Lineær Algebra Eksamens Noter

Morten Nygaard 2011 4582 Kasper Eenberg 2011 7679 Jonas Hovmand 2011 3884

8. juni 2013

Indhold

Indhold					
1	Løsninger og mindste kvadraters løsninger af lineære ligningssystemer				
-	1.1	Lineære Ligningssystemer	2		
	1.2	REF & RREF	3		
	1.3	Konsistens i Ligningssystemer	3		
	1.4	Mindste Kvadraters Løsninger	3		
	1.5	Den Normale Ligning			
	1.5	Den Normale Lighting	4		
2	Vektorrum og underrum				
	2.1	Vektor- og Underrum	5		
	2.2	Span og Basis	6		
	2.3	Entydig Uafhængighed	6		
	2.4	Basis for Søjlerum	8		
2	T in	one soft one cich od			
3		eær uafhængighed	9		
	3.1	Udspændende Mængder	9		
	3.2	Homogene Løsninger	9		
	3.3	Entydighed/Uafhængighed	10		
	3.4	Afhængighed	10		
4	Basis for vektorrum; koordinatisering				
	4.1	Lineær Uafhængighed	12		
	4.2	Basis	12		
	4.3	Koordinatisering	12		
5		ricer og lineære transformationer	17		
		Underrum	17		
	5.2	Lineær Transformation	17		
	5.3	Transformation af Underrum	17		
	5.4	Matrixrepræsentationen	18		
6	Determinanter 21				
Ū	6.1	Definition og Egenskaber	21		
	6.2	Transponeret Matrix			
	6.3	Singulære Matricer og Determinanter			
	6.4	Cramers Regel			
	0.1	Clameto regel	47		

7	Egenværdier og egenvektorer			
	7.1 Egenværdi, -vektor og -rum	26		
	7.2 Karakteristik polynomium og multipliciteter	26		
	7.3 Similaritet			
	7.4 Diagonalisering	28		
8	Diagonalisering 3			
	8.1 Egenværdi, -vektor og -rum	30		
	8.2 Karakteristisk polynomium	30		
	8.3 Diagonalisering	30		
	8.4 Uafhængige Egenvektorer	32		
9	Indre produkt			
	9.1 Definition	34		
	9.2 Pythagoras			
	9.3 Projektion	35		
	9.4 Cauchy-Schwarz Uligheden	35		
10	Ortogonalt komplement og projektion			
	10.1 Dimensioner og Baser for ortogonale komplementer	37		
	10.2 Ortogonal Projektion	38		
11	Ortogonale og ortonormale baser	40		
	11.1 Ortogonal Projektion	40		
	11.2 Gram-Schmidt Processen	40		
12	Ortogonale og unitære matricer	43		
	12.1 Definitioner	43		
	12.2 Ækvivalenser for Ortogonale Matricer			
	12.3 Schurs Sætning	45		
13	Unitær diagonalisering	47		
	13.1 Definitioner	47		
	13.2 Schurs Sætning	47		
	13.3 Unitær Diagonalisering	48		
14	Lineære differentialligninger	50		
	14.1 Diff. Systems Entydighed	50		
	14.2 Putzers Algoritme	51		

1 Løsninger og mindste kvadraters løsninger af lineære ligningssystemer

([P] 1.2, 5.2, 7.2.10-7.2.13, 8.2.9)

Disposition

- 1. Lineær Ligningssystem
- 2. REF & RREF
- 3. Konsistens i Ligningssystemer
- 4. Mindste Kvadraters Løsninger
- 5. Den Normale Ligning

1.1 Lineære Ligningssystemer

Definition

Et lineært ligningssystem er et system af *m* ligninger i *n* ubekendte, hvor disse kan skrives som:

$$a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1$$

$$\vdots$$

$$a_{m,1}x_1 + \dots + a_{m,n}x_n = b_m$$

Et sådan system kan også opstilles på matrix form, hvor A er en matrix, x og b er vektorer:

$$Ax = b$$

Systemet løses ved at indsætte $c_1, ..., c_n$ på x plads, så begge sider af ligheden af den samme, altså er vektoren c en del af løsningsmængden.

Rækkeækvivalens

Hvis løsningsmængden for et ligningssystem Ax = b og Cx = d er ens, altså de har de samme x, kan A og C siges at være rækkeækvivalente. Sammenhængen mellem A og C vil da være at der er blevet benyttet en række ERO'er på A for at danne C.

ERO'er

Der er 3 elementære rækkeoperationer, som kan bruges til at manipulere med ligningssystemer.

- 1. $R_i \Leftrightarrow R_j$: byt den *i*'te og den *j*'te ligning.
- 2. $R_i \Rightarrow sR_i$: gang den *i*'te ligning med $s \in \mathbb{F} \setminus \{0\}$
- 3. $R_i \Rightarrow R_i + tR_j$: addér t gange R_j til R_i når $t \in \mathbb{F}$, $j \neq i$.

1.2 REF & RREF

REF

Række Echelon From, er en bestemt form, som en matrix kan komme på. Dette ved hjælp af *ERO'er*. Formen er som følger:

- 1. Nulrækker, ligger nederst i matricen.
- 2. Den første ikke-nulindgang i en række er 1 og ligger til højre for den første ikke-nulindgang i rækken ovenover.

Den første ikke-nulindgang på en række i en REF-matrix, kaldes en pivot.

RREF

En matrix er på RREF (Reduceret Række Echelon Form), hvis den er på REF, og alle søjler som indeholder en pivot har 0 på alle andre indgange.

1.3 Konsistens i Ligningssystemer

Lemma 2.2.4

Lad $A \in \mathsf{Mat}_{m,n}$. Skriv $A = [\mathbf{a_1}, \dots, \mathbf{a_n}]$ i søjleform. Betragt da ligningssystemet $A\mathbf{x} = \mathbf{b}$, hvor $b \in \mathbb{F}^{m \times 1}$. Systemet er konsistent (har en løsning) $\Leftrightarrow b \in \mathsf{Span}(\mathbf{a_1}, \dots, \mathbf{a_n})$.

1.4 Mindste Kvadraters Løsninger

En mindste kvadraters løsning er hvor man finder den bedst mulige løsning, til et ligningssystem med flere ligninger end ubekendte. Generelt kan det beskrives som Ax = b hvor $A \in Mat_{m,n}(\mathbb{R})$ med m > n.

Generelt kan det ikke forventes at man kan finde et $x \in \mathbb{R}^n$ som løser ligningssystemet, hvilket gør at man leder efter et $z \in \mathbb{R}^n$ som får Az til at være tættest på $b \in \mathbb{R}^m$.

Hvis man har ovenstående ligningssystem kan man finde et residual

$$r(x) = b - Ax$$

som er den "overskydende" afstand mellem den bedste løsning og punkterne. Vi søger derfor at finde den den mindste længde, ||r(x)||, for residualet, hvilket er det samme som at søge den mindst mulige løsning til $||r(x)||^2$. En vektor \hat{x} der opfylder dette, siges at være en mindste kvadraters løsning for Ax = b og $p = A\hat{x}$, hvilket gør $p \in Sø(A)$, der er tættest på b.

Proposition 5.2.2

Der er et unikt $p \in S\phi(A)$ som er tættest på b. Altså

$$||b-y|| > ||b-p||$$

hvor $y, p \in S\phi(A)$ og $y \neq p$.

Bevis

Beviset for at p er unik er som følger. Enhver vektor $b \in \mathbb{R}^m$ kan beskrives som

$$b = p + z$$

hvor $p \in S\phi(A)$ og $z \in (S\phi(A))^{\perp}$. Givet en vektor $y \in S\phi(A)$ forskellig fra p gælder

$$||b - y||^2 = ||(b - p) + (p - y)||^2$$

da $p-y \in S\phi(A)$ og $b-p=z \in (S\phi(A))^{\perp}$ så får vi fra Pythagoras

$$||b - y||^2 = ||b - p||^2 + ||p - y||^2$$

og vi kan derfor konkludere at

$$||b-y|| > ||b-p||$$

1.5 Den Normale Ligning

Proposition 5.2.4

Systemet $A^TAx = A^Tb$ er konsistent, og z er en løsning til dette system, hhvis z er en mindste kvadraters løsning til Ax = b.

Bevis

$$Az = p \Leftrightarrow b - Az \in (S\emptyset(A))^{\perp}$$
 fordi $p = P_{S\emptyset(A)}(b)$ $\Leftrightarrow b - Az \in N(A^T)$ Sætning 5.1.16 $\Leftrightarrow A^T(b - Az) = 0$ $\Leftrightarrow A^Tb = A^TAz$

2 Vektorrum og underrum

([P] 2.1, 3.2)

Disposition

- 1. Vektor- og Underrum
- 2. Span og Basis
- 3. Entydig Uafhængighed
- 4. Underrum Matrix

2.1 Vektor- og Underrum

Definition 2.1.1

Et vektorrum er en mængde V udstyret med addition og skalarmultiplikation således at følgende egenskaber er overholdt:

A1
$$\forall x, y \in V : x + y = y + x$$

A2
$$\forall x, y, z \in V : (x + y) + z = x + (y + z)$$

A3
$$\exists 0 \in V : x + 0 = x \, \forall x \in V$$

A4
$$\forall x \in V, \exists -x \in V : x + (-x) = 0$$

S1
$$\forall \alpha \in \mathbb{F}, x, y \in V : \alpha(x+y) = \alpha x + \alpha y$$

S2
$$\forall \alpha, \beta \in \mathbb{F}, x \in V : (\alpha + \beta)x = \alpha x + \beta x$$

S2
$$\forall \alpha, \beta \in \mathbb{F}, x \in V : (\alpha \beta)x = \alpha(\beta x)$$

S4
$$\exists 1 \in \mathbb{F}, \forall x \in V \colon 1 \cdot x = x$$

Sætning 2.1.2

Et vektorrum har nogle elementære egenskaber

(I) 0 er det entydige neutrale element i V

(II)
$$0 \cdot x = 0 \, \forall x \in V$$

(III) Hvis
$$x, y \in V$$
 er således at $x + y = 0$, så er $y = -x$

(IV)
$$(-1)x = -x \, \forall x \in V$$

En delmængde S af et \mathbb{F} -vektorrum V kaldes et underrum, hvis de har følgende egenskaber:

C0
$$S \neq \emptyset$$

C1
$$\forall x \in S, \alpha \in \mathbb{F} : \alpha x \in S$$

C2
$$\forall x, y \in S : x + y \in S$$

2.2 Span og Basis

Definition 2.2.1

Lad V være et \mathbb{F} -vektorrum og lad $v_1, \ldots, v_n \in V$.

En vektor givet ved $\alpha_1 v_1 + \cdots + \alpha_n v_n \in V$ hvor $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ er en lineær kombination af v_1, \ldots, v_n .

Mængden af alle lineære kombinationer af v_1, \ldots, v_n kaldes spannet af v_1, \ldots, v_n , skrevet $Span(v_1, \ldots, v_n)$.

 $Span(v_1,...,v_n)$ er et underrum af V, idet spannet overholder C0 - C2. Se eventuelt beviset side 34 [duPlessis].

Definition 2.2.11

Lad V være et \mathbb{F} -vektorrum, og lad $v_1, \ldots, v_n \in V$. Da er v_1, \ldots, v_n en basis for V hvis:

- 1. v_1, \ldots, v_n er lineært uafhængige.
- 2. v_1, \ldots, v_n udspænder (spanner) V.

2.3 Entydig Uafhængighed

Definition 2.2.6

Et sæt v_1, \ldots, v_n af vektorer er lineært uafhængige såfremt der gælder at en lineær kombination af vektorerne

$$c_1v_1+\cdots+c_nv_n=0$$

kun har den trivielle løsning, altså at $c_i = 0$ for alle i = 1, ..., n. Hvis der derimod eksisterer et $c_i \neq 0$, så samme ligning stadig er opfyldt, så er vektorerne istedet lineært afhængige, da en kan skrives som en lineær kombination af de andre.

Sætning 2.2.9

Lad V være et \mathbb{F} -vektorrum, lad $v_1, \ldots, v_n \in V$, og lad $S = \mathsf{Span}(v_1, \ldots, v_n)$. Et element $v \in S$ kan udtrykkes *entydigt* som en lineær kombination af $v_1, \ldots, v_n \Leftrightarrow v_1, \ldots, v_n$ er lineært uafhængige.

Bevis

Da $v \in S$ ved vi per definition af spannet, at vi kan skrive v som en lineær kombination.

$$v = a_1v_1 + \cdots + a_nv_n \mod a_1, \dots a_n \in \mathbb{F}$$

Hvis der samtidig gælder at vi kan skrive v som:

$$v = b_1 v_1 + \cdots + b_n v_n \mod b_1, \dots b_n \in \mathbb{F}$$

så er

$$0 = v - v = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n$$

Hvis v_1, \ldots, v_n er lineært **uafhængige** så må:

$$(a_1 - b_1) = 0, \dots, (a_n - b_n) = 0 \Leftrightarrow a_1 = b_1, \dots, a_n = b_n$$

Der findes dermed kun 1 måde at udtrykke v som en lineær kombination af v_1, \ldots, v_n Hvis v_1, \ldots, v_n er lineært **afhængige**, må der findes $c_1, \ldots, c_n \in \mathbb{F}$, hvor ikke alle c_i er 0, og hvor $c_1v_1 + \ldots c_nv_n = 0$, hvilket giver os:

$$v = v + 0 = (a_1v_1 + \dots + a_nv_n) + (c_1v_1 + \dots + c_nv_n) = (a_1 + c_1)v_1 + \dots + (a_n + c_n)v_n$$

Altså er $(a_1 + c_1)v_1 + \cdots + (a_n + c_n)v_n$ et andet udtryk for en lineær kombination af v, da mindst 1 c ikke er 0 og ligningen derfor ikke er lig den øverste.

2.4 Basis for Søjlerum

Sætning 3.2.6

Lad $A = [\mathbf{a}_1, \dots, \mathbf{a}_n] \in \mathsf{Mat}_{m,n}(\mathbb{F})$ på søjleform, og lad $A \sim H$ på RREF, således at H har k søjler med pivot.

Hvor $\{a_1, \dots, a_k\}$ omnummereres til at indeholde søjlerne med pivoter, som er en basis for $S\phi(A)$.

Bevis

A og H har samme løsningsmængde da vi kan lave en lineær kombination af H

$$c_1\mathbf{h}_1 + \ldots + c_n\mathbf{h}_n = 0$$

hvor c_1, \ldots, c_n findes hvis og kun hvis $A\mathbf{c} = 0 \Leftrightarrow H\mathbf{c} = 0$.

Da H er på RREF må

$$\mathbf{h}_i = \mathbf{e}_i = egin{bmatrix} 0 \ dots \ 1 \ dots \ 0 \end{bmatrix}$$

for i = 1, ..., k og der gælder at de k søjler i H er uafhængige og de n - k andre søjler kan beskrives som en lineær kombinationer af de k søjler.

Dermed må $\{a_1, ..., a_k\}$ være en basis for Sø(A) på grund af ækvivalencen mellem løsningsmængderne til A og H.

$$\begin{bmatrix}
1 & 0 & | \\
 & \ddots & ? \\
0 & 1 & \\
 & 0 & 0
\end{bmatrix}$$

3 Lineær uafhængighed

([P], 2.2, 3.1)

Disposition

- 1. Udspændende Mængder
- 2. Homogene Løsninger
- 3. Entydighed/Uafhængighed
- 4. Afhængighed

3.1 Udspændende Mængder

Definition 2.2.1

Lad V være et \mathbb{F} -vektorrum og lad $v_1, \ldots, v_n \in V$.

En vektor givet ved $\alpha_1 v_1 + \cdots + \alpha_n v_n \in V$ hvor $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ er en lineær kombination af v_1, \ldots, v_n .

Mængden af alle lineære kombinationer af v_1, \ldots, v_n kaldes spannet af v_1, \ldots, v_n , skrevet $\mathsf{Span}(v_1, \ldots, v_n)$.

 $Span(v_1, ..., v_n)$ er et underrum af V, idet spannet overholder C0 - C2. Se eventuelt beviset side 34 [duPlessis].

3.2 Homogene Løsninger

Korollar 1.2.13

Lad $A \in Mat_{m,n}(\mathbb{F})$.

- 1. Det homogene ligningssystem Ax = 0 har altid en løsning, x = 0.
- 2. Hvis n > m så har Ax = 0 flere løsninger.

For eksempel har nedenstående $Mat_{2,3}(\mathbb{F})$ uendelige mange løsninger, hvis det gælder at den er lig 0.

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Bevis

- 1. Da A0 = 0 er 0 en løsning til ligningssystemet.
- 2. Lad $A \sim H$ på RREF, så $[A \mid 0] = [H \mid 0]$. H har m rækker, og dermed højst m pivot'er, og da n > m må der altså være mindst n m søjler uden pivot.

Så ligningssystemet må have uendeligt mange løsninger hvis $\mathbb F$ har uendeligt mange elementer, eller q^{n-m} løsninger, hvis $\mathbb F$ har $q<\infty$ elementer.

3.3 Entydighed/Uafhængighed

Definition 2.2.6

Et sæt v_1, \ldots, v_n af vektorer er lineært uafhængige såfremt der gælder at en lineær kombination af vektorerne

$$c_1v_1+\cdots+c_nv_n=0$$

kun har den trivielle løsning, altså at $c_i = 0$ for alle i = 1, ..., n. Hvis der derimod eksisterer et $c_i \neq 0$, så samme ligning stadig er opfyldt, så er vektorerne istedet lineært afhængige, da en kan skrives som en lineær kombination af de andre.

Sætning 2.2.9

Lad V være et \mathbb{F} -vektorrum, lad $v_1, \ldots, v_n \in V$, og lad $S = \mathsf{Span}(v_1, \ldots, v_n)$. Et element $v \in S$ kan udtrykkes *entydigt* som en lineær kombination af $v_1, \ldots, v_n \Leftrightarrow v_1, \ldots, v_n$ er lineært uafhængige.

Bevis

Da $v \in S$ ved vi per definition af spannet, at vi kan skrive v som en lineær kombination.

$$v = a_1v_1 + \cdots + a_nv_n \mod a_1, \ldots a_n \in \mathbb{F}$$

Hvis der samtidig gælder at vi kan skrive v som:

$$v = b_1 v_1 + \cdots + b_n v_n \mod b_1, \dots b_n \in \mathbb{F}$$

så er

$$0 = v - v = (a_1 - b_1)v_1 + \cdots + (a_n - b_n)v_n$$

Hvis v_1, \ldots, v_n er lineært **uafhængige** så må:

$$(a_1 - b_1) = 0, \dots, (a_n - b_n) = 0 \Leftrightarrow a_1 = b_1, \dots, a_n = b_n$$

Der findes dermed kun 1 måde at udtrykke v som en lineær kombination af v_1, \ldots, v_n Hvis v_1, \ldots, v_n er lineært **afhængige**, må der findes $c_1, \ldots, c_n \in \mathbb{F}$, hvor ikke alle c_i er 0, og hvor $c_1v_1 + \ldots c_nv_n = 0$, hvilket giver os:

$$v = v + 0 = (a_1v_1 + \dots + a_nv_n) + (c_1v_1 + \dots + c_nv_n) = (a_1 + c_1)v_1 + \dots + (a_n + c_n)v_n$$

Altså er $(a_1 + c_1)v_1 + \cdots + (a_n + c_n)v_n$ et andet udtryk for en lineær kombination af v, da mindst 1 c ikke er 0 og ligningen derfor ikke er lig den øverste.

3.4 Afhængighed

Sætning 2.2.15

Lad $V = \mathsf{Span}(v_1, \ldots, v_n)$ være et \mathbb{F} -vektorrum. Lad $u_1, \ldots, u_m \in V$, hvor m > n. Så er u_1, \ldots, u_m afhængige.

Bevis

Vi kan opstille hver af u_i 'erne som en lineær kombination af V for i = 1, ..., m.

$$u_i = a_{1i}v_1 + \cdots + a_{ni}v_n$$
, hvor $a_{1i}, \ldots, a_{ni} \in \mathbb{F}$

Samtidig kan vi opstille en lineær kombination af alle $u_i'er$ og omskrive denne til at være en sum af de ovenstående lineære kombinationer.

$$0 = U = x_1 u_1 + \dots + x_n u_n$$

$$= \sum_{i=1}^{m} x_i (\sum_{j=1}^{n} a_{ji} v_j)$$

$$= \sum_{j=1}^{n} (\sum_{i=1}^{m} a_{ji} x_i) v_j$$

Vi ved at v_1, \ldots, v_n ikke er 0, da disse er baser. Derfor må $\sum_{j=1}^n (\sum_{i=1}^m a_{ji} x_i) = 0$. Dette kan opstilles som et ligningssystem der har n ligninger og m ubekendte:

$$x_1a_{11} + \dots + x_ma_{1m}$$

$$\vdots$$

$$x_1a_{n1} + \dots + x_ma_{nm}$$

Per korollar 1.2.13, ved vi at et sådan ligningssystem må have en ikke triviel løsning, og per definitionen af lineær afhængighed, ved vi da at vektorerne u_1, \ldots, u_m må være lineært afhængige.

4 Basis for vektorrum; koordinatisering

([P] 3.1, 3.3)

Disposition

- 1. Definitioner
 - a) Lineær Uafhængighed
 - b) Basis
 - c) Koordinatvektor
- 2. Koordinat Transformations Matrix

4.1 Lineær Uafhængighed

Definition 2.2.6

Et sæt v_1, \ldots, v_n af vektorer er lineært uafhængige såfremt der gælder at en lineær kombination af vektorerne

$$c_1v_1+\cdots+c_nv_n=0$$

kun har den trivielle løsning, altså at $c_i = 0$ for alle i = 1, ..., n. Hvis der derimod eksisterer et $c_i \neq 0$, så samme ligning stadig er opfyldt, så er vektorerne istedet lineært afhængige, da en kan skrives som en lineær kombination af de andre.

4.2 Basis

Definition 2.2.11

Lad V være et \mathbb{F} -vektorrum, og lad $v_1, \ldots, v_n \in V$. Da er v_1, \ldots, v_n en basis for V hvis:

- 1. v_1, \ldots, v_n er lineært uafhængige.
- 2. v_1, \ldots, v_n udspænder (spanner) V.

4.3 Koordinatisering

Definition 3.3.1

Lad $V = \{v_1, \dots, v_n\}$ være en ordnet basis for V. Lad $v \in V$, da kan v skrives entydig som en lineær kombination af v_1, \dots, v_n :

$$v = c_1 v_1 + \dots + c_n v_n$$

Der er således et entydigt element $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{F}^n$, som angiver koordinaterne for \mathbf{v} i \mathcal{V} . Dette

kaldes koordinatvektoren for \mathbf{v} mht. $\tilde{\mathcal{V}}$ og denne skrives som:

$$[\mathbf{v}]_{\mathcal{V}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

En sådan koordinatisering bevarer lineær struktur (lemma 3.3.2), hvilket vil sige at:

- (1) $[\mathbf{v} + \mathbf{w}]_{\mathcal{V}} = [\mathbf{v}]_{\mathcal{V}} + [\mathbf{w}]_{\mathcal{V}}$
- (2) $[r\mathbf{v}]_{\mathcal{V}} = r[\mathbf{v}]_{\mathcal{V}}$

Sætning 1.4.8

Lad $A \in Mat_{n,n}(\mathbb{F})$. Følgende er ækvivalent:

- (a) A er ikke singulær, altså invertibel.
- (b) Ligningen Ax = 0 har kun løsningen 0.
- (c) A er række ækvivalent til I.

Bevis

(a) \Rightarrow (b) Lad **z** være en løsning til A**x** = 0, så er

$$\mathbf{z} = I\mathbf{z} = (A^{-1}A)\mathbf{z} = A^{-1}(A\mathbf{z}) = A^{-1}0 = 0$$

- (b) \Rightarrow (c) Brug din fantasi.
- (c) \Rightarrow (a) Endnu mere magi.

Proposition 3.3.7

Lad $\mathcal{U}=\mathbf{u_1},\ldots,\mathbf{u_n},\,\mathcal{V}=\mathbf{v_1},\ldots,\mathbf{v_n}$ være 2 ordnede baser i $W\in\mathbb{F}^n$. Lad $K\in Mat_{n,n}(\mathbb{F})$ være givet i søjleform ved $[[\mathbf{u_1}]_{\mathcal{V}},\ldots,[\mathbf{u_n}]_{\mathcal{V}}]$. Følgende gør sig da gældende:

- 1. *K* er invertibel
- 2. $\forall \mathbf{w} \in W, [\mathbf{w}]_{\mathcal{V}} = K[\mathbf{w}]_{\mathcal{U}}$.
- 3. K er den entydige matric i $Mat_{n,n}(\mathbb{F})$, således at (2) gør sig gældende.

Sagt med andre ord

$$V = \mathsf{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n) \Leftrightarrow \mathbf{v}_1, \dots, \mathbf{v}_n \in V$$
 er uafhængige

14

Bevis

1. Vi antager at $K' = K \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = 0$, så vi kan skrive K' som en lineær kombination:

$$K' = x_1[\mathbf{u_1}]_{\mathcal{V}} + \ldots + x_n[\mathbf{u_n}]_{\mathcal{V}} = [x_1\mathbf{u_1} + \ldots + x_n\mathbf{u_n}]_{\mathcal{V}} = 0$$

Hvor det sidste lighedstegn kommer af at koordinatisering bevarer lineær struktur. Da K'=0 må det gælde $\forall x=0$, da $\mathbf{u_1},\ldots,\mathbf{u_n}$ er uafhængige, per definitionen af en basis, og dermed ikke kan være 0. Ligningssystemet har da kun løsningen 0 per sætning 1.4.8, og K er dermed invertibel.

2. For $i=1,\ldots,n$ kan $\mathbf{u_i}$ skrives som en lineær kombination $\mathbf{u_i}=k_{1i}\mathbf{v_1}+\cdots+k_{ni}\mathbf{v_n}$ hvor

$$\begin{bmatrix} k_{1i} \\ \vdots \\ k_{ni} \end{bmatrix} = [\mathbf{u_i}]_{\mathcal{V}}$$

er den *i'*te søjle i *K*.

En anden vektor $\mathbf{w} = c_1 \mathbf{u_1} + \cdots + c_n \mathbf{u_n}$

$$[\mathbf{w}]_{\mathcal{U}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

Skrives denne helt ud har vi

$$\mathbf{w} = c_1(k_{11}\mathbf{v_1} + \dots + k_{n1}\mathbf{v_n}) + \dots + c_n(k_{1n}\mathbf{v_1} + \dots + k_{nn}\mathbf{v_n})$$

= $(c_1k_{11} + \dots + c_nk_{1n})\mathbf{v_1} + \dots + (c_1k_{n1} + \dots + c_nk_{nn})\mathbf{v_n}$

hvor

$$[\mathbf{w}]_{\mathcal{V}} = \begin{bmatrix} k_{11}c_1 + \dots + k_{1n}c_n \\ \vdots \\ k_{n1}c_1 + \dots + k_{nn}c_n \end{bmatrix} = K \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = K[\mathbf{w}]_{\mathcal{U}}$$

Vi har hermed vist at K er <u>koordinattransformationsmatricen</u> til V-koordinater fra U-koordinater.

$$[\mathbf{w}]_{\mathcal{V}} = K_{\mathcal{V},\mathcal{U}}[\mathbf{w}]_{\mathcal{U}}$$

3. Vi antager at K' eksisterer så

$$[\mathbf{w}]_{\mathcal{V}} = K'[\mathbf{w}]_{\mathcal{U}}, \ \forall \ \mathbf{w} \in \mathbb{F}^n$$

Det gælder så for u_i , i = 1, ..., n at

$$\begin{bmatrix} k_{1i} \\ \vdots \\ k_{ni} \end{bmatrix} = [\mathbf{u}_i]_{\mathcal{V}} = K'[\mathbf{u}_i]_{\mathcal{U}} = K'\mathbf{e}_i = \begin{bmatrix} k'_{1i} \\ \vdots \\ k'_{ni} \end{bmatrix}$$

for i = 1, ..., n.

Da
$$\mathcal{U}=\{\mathbf{u}_1,\cdots,\mathbf{u}_i,\cdots,\mathbf{u}_n\}\Rightarrow\mathbf{u}_i=\mathcal{U}\begin{bmatrix}0\\\vdots\\1\\\vdots\\0\end{bmatrix}$$
 Så K og K' har samme søjler, og de er ens.

5 Matricer og lineære transformationer

([P] 4.1, 4.2, 4.3)

Disposition

- 1. Underrum
- 2. Lineær Transformation
- 3. Transformation af Underrum
- 4. Matrixrepræsentationen

5.1 Underrum

En delmængde S af et \mathbb{F} -vektorrum V kaldes et underrum, hvis de har følgende egenskaber:

- C0 $S \neq \emptyset$
- **C1** $\forall x \in S, \alpha \in \mathbb{F} : \alpha x \in S$
- C2 $\forall x, y \in S : x + y \in S$

5.2 Lineær Transformation

Definition 4.1.1

Lad V,W være \mathbb{F} -vektorrum. En lineær transformation $L:V\to W$ er en afbildning, som respekterer lineær struktur, dvs.

- 1. $\forall \mathbf{v_1}, \mathbf{v_2} \in V, L(\mathbf{v_1} + \mathbf{v_2}) = L(\mathbf{v_1}) + L(\mathbf{v_2}).$
- 2. $\forall \alpha \in \mathbb{F}, \mathbf{v} \in V, L(\alpha \mathbf{v}) = \alpha L(\mathbf{v}).$

En *lineær transformation* kaldes også for en *lineær afbildning*, og en *lineær operator* Hvis de 2 rum *V* og *W* er ens. Følgende egenskaber gør sig gældende for en lineær transformation:

- 1. $L(0_{\mathcal{V}}) = 0_{\mathcal{W}}$.
- 2. L respekterer lineære kombinationer dvs.

$$L(\alpha_1 \mathbf{v_1} + \cdots + \alpha_n \mathbf{v_n}) = \alpha_1 L(\mathbf{v_1}) + \cdots + \alpha_n L(\mathbf{v_n})$$

3. $L(-\mathbf{v}) = -L(\mathbf{v}), \forall \mathbf{v} \in V$

5.3 Transformation af Underrum

Sætning 4.1.7

Lad V, W være \mathbb{F} -vektorrum. Lad $L:V\to W$ være en lineær transformation.

1. Lad $S \subset V$ være et underrum. Da er L(S) et underrum af W.

2. Lad $T \subset W$ være et underrum. Da er $L^{-1}(S)$ et underrum af V.

Bevis

Vi skal for begge vise alle egenskaberne for underrum.

1. Da $\mathbf{0}_W = L(\mathbf{0}_V)$ er $L(S) \neq \emptyset$

Lad $\mathbf{w}_1, \mathbf{w}_2 \in L(S), \alpha_1, \alpha_2 \in \mathbb{F}$

Det eksisterer et $\mathbf{s}_1, \mathbf{s}_2 \in S$ så $L(\mathbf{s}_1) = \mathbf{w}_1$ og $L(\mathbf{s}_2) = \mathbf{w}_2$

Samtidig ved vi at $\alpha_1 \mathbf{s}_1 + \alpha_2 \mathbf{s}_2 \in S$, og derfor:

$$\alpha_1 \mathbf{w}_1 + \alpha_2 \mathbf{w}_2 = \alpha_1 L(\mathbf{s}_1) + \alpha_2 L(\mathbf{s}_2) = L(\alpha_1 \mathbf{s}_1 + \alpha_2 \mathbf{s}_2) \in L(S)$$

2. Det gælder som før at $\mathbf{0}_V \in L^{-1}(T) \implies L^{-1}(T) \neq \emptyset$

Lad $\mathbf{v}_1, \mathbf{v}_2 \in L^{-1}(T), \alpha_1, \alpha_2 \in \mathbb{F}$. Vi har

$$L(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = \alpha_1 L(\mathbf{v}_1) + \alpha_2 L(\mathbf{v}_2)$$

Da $L(\mathbf{v}_1), L(\mathbf{v}_2) \in T$, er $\alpha_1 L(\mathbf{v}_1), \alpha_2 L(\mathbf{v}_2) \in T$

Så $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 \in L^{-1}(T)$.

Diagrammet her kan bruges til at beskrive transitioner i følgende beviser.

5.4 Matrixrepræsentationen

Sætning 4.2.1

Lad $L: \mathbb{F}^n \to \mathbb{F}^m$ være en lineær transformation.

Vi definerer $M(L) \in \mathsf{Mat}_{m,n}(\mathbb{F})$ ved $M(L) = [L(\mathbf{e_1}), \cdots, L(\mathbf{e_n})]$. Så er $L(\mathbf{x}) = M(L)\mathbf{x}$ for alle $\mathbf{x} \in \mathbb{F}^n$ og M(L) er den entydige matix med denne egenskab.

Bevis

Lad
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{F}^n$$
, så kan x skrives som en lineær kombination: $\mathbf{x} = x_1 \mathbf{e_1} + \dots + x_n \mathbf{e_n}$.

Da må det gælde at:

$$L(\mathbf{x}) = L(x_1\mathbf{e_1} + \dots + x_n\mathbf{e_n})$$

$$= x_1L(\mathbf{e_1}) + \dots + x_nL(\mathbf{e_n})$$

$$= [L(\mathbf{e_1}), \dots, L(\mathbf{e_n})] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$= M(L)\mathbf{x}$$

Entydighed: Hvis vi antager at $A \in \mathsf{Mat}_{m,n}(\mathbb{F})$ tilfredsstiller $L(\mathbf{x}) = A\mathbf{x}$ for alle $\mathbf{x} \in \mathbb{F}^n$, så gælder dette specielt for $\mathbf{x} = \mathbf{e_i}$ hvor $i = 1, \ldots, n$ at $L(\mathbf{e_i}) = A\mathbf{e_i} \Rightarrow \{i\text{'te søjle i A}\} = \{i\text{'te søjle i M(L)}\}.$

Sætning 4.2.4

Lad V, W være \mathbb{F} -vektorrum og lad $V = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, $W = \{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ være ordnede baser for V, W. Lad $L: V \to W$ være en lineær transformation.

$$M_{\mathcal{W},\mathcal{V}}(L) = [[L(\mathbf{v_1})]_{\mathcal{W}}, \dots, [L(\mathbf{v_n})]_{\mathcal{W}}]$$

Der gælder, at $[L(\mathbf{v})]_{\mathcal{W}} = M_{\mathcal{W},\mathcal{V}}(L)[\mathbf{v}]_{\mathcal{V}}$ for alle $\mathbf{v} \in V$, samt at $M_{\mathcal{W},\mathcal{V}}(L)$ er den entydige matrix med denne egenskab.

Bevis

Lad
$$\mathbf{v} \in V$$
 hvor $\mathbf{v} = x_1 \mathbf{v_1} + \dots + x_n \mathbf{v_n}$ og $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = [\mathbf{v}]_{\mathcal{V}}$. Vi har

$$L(\mathbf{v}) = L(x_1\mathbf{v_1} + \dots + x_n\mathbf{v_n}) = x_1L(\mathbf{v_1}) + \dots + x_nL(\mathbf{v_n})$$

så

$$[L(\mathbf{v})]_{\mathcal{W}} = [x_1 L(\mathbf{v_1}) + \dots + x_n L(\mathbf{v_n})]_{\mathcal{W}}$$

$$= x_1 [L(\mathbf{v_1})]_{\mathcal{W}} + \dots + x_n [L(\mathbf{v_n})]_{\mathcal{W}}$$

$$= [[L(\mathbf{v_1})]_{\mathcal{W}}, \dots, [L(\mathbf{v_n})]_{\mathcal{W}}] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$= M_{\mathcal{W}, \mathcal{V}}(L)[\mathbf{v}]_{\mathcal{V}}$$

Hvis $A \in Mat_{m,n}(\mathbb{F})$ tilfredsstiller at

$$[L(\mathbf{v}_i)]_{\mathcal{W}} = A[\mathbf{v}_i]_{\mathcal{V}} = Ae_i = \{i' \text{te søjle i } A\}$$

Så har $M_{\mathcal{V},\mathcal{W}}(L)$ og A de samme søjler og er derfor ens.

6 Determinanter

([P] 8.1, 8.2)

Disposition

- 1. Definition og Egenskaber
- 2. Transponeret Matrix
- 3. Singulære Matricer og Determinanter
- 4. Cramers Regel

6.1 Definition og Egenskaber

Definition 8.1.1

For $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$ med $n \ge 2$ er den (i,j)'te $\underline{\min} \ M(A)_{ij} \in \mathsf{Mat}_{n-1,n-1}(\mathbb{F})$ dannet ved at sløjfe den i'te søjle og j'te række.

$$A_{ij} = \begin{bmatrix} a_{1,1} & \dots & a_{1,i} & \dots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{j,1} & \dots & a_{j,i} & \dots & a_{j,n} \\ \vdots & & & & \vdots \\ a_{n,1} & \dots & a_{n,i} & \dots & a_{n,n} \end{bmatrix} = \begin{bmatrix} a_{1,1} & \dots & a_{1,i-1} & a_{1,i+1} & \dots & a_{1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{j-1,1} & \dots & a_{j-1,i-1} & a_{j-1,i+1} & \dots & a_{j-1,n} \\ a_{j+1,1} & \dots & a_{j+1,i-1} & a_{j+1,i+1} & \dots & a_{j+1,n} \\ \vdots & & & \vdots & & \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,i-1} & a_{n,i+1} & \dots & a_{n,n} \end{bmatrix}$$

Definition 8.1.2

For $B \in Mat_{1,1}(\mathbb{F})$ er $\det B = b_{1,1}$.

For $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$ og n > 1 antager vi at det er vist for en $(n-1) \times (n-1)$ -matrix.

1. For $1 \le i, j \le n$ er den (i, j)'te cofaktor A_{ij} af A givet som

$$A_{ij} = (-1)^{i+j} \det(M(A)_{ij})$$

2. Determinanten af *A* er givet som

$$\det A = a_{11}A_{11} + \dots + a_{1n}A_{1n}$$

Determinanten udvikles altså efter første række.

Bemærkning

Der er en række basale regler for determinanter:

- 8.1.3: Determinanten kan udvikles efter første søjle: $det(A) = a_{11}A_{11} + \cdots + a_{n1}A_{n1}$
- 8.1.4: Hvis B er A med de første to rækker byttet om, så er det $A = -\det B$.

- 8.1.5: Hvis B er A med to vilkårlige rækker byttet gælder det $A = -\det B$.
- 8.1.6: Determinanten kan udvikles efter k'te række: $det(A) = a_{k1}A_{k1} + \cdots + a_{kn}A_{kn}$.
- 8.1.8: Hvis *B* er *A* med to søjler byttet, so er det(A) = -det(B).
- 8.1.9: For $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$ og n > 1, hvis A har to ens rækker/søjler gælder det at $\overline{\det(A)} = 0$.
- 8.1.10/11 (a): Hvis A har en nul-række/søjle er det(A) = 0.
- $\frac{8.1.10/11 \text{ (b)}}{r \det(A)}$: Hvis B er A med k'te række/søjle gange med r, så gælder $\det(B) = \frac{r \det(A)}{r \det(A)}$
- 8.1.10/11 (c): Hvis B er A med s gange i'te række/søjle lagt til j'te række, $i \neq j$, så er $\det(A) = \det(B)$.
- 8.1.12: Hvis A er triangulær, så er det(A) produktet af A's diagonalindgange.
- <u>8.1.13</u>: Hvis E er elementærmatrix gælder det(EA) = det(E) det(A). Deraf følger $\overline{det}(AE) = det(E) det(A)$.

6.2 Transponeret Matrix

Lemma 8.1.7

Lad $A \in Mat_{n,n}(\mathbb{F})$. Der gælder $det(A^T) = det(A)$.

Bevis

Vi beviser lemmaet ved induktion. Vores basistilfælde kan være for matricen hvor n = 2.

$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

$$\det(A^T) = \det\begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - cb$$

I ovenstående må der gælde lighedstegn, da den kommutative lov er gældende.

Herefter opstiller vi induktions hypotesen at $det(A^T) = det(A)$ når A er en $(n-1) \times (n-1)$

Vi vil herefter via induktion vise at dette også gør sig gældende for en $n \times n$ matrix.

$$\det(A^T) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(M(A^T)_{j1})$$

Vi kan da skrive minoren som $M(A^T)_{j1} = (M(A)_{1j})^T$. Da må det per induktionshypotesen gælde:

$$\det(M(A^{T})_{j1}) = \det(M(A)_{1j}^{T}) = \det(M(A)_{1j})$$

Da minoren netop er en $(n-1) \times (n-1)$ matrix. Derfor må:

$$\det(A^T) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(M(A)_{1j}) = \det(A)$$

6.3 Singulære Matricer og Determinanter

Sætning 8.1.15

 $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$ er singulær $\Leftrightarrow \det(A) = 0$.

Bevis

 $A \sim H$, hvor H er på RREF.

$$A = E_k E_{k-1} \cdots E_1 H$$

hvilket giver en determinant

$$det(A) = det(E_k E_{k-1} \cdots E_1 H)$$

$$= det(E_k) det(E_{k-1} \cdots E_1 H)$$

$$= det(E_k) det(E_{k-1}) \cdots det(E_1) det(H)$$

- (\Rightarrow) H må have en nulrække, hvilket giver $\det(H) = 0 \Rightarrow \det(A) = 0$.
- (\Leftarrow) H = I; H er ikke singulær hvilket betyder at $det(A) \neq 0$.

6.4 Cramers Regel

Definition 8.2.6

Lad $A \in Mat_{n,n}(\mathbb{F})$. Den adjungerede matrix er da

$$\mathsf{adj}A = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ A_{1n} & \cdots & \cdots & A_{nn} \end{bmatrix}$$

svarende til den transponerede kofaktormatrice.

Korollar 8.2.9

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$ være invertibel, og lad $\mathbf{b} \in \mathbb{F}^n$. Lad A_i være matricen, der fås ved at erstatte den i'te søjle i A med \mathbf{b} . Den entydige løsning \hat{x} til $A\mathbf{x} = \mathbf{b}$ er da givet ved:

$$\hat{x}_i = \frac{\det(A_i)}{\det(A)}, i = 1, \cdots, n$$

Bevis

Hvis vi ombytter lidt på ligningssystemet $A\mathbf{x} = \mathbf{b}$, får vi at $\mathbf{x} = A^{-1}\mathbf{b}$. Dette kan vi ved hjælp at Korrolar 8.2.8 omskrive:

$$\hat{\mathbf{x}} = A^{-1}\mathbf{b} = \frac{1}{\det(A)}adj(A)\mathbf{b}$$

hvor
$$\hat{\mathbf{x}} = \begin{bmatrix} \hat{x}_1 \\ \vdots \\ \hat{x}_n \end{bmatrix}$$
, og derfor må det gælde at for $i = 1, \cdots, n$:
$$\hat{\mathbf{x}}_i = \frac{1}{\det(A)} (\operatorname{adj} A)_{i:} \mathbf{b} \qquad (\operatorname{den} i'\operatorname{te} række)$$
$$= \frac{1}{\det(A)} (A_{1i}b_1 + \cdots + A_{ni}b_n)$$
$$= \frac{1}{\det(A)} \det(A_i)$$
$$= \frac{\det(A_i)}{\det(A)}$$

7 Egenværdier og egenvektorer

([P] 9.1)

Disposition

- 1. Egenværdi, -vektor og -rum
- 2. Karakteristik polynomium og multipliciteter
- 3. Similaritet
- 4. Diagonalisering

7.1 Egenværdi, -vektor og -rum

Definition 9.1.1

- 1. Lad V være et \mathbb{F} -vektorrum og lad $T:V\to V$ være en lineær transformation. $\lambda\in\mathbb{F}$ er en egenværdi for T, hvis der findes $\mathbf{v}\in V\setminus\{0\}$, så $T(\mathbf{v})=\lambda\mathbf{v}$. \mathbf{v} er da en egenvektor for T associeret til λ .
- 2. Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$. $\lambda \in \mathbb{F}$ er en egenværdi for A hvis der findes $\mathbf{z} \in \mathbb{F}^n \setminus \{0\}$, så $A\mathbf{z} = \lambda \mathbf{z}$.

z er da en egenvektor for A associeret til λ .

Egenvektoren findes ved at finde nulrummet $N(A - \lambda I)$, eller sagt på en anden måde indsætte egenværdierne på λ 's plads, hvorefter matricen reduceres, for at man så kan finde egenvektoren. Nulrummet $N(A - \lambda_i I)$ kaldes for $E_A(\lambda_i)$.

7.2 Karakteristik polynomium og multipliciteter

Notation 9.1.6

 p_A kaldet det karakteristiske polynomium for A, hvor $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$. Hvis $\det(A - \lambda I)$ beregnes for et ubestemt λ , så fås et polynomium af grad n i λ ,

$$p_A(\lambda) = \det(A - \lambda I)$$

Rødderne for polynomiet er de λ hvor $p_A(\lambda) = 0$, og disse λ er egenværdier for A.

Notation 9.1.8

Dimensionen af egenrummet for en egenværdi $dim(E_A(\lambda_i))$ kaldes den *geometriske multi*plicitet. $Geo_A(\lambda_i)$ af λ_i .

Den algrebraiske multiplicitet $Alg_A(\lambda_0)$ af λ_0 er det antal gange $\lambda - \lambda_0$ går op i $p_A(\lambda)$, altså hvis: $p_A(\lambda) = (\lambda - \lambda_0)^{m_0} q(\lambda)$, hvor $q(\lambda) \neq 0$, så er $m_0 = Alg_A(\lambda_0)$.

7.3 Similaritet

Bemærkning

Det siges at $A, B \in \mathsf{Mat}(\mathbb{F})$ er similære, hvis der eksisterer et $S \in \mathsf{Mat}(\mathbb{F})$, så det gælder at $S^{-1}AS = B$. Det følger derfor at S er invertibel.

Hvis dette er tilfældet, gælder det at $SBS^{-1} = A$.

Lemma 9.1.16

Lad A, B være similære.

- 1. $p_A = p_B$.
- 2. Hvis λ_0 er en egenværdi for A og B, så er $Geo_A(\lambda_0) = Geo_B(\lambda_0)$.

Bevis

1. Der eksisterer en ikke singulær $S \in \mathsf{Mat}_{n,n}(\mathbb{F})$ så $B = S^{-1}AS$. For et vilkårligt λ gælder det at

$$S^{-1}(A - \lambda I)S = (S^{-1}AS) - (S^{-1}\lambda S) = B - \lambda I$$

Derfor

$$p_B(\lambda) = \det(B - \lambda I)$$

$$= \det(S^{-1}(A - \lambda I)S)$$

$$= \det(S^{-1}) \det(A - \lambda I) \det(S)$$

$$= \det(S^{-1}) \det(S) \det(A - \lambda I)$$

$$= \det(S^{-1}S) \det(A - \lambda I)$$

$$= \det(A - \lambda I)$$

$$= p_A(\lambda)$$

2. Lad $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ være en basis for $N(B-\lambda_0 I)$. Så har vi for $i=1,\ldots,n$

$$S^{-1}(A - \lambda_0 I)S\mathbf{v}_i = (B - \lambda_0 I)\mathbf{v}_i = \mathbf{0}$$

$$\Rightarrow (A - \lambda_0 I)S\mathbf{v}_i = S(B - \lambda_0 I)\mathbf{v}_i = \mathbf{0}$$

$$\Rightarrow S\mathbf{v}_i \in N(A - \lambda_0 I)$$

Ud fra foregående kan vi se at vi har minimum k vektorer i nulrummet. Argumentet for at $S\mathbf{v}_1, \ldots, S\mathbf{v}_k$ er uafhængige er at antage

$$c_1 S \mathbf{v}_1 + \dots + c_k S \mathbf{v}_k$$

= $S(c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k)$
= $\mathbf{0}$

Og derfor er

$$c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k = S^{-1} S(c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k) = S^{-1} \mathbf{0} = \mathbf{0}$$

og vi ved at $c_1 = \cdots = c_k = 0$, da $\mathbf{v}_1, \ldots, \mathbf{v}_k$ er uafhængige.

Så vi kan konkludere at nulrummet for $N(A - \lambda_0 I)$ er større eller lig $N(B - \lambda_0 I)$.

$$\dim N(A - \lambda_0 I) \ge \dim N(B - \lambda_0 I)$$

På samme måde kan man køre med baserne $\mathbf{w}_1, \dots, \mathbf{w}_k$ for $N(A - \lambda_0 I)$, og nå frem til

$$\dim N(A - \lambda_0 I) \leq \dim N(B - \lambda_0 I)$$

Så

$$Geo_A(\lambda_0) = \dim N(A - \lambda_0 I) = \dim N(B - \lambda_0 I) = Geo_B(\lambda_0)$$

7.4 Diagonalisering

Definition 9.2.1

- 1. Lad $L: V \to V$ være en lineær transformation. L er diagonaliserbar hvis der findes en basis $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for V bestående af egenvektorer for L.
- 2. Lad $A \in \mathsf{Mat}(\mathbb{F})$. A er diagonaliserbar hvis der findes en basis $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for \mathbb{F} bestående af egenvektorer for A.

En diagonalmatrix har nuller på alle andre indgange end diagonalen.

$$d_{i,j} = \begin{cases} 0 & i \neq j \\ d_{i,j} & 0 \end{cases}$$

$$D = \begin{bmatrix} d_{1,1} & 0 \\ & \ddots & \\ 0 & d_{n,n} \end{bmatrix}$$

Lemma 9.2.2

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$. Følgende er ækvivalente

- (1) Der findes en basis for \mathbb{F}^n bestående af egenvektorer for A.
- (2) Der findes n lineært uafhængige egenvektorer for A.
- (3) Der findes en invertibel matrix $V \in \mathsf{Mat}_{n,n}(\mathbb{F})$ så $V^{-1}AV$ er en diagonalmatrix.

Bevis

- (1) \Rightarrow (2) Oplagt, da en basis er uafhængige.
- (2) \Rightarrow (1) Hvis man har n lineært uafhængige vektorer danner de en basis, se sætning 3.1.4.
- (2) \Rightarrow (3) Lad v_1,\ldots,v_n være lineært uafhængige egenvektorer med tilhørende $\lambda_1,\ldots,\lambda_n$

for A, hvor $V = [\mathbf{v_1}, \dots, \mathbf{v_n}]$ i søjleform. Vi har

$$AV = A[\mathbf{v_1}, \dots, \mathbf{v_n}] = [A\mathbf{v_1}, \dots, A\mathbf{v_n}]$$
$$= [\lambda_1 \mathbf{v_1}, \dots, \lambda_n \mathbf{v_n}]$$
$$= [\mathbf{v_1}, \dots, \mathbf{v_n}]D$$
$$= VD$$

hvor

$$D = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

er diagonal. Da V har uafhængige søjler er den diagonal og $V^{-1}AV = V^{-1}VD = D$.

(3) \Rightarrow (2) Antag, $X \in \mathsf{Mat}_{n,n}(\mathbb{F})$ så $X^{-1}AX = D$, hvor D er er diagonal, som ovenover. Da X er invertibel er søjlerne i $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ uafhængige.

Vi har $AX = X(X^{-1}AX) = XD$, dvs. $[A\mathbf{x_1}, \dots, A\mathbf{x_n}] = [\lambda_1\mathbf{x_1}, \dots, \lambda_n\mathbf{x_n}]$. Dette giver $A\mathbf{x_i} = \lambda_i\mathbf{x_i}$, hvilket betyder at $\mathbf{x_1}, \dots, \mathbf{x_n}$ er uafhængige og egenvektorer for A.

8 Diagonalisering

([P] 9.2, 11.1)

Disposition

- 1. Egenværdi, -vektor og -rum
- 2. Karakteristisk polynomium
- 3. Diagonalmatrix
- 4. Uafhængige Egenvektorer

8.1 Egenværdi, -vektor og -rum

Definition 9.1.1

- 1. Lad V være et \mathbb{F} -vektorrum og lad $T:V\to V$ være en lineær transformation. $\lambda\in\mathbb{F}$ er en egenværdi for T, hvis der findes $\mathbf{v}\in V\setminus\{0\}$, så $T(\mathbf{v})=\lambda\mathbf{v}$. \mathbf{v} er da en egenvektor for T associeret til λ .
- 2. Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$. $\lambda \in \mathbb{F}$ er en egenværdi for A hvis der findes $\mathbf{z} \in \mathbb{F}^n \setminus \{0\}$, så $A\mathbf{z} = \lambda \mathbf{z}$.

z er da en egenvektor for A associeret til λ .

Egenvektoren findes ved at finde nulrummet $N(A - \lambda I)$, eller sagt på en anden måde indsætte egenværdierne på λ 's plads, hvorefter matricen reduceres, for at man så kan finde egenvektoren. Nulrummet $N(A - \lambda_i I)$ kaldes for $E_A(\lambda_i)$.

8.2 Karakteristisk polynomium

Notation 9.1.6

 p_A kaldet det karakteristiske polynomium for A, hvor $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$. Hvis $\det(A - \lambda I)$ beregnes for et ubestemt λ , så fås et polynomium af grad n i λ ,

$$p_A(\lambda) = \det(A - \lambda I)$$

Rødderne for polynomiet er de λ hvor $p_A(\lambda) = 0$, og disse λ er egenværdier for A.

8.3 Diagonalisering

Definition 9.2.1

- 1. Lad $L: V \to V$ være en lineær transformation. L er diagonaliserbar hvis der findes en basis $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for V bestående af egenvektorer for L.
- 2. Lad $A \in \mathsf{Mat}(\mathbb{F})$. A er diagonaliserbar hvis der findes en basis $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for \mathbb{F} bestående af egenvektorer for A.

En diagonalmatrix har nuller på alle andre indgange end diagonalen.

$$d_{i,j} = \begin{cases} 0 & i \neq j \\ d_{i,j} & 0 \end{cases}$$

$$D = \begin{bmatrix} d_{1,1} & 0 \\ & \ddots & \\ 0 & d_{n,n} \end{bmatrix}$$

Lemma 9.2.2

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$. Følgende er ækvivalente

- (1) Der findes en basis for \mathbb{F}^n bestående af egenvektorer for A.
- (2) Der findes n lineært uafhængige egenvektorer for A.
- (3) Der findes en invertibel matrix $V \in \operatorname{Mat}_{n,n}(\mathbb{F})$ så $V^{-1}AV$ er en diagonalmatrix.

Bevis

- (1) \Rightarrow (2) Oplagt, da en basis er uafhængige.
- (2) \Rightarrow (1) Hvis man har n lineært uafhængige vektorer danner de en basis, se sætning 3 1 4
- (2) \Rightarrow (3) Lad $\mathbf{v}_1, \dots, \mathbf{v}_n$ være lineært uafhængige egenvektorer med tilhørende $\lambda_1, \dots, \lambda_n$ for A, hvor $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ i søjleform. Vi har

$$AV = A[\mathbf{v_1}, \dots, \mathbf{v_n}] = [A\mathbf{v_1}, \dots, A\mathbf{v_n}]$$
$$= [\lambda_1 \mathbf{v_1}, \dots, \lambda_n \mathbf{v_n}]$$
$$= [\mathbf{v_1}, \dots, \mathbf{v_n}]D$$
$$= VD$$

hvor

$$D = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

er diagonal. Da V har uafhængige søjler er den diagonal og $V^{-1}AV = V^{-1}VD = D$.

(3) \Rightarrow (2) Antag, $X \in \mathsf{Mat}_{n,n}(\mathbb{F})$ så $X^{-1}AX = D$, hvor D er er diagonal, som ovenover. Da X er invertibel er søjlerne i $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ uafhængige.

32

Vi har $AX = X(X^{-1}AX) = XD$, dvs. $[A\mathbf{x_1}, ..., A\mathbf{x_n}] = [\lambda_1\mathbf{x_1}, ..., \lambda_n\mathbf{x_n}]$. Dette giver $A\mathbf{x_i} = \lambda_i\mathbf{x_i}$, hvilket betyder at $\mathbf{x_1}, ..., \mathbf{x_n}$ er uafhængige og egenvektorer for A.

8.4 Uafhængige Egenvektorer

Lemma 9.2.5

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$. Antag at $\lambda_1, \dots, \lambda_k$ er forskellige egenværdier for A. Lad v_1, \dots, v_k være tilsvarende egenvektorer. Så er v_1, \dots, v_k uafhængige.

Bevis

Lad $S = \operatorname{Span}(\mathbf{v_1}, \dots, \mathbf{v_k})$ og lad $r = \dim(S)$. Vi skal så vise at r = k. Vi antager modsætningsvis at r < k, ydermere antager vi da at $\mathbf{v_1}, \dots, \mathbf{v_r}$ er en basis for S. Da må en ny egenvektor $\mathbf{v_{r+1}}$ kunne skrives som en lineær kombination af $\mathbf{v_1}, \dots, \mathbf{v_r}$.

$$\mathbf{v_{r+1}} = c_1 \mathbf{v_1} + \cdots + c_r \mathbf{v_r}$$
, hvor $c_1, \cdots, c_r \in \mathbb{F}$

Så vi kan skrive:

$$A\mathbf{v_{r+1}} = A(c_1\mathbf{v_1} + \cdots + c_r\mathbf{v_r}) = c_1A\mathbf{v_1} + \cdots + c_rA\mathbf{v_r}$$

Da vi ved at $A\mathbf{v} = \lambda \mathbf{v}$ kan vi omskrive dette til:

$$A\mathbf{v}_{r+1} = \lambda_{r+1}\mathbf{v}_{r+1} = c_1\lambda_1\mathbf{v}_1 + \cdots + c_r\lambda_r\mathbf{v}_r$$

Ganger vi så den første ligning med λ_{r+1} og trækker det fra den sidste, så får vi:

$$0 = c_1(\lambda_1 - \lambda_{r+1})\mathbf{v_1} + \ldots + c_r(\lambda_r - \lambda_{r+1})\mathbf{v_r}$$

Da vi ved at v_1, \ldots, v_r er en basis for S må disse være uafhænigige og derfor ikke 0.

Ydermere ved vi per antagelse at alle λ er forskellige, hvilket vil sige at $\lambda_i - \lambda_{r+1}$ er forskellig fra 0 for alle i = 1, ..., r.

Derfor må det være konstanterne c_1, \ldots, c_n der alle må være 0, for at ovenstående ligning kan opfyldes. Men da egenvektoren \mathbf{v}_{r+1} ikke kan være nul, er dette en modstrid med den første ligning, og derfor må vores første antagelse være forkert, og dermed må r = k, der gør at $\mathbf{v}_1, \ldots, \mathbf{v}_k$ alle må være uafhængige.

Multiplicitet

Sætning 9.2.11

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{F})$; lad $\lambda_1,\ldots,\lambda_k \in \mathbb{F}$ være de forskellige egenværdier for A. Så er A diagonaliserbar \Leftrightarrow

(1)
$$Alg(\lambda_1) + \cdots + Alg(\lambda_k) = n$$
.

(2)
$$Alg(\lambda_i) = Geo(\lambda_i)$$
 for $i = 1, ..., k$.

Bemærkning

Hvis $\mathbb{F} = \mathbb{C}$ gælder (1) altid.

Bevis

9 Indre produkt

([P] 6.1, 6.2, 6.3)

Disposition

- 1. Definition
- 2. Pythagoras
- 3. Projektion
- 4. Cauchy-Schwarz Uligheden

9.1 Definition

Definition 6.2.1

Lad V være et \mathbb{C} -vektorrum. Et (komplekst) indre produkt er en afbildning $\langle \ , \ \rangle : V \times V \to \mathbb{C}$, som tilfredsstiller:

- (I) $\langle \mathbf{v}, \mathbf{v} \rangle$ er reel, og ikke-negativ for alle $\mathbf{v} \in V$; og er 0 hhvis v = 0.
- (II) $\langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$ for alle $\mathbf{v}, \mathbf{w} \in V$.
- (III) $\langle \alpha \mathbf{v} + \beta \mathbf{w}, \mathbf{z} \rangle = \alpha \langle \mathbf{v}, \mathbf{z} \rangle + \beta \langle \mathbf{w}, \mathbf{z} \rangle$ for alle $\alpha, \beta \in \mathbb{C}$, $\mathbf{v}, \mathbf{w}, \mathbf{z} \in V$.
- (IV) $\langle \mathbf{v}, \beta \mathbf{w} + \alpha \mathbf{z} \rangle = \overline{\alpha} \langle \mathbf{w}, \mathbf{v} \rangle + \overline{\beta} \langle \mathbf{z}, \mathbf{v} \rangle$ for alle $\alpha, \beta \in \mathbb{C}$, $\mathbf{v}, \mathbf{w}, \mathbf{z} \in V$.

Associeret til det indre produkt er en længde eller norm

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$
 for $\mathbf{v} \in V$

(I) siger at $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$.

Noter at $||a\mathbf{v}|| = |a| ||\mathbf{v}||$ for alle $a \in \mathbb{C}$ og $\mathbf{v} \in V$.

9.2 Pythagoras

Proposition 6.2.4 (Pythagoras)

Lad V være et \mathbb{C} -vektorrum med indre produkt $\langle \ , \ \rangle$. Lad $\mathbf{u},\mathbf{v}\in V$ være ortogonale. Der gælder det:

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

Dette gælder ligeledes for det reele (R) tilfælde.

Bevis

$$\begin{aligned} \|\mathbf{u} + \mathbf{v}\|^2 &= \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle \\ &= \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle \\ &= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 \end{aligned}$$

Da u, v er ortogonale gælder:

$$\langle \mathbf{u}, \mathbf{v} \rangle \langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle \overline{\langle \mathbf{u}, \mathbf{v} \rangle} = 0\overline{0} = 0$$

Og derfor fås ligheden $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

9.3 Projektion

Definition 6.2.5

Lad V være et \mathbb{C} -vektorrum med indre produkt \langle , \rangle . Hvis $\mathbf{u}, \mathbf{v} \in V, \mathbf{v} \neq 0$, så er *skalarprojektionen* af \mathbf{u} på \mathbf{v} tallet

$$\alpha = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|}$$

mens vektorprojektionen er

$$\mathbf{p} = \alpha \left(\frac{1}{\|\mathbf{v}\|} \mathbf{v} \right) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$$

9.4 Cauchy-Schwarz Uligheden

Sætning 6.2.7 (Cauchy-Swartz-Uligheden)

Lad V være et \mathbb{R} eller \mathbb{C} vektorrum med indre produkt \langle , \rangle . Lad $\mathbf{u}, \mathbf{v} \in V$. Der gælder

$$|\langle \mathbf{u}, \mathbf{v} \rangle| = \|\mathbf{u}, \mathbf{v}\|$$

Ligheden gælder hvis og kun hvis **u**, **v** er lineært afhængige.

Bevis

Hvis $\mathbf{v} = \mathbf{0}$ er der lighed

$$|\langle \mathbf{u}, \mathbf{v} \rangle| = 0 = ||\mathbf{u}|| ||\mathbf{v}||$$

Hvis $\mathbf{v} \neq \mathbf{0}$ lades \mathbf{p} være projektionen af \mathbf{u} på \mathbf{v} . Da \mathbf{p} og $\mathbf{u} - \mathbf{p}$ er ortogonale er

$$\|\mathbf{p}\|^2 + \|\mathbf{u} - \mathbf{p}\|^2 = \|\mathbf{u}\|^2$$

Fra skalarprojektionen så

$$\frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2} = |\alpha|^2 = \alpha \overline{\alpha} = \|\mathbf{p}\|^2 = \|\mathbf{u}\|^2 - \|\mathbf{u} - \mathbf{p}\|^2$$

Hvilket giver

$$|\langle \mathbf{u}, \mathbf{v} \rangle|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{p}\|^2 \|\mathbf{v}\|^2 \le \|\mathbf{u}\|^2 \|\mathbf{v}\|^2$$

hvor der gælder lighed hvis u = p.

Det er hermed vist at der kun gælder lighed når u og v er lineært afhængige.

10 Ortogonalt komplement og projektion

([P] 5.1, 5.2.10, 6.4.12-6.4.17, 7.2.5-7.2.6)

10.1 Dimensioner og Baser for ortogonale komplementer

Proposition 3.2.8

Lad $A \in \mathsf{Mat}_{m,n}(\mathbb{F})$, lad $A \sim U$ på REF.

- (1) dim N(A) = # af søjler uden pivot i U.
- (2) dim Ræ(A) = # af ikke nul-rækker i U.
- (3) $\dim Sø(A) = \#$ af søjler med pivot i U.

Det gælder at $\dim(\mathsf{R} \texttt{w}(A)) = \dim(\mathsf{S} \texttt{p}(A))$, samt at $\dim N(A) + \dim \mathsf{S} \texttt{p}(A) = n$, antallet af søjler i A.

Bevis

(1),(2),(3) følger fra $3.2.1 \rightarrow 3.1.6$.

Da antallet af ikke-nul rækker i U er lig antallet af pivot'er, er dim $Ræ(A) = \dim Sø(A)$. Hvis k er antallet af søjler med pivot, er dim N(A)) = n - k. dim Sø(A) = k og

$$\dim N(A) + \dim \mathsf{S}\phi(A) = (n-k) + k = n$$

Sætning 5.1.17

Lad $S \in \mathbb{R}^n$ være et underrum.

- 1. S^{\perp} er også et underrum i \mathbb{R}^n og $\dim(S^{\perp}) = n \dim(S)$.
- 2. Hvis $S \neq \{0\}$, $S \neq \mathbb{R}^n$ og $\{x_1, \ldots, x_r\}$ er en basis for S og $\{x_{r+1}, \ldots, x_n\}$ er en basis for S^{\perp} , så er $\{x_1, \ldots, x_n\}$ en basis for \mathbb{R}^n .

Revis

1. Hvis $S = \{0\}$, og $S^{\perp} \in \mathbb{R}^n$, så følger det naturligt, at $\dim(S^{\perp}) = n - \dim(S) = n - \dim(\{0\})$.

Hvis $S \neq \{0\}$, lad da $\{x_1, ..., x_r\}$ være en basis for S. Da kan vi skrive $X = [x_1, ..., x_r]$, hvor $X \in \mathsf{Mat}_{n,r}(\mathbb{R})$ er en matrix hvor søjlerne består af basis vektorerne.

Da må $S = S\phi(X)$ og da giver lemma 5.1.16 at:

$$S^{\perp} = S\phi(X)^{\perp} = N(X^T)$$

Hvor det gælder at $N(X^T) \in \mathbb{R}^n$. Da kan vi finde:

$$\dim(N(X^T)) = \#\mathsf{s} \not \mathsf{sjler} \ \mathsf{i} \ X^T - \mathsf{rang}(X^T) = n - r = n - \dim(S)$$

Dette fordi X har r uafhængige søjler per definition af basis, så:

$$\operatorname{rang}(X^T) = \operatorname{rang}(X) = r = \dim(S\emptyset(X)) = \dim(S)$$

2. Ifølge sætning 3.1.4 skal vi blot vise at x_1, \ldots, x_n er uafhængige. Vi antager derfor:

$$c_1 \mathbf{x_1} + \ldots + c_r \mathbf{x_r} + c_{r+1} \mathbf{x_{r+1}} + \ldots + c_n \mathbf{x_n} = 0$$

Derpå lader vi vektoren $\mathbf{y} = c_1 \mathbf{x_1} + \ldots + c_r \mathbf{x_r}$ og vektoren $\mathbf{z} = c_{r+1} \mathbf{x_{r+1}} + \ldots + c_n \mathbf{x_n}$. Da må $\mathbf{y} \in S$ og $\mathbf{z} \in S^{\perp}$, og $\mathbf{y} + \mathbf{z} = 0$.

Dette må betyde at $\mathbf{y} = (-1)\mathbf{z}$, hvilket vil sige at $\mathbf{y} \in S$ og $(-1)\mathbf{z} \in S^{\perp}$, altså må $\mathbf{y} = (-1)\mathbf{z} \in S \cap S^{\perp}$, hvilket giver at $\mathbf{y} = (-1)\mathbf{z} = 0$.

Da $c_1x_1 + \ldots + c_rx_r = 0$, må alle $c_1, \ldots, c_r = 0$, da x_1, \ldots, x_r er uafhængige. Da $c_{r+1}x_{r+1} + \ldots + c_nx_n = 0$, må alle $c_{r+1}, \ldots, c_n = 0$, da x_{r+1}, \ldots, x_n er uafhængige. Så x_1, \ldots, x_n er uafhængige og derfor en basis for \mathbb{R}^n .

10.2 Ortogonal Projektion

Sætning 6.4.8

For $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ som en ortonormal mængde i V. Hvis $\mathbf{v} = c_1 \mathbf{u}_1 + \dots + c_n \mathbf{u}_n$, så er $c_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$.

Bevis

$$\langle \mathbf{v}, \mathbf{u}_i \rangle = \langle \sum_{i=1}^n c_j \mathbf{u}_j, \mathbf{u}_i \rangle = \sum_{i=1}^n c_j \langle \mathbf{u}_j, \mathbf{u}_i \rangle = c_i$$

Det sidste gælder da for $i \neq j$ gælder der at $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$, og $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = 1$, da det er en ortonormal basis.

Sætning 6.4.14

Projektionen (eller ortogonalprojektionen) af v på S er defineret ved

$$\mathbf{p} - \mathbf{v} \in S^{\perp} \Leftrightarrow \mathbf{p} = \sum_{i=1}^{k} \langle \mathbf{v}, \mathbf{s}_i \rangle \mathbf{s}_i$$

hvor *S* er et underrum af det indre-produktrum *V*, med indre produkt \langle , \rangle og $\{\mathbf{s}_1, \dots, \mathbf{s}_k\}$ er en ortonormalbasis for *S*, med $v \in V$ og $p \in S$.

Bevis

Projektionen p kan skrives som

$$p = c_1 \mathbf{s}_1 + \ldots + c_k \mathbf{s}_k$$

med $c_1, \ldots, c_k \in \mathbb{K}$ hvor $c_i = \langle \mathbf{p}, \mathbf{s_i} \rangle$ for $i = 1, \ldots, k$, så

$$p = \langle \mathbf{p}, \mathbf{s_k} \rangle \mathbf{s_1} + \ldots + \langle \mathbf{p}, \mathbf{s_k} \rangle \mathbf{s_k} = \sum_{i=1}^k \langle \mathbf{p}, \mathbf{s_i} \rangle \mathbf{s_i}$$

Der gælder derfor

$$\begin{array}{ll} \mathbf{p} - \mathbf{v} \in S \Leftrightarrow \langle \mathbf{s}, \mathbf{p} - \mathbf{v} \rangle & \text{for alle } \mathbf{s} \in S \\ \Leftrightarrow \langle \alpha_1 \mathbf{s}_1, \dots, \alpha_k \mathbf{s}_k, \mathbf{v} - \mathbf{p} \rangle & \text{for alle } \mathbf{a}_1, \dots, \alpha_k \in \mathbb{K} \\ \Leftrightarrow \alpha_1 \langle \mathbf{s}_1, \mathbf{v} - \mathbf{p} \rangle, \dots, \alpha_k \langle \mathbf{s}_k, \mathbf{v} - \mathbf{p} \rangle & \text{for } i = 1, \dots, k \\ \Leftrightarrow \langle \mathbf{s}_i, \mathbf{v} \rangle = \langle \mathbf{s}_i, \mathbf{p} \rangle & \Leftrightarrow \langle \mathbf{p}, \mathbf{s}_i \rangle = \langle \mathbf{v}, \mathbf{s}_i \rangle \end{array}$$

hvilket betyder at vi kan redefinere p som værende afhængig af v

$$\mathbf{p} = \sum_{i=1}^k \langle \mathbf{v}, \mathbf{s}_i \rangle \mathbf{s}_i$$

11 Ortogonale og ortonormale baser

([P] 7.2, 6.4)

11.1 Ortogonal Projektion

Sætning 6.4.14

Projektionen (eller ortogonalprojektionen) af v på S er defineret ved

$$\mathbf{p} - \mathbf{v} \in S^{\perp} \Leftrightarrow \mathbf{p} = \sum_{i=1}^{k} \langle \mathbf{v}, \mathbf{s}_i \rangle \mathbf{s}_i$$

hvor *S* er et underrum af det indre-produktrum *V*, med indre produkt \langle , \rangle og $\{\mathbf{s}_1, \dots, \mathbf{s}_k\}$ er en ortonormalbasis for *S*, med $v \in V$ og $p \in S$.

Bevis

Projektionen p kan skrives som

$$p = c_1 \mathbf{s}_1 + \ldots + c_k \mathbf{s}_k$$

med $c_1, \ldots, c_k \in \mathbb{K}$ hvor $c_i = \langle \mathbf{p}, \mathbf{s_i} \rangle$ for $i = 1, \ldots, k$, så

$$p = \langle \mathbf{p}, \mathbf{s_k} \rangle \mathbf{s_1} + \ldots + \langle \mathbf{p}, \mathbf{s_k} \rangle \mathbf{s_k} = \sum_{i=1}^k \langle \mathbf{p}, \mathbf{s_i} \rangle \mathbf{s_i}$$

Der gælder derfor

$$\begin{array}{ll} \mathbf{p} - \mathbf{v} \in S \Leftrightarrow \langle \mathbf{s}, \mathbf{p} - \mathbf{v} \rangle & \text{for alle } \mathbf{s} \in S \\ \Leftrightarrow \langle \alpha_1 \mathbf{s}_1, \dots, \alpha_k \mathbf{s}_k, \mathbf{v} - \mathbf{p} \rangle & \text{for alle } \alpha_1, \dots, \alpha_k \in \mathbb{K} \\ \Leftrightarrow \alpha_1 \langle \mathbf{s}_1, \mathbf{v} - \mathbf{p} \rangle, \dots, \alpha_k \langle \mathbf{s}_k, \mathbf{v} - \mathbf{p} \rangle & \text{for } i = 1, \dots, k \\ \Leftrightarrow \langle \mathbf{s}_i, \mathbf{v} \rangle = \langle \mathbf{s}_i, \mathbf{p} \rangle & \Leftrightarrow \langle \mathbf{p}, \mathbf{s}_i \rangle = \langle \mathbf{v}, \mathbf{s}_i \rangle \end{array}$$

hvilket betyder at vi kan redefinere p som værende afhængig af v

$$\mathbf{p} = \sum_{i=1}^k \langle \mathbf{v}, \mathbf{s}_i \rangle \mathbf{s}_i$$

11.2 Gram-Schmidt Processen

Sætning 7.2.1 (Gram-Schmidt processen)

Lad V være et indre-produkt rum, og skriv \langle , \rangle for indre-produkt. Lad ydermere $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ være en basis for V.

 $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ er en ortonormal basis for V lavet på følgende måde:

$$\mathbf{u}_1 = \frac{1}{\|\mathbf{x}_1\|} \mathbf{x}_1$$

Og $\mathbf{u}_2 \dots, \mathbf{u}_n$ er defineret rekursivt ved

$$\mathbf{u}_{k+1} = \frac{1}{\|\mathbf{x}_{k+1} - \mathbf{p}_k\|} (\mathbf{x}_{k+1} - \mathbf{p}_k)$$

hvor

$$\mathbf{p}_k = \langle \mathbf{x}_{k+1}$$
 , $\mathbf{u}_1 \rangle \mathbf{u}_1 + \cdots + \langle \mathbf{x}_{k+1}$, $\mathbf{u}_k \rangle \mathbf{u}_k$

er den ortogonale projektion af \mathbf{x}_{k+1} på $\mathsf{Span}(\mathbf{u}_1,\ldots,\mathbf{u}_k)$.

Da er $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ er en ortonormal basis for $\mathrm{Span}(\mathbf{x}_1,\ldots,\mathbf{x}_k)$, for $k=1,\ldots,n$.

Og dermed for k = n, en ortonormal basis for V.

Bevis

Definer $S_k = \mathsf{Span}(\mathbf{x}_1, \dots, \mathbf{x}_k)$ for $k = 1, \dots, n$.

Basis: For S_1 er det klart at $Span(\mathbf{u}_1) = Span(\mathbf{x}_1) = S_1$.

<u>Induktion</u>: Antag nu at det er vist for $\mathbf{u}_1, \dots, \mathbf{u}_k$, for k < n, og $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ er en ortonormal basis for S_k .

Lad \mathbf{p}_k være projektionen af \mathbf{x}_{k+1} på S_k . Ifølge sætning 6.1.14 kan denne skrives som

$$\mathbf{p}_k = \langle \mathbf{x}_{k+1} , \mathbf{u}_1 \rangle \mathbf{u}_1 + \cdots + \langle \mathbf{x}_{k+1} , \mathbf{u}_k \rangle \mathbf{u}_k$$

Da $\mathbf{p}_k \in S_k$, kan \mathbf{p}_k skrives som en linearkombination af $\mathbf{x}_1, \dots, \mathbf{x}_k$:

$$\mathbf{p}_k = c_1 \mathbf{x}_1 + \dots + c_k \mathbf{x}_k$$

Vi vil gerne have fat i den ortogonale vektor $\mathbf{x}_{k+1} - \mathbf{p}_k$, som går ud af S_k :

$$\mathbf{x}_{k+1} - \mathbf{p}_k = \mathbf{x}_{k+1} - c_1 \mathbf{x}_1 - \dots - c_k \mathbf{x}_k$$

Da vi ved at $\mathbf{x}_1, \dots, \mathbf{x}_{k+1}$ er uafhængige og $c_1, \dots, c_k \neq 0$, ved vi at $\mathbf{x}_{k+1} - \mathbf{p}_k \neq 0$. Vi ved at

$$\mathbf{x}_{k+1} - \mathbf{p}_k \in \mathsf{Span}(\mathbf{x}_1, \dots, \mathbf{x}_{k+1}) = S_{k+1}$$

Og ifølge sætning 6.1.14 er

$$\mathbf{x}_{k+1} - \mathbf{p}_k \in S_k^{\perp}$$

og derfor

$$(\mathbf{x}_{k+1} - \mathbf{p}_k) \perp \mathbf{u}_i$$

for i = 1, ..., k.

Vi kan nu skalere den ortogonale projektion og definere \mathbf{u}_{k+1} :

$$\mathbf{u}_{k+1} = \frac{1}{\|\mathbf{x}_{k+1} - \mathbf{p}_k\|} (\mathbf{x}_{k+1} - \mathbf{p}_k)$$

Så er $\{\mathbf{u}_1, \dots, \mathbf{u}_{k+1}\} \in S_{k+1}$ og ortonormal.

Da der er k+1 uafhængige elementer i rummet S_{k+1} , udgør de en basis, og $\{\mathbf{u}_1, \dots, \mathbf{u}_{k+1}\}$ er en ortogonal basis for S_{k+1} .

Korollar 7.2.4

Enhver ortonomal mængde i et indre-produkt rum kan udvides til en ortonomal basis.

Bevis

Lad $\dim(V)=n$. Antag, at $\{\mathbf{u_1},\ldots,\mathbf{u_k}\}\subset V$ er ortonormal. $\{\mathbf{u_1},\ldots,\mathbf{u_k}\}$ kan udvies til en basis $\{\mathbf{u_1},\ldots,\mathbf{u_k},\mathbf{v_1},\ldots,\mathbf{v_{n-k}}\}$ af V når Gram-Schmidt-Processen anvendes på denne basis fås en basis $\{\mathbf{u_1},\ldots,\mathbf{u_k},\mathbf{u_{k+1}},\ldots,\mathbf{u_n}\}$ som udvider $\{u_1,\ldots,u_k\}$.

12 Ortogonale og unitære matricer

([P] 6.4.19-6.4.23, 11.1)

Disposition

- 1. Definitioner
- 2. Ækvivalenser for Ortogonale Matricer
- 3. Schurs Sætning

12.1 Definitioner

Definition 6.4.19

En matrix $Q \in Mat(\mathbb{R})$ er ortogonal hvis søjlerne i Q udgør en ortonormalbasis for \mathbb{R}^n .

12.2 Ækvivalenser for Ortogonale Matricer

Sætning 6.4.21

Lad $Q \in \mathsf{Mat}_{n,n}(\mathbb{R})$. Følgende udsagn er ækvivalente:

- (a) Q er ortogonal
- (b) $Q^TQ = I$
- (c) Q er invertibel og $Q^{-1} = Q^T$
- (d) $(Q\mathbf{x})^T(Q\mathbf{y}) = \mathbf{x}^T\mathbf{y}$ for alle $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- (e) $\|Q\mathbf{x}\| = \|\mathbf{x}\|$ for alle $\mathbf{x} \in \mathbb{R}^n$

 $(a)\Rightarrow(b)$ følger fra Lemma 6.4.18, da søjlerne da må være en ortonormal mængde.

$$(b) \Rightarrow (d) \ \ (Q\mathbf{x})^T (Q\mathbf{y}) = \mathbf{x}^T Q^T Q\mathbf{y} = \mathbf{x}^T \mathbf{y} \text{ for alle } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

 $(d)\Rightarrow(a)$ Vi kan opskrive $Q=[\mathbf{q_1},\ldots,\mathbf{q_n}]$ i søjleform. Der gælder at:

$$\mathbf{q_i}^T \mathbf{q_j} = (Q\mathbf{e_i})^T (Q\mathbf{e_j}) = \mathbf{e_i}^T \mathbf{e_j} = \delta_{ij}$$

hvor det gælder for δ_{ij} :

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

hvilket per definition gør at $\{q_1, \ldots, q_n\}$ er ortonomal.

 $(b)\Rightarrow(c)\,$ følger af Lemma 1.4.10, som siger at AB=I så må A og B være invertible.

 $(c) \Rightarrow (b)$ følger af at være invers.

$$(d) \Rightarrow (e) \|Q\mathbf{x}\|^2 = (Q\mathbf{x})^T Q\mathbf{x} = \mathbf{x}^T \mathbf{x} = \|\mathbf{x}\|^2.$$

 $(e) \Rightarrow (d)$ følger af propertition 6.3.5, hvor $\mathbf{x}^T \mathbf{y}$ og $(Q\mathbf{x})^T (Q\mathbf{y})$ kan omskrives således at det passer.

12.3 Schurs Sætning

Definition 11.1.1

Den konjugerede transponerede C^H af C er givet ved $C^H = (\overline{C})^T$.

Definition 11.1.3

En matrix $U \in Mat(\mathbb{C})$ er unitær, hvis søjlerne i U udgør en ortonormalbasis for \mathbb{C}^n .

Sætning 11.1.9 (Schurs Sætning)

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{C})$. Der findes en unitær matrix $U \in \mathsf{Mat}_{n,n}(\mathbb{C})$, så U^HAU er en øvretriangulær matrix.

Bevis

Beviset foregår ved induktion over n. I basen n = 1 er det trivielt opfyldt, da alle matricer $\in \mathsf{Mat}_{1,1}$ er øvre triangulære.

Antag nu at det gælder for en matrix $B \in Mat_{n-1,n-1}(\mathbb{C})$.

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{B})$ med en egenværdi $\lambda_1 \in \mathbb{C}$, og en tilhørende egenvektor $\mathbf{v}_1 \in \mathbb{C}^n$.

Vi kan arrangere at $\|\mathbf{v}_1\| = 1$. Og vi kan udvide $\{\mathbf{v}_1\}$ til en basis for \mathbb{C}^n , og ved at anvende Gram-Schmidt på denne basis, får vi en ortonormalbasis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for \mathbb{C}^n .

Vi lader $U_1 = [\mathbf{v}_1, \dots, \mathbf{v}_n] \in \mathsf{Mat}_{n,n}(\mathbb{C})$, hvilket gør U_1 unitær.

Vi vil nu forsøge at afgøre opbygningen af den første søjle i $U_1^H A U_1$. Dette kan vi gøre ved at gange med \mathbf{e}_1 :

$$U_1^H A U_1 \mathbf{e}_1 = U_1^H A \mathbf{v}_1 = U_1^H \lambda_1 \mathbf{v}_1 = \lambda_1 U_1 \mathbf{v}_1 = \lambda_1 U_1^H U_1 \mathbf{e}_1 = \lambda_1 \mathbf{e}_1$$

Vi ved derfor at første i $U_1^H A U_1$ er på formen $(\lambda_1, 0, ..., 0)^T$, og kan derfor skrive $U_1^H A U_1$ som

$$U_1^H A U_1 = \begin{bmatrix} \lambda_1 & \mathbf{r} \\ \mathbf{0} & A_1 \end{bmatrix}$$

Her er \mathbf{r} en rækkevektor og $\mathbf{0}$ en søjlevektor, begge med n-1 indgange, og A_1 er defineret som minoren $M(A)_{1,1}$.

Per induktionshypotesen findes der en unitær matrix $C \in Mat_{n-1,n-1}$ der opfylder $C^H A_1 C = B$, så B er en øvre triangulær matrix $\in Mat_{n-1,n-1}(\mathbb{C})$.

Vi definerer

$$U_2 = \begin{bmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & C \end{bmatrix}$$

hvor 0 igen er en søjlevektor med n-1 indgange.

 U_2 er unitær, da de sidste n-1 søjler udgør en ortonormal mængde, per definition, og hver for sig er ortogonale på $(U_2)_{:1}$, som er lig enhedsvektoren e_1 .

Ifølge lemma 11.1.16 er $U = U_1U_2$ ogås unitær.

Da $U_1^HAU_1$ og U_2 har samme former $(n\times n)$, kan vi udregne $U_2^H(U_1^HAU_1)U_2$ ved direkte brug af matrix-regler

$$\begin{aligned} \boldsymbol{U}^{H} \boldsymbol{A} \boldsymbol{U} &= \boldsymbol{U}_{2}^{H} (\boldsymbol{U}_{1}^{H} \boldsymbol{A} \boldsymbol{U}_{1}) \boldsymbol{U}_{2} \\ &= \begin{bmatrix} \mathbf{1} & \mathbf{0}^{T} \\ \mathbf{0} & \boldsymbol{C}^{H} \end{bmatrix} \begin{bmatrix} \lambda_{1} & \mathbf{r} \\ \mathbf{0} & A_{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0}^{T} \\ \mathbf{0} & \boldsymbol{C} \end{bmatrix} \\ &= \begin{bmatrix} \lambda_{1} & \mathbf{r} \\ \mathbf{0} & \boldsymbol{C}^{H} A_{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0}^{T} \\ \mathbf{0} & \boldsymbol{C} \end{bmatrix} \\ &= \begin{bmatrix} \lambda_{1} & \mathbf{r} \boldsymbol{C} \\ \mathbf{0} & \boldsymbol{C}^{H} A_{1} \boldsymbol{C} \end{bmatrix} \\ &= \begin{bmatrix} \lambda_{1} & \mathbf{r} \boldsymbol{C} \\ \mathbf{0} & \boldsymbol{B} \end{bmatrix} \end{aligned}$$

Som er øvre triangulær fordi B er det.

Induktionsskridtet er derfor taget, og sætningen er bevist.

13 Unitær diagonalisering

([P] 11.1)

Disposition

- 1. Definitioner
- 2. Schurs Sætning
- 3. Unitær Diagonalisering

13.1 Definitioner

Definition 11.1.1

Den konjugerede transponerede C^H af C er givet ved $C^H = (\overline{C})^T$.

Definition 11.1.3

En matrix $U \in Mat(\mathbb{C})$ er unitær, hvis søjlerne i U udgør en ortonormalbasis for \mathbb{C}^n .

13.2 Schurs Sætning

Sætning 11.1.9 (Schurs Sætning)

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{C})$. Der findes en unitær matrix $U \in \mathsf{Mat}_{n,n}(\mathbb{C})$, så U^HAU er en øvretriangulær matrix.

Bevis

Beviset foregår ved induktion over n. I basen n=1 er det trivielt opfyldt, da alle matricer $\in \mathsf{Mat}_{1,1}$ er øvre triangulære.

Antag nu at det gælder for en matrix $B \in Mat_{n-1,n-1}(\mathbb{C})$.

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{B})$ med en egenværdi $\lambda_1 \in \mathbb{C}$, og en tilhørende egenvektor $\mathbf{v}_1 \in \mathbb{C}^n$.

Vi kan arrangere at $\|\mathbf{v}_1\| = 1$. Og vi kan udvide $\{\mathbf{v}_1\}$ til en basis for \mathbb{C}^n , og ved at anvende Gram-Schmidt på denne basis, får vi en ortonormalbasis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for \mathbb{C}^n .

Vi lader $U_1 = [\mathbf{v}_1, \dots, \mathbf{v}_n] \in \mathsf{Mat}_{n,n}(\mathbb{C})$, hvilket gør U_1 unitær.

Vi vil nu forsøge at afgøre opbygningen af den første søjle i $U_1^H A U_1$. Dette kan vi gøre ved at gange med \mathbf{e}_1 :

$$U_1^H A U_1 \mathbf{e}_1 = U_1^H A \mathbf{v}_1 = U_1^H \lambda_1 \mathbf{v}_1 = \lambda_1 U_1 \mathbf{v}_1 = \lambda_1 U_1^H U_1 \mathbf{e}_1 = \lambda_1 \mathbf{e}_1$$

Vi ved derfor at første i $U_1^H A U_1$ er på formen $(\lambda_1, 0, \dots, 0)^T$, og kan derfor skrive $U_1^H A U_1$ som

$$U_1^H A U_1 = \begin{bmatrix} \lambda_1 & \mathbf{r} \\ \mathbf{0} & A_1 \end{bmatrix}$$

Her er \mathbf{r} en rækkevektor og $\mathbf{0}$ en søjlevektor, begge med n-1 indgange, og A_1 er defineret som minoren $M(A)_{1,1}$.

Per induktionshypotesen findes der en unitær matrix $C \in \mathsf{Mat}_{n-1,n-1}$ der opfylder $C^H A_1 C = B$, så B er en øvre triangulær matrix $\in \mathsf{Mat}_{n-1,n-1}(\mathbb{C})$.

Vi definerer

$$U_2 = \begin{bmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & C \end{bmatrix}$$

hvor 0 igen er en søjlevektor med n-1 indgange.

 U_2 er unitær, da de sidste n-1 søjler udgør en ortonormal mængde, per definition, og hver for sig er ortogonale på $(U_2)_{:1}$, som er lig enhedsvektoren e_1 .

Ifølge lemma 11.1.16 er $U = U_1 U_2$ ogås unitær.

Da $U_1^H A U_1$ og U_2 har samme former $(n \times n)$, kan vi udregne $U_2^H (U_1^H A U_1) U_2$ ved direkte brug af matrix-regler

$$U^{H}AU = U_{2}^{H}(U_{1}^{H}AU_{1})U_{2}$$

$$= \begin{bmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & C^{H} \end{bmatrix} \begin{bmatrix} \lambda_{1} & \mathbf{r} \\ \mathbf{0} & A_{1} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & C \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_{1} & \mathbf{r} \\ \mathbf{0} & C^{H}A_{1} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0}^{T} \\ \mathbf{0} & C \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_{1} & \mathbf{r}C \\ \mathbf{0} & C^{H}A_{1}C \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_{1} & \mathbf{r}C \\ \mathbf{0} & B \end{bmatrix}$$

Som er øvre triangulær fordi *B* er det.

Induktionsskridtet er derfor taget, og sætningen er bevist.

13.3 Unitær Diagonalisering

Sætning 11.1.10

Lad $A \in \mathsf{Mat}(\mathbb{C})$ være hermite'sk. Så kan A diagonaliseres unitært, det vil sige der findes en unitær matrix $U \in \mathsf{Mat}(\mathbb{C})$ så

$$U^{-1}AU = U^HAU$$

er diagonal, med reelle diagonalindgange.

Bevis

Ifølge Schurs sætning findes der en unitær matrix $U \in Mat(\mathbb{C})$ så $U^HAU = T$ er en øvretrekantsmatrix. T er hermite'sk da

$$T^{H} = (U^{H}AU)^{H} = U^{H}A^{H}(U^{H})^{H} = U^{H}AU = T$$
(1)

Da T er øvretriangulær må T^H være nedretriangulær

$$T = \begin{bmatrix} t_{11} & \dots & t_{1n} \\ & \ddots & \vdots \\ 0 & & t_{nn} \end{bmatrix}, T^H = \begin{bmatrix} \overline{t_{11}} & & 0 \\ \vdots & \ddots & \\ \overline{t_{1n}} & \dots & \overline{t_{nn}} \end{bmatrix}$$

men (1) siger også at $T^H = T$, så for $i \neq j$ er $t_{ij} = 0$ og $t_{ii} = \overline{t_{ii}}$ for i = 1, ..., n, hvilket betyder at T er diagonal med reelle indgange.

14 Lineære differentialligninger

([P] 10.1, 12.2)

Disposition

- 1. Entydighed
- 2. Putzers Algoritme

14.1 Diff. Systems Entydighed

Lemma 10.1.1

Lad λ , $a \in \mathbb{C}$. Ligningen

$$x' = \lambda x \tag{\diamondsuit}$$

har en en entydig løsning $z:\mathbb{R} \to \mathbb{C} \ \mathrm{med} \ z(0) = a \ \mathrm{givet} \ \mathrm{ved} \ z(t) = e^{\lambda t} a$

Bevis

Vi ved at λ er på formen c + id. Det kan vi sætte ind i $e^{\lambda t}$ og differentiere:

$$\begin{aligned} \frac{d}{dt}e^{\lambda t} &= \frac{d}{dt}e^{(c+id)t} \\ &= \frac{d}{dt}e^{ct+idt} \\ &= \frac{d}{dt}e^{ct}e^{idt} \\ &= \frac{d}{dt}e^{ct}(\cos(dt) + i\sin(dt)) \\ &= ce^{ct}(\cos(dt) + i\sin(dt)) + e^{ct}(-d\sin(dt) + id\cos(dt)) \\ &= ce^{ct}(\cos(dt) + i\sin(dt)) + ide^{ct}(i\sin(dt) + \cos(dt)) \\ &= (c+id)e^{ct}(\cos(dt) + i\sin(dt)) \\ &= (c+id)e^{ct}e^{idt} \\ &= (c+id)e^{ct+idt} \\ &= (c+id)e^{(c+id)t} \\ &= \lambda e^{\lambda t} \end{aligned}$$

Altså er $z'(t) = \lambda e^{\lambda t} a = \lambda z(t)$, og z(t) er derfor en løsning til (\lozenge) . Og det er klart at z(0) = a.

For at vise at alle løsninger er på samme form som z(t) kan vi lade $y: \mathbb{R} \to \mathbb{C}$ være en løsning til $x' = \lambda x$, med y(0) = a.

Så har vi at

$$\frac{d}{dt}(e^{-\lambda t}y(t)) = -\lambda e^{-\lambda t}y(t) + e^{-\lambda t}y'(t)$$

$$= e^{-\lambda t}(y'(t) - \lambda y(t))$$

$$= 0$$
(*)

Hvilket giver os at $e^{-\lambda t}y(t)$ er konstant. Som kun kan ske hvis y(t) er invers til $e^{-\lambda t}$, nemlig på formen $e^{\lambda t}$. Bemærk at (\star) følger af $y'(t) = \lambda y(t)$.

Vi er også givet for t = 0 at

$$e^{-\lambda t}y(t) = e^{-\lambda 0}y(0) = y(0) = a$$

Derfor

$$y(t) = e^{\lambda t}a = z(t)$$

z(t) er altså den entydige løsning til (\lozenge) med z(0) = a.

14.2 Putzers Algoritme

Sætning 12.2.2 (Putzers Algoritme)

Lad $A \in \mathsf{Mat}_{n,n}(\mathbb{C})$ og $\lambda_1, \ldots, \lambda_n$ være A's egenværdier, talt med multiplicitet. Vi lader P_k være

$$P_k = egin{cases} I & ext{hvis } k = 0 \ \prod_{j=1}^k (A - \lambda_j I) & ext{for } k = 1, \dots, n \end{cases}$$

og kan nu definere Q(t) som

$$Q(t) = \sum_{k=0}^{n-1} r_{k+1}(t) P_k$$

hvor r_k er

$$r_k(t) = \begin{cases} e^{\lambda_1 t} & \text{hvis } k = 1 \\ e^{\lambda_k t} \int\limits_0^t e^{-\lambda_k s} r_{k-1}(s) \, ds & \text{for } k = 2, \dots, n \end{cases}$$

Så gælder at Q(0) = I, og Q'(t) = AQ(t) = Q(t)A.

Bevis

Først kan vi sige at $r_1(0) = 1$, og $r_k(0) = 0$ for k = 2, ..., n, så $Q(0) = P_0 = I$. Vi kan se at A kommuterer med $(A - \lambda_i I)$ for i = 1, ..., n, derfor kommuterer den også med $P_0, ..., P_{n-1}$, og så med Q(t). Altså gælder det at AQ(t) = Q(t)A. For k > 1 gælder ddet at

$$\begin{split} r_k'(t) &= (e^{\lambda_k t} \int\limits_0^t e^{-\lambda_k s} r_{k-1}(s) \, ds)' \\ &= \lambda_k e^{\lambda_k t} \int\limits_0^t e^{-\lambda_k s} r_{k-1}(s) \, ds + e^{\lambda_k t} e^{-\lambda_k t} r_{k-1}(t) \\ &= \lambda_k r_k(t) + r_{k-1}(t) \end{split} \qquad \text{kæde reglen}$$

Ved at definere $r_0(t) = 0$, så gælder dette også for k = 1. Vi har så at

$$Q'(t) = \sum_{k=0}^{n-1} r'_{k+1}(t) P_k$$

=
$$\sum_{k=0}^{n-1} (\lambda_{k+1} r_{k+1}(t) + r_k(t)) P_k$$

og derfor

$$Q'(t) - AQ(t) = \sum_{k=0}^{n-1} (\lambda_{k+1} r_{k+1}(t) + r_k(t)) P_k - A \sum_{k=0}^{n-1} r_{k+1}(t) P_k$$

$$= \sum_{k=0}^{n-1} (-r_{k+1}(t) (A - \lambda_{k+1} I) P_k + r_k(t) P_k)$$

$$= \sum_{k=0}^{n-1} (-r_{k+1}(t) P_{k+1} + r_k(t) P_k)$$

$$= -r_n(t) P_n$$

$$= 0$$

$$(\sharp)$$

I (\clubsuit) udnytter vi at $r_0(t)P_0=0$, og at alle andre end $-r_n(t)P_n$ går ud med hinanden.

I (\sharp) siger Cayley-Hamilton at $P_n=0$. Beviset er fuldført.