SVM就是试图把线放在最佳位置,好让 在线的两边有尽可能大的间隙(几何间 隔最大化)。

Finds the boundary with "maximum margin" Uses "slack variables" to deal with outliers

Uses "kernels", and the "kernel trick", to solve nonlinear problems.

1. Margin (max)

The margin in wx-b form

$$wx - b = 0$$

$$w_1x_1 + w_2x_2 - b = 0$$

$$x_2 = \frac{-w_1}{w_2}x_1 + \frac{b}{w_2}$$

$$x_2 = mx_1 + c$$

$$margin = \frac{|c_2 - c_1|}{\sqrt{m^2 + 1}}$$

Set upper margin with offset b+1, lower margin with offset b-1

Numerator:
$$c_2 - c_1 = \frac{(b+1)}{w_2} - \frac{(b-1)}{w_2} = \frac{2}{w_2}$$

Denominator:
$$\sqrt{m^2+1}=\sqrt{\left(\frac{-w_1}{w_2}\right)^2+1}$$

$$=\sqrt{\frac{w_1^2+w_2^2}{w_2^2}}=\frac{|w|}{w_2}$$

$$margin = \frac{2}{|w|}$$

2. Hinge loss (min)

$$L_{hinge} = \max \left\{ 0, 1 - y_i f(\mathbf{x}_i) \right\}$$

3. SVM loss function

Margin \rightarrow max \rightarrow 1/w = x^2 Hinge loss \rightarrow min

$$E = \sum_{i=1}^{N} \max\left\{0, 1 - y_i f(\mathbf{x}_i)\right\} + \frac{1}{2} \sum_{j=1}^{d} w_j^2$$
 hinge loss margin

4. Slack variable — — Soft Margin

• Key idea: allow some of the data points to be misclassified (outliner) 放宽约束,允许一些并没有正确分类的样本存在

修改 hinge loss

$$L_{hinge} = \max \left\{ 0, 1 - y_i f(\mathbf{x}_i) \right\}$$

$$L_{hinge} = \max \left\{ 0, 1 - y_i f(\mathbf{x}_i) - \xi_i \right\},\,$$

$$E = \sum_{i=1}^{N} \max \left\{ 0, 1 - y_i f(\mathbf{x}_i) - \xi_i \right\} + \frac{1}{2} \sum_{j=1}^{d} w_j^2 + C \sum_{i=1}^{N} \xi_i$$

修改loss function

Penalty for using slack amount of penalty is controlled by a regularisation constant, C

The value of C (slack variable penalty) 它就是权衡误差和间距的参数

roughly translates as how "soft" the margins will be

The default value C = 1

1.A smaller value (right) means some data points are allowed to violate the margins, hence an approximate SVM solution is found, but it has a larger margin

C很小,它会给你一个大间距,但是作为牺牲,我们必须要忽视一些错误分类的样本

2.large value (left) means a very strict penalty, so a very strict SVM solution will be found

C很大,你会尽量正确地分类样本,但是这样做的代价会导致你有很小的间距

因此,在SVM算法的训练上,我们可以通过减小C值来避免overfitting的发生。

- 1. C大了,松弛变量小,margin小,overfit
- 2. C小了, margin大

5. Non-linear SVM "Kernel Trick"

对于非线性的情况,SVM 的处理方法是选择一个核函数 $\kappa(\cdot,\cdot)$,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题。

$$K(\mathbf{x}_i, \mathbf{x}') = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}')$$

$$f(\mathbf{x}') = \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}').$$

1.The Polynomial kernel

$$K(\mathbf{x}_i, \mathbf{x}') = (1 + \mathbf{x}_i^T \mathbf{x}')^d$$

d=1 linear

The higher degree, the more high order terms are introduced to the implicit feature space, hence the final decision boundary becomes more complex.

2.The RBF kernel

$$K(\mathbf{x_i},\mathbf{x'})=e^{-\gamma(\mathbf{x}_i-\mathbf{x'})^2}$$
 $\gamma=\frac{1}{2\sigma^2}$ gamma y = standard deviation

The larger γ is, the more overfitting we might expect. A smaller γ will produce smooth boundaries, possibly underfitting.

the parameters are not independent

so for example, below is what happens when we try to set the C (slack variable penalty) and parameters, at the same time.

输入	含义	解决问题	核函数的表达式	参数 gamma	参数 degree	参数 coef0
"linear"	线性核	线性	$K(x,y) = x^T y = x \cdot y$	No	No	No
"poly"	多项式核	偏线性	$K(x,y)=(\gamma(x\cdot y)+r)^d$	Yes	Yes	Yes
"sigmoid"	双曲正切核	非线性	$K(x,y) = tanh(\gamma(x\cdot y) + r)$	Yes	No	Yes
"rbf"	高斯径向基	偏非线性	$K(x,y)=e^{-\gamma \ x-y\ ^2}, \gamma>0$	Yes	No	No

K-NN Classifier 非线性模型 一定要标准化normalize

K-nearest neighborhood

**近似误差:训练集的训练误差。
**估计误差:测试集的测试误差。

k=1时,找到的邻居就是自己, training error =0

1.<u>如果选择较小的K值</u>,就相当于用较小的邻域中的训练实例进行预测,学习的**近似误差**会减小,学习的估计误差会增大,整体模型变复杂 **overfit**

Main differences between the perceptron and linear SVM with hard margins:

- ➤SVM is deterministic (Perceptron decision boundary may not always be the same, even for the same data set)
- SVM maximises the margin (Perceptron decision boundary might only 'just' separate the data)
- 2.如果选择较大K值,就相当于用较大邻域中的训练实例进行预测, 其优点是可以减少学习的估计误差,但近似误差会增大,也就是对输入实例预测不准确,K值得增大就意味着整体模型变的简单 underfit

留一交叉验证(leave-one-out):每次从个数为N的样本集中,取出一个样本作为验证集,剩下的N-1个作为训练集,重复进行N次。最后平均N个结果作为泛化误差估计。

K折交叉验证:把数据分成K份,每次拿出一份作为验证集,剩下k-1份作为训练集,重复K次。最后平均K次的结果,作为误差评估的结果。与前两种方法对比,只需要计算k次,大大减小算法复杂度,被广泛应用。