אשנב למתמטיקה

פתרון ממ"ן 11

שאלה 1

: הקבוצות הבאות: B -ו A יהיו

$$B = \{1, 16, 81, ...\} = \{n^4 \mid n \in \mathbb{N}\}$$
, $A = \{1, 4, 9, ...\} = \{n^2 \mid n \in \mathbb{N}\}$

- A ו- A ו- A א. בנה התאמה חד-חד-ערכית בין
- ב. בנה התאמה שאינה חד-חד-ערכית בין A ו- B
- ג. מהי מסקנתך מסעיפים אי ו- בי: האם A ו- B שקולות? נמק!
 - ינסופית? מקן A אינסופית? מקן ד. האם נובע מן הסעיפים הקודמים כי

תשובה

- א. התאמנו B טבעי, נתאים את האיבר n^2 השייך ל- A לאיבר איבר n^4 השייך ל- B בדרך זו, התאמנו A לכל איבר של A איבר אחד ויחיד של A, ולכל איבר של A התאמנו איבר אחד ויחיד של כלומר בנינו התאמה חד-חד-ערכית בין שתי הקבוצות.
- ב. לכל איבר של A נתאים למשל את האיבר 1 השייך ל-B. ברור שההתאמה הזו אינה חד-חד-ערכית, כי לאיבר 1 של B מתאימים איברים רבים של A, ולשאר איברי B לא מתאים אף איבר של A.
- $m{k}$. על-פי ההגדרה, שתי קבוצות הן שקולות אם קיימת התאמה חד-חד-ערכית ביניהן. בסעיף אי מצאנו התאמה חד-חד-ערכית בין $m{k}$ ל- $m{k}$, לפיכך הקבוצות האלה שקולות. (כדאי להעיר שבין שתי קבוצות שקולות ייתכנו גם התאמות שאינן חד-חד-ערכיות, כפי שראינו בסעיף בי).
- ד. לפי ההגדרה, קבוצה היא אינסופית אם יש לה קבוצה חלקית ממש ששקולה לה. בסעיפים B לפי ההגדרה, קבוצה B היא חלקית הקודמים לא הוכחנו עובדה זו. אמנם, כדאי לציין כאן את העובדה כי הקבוצה A היא חלקית ממש ל- A, (שכן, לכל $A \in A$ מתקיים $A \in A$ לכן $A \subseteq A$ ומצד שני $A \subseteq A$ אבל $A \subseteq A$ מכאן ש- $A \subseteq A$). לכן, אם נצרף זאת לעובדה ש- A שקולה ל- A (שהוכחנו בסעיף אי) נקבל ש- A אינסופית.

שאלה 2

באיור שלפניך דיאגרמת ון המתארת את היחסים בין שלוש קבוצות כלשהן B, A ו- C שחלקיות באיור שלפניך דיאגרמות ון (שונות) את השטח המתאר את הקבוצות הבאות:

- $B \setminus (A \setminus C)$.
- $B \setminus (C \setminus A)$.
- $((A \setminus B) \setminus C) \cup (A \cap B^{c}(E) \cap C^{c}(E))$.
- $(A \cup B)^{c}(E) \cup (B \cup C)^{c}(E) \cup (C \cup A)^{c}(E)$.7

תשובה

שאלה 3

 $A \setminus \{x\}$ הקבוצה $x \in B$ כי לכל נתון ני היא הקבוצות. B , A היא יהיו יהיו הבועת. נתון כי לכל אחת מהטענות הבאות:

 $A \cap B = \emptyset$ א.אם A קבוצה סופית אז

 $A \cap B = \emptyset$ ג.אם B קבוצה סופית אז

תשובה

א. עלינו להוכיח כי $A\cap B\neq\varnothing$ נניח בדרך השלילה כי $A\cap B\neq\varnothing$. אז קיים איבר $A\cap B\neq\varnothing$ על-פי הנתון נובע כי $x\in A\cap B$ וגם $x\in A\cap B$ על-פי הנתון נובע כי $x\in A\cap B$ ולפי הגדרת החיתוך, $x\in A\cap B$ שקולה ל- $x\in A$ שקולה ל- $x\in A$ שקולה ל- $x\in A$ ומכאן ש- $x\in A\setminus\{x\}$ לפיכך מצאנו שקיימת קבוצה ביוור, ולכן $x\in A\setminus\{x\}$ ומכאן ש- $x\notin A\setminus\{x\}$ ומכאן שקולה ל- $x\in A$ ואז נובע כי $x\in A\cap B$ הייתה שגויה ומכאן ש- $x\in A\cap B$ אוים אינסופית, בניגוד לנתון. מכאן שההנחה כי $x\in A\cap B$ הייתה שגויה ומכאן ש- $x\in A\cap B$

אז לכל $B=\{1\}$, $A=\mathbf{N}$ למשל (בחר למשל גדית. נבחר למשל $B=\{1\}$, אז לכל $B=\{1\}$, או נכונה. נפריך אותה על-ידי דוגמה נגדית. נבחר למשל $A\setminus\{x\}$ ב- B, והקבוצה $x\in B$ היא שקולה ל- A שקולה ל- $A\setminus\{1\}=\mathbf{N}\setminus\{1\}$ שקולה ל- $A\setminus\{1\}=\mathbf{N}\setminus\{1\}$ שקולה ל- $A\cap B=\mathbf{N}\cap\{1\}\neq\emptyset$ היא חד-חד ערכית). למרות שכל התנאים האלה מתקיימים, $A\setminus\{1\}\neq\emptyset$ הדוגמה מפריכה את הטענה.

שאלה 4

:יהיו B, קבוצות. הוכח או הפרך כל אחת מהטענות הבאות

$$A = \emptyset$$
 או $A = A \setminus B$ אואס.

$$A \cap B = \emptyset$$
 אא $A = A \setminus B$ ב.אם

$$A \cap B = \emptyset$$
 אז $A \setminus B$ שקולה ל- $A \cap B$

 $A \cap B = \emptyset$ אז $A \setminus B$ שקולה ל- $A \cap B$ סופית ו- $A \cap B$

תשובה

- א. $B=\{2\}$, $A=\{1\}$ למשל (בחר למשל גדית. נפריך אותה על-ידי דוגמה א. הטענה לא נכונה. אבל $A \neq \emptyset$ אבל אבל $A \setminus B=\{1\} = A$
- הטענה נכונה. נניח בדרך השלילה ש- $A=A\setminus B$ אבל ש- $A=A\setminus B$. אז קיים איבר .II הטענה נכונה. נניח בדרך השלילה ש- $.x\in B$ ו- $.x\in A$ הפרש בין קבוצות נובע כי $.x\in A\cap B$ הדבר סומר ש- $.x\in A\setminus B$ הדבר סומר את הנתון כי $.x\in A\setminus B$ היא שגויה. מכאן ש- $.x\in A\cap B$ היא שגויה. מכאן ש- $.x\in A\cap B$
- וו. $B=\{1\}$ ו- $A={\bf N}$ ו- $A={\bf N}$ ו- $B=\{1\}$. אז $B=\{1\}$ ו- $A={\bf N}$ ו- $B=\{1\}$. אז הטענה לא נכונה. נפריך אותה על-ידי דוגמה נגדית. נבחר למשל $n\in {\bf N}$ את האיבר הקבוצות $A\setminus B=\{1\}\neq\varnothing$ היא התאמה חד-חד-ערכית בין $A\setminus B=\{1\}$. בכל זאת, $B=\{1\}\neq\varnothing$ והטענה מופרכת.
- מצד $A\setminus B\subseteq A$ מתקיים כמו כן, מתקיים $A\setminus B$ מצד A הון שקולות. כמו כן, מתקיים $A\setminus B\subseteq A$ מצד שני, נתון כי הקבוצה A היא קבוצה סופית, לכן אין ל- A קבוצה חלקית ממש ששקולה לה. מכאן ש- $A\setminus B$ אינה חלקית ממש ל- A ולכן, בהכרח, $A\setminus B$ אבל אז, כפי שהוכחנו בסעיף בי מתקיים $A\setminus B$ כפי שרצינו להוכיח.