004강 매핑 노드와 좌표의 컨트롤

텍스쳐 좌표 이동, 회전, 스케일 좌표 이동을 이용한 노드 애니메이션 Mix 노드 소개

Mapping 노드 좌표를 움직입니다

Mapping 上二

이동의 원리

이동의 원리

각각의 점에 1을 더한다는 건..

이동의 원리

그래프를 왼쪽으로 1 이동시키는 효과입니다.

3차원은 머릿속에서 상상하기 힘들지만, 2차원일 때와 같은 원리입니다.

확대/축소의 원리

2를 곱해서 그래프의 키를 키우는 건..

확대/축소의 원리

그래프를 짜부러트리는 효과와 같습니다.

큰 값을 곱하면, 변화가 빨라집니다. 즉, 스케일이 축소됩니다.

회전의 방정식?

 $x \rightarrow x \cos \theta - y \sin \theta$ $y \rightarrow x \sin \theta + y \cos \theta$ (이건 2차원 회전. 3차원 회전은 더 복잡합니다)

체크포인트

-셰이더 노드의 연산은 각 점마다 개별적으로 이루어집니다.

즉, 어떤 점의 데이터를 다른 점에 전달하는 것은 불가능합니다!

-덧셈과 곱셈이 갖는 의미는 좌표 개념을 넘어서는 개념입니다.

즉, 덧셈이 가지는 이동의 의미, 곱셈이 가지는 확대/축소의 의미는 범용적으로 활용 가능합니다. 상황에 따라 '이동' 이 가지는 뜻이 바뀔 뿐입니다.

회전과 Box Mapping

Box Mapping은 Bounding Box를 기준으로 이루어집니다. 그런데 mapping 노드로 텍스쳐 좌표를 회전시켜도 Bounding Box는 회전하지 않습니다. 이 괴리 때문에 **회전**만큼은 2차원 이미지의 Box Mapping에서는 잘 작동하지 않습니다.

Mix Shader

두 Shader를 섞습니다.

Factor가 작을수록 위쪽, 클수록 아래쪽이 나옵니다.