CONVERSION FACTORS FOR ENERGY UNITS

	Wavenumber v cm ⁻¹	Frequency v MHz	Energy E aJ	Energy E eV	Energy E E _h	Molar energy $E_{\rm m}$ kJ/mol	Molar energy $E_{ m m}$ kcal/mol	Temperature T K
- v: 1 cm ⁻¹	≅ 1	2.997925×10^4	1.986447×10^{-5}	1.239842×10^{-4}	4.556335×10^{-6}	11.96266×10^{-3}	2.85914×10^{-3}	1.438769
v: 1 MHz	$\approx 3.33564 \times 10^{-5}$	1	6.626076×10^{-10}	4.135669×10^{-9}	1.519830×10^{-10}	3.990313×10^{-7}	9.53708×10^{-8}	4.79922×10^{-5}
E: 1 aJ	≅ 50341.1	1.509189×10^9	1	6.241506	0.2293710	602.2137	143.9325	7.24292×10^4
<i>E</i> : 1 eV	≅ 8065.54	2.417988×10^8	0.1602177	1	3.674931×10^{-2}	96.4853	23.0605	1.16045×10^4
<i>E</i> : 1 <i>E</i> _h	≅ 219474.63	6.579684×10^9	4.359748	27.2114	1	2625.500	627.510	3.15773×10^5
			2	2				
$E_{\rm m}$: 1 kJ/mol	≅ 83.5935	2.506069×10^6	1.660540×10^{-3}	1.036427×10^{-2}	3.808798×10^{-4}	1	0.239006	120.272
E _m : 1 kcal/mol	≅ 349.755	1.048539×10^7	6.947700×10^{-3}	4.336411×10^{-2}	1.593601×10^{-3}	4.184	1	503.217
T: 1 K	≅ 0.695039	2.08367×10^4	1.380658×10^{-5}	8.61738×10^{-5}	3.16683×10^{-6}	8.31451×10^{-3}	1.98722×10^{-3}	1

Examples of the use of this table: $1 \text{ aJ} \cong 50341 \text{ cm}^{-1}$

 $1 \text{ eV} \cong 96.4853 \text{ kJ mol}^{-1}$

The symbol \cong should be read as meaning "corresponds to" or "is equivalent to".

E = hv = hcv = kT; $E_{\rm m} = N_{\rm A}E$; $E_{\rm h}$ is the Hartree energy