Детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование.

Цель работы: Научиться реализовывать Интегрирование через ДЦВП.

Оборудование: компьютер, PascalABC, Creately, integral-calculator.

Задание 1.1

Постановка задачи: Решить данное интегрированное уравнение методом левых частей прямоугольника

Математическая модель:

Блок схема:

Список идентификаторов:

Переменная	Тип	Смысл	
а	real	Нижняя граница	
		интеграла	
b	real	Верхняя граница	
		интеграла	
n	integer	Кол-во разбиений	
i	integer	Доп. переменная	
h	real	шаг	
otv	real	Sum*h	
sum	real	Сумма левых частей	

Код программы на PascalABC.NET:

```
program left;
var n, i: integer;
var h, sum, otv, a, b: real;
begin
    read(a, b, n);
    h:=(b-a)/n;
    for i:=0 to n-1 do begin
        sum:=
sum+(sqrt(0.5*(a+i*h)+2)/(sqrt(2*(a+i*h)*(a+i*h)+1)+0.8));
    end;
    otv:=sum*h;
    write(otv);
end.
```

Задание 1.2

Постановка задачи: Решить данное интегрированное уравнение методом правых частей прямоугольника

Математическая модель:

Блок схема:

Список идентификаторов:

Переменная	Тип	Смысл	
a	real	Нижняя граница	
		интеграла	
b	real	Верхняя граница	
		интеграла	
n	integer	Кол-во разбиений	
i	integer	Доп. переменная	
h	real	шаг	
otv	real	Sum*h	
sum	real	Сумма правых частей	

Код программы на PascalABC.NET:

```
program right;
var n, i: integer;
var h, sum, otv, a, b: real;
begin
    read(a, b, n);
    h:=(b-a)/n;
    for i:=1 to n do begin
        sum:=
sum+(sqrt(0.5*(a+i*h)+2)/(sqrt(2*(a+i*h)*(a+i*h)+1)+0.8));
    end;
    otv:=sum*h;
    write(otv);
end.
```

<u>Задание 1.3</u>

Постановка задачи: Решить данное интегрированное уравнение методом трапеций прямоугольника

Математическая модель:

Бережной Михаил Александрович ИВТ 1-1 ЛРЗ

Блок схема:

Список идентификаторов:

Переменная	Тип	Смысл	
а	real	Нижняя граница	
		интеграла	
b	real	Верхняя граница	
		интеграла	
n	integer	Кол-во разбиений	
i	integer	Доп. переменная	
h	real	шаг	
otv	real	Sum*h	
sum	real	Сумма правых частей	

Код программы на PascalABC.NET:

```
program trpc;
var n, i: integer;
var h, sum, otv, a, b: real;
begin
    read(a, b, n);
    h:=(b-a)/n;
sum:=(sqrt(0.5*(a)+2)/(sqrt(2*(a)*(a)+1)+0.8)+sq
rt(0.5*(b)+2)/(sqrt(2*(b)*(b)+1)+0.8))/2;
    for i:=1 to n-1 do begin
sum:=sum+(sqrt(0.5*(a+i*h)+2)/(sqrt(2*(a+i*h)*(a+i*h)+1)+0.8));
    end;
    otv:=sum*h;
    write(otv);
end.
```

Задание 1.4

Постановка задачи: Решить данное интегрированное уравнение методом Симпсона прямоугольника

Математическая модель:

Бережной Михаил Александрович ИВТ 1-1 ЛР3

Блок схема:

Список идентификаторов:

Переменная	Тип	Смысл	
a	real	Нижняя граница	
		интеграла	
b	real	Верхняя граница	
		интеграла	
nch	real	Доп. переменная	
ch	real	Доп. переменная	
n	integer	Кол-во разбиений	
i	integer	Доп. переменная	
h	real	шаг	
otv	real	Sum*h	
sum	real	Сумма правых частей	

Код программы на PascalABC.NET:

```
program sims;
var n, i: integer;
var a,b,h,sum,otv,ch,nch: real;
begin
  read(a,b,n);
  h := (b-a)/n;
sum:=sqrt(0.5*(a)+2)/(sqrt(2*(a)*(a)+1)+0.8)+sqrt(0.5*(
b) +2) / (sqrt(2*(b)*(b)+1)+0.8);
  for i:=1 to n-1 do begin
nch:=nch+(sqrt(0.5*(a+i*h)+2)/(sqrt(2*(a+i*h)*(a+i*h)+1)
) + 0.8));
  end;
  i := 2;
  while i \le (n-2) do begin
ch:=ch+(sqrt(0.5*(a+i*h)+2)/(sqrt(2*(a+i*h)*(a+i*h)+1)+
0.8));
    i := i + 2;
  otv:= (sum+2*ch+4*nch)*h/3;
  write(otv);
end.
```

Результат вычислений:

n	h	Метод	Метод	Метод	Метод
		левых	правых	трапеций	Симпсона
		частей	частей		
10	0.08	0.544186481780811	0.529874506970589	0.5370304943757	0.823405053057798
100	0.008	0.537753748371426	0.536322550890404	0.537038149630915	0.887899660972366
1000	0.0008	0.537109787033163	0.536966667285061	0.537038227159112	0.894347326801269
10000	0.00008	0.537045383921894	0.537031071947083	0.537038227934489	0.894992074781578

Вывод:

Данный интеграл точнее всего решать методом трапеций, и чтобы увеличить точность – нужно увеличить n (кол-во разбиений)

Общий Вывод:

Я научился реализовывать интегрирование через ДЦВП.