Reinforcement learning - HW1

Notations: A HOP (S, A, P, Y)

$$VV:S \rightarrow R$$
, $T^*V(s) = max \left[V(s,a) + \sqrt{\frac{1}{s}}eS\right] \left[V(s)\right] \left[V(s)\right]$ (S) approximate of the second of the seco

.
$$\forall V: S \rightarrow \mathbb{R}$$
, $T^{\pi}V(s) = V(S, \pi(s)) + \sqrt{\sum_{s \in S}} p(s \mid S, \pi(s)) V(s')$ (Bellman operator for a policy π)

Exercice 1:11. V* is the optimal value function, hence $\forall ses, T^*V(s) = V^*(s)$. So V' belongs to the feasible set of the ophimization problem and a solution exists. Let us take V a solution for the optimization problem. We have argmin & V(s) = V By hypothesis, we have that $\Sigma T^* \widetilde{V}(s) \in \Sigma \widetilde{V}(s)$ but since \widetilde{V} is the solution of the problem, we have $T^*\vec{V} = \vec{V}$. Hence \vec{V} is fixed point of the Bellman operator and V=V* since the fixed point is origine.

V* is the unique solution of the problem min & V(s)

the matrix representation of the propability bernet 2) Let Ts = (p(s'1s,a)), et $V = (\sqrt{(s)})_{s \in S}$ $(5,a) \in S \times A$

Let us pose as well, $\vec{A} = (1)$ et $\vec{r} = (r(s, a))$, then it comes the following problem equivalence:

min Z V(s) <=> (Id-y\overline) \(\text{Td} - y\overline) \(\text{Td} - y\overline) \)

Exercice 2 - V: S - R a fonction. T: S -> of the greedy policy war. t the value function V: $\pi(s)$ e argmax $[r(s,a) + y \ge p(s's,a)V(s')]$ 1-al We obviously have T*V > TTV. Reciprocally, Vs, a e SxA, TTV(s) > r(s,a) + Y \ses p(sis,a)V(s') hence $\forall s$, $T^TV(s) > \max_{\alpha} \left[r(s, \alpha) + \sum_{s' \in S} p(s' | s, \alpha) V(s')\right] = T^*V(s)$ As a conclusion, T*V = TTV. 1-b) $\|V^{\times} - V^{\widehat{\pi}}\|_{\infty} = \|V^{\times} - T^{\widehat{\pi}}\widehat{V} + T^{\widehat{\pi}}\widehat{V} - V^{\widehat{\pi}}\|_{\infty}$ but since V^{\times} is a fixed point of T^{+} and by Hinkowshi inequality 11 V - VÎII & & 11 TV - TV II + 11 TÎV - TÎVÎII and T, Thore y-contraction $\| V^* - V^{\widehat{\eta}} \|_{\infty} \leq \gamma \left[\| V^* - \widehat{V} \|_{\infty} + \| \widehat{V} - V^* \|_{\infty} + \| V^* - V^{\widehat{\eta}} \|_{\infty} \right]$ hence we have the result; $\|V^* - V^*\|_{\infty} \le \frac{2\gamma}{1-\gamma} \|V^* - \hat{V}\|_{\infty}$. 1-c) it If V*= V then 11V*-V11= 0 and since 1-6 we have

11V*-V11=0 so tseS, V*(s)=V1(s) => V*=V1=> \(V = V1 => \(V = V1 \) in Reaprecably, $\hat{V} = V^{\hat{\pi}}$ hence $V^{\hat{\pi}} = T^*V^{\hat{\pi}}$ ine $V^{\hat{\pi}}$ is a fixed point of T^* . by definition, the fixed point is unique so $V^{\hat{\pi}} = V^*$.

Conclusion. V"= V => V* = V

2-a) - Q: S.A - IR a function and the greedy policy is: 8 -> A Firs) = argmax Q(s,c) - 97: SXA -> 1R. $Q_{\pi}^{\pi}(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) V_{\pi}^{*}(s')$ - Q* the optimal value function and ε = sop[Q*(s,π(s)) - Qπ(s,π(s))] Since T + is the optimal policy, V* > VT => tses, Q*(s,T*(s)) > QT(s,T(s)) hence E>0. 2-61 Lel us pose t (s,a) e 8x4, Q*(s,a) - 11Q* - Q1, & Q(s,a) & Q(s,a) + 11Q* - Q1. Since it is the greedy policy wit q, we have the S. Q(s, it cos) {Q(s, it cos)} combining the inequation: res, 1 (81) + y & p(818, 1781)(Q18, 1761) + E) { r(8, 1761) + y & p(818, 61) + E 1.e; Q*(s, n*cs)) - 119*- Q1 & Q*(s, ficst) + 10*-Q1. by definition of se arguman Q'is, the Quis, Ties) E S 211Q+-Q112 + Y Ses plais, Ties) [V'(s') - VT(s')] E & 2119 - Q11 + Y & pts is, Resi) [Q'es; "61) - Q'es; Resi] ε ε 219 - 912 + γ ε Σ p(s'15, πes)

$$12$$
 $11-y/8$ $11q^*-q11_2$ and $11q^*-q11_2$ $11-y$

