SỞ GD & ĐT QUẢNG TRI TRƯỜNG THPT HƯỚNG HÓA

ĐỀ MINH HOA GIỮA KỲ II, NĂM HỌC 2024-2025 MÔN: TOÁN - LỚP 12

Thời gian làm bài: 90 phút (Không kể thời gian giao đề)

Họ và tên:	Lớp SBD:	MÃ ĐỀ: 121
------------	----------	------------

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 16. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Câu 1: Cho hàm số f(x) xác định trên một khoảng K. Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu

A.
$$F'(x) = f(x), \forall x \in K$$
.

B.
$$F''(x) = f(x), \forall x \in K$$
.

C.
$$F(x) = f'(x), \forall x \in K$$
.

D.
$$F(x) = f''(x), \forall x \in K$$
.

Câu 2: Cho hàm số f(x) liên tục trên [a;b] và F(x) là một nguyên hàm của f(x). Mệnh đề nào sau đây đúng?

$$\mathbf{A.} \int_{a}^{b} f(x) dx = F(b) - F(a) .$$

B.
$$\int_{a}^{b} f(x) dx = F(a) - F(b)$$
.

C.
$$\int_{a}^{b} f(x) dx = F(a) + F(b)$$
.

D.
$$\int_{a}^{b} f(x) dx = f(b) - f(a)$$
.

Câu 3: Cho f(x) là hàm số liên tục trên đoạn [a;b] và $c \in (a;b)$. Mệnh đề nào sau đây **đúng**?

A.
$$\int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx = \int_{b}^{a} f(x) dx.$$

B.
$$\int_{a}^{b} f(x) dx + \int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx.$$

C.
$$\int_{a}^{b} f(x) dx - \int_{a}^{c} f(x) dx = \int_{c}^{c} f(x) dx.$$

$$\mathbf{D.} \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx.$$

Câu 4: Cho hai hàm số f(x), g(x) liên tục trên đoạn [c;d] và số thực k. Mệnh đề nào sau đây **sai**?

A.
$$\int_{a}^{d} \left[f(x) + g(x) \right] dx = \int_{a}^{d} f(x) dx + \int_{a}^{d} g(x) dx .$$
B.
$$\int_{a}^{d} kf(x) dx = k \int_{a}^{d} f(x) dx .$$

$$\mathbf{B.} \int_{a}^{d} kf(x) dx = k \int_{a}^{d} f(x) dx$$

C.
$$\int_{a}^{d} \left[f(x) - g(x) \right] dx = \int_{a}^{d} f(x) dx - \int_{a}^{d} g(x) dx .$$
 D.
$$\int_{a}^{d} \left[f(x) \cdot g(x) \right] dx = \int_{a}^{d} f(x) dx \cdot \int_{a}^{d} g(x) dx .$$

D.
$$\int_{c}^{d} [f(x).g(x)] dx = \int_{c}^{d} f(x) dx \int_{c}^{d} g(x) dx$$

Câu 5: Biết
$$\int_{1}^{3} f(x) dx = 5$$
 và $\int_{1}^{3} g(x) dx = -7$. Giá trị của $\int_{1}^{3} \left[f(x) - g(x) \right] dx$ bằng

A. 2.

B. -2.

C. 12.

D. -12.

Câu 6: Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình tổng quát của một mặt phẳng?

A.
$$-xy - z - 3 = 0$$
.

B.
$$-x + v - z^2 + 1 = 0$$
.

C.
$$-2x + 2y - z - 3 = 0$$
.

D.
$$\frac{1}{x} + \frac{1}{v} - \frac{3}{z} + 2 = 0$$
.

Câu 7: Trong không gian Oxyz, cho mặt phẳng (P) có phương trình 3x + 2y - z + 1 = 0. Tìm một vector pháp tuyến của (P).

A.
$$\vec{n} = (3;2;1)$$
.

B. $\vec{n} = (-2; 3; 1)$.

C.
$$\vec{n} = (3; 2; -1)$$
.

D. $\vec{n} = (3; -2; -1)$.

Câu 8: Trong không gian Oxyz. Điểm nào sau đây **không** thuộc mặt phẳng (P) -2x + y - 5 = 0?

A.
$$(-2;1;0)$$
.

B. (-2:1:-5).

C. (1; 7; 5).

Câu 9: Họ nguyên hàm của hàm số $f(x) = e^x + x$ là

A.
$$e^x + x^2 + C$$

B.
$$e^x + \frac{1}{2}x^2 + C$$
.

A.
$$e^x + x^2 + C$$
. **B.** $e^x + \frac{1}{2}x^2 + C$. **C.** $\frac{1}{x+1}e^x + \frac{1}{2}x^2 + C$. **D.** $e^x + 1 + C$.

Câu 10: Kết quả phép tính $\int_{1}^{2} 3^{x} dx$ bằng $\frac{a}{\ln b}$. Tính a + b.

Câu 11: Cho $I = \int |2x-4| dx$. Chọn khẳng định **đúng**.

A.
$$I = \left| \int_{-1}^{3} (2x - 4) dx \right|$$
.

B.
$$I = -\int_{-1}^{2} (2x-4) dx + \int_{2}^{3} (2x-4) dx$$
.

C.
$$I = \int_{-1}^{2} (2x-4) dx + \int_{2}^{3} (2x-4) dx$$
.

D.
$$I = \int_{-1}^{2} (2x-4) dx - \int_{2}^{3} (2x-4) dx$$
.

Câu 12: Trong không gian Oxyz, phương trình mặt phẳng đi qua điểm A(-1;1;-2) và có vectơ pháp tuyến $\vec{n} = (1; -2; -2)$ là

A.
$$x-2y-2z-1=0$$
.

B.
$$-x + y - 2z - 1 = 0$$
.

C.
$$x-2y-2z+7=0$$
.

D.
$$-x + y - 2z + 1 = 0$$
.

Câu 13. Cho hàm số y = f(x) có đạo hàm là $f'(x) = 12x^2 + 2$, $\forall x \in \mathbb{R}$ và f(1) = 3. Biết F(x) là nguyên hàm của f(x) thỏa mãn F(0) = 2, khi đó F(1) bằng

A. -3.

Câu 14. Cho hàm số $f(x) = \begin{cases} e^{2x} & khi \ x \ge 0 \\ x^2 + x + 2 & khi \ x < 0 \end{cases}$. Biết tích phân $\int_{-1}^{1} f(x) dx = \frac{a}{b} + \frac{e^2}{c}$ ($\frac{a}{b}$ là phân số

tối giản). Giá trị a+b+c bằng

A. 7.

C. 9.

D. 10.

Câu 15. Tính thể tích khối tròn xoay sinh ra khi quay quanh trục Ox hình phẳng giới hạn bởi đồ thị hàm số $y = \sqrt{x}$, trục hoành và hai đường thẳng x = 0, x = 1 (hình vẽ).

B. 2π .

C. 1.

 $\mathbf{D}. \ \pi$.

Câu 16. Trong không gian Oxyz cho hai điểm A(-1;2;0), B(1;1;3) và mặt phẳng (P): x-2y+3z-5=0. Phương trình của mặt phẳng đi qua hai điểm A, B, đồng thời vuông góc

(P) là 2x-ay-bz+c=0. Giá trị của biểu thức a+2b+3c bằng

A. 12.

B. 24.

C. 20.

D. 10.

PHÀN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Câu 1: Cho hàm số $f(x) = 4x^3 - 2$.

- a) Nếu F(x) là một nguyên hàm của f(x) thì F(x) = f'(x).
- **b)** f(x) có một nguyên hàm là $F(x) = x^4 2x + 5$.
- $\mathbf{c)} \quad \int f(x) dx = \int 4x^3 dx \int 2dx$
- **d)** $\int f(x)dx = x^4 2x + C$.

Câu 2: Cho hàm số f(x) liên tục trên R, F(x) là một nguyên hàm của f(x), $\int_0^9 f(x) dx = 9$ và hàm số $g(x) = 2\cos x - \sin x$.

- **a)** Ta có $\int_{0}^{9} f(x) dx = F(9) F(0)$.
- **b)** $\int_{0}^{6} f(x) dx + \int_{6}^{9} f(x) dx = 18$.
- c) g(x) có một nguyên hàm là $G(x) = -2\sin x + \cos x + 3$ và G(0) = 4.
- **d)** Gọi G(x) là một nguyên hàm của hàm số g(x) thỏa mãn $G\left(\frac{\pi}{2}\right) = 4$ thì $G\left(\frac{\pi}{3}\right) = 4$.

Câu 3: Cho hàm số $f(x) = e^x$ và $g(x) = 2^x + 1$.

a)
$$\int_{2}^{3} f(x) dx = e^{3} - e^{2}$$
.

b)
$$\int_{2}^{3} [f(x)+g(x)] dx = \int_{2}^{3} (e^{x} + 2^{x}) dx + \int_{2}^{3} x dx.$$

- c) Gọi F(x) là một nguyên hàm của hàm số f(x) thoả mãn F(0) = 2 thì $F(\ln 4) = 5$.
- **d)** Gọi G(x) là một nguyên hàm của hàm số g(x) thỏa mãn G(1) = 1 thì $G(3) = a + \frac{b}{\ln 2}$ với $a,b \in \mathbb{Z} : a+b=11$.

Câu 4: Trong không gian Oxyz, cho hai điểm A(1;2;-2) và B(2;4;1) mặt phẳng (Q):x+3y+z-1=0.

- a) Mặt phẳng (Q) có một vecto pháp tuyến là $\vec{n}(1;3;1)$.
- b) Điểm A thuộc mặt phẳng (Q).
- c) Mặt phẳng (P) đi qua hai điểm A,B và vuông góc với mặt phẳng (Q) có phương trình có dạng là ax + by + cz + d = 0, và a + d = 0 (biết các hệ số a,b,c không đồng thời bằng 0).
- d) Mặt phẳng (P) song song với mặt phẳng (R): 7x + 2y + z + 3 = 0.

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 4.

Câu 1: Một quần thể vi sinh vật có tốc độ tăng số lượng cá thể được ước lượng bởi $P'(t) = 150\sqrt{t}$ (cá thể/ngày) với $0 \le t \le 10$ trong đó P(t) là số lượng cá thể vi sinh vật tại thời điểm t ngày kể từ thời điểm ban đầu. Biết rằng ban đầu quần thể có 1000 cá thể. Ước lượng số cá thể của quần thể sau 5 ngày kể từ thời điểm ban đầu (kết quả làm tròn đến hàng trăm).

Câu 2: Giả sử anh Nam nhảy dù từ một chiếc trực thăng. Vào thời điểm 19 giây sau khi rời khỏi trực thăng, anh Nam mở chiếc dù của mình trong 2 giây, anh Nam chạm đất sau 19 giây kể từ lúc bung dù. Tại thời điểm t (giây), vị trí của anh Nam cách mặt đất một khoảng h(t) mét và vận tốc rơi của anh Nam (tính bằng m/s) là một hàm số được cho bởi công thức:

$$v(t) = h'(t) = \begin{cases} -80 & \text{khi } 0 \le t < 19 \\ 37t - 783 & \text{khi } 19 \le t < 21 \\ -6 & \text{khi } 21 \le t \le 40. \end{cases}$$

Độ cao vị trí của anh Nam khi bắt đầu nhảy ra khỏi trực thăng bằng bao nhiêu m?

Câu 3: Một cái cổng hình parabol như hình vẽ bên dưới. Chiều cao GH = 4m, chiều rộng AB = 4m, AC = BD = 0,9m. Chủ nhà làm hai cánh cổng khi đóng lại là hình chữ nhật CDEF tô đậm có giá là 12000000 đồng $/m^2$, còn các phần để trắng làm xiên hoa có giá là 9000000 đồng $/m^2$. Tính tổng số tiền để làm hai phần nói trên (đơn vị: triệu đồng, làm tròn kết quả đến hàng phần mười).

Câu 4: Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 6 m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 2 m; 3 m; 4 m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ (*làm tròn kết quả đến hàng phần chục*)?

----- HÉT -----

(Thí sinh được sử dung MTBT, không được sử dung tài liệu)