From MCTS to AlphaZero

Olivier Sigaud

Sorbonne Université http://www.isir.upmc.fr/personnel/sigaud

Background

- ► MCTS plays well Go or chess, but is quite inefficient
- ► Areas for improvement:
 - ightharpoonup Avoid forgetting Q(s,a) after each step
 - lacktriangle Avoid using Monte Carlo simulations again each time to evaluate Q(s,a)
 - Instead of running random simulations, play good moves with higher probabilities
- Adding a critic network solves these issues

Actor-Critic vs Monte Carlo

- ▶ Monte Carlo direct gradient: Estimate Q(s, a) over rollouts
- Monte Carlo model: learn a model $\hat{Q}(s,a)$ over rollouts using MC regression, throw it away after each update
- \blacktriangleright Bootstrap: Update a model $\hat{Q}(s,a)$ over samples using TD methods, keep it over policy gradient steps
- ▶ The bootstrap approach is much more sample efficient
- It introduces bias and reduces variance

MCTS + Critic

- Learns a critic $\hat{Q}(s,a)$ for all states over all rollouts
- ▶ Using a DQN-like architecture
- lacktriangle Still builds a plan with an MPC-like approach, not using $\max_a \hat{Q}(s,a)$ as policy
- ▶ The MCTS search process helps balancing samples, favors exploration
- In AlphaZero:
 - Instead of playing random rollouts, can play rollouts driven by $\hat{Q}(s,a)$
 - \blacktriangleright The critic $\hat{Q}(s,a)$ can be pre-trained with expert moves (AlphaGo vs AlphaZero)

AlphaZero: from DQN-like to actor-critic

 ${\blacktriangleright}$ Learning a policy and a $\hat{V}(s)$ function is more efficient than using a $\hat{Q}(s,a)$ function

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

