ОПИСАНИЕ МЕТОДА ПАРАБОЛ

Метод парабол является представителем группы методов, основанных на аппроксимации целевой функции некоторой другой функцией, точку минимума которой можно найти аналитически. Эта точка и принимается за очередное приближение искомого минимума целевой функции.

Общая идея всех методов аппроксимации:

Вместо целевой функции f рассматриваем некоторую более простую функцию \widetilde{f} , которая принадлежит некоторому классу функций.

Рассматриваем некоторый класс функций К, функции из которого должны соответствовать следующим требованиям:

- они задаются более или менее просто (это нужно для того, чтобы точку минимума функций \widetilde{f} можно было найти аналитически);
- класс К должен быть достаточно полным (в том смысле, чтобы с помощью функций из этого класса можно было более или менее качественно приблизить любую функцию).

Приближаем функцию f какой-то функцией \widetilde{f} из класса K и стараемся сделать так, чтобы функция \widetilde{f} была в какой-то мере близка к f.

В качестве приближения точки минимума функции f рассматриваем точку минимума функции \widetilde{f} (т.е. $x^* := \widetilde{x^*}$). Считаем, что искомая точка минимума функции f более или менее близка к точке минимума аппроксимирующей функции \widetilde{f} .

В этом и заключается общая идея всех методов аппроксимации.

Метод парабол:

Этот метод выделяется среди всех методов аппроксимации тем, что в качестве аппроксимирующих функций используются квадратные трёхчлены (полиномы 2-ой степени), графиками которых являются параболы.

Пусть

- 1) f(x) унимодальна на [a,b];
- 2) f достигает минимума во внутренней точке отрезка [a, b]

Выбираются попарно различные пробные точки $x_1, x_2, x_3 \in [a, b]$ так, чтобы выполнялись следующие условия (*):

- 1) $x_1 < x_2 < x_3$;
- 2) $f(x_1) \ge f(x_2) \le f(x_3)$, причём по крайней мере одно из неравенств должно быть строгим

Тогда в силу унимодальности целевой функции f можно утверждать, что точка минимума x^* , как и x_2 удовлетворяет условию $x^* \in [x_1, x_3]$.

Аппроксимируем целевую функцию f параболой, проходящей через точки $(x_1, f(x_1)), (x_2, f(x_2))$ и $(x_3, f(x_3))$. Квадратичная функция, проходящая через них, определяется **единственным** образом.

Следуя общей логике методов аппроксимации, в качестве приближения x^* , которую мы ищем, используем точку минимума аппроксимирующей параболы $\widetilde{x^*}$ (мы можем легко найти её аналитически).

В этом и заключается основная идея метода парабол.

Основные формулы метода (**):

Пусть уравнение искомой параболы запишется в виде:

$$g(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$$

С учётом того, что парабола должна проходить через точки:

коэффициенты a_0 , a_1 , a_2 должны вычисляться по следующим формулам:

$$\begin{cases} a_0 = f_1 \\ a_1 = \frac{f_2 - f_1}{x_2 - x_1} \\ a_2 = \frac{1}{x_3 - x_2} \left[\frac{f_3 - f_1}{x_3 - x_1} - \frac{f_2 - f_1}{x_2 - x_1} \right] \end{cases}$$
, где $f_i = f(x_i)$ (1)

Тогда в соответствии с формулами (1) точка минимума параболы g(x) будет определяться формулой:

$$\widetilde{x} = \frac{1}{2} \left[x_1 + x_2 - \frac{a_1}{a_2} \right]$$

Значение \widetilde{x} используется как очередное приближение значения x^* .

Построение итерационного процесса:

Выбираем точки x_1, x_2, x_3 и на первой итерации получаем точку \widetilde{x} .

Считаем, что x_1 это крайняя левая точка отрезка; x_3 это крайняя правая точка отрезка. Точки x_2 и \widetilde{x} будут выступать в качестве пробных точек.

К пробным точкам x_2 и \widetilde{x} применяем метод исключения отрезков, благодаря чему получаем новые точки x_1', x_2', x_3' . С помощью них строим новую аппроксимирующую параболу для исходной целевой функции.

Таким образом получим какую-то новую точку $\widetilde{\chi}'$.

Дальше процедура повторяется, снова применяется метод исключения отрезков.

Замечания:

- 1) Критерием окончания вычислений служит вычисление неравенства $|\widetilde{x} \widetilde{x^*}| \le \varepsilon$, т.е. близости приближений точки минимума с двух последовательных итераций.
- 2) О выборе точек x_1, x_2, x_3 :
 - а) На первой итерации обычно достаточно нескольких проб (можно выполнять итерации *метода золотого сечения* до тех пор, пока для 2-ух пробных точек этого метода и одной из граничных точек очередного отрезка не будут выполнены неравенства (*));
 - b) При второй и последующих итерациях на отрезке $[x_1, x_3]$ рассматриваются точки x_2 и \widetilde{x} , для которых используется метод исключения отрезков. В новом отрезке $[x_1', x_3']$ в качестве x_2' выбирается та точка из x_2 и \widetilde{x} , которая оказалась внутри.
- 3) На каждой итерации метода парабол, кроме первой, вычисляется одно значение целевой функции. На первой итерации вычисляются три значения целевой функции (при условии, что с первого раза попали в годные точки x_1, x_2, x_3).