TALLER 1 OPTIMIZACION Y SIMULACION

TRANSPORTE:

Una empresa cuenta con una red que tiene los siguientes costos unitarios (si no hay costo, no hay conexión entre los nodos)

	Nodo D1	Nodo D2	Nodo D3	Nodo D4	Nodo D5	Nodo D6	Nodo D7	Nodo D8	Nodo D9	Nodo D10
Nodo O1	120	80	85	75	94	85	98	105	125	135
Nodo O2	110		85	78	92	104	110	112	130	85
Nodo O3	90			74	88		55	78	80	
Nodo O4	78	117	60	64		78	69	77	74	78
Nodo O5	65	47	78	75	44	122	71	45	68	88

Los nodos fuente tienen la siguiente capacidad:

Nodo	Demanda (unidades)
Nodo O1	450
Nodo O2	110
Nodo O3	210
Nodo O4	120
Nodo O5	250

Los nodos sumidero requieren las siguientes unidades:

Nodo	Demanda (unidades)
Nodo D1	85
Nodo D2	95
Nodo D3	110
Nodo D4	70
Nodo D5	60
Nodo D6	75

Nodo D7	90
Nodo D8	95
Nodo D9	100
Nodo D10	120

RESTRICCIONES:

Realice un modelo matemático y soluciónelo en Gusek, de manera que obtenga el menor costo de la operación, teniendo en cuenta las restricciones siguientes:

- 1. Las unidades despachadas por el nodo O1, más las del nodo O5, deben ser el doble de las despachadas por el nodo O2 más el nodo O4.
- 2. El nodo D4 debe ser atendido por el nodo O3, con al menos 10 unidades, pero no exclusivamente, puede ser atendido por otros nodos también.
- 3. El nodo D8 debe ser atendido por el nodo O4, con al menos 15 unidades, pero no exclusivamente, puede ser atendido por otros nodos también.
- 4. El nodo O3 debe dar suministro al menos a un nodo tipo D, con no menos de 200 unidades en total para todos los nodos
- 5. La suma de lo que entregan los 3 primeros nodo tipo O (O1,O2,O3) debe ser al menos 550 unidades
- 6. La demanda debe cumplirse
- 7. La capacidad no puede sobrepasarse

SOLUCIÓN

MODELO MATEMÁTICO

Función Objetivo

Minimizar el costo total de transporte

 $\scriptstyle S_{ij}X_{ij}$

Restricciones

1. La capacidad de los nodos fuente debe ser igual a la demanda de los nodos sumidero

 $\sum_{j=1}^{10} X_{ij} = D_i \quad i \in \{1,2,3,4,5\}$

 $\sum_{i=1}^{5} X_{ij} = O_j \quad \int_{1,2,3,4,5,6,7,8,9,10}$

2. Las unidades despachadas por el nodo O1, más las del nodo O5, deben ser el doble de las despachadas por el nodo O2 más el nodo O4.

$$$X_{11} + X_{15} = 2(X_{21} + X_{24})$$

3. El nodo D4 debe ser atendido por el nodo O3, con al menos 10 unidades, pero no exclusivamente, puede ser atendido por otros nodos también.

\$\$X_{34} \geq 10\$\$

4. El nodo D8 debe ser atendido por el nodo O4, con al menos 15 unidades, pero no exclusivamente, puede ser atendido por otros nodos también.

\$\$X_{48} \geq 15\$\$

5. El nodo O3 debe dar suministro al menos a un nodo tipo D, con no menos de 200 unidades en total para todos los nodos

```
\sum_{i=1}^{5} X_{3j} \geq 200 \quad i_{i,2,3,4,5,6,7,8,9,10}
```

6. La suma de lo que entregan los 3 primeros nodo tipo O (O1,O2,O3) debe ser al menos 550 unidades

```
\sum_{j=1}^{10} X_{1j} + \sum_{j=1}^{10} X_{2j} + \sum_{j=1}^{10} X_{3j} \geq 550
```

7. La demanda debe cumplirse

```
X_{ij} \geq 0 \quad i \in \{1,2,3,4,5\} \quad i \in \{1,2,3,4,5,6,7,8,9,10\}
```

8. La capacidad no puede sobrepasarse

 $X_{ij} \leq O_j \quad i \in \{1,2,3,4,5\} \quad j \in \{1,2,3,4,5,6,7,8,9,10\}$

GUSEK

```
/* TRANSPORTE */
param m := 5; /* número de nodos fuente */
param n := 10; /* número de nodos sumidero */
/* Costos de transporte */
param c :=
1 1 2 3 4 5 6 7 8 9 10 :=
1 120 80 85 75 94 85 98 105 125 135
2 110 0 85 78 92 104 110 112 130 85
3 90 0 0 74 88 0 55 78 80 0
4 78 117 60 64 0 78 69 77 74 78
5 65 47 78 75 44 122 71 45 68 88;
/* Oferta y demanda */
param supply := 1 450 2 110 3 210 4 120 5 250;
param demand := 1 85 2 95 3 110 4 70 5 60 6 75 7 90 8 95 9 100 10 120;
/* Resuelve el problema de transporte */
minimize costo transporte: sum{i in 1..m, j in 1..n} c[i,j] * x[i,j];
subject to oferta{i in 1..m}: sum\{j in 1..n\} x[i,j] = supply[i];
subject to demanda{j in 1..n}: sum{i in 1..m} x[i,j] = demand[j];
solve:
display x;
end;
```

ASIGNACION

Deben asignarse ciertos arquitectos (7) a ciertos proyectos (12). Las condiciones para la asignación son:

Cada cliente prefiere trabajar con ciertos arquitectos y han manifestado por medio de puntajes (de 1 a 5), la preferencia por cada uno de ellos, para sus proyectos:

Arq\Proy	1	2	3	4	5	6	7	8	9	10	11	12
1	4	5	4	3	4	3	2	3	4	5	3	2
2	3	2	3	2	3	5	5	5	5	2	2	2
3	5	5	3	3	3	3	4	4	4	5	5	5
4	1	1	1	1	2	2	2	2	2	4	4	4
5	3	3	3	3	4	2	2	2	2	3	3	3
6	5	5	5	5	5	5	5	5	4	4	4	4
7	4	4	4	4	4	4	4	4	4	4	2	2

Adicionalmente, de acuerdo con la experiencia y estudios de cada arquitecto, los funcionarios solo pueden trabajar en los proyectos que han sido clasificados con 1:

Arq\Proj	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	0	0	1	0	0	1	0	0	1
2	0	0	1	1	0	1	0	1	0	1	1	0
3	1	0	0	1	1	0	1	1	0	1	0	1
4	0	0	1	1	1	0	1	1	0	1	1	0
5	0	1	0	0	0	0	1	0	1	0	1	1
6	1	1	0	0	1	1	1	0	1	0	0	1
7	1	1	1	1	0	0	1	0	1	1	1	0

La cantidad de arquitectos que se requiere para cada proyecto es:

1	1
2	2
3	1
4	1
5	1
6	1
7	1
8	1
9	1

10	2
11	1
12	1

Cada arquitecto puede trabajar en máximo 3 proyectos.

Realice un modelo matemático y soluciónelo en Gusek. Tenga en cuenta que las restricciones deben ser cumplidas y la función objetivo debe establecerse en términos de maximización de las preferencias de los clientes. (alcanzar el mayor puntaje total (sumado) de todos los clientes)

SOLUCIÓN

MODELO MATEMÁTICO

Función Objetivo

Maximizar el puntaje total de los clientes

```
\star Z = \sum_{i=1}^{7}\sum_{j=1}^{12} P_{ij}X_{ij}
```

Restricciones

1. Cada arquitecto puede trabajar en máximo 3 proyectos.

```
\sum_{j=1}^{12} X_{ij} \leq 3 \quad i \in \{1,2,3,4,5,6,7\}
```

2. Cada proyecto debe ser atendido por la cantidad de arquitectos requeridos.

```
\sum_{i=1}^{7} X_{ij} = P_j \quad \int_{1,2,3,4,5,6,7,8,9,10,11,12}
```

3. Los arquitectos solo pueden trabajar en los proyectos que han sido clasificados con 1.

```
X_{ij} \leq 1 \quad 1 \quad i \in \{1,2,3,4,5,6,7\} \quad i \in \{1,2,3,4,5,6,7,8,9,10,11,12\}
```

4. La demanda debe cumplirse

 $X_{ij} \geq 0 \quad i \in \{1,2,3,4,5,6,7\} \quad i \in \{1,2,3,4,5,6,7,8,9,10,11,12\}$

GUSEK

```
/* ASIGNACION */

param m := 7; /* número de arquitectos */
param n := 12; /* número de proyectos */

/* Puntajes de los clientes */
param P :=

1 1 2 3 4 5 6 7 8 9 10 11 12 :=

1 4 5 4 3 4 3 2 3 4 5 3 2

2 3 2 3 2 3 5 5 5 5 5 2 2 2

3 5 5 3 3 3 3 4 4 4 5 5 5

4 1 1 1 1 2 2 2 2 2 4 4 4

5 3 3 3 3 4 2 2 2 2 3 3 3

6 5 5 5 5 5 5 5 5 5 4 4 4 4

7 4 4 4 4 4 4 4 4 4 4 2 2;

/* Requerimientos de cada proyecto */
```

```
param P_j :=
1 1
2 2
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 2
11 1
12 1;
/\star Resuelve el problema de asignación \star/
maximize puntaje_total: sum{i in 1..m, j in 1..n} P[i,j] * x[i,j];
subject to max_proyectos{i in 1..m}: sum{j in 1..n} x[i,j] <= 3;</pre>
subject to \ req\_proyectos\{j \ in \ 1..n\}: \ sum\{i \ in \ 1..m\} \ x[i,j] \ = \ P\_j[j];
subject to \ only\_assigned \{i \ in \ 1..m, \ j \ in \ 1..n\} \colon \ x[i,j] \ \mathrel{<=} \ 1;
solve;
display x;
end;
```