

Análisis de compleji dad $\mathcal{T}(n) = \mathcal{O}(n^2)$ $T(n) = \Omega(n|qn)$ Proof 1: · W(n) = # ejecuciones en el peor de las casos · Ban) = # ejecuciones en el mejor de los cosos $n \mid gn \leq B(n) \leq T(n) \leq W(n) \leq n^2$ W(0) + W(s) $\omega(x) + \omega(y)$ $\omega(x) + \omega(y)$ W(6) & max (w(1) + w(5-1)) + 6 $W(6) = \langle$ W(S) + W(O) Para el pear coso $W(u) \leq \Theta(u) + \frac{1}{2} \int M(d-1) + M(u-1-d)$ Probaremes \times inducción en n que $W(n) = O(n^2)$ C.B: $(u(a) = 0) \le \frac{0}{2}$ $(u(1) = 1) \le \frac{5}{2}$ H.I: Supergames que W(K) < _ K2 Y O < K < N-L > & W(N) < _ N2) $M(U) \leq 2U + wax \} M(d-T) + M(U-T-d)$ $\leq 5n + \max_{q=1}^{\infty} \int_{-\infty}^{\infty} (q-1)^2 + \frac{5}{2} (n-1-q)^2 \ell$ $\leq 5n + \frac{5}{9} = \frac{1}{10} + \frac{1}{10} = \frac{1$ 55n + 5 (n-1)2 Lista de égorcéios $=5(\eta^2-\eta+1) \leq 5\eta^2 \qquad \uparrow(\eta)=0(\eta^2)$

f es convexa $\rightarrow f(\frac{a+b}{2}) \leq \frac{1}{2}f(a) + f(b)$ Designaldad de Johnson

Para el mejor caso:

$$B(n) \ge \Theta(n) + \min_{q=1} \{B(q-1) + B(n-1-q)\}$$

Probaremes \times inducción en n que $W(n) = O(n^2)$ $W(n) \leq -n^2$

C.B:

$$(u(a) = 0 \le \frac{5}{5} o^2$$

 $u(t) = y \le \frac{5}{5} t^2$

H.I: Supongames que B(K) > _ KlgK Y 1 & K & n-L -> & B(N) > _ Ngn?

$$> n + m^{(n)} - (q-1) [g(q-1) + (n-1-q) [g(n-1-q)]$$

$$> n + \frac{(n-1) \lg \left(\frac{n-1}{2}\right)}{}$$

× lgx es convexa