Ehrhart Polynomials

VIII Encuentro Colombiano De Combinatoria

Day I: Appetizers

- (1) Given integers a, b, c, d, form the line segment $[(a, b), (c, d)] \subset \mathbb{R}^2$ joining the points (a, b) and (c, d). Show that the number of integer points on this line segment is gcd(a c, b d) + 1.
- (2) Prove that a triangle with vertices on the integer lattice has no other interior/boundary lattice points if and only if it has area $\frac{1}{2}$. (*Hint:* You may begin by "doubling" the triangle to form a parallelogram.)
- (3) Pick four points in \mathbb{Z}^3 and let \mathcal{P} be their convex hull (in \mathbb{R}^3). Compute the Ehrhart polynomial of \mathcal{P} . (If you cannot think of a good example, consider the regular tetrahedron with vertices (0,0,0), (1,1,0), (1,0,1), (0,1,1).)
- (4) Recall that the standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin. Verify that

$$L_{\Delta}(t) = egin{pmatrix} d+t \ d \end{pmatrix} \qquad ext{and} \qquad L_{\Delta^\circ}(t) = egin{pmatrix} t-1 \ d \end{pmatrix}.$$

(If you'd like to amuse your colleagues, we can also write $L_{\Delta^{\circ}}(t) = (-1)^d \binom{d-t}{d}$.)

(5) Given a (d-1)-polytope Q with vertices $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ such that the origin is in Q, we define the bipyramid BiPyr(Q) over Q as the convex hull of

$$(\mathbf{v}_1,0), (\mathbf{v}_2,0), \ldots, (\mathbf{v}_m,0), (0,\ldots,0,1), \text{ and } (0,\ldots,0,-1).$$

Show that $\operatorname{Ehr}_{\operatorname{BiPyr}(\mathcal{Q})}(z) = \frac{1+z}{1-z} \operatorname{Ehr}_{\mathcal{Q}}(z)$.

(6) Compute the Ehrhart polynomial of the octahedron

$$\Diamond = \{ \mathbf{x} \in \mathbb{R}^3 : |x_1| + |x_2| + |x_3| \le 1 \}$$

via the four different approaches outlined in the lecture:

- (a) triangulation into 8 standard tetrahedra & their faces (inclusion-exclusion);
- (b) disjoint triangulation into 8 standard tetrahedra;
- (c) [sage] interpolation;
- (d) [sage] generating function.

Generalize.

- (7) [sage] Plot the roots of the Ehrhart polynomials of cross polytopes in different dimensions. What's going on here?
- (8) [research problem] Compute the Ehrhart polynomial of the Birkhoff—von Neumann polytope \mathcal{B}_{10} or the volume of \mathcal{B}_{11} .

(9) Define the Eulerian number A(d, k) through¹

$$\sum_{j\geq 0} j^d z^j = \frac{\sum_{k=0}^d A(d,k) z^k}{(1-z)^{d+1}}.$$

Alternatively, we may think of the polynomial $\sum_{k=0}^{d} A(d,k) z^{k}$ is the numerator of the rational function

$$\left(z\frac{d}{dz}\right)^d\left(\frac{1}{1-z}\right) = \underbrace{z\frac{d}{dz}\cdots z\frac{d}{dz}}_{d \text{ times}}\left(\frac{1}{1-z}\right).$$

Prove the following:

$$A(d,k) = A(d,d+1-k),$$

$$A(d,k) = (d-k+1) A(d-1,k-1) + k A(d-1,k),$$

$$\sum_{k=0}^{d} A(d,k) = d!,$$

$$A(d,k) = \sum_{j=0}^{k} (-1)^{j} {d+1 \choose j} (k-j)^{d}.$$

(10) The permutahedron $\mathcal{P}_d \in \mathbb{R}^d$ is defined as the convex hull of

$$\{(\pi(1)-1, \pi(2)-1, \ldots, \pi(d)-1) : \pi \in S_d\}$$

where S_d is the set of all permutations of $\{1, 2, ..., d\}$. Show that P_d is a zonotope:

$$\mathcal{P}_d = [\mathbf{e}_1, \mathbf{e}_2] + [\mathbf{e}_1, \mathbf{e}_3] + \cdots + [\mathbf{e}_{d-1}, \mathbf{e}_d],$$

where $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d$ are the standard unit vectors.

- (11) Prove that \mathcal{P}_d tiles the hyperplane spanned by it.
- (12) Show that a sequence f(n) is given by a polynomial of degree $\leq d$ if and only if

$$\sum_{n>0} f(n) z^n = \frac{h(z)}{(1-z)^{d+1}}$$

for some polynomial h(z) of degree $\leq d$. Furthermore, f(n) has degree d if and only if $h(1) \neq 0$.

MATTHIAS BECK

https://matthbeck.github.io/

¹There are two slightly conflicting definitions of *Eulerian numbers* in the literature: sometimes, they are defined through $\sum_{j\geq 0} (j+1)^d z^j = \frac{\sum_{k=0}^d A(d,k)z^k}{(1-z)^{d+1}}$ instead.