1 Konstanten

Stoffmenge $\mathrm{n}(X): 1\,\mathrm{mol} = 6.022\cdot 10^{23}\mathrm{Teilchen} = \mathrm{\#Atome\ in\ 12g\ }_6^{12}C$

molare Masse $M(X) : g \cdot mol^{-1}$ Bsp: $M(H_2O) = 2 \cdot 1.0079 + 15.9994$

Masse m(X) : g

 $n(X) \cdot M(X) = m(X)$

Stoffmengenkonzentration $M = \text{mol} \cdot L^{-1}$

Atommasseneinheit u $12u = Masse eines {}_{6}^{12}C$ -Teilchens = $1.66 \cdot 10^{-24} \, g \cdot 12$

Avogadro-Zahl $N_A = 6.022 \cdot 10^{23} \, \mathrm{mol}^{-1}$

ideales Gasvolumen $22.41 \text{ L} \cdot \text{mol}^{-1}$

ideale Gaskonstante $R = 8.31447\,J\cdot mol^{-1}\cdot K^{-1} = 8.31447\,kPa\cdot L\cdot mol^{-1}\cdot K^{-1}$

Grad Celsius $^{\circ}$ C = K -273.15

Elementarladung $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$

Faraday-Konstante $F = N_A \cdot e = 96485 \,\mathrm{C} \cdot \mathrm{mol}^{-1}$

2 Geschwindigkeitsgesetz

Allgemein: $v(AX) = k \cdot [A]^x \cdot [X]^y$

"Die Reaktion ist x+y-ter Ordnung insgesamt, x-ter Ordnung bzgl. A und y-ter Ordnung bzgl. X"

Ordnung	Geschw.gesetz	Zeitabh. der Konzentration	lin. Beziehung	Halbwertszeit
0	v = k	$[A] = -k \cdot t + [A]_0$	[A] gegen t	$\frac{[A]_0}{2k}$
1	$v = k \cdot [A]$	$\ln[A] = -k \cdot t + \ln[A]_0$	ln [A] gegen t	$\frac{\frac{2k}{\ln 2}}{\frac{k}{\ln 2}}$
2	$v = k \cdot [A]^2$	$\frac{1}{[A]} = k \cdot t + \frac{1}{[A]_0}$	$\frac{1}{A}$ gegen t	$\frac{1}{k \cdot [A]_0}$
		A	A	$ \kappa \cdot A _0$

3 Massenwirkungsgesetz (MWG)

Für die allgemeine Reaktion $aA + eE \rightleftharpoons xX + zZ$ lautet das MWG

 $\frac{[X]^x \cdot [Z]^z}{[A]^a \cdot [E]^e} = K_c = \frac{k_{\text{hin}}}{k_{\text{rück}}}$ In mehrstufigen Reakt. ist K das Produkt der Einzelreakt.

 $K_p = \frac{p^x(X) \cdot p^z(Z)}{p^a(A) \cdot p^e(E)}$, falls **alle** beteiligten Stoffe Gase sind.

R=ideale Gaskonstante

 $K_p = K_c \cdot (RT)^{\Delta n}, \qquad T = \text{Temperatur}[K]$

 $\Delta n = x + z - (a + e)$

4 Säure-Base

$HA + H_2O \rightleftharpoons A^- + H^+$
$B^- + H_2O \rightleftharpoons B + OH^-$
$pH = -\log[H^+] L \cdot \text{mol}^{-1}$
$pOH = -\log[OH^{-}]L \cdot \text{mol}^{-1}$
$pK_w = pH + pOH = 14$
$10^{-14} = [OH^-][H^+]$
$[HA]_0 = [HA] + [A^-]$
$[H+] = [OH^-] + [A^-]$
$K_s(HA) = \frac{[A^-] \cdot [H^+]}{[HA]}$
$pK_s = -\log K_s$
schwach: $pK_s > 3.5$
mittel: $3.5 > pK_s > 0.35$
stark: $pK_s < 0.35$
$pK_2 = pK_1 + 5, pK_3 = pK_2 + 5,$ Bsp: $K_1 = \frac{[H_2A^-][H^+]}{[H_3A]}$
Für Oxidosäuren $H_a X O_b$ gilt:
$pK_1 = 7$ falls $a = b$ $HOCl$
$pK_1 = 2$ falls $a = b - 1$ $(HO)_2SO$
$pK_1 = -3$ falls $a = b - 2$ $HONO_2$
$K_b(A^-) = \frac{[OH^-] \cdot [HA]}{[A^-]}$
$pK_b = -\log K_b$
$pK_w = pK_s + pK_b = 14$ Bsp: $pK_s(NH_4^+) + pK_b(NH_3) = 14$
$\alpha = \frac{[A]^-}{[HA]}$
$[H^{+}] = -\frac{1}{2}K_{s} + \sqrt{\frac{1}{4}K_{s}^{2} + K_{s} \cdot c_{0}}, c_{0} = \text{Anfangskonz. von } HA$
$mit HA \rightleftharpoons H^+ + A^-$
$[H^+] = \sqrt{K_s \cdot c_0}$
$[OH^-] = \sqrt{K_b \cdot c_0}$
$pH \approx \frac{1}{2} \left(pK_s - \log \left(\frac{c_0}{\text{mol} \cdot L^{-1}} \right) \right)$
$pOH \approx \frac{1}{2} \left(pK_b - \log \left(\frac{c_0}{\text{mol} \cdot L^{-1}} \right) \right)$
Charakteristik von Pufferlösungen
$pH = pK_s(HA) - \log \frac{\lfloor HA \rfloor}{\lfloor A^- \rfloor}, \text{ wobei } \frac{\lfloor HA \rfloor}{\lfloor A^- \rfloor} \in \left[\frac{1}{10}, 10\right]$
Harte säure lieben harte Basen, weiche Säuren weiche Basen
$V_{HA} \cdot [HA] = V_B \cdot [B]$
$[M(OH_2)_x]^{n+} + H_2O \rightleftharpoons [M(OH_2)_{x-1}(OH)]^{n-1} + H_3O^+$

5 Löslichkeitsprodukt

Für die allgemeine Reaktion $A_a X_x \rightleftharpoons a A^{x+} + x X^{a-}$ lautet das Löslichkeitsprodukt $L = \left[A^{x+}\right]^a \cdot \left[X^{a-}\right]^x$

Fällungsreaktionen

 $I < L \Rightarrow$ Lösung ungesättigt

 $I = L \Rightarrow$ Lösung gesättigt

 $I > L \Rightarrow$ Lösung übersättigt, es gibt eine Fällung

- $[H^+]^2 \cdot [S^{2-}] = 1.1 \cdot 10^{-22}$
- \bullet vergrösserte Volumina \Rightarrow verringerte Konzentrationen
- pH-Angabe $\Rightarrow [OH^-]$ resp. $[H^+]$ -Konz. anpassen

6 Grundlagen der chemischen Thermodynamik

1. Hauptsatz (Energieerhaltung)

 $\Delta H = \text{Reaktionsenthalpie}$

 $\Delta H = \Delta U + p\Delta V$ $\Delta U = U_2 - U_1$, Veränderung der inneren Energie, Wärme, Reakt.energie bei $\Delta V = 0$

 $\Delta V = \text{Veränderung des Volumens}$

p = Atmosphärendruck

Enthalpie für Reaktionen mit Gasen

$$\Delta H = \Delta U + \Delta nRT$$

$$\Delta n = \text{Veränderung der Stoffmenge}$$

$$RT = 2.479 \frac{kJ}{\text{mol}} @ 25^{\circ}\text{C}$$

2. Hauptsatz

- Bei einer spontanen Zustandsänderung vergrössert sich die Entropie S. S ist ein Mass für die Unordnung eines Systems.
- Bei einer Reaktion wird ein Energieminimum angestrebt.
- Bei einer Reaktion wir ein Maximum an Unordnung angestrebt.

Gesamtentropie
$$\Delta S_{Ges} = \Delta S_{Sys} + \Delta S_{Umg}$$

$$\Delta S_{Umg} = -\frac{\Delta H}{T}$$
 Gibbs-Energie (kJ/mol)
$$\Delta G = \Delta H - T\Delta S$$
 Gibbs-freie Enthalpie
$$G = H - TS$$

$$\Delta G < 0 \quad \text{Reaktion verläuft spontan}$$
 Ablauf der Reaktion
$$\Delta G = 0 \quad \text{System in Glgw.}$$

$$\Delta G > 0 \quad \text{Reaktion verläuft nicht spontan}$$
 freie Reaktionsenergie
$$\Delta F = \Delta U - T\Delta S$$
 Standard-Bildungsenthalpie
$$\Delta G_f^{\circ} = \text{Gibbs-Energie für 1mol der Verbindung}$$

$$\Delta G_f^{\circ} = \Delta H_f^{\circ} - T\Delta S^{\circ}$$

 $\Delta G^{\circ}(\text{Element}) \equiv 0$

3. Hauptsatz

- Die Entropie einer Substanz nimmt mit der Temperatur zu.
- Die Entropie einer perfekten kristallinen Substanz beim absolut Nullpunkt ist 0

 $\Delta G^{\circ} = \sum \Delta G_f^{\circ} \text{Produkte} - \sum \Delta G_f^{\circ} \text{Edukte}$

absolute Standard-Entropie
$$S^0$$
: Entropie bei $101.3kPa$
Standard-Reaktionsentropie ΔS^0 : \sum abs.Entropie(Produkte) $-\sum$ abs.Entropie(Edukte)
Temperaturabhängigkeit von K $\Delta G^0 = -RT \cdot \ln K$ K = K aus MWG
$$G = G^0 + RT \cdot \ln a \quad a = \frac{p}{101.3kPa} = f \cdot \frac{c}{\text{mol} \cdot \text{L}^{-1}}$$

$$RT = 2.479 \frac{kJ}{mol}$$
Clausius-Clap.-Glgw.
$$\ln \left(\frac{p_2}{p_1}\right) = \frac{\Delta H_v}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\ln \left(\frac{K_2}{K_1}\right) = \frac{\Delta H^0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Elektrochemie

Masseinheiten und Beziehungen

	Symbol	Masseinheit
elektr.Potential	E	Volt (V)
Stromstärke	I	Ampère (A)
Widerstand	R	Ohm (Ω)
Ladung	q,e,L	Coulomb (C)
Leitfähigkeit	$\frac{1}{R}$	Siemens (S)

 $e = 1.6 \cdot 10^{-19} \, C$ Elementarladung

Faraday-Konstante $F = N_A \cdot e = 96485 \,\mathrm{C} \cdot \mathrm{mol}^{-1} = 96.485 \frac{kJ}{V \cdot \mathrm{mol}}$ $1A = \frac{1C}{s} \qquad 1J = 1V \cdot C \qquad 1\Omega = 1\frac{V}{A} = 1J \cdot s \qquad 1S = 1\Omega^{-1}$

Faraday'sches Gesetz

$$m = \text{abgeschiedene Menge}[kg]$$

$$\frac{M}{z} = \text{molare Äquivalentmasse}[kg]$$

$$M = \text{molare Masse}$$

$$z = \text{Anzahl mol Elektronen}$$

$$L = \text{Elektrizitätsmenge}[C = A \cdot s]$$

$$F = 96.485 \frac{kJ}{V \cdot \text{mol}}$$

Galvanische Zelle

 $W = L \cdot \Delta E$ Erzeugte elektr. Energie

 $\Delta G = -\underbrace{n \cdot F}_{\bullet} \cdot \Delta E$ n = Anz. beteiligte Elektr. bei Reaktion Gibbs-Energie (kJ/mol)

 $\Delta E = E^0(Kathode) - E^0(Anode)$ Stromgewinn bei $\Delta E > 0$ Spannung

 $Q = \frac{a^{x}(X) \cdot a^{z}(Z)}{a^{a}(A) \cdot a^{e}(F)}$ $\Delta E = \Delta E^0 - \frac{2.303 \ RT}{nF} \log Q \qquad \text{Feststoffe: } a = [\]$ Nernst-Gleichung Gase: $a = \frac{p}{101 \ 3kPa}$

@ 25 °C

 $\Delta E = \Delta E^{0} - \frac{0.05916}{n} \log Q$ $E = E^{0} + \frac{0.05916}{n} \log \frac{[Oxidiert]}{[Reduziert]}$ Halbreaktion