

Institut de Physique Nucléaire de Lyon Internship carried out from 2018/03/12 to 2018/07/13

Master 2 internship report

Signal vs background discrimination in γ +jet events, recorded by the CMS experiment at LHC.

Author:
Maxime GIRAUD

Supervisor : Viola Sordini

Acknowledgments

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula. Pellentesque rhoncus nunc et augue. Integer id felis.

Contents

Introduction		5
$\gamma+{ m jet}$	event classification in LHC collisions	6
1.1	CMS experiment at LHC	6
1.2	Hadronic jets in proton-proton collisions	6
Collisi	on data	7
2.1	Monte-Carlo simulation	7
2.2	CMS data	7
2.3	MVA variables	7
Input	variable analysis	9
3.1	Background vs Signal discrimination	9
3.2	Variable correlations	9
MultiV	Variate Analysis	11
4.1	Boosted Decision Tree	11
4.2	Artificial Neural Network	11
4.3	Results	11
Concl	ision and future outlook	12

List of Figures

3.1	Charge hadron isolation for background and signal, here is a good discrimination	
	between them	10

Acronyms and abbreviations

IPNL Institut de Physique Nucléaire de Lyon

CERN Centre Européen pour la Recherche Nucléaire

LHC Large Hadron Collider

CMS Compact Muon Solenoid

MC Monte-Carlo

MVA MultiVariate Analysis

ANN Artificial Neural Network

Introduction

γ+jet event classification in LHC collisions

1.1 CMS experiment at LHC

The Compact Muon Solenoid (CMS) is a particle physics detector built on the Large Hadron Collider (LHC) at CERN in switzerland and France. The goal of CMS experiment is to investigate the physics beyond the Standard Model. CMS is designed as a general-purpose detector, capable of studying many aspects of proton collisions at 0.9-13 TeV, the center-of-mass energy of the LHC particle accelerator.

It is made of multiple particle detectors designed to measure the energy and momentum of products of the collisions. The first layer called the "Tracker" reconstruct the paths of high-energy muons, electrons and hadrons as well as see tracks coming from the decay of very short-lived particles.

Next the "Electromagnetic Calorimeter" is designed to measure with high accuracy the energies of electrons and photons.

The Hadronic Calorimeter measures the energy of hadrons and provides indirect measurement of the presence of non-interacting, uncharged particles such as neutrinos.

Theses layers all fit inside a large solenoid magnet of 3.8 Tesla, this allows the charge/mass ratio of particles to be determined from the curved track that they follow in the magnetic field. Finally the "Muon detectors and return yoke" are placed outside of the solenoid.

1.2 Hadronic jets in proton-proton collisions

In particle physics, jets are the experimental signatures of quarks and gluons produced in high-energy processes.

These particles having a net colour charge cannot exist freely due to couloour-confinement, thereby they are not directly observed in nature. Instead, they come together to form colour-neutral hadrons by a process called hadronisation that leads to a collimated spray of hadrons called a jet. The detailed understanding of both the jet energy scale and of the transverse momentum resolution is of crucial importance for many physics analyses.

Collision data

Y en a beaucoup...

2.1 Monte-Carlo simulation

Tres jolie ville!

2.2 CMS data

blabla cms!

2.3 MVA variables

CHiso γ: Charged Hadron isolation

NHiso γ : Neutral Hadron isolation

Photoniso γ : Photon isolation

 $\sigma_{i\eta i\eta}$: Energy weighted spread within the 5x5 crystal matrix centred on the crystal with the largest energy deposit in the supercluster. Obtained by measuring position by countining crystals.

 $\sigma_{i\eta i\varphi}$: Energy weighted spread within the 5x5 crystal matrix centred on the crystal with the largest energy deposit in the supercluster. Obtained by measuring position by countining crystals.

 η_{width} γ : Shower width in η

 φ_{width} γ : Shower width in φ

 $\mathbf{R_9}$ $\boldsymbol{\gamma}$: Energy sum of the 3x3 crystals centred on the most energetic crystal in the supercluster divided by the supercluster's energy. Lower values of $\mathbf{R_9}$ for converted photons than those of unconverted photons.

2.3. MVA variables 8

 ${f Had/Em:}$ Hadronic calorimeter energy deposit over Electromagnetic calorimeter energy deposit

 $\mathbf{E_{nxm}}/\mathbf{E_{5x5}}$: Energy of most energetic nxm crystal set over energy of 5x5 crystal set

ρ: Pile-up energy, median of the transverse energy density per unit area.

Input variable analysis

A large set of variables is available from CMS data. MVA training can be time consumming and the "dimensionality curse" forces us to select only a few of them based on two main criteria:

Background vs Signal discrimination: Variables with most differences of shape for background and signal will be picked.

Low correlation between variables: Needed in order to reduce redundancy of input data and thus will permit to reduce MVA complexity (for example number of hidden neurons in ANN).

reference [Collaboration 2015].

3.1 Background vs Signal discrimination

It is necessary to pick the smallest set of input variable for the MVA. This selection is done by looking at variable shape for background and signal data from MC simulation.

3.2 Variable correlations

Training data needed-quantity increases with network complexity. So correlation between variables must be avoided in order to get the minimum redundancy.

Figure 3.1: Charge hadron isolation for background and signal, here is a good discrimination between them

MultiVariate Analysis

4.1 Boosted Decision Tree

Yep!

4.2 Artificial Neural Network

Le train de tes injures roule sur le rail de mon indiférence....

4.3 Results

Conclusion and future outlook

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula. Pellentesque rhoncus nunc et augue. Integer id felis. Curabitur aliquet pellentesque diam. Integer quis metus vitae elit lobortis egestas. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi vel erat non mauris convallis vehicula. Nulla et sapien. Integer tortor tellus, aliquam faucibus, convallis id, congue eu, quam. Mauris ullamcorper felis vitae erat. Proin feugiat, augue non elementum posuere, metus purus iaculis lectus, et tristique ligula justo vitae magna. Aliquam convallis sollicitudin purus. Praesent aliquam, enim at fermentum mollis, ligula massa adipiscing nisl, ac euismod nibh nisl eu lectus. Fusce vulputate sem at sapien. Vivamus leo. Aliquam euismod libero eu enim. Nulla nec felis sed leo placerat imperdiet. Aenean suscipit nulla in justo. Suspendisse cursus rutrum augue. Nulla tincidunt tincidunt mi. Curabitur iaculis, lorem vel rhoncus faucibus, felis magna fermentum augue, et ultricies lacus lorem varius purus. Curabitur eu amet.

Bibliography

[Collaboration 2015] CMS Collaboration. Performance of Photon Reconstruction and Identification with the CMS Detector in Proton-Proton Collisions at sqrt(s) = 8 TeV. In JINST 10, 2015.

Résumé — Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue blandit sodales. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam nibh. Mauris ac mauris sed pede pellentesque fermentum. Maecenas adipiscing ante non diam sodales hendrerit. Ut velit mauris, egestas sed, gravida nec, ornare ut, mi. Aenean ut orci vel massa suscipit pulvinar. Nulla sollicitudin. Fusce varius, ligula non tempus aliquam, nunc turpis ullamcorper nibh, in tempus sapien eros vitae ligula. Pellentesque rhoncus nunc et augue. Integer id felis.

Mots clés: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor.