

N-Channel Enhancement Mode Low Q_g and R_g High dv/dt Nanosecond Switching

Symbol	Test Conditions	Maximum Ra	Maximum Ratings		
V _{DSS}	T _J = 25°C to 150°C	100	V		
\mathbf{V}_{DGR}	T_{J} = 25°C to 150°C; R_{GS} = 1 $M\Omega$	100	V		
V _{GS}	Continuous	±20	V		
V_{GSM}	Transient	±30	V		
I _{D25}	$T_c = 25^{\circ}C$	30.0	Α		
I_{DM}	T_c = 25°C, pulse width limited by T_{JM}	240	Α		
I _{AR}	$T_c = 25^{\circ}C$	TBD	Α		
E _{AR}	T _c = 25°C	TBD	mJ		
dv/dt	$\begin{split} I_S &\leq I_{DM}, \ di/dt \leq \ \ 100 A/\mu s, \ V_{DD} \leq V_{DSS}, \\ T_j &\leq 150^{\circ}C, \ R_G = 0.2\Omega \end{split}$	5.5	V/ns		
	I _S = 0	>200	V/ns		
P _{DC}		550	W		
P _{DHS}	T _c = 25°C Derate 4.4W/°C above 25°C	270	W		
P _{DAMB}	T _c = 25°C	3.5	W		
R _{thJC}		0.25	C/W		
\mathbf{R}_{thJHS}		0.53	C/W		

Symbol	Test Conditions	Characteristic Values		
		T _J = 25°C unless otherwise specified		
		i I		

		min.	typ.	max.	
V _{DSS}	V_{GS} = 0 V, I_D = 3 ma			100	V
$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μa	2	2.5	4	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$			±100	nA
I _{DSS}	$V_{DS} = 0.8 V_{DSS} T_J = 25^{\circ}C$ $V_{GS} = 0$ $T_J = 125^{\circ}C$			25 250	μ Α μ Α
R _{DS(on)}	V_{GS} = 15 V, I_D = 0.5 I_{D25} Pulse test, t \leq 300 μ S, duty cycle d \leq 2%	6		0.06	Ω
g fs	V_{DS} = 15 V, I_D = 0.5 I_{D25} , pulse test		9.7		S
T _J		-55		+175	°C
T _{JM}			175		°C
T _{stg}		-55		+175	°C
T _L	1.6mm(0.063 in) from case for 10 s		300		°C
Weight			2		g

 V_{DSS} = 100 V I_{D25} = 30.0 A $R_{DS(on)}$ ≤ 0.06 Ω

 $P_{DC} = 550 W$

Features

- Isolated Substrate
- high isolation voltage (>2500V)
- excellent thermal transfer
- Increased temperature and power cycling capability
- IXYS advanced low Q_g process
- Low gate charge and capacitances
- easier to drive
- faster switching
- Low R_{DS(on)}
- Very low insertion inductance (<2nH)
- No beryllium oxide (BeO) or other hazardous materials

Advantages

- Optimized for RF and high speed switching
- Easy to mount—no insulators needed
- High power density

DE275-101N30A RF Power MOSFET

Symbol

Test Conditions

Characteristic Values

(T_J = 25°C unless otherwise specified)

		min.	typ.	max.	
\mathbf{R}_{G}				5	Ω
C _{iss}			2500		pF
Coss	V_{GS} = 0 V, V_{DS} = 0.8 $V_{DSS(max)}$, f = 1 MHz		700		pF
C _{rss}			145		pF
C _{stray}	Back Metal to any Pin		16		pF
T _{d(on)}			5		ns
\mathbf{T}_{on}	V_{GS} = 15 V, V_{DS} = 0.8 V_{DSS} I_D = 0.5 I_{DM}		5		ns
$\mathbf{T}_{d(off)}$	$R_G = 0.2 \Omega$ (External)		8		ns
\mathbf{T}_{off}			8		ns
$\mathbf{Q}_{g(on)}$			94		nC
\mathbf{Q}_{gs}	V_{GS} = 10 V, V_{DS} = 0.5 V_{DSS} I_D = 0.5 I_{D25}		11		nC
\mathbf{Q}_{gd}			42		nC

Source-Drain Diode

Characteristic Values

(T_J = 25°C unless otherwise specified)

Symbol	Test Conditions	min.	typ.	max.	
Is	V _{GS} = 0 V			30.0	Α
I _{SM}	Repetitive; pulse width limited by $T_{\mbox{\tiny JM}}$			240	Α
V _{SD}	I_F = I_S , V_{GS} = 0 V, Pulse test, t ≤ 300 μ s, duty cycle ≤ 2%			2.5	V
T _{rr}			600		ns

CAUTION: Operation at or above the Maximum Ratings values may impact device reliability or cause permanent damage to the device.

Information in this document is believed to be accurate and reliable. IXYSRF reserves the right to make changes to information published in this document at any time and without notice.

For detailed device mounting and installation instructions, see the "Device Installation & Mounting Instructions" technical note on the IX-YSRF web site at;

http://www.ixysrf.com/pdf/switch_mode/appnotes/7de_series_mosfet_installation_instructions.pdf

IXYS RF reserves the right to change limits, test conditions and dimensions.

IXYS RF MOSFETS are covered by one or more of the following U.S. patents:

4,835,592	4,860,072	4,881,106	4,891,686	4,931,844	5,017,508
5,034,796	5,049,961	5,063,307	5,187,117	5,237,481	5,486,715

5,381,025 5,640,045

Fig. 1

Fig. 3 Gate Charge vs. Gate-to-Source Voltage $V_{DS} = 50V$ $I_D = 15A$

Gate Charge (nC)

V_{DS} vs. Capacitance

Fig. 5

10000

10 | 0

10

20

30

40

V_{DS} Voltage (V)

50

60

70

80

Fig. 2

Typical Output Characteristics PW = 10µS

Fig. 4 Extended Typical Output Characteristics

Fig. 6 Package Drawing

101N30A DE-SERIES SPICE Model

The DE-SERIES SPICE Model is illustrated in Figure 7. The model is an expansion of the SPICE level 3 MOSFET model. It includes the stray inductive terms L_G , L_S and L_D . Rd is the $R_{DS(ON)}$ of the device, Rds is the resistive leakage term. The output capacitance, C_{OSS} , and reverse transfer capacitance, C_{RSS} are modeled with reversed biased diodes. This provides a varactor type response necessary for a high power device model. The turn on delay and the turn off delay are adjusted via Ron and Roff.

Figure 7 DE-SERIES SPICE Model

This SPICE model may be downloaded as a text file from the IXYSRF web site at

http://www.ixysrf.com/products/switch_mode.html

http://www.ixysrf.com/spice/de275-101n30a.html

```
*SYM=POWMOSN
```

.SUBCKT 101N09A 10 20 30

* TERMINALS: D G S

* 100 Volt 30 Amp .05 ohm N-Channel Power MOSFET 10-30-2001

M1 12 3 3 DMOS L=1U W=1U

RON 561.5

DON 62 D1

ROF 57.2

DOF 27 D1

D1CRS 2 8 D2

D2CRS 1 8 D2

000 00 050

CGS 23 2.5N

RD 41.05

DCOS 3 1 D3

RDS 1 3 5.0MEG

LS 330.1N

LD 104 1N

LG 20 5 1N

.MODEL DMOS NMOS (LEVEL=3 VTO=3.0 KP=9.0)

.MODEL D1 D (IS=.5F CJO=1P BV=100 M=.5 VJ=.6 TT=1N)

.MODEL D2 D (IS=.5F CJO=1100P BV=100 M=.5 VJ=.6 TT=1N RS=10M)

.MODEL D3 D (IS=.5F CJO=300P BV=100 M=.3 VJ=.4 TT=400N RS=10M)

.ENDS

Doc #9200-0242 Rev 1 © 2009 IXYS RF

An IXYS Company

2401 Research Blvd., Suite 108 Fort Collins, CO USA 80526 970-493-1901 Fax: 970-493-1903 Email: sales@ixyscolorado.com Web: http://www.ixyscolorado.com