ABSTRACT OF THE DISCLOSURE

As for a method for measuring a steering angle of a steering shaft for a vehicle, a first rotatable body that rotates together with the steering shaft at an r1 ratio, and a second rotatable body that rotates together with the steering shaft at an r2 ratio are used. An absolute rotational angle of the first rotatable body, Ψ , can be expressed as $\Psi' + i\Omega$, and an absolute rotational angle of the second rotatable body, θ , can be expressed as $\theta' + i\Omega$. Ψ' and θ' are measured by means of an angle sensor whose measurement range is Ω . To obtain the steering angle Φ of the steering shaft, measurement values $\Psi_{M'}$ and for $\theta_{M'}$ of Ψ' and θ' are obtained, and from a relation between Ψ' and θ' , a plurality of θ' s corresponding to the $\Psi_{M'}$ value is calculated to yield a $\theta_{C'}$. By comparing the $\theta_{M'}$ to the $\theta_{C'}$, an i-value of the first rotatable body is obtained. The obtained i-value is then used for obtaining an absolute rotational angle Ψ of the first rotatable body. Finally, from a relation between Ψ and θ , the steering angle Φ of the steering shaft is obtained.

5

10