

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică, 2008 Proba teoretică

Barem de notare – Subiectul 1

Subject	Parțial	Punctaj
1. Barem Subiectul 1		10
a) Timpul necesar dinozaurului pentru a face un pas, așa cum este el definit în enunțul problemei, adică timpul după care piciorul dinozaurului revine în aceeași poziție față de șoldul acestuia (perioada oscilațiilor armonice ale	1,50	
piciorului dinozaurului, modelat ca un pendul fizic în formă de bară liniară omogenă), este:		3,00
$T = 2\pi \sqrt{\frac{2l}{3g}} \approx 2.9 \mathrm{s}.$	0,50	
Rezultă: $v = \frac{d}{T} \approx 1.4 \frac{m}{s} = 5.0 \frac{km}{h}$.	1,00	
b) Perioada oscilațiilor armonice ale pendulului, atunci când plăcile și suportul pendulului sunt în repaus, este dată de expresia: $T_0 = 2\pi \sqrt{\frac{ml}{mg \pm F_e}} = 2\pi \sqrt{\frac{ml}{mg \pm qE}} = 2\pi \sqrt{\frac{l}{g \pm \frac{q}{m}E}},$	0,25	2.00
unde: m — masa pendulului; q — sarcina electrică a pendulului; E — intensitatea câmpului electric dintre cele două plăci; g — accelerația gravitațională. Semnele (\pm) corespund celor două orientări posibile ale vectorului \vec{E} . Direcția față de care se efectuează oscilațiile pendulului, atunci când suportul acestuia și cele două plăci conductoare se deplasează cu accelerația orizontală \vec{a} , este reprezentată în figura alăturată, unde sunt reprezentate forțele care acționează asupra pendulului, asigurând echilibrul acestuia, din care rezultă:		3,00
$R = \sqrt{(mg - F_e)^2 + m^2 a^2}$.	0,25	
\vec{F}_{i} \vec{F}_{e} \vec{T} $G - F_{e}$ \vec{G}	0,25	

În aceste condiții, utilizând figura alăturată, pentru forța responsabilă de oscilațiile pendulului, obținem:

$$F = R \sin \Delta \beta = \sqrt{(mg - F_e)^2 + m^2 a^2} \sin \Delta \beta , \qquad 0.20$$

care, pentru oscilații mici devine:

$$F = \sqrt{(mg - F_e)^2 + m^2 a^2} (\Delta \beta); \ \Delta y \approx l \Delta \beta;$$
 0.10

$$F = \frac{\sqrt{(mg - F_{\rm e})^2 + m^2 a^2}}{I} \Delta y;$$
 0,25

0,25

$$k = \frac{\sqrt{(mg - F_e)^2 + m^2 a^2}}{l}; F = k\Delta y; \vec{F} = -k\Delta \vec{y},$$
 0,25

ceea ce dovedește că și în acest caz oscilațiile pendulului sunt armonice;

$$k = m\omega^2 = m\frac{4\pi^2}{T^2} = \frac{\sqrt{(mg - F_e)^2 + m^2 a^2}}{l};$$
 0,20

$$T^{2} = \frac{4\pi^{2}ml}{\sqrt{(mg - F_{e})^{2} + m^{2}a^{2}}};$$

$$0.10$$

$$T^{2} = \frac{4\pi^{2}l}{\sqrt{\left(g - \frac{q}{m}E\right)^{2} + a^{2}}};$$
0,10

$$T_0^2 = \frac{4\pi^2 l}{g - \frac{q}{m}E}; g - \frac{q}{m}E = \frac{4\pi^2 l}{T_0^2};$$
 0,10

$$T^{2} = \frac{4\pi^{2}l}{\sqrt{\frac{16\pi^{4}l^{2}}{T_{0}^{4}} + a^{2}}};$$

$$0,10$$

$T = 2\pi \sqrt{\frac{l}{\sqrt{\frac{16\pi^4 l^2}{T_0^4} + a^2}}};$	0,10	
$T = 2\pi T_0 \sqrt{\frac{l}{\sqrt{16\pi^4 l^2 + a^2 T_0^4}}};$	0,25	
$\tan \beta = \frac{F_{i}}{G - F_{e}} = \frac{a}{g - \frac{qE}{m}}; \tan \beta = \frac{aT_{0}^{2}}{4\pi^{2}l}.$	0,25	
c) Forțele care acționează asupra conductorului mobil, asigurând echilibrul acestuia, fiind cele reprezentate în figura alăturată, rezultă:		
$ec{F}_{ m eo}$ 1 2 $ec{F}_{ m 02}$		3,00
$ec{F}_{01}$ $ec{G}$	0,25	
2		
$\vec{G} + \vec{F}_{01} + \vec{F}_{02} + n\vec{F}_{e0} = 0;$	0,25	
$F_{01} = F_{02} = \mu_0 \frac{I_0 I}{2\pi d} I,$	0,25	
unde l este lungimea fiecărui conductor;		
$\vec{F}_{01} = -\vec{F}_{02}; \ F_{e} = k(\Delta y_{0}),$	0,25	
unde (Δy_0) este alungirea fiecărui resort, corespunzător poziției de echilibru a		
conductorului mobil; $nk(\Delta y_0) = mg.$	0,25	
Când conductorul mobil este deplasat față de poziția de echilibru, așa cum indică figura alăturată, rezultanta forțelor responsabilă de oscilațiile conductorului mobil este:	, -	

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică, 2008 Proba teoretică

Barem de notare – Subiectul 2

Siaha Nound, 4-8 fekwarie 200	Mounted Discolet Security of Nacolatis
	CULTON THE PARTY
6.1.	Cardo.

Subject	Parțial	Punctaj
2. Barem Subiectul 2	,	10
A) 1. Din condiția $n_1(\lambda_0) = n_2(\lambda_0)$ rezultă imediat $\lambda_0 = \sqrt{\frac{b_1 - b_2}{a_2 - a_1}} = 500 \text{ nm}$ Apoi, revenind în formulele din enunț $n_1(\lambda_0) = n_2(\lambda_0) = 1,50$	0,25 0,25	
2. Calculăm ușor că: $n_1(\lambda_{\text{rosu}}) = 1,256$, $n_1(\lambda_{\text{violet}}) = 1,725$, $n_2(\lambda_{\text{rosu}}) = 1,378$, $n_2(\lambda_{\text{violet}}) = 1,613$ Schita mersului razelor la traversarea sistemului de prisme este cea din figură.	0,40	5,00
A B Rossa D Violat	0,20	
Observația că, depinzând de unghiul de incidență, pentru unele radiații sunt posibile reflexii totale la intefețele AC sau BC.	0,20	
3. Sistemul de prisme se comportă ca o singură prismă cu unghiul refringent $\alpha_0 = 30^{\circ}$ și cu indicele de refracție $n_0 = 1,50$.	0,25	
Cunoasterea faptului ca la deviatie minima traversarea sistemului de prisme este simetrica, adica $i = i', r = r'$	0,30	
Din formulele generale $\delta = i + i' - \alpha_0$, $r + r' = \alpha_0$, transcrise la deviație minimă, cand $r = 0.5\alpha_0$ și $\delta_{\min} = 2i - \alpha_0$, obtinem $i = 0.5(\delta_{\min} + \alpha_0)$.	0,90	
Din legea refracției $\left[\sin i = n_0 \sin(0.5\alpha_0)\right]$ obținem imediat unghiul de incidență $i = \arcsin\left[n_0 \sin(0.5\alpha_0)\right] = 22,84^{\circ}$ (adică 22° și $50,.66^{\circ}$)	0,50	
Acum $\delta_{\min} = 2i - \alpha_0 = 15,69^{\circ}$ (adică 15° și $41,32^{\circ}$)	0,25	

4. Mersul razei incidente prin sistemul dat (desenul de mai jos)	0,20	
a_1 a_2 a_1 a_2 a_2 a_2 a_3 a_4 a_4 a_5 a_5 a_6 a_7 a_8		
Relațiile $i_1 = i_2 = 30^{\circ}$, $r_1 + r_2 = 60^{\circ}$	0,10	
Legea a doua a refracției ne permite să scriem $\sin i_1 = n_1 \sin r_1$, adică $\sin r_1 = 1/2n_1$	0,20	
şi $n_1 \sin r_2 = n_1 \sin(60^0 - r_1) = n_2 \sin i_2 = (1/2)n_2$, adică $n_2/n_1 = \sqrt{3(1-\sin^2 r_1)} - \sin r_1$	0,30	
Eliminându-l pe $\sin r_1$ din cele două relații anterioare găsim relația $(2n_2+1)^2=3(4n_1^2-1)$, care devine o ecuație bipătrată pentru lungimea de undă λ , anume $\lambda^4(3a_1^2-a_2^2-a_2-1)+\lambda^2(6a_1b_1-2a_2b_2-b_2)+(3b_1^2-b_2^2)=0$.	0,50	
Cu valorile numerice din enunţ obţinem ecuaţia $0.36\lambda^4 - 4.8.10^5 \lambda^2 - 2.75.10^{10} = 0$, având soluţia fizica $\lambda = 1178.3$ nm (în infraroşu)	0,20	
B) Diferența de drum optic a razelor cu unghiul de incidență θ ce se reflectă pe cele două fețe ale lamelei de grosime b este $\Delta = \lambda/2 + 2b\sqrt{N^2 - \sin^2 \theta}$ (cu sau fără deducere)	0,75	
Minimul de ordinul <i>m</i> corespunde la $\Delta = (m+1/2)\lambda$, ceea ce înseamnă	0.50	
satisfacerea relației $m\lambda = 2b\sqrt{N^2 - \sin^2 \theta_m}$. Insă, cu precizările din enunț, putem face aproximările	0,50	2,50
$\sin \theta_m \approx tg \theta_m = r_m/2D \approx \theta_m$	0,25	
și relația anterioară devine $m\lambda \approx 2bN\sqrt{1-\theta_m^2/N^2} \approx 2bN(1-r_m^2/8N^2D^2)$.	0,25	
In mod similar, in cazul minimului de ordinal n avem: $n\lambda \approx 2bN\sqrt{1-\theta_n^2/N^2} \approx 2bN\left(1-r_n^2/8N^2D^2\right)$	0,25	
Din cele două relații (prin diferență) obținem: $\lambda = [b(r_m^2 - r_n^2)]/[4N(n-m)D^2].$	0,25	

$\lambda = 475 \text{ nm}$	0,25	
(C)	ŕ	
a) Din relația $d \sin \theta = m\lambda$ (condiția maximelor principale de difracție) rezultă $\sin \theta = m\lambda/d \le 1$, ceea ce înseamnă că $m_{\text{max}} = d/\lambda$.	0,50	
Însă, acest m_{max} nu este neapărat un număr întreg. El trebuie scris sub forma $m_{\text{max}} = d / \lambda = k_{\text{max}} + \Delta k$ unde, în cazul nostru, $k_{\text{max}} = 5$ iar $\Delta k < 1$.	0,25	1,50
Relația referitoare la maximul principal cu direcția $\theta = 35^{\circ}$ devine $(5 + \Delta k) \sin 35^{\circ} = m$, unde <i>m</i> trebuie să fie neapărat un număr întreg iar Δk		
trebuie să fie o cantitate pozitivă subunitară. Prin tatonări găsim că singura situație ce poate fi acceptată este $m=3$ și $\Delta k = 0.23$	0,25	
Astfel rezultă că $d = 3\lambda/\sin\theta = 2.8.10^{-6} \mathrm{m} = 2.8 \mu\mathrm{m}$ (formula si valoare numerica) .	0,25	
b) $\lambda' = (d/3)\sin\theta' = 466 \text{ nm (formula si valoare numerica)}.$	0,25	
Oficiu		1,00

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică, 2008 Proba teoretică

Barem de notare – Subiectul 3

Subiect	Parțial	Punctaj
3. Barem Subiectul 3		10
a) Utilizând grupurile transformărilor speciale Lorentz:		
$x = x'; y = \frac{y' + ut'}{\sqrt{1 - \frac{u^2}{c^2}}}; z = z'; t = \frac{t' + \frac{u}{c^2}y'}{\sqrt{1 - \frac{u^2}{c^2}}};$	0,15	3,00
$x' = x; y' = \frac{y - ut}{\sqrt{1 - \frac{u^2}{c^2}}}; z' = z; t' = \frac{t - \frac{u}{c^2}y}{\sqrt{1 - \frac{u^2}{c^2}}},$	0,15	
rezultă:		
$\mathbf{v}_{\mathbf{X}'} = \frac{\mathbf{d}\mathbf{x}'}{\mathbf{d}t'} = \frac{\mathbf{d}\mathbf{x}}{\mathbf{d}t'} = \frac{\mathbf{d}\mathbf{x}}{\mathbf{d}t} \frac{\mathbf{d}t}{\mathbf{d}t'} = \mathbf{v}_{\mathbf{X}} \frac{\mathbf{d}t}{\mathbf{d}t'} = 0;$	0,20	
$v'_{y'} = \frac{dy'}{dt'} = \frac{d}{dt'} \left(\frac{y - ut}{\sqrt{1 - \frac{u^2}{c^2}}} \right) = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \frac{d}{dt'} (y - ut) = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \left(\frac{dy}{dt'} - u \frac{dt}{dt'} \right);$	0,25	
$\frac{\mathrm{d}y}{\mathrm{d}t'} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}t'} = \mathbf{v}_{\mathrm{Y}} \frac{\mathrm{d}t}{\mathrm{d}t'} = 0;$	0,20	
$\frac{dt}{dt'} = \frac{d}{dt'} \left(\frac{t' + \frac{u}{c^2} y'}{\sqrt{1 - \frac{u^2}{c^2}}} \right) = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \left(1 + \frac{u}{c^2} \frac{dy'}{dt'} \right); \frac{dy'}{dt'} = v'_{Y'};$	0,25	
$\frac{\mathrm{d}t}{\mathrm{d}t'} = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \left(1 + \frac{u}{c^2} \mathbf{v}_{\mathrm{Y}}' \right);$	0,20	
$\mathbf{v}_{\mathbf{Y}'}' = -\frac{u}{1 - \frac{u^2}{c^2}} \left(1 + \frac{u}{c^2} \mathbf{v}_{\mathbf{Y}'}' \right);$	0,20	
c^{2} $v'_{v'} = -u;$	0,25	
$v'_{z'} = \frac{dz'}{dt'} = \frac{dz}{dt'} = \frac{dz}{dt} \frac{dt}{dt'} = v_z \frac{dt}{dt'} = v \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \left(1 - \frac{u^2}{c^2}\right) = v \sqrt{1 - \frac{u^2}{c^2}};$	0,20	
Y C		

$\vec{\mathrm{v}}(0;0;\mathrm{v});$		
$\vec{\mathbf{v}}'\left(0;-u;\mathbf{v}\sqrt{1-\frac{u^2}{c^2}}\right);$	0,20	
$v' = \sqrt{u^2 + v^2 \left(1 - \frac{u^2}{c^2}\right)};$	0,25	
$\tan \theta' = \frac{\mathbf{v}_{\mathbf{Y}'}}{\mathbf{v}_{\mathbf{Z}'}} = -\frac{u}{\mathbf{v}\sqrt{1 - \frac{u^2}{c^2}}}.$	0,25	
Z \vec{v}	0,25	
b) Să considerăm, așa cum indică figura alăturată, că Pământul se deplasează, pentru un timp foarte scurt, rectiliniu și uniform, cu viteza \vec{v}_P , pe direcția BB', iar steaua care trebuie observată se află în poziția Σ . În momentul corespunzător sosirii luminii de la stea la capătul superior al lunetei (A), Pământul se afla în poziția B.	0,10	3,00
Pentru ca lumina să ajungă la ochiul observatorului, situat inițial în poziția B, axul lunetei trebuie înclinat cu un unghi α_0 , în așa fel încât, în intervalul de timp Δt , când lumina străbate distanța AB , cu viteza c , Pământul și ochiul	0,25	
observatorului parcurg distanța BB ', cu viteza v_p . Luneta a trecut din poziția L în poziția L '. În varianta clasică, intervalul de timp Δt este absolut. În consecință, imaginea aparentă a stelei, Σ ', se observă pe direcția axului A 'B' al lunetei, aflată în poziția L '. Direcția aparentă diferă de direcția reală cu un unghi α_0 .	0,20	
Din teorema sinusurilor, aplicată în triunghiul ABB', rezultă:		
$\frac{\sin \alpha_0}{BB'} = \frac{\sin \varphi}{AB'};$	0,10	
$\frac{\sin \alpha_0}{v_p \Delta t} = \frac{\sin \varphi}{c \Delta t}; \frac{\sin \alpha_0}{v_p} = \frac{\sin \varphi}{c};$	0,25	
$\sin \alpha_0 = \frac{v_p}{c} \sin \varphi;$	0,10	
$\sin \alpha_0 \approx \alpha_0$; $\alpha_0 = \frac{V_P}{c} \sin \varphi$; $\alpha_0 = 5 \cdot 10^{-5}$ radiani.	0,10	
În particular, dacă steaua se află la zenit $(\varphi = 90^{\circ})$, atunci unghiul de aberație al stelei trebuie să fie:		

$$\alpha_0 = \frac{v_p}{c} = 10^{-4} \text{ radiani} \approx 20'', 5,$$

rezultat în acord cu experiența.

În varianta relativistă, utilizând figura alăturată, durata propagării luminii pe distanța AB', determinată de un observator aflat în sistemul de referință inerțial fix atașat stelei Σ (XYZ), este Δt , iar durata deplasării Pământului pe distanța BB', determinată de un observator aflat în sistemul de referință inerțial mobil atașat Pământului, este $\Delta t' \neq \Delta t$.

Știind că:

$$\Delta t' = \frac{\Delta t}{\sqrt{1 - \frac{V_p^2}{c^2}}},$$

$$0.25$$

0,10

0,25

aplicând din nou teorema sinusurilor în triunghiul ABB', rezultă:

$$\frac{\sin \alpha_0}{BB'} = \frac{\sin \varphi}{AB'};$$

$$\frac{\sin \alpha_0}{v_p \Delta t'} = \frac{\sin \varphi}{c \Delta t};$$

$$\sin \alpha_0 \approx \alpha_0;$$

$$\alpha_0 = \frac{1}{\sqrt{1 - \frac{v_p^2}{c^2}}} \frac{v_p}{c} \sin \varphi; \quad \alpha_0 = \frac{1}{\sqrt{1 - 10^{-8}}} \cdot 5 \cdot 10^{-5} \text{ radiani};$$

$$\alpha_{0,\text{relativist}} > \alpha_{0,\text{clasic}}.$$

$$0,10$$

$$0,25$$

$$\alpha_{0,\text{relativist}} > \alpha_{0,\text{clasic}}.$$

$$0,10$$

Δ	0,25	
c) Contradicțiile sunt eliminate dacă se iau în calcul duratele de viață ale acestor particule, T , măsurate de un observator de pe Pământ (considerat sistem de referință fix), față de care sistemul propriu al particulei (sistemul mobil S' în care duratele de viață sunt T_0) se deplasează cu o viteză foarte mare, v_0 , astfel	0,75	3,00
încât: $T = \frac{T_0}{\sqrt{1-\frac{{\bf v}_0^2}{c^2}}} > T_0,$	0,75	
ceea ce dovedește că aceste experimente confirmă legătura relativistă dintre intervalele temporale măsurate în sisteme de referință inerțiale diferite. În aceste condiții, rezultă:		
$T_{\pi} = \frac{T_{0\pi}}{\sqrt{1 - \frac{\mathbf{v}_{0\pi}^2}{\mathbf{c}^2}}} = \frac{h_{\pi}}{\mathbf{v}_{0\pi}}; T_{\mu} = \frac{T_{0\mu}}{\sqrt{1 - \frac{\mathbf{v}_{0\mu}^2}{\mathbf{c}^2}}} = \frac{h_{\mu}}{\mathbf{v}_{0\mu}};$	0,50	
$\mathbf{v}_{0\pi} = \frac{h_{\pi}c}{\sqrt{T_{0\pi}^2c^2 + h_{\pi}^2}}; \mathbf{v}_{0\mu} = \frac{h_{\mu}c}{\sqrt{T_{0\mu}^2c^2 + h_{\mu}^2}};$ $\frac{\mathbf{v}_{0\pi}}{\mathbf{v}_{0\mu}} = \frac{h_{\pi}}{h_{\mu}}\sqrt{\frac{T_{0\mu}^2c^2 + h_{\mu}^2}{T_{0\pi}^2c^2 + h_{\pi}^2}};$	0,50	
$\frac{\overline{V_{0\mu}} - \overline{h_{\mu}} \sqrt{T_{0\pi}^2 c^2 + h_{\pi}^2}}{\overline{V_{0\mu}}} \approx \frac{\sqrt{101}}{10} \approx 1,005.$	0,25	
Oficiu		1,00