https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exiden Help

Optimization I: Convex optimization

Assignment Project Exam Help

https://eduassistpro.github.

Outline

- Convex sets and convex functions
- Assignment Project Exam Help
 - - https://eduassistpro.github.

Convex sets

Convex set: a set that contains every line segment between pairs of points in the set.

Assignment Project Exam Help

https://eduassistpro.github.

Figure 1: Which of these sets are convex?

Convex functions (1)

Convex function: a function satisfying the two-point version of Jensen's inequality:

Assignment Project Exam Help

https://eduassistpro.github.
Add WeChat edu_assist_pr

Figure 2: Which of these functions are c

Convex functions (2)

Examples:

```
Assignment (Project Exam Help

Assignment (Project Exam Help

f(w) = [w] \text{ for } c \ge 1 \text{ on } \mathbb{R}^d

https://eduassistpro.github.l

f(w) = \log \max_{w \in \mathbb{R}^d} (w) = \ln \left( \frac{1}{2} \operatorname{Add} (w) \right) = \ln \left( \frac{1}{2} \operatorname{Add} (w) \right)
```

Verifying convexity of Euclidean norm

▶ Verify f(w) = ||w|| is convex

Assignment Project Exam Help

https://eduassistpro.github.

Convexity of differentiable functions (1)

Differentiable function f is convex iff

Assignment Project Exam Help https://eduassistpro.github.

Add WeChat edu_assist_pr

Figure 3: Affine approximation

▶ Twice-differentiable function f is convex iff $\nabla^2 f(w)$ is positive semidefinite for all $w \in \mathbb{R}^d$.

Convexity of differentiable functions (2)

- **Example:** Verify $f(w) = w^4$ is convex

Assignment Project Exam Help

https://eduassistpro.github.

Convexity of differentiable functions (3)

- \blacktriangleright Example: Verify $f(w) = e^{b^\mathsf{T} w}$ for $b \in \mathbb{R}^d$ is convex

Assignment Project Exam Help

https://eduassistpro.github.

Verifying convexity of least squares linear regression

▶ Verify $f(w) = ||Aw - b||_2^2$ is convex

Assignment Project Exam Help

https://eduassistpro.github.

Verifying convexity of logistic regression MLE problem

► Verify $f(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y_i x_i^{\mathsf{T}} w})$ is convex

Assignment Project Exam Help

https://eduassistpro.github.

Local minimizers

Say $w^\star \in \mathbb{R}^d$ is a <u>local minimizer</u> of $f \colon \mathbb{R}^d \to \mathbb{R}$ if there is an "open ball" $U = \{w \in \mathbb{R}^d : \|w - w^\star\|_2 < r\}$ of positive radius Assignment (where $u \in \mathbb{R}^d : \|w - w^\star\|_2 < r\}$ of positive radius has nothing looks better in the immediate vicinity of w^\star .

Figure 4: Local minimiz

https://eduassistpro.github.l

Local minimizers of convex problems

▶ If f is convex, and w^* is a local minimizer, then it is also a global minimizer.

Assi "physical search is well-motivated for convex optimization problems

https://eduassistpro.github. Add We Chat edu_assist_production of the control of

Gradient descent

► Consider (unconstrained) convex optimization problem

Assignment Project Exam Help

- https://eduassistpro.github.
- $\underbrace{ \text{Add} \underset{\text{(Lots of things unspecified here ...)}}^{w^{(t)} \cdot -} \underset{\text{(Lots of things unspecified here ...)}}^{w^{(t)} \cdot -} \text{edu_assist_pr}$

Motivation for gradient descent

- ▶ Why move in direction of (negative) gradient?

Assignment $\Pr_{w \neq \delta} (w + \delta)$ around w: Assignment $\Pr_{w \neq \delta} (w + \delta)$ around w:

- https://eduassistpro.github. $\nabla f w \eta \nabla f w \eta f w < 0$
- a A ord of to be small enough so still have impressist_pr error of affine approximation.

Figure 6: Trajectory of gradient descent

Example: Gradient of logistic loss

Negative gradient of logistic loss on *i*-th training example: using chain rule, ____

Assignment Project Exam Help

https://eduassistpro.github.

where σ is the sigmoid function.

Paddy We Chat edu_assist_profile logistic regression model.

Example: Gradient descent for logistic regression

Objective function:

Assignment Projecty Exam Help

https://eduassistpro.github.

$$\mathbf{Add}^{w_0^{(t)}} = \mathbf{W}_{-w_0^{(t-1)} - \eta_n}^{\mathbf{W}_{-1}^{(t-1)}} \mathbf{Chart}_{-\eta_n}^{\nabla f(w_0^{(t)})} \mathbf{edu_assist_pr}$$

- ► Interpretation of update:
 - ▶ How much of $y_i x_i$ to add to $w^{(t-1)}$ is scaled by how far $\sigma(y_i x_i^{\mathsf{T}} w^{(t-1)})$ currently is from 1.

Convergence of gradient descent on smooth objectives

Theorem: Assume f is twice-differentiable and convex, and $\lambda_{\max}(\nabla^2 f(w)) \leq \beta \text{ for all } w \in \mathbb{R}^d \text{ ("}f \text{ is } \beta\text{-smooth}\text{"}). \text{ Then } \\ \text{Assignment with the project of } Help \\ \underline{\beta} \ w^{(0)} \ w^{\star \ 2}$

https://eduassistpro.github.

Add We Chat edu_assist_preduction in Note: it is possible to have convergence ev

Note: it is possible to have convergence ev some cases; should really treat η as a hyperparameter.

Example: smoothness of empirical risk with squared loss

Empirical risk with squared loss

Assignment Project Exam Help

So objective function is β -smooth with $\beta = \lambda$ $(A^{\mathsf{T}}A)$.

https://eduassistpro.github.

Example: smoothness of empirical risk with logistic loss

► Empirical risk with logistic loss

Assignment Project Exam Help

https://eduassistpro.github.

Assignment Project Exam Help https://eduassistpro.github.

Analysis of gradient descent for smooth objectives (1)

▶ By Taylor's theorem, can upper-bound $f(w + \delta)$ by quadratic:

Assignmento Projecto Exam Help

https://eduassistpro.github. $\delta \in \mathbb{R}^d$ $f(w) = \nabla f(w) \delta - \delta_2$.

Middled by We Chat edu_assist_pr

Plug-in this value of δ into above ine

$$f\left(w - \frac{1}{\beta}\nabla f(w)\right) - f(w) \le -\frac{1}{2\beta}\|\nabla f(w)\|_2^2.$$

Analysis of gradient descent for smooth objectives (2)

If f is convex (in addition to β -smooth), then repeatedly making such local changes is sufficient to approximately

Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_pr 0.5

Figure 8: Linear and quadratic approximations to a convex function

Example: Text classification (1)

- ▶ Data: articles posted to various internet message boards
- Assignment Project Exam Help
 - https://eduassistpro.github.
 - Add WeChat edu_assist_pr

Example: Text classification (2)

Figure 9: Objective value as a function of number of gradient descent iterations

Example: Text classification (3)

Figure 10: Error rate as a function of number of gradient descent iterations

Stochastic gradient method (1)

- ightharpoonup Every iteration of gradient descent takes $\Theta(nd)$ time.
- Assignifications, Polypersize to make a single update.

 Assignification of the propersize to make a single update.

 Help

 Agentative: Stochastic gradient descent (SGD)

https://eduassistpro.github.

 $\operatorname{Add}_{\scriptscriptstyle{(A.k.a.}} \underbrace{\operatorname{WeCh}_{\scriptscriptstyle{j=1}}^{n}}_{\scriptscriptstyle{full\ batch\ gradient.}}^{n} \operatorname{tedu_assist_pr}$

▶ Pick term *J* uniformly at random:

$$\nabla \ell(y_J x_J^{\mathsf{T}} w^{(t)}).$$

What is expected value of this random vector?

Stochastic gradient method (2)

- Minibatch
- Assignment a project while the radius Help

https://eduassistpro.github.

- Alternative: instead of picking example un shuffle order of training examples, and take this Gar We Chat edu_assist_pr
 - Verify that expected value is same!
 - ▶ Seems to reduce variance as well, but not fully understood.

Example: SGD for logistic regression

► Logistic regression MLE for data

Assignment \mathbb{R}^d Project Exam Help

https://eduassistpro.github.

Optimization for linear regression

- ▶ Back to considering ordinary least squares.
- ► Gaussian elimination to solve normal equations can be slow

Assignment Project Exam Help

https://eduassistpro.github.

- ► Time to multiply matrix by vector is linear i
- A Schath Walion akesting (edu_assist_procedu_assist
 - (empirical risk) objective very precisely.

Behavior of gradient descent for linear regression

Theorem: Let \hat{w} be the minimum Euclidean norm solution to normal equations. Assume $w^{(0)}=0$. Write eigendecomposition Assignment $\hat{w}^{(0)}=0$. Example 1

https://eduassistpro.github.

 \blacktriangleright If we choose η such that $2\eta\lambda_i$

Add Wethat edu_assist_pr

which converges to 1 as $t \to \infty$. So, when $2\eta\lambda_1 < 1$, we have $w^{(t)} \to \hat{w}$ as $t \to \infty$.

- ► Rate of convergence is geometric, i.e., "exponentially fast convergence".
- Algorithmic inductive bias!

Postscript

► There are many optimization algorithms for convex optimization ____

Assignment of the project, Excarme Help

- Stochastic variants thereof
- https://eduassistpro.github.
 - lacktriangle E.g., want coordinates of w to lie i
- The month where the tree du_assist_property it is there!