

11 Publication number: 0 379 252 B1

12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 20.12.95 Bulletin 95/51

(51) Int. Cl.6: H04N 7/087

(21) Application number: 90200092.6

(2) Date of filing: 15.01.90

- (54) Receiver for television and teletext signals, including a teletext decoder and an adaptive waiting timereduction circuit
- 30 Priority: 19.01.89 NL 8900121
- (43) Date of publication of application : 25.07.90 Bulletin 90/30
- (45) Publication of the grant of the patent : 20.12.95 Bulletin 95/51
- (84) Designated Contracting States : DE ES FR GB SE
- (56) References cited:
 EP-A- 0 190 837
 US-A- 4 679 083
 US-A- 4 701 794
 FUNKSCHAU, vol. 57, no. 6, March 1985, pages
 53-56, Munich, DE; R. AUER: "Die Warteschlange überlistet"

- (3) Proprietor: Philips Electronics N.V. Groenewoudseweg 1 NL-5621 BA Eindhoven (NL)
- (72) Inventor: Raaijmakers, Thomas Adrianus Maria c/o INT. OCTROOIBUREAU B.V. Prof. Holstlaan 6 NL-5656 AA Eindhoven (NL)
- (4) Representative: Steenbeek, Leonardus
 Johannes et al
 INTERNATIONAAL OCTROOIBUREAU B.V.,
 Prof. Holstlaan 6
 NL-5656 AA Eindhoven (NL)

EP 0 379 252 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

15

20

25

30

35

40

45

Description

1. BACKGROUND OF THE INVENTION.

1.1 Field of the invention.

The invention relates to a receiver of television and teletext signals, including a teletext decoder which provides the possibility of searching a plurality of teletext pages and storing them in a page memory. Such a receiver may be, for example a television receiver or a video recorder.

1.2 Description of the prior art.

A television receiver or video recorder including a teletext decoder is generally provided with a (remote) control system with which the user can switch on the teletext operating state and with which he can subsequently search pages by generating the desired page numbers with the aid of numbered keys. The instructions given by the user are applied to a control circuit which interprets these instructions and passes them on to a teletext decoder. Inter alia, the page with the page number stated can be searched by the decoder, stored in a page memory and displayed on a display screen. Since the teletext pages are cyclically transmitted and since such a cycle lasts a relevant period, it may take some time before the desired page appears on the display screen.

By taking certain measures, this waiting time can be reduced considerably. For example, it is proposed in reference [1] to store the pages transmitted in the cycle in their order of reception in a memory. After a page has been requested by the user, the decoder searches for the presence of this page in the page memory. Large memories are required for this purpose because a considerable reduction of the waiting time can only be realised if the page memory comprises at least an essential number of the teletext pages transmitted in the cycle. Such large memories are, however, relatively expensive.

To meet this problem, teletext decoders have been developed which can search and store a limited but relevant number of pages and which comprise registers stating the page numbers to be searched. An example of such a decoder has been described in reference [2]. In these types of teletext decoders, which will hereinafter be referred to as multipage teletext decoders, the waiting time reduction is achieved by filling the registers as well as possible in conformity with the pages to be actually displayed. To this end it is proposed in reference [3] to store a series of page numbers stated by the user in a page number memory for a later successive display of these pages. Such a television receiver is notably very satisfactory if the number of pages which the multipage teletext decoder can store is relatively small, for example smaller than the number of stored page numbers. In fact, the waiting time is effectively reduced because the multipage teletext decoder searches, for example, the first four pages of the pages qualifying for display. A non-volatile page number memory is preferably used so that the stored page numbers are also preserved after the receiver is switched off. The said receiver has the drawback that the user must explicitly store the numbers of the pages to be displayed in the page number memory. This means that he enters the numbers intentionally in a desired sequence and that he generates special control instructions, for example terminating a page number by means of a store key. The receiver also has the drawback that the page number memory may get filled up whereafter the further entry of page numbers is no longer possible. Furthermore the pages are displayed in their sequence of storage so that for the display of a given desired page a plurality of pages which is irrelevant at that moment must be glanced through by operating a recall key. The ease of operation of this known receiver is therefore found to be a drawback in practice.

A further receiver is disclosed in reference [4]. This prior art receiver comprises a teletext decoder adapted to search and store a plurality of teletext pages; a page number memory for storing at least two page numbers; an operating system for generating a requested page number of a teletext page to be displayed; a control circuit adapted to store successively requested page numbers in the page memory and to apply the stored page numbers to the teletext decoder, the circuit further being adapted to assign an order of precedence to the page numbers stored in the page number memory; and a display screen coupled to the teletext decoder, for displaying the requested teletext page.

The teletext decoder of this prior art receiver regulates the storage of teletext pages according to a priority list of the frequency of use. The priority list is continually updated as selections are made. To each page number included in the priority list, an order of precedence has been assigned, as it were, which is related to its frequency of use. The prior art receiver has the drawback that monitoring the frequency of use requires, for at least the pages whose frequency of use is to be monitored, storage means for holding a record of the number of times that one of said pages is requested in relation to a time interval. When no page numbers are excluded from being included in the priority list, a multibit number must necessarily be stored and kept for each page number which has been selected in the time interval. A memory therefor is relatively large and expensive.

2. OBJECT AND SUMMARY OF THE INVENTION.

It is an object of the invention to realise, inter alia a receiver for television and teletext signals, including

10

15

20

25

30

35

40

a multipage teletext decoder and a page number memory providing improved ease of operation and a considerable reduction of the waiting time without suffering from the drawbacks mentioned above.

According to the invention, the receiver is characterized in that the control circuit is adapted, when storing the requested page number in the page number memory, to assign the most recent order of precedence to said page number, to remove a stored page number having an older order of precedence from the page number memory, and to reassign the orders of precedence of the other stored page numbers corresponding to the order in which they have been generated by the operating system. Herewith is achieved that the page number memory comprises a list of the most recently requested pages, which list can easily be formed and maintained. The receiver need even not store for each page number a value representing the order of precedence. Storage in successive memory locations in a corresponding order suffices.

Considering that a user often requests the same pages in case of normal use, the list of most recently requested pages remains substantially unaltered. If the pattern of use changes in the course of time, the page numbers which are no longer requested ultimately disappear from the memory. The receiver is therefore adaptive to the pattern of use. Further, the list is formed without operation of an additional store key. The page corresponding to the number which has been entered is also directly searched by the multipage teletext decoder, and, where possible, displayed immediately. The relevant pages can therefore be accessed without any waiting time, without requiring the user to operate an additional recall key.

Generally, the page number having the lowest order of precedence is removed from the list. If the requested page number was already stored, however, it is useful to merely update the order of precedence of the already stored identical page number. In one embodiment this is achieved by removing the older identical page number and storing the new one. In another embodiment, the current order of precedence of the already stored identical page number is overwritten by the most recent order of precedence. In both embodiments, the page number memory is used effectively, because only different page numbers are stored. For the sake of completeness it should therefore be noted that the order of precedence of the stored page numbers does not necessarily absolutely indicate the sequence of generating the page numbers. For example, a page number which has meanwhile been removed may originally have been stored between two page numbers with a consecutive order of precedence.

It has also proved useful to refrain from storing the generated page number, if it was not yet stored in the page number memory, as long as the page corresponding to the page number has not been displayed on the screen for a predetermined period of time. This prevents erroneously entered page numbers and the numbers of non-transmitted pages from being preserved.

If desired, the receiver can be provided with a special recall key in the manner as described in reference [3] so as to successively display the stored preferred pages without any waiting time.

3. REFERENCES.

- Teletext device with reduced page-access time.
 European Patent Application no. EP-A-0 118 950
- [2] Teletext signal processing circuit for a teletext receiver. European Patent Application no. EP-A-0 220 763.
- [3] Television receiver comprising a teletext decoding circuit and a page number memory. United States Patent. US-A-4,701,794.
- [4] Teletext unit. European Patent Application. EP-A-0 190 837.

4. BRIEF DESCRIPTION OF THE FIGURES.

Fig. 1 shows diagrammatically the structure of a television receiver with a multipage teletext decoder.

Fig. 2 shows two possible forms of organising the page number memory for storing N page numbers and the orders of precedence assigned thereto.

Figs. 3 to 7 show some diagrams to explain the operation of the television receiver shown in Fig. 1.

5. DESCRIPTION OF EMBODIMENTS.

5.1 General structure.

An embodiment of a television receiver is shown diagrammatically in Fig. 1. The transmitter signals received via an antenna 1 are applied to a conventional tuning and demodulation circuit 2. The obtained composite video signal CVBS of the selected television program is applied on the one hand to a conventional video signal processing circuit 3 and on the other hand to a multipage teletext decoder 4. In the normal operating state of the receiver the elementary colour signals R'G'B generated by video processing circuit 3 are applied to a display screen 6 via a switch 5 in order that the user can watch the received television program. In a teletext operating state which can be called by the user the elementary colour signals RGB of multipage teletext decoder 4 are displayed on display screen 6 via switch 5.

Multipage teletext decoder 4 comprises a clipping circuit 4.1 which regenerates the digital teletext data signal TTD and the associated clock signal TTC from

50

10

15

20

30

35

40

45

50

the applied video signal CVBS, an acquisition circuit 4.2 which captures a number of selected pages in an autonomous manner, a page memory 4.3 in which the captured pages are stored and a display circuit 4.4 which converts a selected stored page into elementary colour signals RGB. Display circuit 4.4 also generates a blanking signal BLK with which switch 5 is operated and with which the display of the normal television program is blanked in the teletext operating state.

Multipage teletext decoder 4 is connected to a control circuit 8 by means of a command bus 7. The multipage teletext decoder receives, inter alia the numbers of the pages to be captured and stored, as well as the number of the page to be displayed, via this command bus of the control circuit.

Operating instructions given by the user are generated in a (remote) control unit 9 and applied to control circuit 8 via a receiver circuit 10. As soon as the user selects the teletext operating state, multipage teletext decoder 4 receives the instruction, via command bus 7 from the control circuit 8, to activate the blanking signal BLK in such a way that the colour signals RGB of the teletext page to be displayed are applied to display screen 6.

An interface 11, which enables control circuit 8 to tune to transmission stations, to control brightness and volume and the like, is also connected to command bus 7. This is indicated by means of the appropriate symbols in the Figure.

Furthermore a preferably non-volatile storage medium 12 is connected to command bus 7 in which control circuit 8 can store all kinds of data which must not get lost when the receiver is switched off, such as tuning data and picture and sound adjustments. More particularly, a portion of this memory is used for storing a number of teletext page numbers. This portion of storage medium 12 will be further referred to as the page number memory.

When storing page numbers in page number memory 12 by means of control circuit 8, an order of precedence which is related to the sequence in which they are generated is assigned to the stored page numbers. Two possible forms of organising the memory are shown for this purpose in Fig. 2. Fig. 2a shows an organogram in which page numbers are stored at random memory addresses and in which a figure indicating the order of precedence is explicitly added to each page number. The page number having the order of precedence 1 is the most recently generated, hence most recent page number and the page number having the order of precedence N is the number which has been stored for the longest time, i.e. it is the oldest number. Fig. 2b shows a series of N registers R(1) to R(N) each comprising a page number, with register R(1) comprising the most recently stored page number and register R(N) comprising the oldest number. The order of precedence of a page number is therefore implicitly determined by the place of the page number in page number memory 12 in this organogram. Both forms are equivalent, if, for example a page number with order of precedence 4 must receive a new order of precedence 5; the order of precedence 4 in the organogram according to Fig. 2a is replaced at the relevant memory address by order of precedence 5, while in the organogram according to Fig. 2b the page number of register R(4) is moved to register R(5). The organogram according to Fig. 2b will be used hereinafter.

5.2 Operation of the receiver.

The operation of the receiver shown in Fig. 1 is determined by a control program which is stored in the control circuit 8 which is preferably implemented in the form of a microprocessor. After the receiver has been switched on or after a different television program has been tuned to, the control program initially proceeds through the following steps in known manner: the page numbers stored in registers R(1) to R(N) of the page number memory 12, as well as page number 100, are passed on to acquisition circuit 4.2 via command bus 7 whereafter this circuit captures the relevant teletext pages in an autonomous manner and stores them in page memory 4.3. It is thus assumed that the multipage teletext decoder can receive and store at least one page more than the number of page numbers stored in page number memory 12. Page 100 is called because this page generally comprises the main index and should be the first page to be displayed on the display screen in the teletext state. With this part of the control program it is achieved that it is very likely that page 100 and the pages with the page numbers stored in registers R(1) to R(N) have already been found and stored if the user selects the teletext state.

The further control program in the teletext state is shown in Fig. 3. In step 13 the control program checks whether the user has entered a page number. As long as this is not the case, the program returns to step 13 and continues to wait for a page number. If a page number has been entered, the multipage teletext decoder is given instructions in known manner in a step 14, such that this decoder captures the page with the entered number, stores it and displays it on the screen. This will often be not immediately possible because the requested page, i.e. the page with the number that has been entered, has not been stored yet so that the user will have to wait until the page is transmitted by the transmitter. However, if the entered number has already been stored in the page number memory, it is very likely that the requested page has already been found and stored. In this case the requested page is displayed immediately.

While the multipage teletext decoder autonomously carries out the instructions obtained in step

10

15

20

25

30

35

40

45

50

8

14, the control program proceeds through a step 15 in which the orders of precedence assigned to the stored page numbers are adapted by placing the contents of register R(1) in register R(2), the contents of register R(2) in register R(3), and so forth. The original contents of register R(N) then get lost. Subsequently the register R(1) emptied in step 15 is filled in a step 16 with the page number which has been entered, so that the most recent order of precedence is assigned to this page number. Subsequently the modified contents of the page number memory are passed on in a step 17 in known manner to the multipage teletext decoder via the command bus for further acquisition of the pages stated in the page number memory. Then the control program returns to step 13 so as to wait for a new page request by the user.

7

Fig. 4 shows by way of example and for the sake of completeness what happens with the contents of page number memory 12, in this case considered to be suitable for storing 10 page numbers, when running through the control program of Fig. 3. The situation prior to entering a page number by the user has been illustrated at the left and the situation after page 101 has been requested is illustrated at the right. It should be noted that page 101 was already present in the memory, in this case in register R(7), so that the page is very likely to be displayed on the screen without any waiting time after it has been requested.

It may be apparent from the foregoing that an original page number stored in R(1) shifts one position in the page number memory whenever a new page has been requested and ultimately disappears from this memory after N times. The page number memory thus always comprises the numbers of the N most recently requested teletext pages, R(1) comprising the most recently requested, on-screen displayed page and R(N) comprising the oldest page. If a user sufficiently often consults pages having a number which has already been stored, the numbers of these pages will not get lost because they are written in register R(1) again before they disappear from register R(N). The user will then get such a page on the display screen without any waiting time and immediately after he has entered the page number. However, if the pattern of use changes, for example because the user is interested in another subject on pages with different numbers, the new numbers are stored in the page number memory and the old numbers will automatically disappear after some time. The receiver thus provides a waiting time reduction in an adaptive way, which is very pleasant when consulting teletext.

A result of the control program of Fig. 3 is that page numbers will often be stored in the page number memory more than once. In fact, if a page with a page number already stored is requested, the order of precedence of this stored page number is increased, but the page number itself is not removed from the memory as long as it is not the oldest page number. This

considerably reduces the possibility of storing as many different page numbers as possible in the page number memory. A more effective use of the page number memory is achieved with a control program as is shown in Fig. 5. This control program only differs from that shown in Fig. 3 in that step 15 is replaced by steps 18 to 20. In a step 18 an auxiliary index n is given the initial value 1. Subsequently page number memory 12 is run through from R(1) in a step 19 and it is checked whether the page number stored therein is identical to the number which has been entered. If this is the case, step 19 is terminated, with R(n) comprising the identical page number. If the entered page number is not found in any one of the registers, step 19 is terminated because auxiliary index n has reached the maximum value N. Subsequently a step 20 is carried out. This step is substantially identical to the previously described step 15 and is used for advancing the page numbers to a subsequent register in the page number memory. Now, however, only the page numbers in registers R(1) to R(n-1) inclusive are advanced one position and the numbers in R(n+1) to R(N) inclusive are not affected. The original contents of register R(n) are lost, as was also intended, because register R(n) comprised the page number which corresponded to the entered page number. In step 16 the entered page number is stored as the most recent page number in register R(1). Thus, the page number memory now comprises different page numbers only.

Fig. 6 shows an example of the contents of page number memory 12 before and after storing a new number for this embodiment of the control program. The page number originally stored in register R(7) corresponds to the entered number and for this reason it is removed from the page number memory. The relevant page number 101 is now stored only as the most recent number in register R(1). Page number 210, stored in register R(10), is now preserved and page 210 thus remains accessible without any waiting time.

When consulting teletext, it regularly appears that a requested page is not transmitted. Erroneously entered figures for a page number are often corrected by completing the erroneous page number, immediately followed by entering the intended number. It also occurs that after a glance at the display screen the displayed page does not appear to have the envisaged contents. In all these cases page numbers are entered without this leading to a display of actually desired pages on the display screen. It is therefore unnecessary to store these page numbers in the page number memory. As is shown in Fig. 7, the control program has a step 21 for this purpose in which it is checked in known manner whether the page which corresponds to the entered page number has actually been captured and displayed. As long as this is not the case, it remains possible to enter a new page

10

15

20

25

30

35

40

number via step 13. If the page with the entered page number has been found, it is checked in a step 22 also in known manner whether a certain period of time has elapsed since the reception of this page. The orders of precedence of the page numbers are adapted in the previously described manner in steps 18, 19 and 20 only if the page with the entered page number has been displayed at least for a predetermined period of time, while the entered number is stored in step 16 and the adapted page numbers are applied in step 17 to the multipage teletext decoder for further acquisition. For the sake of completeness it is to be noted that the adjusted period of time during which a page should at least be displayed may also be zero.

Claims

- A receiver of television and teletext signals, comprising:
 - a teletext decoder (4) adapted to search and store a plurality of teletext pages;
 - a page number memory (12) for storing at least two page numbers;
 - an operating system (9,10) for generating a requested page number of a teletext page to be displayed;
 - a control circuit (8) adapted to store successively requested page numbers in the page memory and to apply the stored page numbers to the teletext decoder, the circuit further being adapted to assign an order of precedence to the page numbers stored in the page number memory;
 - a display screen (6), coupled to the teletext decoder, for displaying the requested teletext page,

characterized in that the control circuit is adapted, when storing the requested page number in the page number memory,

- to assign (16) the most recent order of precedence to said page number;
- to remove a stored page number having an older order of precedence from the page number memory; and
- to reassign (15;20) the orders of precedence of the other stored page numbers corresponding to the order in which they have been generated by the operating system.
- A receiver as claimed in Claim 1, characterized in that the page number to be removed is the page number having the oldest order of precedence (Fig.4).
- 3. A receiver as claimed in Claim 1, characterized in that the control circuit is adapted to determine

whether the requested page number is already stored in the page number memory and, in the affirmative case, to remove said stored page number (Fig.6).

- 4. A receiver as claimed in Claim 1, characterized in that the control circuit is adapted to determine whether the requested page number is already stored in the page number memory and, in the affirmative case, to refrain from storing the requested page number, to assign the most recent order of precedence to said stored page number, and to reduce the orders of precedence of the other stored page numbers accordingly (Fig.6).
- 5. A receiver as claimed in any one of Claims 1-4, characterized in that the control circuit is adapted to refrain from storing the requested page number as long as the teletext page corresponding to said page number has not been displayed on the screen for a predetermined period of time (22).
- 6. A receiver as claimed in any one of Claims 1-5, characterized in that the operating system is further adapted to generate an operating instruction for successively displaying the pages corresponding to the page numbers stored in the page number memory on the display screen.

Patentansprüche

- 1. Empfänger für Fernseh- und Teletextsignale mit:
 - einem Teletextdecoder (4), der die Möglichkeit bietet, eine Anzahl Teletextseiten zu suchen und zu speichern;
 - einem Seitennummerspeicher (12) zum Speichern von wenigstens zwei Seitennummern;
 - einem Bedienungssystem (9, 10) zum Erzeugen einer erwünschten Seitennummer einer wiederzugebenden Teletextseite;
 - einer Steuerschaltung (8) zum Speichern nacheinander erwünschter Seitennummern in dem Seitensepeicher und zum Zuführen der gespeicherten Seitennummern zu dem Teletextdecoder, wobei die Schaltungsanordnung weiterhin dazu vorgesehen ist, in dem Seitennummerspeicher gespeicherten Seitennummern eine Vorzugsordnung zuzuordnen;
 - einem Wiedergabeschirm (6), der mit dem Teletextdecoder gekopelt ist, zum Wiedergeben der erwünschten Teletextseite,

dadurch gekennzeichnet, daß die Steuerschaltung beim Speichern der erwünschten Seitennummer in dem Seitennummerspeicher

- die neueste Vorzugsordnung der genann-

6

55

15

20

25

30

35

40

45

50

55

- ten Seitennummer zuordnet (16);
- eine gespeicherte Seitennummer mit einer älteren Vorzugsordnung aus dem Seitennummerspeicher entfernt und
- die Vorzugsordnungen der anderen gespeicherten Seitennummern entsprechend der Ordnung, in der sie von dem Bedieungssystem erzeugt wurden, neu zugordnet (15; 30).
- Empfänger nach Anspruch 1, dadurch gekennzeichnet, daß die zu entfernende Seitennummer diejenige Seitennummer ist, welche die älteste Vorzugsordnung hat (Fig. 4).
- Empfänger nach Anspruch 1, dadurch gekennzeichnet, daß die Steuerschaltung ermittelt, ob die erwünschte Seitennummer bereits in dem Seitennummerspeicher gespeichert ist und, wenn ja, die genannte, gespeicherte Seitennummer entfernt (Fig. 6).
- 4. Empfänger nach Anspruch 1, dadurch gekennzeichnet, daß die Steuerschaltung ermittelt, ob die erwünschte Seitennummer bereits in dem Seitennummerspeicher gespeichert ist, und wenn ja, auf die Speicherung der erwünschten Seitennummer verzichtet, die neueste Vorzugsordnung der genannten, gespeicherten Seitennummer zuordnet und die Vorzugsordnungen der anderen Seitennummern entsprechend verringert (Fig. 6).
- 5. Empfänger nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Steuerschaltung auf Speicherung der erwünschten Seitennummer verzichtet, solange die Teletextseite, die der genannten Seitennummer entspricht, nocht nicht während einer vorbestimmten Zeit am Wiedergabeschirm wiedergegeben worden ist.
- 6. Empfänger nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Bedienungssystem weiterhin einen Bedienungsbefhlerzeugt zum nacheinander am Wiedergabeschirm Wiedergeben derjenigen Seiten, die den in dem Seitennummerspeicher gespeicherten Seitennummern entsprechen.

Revendications

- Récepteur de signaux de télévision et de télétexte, comprenant :
 - un décodeur de télétexte (4) susceptible de rechercher et de stocker une pluralité de pages de télétexte;
 - une mémoire de numéros de pages (12)

- pour stocker au moins deux numéros de pages;
- un système d'exploitation (9, 10) pour générer un numéro de page demandé d'une page de télétexte à afficher;
- un circuit de commande (8) propre à stocker des numéros de pages successivement demandés dans la mémoire de pages et à appliquer les numéros de pages stockés au décodeur de télétexte, le circuit étant, en outre, à même d'affecter un ordre de priorité aux numéros de pages stockés dans la mémoire de numéros de pages;
- un écran d'affichage (6), couplé au décodeur de télétexte, pour afficher la page de télétexte demandée, caractérisé en ce que le circuit de commande est à même, lors du stockage du numéro de page demandé dans la mémoire de numéros de pages;
- d'affecter (16) l'ordre de priorité le plus récent audit numéro de page;
- d'éliminer un numéro de page stocké ayant un ordre de priorité antérieur de la mémoire de numéros de pages, et
- de réaffecter (15; 20) les ordres de priorité des autres numéros de pages stockés correspondant à l'ordre dans lequel ils ont été générés par le système d'exploitation.
- Récepteur selon la revendication 1, caractérisé en ce que le numéro de page à éliminer est le numéro de page ayant l'ordre de priorité le plus ancien (Fig. 4).
- 3. Récepteur selon la revendication 1, caractérisé en ce que le circuit de commande est à même de déterminer si le numéro de page demandé est déjà stocké dans la mémoire de numéros de pages et, dans l'affirmative, d'éliminer ledit numéro de page stocké (Fig. 6).
- 4. Récepteur selon la revendication 1, caractérisé en ce que le circuit de commande est à même de déterminer si le numéro de page demandé est déjà stocké dans la mémoire de numéros de pages et, dans l'affirmative, de ne pas stocker le numéro de page demandé, d'affecter l'ordre de priorité le plus récent audit numéro de page stocké, et de réduire l'ordre de priorité des autres numéros de pages stockés en conséquence (Fig. 6).
- 5. Récepteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le circuit de commande est à même d'empêcher le stockage du numéro de page demandé aussi longtemps que la page de télétexte correspondant audit numéro de page n'a pas été affichée sur l'écran

pendant une période de temps prédéterminée (22).

6. Récepteur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le système d'exploitation est par ailleurs à même de générer une instruction opératoire pour afficher successivement sur l'écran d'affichage les pages correspondant aux numéros de pages stockés dans la mémoire de numéros de pages.

FIG.3

FIG.4

FIG.7