

Instituto Tecnológico de Estudios Superiores de Monterrey

Campus Puebla

Fundamentación de Robótica (Gpo 101)

Actividad 1 (Mapeo de coordenadas)

Alumno

José Diego Tomé Guardado A01733345

Fecha de entrega

Miércoles 03 de Abril de 2024

Mapeo de coordenadas de un robot móvil

Código de MATLAB

Tenemos primero los comandos para poder realizar la limpieza de la pantalla y de las variables también.

```
%Limpieza de pantalla
clear all
close all
clc
```


Para las variables simbolicas vamos a declarar los grados de libertad de nuestro robot móvil qué es donde se va a estar efectuando su movimiento y también recordando que son funciones del tiempo t.

```
%Declaración de variables simbolicas syms x(t) y(t) th(t) t %Grados de Libertad del robot móvil
```

Ahora se va a crear un vector de posición qué va a tener el contenido de las coordenadas generalizadas del robot móvil y por otro lado se va a calcular el vector de velocidad tomando la derivada con respecto al tiempo de xi inercial.

```
%Creamos el vector de posición
xi_inercial= [x; y; th];
disp('Coordenadas generalizadas');
pretty(xi_inercial);

%Creamos el vector de velocidades
xip_inercial= diff(xi_inercial, t);
disp('Velocidades generalizadas');
pretty(xip inercial);
```

Tendremos la definición de una matriz de posición P y una de rotación R para poder indicar el movimiento y como se está efectuando los movimientos del robot y se realiza una transformacion del marco de referencia global al local utilizando la matriz de rotación en el eje z.

```
%Realizo mi transformación del marco de referencia global al local... xi local=R(:,:,1)*P(:,:,1)
```

Mapeo de coordenadas inerciales

Ahora se definen las coordenadas inerciales del robot (x1, y1, th1) y también con ello se va a definir el vector de posición y una matriz de rotación para el tiempo 1. Se definiran tres arreglos de valores para cada coordenada inercial del robot, para la representacion de las posiciones iniciales para el robot así como su orientación respectivamente.

```
%Definir el arreglo de coordenadas inerciales para un tiempo 1
Valorx1 =[-5,-3,5,0,-6,10,9,5,-1,6,5,7,11,20,10,-9,1,3,15,-10]; %Posición
inicial eje x
Valory1 = [9,8,-2,0,3,-2,1,2,-1,4,7,7,-4,5,9,-8,1,1,2,0];%Posición inicial
eje y
Valorth1 =
[-2,63,90,180,-55,45,88,33,21,-40,72,30,360,270,345,8,60,30,199,300];%Orienta
ción inicial del robot
```

Creamos un ciclo for donde primero utilizando length obtenemos la longitud del vector Valorx1 que va a representar el número de los puntos, con el bucle for iteramos hasta la longitud del arreglo de Valorx1, durante cada iteración se toman los valores de 1 a la longitud de Valorx1. Accediendo a los elementos de cada uno de los vectores de Valorx1, Valory1 y Valorth1 utilizando el índice i.

Se va a realizar una transformación del marco de referencia inercial al local para el tiempo 1 con la ayuda de utilizar la matriz de rotación definida anteriormente como Rot 1.

```
Realizo mi transformación del marco de referencia inercial al local... xi_local_1=Rot_1*Pos_1
```

Obtenemos la magnitud del vector resultante calculando como la raiz cuadrada de la suma del vector de posición al marco de referencia local eleveando al cuadrado la primera componente del vector en el eje x y luego elevando al cuadrado la segunda componente del vector xi local 1 del componente en el eje y y se hace esta suma de cuadrados.

```
%Obtengo la magnitud del vector resultante
magnitud= sqrt(xi local 1(1)^2 + xi local 1(2)^2)
```

Finalmente vamos a comprobar que devuelve el vector inercial por lo qué se calcula la matriz inversa de la matriz de rotación Rot_1 para poder obtener la rotación inversa, y se calcula el vector de posición del marco de referencia inercial para el tiempo 1 multiplicando la matriz de rotación inversa por el vector de posición transformado. Verificando qué xi inercial 1 debe ser igual al vector de posicion inercial original.

```
%Compruebo que me devuelva el vector inercial
inv_Rot_1= inv(Rot_1);
xi inercial 1= inv Rot 1*xi local 1
```

Finalmente se termina el ciclo for pero no sin antes imprimir los resultados de cada iteración, mostrando los valores de posicion y orientaciones originales, el vector del marco de referencia local, la magnitud y el vector inercial.

```
disp(['Coordenadas ', num2str(i), ':']);
   disp(['Valores de x1, y1, th1: ', num2str(x1), ', ', num2str(y1), ', ',
num2str(th1)]);
   disp(['Vector del marco de referencia inercial local: ',
num2str(xi_local_1')]);
   disp(['Magnitud del vector resultante: ', num2str(magnitud)]);
   disp(['Vector inercial: ', num2str(xi_inercial_1')]);
   fprintf('\n');
end
```

Ejecución del programa

```
Coordenadas generalizadas
/ x(t) \
1
| y(t) |
\ th(t) /
Velocidades generalizadas
/ d \
| -- x(t) |
| dt |
| d |
| -- y(t) |
| dt |
1
l d
| -- th(t) |
\ dt
```

Ejemplos mapeo de coordenadas inerciales

Coordenadas 1: Valores de x1, y1, th1: -5, 9, -2 Vector del marco de referencia inercial Magnitud del vector resultante: 10.2956 Vector inercial: -5 9		10.2644	0.801166	-2
Coordenadas 2: Valores de x1, y1, th1: -3, 8, 63 Vector del marco de referencia inercial Magnitud del vector resultante: 8.544 Vector inercial: -3 8 63	local:	-4.29654	7.38511	63
Coordenadas 3: Valores de x1, y1, th1: 5, -2, 90 Vector del marco de referencia inercial Magnitud del vector resultante: 5.3852 Vector inercial: 5 -2	local:	-0.452375	5.36613	90
Coordenadas 4: Valores de x1, y1, th1: 0, 0, 180 Vector del marco de referencia inercial Magnitud del vector resultante: 0 Vector inercial: 0 0 180	local:	0 0 180		
Coordenadas 5: Valores de x1, y1, th1: -6, 3, -55 Vector del marco de referencia inercial Magnitud del vector resultante: 6.7082 Vector inercial: -6 3	local: -55	-3.13203	-5.93215	-55
Coordenadas 6: Valores de x1, y1, th1: 10, -2, 45 Vector del marco de referencia inercial Magnitud del vector resultante: 10.198 Vector inercial: 10 -2	local:	6.95503	7.45839	45
Coordenadas 7: Valores de x1, y1, th1: 9, 1, 88 Vector del marco de referencia inercial Magnitud del vector resultante: 9.0554 Vector inercial: 9 1	local:	8.95896	1.31796	88
Coordenadas 8: Valores de x1, y1, th1: 5, 2, 33 Vector del marco de referencia inercial Magnitud del vector resultante: 5.3852 Vector inercial: 5 2	local:	-2.06621	4.97301	33
Coordenadas 9: Valores de x1, y1, th1: -1, -1, 21 Vector del marco de referencia inercial Magnitud del vector resultante: 1.4142 Vector inercial: -1	local:	1.38438 -	-0.288926	21
Coordenadas 10: Valores de x1, y1, th1: 6, 4, -40 Vector del marco de referencia inercial Magnitud del vector resultante: 7.2111 Vector inercial: 6 4 -40	local:	-1.02118	-7.13843	-40
Coordenadas 11: Valores de x1, y1, th1: 5, 7, 72 Vector del marco de referencia inercial Magnitud del vector resultante: 8.6023 Vector inercial: 5	local:	-6.61302	-5.50164	72

Coordenadas 12: Valores de x1, y1, th1: 7, 7, 30 Vector del marco de referencia inercial local: 7.99598 Magnitud del vector resultante: 9.8995 Vector inercial: 7 7 30	-5.83646	30
Coordenadas 13: Valores de x1, y1, th1: 11, -4, 360 Vector del marco de referencia inercial local: 0.71506 Magnitud del vector resultante: 11.7047 Vector inercial: 11 -4 360	09 11.68284	360
Coordenadas 14: Valores de x1, y1, th1: 20, 5, 270 Vector del marco de referencia inercial local: 20.5678 Magnitud del vector resultante: 20.6155 Vector inercial: 20 5 270	7 1.400991	270
Coordenadas 15: Valores de x1, y1, th1: 10, 9, 345 Vector del marco de referencia inercial local: 13.2868 Magnitud del vector resultante: 13.4536 Vector inercial: 10 9 345	4 2.111833	345
Coordenadas 16: Valores de x1, y1, th1: -9, -8, 8 Vector del marco de referencia inercial local: 9.2244 Magnitud del vector resultante: 12.0416 Vector inercial: -9 -8 8	-7.7402	8
Coordenadas 17: Valores de x1, y1, th1: 1, 1, 60 Vector del marco de referencia inercial local: -0.6476 Magnitud del vector resultante: 1.4142 Vector inercial: 1 1 60	02 -1.25722	60
Coordenadas 18: Valores de x1, y1, th1: 3, 1, 30 Vector del marco de referencia inercial local: 1.45079 Magnitud del vector resultante: 3.1623 Vector inercial: 3 1 30	-2.80984	30
Coordenadas 19: Valores de x1, y1, th1: 15, 2, 199 Vector del marco de referencia inercial local: -5.310 Magnitud del vector resultante: 15.1327 Vector inercial: 15 2 199	788 -14.17023	199
Coordenadas 20: Valores de x1, y1, th1: -10, 0, 300 Vector del marco de referencia inercial local: 0.2209 Magnitud del vector resultante: 10 Vector inercial: -10 -2.775558e-17 300	662 9 . 997558	300