

Federated Reinforcement Learning for Therapeutic Interventions over ICUs with Noisy Labels

Linxiao Cao¹, Yifei Zhu², Haoquan Zhou³, Shilei Tan¹ and Wei Gong¹

1 University of Science and Technology of China

2 Shanghai Jiao Tong University

3 The First Affiliated Hospital of USTC

CSCWD 2025

> Management of routine ICU interventions constitute a major part of intensive care, e.g.:

- ► Invasive mechanical ventilation: the use of mechanical means to assist or replace spontaneous breathing. [1]
 - 40% of ICU patients are ventilated at any given hour, accounting for 12% of US hospital costs.
 - Typically coupled with sedation to maintain comfort and stability.
 - Timely intervention can improve outcomes and reduce costs.
 - However, their effects are often poorly understood, especially in heterogeneous patient populations, leading to varying clinical opinions.

Motivation

- ➤ Weaning: process of liberation from mechanical ventilation. [1]
 - Premature, delayed weaning both associated with worse outcomes.
- We aim to develop a clinician-in-loop decision support tool to
 - alert caregivers when a patient is ready for weaning
 - recommend sedation and ventilation settings

...by modeling this as a Markov Decision Process (MDP).

[1] A Reinforcement Learning Approach to Weaning of Mechanical Ventilation in Intensive Care Units. UAI 2018.

Challenges

> Challenge 1: ICU Data Utilization

- Limited Data Volume: Individual hospitals often have limited patient data, which restricts the development of robust predictive models.
- Data Incompleteness: The data collected may not be comprehensive, affecting the accuracy and reliability of clinical decisions.

The sensitivity of clinical private data leads to the formation of data silos

A data-driven global clinical decision-making support tool

How to construct the global model without sharing scattered private clinical raw data?

Challenges

Challenge 2: Addressing the difficulty of defining a reward function

- *In the medical field, many tasks involve sequential decision-making.*
- These tasks are typically modeled as Markov Decision Processes (MDPs) and tackled with reinforcement learning.

Inaccurate or arbitrary reward functions may have a negative impact on the policy model.

Challenges

Challenge 3: Overcoming data heterogeneity among different hospitals

Data heterogeneity can lead to suboptimal performance of global models.^[1]

- > FERRY: Federated Inverse Reinforcement Learning for Smart ICUs
 - ☐ The overview of FERRY

Method

Introducing federated learning (FL) to break data silos.

FL ensures data privacy and allows collaborative training using data from other hospitals.

Method

➤ Using inverse reinforcement learning (IRL) to solve the difficulty of defining reward functions

IRL can derive suitable reward functions from historical data.

[1] Chan A J, van der Schaar M. Scalable bayesian inverse reinforcement learning[J]. ICLR 2022.

> Utilize distributionally robust optimization (DRO) to alleviate the impact of data heterogeneity.

• DRO treats the data distribution of each hospital as an uncertainty factor and employs the approach of minimizing the worst-case under specified uncertainty to train the global model.

$$\min_{oldsymbol{w} \in \mathcal{W}} \max_{oldsymbol{\lambda} \in \Lambda} F(oldsymbol{w}, oldsymbol{\lambda}) := \sum_{i=1}^{N} \lambda_i f_i(oldsymbol{w})$$

• Use the Wasserstein distance to measure the distance between uncertainty sets and probability distributions.

$$ext{Wasserstein metric: } d_{\mathrm{W}}(\mathbb{Q}_1,\mathbb{Q}_2) = \sup_{\mathrm{lip}(f) \leq 1} \mathbb{E}^{\mathbb{Q}_1}[f(\xi)] - \mathbb{E}^{\mathbb{Q}_2}[f(\xi)]$$

• During each global round, the client with the worst performance is selected for further optimization.

DRO enhances the robustness and generalization capacity of FERRY!

> Utilizing joint loss learning to mitigate the impact of noise

- ➤ Previous research demonstrates that DRO can be sensitive to noisy data ^{[1][2]}.
 - DRO uses measurement methods such as norm or divergence in modeling uncertainty distribution, which takes the noise in the uncertainty set into consideration, making DRO sensitive to noise.

Medical data has incorrect labels, and DRO's sensitivity to noise affects model performance!

1. Zhai R, Dan C, Kolter Z, et al. Doro: Distributional and outlier robust optimization. ICML 2021.

2. Wu B, Liang Z, Han Y, et al. DRFLM: Distributionally Robust Federated Learning with Inter-client Noise via Local Mixup[J]. arXiv:2204.07742, 2022.

Method

> Utilizing joint loss learning to mitigate the impact of noise.

 During classifier training, noisy data is filtered out using consistency regularization, leading to improved model robustness.

$$\mathcal{L}_{Co-Reg} = D_{KL}(P_1||P_2) + D_{KL}(P_2||P_1)$$

• Each classifier's output is compared with that of others; if similarity is found, it's deemed reliable; otherwise, it's likely noisy data.

Joint loss learning can help filter out noisy data

Evaluation

Dataset: MIMIC-III

> Preprocess:

- Filter further to include only those admissions in which the patient was kept under ventilator support for more than 24 hours.
- Filter out admissions in which the patient in not successfully discharged from the hospital by the end of the admission

> The evaluation results show that FERRY improves the overall ventilation and sedation decision-making accuracy by 36.75%

Method	\boldsymbol{V}	S	V&S	RA	Improvement(%)			
CNN	86.07%	51.3%	47.52%	Not applicable				
FQI	85%	58%	55%	Not applicable				
AVRIL	96.38%	96.71%	93.43%	Not applicable				
Fed-NFQI	71.89%	16.89%	14.38%	Can't reach	Not applicable			
FERRY w/o JL	96.21%	91.69%	89.16%	47	0			
FERRY	96.76%	94.31%	91.75%	34	27.66			

Example ventilated ICU patient.

Evaluation

- Our method has better performance under different noise levels.
 - We create synthetic noisy label by randomly flipping the labels with various ratio.
- > The results clearly demonstrate that FERRY exhibits significantly enhanced robustness against noisy labels.

Noise Level	Method											
	FERRY w/o JL				L	Ī	FERRY					
		V(%)	Ī	S(%)	Ī	V&S(%)	Ī	V(%)		S(%)	Ī	V&S(%)
Symmetric 20%	9	06.23		92.48	Ī	90.18	Ī	97.09		94.19	Ī	92.01
Symmetric 40%	9	0.75	Ī	85.53	Ī	83.3	Ī	96.47	Ī	93.05	Ī	90.82
Symmetric 50%	5	53.89	Ī	40.05	Ī	36.68	Ī	84.41		70.69	Ī	67.13
Aymmetric 20%	96	6.56%		92.59%		89.96%		96.83%		94.06%		91.83%

REPORT 2025

Thanks!

CSCWD 2025