I) تعريف وأمثلة:

1- تعری<u>ف:</u>

$$\stackrel{\frown}{E}$$
 لتكن E مجموعة غير فارغة. نسمي قانون تركيب داخلي في $f: E imes E o E$ كل تطبيق f من E نحو E نحو E كل تطبيق E من E نحو

(a,b) يسمى مركب العنصرين (a,b) يسمى مركب العنصرين $a \perp b$; aTb ; a*b ; a*b إذا كان * قانون تركيب داخلي في E فإننا نكتب (E,*) ونقرأ المجموعة E مزودة بالقانون E.

ملاحظة: ليكن st قانون تركيب داخلي في E:

$$(\forall (a,b,c,d) \in E^4)$$

$$\begin{cases} a=b \\ c=d \end{cases} \Rightarrow a*c=b*d$$

لأن:

$$\begin{cases} a=b \\ c=d \end{cases} \Rightarrow (a,c) = (b,d) \Rightarrow f(a,c) = f(b,d)$$
$$\Rightarrow a*c = b*d$$

*) لدينا:

$$\left(\forall (a,b,c) \in E^{3}\right) \begin{cases} a=b \Rightarrow a*c=b*c \\ a=b \Rightarrow c*a=c*b \end{cases}$$

2- أمثلة:

 $\mathbb{C},\mathbb{R},\mathbb{Q},\mathbb{Z},\mathbb{N}$ الجمع و الضرب قانونا تركيب داخلي في

-2 الضرب قانون تركيب داخلي في \mathbb{R}^+ لكنه ليس كذلك في -2 الضرب قانون تركيب $(a \times b) \in \mathbb{R}^+$ فإن: \mathbb{R}^- لأن إذا كان \mathbb{R}^- فإن: \mathbb{R}^- اي $(a \times b) \notin \mathbb{R}_-$

 V_3 من V_2 من V_2 من V_2 من V_3 صن V_2 من V_3

 V_3 و الجداء السلمي ليس قانون تركيب داخلي في ليس قانون تركيب داخلي السلمي ليس قانون تركيب داخلي في

 V_3 في قانون تركيب داخلي في V_3

E لتكن E مجموعة غير فارغة و P(E) مجموعة أجزاء E الاتحاد والتقاطع والفرق التماثلي قوانين تركيب داخلية في P(E).

 $F(X,\mathbb{R})$ مجموعة الدوال \mathbb{R} مجموعة الدوال المعرفة من X نحو \mathbb{R} . الجمع والضرب المعرفين على $F(X,\mathbb{R})$ كما يلى:

$$(\forall x \in X) \qquad (f+g)(x) = f(x) + g(x)$$
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

 \cdot $F(X,\mathbb{R})$ فو انین ترکیب داخلیهٔ فی

E نحو E مجموعة التطبيقات من A(E,E) لتكن

مجموعة غير فارغة. E

التركيب o المعرف على A(E,E) ب:

$$(\forall x \in E) \qquad (fog)(x) = f(g(x))$$

A(E,E) قانون تركيب داخلي في

P- ليكن T مجموعة إزاحة المستوى. و H_0 مجموعة التحاكيات التي مركزها O. و R_0 مجموعة الدورانات التي لها نفس المركز O. التركيب "O" قانون تركيب داخلي في كل من P_0 و P_0 الأن:

$$egin{align*} \mathbf{T}_{ec{u}}O\mathbf{T}_{ec{v}}&=\mathbf{T}_{ec{u}+ec{v}}\ h_{(O,R)}Oh_{(O,R')}'=h_{(O,RR')}\ R_{(o,lpha)}OR_{(o,eta)}&=R_{(o,lpha+eta)} \ &:$$
ن المعر ف على \mathbb{R}_{v} يما يلى: \mathbb{R}_{v}

$$(a,b)$$
 (a,b) $a*b=a^4+a^3-3a^2b$

قانون تركيب داخلي في $\, \mathbb{R} \, .$

 $E = \{1, 2, 3, 6\}$ Large large large $E = \{1, 2, 3, 6\}$ Large lar

لنبين أن المضاعف المشترك الأصغر "V" قانون تركيب داخلي في E.

ولهذا نضع الجدول التالي الذي يسمى جدول القانون في E أو جدول (E,v).

(*					
	>	1	2	3	6
	1	1	2	3	6
	2	2	2	6	6
	3	3	6	3	6
	6	6	6	6	6

نلاحظ أن مركب أي عنصر من E هو عنصر من E. وبالتالي القانون "V" قانون تركيب داخلي في E.

3- جزء مستقر بالنسبة لقانون تركيب داخلي:

a) تعریف:

S لتكن E مجموعة مزودة بقانون تركيب داخلي S وليكن S جزءا من $S \subset S$.

نقول إن S جزء مستقر من (E,*) إذا و فقط إذا كان: $(\forall (x,y) \in S^2)$ $x*y \in S$

b) أمثلة:

 (\mathbb{R},\times) جزء مستقر من \mathbb{R}^+ -1

 (\mathbb{R},\times) ليس جزءا مستقرا من \mathbb{R}_{-} -2

 $U = \{z \in \mathbb{C}/|z| = 1\}$: نعتبر المجموعة: -3

$$(\forall (z,z') \in U^2): |z.z'| = |z|.|z'| = 1.1 = 1$$

$$(\forall (z,z') \in U^2): zz' \in U$$
 إذن:

 (\mathbb{C},\times) إذن U جزء مستقر من

ملاحظة:

اذا كان S جزءا مستقرا من (E,*) فإن * قانون تركيب داخلي في S .

II) خاصبات قوانبن التركبب الداخلي:

1- التجميعية و التبادلية:

a) تعریف:

لیکن * قانون ترکیب داخلی فی E.

نقول إن القانون
$$*$$
 تجميعي في E إذا وفقط إذا كان $(\forall (a,b,c) \in E^3)$ $a*(b*c) = (a*b)*c$

نقول إن القانون
$$*$$
 تبادلي في E إذا وفقط إذا كان $(2 \ (a,b) \in E^2)$ $a*b=b*a$

إذا كان القانون * تجميعي فإن:

$$a*(b*c) = a*b*c$$

b) أمثلة:

القوانين (1), (3), (6), (7) و (9) التي رأيناها في أمثلة قوانين التركيب الداخلية كلها تجميعية وتبادلية (الفقرة I).

. لنبين على (7) و (9):

 $F(X,\mathbb{R})$ لنبين أن الجمع تجميعي في

ليكن
$$f \in \mathcal{F}(X,\mathbb{R})$$
 من $h \cdot g \cdot g \cdot f$ لنبين أن: $f + (g + h) = (f + g) + h$

$$(f + (g + h))(x) = ((f + g) + h)(x)$$
 يعني:

$$(\forall x \in X) (f + (g+h))(x) = f(x) + (g+h)(x)$$

$$= f(x) + g(x) + h(x)$$

$$= (f(x) + g(x)) + h(x)$$

$$= (f+g)(x) + h(x)$$

$$= ((f+g) + h)(x)$$

(\mathbb{R} لأن الجمع تجميعي في \mathbb{R}).

إذن f + (g+h) = (f+g) + h ومنه الجمع تجميعي $F(X,\mathbb{R})$

T نبین أن o تجمیعي في

نعتبر $t_{\overline{v}}$ و $t_{\overline{v}}$ من $t_{\overline{v}}$ انبین أن:

 $t_{\vec{u}} o(t_{\vec{v}} o t_{\vec{w}}) = (t_{\vec{u}} o t_{\vec{v}}) o t_{\vec{w}}$

لدينا:

$$t_{\vec{u}}o\left(t_{\vec{v}}ot_{\vec{w}}\right)=t_{\vec{u}}ot_{\vec{v}+\vec{w}}$$

$$=t_{\vec{u}+(\vec{v}+\vec{w})}=t_{(\vec{u}+\vec{v})+\vec{w}}=t_{\vec{u}+v}ot_{\vec{w}}$$

$$=\left(t_{\vec{u}}ot_{\vec{v}}\right)ot_{\vec{w}}$$

$$\cdot\left(\begin{array}{c}V_{3}\end{array}\right.$$
 في ين الجمع تجميعي في \(\cdot\left(\begin{array}{c}V_{3}\end{array}\right)

$$(\forall (t_{\bar{u}}, t_{\bar{v}}, t_{\bar{w}}) \in \mathsf{T}^3); t_{\bar{u}} o(t_{\bar{v}} o t_{\bar{w}}) = (t_{\bar{u}} o t_{\bar{v}}) o t_{\bar{w}}$$

 $\cdot T$ في تجميعي في σ

 V_3 الجداد المتجهى ليس تجميعيا و V_3 الجداد المتجهى اليس

. ليكن $(\vec{i}, \vec{j}, \vec{h})$ معلم م.م مباشر

لدينا $\vec{i} \wedge \vec{j} = -\vec{j} \wedge \vec{i}$ ليس تبادليا.

$$\left(\vec{i}\wedge\vec{j}\right)\wedge\vec{j}=\vec{h}\wedge\vec{j}=-\vec{i}$$
 لدينا \leftarrow $\vec{i}\wedge\left(\vec{j}\wedge\vec{j}\right)=\vec{i}\wedge\vec{0}=\vec{0}$ و

$$(\vec{i} \wedge \vec{j}) \wedge \vec{j} \neq \vec{i} \wedge (\vec{j} \wedge \vec{j})$$
 إذن V_3 (الجداد المتجهي) ليس تجميعيا في V_3 ين تطبيقي:

x * y = x + y + xy

ادرس تجميعية وتبادلية القانون *.

$$(\forall (x,y) \in \mathbb{R}^2) x * y = x + y + xy$$
 : الدينا

= y + x + yx = y *x

إذن x * y = y * x ومنه * تبادلي.

xو رود z من x لنتحقق هل:

(x * y)*z = x *(y * z)

لدىنا:

$$(x * y)*z = (x + y + xy)*z$$

= $x + y + xy + z + (x + y + xy)z$
= $x + y + xy + z + xz + yz + xyz$ (1)

$$x *(y *z) = x *(y + z + yz)$$

$$= x + y + z + yz + x (y + z + yz)$$

$$= x + y + z + yz + xy + xz + xyz (2)$$

وبما أن (2) و (1) فإن * تجميعى:

 $(\forall (x,y,z) \in \mathbb{R}^3) (x*y)*z = x*(y*z)$

c) تجميعية مركب تطبيقي:

نعتبر التطبيقات من: $E \to F \to G \to H$

لدينا: ho(gof) = (hog)of

هذا لا يعنى أن o تجميعي.

ho(gof) = (hog)of- لنبين أن:

$$(\forall x \in E) (ho(gof))(x) = ((hog)of)(x)$$

 $x \in E$ ليكن –

نضع

لدىنا:

$$((hog)of)(x) = (hog)(f(x)) = (hog)(y)$$
$$= h(g(y)) = h(z) = t$$

ولدينا:

$$(ho(gof))(x) = h((gof)(x))$$
$$= h(g(f(x))) = h(g(y))$$
$$= h(z) = t$$

إذن:

$$(\forall x \in E)((hog)of)(x) = (ho(gof))(x)$$
$$(hog)of = ho(gof)$$
eath:

حالة خاصة:

A(E,E) ليكن A(E,E) مجموعة التطبيقات من A(E,E) لدينا O" قانون تجميعي غير تبادلي في

2- العنصر المحايد:

<u>a) تعریف:</u>

آيكن * قانون تركيب داخلي في E. و $e \in E$. نقول إن $e \in E$ عنصر محايد في E بالنسبة للقانون * أو عنصر محايد في (E,*) إذا وفقط إذاكان:

 $(\forall x \in E) e *x = x et x *e = x$

ملاحظة:

إذا كان القانون * تبادلي فإن e عنصر محايد إذا وفقط إذا كان: $(\forall x \in E) \ x * e = x$

b) أمثلة:

 \to العدد 0 هو العنصر المحايد في كل من $(\mathbb{C},+),(\mathbb{R},+),(\mathbb{Q},+),(\mathbb{Z},+),(\mathbb{N},+)$

العدد 1 هو العنصر المحايد في كل من $(\mathbb{C},\times),(\mathbb{R},\times),(\mathbb{Q},\times),(\mathbb{R},\times)$

 $(V_3,+),(V_2,+)$: هو العنصر المحايد في كل من $\vec{0} \leftarrow$

 $(P(E), \bigcup)$ هو العنصر المحايد في \varnothing

 $(P(E),\cap)$ هو العنصر المحايد في $E \leftarrow$

 $(P(E),\Delta)$ هو العنصر المحايد في \varnothing

 $\big(F(X,\mathbb{R}),+\big)$ هو العنصر المحايد في $\theta:x o 0$

 $(F(X,\mathbb{R}),\times)$ هو العنصر المحايد في f:x o 1

التطبيق المطابق $x \to x$ عنصر محايد في \leftarrow

 $(foId_E = Id_E of = f) \quad (A(E, E), o)$

ملاحظة:

نعتبر القانون * المعرف على \mathbb{N}^* بما يلي: $(\forall (a,b) \in \mathbb{N}^{*2}) \quad a*b = a^b$

 $(\forall a \in \mathbb{N}^*)a*1=a^1=a$ (1) :لدينا

 $1*a = 1^a = 1$

إذن 1 ليس عنصر محايدا.

وبما أنه يحقق (1) نقول إن 1 محايد على اليمين.

<u>تعریف:</u>

نقول إن e عنصر محايد على اليمين في (*,*) إذا وفقط إذا $(\forall x \in E) \ x * e = x$ كان

نقول إن (E,*) نقول إن عنصر محايد على اليسار في (E,*) إذا وفقط $(\forall x \in E) \ e * x = x$

e يكون e محايدا إذا وفقط إذا كان محايد E على اليمين وعلى راليسار .

<u>c) وحدانية العنصر المحايد:</u>

خاصية:

ليكن * قانون تركيب داخلي في E. إذا كان للقانون * عنصر ا محايد فإنه وحيد.

برهان:

e'نفترض أن * يقبل عنصرين محايدين e' و e*e'=e' الدينا $e'\in E$ عنصر محايد و

e*e'=e الذن $e\in E$ عنصر محايد و e'=e الذن e'=e

ومنه العنصر المحايد وحيد. (إذا كان موجودا).

<u>تمارین تطبیقی:</u>

<u>تمرین (1):</u>

نعتبر * القانون المعرف على 🏿 بما يلي:

 $(\forall (x,y) \in \mathbb{R}^2) x * y = xy - 4x - 4y + 20$

- هل للقانون *عنصر محايد؟

 $(\forall x \in \mathbb{R})e * x = x * e = x$: بحيث e من e من e نبحث عن e نبحث عن e بحيث: e نبادلي. إذن يكفي أن نبحث عن e بحيث $(\forall x \in \mathbb{R})e * x = x$

لدبنا:

 $(\forall x \in \mathbb{R})e * x = x \iff (\forall x \in \mathbb{R})ex - 4e - 4x + 20 - x = 0$

 $\Leftrightarrow (\forall x \in \mathbb{R}) x (e-5) - 4e + 20 = 0$

 $\Leftrightarrow \begin{cases} e - 5 = 0 \\ 20 - 4 = 0 \end{cases} \Leftrightarrow \begin{cases} e = 5 \\ e = 5 \end{cases}$

e=5 هو العنصر المحايد للقانون e=5

<u>تمرین (2):</u>

نعتبر القانون * المعرف على \mathbb{R} ب: $(\forall x, y \in \mathbb{R})x * y = x + 4y - 1$

مل للقانون * عنصر محايد؟

 $(\forall x \in \mathbb{R}) x * e = e * x = x$ ننبحث عن e من e ننبحث عن e .

 $(\forall x \in \mathbb{R})x * e = x \quad et \quad e * x = x$ يعنى:

-لدبنا:

 $(\forall x \in \mathbb{R})e * x = x \Leftrightarrow (\forall x \in \mathbb{R})e + 4x - 1 = x$ $\Leftrightarrow (\forall x \in \mathbb{R})e + 3x - 1 = 0$ $\Leftrightarrow \begin{cases} 3 = 0 \\ e - 1 = 0 \end{cases}$

و هذا مستحيل.

 \mathbb{R} إذن *لا يقبل عنصرا محايدا في \mathbb{R} .

3- العنصر المماثل:

a) تعریف:

 $\widetilde{
m L}$ ليکن * قانون ترکيب داخلي في E. نفترض أن * يقبل عنصر e محايدا e

نقول إن عنصرا x من E يقبل مماثلا بالنسبة ل * إذا وفقط إذا وجد عنصر x من E بحيث:

x * x' = x' * x = e

ملاحظة:

إذا كان القانون * تبادلي نكتفي بإحدى المتساويتين.

<u>b) أمثلة:</u>

x عنصر $(\mathbb{C},+),(\mathbb{R},+),(\mathbb{Q},+),(\mathbb{Z},+)$ کل عنصر -x یقبل مماثلا هو

في x في $(\mathbb{C}^*,\times);(\mathbb{R}^*,\times);(\mathbb{R}^*,\times)$ کل عنصر (\mathbb{R}^*,\times) في الماثلا هو

 $x.\frac{1}{x} = \frac{1}{x}.x = 1$ لأن:

E نحو E مجموعة التقابلات من E نحو E

لدينا o" قانون تركيب داخلي في $B\left(E,E\right)$ العنصره المحايد هو التطبيق الطابق Id_F .

 f^{-1} كل عنصر f من B(E,E) له مماثل هو تقابله العكسي f كل غنصر f لأن:

<u>c) خاصیات:</u>

<u>خاصية (1):</u>

ليكن * قانون تركيب داخلي في E.

نفترض أن القانون * يقبل عنصرا محايدا e وتجميعي. إذا كان لعنصر x مماثل x فإن هذا المماثل وحيد.

برهان:

x'' نفترض أن x يقبل مماثلين x'

$$x * x' = x' * x = e$$
 : يعني $x * x' = x' * x = e$

- لدينا:

$$x' = x' * e = x' * (x * x") = (x' * x) * x"$$

= $e * x" = x"$

x' = x'' إذن

خاصية (2):

ليكن * قانون تركيب داخلي في E.

نفترض أن القانون * يقبل عنصرا محايدا e وتجميعي. الذا كان لعنصرين x * y مماثلان x * y فإن: x * y يقبل مماثلا x * y * y.

يعنى: '(x * y)' = y' * x'

برهان:

لدينا:

$$(x * y)*(y'*x')$$

= $x * (y * y)*x' = x * e * x'$
= $(x * e)*x' = x * x' = e$

(y'*x')*(x*y)=e : نفس الطريقة نجد:

استنتاج:

B(E,E) من $g \mathcal{F}$ ليكن

 $\cdot g^{-1}$ هو g ومماثل g هو f^{-1} مماثل

 $g^{-1}of^{-1}$ هو fog مماثل

 $\left(fog\right)^{-1}$ هو fog ان مماثل ماثل

 $(fog)^{-1} = g^{-1}of^{-1}$ إذن:

<u>تمرین:</u>

نعتبر القانون * المعرف على \mathbb{R} بما يلي: x * y = xy - 4x - 4y + 20

من خلال ما سبق 5 هو العنصر المحايد.

- حدد العناصر التي تقبل مماثلا.

 $x \in \mathbb{R}$ ليكن

لنتحقق هل x يقبل مماثلا.

لنبحث عن x' بحیث 5 x*x'=5 لقانون تبادلی).

 $x*x'=5 \Leftrightarrow xx'-4x-4x'+20=5$

 $\Leftrightarrow x'(x-4) = 4x - 15$ $x \neq 4 \quad \text{i.i.} \iff \leftarrow$

ě

 $\frac{4x-15}{x-4}$ فإن: $x' = \frac{4x-15}{x-4}$ ومنه x يقبل مماثلا هو $x' = \frac{4x-15}{x-4}$ خاذا کان x = 4

فإن o=1 ومنه 4 لا يقبل مماثلا

 $\mathbb{R} - \{4\}$: إذن مجموعة العناصر التي تقبل مماثلا هي

و المماثل هو: $\frac{4x-15}{x-4}$

4- العنصر المنتظم:

a) تعریف:

$$\left(\forall (x,y) \in E^2\right) \begin{cases} a*x = a*y \Rightarrow x = y \\ x*a = y*a \Rightarrow x = y \end{cases}$$

ملاحظة:

إذا كان القانون * تبادلي فإن أحد الاستلز امين كاف.

b) أمثلة:

منتظمة $\mathbb{C},\mathbb{R},\mathbb{Q},\mathbb{Z},\mathbb{N}$ منتظمة $a+x=a+y\Rightarrow x=y$ بالنسبة للجمع لأن:

في كل من $a \neq 0$ كل عنصر $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}$ منتظم بالنسبة $ax = ay \Rightarrow x = y$

<u> تمرین:</u>

ليكن * قانون تركيب داخلي في E، تجميعي.

 $a \in E$ العنصر المحايد في (E,*) ليكن e

- بین أنه إذا كان a يقبل مماثلاً فإن a منتظم.

a' نفترض أن a يقبل مماثلا a'

 $\left(\forall (x,y)\in E^2\right)$:نبین أن a منتظم أي

 $a*x = a*y \Rightarrow x = y$ $x*a = y*a \Rightarrow x = y$

لدىنا:

$$a*x = a*y \Rightarrow a'*(a*x) = a'*(a*y)$$
$$\Rightarrow (a'*a)*x = (a'*a)*y$$
$$\Rightarrow e*x = e*y$$
$$\Rightarrow x = y$$

 $x * a = y * a \Rightarrow x = y$: وبنفس الطريقة نبين أن إذن a منتظم.

III) التشاكل:

1- تعريف وأمثلة:

a) تعریف:

أيكن * قانون تركيب داخلي في E.

 \cdot F قانون تركيب داخلي في T

 $f:E \to F$ کل تطبیق (F,T) نحو (E,*) کل تطبیق یسمی تشاکل من رویاند.

 $\cdot \left(\forall (x, y) \in E^2 \right) : f(x * y) = f(x) \mathsf{T} f(y)$

$$f:(\mathbb{R},+)\to(\mathbb{R},+)$$
:نعتبر التطبيق -1

لنبین أن f تشاكل.

$$(\forall (x,y) \in \mathbb{R}^2) f(x+y) = f(x) + f(y)$$
 يعني:

$$f(x+y) = a(x+y) = ax + ay$$

$$= f(x) + f(y)$$
: البينا:

إذن:

$$(\forall (x, y) \in \mathbb{R}^2) f(x+y) = f(x) + f(y)$$

$$(\mathbb{R},+)$$
 نحو $(\mathbb{R},+)$ نحو (f)

$$f:\mathbb{Q}
ightarrow \mathbb{R}$$
 نعتبر -2

$$\left(a \in \mathbb{R}_{+}^{*}\right)$$
 مع $r \to a'$

$$(\mathbb{R},\times)$$
 بین أن f تشاكل من f نحو

$$-$$
لیکن r و r من \mathbb{Q} .

$$f(r+r') = f(r) \times f(r')$$
 لنبين أَن: لنبين أَن

$$f(r+r') = a^{r+r'} = a^r \times a^{r'} = f(r) \times f(r')$$

$$(V(r,r') \in \mathbb{Q}^2) f(r+r') = f(r).f(r')$$
 الذن:

 (\mathbb{R},\times) نحو $(\mathbb{Q},+)$ نحو f منه f

تمارين تطييقية:

تمرین 1:

نعرف في
$$\mathbb{R}^2$$
 جمع زوجين وجداء زوجين بما يلي:
$$(x,y)+(x',y')=(x+x',y+y')$$

$$(x,y)+(x,y)-(x+x,y+y)$$

$$(x, y).(x', y') = (xx' - yy', xy' + x'y)$$

$$f:\mathbb{C} o\mathbb{R}^2$$
 ونعتبر التطبيق

$$z = a + ib \rightarrow (a,b)$$

$$\left(\mathbb{R}^2,+\right)$$
 بنحو $\left(\mathbb{C},+\right)$ نحو f ناب بین أن

$$\left(\mathbb{R}^2,\times\right)$$
 بین أن f تشاكل من $\left(\mathbb{C},\times\right)$ نحو

$$\cdot \left(\mathbb{R}^2, + \right)$$
 نحو $\left(\mathbb{C}, + \right)$ من نشاکل من f نابین أن f

$$z'=a'+ib'$$
 et $z=a+ib$ ليكن

$$f(z+z') = f(z) + f(z')$$
 ننبین أن:

$$z + z' = (a+ib) + (a'+ib')$$

$$= (a+a')+i(b+b')$$

$$f(z+z') = (a+a',b+b')$$

= $(a,b)+(a',b') = f(z)+f(z')$

$$(\mathbb{C},+)$$
 نحو $(\mathbb{C},+)$ نحو $(\mathbb{C},+)$ انحو $(\mathbb{C},+)$

$$\mathbb{D}^2$$
 1) \mathcal{C} 1) \mathcal{C} 1) \mathcal{C} 15 \mathcal{C} 15 \mathcal{C} 1 \mathcal{C} 10 \mathcal{C} 15 \mathcal{C} 16 \mathcal{C} 16 \mathcal{C} 17 \mathcal{C} 18 \mathcal{C} 18 \mathcal{C} 19 $\mathcal{C$

$$\cdot \left(\mathbb{R}^2, +
ight)$$
 نحو f تشاكل من f نحو $+$

$$f(z.z') = f(z).f(z')$$
 : ولنبين أن $z = a + ib$

z' = a' + ib'

z.z' = (a+ib).(a'+ib') = (aa'-bb')+i(ab'+a'b)

إذن:

$$f(z.z') = (aa'-bb', ab'+a'b)$$

ولدينا:

إذن:

$$f(z).f(z') = (a,b).(a',b')$$

$$= (aa'-bb',ab'+a'b)$$

$$f(z.z') = f(z).f(z')$$
ومنه f تشاکل من (\mathbb{C},\times) نحو

$$A = \left\{ f_{(a,b)} : x \to ax + b \ / \ (a,b) \in IR^2
ight\}$$
 نعتبر المجموعة

ينعرف على
$$IR^2$$
 القانون T بمايلي $(a,b) T(a',b') = (aa',ab'+b)$

$$\varphi:(A\,,^\circ)\to(I\!R\,,T\,)$$

$$f_{(a,b)} \rightarrow (a,b)$$

بین أن φ تشاكل

یکون
$$\varphi$$
 تشاکل من (A,o) نحو $(\mathbb{R}^2, \mathbb{T})$ إذا وفقط إذا کان:

$$(\forall (f_{(a,b)}, f_{(a',b')}) \in A^2)$$
:

$$\varphi\Big(f_{(a,b)}of_{(a',b')}\Big) = \varphi\Big(f_{(a,b)}\Big) T\varphi\Big(f_{(a',b')}\Big)$$

$$(\forall x \in \mathbb{R}) \Big(f_{(a,b)} o f_{(a',b')} \Big) (x) = f_{(a,b)} \Big(f_{(a',b')}(x) \Big)$$

$$= f_{(a,b)} (a'x + b')$$

$$= a(a'x + b') + b$$

=aa'x + ab' + b

إذن:

$$\varphi(f_{(a,b)}of_{(a',b')}) = (aa',ab'+b)$$

$$= (a,b)T(a',b')$$

$$= \varphi(f_{(a,b)})T\varphi(f_{(a',b')})$$

ومنه: φ تشاكل

2- خاصیات:

خاصية 1

(F,T) نحو (E,*) نحو لیکن f

(F,T) جزء مستقر من f(E) لدينا

. نشاكل
$$f:(E,*) \to (F,T)$$

$$(F,T)$$
 ننبین أن $f(E)$ مستقر من

$$f(E) \subset F$$
 لدينا (*

$$\cdot x'$$
T $y' \in f(E)$: ليكن $\cdot f(E)$ من $\cdot f(E)$ من $\cdot y' \not = x$

الدينا
$$Y$$
 من Y من Y الإن يوجد Y من Y بحيث: $X' = f(X)$ $Y' = f(Y)$

$$x'Ty' = f(x)Tf(y) = f(x * y)$$

$$x * y \in E$$
 ولدينا

$$x'$$
T $y' \in f(E)$ يعنى: $f(x*y) \in f(E)$

 $\cdot(F,T)$ مستقر من f(E)

ملاحظة:

إذن:

اذا کان f تشاکل من (E,*) نحو (F,T) فإن f قانون ترکیب f(E) داخلی فی

خاصية (2):

. ليكن $f:(E,*)\to (F,T)$ تشاكلا

 $\cdot f(E)$ فإن T تجميعي في E في الإذا كان * تجميعي في الإدا كان *

 $\cdot f(E)$ في $^{\mathrm{T}}$ تبادلي في $^{\mathrm{T}}$ نبادلي في $^{\mathrm{T}}$

* إذا كان ل * عنصر محايد e في E فإن E يقبل مماثلا *

(f(x))' = f(x') في (f(E),T) هو (f(E),T)

. نشاكل $f:(E,*) \to (F,T)$

 \rightarrow نفترض أن * تجميعي في E لنبين أن \rightarrow تجميعي في \rightarrow f(E)

 $\cdot x' \mathsf{T}(y' \mathsf{T} z') = (x' \mathsf{T} y') \mathsf{T} z'$ لنبين أن $\cdot f(E)$ من $\cdot z', y', x'$ ليكن

الدينا z, y, x من $z', y', x' \in f(E)$ لدينا

x' = f(x); y' = f(y); z' = f(z)

إذن:

إذن:

$$(x'Ty')Tz' = (f(x)Tf(y))Tf(z)$$

$$= f(x*y)Tf(z)$$

$$= f[(x*y)*z]$$

$$= f[x*(y*z)] = f(x)Tf(y*z)$$

$$= f(x)T(f(y)Tf(z))$$

$$(x'Ty')Tz' = x'T(y'Tz')$$

(E) ومنه T تجميعي في

 $\cdot f(E)$ في تبادلي في + بنفس الطريقة نبين أن T

f(e) أن ينسبن أن e عنصر محايد في (E,*) لنبين أن ef(E) عنصر محاید فی

x'Tf(e) = f(e)Tx' = x' : لنبين أن f(E) من x' من

x' = f(x) لدينا $x' \in f(E)$ اذن يوجد x من $x' \in f(E)$

f(e) Tx' = x' بنفس الطريقة نجد:

f(E) هو العنصر المحايد في f(e)

f(x') فنترض أن x' هو مماثل x في (E,*) في (E,*)(f(E),T) في f(x)

> f(x) Tf(x') = f(x') Tf(x) = f(e) . يعنى: لدىنا:

f(x)Tf(x')=f(x*x')=f(e)

f(x')Tf(x) = f(x'*x) = f(e)

f(E) في f(x) هو مماثل f(x) في

ملاحظة:

ا پنقل خاصیات $f:(E,*)\to (F,T)$ پنقل خاصیات $f:(E,*)\to (F,T)$ $\cdot f(E)$ في E إلى \bullet

وإذا كان f شمولي فإن f(E) = F وبالتالي f ينقل خاصيات \cdot F في E إلى E في

نقول إن مجموعتين E متشاكلتان إذا وفقط إذا وجد تشاكل (2) $\cdot F$ من E من

ونقول إن F متشاكلتان تقابليا إذا وفقط إذا وجد تشاكل – $\cdot F$ نحو E تقابلی من

IV) الزمرة: Groupe

(G,st) نمجموعة مزودة بقانون تركيب داخلى st نقول إن إذا وفقط إذا تحققت الشروط التالية:

G تجميعي في * " \leftarrow

→ " * " يقبل عنصر ا محايدا.

كل عنصرمن G يقبل مماثلا. \leftarrow

لیکن (G,st) زمرة.

(G,*) إذا كان " * " تبادلي، نقول إن (G,*) زمرة تبادلية أو أبيلية \to .Abelien)

 \longleftrightarrow إذا كانت G منتهية. نقول إن (G,*) زمرة منتهية.

 \rightarrow يمكن أن نرمز للقانون " * " بالجمع " + " (دون أن يكون هو الجمع المعتاد) وفي هذه الحالة نرمز للعنصر المحايد ب " 0 ". ونرمز لمماثل

→ يمكن أن نرمز للقانون " * " بالضرب " . " (دون أن يكون هو الضرب الاعتيادي). وفي هذه الحالة نرمز للعنصر المحايد ب 1. ولمماثل $x^{-1} - X$

2 - أمثلة:

 $(\mathbb{C},+),(\mathbb{R},+),(\mathbb{Q},+),(\mathbb{Z},+)$ زمرة تبادلية. \hookrightarrow

 $(\mathbb{C}^*, imes),(\mathbb{R}^*, imes),(\mathbb{Q}^*, imes)$ زمر تبادلية. o

ڪل من $(V_2,+)$ و $(V_3,+)$ زمرة تبادلية.

زمرة تبادلية. $\left(F\left(X,\mathbb{R}
ight) ,+
ight) \leftarrow$

مجموعة التقابلات)، زمرة غير تبادلية. $\left(B(E,E),o
ight) \leftarrow$

کل من $(R_o,o),(H_o,o),(T,o)$ زمر تبادلیة. \leftarrow

و $(P(E), \bigcirc)$ لیسا زمرتین. $(P(E), \cap)$

زمرة تبادلية. $(P(E),\Delta) \leftarrow$

3- خاصیات

خاصبة (1):

لتكن (G,*) زمرة. لدينا ما يلى:

→ " * " تجميعي. → " * " يقبل عنصرا محايدا.

G في X' كل عنصر X من G بقبل مماثلا X

.(لأنه يقبل مماثلا). G من عنصر G من عنصر G

 $(\forall (a, x, y) \in G^3)$ $a * x = a * y \Leftrightarrow x = y \leftarrow$

 $x * a = y * a \Leftrightarrow x = y$

نلخص هذه الخاصية بقولنا: يمكن الاختزال في زمرة وبدون شروط.

خاصية (2):

G من b وليكن G من G لتكن

كل من المعادلتين: a*x=b(1) و a*x=b(1)

<u>برهان:</u>

لدينا $\mathcal{A} \neq \mathcal{A}$ لأنها تضم العنصر المحايد.

pprox H هو العنصر المحايد في pprox e النبين أن pprox e

 $\cdot H$ العنصر المحايد في e'

: e = e' ننبین أن

 $x \in H$ ليكن

(1) $x^*e'=x$: لدينا H هو العنصر المحايد في e'

ولدينا $G \subset H \subset G$ ولدينا e هو العنصر المحايد في $H \subset G$ إذن .(2)x*e = x

> x*e' = x*e من (1) و (2) نجد: e'=e : الذن

 $\cdot H$ هو العنصر المحايد في e

 $\cdot G$ اليكن $x \in H$ و x' مماثل $x \in H$

 $\cdot H$ ننبین أن x' ینتمی ل

 $\cdot H$ في x مماثل x في

$$x*x' = x*x''$$
 النينا:
$$\begin{cases} x*x' = e \\ x*x'' = e' = e \end{cases}$$

 $x' \in H$ ومنه

G في Y من H و Y مماثل Y في Y ليكن Y

 $x^*y' \in H$ لنبين أن

 $y' \in H$ دومن خلال ما سبق $y \in H$ لدينا

G الإن $X^*y' \in H$ الأن $X^*y' \in H$ الإن $X^*y' \in H$

x' = x'' إذن

خاصية (2):

G, *لیکن (G, *) زمرة. و H جزء من

تكون H زمرة جزئية ل $(G,^*)$ إذا وفقط إذا كان:

 $.H \neq \emptyset$ (*

 $(\forall (x,y) \in H^2) x * y' \in H (*$

G حيث y' مماثل y' حيث

(G,*) نفترض أن H زمرة جزئية ل(G,*).

من خلال الخاصية السابقة لدينا:

 $H \neq \emptyset$

G مع y' مماثل y' في $(\forall (x,y) \in H^2) x * y' \in H$

*) نفترض أن

(II) $(\forall (x,y) \in H^2) x * y' \in H H \neq \emptyset$

(G,*) لنبين أن H زمرة جزئية ل

 $a \in H : a$ إذن يوجد $H \neq \emptyset$ الدينا $H \neq \emptyset$

 $(a,a)\in H^2$ لدينا

 $a*a' \in H$:(II) إذن من خلال

 $x \in H$ ليكن -2

 $(e,x) \in H^2$ لان: $e * x' \in H$

 $x' \in H$ يعنى:

 $(\forall x \in H)$: $x' \in H$

$$(1) \Leftrightarrow a * x = b$$

 $\Leftrightarrow a' * a * x = a' * b$

$$\Leftrightarrow e * x = a' * b$$

$$\Leftrightarrow x = a' * b$$

a'*b هو G إذن (1) نقبل حلا وحيدا في

b*a':G بنفس الطريقة نجد أن (2) نقبل حلا وحيدا في -

استنتاج:

 $a \in G$ ليكن (G,*) زمرة. وليكن

$$g:G o G$$
 $f:G o G$ نعتبر النطبيق $x o x^*a$ $x o a^*x$

التطبيقان f و تقابلان.

4- زمرة جزئية: Sous - groupe

<u>a) تعریف:</u>

(G,*) زمرة. و H جزء مستقر من (G,*)

:G نقول إن (H,*) زمرة جزئية ل(G,*) أو H زمرة جزئية ل

إذا وفقط إذا كان (H,*) زمرة.

b) أمثلة:

 $(\mathbb{R},+)$ زمرة جزئية ل $(\mathbb{Q},+)$ \leftarrow

$$(\mathbb{C}^*, \times)$$
 زمرة جزئية ل $(\mathbb{R}^*, \times) \leftarrow$

لتكن B(P,P) مجموعة تقابلات المستوى.

 $(R_o,o),(H_o,o),(T,o)$ کل من .(B(P,P),o)

e ليكن (G,*) زمرة عنصرها المحايد \leftarrow

.(G,*) لدينا $(\{e\},*)$ زمرة جزئية ل

(G,*) زمرة جزئية ل(G,*)

وكل زمرة جزئية H تخالف هتين الزمرتين تسمى زمرة جزئية فعلية H

ملاحظة:

يمكن لزمرة $\,G\,$ أن تكون غير تبادلية لكن الزمرة الجزئية تبادلية.

مثال: (B(P,P),o) غير تبادلية.

لكن (T,o) تبادلية.

c) خاصبات:

خاصبة (1):

لتكن (G,*) زمرة عنصرها المحايد e ولتكن H زمرة جزئية ل .(G,*)

لدينا ما يلي:

 $H \neq \emptyset \leftarrow$

H هو العنصر المحايد في $e \leftarrow$

 $x' \in H$ اذا كان $X \in H$ و x' مماثل x في $X \in H$ اذا كان

 $(\forall (x,y) \in H^2): x * y' \in H$

G مماثل y في G

$$|z_1| \times \frac{1}{|z_2|} = 1$$

$$|z_1| = 1 \text{ by } |z_2| = 1 \text{ gain for extend } |z_1| = 1 \text{ by } |z_2| = 1 \text{ gain for extend } |z_1| = 1 \text{ by } |z_2| = 1 \text{ gain for extend } |z_2| = 1$$

G حيث x' هو مماثل x في H من *y و x* من −3 $y' \in H$ من خلال ما سبق نستنج أن $x*(y')' \in H$:نجد: (II) نجد ($(x, y') \in H^2$ $x^*y \in H$ يعنى: اذن H جزء مستقر. $\, . \, H \,$ ومنه القانون * قانون تركيب داخلى في نبين أن (H,*) زمرة: +4H نجمیعی فی G إذن st تجمیعی فی $:(\forall x \in H):e *x = x *e = x$ $e \in H \cdot H$ العنصر المحايد في العنصر $x \in H$ ليكن – الدينا $x \in G$ لدينا $x \in G$ لدينا الجنا $x \in G$ $x' \in H$ ومن خلال ما سبق لدينا $x^* x' = x'^* x = e$ إذن x' هو مماثل x في H. وبالتالي (H,*) زمرة جزئية. 1- *) إذا رمزنا للقانون " * " ب " + " فإن الخاصية المميزة تصبح: $(\forall (x,y) \in H^2) x - y \in H -$ *) إذا رمزنا للقانون * ب " × " فإن الخاصية المميزة تصبح: $H \neq \emptyset$ - $(\forall (x,y) \in H^2)x.y^{-1} \in H$ $H\subset G$ زمرة و G,*) زمرة و -2تكون (H,*) زمرة جزئية ل (G,*) إذا وفقط إذا كان: $H \neq \emptyset$ (* $(\forall (x,y) \in H^2) x + y \in H$ (* .(G مماثل x') $(\forall x \in H): x' \in H$ (* تمارين تطبيقية: تمرین (1): $U = \{z \in \mathbb{C}/|z| = 1\}$ نعتبر المجموعة: بين أن (U, imes) زمرة تبادلية. انبين أن (U, imes) زمرة تبادلية: (U, imes)نعلم أن (\mathbb{C}^*, \times) زمرة تبادلية. $(\mathbb{C}^*, imes)$ إذن يكفي أن نبين أن (U, imes) زمرة جزئية ل → لدينا: $(\forall z \in U): |z| = 1$ $z \neq 0$ إذن: $z \in \mathbb{C}^*$ إذن: $U \in \mathbb{C}^*$ إذن: $U \neq \emptyset$ لأن $U \neq 0$). $z_1 \times z_2^{-1} \in U$: لنبين أن U من Z_2 من U

 $|z_1 \times z_2^{-1}| = |z_1| \times \frac{1}{z_1}$

لدينا:

:ادينا C_a من y الان

نمرین:

نعتبر النطبيق:
$$G,.)$$
 زمرة. $f_a:G o G$ نعتبر النطبيق: $x o a.x.a^{-1}$

$$\left(G,.
ight)$$
 بين أن f_a تشاكل تقابلي من (1

2) نعتبر المجموعة:

$$F = \left\{ f_a / a \in G \right\}$$

 \cdot F فی این أن " o " قانون ترکیب داخلی هی (a

$$h:G o F$$
 نعتبر التطبيق (b

 $a \rightarrow f_a$

$$(F,o)$$
 نحو $(G,.)$ نحو h نخو \leftarrow

استنتج أن (F,o) زمرة. \leftarrow

$$(G,.)$$
 نحو $(G,.)$ نحو ($G,.$) نحو ($G,.$) نحو (* (1

 $\cdot G$ من y

$$f_a(x.y) = f_a(x).f_a(y)$$
 :نبین آن

$$f_a(x.y) = a.x.y.a^{-1}$$
 :لينا

 $= a.x.e.y.a^{-1}$

 $= a.x.a^{-1}.a.y.a^{-1}$

 $=(a.x.a^{-1}).(a.y.a^{-1})$

 $= f_a(x).f_a(y)$

اذن f_a تشاكل.

:) لنبين أن f_a نقابل (*

$$f_a(x) = y$$
:ليكن G من x من $y \in G$ ليكن

$$f_a(x) = y \Leftrightarrow a.x.a^{-1} = y$$
 :لينا

 $\Leftrightarrow a^{-1}.a.x.a^{-1} = a^{-1}.v.a$

$$\Leftrightarrow e.x.a^{-1}.a = a^{-1}.v.a$$

$$\Leftrightarrow x.a^{-1}.a = a^{-1}.y.a$$

$$\Leftrightarrow x = a^{-1}.y.a \in G$$

 $x=a^{-1}.y.a$ إذن كل عنصر y من G يقبل سابق وحيد

.اين f_a نقابل

(G,.) ومنه f_a تشاكل تقابلي من G,.

 $\cdot F$ فانون تركيب داخلي في " o " لنبين أن " مانون تركيب داخلي في (a (2

 $f_a o f_b \in F$ ليكن $f_b
otin f_b$ من $f_b
otin f_a$

 $: f_a o f_h(x)$ ليكن $x \in G$ ليكن

$$f_{a}of_{b}(x) = f_{a}(f_{b}(x))$$

$$= f_{a}(b.x.b^{-1})$$

$$= a.b.x.b^{-1}.a^{-1} = a.b.x.(a.b)^{-1} = f_{ab}(x)$$

$$(\forall x \in G): f_{a}of_{b}(x) f_{ab}(x) : ::$$

$$\begin{cases} x.a = a.x & (1) \\ y.a = a.y & (2) \end{cases}$$

$$(y.a)^{-1} = (a.y)^{-1} \qquad :(2) \text{ i.e.}$$

$$: \text{ i.e.}$$

$$a^{-1}.y^{-1} = y^{-1}.a^{-1}$$

$$x.a = a.x$$

$$a^{-1}.y^{-1} = y^{-1}.a^{-1}$$

$$x.a.a^{-1}.y^{-1} = a.x.y^{-1}.a^{-1}$$

$$x.e.y^{-1} = a.x.y^{-1}.a^{-1}$$

$$x.y^{-1} = a.x.y^{-1}.a^{-1}$$

$$x.y^{-1}.a = a.x.y^{-1}.a^{-1}$$

$$x.y^{-1}.a = a.x.y^{-1}.a^{-1}$$

$$x.y^{-1}.a = a.x.y^{-1}.e$$

$$x.y^{-1}.a = a.x.y^{-1}.e$$

$$x.y^{-1}.a = a.x.y^{-1}$$

$$x.y^{-1}.a = a.$$

$$e$$
 $\in Z\left(G
ight)$ إذن

$$a.b^{-1} \in Z(G)$$
 . لنبين أن: $Z(G)$ من $b.y.$ من $(\forall y \in G)$. لنبين أن: $(a.b^{-1}).y = y.(a.b^{-1})$

$$\left(a.b^{-1}\right).y=y.\left(a.b^{-1}\right)$$
 :ليكن $y\in G$ ليكن

:الاينا
$$\mathcal{Z}(G)$$
 من $\mathcal{Z}(G)$ الان

$$\begin{cases} a.y = y.a \ (1) \\ b.y = y.b \ (2) \end{cases}$$

و بنفس الطريقة السابقة نجد:

$$\left(a.b^{-1}\right).y = y.\left(a.b^{-1}\right)$$

إذن:

$$(\forall y \in G)$$
: $(ab^{-1}).y = y.(ab^{-1})$

 $a.b^{-1} \in Z(G)$ إذن

Z(G,.) ومنه Z(G) زمرة جزئية ل

5- تشاكل زمرة:

خاصية:

$$\left[T
ight]$$
 نمرة. $\left[E
ight]$ مجموعة مزودة بقانون تركيب داخلي $\left[G, st
ight]$. و

. تشاكل $f:(G,^*) \rightarrow (E,T)$

لدينا ما يلي:

.نمرة
$$(f(G),T)$$
 زمرة (*

ازمرة تبادلية فإن
$$(f(G), \mathsf{T})$$
 زمرة تبادلية ($(G, *)$ خانت ($(G, *)$

*) إذا كان
$$f$$
 تشاكل شمولي، فإن: $f(G) = E$ إذن: $f(E,T)$ زمرة. نقول إن التشاكل يحول زمرة إلى زمرة.

$$f_a o f_b = f_{ab}$$

$$a.b \in G$$
 الإن $\begin{cases} a \in G \\ b \in G \end{cases}$

$$f_{ab} \in F$$
 إذن

$$\left(\forall \left(f_a,f_b\right)\in F^2\right)\colon f_aof_b\in F$$
 وبالنالي

 \cdot F و قانون تركيب داخلي في " o ا

انبین أن
$$h$$
 تشاكل شمولي من $(G,.)$ نحو (F,o) نحو $(G,.)$

$$h(a.b) = h(a)oh(b)$$
: ليكن a من b من b عند b

$$h(a.b) = f_{ab} = f_a o f_b = h(a) o h(b)$$
 : دينا

اذن h تشاکل.

$$a$$
 الأقل على الأقل على الأقل على الأقل على الأقل f_a من f_a من من f_a من على الأقل على

(F,o) نحو (G,.) نحو شمولي من انحو

.) لنبين أن
$$(F,o)$$
 زمرة $(*$

- لدينا
$$\left(G,.
ight)$$
 زمرة.

$$-$$
و h تشاكل شمولي من $(G,.)$ نحو (G,o)

إذن (F,o) زمرة.

V) الحلقة:

1) توزيعية قانون بالنسبة لآخر.

 $\cdot T$ نکن E مجموعة مزودة بقانونها ترکیب داخلیین st e

نقول إن T توزيعي بالنسبة ل * إذا وفقط إذا كان:

$$(\forall (x, y, z) \in E^3)xT(y*z) = (xTy)*(xTz)(1)$$

$$(x*y)Tz = (xTz)*(yTz)(2)$$

- *) إذا كان القانون T تبادلي فإن إحدى الخاصيتين (1) أو (2) كافية.
- *) إذا تحققت الخاصية (1) نقول إن T توزيعي بالنسبة ل * على اليمين.

 - $\mathbb{C},\mathbb{R},\mathbb{Z},\mathbb{Q},\mathbb{N}$ الضرب توزيعي بالنسبة للجمع في كل من \mathbb{C}
 - 2- الجمع ليس توزيعيا بالنسبة للضرب:

$$x + (y \times z) \neq (x + y) \times (x + z)$$

3- الاتحاد توزيعي بالنسبة للتقاطع. والتقاطع توزيعي بالنسبة للاتحاد في P(E)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $F\left(X,\mathbb{R}
ight)$ الضرب توزيعي بالنسبة للجمع في -4

2) تعریف حلقة:

لتكن A مجموعة مزودة بقانونى تركيب داخليين * وT نقول إن

حلقة إذا وفقط إذا تحققت الشروط التالية: (A, *, T)

- *) (A,*) زمرة تبادلية.
- *) T تجميعي.*) T توزيعي بالنسبة ل

ملاحظات:

- *) إذا كان القانون T تبادلي. نقول إن الحلقة A تبادلية.
- *) إذا كان للقانون T عنصر محايد، نقول إن الحلقة A واحدية.
- *) نرمز عادة للقانون * ب " + " وللقانون T ب " X ونرمز في هذه الحالة

للعنصر المحايد ل * ب 0 أو 0_{A} ويسمى صفر حلقة. ونرمز للعنصر 1_A المحايد ل T ب 1 أو

3) أمثلة:

حلقهٔ $(\mathbb{C},+, imes),(\mathbb{R},+, imes),(\mathbb{Q},+, imes),(\mathbb{Z},+, imes)$ حلقهٔ -1تبادلية وواحدية.

حلقة تبادلية وواحدية. $(F(X,\mathbb{R}),+, imes)$ حلقة تبادلية وواحدية.

4) خاصیات:

خاصية (1):

e لتكن (A,*,T) حلقة صفرها

 $.(\forall a \in A): a\mathrm{T}e = e\mathrm{T}a = e$ لدينا:

ملاحظة:

إذا رمزنا ل $(A, +, \times)$ ب $(A, +, \top)$ الخاصية تصبح: $(\forall a \in A): a \times 0 = 0 \times a = 0$

برهان:

 $(e^*e = e)$ کئی $aT(e^*e) = aTe$ لدينا:

> (aTe)*(aTe) = aTeيعنى:

(aTe)*(aTe)=(aTe)*eيعنى:

زمرة) (A,*) زمرة aTe = eيعنى:

> aTe = eإذن:

eTa = e وبنفس الطريقة نبين أن

eTa = aTe = e

خاصية (2):

e مفرها (A,*,T) منورها

(A,*) في a' لمماثل a'

 $(\forall (a,b) \in A^2): aTb' = a'Tb = (aTb)'$ دينا:

إذا رمزنا ل (A,*,T) ب $(A,+,\times)$ الخاصية تصبح:

 $(\forall (a,b) \in A^2): a \times (-b) = (-a) \times b = -(ab)$

<u>برهان:</u>

(aTb)' = aTb' :نبین أن

يعني: e (لأن * تبادلي). يعني:

- لدينا:

$$(aTb)*(aTb') = aT(b*b')$$

$$= aTe$$

$$= e$$

$$(aTb)' = aTb'$$
 نن

(aTb)' = a'Tb بنفس الطريقة نبين أن

5) العناصر القابلة للمماثلة:

تعربف:

arepsilonلتكن (A,*,T) حلقة واحدية وحدتها

نقول إن عنصرا a من A قابل للمماثلة أو يقبل مقلوبا إذا كان له مماثل A في A بالنسبة للقانون

 \mathcal{E} لتكن (A,*,T) حلقة واحدية وحدتها

ولتكن U مجموعة العناصر القابلة للمماثلة.

لدينا: (U,T) زمرة.

 $arepsilon \in U$ لأن U
eq arnothing

.U قانون تركيب داخلي في ${
m T}$

 $(xTy) \in U$. ليكن x من U لنبين أن y من

(A,T) دينا (A,T) دينا (A,T) دينا (A,T) دينا (A,T) دينا

xTy الله مماثل هو xTy باذن

xT $y \in U$ اذن

.U قانون تركيب داخلى فى ${
m T}$

 $(\forall a \in U)$: $\varepsilon Ta = a T \varepsilon = a$

 $\varepsilon \in U$,

U هو العنصر المحايد في arepsilon

(U,T) لنبين أنه يقبل مماثلا $x \in U$ لنبين أنه يقبل مماثلا -

(A,T) لدينا $x \in U$ اذن يقبل مماثلا $x \in U$

 $x'' \in U$ ولدينا x'' يقبل مماثلا هو x إذن

 (U,T) في x'' مماثلا هو x'' في

وبالتالى (U,T) زمرة.

6) قواسم الصفر في حلقة:

heta:x o 0 صفرها: $F(\mathbb{R},\mathbb{R}),+, imes$ صغتبر الحلقة

 $f: x \to |x| - x$ ونعتبر الدالتين

 $g: x \rightarrow |x| + x :$

لدينا:

$$(\forall x \in \mathbb{R}) : (f.g)(x) = f(x).g(x)$$
$$= (|x| - x)(|x| + x)$$
$$= |x|^2 - x^2$$
$$= x^2 - x^2 = 0 = \theta(x)$$

 $(\forall x \in \mathbb{R})$ $f.g = \theta$ إذن: $f \neq \theta$, $g \neq \theta$, $f.g = \theta$ $(F(\mathbb{R},\mathbb{R}),+,.)$ قاسمين للصفر في الحلقة gنقول إن تعریف (1):

0_A ليكن (A, *, T) حلقة صفرها

نقول إن عنصرا a من A قاسم للصفر إذا وفقط إذا كان:

 $a\mathrm{T}b=0_{\scriptscriptstyle A}$ بحیث: $b
eq 0_{\scriptscriptstyle A}$ ویوجد $a
eq 0_{\scriptscriptstyle A}$

لتكن (A,*,T) حلقة

نقول إن الحلقة $(A,*,\mathsf{T})$ كاملة (intègre) إذا كانت لا تحتوي علم

ملاحظة:

 0_A نعتبر الحلقة (A,+, imes) صفرها

:ا يكون a قاسم للصفر إذا كان-1

 $a \times b = 0_{\scriptscriptstyle A}$ ويوجد $b \neq 0_{\scriptscriptstyle A}$ ويوجد $a \neq 0_{\scriptscriptstyle A}$

اكان: (A,*,T) كاملة إذا وفق إذا كان-2

$$(\forall (x, y) \in A^2)$$
 $\begin{cases} x \neq 0_A \\ y \neq 0_A \end{cases} \Rightarrow x.y \neq 0_A$

يعني:

$$\left(\forall (x, y) \in A^2\right) x. y = 0_A \Longrightarrow \begin{cases} x = 0_A \\ y = 0_A \end{cases}$$

أمثلة:

حلقهٔ $(\mathbb{C},+, imes);(\mathbb{R},+, imes);(\mathbb{Q},+, imes);(\mathbb{Z},+, imes)$ حلقهٔ -1كاملة.

حلقة غير كاملة. $(F(\mathbb{R},\mathbb{R}),+, imes)$ حلقة غير

7) حلقتان هامتان:

a) حلقة المصفوفات المربعة:

→ حلقة المصفوفات المربعة من الرتبة 2:

سمي مصفوفة مربعة من الرتبة 2 بمعاملات حقيقية كل جدول على شكل: \mathbb{R} من d,c,b,a حيث $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$

 $M_2(\mathbb{R})$ برمز لمجموعة هذه المصفوفات ب

نعرف على $M_2(\mathbb{R})$ الجمع والضرب كما يلي:

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix} (\leftarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa'+cb' & ac'+cd' \\ ba'+db' & bc'+dd' \end{pmatrix} (\leftarrow \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a' & b' \\ ba'+db' & bc'+dd' \end{pmatrix} (\leftarrow \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a' & b' \\ c'$$

$\underline{:}\mathbb{Z}/n\mathbb{Z}$ الحلقة (b

سبق و أن عرفنا الجمع والضرب في $\overline{x}/n\mathbb{Z}$ كما يلي: $\overline{x}+\overline{y}=\overline{x+y}$ $\overline{x}.\overline{y}=\overline{x,y}$

خاصية:

. $\overline{1}$ حلقة تبادلية واحدية صفرها $\overline{0}$ وحدتها $\overline{1}$.

ملاحظة:

:) نعتبر
$$(\mathbb{Z}/n\mathbb{Z},+, imes)$$
 لدينا (*

الميد. (
$$\lambda,+,\times$$
) لعيد. ($\lambda,+,\times$) لعيد. ($\lambda,+,\times$) لعيد. ($\lambda,+,\times$) لعيد. ($\lambda,+,\times$) الميد. ($\lambda,+,\times$) عند. ($\lambda,+,\times$)

$(\forall \overline{x}, \overline{y} \in \mathbb{Z}/n\mathbb{Z})$

$$\overline{x}.\overline{y} = \overline{0} \Rightarrow \overline{x.y} = \overline{0}$$

$$\Rightarrow xy \equiv 0[n]$$

$$\Rightarrow n/xy$$

$$\Rightarrow n/x \text{ if } n/y$$

$$\Rightarrow x \equiv 0[n] \text{ if } y \equiv 0[n]$$

$$\Rightarrow \overline{x} = \overline{0} \text{ if } \overline{y} = \overline{0}$$

$$\Rightarrow \overline{x} = \overline{0} \text{ alies alies} (\mathbb{Z}/n\mathbb{Z}, +, \times)$$

) نعتبر الحلقة $(\mathbb{Z}/n\mathbb{Z},+, imes)$ حيث عير أولي.

 \cdot n_1 يقبل قاسم فعلي موجب n

 $n=n_1+n_2$ يعني:

 n_1 قاسم فعلي موجب إذن n_2 قاسم فعلي موجب. $n_1 \not\equiv 0 \begin{bmatrix} n \end{bmatrix}$ لدينا $n \times n_1 \neq 0$ إذن $n \times n_1$ يعني $1 < n_1 < n$ يعني: $1 < n_2 < n$ و $n \times n_2 \neq 0$ و $n \times n_2 \neq 0$

 $n_1.n_2=n$ ولدينا: $\overline{n_1.n_2}=\overline{n}$ يعني: $\overline{n_1.\overline{n_2}}=\overline{0}$ يعني:

ي . \overline{n}_2 قاسمان للصفر . إذن \overline{n}_2 إذن \overline{n}_1 إذن

ومنه: $(\mathbb{Z}/n\mathbb{Z},+, imes)$ حلقة غير كاملة.

<u>خاصية:</u>

الحلقة $(\mathbb{Z}/n\mathbb{Z},+, imes)$ كاملة إذا وفقط إذا كان n أولي.

<u>تمرين:</u>

 $n \in \mathbb{N}^*$ ، $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ نعتبر الحلقة حدد العناصر القابلة للمماثلة.

خاصية:

حلقة غير تبادلية وواحدية. $(M_2(\mathbb{R}),+, imes)$

$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 صفرها المصفوفة المنعدمة:

وحدتها المصفوفة الوحدة: $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ وغير كاملة.

→ حلقة المصفوفات المربعة من الرتبة 3:

<u> عریف:</u>

نسمي مصفوفة مربعة من الرتبة 3 بمعاملات حقيقية كل جدول على شكل:
$$a_{ij}\in\mathbb{R}$$
 حيث $\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}$

 $M_{_3}(\mathbb{R})$ برمز لمجموعة هذه المصفوفات ب

- نعرف الجمع والضرب في $M_3(\mathbb{R})$ بما يلي:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{vmatrix} = \begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{vmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \\ a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \\ a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \end{pmatrix}$$

باستعمال الترميز يمكن أن نعرف الجمع والضرب كما يلي: نعتبر المصفوفة:

$$B=\left(b_{ij}
ight)_{\substack{1\leq i\leq 3\1\leq j\leq 3}}$$
 ; $A=\left(a_{ij}
ight)_{\substack{1\leq i\leq 3\1\leq j\leq 3}}$ $S=\left(S_{ij}
ight)_{\substack{1\leq i\leq 3\1\leq j\leq 3}}$ هي المصفوفة $A+B$ لدينا $S_{ij}=a_{ij}+b_{ij}$ حيث:

$$C = (C_{ij})_{\substack{1 \leq i \leq 3 \\ 1 < i \leq 3}}$$
 ولدينا $A.B$ هي المصفوفة *

$$C_{ij} = \sum_{k=1}^{3} a_{ik} b_{jk}$$
 حيث

ىثال:

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 & -2 \\ 1 & 2 & -1 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 7 & -1 \\ -2 & 2 & -2 \\ 3 & 3 & 2 \end{pmatrix}$$

<u>خاصية:</u>

حلقة غير تبادلية، غير كاملة وواحدية صفرها المصفوفة $(M_3ig(\mathbb{R}ig),+, imes)$

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 وحدثها $0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$: المنعدمة:

- لدينا:

(قابلة للمماثلة
$$\overline{x}$$
) \Leftrightarrow $\left(\exists \overline{x}' \in \mathbb{Z}/n\mathbb{Z}\right)$: $\overline{x}.\overline{x}' = \overline{1}$

$$\Leftrightarrow (\exists x' \in \mathbb{Z}) : x.x' \equiv 1[n]$$

$$\Leftrightarrow (\exists x', k \in \mathbb{Z}) : xx' = 1 + nk$$

$$\Leftrightarrow$$
 $(\exists x', k \in \mathbb{Z}): xx' - nk = 1$

$$\Leftrightarrow x \land n = 1$$

$$U = \{ \overline{x} \in \mathbb{Z} / n\mathbb{Z} / x \land n = 1 \}$$

ملاحظة:

لدينا (U, imes) زمرة تبادلية.

VI) الجسم: Corps

1) تعریف:

نقول إن
$$(K,*,T)$$
 جسم إذا وفقط إذا تحقق ما يلي:

*) دلقة واحدية.
$$(K,*,T)$$
 علقة واحدية.

*) كل عنصر يخالف صفر الحلقة يقبل مماثلا بالنسبة ل T.

ملاحظة:

الحسم K تبادلی نقول إن الجسم K تبادلی. T

$$(K,*,T)$$
 جسما إذا وفقط إذا كان -2

زمرة.
$$\left(K - \left\{0_k\right\}, \mathsf{T}\right)$$
 زمرة.

2) أمثلة:

الدلى. $(\mathbb{C},+,\times),(\mathbb{R},+,\times),(\mathbb{Q},+,\times)$ جسم تبادلى. -1

. نعتبر الحلقة
$$p(\mathbb{Z}/p\mathbb{Z},+, imes)$$
 حيث $p(\mathbb{Z}/p\mathbb{Z},+, imes)$ أولي.

لنبين أنها جسم.

- لدينا
$$(\mathbb{Z}/p\mathbb{Z},+,\times)$$
 حلقة واحدية.

$$\overline{x} \neq \overline{0}$$
 ليكن –

$$p \times x$$
 يعنى $x \neq 0 [p]$

$$p \wedge x = 1$$
 وبما أن p أولى فإن

یو جدV بحیث: یو Bezout یو جد

$$pu + xv = 1$$

 $(\overline{0} = \overline{p})$

$$\overline{p}.\overline{u} + \overline{x}.\overline{v} = \overline{1}$$
 يعني: $\overline{x}.\overline{v} = \overline{1}$

$$\overline{v}$$
 يقبل مماثلا هو \overline{x}

اذن کل عنصر $\overline{x} \neq \overline{0}$ یقبل مقلوبا.

ومنه $(\mathbb{Z}/p\mathbb{Z},+,\times)$ جسم.

خاصية:

اذا كان p أولى فإن $(\mathbb{Z}/p\mathbb{Z},+, imes)$ جسم تبادلى.

$$(M_2(\mathbb{R}),+, imes)$$
 نعتبر الحلقة -3

ادينا
$$(M_2(\mathbb{R}),+, imes)$$
 حلقة واحدية.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 نعتبر المصفوفة –

لنتحقق هل A تقبل مقلوبا.

$$A.A' = A'.A = I$$
 بحيث: $A' = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ لنبحث عن

لدىنا:

$$A.A' = I \Leftrightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}. \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} a+b & c+d \\ a+b & c+d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\Leftrightarrow \begin{cases} a+b=1 \\ c+d=0 \\ a+b=0 \\ c+d=0 \end{cases}$$

و هذا مستحيل.

A' إذن A لا تقبل مقلوبا

ومنه
$$(M_2(\mathbb{R}),+, imes)$$
 ليس جسما.

وبنفس نجد أن $(M_3(\mathbb{R}),+, imes)$ ليس جسما.

3) خاصیات:

خاصية (1):

ایکن $(K,+,\times)$ جسما.

لدينا كل عنصر من $\{0_k\}$ منتظم بالنسبة للضرب.

$$(\forall a \in K - \{0_k\})(\forall (x, y) \in K^2):$$

$$\begin{cases} a.x = a.y \Rightarrow x = y \\ x.a = y.a \Rightarrow x = y \end{cases}$$

. ليكن $(K,+,\times)$ جسما

$$(\forall (x,y) \in K^2): x.y = 0_k \Rightarrow x = 0_k \text{ } y = 0_k$$
 $y=0_k$

Number of $y=0_k$

Number of $y=0_k$

الیکن
$$(K,+,\times)$$
 جسما.

 $a \times x = b$ نعتبر المعادلة

.
$$x=a^{-1}b$$
 إذا كان $a \neq 0_k$ فإن المعادلة تقبل حلا وحيدا (*

و
$$a=0_k$$
 فإن المعادلة ليس لها حل. $a=0_k$ إذا كان

$$S=K$$
 و $b=0_k$ فإن $a=0_k$

 $x \times a = b$ نفس الشيء بالنسبة للمعادلة

$$L = egin{cases} f_a: \mathbb{R}
ightarrow \mathbb{R} \ x
ightarrow ax/a \in \mathbb{R} \end{cases} :$$
نعتبر بين أن: $(L,+,o)$ جسم تبادلي. تمرين (2) :

$$E=egin{cases} M_{(a,b)}=egin{pmatrix} a & b \ -b & a+b \end{pmatrix}/a,b\in\mathbb{R} \end{pmatrix}$$
 نعتبر بين أن $(E,+, imes)$ جسم تبادلي .