TC 2006B Interconexión de dispositivos

Direccionamiento IPv6

Tecnológico de Monterrey

Objetivos de esta sesión

Conocer la representación del direccionamiento lógico IPv6.

Necesidad de IPv6

IPv4 se está quedando sin direcciones. IPv6 es el sucesor de IPv4. IPv6 tiene un espacio de direcciones de 128 bits mucho más grande.

Necesidad de IPv6

- Con una población que accede a
 Internet cada vez mayor, un espacio de direcciones IPv4 limitado, los problemas de NAT y el Internet de las cosas, llegó el momento de comenzar la transición hacia IPv6.
- Tanto IPv4 como IPv6 coexistirán en un futuro próximo y la transición llevará varios años.

- Las direcciones IPv6 tienen 128 bits de longitud y están escritas en hexadecimal.
- Las direcciones IPv6 no distinguen entre mayúsculas y minúsculas, y pueden escribirse en minúsculas o en mayúsculas.
- El formato preferido para escribir una dirección IPv6 es x : x : x : x : x : x : x : x, donde cada "x" consta de cuatro valores hexadecimales. En IPv6, un "hexteto" es el término no oficial que se utiliza para referirse a un segmento de 16 bits o cuatro valores hexadecimales.

Ejemplos:

2001 : 0db8 : 0000 : 1111 : 0000 : 0000 : 0000 : 0200

2001 : 0db8 : 0000 : 00a3 : abcd : 0000 : 0000 : 1234

Regla 1 - Omitir el cero inicial

La primera regla para ayudar a reducir la notación de las direcciones IPv6 es omitir los 0s (ceros) iniciales.

Ejemplos:

- 01ab se puede representar como 1ab
- 09f0 se puede representar como 9f0
- 0a00 se puede representar como a00
- o 00ab se puede representar como ab

Nota: Esta regla solo es válida para los ceros iniciales, y NO para los ceros finales; de lo contrario, la dirección sería ambigua.

Tipo	Formato
Recomendado	2001: 0 db8: 000 0:1111: 000 0: 000 0: 000 0: 0 200
Sin los ceros iniciales	2001 : db8 : 0 : 1111 : 0 : 0 : 0 : 200

Regla 2 – Dos puntos

Los dos puntos dobles (::) pueden reemplazar cualquier cadena única y contigua de uno o más segmentos de 16 bits (hextetos) que estén compuestas solo por ceros.

Ejemplo:

2001:db8:cafe:1:0:0:1 (0s iniciales omitidos) podría representarse como
 2001:db8:cafe:1::1

Nota: Los dos puntos dobles (::) se pueden utilizar solamente una vez dentro de una dirección; de lo contrario, habría más de una dirección resultante posible.

Tipo	Formato
Recomendado	2001: 0 db8: 000 0:1111: 0000 : 0000 : 0000 : 0 200
Comprimido	2001:db8:0:1111::200

Regla 2 – Dos puntos

Nota: Los dos puntos dobles (::) se pueden utilizar solamente una vez dentro de una dirección; de lo contrario, habría más de una dirección resultante posible.

Longitud del prefijo

La longitud del prefijo se representa en notación de barra diagonal y se usa para indicar la porción de red de una dirección IPv6.

La longitud de prefijo puede ir de 0 a 128. La longitud de prefijo IPv6 recomendada para las redes locales (LAN) y la mayoría de los otros tipos de redes es /64.

IPv6 unicast globales

Las direcciones **IPv6 unicast globales** (GUA), son únicas globalmente y constan de tres partes:

- Prefijo de enrutamiento global:
 Red, parte de la dirección asignada
 por el proveedor. Típicamente /48.
- ID de la subred: Se utiliza para crear subredes dentro de una organización.
- ID de la interfaz: Equivale a la porción de host de una dirección IPv4.

Compresión y descompresión de direcciones IPv6

Aplique las reglas para la abreviatura de direcciones IPv6 y **comprima o descomprima a lo máximo** las siguientes direcciones:

- FF00::
- 2001:0030:0001:ACAD:0000:330E:10C2:32BF

```
FF01:0000:0000:0000:0000:0000:1

= FF01:0:0:0:0:0:1

= FF01::1
```

```
E3D7:0000:0000:0000:51F4:00C8:C0A8:6420
= E3D7::51F4:C8:C0A8:6420
```

```
3FFE:0501:0008:0000:0260:97FF:FE40:EFAB

= 3FFE:501:8:0:260:97FF:FE40:EFAB

= 3FFE:501:8::260:97FF:FE40:EFAB
```