Types d'ondes électromagnétiques

Type d'onde	Longueur d'onde	Fréquence
Ondes radio	> 1 mm	< 300 GHz
Micro-ondes	1 mm - 1 cm	300 GHz - 30 GHz
Infrarouge	700 nm - 1 mm	430 THz - 300 GHz
Lumière visible	400 nm - 700 nm	750 THz - 430 THz
Ultraviolet	10 nm - 400 nm	30 PHz - 750 THz
Rayons X	0.01 nm - 10 nm	30 EHz - 30 PHz
Rayons gamma	< 0.01 nm	> 30 EHz

Différents types d'ondes avec leur puissance d'antenne et de téléphone

Type d'onde	Fréquence	Puissance antenne	Puissance téléphone
Radio FM	88 - 108 MHz	10 kW - 100 kW	N/A
Wi-Fi 2,4 GHz	2,4 GHz	1 - 5 W	0,1 W - 1 W
Wi-Fi 5 GHz	5 GHz	1 - 5 W	0,1 W - 1 W
4G LTE	700 MHz - 2,6 GHz	20 - 40 W	0,1 W - 0,5 W
5G Sub-6 GHz	3,5 GHz	10 - 40 W	0,1 W - 0,5 W
5G mmWave	24 - 100 GHz	10 - 100 W	0,1 W - 0,2 W
Four à micro-ondes	2,45 GHz	800 - 1000 W	N/A
Radar militaire	1 - 40 GHz	1 kW - 10 MW	N/A

Effets des ondes électromagnétiques sur les molécules biologiques

Molécule	Type d'Onde	Fréquence	Puissance (W)	Effet Possible
Eau (H₂O)	Micro-ondes	2,45 GHz (four à micro- ondes)	800 - 1000 W (four) 10 - 50 W (antennes)	Chauffement par excitation moléculaire
Protéines	Micro-ondes, Infrarouge	300 MHz - 300 GHz (micro- ondes) 700 nm - 1 mm (infrarouge)	100 W - 10 kW	Dénaturation thermique, altération de la structure tridimensionnelle
ADN	Rayons X, Rayons gamma	30 PHz - 30 EHz (X) >30 EHz (gamma)	< 1 W (très haute énergie par photon)	Cassures de brins, mutations génétiques (ionisation)
Lipides	Micro-ondes, Infrarouge	300 MHz - 300 GHz (micro- ondes) 700 nm - 1 mm (infrarouge)	500 W - 5 kW	Peu d'effet sauf à très haute température, perturbation des membranes cellulaires
Neurotransmetteurs (dopamine, sérotonine)	Champs électromagnétiques faibles	50 Hz - 10 MHz	0,1 - 10 W	Possibilité d'interactions indirectes via effet thermique ou stress cellulaire
Hémoglobine	Rayons X, Gamma	30 PHz - 30 EHz (X) >30 EHz (gamma)	< 1 W (très haute énergie par photon)	Stable sauf exposition extrême aux rayons X/gamma (dégradation possible)
Glucose	Ondes radio	1 MHz - 10 GHz	0,1 - 10 W	Aucun effet direct des ondes radio
lons calcium (Ca ²⁺)	Champs électromagnétiques faibles	50 Hz - 10 MHz	0,1 - 5 W	Impliqué dans la signalisation neuronale, potentiellement affecté par de forts champs électromagnétiques (controversé)

Molécule	Type d'Onde	Fréquence	Puissance (W)	Effet Possible
Radicaux libres	Rayons X, Rayons gamma	30 PHz - 30 EHz (X) >30 EHz (gamma)	< 1 W (très haute énergie par photon)	Augmentation sous forte exposition ionisante (rayons X/gamma), pouvant causer un stress oxydatif

Explication:

- Les ondes non ionisantes (radio, micro-ondes, infrarouge) ne cassent pas directement les molécules, mais peuvent provoquer un échauffement s'ils sont suffisamment puissants.
- Les ondes ionisantes (rayons X, gamma) sont les seules capables de briser les molécules comme l'ADN, ce qui peut entraîner des mutations et des dommages cellulaires.
- Les faibles champs électromagnétiques (comme ceux des appareils électriques domestiques) n'ont pas d'effet thermique mais pourraient théoriquement influencer certains processus biologiques comme la signalisation neuronale (bien que ce soit encore un sujet de débat scientifique).
- Seules les ondes ionisantes sont prouvées pour casser l'ADN et causer des mutations.
- Les ondes radio et micro-ondes n'ont pas d'effet direct sur la biologie sauf à très haute puissance (effet thermique).
- L'électrosensibilité n'a pas de base prouvée scientifiquement, mais certains champs électromagnétiques pourraient indirectement interagir avec des processus biologiques à très faible intensité (hypothèse non confirmée).

Sources:

ANSES : Hypersensibilité électromagnétique ou intolérance environnementale idiopathique attribuée aux champs électromagnétiques

OMS: Au cours des 30 dernières années, environ 25 000 articles scientifiques ont été publiés sur les effets biologiques et les applications médicales des rayonnements non ionisants...

CAIRN : À ce jour, cependant, aucune incidence pathologique de ces observations n'a été mise en évidence.

La Suisse : A l'heure actuelle, il n'existe pas de critères de diagnostic médicaux reconnus.