

cycle « Lumière et couleurs »

Renaud Mathevet Université Paul Sabatier

Plan

Du modèle corpusculaire au modèle ondulatoire

De la spectroscopie au modèle quantique de l'atome...

... jusqu'à la LED bleue

et au-delà...

Plan

Du modèle corpusculaire au modèle ondulatoire

De la spectroscopie au modèle quantique de l'atome...

... jusqu'à la LED bleue

et au-delà...

Conceptions antiques

ombres portées:

- rayon lumineux
- propagation rectiligne

Eratosthène ≈ 230 av. JC

r = -i

Euclide ≈ 300 av. JC

Lois de Snell et Descartes

Willebrord Snell 1580-1626

René Descartes 1596-1650

Abou Sa'd al-'Ala' ibn Sahl vers 984

Principe de Fermat (1657)

Pierre de Fermat (vers 1605-1665)

« La nature agit toujours par les voies les plus courtes et les plus simples. »

$$T_{mer} < T_{air}$$

Interprétations

Christian Huygens 1629 - 1695

René Descartes 1596-1650

Newton vs Huygens

Christian Huygens 1629 -1695

traité de la lumière 1690

ondes

Isaac Newton (1642 – 1727)

Optiks – 1704

corpuscules

Les couleurs (1666)

Isaac Newton 1642-1726

spectromètre USB

Interférences (1802)

Thomas Young 1773-1829

Deux types d'ondes

Corde de Melde

Polarisation (1809)

Etienne Malus 1775-1812

onde transverse

Diffraction (1815)

Augustin Fresnel 1788-1827

$$\Psi(M) = -\frac{i}{\lambda} \iint_{\Sigma} Q(P; M) \Psi_i(P) \frac{e^{ikPM}}{PM} d^2 P$$

1818

Denis Poisson 1781-1840

François Arago 1786-1853

Vitesse de la lumière

Ole Christensen Rømer 1644-1710

James Bradley 1693-1762

Hippolyte Fizeau 1819-1896

 $c \approx 3 \times 10^8 \, m.s^{-1}$

Foucault - Fizeau (1850)

Léon Foucault (1819-1868)

 $v_{eau}>v_{air}$

Electromagnétisme (1865)

James Clerck Maxwell 1831-1879

$$\nabla . \mathbf{E} = 0
\nabla . \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

$$\nabla \times \mathbf{B} - \epsilon_{\mathbf{0}} \mu_{\mathbf{0}} \frac{\partial \mathbf{E}}{\partial t} = \mathbf{0}$$

$$\lambda = c/\nu$$

$$\lambda = c/\nu$$

"A Dynamical Theory of the Electromagnetic Field" Phil. Trans. R. Soc. Lond. 155, 459-512 (1865)

$$\frac{\partial^2 \mathbf{E}}{\partial t^2} - \underbrace{\frac{1}{\epsilon_0 \mu_0}} \frac{\partial^2 \mathbf{E}}{\partial z^2} = 0 \qquad c \approx 3 \times 10^8 \, m.s^{-1}$$

« Nous pouvons difficilement éviter la conclusion que la lumière consiste en des ondulations du même milieu que celui qui est la cause des phénomènes électriques et magnétiques »

La lumière fin XIXème siècle

Onde électromagnétique transverse

$$c \approx 3 \times 10^8 \, m.s^{-1}$$

Plan

Du modèle corpusculaire au modèle ondulatoire

De la spectroscopie au modèle quantique de l'atome...

... jusqu'à la LED bleue

et au-delà...

Un formidable outil...

Spectre de raies (1885)

m=7

Anders Ångström 1814-1874

Johann Balmer 1825-1898

Michelson-Morley (1887)

Lord Kelvin (1824-1907)

c: lumière / éther

v: terre / éther

$$t_{\parallel} pprox rac{2L}{c} (1 + v^2/c^2) \qquad t_{\perp} pprox rac{2L}{c} (1 + v^2/2c^2)$$

$$\delta t_0 = t_1 - t_2 = t_{\parallel} - t_{\perp} \approx + \frac{2L}{c} (v^2 / 2c^2)$$

Albert Michelson (1852-1931)

Edward Morley (1838-1923)

$$\delta t_{90} = t_1 - t_2 = t_{\perp} - t_{\parallel} \approx \frac{2L}{c} (v^2/2c^2)$$

Corps noir (1900)

Max Planck (1858-1947)

 $E = h\nu$

quantification des échanges d'énergie

Effet Photoélectrique

Heinrich Hertz 1857-1894

1905

 $E_{e-} = h\nu - W$

Albert Einstein 1879-1955

Photon

Quantification de l'énergie

$$\lambda = B \frac{m^2}{m^2 - 4}$$

Johannes Rydberg 1854-1919

Walther Ritz 1878-1909

$$\frac{1}{\lambda} = R_y \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$

$$E = h\nu = hc/\lambda$$

$$E = h\nu = hc/\lambda \qquad h\nu = R_H \left(\frac{1}{2^2} - \frac{1}{n^2}\right)$$

$$E_f \quad E_i$$

Synthèse quantique

Niels Bohr 1885-1962

Louis de Broglie (1892-1987)

Erwin Schrödinger (1887-1961)

(1913)

(1926)

Plan

La lumière

De la spectroscopie au modèle quantique de l'atome...

... jusqu'à la LED bleue

et au-delà...

De l'atome au cristal

Spectre de bandes

gap moyen vert

LED Blanche

Synthèse soustractive

Plan

Du modèle corpusculaire au modèle ondulatoire

De la spectroscopie au modèle quantique de l'atome...

... jusqu'à la LED bleue

et au-delà...

Théorie quantique du rayonnement

Albert Einstein (1917)

corps noir

Tout quantique (1927)

Pascual Jordan (1902-1980)

Paul Dirac (1902-1984)

Wolfgang Pauli (1900-1958)

|0
angle : vide quantique

Fluctuations du vide

Werner Heisenberg (1901-1976)

 $\Delta x \Delta p \geq \hbar/2$

Corrélations d'intensité (1950's)

Robert Hanbury-Brown

Richard Twiss

Roy Glauber (1925-)

La séparatrice...

coïncidences fortuites

pas de coïncidences

Laser (1960)

Theodore Maiman (1927 - 2007)

Couper un photon? (1977)

Kimble - Dagenais - Mandel (1977)

Lasers et optique non linéaire (70's)

2 photons uniques (1986)

Incroyable mais vrai

Voir film...

Interprétation

onde classique : toujours des coïncidences

(2)

photons, particules classiques:

(3)

toujours des coïncidences

(4)

(document original: Claude Fabre)

(1)

Interférences

indistinguables
$$|t,t\rangle+|r,r\rangle=0$$

dans le monde quantique, de la probabilité plus de la probabilité peut donner une probabilité nulle!!

Au-delà de la dualité

la particule de lumière n'est pas un « fort petit corpuscule » c'est l'excitation élémentaire d'un mode classique du champ dont il hérite des propriétés

l'onde lumineuse n'est pas une onde de Maxwell classique

fluctuations quantiques

 corrélations quantiques non-locales (violation de l'inégalité de Bell)

le vide $|0\rangle$ n'est pas rien $|0\rangle + |1\rangle \neq |1\rangle$

états cohérents
$$|\alpha=+2\rangle$$
 "quasi-classiques" $|\alpha=+2\rangle$ mais $|\alpha=+2\rangle+|\alpha=-2\rangle$

Une autre dualité

$$\begin{split} \mathbf{H}_{n}(a)\,\mathbf{H}_{m}(a^{\dagger}) &= \frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}}\mathrm{e}^{2ta-t^{2}}\Big|_{t=0} \frac{\mathrm{d}^{m}}{\mathrm{d}\tau^{m}}\mathrm{e}^{2ta^{\dagger}-\tau^{2}}\Big|_{\tau=0} \\ &= \frac{\mathrm{d}^{n}\mathrm{d}^{m}}{\mathrm{d}t^{n}\mathrm{d}\tau^{m}} \colon \mathrm{e}^{-t^{2}+2ta+2\tau a^{\dagger}+4\tau\tau} \colon \Big|_{t=\tau=0} \\ &= \colon \frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}} \big[\mathrm{e}^{-t^{2}+2ta}\mathbf{H}_{m}(2t+a^{\dagger})\big] \colon \Big|_{t=0} \\ &= \colon \sum_{l=0}^{n} \binom{n}{l} \frac{\mathrm{d}^{n-l}}{\mathrm{d}t^{n-l}}\,\mathrm{e}^{-t^{2}+2ta} \frac{\mathrm{d}^{l}}{\mathrm{d}t^{l}}\,\mathbf{H}_{m}(2t+a^{\dagger})\Big|_{t=0} \colon \\ &\stackrel{\mathbb{E}}{\underset{0}{\text{odd}}} \sup_{0 \to \infty} \sup_$$

cycle « Lumière et couleurs »

Renaud Mathevet Université Paul Sabatier

