

Norwegian University of Science and Technology Deptartment of Mathematical Sciences TMA4190 Introduction to Topology Spring 2018

> Suggestions for solutions Exam May 31, 2018

- a) By definition of embeddings, we need to show that f is an injective, proper immersion.
  - f is injective: If f(t) = f(s), then  $\frac{e^t + e^{-t}}{2} = \frac{e^s + e^{-s}}{2}$  and  $\frac{e^t e^{-t}}{2} = \frac{e^s e^{-s}}{2}$ . Adding these two equations, implies  $e^t = e^s$ . Since the exponential function is injective, this shows t = s.
  - f is proper: Let K be a compact subset of  $\mathbb{R}^2$ . That means that K is both closed and bounded in  $\mathbb{R}^2$ . Since f is continuous,  $f^{-1}(K)$  is closed in  $\mathbb{R}$ . Since both coordinates of f(t) are unbounded when t varies in all of  $\mathbb{R}$ ,  $f^{-1}(K)$  must be bounded as well. Thus  $f^{-1}(K)$  is both closed and bounded in  $\mathbb{R}$  and therefore compact.
  - f is an immersion: The derivative of f at any  $t \in \mathbb{R}$  is given in the standard basis by the  $2 \times 1$ -matrix

$$df_t = \begin{pmatrix} \frac{e^t - e^{-t}}{2} \\ \frac{e^t + e^{-t}}{2} \end{pmatrix}.$$

For each t,  $df_t$  is a linear map  $\mathbb{R} \to \mathbb{R}^2$ . Since Ker  $(df_t)$  is a vector subspace of  $\mathbb{R}$ , it is either  $\{0\}$  or  $\mathbb{R}$  itself. Since  $df_t$  is not the zero matrix for any t,  $df_t$  must be injective for all  $t \in \mathbb{R}$ .

b) The derivative of g at a point (x, y) is given by the  $1 \times 2$ -matrix

$$dg_{(x,y)} = \begin{pmatrix} 2x & -2y \end{pmatrix}.$$

As a linear map from  $\mathbb{R}^2$  to  $\mathbb{R}$ ,  $dg_{(x,y)}$  is surjective whenever it is not the zero map. Hence  $dg_{(x,y)}$  is surjective for all  $(x,y) \neq (0,0)$ .

Thus the set of regular values of g is the subset  $\mathbb{R} \setminus \{0\}$ . Since g(0,0) = 0, the only critical value is 0.

Since the derivative of g is not surjective at all points, g is not a submersion.

c) The image of f is a submanifold of  $\mathbb{R}^2$ . This follows, for example, from the fact that f is an embedding. We could also observe that  $\operatorname{Im}(f) = g^{-1}(1)$  and remark that 1 is a regular value of g. The composition  $g \circ f$  is the constant map  $\mathbb{R} \to \mathbb{R}$  with value 1. Hence  $(g \circ f)^{-1}(1) = \mathbb{R}$  is a manifold.

a) We define the map

$$f \colon \mathbb{R}^4 \to \mathbb{R},$$
  $(x_1, x_2, x_3, x_4) \mapsto x_1 + x_2^2 + x_3^3 + x_4^4.$ 

Then Z is the preimage of 0 under f, i.e.,  $Z = f^{-1}(0)$ . In order to show that Z is a manifold, we just need to show that 0 is a regular value of f. To check this, we calculate the derivative of f at any  $z = (x_1, x_2, x_3, x_4)$  in  $f^{-1}(0)$ . The derivative  $df_z$  is a linear map  $\mathbb{R}^4 \to \mathbb{R}$  given in the standard basis by the  $1 \times 4$ -matrix

$$df_z = \begin{pmatrix} 1 & 2x_2 & 3x_3^2 & 4x_4^3 \end{pmatrix}.$$

We need to show that  $df_z$  is surjective. Since  $df_z$  is a map with values in  $\mathbb{R}$ , it suffices to observe that  $df_z$  is not the zero map. Thus  $df_z$  is surjective for all  $z \in f^{-1}(0)$ , and 0 is a regular value of f. By the Preimage Theorem,  $Z = f^{-1}(0)$  is a manifold of dimension  $3 = \dim \mathbb{R}^4 - \dim \mathbb{R}$ .

b) We show that Z and  $S^3$  meet transversally in  $\mathbb{R}^4$ . To do this we need to check that  $T_z(Z) + T_z(S^3) = T_z(\mathbb{R}^4) = \mathbb{R}^4$  for all  $z \in Z \cap S^3$ . Since  $T_z(Z)$  and  $T_z(S^3)$  are both three-dimensional subspaces of  $\mathbb{R}^4$ , it suffices to show that, for every  $z \in Z \cap S^3$ , there is at least one vector v in  $T_z(Z)$  which is not contained in  $T_z(S^3)$ .

The tangent space to Z in a point  $z \in Z$  is the subspace in  $\mathbb{R}^4$  given by the kernel of the derivative  $df_z$ . Let  $z = (x_1, x_2, x_3, x_4)$  be any point in  $Z \cap S^3$ . Then the vector  $v := (12x_1, 6x_2, 4x_3, 2x_4)$  lies in  $T_z(Z)$ , since

$$df_z(v) = \begin{pmatrix} 1 & 2x_2 & 3x_3^2 & 4x_4^3 \end{pmatrix} \begin{pmatrix} 12x_1 \\ 6x_2 \\ 4x_3 \\ 3x_4 \end{pmatrix}$$
$$= 12x_1 + 12x_2^2 + 12x_3^3 + 12x_4^3$$
$$= 12f(z)$$
$$= 0.$$

But v is not an element in  $T_z(S^3)$ . For, recall that  $T_z(S^3)$  is the subspace in  $\mathbb{R}^4$  which is orthogonal to the vector z, i.e.,

$$T_z(S^3) = \{ w \in \mathbb{R}^4 : z \perp w = 0 \}.$$

We can check orthogonality via the scalar product in  $\mathbb{R}^4$ :

$$z \perp w \iff z \cdot w = 0.$$

For v we calculate

$$z \cdot v = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \end{pmatrix} \begin{pmatrix} 12x_2 \\ 6x_2 \\ 4x_3 \\ 3x_4 \end{pmatrix} = 12x_1^2 + 6x_2^2 + 4x_3^2 + 3x_4^2 > 0.$$

Thus v is not an element in  $T_z(S^3)$ . Hence Z and  $S^3$  meet transversally in  $\mathbb{R}^4$ . By the Preimage Theorem, the codimension of  $Z \cap S^3$  in  $S^3$  equals the codimension of Z in  $\mathbb{R}^4$ . Thus dim  $Z \cap S^3 = 2$ .

$$\boxed{3}$$
 Let  $X = \{(x, y) \in \mathbb{R}^2 : x \ge -1\}, Y = \mathbb{R}$  and

$$f: X \to Y, (x, y) \mapsto x^2 + y^2.$$

a) The boundary of X is  $\partial X = \{(x,y) \in \mathbb{R}^2 : x = -1\}$ . The derivative of f is given by the  $1 \times 2$ -matrix  $df_{(x,y)} = \begin{pmatrix} 2x & 2y \end{pmatrix}$ . Hence  $df_{(x,y)}$  is a surjective linear map for all  $(x,y) \neq (0,0)$ . Since  $f(0,0) = 0 \neq 1$ ,  $df_{(x,y)}$  is surjective for all  $(x,y) \in f^{-1}(1)$  and 1 is a regular value of f.

The restriction of f to the boundary of X is

$$\partial f \colon \partial X \to Y, \ (-1, y) \mapsto 1 + y^2.$$

Hence the derivative of  $\partial f$  is given by the  $1 \times 1$ -matrix  $(\partial f)_{(-1,y)} = 2y$ . This is a linear map which is surjective if and only if  $y \neq 0$ . Since  $(-1,0) \in \partial X$  and  $\partial f(-1,0) = 1$ , we see that 1 is not a regular value of  $\partial f$ .

b) The preimage  $f^{-1}(1)$  is just the unit sphere  $S^1$ . Hence the boundary  $\partial(f^{-1}(1))$  is empty. However,

$$f^{-1}(1) \cap \partial X = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \cap \{(x,y) \in \mathbb{R}^2 : x = -1\} = \{(-1,0)\} \neq \emptyset.$$

In particular,  $\partial(f^{-1}(1)) \neq f^{-1}(1) \cap \partial X$ .

This is not a contradiction to the Preimage Theorem for manifolds with boundary, since the conclusion of the theorem required that 1 was a regular of both f and  $\partial f$ . But we showed in the first part that 1 is not a regular value of  $\partial f$ .

**a)** Since  $\deg_2(f) \neq 0$ , we must have  $\#f^{-1}(y) \neq 0 \mod 2$  for some  $y \in Y$ . But, since Y is connected, the function

$$\#f^{-1}(-): Y \to \mathbb{Z}/2, y \mapsto \#f^{-1}(y) \mod 2$$

is constant. Thus we must have  $\#f^{-1}(y) \neq 0 \mod 2$  for all  $y \in Y$ . Hence  $f^{-1}(y) \neq \emptyset$  for all  $y \in Y$  and f is surjective.

- b) Let us assume  $\deg_2(f) \neq 0$  and derive a contradiction. By the previous point, if  $\deg_2(f) \neq 0$ , then f is surjective. But that means Y = f(X). Since f is, in particular, continuous and X is compact, the image of X under f is compact. Hence Y would be compact as the continuous image of a compact space. This contradicts the assumption. Hence we must have  $\deg_2(f) = 0$ .
- c) Let  $f \colon S^1 \to S^1$  be a smooth map without fixed points. We define the map

$$G(x,t) \colon S^1 \times [0,1] \to \mathbb{R}^2, (x,t) \mapsto f(x)(1-t) - tx.$$

We would like to turn G into a homotopy between f and  $\alpha$ . Hence we need to manipulate G such that its image is contained in  $S^1 \subset \mathbb{R}^2$ . We can arrange this if  $G(x,t) \neq 0$ . For then  $\frac{G(x,t)}{|G(x,t)|}$  is in  $S^1$ . Hence we need to check  $G(x,t) \neq 0$  for all  $(x,t) \in S^1 \times [0,1]$ .

For a fixed x and varying t, f(x)(1-t)-tx describes the line segment in  $\mathbb{R}^2$  between the two points f(x) and -x on  $S^1$ . The only way, this line segment can pass  $0 \in \mathbb{R}^2$ , is when f(x) = x is the antipodal point to -x. But, by the assumption on f,  $f(x) \neq x$  for all  $x \in S^1$ .

Thus the smooth map

$$F(x,t) \colon S^1 \times [0,1] \to S^1, (x,t) \mapsto \frac{f(x)(1-t) - tx}{|f(x)(1-t) - tx|}$$

is a homotopy between f and  $\alpha$ .

Since  $\alpha^{-1}(x) = -x$  for all  $x \in S^1$ , there is exactly one preimage point for each x. Hence  $\deg_2(\alpha) = 1$ . Since f and  $\alpha$  are homtopic, the invariance of  $\deg_2$  under homotopy implies  $\deg_2(f) = 1$ . By the first point,  $\deg_2(f) = 1$  implies that f is surjective.