

Normalization

.NET

Database normalization is the process of structuring a relational database in order to reduce data redundancy and improve data integrity.

Normalization Assignment (Pt. 1)

- Create an unnormalized table.
- List the information of your family members.
- There must be at least 5 attributes to each tuple (row) and at least 5 entities.

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

Normalization is a method to prevent **anomalies** and keep the database in a consistent state. **Fields** and **tables** of a relational DB are organized to minimize redundancy and dependency.

Normalization involves dividing large **tables** into smaller (and less redundant) **tables** and defining relationships among their **atomic** data.

There are many normal forms but 1NF, 2NF, and 3NF are primarily used.

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

This table is not normalized. All the information is stored in one table.

Title	Name	City	Movies Watched
Mr.	Moore	Crowley	Avengers Endgame, Thor
Miss.	Garza	Monterrey	Ant-Man, Captain Marvel
Mr.	Moore	Dallas	Spider-Man: Homecoming, Doctor Strange, Iron Man 2

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

1st Normal Form (1NF)

- Have a single *Primary* Key.
- Each table cell should contain a single value.
- Each entity needs to be unique.
- The table contains atomic values only.

Title	Name	City	Movies Watched
Mr.	Moore	Crowley	Avengers Endgame
Mr.	Moore	Crowley	Thor
Miss.	Garza	Monterrey	Ant-Man
Miss.	Garza	Monterrey	Captain Marvel
Mr.	Moore	Dallas	Spider-Man: Homecoming
Mr.	Moore	Dallas	Doctor Strange
Mr.	Moore	Dallas	Iron Man 2

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

2nd Normal Form (2NF) -

- First, be in 1NF.
- Remove subsets of data that apply to multiple rows of a *table* and place them in separate *tables* with PK → FK relationships among the new tables.
- If the table is in *1NF* and every non-key attribute is dependent on the *Primary Key*. then *2NF* is achieved.

Id(PK)	Title	Name	City 1
1	Mr.	Moore	Crowley
2	Miss.	Garza	Monterrey
3	Mr.	Moore	Dallas

Actions Taken:

The **1NF** table is divided into two tables. Table 1 contains only person information. **Id** is created as the **Primary Key (PK)** for Table 1. Table 2 contains the information for each movie. Table 2's new **PK** column is **Movield**.

Movield(PK)	ld(FK)	Movie 2
22	1	Avengers Endgame
4	1	Thor
12	2	Ant-Man
21	2	Captain Marvel
16	3	Spider-Man: Homecoming
14	3	Doctor Strange

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

To achieve *3NF*, there must be no dependencies between fields in a single row.

"Given a value for column B, do we then have only one possible value for column C?"

If yes, B and C should be put into a new table, with one of them becoming the *Primary Key (PK)*. A reference to the new table should be left in the original table and marked as a *Foreign Key*.

Id(PK)	Title	Name	City 1
1	Mr.	Moore	Crowley
2	Miss.	Garza	Monterrey
3	Mr.	Moore	Dallas

A *Transitive Functional Dependency* occurs when the change of one *Candidate Key* column might cause any other *Candidate Key* column to change. In table 1, changing the non-key column '*Name*' may change '*Title*'.

Movield(PK)	ld(FK)	Movie 2	
22	1	Avengers Endgame	
4	1	Thor	
12	2	Ant-Man	
21	2	Captain Marvel	
16	3	Spider-Man: Homecoming	
14	3 Doctor Strange		
3	3	Iron Man 2	

https://www.tutorialspoint.com/dbms/database_normalization.htm https://www.c-sharpcorner.com/UploadFile/0146e3/database-normalization/

Table 1		
Titleld (PK)	Title	
1	Mr.	
2	Miss.	
3	Mrs.	
4	Dr.	

Table 4		
CityId (PK) City		
76036	Crowley	
75201	Dallas	
32070	Monterrey	
76701	Waco	

A *Transitive Functional Dependency* occurs when the change of one *Candidate Key* column might cause any other *Candidate Key* column to change. In table 1, changing the

Candidate Key column 'Name' may change 'Title'.

Table 2		
Movield (PK)	Movie	
22	Avengers Endgame	
4	Thor	
12	Ant-Man	
21	Captain Marvel	
16	Spider-Man: Homecoming	
14	Doctor Strange	
3	Iron Man 2	

Junction Table		
Movield (FK)	ld (FK)	
22	1	
4	1	
12	2	
21	2	
16	3	
14	3	
3	3	

Table 3			
ld (PK)	TitleId (FK)	Name	Cityld (FK)
1	1	Moore	76036
2	2	Garza	75201
3	1	Moore	32070

Actions Taken:

Table 1 is divided. Two new tables are created to store Title and City. Table 2 is divided to isolate Movie data and a Junction table is created to show the Many-To-Many relationship between movie and person. The database is now in *3NF*.

Assignment (Pt. 2)

Convert your Pt. 1 table to a 3NF table.