-Amendment to the Claims-

Amend claims 1, 3, 4, 8 - 11, 13, 15, 17, and 19; cancel claims 18 and 20 - 22; and add new claims 23 - 32 as follows:

1. (Currently amended): A compound of Formula (1.0.0):

- -j is 0 or 1; provided that when j is 0, n must be 2;
- -k is 0 or 1
- -m is 0, 1, or 2;
- -n is 1 or 2;
- -A has the following meanings:
- -(a) a member selected from the group consisting of partial Formulas (1.1.1) through (1.1.5):

- --"*" indicates the point of attachment of each partial Formula (1.1.1) through (1.1.5) to the remaining portion of Formula (1.0.0);
- --q is 1, 2, or 3, provided that where q is 2 or 3, R⁹ has the meaning of –H in at least one instance, or two instances, respectively;
- --v 0 or 1;
- --W³ is —O—; —N(R⁹)—, where R⁹ has the same meaning as defined below; or —OC(=O)—;

- --R⁷ is a member independently selected from the group consisting of
 - the following: —

- --(1) -H;
- $-(C_1-C_6)$ alkyl; $-(C_2-C_6)$ alkenyl; or $-(C_2-C_6)$ alkynyl; where said alkyl, alkenyl or alkynyl is substituted by 0 to 3 substituents R¹⁰;

- where -

--- R^{10} is a member selected from the group consisting of phenyl; pyridyl; -F; -Cl; -CF₃; oxo (=O); -OR¹⁶; -NO₂; -CN; -C(=O)OR¹⁶; -O-C(=O)R¹⁶; -C(=O)NR¹⁶R¹⁷; -O-C(=O)NR¹⁶R¹⁷; -NR¹⁶C(=O)R¹⁷; -NR¹⁶C(=O)OR¹⁷; -NR¹⁶S(=O)₂R¹⁷; and -S(=O)₂NR¹⁶R¹⁷; where said phenyl or pyridyl is substituted by 0 to 3 R¹²;

- where -

- ---- R^{12} is -F; -Cl; -CF₃; -CN; -NO₂; -OH; -(C₁-C₃) alkoxy; -(C₁-C₃) alkyl; or -NR¹⁶R¹⁷; -- and --
- ----R¹⁶ and R¹⁷ are each a member independently selected from the group consisting of –H; –(C₁-C₄) alkyl; –(C₂-C₄) alkenyl; –(C₃-C₆) cycloalkyl; phenyl; benzyl; and pyridyl; wherein said alkyl, alkenyl, cycloalkyl, phenyl, benzyl, or pyridyl is substituted by 0 to 3 substituents selected from the group consisting of –F, –Cl, –CF₃, –CN, and -(C₁-C₃) alkyl;
- -(3) $-(CH_2)_u$ - $(C_3$ - $C_7)$ cycloalkyl where u is 0, 1 or 2; and further where said $(C_3$ - $C_7)$ cycloalkyl is substituted by 0 to 3 substituents R^{10} where R^{10} has the same meaning as defined above;

— and —

- --(4) phenyl or benzyl, where said phenyl or benzyl is independently substituted by 0 to 3 substituents R¹⁰ where R¹⁰ has the same meaning as defined above;
- --R⁸ is a member independently selected from the group consisting of

- the following: -

---(1) tetrazol-5-yl; 1,2,4-triazol-3-yl; 1,2,4-triazol-3-on-5-yl; 1,2,3-triazol-5-yl; imidazol-2-yl; imidazol-4-yl; imidazolidin-2-on-4-yl; 1,2,4-oxadiazol-3-yl; 1,2,4-oxadiazol-5-on-3-yl; 1,2,4-oxadiazol-5-yl; 1,2,4-oxadiazol-3-on-5-yl; 1,3,4-oxadiazolyl; 1,3,4-oxadiazol-2-on-5-yl; oxazolyl; isoxazolyl; pyrrolyl; pyrazolyl; succinimidyl; glutarimidyl; pyrrolidonyl; 2-piperidonyl; 2-pyridonyl; 4-pyridonyl; pyridazin-3-onyl; thiazolyl; isothiazolyl; thiadiazolyl; morpholinyl; parathiazinyl; pyridyl; pyrimidinyl; pyrazinyl; pyridazinyl;

---(2) indolyl; indolinyl; isoindolinyl; benzo[b]furanyl; 2,3-dihydrobenzofuranyl; 1,3-dihydroisobenzofuranyl; 2H-1-benzopyranyl; 2-H-chromenyl; chromanyl; benzothienyl; 1H-indazolyl; benzimidazolyl; benzoxazolyl; benzisoxazolyl; benzothiazolyl; benzotriazolyl; benzotriazinyl; phthalazinyl; 1,8-naphthyridinyl; quinolinyl; isoquinolinyl; quinazolinyl; quinoxalinyl; pyrazolo[3,4-d]pyrimidinyl; pyrimido[4,5-d]pyrimidinyl; imidazo[1,2-a]pyridinyl; pyridopyridinyl; pteridinyl; and 1H-purinyl;

- where -

any moiety recited in (1) or (2) above is optionally substituted with respect to (i) any one or more carbon atoms thereof optionally by a substituent R¹⁴ where R¹⁴ has the same meaning as defined below; (ii) any one or more nitrogen atoms thereof that is not a point of attachment of said moiety, optionally by a substituent R¹⁵ where R¹⁵ has the same meaning as defined below, and all tautomer forms, and optionally N-oxide forms, thereof; and (iii) any sulfur atom thereof that is not a point of attachment of said moiety, by 0, 1, or 2 oxygen atoms;

- and further where -

---- R^{14} is a member selected from the group consisting of $-(C_1-C_4)$ alkyl; $-(C_3-C_7)$ cycloalkyl; phenyl; benzyl; pyridyl; and quinolinyl; where said alkyl, cycloalkyl, phenyl, benzyl, pyridyl, or quinolinyl is substituted by 0, 1, or 2 substituents -F, -Cl, $-CH_3$, $-OR^{16}$, $-NO_2$, -CN, or $-NR^{16}R^{17}$; and said R^{14} group further consists of -F; -Cl; $-CF_3$; oxo (=O); $-OR^{16}$; $-NO_2$; -CN; $-C(=O)OR^{16}$; $-O-C(=O)R^{16}$; $-C(=O)NR^{16}R^{17}$; $-O-C(=O)NR^{16}R^{17}$; $-NR^{16}C(=O)CR^{17}$; $-NC^{17}C(=O)CR^{17}$; $-NC^{17}C(=O)CR^{17}$; $-NC^{17}C(=O)CR^{17}$; $-NC^{17}C(=O)CR^{17}$; $-NC^{17}C(=O)CR^{17}C(=O)CR^{17}$; $-NC^{17}C(=O)CR^{17}C(=O)C$

- and still further where -

---- R^{15} is a member independently selected from the group consisting of -H; $-NR^{16}R^{17}$; $-C(=O)R^{16}$; $-OR^{16}$; $-(C_1-C_4)$ alkyl $-OR^{16}$; $-C(=O)OR^{16}$; $-(C_1-C_2)$ alkyl $-C(=O)OR^{16}$; $-C(=O)NR^{16}R^{17}$; $-(C_1-C_4)$ alkyl; $-(C_2-C_4)$ alkenyl; $-(CH_2)_u-(C_3-C_7)$ cycloalkyl where u is 0, 1 or 2; phenyl; benzyl; pyridyl; and quinolinyl; wherein said alkyl, alkenyl, alkoxy, cycloalkyl, phenyl, benzyl, pyridyl or quinolinyl is substituted with 0 to 3 substituents R^{11} ; where R^{16} and R^{17} have the same meanings as defined above; and

- where -

----- R^{11} is a member independently selected from the group consisting of -F; -CI; $-CO_2R^{18}$; $-OR^{16}$; -CN; $-C(=O)NR^{18}R^{19}$; $-NR^{18}R^{19}$; $-NR^{18}C(=O)R^{19}$; $-NR^{18}C(=O)R^{19}$; $-NR^{18}S(=O)_pR^{19}$; $-S(=O)_pNR^{18}R^{19}$, where p is 1 or 2; $-(C_1-C_4)$ alkyl; and $-(C_1-C_4)$ alkoxy, where R^{11} has the meaning of $-OR^{16}$ above and R^{16} is defined as $-(C_1-C_4)$ alkyl; wherein said alkyl and alkoxy are each independently substituted with 0 to 3 substituents independently selected from -F; -CI; $-(C_1-C_2)$ alkoxycarbonyl; $-(C_1-C_2)$ alkylcarbonyloxy;

- ----- R^{18} and R^{19} are independently selected from the group consisting of -H; $-(C_1-C_4)$ alkyl; and phenyl;
- --R⁹ is a member selected from the group consisting of -H; $-(C_1-C_4)$ alkyl; $-(C_3-C_7)$ cycloalkyl; phenyl; benzyl; pyridyl; $-C(=O)OR^{18}$; $-C(=O)R^{18}$; $-C(=O)R^{18}$; $-C(=O)R^{18}$; and $-(C_1-C_2)$ alkyl $-C(=O)OR^{18}$; where R¹⁸ has the same meaning as defined above;

— or A has the meaning —

-(b) a moiety comprising a member selected from the group consisting of -O-P(=O)(OH)₂ (phosphoric); -PH(=O)OH (phosphinic); -P(=O)(OH)₂ (phosphonic); $-[P(=O)(OH)-O(C_1-C_4) \text{ alkyl}]$ (alkylphosphono); $-P(=O)(OH)-O(C_1-C_4) \text{ alkyl})$ (alkylphosphinyl); - $P(=O)(OH)NH_2$ (phosphoramido); $-P(=O)(OH)NH(C_1-C_4)$ alkyl and $-P(=O)(OH)NHR^{25}$ (substituted phosphoramido); -O-S(=O)₂OH (sulfuric); -S(=O)₂OH (sulfonic); -S(=O)₂NHR²⁵ (arylsulfonamido); -S(=O)2NHR²⁶; and acylsulfonamido selected from the group consisting of $-C(=O)NHS(=O)_2R^{26}$; $-C(=O)NHS(=O)_2NH_2;$ $-C(=O)NHS(=O)_2(C_1-C_4)$ alkyl; $-C(=O)NHS(=O)_2NH(C_1-C_4)$ alkyl; $-C(=O)NHS(=O)_2N[(C_1-C_4) \text{ alkyl}]_2;$ $-S(=O)_2NHC(=O)(C_1-C_4)$ alkyl; $-S(=O)_2NHC(=O)NH(C_1-C_4)$ alkyl; $-S(=O)_2NHC(=O)NH_2;$ $-S(=O)_2NHC(=O)N[(C_1-C_4) \text{ alkyl}]_2; -S(=O)_2NHC(=O)R^{25}; -S(=O)_2NHCN; -S(=O)_2NHC(=S)NH_2; -S(=O)_2NH_2; -S(=O)$ $S(=O)_2NHC(=S)NH(C_1-C_4)$ alkyl; $-S(=O)_2NHC(=S)N[(C_1-C_4)$ alkyl]₂; and $-S(=O)_2NHS(=O)_2R^{25}$;

- where -

- --- R^{25} is -H; -(C_1 - C_4) alkyl; phenyl; or -OR¹⁸;
- -W is -O-; -S(=O)_t-- , where t is 0, 1, or 2; or -N(\mathbb{R}^3)- where \mathbb{R}^3 has the same meaning as defined below;
- -Y is =C(R¹_a)—, where R¹_a—has the same meaning as defined below; or -[N⇒(O)_k]—where k is 0 or 1;

- where -

-- R_a^1 is a member selected from the group consisting of -H; -F; -Cl; -CN; -NO₂; - (C₁-C₄) alkyl; -(C₂-C₄) alkynyl; fluorinated-(C₁-C₃) alkyl; fluorinated-(C₁-C₃) alkoxy; -OR¹⁶; and -C(=O)NR¹²_aR¹²_b;

- where -

- - R^A and R^B are each a member independently selected from the group consisting of -H; -F; -CF₃; -(C₁-C₄) alkyl; -(C₃-C₇) cycloalkyl; phenyl; and benzyl; wherein said cycloalkyl,

phenyl, and benzyl moieties are each independently substituted with 0 to 3 substituents R¹⁰ where R¹⁰ has the same meaning as defined above;

— or —

-R^A and R^B are taken together, but only in the case where m is 1, to form a spiro moiety of Formula (1.2.0):

$$_{r}(H_{2}C)$$
 X^{A}
 $(CH_{2})_{s}$

(1.2.0)

— where —

--r and s are independently 0 to 4 provided that the sum of r + s is at least 1 but not greater than 5;

- and -

- --X^A is -CH₂-, -CHR¹²-, or -C(R¹²)₂- where each R¹² is selected independently of the other and each has the same meaning as defined above; -NR¹⁵-, where R¹⁵ has the same meaning as defined above; -O-; or -S(=O)_t, where t is 0, 1, or 2; and said spiro moiety is substituted as to any one or more carbon atoms thereof by 0 to 3 substituents R¹⁴, as to a nitrogen atom thereof by 0 or 1 substituent R¹⁵, and as to a sulfur atom thereof by 0 or 2 oxygen atoms;
- -R^C and R^D have the same meaning as defined above for R^A and R^B except that one of them must be -H, and they are selected independently of each other and of R^A and R^B;
- -R¹ and R² may individually or together appear on any ring or rings comprising a meaning of the moiety B² as defined below, and R¹ and R² are each a member independently selected from the group consisting of -H; -F; -Cl; -CN; -NO₂; -(C₁-C₄) alkyl; -(C₂-C₄) alkynyl; fluorinated-(C₁-C₃) alkyl; -OR¹⁶; and -C(=O)NR¹²_aR¹²_b; where R¹²_a and R¹²_b have the same meanings as defined above;
- -R³ is -H; -(C₁-C₃) alkyl; phenyl; benzyl; or -OR¹⁶, where R¹⁶ has the same meaning as defined above;
- -R⁴, R⁵ and R⁶ may individually or together appear on any ring or rings comprising a meaning of the moiety B' as defined below, and R⁴, R⁵ and R⁶ are each a member independently selected from the group consisting of

 $-(a) \qquad \qquad -H; \text{ provided that } R^5 \text{ and } R^6 \text{ are not both } -H \text{ at the same time; } -F; -CI; \\ -(C_2-C_4) \text{ alkynyl; } -R^{16}; -OR^{16}; -S(=O)_pR^{16}; -C(=O)R^{16}; -C(=O)OR^{16}; -OC(=O)R^{16}; -CN; -NO_2; \\ -C(=O)NR^{16}R^{17}; \qquad -OC(=O)NR^{16}R^{17}; \qquad -NR^{12}{}_aC(=O)NR^{16}R^{17}; \qquad -NR^{12}{}_aC(=NR^{12})NR^{16}R^{17}; \\ -NR^{12}{}_aC(=NCN)NR^{16}R^{17}; \qquad -NR^{12}{}_aC(=N-NO_2)NR^{16}R^{17}; \qquad -C(=NR^{12}{}_a)NR^{16}R^{17}; \\ -CH_2C(=NR^{12}{}_a)NR^{16}R^{17}; -OC(=NR^{12}{}_a)NR^{16}R^{17}; -OC(=N-NO_2)NR^{16}R^{17}; -NR^{16}R^{17}; -CH_2NR^{16}R^{17}; \\ -NR^{12}{}_aC(=O)R^{16}; \quad -NR^{12}{}_aC(=O)OR^{16}; \quad =NOR^{16}; \quad -NR^{12}{}_aS(=O)_pR^{17} \quad -S(=O)_pNR^{16}R^{17}; \text{ and } -CH_2C(=NR^{12}{}_a)NR^{16}R^{17}; \end{aligned}$

- where -

--p is 0, 1, or 2; and R¹²_a, R¹⁶, and R¹⁷ have the same meanings as defined above;

-(C_1 - C_4) alkyl; and -(C_1 - C_4) alkoxy, where R^4 , R^5 , or R^6 has the meaning of -OR¹⁶ under (A) above and R^{16} is defined as -(C_1 - C_4) alkyl; wherein said alkyl and alkoxy are each independently substituted with 0 to 3 substituents -F or -Cl; or 0 or 1 substituent (C_1 - C_2) alkoxycarbonyl-; (C_1 - C_2) alkylcarbonyl-; or (C_1 - C_2) alkylcarbonyloxy-;

— and —

an aryl or heterocyclyl moiety selected from the group consisting of phenyl; benzyl; furanyl; tetrahydrofuranyl; oxetanyl; thienyl; tetrahydrothienyl; pyrrolyl; pyrrolidinyl; oxazolyl; oxazolidinyl; isoxazolyl; isoxazolidinyl; thiazolyl; thiazolyl; imidazolyl; isothiazolyl; isothiazolyl; pyrazolyl; pyrazolidinyl; oxadiazolyl; thiadiazolyl; imidazolyl; imidazolyl; pyridinyl; pyridinyl; pyridazinyl; piperidinyl; piperazinyl; triazolyl; triazinyl; tetrazolyl; pyranyl; azetidinyl; morpholinyl, parathiazinyl; indolyl; indolinyl; benzo[b]furanyl; 2,3-dihydrobenzofuranyl; 2-H-chromenyl; chromanyl; benzothienyl; 1-H-indazolyl; benzimidazolyl; benzoxazolyl; benzisoxazolyl; benzthiazolyl; quinolinyl; isoquinolinyl; phthalazinyl; quinazolinyl; quinoxalinyl; and purinyl; wherein said aryl and heterocyclyl moieties are each independently substituted with 0 to 2 substituents R¹⁴ where R¹⁴ has the same meaning as defined above;

— or in the case where B' is phenyl —

-(d) R⁵ and R⁶ are taken together to form a moiety which is a member selected from the group consisting of partial Formulas (1.3.1) through (1.3.15):

- --R²⁰ and R²¹ are each a member independently selected from the group consisting of -H; -F; -Cl; -CH₃; -CH₂F; -CHF₂; -CF₃; -OCH₃; and -OCF₃;
- -B¹ is a moiety comprising a saturated or unsaturated carbon ring system that is 3to 7-membered monocyclic, or that is 7- to 12-membered, fused or discontinuous, polycyclic;
 wherein optionally one carbon atom thereof may be replaced by a heteroatom selected from N,
 O, and S; and where N is selected, optionally a second carbon atom thereof may be replaced
 by a heteroatom selected from N, O, or S;

--- wherein ---

said moiety defining B^1 is substituted on any ring or rings thereof by R^4 , R^5 and R^6 , which have the same meaning as defined above;

-B² is a moiety comprising a saturated or unsaturated carbon ring system that is 3-to 7-membered monocyclic, or that is 7- to 12-membered, fused or discontinuous, polycyclic; wherein optionally one carbon atom thereof may be replaced by a heteroatom selected from N, O, and S; and where N is selected, optionally a second carbon atom thereof may be replaced by a heteroatom selected from N, O, or S;

- wherein -

said moiety defining B^2 is substituted on any ring or rings thereof by R^1 and R^2 , which have the same meaning as defined above;

provided that when m is 0 and W is O, A is not COOH;

a pharmaceutically acceptable salt thereof.

2. (Original): A compound according to Claim 1 wherein A is a moiety of partial Formula (1.1.4) where v is 0 or 1, and R⁸ is a member selected from the group consisting of partial Formulas (1.1.11) through (1.1.38):

wherein "*" indicates the point of attachment of each partial Formula (1.1.11) through (1.1.38) to the remaining portion of Formula (1.0.0); and wherein each carbon atom of partial Formulas (1.1.11) through (1.1.38) is optionally substituted by a substituent R¹⁴; and wherein R¹⁴ and R¹⁵ have the same meaning as defined in Claim 1; and all tautomer forms, and optionally N-oxide forms, thereof.

3. (Currently amended): A compound according to Claim 2 wherein R⁸ is a member selected from the group consisting of the following partial Formulas:

4. (Currently amended): A compound according to Claim 3 wherein R⁸ is a member selected from the group consisting of the following partial Formulas:

5. (Original): A compound according to Claim 2 wherein R⁸ is a member selected from the group consisting of partial Formulas (4.8.1) through (4.8.80):

6. A compound according to Claim 1 wherein the group A is a (Original): moiety of partial Formula (1.1.4) and v is 0 or 1, wherein the moiety R8 is a bicyclic heterocyclic group selected from the group consisting of indolyl; indolinyl; isoindolinyl; benzo[b]furanyl; 2,3dihydrobenzofuranyl; 1,3-dihydroisobenzofuranyl; 2H-1-benzopyranyl; 2-H-chromenyl; chromanyl; benzothienyl; 1H-indazolyl; benzimidazolyl; benzoxazolyl; benzisoxazolyl; benzothiazolyl; benzotriazolyl; benzotriazinyl; phthalazinyl; 1,8-naphthyridinyl; quinolinyl; isoquinolinyl; quinazolinyl; quinoxalinyl; pyrazolo[3,4-d]pyrimidinyl; pyrimido[4,5-d]pyrimidinyl; imidazo[1,2-a]pyridinyl; pyridopyridinyl; pteridinyl; and 1*H*-purinyl.

A compound according to Claim 6 wherein said R⁸ moiety is a 7. (Original): member selected from the group consisting of partial Formulas (5.0.1) through (5.0.28):

(5.0.2)

indolinyl

1,3-dihydroisobenzofuranyl; phthalanyl (5.0.6)

1H-indazolyl (5.0.10)

benzothiazolyl (5.0.14)

isoquinolinyl (5.0.18)

quinoxalinyl

Isoindolinyi (5.0.3)

2H-1-benzopyranyl

Benzimidazolyl (5.0.11)

2H-1,2-benzothiazinyl (5.0.15)

1,8-naphthyridinyl (5.0.19)

1*H*-pyrazolo[3,4-*d*]pyrimidinyl (5.0.23)

benzo[b]furanyl (5.0.4)

chromanyl

(5.0.8)

benzoxazolyl (5.0.12)

benzotriazolyl (5.0.16)

phthalazinyl (5.0.20)

pyrimido[5,4-d]pyrimidinyl (5.0.24)

lmidazo-[1,2- <i>a</i>]- pyridinyl (5.0.25)	pyridopyridinyl	Pteridinyl	1 <i>H</i> -purinyl
	(5.0.26)	(5.0.27)	(5.0.28)

where "*" indicates the point of attachment to the remaining portion of Formula (1.0.0); and where each carbon atom is optionally substituted by a substituent R¹⁴; and where R¹⁴ and R¹⁵ have the same meaning as defined in Claim 1; and all tautomer forms, and optionally N-oxide forms, thereof.

8. (Currently amended): A compound according to Claim 1 wherein the moiety B¹ is phenyl and R⁵ and R⁶ are taken together to form a moiety which is a member selected from the group consisting of partial Formulas (1.3.1), (1.3.11), (1.3.12), and (1.3.15):

9. (Currently amended): A compound according to Claim 1 wherein B^1 and the substituents R^4 , R^5 , and R^6 are selected in such a way that the left-hand terminus of said compound of Formula (1.0.0) is represented by the following partial Formulas (1.8.1) through (1.8.72):

10. (Currently amended): A compound according to Claim 1 wherein ${\bf B}^2$ and the substituents ${\bf R}^1$ and ${\bf R}^2$ are selected in such a way that this portion of the right-hand terminus of said compound of Formula (1.0.0) is represented by the following partial Formulas (3.0.1) through (3.0.47):

- are independently phenyl or pyridyl; m is 1; n is 1; A is a moiety of partial Formula (1.1.1) where R^7 is -H, or -CH₃ or phenyl independently substituted by 0 or 1 R^{10} where R^{10} is phenyl or pyridyl substituted by 0-2 of -F, -Cl, -OCH₃, -CN, -NO₂, or -NR¹⁶R¹⁷ where R^{16} and R^{17} are -H or -CH₃; or R^{10} is -F, -Cl, -CF₃, -CN, -OCH₃, -NO₂, or -C(=O)OR¹⁶, -NR¹⁶R¹⁷, or -S(=O)₂NR¹⁶R¹⁷ where R^{16} and R^{17} are -H or -CH₃; R^{9} is -H or -CH₃; R^{9} is -O-; Y is -C(R^{4}) -; R^{1} is -H, or -F; R^{1} and R^{17} are independently -H or -CH₃; or R^{17} and R^{17} are taken together to form a -(C₃-C₇) cycloalkyl-spiro moiety; one of R^{17} and R^{17} is -H and the other is -H or -CH₃; R^{17} and R^{17} are -H, -F, or -OCH₃; R^{17} is -H or -CH₃; and R^{17} is -H and the other is -H or -CH₃; R^{17} and R^{17} are -H, -F, or -OCH₃; R^{17} is -H or -CH₃; and R^{17} is -H and the other is -H or -CH₃; R^{17} and R^{17} are -H, -F, or -OCH₃; R^{17} is -H or -CH₃; and R^{17} is -H and the other is -H or -CH₃; R^{17} and R^{17} are -H, -F, or -OCH₃; R^{17} is -H or -CH₃; and R^{17} is -H and the other is -H or -CH₃; R^{17} and R^{17} are -H, -F, or -OCH₃; R^{17} is -H or -CH₃; and R^{17} is -H and the other is -H or -CH₃; R^{17} and R^{17} are -H or -CH₃; R^{17} and R^{18} are taken together to form a moiety of partial Formula (1.3.1), (1.3.2), (1.3.11), (1.3.12), or (1.3.15).
- 12. (Original): A compound according to Claim 11 wherein R^7 is -H; R^9 is -H; R^4 and R^8 are both -CH₃, or taken together are a cyclopropyl-spiro moiety; R^C and R^D are both -H; R^3 is -H; R^4 is -H; R^5 is -H, -F, -CI, -CN, -OCH₃, -C(=O)CH₃, or -NO₂; R^6 is -H, provided that R^5 and R^6 are not both -H at the same time, or -F; or R^5 and R^6 are taken together to form

a moiety of partial Formula (1.3.1), or partial Formula (1.3.11) where R^{23} and R^{24} are both absent.

- are independently-phenyl er-pyridyl; m is 1; n is 1; A is a moiety of partial Formula (1.1.3) where R^7 is -H, or -CH₃ or phenyl independently substituted by 0 or 1 R^{10} where R^{10} is pyridyl or phenyl substituted by 0-2 of -F, -Cl, -OCH₃, -CN, -NO₂, or -NR¹⁶R¹⁷ where R^{16} and R^{17} are -H or -CH₃; or R^{10} is -F, -Cl, -CF₃, -CN, -OCH₃, -NO₂, -C(=O)OR¹⁶, -NR¹⁶R¹⁷, or -S(=O)₂NR¹⁶R¹⁷ where R^{16} and R^{17} are -H or -CH₃; R^{10} is -H or -CH₃; R^{10} is -H or -CH₃; or R^{10} are taken together to form a -(C₃-C₇) cycloalkyl-spiro moiety; one of R^{10} and R^{10} is -H and the other is -H or -CH₃; R^{10} and R^{10} are not both -H at the same time, -F, -Cl, -OCH₃, -CN; -NO₂, or -C(=O)R³ or -C(=O)OR³ where R^{10} is -CH₃; or R^{10} and R^{10} are taken together to form a R^{10} is -H at the same time, -F, -Cl, -OCH₃, -CN; -NO₂, or -C(=O)R³ or -C(=O)OR³ where R^{10} is -CH₃; or R^{10} and R^{10} are taken together to form a moiety of partial Formula (1.3.1), (1.3.2), (1.3.3), (1.3.11), (1.3.12), or (1.3.15), where for partial Formulas (1.3.11), (1.3.12), and (1.3.15), R^{10} and R^{10} are both absent.
- 14. (Original): A compound according to Claim 13 wherein R^7 is -H; R^9 is -H; R^8 and R^8 are taken together to form a cyclopropyl-spiro or cyclobutyl-spiro moiety; R^C and R^D are both -H; R^3 is -H; R^4 and R^5 are both -H, and R^6 is -F; or R^5 and R^6 are taken together to form a moiety of partial Formula (1.3.1) or (1.3.11).
- (Currently amended): A compound according to Claim 1 wherein B' and B2 15. are independently phenyl or pyridyl; m is 1; n is 1; A is a moiety of partial Formula (1.1.4) where v is 0 or 1, and R⁸ is tetrazol-5-vl, 1,2,4-triazol-3-yl, 1,2,4-triazol-3-on-5-yl, 1,2,3-triazol-5-yl, imidazol-2-yl, imidazol-4-yl, imidazolidin-2-on-4-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-on-3yl, 1,2,4-oxadiazol-5-yl, 1,2,4-oxadiazol-3-on-5-yl, 1,3,4-oxadiazolyl, 1,3,4-oxadiazol-2-on-5-yl, oxazolyl, isoxazolyl, pyrrolyl, pyrazolyl, succinimidyl, glutarimidyl, pyrrolidonyl, 2-piperidonyl, 2pyridonyl, 4-pyridonyl, pyridazin-3-onyl, thiadiazolyl, parathiazinyl, pyridyl, pyrimidinyl, pyrazinyl, or pyridazinyl, all of which are independently substituted by 0 or 1 R¹⁴ where R¹⁴ is -(C₁-C₃) alkyl, phenyl, or pyridyl, each of which is independently substituted by 0-2 of -F, -Cl, -OCH₃, -CN, -NO₂, or -NR¹⁶R¹⁷ where R¹⁶ and R¹⁷ are -H or -CH₃; or R¹⁴ is -F, -Cl, -CF₃, -CN, -OCH₃, -NO₂, or -C(=0)OR¹⁶, -NR¹⁶R¹⁷, or -S(=0)₂NR¹⁶R¹⁷ where R¹⁶ and R¹⁷ are -H or -CH₃; R⁹ is -H or -CH₃; W is -O-; Y is $-C(R^4_a)$ —; R^1_a is -H; or -F; R^A and R^B are independently -H or $-CH_3$; or R^A and R^B are taken together to form a -(C₃-C₇) cycloalkyl-spiro moiety; one of R^C and R^D is -H and the other is -H or -CH₃; R¹ and R² are -H, -F, or -OCH₃; R³ is -H or -CH₃; and R⁴, R⁵ and R⁶ are -H provided that R⁵ and R⁶ are not both -H at the same time, -F, -CI, -OCH₃, -CN;

-NO₂, or -C(=O)R³ or -C(=O)OR³ where R³ is -CH₃; or R⁵ and R⁶ are taken together to form a moiety of partial Formula (1.3.1), (1.3.2), (1.3.3), (1.3.11), (1.3.12), or (1.3.15).

- 16. (Original): A compound according to Claim 15 wherein v is 0, R^8 is tetrazol-5-yl, 1,2,3-triazol-5-yl, or pyridyl; R^C and R^D are both –H; R^3 is –H; R^4 and R^5 are both H, and R^6 is –F; or R^5 and R^6 are taken together to form a moiety of partial Formula (1.3.1) or (1.3.11).
- 17. (Currently amended): A compound of according to Claim 1 wherein said compound is a member selected from the group consisting of the following:
- [4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-acetic acid methyl ester-of Formula (6.0.30);
- 2-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-2-methyl-propionic acid methyl ester of Formula (6.0.31);
- 2-[4-({[2-(4-Fluoro-phenoxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-2-methyl-propionic acid methyl ester-of Formula (6.0.32);
- [3-Fluoro-4-({[2-(4-fluoro-phenoxy)-pyridine-3-carbonyl]- amino}-methyl)-phenyl]-acetic acid methyl ester of Formula (6.0.35);
- 1-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-cyclobutanecarboxylic acid ethyl ester of Formula (6.0.36);
- 1-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-cyclopropanecarboxylic acid ethyl ester of Formula (6.0.37);
- [4-({[2-(Benzo[1,3]dioxol-5-yloxy)-5-fluoro-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-acetic acid methyl ester of Formula (6.0.38);
- 1-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-cyclopropanecarboxylic acid ethyl ester of Formula (6.0.39);
- 2-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-2-methyl-propionic acid of Formula (6.5.1);
- 2-[4-({[2-(4-Fluoro-phenoxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-2-methyl-propionic acid of Formula (6.5.2);
- 1-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-cyclobutanecarboxylic acid of Formula (6.5.3);
- 2-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-2-methyl-propionic acid of Formula (6.5.4);

- 2-[3-Fluoro-4-({[2-(4-fluoro-phenoxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-2-methyl-propionic acid of Formula (6.5.5);
- 1-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-cyclopropanecarboxylic acid of Formula (6.5.6);
- 2-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-propionic acid of Formula (6.5.7);
- 2-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-methoxy-phenyl]-2-methyl-propionic acid of Formula (6.5.8);
- 2-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-5-fluoro-pyridine-3-carbonyl]-amino}-methyl)-3-methoxy-phenyl]-2-methyl-propionic acid of Formula (6.5.9);
- 2-[4-({[2-(4-Fluoro-phenoxy)-pyridine-3-carbonyl]-amino}-methyl)-3-methoxy-phenyl]-2-methyl-propionic acid of Formula (6.5.10);
- [3-Fluoro-4-({[2-(4-fluoro-phenoxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-acetic acid of Formula (6.5.11);
- [4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-acetic acid of Formula (6.5.12);
- 1-[4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-cyclopropanecarboxylic acid of Formula (6.5.13);
- [4-({[2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-acetic acid of Formula (6.5.14);
- [4-({[2-(3-Cyano-phenoxy)-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-acetic acid of Formula (6.5.15);
- [4-({[2-(Benzo[1,3]dioxol-5-yloxy)-5-fluoro-pyridine-3-carbonyl]-amino}-methyl)-3-fluoro-phenyl]-acetic acid of Formula (6.5.16);
- 2-[4-({[2-(Benzo[2,1,3]oxadiazol-5-yloxy)-pyridine-3-carbonyl]-amino}-methyl)-phenyl]-2-methyl-propionic acid-of Formula (6.5.17);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-[4-(1-carbamoyl-1-methyl-ethyl)-benzyl]-nicotinamide—ef Formula (6.5.18);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-(4-carbamoylmethyl-benzyl)-nicotinamide of Formula (6.5.19);
- N-(4-Carbamoylmethyl-2-fluoro-benzyl)-2-(4-fluoro-phenoxy)-nicotinamide—of Formula (6.5.20);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-[4-(1-carbamoyl-1-methyl-ethyl)-2-fluoro-benzyl]-nicotinamide of Formula (6.5.21);

- N-[4-(1-Carbamoyl-1-methyl-ethyl)-2-fluoro-benzyl]-2-(4-fluoro-phenoxy)-nicotinamide—of Formula (6.5.22);
- 2-(4-Fluoro-phenoxy)-N-[2-fluoro-4-(1H-tetrazol-5-ylmethyl)-benzyl]-nicotinamide————of Formula (6.5.23);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-[4-(1-methyl-1-methylcarbamoyl-ethyl)-benzyl]-nicotin-amide-of Formula (6.5.24);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-{4-[1-(cyclopropylmethyl-carbamoyl)-1-methyl-ethyl]-benzyl}-nicotinamide of Formula (6.5.25);
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-[4-(1-ethylcarbamoyl-1-methyl-ethyl)-benzyl]-nicotin-amide-of-Formula (6.5.26);
 - 2-(4-Fluoro-phenoxy)-N-[4-(1H-tetrazol-5-yl)-benzyl]-nicotinamide-of Formula (6.5.27);
- 2-(4-Fluoro-phenoxy)-N-{4-[1-methyl-1-(1H-tetrazol-5-yl)-ethyl]-benzyl}-nicotinamide—of Formula (6.5.28);
- N-{2-Fluoro-4-[1-methyl-1-(1H-tetrazol-5-yl)-ethyl]-benzyl}-2-(4-fluoro-phenoxy)-nicotinamide of Formula (6.5.29);
- 5-Chloro-2-(4-fluoro-phenoxy)-N-{4-[1-methyl-1-(1H-tetrazol-5-yl)-ethyl]-benzyl}-nicotinamide of Formula (6.5.30);
- 2-(Benzo[1,3]dioxol-5-yloxy)-5-chloro-N-{4-[1-methyl-1-(1H-tetrazol-5-yl)-ethyl]-benzyl}-nicotinamide-of-Formula (6.5.31); and ; or
- 2-(Benzo[1,3]dioxol-5-yloxy)-N-{4-[1-methyl-1-(1H-tetrazol-5-yl)-ethyl]-benzyl}-nicotinamide-of-Formula (6.5.32).

18. (Canceled)

19. (Currently amended): A pharmaceutical composition for use in treating a subject suffering from a disease, disorder or condition mediated by the PDE4 isozyme whereby it regulates the activation and degranulation of eosinophils, comprising a therapeutically effective amount of a compound of Formula (1.0.0) as defined in Claim 1 together with a pharmaceutically acceptable carrier therefor.

20. - 22. (Canceled)

Add new claims 23 - 32:

- 23. (New): A method of treating a disease, disorder or condition mediated by the PDE4 isozyme in a mammal, said method comprising administering to said mammal in need of such mediation, a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.
- 24. (New): A method of claim 23 wherein said PDE4 isozyme is the PDE4-D subtype isozyme.
- 25. (New): A method of claim 23 wherein said disease, disorder or condition is atopic asthma; non-atopic asthma; allergic asthma; bronchial asthma; essential asthma; true asthma; intrinsic asthma caused by pathophysiologic disturbances; extrinsic asthma caused by environmental factors; essential asthma of unknown or inapparent cause; bronchitic asthma; emphysematous asthma; exercise-induced asthma; occupational asthma; infective asthma caused by bacterial, fungal, protozoal or viral infection; non-allergic asthma; incipient asthma; or wheezy infant syndrome.
- 26. (New): A method of claim 23 wherein said disease, disorder or condition is chronic or acute bronchoconstriction; chronic bronchitis; small airways obstruction; emphysema; pneumoconiosis; chronic eosinophilic pneumonia; chronic obstructive pulmonary disease; adult respiratory distress syndrome; or exacerbation of airways hyper-reactivity consequent to other drug therapy.
- 27. (New): A method of claim 26 wherein said chronic obstructive pulmonary disease is characterized by irreversible, progressive airways obstruction.
- 28. (New): A method of claim 26 wherein said pneumonconiosis is aluminosis; bauxite workers' disease; anthracosis; miners' disease; asbestosis; steam-fitters' asthma; chalicosis; flint disease; ptilosis caused by inhaling the dust from ostrich feathers; siderosis caused by the inhalation of iron particles; silicosis; grinders' disease; byssinosis; cotton-dust asthma; or talc pneumoconiosis.
- 29. (New): A method of claim 23 wherein said disease, disorder or condition is bronchitis; acute bronchitis; chronic bronchitis; acute laryngotracheal bronchitis; arachidic bronchitis; catarrhal bronchitis; croupus bronchitis; dry bronchitis; infectious asthmatic bronchitis; productive bronchitis; staphylococcus bronchitis; streptococcal bronchitis; or vesicular bronchitis.
- 30. (New): A method of claim 23 wherein said disease, disorder or condition is bronchiectasis; cylindric bronchiectasis; sacculated bronchiectasis; fusiform brochiectasis; capillary bronchiectasis; cystic bronchiectasis; dry bronchiectasis or follicular bronchiectasis.
- 31. (New): A method of claim 23 wherein said disease, disorder or condition is seasonal allergic rhinitis; perennial allergic rhinitis; sinusitis; purulent sinusitis; nonpurulent sinusitis; acute sinusitis; chronic sinusitis; ethmoid sinusitis; frontal sinusitis; or sphenoid sinusitis.
- 32. (New): A method of claim 23 wherein said disease, disorder or condition is regulated by the activation and degranulation of eosinophils.