

Énoncé du problème

Fonction 1: calculer une moyenne mobile

Contexte:

Calculer la moyenne mobile d'une série temporelle financière sur base d'un vecteur data et d'une fenêtre k (3 dans l'exemple).

Décomposition du problème

Décomposer le problème en sous-problèmes

Notre programme peut se décomposer en sous-problèmes :

- · Définir la fonction
- Tester si le nombre d'observations >= k
- Initialiser les variables (indice i, liste moy_mobile)
- Répéter le calcul de la moyenne: while i < len(data)
 - Calculer la somme des k dernières observations
 - Ajouter la moyenne (somme/k) à la liste moy_mobile
 - Incrémenter i
- Renvoyer la liste moy_mobile

Décomposition du problème

Première partie

- Définir la fonction def moyenne_mobile02(data,k):
- Tester si le nombre d'observations >= k
 if len(data) < k: return [] # pas assez d'observations
- Initialiser les variables (indice i, liste moy_mobile)
 moy_mobile = []
 i = k-1

Seconde partie

- Répéter le calcul de la moyenne while i < len(data)
 - Calculer la somme des k dernières observations sum = 0.0 for j in range(0,k): sum = sum + data[i - j]
 - Ajouter la moyenne (somme/k) à la liste moy_mobile moy_mobile.append(sum/k)
 - Incrémenter ii = i + 1

7

Décomposition du problème

Troisième partie

 Renvoyer la liste moy_mobile return moy_mobile

Fonction 2: calculer la longueur de la plus longue séquence croissante

Contexte:

Calculer la longueur de la plus longue séquence croissante dans la série temporelle.

4150 | 4250 | 4300 | 4300 | 4200 | 4200 | 4300

9

Décomposition du problème

Décomposer le problème en sous-problèmes

Notre programme peut se décomposer en sous-problèmes :

- Définir la fonction
- Tester si le nombre d'observations >= k
- Calculer les moyennes mobiles
- Initialiser les variables (longueur maximale maximum, longueur courante cpt)
- Répéter le calcul du maximum: for i in range(0, len(moy_mobile) 1)
 - Calculer la longueur courante
 - Vérifier si la longueur courante excède la plus longue (update du maximum)
- Renvoyer la longueur maximale

Décomposition du problème

Première partie

- Définir la fonction plus_longue_periode_croissante01(data,k):
- Tester si le nombre d'observations >= k
 if len(data) < k: return -1 # pas assez d'observations
- Calculer les moyennes mobiles moy_mobile = moyenne_mobile01(data,k) # calcule la moyenne mobile
- Initialiser les variables (longueur maximale long, longueur courante cpt)
 maximum, cpt = 0, 1

Seconde partie

- Répéter le calcul du maximum for i in range(0,len(moy_mobile) – 1):
 - Calculer la longueur courante à l'aide d'un compteur
 if moy_mobile[i+1] > moy_mobile[i]: # si strictement croissant
 cpt = cpt + 1 # on augmente le compteur
 else: cpt = 1 # remettre le compteur à un si pas strictement croissant
 - Vérifier si la longueur courante excède la plus longue (update du maximum) if cpt > maximum: # si la longueur courante est > que la longueur maximale maximum = cpt # mettre a jour la longueur maximale

13

Décomposition du problème

Troisième partie

 Renvoyer la longueur maximale return maximum