrightarrow (AB - C)x = 0 \Leftrightarrow Mx = 0$, где M = AB - C. Умножив матрицу M на произвольно выбранный вектор x получим n полиномов степени не больше, чем один. Если rk(M) = n, то вероятность того, что все полиномы зануляются выбранным вектором по лемме Шварца-Зиппеля равна $\left(\frac{1}{N}\right)^n$, т. к. координаты вектора могут принимать N разных значений и степень многочленов равна 1. Если ранг матрицы системы меньше n, то вероятность обнуления всех многочленов (а это равносильно равенству исходных матриц) будет меньше. Тогда из условия

$$\left(\frac{1}{N}\right)^n \frac{1}{\sqrt[n]{p}}$$

(ii) $x^TABx = x^TCx$. Перемножив матрицу на произвольно выъранный вектор, после переноса через знак равенства получим полином от n переменных степени не больше второй. Тогда по лемме Шварца-Зиппеля вероятность того, что полином обнуляется выбранным вектором x не более $\frac{2}{N}$. Тогда $\frac{2}{N} \frac{2}{p}$.

 $y^TABx = y^TCx$ — Аналогично получаем полином степени не выше второй, но содержащий 2n переменных. Тогда вероятность ошибки равна $\frac{2}{2N} = \frac{1}{N}.$ $\frac{1}{N} \frac{1}{p}.$

Задача 5

(i) Пусть в графе минимальный разрез содержит r ребер. Если у какой-то вершины графа степень меньше r, то, выделив ее и остальные вершины в два дизьюнктных подмножества множества вершин графа, получим разрез с меньшим числом ребер. Противоречие с минимальностью исходного разреза. Тогда степени всех вершин в графе не меньше r. Получаем

$$|E| = \frac{1}{2} \sum_{v \in V} deg(v) \ge \frac{1}{2} |V| k$$

$$P$$
(выбранное ребро в min разрезе) = $\frac{k}{|E|} \le \frac{k}{0.5|V|k} = \frac{2}{|V|}$

(ii) Алгоритм выдаст MINCUT, если в процессе его работы никакое ребро из минимального разреза не будет стянуто. Это просходит с вероятностью

$$\left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{n-1}\right)\left(1 - \frac{2}{n-2}\right)\cdots\left(1 - \frac{2}{4}\right)\left(1 - \frac{2}{3}\right) =$$

$$= \frac{n-2}{n}\cdot\frac{n-3}{n-1}\cdot\frac{n-4}{n-2}\cdots\frac{2}{4}\cdot\frac{1}{3} = \frac{2(n-2)!}{n!} = \frac{2}{n(n-1)}$$

(iii) Вероятность вероятность хотя бы одного ошибочного стягивания при каждом из n^2 независимых выполнений равна $1-\frac{2}{n(n-1)}<1-\frac{2}{n^2}.$ Тогда вероятность правильно найти минимальный разрез больше

$$1 - \left(1 - \frac{2}{n^2}\right)^{n^2} > 0.85$$
 т. к. $1 - \left(1 - \frac{2}{n^2}\right)^{n^2} \underset{n \to \infty}{\longrightarrow} 1 - \frac{1}{e^2} \approx 0.865$

Задача 6

(*i*) Решим задачу через графы. Для этого преобразуем каждый дизьюнкт $a \lor b \equiv !a \to b \equiv !b \to a \ (*).$

Построим по 2-КНФ граф : каждая переменная и ее отрицание будут вершинами, а ребра будут соответствовать импликациям (*).

Теперь заметим, что если для какой-то переменной a выполняется, что из нее достижимо !a, а из !a достижимо a, то задача решения не имеет, т. к. какое бы значение для переменной a мы бы ни выбрали, всегда получим противоречие ($!a=1 \land a=1$). Тогда, для того, чтобы 2-КНФ имела решение, необходимо и достаточно, чтобы для любой переменной a вершины a и !a находились в разных компонентах сильной связности построенного графа. Это проверим за O(|V|+|E|) с помощью алгоритма поиска сильно связных компонент и последующего поиска пути между вершинами a и !a (a произвольно). found at emax

(*ii*) Поскольку алгоритм лежит в P и $P \subseteq ZPP \subseteq RP \subseteq BPP$, то он лежит во всех этих вероятностных классах.

Задача 7

(*i*) База индукции, когда под картой a_{n-1} всего одна карта. Пусть под картой a_{n-1} находятся j карт и каждая их перестановка равновероятна. Тогда вероятность конкретной перестановки под a_{n-1} картой равна $\frac{1}{j!}$. Для вставки новой карты под a_{n-1} карту есть j+1 вариант, значит, вероятнсть получить конкретную перестановку равна $\frac{1}{j!} \cdot \frac{1}{j+1} = \frac{1}{(j+1)!}$, т. е. снова все перестановки равновероятны.

(ii) Аналогично пункту (i).

(iii) Пусть T_j — число итераций цикла, когда под картой a_{n-1} ровно j карт. Тогда общее число итераций равно $T=T_1+T_2+\cdots+T_{n-2}$ В силу линейности матожидания : $E_T=\sum_{j=1}^{n-2}E_{T_j}$ Если под картой a_{n-1} находятся j карт, получим

$$E_{T_{j}} = 1 \cdot \frac{j+1}{n} + \dots + k \cdot \frac{j+1}{n} \left(\frac{n-j-1}{n} \right)^{k-1} = \sum_{k=0}^{\infty} (k+1) \frac{j+1}{n} \left(1 - \frac{j+1}{n} \right)^{k} =$$

$$= \frac{j+1}{n} \left(\sum_{k=0}^{\infty} \left(1 - \frac{j+1}{n} \right)^{k+1} \right)' = \frac{j+1}{n} \left(\frac{1}{1 - \left(1 - \frac{j+1}{n} \right)} \right)' = \frac{j+1}{n} \frac{1}{\left(\frac{j+1}{n} \right)^{2}} = \frac{n}{j+1}$$

Тогда

$$E_T = \sum_{i=1}^{n-2} \frac{n}{j+1} = n \ \Theta(\ln n)$$

Т. к.
$$\ln n - \ln 2 = \int_0^{n-2} \frac{dx}{x+2} \le \sum_{j=1}^{n-2} \frac{1}{j+1} \le \int_0^{n-2} \frac{dx}{x+1} = \ln (n-1)$$