Data Science with Python

Data Exploration

	id	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0		15674932	Okwudilichukwu	668	France	Male	33.0		0.00		1.0	0.0	181449.97	0
1		15749177	Okwudiliolisa	627	France	Male	33.0		0.00		1.0	1.0	49503.50	0
2		15694510	Hsueh	678	France	Male	40.0	10	0.00		1.0	0.0	184866.69	0
3		15741417	Kao	581	France	Male	34.0		148882.54		1.0	1.0	84560.88	0
4	4	15766172	Chiemenam	716	Spain	Male	33.0		0.00		1.0	1.0	15068.83	0

About Dataset

The bank customer churn dataset is a commonly used dataset for predicting customer churn in the banking industry. It contains information on bank customers who either left the bank or continue to be a customer. The dataset includes the following attributes:

- 1. Customer ID: A unique identifier for each customer
- 2. Surname: The customer's surname or last name
- 3. Credit Score: A numerical value representing the customer's credit score
- Geography: The country where the customer resides (France, Spain or Germany)
- 5. Gender: The customer's gender (Male or Female)
- 6. Age: The customer's age.
- 7. Tenure: The number of years the customer has been with the bank
- 8. Balance: The customer's account balance
- NumOfProducts: The number of bank products the customer uses (e.g., savings account, credit card)
- 10. HasCrCard: Whether the customer has a credit card (1 = yes, 0 = no)
- 11. IsActiveMember: Whether the customer is an active member (1 = yes, 0 = no)

- 12. EstimatedSalary: The estimated salary of the customer
- 13. Exited: Whether the customer has churned (1 = yes, 0 = no)

Data Summary

Data Visualization

Categorical Columns:

['Geography','Gender','NumOfProducts','HasCrCard','Tenure','IsActiveMember']

Numerical Columns:['CreditScore', 'Age', 'Balance', 'EstimatedSalary']

Target column "Exited" Visualization

Plot Numerical Columns

Plot Categorical Columns

Categorical Columns EDA

Plotting Collinearity

ML Packages

```
## Code ## Markdown

from sklearn.model_selection import cross_val_score,train_test_split
from sklearn.model_selection import accuracy_score,classification_report,fl_score,mean_squared_error,roc_auc_score,precision_score,recall_score,roc_curve,ConfusionMatrixDisplay,confusion_matrix,auc
from sklearn.preprocessing import StandardScaler,LabelEncoder,OneHotEncoder,OndinalEncoder,RobustScaler
from sklearn.preprocessing import StandardScaler,LabelEncoder,OneHotEncoder,OndinalEncoder,RobustScaler
from sklearn.preprocessing import StandardScaler,LabelEncoder,OneHotEncoder,OndinalEncoder,RobustScaler
from sklearn.preprocessing import StandardScaler,LabelEncoder,OneHotEncoder,OndinalEncoder,RobustScaler
from sklearn.encodel_import EncodersingClassifier
from sklearn.encodel_import EncodersingClassifier
from sklearn.sup import SVC
from sklea
```

Preprocessing Pipeline

```
class FullPipeline1:
    def __init__(self):
        self.on_cols = ['CreditScore', 'Age', 'Balance', 'EstimatedSalary']
self.categorical_cols = ['Geography', 'Gender', 'NumOfProducts', 'HasCrCard', 'Tenure', 'IsActiveMember']
self.o0_cols = ['Gender', 'NumOfProducts', 'HasCrCard', 'Tenure', 'IsActiveMember']
        self.OH_cols = ['Geography']
        self.TE_cols = ['Surname']
         self.full_pipeline = Pipeline([
             ('impute_num', DataFrameImputer(knn_cols=self.numerical_cols)),
             ('impute_cat', DataFrameImputer(freq_cols=self.categorical_cols)),
             ('scale', StandardScaleTransform(self.numerical_cols)),
             ('ordinal_encode', OrdinalEncodeColumns(self.OD_cols)),
             ("one_hot_encode", CustomOneHotEncoder(self.OH_cols)),
             ('target_encode', TargetEncoderTransformer(self.TE_cols))
    def fit(self, X_train, y_train):
         self.full_pipeline.fit(X_train, y_train)
    def transform(self, X_test):
        return self.full_pipeline.transform(X_test)
    def fit_transform(self, X_train, y_train):
        X_train = self.full_pipeline.fit_transform(X_train, y_train)
         return X_train, y_train
f1 = FullPipeline1()
```

Step	Description				
1 2 3 4	Numerical Imputation (KNN): CreditScore, Age, Balance, EstimatedSalary Categorical Imputation (Frequency): Geography, Gender, NumOfProducts, HasCrCard, Tenure, IsActiveMember Scaling Numerical Columns: CreditScore, Age, Balance, EstimatedSalary Ordinal Encoding: Gender, NumOfProducts, HasCrCard, Tenure, IsActiveMember				
5 6	One-Hot Encoding: Geography Target Encoding: Surname				

Feature Importance

Model Evaluation

	Model-Name	Accuracy	AUC	F1-Score
7	CatBoostClassifier	87.030024	89.883171	65.135597
2	${\it Gradient Boosting Classifier}$	86.914897	89.766216	64.426324
6	XGBClassifier	86.987609	89.661380	65.504779
4	AdaBoostClassifier	86.705850	88.877745	63.699537
1	RandomForestClassifier	86.584664	88.803202	63.675144
3	ExtraTreesClassifier	86.239283	88.326611	62.450397
5	LogisticRegression	83.876147	83.196907	51.958837
0	DecisionTreeClassifier	79.849729	70.702893	53.440672

Confusion Matrix

ROC Plot

Final Model

