Householder matrices are symmetric and orthogonal. It is easily checked that over an orthonormal basis (e_1, \ldots, e_n) , a hyperplane reflection about a hyperplane H orthogonal to a nonzero vector w is represented by the matrix

$$H = I_n - 2 \frac{WW^\top}{\|W\|^2},$$

where W is the column vector of the coordinates of w over the basis (e_1, \ldots, e_n) . Since

$$p_G(u) = \frac{(u \cdot w)}{\|w\|^2} w,$$

the matrix representing p_G is

$$\frac{WW^{\top}}{W^{\top}W},$$

and since $p_H + p_G = id$, the matrix representing p_H is

$$I_n - \frac{WW^\top}{W^\top W}.$$

These formulae can be used to derive a formula for a rotation of \mathbb{R}^3 , given the direction w of its axis of rotation and given the angle θ of rotation.

The following fact is the key to the proof that every isometry can be decomposed as a product of reflections.

Proposition 13.2. Let E be any nontrivial Euclidean space. For any two vectors $u, v \in E$, if ||u|| = ||v||, then there is a hyperplane H such that the reflection s about H maps u to v, and if $u \neq v$, then this reflection is unique. See Figure 13.3.

Proof. If u = v, then any hyperplane containing u does the job. Otherwise, we must have $H = \{v - u\}^{\perp}$, and by the above formula,

$$s(u) = u - 2\frac{(u \cdot (v - u))}{\|(v - u)\|^2} (v - u) = u + \frac{2\|u\|^2 - 2u \cdot v}{\|(v - u)\|^2} (v - u),$$

and since

$$||(v-u)||^2 = ||u||^2 + ||v||^2 - 2u \cdot v$$

and ||u|| = ||v||, we have

$$||(v-u)||^2 = 2||u||^2 - 2u \cdot v,$$

and thus, s(u) = v.

If E is a complex vector space and the inner product is Hermitian, Proposition 13.2 is false. The problem is that the vector v - u does not work unless the inner product $u \cdot v$ is real! The proposition can be salvaged enough to yield the QR-decomposition in terms of Householder transformations; see Section 14.5.

We now show that hyperplane reflections can be used to obtain another proof of the QR-decomposition.