

QUÍMICA NIVEL MEDIO PRUEBA 1

Lunes 18 de noviembre de 2013 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
٢	·	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100
က		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	66
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	86
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97
riódic				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96
Tabla periódica				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95
La				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94
		_1		25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93
	atómico	ento ca relativa		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92
	Número atómico	E lemento Masa atómica relativa		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91
	Ł	<u> </u>		22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	06
				21 Sc 44,96	39 Y 88,91	<i>57</i> † La 138,91	89 ‡ Ac (227)	÷-	**
2		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. ¿Cuál es el número total de átomos de oxígeno en 0,200 mol de glucosa, $C_6H_{12}O_6$?
 - A. 1,20
 - B. 6,00
 - C. $1,20 \times 10^{23}$
 - D. $7,22 \times 10^{23}$
- 2. ¿Cuál representa una fórmula empírica?
 - A. C_2H_4
 - B. B_2H_6
 - C. Al₂O₃
 - D. C_6H_6
- 3. ¿Cuáles son los coeficientes del H₂SO₄(aq) y el H₃PO₄(aq) cuando se ajusta la siguiente ecuación usando los números enteros más pequeños posible?

$$\underline{\hspace{1cm}} Ca_3(PO_4)_2(s) + \underline{\hspace{1cm}} H_2SO_4(aq) \rightarrow \underline{\hspace{1cm}} CaSO_4(s) + \underline{\hspace{1cm}} H_3PO_4(aq)$$

	Coeficiente del H ₂ SO ₄ (aq)	Coeficiente del H ₃ PO ₄ (aq)
A.	1	2
B.	2	3
C.	3	1
D.	3	2

4. ¿Cuál es la presión, en Pa, si 3 mol de un gas ocupan 500 cm³ a 25 °C?

Dados:
$$R = 8,31 \text{ J K}^{-1} \text{ mol}^{-1}$$

 $10^{-3} \text{ m}^3 = 10^3 \text{ cm}^3$

$$A. \qquad \frac{3 \times 8, 31 \times 298}{500}$$

B.
$$\frac{3 \times 8,31 \times 25}{0,0005}$$

$$C. \qquad \frac{3 \times 8,31 \times 25}{500}$$

D.
$$\frac{3 \times 8,31 \times 298}{0,0005}$$

5. Se disuelven 7,102 g de $Na_2SO_4(M = 142,04 \,\mathrm{g\,mol^{-1}})$ en agua para preparar 0,5000 dm³ de solución. ¿Cuál es la concentración del Na_2SO_4 en mol dm⁻³?

A.
$$2,500 \times 10^{-2}$$

B.
$$1,000 \times 10^{-1}$$

D.
$$1,000 \times 10^2$$

6. ¿Cuál es el número de neutrones y electrones en el ion yodo, ¹²⁵I⁺?

	Neutrones	Electrones
A.	53	53
B.	72	52
C.	72	53
D.	125	52

7. En el espectro de emisión del átomo de hidrógeno, ¿qué transición electrónica producirá una línea en la región ultravioleta del espectro electromagnético?

A.
$$n=1 \rightarrow n=3$$

B.
$$n = 3 \rightarrow n = 1$$

C.
$$n = 3 \rightarrow n = 2$$

D.
$$n = 10 \rightarrow n = 2$$

- **8.** ¿Qué enunciados son correctos para el magnesio?
 - I. La distribución electrónica del átomo es 2,8,2.
 - II. El átomo tiene dos electrones en su nivel energético más exterior (de valencia).
 - III. Su óxido es básico.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 9. ¿Qué serie presenta orden **creciente** respecto al radio?

A.
$$F < Cl^- < Cl$$

B.
$$Rb < K < Na$$

C.
$$Al^{3+} < Mg^{2+} < Na^{+}$$

D.
$$I^{-} < Br^{-} < Cl^{-}$$

- 10. ¿Cuál es la fórmula del nitruro de calcio?
 - A. Ca_3N_2
 - B. Ca_2N_3
 - C. $Ca(NO_2)_2$
 - D. $Ca(NO_3)_2$
- 11. ¿Qué compuestos tienen estructura de red iónica en estado sólido?
 - I. Dióxido de silicio
 - II. Fluoruro de sodio
 - III. Nitrato de amonio
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

12. A continuación se da la estructura de Lewis (representación de electrones mediante puntos) de la aspirina.

¿Cuáles son los valores aproximados de los ángulos de enlace α , β y γ , en la molécula?

	α	β	γ
A.	90°	104,5°	104,5°
B.	90°	120°	120°
C.	109,5°	120°	120°
D.	109,5°	104,5°	120°

13. ¿Qué fuerzas intermoleculares existen entre las siguientes moléculas?

	H_2Se	CO	$\mathrm{H_2}$
A.	van der Waals y dipolo-dipolo	van der Waals y dipolo-dipolo	solo van der Waals
B.	van der Waals, dipolo-dipolo y enlace de hidrógeno	solo van der Waals	van der Waals y enlace de hidrógeno
C.	van der Waals, dipolo-dipolo y enlace de hidrógeno	van der Waals y dipolo-dipolo	solo van der Waals
D.	van der Waals y dipolo-dipolo	van der Waals y dipolo-dipolo	van der Waals y enlace de hidrógeno

8813-6128 Véase al dorso

- 14. ¿Qué compuesto tiene mayor punto de ebullición?
 - A. CH₃CH₃
 - B. CH₃OH
 - C. CH₃CH₂OH
 - D. CH₃CH₂CH₃
- **15.** ¿Qué procesos son exotérmicos?
 - I. $CH_3CH_2CH_3(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$
 - II. $Cl_2(g) \rightarrow 2Cl(g)$
 - III. $CH_3CH_2COOH(aq) + NaOH(aq) \rightarrow CH_3CH_2COONa(aq) + H_2O(l)$
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **16.** Considere las dos ecuaciones siguientes.

$$2\text{Ca}(s) + \text{O}_2(g) \rightarrow 2\text{CaO}(s)$$
 $\Delta H^{\ominus} = +x \text{ kJ}$

$$Ca(s) + 0.5O_2(g) + CO_2(g) \rightarrow CaCO_3(s)$$
 $\Delta H^{\ominus} = +y \text{ kJ}$

¿Cuál es el ΔH^{\ominus} , en kJ, para la siguiente reacción?

$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$$

- A. y 0.5x
- B. y-x
- C. 0.5 y
- D. x-y

- 17. ¿Qué factores pueden aumentar la velocidad de una reacción química?
 - I. Aumento de presión en las reacciones gaseosas
 - II. Aumento de temperatura en las reacciones gaseosas
 - III. Aumento del tamaño de partícula de un sólido en una reacción
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 18. El diagrama de abajo muestra las variaciones de energía para una reacción con y sin catalizador. ¿Qué símbolos representan la energía de activación, $E_{\rm a}$, y la variación de entalpía, ΔH , para la reacción con catalizador?

	$E_{\rm a}$ (con catalizador)	ΔH
A.	х	z
B.	y	z
C.	z	x
D.	y-x	Z

8813-6128 Véase al dorso

19. ¿Cuál es la expresión de la constante de equilibrio, K_c , para la siguiente reacción?

$$2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$$

A.
$$K_c = \frac{[H_2S]^2}{[H_2]^2[S_2]}$$

B.
$$K_{c} = \frac{[H_{2}][S_{2}]}{[H_{2}S]}$$

C.
$$K_c = \frac{2[H_2] + [S_2]}{2[H_2S]}$$

D.
$$K_c = \frac{[H_2]^2[S_2]}{[H_2S]^2}$$

20. ¿Qué sucede con la posición de equilibrio y el valor de K_c de la siguiente reacción cuando disminuye la temperatura?

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$
 $\Delta H^{\Theta} = +57.2 \text{ kJ}$

	Posición de equilibrio	Valor de K _c
A.	se desplaza hacia los reactivos	disminuye
B.	se desplaza hacia los reactivos	aumenta
C.	se desplaza hacia los productos	disminuye
D.	se desplaza hacia los productos	aumenta

$$HCO_3^-(aq) + H_2O(l) \rightleftharpoons OH^-(aq) + H_2CO_3(aq)$$

	Ácido de Brønsted–Lowry	Base de Brønsted–Lowry	Ácido conjugado	Base conjugada
A.	HCO ₃ ⁻ (aq)	H ₂ O(l)	$H_2CO_3(aq)$	OH ⁻ (aq)
B.	H ₂ CO ₃ (aq)	OH ⁻ (aq)	HCO ₃ ⁻ (aq)	H ₂ O(l)
C.	H ₂ O(l)	HCO ₃ ⁻ (aq)	H ₂ CO ₃ (aq)	OH ⁻ (aq)
D.	H ₂ O (l)	HCO ₃ ⁻ (aq)	OH ⁻ (aq)	H ₂ CO ₃ (aq)

22. ¿Qué grupo de tres compuestos contiene solo ácidos y bases débiles?

A.	Ba(OH) ₂	CH ₃ NH ₂	CH ₃ COOH
B.	CH ₃ CH ₂ CH ₂ COOH	CH ₃ CH ₂ NH ₂	НСООН
C.	NH ₃	HNO ₃	CH ₃ CH ₂ COOH
D.	NH ₃	NaOH	H ₂ CO ₃

23. ¿Cuál es el nombre del $Co_3(PO_4)_2$?

- A. Fosfito de cobalto(II)
- B. Fosfato de cobalto(II)
- C. Fosfito de cobalto(III)
- D. Fosfato de cobalto(III)

$$Sn(s) + 4HNO_3(aq) \rightarrow SnO_2(s) + 4NO_2(g) + 2H_2O(g)$$

-12-

¿Qué enunciado es correcto?

- A. El HNO₃ es el agente oxidante porque se oxida.
- B. El HNO₃ es el agente reductor porque el número de oxidación del nitrógeno cambia de +5 a +4.
- C. El Sn es el agente oxidante porque se reduce.
- D. El Sn es el agente reductor porque el número de oxidación del estaño cambia de 0 a +4.
- **25.** ¿Qué enunciados son correctos para la electrólisis de bromuro de plomo(II), PbBr₂(l), fundido?
 - I. El Pb²⁺ se reduce en el electrodo negativo (cátodo).
 - II. El Br se oxida en el electrodo positivo (ánodo).
 - III. Se observan unas burbujas de gas marrón en el electrodo negativo (cátodo).
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **26.** ¿Cuál es el nombre de (CH₃)₃CCOCH₃, aplicando las reglas de la IUPAC?
 - A. 2,2-dimetil-3-butanona
 - B. 3,3-dimetil-2-butanona
 - C. 2,2-dimetilbutanal
 - D. 3,3-dimetilbutanal

- 27. ¿Cuál es la función de la luz ultravioleta que se usa en la reacción entre etano y bromo?
 - A. Provoca que los radicales libres bromo formen moléculas de bromo.
 - B. Provoca que los iones bromuro formen moléculas de bromo.
 - C. Provoca que las moléculas de bromo formen iones bromuro.
 - D. Provoca que las moléculas de bromo formen radicales libres bromo.
- **28.** ¿Cuál es la fórmula estructural condensada del compuesto orgánico que se forma cuando se añade ácido sulfúrico concentrado a 2,3-dimetil-2-buteno, (CH₃)₂C=C(CH₃)₂, y a continuación agua?
 - A. (CH₃)₂CHC(OSO₃H)(CH₃)₂
 - B. (CH₃)₂CHC(OH)(CH₃)₂
 - C. $(CH_3)_2C(OH)C(OH)(CH_3)_2$
 - D. $(CH_3)_2(CH_2)_2(CH_3)_2$
- **29.** ¿Qué producto orgánico se forma en la siguiente reacción?

- A. Ácido etanoico
- B. Propanal
- C. Propanona
- D. Ácido propanoico

30. Una estudiante midió la masa y el volumen de una pieza de plata y registró los siguientes valores.

Masa del recipiente de pesada vacío	1,0800 g
Masa del recipiente de pesada con la pieza de plata	11,5700 g
Volumen de plata	1,00 cm ³

¿Qué valor, en g cm⁻³, debe informar la estudiante en su libreta de laboratorio para la densidad de la plata?

- A. 10,49
- B. 10,4900
- C. 10,5
- D. 10,500