

Week 4: Exploring Data

m EMSE 4572/6572: Exploratory Data Analysis

2 John Paul Helveston

September 18, 2024

Quiz solution

Tip of the week:
theme_set()

```
ggplot(mtcars) +
  geom_point(aes(x = mpg, y = hp))
```

Default theme

theme_bw(base_size = 20)

Week 4: Exploring Data

1. Exploring Data BREAK

2. Data Types 5. Correlation

3. Centrality & Variability 6. Visualizing Correlation

4. Visualizing Centrality & Variability 7. Visualizing Relationships

Week 4: Exploring Data

1. Exploring Data

BREAK

2. Data Types

5. Correlation

3. Centrality & Variability

6. Visualizing Correlation

4. Visualizing Centrality & Variability 7. Visualizing Relationships

Exploratory Analysis

Confirmatory Analysis

Goal: **Form** hypotheses.

Improves quality of questions.

(what we do in THIS class)

Goal: **Test** hypotheses.

Improves quality of answers.

(what you do in a stats class)

Exploratory Analysis

Confirmatory Analysis

RQ: Do people bike more when the weather is nice?

Let's build a model to predict bike usage based on weather.

Don't be Icarus

"An approximate answer to the right question is better than an exact answer to the wrong question."

— <u>John Tukey</u>

EDA is an iterative process to help you understand your data and ask better questions

Week 4: Exploring Data

1. Exploring Data

BREAK

2. Data Types

5. Correlation

3. Centrality & Variability

6. Visualizing Correlation

4. Visualizing Centrality & Variability 7. Visualizing Relationships

24,901

Earth's circumference at the equator: 24,901

Earth's circumference at the equator: 24,901 miles

Types of Data

Categorical

Subdivide things into groups

- What type?
- Which category?

Numerical

Measure things with numbers

- How many?
- How much?

Categorical (discrete) variables

Nominal

- Order doesn't matter
- Differ in "name" (nominal) only

e.g. country in TB case data:

```
#> # A tibble: 6 × 4
    country
                       cases population
#>
              vear
                <dbl> <dbl>
                                 <dbl>
    <chr>
                1999
                       745 19987071
  1 Afghanistan
                       2666
                              20595360
  2 Afghanistan
                 2000
#> 3 Brazil
                 1999
                       37737
                              172006362
  4 Brazil
                 2000
                       80488
                              174504898
#> 5 China
                      212258 1272915272
  6 China
                 2000 213766 1280428583
```

Ordinal

- Order matters
- Distance between units not equal

e.g.: Placement 2017 Boston marathon:

```
A tibble: 6 \times 3
     Placement `Official Time`
                                 Name
         <dbl> <time>
                                  <chr>
#> 1
              1 02:09:37
                                  Kirui, Geo
              2 02:09:58
                                  Rupp, Gale
#> 3
              3 02:10:28
                                  Osako, Sug
              4 02:12:08
                                  Biwott, Sh
#> 5
              5 02:12:35
                                  Chebet, Wi
              6 02:12:45
                                  Abdirahman
#> 6
```

Numerical data

Interval

- Numerical scale with arbitrary starting point
- No "0" point
- Can't say "x" is double "y"

e.g.: temp in Beaver data

Ratio

- Has a "0" point
- Can be described as percentages
- Can say "x" is double "y"

e.g.: height & speed in wildlife impacts

```
#> # A tibble: 6 × 3
    <dbl> <dbl>
    <dttm>
    2018-12-31 00:00:00
                         700
                              200
  2 2018-12-27 00:00:00
                         600
                              145
  3 2018-12-23 00:00:00
                              130
  4 2018-12-22 00:00:00
                         500
                              160
                         100
  5 2018-12-21 00:00:00
                              150
  6 2018-12-18 00:00:00
                        4500
                              250
```

Key Questions

Categorical

Numerical

Does the order matter?

Is there a "baseline"?

Yes: **Ordinal**

Yes: Ratio

No: **Nominal**

No: Interval

Be careful of how variables are encoded!

When numbers are categories

- "Dummy coding": e.g., passedTest = 1 or 0)
- "North", "South", "East", "West" = 1, 2, 3, 4

When ratio data are discrete (i.e. counts)

- Number of eggs in a carton, heart beats per minute, etc.
- Continuous variables measured discretely (e.g. age)

Time

- As *ordinal* categories: "Jan.", "Feb.", "Mar.", etc.
- As interval scale: "Jan. 1", "Jan. 2", "Jan. 3", etc.
- As *ratio* scale: "30 sec", "60 sec", "70 sec", etc.

Week 4: Exploring Data

1. Exploring Data BREAK

2. Data Types 5. Correlation

3. Centrality & Variability 6. Visualizing Correlation

4. Visualizing Centrality & Variability 7. Visualizing Relationships

Summary Measures:

Single variables: Centrality & Variability

Two variables: Correlation

Centrality (a.k.a. The "Average" Value)

A single number representing the *middle* of a set of numbers

Mean: $\frac{\text{Sum of values}}{\text{# of values}}$

Median: "Middle" value (50% of data above & below)

Mean isn't always the "best" choice

```
wildlife_impacts %>%
    filter(! is.na(height)) %>%
    summarise(
       mean = mean(height),
       median = median(height)
)
```

```
#> # A tibble: 1 × 2
#> mean median
#> <dbl> <dbl>
#> 1 984. 50
```

Percent of data below mean:

```
#> [1] "73.9%"
```

On average, at what height do planes hit birds?

Beware the "flaw of averages"

What happened to the statistician that crossed a river with an average depth of 3 feet?

...he drowned

Variability ("Spread")

Standard deviation: distribution of values relative to the mean

$$s=\sqrt{rac{\sum_{i=1}^{N}(x_i-ar{x})^2}{N-1}}$$

Interquartile range (IQR): Q_3-Q_1 (middle 50% of data)

Range: max - min

Example: Days to ship

Complaints are coming in about orders shipped from warehouse B, so you collect some data:

```
daysToShip
```

Here, **averages** are misleading:

```
daysToShip %>%
    gather(warehouse, days, warehouseA:warehouseB) %>
    group_by(warehouse) %>%
    summarise(
        mean = mean(days),
        median = median(days))
```

Example: Days to ship

Complaints are coming in about orders shipped from warehouse B, so you collect some data:

```
daysToShip
```

Variability reveals difference in days to ship:

```
daysToShip %>%
    gather(warehouse, days, warehouseA:warehouseB) %>
    group_by(warehouse) %>%
    summarise(
        mean = mean(days),
        median = median(days),
        range = max(days) - min(days),
        sd = sd(days))
```

Example: Days to ship

Interpreting the standard deviation

$$s=\sqrt{rac{\sum_{i=1}^{N}(x_i-ar{x})^2}{N-1}}$$

Outliers

Mean & Standard Deviation are sensitive to outliers

Outliers: $Q_1-1.5IQR$ or $Q_3+1.5IQR$

Extreme values: $Q_1 - 3IQR$ or $Q_3 + 3IQR$

```
data1 <- c(3,3,4,5,5,6,6,7,8,9)
```

• Mean: 5.6

Standard Deviation: 2.01

• Median: 5.5

• IQR: 2.5

```
data2 <- data1
data2[10] <- 20
```

• Mean: 6.7

Standard Deviation: 4.95

• Median: 5.5

• IQR: 2.5

Robust statistics for continuous data (less sensitive to outliers)

Centrality: Use median rather than mean

Variability: Use IQR rather than standard deviation

Practice with summary measurements

- 1) Read in the following data sets:
 - milk_production.csv
 - lotr_words.csv
- 2) For each variable in each data set, if possible, summarize its
- 1. Centrality
- 2. Variability

Week 4: Exploring Data

1. Exploring Data BREAK

2. Data Types 5. Correlation

3. Centrality & Variability 6. Visualizing Correlation

4. Visualizing Centrality & Variability 7. Visualizing Relationships

"Visualizing data helps us think"

	Α		В		С		D	
	Х	У	Х	У	Х	У	Х	У
	10	8.04	10	9.14	10	7.46	8	6.58
	8	6.95	8	8.14	8	6.77	8	5.76
	13	7.58	13	8.74	13	12.74	8	7.71
	9	8.81	9	8.77	9	7.11	8	8.84
	11	8.33	11	9.26	11	7.81	8	8.47
	14	9.96	14	8.1	14	8.84	8	7.04
	6	7.24	6	6.13	6	6.08	8	5.25
	4	4.26	4	3.1	4	5.39	19	12.5
	12	10.84	12	9.13	12	8.15	8	5.56
	7	4.82	7	7.26	7	6.42	8	7.91
	5	5.68	5	4.74	5	5.73	8	6.89
Sum:	99	82.51	99	82.51	99	82.5	99	82.51
Mean:	9	7.5	9	7.5	9	7.5	9	7.5
St. Dev:	3.3	2	3.3	2	3.3	2	3.3	2

Anscombe's Quartet

Anscombe's Quartet

The data *type* determines how to summarize it

Nominal (Categorical)

Ordinal (Categorical)

Numerical (Continuous)

Measures:

 Frequency counts / Proportions

Measures:

- Frequency counts / Proportions
- Centrality: Median, Mode
- Variability: IQR

Measures:

- Centrality:
 Mean, median
- Variability: Range, standard deviation, IQR

Charts:

Bars

Charts:

Bars

Charts:

- Histogram
- Boxplot

Summarizing **Nominal** data

Summarize with counts / percentages Visualize with (usually sorted) bars

```
wildlife impacts %>%
    count(operator, sort = TRUE) %>%
    mutate(p = n / sum(n))
```

```
#> # A tibble: 4 × 3
    operator
                       <int> <dbl>
    <chr>
    SOUTHWEST AIRLINES 17970 0.315
#> 2 UNITED AIRLINES
                       15116 0.265
#> 3 AMERICAN AIRLINES 14887 0.261
#> 4 DELTA AIR LINES
                        9005 0.158
```

```
wildlife_impacts %>%
    count(operator, sort = TRUE) %>%
    ggplot() +
    geom_col(aes(x = n, y = reorder(operator, n)),
             width = 0.7) +
    labs(x = "Count", y = "Operator")
```


Summarizing **Ordinal** data

Summarize: Counts / percentages

```
wildlife_impacts %>%
    count(incident_month, sort = TRUE) %>%
    mutate(p = n / sum(n))
```

```
A tibble: 12 \times 3
      incident month
#>
                <dbl> <int> <dbl>
                       7980 0.140
                       7754 0.136
                       7104 0.125
                       6161 0.108
                       6133 0.108
                       4541 0.0797
                       4490 0.0788
                       4191 0.0736
                       2678 0.0470
                       2303 0.0404
                       1951 0.0342
                       1692 0.0297
```

Visualize: Bars

Summarizing continuous variables

Histograms:

- Skewness
- Number of modes

Boxplots:

- Outliers
- Comparing variables

Histogram: Identify Skewness & # of Modes

Summarise:

Mean, median, sd, range, & IQR:

summary(wildlife_impacts\$height)

```
#> Min. 1st Qu. Median Mean
#> 0.0 0.0 50.0 983.8
```

Visualize:

Histogram (identify skewness & modes)

```
ggplot(wildlife_impacts) +
  geom_histogram(aes(x = height), bins = 50) +
  labs(x = 'Height (ft)', y = 'Count')
```


Histogram: Identify Skewness & # of Modes

Height

```
ggplot(wildlife_impacts) +
  geom_histogram(aes(x = height), bins = 50)
  labs(x = 'Height (ft)', y = 'Count')
```

25000 -15000 -10000 -5000 -10000 -10000 -1500

Speed

```
ggplot(wildlife_impacts) +
  geom_histogram(aes(x = speed), bins = 50)
  labs(x = 'speed (mph)', y = 'Count')
```


Boxplot: Identify outliers

Height

```
ggplot(wildlife_impacts) +
   geom_boxplot(aes(x = height)) +
   labs(x = 'Height (ft)', y = NULL)
```


Speed

```
ggplot(wildlife_impacts) +
    geom_boxplot(aes(x = speed)) +
    labs(x = 'Speed (mph)', y = NULL)
```


Histogram

- Skewness
- Modes

Boxplot

Outliers

Practicing visual summaries

- 1) Read in the following data sets:
 - faithful.csv
 - marathon.csv
- 2) Summarize the following variables using an appropriate chart (bar chart, histogram, and / or boxplot):
 - faithful: eruptions
 - faithful: waiting
 - marathon: Age
 - marathon: State
 - marathon: Country
 - marathon: `Official Time`

Break!

Stand up, Move around, Stretch!

Week 4: Exploring Data

1. Exploring Data BREAK

2. Data Types 5. Correlation

3. Centrality & Variability 6. Visualizing Correlation

4. Visualizing Centrality & Variability 7. Visualizing Relationships

Some pretty racist origins in eugenics ("well born")

Sir Francis Galton (1822 - 1911)

- Charles Darwin's cousin.
- "Father" of eugenics.
- Interested in heredity.

Karl Pearson (1857 - 1936)

- Galton's (hero-worshiping) protégé.
- Defined correlation equation.
- "Father" of mathematical statistics.

Galton's family data

Galton, F. (1886). "Regression towards mediocrity in hereditary stature". *The Journal of the Anthropological Institute of Great Britain and Ireland* 15: 246-263.

Galton's question: Does marriage selection indicate a relationship between the heights of husbands and wives? (He called this "assortative mating")

"midparent height" is just a scaled mean:

```
midparentHeight = (father + 1.08*mother)/2
```


How do you measure correlation?

Pearson came up with this:

$$r = \frac{\operatorname{Cov}(x,y)}{\operatorname{sd}(x) * \operatorname{sd}(y)}$$

How do you measure correlation?

$$r=rac{\mathrm{Cov}(x,y)}{\mathrm{sd}(x)*\mathrm{sd}(y)}$$

Assumptions:

- 1. Variables must be interval or ratio
- 2. Linear relationship

How do you interpret r?

$$r = \frac{\operatorname{Cov}(x,y)}{\operatorname{sd}(x) * \operatorname{sd}(y)}$$

Interpretation:

- \bullet $-1 \le r \le 1$
- Closer to 1 is stronger correlation
- Closer to 0 is weaker correlation

```
cor(x = GaltonFamilies$midparentHeight,
   y = GaltonFamilies$childHeight,
   method = 'pearson')
```

#> [1] **0.**3209499

What does *r* mean?

- \bullet $\pm 0.1-0.3$: Weak
- $\pm 0.3 0.5$: Moderate
- $\pm 0.5-0.8$: Strong
- $\pm 0.8 1.0$: Very strong

Visualizing correlation is...um...easy, right?

guessthecorrelation.com

Click here to vote!

The datasaurus

(More here)

Coefficient of determination: r^2

Percent of variance in one variable that is explained by the other variable

r	r^2		
0.1	0.01		
0.2	0.04		
0.3	0.09		
0.4	0.16		
0.5	0.25		
0.6	0.36		
0.7	0.49		
0.8	0.64		
0.9	0.81		
1.0	1.00		

You should report both r and r^2

Correlation between parent and child height is 0.32, therefore 10% of the variance in the child height is explained by the parent height.

Correlation != Causation

X causes Y

• Training causes improved performance

Y causes X

Good (bad) performance causes people to train harder (less hard).

Z causes both X & Y

• Commitment and motivation cause increased training and better performance.

Be weary of dual axes!

(They can cause spurious correlations)

Outliers

Pearson correlation is highly sensitive to outliers

Spearman's rank-order correlation

$$r = \frac{\operatorname{Cov}(x,y)}{\operatorname{sd}(x) * \operatorname{sd}(y)}$$

- Separately rank the values of X & Y.
- ullet Use Pearson's correlation on the *ranks* instead of the x & y values.

Assumptions:

- Variables can be ordinal, interval or ratio
- Relationship must be monotonic (i.e. does not require linearity)

Spearman correlation more robust to outliers

Spearman correlation more robust to outliers

Pearson Sp	earman
-0.56	0.53
0.39	0.69
0.94	0.81
0.38	0.76
0.81	0.79
0.31	0.70
0.95	0.81
0.51	0.75
-0.56	0.53

Summary of correlation

- **Pearson's correlation**: Described the strength of a **linear** relationship between two variables that are interval or ratio in nature.
- Spearman's rank-order correlation: Describes the strength of a monotonic relationship between two variables that are ordinal, interval, or ratio. It is more robust to outliers.
- The **coefficient of determination** (r^2) describes the amount of variance in one variable that is explained by the other variable.
- Correlation != Causation

R command (hint: add use = "complete.obs" to drop NA values)

```
pearson <- cor(x, y, method = "pearson", use = "complete.obs")
spearman <- cor(x, y, method = "spearman", use = "complete.obs")</pre>
```

Week 4: Exploring Data

1. Exploring Data BREAK

2. Data Types 5. Correlation

3. Centrality & Variability 6. Visualizing Correlation

4. Visualizing Centrality & Variability 7. Visualizing Relationships

Scatterplots: The correlation workhorse

```
scatterplot <- mtcars %>%
  ggplot() +
  geom_point(
    aes(x = mpg, y = hp),
    size = 2, alpha = 0.7
  ) +
  theme_classic(base_size = 20) +
  labs(
    x = 'Fuel economy (mpg)',
    y = 'Engine power (hp)'
  )
  scatterplot
```


Adding a correlation label to a chart

Make the correlation label

```
corr <- cor(
    mtcars$mpg, mtcars$hp,
    method = 'pearson')

corrLabel <- paste('r = ', round(corr, 2))</pre>
```

Add label to the chart with annotate()

```
scatterplot +
annotate(
   geom = 'text',
   x = 25, y = 310,
   label = corrLabel,
   hjust = 0, size = 7
)
```


Visualize all the correlations: ggcorr()

```
library('GGally')

mtcars %>%
    ggcorr()
```


Visualizing correlations: ggcorr()

```
library('GGally')
```

```
mtcars %>%
    ggcorr(label = TRUE,
        label_size = 3,
        label_round = 2)
```


Visualizing correlations: ggcorr()

```
ggcor_mtcars_final <- mtcars %>%
    ggcorr(label = TRUE,
        label_size = 3,
        label_round = 2,
        label_color = 'white',
        nbreaks = 5,
        palette = "RdBu")
```


Pearson

Spearman

```
mtcars %>%
    ggcorr(label = TRUE,
        label_size = 3,
        label_round = 2,
        method = c("pairwise", "pearson"
```


Correlograms: ggpairs()

```
mtcars %>%
    select(mpg, cyl, disp, hp, wt)
    ggpairs()
```

- Look for linear relationships
- View distribution of each variable

Correlograms: ggpairs()

```
mtcars %>%
    select(mpg, cyl, disp, hp, wt)
    ggpairs() +
    theme_classic()
```

- Look for linear relationships
- View distribution of each variable

Your turn

15:00

Using the **penguins** data frame:

- 1. Find the two variables with the largest correlation in absolute value (i.e. closest to -1 or 1).
- 2. Create a scatter plot of those two variables.
- 3. Add an annotation for the Pearson correlation coefficient.

palmerpenguins library

Simpson's Paradox: when correlation betrays you

Body mass vs. Bill depth

Body mass vs. Bill depth

Week 4: Exploring Data

1. Exploring Data BREAK

2. Data Types 5. Correlation

3. Centrality & Variability 6. Visualizing Correlation

4. Visualizing Centrality & Variability 7. Visualizing Relationships

Visualizing variation

Ask yourself:

- What type of variation occurs within my variables?
- What type of covariation occurs between my variables?

Check out these guides

Two Categorical Variables

Summarize with a table of counts

```
wildlife_impacts %>%
    count(operator, time_of_day)
```

```
A tibble: 20 \times 3
                          time_of_day
      operator
#>
#>
      <chr>
                          <chr>
                                       <int>
    1 AMERICAN AIRLINES
                                         458
                          Dawn
    2 AMERICAN AIRLINES
                          Day
                                        7809
    3 AMERICAN AIRLINES
                          Dusk
                                         584
    4 AMERICAN AIRLINES
                          Night
                                        3710
#>
    5 AMERICAN AIRLINES
                          <NA>
                                        2326
#>
    6 DELTA AIR LINES
                                         267
#>
                          Dawn
    7 DELTA AIR LINES
                                        4846
                          Day
                          Dusk
                                         353
    8 DELTA AIR LINES
#>
    9 DELTA AIR LINES
                          Night
                                        2090
     DELTA AIR LINES
                          <NA>
                                        1449
     SOUTHWEST AIRLINES
                          Dawn
                                         394
  12 SOUTHWEST AIRLINES Day
                                        9109
```

Two Categorical Variables

Convert to "wide" format with pivot_wider() to make it easier to compare values

```
wildlife_impacts %>%
    count(operator, time_of_day) %>%
    pivot_wider(names_from = time_of_day, values_from = n)
```

```
#> # A tibble: 4 × 6
     operator
                        Dawn
                               Day
                                    Dusk Night `NA`
     <chr>
                       <int> <int> <int> <int> <int>
    AMERICAN ATRITNES
                         458
                              7809
                                     584
                                          3710
                                               2326
  2 DELTA AIR LINES
                              4846
                                     353
                         267
                                         2090
                                               1449
#> 3 SOUTHWEST AIRLINES
                         394
                              9109
                                     599
                                         5425 2443
#> 4 UNITED AIRLINES
                         151
                              3359
                                     181
                                         1510
                                               9915
```

Two Categorical Variables

Visualize with bars: map **fill** to denote 2nd categorical var

```
wildlife impacts %>%
  count(operator, time_of_day) %>%
  ggplot() +
  geom col(
    aes (
      x = n
      y = reorder(operator, n),
      fill = reorder(time of day, n)
    width = 0.7,
    position = 'dodge') +
  theme(legend.position = "bottom") +
  labs(
    fill = "Time of day",
    v = "Airline"
```


Two **Continuous** Variables

Visualize with scatterplot - looking for *clustering* and/or *correlational* relationship

```
ggplot(wildlife_impacts) +
  geom_point(
    aes(
        x = speed,
        y = height
    ),
    size = 0.5) +
  labs(
    x = 'Speed (mph)',
    y = 'Height (f)'
  )
```


One Continuous, One Categorical

Visualize with **boxplot**

```
ggplot(wildlife_impacts) +
  geom_boxplot(
    aes(
        x = speed,
        y = operator)
    ) +
  labs(
    x = 'Speed (mph)',
    y = 'Airline'
)
```


Practice doing EDA

- 1) Read in the candy_rankings.csv data sets
- 2) Preview the data, note the data types and what each variable is.
- 3) Visualize (at least) three *relationships* between two variables (guided by a question) using an appropriate chart:
 - Bar chart
 - Scatterplot
 - Boxplot

Reminders:

You have 4 days until your Project Proposal is due

You have 6 days until your Mini Project 1 is due.

Sign up for meeting slot next week