- **Q1:** Consider the analog signal, $x_a(t) = 3 \cos(100\pi t)$.
- **Part 1:** Determine the minimum sampling rate required to avoid aliasing.
- **Part 2:** Suppose that the signal is sampled at the rate $F_s = 200$ Hz. What is the discrete-time signal obtained after sampling? Graph the analog signal with the sampling points shown on it.
- **Part 3:** Suppose the signal is sampled at the rate $F_s = 75$ Hz. What is discrete-time signal obtained after sampling? Graph the analog signal with the sampling points shown on it.
- **Part 4:** What is the frequency $0 < F < F_s/2$ of a sinusoid that yields samples identical to those obtained in **Part 3**? Graph the analog signal with the sampling points shown on it and compare it with the results of **Part 3**.

You may use the following conversion table from CTS (Continuous-Time Signal) to DTS (Discrete-Time Signal), and vice versa.

Q2: Consider the analog signal, $x_a(t) = 3\cos(50\pi t) + 10\sin(300\pi t) - \cos(100\pi t)$

What is the Nyquist rate for this signal?

- **Q3:** Consider the analog signal, $x(t) = 3 \cos(2000\pi t) + 5 \sin(6000\pi t) + 10 \cos(12000\pi t)$
- **Part 1:** What is the Nyquist rate for this signal?
- **Part 2:** Assume now that we sample this signal using a sampling rate $F_s = 5000$ samples/s. What is the discrete-time signal obtained after sampling? Graph this signal.
- **Part 3:** What is the analog signal x(t) that we can reconstruct from the samples if we use ideal interpolation? Graph this signal and compare it with the results of **Part 2**.

Q4: Find the DTFS representation of the digital periodic signal x[k] using the inspection method. For inspection method, just use the Euler's formulas. Here, x[k] = $\sin(\Omega_0 k)$, where $\Omega_0 = \frac{N_0}{2\pi}$. Use the given hints.

Definition

The DTFS representation of the periodic signal x[k] with fundamental period N_0 (fundamental frequency $\Omega_0=2\pi/N_0$) is written as N_0-1

 $x[k] = \sum_{r=0}^{N_0-1} \mathcal{D}_r e^{jr\Omega_0 k}$

where \mathcal{D}_r are the DTFS coefficients of the signal x[k]

Q5: You have been tasked with investigating the DTFS representation of the given digital signal x[k] using the definition of DTFS. Here, x[k] = $\sin(0.1\pi k)$, where $\Omega_0 = \frac{N_0}{2\pi}$.

Part 1:

Show that the signal, x[k], is periodic with a period of $N_0 = 20$.

Part 2:

Find the DTFS representation of the digital periodic signal x[k] using the definition. The sigma in D_m equation, the definition of DTFS representation, can have any lower limit and upper limit, as long as the length is 20.

Part 3:

Plot DT sinusoid, x[k], as a function of k using MATLAB.

Part 4:

Plot amplitude spectrum as a function of omega using MATLAB.

Part 5:

Plot phase spectrum as a function of omega using MATLAB.

Use the following hints:

The definition of DTFS representation:

Some useful formulas and concepts:

Definition

The DTFS representation of the periodic signal x[k] with fundamental period N_0 (fundamental frequency $\Omega_0=2\pi/N_0$) is written as $N_{0}-1$

$$x[k] = \sum_{r=0}^{N_0 - 1} \mathcal{D}_r e^{jr\Omega_0 k}$$

where \mathcal{D}_r are the DTFS coefficients of the signal x[k]

Q6: You have been tasked with investigating the DTFS representation of the given digital signal x[k] using the definition of DTFS. As shown below, x[k] is a square wave signal.

Part 1:

Find D_r values.

Part 2:

For $N_0 = 50$, and M = 4, plot x[k] as a function of k, from k = 0 to k = 50. Also, plot amplitude spectrum. Use MATLAB.

Part 3:

For $N_0 = 50$, and M = 12, plot x[k] as a function of k, from k = 0 to k = 50. Also, plot amplitude spectrum. Use MATLAB.

Part 4:

Compare the results of **Part 2** with the results of **Part 3**.

Use the following hints:

The definition of DTFS representation:

Some useful formulas and concepts:

Definition

The DTFS representation of the periodic signal x[k] with fundamental period N_0 (fundamental frequency $\Omega_0=2\pi/N_0$) is written as N_0-1

$$x[k] = \sum_{r=0}^{N_0 - 1} \mathcal{D}_r e^{jr\Omega_0 k}$$

where \mathcal{D}_r are the DTFS coefficients of the signal x[k]

Q7: This digital signal is given to us:

Part 1: Find the DFT of x[k]. That is, find X_0 , X_1 , and X_2 .

Part 2: Find the $X(\Omega)$ equation.

Part 3: Find the $|X(\Omega)|$ equation and plot amplitude spectrum as function of Ω . Show DFT points on the same graph.

Use the following hint:

