The effect of "attempting to lose weight" on sleep

Alex Luedtke, Lucia Petito, Steven Pollack
PHC252D

Roadmap

- Background
- Specify SCM (and DAG)
- Specify counterfactuals and target causal quantity
- Introduce data and commit to a statistical model
- Discuss identifiability and estimand
- Get our hands dirty (estimation procedures)
- Results
- Interpretation

Background

We know that sleep habits affect weight, but does trying to lose weight affect sleep patterns?

- Doctors advise consistently getting enough sleep each night to maintain a healthy lifestyle.
- Previous research has shown an association between sleep deprivation and obesity and oversleeping and obesity (indicates a U-shaped curve).
- ▶ Hormonal changes from dieting could cause disruptions in sleep cycle (could also be caused by exercise).

 We used National Health and Nutrition Examination Survey (NHANES) data – from the National Center for Health Statistics (NCHS) – a multistage survey of U.S. population

Figure: Picture courtesy of NHANES

 Survey aims to study wide range of topics such as Cardiovascular disease, Obesity, Physical fitness and physical functioning, Reproductive history and sexual behavior, etc.

Background (Cont'd)

Notes about NHANES data:

- Individuals were subjected to interviews as well as physical examinations.
 - categorical as well as numerical data
 - some questions had a lot of valid responses, but made practical positivity questionable.
 - No shortage of missing data (either "I don't know"s or unanswered questions).
- ► The sample for the survey is selected to represent the U.S. population of all ages. To produce reliable statistics, NHANES over-samples persons 60 and older, adolescents, African Americans, and Hispanics.

W: Baseline Covariates

- ▶ When interview was conducted (November 1, 2009 April 30, 2010 or May 1, 2010 October 31, 2010)
- Gender
- Age in months (300-959 months, 25-79 years)
- Race/Ethnicity (Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, Other)
- Education Level (less than high school, high school/GED, some college, college and above)
- Marital Status (never married, married/living with partner, divorced/separated)
- Annual Household Income (less than or greater than \$20k)
- ▶ Body Mass Index from one year ago (continuous from 15-50)

A: Exposure Variable

- ► The subject's response to the question: "During the past 12 months, have you tried to lose weight?"
- Note that this does not restrict to dieting

Y: Response Variable

- ► The subject's response to the question: "How much sleep do you usually get at night on weekdays or workdays?
- ▶ Both A and Y sampled simultaneously, so temporal ordering is only assumed

Massaging the Data

- Deleted all people who refused to identify Race/Ethnicity, Education Level, Marital Status, Annual Household Income, dieting status
- ► Forced to coarsen the categories in Annual Household Income
- ► Collapsed Marital Status to Married/Living with a domestic partner vs. everything else
- Modified Education Level to 1) less than a high school diploma, 2) high school diploma/GED, 3) some college, and 4) college diploma or more

SCM and DAG

Our observational data structure is $O = (W, A, Y) \sim P_0$. With mild temporal assumptions, one SCM is:

$$W = f_W(U_W)$$

$$A = f_A(W, U_A)$$

$$Y = f_Y(W, A, U_Y)$$

Note: no assumptions made on func- independence assumptions tional forms of W, A, or Y.

Figure: Simplified DAG - no on U's.

Counterfactuals and Causal Quantities...

- Since the intervention is a point treatment, our counterfactual is Y_a: the average sleep one would get, if they, possibly contrary to fact, had (or had not) attempted to lose weight.
- ▶ We are interested in measuring the ATE of attempted weight lose on average sleep:

$$\Psi(P_{U,X}) = \mathbb{E}_{U,X}[Y_1] - \mathbb{E}_{U,X}[Y_0]$$

Identifiability

 Since Ψ is the ATE, we need to satisfy backdoor criterion to identify g-computation with Ψ:

$$Y_a \perp \!\!\! \perp A \mid W$$

- ▶ Need $U_A \perp \!\!\! \perp U_Y$ and either
 - $U_A \perp \!\!\!\perp U_W$ (semi-plausible)
 - $U_W \perp \!\!\!\perp U_Y$ (less plausible)

Statistical Models

- ▶ No assumptions on the functional forms of f_W , f_A , f_Y .
- ► Choose the (non-parametric) model, \mathcal{M} , of distributions compatible with our SCM.

Positivity Concerns

- ▶ We do not believe that trying to lose weight or not trying to lose weight occurs with probability 0 given any set of covariates W
- ► Practical positivity violations are a concern given *W* is high dimensional

Practical Positivity

- ightharpoonup Practical positivity violations for now only assessed on categorical variables $V\subset W$
 - Gender, Race/ethnicity, Education Level, Marital Status
- ▶ No members in our sample who tried to lose weight given:

Gender	Race	Education	Marital Status
Male	Other	Less than HS	Unmarried/not living with partner
Female	Other	HS	Married/living with partner

Estimands

Provided we can accept $U_A \perp \!\!\!\perp U_W$ or $U_W \perp \!\!\!\!\perp U_Y$, we have:

Simple Substitution:

$$\psi_0 \approx \frac{1}{n} \sum_{i=1}^n \widehat{\mathbb{E}} \left[Y \mid A = 1, W = W_i \right] - \widehat{\mathbb{E}} \left[Y \mid A = 0, W = W_i \right]$$

► IPTW:

$$\psi_0 \approx \frac{1}{n} \sum_{i=1}^n \left(\frac{I(A_i = 1)}{\hat{g}_n(A_i \mid W_i)} - \frac{I(A_i = 0)}{\hat{g}_n(A_i \mid W_i)} \right) Y_i$$

► TMLE:

$$\psi_0 pprox rac{1}{n} \sum_{i=1}^n \left(ar{Q}_n^1(1, W_i) - ar{Q}_n^1(0, W_i)
ight)$$

Estimation Procedures

Estimate $\bar{Q}_n^0(a, w) = \widehat{\mathbb{E}}(Y \mid A = a, W = w)$ (and $\hat{g}_n(a \mid w)$) via Super Learner with library:

SL.mean $Y \sim A$

SL.earth $Y \sim A \times Gender \times RaceEth + MarStat \times HHInc$

 ${\sf SL.rpartPrune} \quad + Age Months: Gender + EduLevel + Age Months$

SL.ridge $Y \sim A \times Gender \times MarStat$

SL.glmnet $Y \sim A \times Gender \times AgeMonths \times HHInc$

Table: Super Learner library

Preliminary Results

- ▶ Multistage survery design makes bootstraping more involved than usually the case.
- Individuals have survey weights associated to them, however we're unsure how to incorporate these weights during analysis
- ▶ High dimensionality of W makes assessing positivity difficult.
- The following analysis was performed using "simple random sampling" procedure during the bootstrap and equal weighting for individuals.

Figure: Histogram and Density estimate of weights from SuperLearner output of g_n .

Most of the mass of the weights in (0,7.5), but weights takes on value over 25 once.

Min.	25%	Median	Mean	75%	Max.
1.037	1.281	1.587	1.952	2.198	35.335

Table: Summary of distribution of weights

Figure: Q-Q plots for G-Comp and IPTW estimators against Normal

Results

Figure: 95% Confidence intervals based on Normal approximation...

	Estimate	95% Normal CI	95% Quantile CI
G-Comp	0.00983	(-0.05444, 0.07411)	(-0.04403, 0.07961)
IPTW	0.38282	(0.13473, 0.63091)	(0.40209, 0.89568)
TMLE	0.08175	(-0.01418, 0.17769)	(-0.01667, 0.16519)

Table: Results for naïve small sample bootstrap

Figure: 95% Confidence intervals based off of Bootstrap Quantiles...

Shortcomings

- Removed all missing data on a complete-case basis: deleted 2,832 people
- Should have more covariates (tv watching, prescription medicines, etc)
- Impossible to accurately bootstrap as it stands: did not account for survey weights
- Did not account for survey weights in our GLMs
- Difficult temporal ordering
- Identifiability implausible (U_W probably not independent of U_Y)
- Covariates do not have predictive power for Y: SuperLearner performs similarly to basic GLM