# Berechenbarkeit und Komplexität

Dozent: Mathias Weller (Skript adaptiert von Rolf Niedermeier)
Betreuer: Leon Kellerhals. Vincent Froese und Philipp Zschoche

Sekretariat: Christlinde Thielcke

Viele Fleißige Tutorinnen und Tutoren

Fachmentorin: Niloofar Nazemi

TU Berlin
Fakultät IV
Fachgebiet Algorithmik und Komplexitätstheorie
https://www.akt.tu-berlin.de

# 1. Einführung

- 2. Berechenbarkeitsbegrif
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

Wissen: alle LOOP-berechenbaren Funktionen sind total

Frage: gibt es totale Funktionen die nicht LOOP-berechenbar sind?

Wissen: alle LOOP-berechenbaren Funktionen sind total

Frage: gibt es totale Funktionen die nicht LOOP-berechenbar sind? Ja! (Diagonalisierung)

Wissen: alle LOOP-berechenbaren Funktionen sind total

Frage: gibt es totale Funktionen die nicht LOOP-berechenbar sind? Ja! (Diagonalisierung)

#### **Theorem**

Sei  $\underline{L}$  eine Liste aller  $\underline{1}$ -stelligen, LOOP-berechenbaren Funktionen. Dann ist  $g:\mathbb{N}\to\mathbb{N}$  mit

$$g(n) := L_n(n) + 1$$

total und nicht LOOP-berechenbar.

Wissen: alle LOOP-berechenbaren Funktionen sind total

Frage: gibt es totale Funktionen die nicht LOOP-berechenbar sind? Ja! (Diagonalisierung)

#### **Theorem**

Sei L eine Liste aller 1-stelligen, LOOP-berechenbaren Funktionen. Dann ist  $g:\mathbb{N}\to\mathbb{N}$  mit

$$g(n) := L_n(n) + 1$$

total und nicht LOOP-berechenbar.

#### **Beweis**

Wäre g LOOP-berechenbar, so gäbe es ein  $k \in \mathbb{N}$  mit  $\underline{L_k = g}$ . (2)  $\longrightarrow g(k) = \underbrace{L_k(k) + 1}_{q} = g(k) + 1$ 

Wissen: alle LOOP-berechenbaren Funktionen sind total

Frage: gibt es totale Funktionen die nicht LOOP-berechenbar sind? Ja! (Diagonalisierung)

#### Theorem

Sei L eine Liste aller 1-stelligen, LOOP-berechenbaren Funktionen. Dann ist  $g:\mathbb{N}\to\mathbb{N}$  mit

$$g(n) := L_n(n) + 1$$

total und nicht LOOP-berechenbar.

#### **Beweis**

Wäre g LOOP-berechenbar, so gäbe es ein  $k \in \mathbb{N}$  mit  $L_k = g$ .

$$\sim g(k) = L_k(k) + 1 = g(k) + 1$$

Aber: Ist g (Turing-)berechenbar?

Die Ackermannfunktion (Variante Rósza Péter):

$$\begin{aligned} &\operatorname{ack}(0,y) := y+1, \\ &\operatorname{ack}(\underline{x},0) := \operatorname{ack}(\underline{x-1},1), \\ &\operatorname{ack}(x,y) := \operatorname{ack}(\underline{x-1},\operatorname{ack}(x,y-1)) \end{aligned}$$

, ver allgemeinerte Exponential function  $\varphi(0,y) \longrightarrow 2+2+...+2 = \frac{2y}{y}$   $\varphi(1,y) \longrightarrow 2\cdot2\cdot...\cdot2 = \frac{2y}{2}$   $\varphi(2,y) \longrightarrow 2^{2}$ 

Die Ackermannfunktion (Variante Rósza Péter):

$$\begin{aligned} \mathsf{ack}(0,y) := & y+1, \\ \mathsf{ack}(x,0) := & \mathsf{ack}(x-1,1), \\ \mathsf{ack}(x,y) := & \mathsf{ack}(x-1,\underbrace{\mathsf{ack}(x,y-1)}) \\ &= \underbrace{\mathsf{ack}(x-1,\underbrace{\mathsf{ack}(x-1,\mathsf{ack}(x-1,\ldots,\mathsf{ack}(x-1,1)))\dots)}_{(y+1) \text{ mal}} \end{aligned}$$

Die Ackermannfunktion (Variante Rósza Péter):

$$\begin{aligned} \mathsf{ack}(0,y) := & y+1, \\ \mathsf{ack}(x,0) := & \mathsf{ack}(x-1,1), \\ \mathsf{ack}(x,y) := & \mathsf{ack}(x-1,\mathsf{ack}(x,y-1)) \\ &= \underbrace{\mathsf{ack}(x-1,\mathsf{ack}(x-1,\mathsf{ack}(x-1,\ldots,\mathsf{ack}(x-1,1)))\ldots)}_{(y+1) \text{ mal}} \end{aligned}$$

Die Ackermannfunktion wächst extrem schnell (z.B. gilt ack $(4,2) \approx 2 \cdot 10^{19728}$ ).

Die Ackermannfunktion (Variante Rósza Péter):

$$\begin{aligned} \mathsf{ack}(0,y) := & y+1, \\ \mathsf{ack}(x,0) := & \mathsf{ack}(x-1,1), \\ \mathsf{ack}(x,y) := & \mathsf{ack}(x-1,\mathsf{ack}(x,y-1)) \\ &= \underbrace{\mathsf{ack}(x-1,\mathsf{ack}(x-1,\mathsf{ack}(x-1,\ldots,\mathsf{ack}(x-1,1)))\ldots)}_{(y+1) \text{ mal}} \end{aligned}$$

Die Ackermannfunktion wächst extrem schnell (z.B. gilt ack $(4,2) \approx 2 \cdot 10^{19728}$ ). Eine "modernisierte" Variante:

$$a(0, y) := 1,$$
  
 $a(1, y) := 3y + 1,$   
 $a(x, y) := \underbrace{a(x - 1, a(x - 1, \dots, a(x - 1, y) \dots)}_{y \text{ mal}}$ 

Die Ackermannfunktion (Variante Rósza Péter):

$$\begin{aligned} \mathsf{ack}(0,y) := & y+1, \\ \mathsf{ack}(x,0) := & \mathsf{ack}(x-1,1), \\ \mathsf{ack}(x,y) := & \mathsf{ack}(x-1,\mathsf{ack}(x,y-1)) \\ &= \underbrace{\mathsf{ack}(x-1,\mathsf{ack}(x-1,\mathsf{ack}(x-1,\ldots,\mathsf{ack}(x-1,1)))\ldots)}_{(y+1) \text{ mal}} \end{aligned}$$

Die Ackermannfunktion wächst extrem schnell (z.B. gilt ack $(4,2) \approx 2 \cdot 10^{19728}$ ). Eine "modernisierte" Variante:

$$a(0, y) := 1,$$
  
 $a(1, y) := 3y + 1,$   
 $a(x, y) := \underbrace{a(x - 1, a(x - 1, \dots, a(x - 1, y) \dots)}_{y \text{ mal}}$ 

Beobachtung: a ist total und in beiden Argumenten monoton wachsend

Die Ackermannfunktion (Variante Rósza Péter):

$$\begin{aligned} \mathsf{ack}(0,y) := & y+1, \\ \mathsf{ack}(x,0) := & \mathsf{ack}(x-1,1), \\ \mathsf{ack}(x,y) := & \mathsf{ack}(x-1,\mathsf{ack}(x,y-1)) \\ &= \underbrace{\mathsf{ack}(x-1,\mathsf{ack}(x-1,\mathsf{ack}(x-1,\ldots,\mathsf{ack}(x-1,1)))\ldots)}_{(y+1) \text{ mal}} \end{aligned}$$

Die Ackermannfunktion wächst extrem schnell (z.B. gilt  $ack(4,2) \approx 2 \cdot 10^{19728}$ ). Eine "modernisierte" Variante:

$$a(0, y) := 1,$$
  
 $a(1, y) := 3y + 1,$   
 $a(x, y) := \underbrace{a(x - 1, a(x - 1, ..., a(x - 1, y)...)}_{y \text{ mal}}$ 

Beobachtung: a ist total und in beiden Argumenten monoton wachsend

Frage: können Sie zeigen, dass  $a(x, y) \le ack(x, 3y)$ ? (\*)

## **Theorem**

Die Ackermannfunktion a ist nicht LOOP-berechenbar.

#### Theorem

Die Ackermannfunktion a ist nicht LOOP-berechenbar.

Strategie: zeigen, dass a schneller wächst als jede LOOP-berechenbare Funktion.

#### Theorem

Die Ackermannfunktion a ist nicht LOOP-berechenbar.

Strategie: zeigen, dass a schneller wächst als jede LOOP-berechenbare Funktion.  $\sim$  definieren zunächst  $f_P(n)$  als die maximale Summe aller Variablenendwerte, die das Programm P erzeugen kann, wenn die initiale Belegung höchstens Summe n hat.

#### Theorem

Die Ackermannfunktion a ist nicht LOOP-berechenbar.

Strategie: zeigen, dass a schneller wächst als jede LOOP-berechenbare Funktion.

 $\sim$  definieren zunächst  $f_P(n)$  als die maximale Summe aller Variablenendwerte, die das Programm P erzeugen kann, wenn die initiale Belegung höchstens Summe n hat.

#### **Definition**

Sei P ein LOOP-Programm, welches die Variablen  $x_0, x_1, \ldots, x_k$  verwendet.

#### Theorem

Die Ackermannfunktion a ist nicht LOOP-berechenbar.

Strategie: zeigen, dass a schneller wächst als jede LOOP-berechenbare Funktion.

 $\sim$  definieren zunächst  $f_P(n)$  als die maximale Summe aller Variablenendwerte, die das Programm P erzeugen kann, wenn die initiale Belegung höchstens Summe n hat.

 $\frac{\text{Definition}}{\text{Sei }P\text{ ein LOOP-Programm, welches die Variablen}} \underbrace{\begin{array}{c} \textbf{n_0} & \textbf{n_1} & \textbf{n_2} & \textbf{n_3} \\ \textbf{n_1} & \textbf{n_2} & \textbf{n_3} \\ \textbf{n_2} & \textbf{n_3} & \textbf{n_4} \\ \textbf{n_3} & \textbf{n_4} & \textbf{n_4} \\ \textbf{n_4} & \textbf{n_4} & \textbf{n_4} \\ \textbf{n_5} & \textbf{n_5} & \textbf{n_5} \\ \textbf{n_5} & \textbf{n_$ 

Die i'te Speicherüberführungsfunktion  $F_i^P: \mathbb{N}^{k+1} \to \mathbb{N}$  an der Stelle  $(n_0, n_1, \dots, n_k)$  ist der Wert von  $x_i$  am Ende des Programmes P falls P mit  $x_i = n_i$  für alle  $0 \le j \le k$  gestartet wird.

#### **X**Theorem

Die Ackermannfunktion a ist nicht LOOP-berechenbar.

Strategie: zeigen, dass a schneller wächst als jede LOOP-berechenbare Funktion.

 $\sim$  definieren zunächst  $f_P(n)$  als die maximale Summe aller Variablenendwerte, die das Programm P erzeugen kann, wenn die initiale Belegung höchstens Summe n hat.

#### **Definition**

Sei P ein LOOP-Programm, welches die Variablen  $x_0, x_1, \dots, x_k$  verwendet.

Die i'te Speicherüberführungsfunktion  $F_i^P: \mathbb{N}^{k+1} \to \mathbb{N}$  an der Stelle  $(n_0, n_1, \dots, n_k)$  ist der Wert von  $x_i$  am Ende des Programmes P falls P mit  $x_i = n_i$  für alle  $0 \le j \le k$  gestartet wird.

Außerdem sei die Funktion  $f_P:\mathbb{N} \to \mathbb{N}$  definiert als

$$f_{P}(n) := \max \left\{ \sum_{i=0}^{k} F_{i}^{P}(\underline{n_{0}, \dots, n_{k}}) \mid \sum_{i=0}^{k} n_{i} \leq n \right\}.$$

# Lemma

Zu jedem LOOP-Programm  $\underline{P}$  existiert ein  $\underline{\ell \in \mathbb{N}}$  sodass für alle  $n \ge \ell$  gilt:  $\underline{f_P(n)} < \underline{a(\ell,n)}$ .

**Fall 1:** 
$$P = "x_i := x_j \pm c"$$
  $\sim f_P(n) \le 2n + c$ 

Aufang: 
$$x_i+x_j \le n$$
  
Finde:  $x_i=x_j+c$   
 $+x_j$   
 $2x_j+c \le 2n+c$ 

#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

Fall 1: 
$$P = "x_i := x_j \pm c"$$
  
 $\sim f_P(n) \le 2n + c \le 3n < 3n + 1$ 

#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

Fall 1: 
$$P = "x_i := x_j \pm c"$$
  
 $\sim f_P(n) \le 2n + c \le 3n < 3n + 1 = a(1, n).$ 

#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

**Fall 1:** 
$$P = "x_i := x_j \pm c"$$

$$\sim f_P(n) \le 2n + c \le 3n < 3n + 1 = a(1, n). \sim \text{W\"ahle } \ell := \max\{c, 1\}.$$



#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

# Beweis (Induktion über Termstruktur von *P*)

**Fall 1:** 
$$P = "x_i := x_i \pm c"$$

$$\sim f_P(n) \leq 2n + c \leq 3n < 3n + 1 = a(1, n) \sim \text{W\"ahle } \ell := \max\{c, 1\}.$$

Fall 2:  $P = , P_1; P_2$ 

Induktionsvoraussetzung  $\rightsquigarrow$  es gibt  $\ell_1, \ell_2 \in \mathbb{N}$ , sodass für alle  $n \ge \max\{\ell_1, \ell_2\} =: \ell_3$  gilt:

$$\underline{f_{P_1}(n) < a(\ell_1, n)} \leq a(\ell_3, n) \text{ und } \underline{f_{P_2}(n) < a(\ell_2, n)} \leq a(\ell_3, n).$$

#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

# Beweis (Induktion über Termstruktur von *P*)

**Fall 1:** 
$$P = "x_i := x_j \pm c"$$
  
  $\sim f_P(n) < 2n + c < 3n < 3n + 1 = a(1, n). → Wähle  $\ell := \max\{c, 1\}$ .$ 

Fall 2:  $P = ...P_1$ :  $P_2$ "

Induktions voraus setzung  $\sim$  es gibt  $\ell_1, \ell_2 \in \mathbb{N}$ , sodass für alle  $n \geq \max\{\ell_1, \ell_2\} =: \ell_3$  gilt:

$$|f_{P_1}(n) < a(\ell_1, n) \le a(\ell_3, n) \text{ und } f_{P_2}(n) < a(\ell_2, n) \le a(\ell_3, n)$$

Da 
$$f_P(n) \le f_{P_2}(f_{P_1}(n))$$
 folgt (falls  $\ell_3 \ge 2$ ):  $f_P(n) < a(\ell_3, f_{P_1}(n))$ 



#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

# Beweis (Induktion über Termstruktur von P)

**Fall 1:** 
$$P = "x_i := x_i \pm c"$$

$$\sim f_P(n) \le 2n + c \le 3n < 3n + 1 = a(1, n). \sim \text{W\"ahle } \ell := \max\{c, 1\}.$$

Fall 2: 
$$P = {}_{1}P_{1}; P_{2}$$

Induktionsvoraussetzung  $\rightsquigarrow$  es gibt  $\ell_1, \ell_2 \in \mathbb{N}$ , sodass für alle  $n \ge \max\{\ell_1, \ell_2\} =: \ell_3$  gilt:

(2) 
$$f_{P_1}(n) < a(\ell_1, n) \le a(\ell_3, n)$$
 und  $f_{P_2}(n) < a(\ell_2, n) \le a(\ell_3, n)$ .

Da 
$$f_P(n) \le f_{P_2}(f_{P_1}(n))$$
 folgt (falls  $\ell_3 \ge 2$ ):

$$f_P(n) < a(\ell_3, f_{P_1}(n)) \le a(\ell_3, a(\ell_3, n))$$

#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

# Beweis (Induktion über Termstruktur von P)

**Fall 1:** 
$$P = "x_i := x_j \pm c"$$

$$\sim f_P(n) \leq 2n + c \leq 3n < 3n + 1 = a(1, n) \sim \text{W\"ahle } \ell := \max\{c, 1\}.$$

Fall 2:  $P = {}_{1}P_{1}; P_{2}$ 

Induktions voraus setzung  $\sim$  es gibt  $\ell_1, \ell_2 \in \mathbb{N}$ , sodass für alle  $n \geq \max\{\ell_1, \ell_2\} =: \ell_3$  gilt:  $f_{P_1}(n) < a(\ell_1, n) \leq a(\ell_3, n)$  und  $f_{P_2}(n) < a(\ell_2, n) \leq a(\ell_3, n)$ .

Da 
$$f_P(n) \le f_{P_2}(f_{P_1}(n))$$
 folgt (falls  $\ell_3 \ge 2$ ):  
 $f_P(n) < a(\ell_3, f_{P_1}(n)) \le a(\ell_3, a(\ell_3, \underline{n})) \le \underbrace{a(\ell_3, a(\ell_3, \dots, a(\ell_3, n) \dots))}_{n-\text{mal}}$ 

#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

# Beweis (Induktion über Termstruktur von *P*)

**Fall 1:** 
$$P = "x_i := x_j \pm c"$$

$$\sim f_P(n) \leq 2n + c \leq 3n < 3n + 1 = a(1, n) \sim \text{W\"ahle } \ell := \max\{c, 1\}.$$

Fall 2:  $P = ...P_1$ :  $P_2$ "

Induktions voraus setzung  $\sim$  es gibt  $\ell_1, \ell_2 \in \mathbb{N}$ , sodass für alle  $n \geq \max\{\ell_1, \ell_2\} =: \ell_3$  gilt:  $f_{P_1}(n) < a(\ell_1, n) \le a(\ell_3, n) \text{ und } f_{P_2}(n) < a(\ell_2, n) \le a(\ell_3, n).$ 

Da  $f_P(n) \le f_{P_2}(f_{P_1}(n))$  folgt (falls  $\ell_3 \ge 2$ ):

$$f_{P}(n) < a(\ell_{3}, f_{P_{1}}(n)) \leq a(\ell_{3}, a(\ell_{3}, n)) \leq \underbrace{a(\ell_{3}, a(\ell_{3}, \dots, a(\ell_{3}, n) \dots))}_{n-\text{mal}} = a(\underbrace{\ell_{3} + 1, n}).$$

$$\Rightarrow \text{W\"{a}hle } \ell := \max\{\ell_{3} + 1, 2\}.$$

$$\sim$$
 Wähle  $\ell := \max\{\ell_3 + 1, 2\}$ .

#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

# Beweis (Induktion über Termstruktur von *P*)

Fall 3:  $P = \text{"LOOP } x_i \text{ DO } P' \text{ END"}$ 

Induktions voraus setzung  $\rightsquigarrow$  es gibt  $\ell' \in \mathbb{N}$ , sodass für alle  $n \ge \ell'$  gilt:  $f_{P'}(n) < a(\ell', n)$ .

#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .



#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

# Beweis (Induktion über Termstruktur von P)

Fall 3:  $P = \text{..LOOP } x_i \text{ DO } P' \text{ END}$ 

Induktions voraus setzung  $\sim$  es gibt  $\ell' \in \mathbb{N}$ , sodass für alle  $n \geq \ell'$  gilt:  $f_{P'}(n) < a(\ell', n)$ .

$$\mathsf{Dann} \ \mathsf{gilt} \ \mathit{f}_{P}(\mathit{n}) \leq (\underbrace{\mathit{f}_{P'} \circ \ldots \circ \mathit{f}_{P'}})(\mathit{n}) < \underbrace{\mathit{a}(\ell', \mathit{a}(\ell', \ldots, \underbrace{\mathit{a}(\ell', \mathit{n}) \ldots)})} = \mathit{a}(\ell' + 1, \mathit{n}).$$

n mal

$$\rightarrow$$
 Wähle  $\ell := \text{bottom}$  max  $\{\ell + 1, 2\}$ 

#### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $\underline{f_P(n)} < \underline{a(\ell,n)}$ .

#### **Theorem**

Die Ackermannfunktion a ist nicht LOOP-berechenbar.

### Ackermannfunktion IV

### Lemma

Zu jedem LOOP-Programm P existiert ein  $\ell \in \mathbb{N}$  sodass für alle  $n \geq \ell$  gilt:  $f_P(n) < a(\ell, n)$ .

### **Theorem**

Die Ackermannfunktion a ist nicht LOOP-berechenbar.

### **Beweis**

Annahme: a LOOP-berechenbar.

$$\rightarrow g(n) \stackrel{\text{(a)}}{:=} \underline{a(n,n)}$$
 LOOP-berechenbar vermöge LOOP-Programm  $\underline{P}$ .

 $\rightarrow$  es gibt ein  $\ell \in \mathbb{N}$ , sodass für alle  $n \ge \ell$  gilt:  $\underline{f_P(n)} < \underline{a(\ell, n)}$ . (4)

$$\longrightarrow \underline{g(\ell)} \leq f_P(\ell) \leq a(\ell,\ell) \stackrel{\text{(1)}}{=} \underline{g(\ell)}.$$

Bemerkung: Funktion g im Beweis wächst schneller als jede LOOP-berechenbare Funktion



#### Theorem

a ist WHILE-berechenbar.

### **Beweis**

Idee: Rekursion in WHILE-Schleife pressen

#### Theorem

a ist WHILE-berechenbar.

### **Beweis**

Idee: Rekursion in WHILE-Schleife pressen

Schwierigkeit: Unbeschränkte Rekursionstiefe mit beschränkter Anzahl Variablen!

#### Theorem

a ist WHILE-berechenbar.

$$a(0,y) := 1,$$

$$a(1,y) := 3y + 1,$$

$$a(x,y) := \underbrace{a(x-1, a(x-1, \dots, a(x-1, y) \dots)}_{y \text{ mal}}$$

### **Beweis**

Idee: Rekursion in WHILE-Schleife pressen

Schwierigkeit: Unbeschränkte Rekursionstiefe mit beschränkter Anzahl Variablen!

- → speichern mehrere Zahlen in einer Variable.
- $\rightarrow$  injektive, LOOP-berechenbare "Pairing-Funktion", z.B.  $\underline{c(x,y)} := \underline{2^{x+y}} + \underline{x}$  (Umkehrfunktionen  $\underline{\text{first}}(c(x,y)) := x$  und  $\underline{\text{second}}(c(x,y)) := y$  LOOP-berechenbar)



#### Theorem

a ist WHILE-berechenbar.

$$a(0,y) := 1,$$

$$a(1,y) := 3y + 1,$$

$$a(x,y) := \underbrace{a(x-1, a(x-1, \dots, a(x-1, y) \dots)}_{y \text{ mal}}$$

### **Beweis**

Idee: Rekursion in WHILE-Schleife pressen

Schwierigkeit: Unbeschränkte Rekursionstiefe mit beschränkter Anzahl Variablen!

- → speichern mehrere Zahlen in einer Variable.
- $\rightarrow$  injektive, LOOP-berechenbare "Pairing-Funktion", z.B.  $c(x,y) := 2^{x+y} + x$

(Umkehrfunktionen first(c(x, y))) := x und second(c(x, y)) := y LOOP-berechenbar)

 $\sim$  Kellerinhalt  $n_1, n_2, \ldots, n_k$  in Zahl  $\underline{n} := c(n_1, \underline{c(n_2, \ldots, c(n_k, 0) \ldots)})$  gespeichert

#### **Theorem**

a ist WHILE-berechenbar.

$$a(0,y) := 1,$$

$$a(1,y) := 3y + 1,$$

$$a(x,y) := \underbrace{a(x-1, a(x-1, ..., a(x-1, y)...)}_{y \text{ mal}}$$

### **Beweis**

Idee: Rekursion in WHILE-Schleife pressen

Schwierigkeit: Unbeschränkte Rekursionstiefe mit beschränkter Anzahl Variablen!

- → speichern mehrere Zahlen in einer Variable.
- $\rightarrow$  injektive, LOOP-berechenbare "Pairing-Funktion", z.B.  $c(x,y) := 2^{x+y} + x$

(Umkehrfunktionen first(c(x, y)) := x und gecond(c(x, y)) := y LOOP-berechenbar)

 $\sim$  Kellerinhalt  $n_1, n_2, \ldots, n_k$  in Zahl  $n := c(n_1, c(n_2, \ldots, c(n_k, 0) \ldots))$  gespeichert

$$INIT \sim n := 0$$

$$\mathsf{PUSH}(x) \leadsto n := c(x, n)$$

$$POP \sim x := first(n); n := second(n); return x$$

#### Theorem

a ist WHILE-berechenbar.

## **Beweis**

```
1 INIT; PUSH(x); PUSH(y);
```

while STACK SIZE 
$$> 1$$
 do  $//$  second( $n$ )  $\neq 0$ 

$$y \leftarrow POP;$$

 $x \leftarrow POP$ : if x = 0 then

else if x = 1 then

 $PUSH(3 \cdot v + 1)$ 8

8 | 
$$PUSH(3 \cdot y + 1)$$
  
9 | else  
10 |  $LOOP \setminus DO PUSH(x - 1) END;$ 

PUSH(v)11 12  $x_0 \leftarrow POP$ :

\*a(0, y) := 1,

$$a(1, y) := 3y + 1,$$
  
 $a(x, y) := a(x - 1, a(x - 1, ..., a(x - 1, y)...)$ 

$$:= \underbrace{a(\underline{x-1},a(\underline{x}))}_{\underline{x}}$$

a (4,2) = a (3, a (3,2)

Ist, mass dies Reblischlap wo genan shlägtes

isierung zeigen, dass es Grenzen der LOOP-Berechenbarkeit Punktion 9148/25

Zu zeigen dass a

Iniah WHILE-Gerenanda

Mathias Weller (TU Berlin) Berechenbarkeit und Komplexität

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- Grenzen der LOOP-Berechenbarkeit
- (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE