Controllable Person Image Synthesis with Attribute-Decomposed GAN

Muhammad Kashif Ali

Contents

- Introduction + Problems + Scope of this research
- Method
 - Observations
 - Proposed solutions to fill the research gap (Main contributions: Architecture + Attribute targetting)
 - Implementation details
- Results
- My thoughts + What we can learn from this paper

Generated images with editable style codes Controllable Person Image Synthesis Pose Code Style Code Component Attributes Pose Attribute upper clothes (keypoints) base pants

Pose source Target pose Source 1

Source 2

Source 3

Source 4

Texture Encoder Network

Open-pose for target pose estimation

Cut down version of a human parser limited to 8 categories

$$\mathcal{L}_{total} = \mathcal{L}_{adv} + \lambda_{rec} \mathcal{L}_{rec} + \lambda_{per} \mathcal{L}_{per} + \lambda_{CX} \mathcal{L}_{CX}$$

$$L_{adv} = \mathbb{E}_{I_s, P_t, I_t} [log(D_t(I_s, I_t) \cdot D_p(P_t, I_t))] + \\ \mathbb{E}_{I_s, P_t} [log((1 - D_t(I_s, G(I_s, P_t)))) \\ \cdot (1 - D_p(P_t, G(I_s, P_t)))].$$

$$L_{rec} = ||G(I_s, P_t) - I_t||_1$$

$$W_t H_t G_t$$

$$\mathcal{L}_{per} = \frac{1}{W_l H_l C_l} \sum_{x=1}^{W_l} \sum_{y=1}^{H_l} \sum_{z=1}^{C_l} \| \phi_l(I_g)_{x,y,z} - \phi_l(I_t)_{x,y,z} \|_1$$

$$\mathcal{L}_{CX} = -log(CX(\mathcal{F}^l(I_g), \mathcal{F}^l(I_t)))$$

This paper

Zhen Zhu, Tengteng Huang, Baoguang Shi, Miao Yu, Bofei Wang, and Xiang Bai. Progressive pose attention transfer for person image generation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2347–2356, **2019**.

