1. Basic Master Theorem (First Form)

The basic Master Theorem solves recurrences of the form: T(n) = aT(n/b) + f(n), where $a \ge 1$, b > 1. Let $p = log_b(a)$. Then: 1. If $f(n) = O(n^{p} - \epsilon)$ for some $\epsilon > 0 \Rightarrow T(n) = O(n^{p})$. 2. If $f(n) = O(n^{p}) \Rightarrow T(n) = O(n^{p} \log n)$. 3. If $f(n) = \Omega(n^{p} + \epsilon)$ and the regularity condition a $f(n/b) \le c$ f(n) (for c < 1, n large) holds $\Rightarrow T(n) = O(f(n))$.

Examples

1. $T(n) = 2T(n/2) + n \Rightarrow p = 1 \Rightarrow Case 2 \Rightarrow T(n) = \Theta(n \log n)$. 2. $T(n) = 3T(n/2) + n \Rightarrow p = \log_2(3) \approx 1.585 \Rightarrow Case 1 \Rightarrow T(n) = \Theta(n^{1.585})$. 3. $T(n) = 2T(n/2) + 2^n \Rightarrow f$ dominates, regular $\Rightarrow T(n) = \Theta(2^n)$.

2. Extended Master Theorem (Polynomial × Logarithmic Form)

The extended Master Theorem applies when $f(n) = \Theta(n^{\log_b a} \log^k n)$: 1. If $k < 0 \Rightarrow T(n) = \Theta(n^{\log_b a})$. 2. If $k = 0 \Rightarrow T(n) = \Theta(n^{\log_b a} \log n)$. 3. If $k > 0 \Rightarrow T(n) = \Theta(n^{\log_b a} \log^k k)$.

Examples

1. $T(n) = 2T(n/2) + n/\log n \Rightarrow k = -1 \Rightarrow T(n) = \Theta(n)$. 2. $T(n) = 2T(n/2) + n \Rightarrow k = 0 \Rightarrow T(n) = \Theta(n \log n)$. 3. $T(n) = 2T(n/2) + n \log^2 n \Rightarrow k = 2 \Rightarrow T(n) = \Theta(n \log^3 n)$.

4. Akra-Bazzi Theorem

The Akra-Bazzi Theorem generalizes the Master Theorem for recurrences of the form: $T(x) = \sum_{i=1}^{n} \{k\} \ a_i \ T(b_i \ x + h_i(x)) + g(x)$, where: • $a_i > 0$, $0 < b_i < 1$, and $h_i(x) = O(x / \log^2 x)$. • g(x) is positive and continuous. Then: If p satisfies $\sum a_i b_i p = 1$, we have: $T(x) = \Theta(x^p (1 + \int_1^x g(u))u^p + 1$ du)).

Examples

1. $T(n) = T(n/2) + T(n/4) + n \Rightarrow p$ solves $(1/2)^n + (1/4)^n = 1 \Rightarrow p \approx 0.7 \Rightarrow T(n) = \Theta(n)$. 2. $T(n) = 2T(n/2) + n/\log n \Rightarrow p = 1 \Rightarrow T(n) = \Theta(n \log \log n)$. 3. $T(n) = 3T(n/2) + n \Rightarrow p = \log_2(3) \approx 1.585 \Rightarrow T(n) = \Theta(n^{1.585})$.