Study guide: Numerical solution of the Navier-Stokes equations

Hans Petter Langtangen^{1,2}

¹Center for Biomedical Computing, Simula Research Laboratory ²Department of Informatics, University of Oslo

Nov 11, 2014

The physical and mathematical problem

http://www.youtube.com/embed/P8VcZzgdfSc http://www.youtube.com/embed/sI2uCHH3qIM

Lots of physical applications involve fluid flow

- Weather (flow in the atmosphere)
- Ocean currents
- Flight
- Drag on cars
- Blood circulation
- Breathing

The physical assumptions behind the Navier-Stokes equations

Assumptions:

- Incompressible flow (velocity < 1/3 of the speed of sound)
- Laminar flow
- Simple fluids (constant viscosity ν)

Primary unknowns:

- velocity $\boldsymbol{u}(\boldsymbol{x},t)$
- pressure p(x,t)

Figure 1: Flow around a cylinder.

The Navier-Stokes equations

Momentum balance (Newton's 2nd law):

$$\boldsymbol{u}_t + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\frac{1}{\varrho}\nabla p + \nu \nabla^2 \boldsymbol{u} + \boldsymbol{f}$$

Mass balance (eq. of continuity):

$$\nabla \cdot \boldsymbol{u} = 0$$

Boundary conditions

- \bullet Dirichlet conditions: components of \boldsymbol{u} are known
- Neumann conditions:
 - Stress condition: components of the stress vector $\boldsymbol{\sigma} \cdot \boldsymbol{n}$ are prescribed
 - Outflow or symmetry condition: $\partial u/\partial n = 0$ (or components of this vector are zero)
- Pressure known at a single point

The classical splitting method

Idea: split the N-S equations into simpler problems (operator splitting).

A simple, naive approach

The equation for \boldsymbol{u} looks like a diffusion equation...why not a Forward Euler scheme?

$$egin{aligned} oldsymbol{u}_t + (oldsymbol{u} \cdot
abla) oldsymbol{u} &= -rac{1}{arrho}
abla p +
u
abla^2 oldsymbol{u} + oldsymbol{f} \ &rac{oldsymbol{u}^{n+1} - oldsymbol{u}^n}{\Delta t} + (oldsymbol{u}^n \cdot
abla) oldsymbol{u}^n &= -rac{1}{arrho}
abla p^n +
u
abla^2 oldsymbol{u}^n + oldsymbol{f}^n \ & oldsymbol{u}^{n+1} &= oldsymbol{u}^n - \Delta t (oldsymbol{u}^n \cdot
abla) oldsymbol{u}^n - rac{\Delta t}{arrho}
abla p^n + \Delta t
u
abla^2 oldsymbol{u}^n + \Delta t oldsymbol{f}^n \ & oldsymbol{u}^n + \Delta t oldsymbol{f}^n \ & oldsymbol{u}^n + \Delta t oldsymbol{f}^n \ & oldsymbol{u}^n + \Delta t oldsymbol{u}^n + \Delta t oldsymbol{f}^n \ & oldsymbol{u}^n + \Delta t oldsymbol{u}^n + \Delta t oldsymbol{f}^n \ & oldsymbol{u}^n + \Delta t oldsymbol{u}^n + \Delta t oldsymbol{f}^n \ & oldsymbol{u}^n + \Delta t oldsymbol{u}^n + \Delta$$

Two fundamental problems:

- 1. $\nabla \cdot \boldsymbol{u}^{n+1} \neq 0$ (that equation is not used!)
- 2. no computation of p^{n+1}

A working scheme

Idea: Forward Euler in time, but evaluate ∇p at t_{n+1} and enforce $\nabla \cdot \boldsymbol{u}^{n+1} = 0$.

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n - \Delta t (\boldsymbol{u}^n \cdot \nabla) \boldsymbol{u}^n - \frac{\Delta t}{\varrho} \nabla p^{n+1} + \Delta t \, \nu \nabla^2 \boldsymbol{u}^n + \Delta t \boldsymbol{f}^n,$$
$$\nabla \cdot \boldsymbol{u}^{n+1} = 0$$

Note: implicit system for u^{n+1} and p^{n+1}

We solve the implicit system by a splitting technique

- Use old $\beta \nabla p^n$ for ∇p^{n+1} and advance to intermediate velocity u^*
- Correct the \boldsymbol{u}^* velocity by $\nabla \cdot \boldsymbol{u}^{n+1} = 0$

Intermediate velocity (Forward Euler):

$$u^* = u^n - \Delta t (u^n \cdot \nabla) u^n - \beta \frac{\Delta t}{\rho} \nabla p^n + \Delta t \nu \nabla^2 u^n + \Delta t f^n$$

Seek correction $\delta \boldsymbol{u}$ such that

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^* + \delta \boldsymbol{u}$$

fulfills

$$\nabla \cdot \boldsymbol{u}^{n+1} = 0$$

A Poisson equation must be solved to ensure $\nabla \cdot \mathbf{u} = 0$

Subtract u^* equation from original u^{n+1} equation to find δu :

$$\delta oldsymbol{u} = oldsymbol{u}^{n+1} - oldsymbol{u}^* = -rac{\Delta t}{arrho}
abla \Phi$$

where

$$\Phi = p^{n+1} - \beta p^n$$

The oldest methods had $\beta = 0$, but $\beta \neq 0$ gives in general better speed and accuracy.

 $\nabla \cdot \dot{\boldsymbol{u}}^{n+1} = 0$ implies

$$\nabla \cdot \delta \boldsymbol{u} = -\nabla \cdot \boldsymbol{u}^*$$

which gives

$$\nabla^2 \Phi = \frac{\varrho}{\Delta t} \nabla \cdot \boldsymbol{u}^*$$

When Φ is computed,

$$oldsymbol{u}^{n+1} = oldsymbol{u}^* - rac{\Delta t}{
ho}
abla \Phi$$

and

$$p^{n+1} = \Phi + \beta p^n$$

Summary

- 1. Compute the intermediate velocity u^*
- 2. Solve the Poisson equation for Φ
- 3. Update the velocity: $\mathbf{u}^{n+1} = \mathbf{u}^* \frac{\Delta t}{\rho} \nabla \Phi$
- 4. Update the pressure: $p^{n+1} = \Phi + \beta p^n$

Basically, we have u=f approximation problems (1,3,4) and a Poisson equation to solve.

Boundary conditions

Problem: p condition at one point only in the original N-S equations. Now we need boundary conditions for Φ along the whole boundary (Poisson equation).

- Use conditions for u also for u^*
- \bullet Known pressure: known Φ

- Known pressure gradient: known $\partial \Phi / \partial n$
- Otherwise $\partial \Phi / \partial n = 0$

Spatial discretization by the finite element method

- $u^*, u^{n+1} \in V^{(u)}$ (modulo nonzero Dirichlet cond.)
- $p^{n+1} \in V^{(\Phi)}$ (modulo nonzero Dirichlet cond.)
- Test function $v^{(u)} \in V^{(u)}$ for vector equations (velocity)
- Test function $v^{(\Phi)} \in V^{(\Phi)}$ for scalar equations (pressure)
- ullet Take inner product of vector equation and $oldsymbol{v}^{(u)}$
- Integrate $\nabla^2 \boldsymbol{u} \cdot \boldsymbol{v}^{(u)}$ by parts
- Integrate $\nabla p \cdot \boldsymbol{v}^{(u)}$ by parts (optional)
- Notation: \boldsymbol{u} is \boldsymbol{u}^{n+1} , \boldsymbol{u}_1 is \boldsymbol{u}^n , p is p^{n+1} , p_1 is p^n (as in code)

$$\int_{\Omega} \left(\boldsymbol{u}^* \cdot \boldsymbol{v}^{(u)} + \Delta t ((\boldsymbol{u}_1 \cdot \nabla) \nabla \boldsymbol{u}_1) \cdot \boldsymbol{v}^{(u)} - \frac{\Delta t}{\varrho} p \nabla \cdot \boldsymbol{v}^{(u)} + \Delta t \nu \nabla \boldsymbol{u}_1 \cdot \nabla \boldsymbol{v}^{(u)} - \Delta t f_1 \right) dx + \int_{\partial \Omega_{N,u}} \left(\nu \frac{\partial \boldsymbol{u}}{\partial n} - p \boldsymbol{n} \right) \cdot \boldsymbol{v}^{(u)} ds, \quad (1)$$

 $\forall \boldsymbol{v}^{(u)} \in V^{(u)}.$

Natural boundary condition:

$$\nu \frac{\partial \boldsymbol{u}}{\partial n} - p\boldsymbol{n} \quad (=0)$$

Usually $\partial \boldsymbol{u}/\partial n = 0$ and p = 0 at outlets.

Pressure Poisson equation:

$$\int_{\Omega} \nabla \Phi \cdot \nabla v^{(\Phi)} \, \mathrm{d}x = \frac{\varrho}{\Delta t} \int_{\Omega} \nabla \cdot \boldsymbol{u}^* \, v^{(\Phi)} \, \mathrm{d}x + \int_{\partial \Omega_{N,p}} \frac{\partial \Phi}{\partial n} v^{(\Phi)} \, \mathrm{d}s, \quad \forall v^{(\Phi)} \in V^{(\Phi)}.$$
(2)

Velocity update:

$$\int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v}^{(u)} \, \mathrm{d}x = \int_{\Omega} (\boldsymbol{u}^* - \frac{\Delta t}{\varrho} \nabla \Phi) \cdot \boldsymbol{v}^{(u)} \, \mathrm{d}x, \quad \forall \boldsymbol{v}^{(u)} \in V^{(u)}.$$
 (3)

Pressure update:

$$\int_{\Omega} pv^{(\Phi)} dx = \int_{\Omega} (\Phi + \beta p_1) v^{(\Phi)} dx, \quad \forall v^{(\Phi)} \in V^{(\Phi)}.$$
 (4)

Increasing the implicitness

Stability (due to Forward Euler-style scheme):

$$\Delta t \le \frac{h^2}{2\nu + Uh} \,. \tag{5}$$

h: minimum element size, U: typical velocity.

Better stability by a Backward Euler scheme:

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^{n} - \Delta t (\boldsymbol{u}^{n+1} \cdot \nabla) \boldsymbol{u}^{n+1} - \frac{\Delta t}{\varrho} \nabla p^{n+1} + \Delta t \, \nu \nabla^{2} \boldsymbol{u}^{n+1} + \Delta t \boldsymbol{f}^{n+1},$$
(6)

$$\nabla \cdot \boldsymbol{u}^{n+1} = 0. \tag{7}$$

Intermediate velocity $(\nabla p^{n+1} \to \beta p^n)$:

$$\boldsymbol{u}^* = \boldsymbol{u}^n - \Delta t (\boldsymbol{u}^* \cdot \nabla) \boldsymbol{u}^* - \beta \frac{\Delta t}{\rho} p^{n+1} + \Delta t \, \nu \nabla^2 \boldsymbol{u}^* + \Delta t \boldsymbol{f}^{n+1}$$

Deal with nonlinearity in a simple way (1 Pickard it.):

$$(\boldsymbol{u}^* \cdot \nabla) \boldsymbol{u}^* \approx (\boldsymbol{u}^n \cdot \nabla) \boldsymbol{u}^*$$
 (8)

Then we have a linear problem for u^* :

$$\boldsymbol{u}^* = \boldsymbol{u}^n - \Delta t(\boldsymbol{u}^n \cdot \nabla)\boldsymbol{u}^* - \beta \frac{\Delta t}{\varrho} \nabla p^n + \Delta t \, \nu \nabla^2 \boldsymbol{u}^* + \Delta t \boldsymbol{f}^{n+1}$$

Correction (assume $u^{n+1} - u^*$ small):

$$\delta \boldsymbol{u} = \Delta t ((\boldsymbol{u}^{n+1} \cdot \nabla) \boldsymbol{u}^{n+1} - (\boldsymbol{u}^n \cdot \nabla) \boldsymbol{u}^*) - \frac{\Delta t}{\rho} \nabla \Phi + \Delta t \, \nu (\nabla^2 (\boldsymbol{u}^{n+1} - \boldsymbol{u}^*) \approx -\frac{\Delta t}{\rho} \nabla \Phi \,.$$

So, as before,

$$\nabla^2 \Phi = \frac{\varrho}{\Delta t} \nabla \cdot \boldsymbol{u}^*$$

- \bullet Need to solve an implicit equation (linear system) for u^*
- The other steps are the same
- ullet A Crank-Nicolson method is more accurate (also implicit scheme for $oldsymbol{u}^*$)

Methods based on slight compressibility

 $\nabla \cdot \boldsymbol{u} = 0$ is problematic. Allow slight compressibility in the fluid:

$$p_t + c^2 \nabla \cdot \boldsymbol{u} = 0.$$

c: speed of sound.

Now we have evolution equations for \boldsymbol{u} and p:

$$\boldsymbol{u}_t = -(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \frac{1}{\rho}\nabla p + \nu \nabla^2 \boldsymbol{u} + \boldsymbol{f}, \tag{9}$$

$$p_t = -c^2 \nabla \cdot \boldsymbol{u} \,. \tag{10}$$

Forward Euler:

$$\boldsymbol{u}^{n+1} = \boldsymbol{u}^n - \Delta t (\boldsymbol{u}^n \cdot \nabla) \boldsymbol{u}^n - \frac{\Delta t}{\rho} \nabla p^n + \Delta t \, \nu \nabla^2 \boldsymbol{u}^n + \Delta t \boldsymbol{f}^n, \tag{11}$$

$$p^{n+1} = p^n - \Delta t c^2 \nabla \cdot \boldsymbol{u}^n \,. \tag{12}$$

- Stability requires $\Delta t \sim h^2/c$
- \bullet c is large
- \bullet Remedy: choose smaller c ("pseudo sound speed")
- Can use Runge-Kutta methods
- Can use implicit methods (but then the other scheme with $\nabla \cdot \boldsymbol{u} = 0$ is not more complicated)

Applications

Figure 2: Flow in a channel.

Figure 3: Flow in a half a channel with a symmetry line.

Figure 4: Flow over a backward facing step.

Figure 5: Flow around a cylinder.