Logika dziedzinowa do wnioskowania o termach z wiązaniem zmiennych

Domain-specific logic for terms with variable binding

Dominik Gulczyński Promotor: dr Piotr Polesiuk

Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Informatyki

Seminarium Zakładu Języków Programowania, 1 Marca 2024

Dwa style prowadzenia rozumowań

- Piszemy dla czytelnika
- Pomijamy detale
- Korzystamy z niejawnych założeń lub niedowiedzonych twierdzeń

- Piszemy dla komputera
- Musimy obsłużyć wszystkie detale
- Korzystamy tylko z jawnych założeń lub i dowiedzonych twierdzeń

Dwa style prowadzenia rozumowań

- Piszemy dla czytelnika
- Pomijamy detale
- Korzystamy z niejawnych założeń lub niedowiedzonych twierdzeń
- Prowadzimy rozumowanie w konwencji nazw zmiennych Barendregta

- Piszemy dla komputera
- Musimy obsłużyć wszystkie detale
- Korzystamy tylko z jawnych założeń lub i dowiedzonych twierdzeń
- 4

5.3.4 Convention: Terms that differ only in the names of bound variables are interchangeable in all contexts.

What this means in practice is that the name of any λ -bound variable can be changed to another name (consistently making the same change in the body of the λ), at any point where this is convenient. For example, if we want to calculate $[x \mapsto y \ z](\lambda y \cdot x \ y)$, we first rewrite $(\lambda y \cdot x \ y)$ as, say, $(\lambda w \cdot x \ w)$. We then calculate $[x \mapsto y \ z](\lambda w \cdot x \ w)$, giving $(\lambda w \cdot y \ z \ w)$.

This convention renders the substitution operation "as good as total," since whenever we find ourselves about to apply it to arguments for which it is undefined, we can rename as necessary, so that the side conditions are satisfied. Indeed, having adopted this convention, we can formulate the definition of substitution a little more tersely. The first clause for abstractions can be dropped, since we can always assume (renaming if necessary) that the bound variable y is different from both x and the free variables of s. This yields the final form of the definition.

5.3.5 DEFINITION [SUBSTITUTION]:

źródło: Types and Programming Languages, Benjamin C. Pierce, MIT Press.

To avoid confusion between the new binding and any bindings that may already appear in $\Gamma,$ we require that the name x be chosen so that it is distinct from the variables bound by $\Gamma.$ Since our convention is that variables bound by λ -abstractions may be renamed whenever convenient, this condition can always be satisfied by renaming the bound variable if necessary.

Lemma [Preservation of types under substitution]: If
$$\Gamma$$
, x:S \vdash t : T and $\Gamma \vdash$ s : S, then $\Gamma \vdash$ [x \vdash s]t : T.

Proof: By induction on a derivation of the statement Γ , $x:S \vdash t:T$. For a given derivation, we proceed by cases on the final typing rule used in the proof. The most interesting cases are the ones for variables and abstractions.

Case T-ABS:
$$t = \lambda y : T_2 \cdot t_1$$

 $T = T_2 \rightarrow T_1$
 $\Gamma \cdot x : S \cdot y : T_2 \vdash t_1 : T_1$

By convention 5.3.4, we may assume $x \neq y$ and $y \notin FV(s)$. Using permutation on the given subderivation, we obtain Γ , $y:T_2$, $x:S \vdash t_1:T_1$. Using weakening on the other given derivation ($\Gamma \vdash s:S$), we obtain Γ , $y:T_2 \vdash s:S$. Now, by the induction hypothesis, Γ , $y:T_2 \vdash [x \mapsto s]t_1:T_1$. By T-ABs, $\Gamma \vdash \lambda y:T_2 \cdot [x \mapsto s]t_1:T_2 \rightarrow T_1$. But this is precisely the needed result, since, by the definition of substitution, $[x \mapsto s]t = \lambda y:T_1 \cdot [x \mapsto s]t_1$.

źródło: Types and Programming Languages, Benjamin C. Pierce, MIT Press.

1 Simply Typed Lambda Calculus

Variables and Substitution We use Barendregt's variable convention, which means we assume that all bound variables are distinct and maintain this invariant implicitly. Another way of saying this is: we will not worry about the formal details of variable names, alpha renaming, freshness, etc., and instead just assume that all variables bound in a variable context are distinct and that we keep it that way when we add a new variable to the context. Of course, getting such details right is very important when we mechanize our reasoning, but in this part of the course, we will not be using Coq, so we can avoid worrying about it.

źródło: Semantics lecture notes 2019/2020, Derek Dreyer, Universität des Saarlandes

Rozwiązania problemu wiązania zmiennych w systemach formalnych

- Rachunek kombinatorów
- Reprezentacja De Bruijna
- Higher-Order Abstract Syntax
- Techniki nominalne

Logika nominalna

- Rozszerzenie logiki pierwszego rzędu o narzędzia do formalizacji i rozumowania na temat struktur syntaktycznych z wiązaniem nazw
- Matematyzacja pojęcia "wystarczająco świeżych nazw" zmiennych
- Opiera się o zamianę nazw i relację świeżości nazwy w termie.

Andrew M. Pitts, "Nominal logic, a first order theory of names and binding":

Names of what? Names of entities that may be subject to binding by some of the syntactical constructions under consideration. In Nominal Logic these sorts of names, the ones that may be bound and hence that may be subjected to swapping without changing the validity of predicates involving them, will be called atoms.

$$t \; ::= \; a \mid \lambda a.t \mid t \; t$$

$$\frac{a \neq b}{a \# b} \qquad \frac{a \# t_1 \quad a \# t_2}{a \# t_1 \ t_2} \qquad \frac{a \# t}{a \# \lambda a.t} \qquad \frac{a \# t}{a \# \lambda b.t}$$

$$\frac{1}{a =_{\alpha} a} \qquad \frac{t_{1} =_{\alpha} t'_{1} \quad t_{2} =_{\alpha} t'_{2}}{t_{1} t_{2} =_{\alpha} t'_{1} t'_{2}} \qquad \frac{(a \ b)t =_{\alpha} (a' \ b)t' \quad b \# t \quad b \# t'}{\lambda a.t =_{\alpha} \lambda a'.t'}$$

Andrew M. Pitts, "Nominal logic, a first order theory of names and binding":

The fundamental assumption underlying Nominal Logic is that the only predicates we ever deal with (when describing properties of syntax) are equivariant ones, in the sense that their validity is invariant under swapping (i.e., transposing, or interchanging) names.

Pomiędzy logiką nominalną a konwencją Barendgreta

• Logika nominalna umożliwia eleganckie wyrażanie alfa-równoważności, świeżości i innych podstawowych właściwości syntaktycznych, dzięki czemu może być używana jako baza do prowadzenia rozumowań o językach programowania.

 Ale najlepiej byłoby nie przejmować się w ogóle takimi sprawami, tak jak w konwencji Barendgreta, powiedzieć jedynie że zajmujemy się tylko "wystarczająco świeżymi nazwami" i nie martwić się o technikalia.

Pomiędzy logiką nominalną a konwencją Barendgreta

- Logika nominalna umożliwia eleganckie wyrażanie alfa-równoważności, świeżości i innych podstawowych właściwości syntaktycznych, dzięki czemu może być używana jako baza do prowadzenia rozumowań o językach programowania.
- Stajemy po środku i przedstawiamy wariant logiki nominalnej która oparta jest o półautomatyczne narzędzie do zajmowania się wybranymi własności syntaktycznymi, które nazywamy więzami.
- Ale najlepiej byłoby nie przejmować się w ogóle takimi sprawami, tak jak w konwencji Barendgreta, powiedzieć jedynie że zajmujemy się tylko "wystarczająco świeżymi nazwami" i nie martwić się o technikalia.

Więzy

$\alpha \# t$	Atom α jest $\mathit{świeży}$ w termie t , czyli nie ma wolnych wystąpień w t jako wolna nazwa.
$t_1 = t_2$	Termy t_1 i t_2 są alfa-równoważne.
$t_1 \sim t_2$	Termy t_1 i t_2 mają taki sam kształt, czyli po wymazaniu atomów byłyby sobie równe.
$t_1 \prec t_2$	Kształt termu t_1 jest strukturalnie mniejszy od kształtu termu t_2 , czyli po wymazaniu atomów t_1 byłby równy jakiemuś podtermowi t_2 .
symbol t	Term t jest jakimś symbolowem funkcyjnym.

Logika więzów

```
\in Atom
                                                                   (atomy)
X \in Var
                                                                 (zmienne)
    \in Symb
                                                      (symbole funkcyine)
                                                     (wyrażenia atomowe)
         \pi a
   ::= id |(\alpha \alpha)\pi|
                                                              (permutacje)
    ::= \alpha \mid \pi X \mid \alpha.t \mid t \mid f
                                                                   (termy)
(kształty)
 c ::= \alpha \# t \mid t = t \mid t \sim t \mid t \prec t \mid \text{symbol } t
                                                                    (więzy)
```

Goal-reducing equality rules:	Goal-reducing subshape rules:	Assumption-reducing freshness rules:
$\varnothing; \Delta \vDash a = a$ $\varnothing; \Delta \vDash X = X$ $\varnothing; \Delta \vDash f = f$	$\begin{array}{c c} \varnothing; \Delta \vDash s_1 \sim s_2 \\ \varnothing; \Delta \vDash s_1 \prec \s_2 \end{array} \qquad \begin{array}{c c} \varnothing; \Delta \vDash s_1 \prec s_2 \\ \varnothing; \Delta \vDash s_1 \prec \s_2 \end{array}$	$\frac{\Gamma; \{a_1 \neq a_2\} \cup \Delta \vDash \mathcal{C}}{a_1 \neq a_2, \ \Gamma; \Delta \vDash \mathcal{C}} \qquad \frac{\Gamma; \{a \not = X\} \cup \Delta \vDash \mathcal{C}}{a \not = X, \ \Gamma; \Delta \vDash \mathcal{C}} \qquad \frac{\Gamma; \Delta \vDash \mathcal{C}}{a \not = f, \Gamma; \Delta \vDash \mathcal{C}}$
$\frac{\mathcal{G}(\Delta \vdash t_1 = t_2 = \mathcal{G}(\Delta \vdash t_1^* = t_2^*)}{\mathcal{G}(\Delta \vdash t_1^* = t_2^*)} = \frac{\alpha \neq \alpha_1, \alpha \neq \alpha_2, \Delta \vdash \alpha = \alpha}{\mathcal{G}(\Delta \vdash t_1 = \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_1, \alpha \neq \alpha_2, \Delta \vdash \alpha = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_1, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_1, \alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_1, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_1 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2 = \alpha}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2^* t_2}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2^* t_2}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2^* t_2}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2^* t_2}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \frac{\alpha \neq \alpha_2, \Delta \vdash \alpha_2^* t_2}{\alpha \in \mathcal{G}(\Delta \vdash t_1 = \alpha_2, \alpha_2^* t_2)} = \alpha \neq \alpha_2, \Delta \vdash \alpha_2^* t_$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ll} a \neq \alpha_1, a \neq \alpha_2, a \neq \alpha_1, \Delta \vdash C \\ a = (\alpha_1, a \neq \alpha_2, a \neq \alpha_1, \Delta \vdash C) \\ a = (\alpha_2, \alpha_1, a \neq \alpha_1, \Delta \vdash C) \\ a \neq \alpha_2, \alpha_1, a \neq \alpha_2, \Delta \vdash C) \\ a \neq \alpha_2, \alpha_1, a \neq \alpha_2, \Delta \vdash C) \\ a \neq \alpha_2, \alpha_1, a \neq \alpha_2, \Delta \vdash C) \\ a \neq \alpha_2, \alpha_1, a \neq \alpha_2, \Delta \vdash C) \\ a \neq \alpha_2, \alpha_1, \Delta \vdash C) \\ a \neq \alpha_2, \alpha_1, \Delta \vdash C) \\ a \neq \alpha_2, \alpha_1, \Delta \vdash C) \\ a \neq \alpha_2, \alpha_2, \Delta \vdash C) \\ a \neq \alpha_2, \Delta \vdash$
$\begin{split} & \varnothing; \Delta \vDash \alpha_1.t_1 = \alpha_2.t_2 \\ & \qquad \qquad \varnothing; \Delta \vDash \alpha = (\alpha_1.\alpha_2)\alpha \\ & \qquad \qquad$	$ {\mathscr{O}; \Delta \vdash \operatorname{symbol} f} \qquad \frac{\operatorname{symbol} X \in \Delta}{\mathscr{O}; \Delta \vdash \operatorname{symbol} X} \qquad \frac{\operatorname{symbol} X \in \Delta}{\mathscr{O}; \Delta \vdash \alpha \# X} $	Assumption-reducing shape rules: $\frac{\Gamma : \{X_1 \sim X_2 \} \cup \Delta \vDash C}{X_1 \sim X_1, \Gamma : \Delta \vDash C} \qquad \frac{\Gamma : \{X \sim x\} \cup \Delta \vDash C}{X \sim x, \Gamma : \Delta \vDash C}$
	Assumption-reducing equality rules: $\frac{X=\pi^{-1}t,\Gamma;\Delta\vDash\mathcal{C}}{\pi X=t,\Gamma;\Delta\vDash\mathcal{C}}$	$\begin{array}{ll} \Gamma_i \Delta \models C & \underline{t_1} \sim t_2, \Gamma_i \Delta \models C \\ \hline a_1 \sim a_2, \Gamma_i \Delta \models C & \underline{t_1} \sim t_2, \Gamma_i \Delta \models C \\ \underline{t_1} \sim t_2, \Gamma_i \Delta \models C & \underline{t_1} \sim t_2, \Gamma_i \Delta \models C \\ \hline t_1 \sim t_2, \Gamma_i \Delta \models C & \underline{t_1} \sim t_2, \Gamma_i \Delta \models C \\ \hline t_1 \in t_2 \sim t_2 \in \Gamma_i \Delta \models C \\ \end{array}$
Goal-reducing freshmess rules: $ \frac{a_1 \neq a_2 \in \Delta}{\varnothing; \Delta \vDash a_1 \# a_2} \qquad \frac{a \# X \in \Delta}{\varnothing; \Delta \vDash a \# X} \qquad \text{symbol } X \in \Delta \\ \frac{a_2 \Rightarrow a_3 \oplus a_4 \oplus a_5}{\varnothing; \Delta \vDash a_1 \# a_2} \qquad \frac{a_3 \# X \in \Delta}{\varnothing; \Delta \vDash a_1 \# f} $	$\frac{\pi \text{ idempotent on } X, \Gamma_1 \triangle \vdash C}{X = \pi X, \Gamma_1 \triangle \vdash C} \qquad \frac{\mathcal{C}_1 \triangle \vdash \pi \text{ idempotent on } X \Gamma_1 \triangle \vdash C}{\pi \text{ idempotent on } X, \Gamma_1 \triangle \vdash C}$ $\langle \forall a \in \pi, \Gamma_1 \triangle \vdash a = \pi a \lor a \not= X \rangle, \Gamma_1 \triangle \vdash C$	$\frac{f_1 \neq f_2}{f_1 \sim f_2, \Gamma; \Delta \vDash \mathcal{C}} \qquad \frac{f}{f \sim f, \Gamma; \Delta \vDash \mathcal{C}}$
$\begin{array}{c c} a \neq \alpha; \Delta \vDash a \neq t & \varnothing; \Delta \vDash a \neq t_1 & \varnothing; \Delta \vDash a \neq t_2 \\ \hline \varnothing; \Delta \vDash a \neq \alpha.t & \varnothing; \Delta \vDash a \neq t_1 t_2 \\ \end{array}$	π idempotent on $X, \Gamma, \Delta \models C$ $\Gamma(X \mapsto t) : \Delta \{X \mapsto t\} \models C\{X \mapsto t\}$ $X = t, \Gamma; \Delta \models C$	Assumption-reducing subshape rules: $\frac{\Gamma \colon \{t \prec X\} \cup \Delta \vDash \mathcal{C}}{t \prec X, \Gamma \colon \Delta \vDash \mathcal{C}}$
$\begin{array}{ll} a\neq\alpha_1,a\neq\alpha_2,\Delta\vdash a\neq\alpha\\ a=\alpha_1,a\neq\alpha_2,\Delta\vdash \alpha_1\neq\alpha\\ a=\alpha_1,a\neq\alpha_2,\Delta\vdash \alpha_1\neq\alpha\\ \alpha=\alpha_1,a\neq\alpha_2,\Delta\vdash \alpha_1\neq\alpha\\ \alpha=\alpha_1,a\neq\alpha_1,\Delta\vdash \alpha_1\neq\alpha\\ \alpha=\alpha_1,a\neq\alpha_1,\Delta\vdash \alpha_1\neq\alpha\\ \alpha=\alpha_1,\alpha=\alpha_1,\Delta\vdash \alpha_1,\Delta\vdash \alpha_1,\Delta$	$\frac{\Gamma(a_1 \rightarrow a_2) \Delta(a_1 \rightarrow a_2) \Gamma(a_1 \rightarrow a_2)}{a_1 = a_2 \Gamma \Delta \Gamma C}$ $a_1 = a_2 \Gamma \Delta \Gamma C$ $a_2 = a_3 \Gamma \Delta \Gamma C$ $a_3 = a_3 \Gamma \Delta \Gamma C$ $a_4 = a_4 \Gamma A \Gamma A \Gamma C$ $a_5 = a_4 \Gamma A \Gamma A \Gamma C$ $a_5 = a_5 \Gamma A \Gamma C \Gamma C$ $a_5 = a_5 \Gamma A \Gamma C \Gamma C$ $a_6 = a_5 \Gamma A \Gamma C \Gamma C$ $a_6 = a_5 \Gamma A \Gamma C \Gamma C$ $a_6 = a_5 \Gamma A \Gamma C \Gamma C$	$\frac{t_1 \sim t_2, \Gamma; \Delta \vdash \mathcal{C} - t_1 \prec t_2, \Gamma; \Delta \vdash \mathcal{C}}{t_1 \prec -t_2, \Gamma; \Delta \vdash \mathcal{C}} \qquad \frac{t_1 \sim t_2, \Gamma; \Delta \vdash \mathcal{C} - t_1 \sim t_2, \Gamma; \Delta \vdash \mathcal{C}}{t_1 \prec t_2, \Gamma; \Delta \vdash \mathcal{C}} \qquad \frac{t_1 \sim t_2, \Gamma; \Delta \vdash \mathcal{C} - t_1 \sim t_2, \Gamma; \Delta \vdash \mathcal{C}}{t_1 \prec t_2, \Gamma; \Delta \vdash \mathcal{C}} \qquad \frac{t_1 \sim t_2, \Gamma; \Delta \vdash \mathcal{C} - t_1 \sim t_2, \Gamma; \Delta \vdash \mathcal{C}}{t_1 \prec t_2, \Gamma; \Delta \vdash \mathcal{C}}$
Goal-reducing shape rules: $\varnothing: \Delta \vDash$	$a = t_1 t_2, \Gamma; \Delta \vdash C$ $a = \alpha . t, \Gamma; \Delta \vdash C$ $a = f, \Gamma; \Delta \vdash C$	$t \prec \alpha, \Gamma; \Delta \vDash C$ $t \prec f, \Gamma; \Delta \vDash C$
$\begin{array}{ccccc} 0 \wedge \Delta & \nu & \sim & & & & & & & & & & \\ N_1 & X_1 & \sim X_1 & \sim X_2 & \sim & & & & & & & \\ N_1 & \Delta & N_1 & \sim X_2 & \sim & & & & & & & \\ 0 \wedge \Delta & \nu & N_1 & \sim & N_2 & \sim & & & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim & & & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim & \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim & \sim \\ 0 \wedge \Delta & \nu & \sim \\$	$a = a_1 l_1 \Delta + C$ $a = b_1 l_2 \Delta + C$ $a = b_1 l_3 \Delta + C$ $a_1 l_4 a_2 l_3 l_4 + C$ $a_1 l_4 a_2 l_3 l_4 + C$ $a_1 l_4 a_2 l_3 l_4 + C$ $a_1 l_4 l_4 l_4 + C$ $b_1 l_4 l_4 l_4 l_4 + C$ $b_1 l_4 l_4 l_4 l_4 l_4 l_4 l_4 l_4 l_4 l_4$	Assumption-coducing symbol rubos: $\frac{\Gamma_1\left(\text{symbol }X\right)\cup\Delta ^{\perp}C}{\text{symbol }X,\Gamma_1\Delta ^{\perp}C} \qquad \frac{\Gamma_1\Delta ^{\perp}C}{\text{symbol }f_1\Gamma_1\Delta ^{\perp}C}$

Logika wyższego rzędu

$$\varphi ::= \begin{array}{ccc} \top \mid \bot \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \varphi \Longrightarrow \varphi \\ \mid \forall_{A}a. \varphi \mid \forall_{T}X. \varphi \mid \forall_{\kappa}P.\varphi \\ \mid \exists_{A}a. \varphi \mid \exists_{T}X. \varphi \mid \exists_{\kappa}P.\varphi \\ \mid \lambda_{A}a. \varphi \mid \lambda_{T}X. \varphi \mid \lambda P :: \kappa. \varphi \\ \mid P \mid \varphi \alpha \mid \varphi t \mid \varphi \varphi \end{array}$$

Logika wyższego rzędu

$$\varphi ::= \begin{array}{ccc} \top \mid \bot \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \varphi \Longrightarrow \varphi \\ \mid \forall_{A}a. \varphi \mid \forall_{T}X. \varphi \mid \forall_{\kappa}P.\varphi \\ \mid \exists_{A}a. \varphi \mid \exists_{T}X. \varphi \mid \exists_{\kappa}P.\varphi \\ \mid \lambda_{A}a. \varphi \mid \lambda_{T}X. \varphi \mid \lambda P :: \kappa. \varphi \\ \mid P \mid \varphi \alpha \mid \varphi t \mid \varphi \varphi \\ \mid c \mid [c] \wedge \varphi \mid [c] \Longrightarrow \varphi \end{array}$$

Logika wyższego rzędu

$$\varphi ::= \begin{array}{ccc} \top \mid \bot \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \varphi \Longrightarrow \varphi \\ \mid \forall_A a. \ \varphi \mid \forall_T X. \ \varphi \mid \forall_\kappa P. \varphi \\ \mid \exists_A a. \ \varphi \mid \exists_T X. \ \varphi \mid \exists_\kappa P. \varphi \\ \mid \lambda_A a. \ \varphi \mid \lambda_T X. \ \varphi \mid \lambda P :: \kappa. \ \varphi \\ \mid P \mid \varphi \ \alpha \mid \varphi \ t \mid \varphi \ \varphi \\ \mid c \mid [c] \wedge \varphi \mid [c] \Longrightarrow \varphi \\ \mid \operatorname{fix} P(X) :: \kappa = \varphi \end{array}$$

Dedukcja naturalna

$$\frac{\varphi \in \Theta}{\Gamma; \Theta \vdash \varphi} \quad \text{Assumption}$$

$$\frac{\Gamma; \Theta, \varphi_1 \vdash \varphi_2}{\Gamma; \Theta \vdash \varphi_1 \Longrightarrow \varphi_2}$$
_{IMPI}

$$\frac{\Gamma \vDash c}{\Gamma; \Theta \vdash c}$$
 ConstrI

$$\frac{\Gamma, c; \Theta \vdash \varphi}{\Gamma; \Theta \vdash [c] \Longrightarrow \varphi} \stackrel{\text{Constr}}{\text{ImpI}}$$

$$\frac{\Gamma_1; \Theta_1 \vdash c \qquad \Gamma_2, c; \Theta_2 \vdash \varphi}{\Gamma_1 \cup \Gamma_2; \Theta_1 \cup \Theta_2 \vdash [c] \land \varphi} \xrightarrow{\text{Constri}}$$

Rekursja — punkt stały

$$(\mathsf{fix}\ P(X) :: \kappa = \varphi)\ t\ \equiv\ \varphi\{X \mapsto t\}\{P \mapsto (\mathsf{fix}\ P(X) :: \kappa = \varphi)\} \qquad ^{\mathsf{FIXPOINT}}_{\mathsf{UNWRAP}}$$

Rekursja — punkt stały

$$\begin{split} (\text{fix } P(X) :: \kappa = \varphi) \ t \ &\equiv \ \varphi\{X \mapsto t\} \{P \mapsto (\text{fix } P(X) :: \kappa = \varphi)\} \quad & \stackrel{\text{Fixpoint}}{\text{Unwrap}} \\ & \frac{\Gamma; \Sigma, (P :: \forall_T Y. \, [Y \prec X] \kappa \{X \mapsto Y\}) \vdash \varphi :: \kappa}{\Gamma; \Sigma \vdash (\text{fix } P(X) :: \kappa = \varphi) :: \forall_T X. \ \kappa} \quad & \stackrel{\text{Kind}}{\text{Fixpoint}} \end{split}$$

Rekursja — punkt stały

$$(\text{fix }P(X) :: \kappa = \varphi) \ t \ \equiv \ \varphi\{X \mapsto t\} \{P \mapsto (\text{fix }P(X) :: \kappa = \varphi)\} \qquad \begin{array}{l} \text{Fixpoint} \\ \frac{\Gamma; \Sigma, (P :: \forall_T Y. [Y \prec X] \kappa \{X \mapsto Y\}) \vdash \varphi :: \kappa}{\Gamma; \Sigma \vdash (\text{fix }P(X) :: \kappa = \varphi) :: \forall_T X. \ \kappa} \qquad \begin{array}{l} \text{Kind} \\ \hline \Gamma; \Sigma \vdash c :: \star \end{array} \qquad \begin{array}{l} \frac{\Gamma, c; \Sigma \vdash \varphi :: \star}{\Gamma; \Sigma \vdash [c] \land \varphi :: \star} \qquad \begin{array}{l} \text{Kind} \\ \hline \Gamma; \Sigma \vdash \varphi :: \forall_T X. \ \kappa \end{array} \qquad \begin{array}{l} \Gamma; \Sigma \vdash \varphi :: \forall_T X. \ \kappa \end{array}$$

$$\frac{\Gamma; \Sigma \vdash \varphi :: \forall_T X. \ \kappa}{\Gamma; \Sigma \vdash \varphi t :: \kappa \{X \mapsto t\}} \qquad \begin{array}{l} \text{Kind} \\ \hline \Gamma \vdash [c] \kappa <: \kappa \end{array} \qquad \begin{array}{l} \text{Subkind} \\ \hline \Gamma \vdash [c] \kappa <: \kappa \end{array} \qquad \begin{array}{l} \text{Subkind} \\ \hline \Gamma \vdash [c] \kappa <: \kappa \end{array}$$

Aksjomaty

$$t \; ::= \; \alpha \mid \pi \; X \mid \alpha.t \mid t \; t \mid f \quad \text{(termy)}$$

$$\frac{\Gamma; \Theta, (\forall_T X'. [X' \prec X] \Longrightarrow \varphi(X')) \vdash \varphi(X)}{\Gamma; \Theta \vdash \forall_T X. \varphi(X)} \text{ Induction}$$

$$t ::= \alpha \mid \pi X \mid \alpha.t \mid t \mid f \quad \text{(termy)}$$

$$\forall P :: (\forall_T X. \star) . (\forall_T X. (\forall_T Y. [Y \prec X] \Longrightarrow P(Y)) \Longrightarrow P(X)) \Longrightarrow \forall_T X. P(X)$$

```
t ::= \alpha \mid \pi X \mid \alpha.t \mid t \mid f (termy)
\forall P :: (\forall_T X. \star).
    (\forall_T X. (\forall_T Y. [Y \prec X] \Longrightarrow P(Y)) \Longrightarrow P(X))
    \Rightarrow \forall_T X. P(X)
\forall P :: (\forall_T X. \star).
      (\forall_{A}a. P(a))
\Rightarrow (\forall_T X_1, X_2, P(X_1) \Rightarrow P(X_2) \Rightarrow P(X_1 X_2))
\Rightarrow (\forall_A a. \forall_T X. P(X) \Rightarrow P(a.X))
\Rightarrow (\forall_T X. [\mathsf{symbol}\ X] \Rightarrow P(X))
    \Rightarrow \forall_T X. P(X)
```

```
t ::= \alpha \mid \pi X \mid \alpha.t \mid t \mid f (termy)
\forall P :: (\forall_T X. \star).
    (\forall_T X. (\forall_T Y. [Y \prec X] \Longrightarrow P(Y)) \Longrightarrow P(X))
    \Rightarrow \forall_T X. P(X)
\forall P :: (\forall_T X. \star).
      (\forall_{A}a. P(a))
\Rightarrow (\forall_T X_1, X_2, P(X_1) \Rightarrow P(X_2) \Rightarrow P(X_1 X_2))
\Rightarrow (\forall_T C. \forall_A a. \forall_T X. [a \# C] \Rightarrow P(X) \Rightarrow P(a.X))
\Rightarrow (\forall_T X. [\mathsf{symbol}\ X] \Rightarrow P(X))
    \Rightarrow \forall_T X. P(X)
```

```
t ::= \alpha \mid \pi X \mid \alpha.t \mid t \mid f (termy)
\forall P :: (\forall_T X. \star).
    (\forall_T X. (\forall_T Y. [Y \prec X] \Longrightarrow P(Y)) \Longrightarrow P(X))
    \Rightarrow \forall_T X. P(X)
\forall P :: (\forall_T X. \star) . \forall_T C.
      (\forall_A a. P(a))
\Rightarrow (\forall_T X_1, X_2, P(X_1) \Rightarrow P(X_2) \Rightarrow P(X_1, X_2))
\Rightarrow (\forall_A a. \forall_T X. [a \# C] \Rightarrow P(X) \Rightarrow P(a.X))
\Rightarrow (\forall_T X. [\mathsf{symbol}\ X] \Rightarrow P(X))
    \Rightarrow \forall_T X. P(X)
```

```
\forall P :: (\forall_T X. \star).
    (\forall_T X. (\forall_T Y. [Y \prec X] \Longrightarrow P(Y)) \Longrightarrow P(X))
    \Rightarrow \forall_T X. P(X)
\forall P :: (\forall_T X. \star).
      (\forall_A a. P(a))
\Rightarrow (\forall_T X_1, X_2, P(X_1) \Rightarrow P(X_2) \Rightarrow P(X_1, X_2))
\Rightarrow (\forall_A a, \forall_T X, (\forall_T C, \exists_A a', \exists_T X', [a' \# C] \land [a, X = a', X'] \land P(X')) \Rightarrow P(a, X))
\Rightarrow (\forall_T X. [\mathsf{symbol}\ X] \Rightarrow P(X))
    \Rightarrow \forall_T X. P(X)
```

 $t ::= \alpha \mid \pi X \mid \alpha.t \mid t \mid f$ (termy)

```
t ::= \alpha \mid \pi X \mid \alpha.t \mid t \mid f (termy)
\forall P :: (\forall_T X. \star).
    (\forall_T X. (\forall_T Y. [Y \prec X] \Longrightarrow P(Y)) \Longrightarrow P(X))
    \Rightarrow \forall_T X. P(X)
\forall P :: (\forall_T X. \star).
      (\forall_A a. P(a))
\Rightarrow (\forall_T X_1, X_2, P(X_1) \Rightarrow P(X_2) \Rightarrow P(X_1, X_2))
\Rightarrow (\forall_A a, \forall_T X, (\forall_T C, \forall_A a', \forall_T X', [a' \# C] \Rightarrow [a, X = a', X'] \Rightarrow P(X')) \Rightarrow P(a, X))
\Rightarrow (\forall_T X. [\mathsf{symbol}\ X] \Rightarrow P(X))
    \Rightarrow \forall_T X. P(X)
```

Studium przypadku: rachunek lambda z typami prostymi

```
let lambda_symbols = (* symbole używane w formalizacji STLC *)
  ["lam": "app": "base": "arrow": "nil": "cons"]
let term predicate = (* Term e *)
  "fix Term(e): * =
   var: (\exists a : atom. (e = a))
   lam: (\exists a : atom. \exists e' : term. [e = lam (a.e')] \land (Term e'))
   app: (\exists e1 e2 : term. [e = app e1 e2] \land (Term e1) \land (Term e2))"
let type_predicate = (* Type t *)
  "fix Type(t): * =
   base: (t = base)
   arrow: (\exists t1 t2 : term. [t = arrow t1 t2]
              \land (Type t1) \land (Type t2))"
```

Indukcja dla λ -termów

```
let term_predicate = (* Term e *)
   "fix Term(e): * =
    var: (\exists a : atom. (e = a))
    V
    lam: (\exists a : atom. \exists e' : term. [e = lam (a.e')] \land (Term e'))
    \/
    app: (\exists e1 e2 : term. [e = app e1 e2] \land (Term e1) \land (Term e2))"
let lambda_ind_thm = lambda_thm
   "\forall P :(\forall _ :term. *).
      (\forall a : atom. P \{a\})
  \Rightarrow (\forall t1 t2 :term. (Term t1) \Rightarrow (Term t2) \Rightarrow
         (P t1) \Rightarrow (P t2) \Rightarrow P \{app t1 t2\}
  \Rightarrow (\forall a :atom. \forall t :term. (Term t) \Rightarrow
          (\forall c : term. \exists a' : atom. \exists t' : term. (Term t') \land
                 ([a' # c] \land [a.t = a'.t'] \land P t'))
         \Rightarrow P {lam (a.t)})
  \Rightarrow (\forall t :term. (Term t) \Rightarrow P t)
```

Demo

Koniec

Logika więzów

```
\in Atom
                                                                   (atomy)
X \in Var
                                                                 (zmienne)
f \in Symb
                                                      (symbole funkcyjne)
                                                     (wyrażenia atomowe)
           \pi a
   ::= id | (\alpha \ \alpha)\pi
                                                              (permutacje)
   := \alpha \mid \pi X \mid \alpha.t \mid t \mid f
                                                                   (termy)
 (kształty)
                                                                   (więzy)
 c ::= \alpha \# t \mid t = t \mid t \sim t \mid t \prec t \mid \text{symbol } t
```

Semantyczne termy

 $|T_1@T_2| := |T_1|@|T_2|$

 $A \in SemAtom$ (wolne atomy) $n \in Nat$ (związane atomy) ::= A | n | T | T@T | f(semantyczne termy) (semantyczne kształty) $\rho \in (Atom \rightarrow SemAtom) \times (Var \rightarrow SemTerm)$ (interpretacje)

and A' := $\begin{cases} A_2 & \text{jeśli } A = A \\ A_1 & \text{jeśli } A = A_1 \\ A_2 & \text{wpp} \end{cases}$

Model logiki więzów

$$\begin{array}{cccc} \rho & :: & (Atom \rightarrow SemAtom) \times (Var \rightarrow SemTerm) & \text{(interpretacje)} \\ \Gamma & ::= & \varnothing \mid c, \ \Gamma & \text{(\'srodowisko więz\'ow)} \end{array}$$

$$\begin{split} \rho &\models \alpha \# t & \text{iff} \quad [\![\alpha]\!]_{\rho} \notin \mathsf{FreeAtoms}([\![t]\!]_{\rho}) \\ \\ \rho &\models t_1 = t_2 & \text{iff} \quad [\![t_1]\!]_{\rho} = [\![t_2]\!]_{\rho} \\ \\ \rho &\models t_1 \sim t_2 & \text{iff} \quad |\![t_1]\!]_{\rho}| = |\![t_2]\!]_{\rho}| \\ \\ \rho &\models t_1 \prec t_2 & \text{iff} \quad |\![t_1]\!]_{\rho}| \text{ jest ścisłym podkształtem } |\![t_2]\!]_{\rho}| \\ \\ \rho &\models \mathsf{symbol} \ t & \text{iff} \quad |\![t]\!]_{\rho}| \text{ jest symbolem funkcyjnym} \end{split}$$

$$\rho \vDash \Gamma \quad \text{iff} \quad \forall c \in \Gamma. \ \rho \vDash c \qquad \qquad \Gamma \vDash c \quad \text{iff} \quad \forall \rho. \ \rho \vDash \Gamma \Longrightarrow \rho \vDash c$$

Solver — Syntaktyczny algorytm rozwiązywania więzów

$$\mathcal{C} ::= \alpha \,\#\, t \mid t = t \mid s \sim s \mid s \prec s \mid \mathsf{symbol} \ t$$

$$\Gamma \vDash \mathcal{C} \stackrel{?}{=} \Gamma; \varnothing \vdash \mathcal{C}$$

