LAB #3: WEB APPLICATION WITH GENIE

Abdelbacet Mhamdi Senior-lecturer, Dept. of EE ISET Bizerte — Tunisia a-mhamdi Mayssa rihane
Dept. of EE

ISET Bizerte — Tunisia

☐ rihanemayssa

I. OBJECTIF

In this lab, we will create a basic web application using **Genie** framework in Julia. The application will allow us to control the behaviour of a sine wave, given some adjustble parameters. You are required to carry out this lab using the REPL as in Figure 1.

Figure 1: Julia REPL

Exo 1: Sine Wave Control

We provide the Julia and HTML codes to build and run a web app that allows us to control the amplitude and frequency of a sine wave. **Plotly** is used to plot the corresponding graph. this dashboard allows you to manipulate various parameters of a sine wave and visualize the results. we add some parameters like: PHASE:This slider adjusts the phase of the sine wave. The range is from -0.5 to 1, with steps of 0.1. OFFSET:This slider adjusts the offset of the sine wave. The range is from -3.141 to 3.141, with steps of 1.

```
using GenieFramework
@genietools

@app begin

@in N::Int32 = 1000

@in amp::Float32 = 0.25

@in freq::Int32 = 1

@in pha::Float32 = 1

@in off::Float32 = 1
```

```
<header class="st-header q-pa-sm">
   <hl class="st-header title text-h3" Sinewave
Dashboard </h1>
</header>
<div class="row">
    <div class="st-col col-12 col-sm st-module">
        <b># Samples</b>
        <q-slider v-model="N"
    :min="10" :max="1000"
    :step="10" :label="true">
  </a-slider>
    </div>
    <div class="st-col col-12 col-sm st-module">
        <b>Amplitude</b>
        <q-slider v-model="amp"
    :min="0" :max="3"
    :step=".5" :label="true">
  </g-slider>
    </div>
    <div class="st-col col-12 col-sm st-module">
        <b>Frequency</b>
  <q-slider v-model="freq"
    :min="0" :max="10"
    :step="1" :label="true">
  </q-slider>
```

ISET Bizerte -1/2 –

```
</div>
   <div class="st-col col-12 col-sm st-module">
        <b>phase</b>
  <q-slider v-model="pha"
    :min="-3.14" :max="3.14"
    :step="1" :label="true">
  </q-slider>
    </div>
    <div class="st-col col-12 col-sm st-module">
        <b>offset</b>
  <q-slider v-model="off"
    :min="-0.5" :max="1"
    :step="0.1" :label="true">
  </g-slider>
    </div>
</div>
<div class="row">
    <div class="st-col col-12 col-sm st-module">
  <b>Sinewave</b>
        <ploy><plotly :data="my_sine"> </plotly>
    </div>
```

julia --project

```
julia> using GenieFramework
julia> Genie.loadapp() # Load app
julia> up() # Start server
```

We can now open the browser and navigate to the link localhost:8000. We will get the graphical interface as in Figure 2.

Figure 2: Genie -> Sine Wave

You are asked to add two extra sliders that modify the behaviour of the sine wave graph:

- 1. Phase ranging between $-\pi$ and π , changes by a step of $\frac{\pi}{100}$
- 2. Offset varies from -0.5 to 1, by a step of 0.1.

ISET Bizerte -2/2 —