# Unsupervised Domain Adaptation for Cross-Device Iris Liveness Detection Model Transfer

Xiuying Wu<sup>1</sup>, Chenxi Du<sup>2,3</sup>, Hui Zhang<sup>1\*</sup>, Jing Liu<sup>1</sup>, Dexin Zhang<sup>1</sup>, and Hang Zou<sup>4</sup>

<sup>1</sup>Tianjin University of Science & Technology, China

<sup>2</sup>SIAT, Chinese Academy of Sciences, China

<sup>3</sup>Southern University of Science and Technology, China

<sup>4</sup> China Telecom Research Institute (CTRI), China



### INTRODUCTION

- In traditional iris classification research, we often assume that the distribution of the training set and the test set is consistent. We train the model on the training set and test it on the test set. However, in practical scenarios, the test environment is often uncontrollable, leading to significant differences in the distribution between the test set and the training set. This discrepancy can cause overfitting and result in poor model performance on the test set.
- When the distributions of the training set and the test set are inconsistent—due to factors like changing devices, end users, or the presence of many unobserved contact lens types—agile deployment can be achieved through transfer learning technology.
- An approach to feature space alignment was devised, leveraging the measures of Maximum Mean Discrepancy (MMD) and Contrastive Domain Discrepancy (CDD), thereby facilitating un\_x0002\_supervised model transfer learning within the target domain, consequently enhancing the efficacy of model transfer significantly.

#### **METHODOLOGY**

• (a) Before domain adaptation, it is evident that there exists a significant domain shift between the source and target data. (b) After conventional domain adaptation, the situation of ignoring class labels of samples often leads to poor generalization performance. (c) Our proposed method aims to minimize the intra-domain differences while maximizing the inter-domain variances, thereby significantly enhancing the classification accuracy.



MMD primarily focuses on sourcetarget domain similarity, while CDD primarily focuses on contrastiveness.

This figure shows the comparison of the distribution of domain difference minimization methods, which minimizes the intra-class difference and maximizes the interclass difference in our iris detection task.

## RESULTS

• **Dataset:**We designed two sets of experiments to validate the effectiveness of the method. For the first set of experiments, we selected Clarkson2015LG, Clarkson20132015Dalsa and NDLiv-Det2017 datasets as dataset-1. For the second set of experiments, we selected ND-I, CASIA-IF and IF-VE datasets as dataset-2.



The details of Dataset 1 and Dataset 2 are as follows:

| Datasets  |                    | Train   |          | Test    |          |
|-----------|--------------------|---------|----------|---------|----------|
|           |                    | Genuine | Cosmetic | Genuine | Cosmetic |
| Dataset-1 | NDLiv-Det2017      | 600     | 600      | 900     | 900      |
|           | Clarkson2015LG     | 450     | 540      | 379     | 577      |
|           | Clarkson20132015Da | 970     | 1275     | 625     | 1000     |
|           | lsa                |         |          |         |          |
| Dataset-2 | ND-I               | 2000    | 1000     | 800     | 400      |
|           | CASIA-IF           | 4800    | 592      | 1200    | 148      |
|           | IE VE              | 20000   | 20000    | 5000    | 5000     |

We experimented on the model using datasets dataset-1 and dataset-2. Six arrangements of source domain and target domain were set up, and two backbone networks ResNet-50 and RestNet-101 were used to carry out experiments on MMD and CDD models. It can be clearly seen that the classification accuracy of CDD is better than that of MMD than that of non-migration method.

• Experiment-1: This table shows the sample instances of genuine iris and cosmetic contact lens iris images in the first dataset of experiments. The accuracy of our model performing on it is shown as well. RN50-NT and RN101-NT respectively denote the Non-Transfer of method with backbone Resnet-50 and Resnet-101

| Source           | Target/Test     | Resnet50 | RN50-ACC | R N 5 0 - | Resnet101 | RN101-  | RN101-  |
|------------------|-----------------|----------|----------|-----------|-----------|---------|---------|
|                  |                 |          |          | NT        |           | ACC     | NT      |
| Clarkson2015     | Clarkson2013201 | MMD      | 71.7058  | 61.9943   | MMD       | 76.0425 | 59.8818 |
|                  | 5Dalsa          | CDD      | 85.3540  |           | CDD       | 82.1147 |         |
| Clarkson2015     | NDLiv-Det2017   | MMD      | 89.4444  | 85.3889   | MMD       | 91.5556 | 74.0556 |
|                  |                 | CDD      | 97.0566  |           | CDD       | 93.5556 |         |
| Clarkson20132015 | Clarkson2015    | MMD      | 88.8104  | 73.9542   | MMD       | 86.1648 | 84.5941 |
| Dalsa            |                 | CDD      | 95.1348  |           | CDD       | 90.5630 |         |
| Clarkson20132015 | NDLiv-Det2017   | MMD      | 79.3889  | 63.1111   | MMD       | 77.4444 | 73.2778 |
| Dalsa            |                 | CDD      | 89.2778  |           | CDD       | 83.6667 |         |
| NDLiv-Det2017    | Clarkson2015    | MMD      | 84.7222  | 81.7708   | MMD       | 90.4473 | 80.0347 |
|                  |                 | CDD      | 90.7118  |           | CDD       | 97.5198 |         |
| NDLiv-Det2017    | Clarkson2013201 | MMD      | 66.6435  | 64.8798   | MMD       | 69.1383 | 59.3186 |
|                  | 5Dalsa          | CDD      | 72.6096  |           | CDD       | 71.0859 |         |

• Experiment-2: This table shows the sample instances of real iris and cosmetic contact lens iris images, in the second dataset of experiments. The accuracy of our model performing on this dataset is shown as well. RN50-NT and RN101-NT respectively denote the Non-Transfer of method with backbone Resnet-50 and Resnet-101.

| Source   | Target/Test | Resnet50 | RN50-ACC | RN50-NT | Resnet1 | RN101-  | RN101-  |
|----------|-------------|----------|----------|---------|---------|---------|---------|
|          |             |          |          |         | 01      | ACC     | NT      |
| ND-I     | CASIA-IF    | MMD      | 65.8615  | 51.0204 | MMD     | 58.3856 | 53.4014 |
|          |             | CDD      | 78.4766  |         | CDD     | 70.6764 |         |
| ND-I     | IF-VE       | MMD      | 24.6871  | 50.1700 | MMD     | 58.1913 | 50.8200 |
|          |             | CDD      | 56.5526  |         | CDD     | 77.0016 |         |
| CASIA-IF | ND-I        | MMD      | 86.1875  | 85.3125 | MMD     | 87.3750 | 59.1875 |
|          |             | CDD      | 98.0625  |         | CDD     | 93.6875 |         |
| CASIA-IF | IF-VE       | MMD      | 67.2000  | 62.7700 | MMD     | 67.1305 | 59.4700 |
|          |             | CDD      | 98.5200  |         | CDD     | 86.5261 |         |
| IF-VE    | ND-I        | MMD      | 84.0625  | 77.1875 | MMD     | 81.1875 | 80.6875 |
|          |             | CDD      | 91.8125  |         | CDD     | 91.8125 |         |
| IF-VE    | CASIA-IF    | MMD      | 96.2310  | 95.9184 | MMD     | 95.5782 | 94.8563 |
|          |             | CDD      | 99.1948  |         | CDD     | 98.6536 |         |

• ROC: Tree sets of diagrams on the first line: ROC curve obtained according to Clarkson2015, Clarkson20132015Dalsa and NDLiv-Det2017 training sample. According to the experimental grouping in Table 2, the MMD, CDD, and the Non-Transfer of method were visually compared using the ROC curve. The advantages of the CDD approach are clearly visible. Tree sets of diagrams on the second line: ROC curve obtained according to ND-I, CASIA-IF and IF-VE training sample. According to the experimental grouping in Table 3, the MMD, CDD, and the Non-Transfer of method were visually compared according to the ROC curve. The results are affected by the large gap in the number of data sets, but the advantages of the CDD method can still be clearly seen.



## CONCLUSIONS

- we propose an unsupervised domain adaptation transfer learning model based on MMD and CDD metrics for iris liveness detection through perceptual alignment. Modeling and optimizing intra-domain and inter-domain discrepancies, the CDD metric and MMD metric significantly improve the accuracy of our model when detecting. In addition, CDD is with a noticeable superiority in terms of classification accuracy and overall model improvement.
- The security of iris recognition technology is pertinent to every individual's life. The forgery of an individual's iris can have profound implications for personal, corporate, and national interests. The two transfer model methods we propose facilitate agile and cost-effective deployment when integrating new devices, thereby significantly advancing iris recognition technology.