Esercitorione 6 - Ripasso Incertessa + Parsiele + Spettri $V = \frac{\pi D^2}{n} h = 4 712 m^3$ mn = p V = 3769, 91 hg 2 parsibilità L7 1. Serivere es previone massa glabale a Calcolore una incertessa e poi l'altra. $\Delta = \mu_N = \rho + \frac{\pi}{4} \frac{D^2}{h}$ Incerterze ρ , D, eh $u_{m} = \sqrt{\left(\frac{\partial m}{\partial \rho} \cdot u_{\rho}\right)^{2} + \left(\frac{\partial m}{\partial D} \cdot u_{o}\right)^{2} + \left(\frac{\partial m}{\partial k} \cdot u_{k}\right)^{2}}$ [up = 0,0x lig /dm2 = 10/1g/m2) u,= uh = 2/3 = 2/3 = 0,0029 m

2 m	$=\frac{\pi D^2}{4} h$	Om.	PTD L	om oh j	$\int \frac{\pi D^2}{4}$
	= 4,712 m²		3769,91 hg		2513,27 hg n
Um=	4969				
M. =	3769, 91± 4	9			
=	3770±49	hg			
1.2)	3800 2790	n=10			
	7770 3820	n	n = 3788 h	2	
	3800 Hed 3810 Canyon:	ist ownt ->	cm = vn = s = 16,36	5,17hg hg	
	3770 3780 So 3790	arto Upo	$cm = 3798h$ $cm = \frac{8}{\sqrt{n}}$ $S = 16,36$		
m	3793,0±				
5=	[[m, -				
	N-z				

Value:
$$G \stackrel{V}{V} \left(\begin{array}{c} AR_1 & AR_2 & DR_3 \\ R_1 & R_2 \end{array} \right)$$
 $\stackrel{\triangle R_1}{R_2} \cdot h E_1$
 $\stackrel{E}{R_1} \cdot h E_2 \cdot E_3 \cdot E_4$
 $\stackrel{E}{R_2} = E_4 = E_4$
 $\stackrel{E}{R_2} = E_4 = E_3$
 $\stackrel{E}{R_1} = \frac{M_p}{4} = \frac{PLw}{4EW_p}$
 $\stackrel{\triangle Q_1}{Q_2} = \frac{GV_0}{4} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_2}{Q_3} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_3}{Q_3} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{PLw}{4EW_p} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{V_0}{V_0} \times \frac{V_0}{V_0} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{V_0}{V_0} \times \frac{V_0}{V_0} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{V_0}{V_0} \times \frac{V_0}{V_0} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{V_0}{V_0} \times \frac{V_0}{V_0} = 25 \text{ mV}$
 $\stackrel{\triangle Q_4}{Q_4} = \frac{V_0}{V_0} \times \frac{V_0}{V_0} \times$

FRF	ω	F	6	6
(2)	٥	٥	1	0
2	42,6	6,78	0,557	-56°
3	£16,8	130	0,035	-88*
\x'(t) =	x(f) •	FRF		
x¹ w	f	A	9	
(3) 0	0	3	0	
E) 42		3,9	-56	
3 816	8 130	0,07	- 88	
		A(x).	A(Fref)	9/x)+ 8(FR)
Frequence	si Nyqui	st	Freguen	so di
$f_N = \frac{f_c}{2} =$	200 Hz	_ 100	Ha	
se $f_x > f$	n usan	à alia	nug	
				reute sani

