Probability&RV Assignment-03

U Anuradha-ee21resch01008

download Python code from

https://github.com/Anuradha-Uggi/Assignments-AI5002-Probability-and-Random-Variables/ blob/main/Prob ass03/Rvsp 3.py

Download Latex code from

https://github.com/Anuradha-Uggi/Assignments-AI5002-Probability-and-Random-Variables/ blob/main/Prob_ass03/AssRv3.tex

I. QUESTION(2.8)

Two groups are competing for the position on the board of directors of a corporation.the probability that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins ,the probability of introducing a new product is 0.7 and the corresponding probability is 0.3 if the second group wins. Find the probability that the new product introduced was by the second group.

II. SOLUTION

Let $P(X_1 = 0)$ is the winning probability of 1st group.

 $P(X_2 = 1)$ is the winning probability of 2nd group. $P(X_2 = 1 \mid X_1 = 0)$ is the probability that the 1st group introduces a new product.

 $P(X_2 = 1 \mid X_1 = 1)$ is the probability that the 2nd group introduces a new product.

x_1	0	1
x_2	1	1
$P(X_1 = x_1)$	0.6	0.4
$P(X_2 = x_2 \mid X_1 = x_1)$	0.7	0.3

In the above defined random variables $X_2=1$ in both the cases since we don't have $X_2=0$ cases.it is given that the product is introduced.so we don't have any cases of not introducing products.

Probability that the new Product introduced was by Group2 is Expressed as

$$P(X_1 = 1 \mid X_2 = 1) = \frac{P(X_2 = 1 \mid X_1 = 1) \times P(X_2 = 1) \times P(X_2 = 1 \mid X_1 = 1) \times P(X_2 = 1) \times P(X_2 = 1 \mid X_1 = 1) \times P(X_2 = 1) \times$$

Substituting Given all Values in above Equation gives

$$P(X_1 = 1 \mid X_2 = 1) = \frac{0.3 \times 0.4}{0.3 \times 0.4 + 0.7 \times 0.6}$$
$$P(X_1 = 1 \mid X_2 = 1) = \frac{2}{9} = 0.222222222.$$

III. CONCLUSION

Probability that the new Product was actually Launched by second group is

$$P(X_1 = 1 \mid X_2 = 1) = \frac{2}{9}$$

From Bays Theorem