BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding with a quick introduction with a quick introduction to transformers

Mateusz Pach

December 14, 2022

"Attention Is All You Need" Vaswani et al. 2017

"Attention Is All You Need" Vaswani et al. 2017

For each query $q \in Q$ assign sum of values $v \in V$ weighted by similarity of corresponding keys $k \in K$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

For each query $q \in Q$ assign sum of values $v \in V$ weighted by similarity of corresponding keys $k \in K$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

 $Q \quad K \quad V$ Attention(Q, K, V) cat pies pies $0.10 \times \text{pies} + 0.01 \times \text{jajko} + 0.89 \times \text{kot}$ dog jajko jajko $0.89 \times \text{pies} + 0.01 \times \text{jajko} + 0.10 \times \text{kot}$ egg kot kot $0.01 \times \text{pies} + 0.98 \times \text{jajko} + 0.01 \times \text{kot}$

For each query $q \in Q$ assign sum of values $v \in V$ weighted by similarity of corresponding keys $k \in K$

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Multi-Head as we project to different representations

 $\mathsf{MultiHead}(Q, K, V) = \mathsf{Concat}(\mathsf{head}_1, \dots, \mathsf{head}_h)$

where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

"Attention Is All You Need" Vaswani et al. 2017

Feed Forward are two convolutions with kernel size 1

$$FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$$

"Attention Is All You Need" Vaswani et al. 2017

Embedding transforms input tokens into vector representations

Embedding transforms input tokens into vector representations

Positional Encoding adds information about position

$$PE(pos, 2i) = \sin(pos/10000^{2i/d_{model}})$$

$$PE(pos, 2i + 1) = \cos(pos/10000^{2i/d_{model}})$$

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way
- 4. Embed already translated words + encode position
- 5. Self-attend l translated words i.e. enrich them with context (from the left)
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way
- 4. Embed already translated words + encode position
- 5. Self-attend l translated words i.e. enrich them with context (from the left)
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way
- 4. Embed already translated words + encode position
- 5. Self-attend l translated words i.e. enrich them with context (from the left)
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way ullet
- 4. Embed already translated words + encode position
- 5. Self-attend l translated words i.e. enrich them with context (from the left)
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way
- 4. Embed already translated words + encode position
- 5. Self-attend l translated words i.e. enrich them with context (from the left)
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way
- 4. Embed already translated words + encode position
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way
- 4. Embed already translated words + encode position
- 5. Self-attend l translated words i.e. enrich them with context (from the left)
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way
- 4. Embed already translated words + encode position
- 5. Self-attend l translated words i.e. enrich them with context (from the left)
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way
- 4. Embed already translated words + encode position
- 5. Self-attend l translated words i.e. enrich them with context (from the left)
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

"Attention Is All You Need" Vaswani et al. 2017

Intuition behind translation with transformers:

- 1. Embed k input words + encode position
- 2. Self-attend input words i.e. enrich them with context
- 3. Adjust for the next layer in a learned way
- 4. Embed already translated words + encode position
- 5. Self-attend l translated words i.e. enrich them with context (from the left)
- 6. Attend words to translate from translated words i.e enrich with original context
- 7. Adjust for the next layer in a learned way
- 8. Output l+1 translated words

BERT

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2018

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2018

BERT

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2018

The input embeddings are the sum of the token, segment and position embeddings

There are two special tokens:

[SEP] — it's used to seperate sentences

[CLS] — its corresponding output token is used as agregate representation

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2018

Pre-training

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2018

Pre-training

We pre-train the model using two unsupervised tasks.

Pre-training

We pre-train the model using two unsupervised tasks.

Task 1: Masked LM

Mask some percentage of the input tokens at random, and then predict those masked tokens.

To mitigate mismatch between pre-training and fine-tuning replace some [MASK] tokens with random tokens.

Pre-training

We pre-train the model using two unsupervised tasks.

Task 1: Masked LM

Mask some percentage of the input tokens at random, and then predict those masked tokens.

To mitigate mismatch between pre-training and fine-tuning replace some [MASK] tokens with random tokens.

Task 2: Next Sentence Prediction (NSP)

Let the sentence B be the actual next sentence that follows A 50% of the time and a random sentence from the corpus another 50% of the time. Use C to output prediction if B follows A.

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2018

BERT

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2018

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2018

New state-of-the-art results on 11 NLP tasks

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).

The number below each took denotes the number of training examples. The "Average" column is slightly different

System	Dev		Test				
·	EM	F1	EM	F1			
Top Leaderboard Systems (Dec 10th, 2018)							
Human	86.3	89.0	86.9	89.5			
#1 Single - MIR-MRC (F-Net)	-	-	74.8	78.0			
#2 Single - nlnet	-	-	74.2	77.1			
Published							
unet (Ensemble)	-	-	71.4	74.9			
SLQA+ (Single)	-		71.4	74.4			
Ours							
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1			

System	Dev	Test
ESIM+GloVe ESIM+ELMo OpenAI GPT		52.7 59.2 78.0
BERT _{BASE} BERT _{LARGE}	81.6 86.6	86.3
Human (expert) [†] Human (5 annotations) [†]	-	85.0 88.0

System	Dev		Test				
·	EM	F1	EM	F1			
Top Leaderboard Systems (Dec 10th, 2018)							
Human	-	-	82.3	91.2			
#1 Ensemble - nlnet	-	-	86.0	91.7			
#2 Ensemble - QANet	-	-	84.5	90.5			
Published							
BiDAF+ELMo (Single)	-	85.6	_	85.8			
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5			
Ours							
BERT _{BASE} (Single)	80.8	88.5	-	-			
BERT _{LARGE} (Single)	84.1	90.9	-	-			
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-			
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8			
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2			

Table 2: SQuAD 1.1 results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

Table 3: SQuAD 2.0 results. We exclude entries that the set is meas use BERT as one of their components.

: SWAG Dev and Test accuracies. †Human perte is measured with 100 samples, as reported in

DI	Т
DE	

	Dev Set							
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD			
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)			
$BERT_{BASE}$	84.4	88.4	86.7	92.7	88.5			
No NSP	83.9	84.9	86.5	92.6	87.9			
LTR & No NSP	82.1	84.3	77.5	92.1	77.8			
+ BiLSTM	82.1	84.1	75.7	91.6	84.9			

Table 5: Ablation over the pre-training tasks using the BERT_{BASE} architecture. "No NSP" is trained without the next sentence prediction task. "LTR & No NSP" is trained as a left-to-right LM without the next sentence prediction, like OpenAI GPT. "+ BiLSTM" adds a randomly initialized BiLSTM on top of the "LTR + No NSP" model during fine-tuning.

"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. 2018

"While the previous results page included a book in the 'Young Adult' category, BERT can better understand that 'adult' is being matched out of context, and pick out a more helpful result."

https://blog.google/products/search/search-language-understanding-bert/

Questions