

EXAME NACIONAL DO ENSINO SECUNDÁRIO - MATEMÁTICA A 12.° ANO DE ESCOLARIDADE

Site: http://recursos-para-matematica.webnode.pt/

Facebook: https://www.facebook.com/recursos.para.matematica

PROVA MODELO N.

JUNHO DE 2016

GRUPO I

Na resposta aos itens deste grupo, seleccione a opção correcta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Seja S, conjunto finito, o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos possíveis ($A \subset S$ e $B \subset S$).

Sabe-se que:

•
$$P(A|B) = 2P(\overline{A}|B)$$

•
$$P(A) - 3P(B) = 0$$

Qual é o valor de P(B|A)?

$$\mathbf{A} \frac{1}{9}$$

$$\mathbb{B} \frac{2}{9}$$

$$\frac{1}{9}$$

2. A distribuição de probabilidades de uma variável aleatória X é dada pela tabela:

X_i	-3	1	2	6
$P(X=x_i)$	b	a	а	b

 $(a \ {\rm e} \ b \ {\rm designam} \ {\rm números} \ {\rm reais} \ {\rm positivos})$

Qual é o valor médio da variável aleatória X?

$$\mathbf{A} \frac{1}{2}$$

$$\frac{3}{2}$$

3. Sejam a e b dois números reais positivos tais que $\log_4 a + \log_2 b = 1$.

Qual é o valor de $\log_4(a^3b^6)$?

4. Considere a sucessão (u_n) definida por $u_n = n^3 e^{-n}$.

Seja g uma função de domínio $\mathbb{R}\setminus\{1\}$ tal que $\lim g\left(u_n+1\right)=2$.

Qual das seguintes pode ser a função g?

$$\mathbf{B} \quad g(x) = \frac{\operatorname{sen}(x-1)}{2x-2}$$

$$g(x) = \frac{x^2 - 1}{e^{x-1} - 1}$$

5. Na figura está representada, num referencial o.n. xOy, a circunferência de equação $x^2 + y^2 = 4$ e o triângulo isósceles [ABC].

Sabe-se que:

- o ponto P pertence à circunferência e ao semi-eixo positivo Ox
- o ponto A pertence ao semi-eixo positivo Ox e $\overline{OP} = \overline{AP}$
- os pontos B e C pertencem à circunferência;
- o lado [BC] é paralelo ao eixo Oy

Seja α a amplitude, em radianos, do ângulo AOC, com $\alpha \in \left]-\pi,0\right[$.

Qual das seguintes expressões define, em função de α , a área do triângulo [ABC]?

 $8 \operatorname{sen}(2\alpha) - 32 \operatorname{sen} \alpha$

B 8sen (2α) + 32sen α

 $2\operatorname{sen}(2\alpha) + 8\operatorname{sen}\alpha$

 $2 \operatorname{sen}(2\alpha) - 8 \operatorname{sen} \alpha$

6. Na figura está representada, no plano complexo, a circunferência centrada na origem que contém o ponto B.

Sabe-se que:

- o ponto A pertence à circunferência e ao semi-eixo positivo real;
- o ponto B é a imagem geométrica de $z_1 = 2\sqrt{3} + 2i$
- o ponto C é a imagem geométrica de $z_2 = \operatorname{cis}\left(-\frac{\pi}{2}\right)$
- os pontos D e E pertencem à circunferência e são simétricos em relação ao eixo imaginário;
- os ângulos AOB e DCE têm a mesma amplitude.

Qual das seguintes condições pode definir a região sombreada da figura?

$$\left| z+i \right| \le 4 \wedge \frac{4\pi}{3} \le \arg(z+i) \le \frac{5\pi}{3}$$

$$|z| \le 4 \wedge \frac{4\pi}{3} \le \arg(z+i) \le \frac{5\pi}{3}$$

$$|z| \le 4 \wedge \frac{17\pi}{12} \le \arg(z+i) \le \frac{19\pi}{12}$$

$$|z| \le 4 \wedge \frac{17\pi}{12} \le \arg(z) \le \frac{19\pi}{12}$$

7. Na figura, estão representadas, num referencial o.n. xOy, as rectas $r \in s$.

Sabe-se que:

- a recta r intersecta o eixo Ox no ponto A e a sua abcissa é 1
- a recta s intersecta o eixo Ox no ponto C
- a rectas *r* e *s* intersectam-se no ponto *B*
- α é a inclinação da recta r e $\cos^2 \alpha \sin^2 \alpha = -\frac{1}{2}$, com $\alpha \in \left[0, \frac{\pi}{2}\right]$
- o triângulo [ABC] é isósceles e $\overline{AB} = 4$

Qual é a equação reduzida da recta s?

A
$$y = \frac{\sqrt{3}}{3}x + \sqrt{3}$$
 B $y = \sqrt{3}x - \sqrt{3}$ **C** $y = \frac{\sqrt{3}}{3}$

$$\mathbf{B} \quad y = \sqrt{3}x - \sqrt{3}$$

$$y = \frac{\sqrt{3}}{3}x + 3$$

8. Seja (u_n) uma progressão aritmética tal que $u_{30} + u_{40} = 40$.

Qual é a soma de todos os termos consecutivos de (u_n) entre os termos de ordem 10 e 60, incluindo-os?

A 1000

C 1200

2040

GRUPO II

Na resposta aos itens deste grupo, apresente todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exacto

1. Em $\mathbb C$, conjunto dos números complexos, considere $z=\operatorname{cis}\frac{\pi}{12}$ e $w=\left(\frac{1}{z}+\overline{z}\right)\left(-1+\sqrt{3}i\right)$.

Sem recorrer à calculadora, determine o menor valor natural de n de modo que w^n seja um número real negativo.

- 2. Numa empresa sabe-se que:
 - 80% dos funcionários são do sexo feminino;
 - dos funcionários do sexo feminino, um quarto estão no atendimento ao público;
 - um terço dos funcionários que estão no atendimento ao público são do sexo masculino;
 - 2.1. Escolhe-se ao acaso um funcionário da empresa.

Qual é a probabilidade de ser do sexo masculino sabendo que não está no atendimento ao público?

Apresente o resultado na forma de fracção irredutível.

2.2. Suponha que a empresa tem cinquenta funcionários.

Considere a experiência aleatória que consiste em escolher, simultaneamente e ao acaso, quatro funcionários do sexo feminino.

Qual é a probabilidade de no máximo um desses funcionários estar no atendimento ao público?

Uma resposta a esta questão é $\frac{^{30}C_4 + 10 \times ^{30}C_3}{^{40}C_4}$.

Elabore uma composição na qual explique a expressão apresentada. A sua composição deve incluir:

- uma referência à regra de Laplace;
- uma explicação do número de casos possíveis;
- uma explicação do número de casos favoráveis.

- **3.** Considere, num referencial o.n. xOy, o ponto A(-1,0,1) e a recta r definida por $\frac{x}{2} = \frac{y-1}{2} = z$.
 - **3.1.** Seja β um plano paralelo à recta r, definido por $4x ay a^2z = 0$, com $a \in \mathbb{R}$.

Determine a.

- **3.2.** Escreva uma equação do plano que contém a recta r e o ponto A. Comece por mostrar que o ponto A não pertence à recta r.
- **3.3.** Seja α a amplitude do ângulo formado pela recta r e pelo eixo Oy.

4. A concentração, em mg por litro de sangue, de um medicamento na corrente sanguínea de um paciente, *t* horas após ter sido ingerido, é dada por:

$$C(t) = t^3 e^{-1,25t}, t \ge 0$$

Resolva os itens seguintes por métodos analíticos, sem recorrer à calculadora.

- **4.1.** Determine $\lim_{t\to +\infty} C(t)$ e interprete o resultado no contexto da situação descrita.
- **4.2.** Determine o instante em que a concentração do medicamento na corrente sanguínea do paciente é máxima.

Apresente o resultado em horas e minutos.

5. Considere a função g, contínua em \mathbb{R} , definida por:

$$g(x) = \begin{cases} \frac{e^{kx-k} + x - 2}{x - 1} & \text{se } x < 1 \\ \frac{(k+1)x + \ln\left(\frac{kx^2}{2}\right)}{x} & \text{se } x \ge 1 \end{cases}$$

Resolva os itens seguintes recorrendo a métodos analíticos, sem recorrer à calculadora.

- **5.1.** Mostre que k = 2.
- **5.2.** Estude a função g quanto à existência de assimptotas horizontais do seu gráfico.

5.3. Para $x \in [1, +\infty[$ mostre que $g''(x) = \frac{4 \ln x - 6}{x^3}$ e estude, neste intervalo, a função g quando ao sentido das concavidades do seu gráfico e à existência de pontos de inflexão.

Na sua resposta deve indicar:

- o(s) intervalo(s) onde o gráfico de *g* tem a concavidade voltada para baixo;
- o(s) intervalo(s) onde o gráfico de *g* tem a concavidade voltada para cima;
- a(s) coordenada(s) do(s) ponto(s) de inflexão.
- **6.** Considere as funções $f \in g$, de domínio \mathbb{R} , definidas por:

$$f(x) = 2 - \cos^2(3x)$$
 e $g(x) = e^{\sin(2x)}$

Sem recorrer à calculadora, nem mesmo para eventuais cálculos numéricos, mostre que os gráficos de f e de g possuem pelo menos um ponto, de igual abcissa e pertence ao intervalo $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$, tais que as rectas tangentes aos gráficos de f e de g nesses pontos são paralelas.

Recorrendo à calculadora gráfica, verifique que existe apenas uma abcissa nas condições do enunciado e determine-a.

Na sua resposta deve:

- mostrar analiticamente a existência de pelo menos uma abcissa nas condições do problema;
- reproduzir, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizar na calculadora, devidamente identificado(s);
- apresentar a abcissa pedida, arredondada às centésimas.

FIM

	Cotações	
	GRUPO I	
1. a	8. (8×5 pontos)	40 ponto
	GRUPO I	
1.		15 ponto
2.		
	2.1.	15 pont
	2.2.	15 pont
		- C
3.		
	3.1.	5 pont
	3.2.	10 pont
	3.3.	15 pont
4.		
	4.1.	10 pont
	4.2.	15 pont
5.		
	5.1.	15 pont
	5.2.	15 pont
	5.3.	15 pont
6.	7.9	15 pont
		200 pont

SOLUCIONÁRIO

GRUPO I

1. E

2. C

3. /

4.

5. D

6. (

7.

8. F

GRUPO II

1. n = 12

2.1. $\frac{1}{2}$

2.2. ≈ 59%

3.1. $a = -4 \lor a = 2$

3.2. -x + y =

3.3. $\frac{1}{4}$

- 4.1. 0; À medida que o tempo passa, a concentração de medicamento na corrente sanguínea do paciente tende para zero.
- **4.2.** A concentração de medicamento na corrente sanguínea do paciente é máxima se t = 2,4, isto é, passadas 2 horas e 24 minutos após o medicamento ter sido ingerido ($0,4 \times 60 = 24$).
- **5.2.** A.H.: y = 1, quando $x \rightarrow -\infty$ e y = 3, quando $x \rightarrow +\infty$.
- 5.3. Para $x \in [1, +\infty[$, o gráfico de g tem a concavidade voltada para baixo em $\left[1, \sqrt{e^3}\right]$ e tem a concavidade voltada para cima em $\left[\sqrt{e^3}, +\infty\right[$. As coordenadas do único ponto de inflexão são $\left(\sqrt{e^3}, 3 + \frac{3}{\sqrt{e^3}}\right)$.
- 6. Para $x \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ tem-se que $f'(x) = g'(x) \Leftrightarrow x = a$, com $a \approx 0.95$