Transformée Discrète en Ondelettes : travaux pratiques

Compte-rendu à transmettre à Sebastien.Bourguignon@ec-nantes.fr, au format pdf, au plus tard 10 jours après la séance.

Rappels et mise en œuvre avec la boîte à outils Wavelab

Soit un signal x[n] de N points avec $N=2^P$. Sa transformée discrète en ondelettes (discrete wavelet transform, DWT) jusqu'à l'échelle J (avec $J \leq P$) est représentée par :

- les coefficients de détail à l'échelle 1 (N/2 coefficients);
- les coefficients de détail à l'échelle 2 (N/4 coefficients);
- . . .
- les coefficients de détail à l'échelle J $(N/2^J)$ coefficients;
- les coefficients d'approximation à l'échelle J $(N/2^J)$ coefficients).

Les coefficients de l'approximation à l'échelle j s'obtiennent par filtrage des coefficients de l'approximation à l'échelle j-1 (filtre h, passe-bas). Les coefficients de détail à l'échelle j s'obtiennent par filtrage des coefficients de l'approximation à l'échelle j-1 (filtre g, passe-haut). On considère ici des transformées orthogonales (cf. cours) telles que $g[n] = (-1)^{1-n}h[1-n]$. La transformée est donc complètement définie par la séquence génératrice h et l'échelle finale J.

Télécharger la boîte à outils Wavelab sur le serveur pédagogique ¹. On n'utilisera ici que les fonctions suivantes :

- h = MakeONFilter('Haar'); h = MakeONFilter('Daubechies',n); calcule le filtre échelle pour une ondelette de Haar ou de Daubechies d'ordre n
- DWT_x = FWT_PO(x,L,h); calcule la transformée discrète en ondelettes, pour les signaux 1D. Attention : L = P J, où J est la dernière échelle souhaitée.
- x = IWT_PO(DWT_x,L,h); calcule la transformée inverse 1D
- DWT_I = FWT2_PO(I,L,h); calcule la transformée discrète en ondelettes 2D pour les images
- I = IWT2_PO(DWT_I,L,h); calcule la transformée inverse 2D.

Télécharger également deux fonctions d'affichage sur le serveur pédagogique :

- plot_dwt(x,DWT_x,J); affiche le signal et sa DWT, en représentant sur plusieurs lignes les différents coefficients de détail $d_1, \ldots d_J$ et d'approximation a_J selon la syntaxe (1);
- im_dwt2(DWT_I,J); représente sous forme d'image la DWT contenue dans la matrice DWT_I.

^{1.} également récupérable ici : http://www-stat.stanford.edu/~wavelab

1 Tracé d'ondelettes et de fonctions échelles par DWT inverse

La DWT, qui se construit à partir de la séquence génératice h, définit implicitement une fonction ondelette $\psi(t)$ et une fonction échelle $\varphi(t)$, telles que :

$$d_{j,n} = \langle x, \psi_{j,n} \rangle, \quad \forall j \leqslant J, \quad \forall n \in \mathbb{Z}$$
$$a_{J,n} = \langle x, \varphi_{J,n} \rangle, \quad \forall n \in \mathbb{Z}$$

Puisque l'on considère des ondelettes orthogonales 2 , on a, pour tout signal x(t):

$$x(t) = \sum_{j=1}^{J} \underbrace{\sum_{n \in \mathbb{Z}} \overbrace{\langle x, \psi_{j,n} \rangle}^{d_{j,n}} \psi_{j,n}(t)}_{\text{signal de détail à l'échelle } j} + \underbrace{\sum_{n \in \mathbb{Z}} \overbrace{\langle x, \varphi_{J,n} \rangle}^{a_{J,n}} \varphi_{J,n}(t)}_{\text{approximation du signal à l'échelle } J}.$$

Par conséquent, pour $x(t) = \psi_{j_0,n_0}(t)$, la DWT de x est nulle partout sauf en j_0, n_0 et ψ_{j_0,n_0} peut être obtenu par transformée inverse de cette DWT.

On considère un signal de N = 1024 points (correspondant à l'échelle 0).

Sous forme informatique (c'est le cas de la boîte à outils WaveLab), on représente en général la DWT par le vecteur de N points contenant les coefficients dans l'ordre suivant :

$$DWT(\boldsymbol{x}) = [\underbrace{\boldsymbol{a}_J}_{\frac{N}{2J}\text{coefs}}, \underbrace{\boldsymbol{d}_J}_{\frac{N}{2J-1}\text{coefs}}, \underbrace{\boldsymbol{d}_{J-1}}_{\frac{N}{2}\text{coefs}}, \dots, \underbrace{\boldsymbol{d}_1}_{\frac{N}{2}\text{coefs}}]. \tag{1}$$

- 1. À quel indice dans la représentation vectorielle (1) correspond le coefficient d'approximation $a_J[k] \ \forall k$? À quel indice correspond le coefficient de détail $d_j[k] \ \forall j, k$?
- 2. Construire le vecteur DWT x contenant seulement un coefficient non-nul, de détail, à la plus grande échelle, et de décalage temporel le situant approximativement au milieu de l'axe temporel.
- 3. En déduire et tracer la fonction ondelette (discrétisée à l'échelle 0), correspondant à la transformée de Haar?
- 4. De même, tracer les fonctions échelles (à l'échelle 0) correspondantes.
- 5. Pour ces deux signaux (questions 3 et 4), calculer la transformée en ondelettes et la tracer (fonction plot_dwt.m), vérifier le résultat.
- 6. Répéter la procédure pour les ondelettes de Daubechies d'ordre 4 et 8.
- 7. Commenter la forme des fonctions obtenues.

^{2.} On a donc $\langle \psi_{j,n}, \psi_{j',n'} \rangle = \delta[j-j'] \delta[n-n']$ et $\langle \psi_{j,n}, \varphi_{j,n} \rangle = 0$

2 « Débruitage » dans l'espace des ondelettes

Pour cette partie, on considérera au choix une ondelette de Haar ou de Daubechies d'ordre 4.

- 1. Créer un signal de N=1024 points dont la DWT jusqu'à l'échelle J=7 contient uniquement quelques coefficients de détail non nuls. Visualiser le signal et sa DWT (fonction plot_dwt).
- 2. Ajouter du bruit au signal précédent (on utilisera la fonction ajoute_bruit utilisée dans le premier TP, qui renverra le signal bruité et l'écart-type σ_b du bruit). Visualiser le signal bruité et sa DWT et comparer au signal sans bruit.

Une procédure dite de « débruitage » consiste alors à ne garder que les coefficients significatifs dans la DWT :

- (a) Calculer la DWT jusqu'à l'échelle J.
- (b) Seuiller ses coefficients en ne conservant que ceux dont l'amplitude (en valeur absolue) dépasse le seuil α (les autres étant mis à 0).
- (c) Calculer la DWT inverse des coefficients seuillés.
- (d) Mesurer la qualité du signal reconstitué par rapport au signal initial.
- 3. Mettre en œuvre et répéter cette procédure pour plusieurs valeurs du niveau de seuil α et analyser l'erreur de reconstruction commise en fonction de α . Comparer la valeur obtenue pour le seuil optimal à celle proposée par Donoho & Johnstone α : $\alpha^* = \sigma_b \sqrt{2 \ln N}$.

Application à des signaux plus réalistes :

- 4. **Générer des signaux** "Blocks": [x,N] = makesig('Blocks',N); et "Doppler": [x,N] = makesig('Doppler',N);
- 5. **Visualiser** ces deux signaux ainsi que leur DWT et commenter. Rajouter du bruit avec un RSB de 20 dB et appliquer la procédure précédente
- 6. Comparer les performances de débruitage obtenues en utilisant une ondelette de Haar et une ondelette de Daubechies d'ordre 4, pour chacun des deux signaux, et commenter.

^{3.} D. L. Donoho and J. M. Johnstone, *Ideal spatial adaptation by wavelet shrinkage*, Biometrika (1994), vol. 81.

3 Compression d'images

Le standard de compression JPEG 2000 exploite la *parcimonie* des coefficients de décomposition en ondelettes des images. On propose ici de mettre en évidence cette propriété sur des images naturelles, puis d'analyser les performances de compression qui en résultent.

- 1. Récupérer l'image lena.bmp disponible sur le serveur pédagogique et l'ouvrir sous Matlab : I = double(imread('lena.bmp'));. Vous pouvez aussi prendre toute autre image de votre choix, de taille carrée N × N, où N est une puissance de 2. On considère une image en niveaux de gris, obtenue éventuellement en ajoutant les trois bandes couleur : I = sum(I,3);.
- 2. Visualiser l'image: imagesc(I); colormap gray; axis square
- 3. Calculer sa transformée en ondelettes 2D à l'échelle J=4 en utilisant un filtre générateur de Daubechies d'ordre 4 (voir en première page).
- 4. Visualiser cette DWT-2D (voir en première page). Attention, à des fins de visualisation, chaque sous-bloc carré de la DWT-2D a été normalisé à une échelle différente.
- 5. Analyser la distribution des coefficients : représenter leur histogramme (hist) et tracer les coefficients par ordre décroissant en valeur absolue (sort). Commenter cette distribution par rapport à celle des valeurs des pixels de l'image.
- 6. Réaliser la procédure de compression :
 - (a) Seuiller les coefficients de la DWT en ne conservant que les $\tau\%$ les plus grands (en valeur absolue), les autres étant mis à 0.
 - (b) Reconstruire l'image correspondant à cette DWT seuillée.
 - La compression réside dans l'étape 1, qui signifie bien qu'en pratique, on peut représenter (et donc stocker) l'image en ne conservant que les valeurs et les coordonnées des plus grands coefficients.
- 7. Visualiser l'image reconstruite et l'image d'erreur par rapport à l'image initiale, pour plusieurs valeurs de τ que l'on interprétera en termes de taux de compression ⁴. Selon le temps disponible, on pourra, comme précédemment, mesurer l'erreur entre l'image compressée et l'image initiale pour différentes valeurs de τ , et choisir ainsi τ .
- 8. Recommencer la procédure en choisissant une ondelette de Haar. Comparer les résultats obtenus.

^{4.} Pour cela, on peut comparer la place occupée en mémoire par la variable Matlab contenant l'image originale et celle contenant la DWT seuillée, codée en format sparse.