Homework 8 – Atomic Structure and Spectra

Name: _____

Excercise 8A.1(a) (5 points)
State the orbital degeneracy of the levels in a hydrogen atom that have energy (i) $-hc\tilde{R}_H$ (ii) $-\frac{1}{9}hc\tilde{R}_H$ (iii) $-\frac{1}{25}hc\tilde{R}_H$
Exercise 8A.5(a) (5 points) At what radius does the probability density of an electron in the H atom fall to 50 percent of its maximum value?
Exercise 8A.7(a) $(5$ points) The wavefunction of one of the d orbitals is proprotional to $\cos heta\sin heta\cos\phi$. At what angles does it have nodal planes
Exercise 8A.10(a) (5 points) What subshells and orbitals are available in the M shell?

Exercise 8A.11	(a)	(5 points)
----------------	-----	------------

What is the orbital angular momentum (as multiples of \hbar) of an electron in the orbitals (1) 1s, (ii) 3s, (iii) 3d? Give the numbers of angular and radial nodes in each case.

Exercise 8B.1(a) (5 points)

Construct the wavefunction for an excited state of the He atom with configuration $1s^12s^1$. Use $Z_{eff}=2$ for the 1s electron and $Z_{eff}=1$ for the 2s electron.

Exercise 8B.2(a) (5 points)

How many electrons can occupy subshells with l=3?

Exercise 8B.4(a) (5 points)

Write the electronic configuration of the Ni²⁺ ion.

Exercise 8C.3(a) (5 points)

Which of the following transitions are allowed in the electronic emission specturm of a hydrogenic atom: (i) $2s \to 1s$, (ii) $2p \to 1s$, (iii) $3d \to 2p$

Exercise	8C9(a)	(5 p	oints)	١
----------	------	----	------	--------	---

What are the possible values of the total spin quantum numbers S and M_S for the Ni^{2^+} ion?

Exercise 8C.10(a) (5 points)

skip the first part Which atomic term is likely to lie lowest in energy for the configuration ns^1nd^1 ?

Exercise 8C.14(a) (5 points)

Which of the following transitions between terms are allowed in the electronic emission spectrum of a many-electron atom: (i) $^3D_2 \rightarrow \ ^3P_1$ (ii) $^3P_2 \rightarrow \ ^1S_0$, (iii) $^3F_4 \rightarrow \ ^3D_3$?