Exemplo 2: Utilizando os valores da função seno, dados pela tabela abaixo, determinar a função quadrática que se aproxima de

$$f(x) = \frac{2 \operatorname{sen}^2 x}{x+1}$$

x=	0,5236
• •	-,

a) Pontos utilizados:

Х	у
0,0000	0,0000
0,5236	0,3280
0,7854	0,5600

b) Cálculo dos coeficientes:

$$A = \begin{bmatrix} x_0^2 & x_0 & 1 \\ x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \end{bmatrix}$$

Α	0,000 0,274 0,617	0,000 0,524 0,785	1,000 1,000 1,000	Υ [0,000 0,328 0,560		
Det A	0	-0,1077					
D_a2	0,000 0,328 0,560	0,000 0,524 0,785	1,000 1,000 1,000	-0,0356	i	a2=	0,3307
D_a1	0,000 0,274 0,617	0,000 0,328 0,560	1,000 1,000 1,000	-0,0488	i	a1=	0,4533
D_a0	0,000 0,274 0,617	0,000 0,524 0,785	0,000 0,328 0,560	0	i	a0=	0,0000

c) Polinômio interpolador (equação da reta que passa pelos pontos dados):

$P_2(x) = a_2x^2 + a_1x + a_0 =$	0,3307 x ² +	0,4533 x +	0,000
----------------------------------	-------------------------	------------	-------

Ponto	0,5236
P=	0,3280

f(x)	0,3282
Error	0,0002