Name: Jenny Petrova

Problem Set 2

Due Date: 9/12 at 11:35 AM

Throughout, assume that $(\Omega, \mathcal{A}, \mathbb{P})$ is a probability space.

(P.1) Show that if $A \cap B = \emptyset$, events A and B cannot be independent unless we have either $\mathbb{P}(A) = 0$ or $\mathbb{P}(B) = 0$.

Proof. If $A \cap B = \emptyset$, then $\mathbb{P}(A \cap B) = \mathbb{P}(\emptyset) = 0$. Suppose A and B are independent events. Then by Theorem 3.2 it must be true that $\mathbb{P}(A|B) = \mathbb{P}(A)$. Suppose $\mathbb{P}(B) > 0$. By definition of conditional probability, we show

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{0}{\mathbb{P}(B)} = 0 = \mathbb{P}(A).$$

Similarly, if A and B are independent it must also be true that $\mathbb{P}(B|A) = \mathbb{P}(B)$. By definition of conditional probability, we also show

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} = \frac{0}{\mathbb{P}(A)} = 0 = \mathbb{P}(B).$$

Thus if $A \cap B = \emptyset$, we must have either $\mathbb{P}(A) = 0$, $\mathbb{P}(B) > 0$ or $\mathbb{P}(B) = 0$, $\mathbb{P}(A) > 0$ for A and B to be independent.

(P.2) Donated blood is screened for a disease. Suppose the test has 99% accuracy, and that one in ten thousand people in your age group are infected with the disease. The test has a 5% false positive rating, as well. Suppose the test screens you as positive. What is the probability you have the disease? Is it 99%?

Proof. Suppose A is the event of a positive test. Let E_1 be the event that you have the disease and E_2 be the event that you do not have the disease. We are given

$$P(A|E_1) = 99\% = .99$$

$$P(A|E_2) = 5\% = .05$$

$$P(E_1) = \frac{1}{10000} = .0001.$$

Then

$$\mathbb{P}(E_2) = 1 - \mathbb{P}(E_1) = 1 - .0001 = .9999.$$

Therefore by Bayes Theorem we calculate the probability that you have the disease given that you test positive to be

$$\mathbb{P}(E_1|A) = \frac{\mathbb{P}(A|E_1)\mathbb{P}(E_1)}{\mathbb{P}(A|E_1)\mathbb{P}(E_1) + \mathbb{P}(A|E_2)\mathbb{P}(E_2)}$$

$$= \frac{(.99)(.0001)}{(.99)(.0001) + (.05)(.9999)}$$

$$= .001976$$

$$\approx 0.20\%.$$

(P.3) Let $A, B \in \mathcal{A}$ with $\mathbb{P}(A) > 0$. Show that $\mathbb{P}(A \cap B \mid A \cup B) \leq \mathbb{P}(A \cap B \mid A)$.

Proof. By definition of conditional probability, we have

$$\begin{split} \mathbb{P}(A \cap B | A \cup B) &= \frac{\mathbb{P}((A \cap B) \cap (A \cup B))}{\mathbb{P}(A \cup B)} \\ &= \frac{\mathbb{P}((A \cap B \cap A) \cup (A \cap B \cap B))}{\mathbb{P}(A \cup B)} \\ &= \frac{\mathbb{P}((A \cap B) \cup (A \cap B))}{\mathbb{P}(A \cup B)} \\ &= \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A \cup B)}. \end{split}$$

We also have

$$\mathbb{P}(A \cap B|A) = \frac{\mathbb{P}((A \cap B) \cap A)}{\mathbb{P}(A)}$$
$$= \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}.$$

We need to show $\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A \cup B)} \leq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$.

Case 1: Let $B = \emptyset$. Then $\mathbb{P}(B) = 0$. Since $\mathbb{P}(A) > 0$, then $\mathbb{P}(A \cup B) = \mathbb{P}(A)$. Therefore

$$\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A \cup B)} = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}.$$

Case 2: Suppose $B \neq \emptyset$. Then $\mathbb{P}(A \cup B) > \mathbb{P}(A)$.

Therefore

$$\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(A\cup B)}<\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(A)}.$$

Thus

$$\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A \cup B)} \le \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

and so

$$\mathbb{P}(A \cap B \mid A \cup B) \le \mathbb{P}(A \cap B \mid A).$$

(P.4) Let $A, B, C \in \mathcal{A}$ be independent events and assume that $\mathbb{P}(A \cap B) > 0$. Show that $\mathbb{P}(C \mid A \cap B) = \mathbb{P}(C)$.

Proof. By definition of mutual independence, we note that

$$\mathbb{P}(C \cap (A \cap B)) = \mathbb{P}(C)\mathbb{P}(A \cap B) = \mathbb{P}(C)\mathbb{P}(A)\mathbb{P}(B). \tag{1}$$

Then by definition of conditional probability, we use (1) to solve

$$\mathbb{P}(C|A \cap B) = \frac{\mathbb{P}(C \cap (A \cap B))}{\mathbb{P}(A \cap B)}$$
$$= \frac{\mathbb{P}(C)\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(A)\mathbb{P}(B)}$$
$$= \mathbb{P}(C).$$

(P.5) Consider two independent coin tosses, which we can model with the probability space $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$, where $\Omega = \{(H, H), (T, T), (H, T), (T, H)\}$ with the definition

$$\mathbb{P}(\{(T_1, T_2)\}) = \frac{1}{4}, \quad (T_1, T_2) \in \Omega.$$

Consider the following two sub- σ -algebras of $\mathcal{P}(\Omega)$:

$$\mathcal{G}_1 = \{\emptyset, \Omega, \{(H, H), (H, T)\}, \{(T, H), (T, T)\}\}$$

and

$$\mathcal{G}_2 = \{\emptyset, \Omega, \{(H, H), (T, H)\}, \{(H, T), (T, T)\}\}.$$

Show that G_1 and G_2 are independent σ -algebras.

Proof. Let $A \in \mathcal{G}_1$ and $B \in \mathcal{G}_2$. By definition, we can show events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Case 1: $A = \emptyset$.

Then $\mathbb{P}(A) = 0$ and

$$\mathbb{P}(A \cap B) = \mathbb{P}(\emptyset \cap B) = \mathbb{P}(\emptyset) = 0 = \mathbb{P}(A)\mathbb{P}(B)$$

for all $B \in \mathcal{G}_2$. By symmetry, if we take $B = \emptyset$, then the result is true for any $A \in \mathcal{G}_1$.

Case 2: $A = \Omega$.

Then $\mathbb{P}(A) = 1$ and

$$\mathbb{P}(A\cap B)=\mathbb{P}(\Omega\cap B)=\mathbb{P}(B)=(1)\mathbb{P}(B)=\mathbb{P}(A)\mathbb{P}(B)$$

for all $B \in \mathcal{G}_2$. By symmetry, if we take $B = \Omega$, then the result is true for any $A \in \mathcal{G}_1$.

Case 3: Suppose $A = \{(H, H), (H, T)\}$ and $B = \{(H, H), (T, H)\}$. Then

$$\mathbb{P}(A) = \mathbb{P}(\{(H, H), (H, T)\}) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

and similarly

$$\mathbb{P}(B) = \mathbb{P}(\{(H, H), (T, H)\}) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

Since $A \cap B = \{(H, H)\}$, we solve to show

$$\mathbb{P}(A \cap B) = \mathbb{P}(\{(H, H)\}) = \frac{1}{4}$$

=

$$\mathbb{P}(A)\mathbb{P}(B) = (\frac{1}{2})(\frac{1}{2}) = \frac{1}{4}.$$

Thus A and B are independent events. Then by Theorem 3.1 we know that so also are A and B^c , A^c and B, and A^c and B^c . Therefore \mathcal{G}_1 and \mathcal{G}_2 are independent for any combination of events $A \in \mathcal{G}_1$ and $B \in \mathcal{G}_2$, and so \mathcal{G}_1 and \mathcal{G}_2 are independent σ -algebras.

(P.6) Consider the previous problem. How would you extend this to an arbitrary, but finite, number of coin flips? An arbitrary and possibly countable infinite number of coin flips?

Proof. We extend the previous problem to consider an arbitrary, but finite, number of independent coin flips. Let $\{\mathcal{G}_n\}_{n\geq 1}$ be an arbitrary sequence of sub- σ -algebras of $\mathcal{P}(\Omega)$ in the probability space $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$, where $\Omega = \{H, T\}^n$ for n coin flips. Define events $A_{i,t_i} \in \mathcal{G}_i$ for $i = 1, \ldots, n, t_i \in \{H, T\}$, where

$$\mathcal{G}_i = \{\emptyset, \Omega, A_{i,H}, A_{i,T}\},\,$$

Case 1: Let $B_i \in \mathcal{G}_i$ and consider a $B_j \in \mathcal{G}_j$ where $B_j = \emptyset$ for some arbitrary $j \in \{1, \ldots, n\}$. Then $\mathbb{P}(B_j) = 0$ and for all $B_i \in \mathcal{G}_i$,

$$\mathbb{P}(B_j \bigcap_{i=1}^n B_i) = \mathbb{P}(\emptyset) = 0 = \mathbb{P}(B_j) \prod_{i=1}^n \mathbb{P}(B_i).$$

Case 2: Now let $B_i \in \mathcal{G}_i$ and consider a $B_k \in \mathcal{G}_k$ where $B_k = \Omega$ for some arbitrary $k \in \{1, ..., n\}$. Then $\mathbb{P}(B_k) = 1$ and for all $B_i \in \mathcal{G}_i$,

$$\mathbb{P}(B_k \bigcap_{i=1}^n B_i) = \mathbb{P}(\bigcap_{i=1}^n B_i) = \prod_{i=1}^n \mathbb{P}(B_i).$$

Case 3: Lastly we consider $A_{i,t_i} \in \mathcal{G}_i$. Since each coin toss is independent, and we have two outcomes $A_{i,H}$ or $A_{i,T}$, then

$$\mathbb{P}(A_{i,t_i}) = \frac{1}{2}$$

for all i. Therefore for n independent coin tosses we have

$$\prod_{i=1}^{n} \mathbb{P}(A_{i,t_i}) = (\frac{1}{2})^n = \frac{1}{2^n}.$$

We also know $|\bigcap_{i=1}^n A_{i,t_i}| = 1$, since only one sequence corresponds to these outcomes, and the total number of possible outcomes is $|\Omega| = 2^n$, so

$$\mathbb{P}(\bigcap_{i=1}^{n} A_{i,t_i}) = \frac{1}{|\Omega|} = \frac{1}{2^n}.$$

Therefore

$$\mathbb{P}(\bigcap_{i=1}^{n} A_{i,t_i}) = \frac{1}{2^n} = \prod_{i=1}^{n} \mathbb{P}(A_{i,t_i})$$

and by definition we have shown that for n extended coin tosses, the collection of events A_{i,t_i} is an independent collection for any i = 1, ..., n. Thus $\{\mathcal{G}_n\}_{n \geq 1}$ are an independent sequence of sub- σ -algebras.

We can also extend to an arbitrary and possibly countable infinite number of coin flips, where $\Omega = \{H, T\}^{\infty}$. For infinite, independent coin tosses, we can take any finite sequence of sub- σ -algebras and show the above is true.