 	 	 • • • • •

(ii) Kirchhoff's second law is linked to the conservation of a certain quantity. State this quantity.

.....[1]

(b) The circuit shown in Fig. 5.1 is used to compare potential differences.

Fig. 5.1

The uniform resistance wire XY has length 1.00 m and resistance 4.0 Ω . Cell A has e.m.f. 2.0 V and internal resistance 0.50 Ω . The current through cell A is I. Cell B has e.m.f. E and internal resistance r.

The current through cell B is made zero when the movable connection J is adjusted so that the length of XJ is $0.90\,m$. The variable resistor R has resistance $2.5\,\Omega$.

(i) Apply Kirchhoff's second law to the circuit CXYDC to determine the current *I*.

(ii)	Calculate the potential difference across the length of wire XJ.
	potential difference =V [2]
(!!!\	value and average in (iii) to extent the value of F
(iii)	your answer in (ii) to state the value of E.
	<i>E</i> = V [1]
(iv)	State why the value of the internal resistance of cell B is not required for the determination of $\it E$.
	[1]