Physical and Thermal Processes in Oil Refinery

INTRODUCTION TO PETROCHEMICAL INDUSTRIES

Processes in Oil Refinery

PHYSICAL PROCESSES	CHEMICAL PROCESSES	
	THERMAL	CATALYTIC
Desalting and Dehydration	Visbreaking	Hydrotreating
Distillation	Delayed Coking	Catalytic Reforming
Propane De-asphalting	Fluid Coking	Catalytic Cracking
Solvent Extraction and De- waxing		Hydrocracking
Blending		Catalytic De-waxing
		Alkylation
		Polymerization
		Isomerization

Physical processes

DESALTING AND DEHYDRATION

- Removal of water, inorganic salts, suspended solids and water soluble trace metal from crude oil
- Desalting and dehydration reduces
 - Corrosion of equipment
 - Plugging and fouling of equipment
 - Poisoning catalysts in processing units
- Types: Chemical and Electrical/Electrostatic De-salting

Desalting and Dehydration

- Chemical Desalting
 - Hot water and surfactants are added to the crude oil
 - Crude is heated to dissolve impurities and cause coalescence Electrodes

- Electrical/Electrostatic Desalting
 - High voltage is introduced to electrodes in a desalter filled with water-crude emulsion.
 - Electrostatic coalscence of the emulsified droplet occurs.
 - Separated water globules falls to the bottom of the tank.

Cross-sectional view of Electrostatic crude oil desalter

Solvent De-asphalting

- Reduces coke-forming tendency of heavier distillates
- Done by solvent extraction
- Liquid propane, butane and pentane are used.
- Propane selectivly dissolves alkanes leaving the asphaltenic materials (aromatic compounds) at 310-330 K and 35-40 bar.
- Propane is evaporated, condensed ad recycled.

Thermal Processes

VISBREAKING

- Mild form of thermal cracking that lowers viscosity of heavy crudeoil residues
- Residuum is heated (425°C-510°C) at atmospheric pressure in a heater
- Over-cracking is checked with cool gas oil
- Thermally cracked residue(tar) is vacuum flashed in a stripper

Coking

- Severe thermal cracking which changes heavy residuals into lighter products
- Produces straight-run gasoline(Coker naphtha) and middle distillate fractions
- Middle distillates serve as catalytic cracking feedstock
- Reduces hydrogen which is responsible for producing a form of carbon called coke
- Types: Delayed coking, fluid coking

Delayed Coking

- Heat is applied to residuum
- Heated residuum is transferred to coke drums
- Drums hold feedstock while cracking occurs
- Coke is deposited as solid

Fluid Coking/Flexicoking

- Feedstock is charged to a heated reactor
- Thermal cracking forming gas, liquids and more coke
- Coke is transferred as a fluidized solid to a heater
- Part of coke is burned to provide heat for cracking

PETROLEUM REFINERY FLOW CHART

