

#### Analog IC Design

## Lecture 15 OTA / Op-Amp Topologies

#### Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

### **MOSFET** in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$





## **Regions of Operation Summary**



# Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

# **Rin/out Shortcuts Summary**



# **Active Load (Source OFF)**



# Diode Connected (Source Absorption)

- Always in saturation
- $\Box$  Bulk effect:  $g_m \to g_m + g_{mb}$





# Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$

$$G_m = \frac{i_{out,sc}}{v_{in}}$$

$$A_v = G_m R_{out}$$

$$A_i = G_m R_{in}$$



- Divide and conquer
  - Rout simplified: vin=0
  - Gm simplified: vout=0
  - We already need Rin/out
  - We can quickly and easily get
     Rin/out from the shortcuts



# **Summary of Basic Topologies**

|      | CS                                                                                                      | CG                                                                    | CD (SF)                                                            |
|------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|
|      | R <sub>D</sub> , V <sub>out</sub> V <sub>out,sc</sub> V <sub>x</sub> R <sub>s</sub> i <sub>out,sc</sub> | R <sub>D</sub> , V <sub>out</sub> j <sub>out,sc</sub> V <sub>in</sub> | iout,sc<br>V <sub>in</sub> V <sub>x</sub> V <sub>out</sub> iout,sc |
|      | Voltage & current amplifier                                                                             | Current buffer                                                        | Voltage buffer                                                     |
| Rin  | $\infty$                                                                                                | $R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$        | $\infty$                                                           |
| Rout | $R_D//r_o[1+(g_m+g_{mb})R_S]$                                                                           | $R_D//r_o$                                                            | $R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$     |
| Gm   | $\frac{-g_m}{1+(g_m+g_{mb})R_S}$                                                                        | $g_m + g_{mb}$                                                        | $\frac{g_m}{1+R_D/r_o}$                                            |

# Differential Amplifier

|                  | Pseudo Diff Amp | Diff Pair (w/ ideal CS) | Diff Pair (w/ R <sub>SS</sub> )              |
|------------------|-----------------|-------------------------|----------------------------------------------|
| $A_{vd}$         | $-g_m R_D$      | $-g_m R_D$              | $-g_m R_D$                                   |
| $A_{vCM}$        | $-g_m R_D$      | 0                       | $\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$ |
| $A_{vd}/A_{vCM}$ | 1               | $\infty$                | $2(g_m + g_{mb})R_{SS} $ $\gg 1$             |

# What is an OTA / Op-Amp?

- An op-amp is simply a high gain differential amplifier
- The gain can be increased by using cascodes and multi-stage amplifiers





# Op-Amp vs OTA

- ☐ An OTA is an op-amp without an output stage (buffer)
- ☐ Some designers just use op-amp name and symbol for both

|                                         | Op-amp                                                                    | ОТА                                                                                         |
|-----------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Rout                                    | LOW                                                                       | HIGH                                                                                        |
| Model                                   | $V_{in} \longrightarrow I_{in}$ $A_{v}V_{in} \longrightarrow A_{v}V_{in}$ | $V_{in} \bigcirc I_{in} \bigcirc V_{out}$ $R_{in} \longrightarrow R_{out} \bigcirc V_{out}$ |
| Diff input, SE output                   |                                                                           |                                                                                             |
| Fully diff  15: OTA / Op-Amp Topologies |                                                                           | 12                                                                                          |

### OTA / Op-Amp

- Integral part of many analog and mixed-signal systems
  - DC bias generation
  - Amplification
  - Filtering
- Challenges
  - Supply voltage and channel length scaling
  - Energy efficiency

#### **Finite Gain**

- Gain determined by ratio of matched components
  - Very low sensitivity to PVT variations
- $\square$  Example: A1 > 60 dB for error < 1%



$$\frac{V_{out}}{V_{in}} \approx \left(1 + \frac{R_1}{R_2}\right) \left(1 - \frac{R_1 + R_2}{R_2} \frac{1}{A_1}\right)$$

## Finite Small-Signal Bandwidth



$$\tau \approx \left(1 + \frac{R_1}{R_2}\right) \frac{1}{A_0 \omega_0}$$





### **OTA Topologies**

- 1. Simple single-stage OTA
- 2. Telescopic cascode OTA
- 3. Folded cascode OTA
- 4. Two-stage OTA
- Gain boosted OTA

## Simple Single-Stage OTAs

☐ Simple, but limited gain



# Simple Single-Stage OTA CMIR (OL)

 $\Box$   $V_{in,CM}$  Range



 $lue{}$   $V_{out}$  Range



- lacksquare  $V_{in,CM,max}$  and  $V_{out,min}$  are coupled
- If max output swing is desired
  - M1 at edge of sat
  - No range for  $V_{in,CM}$



## Simple Single-Stage OTA Output Swing

 $\square$  Max Diff Swing  $\approx 2(V_{DD} - 3V_{ov})$ 



#### 5T OTA as a Buffer

 $\square$   $V_{in}$  Range (OL, without FB)



 $oxdot V_{out}$  Range (OL, without FB)



- $\square$  Example: VDD = 1.2 V, VTH = 0.3 V, and Vov = 0.1 V
  - Vin (Vout) =  $0.5 1.1 \text{ V} \rightarrow \text{Max swing} = 0.6 \text{ V}$



### Telescopic Cascode

Higher DC gain, but limited swing and additional poles





## Telescopic Cascode CMIR (OL)

 $\Box$   $V_{in,CM}$  Range



 $lue{}$   $V_{out}$  Range



- lacksquare  $V_{in,CM,max}$  and  $V_{out,min}$  are coupled
- If max output swing is desired
  - M1 at edge of sat
  - No range for  $V_{in,CM}$



# Telescopic Cascode Output Swing (OL)

- $\square$  Max Diff Swing  $\approx 2(V_{DD} 5V_{ov})$
- ☐ The choice of bias voltages is critical to maintain output swing
- $\Box V_{b1} \ge V_{THN} + V_{ov3} + V_{ov1} + V_{ISS}$
- $\Box V_{b2} \le V_{DD} V_{THP} V_{ov5} V_{ov7}$
- Place M1 and M7 just at the edge of sat for max output swing



## Telescopic Cascode as a Buffer

 $\square$   $V_{in}$  Range (OL, without FB)



 $oldsymbol{\square}$   $V_{out}$  Range (OL, without FB)



- Example: VDD = 1.2 V, VTH = 0.3 V, and Vov = 0.1 V
  - Vin (Vout) = (Vb 0.3) (Vb 0.1) V
  - Max swing = 0.2 V
  - Independent of VDD!



## Telescopic Cascode CM Range (CL)

**VDD** 

**VDD** 

- ☐ Input and output CM levels are equal (why?) → similar to buffer
- lacksquare  $V_{in,CM}$  Range
- lacksquare  $V_{out,CM}$  Range
- $\square$  Max CM Range =  $V_{THN} V_{ov3}$
- $\square$  Example: VDD = 1.2 V, VTH = 0.3 V, and Vov = 0.1 V

**0V** 

• VCM =  $(Vb - 0.3) - (Vb - 0.1) V \rightarrow Max CM range = 0.2 V$ 



## Telescopic Cascode Output Swing (CL)

- Assume swing at input is negligible (high open-loop gain)
  - We care more about keeping M3 and M4 in sat

$$\gt V_{out,min} \ge V_b - V_{THN}$$

- We can place M1 and M2 at the edge
  - $\triangleright$  Set CM level at its max value:  $V_{CM} = V_b V_{ov3}$
- $\square$  Max Diff Swing =  $2 \times 2 \times (V_{THN} V_{ov3})$
- $\Box$  Ex: VTH = 0.3 V and Vov = 0.1 V  $\rightarrow$  Max swing= 2\*2\*0.2 V = 0.8 V



## Telescopic Cascode with SE Output

- ☐ Low compliance (wide swing) current mirror load
- □ Note that for buffer connection, the swing is limited by M2 and M4



#### Folded Cascode



### Telescopic vs Folded Cascode

- $\Box$  Higher power consumption:  $I_{SS1,2} = \frac{I_{SS}}{2} + I_{1,2}$ 
  - M3,4 must be remain ON when  $I_{SS}$  is fully steered on one side
  - $I_{SS1,2} > I_{SS} \rightarrow I_{1,2} > \frac{I_{SS}}{2}$
  - Ex:  $I_{SS1,2} = 1.2I_{SS} \rightarrow I_{1,2} = 0.7I_{SS} \rightarrow \text{Total current} = 2.4I_{SS}$



### Telescopic vs Folded Cascode

- $\Box$  Gain lower than telescopic cascode  $(r_{o1}//r_{o5})$ 
  - Around two times less



### Telescopic vs Folded Cascode

- Non-dominant pole (at folding point) has higher capacitance
- $\Box \text{ Telescopic: } C_{tot} = C_{db1} + f(C_{gd1}) + C_{gs3} + C_{sb3}$
- □ Folded:  $C_{tot} = C_{db1} + f(C_{gd1}) + C_{gs3} + C_{sb3} + C_{db5} + C_{gd5}$
- Note that M5 is large as it carries large current (large parasitics)





## Folded Cascode CMIR (OL)

**VDD** 

- $V_{in.CM}$  Range
  - **0V VDD**
- *Vout* Range **0V**
- $V_{in,CM}$  and  $V_{out}$  are NOT coupled
- Main advantage over telescopic
- Example: VDD = 1.2 V, VTH = 0.3 V, and Vov = 0.1 V
  - VCM = -0.2 V 0.7 V
  - Max CM range = 0.9 V



## Folded Cascode with Rail-to-Rail CMIR



# Folded Cascode Output Swing (OL)

- $\square$  Max Diff Swing  $\approx 2(V_{DD} 4V_{ov})$
- Slightly better than telescopic cascode
- ☐ The choice of bias voltages is critical to maintain output swing



#### Folded Cascode

- NMOS i/p stage has higher gm for same dimensions
  - Or lower parasitics for same gm
- But the non-dominant pole at folding point is worse
- Also body effect and flicker noise may favor PMOS i/p pair



15

#### Folded Cascode as a Buffer

 $\square$   $V_{in}$  Range (OL, without FB)



- $\square$  Max Swing =  $V_{DD} V_{THN} 4V_{ov}$
- $\square$  Example: VDD = 1.2 V, VTH = 0.3 V, and Vov = 0.1 V
  - Max swing = 0.5 V
  - Function of VDD

## Folded Cascode CM Range (CL)

- ☐ Input and output CM levels are equal (why?) → similar to buffer
- $\Box$   $V_{in,CM}$  Range
- lacksquare  $V_{out,CM}$  Range
- $\square$  Example: VDD = 1.2 V, VTH = 0.3 V, and Vov = 0.1 V

**0V** 

**0V** 

Max CM range = 0.5 V





**VDD** 

**VDD** 

## Folded Cascode Output Swing (CL)

- Assume swing at input is negligible (high open-loop gain)
- lacksquare  $V_{in,CM}$  and  $V_{out}$  are NOT coupled
- $\square$  Max Diff Swing  $\approx 2(V_{DD} 4V_{ov})$
- $\square$  Example: VDD = 1.2 V, VTH = 0.3 V, and Vov = 0.1 V
  - Max diff swing = 1.6 V



#### **Two-Stage OTA**

- ☐ Isolates the gain and swing requirements
- ☐ But more power consumption
- And complicates stability requirements
  - More than two stages exist, but quite difficult to stabilize
- ☐ Second stage is typically configured as a simple common-source stage so as to allow maximum output swings



#### Two-Stage OTA

 $\square$  Max Diff Swing  $\approx 2(V_{DD} - 2V_{ov})$ 



#### Two-Stage OTA

- $\square$  Max Diff Swing  $\approx 2(V_{DD} 2V_{ov})$
- Voltage swing at X and Y is negligible



## Two-Stage OTA with SE Output



## Two-Stage OTA with SE Output



### Gain Boosting: Super Transistor Perspective

- $\square$  Assume  $A_1 \gg 1$
- $\Box g_{m,super} = A_1 g_m$
- $\Box r_{o,super} = r_o$





## Gain Boosting: Super Transistor Perspective

$$\Box G_m \approx \frac{g_{m,super}}{1 + g_{m,super}R_S} \approx \frac{A_1 g_m}{1 + A_1 g_m R_S} \approx \frac{1}{R_S}$$

$$\Box R_{out} = r_o(1 + g_{m,super}R_S) = r_o(1 + A_1g_mR_S)$$





## Gain Boosting: Super Transistor Perspective

$$\square R_X \approx \frac{1}{g_{m.super}} \left( 1 + \frac{R_D}{r_o} \right) \approx \frac{1}{A_1 g_m} \left( 1 + \frac{R_D}{r_o} \right)$$





### Gain Boosted (Regulated) Cascode

- $\Box$   $G_m \approx g_{m1}$
- $\square R_{out} = r_{o2}(1 + g_{m2,super}r_{o1}) = r_{o2}(1 + A_1g_{m2}r_{o1})$
- $\Box A_v \approx A_1(g_{m1}r_{o1})(g_{m2}r_{o2})$
- ☐ Gain is boosted while preserving headroom



### Gain Boosting Implementation

- NMOS CS (a): headroom limitation
  - $V_P = V_{TH} + V_{ov3}$  instead of  $V_{ov1}$
- ☐ PMOS CS (b): M3 will be in triode
  - $V_G V_P > V_{TH}$
- ☐ Folded cascode (c): M4 provide level shift





- ☐ NMOS CS implementation replaced by a diff pair
- Headroom limitation
  - $V_{X,Y} = V_{TH} + V_{ov5,6} + V_{ISS2}$  instead of  $V_{ov1} + V_{ISS1}$



- ☐ Folded-cascode used as auxiliary amplifier
- No headroom limitation

• 
$$V_{X,Y} = V_{ov1} + V_{ISS1}$$



#### **Bonus Question**

☐ Calculate the voltage gain. Assume all transistors have the same gm and ro. Assume the load is ideal CS (not drawn).





- $\Box$   $G_m \approx g_{m1}$
- $\square$   $R_{out} \approx r_{o3}(1 + g_{m3,super}r_{o1}) \approx r_{o3}(A_1g_{m3}r_{o1})$
- $\Box A_v \approx \frac{1}{3} (g_m r_o)^4 \qquad \Rightarrow \text{ quadruple cascode}$









#### Gain Boosted OTA Frequency Response

See [Razavi, 2017] Section 9.4.3



# Comparison

|                | Gain   | Output<br>Swing | Speed   | Power<br>Dissipation | Noise  |
|----------------|--------|-----------------|---------|----------------------|--------|
| Telescopic     | Medium | Medium          | Highest | Low                  | Low    |
| Folded-Cascode | Medium | Medium          | High    | Medium               | Medium |
| Two-Stage      | High   | Highest         | Low     | Medium               | Low    |
| Gain-Boosted   | High   | Medium          | Medium  | High                 | Medium |

# Thank you!