Contents

Prepara	tion of Aldenydes and Retones	D
1	List of methods for the preparation of aldehydes and ketones	5
Preparat	tion of aldehydes and ketones from Alkenes	5
-	Term for preparation of aldehydes and ketones from alkenes	5
[Expression for reaction of preparation of aldehydes and ketones from alkenes	5
1	Reactants in preparation of aldehydes and ketones from alkenes	5
	Condition for preparation of aldehydes and ketones from alkenes	5
	alkenes	6
1	Intermediate product in reaction in preparation of aldehydes and ketones from alkenes	6
,	Condition for preparation of aldehydes and ketones from alkenes in interme-	C
,	diate product	6
1	Products in preparation of aldehydes and ketones from alkenes	6
	Role of Zinc in preparation of aldehydes and ketones from alkenes	6
	Condition for formation of aldehydes in preparation of aldehydes and ketones	C
·	from alkenes	6
(Condition for formation of ketones in preparation of aldehydes and ketones	_
	from alkenes	6
Preparat	tion of aldehydes and ketones from Acid chlorides	7
-	Term for reaction involving preparation of carbonyl compounds from acid	•
	chlorides	7
	Expression for reaction of preparation of aldehyde from acid chloride	7
	Reactants in preparation of aldehyde from acid chlorides	
	Products in preparation of aldehyde from acid chlorides	
	Condition for preparation of aldehyde from acid chlorides	
	Role of palladium in preparation of aldehyde from acid chloride	
	Expression for reaction of aldehyde with hydrogen in reverse reaction in prepa-	
	ration from acid chloride	8
	Reactants in reaction of aldehyde with hydrogen in reverse reaction in prepa-	
	ration from acid chloride	8
1	Products for reaction of aldehyde with hydrogen in reverse reaction in prepa-	
	ration from acid chloride	8
1	Function of sulphur or quinole in preparation of aldehyde by acid chlorides	8

	Cause of inability of using acid chloride for preparation of formaldehyde	8
	Expression for reaction of diassociation of formyl chloride	8
	Reactants in disassociation of formyl chloride	Ĉ
	Condition of temperature for disassociation of formyl chloride	Ć
	Products in disassociation of formyl chloride	
	Expression for reaction of preparation of ketone from acid chloride	Ć
	Reactants in preparation of ketone from acid chloride	Ć
	Products in preparation of ketone from acid chloride	S
	Cause of not using grignard reagent in preparation of ketone from acid chloride	Ć
Prepara	ation of aldehydes and ketones from geminal dihalide	1 C
	Structure of geminal dihalide compounds	10
	Expression for reaction of preparation of aldehyde from geminal dihalide	10
	Intermediate compound in reaction of preparation of aldehyde from geminal	
	dihalide	10
	Reactants in reaction of preparation of aldehyde from geminal dihalide	13
	Products in reaction of preparation of aldehyde from geminal dihalide	13
	Expression for reaction of preparation of ketone from geminal dihalide	13
	Reactants in reaction of preparation of ketone from geminal dihalide	13
	Intermediate compounds in preparation of ketone from geminal dihalide	1:
	Products for reaction of preparation of ketone from geminal dihalide	13
Prepara	ation of aldehydes and ketones from alcohols	12
	List of methods for the preparation of aldehydes and ketones from alcohol	12
Prepara	ation of aldehyde and ketones from alkynes	12
	Term for reaction of preparation of aldehydes and ketones from alkynes	12
	Limitation of preparation of aldehydes from alkynes	12
	Expression for reaction of preparation of acetaldehyde from alkynes	12
	Reactants in reaction for preparation of acetaldehyde from alkynes	12
	Condition for preparation of aldehyde and ketones from alkynes	13
	Percentage amount of mercuric sulphate present at preparation of aldehydes	
	and ketone from alkynes	13
	Range of percentage of amount of sulphuric acid present at preparation of	
	aldehydes and ketones from alkynes	13
	Products in reaction for preparation of acetaldehyde from alkynes	13
	Function of Mercuric sulphate in reaction of preparation of aldehydes and	
	ketones from alkynes	13
	Expression for reaction of preparation of ketones from alkynes	13

	Reactants in reaction of preparation of ketones from alkynes	14
	Intermediate compound in reaction of preparation of aldehyde and ketone	
	from alkynes	14
	Products in reaction of preparation of ketones from alkynes	14
Oxidat	tion	14
	List of reagents capable of oxidizing alcohols into aldehydes and ketones	14
	Molecular formula for potassium permanganate	14
	Molecular formula for potassium dichromate	14
Acidifi	ed potassium dichromate	15
	Reaction for the preparation of aldehyde from oxidation of alcohol using potas-	
	sium dichromate as oxidizing agent	15
	potassium dichromate as oxidizing agent	15
	Products for the preparation of aldehyde from oxidation of alcohol using potas-	
	sium dichromate as oxidizing agent	15
	Condition for the preparation of aldehyde from oxidation of alcohol using	
	potassium dichromate as oxidizing agent	15
	Reaction for the preparation of ketone from oxidation of alcohol using potas-	
	sium dichromate as oxidizing agent	15
	Reactants for the preparation of ketone from oxidation of alcohol using potas-	
	sium dichromate as oxidizing agent	16
	Products for the preparation of ketone from oxidation of alcohol using potas-	
	sium dichromate as oxidizing agent	16
	Condition for the preparation of ketone from oxidation of alcohol using potas-	
	sium dichromate as oxidizing agent	16
	Reason for control of reaction temperature at the preparation of aldehyde from	
	oxidation of alcohol using potassium dichromate as oxidizing agent	16
Pyridir	nium chloro chromate	16
	Molecular formula of pyridine	16
	Reactants in formation of pyridinium chlorochromate	16
	Condition for preparation of pyridinium chlorochromate	17
	Molecular formula of pyridinium chloromchromate	17
	Abbreviation of pyridinium chlorochromate	17
	Reaction for preparation of aldehyde from the oxidation of alcohol by using	
	pyridinium chlrochromate as oxidizing agent	17

	Reactants for preparation of aldehyde from the oxidation of alcohol by using	
	pyridinium chlrochromate as oxidizing agent	17
	Products for preparation of aldehyde from the oxidation of alcohol by using	
	pyridinium chlrochromate as oxidizing agent	17
	Condition for preparation of aldehyde from the oxidation of alcohol by using	
	pyridinium chlrochromate as oxidizing agent	17
	Reaction for preparation of ketone from the oxidation of alcohol by using	
	pyridinium chlrochromate as oxidizing agent	18
	Reactants for preparation of ketone from the oxidation of alcohol by using	
	pyridinium chlrochromate as oxidizing agent	18
	Products for preparation of ketone from the oxidation of alcohol by using	
	pyridinium chlrochromate as oxidizing agent	18
	Condition for preparation of aldehyde from the oxidation of alcohol by using	
	pyridinium chlrochromate as oxidizing agent	18
Catalyt	tic dehydrogenation	18
	State of alcohol in catalytic dehydrogenation of alcohol in preparation of alde-	
	hydes and ketones	18
	Chemical reaction for preparation of aldehyde from catalytic dehydrogentation	
	of alcohol	18
	Reactant in preparation of aldehyde from catalytic dehydrogentation of alcohol	19
	Products in preparation of aldehyde from catalytic dehydrogentation of alcohol	19
	Condition in preparation of aldehyde from catalytic dehydrogentation of alcohol	19
	Temperature in preparation of aldehyde from catalytic dehydrogentation of	
		19
	Chemical reaction for preparation of ketone from catalytic dehydrogentation	
		19
	, , , ,	19
	, , , ,	19
	Condition in preparation of ketone from catalytic dehydrogentation of alcohol	19
	Temperature in preparation of ketone from catalytic dehydrogentation of alcohol 2	

Preparation of Aldehydes and Ketones

List of methods for the preparation of aldehydes and ketones

- Alkenes
- Alkynes
- · Geminal dihaloalkane
- · Alcohols
- Acid chloride

Preparation of aldehydes and ketones from Alkenes

Term for preparation of aldehydes and ketones from alkenes

Ozonolysis

Expression for reaction of preparation of aldehydes and ketones from alkenes

Reactants in preparation of aldehydes and ketones from alkenes

- Alkene
- Ozone

Condition for preparation of aldehydes and ketones from alkenes

· Presence of carbon tetra chloride

Role of carbon tetra chloride in preparation of aldehydes and ketones from alkenes

· Act as solvent

Intermediate product in reaction in preparation of aldehydes and ketones from alkenes

Ozonoid

Condition for preparation of aldehydes and ketones from alkenes in intermediate product

- Presence of Zinc
- · Presence of Water

Products in preparation of aldehydes and ketones from alkenes

- · Aldehydes
- Ketones
- Hydrogen Peroxide

Role of Zinc in preparation of aldehydes and ketones from alkenes

Prevent oxidation of aldehydes and ketones to carboxylic acid.

Hydrogen peroxide is an oxidizing agent. The oxidation of aldehydes and ketones yields carboxylic acid. Zinc prevents the conversion of aldehydes and ketones into carboxylic acid by reacting with the hydrogen peroxide to produce corresponding zinc oxide

Condition for formation of aldehydes in preparation of aldehydes and ketones from alkenes

Presence of hydrogen at the double bond containing carbon

Condition for formation of ketones in preparation of aldehydes and ketones from alkenes

Absence of hydrogen at the double bond containing carbon

Preparation of aldehydes and ketones from Acid chlorides

Term for reaction involving preparation of carbonyl compounds from acid chlorides

Rosenmund reaction

Expression for reaction of preparation of aldehyde from acid chloride

$$\begin{array}{c} O \\ \parallel \\ R \longrightarrow C \longrightarrow Cl + H - H \xrightarrow{Pd, BaSO_4} R \longrightarrow C \longrightarrow H \end{array}$$

Reactants in preparation of aldehyde from acid chlorides

- · Acyl chloride
- Molecular hydrogen

Products in preparation of aldehyde from acid chlorides

- Aldehyde
- · Hydro chloric acid

Condition for preparation of aldehyde from acid chlorides

- · Palladium
- · Barium sulphate
- · Sulphur or Quinole

Role of palladium in preparation of aldehyde from acid chloride

· Adsorption of molecular hydrogen

Palladium is a d block element. Palladium gradually attaches the molecular hydrogen to it's surface. This makes the bond between the hydrogen atoms weak and ultimately breaks. The atomic hydrogen attack the chloride of acyl chloride to yield aldehyde.

Expression for reaction of aldehyde with hydrogen in reverse reaction in preparation from acid chloride

$$\begin{array}{c|c} O & H \\ \parallel & | \\ R \longrightarrow C \longrightarrow H + H - H \longrightarrow R \longrightarrow C \longrightarrow OH \\ \parallel & | \\ H \end{array}$$

Reactants in reaction of aldehyde with hydrogen in reverse reaction in preparation from acid chloride

- · Aldehyde
- Molecular hydrogen

Products for reaction of aldehyde with hydrogen in reverse reaction in preparation from acid chloride

Alcohol

Function of sulphur or quinole in preparation of aldehyde by acid chlorides

· Cover aldehyde

The aldehyde formed from acid chloride in absence of sulphur or quinole is reduced by the molecular hydrogen into alcohol. This is prevented by adding sulphur or quinole to cover the aldehyde molecule.

Cause of inability of using acid chloride for preparation of formaldehyde

· Formyl chloride is unstable

Expression for reaction of diassociation of formyl chloride

$$\begin{array}{c} O \\ \parallel \\ H - - C - - Cl \xrightarrow{\mathsf{Room\ Temperature}} HCl + CO \end{array}$$

Reactants in disassociation of formyl chloride

Formyl chloride

Condition of temperature for disassociation of formyl chloride

Room temperature

Products in disassociation of formyl chloride

- Hydro chloric acid
- · Carbon mono oxide

Expression for reaction of preparation of ketone from acid chloride

$$\begin{array}{c|c} C & C & C \\ \hline \\ R & C & C \\ \hline \\ R^{|} & C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ R \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ R^{|} \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \hline \\ C \\ \hline \end{array} \rightarrow \begin{array}{c} C \\ \end{array} \rightarrow \begin{array}{c} C$$

Reactants in preparation of ketone from acid chloride

- Acyl chloride
- · Dialkyl cadmium

Products in preparation of ketone from acid chloride

- Ketone
- · Cadmium alkyl chloride

Cause of not using grignard reagent in preparation of ketone from acid chloride

Reduces to alcohol

To prepare ketone from acyl chloride the chlorine atom is to be replaced with an alkyl unit. Grignard reagent even after replacing the alkyl unit yields alcohol by acting on the ketonic compound produced by itself.

$$R - C - Cl + R^{|}MgX \longrightarrow R - C - R^{|} \xrightarrow{R^{|}MgX} R - C - R^{|}$$

Preparation of aldehydes and ketones from geminal dihalide

Structure of geminal dihalide compounds

Two halogen atoms are bounded with single carbon atom

$$C$$
 X
 X

Expression for reaction of preparation of aldehyde from geminal dihalide

Intermediate compound in reaction of preparation of aldehyde from geminal dihalide

· Geminal Diol

Reactants in reaction of preparation of aldehyde from geminal dihalide

- · Geminal dihaloalkane
- · Aqeous Potassium Hydroxide

Products in reaction of preparation of aldehyde from geminal dihalide

- Aldehyde
- · Potassium Chloride
- Water

Expression for reaction of preparation of ketone from geminal dihalide

Reactants in reaction of preparation of ketone from geminal dihalide

- · Geminal dihaloalkane
- · Aqueous potassium Hydroxide

Intermediate compounds in preparation of ketone from geminal dihalide

Geminal diol

Products for reaction of preparation of ketone from geminal dihalide

- Ketone
- · Potassium chloride
- Water

Preparation of aldehydes and ketones from alcohols

List of methods for the preparation of aldehydes and ketones from alcohol

- Oxidation
- Catalytic dehydrogentaion

Preparation of aldehyde and ketones from alkynes

Term for reaction of preparation of aldehydes and ketones from alkynes

Kucheorv reaction

Limitation of preparation of aldehydes from alkynes

Can only prepare acetaldehyde

Expression for reaction of preparation of acetaldehyde from alkynes

$$H \longrightarrow C \Longrightarrow C \longrightarrow H + H - OH \xrightarrow{HgSO_4} H$$

$$C \Longrightarrow C \longrightarrow H$$

$$H$$

$$H$$

$$C \Longrightarrow C \longrightarrow H$$

Reactants in reaction for preparation of acetaldehyde from alkynes

- Acetyne
- Water

Condition for preparation of aldehyde and ketones from alkynes

- Presence of mercuric sulphate
- · Presence of Sulphuric acid

Percentage amount of mercuric sulphate present at preparation of aldehydes and ketone from alkynes

1 percentage

Range of percentage of amount of sulphuric acid present at preparation of aldehydes and ketones from alkynes

42 - 49 percentage

Products in reaction for preparation of acetaldehyde from alkynes

Acetaldehyde

Function of Mercuric sulphate in reaction of preparation of aldehydes and ketones from alkynes

• Enhance activity of sulphuric acid

Expression for reaction of preparation of ketones from alkynes

$$R \longrightarrow C \longrightarrow C \longrightarrow R^{|} + H - OH \xrightarrow{HgSO_4} \qquad C \longrightarrow R$$

$$OH \qquad \qquad R$$

$$C \longrightarrow R \longrightarrow C \longrightarrow C$$

$$R^{|} \longrightarrow C \longrightarrow C$$

Reactants in reaction of preparation	on of ketones from alky	/nes
--------------------------------------	-------------------------	------

- Alkyne other than ethyne
- Water

Intermediate compound in reaction of preparation of aldehyde and ketone from alkynes

Enol

Products in reaction of preparation of ketones from alkynes

Ketone

Oxidation

List of reagents capable of oxidizing alcohols into aldehydes and ketones

- · Acidified potassium permanganate
- · Acidified potassium dichromate
- · Pyridinium chloro chromate

Molecular formula for potassium permanganate

 KMnO_4

Molecular formula for potassium dichromate

 $K_2Cr_2O_7$

Acidified potassium dichromate

Reaction for the preparation of aldehyde from oxidation of alcohol using potassium dichromate as oxidizing agent

$$R \xrightarrow{\hspace{1cm} C \hspace{1cm}} C \xrightarrow{\hspace{1cm} OH \hspace{1cm} + \hspace{1cm} [O]} \xrightarrow{K_2Cr_2O_7, \, H^+} R \xrightarrow{\hspace{1cm} C \hspace{1cm}} C \xrightarrow{\hspace{1cm} H \hspace{1cm} + \hspace{1cm} H_2O$$

Reactants for the preparation of aldehyde from oxidation of alcohol using potassium dichromate as oxidizing agent

- · Primary alcohol
- Nascent oxygen

Products for the preparation of aldehyde from oxidation of alcohol using potassium dichromate as oxidizing agent

- · Aldehyde
- Water

Condition for the preparation of aldehyde from oxidation of alcohol using potassium dichromate as oxidizing agent

- · Acidic environment
- · Controlled Reaction Temperature

Reaction for the preparation of ketone from oxidation of alcohol using potassium dichromate as oxidizing agent

Reactants for the preparation of ketone from oxidation of alcohol using potassium dichromate as oxidizing agent

- Secondary alcohol
- Nascent Oxygen

Products for the preparation of ketone from oxidation of alcohol using potassium dichromate as oxidizing agent

- Ketone
- Water

Condition for the preparation of ketone from oxidation of alcohol using potassium dichromate as oxidizing agent

· Acidic environment

Reason for control of reaction temperature at the preparation of aldehyde from oxidation of alcohol using potassium dichromate as oxidizing agent

Oxidation to carboxylic acid

Exp: Oxidizing agents like potassium dichromate in acidic environment at so powerful that they oxidize alcohols to the level of carboxylic acid. To retain the product at the level of aldehyde, reaction in controlled temperature is carried.

Pyridinium chloro chromate

Molecular formula of pyridine

 C_5H_5N

Reactants in formation of pyridinium chlorochromate

- Pyridine
- · Chromium Trioxide
- · Hydro chloric acid

Condition for preparation of pyridinium chlorochromate

· Presence of dichloromethane

Molecular formula of pyridinium chloromchromate

$$C_5H_5NH^+CrO_3Cl$$

Abbreviation of pyridinium chlorochromate

PCC

Reaction for preparation of aldehyde from the oxidation of alcohol by using pyridinium chlrochromate as oxidizing agent

$$\begin{array}{c|c} H & O \\ \downarrow & \parallel \\ C & OH \xrightarrow{PCC, CH_2Cl_2} R & C & H \end{array}$$

Reactants for preparation of aldehyde from the oxidation of alcohol by using pyridinium chlrochromate as oxidizing agent

Primary alcohol

Products for preparation of aldehyde from the oxidation of alcohol by using pyridinium chlrochromate as oxidizing agent

Aldehyde

Condition for preparation of aldehyde from the oxidation of alcohol by using pyridinium chlrochromate as oxidizing agent

Presence of dichloromethane

Reaction for preparation of ketone from the oxidation of alcohol by using pyridinium chlrochromate as oxidizing agent

$$\begin{array}{ccc}
R & H & R \\
OH & \xrightarrow{PCC, CH_2Cl_2} & C & \longrightarrow O
\end{array}$$

Reactants for preparation of ketone from the oxidation of alcohol by using pyridinium chlrochromate as oxidizing agent

Secondary alcohol

Products for preparation of ketone from the oxidation of alcohol by using pyridinium chlrochromate as oxidizing agent

Ketone

Condition for preparation of aldehyde from the oxidation of alcohol by using pyridinium chlrochromate as oxidizing agent

Presence of dichloromethane

Catalytic dehydrogenation

State of alcohol in catalytic dehydrogenation of alcohol in preparation of aldehydes and ketones

Vapour

Chemical reaction for preparation of aldehyde from catalytic dehydrogentation of alcohol

$$R \xrightarrow{\qquad C} C \xrightarrow{\qquad OH} \xrightarrow{Cu, 300} R \xrightarrow{\qquad C} C \xrightarrow{\qquad H+H_2}$$

Reactant in preparation of aldehyde from catalytic dehydrogentation of alcohol

Primary alcohol

Products in preparation of aldehyde from catalytic dehydrogentation of alcohol

- Hydrogen
- Aldehyde

Condition in preparation of aldehyde from catalytic dehydrogentation of alcohol

Presence of reduced copper

Temperature in preparation of aldehyde from catalytic dehydrogentation of alcohol

$$300^{\circ}$$

Chemical reaction for preparation of ketone from catalytic dehydrogentation of alcohol

$$\begin{array}{c}
R & OH & R \\
C & \xrightarrow{Cu, 300} \circ \\
R & R
\end{array}$$

Reactant in preparation of ketone from catalytic dehydrogentation of alcohol

Secondary alcohol

Products in preparation of ketone from catalytic dehydrogentation of alcohol

- Hydrogen
- Ketone

Condition in preparation of ketone from catalytic dehydrogentation of alcohol

Presence of reduced copper

Temperature in preparation of ketone from catalytic dehydrogentation of alcohol
300°