SPI_MASTER 使用说明

1. 模块框图

2. 寄存器

地址(HEX)		名称	
00000000	R/W	Tx_Buffer_L	发送缓存区。共8字节。
0000004	R/W	Tx_Buffer_H	
00000008	R	Rx_Buffer_L	接收缓存区。共8字节
000000C	R	Rx_Buffer_H	
0000074	R/W	DLR	SPI 工作参数配置寄存器
0000078	R/W	SCR	SPI工作控制寄存器
000007C	R	SSR	SPI 状态寄存器

2.1. DLR

字节地址	77	76	75	74
寄存器	reserved	00000,BC[2:0]	DLH[7:0]	DLL[7:0]
说明	禁止	发送字节数	时钟分频系数	

2.1.1. BC

发送字节数。一次 SPI 帧发送 BC+1 个字节。从 Tx_Buffer 的高位至低位发送。接收的数据从 Rx_Buffer 低位向高位移位前进。

例如,BC 配置为 1。则依次发送 TX_Buffer 的最高字节和次高字节。接收到的数据最终存储于 Rx_Buffer 的次低字节和最低字节。

2.1.2. DL

时钟分频系数。SCLK的周期为 CPU 时钟的 4*(DL+1)倍。

2.2. SCR

位	2	1	0
寄存器	OE	TRAN	EN

2.2.1. OE

输出使能,为0,则sdo与sclk保持0。

2.2.2. TRAN

发送。在此位写 1 后,SPI 将其拉低并开始执行发送。一次发送未结束前,对此位的置位操作无效。

2.2.3. EN

时钟使能。若为 0,则关断 SPI 模块的驱动时钟。

2.3. SSR

位	0
寄存器	BUSY

2.3.1. BUSY

SPI 忙标志。在置位 TRAN 后,BUSY 被 SPI 置位,在一次传输结束后拉低。BUSY 为高的期间,对 Tx_Buffer 和 TRAN 的写操作无效。