Probabilistic Machine Learning

Variational Inference

Alexandre Graell i Amat alexandre.graell@chalmers.se https://sites.google.com/site/agraellamat

November 30, 2023

Bayesian (probablistic) inference

In this course we consider problems of the form:

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})}$$

- D: Observed data
- θ : parameters of some model explaining the data

Goal: Find $p(\theta|\mathcal{D})$.

- Can be found exactly in some cases (conjugate priors)
- Computation complexity can be alleviated when $p(\mathcal{D}, \theta)$ defined by specific classes of probabilistic graphical models (BNs, MRFs, FGs)

And when computing $p(\theta|\mathcal{D})$ is intractable?

Approximate inference

Need to resort to approximations:

Stochastic methods:

Monte Carlo approximation (numerical sampling)

Deterministic approximate inference methods:

- Variational inference
- Expectation propagation

Approximate inference

We will use Bishop's notation:

- z: set of latent variables and parameters
- x: set of observed variables

Given a probabilistic model that specifies p(x, z), we want to find an approximation of p(z|x) and p(x).

Deterministic approximate inference

Idea: Approximate a complex posterior distribution p(z|x) by a tractable distribution $q(z) \in \Omega$ that is close to p(z|x).

 Ω : A tractable family of densities over latent variables z

• Each $q(z) \in \Omega$ is a candidate approximation to p(z|x)

Goal: Find best candidate (closest to true posterior).

• Given definition of discrepancy between q(z) and p(z|x), free parameters of q(z) set by minimizing discrepancy

Kullback-Leibler divergence

Kullback-Leibler divergence:

$$\begin{aligned} \mathsf{KL}[p(\boldsymbol{x}) \parallel q(\boldsymbol{x})] &= \int p(\boldsymbol{x}) \ln \frac{p(\boldsymbol{x})}{q(\boldsymbol{x})} \mathsf{d}\boldsymbol{x} \\ &= -\int p(\boldsymbol{x}) \ln \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})} \mathsf{d}\boldsymbol{x} \end{aligned}$$

Properties:

- 1. $\mathsf{KL}[p(x) \parallel q(x)] \ge 0$
- 2. $\mathsf{KL}[p(\boldsymbol{x}) \parallel q(\boldsymbol{x})] = 0$ if and only if $p(\boldsymbol{x}) = q(\boldsymbol{x})$
- 3. $\mathsf{KL}[p(x) \parallel q(x)] \neq \mathsf{KL}[q(x) \parallel p(x)]$

Idea: Find a tractable distribution $p(z) \in \Omega$ that minimizes KL divergence.

Deterministic approximate inference

Two possibilities:

Variational inference: Minimize reverse KL divergence

$$q^*(z) = \arg\min_{q(z) \in \Omega} \mathsf{KL}[q(z) \parallel p(z|x)]$$

Expectation propagation: Minimize forward KL divergence

$$q^*(z) = \arg\min_{q(z) \in \Omega} \mathsf{KL}[p(z|x) \parallel q(z)]$$

An important application of VI: Variational autoencoders

D. P. Kingma, and M. Welling, "An Introduction to Variational Autoencoders," Foundations and Trends in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.

Deterministic approximate inference

- Blue: Bimodal distribution
- Red: Single Gaussian ($\Omega = \{\mathcal{N}(\mu, \sigma^2)\}$)
 - Left: $q^*(z) = \arg\min_{q(z) \in \Omega} \mathsf{KL}[p(z|x) \parallel q(z)]$
 - Middle and right: $q^*(z) = \arg\min_{q(z) \in \Omega} \mathsf{KL}[q(z) \parallel p(z|x)]$

Idea: Approximate p(z|x) with a tractable $q(z) \in \Omega$ that minimizes

$$q^*(z) = \arg\min_{q(z) \in \Omega} \mathsf{KL}[q(z) \parallel p(z|x)]$$

• Not tractable! (requires knowledge of posterior p(z|x))

But can rewrite $\mathsf{KL}[q(z) \parallel p(z|x)]$ as

$$\begin{aligned} \mathsf{KL}[q(\boldsymbol{z}) \parallel p(\boldsymbol{z}|\boldsymbol{x})] &= -\int q(\boldsymbol{z}) \ln \frac{p(\boldsymbol{z}|\boldsymbol{x})}{q(\boldsymbol{z})} \mathsf{d}\boldsymbol{z} \\ &= -\int q(\boldsymbol{z}) \ln \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})p(\boldsymbol{x})} \mathsf{d}\boldsymbol{z} \\ &= \ln p(\boldsymbol{x}) - \underbrace{\int q(\boldsymbol{z}) \ln \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \mathsf{d}\boldsymbol{z}}_{\mathcal{L}(q)} \\ &= \ln p(\boldsymbol{x}) + \mathsf{KL}[q(\boldsymbol{z}) \parallel p(\boldsymbol{x}, \boldsymbol{z})] \end{aligned}$$

It follows:

$$\begin{aligned} \ln p(\boldsymbol{x}) &= \ln \int p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d} \boldsymbol{z} \\ &= \ln \int q(\boldsymbol{z}) \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \mathrm{d} \boldsymbol{z} \\ &= \ln \left(\mathbb{E}_{q(\boldsymbol{z})} \left[\frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \right] \right) \\ &\geq \mathbb{E}_{q(\boldsymbol{z})} \left[\ln \left(\frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \right) \right] \\ &= \int q(\boldsymbol{z}) \ln \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \mathrm{d} \boldsymbol{z} \\ &\triangleq \mathcal{L}(q) \end{aligned}$$

 $\mathcal{L}(q)$: A lower bound on $\ln p(x)$ (evidence lower bound (ELBO)).

$$\mathsf{KL}[q(\boldsymbol{z}) \parallel p(\boldsymbol{z}|\boldsymbol{x})] = \ln p(\boldsymbol{x}) - \mathcal{L}(q)$$

Thus, solving

$$q^*(z) = \arg\min_{q(z) \in \Omega} \mathsf{KL}[q(z) \parallel p(z|x)]$$

equivalent to solving

$$q^*(\boldsymbol{z}) = \arg\max_{q(\boldsymbol{z}) \in \Omega} \ \mathcal{L}(q) \triangleq \int q(\boldsymbol{z}) \ln \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \mathrm{d}\boldsymbol{z} = -\mathsf{KL}[q(\boldsymbol{z}) \parallel p(\boldsymbol{x}, \boldsymbol{z})]$$

With no restrictions on q(z), $\mathcal{L}(q)$ maximized for q(z) = p(z|x).

$$\begin{split} q^*(\boldsymbol{z}) &= \arg\max_{q(\boldsymbol{z}) \in \Omega} \ \mathcal{L}(q) \\ &= \arg\min_{q(\boldsymbol{z}) \in \Omega} \ \mathsf{KL}[q(\boldsymbol{z}) \parallel p(\boldsymbol{x}, \boldsymbol{z})] \end{split}$$

In general intractable!

Idea: Choose a parametric distribution $q(z|\omega)$ that is tractable, but rich enough to provide a good approximation of the true posterior.

• $\mathcal{L}(q)$ a function of $w \longrightarrow \mathsf{Can}$ exploit standard nonlinear optimization techniques to determine optimal w

Idea (2) (mean field variational inference): Restrict q(z) so that factorizes as

$$q(oldsymbol{z}) = \prod_{i=1}^M q_i(oldsymbol{z}_i)$$

where z_1, \ldots, z_M are disjoint partitions of z.

$$q(oldsymbol{z}) = \prod_{i=1}^M q_i(oldsymbol{z}_i)$$

Goal: Solve optimization problem

$$\max_{q_1, \dots, q_M} \mathcal{L}(q)$$

Amongst all $q(z) = \prod_{i=1}^{M} q_i(z_i)$, we want to find distribution with largest $\mathcal{L}(q)$.

We will do optimization one term at a time

Goal: Solve

$$q^*(oldsymbol{z}) = rg \max_{q(oldsymbol{z}) \in \Omega} \mathcal{L}(q) riangleq \int q(oldsymbol{z}) \ln rac{p(oldsymbol{x}, oldsymbol{z})}{q(oldsymbol{z})} \mathsf{d}oldsymbol{z}$$

with

$$q(oldsymbol{z}) = \prod_{i=1}^M q_i(oldsymbol{z}_i)$$

Singling out terms that involve q_i :

$$\begin{split} \mathcal{L}(q) &= \int \prod_i q_i \left(\ln p(\boldsymbol{x}, \boldsymbol{z}) - \sum_k \ln q_k \right) \mathrm{d}\boldsymbol{z} \\ &= \left(\int \prod_i q_i \ln p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z} \right) - \left(\int \prod_i q_i \left(\sum_k \ln q_k \right) \mathrm{d}\boldsymbol{z} \right) \\ &= \left(\int \prod_i q_i \ln p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z} \right) - \left(\int \prod_i q_i \ln q_j \mathrm{d}\boldsymbol{z} \right) - \left(\int \prod_i q_i \left(\sum_{k \neq i} \ln q_k \right) \mathrm{d}\boldsymbol{z} \right) \end{split}$$

First term:

$$\begin{split} \int \prod_i q_i \ln p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d} \boldsymbol{z} &= \int q_j \left(\int \ln p(\boldsymbol{x}, \boldsymbol{z}) \prod_{i \neq j} q_i \mathrm{d} \boldsymbol{z}_i \right) \mathrm{d} \boldsymbol{z}_j \\ &= \int q_j \mathbb{E}_{\{\boldsymbol{z}_i\}_{i \neq j} \sim \prod_{i \neq j} q_i(\boldsymbol{z}_i)} \Big[\ln p(\boldsymbol{x}, \boldsymbol{z}) \Big] \mathrm{d} \boldsymbol{z}_j \\ &= \int q_j \mathbb{E}_{i \neq j} \Big[\ln p(\boldsymbol{x}, \boldsymbol{z}) \Big] \mathrm{d} \boldsymbol{z}_j \end{split}$$

Second term:

$$\begin{split} \int \prod_i q_i \ln q_j \mathsf{d}\boldsymbol{z} &= \int q_j \ln q_j \prod_{i \neq j} q_i \mathsf{d}\boldsymbol{z}_j \mathsf{d}\boldsymbol{z}_{i \neq j} \\ &= \left(\int q_j \ln q_j \mathsf{d}\boldsymbol{z}_j \right) \left(\int \prod_{i \neq j} q_i \mathsf{d}\boldsymbol{z}_{i \neq j} \right) \\ &= \int q_j \ln q_j \mathsf{d}\boldsymbol{z}_j \end{split}$$

Third term:

$$\begin{split} \int \prod_i q_i \left(\sum_{k \neq j} \ln q_k \right) \mathrm{d}\boldsymbol{z} &= \int q_j \prod_{i \neq j} q_i \left(\sum_{k \neq j} \ln q_k \right) \mathrm{d}\boldsymbol{z}_j \mathrm{d}\boldsymbol{z}_{i \neq j} \\ &= \left(\int q_j \mathrm{d}\boldsymbol{z}_j \right) \left(\int \prod_{i \neq j} q_i \left(\sum_{k \neq j} \ln q_k \right) \mathrm{d}\boldsymbol{z}_{i \neq j} \right) \\ &= \int \prod_{i \neq j} q_i \left(\sum_{k \neq j} \ln q_k \right) \mathrm{d}\boldsymbol{z}_{i \neq j} \end{split}$$

A constant that does not depend on $q(z_j)$!

Goal: Solve

$$q^*(\boldsymbol{z}) = \arg\max_{q(\boldsymbol{z}) \in \Omega} \mathcal{L}(q) \triangleq \int q(\boldsymbol{z}) \ln \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q(\boldsymbol{z})} \mathrm{d}\boldsymbol{z}$$

with

$$q(oldsymbol{z}) = \prod_{i=1}^M q_i(oldsymbol{z}_i)$$

Singling out terms that involve q_i :

$$\mathcal{L}(q) = \int q_j \mathbb{E}_{i \neq j} \Big[\ln p(\boldsymbol{x}, \boldsymbol{z}) \Big] d\boldsymbol{z}_j - \int q_j \ln q_j d\boldsymbol{z}_j + ext{const.}$$

$$= \int q_j \ln \tilde{p}(\boldsymbol{x}, \boldsymbol{z}_j) d\boldsymbol{z}_j - \int q_j \ln q_j d\boldsymbol{z}_j + ext{const.}$$

with
$$\ln ilde{p}(oldsymbol{x}, oldsymbol{z}_j) = \mathbb{E}_{i
eq j} \Big[\ln p(oldsymbol{x}, oldsymbol{z}) \Big] + \mathsf{const.}$$

$$egin{aligned} \mathcal{L}(q) &= \int q_j \ln ilde{p}(oldsymbol{x}, oldsymbol{z}_j) \mathrm{d} oldsymbol{z}_j - \int q_j \ln q_j \mathrm{d} oldsymbol{z}_j + \mathrm{const.} \ &= \int q_j \ln rac{ ilde{p}(oldsymbol{x}, oldsymbol{z}_j)}{q_j} \mathrm{d} oldsymbol{z}_j + \mathrm{const.} \ &= -\mathsf{KL}[q_j(oldsymbol{z}_j) \parallel ilde{p}(oldsymbol{x}, oldsymbol{z}_j)] + \mathrm{const.} \end{aligned}$$

Keeping $q_{i\neq j}$ fixed, maximizing $\mathcal{L}(q)$ with respect to $q_j(z_j)$, we obtain:

$$\begin{split} q_j^*(\boldsymbol{z}_j) &= \arg\max_{q_j} \ \mathcal{L}(q) \\ &= \arg\max_{q_j} \ -\mathsf{KL}[q_j(\boldsymbol{z}_j) \parallel \tilde{p}(\boldsymbol{x}, \boldsymbol{z}_j)] + \mathsf{const.} \\ &= \arg\min_{q_j} \ \mathsf{KL}[q_j(\boldsymbol{z}_j) \parallel \tilde{p}(\boldsymbol{x}, \boldsymbol{z}_j)] \\ &= \tilde{p}(\boldsymbol{x}, \boldsymbol{z}_j) \\ &= \exp\left(\mathbb{E}_{i \neq j} \Big[\ln p(\boldsymbol{x}, \boldsymbol{z}) \Big] + \mathsf{const.} \right) \end{split}$$

$$q_j^*(\boldsymbol{z}_j) = \exp\left(\mathbb{E}_{i \neq j} \Big[\ln p(\boldsymbol{x}, \boldsymbol{z}) \Big] + \mathsf{const.} \right)$$

Equivalently,

$$\ln q_i^*(\boldsymbol{z}_j) = \mathbb{E}_{i \neq j}[\ln p(\boldsymbol{z}, \boldsymbol{x})] + \mathsf{const.}$$

 $\ln q_i^*(z_i)$ obtained by considering logarithm of $\ln p(z,x)$ and taking expectation with respect to $\{q_i\}_{i\neq i}$.

• Constant chosen so that q_i^* is a normalized distribution

Goal: Solve optimization problem

$$\max_{q_1,\ldots,q_M} \mathcal{L}(q)$$

Algorithm:

- 1. Initialization: Set $\{q_i(z_i)\}$
- 2. For $\ell = 1, \ldots, \ell_{\text{max}}$:
 - Fix $\{q_i(z_i)\}_{i\neq j}$ to their last estimated values $q_i^*(z_i)$
 - Update $q_i^*(z_i)$ as

$$q_j^*(\boldsymbol{z}_j) = \exp\left(\mathbb{E}_{\{q_i\}_{i \neq j}}[\ln p(\boldsymbol{z}, \boldsymbol{x})] + \mathsf{const.}\right)$$

- Normalize $q_i^*(z_i)$
- 3. Repeat Step 2 until ELBO ($\mathcal{L}(q)$) converges

Mean field variational inference solves $\max_{q_1,...,q_M} \mathcal{L}(q)$ iteratively for one hidden variable \mathbf{z}_j at a time, while fixing $q_i(\mathbf{z}_i)$ for other latent variables $\{\mathbf{z}_i\}_{i\neq j}$.

Probabilistic model:

$$p(t_{\mathcal{D}}|\boldsymbol{w}) = \prod_{i=1}^{N} \mathcal{N}\left(t_{i}|\boldsymbol{w}^{\mathsf{T}}\boldsymbol{\phi}(\boldsymbol{x}_{i}), \beta^{-1}\right)$$
$$p(\boldsymbol{w}|\alpha) = \mathcal{N}(\boldsymbol{w}|0, \alpha^{-1}\boldsymbol{I})$$

with

$$\mathcal{N}\left(t_{i}|\boldsymbol{w}^{\mathsf{T}}\boldsymbol{\phi}(\boldsymbol{x}_{i}), \beta^{-1}\right) = \left(\frac{\beta}{2\pi}\right)^{1/2} \exp\left(-\frac{\beta}{2}\left(t_{i} - \boldsymbol{w}^{\mathsf{T}}\boldsymbol{\phi}(\boldsymbol{x}_{i})\right)^{2}\right)$$
$$\mathcal{N}(\boldsymbol{w}|0, \alpha^{-1}\boldsymbol{I}) = \left(\frac{\alpha}{2\pi}\right)^{M/2} \exp\left(-\frac{\alpha}{2}\boldsymbol{w}^{\mathsf{T}}\boldsymbol{w}\right)$$

We will assume β known

How do we pick α ? \longrightarrow Introduce prior, $p(\alpha) = \operatorname{\mathsf{Gamma}}(\alpha|a_0, b_0)$.

Probabilistic model:

$$\begin{split} p(t_{\mathcal{D}}|\boldsymbol{w}) &= \prod_{i=1}^{N} \mathcal{N}\left(t_{i}|\boldsymbol{w}^{\mathsf{T}}\boldsymbol{\phi}(\boldsymbol{x}_{i}), \boldsymbol{\beta}^{-1}\right) \\ p(\boldsymbol{w}|\alpha) &= \mathcal{N}(\boldsymbol{w}|0, \alpha^{-1}\boldsymbol{I}) = \left(\frac{\alpha}{2\pi}\right)^{M/2} \exp\left(-\frac{\alpha}{2}\boldsymbol{w}^{\mathsf{T}}\boldsymbol{w}\right) \\ p(\alpha) &= \mathsf{Gamma}(\alpha|a_{0}, b_{0}) \end{split}$$

Joint distribution:

$$p(t_{\mathcal{D}}, \boldsymbol{w}, \alpha) = p(t_{\mathcal{D}}|\boldsymbol{w})p(\boldsymbol{w}|\alpha)p(\alpha)$$

$$\ln p(t_{\mathcal{D}}|\boldsymbol{w}) = \sum_{i=1}^{N} \ln \left(\left(\frac{\beta}{2\pi} \right)^{1/2} \exp \left(-\frac{\beta}{2} \left(t_i - \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) \right)^2 \right) \right)$$

$$= -\frac{\beta}{2} \sum_{i=1}^{N} \left(t_i - \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{x}_i) \right)^2 + \text{const.}$$

$$\ln p(\boldsymbol{w}|\alpha) = \frac{M}{2} \ln \alpha - \frac{\alpha}{2} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{w} + \text{const.}$$

$$\ln p(\alpha) = (a_0 - 1) \ln \alpha - b_0 \alpha + \text{const.}$$

Predictive distribution (recall):

$$p(t|\mathcal{D}, \boldsymbol{x}, \beta) = \int p(\boldsymbol{w}|\mathcal{D}, \beta)p(t|\boldsymbol{x}, \boldsymbol{w}, \beta)d\boldsymbol{w}$$

Goal: Find an approximation of $p(w, \alpha | \mathcal{D}, \beta) = p(w, \alpha | \mathcal{D}) \longrightarrow \text{Variational framework!}$

Goal: Find an approximation of $p(w, \alpha | \mathcal{D}, \beta) = p(w, \alpha | \mathcal{D}) \longrightarrow \text{Variational}$ framework!

We will consider a posterior $p(w, \alpha | \mathcal{D}, \beta) \approx q(w, \alpha)$ that factorizes as

$$q(\boldsymbol{w}, \alpha) = q(\boldsymbol{w})q(\alpha)$$

with $q(\boldsymbol{w}, \alpha) \equiv p(\boldsymbol{w}, \alpha | \mathcal{D}), \ q(\boldsymbol{w}) \equiv q(\boldsymbol{w} | \mathcal{D}) \text{ and } q(\alpha) \equiv p(\alpha | \mathcal{D})$

Goal: Want to minimize ELBO.

 Recall: for each factor, we take the log of joint distribution, then average with respect to other variables

We need to iterate equations:

$$\begin{split} & \ln q^*(\alpha) = \mathbb{E}_{q(\boldsymbol{w})}[\ln(p(t_{\mathcal{D}}, \boldsymbol{w}, \alpha))] + \text{const.} \\ & \ln q^*(\boldsymbol{w}) = \mathbb{E}_{q(\alpha)}[\ln(p(t_{\mathcal{D}}, \boldsymbol{w}, \alpha))] + \text{const.} \end{split}$$

with

$$p(t_{\mathcal{D}}, \boldsymbol{w}, \alpha) = p(t_{\mathcal{D}}|\boldsymbol{w})p(\boldsymbol{w}|\alpha)p(\alpha)$$

Optimum $q^*(\alpha)$:

$$\begin{split} \ln q^*(\alpha) &= \mathbb{E}_{q(\boldsymbol{w})}[\ln(p(t_{\mathcal{D}}, \boldsymbol{w}, \alpha))] + \text{const.} \\ &= \mathbb{E}_{q(\boldsymbol{w})}[\ln(p(\boldsymbol{w}|\alpha)) + \ln(p(\alpha))] + \text{const.} \\ &= \ln p(\alpha) + \mathbb{E}_{q(\boldsymbol{w})}[\ln p(\boldsymbol{w}|\alpha)] + \text{const.} \\ &= (a_0 - 1) \ln \alpha - b_0 \alpha + \frac{M}{2} \ln \alpha - \frac{\alpha}{2} \mathbb{E}_{q(\boldsymbol{w})} \left[\boldsymbol{w}^\mathsf{T} \boldsymbol{w} \right] + \text{const.} \end{split}$$

$$q^*(\alpha) = \mathsf{Gamma}(\alpha|a_N, b_N), \ a_N = a_0 + \frac{M}{2}, \ b_N = b_0 + \frac{1}{2}\mathbb{E}_{q(w)}[w^\mathsf{T}w]$$

Optimum $q^*(\boldsymbol{w})$:

$$\begin{split} \ln q^*(\boldsymbol{w}) &= \mathbb{E}_{q(\alpha)}[\ln(p(t_{\mathcal{D}}, \boldsymbol{w}, \alpha))] + \text{const.} \\ &= \mathbb{E}_{q(\alpha)}[\ln(p(t_{\mathcal{D}}|\boldsymbol{w})) + \ln(p(\boldsymbol{w}|\alpha))] + \text{const.} \\ &= \ln(p(t_{\mathcal{D}}|\boldsymbol{w})) + \mathbb{E}_{q(\alpha)}[\ln p(\boldsymbol{w}|\alpha)] + \text{const.} \\ &= -\frac{\beta}{2} \sum_{i=1}^N \left(t_i - \boldsymbol{w}^\mathsf{T} \boldsymbol{\phi}(\boldsymbol{x}_i)\right)^2 - \frac{1}{2} \mathbb{E}_{q(\alpha)}[\alpha] \boldsymbol{w}^\mathsf{T} \boldsymbol{w} + \text{const.} \\ &= -\frac{1}{2} \boldsymbol{w}^\mathsf{T} \left(\mathbb{E}_{q(\alpha)}[\alpha] \boldsymbol{I} + \beta \boldsymbol{\Phi}^\mathsf{T} \boldsymbol{\Phi}\right) \boldsymbol{w} + \beta \boldsymbol{w}^\mathsf{T} \boldsymbol{\Phi}^\mathsf{T} t_{\mathcal{D}} + \text{const.} \end{split}$$

$$q^*(\boldsymbol{w}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_N, \boldsymbol{S}_N), \ \boldsymbol{m}_N = \beta \boldsymbol{S}_N \boldsymbol{\Phi}^\mathsf{T} t_{\mathcal{D}}, \ \boldsymbol{S}_N = \left(\mathbb{E}_{q(\alpha)}[\alpha] \boldsymbol{I} + \beta \boldsymbol{\Phi}^\mathsf{T} \boldsymbol{\Phi}\right)^{-1}$$

We get (see Bishop, Appendix B):

$$\mathbb{E}_{q(oldsymbol{lpha})}[lpha] = rac{a_N}{h_N} \qquad \quad \mathbb{E}_{q(oldsymbol{w})}[oldsymbol{w}oldsymbol{w}^{\mathsf{T}}] = oldsymbol{m}_Noldsymbol{m}_N^{\mathsf{T}} + oldsymbol{S}_N$$

$$\mathbb{E}_{q(lpha)}[lpha] = rac{a_N}{b_N} \qquad \qquad \mathbb{E}_{q(oldsymbol{w})}[oldsymbol{w}oldsymbol{w}^{\mathsf{T}}] = oldsymbol{m}_N oldsymbol{m}_N^{\mathsf{T}} + oldsymbol{S}_N$$

Algorithm:

- 1. Initialization: Set q(w)
- 2. For $\ell = 1, ..., \ell_{max}$:
 - Compute

$$egin{aligned} a_N &= a_0 + rac{M}{2} \ b_N &= b_0 + rac{1}{2} \mathbb{E}_{q(oldsymbol{w})}[oldsymbol{w}^\mathsf{T} oldsymbol{w}] = b_0 + rac{1}{2} \left(oldsymbol{m}_N oldsymbol{m}_N^\mathsf{T} + oldsymbol{S}_N
ight) \end{aligned}$$

Compute

$$egin{aligned} m{m}_N &= eta m{S}_N m{\Phi}^\mathsf{T} t_\mathcal{D} \ m{S}_N &= \left(\mathbb{E}_{q(lpha)} [lpha] m{I} + eta m{\Phi}^\mathsf{T} m{\Phi}
ight)^{-1} = \left(rac{a_N}{b_N} m{I} + eta m{\Phi}^\mathsf{T} m{\Phi}
ight)^{-1} \end{aligned}$$

3. Repeat Step 2 until ELBO ($\mathcal{L}(q)$) converges

Predictive distribution:

$$\begin{split} p(t|\mathcal{D}, \boldsymbol{x}, \boldsymbol{\beta}) &= \int p(\boldsymbol{w}|\mathcal{D}, \boldsymbol{\beta}) p(t|\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{\beta}) d\boldsymbol{w} \\ &= \int p(\boldsymbol{w}|\mathcal{D}) p(t|\boldsymbol{x}, \boldsymbol{w}) d\boldsymbol{w} \\ &\approx \int p(t|\boldsymbol{x}, \boldsymbol{w}) q(\boldsymbol{w}) d\boldsymbol{w} \\ &= \int \mathcal{N} \left(t|\boldsymbol{w}^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\beta}^{-1} \right) \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_N, \boldsymbol{S}_N) d\boldsymbol{w} \\ &= \mathcal{N} \left(t|\boldsymbol{m}_N^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\sigma}^2(\boldsymbol{x}) \right) d\boldsymbol{w} \end{split}$$

with

$$\sigma^2(\boldsymbol{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\boldsymbol{x})^\mathsf{T} \boldsymbol{S}_N \boldsymbol{\phi}(\boldsymbol{x})$$

Solution takes same form as seen previously in class! (with fixed α)

$$p(\boldsymbol{x}, \boldsymbol{y}) = \frac{1}{Z} \prod_{i,j} \psi_{i,j}(x_i, x_j) \prod_i \psi_i(x_i, y_i)$$

- $x_i, y_i \in \{+1, -1\}$ (Ising model)
- $\psi_i(x_i, y_i) = e^{\eta x_i y_i}$ and $\psi_{i,j}(x_i, x_j) = e^{\beta x_i x_j}$

For a Gaussian model $y_i = x_i + n_i$, with $\mathsf{n}_i \sim \mathcal{N}(0, \sigma^2)$,

$$\psi_{i,j}(x_i, y_i) = e^{-E(x_i, y_i)} = e^{L_i(x_i, y_i)}$$

Goal:

$$\hat{\boldsymbol{x}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y})$$

with

$$\begin{split} p(\boldsymbol{x}|\boldsymbol{y}) &= \frac{p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})}{p(\boldsymbol{y})} \\ &= \frac{1}{Z_1} \ p(\boldsymbol{x}, \boldsymbol{y}) \\ &= \frac{1}{Z_2} \ \prod_i \psi_i(x_i, y_i) \prod_{i,j: \text{clique}} \psi_{i,j}(x_i, x_j) \\ &= \frac{1}{Z_2} \ \prod_i e^{L_i(x_i, y_i)} \prod_{i,j: \text{clique}} e^{\beta x_i x_j} \\ &= \frac{1}{Z_2} \ e^{\sum_{i,j: \text{clique}} \beta x_i x_j + \sum_i L_i(x_i, y_i)} \end{split}$$

Goal:

$$\hat{\boldsymbol{x}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y})$$

with

$$p(oldsymbol{x}|oldsymbol{y}) \propto \exp\left(\sum_{i,j: \mathsf{clique}} eta x_i x_j + \sum_i L_i(x_i,y_i)
ight)$$

Idea: Approximate p(x|y) by a fully factorized approximation

$$q(oldsymbol{x}) = \prod q(x_i, \mu_i), \quad \pmb{\mu_i} : \mathsf{mean} \ \mathsf{value} \ \mathsf{of} \ \mathsf{x}_i$$

then apply mean field variational inference.

Optimal factor $q_j^*(x_j)$:

$$\begin{split} q_j^*(x_j) &= \exp\left(\mathbb{E}_{\{q_i\}_{i \neq j}}\left[\ln p(\boldsymbol{x}, \boldsymbol{y})\right] + \mathsf{const.}\right) \\ &= \frac{1}{Z} \exp\left(\mathbb{E}_{\{q_i\}_{i \neq j}}\left[\ln p(\boldsymbol{x}, \boldsymbol{y})\right]\right) \\ &= \frac{1}{Z} \exp\left(\mathbb{E}_{\{q_i\}_{i \neq j}}\left[\sum_{i, j: \mathsf{clique}} \beta x_i x_j + \sum_i L_i(x_i, y_i)\right]\right) \end{split}$$

Need to consider only terms that involve x_j ,

$$q_j^*(x_j) \propto \exp\left(\mathbb{E}_{\{q_i\}_{i \neq j}} \left[x_j \sum_{i \in \mathcal{N}(j)} \beta x_i + L_j(x_j, y_j) \right] \right)$$

$$= \exp\left(x_j \sum_{i \in \mathcal{N}(j)} \beta \mathbb{E}_{q_i} \left[x_i \right] + L_j(x_j, y_j) \right)$$

$$= \exp\left(x_j \sum_{i \in \mathcal{N}(j)} \beta \mu_i + L_j(x_j, y_j) \right)$$

$$q_j^*(x_j) \propto \exp(x_j m_j + L_j(x_j, y_j))$$

with $m_j \triangleq \sum_{i \in \mathcal{N}(i)} \beta \mu_i$

Define $L_i^+ \triangleq L_j(+1, y_j)$ and $L_i^- \triangleq L_j(-1, y_j)$

Approximate marginal posterior given by

$$q_j^*(x_j = +1) = \frac{\exp(m_j + L_j^+)}{\exp(m_j + L_j^+) + \exp(-m_j + L_j^-)}$$
$$= \sigma(2a_j)$$

with

$$a_j \triangleq m_j + 0.5(L_j^+ - L_j^-)$$

and

$$q_i^*(\mathsf{x}_j = -1) = \sigma(-2a_j)$$

We can now compute new mean for x_j as

$$\begin{split} \mu_j &= \mathbb{E}_{q_j}[x_j] = q_j(\mathbf{x}_j = +1) \cdot (+1) + q_j(\mathbf{x}_j = -1) \cdot (-1) \\ &= \frac{1}{1 + e^{-2a_j}} - \frac{1}{1 + e^{2a_j}} \\ &= \tanh(a_j) \\ &= \tanh\left(\sum_{i \in \mathcal{N}(j)} \beta \mu_i + 0.5(L_j^+ - L_j^-)\right) \end{split}$$

We are done!

We can now update the parameters $\{\mu_j\}$ iteratively as

$$\mu_j^{(\ell)} = \tanh\left(\sum_{i\in\mathcal{N}(j)}\beta\mu_i^{(\ell-1)} + 0.5(L_j^+ - L_j^-)\right)$$

Algorithm:

- 1. Initialization: Set $\{\mu_i^{(1)}\}\$, e.g., to the noisy pixel values
- 2. For $\ell = 2, \ldots, \ell_{\text{max}}$:
 - Update $q_i^*(\mathsf{x}_j = +1)$ and $q_i^*(\mathsf{x}_j = -1)$ according to

$$q_j^*(\mathbf{x}_j=+1)=\sigma(2a_j) \quad \text{and} \quad q_j^*(\mathbf{x}_j=-1)=\sigma(-2a_j)$$

using $\{\mu_i^{(\ell-1)}\}$ from previous iteration

ullet Compute new mean values $\{\mu_i^{(\ell)}\}$ as

$$\mu_j^{(\ell)} = \tanh\left(\sum_{i \in \mathcal{N}(j)} \beta \mu_i^{(\ell-1)} + 0.5(L_j^+ - L_j^-)\right)$$

3. Repeat Step 2 until convergence

Mean field variational inference for the Ising model

Model:

- $\beta_{i,j} = 1$, Gaussian model with $\sigma = 2$
- Parallel updates with $\lambda = 0.5$,

$$\mu_j^{(\ell)} = (1-\lambda)\mu_j^{(\ell-1)} + \lambda \mathsf{tanh}\left(\sum_{i\in\mathcal{N}(j)}\beta\mu_i^{(\ell-1)} + 0.5(L_j^+ - L_j^-)\right)$$

Mean field variational inference for the Ising model

Figures:

• Left: One iteration

Center: Three iterations

• Right: Mean over 15 iterations

Deterministic approximate inference

Two possibilities:

Variational inference: Minimize

$$q^*(z) = \arg\min_{q(z) \in \Omega} \mathsf{KL}[q(z) \parallel p(z|x)]$$

Expectation propagation: Minimize

$$q^*(\boldsymbol{z}) = \arg\min_{q(\boldsymbol{z}) \in \Omega} \mathsf{KL}[p(\boldsymbol{z}|\boldsymbol{x}) \parallel q(\boldsymbol{z})]$$

Expectation propagation

Consider

$$p(\mathcal{D}, \boldsymbol{\theta}) = \prod_{i}^{I} f_i(\boldsymbol{\theta})$$

Goal: Evaluate $p(\theta|\mathcal{D})$.

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{1}{p(\mathcal{D})} \prod_{i}^{I} f_i(\boldsymbol{\theta})$$

Idea: Approximate $p(\theta|\mathcal{D})$ with a tractable distribution $q(z) \in \Omega$,

$$q(\boldsymbol{\theta}) = \frac{1}{Z} \prod_{i=1}^{I} q_i(\boldsymbol{\theta})$$

Expectation propagation

Often assumed that factors come from exponential family, e.g.,

$$q(\boldsymbol{\theta}) = \frac{1}{Z} \prod_{i}^{I} \mathcal{N}(\boldsymbol{\theta} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})$$

Find $q(\theta)$ which minimizes

$$q^*(\boldsymbol{\theta}) = \arg\min_{q(\boldsymbol{\theta}) \in \Omega} \mathsf{KL}[p(\boldsymbol{\theta}|\mathcal{D}) \parallel q(\boldsymbol{\theta})]$$

• Not tractable! (requires knowledge of posterior $p(\theta|\mathcal{D})$)

Idea: Optimizing each factor in turn (keeping others constant)

- 1. Initializate factors $q_i(\theta)$
- 2. Until convergence, cycle through factors $q_j(\boldsymbol{\theta})$ and optimize as

$$q_j^{\star}(\boldsymbol{\theta}) = \arg\min_{q_j(\boldsymbol{\theta}) \in \Omega} \mathsf{KL}\left[\frac{1}{p(\mathcal{D})} f_j(\boldsymbol{\theta}) \prod_{i \neq j} q_i^{\star}(\boldsymbol{\theta}) \; \middle\|\; \frac{1}{Z} q_j(\boldsymbol{\theta}) \prod_{i \neq j} q_i^{\star}(\boldsymbol{\theta})\right]$$

Expectation propagation in practice

TrueSkill:

Microsoft's method to rank players of Xbox 360 Live online gaming system (one of the largest application of Bayesian statistics to date—processes over 105 games per day)

Reading

"Pattern recognition and machine learning,"

Chapter 10 (Intro, 10.1, 10.3 (not 10.3.3), 10.6 (optional), 10.7 (not 10.7.1))

Goal: Infer the posterior distribution for μ and τ for $\mathcal{N}(\mu, \tau^{-1})$ given $\mathcal{D} = \{x_1, \dots, x_N\}$

Likelihood function:

$$p(\mathcal{D}|\mu,\tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} \exp\left(-\frac{\tau}{2}\sum_{i=1}^{N}(x_i - \mu)^2\right)$$

We introduce conjugate priors:

$$p(\mu|\tau) = \mathcal{N}(\mu|\mu_0, (\lambda_0 \tau)^{-1}) = \left(\frac{\lambda_0 \tau}{2\pi}\right)^{1/2} \exp\left(-\frac{\lambda_0 \tau}{2}(\mu - \mu_0)^2\right)$$
$$p(\tau) = \mathsf{Gamma}(\tau|a_0, b_0)$$

with $\ln (\mathsf{Gamma}(\tau | a_0, b_0)) = (a_0 - 1) \ln \tau - b_0 \tau + \mathsf{const.}$

Assume factorized variational approximation of posterior:

$$q(\mu, \tau) = q_{\mu}(\mu)q_{\tau}(\tau)$$

Goal: Finding optimum factors $q_{\mu}(\mu)$ and $q_{\tau}(\tau)$

We will use

$$\ln q_j^*(\boldsymbol{z}_j) = \mathbb{E}_{i \neq j}[\ln p(\boldsymbol{z}, \boldsymbol{x})] + \text{const.}$$

We proceed:

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}, \mu, \tau)$$
$$= p(\mathcal{D}|\mu, \tau)p(\mu, \tau)$$
$$= p(\mathcal{D}|\mu, \tau)p(\mu|\tau)p(\tau)$$

We obtain:

$$\ln p(\mathcal{D}, \mu, \tau) = \ln p(\mathcal{D}|\mu, \tau) + \ln p(\mu|\tau) + \ln p(\tau)$$

$$= \frac{N}{2} \ln \tau - \frac{\tau}{2} \sum_{i=1}^{N} (x_i - \mu)^2 + \frac{1}{2} \ln \tau - \frac{\tau \lambda_0}{2} (\mu - \mu_0)^2 + (a_0 - 1) \ln \tau - b_0 \tau + \text{const.}$$

We can now easily derive $q_{\mu}(\mu)$ and $q_{\tau}(\tau)$:

 $q_{\mu}(\mu)$: Can focus on terms involving only μ

$$\begin{split} \ln q_{\mu}^{\star}(\mu) &= \mathbb{E}_{q(\tau)}[\ln p(\mathcal{D}|\mu,\tau) + \ln p(\mu|\tau)] + \mathsf{const.} \\ &= -\frac{\mathbb{E}_{q(\tau)}(\tau)}{2} \left[\sum_{i=1}^{N} (x_i - \mu)^2 - \lambda_0 (\mu - \mu_0)^2 \right] + \mathsf{const.} \end{split}$$

From this, $q_{\mu}^{\star}(\mu) = \mathcal{N}(\mu|\mu_N, \tau_N^{-1})$ with

$$\mu_N = \frac{\lambda_0 \mu_0 + \sum_{i=0}^N x_i}{\lambda_0 + N} \qquad \tau_N = (\lambda_0 + N) \mathbb{E}_{q(\tau)}(\tau)$$

 $q_{\tau}(\tau)$: Can focus on terms involving only τ

$$\ln q_{\tau}^{\star}(\tau) = \mathbb{E}_{q(\mu)}[\ln p(\mathcal{D}|\mu,\tau) + \ln p(\mu|\tau) + \ln p(\tau)] + \mathsf{const}$$

From this,
$$q_{\tau}^{\star}(\tau) = \mathsf{Gam}(a_N, b_N)$$
 with

$$a_N = a_0 + \frac{N+1}{2}$$

$$b_N = b_0 + \frac{1}{2} \mathbb{E}_{q(\mu)} \left[\sum_{i=1}^{N} (x_i - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right]$$

$$q_{\mu}^{\star}(\mu) = \mathcal{N}(\mu|\mu_N, \tau_N^{-1})$$
 with

$$\mu_N = \frac{\lambda_0 \mu_0 + \sum_{i=0}^N x_i}{\lambda_0 + N} \qquad \tau_N = (\lambda_0 + N) \mathbb{E}_{q(\tau)}(\tau)$$

 $q_{\tau}^{\star}(\tau) = \mathsf{Gamma}(a_N, b_N)$ with

$$a_N = a_0 + \frac{N+1}{2}$$
 $b_N = b_0 + \frac{1}{2} \mathbb{E}_{q(\mu)} \left[\sum_{i=1}^N (x_i - \mu)^2 + \lambda_0 (\mu - \mu_0)^2 \right]$

Algorithm:

- 1. Initialization: Set $q_{\tau}(\tau)$
- 2. For $\ell = 1, \ldots, \ell_{\mathsf{max}}$:
 - Fix $q_{\tau}(\tau)$ to its last estimated values $q_{\tau}^*(\tau)$
 - Update $q_{\mu}^*(\mu)$, i.e., update μ_N and au_N
 - Fix $q_{\mu}(\mu)$ to its last estimated values $q_{\mu}^{*}(\mu)$
 - Update $q_{ au}^*(au)$, i.e., update a_N and b_N
- 3. Repeat Step 2 until ELBO $(\mathcal{L}(q))$ converges

