고급프로그래밍및실습

/ 16. 기계 학습 2

_

이정진

조교수, 숭실대 글로벌미디어학부 jungjinlee@ssu.ac.kr, 정보과학관 623호

Keywords

기계학습 / 선형 회귀 / 인공신경망

- 모델
- 손실 함수 (Loss Function)
- 경사하강법 (Gradient Descent Algorithm)
- 학습 (Training)

Linear Regression

- 모델
- 손실 함수 (Loss Function)
- 경사하강법 (Gradient Descent Algorithm)
- 학습 (Training)

Χ	у
1.0	1.0
2.0	2.0
3.0	1.6
4.0	3.8
5.0	2,3

Summary

Linear Regression

- 모델
- 손실 함수 (Loss Function)
- 경사하강법 (Gradient Descent Algorithm)
- 학습 (Training)

Summary

인공신경망 (Keras, TensorFlow)

- 모델
- 손실 함수 (Loss Function)
- 경사하강법 (Gradient Descent Algorithm)
- 학습 (Training)

인공신경망 (Keras, TensorFlow)

- 모델
- 손실 함수 (Loss Function)
- 경사하강법 (Gradient Descent Algorithm)
- 학습 (Training)

인공신경망 (Keras, TensorFlow)

- 모델
- 손실 함수 (Loss Function)
- 경사하강법 (Gradient Descent Algorithm)
- 학습 (Training)

인공신경망 (Keras, TensorFlow)

MNIST

```
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
mnist = tf.keras.datasets.mnist
(x train, y train), (x test, y test) = mnist.load data()
x train, x test = x train / 255.0, x test / 255.0
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten(input shape=(28, 28)))
model.add(tf.keras.layers.Dense(512, activation='relu'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam',
              loss='sparse categorical crossentropy',
              metrics=['accuracy'])
model.fit(x train, y train, epochs=5)
print(model.predict(x test[:1]))
```


기계학습 (Machine Learning)

패션 MNIST

글로벌미디어학부 <고급프로그래밍및실습>, 이정진

- 손 글씨 MNIST 데이터 셋과 유사
- 운동화나 셔츠같은 옷과 신발의 이미지와 이 이미지에 대한 레이블을 제공

• 데이터 불러오기

```
# tensorflow와 tf.keras를 임포트
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
# 패션 MNIST 데이터는 keras의 데이터셋에 있는데 이를 읽어와서 학습용, 테스트 데이터로 구분
fashion mnist = keras.datasets.fashion mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/tra
32768/29515 [============= ] - Os Ous/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/tra
```


• 데이터 형태 확인

```
print(train_images.shape) # 학습 이미지의 형태와 레이블을 출력한다 # 레이블에는 0에서 9까지의 숫자가 있다 print(test_images.shape) # 레이블에는 0에서 9까지의 숫자가 있다 (60000, 28, 28) [9 0 0 ... 3 0 5] (10000, 28, 28)
```

• 데이터 형태 확인

```
fig = plt.figure()
ax1 = fig.add_subplot(1, 3, 1)
ax2 = fig.add_subplot(1, 3, 2)
ax3 = fig.add_subplot(1, 3, 3)
ax1.imshow(train_images[0]) # 첫 번째 훈련용 데이터
ax2.imshow(train_images[1]) # 두 번째 훈련용 데이터
ax3.imshow(train_images[2])
                             # 세 번째 훈련용 데이터
plt.show()
<matplotlib.image.AxesImage at 0x7fe3e6d6c320>
```

패션 MNIST

• 레이블 의미

레이블	설명
0	티셔츠/상의
1	바지
2	점퍼
3	드레스
4	코트
5	샌 들
6	셔츠
7	운동화
8	가방
9	앵클 부츠

• 신경망 구조 모델링

```
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])
```

• 신경망 구조 모델링

• 손실 함수와 경사하강법 알고리즘 (최적화기법) 설정

```
0
```

• 학습

```
model.fit(train_images, train_labels, epochs=5)
Epoch 1/5
0.7010
Epoch 2/5
0.7566
Epoch 3/5
0.7844
Epoch 4/5
0.8045
Epoch 5/5
```


• 테스트

```
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\n테스트 정확도:', test_acc)

313/313 - 0s - loss: 0.6141 - accuracy: 0.7907
테스트 정확도: 0.7907000184059143
```


• 학습된 모델 사용해서 예측하기

• 학습된 모델 사용해서 예측하기

```
yhat = np.argmax( model.predict( test_images[randIdx][np.newaxis, :, :]) )
yhat
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
                'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
출력 없음
yhat = np.argmax( model.predict( test_images[randIdx][np.newaxis, :, :]) )
print(class_names[yhat])
Dress
```


• 맷플롯립을 이용하여 이미지 파일 읽기

• 신경망 모델의 입력 데이터 형식에 맞게 조정이 필요!

• OpenCV 라이브러리 활용

https://docs.opencv.org/master/d6/d00/tutorial_py_root.html

- 컴퓨터 비전 및 영상 처리를 위한 기능 제공
- 설치법: Anaconda Prompt 실행 conda install -c conda-forge opencv 입력 후 엔터

- (n, 28, 28) 형태의 3차원 배열이어야 하는데, 현재 가지고 있는 이미지는 (28,28)이다.
- 이를 넘파이의 newaxis를 이용하여 3차원으로 바꾸어 보자.

```
input_data = img[np.newaxis, :, :]
input_data.shape

(1, 28, 28)
```


• 이제 모델을 이용해 예측해보자

이처럼 학습된 모델이 잘못된 결과를 출력할 수도 있다.

• 이미지를 좌우로 뒤집어서 다시 해보자

신경망 학습과 편향: 학습의 한계를 인식하자

• 학습이라는 것은 입력으로 주어진 데이터에 따라 한계를 가질 수 밖에 없다.

• 훈련용으로 주어진 데이터에서 모든 신발은 왼쪽을 쳐다보고 있었기 때문에 오른쪽을 쳐다 보는 발목 부츠가 들어왔을 때, 이것이 신발류라는 것을 인식하지 못하는 것이다.

신경망 학습과 편향: 학습의 한계를 인식하자

 전체를 대표하지 못하고 특정한 특징이나 경향을 가진 데이터만 지나치게 학습에 많이 사용되는 것을 데이터 편향^{data bias}이라고 한다.

• 확보된 데이터를 다양하게 변형하여 편향을 제거하는 방법이 있다. 이것을 데이터 증강^{data augmentation}이라고 한다.

학습된 모델 저장하기

• Keras에서 제공(.h5)

저장된 모델 읽어오기

• Keras에서 제공(.h5)

```
In [45]: model imported = tf.keras.models.load model("c:\\Dev\\PyP data\\model.h5")
In [46]: model imported.summary()
Model: "sequential 12"
Layer (type)
                             Output Shape
                                                        Param #
flatten 12 (Flatten)
                             (None, 784)
                                                        0
dense 24 (Dense)
                              (None, 512)
                                                        401920
dropout 12 (Dropout)
                              (None, 512)
                                                        0
dense 25 (Dense)
                              (None, 10)
                                                        5130
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
```


코랩에서 구글 드라이브 데이터 접근하기

글로벌미디어학부 <고급프로그래밍및실습>, 이정진

구글 드라이브에 올린 파일 접근하기

 가장 먼저 해야 할 일은 자신의 드라이브를 코랩에서 사용할 수 있도록 마운트mount하는 것이다. 마운트는 어떤 장치를 컴퓨터 시스템에서 접근할 수 있도록 등록하는 일이다.

드라이브를 코랩에 마운트시키려고 하면 이 작업에 대한 승인을 요청하는 페이지의 주소가 아래 그림과 같이 나타난다.

구글 드라이브에 올린 파일 접근하기

• 승인에 필요한 코드를 복사하여 구글 코랩에 실행결과 셀의 입력창에 넣으면 된다. 이 과정을 마치면 각자의 개인 구글 드라이브를 코랩에서 /content/drive라는 이름으로 사용할 수 있다.

Google	
로그인	
이 코드를 복사하여 애플리케이션으로 전환한 다음 붙여넣으세 요.	
4/4gGjV1b13deVz :: (jnch0aakms1Z4e0Ja5a DvXTIUob18	

구글 드라이브에 올린 파일 접근하기

• 구글 코랩에서 현재 작업하고 있는 위치가 어디인지 알고 싶으면 !pwd 를 아래와 같이 입력하면 된다. !은 코랩의 시스템 명령을 입력하는 기호이고, pwd는 "print working directory"의 약어로 현재 작업중인 위치를 출력한다.

구글 클라우드의 자료를 코랩에서 사용하기

 구글은 구글 드라이브라는 클라우드 저장소를 제공하고 있다. 그리고 이 저장소에 있는 콘텐츠를 또 다른 서비스인 코랩에서 불러서 이용할 수 있다.

구글 클라우드 저장소

구글 클라우드의 자료를 코랩에서 사용하기

이 데이터를 업로드 한 후 코랩에서 확인되는지 보자. 코랩에서 여러분이 사용하고 있는 시스템을 관리하는 명령은 ! 기호를 붙여서 입력할 수 있다는 점을 이미 설명했다. 저장 장치의 내용을 볼 때 사용하는 리눅스 명령은 1s 인데, list를 의미한다. 특정 위치의 파일 목록을 나열하여 보이라는 뜻이다.

구글 드라이브의 이미지 파일을 읽어 화면에 표시해 보기

• 맷플롯립을 이용하여 읽어 보도록 하자.

구글 드라이브의 이미지 파일을 읽어 화면에 표시해 보기

• OpenCV를 사용해 볼 수 있다.

```
import cv2
img = cv2.imread('./drive/My Drive/myData.png', cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (28, 28) )
plt.imshow(img)
matplotlib.image.AxesImage at 0x7fe3d3f6a0f0>
 15
```


기계 학습 (Machine Learning)

수고하셨습니다 ③

글로벌미디어학부 <고급프로그래밍및실습>, 이정진_