Rank				Paraphrase Identification (PI)			Semantic Similarity (SS)			
PΙ	SS	Team	Run	F1	Precision	Recall	Pearson	maxF1	mPrec	mRecall
		Human Upperbound		0.823	0.752	0.908	0.735			
1		ASOBEK	01_svckernel	0.674^{1}	0.680	0.669	0.475^{18}	0.616	0.732	0.531
	8	ASOBEK	02_linearsvm	0.672^2	0.682	0.663	0.504^{14}	0.663	0.723	0.611
2	1	MITRE	01_ikr	0.667^{3}	0.569	0.806	0.619^{1}	0.716	0.750	0.686
3		ECNU	02_nnfeats	0.662^4	0.767	0.583				
4		FBK-HLT	01_voted	0.659^{5}	0.685	0.634	0.462^{19}	0.607	0.551	0.674
5		TKLBLIIR	02_gs0105	0.659^{5}	0.645	0.674				
		MITRE	02_bieber	0.652^{7}	0.559	0.783	0.612^{2}	0.724	0.753	0.697
6		HLTC-HKUST	02_run2	0.652^{7}	0.574	0.754	0.545^{6}	0.669	0.738	0.611
	3	HLTC-HKUST	01_run1	0.651^9	0.594	0.720	0.563^{5}	0.676	0.697	0.657
		ECNU	01_mlfeats	0.643^{10}	0.754	0.560				
7	4	AJ	01_first	0.622^{11}	0.523	0.766	0.527^{7}	0.642	0.571	0.731
8	5	DEPTH	02_modelx23	0.619^{12}	0.652	0.589	0.518^{8}	0.636	0.602	0.674
9	9	CDTDS	01_simple	0.613^{13}	0.547	0.697	0.494^{15}	0.626	0.675	0.583
		CDTDS	02_simplews	0.612^{14}	0.542	0.703	0.491^{16}	0.624	0.589	0.663
		DEPTH	01_modelh22	0.610^{15}	0.647	0.577	0.505^{13}	0.638	0.642	0.634
	10	FBK-HLT	02_multilayer	0.606^{16}	0.676	0.549	0.480^{17}	0.604	0.504	0.754
10		ROB	01_all	0.601^{17}	0.519	0.714	0.513^{10}	0.612	0.721	0.531
11		EBIQUITY	01_run	0.599^{18}	0.651	0.554				
		TKLBLIIR	01_gsc054	0.590^{19}	0.461	0.817				
		EBIQUITY	02_run	0.590^{19}	0.646	0.543				
		BASELINE	logistic reg.	0.589 ²¹	0.679	0.520	0.511 ¹¹	0.601	0.674	0.543
12	11	COLUMBIA	02_ormf \$	0.588^{22}	0.593	0.583	0.425^{20}	0.599	0.623	0.577
13	12	HASSY	01_train	0.571^{23}	0.449	0.783	0.405^{22}	0.645	0.657	0.634
14		RTM-DCU	01_PLSSVR	0.562^{24}	0.859	0.417	0.564^4	0.678	0.649	0.709
		COLUMBIA	01_ormf ◊	0.561^{25}	0.831	0.423	0.425^{20}	0.599	0.623	0.577
		HASSY	02_traindev	0.551^{25}	0.423	0.789	0.405^{22}	0.629	0.648	0.611
	2	RTM-DCU	02_SVR	0.540^{27}	0.883	0.389	0.570^{3}	0.693	0.695	0.691
		BASELINE	$\mathbf{WTMF} \diamond$	0.536^{28}	0.450	0.663	0.350^{26}	0.587	0.570	0.606
	6	ROB	02_all	0.532^{29}	0.388	0.846	0.515^{9}	0.616	0.685	0.560
	7	MATHLING	02_twimash \$	0.515^{30}	0.364	0.880	0.511^{11}	0.650	0.648	0.651
15		MATHLING	01_twiemb ◊	0.515^{30}	0.454	0.594	0.229^{27}	0.562	0.638	0.503
16		YAMRAJ	01_google ♦	0.496^{32}	0.725	0.377	0.360^{25}	0.542	0.502	0.589
17		STANFORD	01_vs	0.480^{33}	0.800	0.343				
		AJ	02_second	0.477^{34}	0.618	0.389				
	13	YAMRAJ	02_lexical ♦	0.470^{35}	0.677	0.360	0.363^{24}	0.511	0.508	0.514
late	late	AMRITACEN	01_RAE	0.457	0.543	0.394	0.303	0.457	0.543	0.394
18		WHUHJP	02_whuhjp	0.425^{36}	0.299	0.731				
		WHUHJP	01_whuhjp	0.387^{37}	0.275	0.651				
		BASELINE	$\mathbf{random} \diamond$	0.266 ³⁸	0.192	0.434	0.017^{28}	0.350	0.215	0.949