Лабораторная работа **7**

Петрова Мария

НФИбд-02-21

Цель работы

• Изучить и построить модель эффективности рекламы

Задание лабораторной работы

Вариант № 21

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.21 + 0.00008n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000012 + 0.8n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = \left(0.1\sin(t) + 0.1\cos(10t)n(t)\right)\left(N - n(t)\right)$$

При этом объем аудитории $N=800\,$, в начальный момент о товаре знает 11 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Справка о языках программирования

- Julia высокоуровневый высокопроизводительный свободный язык программирования с динамической типизацией, созданный для математических вычислений. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков (например, MATLAB и Octave), однако имеет некоторые существенные отличия. Julia написан на Си, С++ и Scheme. Имеет встроенную поддержку многопоточности и распределённых вычислений, реализованные в том числе в стандартных конструкциях.
- OpenModelica свободное открытое программное обеспечение для моделирования, симуляции, оптимизации и анализа сложных динамических систем. Основано на языке Modelica. Активно развивается Open Source Modelica Consortium, некоммерческой неправительственной организацией. Open Source Modelica Consortium является совместным проектом RISE SICS East AB и Линчёпингского университета. По своим возможностям приближается к таким вычислительным средам как Matlab Simulink, Scilab xCos, имея при этом значительно более удобное представление системы уравнений исследуемого блока.

Теоретическое введние

Мальтузианская модель роста (англ. Malthusian growth model), также называемая моделью Мальтуса — это экспоненциальный рост с постоянным темпом. Модель названа в честь английского демографа и экономиста Томаса Мальтуса.

Модель рекламной кампании описывается следующими величинами.

Считаем, что \$\frac{dn}{dt}\$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить,

\$t\$ - время, прошедшее с начала рекламной кампании, \$N\$ - общее число потенциальных платежеспособных покупателей,

\$n(t)\$ - число уже информированных клиентов.

Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом

\$\alpha _1(t)(N-n(t))\$, где \$\alpha _1>0\$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Теоретическое введние

Модель рекламной кампании описывается следующими величинами.

Считаем, что \$\frac{dn}{dt}\$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить,

\$t\$ - время, прошедшее с начала рекламной кампании,

\$N\$ - общее число потенциальных платежеспособных покупателей,

\$n(t)\$ - число уже информированных клиентов.

Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом

\$\alpha _1(t)(N-n(t))\$, где \$\alpha _1>0\$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Ход выполнения лабораторной работы

- Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:
- 1. $\frac{1}{\sqrt{1}} = \frac{0.21 + 0.000008n(t)}{N-n(t)}$
- 2. $\frac{dn}{dt} = (0.000012 + 0.8n(t))(N-n(t))$
- 3. \$\frac{dn}{dt} = (0.1\sin{t} + 0.1\cos{(10t)} n(t))(N-n(t))\$
 - При этом объем аудитории \$N = 800\$, в начальный момент о товаре знает 11 человек.
 - Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.
- ## Математическая модель
- По представленному выше теоретическому материалу были составлены модели на обоих языках программирования.
- # Решение с помощью программ

Вывод

- В итоге проделанной работы мы построили графики распространения рекламы для трех случаев на языках Julia и OpenModelica. Построение модели распространения рекламы на языке OpenModelica занимает значительно меньше строк, чем аналогичное построение на Julia

— Кроме того, построения на языке OpenModelica проводятся относительно значения времени t по умолчанию, что упрощает нашу работу

Вывод

• В ходе выполнения лабораторной работы была изучена модель эффективности рекламы и в дальнейшем построена модель на языках Julia и Open Modelica.

•

•

