INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY THIRUVANANTHAPURAM 695 547

End Semester Examination - May 2016

B. Tech - II Semester

MA121 - Vector Calculus and Differential Equations

Date: 04/05/2016 Time: 9.30 am - 12.30 pm Max. Marks: 50

SECTION A (Attempt all 10 questions - 10x2.5= 25 marks.)

- 1. Check for uniform convergence of the sequence $\{f_n\}$ where
 - (1) $f_n(x) = \tan^{-1} nx$; $x \in [0, 1]$
 - (2) $f_n(x) = \frac{x}{e^{nx^2}}$; $x \in [0, 1]$
- 2. Show that the series $\frac{x}{x+1} + \frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + \cdots$; $x \ge 0$ is convergent in $[0,\infty]$ but the convergence is not uniform.
- 3. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a C^1 -type function. Define $\phi(x,y) = \lim_{h \to 0} \frac{f(hx,hy) f(0,0)}{h}$ for all $(x,y) \in \mathbb{R}^2$ satisfying $x^2 + y^2 = 1$. Justify that the function ϕ exists, i.e., justify the limit exists. With explanation, find the condition for which $|\phi(x,y)|$ is maximum. [Hint: Directional Derivative]
- 4. Let $\gamma:[a,b] \longrightarrow \mathbb{R}^3$ be a C^1 -type non-constant curve. Using properties of Arc-Length function of γ , show that $\|\gamma'(t)\| \neq 0$ for all $t \in [a,b]$.
- 5. Let D be an open set D in \mathbb{R}^2 and $\gamma:[a,b]\longrightarrow\mathbb{R}^2$ a C^1 -type curve. If $f:D\longrightarrow\mathbb{R}$ be a C^1 -type scalar field, show that $\int_{\gamma}\nabla f=f(\gamma(b))-f(\gamma(a))$.
- 6. If \vec{F} be a vector field such that $\int_C \vec{F} = 0$ for all loop C inside the domain of \vec{F} . Then show that $\int_{C_1} \vec{F} = \int_{C_2} \vec{F}$ for all paths C_1, C_2 from a point P_1 to a point P_2 inside the domain of \vec{F} .
- 7. Solve $(3x^2y^4 + 2xy)dx + (2x^3y^3 x^2)dy = 0$
- 8. Solve $\frac{d^2y}{dx^2} + 2y = x^3 + x^2 + e^{-2x} + \cos 3x$.
- 9. Suppose $\phi(x)$ is a solution of $(1-x^2)y''-2xy'+p(p+1)y=0$. Let $\psi(t)=\phi(2t-1)$. Show that $\psi(t)$ satisfies the equation

$$(t - t2)y'' + (1 - 2t)y' + p(p+1)y = 0$$

10. Prove that $P'_n(1) = \frac{1}{2}n(n+1)$, where $P_n(x)$ is the n^{th} degree Legendre polynomial.

SECTION B (Attempt any 5 questions - 5x5= 25 marks.)

11. (a) Let $f_n(x) = nx(1-x^2)^n$; $0 \le x \le 1$. Show that $\{f_n\}$ converges to a function f on [0,1] and the convergent is not uniform by showing $\lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 f$.

(b) Let
$$f(x) = \sum_{1}^{\infty} \frac{\cos nx}{n^2}$$
. Prove that $\int_{0}^{\pi/2} f(x)dx = \sum_{0}^{\infty} \frac{(-1)^n}{(2n+1)^3}$

- 12. (a) Show that $f_n(x) = \frac{\ln(1+nx^2)}{2n}$; $x \in [1,2]$ converges uniformly by using the sequence $\{f'_n(x)\}$ of derivatives of $f_n(x)$.
 - (b) Is $\sum_{1}^{\infty} \frac{x}{n(1+nx^2)}$; $x \in (0, \infty)$ a continuous function.
- 13. (a) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be given by $f(x,y) = \sqrt{|xy|}$. Find all unit vectors \vec{v} such that $D_{\vec{v}}(f)|_{(0,0)}$ exists. Is f differentiable at (0,0)? Justify your answer. Argue whether f is continuous at (0,0). [1.5+0.5+0.5]
 - (b) Let $\gamma(t) = (t \sin t, \ 1 \cos t)$ for all $t \in [0, 2\pi]$ be a curve. Find the Arc-Length function of the curve γ and hence find the length of the curve. [2.5]
- 14. (a) State Green's Theorem. Find the area of the shaded region using Green's theorem.

- (b) Let $\vec{F}(x,y) = (x \exp^{\frac{x^2+y^2}{2}} + \cos(x+y), \ y \exp^{\frac{x^2+y^2}{2}} + \cos(x+y))$ form all $(x,y) \in \mathbb{R}^2$. Suppose $C = C_1 * C_2$ be a curve in \mathbb{R}^2 given by $C_1 : \frac{x^2}{4} + \frac{y^2}{9} = 1, y \ge 0$ oriented positively and C_2 is the straight line segment from (-2,0) to (-4,2). Find $\int_C \vec{F}$. Is the vector field \vec{F} conservative? Justify your answer. [1.5+1]
- 15. Find two linearly independent power series solution of $(1-x^2)y'' 2xy' + 2y = 0$.
- 16. Consider the ODE

$$y'' + a_1(x)y' + a_2(x)y = 0$$

Show that the above ODE has a solution of the form

$$p(x) = \exp\left[\int_0^x p(t) dt\right],$$

if and only if the function p satisfies the nonlinear ODE

$$y' = -y^2 - a_1(x)y - a_2(x)$$