I341 TCP/IP Protocol and Addressing

J. Farricker

Rev: Oct 2016

Application	Telnet	FTP	SMTP	DNS	SNMP
Presentation					
Session					
	(TCP) Transi			(UDP) User	
Transport	Control Prot	ocol		atagram Protoco	ol .
Network	(IP) Internet Protocol				
Data Link Contol			ARP		
(Logical Link Control)			SIKI		
MAC Media Access Contol	Ethernet	Token Bus	To	ken Ring	Wireless
Physical	IEEE 802.3	IEEE 802.4		IEEE 802.5	IEEE 802.11
	802.3	802.4		802.5	802.11

TCP Header

Source Port	Destination Port			
Sequence Number				
Acknowledgement Number				
Misc Flags	Window (Flow Cntl)			
Checksum	Urgent			
Options				

TCP/IP User Application Protocols

FTP (File Transfer Protocol) - allows the user to send or retrieve entire files interactively. The user can remove files, list directories, get the status of the file transfer and rename files. FTP follows a client/server mode; a client send commands and interacts with the user, a server receives and responds to the commands.

SMTP (Simple Mail Transfer Protocol) is an electronic mail protocol which uses a TCP virtual circuit to transmit and relay mail. SMTP implementations usually return undeliverable mail automatically. SMTP is address oriented, rather than route oriented so the user does not need to specify a particular path to the receive (although he has that option). **TELNET** (Remote Access Protocol) is an interactive, remote access, terminal protocol, allowing the user to log in and use a remote computer system on the network as though your terminal were directly connected to the remote

Domain Name Services (DNS) enables a device to be referenced by a special name (as opposed to a TCP/IP number). In this manner a computer such as homer (homer@u.washington.edu) can be accessed by a common naming system.

machine. TELNET options permit negotiation of terminal and data characteristics (i.e. 3720, VT100...).

Simple Network Management Protocol (SNMP) uses SNMP agents that reside in network devices (concentrators, bridges, routers, servers) and collects data (statistics) that are transported back over UDP to a SNMP Manager. **Network File Server (NFS)** is a set of protocols developed by Sun Micorsystems to allow multiple devices to access each others directories (the interconnected devices files/directories appear as if they are locally attached). This is accomplished by using a distributed filesystem scheme. NFS is commonly used by larger UNIX workstations and typically places extremely large bandwidth requirements on the network supporting it. Extremely difficult to support well over a WAN (Wide Area Network) environment.

Remote Procedure Calls (RPCs) are functions that enable applications to communicate with other machines (typically servers). RPCs provide for programming functions, return codes and variables (user definable) to support distributed computing.

Trivial File Transfer Protocol (TFTP) is a simple, unsophisticated file transfer protocol that lacks error checking (uses UDP). TFTP is typically used to download images (software/microcode) to flash memory in bridges, routers or PCs.

Port Numbers

Introduction to TCP/IP Addresses

Unique addressing allows communication between end stations

Path choice is based on location

Location is represented by an address

IP Addressing (Dotted Decimal)

IP Addressing

IP Addressing

IPAddress Classes

	8 bits	8 bits	8 bits	8 bits
• Class A:	Network	Host	Host	Host
• Class B:	Network	Network	Host	Host
• Class C:	Network	Network	Network	Host

• Class D: Multicast

Class E: Research

IP Address Classes

Bits:	1 8	9 16	17 24	25 32		
Class A:	ONNNNNN	Host	Host	Host		
Giaco / ti	Range (1-126)					
Bits:	1 8	9 16	17 24	25 32		
Class B:	10NNNNNN	Network	Host	Host		
Giaco Bi	Range (128-191) 1 8 9 16 17 24 25 32					
Bits:	Bits: 1 8 9 16 17 24 25					
Class C:	110NNNNN	Network	Network	Host		
	Range (192-223)					
Bits:	1 8	3 9 16	5 17 24	25 32		
Class D:	1110MMMM	Multicast Group	Multicast Group	Multicast Group		
	Range (224-239)					

Addressing w/out Subnetting

Network 172.16.0.0

Addressing with Subnets

Network 172.16.0.0

TCP/IP Addressing

Subnet Mask — what portion of the address is network add, and what portion of the address is host.

Broadcast Add — to everyone on my network/subnetwork

IP address matrix (N – Network H – Host Bits)

Α	NNN	ННН	ннн	ннн
В	NNN	NNN	ннн	ННН
С	NNN	NNN	NNN	ННН

Internet (IP) Addressing

Class A Address: AAA.XXX.XXXX

AAA = **Network Address**

XXX.XXX.XXX = Host Address

Class A Addresses:

57.24.36.2 (Net 57.0.0.0)

12.21.63.228 (Net 12.0.0.0)

Internet (IP) Addressing

Class B Address: BBB.BBB.XXX.XXX

BBB.BBB = Network Address

XXX.XXX = **Host Address**

Network Number

Host Number

Reserved

Class B Address: 128 – 191.1-254.xxx.xxx

Class B Addresses:

137.137.76.41 (Net 137.137.0.0)

144.116.91.112 (Net 144.116.0.0)

Internet (IP) Addressing

Class C Address: CCC.CCC.XXXX

CCC.CCC.CCC = Network Address XXX = Host Address

Class C Addresses:

193.241.16.21 (Net 193.241.16.0)

194.16.191.11 (Net 194.16.191.0)