Revue de Projet

Assistance à la personne : Surveillance médicale Détection de la chute d'une personne

Sommaire

- -Présentation
- -Solution
- -Démarche
- Analyse comportementale
- -Annexe

Solutions

Analyse comportementale

Annexe

```
int LED=5:
int COLLISION SENSOR=2;
int RED=3:
int motor=9:
int button=7:
int membutton:
void setup()
    pins init();
Serial.begin(9600);
void loop()
  membutton = digitalRead(button);
 if(isTriggered())
        turnOnLED();
        delay(1000);
    else turnOffLED();
void pins init()
{ pinMode(button, INPUT);
    pinMode (motor, OUTPUT);
    pinMode (LED, OUTPUT);
    turnOffLED();
   pinMode (COLLISION SENSOR, INPUT);
    pinMode (RED, INPUT);
```

```
boolean isTriggered()
    if(!digitalRead(COLLISION_SENSOR))
        delay(100);
        if(!digitalRead(COLLISION_SENSOR))
        return true;//the collision sensor triggers
        Serial.println("toto");
    return false:
void turnOnLED()
    digitalWrite(LED, HIGH);//the LED is on
    analogWrite (motor, 255);
    delay(5000);
    if (digitalRead(button==LOW))
      digitalWrite (RED, HIGH);
void turnOffLED()
  if (membutton == HIGH)
  { digitalWrite(RED, LOW);
    digitalWrite(LED, LOW);//the LED is off
    analogWrite (motor, 0);
```

Annexe

Annexe

G2N7000

N-CHANNEL ENHANCEMENT MODE MOSFET

Description

The G2N7000 is designed for high voltage, high speed applications such as switching regulators, converters, solenoid and relay drivers.

Package Dimensions

REF.	Millimeter		REF.	Millimeter	
	Min.	Max.	NEF.	Min.	Max.
Α	4.45	4.7	D	4.44	4.7
S ₁	1.02	-	E	3.30	3.81
b	0.36	0.51	L	12.70	-
b ₁	0.36	0.76	e1	1.150	1.390
С	0.36	0.51	е	2.42	2.66