Homework #4 (Covers Unit-11, Unit-12 and Unit-13) CDA Computer Logic Design Total Points: 100

Notes:

- 1. All homework should be done and submitted individually
- 2. Show all steps for each question to get full points (Use extra pages if required)
- 3. Submit electronically in canvas as a single pdf file
- 4. Follow instructions for each question
- 5. A' is the complement of A

Name: _	SOLUTIONS	UID:
---------	-----------	------

Q1. (3x5 points) A sequential circuit with two D flip-flops, X and Y; two inputs, A and B; and one output, Z, is specified by the following next-state and output equations:

$$X(t+1) = (A + B)(A'X)$$
$$Y(t+1) = AB + AB'Y$$
$$Z = X'Y$$

(a) Draw the logic diagram of the circuit

(b) Derive the state table

Presen	t State	Inp	outs	Next	State	Output
X	Y	A	В	X	Y	Z
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	0	1	0	0	1
0	1	1	0	0	1	1
0	1	1	1	0	1	1
1	0	0	0	0	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	0
1	0	1	1	0	1	0
1	1	0	0	0	0	0
1	1	0	1	1	0	0
1	1	1	0	0	1	0
1	1	1	1	0	1	0

(c) Draw the corresponding state diagram

- Q2. (2x5 points) Given the input and clock transitions, indicate the output of a D flip flop assuming:
- (a) It is negative-edge triggered
- (b) It is positive-edge triggered

Q3. (2x10 points) Given the state diagram below, (for reference: $0/0 \rightarrow$ Input / Output)

(a) create the state table

Presen	nt State	Input	Next State D Inputs		Output
Q1	Q2	I	D 1	D2	О
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	1	0
1	0	0	1	1	0
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	0	0	1

D1	Q1Q2			
Input I	00	01	11	10
0	1	0	0	1
1	0	1	0	0

$$D1 = Q2'I' + Q1'Q2I$$

D2	Q1Q2			
Input I	00	01	11	10
0	0	0	1	1
1	1	1	0	0

$$D2 = Q1'I + Q1I' = I XOR Q1$$

Output	Q1Q2			
Input I	00	01	11	10
0	0	0	0	0
1	0	0	1	1

Output = Q1I

(b) create a sequential circuit design using only two D flip flops, and any additional simple logic gates (AND, OR, NOT, XOR, NAND, NOR)

Q4. (2x10 points) An A-B flip-flop behaves as follows:

If AB = 00, the flip-flop changes its current state,

If AB = 01, the flip-flop holds,

If AB = 10, the flip-flop is reset, i.e. Q=0

If AB = 11, the flip-flop changes its current state

(a) Give the characteristic (next-state) equation for this flip-flop.

$$Q^+ = A'B'Q' + A'BQ + ABQ'$$

(b) Create the state table

A	В	Present State	Next State
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Q5. (15 points) For the following circuit complete the timing diagram.

Q6. (2x10 points) Design a synchronous sequential circuit that will count through the sequence 0,1,3,5,7 when the control input, x=0; and through the sequence 7,5,3,1,0 when x=1. The circuit should return to state 0 if it falls into states 2, 4, or 6. Note: the sequence cycles -0,1,3,5,7,0,1,3,... (a) Draw a state diagram for the circuit

(b) Draw a state transition table for the circuit

	X = 0							
	Present State Next State							
State		Flip-flop		State	Flip-flop			
	Q2	Q1	Q0		Q2	Q1	Q0	
S0	0	0	0	S1	0	0	1	
S 1	0	0	1	S3	0	1	1	
S2	0	1	0	S0	0	0	0	
S3	0	1	1	S5	1	0	1	
S4	1	0	0	S0	0	0	0	
S5	1	0	1	S7	1	1	1	
S6	1	1	0	S0	0	0	0	
S7	1	1	1	S0	0	0	0	

			X	= 1			
	Presen	t State			Next	State	
State		Flip-flop		State Flip-flop			
	Q2	Q1	Q0		Q2	Q1	Q0
S0	0	0	0	S7	1	1	1
S 1	0	0	1	S0	0	0	0
S2	0	1	0	S0	0	0	0
S3	0	1	1	S1	0	0	1
S4	1	0	0	S0	0	0	0
S5	1	0	1	S3	0	1	1
S6	1	1	0	S0	0	0	0
S7	1	1	1	S5	1	0	1