

CMT107 Visual Computing

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Xianfang Sun

School of Computer Science & Informatics
Cardiff University

Overview

- Constructive solid geometry
- ➤ Boundary representation
- ➤ Mesh representation
 - · Rendering meshes with OpenGl Help
- ➤ Volumetric representation: voxels https://tutorcs.com

WeChat: cstutorcs

Example Models and Scenes

Geometric Modelling

- > Need data-structures and algorithms to model shapes
 - Scene description of the whole environment
 - Model description of an object in the environment
 - Suitable for creating, editing, analysing and rendering Assignment Project Exam Help
- Object representations
 - https://tutorcs.com
 Constructive solid geometry (CSG)
 - Boundary representation (BOFE)
 - Mesh representation
 - Volumetric representation: voxels

Constructive Solid Geometry

- > Use set of volumetric primitives
 - Block, Tetrahedron, sphere, cylinder, cone, ...

- > Construct objects using Boolean operations
 - Union, intersection difference Exam Help

CSG Tree

- CSG operations stored as tree (or sequence) of operations on primitives
- Common for CAD feature based modelling

Boundary Representation

Explicitly represent boundary of object:

 Basic elements are (natural) faces, edges, vertices with a geometry (shape)

• Also recordstendless respectivity/Help boundary relations) of elements

Mathematically an algebraic complex (topology) with was enmetricutores realisation (geometry)

Algorithmically: a graph data structure (topology) where nodes have shape (geometry) attributes

B-Rep: An Algebraic Complex

- ightharpoonup Cells (elements) = $\{v_1, v_2, v_3, v_4, e_1, e_2, e_3, e_4, e_5, e_6, f_1, f_2, f_3, f_4, l_1\}$
- - $(1, \{e_1, e_2, e_3, e_4, e_5, e_6\})$ (1, $\{e_1, e_2, e_3, e_4, e_5, e_6\}$) Assignment Project Exam Help $(2, \{f_1, f_2, f_3, f_4\}), (3, \{l_1\})\}$
- ► Bound (topology) $= \{e_1, \{v_1, v_3\}, (e_2, \{v_1, v_4\}), (e_3, \{v_1, v_2\}), (e_4, \{v_2, v_4\}), (e_5, \{v_1, v_3\}), (e_6, \{v_2, v_3\}), (f_1, \{e_1, e_2, e_4\}), (f_2, \{e_2, e_3, e_5\}), (f_3, \{e_1, e_3, e_6\}), (f_4, \{e_4, e_5, e_6\}), (l_1, \{f_1, f_2, f_3, f_4\})\}$

B-Rep Geometry

- > Describe shape of each face, edge and vertex
 - Vertex geometry: position
 - Edge geometry: curve E.g. straight line, circle, ellipse, free-form curve, . . .

B-Rep Data Structure

>B-Rep graph data structure representing the topology:

BODY	Solid made of a list of LUMPS
LUMP	Connected volume, bounded by a list of SHELLS
SHELL	Connected surfaces consisting of polisting of FACES
FACE	Natural surface, bounded by a LOOP
LOOP	Connected curves, consisting of a list of COEDGES WeChat: cstutorcs
COEDGE	Directed edge as part of a loop, consisting of an EDGE (also called half-edge)
EDGE	Natural edge, bounded by VERTICES
VERTEX	Boundary of an edge

B-Rep Issues

- Consistency of geometry and topology
 - No explicit way to ensure boundary relations are preserved by geometry
- > Ambiguous and impossible models

- Topology allows us to determine impossible models
- Orientation and topology distinguish ambiguous models

B-Rep Orientation

- > Orient face: distinguish between inside and outside
 - Surface normals always point towards the outside
- Orient each loop
 - Move around each loop such that the inside lies to the left when viewed from outside the model
 - COEDGEs indicate direction of loop by ordering edge

end-points https://tutorcs.com

- EDGE lies on two faces as indicated by two COEDGEs
- Non-manifold objects: EDGE can lie on more than two faces
 - Causes problems for orientation, etc.
 (so not allowed in standard B-rep)

Mesh Representation

- > Describe model as a polygonal mesh (often triangular)
 - Collection of polygons (facets)
 - Similar, but simpler than B-rep
 - Linear approximation of object
 - Fast and quality good enough for real-time rendering

Polygons

- > Polygons are specified by a sequence of vertices
- > Polygons are not just line segments, but have an interior
 - Simple polygon: lines do not intersect
 - Convex polygon: given two points inside the polygon, the line segment joining the points lies inside polygon
 - Flat polygon: polygon lies in a plane
- > Orientation / sidethes tutores.com
 - Polygons have front and a back
 - If vertices are in anti-clockwise order on display, we see the front (default OpenGL convention; consistent with B-rep orientation)

Polygon Normal

- > If a polygon is simple, convex and flat, its normal can be calculate using any 3 non-collinear points p_1 , p_m , and p_n
 - Suppose *l*<*m*<*n*
 - $V_1 = p_m p_l$, $V_2 = p_n p_m$,
 - n = v₁ x v₂Assignment Project Exam Help
 normal n points outside the front.
- > Polygon normal VEPtor Where Piewer direction vector can determine whether the yiewer is looking at the front or back of the polygon
 - If the angle between normal vector and viewer direction vector are less than 90°, it's at the front
 - If the angle is great than 90°, it's at the back
 - If the angle is 90° , the viewer is on the polygon plane.

List of Faces

- > Each face lists vertex coordinates
 - Redundant vertices
 - No adjacency or other structural information (topology)
 - Orientation from sequence of vertices

Assignment Project Exam Help

Vertex and Face Tables

- > Each face lists vertex references
 - Shared vertices
 - No adjacency or other structural information (topology)
 - Orientation from sequence of vertices

Can add half-edges, shells, lumps, bodies for representing solids

Rendering Meshes with OpenGL

Two simple OpenGL drawing functions:

```
✓ glDrawArrays (mode, first, count);

✓ glDrawElements (mode, count, type, indices);
```

- mode: GL_AQHATANGENTIPESiest_FRIAMGETES, petc.
- first: the starting index in the enabled arrays.
- count: the number of elements to be rendered
- type: type of the values in indices, GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT
- indices: a pointer to the location where the indices are stored.
- ➤ glDrawArrays() is used for "List of Faces"
 - Example see CG02.java in the labs
- ➤ glDrawElements() is used for "Vertex and Face Tables"
 - Example see CG03.java in the labs

Modelling a Sphere

- ➤ A sphere can be modelled by covering the surface with triangles
 - use lines of longitude and latitude to divide the surface into triangles (around north and south poles) and quadrangles each quadrangles is divided into two triangles for
 - each quadrangles is divided into two triangles for rendering by beside tutores.com

Spherical Coordinates

Points on a unit sphere in spherical coordinates :

- \triangleright Maps each (ϕ, θ) on a point on the unit sphere (but be careful at the north and south poles)
- More details see sphere.java in the labs...

Volumetric Representation: Voxels

- Partition space into uniform 3D grid
 - Grid cells are called voxels (volume elements) (also see pixels)
- > Store *properties* of solid object with each voxel

• Occupancy Assignment Project Exam Help

- Colour
- https://tutorcs.com Density
- Temperature WeChat: estutores

FvDFH Figure 12.20

Voxel Examples

Visible Human
(National Library of Medicine)

Voxel Issues

- ➤ Advantages:
 - Simple inside/outside test
 - Simple and robust boolean operations
 - Represent interior of the object
- Disadvantagessignment Project Exam Help
 - Memory consuming https://tutorcs.com (can use octree for hierarchical construction to save memory)
 - Non-smooth WeChat: cstutorcs
 - Time consuming to manipulate and render

Summary

- > Explain the following model representations:
 - constructive solid geometry
 - boundary representation
 - mesh representation
 - volumetric representation Help
 - How is the model represented?
 - Which data structures are used?
 - What are advantages/disadvantages of these representations?
- What is a simple / convex / flat polygon?
- What do we understand by the orientation of a polygon/loop/edge?