Mathematical models of invasion and evolution in adenocarcinomas

Chay Paterson

University of Washington

What is cancer?

In vitro experiments

- 1. Lesions are spheroidal
- 2. Expanded with steady speed $0.03~\mathrm{mm/hr}$
- 3. Shed cells at rate $\propto 0.05 \; \rm hr^{-1} mm^{-2} \times$ surface area

J. Landry et al., "Shedding of mitotic cells from the surface of multicell spheroids during growth", Journal of cellular physiology 106.1 (1981): 23-32

In vivo experiments

Explains entire size distribution and growth rate with two equations!

K. Iwata, K. Kawasaki, and N. Shigesada, "A dynamical model for the growth and size distribution of multiple metastatic tumors." *Journal of theoretical biology* 203.2 (2000): 177-186

Evolutionary dynamics

Initially, assume a completely linear space of possible genotypes:

Lattice simulations

Controlled by:

- ▶ Birth/death rates b_n , d_n
- ► Migration probability *M*
- Mutation probability p_{μ}

Lattice simulations

Analytical model

Analytical model

Two equations:

- 1. growth
- invasion+mutation

$$\partial_{t} f_{n}(a,t) + \partial_{a} f_{n}(a,t) = 0$$

$$f_{n}(0,t) = \int_{0}^{\infty} r_{n}(a) \phi_{n}(a) f_{n}(a,t) da$$

$$+ \int_{0}^{\infty} (1 - r_{n-1}(a)) \phi_{n-1}(a) f_{n-1}(a,t) da$$
(2)

Exact solution!

1. Total number and total mass of lesions of sub-type n grows exponentially with growth rate G_n satisfying

$$\int_0^\infty \phi_n(a) \mathrm{e}^{-G_n a} da = 1$$

2. E.G. for $\phi_n = 4\pi M v_n^3 a^2$ and $r_n = \exp(-\mu a)$,

$$G_n = 2\pi^{1/3} M^{1/3} v_n$$

Chay Paterson, Martin A. Nowak, Bartlomiej Waclaw, "An exactly solvable, spatial model of mutation accumulation in cancer", *Scientific Reports* 2016

Comparison of models

How could invasion affect evolution?

- Growth exponential
- Consistent with clinical doubling times
- ▶ PREDICTION: higher motility → higher fitness

What about branching/complex pathways?

Sporadic/familial colon cancer

Colitis-associated colon cancer

A. De Lerma Barbaro et al., "Inflammatory cues acting on the adult intestinal stem cells and the early onset of cancer", International Journal of Oncology, 45(3) 2014.

The speed of cancer evolution

In the limit that mutation is rare compared to growth, these are:

$$Pr(\text{cancer}) \approx \frac{1}{4} N r_{APC} r_{tp53} r_{kRAS} r_{LOH}^2 \cdot t^5$$
 (3)

$$Pr(\text{cancer}) \approx \frac{3}{2} N \frac{r_{APC} r_{tp53} r_{kRAS} r_{LOH}^2}{b_1^3} \cdot t^2 e^{b_1 t}$$
 (4)

$$Pr(\text{cancer}) \approx cNr_{APC}r_{tp53}r_{kRAS}r_{LOH}^2\tau^4 \cdot t \ e^{b_{12}t}$$
 (5)

(compare Armitage & Doll 1954), where

$$\tau^4 = \frac{1}{b_{12}^3(b_{12} - b_1)} + \frac{1}{b_{12}^3(b_{12} - b_2)} + \frac{1}{b_{12}^2(b_{12} - b_2)^2}$$

How does evolution affect lifetime risk?

Ivana Bozic, Chay Paterson, Hans Clevers, "Mathematical model of colorectal cancer initiation", (pending submission), 2019

(2) C. Tomasetti, B. Vogelstein, "Variation in cancer risk among tissues can be explained by the number of stem cell divisions", *Science* 347(78-81) (2015).

Conclusions

- Motility can "boost" fitness.
- ▶ Fitness differentials accelerate cancer evolution.
- ► Current experimental knowledge *can* explain incidence.
- ▶ All of our inputs are empirically measurable.
- ▶ The main output, incidence against age, is also measurable.

Open questions

Application to other cancers/disorders?

- ► Familial adenomatous polyposis?
- Bloom syndrome?

"Inverse problem": can different molecular subtypes be deduced from incidence data?