Lista 1

Victor Sena Molero - 8941317

February 20, 2016

Ex 1.a. $3^n \neq O(2^n)$

Proof. Suponha que $3^n \in O(2^n)$, logo,

$$\exists c, n_0 : 3^n \le c2^n \forall n \in \mathbb{N}, n \ge n_0$$

mas, já que $(3/2)^n$ é estritamente crescente e bem definida para todo n natural, temos que

$$\exists m \in \mathbb{N}, m \ge n_0 : (3/2)^m > c$$

logo,

$$\exists m \in \mathbb{N}, m \geq n_0 : 3^m > c2^m$$

um absurdo, ou seja, 3^n não é $O(2^n)$

Ex 1.b. $\log_{10} n = O(\lg n)$

Proof.

$$\log_{10} n / \log_{10} 2 = \lg n$$

$$\log_{10} n = \log_{10} 2 * \lg n$$

logo, com $c = \log_{10} 2$ e $n_0 = 1$ temos

$$\log_{10} n \le c \lg n \forall n \ge n_0$$

Ex 1.c. $\lg n = O(\log_{10} n)$

Proof.

$$\lg n / \lg 10 = \log_{10} n$$

$$\lg n = \lg 10 * \log_{10} n$$

logo, com $c = \lg 10$ e $n_0 = 1$ temos

$$\lg n < c \log_{10} n \forall n > n_0$$