Statistical Inference - Homework 1

Nov. 10, 2021

Due date: Nov. 19, 2021

- 1. Point out the difference between joint distribution and sampling distribution. You may want to use an example to support your statement.
- 2. Let the population (r.v.) $X \sim B(1, p)$ (i.e., P(X = 1) = p, P(X = 0) = 1 p, where p is an unknown parameter. $X = (X_1, X_2, \dots, X_4)$ is a random sample from the population X,
 - Write out the sample space and the probability distribution of X;
 - Point out which of the followings are statistics: X_1+X_2 , $\min_{1\leq i\leq 4} X_i$, X_4+2p , $X_4-E(X_1)$, $(X_4-X_1)^2/Var(X_1)$;
- 3. Let X_1, \dots, X_n be a random sample from normal population $X \sim N(\mu, 1)$, let \bar{X} be the sample mean. How large is the sample size n enough to guarantee $P(|\bar{X} \mu| < 0.5) \ge 0.99$?
- 4. Suppose X_n from binomial(n, p), where $0 . Find the asymptotic distribution of <math>g(X_n/n) g(p)$, where $g(x) = \min\{x, 1-x\}$.
- 5. Show that the *n*-dimensional normal family $\{f(\boldsymbol{x}; \boldsymbol{\mu}, \Sigma); \boldsymbol{\mu} \in \mathbb{R}^n, \ \Sigma \in \mathcal{M}_n\}$ is an exponential family, where \boldsymbol{x} and $\boldsymbol{\mu}$ are *n*-dimensional column vector, \mathcal{M}_n is a collection of $n \times n$ symmetric positive definite matrices and

$$f(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right], \quad \boldsymbol{x} \in R^{n}.$$

6. Gamma distributions belongs to an exponential family. The p.d.f. of Gamma distribution is

$$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha - 1} e^{-x/\theta}.$$

Please write the natural (canonical) form and specify the corresponding natural parameter space.

7. Is the family of Weibull distributions with two unknown parameters α and β an exponential family? The p.d.f. of Weibull distribution is

$$f(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, \quad x > 0 \quad (\alpha, \beta > 0).$$

- 8. Let r.v.'s X_1, \dots, X_n i.i.d. $\sim N(\theta, \theta^2)$, is \bar{X} a sufficient statistic of θ ?
- 9. Let X_1, \dots, X_m $i.i.d. \sim N(a, \sigma^2), Y_1, \dots, Y_n$ $i.i.d. \sim N(b, \sigma^2)$ and X_i 's and Y_j 's are independent. Let $\bar{X} = \sum_{i=1}^m X_i/m, \ \bar{Y} = \sum_{j=1}^n Y_j/n,$ and

$$S^{2} = \frac{1}{n+m-2} \left[\sum_{i=1}^{m} (X_{i} - \bar{X})^{2} + \sum_{j=1}^{n} (Y_{j} - \bar{Y})^{2} \right].$$

Show that (\bar{X}, \bar{Y}, S^2) is a sufficient statistic of (a, b, σ^2) .