Import Necessary Libraries

```
In [1]: 1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
```

Load the dataset

```
In [2]: 1 movie = pd.read_csv('D://CodSoft Task//Data Science Internships//Movie Rat
2 movie.head()
```

Out[2]:

Category	movie_name	movie_id	
Animation Children's Comedy	Toy Story (1995)	1	0
Adventure Children's Fantasy	Jumanji (1995)	2	1
Comedy Romance	Grumpier Old Men (1995)	3	2
Comedy Drama	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4

Out[3]:

	user_id	movie_id	rating	timestamp
0	1	1193	5	978300760
1	1	661	3	978302109
2	1	914	3	978301968
3	1	3408	4	978300275
4	1	2355	5	978824291

Out[4]:

	user_id	gender	age	Occupation	zipcode
0	1	F	1	10	48067
1	2	М	56	16	70072
2	3	М	25	15	55117
3	4	М	45	7	02460
4	5	М	25	20	55455

Join the dataset as one dataset

In [5]: 1 data = pd.merge(movie,rating,on = "movie_id")
2 data

Out[5]:

	movie_id	movie_name	Category	user_id	rating	timestamp
0	1	Toy Story (1995)	Animation Children's Comedy	1	5	978824268
1	1	Toy Story (1995)	Animation Children's Comedy	6	4	978237008
2	1	Toy Story (1995)	Animation Children's Comedy	8	4	978233496
3	1	Toy Story (1995)	Animation Children's Comedy	9	5	978225952
4	1	Toy Story (1995)	Animation Children's Comedy	10	5	978226474
1000204	3952	Contender, The (2000)	Drama Thriller	5812	4	992072099
1000205	3952	Contender, The (2000)	Drama Thriller	5831	3	986223125
1000206	3952	Contender, The (2000)	Drama Thriller	5837	4	1011902656
1000207	3952	Contender, The (2000)	Drama Thriller	5927	1	979852537
1000208	3952	Contender, The (2000)	Drama Thriller	5998	4	1001781044

1000209 rows × 6 columns

```
In [6]: 1 data = pd.merge(data,user_data, on ="user_id")
2 data.head()
```

Out[6]:

	movie_id	movie_name	Category	user_id	rating	timestamp	gende
0	1	Toy Story (1995)	Animation Children's Comedy	1	5	978824268	ŀ
1	48	Pocahontas (1995)	Animation Children's Musical Romance	1	5	978824351	ŀ
2	150	Apollo 13 (1995)	Drama	1	5	978301777	ŀ
3	260	Star Wars: Episode IV - A New Hope (1977)	Action Adventure Fantasy Sci-Fi	1	4	978300760	I
4	527	Schindler's List (1993)	Drama War	1	5	978824195	F

Checking the statistics of the dataset

In [7]: 1 data.describe()

Out[7]:

	movie_id	user_id	rating	timestamp	age	Occupation
count	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06
mean	1.865540e+03	3.024512e+03	3.581564e+00	9.722437e+08	2.973831e+01	8.036138e+00
std	1.096041e+03	1.728413e+03	1.117102e+00	1.215256e+07	1.175198e+01	6.531336e+00
min	1.000000e+00	1.000000e+00	1.000000e+00	9.567039e+08	1.000000e+00	0.000000e+00
25%	1.030000e+03	1.506000e+03	3.000000e+00	9.653026e+08	2.500000e+01	2.000000e+00
50%	1.835000e+03	3.070000e+03	4.000000e+00	9.730180e+08	2.500000e+01	7.000000e+00
75%	2.770000e+03	4.476000e+03	4.000000e+00	9.752209e+08	3.500000e+01	1.400000e+01
max	3.952000e+03	6.040000e+03	5.000000e+00	1.046455e+09	5.600000e+01	2.000000e+01

Checking the description of the dataset

In [8]: 1 data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000209 entries, 0 to 1000208
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	<pre>movie_id</pre>	1000209 non-null	int64
1	<pre>movie_name</pre>	1000209 non-null	object
2	Category	1000209 non-null	object
3	user_id	1000209 non-null	int64
4	rating	1000209 non-null	int64
5	timestamp	1000209 non-null	int64
6	gender	1000209 non-null	object
7	age	1000209 non-null	int64
8	Occupation	1000209 non-null	int64
9	zipcode	1000209 non-null	object

dtypes: int64(6), object(4)
memory usage: 83.9+ MB

Checking the presence of Null values

```
In [9]:
          1 data.isnull().sum()
Out[9]: movie_id
        movie_name
                       0
        Category
                       0
        user_id
                       0
        rating
                       0
        timestamp
                       0
        gender
        age
        Occupation
        zipcode
        dtype: int64
```

As we can there is no null value so there is no need to deal with missing values.

Checking the Presence of Duplicate Values

There is no duplicate value

```
In [11]: 1 data.head()
```

Out[11]:

	movie_id	movie_name	Category	user_id	rating	timestamp	gende
0	1	Toy Story (1995)	Animation Children's Comedy	1	5	978824268	ı
1	48	Pocahontas (1995)	Animation Children's Musical Romance	1	5	978824351	Ī
2	150	Apollo 13 (1995)	Drama	1	5	978301777	Ī
3	260	Star Wars: Episode IV - A New Hope (1977)	Action Adventure Fantasy Sci-Fi	1	4	978300760	ſ
4	527	Schindler's List (1993)	Drama War	1	5	978824195	F

Determining the number of rating to each movie

```
1 rat.rename(columns = {"rating":"No. of Rating"},inplace = True)
In [13]:
            2 rat.head()
Out[13]:
                                    No. of Rating
                       movie_name
               $1,000,000 Duck (1971)
                                             37
                 'Night Mother (1986)
                                             70
             'Til There Was You (1997)
                                             52
                                            303
                   'burbs, The (1989)
           ...And Justice for All (1979)
                                            199
            1 rat["rating"] = pd.DataFrame(data["rating"].groupby(data["movie_name"]).me
In [14]:
            2 rat.head(1)
Out[14]:
                                 No. of Rating
                                                rating
                    movie_name
           $1,000,000 Duck (1971)
                                          37 3.027027
            1 | rat = rat.reindex(columns = ["rating","No. of Rating"])
In [15]:
            2 rat.head(1)
Out[15]:
                                   rating No. of Rating
                    movie_name
           $1,000,000 Duck (1971) 3.027027
                                                   37
```

plot graph of 'ratings' column

Out[16]: <AxesSubplot:>

From this graph we can see that most of the people give rating 3.0 to the movies.

Check the correlation of the dataset

```
In [17]:    1    corr = data.corr()
    2    sns.heatmap(corr,annot = True,cmap = "Greens")
Out[17]:    <AxesSubplot:>
```


Seperate the independent and dependent dataset

Split the Dataset into training and testing set

```
In [19]:
          1 | from sklearn.model_selection import train_test_split
           2 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size =0.3,random
In [20]:
          1 from sklearn.linear_model import LinearRegression
          2 from sklearn.metrics import r2_score
          3 from sklearn.metrics import mean_squared_error
          4 reg_lr =LinearRegression()
          5 reg_lr.fit(x_train,y_train)
          6 y_pred_train = reg_lr.predict(x_train)
          7 y_pred_test = reg_lr.predict(x_test)
          8 print("Training Accuracy = ",r2_score(y_train,y_pred_train))
          9 print("Training Mean Square Error = ",mean_squared_error(y_train,y_pred_tr
          10 print("Testing Accuracy = ",r2_score(y_test,y_pred_test))
          11 print("Testing Mean Square Error = ",mean_squared_error(y_test,y_pred_test
         Training Accuracy = 0.007832766100009492
         Training Mean Square Error = 1.23770297097172
         Testing Accuracy = 0.008266672259429564
         Testing Mean Square Error = 1.238619984994157
In [ ]:
          1
```