TOPOLOGÍA I. Examen final

- Grado en Matemáticas - Grupo B. Curso 2012/13

Nombre:

- 1. Consideramos (X, τ) , donde X = [0, 2] y $\tau = \{O \subset X : (0, 1) \subset O\} \cup \{\emptyset\}$. Si A = (0, 1), hallar \overline{A} . Probar que A es compacto pero \overline{A} no lo es.
- 2. Sea $A \subset \mathbb{R}^n$ una recta. Probar que $A \cong \mathbb{R}$. Si n > 2, probar que $\mathbb{R}^n A$ es conexo.
- 3. (a) Probar que cualesquiera dos de los espacios $A=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\},$ $B=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}-\{(1,0)\}$ y \mathbb{S}^1 no son homeomorfos.
 - (b) Probar que todo subconjunto compacto de un espacio Hausdorff es cerrado.
- 4. Sea un espacio topológico (X,τ) . En $(X \times \{0,1\}, \tau \times \tau_u)$ se define la relación de equivalencia (x,t)R(x',t') si x=x'. Probar que $\frac{X \times \{0,1\}}{R} \cong X$.

RAZONAR todas las respuestas