Guillaume T. 11-2024

Racines n-ièmes d'un nombre complexe

MAT3

5 - Racines et Polynômes complexes

Résumé du document

Definition

Table des matières

1. Définition	. 2
2. Racine de nombre sous forme exponentielle	. 3
2.1. Conditions pour que w soit une racine n-ième de z	

Guillaume T. 11-2024

1. Définition

Soit z un nombre complexe et n un entier positif, une racine n-ième de z est un nombre complexe vérifiant:

 $w^n = z$

Tout nombre complexe z non null possède n racines n-ièmes distinctes.

Guillaume T. 11-2024

2. Racine de nombre sous forme exponentielle

Si $z = re^{j\theta}$, alors ses n racines n-ièmes sont égales à

$$w_k = \sqrt[n]{r} * e^{\frac{\theta}{n} + \frac{2k\pi}{n}}, \quad k = 0, 1, ..., n-1$$

2.1. Conditions pour que w soit une racine n-ième de z

Soit $z=re^{j\theta}$ un nombre complexe non nul et $w=\rho e^{j\varphi}$ un autre nombre complexe. w est une racine n-ième de z (c'est-à-dire $w^n=z$) si et seulement si les deux conditions suivantes sont satisfaites :

1. Condition sur le module :

$$|w^n| = |z| \iff \rho^n = r \iff \rho = \sqrt[n]{r}$$

2. Condition sur l'argument :

$$n\varphi \equiv \theta (\operatorname{mod} 2\pi) \quad \Longleftrightarrow \quad n\varphi = \theta + 2k\pi \quad \Longleftrightarrow \quad \varphi = \frac{\theta}{n} + \frac{2k\pi}{n}, \quad \operatorname{avec} \ k \ \ \operatorname{un \ entier}$$

Cela signifie que le module de w doit être $\sqrt[n]{r}$ et son argument doit être de la forme $\frac{\theta}{n} + \frac{2\pi k}{n}$ pour un entier k.