1 Définitions

1.1 Produit scalaire sur un C-espace vectoriel

Définition 1

Soit E un \mathbb{C} -ev. Une application $\Phi: E \times E \to \mathbb{C}$ est un produit scalaire sur E si Φ est

• $lin\'eaire\ \grave{a}\ droite$: pour tout $(x,y,z)\in E^3$ et tout $\lambda\in\mathbb{C}$

$$\Phi(x, \lambda y + z) = \lambda \Phi(x, y) + \Phi(x, z)$$

• anti-linéaire à gauche : pour tout $(x, y, z) \in E^3$ et tout $\lambda \in \mathbb{C}$

$$\Phi(\lambda x + y, z) = \overline{\lambda}\Phi(x, z) + \Phi(y, z)$$

- $\bullet \ \ anti-sym\'etrique$: pour tout $(x,y)\in E^2, \ \Phi(x,y)=\overline{\Phi(y,x)}$
- positive : pour tout $x \in E$, $\Phi(x, x) \geqslant 0$
- définie: pour tout $x \in E$, $(\Phi(x, x) = 0) \Longrightarrow (x = 0)$.

1.2 Orthogonalité

Définition 2

Soit E un \mathbb{C} -espace vectoriel muni du produit scalaire $\langle \cdot, \cdot \rangle$. Deux vecteurs x et y de E sont dit orthogonaux pour $\langle \cdot, \cdot \rangle$ si $\langle x, y \rangle = 0$.

Définition 3

Soient E un \mathbb{C} -ev muni du produit scalaire $\langle \cdot, \cdot \rangle$ et (v_1, \dots, v_n) une famille de vecteurs de E. On dit que la famille (v_1, \dots, v_n) est une famille orthogonale si

$$\forall (i,j) \in \{1,\ldots,n\}^2, \quad i \neq j \Longrightarrow \langle v_i,v_j \rangle = 0$$

Elle est orthonormée si, de plus, pour tout $i \in \{1, ..., n\}, \langle v_i, v_i \rangle = 1$.

1.3 Espace \mathcal{D}

Notation

On note \mathcal{D} le sous- \mathbb{C} -espace vectoriel des fonctions 2π -périodiques de \mathbb{R} dans \mathbb{C} , composé des fonctions $f:\mathbb{R}\to\mathbb{C}$

- continues par morceaux,
- qui satisfont, en tout point de discontinuité $x, f(x) = \frac{f(x^+) + f(x^-)}{2}$

Proposition 1

L'application $\langle \cdot, \cdot \rangle : \mathcal{D} \times \mathcal{D} \to \mathbb{C}$ définie pour tout $(f, g) \in \mathcal{D}^2$ par

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} \overline{f(x)} g(x) dx$$

est un produit scalaire sur \mathcal{D} .

Proposition 2

La famille $(e_n)_{n\in\mathbb{Z}}$ est une famille orthonormée de \mathcal{D} où pour tout $n\in\mathbb{Z}$, e_n est la fonction de \mathbb{R} dans \mathbb{C} donnée par $t\mapsto e^{int}$.

1.4 Série de Fourier complexe

Définition 4

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction dans \mathcal{D} . On appelle série de Fourier complexe de f, la série de fonctions F(f) définie pour tout $N \in \mathbb{N}$ et tout $x \in \mathbb{R}$, par

$$F_N(f)(x) = \sum_{n=-N}^{N} c_n(f)e^{inx}$$

οù

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx$$

Les nombres complexes $c_n(f)$ sont appelés coefficients de Fourier complexes associés à f.