

UserSim: User Simulation via Supervised Generative Adversarial Network

Xiangyu Zhao¹, Long Xia², Lixin Zou³ Hui Liu¹, Dawei Yin³, Jiliang Tang¹

1: Data Science and Engineering Lab, Michigan State University
2: York University 3: Baidu

Reinforcement Learning for Recommendations

Increasing interests in applying Reinforcement Learning for recommendations

- Advantages
 - Continuously updating the recommendation strategies during the interactions
 - Maximizing the long-term reward from users

Real-time Feedback

The most practical and precise way is online A/B test

- Online A/B test is inefficient and expensive
 - Taking several weeks to collect sufficient data
 - Numerous engineering efforts
 - Bad user experience

Overview

- Simulating users' real-time feedback is challenging
 - Underlying distribution of item sequences is extremely complex
 - Data available to each user is rather limited

Generator

- Learning the data distribution
- Generating indistinguishable logs based on users' browsing history

Encoder

component

real action a

- Input layer
 - e_n: item's identifier embedding

Encoder

GRU layer:

Capturing user's preference from the sequence of items

Decoder

- Goal:
 - Predicting the item to be recommended

Discriminator

Distinguishing real/fake items

Real or Fake Item

real a or fake $G_{\theta}(s)$ Embedding

Optimization

Discriminator

$$L_D = L_D^{unsup} + \alpha \cdot L_D^{sup}$$

Optimization

Generator

Experimental Settings

- Pubilc benchmark datasets
 - Netflix and JD.com
 - 70%: training/validation set
 - 30%: test set
- 4 types of feedback
 - Real-positive
 - Real-negative
 - Fake-positive
 - Fake-negative
 - Real: real item from data
 - Fake: fake item from generator

Object	Netflix Prize	JD.com
# user (session)	480,189	283,228
# item	17,770	1,355,255
# interaction	100,480,507	97,713,660
# ave. length	209	345
# feedback	rating 1~5	skip, click

4~5: positive click: positive 1~3: negative skip: negative

Overall Performance

- Metric: F1-score
- Baselines: LR, UserSim-d, RecSim, RecoGym, Virtual-Taobao, GAN-PW, IRecGAN
- Generator can learn the item distribution, and generate fake items
- Discriminator can distinguish real and fake items, and predict user's feedback

RL-based Recommender Training

- Metric: average reward of a session
- Baselines: Historical Logs, IRecGAN

On-policy RL algorithms such as SARSA cannot be directly trained on historical data

- UserSim converges to the similar avg_reward with the one upon historical data
- UserSim performs much more stably than the one trained based upon IRecGAN

Conclusion

- We propose a novel user simulator based on Generative Adversarial Network
 - Generating real-time feedback like real users
 - Pre-training and evaluating new recommendation algorithms before launching them online

zhaoxi35@msu.edu

