Оглавление

- 1. Задание
- 2. Описание датасета
- 3. Импорт библиотек
- 4. Загрузка и первичный анализ данных
- 5. Визуализация
- 6. Корреляционный анализ

Задание (к оглавлению)

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Для пары произвольных колонок данных построить график "Диаграмма рассеяния".

Необходимо подготовить отчет по рубежному контролю и разместить его в Вашем репозитории. Вы можете использовать титульный лист, или в начале ноутбука в текстовой ячейке указать Ваши Ф.И.О. и группу.

Описание датасета (к оглавлению)

Датасет Graduate Admission 2 создан для прогнозирования поступления в аспирантуру. Он состоит из двух таблиц:

- Admission_Predict.csv
- Admission Predict Ver1.1.csv

В текущей работе используется первый.

Таблица Admission_Predict.csv состоит из следующих столбцов:

- GRE Scores (out of 340)
- TOEFL Scores (out of 120)
- University Rating (out of 5)
- Statement of Purpose and Letter of Recommendation Strength (out of 5)

- Undergraduate GPA (out of 10)
- Research Experience (either 0 or 1)
- Chance of Admit (ranging from 0 to 1)

Импорт библиотек (к оглавлению)

```
import numpy as np
import pandas as pd

import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

Загрузка и первичный анализ данных (к оглавлению)

```
In [30]: data = pd.read_csv("Admission_Predict.csv", sep=",")
    data
```

Out[30]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65
395	396	324	110	3	3.5	3.5	9.04	1	0.82
396	397	325	107	3	3.0	3.5	9.11	1	0.84
397	398	330	116	4	5.0	4.5	9.45	1	0.91
398	399	312	103	3	3.5	4.0	8.78	0	0.67
399	400	333	117	4	5.0	4.0	9.66	1	0.95

400 rows × 9 columns

```
In [31]: data.describe()
```

Out[31]:		Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA
	count	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000
	mean	200.500000	316.807500	107.410000	3.087500	3.400000	3.452500	8.598925
	std	115.614301	11.473646	6.069514	1.143728	1.006869	0.898478	0.596317

```
min
       1.000000 290.000000
                              92.000000
                                           1.000000
                                                       1.000000
                                                                   1.000000
                                                                              6.800000
25% 100.750000 308.000000 103.000000
                                           2.000000
                                                       2.500000
                                                                   3.000000
                                                                              8.170000
50% 200.500000 317.000000 107.000000
                                           3.000000
                                                       3.500000
                                                                   3.500000
                                                                              8.610000
75% 300.250000 325.000000 112.000000
                                           4.000000
                                                       4.000000
                                                                   4.000000
                                                                              9.062500
max 400.000000 340.000000 120.000000
                                           5.000000
                                                       5.000000
                                                                   5.000000
                                                                              9.920000
```

```
In [32]:
          data.shape
          (400, 9)
Out[32]:
In [33]:
          data.dtypes
                                int64
         Serial No.
Out[33]:
         GRE Score
                               int64
         TOEFL Score
                               int64
                               int64
         University Rating
                              float64
         SOP
         LOR
                              float64
         CGPA
                              float64
         Research
                               int64
         Chance of Admit
                             float64
         dtype: object
In [34]:
          # Количество пустых значений
          total count = data.shape[0]
          for col in data.columns:
              temp_null_count = data[data[col].isnull()].shape[0]
              temp_perc = round((temp_null_count / total_count) * 100.0, 2)
              print('Колонка {} - {}, {}%'.format(col, temp_null_count, temp_perc)
         Колонка Serial No. - 0, 0.0%
         Колонка GRE Score - 0, 0.0%
         Колонка TOEFL Score - 0, 0.0%
         Колонка University Rating - 0, 0.0%
         Колонка SOP - 0, 0.0%
         Колонка LOR - 0, 0.0%
         Колонка CGPA - 0, 0.0%
         Колонка Research - 0, 0.0%
         Колонка Chance of Admit - 0, 0.0%
```

Визуализация (к оглавлению)

```
In [36]: # Удалим столбец ID, он неинформативен df = data.drop('Serial No.', axis=1) df
```

GRE TOEFL University Chance of Out[36]: SOP LOR CGPA Research **Score** Score Rating Admit 337 4.5 9.65 0.92 118 4.5 1 324 107 4.0 4.5 8.87 0.76 2 1 0.72 316 104 3.0 3.5 8.00

3	322	110	3	3.5	2.5	8.67	1	0.80
4	314	103	2	2.0	3.0	8.21	0	0.65
395	324	110	3	3.5	3.5	9.04	1	0.82
396	325	107	3	3.0	3.5	9.11	1	0.84
397	330	116	4	5.0	4.5	9.45	1	0.91
398	312	103	3	3.5	4.0	8.78	0	0.67
399	333	117	4	5.0	4.0	9.66	1	0.95

400 rows × 8 columns

```
In [37]:
    sns.pairplot(df)
```

Out[37]: <seaborn.axisgrid.PairGrid at 0x2e8476ae348>

```
340
330
320
320
330
    290
120
    115
 0.8
0.6
0.0
4.0
     0.2
```

```
In [40]: g = sns.pairplot(
          df,
          vars=['GRE Score', 'TOEFL Score', 'CGPA'],
          diag_kind='kde'
```

```
g.map_lower(sns.kdeplot, levels=4, color=".2")
```

Out[40]: <seaborn.axisgrid.PairGrid at 0x2e852518d88>


```
In [41]:
fig, ax = plt.subplots(figsize=(10,10))
fig.suptitle("Диаграмма рассеяния для колонок GRE Score и CGPA")
sns.scatterplot(ax=ax, x='CGPA', y='GRE Score', data=data)
```

Out[41]: <AxesSubplot:xlabel='CGPA', ylabel='GRE Score'>

Корреляционный анализ (к оглавлению)

In [42]: df.corr()

[42]:		GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admi
	GRE Score	1.000000	0.835977	0.668976	0.612831	0.557555	0.833060	0.580391	0.80261
	TOEFL Score	0.835977	1.000000	0.695590	0.657981	0.567721	0.828417	0.489858	0.79159
	University Rating	0.668976	0.695590	1.000000	0.734523	0.660123	0.746479	0.447783	0.71125
	SOP	0.612831	0.657981	0.734523	1.000000	0.729593	0.718144	0.444029	0.67573
	LOR	0.557555	0.567721	0.660123	0.729593	1.000000	0.670211	0.396859	0.66988
	CGPA	0.833060	0.828417	0.746479	0.718144	0.670211	1.000000	0.521654	0.87328
	Research	0.580391	0.489858	0.447783	0.444029	0.396859	0.521654	1.000000	0.55320

```
In [44]:
          df.corr()['CGPA']
         GRE Score
                               0.833060
Out[44]:
         TOEFL Score
                               0.828417
         University Rating
                               0.746479
         SOP
                               0.718144
         LOR
                               0.670211
         CGPA
                               1.000000
         Research
                               0.521654
         Chance of Admit
                               0.873289
         Name: CGPA, dtype: float64
In [45]:
          fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(13,10)
          fig.suptitle('Корреляционная матрица')
          sns.heatmap(df.corr(), ax=ax, annot=True, fmt='.3f', cmap='YlGnBu')
          <AxesSubplot:>
```

Out[45]:

Корреляционная матрица

На основе корреляционной матрицы можно сделать следующие выводы.

Все признаки достаточно хорошо коррелируют с целевым признаокм ССРА:

Признак	Корреляция
---------	------------

GRE Score	0.833060
TOEFL Score	0.828417
University Rating	0.746479
SOP	0.718144
LOR	0.670211
CGPA	1.000000
Research	0.521654
Chance of Admit	0.873289

Признаки GRE Score, T0EFL Score, Chance of Admit сильно коррелируют между собой, следовательно, для того, чтобы повысить качество модели, стоит выбрать из них только один, который наиболее сильно коррелирует с целевым признаком, т.е. Chance of Admit.

Таким образом, для построения модели использовались бы следующие признаки: University Rating, SOP, LOR, CGPA, Research.