- Now.	let us focus	our otte	ntion back	k to Al	e 0/1	8
Knapsack	2 problem. 1 to identify	As a finet	step me	will p	erform	an
Exercise	to identify	that this	problem	can be	solved	using.
Dynamic	Programming	f ·				O

"How does one identify that DP can be applied to the 0/1 knapsack problem?"

let us frost take a look at what input has been provided to us to some the problem.

Input:

Capachty is provided as a variable

E 0 0 0 0 0 0 -- 3 a collection of items whose capacities and value in usp is provided as individual arrays: W[], P[]

hence our input is the
following for 0/1 KS:

problem

P()

the sample instance of the input we will take a look at here is the following:

W: 7 kg W[]: 1 3 4 5

PD: 1 4 5 7

Output: The output we want to have given an input instance is the "maximum profit/value" one could obtain by putting a subset of items in the bag