Чернівецький національний університет імені Юрія Федьковича Навчально-науковий інститут фізико-технічних та комп'ютерних наук Відділ комп'ютерних технологій Кафедра математичних проблем управління і кібернетики

Звіт про виконання лабораторної роботи №5

Тема: "Апроксимації гладких ліній вищих порядків. Фрактали."

з дисципліни
" Літня обчислювальна практика" Варіант
№ 13

Виконав:

ст. гр. 241 Українець Д.

Прийняв:

доц. Лазорик В. В.

Лабораторна роботи №5.

Виконання лабораторної роботи

- 1. Зайти в свій обліковий запис на github.com.
- 2. Клонувати репозиторій https://classroom.github.com/a/Berdcd6 в свій обліковий запис на github.com.
- 3. Розв'язати завдання.
- 4. Вихідних код записати в створений репозиторій.

Завдання

- 1. Створити проект Windows Form (C++ aбo C#).
- 2. Розробити програму вирішення задач згідно варіантів(варіанти згідно списку)

Залача 1.1

На площині задано дві точки Р1(Х1,У1), Р2(Х2,У2) та два вектора V1(Vx1,Vy1), V2(Vx2,Vy2). Розробити програму для відображення параметричної лінії Ерміта від точки Р1 до точки Р2 з початковим вектором V1 та кінцевим вектором V2.

```
Блок-схема:
```

Початок програми

 \downarrow

Виклик функції draw hermite(p1, p2, v1, v2, scale)

Обчислити параметричні значення t від 0 до 1

Обчислити базисні функції Ерміта:

- $h_1 = 2t^3 3t^2 + 1$
- $h_2 = -2t^3 + 3t^2$
- $h_3 = t^3 2t^2 + t$
- $h_4 = t^3 t^2$

 \downarrow

Обчислити координати кривої:

- $x = h_1 \cdot P1.x + h_2 \cdot P2.x + h_3 \cdot V1.x + h_4 \cdot V2.x$
- $y = h_1 \cdot P1.y + h_2 \cdot P2.y + h_3 \cdot V1.y + h_4 \cdot V2.y$

Масштабувати координати (x, y) та точки P1, P2, V1, V2

Побудувати графік: • Побудова кривої Ерміта • Відображення точок Р1, Р2 (червоні) • Відображення векторів V1, V2 (зелені/помаранчеві стрілки) Показати графік (plt.show()) Кінець програми import numpy as np import matplotlib.pyplot as plt def compute hermite points(p1, p2, v1, v2, resolution=100): t = np.linspace(0, 1, resolution) h = [2 * t**3 - 3 * t**2 + 1, -2 * t**3 + 3 * t**2, t**3 - 2 * t**2 + t, t**3 - t**2 $x_vals = h[0] * p1[0] + h[1] * p2[0] + h[2] * v1[0] + h[3] * v2[0]$ $y_vals = h[0] * p1[1] + h[1] * p2[1] + h[2] * v1[1] + h[3] * v2[1]$ return x_vals, y_vals def draw_hermite(p1, p2, v1, v2, scale=1.5): x, y = compute_hermite_points(p1, p2, v1, v2) x *= scale y *= scale points = { 'P1': np.array(p1) * scale, 'P2': np.array(p2) * scale, 'V1': np.array(v1) * scale, 'V2': np.array(v2) * scale plt.figure(figsize=(8, 6)) plt.plot(x, y, 'b', label='Крива Ерміта') $\verb|plt.scatter([points['P1'][0], points['P2'][0]], [points['P1'][1], points['P2'][1]], color='red', label='Touku')|$ plt.quiver(*points['P1'], *points['V1'], angles='xy', scale_units='xy', scale=1, color='green', label='Вектор V1') plt.quiver(*points['P2'], *points['V2'], angles='xy', scale_units='xy', scale=1, color='orange', label='Вектор V2') plt.title("Гладка крива Ерміта") plt.legend() plt.axis('equal') plt.grid(True) plt.show() # Демонстрація

Рис. 1 – Код завдання 1

if __name__ == "__main__":

draw hermite((0, 1), (4, 4), (2, -5), (4, -2), scale=-3)

Рис. 2 – Результат виконання завдання 1

Задача 2.5

Для «пучка» з А відрізків з одним спільним кінцем реалізувати фрактали «Папороть» порядку К з різним кольором для кожного «листка».

Блок-схема:

```
Початок програми

↓
Запуск функції draw()

↓
Для кожного кута з 6 обертів (листків):

↓
Виклик fern(n) для генерації точок

↓
Для кожної точки:

- Генерується випадкове число

- Застосовується одна з 4 афінних трансформацій

- Зберігається нова точка

↓
Обертання точки на відповідний кут
```

```
\downarrow
      Виведення точок певного кольору
 Повторити для всіх 6 листків
 Сховати осі та показати графік
 Кінець програми
import matplotlib.pyplot as plt
import numpy as np
import random
plt.figure(figsize=(6, 6))
for i, a in enumerate(np.linspace(0, 2*np.pi, 6, endpoint=False)):
   x = y = 0
   points = []
   for _ in range(1500):
       r = random.random()
       if r < 0.01: x, y = 0, 0.16*y
       elif r < 0.86: x, y = 0.85*x + 0.04*y, -0.04*x + 0.85*y + 1.6
       elif r < 0.93: x, y = 0.2*x - 0.26*y, 0.23*x + 0.22*y + 1.6
       else: x, y = -0.15*x + 0.28*y, 0.26*x + 0.24*y + 0.44
       points.append((x, y))
    pts = np.array(points)
   rot = np.array([[np.cos(a), -np.sin(a)], [np.sin(a), np.cos(a)]])
   rot_pts = pts @ rot
    plt.plot(rot_pts[:,0], rot_pts[:,1], '.', ms=0.5, color=plt.cm.hsv(i/6))
plt.axis('off')
plt.show()
```

Рис. 3 – Код завдання 2

Рис. 4 – Результат виконання завдання 2

Висновок: Під час виконання лабораторної роботи було реалізовано два графічних завдання на мові Руthon. Перше — побудова кривої Ерміта між двома точками з урахуванням напрямків (векторів). Друге — генерація фракталу «Папороть» у вигляді пучка з кількох листків різного кольору.