

Data Warehouse Definitions

Theoretical definition:

"A data warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management's decision-making process"

Using the Data Warehouse - Wiley, W.H. Inmon

Data Warehouse Definitions (cont..)

Data Warehouse Definitions (cont..)

Integrated

- Data can come from many different sources
- Each source can look different than the other
- Once it's in the DW, it should look the same

Time-Variant

- Key structure is an element of time
- No matter how it's organized, it still represents a series of snapshots
- Snapshots or slices can lose accuracy over time, as opposed to the operational environment, which doesn't lose accuracy.

Example: "Our product code has changed since last year."

Data Warehouse Definitions (cont..)

Nonvolatile

- Two types of routine operations: Load & Access
- No update
- Removal of data according to business rule

Business Analyst Perspective

Outcome Variable / quantitative variable

Data Cube Basics

- Business analyst model
 - Factors or influencing variables of interest
 - Quantitative variables
 - Multidimensional arrangement
- Terminology
 - Dimension: subject label for a row or column
 Can have more than 2 or 3 dimensions
 dimension may be city size or type of health plan offered
 - Member: value of dimension
 - Measure: quantitative variables/data stored in cells can have more than one measure in a cell

Sales Data Cube Example

Notes on Dimensions and Measures

•Hierarchies:

Member can have sub members (more detail) Location: country, region, state, zip code

•Sparsity:

Many cells are typically empty when dimensions are related May not sell all products in all regions
Major problem with storing data cubes:
compression of unused space

•Measures:

Derived measure:

Common: unit sales * unit volume; sales per transaction Data cube engine must compute efficiently Multiple measures in cells

- Granularity (level of details or summarization of the units of data)
 - high level of granularity contains low level of detail
 - low level of granularity contains high level of detail
- Sparsity (low density)
 - Data is normally stored in sparse form. If no value exists for a given combination of dimension values, no row exists in the fact table. For example, if not every product is sold in every market. In this case, Market and Product are sparse dimensions.
 - DENSE DATA: Most multidimensional databases may also contain dense dimensions. A fact table is considered to have dense data if it has (of a high probability to have) one row for every combination of its associated dimension levels.

Measure Aggregation Properties

"Aggregate Property" indicates allowable summary operations for measures

Additive

- Summarized by addition across all dimensions such as sales, cost, profit
- Sales can be summed across product, time, customer, ...

Semi-Additive

- Summarized by addition in some but not all dimensions such as time
- Periodic measurements such as account balances and inventory levels
- Account balance can be summed across customer branch
- Account balance cannot be summed across time because balance is just a point in time measurement

Non-Additive

- Cannot be summarized by addition through any dimension
- Historical facts such as unit price for a sale

12

Measure Aggregation Example

- Dimensions
 - Course: course id, degree, department, and college
 - Student: student id, major, department, and college
 - Time: semester, academic year, academic decade
- Measures:
 - Credit hours
 - Grade
 - Unit tuition (cost per credit hour)
 - Tuition (unit tution * credit hours)
- Aggregation properties for measures: ?

Credit hours: additive across all dimensions

Grade: non additive but averageable such as grade point average

Unit tuition: non additive and averageable but probably not useful as an average

Tuition: additive

Sales Data Cube Example

WHAT IS THE GENERIC MEANING OF THE VERB "PIVOT"?

WHAT DOES PIVOT MEAN FOR A DATA CUBE?

SLICE OPERATOR

- Subset of dimensions
- Set dimension to specific value

(Location x Product Slice for Time = 1/1/2013)

Location	Product						
Location	Mono Laser	Ink Jet	Photo	Portable 25			
California	80	110	60				
Utah	40	90	50	30			
Arizona	70	55	60	35			
Washington	75	85	45	45			
Colorado	65	45	85	60			

SLICE SUMMARIZE VARIATION

 Replace a dimension with a summary of its values across all members

Location	Time					
	1/1/2013	1/2/2013		Total Sales		
California	275	670		16,250		
Utah	210	190		11,107		
Arizona	220	255		21,500		
Washington	250	285		20,900		
Colorado	255	245		21,336		

DICE OPERATOR

- Replace a dimension with a subset of values
- Dice operation often follows a slice operation

Location	Product						
Location	Mono Laser	Ink Jet	Photo	Portable			
California	80	110	60	25			
Utah	40	90	50	30			
Arizona	70	55	60	35			
Washington	75	85	45	45			
Colorado	65	45	85	60			

(Utah, Colorado, Arizona Dice)

Location	Product						
Location	Mono Laser	Ink Jet	Photo	Portable			
Utah	40	90	50	30			
Arizona	70	55	60	35			
Colorado	65	45	85	60			

NAVIGATION OPERATORS

- Operators for hierarchical dimensions
- Drill-down: add detail to a dimension
- Roll-up: remove detail from a dimension
- Distribute or recalculate measure values

DRILL-DOWN EXAMPLE

Location		Product						
Location	Mono Laser	Ink Jet	Photo	Portable				
California	80	110	60	25				
-Utah								
Salt Lake	20	20	10	15				
Park City	5	30	10	5				
Ogden	15	40	30	10				
Arizona	70	55	60	35				
Washington	75	85	45	45				
Colorado	65	45	85	60				

PIVOT OPERATOR

Rotate or rearrange dimensions

Location

OPERATOR SUMMARY

Operator	Purpose	Description
Slice	Focus attention on a subset of dimensions	Replace a dimension with a single member value or with a summary of its measure values
Dice	Focus attention on a subset of member values	Replace a dimension with a subset of members
Drill-down	Obtain more detail about a dimension	Navigate from a more general level to a more specific level
Roll-up	Summarize details about a dimension	Navigate from a more specific level to a more general level
Pivot	Present data in a different order	Rearrange the dimensions in a data cube

Microsoft Multidimensional Expressions (MDX) Language History

 Defacto standard developed by Microsoft and later by the XMLA (XML for Analysis) Council – A web standards

₩9₩MS OLAP specificatio n mdXML specificatio n by XMLA Council

1998 MS OLAP services release

MS 2005 MDX revision

MDX Usage

- Foundation for Microsoft products and open source analytics software
- SQL Server Analysis Services and Excel Pivot Tables
- Hyperion, IBM, SAP (Systems Applications and Products), and other vendors
- Foundation for open source projects: JPivot,
 Pivot4J, and Pentaho Business Analytics Platform

Example MDX Cube Structure

Cube Structure

- ▼ 点 Measures
 - Quantity
 - Sales 🗞
- ▼ 点 Markets
 - (All)
 - Territory
 - « Country
 - *** State Province
 - *** City
- ▼ 点 Customers
 - (All)
 - Customer
- ▼ 🚓 Product
 - (All)
 - Line
 - ** Vendor
 - *** Product
- ▼ 点 Time
 - (All)
 - Years
 - Quarters
 - *** Months
- ▼ 点 Order Status
 - (All)
 - Type

26

Attribute Hierarchy and Members

Steel Wheels Cube Display

			Time		
	All Years	+ 2003	+ 2004	+ 2005	Average
	Measures	Measures	Measures	Measures	Measures
Product	Sales	Sales	Sales	Sales	Sales
+ Classic Cars	4,091,420	1,514,407	1,838,275	738,738	1,363,807
→ Motorcycles	1,274,125	397,220	590,580	286,325	424,708
+ Planes	1,076,757	347,755	528,928	200,074	358,919
Ships	748,671	244,821	375,672	128,178	249,557
Autoart Studio Design	67,592	19,764	36,027	11,801	22,531
Carousel DieCast Legends	208,583	75,184	102,537	30,862	69,528
Min Lin Diecast	79,662	29,691	37,098	12,873	26,554
Red Start Diecast	77,872	25,207	40,948	11,717	25,957
Studio M Art Models	84,190	27,795	39,390	17,005	28,063
→ Unimax Art Galleries	147,078	42,313	73,966	30,799	49,026
→ Welly Diecast Productions	83,693	24,867	45,706	13,120	27,898
+ Trains	234,469	72,802	124,750	36,917	78,156
Trucks and Buses	1,154,281	420,430	531,976	201,875	384,760
→ Vintage Cars	2,066,226	679,949	997,560	388,718	688,742
Average	818,919	282,876	383,672	152,371	272,973

MDX Terminology Notes

- Tuple
 - Cell identifier
 - One member from each dimension
- Axis: dimension selected in a query (source cube cells)
- Slicer: combination of dimension members (result cube cells)

SQL Versus MDX

- Table result for SQL SELECT statement
- Data cube result for MDX SELECT statement
- Different mathematical approaches for manipulating tables (e.g. relational algebra) and data cubes (e.g. matrix algebra)

Comparison of Clauses

	Language						
Clause	SQL	MDX					
SELECT	List of columns	List of axis dimensions (source cube cells)					
FROM	List of tables	Cube name					
WHERE	Conditions restricting rows	Restriction to a combination of dimension members (result cube cells)					

Example MDX Statement and Result

Dimensions in the WHERE clause must be different than the SELECT clause
WHERE condition is known as a slicer condition

CrossJoint Operation

 Combines multiple dimensions or measures on a single axis

Slicer Comparison Examples

	Order Status All Status Types							
	Time							
Product	+ 2003 + 2004 + 2005							
Classic Cars	12,762	16,085	6,705					
→ Motorcycles	4,031	5,906	2,771					
+ Planes	3,833	5,820	2,207					
Ships	2,844	4,309	1,346					
♣ Trains	1,000	1,409	409					
Trucks and Buses	4,056 5,024 1,921							
→ Vintage Cars	7,913	10,864	4,116					

[Product].[Ships], [Product].[Trains], [Product].[Trucks and

Buses], [Product].[Vintage Cars]} ON ROWS FROM

[SteelWheelsSales] WHERE Markets.Territory.NA

Pivot Table

		Order Status						
	Cancelled	Disputed	In Process	On Hold	Resolved	Shipped	Total	
	Measures	Measures	Measures	Measures	Measures	Measures	Measures	
Product	Sales	Sales	Sales	Sales	Sales	Sales	Sales	
1968 Ford Mustang	3,923					149,346	153,268	
1958 Chevy Corvette Limited Edition			1,030			46,205	47,235	
1966 Shelby Cobra 427 S/C			2,234	2,576	1,463	42,336	48,608	
1982 Camaro Z28			3,722		3,195	97,362	104,280	
1949 Jaguar XK 120			3,934	7,182		72,523	83,639	
1952 Alpine Renault 1300			12,001			179,072	191,073	
1956 Porsche 356A Coupe	5,148					135,479	140,627	
1957 Corvette Convertible						137,115	137,115	
1961 Chevrolet Impala						83,389	83,389	
1965 Aston Martin DB5	3,375			7,048	2,759	93,669	106,851	
1952 Citroen-15CV			5,297	5,820		81,773	92,890	
1969 Chevrolet Camaro Z28			3,386	1,057		66,304	70,747	
1992 Porsche Cayenne Turbo Silver	2,367					99,789	102,156	
1948 Porsche 356-A Roadster	1 930					77 738	79.66	

- Powerful interface for data cubes
- Convenient rearrangement of row and column headings
- Expand or collapse dimensions

Pivot4J

- Allows cube representation similar to pivot table in Microsoft Excel
- Works with Pentaho Business Analytics
- Separate add-on
- Graphical implementation of the MDX language

Pivot4J Interface

Pivot Table with MDX Statement

Pivot Table with CrossJoin

