CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 July 2007 (19.07.2007)

PCT

(10) International Publication Number WO 2007/080126 A3

(51) International Patent Classification:

C12N 15/82 (2006.01) A01H 5/00 (2006.01) C12N 15/12 (2006.01) C12N 15/11 (2006.01)

C12N 5/10 (2006.01)

(21) International Application Number:

PCT/EP2007/000286

(22) International Filing Date: 12 January 2007 (12.01.2007)

(25) Filing Language:

Englis

(26) Publication Language:

English

(30) Priority Data:

 60/758,191
 12 January 2006 (12.01.2006)
 US

 06447008.1
 12 January 2006 (12.01.2006)
 EP

 60/771,160
 7 February 2006 (07.02.2006)
 US

 60/837,910
 16 August 2006 (16.08.2006)
 US

 60/875,356
 18 December 2006 (18.12.2006)
 US

(71) Applicant (for all designated States except US): DEV-GEN N.V. [BE/BE]; Technologiepark 30, B-9052 Zwijnaarde (BE).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RAEMAEKERS, Romaan [BE/BE]; Eikelstraat 29, B-9840 De Pinte (BE). KUBLER, Laurent [FR/FR]; 9, Rue De Quesnoy, F-59126 Linselles (FR). VANBLEU, Els [BE/BE]; Sint-omerlaan 50, B-8900 leper (BE).
- (74) Agents: DE CLERCQ, Ann et al.; De Clercq, Brants & Partners CV, E. Gevaertdreef 10a, B-9830 Sint-martenslatem (BE).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: DSRNA AS INSECT CONTROL AGENT

FIGURE 1-LD

(57) Abstract: The present invention relates to methods for controlling pest infestation using double stranded RNA molecules. The invention provides methods for making transgenic plants that express the double stranded RNA molecules, as well as pesticidal agents and commodity products produced by the inventive plants.

2007/080126 A3

WO 2007/080126 A3

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

- of inventorship (Rule 4.17(iv))

Published:

- with international search report
- (88) Date of publication of the international search report: 27 March 2008
- (48) Date of publication of this corrected version:

14 August 2008

(15) Information about Correction: see Notice of 14 August 2008

DSRNA AS INSECT CONTROL AGENT

Field of the invention

5

10

15

20

25

30

35

40

The present invention relates to the field of double-stranded RNA (dsRNA)-mediated gene silencing in insect species. More particularly, the present invention relates to genetic constructs designed for the expression of dsRNA corresponding to novel target genes. These constructs are particularly useful in RNAi-mediated plant pest control. The invention further relates to methods for controlling insects, methods for preventing insect infestation and methods for down-regulating gene expression in insects using RNAi. The invention also relates to transgenic plants resistant to insect infestation.

Background to the invention

The environment is replete with pests and numerous methods have attempted to control pests infestations of plants. Commercial crops are often the targets of insect attack. Substantial progress has been made in the last few decades towards developing more efficient methods and compositions for controlling insect infestation in plants.

Chemical pesticides have been very effective in eradicating pest infestation. However, there are several disadvantages to using chemical pesticidal agents. Not only are they potentially detrimental to the environment, but they are not selective and are harmful to various crops and non-target fauna. Chemical pesticides persist in the environment and generally are slow to be metabolized, if at all. They accumulate in the food chain, and particularly in the higher predator species where they can act as mutagens and/or carcinogens to cause irreversible and deleterious genetic modifications. There has thus been continued controversy in the use of chemical insecticides to combat crop pests. They can rapidly develop resistance against these insecticides because of repetitive usage of the same insecticide or of insecticides having the same mode of action, and because accumulation also results in the development of resistance to the agents in species higher up the evolutionary ladder.

Control of insect pests on agronomically important crops is important, particularly insect pests which damage plants belonging to the Solanaceae family, especially potato (Solanum tuberosum), but also tomato (Solanum lycopersicum), eggplant (Solanum melongena), capsicums (Solanum capsicum), and nightshade (for example, Solanum aculeastrum, S. bulbocastanum, S. cardiophyllum, S. douglasii, S. dulcamara, S. lanceolatum, S. robustum, and S. triquetrum), particularly the control of coleopteran pests.

Biological control using extract from neem seed has been shown to work against coleopteran pests of vegetables. Commercially available neem-based insecticides have azadirachtin as the primary active ingredient. These insecticides are applicable to a broad spectrum of insects. They act as insect growth regulator; azadirachtin prevents insects from molting by inhibiting production of an insect hormone, ecdysone.

Biological control using protein Cry3A from Bacillus thuringiensis varieties tenebrionis and san diego, and derived insecticidal proteins are alternatives to chemical control. The Bt toxin

10

15

20

25

30

35

40

protein is effective in controlling Colorado potato beetle larvae either as formulations sprayed onto the foliage or expressed in the leaves of potatoes.

An alternative biological agent is dsRNA. Over the last few years, down-regulation of genes (also referred to as "gene silencing") in multicellular organisms by means of RNA interference or "RNAi" has become a well-established technique.

RNA interference or "RNAi" is a process of sequence-specific down-regulation of gene expression (also referred to as "gene silencing" or "RNA-mediated gene silencing") initiated by double-stranded RNA (dsRNA) that is complementary in sequence to a region of the target gene to be down-regulated (Fire, A. Trends Genet. Vol. 15, 358-363, 1999; Sharp, P.A. Genes Dev. Vol. 15, 485-490, 2001).

Over the last few years, down-regulation of target genes in multicellular organisms by means of RNA interference (RNAi) has become a well established technique. Reference may be made to International Applications WO 99/32619 (Carnegie Institution) and WO 00/01846 (by Applicant).

DsRNA gene silencing finds application in many different areas, such as for example dsRNA mediated gene silencing in clinical applications (WO2004/001013) and in plants. In plants, dsRNA constructs useful for gene silencing have also been designed to be cleaved and to be processed into short interfering RNAs (siRNAs).

RNAi has also been proposed as a means of protecting plants against plant parasitic nematodes, i.e. by expressing in the plant (e.g. in the entire plant, or in a part, tissue or cell of a plant) one or more nucleotide sequences that form a dsRNA fragment that corresponds to a target gene in the plant parasitic nematode that is essential for its growth, reproduction and/or survival. Reference may be made to the International Application WO 00/01846 (by Applicant) and US patent 6,506,559 (based on WO 99/32619).

Although the technique of RNAi has been generally known in the art in plants, C. elegans and mammalian cells for some years, to date little is known about the use of RNAi to down-regulate gene expression in insects. Since the filing and publication of the WO 00/01846 and WO 99/32619 applications, only few other applications have been published that relate to the use of RNAi to protect plants against insects. These include the International Applications WO 01/37654 (DNA Plant Technologies), WO 2005/019408 (Bar Ilan University), WO 2005/049841 (CSIRO, Bayer Cropscience), WO 05/047300 (University of Utah Research foundation), and the US application 2003/00150017 (Mesa et al.).

The present invention provides target genes and constructs useful in the RNAi-mediated insect pest control, especially the control of insect plant pathogens. The present invention also provides methods for controlling insect pest infestation by repressing, delaying, or otherwise reducing target gene expression within a particular insect pest.

Description of the invention:

The present invention describes a novel non-compound, non-protein based approach for the control of insect crop pests. The active ingredient is a nucleic acid, a double-stranded RNA

10

15

20

25

30

35

40

(dsRNA), which can be used as an insecticidal formulation. In another embodiment, the dsRNA can be expressed constitutively in the host plant, plant part, plant cell or seed to protect the plant against chewing insects especially coleopterans such as beetles. The sequence of the dsRNA corresponds to part or whole of an essential insect gene and causes downregulation of the insect target via RNA interference (RNAi). As a result of the downregulation of mRNA, the dsRNA prevents expression of the target insect protein and hence causes death, growth arrest or sterility of the insect.

The methods of the invention can find practical application in any area of technology where it is desirable to inhibit viability, growth, development or reproduction of the insect, or to decrease pathogenicity or infectivity of the insect. The methods of the invention further find practical application where it is desirable to specifically down-regulate expression of one or more target genes in an insect. Particularly useful practical applications include, but are not limited to, protecting plants against insect pest infestation.

In accordance with one embodiment the invention relates to a method for controlling insect growth on a cell or an organism, or for preventing insect infestation of a cell or an organism susceptible to insect infection, comprising contacting insects with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of an insect target gene, whereby the double-stranded RNA is taken up by the insect and thereby controls growth or prevents infestation.

The present invention therefore provides isolated novel nucleotide sequences of insect target genes, said isolated nucleotide sequences comprising at least one nucleic acid sequence selected from the group comprising:

(i) sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 183, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472,

10

15

20

25

30

35

40

473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or a complement thereof,

said nucleic acid sequences being useful for preparing the double stranded RNAs of the invention for controlling insect growth.

"Controlling pests" as used in the present invention means killing pests, or preventing pests to develop, or to grow or preventing pests to infect or infest. Controlling pests as used herein also encompasses controlling pest progeny (development of eggs). Controlling pests as used herein also encompasses inhibiting viability, growth, development or reproduction of the pest, or to decrease pathogenicity or infectivity of the pest. The compounds and/or compositions described herein, may be used to keep an organism healthy and may be used curatively, preventively or systematically to control pests or to avoid pest growth or development or infection or infestation. Particular pests envisaged in the present invention are plant pathogenic insect pests. "Controlling insects" as used herein thus also encompasses controlling insect progeny (such as development of eggs). Controlling insects as used herein also encompasses inhibiting viability, growth,

development or reproduction of the insect, or decreasing pathogenicity or infectivity of the insect. In the present invention, controlling insects may inhibit a biological activity in a insect, resulting in one or more of the following attributes: reduction in feeding by the insect, reduction in viability of the insect, death of the insect, inhibition of differentiation and development of the insect, absence of or reduced capacity for sexual reproduction by the insect, muscle formation, juvenile hormone formation, juvenile hormone regulation, ion regulation and transport, maintenance of cell membrane potential, amino acid biosynthesis, amino acid degradation, sperm formation, pheromone synthesis, pheromone sensing, antennae formation, wing formation, leg formation, development and differentiation, egg formation, larval maturation, digestive enzyme formation, haemolymph synthesis, haemolymph maintenance, neurotransmission, cell division, energy metabolism, respiration, apoptosis, and any component of a eukaryotic cells' cytoskeletal structure, such as, for example, actins and tubulins. The compounds and/or compositions described herein, may be used to keep an organism healthy and may be used curatively, preventively or systematically to control a insect or to avoid insect growth or development or infection or infestation. Thus, the invention may allow previously susceptible organisms to develop resistance against infestation by the insect organism.

10

15

20

25

30

35

The expression "complementary to at least part of" as used herein means that the nucleotide sequence is fully complementary to the nucleotide sequence of the target over more than two nucleotides, for instance over at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or more contiguous nucleotides.

According to a further embodiment, the invention relates to a method method for down-regulating expression of a target gene in an insect, comprising contacting said insect with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of the insect target gene to be down-regulated, whereby the double-stranded RNA is taken up into the insect and thereby down-regulates expression of the insect target gene.

Whenever the term "a" is used within the context of "a target gene", this means "at least one" target gene. The same applies for "a" target organism meaning "at least one" target organism, and "a" RNA molecule or host cell meaning "at least one" RNA molecule or host cell. This is also detailed further below.

According to one embodiment, the methods of the invention rely on uptake by the insect of double-stranded RNA present outside of the insect (e. g. by feeding) and does not require expression of double-stranded RNA within cells of the insect. In addition, the present invention also encompasses methods as described above wherein the insect is contacted with a composition comprising the double-stranded RNA.

The invention further provides a method for down-regulating expression of at least one target gene in a target organism (which is capable of ingesting a plant, plant part, plant cell or seeds) comprising feeding a plant, plant part, plant cell or seed to the target organism which plant, plant part, plant cell or seed expresses double-stranded RNA.

10

15

20

25

30

35

In a more preferred aspect, the invention provides a method for down-regulating expression of at least one target gene in a target organism (which is capable of ingesting a host cell, or extracts thereof) comprising feeding a hostplant, plant part, plant cell or seed to the target organism which hostplant, plant part, plant cellcell or seed expresses a double-stranded RNA molecule comprising a nucleotide sequence complementary to or representing the RNA equivalent of at least part of the nucleotide sequence of the at least one target gene, whereby the ingestion of the host cell, host plant, plant part, plant cell or seed by the target organism causes and/or leads to down-regulation of expression of the at least one target gene.

The invention provides for use of a plant, plant part, plant cell or seed as defined herein for down regulation of expression of an insect target gene. In more detailed terms, the invention provides for use of a host cell as defined herein and/or an RNA molecule comprising a nucleotide sequence that is the RNA complement of or that represents the RNA equivalent of at least part of the nucleotide sequence of a target gene from a target organism, as produced by transcription of a nucleic acid molecule in a plant, plant part, plant cell or seed, for instance in the manufacture of a commodity product, for down regulation of expression of a target gene. Suitable target genes and target organisms in respect of the invention are discussed below in further detail.

According to one embodiment, the methods of the invention rely on a GMO approach wherein the double-stranded RNA is expressed by a cell or an organism infested with or susceptible to infestation by insects. Preferably, said cell is a plant cell or said organism is a plant.

The present invention thus also relates to a method for producing a plant resistant to a plant pathogenic insect, comprising:

 transforming a plant cell with a recombinant construct comprising at least one regulatory sequence operably linked to a sequence complementary to at least part of (a) a nucleotide sequence of a target insect gene selected from the group consisting of:

(i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,

10

15

20

25

30

35

(ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID Nos 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and

(iii) sequences comprising a sense strand comprising a nucleotide sequence of (i) and an antisense strand comprising the complement of said nucleotide sequence of (i), wherein the transcript encoded by said nucleotide sequence is capable of forming a double-stranded RNA,

or (b) a nucleotide sequence which is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID Nos 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement thereof;

- regenerating a plant from the transformed plant cell; and
- growing the transformed plant under conditions suitable for the expression of the recombinant construct, said grown transformed plant resistant to plant pathogenic insects compared to an untransformed plant.

The insect can be any insect, meaning any organism belonging to the Kingdom Animals, more specific to the Phylum Arthropoda, and to the Class Insecta or the Class Arachnida. The methods of the invention are applicable to all insects and that are susceptible to gene silencing by RNA interference and that are capable of internalising double-stranded RNA from their immediate environment. The invention is also applicable to the insect at any stage in its development. Because insects have a non-living exoskeleton, they cannot grow at a uniform rate and rather grow in stages by periodically shedding their exoskeleton. This process is referred to as moulting or ecdysis. The stages between moults are referred to as "instars" and these stages may be targeted according to the invention. Also, insect eggs or live young may also be targeted according to the present invention. All stages in the developmental cycle, which includes metamorphosis in the pterygotes, may be targeted according to the present invention. Thus, individual stages such as larvae, pupae, nymph etc stages of development may all be targeted.

10

15

20

25

30

35

40

In one embodiment of the invention, the insect may belong to the following orders: Acari, Araneae, Anoplura, Coleoptera, Collembola, Dermaptera, Dictyoptera, Diplura, Diptera, Embioptera, Ephemeroptera, Grylloblatodea, Hemiptera, Homoptera, Hymenoptera, Isoptera, Lepidoptera, Mallophaga, Mecoptera, Neuroptera, Odonata, Orthoptera, Phasmida, Plecoptera, Protura, Psocoptera, Siphonaptera, Siphunculata, Thysanura, Strepsiptera, Thysanoptera, Trichoptera, and Zoraptera.

In preferred, but non-limiting, embodiments and methods of the invention the insect is chosen from the group consisting of an insect which is a plant pest, such as but not limited to Nilaparvata spp. (e.g. N. lugens (brown planthopper)); Laodelphax spp. (e.g. L. striatellus (small brown planthopper)); Nephotettix spp. (e.g. N. virescens or N. cincticeps (green leafhopper), or N.nigropictus (rice leafhopper)); Sogatella spp. (e.g. S. furcifera (white-backed planthopper)); Blissus spp. (e.g. B. leucopterus leucopterus (chinch bug)); Scotinophora spp. (e.g. S. vermidulate (rice blackbug)); Acrosternum spp. (e.g. A. hilare (green stink bug)); Pamara spp. (e.g. P. guttata (rice skipper)); Chilo spp. (e.g. C. suppressalis (rice striped stem borer), C. auricilius (gold-fringed stem borer), or C. polychrysus (dark-headed stem borer)); Chilotraea spp. (e.g. C. polychrysa (rice stalk borer)); Sesamia spp. (e.g. S. inferens (pink rice borer)); Tryporyza spp. (e.g. T. innotata (white rice borer), or T. incertulas (yellow rice borer)); Cnaphalocrocis spp. (e.g. C. medinalis (rice leafroller)); Agromyza spp. (e.g. A. oryzae (leafminer), or A. parvicornis (corn blot leafminer)); Diatraea spp. (e.g. D. saccharalis (sugarcane borer), or D. grandiosella (southwestern corn borer)); Narnaga spp. (e.g. N. aenescens (green rice caterpillar)); Xanthodes spp. (e.g. X. transversa (green caterpillar)); Spodoptera spp. (e.g. S. frugiperda (fall armyworm), S. exigua (beet armyworm), S. littoralis (climbing cutworm) or S. praefica (western yellowstriped armyworm)); Mythimna spp. (e.g. Mythmna (Pseudaletia) seperata (armyworm)); Helicoverpa spp. (e.g. H. zea (corn earworm)); Colaspis spp. (e.g. C. brunnea (grape colaspis)); Lissorhoptrus spp. (e.g. L. oryzophilus (rice water weevil)); Echinocnemus spp. (e.g. E. squamos (rice plant weevil)); Diclodispa spp. (e.g. D. armigera (rice hispa)); Oulema spp. (e.g. O. oryzae (leaf beetle); Sitophilus spp. (e.g. S. oryzae (rice weevil)); Pachydiplosis spp. (e.g. P. oryzae (rice gall midge)); Hydrellia spp. (e.g. H. griseola (small rice leafminer), or H. sasakii (rice stem maggot)); Chlorops spp. (e.g. C. oryzae (stem maggot)); Diabrotica spp. (e.g. D. virgifera virgifera (western corn rootworm), D. barberi (northern corn rootworm), D. undecimpunctata howardi (southern corn rootworm), D. virgifera zeae (Mexican corn rootworm); D. balteata (banded cucumber beetle)); Ostrinia spp. (e.g. O. nubilalis (European corn borer)); Agrotis spp. (e.g. A.ipsilon (black cutworm)); Elasmopalpus spp. (e.g. E. lignosellus (lesser cornstalk borer)); Melanotus spp. (wireworms); Cyclocephala spp. (e.g. C. borealis (northern masked chafer), or C. immaculata (southern masked chafer)); Popillia spp. (e.g. P. japonica (Japanese beetle)); Chaetocnema spp. (e.g. C. pulicaria (corn flea beetle)); Sphenophorus spp. (e.g. S. maidis (maize billbug)); Rhopalosiphum spp. (e.g. R. maidis (corn leaf aphid)); Anuraphis spp. (e.g. A. maidiradicis (corn root aphid)); Melanoplus spp. (e.g. M. femurrubrum (redlegged grasshopper) M. differentialis (differential grasshopper) or M. sanguinipes (migratory grasshopper)); Hylemya spp. (e.g. H. platura (seedcorn maggot)); Anaphothrips spp. (e.g. A. obscrurus (grass thrips)); Solenopsis spp. (e.g. S. milesta (thief ant)); or spp. (e.g. T.

10

15

20

25

30

35

40

urticae (twospotted spider mite), T. cinnabarinus (carmine spider mite); Helicoverpa spp. (e.g. H. zea (cotton bollworm), or H. armigera (American bollworm)); Pectinophora spp. (e.g. P. gossypiella (pink bollworm)); Earias spp. (e.g. E. vittella (spotted bollworm)); Heliothis spp. (e.g. H. virescens (tobacco budworm)); Anthonomus spp. (e.g. A. grandis (boll weevil)); Pseudatomoscelis spp. (e.g. P. seriatus (cotton fleahopper)); Trialeurodes spp. (e.g. T. abutiloneus (banded-winged whitefly) T. vaporariorum (greenhouse whitefly)); Bemisia spp. (e.g. B. argentifolii (silverleaf whitefly)); Aphis spp. (e.g. A. gossypii (cotton aphid)); Lygus spp. (e.g. L. lineolaris (tarnished plant bug) or L. hesperus (western tarnished plant bug)); Euschistus spp. (e.g. E. conspersus (consperse stink bug)); Chlorochroa spp. (e.g. C. sayi (Say stinkbug)); Nezara spp. (e.g. N. viridula (southern green stinkbug)); Thrips spp. (e.g. T. tabaci (onion thrips)); Frankliniella spp. (e.g. F. fusca (tobacco thrips), or F. occidentalis (western flower thrips)); Leptinotarsa spp. (e.g. L. decemlineata (Colorado potato beetle), L. juncta (false potato beetle), or L. texana (Texan false potato beetle)); Lema spp. (e.g. L. trilineata (three-lined potato beetle)); Epitrix spp. (e.g. E. cucumeris (potato flea beetle), E. hirtipennis (flea beetle), or E. tuberis (tuber flea beetle)); Epicauta spp. (e.g. E. vittata (striped blister beetle)); Phaedon spp. (e.g. P. cochleariae (mustard leaf beetle)); Epilachna spp. (e.g. E. varivetis (mexican bean beetle)); Acheta spp. (e.g. A. domesticus (house cricket)); Empoasca spp. (e.g. E. fabae (potato leafhopper)); Myzus spp. (e.g. M. persicae (green peach aphid)); Paratrioza spp. (e.g. P. cockerelli (psyllid)); Conoderus spp. (e.g. C. falli (southern potato wireworm), or C. vespertinus (tobacco wireworm)); Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); Macrosiphum spp. (e.g. M. euphorbiae (potato aphid)); Thyanta spp. (e.g. T. pallidovirens (redshouldered stinkbug)); Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); Helicoverpa spp. (e.g. H. zea (tomato fruitworm); Keiferia spp. (e.g. K. lycopersicella (tomato pinworm)); Limonius spp. (wireworms); Manduca spp. (e.g. M. sexta (tobacco hornworm), or M. quinquemaculata (tomato hornworm)); Liriomyza spp. (e.g. L. sativae, L. trifolli or L. huidobrensis (leafminer)), Drosophilla spp. (e.g. D. melanogaster, D. yakuba, D. pseudoobscura or D. simulans); Carabus spp. (e.g. C. granulatus); Chironomus spp. (e.g. C. tentanus); Ctenocephalides spp. (e.g. C. felis (cat flea)); Diaprepes spp. (e.g. D. abbreviatus (root weevil)); Ips spp. (e.g. I. pini (pine engraver)); Tribolium spp. (e.g. T. castaneum (red floor beetle)); Glossina spp. (e.g. G. morsitans (tsetse fly)); Anopheles spp. (e.g. A. gambiae (malaria mosquito)); Helicoverpa spp. (e.g. H. armigera (African Bollworm)); Acyrthosiphon spp. (e.g. A. pisum (pea aphid)); Apis spp. (e.g. A. melifera (honey bee)); Homalodisca spp. (e.g. H. coagulate (glassy-winged sharpshooter)); Aedes spp. (e.g. Ae. aegypti (yellow fever mosquito)); Bombyx spp. (e.g. B. mori (silkworm)); Locusta spp. (e.g. L. migratoria (migratory locust)); Boophilus spp. (e.g. B. microplus (cattle tick)); Acanthoscurria spp. (e.g. A. gomesiana (red-haired chololate bird eater)); Diploptera spp. (e.g. D. punctata (pacific beetle cockroach)); Heliconius spp. (e.g. H. erato (red passion flower butterfly) or H. melpomene (postman butterfly)); Curculio spp. (e.g. C. glandium (acom weevil)); Plutella spp. (e.g. P. xylostella (diamondback moth)); Amblyomma spp. (e.g. A. variegatum (cattle tick)); Anteraea spp. (e.g. A. yamamai (silkmoth)); and Armigeres spp. (e.g. A. subalbatus);

Preferred plant pathogenic insects according to the invention are plant pest are selected from the group consisting of *Leptinotarsa* spp. (e.g. *L. decemlineata* (Colorado potato beetle), *L.*

10

15

20

25

30

35

40

juncta (false potato beetle), or L. texana (Texan false potato beetle)); Nilaparvata spp. (e.g. N. lugens (brown planthopper)); Laodelphax spp. (e.g. L. striatellus (small brown planthopper)); Nephotettix spp. (e.g. N. virescens or N. cincticeps (green leafhopper), or N. nigropictus (rice leafhopper)); Sogatella spp. (e.g. S. furcifera (white-backed planthopper)); Chilo spp. (e.g. C. suppressalis (rice striped stem borer), C. auricilius (gold-fringed stem borer), or C. polychrysus (dark-headed stem borer)); Sesamia spp. (e.g. S. inferens (pink rice borer)); Tryporyza spp. (e.g. T. innotata (white rice borer), or T. incertulas (yellow rice borer)); Anthonomus spp. (e.g. A. grandis (boll weevil)); Phaedon spp. (e.g. P. cochleariae (mustard leaf beetle)); Epilachna spp. (e.g. E. varivetis (mexican bean beetle)); Tribolium spp. (e.g. T. castaneum (red floor beetle)); Diabrotica spp. (e.g. D. virgifera virgifera (western corn rootworm), D. barberi (northern corn rootworm), D. undecimpunctata howardi (southern corn rootworm), D. virgifera zeae (Mexican corn rootworm); Ostrinia spp. (e.g. O. nubilalis (European corn borer)); Anaphothrips spp. (e.g. A. obscrurus (grass thrips)); Pectinophora spp. (e.g. P. gossypiella (pink bollworm)); Heliothis spp. (e.g. H. virescens (tobacco budworm)); Trialeurodes spp. (e.g. T. abutiloneus (banded-winged whitefly) T. vaporariorum (greenhouse whitefly)); Bemisia spp. (e.g. B. argentifolii (silverleaf whitefly)); Aphis spp. (e.g. A. gossypii (cotton aphid)); Lygus spp. (e.g. L. lineolaris (tarnished plant bug) or L. hesperus (western tarnished plant bug)); Euschistus spp. (e.g. E. conspersus (consperse stink bug)); Chlorochroa spp. (e.g. C. sayi (Say stinkbug)); Nezara spp. (e.g. N. viridula (southern green stinkbug)); Thrips spp. (e.g. T. tabaci (onion thrips)); Frankliniella spp. (e.g. F. fusca (tobacco thrips), or F. occidentalis (western flower thrips)); Acheta spp. (e.g. A. domesticus (house cricket)); Myzus spp. (e.g. M. persicae (green peach aphid)); Macrosiphum spp. (e.g. M. euphorbiae (potato aphid)); Blissus spp. (e.g. B. leucopterus leucopterus (chinch bug)); Acrosternum spp. (e.g. A. hilare (green stink bug)); Chilotraea spp. (e.g. C. polychrysa (rice stalk borer)); Lissorhoptrus spp. (e.g. L. oryzophilus (rice water weevil)); Rhopalosiphum spp. (e.g. R. maidis (corn leaf aphid)); and Anuraphis spp. (e.g. A. maidiradicis (corn root aphid)).

According to a more specific embodiment, the methods of the invention are applicable for Leptinotarsa species. Leptinotarsa belong to the family of Chrysomelidae or leaf beatles. Chrysomelid beetles such as Flea Beetles and Corn Rootworms and Curculionids such as Alfalfa Weevils are particularly important pests. Flea Beetles include a large number of small leaf feeding beetles that feed on the leaves of a number of grasses, cereals and herbs. Flea Beetles include a large number of genera (e.g., Attica, Apphthona, Argopistes, Disonycha, Epitrix, Longitarsus, Prodagricomela, Systena, and Phyllotreta). The Flea Beetle, Phyllotreta cruciferae, also known as the Rape Flea Beetle, is a particularly important pest. Corn rootworms include species found in the genus Diabrotica (e.g., D. undecimpunctata undecimpunctata, D. undecimpunctata howardii, D. longicornis, D. virgifera and D. balteata). Corn rootworms cause extensive damage to corn and curcubits. The Western Spotted Cucumber Beetle, D. undecimpunctata undecimpunctata, is a pest of curcubits in the western U.S. Alfalfa weevils (also known as clover weevils) belong to the genus, Hypera (H. postica, H. brunneipennis, H. nigrirostris, H. punctata and H. meles), and are considered an important pest of legumes. The Egyptian alfalfa weevil, H. brunneipennis, is an important pest of alfalfa in the western U.S.

10

15

20

25

30

35

40

There are more than 30 Leptinotarsa species. The present invention thus encompasses methods for controlling Leptinotarsa species, more specific methods for killing insects, or preventing Leptinotarsa insects to develop or to grow, or preventing insects to infect or infest. Specific Leptinotarsa species to control according to the invention include Colorado Potato Beetle (Leptinotarsa decemlineata (Say) and False Potato Beetle (Leptinotarsa juncta (Say).

CPB is a (serious) pest on our domestic potato (Solanum tuberosum), other cultivated and wild tuber bearing and non-tuber bearing potato species (e.g. S. demissum, S.phureja a.o.) and other Solanaceous (nightshades) plant species incuding:

- (a) the crop species tomato (several Lycopersicon species), eggplant (Solanum melongena), peppers (several Capsicum species), tobacco (several Nicotiana species including ornamentals) and ground cherry (Physalis species);
- (b) the weed/herb species, horse nettle (S. carolinense), common nightshade (S. dulcamara), belladonna (Atropa species), thorn apple (datura species), henbane (Hyoscyamus species) and buffalo burr (S. rostratum).

FPB is primarily found on horse nettle, but also occurs on common nightshade, ground cherry, and husk tomato (Physalis species).

The term "insect" encompasses insects of all types and at all stages of development, including egg, larval or nymphal, pupal and adult stages.

The present invention extends to methods as described herein, wherein the insect is Leptinotarsa decemlineata (Colorado potato beetle) and the plant is potato, eggplant, tomato, pepper, tobacco, ground cherry or rice, corn or cotton.

The present invention extends to methods as described herein, wherein the insect is Phaedon cochleariae (mustard leaf beetle) and the plant is mustard, chinese cabbage, turnip greens, collard greens or bok choy.

The present invention extends to methods as described herein, wherein the insect is Epilachna varivetis (Mexican bean beetle) and the plants are beans, field beans, garden beans, snap beans, lima beans, mung beans, string beans, black-eyed beans, velvet beans, soybeans, cowpeas, pigeon peas, clover or alfalfa.

The present invention extends to methods as described herein, wherein the insect is Anthonomus grandis (cotton boll weevil) and the plant is cotton.

The present invention extends to methods as described herein, wherein the insect is *Tribolium castaneum* (red flour beetle) and the plant is in the form of stored grain products such as flour, cereals, meal, crackers, beans, spices, pasta, cake mix, dried pet food, dried flowers, chocolate, nuts, seeds, and even dried museum specimens.

The present invention extends to methods as described herein, wherein the insect is Myzus persicae (green peach aphid) and the plant is a tree such as Prunus, particularly peach, apricot and plum; a vegetable crop of the families Solanaceae, Chenopodiaceae, Compositae, Cruciferae, and Cucurbitaceae, including but not limited to, artichoke, asparagus, bean, beets, broccoli, Brussels sprouts, cabbage, carrot, cauliflower, cantaloupe, celery, com, cucumber, fennel, kale, kohlrabi, turnip, eggplant, lettuce, mustard, okra, parsley, parsnip, pea, pepper, potato, radish,

PCT/EP2007/000286

5

10

15

20

25

30

35

40

spinach, squash, tomato, turnip, watercress, and watermelon; a field crops such as, but not limited to, tobacco, sugar beet, and sunflower; a flower crop or other ornamental plant.

The present invention extends to methods as described herein, wherein the insect is Nilaparvata lugens and the plant is a rice plant.

The present invention extends to methods as described herein, wherein the insect is *Chilo* suppressalis (rice striped stem borer) and the plant is a rice plant, bareley, sorghum, maize, wheat or a grass.

The present invention extends to methods as described herein, wherein the insect is *Plutella xylostella* (Diamondback moth) and the plant is a *Brassica* species such as, but not limited to cabbage, chinese cabbage, Brussels sprouts, kale, rapeseed, broccoli, cauliflower, turnip, mustard or radish.

The present invention extends to methods as described herein, wherein the insect is Acheta domesticus (house cricket) and the plant is any plant as described herein or any organic matter.

In terms of "susceptible organisms", which benefit from the present invention, any organism which is susceptible to pest infestation is included. Preferably plants may benefit from the present invention by protection from infestation by plant pest organisms.

In a preferred embodiment the susceptible organism is a plant and the pest is a plant pathogenic insect. In this embodiment the insect is contacted with the RNA molecule by expressing the dsRNA molecule in a plant, plant part, plant cell or plant seed that is infested with or susceptible to infestation with the plant pathogenic pest.

In this context the term "plant" encompasses any plant material that it is desired to treat to prevent or reduce insect growth and/or insect infestation. This includes, *inter alia*, whole plants, seedlings, propagation or reproductive material such as seeds, cuttings, grafts, explants, etc. and also plant cell and tissue cultures. The plant material should express, or have the capability to express, the RNA molecule comprising at least one nucleotide sequence that is the RNA complement of or that represents the RNA equivalent of at least part of the nucleotide sequence of the sense strand of at least one target gene of the pest organism, such that the RNA molecule is taken up by a pest upon plant-pest interaction, said RNA molecule being capable of inhibiting the target gene or down-regulating expression of the target gene by RNA interference.

The target gene may be any of the target genes herein described, for instance a target gene that is essential for the viability, growth, development or reproduction of the pest. The present invention relates to any gene of interest in the insect (which may be referred to herein as the "target gene") that can be down-regulated.

The terms "down-regulation of gene expression" and "inhibition of gene expression" are used interchangeably and refer to a measurable or observable reduction in gene expression or a complete abolition of detectable gene expression, at the level of protein product and/or mRNA product from the target gene. Preferably the down-regulation does not substantially directly inhibit the expression of other genes of the insect. The down-regulation effect of the dsRNA on gene expression may be calculated as being at least 30%, 40%, 50%, 60%, preferably 70%, 80% or

PCT/EP2007/000286

5

10

15

20

25

30

35

40

even more preferably 90% or 95% when compared with normal gene expression. Depending on the nature of the target gene, down-regulation or inhibition of gene expression in cells of an insect can be confirmed by phenotypic analysis of the cell or the whole insect or by measurement of mRNA or protein expression using molecular techniques such as RNA solution hybridization, PCR, nuclease protection, Northern hybridization, reverse transcription, gene expression monitoring with a microarray, antibody binding, enzyme-linked immunosorbent assay (ELISA), Western blotting, radioimmunoassay (RIA), other immunoassays, or fluorescence-activated cell analysis (FACS).

The "target gene" may be essentially any gene that is desirable to be inhibited because it interferes with growth or pathogenicity or infectivity of the insect. For instance, if the method of the invention is to be used to prevent insect growth and/or infestation then it is preferred to select a target gene which is essential for viability, growth, development or reproduction of the insect, or any gene that is involved with pathogenicity or infectivity of the insect, such that specific inhibition of the target gene leads to a lethal phenotype or decreases or stops insect infestation.

According to one non-limiting embodiment, the target gene is such that when its expression is down-regulated or inhibited using the method of the invention, the insect is killed, or the reproduction or growth of the insect is stopped or retarded. This type of target genes is considered to be essential for the viability of the insect and is referred to as essential genes. Therefore, the present invention encompasses a method as described herein, wherein the target gene is an essential gene.

According to a further non-limiting embodiment, the target gene is such that when it is down-regulated using the method of the invention, the infestation or infection by the insect, the damage caused by the insect, and/or the ability of the insect to infest or infect host organisms and/or cause such damage, is reduced. The terms "infest" and "infect" or "infestation" and "infection" are generally used interchangeably throughout. This type of target genes is considered to be involved in the pathogenicity or infectivity of the insect. Therefore, the present invention extends to methods as described herein, wherein the target gene is involved in the pathogenicity or infectivity of the insect. The advantage of choosing the latter type of target gene is that the insect is blocked to infect further plants or plant parts and is inhibited to form further generations.

According to one embodiment, target genes are conserved genes or insect-specific genes. In addition, any suitable double-stranded RNA fragment capable of directing RNAi or RNA-mediated gene silencing or inhibition of an insect target gene may be used in the methods of the invention.

In another embodiment, a gene is selected that is essentially involved in the growth, development, and reproduction of a pest, (such as an insect). Exemplary genes include but are not limited to the structural subunits of ribosomal proteins and a beta-coatamer gene, such as the CHD3 gene. Ribosomal proteins such as S4 (RpS4) and S9(RpS9) are structural constituents of the ribosome involved in protein biosynthesis and which are components of the cytosolic small ribosomal subunit, the ribosomal proteins such as L9 and L19 are structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome. The beta coatamer gene in C. elegans encodes a protein which is a subunit of a multimeric complex that forms a membrane

10

15

20

25

30

35

40

vesicle coat. Similar sequences have been found in diverse organisms such as Arabidopsis thaliana, Drosophila melanogaster, and Saccharomyces cerevisiae. Related sequences are found in diverse organisms such as Leptinotarsa decemlineata, Phaedon cochleariae, Epilachna varivestis, Anthonomus grandis, Tribolium castaneum, Myzus persicae, Nilaparvata lugens, Chilo suppressalis, Plutella xylostella and Acheta domesticus.

Other target genes for use in the present invention may include, for example, those that play important roles in viability, growth, development, reproduction, and infectivity. These target genes include, for example, house keeping genes, transcription factors, and pest specific genes or lethal knockout mutations in Caenorhabditis or Drosophila. The target genes for use in the present invention may also be those that are from other organisms, e.g., from insects or arachnidae (e.g. Leptinotarsa spp., Phaedon spp., Epilachna spp., Anthonomus spp., Tribolium spp., Myzus spp., Nilaparvata spp., Chilo spp., Plutella spp., or Acheta spp.).

Preferred target genes include those specified in Table 1A and orthologous genes from other target organisms, such as from other pest organisms.

In the methods of the present invention, dsRNA is used to inhibit growth or to interfere with the pathogenicity or infectivity of the insect.

The invention thus relates to isolated double-stranded RNA comprising annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a target nucleotide sequence of a target gene of an insect. The target gene may be any of the target genes described herein, or a part thereof that exerts the same function.

According to one embodiment of the present invention, an isolated double-stranded RNA is provided comprising annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a nucleotide sequence of an insect target gene, wherein said target gene comprises a sequence which is selected from the group comprising:

(i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and

(ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203,

PCT/EP2007/000286

5

10

15

20

25

30

35

40

208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,

or wherein said insect target gene is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement thereof.

Depending on the assay used to measure gene silencing, the growth inhibition can be quantified as being greater than about 5%, 10%, more preferably about 20%, 25%, 33%, 50%, 60%, 75%, 80%, most preferably about 90%, 95%, or about 99% as compared to a pest organism that has been treated with control dsRNA.

According to another embodiment of the present invention, an isolated double-stranded RNA is provided, wherein at least one of said annealed complementary strands comprises the RNA equivalent of at least one of the nucleotide sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or wherein at least one of said annealed complementary strands comprises the RNA equivalent of a fragment of at least 17 basepairs in length thereof, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof.

If the method of the invention is used for specifically controlling growth or infestation of a specific insect in or on a host cell or host organism, it is preferred that the double-stranded RNA does not share any significant homology with any host gene, or at least not with any essential gene of the host. In this context, it is preferred that the double-stranded RNA shows less than 30%, more

10

15

20

25

30

35

40

preferably less that 20%, more preferably less than 10%, and even more preferably less than 5% nucleic acid sequence identity with any gene of the host cell. % sequence identity should be calculated across the full length of the double-stranded RNA region. If genomic sequence data is available for the host organism one may cross-check sequence identity with the double-stranded RNA using standard bioinformatics tools. In one embodiment, there is no sequence identity between the dsRNA and a host sequences over 21 contiguous nucleotides, meaning that in this context, it is preferred that 21 contiguous base pairs of the dsRNA do not occur in the genome of the host organism. In another embodiment, there is less than about 10% or less than about 12.5 % sequence identity over 24 contiguous nucleotides of the dsRNA with any nucleotide sequence from a host species.

The double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which corresponds to a target nucleotide sequence of the target gene to be down-regulated. The other strand of the double-stranded RNA is able to base-pair with the first strand.

The expression "target region" or "target nucleotide sequence" of the target insect gene may be any suitable region or nucleotide sequence of the gene. The target region should comprise at least 17, at least 18 or at least 19 consecutive nucleotides of the target gene, more preferably at least 20 or at least 21 nucleotide and still more preferably at least 22, 23 or 24 nucleotides of the target gene.

It is preferred that (at least part of) the double-stranded RNA will share 100% sequence identity with the target region of the insect target gene. However, it will be appreciated that 100% sequence identity over the whole length of the double stranded region is not essential for functional RNA inhibition. RNA sequences with insertions, deletions, and single point mutations relative to the target sequence have also been found to be effective for RNA inhibition. The terms "corresponding to" or "complementary to" are used herein interchangeable, and when these terms are used to refer to sequence correspondence between the double-stranded RNA and the target region of the target gene, they are to be interpreted accordingly, i.e. as not absolutely requiring 100% sequence identity. However, the % sequence identity between the double-stranded RNA and the target region will generally be at least 80% or 85% identical, preferably at least 90%, 95%, 96%, or more preferably at least 97%, 98% and still more preferably at least 99%. Two nucleic acid strands are "substantially complementary" when at least 85% of their bases pair.

The term "complementary" as used herein relates to both DNA-DNA complementarity as to DNA-RNA complementarity. In analogy herewith, the term "RNA equivalent" substantially means that in the DNA sequence(s), the base "T" may be replaced by the corresponding base "U" normally present in ribonucleic acids.

Although the dsRNA contains a sequence which corresponds to the target region of the target gene it is not absolutely essential for the whole of the dsRNA to correspond to the sequence of the target region. For example, the dsRNA may contain short non-target regions flanking the target-specific sequence, provided that such sequences do not affect performance of the dsRNA in RNA inhibition to a material extent.

10

15

20

25

30

35

The dsRNA may contain one or more substitute bases in order to optimise performance in RNAi. It will be apparent to the skilled reader how to vary each of the bases of the dsRNA in turn and test the activity of the resulting dsRNAs (e.g. in a suitable *in vitro* test system) in order to optimise the performance of a given dsRNA.

The dsRNA may further contain DNA bases, non-natural bases or non-natural backbone linkages or modifications of the sugar-phosphate backbone, for example to enhance stability during storage or enhance resistance to degradation by nucleases.

It has been previously reported that the formation of short interfering RNAs (siRNAs) of about 21 bp is desirable for effective gene silencing. However, in applications of applicant it has been shown that the minimum length of dsRNA preferably is at least about 80-100 bp in order to be efficiently taken up by certain pest organisms. There are indications that in invertebrates such as the free living nematode *C. elegans* or the plant parasitic nematode *Meloidogyne incognita*, these longer fragments are more effective in gene silencing, possibly due to a more efficient uptake of these long dsRNA by the invertebrate.

It has also recently been suggested that synthetic RNA duplexes consisting of either 27-mer blunt or short hairpin (sh) RNAs with 29 bp stems and 2-nt 3' overhangs are more potent inducers of RNA interference than conventional 21-mer siRNAs. Thus, molecules based upon the targets identified above and being either 27-mer blunt or short hairpin (sh) RNA's with 29-bp stems and 2-nt 3'overhangs are also included within the scope of the invention.

Therefore, in one embodiment, the double-stranded RNA fragment (or region) will itself preferably be at least 17 bp in length, preferably 18 or 19bp in length, more preferably at least 20bp, more preferably at least 21 bp, or at least 22 bp, or at least 23 bp, or at least 24 bp, 25 bp, 26 bp or at least 27 bp in length. The expressions "double-stranded RNA fragment" or "double-stranded RNA region" refer to a small entity of the double-stranded RNA corresponding with (part of) the target gene.

Generally, the double stranded RNA is preferably between about 17-1500 bp, even more preferably between about 80 - 1000 bp and most preferably between about 17-27 bp or between about 80-250 bp; such as double stranded RNA regions of about 17 bp, 18 bp, 19 bp, 20 bp, 21 bp, 22 bp, 23 bp, 24 bp, 25 bp, 27 bp, 50 bp, 80 bp, 100 bp, 150 bp, 200 bp, 250 bp, 300 bp, 350 bp, 400 bp, 450 bp, 500 bp, 550 bp, 600 bp, 650 bp, 700 bp, 900 bp, 100 bp, 1100 bp, 1200 bp, 1300 bp, 1400 bp or 1500 bp.

The upper limit on the length of the double-stranded RNA may be dependent on i) the requirement for the dsRNA to be taken up by the insect and ii) the requirement for the dsRNA to be processed within the cell into fragments that direct RNAi. The chosen length may also be influenced by the method of synthesis of the RNA and the mode of delivery of the RNA to the cell. Preferably the double-stranded RNA to be used in the methods of the invention will be less than 10,000 bp in length, more preferably 1000 bp or less, more preferably 500 bp or less, more preferably 300 bp or less, more preferably 100 bp or less. For any given target gene and insect, the optimum length of the dsRNA for effective inhibition may be determined by experiment.

10

15

20

25

30

35

40

The double-stranded RNA may be fully or partially double-stranded. Partially double-stranded RNAs may include short single-stranded overhangs at one or both ends of the double-stranded portion, provided that the RNA is still capable of being taken up by insects and directing RNAi. The double-stranded RNA may also contain internal non-complementary regions.

The methods of the invention encompass the simultaneous or sequential provision of two or more different double-stranded RNAs or RNA constructs to the same insect, so as to achieve down-regulation or inhibition of multiple target genes or to achieve a more potent inhibition of a single target gene.

Alternatively, multiple targets are hit by the provision of one double-stranded RNA that hits multiple target sequences, and a single target is more efficiently inhibited by the presence of more than one copy of the double stranded RNA fragment corresponding to the target gene. Thus, in one embodiment of the invention, the double-stranded RNA construct comprises multiple dsRNA regions, at least one strand of each dsRNA region comprising a nucleotide sequence that is complementary to at least part of a target nucleotide sequence of an insect target gene. According to the invention, the dsRNA regions in the RNA construct may be complementary to the same or to different target genes and/or the dsRNA regions may be complementary to targets from the same or from different insect species.

The terms "hit", "hits" and "hitting" are alternative wordings to indicate that at least one of the strands of the dsRNA is complementary to, and as such may bind to, the target gene or nucleotide sequence.

In one embodiment, the double stranded RNA region comprises multiple copies of the nucleotide sequence that is complementary to the target gene. Alternatively, the dsRNA hits more than one target sequence of the same target gene. The invention thus encompasses isolated double stranded RNA constructs comprising at least two copies of said nucleotide sequence complementary to at least part of a nucleotide sequence of an insect target.

The term "multiple" in the context of the present invention means at least two, at least three, at least four, at least five, at least six, etc.

The expressions "a further target gene" or "at least one other target gene" mean for instance a second, a third or a fourth, etc. target gene.

DsRNA that hits more than one of the above-mentioned targets, or a combination of different dsRNA against different of the above mentioned targets are developed and used in the methods of the present invention.

Accordingly the invention relates to an isolated double stranded RNA construct comprising at least two copies of the RNA equivalent of at least one of the nucleotide sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099,

10

15

20

25

30

35

40

1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or at least two copies of the RNA equivalent of a fragment of at least 17 basepairs in length thereof, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof. Preferably, said double-stranded RNA comprises the RNA equivalent of the nucleotide sequence as represented in SEQ ID NO 159 or 160, or a fragment of at least 17, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof. In a further embodiment, the invention relates to an an isolated double stranded RNA construct comprising at least two copies of the RNA equivalent of the nucleotide sequence as represented by SEQ ID NO 159 or 160.

Accordingly, the present invention extends to methods as described herein, wherein the dsRNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a target nucleotide sequence of an insect target gene, and which comprises the RNA equivalents of at least wo nucleotide sequences independently chosen from each other. In one embodiment, the dsRNA comprises the RNA equivalents of at least two, preferably at least three, four or five, nucleotide sequences indepently chosen from the sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577. 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or fragments thereof of at least 17 basepairs in length, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 basepairs in length thereof.

The at least two nucleotide sequences may be derived from the target genes herein described. According to one preferred embodiment the dsRNA hits at least one target gene that is essential for viability, growth, development or reproduction of the insect and hits at least one gene involved in pathogenicity or infectivity as described hereinabove. Alternatively, the dsRNA hits multiple genes of the same category, for example, the dsRNA hits at least 2 essential genes or at least 2 genes involved in the same cellular function. According to a further embodiment, the dsRNA hits at least 2 target genes, which target genes are involved in a different cellular function. For

10

15

20

25

30

35

example the dsRNA hits two or more genes involved in protein synthesis (e.g. ribosome subunits), intracellular protein transport, nuclear mRNA splicing, or involved in one of the functions described in Table 1A.

Preferably, the present invention extends to methods as described herein, wherein said insect target gene comprises a sequence which is which is selected from the group comprising:

(i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and

(ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,

or wherein said insect target gene is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement thereof.

The dsRNA regions (or fragments) in the double stranded RNA may be combined as follows:

- a) when multiple dsRNA regions targeting a single target gene are combined, they may be combined in the original order (ie the order in which the regions appear in the target gene) in the RNA construct,
- alternatively, the original order of the fragments may be ignored so that they are scrambled and combined randomly or deliberately in any order into the double stranded RNA construct,

10

15

20

25

30

35

- c) alternatively, one single fragment may be repeated several times, for example from 1 to 10 times, e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 times, in the ds RNA construct, or
- d) the dsRNA regions (targeting a single or different target genes) may be combined in the sense or antisense orientation.

In addition, the target gene(s) to be combined may be chosen from one or more of the following categories of genes:

- e) "essential" genes or "pathogenicity genes" as described above encompass genes that are vital for one or more target insects and result in a lethal or severe (e.g. feeding, reproduction, growth) phenotype when silenced. The choice of a strong lethal target gene results in a potent RNAi effect. In the RNA constructs of the invention, multiple dsRNA regions targeting the same or different (very effective) lethal genes can be combined to further increase the potency, efficacy or speed of the RNAi effect in insect control.
- f) "weak" genes encompass target genes with a particularly interesting function in one of the cellular pathways described herein, but which result in a weak phenotypic effect when silenced independently. In the RNA constructs of the invention, multiple dsRNA regions targeting a single or different weak gene(s) may be combined to obtain a stronger RNAi effect.
- g) "insect specific" genes encompass genes that have no substantial homologous counterpart in non-insect organisms as can be determined by bioinformatics homology searches, for example by BLAST searches. The choice of an insect specific target gene results in a species specific RNAi effect, with no effect or no substantial (adverse) effect in non-target organisms.
- h)"conserved genes" encompass genes that are conserved (at the amino acid level) between the target organism and non-target organism(s). To reduce possible effects on non-target species, such effective but conserved genes are analysed and target sequences from the variable regions of these conserved genes are chosen to be targeted by the dsRNA regions in the RNA construct. Here, conservation is assessed at the level of the nucleic acid sequence. Such variable regions thus encompass the least conserved sections, at the level of the nucleic acid sequence, of the conserved target gene(s).
- i) "conserved pathway" genes encompass genes that are involved in the same biological pathway or cellular process, or encompass genes that have the same functionality in different insect species resulting in a specific and potent RNAi effect and more efficient insect control;

10

15

20

25

30

35

j) alternatively, the RNA constructs according to the present invention target multiple genes from different biological pathways, resulting in a broad cellular RNAi effect and more efficient insect control.

According to the invention, all double stranded RNA regions comprise at least one strand that is complementary to at least part or a portion of the nucleotide sequence of any of the target genes herein described. However, provided one of the double stranded RNA regions comprises at least one strand that is complementary to a portion of the nucleotide sequence of any one of the target genes herein described, the other double stranded RNA regions may comprise at least one strand that is complementary to a portion of any other insect target gene (including known target genes).

According to yet another embodiment of the present invention there is provided an isolated double stranded RNA or RNA construct as herein described, further comprising at least one additional sequence and optionally a linker. In one embodiment, the additional sequence is chosen from the group comprising (i) a sequence facilitating large-scale production of the dsRNA construct; (ii) a sequence effecting an increase or decrease in the stability of the dsRNA; (iii) a sequence allowing the binding of proteins or other molecules to facilitate uptake of the RNA construct by insects; (iv) a sequence which is an aptamer that binds to a receptor or to a molecule on the surface or in the cytoplasm of an insect to facilitate uptake, endocytosis and/or transcytosis by the insect; or (v) additional sequences to catalyze processing of dsRNA regions. In one embodiment, the linker is a conditionally self-cleaving RNA sequence, preferably a pH sensitive linker or a hydrophobic sensitive linker. In one embodiment, the linker is an intron.

In one embodiment, the multiple dsRNA regions of the double-stranded RNA construct are connected by one or more linkers. In another embodiment, the linker is present at a site in the RNA construct, separating the dsRNA regions from another region of interest. Different linker types for the dsRNA constructs are provided by the present invention.

In another embodiment, the multiple dsRNA regions of the double-stranded RNA construct are connected without linkers.

In a particular embodiment of the invention, the linkers may be used to disconnect smaller dsRNA regions in the pest organism. Advantageously, in this situation the linker sequence may promote division of a long dsRNA into smaller dsRNA regions under particular circumstances, resulting in the release of separate dsRNA regions under these circumstances and leading to more efficient gene silencing by these smaller dsRNA regions. Examples of suitable conditionally self-cleaving linkers are RNA sequences that are self-cleaving at high pH conditions. Suitable examples of such RNA sequences are described by Borda et al. (Nucleic Acids Res. 2003 May 15;31(10):2595-600), which document is incorporated herein by reference. This sequence originates from the catalytic core of the hammerhead ribozyme HH16.

In another aspect of the invention, a linker is located at a site in the RNA construct, separating the dsRNA regions from another, e.g. the additional, sequence of interest, which preferably provides some additional function to the RNA construct.

In one particular embodiment of the invention, the dsRNA constructs of the present invention are provided with an aptamer to facilitate uptake of the dsRNA by the insect. The aptamer is designed to bind a substance which is taken up by the insect. Such substances may be from an insect or plant origin. One specific example of an aptamer, is an aptamer that binds to a transmembrane protein, for example a transmembrane protein of an insect. Alternatively, the aptamer may bind a (plant) metabolite or nutrient which is taken up by the insect.

5

10

15

20

25

30

35

40

Alternatively, the linkers are self-cleaving in the endosomes. This may be advantageous when the constructs of the present invention are taken up by the insect via endocytosis or transcytosis, and are therefore compartmentalized in the endosomes of the insect species. The endosomes may have a low pH environment, leading to cleavage of the linker.

The above mentioned linkers that are self-cleaving in hydrophobic conditions are particularly useful in dsRNA constructs of the present invention when used to be transferred from one cell to another via the transit in a cell wall, for example when crossing the cell wall of an insect pest organism.

An intron may also be used as a linker. An "intron" as used herein may be any non-coding RNA sequence of a messenger RNA. Particular suitable intron sequences for the constructs of the present invention are (1) U-rich (35-45%); (2) have an average length of 100 bp (varying between about 50 and about 500 bp) which base pairs may be randomly chosen or may be based on known intron sequences; (3) start at the 5' end with -AG:GT- or -CG:GT- and/or (4) have at their 3' end -AG:GC- or -AG:AA.

A non-complementary RNA sequence, ranging from about 1 base pair to about 10,000 base pairs, may also be used as a linker.

Without wishing to be bound by any particular theory or mechanism, it is thought that long double-stranded RNAs are taken up by the insect from their immediate environment. Double-stranded RNAs taken up into the gut and transferred to the gut epithelial cells are then processed within the cell into short double-stranded RNAs, called small interfering RNAs (siRNAs), by the action of an endogenous endonuclease. The resulting siRNAs then mediate RNAi via formation of a multi-component RNase complex termed the RISC or RNA interfering silencing complex.

In order to achieve down-regulation of a target gene within an insect cell the doublestranded RNA added to the exterior of the cell wall may be any dsRNA or dsRNA construct that can be taken up into the cell and then processed within the cell into siRNAs, which then mediate RNAi, or the RNA added to the exterior of the cell could itself be an siRNA that can be taken up into the cell and thereby direct RNAi.

siRNAs are generally short double-stranded RNAs having a length in the range of from 19 to 25 base pairs, or from 20 to 24 base pairs. In preferred embodiments siRNAs having 19, 20, 21, 22, 23, 24 or 25 base pairs, and in particular 21 or 22 base pairs, corresponding to the target gene to be down-regulated may be used. However, the invention is not intended to be limited to the use of such siRNAs.

siRNAs may include single-stranded overhangs at one or both ends, flanking the doublestranded portion. In a particularly preferred embodiment the siRNA may contain 3' overhanging

10

15

20

25

30

35

nucleotides, preferably two 3' overhanging thymidines (dTdT) or uridines (UU). 3' TT or UU overhangs may be included in the siRNA if the sequence of the target gene immediately upstream of the sequence included in double-stranded part of the dsRNA is AA. This allows the TT or UU overhang in the siRNA to hybridise to the target gene. Although a 3' TT or UU overhang may also be included at the other end of the siRNA it is not essential for the target sequence downstream of the sequence included in double-stranded part of the siRNA to have AA. In this context, siRNAs which are RNA/DNA chimeras are also contemplated. These chimeras include, for example, the siRNAs comprising a double-stranded RNA with 3' overhangs of DNA bases (e.g. dTdT), as discussed above, and also double-stranded RNAs which are polynucleotides in which one or more of the RNA bases or ribonucleotides, or even all of the ribonucleotides on an entire strand, are replaced with DNA bases or deoxynucleotides.

The dsRNA may be formed from two separate (sense and antisense) RNA strands that are annealed together by (non-covalent) basepairing. Alternatively, the dsRNA may have a foldback stem-loop or hairpin structure, wherein the two annealed strands of the dsRNA are covalently linked. In this embodiment the sense and antisense stands of the dsRNA are formed from different regions of single polynucleotide molecule that is partially self-complementary. RNAs having this structure are convenient if the dsRNA is to be synthesised by expression *in vivo*, for example in a host cell or organism as discussed below, or by *in vitro* transcription. The precise nature and sequence of the "loop" linking the two RNA strands is generally not material to the invention, except that it should not impair the ability of the double-stranded part of the molecule to mediate RNAi. The features of "hairpin" or "stem-loop" RNAs for use in RNAi are generally known in the art (see for example WO 99/53050, in the name of CSIRO, the contents of which are incorporated herein by reference). In other embodiments of the invention, the loop structure may comprise linker sequences or additional sequences as described above.

Another aspect of the present invention are target nucleotide sequences of the insect target genes herein disclosed. Such target nucleotide sequences are particularly important to design the dsRNA constructs according to the present invention. Such target nucleotide sequences are preferably at least 17, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 nucleotides in length. Non-limiting examples of preferred target nucleotide sequences are given in the examples.

According to one embodiment, the present invention provides an isolated nucleotide sequence encoding a double stranded RNA or double stranded RNA construct as described herein.

According to a more specific embodiment, the present invention relates to an isolated nucleic acid sequence consisting of a sequence represented by any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or a fragment of at least 17 preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 nucleotides thereof.

A person skilled in the art will recognize that homologues of these target genes can be found and that these homologues are also useful in the methods of the present invention.

Protein, or nucleotide sequences are likely to be homologous if they show a "significant" level of sequence similarity or more preferably sequence identity. Truely homologous sequences are related by divergence from a common ancestor gene. Sequence homologues can be of two types:(i) where homologues exist in different species they are known as orthologues. e.g. the α -globin genes in mouse and human are orthologues.(ii) paralogues are homologous genes in within a single species. e.g. the α - and β - globin genes in mouse are paralogues

5

10

15

20

25

30

35

40

Preferred homologues are genes comprising a sequence which is at least about 85% or still more preferably about 90%, still more preferably at least about 95% and most preferably at least about 99% identical to a sequence selected from the group of sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof. Methods for determining sequence identity are routine in the art and include use of the Blast software and EMBOSS software (The European Molecular Biology Open Software Suite (2000), Rice,P. Longden, I. and Bleasby, A. Trends in Genetics 16, (6) pp276—277). The term "identity" as used herein refers to the relationship between sequences at the nucleotide level. The expression "% identical" is determined by comparing optimally aligned sequences, e.g. two or more, over a comparison window wherein the portion of the sequence in the comparison window may comprise insertions or deletions as compared to the reference sequence for optimal alignment of the sequences. The reference sequence does not comprise insertions or deletions. The reference window is chosen from between at least 10 contiguous nucleotides to about 50, about 100 or to about 150 nucleotides, preferably between about 50 and 150 nucleotides. "% identity" is then calculated by determining the number of nucleotides that are identical between the sequences in the window, dividing the number of identical nucleotides by the number of nucleotides in the window and multiplying by 100.

Other homologues are genes which are alleles of a gene comprising a sequence as represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046,

26

5

10

15

20

25

30

35

1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481. Further preferred homologues are genes comprising at least one single nucleotide polymorphism (SNIP) compared to a gene comprising a sequence as represented by any of SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481.

According to another embodiment, the invention encompasses target genes which are insect orthologues of a gene comprising a nucleotide sequence as represented in any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481. By way of example, orthologues may comprise a nucleotide sequence as represented in any of SEQ ID NOs 49 to 123, 275 to 434, 533 to 562, 621 to 738, 813 to 852, 908 to 1010, 1161 to 1437, 1730 to 1987, 2120 to 2290, and 2384 to 2438, or a fragment thereof of at least 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or 27 nucleotides. A non-limiting list of insect or arachnida orthologues genes or sequences comprising at least a fragment of 17 bp of one of the sequences of the invention, is given in Tables 4.

5

10

15

20

25

30

35

40

According to another embodiment, the invention encompasses target genes which are nematode orthologues of a gene comprising a nucleotide sequence as represented in any of 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 248. By way of example, nematode orthologues may comprise a nucleotide sequence as represented in any of SEQ ID NOs 124 to 135, 435 to 446, 563 to 564, 739 to 751, 853, 854, 1011 to 1025, 1438 to 1473, 1988 to 2001, 2291 to 2298, 2439 or 2440, or a fragment of at least 17, 18, 19, 20 or 21 nucleotides thereof. According to another aspect, the invention thus encompasses any of the methods described herein for controlling nematode growth in an organism, or for preventing nematode infestation of an organism susceptible to nemataode infection, comprising contacting nematode cells with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of a target gene comprising a fragment of at least 17, 18, 19, 20 or 21 nucleotides of any of the sequences as represented in SEQ ID NOs 124 to 135, 435 to 446, 563 to 564, 739 to 751, 853, 854, 1011 to 1025, 1438 to 1473, 1988 to 2001, 2291 to 2298, 2439 or 2440, whereby the double-stranded RNA is taken up by the nematode and thereby controls growth or prevents infestation. The invention also relates to nematoderesistant transgenic plants comprising a fragment of at least 17, 18, 19, 20 or 21 nucleotides of any of the sequences as represented in SEQ ID NOs 124 to 135, 435 to 446, 563 to 564, 739 to 751, 853, 854, 1011 to 1025, 1438 to 1473, 1988 to 2001, 2291 to 2298, 2439 or 2440. A non-limiting list of nematode orthologues genes or sequences comprising at least a fragment of 17 bp of one of the sequences of the invention, is given in Tables 5.

According to another embodiment, the invention encompasses target genes which are fungal orthologues of a gene comprising a nucleotide sequence as represented in any of 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622,

28

1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481. By way of example, fungal orthologues may comprise a nucleotide sequence as represented in any of SEQ ID NOs 136 to 158, 447 to 472, 565 to 575, 752 to 767, 855 to 862, 1026 to 1040, 1475 to 1571, 2002 to 2039, 2299 to 2338, 2441 to 2460, or a fragment of at least 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or 27 nucleotides thereof.. According to another aspect, the invention thus encompasses any of the methods described herein for controlling fungal growth on a cell or an organism, or for preventing fungal infestation of a cell or an organism susceptible to fungal infection, comprising contacting fungal cells with a double-stranded RNA, wherein the doublestranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of a target gene comprising a fragment of at least 17, 18, 19, 20 or 21 nucleotides of any of the sequences as represented in SEQ ID NOs 136 to 158, 447 to 472, 565 to 575, 752 to 767, 855 to 862, 1026 to 1040, 1475 to 1571, 2002 to 2039, 2299 to 2338, 2441 to 2460, whereby the double-stranded RNA is taken up by the fungus and thereby controls growth or prevents infestation. The invention also relates to fungal-resistant transgenic plants comprising a fragment of at least 17, 18, 19, 20 or 21 of any of the sequences as represented in SEQ ID NOs 136 to 158, 447 to 472, 565 to 575, 752 to 767, 855 to 862, 1026 to 1040, 1475 to 1571, 2002 to 2039, 2299 to 2338, 2441 to 2460. A nonlimiting list of fungal orthologues genes or sequences comprising at least a fragment of 17 bp of one of the sequences of the invention, is given in Tables 6.

10

15

20

25

30

35

40

In one preferred embodiment of the invention the dsRNA may be expressed by (e.g. transcribed within) a host cell or host organism, the host cell or organism being an organism susceptible or vulnerable to infestation by an insect. In this embodiment RNAi-mediated gene silencing of one or more target genes in the insect may be used as a mechanism to control growth of the insect in or on the host organism and/or to prevent or reduce insect infestation of the host organism. Thus, expression of the double-stranded RNA within cells of the host organism may confer resistance to a particular insect or to a class of insects. In case the dsRNA hits more than one insect target gene, expression of the double-stranded RNA within cells of the host organism may confer resistance to more than one insect or more than one class of insects.

In a preferred embodiment the host organism is a plant and the insect is a plant pathogenic insect. In this embodiment the insect is contacted with the double-stranded RNA by expressing the double-stranded RNA in a plant or plant cell that is infested with or susceptible to infestation with the plant pathogenic insect.

In this context the term "plant" encompasses any plant material that it is desired to treat to prevent or reduce insect growth and/or insect infestation. This includes, *inter alia*, whole plants, seedlings, propagation or reproductive material such as seeds, cuttings, grafts, explants, etc. and also plant cell and tissue cultures. The plant material should express, or have the capability to express, dsRNA corresponding to one or more target genes of the insect.

Therefore, in a further aspect the invention provides a plant, preferably a transgenic plant, or propagation or reproductive material for a (transgenic) plant, or a plant cell culture expressing or capable of expressing at least one double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a target nucleotide sequence of a target gene of an insect, such that the double-stranded RNA is taken up by an insect upon plant-insect interaction, said double stranded RNA being capable of inhibiting the target gene or down-regulating expression of the target gene by RNA interference. The target gene may be any of the target genes herein described, for instance a target gene that is essential for the viability, growth, development or reproduction of the insect.

5

10

15

20

25

30

35

40

In this embodiment the insect can be any insect, but is preferably plant pathogenic insect. Preferred plant pathogenic insects include, but are not limited to, those listed above.

A plant to be used in the methods of the invention, or a transgenic plant according to the invention encompasses any plant, but is preferably a plant that is susceptible to infestation by a plant pathogenic insect.

Accordingly, the present invention extends to methods as described herein wherein the plant is chosen from the following group of plants (or crops): alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clemintine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes, grape, grapefruit, groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya,, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugargcane, sunflower, sweet poatao, tangerine, tea, tobacco, tomato, a vine, waetermelon, wheat, yams and zucchini.

In one embodiment the present invention extends to methods as described herein, wherein the plant is potato and the target gene is a gene from an insect selected from the group consisting of Leptinotarsa spp. (e.g. L. decemlineata (Colorado potato beetle), L. juncta (false potato beetle), or L. texana (Texan false potato beetle)); Lema spp. (e.g. L. trilineata (three-lined potato beetle)); Epitrix spp. (e.g. E. cucumeris (potato flea beetle) or E. tuberis (tuber flea beetle)); Epicauta spp. (e.g. E. vittata (striped blister beetle)); Phaedon spp. (e.g. P. cochleariae (mustard leaf beetle)); Empoasca spp. (e.g. E. fabae (potato leafhopper)); Myzus spp. (e.g. M. persicae (green peach aphid)); Paratrioza spp. (e.g. P. cockerelli (potato psyllid)); Ostrinia spp. (e.g. O. nubilalis (European corn borer)); Conoderus spp. (e.g. C. falli (southern potato wireworm), or C. vespertinus (tobacco wireworm)); and Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); in another embodiment the present invention extends to methods as described herein, wherein the plant is tomato and the target gene is a gene from an insect selected from the group consisting of: Macrosiphum spp. (e.g. M. euphorbiae (potato aphid)); Myzus spp. (e.g. M. persicae (green peach aphid)); Trialeurodes spp. (e.g. T. vaporariorum (greenhouse whitefly), or T. abutilonia (banded-

10

15

20

25

30

35

40

winged whitefly)); Bemisia spp. (e.g. B. argentifolii (silverleaf whitefly)); Frankliniella spp. (e.g. F. occidentalis (western flower thrips)); Leptinotarsa spp. (e.g. L. decemlineata (Colorado potato beetle), L. juncta (false potato beetle), or L. texana (Texan false potato beetle)); Epitrix spp. (e.g. E. hirtipennis (flea beetle)); Lygus spp. (e.g. L. lineolaris (tarnished plant bug), or L. hesperus (western tarnished plant bug)); Euschistus spp. (e.g. E. conspresus (consperse stinkbug)); Nezara spp. (e.g. N. viridula (southern green stinkbug)); Thyanta spp. (e.g. T. pallidovirens (redshouldered stinkbug)); Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); Helicoverpa spp. (e.g. H. zea (tomato fruitworm); Keiferia spp. (e.g. K. lycopersicella (tomato pinworm)); Spodoptera spp. (e.g. S. exigua (beet armyworm), or S. praefica (western yellowstriped armyworm)); Limonius spp. (wireworms); Agrotis spp. (e.g. A. ipsilon (black cutworm)); Manduca spp. (e.g. M. sexta (tobacco hornworm), or M. quinquemaculata (tomato hornworm)); Liriomyza spp. (e.g. L. sativae, L. trifolli or L. huidobrensis (leafminer)); and Paratrioza spp. (e.g. P. cockerelli (tomato psyllid)); In another embodiment the present invention extends to methods as described herein, wherein the plant is corn and the target gene is a gene from an insect selected from the group consisting of: Diabrotica spp. (e.g. D. virgifera virgifera (western corn rootworm), D. barberi (northern corn rootworm), D. undecimpunctata howardi (southern corn rootworm), D. virgifera zeae (Mexican corn rootworm); D. balteata (banded cucumber beetle)); Ostrinia spp. (e.g. O. nubilalis (European corn borer)); Agrotis spp. (e.g. A.ipsilon (black cutworm)); Helicoverpa spp. (e.g. H. zea (corn earworm)); Spodoptera spp. (e.g. S. frugiperda (fall armyworm)); Diatraea spp. (e.g. D. grandiosella (southwestern com borer), or D. saccharalis (sugarcane borer)); Elasmopalpus spp. (e.g. E. lignosellus (lesser cornstalk borer)); Melanotus spp. (wireworms); Cyclocephala spp. (e.g. C. borealis (northern masked chafer)); Cyclocephala spp. (e.g. C. immaculata (southern masked chafer)); Popillia spp. (e.g. P. japonica (Japanese beetle)); Chaetocnema spp. (e.g. C. pulicaria (corn flea beetle)); Sphenophorus spp. (e.g. S. maidis (maize billbug)); Rhopalosiphum spp. (e.g. R. maidis (corn leaf aphid)); Anuraphis spp. (e.g. A. maidiradicis (corn root aphid)); Blissus spp. (e.g. B.leucopterus leucopterus (chinch bug)); Melanoplus spp. (e.g. M. femurrubrum (redlegged grasshopper), M. sanguinipes (migratory grasshopper)); Hylemya spp. (e.g. H. platura (seedcorn maggot)); Agromyza spp. (e.g. A. parvicornis (corn blot leafminer)); Anaphothrips spp. (e.g. A. obscrurus (grass thrips)); Solenopsis spp. (e.g. S. milesta (thief ant)); and Tetranychus spp. (e.g. T. urticae (twospotted spider mite)); in another embodiment the present invention extends to methods as described herein, wherein the plant is cotton and the target gene is a gene from an insect selected from the group consisting of: Helicoverpa spp. (e.g. H. zea (cotton bollworm)); Pectinophora spp. (e.g. P. gossypiella (pink bollworm)); Helicoverpa spp. (e.g. H. armigera (American bollworm)); Earias spp. (e.g. E. vittella (spotted bollworm)); Heliothis spp. (e.g. H. virescens (tobacco budworm)); Spodoptera spp. (e.g. S. exigua (beet armyworm)); Anthonomus spp. (e.g. A. grandis (boll weevil)); Pseudatomoscelis spp. (e.g. P. seriatus (cotton fleahopper)); Trialeurodes spp. (e.g. T. abutiloneus (banded-winged whitefly) T. vaporariorum (greenhouse whitefly)); Bemisia spp. (e.g. B. argentifoli (silverleaf whitefly)); Aphis spp. (e.g. A. gossypii (cotton aphid)); Lygus spp. (e.g. L. lineolaris (tarnished plant bug) or L. hesperus (western tarnished plant bug)); Euschistus spp. (e.g. E. conspersus (consperse stink bug)); Chlorochroa spp. (e.g. C. sayi (Say stinkbug)); Nezara spp.

5

10

15

20

25

30

35

40

(e.g. N. viridula (green stinkbug)); Thrips spp. (e.g. T. tabaci (onion thrips)); Franklinkiella spp. (e.g. F. fusca (tobacco thrips), or F. occidentalis (western flower thrips)); Melanoplus spp. (e.g. M. femurrubrum (redlegged grasshopper), or M. differentialis (differential grasshopper)); and Tetranychus spp. (e.g. T. cinnabarinus (carmine spider mite), or T. urticae (twospotted spider mite)); in another embodiment the present invention extends to methods as described herein. wherein the plant is rice and the target gene is a gene from an insect selected from the group consisting of: Nilaparvata spp. (e.g. N. lugens (brown planthopper)); Laodelphax spp. (e.g. L. striatellus (small brown planthopper)); Nephotettix spp. (e.g. N. virescens or N. cincticeps (green leafhopper), or N.nigropictus (rice leafhopper)); Sogatella spp. (e.g. S. furcifera (white-backed planthopper)); Blissus spp. (e.g. B. leucopterus leucopterus (chinch bug)); Scotinophora spp. (e.g. S. vermidulate (rice blackbug)); Acrosternum spp. (e.g. A. hilare (green stink bug)); Parnara spp. (e.g. P. guttata (rice skipper)); Chilo spp. (e.g. C. suppressalis (rice striped stem borer), C. auricilius (gold-fringed stem borer), or C. polychrysus (dark-headed stem borer)); Chilotraea spp. (e.g. C. polychrysa (rice stalk borer)); Sesamia spp. (e.g. S. inferens (pink rice borer)); Tryporyza spp. (e.g. T. innotata (white rice borer)); Tryporyza spp. (e.g T. incertulas (yellow rice borer)); Cnaphalocrocis spp. (e.g. C. medinalis (rice leafroller)); Agromyza spp. (e.g. A. oryzae (leafminer)); Diatraea spp. (e.g. D. saccharalis (sugarcane borer)); Narnaga spp. (e.g. N. aenescens (green rice caterpillar)); Xanthodes spp. (e.g. X. transversa (green caterpillar)); Spodoptera spp. (e.g. S. frugiperda (fall armyworm)); Mythimna spp. (e.g. Mythmna (Pseudaletia) seperata (armyworm)); Helicoverpa spp. (e.g. H. zea (corn earworm)); Colaspis spp. (e.g. C. brunnea (grape colaspis)); Lissorhoptrus spp. (e.g. L. oryzophilus (rice water weevil)); Echinocnemus spp. (e.g. E. squamos (rice plant weevil)); Diclodispa spp. (e.g. D. armigera (rice hispa)); Oulema spp. (e.g. O. oryzae (leaf beetle); Sitophilus spp. (e.g. S. oryzae (rice weevil)); Pachydiplosis spp. (e.g. P. oryzae (rice gall midge)); Hydrellia spp. (e.g. H. griseola (small rice leafminer)); Chlorops spp. (e.g. C. oryzae (stem maggot)); and Hydrellia spp. (e.g. H. sasakii (rice stem maggot));

Transgenic plants according to the invention extend to all plant species specifically described above being resistant to the respective insect species as specifically described above. Preferred transgenic plants (or reproductive or propagation material for a transgenic plant, or a cultured transgenic plant cell) are plants (or reproductive or propagation material for a transgenic plant, or a cultured transgenic plant cell) wherein said plant comprises a nucleic acid sequence which is selected from the group comprising:

(i) sequences which are at least 75% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662,

32

1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and

5

10

15

20

25

30

35

(ii) sequences comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,

or whetein said nucleic acid is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or the complement thereof.

The present invention also encompasses plants (or reproductive or propagation material for a transgenic plant, or a cultured transgenic plant cell) which express or are capable of expressing at least one of the nucleotides of the invention, for instance at least one of the nucleotide seguences represented in any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, or comprising a fragment thereof comprising at least 17, preferably at least 18, 19, 20 or 21, more preferably at least 22, 23 or 24 nucleotides.

PCT/EP2007/000286

The plant may be provided in a form wherein it is actively expressing (transcribing) the double-stranded RNA in one or more cells, cell types or tissues. Alternatively, the plant may be "capable of expressing", meaning that it is transformed with a transgene which encodes the desired dsRNA but that the transgene is not active in the plant when (and in the form in which) the plant is supplied.

5

10

15

20

25

30

35

40

Therefore, according to another embodiment, a recombinant DNA construct is provided comprising the nucleotide sequence encoding the dsRNA or dsRNA construct according to the present invention operably linked to at least one regulatory sequence. Preferably, the regulatory sequence is selected from the group comprising constitutive promoters or tissue specific promoters as described below.

The target gene may be any target gene herein described. Preferably the regulatory element is a regulatory element that is active in a plant cell. More preferably, the regulatory element is originating from a plant. The term "regulatory sequence" is to be taken in a broad context and refers to a regulatory nucleic acid capable of effecting expression of the sequences to which it is operably linked.

Encompassed by the aforementioned term are promoters and nucleic acids or synthetic fusion molecules or derivatives thereof which activate or enhance expression of a nucleic acid, so called activators or enhancers. The term "operably linked" as used herein refers to a functional linkage between the promoter sequence and the gene of interest, such that the promoter sequence is able to initiate transcription of the gene of interest.

By way of example, the transgene nucleotide sequence encoding the double-stranded RNA could be placed under the control of an inducible or growth or developmental stage-specific promoter which permits transcription of the dsRNA to be turned on, by the addition of the inducer for an inducible promoter or when the particular stage of growth or development is reached.

Alternatively, the transgene encoding the double-stranded RNA is placed under the control of a strong constitutive promoter such as any selected from the group comprising the CaMV35S promoter, doubled CaMV35S promoter, ubiquitin promoter, actin promoter, rubisco promoter, GOS2 promoter, Figwort mosaic viruse (FMV) 34S promoter, cassava vein mosaic virus (CsVMV) promoter (Verdaguer B. et al, Plant Mol Biol. 1998 37(6):1055-67).

Alternatively, the transgene encoding the double-stranded RNA is placed under the control of a tissue specific promoter such as any selected from the group comprising root specific promoters of genes encoding PsMTA Class III chitinase, photosynthetic tissue-specific promoters such as promoters of cab1 and cab2, rbcS, gapA, gapB and ST-LS1 proteins, JAS promoters, chalcone synthase promoter and promoter of RJ39 from strawberry.

In another embodiment, the transgene encoding the double-stranded RNA is placed under the control of an insect-induced promoter, for instance the potato proteinase inhibitor II (PinII) promoter (Duan X et al, Nat Biotechnol. 1996, 14(4):494-8)); or a wounding-induced promoter, for instance the jasmonates and ethylene induced promoters, PDF1.2 promoter (Manners JM et al., Plant Mol Biol. 1998, 38(6):1071-80); or under a defense related promoter, for instance the salicylic acid induced promoters and plant-pathogenesis related protein (PR protein) promoters (PR1

10

15

20

25

30

35

promoter (Cornelissen BJ et al., Nucleic Acids Res. 1987, 15(17):6799-811; COMT promoter (Toguin V et al, Plant Mol Biol. 2003, 52(3):495-509).

Furthermore, when using the methods of the present invention for developing transgenic plants resistant against insects, it might be beneficial to place the nucleic acid encoding the doublestranded RNA according to the present invention under the control of a tissue-specific promoter. In order to improve the transfer of the dsRNA from the plant cell to the pest, the plants could preferably express the dsRNA in a plant part that is first accessed or damaged by the plant pest. In case of plant pathogenic insects, preferred tissues to express the dsRNA are the leaves, stems, roots, and seeds. Therefore, in the methods of the present invention, a plant tissue-preferred promoter may be used, such as a leaf-specific promoter, a stem-specific promoter, a phloemspecific promoter, a xylem-specific promoter, a root-specific promoter, or a seed-specific promoter (sucrose transporter gene AtSUC promoter (Baud S et al., Plant J. 2005, 43(6):824-36), wheat high molecular weight glutenin gene promoter (Robert LS et al., Plant Cell. 1989, 1(6):569-78.)). Suitable examples of a root specific promoter are PsMTA (Fordam-Skelton, A.P., et al., 1997 Plant Molecular Biology 34: 659-668.) and the Class III Chitinase promoter. Examples of leaf- and stemspecific or photosynthetic tissue-specific promoters that are also photoactivated are promoters of two chlorophyll binding proteins (cab1 and cab2) from sugar beet (Stahl D.J., et al., 2004 BMC Biotechnology 2004 4:31), ribulose-bisphosphate carboxylase (Rubisco), encoded by rbcS (Nomura M. et al., 2000 Plant Mol. Biol. 44: 99-106), A (gapA) and B (gapB) subunits of chloroplast glyceraldehyde-3-phosphate dehydrogenase (Conley T.R. et al. 1994 Mol. Cell Biol. 19: 2525-33; Kwon H.B. et al. 1994 Plant Physiol. 105: 357-67), promoter of the Solanum tuberosum gene encoding the leaf and stem specific (ST-LS1) protein (Zaidi M.A. et al., 2005 Transgenic Res. 14:289-98), stem-regulated, defense-inducible genes, such as JAS promoters (patent publication no. 20050034192/US-A1). An example of a flower-specific promoter is for instance, the chalcone synthase promoter (Faktor O. et al. 1996 Plant Mol. Biol. 32: 849) and an example of a fruit-specific promoter is for instance RJ39 from strawberry (WO 98 31812).

In yet other embodiments of the present invention, other promoters useful for the expression of dsRNA are used and include, but are not limited to, promoters from an RNA Poll, an RNA PollI, an RNA PollII, T7 RNA polymerase or SP6 RNA polymerase. These promoters are typically used for *in vitro*-production of dsRNA, which dsRNA is then included in an anti-insecticidal agent, for example, in an anti-insecticidal liquid, spray or powder.

Therefore, the present invention also encompasses a method for generating any of the double-stranded RNA or RNA constructs of the invention. This method comprises the steps of

- a. contacting an isolated nucleic acid or a recombinant DNA construct of the invention with cell-free components; or
- b. introducing (e.g. by transformation, transfection or injection) an isolated nucleic acid or a recombinant DNA construct of the invention in a cell,

under conditions that allow transcription of said nucleic acid or recombinant DNA construct to produce the dsRNA or RNA construct.

10

15

20

25

30

35

40

Optionally, one or more transcription termination sequences may also be incorporated in the recombinant construct of the invention. The term "transcription termination sequence" encompasses a control sequence at the end of a transcriptional unit, which signals 3' processing and poly-adenylation of a primary transcript and termination of transcription. Additional regulatory elements, such as transcriptional or translational enhancers, may be incorporated in the expression construct.

The recombinant constructs of the invention may further include an origin of replication which is required for maintenance and/or replication in a specific cell type. One example is when an expression construct is required to be maintained in a bacterial cell as an episomal genetic element (e.g. plasmid or cosmid molecule) in a cell. Preferred origins of replication include, but are not limited to, f1-ori and colE1 ori.

The recombinant construct may optionally comprise a selectable marker gene. As used herein, the term "selectable marker gene" includes any gene, which confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells, which are transfected or transformed, with an expression construct of the invention. Examples of suitable selectable markers include resistance genes against ampicillin (Ampr), tetracycline (Tcr), kanamycin (Kanr), phosphinothricin, and chloramphenicol (CAT) gene. Other suitable marker genes provide a metabolic trait, for example manA. Visual marker genes may also be used and include for example beta-glucuronidase (GUS), luciferase and Green Fluorescent Protein (GFP).

Plants that have been stably transformed with a transgene encoding the dsRNA may be supplied as seed, reproductive material, propagation material or cell culture material which does not actively express the dsRNA but has the capability to do so.

Accordingly, the present invention encompasses a plant (e.g. a rice plant), or a seed (e.g. a rice seed), or a cell (e.g. a bacterial or plant cell), comprising at least one double-stranded RNA or at least one double-stranded RNA construct as described herein: or at least one nucleotide sequence or at least one recombinant DNA construct as descrobed herein; or at least one plant cell as described herein. The present invention also encompasses a plant (e.g. an alfalfa, ,apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clemintine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes, grape, grapefruit, groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya,, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugargcane, sunflower, sweet poatao, tangerine, tea, tobacco, tomato, a vine, waetermelon, wheat, yams or zucchiniplant; preferably a potato, eggplant, tomato, pepper, tobacco, ground cherry, rice corn or cotton plant), or a seed or tuber (e.g. an alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery, cherry, citrus, clemintine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes,

15

20

25

30

40

grape, grapefruit, groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya,, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugargcane, sunflower, sweet poatao, tangerine, tea, tobacco, tomato, a vine, waetermelon, wheat, yams or zucchini plant; preferably a potato, eggplant, tomato, pepper, tobacco, ground cherry, rice, corn or cotton seed or tuber), or a cell (e.g. a bacterial or plant cell), comprising at least one double-stranded RNA or at least one doublestranded RNA construct as described herein: or at least one nucleotide sequence or at least one recombinant DNA construct as descrobed herein. Preferably, these plants or seeds or cells comprise a recombinant construct wherein the nucleotide sequence encoding the dsRNA or dsRNA construct according to the present invention is operably linked to at least one regulatory element as described above.

The plant may be provided in a form wherein it is actively expressing (transcribing) the RNA molecule in one or more cells, cell types or tissues. Alternatively, the plant may be "capable of expressing", meaning that it is transformed with a transgene which encodes the desired RNA molecule but that the transgene is not active in the plant when (and in the form in which) the plant is supplied.

In one particular embodiment, there is provided a recombinant (expression) construct for expression of an RNA molecule in a plant or in a plant cell comprising at least one regulatory sequence operably linked to a nucleic acid molecule comprising at least 14, 15, 16, 17, 18, 19, 20, 21, 22 etc. nucleotides, up to all of the nucleotides of the sequence set forth as SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203. 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or comprising at least 14, 15, 16, 17, 18, 19, 20, 21, 22 etc. 35 up to all nucleotides of the sequence of an orthologous nucleic acid molecule from a different target species. Many vectors are available for this purpose, and selection of the appropriate vector will depend mainly on the size of the nucleic acid to be inserted into the vector and the particular host cell to be transformed with the vector.

General techniques for expression of exogenous double-stranded RNA in plants for the purposes of RNAi are known in the art (see Baulcombe D, 2004, Nature. 431(7006):356-63. RNA

15

20

25

30

35

40

silencing in plants, the contents of which are incorporated herein by reference). More particularly, methods for expression of double-stranded RNA in plants for the purposes of down-regulating gene expression in plant pests such as nematodes or insects are also known in the art. Similar methods can be applied in an analogous manner in order to express double-stranded RNA in plants for the purposes of down-regulating expression of a target gene in a plant pathogenic insect. In order to achieve this effect it is necessary only for the plant to express (transcribe) the double-stranded RNA in a part of the plant which will come into direct contact with the insect, such that the double-stranded RNA can be taken up by the insect. Depending on the nature of the insect and its relationship with the host plant, expression of the dsRNA could occur within a cell or tissue of a plant within which the insect is also present during its life cycle, or the RNA may be secreted into a space between cells, such as the apoplast, that is occupied by the insect during its life cycle. Furthermore, the dsRNA may be located in the plant cell, for example in the cytosol, or in the plant cell organelles such as a chloroplast, mitochondrion, vacuole or endoplastic reticulum.

Alternatively, the dsRNA may be secreted by the plant cell and by the plant to the exterior of the plant. As such, the dsRNA may form a protective layer on the surface of the plant.

In a further aspect, the invention also provides combinations of methods and compositions for preventing or protecting plants from pest infestation. For instance, one means provides using the plant transgenic approach combining methods using expression of dsRNA molecules and methods using expression of such Bt insecticidal proteins.

Therefore the invention also relates to a method or a plant cell or plant described herein, wherein said plant cell or plant expressing said RNA molecule comprises or expresses a pesticidal agent selected from the group consisting of a patatin, a *Bacillus thuringiensis* insecticidal protein, a *Xenorhabdus* insecticidal protein, a *Photorhabdus* insecticidal protein, a *Bacillus laterosporous* insecticidal protein, and a *Bacillus sphearicus* insecticidal protein. Preferably said *Bacillus thuringiensis* insecticidal protein is selected from the group consisting of a Cry1, a Cry3, a TIC851, a CryET170, a Cry22, a binary insecticidal protein CryET33 and CryET34, a binary insecticidal protein CryET80 and CryET76, a binary insecticidal protein TIC100 and TIC101, and a binary insecticidal protein PS149B1.

In a further embodiment, the invention relates to a composition for controlling insect growth and/or preventing or reducing insect infestation, comprising at least a plant part, plant cell, plant tissue or seed comprising at least one double-stranded RNA, wherein said double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of a nucleotide sequence of an insect target gene. Optionally, the composition further comprises at least one suitable carrier, excipient or diluent. The target gene may be any target gene described herein. Preferably the insect target gene is essential for the viability, growth, development or reproduction of the insect.

In another aspect the invention relates to a composition as described above, wherein the insect target gene comprises a sequence which is at least 75%, preferably at least 80%, 85%, 90%, more preferably at least 95%, 98% or 99% identical to a sequence selected from the group of sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158,

159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249. 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 5 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 10 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, or wherein said insect target gene is an insect orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 15 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 20 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof. 25

According to a still further embodiment, the present invention extends to a method for increasing plant yield comprising introducing in a plant any of the nucleotide sequences or recombinant DNA constructs as herein described in an expressible format. Plants encompassed by this method are as described earlier.

The invention will be further understood with reference to the following non-limiting examples.

Brief Description of Figures and Tables

30

35

Figure 1-LD: Survival of *L. decemlineata* on artificial diet treated with dsRNA. Insects of the second larval stage were fed diet treated with 50 μl of topically-applied solution of dsRNA (targets or gfp control). Diet was replaced with fresh diet containing topically-applied dsRNA after 7 days. The number of surviving insects were assessed at days 2, 5, 7, 8, 9, & 13. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Target LD006: (SEQ ID NO 178);

15

20

25

30

35

Target LD007 (SEQ ID NO 183); Target LD010 (SEQ ID NO 188); Target LD011 (SEQ ID NO 193); Target LD014 (SEQ ID NO 198); gfp dsRNA (SEQ ID NO 235).

Figure 2-LD: Survival of *L. decemlineata* on artificial diet treated with dsRNA. Insects of the second larval stage were fed diet treated with 50 μl of topically-applied solution of dsRNA (targets or gfp control). Diet was replaced with fresh diet only after 7 days. The number of surviving insects was assessed at days 2, 5, 6, 7, 8, 9, 12, & 14. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Target LD001 (SEQ ID NO 163); Target LD002 (SEQ ID NO 168); Target LD003 (SEQ ID NO 173); Target LD015 (SEQ ID NO 215); Target LD016 (SEQ ID NO 220); gfp dsRNA (SEQ ID NO 235).

Figure 3-LD: Average weight of *L. decemlineata* larvae on potato leaf discs treated with dsRNA. Insects of the second larval stage were fed leaf discs treated with 20 μl of a topically-applied solution (10 ng/μl) of dsRNA (target LD002 or gfp). After two days the insects were transferred on to untreated leaves every day.

Figure 4-LD: Survival of *L. decemlineata* on artificial diet treated with shorter versions of target LD014 dsRNA and concatemer dsRNA. Insects of the second larval stage were fed diet treated with 50 μl of topically-applied solution of dsRNA (gfp or targets). The number of surviving insects were assessed at days 3, 4, 5, 6, & 7. The percentage of surviving larvae were calculated relative to day 0 (start of assay).

Figure 5-LD: Survival of *L. decemlineata* larvae on artificial diet treated with different concentrations of dsRNA of target LD002 (a), target LD007 (b), target LD010 (c), target LD011 (d), target LD014 (e), target LD015 (f), LD016 (g) and target LD027 (h). Insects of the second larval stage were fed diet treated with 50 µl of topically-applied solution of dsRNA. Diet was replaced with fresh diet containing topically-applied dsRNA after 7 days. The number of surviving insects were assessed at regular intervals. The percentage of surviving larvae were calculated relative to day 0 (start of assay).

Figure 6-LD. Survival of *L. decemlineata* adults on potato leaf discs treated with dsRNA. Young adult insects were fed double-stranded-RNA-treated leaf discs for the first two days and were then placed on untreated potato foliage. The number of surviving insects were assessed regularly; mobile insects were recorded as insects which were alive and appeared to move normally; moribund insects were recorded as insects which were alive but appeared sick and slow moving – these insects were not able to right themselves once placed on their backs. Target LD002 (SEQ ID NO 168); Target LD010 (SEQ ID NO 188); Target LD014 (SEQ ID NO 198); Target LD016 (SEQ ID NO 220); gfp dsRNA (SEQ ID NO 235).

Figure 7-LD. Mortality and growth/developmental delay of larval survivors of the Colorado potato beetle, *Leptinotarsa decemlineata*, on transgenic potato plants. Seven CPB L1 larvae were fed on transgenic potato siblings harbouring LD002 construct (●), empty vector (▲), or wild type line V plants (■) for seven days. Mortality is expressed in percentage and average larval weight in mg.

Figure 1-PC: Effects of ingested target dsRNAs on survival and growth of *P. cochleariae* larvae. Neonate larvae were fed oilseed rape leaf discs treated with 25 μl of topically-applied solution of 0.1 μg/μl dsRNA (targets or gfp control). Afer 2 days, the insects were transferred onto fresh dsRNA-treated leaf discs. At day 4, larvae from one replicate for every treatment were collected and placed in a Petri dish containing fresh untreated oilseed rape foliage. The insects were assessed at days 2, 4, 7, 9 & 11. (a) Survival of *E. varivestis* larvae on oilseed rape leaf discs treated with dsRNA. The percentage of surviving larvae was calculated relative to day 0 (start of assay). (b) Average weights of *P. cochleariae* larvae on oilseed rape leaf discs treated with dsRNA. Insects from each replicate were weighed together and the average weight per larva determined. Error bars represent standard deviations. Target 1: SEQ ID NO 473; target 3: SEQ ID NO 478; target 5: SEQ ID NO 483 —; target 10: SEQ ID NO 488; target 14: SEQ ID NO 493; target 16: SEQ ID NO 498; target 27: SEQ ID NO 503; gfp dsRNA: SEQ ID NO 235.

10

15

20

25

30

35

Figure 2-PC: Survival of *P. cochleariae* on oilseed rape leaf discs treated with different concentrations of dsRNA of (a) target PC010 and (b) target PC027. Neonate larvae were placed on leaf discs treated with 25 μl of topically-applied solution of dsRNA. Insects were transferred to fresh treated leaf discs at day 2. At day 4 for target PC010 and day 5 for target PC027, the insects were transferred to untreated leaves. The number of surviving insects were assessed at days 2, 4, 7, 8, 9 & 11 for PC010 and 2, 5, 8, 9 & 12 for PC027. The percentage of surviving larvae was calculated relative to day 0 (start of assay).

Figure 1-EV: Survival of *E. varivestis* larvae on bean leaf discs treated with dsRNA. Neonate larvae were fed bean leaf discs treated with 25 μl of topically-applied solution of 1 μg/μl dsRNA (targets or gfp control). Afer 2 days, the insects were transferred onto fresh dsRNA-treated leaf discs. At day 4, larvae from one treatment were collected and placed in a plastic box containing fresh untreated bean foliage. The insects were assessed for mortality at days 2, 4, 6, 8 & 10. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Target 5: SEQ ID NO 576; target 10: SEQ ID NO 586; target 15: SEQ ID NO 591; target 16: SEQ ID NO 596; gfp dsRNA: SEQ ID NO 235.

Figure 2-EV: Effects of ingested target dsRNAs on surival of *E. varivestis* adults and resistance to snap bean foliar insect damage. (a) Surivival of *E. varivestis* adults on bean leaf treated with dsRNA. Adults were fed bean leaf discs treated with 75 μl of topically-applied solution of 0.1 μg/μl dsRNA (targets or gfp control). After 24 hours, the insects were transferred onto fresh dsRNA-treated leaf discs. After a further 24 hours, adults from one treatment were collected and placed in a plastic box containing potted fresh untreated whole bean plants. The insects were assessed for mortality at days 4, 5, 6, 7, 8, & 11. The percentage of surviving adults was calculated relative to day 0 (start of assay). Target 10: SEQ ID NO 586; target 15: SEQ ID NO 591; target 16: SEQ ID NO 596; gfp dsRNA: SEQ ID NO 235. (b) Resistance to bean foliar damage caused by adults of the *E. varivestis* by dsRNA. Whole plants containing insects from one treatment (see (a)) were checked visually for foliar damage on day 9. (i) target 10; (ii) target 15; (iii) target 16; (iv) gfp dsRNA; (v) untreated.

10

20

30

35

Figure 1-TC: Survival of *T. castaneum* larvae on artificial diet treated with dsRNA of target 14. Neonate larvae were fed diet based on a flour/milk mix with 1 mg dsRNA target 14. Control was water (without dsRNA) in diet. Four replicates of 10 first instar larvae per replicate were performed for each treatment. The insects were assessed for survival as average percentage means at days 6, 17, 31, 45 and 60. The percentage of surviving larvae was calculated relative to day 0 (start of assay). Error bars represent standard deviations. Target TC014: SEQ ID NO 878.

Figure 1-MP: Effect of ingested target 27 dsRNA on the survival of *Myzus persicae* nymphs. First instars were placed in feeding chambers containing 50 μl of liquid diet with 2 μg/μl dsRNA (target 27 or gfp dsRNA control). Per treatment, 5 feeding chambers were set up with 10 instars in each feeding chamber. Number of survivors were assessed at 8 days post start of bioassay. Error bars represent standard deviations. Target MP027: SEQ ID NO 1061; gfp dsRNA: SEQ ID NO 235.

Figure 1-NL: Survival of *Nilaparvata lugens* on liquid artificial diet treated with dsRNA. Nymphs of the first to second larval stage were fed diet supplemented with 2 mg/ml solution of dsRNA targets in separate bioassays: (a) NL002, NL003, NL005, NL010; (b) NL009, NL016; (c) NL014, NL018; (d) NL013, NL015, NL021. Insect survival on targets were compared to diet only and diet with gfp dsRNA control at same concentration. Diet was replaced with fresh diet containing dsRNA every two days. The number of surviving insects were assessed every day

Figure 2-NL: Survival of *Nilaparvata lugens* on liquid artificial diet treated with different concentrations of target dsRNA NL002. Nymphs of the first to second larval stage were fed diet supplemented with 1, 0.2, 0.08, and 0.04 mg/ml (final concentration) of NL002. Diet was replaced with fresh diet containing dsRNA every two days. The numbers of surviving insects were assessed every day.

25 Examples

Example 1: Silencing C.elegans target genes in C. elegans in High Throughput Screening

A C. elegans genome wide library was prepared in the pGN9A vector (WO 01/88121) between two identical T7-promoters and terminators, driving its expression in the sense and antisense direction upon expression of the T7 polymerase, which was induced by IPTG.

This library was transformed into the bacterial strain AB301-105 (DE3) in 96 well plate format. For the genome wide screening, these bacterial cells were fed to the nuclease deficient *C. elegans nuc-1(e1392)* strain.

Feeding the dsRNA produced in the bacterial strain AB301-105 (DE3), to *C. elegans nuc-1* (e1392) worms, was performed in a 96 well plate format as follows: nuc-1 eggs were transferred to a separate plate and allowed to hatch simultaneously at 20 °C for synchronization of the L1 generation. 96 well plates were filled with 100 μ L liquid growth medium comprising IPTG and with 10 μ L bacterial cell culture of OD₆₀₀1 AB301-105 (DE3) of the C. elegans dsRNA library carrying each a vector with a C. elegans genomic fragment for expression of the dsRNA. To each well, 4 of

42

the synchronized L1 worms were added and were incubated at 25 °C for at least 4 to 5 days. These experiments were performed in quadruplicate. In the screen 6 controls were used:

- pGN29 = negative control, wild type
- pGZ1 = unc-22 = twitcher phenotype
- pGZ18 = chitin synthase = embryonic lethal
- pGZ25 = pos-1 = embryonic lethal
- pGZ59 = bli-4D = acute lethal

5

10

15

20

25

30

35

- ACC = acetyl co-enzym A carboxylase = acute lethal

After 5 days, the phenotype of the *C. elegans nuc-1 (e1392)* worms fed with the bacteria producing dsRNA were compared to the phenotype of worms fed with the empty vector (pGN29) and the other controls. The worms that were fed with the dsRNA were screened for lethality (acute or larval) lethality for the parent (Po) generation, (embryonic) lethality for the first filial (F1) generation, or for growth retardation of Po as follows: (i) <u>Acute lethality of Po:</u> L1's have not developed and are dead, this phenotype never gives progeny and the well looks quite empty; (ii) (<u>Larval</u>) lethality of Po: Po died in a later stage than L1, this phenotype also never gives progeny. Dead larvae or dead adult worms are found in the wells; (iii) <u>Lethality for F1:</u> L1's have developed until adult stage and are still alive. This phenotype has no progeny. This can be due to sterility, embryonic lethality (dead eggs on the bottom of well), embryonic arrest or larval arrest (eventually ends up being lethal): (iv) <u>Arrested in growth and growth retardation/delay:</u> Compared to a well with normal development and normal # of progeny.

For the target sequences presented in **Table 1A**, it was concluded that dsRNA mediated silencing of the *C. elegans* target gene in nematodes, such as *C. elegans*, had a fatal effect on the growth and viability of the worm.

Subsequent to the above dsRNA silencing experiment, a more detailed phenotyping experiment was conducted in *C. elegans* in a high throughput format on 24 well plates. The dsRNA library produced in bacterial strain AB301-105 (DE3), as described above, was fed to *C. elegans nuc-1 (e1392)* worms on 24 well plates as follows: *nuc-1* eggs were transferred to a separate plate and allowed to hatch simultaneously at 20 C for synchronization of the L1 generation. Subsequently 100 of the synchronized L1 worms were soaked in a mixture of 500 μ L S-complete fed medium, comprising 5 μ g/mL cholesterol, 4 μ L/mL PEG and 1mM IPTG, and 500 μ L of bacterial cell culture of OD₆₀₀1 AB301-105 (DE3) of the *C. elegans* dsRNA library carrying each a vector with a *C. elegans* genomic fragment for expression of the dsRNA. The soaked L1 worms were rolled for 2 hours at 25 C.

After centrifugation and removal of 950 µL of the supernatant, 5 µL of the remaining and resuspended pellet (comprising about 10 to 15 worms) was transferred in the middle of each well of a 24 well plate, filled with a layer of agar LB broth. The inoculated plate was incubated at 25°C for 2 days. At the adult stage, 1 adult worm was singled and incubated at 25°C for 2 days for inspection of its progeny. The other adult worms are inspected *in situ* on the original 24 well plate. These experiments were performed in quadruplicate.

10

15

20

25

30

35

This detailed phenotypic screen was repeated with a second batch of worms, the only difference being that the worms of the second batch were incubated at 20 C for 3 days.

The phenotype of the worms fed with *C. elegans* dsRNA was compared to the phenotype of *C. elegans nuc-1 (e1392)* worms fed with the empty vector.

Based on this experiment, it was concluded that silencing the *C. elegans* target genes as represented in **Table 1A** had a fatal effect on the growth and viability of the worm and that the target gene is essential to the viability of nematodes. Therefore these genes are good target genes to control (kill or prevent from growing) nematodes via dsRNA mediated gene silencing. Accordingly, the present invention encompasses the use of nematode orthologues of the above *C. elegans* target gene, to control nematode infestation, such as nematode infestation of plants.

Example 2: Identification of D. melanogaster orthologues

As described above in Example 1, numerous *C. elegans* lethal sequenes were identified and can be used for identifying orthologues in other species and genera. For example, the *C. elegans* lethal sequences can be used to identify orthologous *D. melanogasters* sequences. That is, each *C. elegans* sequence can be querried against a public database, such as GenBank, for orthologous sequences in *D. melanogaster*. Potential *D. melanogaster* orthologues were selected that share a high degree of sequence homology (E value preferably less than or equal to 1E-30) and the sequences are blast reciprocal best hits, the latter means that the sequences from different organisms (e.g. *C. elegans* and *D. melanogaster*) are each other's top blast hits. For example, sequence C from *C. elegans* is compared against sequences in *D. melanogaster* using BLAST. If sequences of *C. elegans*, also turns out to be sequence C, then D and C are reciprocal best hits. This criterium is often used to define orthology, meaning similar sequences of different species, having similar function. The *D. melanogaster* sequence identifiers are represented in Table 1A.

Example 3: Leptinotarsa decemlineata (Colorado potato beetle)

A. Cloning partial gene sequences from Leptinotarsa decemlineata

High quality, intact RNA was isolated from 4 different larval stages of *Leptinotarsa decemlineata* (Colorado potato beetle; source: Jeroen van Schaik, Entocare CV Biologische Gewasbescherming, Postbus 162, 6700 AD Wageningen, the Netherlands) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript TM III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the LD001, LD002, LD003, LD006, LD007, LD010, LD011, LD014, LD015, LD016, LC018 and LD027 genes, a series of PCR

15

20

25

30

35

reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-LD**, which displays *Leptintarsa decemlineata* target genes including primer sequences and cDNA sequences obtained. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/topo vector (Cat. Nr. K2500 20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-LD** and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in **Table 3-LD**, where the start of the reading frame is indicated in brackets.

B. dsRNA production of the Leptinotarsa decemlineata genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-LD. The conditions in the PCR reactions were as follows: 4 minutes at 95°C, followed by 35 cycles of 30 seconds at 95°C, 30 seconds at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-LD. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-LD. Table 8-LD displays sequences for preparing ds RNA fragments of Leptinotarsa decemlineata target sequences and concatemer sequences, including primer sequences.

C. Cloning Leptinotarsa decemlineata genes into plant vector pK7GWlWG2D(II)

Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, were cloned in anti-sense and sense orientation, separated by the intron - CmR - intron, whereby CmR is the chloramphenical resistance marker, to form a dsRNA hairpin construct. These hairpin constructs were generated using the LR

45

recombination reaction between an attL- containing entry clone (see Example 1) and an attR-containing destination vector (= pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) was obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction was performed by using LR ClonaseTM II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments resulted in a hairpin construct for each of the LD002, LD006, LD007, LD010, LD011, LD014 and LD016 genes, having either the promoter - sense - intron - CmR - intron - antisense orientation, or promoter - antisense - intron - CmR - intron - sense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into *A. tumefaciens*.

5

10

15

25

30

35

For LD002 and LD010, a double digest with restriction enzymes BsoBI & Pvul was done on LD002 cloned into pCR8/GW/topo (see Example 3A). For LD006, LD007, LD011, LD014, LD016 and LD027, a digest with restriction enzyme BsoBI was done on LD006 cloned into pCR8/GW/topo (see Example 3A). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) was purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) was added together with the LR clonase II enzyme and incubated for at least 1h at 25°C. After proteinase K solution treatment (10 min at 37°C), the whole recombination mix was transformed into Top 10 chemically competent cells. Positive clones were selected by restriction digest analysis. The complete sequence of the hairpin construct for:

20 - LD002 (antisense - intron - CmR - intron - sense) is set forth in SEQ ID NO 240;

- LD006 (sense - intron - CmR - intron - antisense) is set forth in SEQ ID NO 241;

- LD007 sense - intron - CmR - intron - antisense) is set forth in SEQ ID NO 242;

- LD010 (antisense - intron - CmR - intron - sense) is set forth in SEQ ID NO 243:

- LD011 (sense - intron - CmR - intron - antisense) is set forth in SEQ ID NO 244;

- LD014 (sense - intron - CmR - intron - antisense) is set forth in SEQ ID NO 245;

- LD016 (antisense - intron - CmR - intron - sense) is set forth in SEQ ID NO 246;

- LD027 (sense - intron - CmR - intron - antisense) is set forth in SEQ ID NO 2486.

Table 9-LD provides complete sequences for each hairpin construct.

D. Screening dsRNA targets using artificial diet for activity against Leptinotarsa decemlineata

Artificial diet for the Colorado potato beetle was prepared as follows (adapted from Gelman et al., 2001, J. Ins. Sc., vol. 1, no. 7, 1-10): water and agar were autoclaved, and the remaining ingredients (shown in Table A below) were added when the temperature dropped to 55 °C. At this temperature, the ingredients were mixed well before the diet was aliquoted into 24-well plates (Nunc) with a quantity of 1ml of diet per well. The artificial diet was allowed to solidify by cooling at room temperature. Diet was stored at 4 °C for up to three weeks.

46

Table A: Ingredients for Artificial diet

5

10

15

20

Ingredients	Volume for 1 L
water	768ml
agar	14g
rolled oats	40g
Torula yeast	60g
lactalbumin hydrolysate	30g
casein	10g
fructose	20 g
Wesson salt mixture	4g
tomato fruit powder	12.5g
potato leaf powder	25g
b-sitosterol	1g
sorbic acid	0.8g
methyl paraben	0.8g
Vanderzant vitamin mix	12g
neomycin sulfate	0.2g
aureomycin	0.130g
rifampicin	0.130g
chloramphenicol	0.130g
nystatin	0.050g
soybean oil	2ml
wheat germ oil	2ml

Fifty µl of a solution of dsRNA at a concentration of 1 mg/ml was applied topically onto the solid artificial diet in the wells of the multiwell plate. The diet was dried in a laminair flow cabin. Per treatment, twenty-four Colorado potato beetle larvae (2nd stage), with two insects per well, were tested. The plates were stored in the insect rearing chamber at 25 ± 2 °C, 60 % relative humidity, with a 16:8 hours light:dark photoperiod. The beetles were assessed as live or dead every 1, 2 or 3 days. After seven days, for targets LD006, LD007, LD010, LD011, and LD014, the diet was replaced with fresh diet with topically applied dsRNA at the same concentration (1 mg/ml); for targets LD001, LD002, LD003, LD015, and LD016, the diet was replaced with fresh diet only. The dsRNA targets were compared to diet only or diet with topically applied dsRNA corresponding to a fragment of the GFP (green fluorescent protein) coding sequence (SEQ ID NO 235).

Feeding artificial diet containing intact naked dsRNAs to *L. decemlineata* larvae resulted in significant increases in larval mortalities as indicated in two separate bioassays (Figures 1LD-2LD).

All dsRNAs tested resulted ultimately in 100 % mortality after 7 to 14 days. Diet with or without GFP dsRNA sustained the insects throughout the bioassays with very little or no mortality.

Typically, in all assays observed, CPB second-stage larvae fed normally on diet with or without dsRNA for 2 days and molted to the third larval stage. At this new larval stage the CPB were observed to reduce significantly or stop altogether their feeding, with an increase in mortality as a result.

10

15

20

25

30

35

E. Bioassay of dsRNA targets using potato leaf discs for activity against the Leptinotarsa decemlineata

An alternative bioassay method was employed using potato leaf material rather than artificial diet as food source for CPB. Discs of approximately 1.1 cm in diameter (or 0.95 cm²) were cut out off leaves of 2 to 3-week old potato plants using a suitably-sized cork borer. Treated leaf discs were prepared by applying 20 µl of a 10 ng/µl solution of target LD002 dsRNA or control gfp dsRNA on the adaxial leaf surface. The leaf discs were allowed to dry and placed individually in 24 wells of a 24-well multiplate (Nunc). A single second-larval stage CPB was placed into each well, which was then covered with tissue paper and a multiwell plastic lid. The plate containing the insects and leaf discs were kept in an insect chamber at 28°C with a photoperiod of 16h light/8h dark. The insects were allowed to feed on the leaf discs for 2 days after which the insects were transferred to a new plate containing fresh treated leaf discs. Thereafter, the insects were transferred to a plate containing untreated leaf discs every day until day 7. Insect mortality and weight scores were recorded.

Feeding potato leaf discs with surface-applied intact naked dsRNA of target LD002 to *L. decemlineata* larvae resulted in a significant increase in larval mortalities (i.e. at day 7 all insects were dead; 100 % mortality) whereas control gfp dsRNA had no effect on CPB survival. Target LD002 dsRNA severely affected the growth of the larvae after 2 to 3 days whereas the larvae fed with gfp dsRNA at the same concentration developed as normal (Figure 3-LD).

F. Screening shorter versions of dsRNAs using artificial diet for activity against Leptinotarsa decemlineata

This example exemplifies the finding that shorter (60 or 100bp) dsRNA fragments on their own or as concatemer constructs are sufficient in causing toxicity towards the Colorado potato beetle.

LD014, a target known to induce lethality in Colorado potato beetle, was selected for this example. This gene encodes a V-ATPase subunit E (SEQ ID NO 15).

A 100 base pair fragment, LD014_F1, at position 195-294 on SEQ ID NO 15 (SEQ ID NO 159) and a 60 base pair fragment, LD014_F2, at position 235-294 on SEQ ID NO 15 (SEQ ID NO 160) were further selected. See also **Table 7-LD**.

Two concatemers of 300 base pairs, LD014_C1 and LD014_C2, were designed (SEQ ID NO 161 and SEQ ID NO 162). LD014_C1 contained 3 repeats of the 100 base pair fragment described above (SEQ ID NO 159) and LD014_C2 contained 5 repeats of the 60 base pair fragment described above (SEQ ID NO 160). See also **Table 7-LD**.

The fragments LD014_F1 and LD014_F2 were synthesized as sense and antisense primers. These primers were annealed to create the double strands DNA molecules prior to cloning. Xbal and Xmal restrictions sites were included at the 5' and 3' ends of the primers, respectively, to facilitate the cloning.

48

The concatemers were made as 300 base pairs synthetic genes. Xbal and Xmal restrictions sites were included at the 5' and 3' ends of the synthetic DNA fragments, respectively, to facilite the cloning.

The 4 DNA molecules, i.e. the 2 single units (LD014_F1 & LD014_F2) and the 2 concatemers (LD014_C1 & LD014_C2), were digested with Xbal and Xmal and subcloned in pBluescriptII SK+ linearised by Xbal and Xmal digests, resulting in recombinant plasmids p1, p2, p3, & p4, respectively.

5

10

15

20

25

30

35

40

Double-stranded RNA production: dsRNA was synthesized using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter. For LD014 F1, the sense T7 template was generated using the specific T7 forward primer oGBM159 and the specific reverse primer oGBM164 (represented herein as SEQ ID NO 204 and SEQ ID NO 205, respectively) in a PCR reaction with the following conditions: 4 minutes at 95°C, followed by 35 cycles of 30 seconds at 95°C, 30 seconds at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using the specific forward primer oGBM163 and the specific T7 reverse primer oGBM160 (represented herein as SEQ ID NO 206 and SEQ ID NO 207, respectively) in a PCR reaction with the same conditions as described above. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, Dnase and Rnase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA is herein represented by SEQ ID NO 203.

For LD014_F2, the sense T7 template was generated using the specific T7 forward primer oGBM161 and the specific reverse primer oGBM166 (represented herein as SEQ ID NO 209 and SEQ ID NO 210, respectively) in a PCR reaction with the following conditions: 4 minutes at 95°C, followed by 35 cycles of 30 seconds at 95°C, 30 seconds at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using the specific forward primer oGBM165 and the specific T7 reverse primer oGBM162 (represented herein as SEQ ID NO 211 and SEQ ID NO 212, respectively) in a PCR reaction with the same conditions as described above. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, Dnase and Rnase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA is herein represented by SEQ ID NO 208.

Also for the concatemers, separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter. The recombinant plasmids p3 and p4 containing

49

LD014_C1 & LD014_C2 were linearised with *Xbal* or *Xmal*, the two linear fragments for each construct purified and used as template for the *in vitro* transcription assay, using the T7 promoters flanking the cloning sites. Double-stranded RNA was prepared by *in vitro* transcription using the T7 RiboMAXTM Express RNAi System (Promega). The sense strands of the resulting dsRNA for LD014_C1 and LD014_C2 are herein represented by SEQ ID NO 213 and2114, respectively.

Shorter sequences of target LD014 and concatemers were able to induce lethality in *Leptinotarsa decemlineata*, as shown in Figure 4-LD.

5

10

15

20

25

30

35

G. Screening dsRNAs at different concentrations using artificial diet for activity against Leptinotarsa decemlineata

Fifty μ I of a solution of dsRNA at serial ten-fold concentrations from 1 μ g/ μ I (for target LD027 from 0.1 μ g/ μ I)down to 0.01 ng/ μ I was applied topically onto the solid artificial diet in the wells of a 24-well plate (Nunc). The diet was dried in a laminair flow cabin. Per treatment, twenty-four Colorado potato beetle larvae (2nd stage), with two insects per well, were tested. The plates were stored in the insect rearing chamber at 25 ± 2 °C, 60 % relative humidity, with a 16:8 hours light:dark photoperiod. The beetles were assessed as live or dead at regular intervals up to day 14. After seven days, the diet was replaced with fresh diet with topically applied dsRNA at the same concentrations. The dsRNA targets were compared to diet only.

Feeding artificial diet containing intact naked dsRNAs of different targets to *L. decemlineata* larvae resulted in high larval mortalities at concentrations as low as between 0.1 and 10 ng dsRNA/µI as shown in **Figure 5-LD**.

H. Adults are extremely susceptible to orally ingested dsRNA corresponding to target genes.

The example provided below highlights the finding that adult insects (and not only insects of the larval stage) are extremely susceptible to orally ingested dsRNA corresponding to target genes.

Four targets were chosen for this experiment: targets 2, 10, 14 and 16 (SEQ ID NO 168, 188, 198 and 220, respectively). GFP fragment dsRNA (SEQ ID NO 235) was used as a control. Young adults (2 to 3 days old) were picked at random from our laboratory-reared culture with no bias towards insect gender. Ten adults were chosen per treatment. The adults were prestarved for at least 6 hours before the onset of the treatment. On the first day of treatment, each adult was fed four potato leaf discs (diameter 1.5 cm²) which were pretreated with a topical application of 25 µl of 0.1µg/µl target dsRNA (synthesized as described in Example 3A; topical application as described in Example 3E) per disc. Each adult was confined to a small petridish (diameter 3 cm) in order to make sure that all insects have ingested equal amounts of food and thus received equal doses of dsRNA. The following day, each adult was again fed four treated leaf discs as described above. On the third day, all ten adults per treatment were collected and placed together in a cage consisting of a plastic box (dimensions 30 cm x 20 cm x 15 cm) with a fine nylon mesh built into the lid to provide good aeration. Inside the box, some moistened filter paper was placed in the base. Some (untreated) potato foliage was placed on top of the paper to maintain the adults during the

10

15

20

25

30

35

experiment. From day 5, regular assessments were carried out to count the number of dead, alive (mobile) and moribund insects. For insect moribundity, adults were laid on their backs to check whether they could right themselves within several minutes; an insect was considered moribund only if it was not able to turn onto its front.

Clear specific toxic effects of double-stranded RNA correpsonding to different targets towards adults of the Colorado potato beetle, *Leptinotarsa decemlineata*, were demonstrated in this experiment (**Figure 6-LD**). Double-stranded RNA corresponding to a gfp fragment showed no toxicity towards CPB adults on the day of the final assessment (day 19). This experiment clearly showed that the survival of CPB adults was severely reduced only after a few days of exposure to dsRNA when delivered orally. For example, for target 10, on day 5, 5 out of 10 adults were moribund (sick and slow moving); on day 6, 4 out of 10 adults were dead with three of the survivors moribund; on day 9 all adults were observed dead.

As a consequence of this experiment, the application of target double-stranded RNAs against insect pests may be broadened to include the two life stages of an insect pest (i.e. larvae and adults) which could cause extensive crop damage, as is the case with the Colorado potato beetle.

I. Laboratory trials to test transgenic potato plants against larvae of the Colorado potato beetle, *Leptinotarsa decemlineata*

The example provided below is an exemplification of the finding that transgenic potato plants expressing CPB-gene-specific hairpin RNAs adversely affected Colorado potato beetles. Potato transformation

Stably transformed potato plants were obtained using an adapted protocol received through Julie Gilbert at the NSF Potato Genome Project (http://www.potatogenome.org/nsf5). Stem internode explants of potato 'Line V' (obtained from the Laboratory of Plant Breeding at PRI Wageningen, the Netherlands) which was derived from the susceptible diploid *Solanum tuberosum* 6487-9 were used as starting material for transformation.

In vitro derived explants were inoculated with Agrobacterium tumifaciens C58C₁Rif^R containing the hairpin constructs. After three days co-cultivation the explants were put onto a selective medium containing 100mg/l Kanamycin and 300mg/l Timentin. After 6 weeks post-transformation the first putative shoots were removed and rooted on selective medium. Shoots originating from different explants were treated as independent events, shoots originating from the same callus were termed 'siblings' until their clonal status can be verified by Southerns, and nodal cuttings of a shoot were referred to as 'clones'.

The transgenic status of the rooting shoots was checked either by GFP fluorescence or by plus/minus PCR for the target sequence. Positive shoots were then clonally propagated in tissue culture to ensure enough replicates were available for the Colorado potato beetle assay with the first plants being available to test fourteen weeks post transformation.

Bioassay

51

Transgenic potato plants were grown to the 8-12 unfolded leaf stage in a plant growth room chamber with the following conditions: $23 \pm 2^{\circ}$ C, 60 % relative humidity, 16:8 hour light:dark photoperiod. The plants were caged by placing a 500 ml bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent larval escape.

In this bioassay, seven neonate CPB larvae were placed on the foliage of each transgenic potato plant. Six transgenic potato siblings per transformation event (i.e. plants derived from one callus) of the hairpin construct LD002 (comprising SEQ ID NO 240) (labeled as pGBNB001/28A to F) and empty vector (labeled as pK7GWIWG2D(II)/11A to F), and two wild type plants were tested. Temperature, humidity and lighting conditions were the same as described above. At day 7 (7 days after the start of the bioassay), the number of survivors were counted and the average weight of larval survivors from each plant recorded. Data was analysed using the Spotfire® DecisionSite® 9.0 software (Version 17.1.779) from Spotfire Inc.

In this experiment, all larvae of the Colorado potato beetle on two sibling plants (labeled as pGBNB001/28A and pGBNB001/28F), harbouring hairpin construct LD002, generated from a single transformation event, were dead on day 7 (Figure 7-LD). Feeding damage by CPB larvae on these two plants was very low when compared to the empty vector transgenic plants or wild type line V plants.

20 Example 4: Phaedon cochleariae (mustard leaf beetle)

5

10

15

25

30

35

A. Cloning of a partial sequence of the *Phaedon cochleariae* (mustard leaf beetle) PC001, PC003, PC005, PC010, PC014, PC016 and PC027 genes via family PCR

High quality, intact RNA was isolated from the third larval stage of *Phaedon cochleariae* (mustard leaf beetle; source: Dr. Caroline Muller, Julius-von-Sachs-Institute for Biosciences, Chemical Ecology Group, University of Wuerzburg, Julius-von-Sachs-Platz 3, D-97082 Wuerzburg, Germany) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase (Cat. Nr. 1700, Promega) treatment following the manufacturer's instructions. cDNA was generated using a commercially available kit (SuperScript TM III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the PC001, PC003, PC005, PC010, PC014, PC016 and PC027 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-PC**. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the

pCR4/TOPO vector (Cat. Nr. K4530-20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-PC** and are referred to as the partial sequences.

The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in **Table 3-PC**. Table 3-PC provides amino acid sequences of cDNA clones, and the start of the reading frame is indicated in brackets.

B. dsRNA production of the Phaedon cochleariae genes

5

10

15

20

25

30

35

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in **Table 8-PC**. Table 8-PC provides details for preparing ds RNA fragments of *Phaedon cochleariae* target sequences, including primer sequences.

The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-PC. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-PC.

C. Recombination of the *Phaedon cochleariae* (mustard leaf beetle) genes into the plant vector pK7GWIWG2D(II)

Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, were cloned in anti-sense and sense orientation, separated by the intron - CmR - intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs were generated using the LR recombination reaction between an attL- containing entry clone (see Example 4A) and an attR-containing destination vector (= pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) was obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction was performed by using LR ClonaseTM II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments resulted in a

hairpin construct for each of the PC001, PC010, PC014, PC016 and PC027 genes, having the promoter - sense - intron - CmR - intron - antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into *A. tumefaciens*.

Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 4B): for PC001, a double digest with BsoBI & PvuI; for PC010, a double digest with PvuI & PvuII; for PC014, a triple digest with HinclI, PvuI & XhoI; for PC016, a single digest with ApaLI; for PC027, a double digest with AvaI & DrdI. The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) was purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) was added together with the LR clonase II enzyme and incubated for at least 1h at 25°C. After proteinase K solution treatment (10 min at 37°C), the whole recombination mix was transformed into Top 10 chemically competent cells. Positive clones were selected by restriction digest analyses. The complete sequence of the hairpin construct for:

- PC001 (sense intron CmR intron antisense) is represented in SEQ ID NO 508;
- PC010 (sense intron CmR intron antisense) is represented in SEQ ID NO 509;
- PC014 (sense intron CmR intron antisense) is represented in SEQ ID NO 510;
- PC016 (sense intron CmR intron antisense) is represented in SEQ ID NO 511;
- PC027 (sense intron CmR intron antisense) is represented in SEQ ID NO 512;

20

25

30

35

5

10

15

Table 9-PC provides sequences for each hairpin construct.

D. Laboratory trials to test dsRNA targets, using oilseed rape leaf discs for activity against *Phaedon cochleariae* larvae

The example provided below is an exemplification of the finding that the mustard leaf beetle (MLB) larvae are susceptible to orally ingested dsRNA corresponding to own target genes.

To test the different double-stranded RNA samples against MLB larvae, a leaf disc assay was employed using oilseed rape (*Brassica napus* variety SW Oban; source: Nick Balaam, Sw Seed Ltd., 49 North Road, Abington, Cambridge, CB1 6AS, UK) leaf material as food source. The insect cultures were maintained on the same variety of oilseed rape in the insect chamber at 25 ± 2 °C and 60 ± 5 % relative humidity with a photoperiod of 16h light/8h dark. Discs of approximately 1.1 cm in diameter (or 0.95 cm²) were cut out off leaves of 4- to 6-week old rape plants using a suitably-sized cork borer. Double-stranded RNA samples were diluted to 0.1 µg/µl in Milli-Q water containing 0.05% Triton X-100. Treated leaf discs were prepared by applying 25 µl of the diluted solution of target PC001, PC003, PC005, PC010, PC014, PC016, PC027 dsRNA and control gfp dsRNA or 0.05 % Triton X-100 on the adaxial leaf surface. The leaf discs were left to dry and placed individually in each of the 24 wells of a 24-well multiplate containing 1 ml of gellified 2% agar which helps to prevent the leaf disc from drying out. Two neonate MLB larvae were placed into each well of the plate, which was then covered with a multiwell plastic lid. The plate (one treatment containing 48 insects) was divided into 4 replicates of 12 insects per replicate (each row).

10

15

20

25

30

35

The plate containing the insects and leaf discs were kept in an insect chamber at 25 ± 2 °C and 60 ± 5 % relative humidity with a photoperiod of 16h light/8h dark. The insects were fed leaf discs for 2 days after which they were transferred to a new plate containing freshly treated leaf discs. Thereafter, 4 days after the start of the bioassay, the insects from each replicate were collected and transferred to a Petri dish containing untreated fresh oilseed rape leaves. Larval mortality and average weight were recorded at days 2, 4 7, 9 and 11.

P. cochleariae larvae fed on intact naked target dsRNA-treated oilseed rape leaves resulted in significant increases in larval mortalities for all targets tested, as indicated in Figure 1(a). Tested double-stranded RNA for target PC010 led to 100 % larval mortality at day 9 and for target PC027 at day 11. For all other targets, signficantly high mortality values were reached at day 11 when compared to control gfp dsRNA, 0.05% Trition X-100 alone or untreated leaf only: (average value in percentage \pm confidence interval with alpha 0.05) PC001 (94.4 \pm 8.2); PC003 (86.1 \pm 4.1); PC005 (83.3 \pm 7.8); PC014 (63.9 \pm 20.6); PC016 (75.0 \pm 16.8); gfp dsRNA (11.1 \pm 8.2); 0.05% Trition X-100 (19.4 \pm 10.5); leaf only (8.3 \pm 10.5).

Larval survivors were assessed based on their average weight. For all targets tested, the mustard leaf beetle larvae had significantly reduced average weights after day 4 of the bioassay; insects fed control gfp dsRNA or 0.05% Triton X-100 alone developed normally, as for the larvae on leaf only (Figure 1(b)-PC).

E. Laboratory trials to screen dsRNAs at different concentrations using oilseed rape leaf discs for activity against *Phaedon cochleariae* larvae

Twenty-five μ I of a solution of dsRNA from target PC010 or PC027 at serial ten-fold concentrations from 0.1 μ g/ μ I down to 0.1 μ g/ μ I was applied topically onto the oilseed rape leaf disc, as described in Example 4D above. As a negative control, 0.05% Triton X-100 only was administered to the leaf disc. Per treatment, twenty-four mustard leaf beetle neonate larvae, with two insects per well, were tested. The plates were stored in the insect rearing chamber at 25 \pm 2 °C, 60 \pm 5% relative humidity, with a 16:8 hours light:dark photoperiod. At day 2, the larvae were transferred on to a new plate containing fresh dsRNA-treated leaf discs. At day 4 for target PC010 and day 5 for target PC027, insects from each replicate were transferred to a Petri dish containing abundant untreated leaf material. The beetles were assessed as live or dead on days 2, 4, 7, 8, 9, and 11 for target PC010, and 2, 5, 8, 9 and 12 for target PC027.

Feeding oilseed rape leaf discs containing intact naked dsRNAs of the two different targets, PC010 and PC027, to *P. cochleariae* larvae resulted in high mortalities at concentrations down to as low as 1 ng dsRNA/ μ l solution, as shown in Figures 2 (a) and (b). Average mortality values in percentage \pm confidence interval with alpha 0.05 for different concentrations of dsRNA for target PC010 at day 11, 0 μ g/ μ l: 8.3 \pm 9.4; 0.1 μ g/ μ l: 100; 0.01 μ g/ μ l: 79.2 \pm 20.6; 0.001 μ g/ μ l: 58.3 \pm 9.4; 0.0001 μ g/ μ l: 12.5 \pm 15.6; and for target PC027 at day 12, 0 μ g/ μ l: 8.3 \pm 9.4; 0.1 μ g/ μ l: 95.8 \pm 8.2; 0.01 μ g/ μ l: 83.3 \pm 13.3; 0.0001 μ g/ μ l: 12.5 \pm 8.2.

F. Laboratory trials of *Myzus periscae* (green peach aphid) infestation on transgenic *Arabidopsis thaliana* plants

Generation of transgenic plants

Arabidopsis thaliana plants were transformed using the floral dip method (Clough and Bent (1998) Plant Journal 16:735-743). Aerial parts of the plants were incubated for a few seconds in a solution containing 5% sucrose, resuspended Agrobacterium tumefaciens strain C58C1 Rif cells from an overnight culture and 0.03% of the surfactant Silwet L-77. After inoculation, plants were covered for 16 hours with a transparent plastic to maintain humidity. To increase the transformation efficiency, the procedure was repeated after one week. Watering was stopped as seeds matured and dry seeds were harvested and cold-treated for two days. After sterilization, seeds were plated on a kanamycin-containing growth medium for selection of transformed plants.

The selected plants are transferred to soil for optimal T2 seed production.

<u>Bioassay</u>

5

10

15

25

30

35

Transgenic Arabidopsis thaliana plants are selected by allowing the segregating T2 seeds to germinate on appropriate selection medium. When the roots of these transgenics are well-established they are then transferred to fresh artificial growth medium or soil and allowed to grow under optimal conditions. Whole transgenic plants are tested against nymphs of the green peach aphid (Myzus persicae) to show (1) a significant resistance to plant damage by the feeding nymph, (2) increased nymphal mortality, and/or (3) decreased weight of nymphal survivors (or any other aberrant insect development).

20 Example 5: Epilachna varivetis (Mexican bean beetle)

A. Cloning Epilachna varivetis partial gene sequences

High quality, intact RNA was isolated from 4 different larval stages of *Epilachna varivetis* (Mexican bean beetle; source: Thomas Dorsey, Supervising Entomologist, New Jersey Department of Agriculture, Division of Plant Industry, Bureau of Biological Pest Control, Phillip Alampi Beneficial Insect Laboratory, PO Box 330, Trenton, New Jersey 08625-0330, USA) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript TM III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the EV005, EV009, EV010, EV015 and EV016 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-EV**, which displays *Epilachna varivetis* target genes including primer sequences and cDNA sequences obtained. These primers were used in respective PCR reactions with the following conditions: for EV005 and EV009, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute 30 seconds at 72°C, followed by 7 minutes at 72°C; for EV014, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at

53°C and 1 minute at 72°C, followed by 7 minutes at 72°C; for EV010 and EV016, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 1 minute 40 seconds at 72°C, followed by 7 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR4/TOPO vector (Cat. Nr. K4530-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-EV** and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in **Table 3-EV**, where the start of the reading frame is indicated in brackets.

B. dsRNA production of the Epilachna varivetis genes

5

10

15

20

25

30

35

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in **Table 8-EV**.

The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in **Table 8-EV**. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in **Table 8-EV**.

C. Recombination of the *Epilachna varivetis* genes into the plant vector pK7GWIWG2D(II)

Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron - CmR - intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL- containing entry clone (see Example 5A) and an attR-containing destination vector (= pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR ClonaseTM II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the

10

15

20

25

30

35

manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter - sense - intron - CmR - intron - antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into *A. tumefaciens*.

Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1h at 25°C. After proteinase K solution treatment (10 min at 37°C), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.

D. Laboratory trials to test dsRNA targets using bean leaf discs for activity against Epilachna varivetis larvae

The example provided below is an exemplification of the finding that the Mexican bean beetle (MBB) larvae are susceptible to orally ingested dsRNA corresponding to own target genes.

To test the different double-stranded RNA samples against MBB larvae, a leaf disc assay was employed using snap bean (Phaseolus vulgaris variety Montano; source: Aveve NV, Belgium) leaf material as food source. The same variety of beans was used to maintain insect cultures in the insect chamber at 25 ± 2 °C and 60 ± 5 % relative humidity with a photoperiod of 16h light/8h dark. Discs of approximately 1.1 cm in diameter (or 0.95 cm²) were cut out off leaves of 1- to 2-week old bean plants using a suitably-sized cork borer. Double-stranded RNA samples were diluted to 1 ug/ul in Milli-Q water containing 0.05% Triton X-100. Treated leaf discs were prepared by applying 25 µl of the diluted solution of target Ev005, Ev010, Ev015, Ev016 dsRNA and control gfp dsRNA or 0.05 % Triton X-100 on the adaxial leaf surface. The leaf discs were left to dry and placed individually in each of the 24 wells of a 24-well multiplate containing 1 ml of gellified 2 % agar which helps to prevent the leaf disc from drying out. A single neonate MBB larva was placed into each well of a plate, which was then covered with a multiwell plastic lid. The plate was divided into 3 replicates of 8 insects per replicate (row). The plate containing the insects and leaf discs were kept in an insect chamber at 25 ± 2 °C and 60 ± 5 % relative humidity with a photoperiod of 16h light/8h dark. The insects were fed on the leaf discs for 2 days after which the insects were transferred to a new plate containing freshly treated leaf discs. Thereafter, 4 days after the start of the bioassay, the insects were transferred to a petriplate containing untreated fresh bean leaves every day until day 10. Insect mortality was recorded at day 2 and every other day thereafter.

Feeding snap bean leaves containing surface-applied intact naked target dsRNAs to *E. varivestis* larvae resulted in significant increases in larval mortalities, as indicated in Figure 1. Tested double-stranded RNAs of targets Ev010, Ev015, & Ev016 led to 100 % mortality after 8 days, whereas dsRNA of target Ev005 took 10 days to kill all larvae. The majority of the insects fed on treated leaf discs containing control gfp dsRNA or only the surfactant Triton X-100 were sustained throughout the bioassay (Figure 1-EV).

58

E. Laboratory trials to test dsRNA targets using bean leaf discs for activity against Epilachna varivestis adults

The example provided below is an exemplification of the finding that the Mexican bean beetle adults are susceptible to orally ingested dsRNA corresponding to own target genes.

In a similar bioassay set-up as for Mexican bean beetle larvae, adult MBBs were tested against double-stranded RNAs topically-applied to bean leaf discs. Test dsRNA from each target Ev010, Ev015 and Ev016 was diluted in 0.05 % Triton X-100 to a final concentration of 0.1 µg/µl. Bean leaf discs were treated by topical application of 30 µl of the test solution onto each disc. The discs were allowed to dry completely before placing each on a slice of gellified 2 % agar in each well of a 24-well multiwell plate. Three-day-old adults were collected from the culture cages and fed nothing for 7-8 hours prior to placing one adult to each well of the bioassay plate (thus 24 adults per treatment). The plates were kept in the insect rearing chamber (under the same conditions as for MBB larvae for 24 hours) after which the adults were transferred to a new plate containing fresh dsRNA-treated leaf discs. After a further 24 hours, the adults from each treatment were collected and placed in a plastic box with dimensions 30 cm x 15 cm x 10 cm containing two potted and untreated 3-week-old bean plants. Insect mortality was assessed from day 4 until day 11.

All three target dsRNAs (Ev010, Ev015 and Ev016) ingested by adults of *Epilachna* varivestis resulted in significant increases in mortality from day 4 (4 days post bioassay start), as shown in **Figure 2-EV(a)**. From day 5, dramatic changes in feeding patterns were observed between insects fed initially with target-dsRNA-treated bean leaf discs and those that were fed discs containing control gfp dsRNA or surfactant Triton X-100. Reductions in foliar damage by MBB adults of untreated bean plants were clearly visible for all three targets when compared to gfp dsRNA and surfactant only controls, albeit at varying levels; insects fed target 15 caused the least damage to bean foliage (**Figure 2-EV(b)**).

25

30

35

5

10

15

20

Example 6: Anthonomus grandis (cotton boll weevil)

A. Cloning Anthonomus grandis partial sequences

High quality, intact RNA was isolated from the 3 instars of *Anthonomus grandis* (cotton boll weevil; source: Dr. Gary Benzon, Benzon Research Inc., 7 Kuhn Drive, Carlisle, Pennsylvania 17013, USA) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the AG001, AG005, AG010, AG014 and AG016 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.

15

20

25

30

35

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-AG**. These primers were used in respective PCR reactions with the following conditions: for AG001, AG005 and AG016, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C; for AG010, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 2 minutes and 30 seconds at 72°C, followed by 7 minutes at 72°C; for AG014, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 7 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QlAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-AG** and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in **Table 3-AG**.

B. dsRNA production of the Anthonomus grandis (cotton boll weevil) genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-AG. A touchdown PCR was performed as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C with a decrease in temperature of 0.5°C per cycle and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-AG. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-AG.

C. Recombination of *Anthonomus grandis* genes into the plant vector pK7GWIWG2D(II)

Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron - CmR - intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR

recombination reaction between an attL- containing entry clone (see Example 6A) and an attR-containing destination vector (= pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR ClonaseTM II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter - sense - intron - CmR - intron - antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into *A. tumefaciens*.

Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 6B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1h at 25°C. After proteinase K solution treatment (10 min at 37°C), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.

D. Laboratory trials to test *Escherichia coli* expressing dsRNA targets against *Anthonomus grandis*

Plant-based bioassays

10

15

20

25

30

35

Whole plants are sprayed with suspensions of chemically induced bacteria expressing dsRNA prior to feeding the plants to CBW. The are grown from in a plant growth room chamber. The plants are caged by placing a 500 ml plastic bottle upside down over the plant with the neck of the bottle firmly placed in the soil in a pot and the base cut open and covered with a fine nylon mesh to permit aeration, reduce condensation inside and prevent insect escape. CBW are placed on each treated plant in the cage. Plants are treated with a suspension of *E. coli* AB301-105(DE3) harboring the pGXXX0XX plasmids or pGN29 plasmid. Different quantities of bacteria are applied to the plants: for instance 66, 22, and 7 units, where one unit is defined as 10⁹ bacterial cells in 1 ml of a bacterial suspension at optical density value of 1 at 600 nm wavelength. In each case, a total volume of between 1 and 10 ml s sprayed on the plant with the aid of a vaporizer. One plant is used per treatment in this trial. The number of survivors are counted and the weight of each survivor recorded.

Spraying plants with a suspension of *E. coli* bacterial strain AB301-105(DE3) expressing target dsRNA from pGXXX0XX lead to a dramatic increase in insect mortality when compared to pGN29 control. These experiments show that double-stranded RNA corresponding to an insect gene target sequence produced in either wild-type or RNaseIII-deficient bacterial expression systems is toxic towards the insect in terms of substantial increases in insect mortality and growth/development delay for larval survivors. It is also clear from these experiments that an exemplification is provided for the effective protection of plants/crops from insect damage by the use of a spray of a formulation consisting of bacteria expressing double-stranded RNA corresponding to an insect gene target.

10

15

20

25

30

35

PCT/EP2007/000286

Example 7: Tribolium castaneum (red flour beetle)

A. Cloning Tribolium castaneum partial sequences

High quality, intact RNA was isolated from all the different insect stages of *Tribolium castaneum* (red flour beetle; source: Dr. Lara Senior, Insect Investigations Ltd., Capital Business Park, Wentloog, Cardiff, CF3 2PX, Wales, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript TM III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the TC001, TC002, TC010, TC014 and TC015 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-TC. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C (TC001, TC014, TC015); 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 2 minutes and 30 seconds at 72°C, followed by 7 minutes at 72°C (TC010); 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 53°C and 1 minute at 72°C, followed by 7 minutes at 72°C (TC002). The resulting PCR fragments were analyzed on agarose gel, purified (QlAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-TC and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-TC.

B. dsRNA production of the *Tribolium castaneum* genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in **Table 8-TC**. The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C (-0.5°C/cycle) and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction

with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in **Table 8-TC**. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in **Table 8-TC**.

5

10

15

20

25

30

35

C. Recombination of *Tribolium castaneum* genes into the plant vector pK7GWIWG2D(II)

Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron - CmR - intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL- containing entry clone (see Example 7A) and an attR-containing destination vector (= pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR ClonaseTM II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter - sense - intron - CmR - intron - antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into *A. tumefaciens*.

Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 7B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1h at 25°C. After proteinase K solution treatment (10 min at 37°C), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.

D. Laboratory trials to test dsRNA targets, using artificial diet for activity against Tribolium castaneum larvae

The example provided below is an exemplification of the finding that the red flour beetle (RFB) larvae are susceptible to orally ingested dsRNA corresponding to own target genes.

Red flour beetles, *Tribolium castaneum*, were maintained at Insect Investigations Ltd. (origin: Imperial College of Science, Technology and Medicine, Silwood Park, Berkshire, UK). Insects were cultured according to company SOP/251/01. Briefly, the beetles were housed in plastic jars or tanks. These have an open top to allow ventilation. A piece of netting was fitted over the top and secured with an elastic band to prevent escape. The larval rearing medium (flour) was

10

15

20

25

30

35

placed in the container where the beetles can breed. The stored product beetle colonies were maintained in a controlled temperature room at 25 ± 3 °C with a 16:8 hour light:dark cycle.

Double-stranded RNA from target TC014 (with sequence corresponding to SEQ ID NO-799) was incorporated into a mixture of flour and milk powder (wholemeal flour: powdered milk in the ratio 4:1) and left to dry overnight. Each replicate was prepared separately: $100 \,\mu$ l of a $10 \,\mu$ g/µl dsRNA solution (1 mg dsRNA) was added to 0.1 g flour/milk mixture. The dried mixture was ground to a fine powder. Insects were maintained within Petri dishes (55 mm diameter), lined with a double layer of filter paper. The treated diet was placed between the two filter paper layers. Ten first instar, mixed sex larvae were placed in each dish (replicate). Four replicates were performed for each treatment. Control was Milli-Q water. Assessments (number of survivors) were made on a regular basis. During the trial, the test conditions were $25-33 \,^{\circ}$ C and $20-25 \,^{\circ}$ 8 relative humidity, with a 12:12 hour light:dark photoperiod.

Survival of larvae of *T. castaneum* over time on artificial diet treated with target TC014 dsRNA was significantly reduced when compared to diet only control, as shown in **Figure 1-TC**.

Example 8: Myzus persicae (green peach aphid)

A. Cloning Myzus persicae partial sequences

High quality, intact RNA was isolated from nymphs of *Myzus persicae* (green peach aphid; source: Dr. Rachel Down, Insect & Pathogen Interactions, Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript TM III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the MP001, MP002, MP010, MP016 and MP027 genes, a series of PCR reactions with degenerate primers were performed using Amplitag Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-MP**. These primers were used in respective PCR reactions with the following conditions: for MP001, MP002 and MP016, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute 30 seconds at 72°C, followed by 7 minutes at 72°C; for MP027, a touchdown program was used: 10 minutes at 95°C, followed by 10 cycles of 30 seconds at 95°C, 40 seconds at 60°C with a decrease in temperature of 1°C per cycle and 1 minute 10 seconds at 72°C, followed by 30 cycles of 30 seconds at 95°C, 40 seconds at 50°C and 1 minute 10 seconds at 72°C, followed by 7 minutes at 72°C; for MP010, 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 3 minutes at 72°C, followed by 7 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr.

K2500-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-MP** and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in **Table 3-MP**.

B. dsRNA production of Myzus persicae genes

5

10

15

20

25

30

35

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-MP. A touchdown PCR was performed as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 55°C (for MP001, MP002, MP016, MP027 and gfp) or 30 seconds at 50°C (for MP010) with a decrease in temperature of 0.5°C per cycle and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 45°C and 1 minute at 72°C followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-MP. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed. DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-MP.

C. Recombination of Myzus persicae genes into the plant vector pK7GWIWG2D(II)

Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, were cloned in anti-sense and sense orientation, separated by the intron - CmR - intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs were generated using the LR recombination reaction between an attL- containing entry clone (see Example 8A) and an attR-containing destination vector (= pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) was obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction was performed by using LR ClonaseTM II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments resulted in a hairpin construct for each of the MP001, MP002, MP010, MP016 and MP026 genes, having the promoter - sense - intron - CmR - intron - antisense orientation and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into *A. tumefaciens*.

15

20

25

30

35

A digest with restriction enzyme Alw44I was done for all the targets cloned into pCR8/GW/topo (see Example 8B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) was purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) was added together with the LR clonase II enzyme and incubated for at least 1h at 25°C. After proteinase K solution treatment (10 min at 37°C), the whole recombination mix was transformed into Top 10 chemically competent cells. Positive clones were selected by restriction digest analysis. The complete sequence of the hairpin construct for:

- MP001 (sense intron CmR intron antisense) is represented in SEQ ID NO 1066;
- MP002 (sense intron CmR intron antisense) is represented in SEQ ID NO 1067;
- MP010 (sense intron CmR intron antisense) is represented in SEQ ID NO 1068;
- MP016 (sense intron CmR intron antisense) is represented in SEQ ID NO 1069;
- MP027 (sense intron CmR intron antisense) is represented in SEQ ID NO 1070.

Table 9-MP provides complete sequences for each hairpin construct.

D. Laboratory trials to test dsRNA targets using liquid artificial diet for activity against Myzus persicae

Liquid artificial diet for the green peach aphid, Myzus persicae, was prepared based on the diet suitable for pea aphids (Acyrthosiphon pisum), as described by Febvay et al. (1988) [Influence of the amino acid balance on the improvement of an artificial diet for a biotype of Acyrthosiphon pisum (Homoptera: Aphididae). Can. J. Zool. 66: 2449-2453], but with some modifications. The amino acids component of the diet was prepared as follows: in mg/100ml, alanine 178.71, betaalanine 6.22, arginine 244.9, asparagine 298.55, aspartic acid 88.25, cysteine 29.59, glutamic acid 149.36, glutamine 445.61, glycine 166.56, histidine 136.02, isoleucine 164.75, leucine 231.56, lysine hydrochloride 351.09, methionine 72.35, ornithine (HCI) 9.41, phenylalanine 293, proline 129.33, serine 124.28, threonine 127.16, tryptophane 42.75, tyrosine 38.63, L-valine 190.85. The amino acids were dissolved in 30 ml Milli-Q H₂O except for tyrosine which was first dissolved in a few drops of 1 M HCl before adding to the amino acid mix. The vitamin mix component of the diet was prepared as a 5 x concentrate stock as follows: in mg/L, amino benzoic acid 100, ascorbic acid 1000, biotin 1, calcium panthothenate 50, choline chloride 500, folic acid 10, myoinositol 420, nicotinic acid 100, pyridoxine hydrochloride 25, riboflavin 5, thiamine hydrochloride 25. The riboflavin was dissolved in 1 ml H2O at 50 °C and then added to the vitamin mix stock. The vitamin mix was aliquoted in 20 ml per aliquot and stored at -20 °C. One aliquot of vitamin mix was added to the amino acid solution. Sucrose and MgSO₄.7H₂O was added with the following amounts to the mix: 20 g and 242 mg, respectively. Trace metal stock solution was prepared as follows: in mg/100ml, CuSO₄.5H₂O 4.7, FeCl₃.6H₂O 44.5, MnCl₂.4H2O 6.5, NaCl 25.4, ZnCl₂ 8.3. Ten ml of the trace metal solution and 250 mg KH₂PO₄ was added to the diet and Milli-Q water was added to a final liquid diet volume of 100 ml. The pH of the diet was adjusted to 7 with 1 M KOH solution. The liquid diet was filter-sterilised through an 0.22 µm filter disc (Millipore).

10

15

20

25

30

35

Green peach aphids (*Myzus persicae*; source: Dr. Rachel Down, Insect & Pathogen Interactions, Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK) were reared on 4- to 6-week-old oilseed rape (*Brassica napus* variety SW Oban; source: Nick Balaam, Sw Seed Ltd., 49 North Road, Abington, Cambridge, CB1 6AS, UK) in aluminium-framed cages containing 70 µm mesh in a controlled environment chamber with the following conditions: 23 ±2 °C and 60 ±5 % relative humidity, with a 16:8 hours light:dark photoperiod.

One day prior to the start of the bioassay, adults were collected from the rearing cages and placed on fresh detached oilseed rape leaves in a Petri dish and left overnight in the insect chamber. The following day, first-instar nymphs were picked and transferred to feeding chambers. A feeding chamber comprised of 10 first instar nymphs placed in a small Petri dish (with diameter 3 cm) covered with a single layer of thinly stretched parafilm M onto which 50 µl of diet was added. The chamber was sealed with a second layer of parafilm and incubated under the same conditions as the adult cultures. Diet with dsRNA was refreshed every other day and the insects' survival assessed on day 8 i.e. 8th day post bioassay start. Per treatment, 5 bioassay feeding chambers (replicates) were set up simultaneously. Test and control (gfp) dsRNA solutions were incorporated into the diet to a final concentration of 2 µg/µl. The feeding chambers were kept at 23 ±2 °C and 60 ±5 % relative humidity, with a 16:8 hours light:dark photoperiod. A Mann-Whitney test was determined by GraphPad Prism version 4 to establish whether the medians do differ significantly between target 27 (MP027) and gfp dsRNA.

In the bioassay, feeding liquid artificial diet supplemented with intact naked dsRNA from target 27 (SEQ ID NO 1061) to nymphs of *Myzus persicae* using a feeding chamber, resulted in a significant increase in mortality, as shown in Figure 1. Average percentage survivors for target 27, gfp dsRNA and diet only treatment were 2, 34 and 82, respectively. Comparison of target 027 with gfp dsRNA groups using the Mann-Whitney test resulted in an one-tailed P-value of 0.004 which indicates that the median of target 027 is significantly different (P < 0.05) from the expected larger median of gfp dsRNA. The green peach aphids on the liquid diet with incorporated target 27 dsRNA were noticeably smaller than those that were fed on diet only or with gfp dsRNA control (data not presented).

E. Laboratory trials of *Myzus periscae* (green peach aphid) infestation on transgenic *Arabidopsis thaliana* plants

Generation of transgenic plants

Arabidopsis thaliana plants were transformed using the floral dip method (Clough and Bent (1998) Plant Journal 16:735-743). Aerial parts of the plants were incubated for a few seconds in a solution containing 5% sucrose, resuspended Agrobacterium tumefaciens strain C58C1 Rif cells from an overnight culture and 0.03% of the surfactant Silwet L-77. After inoculation, plants were covered for 16 hours with a transparent plastic to maintain humidity. To increase the transformation efficiency, the procedure was repeated after one week. Watering was stopped as seeds matured and dry seeds were harvested and cold-treated for two days. After sterilization, seeds were plated on a kanamycin-containing growth medium for selection of transformed plants.

67

The selected plants are transferred to soil for optimal T2 seed production. Bioassay

Transgenic Arabidopsis thaliana plants are selected by allowing the segregating T2 seeds to germinate on appropriate selection medium. When the roots of these transgenics are well-established they are then transferred to fresh artificial growth medium or soil and allowed to grow under optimal conditions. Whole transgenic plants are tested against nymphs of the green peach aphid (Myzus persicae) to show (1) a significant resistance to plant damage by the feeding nymph, (2) increased nymphal mortality, and/or (3) decreased weight of nymphal survivors (or any other aberrant insect development).

10

15

20

25

30

35

5

Example 9: Nilaparvata lugens (Brown Plant Hopper)

A. Cloning Nilaparvata lugens partial sequences

From high quality total RNA of *Nilaparvata lugens* (source: Dr. J. A. Gatehouse, Dept. Biological Sciences, Durham University, UK) cDNA was generated using a commercially available kit (SuperScriptTM III Reverse Transcriptase, Cat N°. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's protocol.

To isolate cDNA sequences comprising a portion of the *Nilaparvata lugens* NL001, NL002, NL003, NL004, NL005, NL006, NL007, NL008, NL009, NL010, NL011, NL012, NL013, NL014, NL015, NL016, NL018, NL019, NL021, NL022, and NL027 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat N°. N8080240; Applied Biosystems) following the manufacturer's protocol.

The sequences of the degenerate primers used for amplification of each of the genes are given in Table 2-NL. These primers were used in respective PCR reactions with the following conditions: for NL001: 5 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C: for NL002: 3 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C; for NL003: 3 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 61 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL004: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 51 °C and 1 minute at 72 °C; for NL005: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL006: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 55 °C and 3 minute 30 seconds at 72 °C, followed by 10 minutes at 72°C; for NL007: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 15 seconds at 72 °C, followed by 10 minutes at 72 °C; for NL008 & NL014: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 53 °C and 1 minute at 72 °C, followed by 10 minutes at 72 °C; for NL009, NL011, NL012 & NL019: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 55 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL010: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 2 minute 30 seconds at 72 °C, followed by 10 minutes at 72°C; for NL013: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 10 seconds at 72 °C, followed by 10 minutes at 72°C; for NL015 & NL016: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 40 seconds at 72 °C, followed by 10 minutes at 72°C; for NL018: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 35 seconds at 72 °C, followed by 10 minutes at 72°C; for NL021, NL022 & NL027: 10 minutes at 95 °C, followed by 40 cycles of 30 seconds at 95 °C, 1 minute at 54 °C and 1 minute 45 seconds at 72 °C, followed by 10 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QlAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/topo vector (Cat. Nr. K2500 20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in Table 2-NL and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in Table 3-NL.

5

10

15

20

25

30

35

B. Cloning of a partial sequence of the Nilaparvata lugens NL023 gene via EST sequence

From high quality total RNA of *Nilaparvata lugens* (source: Dr. J. A. Gatehouse, Dept. Biological Sciences, Durham University, UK) cDNA was generated using a commercially available kit (SuperScriptTM III Reverse Transcriptase, Cat N°. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's protocol.

A partial cDNA sequence, NL023, was amplified from *Nilaparvata lugens* cDNA which corresponded to a *Nilaparvata lugens* EST sequence in the public database Genbank with accession number CAH65679.2. To isolate cDNA sequences comprising a portion of the NL023 gene, a series of PCR reactions with EST based specific primers were performed using PerfectShot™ ExTaq (Cat N°. RR005A, Takara Bio Inc.) following the manafacturer's protocol.

For NL023, the specific primers oGBKW002 and oGBKW003 (represented herein as SEQ ID NO 1157 and SEQ ID NO 1158, respectively) were used in two independent PCR reactions with the following conditions: 3 minutes at 95 °C, followed by 30 cycles of 30 seconds at 95 °C, 30 seconds at 56 °C and 2 minutes at 72 °C, followed by 10 minutes at 72 °C. The resulting PCR products were analyzed on agarose gel, purified (QIAquick® Gel Extraction Kit; Cat. N°. 28706, Qiagen), cloned into the pCR4-TOPO vector (Cat N°. K4575-40, Invitrogen) and sequenced. The consensus sequence resulting from the sequencing of both PCR products is herein represented by SEQ ID NO 1111 and is referred to as the partial sequence of the NL023 gene. The corresponding partial amino acid sequence is herein reperesented as SEQ ID NO 1112.

C. dsRNA production of Nilaparvata lugens genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

69

5

10

15

20

25

30

35

40

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-NL. The conditions in the PCR reactions were as follows: for NL001 & NL002: 4 minutes at 94 °C, followed by 35 cycles of 30 seconds at 94 °C, 30 seconds at 60 °C and 1 minute at 72 °C, followed by 10 minutes at 72 °C; for NL003: 4 minutes at 94 °C, followed by 35 cycles of 30 seconds at 94 °C, 30 seconds at 66 °C and 1 minute at 72 °C, followed by 10 minutes at 72 °C; for NL004, NL006, NL008, NL009, NL010 & NL019: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 54 °C and 1 minute at 72 °C, followed by 10 minutes at 72 °C; for NL005 & NL016: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 57 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C; for NL007 & NL014: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 51 °C and 1 minute at 72 °C, followed by 10 minutes at 72 °C; for NL011, NL012 & NL022: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 53 °C and 1 minute at 72 °C, followed by 10 minutes at 72 °C; for NL013, NL015, NL018 & NL021: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 55 °C and 1 minute at 72 °C, followed by 10 minutes at 72 °C; for NL023 & NL027: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 52 °C and 1 minute at 72 °C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-NL. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen). The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions, but with the following modification: RNA peppet is washed twice in 70% ethanol. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-NL.

The template DNA used for the PCR reactions with T7 primers on the green fluorescent protein (gfp) control was the plasmid pPD96.12 (the Fire Lab, http://genome-www.stanford.edu/group/fire/), which contains the wild-type gfp coding sequence interspersed by 3 synthetic introns. Double-stranded RNA was synthesized using the commercially available kit T7 RiboMAXTM Express RNAi System (Cat.N°. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter. For gfp, the sense T7 template was generated using the specific T7 FW primer oGAU183 and the specific RV primer oGAU182 (represented herein as SEQ ID NO 236 and SEQ ID NO 237, respectively) in a PCR reaction with the following conditions: 4 minutes at 95 °C, followed by 35 cycles of 30 seconds at 95 °C, 30 seconds at 55 °C and 1 minute at 72 °C, followed by 10 minutes at 72 °C. The antisense T7 template was generated using the specific FW primer oGAU181 and the specific T7 RV primer oGAU184 (represented herein as SEQ ID NO 238 and SEQ ID NO 239, respectively) in a

70

PCR reaction with the same conditions as described above. The resulting PCR products were analyzed on agarose gel and purified (QIAquick® PCR Purification Kit; Cat. N°. 28106, Qiagen). The generated T7 FW and RV templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by precipitation with sodium acetate and isopropanol, following the manufacturer's protocol, but with the following modification: RNA peppet is washed twice in 70% ethanol. The sense strands of the resulting dsRNA is herein represented by SEQ ID NO 235.

5

10

15

20

25

30

35

D. Laboratory trials to screen dsRNA targets using liquid artificial diet for activity against Nilaparvata lugens

Liquid artificial diet (MMD-1) for the rice brown planthopper, *Nilaparvata lugens*, was prepared as described by Koyama (1988) [Artificial rearing and nutritional physiology of the planthoppers and leafhoppers (Homoptera: Delphacidae and Deltocephalidae) on a holidic diet. *JARQ* 22: 20–27], but with a modification in final concentration of diet component sucrose: 14.4 % (weight over volume) was used. Diet components were prepared as separate concentrates: 10 x mineral stock (stored at 4 °C), 2 x amino acid stock (stored at -20 °C) and 10 x vitamin stock (stored at -20 °C). The stock components were mixed immediately prior to the start of a bioassay to 4/3 x concentration to allow dilution with the test dsRNA solution (4 x concentration), pH adjusted to 6.5, and filter-sterilised into approximately 500 µl aliquots.

Rice brown planthopper (*Nilaparvata lugens*) was reared on two-to-three month old rice (*Oryza sativa* cv Taichung Native 1) plants in a controlled environment chamber: 27 ± 2 °C, 80 % relative humidity, with a 16:8 hours light:dark photoperiod. A feeding chamber comprised 10 first or second instar nymphs placed in a small petri dish (with diameter 3 cm) covered with a single layer of thinly stretched parafilm M onto which $50 \mu l$ of diet was added. The chamber was sealed with a second layer of parafilm and incubated under the same conditions as the adult cultures but with no direct light exposure. Diet with dsRNA was refreshed every other day and the insects' survival assessed daily. Per treatment, 5 bioassay feeding chambers (replicates) were set up simultaneously. Test and control (gfp) dsRNA solutions were incorporated into the diet to a final concentration of 2 mg/ml. The feeding chambers were kept at 27 ± 2 °C, 80 % relative humidity, with a 16:8 hours light:dark photoperiod. Insect survival data were analysed using the Kaplan-Meier survival curve model and the survival between groups were compared using the logrank test (Prism version 4.0).

Feeding liquid artificial diet supplemented with intact naked dsRNAs to *Nilaparvata lugens* in vitro using a feeding chamber resulted in significant increases in nymphal mortalities as shown in four separate bioassays (Figures 1(a)-(d)-NL; Tables 10-NL(a)-(d)) (Durham University). These results demonstrate that dsRNAs corresponding to different essential BPH genes showed significant toxicity towards the rice brown planthopper.

Effect of gfp dsRNA on BPH survival in these bioassays is not significantly different to survival on diet only

10

15

20

25

30

35

Tables 10-NL(a)-(d) show a summary of the survival of *Nilaparvata lugens* on artificial diet supplemented with 2 mg/ml (final concentration) of the following targets; in **Table 10-NL(a**): NL002, NL003, NL005, NL010; in **Table 10-NL(b**): NL009, NL016; in **Table 10-NL(c**): NL014, NL018; and in **Table 10-NL(d**): NL013, NL015, NL021. In the survival analysis column, the effect of RNAi is indicated as follows: + = significantly decreased survival compared to gfp dsRNA control (alpha < 0.05); - = no significant difference in survival compared to gfp dsRNA control. Survival curves were compared (between diet only and diet supplemented with test dsRNA, gfp dsRNA and test dsRNA, and diet only and gfp dsRNA) using the logrank test.

E. Laboratory trials to screen dsRNAs at different concentrations using artificial diet for activity against *Nilaparvata lugens*

Fifty µI of liquid artificial diet supplemented with different concentrations of target NL002 dsRNA, namely 1, 0.2, 0.08, and 0.04 mg/mI (final concentration), was applied to the brown planthopper feeding chambers. Diet with dsRNA was refreshed every other day and the insects' survival assessed daily. Per treatment, 5 bioassay feeding chambers (replicates) were set up simultaneously. The feeding chambers were kept at 27 ± 2 °C, 80 % relative humidity, with a 16:8 hours light:dark photoperiod. Insect survival data were analysed using the Kaplan-Meier survival curve model and the survival between groups were compared using the logrank test (Prism version 4.0).

Feeding liquid artificial diet supplemented with intact naked dsRNAs of target NL002 at different concentrations resulted in significantly higher BPH mortalities at final concentrations of as low as 0.04 mg dsRNA per ml diet when compared with survival on diet only, as shown in Figure 2-NL and Table 11-NL. Table 11-NL summarizes the survival of *Nilaparvata lugens* artificial diet feeding trial supplemented with 1, 0.2, 0.08, & 0.04 mg/ml (final concentration) of target NL002. In the survival analysis column the effect of RNAi is indicated as follows: + = significantly decreases survival compared to diet only control (alpha < 0.05); - = no significant differences in survival compared to diet only control. Survival curves were compared using the logrank test.

Example 10: Chilo suppressalis (rice striped stem borer)

A. Cloning of partial sequence of the Chilo suppressalis genes via family PCR

High quality, intact RNA was isolated from the 4 different larval stages of *Chilo suppressalis* (rice striped stem borer) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript TM III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the CS001, CS002, CS003, CS006, CS007, CS009, CS011, CS013, CS014, CS015, CS016 and CS018 genes, a series of PCR

reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-CS**. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QlAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR4/TOPO vector (Cat. Nr. K2500-20, Invitrogen), and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-CS** and are referred to as the partial sequences. The corresponding partial amino acid sequences are represented by the respective SEQ ID NOs as given in **Table 3-CS**.

B. dsRNA production of the Chilo suppressalis genes

10

15

20

25

30

35

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-CS. The conditions in the PCR reactions were as follows: 4 minutes at 95°C, followed by 35 cycles of 30 seconds at 95°C, 30 seconds at 55°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-CS. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-CS.

C. Recombination of the *Chilo suppressalis* genes into the plant vector pK7GWIWG2D(II)

Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron - CmR - intron, whereby CmR is the chloramphenical resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL- containing entry clone (see Example 10A) and an attR-containing destination vector (= pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction

is performed by using LR ClonaseTM II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter - sense - intron - CmR - intron - antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into *A. tumefaciens*.

5

10

15

20

25

30

35

Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 10B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1h at 25°C. After proteinase K solution treatment (10 min at 37°C), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.

D. Laboratory trials to test dsRNA targets, using artificial diet for activity against Chilo suppressalis larvae

Rice striped stem borers, *Chilo suppressalis*, (origin: Syngenta, Stein, Switzerland) were maintained on a modified artificial diet based on that described by Kamano and Sato, 1985 (in: Handbook of Insect Rearing. Volumes I & II. P Singh and RF Moore, eds., Elsevier Science Publishers, Amsterdam and New York, 1985, pp 448). Briefly, a litre diet was made up as follows: 20 g of agar added to 980 ml of Milli-Q water and autoclaved; the agar solution was cooled down to approximately 55 °C and the remaining ingredients were added and mixed thoroughly: 40 g corn flour (Polenta), 20 g cellulose, 30 g sucrose, 30 g casein, 20 g wheat germ (toasted), 8 g Wesson salt mixture, 12 g Vanderzant vitamin mix, 1.8 g sorbic acid, 1.6 g nipagin (methylparaben), 0.3 g aureomycin, 0.4 g cholesterol and 0.6 g L-cysteine. The diet was cooled down to approx. 45 °C and poured into rearing trays or cups. The diet was left to set in a horizontal laminair flow cabin. Rice leaf sections with oviposited eggs were removed from a cage housing adult moths and pinned to the solid diet in the rearing cup or tray. Eggs were left to hatch and neonate larvae were available for bioassays and the maintenance of the insect cultures. During the trials and rearings, the conditions were 28 ± 2 °C and 80 ± 5 % relative humidity, with a 16:8 hour light:dark photoperiod.

The same artificial diet is used for the bioassays but in this case the diet is poured equally in 24 multiwell plates, with each well containing 1 ml diet. Once the diet is set, the test formulations are applied to the diet's surface (2 cm²), at the rate of 50 µl of 1 µg/µl dsRNA of target. The dsRNA solutions are left to dry and two first instar moth larvae are placed in each well. After 7 days, the larvae are transferred to fresh treated diet in multiwell plates. At day 14 (i.e. 14 days post bioassay start) the number of live and dead insects is recorded and examined for abnormalities. Twenty-four larvae in total are tested per treatment.

An alternative bioassay is performed in which treated rice leaves are fed to neonate larvae of the rice striped stem borer. Small leaf sections of *Indica* rice variety Taichung native 1 are dipped in 0.05 % Triton X-100 solution containing 1 µg/µl of target dsRNA, left to dry and each section placed in a well of a 24 multiwell plate containing gellified 2 % agar. Two neonates are transferred

15

20

25

30

35

from the rearing tray to each dsRNA treated leaf section (24 larvae per treatment). After 4 and 8 days, the larvae are transferred to fresh treated rice leaf sections. The number of live and dead larvae are assessed on days 4, 8 and 12; any abnormalities are also recorded.

5 Example 11: Plutella xylostella (Diamondback moth)

A. Cloning of a partial sequence of the Plutella xylostella

High quality, intact RNA was isolated from all the different larval stages of Plutella xylostella (Diamondback moth; source: Dr. Lara Senior, Insect Investigations Ltd., Capital Business Park, Wentloog, Cardiff, CF3 2PX, Wales, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manufacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript TM III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the PX001, PX009, PX010, PX015, PX016 genes, a series of PCR reactions with degenerate primers were performed using Amplitaq Gold (Cat. Nr. N8080240, Applied Biosystems) following the manufacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-PX**. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C (for PX001, PX009, PX015, PX016); 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 54°C and 2 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C (for PX010). The resulting PCR fragments were analyzed on agarose gel, purified (QIAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/TOPO vector (Cat. Nr. K2500-20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-PX** and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in **Table 3-PX**.

B. dsRNA production of the Plutella xylostella genes

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in **Table 8-PX**. The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C (-0.5°C/cycle) and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7

10

15

20

25

30

35

template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in **Table 8-PX**. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in **Table 8-PX**.

C. Recombination of the *Plutella xylostella* genes into the plant vector pK7GWIWG2D(II)

Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron - CmR - intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL- containing entry clone (see Example 11A) and an attR-containing destination vector (= pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR ClonaseTM II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter - sense - intron - CmR - intron - antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into *A. tumefaciens*.

Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 11B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1h at 25°C. After proteinase K solution treatment (10 min at 37°C), the whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.

D. Laboratory trials to test dsRNA targets, using artificial diet for activity against Plutella xylostella larvae

Diamond-back moths, *Plutella xylostella*, were maintained at Insect Investigations Ltd. (origin: Newcastle University, Newcastle-upon-Tyne, UK). The insects were reared on cabbage leaves. First instar, mixed sex larvae (approximately 1 day old) were selected for use in the trial. Insects were maintained in Eppendorf tubes (1.5 ml capacity). Commercially available Diamond-back moth diet (Bio-Serv, NJ, USA), prepared following the manafacturer's instructions, was placed in the lid of each tube (0.25 ml capacity, 8 mm diameter). While still liquid, the diet was smoother over to remove excess and produce an even surface.

10

15

20

25

30

35

Once the diet has set the test formulations are applied to the diet's surface, at the rate of 25 µl undiluted formulation (1 µg/µl dsRNA of targets) per replicate. The test formulations are allowed to dry and one first instar moth larva is placed in each tube. The larva is placed on the surface of the diet in the lid and the tube carefully closed. The tubes are stored upside down, on their lids such that each larva remains on the surface of the diet. Twice weekly the larvae are transferred to new Eppendorf tubes with fresh diet. The insects are provided with treated diet for the first two weeks of the trial and thereafter with untreated diet.

Assessments are made twice weekly for a total of 38 days at which point all larvae are dead. At each assessment the insects are assessed as live or dead and examined for abnormalities. Forty single larva replicates are performed for each of the treatments. During the trial the test conditions are 23 to 26 °C and 50 to 65 % relative humidity, with a 16:8 hour light:dark photoperiod.

Example 12: Acheta domesticus (house cricket)

A. Cloning Acheta domesticus partial sequences

High quality, intact RNA was isolated from all the different insect stages of *Acheta domesticus* (house cricket; source: Dr. Lara Senior, Insect Investigations Ltd., Capital Business Park, Wentloog, Cardiff, CF3 2PX, Wales, UK) using TRIzol Reagent (Cat. Nr. 15596-026/15596-018, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions. Genomic DNA present in the RNA preparation was removed by DNase treatment following the manafacturer's instructions (Cat. Nr. 1700, Promega). cDNA was generated using a commercially available kit (SuperScript TM III Reverse Transcriptase, Cat. Nr. 18080044, Invitrogen, Rockville, Maryland, USA) following the manufacturer's instructions.

To isolate cDNA sequences comprising a portion of the AD001, AD002, AD009, AD015 and AD016 genes, a series of PCR reactions with degenerate primers were performed using Amplitag Gold (Cat. Nr. N8080240, Applied Biosystems) following the manafacturer's instructions.

The sequences of the degenerate primers used for amplification of each of the genes are given in **Table 2-AD**. These primers were used in respective PCR reactions with the following conditions: 10 minutes at 95°C, followed by 40 cycles of 30 seconds at 95°C, 1 minute at 50°C and 1 minute and 30 seconds at 72°C, followed by 7 minutes at 72°C. The resulting PCR fragments were analyzed on agarose gel, purified (QlAquick Gel Extraction kit, Cat. Nr. 28706, Qiagen), cloned into the pCR8/GW/topo vector (Cat. Nr. K2500 20, Invitrogen) and sequenced. The sequences of the resulting PCR products are represented by the respective SEQ ID NOs as given in **Table 2-AD** and are referred to as the partial sequences. The corresponding partial amino acid sequence are represented by the respective SEQ ID NOs as given in **Table 3-AD**.

10

15

20

25

30

35

dsRNA was synthesized in milligram amounts using the commercially available kit T7 RibomaxTM Express RNAi System (Cat. Nr. P1700, Promega). First two separate single 5' T7 RNA polymerase promoter templates were generated in two separate PCR reactions, each reaction containing the target sequence in a different orientation relative to the T7 promoter.

For each of the target genes, the sense T7 template was generated using specific T7 forward and specific reverse primers. The sequences of the respective primers for amplifying the sense template for each of the target genes are given in Table 8-AD. The conditions in the PCR reactions were as follows: 1 minute at 95°C, followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 60°C (-0.5°C/cycle) and 1 minute at 72°C, followed by 15 cycles of 30 seconds at 95°C, 30 seconds at 50°C and 1 minute at 72°C, followed by 10 minutes at 72°C. The anti-sense T7 template was generated using specific forward and specific T7 reverse primers in a PCR reaction with the same conditions as described above. The sequences of the respective primers for amplifying the anti-sense template for each of the target genes are given in Table 8-AD. The resulting PCR products were analyzed on agarose gel and purified by PCR purification kit (Qiaquick PCR Purification Kit, Cat. Nr. 28106, Qiagen) and NaClO₄ precipitation. The generated T7 forward and reverse templates were mixed to be transcribed and the resulting RNA strands were annealed, DNase and RNase treated, and purified by sodium acetate, following the manufacturer's instructions. The sense strand of the resulting dsRNA for each of the target genes is given in Table 8-AD.

C. Recombination of the *Acheta domesticus* genes into the plant vector pK7GWIWG2D(II)

Since the mechanism of RNA interference operates through dsRNA fragments, the target nucleotide sequences of the target genes, as selected above, are cloned in anti-sense and sense orientation, separated by the intron - CmR - intron, whereby CmR is the chloramphenicol resistance marker, to form a dsRNA hairpin construct. These hairpin constructs are generated using the LR recombination reaction between an attL- containing entry clone (see Example 12A) and an attR-containing destination vector (= pK7GWIWG2D(II)). The plant vector pK7GWIWG2D(II) is obtained from the VIB/Plant Systems Biology with a Material Transfer Agreement. LR recombination reaction is performed by using LR ClonaseTM II enzyme mix (Cat. Nr. 11791-020, Invitrogen) following the manufacturer's instructions. These cloning experiments result in a hairpin construct for each of the target genes, having the promoter - sense - intron - CmR - intron - antisense orientation, and wherein the promoter is the plant operable 35S promoter. The binary vector pK7GWIWG2D(II) with the 35S promoter is suitable for transformation into *A. tumefaciens*.

Restriction enzyme digests were carried out on pCR8/GW/TOPO plasmids containing the different targets (see Example 12B). The band containing the gene of interest flanked by the attL sites using Qiaquick Gel Extraction Kit (Cat. Nr. 28706, Qiagen) is purified. An amount of 150 ng of purified fragment and 150 ng pK7GWIWG2D(II) is added together with the LR clonase II enzyme and incubated for at least 1h at 25°C. After proteinase K solution treatment (10 min at 37°C), the

whole recombination mix is transformed into Top 10 chemically competent cells. Positive clones are selected by restriction digest analyses.

D. Laboratory trials to test dsRNA targets, using artificial diet for activity against Acheta domesticus larvae

5

10

15

20

25

30

House crickets, *Acheta domesticus*, were maintained at Insect Investigations Ltd. (origin: Blades Biological Ltd., Kent, UK). The insects were reared on bran pellets and cabbage leaves. Mixed sex nymphs of equal size and no more than 5 days old were selected for use in the trial. Double-stranded RNA is mixed with a wheat-based pelleted rodent diet (rat and mouse standard diet, B & K Universal Ltd., Grimston, Aldbrough, Hull, UK). The diet, BK001P, contains the following ingredients in descending order by weight: wheat, soya, wheatfeed, barley, pellet binder, rodent 5 vit min, fat blend, dicalcium phosphate, mould carb. The pelleted rodent diet is finely ground and heat-treated in a microwave oven prior to mixing, in order to inactivate any enzyme components. All rodent diet is taken from the same batch in order to ensure consistency. The ground diet and dsRNA are mixed thoroughly and formed into small pellets of equal weight, which are allowed to dry overnight at room temperature.

Double-stranded RNA samples from targets and gfp control at concentrations 10 µg/µl were applied in the ratio 1 g ground diet plus 1 ml dsRNA solution, thereby resulting in an application rate of 10 mg dsRNA per g pellet. Pellets are replaced weekly. The insects are provided with treated pellets for the first three weeks of the trial. Thereafter untreated pellets are provided. Insects are maintained within lidded plastic containers (9 cm diameter, 4.5 cm deep), ten per container. Each arena contains one treated bait pellet and one water source (damp cotton wool ball), each placed in a separate small weigh boat. The water is replenished *ad lib* throughout the experiment.

Assessments are made at twice weekly intervals, with no more than four days between assessments, until all the control insects had either died or moulted to the adult stage (84 days). At each assessment the insects are assessed as live or dead, and examined for abnormalities. From day 46 onwards, once moulting to adult has commenced, all insects (live and dead) are assessed as nymph or adult. Surviving insects are weighed on day 55 of the trial. Four replicates are performed for each of the treatments. During the trial the test conditions are 25 to 33 °C and 20 to 25 % relative humidity, with a 12:12 hour light:dark photoperiod.

C elegans id	D melanogaster id	description	devaen RNAi screen
B0250.1	CG1263	large ribosomal subunit L8 protein.	Acute lethal or lethal
B0336.10	CG3661	large ribosomal subunit L23 protein.	Acute lethal or lethal
B0336.2	CG8385	ADP-ribosylation factor	Acute lethal or lethal
B0464.1	CG3821	Putative aspartyl(D) tRNA synthetase.	Acute lethal or lethal
C01G8.5	CG10701	Ortholog of the ERM family of cytoskeletal linkers	Acute lethal or lethal
C01H6.5	CG33183	Nuclear hormone receptor that is required in all larval molts	Acute lethal or lethal
C02C6.1	CG18102	Member of the DYNamin related gene class	Acute lethal or lethal
C03D6.8	CG6764	Large ribosomal subunit L24 protein (Rlp24p)	Acute lethal or lethal
C04F12.4	CG6253	rpl-14 encodes a large ribosomal subunit L14 protein.	Acute lethal or lethal
9 11 100	00000	Product with RNA helicase activity (EC:2.7.7) involved in nuclear	Embassic lethel or sterile
CO413.0	6800150	spliceosome complex	
C13B9.3	CG14813	Delta subunit of the coatomer (COPI) complex	Acute lethal or lethal
C17H12.14	CG1088	Member of the Vacuolar H ATPase gene class	Acute lethal or lethal
C26E6.4	CG3180	DNA-directed RNA polymerase II	Acute lethal or lethal
F23F12.6	CG16916	Triple A ATPase subunit of the 26S proteasome's 19S regulatory particle (RP) base subcomplex	Acute lethal or lethal
F57B9.10	CG10149	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
K11D9.2	CG3725	sarco-endoplasmic reticulum Ca[2+] ATPase homolog	Embryonic lethal or sterile
T20G5.1	CG9012	Clathrin heavy chain	Acute lethal or lethal
T20H4.3	CG5394	Predicted cytoplasmic prolyl-tRNA synthetase (ProRS)	Acute lethal or lethal
T21E12.4	CG7507	Cytoplasmic dynein heavy chain homolog	Acute lethal or lethal
C05C10.3	CG1140	Orthologue to the human gene 3-OXOACID COA TRANSFERASE	Acute lethal or lethal
C09D4.5	CG2746	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome	Acute lethal or lethal
C09E10.2	CG31140	Orthologue of diacylglyerol kinase involved in movement, egg laying, and synaptic transmission, and is expressed in neurons.	Acute lethal or lethal
C13B9.3	CG14813	Delta subunit of the coatomer (COPI)	Acute lethal or lethal

C14B9.7	CG12775	Large ribosomal subunit L21 protein (RPL-21) involved in protein biosynthesis	Acute lethal or lethal
C15H11.7	CG30382	Type 6 alpha subunit of the 26S proteasome's 20S protease core particle (CP)	Acute lethal or lethal
C17E4.9	CG9261	Protein involved with Na+/K+- exchanging ATPase complex	Embryonic lethal or sterile
C17H12.14	CG1088	V-ATPase E subunit	Acute lethal or lethal
C23G10.4	CG11888	Non-ATPase subunit of the 26S proteasome's 19S regulatory paritcle base subcomplex (RPN-2)	Acute lethal or lethal
C26D10.2	CG7269	Product with helicase activity involved in nuclear mRNA splicing, via spliceosome which is localized to the nucleus	Acute lethal or lethal
C26E6.4	CG3180	RNA polymerase II 140kD subunit (RpII140), DNA-directed RNA polymerase activity (EC:2.7.7.6) involved in transcription from Pol II promoter which is a component of the DNA-directed RNA polymerase II, core complex	Acute lethal or lethal
C26F1.4	CG15697	Product with function in protein biosynthesis and ubiquitin in protein degradation.	Acute lethal or lethal
C30C11.1	CG12220	Unknown function	Acute lethal or lethal
C30C11.2	CG10484	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
C36A4.2	CG13977	cytochrome P450	Acute lethal or lethal
C37C3.6	CG33103	Orthologous to thrombospondin, papilin and lacunin	Acute lethal or lethal
C37H5.8	CG8542	Member of the Heat Shock Protein gene class	Acute lethal or lethal
C39F7.4	CG3320	Rab-protein 1 involved in cell adhesion	Acute lethal or lethal
C41C4.8	CG2331	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis	Growth delay or arrested in growth
C42D8.5	CG8827	ACE-like protein	Acute lethal or lethal
C47E12.5	CG1782	Ubiquitin-activating enzyme,function in an ATP-dependent reaction that activates ubiquitin prior to its conjugation to proteins that will subsequently be degraded by the 26S proteasome.	Acute lethal or lethal
C47E8.5	CG1242	Member of the abnormal DAuer Formation gene class	Acute lethal or lethal
C49H3.11	CG5920	Small ribosomal subunit S2 protein.	Acute lethal or lethal

C52E4.4	CG1341	Member of the proteasome Regulatory Particle, ATPase-like gene class	Acute lethal or lethal
C56C10.3	CG8055	Carrier protein with putatively involved in intracellular protein transport	Growth delay or arrested in growth
CD4.6	CG4904	Type 1 alpha subunit of the 26S proteasome's 20S protease core particle (CP).	Acute lethal or lethal
D1007.12	CG9282	Large ribosomal subunit L24 protein.	Acute lethal or lethal
D1054.2	CG5266	Member of the Proteasome Alpha Subunit gene class	Acute lethal or lethal
D1081.8	CG6905	MYB transforming protein	Acute lethal or lethal
F07D10.1	CG7726	Large ribosomal subunit L11 protein (RPL-11.2) involved in protein biosynthesis.	Acute lethal or lethal
F11C3.3	CG17927	Muscle myosin heavy chain (MHC B)	Acute lethal or lethal
F13B10.2	CG4863	Large ribosomal subunit L3 protein (rpl-3)	Acute lethal or lethal
F16A11.2	CG9987	Methanococcus hypothetical protein 0682 like	Acute lethal or lethal
F20B6.2	CG17369	V-ATPase B subunit	Growth delay or arrested in growth
F23F12.6	CG16916	Triple A ATPase subunit of the 26S proteasome's 19S regulatory particle (RP) base subcomplex (RPT-3)	Acute lethal or lethal
F25H5.4	CG2238	Translation elongation factor 2 (EF-2), a GTP-binding protein involved in protein synthesis	Growth delay or arrested in growth
F26D10.3	CG4264	Member of the Heat Shock Protein gene class	Acute lethal or lethal
F28C6.7	CG6846	Large ribosomal subunit L26 protein (RPL-26) involved in protein biosynthesis	Embryonic lethal or sterile
F28D1.7	CG8415	Small ribosomal subunit S23 protein (RPS-23) involved in protein biosynthesis	Acute lethal or lethal
F29G9.5	CG5289	Member of the proteasome Regulatory Particle, ATPase-like gene class	Acute lethal or lethal
F32H2.5	CG3523	Mitochondrial protein	Acute lethal or lethal
F37C12.11	CG2986	Small ribosomal subunit S21 protein (RPS-21) involved in protein biosynthesis	Acute lethal or lethal
F37C12.4	CG7622	Large ribosomal subunit L36 protein (RPL-36) involved in protein biosynthesis	Acute lethal or lethal

F37C12.9	CG1527	Small ribosomal subunit S14 protein (RPS-14) involved in protein biosynthesis	Acute lethal or lethal
F38E11.5	CG6699	beta' (beta-prime) subunit of the coatomer (COPI) complex	Acute lethal or lethal
F39B2.6	CG10305	Small ribosomal subunit S26 protein (RPS-26) involved in protein biosynthesis	Acute lethal or lethal
F39H11.5	CG12000	Member of the Proteasome Beta Subunit gene class	Acute lethal or lethal
F40F8.10	CG3395	Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit	Acute lethal or lethal
F42C5.8	CG7808	Small ribosomal subunit S8 protein (RPS-8) involved in protein biosynthesis	Acute lethal or lethal
F49C12.8	CG5378	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
F53A3.3	CG2033	Small ribosomal subunit S15a protein.	Acute lethal or lethal
F53G12.10	CG4897	large ribosomal subunit L7 protein (rpl-7)	Acute lethal or lethal
F54A3.3	CG8977	Unknown function	Acute lethal or lethal
F54E2.3	CG1915	Product with sallimus (sls), myosin-light-chain kinase activity (EC:2.7.1.117) involved in mitotic chromosome condensation which is localized to the nucleus	
F54E7.2	CG11271	Small ribosomal subunit S12 protein (RPS-12) involved in protein biosynthesis	Acute lethal or lethal
F55A11.2	CG4214	Member of the SYNtaxin gene class	Acute lethal or lethal
F55A3.3	CG1828	transcritpion factor	Acute lethal or lethal
F55C10.1	CG11217	Ortholog of calcineurin B, the regulatory subunit of the protein phosphatase 2B	Acute lethal or lethal
F56F3.5	CG2168	rps-1 encodes a small ribosomal subunit S3A protein.	Acute lethal or lethal
F57B9.10	CG10149	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
F58F12.1	CG2968	ATP synthase	Acute lethal or lethal
F59E10.3	CG3948	Zeta subunit of the coatomer (COPI) complex	Acute lethal or lethal
JC8.3	CG3195	Large ribosomal subunit L12 protein (rpl-12)	Acute lethal or lethal
K01G5.4	CG1404	Putative RAN small monomeric GTPase (cell adhesion)	Acute lethal or lethal
K04F10.4	CG18734	Subtilase	Acute lethal or lethal

KOSCA 1	CG12323	Member of the Drotessome Bats Subunit gans class	Acute lethal or lethal
2000	CC 18474	District of the Library of the Case	Acute Tental Official
K0/D4.3	CG181/4	Putative proteasome regulatory particle, lid subcomplex, rpn11	Acute lethal or lethal
K11D9.2	CG3725	Sarco-endoplasmic reticulum Ca[2+] ATPase	Embryonic lethal or sterile; Acute lethal or lethal
M03F4.2	CG4027	An actin that is expressed in body wall and vulval muscles and the spermatheca.	Acute lethal or lethal
R06A4.9	CG1109	six WD40 repeats	Acute lethal or lethal
R10E11.1	CG15319	Putative transcriptional cofactor	Acute lethal or lethal
R12E2.3	CG3416	Protein with endopeptidase activity involved in proteolysis and peptidolysis	Acute lethal or lethal
F10C1.2	CG10119	Member of the Intermediate Filament, B gene class	Embryonic lethal or sterile
F35G12.8	CG11397	Homolog of the SMC4 subunit of mitotic condensin	Embryonic lethal or sterile
F53G12.1	CG5771	GTPase homologue	Embryonic lethal or sterile
F54E7.3	CG5055	PDZ domain-containing protein	Embryonic lethal or sterile
H28O16.1	CG3612	ATP synthase	Growth delay or arrested in growth
K12C11.2	CG4494	Member of the SUMO (ubiquitin-related) homolog gene class	Embryonic lethal or sterile
R12E2.3	CG3416	Member of the proteasome Regulatory Particle, Non-ATPase-like gene class	Acute lethal or lethal
R13A5.8	CG6141	Ribosomal protein L9, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome	Acute lethal or lethal
T01C3.6	CG4046	rps-16 encodes a small ribosomal subunit S16 protein.	Acute lethal or lethal
T01H3.1	CG7007	proteolipid protein PPA1 like protein	Acute lethal or lethal
T05C12.7	CG5374	Cytosolic chaperonin	Acute lethal or lethal
T05H4.6	CG5605	eukaryotic peptide chain release factor subunit 1	Acute lethal or lethal
T10H9.4	CG17248	N-synaptobrevin; v-SNARE, vesicle-mediated transport, synaptic vesicle	
T14F9.1	CG17332	ATPase subunit	Growth delay or arrested in growth
T20G5.1	CG9012	Clathrin heavy chain	Acute lethal or lethal
T21B10.7	CG7033	t-complex protein 1	Embryonic lethal or sterile
W09B12.1	CG17907	Acetylcholineesterase	
T27F2.1	CG8264	Member of the mammalian SKIP (Ski interacting protein) homolog gene	Acute lethal or lethal

		class	
ZC434.5	CG5394	predicted mitochondrial glutamyl-tRNA synthetase (GluRS)	Acute lethal or lethal
B0511.6	CG6375	helicase	Embryonic lethal or sterile
DY3.2	CG10119	Nuclear lamin; LMN-1 protein	Growth delay or arrested in growth
R13G10.1	CG11397	homolog of the SMC4 subunit of mitotic condensin	Wild Type
T26E3.7	CG3612	Predicted mitochondrial protein.	Growth delay or arrested in growth
Y113G7A.3	CG1250	GTPase activator, ER to Golgi prot transport, component of the Golgi stack	Acute lethal or lethal
Y43B11AR.4	CG11276	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit	Acute lethal or lethal
Y46G5A.4	CG5931	Y46G5A.4 gene	Acute lethal or lethal
Y71F9AL.17	CG7961	Alpha subunit of the coatomer (COPI) complex	Acute lethal or lethal
Y76B12C.7	CG10110	Gene cleavage and polyadenylation specificity factor	Embryonic lethal or sterile
Y37D8A.10	CG1751	Unknown function	Embryonic lethal or sterile
CG7765	C06G3.2	Member of the Kinesin-Like Protein gene class	
CG10922	C44E4.4	RNA-binding protein	Embryonic lethal or sterile
CG4145	F01G12.5	alpha-2 type IV collagen	Embryonic lethal or sterile
CG13391	F28H1.3	apredicted cytoplasmic alanyl-tRNA synthetase (AlaRS)	Growth delay or arrested in growth
CG7765	R05D3.7	Member of the UNCoordinated gene class	Embryonic lethal or sterile
CG7398	R06A4.4	Member of the IMportin Beta family gene class	Embryonic lethal or sterile
CG7436	T17E9.2	Unknown function	Embryonic lethal or sterile
CG2666	T25G3.2	putative chitin synthase	Embryonic lethal or sterile
CG17603	W04A8.7	TATA-binding protein associated factor TAF1L (TAFII250)	Embryonic lethal or sterile

Table 1-LD				
Target ID	Dm identifier	SEQ ID NO NA	SEQ ID NO AA	Function (based on Flybase)
LD001	CG11276	1	2	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
LD002	CG8055	3	4	Carrier protein with putatively involved in intracellular protein transport
LD003	CG3395	5	9	Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
900GT	CG3180		8	RNA polymerase II 140kD subunit (RpII140), DNA-directed RNA polymerase activity (EC:2.7.7.6) involved in transcription from Pol II promoter which is a component of the DNA-directed RNA polymerase II, core complex
LD007	CG7269	6	10	Helicase at 25E (Hel25E), also known in FlyBase as Dbp25F, Hel, I(2)25Eb and I(2)k11511, pre-mRNA splicing factor activity involved in nuclear mRNA splicing, via spliceosome which is localized to the nucleus
LD010	CG1250	11	12	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
LD011	CG1404	13	14	Tutative RAN small monomeric GTPase (cell adhesion)
LD014	CG1088	15	16	V-ATPase E subunit
LD015	CG2331	11	18	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
LD016	CG17369	19	20	V-ATPase B subunit
LD018	CG1915	21	22	Sallimus (sls), myosin-light-chain kinase activity (EC:2.7.1.117) involved in mitotic chromosome condensation which is localized to the nucleus
LD027	669950	23	24	Beta-coatamer protein, subunit of a multimeric complex that forms a membrane vesicle coat

Table 1-PC

Target ID	Dm	SEQ ID	SEQ ID	Function (based on Flybase)
PC001	CG11276	1	248	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
PC003	CG3395	249	250	Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis

				which is a component of the cytosolic small ribosomal subunit
PC005	CG2746	251	252	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
PC010	CG1250	253	254	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
PC014	CG1088	255	256	V-ATPase E subunit
PC016	CG17369	257	258	258 V-ATPase B subunit
PC027	669950	259	260	Beta-coatamer protein, subunit of a multimeric complex that forms a membrane vesicle coat

Table 1-EV

Target ID	Dm identifier	SEQ ID NO NA	1	SEQ ID Function (based on Flybase) NO AA
EV005	CG2746	513	514	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
EV009	CG9261	515	516	Protein involved with Na+/K+- exchanging ATPase complex
EV010	CG1250	212	518	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
EV015	CG2331	519	520	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
EV016	CG17369	521	229	V-ATPase B subunit

Table 1-AG

Target ID	-	SEQ ID SEQ II	SEQ ID	Function (based on Flybase)
	Identifier	NONA	NO AA	
AG001	CG11276	601	602	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
AG005	CG2746	603	604	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
AG010	CG1250	909	909	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
AG014	CG1088	209	809	V-ATPase E subunit

V-ATPase B subunit	The second secon
610	
609	
CG17369	
AG016	

Table 1-TC

Target ID	Dm identifier	SEQ ID NO NA	SEQ ID NO AA	ID Function (based on Flybase)
TC001	CG11276	793	794	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
TC002	CG8055	795	962	Protein with putatively involved in intracellular protein transport
TC010	CG1250	797	798	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
TC014	CG1088	662	800	V-ATPase E subunit
TC015	CG2331	801	802	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis

able 1-MF

Target ID Dm iden	Dm identifier	SEQ ID NO NA	SEQ ID NO AA	ID Function (based on Flybase)
MP001	CG11276	888	688	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
MP002	CG8055	890	891	Carrier protein with putatively involved in intracellular protein transport
MP010	CG1250	892	668	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
MP016	CG17369	894	968	V-ATPase B subunit
MP027	669950	968	268	Beta-coatamer protein, subunit of a multimeric complex that forms a membrane vesicle coat

able 1-NL

Target ID	Dm	SEQ ID	SEQ ID	Function (based on Flybase)
	identifier	NO NA	NO AA	
NL001	CG11276	1071	1072	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which
		-		is a component of the cytosolic small ribosomal subunit

NL002	CG8055	1073	1074	Protein with putatively involved in intracellular protein transport
NL003	CG3395	1075	1076	Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
NL004	CG6141	1077	1078	Ribosomal protein L9, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
NL005	CG2746	1079	1080	Ribosomal protein L19, structural constituent of ribosome involved in protein biosynthesis which is localised to the ribosome
NL006	CG3180	1081	1082	RNA polymerase II 140kD subunit (RpII140), DNA-directed RNA polymerase activity (EC:2.7.7.6) involved in transcription from Pol II promoter which is a component of the DNA-directed RNA polymerase II, core complex
NL007	CG7269	1083	1084	Helicase at 25E (Hel25E), also known in FlyBase as Dbp25F, Hel, I(2)25Eb and I(2)k11511, pre- mRNA splicing factor activity involved in nuclear mRNA splicing, via spliceosome which is localized to the nucleus
NL008	CG3416	1085	1086	Protein with endopeptidase activity involved in proteolysis and peptidolysis which is a component of the proteasome regulatory particle, lid subcomplex (sensu Eukarya)
NL009	CG9261	1087	1088	Protein involved with Na+/K+- exchanging ATPase complex
NL010	CG1250	1089	1090	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
NL011	CG1404	1091	1092	Putative RAN small monomeric GTPase (cell adhesion)
NL012	CG17248	1093	1094	N-synaptobrevin; v-SNARE, vesicle-mediated transport, synaptic vesicle
NL013	CG18174	1095	1096	Putative proteasome regulatory particle, lid subcomplex, rpn11
NL014	CG1088	1097	1098	V-ATPase E subunit
NL015	CG2331	1099	1100	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
NL016	CG17369	1101	1102	V-ATPase B subunit
NL018	CG1915	1103	1104	Sallimus (sls), myosin-light-chain kinase activity (EC:2.7.1.117) involved in mitotic chromosome condensation which is localized to the nucleus
NL019	CG3320	1105	1106	Rab-protein 1 involved in cell adhesion
NL021	CG10110	1107	1108	Gene cleavage and polyadenylation specificity factor

NL022	CG10689	1109	1110	Product with RNA helicase activity (EC:2.7.7) involved in nuclear mRNA splicing, via spliceosome which is a component of the spliceosome complex
NL023	CG17907	1111	1112	Acetylcholineesterase
NL027	669950	1113	1114	Beta-coatomer protein

Table 1-CS

Target ID	Dm identifier	SEQ ID NO NA	SEQ ID NO AA	Function (based on Flybase)
CS001	CG11276	1682	1683	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
CS002	CG8055	1684	1685	Carrier protein with putatively involved in intracellular protein transport
CS003	CG3395	1686	1687	Ribosomal protein S9 (RpS9), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
CS006	CG3180	1688	1689	RNA polymerase II 140kD subunit (RpII140), DNA-directed RNA polymerase activity (EC:2.7.7.6) involved in transcription from Pol II promoter which is a component of the DNA-directed RNA polymerase II, core complex
CS007	CG7269	1690	1691	Helicase at 25E (Hel25E), also known in FlyBase as Dbp25F, Hel, I(2)25Eb and I(2)k11511, pre-mRNA splicing factor activity involved in nuclear mRNA splicing, via spliceosome which is localized to the nucleus
CS009	CG9261	1692	1693	Protein involved with Na+/K+- exchanging ATPase complex
CS011	CG1404	1694	1695	Tutative RAN small monomeric GTPase (cell adhesion)
CS013	CG18174	1696	1697	Putative proteasome regulatory particle, lid subcomplex, rpn11
CS014	CG1088	1698	1699	V-ATPase E subunit
CS015	CG2331	1700	1701	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
CS016	CG17369	1702	1703	V-ATPase B subunit
CS018	CG1915	1704	1705	Sallimus (sls), myosin-light-chain kinase activity (EC:2.7.1.117) involved in mitotic chromosome condensation which is localized to the nucleus

Table 1-PX

Target ID	Dm identifier	SEQ ID NO NA	SE	Q ID Function (based on Flybase)
PX001	CG11276	2100	2101	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
PX009	CG9261	2102	2103	Protein involved with Na+/K+- exchanging ATPase complex
PX010	CG1250	2104	2105	GTPase activator, ER to Golgi prot transport, component of the Golgi stack
PX015	CG2331	2106	2107	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
PX016	CG17369	2108	2109	2109 V-ATPase B subunit

able 1-AD

Target ID	Dm Identifier	SEQ ID NO NA	SEQ NO A	ID Function (based on Flybase)
AD001	CG11276	2364	2365	Ribosomal protein S4 (RpS4), structural constituent of ribosome involved in protein biosynthesis which is a component of the cytosolic small ribosomal subunit
AD002	CG8055	2366	2367	Carrier protein with putatively involved in intracellular protein transport
AD009	CG9261	2368	2369	Protein involved with Na+/K+- exchanging ATPase complex
AD015	CG2331	2370	2371	Transitional endoplasmic reticulum ATPase TER94, Golgi organization and biogenesis
AD016	CG17369	2372	2373	V-ATPase B subunit

Table 2-LD

Target ID	Forward	Primer Reverse	Primer Reverse cDNA Sequence (sense strand)
	5' → 3'	5' → 3'	5' → 3'
LD001	SEQ ID NO: 25	SEQ ID NO: 26	SEQ ID NO: 1
	GGCCCCAAGAA TAGCGGAT(TAGCGGATGGT	GGT GGCCCCAAGAAGCATTTGAAGCGTTTGAATGCCCCAAAAGCATGGATGTTGGATAAATTGG
	GCATTTGAAGC	GCGDCCRTCRT	GCGDCCRTCRT GAGGTGTTTTCGCACCTCGCCCATCTACAGGACCTCACAAATTGCGAGAGTCTTTGCCCTT
		တ	GGTGATCTTCCTACGTAACCGATTGAAGTATGCTTTGACTAACAGCGAAGTTACTAAGATTG
			TTATGCAAAGGTTAATCAAAGTAGATGGAAAAGTGAGGACCGACTCCAATTACCCTGCTGG
			GTTTATGGATGTTATTACCATTGAAAAACTGGTGAATTTTTCCGACTCATCTATGATGTTAA

			AGGACGATTTGCAGTGCATCGTATTACTGCTGAGGAAGCAAAGTACAAACTATGCAAAGTC AGGAGGATGCAAACTGGCCCCAAAGGAATTCCCTTCATAGTGACACGCGGCGCGCACC ATCCGCTA
LD002	SEQ ID NO: 27 GAGCGGCCAT GCAAGCVCTBA ARMRRAAG	SEQ ID NO: 28 GCAATGTCATC CATCAKRTCRT GCAC	SEQ ID NO: 3 GCAATGTCCATCATGTCGTGTACATTGTCCACGTCCAAGTTTTTATGGGCTTTCTTAAG AGCTTCAGCTGCATTTTTCATAGATTCCAATACTGTGGTGTTCGTACTAGCTCCCTCC
LD003	SEQ ID NO: 29 TCGGTCTTCTC GAAGACNTAYG TKAC	SEQ ID NO: 30 CAGGTTCTTCC TCTTKACRCGD CC	SEQ ID NO: 5 CAGGITCTICCTCTTGACGCGTCCAGGGCGACCACCGCGAATGGAGATTTGAGCGAGAA GTCAATATGCTTCTGGGAATCAAGTCTCACAATGAAGCTTGGAATATTCACGACCTGCTTAC GTCAATATGCTTCTGGGAATCAAGTCTCACAATGAAGCTTGGAATATTCACGACCTGCTTAC GAACCCTGATATGTGTTTTGGAGACGTCGTTCCAAGAAATCTTCAATCTTCAAACCCAAGA CGTAATCAAGCTTCATACGGGTTTCATCCAACACTCCAATACGCACCGACGAAGAAG AGCATTGCCTTCAAACAACTGCGCTGATCTTTCTTTCTCTTCAAAGTTCTCTGGCAG CTTTACGGATTTTTGCCAAGGTATACTTGACTCGCCACCTTTCATAAGGTCCTTAAGGCCTGGGA
90007	SEQ ID NO: 31 GGAGCGAGAC TACAACAAYKA YRGYTGGC	SEQ ID NO: 32 CTCGAACTGCT CYTCYTGATCR CC	SEQ ID NO: 7 GGAGCGAGACTACACAACTATGGCTGGCAGGTGTTGGTTG
70007	SEQ ID NO: 33 CCGAAGAAGGA YGTSAAGGGYA C	SEQ ID NO: 34 CGATGCAAGTA GGTGTCKGART CYTC	SEQ ID NO: 9 CCGAAGAAGGATGTGAAGGGTACTTACGTATCCATACACAGGTTTCAGGCTTCCAGAGATTTTT TATTGAAACCAGAAATTCTAAGAGCTATAGTTGACTGCGGTTTTGAACACCCTTCAGAAGTT CAGCACGAATGTATTCCTCAAGCTGTCATTGGCATGGACATTTTATGTCAAGCCAAATCTGG TATGGCAAAAACGGCAGTGTTTGTTCTGGCGACACTGCAACAATTGGAACCAGCGGACAAT GTTGTTTACGTTTTGGTGATGTGTCACACTCGTGAACTGGCTTTTCCAAATCAGCAAAGAGTA CGAGAGGTTCAGTAAATATATGCCCAGTGTCAAGGTGGCGTCTTTTTCGGAGGAATGCCT

			CAACCCGATAGAATTCTGCTCATGGACACGTTCTTCCAGATTCTGATATTCCATGGCGAAAC CATCGCCCAATGGCG
LD011	SEQ ID NO: 37	SEQ ID NO: 38	SEQ ID NO: 13
	CCCACTTTCAA GTGYGTRYTRG TCGG	GTGGAAGCAG GGCWGGCATK GCRAC	GTGGAAGCAGGGCTGGCATGGCGACAAATTCTAGATTGGGATCACCAATAAGCTTCCTAG CTAGCCATAGGAAAGGCTTCTCAAAGTTGTAGTTAGATTTGGCAGAGATATCATAGTACTGC AAATTCTTCTTCTATGAAAGACAATACTTTTCGCTTTTACTTTTCTGTCTTTGATGTCAAGCCT
))	TGTTCCCGCAAAGTACTATCGGGATATTTTCACAGACTCTGACAAGATCTCTGTGCCAATTT
			GGTACATTCTTGTATGTAACTCTGGAAGTTACATCAAACATGATAATAGCACACTGTCCCTG AATGTAATATCCATCACGGAGACCACCAAAACTTCTCCTGACCGGCAGTGTCCCATACATTG
			AACCGAATAGGGCCCCTGTTTGTATGGAAGACCAGAGGATGGACTTCAACTCCCAAAGTAG
			CTCCATCTCCGACCACACACACTTGAAAGTGGG
LD014	SEQ ID NO: 39	SEQ ID NO: 40	SEQ ID NO: 15
	CGCAGATCAAR	CGGATCTCGG	CGCAGATCAAGCATATGATGGCTTTCATTGAACAAGGGCAAAAGGCCAGAAGAAT
	CAYATGATGGC	GCASMARYTGC	CGATGCCAAGGCCGAGGAAGATTTAATATTGAAAAGGGGCGCCTTGTTCAGCAACAACGT
			CTCAAGATTATGGAATATTATGAGAAGAGAGAAACAGGTCGAACTCCAGAAAAAATCCA
			CGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGACCAGGGAAAA
			TATTCCCAAATCCTGGAAAGCCTCATTTTGCAGGGATTATATCAGCTTTTTGAGAAAGATGT
			TACCATTCGAGTTCGGCCCCAGGACCGAGAACTGGTCAAATCCATCATTCCCACCGTCACG
			AACAAGTATAAAGATGCCACCGGTAAGGACATCCATCTGAAAATTGATGACGAAATCCATCT
			GTCCCAAGAAACCACCGGGGGGAATCGACCTGCTGGCGCAGAAAAAAAA
LD014_F1			SEQ ID NO: 159
			TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTA CCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCA
LD014_F2			SEQ ID NO: 160
			TCTAGAAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAAACGACTTGGTCAGGTCA
			CAAACGCCCGGG
LD014_C1			SEQ ID NO: 161
			TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTA
			CCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCA
			AAACGACTTGGTCAGGTCACAAACGATGTTGAATCAGGCTCGATTGAAAGTATTGAAAGGTT
			AGGGAAGATCACGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACA

			AACGCCGGG
LD014_C2			SEQ ID NO: 162 TCTAGAAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCA CAAACGAAGATCACGTTCGTACCGTAC
LD015	SEQ ID NO: 41 CGCCATCCRTC GCTSTTCAAGG C	SEQ ID NO: 42 GCAATGGCATC AAKYTCRTCRA TG	SEQ ID NO: 17 GCAATGGCATCAAGTTCATCGATGAAGATGATCGCCGGAGAGTTTTTGTCAGCTTCTTCAA AAGCTTTGCGCAAGTTACTCTCAGACTCGCCAGCGAGTTTGCTCATGATCTCCGGCCCGTT TATCAAGAAGAAGAACGCCCCAGTCTCATTAGCCACGGCGCGCAGCATCAGGGTCTTACC CGTACCAGGGGGACCATACAGCAGTATACCCCTAGGGGGCTTCACGCCGATAGCCTTGAA GAGCGATGGGCG
LD016	SEQ ID NO: 43 GACTGTGTCTG GTGTRAACGG WCC	SEQ ID NO: 44 GGAATAGGATG GGTRATRTCGT CG	SEQ ID NO: 19 GGAATAGGATGGCTAATGTCGTCGTTGGGCATAGTCAATATAGGAATCTGGGTGTACATGTACATCGTCCTTCAACAGCCCGCAAAGCCCGTTACGTCGTAGTCGTACATCTGGCTGTACATGTACATGTACATGTACATGTACATGTACATGTACATGTACATGTACATGTACATGTACATGTACATGTACATGTACATGTACATGCTACCTCACGCAAAGCCTTCTTCCACAGCCAGC
LD018	SEQ ID NO: 45 CACCTGGTTCA AGRATGGVCAR MG	SEQ ID NO: 46 GTGCATCGGTA CCAHSCHGCRT C	SEQ ID NO: 21 CACCTGGTTCAAGGATGGGCAGCGGATAACGGAGTCGCAGAAATACGAGAGCACCTTCTC GAACAACCAAGCCTCCTTGAGGGTAAAACAAGCCCAGTCTGAGGACTCGGGACACTACAC TITGTTGGCGGAGAAACCTCAAGGCTGCATAGTGTCATCTGCTTAGCCATAGAACCG

			CT***COC*C**C*C*C*CC*CCTC*CCT*CCT*CCT*CC
			G AACCACCACAGGGG I GAI CCACGAG I CAACCAGCAGCAGCAGAAAIG
			GAGCAAATCGACACCAGCAAGACCTTGGCGCCTAACTTCGTCAGGGTTTGCGGGGGATAGA
			GACGTGACCGAGGGCAAGATGACCCGCTTCGACTGTCGCGTCACTGGTCGTCCTTATCCA
			GACGTGACATGGTACATAAACGGTCGACAAGTCACCGACGACGACACACAC
			TTAACGAATCCGGAAACCATGCCCTGATGATCACCACCGTGAGCAGGAACGACTCAGGAG
·			TAGTGACCTGCGTCGCCAGGAACAAGACGGGAGAACCTCCTTCCAGTGCAACCTTAACG
			TCATCGAAAAGGAACAGGTAGTCGCGCCCAAGTTCGTGGAGAGATTTACCACAGTCAACGT
			GECAGAAGGAGAACCAGTGTCTCTGCGCGCTAGAGCTGTTGGCACGCCGGTGCCGCGAA
	•		TCACTTGGCAGAGGGACGGGGGGCCCCTAGCCAGCGGGCCCGACGTTCGCATCGCGATT
			GACGGTGGAGCCTCTACTTTGAATATCTCGAGGGCCAAGGCCTCGGATGCTGCATGGTAC
1 0027	SFO ID NO: 47	SEO ID NO: 48	SEO ID NO: 23
	COCTOCT	V CT V C V T V T C C	
	00000000000000000000000000000000000000	APLACATORY	CONTINUE DE CONTINUE DE LA CONTINUE DEL CONTINUE DE LA CONTINUE DEL CONTINUE DE LA CONTINUE DEL CONTINUE DEL CONTINUE DE LA CONTINUE DEL CONTINUE DEL CONTINUE DE LA CONTINUE DEL CONTINUE DE LA CONTINUE DE LA CONTINUE DE LA CONTINUE DEL CONTINUE DE LA CONTINUE D
		ACCCA	GTTTTCCACCCTGAACTACCTGTGGCTCTCACAGGCAGCGAAGATGGTACCGTTAGAG
) 		TITGCATACGAATACACACACATTAGAGAATTGTTTGAATTATGGGTTCGAGAGTGTG
			CACCATTLETTECTION ACCOUNTS AT A TOTAL CONTROLL OF THE CONTROL OF THE CONTRO
			470C01-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0
			11 AG I GAAAG 11 GGAAGAAGAACCGCAG 1 AG I AT GGA I GCCAG I GGCGG I AAAA I AA
			TTTGGGCAAGGCACTCGGAATTACAACAAGCTAATTTGAAGGCGCTGCCAGAAGGTGGAG
			AAATAAGAGATGGGGAGCGTTTACCTGTCTGTAAAAGATATGGGAGCATGTGAAATATA
			CCCTCAAACAATCCAACATAATCCGAATGGAAGATTCGTTGTAGTATGCGGAGACGGCGAA
			TATATCATTTACACAGGGATGGCTCTACGGAACAAGGCTTTTGGAAGCGCTCAAGAGTTTG
			TCTGGGCTCAGGACTCCAGCGAGTATGCCATTCGCGAGTCTGGTTCCACAATTCGGATATT
			CAAAAACTTCAAAGAAAGGAAGAACTTCAAGTCGGATTTCAGCGCGGAAGGAA
			GGTTTTCTCTTGGGGATTAAATCGGTGTCCGGTTTAACGATTTGGGAAACTTTGGA
			CTTGGTGAGACGGATTGAAATACAACCGAGGGCGGTTTATTGGTCTGACAGTGGAAATTA
			GTCTGTCTCGCAACGGAGGACAGCTACTTCATCCTTTCTTATGATTCGGAGCAAGTTCAGA
			AGGCCAGGGAGAACAATCAAGTCGCAGAGGATGGCGTAGAGGCCGCTTTCGATGTGTTGG
			GGGAAATGAACGAGTCTGTCCGAACAGGTCTTTGGGTCGGAGACTGTTTCATCTATACC

Table 2-PC

Target	arget Primer Forward	Primer Reverse	cDNA Sequence (sense strand)
<u></u>	5' → 3'	5' → 3'	5' → 3'
PC001	PC001 SEQ ID NO: 261 SEQ ID NO: 262		SEQ ID NO: 247
	CATTTGAAGCG CTTCGTGCCCT		CATTTGAAGCGTTTAGCTGCTCCCAAAGCATGGATGTTGGACAAATTGGGGGGTGTCTTCGCCC

	TTTWRMYGCY CC	TGCCRATKATR AABACG	CTCGTCCATCCACCGGGCCTCACAAGTTGCGCGAATCCCTGCCTTTAGTGATTTTCCTTCGTAAC AGGCTGAAGTATGCCCTTACAAACAGTGAAGTCACTAAAATTGTCATGCAAAGGTTGATCAAAGT TGATGGTAAAGTGAGGACTGATTCAATTACCCTGCTGGTTTCATGCATG
PC003	SEQ ID NO: 263	SEQ ID NO: 264	SEQ ID NO: 249
	TCGGTCTTCTC GAAGACNTAYG TKAC	CCCTGGTTCTT CTTVRRRTTCT TCCTC	CCCTAGACGTCCCTATGAAAAGGCCCGTCTGGATCAGGAATTGAAAATTATCGGCGCCTTTGGTT TACGAAACAAACGTGAAGTGTAAAAGTAAAGT
			GGGTGGCCGACCTGGCCGTGTCAA
PC005	SEQ ID NO: 265	SEQ ID NO: 266	SEQ ID NO: 251
	TGCGATGCGG CAARAARAAGG TBTGG	TCCTGCTTCTT SGYRGCRATW CGYTC	TGCGATGCGGCAAAAAGAAGGTGTGGTTGGATCCAAATGAAATCAACGAAATCGCCAACACCAA CTCAAGACAAAACATCCGTAAGCTCATCAAGGATGGTCTTATCATCAAGAAGCCAGTGGCAGTAC ACTCTAGGGCCCGTGTACGCAAGAACATTGAAGCCAGAAGGAAG
			GAAAGAGGAAGGGTACGGCAAATGCCCGTATGCCTCAAAAGGAACTGTGGGTGCAGCGCATGC GCGTCCTCAGGCGCCTCCTCAAAAAGTACAGGGAGGCCAAGAAAATCGACCGCCATCTTTACCA
			CGCCCTGTACATGAAAGCGAAGGGTAACGTGTTCAGGAACAAGAGGGTCCTTATGGAGTACATC CACAAGAAGAAGGCAGAAAGGCCAGGGCCAAGATGCTGTCTGACCAGGCTAACGCCAGGAGA TTGAAGGTGAAGCAGGCCAGGGAACGTAGGGAAGAGCGTATCGCCACCAAGAAGCAGG
PC010	SEQ ID NO: 267	SEQ ID NO: 268	SEQ ID NO: 253
	CTCTCAAGGAT TCKYTRCARAT GTC	CGCCATTGGG CRATGGTYTCK CC	CTCTCAAGGATTCTTTGCAGATGTCGCTCAGCCTATTACCGCCCAACGCGTTGATTGGATTGATC ACGTTCGGAAAAATGGTGCAAGTCCACGAACTGGGTACCGAAGGCTGCAAGGCAAGTCGTACGTA
			ACCAAATCCCCAACAACAGCCAGGCAACCTGGGCGGCCAGGGCAGAATCCCCAAGCTGCCCC
-			ATCGGGGAGTTGCAGAAGACCCTTGGCCCGTACATCAGGGCAAAAGACCTCTTAGATCCACAG
			GCGCAGCA G CCA CGC G CGCC C AGAA GCACC A CCGAA ACGGG GGCAGAA CATGATATTCTTAGGAGGACCATGCTCTCAGGGTCCCGGCCAGGTGTTGAACGACGACTTTGAAG
			CAGCCCATCAGGTCCCATCATGACATACACAAGACAATGCCAAGTACATGAAGAAGACTATCAA

			ACATTACGATCACTTGGCAATGCGAGCTGCCACCAACAGCCATTGCATCGACATTTACTCCTGCG ACATTACGATCACTTGGCAATGCGAGCTGCCACCAACGCCATTTACTCCTGCG CCCTGGATCACTTCAATGCGAGATGAAGCAGTGCTGCAATTCCACCGGAGGCACATGG TCATGGGCGATCCTTCAATTCCTCTTATTCAAACAGCTTCCAGCGAGTGTTCTCAAAAGACC CGAAGAACGACCACTCCAAGCGCTTCAACCCCTTGGAGGTGATTCCAGGGAGTTAAA AGTCCAAGGGGGCATCGGCTTCAACCCACCTTGGAGGTTAAAAGCCCTCTGGTTCCCAAGGGGGCTGCATTGGACTTTCTCCAGGTTGGCTTCTCAGGCTGCATTGGCCCCATTTGCACCACAGGGGGGCTGCA TCCAGCTCATCACCCCAGTATCAGCACGCGGGGCCAAAGGAGGAGGCGCAGGGGGCTGCA TCCAGCTCATCACCCCAGTATCGCCCGAACATTCGCCACATTAGCCGCTTCGACCAAGAAGC GCTGAAATTGGGCGGACGCTACTGCCACATCCACCACATTAGCCGCTTCGACCAAGAAGC GCTCAGAATTGGGCCCGAATGCCCGGTTACAATAAAGAC GCTCAGATTCGTTCAGGTTGATCAGGCTTTCATTTAAAGACCAGTTCATGAGCACTTCATCATCAGCACATTTAAAGAC GATCCGAATTCGTTCAGGTTGGACACATCCTTTTATAGGCACATTCA TGATGCGTGGAGTTTTTATAGCCACATTCATCAGCTTCATTCA	
PC014	SEQ ID NO: 269 CGCAGATCAAR CAYATGATGGC	SEQ ID NO: 270 CGGATCTCGG GCASMARYTG C	SEQ ID NO: 255 CTGATGTTCAAAAACAAATCAAACATGATGGCTTTCATTGAACAAGGAGGCGATGAGGAAAGCA GAAGAAATTGATGCCAAGGCAGAGGAGAATTCAACATTGAAAAAGGCGTTTTGGTCCAGCAAC GAAGAAATTGATGCCAAGGCAGAGGAGAAAAAGGAAGAAGCCAAGTCCAAAAAGTCTCAAAAAGTCTTGAAAAAGGAGAAAATTCAAAAAGTCTCAAAAAGTCTTGAAAAGTCTTGAAAAGTCTGAAAAGTCTCCCCAAAAAGACCAAAGACCAAAGACCAAGGAAAATTTTGGAGGAGGATGCTCGTTTTTGGTGAAAGTCTTCCAGGACCTGTTCCAAAGACCAAAGACCAAAAAAAGTCTTCAAGGTCTTCCAGAAAGACCAAAGACCAAAAAAAA	
PC016	SEQ ID NO: 271 GACTGTGTCTG GTGTRAACGG WCC	SEQ ID NO: 272 GGAATAGGAT GGGTRATRTC GTCG	SEQ ID NO: 257 GGAATAGGATGGGTGATGTCGTTGGGCATAGTCAAGATGGGGATCTGCGTGATGGAGCCG TTGCGGCCCTCCACACGACCGGCGCGCTCGTAAATGGTGGCCAGATCGGTGTACCTGTAACCG GGGAAACCCCTACGGCCGGCCGCTCTTCTCCGAGCGCAGACCCTCCGCGCGCG	

			CCGTGATCCCAGTCTGGATCATTTCCTCGGGATAAATACGCGACCACGGGTTGATCGGCTGTCC
			TTGGATGTCGAGGTAGTCCTCAGCCAGGATCGGGGGGCCTTTATCAATGGGTTTTCCTGATCCAT
			TGAAGACACGTCCCAGCATATCTTCTGATACTGGAGTTCTTAGAATATCTCCAGTGAACTCACAC
			ACCGTGTTCTTAGCATCAATACCTGATGTGCCTTCAAATACCTGAACAACTGCCTTTGATCCACTG
			ACTTCCAAAACTTGTCCAGATCGTAGAGTTCCATCTGCCAATTTGAGCTGGACAATTTCATTGAAT
			TTTGGAAACTTGACATCCTCAAGAATGACCAGTGGTCCGTTCACACCAGACACAGTC
PC027	SEQ ID NO: 273	SEQ ID NO: 274	SEQ ID NO: 259
	GGGCCAAGCA	TGTGCCACCC	GGGCCAAGCACAGTGAAATACAGCAAGCTAACTTGAAAGCACTACCAGAAGGAGGAGCTGAAATCAG
	CWSYGAAATRC	TAGTRCGRTG	AGATGGAGAACGTTTGCCAGTCACAGTAAAGGACATGGGAGCATGCGAGATTTACCCACAAACA
	AG	YTC	ATCCAACACACACCCCAATGGGCGGTTTGTAGTGGTTTGTGTGGTGGAGAGAATACATAATATACAC
			GECTATEGCCCTTCGTAACAAAGCATTTGGTAGCGCTCAAGAATTTGTATGGGCACAGGACTCC
			AGTGAATATGCCATCCGCGATCCGGATCCACCATTCGAATCTTCAAGAATTTCAAAGAAAAAA
			GAATTICAAGTCCGACTTTGGTGCCGAAGGAATCTATGGTGGTTTTCTCTTGGGTGTGAAATCAG
			TGTCTGGCTTAGCTTTCTATGACTGGGAAACGCTTGAGTTAGTAAGGCGCATTGAAATACAGCCT
			AGAGCTATCTACTGGTCAGATAGTGGCAAGTTGGTATGCCTTGCTACCGAAGATAGCTATTCAT
			ATTGTCCTATGACTCTGACCAAGTCCAGAAAGCTAGAGATAACAACCAAGTTGCCGAAGATGGAG
			TGGAGGCTGCCTTTGATGTCCTAGGTGAAATAAATGAATCCGTAAGAACAGGTCTTTGGGTAGGA
			GACTGCTTCATTTACACAAACGCAGTCAACCGTATCAACTACTTTGTGGGTGG
			TATTGCACATCTGGACCGTCCTCTATATGTCCTGGGCTATGTACCTAGAGATGACAGGTTATACT
			TGGTTGATAAAGAGTTAGGAGTAGTCAGCTATCAATTGCTATTATCTGTACTCGAATATCAGACTG
			CAGTCATGCGACGAGGACTTCCCAACGGCTGATCGAGTATTGCCTTCAATTCCAAAAGAACATCGC
			ACTAGGGTGGCACA

Table 2-EV

Target ID	arget ID Primer Forward 5' → 3'	Primer Rev 5' → 3'	erse cDNA Sequence (sense strand) 5' → 3'
EV005	SEQ ID NO: 523 TGCGATGCGG CAARAARAAGG TBTGG		SEQ ID NO: 524 TGCGATGCGGCAAGAAGGTTTGGCTGGATCCTAATGAAATAACTGAAATTGCTAATACA SGYRGCRATW AACTCTAGACAAACATCCGCAAACTGATTAAAGATGGTCTTATTAATAAAAAGCCTGTCGCG GGTATCTCGTGCACGTGTACGCAAAATACTGAAGCCCGCAGGAAAGGTCGTCATTGTG GGATTTGGTAAAAAGGAAACTGCAAATGCTAGGAAGGAAAGGAAAGGAATTATGAA GGATTTGGTAAAAAGGAAAGGTTATTGAAAAATATAGGGAAGCTAAGAAAATTGATATGGAAATGTATTCAAGAAATGTATTCAAGAAATGATTCAATGATATGAATGA
			GATGCAAGGAGGCTGAAAGTCAAAGAGGCACGTAAGCGACGTGAAGAGGCGTATCGCTACG

			AAGAAGCAGGA
EV009	SEG ID NO: 525 GGGCCGTGGT CAGAAYATYWA YAAC	SEQ ID NO: 526 GCAGCCCACG CYYTGCACTC	SEQ ID NO: 515 CCAACTCTCGATCCAAGCATTCCAAAATACAGGACTGAAGAATCTATAATAGGAACCAAACCC AGGAATGGGTTTTAGGCCAATGCCCGACAACGAAGGAAGTACCCTGATTTGGTTACAG AGGAATGGGTTTTAGGCCAATGCCCGACAACGAAGTATTTAGACAAGTAT TACACTCCCGGAAAAATAGAAAAGGGAAATATTCCAGTAAAGCGCTGTTCATACGGAGAAAA ATTGATTAGGGGACAAGTATGTGATGTAGATGTGAAAGGGAAAAAAATGGGAAAAAA
EV010	SEQ ID NO: 527 CGGCTGACGT GGAAYGTKTGG CC	SEQ ID NO: 528 CGGCGTATTCT CCRAAYTTCTG GC	SEQ ID NO: 517 CTGGCGCCACATGGTCATGGGTGATTCATTTAACTCTTTCACTTTTCAAACAAA
EV015	SEQ ID NO: 529 CGCTGTCGCAR GCRAARATGG	SEQ ID NO: 530 CGATCAAAGC GWCCRAAVCG ACG	SEQ ID NO: 519 CGCCATCCGTCGCTGTTCAAGGCGATCGGCGTTAAGCCTCCAAGGGGTATTCTCCTTTACG GGCCTCCCGGCACGGGGAAAACGCTGATCGCCAGGGCCGTTGCCAACGAAACTGGTGCGT TCTTCTTCCTCATCAATGGGCCCGAGATTATGAGCAAGCTGGCCGGAGAATCCGAGAGCAA TCTTGAAAAGGCTTTTGAAGAGGCTGATAAAAACTCTCCTGCAATCATCTTTATCGACGAATT AGACGCAATCGCTCCCAAGCGCGAGAAGACTCATGGTGAGGTAGAGAGGCGCC CCAACTGTTGACTTTGATGGACGCATGAAAAGATCCATGTGATCGTGATGGCGGCC ACGAACAGGCCCAATTCCATCGACGCTGCACTCAGAACTCCATGGCGCCGAAAACTCGACCGGACGCCGAAACCTCAGAAAACTTCCATCGGCCGACCCGAAAAACTTCCATCGGCCGAAAAACTTCCATCGGCGCCGAAAAACTTCCATCGGAAAAACTTCCATCGGAAAAACTTCCATCGGAAAAACTTCCATCGGAAAAACTTCCATCGGAAAAACTTCCATCGGAAAAACTTCCATCGGAAAAACTTCCATCGGAAAAAACTTCCATCGGAAAAACTTCCATCAGAATACCACAAAAACCTCAAAAAACTTCCATCGGAAAAAACCCCAAAAAACCTCAAAAAACTTCCATCAGAATACCACAAAAAACTTCCATCAGAATACCACAAAAACCCAAAAAACCTCAAAAAACTTCCACACCAAAAAA

			ATGAAATTGGCTGACGATGTAGATTTGGAACAGATTGCCGCAGAGACTCACGGTCATGTAGAAATTAGAGAAAAAAAA
			CTCATCGACTTAGATGAGCAGATGCCGAAGTCCTAAATTCTCTGGCAGTTACCAT
			GGAGAACTTCCGTTACGCCATGTCTAAGAGCAGTCCGAGCGCTTTGCGCGAAACCGTCGT
EV016	SEQ ID NO: 531	SEQ ID NO: 532	SEQ ID NO: 521
	GTTCACCGGC	CGGCATAGTC	GACTGTGTCTGGTGTGAACGGACCGTTGGTGATCCTTGATAGTGTTAAGTTTCCAAAATTTA
	GAYALYCIGGG	AGAATSGGRAT	ACGAAATTGTACAGCTCAAGTTATCAGATGGAACAGTTAGGTCTGGACAAGTTTTGGAAGTC
		פ	AGTGGACAGAAGGCGGTTGTCCAAGTTTTTGAAGGCACCTCCGGAATTGATGCTAAAAACA
			CTTTATGTGAATTTACAGGAGATATCTTAAGAACTCCAGTGTCTGAAGATATGTTGGGTCGT
			GTGTTTAATGGATCTGGAAAGCCTATCGATAAAGGGCCGCCAATCTTAGCTGAAGATTTTCT
			TGACATTCAAGGTCAACCTATAAATCCTTGGTCTCGTATCTATC
			CTGGTATTTCTGCGATTGATGTGATGAATTCCATTGCCAGAGGACAAAAGATTCCAATTTTCT
-			CTGCAGCTGGTTTACCCCACAATGAAATCGCTGCTCAAATCTGTAGACAAGCTGGTCTTGTC
			AAAATCCCAGGGAAATCTGTCTTAGATGATCATGAAGACAACTTTGCTATCGTTTTCGCCGC
			TATGGGTGTCAATATGGAAACAGCCAGATTCTTCAAGCAAG
			TGGAAAATGTGTGCCTATTTTTGAACTTGGCCAATGATCCTACCATTGAAAGAATTATAACAC
			CCCGTTTGACTTTAACAGCGGCTGAATTTATGGCATATCAATGTGAGAAGCATGTGTTAGTC
			ATATTGACTGACATGTCATCTTATGCTGAGGCTTTGCGTGAGGTATCTGCTGCT

Table 2-AG

Target	Primer Forward Primer Reverse	1	cDNA Sequence (sense strand)
AG001	1		SEQ ID NO: 601
	CATTTGAAGCG	сесттетссс	CATTIGAAGCGTITIGCTGCCCCCAAAGCATGGATGTTGGACAAATTGGGGGGTGTGTTCGCCC
	TTTWRMYGCYC	_	CCAGGCCCTCCACCGGGCCACACGTCAGGGAGTCCCTTCCATTAGTGATTTTCTTGCGTAA
	ပ	RAT	CAGGTTGAAGTACGCCCTGACAACTGTGAGGTGACCAAGATCGTTATGCAGAGACTTATTAAG
			GTCGACGGCAAAGTCAGGACTGATCCTAACTATCCTGCTGGATTCATGGATGTGATCACCATTGA
			AAAAACTGGTGAATTCTTCCGTTTGATCTATGATGTTAAGGGAAGATTCACTATTCACAGGATCAC
			TGCTGAAGAAGCAAAATACAAATTGTGCAAAGTCCGCAAGGTGCAAAACGGGACCAAAAGGTATTC
	_		CATTCTTGGTCACCCACGATGGTAGGACCATTAGGTACCCTGACCCAATGATCAAGGTAAACGAC
			ACCATCCAACTGGAAATCGCCACCTCAAAGATCCTGGACTTTATCAAATTCGAATCCGGCAACTT
			GTGCATGATCACCGGAGGCAGGAATTTGGGTAGAGTGGGAACGGTAGTGAACAGGGAAAGGCA
			TCCGGGATCATTCGATATTGTCCACATTAGGGACGCTAATGATCACGTGTTCGCCACTAGATTAA
			ACAACGTATTCGTCATCGGTAAAGGAAGCAAAGCTTTCGTGTCTCTGCCAAGGGGCAAGGGGAGT
			GAAACTGTCCATCGCTG

AG005	SEQ ID NO: 613	SEQ ID NO: 614	SEO ID NO: 603
	GGTCTGGTTGG ATCCHAATGAA ATCAAYGA	TCCTGCTTCTT SGYRGCRATW CGYTC	GGTCTGGTTGGATCCAAATGAAATCAATGAGATTGCCAACACCCAACTCGAGGCCAAAACCTCCGTA AATTGATCAAGGATGGTTTGATCATTAAGAAACCGGTGGCAGTGCACTCTAGGGCTCGTGTCCGT AAAAACACAGAAGGCAAGGC
AG010	SEQ ID NO: 615 CTGGCGGCCA CATGSTBATGG	SEQ ID NO: 616 CGCCATTGGG CRATGGTYTCK CC	SEQ ID NO: 605 CTGGCGGCCACATGCTTATGGGAGACTCTTTCAATTCGTCGTTGTTCAAACAAA
			CTAGCACGACGATGCGCTGTTTTTCGAGGTGGTCAATCAGCATTCGGCCCCCATTCCTCAAGG TGGTAGAGGATGTATACACAATATCAGCACTCGAGTGGCCCCCATTCCTCAAGG TGGTAGAGGATGTATACACAATATCAGCACTCGAGTGGCCAAAGGAGGATAAGGG TGACGACGTGGCGGAAATTGGGCGGACGCATCGGCGAATATTCACCACATCAGCGGGGGTTT CGATCAGGAACGTGCCGGTTATATGGCCCGGATGCTTTTATAGAGCGGAGACCGATGA GAGTCCCGATGTTTAAGATGGGTCGATCGGATGCTGTTTGTGTCAAAAGTTTGGAGAAT ATAACAAAGATGACCAGGTTTTTGCAAGTGTTCAACAAATTTACA ACCACTTAAGGCGATCCCTTCAAGTTTCAACAATTCACCTGACGAAACCGTTATACAGCGGAAGATTTTACA GCCATATGCTTATGAGGGAAGATTTGCAAGTCCTGATAATGACCAATGCCCAATCCAATGCCCAATCCAATGCCCAATCAAT
AG014	SEQ ID NO: 617	SEQ ID NO: 618	SEQ ID NO: 607
	CGCAGATCAAR CAYATGATGGC	GAACTTGCGG TTGABGTTSCG DCC	CGCAGATCAAGCATATGATGGCCTTCATTGAAGAGGCCTAATGAAAAAGGGCCGAGGAAATTGA TGCCAAGGGGAAGAAGTTTAACATTGAAAAGGGCCGCCTTGTGCAACAACAAAGATTGAAG TGCCAAGGGGGAAGAAGAAGAAGAGGCCGCCTTGTGCAACAACAAAAAAGAGATTGAAG ATCATGGAATACTATGAGAAGAAGAAGCAAGTCCGAACTACAAAAAAATTGAATCCTCCAA CATGCTGAACCAAGAAGCTTTAAGGGTTCTGAAAGTCCGCGAAGATCATGTTATGGAATCTTTGAGCCTCCAAGAGTCAAGAAGCTTTTCGAGGGATCAAGGGCAAATATGCCCAGATTCTGGA ATCTTTGATCCTTCAGGGACTCTACCAGCTTTTTCGAGGCAAACGTGACCGTACGCGCCCA CAGGACAGAACCTTAGTCCATCGATGCCCAACCATCGCAAATACCGTAACGGCGGGAAT CGCAAATTGTCCAAAAATTAAGGTCTGCAAACACCCTGGAAGCCTTGGAACCTTTGGAACTTGGAACTTGCCAACATTGGAACTTTGCCAAAAATTAAGGTTCGCAACACCCTGGAAGCCTAGAACCCTAATTGCCAAAAATTAAGGTTCTGCAACACCTTGAACCCTAAACACTAACACAAATTAAGGTTCTGCAACACCTTGAACCCTAAACACTAAACACAAATTAAGGTTCTGCAACACCTTGAACCCTAAACACAAATTAACGTTTCGCAACATCAACACTAAATTAACGTTTCGCAACATCAACAATCAACAAATTAACGCTTTGCCAACATCAACAAAATTAACGCTTTGCCAACATCAACAAAATTAACGCTTTGCCAACATCAACAACAAAATTAACGCTTTGCAACACTTAACACAAATTAACACTTGCTAAACACCCTTGCAACACCAACCCTAACACTAACAAAATTAACGCTTTGCAACACTTTCGCAACCTTTCGCAACCTTTGCAACACTTTCGCAAACCTTTCGCAACCTTTGCAACACTTTCGCAACCTTTCGCAAACCTTTCGCAACCTTTTTCGCAACCTTTTTTCCCAAACTTTCGCAACCTTTTTTCGCAACCTTTTTTTCTCAAACAAA
AG016	SEQ ID NO: 619	SEQ ID NO: 620	SEQ ID NO: 609

GTGTCGGAGG	GGAATAGGAT	GTGTCGGAGGATATGTTGGGCCGAGTGTTCAACGGATCAGGAAAACCCATTGACAAAGGTCCTC
ATATGYTGGGY GGGTRATRTC	GGGTRATRTC	CAATCTTAGCCGAAGATTTCTTGGACATCCAAGGTCAACCCATCAACCCATGGTCGCGTATCTAC
9	GTCG	CCGGAAGAAATGATCCAGACCGGTATCTCCGCCATCGACGTGATGAACTCCATCGCGCGTGGG
		CAAAAAATCCCCATTTTCTCCGCGGCCGGTTTACCGCACAACGAAATCGCCGCCCAAATCTGTG
 		ACAGGCCGGTTTAGTCAAACTGCCGGGCAAATCGGTAATCGACGATCACGAGGACAATTTCGCC
		ATCGTGTTCGCCGCCATGGGTGTCAACATGGAAACCGCCCGTTTCTTCAAGCAGGACTTCGAAG
		AAAACGGTTCCATGGAGAACGTGTGTCTTCTTGAATTTGGCCAACGATCCCACCATCGAGAGA
		ATCATCACGCCCCGTTTGGCTCTGACCGCCGCCGAATTTTTGGCTTATCAATGCGAGAAACACGT
		CCTGGTTATCTTAACTGATATGTCTTCTTACGCCGAGGCTTTGCGTGAAGTATCCGCCGCCAGAG
		AAGAAGTACCCGGACGTCGTGGGTTCCCCGGTTACATGTACACCGATTTGGCCACCATTTACGA
		AAGAGCCGGTCGCGTTGAGGGTAGAAACGGTTCCATCACCCAGATTCCCATCTTGACTATGCCG
		AACGACGACGATCGTATTCC

Table 2-TC

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand) 5' → 3'
TC001	SEQ ID NO: 803	SEQ ID NO: 804	SEQ ID NO: 793
	GGCCCCAAGA	сесттетссс	GGCCCCAAGAAGCATTTGAAGCGTCTCAATGCGCCCAAAGCATGGATGTTGGATAAACTG
	AGCATTTGAAG	GCTCCTCNGC	GGGGGTGTGTTGCCCCTCGGCCTTCCACCGGCCCCCACAAGCTACGGGAGTCGCTACC
	8	RAT	TTTGGTTATCTTCCTGCGAAACAGGCTGAAGTATGCCTTGACCAACTCAGAAGTGACGAA
			GATTGTTATGCAAAGATTGATTAAAGTTGACGGAAAAGTTAGGACAGACCCCAACTACCCC
			GCGGGTTTCATGGATGTTGTGACTATTGAGAAAACTGGGGAATTCTTCCGCTTGATTTATG
			ATGTTAAGGGAAGGTTCACAATCCATCGCATTACTGGAGAAGAGGGCCAAATATAAATTGTG
			CAAAGTGAAGAAAGTACAGACAGGCCCCAAGGGCATTCCCTTCTTGGTGACCCGCGACG
			GACGCACTATCAGATACCCAGACCCCATGATCAAAGTGAATGACACCATTCAATTGGAGAT
			TGCCACTTCGAAAATTCTTGATTTTATCAAATTTGAGTCCGGTAATTTGTGTATGATTACTG
			GAGGTCGTAACTTGGGGCGTGTCGGTACAGTGGTGAGCCGAGAACGTCACCCAGGTTCC
			TTCGACATCGTTCATATTAAGGATGCAAATGGGCACACC
TC002	SEQ ID NO: 805	SEQ ID NO: 806	SEQ ID NO: 795
	CAGGAGTTCCT		CAGGAGTTCCTGGAGGCTAAAATCGACCAAGAGATCCTCACAGCGGAAGAAAAACGCGTC
	GGARRMBAAR	GCAATGTCATC	GAAAAACAAACGAGCGGCCATCCAGGCCATCAAGAGGAAGAAACGCTACGAAAAGCAGC
	ATMGA	CATCAKRTCRT	TCCAGCAGATCGATGGCACCCTCAGCACCATCGAGATGCAGCGGGGGGGCCCTCGAGGG
		GTAC	GGCCAACACCAACACGCCGTACTCAAAACGATGAAAAACGCAGCGGACGCCCTCAAAAA
			TGCCCACCTCAACATGGATGTTGATGAGGTACATGACATGATGGATG
TC010	SEQ ID NO: 807	SEQ ID NO: 808	SEQ ID NO: 797

	GCATTCTGCGC TGGGTCGATCG	TGCCGGAAGT TCTCRTAYTCK GGC	AAAATTCGGCGAATACAACAAAGACGACCCTAACAGTTTCCGTTTGAGTGAAAACTTCAGT CTCTATCCCCAATTCATGTACCATTTGCGCCGCTCCCAATTCCTCCAAGTTTTCAACAACT CCCCAGACGAGACCTCGTTCTACCGCCACATGCTGGTGGGGGGGG
TC014	SEQ ID NO: 809 GAGAAAGCCG ARGARATYGAT GC	SEQ ID NO: 810 GAACTTGCGG TTGABGTTSCG DCC	SEQ ID NO: 799 GAGAAAGCCGAAGAAATCGAAAGCTGAGGAGGATTTAACATTGAAAAAGGGCG CCTGGTCCAACAACACGCGCTTGAAGATCATGGAAAGGGCGGT GGAATTGCAGAAGAAATTCAGTCGTCAACATGTGAACCAAGCCGGTTTGAAGAAGTATTA AAAGTGCGTGAAGAAATTCAGTCGTCAATGTGCTGGATGACCAAGCCGCTTTGAAAGTATTA AAAGTGCGTGAAGACCACGTCCACATGTGCTGGATGACGCCCGCAAACGTCTGGGCGA AAAGTGCGTGAAGACCACGTCCACAATGTGCTGGATGACCGCCCCCCCAAACGTCTGGCGCGA AACCACCAATGACCAGCGAGATATTCACAACTTTTGGAACAATATAGTGGTGAGAGTCTC CAACAGGACAGG
TC015	SEQ ID NO: 811 GGATGAACTAC AGCTBTTCCGH GG	SEQ ID NO: 812 CGATCAAAGC GWCCRAAVCG ACG	SEQ ID NO: 801 GGATGAACTACAGCTGTTCCGTGGCGATACAGTGTTTGCTGAAAGGGAAGCGGCGGAAAG AGACCGTCTGCATTGTGCTGGCCGACGAAAACTGCCCCGATGAGAAGATCCGGATGAAC AGGATCGTCAGGAATAATCTACGGGTTAGGCTCTCTGCCCTCTCTGGAAGCGCCCTGT CCCGACGTCAGAATAATCTACGGGATCCACGTTTTGCCCATCGTTCGCACGGTCGAAGG GCTCGTCGGAAATCTCTTCCAGGGTTACTTAAAACCATCGTTCCTCGAAGGGTCGAAGG GCTCGTCGGAAATCTCTTCCAGGTGTACTTAAAACCATTCCTCGAAGCTTTTCCACGAAGTTTTCATCGTCGTCGCTTGCAGCGTTGAATTCAAAGGGAAGCGTTGTCGAAGCGTTGTCGAAGCGAACCGAAATCGCAAATTCATCGCACGAAGCGTTGTCGAAATCGCAAATTCATCGCAAATCGCAAATTCATCGAATTCATCGCTTTGTACGCGTTGTACGCTTTTTCATCGAACGGAAATTGCTCTTTTTAATCAAGGCCATTGAAGCGTGAAATTAGCCGCGAAATTATCGCAAATTCGCACGTTGTACGCTTTTTTCATCGAAGAAGCGTTCTTTTTCATCGAAGAATTATTTTCATCGAAGTAATTAGCCGCGAAATTTTTCATCGAAGAAGTAATTGCACGGCGAATTGTTCTTTAATCAACGGAAAAAAAA

_
₾
Σ
Ç
٠.
Ŕ
<u>•</u>
ap
æ

Target ID	Primer Forward 5' → 3'	Primer Reverse 5' → 3'	cDNA Sequence (sense strand) 5' → 3'
MP001	SEQ ID NO: 898	SEQ ID NO: 899	SEQ ID NO: 888
	GGCCCCAAGAA GCATTTGAAGC	CGCTTGTCCC GCTCCTCNGC RAT	GGCCCCAAGAAGCATTTGAAGCGTTTAAACGCACCCAAAGCATGGATGTTGGACAAATCGGG GGGTGTCTTCGCTCCACGTCCAAGCACCGGTCCAAAACTTCGTGAATCACTACCGTTATT GATCTTGCGTAATCGTTTGAAGTATGCACTTACTGGTGCCGAAGTCACCAAGATTGTCAT
)	:	GCAAAGATTAATCAAGGTTGATGGCAAAGTCCGTACCGACCCTAATTATCCAGCCGGTTTTAT GGATGTTATATCTATCCAAAAGACCAGTGAGCACTTTAGATTGATCTATGATGTAAAAGGTCG
			TTTCACCATCCACAGAATTACTCCTGAAGAAGCAAAATACAAGTTGTGTAAAAGTAAAGGGGT ACAAACTGGACCCAAAGGTGTGCCATTTTTAACTACTCATGATGGCCGTACTATTCGCTACCC
			TGACCCTAACATCAAGGTTAATGACACTATTAGATACGATATTGCATCATCTAAAATTTTGGAT CATATCCGTTTTGAAACTGGAAACTTGTGCATGATAACTGGAGGTCGCAATTTAGGGGCGTGTT
			GGTATTGTTACCAACAGGGAAAGACATCCAGGATCTTTTGTTTG
MP002	SEQ ID NO: 900	SEQ ID NO: 901	SEQ ID NO: 890
	GAGTTTCTTTA	GCAATGTCATC	GAGTITCTITAGTAAAGTATTCGGTGGCAAAAAGGAAGAAGAAGGAAGG
	GGTGG	GTAC	AAATTGAACAAGAAGTAGCGATAGCCAAAAAAATGGTACAACTAATAAACGAGCTGCATTGC
			AAGCATTGAAGCGTAAGAAACGGTACGAACAACAATTAGCCCAAATTGATGGTACCATGTTAA
•			CTATTGAACAACAGCGGGAGGCATTAGAAGGTGCCAACACAAAAATGAGGAGTATTGACTACC ATGAAAACTGCAGCAGATGCACTTAAATCAGCTCATCAAAACATGAATGTAGATGAAGTGTACAT
			GATCTGATGGATGACATTGC
MP010	SEQ ID NO: 902	SEQ ID NO: 903	SEQ ID NO: 892
	GTGGCTGCATA	CGCGGCTGCT	GTGGCTGCATACAGTTCATTACGCAGTATCAACATTCCAGTGGCTATAAACGAATTAGAGTCA
	GCAG	76	ATCAAGAAGCATCTGCCGTTTTAATGGCTCGTATGGTAGTGAACCGTGCTGAAACTGAGGATA
			GTCCAGATGTGATGCGTTGGCTGATCGTACGCTTATACGCTTGTGTCAAAAATTTGGTGATT
			ATCAAAAAGATGATCCAAATAGTTTCCGATTGCCAGAAAACTTCAGTTTATATCAGTTCAGAGTTCAT
			ATAGGCACATGTTGATGCGTGAAGATGTTACCCAAAGTTTAATCATGATACAGCCAATTCTGT
··-			ATAGCTATAGTTTTAATGGTAGGCCAGAACCTGTACTTTTGGATACCAGAGACTATTCAACCTGA
			- 「とくく・スク・・と・つくりにりのうくとの・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

			GGAGAGCAATGGATTATCAAAATAGACCAGAGTATAGTAACCTCAAGCAGTTGCTTCAAGCCC CCGTTGATGATGCTCAGGAAATTCTCAAAACTCGATTCCCAATGCCTCGGTATATTGACACG AACAAGGTGGTAGTCAGGCAAGATTTTACTATGCAAAGTAAACCCATCTCAAACACATAATAA TATGTATGCTTATGGAGGGTGATGGTGGAGCACCAGTTTTGACAGATGATGTAAGCCTTGCAG
MP016	SEQ ID NO: 904 GTGTCGGAGG ATATGYTGGGY CG	SEQ ID NO: 905 GGAATAGGAT GGGTRATRTC GTCG	SEQ ID NO: 894 GTGTCGGAGGATATGTTGGACCGCTTTTCAATGGCAGTGGAAAGCCGATAGATA
MP027	SEQ ID NO: 906 CGCCGATTACC AAAACAARACB TG	SEG ID NO: 907 GGGATACTGT CACAAYYTCDC CRCC	SEQ ID NO: 896 CGCCGATTACCAAAACAAGACGTGTTTCAGACATTAGAAGGCCATGCTCAAAATATTTCTGC TCGTTTGTTTCCATCCAGAACTTCCCATCGTGTTAACTGGCTCAGAAGGATGGTACCGTCAGAA TTTGGCATTCTGGTACTTATCGATTAGAATCATTAAACTTAGACTATGGGTTAGAACGTGTATGGAA AATCTGTTGCTTACGGGGATCTAATGTAGCTCTAGGGTTAGAAGGAAG

ATGCTGATAAAGAAACAAGACTTTTTAGAAAAGAAAATTGAAGTTGAAATTGGAGTTGC TCCGCGTCGTCCTTACGAGAAGGCACGTCTCGAACAGGAGTTGAAGATCATCGGAGA CATCAGACAAAGACATATCAGAGTGCGCAAACAAGTAGTGAACATTCCGAGCTTTGTG CATCATCGGCAAGGGTAGTAAAGCATACGTGTCTCTGCCCAAGGGCAAGGGTGTGAA GATGAAAAGGGCCCTACAACTGGCGAAGCCATTCAGAAACTACGCGAAACAGAGGAA CAGGAAGAATGGAACAAAAAAAAAAGAGCCGCGATCCAGGCACTCAAAAGGAAGAA GAAATCATGGATGTTGGACAAATTGGGTGGTGTGTATGCACCCCGACCCAGCACAGG CCAGACCCCTTGGTAAAAGTCAATGACACCATCCAATTGGACATTGCCACATTCCAAAA GTATGGACTCCGTAACAAGCGTGAGGTGTGGAGAGTCAAATACGCCCTGGCCAAGAT <u> ACGGCAAAGTGAGGACTGACCCCAACTATCCTGCAGGTTTTATGGACGTTGTTCAAAT</u> CACAGGATCACAGCTGAAGAAGCTAAGTACAAGCTGTGCAAAGTGAAGAGGGGTTCAG TCATGGACTTCATCAGATTCGACTCTGGTAACCTGTGTATGATCACTGGAGGTCGTAA TCCACACACAGCTGCGAGAATCTCTCCCCACTTGTCATATTTTTGCGTAATCGGCTCAAG TACGCTTTAACTAACTGTGAAGTGAAGAAAATTGTGATGCAGCGTCTCATCAAGGTTG CTTGGGTCGTGTGGGCACTGTCGTGAACAGGGAGCGACACCCCGGGGGTCTTTCGACA rcgtgcacatcaaggacgtgttgggacacacttttgccactaggttgaacaacgttt GTGCGCCTGGACTCGCAGAAGCACATTGACTTCTCGCTGAAGTCGCCGTTCGGCGG TCGTAAGGCCGCTCGTGAGCTGTTGACTCTGGAAGAGAAGGACCAGAAACGTTTGTT ACAGGACCCAAGGGCATTCCATTTTTGACCACTCACGATGGACGCACCATCAGGTAT GAGGTATGAAAAGCAATTGCAGCAGATCGATGGAACGTTATCAACAATTGAGATGCA GAGAGAGGCCCTCGAAGGAGCCAACACGAATACGGCCGTACTGCAAACTATGAAGA TGAAGGTAACGCCCTGCTGCGTCGCCTGGTGCGTATTGGAGTGTTGGACGAAGGAA GAATGAAGCTCGATTACGTCTTGGGTTTAAAAATTGAAGATTTCCTTGAACGTCGTCT ACGCAGCAGATGCTCTCAAAGCGGCTCATCAACACATGGATGTGGATCAG TGGCCGACCTGGTCGCGTCAA cDNA Sequence (sense strand) **SEQ ID NO: 1073 SEQ ID NO: 1075 SEQ ID NO: 1077 SEQ ID NO: 1071** GCTCAG 5, 4 3, ACTGAGCTTCACAC CTGATCCACATCCA TTGACGCGACCAG TGTGTTGATGAG **SEQ ID NO: 1118 SEQ ID NO: 1124 SEQ ID NO: 1120 SEQ ID NO: 1122** Primer Reverse GTCGGCCAC CCTTGCCC 5, 1 **SEQ ID NO: 1123** GAAATCATGGAT **SEQ ID NO: 1119** GTTGGACAAATT GATGAAAAGGG SEQ ID NO: 1117 CCCTACAACTG SEQ ID NO: 1121 TCCGCGTCGTC CTTACGAGAAG GC **Primer Forward** 15 15 15 15 **Target** NL003 NL004 **NL002** NL001

Table 2-NI

	TGAAGGTGGAG AARGGTTYGGM WCMAAG	GTCGTCTTCTCDGA HACRTAVAGACC	AAGGAGTTGGCTGCTGTAAGAACTGTCTGCTCTCACATCGAAAACATGCTGAAGGGA GTCACAAAGGGATTCCTGTACAAGATGCGTGCCGTGTACGCCCATTTCCCCCATCAAC TGTGTGACGACCGAGAACACTCTGTGATCGAGGTGCGTAACTTCCTGGGCGAGAAG TACATCCGACGGGTGAGGATGCCCCGGCGTCACTTTACCAACTCGACAAAGCA GAAGGACGACGCTCATCGTCGAAGGAACAGCATAGAGGACGTGTCAAGATCAGAGCTG CCCTCATCCAACAACAACAGTGAAGAACAAGGATATTCGTAAATTCTTGGAC
NL005	SEQ ID NO: 1125 GGTCTGGTTGG ATCCHAATGAAA TCAAYGA	SEQ ID NO: 1126 TCCTGCTTCTTSGY RGCRATWCGYTC	SEQ ID NO: 1079 TTGGATCCCAATGAAATGAAATCGCAAACACAAATTCACGTCAAAGCATCAGGA AGCTGATCAAAGACGGTTTCATCAGGAAACCGGTTGCAGTACATTCACGTGCTCG CGTTCGTAAAAACACTGAAAGGCAGGAAAGGCAGACATTGTGGCTTTGGTAAGAG GAAAGGTACAGCCAACGCCCGTATGCCACAAAAGGTTCTATGGGTGAATCGTATGCG TGTCTTGAGAAGACTGTTGAAAAAATACAGACAAGGTTTCAAGAAAATCGACAGGCATCTG TACCATCACCTTTACATGAAAAAAAAAGGTAACGTATTCAAGAAACGTGTATTGA TGGAGTTCATTCATAAGAAGGACGAGAAAGGCCAAGAAATGAAGGGCAA
900 N	SEQ ID NO: 1127 GGAGCGAGACT ACAACAAYKAYR GYTGGC	SEQ ID NO: 1128 GAGATCTTCTGCAC RTTKACVGCATC	SEQ ID NO: 1081 AAGTGCTTGTGTCAAGTGGTGGAGTACATTGACACCCTGGAGGAGGAGGA ACCATGATAGCGATGTCGCCGGAGTACATTGACAAGGAGTATGCTACTGT ACCATGATAGCGATGTCGCCGGAGTGCTGGAGAGAGCGCTACTGT ACCACGTCACCGCACCACCCGGCCATGATACCTCGGTGTGTGCCCTCT ATTATTCCCTTCCC
NL007	SEQ ID NO: 1129	SEQ ID NO: 1130	SEQ ID NO: 1083

	СССТССАТССА АСАСУТСССССССССССССССССССССС	CGATGCAAGTAGG	TITCAGAGATITICCTICTGAAACCTGAAATITITGAGAGCAATCCTTGACTGGGTTTTG AACATCCATCTGAAGTACAACATGAATGCATTCCTCAAGCTGTACTTGGGAATGGATTA ATGTGTCAAGCGAAATCCGGTAGGGAAAACTGCTGTATTTGTGTTGGCGACATTA CAGCAAATTGAACCAACCGGTGTGTGTTTGGTCATGCCAGAG AGCTTGCATTCCAAACCGAACGAGTTGAACGATTTTCGAAATGTATGCCAGAG AGCTTGCATTCCAAATCAGCAAACAGGTTTGAACGATTTTCGAAATGTTGCCAAATAT CAAGGTTGGAGTTTTCTTCGGCGGACTGCCGATTCAGAGGGATGAGGAGCTTGAACAGAATAT CAACAAGAACAGACTCTCAAGCATCTCAAGCACTTTGTCCTTGACGAATGTAGCAAA ATGTTGGAACTGTTAGATTCAGGAAGATCTCAAGCAATGTTCCCAAAAA ATGTTGGAACTGTTAGATTCAGTGCAACTCTCAGCAAAAAAAA
NL008	SEQ ID NO: 1131 GTGGTGGATCA CTTYAAYCGKAT G	SEQ ID NO: 1132 GCGCATTTGATCGT TBGTYTTCAC	SEQ ID NO: 1085 GGAAGGATAGAAAACCAGAACGAGTTGTTGGTGTTCTTTTGGGATGCTGGAGACCT GGAAGGATAGAAAACCAGAACGATTTTGCAGTTCCATTTGGGATGCTGGACAAG GGAAGGTTATTGGATGTTTCAAACAGTTTTGCAGTTCCATTTGGATGGTGCTGGACCAAG GAAAGATGTTTGGTTCTTAGACCATGATTACTTGGAAACATGTTCGAAG GAAAGTTAATGCTAGAAAAGGTTGTGGTTGGTCCATACTGGACCCAAACTCCA GCAAACGATGTTGCAATCAATGATTGGTTGGTTACTGTCCAAACTGTGTTTA GTCAAACGATGCAAGCCTAAAGATTTGGGTCTACAAAACATTTGAACATGTGTTGATGA GTCAAAACGATTGGGGCAGAAGGCTGAGGGCTCACAAGACCAAATTGAAGAC ATCAAAGAATTGGGGCAGAAGGGTCACTGTCACAGGCGTCACAAGTCGGCTTGAAGACTTTTTGAAGATTTTGAAGACTTTTTGAAGACTTTCAACCT TTGAAGGGCTTGCAATTACAGGATATTGCGAACTGCCAAGTCTTCAACCT TTGAAGGAAAGTTGCCAATGAATTACAAATCGTTTACCAAGTCTTCAACCT TCTACCCGATATCGGCCAACTTTTTGTAGACTCTACCTAC
NL009	SEQ ID NO: 1133 GGGCCGTGGTC AGAAYATYWAYA AC	SEQ ID NO: 1134 CCGCCAAAGGACT SARRTADCCCTC	SEQ ID NO: 1087 TGCGACTATGATCGACCGCGGGACGCGGTCAGGTGTGCGACGTCGACGTCAAGAA CTGGTTTCCCTGCACCTCTGAGAACAATTTCAACTACCATCAATCGAGCCTTGTGTT TTTCTCAAACTGAACAAGATAATTGGTTGGCAACCGGAGTACTACAATGAGACTGAAG GCTTTCCAGATAATATGCCAGGTGACCTCAAGCGACAACTGAGAAGAGTA TCAACAAGCTGTTTATGCAAACAATCTGGATAACTTGCGAAGGAGGGTCCTCTAGA

			CAAGGAGAATGCAGGGGAGATCCCAGTACCTAGACAGGGGATTTCCGGGGCTACTT CTACCCTTACACTAATGCC
NL010	SEQ ID NO: 1135 CGGCTGACGTG GAAYGTKTGGC C	SEQ ID NO: 1136 TGCCGGAAGTTCTC RTAYTCKGGC	SEQ ID NO: 1089 (amino terminus) GTCCAGTCGACTGGAAGCCACCAGGCTTGTTGTTCCCGTTGGATGTCTGTATCAACC TTTGAAGGAGAGACCTGATCTACCGCCTGTACAGTACGATCCAGTTCTTTGTACTAGG AATACTTGTCGTGCAATTCTGAATCCATTGTGCCAAGCTAT
			GGGTCTGCAACTTTTGTTTCCAGAGGAATCCTTTCCCCCCCTCAATATGCAGCTATTTC GGAGCAGCATCAACCAGCAGAACTGATACCTTTTCCACCATCGAATACATCATT ACCAGAGCGCAAACGATGCCGCCGATGTTCGTGCTGGTGGTGGACACATGTCTGGA CGACGAGGGGGAGCTTTGAAGGACTCACTGCAGATGTCGCTGTCGCTGCTGCTGC CGACGAGGAGCTTGAAGGACTCACTGCAGAATGGTGCTGCTGCTGC CGCCCAATGCACTCGTCGGTCATCACGTTCGCCAAAATGGTGCAGGGCC
			TTGGCTGCGACGGCTGCTCGAAGAGCTACGTGTTCCGTGGCGTGAAGGACCTGACT GCCAAGCAGATCCAGGACATGTTGGGCATTGGCAAGATGGCCGCCGCTCCACAGCC CATGCAACAGCGCATTCCCGGCGCCGCTCCCTCCGCACTGTCAACAGATTTCTTCA GCCTGTCGGAAAGTGCGATATGAGTTTAACTGATCTGCTTGGGGAATTGCAAAGAGA TCCATGGAATGTGGCTCAGGGCAAGAGACCTCTCCGATCTACTGGAGTTGCATTGTC CATTGCAGTTGGTCTCGGGTGCACA
			SEQ ID NO: 1115 (carboxy terminus) CGTTGAACGTGAAAGGCTCGTGTGTCAGACACTGACATTGGCTTGGGCGGCACCT CTCAATGGAAAATGTGCGCCTTCACTCCACACACAACTTGTGCATTCTTCTTCGAAGT
			TACGCAATACCAACATTCCAGTGGCCAGAGGATACGTGTCACCACCATCGCTCG AAACTGGGCAGAGCACCAGCACCTGGCACACCATCGCTCGC
			GGACCIGACGICAIGCGCIGGGCIGACCGCAIGCICAICCGICICIGICAGAGGTIC GGTGAATACAGTAAGGATGACCTAACAGTTTCCGTCTGCCAGAGAACTTCACACTTT ATCCGCAGTTCATGTACCATCTGCGTCGATCCTAGCAAGTGTTCAACAACAG TCCTGATGAAACATCTTACTACAGGCACATTCTTATGCGAGGATCTGAACACCAGAGT
			TTGATTATGATCCAGCCGATTTTGTACAGCTACAGCTTCAATGGTCCCCCCGAGCCAG TGCTGCTCGACACCCAGCAGTATTCAACCCGACAGAATCCTATTGATGGACACTTTTT CCAAATTCTCATTTCCATGGAGAGACGATTGCTCAATGGCGATCTCTGGGCTACCAG GACAT
NL011	SEQ ID NO: 1137	SEQ ID NO: 1138	SEQ ID NO: 1091
	CCCACTTTCAAG TGYGTRYTRGTC GG	CGCTCTCTCGAT CTGYDSCTGCC	AGATGGTGGTACCGGCAAAACTACATTTGTCAAACGACATCTTACCGGAGAATTTGAA AAGAAGTATGTTGCCCCTTGTACTTCACCAAACA GAGAAGTTCACCCCTTGTATTCACCAAACA GAGGTGTGGATTAGGTTCAATGTGTGGGACACAGCTGGCCAGGAAAAGTTCGGTGGA

			CTTCGTGATGGATATTACATTCAGGGACAATGCGCCATCATTATGTTTTGACGTAACGT CAAGAGTCACCTACAAGAACGTTCCCAACTGGCACAGAGATTTAGTGAGGGTTTGCG AAAACATTCCCATTGTACTATGCGGCAACAGTAGACATCAAGGACAGGAAAGTCAA GGCCAAGAGCATAGTTCCATAGGAAGAAGAAGTCATCAGTACGACATCAGTGC GAAAAGCAACTACAACTTCCATAGGAAGAAGACCTTCAGTACTACGACATCAGTGC GAAAAGCAACTACAACTTCGAGAAGCCGTTCCTGTGGTTGGCAAAGAAGCTGATCGG TGACCCCAACCTGGAGTTCGTCGCCATGCCCGCCCTCCTCCCACCCGAGGTCAAAT
NL012	SEQ ID NO: 1139 GCAGGCGCAGG TBGABGARGT	SEQ ID NO: 1140 GAATTTCCTCTTSA GYTTBCCVGC	SEQ ID NO: 1093 GCAGCAGACGCACAGGTAGACGAGGTTGTCGATATAATGAAAACAAAC
NL013	SEQ ID NO: 1141 CAGATGCGCCC GTBGTDGAYAC	SEQ ID NO: 1142 GCCCTTGACAGAYT GDATVGGATC	SEQ ID NO: 1095 CGCAGAGCAAGTCTACATCTTCACTGGCCTTATTGAAAATGCTTAAGCACGGTCGC GCCGGTGTTCCCATGGAAGTTATGGCCTAATGCTGGGCGAATTTGTAGACGACTAC ACTGTGCGTGTCATTGATGTATTCGCTATGCCACAGAGTGGAACGGGAGTGAGT
NL014	SEQ ID NO: 1143 CGCAGATCAAR CAYATGATGGC	SEQ ID NO: 1144 GAACTTGCGGTTGA BGTTSCGDCC	SEQ ID NO: 1097 TITCATTGAGCAAGAGCCCGAAGAGACCGAAGAGACCCAAGGCCGAGGA AGAATTCAACATTGAAAAGGGAAGGCTCGTACAGCACCAGCGCCTTAAAATCATGGA AGAATTCAACAGGAAGGGAGGGTTGAACAGCACCAGCGCCTTAAAATCATGGA GTACTATGACAGGAAAGGGAGGGTTGAGCTCCAGCGCAAAAAAAA
NL015	SEQ ID NO: 1145 GCCGCAAGGAG ACBGTVTGC	SEQ ID NO: 1146 GTCCGTGGGAYTC RGCHGCAATC	SEQ ID NO: 1099 ATTGTGCTGTCTGACGACATGTCCGTTCGAAAAGATCCGCATGAATCGAGTGGTC AGGAAGAATCTGCGAGTGCGCTTGTCCGACATTGTCTCGATCCAGCCTTGCCCAGAC GTCAAGTATGGAAAGCGTATCCATGTGCTGCCCATTGATGATACCGTTGAGGGTCTTA

			TCACAAGGATGATTCATTGTTCGCGGAGGTATGAGAGCGGTCGAATTCAAGGT GGTTGAAACAGATCCATCGCCCTACTGCATTGTCGCGCCAGACCGTCATTCCATTG GGTTGAAACAGATCCATCGCCCTACTGCATTGTCGCGCCAGACCCGTCATCCATTG TGAGGAGACCCCATCAAACGTGAAGAAGACGCAGCAAACGCAGTCGGCT ACGACGACATTGGAGGCTGCAGCAGCTGGCGCAGATCAAAGAGCCGCCACGAGG TTGCCGCTGAGACATCCCAGTCTGTTCAAGGCGATCGAAGAGCCGCCGCCGCGCCCTCG CATCCTGCTGTACGGACCCGGAAACCGGAAGCGGCGCCGCCGCGCGCCCTCG CCACCGGCGCGCCTTCTTCTTCCTCATCAACGGCGACCGCGCCCCTCG CCACCGGCGCGCCTTCTTCTTCCTCATCAACGCGACGCG
NL016	SEQ ID NO: 1147 GTTCACCGGCG AYATYCTGCG	SEQ ID NO: 1148 CGGCATAGTCAGA ATSGGRATCTG	SEQ ID NO: 1101 GACGACAGTATCAGAGGATTATTCAACGGAAGTGGTAAGCCCAT GACGACAGGACTTCTTGCTGAGGATTATCTCGACATTCAAGGTCAACCCATC CGACAAAGGACCTCCCATTCTTGCTGAGGAATTATCTCGACATTCAAGGTCAACCCATC AATCCTTGGTCGCGTATCTATCCCGAGGAAATGATCCAGACTGGAATTTCAGCCATCG ACGTCATGAACTCGATTGCTCGTGGCCAGAAAATCCCCATCTTTTCAGCTGCCGGTCT ACCTCACAACGAAATTGCTCGATCTTGTAAGACAGGCTGTTTTGTATTCGCAACCGGTCT ACCTCACAACGAAATTGCTCGATTCTTCAAACTTGTCATTGTCAAACTGCCA GGAAAGTCAGTTCTCGATGATCTTCAAACCTGGCGACCATCG GGAAAGTCAGTTCTTCAAACTTGCTGGCGACGATCATCAT GGAGAACGTGTGCCTGTTCTTCAAACCTGGCGACCGACGACCGATCATCAT CACCCCCCCCGCCTGGCGCCCTGGCGCCCCGACGACCGAC
NL018	SEQ ID NO: 1149 GCTCCGTCTACA THCARCCNGAR GG	SEQ ID NO: 1150 GTGCATCGGTACC AHSCHGCRTC	SEQ ID NO: 1103 TATGCAAATGCCTGTGCCACGCCCACAAATAGAAAGCACACAACAGTTTATTCGATCC GAGAAAACAACATGCCTGTGCCACGCCCACACACACACTTTATTCGATCC GAGAAAACAACATACTCGAATGGATTCACCACTTGAGGAGGACTTCAAAACTA CTTCGAATACCGTCTTCTGCGCGAGGTGTCGTTCCGCGAATCTCTGATCAGAAACTA CTTGCACGAGGCGGACATGCAGATGTCGACGGTGGTGGACCGAGCATTGGGTCCCC CCTCGGCCCACACATCCAGCAGAAGCCGCGCCAACTCCAAAAATCCAGGAGGCGGC GATGCCGTCTTTTCCATCAAGCTCAGCGCCCAACCCCAAGCCTCGGTTC AAGAACGGTCAGCGCCATCGGTCAGACGCCAGGCCTCCTACTCCAATCAG

			ACCECCACECTCAAGGATGTCAGCGCTCAAGACTCCGGCCACTACACGCT GCTTGCTGAAAATCCGCAAGGATGTACTGTGTCCTCAGCTTACCTAGCTGTCGAATCA GCTTGCTGAAAATCCGCAAGGATGTACTGTGTCCTCAGCTTACCTAGCTGTCGAATCA GCTGGCACTCAAGATACAGGATGAGCAATACAGCAGACAAGAGGTGGAGAC GACAGGCGGTGGACAGCAGATGCTGGCACCCGAACTTTGTTCGCGTGCCGG CCGATCGCGACGCGA
NL019	SEQ ID NO: 1151 GTCCTGTCTGCT GCTVMGWTTYG C	SEQ ID NO: 1152 CCTTGATCTCHGC MGCCATBGTC	SEQ ID NO: 1105 CGATGACACATACAGAAAGTTACATCAGTACCATTGGTGTAGATTTTAAAATTAGAA CGATGACACATACACAGAAAAGCTTACATCAGATTTGGGACACGGCCGGC
NL021	SEQ ID NO: 1153 CTCAATCAGAGC GTYCCHCCRTAY GG	SEQ ID NO: 1154 GGAATTGCCSAGV CGDGADCC	SEQ ID NO: 1107 CGTCAGTCTCAATTCTGTCACCGATATCAGCACCACGTTCATTCTCAAGCCACAGAG AACGTCAAGATAACGCTTGAGGGCGCACAGGCCTGTTTCATTCTCACAGGCCACAGAG AACGTGAAGATAACGCTTGAGGAAACTCTATGTTCTATTCCCATAGTATTGC GTGATCTCACTGAGGAGGAAACTCTATGTTCTACTCTTTTCCATTCCCATTGTTAT CTGTGTTTGTGAGGAGATTTCATCTGTTCCTTGGTTCCCGTCTTGGAAACTCACTGTTG CTCAGGTTTACTGAAACTATCTGTTCCTTGGTTCCCGAGGGCCATCGAAACTCA CTCAGGTTTACTGAAAACAAAAAAAAAA
NL022	SEQ ID NO: 1155 GCGTGCTCAAG TAYATGACBGAY GG	SEQ ID NO: 1156 CCAGTTCATGCTTR TANGCCCANGC	SEQ ID NO: 1109 TACATTGCACAGAGAATTCCTTTCCGAGCCAGATCTGCAATCTTACAGTGTTATGATA ATTGATGAAGCTCACGAGAGGACGTTGCACACTGATATCATTCGGTTTGGTGAAA GATGTCGCCCGATTCAGACCTTGAAGCTGCTCATATCAAGCGCCACACTGGAT

			GCTCAGAAATTCTCCGAGTTTTTCGACGATGCACCCATCTTCAGGATTCCGGGCCGT AGATTTCCGGTGCACTACTACAAAGGCGCCCGAGGCTGACTACGTGGACGC AGATTTCCGGTGGACATCTACTACAAAGGCGCCCGAGGCTGACTACGTGGACGC TGTGTCGTTTCGATCCTGCATCCACGCCCCTCCGGACGACTCCTGGTC TTCCTCACCGGTCAGGAGGATCCAAGCACCTGCCAGGAGCTGCTGCTGCTGCTGCTGGTC TCCTCACCGGTCAGGAGGATCCAAGGACCTGCCAGGAGCTGCTGCTGCTGCTGTATTCCAAGGACGTAATTGCCCGTCTATTCCAAGGACGTAATTCCAGCAAATGCTAGGAAGGTA GTATTGGCCACAAATATTGCAGAAACCTCATTGACCATCGACAATAAATCTACGTGA TTGATCCTGGTTTTTGTAAGCAGAATAACTTCAATTCAA
NL023	SEQ ID NO: 1157 CCGGAGCTTCT CTCAGGAACGC	SEQ ID NO: 1158 GAAAGCACACGCT GTTGCTCTGG	SEQ ID NO: 1111 CCGGAGCTTCTCAAGGAACGCCAGGGAAATGAAGGAATCCTCGGGTCGCA TGCATCACAGGACGCCACGAGACTCATAGCGGGTCACGTGAGAGGAATCT CGGAAGACCGTCCTCGGACGGCACCCGTCACGTCGTTTGCCGTTTGCGAAA CCTCCCGATCGGTCGCACTCCCAACAGCGGTTCCCGTTCGACCCGTGGCACGG CCTCCTGGATGCGGACTCCCAACAGCGGTTCCCAACAGGAATTTTGTCCGAAGATTTTTCCCGAATTTGTCCGAAATTTTTTCCCGAACAGGAATTGTGAATTTGTCCGAAGATTTTTCTCCGAAGAATTGTGACGAATTTTTTCTCCGAAGAATTGTCCGAACACGG CCGGGGCTTCGAGGGAAGGAAATCGGAATTTTGTCCGAAGACACAG CCGGGGCTTCGGACACAGGCAACGGGAATTTGTCCGAAGATTTTTCTCGAGGAATTGTCCGAACACAG CGAGGAATAAACCAAGAGCAACGTGCAGCGGTTCCGTTCCTC ACGAGGACACAGACCTCCGCTCCATGCAGTGCTGACATTGCTGGCCTTCCGA TACCTCGCACAGGACTTCCCTTTTGCAGTTCCGGCCGCCCTTCGGA CCACCACAGACCATCCGCTCCGC

CCAGTCTGCGAATAATGCAA TGATGACGTGAATTGGCCTA GCGGAGACTTCGGGCACAG	STACAGGCTGGAGTCCTCGC SATGCGAGGATCCAACATG GGTGGGTCGGAGGAGCG GGGCGCCACTCGGAGAT SGAATCAAGATGGCGAAC WATATATCCGCAGACCATCG GATGGAGAGTTCATTCGGGG TCCACTGTACATATTCAAA TGCTGAGAGTTCATTTCGGGG TCCACTGTCAAAGTATTCAAA TGCTGAGAGGTTCGGGGGGGGGG
AACATGTCGCTGCAATTCAATGCTAGGGAAAGGGATCTCAGTCTGCGAATAATGCAA GCTTACTCTAGGTTTGCATTGACAGGTAAACCAGTGCCTGATGACGTGAATTGGCCTA TCTACTCCAAGGACCAGCCGCAGTATTACATTTTCAATGCGGAGACTTCGGGCACAG GCAGAGGACCCAGAGCAGCGTGTGCTTTC	SEQ ID NO: 1113 AGAAGACGGCACGGTGCGTATTTGGCACTCGGGCACCTACAGGCTGGAGTCCTCGC TGAATTATGGCCACGGTGCGTGTGTGGAAGGTTGCGGGCACCTGCGAGGATG TGGCTCTTGGCTACGAAGGCAGCATAATGGTGAAGGTGCGAGGAGCCG TGGCTCTTGGCTACGACGCAGAGGCAAATTGTGGGGAGCCCGCCC
0 1	SEQ ID NO: 1160 GGTATAGATGAARC ARTCDCCVACCCA TO CO
	SEQ ID NO: 1159 GCCGATCGTKYT VACKGGCTC
	NL027

Table 2-CS

Target	Primer Forward	Primer Reverse	cDNA Sequence (sense strand)
Ω	5' → 3'	5' → 3'	5, + 3,
CS001	SEQ ID NO: 1706	SEQ ID NO: 1707	SEQ ID NO: 1682
	CATTTGAAGCGT	CATTTGAAGCGT CTTCGTGCCCTT	TAAAGCATGGATGTTGGACAAACTGGGTGGCGTGTACGCGCGCG
	TTWRMYGCYCC	GCCRATKATRAA	CCCCACAGAGTTGCGCGAGTGCCTGCCGCTGGTGATCTTCCTCAGGAACCGGCTCAA
		BACG	GTACGCGCTCACCGGAAATGAAGTGCTTAAGATTGTAAAGCAGCGACCTTATCAAAGTTG
			ACGCCAAAGTCAGGACAGACCCCACATATCCCGCTGGATTTATGGATGTTGTTTCCATT
			GAAAAGACAAATGAGCTGTTCCGTCTTATATATGATGTCAAAGGCAGATTTACTATTCAC
			CGTATTACTCCTGAGGGGTAAATACAAGCTGTGCAAGGTGCGGCGCGCGTGGCGACG
			GGCCCCAAGAACGTGCCTTACCTGGTGACCCACGACGGACG
			GACCCACTCATCAAGGTCAACGACTCCATCCAGCTCGACATCGCCACCTCCAAGATCA
			TGGACTTCATCAAGTTTGAATCTGGTAACCTATGTATGATCACGGGAGGCCGTAACTTG
			GGGCGCGTGGGCACCATCGTGTCCCGCGAGCGACATCCCGGGTCCTTCGACATCGTG

			CATATACGGGACTCCACCGGACATACCTTCGCTACCAGATTGAACAACGTGTTCATAAT CGGCAAGGGCACGAAG
CS002	SEQ ID NO: 1708	SEQ ID NO: 1709	SEQ ID NO: 1684
	GAGTTTCTTTAG	GCAATGTCATCC ATCAKRTCRTGTA	GAGTTTCTTTAGTAAAGTATTCGGTGGCAAGAAGGAGGAGGAGGAGGGTCCATCAACACAC GAAGCTATACAGAAATTACGCGAAACGGAAGAGTTATTGCAGAAGAAGAACAAGAGTTTCT
	TGG	0	AGAGCGAAAGATCGACACTGAATTACAAACGGCGAGAAAACATGGCACAAAGAATAAG
			AGAGCTGCCATTGCGGCACTGAAGCGCAAGAAGCGTTATGAAAAGCAGCTTACCCAGA
			TTGATGGCACGCTTACCCAAATTGAGGCCCAAAGGGAAGCGCTAGAAGGAGCTAACAC CAATACAACACTAACAACACTAACAACACAAC
			AAGGATATCGATGTAGACAAGGTACACGATCTGATGGATG
CS003	SEQ ID NO: 1710	SEQ ID NO: 1711	SEQ ID NO: 1686
	CAGGAGTTGAR	CAGGTTCTTCCT	TGGTCTCCGCAACAAGCGTGAGGTGTGGAGGGTGAAGTACACGCTGGCCAGGATCCG
	RATHATYGGHSA	CTTKACRCGDCC	TAAGGCTGCCCGTGAGCTGCTCACACTCGAGGAGAAAGACCCTAAGAGGTTGGAAAAAAAA
	¥ ¥		AGCTCGATTATGTACTCGGTCTGAAGATTGAGGACTTCTTGGAACGTCGTCTCCAGACT
			CAGGTGTTCAAGGCTGGTCTAGCTAAGTCTATCCATCATGCCCGTATTCTTATCAGACA
			GAGGCACATCCGTGTCCGCAAGCAAGTTGTGAACATCCCTTCGTTCATCGTGCGGCTG
			GACTOTGGCAAGCACATIGACTICTCGCTGAAGTCTCCGTTCGGCGGCGGCCGGCCG
2000	SEQ ID NO: 1712	SEQ ID NO: 1713	SEQ ID NO: 1688
	ACCTGCCAAGG	GAGATCTTCTGC	ACCTGCCAAGGAATGAGGAACGCTTTGTATGACAAATTGGATGATGATGGTTAATTGC
	AATGMGVAAYG	ACRITKACVGCAT	ACCAGGGATTCGTGTAICIGGIGACGAIGIAGICAIIGGAAAAACIAIAACIIIGCCAG
	ပ	ی	AAAACGA GA GAGC GGAAGGAACA CAAGACGA ACAG AAGAAGAA GCC CO ACAAGAACGA GAAGAA AAAAAAAAAA
			AAGGATACAAATTTTGTAAAATACGTGTGAGATCTGTGAGAATCCCACAAATTGGAGAGC
			AAATTTGCTTCTCGTCATGGTCAAAAAGGGACTTGTGGTATTCAATATAGGCAAGAAGA
			TATGCCTTTCACTTGTGAAGGATTGACACCAGATATTATCATCAATCCACATGCTATCCC
			CICI CG AIGACAAI I GG CACI I GAA I GIAA I GIAA GAGG AAGG CICCI CAAAI AA AGGTGAAATAGGTGATGCTACACCATTTAACGATGCTGTCAACGAGGAGGAGAAGATCTC
CS007	SEQ ID NO: 1714	SEQ ID NO: 1715	SEQ ID NO: 1690
	CGGTGTCCATTC	CGATGCAAGTAG	TTTCAGAGATTTCTTGTTGGAACCAGAGATTTTGGGGGCTATCGTCGATTGCGGTTTCG
	ACAGYTCCGG	GTGTCKGARTCY	AGCACCCTTCAGAAGTTCAACATGAATGTATTCCCCAAGCTGTTTTGGGAATGGATATT
		JT	CTTTGTCAAAGCTAAATCCGGAATGGGAAAAACCGCCGTATTTGTTTAGCAACACTGC
			AACAGCTAGAACCTTCAGAAAACCATGTTTACGTATTATATGTTATGTTAT
			CICGC CCAAA AAGCAAGGAA A GAGAGG CICIAAA A AIGGC GG G AG agtatctgtattcttttggtgggatgcCaattCAGAAAGATGAAGAAGAAGTATTGAAGAGAGA

			CCTGCCCGCACATCGTTGTTGGTACTCCTGGCAGAATATTAGCATTGGTTAACAACAAGAGAACTGAATTTAAAAAACACTGAAACTTCATCCTGGATGAATGTGACAAAAACACACTTGAA
			TCTCTAGACATGAGACGTGATGTGCAGGAAATATTCAGGAACACCCCTCACGGTAAGC AGGTCATGATGTTTTCTGCAACATTGAGTAAGGAGATCAGACCAGTCTGTAAGAAATTT ATGCAAGATCCTATGGAAGTTTATGTGGATGATGAAGCTAACATTGCACGGTTT
			GCAGCACATTATGTTAAACTCAGGAAATGAAAGAATAAGAAGATTATTGAACTTTT
			CTCTCGCACAGCTGCTGACCAAAACTTCCCAGCTATTGGTATACACCGAAATATG
			ACTCAAGATGAGCGTCTCTCCCGCTATCAGCAGTTCAAAGATTTCCAGAAGAGGATCCT TGTTGCGACAAATCTTTTTGGACGGGGTATGGACATTGAAAGAGTCAACATAGTCTTCA
000	0 0 0 1746	SEC ID NO: 1717	ATTATGACATGCCG
800S	CCTCGTTGCCAT	CTGGATTCTCTC	SECTIONOLINATE DE LA PROPERTIE DE LA CONTROL
		CCTCGCAMGAHA	TGGCAGCTGGACGAGCATCATCGGCACCAACCCCGGGCTCGGCTTCCGGCCCACG
		ပ္ပ	CCGCCAGAGGTCGCCAGCAGCGTCATCTGGTATAAAGGCAACGACCCCAACAGCCAA CAATTCTGGGTGCAAGAAACCTCCAACTTTCTAACCGCGTACAAACGAGAAGGTAAAGA
			AAGCAGGAGCCAGAACATCCACAACTGTGATTTCAAACTGCCTCCTCCGGCCGG
			TAAGGTGTGCGACGTGGACATCAGCGCCTGGAGTCCCTGTGTAGAGGACAAGCACTTT
			GGCCGCACTTCTACAACAGCTCCGACAGCCTGCCCACTGACATGCCCGACGACGTTGAA
			GGAGCACATCAGGAATATGACAGCGTACGATAAGAATTATCTAAACATGGTATGGGTGT
CS011	SEO ID NO: 1718	SEC ID NO: 1719	SEO ID NO: 1694
		CTCAACCACC	
		CWGGCATKGCRA	-
	ပ	ပ	
			GTTACTATATCCAAGGTCAATGTGCCATCATGTTCGATGTAACGTCTCGTGTCACC
			TACAAAAATGTACCCAACTGGCACAGAGATTTAGTGCGAGTCTGTGAAGGCATTCCAAT
			TOTTOCACACAAAAAAAAAACTTCAATATTATGACATCTCTCTCCCAAAATCAAATTAAAATT
			TCGAGAAACCCTTCCTCTGGTTAGCGAGAAAGTTGATCGGTGATGGTAACCTAGAGTTT
			GTCGCCATGCAGCCCTGCTTCCAC
CS013	SEQ ID NO: 1720	SEQ ID NO: 1721	SEQ ID NO: 1696
	GGATCGTCTGC	статевтетсса	CAGATGCGCCCGTTGTTGATACTGCCGAACAGGTATACATCTCGTCTTTGGCCCTGTT
	TAMGWYTWGGA	GCATSGCGC	GAAGATGTTAAAACACGGCGCGCGCGGTGTTCCAATGGAAGTTATGGGACTTATGTTA
	99		

			TGGCACAGGAGTGTCGGTTGAAGCTGTAGATCCTGTCTTCCAAGCAAAGATGTTGGAT ATGTTGAAGCAAACTGGACGACCTGAGATGGTAGTGGGATGGTACCACTCGCATCCTG GCTTTGGATGTTATCTGGAGTCGACATTAATACTCAGCAGTCTTTCGAAGCTTTG
CS014	SEQ ID NO: 1722 ATGGCACTGAG CGAYGCHGATG	SEQ ID NO: 1723 GAACTTGCGGTT GABGTTSCGDCC	SEQ ID NO: 1698 TTCAAAAGCAGATCAAGCATATGATGGCCTTCATCGAACAAGAGGCCTAATGAAAAGGCCCGCTGGTG GAGGAATCGATGCAAAGGCCGAAGAGGAGTTCAACATTGAAAAAGGCCGCCTGGTG CAGCAGCAGCGGCTCAAGGTCATGGAATACTACGAAAAGAAAAGAAAAAGAGCCGCCTGGTG TCCAGAAAAAGATCCAATCTTCGAACATGCTGAATCAAAGCCCGTCTGAAAGTGCTCAAA GTGCGTGAGGACCACGTTTCGAACGTTCTCGAGGCTCGCAAGCGCTGGCTG
CS015	SEQ ID NO: 1724 GCCGCAAGGAG ACBGTVTGC	SEQ ID NO: 1725 CGATCAAAGCGW CCRAAVCGACG	SEQ ID NO: 1700 ATCGTGCTTTCAGACGATAACTGCCCCGATGAGAGATCCGCATGAACCGCGTCGTGC GAAACAACTTGCGTGTATATTGCCCATTGATGATTCTGTCGAGGGTTTGACTG GAAATTTATTCGAAGCGTACATATTTGCCCATTGATGATTCTGTCGAGGGTTTGACTG GAAATTTATTCGAAGTCTTGCAACCATACTTCATGGAGCTTATCGGCCTATCCATC GCGATGACCATTCATGGTTCGCGGGGGGCATGAGGGAGCTTATCGGCTATCCATC GCGATGACCACTTCATGGTTCGCGGGGGGCATGAGGGAGCTTATCGGCTGTGGTGGA GCCTATCAAACGGGAAGAAGAAGAAGAAGCCCTAAACGGCGTAGGGTACGAGGA GACCTATCAAACGGGAAGAAGAAGAAGAAGCCCTAAAGAAGGA GACCTATCAAACGGGCAAATTGGTGTGTGAAGCGCCTAGGGTACGACTTCATGTTCATCTTCTTCTATCAACGGCAAATTGGTGTGGGAGACCGCGGGGGGGG
CS016	SEQ ID NO: 1726 GTTCACCGGCG AYATYCTGCG	SEQ ID NO: 1727 GTCGCGCAGGTA GAAYTCKGC	SEQ ID NO: 1702 AGGATGGAAGCGGGATACGTTTGAGCATCTCCTTGGGGAAGATACGGAGCAGCTGC CAGCCGATGTCCCAGCGACTCGAATACTGTGCGGTTCTCGTAGTTGCCCTGTGTGATGA AGTTCTTCTCGAACTTGGTGAGGAACTCGAGGTAGAGCAGATCGTCGGGGTGTCAGGGC

			TTCCTCACCGACGACAGCCTTCATGGCCTGCACGTCCTTACCGATGGCGTAGCAGGCG TACAGCTGGTTGGAAACATCAGAGTGGTCCTTGCGGGTCATTCCCTCACCGATGGCAG TACAGCTGGTTGGAAACATCAGAGTGGTCCTTGCGGTCATTCCCTCACCGATGGCAG ACTTCATGAGACGAGAGGAGGCAGCACGTTTACAGGCGGCGGTAAAATCGGGA ATAGGATGGGTGATGTCGTTGGGCATAGTCAAGATGTGGGGATCTGCGTTAAATCGGGA ATAGGATGGGTGATGTCGTTGGGCATAGTCAAGATGGGGGCGCTCTCACG GTACCTGGGAAACCTACACGCCCGGCTCTCCTCCTCAGAGTTGCCGTGTTTCTCACG CGTTTCTACCCTCTACAGGCAGCTCTCCTCGTAGATGGTGGTGTTTCTCACA GTAGCCTCCGCGTACGAGCAGTCAAGGCCAAACGTGGTGTTTTCTCACA TAGTGGGAACCCGGCACAGTCAAGGCCAAACGTGTTTTCACAC CTCGAAGTCCTTGAAGACCGGGCCGTCTCCATGTTTTACAA TAGTGGGATCCTTGAAGAACCGGGCCGTCTCCATGTTTTACAA TAGTGGGATCTTTGAAGAACCGGGCCGTCTCCATGTTTTACAA TAGTGGGATCTTTGGTTGGTCGTCCATGTGGCGCGAAC ACGAAGTTTTCCTCGTGGTCGTCCAGGAGTTTTCCATGTGCGGAGAT ACGAGGCTTGCCTACAGATCTGGCGGCAATTTCGTTGTGTGGCGAACCGGCGAGAT ACGAAATGGGGATCTTTTGGTGGCGAAATGCGGAGAT ACCAGTCTGGATCTTTTCCTCAGGGAATTTCCTCAATGGGGTTTTCCAGA ACCAGTCTGGATCTTTTCCTCAGGGTAGATACGGGGACCTTTGTCAATGGGGTTTTCCAGA ACCAGTCTGGATCTTCAGCAACGTTTTCCAGAACGGGTTTTCCAGA ACCAGTCTGGATCTTTCACAACGGGTTTTCCAGA ACCAGTCTGGATCTTTCACAACGGGTTTTCCAGAACGCGTTTTTCCAGAACGCGTTTTTCCAGAACGCGTTTTTCCAAAAAGGTCTTCCAAAAAGGTTTTCCAAAAAGGTCTTCAAACGGGGATCTTTTTCCAAAAAGGTTTTCCAAAAAGGGTTTTCCAAAAAGGTCTTCAAACGGGGACCTTTGTCCAAAAAGGGTTTTCCAAAAAGGTCTTCAAAAAGGGGGTTTCCAAAAAGGGTTTCCAAAAAGGTCTTCAAAAAGGGGAACTTTCCAAAAAGGGGGTTTTCCAAAAAAGGGTTTCCAAAAAGGGGATCTTTCCAAAAAGGGGATCTTTCCAAACGGGGACCTTTGTCCAAAAAGGGTTTCCAAAAAATGGGGGACCAACGGGGACCTTTGTCCAAAAAGGGTTTCCCAAAAAGGTCTTCCAAACGGGGACCTTTGTCCAAAAAATGGGGATCTTCCAAACGGGGACCTTTGTCCAAAAAAAA
CS018	SEQ ID NO: 1728 GCTCCGTCTACA THCARCCNGAR GG	SEQ ID NO: 1729 GTGCATCGGTAC CAHSCHGCRTC	SEQ ID NO: 1704 GCTCCGTCTACATTCAGCCGGAAGGCGTCCCTGTACCTGCTCAGCAATCCCAACAGCA GCAGAGTTACCACTCCGGAAGGCGTCCAACAAATCCTACGGCACCGCAAGG GCAGAGTTACCGCCACGTCAGCAGAAGCGTCGAAATCCTACGGCACGCAAGG GTACACCACTTCGGAACAGCAGCAGAACCACAAATCCTACGGCACCGCAGG GTACACCACTTCCGAACCCAAGCAGCAGAATACGTTCGAACACCCCCAACGGTTCC GACTACTCTTCCACGGACCACTTTAAGGTGGATACGTTCGAACACCCCCAACAGTTCCACGGATCCATCAGGATCCATCAGGATCCATCAGGATCCATCAGGTTCAAGGACACACAAAAGCCCCCCCC

Table 2-PX

Target	Primer Forward	Primer Reverse	cDNA Sequence (sense strand)
2	5' → 3'		5' → 3'
PX001	SEQ ID NO: 2110	SEQ ID NO: 2111	SEQ ID NO: 2100
	GECCCCAAGAAG	CTTCGTGCCCTTGC	GGCCCCAAGAAGCATTTGAAGCGCCTGAACGCGCCGCGC
			CGCGAGTGCCTGCCGCTCGTCATCTTCCTGCAACCGCCTCAAGTACGCGCTCAG
			CGGCAACGAGGTGCTGAAGATCGTGAAGCAGCGCCTCATCAAGGTGGACGGCA
			AGGICCGCACCGACCCCACCIACCCGGCIGGAIICAIGGAIGIIGIGIGICGATIG AAAAAGACCAATGAGCTGTTCCGTCTGACGATGTGAAAGGGAACGCTTCACCAT
			CCACCGCATCACTCCCGAGGGCCCAAGTACAAGCTGTGCAAGGTGAAGCGCG
			TGGCGACGGGCCCCAAGAACGTGCCGTACATCGTGACGCACAACGGCCGCACG
			CTGCGCTACCCCGACCCGCTCATCAAGGTCAACGACTCCATCCA
			GCCACCIGCAAGAICAIGGACAICAICAAGIICGACICAGGIAACCIGIGCAIGA
			CACGGGAGGGCG
			GCCACCAGGTTGAACAACGTGTTCATCATCGGCAAGGGCACGAAG
PX009	SEQ ID NO: 2112	SEQ ID NO: 2113	SEQ ID NO: 2102
	GCACGTTGATCTG	GCAGCCCACGCYYT	GCACGTTGATCTGGTACAAAGGAACCGGTTACGACAGCTACAAGTATTGGGAGA
	GTACARRGGMAC	GCACTC	ACCAGCTCATTGACTTTTGTCAGTATACAAGAAGAAGGGTCAGACAGCGGGTGC
	J		TGGTCAGAACATCTTCAACTGTGACTTCCGCAACCCGCCCCCACACGGCAAGGT
			GTGCGACGTGGACATCCGCGGCTGGGAGCCCTGCATTGATGAGAACCACTTCTC
			TTCCACAAGTCTTCGCCTTGCATCTTCTTGAAGCTGAATAAGATCTACGGCTGG
-			CGTCCAGAGTTCTACAACGACACGGCTAACCTGCCTGAAGCCATGCCCGTGGAC
			TTGCAGACCCACATTCGTAACATTACTGCCTTCAACAGAGACTATGCGAACATGG
			TGTGGGTGTCGTGCCACGCGGGGGCGGCGGACAGGAGAACATCGGGCC
			GGTGCGCTACCTGCCCTACCCGGGCTTCCCCGGGTACTTCTACCCGTACGAGAA
			CGCCGAGGGGTATCTGAGCCCGCTGGTCGCCGTGCATTTGGAGAGGCCGAGGA
			CCGGCATAGTGATCAACATCGAGTGCAAAGCGTGGGCTGC
PX010	SEQ ID NO: 2114	SEQ ID NO: 2115	SEQ ID NO: 2104
	GTGGCTGCATACA	сесевстестссят	GTGGCTGCATACAGTTCATTACGCAGTACCAGCACTCTAGTGGACAACGTCGCG

		GAAYASYTG	TTCGGGTCACCACTGTCGCGCGCAATTGGGGCGACGCAGCCGCCAACTTACAC
			CACATATCGGCGGCGTTCGACCAGGAGGCGGCGGCGGTGGTGATGGCGCGGC TGGTGGTGTACCGCGGGGGGGGGG
			ACCCGAACAGCTTCCGTCTGTCGGAGAACTTCAGCCTGTACCCGCAGTTCATGT ACCACCTGCGCCGCCGAGTTCCTGCAGACTTCAACAACTCGCCCGACGAGA
			CCACCTTCTACAGACACATGCTGATGCGCGAAGACCTGACCCAATCCCTCATCAT
			GATICCAGCCGATICCTCTACTICGTAGGCTGCGCGCGCCCGGAGCCGGTGCTT
			CCAGATCCTCATCTACCATGGAGAGACAATGGCGCAATGGCGCGCTCTCCGCTA
			CCAAGACATGGCTGAGTACGAGAACTTCAAGCAGCTGCTGCGGGGCGCCGGTGG ACGACGCGCAGGAGATCCTGCAGAACCAGGTTCCCCGTGCCGCGGTACATTGATA
			CAGAGCACGGCGCTCACAGGCCCGGTTCTTGCTTTCCAAAGTGAATCCCTCTC
			AGACTCACAACAACATGTACGCGTATGGCGGGGCGATGCCGATACCATCAGCGG ACGTGGGGGCGTGCGAGGTGTCATGGAG ACGGTGGCGCCCCCGTGTTCATGGAG
			CAGCCGCG
PX015	SEQ ID NO: 2116	SEQ ID NO: 2117	SEQ ID NO: 2106
-	GCCGCAAGGAGA CBGTVTGC	GCAATGGCATCAAK YTCRTCRATG	GCCGCAAGGAGACCGTGTGCATTGTGCTGTCCGACGACACTGCCCCGACGAGAGAGA
			ATTGTGTCCATCGCTCCTTGCCCGTCAGTGAAGTACGGCAAGAGAGTTCATATTC
			TGCCCATTGATGACTCTGTTGAGGGTTTGACTGGAAACCTGTTCGAAGTCTACCT
			GAAGCCGTACTTCATGGAGGCGTACCGGCCCATCCACCGCGACGACGTTCAT
			GGIGCGCGCGCGCGCGCCGICGAGGICAAGGIGGIGGAGACCGACC
			TTAAACGCGAGGAAGAAGAGGGCTCTCAACGCCGTCGGCTACGACGACATC
			GGCGGGTGCCGCAAGCTGGCGCAGATCAAGGAGATGGTGGAGCTGCCGCT
			GCGCCACCCCTCGCTGTTCAAGGCCATCGGGGTCAAGCCGCCGCGGGGGATAC
			IGATG1ACGGGCCCCCGGGGACGGGGAAGACCTTGATCGCTAGGGCTGTCGCT
			ANTORIGINATION TO THE TOTAL CATEGORIAN CARGO CONTRACTOR AND TO THE TOTAL CATEGORIAN CATE
			GAACTCTCCGGCCATCATCCTCATTGATGAACTTGATGCCATTGC
PX016	SEQ ID NO: 2118	SEQ ID NO: 2119	SEQ ID NO: 2108
	GTTCACCGGCGAY ATYCTGCG	CATCTCCTTGGGGA	GTTCACCGGCGATATTCTGCGCACGCCCGTCTCTGAGGACATGCTGGGGTCGTAT
			CAACGGC CGGCAAGCCCA CGACAAGGGGGCCCCCGA CC GGCCGAGG
			AGGAGATGATCOAGACTGGTATTCCCCATATTCACCCCTGGTCACCCCGTATCACCCCCGTATCACCCCCGTATCACCCCCGTATCACCCCCGTATCACCCCCGTATCACCCCCCGTATCACCCCCCGTATCACCCCCCGTATCACCCCCCACCCCACCCA
			GTGGTCAGAAGATCCCCCATCTTCTCCGCCGCCGGTCTGCCCCACAACGAGATTG

7.64 7.60 9.00 9.00	TGGACGACCACGAAGACAACTTCGCCATCGTGTTCGCCGCCATGGGAGTCAACA TGGAGACCGCCAGGTTCTTCAAGCAGGACTTCGAGGAGAACGGTTCCATGGAGA ACGTCTGTCTGTTCTTGAACTTGGCCAATGACCCGACCATTGAGGATTATCAC GCCGAGGTTGGCGCTGACTGCTGCCGAGTTCTTGGCCTACCAGTGCGAGAAACA CGTGTTGGTAATCTTGACCGACATGTCTTCATACGCGGAGGCTCTTCGTGAAGTG TCAGCCGCCCCTGAGGAGGTGCCCGGACGACGTTCCAGGTTACCAGGTTACATGTA
7.00 ACO	TGGAGACCGCCAGGTTCTTCAAGCAGGACTTCGAGGAGAACGGTTCCATGGAGA ACGTCTGTCTGTTCTTGAACTTGGCCAATGACCCGACCATTGAGGATTATCAC GCCGAGGTTGGCGCTGACTGCTGCCGAGTTCTTGGCCTACCAGTGCGAGAAACA GCTGTTGGTAATCTTGACCGACATGTCTTCATACGCGGAGGCTCTTCGTGAAGTG TCAGCCGCCCCTGAGGAGGTGCCCGGACGACGTTCCCAGGTTACATGTA CAGCCGCCCCTGAGAGGTGCCCGGACGCGGGGGGGGGG
9 S S S S S S S S S S S S S S S S S S S	ACGTCTGTCTGTTCTTGAACTTGGCCAATGACCCGACCATTGAGGGATTATCAC GCCGAGGTTGGCGCTGACTGCTGCCGAGTTCTTGGCCTACCAGTGCGAGAAACA CGTGTTGGTAATCTTGACCGACATGTCTTCATACGCGGAGGCTCTTCGTGAAGTG TCAGCCGCCCCGTGAGGAGGTGCCCGGACGACGTTCCCAGGTTACATGTA CACGGATTTGGCCACAATCTACGAGCGCGCGGGGCGAGTCGAGGGCCGCAACG
999	GCCGAGGTTGGCGCTGACTGCTGCCGAGTTCTTGGCCTACCAGTGCGAGAAACA CGTGTTGGTAATCTTGACCGACATGTCTTCATACGCGGAGGCTCTTCGTGAAGTG TCAGCCGCCCCGTGAGGAGGTGCCCGGACGACGTTTCCCAGGTTACATGTA CACGGATTTGGCCACAATCTACGAGCGCGGGGGGGGGG
99	CGTGTTGGTAATCTTGACCGACATGTCTTCATACGCGGAGGCTCTTCGTGAAGTG TCAGCCGCCCGTGAGGAGGTGCCCGGACGACGTTTCCCAGGTTACATGTA CACGGATTTGGCCACAATCTACGAGCGCGCGGGGGGGGGG
	TCAGCCGCCCGTGAGGAGGTGCCCGGACGACGTTTCCCAGGTTACATGTA
21	CACGEATTTGGCCACACAATCTACGAGCGCGCGGGGGGGGGG
Š	
	GCTCCATCACGCAGATCCCCATCCTGACCATGCCCAACGACGACATCACCCACC
	CCATCCCCGACTTGACCGGGTACATCACTGAGGGACAGATCTACGTGGACCGTC
- AG	AGCTGCACAACAGGCAGATCTACCCGCCGGTGAATGTGCTCCCGTCGCTATCTC
<u> 6</u> 1	GTCTCATGAAGTCCGCCATCGGAGAGGGCATGACCAGGAAGGA
GT	GTGTCCAACCAACTGTACGCGTGCTACGCCATCGGCAAGGACGTGCAGGCGAT
AG GA	GAAGGCGGTGGTGGGCGAGGAGGCGCTCACGCCCGACGACCTGCTCTACCTCG
AG	AGTTCCTCACCAAGTTCGAGAAGAACTTCATCACACAGGGAAGCTACGAGAACC
29	ccacagtgttcgagtcgctggacatcggctggcagcccctgcgtatcttcccca
AG	AGGAGATG

Table 2-AD

Target Primer Forward 5'→ 3' AD001 SEQ ID NO: 2374 SEQ ID NO: 2364 GGCCCCAAGAAGCATTTGAAGCGTTTAAATG GGCCCCAAGAAGCG TTGAAGCG TTGAAGCG TTGAAGCG TTGAAGCG TTGAAGCG TGCTTCTCCGCAAGAAGCATTTTCTCCCCCCAGGAGCATTGTTATTCTTCCCCCCCAGGAGCATTGTTATTCTTCCCCCCCAGGAGCATTGTTATTCTTCATGGATTGTTATTCTTCATGGATTGTTATTCTTCATGGATTGTTATTCTTCAAGGAAAGCTTTCATGGATTGTTATTCTTCAAGGAAAGGAAGG				
SEQ ID NO: 2374 SEQ ID NO: 2375 GGCCCCAAGAAGCA CTCCTCNGCRA TTGAAGCG T	Target	Primer Forward	Primer Reverse	cDNA Sequence (sense strand)
SEQ ID NO: 2374 GGCCCCAAGAAGCA TTTGAAGCG CTCCTCNGCRA T	_	5' → 3'	5' + 3'	5. ± 3.
CGCTTGTCCCG CTCCTCNGCRA T	AD001	SEQ ID NO: 2374	SEQ ID NO: 2375	SEQ ID NO: 2364
CTCCTCNGCRA		GGCCCCAAGAAGCA	cecttetccce	GGCCCCAAGAAGCATTTGAAGCGTTTAAATGCTCCTAAAGCATGGATGTTGGACAA
T GAAGTAACCATTTGGTGATTTTTCTTCGCAATCG GAAGTAACGAAGATTGTTATGCCGCTGGTTTCATGGAT CGATCCGAATTATCCCGCTGGTTTCATGGAT AGTTCTTCAGGCTGGTGTATGAAAGG GCAGAAGAAGCCAAGTACAAGCTCTGCAAGA AAGGTATTCCATTCTTGGTGACCCATGATGG GTCATTAAAGTTAATGACTCAATCCAATTGATGGA CACATCAGATTTGAATCTGGCAACCTGTGTA TCGAGTGGGGACTGTTGTGAACGAACG CATATCAAAGGATACCCAAGGAACGTTTTG ATTGGAAAAGCTTACAAGGACTTTTGT GAGTATCGAAAAGCTTACATTTCAT GAGTATCGCCGAGGACCAAGCCTTACATTTCAT GAGTATCGCCGAGGACCAGGACAAGCC		TTTGAAGCG	CTCCTCNGCRA	ACTCGGAGGAGTATTCGCTCCTCGCCCCAGTACTGGCCCCCACAAATTGCGTGAA
GAAGTAACGAAGATTATCCGCTGGTTTCATGGAT CGATCCGAATTATCCCGCTGGTTTCATGGAT AGTTCTTCAGGCTGGTGTATGAAGG GCAGAAGAAGACCCAAGTACCATGTGCAAGG AAGGTATTCCATTCTTGGTGACCCATGATGG GTCATTAAAGTTAATGACTCAATCCAATTGGA CACATCAGATTTGAATCTGGCAACCTGTTTG TCGAGTGGGGACTGTTGTGAGTCGAGAACG CATATCAAGGATACCCAAGGACATTTTGT ATTGGAAAAGCTACAAAGCCTTACATTTCAT		_	-	TGTTTACCTTTGGTGATTTTCTTCGCAATCGGCTCAAGTATGCTCTGACGAACTGT
CGATCCGAATTATCCCGCTGGTTTCATGGAT AGTTCTTCAGGCTGGTGTATGAAAGG GCAGAAGAAGCCAAGTACAAGCTCTGCAAGG GCAGAAGAAGCCAAGTACAAGCTCTGCAAGGCTCTGCAAGG AAGGTATTCCATTCTTGGTGACCCATGATGG GTCATTAAAGTTAATGACTCAATCCAATTGATTGGA CACATCAGATTTGAATCTGGCAACCTGTGTA TCGAGTGGGGACTGTTGTGAGCAACGGAAACG CATATCAAAGGATACCCAAGGACATACTTTTG ATTGGAAAAGCTACAAAGCCTTACATTTCAT GAGTATCGCGAGGAGCGGGACAAGCG				GAAGTAACGAAGATTGTTATGCAGCGACTTATCAAAGTTGACGGCAAGGTGCGAAC
AGTTCTTCAGGCTGGTGTATGATGTGAAAGG GCAGAAGAAGCCAAGTACCAGCTCTGCAAGG AAGGTATTCCATTCTTGGTGACCCATGATGG GTCATTAAAGTTAATGACTCAATCCAATTGGTGGCAATTGGTGGCAATTGGTGGCAATTGGTGGCAATTGGAATTGGAATCTGGCAATTGGAATTGGAATCTGGCAACCTGTTAATGGAAACGCTGTTAATGAAAGGCTTAATGAAACGGAAAGGCGTTAATTTTGGAAAAGCTTACAATTTTGTTTTTGGAAAAGCTTACATTTTGTTTTTGGAAAAGCTTACATTTTCATTTTGGAAAAGCCTTACATTTTCATTTTCATTTTCATTTTCATTTTCATTTTCATTTCATTTTCATTTTCATTTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTTCATTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTTCATTCATTT				CGATCCGAATTATCCCGCTGGTTTCATGGATGTTGTCACCATTGAGAGACTGGAG
GCAGAAGCCAAGTACCAAGCTCTGCAAGC AAGGTATTCCATTCTTGGTGACCCATGATGG AAGGTATTCCATTCTTGGTGACCCATGATGG GTCATTAAAGTTAATGACTCAATCCAATTGGA CACATCAGATTTGAATCTGGCAACCTGTTGT CACATCAGGACTGTTGTGACCCAAGGAACG CATATCAAGGATACCCAAGGACATTTGT ATTGGAAAAGCTACAAAGCCTTACATTTCAT GAGTACGCGAGGAGCGGGACAAGCG				AGTTCTTCAGGCTGGTGTATGTGAAAGGCCGTTTCACAATTCACAGAATTAGT
AAGGTATTCCATTCTTGGTGACCCATGATGG GTCATTAAAGGTTAATGGCTCAATCCAATTGG/ GTCATTAAAGGTTAATGGCTCAATCCAATTGG/ CACATCAGGTTTGGAATCTGGCAACTGTTGTAATGGAACGGAACGGAACGGAACGAATCGAAAGGTTTGAAAAGCTAACCAAGGAAAGCTAATTGAAAAGCTACAAAGCGAAAGCGAAAGCGAAAGCGAAAGCGAAAAGCGAAAAGCGAAAAGCGAAAAAGCGAAAAAGCGAAAAAGCGAAAAAA				GCAGAAGAAGCCAAGTACAAGCTCTGCAAGGTCAGGAGAGTTCAAACTGGGCCAA
GTCATTAAAGTTAATGACTCAATTGGATTGGGATTGGGATTGGGATTGGGAATTGGGAACCTGTGTGTG				AAGGTATTCCATTCTTGGTGACCCATGATGGCCGTACTATCCGTTATCCTGACCCA
CACATCAGATTTGAATCTGGCAACCTGTGTGTGTGTGTGT				GTCATTAAAGTTAATGACTCAATCCAATTGGATATTGCCACTTGTAAAATCATGGAC
TCGAGTGGGGACTGTTGTGAGTCGAGGAACG CATATCAAGGATACCCAAGGACATACTTTTG ATTGGAAAAGCTACAAAGCCTTACATTTCATT				CACATCAGATTTGAATCTGGCAACCTGTGTATGATTACTGGTGGACGTAACTTGGG
CATATCAAGGATACCCAAGGACATACTTTTG ATTGGAAAAGCTACAAAGCCTTACATTTCATT GAGTATCGCCGAGGAGCGGGACAAGCG				TCGAGTGGGGACTGTTGTGAGTCGAGAACGTCACCCAGGCTCGTTTGATATTGTT
ATTGGAAAAGCTACAAAGCTTACATTTCATT				CATATCAAGGATACCCAAGGACATACTTTTGCCACAAGATTGAATAATGTATTCATC
GAGTATCGCCGAGGAGCGGGACAAGCG				ATTGGAAAAGCTACAAAGCCTTACATTTCATTGCCAAAGGGTAAGGGTGTGAAATT
				GAGTATCGCCGAGGAGCGGACAAGCG

AD002	SEQ ID NO: 2376 GAGTTTCTTTAGTAA AGTATTCGGTGG	SEQ ID NO: 2377 GCAATGTCATCC ATCAKRTCRTGT AC	SEQ ID NO: 2366 GAGTTCTTTAGTAAAGTATTCGGTGGGAAGAAAGATGTTAATCAAAAAGCCCACTG GTGAGGCCATTCAGAAACTCAGAGAACAGAAGAATGTTAATCAAAAAGCAGGAA TTTTTAGAGAAGAAAATCGAACAAGAAATCAATGTTGCAAAGAAAAATGGAACGAAA AATAAGCGAGCTGCTATTCAGGCTCTGAAAAGGGAAAAAGAGGTATGAAAATGGAAATT GCAGCAAATTGATGGCACCTTATCCACAATTGAAATGCAAAGAGGGGGGGG
AD009	SEQ ID NO: 2378 GAGTCCTAGCCGCV YTSGTKGC	SEQ ID NO: 2379 CTGGATTCTCTC CCTCGCAMGAH ACC	SEQ ID NO: 2368 GAGTCCTAGCCGCCTTGGTTGCAGTATGTTTATGGGTCTTCTCCAGACCTGGAT CCTCGTATTCCCACCTGGCAGTAGCATTCTTCTATCATTGCCACTGGCCT CCTCGTATTCCCACCTGGCAGAGATTCTTCTTCATTGGCACATCCTGGTCC AGGTTTCCGGCCAATGCCAGAGATAGCAATGTAGAGTCACACTCTCATCTGGTACC GTGGAACAGATCGTGATGACTTCCGTCAGTGGACACCTTGATGAATTTCTT GCGATCCTGGTCTGGT
AD015	SEQ ID NO: 2380 GGATGAACTACAGC TBTTCCGHGG	SEQ ID NO: 2381 GTCCGTGGGAY TCRGCHGCAAT C	SEQ ID NO: 2370 GGATGAACTACAGCTTTTCCGAGGAGATACAGTTCTTCTTAAAGGAAAAAGGAGAAAAAAAA

			TGCCCCTAAAAGAGAAAAACTCATGGAGAGGTGGAACGTCGCATAGTTTCACAAC TACTAACTTTAATGGATGGTCTGAAGCAAAGTTCACATGTTATTGTTATGGCTGCCA CAAATAGACCCAACTCTATTGATGGTGCCTTGCGCCGCTTTGGCAGATTTGATAGG GAAATTGATATTGGTATACCAGATGCCACTGGTCGCCTTGAAATTCTTCGTATCCAT ACTAAGAATATGATATG
AD016	SEQ ID NO: 2382 GTTCACCGGCGAYA TYCTGCG	SEQ ID NO: 2383 GGAATAGGATG GGTRATRTCGT CG	SEQ ID NO: 2372 GITCACCGGCGATATTCTGCGCGTGCCCGTGTCCGAGGACATGCTGGGCCGCAC CITCAACGGCGCGCATCCCCATCGACGGCGCCCCATCGTCGCCGCAC CTACCTCGACGTCCCGGCGTGCCGTTCAACGCCCCATCGTCGCCGGAG GAAATGATCCAGACGGGCATGCCGATTAATCCTCAAACGCGCATCTACCCGGAG GAAATGATCCAGACGGGGATCTCGACCATCGACGTGCTCCACCACCACCACCACCACCACGAGGACGCGCGCG

Table 3-LD

Target ID	CDNA SEQ ID NO	cDNA SEQ ID NO Corresponding amino acid sequence of cDNA clone
LD001	-	SEQ ID NO: 2 (frame +1) GPKKHLKRLNAPKAWMLDKLGGVFAPRPSTGPHKLRESLPLVIFLRNRLKYALTNSEVTKIVMQRLIKVDGKVRTD SNYPAGFMDVITIEKTGEFFRLIYDVKGRFAVHRITAEEAKYKLCKVRRMQTGPKGIPFIVTHDGRTIR
LD002	က	SEQ ID NO: 4 (frame -3) AMQALKRKKRLEKNQLQIDGTLTTIELQREALEGASTNTTVLESMKNAAEALKKAHKNLDVDNVHDMMDDI
LD003	r.	SEQ ID NO: 6 (frame -2) PRRPYEKARLDQELKIIGEYGLRNKREVWRVKYTLAKIRKAARELLTLEEKDQRRLFEGNALLRRLVRIGVLDETRM KLDYVLGLKIEDFLERRLQTQVFKLGLAKSIHHARVLVRQRHIRVRKQVVNIPSFIVRLDSQKHIDFSLKSPFGGGRP GRVKRKNL

P0000		SEQ ID NO: 8 (frame +1)
		HNYGWQVLVASGVVEYIDTLEEETVMIAMNPEDLRQDKEYAYCTTYTHCEIHPAMILGVCASIIPFPDHNQSPRNT YQSAMGKQAMGVYITNFHVRMDTLAHVLYYPHKPLVTTRSMEYLRFRELPAGINSIVAIACYTGYNQEDSVILNAS AVERGFFRSVFYRSYKDAESKRIGDQEEQFE
LD007	6	SEQ ID NO: 10 (frame +1)
		PKKDVKGTYVSIHSSGFRDFLLKPEILRAIVDCGFEHPSEVQHECIPQAVIGMDILCQAKSGMGKTAVFVLATLQQL EPADNVYYVLVMCHTRELAFQISKEYERFSKYMPSVKVGVFFGGMPIANDEEVLKNKCPHIVVGTPGRILALVKSR KLVLKNLKHFILDECDKMLELLDMRRDVQEIYRNTPHTKQVMMFSATLSKEIRPVCKKFMQDPMEVYVDDEAKLTL HGLQQHYVKLKENEKNKKLFELLDVLEFNQVVIFVKSVQRCVALAQLLTEQNFPAIGIHRGMDQKERLSRYEQFKD FQKRILVATNLFGRGMDIERVNIVFNYDMPEDSDTYLH
LD010	1	SEQ ID NO: 12 (frame +1)
		VKCSRELKIGGGIGSCVSLNVKNPLVSDTEIGMGNTVQWKMCTVTPSTTMALFFEVVNQHSAPIPQGGRGCIQFIT QYQHASGQKRIRVTTVARNWADASANIHHVSAGFDQEAAAVIMARMAVYRAESDDSPDVLRWVDRMLIRLCQKF GEYNKDDPNSFRLGENFSLYPQFMYHLRRSQFLQVFNNSPDETSFYRHMLMREDLTQSLIMIQPILYSYSFNGPP EPVLLDTSSIQPDRILLMDTFFQILIFHGETIAQW
LD011	13	SEQ ID NO: 14 (frame -1)
		PTFKCVLVGDGGTGKTTFVKRHMTGEFEKRYVATLGVEVHPLVFHTNRGPIRFNVWDTAGQEKFGGLRDGYYIQ GQCAIIMFDVTSRVTYKNVPNWHRDLVRVCENIPIVLCGNKVDIKDRKVKAKSIVFHRKKNLQYYDISAKSNYNFEK PFLWLARKLIGDPNLEFVAMPALLP
LD014	15	SEQ ID NO: 16 (frame +3)
		QIKHMMAFIEGEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKQVELQKKIQSSNMLNQARLKVLKV REDHVRTVLEEARKRLGQVTNDQGKYSQILESLILQGLYQLFEKDVTIRVRPQDRELVKSIIPTVTNKYKDATGKDI HLKIDDEIHLSQETTGGIDLLAQKNKIKISNTMEARLELISQQLLPEI
LD015	17	SEQ ID NO: 18 (frame -1)
		RHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEADKNSPAIIFI DELDAI
LD016	19	SEQ ID NO: 20 (frame -2)
		TVSGVNGPLVILEDVKFPKYNEIVQLKLADGTIRSGQVLEVSGSKAVVQVFEGTSGIDAKNTACEFTGDILRTPVSE DMLGRVFNGSGKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGITAIDVMNSIARGQKIPIFSAAGLPHNEIAA QICRQAGLVKIPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALT
		AAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMP NDDITHPI

LD018	21	SEQ ID NO: 22 (frame +2)
		TWFKDGQRITESQKYESTFSNNQASLRVKQAQSEDSGHYTLLAENPQGCIVSSAYLAIEPVTTQEGLIHESTFKQQ QTEMEQIDTSKTLAPNFVRVCGDRDVTEGKMTRFDCRVTGRPYPDVTWYINGRQVTDDHNHKILVNESGNHALM ITTVSRNDSGVATCVARNKTGETSEOCNI NVIEKEOVAABKEVEDETTVANAGGEBVSI BABAVGTBVDDTAVOD
		DGAPLASGPOVRIAIDGGASTLNISRAKASDAAWYRC
LD027	23	SEQ ID NO: 24 (frame +1)
		HGGDKPYLISGADDRLVKIWDYQNKTCVQTLEGHAQNVTAVCFHPELPVALTGSEDGTVRVWHTNTHRLENCLN
	-	YGFERVWTICCLKGSNNVSLGYDEGSILVKVGREEPAVSMDASGGKIIWARHSELQQANLKALPEGGEIRDGERL
		PVSVKDMGACEIYPQTIQHNPNGRFVVVCGDGEYIIYTAMALRNKAFGSAQEFVWAQDSSEYAIRESGSTIRIFKN
		FKERKNFKSDFSAEGIYGGFLLGIKSVSGLTFYDWETLDLVRRIEIQPRAVYWSDSGKLVCLATEDSYFILSYDSEQ
		VQKARENNQVAEDGVEAAFDVLGEMNESVRTGLWVGDCFIYT

Table 3-PC

		_
Target ID	CDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
PC001	247	SEQ ID NO: 248 (frame +1)
		AWMLDKLGGVFAPRPSTGPHKLRESLPLVIFLRNRLKYALTNSEVTKIVMQRLIKVDGKVRTDSNYPAGFMDVITIE KTGEFFRLIYDVKGRFAVHRITAEEAKYKLCKVRRVQTGPKGIPFLVTHDGRTIRYPDPNIKVNDTIQMEIATSKILDY IKFES
PC003	249	SEQ ID NO: 250 (frame: +2)
		PRRPYEKARLDQELKIIGAFGLRNKREVWRVKYTLAKIRKAARELLTLEEKEPKRLFEGNALLRRLVRIGVLDENRM KLDYVLGLKIEDFLERRLQTQVFKSGLAKSIHHARVLIRQRHIRVRKQVVNIPSFIVRLDSQKHIDFSLKSPFGGGRP GRV
PC005	251	SEQ ID NO: 252 (frame +3)
		PNEINEIANTNSRQNIRKLIKDGLIIKKPVAVHSRARVRKNTEARRKGRHCGFGKRKGTANARMPQKELWVQRMR VLRRLLKKYREAKKIDRHLYHALYMKAKGNVFRNKRVLMEYIHKKKAEKARAKMLSDQANARRLKVKQARERRE
PC010	253	SEQ ID NO: 254 (frame +3)
		LKDSLQMSLSLLPPNALIGLITFGKMVQVHELGTEGCSKSYVFCGTKDLTAKQVQEMLGIGKGSPNPQQQPGQPG RPGONPOAAPVPPGSRFLOPVSKCDMNI TDLIGELOKDPWPVHOGKRPI RSTGAAL SIAVGLI FCTYPNTGGRI
		MIFLGGPCSQGPGQVLNDDLKQPIRSHHDIHKDNAKYMKKAIKHYDHLAMRAATNSHCIDIYSCALDQTGLMEMK
		QCCNSTGGHMVMGDSFNSSLFKQTFQRVFSKDPKNDLKMAFNATLEVKCSRELKVQGGIGSCVSLNVKSPLVSD
		TELGMGNTVQWKLCTLAPSSTVALFFEVVNQHSAPIPQGGRGCIQLITQYQHASGQRRIRVTTIARNWADATANIH
		HISAGFDQEAAAVVMARMAGYKAESDETPDVLRWVDRMLIRLCQKFGEYNKDDPNSFRLGENFSLYPQFMYHLR

		RSQFLQVFNNSPDETSFYRHMLMREDLTQSLIMIQPILYSYSFNGPPEPVLLDTSSIQPDRILLMDTFFQILIFHGETI AOW
PC014	255	SEQ ID NO: 256 (frame +3)
		DVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKQVELQKKIQSSNMLNQARLK VLKVREDHVRAVLEDARKSLGEVTKDQGKYSQILESLILQGLFQLFEKEVTVRVRPQDRDLVRSILPNVAAKYKDA TGKDILLKVDDESHLSQEITGGVDLLAQKNKIKISNTMEARLDLIA
PC016	257	SEQ ID NO: 258 (frame +2)
		LVILEDVKFPKFNEIVQLKLADGTLRSGQVLEVSGSKAVVQVFEGTSGIDAKNTVCEFTGDILRTPVSEDMLGRVFN
		GSGKPIDKGPPILAEDYLDIGGGPINPWSKIYPEEMIGTGTTAIDVINNSIAKGGNIPITSAAGLPINEIAAGICKGAGL VKVPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALTAAEFLAYQ
		CEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMP
PC027	259	SEQ ID NO: 260 (frame +1)
		QANLKVLPEGAEIRDGERLPVTVKDMGACEIYPQTIQHNPNGRFVVVCGDGEYIIYTAMALRNKAFGSAQEFVWA
		QDSSEYAIRESGSTIRIFKNFKEKKNFKSDFGAEGIYGGFLLGVKSVSGLAFYDWETLELVRRIEIQPRAIYWSDSG
		KLVCLATEDSYFILSYDSDQVQKARDNNQVAEDGVEAAFDVLGEINESVRTGLWVGDCFIYTNAVNRINYFVGGEL
		VITALIDOD VITA DOVIDO DO VITA DE SIZONO VITA DE SIZ

Table 3-EV

Target ID	cDNA SEQ ID NO	cDNA SEQ ID Corresponding amino acid sequence of cDNA clone NO
EV005	513	SEQ ID NO: 514 (frame +3)
		RCGKKKVWLDPNEITEIANTNSRQNIRKLIKDGLIIKKPVAVHSRARVRKNTEARRKGRHCGFGKRKGTANARMPRK ELWIQRMRVLRRLLKKYREAKKIDRHLYHALYMKAKGNVFKNKRVMMDYIHKKKAEKARTKMLNDQADARRLKVKE
		ARKREERIATKKO
EV009	515	SEQ ID NO: 516 (frame +1)
		PTLDPSIPKYRTEESIIGTNPGMGFRPMPDNNEESTLIWLQGSNKTNYEKWKMNLLSYLDKYYTPGKIEKGNIPVKRC
		SYGEKLIRGQVCDVDVRKWEPCTPENHFDYLRNAPCIFLKLNRIYGWEPEYYNDPNDLPDDMPQQLKDHIRYNITNP
		VERNTYWYTCAGENPADVEYLGPVKYYPSFQGFPGYYFPYLNSEGYLSPLLAVQFKRPVSGIVINIECKAWA
EV010	517	SEQ ID NO: 518 (frame +3)
		GGHMVMGDSFNSSLFKQTFQRVFSKDSNGDLKMSFNAILEVKCSRELKVQGGIGPCVSLNVKNPLVSDLEIGMGNT
		VQWKLCSLSPSTTVALFFEVVNQHAAPIPQGGRGCIQFITQYQHSSGQKKIRVTTIARNWADATANIHHISAGFDEQT
		AAVLMARIAVYRAETDESSDVLRWVDRMLIRLCQKFGEYNKDDTNSFRLSENFSLYPQFMYHLRRSQFLQVFNNSP
		DETSFYRHMLMREDRNQ

EV015	519	SEQ ID NO: 520 (frame +1)
		RHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEADKNSPAIIFIDE LDAIAPKREKTHGEVERRIVSQLLTLMDGMKKSSHVIVMAATNRPNSIDPALRRFGRFDREIDIGIPDATGRLEVLRIHT
		KNMKLADDVDLEQIAAETHGHVGADLASLCSEAALQQIREKMDLIDLDDEQIDAEVLNSLAVTMENFRYAMSKSSPSA
EV016	521	SEQ ID NO: 522 (frame +2)
		TVSGVNGPLVILDSVKFPKFNEIVQLKLSDGTVRSGQVLEVSGQKAVVQVFEGTSGIDAKNTLCEFTGDILRTPVSED
		MLGRVFNGSGKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAAGLPHNEIAAQIC
		RQAGLVKIPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLTLTAAEFM
		AYQCEKHVLVILTDMSSYAEALREVSAA

Table 3-AG

Target ID	CDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
AG001	601	SEQ ID NO: 602 (frame +1)
		HLKRFAAPKAWMLDKLGGVFAPRPSTGPHKLRESLPLVIFLRNRLKYALTNCEVTKIVMQRLIKVDGKVRTDPNYPAG FMDVITIEKTGFEERI IYDVKGRETIHBITAFFAKYKI CKVRKVOTGPKGIPFI VTHDGRTIRYPDPMIKVNDTIQI FIATS
		KILDFIKFESGNLCMITGGRNLGRVGTVVNRERHPGSFDIVHIRDANDHVFATRLNNVFVIGKGSKAFVSLPRGKGVK
AG005	603	SEQ ID NO: 604 (frame +2)
		VWLDPNEINEIANTNSRQNIRKLIKDGLIIKKPVAVHSRARVRKNTEARRKGRHCGFGKRKGTANARMPQKELWIQR MRVLRRLLKKYREAKKIDRHLYHALYMKAKGNVFKNKRVLMEYIHKKKAEKARAKMLADQANARRQKVKQVP*EEG
		RAYRREEAG
AG010	605	SEQ ID NO: 606 (frame +3)
		GGHIMLMGDSFNSSLFKQTFQRVFAKDQNGHLKMAFNGTLEVKCSRELKVQGGIGSCVSLNVKSPLVADTEIGMGN
		TVQWKMCTFNPSTTMALFFEVVNQHSAPIPQGGRGCIQFITQYQHSSGQRRIRVTTIARNWADASANIHHISAGFDQ
		ERAAVIMARMAVYRAETDESPDVLRWVDRMLIRLCQKFGEYNKDDQASFRLGENFSLYPQFMYHLRRSQFLQVFNN
		SPDETSFYRHMLMREDLTQSLIMIQPILYSYSFNGPPEPVLLDTSSIQPDRILLMDTFFQILIFHGETIAQW
AG014	209	SEQ ID NO: 608 (frame +3)
		QIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKQVELQKKIQSSNMLNQARLKVLKVRE
		DHVRAVLDEARKKLGEVTRDQGKYAQILESLILQGLYQLFEANVTVRVRPQDRTLVQSVLPTIATKYRDVTGRDVHLS IDDFTQI SESVTGGIFI I CKONKIKVCNTLEARI DLISQQI VPQIRNALFGRNINRKF
AG016	609	SEQ ID NO: 610 (frame +1)

VSEDMLGRVFNGSGKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAAGLPHNEIA AQICRQAGLVKLPGKSVIDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALTA AEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPND DITHPI

Table 3-TC

Target	CDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
TC001	793	SEQ ID NO: 794 (frame +1) GPKKHLKRLNAPKAWMLDKLGGVFAPRPSTGPHKLRESLPLVIFLRNRLKYALTNSEVTKIVMQRLIKVDGKVRTD PNYPAGFMDVVTIEKTGEFFRLIYDVKGRFTIHRITGEEAKYKLCKVKKVQTGPKGIPFLVTRDGRTIRYPDPMIKVN DTIQLEIATSKILDFIKFESGNLCMITGGRNLGRVGTVVSRERHPGSFDIVHIKDANGHTFATRLNNVFIIGKGSKPYV SI PRGKGVKI SI
TC002	795	SEQ ID NO: 796 (frame +1) QEFLEAKIDQEILTAKKNASKNKRAAIQAIKRKRYEKQLQQIDGTLSTIEMQREALEGANTNTAVLKTMKNAADAL KNAHLNMDVDEVHDMMDDI
тс010	797	SEQ ID NO: 798 (frame +3) PEVLVFGHVLVLEVPPLGDCLTVENQNLEKCVHEKDPIGLNGTSVEEDGFRGAVETITVQNRLDHNETLGEVLPH QHVAVERGLVWGVVENLEELGAAQMVHELGIETEVFTQTETVRVVFVVFAEF
TC014	799	SEQ ID NO: 800 (frame +1) EKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKPVELQKKIQSSNMLNQARLKVLKVREDHVHNVLDDARK RLGEITNDQARYSQLLESLILQSLYQYLGISDELFENNIVVRVRQQDRSIIQGILPVVATKYRDATGKDVHLKIDDES HLPSETTGGVVLYAQKGKIKIDNTLEARLDLIAQQLVPEIRTALFGRNINRKF
TC015	801	SEQ ID NO: 802 (frame +2) DELQLFRGDTVLLKGKRRKETVCIVLADENCPDEKIRMNRIVRNNLRVRLSDVVWIQPCPDVKYGKRIHVLPIDDTV EGLVGNLFEVYLKPYFLEAYRPIHKGDVFIVRGGMRAVEFKVVETEPSPYCIVAPDTVIHCDGDPIKREEEEEALNA VGYDDIGGCRKQLAQIKEMVELPLRHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKL AGESESNLRKAFEEADKNSPAIIFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGMKKSSHVIVMAATNRPNSIDPA LRRFGRFD

Table 3-MP

Target ID	CDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
MP001	888	SEQ ID NO: 889 (frame +1) GPKKHLKRLNAPKAWMLDKSGGVFAPRPSTGPHKLRESLPLLIFLRNRLKYALTGAEVTKIVMQRLIKVDGKVRTDPN YPAGFMDVISIQKTSEHFRLIYDVKGRFTIHRITPEEAKYKLCKVKRVQTGPKGVPFLTTHDGRTIRYPDPNIKVNDTIR YDIASSKILDHIRFETGNLCMITGGRNLGRVGIVTNRERHPGSFDIVHIKDANEHIFATRMNNVFIIGKGQKNYISLPRSK GVKLT
MP002	890	SEQ ID NO: 891 (frame +2) SFFSKVFGGKKEEKGPSTEDAIQKLRSTEEMLIKKQEFLEKKIEQEVAIAKKNGTTNKRAALQALKRKKRYEQQLAQID GTMLTIEQQREALEGANTNTAVLTTMKTAADALKSAHQNMNVDDVHDLMDDI
MP010	892	SEQ ID NO: 893 (frame +3) GCIQFITQYQHSSGYKRIRVTTLARNWADPVQNMMHVSAAFDQEASAVLMARMVVNRAETEDSPDVMRWADRTLI RLCQKFGDYQKDDPNSFRLPENFSLYPQFMYHLRRSQFLQVFNNSPDETSYYRHMLMREDVTQSLIMIQPILYSYSF NGRPEPVLLDTSSIQPDKILLMDTFFHILIFHGETIAQWRAMDYQNRPEYSNLKQLLQAPVDDAQEILKTRFPMPRYID TEQGGSQARFLLCKVNPSQTHNNMYAYGG*WWSTSFDR*CKLAAVHGAAA
MP016	894	SEQ ID NO: 895 (frame +1) VSEDMLGRVFNGSGKPIDKGPPILAEDYLDIEGQPINPYSRTYPQEMIQTGISAIDIMNSIARGQKIPIFSAAGLPHNEIA AQICRQAGLVKKPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALT AAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSITQIPILTMPN DDITHPI
MP027	968	SEQ ID NO: 897 (frame +3) PITKTRRVFRH*KAMLKIFLLVCFHPELPIVLTGSEDGTVRIWHSGTYRLESSLNYGLERVWTICCLRGSNNVALGYDE GSIMVKVGREEPAMSMDVHGGKIVWARHSEIQQANLKAMLQAEGAEIKDGERLPIQVKDMGSCEIYPQSISHNPNG RFLVVCGDGEYIIYTSMALRNKAFGSAQDFVWSSDSEYAIRENSSTIKVFKNFKEKKSFKPEGGADGIFGGYLLGVKS VTGLALYDWENGNLVRRIETQPKHVFWSESGELVCLATDEAYFILRFDVNVLSAARASNYEAASPDGLEDAFEILGEV DEVVKTGI WYGDCFIYTNGVNRINYYVGGFVVTVS

Table 3-NL

Target ID	CDNA SEQ	Corresponding amino acid sequence of cDNA clone
NL001	1071	SEQ ID NO: 1072 (frame +2) KSWMLDKLGGVYAPRPSTGPHKLRESLPLVIFLRNRLKYALTNCEVKKIVMQRLIKVDGKVRTDPNYPAGFMDVVQIEK TNEFFRLIYDVKGRFTIHRITAEEAKYKLCKVKRVQTGPKGIPFLTTHDGRTIRYPDPLVKVNDTIQLDIATSKIMDFIRFDS GNLCMITGGRNLGRVGTVVNRERHPGSFDIVHIKDVLGHTFATRLNNVFIIGKGSKAYVSL PKGKGVKI S
NL002	1073	SEQ ID NO: 1074 (frame +1) DEKGPTTGEAIQKLRETEEMLIKKQDFLEKKIEVEIGVARKNGTKNKRAAIQALKRKKRYEKQLQQIDGTLSTIEMQREAL EGANTNTAVLQTMKNAADALKAAHQHMDVDQ
NL003	1075	SEQ ID NO: 1076 (frame +2) PRRPYEKARLEGELKIIGEYGLRNKREVWRVKYALAKIRKAARELLTLEEKDQKRLFEGNALLRRLVRIGVLDEGRMKLD YYLGLKIEDFLERRLQTQYYKLGLAKSIHHARYLIRQRHI RVRKQVVNIPSFVVRLDSQKHIDFSLKSPFGGGRPGRV
NL004	1077	SEQ ID NO: 1078 (frame +1) KELAAVRTVCSHIENMLKGVTKGFLYKMRAVYAHFPINCVTTENNSVIEVRNFLGEKYIRRVRMAPGVTVTNSTKQKDEL IVEGNSIEDVSRSAALIQQSTTVKNKDIRKFLD
NL005	1079	SEQ ID NO: 1080 (frame +1) LDPNEINEIANTNSRQSIRKLIKDGLIIKKPVAVHSRARVRKNTEARRKGRHCGFGKRKGTANARMPQKVLWVNRMRVL RRLLKKYRQDKKIDRHLYHHLYMKAKGNVFKNKRVLMEFIH KKKAEKARMKMLNDQAEARRQKVKEAKKRRE
900 N	1081	SEQ ID NO: 1082 (frame +3) VLVSSGVVEYIDTLEEETTMIAMSPDDLRQDKEYAYCTTYTHCEIHPAMILGVCASIIPFPDHNQSPRNTYQSAMGKQAM GVYITNFHVRMDTLAHVLFYPHKPLVTTRSMEYLRFRELPAGINSVVAIACYTGYNQEDSVILNASAVERGFFRSVFFRS YKDAESKRIGDQEEQFEKPTRQTCQGMRNAIYDKLDDDGIIAPGLRVSGDDVVIGKTITLPDNDDELEGTTKRFTKRDAS TFLRNSETGIVDQVMLTLNSEGYKFCKIRVRSVRIPQIGDKFASRHGQKGTCGIQYRQEDMPFTSEGIAPDIIINPHAIPSR MTIGHLIECLQGKVSSNKGEIGDATPFN
NL007	1083	SEQ ID NO: 1084 (frame +2) FRDFLLKPEILRAILDCGFEHPSEVQHECIPQAVLGMDILCQAKSGMGKTAVFVLATLQQIEPTDNQVSVLVMCHTRELA FQISKEYERFSKCMPNIKVGVFFGGLPIQRDEETLKLNCPHIVVGTPGRILALVRNKKLDLKHLKHFVLDECDKMLELLDM RRDVQEIFRNTPHSKQVMMFSATLSKEIRPVCKKFMQDPMEVYVDDEAKLTLHGLQQHYVKLKENEKNKKLFELLDILE FNQVVIFVKSVQRCMALSQLLTEQNFPAVAIHRGMTQEERLKKYQEFKEFLKRILVATNLFGRGMDIERVNIVFNYDMP
NL008	1085	SEQ ID NO: 1086 (frame +1) GRIENQKRVVGVLLGCWRPGGVLDVSNSFAVPFDEDDKEKNVWFLDHDYLENMFGMFKKVNAREKVVGWYHTGPKL

		HQNDVAINELIRRYCPNCVLVIIDAKPKDLGLPTEAYRVVEEIHDDGSPTSKTFEHVMSEIGAEEAEEIGVEHLLRDIKDTT VGSLSQRVTNQLMGLKGLHLQLQDMRDYLNQVVEGKLPMNHQIVYQLQDIFNLLPDIGHGNFVDSLY
NL009	1087	
		CDYDRPPGRGQVCDVDVKNWFPCTSENNFNYHQSSPCVFLKLNKIIGWQPEYYNETEGFPDNMPGDLKRHIAQQKSI NKLFMQTIWITCEGEGPLDKENAGEIQYIPRQGFPGYFYPYTN A
NL010	1089	SEQ ID NO: 1090 (amino terminus end) (frame +2)
		SSRLEATRLVVPVGCLYQPLKERPDLPPVQYDPVLCTRNTCRAILNPLCQVDYRAKLWVCNFCFQRNPFPPQYAAISEQ HOBAFI IPSESTIFYITRAOTMPPMFVI VVDTCI ODEEI GAI KDSI OMSI SII PDNA IGI ITEGKAVOVHEI GODGOSK
		SYVERGVKDLTAKQIQDMLGIGKMAAAPQPMQQRIPGAAPSAPVNRFLQPVGKCDMSLTDLLGELQRDPWNVAQGKR
		SEQ ID NO: 1116 (carboxy terminus end) (frame +3)
	1115	LNVKGSCVSDTDIGLGGTSQWKMCAFTPHTTCAFFFEVVNQHAAPIPQGGRGCIQFITQYQHSSGQRRIRVTTIARNWA
		DASTNLAHISAGFDQEAGAVLMARMVVHRAETDDGPDVMRWADRMLIRLCQRFGEYSKDDPNSFRLPENFTLYPQFM YHLRRSQFLQVFNNSPDETSYYRHILMREDLTQSLIMIQPILYSYSFNGPPEPVLLDTSSIQPDRILLMDTFFQILIFHGETI A
NL011	1091	SEQ ID NO: 1092 (frame +2)
		DGGTGKTTFVKRHLTGEFEKKYVATLGVEVHPLVFHTNRGVIRFNVWDTAGQEKFGGLRDGYYIQGQCAIIMFDVTSRV
		TYKNVPNWHRDLVRVCENIPIVLCGNKVDIKDRKVKAKSIVFHRKKNLQYYDISAKSNYNFEKPFLWLAKKLIGDPNLEFV AMPALLPPEVTMDPQX
NL012	1093	SEQ ID NO: 1094 (frame +2)
		QQTQAQVDEVVDIMKTNVEKVLERDQKLSELDDRADALQQGASQFEQQAGKLKRKF
NL013	1095	SEQ ID NO: 1096 (frame +2)
		AEQVYISSLALLKMLKHGRAGVPMEVMGLMLGEFVDDYTVRVIDVFAMPQSGTGVSVEAVDPVFQAKMLDMLKQTGR PEMVVGWYHSHPGFGCWLSGVDINTQESFEQLSKRAVAVVV
NL014	1097	SEQ ID NO: 1098 (frame +2)
		FIEGEANEKAEEIDAKAEEEFNIEKGRLVQHQRLKIMEYYDRKEKQVELQKKIQSSNMLNQARLKALKVREDHVRSVLEE
		SRKRLGEVTRNPAKYKEVLQYLIVQGLLQLLESNVVLRVR FADVSI IEGIVGSCAFOYAKMTGKFVVVKI DADNFI AAFTGGGVFI FARNGRIKIPNTI FSRI DI ISOOI VPEIRVAI F
NL015	1099	SEQ ID NO: 1100 (frame +1)
		IVLSDETCPFEKIRMNRVVRKNLRVRLSDIVSIQPCPDVKYGKRIHVLPIDDTVEGLTGNLFEVYLKPYFLEAYRPIHKDDA
		FIVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGDPIKREDEEDAANAVGYDDIGGCRKQLAQIKEMVELPLRHPSLFK
		AIGVKPPRGILLYGPPGTGKTLIARAVANE IGAFFFLINGPEIMSKLAGESESNLRKAFEEADKNAPAIIFIDELDAIAPKRE KTHGEVERRIVSOLLTLMDGLKQSSHVIVMAATNRPNSIDAALRRFGRFDREIDIGIPDATGRLEVLRIHTKNMKI ADDVD

		X-1
NL016	1101	SEQ ID NO: 1102 (frame +2)
		TPVSEDMLGRVFNGSGKPIDKGPPILAEDYLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAAGLPHNEIA AQICRQAGLVKLPGKSVLDDSEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERIITPRLALTAAE FLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSIT
NL018	1103	SEQ ID NO: 1104 (frame +2)
		MQMPVPRPQIESTQQFIRSEKTTYSNGFTTIEEDFKVDTFEYRLLREVSFRESLIRNYLHEADMQMSTVVDRALGPPSAP HIQOKPRNSKIQEGGDAVFSIKLSANPKPRLVWFKNGQRIGQTQKHQASYSNQTATLKVNKVSAQDSGHYTLLAENPQ GCTVSSAVI AVESAGTODTGVSEOVSEONSTTEAVDSSKMI ADHEVDVOADDASECKATEBEDGBYTGGBYDDANA
		WFINGQQYADDATHKILVNESGNHSLMITGVTRLDHGVVGCIARNKAGETSFQCNLNVIEKELVVAPKFVERFAQVNVK EGEPVVLSARAVGTPVPRITWQKDGAPIQSGPSVSLFVDGGATSLDIPYAKAS
NL019	1105	SEQ ID NO: 1106 (frame +2)
		DDTYTESYISTIGVDFKIRTIDLDGKTIKLQIWDTAGQERFRTITSSYYRGAHGIIVVYDCTDQESFNNLKQWLEEIDRYAC DNVNKLLVGNKCDQTNKKVVDYTQAKEYADQLGIPFLETSAKNATNVEQAF
NL021	1107	SEQ ID NO: 1108 (frame +2)
		VSLNSVTDISTTFILKPQENVKITLEGAQACFISHERLVISLKGGELYVLTLYSDSMRSVRSFHLEKAAASVLTTCICVCEE
		IN LETEROSTERIAS LETEROSTERIAS PROPERTIES SOCIATION NO LE L'ESPOE LE INDEPETER I COSE I CI DIMIGIANTI
NL022	1109	SEQ ID NO: 1110 (frame +2)
		TLHREFLSEPDLQSYSVMIDEAHERTLHTDILFGLVKDVARFRPDLKLLISSATLDAQKFSEFFDDAPIFRIPGRRFPVDIY
		TIRAPEADTYDACVVSILGIHATGPLGDILVFLTGGEEFFTGGELLGDRVRRLGPRIRELLILPVYSNLPSDMGAKIFLPTPP NARKVVLATNIAETSLTIDNIIYVIDPGFCKQNNFNSRTGMESLVVVPVSKASANQRAGRAGRVAAGKCFRLYT
NL023	1111	SEQ ID NO: 1112 (frame +2)
		RSFSQERQHEEMKESSGRMHHSDPLIVETHSGHVRGISKTVLGREVHVFTGIPFAKPPIGPLRFRKPVPVDPWHGVLDA
		TALPNSCYGERYEYFPGFEGEEMWNPNTNLSEDCLYLNIWVPHRLRIRHRANSEENKPRAKVPVLIWIYGGGYMSGTA TLDVYDADMVAATSDVIVASMQYRVGAFGFLYLAQDLPRGSEEAPGNMGLWDQALAIRWLKDNIAAFGGDPELMTLFG
		ESAGGGSVSIHLVSPITRGLARRGIMQSGTMNAPWSFMTAERATEIAKTLIDDCGCNSSLLTDAPSRVMSCMRSVEAKII
		SVQQWNSYSGILGLPSAPTIDGIFLPKHPLDLLKEGDFQDTEILIGSNQDEGTYFILYDFIDFFQKDGPSFLQRDKFLDINT
		I FRINM I RIEREAIIFOT I DWEHVMDGT LNORMIGDVYGDTFFICP I NHFAQAFAEHGKKVTTTFFI QK I SI SLWGEWMG VMHGDEIEYVFGHPLNMSLQFNARERDLSLRIMQAYSRFALTGKPVPDDVNWPIYSKDQPQYYIFNAETSGTGRGPRA
NL027	1113	SEQ ID NO: 1114 (frame +2)
		PIVLTGSEDGTVRIWHSGTYRLESSLNYGLERVWTICCMRGSNNVALGYDEGSIMVKVGREEPAISMDVNGEKIVWARH SFIOOVNI KAMPFGVFIKDGFRI PVAVKDMGSCFIYPOTIAHNPNGRFI VVCGDGFYIIHTSMVI RNKAFGSAOFFIWG

QDSSEYAIREGTSTVKVFKNFKEKKSFKPEFGAESIFGGYLLGVCSLSGLALYDWETLELVRRIEIQPKHVYWSESGELV ALATDDSYFVLRYDAQAVLAARDAGDDAVTPDGVEDAFEVLGEVHETVKTGLWVGDCFIYT

Table 3-CS

Target	CDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
CS001	1682	SEQ ID NO: 1683 (frame +1) KAWMLDKLGGVYAPRPSTGPHKLRECLPLVIFLRNRLKYALTGNEVLKIVKQRLIKVDGKVRTDPTYPAGFMDVV SIEKTNELFRLIYDVKGRFTIHRITPEEAKYKLCKVRRVATGPKNVPYLVTHDGRTVRYPDPLIKVNDSIQLDIATSK IMDFIKFESGNLCMITGGRNLGRVGTIVSRERHPGSFDIVHIRDSTGHTFATRLNNVFIIGKGTKAYISLPRGKGVR LT
CS002	1684	SEQ ID NO: 1685 (frame +1) SFFSKVFGGKKEEKGPSTHEAIQKLRETEELLQKKQEFLERKIDTELQTARKHGTKNKRAAIAALKRKKRYEKQLT QIDGTLTQIEAQREALEGANTNTQVLNTMRDAATAMRLAHKDIDVDKVHDLMDDI
CS003	1686	SEQ ID NO: 1687 (frame +1) GLRNKREVWRVKYTLARIRKAARELLTLEEKDPKRLFEGNALLRRLVRIGVLDEKQMKLDYVLGLKIEDFLERRLQ TQVFKAGLAKSIHHARILIRQRHIRVRKQVVNIPSFIVRLDSGKHIDFSLKSPFGGGRP
CS006	1688	SEQ ID NO: 1689 (frame +1) TCQGMRNALYDKLDDDGIIAPGIRVSGDDVVIGKTITLPENDDELEGTSRRYSKRDASTFLRNSETGIVDQVMLTL NSEGYKFCKIRVRSVRIPQIGDKFASRHGQKGTCGIQYRQEDMPFTCEGLTPDIIINPHAIPSRMTIGHLIECIQGK VSSNKGEIGDATPFNDAVNVQKI
CS007	1690	SEQ ID NO: 1691 (frame +3) SEISCWNQRFWGLSSIAVSSTLQKFNMNVFPKLFWEWIFFVKAKSGMGKTAVFVLATLQQLEPSENHVYVLVMC HTRELAFQISKEYERFSKYMAGVRVSVFFGGMPIQKDEEVLKTACPHIVVGTPGRILALVNNKKLNLKHLKHFILD ECDKMLESLDMRRDVQEIFRNTPHGKQVMMFSATLSKEIRPVCKKFMQDPMEVYVDDEAKLTLHGLQQHYVKL KENEKNKKLFELLDVLEFNQVVIFVKSVQRCIALAQLLTDQNFPAIGIHRNMTQDERLSRYQQFKDFQKRILVATN LFGRGMDIERVNIVFNYDMP
CS009	1692	SEQ ID NO: 1693 (frame +1) LVAICIWTFLQRLDSREPMWQLDESIIGTNPGLGFRPTPPEVASSVIWYKGNDPNSQQFWVQETSNFLTAYKRD GKKAGAGQNIHNCDFKLPPPAGKVCDVDISAWSPCVEDKHFGYHKSTPCIFLKLNKIFGWRPHFYNSSDSLPTD MPDDLKEHIRNMTAYDKNYLNMVWVSCEGENP

CS011	1694	SEQ ID NO: 1695 (frame +1)
		GSGKTTFVKRHLTGEFEKRYVATLGVEVHPLVFHTNRGPIRFNVWDTAGQEKFGGLRDGYYIQGQCAIIMFDVT SRVTYKNVPNWHRDLVRVCEGIPIVLCGNKVDIKDRKVKAKTIVFHRKKNLQYYDISAKSNYNFEKPFLWLARKLI GDGNLEFVAMQPCFH
CS013	1696	SEQ ID NO: 1697 (frame +2) DAPVVDTAEQVYISSLALLKMLKHGRAGVPMEVMGLMLGEFVDDYTVRVIDVFAMPQTGTGVSVEAVDPVFQA KMLDMLKQTGRPEMVVGWYHSHPGFGCWLSGVDINTQQSFEALSERAVAVVVDPIQSVKG
CS014	1698	SEQ ID NO: 1699 (frame +2) QKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEYYEKKEKQVELQKKIQSSNMLNQARLKV LKVREDHVRNVLDEARKRLAEVPKDVKLYTDLLVTLVVQALFQLMEPTVTVRVRQADVSLVQSILGKAQQDYKA KIKKDVQLKIDTENSLPADTCGGVELIAARGRIKISNTLESRLELIAQQLLPEIRTALF
CS015	1700	SEQ ID NO: 1701 (frame +1) IVLSDDNCPDEKIRMNRVVRNNLRVRLSDIVSIAPCPSVKYGKRVHILPIDDSVEGLTGNLFEVYLKPYFMEAYRPI HRDDTFMVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGDPIKREEEEEALNAVGYDDIGGCRKQLAQIKEMV ELPLRHPSLFKAIGVKPPRGILMYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEADKN SPAIIFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGMKKSSHVIVMAATNRPNSIDPAL
CS016	1702	SEQ ID NO: 1703(frame -3) TPVSEDMLGRVFNGSGKPIDKGPPILAEDFLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSAAGLP HNEIAAQICRQAGLVKIPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIERII TPRLALTAAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSI TQIPILTMPNDDITHPIPDLTGYITEGQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYAC YAIGKDVQAMKAVVGEEALTPDDLLYLEFLTKFEKNFITQGNYENRTVFESLDIGWQLLRIFPKEMLKRIPASI
CS018	1704	SEQ ID NO: 1705 (frame +2) SVYIQPEGVPVPAQQSQQQQSYRHVSESVEHKSYGTQGYTTSEQTKQTQKVAYTNGSDYSSTDDFKVDTFEY RLLREVSFRESITKRYIGETDIQISTEVDKSLGVVTPPKIAQKPRNSKLQEGADAQFQVQLSGNPRPRVSWFKNG QRIVNSNKHEIVTTHNQTILRVRNTQKSDTGNYTLLAENPNGCVVTSAYLAVESPQETYGQDHKSQYIMDNQQT AVEERVEVNEKALAPQFVRVCQDRDVTEGKMTRFDCRVTGRPYPEVTWFINDRQIRDDYXHKILVNESCNHAL MITNVDLSDSGVVSCIARNKTGETSFQCRLNVIEKEQVVAPKFVERFSTLNVREGEPVQLHARAVGTPTPRITWQ KDGVQVIPNPELRINTEGGASTLDIPRAKASDAGWYRC

Table 3-PX

Target ID	CDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
PX001	2100	SEQ ID NO: 2101 (frame +1) GPKKHLKRLNAPRAWMLDKLGGVYAPRPSTGPHKLRECLPLVIFLQPPQVRAQRQRGAEDREAAPHQGGRQGPH RPHLPGWIHGCCVD*KDQ*AVPSDLRCEGTLHHPPHHSRGGQVQAVQGEARGDGPQERAVHRDAQRPHAALPRP AHQGQRLHPARHRHLQDHGHHQVRLR*PVHDHGRA*LGASGHHRVPREAPRELRHRPHQGHHRTHLRHQVEQRV HHRQGHE
PX009	2102	SEQ ID NO: 2103 (frame +3) TLIWYKGTGYDSYKYWENQLIDFLSVYKKKGQTAGAGQNIFNCDFRNPPHGKVCDVDIRGWEPCIDENHFSFHKS SPCIFLKLNKIYGWRPEFYNDTANLPEAMPVDLQTHIRNITAFNRDYANMVWVSCHGETPADKENIGPVRYLPYPGFP GYFYPYENAEGYLSPLVAVHLERPRTGIVINIECKAWA
PX010	2104	SEQ ID NO: 2105 (frame +3) GCIQFITQYQHSSGQRRVRVTTVARNWGDAAANLHHISAGFDQEAAAVVMARLVVYRAEQEDGPDVLRWLDRMLIR LCQKFGEYAKDDPNSFRLSENFSLYPQFMYHLRRSQFLQVFNNSPDETTFYRHMLMREDLTQSLIMIQPILYSYSFG GAPEPVLLDTSSIQPDRILLMDTFFQILIYHGETMAQWRALRYQDMAEYENFKQLLRAPVDDAQEILQTRFPVPRYIDT EHGGSQARFLLSKVNPSQTHNNMYAYGGAMPIPSADGGAPVLTDDVSLQVFMEQP
PX015	2106	SEQ ID NO: 2107 (frame +3) RKETVCIVLSDDNCPDEKIRMNRVVRNNLRVRLSDIVSIAPCPSVKYGKRVHILPIDDSVEGLTGNLFEVYLKPYFMEA YRPIHRDDTFMVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGEPIKREEEEEALNAVGYDDIGGCRKQLAQIKEMV ELPLRHPSLFKAIGVKPPRGILMYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESESNLRKAFEEADKNSPAI ILIDELDAI
PX016	2108	SEQ ID NO: 2109 (frame +2) FTGDILRTPVSEDMLGRIFNGSGKPIDKGPPILAEEYLDIQGQPINPWSRIYPEEMIQTGISAIDVMNSIARGQKIPIFSA AGLPHNEIAAQICRQAGLVKVPGKSVLDDHEDNFAIVFAAMGVNMETARFFKQDFEENGSMENVCLFLNLANDPTIE RIITPRLALTAAEFLAYQCEKHVLVILTDMSSYAEALREVSAAREEVPGRRGFPGYMYTDLATIYERAGRVEGRNGSIT QIPILTMPNDDITHPIPDLTGYITEGQIYVDRQLHNRQIYPPVNVLPSLSRLMKSAIGEGMTRKDHSDVSNQLYACYAIG KDVQAMKAVVGEEALTPDDLLYLEFLTKFEKNFITGGSYENRTVFESLDIGWQPLRIFPKEM

Table 3-AD

Target ID	cDNA SEQ ID NO	Corresponding amino acid sequence of cDNA clone
AD001	2364	SEQ ID NO: 2365 (frame +1) GPKKHLKRLNAPKAWMLDKLGGVFAPRPSTGPHKLRECLPLVIFLRNRLKYALTNCEVTKIVMQRLIKVDGKVRTDPN YPAGFMDVVTIEKTGEFFRLVYDVKGRFTIHRISAEEAKYKLCKVRRVQTGPKGIPFLVTHDGRTIRYPDPVIKVNDSI QLDIATCKIMDHIRFESGNLCMITGGRNLGRVGTVVSRERHPGSFDIVHIKDTQGHTFATRLNNVFIIGKATKPYISLPK GKGVKLSIAEERDK
AD002	2366	SEQ ID NO: 2367 (frame +2) SFSKVFGGKKDGKAPTTGEAIQKLRETEEMLIKKQEFLEKKIEQEINVAKKNGTKNKRAAIQALKRKKRYEKQLQQID GTLSTIEMQREALEGANTNTAVLQTMKSAADALKAAHQHMDVDKVHDLMDDI
AD009	2368	SEQ ID NO: 2369 (frame +3) VLAALVAVCLWVFFQTLDPRIPTWQLDSSIIGTSPGLGFRPMPEDSNVESTLIWYRGTDRDDFRQWTDTLDEFLAVY KTPGLTPGRGQNIHNCDYDKPPKKGQVCNVDIKNWHPCIQENHYNYHKSSPCIFIKLNKIYNWIPEYYNESTNLPEQM PEDLKQYIHNLESNNSREMNTVWVSCEGENP
AD015	2370	SEQ ID NO: 2371 (frame +2) DELQLFRGDTVLLKGKRRKETVCIVLSDDTCPDGKIRMNRVVRNNLRVRLSDVVSVQPCPDVKYGKRIHVLPIDDTVE GLTGNLFEVYLKPYFLEAYRPIHKDDAFIVRGGMRAVEFKVVETDPSPYCIVAPDTVIHCEGDPIKREEEEEALNAVGY DDIGGCRKQLAQIKEMVELPLRHPSLFKAIGVKPPRGILLYGPPGTGKTLIARAVANETGAFFFLINGPEIMSKLAGESE SNLRKAFEEADKNAPAIIFIDELDAIAPKREKTHGEVERRIVSQLLTLMDGLKQSSHVIVMAATNRPNSIDGALRRFGRF DREIDIGIPDATGRLEILRIHTKNMKLADDVDLEQIAAESHG
AD016	2372	SEQ ID NO: 2373 (frame +2) FTGDILRVPVSEDMLGRTFNGSGIPIDGGPPIVAETYLDVQGMPINPQTRIYPEEMIQTGISTIDVMTSIARGQKIPIFSG AGLPHNEIAAQICRQAGLVQHKENKDDFAIVFAAMGVNMETARFFKREFAQTGACNVVLFLNLANDPTIERIITPRLAL TVAEFLAYQCNKHVLVIMTDMTSYAEALREVSAAREEVPGRRGFPGYMYTDLSTIYERAGRVQGRPGSITQIPILTMP NDDITHPI

Table 4-LD			
Target ID	SEQ ID NO	Sequences*	Example Gi-number and species
LD001	49	GGCCCCAAGAAGCATTTGAAGCGTTT	3101175 (Drosophila melanogaster), 92477283 (Drosophila erecta)
LD001	20	AATGCCCCAAAAGCATGGATGTTGGATAAA TTGGGAGGTGT	, 70909480 (Carabus granulatus), 77325294 (Chironomus tentans), 900945 (Ctenocephalides felis), 60297219 (Diaprepes abbreviatus), 37951951 (Ips pini), 75735533 (Tribolium castaneum), 22039624 (Ctenocephalides felis)
LD001	51	GAAGTTACTAAGATTGTTATGCA	33368080 (Glossina morsitans)
LD001	52	ATTGAAAAACTGGTGAATTTTTCCG	60297219 (Diaprepes abbreviatus)
LD001	53	ACACACGACGGCGCACCATCCGCT	27555937 (Anopheles gambiae), 33355008 (Drosophila yakuba), 22474232 (Helicoverpa armigera), 3738704 (Manduca sexta)
LD001	54	ACACACGACGGCCGCACCATCCGCTA	92477283 (Drosophila erecta)
LD001	55	CCCAAGAAGCATTTGAAGCGTTTG	92954810 (Drosophila ananassae), 92231605 (Drosophila willistoni)
LD002	56	GCAATGTCATCATGTCGTG	17861597 (Drosophila melanogaster), 92223378 (Drosophila willistoni), 92471309 (Drosophila erecta)
LD003	57	саввтстсстсттвасвсвтссавв	24975810 (Anopheles gambiae), 3478578 (Antheraea yamamai), 42764756 (Armigeres subalbatus), 24661714 (Drosophila melanogaster), 68267151 (Drosophila simulans), 33355000 (Drosophila yakuba), 49532931 (Plutella xylostella), 76552910 (Spodoptera frugiperda), 92959651 (Drosophila ananassae), 92467993 (Drosophila erecta)
LD003	58	TTGAGCGAGAAGTCAATATGCTTCT	49558930 (Boophilus microplus)
LD003	59	TTCCAAGAAATCTTCAATCTTCAAACCCAA	62238687 (Diabrotica virgifera), 76169907 (Diploptera punctata), 67872253 (Drosophila pseudoobscura), 55877642 (Locusta migratoria), 66548956 (Apis mellifera)

LD003	09	TTCATCCAACACTCCAATACG	22040140 (Ctenocephalides felis)
LD003	61	AAGAGCATTGCCTTCAAACAACCT	2459311 (Antheraea yamamai)
LD003	62	AGTTCTCGCCAGCTTTACGGATTTT	76169907 (Diploptera punctata)
LD003	63	CCACACTTCACGTTTGTTCCT	57963694 (Heliconius melpomene)
LD003	64	CCGTATGAAGCTTGATTACGT	108742527 (Gryllus rubens), 108742525 (Gryllus pennsylvanicus), 108742523 (Gryllus veletis), 108742521 (Gryllus bimaculatus), 108742519 (Gryllus firmus), 109194897 (Myzus persicae)
LD003	99	AGGAACAACGTGAAGTGTGGCG	109194897 (Myzus persicae)
900QT	99	AGCGCTATGGGTAAGCAAGCTATGGG	27819970 (Drosophila melanogaster)
900QT	29	TGTTATACTGGTTATAATCAAGAAGAT	55801622 (Acyrthosiphon pisum), 66535130 (Apis mellifera)
LD007	89	GAAGTTCAGCACGAATGTATTCC	50563603 (Homalodisca coagulata)
LD007	69	CAAGCAAGTGATGATCAGTGCCAC	50563603 (Homalodisca coagulata)
LD007	02	TGCAAGAATTCATGCAAGATCC	21068658 (Chironomus tentans)
LD007	71	AAATGAAAAGAATAAAAAATT	49201437 (Drosophila melanogaster)
LD007	72	CAGAATTTCCCAGCCATAGGAAT	67895225 (Drosophila pseudoobscura)
LD007	73	AGCAGTTCAAAGATTTCCAGAAG	77848709 (Aedes aegypti)
LD007	74	TTCCAAATCAGCAAAGAGTACGAG	91083250 (Tribolium castaneum)
LD010	75	TACCCGCAGTTCATGTACCAT	29558345 (Bombyx morl)
LD010	92	CAGTCGCTGATCATGATCCAGCC	49559866 (Boophilus microplus)
LD010	11	CTCATGGACACGTTCTTCCAGAT	60293559 (Homalodisca coagulata)
LD010	. 78	GGGCTGCATACAGTTCATCAC	92971011 (Drosophila mojavensis)
LD010	6/	CCCGCAGTTCATGTACCATTTG	92952825 (Drosophila ananassae)
LD010	80	GACAATGCCAAATACATGAAGAA	92921253 (Drosophila virilis)

LD010	81	TTCGATCAGGAGGCAGCGCAGTG	92921253 (Drosophila virilis)
LD011	82	AGCAGGGCTGGCATGGCGACAAA	28317118 (Drosophila melanogaster)
LD011	83	TTCTCAAAGTTGTAGTTAGATTTGGC	37951963 (lps pini)
LD011	84	TACTGCAAATTCTTCCTATG	55883846 (Locusta migratoria)
LD011	85	GGTACATTCTTGTATGTAACTC	67885713 (Drosophila pseudoobscura)
LD011	86	TCAAACATGATAATAGCACACTG	68771114 (Acanthoscurria gomesiana)
LD011	87	TCTCCTGACCGGCAGTGTCCCATA	17944197 (Drosophila melanogaster), 77843537 (Aedes aegypti), 94469127 (Aedes aegypti), 24664595 (Drosophila melanogaster)
LD011	88	GCTACTTTGGGAGTTGAAGTCCATCC	101410627 (Plodia interpuntella)
LD011	88	TAACTACAACTTTGAGAAGCCTTTCCT	90813103 (Nasonia vitripennis)
LD011	06	AAGTITGGTGGTCTCCGTGATGG	84267747 (Aedes aegypti)
LD014	91	GCAGATCAAGCATATGATGGC	9732 (Manduca sexta), 90814338 (Nasonia vitripennis), 87266590 (Choristoneura fumiferana)
LD014	92	ATCAAGCATATGATGGCTTTCATTGA	75470953 (Tribolium castaneum), 76169390 (Diploptera punctata)
LD014	93	AATATTGAAAAGGGGCGCCTTGT	78055682 (Heliconius erato)
LD014	94	CAACGTCTCAAGATTATGGAATA	37659584 (Bombyx mori)
LD014	95	ATTATGGAATATTATGAGAAGAAGA	66556286 (Apis mellifera)
LD014	96	AACAAAATCAAGATACT	25958976 (Curculio glandium)
LD016	97	ATGTCGTCGTTGGGCATAGTCA	27372076 (Spodoptera littoralis)
LD016	86	GTAGCTAAATCGGTGTACATGTAACCTGGG AAACCACGACG	27372076 (Spodoptera littoralis), 55797015 (Acyrthosiphon pisum), 73615307 (Aphis gossypii), 4680479 (Aedes aegypti), 9713 (Manduca sexta), 7655122 (Spodoptera frugiperda), 237458 (Heliothis virescens), 53883819 (Plutella xylostella), 22038926 (Ctenocephalides felis), 101403557 (Plodia interpuntella), 92969578 (Drosophila grimshawi), 91829127

			(Bombyx mori)
LD016	66	GCAGATACCTCACGCAAAGCTTC	62239897 (Diabrotica virgifera)
LD016	100	GGATCGTTGGCCAAATTCAAGAACAGGCA	67882712 (Drosophila pseudoobscura), 92985459 (Drosophila grimshawi)
LD016	101	TTCTCCATAGAACCGTTCTCTTCGAAATCCT G.	4680479 (Aedes aegypti), 27372076 (Spodoptera littoralis)
LD016	102	GCTGTTTCCATGTTAACACCCAT	49558344 (Boophilus microplus)
LD016	103	TCCATGTTAACACCCATAGCAGCGA	62238871 (Diabrotica virgifera)
LD016	104	CTACAGATCTGGGCAGCAATTTCATTGTG	22038926 (Ctenocephalides felis), 16898595 (Ctenocephalides felis)
LD016	105	GGCAGACCAGCTGCAGAGAAAT	22038926 (Ctenocephalides felis), 16898595 (Ctenocephalides felis)
LD016	106	GAGAAAATGGGGATCTTCTGACCACGAGCA ATGGAGTTCATCACGTC	4680479 (Aedes aegypti), 9713 (Manduca sexta), 22038926 (Ctenocephalides felis), 16898595 (Ctenocephalides felis), 67877903 (Drosophila pseudoobscura), 10763875 (Manduca sexta), 76554661 (Spodoptera frugiperda), 77905105 (Aedes aegypti), 50562965 (Homalodisca coagulata), 27372076 (Spodoptera littoralis)
LD016	107	ATGGAGTTCATCACGTCAATAGC	9713 (Manduca sexta), 237458 (Heliothis virescens), 76554661 (Spodoptera frugiperda), 22474331 (Helicoverpa armigera)
LD016	108	GTCTGGATCATTTCCTCAGGATAGATACGG GACCACGGATTGATTGGTTGACCCTGGATG TCCAAGAAGTCTTCAGCCAAAATTGGGGGA CCTTTGTC	16898595 (Ctenocephalides felis), 22038926 (Ctenocephalides felis), 50562965 (Homalodisca coagulata), 49395165 (Drosophila melanogaster), 6901845 (Bombyx mori), 92931000 (Drosophila virilis)
LD016	109	ATTGGGGGACCTTTGTCGATGGG	10763875 (Manduca sexta)

LD016	110	ATGGGTTTTCCTGATCCATTGAAAACAGGTC CCAACATATCTTCAGAAACAGGAGTCCTCA AAATATCTCCTGTGAATTCACAAGCGGTGTT TTTGGCGTCGATTCCTGATGTGCCCTCGAA CACTTGAACCACAGCTTT	49395165 (Drosophila melanogaster), 55905051 (Locusta migratoria)
LD016	111	ACAGCTTTTGACCCACTGACTTCCAG	21642266 (Amblyomma variegatum)
LD016	112	GACCCACTGACTTCCAGAACTTGTCCCGAA CGTATAGTGCCATCAGCCAGTTTGAGT	49395165 (Drosophila melanogaster)
LD016	113	GGACCGTTCACCAGACACAGT	24646342 (Drosophila melanogaster)
LD016	114	GACTGTGTGTGTGAACGGTCCTCT	103769163 (Drosophila melanogaster), 92048971 (Drosophila willistoni)
LD016	115	TTCTCTTCGAAATCCTGTTTGAA	84116133 (Dermatophagoides farinae)
LD016	116	GACTGTGTVTGGTGTGAACGGTCC	24646342 (Drosophila melanogaster)
LD016	117	GGTCGTCGTGGTTTCCCAGGTTACATGTAC ACCGATTT	92231646 (Drosophila willistoni), 91755555 (Bombyx mori), 84228226 (Aedes aegypti)
LD016	118	TGACAGCTGCCGAATTCTTGGC	92231646 (Drosophila willistoni)
LD018	119	CAAGTCACCGACGACCACACAA	91080016 (Tribolium castaneum)
LD018	120	ATCGCGATTGACGGTGGAGCC	91080016 (Tribolium castaneum)
LD027	121	AGACGATCGGTTGGTTAAAATC	66501387 (Apis mellifera)
LD027	122	GATATGGGAGCATGTGAAATATA	77326476 (Chironomus tentans)
LD027	123	ТТАСАСААТТСТТСААТТАТ	90129719 (Bicyclus anynana)

Table 4-PC

arget ID	SEQ ID NO	Sequence *	Example Gi-number and species
C001	275	AAAATTGTCATGCAAAGGTTGAT	37952206 (lps pini)

PC001	276	AAAGCATGGATGTTGGACAAA	98994282 (Antheraea mylitta) 109978109 (Gryllus pennsylvanicus) 55904580 (Locusta migratoria)
PC001	277	AAAGCATGGATGTTGGACAAATT	31366663 (Toxoptera citricida)
PC001	278	AAAGCATGGATGTTGGACAAATTGGG	60311985 (Papilio dardanus)
PC001	279	AAAGCATGGATGTTGGACAAATTGGGGGGTGT	37951951 (lps pini)
PC001	280	AAATACAAGTTGTGTAAAGTAA	84647793 (Myzus persicae)
PC001	281	AAGCATGGATGTTGGACAAATTGGGGGGTGT	70909486 (Mycetophagus quadripustulatus)
PC001	282	ATGGATGTCATTACTATTGAGAA	25957367 (Carabus granulatus)
PC001	283	CATCAAATTTGAATCTGGCAACCT	37952206 (lps pini)
PC001	284	CATGATGGCAGAACCATTCGTTA	60303405 (Julodis onopordi)
PC001	285	CCAAAGCATGGTTGGACAA	90138164 (Spodoptera frugiperda)
PC001	286	CCATTITIGGTAACACATGATGG	111011915 (Apis mellifera)
PC001	287	CCCAAAGCATGGATGTTGGACAA	50565112 (Homalodisca coagulata)
PC001	288	CCCAAAGCATGGATGTTGGACAAA	103790417 (Heliconius erato) 101419954 (Plodia interpunctella)
PC001	289	CCCAAAGCATGGATGTTGGACAAATT	73612809 (Aphis gossypii)
PC001	290	CCCAAAGCATGGATGTTGGACAAATTGGG	77329254 (Chironomus tentans)
PC001	291	CCCAAAGCATGGATGTTGGACAAATTGGGGGGGTGT	60305420 (Mycetophagus quadripustulatus)
PC001	292	CCCAAAGCATGGATGTTGGACAAATTGGGGGGGTGTCTTCGC	84647995 (Myzus persicae)
PC001	293	CGTTACCCTGACCCCAACATCAA	73613065 (Aphis gossypii)
PC001	294	GCAAAATACAAGTTGTGTAAAGTAA	83662334 (Myzus persicae)
PC001	295	GCATGGATGTTGGACAAATTGGG	92969396 (Drosophila grimshawi)
PC001	296	GCATGGATGTTGGACAAATTGGGGG	67885868 (Drosophila pseudoobscura)
PC001	297	GCATGGATGTTGGACAAATTGGGGGGGTGT	25956479 (Biphyllus lunatus)
PC001	298	GCATGGATGTTGGACAAATTGGGGGGGTGTCT	90814901 (Nasonia vitripennis)
PC001	299	GCTCCCAAAGCATGGATGTTGGA	110260785 (Spodoptera frugiperda)
PC001	300	GCTCCCAAAGCATGGATGTTGGACAA	76551269 (Spodoptera frugiperda)
PC001	301	GCTCCCAAAGCATGGATGTTGGACAAA	56085210 (Bombyx mori)
PC001	302	GCTCCCAAAGCATGATGTTGGACAAATTGGG	22474232 (Helicoverpa armigera)
PC001	303	GGTCCCAAAGGAATCCCATTTTGGT	50565112 (Homalodisca coagulata)
PC001	304	GGTGTCTTCGCCCTCGTCCA	82575022 (Acyrthosiphon pisum)
PC001	305	GTGAAGTCACTAAAATTGTCATGCAAAG	25956820 (Biphyllus lunatus)

PC001	306	TOCACOGGGCTCACAGGTTGCG	58371410 (Lonomic oblicus)
PC001	307	TCCCAAAGCATGTTGGA	110263957 (Snodontera friginarda)
PC001	308	TGCTCCCAAAGCATGATGTTGGACAA	48927129 (Hydropsyche sp.)
PC001	309	TGGATGTTGGACAAATTGGGGGGTGTCT	90814560 (Nasonia vitripennis)
PC003	310	AAAATTGAAGATTTCTTGGAA	108742519 (Gryllus firmus) 109978291 (Gryllus pennsylvanicus) 62083482 (Lysiphlebus testaceipes) 56150446 (Rhynchosciara americana)
PC003	311	AACAAACGTGAAGTGTGGAGAGT	57963755 (Heliconius melpomene)
PC003	312	AAGTCGCCCTTCGGGGGTGGCCG	77884026 (Aedes aegypti)
PC003	313	ACTTCTCCCTGAAGTCGCCCTTCGG	92992453 (Drosophila mojavensis)
PC003	314	AGATTGTTTGAAGGTAATGCACTTCT	60298816 (Diaphorina citri)
PC003	315	ATCCGTAAAGCTGCTCGTGAA	33373689 (Glossina morsitans)
PC003	316	ATCGACTTCTCCCTGAAGTCGCC	92987113 (Drosophila grimshawi)
PC003	317	ATCGACTTCTCCCTGAAGTCGCCCT	1899548 (Drosophila melanogaster)
PC003	318	ATGAAGCTTGATTATGTTTTGGGTCTGAAAATTGAAGATTTCT TGGAAAGA	71539459 (Diaphorina citri)
PC003	319	ATTGAAGATTTCTTGGAAAGA	62240069 (Diabrotica virgifera)
PC003	320	CACATCGACTTCTCCCTGAAGTC	71550961 (Oncometopia nigricans)
PC003	321	CAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTTCGG	68267151 (Drosophila simulans) 33355000 (Drosophila yakuba)
PC003	322	CAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTTCGGGGG	2152719 (Drosophila melanogaster)
PC003	323	CGACTTCTCCCTGAAGTCGCC	107324644 (Drosophila melanogaster)
PC003	324	CTCCCTGAAGTCGCCCTTCGG	15461311 (Drosophila melanogaster)
PC003	325	CTGGACTCGCAGAAGCACATCGACTTCTCCCTGAA	38624772 (Drosophila melanogaster)
PC003	326	GACTTCTCCCTGAAGTCGCCCTTCGG	92959651 (Drosophila ananassae) 92981958 (Drosophila mojavensis) 76552467 (Spodoptera frugiperda)
PC003	327	GCTAAAATCCGTAAAGCTGCTCGTGA	60296953 (Diaprepes abbreviatus)
PC003	328	GCTAAAATCCGTAAAGCTGCTCGTGAACT	77329341 (Chironomus tentans)
PC003	329	GTGCGCAAGCAGGTGGTGAACATCCC	60312414 (Papilio dardanus)
PC003	330	TACACTTTGGCTAAAATCCGTAAAGCTGC	22040140 (Ctenocephalides felis)
PC003	331	TCGCAGAAGCACATCGACTTCTC	18883211 (Anopheles gambiae)

PC003	332	TCGCAGAAGCACATCGACTTCTCCCTGAAGTCGCCCTTCGG	92963738 (Drosophila grimshawi)
PC003	333	TCTCCCTGAAGTCGCCCTTCGG	38047836 (Drosophila yakuba) 27260897 (Spodoptera frugiperda)
PC003	334	TGAAAATTGAAGATTTCTTGGAA	61646980 (Acyrthosiphon pisum) 73615225 (Aphis gossypii) 83661890 (Myzus persicae) 37804775 (Rhopalosiphum padi) 30049209 (Toxoptera citricida)
PC003	335	TGAAAATTGAAGATTTCTTGGAAAGA	90813959 (Nasonia vitripennis)
PC003	336	TGGACTCGCAGAGCACATCGACTTCTCCCT	25959408 (Meladema coriacea)
PC003	337	TGGCTAAAATCCGTAAAGCTGC	76169907 (Diploptera punctata)
PC003	338	TGGGTCTGAAAATTGAAGATTTCTTGGA	34788046 (Callosobruchus maculatus)
PC003	339	TTCTCCCTGAAGTCGCCCTTCGG	107331362 (Drosophila melanogaster) 110240861 (Spodoptera frugiperda)
PC003	340	TTGGGTCTGAAATTGAAGATTTCTTGGAAAG	37952462 (lps pini)
PC003	341	GGGTGCGCAGGTGGTGAAC	110887729 (Argas monolakensis)
PC005	342	CTCCTCAAAAAGTACAGGAGGCCAAGAA	63512537 (Ixodes scapularis)
PC005	343	AAAAAGAAGGTGTGGATCC	33491424 (Trichoplusia ni)
PC005	344	AAAAAGAAGGTGGGTTGGATCCAAATGAAATCAA	91759273 (Bombyx mori) 55908261 (Locusta migratoria)
PC005	345	AAAGAAGGTGTGGATCCAAATGAAATCA	101414616 (Plodia interpunctella)
PC005	346	AACACCAACTCAAGACAAAACAT	25957531 (Cicindela campestris)
PC005	347	AACACCAACTCAAGACAACATCCGTAA	25958948 (Curculio glandium)
PC005	348	AACTCAAGACAAACATCCGTAA	60314333 (Panorpa cf. vulgaris APV-2005)
PC005	349	AAGAACACTGAAGCCAGAAGGAAGGGAAGGCATTGTGG	25958948 (Curculio glandium)
PC005	350	AATGAAATCAACGCAACAC	92979160 (Drosophila grimshawi) 92232072 (Drosophila willistoni)
PC005	351	ATGGAGTACATCCACAAGAAGAAGGC	15454802 (Drosophila melanogaster)
PC005	352	CAAGATGCTGTCTGACCAGGC	67872905 (Drosophila pseudoobscura)
PC005	353	CGCCTCCTCAAAAGTACAGGGAGGC	75471260 (Tribolium castaneum)
PC005	354	CGTATCGCCACCAAGAAGCAG	68267374 (Drosophila simulans)
PC005	355	CTGTACATGAAAGCGAAGGGTAA	25957246 (Carabus granulatus)
PC005	356	GAACAAGAGGTCCTTATGGAG	90977107 (Aedes aegypti)

PC005	357	GAACAAGAGGGTCCTTATGGAGTACATCCA	40544432 (Tribolium castaneum)
PC005	358	GAGCGTATCGCCACCAAGAAGCA	92480972 (Drosophila erecta) 33354497 (Drosophila yakuba)
PC005	359	GAGTACATCCACAAGAAGAAGGC	15516174 (Drosophila melanogaster)
PC005	360	GATCCAAATGAAATCAACGAAAT	56149737 (Rhynchosciara americana)
PC005	361	GCCAACACCAACTCAAGACAAACATCCG	103019061 (Tribolium castaneum)
PC005	362	GCCAACACCAACTCAAGACAAAACATCCGTAAGCTCAT	56149737 (Rhynchosciara americana)
PC005	363	GGCAAAAGAAGGTGTGGTTGGATCCAAATGAAATCA	101417042 (Plodia interpunctella)
PC005	364	GGGTCCTTATGGAGTACATCCACAAGAA	67885759 (Drosophila pseudoobscura)
PC005	365	TGCGATGCGGCAAAAGAAGGT	56149531 (Rhynchosciara americana)
PC005	366	TGGTTGGATCCAAATCAACGAAAT	15355452 (Apis mellifera) 83662749 (Myzus persicae)
PC005	298	TTGGATCCAAATGAAATCAACGAAAT	110985444 (Apis mellifera) 111158439 (Myzus persicae)
PC010	368	CCGCAGTTCATGTACCATTTG	92952825 (Drosophila ananassae)
PC010	369	CTGATGGAGATGAAGCAGTGCTGCAATTC	58395529 (Anopheles gambiae str. PEST)
PC010	370	GACGTGCTCAGATGGGTGGACAG	56152422 (Rhynchosciara americana)
PC010	371	<u>всссемесстететтеем</u>	92939820 (Drosophila virilis)
PC010	372	GGCACATGCTGATGCGTGAGGAT	83937570 (Lutzomyia longipalpis)
PC010	373	GGGCACATGGTCATGGGCGATTC	3337934 (Drosophila melanogaster)
PC014	374	AAGATCATGGAGTACTACGAGAA	85577611 (Aedes aegypti)
PC014	375	ACGAGAAAAGGAGAAGCAAG	67838315 (Drosophila pseudoobscura)
PC014	376	ATGGAGTACTACGAGAAAAAGGAGAGAAGT	92928915 (Drosophila virilis)
PC014	377	CAAAAACAAACACATGATGGC	82574001 (Acyrthosiphon pisum) 111160670 (Myzus persicae)
PC014	378	CTCAAGATCATGGAGTACTACGA	55692554 (Drosophila yakuba)
PC014	379	CTCAAGATCATGGAGTACTACGAGAA	92942301 (Drosophila ananassae) 92476196 (Drosophila erecta)
			53884266 (Plutella xylostella)
PC014	380	GAACAAGAAGCCAATGAGAAAGC	111160670 (Myzus persicae)
PC014	381	GACTCAAGATCATGGAGTACT	112432414 (Myzus persicae)
PC014	382	GATGTTCAAAAACAAATCAAACACATGATGGC	73618688 (Aphis gossypii)
PC014	383	TACTACGAGAAAAGGAGAAGC	62239529 (Diabrotica virgifera)

PC014	384	TTCATTGAACAAGAGCCAATGA	15357365 (Apis mellifera)
PC016	385	ACACGACCGGCGCTCGTAAAT	75710699 (Tribolium castaneum)
PC016	386	ACCAGCACGTGCTTCTCGCACTGGTAGGCCAAGAATTCGGC	92048971 (Drosophila willistoni)
PC016	387	AGCACGTGCTTCTCGCACTGGTAGGC	92985459 (Drosophila grimshawi)
PC016	388	ATACGCGACCACGGGTTGATCGG	18868609 (Anopheles gambiae)
			2921501 (Culex pipiens) 62239897 (Diabrotica virgifera)
PC016	389	ATCGGTGTACATGTAACCGGGGAAACC	92957249 (Drosophila ananassae) 92477818 (Drosophila erecta)
			92965644 (Drosophila grimshawi) 24646342 (Drosophila melanogaster)
			67896594 (Urosophila pseudoobscura) 75710699 (Tribolium castaneum)
PC016	390	ATCGTTGGCCAAGTTCAAGAACAG	92950254 (Drosophila ananassae)
PC016	391	CACGTGCTTCTCGCACTGGTAGGCCAAGAA	4680479 (Aedes aegypti)
PC016	392	CCAGTCTGGATCATTTCCTCGGG	67884189 (Drosophila pseudoobscura)
PC016	393	CCAGTCTGGATCATTTCCTCGGGATA	92940287 (Drosophila virilis)
PC016	394	CGCTCGATGGTCGGTTGGCCAAGTTCAAGAACA	2921501 (Culex pipiens)
PC016	395	CGCTCGATGGTCGATCGTTGGCCAAGTTCAAGAACAGACA CACGTTCTCCAT	92477818 (Drosophila erecta) 15061308 (Drosophila melanogaster)
PC016	396	CGTGCTTCTCGCACTGGTAGGCCAAGAA	13752998 (Drosophila melanogaster)
PC016	397	CTGGCAGTTTCCATGTTGACACCCATAGC	16898595 (Ctenocephalides felis)
PC016	398	CTTAGCATCAATACCTGATGT	61646107 (Acyrthosiphon pisum)
PC016	399	GACATGTCGGTCAAGATGACCAGCACGTG	9713 (Manduca sexta)
PC016	400	GACATGTCGGTCAAGATGACCAGCACGTGCTTCTCGCACTG	92933153 (Drosophila virilis)
PC016	401	GACATGTCGGTCAAGATGACCAGCACGTGCTTCTCGCACTG GTA	2921501 (Culex pipiens)
PC016	402	GAGCCGTTCTCTTCGAAGTCCTG	237458 (Heliothis virescens)
PC016	403	GATGACCAGCACGTGCTTCTC	18883474 (Anopheles gambiae)
PC016	404	GATGACCAGCACGTGCTTCTCGCACTG	92477818 (Drosophila erecta)
PC016	405	GATGACCAGCACGTGCTTCTCGCACTGGTAGGCCAAGAA	15061308 (Drosophila melanogaster) 67883622 (Drosophila pseudoobscura)

PC016	406	GATGACCAGCACGTGCTTCTCGCACTGGTAGGCCAAGAATTC GGC	31206154 (Anopheles gambiae str. PEST)
PC016	407	GATGGGGATCTGCGTGATGGA	101403557 (Plodia interpunctella)
PC016	408	GATGGGGATCTGCGTGATGGAGCCGTTGCGGCCCTCCAC	53883819 (Plutella xylostella)
PC016	604	GGAATAGGATGGTGATGTCGTCGTTGGGCATAGT	110240379 (Spodoptera frugiperda)
PC016	410	GGAATAGGATGGGTGATGTCGTCGTTGGGCATAGTCA	27372076 (Spodoptera littoralis)
PC016	411	GGATCGTTGGCCAAGTTCAAGAA	91757299 (Bombyx mori)
PC016	412	GGATCGTTGGCCAAGTTCAAGAACA	103020368 (Tribolium castaneum)
PC016	413	GGATCGTTGGCCAAGTTCAAGAACAG	237458 (Heliothis virescens)
PC016	414	GGATGGGTGATGTCGTCGTTGGGCAT	101403557 (Plodia interpunctella)
PC016	415	GGCAGTITCCATGTTGACACCCATAGC	4680479 (Aedes aegypti)
PC016	416	GGCATAGTCAAGATGGGGATCTG	92924977 (Drosophila virilis)
PC016	417	GTCTGGATCATTTCCTCGGGATA	92966144 (Drosophila grimshawi)
PC016	418	GTGATGATGCGCTCGATGGTCGTTGGCCAAGTTCAA GAACAGACACGTTCTCCAT	15514750 (Drosophila melanogaster)
PC016	419	GTGTACATGTAACCGGGGAAACC	92924977 (Drosophila virilis)
PC016	420	GTTTCCATGTTGACACCCATAGC	91826756 (Bombyx mori)
PC016	421	тслатеветттсстватссаттвла	49395165 (Drosophila melanogaster) 99009492 (Leptinotarsa decemlineata)
PC016	422	TCATCCAGCACAGACTTGCCAG	10763875 (Manduca sexta)
PC016	423	TCATCCAGCACAGACTTGCCAGG	9713 (Manduca sexta)
PC016	424	TCCATGTTGACACCCATAGCAGC	92962756 (Drosophila ananassae)
PC016	425	TCCATGTTGACACCCATAGCAGCAAACAC	60295607 (Homalodisca coagulata)
PC016	426	TCGAAGTCCTGCTTGAAGAACCTGGC	101403557 (Plodia interpunctella)
PC016	427	TCGATGGTCGGATCGTTGGCCAAGTTCAAGAACAGACACACAC	4680479 (Aedes aegypti)
PC016	428	TCGGATCGTTGGCCAAGTTCAAGAACAGACACACGTTCTCCA T	2793275 (Drosophila melanogaster)
PC016	429	TCGTTGGCCAAGTTCAAGAACAG	90137502 (Spodoptera frugiperda)
PC016	430	TGGGTGATGTCGTTGGGCAT	53883819 (Plutella xylostella)
PC016	431	TTCTCGCACTGGTAGGCCAAGAA	110240379 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)
PC016	432	TTCTCTTCGAAGTCCTGCTTGAAGAACCTGGC	9713 (Manduca sexta)
PC016	433	TTGGCCAAGTTCAAGAACAGACACGTT	55905051 (Locusta migratoria)

84116133 (Dermatophagoides farinae)
GTTTCCATGTTGACACCCATAGCAGCAAA
434
PC016

ш
4
0
Ω
٦a

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
EV005	533	AAGCGACGTGAAGAGCGTATCGC	76553206 (Spodoptera frugiperda)
EV005	534	ATTAAAGATGGTCTTATTATAA	15355452 (Apis mellifera)
EV005	535	CGTAAGCGACGTGAAGAGCGTATCGC	33491424 (Trichoplusia ni)
EV005	536	GGTCGTCATTGTGGATTTGGTAAAAG	60314333 (Panorpa cf. vulgaris APV-2005)
EV005	537	TGCGATGCGGCAAGAAGGT	15048930 (Drosophila melanogaster)
EV005		TGCGGCAAGAAGATTTGG	93002524 (Drosophila mojavensis) 92930455 (Drosophila virilis)
	538		92044532 (Drosophila willistoni)
EV005	539	TTGTGGATTTGGTAAAAGGAA	60306723 (Sphaerius sp.)
EV010	540	CAAGTGTTCAATAATTCACCA	83937567 (Lutzomyia longipalpis)
EV010	541	CATTCTATAGGCACATGTTGATG	29558345 (Bombyx mori)
EV010		CTGGCGGCCACATGGTCATGGG	92476940 (Drosophila erecta) 92977931 (Drosophila grimshawi)
	542		2871327 (Drosophila melanogaster)
EV015	543	AACAGGCCCAATTCCATCGACCC	92947821 (Drosophila ananassae)
EV015	544	AGAGAAAATGGACCTCATCGAC	62239128 (Diabrotica virgifera)
EV015	545	CGCCATCCGTCGCTGTTCAAGGCGATCGG	18866954 (Anopheles gambiae)
EV015	546	CTGGCAGTTACCATGGAGAACTTCCGTTACGCCATG	62239128 (Diabrotica virgifera)
EV015	547	GTGATCGTGATGGCGGCCACGAA	18887285 (Anopheles gambiae)
EV015	548	GTGATCGTGATGGCGGCCACGAAC	83423460 (Bombyx mori)
EV015	549	TGATGGACGCCATGAAGAAAG	91086234 (Tribolium castaneum)
EV016	550	AATATGGAAACAGCCAGATTCTT	109193659 (Myzus persicae)
EV016	551	ATGATCCAGACTGGTATTTCTGC	92938857 (Drosophila virilis)
EV016	552	ATTGATGTGATTCCATTGCC	55905051 (Locusta migratoria)
EV016	553	GAAATGATCCAGACTGGTATTTCTGC	50562965 (Homalodisca coagulata)
EV016	554	GAAGAAATGATCCAGACTGGTAT	92969748 (Drosophila mojavensis)
EV016	555	GACTGTGTGTGTGAACGG	2286639 (Drosophila melanogaster) 92042621 (Drosophila willistoni)

٦		and determinations.		
	91827863 (Bombyx mori)	TTGAACTTGGCCAATGATCCTACCAT	562	EV016
	60336595 (Homalodisca coagulata)	TGGCATATCAATGTGAGAAGCA	561	EV016
	27372076 (Spodoptera littoralis)	TCTGAAGATATGTTGGGTCGTGT	260	EV016
	22474331 (Helicoverpa armigera)	GTGTCTGGTGTGAACGGACCG	559	EV016
	76554661 (Spodoptera frugiperda)	GTGTCTGAAGATATGTTGGGTCGTGT	558	EV016
	99011193 (Leptinotarsa decemlineata)	GATCCTACCATTGAAAGAATTAT	222	EV016
Г	92969748 (Drosophila mojavensis)	<u> </u>		EV016

Table 4-AG

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
AG001	621	AAAACTGGTGAATTCTTCCGTTTGAT	37953169 (lps pini)
AG001		AAAGCATGGATGTTGGACAAA	98994282 (Antheraea mylitta) 109978109 (Gryllus pennsylvanicus)
	622		55904580 (Locusta migratoria)
AG001	623	AAAGCATGTTGGACAAATT	31366663 (Toxoptera citricida)
AG001	624	AAAGCATGGATGTTGGACAAATTGGG	60311985 (Papilio dardanus)
AG001	625	AAAGCATGGATGTTGGACAAATTGGGGGGTGT	37951951 (lps pini) 109195107 (Myzus persicae)
AG001	626	AAATACAAATTGTGCAAAGTCCG	25958703 (Curculio glandium)
AG001	627	AACTTGTGCATGATCACCGGAG	22039624 (Ctenocephalides felis)
AG001	628	AAGCATGGATGTTGGACAAATTGGGGG	112433559 (Myzus persicae)
AG001	629	AAGCATGGATGTTGGACAAATTGGGGGGGTGTGTT	70909486 (Mycetophagus quadripustulatus)
AG001	630	ACTGGTGAATTCTTCCGTTTGAT	77327303 (Chironomus tentans)
AG001	631	ATTGAAAAACTGGTGAATTCTTCCGTTTGATCTATGATGTTA	22039624 (Ctenocephalides felis)
AG001	632	CCAAAGCATGGATGTTGGACAA	90138164 (Spodoptera frugiperda)
AG001	633	CCCAAAGCATGGTTGGACAA	48927129 (Hydropsyche sp.) 76551269 (Spodoptera frugiperda)
AG001		CCCAAAGCATGGTTGGACAAA	91835558 (Bombyx mori) 103783745 (Heliconius erato)
	634		101419954 (Plodia interpunctella)
AG001	635	CCCAAAGCATGGATGTTGGACAAATT	73619372 (Aphis gossypii)

AG001	636	CCCAAAGCATGTTGGACAAATTGGG	77329254 (Chironomus tentans) 22474232 (Helicoverpa armigera)
AG001	637	CCCAAAGCATGATGTTGGACAAATTGGGGG	84647382 (Myzus persicae)
AG001	638	CCCAAAGCATGGATGTTGGACAAATTGGGGGGTGT	84647995 (Myzus persicae)
AG001	639	CCCAAAGCATGGTTGGACAAATTGGGGGGTGTGTT	60305420 (Mycetophagus quadripustulatus)
AG001	640	CTGGATTCATGGATGTGA	27617172 (Anopheles gambiae)
AG001	641	GAATTCTTCCGTTTGATCTATGATGT	50565112 (Homalodisca coagulata) 71049326 (Oncometopia nigricans)
AG001	643	GCATGGATGTTGGACAAATTGGG	92969396 (Drosophila grimshawi) 93001617 (Drosophila mojavensis) 92929731 (Drosophila virilis)
AG001	643	GCATGGATGTTGGACAAATTGGGGG	67885868 (Droscophila pseudoobscura)
AG001	644	GCATGGATGTTGGACAAATTGGGGGGGTGT	90814901 (Nasonia vitripennis)
AG001	645	GCATGGATGTTGGACAAATTGGGGGGTGTGTTCGCCCC	25956479 (Biphyllus lunatus)
AG001	646	GCCCCCAAAGCATGGATGTTGGACAA	50565112 (Homalodisca coagulata)
AG001	647	GCTGGATTCATGGATGTGATC	103775903 (Heliconius erato)
AG001	648	GGATCATTCGATATTGTCCACAT	113017118 (Bemisia tabaci)
AG001	649	GGCAACTTGTGCATGATCACCGGAGG	25958703 (Curculio glandium)
AG001	650	TACAAATTGTGCAAAGTCCGCAA	56161193 (Rhynchosciara americana)
AG001	651	TATCCTGCTGGATTCATGGATGT	40934103 (Bombyx mori)
AG001	652	TCACCATTGAAAAACTGGTGAATTCTTC	62083410 (Lysiphlebus testaceipes)
AG001	653	TGCATGATCACCGGAGGCAGGAA	3478550 (Antheraea yamamai)
AG001	654	TGCATGATCACCGGAGGCAGGAATTTGGG	14627585 (Drosophila melanogaster) 33355008 (Drosophila yakuba)
AG001	655	TGGATGTTGGACAAATTGGGGGGTGT	90814560 (Nasonia vitripennis)
AG001	656	TGTGCATGATCACCGGAGGCAG	92949859 (Drosophila ananassae) 92999306 (Drosophila grimshawi)
AG001	657	TGTGCATGATCACCGGAGGCAGGAATTTGGG	67842487 (Drosophila pseudoobscura)
AG005	658	AAGATCGACAGCCATCTGTACCACG	83935651 (Lutzomyia longipalpis)
AG005	629	AAGATCGACAGGCATCTGTACCACGCCCTGTACATGAAGGC	76552995 (Spodoptera frugiperda)
AG005	099	AAGGGTAACGTGTTCAAGAACAA	18932248 (Anopheles gambiae) 60306606 (Sphaerius sp.)

	-		18953735 (Anopheles gambiae)
AG005		AAGGGTAACGTGTTCAAGAACAAG	25957811 (Cicindela campestris)
	661		60311920 (Euclidia glyphica)
AG005	662	AAGGGTAACGTGTTCAAGAACAAGAGAGT	25958948 (Curculio glandium) 90812513 (Nasonia giraulti)
AG005	663	ACAAGAAGGCTGAGAAGGC	60311700 (Euclidia glyphica)
AG005	664	ATCAAGGATGGTTTGATCATTAA	25957811 (Cicindela campestris)
AG005	665	ATGGAATACATCCACAAGAAGAAG	56149737 (Rhynchosciara americana)
AG005	999	CAAAACATCGTAAATTGATCAAGGATGGT	60314333 (Panorpa cf. vulgaris APV-2005)
AG005	299	CAAAACATCCGTAAATTGATCAAGGATGGTTTGATCAT	25958948 (Curculio glandium)
AG005	899	CAAGGGTAACGTGTTCAAGAA	476608 (Drosophila melanogaster) 38048300 (Drosophila yakuba)
AG005	699	CAAGGGTAACGTGTTCAAGACAAG	92946023 (Drosophila ananassae) 2871633 (Drosophila melanogaster) 68267374 (Drosophila simulans) 33354497 (Drosophila yakuba) 83937096 (Lutzomyia longipalpis)
AG005	670	CATCTGTACCACGCCCTGTACATGAAGGC	101417042 (Plodia interpunctella)
AG005	671	GAAGAAGGCCCG	40874303 (Bombyx mori)
AG005	672	GACAGGCATCTGTACCACGCCCTGTACATGAAGGC	90135865 (Bicyclus anynana)
AG005	673	GAGAAGGCCCGTGCCAAGATGTTG	82572137 (Acyrthosiphon pisum)
AG005	674	GATCCAAATGAAATCAATGAGATTGC	60312128 (Papilio dardanus)
AG005	675	GCTCGTATGCCTCAAAAGGAACTATGG	25957246 (Carabus granulatus)
AG005	929	GGGTAACGTGTTCAAGAACAAG	4447348 (Drosophila melanogaster)
AG005	677	GGTAACGTGTTCAAGAACAAG	18948649 (Anopheles gambiae)
AG005	678	TACATCCACAAGAAGGCTGAGAAG	2871633 (Drosophila melanogaster)
AG005	629	TACCACGCCCTGTACATGAAGGC	10764114 (Manduca sexta)
AG005	089	TCAATGAGATTGCCAACACCAACTC	83935651 (Lutzomyia longipalpis)
AG005		TGATCAAGGATGGTTTGATCAT	77642775 (Aedes aegypti) 27615052 (Anopheles gambiae) 92082271 (Prosonhila grimshawi)
	681		67896961 (Drosophila pseudoobscura)
AG005	682	TGATCAAGGATGGTTTGATCATTAAGAA	92042883 (Drosophila willistoni)

AG005	683	TGGTTGGATCCAAATGAAATCA	40867709 (Bombyx mori) 101417042 (Plodia interpunctella)
AG005	684	TGGTTGGATCCAAATGAAATCAA	15355452 (Apis mellifera) 83662749 (Myzus persicae)
AG005	685	TGGTTGGATCCAAATGAAATCAATGAGAT	63013469 (Bombyx mori) 55908261 (Locusta migratoria)
AG005	989	TGTACCACGCCCTGTACATGAAGGC	23573622 (Spodoptera frugiperda)
AG005	687	TTGATCAAGGATGGTTTGATCA	113019292 (Bemisia tabaci)
AG005	688	TTGATCAAGGATGGTTTGATCAT	61674956 (Aedes aegypti) 41576849 (Culicoides sonorensis)
AG005	689	TTGATGGAATACATCCACAAGAAGAAGGC	92225847 (Drosophila willistoni)
AG005	069	AGGATGCGTGTTTGAGGCGTCT	110887217 (Argas monolakensis)
AG005	691	AAGGCCAAGGGTAACGTGTTCAAGAACAAG	110887217 (Argas monolakensis)
AG010	692	CGTTTGTGTCAAAGTTTGGAGAATA	78539702 (Glossina morsitans)
AG010	693	GATGTTTTAAGATGGGTCGATCG	110759793 (Apis mellifera)
AG010	694	TTTTACAGGCATATGCTTATGAGGGAAGATTT	55902158 (Locusta migratoria)
AG010	695	TTTTCGAGGTGGTCAATCAGCATTCGGC	92925934 (Drosophila virilis)
AG014	969	AACATGCTGAACCAAGCCCGT	75466802 (Tribolium castaneum)
AG014	269	AACATGCTGAACCAAGCCCGTCT	87266590 (Choristoneura fumiferana) 103779114 (Heliconius erato)
AG014	869	AAGATCATGGAATACTATGAGAAGAA	101403826 (Plodia interpunctella)
AG014	669	AAGATCATGGAATACTATGAGAAGAAGGAGAA	81520950 (Lutzomyia longipalpis)
AG014	700	AATGAAAAGGCCGAGGAAATTGATGC	62239529 (Diabrotica virgifera)
AG014	701	ATGGAATACTATGAGAAGAAGGA	16901350 (Ctenocephalides felis)
AG014	702	CAATCCTCCAACATGCTGAACCA	53148472 (Plutella xylostella)
AG014	703	CAGATCAAGCATATGATGGCCTTCAT	53148472 (Plutella xylostella)
7,00		+**************************************	87266590 (Choristoneura fumiferana)
#100X	704	CASCA CASC	97.32 (Manouca sexta) 90814338 (Nasonia vitripennis)
AG014	705	GCGGAAGAATTTAACATTGAAAAGGG	50558386 (Homalodisca coagulata) 71552170 (Oncometopia nigricans)
AG016	706	AACGACGACCCATCCTATTC	110248186 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)

AG016		AACGGTTCCATGGAGGACGTGTG	2921501 (Culex pipiens) 92950254 (Drosophila ananassae)
	707		110240379 (Spodoptera frugiperda)
AG016	708	AACGGTTCCATGGAGGACGTGTCT	24646342 (Drosophila melanogaster)
AG016	502	AACGGTTCCATGGAGACGTGTGTCTTCTTGAA	91829127 (Bombyx mori)
AG016	710	ATGATCCAGACCGGTATCTCCGC	22474040 (Helicoverpa armigera)
AG016	711	ATGCCGAACGACATCACCCATCC	31206154 (Anopheles gambiae str. PEST)
AG016	712	CAATGCGAGAACACGTGCTGGT	9713 (Manduca sexta)
AG016	713	CCGCACAACGAAATCGCCGCCCAAAT	75469507 (Tribolium castaneum)
AG016	714	CGTTTCTTCAAGCAGGACTTCGA	83937868 (Lutzomyia longipalpis)
AG016	715	CTTGGACATCCAAGGTCAACCCATCAACCCATGGTC	104530890 (Belgica antarctica)
AG016	716	GAAATGATCCAGACCGGTATCTC	2921501 (Culex pipiens) 92966144 (Drosophila grimshawi)
AG016	717	GAAATGATCCAGACCGGTATCTCCGCCATCGACGTGAAC TC	31206154 (Anopheles gambiae str. PEST)
AG016	718	GAAGAAATGATCCAGACCGGTAT	75469507 (Tribolium castaneum)
AG016	719	GAAGAAGTACCCGGACGTCGTGG	22038926 (Ctenocephalides felis)
AG016	720	GACATCCAAGGTCAACCCATCAA	16898595 (Ctenocephalides felis)
AG016	721	GCCCGTTTCTTCAAGCAGGACTTCGA	31206154 (Anopheles gambiae str. PEST)
AG016	722	GCCGCCCAAATCTGTAGACAGGC	60295607 (Homalodisca coagulata)
AG016	723	GGATCAGGAAAACCCATTGACAAAGGTCC	49395165 (Drosophila melanogaster) 99009492 (Leptinotarsa decemlineata)
AG016	724	GGTTACATGTACACCGATTTGGC	91829127 (Bombyx mori)
AG016	725	GGTTACATGTACACCGATTTGGCCACCAT	77750765 (Aedes aegypti) 9713 (Manduca sexta) 110248186 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)
AG016	726	GGTTACATGTACACCGATTTGGCCACCATTTACGAA	92231646 (Drosophila willistoni)
AG016	727	GTGTCGGAGGATATGTTGGGCCG	92460250 (Drosophila erecta) 24646342 (Drosophila melanogaster) 55694673 (Drosophila yakuba)
AG016	728	TACATGTACACCGATTTGGCCACCAT	31206154 (Anopheles gambiae str. PEST)
AG016	729	TTCAACGGATCAGGAAACCCATTGACAAAGGTCC	99010653 (Leptinotarsa decemlineata)

AG016	730	TTCCCCGGTTACATGTACACCGATTTGGCCAC	2921501 (Culex pipiens) 75710699 (Tribolium castaneum)
AG016	731	TTCCCCGGTTACATGTACACCGATTTGGCCACCAT	62239897 (Diabrotica virgifera) 92957249 (Drosophila ananassae) 92477149 (Drosophila erecta) 67896654 (Drosophila pseudoobscura)
AG016	732	TTCCCCGGTTACATGTACACCGATTTGGCCACCATTTA	92969578 (Drosophila grimshawi)
AG016	733	TTCCCCGGTTACATGTACACCGATTTGGCCACCATTTACGA	103744758 (Drosophila melanogaster)
AG016	734	TTCGCCATCGTGTTCGCCGCCATGGGTGT	31206154 (Anopheles gambiae str. PEST)
AG016	735	TTCTTCAAGCAGGACTTCGAAGA	9713 (Manduca sexta)
AG016	736	TTCTTGAATTTGGCCAACGATCC	92972277 (Drosophila grimshawi) 99011193 (Leptinotarsa decemlineata)
AG016	737	TTCTTGAATTTGGCCAACGATCCCACCATCGAG	67839381 (Drosophila pseudoobscura)
AG016	738	GCCGAATTTTTGGCTTATCAATG	84116133 (Dermatophagoides farinae)

Table 4-TC

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
TC001	813	AAAGCATGGATGATAAA	70909480 (Carabus granulatus) 16898765 (Ctenocephalides felis) 60298000 (Diaprepes abbreviatus)
TC001	814	AATITGTGTATGATTACTGGAGG	55904576 (Locusta migratoria)
TC001	815	ACTGGAGGTCGTAACTTGGGGCGTGT	60298000 (Diaprepes abbreviatus)
TC001	816	ATGATTACTGGAGGTCGTAACTTGGGGCGTGT	73619372 (Aphis gossypii) 37804548 (Rhopalosiphum padi)
TC001	817	ATGCAAAGATTGATTAAAGTTGACGG	70909478 (Biphyllus lunatus)
TC001	818	ATTAAAGTTGACGGAAAAGTT	110763874 (Apis mellifera)
TC001	819	ATTGAGAAACTGGGGAATTCTTCCG	37952206 (lps pini)
TC001	820	ATTGTTATGCAAAGATTGATTAAAGTTGACGGAAAAGT	70909486 (Mycetophagus quadripustulatus)
TC001	821	CCAAGAAGCATTTGAAGCGTCT	55904580 (Locusta migratoria)
TC001	822	CCAAGAAGCATTTGAAGCGTCTC	83935971 (Lutzomyla longipalpis)
TC001	823	GCGCCCAAAGCATGGATGTTGGA	103790417 (Heliconius erato) 101419954 (Plodia interpunctella)

TC001	824	GGCCCAAGAAGCATTTGAAGCGT	14700642 (Ozocopila majoropia)
10001	100	TOATTACTOCCOTOCATOR	TOCOCOLO (A 1.1
10001	825	IGALIACIGGAGGICGTAACTIGGGGCGIGT	73612212 (Aphis gossypii)
TC001	826	TGTATGATTACTGGAGGTCGTAACTTGGGGCGTGT	70909478 (Biphyllus lunatus)
TC001	827	TTGATTTATGATGTTAAGGGA	77325485 (Chironomus tentans)
TC001	828	TTGTGTATGATTACTGGAGGTCGTAA	60305816 (Mycetophagus quadripustulatus)
TC002	829	AAAAACAACGAGCGCCATCCAGGC	18920284 (Anopheles gambiae)
TC002	830	ATCGACCAAGAGATCCTCACAGCGAAGAAAACGCGTCGAAA AACAAACGAGCGGCCATCCAGGCC	75717966 (Tribolium castaneum)
TC002	831	CTCCAGCAGATCGATGGCACCCT	92475657 (Drosophila erecta) 13763220 (Drosophila melanogaster)
		TCAAGAGGAAGAACGCTACGAAAAGCAGCTCCAGCAGATC GATGGCACCCTCAGCACCATCGAGATGCAGCGGGAGGCCCT	
TC002	832	CGAGGGGCCAACACCCAGCCGTACTCAAAACGATGA AAAACGCAGCGGACGCCCTCAAAAATGCCCACCTCAACATG GATGTTGATGAGGT	75717966 (Tribolium castaneum)
TC010	833	AACCTCAAGTACCAGGACATGCCCGA	90973566 (Aedes aegypti)
TC010	834	AGCCGATTITGTACAGTTATA	92944620 (Drosophila ananassae)
TC010	835	ATGGACACATTTTCCAAATT	33427937 (Glossina morsitans)
TC010	836	ATGGACACATTTTCCAAATTTTGATTTTCCACGG	56151768 (Rhynchosciara americana)
TC010	837	CAAGTACCAGGACATGCCCGA	18911059 (Anopheles gambiae)
TC010	838	CACATGCTGATGCGGGGGGCCTC	67893321 (Drosophila pseudoobscura)
TC010	839	CCTCAAGTACCAGGACATGCCCGA	67893324 (Drosophila pseudoobscura)
TC010	840	TCAAGTACCAGGACATGCCCGA	67893321 (Drosophila pseudoobscura)
TC010	841	TTCATGTACCATTTGCGCCGCTC	92952825 (Drosophila ananassae)
TC014	842	AAAATTCAGTCGTCAAACATGCTGAA	76169390 (Diploptera punctata)
TC014	843	AACATGCTGAACCAAGCCCGT	87265590 (Choristoneura fumiferana) 103779114 (Heliconius erato)
TC014	844	CACAGCAACTTGTGCCAGAAAT	92923718 (Drosophila virilis)
TC014	845	GAGAAAGCCGAAGAAATCGATGC	77325830 (Chironomus tentans)
TC014	846	GCCGCAAACGTCTGGGCGAA	92232132 (Drosophila willistoni)
TC014	847	TAAAAGTGCGTGAAGACCACGT	58371699 (Lonomia obliqua)
TC015	848	ACACTGATGGACGGCATGAAGAA	78531609 (Glossina morsitans)
TC015	849	ATCGCCGGTTGTCGCAAACAACT	6904417 (Bombyx mori)
TC015	850	CCCGATGAGAAGATCCGGATGAA	83922984 (Lutzomyia longipalpis)

92948836 (Drosophila ananassae)	84116975 (Dermatophagoides farinae)
TGAGAAGATCCG	AACGAAACCGGTGCTTTCTT
851	852
TC015	TC015

Table 4-MP

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
MP001	806	AAAGCATGGATGTTGGACAAA	98994282 (Antheraea mylitta) 108789768 (Bombyx mori) 109978109 (Gryllus pennsylvanicus) 55904580 (Locusta migratoria)
MP001	606	AAAGCATGGATGTTGGACAAAT	77325485 (Chironomus tentans) 37951951 (Ips pini) 60311985 (Papilio dardanus) 30031258 (Toxoptera citricida)
MP001	910	AAGAAGCATTTGAAGCGTTTAAACGCACC	3658572 (Manduca sexta)
MP001	911	1 1	103790417 (Heliconius erato) 22474232 (Helicoverpa armigera)
MP001	912	AAGCATTTGAAGCGTTTAAACGCACC	25957217 (Carabus granulatus)
MP001	913	AAGTCCGTACCGACCCTAATTATCCAGC	46994131 (Acyrthosiphon pisum)
MP001	914	ACGCACCCAAAGCATGGATGTT	46999037 (Acyrthosiphon pisum)
MP001	915	ACTATTAGATACGATATTGCA	46998791 (Acyrthosiphon pisum)
MP001	916	ACTGGACCCAAAGGTGTGCCATTTTTAACTACTCATGATGGC CGTACTAT	46997137 (Acyrthosiphon pisum)
MP001	917	AGAAGCATTTGAAGCGTTTAAA	27620566 (Anopheles gambiae)
MP001	918	AGAAGCATTTGAAGCGTTTAAACGCACC	98994282 (Antheraea mylitta)
MP001	919	AGAAGCATTTGAAGCGTTTAAACGCACCCAAAGCATGGATGT TGGACAAAT	73619191 (Aphis gossypii)
MP001	920	AGTAAGGGAGTTAAATTGACTA	46998791 (Acyrthosiphon pisum)
MP001	921	ATACAAGTTGTGTAAAGTAAAG	29553519 (Bombyx mori)
MP001	922	ATGGATGTTATATCTATCCAAAAGACCAGTGAGCACTTTAGAT TGATCTATGATGTGAAAGGTCGTTTCAC	46998791 (Acyrthosiphon pisum)
MP001	923	ATTGATCTATGATGTGAAAGGTCGTTTCAC	46999037 (Acyrthosiphon pisum)
MP001	924	CAAAAGACCAGTGAGCACTTTAGATTGAT	30031258 (Toxoptera citricida)
MP001	925	CACAGAATTACTCCTGAAGAAGC	73619191 (Aphis gossypii)

MP001	926	CACAGAATTACTCCTGAAGAAGCAAAATACAAG	46998791 (Acyrthosiphon pisum) 30031258 (Toxoptera citricida)
MP001	927	CATCCAGGATCTTTTGATATTGTTCACATTAA	31364848 (Toxoptera citricida)
MP001	928	CATCCAGGATCTTTTGATATTGTTCACATTAAGGATGCAAATG AACATATTTTTGCTAC	37804548 (Rhopalosiphum padi)
MP001	929	CATCTAAAATTTTGGATCATATCCGTTTTGAAACTGGAAACTT GTGCATGAT	46998791 (Acyrthosiphon pisum)
MP001	930	CATTTGAAGCGTTTAAACGCACC	30031258 (Toxoptera citricida)
MP001	931	CATTTGAAGCGTTTAAACGCACCCAAAGCATGGATGTT	46998791 (Acyrthosiphon pisum)
MP001	932	CCAAAGCATGATGTTGGACAA	90138164 (Spodoptera frugiperda)
MP001	933	CCAAGGAGTAAAATTGACTA	73615238 (Aphis gossypii) 31364848 (Toxoptera citricida)
MP001	934	CCCAAAGCATGGTTGGAC	108789768 (Bombyx mori)
MP001	935	CCCAAAGCATGATGTTGGACAA	50565112 (Homalodisca coagulata) 48927129 (Hydropsyche sp.) 76551269 (Spodoptera frugiperda)
MP001	936	CCCAAAGCATGTTGGACAAA	56085210 (Bombyx mori) 103792451 (Heliconius erato) 101419954 (Plodia interpunctella)
MP001	937	CCCAAAGCATGATGTTGGACAAAT	22474095 (Helicoverpa armigera)
MP001	938	CGTCCAAGCACCGGTCCACACAACT	47537863 (Acyrthosiphon pisum)
MP001	626	CTGGAAACTTGTGCATGATAACTGGAGG	78524585 (Glossina morsitans)
MP001	940	GAAAGACATCCAGGATCTTTTGATATTGTTCACATTAAGGATG CAAATGAACATATTTTTGCTACCCGGATGAACAATGTTTTTAT TATTGGAAAAGGTCAAAAGAACTACATTTCTCTACCAAG	46997137 (Acyrthosiphon pisum)
MP001	941	GATCATATCCGTTTTGAAACTGGAAACTTGTGCATGAT	73614725 (Aphis gossypii)
MP001	942	GATGCAAATGAACATATTTTTGCTAC	31364848 (Toxoptera citricida)
MP001	943	GCACCCAAAGCATGGATGTTGGA	70909486 (Mycetophagus quadripustulatus)
MP001	944		77329254 (Chironomus tentans) 60305420 (Mycetophagus quadripustulatus)
MP001	945	GGATCTTTGATATTGTTCACAT	60303405 (Julodis onopordi)
MP001	946	GGATCTTTTGATATTGTTCACATTAAGGATGCAAATGAACATA TTTTTGCTAC	73619191 (Aphis gossypii)
MP001	947	GGCCCCAAGAAGCATTTGAAGCGTTTAA	14693528 (Drosophila melanogaster)

MP001	948	GGGCGTGTTGGTTACCAACAG	31365398 (Toxoptera citricida)
MP001	646	GGGCGTGTTGGTTACCAACAGGGAAAG	73612212 (Aphis gossypii) 37804548 (Rhopalosiphum padi)
MP001	950	GGTACAAACTGGACCCAAAGG	60297572 (Diaprepes abbreviatus)
MP001	951	GTTTTTATTGGAAAAGGTCAAAAGAACTACATTTCTCT	73619191 (Aphis gossypii) 31364848 (Toxoptera citricida)
MP001	952	TGAAGTATGCACTTACTGGTGC	73619191 (Aphis gossypii)
MP001	953	TGTAAAGTAAAGGGGTACAAACTGGACCCAAAGGTGT	73619191 (Aphis gossypii)
MP001	954	TGTGTAAAGTAAAGGGGTACAAACTGGACCCAAAGGTGT	30031258 (Toxoptera citricida)
MP001	955	TTCTTGCGTAATCGTTTGAAGTATGCACTTACTGGTGCCGAA GTCACCAAGATTGTCATGCAAAGATTAATCAAGGTTGATGGC AAAGTCCGTACCGACCCTAATTATCCAGC	46998791 (Acyrthosiphon pisum)
MP001	926	TTGGAAAAGGTCAAAAGAACTACATTTCTCT	73615060 (Aphis gossypii)
MP001	957	TTGGATCATATCCGTTTTGAAACTGGAAACTTGTGCATGAT	37804548 (Rhopalosiphum padi)
MP002	928	AAAAAAATGGTACAACTAATAAACGAGCTGCATTGCAAGC	47537017 (Acyrthosiphon pisum)
MP002	959	AAGAAACGGTACGAACAACAA	15363283 (Apis mellifera)
MP002	096	ACAAGAATTTTTAGAAAAAAAATTGAACAAGAAGTAGCGATA GC	47537017 (Acyrthosiphon pisum)
MP002	961	CAAATTGATGGTACCATGTTAACTATTGAACAACAGCG	47537017 (Acyrthosiphon pisum)
MP002	962	GAAGATGCGATACAAAAGCTTCGATCCAC	47537017 (Acyrthosiphon pisum)
MP002	696	GAGTITCTITAGTAAAGTATTCGGTGG	110762684 (Apis mellifera)
MP010	964	AAAAGATGATCCAAATAGTTT	110759793 (Apis mellifera)
MP010	965	AAAATATTATTGATGGACACATTTTTCCATATTTTGATATTCCA	47520567 (Acyrthosiphon pisum)
MP010	996	AATAGTCCTGATGAAACATCATATTATAG	47520567 (Acyrthosiphon pisum)
MP010	296	CAAAAAGATGATCCAAATAGTTTCCGATTGCCAGAAAACTTCA GTTTATATCCACAGTTCATGTATCATTTAAGAAGGTCTCAATTT CTACAAGTTTTTAA	47520567 (Acyrthosiphon pisum)
MP010	896	CAACATTCCAGTGGCTATAAACGAAT	47520567 (Acyrthosiphon pisum)
MP010	696	CACATGTTGATGCGTGAAGATGTTAC	47520567 (Acyrthosiphon pisum)
MP010	970	CCAATTCTGTATAGCTATAGTTTTAATGGTAGGCCAGAACCTG TACTTTTGGATACCAG	47520567 (Acyrthosiphon pisum)
MP010	971	CCATCTCAAACACATAATATGTATGCTTATGGAGG	55814942 (Acyrthosiphon pisum)
MP010	972	CTCAAAACTCGATTCCCAATGCCTCGGTATATTGACACAGAA CAAGGTGGTAGTCAGGCAAGATTTTTACTATGCAAAGT	55814942 (Acyrthosiphon pisum)

MP010	973	GGTGATGGTGGAGCACCAGTTTTGACAGATGATGTAAGCTTG	55814942 (Acythosiphon pierum)
MP010	974	GTGGCTGCATACAGTTCATTACGCAGTA	28574527 (Decemble melanester)
MP010	975	TAATGGCTCGTATGGTAGTGAACCGTGAAACTGA	47520667 (Academica files and academy)
MP010	926	TATAGGCACATGTTGATGCGTGAAGAT	40924332 (Bombive mori)
MP010	977	TGGGCTGATCGTACGCTTATACGCTTGTCCA	47520567 (Acvrthosiopon pisum)
MP010	978	TTAGCTAGGAATTGGGCAGACCCTGT	47520567 (Acyrthosiphon pisum)
MP016	626	AAACAAGATTTTGAGGAAAATGG	35508791 (Acyrthosiphon pisum)
MP016	086	AACCTGGTAAATCAGTTCTTGA	35508791 (Acyrthosiphon pisum)
MP016	981	AACGACGATCACCCATCCTATTC	110240379 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)
MP016	982	AATTTAGCTAATGATCCTACTATTGA	15366446 (Apis mellifera)
MP016	983	ACTATGCCTAACGACGACATCACCCATCC	237458 (Heliothis virescens)
MP016	984	ATAGTATTTGCTGCTATGGGTGTTAATATGGAAAC	30124460 (Toxoptera citricida)
MP016	985	CAAATTTGTAGACAAGCTGGTCT	103020368 (Tribolium castaneum)
MP016	986	CATGAAGACAATTTTGCTATAGTATTTGCTGCTATGGGTGTTA ATATGGAAAC	35508791 (Acyrthosiphon pisum)
MP016	286	CCGATAGATAAAGGACCTCCTATTTTGGCTGAAGATTATTTGG ATATTGAAGGCCAACCTATTAATCCATA	35508791 (Acyrthosiphon pisum)
MP016	886	CCTATTTTGGCTGAAGATTAT	55905051 (Locusta migratoria)
MP016	686	CGTATCATTACACCACGTCTTGCTTTAACTGCTGCTGAATTTT TAGCTTA	30124460 (Toxoptera citricida)
MP016	066	CGTCTTGCTTTAACTGCTGCTGAATTTTTAGCTTA	35508791 (Acyrthosiphon pisum)
MP016	991	GAAGAAGTACCTGGGCGTCGTGGTTTCCCTGGTTACATGTAC	30124460 (Toxoptera citricida)
MP016	892	GAAGGAAGAATGGTTCTATCACACAAATACCTATTTTAACTA TGCCTAA	30124460 (Toxoptera citricida)
MP016	663	GAAGGAAGAATGGTTCTATCACACAAATACCTATTTTAACTA TGCCTAACGA	73615307 (Aphis gossypii)
MP016	994	GATTTAGCTACAATTTATGAACG	30124460 (Toxoptera citricida)
MP016	995	GCCAGATTCTTTAAACAAGATTTTGAGGAAAATGG	30124460 (Toxoptera citricida)
MP016	966	GCTATGGGTGTTAATATGGAAAC	75469507 (Tribolium castaneum)
MP016	266	GCTGCAGGTTTACCACATAATGAGATTGCTGCTCAAATTTG	35508791 (Acyrthosiphon pisum)
MP016	866	GCTGGGCGTGTAGAAGGAAGAATGGTTCTATCACACAAATA	55813096 (Acyrthosiphon pisum)

		CCTATTTAACTATGCCTAACGA	
MP016	666	GGTTACATGTACACCGATTTAGCTACAATTTATGAACG	55813096 (Acyrthosiphon pisum) 73615307 (Aphis gossypii)
MP016	1000	GTGGACAAAAATTCCAATATTTTC	55813096 (Acyrthosiphon pisum)
MP016	1001	GTGTCGGAGGATATGTTGGGCCG	92460250 (Drosophila erecta) 2286639 (Drosophila melanogaster) 55694673 (Drosophila yakuba)
MP016	1002	GTTCTTGAATTTAGCTAATGATCCTACTATTGA	82563007 (Acyrthosiphon pisum)
MP016	1003	TCAATGGAGAATGTTTGTTTGTTTGAATTTAGCTAATGATC CTACTATTGA	35508791 (Acyrthosiphon pisum) 30124460 (Toxoptera citricida)
MP016	1004	TCAGCTATTGATATCATGAACTCTATTGCTCGTGGACAAAAA TTCCAATATTTTC	35508791 (Acyrthosiphon pisum)
MP016	1005	TCATATGCTGAAGCTTTAAGAGAAGTTTCTGCTGCTCG	30124460 (Toxoptera citricida)
MP016	1006	TCCAGAACATATCCTCAAGAAATGATTCAAACTGGTAT	35508791 (Acyrthosiphon pisum)
MP016	1001	TCTATTGCTCGTGGACAAAAATTCC	110764393 (Apis mellifera)
MP016	1008	TGTGAAAAGCATGTCTTAGTTATTTAACTGACATGAGTTCAT ATGCTGAAGCTTTAAGAAAGTTTCTGCTGCTCGTGAAGAAG TACCTGGGCGTCGTGGTTTCCC	55813096 (Acyrthosiphon pisum)
MP016	1009	TTAACTGACATGAGTTCATATGCTGAAGCTTTAAGAGAAGTTT CTGCTGCTCGTGAAGAAGTACCTGG	73615307 (Aphis gossypii)
MP027	1010	TITITAAAAATITITAAAGAAAAAA	47522167 (Acyrthosiphon pisum)

Table 4-NL

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
NL001	1161	CTGAAGAAGCTAAGTACAAGCT	16566724 (Spodoptera frugiperda)
NL001	1162	TTCTTCCGTTTGATCTATGATGTTAA	16900870 (Ctenocephalides felis)
NL001	1163	CAGCTGAAGCTAAGTACAA	16900870 (Ctenocephalides felis), 56199521 (Culicoides sonorensis)
NL001	1164	GAGTTCTTCCGTTTGATCTATGATGTTAA	16900945 (Ctenocephalides felis)
NL001	1165	AAGTACAAGCTGTGCAAAGTGAAG	22474232 (Helicoverpa armigera)

NL001	1166	TTCGACATCGTGCACATCAAGGAC	22474232 (Helicoverpa armigera)
NL001	1167	ATCACAGCTGAAGCTAAGTACAAG	25956820 (Biphyllus lunatus)
NL001	1168	TGTGTATGATCACTGGAGGTCGTAA	25957367 (Carabus granulatus)
NL001	1169	AACGTTTTCATCGGCAAG	27613698 (Anopheles gambiae)
NL001	1170	CCAAAATCATGGACTTCATCA	3738704 (Manduca sexta)
NL001	1171	TGATCTATGATGTTAAGGGACG	3738704 (Manduca sexta)
NL001	1172	CATGGATGTTGGACAAATTGGG	37951951 (lps pini), 56772312 (Drosophila virilis), 60305420 (Mycetophagus quadripustulatus), 67885868 (Drosophila pseudoobscura), 77321575 (Chironomus tentans), 25956479 (Biphyllus lunatus), 22474232 (Helicoverpa armigera);
NL001	1173	TTTTGCCACTAGGTTGAACAACGT	37953169 (lps pini)
NL001	1174	GCAGCGTCTCATCAAGGTTGACGGCAA	48927129 (Hydropsyche sp.)
NL001	1175	AAGGGACGTTTCACCATCCAC	50818668 (Heliconius melpomene)
NL001	1176	AACCTGTGTATGATCACTGGAGG	60293875 (Homalodisca coagulata)
NL001	1177	ACTAACTGTGAAGTGAAGAAATTGT	60293875 (Homalodisca coagulata)
NL001	1178	TTCTTCCGTTTGATCTATGATGT	60293875 (Homalodisca coagulata), 71047771 (Oncometopia nigricans)
NL001	1179	TGTATGATCACTGGAGGTCGTAACTTGGG	60297219 (Diaprepes abbreviatus)
NL001	1180	CATGGATGTTGGACAAATTGGGTGG	60311985 (Papilio dardanus)
NL001	1181	GCTGAAGAAGCTAAGTACAAG	68758383 (Acanthoscurria gomesiana)
NL001	1182	GGAGGTCGTAACTTGGGTCGTGT	77327303 (Chironomus tentans)
NL001	1183	TATGATGTTAAGGGACGTTTCACCAT	77327303 (Chironomus tentans)
NL001	1184	CATGGATGTTGGACAAATTGGG	93002561 (Drosophila grimshawi) 93001617 (Drosophila mojavensis) 92939328 (Drosophila virilis) 112433559 (Myzus persicae)

			90814922 (Nasonia vitripennis)
NL001	1185	CTGAAGAAGCTAAGTACAAGCT	110264122 (Spodoptera frugiperda)
NL001	1186	GAAGAAGCTAAGTACAAGCTGTG	90820001 (Graphocephala atropunctata)
NL001	1187	TTGCACAGCTTGTACTTAGCTTCTTC	90134075 (Bicyclus anynana)
NL001	1188	AAGTACAAGCTGTGCAAAGTGAAG	112350104 (Helicoverpa armigera)
NL001	1189	ATGATCACTGGAGGTCGTAACTTGGGTCG	113017118 (Bemisia tabaci)
NL001	1190	GGTCGTAACTTGGGTCGTGTGGG	109978109 (Gryllus pennsylvanicus)
NL001	1191	TTCGACATCGTGCACATCAAGGAC	112350104 (Helicoverpa armigera)
NL001	1192	ACATCGTGCACATCAAGGACG	90981811 (Aedes aegypti)
NL003	1193	CAGGAGTTGAAGATCATCGGAGAGTATGG	15457393 (Drosophila melanogaster), 76551770 (Spodoptera frugiperda)
NL003	1194	CGTAAGGCCGCTCGTGAGCTG	1797555 (Drosophila melanogaster)
NL003	1195	AAGGTAACGCCCTGCTGCGTCG	18863433 (Anopheles gambiae)
NL003	1196	CAGGAGTTGAAGATCATCGGAGAGTA	2459311 (Antheraea yamamai), 49532931 (Plutella xylostella)
NL003	1197	GCCAAGTCCATCACGCCCG	33354488 (Drosophila yakuba), 60312414 (Papillo dardanus)
NL003	1198	AAGTCCATCCATCACGCCCGT	33528372 (Trichoplusia ni)
NL003	1199	TGTTTGAAGGTAACGCCCTGCT	34788046 (Callosobruchus maculatus)
NL003	1200	CAGGAGTTGAAGATCATCGGAGA	35505798 (Acyrthosiphon pisum), 56772256 (Drosophila virilis)
NL003	1201	GTGCGCCTGGACTCGCAGAAGCACAT	38624772 (Drosophila melanogaster)
NL003	1202	GAGTTGAAGATCATCGGAGAGTA	4158332 (Bombyx mori)
NL003	1203	TTGGGTTTAAAAATTGAAGATTTC	56150446 (Rhynchosciara americana)
NL003	1204	TCGCAGAAGCACATTGACTTCTC	56772256 (Drosophila virilis)
NL003	1205	AGAATGAAGCTCGATTACGTC	60306665 (Sphaerius sp.)
NL003	1206	TTTGTGGTGCGCCTGGACTCG	60312414 (Papilio dardanus)
NL003	1207	AGAAGCACATTGACTTCTCGCTGAAGTC	63514675 (Ixodes scapularis)

NL003	1208	TCGCAGAAGCACATTGACTTCTCGCT	70979521 (Anopheles albimanus)
NL003	1209	CTCATCAGACAAAGACATATCAGAGT	71536734 (Diaphorina citri)
NL003	1210	TTGAAGATCATCGGAGAGTATGG	73612958 (Aphis gossypii)
NL003	1211	AAAATTGAAGATTTCCTTGAA	75467497 (Tribolium castaneum)
NL003	1212	CAGAAGCACATTGACTTCTCGCT	77730066 (Aedes aegypti)
NL003	1213	CGTAAGGCCGCTCGTGAGCTG	24661714 (Drosophila melanogaster)
NL003	1214	GCGTGATGGACTTGGCCAA	90813959 (Nasonia vitripennis)
NL003	1215		92467993 (Drosophila erecta)
NL003	1216	GCCAAGTCCATCACGCCCGT	112349903 (Helicoverpa armigera)
NL003	1217	CTCATCAGACAAGACATATCAGAGT	110671455 (Diaphorina citri)
NL003	1218	CAGGAGTTGAAGATCATCGGAGA	86464397 (Acyrthosiphon pisum) 92938865 (Drosophila virilis)
NL003	1219	CAGGAGTTGAAGATCATCGGAGGAGTATGG	101417830 (Plodia interpunciella) 110254389 (Spodoptera frugiperda)
NL003	1220	GAGTTGAAGATCATCGGAGAGTA	112984021 (Bombyx mori)
NL003	1221	TCGCAGAAGCACATTGACTTCTC	93002641 (Drosophila mojavensis) 92938865 (Drosophila virilis)
NL003	1222	TTGAAGATCATCGGAGAGTATGG	111158779 (Myzus persicae)
NL003	1223	CAGAAGCACATTGACTTCTCGCTGAA	92232387 (Drosophila willistoni)
NL003	1224	CTCCGTAACAAGCGTGAGGTGTGG	92232387 (Drosophila willistoni)
NL003	1225	CGTAACAAGCGTGAGGTGTGG	110558371 (Drosophila ananassae)
NL003	1226	GTCAAATACGCCCTGGCCAAGAT	93001117 (Drosophila grimshawi)
NL004	1227	TACGCCCATTCCCCATCAACTGTGT	14994663 (Spodoptera frugiperda), 53883415 (Plutella xylostella)
NL004	1228	TGCTCTCACATCGAAACATG	22039837 (Ctenocephalides felis)
NL004	1229	AACTTCCTGGGCGAGAAGTACATC	25959088 (Meladema coriacea)
NL004	1230	GCCGTGTACGCCCATTCCCCATCAACTG	25959088 (Meladema coriacea)
NL004	1231	GTGTACGCCCATTTCCCCATCAACTGTGTGAC	2761563 (Drosophila melanogaster)
NL004	1232	GTGTACGCCCATTCCCCATCAACTGTGT	33354902 (Drosophila yakuba)
NL004	1233	ATGCGTGCGTGTACGCCCATTT	33433477 (Glossina morsitans)

00	1234	TO A COLON TO TO A COLON A COL	22404406 /Trichooling
NL004	1235	AAGGATATTCGTAAATTCTTGGA	37952094 (los pini). 56199511 (Culicoides sonorensis)
NL004	1236	GCCCATTTCCCCATCAACTGTGT	42766318 (Armigeres subalbatus)
NL004	1237	AACTTCCTGGGCGAGAAGTACAT	49547659 (Rhipicephalus appendiculatus)
NL004	1238	AAGAACAAGGATATTCGTAAATTCTTGGA	56152793 (Rhynchosciara americana)
NL004	1239	AACTTCCTGGGCGAGAAGTACATCCG	58079798 (Amblyomma americanum), 49554219 (Boophilus microplus)
NL004	1240	CATTTCCCCATCAACTGTGAC	60312171 (Papilio dardanus)
NL004	1241	CGTAACTTCCTGGGCGAGAAGTACATCCG	63516417 (Ixodes scapularis)
NL004	1242	AGATCAGCTGCCTCATCCAACA	71539722 (Diaphorina citri)
NL004	1243	GTGTACGCCCATTTCCCCATCAACTGTGT	24583601 (Drosophila melanogaster)
NL004	1244	TACGCCCATTTCCCCATCAACTGT	113017826 (Bemisia tabaci)
NL004	1245		110263092 (Spodoptera frugiperda)
NL004	1246		94468811 (Aedes aegypti)
NL004	1247	ACACAGTTGATGGGGAAATGGGC	90136736 (Bicyclus anynana)
NL004	1248	GCCCATTTCCCCATCAACTGTGT	110671493 (Diaphorina citri) 110249018 (Spodoptera frugiperda)
NL004	1249	GTCACACAGTTGATGGGGAAATGGGC	87266195 (Choristoneura fumiferana)
NL004	1250	CCATTTCCCCATCAACTGTGT	90981351 (Aedes aegypti)
NL005	1251	AAGGGTAACGTATTCAAGAACAAGCG	1900283 (Drosophila melanogaster)
NL005	1252	AAGGGTAACGTATTCAAGAACAAG	25956594 (Biphyllus lunatus)
NL005	1253	ССТСТАТТСАТССАТТСА	30124405 (Toxoptera citricida), 60294294 (Homalodisca coagulata), 71046487 (Oncometopia nigricans), 73612243 (Aphis gossypii)
NL005	1254	AAAGGTCAAGGAGGCCAAGAAG	67875089 (Drosophila pseudoobscura)
NL005	1255	AAGATGTTGAACGACCAGGCTGAAGC	77324118 (Chironomus tentans)
NL005	1256	ACGTTACCCTTAGCCTTCATGTA	90812513 (Nasonia giraulti)
NL005	1257		45552830 (Drosophila melanogaster)
NL005	1258	CGTGTATTGATGGAGTTCATTCA	112433619 (Myzus persicae)

300	4250		00044400 (B
NEOOS.	6071	AGG I CAAGGAGCCCAAGAAGC	92941126 (Drosophila Virilis)
NLOOD	1200	ACGI I ACCCI I CAI GI A	90812513 (Nasonia giraulti)
NL005	1261	AAGGGTAACGTATTCAAGAACAAGCG	45552830 (Drosophila melanogaster)
NL006	1262	AGTCCCAGGAACACCTATCAG	21464337 (Drosophila melanogaster)
NL006	1263	ATTATTCCCTTCCCCGATCACAA	24646762 (Drosophila melanogaster)
NL006	1264	CACGCTATCCCATCTCGTATGACAATTGG	24646762 (Drosophila melanogaster)
NL006	1265	TACAAGTTCTGCAAAATTCGAGT	49573116 (Boophilus microplus)
NL006	1266	ATGACAATTGGCCATTTAATTGAATG	50564037 (Homalodisca coagulata)
900N	1267	ACCTACACGCACTGCGAGATCCA	58384759 (Anopheles gambiae str. PEST)
NL006	1268	GGTGTGGTGGAGTACATTGACAC	58384759 (Anopheles gambiae str. PEST)
900TN	1269	ATTATTCCCTTCCCCGATCACAA	24646762 (Drosophila melanogaster)
900N	1270	AGTCCCAGGAACACCTATCAG	22026793 (Drosophila melanogaster)
NL006	1271	CACGCTATCCCATCTCGTATGACAATTGG	24646762 (Drosophila melanogaster)
NL006	1272	TCTCGTATGACAATTGGCCATTT	93000469 (Drosophila mojavensis)
NL007	1273	GCAAACAAGTCATGATGTTCAG	15354019 (Apis mellifera)
NL007	1274	GGTATGGGAAAACTGCTGTATTTGTGTT	15354019 (Apis mellifera)
NL007	1275	GAATGCATTCCTCAAGCTGTA	21068658 (Chironomus tentans)
NL007	1276	TGCAAGAAATTCATGCAAGATCC	21068658 (Chironomus tentans)
NL007	1277	TTCCAAATCAGCAAAGAGTATGA	2890413 (Drosophila melanogaster)
NL007	1278	GATGACGAGGCCAAGCTGACGCT	49536419 (Rhipicephalus appendiculatus)
NL007	1279	TGTGGTTTTGAACATCCATCTGAAGTACAACA	60308907 (Hister sp.)
NL007	1280	GAAAACGAAAAGAACAAAAG	77642464 (Aedes aegypti)
NL007	1281	GGTATGGGAAAACTGCTGTATTTGTGTT	110759359 (Apis mellifera)
NL007	1282	GCAAACAAGTCATGATGTTCAG	110759359 (Apis mellifera)
NL007	1283	CTGCAGCACTATGTCAAACTCAA	90137538 (Spodoptera frugiperda)
NL007	1284	GAAAACGAAAAAAAAAG	94468805 (Aedes aegypti)
NL008	1285	TGCCAAGCCTAAAGATTTGGG	60315277 (Dysdera erythrina)
NL008	1286	ATGTTCAAGAAAGTTAATGCTAGAGA	60336214 (Homalodisca coagulata)

NL008	1287	GAGTTGTTGTTTTTGGGATG	66522334 (Apis mellifera)
NL008	1288	TTCAAACAGTTTTGCAGTTCC	75735289 (Tribolium castaneum)
NL008	1289	<u>ваеттетевтеттевенте</u>	110762109 (Apis mellifera)
NL010 1	1290	AAGGACCTGACTGCCAAGCAG	2761430 (Drosophila melanogaster)
NL010 1	1291	GCCAAGCAGATCCAGGACATG	49559867 (Boophilus microplus)
NL010 1	1292	TGCTCGAAGAGCTACGTGTTCCG	49559867 (Boophilus microplus)
NL010 1	1293	AAGAGCTACGTGTTCCGTGGC	92043082 (Drosophila willistoni)
NL010_1	1294	AAGGACCTGACTGCCAAGCAG	92481328 (Drosophila erecta) 28571527 (Drosophila melanogaster)
NL010 2	1295	ATGGACACATTTTTCCAAATTCTCAT	33427937 (Glossina morsitans)
NL010 2	1296	ACCAGCAGTATTCAACCCGACA	47520567 (Acyrthosiphon pisum)
NL010_2	1297	TATTGATGGACACATTTTTCCA	47520567 (Acyrthosiphon pisum)
NL010 2	1298	TTCAACAACAGTCCTGATGAAAC	55891325 (Locusta migratoria)
NL010_2	1299	ATGGACACATTTTCCAAATT	56151768 (Rhynchosciara americana), 75736992 (Tribolium castaneum)
NL010 2	1300	CCGCAGTTCATGTACCATCTGCG	6932015 (Anopheles gambiae), 29558345 (Bombyx mori)
NL010 2	1301	ATGGACACATTTTCCAAATT	91086194 (Tribolium castaneum)
NL011	1302	AAGAAGTATGTTGCCACCCTTGG	21640529 (Amblyomma variegatum)
NL011	1303	GACATCAAGGACAGGAAAGTCAAGGCCAAGAGC ATAGT	25959135 (Meladema coriacea)
NL011	1304	CAACTACAACTTCGAGAAGCCGTTCCTGTGG	25959135 (Meladema coriacea), 77646995 (Aedes aegypti)
NL011	1305	TACAAGAACGTTCCCAACTGGCA	3114090 (Drosophila melanogaster)
NL011	1306	TGCGAAAACATTCCCATTGTACT	37951963 (lps pini)
NL011	1307	AGGAAGAACCTTCAGTACTACGA	40544671 (Tribolium castaneum)
NL011	1308	AGCAACTACAACTTCGAGAAGCC	49565237 (Boophilus microplus), 49538692 (Rhipicephalus appendiculatus)
NL011	1309	AACAAAGTAGACATCAAGGACAGGAAAGTCAA	76552920 (Spodoptera frugiperda)

NL011	1310	CCCAACTGGCACAGAGATTTAGTG	78230577 (Heliconius erato/himera mixed FST lihrary)
NL011	1311	GATGGTGGTACCGGCAAAACTAC	78538667 (Glossina morsitans)
NL011	1312	TACAAGAACGTTCCCAACTGGCAC	84267747 (Aedes aegypti)
NL011	1313	AACAAAGTAGACATCAAGGACAGGAAAGTCAA	110263840 (Spodoptera frugiperda)
NL011	1314	TTGACTITCCTGTCCTTGATGTC	90136305 (Bicyclus anynana)
NL011	1315	GACATCAAGGACAGGAAAGTCAAGGC	90813103 (Nasonia vitripennis)
NL011	1316	AGGAAGAACCTTCAGTACTACGA	91091115 (Tribolium castaneum)
NL011	1317	GATGTCGTAGTACTGAAGGTTCTT	90136305 (Bicyclus anynana)
NL011	1318	CAACTACAACTTCGAGAAGCCGTTCCTGTGG	90977910 (Aedes aegypti)
NL011	1319	CCAACCTGGAGTTCGTCGCCATGCC	92465523 (Drosophila erecta)
NL011	1320	GAATTTGAAAAGAAGTATGTTGC	113015058 (Bemisia tabaci)
NL011	1321	CTTCAGTACTACGACATCAGTGCGAA	110086408 (Amblyomma cajennense)
NL011	1322	AGCAACTACAACTTCGAGAAGCC	110086408 (Amblyomma cajennense)
NL011	1323	AAGCTGATCGGTGACCCCAACCTGGAGTT	110086408 (Amblyomma cajennense)
NL012	1324	CACAGTTTGAACAGCAAGCTGG	29552409 (Bombyx mori)
NL012	1325	GCAGCAGCCACAGGTAGA	77823921 (Aedes aegypti)
NL012	1326	CACAGTITGAACAGCAAGCTGG	94435913 (Bombyx mori)
NL013	1327	CAAGCGAAGATGTTGGACATGCT	15536506 (Drosophila melanogaster)
NL013	1328	ATGGTGGTGGTACCACTCGCACCC	49547019 (Rhipicephalus appendiculatus)
NL013	1329	GTGGTGGGTGGTACCACTCGCACCC	58079586 (Amblyomma americanum)
NL013	1330	GTGGGCTGGTACCACTCGCACCC	82848521 (Boophilus microplus)
NL013	1331	AAGATGTTGGACATGCTAAAGCAGACAGG	92229701 (Drosophila willistoni)
NL013	1332	TGTCGGGTGTCGACATCAACAC	92962655 (Drosophila ananassae)
NL013	1333	GTTCCCATGGAGTTATGGGC	112433067 (Myzus persicae)
NL013	1334	GTGGGCTGGTACCACTCGCACCC	110085175 (Amblyomma cajennense)
NL014	1335	GAGATCGATGCCAAGGCCGAGGA	1033187 (Drosophila melanogaster)
NL014	1336	GAATTCAACATTGAAAAGGGA	16900951 (Ctenocephalides felis)
NL014	1337	GAAGAATTCAACATTGAAAAGGG	47518467 (Acyrthosiphon pisum)
NL014	1338	GAAGCCAATGAGAAAGCCGAAGA	47518467 (Acyrthosiphon pisum)
NL014	1339	TCGTCAAACATGCTGAACCAAGC	61954844 (Tribolium castaneum)

			essesso (Dishrotica viraitora) 78160300
NL014	1340	TTTCATTGAGCAAGAGCCAATGA	(1954844 (Tribolium castaneum), halides felis)
NL014	1341	CAAGAAGCCAATGAGAAAGCCGA	111160670 (Myzus persicae)
NL014	1342	TITCATTGAGCAAGAGCCAATGA	91092061 (Tribolium castaneum)
NL014	1343	AGAAGCCAATGAGAAAGCCGA	112432414 (Myzus persicae)
NL014	1344	TCGTCAAACATGCTGAACCAAGC	91092061 (Tribolium castaneum)
NC014	1345	GCCAATGAGAAGCCGAAGAGATCGATGCCAA	93001435 (Drosophila grimshawi)
NL014	1346	AAAGCCGAAGAGATCGATGCCAA	92936169 (Drosophila virilis)
NL014	1347	GAGATCGATGCCAAGGCCGAGGA	24644299 (Drosophila melanogaster)
NL014	1348	GAAGAATTCAACATTGAAAAGGG	86463006 (Acyrthosiphon pisum) 111160670 (Myzus persicae)
NL014	1349	GAAGAATTCAACATTGAAAAGGGAAGGCT	90819999 (Graphocephala atropunctata)
NL014	1350	AAGAATTCAACATTGAAAAGGG	111158385 (Myzus persicae)
NL015	1351	GAGGTGCGCCATCCACAC	18887285 (Anopheles gambiae)
NL015	1352	ATCCATGTGCTGCCCATTGATGA	21641659 (Amblyomma variegatum)
NL015	1353	CATGTGCCCATTGATGAT	22039735 (Ctenocephalides felis)
NL015	1354	CTGCGCATCCACACAGAACATGAAGTTGG	22474136 (Helicoverpa armigera)
NL015	1355	TTCTTCTTCATCAACGGACC	49552586 (Rhipicephalus appendiculatus)
NL015	1356	GAGATGGTGGAGTTGCCGCTG	58371722 (Lonomia obliqua)
NL015	1357	CAGATCAAAGAGATGGTGGAG	92947821 (Drosophila ananassae)
NL015	1358		92947821 (Drosophila ananassae)
NL015	1359		92470977 (Drosophila erecta)
NL015	1360		92480997 (Drosophila erecta)
NL015	1361	ATCATCTTCATCGATGAGCTGGACGC	99007898 (Leptinotarsa decemlineata)
NL015	1362	CAGCTGCTGACGCTGATGGACGG	92941440 (Drosophila virilis)
NL015	1363	ATCGACATTGGCATTCCCGATGCCACCGG	92947821 (Drosophila ananassae)
NL016	1364	TCTATGGAGAACGTGTGCCTGTTCTTGAAC	27372076 (Spodoptera littoralis)
NL016	1365	TACCAGTGCGAGAGCACGTGCT	2921501 (Culex pipiens)
NL016	1366	ATGGAGAACGTGTGCCTGTTCTTGAACCTGGC	31206154 (Anopheles gambiae str. PEST)
NL016	1367	CGTGGCCAGAAATCCCCATCTT	3945243 (Drosophila melanogaster)
***************************************	A		

NL016	1368	TGGCCTACCAGTGCGAGAAGCACGTG	4680479 (Aedes aegypti)
NL016	1369	TGCCCACCATCTACGAGCGCGCCGG	53883819 (Plutella xylostella)
NL016	1370	ATGGAGAACGTGTGCCTGTTCTTGAA	67883622 (Drosophila pseudoobscura)
NL016	1371	CCCGAGGAAATGATCCAGACTGG	67883622 (Drosophila pseudoobscura)
NL016	1372	TGGCCTACCAGTGCGAGAAGCACGTGCT	67883622 (Drosophila pseudoobscura), 31206154 (Anopheles gambiae str. PEST)
NL016	1373	GAGGAGGTGCCCGGCCGTCGTGGTTTCCCCGG TTACATGTACACCGAT	67896654 (Drosophila pseudoobscura)
NL016	1374	GAGGGTCGCAACGGCTCCATCAC	67896654 (Drosophila pseudoobscura)
NL016	1375	GAGGTGCCGGCCGTCGTGGTTTCCCCGGTTAC ATGTACACCGAT	75710699 (Tribolium castaneum)
NL016	1376	ATGGAGAACGTGTGCCTGTTCTTGAAC	76554661 (Spodoptera frugiperda)
NL016	1377	TGGCCTACCAGTGCGAGAGCACGTGCTCGTCA TCCT	9992660 (Drosophila melanogaster)
NL016	1378	CGTCGTGGTTTCCCCGGTTACATGTACACCGAT	9992660 (Drosophila melanogaster), 2921501 (Culex pipiens), 62239897 (Diabrotica virgifera)
NL016	1379	TGGTCGCGTATCTATCCCGAGGAAATGATCCAG AC	92999374 (Drosophila grimshawi)
NL016	1380	TGGTCGCGTATCTATCCCGAGGAAATGATCCAG ACTGG	92940538 (Drosophila virilis)
NL016	1381	TCTATGGAGAACGTGTGCCTGTTCTTGAAC	92938622 (Drosophila virilis)
NL016	1382	ATGGAGAACGTGTGCCTGTTCTTGAAC	92950254 (Drosophila ananassae) 90137502 (Spodoptera frugiperda)
NL016	1383	AACGTGTGCTGTTCTTGAAC	92946927 (Drosophila ananassae)
NL016	1384	TGGCCTACCAGTGCGAGAAGCACGTGCT	24646342 (Drosophila melanogaster) 92231646 (Drosophila willistoni)
NL016	1385	TGGCCTACCAGTGCGAGAAGCACGTGCTCGTCA TCCT	107256717 (Drosophila melanogaster)
NL016	1386	GCCTACCAGTGCGAGAGCACGTGCT	92985459 (Drosophila grimshawi)
NL016	1387	GAGGAGGTGCCGGCCGTCGTGGTTTCCCCGG TTACATGTACAC	92938622 (Drosophila virilis)

NL016	1388	GAGGAGGTGCCGGCCGTCGTGGTTTCCCCGG TTACATGTACACCGAT	92477818 (Drosophila erecta)
NL016	1389	GAGGTGCCGGCCGTCGTGGTTTCCCCGGTTAC ATGTACACCGAT	91090030 (Tribolium castaneum)
NL016	1390	CGTCGTGGTTTCCCCGGTTACAT	104530890 (Belgica antarctica)
NL016	1391	CGTCGTGGTTTCCCCGGTTACATGTACACCGAT	92981037 (Drosophila grimshawi) 24646342 (Drosophila melanogaster)
NL016	1392	CGTGGTTTCCCCGGTTACATGTACACCGAT	92957249 (Drosophila ananassae)
NL016	1393	ATCGGTGTACATGTAACCGGGGAAACCA	103744758 (Drosophila melanogaster)
NL016	1394	CGTCCGCCCCCCTCGTAGATGGT	91829127 (Bombyx mori)
NL016	1395	GAGGGTCGCAACGGCTCCATCAC	92957249 (Drosophila ananassae)
NL018	1396	CGGACGTGGCTCATCA	92479742 (Drosophila erecta)
NL019	1397	GTGGTGTACGACTGCACCGACCAGGAGTCGTTC AACAAC	84343006 (Aedes aegypti)
NL019	1398	GAAAGTTACATCAGTACCATTGGTGT	113018639 (Bemisia tabaci)
NL019	1399	CACCGACCAGGAGTCGTTCAACAAC	85857059 (Aedes aegypti)
NL019	1400	AGTACCATTGGTGTAGATTTTAAAAT	91087112 (Tribolium castaneum)
NL019	1401	ATTGGTGTAGATTTAAAATTTAG	78542465 (Glossina morsitans)
NL019	1402	GGTGTAGATTTTAAAATTAGAAC	92232411 (Drosophila willistoni)
NL019	1403		90986845 (Aedes aegypti)
NL019	1404	GTTCTAATTTTAAAATCTACAC	92043152 (Drosophila willistoni)
NL019	1405	TGGGACACGCCCGCCAGGAG	91091115 (Tribolium castaneum)
NL019	1406	TGGGACACGCCCGCCAGGAGCG	90982219 (Aedes aegypti)
NL019	1407	TGGGACACGGCCGGCCAGGAGCGGT	94433465 (Bombyx mori)
NL019	1408	GACCAGCTGGGCATTCCGTTCCT	10708384 (Amblyomma americanum)
NL019	1409	ATTGGTGTAGATTTAAAATT	18864897 (Anopheles gambiae)
NL019	1410	TEGGACACGCCCGCCAGGAGCGGTT	18888926 (Anopheles gambiae)
NL019	1411	CAGGAGCGGTTCCGCACGATCAC	21640713 (Amblyomma variegatum)
NL019	1412	ATTGGTGTAGATTTAAAATTAGAAC	22039832 (Ctenocephalides felis)
NL019	1413	ATTGGTGTAGATTTAAAATTAG	33378174 (Glossina morsitans)
NL019	1414	TGGGACACGGCCGGCCAGGAG	3738872 (Manduca sexta), 25959135 (Meladema coriacea), 40542849 (Tribolium castaneum), 67840088 (Drosophila pseudoobscura)

NL019	1415	TGGGACACGCCCGGCCAGGAGCGGT	4161805 (Bombyx mori)
NL019	1416	GATGACACATACAGAAAGTTACATCAGTAC	50562545 (Homalodisca coagulata), 71047909 (Oncometopia nigricans)
NL019	1417	ACGCCCGCCAGGAGCGGTTCCG	58378591 (Anopheles gambiae str. PEST)
NL019	1418	AGTACCATTGGTGTAGATTTTAAAAT	61954135 (Tribolium castaneum)
NL019	1419	TAAAGCTTCAGATTTGGGACAC	68758530 (Acanthoscurria gomesiana)
NL019	1420	ATTTGGGACACGGCCGGCCAGGA	77667315 (Aedes aegypti)
NL019	1421	GTGGTGTACGACTGCACCGACCAGGAGTCGTTC AACAAC	77705629 (Aedes aegypti)
NL019	1422	GGTGTAGATTTTAAAATTAGAACAAT	77890715 (Aedes aegypti)
NL019	1423	TGGGACACGGCCGGCCAGGAGCG	82851662 (Boophilus microplus), 49536894 (Rhipicephalus appendiculatus)
NL022	1424	TCTTCCTCACCGGTCAGGAGGAGAT	6928515 (Anopheles gambiae)
NL022	1425	AAATTCTCCGAGTTTTTCGACGATGC	91082872 (Tribolium castaneum)
NL022	1426	TTCCTCACCGGTCAGGAGGAGAT	90976120 (Aedes aegypti)
NL022	1427	TAGTATTGGCCACAAATATTGCAGA	92042565 (Drosophila willistoni)
NL023	1428	TATTTGAACATATGGGTGCCGCA	20384699 (Plutella xylosiella)
NL023	1429	GAGGGAGGAAATGTGGAATCC	22085301 (Helicoverpa armigera)
NL023	1430	CCGAAGATTGTCTGTATTTGAA	27531022 (Apis mellifera)
NL023	1431	GATTCCGTTTGCGAAACCTCC	57929927 (Anopheles gambiae str. PEST)
NL023	1432	GGTGCGTTCGGCTTCCTCTACCT	58380563 (Anopheles gambiae str. PEST)
NL023	1433	CAATTCAATGCTAGGGAAAGG	110759012 (Apis mellifera)
NL023	1434	GAGGGAGGAAATGTGGAATCC	55793188 (Helicoverpa assulta)
NL023	1435	CCGAAGATTGTCTGTATTTGAA	58585075 (Apis mellifera)
NL023	1436	GACGTCGTCGCTCCATGCA	91077117 (Tribolium castaneum)
NL027	1437	GGAGACCCTGGAGCTGGTGCG	49543279 (Rhipicephalus appendiculatus)

Table 4-CS

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
CS001	1730	AAAGCATGGATGTTGGACAAA	73619372 (Aphis gossypii); 77325485 (Chironomus tentans); 22474232 (Helicoverpa armigera); 37951951 (Ips pini); 60305420 (Mycetophagus quadripustulatus); 84647995 (Myzus persicae)
CS001	1731	AAAGCATGGATGTTGGACAAACT	40877657 (Bombyx mori); 103783745 (Heliconius erato); 55904580 (Locusta migratoria); 101413238 (Plodia interpunctella)
CS001	1732	AACCGGCTCAAGTACGCGCTCAC	22474232 (Helicoverpa armigera)
CS001	1733	AACCGGCTCAAGTACGCGCTCACCGG	90134075 (Bicyclus anynana)
CS001	1734	AAGATCATGGACTTCATCAAGTT	90134075 (Bicyclus anynana)
CS001	1735	ACCAGATTGAACAACGTGTTCAT	71536878 (Diaphorina citri) 3658573 (Manduca sexta)
CS001	1736	ATCATGGACTTCATCAGTTTGAATC	103783745 (Heliconius erato)
CS001	1737	CAAGATCATGGACTTCATCAAGTT	3478550 (Antheraea yamamai)
CS001	1738	CCCCACAAGTTGCGCGAGTGC	63011732 (Bombyx mori)
CS001	1739	CCCGCTGGATTTATGGATGTTGT	101403940 (Plodia interpunctella)
CS001	1740	CCTCCAAGATCATGGACTTCATCAAGTT	22474232 (Helicoverpa armigera)
CS001	1741	ccreccecreereArctrccr	27597800 (Anopheles gambiae)
CS001	1742	CGACGGCCCCAAGAACGTGCC	22474232 (Helicoverpa armigera)
CS001	1743	CTCATCAAGGTCAACGACTCC	103783745 (Heliconius erato) 112350001 (Helicoverpa armigera) 101418268 (Plodia interpunctella)
CS001	1744	CTCATCAAGGTCAACGACTCCATCCAGCTCGAC AT	3738704 (Manduca sexta)
CS001	1745	CTCATCAAGGTCAACGACTCCATCCAGCTCGAC ATCGCCACCT	53884106 (Plutella xylostelia)
CS001	1746	CTGCCGCTGGTGATCTTCCTC	27603050 (Anopheles gambiae)

CS001	1747	GACCCCACATATCCCGCTGGATT	103783745 (Heliconius erato)
CS001	1748	GCAGCGACTTATCAAAGTTGA	109978109 (Gryllus pennsylvanicus)
CS001	1749	GCATGGATGTTGGACAAACTGGG	67899746 (Drosophila pseudoobscura)
CS001	1750	GCCACCTCCAAGATCATGGACTTCAT	110259010 (Spodoptera frugiperda)
CS001	1751	GCGCGTGGCGACGGCCCCAAGAACGTGCC	53884106 (Plutella xylostella)
CS001	1752	GCTGGATTTATGGATGTTGTTT	29553519 (Bombyx mori)
CS001	1753	GGCTCAAGTACGCGCTCACCGG	5498893 (Antheraea yamamai)
CS001	1754	GTGGGCACCATCGTGTCCCGCGAG	3953837 (Bombyx mandarina) 53884106 (Plutella xylostella)
CS001	1755	GTGGGCACCATCGTGTCCCGCGAGCG	3478550 (Antheraea yamamai)
CS001	1756	GTGGGCACCATCGTGTCCCGCGAGCGACATCC CGG	22474232 (Helicoverpa armigera)
CS001	1757	TAAAGCATGGATGTTGGACAA	58371410 (Lonomia obliqua)
CS001	1758	TAAAGCATGGATGTTGGACAAA	60311985 (Papilio dardanus) 31366663 (Toxoptera citricida)
CS001	1759	TAAAGCATGGATGTTGGACAAACT	109978109 (Gryllus pennsylvanicus)
CS001	1760	TAAAGCATGGATGTTGGACAAACTGGG	98994282 (Antheraea mylitta)
CS001	1761	TACAAGCTGTGCAAGGTGCGGCGCGTGGCGAC GGCCCC	98993531 (Antheraea mylitta)
CS001	1762	TACAAGCTGTGCAAGGTGCGGCGCGTGGCGAC GGGCCCCAA	5498893 (Antheraea yamamai)
CS001	1763	TACCCGACCCACTCAAGGT	90134075 (Bicyclus anynana)
CS001	1764	TGAACAACGTGTTCATAATCGG	98993531 (Antheraea mylitta)
CS001	1765	TGCGCGAGTGCCTGCTGGT	22474232 (Helicoverpa armigera)
CS001	1766	TGTATGATCACGGGAGGCCGTAACTTGGG	60311445 (Euclidia glyphica)
CS001	1921	TGTATGATCACGGGAGGCCGTAACTTGGGGCG	3953837 (Bombyx mandarina)
CS001	1768	TGTATGATCACGGGAGGCCGTAACTTGGGGCG	91826697 (Bombyx mori)
CS001	1769	TGTGCAAGGTGCGGCGCGTGGCGACGGGCCCC	3478550 (Antheraea yamamai)
CS001	1770	TTGAACAACGTGTTCATAATCGGCAAGGGCACG AA	3953837 (Bombyx mandarina) 40915191 (Bombyx mori)
CS002	1771	ATTGAGGCCCAAAGGGAAGCGCTAGAAGG	91849872 (Bombyx mori)
CS002	1772	CACGATCTGATGGATGACATTG	33498783 (Anopheles gambiae)

CS002	1773	GAGTITCTITAGTAAAGTATTCGGTGG	110762684 (Apis mellifera)
CS002	1774	TATGAAAAGCAGCTTACCCAGAT	49552807 (Rhipicephalus appendiculatus)
CS003	1775	AGGCACATCCGTGTCCGCAAGCA	10707186 (Amblyomma americanum)
CS003	1776	AAGATTGAGGACTTCTTGGAA	60295192 (Homalodisca coagulata)
CS003	1777	AAGCACATTGACTTCTCGCTGAA	92219983 (Drosophila willistoni)
CS003	1778	ATCAGACAGACACCATCCGTGT	27260897 (Spodoptera frugiperda)
CS003	1779	ATCCGTAAGGCTGCCCGTGAG	101413529 (Plodia interpunctella)
CS003	1780	ATCCGTAAGGCTGCCCGTGAGCTG	92042852 (Drosophila willistoni)
CS003	1781	ATCCGTAAGGCTGCCCGTGAGCTGCT	92959651 (Drosophila ananassae) 112349903 (Helicoverpa armigera)
CS003	1782	ATCCGTAAGGCTGCCCGTGAGCTGCTCAC	90138123 (Spodoptera frugiperda)
CS003	1783	CACATCCGTGTCCGCAAGCAAG	60306665 (Sphaerius sp.)
CS003	1784	CACATCCGTGTCCGCAAGCAAGT	77329341 (Chironomus tentans)
CS003	1785	CACATCCGTGTCCGCAAGCTTG	60306676 (Sphaerius sp.)
CS003	1786	CGCAACAAGCGTGAGGTGTGG	92473214 (Drosophila erecta) 67888665 (Drosophila pseudoobscura)
CS003	1787	CGTGTCCGCAAGCTGTGAACATCCC	90134575 (Bicyclus anynana) 29553137 (Bombyx mori)
CS003	1788	CTCGCTGAAGTCTCCGTTCGGCGGCGGCCG	3986375 (Antheraea yamamai)
CS003	1789	CTCGGTCTGAGGATTGAGGACTT	112349903 (Helicoverpa armigera) 49532931 (Plutella xylostella)
CS003	1790	CTGGACTCTGGCAAGCACATTGACTTCTC	29553137 (Bombyx mori) 58371398 (Lonomia obliqua)
CS003	1791	GACTTCTCGCTGAAGTCTCCGTTCGGCGGCGG	60312414 (Papilio dardanus)
CS003	1792	GACTTCTCGCTGAAGTCTCCGTTCGGCGGCGG	49532931 (Plutella xylostella)
CS003	1793	GAGGAGAAGACCCTAAGAGGTTATTCGAAGG TAA	37952462 (lps pini)
CS003	1794	GATCCGTAAGGCTGCCCGTGA	67568544 (Anoplophora glabripennis)
CS003	1795	GATCCGTAAGGCTGCCGTGAGCTGCT	67843629 (Drosophila pseudoobscura) 56772258 (Drosophila virilis)
CS003	1796		101413529 (Plodia interpunctella)
CS003	1797	GGTCTGAAGATTGAGGACTTCTTGGA	2699490 (Drosophila melanogaster)

CS003	1798	GTGTGGAGGTGAAGTACACGCT	60312414 (Papilio dardanus)
CS003	1799	GTGTTCAAGGCTGGTCTAGCTAAGTC	78230982 (Heliconius erato/himera mixed EST library)
CS003	1800	GTGTTGGATGAGAGCAGATGAAGCTCGATTAT GT	112349903 (Helicoverpa armigera)
CS003	1801	TGAAGATTGAGGACTTCTTGGA	3986375 (Antheraea yamamai)
CS003	1802	TGGACTCTGGCAAGCACATTGACTTCTC	78230982 (Heliconius erato/himera mixed EST library)
CS003	1803	TGGATGAGGAGGATGAAGCT	60312414 (Papilio dardanus)
CS003	1804	TGGTCTCCGCAACAAGCGTGAGGT	76552467 (Spodoptera frugiperda)
CS003	1805	TGGTCTCCGCAACAAGCGTGAGGTGTGG	33528372 (Trichoplusia ni)
CS006	1806	CGTATGACAATTGGTCACTTGATTGA	91831926 (Bombyx mori)
900SO	1807	GAAGATATGCCTTTCACTTGTGAAGG	55801622 (Acyrthosiphon pisum)
CS006	1808	GGAAAACTATAACTTTGCCAGAAAA	40926289 (Bombyx mori)
CS006	1809	GGTGATGCTACACCATTTAACGATGCTGT	31366154 (Toxoptera citricida)
2006	1810	TCTCGTATGACAATTGGTCACTTGAT	49201759 (Drosophila melanogaster)
CS006	1811	CTGTCAACGTGCAGAAGATCTC	49573116 (Boophilus microplus)
CS007	1812	TGGATGAATGTGACAAAATGCTTGAA	84114516 (Blomia tropicalis)
CS007	1813	TITATGCAAGATCCTATGGAAGT	84114516 (Blomia tropicalis)
CS007	1814	AAATTTATGCAAGATCCTATGGAAGTTTATGT	78525380 (Glossina morsitans)
CS007	1815	AATATGACTCAAGATGAGCGTCT	90137538 (Spodoptera frugiperda)
CS007	1816	ATGACTCAAGATGAGCGTCTCTCCCG	103792212 (Heliconius erato)
CS007	1817	ATGCAAGATCCTATGGAAGTTTA	77336752 (Chironomus tentans)
CS007	1818	ATGCAAGATCCTATGGAAGTTTATGT	77873166 (Aedes aegypti)
CS007	1819	CGCTATCAGCAGTTCAAAGATTTCCAGAAG	77873166 (Aedes aegypti)
CS007	1820	GAAAATGAAAAGAATAAGAAG	110759359 (Apis mellifera) 78525380 (Glossina morsitans)
CS007	1821	GAAGTTCAACATGAATGTATTCC	110759359 (Apis mellifera)
CS007	1822	GATGAGCGTCTCCCCGCTATCA	40932719 (Bombyx mori)
CS007	1823	TGCCAATTCAGAAGATGAAGAGT	110759359 (Apis mellifera)
CS007	1824	TGTAAGAAATTTATGCAAGATC	45244844 (Bombyx mori)
CS009	1825	AGGTGCGACGTGGACATCA	92460383 (Drosophila erecta)
CS009	1826	GACTTGAAGGAGCACATCAGGAA	29534871 (Bombyx mori)
CS009	1827	GGCCAGAACATCCACAACTGTGA	29534871 (Bombyx mori)
CS009	1828	TCTTGCGAGGGAGAGATCCA	111005781 (Apis mellifera)

CS011			
	1830	ATCAAGGACAGAAAGTCAAAGC	78230577 (Heliconius erato/himera mixed EST library)
CS011	1831	ATCTCTGCCAAGTCAAACTACAA	101406907 (Plodia interpunctella)
CS011	1832	CAATGTGCCATCATGTTCGA	110242457 (Spodoptera frugiperda)
CS011	1833	CCCAACTGGCACAGAGATTTAGTGCG	78230577 (Heliconius erato/himera mixed EST library)
CS011	1834	GACACTTGACTGGAGAGTTCGAGAAAGATA	101410627 (Plodia interpunctella)
CS011	1835	GATATCAAGGACAGAAAGTCAA	60312108 (Papilio dardanus)
CS011	1836	GCCAAGTCAAACTACAATTTCGA	67873076 (Drosophila pseudoobscura)
CS011	1837	GCTGGCCAAGAAAGTTTGGTGGT	111031693 (Apis mellifera)
CS011	1838	GCCAAGAAAGTTTGGTGGTCTCCG	84267747 (Aedes aegypti)
CS011	1839	TACAAAAATGTACCCAACTGGCA	92963426 (Drosophila grimshawi) 37951963 (lps pini)
CS011	1840	TACAAAATGTACCCAACTGGCACAGAGA	60312108 (Papilio dardanus)
CS011	1841	TATGGGATACTGCTGGCCAAGAA	40929360 (Bombyx mori)
CS011	1842	TATGGGATACTGCTGGCCAAGAAA	110749704 (Apis mellifera)
CS011	1843	TGGGATACTGCTGGCCAAGAA	73618835 (Aphis gossypii) 112432160 (Myzus persicae)
CS011	1844	TGTGCCATCATGTTCGATGT	84346664 (Aedes aegypti)
CS011	1845	TTGACTGGAGATTCGAGAAA	90136305 (Bicyclus anynana) 78230577 (Heliconius erato/himera mixed EST library) 60312108 (Papilio dardanus)
CS011	1846	TTGACTGGAGATTCGAGAAAA	86465126 (Bombyx mori) 110262261 (Spodoptera frugiperda)
CS011	1847	TGGGATACTGCTGGCCAAGAA	21639295 (Sarcoptes scabiei)
CS013	1848	GATCCCATTCAGTCTGTCAAGGG	3626535 (Drosophila melanogaster)
CS013	1849	TTCCAAGCAAAGATGTTGGATATGTTGAA	112433067 (Myzus persicae)
CS014	1850	AAAAAGATCCAATCTTCGAACATGCTGAA	103775905 (Heliconius erato)
CS014	1851	AAACAAGTGGAACTCCAGAAAAA	101403826 (Plodia interpunctella)
CS014	1852	AAAGTGCGTGAGGACCACGTACG	87266590 (Choristoneura fumiferana) 3738660 (Manduca sexta)
CS014	1853	AAGATCAGCAACACTCTGGAGTC	58371699 (Lonomia obliqua)
CS014	1854	AAGATCAGCAACACTCTGGAGTCTCG	91848497 (Bombyx mori)
CS014	1855	AAGATCCAATCTTCGAACATG	77790417 (Aedes aegypti)

CS014	1856	AAGATCCAATCTTCGAACATGCTGAA	91756466 (Bombvx mori)
CS014	1857	AAGCAGATCAAGCATATGATGGCCTTCATCGAA CA	90814338 (Nasonia vitripennis)
CS014	1858	AAGCAGATCAAGCATATGATGGCCTTCATCGAA CAAGAGGC	87266590 (Choristoneura fumiferana)
CS014	1859	ATGATGGCCTTCATCGAACAAGA	111158385 (Myzus persicae)
CS014	1860	ATGATGGCCTTCATCGAACAAGAGGC	98993392 (Antheraea mylitta) 91756466 (Bombyx mori) 103775905 (Heliconius erato)
CS014	1861	CAGATCAAGCATATGATGGCCTTCATCGA	53884266 (Plutella xylostella)
CS014	1862	CAGCAGCGGCTCAAGATCATGGAATACTA	101403826 (Plodia interpunctella)
CS014	1863	CATATGATGGCCTTCATCGAACAAGAGGC	101403826 (Plodia interpunctella)
CS014	1864	CTCAAAGTGCGTGAGGACCACGT	103775905 (Heliconius erato)
CS014	1865	CTCAAGATCATGGAATACTACGA	15068660 (Drosophila melanogaster)
CS014	1866	GAAATCGATGCAAAGGCCGAAGAGGAGTTCAA	103775905 (Heliconius erato)
CS014	1867	GAACTCCAGAAAAGATCCAATC	76551032 (Spodoptera frugiperda)
CS014	1868	GAACTCCAGAAAAGATCCAATCTTCGAACATG CTGAA	87266590 (Choristoneura fumiferana)
CS014	1869	GAGGAAATCGATGCAAAGGCCGA	76551032 (Spodoptera frugiperda)
CS014	1870	GCCGAAGAGGAGTTCAACATTGAAAAAGG	33374540 (Glossina morsitans)
CS014	1871	GCGCCTGGCTGAGGTGCCCAA	101403826 (Plodia interpunctella)
CS014	1872	GGCCGCCTGGTGCAGCAGCG	24975647 (Anopheles gambiae)
CS014	1873	GGCTCAAGATCATGGAATACTA	37593557 (Pediculus humanus)
CS014	1874	GGCTCAAGATCATGGAATACTACGA	58371699 (Lonomia obliqua)
CS014	1875	TACGAAAAGAAGAGAACAAGT	33374540 (Glossina morsitans)
CS014	1876	TGAAGGTGCTCAAAGTGCGTGAGGA	92976185 (Drosophila grimshawi)
CS014	1877	TTCAAAAGCAGATCAAGCATATGATGGCCTTCA	3738660 (Manduca sexta)
CS015	1878	AACGGGCCGGAGATCATGTCCAA	92480997 (Drosophila erecta)
CS015	1879	AACTGCCCCGATGAGAAGATCCG	91086234 (Tribolium castaneum)
CS015	1880	ATCTTCATCGATGAACTGGATGC	56152379 (Rhynchosciara americana)
CS015	1881	CATATATTGCCCATTGATGATTC	58371642 (Lonomia obliqua)
CS015	1882	CTCATGTATGGGCCGCCTGGTACCGG	83423460 (Bombyx mori)

SCATGAACCG 92948836 (Drosophila ananassae)	4691131 (Aedes aegyptl) 3GT 92466521 (Drosophila erecta) 15070638 (Drosophila melanogaster)	90133859 (Bicyclus anynana)			3GGAAACCACG 73615307 (Aphis gossypii)		18950388 (Anopheles gambiae) 31206154 (Anopheles gambiae str. PEST)	7616988 (Diploptera punctata) 92953069 (Drosophila ananassae) 92477149 (Drosophila erecta) 8809 (Drosophila melanogaster) 55694467 (Drosophila yakuba)	GTCAT 55694467 (Drosophila yakuba) 110248186 (Spodoptera frugiperda)		CAC 27372076 (Spodoptera littoralis)	ACGTCCTT 67896654 (Drosophila pseudoobscura)		SATGTC 53883819 (Plutella xylostella)	60295607 (Homalodisca coagulata)	92953069 (Drosophila ananassae) 92477149 (Drosophila erecta) 55694467 (Drosophila yakuba) 112349870 (Helicoverpa armigera) 237458 (Heliothis virescens) 9713 (Manduca sexta) 110242332 (Spodoptera frugiperda)
CTGCCCCGATGAGAAGATCCGCATGAACCG	GAGAAGATCCGCATGAACCGCGT	GTACATATATTGCCCATTGAT	TCATCGCACGTGATCGTAATGGC	TTCATGGTTCGCGGGGGCATG	AAATCGGTGTACATGTAACCTGGGAAACCACG	AAGTTGTCCTCGTGGTCGTCCA	ACAGATCTGGGCGGCAATTTC	ACAGCCTTCATGGCCTGCACGTCCTT	ACATCAGAGTGGTCCTTGCGGGTCAT	ACCAGCACGTGTTTCTCACACTGGTA	ACCTCCTCACGGGGGGGGGGACAC	ACGACAGCCTTCATGGCCTGCACGTCCTT	ACGTAGATCTGTCCCTCAGT	AGAGCCTCCGCGTACGAAGACATGTC	AGCAATGGAGTTCATCACGTC	AGCAGCTGCCAGCCGATGTCCAG
1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899
CS015	CS015	CS015	CS015	CS015	CS016	CS016	CS016	CS016	CS016	CS016	CS016	CS016	CS016	CS016	CS016	CS016

CS016 1900 AGCATCTCCTTGGGGAAGATACG CS016 1901 AGGGCTTCCTCACCGACGACGCCTTCATGGC CS016 1902 ATACCAGTCTGGATCATTTCCTCAGG CS016 1903 ATACGGGACCAGGGGTTGATGGGCTG CS016 1906 ATACGGGACAATTCGTTGTG CS016 1906 ATGGCAGACTTCATGAGACGA CS016 1909 ATGGTGGCCAAATTCGTTGTG CS016 1909 ATGGTGGCCAAATTGGTTGTACCT CS016 1909 ATGGTGGCCAAATCGGTGTACATGTAACCT CS016 1909 ATGGTGGCCAAATCGGTGTACATGTAACCT CS016 1910 ATTGCGGCACCTTTGTCATGGAGAC CS016 1911 ATTGCGGGACCTTTGTCATGGCTTTCCTCGAAG CS016 1914 CATCTCCTTGGGGAAGATACG CS016 1914 CATCTCTTGGGGAAGATACG CS016 1916 CCCTCACGATGGCAACCCATGGCGGCGAAC CS016 1916 CCCTCACCGATGGCAACCCATGGCGGCGAACC CS016 1916 CCGATGGCCAAGACCCATGGCGGCAACCCATGGCGGAACC CS016 1916 CCGATGGCCATGGCAACCCATGGCGGCAACCCATGGCGGCAACCCATGGCGGAACC CS016 1916 CCGATGGCCATGGCAACCCATGGCGGCAACCCATGGCGGAACCCATGGCGGAACCCATGGCGGCAACCCATGGCGGAACCCATGGCGGAACCCATGGCGGAACCCATGGCGGAACCCATGGCGGAACCCATGGCGGAACCCATGGCGGCGAACCCATGGCGGCGAACCCATGGCGGCAACCATGGCGGAACCATCATCATCATCATCATCATCATCATCATCATCATC		
1901 1902 1903 1904 1906 1906 1909 1910 1911 1914 1916 1916		63005818 (Bombyx mori) 92967975 (Drosophila mojavensis) 92938364 (Drosophila virilis) 92231646 (Drosophila willistoni) 237458 (Heliothis virescens)
1902 1903 1904 1906 1906 1909 1910 1911 1914 1915 1916		4680479 (Aedes aegypti)
1903 1904 1906 1906 1908 1909 1911 1914 1915 1916 1916		60295607 (Homalodisca coagulata)
1904 1905 1906 1907 1909 1910 1911 1914 1915 1916		92953552 (Drosophila ananassae)
1905 1906 1907 1909 1910 1912 1913 1914 1916 1916		237458 (Heliothis virescens) 76554661 (Spodoptera frugiperda)
1906 1908 1909 1910 1911 1914 1915 1916 1916	ATCTG	83937869 (Lutzomyia longipalpis)
1907 1908 1909 1910 1911 1914 1915 1916 1916		55894053 (Locusta migratoria)
1908 1909 1910 1911 1914 1916 1916		92965644 (Drosophila grimshawi)
1909 1910 1912 1913 1914 1915 1916		92969578 (Drosophila grimshawi)
1910 1912 1913 1914 1915 1916		92231646 (Drosophila willistoni)
1912 1913 1914 1915 1916		67841091 (Drosophila pseudoobscura)
1912 1913 1914 1915 1916		49395165 (Drosophila melanogaster) 99009492 (Leptinotarsa decemlineata)
1913 1914 1915 1916	CACACGTTCTCCATGGAGCCGTTCTCCTCGAAG TCCTGCTTGAAGAA	92477818 (Drosophila erecta)
1914		4680479 (Aedes aegypti)
1915 1916 1917	CATCT	16899457 (Ctenocephalides felis) 9713 (Manduca sexta)
1916		4680479 (Aedes aegypti) 92924977 (Drosophila virilis) 110248186 (Spodoptera frugiperda)
1917		71049259 (Oncometopia nigricans)
		33547658 (Anopheles gambiae)
CS016 1918 CCGTTCTCCTCGAAGTCCTGCTTGAAGAA		31206154 (Anopheles gambiae str. PEST) 8809 (Drosophila melanogaster)

CS016	1919	CCGTTCTCCTCGAAGTCCTGCTTGAAGAACC	101403557 (Plodia interpunctella)
CS016	1920	CGAGCAATGGAGTTCATCACGTCGATAGCGGA GATACCAGTCTGGATCAT	27372076 (Spodoptera littoralis)
CS016	1921	CGGGCCGTCTCCATGTTCACACCCCATGGCGGC	31206154 (Anopheles gambiae str. PEST)
CS016	1922	CGTCCGGGCACCTCCTCACGGGCGGC	18883474 (Anopheles gambiae) 31206154 (Anopheles gambiae str. PEST)
CS016	1923	CGTCCGGGCACCTCCTCACGGGCGGCGGACA C	9713 (Manduca sexta) 110248186 (Spodoptera frugiperda)
CS016	1924	CTACAGATCTGGGCGGCAATTTC	91826756 (Bombyx mori) 9713 (Manduca sexta) 27372076 (Spodoptera littoralis)
CS016	1925	CTACAGATCTGGGCGGCAATTTCGTTGTG	237458 (Heliothis virescens) 76554661 (Spodoptera frugiperda)
CS016	1926	CTCGTAGATGGTGGCCAAATC	53883819 (Plutella xylostella)
CS016	1927	CTCGTAGATGGTGGCCAAATCGGTGTACATGTA	18883474 (Anopheles gambiae) 31206154 (Anopheles gambiae str. PEST)
CS016	1928	CTCGTAGATGGTGGCCAAATCGGTGTACATGTA ACC	92953069 (Drosophila ananassae) 92477818 (Drosophila erecta) 8809 (Drosophila melanogaster) 67896654 (Drosophila pseudoobscura)
CS016	1929	CTCGTAGATGGTGGCCAAATCGGTGTACATGTA ACCTGGGAAACCACG	9713 (Manduca sexta) 110248186 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)
CS016	1930	GAACAGGCACACGTTCTCCATGGA	92962756 (Drosophila ananassae)
CS016	1931	GACTCGAATACTGTGCGGTTCTCGTAGTT	87266757 (Choristoneura fumiferana) 9713 (Manduca sexta)
CS016	1932	GACTTCATGAGACGAGACAGGGAAGGCAGCAC GTT	9713 (Manduca sexta)
CS016	1933	GAGATACCAGTCTGGATCATTTC	92969748 (Drosophila mojavensis)
CS016	1934	GAGATACCAGTCTGGATCATTTCCTC	92935139 (Drosophila virilis)
CS016	1935	GATGAAGTTCTTCTCGAACTTGG	2921501 (Culex pipiens)

CS016	1936	GATGAAGTTCTTCTCGAACTTGGT	4680479 (Aedes aegypti) 31206154 (Anopheles gambiae str. PEST) 92953069 (Drosophila ananassae) 92477149 (Drosophila erecta) 8809 (Drosophila melanogaster) 67896654 (Drosophila pseudoobscura) 55694467 (Drosophila yakuba) 112349870 (Helicoverpa armigera)
CS016	1937	GATGAAGTTCTTCGAACTTGGTGAGGAACTC GAGGTAGAGCA	76555122 (Spodoptera frugiperda)
CS016	1938		101403557 (Plodia interpunctella) 53883819 (Plutella xylostella)
CS016	1939	GCACACGTTCTCCATGGAGCCGTTCTC	104530890 (Belgica antarctica)
CS016	1940	GCCAAATCGGTGTACATGTAACCTGGGAAACCA CGTCGTCCGGG	91829127 (Bombyx mori)
CS016	1941	GCCAAGAACTCAGCAGCAGTCA	237458 (Heliothis virescens)
CS016	1942	GCCGTCTCCATGTTCACACCCA	83937868 (Lutzomyia longipalpis)
CS016	1943	GCCGTCTCCATGTTCACACCCAT	92965644 (Drosophila grimshawi)
CS016	1944	GCCTGCACGTCCTTACCGATGGCGTAGCA	112349870 (Helicoverpa armigera) 237458 (Heliothis virescens) 110248186 (Spodoptera frugiperda)
CS016	1945	GCCTTCATGGCCTGCACGTCCTT	39675733 (Anopheles gambiae) 31206154 (Anopheles gambiae str. PEST)
CS016	1946	GCCTTCATGGCCTGCACGTCCTTACCGATGGC GTAGCA	2921501 (Culex pipiens)
CS016	1947	GCGGCGAACACGATGGCAAAGTT	2921501 (Culex pipiens) 92965644 (Drosophila grimshawi)
CS016	1948	GCGCCGAACACGATGGCAAAGTTGTCCTCGTG	77905105 (Aedes aegypti)
CS016	1949	GCGTACAGCTGGTTGGAAACATC	67896654 (Drosophila pseudoobscura)
CS016	1950	GGAATAGGATGGGTGATGTCGTCGTTGGGCAT AGT	110248186 (Spodoptera frugiperda)
CS016	1951	GGAATAGGATGGGTGATGTCGTCGTTGGGCAT AGTCA	27372076 (Spodoptera littoralis)

CS016	1952	GGATGGGTGATGTCGTCGTTGGGCCAT	101403557 (Plodia Interpunctella)
CS016	1953	GGCAGACCGCCAGCCGAGAAAATGGGGGATCTT	67841091 (Drosophila pseudoobscura)
CS016	1954	GGCATAGTCAAGATGGGGATCTG	92924977 (Drosophila virilis)
CS016	1955	GGCCGTCTCCATGTTCACACCCATGGC	101403557 (Plodia interpunctella)
CS016	1956	GGCGGGTAGATCTGTCTGTTGTG	2921501 (Culex pipiens) 92965644 (Drosophila grimshawi) 92924977 (Drosophila virilis)
CS016	1957	GGCGGGTAGATCTGTTGTTGTGGAGCTGACG GTCTACGTAGATCTGTCCCTCAGT	237458 (Heliothis virescens) 110248186 (Spodoptera frugiperda)
CS016	1958	GGGAAGATACGGAGCAGCTGCCA	60336551 (Homalodisca coagulata)
CS016	1959	GGGTTGATGGGCTGTCCCTGGATGTCCAA	76554661 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)
CS016	1960	GGTTTTCCAGAGCCGTTGAATAC	62238871 (Diabrotica virgifera)
CS016	1961	GTGATGAAGTTCTTCGAACTTGGT	87266757 (Choristoneura fumiferana)
CS016	1962	GTGCGGTTCTCGTAGTTGCCCTG	31206154 (Anopheles gambiae str. PEST) 92477149 (Drosophila erecta) 8809 (Drosophila melanogaster) 67896654 (Drosophila pseudoobscura) 92938364 (Drosophila virilis) 92231646 (Drosophila yakuba)
CS016	1963	GTGGCCAAATCGGTGTACATGTAACC	2921501 (Culex pipiens) 75469507 (Tribolium castaneum)
CS016	1964	GTGTACATGTAACCTGGGAAACCACG	101403557 (Plodia interpunctella)
CS016	1965	GTGTACATGTAACCTGGGAAACCACGTCG	237458 (Heliothis virescens)
CS016	1966	GTGTACATGTAACCTGGGAAACCACGTCGTCC GGCACCTCCTCACGGGCGGC	53883819 (Plutella xylostella)
CS016	1967	TCAGAGTGGTCCTTGCGGGTCAT	237458 (Heliothis virescens) 9713 (Manduca sexta)
CS016	1968	TCAGCAAGGATTGGGGGACCTTTGTC	10763875 (Manduca sexta)
CS016	1969	TCCTCACCGACGACAGCCTTCATGGCCTG	92969578 (Drosophila grimshawi)
CS016	1970	TCCTCAGGGTAGATACGGGACCA	76554661 (Spodoptera frugiperda)

CS016	1971	TCCTCAGGGTAGATACGGGACCAGGGGTTGAT GGGCTG	22474040 (Helicoverpa armigera) 237458 (Heliothis virescens) 9713 (Manduca sexta)
CS016	1972	TCGAAGTCCTGCTTGAAGAACC	9713 (Manduca sexta)
CS016	1973	TCGTAGATGGTGGCCAAATCGGTGTACATGTAA CC	62239897 (Diabrotica virgifera)
CS016	1974	TCGTAGATGGTGGCCAAATCGGTGTACATGTAA CCTGGGAAACCACG	4680479 (Aedes aegypti)
CS016	1975	TCTACGTAGATCTGTCCCTCAGTGATGTA	101403557 (Plodia interpunctella)
CS016	1976	TGCACGTCCTTACCGATGGCGTAGCA	9713 (Manduca sexta) 75710699 (Tribolium castaneum)
CS016	1977	TGGGTGATGTCGTTGGGCAT	53883819 (Plutella xylostella)
CS016	1978	TGGTAGGCCAAGAACTCAGCAGC	9713 (Manduca sexta)
CS016	1979	TTCAAGAACAGGCACACGTTCTCCAT	18883474 (Anopheles gambiae) 31206154 (Anopheles gambiae str. PEST) 92933153 (Drosophila virilis) 27372076 (Spodoptera littoralis)
CS016	1980	TTCAAGAACAGGCACACGTTCTCCATGGA	92950254 (Drosophila ananassae) 76554661 (Spodoptera frugiperda)
CS016	1981	TTCTCACACTGGTAGGCCAAGAA	18883474 (Anopheles gambiae)
CS016	1982	TTCTCCTCGAAGTCCTGCTTGAAGAA	83937868 (Lutzomyia longipalpis)
CS016	1983	TTGAGCATCTCCTTGGGGAAGATACG	92477149 (Drosophila erecta) 8809 (Drosophila melanogaster) 67896654 (Drosophila pseudoobscura) 112349870 (Helicoverpa armigera)
CS016	1984	TTGAGCATCTCCTTGGGGAAGATACGGAGCA	83928466 (Lutzomyia longipalpis)
CS016	1985	TTGAGCATCTCCTTGGGGAAGATACGGAGCAG CTGCCA	50559098 (Homalodisca coagulata) 71049259 (Oncometopia nigricans)
CS016	1986	TTGAGCATCTCCTTGGGGAAGATACGGAGCAG CTGCCAGCCGATGTC	87266757 (Choristoneura fumiferana)
CS018	1987	TCCGACTACTCTTCCACGGAC	31659029 (Anopheles gambiae)

Table 4-PX

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
PX001	2120	AACAACGTGTTCATCGGCAAGGGCACGAA	112350001 (Helicoverpa armigera)
PX001	2121	AACGTGTTCATCGGCAAG	27562760 (Anopheles gambiae) 58378595 (Anopheles gambiae str. PEST)
PX001	2122	AACGTGTTCATCGGCAAGG	42764924 (Armigeres subalbatus)
PX001	2123	AACGTGTTCATCGGCAAGGG	71048604 (Oncometopia nigricans)
PX001	2124	AACGTGTTCATCGCCAAGGGCACGAA	112783858 (Anopheles funestus)
PX001	2125	AACTTGGGGCGAGTGGCATCGTGTC	90132259 (Bicyclus anynana)
PX001	2126	AACTTGGGGCGAGTGGCACCATCGTGTCCCGCGAG	112350001 (Helicoverpa armigera)
PX001	2127	AAGATCGTGAAGCAGCGCCTCATCAAGGTGGACGGCAAGGT	112350001 (Helicoverpa armigera)
PX001	2128	AAGGTCCGCACCGACCTA	14627585 (Drosophila melanogaster)
PX001	2129	AAGTACAAGCTGTGCAAGGTG	5498893 (Antheraea yamamai) 90132259 (Bicyclus anynana) 92969396 (Drosophila grimshawi) 50818668 (Heliconius melpomene) 58371410 (Lonomia obliqua)
PX001	2130	ACAACGTGTTCATCGGCAAGGGCACGAA	103783745 (Heliconius erato)
PX001	2131	ACGCAAGGTCCGCACCGACCC	77890923 (Aedes aegypti)
PX001	2132	ACGGCCGCACGCTGCGCTCCGCCCCCTCATCAAGGTC AACGACTCC	101413238 (Plodia interpunctella)
PX001	2133	ACGTGTTCATCGCCAAGGGCAC	109509107 (Culex pipiens)
PX001	2134	AGGAGGCCAAGTACAAGCTGT	27566312 (Anopheles gambiae) 67889891 (Drosophila pseudoobscura)
PX001	2135	AGGAGGCCAAGTACAAGCTGTGCAAGGT	92944919 (Drosophila ananassae) 67886177 (Drosophila pseudoobscura) 92045792 (Drosophila willistoni)
PX001	2136	AGGAGGCCAAGTACAAGCTGTGCAAGGTG	92929731 (Drosophila virilis)
PX001	2137	CAACGTGTTCATCGGCAA	109509107 (Culex pipiens)
PX001	2138	CAACGTGTTCATCGCCAAGGGCA	55816641 (Drosophila yakuba)
PX001	2139	CACACCTTCGCCACCAGGTTGAACAACGTGTT	3986403 (Antheraea yamamai)
PX001	2140	CCCCAAGAAGCATTTGAAGCG	2886669 (Drosophila melanogaster)
PX001	2141	CCGAGGAGGCCAAGTACAAGCT	92944919 (Drosophila ananassae)

PX001	2142	CCGAGGAGGCCAAGTACAAGCTGTGCAAGGT	15480750 (Drosophila melanogaster)
PX001	2143	CCGCACAAGCTGCGCGAGTGCCTGCCGCT	22474232 (Helicoverpa armigera)
PX001	2144	CGACGGCCCCAAGAACGTGCC	112350001 (Helicoverpa armigera)
PX001	2145	CGAGGAGGCCAAGTACAAGCT	58378595 (Anopheles gambiae str. PEST)
PX001	2146	CGAGGAGGCCAAGTACAAGCTG	18914191 (Anopheles gambiae)
PX001	2147	CGAGTGGCCATCGTGTCCCGCGAG	3986403 (Antheraea yamamai)
PX001	2148	CGCTACCCCGACCCGCTCATCAAGGTCAACGACTCC	112350001 (Helicoverpa armigera)
PX001	2149	CGCTTCACCATCACC	103783745 (Heliconius erato)
PX001	2150	CGGCAACGAGGTGCTGAAGATCGT	90132259 (Bicyclus anynana)
PX001	2151	CGTAACTTGGGGCGAGTGGGCAC	60311985 (Papilio dardanus)
PX001	2152	CTACCGGCTGGATTCATGGATGT	42764924 (Armigeres subalbatus)
PX001	2153	CTCATCAAGGTCAACGACTCC	103783745 (Heliconius erato)
PX001	2154	CTCATCAAGGTCAACGACTCCATCCAGCTCGACAT	3738704 (Manduca sexta)
PX001	2155	GACGGCAAGGTCCGCACCGAC	109509107 (Culex pipiens)
PX001	2156	GACGGCAAGGTCCGCACCC	77759638 (Aedes aegypti)
PX001	2157	GAGGAGGCCAAGTACAAGCTGTGCAAGGT	67841491 (Drosophila pseudoobscura)
PX001	2158	GAGGAGGCCAAGTACAAGCTGTGCAAGGTG	56772971 (Drosophila virilis)
PX001	2159	GAGGCCAAGTACAAGCTGTGCAA	112350001 (Helicoverpa armigera)
PX001	2160	GAGGCCAAGTACAAGCTGTGCAAGGTG	98993531 (Antheraea mylitta)
PX001	2161	GCCAAGTACAAGCTGTGCAAGGT	67838306 (Drosophila pseudoobscura) 109978109 (Gryllus pennsylvanicus)
PX001	2162	GCCCCAAGAAGCATTTGAAGCG	2151718 (Drosophila melanogaster)
PX001	2163	GCGCGTGGCGACGGGCCCCAA	5498893 (Antheraea yamamai)
PX001	2164	GCGCGTGGCGCCCCCAAG	3986403 (Antheraea yamamai)
PX001	2165	GGAGGCCAAGTACAAGCTGTGCAAGGT	92942537 (Drosophila ananassae)
PX001	2166	GGCCCCAAGAAGCATTTGAAGCG	4459798 (Drosophila melanogaster)
PX001	2167	GECGGCGTGTACGCGCCCC	98994282 (Antheraea mylitta)
PX001	2168	GTCCGCACCCCACCTACCC	92472430 (Drosophila erecta) 55854272 (Drosophila yakuba)
PX001	2169	GTGGGCACCATCGTGTCCCGCGAGAG	3953837 (Bombyx mandarina) 29554802 (Bombyx mori)
PX001	2170	TCAAGGTGGACGGCAAGGTCCGCACCGACCC	92944919 (Drosophila ananassae)
PX001	2171	TGATCTACGATGTGAAGGGACG	83935965 (Lutzomyia longipalpis)

			\
PX001	2173	GCTGGATTCATGGATGTTGTG	10707240 (Ambiyomma americanum)
PX001	2174	AAGCAGCGCCTCATCAAGGTGGACGGCAAGGTCCGCACCGA C	49545866 (Rhipicephalus appendiculatus)
PX009	2175	AACATCTTCAACTGTGACTTC	93001544 (Drosophila mojavensis)
PX009	2176	TGATCAACATCGAGTGCAAAGC	110755556 (Apis mellifera)
PX009	2177	TTCTTGAAGCTGAATAAGATCT	103750396 (Drosophila melanogaster)
PX010	2178	CAGTICCTGCAGGTCTTCAACAA	71553175 (Oncometopia nigricans)
PX010	2179	CCATCAGCGGACGGTGGCCCCCCGTG	90139187 (Spodoptera frugiperda)
PX010	2180	CCCGCAGTTCATGTACCACCTGCGCCGCTCGCAGTTC	67893194 (Drosophila pseudoobscura)
PX010	2181	CCGAACAGCTTCCGTCTGTCGGAGAACTTCAG	29558345 (Bombyx mori)
PX010	2182	CGCCTGTGCCAGAAGTTCGGCGAGTACG	58395529 (Anopheles gambiae str. PEST)
PX010	2183	CTGCGCCGCTCGCAGGT	18872210 (Anopheles gambiae)
PX010	2184	CTGTACCCGCAGTTCATGTACCA	29558345 (Bombyx mori)
PX010	2185	GACGTGCGCTGGCTCGACCG	29558345 (Bombyx morl)
PX010	2186	GACGTGTGCTGCAAGTGTTCATGGAGCA	18872210 (Anopheles gambiae)
			77886140 (Aedes aegypti)
DXU10	2187	GAGTACGAGACTTCAAGCAGCTGC	18872210 (Anopheles gambiae)
	<u>.</u>		49376735 (Drosophila melanogaster)
			or oscosta (prosoprima pseudopseura)
PX010	2188	GGCGGGCGATGCCATC	91757875 (Bombyx mori)
PX010	2189	GTGGCTGCATACAGTTCATTACGCAGTACCAGCAC	28571527 (Drosophila melanogaster)
PX010	2190	TCGCAGTTCCTGCAGGTCTTCAACAA	92932090 (Drosophila virilis)
PX010	2191	TGCGCCGCTCGCAGTTCCTGCAGGTCTTCAACAA	67893324 (Drosophila pseudoobscura)
PX010	2192	TGCGCCGCTCGCAGTTCCTGCAGGTCTTCAACAACTCGCCC GACGAGACCAC	92952825 (Drosophila ananassae)
PX010	2193	TTCATGTACCACCTGCGCCGCTCGCAGTTCCTGCAGGTCTTC AACAACTCGCCCGACGAGACCAC	28571527 (Drosophila melanogaster)
PX010	2194	ATCCTGCTCATGGACACCTTCTTCCA	82842646 (Boophilus microplus)
PX015	2195	CACCGCGACGACGTTCATGGTGCGCGGCGG	58371643 (Lonomia obliqua)
PX015	2196	CAGATCAAGGAGATGGTGGAG	92480997 (Drosophila erecta) 58371722 (Lonomia obliqua)
PX015	2197	CCCGACGAGAAGATCCGCATGAA	67873606 (Drosophila pseudoobscura)

DYO15	2108	TOCOGAGGAGGAGGAGGGGT	15070733 (Drosophila melanogaster)
PX015	2199	CCGACGAGAAGATCCGCATGAACCGCGT	92459970 (Drosophila erecta)
PX015	2200	CGCAAGGAGCGGTGTGCATTGTGCT	67873606 (Drosophila pseudoobscura)
PX015	2201	GACGAGAAGATCCGCATGAACCG	1891444 (Anopheles gambiae)
PX015	2202	GACGAGAAGATCCGCATGAACCGCGT	4691131 (Aedes aegypti)
PX015	2203	GCGCAGATCAAGGAGATGGTGGAGCT	99007898 (Leptinotarsa decemlineata)
PX015	2204	GGCATGCGCCGTCGAGTTC	6901917 (Bombyx mori)
PX015	2205	GTGCGCGCGCATGCGCGCC	67891252 (Drosophila pseudoobscura)
PX015	2206	TCAAGGAGATGGTGGAGCTGC	27819993 (Drosophila melanogaster)
PX015	2207	TGAAGCCGTACTTCATGGAGGC	29559940 (Bombyx mori)
PX015	2208	TGCCGCAAGCAGCTGGCGCAGATCAAGGAGATGGT	18914444 (Anopheles gambiae)
PX015	2209	TGGAGGCGTACCGGCCCATCCAC	1891444 (Anopheles gambiae)
PX016	2210	AAGGACCACTCCGACGTGTCCAA	101406307 (Plodia interpunctella)
PX016	2211	AAGGACGTGCAGGCGATGAAGGC	112349870 (Helicoverpa armigera) 110248186 (Spodoptera frugiperda)
PX016	2212	ACCAAGTTCGAGAAGTTCATC	4680479 (Aedes aegypti) 31206154 (Anopheles gambiae str. PEST) 92953069 (Drosophila ananassae) 92477149 (Drosophila erecta) 24646340 (Drosophila melanogaster) 67900295 (Drosophila pseudoobscura) 55694467 (Drosophila yakuba) 112349870 (Helicoverpa armigera) 237458 (Heliothis virescens)
PX016	2213	ACCAAGTTCGAGAAGTTCATCAC	87266757 (Choristoneura fumiferana)
PX016	2214	ACCECCAGETTCTTCAAGCAGGACTTCGA	9713 (Manduca sexta)
PX016	2215	ACCGGCGATATTCTGCGCACGCCCGTCTC	92940287 (Drosophila virilis)
PX016	2216	AGCAGGACTTCGAGGAGAACGG	67880606 (Drosophila pseudoobscura)
PX016	2217	ATCACGCAGATCCCCATCCTGACCATGCC	31206154 (Anopheles gambiae str. PEST)
PX016	2218	ATCTTGACCGACATGTCTTCATACGC	104530890 (Belgica antarctica) 92231646 (Drosophila willistoni)
PX016	2219	ATGACCAGGAAGGACCACTCCGACGT	75713096 (Tribolium castaneum)

			101406307 (Plodia interpunctella)
PX016	2220	ATGCCCAACGACGACATCACCCA	76555122 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)
PX016	2221	CAGAAGATCCCCATCTTCTCCGCCGCCGGTCTGCCCCCACAA	92460896 (Drosophila erecta) 24646340 (Drosophila melanogaster)
PX016	2222	CAGGACTTCGAGGAGGAGGTTCCATGGAGAACGT	2921501 (Culex pipiens) 76554661 (Spodoptera frugiperda)
PX016	2223	CCAAGTTCGAGAAGTTCATC	2921501 (Culex pipiens)
PX016	2224	CCCATCAACCCGTGGTCCCGTATCTACCCGGAGGA	2921501 (Culex pipiens)
PX016	2225	CCCGACTTGACCGGGTACATCACTGAGGGACAGATCTACGT	101406307 (Plodia interpunctella)
PX016	2226	CCCGGACGACGTTTCCCAGGTTACATGTACAC	91829127 (Bombyx mori)
PX016	2227	CCTGGACATCCAGGGGCAGCCCATCAACCC	91090030 (Tribolium castaneum)
PX016	2228	CGACGTGGTTTCCCAGGTTACATGTACACGGATTTGGC	237458 (Heliothis virescens)
PX016	5229	CGTCTCATGAAGTCCGCCATCGG	91829127 (Bombyx mori)
PX016	2230	CGTCTCATGAAGTCCGCCATCGGAGGGGCATGACC	237458 (Heliothis virescens)
PX016	2231	CGTGGTCAGAAGATCCCCATCTTCTC	27372076 (Spodoptera littoralis)
PX016	2232	CGTGGTCAGAAGATCCCCATCTTCTCCGC	76554661 (Spodoptera frugiperda)
PX016	2233	CGTGGTTTCCCAGGTTACATGTACAC	55797015 (Acyrthosiphon pisum) 4680479 (Aedes aegypti) 73615307 (Aphis gossypii) 92231646 (Drosophila willistoni) 9713 (Manduca sexta) 76555122 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)
PX016	2234	CGTGGTTTCCCAGGTTACATGTACACGGATTTGGCCACAATC TACGAGCGCCCCGGGCG	101406307 (Plodia interpunctella)
PX016	2235	CTACGAGAACCGCACAGTGTTCGAGTC	112350031 (Helicoverpa armigera) 237458 (Heliothis virescens) 76555122 (Spodoptera frugiperda)

			63005818 (Bombyx mori) 92477149 (Drosophila erecta) 24646340 (Drosophila melanogaster) 56773982 (Drosophila pseudoobscura)
PX016	2236	CTGCGTATCTTCCCCAAGGAGAT	92935600 (Drosophila virilis) 92220609 (Drosophila willistoni) 112350031 (Helicoverpa armigera) 237458 (Heliothis virescens) 9713 (Manduca sexta)
PX016	2237	CTGTACGCGTACGCCATCGG	9713 (Manduca sexta)
PX016	2238	CTGTTCTTGAACTTGGCCAATGA	16898595 (Ctenocephalides felis)
PX016	2239	CTGTTCTTGAACTTGGCCAATGACCC	27372076 (Spodoptera littoralis)
PX016	2240	GACAACTTCGCCATCGTGTTCGC	92950254 (Drosophila ananassae)
PX016	2241	GACAACTTCGCCATCGTGTTCGCCGC	92477818 (Drosophila erecta) 24646340 (Drosophila melanogaster) 237458 (Heliothis virescens) 9713 (Manduca sexta) 76554661 (Spodoptera frugiperda)
PX016	2242	GACAACTTCGCCATCGTGTTCGCCGCCATGGG	31206154 (Anopheles gambiae str. PEST)
PX016	2243	GACCGTCAGCTGCACAGGCA	50564193 (Homalodisca coagulata)
PX016	2244	GACCTGCTCCTCGAGTTC	112349870 (Helicoverpa armigera)
PX016	2245	GACGTGATGAACTCCATCGCCCG	237458 (Heliothis virescens)
PX016	2246	GACGTGATGAACTCCATCGCCCGTGG	22474040 (Helicoverpa armigera)
PX016	2247	GAGAACGGTTCCATGGAGAACGT	91829127 (Bombyx mori)
PX016	2248	GAGGAGATGATCCAGACTGGTATCTCCGCTAT	237458 (Heliothis virescens) 76554661 (Spodoptera frugiperda)
PX016	2249	GAGGAGATGATCCAGACTGGTATCTCCGCTATCGACGTGATG AACTCCAT	27372076 (Spodoptera littoralis)
PX016	2250	GAGGAGGCGCTCACGCCCGACGAC	9713 (Manduca sexta)
PX016	2251	GAGTTCTTGGCCTACCAGTGCGAGAA	4680479 (Aedes aegypti)
PX016	2252	GCCAGGTTCTTCAAGCAGGACTTCGAGGAGAACGG	101403557 (Plodia interpunctella)
PX016	2253	GCCCGTGGTCAGAAGATCCCCAT	67877903 (Drosophila pseudoobscura)
PX016	2254	GCCCGTGGTCAGAAGATCCCCATCTTCTC	6901845 (Bombyx mori)

PX016	2255	GCCCGTGGTCAGAAGATCCCCATCTTCTCCGCCGC	92950254 (Drosophila ananassae)
PX016	2256	GCCGAGTTCTTGGCCTACCAGTGCGAGAA	24646340 (Drosophila melanogaster)
PX016	2257	GCCGAGTTCTTGGCCTACCAGTGCGAGAAACACGTGTTGGT	110240379 (Spodoptera frugiperda)
PX016	2258	GCCGCCGTGAGGAGGTGCCCGGACG	31206154 (Anopheles gambiae str. PEST) 9713 (Manduca sexta) 110240379 (Spodoptera frugiperda)
PX016	2259	GCCTACCAGTGCGAGAACACGTGTTGGTAATCTTGACCGAC ATGTC	101406307 (Plodia interpunctella)
PX016	2260	GGCAGATCTACCCGCCGGTGAA	31206154 (Anopheles gambiae str. PEST)
PX016	2261	GGCGAGGGCGCTCACGCCCGACGA	31206154 (Anopheles gambiae str. PEST)
PX016	2262	GGTCAGAAGATCCCCATCTTCTC	60295607 (Homalodisca coagulata)
PX016	2263	GGTTACATGTACACGGATTTGGCCAC	92924977 (Drosophila virilis)
PX016	2264	GTGGTGGCGGGGGCGCTCACGCC	112349870 (Helicoverpa armigera)
PX016	2265	GTTCACCGGCGATATTCTGCG	92997483 (Drosophila grimshawi)
PX016	2266	GTTCACCGGCGATATTCTGCGCAC	92950254 (Drosophila ananassae) 92048971 (Drosophila willistoni)
PX016	2267	TACCAGTGCGAGAACACGTGTTGGT	237458 (Heliothis virescens)
PX016	2268	TACGCCATCGGCAAGGACGTGCAGGCGATGAAGGC	87266757 (Choristoneura fumiferana)
PX016	2269	TCCATCACGCAGATCCCCATCCT	101406307 (Plodia interpunctella)
PX016	2270	TCCGGCAAGCCCATCGACAAGGG	92460896 (Drosophila erecta) 24646340 (Drosophila melanogaster) 22474040 (Helicoverpa armigera) 237458 (Heliothis virescens)
PX016	2271	TCTACGAGCGCCGGGCGAGTC	33528180 (Trichoplusia ni)
PX016	2272	TCTCGTCTCATGAAGTCCGCCATCGG	9713 (Manduca sexta)
PX016	2273	TGACTGCTGCCGAGTTCTTGGCCTACCAGTGCGAGAACAC GTGTTGGT	27372076 (Spodoptera littoralis)
PX016	2274	TGCACAACAGGCAGATCTACCC	62239897 (Diabrotica virgifera)
PX016	2275	TGCGTATCTTCCCCAAGGAGAT	16900620 (Ctenocephalides felis) 92967975 (Drosophila mojavensis)

PX016	2276	TGCTACGCCATCGGCAAGGACGTGCAGGC	31206154 (Anopheles gambiae str. PEST) 92953069 (Drosophila ananassae) 92477149 (Drosophila erecta) 24646340 (Drosophila melanogaster) 67898824 (Drosophila pseudoobscura) 55694467 (Drosophila yakuba)
PX016	2277	TGCTCTACCTCGAGTTCCTCACCAAGTTCGAGAAGAACTTCA TC	76555122 (Spodoptera frugiperda)
PX016	2278	TGTCTGTTCTTGAACTTGGCCAA	4680479 (Aedes aegypti) 92477818 (Drosophila erecta) 24646340 (Drosophila melanogaster)
PX016	2279	TGTCTGTTCTTGAACTTGGCCAATGA	55905051 (Locusta migratoria)
PX016	2280	TGTTCTTGAACTTGGCCAATGA	91090030 (Tribolium castaneum)
PX016	2281	TTCAACGGCTCCGGCAAGCCCAT	76554661 (Spodoptera frugiperda)
PX016	2282	TTCAACGGCTCCGGCAAGCCCATCGACAAGGG	4680479 (Aedes aegypti) 31206154 (Anopheles gambiae str. PEST) 67877903 (Drosophila pseudoobscura)
PX016	2283	TTCGAGGAGAACGGTTCCATGGAGAA	92972277 (Drosophila grimshawi)
PX016	2284	TTCGAGGAGAACGTTCCATGGAGAACGT	92950254 (Drosophila ananassae)
PX016	2285	TTCTTCAAGCAGGACTTCGAGGAGAA	83937868 (Lutzomyia longipalpis)
PX016	2286	TTCTTCAAGCAGGACTTCGAGGAGAACGG	92477818 (Drosophila erecta)
PX016	2287	TTCTTCAAGCAGGACTTCGAGGAGAACGGTTC	31206154 (Anopheles gambiae str. PEST)
PX016	2288	TTCTTCAAGCAGGACTTCGAGGAGAACGGTTCCATGGAGAAC	24646340 (Drosophila melanogaster)
PX016	2289	TTCTTGAACTTGGCCAATGACCC	9713 (Manduca sexta)
PX016	2290	ТСТТGGCCTACCAGTGCGAGAA	31206154 (Anopheles gambiae str. PEST) 67883622 (Drosophila pseudoobscura) 92231646 (Drosophila willistoni)

22474232 (Helicoverpa armigera); 37951951 (Ips pini); 60305420 (Mycetophagus quadripustulatus); 84647995 (Myzus persicae) 73619372 (Aphis gossypii); 77325485 (Chironomus tentans); 94432102 (Bombyx mori); 103790417 (Heliconius erato); 55904580 (Locusta migratoria); 101419954 (Plodia 109978109 (Gryllus pennsylvanicus) Example Gi-number and species 42764924 (Armigeres subalbatus) 27620566 (Anopheles gambiae) 27557322 (Anopheles gambiae) 55904577 (Locusta migratoria) 31365398 (Toxoptera citricida) 3953837 (Bombyx mandarina) 98994282 (Antheraea mylitta) 73613065 (Aphis gossypii) 73619372 (Aphis gossypii) 3658572 (Manduca sexta) 94432102 (Bombyx mori) interpunctella) GTACTATCCGTTATCCTGACCCAGTCATTAAAGT AACTGTGAAGTAACGAAGATTGTTATGCAGCGACT CAAGGACATACTTTGCCACAAGATTGAATAATGT AAAGGTATTCCATTCTTGGTGACCCATGATGGCC CATGATGGCCGTACTATCCGTTATCCTGACCC AAGGGTAAGGGTGTGAAATTGAGTAT AGTGCAGAAGAAGCCAAGTACAAGCT **AGAAGCATTTGAAGCGTTTAAATGC** AGTACTGGCCCCCACAAATTGCG **ATCGCCGAGGAGCGGGACAAGC** CATGATGGCCGTACTATCCGTTA AAGAAGCATTTGAAGCGTTTAAA AAAGCATGGATGTTGGACAAACT **AATGTATTCATTGGAAAAGC** CATTTGAAGCGTTTAAATGCTCC CAGAAGAAGCCAAGTACAAGCT **AGAAGCATTTGAAGCGTTTAAA** AAAGCATGGATGTTGGACAAA **ATTCATCATTGGAAA** TATCAAAGTTGA Sequence * SEQ ID NO 2384 2385 2386 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2387 Target ID AD001 AD001 AD001 AD001 AD001 AD001 AD001 **AD001** AD001 AD001 **AD001** AD001 AD001 AD001 AD001 AD001 AD001

Table 4-AD

AD001	2401	CCTAAAGCATGGATGTTGGAC	77324536 (Chironomus tentans)
AD001	2402	CCTAAAGCATGGATGTTGGACAA	58371410 (Lonomia obliqua)
1000	2403	CCTAAAGCATGGATGTTGGACAAA	60311985 (Papilio dardanus)
2	7100		30031258 (Toxoptera citricida)
AD001	2404	CCTAAAGCATGGATGTTGGACAAACT	98994282 (Antheraea mylitta)
AD001	2405	CGTACTATCCGTTATCCTGACCC	37804548 (Rhopalosiphum padi)
AD001	2406	GAATGTTTACCTTTGGTGATTTTTCTTCGCAATCG GCT	109978109 (Gryllus pennsylvanicus)
AD001	2407	GCAGAAGAAGCCAAGTACAAGCT	37953169 (lps pini)
AD001	2408	GCATGGATGTTGGACAACTCGG	83935968 (Lutzomyia longipalpis)
AD001	2409	GCTGGTTTCATGGATGTTGTCAC	109978109 (Gryllus pennsylvanicus)
AD001	2410	GCCCCAAGAAGCATTTGAAGCGTTTAA	14693528 (Drosophila melanogaster)
AD001	2411	GGTTTCATGGATGTTGTCACCAT	25958683 (Curculio glandium)
AD001	2412	TATGATGTGAAAGGCCGTTTCACAATTCACAGAAT	109978109 (Gryllus pennsylvanicus)
AD001	2413	TCATTGCCAAAGGGTAAGGGT	77324972 (Chironomus tentans)
AD001	2414	TGGATATTGCCACTTGTAAAATCATGGACCACATC AGATTTGAATCTGG	109978109 (Gryllus pennsylvanicus)
AD001	2415	TTAAATGCTCCTAAAGCATGGATGTTGGACAAACT	109978109 (Gryllus pennsylvanicus)
AD001	2416	TTTGAATCTGGCAACCTGTGTATGAT	60311985 (Papilio dardanus)
AD001	2417	TTTGATATTGTTCATATCAAGGATAC	109978109 (Gryllus pennsylvanicus)
AD002	2418	AAGAAAATCGAACAAGAAATC	55902553 (Locusta migratoria)
AD002	2419	CAGCACATGGATGTGGACAAGGT	67899569 (Drosophila pseudoobscura)
AD002	2420	GAGTITCTTTAGTAAAGTATTCGGTGG	110762684 (Apis mellifera)
AD009	2421	CACTACAACTACCACAAGAGC	84226228 (Aedes aegypti) 18941376 (Anopheles gambiae)
AD009	2422	CAGAACATCCACAACTGTGACT	29534871 (Bombyx mori)
AD009	2423	GETETEGETETECEAGGG	83926368 (Lutzomyia longipalpis)
AD009	2424	TGGATCCCTGAATACTACAATGA	83926506 (Lutzomyia longipalpis)
AD015	2425	GAGCAGTAGAATTCAAAGTAGT	99012451 (Leptinotarsa decemlineata)
AD015	2426	GCAATTATATTGATGAA	83936542 (Lutzomyia longipalpis)
AD015	2427	TCACCATATTGTATTGTTGCT	31366806 (Toxoptera citricida)
AD015	2428	TTGTCCTGATGTTAAGTATGG	84114691 (Blomia tropicalis)
AD016	2429	ACGATGCCCAACGACGACATCACCCATCC	101406307 (Plodia interpunctella)

AD016	2430	ATGCCCAACGACGACATCACCCA	53883819 (Plutella xylostella)
AD016	2431	ATGCCCAACGACGACATCACCCATCCTATT	110240379 (Spodoptera frugiperda) 27372076 (Spodoptera littoralis)
AD016.	2432	CAGAAGATCCCCATCTTCTCGG	91827264 (Bombyx mori) 22474331 (Helicoverpa armigera) 60295607 (Homalodisca coagulata)
AD016	2433	CGGCTCCATCACTCAGATCCCCAT	67896654 (Drosophila pseudoobscura)
AD016	2434	GCCAACGACCCCACCATCGAG	101406307 (Plodia interpunctella)
AD016	2435	GCCCGTGTCCGAGGACATGCTGGG	83937868 (Lutzomyia longipalpis) 75473525 (Tribolium castaneum)
AD016	2436	GGCAGAAGATCCCCATCTTCTC	2286803 (Drosophila melanogaster)
AD016	2437	GTTCACCGGCGATATTCTGCG	92997483 (Drosophila grimshawi)
AD016	2438	GTTCACCGGCGATATTCTGCGC	92953552 (Drosophila ananassae) 92042621 (Drosophila willistoni)

Table 5-LD

Target ID	SEQ ID No	Sequences*	Example Gi-number and species
LD001	124	AAGAAGCATTTGAAGCGTTTG	8005678 (Meloidogyne incognita), 9829015 (Meloidogyne javanica)
LD003	125	GTTCTTCCTCTTGACGCGTCC	7710484 (Zeldia punctata)
LD003	126	GCAGCTTTACGGATTTTGCCAA	32183696 (Meloidogyne chitwoodi)
LD003	127	TITCAACTCCTGATCAAGACGT	1662318 (Brugia malayi), 31229562 (Wuchereria bancrofti)
PD006	128	GCTATGGGTAAGCAAGCTATGGG	520506 (Caenorhabditis elegans)
LD007	129	AAAGAATAAAAATTATTTGA	17539725 (Caenorhabdilis elegans)
LD007	130	AAGCAAGTGATGTTCAGTGC	7143515 (Globodera pallida)
LD014	131	ATGATGGCTTTCATTGAACAAGA	10122191 (Haemonchus contortus)
LD015	132	AACGCCCCAGTCTCATTAGCCAC	20064339 (Meloidogyne hapla)
LD016	133	TTTTGGCGTCGATTCCTGATG	71999357 (Caenorhabditis elegans)
LD016	134	GTGTACATGTAACCTGGGAAACC	13418283 (Necator americanus)
LD016	135	GTGTACATGTAACCTGGGAAACCACGACG	10819046 (Haemonchus contortus)

Table 5-PC

Target ID	SEQ ID NO	Sequence *	Example GI-number and species
PC001	435	ATGGATGTTGGACAAATTGGG	7143612 (Globodera rostochiensis)
PC003	436	GCTAAAATCCGTAAAGCTGCTCGTGAACT	9831177 (Strongyloides stercoralis)
PC003	437	GAGTAAAGTACACTTTGGCTAAA	28914459 (Haemonchus contortus)
PC003	438	AAAATCCGTAAAGCTGCTCGTGAACT	32185135 (Meloidogyne chitwoodi)
PC003	439	CTGGACTCGCAGAAGCACATCGACTT	51334250 (Radopholus similis)
PC003	440	CGTCTGGATCAGGAATTGAAA	61115845 (Litomosoides sigmodontis)
PC005	441	TGGTTGGATCCAAATGAAATCAA	5430825 (Onchocerca volvulus)
PC005	442	GTGTGGTTGGATCCAAATGAAATCAA	6845701 (Brugia malayi); 45215079 (Wuchereria bancrofti)
PC014	443	CACATGATGCTTTCATTGAACAAGAAGC	10122191 (Haemonchus contortus)
PC014	444	TACGAGAAAAGGAGGAAGT	21265518 (Ostertagia ostertagi)
PC016	445	GTCTGGATCATTTCCTCGGGATAAAT	18081287 (Globodera rostochiensis)
PC016	446	CCAGTCTGGATCATTTCCTCGGGATA	108957716 (Bursaphelenchus mucronatus); 108962248 (Bursaphelenchus xylophilus)

Fable 5-EV

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
EV005	563	ТТАААВАТВЕТСТТАТТАТТАА	21819186 (Trichinella spiralis)
EV016	564	GCTATGGGTGTCAATATGGAAAC	54554020 (Xiphinema index)

able 5-AG

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
AG001	739	GCTGGATTCATGGATGTGATCA	15666884 (Ancylostoma ceylanicum)
AG001	740	ATGGATGTTGGACAAATTGGG	18081843 (Globodera rostochiensis)
AG001	741	TTCATGGATGTGATCACCATTGA	27002091 (Ascaris suum)
AG005	742	GTCTGGTTGGATCCAAATGAAATCAATGA	2099126 (Onchocerca volvulus)
AG005	743	GGATCCAAATGAAATCAATGA	2099309 (Onchocerca volvulus)
AG005	744	TGATCAAGGATGGTTTGATCAT	2130916 (Brugia malayi)
AG005	745	TGGTTGGATCCAAATGAAATCAATGA	6845701 (Brugia malayi)
AG005	746	CCAAGGGTAACGTGTTCAAGAACAAG	29964728 (Heterodera alvcines)

AG005	747	TGGTTGGATCCAAATGAAATCAATGA	45215079 (Wuchereria bancrofti)
AG005	748	TGGATCCAAATGAAATCAATGA	61116961 (Litomosoides sigmodontis)
AG014	749	GAAGAATTTAACATTGAAAAGGG	10122191 (Haemonchus contortus)
AG014	750	GAATTTAACATTGAAAAGGGCCG	28252967 (Trichuris vulpis)
AG016	751	GGTTACATGTACACCGATTTGGC	54552787 (Xiphinema index)

Table 5-TC

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
TC014	853	ATCATGGAATATTACGAGAAGAA	6562543 (Heterodera schachtii); 15769883 (Heterodera glycines)
TC015	854	AACGGTCCCGAAATTATGAGTAAATT	108966476 (Bursaphelenchus xylophilus)

Table 5-MP

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
MP001	1011	GATCTTTTGATATTGTTCACATTAA	13099294 (Strongyloides ratti)
MP001	1012	ACATCCAGGATCTTTTGATATTGTTCAC	15275671 (Strongyloides ratti)
MP001	1013	TCTTTTGATATTGTTCACATTAA	32183548 (Meloidogyne chitwoodi)
MP016	1014	TATTGCTCGTGGACAAAAAT	9832367 (Strongyloides stercoralis)
MP016	1015	TCTGCTGCTGAAGAAGTACCTGG	13418283 (Necator americanus)
MP016	1016	GCTGAAGATTATTTGGATATT	20064440 (Meloidogyne hapla)
MP016	1017	GGTTTACCACATAATGAGATTGCTGC	20064440 (Meloidogyne hapla)
MP016	1018	AAGAAATGATTCAAACTGGTATTTCAGCTATTGAT	31545172 (Strongyloides ratti)
MP016	1019	TATTGCTCGTGGACAAAAATTCCAAT	31545172 (Strongyloides ratti)
MP016	1020	GTITCTGCTGCTGAAGAAGT	31545172 (Strongyloides ratti)
MP016	1021	CGTGGTTTCCCTGGTTACATGTACAC	31545172 (Strongyloides ratti)
MP016	1022	CCTGGTTACATGTACACCGATTT	54552787 (Xiphinema index)
MP027	1023	TTTAAAAATTTTAAAGAAAAA	27540724 (Meloidogyne hapla)
MP027	1024	CTATTATGTTGGTGGTGAAGTTGT	34026304 (Meloidogyne arenaria)
MP027	1025	AAAGTITTTAAAAATTTTAAA	34028558 (Meloidogyne javanica)

Table 5-NL

NL001	1438	- ACTACA ACCTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT	
NL001		AG I ACARAGI G I GCAAAG I GAAGA	18087933 (Globodera rostochiensis), 54547517 (Globodera pallida)
_	1439	ATGGATGTTGGACAAATTGGGTGG	7143612 (Globodera rostochiensis)
NL001	1440	TGGATGTTGGACAAATTGGGTGG	7235910 (Meloidogyne incognita)
NL001	1441	AGTACAAGCTGTGCAAAGTGAAGA	111164813 (Globodera rostochiensis)
NL003	1442	AGTCCATCACGCCGTGT	6081031 (Pristionchus pacificus)
NL003	1443	CTCCGTAACAAGCGTGAGGTGTGG	5815927 (Pristionchus pacificus)
NL003	1444	GACTCGCAGAAGCACATTGACTTCTC	5815618 (Pristionchus pacificus)
NL003	1445	GCAGAAGCACATTGACTTCTC	6081031 (Pristionchus pacificus)
NL003	1446	GCCAAGTCCATCACGCCC	6081133 (Pristionchus pacificus)
NL003	1447	GCCAAGTCCATCACGCCCGTGT	1783663 (Pristionchus pacificus)
NL003	1448	TCGCAGAAGCACATTGACTTCTC	10804008 (Ascaris suum)
NL003	1449	TCGCAGAAGCACATTGACTTCTCGCTGAA	18688500 (Ascaris suum)
NL003	1450	GCCAAGTCCATCACGCCCGTGT	91102596 (Pristionchus pacificus)
NL003	1451	GACTCGCAGAAGCACATTGACTTCTC	91102596 (Pristionchus pacificus)
NL003	1452	CTCCGTAACAAGCGTGAGGTGTGG	91102596 (Pristionchus pacificus)
NL004	1453	AAGAACAAGGATATTCGTAAATT	3758529 (Onchocerca volvulus), 6200728 (Litomosoides sigmodontis)
NL004	1454	AAGAACAAGGATATTCGTAAATTCTTGGA	21056283 (Ascaris suum), 2978237 (Toxocara canis)
NL004	1455		1783477 (Pristionchus pacificus)
NL004	1456	TACGCCCATTTCCCCATCAAC	2181209 (Haemonchus contortus)
NL007	1457	CAACATGAATGCATTCCTCAAGC	39747064 (Meloidogyne paranaensis)
NL007	1458	GAAGTACAACATGCATTCC	6721002 (Onchocerca volvulus)
NL007	1459	GCTGTATTGTGTTGGCGACA	27541378 (Meloidogyne hapla)
NL008	1460	AGAAAAGGTTGTGGGTTGGTA	108958003 (Bursaphelenchus mucronatus)
NL011	1461	GGACTTCGTGATGGATATTACATTCAGGGACAATG	33138488 (Meloidogyne incognita)
NL011	1462	CAACTACAACTTCGAGAAGCC	108984057 (Bursaphelenchus xylophilus)
NL014	1463	GAAGAATTCAACATTGAAAAGGG	11927908 (Haemonchus contortus)

NL014	1464	GAGCAAGAGCCAATGAGAAAGC	108985855 (Bursaphelenchus mucronatus)
NL014	1465	TTTCATTGAGCAAGAGCCAATGAGAAAGCCGAAGA	108979738 (Bursaphelenchus xylophilus)
NL015	1466	ATGAGCAAATTGGCCGGCGAGTCGGAG	18090737 (Globodera rostochiensis)
NL015	1467	CACACCAAGAACATGAAGTTGGCTGA	68276872 (Caenorhabditis remanei)
NL015	1468	CAGGAAATCTGTTCGAAGTGT	45564676 (Meloidogyne incognita)
NL015	1469	CTGGCGCAGATCAAAGAGATGGT	18090737 (Globodera rostochiensis)
NL015	1470	TGGCGCAGATCAAAGAGATGGT	27428872 (Heterodera glycines)
NL016	1471	TATCCCGAGGAAATGATCCAGAC	18081287 (Globodera rostochiensis)
NL016	1472	CGTATCTATCCCGAGGAAATGATCCAGACTGGAATTTC	108957716 (Bursaphelenchus mucronatus) 108962248 (Bursaphelenchus xylophilus)
NL023	1473	TGGATGGGAGTCATGCATGGA	13959786 (Nippostrongylus brasiliensis)

Table 5-CS

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
CS001	1988	ATACAAGCTGTGCAAGGTGCG	10803803 (Trichuris muris)
CS003	1989	AAGCACATTGACTTCTCGCTGAA	18850138 (Ascaris suum)
CS003	1990	CGCAACAAGCGTGAGGTGTGG	40305701 (Heterodera glycines)
CS003	1991	CGTCTCCAGACTCAGGTGTTCAAG	91102965 (Nippostrongylus brasiliensis)
CS011	1992	TTTAATGTATGGGATACTGCTGG	9832495 (Strongyloides stercoralis)
CS011	1993	CACTTGACTGGAGAGTTCGAGAAAA	18082874 (Globodera rostochiensis)
CS011	1994	CTCGTGTCACCTACAAAATGTACC	71182695 (Caenorhabditis remanei)
CS011	1995	CACTTGACTGGAGAGTTCGAGAA	108987391 (Bursaphelenchus xylophilus)
CS013	1996	TAGGTGAATTTGTTGATGATTA	40305096 (Heterodera glycines)
CS014	1997	AAGAAAGAAACAAGTGGAACT	51871231 (Xiphinema index)
CS016	1998	GTGTACATGTAACCTGGGAAACCACG	10819046 (Haemonchus contortus)
CS016	1999	GTGTACATGTAACCTGGGAAACC	13418283 (Necator americanus)
CS016	2000	GCCAAATCGGTGTACATGTAACC	54552787 (Xiphinema index)
CS016	2001	AAGTTCTTCGAACTTGGTGAGGAACTC	111163626 (Globodera rostochiensis)

able 5-P)

ביבות בי ביבות ביבות בי	SEQ ID NO	Sequence *	Example Gi-number and species
PX001	2291	CTCGACATCGCCACCTGCAAG	11069004 (Haemonchus contortus); 27770634 (Teladorsagia circumcincta)
PX001	2292	GACGGCAAGGTCCGCACCGAC	32320500 (Heterodera glycines)
PX001		CCCGGCTGGATTCATGGATGT	51334233 (Radopholus similis)
PX001		ATCAAGGTGGACGGCAAGGTCCGCAC	108959807 (Bursaphelenchus xylophilus)
PX001		ACAACGTGTTCATCGGCAA	111166840 (Globodera rostochiensis)
PX016	2296	CGTGGTTTCCCAGGTTACATGTACACGGATTTGGC	10819046 (Haemonchus contortus)
PX016		GGTTTCCCAGGTTACATGTACAC	13418283 (Necator americanus)
PX016		GAGTTCCTCACCAAGTTCGAGAAGAACTT	111163626 (Globodera rostochiensis)

Table 5-AD

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
AD015	2439	ATAAATGGTCCTGAAATTATGA	9832193 (Strongyloides stercoralis)
AD016	2440	GTCAACATGGAGGCGCGCGTT	30220804 (Heterodera glycines)

Table 6-LD

Target ID	SEQ ID No	Sequences*	Example Gi-number and species
LD001	136	TAGCGGATGGTGCGCCGTCGTG	54625255 (Phlebiopsis gigantea)
LD003	137	TTCCAAGAAATCTTCAATCTTCAAA	50294437 (Candida glabrata CBS 138)
LD007	138	GACTGCGGTTTTGAACACCCTTCAGAAGTTCA	110463173 (Rhizopus oryzae)
LD007	139	TGTCAAGCCAAATCTGGTATGGG	110463173 (Rhizopus oryzae)
LD011	140	GGCTTCTCAAAGTTGTAGTTA	48898288 (Aspergillus flavus)
LD011	141	CCATCACGGAGACCACCAAACTT	60673229 (Alternaria brassicicola)
LD011	142	AAAGGCTTCTCAAAGTTGTAGTTA	58157923 (Phytophthora infestans)
LD011	143	TGTGCTATTATCATGTTTGATGT	110458937 (Rhizopus oryzae)
LD011	144	ACTGCCGGTCAGGAGAGTTTGG	90638500 (Thermomyces lanuginosus)
L D011	145	AATACAACTTTGAGAAGCCTTTCCT	90549582 (Lentinula edodes), 90381505 (Amorphotheca resinae)

LD011	146	CAGGAGAGTTTGGTGGTCTCCG	90544763 (Gloeophyllum trabeum)
LD011	147	ACCACCAAACTTCTCCTGACC	90368069 (Aureobasidium pullulans)
LD011	148	GGTCAGGAGAGTTGGTGGTCTCCG	90355148 (Coprinopsis cenerea)
LD016	149	GCAGCAATTTCATTGTGAGGCAGACCAG	50285562 (Candida glabrata CBS 138)
LD016	150	ATGGAGTTCATCACGTCAATAGC	68419480 (Phytophthora parasitica)
LD016	151	GGTCTGCCTCACAATGAAATTGCTGCCCAGAT	85109950 (Neurospora crassa)
LD016	152	CTATTGTTTTCGCTGCTATGGGTGTTAACATG GA	50423336 (Debaryomyces hansenii), 90540142 (Gloeophyllum trabeum)
LD016	153	ATGAACTCCATTGCTCGTGGTCAGAAGAT	84573655 (Aspergillus oryzae)
LD016	154	ATAGGAATCTGGGTGATGGATCCGTT	90562068 (Leucosporidium scottii), 90359845 (Aureobasidium pullulans)
LD016	155	TCCTGTTTCTGAAGATATGTTGGG	90388021 (Cunninghamella elegans)
LD016	156	TTTGAAGATTGAAGATTTCTTGGAACG	50294437 (Candida glabrata CBS 138), 110468393 (Rhizopus oryzae), 90388664 (Cunninghamella elegans), 90376235 (Amorphotheca resinae)
LD027	157	TCACAGGCAGCGAAGATGGTACC	90546087 (Gloeophyllum trabeum)
LD027	158	TTCTTTGAAGTTTTTGAATAT	50292600 (Candida glabrata CBS 138)

Table 6-PC

Target ID	Target ID SEQ ID NO Sequence	Sequence *	Example Gi-number and species
PC001	447	CCCTGCTGGTTTCATGGATGTCAT	110469463 (Rhizopus oryzae)
PC003	448	ATTGAAGATTTCTTGGAAAGAAG	50294437 (Candida glabrata CBS 138)
PC003	449	TTGAAGATTTCTTGGAAAGAAG	50310014 (Kluyveromyces lactis NRRL Y-1140)
PC003	450	CTTCTTTCCAAGAAATCTTCAA	622611 (Saccharomyces cerevisiae)
			109744873 (Allomyces macrogynus); 59284959
PC003	451	GACTCGCAGAAGCACATCGACTT	(Blastocladiella emersonii); 90623359 (Corynascus
			heterothallicus); 29427071 (Verticillium dahliae)
2000	460		59298648 (Blastocladiella emersonii); 90565029
300	432	うこうできょうかんかんかんかん	(Leucosporidium scottii)
PC003	453	TCGCAGAGCACATCGACTTC	47032157 (Mycosphaerella graminicola)
PC003	454	CAGAAGCACATCGACTTCTCCCT	34332427 (Ustilago maydis)

_											. —	-		_			
98997063 (Spizellomyces punctatus)	84572408 (Aspergillus oryzae)	50288722 (Candida glabrata CBS 138)	70990481 (Aspergillus fumigatus)	90631635 (Thermomyces lanuginosus)	30394561 (Magnaporthe grisea)	59281308 (Blastocladiella emersonii)	38353161 (Hypocrea jecorina)	34447668 (Cryphonectria parasitica)	34447668 (Cryphonectria parasitica)	38353161 (Hypocrea jecorina)	59281308 (Blastocladiella emersonii)	50285562 (Candida glabrata CBS 138)	66909391 (Phaeosphaeria nodorum)	110463410 (Rhizopus oryzae)	71006197 (Ustilago maydis)	68488910 (Candida albicans)	90347883 (Coprinopsis cinerea)
CTTATGGAGTACATCCACAG	AAGAAGGCAGAGAAGGCCA	GTGTTCAATAATTCTCCTGATGA	ATTITCCATGGAGACCATTGC	GGGCAGAATCCCCAAGCTGCC	AATACAAGGACGCCACCGGCA	ATGCCCAACGACGACATCACCCA	TGGGTGATGTCGTTGGGCAT	GGTTTCCCCGGTTACATGTACAC	ACTATGCCCAACGACGACATCAC	CGGGCACTTCTTCGAGCGGC	CCGACCATCGAGCGCATCATCAC	TTCTTGAACTTGGCCAACGATCC	TGTTCTTGAACTTGGCCAACGA	GCTATGGGTGTCAACATGGAAACTGC	TGCTATGGGTGTCAACATGGA	CTATTGTGTTTGCTGCTATGGGTGT	TACGAGCGCCGGTCGTGTGGA
455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472
PC005	PC005	PC010	PC010	PC010	PC014	PC016	PC016	PC016	PC016	PC016	PC016	PC016	PC016	PC016	PC016	PC016	PC016

Table 6-EV

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
EV010	292	TTCAATAATTCACCAGATGAAAC	50405834 (Debaryomyces hansenii)
EV015	999	CGATCGCCTTGAACAGCGACG	22502898 (Gibberella zeae)
EV015		GTTACCATGGAGAACTTCCGTTA	67900533 (Aspergillus nidulans FGSC A4)
EV015	268	GTTACCATGGAGACTTCCGTTACGCC	70820241 (Aspergillus niger)
EV015		ACCATGGAGACTTCCGTTACGCC	84573628 (Aspergillus oryzae)
EV015		ATGGAGAACTTCCGTTACGCC	71002727 (Aspergillus fumigatus)
EV016		TCTGAAGATATGTTGGGTCGTGT	90396765 (Cunninghamella elegans)
EV016	572	CAAAAGATTCCAATTTTCTCTGCA	50306984 (Kluyveromyces lactis NRRL Y-1140)
EV016	573	CCCCACAATGAAATCGCTGCTCAAAT	68001221 (Schizosaccharomyces pombe 972h-)
EV016	574	ATCGTTTTCGCCGCTATGGGTGT	58271359 (Cryptococcus neoformans var.)
EV016	575	TTCAAGCAAGATTTTGAAGAGAATGG	50285562 (Candida glabrata CBS 138)

Table 6-AG

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
AG001	752	CGTAACAGGTTGAAGTACGCCCT	16931515 (Coccidioldes posadasii)
AG001	753	AAGGTCGACGGCAAAGTCAGGACTGAT	33515688 (Cryptococcus neoformans var.)
AG001	754	CCATTCTTGGTCACCCACGATG	38132640 (Hypocrea jecorina)
AG001	755	ATCAAGGTAAACGACACCATC	56939474 (Puccinia graminis f. sp.)
AG005	756	TGTACATGAAGGCCAAGGGTAACGTGTTCAAGAACAAG	98997063 (Spizellomyces punctatus)
AG005	757	CCAAGGGTAACGTGTTCAAGAACAAG	109744763 (Allomyces macrogynus); 59297176 (Blastocladiella emersonii)
AG005	758	AAGGGTAACGTGTTCAAGAACAAG	109741162 (Allomyces macrogynus)
AG005	759	CAAGAAGAGGCTGAGAAGGC	67903433 (Aspergillus nidulans FGSC A4)
AG005	760	CAAGAAGAGCTGAGAAGGC	4191107 (Emericella nidulans)
AG005	761	AAGAAGGCTGAGAAGGCC	66909252 (Phaeosphaeria nodorum)
AG005	762	CAAAACATCCGTAAATTGATCAAGGATGGTTT	21649803 (Conidiobolus coronatus)
AG016	763	TTCGCCGCCATGGGTGTCAAC	50554108 (Yarrowia lipolytica)
AG016	764	ATGGGTGTCAACATGGAAACCGC	90639144 (Trametes versicolor)
AG016	765	TGGAAACCGCCGTTTCTTCA	85109950 (Neurospora crassa)
AG016	992	GGTTACATGTACACCGATTTG	32169825 (Mucor circinelloides)
AG016	191	GTCAAGATGGGAATCTGGGTGATGGA	38353161 (Hypocrea jecorina)

able 6-TC

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
TC001	855	AACAGGCTGAAGTATGCCTTGACC	90545567 (Gloeophyllum trabeum)
TC015	928	TTCATCGTCGTGGTGCCATG	46122304 (Gibberella zeae PH-1)
TC015	298	AGTITTACCGGTACCTGGAGG	50310636 (Kluyveromyces lactis NRRL Y-1140)
TC015	858	CCTCCAGGTACCGGTAAAACT	85114224 (Neurospora crassa)
TC015	698	CCTCCAGGTACCGGTAAAACTTT	50290674 (Candida glabrata CBS 138)
TC015	860	ATTAAAGTTTTACCGGTACCTGGAGG	3356460 (Schizosaccharomyces pombe)
TC015	861	GGTGCTTTCTTCATCAA	21649889 (Conidiobolus coronatus)
TC015	862	ATCAACGGTCCCGAAATTATG	82610024 (Phanerochaete chrysosporium)

Table 6-MP

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
MP002	1026	AATTITTAGAAAAAAATTG	68026454 (Schizosaccharomyces pombe 972h-)
MP010	1027	GTCACCACATTAGCTAGGAAT	48564349 (Coccidioides posadasii)
MP016	1028	AAGAAATGATTCAAACTGGTAT	90396765 (Cunninghamella elegans)
MP016	1029	AAGAAATGATTCAAACTGGTATTTC	110463410 (Rhizopus oryzae)
MP016	1030	CATGAACTCTATTGCTCGTGG	50285562 (Candida glabrata CBS 138)
MP016	1031	GCTGCTATGGGTGTTAATATGGA	90348219 (Coprinopsis cinerea)
MP016	1032	TGCTATGGGTGTTAATATGGAAAC	90396964 (Cunninghamella elegans)
MP016	1033	CCTACTATTGAGCGTATCATTAC	90524974 (Geomyces pannorum)
MP016	1034	GAAGTITCTGCTGCTCGTGAAGAAGTACCTGG	90396313 (Cunninghamella elegans)
MP016	1035	GTTTCTGCTGCTCGTGAAGAGT	32169825 (Mucor circinelloides)
MP016	1036	GTGTACATGTAACCAGGGAAACCACG	45392344 (Magnaporthe grisea)
MP016	1037	CCTGGTTACATGTACACCGATTT	32169825 (Mucor circinelloides)
MP016	1038	GGTTACATGTACACCGATTTA	47067814 (Eremothecium gossypii)
MP016	1039	CCTATTTTAACTATGCCTAACGA	90396313 (Cunninghamella elegans)
MP027	1040	ACTCTCCATCACCACATACTA	60673889 (Alternaria brassicicola)

Table 6-NL

Target ID	SEQ ID No	Sequence *	Example Gi-number and species
NL001	1474	CCAAGGGCAAGGGTGTGAAGCTCA	30418788 (Magnaporthe grisea)
NL001	1475	TCTCTGCCCAAGGGCAAGGGTGT	22500578 (Gibberella zeae), 46128672 (Gibberella zeae PH-1), 70662858 (Gibberella moniliformis), 71000466 (Aspergillus
			fumigatus)
NL001	1476	TCTGCCCAAGGCAAGGGTGT	14664568 (Fusarium sporotrichioides)
NL001	1477	TCTCTGCCCAAGGGCAAGGGT	50550586 (Yarrowia lipolytica)
NL001	1478	TCTCTGCCCAAGGGCAAGGGTGT	71000466 (Aspergillus fumigatus) 92459259 (Gibberella zeae)
NL001	1479	CTGCCCAAGGGCAAGGGTGTGAAG	90545567 (Gloeophyllum trabeum)
NL003	1480	ATGAAGCTCGATTACGTCTTGG	24446027 (Paracoccidioides brasiliensis)
NL003	1481	CGTAAGGCCGCTCGTGAGCTG	10229753 (Phytophthora infestans)

N 003	1482	CGTAAGGCCGCTCGTGAGCTGTTGAC	58082846 (Phytonhithora infectane)
NL003	1483	GACTCGCAGAAGCACATTGACTT	21393181 (Pratylenchus penetrans), 34330401 (Ustilago maydis)
NL003	1484	TGAAGCTCGATTACGTCTTGG	46346864 (Paracoccidioides brasillensis)
NL003	1485	TGGCCAAGTCCATCACGCCCGTGT	58113938 (Phytophthora infestans)
NL004	1486	CGTAACTTCCTGGGCGAGAAG	58127885 (Phytophthora infestans)
NL003	1487	ATGAAGCTCGATTACGTCTTGG	90366381 (Aureobasidium pullulans)
NL003	1488	TCGGTTTGGCCAAGTCCATCCA	90353540 (Coprinopsis cinerea)
NL003	1489	GACTCGCAGAAGCACATTGACTT	71012467 (Ustilago maydis)
NL003	1490	GACTCGCAGAAGCACATTGACTTCTC	90616286 (Ophiostoma piliferum)
NL004	1491	TACGCCCATTCCCCATCAAC	15771856 (Gibberella zeae), 29426217 (Verticillium dahliae), 30399988 (Magnaporthe grisea), 34330394 (Ustilago maydis), 39945691 (Magnaporthe grisea 70-15), 46108543 (Gibberella zeae PH-1), 70660620 (Gibberella moniliformis)
NL004	1492	CGTGTACGCCCATTTCCCCATCAAC	90615722 (Ophiostoma piliferum)
			90367524 (Aureobasidium pullulans) 90372622 (Cryptococcus laurentii)
			109654277 (Fusarium oxysporum f. sp.) 90535059 (Geomyces papporium)
			46108543 (Gibberella zeae PH-1)
NL004	1493	TACGCCCATTTCCCCATCAAC	90566138 (Leucosporidium scottii)
			39945691 (Magnaporthe grisea 70-15)
			110115/33 (Saitoella complicata) 110081735 (Tuher horchii)
			71021510 (Ustilago maydis)
			50554252 (Yarrowia lipolytica)
NL004	1494	TACGCCCATTTCCCCATCAACTG	90640952 (Trametes versicolor)
NL004	1495	CGTGTACGCCCATTTCCCCATCAAC	90615722 (Ophiostoma piliferum)
NL005	1496	AAAAGGTCAAGGGCCAAGA	14662414 (Fusarium sporotrichioides)
NL005	1497	TTCAAGAACAAGCGTGTATTGATGGA	90395504 (Cunninghamella elegans)
NL005	1498	TTCAAGAACAAGCGTGTATTGATGGAGT	90542553 (Gloeophyllum trabeum)
NL006	1499	CCTGGAGGAGGACGACCAT	70998503 (Aspergillus fumigatus)
900N	1500	TCCCATCTCGTATGACAATTGG	68471154 (Candida albicans)

70998503 (Aspergillus fumigatus)	i		CAG 10229203 (Phytophthora infestans)	AC 70984614 (Aspergillus fumigatus)	AA 68478799 (Candida albicans)	AC 21649260 (Conidiobolus coronatus)	47031965 (Mycosphaerella graminicola)		3A 68132303 (Trichophyton rubrum)	T 68132303 (Trichophyton rubrum)	TGGCAC 70674996 (Gibberella moniliformis)	22500425 (Gibberella zeae), 34331122 (Ustilago maydis), 46108433 (Gibberella zeae PH-1), 47029512 (Mycosphaerella		(Fusarium oxysporum f. sp.), 70674996 (Gibberella	AC 68132303 (Trichophyton rubrum)	C 68132303 (Trichophyton rubrum)		G 68132303 (Trichophyton rubrum)	C 22505588 (Gibberella zeae)	C 68132303 (Trichophyton rubrum)	68132303 (Trichophyton rubrum)	A 68132303 (Trichophyton rubrum)	ACT 30405871 (Magnaporthe grisea)		Injurians FGSC A4)
ATGGTCGTCCTCCTCCAGG	TCCCATCTCGTATGACAATTGG	CAAGTCATGATGTTCAGTGCAAC	TGACGCTTCACGGCCTGCAGCAG	CAAGTCATGATGTTCAGTGCAAC	CAATTCTTGCAAGTGTTCAACAA	TTCAACAACAGTCCTGATGAAAC	TTCTTGCAAGTGTTCAACAAC	AAGAACGTTCCCAACTGGCAC	ACAAGAACGTTCCCAACTGGCA	ACCTACAAGAACGTTCCCAACT	ACCTACAAGAACGTTCCCAACTGGCAC		CAACTACAACTTCGAGAAGCC		CAAGAACGTTCCCAACTGGCAC	CACCTACAAGAACGTTCCCAAC	CCTACAAGAACGTTCCCAACTG	CTACAAGAACGTTCCCAACTGG	GCAACTACAACTTCGAGAAGCC	TACAAGAACGTTCCCAACTGGC	TCACCTACAAGAACGTTCCCA	TCACCTACAAGAACGTTCCCAA	TCACCTACAAGAACGTTCCCAACT	TCACCTACAAGAACGTTCCCAACTGGCAC	
1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512		1513		1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	
NL006	900TN	NL007	NL007	NL007	NL010_2	NL010_2	NL010_2	NL011	NL011	NL011	NL011		NL011		NL011	NL011	NL011	NL011	NL011	NL011	NL011	NL011	NL011	NL011	

NL011	1525	TTCGAGAAGCCGTTCCTGTGG	38056576 (Phytophthora sojae), 45244260 (Phytophthora nicotianae), 58091236 (Phytophthora infestans)
NL011	1526	TTCGAGAAGCCGTTCCTGTGGTTGGC	58090083 (Phytophthora infestans)
NL011	1527	TGGGACACAGCTGGCCAGGAAA	39950145 (Magnaporthe grisea 70-15)
NL011	1528	TATTACATTCAGGGACAATGCG	110134999 (Taphrina deformans)
NL011	1529	TCACCTACAAGAACGTTCCCAACTGGCAC	84573903 (Aspergillus oryzae) 90355199 (Coprinopsis cinerea) 90624693 (Corynascus heterothallicus) 90638500 (Thermomyces lanuginosus)
NL011	1530	ACCTACAAGAACGTTCCCAACTGGCAC	113544700 (Cordyceps bassiana) 85114463 (Neurospora crassa)
NL011	1531	TACAAGAACGTTCCCAACTGGCA	110269748 (Hypocrea lixii)
NL011	1532	TACAAGAACGTTCCCAACTGGCAC	110458937 (Rhizopus oryzae)
NL011	1533	AGGAAGAACCTTCAGTACT	90557551 (Leucosporidium scottii)
NL011	1534	AAGAAGCTTCAGTACTACGA	113551594 (Cordyceps bassiana)
NL011	1535	AAGAAGCTTCAGTACTACGACATC	90036917 (Trichophyton rubrum)
NL011	1536	AAGAACCTTCAGTACTACGACATC	90624693 (Corynascus heterothallicus)
NL011	1537	GGCTTCTCGAAGTTGTAGTTGC	89975123 (Hypocrea lixii)
			70992714 (Aspergillus fumigatus) 90368808 (Aureobasidium pullulans)
			90629512 (Corynascus heterothallicus)
			109656121 (Fusarium oxysporum f. sp.)
NL011	1538	CAACTACAACTTCGAGAAGCC	90532849 (Geomyces pannorum) 110272576 (Hynocrea livii)
			47029512 (Mycosphaerella graminicola)
			85114463 (Neurospora crassa)
			90617165 (Ophiostoma piliferum)
			90036917 (Trichophyton rubrum)
NL011	1539	GGCTTCTCGAAGTTGTAGTTG	92233975 (Gibberella zeae)
NL013	1540	CCCGAGATGGTGGGCTGGTACCA	49069733 (Ustilago maydis)
NL013	1541	GGTACCACTCGCACCCGGGCTT	58134950 (Phytophthora infestans)
NL013	1542	GTGGGCTGGTACCACTCGCACCCGGGCTTCGG CTGCTGGCTGTCGGG	38062327 (Phytophthora sojae)
NL013	1543	TGGTACCACTCGCACCCGGGCTT	58084933 (Phytophthora infestans)

NL013	1544	CCCGAGATGGTGGTGGCTGGTACCA	71006043 (Ustilago maydis)
NL015	1545	ATCCACACCAAGAACATGAAG	10181857 (Aspergillus niger), 22505190 (Gibberella zeae), 30394634 (Magnaporthe grisea), 33507832 (Cryptococcus neoformans var.), 3773467 (Emericella nidulans), 39940093 (Magnaporthe grisea 70-15), 46122304 (Gibberella zeae PH-1), 47032030 (Mycosphaerella graminicola), 49106059 (Aspergilius nidulans FGSC A4)
NL015	1546	CACACCAAGACATGAAGTTGG	21649889 (Conidiobolus coronatus)
NL015	1547	GCCTTCTTCCTCATCAACGG	46122304 (Gibberella zeae PH-1)
NL015	1548	TTGGAGGCTGCAGAAGCAGCT	90369178 (Cryptococcus laurentii)
NL015	1549	GCCTTCTTCCTCATCAACGG	46122304 (Gibberella zeae PH-1)
NL015	1550	ATCCACACCAAGAACATGAAG	70820941 (Aspergillus niger) 58260307 (Cryptococcus neoformans var.) 85691122 (Encephalitozoon cuniculi GB-M1) 46122304 (Gibberella zeae PH-1) 39940093 (Magnaporthe grisea 70-15)
			85082882 (Neurospora crassa) 50555821 (Yarrowia lipolytica)
NL015	1551	CACACCAAGAACATGAAGTTGGC	110272618 (Hypocrea lixii)
NL016	1552	CATGAACTCGATTGCTCGTGG	30418452 (Magnaporthe grisea), 39942327 (Magnaporthe grisea 70-15)
NL016	1553	CCACCATCTACGAGCGCCGGGACG	39942327 (Magnaporthe grisea 70-15), 45392344 (Magnaporthe grisea)
NL016	1554	CATGAACTCGATTGCTCGTGG	90367610 (Aureobasidium pullulans) 39942327 (Magnaporthe grisea 70-15)
NL016	1555	CATGTCGGTGAGGATGACGAG	90562068 (Leucosporidium scottii)
NL016	1556	CCACCATCTACGAGGGGGGGGGGGG	39942327 (Magnaporthe grisea 70-15)
NL019	1557	CAGATTTGGGACACGCCCGGCCAGGAGCG	9834078 (Phytophthora sojae)
NL019	1558	GACCAGGAGTCGTTCAACAAC	9834078 (Phytophthora sojae)
NL019	1559	TGGGACACGGCCGGCCAGGAG	38056576 (Phytophthora sojae), 40545332 (Phytophthora nicotianae), 58083674 (Phytophthora infestans)
NL019	1560	TGGGACACGCCGGCCAGGAGCG	29426828 (Verticillium dahliae), 38057141 (Phytophthora sojae)
NL019	1561	TGGGACACGGCCGGCCAGGAGCGGTT	70981934 (Aspergillus fumigatus)
NL019	1562	TTCCTGGAGACGTCGGCGAAGAACGC	90643518 (Trametes versicolor)

NL019	1563	CAGATTTGGGACACGGCCGGCCAGGAGCG	90616605 (Ophiostoma piliferum)
NL019	1564	TGGGACACGCCCGGCCAGGAG	110272626 (Hypocrea lixii)
NL019	1565	TGGACACGCCCGGCCAGGAGCG	50550714 (Yarrowia lipolytica)
NL019	1566	TGGGACACGCCCGGCCAGGAGCGGTT	70981934 (Aspergillus fumigatus)
NL019	1567	TGGGACACGCCCGGCCAGGAGCGGTTCCG	50553761 (Yarrowia lipolytica)
NL022	1568	CAGGCAAAGATTTTCCTGCCCA	58124185 (Phytophthora infestans)
NL022	1569	GGCAAGTGCTTCCGTCTGTACAC	58124872 (Phytophthora infestans)
NL023	1570	GGATGACCAAAACGTATTCT	46137132 (Gibberella zeae PH-1)
NL023	1571	AGAATACGTTTTTGGTCATCC	46137132 (Gibberella zeae PH-1)

Table 6-CS

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
CS003	2002	TGGTCTCCGCAACAAGCGTGA	46356829 (Paracoccidioides brasiliensis)
CS003	2003	GGTCTCCGCAACAAGCGTGAG	71012467 (Ustilago maydis)
CS003	2004	TGGTCTCCGCAACAGCGTGAGGT	5832048 (Botryotinia fuckeliana)
CS003	2002	TGGTCTCCGCAACAGCGTGAGGT	40545704 (Sclerotinia sclerotiorum)
			21907821 (Colletotrichum trifolii); 90623359
CS003	2006	GGTCTCCGCAACAAGAGGTGAGGT	(Corynascus heterothallicus); 94331331
	-		(Pyronema omphalodes); 29427071 (Verticillium
			dahliae)
5003	2002	TGGTCTCCGCAACAAGCGTGAGCTGTGG	27439041 (Chaetomium globosum); 47032270
2000	1007	991919999999999999999999999999999999999	(Mycosphaerella graminicola)
			71000428 (Aspergillus fumigatus); 67537265
			(Aspergillus nidulans FGSC A4); 70825441
5003	2008	CGCAACAAGGTGAGGTGTGG	(Aspergillus niger); 84573806 (Aspergillus oryzae);
			3773212 (Emericella nidulans); 90632673
			(Thermomyces lanuginosus); 34332427 (Ustilago
			maydis)
CS006	2009	TCCCCTCTCGTATGACAATTGGT	68011927 (Schizosaccharomyces pombe 972h-)
CS007	2010	ATTTAGCTTTGACAAAGAATA	50305206 (Kluyveromyces lactis NRRL Y-1140)
CS007	2011	GAGCACCCTTCAGAGTTCAACA	90553133 (Lentinula edodes)
CS011	2012	TGGGATACTGCTGGCCAAGAA	90385536 (Amorphotheca resinae); 68475609
			(Calidida alolcalla), 00004 104 (INDAVGIOLII)cdo

			lactis NRRL Y-1140); 85105150 (Neurospora
			crassa)
CS011	2013	AAGTTTGGTGTCTCCGAGATGGTTACTA	90355199 (Coprinopsis cinerea)
CS011	2014	CAATGTGCCATCATGTTCGA	15276938 (Glomus intraradices)
CS011	2015	CATCATCATGTTCGATGTAAC	28268268 (Chaetomium globosum)
CS011	2016	CACTTGACTGGAGATTCGAGAA	90368808 (Aureobasidium pullulans); 34331122 (Ustilago maydis)
CS011	2017	TGAAGGTTCTTTTTCTGTGGAA	6831345 (Pneumocystis carinii)
CS013	2018	GGATGGTACCACTCGCATCCTGG	109651225 (Fusarium oxysporum f. sp.)
CS015	2019	AACGAGGAAGAAGAAGAAG	39944615 (Magnaporthe grisea 70-15)
CS015	2020	AGGCTTCTTCTTCTTCT	14662870 (Fusarium sporotrichioides)
CS015	2021	таввесттеттеттет	85112692 (Neurospora crassa)
CS015	2022	GAGATGGTCGAGTTGCCTCTA	71005073 (Ustilago maydis)
CS016	2023	GCTGAAGACTTTTGGACATC	30418452 (Magnaporthe grisea)
CS016	2024	CCTCACCAAGTTCGAGAAGAACTTC	90566317 (Leucosporidium scottii)
CS016	2025	GTCGTCGGTGAGGCCCTG	84573655 (Aspergillus oryzae)
CS016	2026	TCCTCACCGACGACAGCCTTCATGGCC	29427786 (Verticillium dahliae)
CS016	2027	GATGTTTCCAACCAGCTGTACGCC	90368806 (Aureobasidium pullulans)
CS016	2028	GGCGTACAGCTGGTTGGAAACATC	29427786 (Verticillium dahliae)
CS016	2029	TGATGTTTCCAACCAGCTGTACGCC	46107507 (Gibberella zeae PH-1)
CS016	2030	ATGGCAGACTTCATGAGACGAGA	29427786 (Verticillium dahliae)
CS016	2031	ATGCCCAACGACGACATCACCCA	59281308 (Blastocladiella emersonii)
CS016	2032	TGGGTGATGTCGTTGGGCAT	38353161 (Hypocrea jecorina)
CS016	2033	ACTATGCCCAACGACGACATCAC	34447668 (Cryphonectria parasitica)
CS016	2034	GGTTACATGTACACCGATTTG	32169825 (Mucor circinelloides)
CS016	2035	CCCAGGTTACATGTACACCGATTT	47067814 (Eremothecium gossypii)
CS016	2036	ACACCACGTTTGGCCTTGACT	68488910 (Candida albicans)
CS016	2037	GCCATGGGTGTGAACATGGAGAC	82608508 (Phanerochaete chrysosporium)
CS016	2038	GACGACCACGAGGACAACTTTGCCATCGTGTTCG	59277641 (Blastocladiella emersonii)
CS016	2039	AAGATCCCCATTITCTCGGCTGC	90348219 (Coprinopsis cinerea)

Table 6-PX

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
PX001	2299	CTCATCAAGGTGGACGGCAAGGT	85080580 (Neurospora crassa)
PX001	2300	TCGGTGCGGACCTTGCCGTCCACCTTGA	70768092 (Gibberella moniliformis)
PX001	2301	GACGGCAAGGTCCGCACCGAC	109745014 (Allomyces macrogynus); 60673542 (Alternaria brassicicola); 90368699 (Aureobasidium pullulans); 59299145 (Aureobasidium pullulans); 59299145 (Chaetomium globosum); 27438899 (Chaetomium globosum); 90623992 (Corynascus heterothallicus); 89975695 (Hypocrea lixii); 99039195 (Leptosphaeria maculans); 39970560 (Magnaporthe grisea); 47731115 (Metarhizium anisopliae); 90036859 (Trichophyton rubrum); 29427127 (Verticillium dahliae)
PX001	2302	GACGGCAAGGTCCGCACCC	70823112 (Aspergillus niger); 90633197 (Thermomyces lanuginosus)
PX001	2303	AAGGTCCGCACCGACCCTACCC	71015993 (Ustilago maydis)
PX001	2304	CGCTTCACCATCCACCGCATCAC	90639458 (Trametes versicolor)
PX001	2305	CGAGGGCCAAGTACAAGCTG	78177454 (Chaetomium cupreum); 27438899 (Chaetomium globosum)
PX001	2306	GAGGCCAAGTACAAGCTGTGCAAGGT	109745014 (Allomyces macrogynus)
PX001	2307	GCCAAGTACAAGCTGTGCAAG	45923813 (Coccidioides posadasii)
PX001	2308	CCCGACCCGCTCATCAAGGTCAACGAC	78177454 (Chaetomium cupreum)
PX001	2309	CGACATCGTCCACATCAAGGAC	82603501 (Phanerochaete chrysosporium)
PX001	2310	CCGCACAAGCTGCGCGAGTGCCTGCCGCTC	109745014 (Allomyces macrogynus)
PX010	2311	TTCGACCAGGAGGCGGCGGCGGT	90542152 (Gloeophyllum trabeum)
PX010	2312	CACCACCGCCGCCTCCTG	84578035 (Aspergillus oryzae)
PX010	2313	TGCAGGTCTTCAACAACTCGCCCGACGA	39978050 (Magnaporthe grisea)
PX010	2314	TTCAACAACTCGCCCGACGAGAC	90618424 (Corynascus heterothallicus)
PX015	2315	CATGCGCGCCGTCGAGTTCAAGGTGGT	59282860 (Blastocladiella emersonii)
PX015	2316	GCATTCTTCTTCCTCATCAACGG	68323226 (Coprinopsis cinerea)
PX015	2317	ATCAACGGCCCCGAGATCATGTC	85082882 (Neurospora crassa)
PX015	2318	TGCGCAAGGCGTTCGAGGAGGC	71002727 (Aspergillus furnigatus)
PX016	2319	CCTCACCAAGTTCGAGAAGAACTTC	90566317 (Leucosporidium scottii)

PX016	2320	GAGGAGATCCAGACTGGTAT	90639144 (Trametes versicolor)
PX016	2321	GAGGAGATGATCCAGACTGGTATCTC	58271359 (Cryptococcus neoformans)
PX016	2322	ATGAACTCCATCGCCGTGGTCAGAAGATCCC	90545177 (Gloeophyllum trabeum)
PX016	2323	GTCAGAAGATCCCCATCTTCTCCGCC	9651842 (Emericella nidulans)
			70825597 (Aspergillus niger); 90611576
PX016	2324	CAGAAGATCCCCATCTTCTCCGC	(Ophiostoma piliferum); 90639144 (Trametes
			versicolor)
PX016	2325	CAGAAGATCCCCATCTTCTCCGCC	67540123 (Aspergillus nidulans)
PX016	2326	CAGAAGATCCCCATCTTCTCCGCCGGG	59283275 (Blastocladiella emersonii)
PX016	2327	AAGATCCCCATCTTCTCCGCCGCCGGTCT	34447668 (Cryphonectria parasitica)
PX016	2328	CCCATCTTCTCCGCCGGCCGGTCTGCC	90621827 (Corynascus heterothallicus)
PX016	2329	GGTCTGCCCCACAACGAGATTGCTGC	90367610 (Aureobasidium pullulans); 66909391 (Phaeosphaeria nodorum)
PX016	2330	TTCGCCGCCATGGGAGTCAACATGGAGAC	90562163 (Leucosporidium scottii)
PX016	2331	ACCGCCAGGTTCTTCAAGCAGGA	47067814 (Eremothecium gossypii)
PX016	2332	CTGTTCTTGAACTTGGCCAATGA	90545177 (Gloeophyllum trabeum)
			34447668 (Cryphonectria parasitica); 90545177
DX016	2333	GGTTACATGTACACGGATTTG	(Gloeophyllum trabeum); 39942327 (Magnaporthe
2	2003		grisea); 82608506 (Phanerochaete
			chrysosporium); 71006197 (Ustilago maydis)
PX016	2334	GGCAAGCCCATCGACAAGGGGCCC	59283275 (Blastocladiella emersonii)
PX016	2335	ATGGGGTGGTGTCGTCGTTGGGCATGGTCA	38353161 (Hypocrea jecorina)
PX016	2336	ACCATGCCCAACGACGACATCACCCACCC	59281308 (Blastocladiella emersonii)
PX016	2337	TGCACAACAGGCAGATCTACCC	107889579 (Encephalitozoon cuniculi)
PX016	2338	CCGTCGCTATCTCGTCATGAA	48521040 (Coccidioides posadasii)

Table 6-AD

Target ID	SEQ ID NO	Sequence *	Example Gi-number and species
AD001	2441	CCCGCTGGTTTCATGGATGTT	58259586 (Cryptococcus neoformans)
AD001	2442	GACAACATCCATGAAACCAGCGGG	21649877 (Conidiobolus coronatus)
AD001	2443	TTCATGGATGTTGTCACCATTG	90616000 (Ophiostoma piliferum)
AD001	2444	GAAGAAGCCAAGTACAAGCTCTG	110469512 (Rhizopus oryzae)
AD001	2445	AAGAAGCCAAGTACAAGCTCTG	110469518 (Rhizopus oryzae)

2446	GCCAAGTACAAGCTCTGCAAGGT	98996590 (Spizellomyces punctatus)
Ö	GCCAAGTACAAGCTCTGCAAGGTCA	109743129 (Allomyces macrogynus)
¥	AGTACAAGCTCTGCAAGGTCA	71000466 (Aspergillus fumigatus); 67537247 (Aspergillus pidulans); 70823112 (Aspergillus pidulans);
: 		40886470 (Emericella nidulans)
F.	TATGGACCCCTGGAACTGGTAAAACC	46349704 (Paracoccidioides brasiliensis)
ř	TGCCCGTGTCCGAGGACATGCTGGGCCG	109743322 (Allomyces macrogynus)
1	TGCCCGTGTCCGAGGACATGCTGGGCCGC	59283275 (Blastocladiella emersonii)
ၓ	CGTGTCCGAGGACATGCTGGGCCGCA	90612905 (Ophiostoma piliferum)
Ą	ATGGGCGTCAACATGGAGACGGC	59277641 (Blastocladiella emersonii)
Ţ	TGGAGACGGCGCTTCTTCA	90611376 (Ophiostoma piliferum)
T	TTCCTCAACCTGGCCAACGACCCCAC	90611376 (Ophiostoma piliferum)
۲	ACCATCGAGCGCATCATCACCCCGCGCCTCGC	59281308 (Blastocladiella emersonii)
T	TCCACCATCTACGAGCGCGCTGG	90368806 (Aureobasidium pullulans)
၁	CTGACGATGCCCAACGACGACATCAC	90611301 (Ophiostoma piliferum)
٩	ATGCCCAACGACGACATCACCCA	59281308 (Blastocladiella emersonii)
_	TGGGTGATGTCGTCGTTGGGCAT	38353161 (Hypocrea jecorina)

Table 7-LD

Target ID	SEQ ID NO and DNA Sequence (sense strand) 5' → 3' of fragments and concatemer constructs
LD014_F1	SEQ ID NO: 159
	TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACTAGAGGGGGGGG
LD014_F2	SEQ ID NO: 160
	TCTAGAAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGCCCGGG
LD014_C1	SEQ ID NO: 161
	TCTAGAATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAA
	CGACTTGGTCAGGTCACAAACGATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACTA GAGGAGGCGCGTAAACGACTTGGTCAGGTCA
	CGTTCGTACCGTACTAGAGGGCGCGTAAACGACTTGGTCACAAACGCCCGGG
LD014_C2	LD014_C2 SEQ ID NO: 162
	TCTAGAAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGGTCACAAACGAAGATCACGTTCGTACCGT

Table 8-LD

Target ID	Primers Forward	Primers Reverse	dsRNA DNA Sequence (sense strand)
)	5' → 3'	5' → 3'	5' → 3'
LD001	SEQ ID NO: 164	SEQ ID NO: 165	SEQ ID NO: 163
	GCGTAATACGACTC	CCTTTGGGGCCAGT	GGCCCCAAGAAGCATTTGAAGCGTTTGAATGCCCCCAAAAGCATGGATGTTGG ATAAATTGGGAGGTGTTTCGCACCTCGCCCATCTACAGGACCTCACAAATTG
	AAGAAGCATTTGAA) :	CGAGAGTCTTTGCCCTTGGTGATCTTCCTACGTAACCGATTGAAGTATGCTTT
	909	SEQ ID NO: 167	GACTAACAGCGAAGTTACTAAGATTGTTATGCAAAGGTTAATCAAAGTAGATG GAAAAGTGAGGACCGAACTCCAATTACCCTGCTGGTTTATGGATGTTATACC
	166 166	GCGTAATACGACTC	ATTGAAAAACTGGTGAATTTTTCCGACTCATCATGATGAAGGACGATTT
	SEG ID NO. 188	ACTATAGGCCTTTG	GCAGTGCATCGTATTACTGCTGAGGAAGCAAAGTACAAACTATGCAAAGTCAG
	GGCCCCAAGAAGCA	GGGCCAGTTGCAT	GAGGATGCAAACTGGCCCCAAAGG
LD002	SEQ ID NO: 169	SEQ ID NO: 170	SEQ ID NO: 168
	GCGTAATACGACTC	AAGCGATTAGAAAA	GTCCACGTCCAAGTTTTTATGGGCTTTCTTAAGAGCTTCAGCTGCATTTTTCAT
_	ACTATAGGGTCCAC	AAATCAGTTGC	AGATTCCAATACTGTGGTGTTCGTACTAGCTCCCTCCAGAGCTTCTCGTTGAA
	GTCCAAGTTTTTATG		GTTCAATAGTAGTTAAAGTGCCATCTATTTGCAACTGATTTTTTTT
	၁၅၅	SEQ ID NO: 172	
		GCGTAATACGACTC	
	SEQ ID NO: 171	ACTATAGGAAGCGA	
	GTCCACGTCCAAGT	TTAGAAAAAATCAG	
	TTTTATGGGC	твс	
LD003	SEQ ID NO: 174	SEQ ID NO: 175	SEQ ID NO: 173
	GCGTAATACGACTC	GETGACCACCACCG	GGTGACCACCACCGAATGGAGATTTGAGCGAGAAGTCAATATGCTTCTGGGA
	ACTATAGGCCCAGG	AATGGAG	ATCAAGTCTCACAATGAAGCTTGGAATATTCACGACCTGCTTACGAACCCTGA
	CGACCTTATGAAAA		TATGICITTGACGGACCAGCACGAGCATGATGGATTGATTTTGCAAGCCCC
	၁၅၅	SEO ID NO: 177	AACTTGAAAACTTGTGTTTGGAGACGTCGTTCCAAGAAATCTTCAATCTTCAAA
		SEGIONO. 17	CCCAAGACGTAATCAAGCTTCATACGGGTTTCATCCAACACTCCAATACGCAC
		GCGTAATACGACTC	CAACCGACGAAGAAGAGCATTGCCTTCAAACAACCTGCGCTGATCTTTCTCTT
	SEQ ID NO: 176	ACTATAGGGGTGAC	

	CCCAGGCGACCTTA TGAAAAGGC	CACCACCGAATGGA G	CCAAAGTCAGAAGTTCTCTGGCAGCTTTACGGATTTTTGCCAAGGTATACTTGACTTGACTCGCCACACATTCTCCTATGATTTTCAACTTCTGATCAAGACCTGGG
90007	SEQ ID NO: 179 GCGTAATACGACTC ACTATAGGGGTGTT	SEQ ID NO: 180 GCTTCGATTCGGCA TCTTTATAGG	SEQ ID NO: 178 GGTGTTGGTTCTGGTGTGGTGGAATACATCGACACTCTTGAAGAAGAAA CTGTCATGATTGCGATGAATCCTGAGGATCTTCGGCAGGACAAAGAATATGCT
	есттестте в те	SEQ ID NO: 182	TATTGTACGACCTACACCCACTGCGAAATCCACCCGGCCATGATCTTGGGCG TTTGCGCGTCTATTATACCTTTCCCCGATCATAACCAGAGCCCAAGGAACACC TACCAGAGCGCTATGGGTAAGCAAGCAAGCGAGGGGTCTACGAATTTCCA
	SEQ ID NO: 181 GGTGTTGGTTGCTT CTGGTGTG	GCGTAATACGACTC ACTATAGGGCTTCG ATTCGGCATCTTTAT AGG	CGTGCGGATGGACCCCTGGCCCACGTGCTATACTACCGCGCACAACCTCTG GTCACTACCAGGTCTATGGAGTATCTGCGGTTCAGAGAATTACCAGGCCGGGA TCAACAGTATAGTTGCTATTGTTATACTGGTTATAATCAAGAGAAGATTTTTAT TAATCTGAACGCGTCTGCTGGAAAGAGGATTTTTCCGATCCGTGTTATAT
			CGTTCCTATAAAGATGCCGAATCGAAGC
LD007	SEQ ID NO: 184	SEQ ID NO: 185	SEQ ID NO: 183
	GCGTAATACGACTC ACTATAGGGACTGG	GCTTICAATGTCCAT	GACTGGCGGTTTTGAACACCCTTCAGAAGTTCAGCACGAATGTATTCCTCAAG CTGTCATTGGCATGGACATTTTATGTCAAGCCAAATCTGGTATGGGCAAAACG GCAGTGTTTGTTCTGGCGACACTGCAACAATTGGAACCAGCGGACAATGTTG
	O	SEQ ID NO: 187	TTTACGTTTTGGTGATGTCACACTCGTGAACTGGCTTTCCAAATCAGCAAA
	SEQ ID NO: 186	GCGTAATACGACTC	CGGAGGATGCCTATTGCTAACGATGAAGAAGTATTGAAAAACAAATGTCCAC
	GACTGGCGGTTTG	ATGTCCATGCCACG	GCTAGTCCTCAAGAACCTGAAACACTTCTTGATGATGGTGCGATAAATGT
	AACACCC		TAGAACTGTTGGATATGAGGAGAGACGTCCAGGAAATCTACAGAAACACCCC TCACACCAAGCAAGTGATGATGTTCAGTGCCACACTCAGCAAAGAAATCAGG
			CCGGTGTGCAAGAATTCATGCAAGATCCAATGGAGGTGTATGTA
			AATGAAAAGAATAAAAAATTATTTGAGTTGCTCGATGTTCTCGAATTTAATCAG
-			GTGGTCATTTTTGTGAAGTCCGTTCAAAGGTGTGTGGCTTTGGCACAGTTGCT
			GAGTGAACAGAATTTCCCAGCCATAGGAATTCACAGAGGAATGGACCAGAAAAGAGAGAG
			AGCIACGAAICICIIIGGGCGIGGCAIGGACAIIGAAAGG
LD010	SEQ ID NO: 189	SEQ ID NO: 190	SEQ ID NO: 188
	ACTATAGGGCTTGTT	CTATCGGGTTGGAT GGAACTCG	GCTTGTTGCCCCCGAATGCCTTGATAGGGTTGATTACCTTTGGGAAGATGGTC CAAGTGCACGAACTAGGTACCGAGGGCTGCAGCAAATCTTACGTTTTCCGAG GGACGAAAGACCTCACAGCTAAGCAAGTTCAAGAGATGTTGGAAGTGGGCAG
	وددددوساود		

		SEQ ID NO: 192	AGCCGCAGTAAGTGCTCAACCTGCTCCAACAACCAGGACAACCCATGAGG
	SEQ ID NO: 191	GCGTAATACGACTC	CCTGGAGCACTCCAGCAAGCTCCTACGCCACCAGGAAGCAGGTTCCTTCAAC CCATCTCGAAATGCGACATGAACCTCACTGATCTTATTGGAGAGTTGCAAAGA
	GCTTGTTGCCCCCG	GGTTGGATGGAACT	GACCCATGGCCTGTCCACCAAGGCAAATGCGCCCTTAGATCGACCGGGACA
		90	GCTTTATCGATAGCCATTGGAGGAGCTTGCTCAAGGCCCAATACTGGTGC
			TTGAATGATGTGAAGCAACCTATCAGATCTCACCACGACATCCAAAAAGA
			CAATGCCAAATACATGAAGAAAGCAATCAAGCACTATGATAATTTAGCGATGA
			GAGCAGCAACGAATGGACACTGCGTTGACATATTCATGCGCTTTGGATCA
			GTCATGGGCGACTCGTTCAATTCTTCCCTGTTCAAGCAAACGTTCCAGCGCAT
			ATTITCGAAAGATCAGAAAACGAGCTGAAGATGGCATTTAATGGTACTCTGG
			AGGGTCAAGTGTTCCAGGGAGTTGAAAATTCAAGGCGGTATTGGATCTTGTGT
			TTCGTTGAATGTGAAGAATCCTTTGGTTTCCGACACCGAAATAGGAATGGGTA
			ACACGGI CCAGI GGAAAAI GI GI GI GAGAGTACT CCAAGTACTACCAT GGCCTT
			GITUTICGAGGICGICAACCAACAIICCGCICCCAIACCICAAGGGGGGAAGG
			GGC1GCA1ACAG11CA1CACGCAA1A1CAGCA1GC1AG1GGCCAGAAGAGGA
			CCGAG AACGACAG GC AGAAAC GGGCCGA GCT CCGCTAATATACAT CCGAG AACGACAG GC AGAAAC GGGCCGA GCT CCGCTAATATACAT
			CATE CAST GC GGAT TOGAL CAGGAGGCAGCCGCAG GATATA GGCGAGGA
			GGCAG ACAGAGGGGAA CAGACGA AGCCC GA G GAGA GGG CGATAGGATGTTGATACGTCTGTGCCAGAAATTCCGCGAAATATAAAAAAAA
			GACCCGAATTCGTTCCGCTTGGGCGAAACTTCAGCCTCTACCACAACTTCA
			TGTACCATTTGAGAAGGTCACAGTTCCTGCAGGTGTTTAACAATTCTCCGAC
			GAAACGTCCTTCTACAGGCACATGCTTATGCGCGAAGACCTCACGCAGTCGC
			TGATCATGATCCAGCCGATACTCTACAGCTACAGTTTCAATGGACCACCAGAA
			CCTGTGCTTTTGGATACGAGTTCCATCCAACCCGATAG
LD011	SEQ ID NO:194	SEQ ID NO: 195	SEQ ID NO: 193
	GCGTAATACGACTC	GGAAAACGACATT	GCCATAGGAAAGGCTTCTCAAAGTTGTAGTTAGATTTGGCAGAGATATCATAG
	ACTATAGGGCCATA	TGTGAAACGTC	TACTGCAAATTCTTCTTCCTATGAAAGACAATACTTTTCGCTTTTACTTTTCTGT
	GGAAAGGCTTCTCA		CTTTGATGTCAACCTTGTTCCCGCAAAGTACTATCGGGGATATTTCACAGACTC
	AAG	SEO ID NO: 197	IGACAAGA I CI CI GI GCCAATI I GGI ACATI CI I GTATGTAACT CT GGAAGTTA
		OTO OTO OTO OTO	CATCAAACATGATAGCACACTGTCCCTGAATGTAATATCCATCACGGAGA
	SEQ ID NO: 196	ACTATAGGGGAAAA	CCACCAAACTICICCIGACCGGCAGIGICCCATACATTGAACCGAATAGGGC
	GCCATAGGAAAGGC	ACGACATTTGTGAAA	TATCTTTTTCAAATTCACCAGTCATATGACGTTTCACAAATGTCGTTTTTCC
LD014	SEC ID NO: 199	SEO ID NO: 200	SEO ID NO: 198
		201 :0: 12	

	GCGTAATACGACTC ACTATAGGTTTCATT GAACAAGAGGCAAA	GCGAAATCAGCTCC AGACGAGC	TTTCATTGAACAAGAGGCAAAAGGCAGAAGAAATCGATGCCAAGGCC GAGGAAGAATTTAATATTGAAAAGGGGGGCCCTTGTTCAGCAACAACGTCAAAAAAAA
	90	SEQ ID NO: 202	TCCATCGTCTAACATGTCGTCGTCGATTGAAGTATTGAAGGTTAGG GAAGATCACGTTCGTACCGTAC
	SEQ ID NO: 201	ACTATAGGGCGAAA	TCACAAACGACCAGGGAAAATATTCCCAAATCCTGGAAAGCCTCATTTTGCAG GGATTATATATATATCAGCTTTTTTGAGAAAGATGTTACCATTCGAGTTCGGCCCCAGGA
	GGCAAACG	I CAGC I CCAGACGA GC	CCGAGAACTGGTCAAATCCATTCCCACCGTCACGAACAGGTATAAAGATG CCACCGGTAAGGACATCCATCTGAAAATTGATGACGAAATCCATCTGTCCCAA GAAACCACCGGGGGAATCGACCTGCTGGCGCAGAAAAAAAA
LD014_F1	SEQ ID NO: 204	SEQ ID NO: 205	SEQ ID NO: 203
	GCGTAATACGACTC ACTATAGGATGTTGA ATCAGGCTCGATTG	CGTTTGTGACCTGA CCAAGTC	ATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCG TACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACG
		SEQ ID NO: 207	
	SEQ ID NO: 206	GCGTAATACGACTC	
	TCGATTG	GACCTGACCAAGTC	
LD014_F2	SEQ ID NO: 209	SEQ ID NO: 210	SEQ ID NO: 208
	GCGTAATACGACTC	CGTTTGTGACCTGA	AAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGT
	ACTATAGGAAGATC ACGTTCGTACCGTA	CCAAG	CACAAACG
	<u>۔</u>	SEQ ID NO: 212	
	SEQ ID NO: 211	GCGTAATACGACTC ACTATAGGCGTTTGT	
	AAGATCACGTTCGT ACCGTAC	GACCTGACCAAG	
LD014_C1			SEQ ID NO: 213
			AATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTC
			GTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGATGT TGAATCAGGCTCGATTGAAAGTATTGAAGGTTAAGGAAAGATCACGTTCGTACC
			GTACTAGAGGGGGGCGTAAACGACTTGGTCAGGTCACAACGATGTTGAAT
			CAGGC I CGA I GAAAG I AI GAAGGI I AGGGAAGA I CACGI I CGI ACCGI ACT

			AGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGC
LD014_C2			SEQ ID NO: 214
			AAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACTTGGTCAGG
			TCACAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGTAAACGACT
			TGGTCAGGTCACAAACGAAGATCACGTTCGTACCGTACTAGAGGAGGCGCGT
			AAACGACTTGGTCAGGTCACAAACGAAGGATCACGTTCGTACCGTACTAGAGG
			ACTAGAGGAGGCGCGTAAACGACTTGGTCAGGTCACAAACGC
LD015	SEQ ID NO: 216	SEQ ID NO: 217	SEQ ID NO: 215
	GCGTAATACGACTC	CTATCGGCGTGAAG	CGCCGGAGAGTTTTTGTCAGCTTCTTCAAAAGCTTTGCGCAAGTTACTCTCAG
	ACTATAGGCGCCGG	20222	ACTCGCCAGCGAGTTTGCTCATGATCTCCGGCCCGTTTATCAAGAAGAA
	AGAGITITIGICAGC		CGCCCCAGTCTCATTAGCCACGCCGCGAGCAATCAGGGTCTTACCCGTACCA
		SEQ ID NO: 219	GGGGGGCTTCACGCGGTACCCCTAGGGGGCTTCACGCCGATAG
-	SEQ ID NO: 218	GCGTAATACGACTC	
	CGCCGGAGAGTTTT	ACTATAGGCTATCG	
	TGTCAGC	GCGTGAAGCCCCC	
LD016	SEQ ID NO: 221	SEQ ID NO: 222	SEQ ID NO: 220
	GCGTAATACGACTC	GGTAATCCTCGAAG	GGCATAGTCAATATAGGAATCTGGGTGATGGATCCGTTACGTCCTTCAACACG
	ACIAIAGGGGCAIA	AIGHAAGHCC	GCCGGCACGIICAIAGAIGGIAGCIAAAICGGIGIACAIGIAACCIGGGAAA
	GICAATATAGGAAIC		CCACGACGACCAGGCACCTCTTCTGGCAGCAGATACCTCACGCAAAGCTT
	୬၂୭୭୭	SEQ ID NO: 224	CIGCAIACGAAGACAIAICIGICAAGAIGACCAAGACGIGCITCICACATTGG
		GCGTAATACGACTC	
		ACTATAGGGGTAAT	CGTTCTCTTCGAAATCCTGTTTGAAGAACCTAGCTGTTTCCATGTTAACACCA
	4TA	CCTCGAAGATGTTA	TAGCAGCGAAAACAATAGCAAAGTTATCTTCATGATCATCAAGTACAGATTTAC
	GGAATCTGGGTG	AGTTCC	CAGGAATCTTGACTAAACCAGCCTGTCTACAGATCTGGGCAGCAATTTCATTG
			TGAGGCAGACCAGCTGCAGAGAAATGGGGGATCTTCTGACCACGAGCAATGG
			AGTICATCACGTCAATAGCTGTAATACCCGTCTGGATCATTTCCTCAGGATAG
	~		CCAAAATTGGGGGACCTTTGTCGATGGGTTTTCCTGATCCATTGAAAACACGT
			CCCAACATATCTTCAGAAACAGGAGTCCTCAAAATATCTCCTGTGAATTCACAA
			GCGGTGTTTTGGCGTCGATTCCTGATGTGCCCTCGAACACTTGAACCACAG
			CTTTTGACCCACTGACTTCCAGAACTTGTCCCGAACGTATAGTGCCATCAGCC
			AGTITGAGTIGTACGATTICATTGTACTTGGGGGAACTTAACATCTTCGAGGATT

LD018	SEQ ID NO: 226 GCGTAATACGACTC ACTATAGGGGAGTC GCAGAAATACGAGA GCAC SEQ ID NO: 228 GGAGTCGCAGAAAT ACGAGAGCAC	SEQ ID NO: 227 GTAGAGGCTCCACC GTCAATCGC SEQ ID NO: 229 GCGTAATACGACTC ACTATAGGGTAGAG GCTCCACCGTCAAT CGC	SEQ ID NO: 225 GGAGTCGCAGAAATACGAGAGCACCTTCTCGAACCAAGCCTCCTTGAGG GTAAAACAAGCCCAGTCTGAGGACTCGGGACACTACATTGTTGGCGGAGA ACCCTCAAGGCCCATAGTGTCATCTCGCATACATTGGCGGAGA ACCCTCAAGGCTGCATAGTGTCATCTCGTCAAGCAGCAGAACCGGTAACC ACCCAGGAAGGGTTGATCCACGAGTCCACCTTCAAGCAGCAGAACCGAAA TGGAGCAAATCGACACAAGACCTTGGCGCCTAACTTCGTCAGGGTTTG CGGGGATAGAGACCTGACCAGGAGACGTTCGACATGCCGT CACTGGTCGTCCTTATCCAGAGGCAAGATGACCGCTTCGACAAGTCA CGGACAACACCACAAGATTTTGGTTAACGAATCGGAAACCATGCCCT GATGATCACCACCGTGAGAACCTTCCAGTGCAACCTTCGAA AAGGAACAGGAGAACCTTCCTTCCAGTGCAACCTTAACGTCAACG TGGCAGAACGGAACCGTTTCGTGGAGAGTTTTACCACAGTCAACG TGGCAGAAGGAACCAGTTCGTGGAGAGTTTTACCACAGTCAACG TGGCAGAAGGAACCAGTTCGTGGAGAGTTTTACCACAGTCAACG TGGCAGAAGGAACCAGTTCTTGCGCGCCCTAGCCCGGGCCC GACGTTCGCATCGCA
LD027	SEQ ID NO: 231 GCGTAATACGACTC ACTATAGGGGGAGC AGACGATCGGTTGG SEQ ID NO: 233 GGGAGCAGACGATC GGTTGG	SEQ ID NO: 232 TCGACAGACTCGT TCATTTCCC SEQ ID NO: 234 GCGTAATACGACTC ACTATAGGTCGAC AGACTCGTTCATTTC CC	SEQ ID NO: 230 GGGAGCAGACGATGGTTAAAATCTGGGACTATCAAAACGTGT GTCCAAACCTTGGAAGGACACGCCCAAAACGTAACCGCGTTTGTTT

djb	SEQ ID NO: 236	SEQ ID NO: 237	SEQ ID NO: 235
	GCGTAATACGACTC	CAATTTGTGTCCAAG	CAATITIGIGICCAAG AGATACCCAGATCATATGAAACGGCATGACTITITICAAGAGTGCCATGCCCGA
	ACTATAGGAGATAC	AATGTTTCC	AGGTTATGTACAGGAAAGAACTATATTTTCAAAGATGACGGGAACTACAAGA
	CCAGATCATATGAAA		CACGTAAGTTTAAACAGTTCGGTACTAACTAACCATACATA
	990	SEQ ID NO: 239	GTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAA
	:	GCGTAATACGACTC	りことをなっていていていているとなっているとなっていているというできました。
	SEQ ID NO: 238	ACTATAGGCAATTTG	
	AGATACCCAGATCA	TGTCCAAGAATGTTT	
		၁၁	

Table 8-PC

Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dsRNA DNA Sequence (sense strand) 5' → 3'
PC001	SEQ ID NO: 474 GCATGGATGTTGGA CAAATTGGG SEQ ID NO: 476 GCGTAATACGACTC ACTATAGGCATGG ATGTTGGACAAATTG GG	SEQ ID NO: 475 GCGTAATACGACTC ACTATAGGAGATTCA AATTTGATGTAGTCA AGAATTTTAG SEQ ID NO: 477 AGATTCAAATTTT AGATTCAAATTTT AGATTCAAAATTTT AGATTCAAAATTTT AGA	SEQ ID NO: 473 GCATGGATGTTGGACAAATTGGGGGGTGTCTTCGCCCCTCGTCCATCCA
PC003	SEQ ID NO: 479 CCCTAGACGTCCCT ATGAAAAGGCCC SEQ ID NO: 481 GCGTAATACGACTC ACTATAGGCCCTAG ACGTCCCTATGAAA AGGCCC	SEQ ID NO: 480 GCGTAATACGACTC ACTATAGGTTGACA CGGCCAGGTCGGC CACC CAC	SEQ ID NO: 478 CCCTAGACGTCCCTATGAAAAGGCCCGTCTGGATCAGGAATTGAAAATTATCGGC GCCTTTGGTTTACGAAACAAACGTGAAGTGTGGAGAGTAAAGTACACTTTGGCTA AAATCCGTAAAAGGCTCGTGAACTGCTCACCCTAGAAAAAGAAAAGGCTAAAATTGTTTGGTTGTTTTGGTTTTGGTGCGAATTGGTGTTTTGGATG ATTGTTTGAAGGTAATGCACTTCTACGTTTTGGTTTTGGTGCGAATTGAAGATTCTTGGAA AGAACAGGATGAAGCTTGATTATGTTTTTGGGTCTGAAAATTGAAGATTCTTGGAA AGAAGGCTCCAAACTCAGGTGTTCAAATCTGGTCTGG

PC005	SEQ ID NO: 484	SEQ ID NO: 485	SEQ ID NO: 483
	AICCIAAIGAAAICA	GCGTAATACGACTC	ATCCTAATGAAATCAACGAAATCGCCAACACCAAGTCAAGACAAAACATCCGTAAG
	ACGAAATCGCC	ACTATAGGTTCCCTA	CTCATCAAGGATGGTCTTATCATCAAGAAGCCAGTGGCAGTACACTCTAGGGGCC
		cerrecere	GTGTACGCAAGAACACTGAAGCTAGAAGGAAGGGAAGGCATTGTGGATTTGGAAA
	SEQ ID NO: 486	CTTC	GAGGAAGGGTACGGCAAATGCCCTTAAAAAAAGGAACTGTGGGTGCAGCG
	GCGTAATACGACTC		CATGCGCGTCCTCAGGCGCCTCCTCAAAAGTACAGGGGGGGCCAAGAAATCGA
	ACTATAGGATCCTAA	SEQ ID NO: 487	CCGCCATCTTTACCACGCCCTGTACATGAAAGCGAAGGGTAACGTGTTCAGGAAC
	TGAAATCAACGAAAT	TTCCCTACGTTCCCT	AAGAGGGTCCTTATGGAGTACATCCACAAGAAGAAGGCAGAGAGGCCAGGGCC
	၁၁၅၁	GGCCTGCTTC	AAGATGCTGTCTGACCAGGCTAACGCCAGGAGATTGAAGGTGAAGCAGGCCAGG
			GAACGTAGGGAA
PC010	SEQ ID NO: 489	SEQ ID NO: 490	SEQ ID NO: 488
	GCTCAGCCTATTAC	GCGTAATACGACTC	GCTCAGCCTATTACCGCCCAACGCGTTGATTGGATTGATCACGTTCGGAAAAAA
	CGCCCAACGC	ACTATAGGATGGAA	GTGCAAGTCCACGAACTGGGTACCGAAGGCTGCAGCCAAGTCGTACGTGTTCTGT
		AATGAGTATCTGGA	GGAACGAAAGATCTCACCGCCAAGCAAGTCCAGGAGATGTTGGGAAAA
	SEQ ID NO: 491	AGAAAG	GGGTCACCAAATCCCCAACAACAGCCAGGGCAACCTGGGCGGCGGCAGGAT
-	GCGTAATACGACTC		CCCCAAGCTGCCCCTGTACCACCGGGGAGCAGATTCTTGCAGCCCGTGTCAAAA
	ACTATAGGGCTCAG	SEQ ID NO: 492	TGCGACATGAACTTGACAGATCTGATCGGGGAGTTGCAGAAAGACCCTTGGCCC
	CCTATTACCGCCCA	ATGGAAAATGAGTAT	GTACATCAGGGCAAAAGACCTCTTAGATCCACAGGCGCAGCATTGTCCATCGCTG
	ACGC	CTGGAAGAAAG	TCGGCCTCTTAGAATGCACCTATCCGAATACGGGTGGCAGAATCATGATATTCTTA
			GGAGGACCATGCTCTCAGGGTCCCGGCCAGGTGTTGAACGACGATTTGAAGCAG
			CCCATCAGGTCCCATCATGACATACACAAAGACAATGCCAAGTACATGAAGAAGG
-			CTATCAAACATTACGATCACTTGGCAATGCGAGCTGCCACCAACAGCCATTGCAT
			CGACATTTACTCCTGCGCCCTGGATCAGACGGGACTGATGGAGATGAAGCAGTG
			CTGCAATTCCACCGGAGGGCACATGGTCATGGGCGATTCCTTCAATTCCTCTCTA
			TTCAAACAAACCTTCCAGCGAGTGTTCTCAAAAGACCCGGAAGAACGACCTCAAGA
-			TGGCGTTCAACGCCACCTTGGAGGTGAAGTGTTCCAGGGAGTTAAAAGTCCAAG
			GGGGCATCGGCTCGTGCCTTGAACGTTAAAAGCCCTCTGGTTTCCGATAC
			GEAACTAGECATGGGGAATACTGTGCAGTGGAAACTTTGCACGTTGGCGCCGAG
_			CICIACIGIGECECIGIICIICGAGGIGGITAACCAGCATTCGGCGCCCATACCA
			CAGGGAGGCAGGGGCTGCATCCAGCTCATCACCCAGTATCAGCACGCGAGCGG
	7.		GCAAAGGAGGATCAGAGTGACCACGATTGCTAGAAATTGGGCGGACGCTACTGC
			CAACATCCACCACATTAGCGCTGGCTTCGACCAAGAAGCGGCGGCAGTTGTGAT
			GGCCCGAATGGCCGGTTACAAGGCGGAATCGGACGAGACTCCCGACGTGCTCA
			GATGGGTGGACAGGATGTTGATCAGGCTGTGCCAGAAGTTTCGGAGAGTACAATA
			AAGACGATCCGAATTCGTTCAGGTTGGGGGAGAACTTCAGTCTGTATCCGCAGTT
			CATGTACCATTTGAGACGGTCGCAGTTTCTGCAGGTGTTCAATAATTCTCCTGATG
			AAAUG I UG I I I I I I I I A I AGGCACA I GC I GA I GCG I GAGGATTI GACT CAGT CTTT GAT C

			ATGATCCAGCCGATTTTGTACAGTTACAGCTTCAACGGGCCGCCCGAGCCTGTGT TGTTGGACACAAGCTCTATTCAGCCGGATAGAATCCTGCTCATGGACACTTTCTTC CAGATACTCCATTTCCAT
PC014	SEQ ID NO: 494 CTGATGTTCAAAAAC AAATCAAACACATG SEQ ID NO: 496 GCGTAATACGACTC ACTATAGGCTGATG TTCAAAAACAAATCA AACACATG	SEQ ID NO: 495 GCGTAATACGACTC ACTATAGGTGAGCG ATCAGATCCAACCTA GCCTCC SEQ ID NO: 497 TGAGCGATCAGATC CAACCTAGCTCC	SEQ ID NO: 493 CTGATGTTCAAAACCAAATCAAACACATGATGGCTTTCATTGAACAAGAACACATGAAAAACGAAAAGGAAAAGCAAAAGCAAAAAGCAAAAAGCAAAAAGCAAAAAGCAAGAAAAAGGAAAAAGCAAAAAGCAAAAAGCAAAAAGCAAAAAGCAAAGCAAGCAAGCAAGCAAGAAAAAA
PC016	SEQ ID NO: 499 ACTGGTCATTCTTGA GGATGTCAAGT SEQ ID NO: 501 GCGTAATACGACTC ACTATAGGACTGGT CATTCTTGAGGATGT CAAGT	SEQ ID NO: 500 GCGTAATACGACTC ACTATAGGTTGGGC ATAGTCAAGATGGG GATCTGC SEQ ID NO: 502 TTGGGCATAGTCAA GATGGGGATCTGC	SEQ ID NO: 498 ACTGGTCATTCTTGAGGATGTCAAGTTTCCAAAATTCAATGAAATTGTCCAGCTCA AATTGGCAGATGGAACTCTACGATCTGGACAAGTTTTGGAAGTCAGTGGATCAAA GGCAGTTGTTCAGGTATTTGAAGGCCACATCAGGTATTTGGAAGTCAGTGGATCAAA GGCAGTTGTTCAGGAATATTCTAAGAACTCCAGTATTCAGAAGAACACGGTG TGTGAGTTCAATGGAAAATTCTAAGAACTCCAGTATTCAGAAGAACTCCAGTCCTAAGGACAATGAAACCCATTGATAAAGGTCCCCCGATCTGGCTGA GGACTACCTCGACATCCAAGGACAGCCGATCAACGCCCAGAATGAAT
PC027	SEQ ID NO: 504 CAAGCTAACTTGAAA GTACTACCAGAAGG	SEQ ID NO: 505 GCGTAATACGACTC ACTATAGGTTTTGGA	SEQ ID NO: 503 CAAGCTAACTTGAAAGTACTACCAGAAGGAGCTGAAATCAGAGATGGAGAACGTT TGCCAGTCACAGTAAAGGACATGGGAGCATGCGAGATTTACCCACAAAACAATCCA

	ATTGAAGGCAATACT	ATTGAAGGCAATACT ACACAACCCCAATGGGCGGTTTGTAGTGGTTTGTGGGTGATGGAGAATACATAATA
SEO ID NO: 606	CGATCAG	TACACGGCTATGGCCCTTCGTAACAAAGCATTTGGTAGCGCTCAAGAATTTGTATG
 SECTIONOL SOS		GGCACAGGACTCCAGTGAATATGCCATCCGCGAATCCGGATCCACCATTCGAATC
 10000000000000000000000000000000000000	SEO ID NO: 507	TTCAAGAATTTCAAAGAAAAAAAAAATTTCAAGTCCGACTTTGGTGCCGAAGGAAT
 STOCK OF THE STOCK	3E 3 10 140: 30/	CTATGGTGGTTTTCTCTTGGGTGTGAAATCAGTTTCTGGCTTAGCTTTCTATGACT
	000000000000000000000000000000000000000	GGGAAACGCTTGAGTTAGTAAGGCGCATTGAAATACAGCCTAGAGCTATCTACTG
 りのなどのなっつ	りないとういうとしない	GTCAGATAGTGGCAAGTTGGTATGCCTTGCTACCGAAGATAGCTATTTCATATTGT
		CCTATGACTCTGACCAAGTCCAGAAAGCTAGAGATAACAACCAAGTTGCTGAAGA
		TGGAGTGGAGGCTGCCTTTGATGTCCTAGGTGAAATAAAT
		GGTCTTTGGGTAGGAGACTGCTTCATTTACACAAACGCAGTCAACCGTATCAACTA
		CTTTGTGGGTGGTGAATTGGTAACTATTGCACATCTGGACCGTCCTCTATATGTCC
		TGGGCTATGTACCTAGAGATGACAGGTTATACTTGGTTGATAAAGAGTTAGGAGTA
		GTCAGCTATCNAATTGCTATTATCTGTACTCGAATATCAGACTGCAGTCATGCGAC
		GAGACTTCCCAACGGCTGATCGAGTATTGCCTTCAATTCCAAAA

Table 8-EV

Target	Primers Forward	Primers Reverse	dsRNA DNA Sequence (sense strand)
Q	5' → 3'	5' → 3'	5; → 3;
EV005	SEQ ID NO: 577	SEQ ID NO: 578	SEQ ID NO: 576
	GACAAAACATCCGC	GCGTAATACGACTC	GACAAAACATCCGCAAACTGATTAAAGATGGTCTTATTATTAAAAAGCCTGTCGCG
	AAACTG	ACTATAGGCTCCTT	GTGCATTCTCGTGCACGTGTACGCAAAATACTGAAGCCCGCAGGAAAGGTCGTC
		GCATCAGCTTGATC	ATTGTGGATTTGGTAAAAGGAAAGGAACTGCAAATGCTAGGATGCCCAGAAAGGA
			ATTATGGATTCAACGTATGAGAGTTCTCAGAAGGTTATTGAAGAAATATAGGGAAG
	SEO ID NO: 570	SEQ ID NO: 580	CTAAGAAAATTGATAGGCATTTATACCATGCTTTATATATGAAAGCTAAGGGAAAT
	CLC CLC	CTCCTTGCATCAGC	GTATTCAAGAATAAGAGAGTAATGATGGACTATATCCATAAAAAGAAGGCGGAGAA
	21262241821929	TTO 010	AGCACGTACAAAGATGCTCAATGATCAAGCTGATGCAAGGAG
	ACTATAGGGACAAA	2	
	ACATCCGCAAACTG		
EV009	SEQ ID NO: 582	SEQ ID NO: 583	SEQ ID NO: 581
	CAGGACTGAAGAAT	GCGTAATACGACTC	CAGGACTGAAGAATCTATAATAGGAACAAACCCAGGAATGGGATTTTAGGCAATG
	CTATAATAGG	ACTATAGGCTGGAA	CCGACAACAACGAAGGAAGTACCCTGATTTGGTTACAGGGTTCTAATAAAAAAAA
		THOUSE ATOCOTACA	
		1 124 140 1500 1404	CTACGAAAAATGGAAAATGAATCTCCTCTCTATTTAGACAAGTATTACACTCCCG
	SEO ID NO: 584	<u>ာ</u>	GAAAAATAGAAAAGGGAAATATTCCAGTAAAGCGCTGTTCATACGGAGAAAATTG
	GCGTAATACGACTC		ATTAGGGGACAAGTATGTGATGTGAGATGTGAGAAATGGGAGCCGTGCACCCCG
	ACTATAGGCAGGAC	SEQ ID NO: 585	GAAAATCATTTGATTACCTCAGAAATGCGCCTTGTATATTTCTGAAGCTGAACAG

	TGAAGAATCTATAAT AGG	CTGGAAAGATGGGT AATACTTC	GATATATGGATGGGAACCGGAGTACTACAACGATCCAAATGATCTTCCAGATGAT ATGCCGCAGCAGTGAGACCATATACGTTGAATATCACCAATCCAGTGGAGA
			GAAATACCGTCTGGGTAACATGCGCAGGTGAAAATCCGGCAGACGTGGAGTACTT GGGCCCTGTGAAGTATTACCCATCTTTCCAG
EV010	SEQ ID NO: 587	SEQ ID NO: 588	SEQ ID NO: 586
	CCAATGGAGACTTG	GCGTAATACGACTC	CCAATGGAGACTTGAAGATGTCCTTCAACGCCATATTAGAAGTGAAGTGTTCTAGA
	AAGAIGIC	CATCAACATGTGC	GAACTTAAAGTACAAGGAGGTATAGGTCCTTGTGTCTCTCTAAATGTCAAAAATCC
			ICITELLICIGATITAGAAATAGGCATGGGTAACACAGTTCAGTGGAAACTGTGTA
	SEQ ID NO: 589	SEC ID NO: 500	GCACCCATTCCTCAAGGGGGACGTGGATTCAATTTATTACTCAATATCAGC
	ACTATAGGCCAATG	CTTCCCTCATCAACA	ATTCAAGTGGTCAGAAAAAAAATAAGGGTAACTACAATAGCAAGAAATTGGGCGGA
	GAGACTTGAAGATG	тетес	TGCCACTGCAAATATTCACCATATTAGCGCTGGCTTTGACGAACAAACTGCGGCT
	2		GIIIIAAIGGCGAGGAICGCIGIAIAIAGAGCAGAAACIGAIGAGAGIICAGAIG TTCTCAGATGGGTTGACAGAATGTTGATAGGATTGTGTGAGAATTTGGAGAAATAT
			AACAAAGATGACACCAACAGCTTCAGGCTCAGTGAAAACTTCAGCTTATATATCCACA
			GTTTATGTATCATCTACGTCGTTCCCAATTTCTACAAGTGTTCAATAATTCACCAGA
			TGAAACTTCATTCTATAGGCACATGTTGATGAGGGAAG
EV015	SEQ ID NO: 592	SEQ ID NO: 593	SEQ ID NO: 591
	GTTAAGCCTCCAAG	GCGTAATACGACTC	GTTAAGCCTCCAAGGGGTATTCTCCTTTACGGGCCTCCCGGCACGGGGAAAACG
	GGGIALIC	ACIAIAGGGAGCAC	CTGATCGCCAGGGCCGTTGCCAACGAAACTGGTGCGTTCTTCTTCCTCATCAATG
		2 1944229449451	GGCCCGAGATTATGAGCAAGCTGGCCGGAGAATCCGAGAGCAATCTTAGAAAGG
	SEQ ID NO: 594	2	CTITTGAAGAGGCTGATAAAAACTCTCCTGCAATCATCTTTATCGACGAATTAGAC
	GCGTAATACGACTC		GCAATCGCTCCCAAGCGCGAGAAGACTCATGGTGAGGTAGAGACGCATCGTC
	ACTATAGGGTTAAG	SEQ ID NO: 595	TCCCAACTGTTGACTTTGATGGACGGCATGAAGAAAGTTCCCATGTGATCGTGA
	CCTCCAAGGGGTAT	GAGCACAAAGAAGC	IGGCGGCCACGAACAGGCCCAATTCCATCGACCCTGCACTCAGACGTTTCGGCC
	ပ	CAAGTCAG	SATICGACAGAGAICGACAICGGIAICCCCCGACGCIACIGGAAGAIIAGAAGI
- 			TTGCCGCAGAGACTCACGCTCATGTAGGTGCTTGACTTGTGTCTC
EV016	SEQ ID NO: 597	SEQ ID NO: 598	SEQ ID NO: 596
	GGTGATCCTTGATA	GCGTAATACGACTC	GGTGATCCTTGATAGTGTTAAGTTTCCAAAATTTAACGAAATTGTACAGCTCAAGTT
	GTGTTAAG	ACTATAGGCCTCAG	ATCAGATGGAACAGTTAGGTCTGGACAAGTTTTGGAAGTCAGTGGACAGAAGGCG
		CALAAGALGACALG	GTTGTCCAAGTTTTTGAAGGCACCTCCGGAATTGATGCTAAAAACACTTTATGTGA
	SEQ ID NO: 599		ATTTACAGGAGATATCTTAAGAACTCCAGTGTCTGAAGATATGTTGGGTCGTGTGT
	GCGTAATACGACTC	SEQ ID NO: 600	TTAATGGATCTGGAAAGCCTATCGATAAAGGGCCGCCAATCTTAGCTGAAGATTTT
·	CCTTGATAGGGGTGAT	CCTCAGCATAAGAT	GATCCAGACTGGTATTTCTGCGATTGATGTGATGAAATTCCATTGCCAGAGGACAAA
		2000	

	ပ		AGATTCCCAATTTTCTCTGCGGCTGGTTTACCCCACAATGAAATCGCTGCTCAAATC TGTAGACAAGCTGGTCTTGTCAAAATCCCAGGGAAATCTGTCTTAGATGATCATGA AGACAACTTTGCTATCGTTTTCGCCGCTATGGGTGTCAATATGGAACAGCAGAT TCTTCAAGCAAGATTTTGAAGAAATGGCTCTATGGAAAATGTGTGCCTATTTTG AACTTGGCCAATGATCCTACCATTGAAGAATTATAACCCCGTTTGACTTTAAC AGCGGCTGAATTTATGGCATATCAATGTGAGAAGCATGTTTAGTCATATTGACTG
Table 8-AG	AG		
Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dsRNA DNA Sequence (sense strand) 5' → 3'
AG001	SEQ ID NO: 769	SEQ ID NO: 770	SEQ ID NO: 768

Tarnot	Primers Forward	Primers Reverse	deBNA DNA Sequence (cence etrand)
28.00		F. 2,	
	c † c	c † c	3 1 0
AG001	SEQ ID NO: 769	SEQ ID NO: 770	SEQ ID NO: 768
	GCGTAATACGACTC	GATITCCAGTTGGAT	GCATGGATGTTGGACAAATTGGGGGGTGTGTTCGCCCCCCAGGCCCTCCACCGGG
	ACTATAGGGCATGG	921916	CCACACAAGCTCAGGGAGTCCCTTCCATTAGTGATTTTCTTGCGTAACAGGTTGAA
	ATGITGGACAAATTG		GTACGCCCTGACAAACTGTGAGGTGACCAAGATCGTTATGCAGAGACTTATTAAG
	9	SEQ ID NO: 772	GTCGACGCCAAAGTCAGGACTGATCCTAACTATCCTGCTGGATTCATGGATGTGA
		GCGTAATACGACTC	TCACCATTGAAAAAACTGGTGAATTCTTCCGTTTGATCTATGATGTTAAGGGAAGA
	SEQ ID NO: 771	ACTATAGGGATTTCC	TTCACTATTCACAGGATCACTGCTGAAGAAGCAAAATACAAATTGTGCAAAGTCCG
	GCATGGATGTTGGA	AGTTGGATGTGT	CAAGGTGCAAACCGGACCAAAAGGTATTCCATTCTTGGTCACCCACGATGGTAGG
	CAAATTGG	0	ACCATTAGGTACCCTGACCCAATGATCAAGGTAAACGACACCATCCAACTGGAAA
AG005	SEQ ID NO: 774	SEQ ID NO: 775	SEQ ID NO: 773
	OTO O O O O O O O O O O O O O O O O O O	CCTTTTGCCTTGG	
	GCGI ANI ACGACIC		CAACACCAACICGAGGCAAAACAICCGIAAAIIGAICAAGGAIGGIIIGAICAIIA
	ACTATAGGCAACAC	94190	AGAAACCGGTGGCAGTGCACTCTAGGGCTCGTGTCCGTAAAAACACAGAAGCTC
	CAACTCGAGGCAAA		GCAGGAAGGGAAGGCACTGCGGTTTCGGTAAGAGGAAAGGTACAGCGAACGCTC
	AC	SEO ID NO: 777	GTATGCCTCAAAAGGAACTATGGATCCAAAGGATGCGTGTCTTGAGGCGTCTCCT
		OTO OTO AT A TOO	GAAAAAATACAGGGAAGCCAAAAAGATCGACAGGCATCTGTACCACGCCCTGTAC
	925 ON OLO 925	SCENE ACTION OF A TANK	ATGAAGGCCAAGGGTAACGTGTTCAAGAACAAGAGAGTGTTGATGGAATACATCC
	שבשום אס. יו אפ	ACIAI AGGCCCI 10	ACAAGAAGAAGGCTGAGAAGGCCCGTGCCAAGATGTTGGCCGACCAAGCTAACG
	CAACACCAACTCGA		CCAGAAGGCAAAAGG
	GGCAAAAC		
AG010	SEQ ID NO: 779	SEQ ID NO: 780	SEQ ID NO: 778
	GCGTAATACGACTC	GAAGGATGCCTGGT	CAAACTTTCCAAAGGGTGTTCGCGAAGGACCAGAATGGACATTTGAAGATGGCTT
	ACTATAGGCAAACTT	CATCTTTG	TCAACGGTACTTTGGAGGTGAAGTGCTCTAGGGAATTAAAAGTTCAAGGCGGTAT
	TCCAAAGGGTGTTC		TGGCTCATGCGTGTCGCTAAATGTAAAAAGTCCTTTGGTAGCGGACACGGAATA

	G SEQ ID NO: 781 CAAACTTTCCAAAG GGTGTTCG	SEQ ID NO: 782 GCGTAATACGACTC ACTATAGGGAAGGA TGCCTGGTCATCTTT G	GGCATGGGAAACACCGTGCAATGGAAGATGTGCACCTTCAACCCTAGCACGACG ATGGCGCTGTTTTTCGAGGTGGTCAATCAGCATTCGGCCCCCCATTCCTCAAGGTG GTAGAGGATGTATACAGGTGTCAATCAGCATTCGGCCCCCATTCCTCAAGGTG GATAAGGGTGACGACGATTAATACACAATATCAGCACTCGAGTGGCCGAAAGGAG GATAAGGGTGACGACGATAGCGAAAATTGGGCGGACGCATCGGCGAAATATCA CCACATCAGCGGGGTTTCGATCAGGAACTGCCGGGTGATTATAGGCCCGGAT GGCTGTTTATAGAGCGGAGACCGATGAGAGGTCCCGATGTTTAAGATGGCCCGGAT
			CGGATGCTGATTCGTTTGTGTTTGGAGAATATAACAAAGATGACCAGG CATCCTTC
AG014	SEQ ID NO: 784	SEQ ID NO: 785	SEQ ID NO: 783
	ACTATAGGGAAAAG	TCAGGTCC	GCGCCTTGTGCAACAACAAAGATTGAAGACGAAGAAATTTAACATTGAAAGGAAAAAAGGAAAAAAAA
	GCCGAGGAAATTGA		GAAGCAAGTCGAACTACAAAAGAAAATTCAATCCTCCAACATGCTGAACCAAGCC
	2	SEQ ID NO: 787	CGTCTTAAGGTTCTGAAAGTCCGCGAAGATCATGTTAGAGCTGTATTGGATGAGG CTCCGCAAGAAGCTTGGATGAGG CTCGCCAAGAAATATGCCCAGATTCT
	SEQ ID NO: 786	ACTATAGGCAACTG	GGAATCTTTGATCCTTCAGGGACTCTACCAGCTTTTCGAGGCAAACGTGACCGTA
	GAAAAGGCCGAGGA	TTGCGAAATCAGGT	CGCGTCCGCCCACAAGACAGAACCTTAGTCCAATCAGTGCTGCCAACCATCGCAA CCAAATACCGTGACGTCACCGGCCGAGATGTACACCTGTCCATCGATGAACAAA
	AATTGATG	<u>ي</u> د	TCAACTGTCCGAATCCGTAACCGGCGGAATCGAACTTTTGTGCAAACAAA
			ATTAAGGTCTGCAACACCCTGGAGGCACGTTTGGACCTGATTTCGCAACAGTTG
AG016	SEQ ID NO: 789	SEQ ID NO: 790	SEQ ID NO: 788
	GCGTAATACGACTC	CGACCGGCTCTTTC	GTGTTCAACGGATCAGGAAAACCCATTGACAAAGGTCCTCCAATCTTAGCCGAAG
	ACIAIAGGGIGIIC	GIAAAIG	ATTICTTGGACATCCAAGGTCAACCCATCAACCCATGGTCGCGTATCTACCCGGA
	AACGGAICAGGAAA		AGAAATGATCCAGACCGGTATCTCCGCCATCGACGTGATGAACTCCCATCGCGCGT
	2	SEQ ID NO: 792	GGGCAAAAAAICCCCCATTTCTCGCGGCCGGTTTACCGCACAACGAAATCGCCG
	SEO ID NO: 704	GCGTAATACGACTC	CCCATACIONAL MARCALAGA CAGA CAMACIO COGAGA CAGA CAGA CAGA CAGA CAGA CAGA C
	GTGTTCAACGGATC	GCTCTTTCGTAAATG	ACCECCCETTTCTTCAAGCAGGACTTCGAAGAAACGGTTCCATGGAGAACGTGT
	AGGAAACC		GTCTCTTCTTGAATTTGGCCAACGATCCCACCATCGAGAGAATCATCACGCCCCG
			TITGGCTCTGACCGCCGCCGAATTTTTGGCTTATCAATGCGAGAAACACGTGCTG
	•		GTTATCTTAACTGATATGTCTTACGCCGAGGCTTTGCGTGAAGTATCCGCCGC
	-		CAGAGAAGAAGTACCCGGACGTCGTGGGTTCCCCCGGTTACATGTACACCCGATTTG
			GCCACCAIIIACGAAAGAGCCGGICG

Table 8-TC

Target ID	Primers Forward 5' → 3'	Primers Reverse 5' → 3'	dsRNA DNA Sequence (sense strand)
10001	SEQ ID NO: 864 GCGTAATACGACTC ACTATAGGCTGCGA AACAGGCTGAAGTA TGC SEQ ID NO: 866 CTGCGAAACAGGCT GAAGTATGC	SEQ ID NO: 865 GGTGTGCCCATTTG CATCCT SEQ ID NO: 867 GCGTAATACGACTC ACTATAGGGGTGTG CCCATTTGCATCCT	SEQ ID NO: 863 CTGCGAAACAGGCTGAAGTTGACCAACTCAGAAGTGACGAACAGACTACCCCGC TGCAAAGATTGATTAAAGTTGACGAAAAGTTAGGACAGACCCCCAACTACCCCGC GGGTTTCATGGATGTTGTGACTATTGAGAAAACTGGGGAATTCTTCCGCTTGATTT ATGATGTTAAGGGAAGGTTCACAATCCATCGCATTACTGGAGAGAGGCCAAATA TAAATTGTGCAAAGTGAAAAGTACAGACAGGCCCCAAGGGCCATTCCTTG GTGACCCGGCGACGGACGCACTATCAGATACCCAGGCCCATGATTCTTG GACCCGGCGACGGACGCACTTCCAGATTTGAGTTTTGAGTTTGAGTTTCAATTTGAGTTTCAATTTGAGTTCCACTTCGAAATTTGAGTTTCAATTTGAGTTCCACTTCGAAATTTCGGGTACAGTTCGAGGCCCAGGCCGTTCGAATTTGAGTTACTGGAGGTCCTTCGACATTTGAGTTTCAATTTGAGTTCCAGGTCCTTCGACATTCGGGCCGTTCAATTTAACAGGATGCAAATTCGGGGCCGTCCAGGTTCCATATTAAGGGATGCAAATTGGGGCCCACACCACCAGGTTCCATCGACCACCACCAGGTTCCATCGTTCATATTAAGGGATGCAAATTGGGGCCCACCACCACCACCACCACCACCACCACCACCACC
TC002	SEQ ID NO: 869 GCGTAATACGACTC ACTATAGGCATCCAT GTTGAGGTGGGCA SEQ ID NO: 871 CATCCATGTTGAGG	SEQ ID NO: 870 CTTTGTGAACAGCG GCCATC SEQ ID NO: 872 GCGTAATACGACTC ACTATAGGCTTTGTG AACAGCGGCCATC	SEQ ID NO: 868 CATCCATGITGAGGCGCGTCCGCTGCGTTTTTCATCGTTIT GAGTACGGCTGCTGTTGGCCCCCTCGAGGGCCTCCCGCTGCATCTCGAT GGTGCTGAGGGTGCCATCGATCTGCTGGAGCTTTTCGTAGCGTTTCTTCCTC TTGATGGCCTGGATGGCCGCTGTTCACAAAG
TC010	SEQ ID NO: 874 GCGTAATACGACTC ACTATAGGATGTAC CATTTGCGCCGCTC SEQ ID NO: 876 ATGTACCATTTGCG CCGCTC	SEQ ID NO: 875 ATGTCCTGGTACTT GAGGTTCCTCC SEQ ID NO: 877 GCGTAATACGACTC ACTATAGGATGTCCT GGTACTTGAGGTTC CTCC	SEQ ID NO: 873 ATGTCCTGGTACTTGAGGTTCCTCCATTGGCCGATTGTCTCACCGTGGAAAATCA AAATTTGGAAAAATGTGTCCATGAGAAGGATCCGATCGGGTTGAATGGAACTAGT GTCGAGGGGGCGGTTCAGGGGGGCCGTTGAAACTGTACAAAATCGG CTGGATCATAATGAGACTTTGGGTGAGGTCCTCCCGCATCAGCATGTGGCGGTAG AACGAGGTCTCGTCTGGGGAGTTGTTGAAAACTTGGAGGAATTGGGAGCGCGC AAATGGTACAT
TC014	SEQ ID NO: 879 GCGTAATACGACTC	SEQ ID NO: 880 ACAAGGCCGTACGA	SEQ ID NO: 878 CAACAGCGCTTGAAGATCATGGAATATTACGAGAAGAAGGAGAAACCGGTGGAAT

	ACTATAGGCAACAG	ATTTCTGG	TGCAGAAGAAAATTCAGTCGTCAAACATGCTGAACCAAGCCCGTTTGAAAGTATTA
	CGCTTGAAGATCAT		AAAGTGCGTGAAGACCACGTCCACAATGTGCTGGATGACGCCCGCAAACGTCTG
	99	SEC ID NO: 882	GGCGAAATCACCAATGACCAGGCGAGATATTCACAACTTTTGGAGTCTCTTATCCT
		SEG 10 NO. 882	CCAGAGICICIACCAGIACITGGGAAICAGIGAIGAGAGITGITIGAGAACAAIAIAG
		GCGTAATACGACTC	TGGTGAGAGTCAGGCAACAGGACAGGAGTATAATCCAGGGCATTCTCCCAGTTGT
	SEG ID 190. 881	ACTATAGGACAAGG	TGCGACGAAATACAGGGACGCCACTGGTAAAGACGTTCATCATTAAAATCGACGAT
	CAACAGCGCTTGAA	CCGTACGAATTTCT	GAGAGCCACTTGCCATCCGAAACCACCGGAGGAGTGGTTTTGTATGCGCAAAAG
	GATCATGG	99	GGTAAAATCAAGATTGACAACACCTTGGAGGCTCGTTTGGATTTAATTGCACAGCA
			ACTTGTGCCAGAAATTCGTACGGCCTTGT
TC015	SEQ ID NO: 884	SEQ ID NO: 885	SEQ ID NO: 883
	GCGTAATACGACTC	TCGGATTCGCCGGC	CGATACAGTGTTGCTGAAAGGGAAGCGGCGGAAAGAGACCGTCTGCATTGTGCT
	ACTATAGGCGATAC	TAATITAC	GGCCGACGAAAACTGCCCCGATGAGAAGATCCGGATGAACAGGATCGTCAGGAA
	AGTGTTGCTGAAAG		TAATCTACGGGTTAGGCTCTCTGACGTCGTCTGGATCCAGCCCTGTCCCGACGTC
	GGAAG	SEQ ID NO: 887	AAATACGGGAAGAGGATCCACGTTTTGCCCATCGATGACACGGTCGAAGGGCTC
		GCGTAATACGACTC	GTCGGAAATCTCCGAGGTGTACTTAAAACCATACTTCCTCGAAGCTTATCGACC
	NO: 886	ACTATAGGTCGGAT	AATCCACAAAGGCGACGTTTTCATCGTCGTGGTGGCATGCGAGCCGTTGAATTC
	CONTRACTOR	TCGCCGGCTAATTT	AAAGTGGTGGAAACGGAACCGTCACCATATTGTATCGTCGCCCCCGATACCGTCA
		AC	TCCATTGTGACGGCGATCCGATCAAACGAGAAGAAGAGGAGGAAGCCTTGAACG
	0440004401	ļ ,	CCGTCGGCTACGACGATATCGGCGGTTGTCGCAAACAACTCGCACAAATCAAAGA
			AATGGTCGAATTACCTCTACGCCACCCGTCGCTCTTCAAGGCCATTGGCGTGAAA
			CCACCACGTGGTATCCTCTTGTACGGACCTCCAGGTACCGGTAAAACTTTAATCG
			CACGTGCAGTGGCCAACGAAACCGGTGCTTTCTTCTTCAATCAA
			AATTATGAGTAAATTAGCCGGCGAATCCGA

Table 8-MP

Target	Target Primers Forward	Primers Reverse	dsRNA DNA Sequence (sense strand)
<u> </u>	5' → 3'	5' → 3'	5, + 3,
MP001	SEQ ID NO: 1042	SEQ ID NO: 1043	SEQ ID NO: 1041
	GCGTAATACGACTC	CAATACCAACACGC	GTTTAAACGCACCCAAAGCATGGATGTTGGACAAATCGGGGGGTGTCTTCGCTCC
	ACTATAGGGTTTAAA	CCTAAATTGC	ACGTCCAAGCACCGGTCCACACAACTTCGTGAATCACTACCGTTATTGATCTTCT
	CGCACCCAAAGCAT		TGCGTAATCGTTTGAAGTATGCACTTACTGGTGCCGAAGTCACCAAGATTGTCATG
	99	SEO ID NO: 1045	CAAAGATTAATCAAGGTTGATGGCAAAGTCCGTACCGACCCTAATTATCCAGCCG
			GTTTTATGGATGTTATATCTATCCAAAAGACCAGTGAGCACTTTAGATTGATCTATG
		SCENT ACCENT OF SECULATION	ATGTGAAAGGTCGTTTCACCATCCACAGAATTACTCCTGAAGAAGCAAAATACAAG
	SEC 10 NO: 1044	ACIA GCCAAIAC	TTGTGTAAAGTAAAGAGGGTACAAACTGGACCCAAAGGTGTGCCATTTTTAACTAC

228

WO 2007/080126 PCT/EP2007/000286

	GTTTAAACGCACCC AAAGCATGG	CAACACGCCCTAAA TTGC	TCATGATGGCCGTACTATTCGCTACCCTGACCCTAACATCAAGGTTAATGACACTA TTAGATACGATATTGCATCTTAGAACTGGAA ACTTGTGCATGTTGGTTTTGAAACTGGAAACTGGAAATTTAGGGCGTGTTGGTATTG
MP002	SEQ ID NO: 1047 GCGTAATACGACTC ACTATAGGGGTGGC AAAAAGGAAGAAA GG SEQ ID NO: 1049 GGTGGCAAAAAGGA AGAGAAGG	SEQ ID NO: 1048 GCTGATTTAAGTGC ATCTGCTGC SEQ ID NO: 1050 GCGTAATACGACTC ACTATAGGGCTGAT TTAAGTGCATCTGCT GC	SEQ ID NO: 1046 GGTGGCAAAAAGGAAGGGACCATCAACCGAAGATGCGATACAAAAGCTT CGATCCACTGAAGAAGGGACCATCAACCGAAGATGCGATACAAAAAAATTGA ACAAGAAGATAGCGATAGCCAAAAAAAGGAAATTGAACGAGCTGCATTG ACAGCATTGAAGCGTAAGAAACGGTACGAACAATTAGCCCAAATTGATGGTA CAAGCATTGAAGCGTAAGAACGGTACGAACAACAATTAGCCCAAATTGATGGTA CCATGTTAACTATTGAACAACAGCGGGAGGCATTAGAAGGTGCCAACACAAATAC AGCAGTATTGACTACCATGAAAACTGCAGCAGAATGCACAAATAC
MP010	SEQ ID NO: 1052 GCGTAATACGACTC ACTATAGGCAGACC CTGTTCAGAATATG SEQ ID NO: 1054 CAGACCCTGTTCAG AATATG	SEQ ID NO: 1053 GCATTGGGAATCGA GTTTTGAG SEQ ID NO: 1055 GCGTAATACGACTC ACTATAGGGCATTG GGAATCGAGTTTTG AG	SEQ ID NO: 1051 CAGACCCTGTTCAGAATATGATGCATGTTAGTGCTGCATTTGATCAAGAAGCATCT GCCGTTTTAATGGCTCGTATGGTAGTGACCGTGCTGAAACTTGATCAAGAAGCTCT GCCGTTTTAATGGCTCGTATGGTAGTGCTTATACGCTTGTGCAAAATTTGGTGAT TATCAAAAAGATGATCCAAATAGTTTCCGATTGCCAGAAAACTTCAGTTTATATCCA CAGTTCATGTATCATTTAAGAAGGTCTCAATTTCTACAAGTTTTTAATAATAATAGTCCT GATGAAACATCATATTATAGGCACATGTTGATTGTTTTAATGGTAGCCAGAAGTTT AATCATGATACAGCCAATTCTGTATAGCTATAGTTTTAATGGTAGGCCAGAACCTG TACTTTTGGATACCAGTAGTATTCAACCTGATAAAAATATTATTGATGGACAATTTT TCCATATTTTGATATTCCATGGAGAGACTATTGCTCAATGGAGGAGCAATTTT CCAAAATAGAACTCCAAAGCTCCAAGCAGTTGATG ATGCTCAGGAAATTCTCAAAACTCCAAATGC
MP016	SEQ ID NO: 1057 GCGTAATACGACTC ACTATAGGGTTTTCA ATGGCAGTGGAAAG C SEQ ID NO: 1059 GTTTTCAATGGCAGT	SEQ ID NO: 1058 CGTGGTGTAATGAT ACGCTC SEQ ID NO: 1060 GCGTAATACGACTC ACTATAGGCGTGGT GTAATGGTGCTC	SEQ ID NO: 1056 GTTTCAATGGCAGTGGAAAGCCGATAGATAAAGGACCTCCTATTTTGGCTGAAG ATTATTTGGATATTGAAGGCCAACCTATTAATCCATACTCCAGAACATATCCTCAAG AAATGATTCAAACTGGTATTTCAGCTATTGATATCATGAACTTTTGCTGGTGGAC AAAAAATTCCAATATTTTCAGCTGCAGGTTTACCACATAATGAGATTGCTGCTCAAA TTTGTAGACAAGCTGGTCTCGTTAAAAAAACCTGGTAAATCAGTTCTTGACGATCAT GAAGACAATTTTGCTATAGTATTTGCTGCTATGGGTGTTAAATGGAAACCAG ATTCTTTAAACAAGATTTTGAGGAAAATGGTTCATTGAGGAATGTTTTGTTTTGTTTTTTGTTTG
MP027	SEQ ID NO: 1062 GCGTAATACGACTC	SEQ ID NO: 1063 CCAAAAATACCATCT	SEQ ID NO: 1061

ACTATAGGGCTCGT GCTCCACC	GCTCCACC	GCTCGTTTGTTTCCATCCAGAACTTCCCATCGTGTTAACTGGCTCAGAAGATGGTA
 TIGHTICCATCCAGA		CCGTCAGAATTTGGCATTCTGGTACTTATCGATTAGAATCATCATTAAACTATGGG
AC	SEO ID NO: 1065	TTAGAACGTGTATGGACAATCTGTTGCTTACGGGGATCTAATAATGTAGCTCTAGG
	GCGTAATACGACTC	TTATGATGAAGGAAGTATAATGGTTAAAGTTGGTCGTGAAGAGCCAGCAATGTCAA
 SEO ID NO: 1064	ACTATAGGCCAAAA	TGGATGTTCATGGGGGTAAAATTGTTTGGGCACGTCATAGTGAAATTCAACAAGCT
GCTCGTTTGTTTCCA	ATACCATCTGCTCCA	AACCTTAAAGCGATGCTTCAAGCAGAAGGAGCCGAAATCAAAGATGGTGAACGTT
 TCCAGAAC	CC	TACCAATACAAGTTAAAGACATGGGTAGCTGTGAAATTTATCCACAGTCAATATCT
		CATAATCCGAATGGTAGATTTTTAGTAGTATGTGGTGATGGAGAGTATATATATAT
		ACATCAATGGCTTTGCGTAATAAAGCATTTGGCTCCGCTCAGGATTTTGTATGGTC
		TTCTGATTCTGAGTATGCCATTAGAGAAAATTCTTCTACAATCAAAGTTTTTAAAAA
		TTTTAAAGAAAAAAGTCTTTTAAACCAGAAGGTGGAGCAGATGGTTTTTGG

Table 8-NL

Target	Primers Forward	Primers Reverse	dsRNA DNA Sequence
Ω	5' → 3'	5' → 3'	5' → 3'
NL001	SEQ ID NO: 1573	SEQ ID NO: 1574	SEQ ID NO: 1572
	GCGTAATACGACTCA	ACTGAGCTTCACA	GAAATCATGGATGTTGGACAAATTGGGTGTGTGTATGCACCCCGACCCAGCACA
	CTATAGGGAAATCAT	CCCTTGCCC	GGTCCACACAAGCTGCGAGAATCTCTCCCACTTGTCATATTTTGCGTAATCGGCT
	GGATGTTGGACAAAT		CAAGTACGCTTTAACTAACTGTGAAGTGAAGAAAATTGTGATGCAGCGTCTCATCA
	166		AGGTTGACGGCAAAGTGAGGACTGACCCCAACTATCCTGCAGGTTTTATGGACGT
			TGTTCAAATCGAAAAGACAAACGAGTTCTTCCGTTTGATCTATGATGTTAAGGGAC
	SEO ID NO: 1676	SEQ ID NO: 1576	GTTTCACCATCCACAGGATCACAGCTGAAGAAGCTAAGTACAAGCTGTGCAAAGT
	SECTIONO. 1373	GCGTAATACGACT	GAAGAGGGTTCAGACAGGACCCAAGGGCATTCCATTTTTGACCACTCACGATGGA
	GAAATCATGGATGTT	CACTATAGGACTG	CGCACCATCAGGTATCCAGACCCCTTAGTAAAAGTCAATGACACCATCCAATTGG
	GGACAAATTGG	AGCTTCACACCCT	ACATTGCCACATCCAAAATCATGGACTTCATCAGATTCGACTCTGGTAACCTGTGT
		TGCCC	ATGATCACTGGAGGTCGTAACTTGGGTCGTGTGGGCACTGTCGTGAACAGGGAG
			CGACACCCGGGGTCTTTCGACATCGTGCACATCAAGGACGTGTTGGGACACACTT
			TTGCCACTAGGTTGAACAACGTTTTCATCGGCAAGGGTAGTAAAGCATACGT
			GTCTCTGCCCAAGGGCAAGGTGTGAAGCTCAGT
NL002	SEQ ID NO: 1578	SEQ ID NO: 1579	SEQ ID NO: 1577
	GCGTAATACGACTCA	CTGATCCACATCC	GATGAAAAGGGCCCTACAACTGGCGAAGCCATTCAGAAACTACGCGAAACAGAG
_	CTATAGGGATGAAAA	ATGTGTTGATGAG	GAAATGCTGATAAAGAAACAAGACTTTTTAGAAAAGAAA
	GGGCCCTACAACTGG		AGTTGCCAGGAAGAATGGAACAAAAAAAAAAGAGCCGCGATCCAGGCACTCAAA
	ပ		AGGAAGAAGAGGTATGAAAAGCAATTGCAGCAGATCGATGGAACGTTATCAACAA
		SEC 10 INC. 1361	TTGAGATGCAGAGAGGCCCTCGAAGGAGCCAACACGAATACGGCCGTACTGC

SEQ ID NO: 1584 TTGACGCGACCAG GTCGGCCAC SEQ ID NO: 1586 GCGTAATAGGTTGA GCGTAATAGGTTGA GCGACCAGGTCG GCCAC SEQ ID NO: 1589 CTGTTGTTGACTGT TGGATGAGG SEQ ID NO: 1591 GCGTAATAGGCTGT TGTTGATGACTGT TGTTGATGACTGT TGTTGATGACTGT TGTTGATGACTGT TGTTGACTGTTGG ATGAGG SEQ ID NO: 1594 CCTTCGCTTCTTG GCCTCCTTTGAC SEQ ID NO: 1596 CCTTCGCTTCTTG GCCTCCTTGAC SEQ ID NO: 1596 GCGTAATACGACT CACTATAGGCCTT CACTATAGGCT		SEQ ID NO: 1580	GCGTAATACGACT CACTATAGGCTGA TCCACATCCATGT	AAACTATGAAGAACGCAGCAGATGCTCTCAAAGCGGCTCATCAACACATGGATGT GGATCAG
SEQ ID NO: 1583 GCGTAATACGACTCA TTGACGCGACCAG GTCATAGGTCCGCGTC GTCGGCTAATACGACA C SEQ ID NO: 1585 TCCGCGTCGTCCTTA CGAGAAGGC CGAGAAGGC CGAGAAGGC CGAGAAGGC CGAGAAGGC CGAGAAGGC CGAGAAGGC CGAGAAGGC CGAGAAGGC CTATAGGGGAGTTGG CTATAGGGGAGTTGG CTGTTGTTGATGACTGT CTGCTGTAAGAACTG CTGTTGTTGATGACTGT CGCGTAATACGACT CGCGTAATACGACT CGCGTAATACGACT CGCGAATACGACT CGCGAATACGACT CATAGGCGCAAACA SEQ ID NO: 1593 GCGTAATACGACT CACTATAGGCTGT CACTATAGGCT CCTCGCTTCT CCTCGCTTCT CCTCGCTTCT CCTCGCTTCT CCTCGCTT CACTATAGGCCT CCTCGCTT CCTCGCT CCTCCT CCTCCT CCTCCT CCTCCT CCTCCT CCTCCT		ACAACTGGC	GTTGATGAG	
GCGTAATACGACTCA TTGACGCGACCAG CTATAGGTCCGCGTC GTCGGCCAC GTCGGCCAC GTCGGCCAC CGAGAAGG C SEQ ID NO: 1585 TCCGCGTCGTCCTTA CGCGACCAGGTCG CGAGAAGGC SEQ ID NO: 1588 GCGTAATACGACTCG CGAGAAGGC SEQ ID NO: 1588 GCGTAATACGACTCG CTGTTGTTGATCGACT CTGTTGATGAGGTCG CTGTTAGGGGAGTTGG CTGTTAGGGGAGTTGG CTGTTAGGGGAGTTGG CTGTTAGGGGAGTTGG CTGTTAGGGGAGTTGG CTGTTAGGGGAGTTGG CTGTTAGGGCGCTGT AAGAACTG SEQ ID NO: 1593 GCGTAATACGACTC CACTATAGGCTGT CCGCTAATACGACT CCGCAAACACAACA CCTTCGCTTCTTG CCGCAAACACAACA CCTTCGCTTTTG CCGCAAACACAACAC	NL003	SEQ ID NO: 1583		SEQ ID NO: 1582
GTCCTTACGAGAAGG SEQ ID NO: 1586 CGAGAAGGC SEQ ID NO: 1586 CGAGAAGGC SEQ ID NO: 1589 GCGTAATACGACTG CGAGAAGGC SEQ ID NO: 1589 GCGTAATACGACTGT CGCGACCAGGTCG CGAGAAGGC SEQ ID NO: 1589 GCGTAATACGACTGT CGCGACCAGGTCG CTGTTGTTGACTGT CGCGACCAGGTCG CTGTTGTTGACTGT CGCGACCAGGTCG CTGTTGTTGACTGT CGCTATAGGCGCTGT CACTATAGGCTGT CACTATAGGCCT CCTCGCTTCTTG CCCCAAACACA CCTCGCTTCTTGGCCT CGCAAACACACACA CCTCGCTTCTTGGCCT CGCAAACACACACACC CGCAAACACACC CGCAAACACACC CGCCAAACACC CGCCAAACACC CCTCGCTTCTTGGCCT CGCTAAACGACT CCTCGCTTCTGGCCT CGCCAAACACACC CCTCGCTTCTCTCGCCT CCTCGCTTCTCTCTCTCT CGCTAAACCACACT CCTCGCTTCTCTCTCTCTCT CGCTCAAACCC CGCTAATAGGCCT CCTCGCTTCTCTCTCTCTCT CCTCCTCTCTCTC		GCGTAATACGACTCA	TTGACGCGACCAG	TCCGCGTCGTCCTTACGAGAAGGCACGTCTCGAACAGGAGTTGAAGATCATCGG AGAGTATGGACTCCGTAACAAGGGTGAGGTGTGGAGAGTCAAATACGCCTGGC
SEQ ID NO: 1586 SEQ ID NO: 1585 TCGGCGTCGTCCTTA TCGGCGTCGTCCTTA GCGAATAGGTGA TCGGCGTCGTCCTTA GCGACCAGGTCG GCGACCAGGTCG GCGACCAGGTCG GCGACCAGGTCG GCGACCAGGTCG GCGACCAGGTCG GCGACCAGGTCG GCGACCAGGTCG GCGACCAGGTCG CTATAGGCGCAGTTGG CTGTTGTTGACTGT GCGTAATACGACTCG SEQ ID NO: 1590 GCGTAATACGACT GCGTAATACGACT GCGTAATACGACT CATAGGCCCAAACA CATTCGCTTCTTG GCGTAATACGACT CATAGGCCCAAACA CATTCGCTTCTTG CAAATTCACGTCAAAG CATTCGCTTCTTG CCGCAAATACGACT CCGCAAATACGACT CCGCAAATACGACT CCGCAAATACGACT CCGCAAATACGACT CCGCAAATACGACT CCGCAAACACACACACACACT CCCTTCACCCTTCTTCGCCTT CCCTCAAACCC CCCTCAAACCC CCCTCAAACCC CCCTCAAACCC CCCTCAAACCC CCTTCACCCTCTCACCC CCCTCAACCC CCCTCAACCC CCTCCACCC CCCTCAACCC CCTCCACCC CCTCCACCC CCCTCACCC CCCTCACCC CCCTCCTCCC CCCTCACCC CCCTCACCC CCCTCCCT		GTCCTTACGAGAAGG		CAAGATTCGTAAGGCCGCTCGTGAGCTGTTGACTCTGGAAGAAGAGAGACCAGAA
SEQ ID NO: 1585 CGCGACCAGGTCG CGAGAAGGC SEQ ID NO: 1588 GCGTAATAGGTTGA CGCGACCAGGTCG CGAGAAGGC SEQ ID NO: 1588 GCGTAATACGACTCT TGGATGAGG CTGTTGTTGACTGT TGGATGAGG CTGCTGTAAGAGTTG SEQ ID NO: 1590 GCGTAATACGACT GGAGTTGG CTGTTGTTGACTGT TGTTGACGCTGT AAGAACTG SEQ ID NO: 1593 GCGTAATACGACT CACTATAGGCTGT CACTATAGGCTGT CACTATAGGCTGT CACTATAGGCTGT CACTATAGGCTGT CACTATAGGCTGT CACTATAGGCTGT CACTATAGGCTGT CACTATAGGCTGT CACTATAGGCT CACTATAGGCT CACTATAGGCT CACTATAGGCT CACTATAGGCT CACTATAGGCCT CACTATAGGCCT CACTATAGGCCT CACTATAGGCCT CACTATAGGCCT CGCAAACACAC CGCAAACACAC CGCTAAAGCC CCTTCACC CGCTAAAGCC CCTTCACC CGCTAAAGCC CCTTCACC CCTTCACT CCTTCACC CTTCACC CCTTCACC CCTTCA		U		ACGITTGITTGAAGGIAACGCCCTGCTGCGCCTGGTGCGTATTGGAGTGTTG
TCCGCGTCGTCCTTA CGCGACCAGGTCG CGAGAAGGC SEQ ID NO: 1588 GCGTAATACGACTCA CTGTTGTTGACTGT CACTATACGACT CACTATACGCTGT CACTATACGCTGT CACTATACGCTGT CACTATACGCTGT CACTATACGCTGT CACTATACGCTCAAACA CCACTATAGCCAAACA CCACTATAGCCCTT CCGCAAACCAAAC		SEQ ID NO: 1585	GCGTAATACGACT	TGAACGTCGTCTACAGACTCAGGTGTACAAACTCGGTTTGGCCAAGTCCATCCA
SEQ ID NO: 1588 GCGTAATACGACTCA CTATAGGGGAGTTGG CTGTTGTTGACTGT CTATAGGGGAGTTGG CTGCTGTAAGAACTG SEQ ID NO: 1590 SEQ ID NO: 1590 SEQ ID NO: 1593 SEQ ID NO: 1593 SEQ ID NO: 1594 GCGTAATACGACTCATGG ATGAGG CTATAGGCGCAAACA CAAATTCACGTCAAAG CAAATTCACGTCAAAG CCTCGCTTCTTG CCTATAGGCGCAAACA CAAATTCACGTCAAAG CCTCCTTGGCTTCTTG CCTAAAGGCCTT CCGCAAACAAGC CCCTAAAGGCCTT CGCTAAAGGCCTT CGCCAAACACACT CGCCAAACACCT CGCCAAACCCT CGCCAAAGGC CCTTCACCT CCTTCACCT CCTTCACCT CCTTCACCCT CCTTCACCT CCTTCACCCT CCTTCACCCT CCTTCACCT		TCCGCGTCGTCCTTA	CGCGACCAGGTCG	CACGCCCG G I ACT CA CAGACAAGACATA I CAGAG TGCGCAAACAAGTAGTGA ACATTCCGAGCTTTGTGGTGCGCCTGGACTCGCAGAAGCACATTGACTTCTCGCT
SEQ ID NO: 1588 SEQ ID NO: 1589 GCGTAATACGACTCA CTGTTGTTGACTGT CTATAGGGGAGTTGG TGGATGAGG CTGCTGTAAGAACTG SEQ ID NO: 1591 SEQ ID NO: 1590 GCGTAATACGACT GGAGTTGGCTGCTGT CACTATAGGCTGT AAGAACTG ATGAGG SEQ ID NO: 1593 SEQ ID NO: 1594 GCGTAATACGACTCA CCTTCGCTTCTTG CAAATTCACGTCAAACA CCTTCGCTTCTTG CAAATTCACGTCAAAG GCCTCCTTGAC C SEQ ID NO: 1596 CGCAAACACGACT CGCTAATAGGCCT CGCAAACACGACT CGCTAATAGGCCT CGCAAACACGACT CGCTAATAGGCCT CGCAAACACGACT CGCTAATAGGCCT CGCAAACACACACACACACACACACACACACACACACAC		CGAGAAGGC	gecae	GAAGTCGCCGTTCGGCGGTGGCCGACCTGGTCGCGTCAA
GCGTAATACGACTCA CTATAGGGGAGTTGG CTGCTGTAAGAGCTG CTGCTGTAAGAGCTG SEQ ID NO: 1590 SEQ ID NO: 1590 GCGTAATACGACT AAGAACTG SEQ ID NO: 1593 SEQ ID NO: 1594 GCGTAATACGACTCATGGG SEQ ID NO: 1594 GCGTAATACGACTCATGGCTGTTGG ATGAGC CAAATTCACGTCAAACA CAAATTCACGTCAAAACA CAAATTCACGTCAAAAC CAAATTCACGTCAAAAC CAAATTCACGTCAAAAC CACTAGGCCCTT CGCTAAAAGCC CGCAAACACACAATCAGGCCTT CGCCAAAAGC CCTTCACCCTTCACCCTT CCGCAAACACCACTCTCACCCTT CGCTCAAAGCC CCTTCACCCTTCACCCTT CCTCAAAGCC CCTTCACCCTTCACCCTT CCTCAAACCCCTT CCTCAAACCCCTT CCTCAAAGCC CCTTCACCCTTCACCCTT CCTCAAACCCCTT CCTCACACCCTT CCTCACACCTT CCTCACACCCTT CCTCACACCTT CCTCACACCTT CCTCACACCCTT CCTCACACCCTT CCTCACACCTT CCTCACACCCTT CCTCACACCCTT CCTCACACCTT CCTCACACTT CCTCACACT CCTCACACTT CCTCACACT CCTCACACT CCTCACACT CCTCACACT CCTCACACT CCTCACACT CCTCACACT CC	NL004	SEQ ID NO: 1588	SEQ ID NO: 1589	SEQ ID NO: 1587
CTATAGGGGAGTTGG CTGCTGTAAGAACTG SEQ ID NO: 1590 GGAGTTGGCTGCTGT GGAGTTGGCTGCTGT GGAGTTGGCTGCTGT GGAGTTGGCTGCTGT GGAGTTGGCTGCTGT GGAGTTGGCTGCTGT GGAATTGGCTGCTGT CATAGGCGCAAACA CCTTCGCTTCTTG CTATAGGCGCAAACA CCTTCGCTTCTTG CAATTCACGTCAAAG CCTTCGCTTCTTG CAATTCACGTCAAAG CCTTCGCTTCTTG CAATTCACGTCAAAG CCTTCGCTTCTTG CCCTAAAGGCCTT CGCAAACACACAATTCA CGCTAAAGGCCTT CGCCAAAGCC CCTTCACGCCTC CGCCAAAGCC CCTTCACGCCTC CCTTCACGCCTT CCTTCACGCCTC CCTTCACGCCTC CCTTCACGCCTC CCTTCACGCCTC CCTTCACGCCTC CCTTCACCCTC CCTTCACCTC CCTTCCCTTC CCTTCACCTC CCTTCCCTTC CCTTCACCTC CCTTCCTC CCTTCCCTTC CCTTCCCTTC CCTTCCCTTC CCTTCCCTTC CCTTCCCTTC CCTTCCTC CCTTCCTC CCTTCCTC CCTTCCCTTC CCTTCCTC CCTTCCCTTC CCTTCCTC CCTTCCTCTC CCTTC		GCGTAATACGACTCA	стеттеттелстет	GGAGTTGGCTGCTGTAAGAACTGTCTGCTCTCACATCGAAAACATGCTGAAGGGA
SEQ ID NO: 1591 SEQ ID NO: 1591 GGAGTTGGCTGCTGT AAGAACTG SEQ ID NO: 1593 SEQ ID NO: 1594 GCGTAATACGACTCA CAAATACGACTCA CAAATTCACGTCAAAC CAAATTCACGTCAAAC CAAATTCACGTCAAAC CACTATAGGCCCTT CCTTCGCTTCTTG CAAATTCACGTCAAAC CAAATTCACGTCAAAC CACTATAGGCCTT CCTCAAAGCC CGCAAACACACAATTCA CGCTAATACGACT CCTCAAAGCC CGCTAAACGCCTT CCTCAAAGCC CGCTAAACGCCTT CCTCAAAGCC CCTTCACACCCTC CCTTCACCCTCACCCTT CCTCCACCCTC CCTTCACCCTCCTCCCTC		CTATAGGGGAGTTGG	TGGATGAGG	GTCACAAAGGGATTCCTGTACAAGATGCGTGCCGTGTACGCCCATTTCCCCATCA
SEQ ID NO: 1591 GGAGTTGGCTGCTGT AAGAACTG SEQ ID NO: 1593 SEQ ID NO: 1594 GCGTAATAGGCTGT TGTTGACTGTTGG ATGAGG CAATTCGCTTCTTG CAATTCACGTCAAACA CAATTCACGTCAAACA CAATTCACGTCAAACA CAATTCACGTCAAACA CAAATTCACGTCAAACA CGCAAACACCACT CGCTAATAGGCCTT CGCTAATAGGCCTT CGCTAATAGGCCTT CGCTAATAGGCCTT CGCTAATAGGCCTT CGCTAATAGGCCTT CGCTAAAGCC CGCTAATAGGCCTT CGCTAAAGCC CGTTCAAAGC CGTTCATGGCCTT CGCTAAACACCTT CGCTTCTTGGCCTT CGCTTCTTGGCCTT CGCTTCTTGGCCTT CGCTTCTTGGCCTT CGTTCAAAGCC CCTTCAAACACCTT CGTTCAAACACCTT CGTTCAAACCCTT CGTTCAAACCCTT CGTTCAAACACCTT CGTTCAAACACACTT CGTTCAAACACACTT CGTTCAAACACACTT CGTTCAAACACACACACACACACACACACACACACACACA		CIGCIGIAAGAACIG		ACTGTGTGACGACGAGAACAACTCTGTGATCGAGGTGCGTAACTTCCTGGGCG
SEQ ID NO: 1590 GCGTAATACGACT GGAGTTGGCTGCTGT CACTATAGGCTGT AAGAACTG TGTTGACTGTTGG SEQ ID NO: 1593 SEQ ID NO: 1594 GCGTAATACGACTCA CCTTCGCTTCTTG CAAATTCACGTCAAACA GCCTCCTTGAC CAAATTCACGTCAAAG GCCTCCTTGAC C SEQ ID NO: 1596 GCGTAATACGACT GCGTATAGGACT C SEQ ID NO: 1596 GCGTAATACGACT GCGTAATACGACT CGCAAACACACA CACTATAGGCCTT CGCAAACACACAAATTCA CGCTATAGGCCTT CGCAAACACACAAATTCA CGCTTCTTGGCCT CGTCAAAGC CCTTGAC CGTTCAAAGC CCTTGACT CGTTCAAAGC CCTTGACT CGTCAAAGC CCTTGACT			SEQ ID NO: 1591	AGAAGI ACA I CCGACGGG I GAGGA I GGCGCCCGGCGTCACTGTT ACCAACTCGA
GGAGTTGGCTGCT CACTATAGGCTGT AAGAACTG SEQ ID NO: 1593 SEQ ID NO: 1594 GCGTAATACGACTCA CTTCGCTTCTG CTATAGGCGCAAACA CAATTCACGTCAAAG CAATTCACGTCAAAG C SEQ ID NO: 1596 C SEQ ID NO: 1596 CGCTAATACGACT SEQ ID NO: 1596 CGCTAATACGACT CGCTAATACGACT CGCTAAAGGCCTT CGCTAAAGCCTT CGCTAAAGCCTT CGCTAAAGCCTT CGCTCAAAGCCTT CGTCAAAGCC CCTTCAAAGCCTT CGCTCAAAGCCTT CGCTCAAAGCCTT CGCTCAAAGCCTT CGTCAAAGCCTT CGTCAAAGCCTT CCTTCACT CCTTCACT CCTTCACT CCTTCACT CCTTCACT CTTCACT CCTTCACT C		SEQ ID NO: 1590	GCGTAATACGACT	GATCAGCTGCCTCATCCAACAGTCAACAGAG
AAGAACTG TGTTGACTGTTGG SEQ ID NO: 1593 SEQ ID NO: 1594 GCGTAATACGACTCA CCTTCGCTTCTTG CTATAGGCGCAAACA GCCTCCTTGAC CAAATTCACGTCAAAG GCCTCCTTGAC C SEQ ID NO: 1596 GCGTAATACGACT GCGTAATACGACT CGCAAACACAAATTCA CGCTATAGGCCTT CGCAAACACAAATTCA CGCTTCTTGGCCTT CGTCAAAGC CCTTGAC		GGAGTTGGCTGCTGT	CACTATAGGCTGT	
SEQ ID NO: 1593 GCGTAATACGACTCA CCTTCGCTTCTTG CTATAGGCGCAAACA CAAATTCACGTCAAAG C SEQ ID NO: 1596 GCGTAATACGACT SEQ ID NO: 1596 GCGTAATACGACT CGCAAACACAATTCA CGCTAAGGCCTT CGCAAAGCC CGTCAAGCC CGTCAAAGCC CGTCAAAGCC CGTCAAAGCC CCTTCACC CGTCAAAGCC CCTTCACC CCTTCACC CCTTCACC CCTTCACC CCTTCACC CCTTCACC CCTTCACC CCTTCACC CTTCACC CCTTCACC CTTCACC CCTTCACC CCTT		AAGAACTG	TGTTGACTGTTGG ATGAGG	
CCTTCGCTTCTTG GCCTCCTTGAC SEQ ID NO: 1596 GCGTAATACGACT CACTATAGGCCTT CGCTTCTTGGCCT CCTTGAC	NL005	SEQ ID NO: 1593	SEQ ID NO: 1594	SEQ ID NO: 1592
SEQ ID NO: 1596 GCGTAATACGACT CACTATAGGCCTT CGCTTCTTGGCCT CCTTGAC		GCGTAATACGACTCA	ссттсесттств	CGCAAACACAAATTCACGTCAAAGCATCAGGAAGCTGATCAAAGACGGTCTTATC
SEQ ID NO: 1596 GCGTAATACGACT CACTATAGGCCTT CGCTTCTTGGCCT		CIAIAGGCGCAAACA	GCCTCCTTGAC	ATCAAGAAACCGGTTGCAGTACATTCACGTGCTCGCGTTCGTAAAAACACTGAAG
SEQ ID NO: 1596 GCGTAATACGACT CACTATAGGCCTT CGCTTCTTGGCCT CCTTGAC		CAAATTCACGTCAAAG		CCAGGAGGAAAGGCAGACATTGTGGCTTTGGTAAGAGGAAAGGTACAGCCAACG
GCGTAATACGACT CACTATAGGCCTT CGCTTCTTGGCCT CCTTGAC		ر	SEQ ID NO: 1596	CCCGIAIGCCACAAAAGIICIAIGGGIGAAICGIAIGCGIGICTTGAGAAGACT
CACTATAGGCCTT CGCTTCTTGGCCT CCTTGAC		014	GCGTAATACGACT	ACATGAAGGCTAAGGGTAACGTATTCAAGAACAAGCGTGTATTGATGGAGTTCATT
CCTTCTTGGCCT		SECTIONO: 1595	CACTATAGGCCTT	CATAAGAAGAAGGCCGAGAAAGCAAGAATGAAGATGTTGAACGACCAGGCTGAA
		CGCAACACAAATTCA	CGCTTCTTGGCCT	GCTCGCAGACAAAAGGTCAAGAGGCCAAGAAGCGAAGG
NL006 SEQ ID NO: 1598 SEQ ID NO: 1599 SEQ ID NO: 15	900TN	SEQ ID NO: 1598		SEQ ID NO: 1597

	GCGTAATACGACTCA CTATAGGGTGCTTGT GTCAAGTGGTGTGG	CGAGATGGGATAG CGTGAGG	GTGCTTGTGTCAAGTGGTGTGTGGAGTACATTGACACCCTGGAGGAGGAGGCGACGACGATGACGATGTCGCGGATGACCTGCGTCAGGACAAGGAGTATGCCTACTGCTACACCTACACGACAAGGAGTGTGCCTACACACGACAAGGAGTGTGCGACTGCGAGATCCACCCGGCCATGATACTCGGTGTGC
	SEQ ID NO: 1600	SEQ ID NO: 1601 GCGTAATACGACT	GCCTCTATTATTCCCTTCCCCGATCACAAGCCCAGGAACACCTATCAGA GCGCTATGGGGGAAACAGGCGATGGGCGTGTACATCACCAACTTCCACGTGCGAA TGGACACGCTGGCTCACGTGTTCTACCCGCACAAGCCACTGGTCACCACTC
	GETETEG	ATGGGATAGCGTG	GCTCCATGGAGTACCTGCGCTTCAGGGAGCTTCCTGCCGGCATCAACTCTGTGG TCGCCATGGCGTGCTACACTGGATACAACCAGGAGGACAGTGTCATTCTCAACGC
		AGG	CTCCGCTGTCGAGCGCGGATTCTTCAGATCGGTTTTCTTCCGATCTTACAAAGAT GCAGAATCGAAGCGTATTGGCGACCAAGAGGAGCAATTCGAGAAGCCCACCAGA
			CAGACGTGTCAGGGAATGAGGAATGCCATTTATGACAAATTGGACGATGATGGCA TCATTGCTCCCGGTCTGAGAGTGTCTGGTGACGATGTGGTTATTGGCAAAACCAT
			AACACTGCCCGATAATGATGACGAGCTGGAAGGTACAACAAGAGGTTCACGAAG AGAGATGCCAGTACTTTCCTGCGTAACAGTGAGACGGGAATCGTCGACCAAGTCA
			TGTTAACCTTGAACTCTGAGGGTTACAAGTTCTGCAAAATTCGAGTCAGGTCTGTG
			GTGGAATACAGTATCGTCAAGAGGACATGCCTTTTACAAGCGAGGGAATCGCACC GGATATTATTATCAATCCTCACGCTATCCCATCTCG
NL007	SEQ ID NO: 1603	SEQ ID NO: 1604	SEQ ID NO: 1602
	GCGTAATACGACTCA	CCACGGTGAATAG	TGAGAGCAATCCTTGACTGTGGTTTTGAACATCCATCTGAAGTACAACATGAATGC
	CTATAGGTGAGAGCA	CCACTGC	ATTCCTCAAGCTGTACTTGGAATGGACATATTGTGTCAAGCGAAATCCGGTATGG
	AICCIIGACIGIGG	1	GAAAAACIGCIGIAIIIGIGIIGGCGACAIIAACAAAIIGAACCAACIGACAAC CAAGTCAGTGTATTGGTCATGTGTCATACCAGAGAGAGCTTGCATTCCAAATCAGCAA
	CEO IO NO: 4606	SEQ ID NO: 1606	AGAGTATGAACGATTTTCGAAATGTATGCCAAATATCAAGGTTGGAGTTTTCTTCG
	TGAGAGCAATCCTTG	GCGTAATACGACT	GCGGACTGCCGATTCAGAGGGATGAGGAGACGTTGAAATTGAACTGTCCTCACAT
	ACTGTGG	GGTGAATAGCCAC	CG1GG11GGAACACCCGGACGAA1111GGCG11GG1ACGCAACAAGAAGC1GGA CCTCAAGCATCTCAAGCACTTTGTCCTTGACGAATGTGACAAAATGTTGGAACTGT
		T6C	TAGATATGCGAAGAGATGTGCAGGAAATATTCCGAAACACGCGCGCACAGCAAACA
			AGTCATGATGTTCAGTGCAACTCTCAGCAAAGAAATTCGTCCAGTCTGCAAGAAAT
			CGCCTGCAGCACCATATGTCAAACTCAAAGAAAAGGAAAAGAACAAAAGTTA
			TITGAATTACTTGACATACTTGAATTCAACCAGGTTGTTATATTTGTGAAGTCAGTG
			CAGCGCTGCATGCCCTATCGCAACTCCTAACAGAGCAGAACTTCCCTGCAGTG
			ממושלו הארכים ומס
NL008	SEQ ID NO: 1608	SEQ ID NO: 1609	SEQ ID NO: 1607
	GCGTAATACGACTCA	GAGCGAGTCTACA	GATGCTGGAGACCTGGAGGTGTATAGATGTTTCAAACAGTTTTGCAGTTCCATTT

	CTATAGGGATGCTGG AGACCTGGAGGTG	AAATTGCCG	GATGAGGACGACAAAGAAAGAATGTTTGGTTCTTAGACCATGATTACTTGGAAAA CATGTTCGGGGATGTTCAAGAAAGTTAATGCTAGAGAAAAAGGTTGTGGGTTGGTAC
	SEQ ID NO: 1610	SEQ ID NO: 1611 GCGTAATACGACT	CATACTGGACCCAAACTCCACCAAAACGATGTTGCAATCAAT
	GATGCTGGAGACCTG GAGGTG	CACTATAGGGAGC	ATCAAAAACATTTGAACATGTGATGAGTGAGTGGGGCAGAAGAGGCTGAGGAG ATTGGCGTTGAACATCTGTTGAGAGATTGGGCAGAAGAGAGGCTGAGGAG
		9009	CACAGCGCGTCACAAATCAGCTGATGGGCTTGAAGGGCTTGCATCTGCAATTACA
			CAAATIGETTTACCAACTGCAAGACATCTTCAACCTTCTACCGGATATCGGCCACGG CAATTTTGTAGACTCGCTC
6007N	SEQ ID NO: 1613	SEQ ID NO: 1614	SEQ ID NO: 1612
	GCGTAATACGACTCA	GTGTAAGGGTAGA	GCGACTATGATCGACCGCCGGGACGCGGTCAGGTGTGCGACGTCGACGTCAAG
	GATCGACCGCC	AGIAGCCCGG	AACTGGTTTCCCAAACAACAATTGGTTGGCAACCGGAGTACTACAATGAGA
		SEO ID NO: 1616	CTGAAGGCTTTCCAGATAATATGCCAGGTGACCTCAAGCGACACATTGCCCAACA
	SEQ ID NO: 1615	GCGTAATACGACT	GAAGAGTATCAACAAGGTGTTTATGCAAACAATCTGGATACATAC
	GCGACTATGATCGAC	CACTATAGGGTGT	TTTCCGGGCTACTTCTACCCTTACAC
	cecc	AAGGGTAGAAGTA GCCCGG	
NL010	SEQ ID NO: 1618	SEQ ID NO: 1619	SEQ ID NO: 1617
	GCGTAATACGACTCA	GCAACTCCAGTAG	GCTTGTTGTTCCCGTTGGATGTCTGTATCAACCTTTGAAGGAGAGACCTGATCTAC
	CTATAGGGCTTGTTGT	ATCGGAGAGGTC	CGCCTGTACAGTACGATCCAGTTCTTGTACTAGGAATACTTGTCGTGCAATTCTG AATCCATTGTGCCAAGTCGACTATCGAGCCAAGCTATGGGTCTGCAACTTTTGTTT
		1000	CCAGAGGAATCCTTTCCCCCTCAATATGCAGCTATTTCGGAGCAGCATCAACCA
	SEO ID NO: 1620	SEQ ID NOT 1621	GCAGAACTGATACCTTCATTTTCCACCATCGAATACATCATTACCAGAGCGCAAAC
	TT	CACTATAGGGGACT	GATGCCGCCGATGTTCGTGCTGGTGGACACATGTTGGTGGACGACGAGGAGCT
		CTCCAGTAGATCG	GGGAGCTTTGAAGGACTCACTGCAGATGTCGCTGTCGCTGCTGCTGCCCCAATGC ACTCATCGGTCTCATCACGTTCGGCAAAATGGTGCAGGTGCACGAGCTTGGCTGC
		GAGAGGTC	GACGGCTGCTCGAAGAGCTACGTGTTCCGTGGCGTGAAGGACCTGACTGCCAAG
			CAGATCCAGGACATGTTGGCATTGGCAAGATGGCCGCCGCTCCACAGCCCATG
			CAACAGCGCATTCCCGGCGCCGCTCCCTCCGCACCGTTTCTTCAGC
			CIGICGGAAAGIGCGATATGAGITTAACIGATCIGCTTGGGGAATTGCAAAGAGA TCCATGGAATGTGGCTCAGGGCAAGAGACCTCTCCGATCTACTGGAGTTGC
NL011	SEQ ID NO: 1623	SEQ ID NO: 1624	SEQ ID NO: 1622

	CCCACTTCAAGTGY GTRYTRGTCGG	GTCCATTGTGACC TCGGGAGG	GTTGCCACCCTTGGAGTTGAAGTTCACCCCCTTGTATTTCACACAAACAGAGGTG TGATTAGGTTCAATGTGTGGGACACAGCTGGCCAGGAAAAGTTCGGTGGACTTCG
	SEQ ID NO: 1625 GTTGCCACCCTTGGA GTTGAAG	SEQ ID NO: 1626 GCGTAATACGACT CACTATAGGGTCC ATTGTGACCTCGG GAGG	TGATGGATATTACATTCAGGGACAATGCGCCATCATTATGTTTGAGGTAACGTCAA GAGTCACCTACAAGAACGTTCCCAACTGGCACAGAGATTTAGTGAGGGTTTGCGA AAACATTCCCATTGTACTATGCGGCAACAAGTAGACATCAAGGACAGGGAAGTC AAGGCCAAGAGACATTGTACTATGCGGCAACAAGTAGACATCAAGGACAGGAAAGTC AAGGCCAAGAGAGATAGTCTTCCATAGGAAGAAGAACCTTCAGTACTACGACATCA GTGCGAAAAGCAACTACAACTTCGAGAAGACCGTTCCTGTGGTTGGCAAAGAAGCT GATCGGTGACCAACCTGGAGTTCGTCGCCATGCCCCCCCC
NL012	SEQ ID NO: 1628 GCGTAATACGACTCA CTATAGGGCAGCAGA CGCAGGCACAGGTAG	SEQ ID NO: 1629 GAATTTCCTCTTGA GTTTGCCAGCTTG	SEQ ID NO: 1627 GCAGCAGACGCACAGGTAGACGAGGTTGTCGATATAATGAAAACAAAC
	SEQ ID NO: 1630 GCAGCAGACGCAGGC ACAGGTAG	SEQ ID NO: 1631 GCGTAATACGACT CACTATAGGGAAT TTCCTCTTGAGTTT GCCAGCTTG	ATTC
NL013	SEQ ID NO: 1633 GCGTAATACGACTCA CTATAGGCGCAGAGC AAGTCTACATCTCTTC SEQ ID NO: 1635 CGCAGAGCAAGTCTA CATCTCTTC	SEQ ID NO: 1634 GGCAACGGCTCTC TTGGATAG SEQ ID NO: 1636 GCGTAATAGGGCA ACGGCTCTTTGG ATAG	SEQ ID NO: 1632 CGCAGAGCAAGTCTCTTCACTGGCCTTATTGAAAATGCTTAAGCACGGTC GCGCCGGTGTTCCCATGGAAGTTATGGGCCTAATGCTGGGCGAATTTGTAGACG ACTACACTGTGCGTGTCATTGATGTATTCGCTATGCCACAGAGTGGAACGGGAGT ACTACACTGTGCGTGTCATTGATGTATTCCCAATGCCACAGAGTGGAACGGGAGT GAGTGTGGAGGCTGTAGACCCGGTGTTCCAAGCGAAGATGTTGGACATGCTAAA GCAGACAGGACGCCCGAGATGGTGGTGGTGGCTGCTCGCACCCGGGCT TCGGCTGCTGGCGTGTCGACATCAACACGCAGGAGCTTCGAGCAAC TATCCAAGAGAGCCGTTGCC
NL014	SEQ ID NO: 1638 GCGTAATACGACTCA CTATAGGCATTGAGC AAGAAGCCAATGAG SEQ ID NO: 1640	SEQ ID NO: 1639 GAGCGCGACTCTA ATCTCGG SEQ ID NO: 1641 GCGTAATACGACT	SEQ ID NO: 1637 CATTGAGCAAGAAGCCAAGGAGGCCGAAGAGTCGATGCCAAGGCCGAGGA AGAATTCAACATTGAAAAGGGAAGGCTCGTACAGCACCAGCGCCTTAAAATCATG GAGTACTATGACAGGAAAGAAGGCTCGTTGAGCTCCAGAAAAAAATCCATG CAAACATGCTGAACGAAGGAAGGAAGGTCTGAAGGCACTGAAGGTGCGGAAGATCACG TGAGAAGTGTGCTCGAAGAAGAACGTCTTGGAGAAGTAACCAGAAACCC AGCCAAGTACAAGGAAGTCCTCCAGTATCTAATTGTCCAAGGAACTCTGCAGGAACTG

	CATTGAGCAAGAGC	CACTATAGGGAGC	CTAGAATCAAACGTAGTACTGCGCGTGCGCGAGGCTGACGTGAGTCTGATCGAGGGGCAAAGAGAGAG
		990	GTGGTGAAGCTGGACGAACTTCCTGGCCGCCGAGACGTGTGGAGGCGTC GAGTTGTTCGCCCGCAACGCCGCATCAAGATCCCCAACACCCTCGAGTCCAGG CTCGACCTCATCTCCCAGCAACTTGTGCCCGAGATTAGAGTCGCGCTC
NL015	SEQ ID NO: 1643	SEQ ID NO: 1644	SEQ ID NO: 1642
	GCGTAATACGACTCA	GGCCAAAGCGCCT	CTGCGAGTGCGCTTGTCCGACATTGTCTCGATCCAGCCTTGCCCAGACGTCAAGT ATGGAAAGCGTATCCATGTGCTGCCCATTGATGATACCGTTGAGGGTCTTACAGG
	всесттетссе		AAATCTGTTCGAAGTGTATTTGAAGCCATACTTCCTGGAAGCATACAGGCCAATTC
		SEQ ID NO: 1646	ACAAGGATGATGCATTCATTGTTCGCGGAGGTATGAGAGCGGTCGAATTCAAGGT
	SEQ ID NO: 1645	GCGTAATACGACT	TGTGAGGGAGACCCCATCAAACGTGAGGATGAAGAAGAAGACGCAAACGCAGTC
	CTGCGAGTGCGCTTG	CACTATAGGGGCC	GGCTACGACGACATTGGAGGCTGCAGAAAGCAGCTGGCGCAGATCAAAGAGATG
		300000000000000000000000000000000000000	GIGGAGIGCCCCCIGAGACAICCCAGICIGIICAAGGCGAAICGGCGIGAAGCCG
			CGCGCCGTCGCCAACGAAACGGCGCCTTCTTCTTCTTCTTCAACGGACCCGAG
			ATTATGAGCAAATTGGCCGGCGAGTCGGAGAGTAACCTGCGCAAAGCTTTCGAG
			GAAGCGGACAAAAACGCACCGGCCATCATCTTCATCGATGAGCTGGACGCAATC
			GCGCCCAAAACGCGAGAGGACGCACGGCGAGG GGAGCGACGCATGTGTGTCGCA
			CGCCACCAATCGGCCCAACTCGATGCCGCGCTTAGGCGCTTTGGCC
NL016	SEQ ID NO: 1648	SEQ ID NO: 1649	SEQ ID NO: 1647
	GCGTAATACGACTCA	GATGGAGCCGTTG	GACGCCAGTATCAGAAGACATGCTTGGTCGTGTATTCAACGGAAGTGGTAAGCCC
	CTATAGGGACGCCAG	CGACC	ATCGACAAAGGACCTCCCATTCTTGCTGAGGATTATCTCGACATTCAAGGTCAACC
	TATCAGAAGACATGC		CATCAATCCTTGGTCGCGTATCTATCCCGAGGAAATGATCCAGACTGGAATTTCA
		SEQ ID NO: 1651	GCCATCGACGTCATGAACTCGATTGCTCGTGGCCAGAAATCCCCCATCTTTTCAG
	SEQ ID NO: 1650	GCGTAATACGACT	TGTCAAACTGCCAGGAAAGTCAGTTCTCGATGACTCTGAGGACACTTTGCTATTG
	GACGCCAGTATCAGA	CACTATAGGGATG	TATTCGCAGCCATGGAGTCAACATGGAAACTGCTCGATTCTTCAAACAGGATTTC
	AGACATGC	GAGCCGTTGCGAC	GAGGAGAACGGCTCTATGGAGAACGTGTGCCTGTTCTTGAACCTGGCGAACGAC
		٠ ر	CCGACGATCGAGCGTATCATCACACCACGCCTGGCGCTGACGGCCGCCGAGTTC
			C. GGCC. IACCAG. GCGAGAAGCACG. GCI CG CAI CCI CACCGACAI GAGCI CC
			ACGCCGAGGCGC GCGAGAGG G CCGCCGCCCGCGAGGAGG GCCCGGCCCCGCCCC
			CGGACGAGTCGCAGGGTCGCATC
NL018	SEQ ID NO: 1653	SEQ ID NO: 1654	SEQ ID NO: 1652

	GCGTAATACGACTCA CTATAGGGCAAATGC CTGTGCCACGC	GCAATACAGCCGA CCACTCCG	GCAAATGCCTGTGCCACGCCCACAAATAGAAAGCACACAACAGTTTATTCGATCC GAGAAAACAACATACTCGAATGGATTCACCACCATTGAGGAGGACTTCAAAGTAG ACACTTTCGAATACCGTCTTCTGCGCGAGGTGTCGTTCCGCGGAATCTCTGATCAG
	SEQ ID NO: 1655	SEQ ID NO: 1656 GCGTAATACGACT	AAACTACTTGCACGAGGCGGACATGCAGATGTCGACGGTGGTGGACCGAGCATT GGGTCCCCCCCTCGGCGCCACACCATCAGAGAGCCGCGCGAACTCAAAAATCCA GGAGGGGGGGGATGCGGTCTTTCCATCAAGCTCAGGGCCAACCCCAAAGCTCG
	GCAAATGCCTGTGCC	CACTATAGGGCAA	GCCGCTCTGGTTCAAGAACGGTTCACCGTCGCTCACCCCACACACCAGGC
		TCCG	TCCGGCCACTACACGCTGCTGAAAATCCGCAAGGATGTACTGTGTCCTCAG
			CTTACCTAGCTGTCGAATCAGCTGGCACTCAAGATACAGGATACAGTGAGCAATA CAGCAGACAAGAGGTGGAGACGACAGAGGCGGTGGACAGCAGCAAGATGCTGG
			CACCGAACTTTGTTCGCGTGCCGGCCGATCGCGACGCGA
			ATCAACGGCCAACAGGTGGCTGACGACGCCACGCACAAGATCCTCGTCAACGAG TCTGGCAACCACTCGCTCATGATCACCGGCGTCACTCGCTTGGACCACGGAGTG
			GTCGGCTGTATTGC
NL019	SEQ ID NO: 1658	SEQ ID NO: 1659	SEQ ID NO: 1657
	GCGTAATACGACTCA	GAACGCCTGCTCC	GCTTCAGATTTGGGACACGGCCGGCCAGGAGCGGTTCCGCACGATCACATCGAG
	11100000000000000000000000000000000000	9911606	C14C14CC6GGGCCCCCACGGCA1CA13G1GG1G1ACGAC1GCACCGACCGACCAGGA
_	2002424000		GICGIICAACAACAICCICAACAGIGGCICGAGGAGAIIGACCGCIACGCCIGIGAII
		SEQ ID NO: 1661	TCGACTATACACAGGCTAAGGAATACGCCGACCAGCTGGGCATTCCGTTCCTGGA
	SECTIONO: 1660	GCGTAATACGACT	GACGTCGGCGAAGAACGCGACCAATGTGGAGCAGGCGTTC
	GETTCAGATTTGGGA	CACTATAGGGAAC	
	CACGGC	GCCI GCI CCACAI	
NL021	SEQ ID NO: 1663	SEQ ID NO: 1664	SEQ ID NO: 1662
	GCGTAATACGACTCA	CTTCTAGTTCATCC	CGTCAGTCTCAATTCTGTCACCGATATCAGCACCACGTTCATTCTCAAGCCACAAG
-	TCAATTCTGTCACG	AGGICGCG	AGAACGIGAAGAIAACGCIIGAGGGCGCACAGGCCIGIIICAIIICAGACGAACG ACTTGTGATCTCACTGAAGGGAGGAGAACTCTATGTTCTAACTCTCTATTCCGATA
		SEO ID NO: 1666	GTATGCGCAGTGTGAGGAGTTTTCATCTGGAGAAAGCTGCTGCCAGTGTCTTGAC
	SEQ ID NO: 1665	GCGTAATACGACT	TACTTGTATCTGTGTTTGTGAGGAGAACTATCTGTTCCTTGGTTCCCGTCTTGGAA ACTCACTGTTGCTCAGGTTTACTGAGAAGGAATTGAACCTGATTGAGCCGAGGGC
	CGTCAGTCTCAATTCT	CACTATAGGCTTCT	CATCGAAAGCTCACAGTCCCAGAATCCGGCCAAGAAAAAAAA
		9090	

NL022	SEQ ID NO: 1668	SEQ ID NO: 1669	SEQ ID NO: 1667
	GCGTAATACGACTCA	CAGACGGAAGCAC	CTCACGAGAGGACGTTGCACACTGATATACTGTTCGGTTTGGTGAAAGATGTCGC CCGATTCAGACCTGACTTGAAGCTGCTCATATCAAGCGCCACACTGGATGCTCAG
	AGGACGTTGCACAC		AAATTCTCCGAGTTTTTCGACGATGCACCCATCTTCAGGATTCCGGGCCGTAGATT
		SEQ ID NO: 1671	TCCGGTGGACATCTACTACAAAGGCGCCCGAGGCTGACTACGTGGACGCATG
	SEQ ID NO: 1670	GCGTAATACGACT	TTCCTCACCGGTCAGGAGGAGGATCGAAACCTGCCAGGAGGTGCTGCAGGACAGA
	TGCACAC	CGGAAGCACTTGC	G GCGCAGGCT GGG C CG A CAAGGAGCT GCCCAGCT GCCAGCT GCCACT GCCACT GCCACT GCCACT GCCACT GCCACT GCCACT GCCAC
		90	AAAGGTAGTATTGGCCACAAATATTGCAGAAACCTCATTGACCATCGACAATATAA
			TCTACGTGATTGATCCTGGTTTTTGTAGCAGAATAACTTCAATTCAAGGACTGGA ATGGAATCGCTTGTTGTAGTGCCTGTTTCAAAGGCATCGGCCAATCAGCGAGCAG GGCGGGCGGGACGGGTGGCGGCCGGCAAGTGCTTCCGTCTG
NL023	SEQ ID NO: 1673	SEQ ID NO: 1674	SEQ ID NO: 1672
	GCGTAATACGACTCA	ССААТЕТТЕТСЕТТ	GTCCTCGGACGGGAGGTCCACGTGTTTACCGGGATTCCGTTTGCGAAACCTCCC
	CTATAGGGTCCTCGG	GAGCCAGC	ATCGGTCCGTTGCGATTCCGTAAACCGGTTCCCGTCGACCCGTGGCACGGCGTT
	20 20 20 20 20 20 20 20 20 20 20 20 20 2		CCGGGCTTCGAGGGAGAGGAATGTGGAATCCGAATACGAATTTGTCCGAAGATT
	01010	SEQ ID NO: 16/6	GTCTGTATTTGAACATATGGGTGCCGCACCGGTTGAGAATCCGACACAGAGCCAA
	SEC ID NO. 1673	GCGTAATACGACT	CAGCGAGGAGAATAAACCAAGAGCGAAGGTGCCGGTGCTGATCTGGATCTACGG
	GTCCTCGGACGGGAG	CACTATAGGGCAA	CGGGGGGTTACATGAGCGGCACAGCTACACTGGACGTGTACGATGCTGACATGGT
	22.5	161161CC116AG	GGCCGCCACGAGTGACGTCATCGTCCTCCATGCAGTACCGAGTGGGTGCGTT
		25672	CGGCTTCCTCTACCTCGCACAGGACTTGCCTCGAGGCAGGGAGGCGCCGG GCAACATGGGGCTCTGGGACCAGGCCCTTGCCATCCGCTGGCTCAAGGACAACA TTGC
NL027	SEQ ID NO: 1678	SEQ ID NO: 1679	SEQ ID NO: 1677
	GCGTAATACGACTCA	CAATCCAGTTTTTA	AGAAGACGGCACGGTGCGTTTTGGCACTCGGGCACCTACAGGCTGGAGTCCTC
	CTATAGGAGAAGACG	CAGTTTCGTGC	GCTGAATTATGGCCTCGAAAGAGTGTGGACCATTTGCTGCATGCGAGGATCCAAC
	GCACGGTGCG		AATGIGGCICIIGGCIACGACGAAGGCAGCAIAAIGGIGAAGGIGGGIG
		SEQ ID NO: 1681	TCGGAGATACAACAGGTCAACCTCAAGGCCATGCCGGAGGGCGTCGAAATCAAA
	SEQ ID NO: 1680	GCGTAATACGACT	GATGGCGAACGACTGCCGGTCGCCGTTAAGGATATGGGCCAGCTGTGAAATATAT
	AGAAGACGGCACGGT	CACTATAGGCAAT	CCGCAGACCATCGCTCATAATCCCAACGGCAGATTCCTAGTCGTTTGTGGAGATG
-	၅၁၅	CCAGIIIIACAGI	GAGAGTACATAATTCACACATCAATGGTGCTAAGAAATAAGGCGTTTGGCTCGGC
		2515011	CCAAGAGIICAIIIGGGGACAGGACICGICGAGIAIGCIAICAGAGAAGGAACA TCCACTGTCAAAGTATTCAAAAAGTTCAAAGAAAAGA

TCGATGTAGACAAG

SEQ ID NO: 2049
CTTGTCTACATCGAT
ATCCTTGTGGGC

SEQ ID NO: 2048
GCGTAATACGACTC
ACTATAGGCAAGAA
GGAGGAGAAGGGTC
CATCAAC

			GGTGCTGAGAGCATATTCGGCGGCTACCTGCTGGGAGTTTGTTCGTTGTCTGGAC TGGCGCTGTACGACTGGAGACCCTGGAGCTGGTGCGTCGCATCGAGATCCAAC CGAAACACGTGTACTGGTCGGAGAGTGGGGAGCTGGTGGCGCTGGCTG	
			GGTGAAGTGCACGAAACTGTAAAAACTGGATTG	
Table 8-CS	Su			r
Target	Primers Forward	Primers Reverse	dsRNA DNA Sequence (sense strand)	
□	5' + 3'	5' → 3'	5' → 3'	
CS001	SEQ ID NO: 2041	SEQ ID NO: 2042	SEQ ID NO: 2040	
	TAAAGCATGGATGTT	GCGTAATACGACTC	TAAAGCATGGATGTTGGACAAACTGGGTGGCGTGTACGCGCGCG	
	9991244299	TCGCACGCCCTTGC	GGCCCCCACAGG GCGCGGAATGAAGTGCTTAAGATTGTAAAGCAGCGCCTT	
	SEQ ID NO: 2043	ပ	ATCAAAGTTGACGGCAAAGTCAGGACAGACCCCACATATCCCGCTGGATTTATGG	
	GCGTAATACGACTC		ATGTTCCATTGAAAAGACAAATGAGCTGTTCCGTCTTATATGATGTCAAAG	
	ACTATAGGTAAAGC	SEQ ID NO: 2044	GCAGATTTACTATTCACCG1AT1ACTCCTGAGGAGGCTAAATACAAGCTGTGAGGA	
	AIGGAIGIIGGACA	GGTGAGTCGCACGC	GGGACGCACCGTGCGATACCCCGACTCATCAAGGTCAACGACTCCATCCA	
	999	225 22	GCTCGACATCGCCACCTCCAAGATCATGGACTTCATCAAGTTTGAATCTGGTAAC	
			CTATGTATGATCACGGGAGGCCGTAACTTGGGGCGCGCGTGGGCCATCGTGTCC	
			CGCGAGCGACATCCCGGGTCCTTCGACATCGTGCATATACGGGACTCCACCGGA	
			CATACCT I CGC I ACCAGAT I GAACAACG I GT I CATAAT CGGCCAAGGGCACGAAGGCCACGAAGGCCTCACCC	
CS002	SEQ ID NO: 2046	SEQ ID NO: 2047	SEQ ID NO: 2045	
	CAAGAAGGAGGAGA	GCGTAATACGACTC	CAAGAAGGAGGAGAAGGGTCCATCAACACACGAAGCTATACAGAAATTACGCGAA	_
	AGGGTCCATCAAC	ACTATAGGCTTGTCT	ACGGAAGAGTTATTGCAGAAGAACAAGAGTTTCTAGAGCGAAAGATCGACACTG	
		ACATCGATATCCTTG	AATTACAAACGGCGAGAAAACATGGCACAAAGAATAAGAGAGCTGCCATTGCGGC	
	SEQ ID NO: 2048		ACTGAAGCGCAAGAAGCGTTATGAAAAGCAGCTTACCCAGATTGATGGCACGCTT	
	GCGTAATACGACTC		ACCCAAA11GAGGCCCAAAGGGGAAGCGCTAGAAGGAGCTAAGAAGCAACTAAGAAAGA	
	ACTATAGGCAAGAA	SEQ ID NO: 2049	GIGCIIAACACIAIGCGAGAIGCIGCIACGCIAIGAGACICGCCCACAAGGAIA	

CS003	SEQ ID NO: 2051	SEQ ID NO: 2052	SEQ ID NO: 2050
	AGCGTGAGG	ACTATAGGCGAACG GAGACTTCAGCGAG	TGGTCTCCGCAACAAGCGTGAGGTGTGGAGGGTGAAGTACACGCTGGCCAGGAT
	SEQ ID NO: 2053	AAGTCA	CCGTAAGGCTGCCCTCCTTCGTCGTCGTGAGGATCGCTAAGAGGTT ATTCGAAGGTAATGCTCCCTTCGTCGTCGGTGAGGATCGGTGTGGATGAG
	ACTATAGGTGGTCT	SEQ ID NO: 2054	GTCGTCTCCAGACTCAGGTGTTCAAGGCTGGTCTAGCTAAGTCTATCCATCATGC
	CCGCAACAAGCGTG AGG	CGAACGGAGACTTC AGCGAGAAGTCA	CCGTATTCTTATCAGACAGAGGCACATCCGTGTCCGCAAGCAA
	SEQ ID NO: 2056	SEQ ID NO: 2057	SEQ ID NO: 2055
2000	GGATGATGATGGTA	GCGTAATACGACTC	GGATGATGATGGTATAATTGCACCAGGGATTCGTGTATCTGGTGACGATGTAGTC
	ואאוופראכנאפפט	TGGTGTAGCATCAC	ATTGGAAAAACTATAACTTTGCCAGAAAACGATGATGAGGCTGGAAGGAA
	SEO ID NO: 2058	CTATTTCACC	GTTGACCAAGTTATGCTTACACTTAACAGCGAAGGATACAAATTTTGTAAAATACG
	GCGTAATACGACTC		TGTGAGATCTGTGAGAATCCCACAAATTGGAGACAAATTTGCTTCTCGTCATGGTC
	ACTATAGGGGATGA	SEQ ID NO: 2059	AAAAAGGGACTTGTGGTATTCAATATAGGCAAGAAGATATGCCTTTCACTTGTGAA
	IGALGGTALAATTGC	GCATCACCTATTCA	TGGTCACTTGATTGAATGTATTCAAGGTAAGGTCTCCTCAAATAAAGGTGAAATAG
		CC	GTGATGCTACACCATTTAACG
CS007	SEQ ID NO: 2061	SEQ ID NO: 2062	SEQ ID NO: 2060
	CTTGTTGAAACCAG	GCGTAATACGACTC	CTTGTTGAAACCAGAGATTTTGAGGGCTATCGTCGATTGCGGTTTCGAGCACCCT
	AGATTTTGAGGGC	ACTATAGGCGGCAT	TCAGAAGTTCAACATGAATGTATTCCCCAAGCTGTTTTGGGAATGGATATTCTTTG
		TATOTTO	TCAAAGCTAAATCCGGAATGGGAAAAACCGCCGTATTTGTTTTAGCAACACTGCAA
	SEQ ID NO: 2063	I AI GII GACI C	CAGCTAGAACCTTCAGAAAACCATGTTTACGTATTAGTAATGTGCCATACAAGGGA
	GCGTAATACGACTC		ACTCGCT11CCAAATAAGCAAGGAATATGAGAGGTTCTCTAAATATATGGCTGGTG
	ACTATAGGCTTGTTG	SEQ ID NO: 2064	AGAGAGGCTGCCGCGCACATCGTTGTTGCTACTCCTGGCAGAAGAATATTAGCATTGG
	AGGGG	GAAGACTATGTTGA	TTAACAACAAGAAACTGAATTTAAAACACCTGAAACACTTCATCCTGGATGAATGT
		CTC	GACAAAATGCTTGAATCTCTAGACATGAGACGTGATGTGCAGGAAATATTCAGGA
)	ACACCCCTCACGGTAAGCAGGTCATGATTTTCTGCAACATTGAGTAAGGAGAT
			CAGACCAGTCTGTAAGAAATTTATGCAAGATCCTATGGAAGTTTATGTGGATGATG
			AAGCTAAACTTACATTGCACGGTTTGCAGCAACATTATGTTAAACTCAAGGAAAAT
			GAAAAGAATAAGAAGTTATTGAACTTTTGGATGTACTGGAGTTCAACCAAGTTGT
			CATATITIGIAAAGICAGIGCAGCGCIGCATAGCTCTCGCACAGCTGCTGACAGAC

·			CAAAACTTCCCAGCTATTGGTATACACGGAAATATGACTCAAGATGAGCGTCTCTC CCGCTATCAGCAGTTCAAAGATTTCCAGAAGAGGATCCTTGTTGCGACAAATCTTT TTGGACGGGGTATGGACATTGAAAGAGTCAACATAGT GACATGCCG
CS009	SEQ ID NO: 2066 ACGTITCTGCAGCG GCTGGACTC SEQ ID NO: 2068	SEQ ID NO: 2067 GCGTAATACGACTC ACTATAGGGATAATT CTTATCGTACGCTGT CATATTCCTG	SEQ ID NO: 2065 ACGTTTCTGCAGCGGCTCGGGAGCCCATGTGGCAGCTGGACGAGGC ATCATCGGCACCACCCCGGGCTCGGCTTCCGGCCCACGCCCAGAGGTCGC CAGCAGCGTCATCTGGTATAAAGGCAACGACCCCAACACACAATCTGGGTG CAAGAAACCTCCAACTTTCTAACGCGTACAAAAGGAGGCGAAAAGCAGGAG
	GCGTAATACGACTC ACTATAGGACGTTTC TGCAGCGGCTGGAC TC	SEQ ID NO: 2069 GATAATTCTTATCGT ACGCTGTCATATTCC TG	CAGGCCAGAACATCCACAACTGTGATTTCAAACTGCCTCCTCCGGCCGG
CS011	SEQ ID NO 2071 CGACACTTGACTGG AGAGTTCGAGA	SEQ ID NO: 2072 GCGTAATACGACTC ACTATAGGCTCTAG GTTACCATCACCGA	SEQ ID NO: 2070 CGACACTTGACTGGAGAGTTCGAGAAAAGATATGTCGCCACATTAGGTGTCGAGG TGCATCCCTTAGTATTCCACACAAATAGAGGCCCTATAAGGTTTAATGTATGGGAT ACTGCTGGCCAAGAAAAGTTTGGTGGTCTCCGAGATGGTTACTATATCCAAGGTC
	SEQ ID NO: 2073 GCGTAATACGACTC ACTATAGGCGACAC TTGACTGGAGAGTT CGAGA	SEQ ID NO: 2074 CTCTAGGTTACCATC ACCGATCAACT	AATGTGCCATCATCATGTTCGATGTAACGTCTCGTGTCACCTACAAAATGTACCC AACTGGCACAGAGATTTAGTGCGAGTCTGTGAAGGCATTCCAATTGTTCTTTGTG GCAACAAAGTAGATATCAAGGACAGAAAAGTCAAAGCAAAAACTATTGTTTTCCAC AGAAAAAAAAGAACCTTCAGTATTATGACATCTCTGCCAAGTCAAACTACAATTTCGA GAAACCTTCCTCTGGTATTATGACATCTCTGCCAAGTCAAACTACAATTTCGA
CS013	SEQ ID NO: 2076 TGCCGAACAGGTAT ACATCTCGTCTTTGG	SEQ ID NO: 2077 GCGTAATACGACTC ACTATAGGCCACTA CAGCTACAGCACGT	SEQ ID NO: 2075 TGCCGAACAGGTATACATCTCGTCTTTGGCCCTGTTGAAGATGTTAAAACACGGG CGCGCCGGTGTTCCAATGGAAGTTATGGGACTTATGTTAGGTGAATTTGTTGATG ATTACACGGTGCGTGTCATAGACGTATTTCCAAAGCTGAAACTGGCACAGGAGT
	SEQ ID NO: 2078 GCGTAATACGACTC ACTATAGGTGCCGA ACAGGTATACATCC ACAGGTATACATCTC GTCTTTGG	SEQ ID NO: 2079 CCACTACAGCTACA GCACGTTCAGAC	GAACGTGCTGTAGTGGTAGTTGGTAGCAACGTGTTGGAGTTTGGTTTGGTTGG
CS014	SEQ ID NO: 2081 CAGATCAAGCATAT GATGGCCTTCATCG	SEQ ID NO: 2082 GCGTAATACGACTC ACTATAGGGAACAA	SEQ ID NO: 2080 AGATCAAGCATATGATGGCCTTCATCGAACAAGAGGCTAATGAAAAGGCCGAGGA

	∢	TGCGGTACGTATTT CGGGC	AATCGATGCAAAGGCCGAAGAGGAGTTCAACATTGAAAAAGGCCGCCTGGTGCA GCAGCAGCGGCTCAAGATCATGGAATACTACGAAAAGAAAAGAAAG
	SEQ ID NO: 2083 GCGTAATACGACTC ACTATAGGAGATC	SEQ ID NO: 2084 GAACAATGCGGTAC	CTCCAGAAAAAGATCCAAATCTTCGAACATGCTGAATCAAGCCCGTCTGAAGGTGC TCAAAGTGCGTGAGGACCACGTACGCAACGTTCTCGACGAGGCTCGCAAGCGCC TGGCTGAGGTGCCCAAAGACGTGAAACTTTACACAGATCTGCTGGTCACGCTCGT CGTACAAGCCCTATTCCAGCTCATGGAACCCACAGTAACAGTTCGCGTTAGGCAG
	CTTCATCGA	29999	GCGGACGTCTCCTTAGTACAGTCCATATTGGGCAAGGCACAGCAGGATTACAAAG CAAAGATCAAGAAGGACGTTCAATTGAAGATCGACACCGAGAATTCCCTGCCGC CGATACTTGTGGCGGAGTGGAACTTATTGCTGCTAGAGGGCGTATTAAGATCAGC AACACTCTGGAGTCTCGTCTGGAGCTGATAGCCCAACAACTGTTGCCCGAAATAC
CS015	SEQ ID NO: 2086	SEQ ID NO: 2087	GTACCGCATTGTTC SEQ ID NO: 2085
<u>'</u>	ATCGTGCTTTCAGA		ATCGTGCTTTCAGACGATAACTGCCCCGATGAGAAGATCCGCATGAACCGCGTCG
		ACTATAGGCCATTAC	ATCGGTCAAATATGGGAAACGGGTACATATTGCCCATTGATGATTCTGTCGAG
	SEQ ID NO: 2088 GCGTAATACGACTC	GATCACGIGCGAIG	GGTTTGACTGGAAATTATTCGAAGTCTACTTGAAACCATACTTCATGGAAGCTTA TCGGCCTATCCATCGCGATGACACATTCATGGTTCGCGGGGGGCATGAGGCTGT
	ACTATAGGATCGTG		TGAATTCAAAGTGGTGGAGACTGATCCGTCGCCGTATTGCATCGTCGCTCCCGAC ACAGTGATACACTGCGAAGGAGGACCCTATCAAACGAGGAGGAAGAAGAAGAAGA
	TGCCCC	SEQ ID NO: 2089 CCATTACGATCACG	CTAAACGCCGTAGGGTACGACGACGACGTGGCTGGCTGTCGTCGCTCAG
		TGCGATGACTTC	ATCAMAGAGAGGCICGAGTTGCCTCTAAGGCATCCGTCGCTGTTCAAGGCAATTG
			CTCTCATTGCTCGGGCAGTGGCTAATGAAACTGGTGCATTCTTCTTCTGATCAAC
		-	GGGCCGGAGATCATGTCCAAACTCGCGGCCGAGTCCGAATCGAACCTTCGCAAG GCATTCGAGGAAGCGGACAAGAACTCCCCGGCTATAATCTTCATCGATGAACTGG
			ATGCCATCGCACCAAAGAGGGGAGAGACTCACGGTGAAGTGGAGCGTCGTATTG
			TGTCGCAACTACTTACTCTTATGGATGGAATGAAGAAGTCATCGCACGTGATCGTA ATGG
CS016	SEQ ID NO: 2091	SEQ ID NO: 2092	SEQ ID NO: 2090
	AGGATGGAAGCGGG	GCGTAATACGACTC	AGGATGGAAGCGGGGATACGTTTGAGCATCTCCTTGGGGAAGATACGGAGCAGC
	GATACGTTTGAG	ACTATAGGGCACCC	TECCAGCCGATGTCCAGCGACTCGAATACTGTGCGGTTCTCGTAGTTGCCCTGTG
		ATGIT	TGATGAAGITCTTCTCGAACTTGGTGAGGAACTCGAGGTAGAGGAGGAGATCGTCGGG
	SEQ ID NO: 2093		GCGTAGCAGGCGTACAGCTGGTTGGAAACATCAGAGTGGTCCTTGCGGGTCATT
	ACTATAGGAGGATG	SEQ ID NO: 2094	CCCTCACCGATGGCAGACTTCATGAGACGAGACAGGGAAGGCAGCACGTTTACA
	GAAGCGGGGATACG		GGCGGGTAGATCTGTCTGTTGTGGAGCTGACGGTCTACGTAGATCTGTCCCTCAG
			1GATGTAGCCCGTTAAATCGGGAATAGGATGGGTGGTCGTCGTTGGGCATAGT

	TTGAG	GAAGACATGTT	CAÁGATGGGGATCTGCGTGATGGATCCGTTTCTACCCTCTACACGCCCGGCTCTC TCGTAGATGGTGGCCAAATCGGTGTACATGTAACCTGGGAAACCACGTCGTCG GGCACCTCCTCACGGGCGGCGGACACTTCACGCAGAGCCTCCGCGTACGAAGA CATGTCAGTCAAGATTACCAGCACGTGTTTCTCACACTGGTAGGCCAAGAACTCA GCAGCAGTCAAGGCCAAACGTGGTGTGATGATTCTCTCAATAGTGGGATCGTTGG CCAGATTCAAGAACAGGCACACGTTCTCCATGGAGCCGTTCTCCTCGAAGACCTG CTTGAAGAACCGGGCCGTCTCCCATGTTCACACGGGGGGATCTTTACAAAGACCG AAGTTGTCCTCGTGGTCGTCCACGCACACGTTTGCCGGGGGGGTCTTTACAAAACGGCGAACACGGCAACACGCAACACGCAACACGCAACACGCAACACGCAACACCGCAACACACACACACACACACACACACACACACACACACAC
			AAAATGGGATCTTTTGCCGCGAGCAATGGAGTTCATCACGTGGCGGAGA TACCAGTCTGGATCATTCCTCAGGGTAGATACGGGACCAGGGGTTGATGGGGCT GTCCCTGGATGAAAAAGTCTTCAGCAAGGATTGGGGGACCTTTGTCAATGGG TTTTCCAGAGCCGTTGAATACGCGACCAAGGATTCGGGGGACCATTGTCAATGGG
CS018	SEQ ID NO: 2096 CGTCCCTGTACCTG CTCAGCAATCCCA	SEQ ID NO: 2097 GCGTAATACGACTC ACTATAGGCAGCGT CGAGGCCCCACCTT	SEQ ID NO: 2095 CGTCCCTGTACCTGCTCAGCAACAGCAGCAGAGTTACCGCCACGTCAG CGAGAGCGTCGAACACAAATCCTACGGCACGCAAGGGTACACCACTTCGGAACA GACAAGCGTCGAACACAAATCCTACGGCACGCAAGGGTACACCACTTCGGAACA GACCAAGCAGACACAAGAAGGTGGCGTACACCAACGGTTCCGACTACTTCCAC
······································	SEQ ID NO: 2098 GCGTAATACGACTC ACTATAGGCGTCCC	SEQ ID NO: 2099 CAGCGTCGAGGCCC	GGACGACTTTAAGGTGGATACGTTCGAATACAGACTCCTCCGAGAAGTTTCGTTC AGGGAATCCATCACGAAGCGGTACATTGGCGAGACAGCATTCAGATCAGCACG GAGGTCGACAAGTCTCTCGGTGTGGTGACCCCTCCTAAGATAGCACAAAAGCCTA
	TGTACCTGCTCAGC AATCCCA	CACCTT	GGAALICCAAGCIGCAGGAGGGAGGCICAGIIICAAGIGCAGCIGIGG GTAACCCGCGGCCACGGGTGTCATGGTTCAAGAACGGGCAGAGGATAGTCAACT CGAACAAACACGAAATCGTCACGACATAATCAAACAATACTTAGGGTAAGAAAC ACACAAAAGTCTGATACTGGCAACTACACGTTGTTGGCTGAAAATCCTAACGGAT
			GCG I CG I CACA I CGGCATACC I GGCCG I CGCC I CAAGAAAC I I ACGGCC AAGATCATAAATCACATAATGGACAATCAGCAAACAGCTGTAGAAGAAAGA
			CTTACCCAGAAGTCACGTGGTTCATTAACGATAGACAAATTCGAGACGATTATWAT CATAAGATATTAGTAAACGAATCGTGTAATCATGCACTTATGATTACAAACGTCGAT CTCAGTGATAGTAGCGTAGTATCATGTATAGCACGCAACAAGACCGGCGAAACTT
			CGTTTCAGTGTAGGCTGAACGTGATAGAGAAGGAGCAAGTGGTCGCTCCCAAATT CGTGGAGCGGTTCAGCACGTCAACGTGCGCGAGGCGAG
			GTTCAAGTTATACCCAATCCAGAGCTACGAATAAATACCGAAGGTGGGGCCTCGA CGCTG

Table 8-PX

Target	Primers Forward	Primers Reverse	dsRNA DNA Sequence (sense strand)
<u>α</u>	5' → 3'	5' → 3'	5' → 3'
PX001	SEQ ID NO: 2340 GCGTAATACGACTC ACTATAGGCGAGGT GCTGAAGATCGTGA	SEQ ID NO: 2341 CTTGCCGATGATGA ACACGTTG	SEQ ID NO: 2339 CGAGGTGCTGAAGATCGTGAAGCAGCGCCTCATCAAGGTGGACGGCAAGGTCCG CACCGACCCCACCTACCCGGCTGGATTCATGGATGTTGTGTGTG
	AG SEO ID NO: 2342	SEQ ID NO: 2343	TCACTCCCGAGGAGGCCAAGTACAAGCTGTGCAAGGTGAAGCGCGTGGCGACGACGACGAAGAGGGCGAAGAAGGGCGAAGAAGGGCGAAGAA
	CGAGGTGCTGAAGA TCGTGAAG	ACTATAGGCTTGCC GATGATGAACACGT	CCCGACCCGCTCATCAAGGTCAACGACTCCATCCAGCTCGACATCGCCACCTGC AAGATCATGGACATCAAGTTCGACTCAGGTAACCTGTGCATGATCACGGGAG
		ТС	GGCGTAACTTGGGGCGAGTGGGCACCATCGTGTCCCGCGAGAGGCACCCCGGGAGCTTCGATCGCCACCAGGTTGAACAACGTTCGCCACCAGGTTGAACAACGTGTCATCGGCAAG
PX009	SEQ ID NO: 2345	SEQ ID NO: 2346	SEQ ID NO: 2344
	GCGTAATACGACTC ACTATAGGCAGCTA CAAGTATTGGGAGA	TGTTGATCACTATGC CGGTCCT	CAGCTACAAGTATTGGGAGAACCAGCTCATTGACTTTTTGTCAGTATACAAGAAGAAGAAGGGTCAGACAGGGGGGGG
	ACCAG	SEQ ID NO: 2348	ATTGATGAGAACCACTTCTCTTTCCACAGTCTTCGCCTTGCATCTTCTTGAAGCT
	SEQ ID NO: 2347	GCGTAATACGACTC	GAAGCCATGCCCGTGGACTTGCAGACCCACATTACTGCCTTCAACA
	GGGAGAACCAG	CACTATGCCGGTCC	GAGACTATGCGAACATGGTGTGGGTGTCGTGCCACGGCGAGACGCCGGCGGAC AAGGAGAACATCGGGCCGGTGCGCTACCTGCCCTACCCGGGCTTCCCCGGGTAC
		_	TTCTACCCGTACGAGACGCCGAGGGGTATCTGAGCCCGCTGGTCGCCGTGCAT TTGGAGAGGCCGAGGACCGGCATAGTGATCAACA
PX010	SEQ ID NO: 2350	SEQ ID NO: 2351	SEQ ID NO: 2349
	GCGTAATACGACTC	CTGTATCAATGTACC	ACCAGCACTCTAGTGGACAACGTCGCGTTCGGGTCACCACTGTCGCGCGCAATT
	ACTCTAGTGGACAA	GCGGCAC	GGGGCGACGCAGCCGCCAACTTACACCATATCGGCGGGCTTCGACCAGGAG GCGGCGGCGGTGGTGATGGCGCGGCTGGTGTTACCGCGCGGAGCAGGAG
	сетс	SEO ID NO: 2353	ACGGGCCCGACGTGCTGCTCGACCGCATGCTCATACGCCTGTGCCAGA
	SEO ID NO: 2352	GCGTAATACGACTC	AGIICGGCGAGIACGCGAAGGACGACCGGAACAGCIICCGICIGICGGAGAACI TCAGCCTGTACCCGCAGTTCATGTACCACCTGCGCGCTCGCAGTTCCTGCAGGT
-	ACCAGCACTCTAGT	ACTATAGGCTGTATC	CTTCAACAACTCGCCCGACGAGGACCACCTTCTACAGACACATGCTGATGCGCGAA
	GGACAACGTC	C C C C C C C C C C C C C C C C C C C	GACCTGACCCAATCCCTCATCATGATCCAGCCGATCCTCTACTCGTACAGCTTCG GAGGCGCGCCCGAACCCGTGCTGTTAGACACCAGCTCCATCCA

၁ န ပ	03 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	527448558557574
TCCTGCTCATGGACACCTTCTTCCAGATCCTCATCTACCATGGAGAGACAATGGC GCAATGGCGCGCTCTCCGCTACCAAGACATGGCTGAGTACGAGAACTTCAAGCA GCTGCTGCGAGCGCCGTGGACGACGCGCAGGAGATCCTGCAGACCAGGTTCC CCGTGCCGCGGTACATTGATACAG	SEQ ID NO: 2354 GACGAGAACATCCGCATGAACCGCGTCGTCCGGAACCACCTGCGAGGACCTG TCAGACATTGTGTCCATCGCTCTTGCCCGTCAGGAACACCTGCGAGGAGTTC ATATTCTGCCCCATTGATGACTCTTGTGAGGGTTTGAACCTGTTCGAAGGTC TACCTGAAGCCGTACTTCATGGAGGCGTTCGAGTTCAACGTGGTGGAGACCGA TTCATGGTGCGCGCGCGCTGCGCCCTCCACCGCGACGACGA CCCCTCGCCCTACTGCATCGTGGCCCCCGACACGGTCATTCAT	SEQ ID NO: 2359 CTGGGTGGTATTTTCAACGGCTCCGGCAAGCCCATCGACAAGGGGCCCCCGATC CTGGCCGAGGAGTACCTGGACATCCAGGGGCCACCATCAACCCGTGGTCCCGT CTGCCCGGAGGAGTACCTGGACTGCTTCTCCGCCTATCGACGTGATGACT CCATCGCCCGGAGGATCAGACACTGTTTCTCCGCCGCGGTCTGCCCCAACACACAC
	SEQ ID NO: 2356 GATGATGGCCGGAG AGTTCTTG SEQ ID NO: 2358 GCGTAATACGACTC ACTATAGGGATGAT GGCCGGAGAGTTCT TG	SEQ ID NO: 2361 AGTGATGTACCCGG TCAAGTCG SEQ ID NO: 2363 GCGTAATACGACTC ACTATAGGAGTGAT GTACCCGGTCAAGT CG
	SEQ ID NO: 2355 GCGTAATACGACTC ACTATAGGGACGAG AAGATCCGCATGAA CC SEQ ID NO: 2357 GACGAGAAGATCCG	SEQ ID NO: 2360 GCGTAATACGACTC ACTATAGGCTGGGT CGTATTTTCAACGG CTC SEQ ID NO: 2362 CTGGGTCGTATTTTC AACGGCTC
	PX015	PX016

ACACCCTTGATGAATTTCTTGCTGTGTACAAGACTCCTGGTCTGACCCCTGGTCGAG CGTTTCACAATTCACAGAATTAGTGCAGAAGAAGCCAAGTACAAGCTCTGCAAGGTC GAAGAAAGATGGAAAGGCTCCGACCACTGGTGAGGCCCATTCAGAAACTCAGAGAAA TCAATGTTGCAAAGAAAAATGGAACGAAAAAAAAGCGAGCTGCTATTCAGGCTCTGA AAGAGCTCTCCATGCATATTCATCAAGCTCAACAAGATCTACAATTGGATCCCTGAA GCTCCTAAAGCATGGATGTTGGACAAACTCGGAGGAGTATTCGCTCCTCGCCCCAG CAAAGTTGACGGCAAGGTGCGAACCGATCCGAATTATCCCGCTGGTTTCATGGATG AGGAGAGTTCAAACTGGGCCAAAAGGTATTCCATTCTTGGTGACCCATGATGGCCG <u>AAAGGAAAAAGGGGTATGAAAAACAATTGCAGCAAATTGATGGCACCTTATCCACAA</u> ATTGGCACATCACCTGGCCTAGGTTTCCGGCCAATGCCAGAAGATAGCAATGTAGA GTCAACTCTCATCTGGTACCGTGGAACAGATCGTGATGACTTCCGTCAGTGGACAG **AATGTGGACATCAAGAATTGGCATCCCTGCATTCAAGAGAATCACTACAACTACCAC** TACTACAATGAGAGTACGAATTTGCCTGAGCAGATGCCAGAAGACCTGAAGCAGTA GCTCAAGTATGCTCTGACGAACTGTGAAGTAACGAAGATTGTTATGCAGCGACTTAT TGTCACCATTGAGAAGACTGGAGAGTTCTTCAGGCTGGTGTATGATGTGAAAGGC TACTATCCGTTATCCTGACCCAGTCATTAAAGTTAATGACTCAATCCAATTGGATATT CAGAAGAAATGTTAATCAAAAAGCAGGAATTTTTAGAGAAGAAAATCGAACAAGAAA TGAAATGCAAAGAGAAGCTTTGGAGGGTGCTAATACTAATACAGCTGTATTACAAA TACTGGCCCCCACAAATTGCGTGAATGTTTACCTTTGGTGATTTTTCTTCGCAATCG GTCTTCCAGACACTGGATCCTCGTATTCCCACCTGGCAGTTAGATTCTTGTATC **ACTGGTGGACGTAACTTGGGTCGAGTGGGGGACTGTTGTGAGTCGAGAACGTCACC** GCCACTTGTAAAATCATGGACCACATCAGATTTGAATCTGGCAACCTGTGTATGATT CAATGAAATCAGCAGCAGATGCCCTTAAAGCAGCTCATCAGCACATGGATG CATCCACAACCTGGAGAGTAACAACTCGAGGGAGATGAACACG dsRNA DNA Sequence (sense strand) CAGGCTCGTTTGATATTG **SEQ ID NO: 2466 SEQ ID NO: 2476 SEQ ID NO: 2471** SEQ ID NO: 2461 5, 4 3, ACTATAGGCATCCAT ACTATAGGCAATATC CGTGTTCATCTCCCT AAACGAGCCTGGGT G GCGTAATACGACTC GTGCTGATGAGCTG **AGAATTTCAAGGCG** GCGTAATACGACTC CATCCATGTGCTGA GCGTAATACGACTC CAATATCAAACGAG CATCTCCCTCGAGT TG **ACTATAGGCGTGTT SEQ ID NO: 2475 SEQ ID NO: 2478 SEQ ID NO: 2465 SEQ ID NO: 2470 SEQ ID NO: 2473 SEQ ID NO: 2463 SEQ ID NO: 2468** Primers Reverse CCTGGGTG **IGAGCTGC** CGAGTTG GTCTTCTTCCAGACA ACTATAGGGTCTTCT GAAGAAAGATGGAA GCGTAATACGACTC **AGATGGAAAGGCTC** GCGTAATACGACTC GCTCCTAAAGCATG TCCAGACACTGGAT GCGTAATACGACTC ACTATAGGGAAGAA GCGTAATACGACTC ACTATAGGGCTCCT AAAGCATGGATGTT **SEQ ID NO: 2474 SEQ ID NO: 2469 SEQ ID NO: 2472 SEQ ID NO: 2477 SEQ ID NO: 2464** Primers Forward **SEQ ID NO: 2462** SEQ ID NO: 2467 AGGCTCCGAC CTGGATCCTC GATGTTGG CCTC CGAC ပ္ပ AD015 **AD009** AD002 **Target** AD001 ₽

Table 8-AD

	ACTATAGGGTTGAA	ACCAGTGG	GTTGAAGGACTAACCGGGAATTTGTTTGAGGTGTACTTAAAAACCGTACTTTCTCGAA
	GGACTAACCGGGAA	SEQ ID NO: 2480	GCATACCGACCCATTCACAAAGATGATGCGTTTATTGTTCGTGGTGGTATGCGAGCA
	าเาด	GCGTAATACGACTC	GTAGAATTCAAAGTAGTGGAAACAGATCCTTCACCATATTGTATTGTTGCTCCTGATA
	SEQ ID NO: 2479	ACTATAGGAGAATTT	CTGTTATTCACTGTGAAGGTGATCCAATAAAACGTGAAGAGGAAGAAGAAGCATTAA
	GTTGAAGGACTAAC	CAAGGCGACCAGTG	ATGCTGTTGGTTATGATGACATTGGGGGTTGCCGAAAACAGCTAGCACAGATCAAG
	CGGGAATTTG	ඉ	GAAATGGTGGAATTGCCATTACGGCACCCCAGTCTCTTTAAGGCTATTGGTGTTAAG
· .			CCACCGAGGGGAATACTGCTGTATGGACCCCCTGGAACTGGTAAAACCCTCATTGC
			CAGGGCTGTGGCTAATGAAACTGGTGCATTCTTCTTTTTAATAAATGGTCCTGAAATT
			ATGAGCAAGCTTGCTGGTGAATCTGAAAGCAACTTACGTAAGGCATTTGAAGAAGCT
			GATAAGAATGCTCCGGCAATTATATTTATTGATGAACTAGATGCCAATTGCCCCTAAAA
			GAGAAAAAACTCATGGAGAGGTGGAACGTCGCATAGTTTCACAACTACTAACTTTAA
			TGGATGGTCTGAAGCAAAGTTCACATGTTATTGTTATGGCTGCCACAAATAGACCCA
			ACTCTATTGATGGTGCCTTGCGCCGCTTTGGCAGATTTGATAGGGAAATTGATATTG
			GTATACCAGATGCCACTGGTCGCCTTGAAATTCT
AD016	SEQ ID NO: 2482	SEQ ID NO: 2483	SEQ ID NO: 2481
	GCGTAATACGACTC	ATGTAGCCTGGGAA	ACCCGGAAGAATGATCCAGACGGGGATCTCGACCATCGACGTGATGACGTCCATC
	ACTATAGGACCCGG	GCCTCTTC	GCGCGAGGGCAGAAGATCCCCATCTTCTCGGGCGCAGGGCTGCCACACAACGAGA
	AAGAAATGATCCAG	SEQ ID NO: 2485	TCGCTGCGCAGATCTGCCGACAGGCGGGGGTGGTGCAGCACAAGGAGAACAAGGA
	AC	GCGTAATACGACTC	CGACTTCGCCATCGTGTTCGCGGCGATGGGCGTCAACATGGAGACGGCGCGCTTC
	SEQ ID NO: 2484	ACTATAGGATGTAG	TTCAAGCGCGAGTTCGCGCAGACGGGCGCGTGCAACGTGGTGCTGTTCCTCAACC
	ACCCGGAAGAAATG	CCTGGGAAGCCTCT	TGGCCAACGACCCCACCATCGAGCGCATCATCACCCCGCGCGCTCGCGCTCACCGT
	ATCCAGAC	70	GGCCGAGTTCCTGGCCTACCAGTGCAACAAGCACGTGCTCGTCATCATGACCGACA
			TGACCTCCTACGCGGAGGCGCTGCGCGAGGTGAGCGCGGCGCGCGAGGAGGTTC
			CTGGGCGAAGAGGCTTCCCAGGCTACAT

Table 9-LD

Target ID	Target ID Hairpin Sequence
	5' → 3'
LD002	SEQIDNO: 240
	GCCCTTGCAATGTCATCCATCATGTCGTGTACATTGTCCACGTCCAAGTTTTTATGGGCTTTCTTAAGAGCTTCAGCTGCATTTTTCAT
	AGATTCCAATACTGTGGTGTTCGTACTAGCTCCCTCCAGAGCTTCTCGTTGAAGTTCAATAGTAGTTAAAGTGCCATCTATTTGCAACT
	GATITITICIAATCGCTTCTTCCGCTTCAGCGCTTGCATGGCCGCTCAAGGGCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATC
	ACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGA
	CCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACT
	CATTAACTAATATCACCTCTAGAGTATAATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTC

	TACAATGTTCAAAGAAAGAGTTGCATCTAAAGCCCTATGAATTCAATGAACGCTAAGGTGATCCGGGGGAGATTTTCAGGAG
	CTAAGGAAGCTAAAATGGAAAAATGACTGGATATACCACCGTTGATATCCCAATGGCATCGTAAAGAACATTTTGAGGATTT
	CAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAATAAGCACAAGTT
	TTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATA
	GECAGTITCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTT
	TTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCAT
	GGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGG
	CAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGC
	AAGTOTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAGCCAAAATTTATGCTAGGAAAAACTTCACTAAAGAAG
	ACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTA
	TGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACAGAGCATATATAT
	~
,	TCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTGAGCGGCCAAGCGCTGAAGCGGAAGAGCG
	ATTAGAAAAAATCAGTTGCAAATAGATGGCACTTTAACTACTACTACTTCAACGAGAAGCTCTGGAGGGAG
	ACAGINIIGGAAICINIGAAAAAIGCAGCIGAAGCICIINAGAAAGCCCAIAAAAACIIIGGACGIGGACAAIGIACACGACAAIGAIGG ATGACATTGCAAGGGC
P0007	SEQIDNO: 241
	GCCCTTGGAGCGAGACTACAACAACTATGGCTGGCAGGTGTTGGTTG
···	AACTGTCATGATTGCGATGAATCCTGAGGATCTTCGGCAGGACAAAGAATATGCTTATTGTACGACCTACACCCCACTGCGAAATCCAC
	ccgcccatgatcttgggccgtttgcccgtctattatacctttccccgatcataaccagagcccaaggaacacctaccagagcgctatg
	GGTAAGCAAGCTATGGGGGTCTACATTACGAATTTCCACGTGCGGATGGACACCCTGGCCCACGTGCTATACTACCGCGCACAAACCT
	CTGGTCACTACCAGGTCTATGGAGTATCTGCGGTTCAGAGAATTACCAGCCGGGATCAACAGTATAGTTGCTATTGCTTGTTATACTG
	GTTATAATCAAGAAGATTCTGTTATTCTGAACGCGTCTGCTGTGGAAAGAGGGATTTTTCCGATCCGTGTTTTATCGTTCCTATAAAGAT
	GCCGAATCGAAGCGAATTGGCGATCAAGAAGAGCAGTTCGAGAAGGGCCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATCACTA
	GTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTG
	CAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATT
	AACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGAAGAGTTTCAAGAGTAGGCTAATGTAAATCTTTGTACA
	ATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAA
	GGAAGCTAAAATGGAGAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGT
	ccgcctttattcacattcttgcccgcctgatgaatgctcatccggaattccgtatggcaatgaaagacggtgagctggtgatatgg
	GATAGTGTTCACCCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGC
	AGTITCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTC
	GTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGG
	GCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGTGCCGTCTGTGATGCTTCCATGTCGGCA
	GAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGGGGTAAACGCCGTGGATCAGCTTAATATGACTCTCAATAAA

	CONTRACTOR OF TOTAL TOTAL TOTAL AND A CANADA CANADA A CANADA
	GATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAAACCTAATCTCATTAAAGTTTATG
	CTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATAT
	GAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATC
	CCGCGGGAIAICACCACIIIGIACAAGAAAGCIGGGICGGCCCTICICGAACIGCIICIIGIIGAIGGCAATAACAAAAATCTTCTTGAAAAAAATCTTAAAAAAAA
	CAGIATAACAAGCAATAGCAACTATACTGTTGATCCCGGCTGGTAATTCTCTGAACCGCAGATACTCCATAGACCTGGTAGTGACCAG
	AGGTTTGTGCGGGTAGTATAGCACGTGGGCCAGGGTGTCCATCCGCACGTGGAAATTCGTAATGTAGACCCCCATAGCTTGCTT
	GGTGGATTICGCAGTGGGTGTAGGTCGTACAATAAGCATATTCTTTGTCCTGCCGAAGATCCTCAGGATTCATCGCAATCATGACAGT TTCTTCTTCAAGAGTGTCGATGTATTCCACCACACCA
LD007	
	GCCCTTCCGAAGAAGGATGTGAAGGGTACTTACGTATCCATACACAGTTCAGGCTTCAGAGATTTTTATTGAAACCAGAAATTCTAA
	CAAGCCAAATCTGGTATGGGCAAAACGGCAGTGTTTGTTCTGGCGACACTGCAACAATTGGAACCAGCGGACAATGTTGTTTACGTTT
	TGGTGATGTGTCACACTCGTGAACTGGCTTTCCAAATCAGCAAAGAGTACGAGAGGTTCAGTAAAATATATGCCCAGTGTCAAGGTGG
	GCGTCTTTTCGGAGGAATGCCTATTGCTAACGATGAAGAAGTATTGAAAAACAAATGTCCACACATTGTTGTGGGGGACGCCTGGGC
	GTATTTGGCGCTTGTCAAGTCTAGGAAGCTAGTCCTCAAGAACCTGAAACACTTCATTGATGAGTGCGATAAAATGTTAGAACTG
	TTGGATATGAGGAGAGACGTCCAGGAAATCTACAGAAACACCCCTCACCAGCAAGCA
	GAAATCAGGCCGGTGTGCAAGAAATTCATGCAAGATCCAATGGAGGTGTATGTA
_	CAACAGCATTACGTTAAACTCAAAGAAAATGAAAAGAATAAAAAATTATTTGAGTTGCTCGATGTTCTCGAATTTAATCAGGTGGTCATT
	TTTGTGAAGTCCGTTCAAAGGTGTGTGTGGCACAGTTGCTGACTGA
	GACCAGAAAGAGAGGTTGTCTCGGTATGAGCAGTTCAAAGATTTCCAGAAGAGATATTGGTAGCTACGAATCTCTTTGGGCGTGGC
	ATGGACATTGAAAGGGTCAACATTGTCTTCAACTATGATATGCCAGAGGACTCCGACACCTTGCATCGAAGGGGCGAATTCACCAG
	CTITCTIGIACAAAGIGGIATATCACTAGIGCGCCCCCCCCCGCTGCACCATAIGGICGACCIGCAGGCGGCCGCCACTAGIGAIGC
_	TGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAG
-	a 1
	GAICCEGCGAGAIIIICAGCGAGCIAAAAAIGGGAGAAAAAAAAICACIGGGATAAAAAAAAAA
	GIAAAGAACAIIIIGAGGCAIIICAGICAGICGAIGGCCAAIGIACCAGACCAGACCGIICAGCIGGAIAIIACGGCCIIIIIAAAGACC
	GIAAAGAAAAIAAGCACAAAGIIIIAICCGGCCIIIAIICACAIICIIGCCCGCCIGAIGAAIGCICAICCGGAAIICCGIAIGGCAAI
	301010301401 10304040 10404041 10304040 1030404
	AGIGAATACCACGACGATITOCGGCAGIIIOTACACATATAGAGAAGATATAGAATATAGAATATAAAAGATAGAAAAAA
	GICTETEATGGCTTCCATGTTTAATGAATTACAAGAATGCGTGGGGGGGG
	ATCAGCITAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTC

TCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCGACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTCGATGCAAGTA GGTGTCGGAGTCCTCTGGCATATCATAGTTGAAGACAATGTTGACCCTTTCAATGTCCATGCCACGCCCAAAGAGAGATTCGTAGCTACC CTACATACACCTCCATTGGATCTTGCATGAATTTCTTGCACACCGGCCTGATTTCTTTGCTGAGTGTGGCACTGAACATCATCACTGC <u> ATGAATATATGTCAACGCAGTGGCCATTCGTTGCTGCTCTCATCGCTAAATTATCATAGTGCTTGATTGCTTTCTTCATGTATTTGGCAT</u> <u> 18TCTTTTTGGATGTCGTGGTGAGATCTGATAGGTTGCTTCAGATCATCATTCAAGACTTGACCAGGGCCTTGAGAGCAAGGTCCTCC</u> <u>GGGTTGAAGGAACCTGCTTCCTGGTGGCGTAGGAGCTTGCTGGAGTGCTCCAGGCCTCATGGGTTGTCCTGGTTGTTGAGGAGCAG</u> CTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTA CAGTGTCGCCAGAACAAACACTGCCGTTTTGCCCATACCAGATTTGGCTTGACATAAAATGTCCATGCCAATGACAGCTTGAGGAATA GTTGAGCACTTACTGCGGCTCTGCCCACTTCCAACATCTCTTGAACTTGCTTAGCTGTGAGGTCTTTCGTCCCTCGGAAAACGTAAGA GGTGTGAGGGGGTGTTTCTGTAGATTTCCTGGACGTCTCTCCTCATATCCAACAGTTCTAACATTTTATCGCACTCATCAAGAATGAA CATTCGTGCTGAACTTCTGAAGGGTGTTCAAAACCGCAGTCAACTATAGCTCTTAGAATTTCTGGTTTCAATAAAAATCTCTGAAGCC <u> GCCTTCGCCATTGGGCGATGGTTTCGCCATGGAATATCAGAATCTGGAAGAACGTGTCCATGAGCAGAATTCTATCGGGTTGGATG</u> GTTGGTTGACGACCTCGAAGAACAAGGCCATGGTAGTACTTGGAGTTACCGTACACATTTTCCACTGGACCGTGTTACCCATTCCTAT <u> AATATTCTTCTTCTGGAAATCTTTGAACTGCTCATACCGAGACAACCTCTCTTTCTGGTCCATTCCTCTGTGAATTCCTATGGCTGGGAA</u> <u> AGCAACTCAAATAATTTTTTATTCTTTCGTTTGAGTTTAACGTAATGCTGTTGTAATCCGTGCAACGTCAATTTGGCTTCATCG</u> GAACTCGTATCCAAAAGCACAGGTTCTGGTGGTCCATTGAAACTGTAGCTGTAGAGTATCGGCTGGATCATGATCAGCGACTGCGTG CTCGGATCCTCTTCTGGCCACTAGCATGCTGATATTGCGTGATGAACTGTATGCAGCCCCTTCCCCCTTGAGGTATGGGAGCGGAAT CATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAAGCCGTAAGAAGAGGCAAGAGGTATGAAACCTTACCTCA ATTCTGTTCAGTCAGCAACTGTGCCAAAGCCACACACCTTTGAACGGACTTCACAAAAATGACCACGTGATTAAATTTCGAGAACATCG GTTTTTCAATACTTCTTCATCGTTAGCAATAGGCATTCCTCCGAAAAAGACGCCCACCTTGACACTGGGCATATATTACTGAACCTCT CGTACTCTTTGCTGATTTGGAAAGCCAGTTCACGAGTGTGACACATCACCAAAACGTAAACAACATTGTCCGCTGGTTCCAATTGTTG TGGTACATGAACTGCGGGTAGAGGCTGAAGTTTTCGCCCAAGCGGAACGAATTCGGGTCGTCCTTGTTATATTCGCCGAATTTCTGG CACAGACGTATCAACATCCTATCGACCCATCTCAAAACATCAGGGCTATCGTCTGATTCCGCTCTGTAAACTGCCATCCTCGCCATTA TCACTGCGGCTGCCTCCTGATCGAATCCAGCACTGACATGATGTATATTAGCGGAAGCATCGGCCCAGTTTCTAGCAACTGTCGTTA TTCGGTGTCGGAAACCAAAGGATTCTTCACATTCAACGAAACACACAAGATCCAATACCGCCTTGAATTTTCAACTCCCTGGAACACTTG <u>GAATTGAACGAGTCGCCCATGACCATATGTCCCCCTGTTGAATTACAACACTGTTTCATCTCCATCAATCCTGTCTGATCCAAAGCGC</u> TTTGCTGCAGCCCTCGGTACCTAGTTCGTGCACTTGGACCATCTTCCCAAAGGTAATCAACCCTATCAAGGCATTCGGGGGGCAACAA <u> PAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGTGATAC</u> AAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACAGAG AGGTCTTCGCGCATAAGCATGTGCCTGTAGAAGGACGTTTCGTCGGGAGAATTGTTAAACACCTGCAGGAACTGTGACCTTCTCAAA <u> ACCCTCCAGAGTACCATTAAATGCCATCTTCAGCTCGTTTTTCTGATCTTTCGAAAATATGCGCTGGAACGTTTGCTTTGAACAGGGAA</u> AACGAATAGCATGACCCTGGCACCAGTATTGGCGTATGTGCACTCCAACAACCCAATGGCTATCGATAAAGCTGTCCGGTCGATCT <u> AAGGGCGCATITGCCITGGTGGACAGGCCATGGGTCTCTTTGCAACTCTCCAATAAGATCAGTGAGGTTCATGTCGCATTTCGAGAT</u> GCTCAAAGACATCTGCAACGAATCCTTGAGAAGGGCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATCACTAGTGCGGCCGC GTGTTTCAGGTTCTTGAGGACTAGCTTCCTAGACTTGACAAGCGCCAAAATACGCCCAGGCGTCCCCACAACAATGTGTGGACATTT TGAACTGTGTATGGATACGTAAGTACCCTTCACATCCTTCGGAAGGGC SEQIDNO: 243 LD010

	AATGCTAAGAAGTTAGAATATATGAGACACACTAAATAAA
	CTCTAGAGTATAATAATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATA
	ACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGTTAAAAAT
	GGAGAAAAAAATCACTGGATATACCACCGTTGATATACCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAG
	GTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAAAAA
	CACATTCTTGCCCGCCTGATGATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCAC
	CCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACAT
	ATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTCGTCTCAGCCAATC
	CCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATAC
	GCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATGTGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGA
_	ATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGGGGGG
	AAGTGCCACCTTATTCAACCATCAAGAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTT
	TTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCAT
	AATITTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATAT
	AAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGGATATC
	GACCACTITIGTACAAGAAAGCTGGTCGAATTCGCCCTTCTCTCAAGGATTCGTTGCAGATGTCTTTGAGCTTGTTGCCCCCGAATGCC
	TIGATAGGGTTGATTACCTTTGGGAAGATGGTCCAAGTGCACGAACTAGGTACCGAGGGCTGCAGCAAATCTTACGTTTTCCGAGGG
	ACGAAAGACCTCACAGCTAAGCAAGTTCAAGAGATGTTGGAAGTGGGCAGAGCCGCAGTAAGTGCTCAACCTGCTCCTCAACAACAA
	GGACAACCCATGAGGCCTGGAGCACTCCAGCAAGCTCCTACGCCACCAGGAAGCAGGTTCCTTCAACCCATCTCGAAATGCGACAT
	GAACCTCACTGATCTTATTGGAGAGTTGCAAAGAGACCCATGGCCTGTCCACCAAGGCAAATGCGCCCTTAGATCGACCGGGACAGC
	TITATCGATAGCCATTGGGTTGTTGGAGTGCACATACGCCAATACTGGTGCCAGGGTCATGCTATTCGTTGGAGGACCTTGCTCCAA
	GGCCCTGGTCAAGTCTTGAATGATGATCTGAAGCAACCTATCAGATCTCACCACGACATCCAAAAGACAATGCCAAATACATGAAGA
	AAGCAATCAAGCACTATGATAATTTAGCGATGAGAGCAGCAACGAATGGCCACTGCGTTGACATATATTCATGCGCTTTGGATCAGAC
	AGGATTGATGGAGATGAAACAGTGTTGTAATTCAACAGGGGGGCATATGGTCATGGGCGACTCGTTCAATTCTTCCCTGTTCAAGCAA
	ACGITCCAGCGCATATITTCGAAAAGATCAGAAAAAGGGGCTGAAGATGGCATTTAATGGTACTCTGGAGGGTCAAGTGTTCCAGGGA
	ACGG I CCAG I GGAAAA I G T G T A C G G T A C T A C C A T G C C T T C G A G G T C C A A C A C C A C C A T C C C C A T C C C C
	CTCAAGGGGGAAGGGGCTGCATACAGTTCATCACGCAATATCAGCATGCTAGTGGCCAGAAGAGGATCCGAGTAACGACAGTTGCT
	AGAAACTGGGCCGATGCTTCCGCTAATATACATCATGTCAGTGCTGGATTCGATCAGGAGGCCGCCGCAGTGATGGCGAGGATG
	GCAGTITACAGAGCGGAATCAGACGATAGCCCTGATGTTTTGAGATGGGTCGATAGGATGTTGATACGTCTGTGCCAGAAATTCGGC
	GAATATAACAAGGACGACCCGAATTCGTTCCGCTTGGGCGAAAACTTCAGCCTCTACCCGCAGTTCATGTACCATTTGAGAAGGTCA
	CAGTTCCTGCAGGTGTTTAACAATTCTCCCGACGAAACGTCCTTCTACAGGCACATGCTTATGCGCGAAGACCTCACGCAGTCGCTG
	ATCATGATCCAGCCGATACTCTACAGCTACAGTTTCCATGGACCACCAGAACCTGTGCTTTTGGATACGAGTTCCATCCA
LD011	SEQIDNO: 244
	GCCCTTGTGGAAGCAGCCGGCGTGGCGACAAATTCTAGATTGGGATCACCAATAAGCTTCCTAGCCTAGCCATAGGAAAGGCTTCT
	CAMAGE I GENERAL I I GOCAGAGA CALLACIA COMAGA I I COLO LA LOCAMAGACACAMI ACTITICACIO I I ACTITICACIO

TTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCG GAAGGGCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGG CAGGGGGGGGGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGAGTGCCACCTTATTCAACCATCAAG AACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGAT AAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGAGACAGAAAGCGTAAGAAGAGG GCCCTTCGCAGATCAAGCATATGATGGCTTTCATTGAACAAGAGGCAAAAGGCCAGAAGAAATCGATGCCAAGGCCGAGGAAG TATGTAACTCTGGAAGTTACATCAAACATGATAATAGCACACTGTCCCTGAATGTAATATCCATCACGGAGACCACCAAACTTCTCCTG TGCAGGCGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAAATGCTAAGAAGTTAGAATATATGAG CTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCA AAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTA CGAATTCGCCCTTCCCACTTTCAAGTGTGTGTTGGTCGGAGATGGAGGTACTGGAAAAACGACATTTGTGAAAACGTCATATGACTGGT AACAAGGTTGACATCAAAGACAGAAAAGTAAAAGCGAAAAGTATTGTCTTTCATAGGAAGAAGAATTTGCAGTACTATGATATCTCTGC IATCAGCTITITGAGAAAGATGTTACCATTCGAGTTCGGCCCCAGGACCGAGAACTGGTCAAATCCATCATTCCCACCGTCACGAACA GAGGAGGCGCGTAAACGACTTGGTCAGGTCACAACGACCAGGGAAAATATTCCCAAATCCTGGAAAGCCTCATTTTGCAGGGATTA **ACCGGCAGTGTCCCATACATTGAACCGAATAGGGCCCCTGTTTGTATGGAAGACCAGAGGATGGACTTCAACTCCCAAAGTAGCTAC** GACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGC CAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCGGACCACTTTGTACAAGAAAGCTGGGT <u> TATGGGACACTGCCGGTCAGGAGAAGTTTGGTGGTCTCCGTGATGGATATTACATTCAGGGACAGTGTGCTATTATCATGTTTGATGT</u> AACTTCCAGAGTTACATACAAGAATGTACCAAATTGGCACAGAGATCTTGTCAGAGGTCTGTGAAAATATCCCGGATAGTACTTTGCGGG AGTATAAAGATGCCACCGGTAAGGACATCCATCTGAAAATTGATGACGAAATCCATCTGTCCCAAGAAACCACCGGGGGGAATCGACC TGCTGGCGCAGAAAACAAAATCAAGATCAGCAATACTATGGAGGCTCGTCTGGAGCTGATTTCGCAGCAACTTCTGCCCGAGATCC GAATTTGAAAAAAGATATGTAGCTACTTTGGGAGTTGAAGTCCATCCTCTGGTCTTCCATACAAACAGGGGCCCTATTCGGTTCAATG CCAGAAAAAAATCCAATCGTCTAACATGTTGAATCAGGCTCGATTGAAAGTATTGAAGGTTAGGGAAGATCACGTTCGTACCGTACTA AACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTAC GGGAAGGCCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACC CTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGG AATTTAATATTGAAAAGGGGCGCCTTGTTCAGCAACAACGTCTCAAGATTATGGAATATTATGAGAAGAAAAGAGAAACAGGTCGAACT <u>CTTTGATGTCAACCTTGTTCCCGCAAAGTACTATCGGGGATATTTTCACAGACTCTGACAAGATCTCTGTGCCAATTTGGTACATTCTT</u> GGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTT CCCTGCTTCCACAAGGGC SEQIDNO: 245

CGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCCTTGTTACACCGTTTTCCATGAGCAAACTGA CTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTACCCACTAAGCGTGACCAGATAAACA TAACTCAGCACACAGAGCATATATATATGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAAGA ACCTCACGCAAAGCTTCTGCATACGAAGACATATCTGTCAAGATGACCAAGACGTGCTTCTCACATTGGTAAGCCAAGAATTCGGCAG AGAGAAAATGGGGGATCTTCTGACCACGAGCAATGGAGTTCATCACGTCAATAGCTGTAATACCCGTCTGGATCATTTCCTCAGGATAG TATACTTGTTCGTGACGGTGGGAATGATGGATTTGACCAGTTCTCGGTCCTGGGGCCGAACTCGAATGGTAACATCTTTCTCAAAAAG CTGGAGTTCGACCTGTTTCTTCTTCTTCATAATATTCCATAATCTTGAGACGTTGTTGCTGAACAAGGCGCCCCTTTTCAATATTAAA CATCAAGTACAGATTTACCAGGAATCTTGACTAAACCAGCCTGTCTACAGATCTGGGCAGCAATTTCATTGTGAGGCAGAGCTGC CGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGGGACAAGGTGCTGATGCCGCTGGC TTCTTCCTCGGCCTTGGCATCGATTTCTTCTTCTTTCGTTTCGTTTGTTCAATGAAAGCCATCATATGCTTGATCTGCGAAGGGC CCGGCACGTTCATAGATGGTAGCTAAATCGGTGTACATGTAAACCTGGGAAACCACGACGACCAGGCACCTCTTCTCTGGCAGCAGT CTGTCAAAGCCAGACGAGGTGTAATAATTCTTTCAATGGTAGGATCGTTGGCCAAATTCAAGGAACAGGCAGACATTCTCCATAGAACC CGATTCCTGATGTGCCCTCGAACACTTGAACCACAGCTTTTGACCCACTGACTTCCAGAACTTGTCCGGAACGTATAGTGCCATCAGC GATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTTGCTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATAT TACGGCCTTTTAAAGACCGTAAAGAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGATGCTCATC AACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAA AGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAA CGCCCTTCGGATCTCGGGCAGAAGTTGCTGCGAAATCAGCTCCAGACGAGCCTCCATAGTATTGCTGATCTTGATTTGTTTTCTGC GCCCTTGGAATAGGATGGGTAATGTCGTCGTTGGGCATAGTCAATATAGGAATCTGGGTGATGGATCCGTTACGTCCTTCAACACGG TTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAA GATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGG CGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGAGTGCCACCTTATTCAACCATCAAGAAAA GTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGGATATCGACCACTTTGTACAAGAAAGCTGGGTCGAATT CTGATATAATCCCTGCAAAATGAGGCTTTCCAGGATTTGGGAATATTTTCCCTGGTCGTTTGTGACCTGACCAAGTCGTTTACGCGCC GTTCTCTTCGAAATCCTGTTTGAAGAACCTAGCTGTTTCCATGTTAACACCCATAGCAGCGAAAACAATAGCAAAGTTATCTTCATGAT AACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAA atacgggaccacggattgattggttgaccctggatgtccaagaagtcttcagccaaaattgggggacctttgtcgatgggttttcct GATCCATTGAAAACACGTCCCAACATATCTTCAGAAACAGGAGTCCTCAAAATATCCCTGTGAATTCACAAGCGGTGTTTTTGGCGT GGCGAATTCACCAGCTTTCTTGTACAAAGTGGTATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGG CCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAAATGCTAAGAAGTTAGAATATATGAGACACGTTAA <u> CGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACG</u> TAACTGGTATATGAATAAGGTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATGAATTCGACAAT TCCTCTAGTACGGTACGAACGTGATCTTCCCTAACCTTCAATACTTTCAATCGAGCCTGATTCAACATGTTAGACGATTGGATTTTTTT SEQIDNO: 246 LD016

	CTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATATCGACAATTTG ACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATATA
	CAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGAT
	ATATCCCAATGGCATCGTAAAGAACATTTGAGGCATTTCAGTCAG
	GGCCTTTTTAAAGACCGTAAAGAAAAAAAAAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCGG
	AATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAAC
	GTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATTCGCAAGATGTGGCGTGTTACGGTGAAAAC
	CTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGT
	GGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGAT
	TCAGGTTCATCATGCCGTCTGTGATGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGG
	CAAAAIIIAIGCIACICIAAGGAAAACIICACIAAAGAAGAAGAAGAIGIIIIACCAAGAAIIICIGICAICIIACTAAACAACTA
_	AAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAA
	ATGAAACCTTACCTCATCATTCCATGAGGTTGCTTCTGATCCCGGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGC
	CGACGCCAAAAACACCGCTTGTGAATTCACAGGAGATATTTGAGGACTCCTGTTTCTGAAGATATGTTGGGGACGTGTTTTCAATGGA
	TCAGGAAAACCCATCGACAAAGGTCCCCCAATTTTGGCTGAAGACTTCTTGGACATCCAGGGTCAACCAATCAAT
	ATCTATCCTGAGGAATGATCCAGACGGGTATTACAGCTATTGACGTGATGAACTCCATTGCTCGTGGTCAGAAGATCCCCATTTTCT
	CIGCAGCIGGICIGCCICACAAIGAAAIIGCIGCCCAGAICIGIAGACAGGCIGGIIIAGICAAGAIICCIGGTAAATCTGTACTIGA
	TGATCATGAAGATAACTTTGCTATTGTTTTCGCTGCTATGGGTGTTAACATGGAAACAGCTAGGTTCTTCAAACAGGATTTCGAAGAGA
	ACGGTTCTATGGAGAATGTCTGCCTGTTCTTGAATTTGGCCAACGATCCTACCATTGAAAGAATTATTACACCTCGTCTGGCTTTGACA
	GCTGCCGAATTCTTGGCTTACCAATGTGAAAGCACGTCTTGGTCATCTTGACAGATATGTCTTCGTATGCAGAAGCTTTGCGTGAGG
	TATCTGCTGCCAGAGAAGAGGTGCCTGGTCGTCGTTTCCCAGGTTACATGTACACCGATTTAGCTACCATCTATGAACGTGCCG
1000	GCCG16116AGGGCG1AACGGA1CCA1CACCCAGA11CC1A1A11GAC1A1GCCCAACGACGACGACA11ACCCA1CC1A11CCAAGGGC
LD02/	SEQUENCY 2400
****	GGGAGCAGACGATCGGTTGGTTAAAATCTGGGACTATCACAGGCAAACGTGTCCAAAACCTTAGAAAGGACACGCCCAAAACGTAAC
	OSCOSOTITICARCO I GANOTACO I OTORIO I OSCOTO I CACAGO CATTIGATO I LA GALLA GALLA CONTRA CACAGO I TAGA TAGA TAGA TAGA TAGA TAGA TAGA TA
-	GAGGGCAGTATATTAGTGAAAGTTGGAAGAAGAACCGGCAGTTAGTATGGATGCCAGTGGCGGTAAAATAATTTGGGCAAGGCAC
	TCGGAATTACAACAAGCTAATTTGAAGGCGCTGCCAGAAGGTGGAGAATAAGAGATGGGGGGGCGTTTACCTGTCTCTGTAAAAGAT
	ATGGGAGCATGTGAAATATACCCTCAAACAATCCAACATAATCCGAATGGAAGATTCGTTGTAGTATGCGGAGACGGCGAATATATCA
	TTTACACAGCGATGGCTCTACGGAACAAGGCTTTTGGAAGCGCTCAAGAGTTTGTCTGGGCTCAGGACTCCAGCGAGTATGCCATTC
	GCGAGTCTGGTTCCACAATTCGGATATTCAAAAACTTCAAAGGAAGG
	GGGGTTTTCTCTTGGGGATTAAATCGGTGTCCGGTTTAACGTTTTACGATTGGGAAACTTTGGACTTGGTGAGACGGATTGAAATACA
	ACCGAGGGCGGTTTATTGGTCTGACAGTGGAAAATTAGTCTGTCT

GTTGTATTTCAATCCGTCTCACCAAGTCCAAAGTTTCCCAATCGTAAAACGTTAAACCGGACACCGATTTAATCCCCAAGAGAAACCC IGTCCGAACCCAGCTTTCTTGTACAAAGTGGTGATATCCCGCGGGATCAGAAGCAACCTCATGGAAATGATGAGGTAAGGTTTCATAC CTGCCACTCATCGCAGTACTGTTGTAATTCATTAAGCATTCTGCCGACATGGAAGCCATCACAGACGGCATGATGATGAACCTGAATCGCC CACCGTAACACGCCACATCTTGCGAATATATGTGTGTAGAAACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTC AGTITIGCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGGTCACCGTCTITCATTGCCATACGGAATTCCGGA TGAGCATTCATCAGGCGGCCAAGAATGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTTACGGTCTTTAAAAAGGCCGTAAT ATGGCCATAGGGGTTTAGATGCAACTGTTTCTTTGAACATTGTAGAAATATATAAAAGATTTTACATTAGCCTACTCTTGAAAGTCAAATT GTCGAATTTGATTATATATATCTCTAGAGGTGATATTAGTTAATGAGTTTATACTCGGTTATTACAGCTTATTCATATACCAGTTAACGT CAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATATACCACTTTGTACAAGAAAGGTGGTCGAATTCGCCCTTTCGG CTTTACAGAGACAGGTAAACGCTCCCCATCTCTTATTTCTCCACCTTCTGGCAGCGCCTTCAAATTAGCTTGTTGTAATTCCGAGTGC CCCCAGAGAAACATTATTCGAACCCTTCAAGCAACAAATGGTCCACACTCTCTGGAACCCATAATTCAAACAATTCTCTAATCTGTGTG CGGTGGTATATCCAGTGATTTTTTTTTTTTAGCTTCCTTAGCTCCTGAAAATCTCGCCGGATCAGCTTAGCGTTCATTGAATTTG TGCCCAAATTATTTACCGCCACTGGCATCCATACTACTGCCGGTTCTTCTTCTTCCAACTTTCACTAATATACTGCCCTCGTCATA GICTCATATATICTAACTICTTAGCATTTAACGIGITTIGCAGGICAGCTTGACACTGAACATAACAGCATCACTAGIGCGGCCGCCTG GATATATTCGCCGTCTCCGCATACTACAACGAATCTTCCATTCGGATTATGTTGGATTGTTTGAGGGTATATTTCACATGCTCCCATAT TTCTTGATGGTTGAATAAGGTGGCACTTGTTGGTATGAGACTTTATTGAGAGTCATATTAAGCTGATCCACGCGTTTACGCCCGGC I ATT CGTAT GCCAAACT CTAACGGT ACCAT CTT CGCT GC CGT GAG GCCACAGG TA GTT CAGG GT GGAAACAAAC CGCG GGTT ACGT GTTTAGTAAGATGACAGAAATTCTTGGTAAAACACTCTAAATCGTCTTCTTTAGTGAAGTTTTCCTTAGAGTAGCATAAATTTTGGCTTT ACAGACTCGTTCATTTCCCCCAACACATCGAAAGCGGCCTCTACGCCATCCTCTGCGACTTGATTGTTCTCCCTGGCCTTGAACT <u> AATGGCATACTCGCTGGAGTCCTGAGCCCAGACAACTCTTGAGCGCTTCCAAAAGCCTTGTTCCGTAGAGCCATCGCTGTGTAAAT</u> CGATGTGTTGGGGGAAATGAACGAGT TTATCTGGTCACGCTTAGTGGGTAAAATTATGCTTATTTTAGCATAAACTTTAATGAGATTAGGTTTTGTATCACACCGATCTTTAGT AAATCAAAACTGGTGAAACTCACCCAGGGATTGGCTGAGACGAAAAACATATTCTCAATAAACCCTTTAGGGAAATAGGCCAGGTT <u> CAAGTTCAGAAGGCCAGGGAGAACAATCAAGTCGCAGAGGATGGCGTAGAGGCCGCTTT</u>

O
•
å
0
9
୍ୟ
-

ì	
10 G	naiipiii Saquarica 5' → 3'
PC001	SEQ ID NO: 508
	AGATTCAAATTTGATGTCAAGAATTTTAGATGTAGCAATTTCCATTTGAATTGTGTCATTCACTTTGATGTTGGGGGTCAGGGTAACGA
	ATGGTTCTGCCATCATGTGTACCAAAAATGGGGATTCCTTTAACATCATAGATCAGAAAAAAAA
	TGAAACCAGCAGGGTAATTAGAATCAGTCCTCACTTTACCATCTTTGATTGA
	AAGGGCATACTTCAGCCTGTTACGAAGGAAAATCACTAAAGGCAGGGATTCGCGCAACTTGTGAGGCCCGGTGGATGGA
	GAAGACACCCCCCAATTTGTCCAACATCCATGCAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCC
	GCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAGTGTCAAGCTGAACTGCAAACAGGTT *********************************
	CTCTAGAGTATAATATAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAA
	CAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAAATGG
	AGAAAAAAAATCACTGGATATACCACCGTTGATATACCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAG
	CCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAAAAA
_	TTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGT
	TACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTCTCAGGAGTTTTCCGGCAGTTTTCGGAGTGAATACCAGATTCCTAAAACGAATACCTAAAAACAAAAAAAA
	GAGTITICACCAGTITITICATITIAAACGIGGCCAATAIGGACAACTICTICGCCCCCGITITICACCAIGGGCAAAIATAIACGCAAGGGCA
	CAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGT
	ACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTT
	ATTCAACCATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTC
	TGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAG
	CGTGACCAGATAAACATAACTCAGCACACCAGAGCATATATAT
	TAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTIGCTTCTGGCCCGCGGGATATCACCACTTGTAAAAAAAAAA
	GC1GGG1CGAA11CGCCC11GCA1GGA1G11GGACAAA11GGGGGGGG
	_
	CCGTCTGATCTATGATGTTAAAGGAAGATTTGCTGTGCACCGTATTACAGCTGAAGAGGCAAAATACAAGTTGTGTAAAAGTAAGGAGAG
	TCCAAACTGGTCCCAAAGGAATCCCATTTTTGGTAACACATGATGGCAGAACCATTCGTTACCCTGACCCAACATCAAAGTGAATGAA
PC010	
	CTCTCAAGGATTCTTTGCAGATGTCGCTCAGCCTATTACCGCCCAACGCGTTGATTGGATTGATCACGTTCGGAAAAATGGTGCAAGTC
	CACGAACTGGGTACCGAAGGCTGCAGCAAGTCGTACGTGTTCTGTGGAACGAAAGATCTCACCGCCAAGCAAG
	GGCAI I GGAAAAGGG I CACCAAA I CCCCAACAACAACAAGGCCGGCCAGGGCCAGGAA I CCCCAAGC I GCCC I GI ACCA

TTGGTCGAAGCCAGCGCTAATGTGGTGGTGGTTGGCAGTAGCGTCCGCCCAATTTCTAGCAATCGTGGTCACTCTGATCCTCCTTTTGCC ATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGG TCCTGTCCACCCATCTGAGCACGTCGGGAGTCTCGTCCGATTCCGCCTTGTAACCGGCCATTCGGGCCATCACAACTGCCGCCGCTTC GTTGTTGGACACAAGCTCTATTCAGCCGGATAGAATCCTGCTCATGGACACTTTCTTCCAGATACTCATTTTCCATGGAGAGACATTGC **GGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAGCCA** GCACACCAGAGCATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAAGCCGTAAGAAGAAGAGAGTATGAAA CATTGGGCAATGGTCTCTCCATGGAAAATGAGTATCTGGAAGAAAGTGTCCATGAGCAGGATTCTATCCGGCTGAATAGAGCTTGTGT CCTCTGGTTTCCGATACGGAACTAGGCATGGGGAATACTGTGCAGTGGAAACTTTGCACGTTGGCGCCGAGCTCTACTGTGGCGCTG CAATGGCGAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTC CATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCCTTGTTACACCGTTTTCCATGAGCAAAC <u>AAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAA</u> CAACAACACAGGCTCGGGCGGCCCGTTGAAGCTGTAACTGTACAAAATCGGCTGGATCATGATCAAAAGACTGAGTCAAAATCCTCACGC GTGGCAGAATCATGATATTCTTAGGAGGACCATGCTCTCAGGGTCCCGGCCAGGTGTTGAACGACGATTTGAAGCAGCCCATCAGGTC GCCATTGCATCGACATTTACTCCTGCGCCCTGGATCAGACGGGACTGATGGAGATGAAGCAGTGCTGCAATTCCACCGGAGGGCACAT CTGTATCCGCAGTTCATGTACCATTTGAGACGGTCGCAGTTTCTGCAGGTGTTCAATAATTCTCCTGATGAAACGTCGTTTTATAGGCAC <u> ATGCTGATGCGTGAGGATTTGACTCAGTCTTTGATCATGATCCAGCCGATTTTGTACAGTTTACAGCTTCAACGGGCCGCCCGAGCCTGT</u> GACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATAT TCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAAACCCTATGG TGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTG CSTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGGGACAAGGTGCTGATGCCGCTGGCG <u>ATCGGTGTGTACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCA</u> CTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTCGC ATCAGCATGTGCCTATAAAACGACGTTTCATCAGGAGAATTATTGAACACCTGCAGAAACTGCGACCGTCTCAAATGGTACATGAACTG CGGATACAGACTGAAGTTCTCCCCCAACCTGAACGAATTCGGATCGTCTTTATTGTACTCTCCGAACTTCTGGCACAGCCTGATCAACA CCATCATGACATACACAAAGACAATGCCAAGTACATGAAGAAGGCTATCAAACATTACGATCACTTGGCAATGCGAGCTGCCACCAACA TCTTCGAGGTGGTTAACCAGCATTCGGCGCCCATACCACAGGGAGGCAGGGGCTGCATCCAGCTCATCACCAGTATCAGCACGCG AAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAG AGCGGGCAAAGGAGGATCAGAGTGACCACGATTGCTAGAAATTGGGCCGGACGCTACTGCCAACATCCACCACATTAGCGCTGGCTTC <u> GGACAGGATGTTGATCAGGCTGTGCCAGAAGTTCGGAGAGTACAATAAAGACGATCCGAATTCGTTCAGGTTGGGGGGAAACTTCAGT</u> GTACATCAGGGCAAAAGACCTCTTAGATCCACAGGCGCAGCATTGTCCATCGCTGTCGGCCTCTTAGAATGCACCTATCCGAATACGG GACCAAGAAGCGGCGGCAGTTGTGATGGCCCGAATGGCCGGTTACAAGGCGGAATCGGACGAGGCTCCCGACGTGCTCAGATGGGT CGGGGGAGCAGATTCTTGCAGCCCGTGTCAAAATGCGACATGAACTTGACAGATCTGATCGGGGAGTTGCAGAAAGACCCTTGGCCC GATATTACGGCCTTTTAAAGACCGTAAAGAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGATGC1

TACGGGCCAAGGGTCTTTCTGCAACTCCCCGATCAGATCTGTCAAGTTCATGTCGCATTTTTGACACGGGCTGCAAGAATCTGCTCCCCG GACTTGCACCATTTTTCCGAACGTGATCAATCCAATCAACGCGTTGGGCGGTAATAGGCTGAGCGACATCTGCAAAGAATCCTTGAGAG CGCAGATCAAACATATGATGGCTTTCATTGAACAAGAAGCCAATGAGAAAGCAGAAAATCGATGCCAAGGCAGAGAGGAATTCAAC <u> AGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAA</u> GTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGGGGTAAACGCGTGGATCAGC <u>ATTGAAAAAGGGCGTTTAGTCCAGCAACAGAGACTCAAGATCATGGAGTACTACGAGAAAAGGAGAAAAGCAAGTCGAACTTCAAAAGAA</u> TGGCTGTTGGTGGCAGCTCGCATTGCCAAGTGATCGTAATGTTTGATAGCCTTCTTCATGTACTTGGCATTGTCTTTGTGTATGTCATGA GAGAAGGAGGTGACGGTCCGCGTGAGGACCGCAAGATAGGGACTTGGTTAGGTCCATCCTGCCAACGTCGCTGCCAAATACAAGGAC CGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACT CCGTAAAGAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCGGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAA TTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAGCCAAAAATTTATGCTACTCTAAGGAA <u> AGAACAGCGCCACAGTAGAGCTCGGCGCCAACGTGCAAAGTTTCCACTGCACAGTATTCCCCATGCCTAGTTCCGTATCGGAAACCAG</u> GACCATGTGCCCTCCGGTGGAATTGCAGCACTGCTTCATCTCCATCAGTCCCGTCTGATCCAGGGCGCAGGAGTAAATGTCGATGCAA AAGAACAAGATCAAGATCAGCAACACGATGGAGGCTAGGTTGGATCTGATCGCTCAGCAATTGGTGCCCGAGATCCGAAGGGGCGAATT AGTGATGCTGTTATGTTCAGTGTCAAGCTGAACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATAT TAGGCTAATGTAAAATCTTTATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAAACCCCTATGGCCATCAAATTCAATGAACGCTA CACCCGTATTCGGATAGGTGCATTCTAAGAGGCCGACAGCGATGGAGATGCTGCGCCTGTGGATCTAAGAGGTCTTTTGCCCTGATG GAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGG GGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACATCTTC AACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAA CGCTCGCGTGCTGATACTGGGTGATGAGCTGGATGCAGCCCCTGCCTCCCTGTGGGTATGGGCGCCGAATGCTGGTTAACCACCTCGA AGGGCTTTTAACGTTCAAGGACACGCACGAGCCGATGCCCCCTTGGACTTTTAACTCCCTGGAACACTTCACCTCCAAGGTGGCGTTG TGGGACCTGATGGGCTGCTTCAAATCGTCGTTCAACACCCTGGCCGGGACCCTGAGAGCATGGTCCTCCTAAGAATATCATGATTCTGC GTGGTACAGGGGCAGCTTGGGGGATTCTGCCCTGGCCGCCCAGGTTGCCCTGGCTGTTGTTGGGGATTTGGTGACCCTTTTCCAATGC GTAAAAGTCTTGGTGAAGTAACCAAAGACCAAGGAAAATACTCCCAAATTTTGGAGAGCCTAATCCTACAAGGACTGTTCCAGCTGTTC ATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGA GTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGAGTATGAAACCTTACCTCATCATTTCCATGA GGTTGCTTCTGATCCCGCGGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTCGGATCTCGGGCACCAATTGCTGA CCAACATCTCCTGGACTTGCTTGGCGGTGAGATCTTTCGTTCCACAGAACACGTACGACTTGCTGCAGCCTTCGGTACCCAGTTCGTG TTCGCCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCT **SEQ ID NO: 510** PC014

ACTTGACATCCTCAAGAATGACCAGTAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCA GTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTC GCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCATTACAACAGTACTGCG CTAACCAAGTCCCTATCTTGCGGTCTCACGCGGACCGTCACCTCCTTCTCGAACAGCTGGAACAGTCCTTGTAGGATTAGGCTCTCCAA ATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAAC CATCAAGAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATC GTGTACATGTAACCGGGGAAACCCCTACGGCCGGGCACTTCTTCTCGAGCGGCAGACACCTCACGCAACGCCTCCGCGTACGACGAC ATGTCGGTCAAGATGACCAGCACGTGCTTCTCGCACTGGTAGGCCAAGAATTCGGCGGCCGTCAGAGCCCAAACGCGGGCGTGATGATG CGCTCGATGGTCGGATCGTTGGCCAAGTTCAAGAACAGACACACGTTCTCCATCGAGCCGTTCTCTTCGAAGTCCTGCTTGAAGAACCI **AAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGA** ATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAA GAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGG CGATCTGGACAAGTTTTGGAAGTCAGTGGATCAAAGGCAGTTGTTCAGGTATTTGAAGGCACATCAGGTATTGATGCTAAGAACACGGT CGATAGAGITCATCACGICGATGGCCGIGATCCCAGICITGGATCATTICCICGGGATAAAIACGCGACCACGGGITGATCGGCTGTCT GTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGAT TCGAATTCGCCCTTACTGGTCATTCTTGAGGATGTCAAGTTTCCAAAATTCAATGAAATTGTCCAGCTCAAATTGGCAGATGGAACTCTA TTCAGCACCTTCAAACGAGCCTGATTCAACATATTAGAGGACTGAATTTTCTTTTGAAGTTCGACTTGCTTCTCCTTTTTCTCGTAGTAC TCCATGATCTTGAGTCTCTGTTGCTGGACTAAACGCCCTTTTTCAATGTTGAATTCCTCCTCTGCCTTGGCATCGATTTCTTCTGCTTTCT GGCAGTITCCATGITGACACCCATAGCAGCAAACACAATAGCAAAGTIGTCITCATGGTCATCCAGCACAGACTTGCCAGGTACTTTGA CCAAGCCAGCCTGCCTACAAATCTGGGCTGCAATCTCATTGTGGGGCAGCCCAGCGGGGGGAGAAGATCGGGAAATCTTCTGCCCTCTGG TTGGATGTCGAGGTAGTCCTCAGCCAGGATCGGGGGACCTTTATCAATGGGTTTTCCTGATCCATTGAAGACACGTCCCAGCATATCTT CTGATACTGGAGTTCTTAGAATATCTCCAGTGAACTCACACCGTGTTCTTAGCATCAATACCTGATGTGCCTTCAAATACCTGAACAA CTGCCTTTGATCCACTGACTTCCAAAACTTGTCCAGATCGTAGAGTTCCATCTGCCAATTTGAGCTGGACAATTTCATTGAATTTTGGAA CCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGC TTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGAC CAGATAAACATAACTCAGCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAA GGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCT CCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACC ACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGT CATTGGCTTCTTGTTCAATGAAAGCCATCATATGTTTGATCTGCG **SEQ ID NO: 511** PC016

TATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACACAAGTTTTATCCGGCCTTTATTCACATTG GGGCCAAGCACAGCGAAATGCAGCAAGCTAACTTGAAAGCACTACCAGAAGGAGCTGAAATCAGAGATGGAAACGTTTGCCAGTCAC TTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTAC <u> GETECTGATECCECTGECGATTCAGGTTCATCATECCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACT</u> CTACCAGTGCGAGAAGCACGTGCTGGTCATCTTGACCGACATGTCGTCGTACGCGGAGGCGTTGCGTGAGGTGTCTGCCGCTCGAGA <u>AGAAGTGCCCGGCCGTAGGGGTTTCCCCCGGTTACATGTACACCGATCTGGCCACCATTTACGAGCGCGCCGGTCGTGTGGAGGGCCG</u> CTATGGTGGTTTTCTCTTGGGTGTGAAATCAGTGTCTGGCTTAGCTTTCTATGACTGGGAAACGCTTGAGTTAGTAAGGCGCCATTGAAT <u> ACAGCCTAGAGCTATCTACTGGTCAGATAGTGGCAAGTTGGTATGCCTTGCTACCGAAGATAGCTATTTCATATTGTCCTATGACTCTGA</u> <u>TATTGCACATCTGGACCGTCCTCTATATGTCCTGGGCTATGTACCTAGAGATGACAGGTTATACTTGGTTGATAAAGAGTTAGGAGTAGT</u> CAGCTATCAATTGCTATTATCTGTACTCGAATATCAGACTGCAGTCATGCGACGAGGACTTCCCAACGGCTGATCGAGTATTGCCTTCAAT TCCAAAAGAACACCGCACTAGGGTGGCACAAAAGGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGC CTAGAGTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATTCTACAATGTTCAAAGAAACA GTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAAATGGAG ACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAA GATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTCGTCTCAGCCAATCCCTGGGTGAG TITCACCAGTITTGATITAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAA CAACCATCAAGAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTTTTACCAAGAATTTCTGT CATCTTACTAAAQAACTAAAGATGGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGGG TGTGTCTGTTCTTGAACTTGGCCAACGATCCGACCATCGAGCGCATCATCACGCCGCGTTTGGCTCTGACGGCCGCCGAATTCTTGGC GAATACATAATATACACGGCTATGGCCCTTCGTAACAAAGCATTTGGTAGCGCTCAAGAATTTGTATGGGCACAGGACTCCAGTGAATA CTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGGTTAA GCTATTGTGTTTGCTGCTATGGGTGTCAACATGGAAACTGCCAGGTTCTTCAAGCAGGACTTCGAAGAAGGGACGCTCGATGGAGAACG ATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGGAGTATAAACTCATTAACTAATATCACCT CCAGACTGGGATCACGGCCCATCGACGTGATGAACTCTATCGCCAGAGGCAGAGATTCCGATCTTCTCCGCCGCTGGGCTGCCCCA SAAGAGGCAAGAGTATGAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCT AAGGTCCCCGGATCCTGGCTGAGGACTACCTCGACATCCAAGGACAGCCGATCAACCCGTGGTCGCGTATTTATCCCGAGGAAATGA1 <u> GCGATGAGTGGCAGGGCGGGGCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGAGTGCCACCTTATT</u> CAATGAGATTGCAGCCCAGATTTGTAGGCAGGCTGGCTTGGTCAAAGTACCTGGCAAGTCTGTGCTGGATGACCATGAAGACAACTTT CAACGGCTCCATCACGCAGATCCCCATCTTGACTATGCCCAA **SEQ ID NO: 512** PC027

CTAGGTACATAGCCCAGGACATATAGAGGACGGTCCAGATGTGCAATAGTTACCAATTCACCACCACAAAGTAGTTGATACGGTTGAC TCCATCTTCGGCAACTTGGTTGTTATCTCTAGCTTTCTGGACTTGGTCAGAGTCATAGGACAATATGAAATAGCTATCTTCGGTAGCAAG <u> GCATACCAACTTGCCACTATCTGACCAGTAGATAGCTCTAGGCTGTATTTCAATGCGCCTTACTAACTCAAGCGTTTCCCAGTCATAGAA</u> GAAATTCTTGAAGATTCGAATGGTGGATCCGGATTCGCGGATGGCATATTCACTGGAGTCCTGTGCCCATACAAATTCTTGAGCGCTAC CAAATGCTTTGTTACGAAGGGCCATAGCCGTGTATATATGTATTCTCCATCACCACAAACCACTACAAACCGCCCATTGGGGTTGTGT SGATTGTTTGTGGGTAAATCTCGCATGCTCCCATGTCCTTTACTGTGACTGGCAAACGTTCTCCATCTCTGATTTCAGCTCCTTCTGGTA CATGACTGCAGTCTGATATTCGAGTACAGATAATAGCAATTGATAGCTGACTACTCCTAACTCTTTATCAACCAAGTATAACCTGTCATC1 <u> 111616CCACCCTAGTGCGGTGTTCTTTTGGAATTGAAGGCAATACTCGATCAGCCGTTGGGAAGTCTCGTCG</u> <u>AGCTAAGCCAGACACTGATTTCACACCCAAGAGAAAACCACCATAGATTCCTTCGGCACCAAAGTCGGACTTGAAATTCTTTTTTCTTT</u> GTGCTTTCAAGTTAGCTTGCTGCATTTCGCTGTGCTTGGCCC

Table 9-MP

Target ID	Hairpin Sequence
	5' → 3'
MP001	SEQ ID NO: 1066
	GTITAAACGCACCCAAAGCATGGATGTTGGACAAATCGGGGGGTGTCTTCGCTCCACGTCCAAGCACCGGTCCACACACA
	AATCACTACCGTTATTGATCTTGTTGCGTAATCGTTTGAAGTATGCACTTACTGGTGCCGAAGTCACCAAGATTGTCATGCAAGATTA
	ATCAAGGTTGATGGCAAAGTCCGTACCGACCCTAATTATCCAGCCGGTTTTATGGATGTTATATTCTATCCAAAAGACCAGTGAGCACT
	TTAGATTGATCTATGATGTGAAAGGTCGTTTCACCATCCACAGAATTACTCCTGAAGAAGCAAAATACAAATTGCAAAATTGATCTATAAAGTTGTGTAAAGTAAAAGAGG
	GTACAAACTGGACCCAAAGGTGTGCCATTTTTAACTACTCATGATGGCCGTACTATTCGCTACCCTGACCTAACATCAAGGTTAATG
	ACACTATTAGATACGATATTGCATCATCTAAAATTTTGGATCATATCCGTTTTTGAAACTGGAAACTTGTGCATGATAACTGGAGGTCGC
	AATTTAGGGCGTGTTGGTATTGAAGGGCGAATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGG
	TCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTA
	AGAAGTTAGAATATATGAGACACGTTAACTGGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGA
	GTATAATATAATCAAATTCGACAATTTGACTTTCAAGAGTAGGCTAATGTAAAATCTTTATATATA
	CATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAA
	AAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAG
	TAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAAAAA
	TTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGGTGATATGGGATAGTGTTCACCCTTGTT
	ACACCETTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGACGATTTCCGGCAGTTTCTACACATATATTCG
	CAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTCGTCTCAGCCAATCCTGGG
	TGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGC
	GACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGATGCTTAATGAATTACAA
	CAGTACTGCGATGAGTGGCAGGGCGGGGGGGTAAACGCGTGGATCAGCTTAATATATGACTCTCAATAAAGTCTCATACCAACAAGTGCC

	CCTTTTC**CC*TC********************
	GAATTICTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTAC
	CCACTAAGCGTGACCAGATAAACATCAGCACACCACAGAGCATATATAT
	AGAAAGCCGI AAGAAGCCAAGAGI AI GAAACCI I ACCI CAI I I CCAI GAGGI I GCI I CI GAI CCCGCGGGGAI AI CACCACI I I GAAAGCTGGGTCGAATTCGCCCTTCAATACCAACACGCCCTAAAATTGCGACCTCCAGTTATCATGCAAAAGTTGCAAAAGCTGGGAAATTCGCAATTCGCCTTCAATACCAACACGCCCTAAAATTGCGACCTCCAGTTATCATGCAAAAGTTGCAAAAAAAA
	AAAACGGATATGATCCAAAATTTTAGATGATGCAATATCGTATCTAATAGTGTCATTAACCTTGATGTTAGGGTCAGGGTAGCGAATAG
	TACGGCCATCATGAGTAGAAAAAATGGCACACCTTTGGGTCCAGTTTGTACCCTCTTTACTTTACACAACTTGTATTTTGCTTCTTCA
	GGAGIAAIICIGIGGAIGGIGAAACGACCIIICACAICAICAAICIAAAGIGCICACIGGICIIIIGGAIAGAIA
	GTAGTGCATACTTCAAACGATTACGCAAGAAGATCAATAACGGTAGTGATTCACGAAGTTTGTGTGGACCGGTGCTTGGACGTGGA
MP002	
	GCTGATTTAAGTGCATCTGCTGCAGTTTTCATGGTAGTCAATACTGCTGTATTTGTGTTGGCACCTTCTAATGCCTCCCGCTGTTGTTC
	AATAGTTAACATGGTACCATCAATTTGGGCTAATTGTTGTTCGTACCGTTTCTTACGCTTCAATGCTTGCAATGCAGCGCTCGTTTATTAGT
-	TGTACCATTITITIGGCTATCGCTACTTCTTGTTCAATTTTTTTTTT
	GCTTTGTATCGCATCTTCGGTTGATGGTCCCTTCTTCTTTTTGCCACCAAGGGCCAATTCGACCCAGCTTTCTTGTACAAAGTG
	GTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGTTTTTTTT
	CAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAATAATAAATCAAATTCAAATTTGACTTTTCAAGAAATAGGAATAAGCTGAAATAAAT
	ATABACTICALITATION
	TO A CONTROL OF THE PROPERTY O
	CAGGAGCI AAGGAAGCI AAAAI GGAGAAAAAAA CACI GGALAI ACCACCAI I GALAI A CACACAI GGAAAAAAAAAAAAAAAAAAAAAAAAA
	AGGCATTICAGTCAGTCACTTATCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGC
	CGATTICCGGCAGTITCTACACATATATICGCAAGATGTGGCGTGTACGGTGAAAACCTGGCCTATTICCCTAAAGGGTTTATTGAG
	AATATGTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCCCCGT
	TTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTT
	CCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAAACGCCGTGGATCAGCTTAATATGA
	CTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAAGCCAAAATTTATGCTACTCTAAGGAAAACTTCA
	CTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGATCGGTGTGATACAAAACCTAATCTCAT
	TAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTTCAGCACACCAGAGCATATATTTGGTGG
	TGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTGGTGGCAAAAAGGAAGAAGGGACC
	ATCAACCGAAGATGCGATACAAAAGCTTCGATCCACTGAAGAGATGCTGATAAAGAAAAAGAATTTTAGAAAAAAAA
	AAGTAGCGATAGCCAAAAAAAATGGTACAACTAATAAACGAGCTGCATTGCAAGCATTGAAGCGTAAGAAACGGTACGAACAATT
	AGCCCAAATTGATGGTACCATGTTAACTATTGAACAACAGCGGGAGGCATTAGAAGGTGCCAACACAAATACAGCAGTATTGACTACC
	ATGAAAACTGCAGCAGATGCACTTAAAATCAGC

MD010	SEO ID MO: 4069
	35 JO NO. 1000
	CAGACCCTGTTCAGAATATGATGCATGTTAGTGCTGCATTTGATCAAGAAGCATCTGCCGTTTTAATGGCTCGTATGGTAGTGAACCG
	TGCTGAAACTGAGGATAGTCCAGATGTGATGCGTTGGGCTGATCGTACGCTTATACGCTTGTGTCTAAAAATTTGGTGATTATCAAAAA
	GATGATCCAAATAGTTTCCGATTGCCAGAAAACTTCAGTTTATATCCACAGTTCATGTATCATTTAAGAAGGTCTCAATTTCTACAAGTT
	TTTAATAATAGTCCTGATGAAACATCATATTATAGGCACATGTTGATGCGTGAAGATGTTACCCAAAGTTTAATCATGATACAGCCAATT
_	ATTITICCATATITIGATATTCCATGGAGAGACTATTGCTCAATGGAGAGCAATGGATTATCAAAATAGACCAGAGTATAGTAACCTCA
	AGCAGTTGCTTCAAGCCCCCGTTGATGATGCTCAGGAAATTCTCAAAACTCGATTCCCAATGCAAGGGCGAATTCGACCCAGCTTTCT
	TGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGCACTAGTGATGCTGTT
	AAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATATCGACAATTTGACTTTCAAGAGTAGGCTAAT
	GTAAAATCTTTATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGAACGCTAAGCTGATC
	CGGCGAGATTITCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATCCCAATGGCATCGTAA
	AGAACATTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAA
	AGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAA
	GACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTG
	AATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGG
	GTITATIGAGAATATGTITITCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCT
	TCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATGCCGTCT
	GIGAIGECTICCATGICEGCAGAATECTTAATGAATTACAACAGTACTECGATGAGTGGCAGGGGGGGGGG
	GUITAATATGACTUTCAATAAAGTUTCAATAACAAGTGCCACCTTATTCAACCATCAAGAAAAAAAGGCCAAAATTTATGCTACTCTAAG
	GAAAACIICACIAAAGAAGACGAIIIAGAGIGIIIIACCAAGAAIIICIGICAICTIACTAAACAACTAAAGATCGGTGTGATACAAAA
	CCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCAGCACACCAGAGCATA
	TATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCAAGAGTATGAAACCTTACCTCATCAT
	TTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCTTGCATTGGGAATCGAG
	I I I I I I I I I I I I I I I I I I I
	CTCCATTGAGCAATAGTCTCTCCATGGAATATCAAAATATGGAAAAATGTGTCCATCAATAATATTTATCAGGTTGAATACTACTGGTA
	TCCAAAAGTACAGGTTCTGGCCTACCATTAAAACTATAGCTATACAGAATTGGCTGTATCATGATTAAAACTTTGGGTAACATCTTCACG
	1GGATATAAACTGAAGTTTTCTGGCAATCGGAAACTATTTGGATCATCTTTTTGATAATCACCAAATTTTTGACACAAGCGTATAAGCGT
	ACGATCAGCCCAACGCATCACATCTGGACTATCCTCAGTTTCAGCACGGTTCACTACCATACGAGCCATTAAAACGGCAGATGCTTCT
	TGATCAAATGCAGCACTAACATGCATCATATTCTGAACAGGGTCTG
MP016	SEQ ID NO: 1069
·	GTTTTCAATGGCAGTGGAAAGCCGATAGATAAAAGGACCTCCTATTTTGGCTGAAGATTATTTGGATATTGAAGGCCAACCTATTAATCC
	ATACTCCAGAACATATCCTCAAGAAATGATTCAAACTGGTATTTCAGCTATTGATGTGTGAACTCTATTGCTCGTGGACAAAAATTCC
	AATATTTCAGCTGCAGGTTTACCACATAATGAGATTGCTGCTCAAATTTGTAGACAAGCTGGTCTCGTTAAAAAACCTGGTAAAATCAG
	TTCTTGACGATCATGAAGACAATTTTGCTATAGTATTTGCTGCTATGGGTGTTAATATGGAAACAGCCAGATTCTTTAAACAAGATTTTG

	AGGAAAATGGTTCAATGGAGAATGTTTGTTTGTTTGAATTTAGCTAATGATCCTACTATTGAGCGTATCATTACACCACGAAGGGGCG
	AATTCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCC
	GCACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACT
	GGTATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATAATCAAATTCGACAATTTGAC
	TITCAAGAGTAGGCTAATGTAAAATCTITATATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCA
	ATGAACGCTAAGCTGATCCGGCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAAAAAAAA
	ATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAG
	GCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGATGCTCATCCGGA
	ATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACG
_	TTTICATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTTCGCAAGATGTGGCGTGTTACGGTGAAAACC
	TGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTG
	GCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATT
	CAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGG
	GCGTAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAGCC
	AAAATITATGCTACTCTAAGGAAAACTTCACTAAAGAAGACGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAA
	AGATCGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAAC
	TCAGCACACCAGAGCATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGCCGTAAGAAGAGGCCAAAGAGAGTAT
	GAAACCTTACCTCATCATTTCCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCC
	TTCGTGGTGTAATGATACGCTCAATAGTAGGATCATTAGCTAAATTCAAGAACAAACA
	CTTGTTTAAAGAATCTGGCTGTTTCCATATTAACACCCATAGCAGCAAATACTATAGCAAAATTGTCTTCATGATGGTCGTCAAGAACTGATT
•	TACCAGGITITITAACGAGACCAGCTTGTCTACAAATTTGAGCAGCAATCTCATTATGTGGTAAACCTGCAGCTGAAAATATTGGAATT
	TTTTGTCCACGAGCAATAGAGTTCATGATATCAATAGCTGAAATACCAGTTTGAATCATTTCTTGAGGATATGTTCTGGAGTATGGATT AATAGGTTGGATT
20001	STANDARD CONTRACTOR OF THE PROCESS O
MP027	SEQ ID NO: 1070
	CCAAAAATACCATCTGCTCCACCTTCTGGTTTAAAAGACTTTTTTTT
	TGGCATACTCAGAATCAGAAGACCATACAAAATCCTGAGCGGAGCCAAATGCTTTATTACGCAAAGCCATTGATGTATATATA
	TCTCCATCACCACATACTACAAAAATCTACCATTCGGATTATGAGATATTGACTGTGGATAAATTTCACAGCTACCCATGTCTTTAACT
	ISTATISE LA AAACET LE CECT LE LECT LE LECT LE LE CATE LE LA CATE LE CATE LE LA CATE LA CATE LE LA CATE LE LA CATE
	ISCCCAACCATTTTACCCCCATGACATCCATTGCTGGCTCTTCACGACCAATTATACCTTCCTT
	TAGAGCTACATTATTAGATCCCCGTAAGCAACAGATTGTCCATACACGTTCTAACCCATAGTTTAATGATGATTCTAATCGATAGGTAC
	CAGAATGCCAAATTCTGACGGTACCATCTTCTGAGCCAGTTAACACGGTGGGAAGTTCTGGATGGA
	TCGACCCAGCTTTCTTGTACAAAGTGGTGATATCACTAGTGCGGCCGCCTGCAGGTCGACCATATGGTCGACCTGCAGGCGGCCGC
	ACTAGTGATGCTGTTATGTTCAGTGTCAAGCTGACCTGCAAACACGTTAAATGCTAAGAAGTTAGAATATATGAGACACGTTAACTGGT
	ATATGAATAAGCTGTAAATAACCGAGTATAAACTCATTAACTAATATCACCTCTAGAGTATAATATCAAAATTCGACAATTTGACTTTC
	AAGAGTAGGCTAATGTAAAATCTTTATATTTCTACAATGTTCAAAGAAACAGTTGCATCTAAACCCCTATGGCCATCAAATTCAATGA
	ACGCTAAGCTGATCCGGCGAGATTTTCAGGAGGTAAGGAAGCTAAAATGGAGAAAAAAAA
	CATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGT

GCTCGTTTGTTTCCATCCAGAACTTCCCATCGTGTTAACTGGCTCAGAAGATGGTACCGTCAGAATTTGGCATTCTGGTACTTATCGAT TAAACGCGTGGATCAGCTTAATATGACTCTCAATAAAGTCTCATACCAACAAGTGCCACCTTATTCAACCATCAAGAAAAAGCCAAAA TAGAATCATCATTAAACTATGGGTTAGAACGTGTATGGACAATCTGTTGCTTACGGGGGTCTAATAATGTAGCTCTAGGTTATGATGAA CCTATITCCCTAAAGGGITTATIGAGAATATGTITITCGTCTCAGCCAATCCCTGGGTGAGITITCACCAGTITTAAAACGTGGCC AATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAG TTTATGCTACTCTAAGGAAAACTTCACTAAAGAAGAGGCGATTTAGAGTGTTTTACCAAGAATTTCTGTCATCTTACTAAACAACTAAAGAT GCACACCAGAGCATATATATTGGTGGCTCAAATCATAGAAACTTACAGTGAAGACACAGAAAGGCCGTAAGAAGAGGCAAGAGTATGA GAAATTCAACAAGCTAACCTTAAAGCGATGCTTCAAGCAGAAGGAGCCGAAATCAAAGATGGTGAACGTTTACCAATACAAGGTTAAAG ATATATACATCAATGGCTTTGCGTAATAAAGCATTTGGCTCCGCTCAGGATTTTGTATGGTCTTCTGATTCTGAGTATGCCATTAGAGA CATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGG CGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTT CGGTGTGATACAAAACCTAATCTCATTAAAGTTTATGCTAAAATAAGCATAATTTTACCCACTAAGCGTGACCAGATAAACATAACTCA AACCTTACCTCATCATTICCATGAGGTTGCTTCTGATCCCGCGGGATATCACCACTTTGTACAAGAAAGCTGGGTCGAATTCGCCCT <u> GGAAGTATAATGGTTAAAGTTGGTCGTGAAGAGCCAGCAATGTCAATGGATGTTCATGGGGGTAAAATTGTTTGGGCACGTCATAGT</u> <u>ITTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAATGCTCATCGGAATT</u> <u>AAATTCTTCTACAATCAAAGTTTTTAAAAAATTTTAAAGAAAAAAAGTCTTTTAAACCAGAAGGTGGAGCAGATGGTATTTTFGG</u>

Tables 10-NL (a)

	Mean % survival (days post start)									Survival
RNAi	0	1	2	3	4	5	6	7	8	analysis ¹
gfp	100	98	90	82	68	60	44	32	20	-
diet only	100	98	96	86	74	68	58	54	38	-
NL002	100	98	90	76	68	34	6	0	0	+
NL003	100	98	74	48	36	22	12	2	0	+
NL005	100	100	74	56	40	20	16	6	4	+
NL010	100	96	74	56	48	30	18	12	8	+

⁼ Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. 2
diet versus:			
NL002	29.06	<0.0001	Yes
NL003	39.59	<0.0001	Yes
NL005	29.55	<0.0001	Yes
NL010	21.04	<0.0001	Yes
gfp dsRNA versus:			
NL002	15.09	0.0001	Yes
NL003	22.87	<0.0001	Yes
NL005	15.12	<0.0001	Yes
NL010	8.838	0.0029	Yes
diet versus gfp dsRNA	4.030	0.0447 (~0.05)	No

²alpha < 0.05

Tables 10-NL (b)

	Mean % survival (days post start)									Survival
RNAi	0	1	2	3	4	5	6	7	8	analysis ¹
gfp	100	96	84	82	76	70	54	50	44	-
diet only	100	96	88	82	76	70	54	50	44	-
NL009	100	94	75	63	42	30	24	22	14	+
NL016	100	94	84	78	54	44	36	18	14	+

⁼ Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. 2
diet versus:			
NL009	11.98	0.0005	Yes
NL016	8.98	0.0027	Yes
gfp dsRNA versus:			
NL009	13.69	0.0002	Yes
NL016	11.37	0.0007	Yes
diet versus gfp dsRNA	0.03317	0.8555	No

²alpha < 0.05

Tables 10-NL (c)

	Mean % survival (days post start)									Survival
RNAi	0	1	2	3	4	5	6	7	8	analysis ¹
gfp	100	92	84	78	72	62	58	56	48	-
diet only	100	84	72	68	64	58	52	42	42	-
NL014	100	86	68	60	46	32	24	18	14	+
NL018	100	82	70	54	40	30	18	14	12	+

⁼ Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. 2
diet versus:			
NL014	8.088	0.0045	Yes
NL018	10.47	0.0012	Yes
gfp dsRNA versus:			
NL014	14.55	0.0001	Yes
NL018	17.64	<0.0001	Yes
diet versus gfp dsRNA	0.6548	0.4184	No

²alpha < 0.05.

Tables 10-NL (d)

	Mean % survival (days post start)							Survival			
RNAi	0	1	2	3	4	5	6	7	8	9	analysis ¹
gfp	100	96	84	84	72	68	68	66	66	62	-
diet only	100	96	86	82	74	72	70	70	66	58	-
NL013	100	94	82	68	50	40	30	28	20	20	+
NL015	100	100	72	30	18	12	8	6	6	6	+
NL021	100	100	84	58	50	44	40	34	34	22	+

⁼ Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. 2
diet versus:			
NL013	15.73	<0.0001	Yes
NL015	39.44	<0.0001	Yes
NL021	12.75	0,0004	Yes
gfp dsRNA versus:			
NL013	16.42	<0.0001	Yes
NL015	39.15	<0.0001	Yes
NL021	14.1	0,0002	Yes
diet versus gfp dsRNA	0.1031	0,7481	No

²alpha < 0.05

Table 11-NL

	Mean % survival (days post start)								Survival
NL002 RNAi	0	1	2	3	4	5	6	7	analysis ¹
diet only	100	100	96	90	86	78	78	78	<u> </u>
1 μg/μί	100	84	80	44	26	8	6	6	. +
0.2 μg/μl	100	84	60	12	8	4	2	2	+
0.08 µg/µl	100	84	62	18	14	6	6	6	+
0.04 µg/µl	100	84	48	24	22	22	22	22	+

^{1 =} Data were analysed using Kaplan-Meier survival curve analysis

	Chi squared	P value	Sig. Dif. 2
diet versus:			
NL002 1 μg/μl	57.53	<0.0001	Yes
NL002 0.2 µg/µl	74.54	<0.0001	Yes
NL002 0.08 µg/µl	64	<0.0001	Yes
NL002 0.04 µg/µl	39.49	<0.0001	Yes

²alpha < 0.05

WO 2007/080126

Claims

5

10

15

20

25

30

35

1. An isolated nucleotide sequence comprising a nucleic acid sequence selected from the group comprising:

267

(i) sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof,

(ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, 1066 to 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476, 2481 or 2486, or the complement thereof.

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, 275 to 472, 533 to 575, 621 to 767, 813 to 862, 908 to 1040, 1161 to 1571, 1730 to 2039, 2120 to 2338, 2384 to 2460, or a complement thereof.

- 10 2. A double stranded ribonucleotide sequence produced from the expression of a polynucleotide sequence of claims 1, wherein ingestion of said ribonucleotide sequence by a plant insect pest inhibits the growth of said insect pest.
 - 3. The ribonucleotide sequence of claim 2, wherein ingestion of said sequence inhibits expression of a nucleotide sequence substantially complementary to said sequence.
- 4. A cell transformed with a polynucleotide comprising a nucleic acid sequence as defined in claim 1, optionally operably linked to a regulatory sequence.
 - 5. The cell of claim 4, wherein said cell is a plant cell.

5

30

35

- 6. A plant transformed with a polynucleotide having a nucleic acid sequence as defined in claim 1, said nucleic acid sequence optionally operably linked to a regulatory sequence.
- 20 7. The plant of claim 6, wherein said sequence inhibits a pest biological activity.
 - The plant of claim 6, wherein said sequence inhibits expression of a target sequence.
 - 9. The plant of claim 8 wherein said target sequence is an insect, nematode or fungal sequence.
 - The plant of any of claims 6 to 9, wherein said plant is cytoplasmic male sterile.
- 25 11. The plant of any of claims 6 to 10, wherein said plant further comprises or expresses a pesticidal agent selected from the group consisting of a patatin, a *Bacillus thuringiensis* insecticidal protein, a *Xenorhabdus* insecticidal protein, a *Photorhabdus* insecticidal protein, a *Bacillus laterosporous* insecticidal protein, and a *Bacillus sphearicus* insecticidal protein.
 - 12. The plant of claim 11 wherein said *Bacillus thuringiensis* insecticidal protein is selected from the group consisting of a Cry1, a Cry3, a TIC851, a CryET170, a Cry22, a binary insecticidal protein CryET33 and CryET34, a binary insecticidal protein CryET80 and CryET76, a binary insecticidal protein TIC100 and TIC101, and a binary insecticidal protein PS149B1.
 - 13. The plant of any of claims 6 to 12, wherein said plant is chosen from the group comprising alfalfa, apple, apricot, artichoke, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussel sprouts, cabbage, canola, carrot, cassava, cauliflower, a cereal, celery,

10

15

20

25

30

35

cherry, citrus, clemintine, coffee, corn, cotton, cucumber, eggplant, endive, eucalyptus, figes, grape, grapefruit, groundnuts, ground cherry, kiwifruit, lettuce, leek, lemon, lime, pine, maize, mango, melon, millet, mushroom, nut aot, okra, onion, orange, an ornamental plant or flower or tree, papaya,, parsley, pea, peach, peanut, peat, pepper, persimmon, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, soy, soybean, spinach, strawberry, sugarbeet, sugargcane, sunflower, sweet poatao, tangerine, tea, tobacco, tomato, a vine, waetermelon, wheat, yams and zucchini.

The plant of anny of claims 6 to 13, wherein said plant is resistant against infestation by an insect chosen from the group comprising Leptinotarsa spp. (e.g. L. decemlineata (Colorado potato beetle), L. juncta (false potato beetle), or L. texana (Texan false potato beetle)); Lema spp. (e.g. L. trilineata (three-lined potato beetle)); Epitrix spp. (e.g. E. cucumeris (potato flea beetle), E. hirtipennis (flea beetle), or E. tuberis (tuber flea beetle)); Epicauta spp. (e.g. E. vittata (striped blister beetle)); Epilachna spp. (e.g. E. varivetis (mexican bean beetle)); Phaedon spp. (e.g. P. cochleariae (mustard leaf beetle)); Nilaparvata spp. (e.g. N. lugens (brown planthopper)); Laodelphax spp. (e.g. L. striatellus (small brown planthopper)); Nephotettix spp. (e.g. N. virescens or N. cincticeps (green leafhopper), or N. nigropictus (rice leafhopper)); Sogatella spp. (e.g. S. furcifera (white-backed planthopper)); Acheta spp. (e.g. A. domesticus (house cricket)); Blissus spp. (e.g. B. leucopterus leucopterus (chinch bug)); Scotinophora spp. (e.g. S. vermidulate (rice blackbug)); Acrosternum spp. (e.g. A. hilare (green stink bug)); Parnara spp. (e.g. P. guttata (rice skipper)); Chilo spp. (e.g. C. suppressalis (rice striped stem borer), C. auricilius (gold-fringed stem borer), or C. polychrysus (dark-headed stem borer)); Chilotraea spp. (e.g. C. polychrysa (rice stalk borer)); Sesamia spp. (e.g. S. inferens (pink rice borer)); Tryporyza spp. (e.g. T. innotata (white rice borer), or T. incertulas (yellow rice borer)); Cnaphalocrocis spp. (e.g. C. medinalis (rice leafroller)); Agromyza spp. (e.g. A. oryzae (leafminer), or A. parvicornis (corn blot leafminer)); Diatraea spp. (e.g. D. saccharalis (sugarcane borer), or D. grandiosella (southwestern corn borer)); Narnaga spp. (e.g. N. aenescens (green rice caterpillar)); Xanthodes spp. (e.g. X. transversa (green caterpillar)); Spodoptera spp. (e.g. S. frugiperda (fall armyworm), S. exigua (beet armyworm), S. littoralis (climbing cutworm), or S. praefica (western yellowstriped armyworm)); Mythimna spp. (e.g. Mythmna (Pseudaletia) seperata (armyworm)); Helicoverpa spp. (e.g. H. zea (corn earworm)); Colaspis spp. (e.g. C. brunnea (grape colaspis)); Lissorhoptrus spp. (e.g. L. oryzophilus (rice water weevil)); Echinocnemus spp. (e.g. E. squamos (rice plant weevil)); Diclodispa spp. (e.g. D. armigera (rice hispa)); Oulema spp. (e.g. O. oryzae (leaf beetle); Sitophilus spp. (e.g. S. oryzae (rice weevil)); Pachydiplosis spp. (e.g. P. oryzae (rice gall midge)); Hydrellia spp. (e.g. H. griseola (small rice leafminer), or H. sasakii (rice stem maggot)); Chlorops spp. (e.g. C. oryzae (stem maggot)); Diabrotica spp. (e.g. D. virgifera virgifera (western corn rootworm), D. barberi (northern corn rootworm), D. undecimpunctata howardi (southern corn rootworm), D. virgifera zeae (Mexican corn rootworm); D. balteata (banded cucumber beetle)); Ostrinia spp. (e.g. O. nubilalis (European corn borer)); Agrotis spp. (e.g. A.ipsilon (black cutworm)); Elasmopalpus spp. (e.g. E. lignosellus (lesser cornstalk borer)); Melanotus spp. (wireworms); Cyclocephala spp.

15

20

25

30

35

40

(e.g. C. borealis (northern masked chafer), or C. immaculata (southern masked chafer)); Popillia spp. (e.g. P. japonica (Japanese beetle)); Chaetocnema spp. (e.g. C. pulicaria (corn flea beetle)); Sphenophorus spp. (e.g. S. maidis (maize billbug)); Rhopalosiphum spp. (e.g. R. maidis (corn leaf aphid)); Anuraphis spp. (e.g. A. maidiradicis (corn root aphid)); Melanoplus spp. (e.g. M. femurubrum (redlegged grasshopper) M. differentialis (differential grasshopper) or M. sanguinipes (migratory grasshopper)); Hylemya spp. (e.g. H. platura (seedcorn maggot)); Anaphothrips spp. (e.g. A. obscrurus (grass thrips)); Solenopsis spp. (e.g. S. milesta (thief ant)); or spp. (e.g. T. urticae (twospotted spider mite), T. cinnabarinus (carmine spider mite); Helicoverpa spp. (e.g. H. zea (cotton bollworm), or H. armigera (American bollworm)); Pectinophora spp. (e.g. P. gossypiella (pink bollworm)); Earias spp. (e.g. E. vittella (spotted bollworm)); Heliothis spp. (e.g. H. virescens (tobacco budworm)); Anthonomus spp. (e.g. A. grandis (boll weevil)); Pseudatomoscelis spp. (e.g. P. seriatus (cotton fleahopper)); Trialeurodes spp. (e.g. T. abutiloneus (banded-winged whitefly) T. vaporariorum (greenhouse whitefly)); Bemisia spp. (e.g. B. argentifolii (silverleaf whitefly)); Aphis spp. (e.g. A. gossypii (cotton aphid)); Lygus spp. (e.g. L. lineolaris (tarnished plant bug) or L. hesperus (western tarnished plant bug)); Euschistus spp. (e.g. E. conspersus (consperse stink bug)); Chlorochroa spp. (e.g. C. sayi (Say stinkbug)); Nezara spp. (e.g. N. viridula (southern green stinkbug)); Thrips spp. (e.g. T. tabaci (onion thrips)); Frankliniella spp. (e.g. F. fusca (tobacco thrips), or F. occidentalis (western flower thrips)); Empoasca spp. (e.g. E. fabae (potato leafhopper)); Myzus spp. (e.g. M. persicae (green peach aphid)); Paratrioza spp. (e.g. P. cockerelli (psyllid)); Conoderus spp. (e.g. C. falli (southern potato wireworm), or C. vespertinus (tobacco wireworm)); Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); Macrosiphum spp. (e.g. M. euphorbiae (potato aphid)); Thyanta spp. (e.g. T. pallidovirens (redshouldered stinkbug)); Phthorimaea spp. (e.g. P. operculella (potato tuberworm)); Helicoverpa spp. (e.g. H. zea (tomato fruitworm); Keiferia spp. (e.g. K. lycopersicella (tomato pinworm)); Limonius spp. (wireworms); Manduca spp. (e.g. M. sexta (tobacco hornworm), or M. quinquemaculata (tomato hornworm)); Liriomyza spp. (e.g. L. sativae, L. trifolli or L. huidobrensis (leafminer));. Drosophilla spp. (e.g. D. melanogaster, D. yakuba, D. pseudoobscura or D. simulans); Carabus spp. (e.g. C. granulatus); Chironomus spp. (e.g. C. tentanus); Ctenocephalides spp. (e.g. C. felis (cat flea)); Diaprepes spp. (e.g. D. abbreviatus (root weevil)); Ips spp. (e.g. I. pini (pine engraver)); Tribolium spp. (e.g. T. castaneum (red floor beetle)); Glossina spp. (e.g. G. morsitans (tsetse fly)); Anopheles spp. (e.g. A. gambiae (malaria mosquito)); Helicoverpa spp. (e.g. H. armigera (African Bollworm)); Acyrthosiphon spp. (e.g. A. pisum (pea aphid)); Apis spp. (e.g. A. melifera (honey bee)); Homalodisca spp. (e.g. H. coagulate (glassy-winged sharpshooter)); Aedes spp. (e.g. Ae. aegypti (yellow fever mosquito)); Bombyx spp. (e.g. B. mori (silkworm)); Locusta spp. (e.g. L. migratoria (migratory locust)); Boophilus spp. (e.g. B. microplus (cattle tick)); Acanthoscurria spp. (e.g. A. gomesiana (red-haired chololate bird eater)); Diploptera spp. (e.g. D. punctata (pacific beetle cockroach)); Heliconius spp. (e.g. H. erato (red passion flower butterfly) or H. melpomene (postman butterfly)); Curculio spp. (e.g. C. glandium (acorn weevil)); Plutella spp. (e.g. P. xylostella (diamontback moth)); Amblyomma spp. (e.g. A. variegatum (cattle tick)); Anteraea spp. (e.g. A. yamamai (silkmoth)); and Armigeres spp. (e.g. A. subalbatus).

- 15. A seed or reproductive or propagation material for a plant of any of claims 6 to 14, wherein said seed or reproductive or propagation material comprises a polynucleotide having a nucleic acid sequence as defined in claim 1 or wherein said seed comprises a double stranded ribonucleotide sequence produced from the expression of said polynucleotide.
- 5 16. A product produced from the plant of any of claims 6 to 14, or the seed or reproductive or propagation material of claim 15, wherein said product comprises a polynucleotide having a nucleic acid sequence as defined in claim 1 or wherein said seed comprises a double stranded ribonucleotide sequence produced from the expression of said polynucleotide.
- 17. The product of claim 16, wherein said product is selected from the group consisting of food, feed, fiber, paper, meal, protein, starch, flour, silage, coffee, tea, and oil.
 - 18. A pesticide comprising a plant of any of claims 6 to 14, the seed or reproductive or propagation material of claim 15 or the product of claim 16 or 17, said plant, seed, reproductive or propagation material, or product expressing a nucleic acid sequence as defined in claim 1.
- 19. A method for controlling or preventing insect growth comprising providing an insect pest with plant material derived from the plant of any of claims 6 to 14, the seed or reproductive or propagation material of claim 15 or the product of claim 16 or 17, wherein said plant, seed, reproductive or propagation material, or product comprises a polynucleotide sequence that inhibits an insect biological activity.
- 20. The method of claim 19, wherein said polynucleotide comprises a nucleic acid sequence 20 as defined in claim 1.
 - 21. A method for producing a plant resistant against a plant pathogenic organism comprising:
 - transforming a plant cell with a polynucleotide having a nucleic acid sequence as
 defined in claim 1, said nucleic acid sequence optionally operably linked to a regulatory
 sequence,
- 25 regenerating a plant from the transformed plant cell; and
 - growing the transformed plant under conditions suitable for the expression of an RNA molecule from said polynucleotide, said grown transformed plant resistant to said plant pathogenic organism compared to an untransformed plant.
 - 22. A method for improving yield, comprising:
- transforming a plant cell with a polynucleotide having a nucleic acid sequence as defined in claim 1, said nucleic acid sequence optionally operably linked to a regulatory sequence.
 - regenerating a plant from the transformed plant cell; and
- growing the transformed plant under conditions suitable for the expression of an RNA molecule from said polynucleotide, said expression inhibiting feeding by a plant pathogenic organism and loss of yield due to pest infestation.

- 23. The method according to any of claims 19 to 22, wherein polynucleotide expression produces an RNA molecule that suppresses a target gene in an insect pest that has ingested a portion of said crop plant, wherein said target gene performs at least one essential function selected from the group consisting of feeding by the pest, viability of the pest, pest cell apoptosis, differentiation and development of the pest or any pest cell, sexual reproduction by the pest, muscle formation, muscle twitching, muscle contraction, juvenile hormone formation and/or reduction, juvenile hormone regulation, ion regulation and transport, maintenance of cell membrane potential, amino acid biosynthesis, amino acid degradation, sperm formation, pheromone synthesis, pheromone sensing, antennae formation, wing formation, leg formation, egg formation, larval maturation, digestive enzyme formation, haemolymph synthesis, haemolymph maintenance, neurotransmission, larval stage transition, pupation, emergence from pupation, cell division, energy metabolism, respiration, cytoskeletal structure synthesis and maintenance, nucleotide metabolism, nitrogen metabolism, water use, water retention, and sensory perception
- 24. The method according to any of claims 19 to 22 wherein:
 - the nucleic acid sequence is chosen from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160 to 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246, or 2486, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160 to 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246, or 2486, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160 to 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246, or 2486, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, or the complement thereof,

and

5

10

15

20

25

30

35

- the insect is chosen from the group comprising *Leptinotarsa* spp. (e.g. *L. decemlineata* (Colorado potato beetle), *L. juncta* (false potato beetle), and *L. texana* (Texan false potato beetle)).
- 25. The method according to any of claims 19 to 22 wherein:
 - the nucleic acid sequence is chosen from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of

SEQ ID NOs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512, or the complement thereof, and

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 275 to 472, or the complement thereof,

and

5

10

15

20

25

35

- the insect is chosen from the group comprising *Phaedon* spp. (e.g. *P. cochleariae* (mustard leaf beetle)).
- 26. The method according to any of claims 19 to 22 wherein:
 - the nucleic acid sequence is chosen from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596, or the complement thereof, and
 - (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 533 to 575, or the complement thereof,

and

- the insect is chosen from the group comprising *Epilachna* spp. (e.g. *E. varivetis* (mexican bean beetle)).
- 27. The method according to any of claims 19 to 22 wherein:
 - the nucleic acid sequence is chosen from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788, or the complement thereof,
 - (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788, or the complement thereof, and
 - (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 621 to 767, or the complement thereof,

and

5

10

25

30

35

- the insect is chosen from the group comprising *Anthonomus* spp. (e.g. *A. grandis* (boll weevil)).
- 28. The method according to any of claims 19 to 22 wherein:
 - the nucleic acid sequence is chosen from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883, or the complement thereof,
- or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 813 to 862, or the complement thereof,

and

- the insect is chosen from the group comprising *Tribolium* spp. (e.g. *T. castaneum* (red floor beetle)).
- 20 29. The method according to any of claims 19 to 22 wherein:
 - the nucleic acid sequence is chosen from the group comprising:
 - (i) sequences represented by any of SEQ ID NOs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1070, or the complement thereof,
 - (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1070, or the complement thereof, and
 - (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1070, or the complement thereof,
 - or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 908 to 1040, or the complement thereof,

and

- the insect is chosen from the group comprising *Myzus* spp. (e.g. *M. persicae* (green peach aphid)).
- 30. The method according to any of claims 19 to 22 wherein:
 - the nucleic acid sequence is chosen from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111,

10

15

20

25

30

- 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677, or the complement thereof,
- or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1161 to 1571, or the complement thereof,

and

- the insect is chosen from the group comprising *Nilaparvata* spp. (e.g. *N. lugens* (brown planthopper)).
- 31. The method according to any of claims 19 to 22 wherein:
- the nucleic acid sequence is chosen from the group comprising:
 - (i) sequences represented by any of SEQ ID NOs 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095, or the complement thereof,
 - (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095, or the complement thereof, and
 - (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095, or the complement thereof,
 - or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1730 to 2039, or the complement thereof,

35 and

- the insect is chosen from the group comprising *Chilo* spp. (e.g. *C. suppressalis* (rice striped stem borer), *C. auricilius* (gold-fringed stem borer), or *C. polychrysus* (darkheaded stem borer)).
- 32. The method according to any of claims 19 to 22 wherein:

WO 2007/080126 PCT/EP2007/000286

- the nucleic acid sequence is chosen from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354 or 2359, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354 or 2359, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354 or 2359, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 2120 to 2338, or the complement thereof,

and

5

10

15

20

25

30

35

- the insect is chosen from the group comprising *Plutella* spp. (e.g. *P. xylostella* (diamontback moth)).
- 33. The method according to any of claims 19 to 22 wherein:
 - the nucleic acid sequence is chosen from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and
 - (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 2384 to 2460, or the complement thereof,

and

- the insect is chosen from the group comprising *Acheta* spp. (e.g. *A. domesticus* (house cricket)).
- 34. A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a nucleic acid sequence selected from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246, or 2486, or the complement thereof,
 - (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of

10

15

20

25

- SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246, or 2486, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246, or 2486, or the complement thereof,
- or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 49 to 158, or the complement thereof.
- 35. A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a nucleic acid sequence selected from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512, or the complement thereof,
- or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 275 to 472, or the complement thereof.
- 36. A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a nucleic acid sequence selected from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596, or the complement thereof, and
- 30 (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596, or the complement thereof,
 - or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 533 to 575, or the complement thereof.
- 35 37. A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a nucleic acid sequence selected from the group comprising:
 - (i) sequences represented by any of SEQ ID NOs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788, or the complement thereof,

- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788, or the complement thereof,

15

20

25

30

35

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 621 to 767, or the complement thereof.

- 10 A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a 38. nucleic acid sequence selected from the group comprising:
 - (i) sequences represented by any of SEQ ID NOs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883, or the complement thereof,
 - (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883, or the complement thereof, and
 - (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 813 to 862, or the complement thereof.

- A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a 39. nucleic acid sequence selected from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1071, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1071, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1071, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 908 to 1040, or the complement thereof.

- A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a nucleic acid sequence selected from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111,

15

20

25

35

- 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677, or the complement thereof,
- or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1161 to 1571, or the complement thereof.
- 41. A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a nucleic acid sequence selected from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095, or the complement thereof, and
- (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095, or the complement thereof,
- or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 1730 to 2039, or the complement thereof.
 - 42. A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a nucleic acid sequence selected from the group comprising:
 - (i) sequences represented by any of SEQ ID NOs 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354 or 2359, or the complement thereof,
 - (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354 or 2359, or the complement thereof, and

15

20

25

30

(iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354 or 2359, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 2120 to 2338, or the complement thereof.

- 43. A transgenic plant resistant to an insect pest comprising a polynucleotide comprising a nucleic acid sequence selected from the group comprising:
- (i) sequences represented by any of SEQ ID NOs 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,
- (ii) sequences which are at least 70 %, preferably at least 75%, 80%, 85%, 90%, more preferably at least 95%, 96%, 97%, 98% or 99% identical to a sequence represented by any of SEQ ID NOs 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof, and
 - (iii) sequences comprising at least 17 contiguous nucleotides of any of the sequences represented by SEQ ID NOs 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481, or the complement thereof,

or wherein said nucleic acid sequence is an orthologue of a gene comprising at least 17 contiguous nucleotides of any of SEQ ID NOs 2384 to 2460, or the complement thereof.

- 44. The transgenic plant according to any of claims 34 to 43 further comprising or expressing a pesticidal agent selected from the group consisting of a patatin, a *Bacillus thuringiensis* insecticidal protein, a *Xenorhabdus* insecticidal protein, a *Photorhabdus* insecticidal protein, a *Bacillus laterosporous* insecticidal protein, and a *Bacillus sphearicus* insecticidal protein.
- 45. The transgenic plant of claim 44 wherein said *Bacillus thuringiensis* insecticidal protein is selected from the group consisting of a Cry1, a Cry3, a TIC851, a CryET170, a Cry22, a binary insecticidal protein CryET33 and CryET34, a binary insecticidal protein CryET80 and CryET76, a binary insecticidal protein TIC100 and TIC101, and a binary insecticidal protein PS149B1.
- 46. Use of an isolated nucleic acid according to claim 1, a double stranded ribonucleotide sequence according to claim 2 or 3, a cell according to claim 4 or 5, a plant according to any of claims 6 to 14, a seed or reproductive or propagation material of claim 15, a product of claim 16 or 17, a transgenic plant of any of claims 34 to 45 for preventing insect growth on a plant.
- 47. Use of an isolated nucleic acid according to claim 1, a double stranded ribonucleotide sequence according to claim 2 or 3, a cell according to claim 4 or 5, a plant according to any of claims 6 to 14, a seed or reproductive or propagation material of claim 15, a product of claim 16 or 17, a transgenic plant of any of claims 34 to 45 for preventing insect infestation of a plant.
- 48. Use of an isolated nucleic acid according to claim 1, a double stranded ribonucleotide sequence according to claim 2 or 3, a cell according to claim 4 or 5, a plant according to any of claims 6 to 14, a seed or reproductive or propagation material of claim 15, a product of claim 16 or 17, a transgenic plant of any of claims 34 to 45 for improving yield.

FIGURE 1-LD

FIGURE 2-LD

FIGURE 3-LD

FIGURE 4-LD

FIGURE 5-LD (a)

FIGURE 5-LD (b)

FIGURE 5-LD (c)

FIGURE 5-LD (d)

FIGURE 5-LD (e)

FIGURE 5-LD (f)

FIGURE 5-LD (g)

FIGURE 7-LD

9/16

FIGURE 1-PC (a)

FIGURE 1-PC (b)

FIGURE 2-PC (a)

FIGURE 2-PC (b)

FIGURE 1-EV

FIGURE 2-EV (a)

12/16

FIGURE 2-EV (b)

RE 1-MP

FIGURE 1-NL (a)

FIGURE 1-NL (b)

FIGURE 1-NL (c)

FIGURE 1-NL (d)

FIGURE 2-NL

International application No PCT/EP2007/000286

A. CLASSIFICATION OF SUBJECT MATTER
INV. C12N15/82 A01H5 A01H5/00 C12N5/10 C12N15/12 C12N15/11 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) C12N A01H C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, Sequence Search, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X DATABASE UniProt [Online] 1-23,34,30 August 2005 (2005-08-30), "Ribosomal 44-48 protein S4e." XP002432593 retrieved from EBI accession no. UNIPROT: Q4GXU7 Database accession no. Q4GXU7 abstract χ & DATABASE EMBL SEQUENCE LIBRARY [Online] 1-23,34,Ebi. hinxton; ribosomal protein S4e; rpS4e 44-48 gene 16 July 2005 (2005-07-16), LONGHORN, S.J.: "Biphyllus lunatus mRNA for ribosomal protein S4e" retrieved from EBI. HINXTON accession no. www.ebi.co.uk Database accession no. AMO48926 abstract -/--Further documents are listed in the continuation of Box C. X See patent tamily annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O' document referring to an oral disclosure, use, exhibition or document published prior to the International filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 28 September 2007 12/02/2008 Name and mailing address of the ISA/ Authorized officer European Paterni Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel (431-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Holtorf, Sönke

International application No PCT/EP2007/000286

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2005/110068 A (MONSANTO TECHNOLOGY LLC; BAUM, JAMES, A; GILBERTSON, LARRY, A; KOVALIC) 24 November 2005 (2005-11-24) page 5, line 7 claim 39; example 6	1-23,34, 44-48
(WO 2005/019408 A (BAR ILAN UNIVERSITY; HAZERA GENETICS LTD; RAHAN MERISTEM LTD; MICHAEL) 3 March 2005 (2005-03-03) the whole document	1-23,34, 44-48
(WO 01/34815 A (CAMBRIA BIOSCIENCES, LLC) 17 May 2001 (2001-05-17) the whole document	1-23,34, 44-48
\	WO 2005/049841 A (COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION; BAYER BI) 2 June 2005 (2005-06-02) the whole document	
\	WO 01/37654 A (DNA PLANT TECHNOLOGY CORPORATION; TOBIAS, CHRISTIAN; SHAH, GOWRI; GUTT) 31 May 2001 (2001-05-31) the whole document	
	WO 03/004644 A (COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION; WHYARD,) 16 January 2003 (2003-01-16) the whole document claim 13 page 23 - page 24 page 20, line 21	
	WO 02/46432 A (AVENTIS CROPSCIENCE GMBH; GUNKEL, NIKOLAS) 13 June 2002 (2002-06-13) the whole document	

International application No. PCT/EP2007/000286

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple Inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search reportcovers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Invention 1: 1-23, 34, 44, 45, 46-48 partially
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention1: 1-23,34,44,45, 46-48 partially

Isolated Leptinotarsa-specific nucleotide sequence as characterized by SEQID1; double stranded ribonucleotide sequence produced by expressing said SEQID1; cell or plant transfomed by said sequence, said plant further expressing a pesticidal agent or insecticidal protein; a seed, reproductive or propagation material comprising said sequence, a product produced from said plant; a pesticide comprising said plant, a method for controlling or preventing insect growth comprising bringing into contact said insect pest with said seed, reproductive or propagation material which inhibits the insect's biological activity; a method for producing a plant resistant against a plant pathogenic organism, a method for improving yield by transforming said plant with said sequence which suppresses a Leptinotarsa-specific target gene, a transgenic plantresistant to an insect pest comprising said sequence; said transgenic plant further expressing another pesticidal agent or insecticidal protein; use of said sequence, double stranded ribonucleotide sequence, cell, plant, seed, reproductive or propagation material, product, transgenic plant for preventing either insect growth, insect infestation or for improving yield.

Inventions 2-149: claims 1-23,24,34,44,45, 46-48 partially

as invention 1, but limited to the Leptinotarsa-specific SEQIDs 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49 to 158, 159, 160-163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 240 to 246 and 2486.

as invention 1, but limited to the Phaedon-specific nucleotide sequences as characterized by SEQIDs 247, 249, 251, 253, 255, 257, 259, 275 to 472, 473, 478, 483, 488, 493, 498, 503, 508 to 512 and the use for Phaedon-specific infestation in plants.

Invention 151: claims 1-23,44,45, 46-48 partially, 26, 36 completely

as invention 1, but limited to the Epilachna-specific nucleotide sequences as characterized by SEQIDs 513, 515, 517, 519, 521, 533 to 575, 576, 581, 586, 591 or 596 and the use for Epilachna-specific infestation in plants.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

as invention 1, but limited to the Anthonomus-specific nucleotide sequences as characterized by SEQIDs 601, 603, 605, 607, 609, 621 to 767, 768, 773, 778, 783 or 788 and the use for Anthonomus-specific infestation in plants.

as invention 1, but limited to the Tribolium-specific nucleotide sequences as characterized by SEQIDs 793, 795, 797, 799, 801, 813 to 862, 863, 868, 873, 878 or 883 and the use for Tribolium-specific infestations.

as invention 1, but limited to the Myzus-specific nucleotide sequences as characterized by SEQIDs 888, 890, 892, 894, 896, 908 to 1040, 1041, 1046, 1051, 1056, 1061, or 1066 to 1070 and the use for Myzus-specific infestation in plants.

Invention 155: claims 1-23,44,45, 46-48 partially, 30, 40 completely

as invention 1, but limited to the Nilaparvata-specific nucleotide sequences as characterized by SEQIDs 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109,1111, 1113, 1161 to 1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672 or 1677 and the use for Nilaparvata-specific infestations in plants.

Invention 156: claims 1-23,44,45, 46-48 partially, 31, 41 completely

as invention 1, but limited to Chilo-specific nucleotide sequences as characterized by SEQIDs 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730 to 2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090 or 2095 and the use for Chilo-specific infestation in plants.

Invention 157: claims 1-23,44,45, 46-48 partially, 32, 42 completely

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

as invention 1, but limited to Plutella-specific nucleotide sequences as characterized by SEQIDs 2100, 2102, 2104, 2106, 2108, 2120 to 2338, 2339, 2344, 2349, 2354, or 2359 and the use for Plutella-specific infestations in plants.

Invention 158: claims 1-23,44,45, 46-48 partially, 33, 43 completely

as invention 1, but limited to Acheta-specific nucleotide sequences as characterized by SEQIDs 2364, 2366, 2368, 2370, 2372, 2384 to 2460, 2461, 2466, 2471, 2476 or 2481 and the use for Acheta-specific infestations.

Information on patent family members

International application No PCT/EP2007/000286

Patent document dited in search report		Publication date	Patent family member(s)			Publication date	
WO 2005110068	A	24-11-2005	AU	2005244258	A1	24-11-2005	
			BR	PI0509743	Α	25-09-2007	
			CA	2562022	A1	24-11-2005	
			EP	. 1732379	A2	20-12-2006	
WO 2005019408	A	03-03-2005	AU	2004267254	A1	03-03-2005	
			CA	2535132		03-03-2005	
			EP	1656012		17-05-2006	
			ŲS ,	2007199100	A1	23-08-2007	
WO 0134815	A	17-05-2001	AU	1461701	Α	06-06-2001	
			CA	2388753	A1	17-05-2001	
			EP	1230376	A1	14-08-2002	
			US	6326193	B1	04-12-2001	
			US.	2002137710	A1	26-09-2002	
WO 2005049841	Ą	02-06-2005	EP	1687435	A1	09-08-2006	
WO 0137654	Α	31-05-2001	AU	2047001	A	04-06-2001	
WO 03004644	Α	16-01-2003	CA	2455490	A1	16-01-2003	
			ΕP	1414959		06-05-2004	
			JP	2004532653	T	28-10-2004	
			NZ	530969	A	30-09-2005	
			US	2005095199	A1	05-05-2005	
WO 0246432	A	13-06-2002	AU	1914002	Α	18-06-2002	
			EP	1210875		05-06-2002	