MAC 2311 – Calculus w/Analytic Geometry I

Worksheet – Section 6.5 – Work

Lesson Problems
$$x = 1.8 - 1.0 = 0.8$$

1) A spring has a natural length of 1 meter. A force of 24N holds the spring stretched to a total length of 1.8 m.

(a) Find the force constant k.

(b) How much work will it take to stretch the spring 2 m beyond its natural length?

F = 30(x)

(c) How far will a 45 N force stretch the spring?

(d)
$$24N = k(0.3m_7) = K = \frac{24N}{.3m} = \frac{15}{.3m}$$

(e) How far will a 45 N force stretch the spring?

(e) How far will a 45 N force stretch the spring?

(f) $K = \frac{30N}{m}$

(g) $K = \frac{30N}{m}$

(h) $V = \int_{0}^{2} 30 \times 10^{-3} = \frac{30}{2} \times 10^{2} = \frac{30N}{.3m}$

(h) $V = \int_{0}^{2} 30 \times 10^{-3} = \frac{30}{.3m} \times 10^{2} = \frac{30N}{.3m}$

$$W = \int_{0}^{\infty} 30 \times dx = \frac{30}{2}$$

2) When a spring is expanded 1 foot from its natural position and held fixed, the force necessary to hold it is 30 pounds. Find the work required to stretch the spring from 3 to 6 feet.

pounds. Find the work required to stretch the spring from 3 to 6 feet.

$$W = Fd$$

$$W = \int_{0}^{6} 30 \times dx = |S|^{2} = |A|^{2} =$$

$$\frac{30}{1} = K \left[\frac{K=30}{K=30} \right]$$

$$F = K \times$$

3) A bucket weighing 1000 pounds is to be lifted from the bottom of a shaft that is 20 feet deep. The weight of the cable used to hoist it is 10 pounds per foot. How much work is done lifting the bucket to the top of the

shaft?

$$V_{bucket} = 1020(25)$$

$$V_{bucket} = 20,000 ft.lbs$$

$$|0(20-x)| \qquad W_{chain} = \int_{0}^{20} |0(20-x)dx|$$

$$|0(20-x)| dx = \int_{0}^{20} |0(20-x)dx|$$

$$|0(20-x)| dx = \int_{0}^{20} |0(20-x)| dx = \int_{0}^{20} |0($$

4) A 5-lb bucket is lifted from the ground into the air by pulling in 20ft of rope at a constant speed. The rope weighs 0.08 pounds per foot. How much work was spent lifting the bucket and rope?

$$K = \frac{.6816s}{1 \text{ ft}}$$

$$F = 0.08(20-x) = \frac{.08}{1 \text{ ft}}$$

$$F = 0.08(20-x) =$$
 $V = 0.08(20-x) = 0.08(20-x)$

Whope =
$$\int_{0}^{20} .08(20-x)e^{-1}x^{2}$$

= $.08(20-x)e^{-1}x^{2}$

·---·

.

.

.

•

MAC 2311 – Calculus w/Analytic Geometry I Worksheet – Section 6.5 – Work Practice Problems

1) If a spring's natural length is 1 foot and it requires 10 lbs. of force to hold this spring stretched to a length 1.5 feet, how much work is done stretching this spring from 2 feet to 3?

F=Kx

2) A spring has a natural length of 20 cm. A 40 N force is required to stretch (and hold the spring) to a length of 30 cm. How much work is done in stretching the spring from 35 cm to 38 cm?

3) A 20 ft. cable weighs 80 lbs. and hangs from the ceiling of a building without touching the floor. Determine the work that must be done to lift the bottom end of the chain all the way up until it touches the ceiling.

$$F = K \times K = 4 \frac{lbs}{tt}$$

$$\frac{80lbs}{20tt} K$$

$$F = 4(20 - x)$$

$$W = 800 + (-1bs)$$

4) If 6 foot-pounds of work are required to compress a spring 1 foot from its natural length, find the work necessary to compress the spring 1 extra foot.

$$W = f \cdot d$$

$$6 = \int_{0}^{1} K x dx = 6 = K \cdot \frac{1}{2} x^{2} \Big|_{0}^{1} = 6 = \frac{K}{2} K = 12$$

$$K = 6$$

$$W = \int_{0}^{2} 12x dx = 6 x^{2} \Big|_{0}^{2} = \frac{18f(-1)s}{1}$$

5) If 6 foot-pounds of work are required to compress a spring from its natural length of 10 feet to a length of 9 feet, find the work necessary to stretch the spring from its natural length to a length of 12 feet.

$$W = 64t \cdot lbr$$

$$6 = \int K \times dx = \frac{K}{2} \times^{2} \Big|_{0}^{1} = 6 = \frac{K}{2} = K = 12$$

$$W = \int_{0}^{2} 12 \times dx = 6 \times^{2} \Big|_{0}^{2} = \frac{24 \text{ ft. lbs}}{2}$$

6) A bucket of cement weighing 200 pounds is hoisted by means of a windlass from the ground to the tenth story of an office building, 80 feet above the ground. Assume that a chain weighing 1 pound per foot is used in lifting the bucket. Find the work required to make the lift.

$$w = 200 \text{ lbs} - 816$$
 $w_{bushet} = 16,000 \text{ ft} \cdot 165$
 $w_{bushet} = 16,000 \text{ ft} \cdot 165$

7) Find the work required to compress a spring from its natural length of 1ft to a length of 0.75 ft. if the force constant is 16 foot-lbs.

8) A certain amount of work is done to stretch a spring 3 in. The force to keep it stretched is 16 lb. How much additional work is done to stretch the spring an additional 4 in.

$$F = Kx \rightarrow 16 = K(3) = K = \frac{16}{3}$$

$$\int_{3}^{7} \frac{16}{3} \times dx = \frac{16}{6} \times^{2} \int_{3}^{7} = \frac{16}{106.667 \text{ in . 16s}}$$

Replacement Test - Comprehensive

Date

Find the limit, if it exists.

1)
$$\lim_{x \to -6} \frac{x^2 + 3x - 18}{x^2 + 2x - 24}$$
 $\frac{36 - 18 - 18}{36 - 36}$ $\frac{0}{0} = \frac{2x + 3}{2x + 2} = \frac{2(-6) + 5}{2(-6) + 2} = \frac{-12 + 3}{-12 + 2} = \frac{9}{10}$
A) Does not exist B) $\frac{3}{10}$ C) $-\frac{9}{10}$

Use l'Hopital's Rule to evaluate the limit.

2)
$$\lim_{x\to 0} \frac{\cos 9x - 1}{x^2} = \frac{-95 \ln 9x}{2x} = \frac{9 \cdot -\cos 9x \cdot 9}{2} = \frac{1 \cdot -1}{2} - \frac{81}{2}$$
(A) $\frac{81}{2}$
(B) $\frac{81}{2}$
(C) 0

Find the derivative of the function.

the derivative of the function.
3)
$$y = \frac{x^3}{x-1} = \frac{(x-1)(3x^2) - (1)(x^3)}{(x-1)^2} = \frac{3x^3 - 3x^2 - x^3}{(x-1)^2} = \frac{2x^3 - 3x^2}{(x-1)^2}$$

B) $y' = \frac{-2x^3 - 3x^2}{(x-1)^2}$

C) $y' = \frac{2x^3 + 3x^2}{(x-1)^2}$

D) $y' = \frac{-2x^3 + 3x^2}{(x-1)^2}$

4)
$$r = (\sec \theta + \tan \theta)^{-5}$$
 $-5 \left(\sec \theta + \tan \theta \right)^{-6}$ $\left(-\frac{1}{6} \ln \theta \sec \theta + \sec^2 \theta \right)^{-6}$
B) $-5(\sec \theta + \tan \theta)^{-6}$

A)
$$-5(\sec \theta + \tan \theta)^{-6}$$

B) $-5(\sec \theta \tan \theta + \sec^2 \theta)^{-6}$

C) $-5(\sec \theta + \tan \theta)^{-6}(\tan^2 \theta + \sec \theta \tan \theta)$

$$-5 \frac{(7 - \sin \theta) \cos \theta + 5 \cos \theta}{(5 \cos \theta + \tan \theta)^5}$$

Find the derivative of y with respect to x, t, or θ , as appropriate.

5) $y = e^{8 - 8x} = e^{8 - 8x}(-8) = -8e^{3 - 8x}$

B) $-5(\sec \theta \tan \theta + \sec^2 \theta)^{-6}$

(sec $\theta + \tan \theta$)⁵

(sec $\theta + \tan \theta$)

(A)
$$28e^8 - 8x$$
 B) e^{-8} C) $8e^8 - 8x$ D) $-8 \ln (8 - 8x)$

the derivative of y with respect to x.

6) $y = \tan^{-1} \sqrt{11x}$

$$\frac{1}{2 \sqrt{||x||^2}} = \frac{1}{2 \sqrt{||x|^2}} = \frac{1}{2 \sqrt{||x||^2}} = \frac{1}{2 \sqrt{|x|^2}} = \frac{1}{2 \sqrt{|x|^2$$

Find the derivative of y with respect to x.

6)
$$y = \tan^{-1} \sqrt{11x}$$

A) $\frac{1}{22\sqrt{11x(1+11x)}}$

B) $\frac{11}{2(1+11x)\sqrt{11x}}$

C) $\frac{1}{\sqrt{1-11x}}$

D) $\frac{1}{1+11x}$

Use implicit differentiation to find dy/dx.

7)
$$2xy - y^2 = 1$$
A) $\frac{x}{y - x}$
B) $\frac{x}{x - y}$
C) $\frac{y}{x - y}$

$$2 \times \left(\frac{dy}{dx}\right) + \frac{2y}{2} - \frac{2y}{2x}\left(\frac{dy}{dx}\right) = 0$$

$$2 \times \left(\frac{y}{dx}\right) - \frac{2y}{2x - 2y} = -\frac{y}{2x - 2y}$$

$$\frac{1}{2x - 2y} = -\frac{y}{2x - 2y}$$

$$U = St^2 - 1$$

$$dv = 10t$$

Solve the initial value problem.

8)
$$\frac{ds}{dt} = 20t(5t^2 - 1)^3$$
, $s(1) = 4$

A)
$$s = \frac{1}{2}(5t^2 - 1)^4$$

C)
$$s = \frac{1}{2}(5t^2 - 1)^4 - 124$$

A)
$$s = \frac{1}{2}(5t^2 - 1)^4 - 124$$

B) $s = \frac{1}{2}(5t^2 - 1)^4 - 124$

C) $s = \frac{1}{2}(5t^2 - 1)^4 - 124$

C) $s = (5t^2 - 1)^4 - 252$

$$S = (5t^2 - 1)^4 - 252$$

$$S = \frac{57^2 - 1}{8}$$

Evaluate the integral.

9)
$$\int 2x^2 \sqrt[4]{5 + 4x^3} \, dx$$

$$\bigcup_{z} \sqrt[4]{x^3} + S \qquad A) \frac{8}{5} (5 + 4x^3)^{5/4} + C$$

$$\int_{0}^{2} (2 \times x^{2})^{-3/4} + C$$

Evaluate the integral.
9)
$$\int 2x^2 \sqrt[4]{5 + 4x^3} dx$$
 $\int 2x^2 \left(5 + 4x^3\right)^{\frac{1}{4}} dx > \frac{1}{6} \int \sqrt[4]{4} dx = \frac{1}{6} \cdot \frac{4}{5} \sqrt[4]{4} = \frac{2}{15} \left(\sqrt[4]{4}\right) + C$

$$(5 + 4x^3)^{\frac{1}{4}} dx > \frac{1}{6} \int \sqrt[4]{4} dx = \frac{1}{6} \cdot \frac{4}{5} \sqrt[4]{4} dx = \frac{2}{15} \left(\sqrt[4]{4}\right) + C$$

$$(5 + 4x^3)^{\frac{1}{4}} dx > \frac{1}{6} \int \sqrt[4]{4} dx = \frac{2}{15} \left(\sqrt[4]{4}\right) + C$$

D)
$$2(5 + 4x^3)^{5/4} + C$$

$$U = 29 \times 9 = 10) \int \csc^2(2\theta + 9) d\theta \qquad \frac{1}{2} \int CSC^2(v) dv = -\frac{1}{2} \cot(2\theta + 9) + C$$

$$A) -\cot(2\theta + 9) + C$$

$$B) 2 \cot(2\theta + 9) + C$$

A)
$$-\cot(2\theta+9) + C$$
(C) $-\frac{1}{2}\cot(2\theta+9) + C$

D)
$$4 \csc (2\theta + 9) \cot (2\theta + 9) + C$$

Find the area enclosed by the given curves.

12)
$$y = 2x - x^2$$
, $y = 2x - 4$

B)
$$\frac{37}{3}$$

C)
$$\frac{31}{3}$$

D)
$$\frac{34}{3}$$

Use the washer method to find the volume of the solid generated by revolving the region bounded by the given lines and curves about the x-axis.

13)
$$y = x^2 + 3$$
, $y = 3x + 3$

$$(A) \frac{297}{5} \pi$$

C)
$$\frac{297}{10}\pi$$

D)
$$\frac{513}{5}\pi$$

Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves and lines about the y-axis. Use the calculator to calculate the volume.

14)
$$y = 3x^2$$
, $y = 3\sqrt{x}$

A)
$$\frac{9}{4}\pi$$

B)
$$\frac{9}{5}\pi$$

C)
$$\frac{9}{20}\pi$$

$$\sqrt{D}\frac{9}{10}\pi$$

Replacement Test - Answer Sheet

Date

Pi $y^2 + 3 = 3x + 3$ x +3-3

$$\frac{2x-x^{2}-2x-41}{2x-x^{2}-2x+9}$$

$$R = 3x + 3 - 0$$

$$\Gamma = X^{2} + 3 - 0$$

$$\int_{-X^{2}}^{Z} - X^{2} + 4 dX = -\frac{X^{3}}{3} + 4 |X|^{2}$$

$$\frac{-Z}{3} = \frac{|3Z|}{3}$$

$$2$$

$$H = 3\sqrt{x} - 3x^{2}$$
Poi
 $X = 0, X = 1$

$$\int_{-\infty}^{\infty} x^{2}$$

$$Y = 3x^{2}$$

$$Y = 3\sqrt{x}$$

$$\int Z \pi x \left(3\sqrt{x} - 3x^2 \right) =$$

$$V = \int_{-2\pi}^{2\pi} (3x^2 - 3x^3) dx = 2\pi (\frac{5}{5} \cdot 3x^2 - \frac{3}{4}x^4)$$

$$= 2\pi \left(\frac{5}{5}x^{32} - \frac{3}{4}x^4\right)$$

$$= 2\pi \left(\frac{5}{5}x^{32} - \frac{3}{4}x^4\right)$$

$$= 2\pi \left(\frac{9}{20} - \frac{1}{10}x^4\right)$$

MAC 2311 - Calculus w/Analytic Geometry I Volume of Solids of Rotation - Method of Shells Lesson Problems

$$Volume = \int_{a}^{b} 2\pi x \cdot f(x) \cdot dx$$

$$Volume = \int_{0}^{d} 2\pi y \cdot f(y) \cdot dy$$

Sketch the graphs, shade the bounded region, draw a typical shell, set up the integral to find the volume, and calculate the volume.

1)
$$y = \frac{1}{\sqrt{x}}$$
 $y = 0$ $x = 1$ and $x = 4$ - about the y-axis

Factor =
$$\chi$$
 (it's always some χ value)
$$\int_{0}^{3} 2\pi r \cdot Ht \cdot th$$

$$\int_{0}^{4} 2\pi \chi \left(\frac{1}{\chi}\right) dx = \int_{0}^{4} 2\pi \chi^{\frac{1}{2}} dx = \left[\frac{29.322}{37.322}\right]$$

$$2\pi \chi^{\frac{32}{3}} \left|\frac{4}{3}\right|^{\frac{4}{3}} = \frac{4\pi \chi^{\frac{1}{2}}}{3} \left|\frac{4}{3}\right|^{\frac{4}{3}}$$

2)
$$y = x^3$$
 $x = 1$ and $y = 0$

H=
$$x^{5}$$
 Poi = x^{2} = 0 = x^{2} x^{2}

3)
$$y = x^2$$
 $y = 2 - x^2$ $x = 0$

(Region in the 1st quadrant) rotated about the y-axis

$$\Gamma = X \text{ for } Ht = 2 - x^{2} - x^{2} = 2 - 2x^{2}$$

$$\rho = X = 2 - x^{2}$$

$$\chi^{2} = 1$$

$$\chi^{2}$$

4)
$$y = x^3 - 2$$
 $y = -x^2 + 8$ and $x = 1$ - about the line $x = 5$

$$\Gamma = 5 - x$$

$$V^{2} - 2 = -x^{2} + 8$$

$$V = -x^{2} + 8 - (x^{2} - 2)$$

$$V = \begin{cases} 2x(s - x)(-x^{2} - x^{2} + 10) \\ 2x(s - x)(-x^{2} - x^{2} + 10) \end{cases}$$

$$V = \begin{cases} 2x(s - x)(-x^{2} - x^{2} + 10) \\ 3x(s - x)(-x^{2} - x^{2} + 10) \end{cases}$$

$$V = \begin{cases} 2x(s - x)(-x^{2} - x^{2} + 10) \\ 3x(s - x)(-x^{2} - x^{2} + 10) \end{cases}$$

5)
$$xy = 4$$
 and $x + y = 5$

- about the line at
$$x = -2$$

$$y = \frac{4}{x}$$
, $y = 5 - x$

$$F = X - (-2) = X + 2$$

$$H(= S - X - (\frac{4}{X}) = 5 - X - \frac{9}{X}$$

$$Poi$$

$$\frac{4}{X} = -X + S$$

$$4 = -X^2 + SX = X^2 - SX + \frac{9}{4} = 0$$

(x.4)(x-1)=0

$$\int_{1}^{4} Z r(x+z)(-x+s-\frac{4}{x}) dx$$

$$\sqrt{-52.739}$$

$$\int Z r(x+z)(-x+s-\frac{4}{x}) dx$$

$$\sqrt{-52.739}$$

6)
$$y^2 = x$$
 $y = 1$ and $x = 0$

$$V = \int_{0}^{1} 2\pi (Y)(Y') dY = \int_{0}^{1} 2\pi Y' dY = 2\pi Y' = 2$$

7)
$$y = x^2$$
 $y = 0$ and $x = 1$

- about the x-axis

$$Y = Y$$
 $X = 1 + X = \pm \sqrt{Y}$
 $Y = 1 - \sqrt{Y} = 0$

$$\int_{0}^{1} 2\pi(y)(1-\sqrt{y})dy = \int_{0}^{1} 2\pi(y-y''')dy$$

$$= \frac{277}{2} \frac{y^2}{2} - \frac{y^{5/2}}{5} \Big|_{0}^{1} = \frac{277}{2} \frac{y^5}{2} - \frac{2y^5}{5} \Big|_{0}^{1}$$

8)
$$y = x^2$$
 $y = 4$ and $x = 0$

(Region in the 1st quadrant) rotated about the x-axis

9)
$$x = (y-1)^2$$
 and $x = y+1$

- about the x-axis

10)
$$y = \sqrt{x+2}$$
 $y = x$ and $y = 0$

- about the line
$$y = -1$$

$$\int_{-1}^{3} 2\pi r \cdot H dr$$

				•			
		•			•		
				•		•	•
·							
			1				
		•					
					•		
-					•		
			•				
			-				
		•					
							**
		•		•		•	
					•		
	•						
						-	
			• • • • • • • • • • • • • • • • • • • •		•		
				•			
	•						
•	·	•					
	•						
				•			
	•						
				•			
						• .	

MAC 2311 - Calculus w/Analytic Geometry I

Volume of Solids of Rotation - Disk and Washer Methods

Sketch the graphs, shade the bounded region, and draw a typical disk or washer. Set up the integral to find the volume, integrate, and calculate the volume.

1)
$$y = \sqrt{x}$$
, $x = 4$, and $y = 0$

$$x = 4$$

$$y = 0$$

about the x-axis

$$\int_{0}^{4} \pi (\sqrt{x})^{2} dx$$

$$\int_{0}^{4} \pi \times dx = \frac{\pi}{2} \times 2 \int_{0}^{4} \frac{\pi}{2} (4)^{2} - 0$$

2)
$$y = x^3$$
, $y = 0$, and $x = 2$

about the x-axis

$$\int_{0}^{2} \pi (x^{3})^{2} dx$$

$$\int_{0}^{2} \pi x^{3} dx = \frac{\pi}{7} x^{7} / \frac{2}{6}$$

$$\begin{cases} -x^3 - 0 \\ 0 = x^3 \end{cases}$$

0=0

$$\frac{\Upsilon}{7}(z)^{7}-0$$

3)
$$x = \frac{2}{y}$$
, and $y = 1$, $y = 6$, and $x = 0$

about the y-axis

Fight - Left
$$\Gamma = \frac{2}{7} - 0$$

$$V = \int \pi \left(\frac{2}{4}\right)^{2} dy$$

$$\int \pi \frac{4}{4^{2}} dy = \pi 4 \left(-\frac{1}{4}\right) = \pi \frac{4}{4}$$

$$= 10.472$$

4)
$$x = y^{2/3}$$
, $y = 8$, and $x = 0$ about the y-axis

5)
$$y = 3x$$
, and $y = 2x^2$

Poi

$$3x = 2x^{2}$$

$$0 = 2x^{2} - 3x$$

$$0 = x(2x - 3)$$

$$x = 0 + y = \frac{3}{2}$$

$$\int_{0}^{3/2} \left(R^{2} - r^{2}\right) dx$$

$$\int_{0}^{3/2} \left(3x^{2} - (2x^{2})^{2}\right) dx$$

$$R = 3x - 0$$

$$R = 3x$$

$$\Gamma = 2x^{2} - 0$$

$$\Gamma = 2x^{2}$$

$$\int_{0}^{3/2} \Upsilon(9x^{2} - 4x^{4}) dx = \Upsilon\left[\frac{9}{3}x^{3} - \frac{4}{5}x^{5}\right]_{0}^{3/2}$$

$$= |12,723|$$

6)
$$y = 3x$$
, $y = 2x^2$ above

The y-axis
$$\begin{array}{c}
X = \frac{1}{2} \\
X = \frac{\sqrt{7}}{\sqrt{z}} \\
X = \frac{1}{2}
\end{array}$$

$$Poi = \frac{4}{3}$$

$$\frac{4}{3} = \frac{4}{3}$$

$$\frac{4}{3} = \frac{4}{9}$$

$$\frac{y^2}{9} - \frac{y}{2} = 0$$

$$R = \sqrt{\frac{1}{2}} - 0$$

$$R = \sqrt{\frac{1}{2}}$$

$$\int_{0}^{2} \gamma \left(\sqrt{\frac{1}{2}}\right)$$

$$\int_{0}^{4/2} \gamma \left(\sqrt{\frac{1}{2}}\right)$$

$$\int_{0}^{4/2} \gamma \left(\sqrt{\frac{1}{2}}\right)$$

$$\int_{0}^{2} \gamma \left(\sqrt{\frac{y}{z}}\right)^{2} - \left(\frac{y}{3}\right)^{2} dy$$

$$\int_{0}^{9/2} \gamma \left(\frac{y}{a} - \frac{y^{2}}{9}\right) dy$$

$$= \left(\frac{1}{4} \sqrt{1 - \frac{1}{2^{2}}} \sqrt{3}\right) \sqrt{\frac{9}{2}} = 5.301$$

7)
$$y = x^3$$
, $y = 0$, and $x = 3$

about the line
$$y = -2$$

$$V = \int_{0}^{3} \pi \left((x^{3} + 2)^{2} - (2)^{2} \right) dx$$

$$\int_{0}^{3} \pi \left(x^{4} + 4 + 4 + 4 \right) dx$$

$$\int_{0}^{3} \pi \left(x^{4} + 4x^{3} \right) dx = \pi \left(\frac{x^{7}}{7} + \frac{4}{4}x^{4} \right)$$

$$= \mathcal{H}\left(\frac{1}{7} \times^{7} + \chi^{4}\right) \Big|_{0}^{3} = 1235.992$$

$$R = X^{3} - (-2)$$

$$R = X^{3} + 2$$

$$C = 0 - (-2)$$

8)
$$y = x^3$$
, $y = 0$, and $x = 3$

about the line
$$x = -1$$

MAC 2311 - Calculus w/Analytic Geometry I

Area Between Two Curves (A)

Sketch the graphs, shade the bounded region and find the area bounded by the given expressions. Use vertical boxes (dx) for problems 1, 2, and 3. Use horizontal boxes (dy) for problems 4, 5, and 6.

problems 4, 5, and 6.

1) $y = x^2 + 1$, y = x, x = -1, and x = 2 $A = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$

and
$$x = 2$$

$$A = \int_{-1}^{2} \int_{-1}^{2} (f(x) - g(x)) dx$$

$$\int_{-1}^{2} (x^{2}+1-x) dx = \frac{x^{3}}{3} + x - \frac{x^{2}}{2} \Big|_{-1}^{2}$$

$$\frac{2^{3}}{3} + 2 - \frac{2^{3}}{2} - \left[\frac{(1)^{3}}{3} + (1) - \frac{(1)^{3}}{2}\right]$$

$$A = \frac{9}{2}$$

2)
$$y = \sqrt{x}$$
 and $y = \frac{x}{4}$

Points of intersection is where these egustions equal each other

$$\sqrt{x} = \frac{x}{4}$$

$$4\sqrt{x} = x$$

$$16x = x^{2}$$

$$x^{2} - 16x = 0$$

$$x(x-16) = 0$$

$$\int_{0}^{16} (\sqrt{x} - x/4) dx$$

$$\int_{0}^{16} (\sqrt{x^{2} - \frac{1}{4}}x) dx$$

$$= [0.667]$$

$$\chi(x-16)=0$$

$$\chi=0+\chi=16$$

3)
$$x = \frac{1}{x^2}$$
, $y = x$, and $y = 2$

$$\int_{1}^{2} (1-\frac{1}{7^{2}}) dy = \int_{1}^{2} (1-\frac{1}{7^{2}}) dy$$

$$\frac{1}{2} + \frac{1}{1} \Big|_{1}^{2} = \boxed{\boxed{}}$$

4)
$$x = 2 - y^2$$
, $y = -x$.

5)
$$y = x^2$$
 and $y = 4x$

use vertical boxes (dx)
$$Poi = 4x = x^{2}$$

$$x^{2} - 4x = 0$$

$$x(x-4) = 0$$

$$x = 2x^{2} - \frac{x^{3}}{3}$$

6)
$$y = x^2$$
 and $y = 4x$

$$X = \frac{1}{4} + X = \sqrt{y}$$
 $Y = \sqrt{y}$
 $Y = \frac{1}{6}y$
 $Y = \frac{1}{6}y = 0$
 $Y = \frac{1}{6}y = 0$
 $Y = \frac{1}{6}y = 0$

					,		
		•					
				÷			-
						•	
	·		·		•		
						•	
	•						
						•	
						•	
				•			
			•				
			•				
						•	
·							
·							
·							
							·
							·
							·

Review for Test #4- Chapter 5 SHOW ALL WORK

Date

Use a Riemann sum to estimate the area under the curve of the function on the given interval. Partition the interval into rectangles of equal width and evaluate the area using the Left-hand endpoint, Right-hand endpoint and Midpoint methods.

1) $f(x) = \sqrt{x} + 2$ on [2, 5] divided into 6 subintervals

			,

Review for Test #3 - Chapter 5 SHOW ALL WORK

Date

Use a Riemann sum to estimate the area under the curve of the function on the given interval. Partition the interval into rectangles of equal width and evaluate the area using the Left-hand endpoint, Right-hand endpoint and Midpoint methods.

1)
$$f(x) = \sqrt{x} + 2$$
 on [2, 5] divided into 6 subintervals

				,	
		·			
				÷	
		·			

Write the sum without sigma notation and evaluate it.

$$2) \sum_{k=1}^{2} \frac{18k}{k+37}$$

A)
$$\frac{18}{1+37} + \frac{36}{2+37} = \frac{54}{77}$$

C)
$$\frac{18}{1+37} + \frac{36}{2+37} = \frac{345}{247}$$

B)
$$\frac{18}{1+37} + \frac{36}{2+37} = \frac{108}{247}$$

D)
$$\frac{18}{1+37} \div \frac{18}{2+37} = \frac{231}{247}$$

3)
$$\sum_{k=1}^{3} (-1)^{k} (k-2)^{2}$$

A)
$$-(1-2)^2 - 2(2-2)^2 - 3(3-2)^2 = -4$$

C)
$$-(1-2)^2 + (2-2)^2 - (3-2)^2 = 2$$

B)
$$(1-2)^2 - (3-2)^2 = -2$$

D)
$$-(1-2)^2 + (2-2)^2 - (3-2)^2 = -2$$

Express the sum in sigma notation.

4)
$$\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81}$$

A)
$$\sum_{k=1}^{5} \left(\frac{1}{3}\right)^{k-1}$$

B)
$$\sum_{k=1}^{4} \left(\frac{1}{3}\right)^{k-1}$$

C)
$$\sum_{k=1}^{4} \left(\frac{1}{3}\right)^k$$

A)
$$\sum_{k=1}^{5} \left(\frac{1}{3}\right)^{k-1}$$
 B) $\sum_{k=1}^{4} \left(\frac{1}{3}\right)^{k-1}$ C) $\sum_{k=1}^{4} \left(\frac{1}{3}\right)^{k}$ D) $\sum_{k=0}^{4} \left(\frac{1}{3}\right)^{k+1}$

$$5)$$
 $3 + 6 + 9 + 12 + 15$

A)
$$\sum_{k=2}^{5} 3(k-1)$$
 B) $\sum_{k=1}^{6} 3k$

$$B) \sum_{k=1}^{6} 3k$$

C)
$$\sum_{k=1}^{5} 3(k+1)$$

C)
$$\sum_{k=1}^{5} 3(k+1)$$
 D) $\sum_{k=0}^{4} 3(k+1)$

Solve the problem.

6) Suppose that f and g are continuous and that
$$\int_{5}^{9} f(x) dx = -6$$
 and $\int_{5}^{9} g(x) dx = 8$. Find $\int_{5}^{9} [5f(x) + g(x)] dx$.
A) -22 B) 10 C) 34 D) 13

7) Suppose that f and g are continuous and that
$$\int_{6}^{10} f(x) dx = -6 \text{ and } \int_{6}^{10} g(x) dx = 10. \text{ Find } \int_{10}^{6} \left[g(x) - f(x) \right] dx.$$

Find the average value of the function over the given interval,

8)
$$f(x) = -2x + 4$$
 on $[-4, 2]$

9)
$$y = 6 - x^2$$
; $[-5, 4]$

B)
$$\frac{223}{27}$$

C)
$$\frac{43}{27}$$

		and the second s	
·			
	·		
·			

the derivative.

10)
$$\frac{d}{dt} \int_{0}^{\sin t} \frac{1}{9 - u^2} du$$
 Plug in upper limit function 2 multiply by its derivative

$$(0) \frac{d}{dt} \int_{0}^{\infty} \frac{1}{9 - u^2} dt$$

$$(0) \cos t$$

$$\underbrace{\text{A)} \frac{\cos t}{9 - \sin^2 t}} \qquad \qquad \text{B)} \frac{-\cos t}{9 - \sin^2 t}$$

C)
$$\frac{1}{\cos t (9 - \sin^2 t)}$$
 D) $\frac{1}{9 - \sin^2 t}$

D)
$$\frac{1}{9 - \sin^2 t}$$

11)
$$y = \int_0^{x^8} \cos \sqrt{t} \, dt$$

$$(A) 8x^7 \cos (x^4)$$

11)
$$y = \int_{0}^{x8} \cos \sqrt{t} dt$$
 $\cos \sqrt{t} dt$ $\cos \sqrt{x} = \cos x^{4} \cdot 8x^{7}$

B) $\cos(x^4) - 1$

D)
$$\cos(x^4)$$

Evaluate the integral.

12)
$$\int 9(3x-1)^{-6} dx$$
 find $U \neq dU$ $U = 3x - 1$ $dU = 3$

A)
$$-\frac{6}{5}(3x-1)^{-5}+C$$
 B) $-\frac{3}{7}(3x-1)^{-7}+C$ C) $(3x-1)^{-5}+C$

C)
$$(3x - 1)^{-5} + C$$

(D)
$$\frac{3}{5}(3x-1)^{-5} + C$$

13)
$$\int \frac{32s^3 \, ds}{\sqrt{10 - s^4}}$$

A)
$$\frac{16s^4}{\sqrt{10-s^4}}$$

B)
$$\frac{-8}{2\sqrt{10-s^4}} + C$$

(C)
$$16\sqrt{10-s^4}+C$$

D)
$$-16s^3\sqrt{10-s^4}+C$$

14)
$$\int \csc^2 6\theta \cot 6\theta \ d\theta$$

A)
$$\frac{1}{6} \csc^3 6\theta \cot^2 6\theta + C$$

C)
$$\frac{1}{12} \cot^2 \theta + C$$

$$(B)$$
 - $\frac{1}{12}$ cot² 6 θ + C

D)
$$-\frac{1}{12} \tan^2 6\theta + C$$

15)
$$\int \frac{x \, dx}{(7x^2 + 3)^5}$$

$$(A)$$
 $-\frac{1}{56}(7x^2+3)^{-4}+C$

C)
$$-\frac{7}{3}(7x^2+3)^{-6}+C$$

B)
$$-\frac{1}{14}(7x^2+3)^{-6}+C$$

D)
$$-\frac{7}{3}(7x^2+3)^{-4}+C$$

16)
$$\int \csc^2 (2\theta + 9) d\theta$$

A)
$$2 \cot (2\theta + 9) + C$$

C)
$$4 \csc (2\theta + 9) \cot (2\theta + 9) + C$$

B)
$$-\cot(2\theta + 9) + C$$

$$(\hat{D}) - \frac{1}{2} \cot (2\theta + 9) + C$$

(D)
$$-\frac{1}{2}\cot(2\theta + 9) + C$$

$$\frac{1}{2} \int Csc^{2}(2\theta+9) \cdot 2d\theta = \frac{1}{2} \int csc^{2}u \, du = \frac{1}{2} \cdot (-6tu) + c$$

$$3 = -\frac{1}{2} \cot(2\theta+9) + c$$

(13)
$$(38.5)$$
 ds $(3x-1)^{-6}$ dx $(3x-1)^{-5}$ + c $(3x-1)^{-5}$ dy

$$\frac{13}{\sqrt{10-5!}} = \int 325^{3} (10-5!)^{-\frac{1}{2}} dv \qquad U = 10-5!$$

$$dv = -45^{3} ds$$

$$-8\int_{-\frac{1}{8}}^{\frac{1}{2}} 3z s^{3} (10-s^{4})^{\frac{1}{2}} ds = -8\int_{-\frac{1}{6}}^{\frac{1}{2}} du = -8\cdot \frac{u^{\frac{1}{2}}}{\frac{1}{2}} + C$$

$$= -16 u^{\frac{1}{2}} + C = \left[-16\left(10-s^{4}\right)^{\frac{1}{2}} + C\right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -16 v^{\frac{1}{2}} + C = \left[-16 \left(10 - 5^{4} \right)^{\frac{1}{2}} + C \right]$$

$$= -\frac{1}{12} v^{2} + C = \left[-\frac{1}{2} \left(\cot 60 \right)^{2} + C \right]$$

(IS)
$$\int X(7x^2+3)^{-5} dx = \frac{1}{14} \int (7x^2+3)^{-5} |4x dx|$$

$$=\frac{1}{14}\int_{0}^{-5} du = \frac{1}{14} \cdot \frac{1}{4} + C = -\frac{1}{56} \cdot \frac{1}{14} \cdot \frac{1}{4} \cdot C = \frac{1}{56} \cdot \frac{1}{7x^{2} + 3} \cdot \frac{1}{4} \cdot C$$

U=7x2+3

du= 14xdx

17)
$$\int \frac{1}{t^2} \sin\left(\frac{3}{t} + 6\right) dt$$
A) $-\cos\left(\frac{3}{t} + 6\right) + C$

$$\mathbf{B} \frac{1}{3} \cos \left[\frac{3}{t} + 6 \right] + C$$

C)
$$3\cos\left(\frac{3}{t}+6\right)+C$$

$$(3) \frac{1}{3} \cos \left(\frac{3}{t} + 6\right) + C \qquad (3) \cos \left(\frac{3}{t} + 6\right) + C \qquad (4) \cos \left(\frac{3}{t} + 6\right) + C$$

$$18) \int \frac{e^x dx}{\sqrt{1 - e^{2x}}}$$

A)
$$e^{x} \sin^{-1}(e^{x}) + 0$$

A)
$$e^{x} \sin^{-1}(e^{x}) + C$$
 B $\sin^{-1}(e^{x}) + C$

C)
$$\sec^{-1}(e^{x}) + C$$

D)
$$-2\sqrt{1 - e^{2x}} + C$$

Solve the initial value problem.

19)
$$\frac{dy}{dx} = x \cos(9x^2)$$
, $y(0) = 11$

A)
$$y = \frac{1}{u} \sin(u)$$

$$(C) y = \frac{1}{18} \sin(9x^2) + 11$$

B)
$$y = \sin(9x^2) + 11$$

D)
$$y = \frac{x^2}{2} \sin(9x^2) + 11$$

20)
$$\frac{ds}{dt}$$
 = (4t + 3) sin (2t² + 3t), s(0) = -5

A)
$$s = \cos(2t^2 + 3t) - 6$$

(C)
$$s = -\cos(2t^2 + 3t) - 4$$

B)
$$s = \sin(2t^2 + 3t) - 5$$

D)
$$s = -\cos(4t + 3) - \frac{5}{2}$$

Evaluate the integral.

21)
$$\int_{3\pi/2}^{2\pi} \theta \, d\theta$$

$$(A)\frac{7\pi^2}{8}$$

B)
$$\frac{9\pi^2}{8}$$

C)
$$\frac{\pi^2}{2}$$

D)
$$\frac{\pi^2}{8}$$

22)
$$\int_0^{1/5} t^2 dt$$

$$\underbrace{A}_{375}^{1}$$

B)
$$-\frac{1}{5}$$

D)
$$-\frac{1}{375}$$

$$23) \int_{2}^{\sqrt{6}} \left(z - \sqrt{6}\right) dz$$

B)
$$- 5\sqrt{6}$$

(D)
$$-5 + 2\sqrt{6}$$

$$\begin{array}{lll}
\text{(3)} & \text{(3)} & \text{(3)} & \text{(3)} & \text{(3)} & \text{(3)} & \text{(4)} & \text{(3)} & \text{(3)} & \text{(4)} & \text{(4)} & \text{(3)} & \text{(4)} & \text{$$

$$U = 2t^2 + 3t$$

$$dv = 4t + 3 dt$$

24)
$$\int_{0}^{7} (3x^{2} + x + 8) dx = X^{3} + X^{2} + 8x \int_{0}^{7} = \frac{4|23.5|}{2}$$

A) 64

B) $\frac{2485}{3}$

(C) $\frac{847}{2}$

D) 189

25) $\int_{1}^{4} (t + \frac{1}{t})^{2} dt$

A) $\int_{1}^{4} (t + t^{-1})^{2} dt = \int_{1}^{4} (t^{2} + 2 + \frac{1}{2}z) dt = \int_{1}^{4} (t^{$

$$27) \int_{0}^{1} \frac{10 \, r \, dr}{\sqrt{9 + 5r^{2}}} = 1.4833 = \int_{0}^{1} 10 \, r \, \left(9 + 5 \right)^{\frac{1}{2}} \, dr = \frac{0.4833}{0.000} = \frac{1}{2} \int_{0}^{1} 10 \, r \, dr = \frac{1$$

28)
$$\int_{\pi/3}^{2\pi} 4 \cos^3 x \sin x \, dx$$
A) $-\frac{32769}{524288}$
B) $\frac{15}{16}$
C) $\frac{15}{16}$
D) $-\frac{15}{4}$

29)
$$\int_{\pi/8}^{\pi/4} 2 \cot (2\theta) d\theta$$

A) $-\frac{\ln 2}{2}$ B) $\frac{\ln 4}{2}$ C) $\ln 2$

Sketch the graphs, shade the bounded region, draw a typical horizontal or vertical box, set up the integral, integrate and state the area.

30)
$$y = 2x - x^2$$
, $y = 2x - 4$ use "dx"
A) $\frac{32}{3}$ B) $\frac{37}{3}$ C) $\frac{31}{3}$ D) $\frac{34}{3}$

31)
$$y = x^3$$
, $y = 4x$ area in the first quadrant only and use "dy"

A) 16

B) 8

C) 4

D) 2

Answer Key

Testname: MAC 2311 - REVIEW FOR TEST #4 - CHAPTER 5

1) 2) C

3) D

4) C

5) D

6)_.A

7) C

8) D

9) D

10) A

11) A

12) D

13) C 14) B

15) A 16) D

17) B

18) B

19) C

20) C

21) A

22) A

23) D

24)·C

25) C

26) B

27) A

28) C

29) D

30) A

31) 🗶 📞

$$(30) \qquad |= 2x - x^2 \qquad y = 2x - 4$$

$$(2x)$$

$$\int_{0}^{0} = 2x - X^{2} = 2x - 4$$

$$2x - X^{2} - 2x + 4 = 0$$

$$x^{2} + 4 = 0$$

$$X = -2, X = 2$$

$$\int_{-2}^{2} \left[2x - x^{2} - (2x - 4) \right] dx$$

$$\int_{-2}^{2} \left(2x - x^{2} - 2x + 4 \right) dx = \left[x^{2} + 4 \right] dx$$

$$= -\frac{x^{3}}{3} + 4x \Big|_{-2}^{2} = \left[10.67 \right]$$

$$1=X^{3}, 1=1/X$$
 $1=X^{3}=X, \frac{1}{4}=X$

Poi =
$$y^{\frac{1}{3}} = \frac{1}{2}y$$

 $y = \frac{1}{64}y^3$
 $y = \frac{1}{64}y = 0$

$$\int_{0}^{8} \frac{1}{3} - \frac{1}{4} y \, dy$$

$$= \frac{3}{4} y^{4/3} - \frac{1}{8} y^{2} \Big|_{0}^{8}$$

= 4

MAC 2311 - Calculus w/Analytic Geometry I Volumes of Solids - Cross Sections Lesson Problems

1. The base of the solid lies in the area bounded by $y=\sqrt{1-x^2}$, $y=-\sqrt{1-x^2}$, x=-1, and x=1. Cross-sections perpendicular to the x-axis are squares with a side of the square lying on the coordinate plane.

2. The base of the solid lies in the area bounded by $y = \sqrt{x}$, $y = -\sqrt{x}$, x = 0, and x = 4.

Cross-sections perpendicular to the x-axis are semicircles with the diameter running between the curves. A $-\infty$ 12

$$\int_{0}^{4} \frac{1}{2} \operatorname{Tr}(x)^{2} dx$$

$$\int_{0}^{4} \frac{1}{2} \operatorname{Tr}(x)^{2} dx$$

$$= \frac{1}{4} \operatorname{Tr}(x)^{2} dx$$

3. The base of the solid lies in the area-bounded by $y=\sqrt{1-x^2}$, $y=-\sqrt{1-x^2}$, x=-1, and x=1. Cross-sections perpendicular to the x-axis are semicircles with the diameter running between the curves.

4. A some first in the area bounded by $y = \sqrt{1-x^2}$, $y = -\sqrt{1-x^2}$ with the diagonal of the square running lattices the two semicircles.

MAC 2311 - Calculus w/Analytic Geometry I

<u>Integration</u> "u du" Substitution

1)
$$\int 3(3x-1)^5 dx$$

 $u = 3x - 1$ $\int (3x-1)^5 3 dx$
 $du = 3 dx$ $\int \int_{6}^{3} dy$
 $= \frac{y}{6} + C$
 $= \frac{1}{6}(3x-1)^6 + C$

3)
$$\int \sqrt{1-4x} \, dx - \frac{1}{4} \int (1-4x)^{\frac{1}{2}} \, dx$$

$$u = 1-4x$$

$$du = -4 dx$$

$$-\frac{1}{4} \int \frac{1}{2} \, dx$$

$$-\frac{1}{4} \left(\frac{2}{3} \int \frac{3}{2} \, dx\right)$$

$$-\frac{1}{4} \left(\frac{2}{3} \left(1-4x\right)^{\frac{3}{2}} + C\right)$$

$$\left[-\frac{1}{6} \left(1-4x\right)^{\frac{3}{2}} + C\right]$$
5)
$$\int (2x^2+1)^2 \, dx$$

2)
$$\int (6x+7)^3 dx$$

 $u = 6x+7$
 $\frac{1}{6} \int (6x+7)^3 6 dx$

$$du = 6 dx$$
 $= \frac{1}{6} \left(\frac{0}{4} + c \right)$
 $= \frac{1}{6} \left(\frac{(6x+7)^4}{4} + c \right)$
 $= \frac{1}{6} \left(\frac{(6x+7)^4}{4} + c \right)$

$$4) \int x \left(2x^2+1\right)^6 dx$$

6)
$$\int x^{2}(x^{3}-1)^{10} dx \frac{1}{3} \int_{3x^{2}} (x^{3}-1)^{10} dx$$

$$u = x^{3}-1$$

$$du = 3x^{2} dx$$

$$\frac{1}{3} \cdot \left(\frac{y''}{11} + C\right)$$

$$\frac{1}{3} \cdot \left(\frac{x^{3}-1}{11}\right)^{11} + C$$

$$\frac{1}{3} \cdot \left(\frac{x^{3}-1}{11}\right)^{11} + C$$

7)
$$\int x^4 \sqrt{3x^5 - 5} \, dx$$

8)
$$\int \sin^{10}(x)\cos(x) dx \int \int_{0}^{10} dx$$

$$u = \int_{0}^{10} x$$

$$du = \cos X dX$$

9)
$$\int 6x^2 \sin(x^3) dx$$

10)
$$\int \sin^2(2x)\cos(2x)\,dx$$

11)
$$\int \frac{4y}{\sqrt{2y^2 + 1}} dy \int (2y^2 + 1)^{-\frac{1}{2}} dy$$

$$u = 2y^2 + 1 \int \sqrt{-\frac{1}{2}} dy$$

$$u = 2y^2 + 1$$

12)
$$\int \frac{5x}{(4+x^2)^2} dx = \int \frac{1}{(4+x^2)^2} - 5x dx$$

$$u = 4 + \chi^2$$

$$du = 2 \times dx$$

$$5 \cdot \frac{1}{2} \int \overline{U}^2 dx$$

$$\frac{5}{2} \int_{0}^{-2} dx$$

$$\frac{5}{2}\left(\frac{\sqrt{1}}{-1}+C\right)$$

$$\frac{8x^{2}-2x+8xh-2h+8x^{2}-8xh+2x}{h(8x+8h-2)(8x-2)}$$

$$=\lim_{h\to 0} \frac{-2h}{h(8x+8h-2)(8x-2)}$$

$$=\lim_{h\to 0} \frac{-2}{(8x-2)^{2}}$$

$$3) y = \frac{27}{(x^{2}+2)(6)-27(6x)}$$

$$(x^{2}+2)^{2}$$

$$y' = \frac{-54x}{(x^{2}+2)^{2}}$$

$$y' = -\frac{54}{9}$$

$$y' = -\frac{6}{9}$$

$$y' = -\frac{6}{9}$$

(4)
$$f(x) = 2x^{2} - 3x$$
 tangent the 11 to $y = 13x + 5$
 $y = 4x - 3$
 $13 = 4x - 3$
 $12 = 4x - 3$
 $13 = 4x - 3$
 $13 = 4x - 3$
 $14 = 20$

(4) $y = 20$

(5) $x = 4$
 $y = 2(4)^{2} - 3(4)$
 $y = 20$

(5) $x = 4$
 $y = 3 + 24$
 $y = 20$

(6) $y = 3 + 24$
 $y = 20$
 $y = 20$
 $y = 3 + 24$
 $y = 20$
 $y = 20$
 $y = 3 + 24$
 $y = 3 + 24$

	(7) S(t) = t3 - 9t2 + 24t Displacement t=0 t=5
	Displacement = End - begining
	S(5) - S(0) = 20 - 0 = 20m (right)
	(8) $S(t) = 120t - 4t^2$
	$V(t) = 120 - 8t$ $V(t) = 0 \rightarrow max height$ Q = 120 - 8t
	0= 120 - 8t E = 15 sect
	· <i>L</i>
	how high does it so? S(15) = 120(15) - 4(15) ² S(15) = 900 m
	9) S(t) = 120t-4t2 when it hits the ground?
	(9) $S(t) = 120t - 4t^2$ when it hits the ground? V(t) = 120 - 8t $S(t) = 0$ grand? S(t) = 0
	$0 = 120 \frac{\pi}{500}$ $0 = 16(30-6)$ $0 = 120 \frac{\pi}{500}$
	4t=0 30-t=0
·—-	(t=0) [t=30]

(10)
$$S(t) = |20t - 4t^2$$
 (a) $|00|$ the drive ground $S(t) = |00|$
 $|00| = |20t - 4t^2$
 $|12| - |20t + |00| = 0$
 $|4(t^2 - 30t + 25) = 0$
 $|4($

(1)
$$| \frac{1}{2} | \frac{1}{3} | \frac{1}{3}$$

	5
	$\int \int h(x) = \frac{\cos x}{1 + \sin x}$
	$h'(x) = S\left(\frac{\cos x}{1 + \sin x}\right) \left(\frac{(1 + \sin x) - \cos x(\cos x)}{(1 + \sin x)^2}\right)$
*	
-	
-	

(16)
$$y = cos^{5}(\pi t - 19)$$

 $\frac{dy}{dt} = 5(cos^{9}(\pi t - 19))(-sin(\pi t - 19))(\pi)$
 $\frac{dy}{dt} = -5\pi(cos^{5}(\pi t - 19))(s;n(\pi t - 19))$
 $\frac{dt}{dt}$
(17) $y = t^{5}(t^{9} - 6)^{9}$
 $\frac{dy}{dt} = 5t^{9}(t^{9} - 6)^{9} + (t^{5})(4(t^{9} - 6)^{3}(4t^{6}))$
 $\frac{dy}{dt} = 16t^{8}(t^{9} - 6)^{3} + 5t^{4}(t^{9} - 6)^{4}$
 $\frac{dy}{dt} = t^{9}(t^{9} - 6)^{3}(16t^{9} + 5(t^{9} - 6))$
 $\frac{dy}{dt} = t^{9}(t^{9} - 6)^{3}(21t^{9} - 30)$

$$\frac{dY}{dt} = 4(e^{\cos^{2}\frac{1}{3}})^{3}(-\sin^{2}\frac{1}{3})(\frac{1}{3})$$

$$\frac{dY}{dt} = 4(e^{\cos^{2}\frac{1}{3}})^{3}(-\sin^{2}\frac{1}{3})(\frac{1}{3})$$

$$\frac{dY}{dt} = 4(e^{\cos^{2}\frac{1}{3}})^{3}(-\sin^{2}\frac{1}{3})(\frac{1}{3})$$

$$\frac{dY}{dt} = 4(e^{\cos^{2}\frac{1}{3}})^{3}(-\sin^{2}\frac{1}{3})(\frac{1}{3})$$

21)
$$y^{5} + x^{3} = y^{2} + 12x$$
 torgen $(0, 1)$
 $5y^{4}dy + 3x^{2} = 2y dy + 12$
 $5y^{4}dy - 2y dy = 12 - 3x^{2}$
 $dy = 12 - 3x^{2} = 12$
 $dx = 5y^{4} - 2y = 3$
 $y - 1 = 4(x - 0)$
 $y = 4x + 1$
 $y = 4x +$

23)
$$y = 10e^{\theta} (\sin \theta - \cos \theta)$$
 $\frac{dy}{d\theta} = 10e^{\theta} (\cos \theta + \sin \theta) + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \log^{\theta} \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \log^{\theta} \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \log^{\theta} \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} (\sin \theta - \cos \theta)$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \sin \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta + 10e^{\theta} \cos \theta$
 $= 10e^{\theta} \cos \theta + 10e^{\theta}$

$$\frac{2S}{4!} = e^{-sint} (\ln t^3 + 3)$$

$$\frac{3V}{4!} = e^{sint} (\frac{1}{t^3} \cdot 3t^2 + 0) + e^{sint} cost (\ln t^3 + 3)$$

$$e^{sint} \frac{3t^2}{t} + e^{sint} cost (\ln t^3 + 3)$$

$$= e^{sint} (\frac{3}{t} + cost (\ln t^3 + 3))$$

$$= e^{sint} (\frac{3}{t} + cost (\ln t^3 + 3))$$

$$= e^{sint} (\frac{3}{t} + cost (\ln t^3 + 3))$$

Z

	(29) Y= 25m (4x4)		
	$\frac{d^3}{d^4} = \frac{2}{\sqrt{1-(4x^4)}} \frac{16x^3}{\sqrt{1-(4x^4)}}$		
·	$\frac{d^{3}}{dx} = \frac{2}{\sqrt{1-(4x^{4})}} = \frac{1}{1-(4x^{4})}$		
<u></u>			
			- <u>-</u> -
			——
			 -
		,	
			
······································			-
		<u>:</u>	
		·- <u>-</u>	
- · · · · · · · · · · · · · · · · · · ·			
			

$$|V=3-1| \frac{dV}{dt} = 6 \frac{1}{5cc}$$

$$|V=3-1| \frac{dV}{dt} = 7 \frac{1}{4}$$

$$|V=3-1| \frac{dV}{dt}$$

5)
$$S = {3 \cdot 9f^{2} + 24t}$$
 $a(t)$ when $V(t) = 0$
 $V(t) = 3t^{2} - 18t + 24$
 $0 = 3t^{2} - 18t + 24$
 $0 = 3(t^{2} - 6t + 8)$ $t = 2$ $t = 4$
 $a(t) = 6t - 18$, $a(2) = -6$, $a(4) = 6$

5) $S(0) = 0$ 20
 $S(2) = 20$
 $S(3) = 20$
 $S(4) = 16$
 $S(5) = 20$
 $S(5) = 20$
 $S(6) = 120t - 4t^{2}$ flow high, flow long?

highest when $V=x_{1}(y) = 0$
 $S'(t) = V(t) = 120 - 8t$
 $0 = 120 - 8t$ $\Rightarrow t = 15$ sec. is highest point $S(15) = 120(15) - 4(15)^{2}$
 $S(15) = 120(15) - 4(15)^{2}$
 $S(15) = 120t - 4t^{2}$ from $S(1) = 0$
 $S(1) = 120t - 4t^{2}$ from $S(1) = 0$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$
 $S(1) = 120t - 4t^{2}$ $S(1) = 120t - 3(10)$

MAC 2311 - Calculus w/Analytic Geometry I

Spring 2015

Review for Test #3 - Chapter 4

Solve the problem.

1) Find the graph that matches the given table.

Determine whether the function satisfies the hypotheses of the Mean Value Theorem for the given interval.

2)
$$g(x) = x^{3/4}$$
,
A) No

#1 gers continuous on [0,5]

#z g'(x) is differentiable on (0,5)
does not include endpoint

#9
$$f(\frac{3}{3}) - f(\frac{3}{3}) = .907$$
 $F'(x) = \frac{1}{1-x^2} = .907$
 $1+x^2 = \frac{1}{.907}$

$$P'(x) = \frac{1}{1 - x^2} = .907$$
 $1+x^2 = \frac{1}{.907}$

Find the absolute extreme values of the function on the interval.

3)
$$q(x) = -x^2 + 12x - 32$$
, $4 \le x \le 8$

- A) absolute maximum is 68 at x = 6; absolute minimum is 0 at 8 and 0 at x = 4
- (B))absolute maximum is 4 at x = 6; absolute minimum is 0 at 8 and 0 at x = 4
- C) absolute maximum is 5 at x = 7; absolute minimum is 0 at 8 and 0 at x = 4
- D) absolute maximum is 4 at x = 7; absolute minimum is 0 at 8 and 0 at x = 4

$$g(x) = -2x + 12$$

$$0 = -2x + 12 \text{ inc.} Dec$$

$$X = 6$$

$$F(4) = 0$$

F(4)=0 +(6)= 4 Abs Max +(3)=U

4)
$$f(x) = \csc x$$
, $-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$

- A) absolute maximum is -1 at $x = \pi$; absolute minimum is 1 at x = 0
- B) absolute maximum is 1 at $x = \pi$; absolute minimum is -1 at $x = \pi$
- (C) absolute maximum does not exist; absolute minimum does not exist
- D) absolute maximum is 0 at $x = -\pi$; absolute minimum is -1 at $x = \pi$

f(x)=UND= X= 0, T, 2x, 3xf

Find the absolute extreme values of the function on the interval.

5)
$$f(x) = x^{4/3}, -1 \le x \le 8$$

- A) absolute maximum is 64 at x = 8; absolute minimum is 0 at x = 0
- B) absolute maximum is 16 at x = 8; absolute minimum does not exist
- C) absolute maximum is 16 at x = 8; absolute minimum is 1 at x = -1
- D) absolute maximum is 16 at x = 8; absolute minimum is 0 at x = 0

6)
$$f(x) = -6 e^{-x^2}$$
, $-\infty < x < \infty$

- A) Minimum value is 6 at x = 0; maximum value is $\frac{6}{3}$ at x = 1
- B) No minimum value and no maximum value
- (C) Minimum value is 6 at x = 0; no maximum value
- \mathbf{D}) Maximum value is 6 at $\mathbf{x} = 0$; minimum value

$$f'(x) = -6e^{x^2}(-2x)$$

$$f'(x) = \frac{12x}{e^{x^2}}$$

$$f'(x) = 0 \text{ ax=0}$$

F(x) = CSCX = Sinx

$$f'(x) = \frac{12x}{6x^2}$$

$$F(0) = -\frac{6}{7} = -6$$
 nin del Abs Min

7)
$$f(x) = \ln(-x), -7 \le x \le -1$$

- A) Minimum value is 0 at x = -1; no maximum value
- B) Maximum value is 0 at x = -1; minimum value is -In 7 at x = -7
- C) No minimum value; no maximum value
- (D) Minimum value is 0 at x = -1; maximum value is $\ln 7$ at x = -7

Find the value or values of c that satisfy the equation $\frac{f(b) - f(a)}{b-a} = f'(c)$ in the conclusion of the Mean Value Theorem for

the function and interval.

ction and interval.
8)
$$f(x) = x^2 + 5x + 2$$
, [1,2] $f'(x) = 2x + 5$ $\frac{f(z) - f(z)}{2 - 1} = \frac{16 - 8}{1} = 8$. $f'(c) = 2x + 5$ $x = \frac{3}{2}$

$$\frac{f(2)-f(1)}{2-1}$$

$$= \frac{16-0}{1} = 8$$
C) $0, \frac{3}{2}$

$$\frac{16-8}{1} = 8$$

$$X = \frac{3}{2}$$

9)
$$f(x) = \tan^{-1} x, \left[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right]$$

Round to the nearest thousandth.

A) 0.320

- B) 0, 0.320
- D) -0.320, 0, 0.320

Answer the question.

10) A trucker handed in a ticket at a toll booth showing that in 3 hours he had covered 222 miles on a toll road with speed limit 65 mph. The trucker was cited for speeding. Why?

2

15)
$$\gamma = \frac{(x^2 + 2x + 2)(1) - (x+1)(2x+2)}{(x^2 + 2x + 2)^2} = \frac{x^2 + 2x + 2 - 2x^2 - 1x - 2}{(x^2 + 2x + 2)^2}$$

$$F'(x) = \frac{-x^2 - 2x}{(x^2 + 2x)^2} \longrightarrow \frac{-x^2 - 2x}{(x^2 - 2x)^2}$$

No values will make this and

Determine all critical points for the function.

11)
$$f(x) = x^3 - 12x + 5$$

A)
$$x = 2$$

$$(C)$$
x = -2 and x = 2

B)
$$x = -2$$

D)
$$x = -2$$
, $x = 0$, and $x = 2$

12)
$$f(x) = 20x^3 - 3x^5$$

A)
$$x = 2$$

C)
$$x = -2$$
 and $x = 2$

B)
$$x = -2$$

$$(D)_0 x = 0, x = -2, and x = 2$$

13)
$$y = 4x^2 - 128\sqrt{x}$$
 $f'(x) = 8x - 178 \cdot \frac{1}{2} \cdot x^{-\frac{1}{2}}$

$$A) x = 0$$

C)
$$x = 4$$

$$f'(x) = 8x - \frac{64}{x^{\frac{1}{2}}} = 0$$

$$8x^{\frac{1}{2}} - 64 = 0 \longrightarrow x = 8^{\frac{2}{3}} = \frac{14}{3}$$

B)
$$x = 0$$
, $x = 4$, and $x = -4$
D) $x = 0$ and $x = 4$

Find the extreme values of the function and where they occur.

14)
$$y = x^3 - 12x + 2$$

- A) Local maximum at (0, 0).
- B) Local maximum at (2, -14), local minimum at (-2, 18).
- C) Local maximum at (-2, 18), local minimum at (2, -14).
- D) None

15)
$$y = \frac{x+1}{x^2+2x+2}$$

- A) None
- B) The maximum is $-\frac{1}{2}$ at x = 0; the minimum is $\frac{1}{2}$ at x = -2.
- The maximum is $\frac{1}{2}$ at x = 0; the minimum is $-\frac{1}{2}$ at x = -2.
 - D) The maximum is 2 at x = 0; the minimum is $\frac{1}{2}$ at x = -2.

16)
$$y = \frac{\ln x}{x^2}$$
 $x > 0$

- A) Maximum value is $\frac{1}{29}$ at $x = e^{1/2}$; minimum value is 0 at x = 1.
- (\hat{B}) Maximum value is $\frac{1}{2e}$ at $x = e^{1/2}$; no minimum value.
- C) Minimum value is $\frac{1}{2e}$ at $x = e^{1/2}$; no maximum value.
- D) None

$$f'(x) = \frac{x^2 \cdot \frac{1}{x} - \ln x \cdot 2x}{x^4} = \frac{1 - 2\ln x = 0}{2\ln x = 1}$$

$$\ln x = \frac{1}{2}$$

$$\frac{x-2x\ln x}{x^4} = \frac{\chi(1-2\ln t)}{\chi^4}; \frac{1-2\ln t}{x^3}$$

·					
		·			

Find the derivative at each critical point and determine the local extreme values.

17)
$$y = x^{2/3}(x^2 - 16)$$
; $x \ge 0$

Critical Pt. derivative Extremum Value
$$\begin{array}{c|cccc}
x = 0 & maximum & 0 \\
x = 2 & 0 & mlnimum & -19.049
\end{array}$$

D) 9

Identify all local extrema and inflection points.

Use l'Hopital's Rule to evaluate the limit.

19)
$$\lim_{x\to 9} \frac{x^2 - 81}{x - 9} = 0$$
 $\lim_{x\to 9} \frac{2x}{1} = 2(9) = 18$
A) -18
B) -9

20)
$$\lim_{x\to 0} \frac{\cos 9x - 1}{x^2} = \frac{0}{0} \quad \lim_{x\to 0} \frac{\left(-S; n \frac{9}{x}\right)^{\frac{9}{2}}}{Zx} = \frac{0}{0} = \lim_{x\to 0} \frac{\left(-Gs \frac{9}{x}\right)^{\frac{9}{2}}}{Z} = \frac{0}{0}$$

$$E = \lim_{x\to 0} \frac{\left(-Gs \frac{9}{x}\right)^{\frac{9}{2}}}{Z} = \frac{0}{0}$$

21)
$$\lim_{x\to 0} \frac{x}{\sin x} = \frac{5}{5}$$
 $\lim_{x\to 70} \frac{1}{\cos x} = 1$

A) -1 B) 0 C) 1

22)
$$\lim_{X \to \infty} \frac{16x^{2} + 7x - 5}{13x^{2} - 5x + 18} = \frac{\frac{16}{13}}{13}$$

A) 1

B) $\frac{16}{13}$

C) $-\frac{16}{13}$

D) $\frac{13}{16}$

#27
$$V = 1... \cdot h$$
 $V(x) = (40 - 2x)(40 - 2x)(x)$
 $V(x) = (40 - 2x)(40 x - 2x)$
 $V(x) = 1600 x - 160x^2 + 4x^3$
 $V'(x) = 1600 - 320 x + 12x^2$
 $V'(x) = 0$
 $X = 6.67 \cdot h$
 $X = 240 x^2 + 27$
 $X = 4(xh) + x^2$
 $X = 240 x^2 + 27$
 $X = 4x + 2x + 2x$
 $X = 240 x^2 + 2x$
 $X = 240 x^$

can't be minus

20 Josent work as its

$$SA = \frac{240}{X} + X^{2}$$

$$SA = \frac{240}{X} + X^{2}$$

$$SA' = -\frac{240}{X^{2}} + 2X = 0$$

$$0 = \frac{-240}{X^{2}} + 2X$$

$$CD = X^{2}$$

$$0 = -\frac{240}{X^{2}} + 2X$$

$$CD = X^{2}$$

$$X^{3} = \frac{120}{X^{2}} = \frac{1}{X^{2}} = \frac{60}{4.92} = \frac{2}{4.92}$$

Use l'Hopital's rule to find the limit.

Phopital's rule to find the limit.

23)
$$\lim_{X\to 0} \frac{\sin 6x}{\tan 4x} \stackrel{\circ}{\cup} \qquad \lim_{X\to 0} \frac{(\cos 6x)6}{(\cos 2x)^4} = \frac{6}{4} \cos (6x) \cdot \cos^2(4x) \rightarrow \frac{3}{2} \cos (6x) \cdot \cos^2(4x) \rightarrow \frac{3}{2}$$

$$B) \frac{2}{3}$$

$$C) 0$$

$$D) -\frac{3}{2}$$

25)
$$\lim_{X \to \infty} (\sqrt{x^2 + 6x} - x)$$

A) 6 B) 3 C) 0 D) - 3

Find the limit.

26)
$$\lim_{x\to 0^+} x^{-2/\ln x}$$
A) e^2
B) $\frac{1}{e^2}$
C) $\frac{1}{e}$
D) -2

Solve the problem.

27) From a thin piece of cardboard 40 in. by 40 in., square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume? What is the maximum volume? Round to the nearest tenth, if necessary.

B) 26.7 ln. × 26.7 in. × 13.3 in.: 9481.5 ln³

(c) 26.7 in. \times 26.7 in. \times 6.7 in.; 4740.7 in³

D) 13.3 in. \times 13.3 in. \times 13.3 in.; 2370.4 in³

28) A company is constructing an open-top, square-based, rectangular metal tank that will have a volume of 60 ft3. What dimensions yield the minimum surface area? Round to the nearest tenth, if necessary.

B) $5.6 \text{ ft} \times 5.6 \text{ ft} \times 1.9 \text{ ft}$

D) 11 ft \times 11 ft \times 0.5 ft

29) A rectangular field is to be enclosed on four sides with a fence. Fencing costs \$7 per foot for two opposite sides, and \$5 per foot for the other two sides. Find the dimensions of the field of area 840 ft² that would be the cheapest to enclose. > \h', \n

(A) 24.5 ft @ \$7 by 34.3 ft @ \$5

B) 40.6 ft @ \$7 by 20.7 ft @ \$5

C) 34.3 ft @ \$7 by 24.5 ft @ \$5

D) 20.7 ft@\$7 by 40.6 ft@\$5

Find the most general antiderivative.

30)
$$\int (5x^3 + 8x + 3) dx$$

A) $5x^4 + 8x^2 + 3x + C$

B) $15x^4 + 16x^2 + 3x + C$

C) $\frac{5}{4}x^4 + 4x^2 + 3x + C$

D) $15x^2 + 8 + C$

(31)
$$\int \left(\frac{r_{1}}{6} + \frac{3}{r_{1}}\right) dy = \int \left(\frac{1}{6}y^{\frac{3}{2}} + 3y^{\frac{3}{2}}\right) dy$$

$$= \frac{1}{6} \cdot \frac{y^{\frac{3}{2}}}{\frac{1}{2}} + 3\frac{y^{\frac{3}{2}}}{\frac{1}{2}} + c = \frac{1}{2}y^{\frac{3}{2}} + 6y^{\frac{3}{2}} + c$$

$$= \frac{1}{6} \cdot \frac{y^{\frac{3}{2}}}{\frac{1}{2}} + 3\frac{y^{\frac{3}{2}}}{\frac{1}{2}} + c = \frac{1}{2}y^{\frac{3}{2}} + 6y^{\frac{3}{2}} + c$$

$$= \frac{1}{1 - \cos \theta} \rightarrow identity = \frac{1}{\sin^{2}\theta} = \cos \theta d\theta$$

$$= \frac{1}{1 - \cot^{3}\theta} \rightarrow identity = \frac{1}{\sin^{2}\theta} = \cos \theta d\theta$$

$$= \cot \theta + c$$

$$|hy| = -2$$

$$e^{|hy|} = e^{-2}$$

$$|y| = e^{-2}$$

$$|y| = \frac{1}{e^{2}}$$

31)
$$\int \left[\frac{\sqrt{y}}{6} + \frac{3}{\sqrt{y}} \right] dy$$
A) $\frac{1}{4}y^{3/2} + \frac{1}{6}\sqrt{y} + C$

B)
$$\frac{1}{9}y^{3/2} - 6\sqrt{y} + 0$$

B)
$$\frac{1}{9}y^{3/2} - 6\sqrt{y} + C$$
 C) $\frac{1}{12}\sqrt{y} - \frac{1}{6\sqrt{y}} + C$

$$\bigcirc \frac{1}{9}y^{3/2} + 6\sqrt{y} + C$$

32)
$$\int (-9 \sec^2 x) dx$$

C)
$$\frac{\tan x}{9}$$
 + C

33)
$$\int \frac{\sec \theta}{\sec \theta - \cos \theta} d\theta$$

A)
$$\cos^2 \theta + C$$

B)
$$-\cot \theta + C$$

C)
$$\theta$$
 + tan θ + C

D)
$$\cot \theta + C$$

= find c Solve the initial value problem.

34)
$$\frac{dy}{dx} = 3x^{-3/4}$$
, $y(1) = 1$

A)
$$y = 12x^{1/4} - 11$$

B)
$$y = 12x^{1/4} + 12$$

C)
$$y = -\frac{3}{4}x^{-7/4} - \frac{11}{4}$$

D)
$$y = 3x^{1/4} - 2$$

35)
$$\frac{dr}{dt} = 4t + \sec^2 t$$
, $r(-\pi) = 4$

A)
$$r = 2t^2 + \cot t + 4 - 2\pi^2$$

C)
$$r = 4 + \tan t + 0$$

B)
$$r = 4t^2 + \tan t + 4 - 4\pi^2$$

(D)
$$r = 2t^2 + \tan t + 4 - 2\pi^2$$

$$4 = 2\Upsilon^{2} + C$$

$$4 - 2\Upsilon^{2} = C$$

					,
			• ,		
		·			
·					
	·				

36) Plan and plot a graph the meets the following criteria. Each block represents one unit.

$$f(-4) = 6$$
, $f(5) = 2$ $(-4,6)(5,2)$
 $f'(-4) = 0$
 $f'(x) > 0$ for $(-\infty, -4) \cup (2, \infty)$
 $f'(x) < 0$ for $(-4, 2)$
 $f''(-7) = f''(-2) = 0$
 $f''(x) < 0$ for $(-\infty, -7) \cup (-2, 0)$
 $f''(x) < 0$ for $(-7, -2) \cup (0, 2) \cup (2, \infty)$

f''(x) < 0 for $(-7, -2) \cup (0, 2) \cup (2, \infty)$

 $\lim_{x \to 0} f(x) = 1,$ lim f(x) = 💨 $\lim f(x) = -\infty,$ $\lim f(x) = -\infty$ x→2+ x→2-

		ŕ	

Answer Key

Testname: MAC 2311 - REV T3 W ANS - CHAPTER 4

- 1) C
- 2) B
- 3) B
- 4) C
- 5) D
- 6) C
- 7) D
- 8) A
- 9) C
- 10) As the trucker's average speed was 74 mph, the Mean Value Theorem implies that the trucker must have been going that speed at least once during the trip.
- 11) C
- 12) D
- 13) D
- 14) C
- 15) C
- 16) B
- 17) C
- 18) Absolute maxima: (-1, -8), (1, -8)

Local minimum: (0, -9)

Inflection points: $\left(-\sqrt{\frac{1}{3}}, \frac{8}{9}\right), \left(\sqrt{\frac{1}{3}}, \frac{8}{9}\right)$

- 19) C
- 20) D
- 21) C
- 22) B
- 23) A
- 24) D
- 25) B
- 26) B
- 27) C
- 28) C
- 29) A
- 30) C
- 31) D
- 32) A

			-
		•	

Answer Key Testname: MAC 2311 - REV T3 W ANS - CHAPTER 4

- 33) B 34) A 35) D 36)

	•							
								* • • • •
						·		
			·					
		•						
,								

$$V = (40.2x)(40-2x) \cdot X$$

$$V = (40.2x)(40-2x) \cdot X$$

$$V = (600x - 160x^2 + 9x^3)$$

$$V' = 1600 - 320x + 12x^2$$

$$O = 1600 - 320x + 12x^4$$

$$X = 6.67$$

$$40 - 2(6.67) = 26.67$$

$$\frac{1}{4} \cdot 3x^{\frac{1}{4}} = 12x^{\frac{1}{4}} + e$$

$$1 = 12 (1)^{\frac{1}{5}} \cdot C$$
 $1 = 12 + C$
 $C : 1$

3)
$$g(x) = -x^2 + |2x - 32| \quad [4,8]$$
 $g(x) = -2x + |2 = 0$
 $-2x = -|2| - |2| = |2| - |2| = |2|$
 $f(4) = 0$, $f(6) = 4$, $f(8) = 0$

1) $csc \times 1$, $[-\frac{\pi}{2}, \frac{\pi}{2}]$ [No Abs extreme where $f'(x) = -cbt \times csc \times 1$
 $f'(x) = -cbt \times 1$
 f'

$$f'(x) = 2x + 5$$

$$2x + 5 = 3$$

$$2x = 3$$

(i)
$$f(x) = x^3 - 12x + 5$$

$$f'(x) = 3x^2 - 12$$

$$0 = 3x^2 - 12$$

$$3x^2 = 12 \rightarrow x^2 - \frac{12}{3} = x^2 - 4 \rightarrow x = \pm 2$$
(ii) $f(x) = 50x^3 - 12$

$$f'(x) = 60x^2 - 15x^4$$

$$0 = 15x^2(\frac{1}{3} - x^2)$$

$$x = 0 - \pm x = \pm 2$$
(iii) $f(x) = \frac{1}{12}$

$$f'(x) = \frac{1}{12} + \frac{1}{12}$$

$$f'(x) = \frac{1}$$

MAC 2311 - Calculus w/Analytic Geometry I

REVIEW for Test #2 - Chapter 3- Differentiation

Find an equation for the tangent to the curve at the given point.

1)
$$f(x) = 8\sqrt{x} - x + 5$$
, (64, 5)

A)
$$y = 5$$

B)
$$y = -\frac{1}{2}x + 5$$
 C) $y = \frac{1}{2}x - 37$

C)
$$y = \frac{1}{2}x - 37$$

D)
$$y = -\frac{1}{2}x + 37$$

Find the indicated derivative using the formal definition of the derivative.

2)
$$\frac{dy}{dx}$$
 if $y = \frac{x}{8x - 2}$

A)
$$-\frac{2x}{(8x-2)^2}$$

B)
$$-\frac{2}{(8x-2)^2}$$

C)
$$-\frac{2}{8x-2}$$

D)
$$\frac{16x - 2}{(8x - 2)^2}$$

Provide an appropriate response.

3) Find an equation for the tangent to the curve $y = \frac{27}{x^2 + 2}$ at the point (1, 9).

A)
$$y = -6x + 15$$

B)
$$y = -3x + 12$$

D)
$$y = 6x + 3$$

4) Find all points (x, y) on the graph of $f(x) = 2x^2 - 3x$ with tangent lines parallel to the line y = 13x + 5.

Solve the problem.

5) At time t (sec), the position of a body moving along the s-axis is $s = t^3 - 9t^2 + 24t$ m. Find the body's acceleration each time the velocity is zero.

A)
$$a(2) = 6 \text{ m/sec}^2$$
, $a(4) = -6 \text{ m/sec}^2$

B)
$$a(2) = 0 \text{ m/sec}^2$$
, $a(4) = 0 \text{ m/sec}^2$

C)
$$a(4) = 24 \text{ m/sec}^2$$
, $a(8) = 4 \text{ m/sec}^2$

$$\bigcirc$$
 a(2) = -6 m/sec², a(4) = 6 m/sec²

6) At time t, the position of a body moving along the s-axis is $s = t^3 - 9t^2 + 24t$ m. Find the total distance traveled by the body from t = 0 to t = 5.

7) At time t, the position of a body moving along the s-axis is $s = t^3 - 9t^2 + 24t$ m. Find the displacement of the body from t = 0 to t = 5.

- 8) A rock is thrown vertically upward from the surface of an alriess planet. It reaches a height of $s = 120t 4t^2$ meters in t seconds. How high does the rock go? How long does it take the rock to reach its highest point? D) 1785 m, 15 sec C) 3480 m, 30 sec (A)**)**900 m, 15 sec B) 1800 m, 30 sec
- 9) A rock is thrown vertically upward from the surface of an airless planet. It reaches a height of $s = 120t 4t^2$ meters in t seconds. When will the rock hit the ground? What Is the velocity at impact?

1

	•					
		;	·			
			·			
						,
			•			
						, ;
		•				•
•						
			-			
				*		
						•
						•
					÷	
					÷	
	•					
		,				

10) A rock is thrown vertically upward from the surface of an airless planet. It reaches a height of $s = 120t - 4t^2$ meters in t seconds. When will the rock be at 100 feet above the ground?

Find the derivative.

11)
$$y = \frac{8}{x} + 3 \sec x$$

A)
$$y' = -\frac{8}{x^2} + 3 \tan^2 x$$

C)
$$y' = \frac{8}{x^2} - 3 \sec x \tan x$$

B)
$$y' = -\frac{8}{x^2} - 3 \csc x$$

D)
$$y' = -\frac{8}{x^2} + 3 \sec x \tan x$$

12)
$$y = \frac{11}{\sin x} + \frac{1}{\cot x}$$

A)
$$y' \approx 11 \cos x - \csc^2 x$$

C)
$$y' = 11 \csc x \cot x - \csc^2 x$$

B)
$$y' = -11 \csc x \cot x + \sec^2 x$$

D)
$$y' = 11 \csc x \cot x - \sec^2 x$$

13)
$$s = t^5 - \csc t + 11$$

A)
$$\frac{ds}{dt} = 5t^4 + \cot^2 t$$

C)
$$\frac{ds}{dt} = t^4 - \cot^2 t + 11$$

B)
$$\frac{ds}{dt} = 5t^4 + \csc t \cot t$$

D)
$$\frac{ds}{dt} = 5t^4 - \csc t \cot t$$

Find the derivative of the function.

14)
$$y = \frac{1}{6}(8x + 7)^3 + \left(1 - \frac{1}{x^3}\right)^{-1}$$

A) $\frac{4}{3}(8x + 7)^2 + \frac{3}{x^4}\left(1 - \frac{1}{x^3}\right)^{-2}$
C) $4(8x + 7)^2 - \frac{3}{x^4}\left(1 - \frac{1}{x^3}\right)^{-2}$

B)
$$\frac{1}{2}(8x)^2 - \left(\frac{3}{x^4}\right)^{-2}$$

D) $\frac{1}{2}(8x + 7)^2 - \left(1 - \frac{1}{x^3}\right)^{-2}$

15)
$$h(x) = \left(\frac{\cos x}{1 + \sin x}\right)^5$$

A)
$$\frac{-5\cos^4 x}{(1+\sin x)^5}$$

C)
$$-5\left(\frac{\sin x}{\cos x}\right)^4$$

$$B) \left(-\frac{4 \sin x}{\cos x} \right) \left(\frac{\cos x}{1 + \sin x} \right)^4$$

D)
$$5\left(\frac{\cos x}{1+\sin x}\right)^4$$

Find dy/dt.

16)
$$y = \cos^5(\pi t - 19)$$

A)
$$-5\pi \cos^4(\pi t - 19) \sin(\pi t - 19)$$

C)
$$-5\pi \sin^4(\pi t - 19)$$

B)
$$-5\cos^4(\pi t - 19)\sin(\pi t - 19)$$

D)
$$5 \cos^4(\pi t - 19)$$

								1
•	·					_		
				•				
·								
		•						
						-		

17)
$$y = t^5(t^4 - 6)^4$$

A)
$$t^4(t^4 - 6)^3(21t^4 - 30)$$

C) $80t^{18}(t^4 - 6)^3$

C)
$$80t^{18}(t^4 - 6)^3$$

B)
$$5t^4(t^4-6)^3(16t^4-6)$$

D)
$$t^5(t^4-6)^3(21t^3-30)$$

18)
$$y = (e^{\cos(t/3)})^4$$

A)
$$\frac{4}{3}\cos\left(\frac{t}{3}\right)e^{4}\cos(t/3)$$

C)
$$\frac{4}{3} \sin \left(\frac{t}{3}\right) e^{3} \cos(t/3)$$

B)
$$-\frac{4}{3}\sin\left(\frac{t}{3}\right)e^{4}\cos(t/3)$$

D)
$$-\frac{4}{3}(e\sin(t/3))^3$$

Use implicit differentiation to find dy/dx.

19)
$$\frac{x+y}{x-y} = x^2 + y^2$$

A)
$$\frac{x(x-y)^2-y}{x+y(x-y)^2}$$

B)
$$\frac{x(x-y)^2-y}{x-y(x-y)^2}$$

C)
$$\frac{x(x-y)^2 + y}{x-y(x-y)^2}$$

D)
$$\frac{x(x-y)^2 + y}{x + y(x-y)^2}$$

20)
$$\cos xy + x^5 = y^5$$

A)
$$\frac{5x^4 - x \sin xy}{5y^4}$$

B)
$$\frac{5x^4 + y \sin xy}{5y^4 - x \sin xy}$$

C)
$$\frac{5x^4 + x \sin xy}{5v^4}$$

D)
$$\frac{5x^4 - y \sin xy}{5y^4 + x \sin xy}$$

At the given point, find the slope of the curve, the line that is tangent to the curve, or the line that is normal to the curve,

21)
$$y^5 + x^3 = y^2 + 12x$$
, tangent at (0, 1)

A)
$$y = -\frac{12}{7}x$$

B)
$$y = 4x + 1$$

C)
$$y = \frac{12}{5}x + 1$$

D)
$$y = -\frac{12}{5}x - 1$$

22)
$$3x^2y - \pi \cos y = 4\pi$$
, normal at (1, π)

A)
$$y = \frac{1}{2\pi}x - \frac{1}{2\pi} + \pi$$
 B) $y = -\frac{1}{\pi}x + \frac{1}{\pi} + \pi$ C) $y = \frac{1}{\pi}x - \frac{1}{\pi} + \pi$

B)
$$y = -\frac{1}{\pi}x + \frac{1}{\pi} + \pi$$

C)
$$y = \frac{1}{\pi}x - \frac{1}{\pi} + \pi$$

D)
$$y = -2\pi x + 3\pi$$

Find the derivative of y with respect to x, t, or θ , as appropriate.

23)
$$y = 10e^{\theta}(\sin \theta - \cos \theta)$$

A)
$$10e^{\theta}(\sin \theta - \cos \theta) + 10e^{\theta}$$

B)
$$20e^{\Theta} \sin \theta$$

C)
$$20e^{\theta}(\sin \theta - \cos \theta)$$

24)
$$y = \ln \left(\frac{e^{\theta}}{9 + e^{\theta}} \right)$$

A)
$$\frac{9 + e^{\theta}}{e^{\theta}}$$

B)
$$\ln \left(\frac{9}{9 + e\theta} \right)$$

C)
$$\frac{9}{9+e^{\theta}}$$

D)
$$\frac{9+2e^{\theta}}{9+e^{\theta}}$$

				•
		•		
·				
			•	
		,		
				·
			·	

25)
$$y = e^{\sin t} (\ln t^3 + 3)$$

A)
$$e^{\cos t} (\cos t) (\ln t^3 + 3) + \frac{3e^{\sin t}}{t}$$

C)
$$\frac{3e^{\sin t}\cos t}{t}$$

B)
$$e^{\sin t} \left((\cos t) (\ln t^3 + 3) + \frac{3}{t} \right)$$

D)
$$e^{\sin t} \left(\ln t^3 + 3 + \frac{3}{t} \right)$$

Find $\frac{dy}{dx}$.

26)
$$tan y = e^{X} + In 7x$$

A)
$$\frac{xe^{X}+1}{x sec^{2} v}$$

B)
$$e^{x} + \frac{7}{x} - \sec^{2} y$$

C)
$$\frac{xe^{X} + 7}{x \sec^2 y}$$

D)
$$\frac{e^{X}+7}{\sin^2 y}$$

Use logarithmic differentiation to find the derivative of y with respect to the independent variable.

27)
$$y = x^5 \sin x$$

A)
$$x \sin x \left(\cos x \ln x + \frac{\sin x}{x}\right)$$

B)
$$5 x^5 \sin x \left(\cos x \ln x + \frac{\sin x}{x}\right)$$

D) 5 cos x ln x +
$$\frac{\sin x}{x}$$

28)
$$y = (\sin x)^{\cos x}$$

C)
$$(\sin x)^{\cos x}(\cos x \cot x - \sin x \ln (\sin x))$$

D)
$$\cos x \cot x - \sin x \ln(\sin x)$$

Find the derivative of y with respect to x.

29)
$$y = 2 \sin^{-1} (4x^4)$$

A)
$$\frac{32x^3}{\sqrt{1-16x^8}}$$

B)
$$\frac{32x^3}{\sqrt{1-16x^4}}$$

C)
$$\frac{2}{\sqrt{1-16x^8}}$$

D)
$$\frac{32x^3}{1 - 16x^8}$$

30)
$$y = tan^{-1} (ln 3x)$$

A)
$$\frac{1}{1 + (\ln 3x)^2}$$

B)
$$\frac{3}{x(1 + (\ln 3x)^2)}$$

C)
$$\frac{1}{x(1 + (\ln 3x)^2)}$$

$$D) \frac{1}{x\sqrt{1+(\ln 3x)^2}}$$

Find the linearization L(x) of f(x) at x = a.

31)
$$f(x) = \sqrt{2x + 36}$$
, $a = 0$

A) L(x) =
$$\frac{1}{3}$$
x + 6

B) L(x) =
$$\frac{1}{3}$$
x - 6

C) L(x) =
$$\frac{1}{6}$$
x - 6

D) L(x) =
$$\frac{1}{6}$$
x + 6

32)
$$f(x) = \sqrt[3]{x}$$
, $a = 27$

A) L(x) =
$$\frac{1}{27}$$
x + 1

B)
$$L(x) = \frac{1}{9}x + 6$$

C) L(x) =
$$\frac{1}{27}$$
x + 2

D) L(x) =
$$\frac{1}{9}$$
x + 1

-					
				•	,
•		•			•
-			`		
			•		
,					
				•	
			•		
	•				

Solve	the	prob]	lem.
-------	-----	-------	------

33) Water is falling on a surface, wetting a circular area that is expanding at a rate of 2 mm²/s. How fast is the radius of the wetted area expanding when the radius is 176 mm? (Round your answer to four decimal places.)

A) 0.0018 mm/s

B) 0.0114 mm/s

C) 552.9198 mm/s

D) 0.0036 mm/s

Solve the problem. Round your answer, if appropriate. Round all answers to three decimal places.

34) One airplane flying south is approaching an airport at a rate of 192 km/hr. A second airplane flying west approaches the airport at a rate of 298 km/hr. Find the rate at which the distance between the planes changes when the southbound plane is 32 km away from the airport and the westbound plane is 22 km from the airport.

A) -654.123 km/hr

B) -163.527 km/hr

C) -327.041 km/hr

D) -490.131 km/hr

35) Water is being drained from a container which has the shape of an inverted right circular cone. The container has a radius of 9.00 inches at the top and a height of 10.0 inches. At the instant when the water in the container is 8.00 inches deep, the surface level is falling at a rate of 1 in./sec. Find the rate at which water is being drained from the container.

A) 128.774 in.³s

B) 175.681 in.3/s

C) 156.229 in.3/s

D) 2.860 ln.3/s

36) A rocket is fired vertically into the sky at a rate of 6 miles per second. An observer is located 4 miles away from the launching pad (horizontal distance). How fast is the observer's angle of elevation changing when the rocket is at an altitude of 3 miles?

A) 0.96 rad/sec

- B) 0.362 rad/sec
- C) 3.344 rad/sec
- D) 0.844 rad/sec

Answer Key

Testname: MAC 2311 - REVIEW FOR TEST 2 - CH 3

- 1) D 2) B 3) A 4) C

- 5) D
- 6) B
- 7) A
- 8) A
- 9) D
- 10) C 11) D 12) B 13) B 14) C

- 15) A
- 16) A
- 17) A
- 18) B
- 19) C 20) D
- 21) B
- 22) A
- 23) B 24) C
- 25) B
- 26) A
- 27) B
- 28) C
- 29) A
- 30) C
- 31) D
- 32) C 33) A
- 34) C
- 35) D 36) A

							£
			•	,			
							_
							-
•	-						
					·		
•							
							!
							;
							,
		-					İ
•							
			-				
		,					
•	-					·	
						;	
•		•					
							٠
<u>.</u>		·					

MAC 2311 - Calculus w/Analytical Geometry I Optimization Problems

- 1) The position function of a projectile launched vertically upward from an elevated position is $s(t) = -16t^2 + 87t + 129$. Position (s) is measured in feet and time (t) is measured in seconds.
 - a) When will the projectile hit the ground? = $\xi = S(\xi) = 0$
 - b) What is the impact velocity?
 - c) When will the projectile reach its maximum height?

d) What is its maximum height?

$$O = -16t^2 + 87t + 129 = -(87)^{\frac{1}{2}} \sqrt{(87)^2 - 4(-16)(129)} = -1.212$$

$$V(t) = -32t + 87$$

$$= -(87)^{\frac{1}{2}} \sqrt{(87)^2 - 4(-16)(129)} = -6.650$$
6.650 See

b)
$$V(t) = -32(6.65) + 87 = -105.8 \%$$

c) $0 = -32(t + 87) = 32t = 87 \rightarrow t = 32 \rightarrow t = 2.719 \text{ seed}$

d)
$$S(z.79) = 16(z.79)^2 + 87(z.79) + 129$$

 $S(z.79) = 247.266ft$

2) A cardboard box manufacturing company has to maximize the volume of a box made from a 24-inch by 9-inch sheet of cardboard. What are the dimensions of the box?

$$V = 1 \cdot w \cdot h$$

$$V = 24 \cdot 2x$$

$$V = (24 \cdot 2x)(9 \cdot 2x)(x)$$

$$V = 216x \cdot 18x^{2} \cdot 48x^{2} + 4x$$

$$V = 4x^{3} \cdot 66x^{2} + 216x$$

$$V = 4x^{3} \cdot 66x^{2} + 216x$$

$$V = 9 \cdot 2(2) = 20 \text{ in}$$

$$V = 12x^{2} \cdot 132x + 216$$

$$O = 12x^{2} \cdot 132x + 216$$

$$O = 12(x \cdot 2)(x \cdot 9)$$

$$O = 12(x \cdot 2)(x \cdot 9)$$

$$\begin{aligned}
\lambda &= 24 - z \times \\
\lambda &= 9 - z \times \end{aligned}
\end{aligned}
V &= (24 - z \times)(9 - z \times)(x)$$

$$\lambda &= 9 - z \times \end{aligned}
V &= 216x - 18x^2 - 48x^2 + 4x^3$$

$$\lambda &= 4x^3 - 66x^2 + 216x \times \end{aligned}$$

$$2(z) &= z0 \text{ in }$$

$$2(z) &= 5 \text{ in }$$

$$0 &= 12x^2 - 13z \times + 216$$

$$0 &= 12x^2 - 13z \times + 216$$

$$0 &= 12(x - 2)(x - 9)$$

$$x &= 2 \text{ in } d \times \sqrt{9} \text{ et loo big}$$

$$x &= height$$

3) A box is to be constructed where the base length is 3 times the base width. The material

used to build the top and bottom cost \$10 per square foot and the material used to build the sides cost \$6 per square foot. If the box must have a volume of 50 cubic feet, determine the dimensions that will minimize the cost to build the box.

4) A printer need to make a poster that will have a total area of 200 in² and will have 1 inch margins on the sides, a 2 inch margin on the top and a 1.5 inch margin on the bottom. What dimensions will give the largest printed area?

5) An open rectangular box with a square base is to be made from 48 square feet of material. What dimensions will result in a box with the largest possible volume?

· .

MAC 2311 - Calculus w/Analytical Geometry 1

Worksheet - Curve Sketching

Sketch a graph of the function from the given information. Plan ahead prior to plotting the \times and y axis. Each box is 1 unit in length and 1 unit in height. The graph must be neat, legible, and fit within the provided grid system.

1)

f is continuous.

$$f(2) = 4$$
, $f(4) = 3$ $(2,4)$, $(4,3)$

x-intercepts=
$$-\frac{1}{2}$$
, 5 y-intercept=2

$$f'(2) = 0$$

$$f'(x) > 0$$
 for $(-\infty,2)$

$$f'(x) < 0$$
 for $(2,\infty)$

$$f''(x) < 0$$
 for $(-\infty, \infty)$

State the extreme values and their classification.

Sketch a graph of the function from the given information. Plan ahead prior to plotting the x and y axis. Each box is 1 unit in length and 1 unit in height. The graph must be neat, legible, and fit within the provided grid system.

2)

f is continuous.

$$f(0) = 5$$
, $f(3) = 2$, $f(5) = -1$, $f(8) = 1$

$$f'(0) = f'(5) = 0$$

$$f'(x) > 0$$
 for $(-\infty, 0) \cup (5, \infty)$

$$f'(x) < 0$$
 for $(0, 5)$

$$f''(3) = f''(8) = 0$$

$$f''(x) > 0$$
 for (3,8)

$$f''(x) < 0$$
 for $(-\infty,3) \cup (8,\infty)$

$$\lim_{x\to\infty}f(x)=3$$

State the extreme values and their type.

Sketch a graph of the function from the given information. Plan ahead prior to plotting the x and y axis. Each box is 1 unit in length and 1 unit in height. The graph must be neat, legible, and fit within the provided grid system.

3)

f is continuous.

$$f(-9) = 4$$
, $f(-4) = 5$, $f(-2) = 2$, $f(0) = 4$, $f(-6) = 7$
 $f'(-6) = f'(-2) = 0$
 $f'(x) > 0$ for $(-\infty, -6) \cup (-2, \infty)$
 $f'(x) < 0$ for $(-6, -2)$
 $f''(-9) = f''(-4) = f''(0) = 0$

$$f''(x) > 0 \text{ for } (-\infty, -9) \cup (-4, 0)$$

 $f''(x) < 0 \text{ for } (-9, -4) \cup (0, \infty)$

$$\lim_{x \to \infty} f(x) = -1, \qquad \lim_{x \to \infty} f(x) = 6$$

State the extreme values and their classification.

. · .

MAC 2311 - Calculus with Analytical Geometry I

Related Rates

- 1. Read the problem, pull out essential information and identify a formula to be used.
- 2. Sketch a diagram if possible.
- 3. Write down any known rate of change & the rate of change you are looking for.
- 4. Be careful with signs...if the amount is decreasing, the rate of change is negative.
- 5. Pay attention to whether quantities are constant or varying.
- 6. Set up an equation involving the appropriate quantities.
- 7. Differentiate with respect to t using implicit differentiation.
- 8. Plug in known items (you may need to find some quantities using geometry).
- 9. Solve for the item you are looking for, most often this will be a rate of change.
- 10. State your final answer with the appropriate units.

1. If
$$x = y^3 - y$$
 and $\frac{dy}{dt} = 5$, then what is the value of $\frac{dx}{dt}$ when $y = 2$?

$$\frac{\lambda = 1^3 - 1}{dx} = 31^2 \frac{dy}{dt} - \frac{dy}{dt}$$

$$\frac{dx}{dt} = 3(2^2)(s) - 5$$

$$\frac{dt}{dt} = 55$$

$$\frac{dt}{dt} = 4$$

2. If
$$r + s^2 + v^3 = 12$$
, $\frac{dr}{dt} = 4$, and $\frac{ds}{dt} = -3$, then what is the value of $\frac{dv}{dt}$ when $r = 3$, $s = 1$, and $v = 4$?

$$\frac{dV}{dt} = \frac{2}{48}$$

MAC 2311 - Calculus with Analytic Geometry I The Derivative as a Rate of Change Rectilinear and Projectile Motion

Position:
$$s(t)$$
 Velocity: $v(t) = \frac{ds}{dt}$ Acceleration: $a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}$

- 1) The position of a skateboarder at any time t (in seconds) is given by the function $s(t) = t^3 8t^2 + 8t$ measured in feet.
 - a) What are the velocity and acceleration functions in terms of t?

$$S'(t) = V(t) = 3t^2 - 16t + 8$$

 $S''(t) = a(t) = 6t - 16$

b) When is the skateboarder at rest?

$$0 = 3\ell^{2} - 16\ell + 8 \qquad \ell = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$0 = (3t)$$

$$\ell = \frac{16 \pm \sqrt{286 - 4(3)(8)}}{6}$$

$$\ell = \frac{16 \pm \sqrt{160}}{6} = \frac{16 \pm 4\sqrt{10}}{6}$$

c) What is the position(s) of the skateboarder when at rest?

$$5(.558) = (.558)^3 - 8(.558)^2 + 8(.558) = 2.147 FE$$

d) What are the position, velocity, and acceleration of the skateboarder at three seconds and five seconds?

and five seconds?

$$S(3) = (3)^3 - 8(3) + 8(3) = [-21], S(5) = [-35]$$

 $V(3) = 3(3)^2 - 16(3) + 8 = [-12.99], V(5) = [3.00001]$
 $Q(3) = 6(3) - 16 = [2], Q(5) = [14]$

e) Sketch a motion serior tic of the skateboarder. Be supplicated (1) the initial position, (2) the initial velocity, (3) the position, (2) the initial velocity, (3) the position we velocity at any critical time, and (4) the times at which the occur.

f) What is the total distance traveled by the skateboarder in the first five seconds? $|S(5) - S(0)| = |-35 - 0| = |-35| = 35f \in$

$$S(0) = 046$$

$$S(.558) = 2.147$$

$$S(.558) = 2.147$$

$$S(4.775) = -35.332$$

$$S(5) = -35$$

g) What is the displacement of the skateboarder after the first five seconds?

$$S(S) - S(O) = -3S f \in$$

h) When is the skateboarder moving to the right and to the left? Use interval notation for your answers.

ľ		1	![٠ .	. :		
	Sin	Cos	- Gn	CSC	Sec	cot	-
O° an	0	THE THE PROPERTY OF THE PROPER	0				
30°	1/2	J32	$\sqrt{\frac{3}{3}}$	2	2/3	$\sqrt{3}$,
45,	1/2/2	122		\\\ \sqrt{2}	Tâ		
60°		2	J3	2/3	2	$\sqrt{3}$	
9000	1			resulting the second se	· .	0	Action in the Control of the Control
1200		-12	-13	2/3	-2	- \(\sqrt{3} \)	
1350	12/2	12		V2	- 12	-1	
150	1/2	- 13/2	-13/3	2	-243	- \(\sqrt{3} \)	
180°		- 1	0		- 1.	1-	-
225	0 - 12	1-1/2	1	- √2	-12	1	-
270		0		-		0	
-	3 - 5	12	-1	-√a	Va	-	
			ويدودب فيقادا القوي ويشورون التالا	And the Control of th	 	-	

ï

-

-

•

†
Derivative of a function if Man = x
$ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ then $m_{normal} = -\frac{1}{x}$
Differentiation Rules Power = f'(x) = nx
(on close)
Constant Multiple = $f'(C \cdot U) = C \cdot \frac{dU}{dX}$ logs = $f'(g(x)) = f'(g(x)) \cdot g'(x)$
10 duct = (10 U.V) = 11 dv + 1 dv
Quotient = f'() = v.(v) = v.(v)
Siz = [1/(C: V) = 0
(as = 5) (V) ha Ty
t MILL CONTRACTOR
$CC - C' \cap CC \cap C$
$\cot = f(\cot x) = -\csc^2 x$ $\csc = f(\csc x) = \frac{1}{\cot x}$
V1 1 2
11-x2 (Cos x)= 11-x2 · 2
a(t)= v'(t) = at at Speed = the absolute value of Volvity Cost of Production C(x)
(ct 1 P 1 1)
Allana Cot- Con
Marginal Cost = C'(x)
moting Marginal cost of Producing X+1 Units = C'(X)
finding Marginal cost of Producing X+1 Units = C'(X) Finding Actual Cost of Producing X+1 Unit = C(X+1) - C(X)
Linearization = $L(x) = f(a) + f'(a)(x-a)$ near $x = a$
Ving Linearization to account of the
Just pick a linde number value near X
just pick a stude number value near X Approximation Error = DY - dy

1 2 1 Row 2 Row 2 Row 3 Row 3 for any slope of a Tangent mtan = -4-2h Precise Def of a Limit 02 | X-X0 | 8 -> | F(X)-L| E Ex: $(x+h)^3 = \frac{1}{(x^3+3x^2h+3xh^2+h^3)}$ Rules for Continuity $\lim_{x\to x_0} f(x) = f(c)$ $\lim_{\theta\to 0} \frac{\sin\theta}{\theta} = \frac{1}{3} \lim_{\theta\to 0} \frac{1}{\sin\theta} \frac{\sin\theta}{\sin\theta} = \frac{1}{3} \lim_{\theta\to 0} \frac{1}{\sin\theta} \frac{1}{\sin$ Limits involving infinity : Assymtotes Remarable Discontinuity Horizontal Asymptote create a similar function $\lim_{x\to\infty} f(x) = b \qquad \lim_{x\to-\infty} f(x) = b$ $0 \lim_{x\to 2} g(x) \text{ exists} = 1$ (3) lim g(x) = g(2) 1=1 Vertical Asymptote $\lim_{x\to b^+} f(x) = \pm \infty \quad \lim_{x\to b^-} f(x) = \pm \infty$ (2) g(z) exists = 1 $g(x) = \begin{cases} f(x) & \text{if } x \neq 2 \\ 1 & \text{if } x = 2 \end{cases}$ Rules approaching infinity 1) Largest exponent in numerator X no HA. Since $\frac{1}{0+} = \infty$ g(x) cont at X=2 2) Largest exponent in numerator & Long Division denominator equal take Geficients Denominator | Nemerator 3) Largest exponent is in denominator draw the line of change the sign we have H.A. @ y=0 point Slope formula 1-11=m(x-x,) Slope of a curve f(x+h)-fa) @ point p & equation =

of tament line a P

	0	3		V3		-13	-	- 3	0	The state of the s	_	[-1
CSC	 	2	T2	2/3	And the second	213	VZ	2,		-√2	-	-VZ
Sec	1.	253	V2	2	_	-2	- 万	-25		- JZ		VZ
cot		V3		V3 3	O	-(<u>5</u> 3	City visit and deep to the Landscanners	- √3			0	- [

3. The radius r and the height h of a right circular cone are related to the cone's volume V by the equation

4. An oil tanker strikes an iceberg and a hole is ripped open on its side. Oil is leaking out in a near circular shape. The radius of the oil spill is changing at a rate of 1.5 miles per hour. How fast is the area of the oil spill changing when the radius is 0.6 mile?

$$\frac{dr}{dt} = 1.5 \frac{mi}{hr}$$

$$\frac{mi}{hr}$$
 $f = 0.6$ mile

$$\frac{dA}{dt} = ?$$

$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$

$$-7 \frac{dA}{dt} = 5.655 \frac{mi^2}{hr}$$

5. A balloon is being inflated at a rate of 10 cubic centimeters per second. How fast is the radius of a spherical balloon changing at the instant the radius is 5 centimeters?

$$\frac{dV}{dt} = 10 \frac{s}{sec}$$

$$\int_{-\infty}^{\infty} \frac{dr}{dt} = 7$$

$$\frac{dV}{dt} = 4\pi r^{2} \frac{dr}{dt}$$

$$\int_{-\infty}^{\infty} \frac{dr}{dt} = 4\pi r^{2} \frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{10}{4\pi - 25}$$

$$\frac{dr}{dt} = .0318$$

6. A water authority is filling an inverted conical water storage tower at a rate of 9 cubic feet per minute. The height of the tank is 80 feet and the radius at the top is 40 feet. How fast is the water level inside the tank changing when the water level is 60 feet deep?

.00318 f

feet per second. How fast is the top of the ladder moving at the instant the bottom of the ladder is 15 feet away from the wall?

7. A 25-foot ladder is leaning against a wall. The bottom of the ladder is being pulled away from the wall at a rate of 3

$$2 \times \frac{dx}{dt} + \frac{2y}{dt} = 0$$

$$2(15)(3) + 2(25)\frac{dy}{dt} = 0$$

$$40\frac{dy}{dt} = 0$$

$$40\frac{dy}{dt} = -90$$

$$\frac{dy}{dt} = -2.25 \text{ ft}$$

$$\frac{dy}{dt} = -2.25 \text{ ft}$$

8. A 25-foot ladder is leaning against a wall. The bottom of the ladder is being pulled away from the wall at a rate of 3 feet per second. How fast is the top of the ladder moving at the instant the bottom of the ladder is 15 feet away from the wall? At the same instant, what is the rate of change of the area between the ground, the wall, and the ladder?

$$A = \frac{1}{2}bh = \frac{1}{2}xy$$

$$X = 15f6, y = 15f6$$

$$\frac{14}{1} = \frac{1}{2}\frac{dx}{dt}(y) + \frac{1}{2}x(dt)$$

$$X = 15f6, y = 15f6$$

$$\frac{dy}{dt} = -2.25$$

$$\frac{dA}{dt} = 30 + (-16.875)$$

$$\frac{dA}{dt} = 13.125 \text{ ft}^2$$

$$\frac{dA}{dt} = 30 + (-16.875)$$

9. A 25-foot ladder is leaning against a wall. The bottom of the ladder is being pulled away from the wall at a rate of 3 feet per second. How fast is the top of the ladder moving at the instant the bottom of the ladder is 15 feet away from the wall? At the same instant, what is the rate of change of the angle (θ) between the ground and the ladder?

$$\frac{dx}{dt} = 3 \quad x = 15ft \quad Y = 20ft \quad dY = -2.25$$

$$z_0 \quad t_{an}\theta = \frac{y}{x} \quad \frac{d\theta}{dt} = ?$$

$$t_{an}\theta = \frac{20}{15} \quad \theta = 0.9273$$

$$\tan \theta = \frac{1}{X}$$

$$tan\theta = \frac{20}{15}$$

$$\tan \theta = \frac{y}{x}$$

Sec
$$\theta \cdot \frac{d\theta}{dt} = \frac{\chi(\frac{dY}{dt}) - (\frac{dY}{dt})(Y)}{\chi^2}$$

$$\frac{1}{\cos^2(.9273)} = -.4167$$

$$\frac{d\theta}{dt} = -.150 \frac{rad}{sec}$$

REVIEW for Test #1 - Chapter 2 - Limits and Continuity

Date_____

Find the average rate of change of the function over the given interval.

1)
$$y = 5x^3 - 3x^2 - 8$$
, [-8, -5]

C)
$$-\frac{2052}{5}$$

D)
$$\frac{708}{5}$$

2)
$$g(t) = 4 + \tan t \cdot \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

A)
$$-\frac{3}{2}$$

$$\left(B\right)\frac{4}{\pi}$$

C) -
$$\frac{4}{\pi}$$

Find the slope of the curve at the given point P and an equation of the tangent line at P.

3)
$$y = x^2 + 5x$$
, P(4, 36)

A) slope is
$$\frac{1}{20}$$
; $y = \frac{x}{20} + \frac{1}{5}$

B) slope is
$$-\frac{4}{25}$$
; $y = -\frac{4x}{25} + \frac{8}{5}$

C) slope is 13;
$$y = 13x - 16$$

D) slope is
$$-39$$
; $y = -39x - 80$

Find the limit.

4)
$$\lim_{x\to 2} (x^3 + 5x^2 - 7x + 1)$$

5)
$$\lim_{x \to 5} \sqrt{x^2 + 10x + 25}$$

D) does not exist

Find the limit if it exists.

6)
$$\lim_{x \to \frac{1}{6}} 6x \left(x - \frac{2}{5} \right)$$

A)
$$\frac{17}{30}$$

B)
$$-\frac{7}{5}$$

$$(C) - \frac{7}{30}$$

7)
$$\lim_{x \to -3} (x + 3128)^{3/5}$$

1

Find the limit, if it exists.

8)
$$\lim_{x \to 0} \frac{x^3 + 12x^2 - 5x}{5x}$$

9)
$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7}$$

- A) Does not exist
- B) 1

C) 7

D) 14

10)
$$\lim_{x \to 8} \frac{x^2 + 2x - 80}{x^2 - 64}$$

- A) Does not exist
- B) 0

C) $\frac{9}{8}$

D) $-\frac{1}{8}$

11)
$$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

A) 0

- C) Does not exist
- D) $3x^2 + 3xh + h^2$

Find the limit.

12)
$$\lim_{X \to -\pi} \sqrt{x+9} \cos(x+\pi)$$

A)
$$\sqrt{9-\pi}$$

- B) $-\sqrt{9-\pi}$
- C) 0

D) 1

Evaluate the limit using the difference quotient, $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$, for the given x_0 and function f.

- 13) $f(x) = 3x^2 + 4$ for $x_0 = 4$

B) 28

C) 48

D) Does not exist

- 14) $f(x) = 4\sqrt{x}$ for $x_0 = 4$

C) 8

D) Does not exist

A function f(x), a point x_0 , the limit of f(x) as x approaches x_0 , and a positive number ε is given. Find a number $\delta > 0$ such that for all x, $0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon$.

- 15) f(x) = 3x 2, L = 1, $x_0 = 1$, and $\varepsilon = 0.01$
 - (A) 0.003333)
- B) 0.001667
- C) 0.006667
- D) 0.01

- 16) f(x) = -10x + 5, L = -15, $x_0 = 2$, and $\epsilon = 0.01$
 - A) 0.004

- B) -0.005
- C) 0.002

(6) 0.001

Find the relationship between epsilon and delta. Explain the relationship with an example.

- 17) $\lim_{x \to 5} (5x 3) = 22$
- L= 22, C= 5

Find the limit using $\lim_{x=0} \frac{\sin x}{x} = 1$.

- 18) $\lim_{x\to 0} \frac{\tan 4x}{x}$
 - A) $\frac{1}{4}$

- B) does not exist

D) 1

					•
		·			
	·				
					,
,					
			. •	٠	
			÷		
		·		-	
			•		
					·

19)
$$\lim_{x\to 0} \frac{\sin x \cos 4x}{x + x \cos 5x}$$

A)
$$\frac{1}{2}$$

B) 0

C) $\frac{4}{5}$

D) does not exist

Find the limit and determine if the function is continuous at the point being approached.

20)
$$\lim_{X \to -\pi/2} \cos(5x - \cos 5x)$$

$$X \rightarrow -\pi/2$$
A) 0; no

B) does not exist; no

D) does not exist; yes

21)
$$\lim_{x \to -\pi/2} \cos \left(\frac{3\pi}{2} \cos (\tan x) \right)$$

B) 1; yes

C) does not exist; yes

D) does not exist; no

22)
$$\lim_{x\to 1} \sin(x \sin^2 x + x \cos^2 x + 2)$$

B) does not exist; no

C) sin 1; yes

D) sin 3; no

Find the limit.

23)
$$\lim_{X\to\infty} \frac{\cancel{2} + 8x + 6}{\cancel{3} - 9x^2 + 5}$$

3)
$$\frac{6}{5}$$

C) 1

(b) (b)

24)
$$\lim_{x \to -\infty} \frac{-9x^2 - 8x + 2}{-3x^2 + 3x + 16} = \frac{9}{3}$$

B) 1

C) ∞

D) $\frac{1}{8}$

25)
$$\lim_{X \to -\infty} \frac{\cos 2x}{x}$$

A) 2

B) 1

C) -∞

D) 0

Divide numerator and denominator by the highest power of x in the denominator to find the limit.

26)
$$\lim_{t \to \infty} \frac{\sqrt{25t^2 - 125}}{t - 5}$$

A) does not exist

C) 125

D) 25

Find the limit.

27)
$$\lim_{x \to -2} \frac{1}{x+2}$$

D) Does not exist

	,						, .	_
			,	,				
			•					
	1					÷		
÷					•			
			·					
		-						

28)
$$\lim_{x \to 7^{+}} \frac{1}{x - 7}$$

A) 0

(C) ...

29)
$$\lim_{x \to -3^{-}} \frac{4}{x^2 - 9}$$

A) 0

C) -1

30)
$$\lim_{x \to (\pi/2)^+} \tan x$$

A) 0

C) -∞

D) 1

Indentify the types of asymptotes and their equations that exist in each function.

31)
$$f(x) = \frac{2x^2}{4 - x^2}$$

A) asymptotes: V.A.: x = -2, x = 2, O. A.: y = 0

B) asymptotes: V.A.: x = -2, x = 2, H.A.: y = -2

C) asymptotes: O.A.: x = -2, x = 2, H. A.: y = 0

D) asymptotes: H.A.: x = -2, x = 2, O.A.: y = 2

32)
$$f(x) = \frac{2-x^2}{2x+4}$$

A) asymptotes: H.A.:
$$x = -2$$
, O.A.: $y = -\frac{1}{4}x + \frac{1}{2}$

B) asymptotes: V.A.: x = -2, O.A.: y = -x + 2

C) asymptotes: V.A.:
$$x = -4$$
, O.A. $y = -\frac{1}{8}x + \frac{1}{2}$

D) asymptotes: V.A.: x = -2, O.A>: $y = -\frac{1}{2}x + 1$

				-				
					-			
			•				•	
		,					·	
		÷						
								÷
						•		
-								
						*		
				·				
								-
					•			

33) Use the following graph of the function f(x) to find the limits and function values

a.
$$\lim_{x\to 1^-} f(x) = \mathbf{z}$$

b.
$$\lim_{x \to -4^+} f(x) = 5$$

c.
$$\lim_{x\to\infty} f(x) = -4$$

f.
$$\lim_{x\to7} f(x) = O$$

34) Use the following graph of the function g(x) to find the limits and function values

a.
$$\lim_{x\to -8^+} g(x) = -6$$

b.
$$\lim_{x \to -6^{-}} g(x) = -\frac{1}{4}$$

c.
$$\lim_{x\to 6} g(x) = DNE$$

d.
$$g(-8) = -3$$

f.
$$\lim_{x\to -2} g(x) = DNE$$

	•	•	
			*
			•
			-
	÷		
,			
			·
			•
	•		
		•	

35) Is the function h(x) continuous at the requested values of x? Use the theorem of Continuity at a Point to prove your answers.

a. x=-1 f(-1)=4 exists $\lim_{x\to -1} f(x)=4$ exists

$$f(x) = \lim_{x \to -1} f(x)$$

Continuous @ X = -1

b. x = 2

•		

MAC 2311 - Calculus with Analytic Geometry I

Answers for Test #1 Review

1. B

2. B

3. B

4. D

5. B

6. C

7. B

8. A

9. D

10. C

11. B

12. A

13. A

14. B

15. A

16. D

17. $\delta = \frac{\epsilon}{5}$

18. C

19. A

20. C

21. D

22, A

23. D

24. A

25. D

26. B

27. D

28. C

29. D

30. C

31. B

32. D

33. a. ∞

b. –∞

c. -1

d. DNE

e. 0

f. 0

34. a. −6

b. -4

c. DNE

d. -3

e. 3

f. DNE

35a. f(c) exists: f(-1) = 4

 $\lim_{x\to c} f(x)exists$: $\lim_{x\to -1} f(x) = 4$

 $\lim_{x\to c} f(x) = f(c)$: 4 = 4

f(x) is continuous at x = -1

35b. f(c) exists: f(2) = -1

 $\lim_{x\to c} f(x) exists$: $\lim_{x\to -1} f(x) = DNE$

f(x) is not continuous at x = 2

							. 1	•
				·				
-								
							·	
	•							
								•
					-			
	·		·					
		•						

$$\frac{F(-5)-F(-8)}{-5-(-8)} = 684$$

$$\frac{g(\frac{\pi}{4}) - g(-\frac{\pi}{4})}{\frac{\pi}{4} - (-\frac{\pi}{4})} = 1.273 = \frac{4}{1}$$

$$\frac{5-3}{2\pi} = \frac{2}{2} = \frac{2\cdot 2}{\pi} = \frac{4}{\pi}$$

(3)
$$y = x^2 + 5x$$
 (4,36)

$$\frac{m}{\tan x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 + 5(x+h) - (x^2 + 5x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 + 5x + 5h}{h} - \lim_{h \to 0} \frac{(x+h+5)}{h}$$

$$\lim_{h \to 0} 2x + h + 5 = \lim_{h \to 0} 2x + 5$$

$$\frac{1}{\tan x} = $

lim (x+h)3+X 3ho+3xh+3xh2+x0h3-x3 $\frac{3x^2 + 3xh + h^2}{h} = \frac{3x^2 + 3xh + h^2}{h}$ 11m 3x2+3xh+h2 = 3x2+0+0= $f(x) = 3x^2 + 4$ for x = 4|im 3 (x+h) +4 - (3x2+4) $= 3x^2 + 6xh + 3h^2 + 4 - 3x^2 - 4$ 6x + 3h = 1 in 6x + 0 =X = 4 so 6(4) = 124

(16)
$$f(x) - 10x + 5$$
 $l = -15$ $X_0 = 2$ $E = .01$
 $0 \le |x - x_0| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \le E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \ge E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \ge E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \ge E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \ge E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \ge E$
 $0 \le |x - 2| = 0 \Rightarrow |f(x) - L| \ge E$
 $0 \le |x$

$$\begin{array}{c} 20) \lim_{X \to (-5)} \cos(5x - \cos 5x) \\ x \to (-5) - \cos(-5) \\ = \cos(-5) - \cos(-5) \\ = \cos(-5) - \cos(-5) \end{array}$$

$$f(z) = Cos(-sin - Cos - sin)$$

= $Cos(-sin - O)$

6)
$$\lim_{X \to \frac{1}{6}} 6x \left(x - \frac{z}{5}\right) = 6 - \frac{1}{6} \left(\frac{1}{6} - \frac{z}{5}\right)$$

$$\left(\frac{1}{6} - \frac{2}{5}\right) = \left(\frac{5}{30} - \frac{12}{30}\right) = -\frac{7}{30} - \frac{7}{30}$$

$$\left(\frac{1}{6} - \frac{2}{5}\right) = \frac{30}{30} = \frac{30}{30}$$

(8)
$$\lim_{X \to 0} \frac{X^3 + 12x^2 - 5x}{5x} = \frac{X(X^2 + 12x - 5)}{5x}$$

$$\lim_{X \to 0} \frac{0 + 12(0) - 5}{5} = \frac{-5}{5} = \boxed{-1}$$

$$|X \to 0| = \frac{5}{5}$$

[5]
$$f(x) = 3x - 2$$
 $l = 1$ $f(x) = 1$ $l = -01$
 $0 \le |x - x| \le 8 \longrightarrow |f(x) - L| \le 6$
 $0 \le |X - x| \le 8 \longrightarrow |(3x - 2) - 1| \le 6$
 $1 \le |x - x| \le 8 \longrightarrow |(3x - 2) - 1| \le 6$
 $1 \le |x - x| \le 8 \longrightarrow |(3x - 2) - 1| \le 6$
 $1 \le |x - x| \le 8 \longrightarrow |(3x - 2) - 1| \le 6$

O.A. 1-x2+0x+2 +x2+2x 2× +4 0+2x+2 O.A. =

5 Quizzes

DUE DATE: Tuesday, May 5th, 6:00 PM

Date

Answer the question.

1) Does lim f(x) exist?

Find the limit.

2)
$$\lim_{X \to -\infty} \frac{-10x^2 - 5x + 4}{-18x^2 - 5x + 7}$$

A) 1

C)
$$\frac{4}{7}$$

$$D)\frac{5}{9}$$

Find the derivative.

3)
$$\dot{y} = 11x^{-2} + 5x^3 - 4x$$

A)
$$-22x^{-1} + 15x^2$$

C)
$$-22x^{-1} + 15x^2 - 4$$

$$D -22x^{-3} + 15x^2 - 4$$

Find y'.

4)
$$y = (5x - 2)(5x + 1)$$

A) $25x - 5$

$$\gamma = 5(Sx+1) + (Sx-2) \cdot 5$$

 $\gamma = 25x+5 + 25x-10$
 $\gamma = 50x-5$

			-	
				•
				•
			•	
	•			
•				
				•
•				

Find the derivative of the function.

5)
$$y = \frac{x^3}{x - 1}$$

(A)
$$y' = \frac{2x^3 - 3x^2}{(x - 1)^2}$$

B)
$$y' = \frac{2x^3 + 3x^2}{(x - 1)^2}$$

C)
$$y' = \frac{-2x^3 + 3x^2}{(x-1)^2}$$

(A)
$$y' = \frac{2x^3 - 3x^2}{(x - 1)^2}$$
 B) $y' = \frac{2x^3 + 3x^2}{(x - 1)^2}$ C) $y' = \frac{-2x^3 + 3x^2}{(x - 1)^2}$ D) $y' = \frac{-2x^3 - 3x^2}{(x - 1)^2}$

$$\frac{(x-1)^2}{(x-1)^2} = \frac{3x^3 - 3x^2 - x^3}{(x-1)^2}$$

$$= \frac{3x^3 - 3x^2 - x^3}{(x-1)^2}$$

Solve the problem.

6) The position of a body moving on a coordinate line is given by $s = t^2 - 5t + 6$, with s in meters and t in seconds, When, if ever, during the interval $0 \le t \le 5$ does the body change direction?

$$(\widehat{A})$$
t = 2.5 sec

B) no change in direction

D) t = 5 sec

$$V(t) = zt - 5 \Rightarrow zt - 5 = 0$$

Find the derivative.

7)
$$s = t^6 - \csc t + 6$$

$$\triangle \frac{ds}{dt} = 6t^5 + \csc t \cot t$$

C)
$$\frac{ds}{dt} = 6t^5 - \csc t \cot t$$

B)
$$\frac{ds}{dt} = 6t^5 + \cot^2 t$$

D)
$$\frac{ds}{dt} = t^5 - \cot^2 t + 6$$

Find the derivative of the function.

8)
$$q = \sqrt{19r - r^3}$$

(A)
$$\frac{19 - 3r^2}{2\sqrt{19r - r^3}}$$

B)
$$\frac{1}{2\sqrt{19-3r^2}}$$

C)
$$\frac{-3r^2}{\sqrt{19r-r^3}}$$

D)
$$\frac{1}{2\sqrt{19r-r^3}}$$

8)
$$q = \sqrt{19r - r^3}$$

(A) $\frac{19 - 3r^2}{2\sqrt{19r - r^3}}$

B) $\frac{1}{2\sqrt{19 - 3r^2}}$

C) $\frac{-3r^2}{\sqrt{19r - r^3}}$

Find dv/dx

Use implicit differentiation to find dy/dx.

$$\bigcirc \frac{y}{y-x}$$

B)
$$\frac{x}{y-x}$$

C)
$$\frac{x}{x-y}$$

D)
$$\frac{y}{x-y}$$

$$187^{2} + 248^{2} = C^{2}$$
 $C^{2} = 86183$
 $C = 293.518$

Find
$$\frac{dy}{dx}$$
. See $\frac{2}{x}$ $\frac{dy}{dx} = e^{x} + \frac{1}{4x} \cdot 7$ $e^{x} + \frac{1}{x} > \frac{1}{x}$

A)
$$\frac{e^{x} + 7}{\sin^{2} y}$$
 B) $e^{x} + \frac{7}{x} - \sec^{2} y$

$$\begin{array}{c}
xe^{x+7} \\
x \sec^2 y
\end{array}$$
D) $\frac{xe^{x+7}}{x \sec^2 y}$

Find the derivative of y with respect to the independent variable.

12)
$$y = 6 \ln 7t$$

$$= 6^{C \ln (2\pi)}$$

$$(a) \frac{\ln 6}{t} 6 \ln 7t$$
B) $6 \ln 7t$
C) $\frac{7 \ln 6}{t} 6 \ln 7t$
D) $\frac{7 \ln 6}{t}$

Find the derivative of y with respect to x.
13)
$$y = -\cot^{-1} \frac{6x}{5} + \frac{1}{1 + (\frac{6x}{5})^2} \frac{6}{5} = \frac{\frac{6}{5}}{1 + \frac{36x^2}{25}} = \frac{\frac{6}{5}}{\frac{25}{36x^2 + 25}} = \frac{\frac{36}{5}}{\frac{36x^2 + 25}{25}} = \frac{\frac{6}{5}}{\frac{36x^2 + 25}{25}} = \frac{\frac{36}{5}}{\frac{36x^2 + 25}{25}} = \frac{36}{5}$$

Solve the problem. Round your answer, if appropriate.

- 14) One airplane is approaching an airport from the north at 157 km/hr. A second airplane approaches from the east at 284 km/hr. Find the rate at which the distance between the planes changes when the southbound plane is 31 km away from the airport and the westbound plane is 17 km from the airport.
 - A) -411 km/hr
- B) -274 km/hr
- C) -137 km/hr
- D) -548 km/hr

Use l'Hopital's Rule to evaluate the limit

Hopital's Rule to evaluate the limit.
15)
$$\lim_{X \to 1} \frac{x^3 - 6x^2 + 5}{x - 1} \stackrel{\mathcal{O}}{=} \frac{3x^2 - 12x}{6} = \frac{3(1)^2 - 12(1)}{6} = \frac{3($$

Find the average value of the function over the given interval.

16)
$$y = 5 - x^{2}$$
; [-4,5]
A) $\frac{74}{27}$
B) -2
C) $-\frac{16}{3}$
D) $-\frac{46}{27}$

$$AV = Area under Correction = AV = $\frac{1}{5+4}$
 $\frac{1}{3}$
 $\frac{5}{3}$
 $\frac{5}{3$$$

,

17)
$$y = \int_{0}^{\sqrt{x}} 9t \cos(t^{6}) dt$$

A)
$$9\sqrt{x}\cos(x^3)$$

C)
$$9 \cos(x^3) - 9\sqrt{x} \sin(x^3)$$

$$\frac{dY}{dx} \int_{0}^{x^{2}} 9t \cos(t^{6}) dt = 9(x^{2}) \cos(x^{3}) \cdot \frac{1}{z\sqrt{x}}$$

$$= \frac{9\sqrt{x}}{z\sqrt{x}} \cdot \cos(x^{3}) = \frac{9}{z} \cos(x^{3})$$
B) $6\sqrt{x} \cos(x^{3})$

B)
$$6\sqrt{x}\cos(x^3)$$

$$(D)\frac{9}{2}\cos(x^3)$$

Solve the initial value problem.

the initial value problem.
18)
$$\frac{dy}{dx} = 6 \sin 2 x \cos x$$
, $y(0) = 4$

$$\int = \begin{cases} 65 \text{ in } x \cdot \cos x & \text{do } \cos x \text{ do } \end{cases}$$

(A)
$$y = 2 \sin 3 x + 4$$

(A)
$$y = 2 \sin 3 x + 4$$

(B) $y = 3 \cos 2 x + 4$
(C) $y = -2 \sin 3 x - 4$
(A) $y = 2 \sin 3 x - 4$
(B) $y = 3 \cos 2 x + 4$
(D) $y = 12 \sin x \cos x + 4$

B)
$$y = 3 \cos 2 x + 4$$

Evaluate the integral.

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \left(11 + 3x^{3}\right)^{\frac{1}{4}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx$$

$$\frac{19}{5} \int 9x^{2} \sqrt[4]{11 + 3x^{3}} dx \qquad \int 9x^{2} \sqrt[4]{11 +$$

$$U = 11 + 3x^3$$

$$\int U = 9x^2 dx$$

A)
$$9(11 + 3x^3)^{5/4} + C$$

C) -
$$6(11 + 3x^3)^{-3/4} + C$$

$$U''_{4}d_{0} = \sqrt{\frac{4}{5}U^{5/4}} \left(B\right) \frac{4}{5} (11 + 3x^{3})^{5/4}$$

D)
$$\frac{36}{5}$$
 (11 + 3x³) 5/4 + C

$$U = 2 + Gst$$

 $dv = -Sint dt$

$$\int \frac{1}{(21\cos 1)^4} \cdot \sin dt = \int U^4 dv = -\frac{1}{3}U^{3} + c = -\frac{1}{3}U^{3} + c = \frac{1}{3}(2\cos 1)^3$$

B)
$$\frac{1}{5(2 + \cos t)^5} + C$$

C)
$$\frac{3}{(2 + \cos t)^3} + C$$

D)
$$\frac{1}{(2 + \cos t)^3} + C$$

Find the area enclosed by the given curves.

 $(A) \frac{1}{3(2 + \cos t)^3} + C$

21)
$$y = 2x - x^2$$
, $y = 2x - 4$

A)
$$\frac{31}{3}$$

20) $\int \frac{\sin t}{(2 + \cos t)^4} dt$

B)
$$\frac{37}{3}$$

C)
$$\frac{34}{3}$$

$$(D)^{\frac{32}{3}}$$

22) $y = -4\sin x$, $y = \sin 2x$, $0 \le x \le \pi$

(A)
$$\frac{1}{2}$$

Sin2x +4Sinxdx = - 1 Coszx -4Cosx

$$= +\frac{7}{2} + \frac{9}{2}$$

(2)
$$y = 2x - 4$$
 $y = 2x - 4$ $y = 2x - 4$

$$A = \int_{-2}^{2} 2x - x^{2} - (zx - 4) dx$$

$$\int_{-2}^{2} 2x - x^{2} - 2x + 4 dx$$

$$\int_{-2}^{2} -X^{2} + 4 dy = -\frac{X^{3}}{3} + 4x = \frac{32}{3}$$

$$\Gamma = \sqrt{X} - O$$

$$\Gamma = \sqrt{X}$$

$$\int \pi(x)^{2} dx$$

$$\int \pi x dx = \pi\left(\frac{x^{2}}{2}\right)^{\frac{1}{2}}$$

$$A = \frac{81}{2}\pi$$

Use the disk method to find the volume of the solid generated by revolving the region bounded by the given lines and curves about the x-axis.

23)
$$y = \sqrt{x}$$
, $y = 0$, $x = 0$, $x = 9$
(A) $\frac{81}{2}\pi$

B) 9π

C) $\frac{9}{2}\pi$

D) 27π

Use the washer method to find the volume of the solid generated by revolving the region bounded by the given lines and curves about the x-axis.

24)
$$y = \sqrt{3x}$$
, $y = 3$, $x = 0$
A) $\frac{27}{4}\pi$

Β) 9π

D) 18π

Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves and lines about the y-axis.

V= Szrr. ht. dx

25)
$$y = 5x^2$$
, $y = 5\sqrt{x}$
A) $\frac{15}{4}\pi$

B) 3π

C) $\frac{3}{4}\tau$

 $(D)\frac{3}{2}\pi$

R = V = 3 - 3 = 3 $V = \sqrt{3}x - 0 = \sqrt{3}x$ $\sqrt{3}x = 3$ $\sqrt{3}x = 9$ $\sqrt{3}x = 3$ $\sqrt{3}x = 9$ $\sqrt{4}x = 3$ $\sqrt{4}x =$

ht =
$$5\sqrt{x} - 5x^2$$

ht = $5(x)^2 - 5x^2$
Psi
 $5\sqrt{x} = 5x^2$
 $25x = 2x^4$
 $2x^4 - 25x = 0$

 $\int_{0}^{1} 2\pi x \left(Sx^{\frac{1}{2}} - 5x^{\frac{3}{2}} \right) dx = \int_{0}^{1} 2\pi \left(5x^{\frac{3}{2}} - 5x^{\frac{3}{2}} \right) dx$

$$= ZT \left(2X^{\frac{5}{2}} - \frac{5}{4}x^{4} \right) \Big|_{0}^{1} = T \left(\frac{5}{4}x^{2} - \frac{5}{2}x^{4} \right) \Big|_{0}^{1}$$

$$= T \left(\frac{4}{1} \left(\frac{5}{2} - \frac{5}{2} \left(\frac{5}{2} \right) \right) \right) = \left(\frac{4}{1} - \frac{5}{2} \right) T$$

$$= \frac{8 - 5}{2} = \frac{3}{2}T$$

Review for Test 5

Date

For all volume problems (a) plot the graphs, (b) shade the bounded region, (c) show a typical section, (d) set up the integral, (e) integrate, (f) and state the volume. If needed, set ups for limits, POIs, radii, height, etc. must be shown. Round all answers to three decimal places.

Find the volume of the described solid.

1) The solid lies between planes perpendicular to the x-axis at x = 0 and x = 7. The cross sections perpendicular to the x-axis between these planes are squares whose bases run from the parabola $y = -2\sqrt{x}$ to the parabola

2) The solid lies between planes perpendicular to the x-axis at x = -3 and x = 3. The cross sections perpendicular to the x-axis are semicircles whose diameters run from $y = -\sqrt{9 - x^2}$ to $y = \sqrt{9 - x^2}$.

3) The solid lies between planes perpendicular to the x-axis at x = -5 and x = 5. The cross sections perpendicular to the x-axis are circular disks whose diameters run from the parabola $y = x^2$ to the parabola $y = 50 - x^2$.

diam =
$$(50-x^2-6x^2)$$

 $0 = 50-2x^2$
poi
 $x^2 = 50-x^2$
 $2x^2 = 50$

Find the volume of the solid generated by revolving the region bounded by the given lines and curves about the x-axis.

4)
$$y = \sqrt{2x + 3}$$
, $y = 0$, $x = 0$, $x = 1$

$$V = \int_{0}^{1} T \int_{0}^{2} dt$$

	÷		
		•	
•			
		• '	
•			

$$J = 3k$$

$$AU = 3k$$

$$Y = \frac{1}{3} \int_{0}^{1/3} S_{1} w dv$$

$$S_{1} = \sqrt{S_{1} \cdot 3} \times -0$$

$$S_{2} = \sqrt{S_{1} \cdot 3} \times -0$$

$$S_{3} = \sqrt{S_{2} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{3} = \sqrt{S_{2} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{4} = \sqrt{S_{2} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{2} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{2} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{2} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{2} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{2} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{2} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{2} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5} \cdot 3} \times -\frac{1}{3} esc(3x) \int_{0}^{1/3} R(S_{5} \cdot 3x) dx$$

$$S_{5} = \sqrt{S_{5}$$

$$R = 7-0.$$

$$V = \int r (7)^{2} - (7\cos(rx))^{2} dr = \frac{76.969}{15}$$

$$S = \frac{7}{2}$$

		•		
				,
				, .
			•	
				•
•				•
				•
		,		
			•	
,				
•				
	,			

Find the volume of the solid generated by revolving the region about the given line.

9) The region in the first quadrant bounded above by the line y = 5, below by the curve $y = \sqrt{5x}$, and on the left by the y-axis, about the line y = 5

Find the volume of the solid generated by revolving the region about the y-axis.

10) The region in the first quadrant bounded on the left by $y = x^3$, on the right by the line x = 4, and below by the x-axis

Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves and lines about the y-axis.

11)
$$y = x^2$$
, $y = 3 + 2x$, for $x \ge 0$

$$3+2x-x^{2}=0$$

$$(\chi^2+1)(\chi-3)$$

$$\int_{0}^{3} 2\pi \left(2x + 2x^{2} - x^{3} \right) dx$$

$$2\pi \left(\frac{3}{2}x^{2} + \frac{2}{3}x^{2} - \frac{x^{3}}{4} \right) \Big|_{0}^{3} = \boxed{70.686}$$

$$= \frac{70.686}{}$$

Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves and lines about the x-axis.

12)
$$x = 3y - y^2$$
, $x = 0$

$$X = 3y - y^2$$

$$X = 0$$

$$Set = 0$$

$$= \int_{0}^{3} 2\pi \left(3\sqrt{2} - \sqrt{3}\right) dy$$

) 27 y (3y - Y) dy

$$= \frac{3}{27} \left(\sqrt{\frac{3}{1} - \frac{1}{4}} \right) \left(\frac{3}{1} - \frac{412}{112} \right)$$

about the given lines. 13) y = 2x, y = 0, x = 3; revolve about the line x = -4

$$f = X - (-4)$$
 Poi
 $f = X + 4$ $Z_{X=0}$
 $\chi = 0$

Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves $\int 2\pi r \cdot ht \cdot th = \frac{2\pi (3x^{2} + 4x)}{39.292}$ $= \frac{339.292}{39.292}$

Solve the problem.

14) The spring of a spring balance is 6.0 in. long when there is no weight on the balance, and it is 7.9 in. long with 8.0 lb hung from the balance. How much work is done in stretching it from 6.0 in. to a length of 13.5 in.?

15) It takes a force of 16,000 lb to compress a spring from its free height of 13 in. to its fully compressed height of 8 in. How much work does it take to compress the spring the first inch?

$$= \frac{3700}{2} \times^{2} = 1600 \text{ in . 15},$$

16) Find the work done in winding up a 300-ft cable that weighs 3.00 lb/ft.

$$K = 3 \frac{4}{5}$$
 $F = 3(300 - 3)$
 $F = 900 - 3x$

$$900x - 3x^{2} = 135,000 \text{ ft.1bs}$$

$$K_{abb} = 2\frac{B_{4}}{FE}$$
 $E = 2(40-X)$
 $4 \text{ Walt} = \begin{cases} 40 \\ 2(40-X) dx \end{cases}$

Answer Key

Testname: MAC 2311 REV T5 - CH 6 NO MC

- 1) 392
- 2) 18π
- 3) $\frac{10000}{3}\pi$
- 4) 4π
- 5) $\frac{2}{3}\pi$
- 6) 32π 7) $\frac{297}{5}\pi$
- 8) $\frac{49}{2}\pi$
- 9) $\frac{125}{6}\pi$
- 10) $\frac{2048}{5}\pi$
 - 11) $\frac{45}{2}\pi$
 - 12) $\frac{27}{2}\pi$
 - 13) 108π
 - 14) 120 lb·in.
 - 15) 1600 in. · lb
 - 16) 135,000 ft·lb
 - 17) 8000 ft · lb

•					
			4	•	•
		•			
	·				
		•		•	
	•				
	•				
	•				
	·		,		
					, .
	•				
		•			
			÷		
				* = * * * * * * * * * * * * * * * * * *	