Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	5
2 МЕТОД РЕШЕНИЯ	6
3 ОПИСАНИЕ АЛГОРИТМОВ	7
3.0 Алгоритм функции main	7
3.1 Алгоритм конструктора класса cl	7
3.2 Алгоритм метода f класса cl	8
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	9
5 КОД ПРОГРАММЫ	11
5.0 Файл cl.cpp	11
5.1 Файл cl.h	11
5.2 Файл main.cpp	12
6 ТЕСТИРОВАНИЕ	13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	14

1 ПОСТАНОВКА ЗАДАЧИ

Разработать объект, который обладает следующей функциональностью:

- В конструкторе вводит количество элементов целочисленного массива, создает целочисленный массив заданным количеством элементов, определяет значения элементов массива. Значение каждого элемента равно квадрату индекса элемента.
 - Выводит значения элементов массива в обратном порядке.

Необходимые свойства объекта определяется разработчиком. Количество элементов массива принадлежит интервалу от 5 до 20.

Написать программу:

- 1. Создает объект посредством оператора new.
- 2. Выводит значения элементов массива в обратном порядке.
- 3. Удаляет объект посредством оператора delete.

1.1 Описание входных данных

Первая строка (количество элементов массива): «целое число в десятичном формате»

1.2 Описание выходных данных

2 МЕТОД РЕШЕНИЯ

Для решения задачи понадобится: оператор for используется операторы функции new, delete массив array библиотека iomanip (функция setw)

Класс cl

Поля:

скрытые элементы:

int n = 0

int* array указатель массива

Методы:

Открытые:

cl() - конструктор класса

f() - вывод элементов массива в обратном порядке

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.0 Алгоритм функции main

Функционал: главный метод программы.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

N₂	Предикат	Действия	No
			перехода
1		создание объекта класса посредством оператора new	2
2		вывод элементов массива в обратном порядке	3
3		удаление объекта класса посредством оператора delete	Ø

3.1 Алгоритм конструктора класса cl

Функционал: ввод количество, создание массива, определение элементов массива.

Параметры: нет.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса cl

No	Предикат	Действия	N₂	
			перехода	
1		ввод количество элементов	2	

No	Предикат	Действия	No
			перехода
2		создание массива	3
3		приравнивание счетчика с единицей	4
4	счетчик меньше или равно	каждый элемент равно квадрату индекса элемента	5
	количество элементов		
			Ø
5		увеличение счетчика на 1	4

3.2 Алгоритм метода f класса cl

Функционал: вывод элементов массива в обратном порядке.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода f класса cl

No	Предикат Действия					
			перехода			
1		приравнивание счетчика с количеством элементов	2			
		массива				
2	счетчик больше нуля	вывод значения массива	3			
			Ø			
3		уменьшения счетчика на 1	2			

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.0 Файл cl.cpp

Листинг 1 – cl.cpp

```
#include <iostream>
#include <iomanip>
#include "cl.h"
using namespace std;
cl::cl()
{
      cin >> n;
      array = new int[n];
      for (int i = 1; i \le n; i++)
             array[i] = (i * i);
      }
}
void cl::f()
      for (int i = (n - 1); i \ge 0; i - -)
            cout << setw(5) << array[i];</pre>
      }
```

5.1 Файл cl.h

Листинг 2 - cl.h

```
#ifndef __Cl_H
#define __Cl_H

using namespace std;

class cl
{
private:
   int n = 0;
```

```
int* array;
public:
    cl();
    void f();
};
#endif
```

5.2 Файл таіп.срр

Листинг 3 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "cl.h"

using namespace std;

int main()
{
    cl* object = new cl();
    object -> f();
    delete object;
    return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 4.

Таблица 4 – Результат тестирования программы

	Входные данные	Ожидаемые выходные			Ф	Фактические выходные					
			данные				данные				
5		16	9	4	1	0	16	9	4	1	0

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).