CS1555 Recitation 5 - Video Solution

Objective: To practice more relational model concepts and relational algebra, especially aggregations, joins, and division.

Consider the following relation schemas and states:

Student (SID, Name, Class, Major)

Student_Dir (SID, Address, Phone)

 $FK: (SID) \rightarrow Student (SID)$

Course (Course No, Name, Level)

Courses taken (Course No, Term, SID, Grade)

FK: (Course No) \rightarrow Course (Course No)

 $FK: (SID) \rightarrow Student (SID)$

Student

Student				
SID	Name	Class	Major	
123	John	3	CS	
124	Mary	3	CS	
126	Sam	2	CS	
129	Julie	2	Math	

Student Dir

SID	Address	Phone
123	333 Library St	555-535-5263
124	219 Library St	555-963-9635
129	555 Library St	555-123-4567

Course

Course_No	Course_Name	Course_level
CS1520	Web Programming	UGrad
CS1555	Database Management Systems	UGrad
CS1550	Operating Systems	UGrad
CS 1655	Secure Data Management and Web Applications	UGrad
CS2550	Database Management Systems	Grad

Course taken

Course_No	Term	SID	Grade
CS1520	Fall 19	123	3.75
CS1520	Fall 19	124	4
CS1520	Fall 19	126	3
CS1555	Fall 19	123	4
CS1555	Fall 19	124	NULL
CS1550	Spring 20	123	NULL
CS1550	Spring 20	124	NULL
CS1550	Spring 20	126	NULL
CS1550	Spring 20	129	NULL
CS2550	Spring 20	124	NULL
CS1520	Spring 20	126	NULL

Part 1: Relational Model

- 1. For each of the relational algebra queries below:
 - a. Identify the expected arity, schema, and min/max cardinality of the relation resulted from the below queries, without actually evaluating the query and based only on the schemas and cardinalities of the 4 given relations.
 - b. Find the resulted relation given the above states of the relations.

(Note: we are using |T| notation to denote the Arity of relation T and |r(T)| notation to denote the cardinality of relation T)

a.
$$T2 <- \pi_{Course_No} \left(\sigma_{Term = 'Spring \ 20'} \right) \left(Courses_taken \right)$$

$$|T2| = 1$$

$$T2(Course_No)$$

$$Min|r(T2)| = 0; \quad Max|r(T2)| = |r(Course)|$$

T2

Course_No
CS1550
CS2550
CS1520

T3

_13					
Course_No	Term	SID	Grade	Course_Name	Course_Level
CS1520	Fall 19	123	3.75	Web Programming	UGrad
CS1520	Fall 19	124	4	Web Programming	UGrad
CS1520	Fall 19	126	3	Web Programming	UGrad
CS1555	Fall 19	123	4	Database management System	UGrad
CS1555	Fall 19	124	NULL	Database management System	UGrad
CS1550	Spring 20	123	NULL	Operating Systems	UGrad
CS1550	Spring 20	124	NULL	Operating Systems	UGrad
CS1550	Spring 20	126	NULL	Operating Systems	UGrad
CS1550	Spring 20	129	NULL	Operating Systems	UGrad
CS2550	Spring 20	124	NULL	Database Management System	Grad
CS1520	Spring 20	126	NULL	Web Programming	UGrad

T4

Course_Taken	Term	SID	Grade	Course.C	Course_Name	Course_Level
.Course_No				ourse_No	_	
CS1520	Fall 19	123	3.75	CS1520	Web Programming	UGrad
CS1520	Fall 17	124	4	CS1520	Web Programming	UGrad
CS1520	Fall 19	126	3	CS1520	Web Programming	UGrad
CS1555	Fall 19	123	4	CS1555	Database management System	UGrad
CS1555	Fall 19	124	NULL	CS1555	Database management System	UGrad
CS1550	Spring 20	123	NULL	CS1550	Operating Systems	UGrad
CS1550	Spring 20	124	NULL	CS1550	Operating Systems	UGrad
CS1550	Spring 20	126	NULL	CS1550	Operating Systems	UGrad
CS1550	Spring 20	129	NULL	CS1550	Operating Systems	UGrad
CS2550	Spring 20	124	NULL	CS2550	Database Management System	Grad
CS1520	Spring 20	126	NULL	CS1520	Web Programming	UGrad

Part 2: Relational Algebra

Write a relational algebra query for each of the queries below:

1. List the SID of the students who did not enroll in any course in Fall 19.

SID_enroll_fall19
$$\leftarrow \pi_{SID}(\sigma_{Term = 'Fall 19'}(Courses_Taken))$$

SID_all $\leftarrow \pi_{SID}(Student)$
RSLT \leftarrow SID_all - SID_enroll_fall19

If we were interested in all of the student attributes then:

 π Student.SID, Student.name, Student.class, Student.major (Student \bowtie Student.SID = RSLT.SID RSLT)

2. Find the total number of students.

$$\mathcal{F}_{\text{COUNT SID}}$$
 (Student)

3. Find the total number of students who have enrolled in the course "Operating Systems".

$$OS_Taking \leftarrow \pi_{SID}(\sigma_{Course.Name = 'Operating \ Systems'} (Course_Taken * Course))$$

$$RSLT \leftarrow \mathcal{F}_{COUNT \ SID} (OS_Taking)$$

(or you can combine the two steps into one expression (nested operations))

4. List the SID, name, and address (if available) of all students.

$$\pi_{SID, name, address}$$
 (Student] $\bowtie_{Student.SID=StudentDir. ID}$ Student_Dir) (note the left outer join)