Girvan-Newman Algorithm to find Communities

Girvan-Newman Algorithm

- The *Girvan-Newman* technique for the detection and analysis of community structure depends upon the iterative elimination of edges with the highest number of the shortest paths that pass through them.
- Divisive hierarchical clustering based on edge betweenness: number of shortest paths passing through the edge

Girvan-Newman Algorithm

Repeat until no edge is left

- 1. Calculate edge betweenness for every edge in the graph.
- 2. Remove the edge with highest edge betweenness.
- 3. Calculate edge betweenness for remaining edges.
- 4. Connected components are communities.

Example

• Example: for the given graph calculate the betweenness centrality for the edges, solve using Girvan Newman.

Applying BFS Algorithm

EDGE S	EDGE BETWEENNESS
AB	3.165+1.5+1.33+0.835+0.5+0.667=8
AD	1.835+0.5+0.33+1.835+0.5+0.33=5.33
BC	3.165+1.5+1.33+0.835+0.5+0.667=8
BE	0.835+2+0.835+0.835+2+0.835=7.34
CF	1.835+0.5+0.33+1.835+0.5+0.33=5.33
DE	3.165+1.5+1.33+0.835+0.5+0.667=8
EF	3.165+1.5+1.33+0.835+0.5+0.667=8

Deleted due highest edges weight

There are 3 communities.

Thank You