

Soal

$$m\left(\bigcup_{n=1}^{\infty}I_n\right)$$

di mana untuk setiap $n \in \mathbb{N}, \, a + \frac{1}{n} < b.$

- $\fbox{\textbf{2}}$ Diketahui jika himpunan Adan Bterukur, maka $A \cup B$ terukur. Dengan menggunakan argumen ini,
 - (a) Buktikan $A \cap B$ terukur.
 - (b) Buktikan bahwa $A \setminus B$ terukur.
- 3 Jika fungsi f dan g terukur pada himpunan E terukur, maka fungsi $f \cdot g$ terukur. Gunakan fakta ini untuk membuktikan bahwa fungsi $h = \frac{f}{g}$ terukur di mana $g \neq 0$ a.e.
- 4 Misalkan $f^+ = \max\{f, 0\}$ dan $f^- = \max\{-f, 0\}$. Buktikan jika f terukur maka f^+ dan f^- terukur.

Untuk setiap $n \in \mathbb{N}$, inerval $I_n = \left[a + \frac{1}{n}, b\right) \subseteq \mathbb{R}$. Hitung

$$m\left(\bigcup_{n=1}^{\infty}I_n\right)$$

di mana untuk setiap $n \in \mathbb{N}$, $a + \frac{1}{n} < b$.

Solusi:

Akan dibuktikan bahwa $(a,b) = \bigcup_n \left[a + \frac{1}{n}, b \right)$. Jelas bahwa $\left[a + \frac{1}{n}, b \right) \subseteq (a,b)$. Misalkan $x \in (a,b)$ yang berarti x-a>0. Dari Archimedes terdapat bilangan asli N yang memenuhi $\frac{1}{x-a} < N$ atau $\frac{1}{N} < x-a$ sehingga $a+\frac{1}{N} < x < b$ yang menunjukkan $x \in \left[a + \frac{1}{N}, b \right)$. Jadi, $x \in \bigcup_n \left[a + \frac{1}{n}, b \right)$ sehingga $(a,b) \subseteq \bigcup_n \left[a + \frac{1}{n}, b \right)$. Diperoleh

$$m\left(\bigcup_{n}I_{n}\right)=m(a,b)=\boxed{b-a}.$$

Diketahui jika himpunan A dan B terukur, maka $A \cup B$ terukur. Dengan menggunakan argumen ini,

- (a) Buktikan $A \cap B$ terukur.
- (b) Buktikan bahwa $A \setminus B$ terukur.

Solusi:

- (a) Karena A,B terukur, maka A^c,B^c terukur. Ini berakibat $A^c\cup B^c$ terukur sehingga $A\cap B=(A^c\cup B^c)^c$ terukur.
- (b) Karena Aterukur dan B^c terukur, dari bagian (b) berlaku $A \setminus B = A \cap B^c$ terukur.

Jika fungsi f dan g terukur pada himpunan E terukur, maka fungsi $f \cdot g$ terukur. Gunakan fakta ini untuk membuktikan bahwa fungsi $h = \frac{f}{g}$ terukur di mana $g \neq 0$ a.e.

Solusi:

Definisikan $E(g>a)=\{x:g(x)>a\}.$ Perhatian bahwa

$$E(1/g > a) = \begin{cases} E(g < 1/a) \cap E(g > 0), & a > 0 \\ E(g > 0), & a = 0 \\ E(g > 0) \cup [E(g < 0) \cap E(g < 1/a)], & a < 0 \end{cases}.$$

Mengingat gterukur, ini menunjukkan bahwa1/gterukur. Karena fterukur, mka $f/g=f\cdot 1/g$ terukur.

SOAL NOMOR

Misalkan $f^+ = \max\{f,0\}$ dan $f^- = \max\{-f,0\}$. Buktikan jika f terukur maka f^+ dan f^- terukur.

Solusi:

Perhatikan bahwa

$$f^+ = \max\{f, 0\} = \frac{f + |f|}{2}, \quad f^- = \frac{-f + |-f|}{2} = \frac{|f| - f}{2}.$$

Karena f terukur, maka |f| terukur. Maka f+|f| dan |f|-f terukur sehingga diperoleh f^+ dan f^- terukur.