2020/2/28 狸猫技术窝

首页

图文 22 生产经验:如何通过chunk来支持数据库运行期间的Buffer Pool动态调

整?

527 人次阅读

2020-02-14 07:56:09

返回 前进 重新加载

打印

详情 评论

生产经验:如何通过chunk来支持数据库运行期间的Buffer Pool动态调整?

如何提问: 每篇文章都有评论区, 大家可以尽情留言提问, 我会逐一答疑

如何加群:购买狸猫技术窝专栏的小伙伴都可以加入狸猫技术交流群,一个非常纯粹的技术交流的地方

具体加群方式,请参见目录菜单下的文档:《MySQL专栏付费用户如何加群》(购买后可见)

相关频道

狸猫技ス

进店逛

1、buffer pool这种大块头,能在运行期间动态调整大小吗?

那么这一篇文章我们接着分析下一个问题,那就是buffer pool这种大块头数据结构,在数据库运行期间,可以动态的调整他的大小吗?

其实如果就我们讲的这套原理的话, buffer pool在运行期间是不能动态的调整自己的大小的

为什么呢?因为动态调整buffer pool大小,比如buffer pool本来是8G,运行期间你给调整为16G了,此时是怎么实现的呢?

就是需要这个时候向操作系统申请一块新的16GB的连续内存,然后把现在的buffer pool中的所有缓存页、描述数据块、各种链表,都拷贝到新的16GB的内存中去。这个过程是极为耗时的,性能很低下,是不可以接受的!

所以就目前讲解的这套原理, buffer pool是绝对不能支持运行期间动态调整大小的。

2、如何基于chunk机制把buffer pool给拆小呢?

但是MySQL自然会想办法去做一些优化的,他实际上设计了一个chunk机制,也就是说buffer pool是由很多chunk组成的,他的大小是innodb buffer pool chunk size参数控制的,默认值就是128MB。

所以实际上我们可以来做一个假设,比如现在我们给buffer pool设置一个总大小是8GB,然后有4个buffer pool,那么每个buffer pool就是2GB,此时每个buffer pool是由一系列的128MB的chunk组成的,也就是说每个buffer pool会有16个chunk。

然后每个buffer pool里的每个chunk里就是一系列的描述数据块和缓存页,每个buffer pool里的多个chunk共享一套 free、flush、lru这些链表,此时的话,看起来可能大致如下图所示。

在上面的图里,可以清晰的看到,每个buffer pool里已经有了多个chunk,每个chunk就是一系列的描述数据块和缓 存页,这样的话,就是把buffer pool按照chunk为单位,拆分为了一系列的小数据块,但是每个buffer pool是共用一套 手QQ3195303913微信wxywd8 free、flush、Iru的链表的。

3、基于chunk机制是如何支持运行期间,动态调整buffer pool大小的?

那么现在有了上面讲的这套chunk机制,就可以支持动态调整buffer pool大小了。

比如我们buffer pool现在总大小是8GB,现在要动态加到16GB,那么此时只要申请一系列的128MB大小的chunk就 可以了,只要每个chunk是连续的128MB内存就行了。然后把这些申请到的chunk内存分配给buffer pool就行了。

有个这个chunk机制,此时并不需要额外申请16GB的连续内存空间,然后还要把已有的数据进行拷贝。

给大家讲解这个chunk机制,倒不是让大家在数据库运行的时候动态调整buffer pool大小,其实这不是重点,重点是 大家要了解数据库的buffer pool的真实的数据结构,是可以由多个buffer pool组成的,每个buffer pool是多个 chunk组成的, 然后你只要知道他运行期间可以支持动态调整大小就可以了。

4、昨日思考题解答

现在我们来解答一下昨天的思考题,昨天让大家思考了一下,到底如何避免你执行crud的时候,频繁的发现缓存页都 用完了,完了还得先把一个缓存页刷入磁盘腾出一个空闲缓存页,然后才能从磁盘读取一个自己需要的数据页到缓存 页里来。

如果频繁这么搞,那么很多crud操作,每次都要执行两次磁盘IO,一次是缓存页刷入磁盘,一次是数据页从磁盘里读 取出来,性能是很不高的。

其实结合我们了解到的buffer pool的运行原理就可以知道,如果要避免上述问题,说白了就是避免缓存页频繁的被使 用完毕。那么我们知道实际上你在使用缓存页的过程中,有一个后台线程会定时把LRU链表冷数据区域的一些缓存页 刷入磁盘中。

所以本质上缓存页一边会被你使用,一边会被后台线程定时的释放掉一批。

所以如果你的缓存页使用的很快,然后后台线程释放缓存页的速度很慢,那么必然导致你频繁发现缓存页被使用完 了。但是缓存页被使用的速度你是没法控制的,因为那是由你的Java系统访问数据库的并发程度来决定的,你高并发 2020/2/28 狸猫技术窝

访问数据库,缓存页必然使用的很快了!

然后你后台线程定时释放一批缓存页,这个过程也很难去优化,因为你要是释放的过于频繁了,那么后台线程执行磁盘IO过于频繁,也会影响数据库的性能。

所以这里的关键点就在于, 你的buffer pool有多大!

这样的话,你会发现高并发场景下,数据库的buffer pool缓存页频繁的被应力,后是成为自己。程也在定时释放一些缓存页,那么综合下来,空闲的缓存页还是会以一定的速率逐步逐步的减少。

因为你的buffer pool内存很大,所以空闲缓存页是很多很多的,即使你的空闲缓存页逐步的减少,也可能需要较长时间才会发现缓存页用完了,此时才会出现一次crud操作执行的时候,先刷缓存页到磁盘,再读取数据页到缓存页来,这种情况是不会出现的太频繁的!

而一旦你的数据库高峰过去,此时缓存页被使用的速率下降了很多很多,然后后台线程会定是基于flush链表和lru链表不停的释放缓存页,那么你的空闲缓存页的数量又会在数据库低峰的时候慢慢的增加了。

所以线上的MySQL在生产环境中,buffer pool的大小、buffer pool的数量,这都是要用心设置和优化的,因为多MySQL的性能和并发能力,都会有较大的影响。

5、实践思考题

请每位同学,去看看自己负责的系统的buffer pool大小、buffer pool数量、chunk大小,然后看看自己的数据库的机器配置,思考一下,当前设置是否合理?为什么要这样设置?

大家可以把自己的思考发在评论区一起交流。

认准一手QQ195303913微信wxywd8

专栏版权归公众号狸猫技术窝所有

未经许可不得传播,如有侵权将追究法律责任

狸猫技术窝精品专栏及课程推荐:

《从零开始带你成为消息中间件实战高手》

《21天互联网Java进阶面试训练营》(分布式篇)

《互联网Java工程师面试突击》(第1季)

《互联网Java工程师面试突击》(第3季)

《从零开始带你成为JVM实战高手》

2020/2/28 狸猫技术窝

返回 前进 重新加载 打印

Copyright © 2015-2020 深圳小鹅网络技术有限公司 All Rights Reserved. <u>粵ICP备15020529号</u>

● 小鹅通提供技术支持

认准一手QQ3195303913微信wxywd8

 $https://apppukyptrl1086.pc.xiaoe-tech.com/detail/i_5e454caae35bf_oszdyZ4R/1?from=p_5e0c2a35dbbc9_MNDGDYba\&type=60c2a35dbbc9_MNDGDYba&type=60c2a35dbbc9_MND$