

Predicting fisheries bycatch risk for dynamic spatial management

BRIAN STOCK, TOMO EGUCHI, ERIC WARD, JASON JANNOT, ERIC FORNEY, & BRICE SEMMENS

Static vs. dynamic management

Dynamic

Static vs. dynamic management

Dynamic

- Effectively protected?
- 2. Huge loss of fishing area

Static

Static vs. dynamic management

Dynamic

Static

- temperature
- depth
- substrate
- spatial field

GLM

~ environmental predictors (temp, depth, substrate, ...)

GAM

Problem:

INLA

spatial correlation in residuals (Prediction – Observed)

GLM

GAM

INLA

RF

- ~ environmental predictors
 - + s(lat,lon)
 - Common, simple approach
 - Helps spatial correlation problem

Purely statistical (no spatial process)

GLM

GAM

INLA

- ~ environmental predictors
 - + $MVN(0, \Sigma)$
 - Models covariance as function of spatial locations

GLM

GAM

INLA

- ~ environmental predictors
 - + $MVN(0, \Sigma)$
 - Models covariance as function of spatial locations
 - Increasing adoption in fisheries

GAM

INLA

- ~ environmental predictors
 - + $MVN(0, \Sigma)$
 - Models covariance as function of spatial locations
 - Increasing adoption in fisheries

GAM

INLA

- Machine learning, designed for prediction
- Black box
 - Predictor-bycatch relationships not modeled
 - No spatial field (add LAT, LON)

Fisheries observer data

West Coast Groundfish Trawl

- · 2002-2013
- 55,835 tows

Hawaii Longline

- 1994-2014
- 16,714 sets (swordfish only)

Research question

Does the answer depend on species?

Benthic

Habitat: Benthic Benthic

Movement: Med Low Low

Bycatch Rate: 29% 18% 0.3%

Habitat:

Pelagic

Pelagic

Pelagic

Movement:

High

High

Bycatch Rate:

96%

1.4%

0.7%

High

Delta model

Binomial

Positive

Binomial

x Positive

Pr(some bycatch)

E(bycatch | some bycatch)

E(bycatch)

How to gauge model performance?

Goal: prediction

5-fold cross validation repeated 10x

Binomial

ROC curve (AUC)

Positive

R² (pred-obs), RMSE

Less clear for rarer species

Results

Binomial

Results

Positive

Conclusion

If the goal is purely *prediction*:

...but if we care about inference on processes affecting bycatch:

Marginal posteriors

Results

Can random forests do the same?

Are random forests really "black boxes"?

Identifying covariate interactions

Can random forests do better?

Identifying covariate interactions

Discussion

RF

- + Better at prediction
- + More complex covariate relationships (incl. interactions)
- + Much quicker to set up and run (~2 min vs. 5-15 hours)
- + Not just a "black box"?

INLA

- + Statistical inference, marginal posteriors for covariate effects
- + Ability to include observation error

Results

Thank you!

SIO

Brice Semmens

SWFSC

Tomo Eguchi

NWFSC

- Eric Ward
- Essential Fish Habitat (Blake Feist)
- West Coast Groundfish Observer Program (Jason Jannot)

PIFSC

Hawaii Longline Observer Program (Eric Forney)

Can random forests do the same?

What is a "feature contribution"??

Can random forests do the same?

What is a "feature contribution"??

Prediction_i = 0.11 = 0.18 - 0.06 (Depth) - 0.01 (Temp)

Remove X% of fishing effort with highest bycatch risk

Remove X% of fishing effort with highest bycatch risk

		risining removed		
0		1%	5%	
ove	GAM	6.2%	23.6%	

Fishing removed

GAM 6.2% 23.6% INLA 7.3% 29.4% S.7% 32.7%

To do: dynamic vs. static management

- Consider bycatch:target ratio
- 2. Simulate management strategy performance

Research questions

2. What *type* of spatial model best predicts bycatch?

Chapter 2: Bycatch prediction

West Coast Groundfish covariates

```
Binomial
            \sim sst + sst<sup>2</sup> +
Positive
               depth + depth^2 +
               distance to rocky substrate +
               size of rocky patch +
               in Rockfish Conservation Area +
               predicted occurrence (survey) +
               day of year +
               spatial field
```

Hawaii Longline covariates

```
Positive ~ sst + sst<sup>2</sup> + day of year + spatial field
```