

CS 423 Operating System Design

https://cs423-uiuc.github.io

Tianyin Xu tyxu@illinois.edu

* Thanks Adam Bates for the slides.

Scheduling

- A forever topic in Computer Systems and Life
 - Uniprocessor: I00 threads in the ready queue which one to run next?
 - Multiprocessor: 400 threads in the ready queues of four cores which one to run next on which core?
 - Cluster: I000 MapReduce jobs which one to run on which machine and on which core?
 - Datacenters: I0000 user request which one to run on which datacenter on which cluster on which machine?

More complexity

- Jobs/requests are not created equal.
 - Some are more important than the others
- Jobs/requests could have deadlines
 - Finishing late means nothing but wasting resources.
- Jobs/requests have constraints
 - Affinity is important same node and same PCIe switch for GPUs
- Workloads could be very different.

Scheduling

- Always an active research topic
 - Everyone wants run more jobs with less resources

 In this class, we are going to focus on the simplest setup – a uniprocessor

What Are Scheduling Goals?

- What are the goals of a scheduler?
- Scheduling Goals:
 - Generate illusion of concurrency

- Maximize resource utilization (e.g., mix CPU and I/O bound processes appropriately)
- Meet needs of both I/O-bound and CPU-bound processes
 - Give I/O-bound processes better interactive response
 - Do not starve CPU-bound processes
- Support Real-Time (RT) applications

Task/Job

- Something that needs CPU time: a thread associated with a process or with the kernel...
- ... a user request, e.g., mouse click, web request, shell command, ...
- Latency/response time
 - How long does a task take to complete?
- Throughput
 - How many tasks can be done per unit of time?

Overhead

How much extra work is done by the scheduler?

Fairness

How equal is the performance received by different users?

Predictability

How consistent is the performance over time?

Starvation

- A task 'never' receives the resources it needs to complete
- Not very fair : (

- Workload
 - Set of tasks for system to perform
- Work-conserving
 - Resource is used whenever there is a task to run
 - For non-preemptive schedulers, work-conserving is not always better

Non-preemptive scheduling:

- The running process keeps the CPU until it voluntarily gives up the CPU
 - process exits
 - switches to blocked state
 - 1 and 4 only (no 3)

Preemptive scheduling:

 The running process can be interrupted and must release the CPU (can be forced to give up CPU)

- Scheduling algorithm
 - takes a workload as input
 - decides which tasks to do first
 - Performance metric (throughput, latency) as output
 - Only preemptive, work-conserving schedulers to be considered

First In First Out (FIFO)

- Schedule tasks in the order they arrive
 - Continue running them until they complete or give up the processor

On what workloads would FIFO be particularly bad?

Shortest Job First (SJF)

- Always do the task that has the shortest remaining amount of work to do
 - Often called Shortest Remaining Time First (SRTF)

- Suppose we have five tasks arrive one right after each other, but the first one is much longer than the others
 - Which completes first in FIFO? Next?
 - Which completes first in SJF? Next?

FIFO vs. SJF

Tasks	FIFO	
(1)		
(2)		
(3)		
(4)		
(5)		
Tasks	SJF	
(1)		
(2)		
(3)		
(4)		
(5)		
		
	Time	

Round Robin (RR)

- Each task gets resource for a fixed period of time (time quantum)
 - If task doesn't complete, it goes back in line
- Characteristics of scheduler change depending on the time quantum size
 - What if time quantum is too short?
 - One instruction?
 - What if time quantum is too long?
 - Infinite?

Tasks	Round Robin (1 ms time slice)
(1)	Rest of Task 1
(2)	
(3)	
(4)	
(5)	

Scheduling

- Basic scheduling algorithms
 - FIFO (FCFS)
 - Shortest job first
 - Round Robin

Scheduling

- Basic scheduling algorithms
 - FIFO (FCFS)
 - Shortest job first
 - Round Robin

• What is an optimal algorithm in the sense of maximizing the number of jobs finished (i.e., minimizing average response time)?

FIFO vs. SJF

Scheduling

- Basic scheduling algorithms
 - FIFO (FCFS)
 - Shortest job first
 - Round Robin

Assuming zero-cost to time slicing, is Round Robin always better than FIFO?

RR v. FIFO (fixed size tasks)

Tasks	Round Robin (1 ms time slice)
(1)	
(2)	
(3)	
(4)	
(5)	
Tasks	FIFO and SJF
(1)	
(2)	
(3)	
(4)	
(5)	
	•
	Time

Starvation, Sample Bias

- Suppose you want to compare two scheduling algorithms
 - Create some infinite sequence of arriving tasks
 - Start measuring
 - Stop at some point
 - Compute average response time as the average for completed tasks between start and stop
- Is this valid or invalid?

Sample Bias Solutions

- Measure for long enough that # of completed tasks >> # of uncompleted tasks
 - For both systems!
- Start and stop system in idle periods
 - Idle period: no work to do
 - If algorithms are work-conserving, both will complete the same tasks

Round Robin = Fairness?

Is Round Robin the fairest possible algorithm?

What is fair?

- FIFO?
- Equal share of the CPU?
- What if some tasks don't need their full share?
- Minimize worst case divergence?
- Time task would take if no one else was running
- Time task takes under scheduling algorithm

Fairness needs to be defined.

- 4 kids share a cake.
 - Each gets 25% of the cake.
 - Quite fair!

- There is one little kids and the kid can only eat 10% of the cake.
 - We either force her to eat the 25% -- to be fair
 - Or we give 15% remaining to the other 3 kids.
 - Min-max fairness

- The least demanding one will get its fair share first
- After this, the next least demanding one will get its fair share first
- And so on...

- Kid 1: 20%
- Kid 2: 26%
- Kid 3: 40%
- Kid 4: 50%

- 100% -> 25% each kid
 - 20% -> 5% left -> 1.666666% to the other three
 - 25%
 - 25%
 - 25%

- Kid 1: 20%
- Kid 2: 26%
- Kid 3: 40%
- Kid 4: 50%

- 100% -> 25% each kid
 - 20%26%27%27%

- How do we balance a mixture of repeating tasks?
 - Some I/O bound, need only a little CPU
 - Some compute bound, can use as much CPU as they are assigned
- One approach: maximize the minimum allocation given to a task
 - If any task needs less than an equal share, schedule the smallest of these first
 - Split the remaining time using max-min
 - If all remaining tasks need at least equal share, split evenly

Mixed Workloads??

Multi-Level Feedback Queue

- Set of Round Robin queues
 - Each queue has a separate priority
- High priority queues have short time slices
 - Low priority queues have long time slices
- Scheduler picks first thread in highest priority queue
- Tasks start in highest priority queue
 - If time slice expires, task drops one level

Multi-Level Feedback Queue

Goals:

- Responsiveness
- Low overhead
- Starvation freedom
- Some tasks are high/low priority
- Fairness (among equal priority tasks)
- Not perfect at any of them!
 - Used in Linux (and probably Windows, MacOS)

Multi-Level Feedback Queue

Priority Time Slice (ms)

1 10

2 20

3 40

4 80

Round Robin Queues

Why is MLFQ a good design?

 How to design a scheduler that both minimizes response time for interactive jobs while also minimizing turnaround time without a priori knowledge of job length?

- Yes, SJF the assumption is to know which is the "shortest.."
 - It's just very hard to know in advance.
 - Sometimes processes/threads could try to game (we will see an example).

Why is MLFQ a good design?

The Key Idea

 Dynamically adjusting the priority level based on observing the behavior of the processes/threads

Basic Design

- When a job enters the system, it is placed at the highest priority (the topmost queue).
- If a job uses up an entire time slice while running, its priority is reduced (i.e., it moves down one queue).
- If a job gives up the CPU before the time slice is up, it stays at the same priority level.

Basic Design

 because it doesn't know whether a job will be a short job or a long-running job, it first assumes it might be a short job, thus giving the job high priority. If it actually is a short job, it will run quickly and complete; if it is not a short job, it will slowly move down the queues, and thus soon prove itself to be a longrunning more batch-like process.

Limitations?

- Starvation
- A process changing its characteristics
- Gaming the scheduler

Priority Boost

 After some time period S, move all the jobs in the system to the topmost queue

Better Accounting

 Once a job uses up its time allotment at a given level (regardless of how many times it has given up the CPU), its priority is reduced (i.e., it moves down one queue).

Sounds perfect?

- How many queues should there be?
- How big should the time slice be per queue?
- How often should priority be boosted in order to avoid starvation and account for changes in behavior?

Summary

- FIFO is simple and minimizes overhead.
- If tasks are variable in size, then FIFO can have very poor average response time.
- If tasks are equal in size, FIFO is optimal in terms of average response time.
- Considering only the processor, SJF is optimal in terms of average response time.
- SJF is pessimal in terms of variance in response time.

Summary

- If tasks are variable in size, Round Robin approximates
 SJF.
- If tasks are equal in size, Round Robin will have very poor average response time.
- Tasks that intermix processor and I/O benefit from SJF and can do poorly under Round Robin.

Summary

- Max-Min fairness can improve response time for I/Obound tasks.
- Round Robin and Max-Min fairness both avoid starvation.
- By manipulating the assignment of tasks to priority queues, an MFQ scheduler can achieve a balance between responsiveness, low overhead, and fairness.
- Is MFQ optimally fair??