Cyclistic 共享自行車會員與非會員使用行為

分析報告

1. 專題背景

本專題資料來自 google 的虛構共享自行車公司 Cyclistic 的租借紀錄。 旨分析會員與非會員的使用模式差異,瞭解非會員轉換為會員的可能原因,並協助制定行銷策略以提高 會員數量。

2. 資料介紹與處理

● 資料來源:虛構共享自行車公司 Cyclistic 的租借紀錄 (連結:https://divvy-tripdata.s3.amazonaws.com/index.html)

● 資料期間: 2024 年 6 月至 12 月

● 主要欄位:

ride_id	租借記錄編號
rideable_type	租借自行車類型
started_at	開始時間
ended_at	結束時間
ride_time	總計騎乘時間
day_of_week	星期幾
member_casual	是否為會員
is_excluded	是否為有效資料
start_lat	起始緯度
start_Ing	起始經度
end_lat	結束緯度
end_Ing	結束緯度

● 分析步驟

- 。 資料格式預處理
 - 以 Python 將 started_at 及 ended_at 的微秒數值捨去,以符合 MySQL 的 DATETIME 格式
- 。 將資料匯入 MySQL
- 。 在 MySQL 中清理資料
 - 新增欄位 is excluded,標記異常值,預設 0,若有異常則設為 1。
 - 確認有無缺失或異常值
 - 騎乘時間小於 1 分鐘或大於 6 小時,以及移動距離小於 100 公尺或大於 100 公里之資料視為異常值。不納入分析。
- 。 運用 MySQL 及 Tebleau 分析並呈現比例差異。
 - 新增欄位 ride_time 紀錄騎乘時間。
 - 新增欄位 day_of_week 儲存星期資料。
 - 定義通勤時間為平日 6:00~8:59 以及 16:00~18:59, 並分析通勤時間的使用次數佔整

體的比例。

■ 運用 Tableau 呈現趨勢

3. 分析方法與工具

使用工具: MySQL、Tableau、Python。

分析方式:透過 Python 及 MySQL 進行資料清洗與初步分析,觀察會員與非會員在不同時間段的使用情況。接著使用 Tableau 製作視覺化圖表,更直覺地呈現兩者在使用行為上的差異與趨勢。

4. 分析結果

◆ 會員及非會員具顯著差異項目

○ 使用時間中位數 排除異常值後,會員及非會員的平均使用時間分別為 9 分 (540 秒)與 12 分 23 秒 (743 秒),可發現 會員的使用時間較短。

○ 騎乘速率中位數 分別為<mark>會員 3.3 公里/時及非會員 2.8 公里/時</mark>。針對會員的使用時間較短的現象,因騎乘距離並無顯著 差異,因此分析各自之騎乘速率中位數,可推斷造成主要是因速率而令會員的使用時間較短。

星期別使用次數 按降序排列後可發現,會員在平日的使用次數高於假日,而非會員則相反,傾向在假日和借。

會員通勤時段佔整體比例
在得知了會員較傾向於平日租借自行車後,分析了會員使用紀錄中通勤時段佔整體比例。結果顯示會員的整體使用紀錄中,約 1/3 是在通勤時間中。

非會員通勤時段佔整體比例 非會員的使用紀錄中,約 1/4 屬於通勤時間。

。 車種別利用時間中位數 非會員使用 classic bike 的時間,明顯多於會員約6分鐘。推斷原因可能為騎乘目的不同(觀光&通 勤)、對路況不熟等。

◆ 無顯著差異項目

○ 平均騎乘距離分布圖

會員及非會員的騎乘距離中位數為 1669.2 公尺及 1786.5 公尺,差距並不大。皆集中於 800~1399 公尺。但可以發現,會員中 800 公尺~899 公尺內的使用紀錄最多。

。 月別使用次數 會員及非會員在月份別並無顯著差異,兩者皆在 9 月達到最高使用次數,隨著進入冬季,使用次 數下降。

。 星期別平均使用時間 兩者皆傾向在假日使用較長的時間。

車種別租借次數 兩者在車種別上,無顯著使用行為差異。electric bike 的使用頻率最高,其次為 classic bike,而 electric scooter 的使用次數則相對最少

5. 結論與建議

◆ 總結觀察到的差異與行為模式

會員相較於非會員

- 。 傾向於平日使用
- 。 1/3 使用紀錄屬於通勤時段
- 。 使用時間較短
- o 速率較高

根據上述特點,可推斷出會員中以通勤為目的的族群占一定比例。

通勤為長期且穩定的需求,是值得開發的穩定客群。在非會員的使用紀錄中,有 1/4 的使用紀錄可能為 通勤目的,是我們的潛在客戶。

◆ 建議將行銷策略的目標客群設為通勤族。強調「自由選擇還車地點」、「避開人潮擁擠」等優勢。並可推出專屬會員的「通勤月票」或「騎乘次數累積優惠」,以提高會員註冊率。

6. 限制與未來方向

• 限制:資料內站點 id 及經緯度並未統一。 因資料中出現同一站點 id 對應到複數經緯度,以及 100 公尺內就有 3 個不同站點 id 等情形。因此此專題僅分析騎乘距離,並未分析同一站點的使用量。

start_station_name	起始租借點站名
start_station_id	起始租借點 id
end_station_name	結束租借點站名
end_station_id	結束租借點 id

• 未來方向:加入會員 id ,以識別同一會員的使用紀錄,用來進一步分析個別客戶的使用頻率、習慣等。