Einführung in die Geometrie und Topologie - Definitionen und Sätze -

Vorlesung im Wintersemester 2011/2012

Sarah Lutteropp, Simon Bischof 25. November 2011

Topologischer Raum

Ein topologischer Raum X ist gegeben durch eine Menge X und ein System \mathcal{O} von Teilmengen von X, den so genannten offenen Mengen von X, welches unter beliebigen Vereinigungen und endlichen Durchschnitten abgeschlossen ist und X und die leere Menge \emptyset als Elemente enthält.

X Menge, $\mathcal{O} \subset \mathcal{P}(X)$:

- (1) $O_1, O_2 \in \mathcal{O} \Rightarrow O_1 \cap O_2 \in \mathcal{O}$
- (2) $O_{\alpha} \in \mathcal{O}, \alpha \in A, A \text{ Indexmenge} \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \in \mathcal{O}$
- (3) $X, \emptyset \in \mathcal{O}$

Metrischer Raum

Ein <u>metrischer Raum</u> X ist eine Menge X mit einer Abbildung $d: X \times X \to \mathbb{R}$, der <u>"Metrik"</u> auf X, die folgende Eigenschaften erfüllt: $\forall x, y, z \in X$

- (1) d(x,y) = d(y,x) "Symmetrie"
- (2) $d(x,y) = 0 \Leftrightarrow x = y, d(x,y) \ge 0$ "Definitheit"
- (3) $d(x,z) \leq d(x,y) + d(y,z)$ "Dreiecksungleichung"

Stetigkeit

Eine Abbildung $F: X \to Y$ zwischen topologischen Räumen X und Y heißt stetig, falls die F-Urbilder offener Mengen in Y offene Teilmengen von X sind.

Homotopie

Eine Homotopie $H: f \simeq g$ zwischen zwei (stetigen) Abbildungen

$$f, g \colon X \to Y$$

ist eine (stetige) Abbildung

$$H \colon X \times I^1 \to Y, (x,t) \mapsto H(x,t)$$

mit
$$H(x,0) = f(x)$$
 und $H(x,1) = g(x) \forall x \in X$.

 $^{^{1}}I = [0,1] \subset \mathbb{R}$

Homotope Abbildungen

Zwei (stetige) Abbildungen heißen homotop, in Zeichen: $f \simeq g$, falls eine Homotopie mit Anfang f und Ende g existiert.

Nullhomotopie

Eine stetige Abbildung $f: X \to Y$ heißt <u>nullhomotop</u>, falls sie homotop zu einer konstanten Abbildung ist.

Teilraumtopologie

Es sei (X, \mathcal{O}) topologischer Raum und $A \subset X$. Die auf A durch

$$\mathcal{O}\Big|_{A} := \{ U \cap A \mid U \in \mathcal{O} \}$$

induzierte Topologie heißt <u>Teilraumtopologie</u> und der dadurch gegebene topologische Raum $(A, \mathcal{O}\big|_A)$ heißt <u>Teilraum</u> von (X, \mathcal{O}) .

Abgeschlossenheit

 $A \subset X, X$ topologischer Raum, heißt abgeschlossen : $\Leftrightarrow X \setminus A$ ist offen.

Umgebung

Ist X topologischer Raum und $x \in X$, so heißt jede <u>offene</u> Teilmenge $O \subset X$ mit $x \in O$ eine <u>Umgebung</u> von x.

Basis

Ist (X, \mathcal{O}) topologischer Raum mit $\mathcal{B} \subset \mathcal{O}$, so heißt \mathcal{B} Basis der Topologie $:\Leftrightarrow$ Jede (nichtleere) offene Menge ist Vereinigung von Mengen aus \mathcal{B} .

Feiner und gröber

Sind \mathcal{O}_1 und \mathcal{O}_2 Topologien auf X und $\mathcal{O}_1 \subset \mathcal{O}_2$, so heißt \mathcal{O}_2 feiner als \mathcal{O}_1 und \mathcal{O}_1 gröber als \mathcal{O}_2 .

ϵ -Ball, Sphäre

Für einen metrischen Raum (X, d) und $\epsilon > 0$ sei für $p \in X$

- $B_{\epsilon}(p) := \{x \in C \mid d(p, x) < \epsilon\}$ der offene ϵ -Ball um p
- $D_{\epsilon}(p) := \{x \in C \mid d(p,x) \leq \epsilon\}$ der abgeschlossene ϵ -Ball um p
- $S_{\epsilon}(p) := \{x \in C \mid d(p,x) = \epsilon\}$ die $\underline{\epsilon}$ -Sphäre um p (oder Sphäre vom Radius ϵ)

Metrischer Unterraum

Ist (X,d) metrischer Raum und $A \subset X$, so heißt der metrische Raum $(A,d|_{A\times A})$ (metrischer) Unterraum von X.

Beschränktheit, Durchmesser

 $A \subset (X, d)$ heißt beschränkt

 $\Rightarrow \exists 0 < \rho \in \mathbb{R} : d(x,y) < \rho \ \forall x,y \in A$

Das Infimum, diam A, dieser ρ heißt dann <u>Durchmesser von A</u>.

Abstand

(X,d) sei metrischer Raum und $A \subset X, p \in X$.

$$d(p, A) := dist(p, A) := \inf\{d(p, a) \mid a \in A\}$$

heißt Abstand von p und A.

Innerer Punkt, äußerer Punkt, Randpunkt

Für $p \in A \subset X$, X topologischer Raum, heißt p

- (1) <u>innerer Punkt</u> von A, falls es eine in A enthaltene Umgebung U um p gibt.
- (2) <u>äußerer Punkt</u>, falls eine zu p disjunkte Umgebung V in X existiert.
- (3) Randpunkt von A, falls jede Umgebung von p nichtleeren Durchschnitt mit A und $X \setminus A$ hat.

Inneres

Für $A \subset X$ heißt die größte in X offene und in A enthaltene Teilmenge \mathring{A} Inneres von A.

Abschluss

Der Abschluss \bar{A} von A ist $X \setminus ((\mathring{X} \setminus A))$.

Rand

Der Rand ∂A von A ist $\partial A := \bar{A} \setminus \mathring{A}$, d.h. Rand $A = \{$ Randpunkte von $A \}$.

Stetigkeit

```
f \colon X \to Y ist stetig 
 :\Leftrightarrow \forall offenen Mengen in Y ist das Urbild unter f offene Menge in X.
```

Stetigkeit

```
f \colon X \to Y ist stetig in x \in X
:\Leftrightarrow \forall Umgebungen V von f(x) = \exists Umgebung U von x mit f(U) \subset V.
```

Isometrische Einbettung, Isometrie

Sind X,Y metrische Räume, so heißt eine Abbildung $f\colon X\to Y$ isometrische Einbettung

```
\Leftrightarrow \forall x, x' \in X \text{ gilt } d_Y(f(x), f(x')) = d_X(x, x').
```

Eine isometrische Einbettung ist immer injektiv.

Ist f zusätzlich bijektiv, so heißt f <u>Isometrie</u>.

Homöomorphismus

Eine invertierbare Abbildung $f\colon X\to Y$ topologischer Räume heißt Homö
omorphismus, falls f und f^{-1} stetig sind.

homöomorph

Zwei topologische Räume X und Y heißen <u>homöomorph</u> oder vom gleichen Homöomorphietyp, in Zeichen $X \cong Y$, falls es einen Homöomorphismus $f: X \to Y$ gibt.

Einbettung

 $f \colon X \to Y$ stetig heißt Einbettung : $\Leftrightarrow X \xrightarrow{f} f(X) \subset Y$ Homöomorphismus.

Äquivalenz von Einbettungen

Zwei Einbettungen $f,g\colon X\to Y$ heißen <u>äquivalent</u> : $\Leftrightarrow \exists$ Homöomorphismen $h_X\colon X\to X, \overline{h_Y\colon Y\to Y}$ mit $g\circ h_X=h_Y\circ f,$

d.h. dass das Diagramm

kommutiert.

Knoten

Eine Einbettung $S^1 \to \mathbb{R}^3$ heißt Knoten.

zusammenhängend

Ein topologischer Raum heißt <u>zusammenhängend</u>: \Leftrightarrow Die einzigen in X gleichzeitig offenen und abgeschlossenen Teilmengen sind \emptyset und X. Ansonsten heißt X <u>un-</u> oder nicht zusammenhängend.

Überdeckung

Eine Familie $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}^2$ von Teilmengen von X heißt Überdeckung von X: $\Leftrightarrow X = \bigcup_{\alpha \in A} U_{\alpha}$.

 \mathcal{U} heißt <u>offene</u> beziehungsweise <u>abgeschlossene</u> Überdeckung \Leftrightarrow alle U_{α} sind offen beziehungsweise abgeschlossen.

Für $X' \subset X$ heißt eine Familie $\mathcal{U} = \{U_{\alpha}\}$ wie oben Überdeckung von X': $\Leftrightarrow X' \subset \bigcup_{\alpha \in A} U_{\alpha}$.

Partition

Eine <u>Partition</u> oder <u>Zerlegung</u> einer Menge ist eine Überdeckung dieser Menge durch paarweise disjunkte Teilmengen.

 $^{^{2}}A$ Indexmenge

Zusammenhangskomponente

Eine Zusammenhangskomponente eines topologischen Raumes X ist eine maximale zusammenhängende Teilmenge von X.

Satz

Stetige Bilder zusammenhängender Mengen sind zusammenhängend. (D.h.: Ist $f: X \to Y$ stetig und X zusammenhängend, so auch $f(X) \subset Y$.)

Weg, Anfangspunkt, Endpunkt

ein Weg in einem topologischen Raum X ist eine stetige Abbildung $\gamma \colon [0,1] \to X$, und $\gamma(0)$ heißt Anfangs-, $\gamma(1)$ Endpunkt.

Wegzusammenhang

X heißt wegzusammenhängend : \Leftrightarrow Zu je zwei Punkten $x, x' \in X$ \exists Weg $\gamma \colon [0, 1] \to X$ mit $\gamma(0) = x, \gamma(1) = x'$.

Kompaktheit

Ein topologischer Raum X heißt kompakt, falls jede offene Überdeckung von X eine endliche Teilüberdeckung enthält.

T_1 -Raum

Ein topologischer Raum X heißt $\underline{T_1$ -Raum bzw. erfüllt das erste Trennungsaxiom : \Leftrightarrow Für je zwei verschiedene Punkte von X existiert für jeden dieser Punkte eine Umgebung in X, die den anderen nicht enthält. $\forall x \neq y \in X \exists U = U_X \colon y \notin U_X$

T_2 -Raum

X heißt <u>Hausdorff</u>- oder <u>T</u>₂-Raum bzw. <u>erfüllt das zweite Trennungsaxiom</u> : \Leftrightarrow Je zwei verschiedene Punkte in X besitzen disjunkte Umgebungen. $\forall x \neq y \in X \exists U_x \ni x, U_y \ni y$ mit $U_x \cap U_y = \emptyset$

Grenzwert

Ist $(x_n)_{n\in\mathbb{N}}$ eine Folge von Punkten in einem topologischen Raum X, so heißt $x\in X$ Grenzwert der Folge (x_n) genau dann, wenn zu jeder Umgebung U von x ein $N\in\mathbb{N}$ existiert mit $x_n\in U \forall n\geq N$.

Umgebungsbasis

Ist X topologischer Raum und $x \in X$, so ist eine <u>Umgebungsbasis</u> oder <u>Basis von X in x eine Familie von Umgebungen von x, sodass jede <u>Umgebung</u> von x eine <u>Umgebung</u> aus der Familie enthält.</u>

Abzählbarkeitsaxiome, Separabilität

X <u>erfüllt das erste Abzählbarkeitsaxiom</u> : \Leftrightarrow jeder Punkt $x \in X$ besitzt eine abzählbare Basis.

X erfüllt das zweite Abzählbarkeitsaxiom : $\Leftrightarrow X$ selbst besitzt eine abzählbare Basis.

X heißt <u>separabel</u> : $\Leftrightarrow X$ enthält eine abzählbare und dichte $(\bar{A} = X)$ Menge A.

Lokale Kompaktheit

X heißt <u>lokal</u> kompakt

: \Leftrightarrow Jeder Punkt $x \in X$ besitzt eine Umgebung U, sodass \overline{U} kompakt ist.

Lokale Endlichkeit

Eine Familie Γ von Teilmengen eines topologischen Raumes X heißt lokal endlich : $\Leftrightarrow \forall x \in X \exists U = U(x) \colon A \cap U = \emptyset \forall A \in \Gamma$ bis auf endlich viele A.

Verfeinerung

 Γ, Δ Überdeckungen von X. Δ heißt <u>Verfeinerung</u> von Γ : $\Leftrightarrow \forall A \in \Delta \exists B \in \Gamma \colon A \subset B$.

Parakompaktheit

X heißt <u>parakompakt</u> : \Leftrightarrow Jede offene Überdeckung besitzt eine lokal endliche offene Verfeinerung.

Mannigfaltigkeit, Karte

Ein topologischer Raum M heißt $\underline{n\text{-dimensionale}}$ (topologische) Mannigfaltigkeit, wenn gilt:

- 1. M ist ein Hausdorff-Raum mit abzählbarer Basis der Topologie
- 2. M ist lokal homö
omorph zu \mathbb{R}^n , d.h. zu jedem $p \in M$ existieren eine Umgebung $U = U(p) \subset_{offen} M$ und ein Homö
omorphismus $\varphi \colon U \to V, V \subset_{offen} \mathbb{R}^n$. Jedes solche Paar (U, φ) heißt eine Karte oder ein Lokales Koordinatensystem um p.

Atlas

Ein Atlas für eine topologische n-Mannigfaltigkeit M ist eine Menge $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}^3 \text{ von Karten } \varphi_{\alpha} \colon U_{\alpha} \to V_{\alpha} = \varphi(U_{\alpha}) \subset \mathbb{R}^n, \text{ so dass } M = \bigcup_{\alpha \in \Lambda} U_{\alpha}$

C^k -Atlas, Kartenwechsel

Ein Atlas heißt <u>differenzierbar</u> <u>von der Klasse C^k </u> (oder: C^k -Atlas von M), wenn für alle $\alpha, \beta \in \Lambda$ mit $U_{\alpha} \cap U_{\beta} \neq \emptyset$ der <u>Kartenwechsel</u> $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \colon \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ eine C^k -Abbildung, also k-mal stetig differenzierbar ist. $(k = 0, 1, 2, ..., \infty, \omega)$

Verträglichkeit, differenzierbare Struktur

Ist M topologische Mannigfaltigkeit und $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}$ ein C^k -Atlas von M, so heißt eine Karte (φ, U) von M mit \mathcal{A} verträglich, falls $\mathcal{A}' := \mathcal{A} \cup \{(\varphi, U)\}$ ebenfalls C^k -Atlas ist. Ein C^k -Atlas heißt maximal (oder differenzierbare Struktur (der Klasse C^k)), falls \mathcal{A} alle mit \mathcal{A} verträglichen Karten enthält.

C^k -Mannigfaltigkeit, glatt

Eine differenzierbare Mannigfaltigkeit der Klasse C^k (kurz: C^k -Mannigfaltigkeit) ist ein Paar (M, \mathcal{A}) bestehend aus einer topologischen Mannigfaltigkeit M und einer C^k -Struktur auf M. Eine C^{∞} -Mannigfaltigkeit heißt auch glatt.

 $^{^3\}Lambda$ Indexmenge

Produkt-Topologie

Sind (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) topologische Räume, so bildet

$$\mathcal{B}_{X\times Y} := \{U\times V\mid U\in\mathcal{O}_X, V\in\mathcal{O}_Y\}$$

die Basis einer Topologie für die Menge $X \times Y$, und diese heißt Produkt-Topologie auf $X \times Y$.

Versehen mit der Produkt-Topologie ist $X \times Y$ sebst ein topologischer Raum und für gegebene X, Y denkt man sich $X \times Y$ stillschweigend mit der Produkt-Topologie versehen.

C^l -Abbildung

Es seien (M, \mathcal{A}) eine n-dimensionale C^k -Mannigfaltigkeit, (M', \mathcal{A}') eine n'-dimensionale $C^{k'}$ -Mannigfaltigkeit und $l \leq \min(k, k')$. Eine stetige Abbildung $f \colon M \to M'$ heißt <u>differenzierbar</u> (<u>von der Klasse C^l </u>) oder kurz: C^l -Abbildung, falls gilt:

$$\forall (\varphi, U) \in \mathcal{A} \text{ und } (\varphi', U') \in \mathcal{A}' \text{ mit } f(U) \cap U' \neq \emptyset \text{ ist}$$

$$\varphi' \circ f \circ \varphi^{-1} \colon \varphi(U \cap f^{-1}(U')) \to \varphi'(f(U) \cap U')$$

eine C^l -Abbildung im üblichen Sinn.

Untermannigfaltigkeit

Eine Menge $M \subset \mathbb{R}^{n+l}$, die eine der Bedingungen (a), (b) oder (c) erfüllt, heißt dann n-dimensionale (glatte/differenzierbare) Untermannigfaltigkeit von \mathbb{R}^{n+l} .

Satz: Äquivalente Beschreibung einer glatten Untermannigfaltigkeit von \mathbb{R}^{n+l}

Für Teilmengen $M \subset \mathbb{R}^{n+l}$ sind äquivalent:

(a) $\forall x_0 \in M \quad \exists \text{ Umgebung } U = U(x_0) \subset_{offen} \mathbb{R}^{n+l} \text{ und}$ $f \in C^{\infty}(U, \mathbb{R}^l) := \{g \colon U \to \mathbb{R}^l \mid g \text{ ist } C^{\infty}\} \text{ mit Rang } Df(x) = l \quad \forall x \in U$ $^4 \text{ dergestalt, dass } U \cap M = f^{-1}(0) = \{x \in U \mid f(x) = 0\}$

- (b) $\forall x_0 \in M \quad \exists U = U(x) \subset_{offen} \mathbb{R}^{n+l} \text{ und } \varphi \colon U \to \mathbb{R}^{n+l} \text{ mit folgenden}$ Eigenschaften: $\varphi(U) \subset \mathbb{R}^{n+l}$ ist offen, φ ist C^{∞} -Diffeomorphismus $U \to \varphi(U)$ und $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^n \times \{0\}) = \{(y_1, \dots, y_{n+l}) \in \varphi(U) \mid y_{n+1} = \dots = y_{n+l} = 0\}$
- (c) $\forall x_0 \in M \exists U = U(x_0) \subset_{offen} \mathbb{R}^{n+l}, W \subset \mathbb{R}^n \text{ offen und } \psi \in C^{\infty}(W, U)$
 - ψ ist Homö
omorphismus $W \to U \cap M$
 - $D\psi(w)$ ist injektiv für alle $w \in W$

(Jedes solche ψ heißt lokale Parametrisierung von M).

 $^{^4}Df$ ist die Jacobi-Matrix von f

Satz: C^{∞} -Untermannigfaltigkeiten von \mathbb{R}^{n+l} sind C^{∞} -Mannigfaltigkeiten

Es sei $M \subseteq \mathbb{R}^{n+l}$ n-dimensionale C^{∞} -Untermannigfaltigkeit von \mathbb{R}^{n+l} und $\{\psi_{\alpha} \colon W_{\alpha} \to U_{\alpha} \cap M \mid \alpha \in \Lambda\}$ eine Menge lokaler Parametrisierungen (wie in (c)) mit $M \subseteq \bigcup_{\alpha \in \Lambda} U_{\alpha}$. Dann ist $\mathcal{A} = \{(\psi_{\alpha}^{-1}, U_{\alpha} \cap M) \mid \alpha \in \Lambda\}$ ein C^{∞} -Atlas und M eine C^{∞} -Mannigfaltigkeit.

Hier endet der Stoff für den ersten Test.

Quotienten(raum)topologie

Eine Teilmenge $U \subset X/S$ heißt offen : $\Leftrightarrow \pi^{-1}(U)$ ist offen in X Alle im Sinne dieser Definition offenen Teilmengen von X/S definieren dann eine Topologie auf X/S und die Menge X/S zusammen mit dieser Topologie heißt Qotientenraum von X nach S.

Quotientenabbildung

Ist S eine Partition von X in nichtleere disjunkte Teilmengen und $f: X \to Y$ eine Abbildung, die auf jedem Element von S konstant ist, so existiert eine Abbildung $X/S \to Y$, die jedes Element A von S auf $f(a), a \in A$, abbildet. Diese heißt dann **Quotientenabbildung** von f nach S, in Zeichen f/S.

injektiver Quotient

injektiver Quotient von f.

<u>Jede</u> Abbildung $f: X \to Y$ definiert eine Partition S = S(f) von X, und zwar in die nichtleeren Urbilder der Elemente von Y unter f. Die induzierte Abbildung $f/_{S(f)}: X/_{S(f)} \to Y$ ist dann injektiv und heißt

Kontraktion

Die Quotientenmenge eines topologischen Raumes X bzgl. einer Partition S von X, welche aus einer Teilmenge A von X und allen Einpunktmengen aus $X \backslash A$ besteht,

$$S = A \cup \{\{x\} \mid x \in X \backslash A\}$$

heißt <u>Kontraktion</u> (<u>von X bzgl. $X \setminus A$ </u>), und für X/S schreibt man einfach X/A.

Verkleben

Sind A und B disjunkte Teilräume eines topologischen Raumes X und ist $f\colon A\to B$ ein Homöomorphismus, (TODO: Bild) so heißt der Übergang zum Quotientenraum, der durch die Partition von X in die Einpunktmengen von $X\setminus (A\cup B)$ und die Zweipunktmengen $\{x,f(x)\},x\in A$ gegeben ist, Verkleben (von X längs A und B via des Homöomorphismus f) und dieser Prozess einfach auch Verkleben von A und B.

Notation

$$X/_{[a \sim f(a)]}$$
 (mit $a \in A$)

n-dimensionaler reell-projektiver Raum

Der n-dimensionale reell-projektive Raum 5 ist

$$\mathbb{RP}^n := S^n/_{[x \sim -x]}$$

und der n-dimensionale komplex-projektive Raum ist

$$\mathbb{CP}^n := \underbrace{S^{2n+1}}_{\subset \mathbb{C}^{n+1}} / [v \sim \lambda v, \lambda \in S^1]$$

 $^{^5\}overline{\text{Anschaulich (projektive Geometrie)}}:$ Die Menge aller Geraden durch den Ursprung im \mathbb{R}^{n+1}