Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: М3110	_К работе допущен:			
Студент: Косовец Роман Евгеньевич	_Работа выполнена:			
Преподаватель: Прохорова Ульяна	_Отчет принят:			
Рабочий протокол и отчет по лабораторной работе №3.02				
Характеристики источника тока				

1. Цель работы:

- 1. Исследовать зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешней цепи и КПД источника от силы тока в цепи.
- 2. Найти значения параметров источника: электродвижущей силы и внутреннего сопротивления, оценить их погрешность.

2. Задачи, решаемые при выполнении работы:

- Собрать установку в соответствии со схемой, предоставленной в приложении
- На блоке ГН1 регулятор генератора постоянного напряжения установить в среднем положении и установить диапазоны измерений амперметра
- Изменяя переменное сопротивление R, провести измерения зависимости напряжения от силы тока U=U(I)
- 3. Объект исследования Электрическая цепь
- 4. Метод экспериментального исследования Эксперимент

5. Рабочие формулы и исходные данные:

$$U = \mathcal{E} - Ir, \qquad P = \mathcal{E}I \qquad P_S = I^2r$$

$$P_R = UI$$

$$I^* = \frac{I_1 + I_2}{2} = \frac{\mathcal{E}}{2r} \qquad P_{max} = P_{Smax} = \frac{\mathcal{E}^2}{r}$$

$$P_{Rmax} = P_R(I^*) = \frac{\mathcal{E}^2}{4r} \quad \eta = \frac{\mathcal{E} - Ir}{\mathcal{E}} = 1 - \frac{Ir}{\mathcal{E}}$$

$$r = \frac{I_K}{\mathcal{E}}$$

6. Измерительные приборы:

№ n/n	Наименование	Цена деления	Погрешность прибора
1	Вольтметр	0,01 B	0,005 B
2	амперметр	0,1 A	0,05 A

7. Схема установки:

- 1. Измерительными приборами в данной лабораторной работе являются амперметр и вольтметр, содержащиеся в блоке AB1. Резистор переменного сопротивления $R = 0 \div 1,5$ кОм расположен на стенде с объектами исследования «C3-ЭМ01» в левом верхнем углу (см. рис. 5)
- 2. В качестве источника ЭДС в лабораторной работе используется генератор регулируемого постоянного напряжения блока ГН1 (см. рис. 6) с включенным внутренним сопротивлением (переключатель RBH должен быть нажат). В этом случае номинальное значение внутреннего сопротивления генератора равняется $680 \text{ Om} \pm 10\%$

Рис. 5. Стенд «С3-ЭМ01»

Рис. 6. Генератор напряжения ГН1

8. Результаты прямых измерений и расчет результатов косвенных измерений:

С помощью стандартного метода нахождения параметров линейных зависимостей найдите параметры полученной зависимости (с помощью линии тренда найдём уравнение и найдем r и ε):

- r = k = 65,7
- $\varepsilon = b = 11$

Используя формулы $P_R = UI$; $P_S = I^2r$; $P = \varepsilon I$; посчитаем и запишем результаты вычислений в таблицу:

No	U, B	I, mA	PR, mBT	PS, mBt	<i>P</i> , мВт	η
1	0	0,17	0	1,899	1,870	0
2	1,8	0,14	0,252	1,288	1,540	0,164
3	2,8	0,12	0,336	0,946	1,320	0,255
4	3,5	0,11	0,385	0,795	1,210	0,318
5	3,9	0,11	0,429	0,795	1,210	0,355
6	4,3	0,10	0,43	0,657	1,100	0,391
7	4,6	0,10	0,46	0,657	1,100	0,418
8	4,8	0,09	0,432	0,532	0,990	0,436
9	5,1	0,09	0,459	0,532	0,990	0,464
10	5,3	0,09	0,477	0,532	0,990	0,482

11	5,5	0,08	0,44	0,420	0,880	0,500
12	5,7	0,08	0,456	0,420	0,880	0,518
13	6,0	0,08	0,48	0,420	0,880	0,545
14	6,1	0,07	0,427	0,322	0,770	0,555
15	6,3	0,07	0,441	0,322	0,770	0,573
16	6,5	0,07	0,455	0,322	0,770	0,591
17	6,6	0,07	0,462	0,322	0,770	0,600
18	6,8	0,07	0,476	0,322	0,770	0,618
19	6,9	0,06	0,414	0,237	0,660	0,627
20	7,1	0,06	0,426	0,237	0,660	0,645

Графики зависимости всех мощностей от силы тока:

С помощью графика зависимости $P_R = P_R(I)$ найдем значение силы тока I^* при котором полезная мощность достигает максимального значения:

- $P_{Rmax} = 0.477 \, (\text{MBT});$
- $I^* = 0.09 (A)$;

Подставив в формулу $P_R = I^2 R$ значения P_{Rmax} и I^* , найдём сопротивление R, соответствующее режиму согласования нагрузки источника:

• R = 58,88888889 (Om)

Найдем значения КПД $\eta = \frac{P_R}{P}$, как функции силы тока, занесем результаты в таблицу и построим соответствующий график:

По графику $\eta = \eta(I)$ определим значение тока I^* , соответствующее $\eta = 0.5$:

• $I^* = 0.08 (A)$

9. Окончательные результаты:

- $P_{Rmax} = 0.477 \, (\text{MBT});$
- $I^* = 0.09 (A)$ (для $P_R = P_R(I)$)
- R = 58,88888889 (OM);
- $I^* = 0.08 (A)$ (для $\eta = \eta(I)$)

10. Выводы и анализ результатов работы:

В процессе лабораторной работы были исследованы зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешней цепи и КПД источника от силы тока в цепи. Также найдены значения параметров источника: электродвижущей силы и внутреннего сопротивления, оценить их погрешность.