ADVANCED DATA ANALYSIS

HW7

Fan Yang UNI: fy2232 04/19/2018

Problem 1

(20pt) The data below show survival times in months of patients with Hodgkin's disease who were treated with nitrogen mustard. Group A patients received little or no prior therapy whereas Group B patients received heavy prior therapy. Starred are observations are censoring times.

```
Group A:
```

```
1.25, 1.41, 4.98, 5.25, 5.38, 6.92, 8.89, 10.98, 11.18, 13.11, 13.21, 16.33, 19.77, 21.08, 21.84^+, 2\% \\ \text{Group B}:
```

```
1.05, 2.92, 3.61, 4.20, 4.49, 6.72, 7.31, 9.08, 9.11, 14.49^+, 16.85, 18.82^+, 26.59^+, 30.26^+, 41.34^+
```

load data first.

```
In [1]:
        library(survival)
         timeA <- c(1.25, 1.41, 4.98, 5.25, 5.38,
                    6.92, 8.89, 10.98, 11.18, 13.11,
                    13.21, 16.33, 19.77, 21.08, 21.84,
                    22.07, 31.38, 32.61, 37.18, 42.92)
        deltaA <- c(1,1,1,1,1,1,
                     1,1,1,1,1,
                     1,1,1,1,0,
                     1,0,0,0,1)
        timeB <- c(1.05, 2.92, 3.61, 4.20, 4.49,
                    6.72, 7.31, 9.08, 9.11, 14.49,
                    16.85, 18.82, 26.59, 30.26, 41.34)
        deltaB <- c(1,1,1,1,1,1,
                     1,1,1,1,0,
                     1,0,0,0,0)
```

(a)

(a) (5pt) Obtain and plot the Kaplan Meier estimates of S_A and S_B , the survival functions of Group A and Group B, respectively.

In [3]: plot(kmA\$time,kmA\$surv, type="s",xlab="Time of A",ylab="Survival of A")

In [4]: kmB <- survfit(Surv(timeB, deltaB)~1,type="kaplan-meier")
kmB\$surv</pre>

In [5]: plot(kmB\$time,kmB\$surv, type="s",xlab="Time of B",ylab="Survival of B")

(b)

(b) (2.5pt) Estimate $S_{\!A}(10)$ and $S_{\!B}(10)$ using a 95% confidence interval.

In [6]: summary(kmA)

Call: survfit(formula = Surv(timeA, deltaA) ~ 1, type = "kaplan-meier")

time	n.risk	n.event	survival	std.err	lower	95% CI	upper 95%	CI
1.25	20	1	0.95	0.0487		0.859	1.0	00
1.41	19	1	0.90	0.0671		0.778	1.0	00
4.98	18	1	0.85	0.0798		0.707	1.0	00
5.25	17	1	0.80	0.0894		0.643	0.9	96
5.38	16	1	0.75	0.0968		0.582	0.9	66
6.92	15	1	0.70	0.1025		0.525	0.9	33
8.89	14	1	0.65	0.1067		0.471	0.8	97
10.98	13	1	0.60	0.1095		0.420	0.8	58
11.18	12	1	0.55	0.1112		0.370	0.8	18
13.11	11	1	0.50	0.1118		0.323	0.7	75
13.21	10	1	0.45	0.1112		0.277	0.7	31
16.33	9	1	0.40	0.1095		0.234	0.6	84
19.77	8	1	0.35	0.1067		0.193	0.6	36
21.08	7	1	0.30	0.1025		0.154	0.5	86
22.07	5	1	0.24	0.0980		0.108	0.5	34
42.92	1	1	0.00	NaN		NA		NA

From the above result, we can get the 95% confidence interval for $S_A(10)$ to be [0.420,0.858]

In [7]: summary(kmB)

Call: survfit(formula = Surv(timeB, deltaB) ~ 1, type = "kaplan-meier")

```
time n.risk n.event survival std.err lower 95% CI upper 95% CI
 1.05
          15
                    1
                         0.933
                                0.0644
                                                0.815
                                                              1.000
 2.92
                                                              1.000
          14
                    1
                         0.867
                                 0.0878
                                                0.711
 3.61
          13
                    1
                         0.800
                                0.1033
                                                0.621
                                                              1.000
 4.20
          12
                         0.733
                                0.1142
                                                0.540
                                                              0.995
 4.49
          11
                         0.667
                                0.1217
                                                0.466
                                                              0.953
                    1
 6.72
          10
                         0.600 0.1265
                                                0.397
                                                              0.907
                    1
 7.31
           9
                         0.533
                                0.1288
                                                0.332
                                                              0.856
                    1
                         0.467
 9.08
           8
                    1
                                0.1288
                                                0.272
                                                              0.802
 9.11
           7
                    1
                         0.400
                                0.1265
                                                0.215
                                                              0.743
                         0.320
16.85
                                0.1239
                                                0.150
                                                              0.684
```

From the above result, we can get the 95% confidence interval for $S_B(10)$ to be [0.215,0.743]

(c)

(5pt)Test $H_0: S_A = S_B$ against $H_a: S_A \neq S_B$, Use $\alpha = 0.05$.

reshape data:

time	delta	group								
1.25	1	1								
1.41	1	1								
4.98	1	1								
5.25	1	1								
5.38	1	1								
6.92	1	1								
Call:		formul	a = Su	ırv(time,	delta) ~	group,	data =	data,	rho = 0))
	1	N Obse	rved E	xpected	(O-E)^2/E	(O-E)^2	2/V			
group	=1 2	0	16	16.66	0.0261	0.07	49			
group	p=2 1	5	10	9.34	0.0466	0.07	49			
Chis	0 =pa	.1 on	1 deg	rees of	freedom, p	p= 0.784	ļ			

In the test $H_0: S_A = S_B$ against $H_a: S_A \neq S_B$ under $\alpha = 0.05$, we got the p-value equals to 0.784.

Therefore we fail to reject the null hypothesis that the two survival functions are equal.

(d)

(5pt) Assume that it appropriate to use Cox proportional hazard model to these data. That is assume that

$$\lambda(t|x) = \lambda_0(t)e^{\beta x}$$

where x = 0 if group A and x = 1 if group 1. Estimate the hazard ratio using a 95% confidence interval. Interpret your result.

```
In [9]:
        fitphm <- coxph(Surv(time,delta)-factor(group), data = data)</pre>
         fitphm
         confint(fitphm)
         exp(confint(fitphm))
        coxph(formula = Surv(time, delta) ~ factor(group), data = data)
                          coef exp(coef) se(coef)
        factor(group)2 0.112
                                   1.119
                                             0.410 0.27 0.78
        Likelihood ratio test=0.07 on 1 df, p=0.785
        n= 35, number of events= 26
                         2.5 %
                                 97.5 %
         factor(group)2 -0.6907948 0.9148215
                         2.5 %
                               97.5 %
         factor(group)2 0.5011776 2.49633
```

From this output, we found that the estimated coefficient or β is **0.112**, with a confidence interval **[-0.6907948, 0.9148215]**

While the hazard ratio comparing x=1 to x=0 is defined as e^{β} . Therefore the confidence interval is **[0.5011776, 2.49633]**

The hazard ratio tells us how much more likely one individual is to die than another at any particular point in time.

(e)

(2.5pt)Test $H_0: \beta=0$ against $H_a: \beta \neq 0$ using $\alpha=0.05$.

In [10]: summary(fitphm)

In our test H_0 : $\beta=0$ against H_a : $\beta\neq 0$ under $\alpha=0.05$. We found that the Z statistic is 0.271 with p-value 0.784.

Therefore we fail to reject the null hypothesis and conclude that $\beta = 0$.