

Muc tiêu:

- Hiểu được vai trò của HPT định tính
- Nêu được các phương pháp phân định tính
- Trình bày được hệ thống phân tích cation.

2

CÁC PHƯƠNG PHÁP PHÂN TÍCH

- Phương pháp hóa học: dùng phản ứng hóa học; được sử dụng rộng rãi
- Phương pháp vật lý, hóa lý: dựa vào tính chất vật lý, hóa lý
- PP so màu ngọn lửa: Na+; K+; Ba²⁺
- PP soi tinh thể
- PP dung cu: Quang phổ, sắc ký

CÁC PHƯƠNG PHÁP PHÂN TÍCH

- Phân tích ướt: hòa tan chất phân tích trong dung môi thành dung dịch
 - VD: NaCl hòa tan + Ag+
- Phân tích khô: các chất tham gia ở dạng rắn, đun nóng ở nhiệt độ cao hoặc nghiên các chất rắn với nhau

VD: đun Na $^+$ trên platin => lửa Màu vàng Nghiền $CoSO_4$ với SCN^- tạo $[Co(SCN)_4]^{2-}$ xanh dương

CÁC PHƯƠNG PHÁP PHÂN TÍCH

- Phân tích riêng biệt: Xác định một ion trong hỗn hợp bằng một phản ứng đặc hiệu. VD iod
 hồ tinh bôt
- ⇒ Nhiều ion không có phản ứng đặc hiệu
- Phân tích hệ thống: xác định các ion theo một thứ tự nhất định bằng thuốc thử nhóm, chia thành nhiều nhóm, phân nhóm, cuối cùng tách thành ion riêng biệt. Hỗn hợp Ag+, Ca²⁺, Ba²⁺ ?!

CÁC PHẨN ỨNG DÙNG TRONG PHÂN TÍCH ĐINH TÍNH (Bản Chất)

- Phản ứng hòa tan: CaCO₃ + HCI
- Phản ứng kết tủa: BaSO₄
- Phản ứng trung hòa: acid + bazơ
- Phản ứng tạo chất bay hơi: NH₃
- Phản ứng oxi hóa khử: Mn²⁺ -> MnO4 ⁻
- Phản ứng tạo phức: [HgI₄]²⁻

6

CÁC PHẨN ỨNG DÙNG TRONG PHÂN TÍCH ĐINH TÍNH (Muc đích)

- Phản ứng tách: chia các ion thành nhóm nhỏ hoặc tách riêng một ion
 VD: Chiết lod từ nước sang Cloroform
- Phản ứng đặc trưng, xác định: tìm một ion đã cô lập, hay trong hỗn hợp
- Phản ứng "khóa": loại ion cản trở tạo tủa, tạo phức
- Phản ứng "mở khóa" : hòa tan tủa, phức

ĐỘ NHẠY VÀ TÍNH ĐẶC HIỆU

ĐỘ NHẠY VÀ TÍNH ĐẶC HIỆU

- Độ nhạy tuyệt đối: là lượng tối thiểu một chất được phát hiện bằng phương pháp phản ứng, khảo sát trong điều kiện xác định (mcg = 10 ⁻⁶ g)
- Độ nhạy tương đối (giới hạn pha loãng)
 là nồng độ tối thiểu của chất tham gia phản ứng: diễn tả bằng 1/G (G = khối lượng dung môi/ khối lượng chất tan)

ĐỘ NHẠY VÀ TÍNH ĐẶC HIỆU

- Giới hạn độ nhạy: m = V.106/G (mcg)
- Vd: PP kết tủa xác định Na+ có:

m = 10 mcg; 1/G = 1/5000000PP soi tinh thể xác định Na⁺ có: m = 0.02 mcg; 1/G = 1/5000000

10

ĐỘ NHẠY VÀ TÍNH ĐẶC HIỆU

 Tính đặc hiệu: Xác định một chất khi có mặt chất khác ở một điều kiện xác định
 VD: KI thuốc thử đặc hiệu Hg
 Lượng ion cần phát hiện

= ------

Lượng ion lạ cùng có mặt

11

THUỐC THỬ TRONG CÁC PHẢN ỨNG ĐINH TÍNH

- Yêu cầu của thuốc thử: tinh khiết, nhạy, đặc hiệu
- Tinh khiết phân tích < tinh khiết hóa học làm chất chuẩn < tinh khiết quang học dùng phân tích quang phổ
- Thuốc thử nhóm: giống trên môt nhóm
- Thuốc thử chọn lọc: nhiều nhóm
- Thuốc thử đặc hiệu: đặc hiệu một ion

1:

PHÂN TÍCH ĐỊNH TÍNH CATION

■ <u>Hệ thống dùng H₂S</u> : chia 5 nhóm, dùng H₂S, HCl...

Ưu điểm: kết quả chính xác, triệt để Nhược điểm: độc, tạo dung dịch keo S

■ <u>Hê thống acid bazơ</u>: chia 6 nhóm, sử dụng HCI, H₂SO₄, NaOH, NH₄OH

Ưu điểm: ít độc hại, sử dụng chất cơ bản Nhược điểm: không chặt chế bằng H₂S

13

Phân nhóm các Cation					
Nhóm	Ion	Thuốc thứ	Kết quả		
I	Ag ⁺ , Pb ²⁺ , Hg ₂ ²⁺	HCl 6M	Tùa clorid		
II	Ba ²⁺ , Ca ²⁺	H_2SO_4 3M/ $\cosh 90^\circ$	Tùa sulfat		
III	Al^{3+},Zn^{2+}	NaOH dur	Hydroxyd tan/ kiềm dư		
IV	$Bi^{3+}, Fe^{3+}, Mg^{2+}$	NaOH, NH ₄ OH $+$ H ₂ O ₂	Hydroxyd không tan/ kiềm dư		
V	Cu^{2+}, Hg^{2+}	$\mathrm{NH_4OH}$	Phức tan/ NH ₄ OH dư		
VI	$\mathrm{Na}^{\scriptscriptstyle +},\mathrm{K}^{\scriptscriptstyle +},\mathrm{NH_4}^{\scriptscriptstyle +}$	Chuyên biệt			

Phân tích các Anion

- Không có thuốc thử nhóm rõ ràng nên không phân chia một cách chặt chế toàn bộ như cation
- Dựa vào tác dụng của thuốc thử phân loại theo (SGK)

Phân tích các Anion

Nhóm	Ion	
I	Cl ⁻ , Br ⁻ , l ⁻ , S ²⁻ , NO ³⁻	
II	PO ₄ ³⁻ , HCO ³⁻ , CO ₃ ²⁻ , AsO ₃ ³⁻ , AsO ₄ ³⁻	
TIT	SO.2- SO.3	

XÁC ĐỊNH CÁC CATION NHÓM 1

(Ag +; Pb $^{2+}$; Hg₂ $^{2+}$)

XÁC ĐINH CÁC CATION NHÓM 1

- Thuốc thử nhóm: HCI 6M
- Phương trình ion:

 $\begin{array}{lll} Ag^+ + HCI & = & AgCI \Psi + H^+ \\ & AgCI \ tan \ trong \ dung \ dich \ NH_4OH \\ Pb^{2+} + 2HCI & = & PbCI_2 \Psi + 2H^+ \\ & PbCI_2 \ không \ tan \ trong \ dung \ dich \ NH_4OH \\ Hg_2^{2+} + 2HCI & = & Hg_2CI_2 \Psi + 2H^+ \\ & Hg_2CI_2 \ hóa \ den \ trong \ dung \ dich \ NH_4OH \\ \end{array}$

19

XÁC ĐỊNH CÁC CATION NHÓM 1

- Thuốc thử cation
- Thuốc thử ion Ag +
- Với K₂CrO₄: tạo Ag₂CrO₄ tủa đỏ thẫm
- Với KI: tạo AgI tủa vàng nhạt
- Với Na₂CO₃: tạo tủa trắng, lâu hóa xám

XÁC ĐINH CÁC CATION NHÓM 1

- Thuốc thử ion Pb 2+
- Với S²-: tạo PbS tủa đen
- Với CrO₄ ²: tạo PbCrO₄ vàng tươi, tan trong NaOH, acid nitrit, không tan Axetic acid
- Với KI: PbI₂ tủa vàng, tan trong...T°
- Với SO₄ ²⁻: tạo PbSO₄ tủa....T
- Với CO₃ ²⁻: tạo PbCO₃ tủa....T

XÁC ĐỊNH CÁC CATION NHÓM 1

- Thuốc thử ion Hg₂ ²⁺
- . Với NH₄OH: tạo tủa xám đen (Hg)
- Với CrO₄ ²⁻: tạo tuả đỏ gạch (Hg₂CrO₄)
- Với KI: tạo tủa màu xanh lục (Hg_2I_2) , chuyển thành màu đen (Hg)
- Với NaCO₃: tạo tủa xám đen (Hg₂CO₃)

Bảng tóm <mark>tắt các</mark> phản ứng đặc trưng của cation nhóm I					
Thuốc thứ	Cation				
4	Ag ⁺	Pb ²⁺	Hg ₂ ²⁺		
HCL loãng	AgCl ¹ trắng, tan trong NH ₄ OH dư do tạo phức [Ag(NH ₃) ₂] ⁺	PbCl₂↓trắng,tan trong nước nóng	HgCl₂↓trắng, tác dụng với NH₄OH tạo Hg ⁰ + NH₂HgCl		
H₂SO₄ loãng	-	PbSO ₄ ↓trắng	Hg₂SO ₄ ↓trắng		
NaOH hay KOH	Ag ₂ O↓đen	Pb(OH) ₂ ↓trắng, tan trong kiểm dư, tạo PbO ₂ ²⁻	Hg ₂ O↓đen		
NH₄OH du	Tạo phức $\left[\mathrm{Ag}(\mathrm{NH_3})_2\right]^+$	Pb(OH)₂↓trắng	$[Hg_2ONH_2]NO_{3_{\downarrow}} + Hg^0$		
K ₂ CO ₃ hay Na ₂ CO ₃	Ag₂CO₃↓trắng	Pb ₂ (OH) ₂ CO ₃ ↓trắng	$Hg_2CO_3 = HgO + Hg + CO_2$		
K ₂ CrO ₄	Ag₂CrO₄↓đỏ nâu	PbCrO₄↓vàng tan trong kiểm dư	HgCrO₄↓đỏ		
KI	AgI↓vàng	PbL₂↓vàng tan trong nước nóng	Hg ₂ I ₂ ↓vàng, xanh, nếu dư thuốc thứ sẽ tạo thành HgI ₄ ²⁻ + Hg°		
H ₂ S	Ag ₂ S↓đen	PbS↓đen	HgS↓ _{den} + Hg ⁰ ↓		

XÁC ĐỊNH CÁC CATION NHÓM 2

Thuốc thử nhóm: H₂SO₄ 3M Ca ²⁺ lượng ít phải cần môi trường aceton hoặc ethanol 96⁰

XÁC ĐINH CÁC CATION NHÓM 2

Phương trình ion

Ba
$$^{2+}$$
 + H₂SO₄ = BaSO₄ Ψ + 2H⁺
Ca $^{2+}$ + H₂SO₄ = CaSO₄ Ψ + 2H⁺

26

XÁC ĐỊNH CÁC CATION NHÓM 2

- Thuốc thử của ion Ba 2+
 - Với CrO4 $\dot{}$: tủa vàng tươi không tan trong NaOH 3M và acid acetic
 - H₂SO₄/KMnO₄: tủa màu hồng (Voller)
 - Với CO₃ ²⁻: tủa trắng BaCO₃

XÁC ĐỊNH CÁC CATION NHÓM 2

- Thuốc thử ion Ca 2+
- Với Amoni oxalat: tủa trắng, không tan trong...., tan trong acid.......
- Với Natri Carbonat: tạo tủa trắng.....
 ĐA: acid acetic; HCI-acid mạnh

