700, Health Sciences Drive, Stony Brook, New York

Shrinath Deshpande

https://deshpandeshrinath.github.io/ Mobile: +1-631-633-1851

Education

Stony Brook University

Stony Brook, NY

Email: deshpandeshrinath@gmail.com

Ph.D. (Major: Mechanical, Minor: Computer Science), GPA 3.86

Aug. 2015 - Present

- Relevent Coursework: Artificial Intelligence, Computer Vision, Machine Learning, Analysis of Algorithms, Advanced Control Systems, Robotics, Advanced Dynamics, Computational Geometry, Geometric Modelling, Product Design Optimization
- Developing a framework for data-driven mechanism design, under the guidance of Dr. Purwar; funded by \$450K NSF grant.

Experience

Stony Brook University

Stony Brook, NY

Research Assistant, Teaching Assistant

May 2016 - Present, Aug 2015 - May 2016

Machine Learning

- Working on Deep RL for Intelligent Mechanism Design; Implemented DDPG, HER for goal oriented continuous control tasks.
- Used autoencoder nets for dimensionality reduction; Achieved 45:1 data compression for mechanism trajectory database.
- Autoencoders trained in greedy layer-wise fashion; Tensorflow, GCP based implementation; Accepted for publication.

Optimization

- Developed Lagrange Optimization routine for four-bar linkage synthesis; Reduces constrained optimization into polynomial system. Solved the system by gröebner basis method; implemented using GIAC npm package on node.js server.
- Led to an award winning publication for solving practical synthesis problems (doi: 10.1115/1.4037801)

MotionGen: Web, iOs and Android App for Linkage Synthesis

- Developed smart-synthesis, motion interpolation functionalities for the cross platform app based on MVC architecture; url: http://cadcam.eng.sunysb.edu/. Used Apache Cordova framework for iOs and Android implementations.
- Implemented multi-core computations for synthesis using *Cluster* node package.

Teaching Assistant - MEC101 (Mechanical Design Innovation), MEC 262 Engineering Dynamics

- Involved in creating assignment, exams and conducting recitation sessions for 200+ students in each course.
- Developed modular robotic kits for MEC101 students; Conducted Hands-On tutorials on Arduino programming.

Skills

- Languages: Proficient in Python, Javascript, MATLAB, Mathematica. Competent with C++, HTML, CSS
- Tools & Technologies: Tensorflow, OpenCV, Simulink, ROS, Vim, Scikit-learn, Unix/Linux, GCP, STL, Apache Cordova

Relevant Projects

Tensorflow, OpenAI-Gym

Python, Tensorflow, OpenCV

Deep Reinforcement Learning for Continuous Control Tasks

CSE 537 AI, Prof. N Balasubramanian

Jan 2018 - April 2018

- Implemented Deep DPG algorithm to learn continuous control policies; Compatible with all OpenAI-Gym environments.
- Implemented Hindsight Experience Replay for learning goal-oriented tasks with sparse binary rewards.

Visual Odometry with Deep Learning

CSE527 Computer Vision, Prof. Roy Shilkrot

Oct 2017 - Dec 2017

- Built deep Recurrent Convolutional Neural Network for pose estimation of a car; CNN was derived from pretrained FlowNet2.0
- Trained and tested on KITTI visual odometry dataset (grayscale); Supported by Human Interaction Lab, Stony Brook.

Optimal Control of a Drifting Car MATLAB, GPOPS-II

MEC560 Advanced Control Systems, Prof. Vivek Yadav Oct 2016 - Dec 2016

- Designed Ext. Kalman Filter for observer; Modeled governing dynamics; Used empirical tire friction model for drift simulations.
- Computed shortest path using Dynamic Programming. Obtained Optimal Control via Direct Collocation; Implemented in MATLAB using optimal control solver GPOPS II.
- Used high gain PID controller to follow optimal control. Results match with empirical drifting techiques used by race drivers.

Motion Planning of Baxter Arm MATLAB

MEC529 Robotics, Prof. N. Chakraborty March 2016 - May 2016

- Computed smooth B-Spline motion for pushing. Computed Jacobian matrix; Applied approximate Inverse Position Kinematics
- Obtained joint angles and rates for the task. Performed simulations to validate the results.

Selected Publications

- Deshpande S, Purwar A. A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages. (Accepted for ASME IDETC, 2018.)
- Deshpande S, Purwar A. A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem. ASME. J. Mechanisms Robotics. 2017;9(6):061005-061005-9. doi:10.1115/1.4037801
- Purwar, A., Deshpande, S., Ge, Q. J. (2016, August). MotionGen: An iOS and Android App for Planar Four-Bar Motion Generation, ASME 2016 IDETC.

Awards

A.T. Yang Award in Theoretical Kinematics

Aug 2017

• Awarded \$1000 for the Best Paper at ASME Mechanisms and Robotics Conference, Cleveland, OH, August, 2017