明 細 **書AP5 Rec'd PCT/PTO 31 MAR 2006**

フッ化ビニリデン系樹脂多孔質中空糸およびその製造方法

5 技術分野

本発明は、薬剤または細菌等の精密濾過膜として使用される多孔質中空糸(あるいは「中空糸状多孔膜」ないしは「ミクロポーラスチューブ」とも称される)に関し、水(ないし液)処理性能の改善された多孔質中空糸、ならびにその製造方法に関する。

10

15

20

25

÷ ...

背景技術

フッ化ビニリデン系樹脂は、ポリオレフィン等の汎用樹脂に比べて、耐候性およ び耐薬品性に優れ、また耐熱性、強度等も良好であるため、水(あるいは液)処理 用の精密濾過膜として使用するフッ化ビニリデン系樹脂製の多孔膜、特に中空糸状 多孔膜、すなわち多孔質中空糸、ならびにその製法が数多く提案されている(例え ば下記特許文献1~4)。多孔質中空糸が実際に水(あるいは液であるが、以下、 代表的に水と称する)の処理用の濾過部材として使用されるときには、一般に0. 2~2m程度の均一な長さに裁断された多孔質中空糸(集水管)を束ねてモジュー ル化し、多くはそれらの東ねられた多孔質中空糸の外面から被処理水を供給し、壁 に設けられた孔を通じて中空部へと濾過された処理水が多孔質中空糸の両端部から 流出することにより濾過水を得る方法が採られる。このようにして使用される精密 濾過による水処理用の多孔質中空糸には、多くの性能が要求される。例えば(i) 被除去粒子を除くに適当な大きさ且つ均一な孔径分布、(ii)大なる機械的耐久性 (引張強度および耐圧性)、(iii)大なる一本当りの処理能力(透水量)、(iv) モジュール化した際の容積当りの大なる処理能力、(vi)耐薬品性などである。し かし、従来のフッ化ビニリデン系樹脂多孔質中空糸は、これらの精密濾過要求適性 の全てに対して必ずしも満足できるものではなかった。

特許文献 1:特開昭 6 3 - 2 9 6 9 3 9 号公報

特許文献2:特開昭63-296940号公報

30 特許文献3:特開平3-215535号公報

特許文献4:特開平11-319522号公報

発明の開示

本発明は、上述した(i)~(iv)等の特性に優れ、精密濾過部材として総合的 に改善されたフッ化ビニリデン系樹脂多孔質中空糸ならびその製造方法を提供する ことを目的とする。

- 本発明のフッ化ビニリデン系樹脂多孔質中空糸は、上述の目的を達成するために開発されたものであり、重量平均分子量が30万以上のフッ化ビニリデン系樹脂からなる多孔質中空糸であって、試長L=0. $2\sim0$. 8(m) の範囲において差圧100 k P a 、水温25 $\mathbb C$ の条件で測定される透水率 $F(m^3/m^2 \cdot d$ a y)と試長L の直線関係式: $F=C \cdot L+F_0$ (式 1) において、
- 10 (イ) 平均傾きC (/day) $\dot{n}-20 \le C \le 0$,
 - (ロ) 切片 (基礎透水率) F₀ (m³/m²·day) がF₀≥30、
 - (ハ) F_o (m^3/m^2 ・day) とハーフドラ**イ法**による平均孔径P (μm) の関係が $F_o/P \ge 300$ 、および
 - (二) 外径が 3 mm以下
- 15 の要件(イ)~(二)を満すことを特徴とする。

また本発明のフッ化ビニリデン系樹脂多孔質中空糸の製造方法は、重量平均分子量が30万以上であるフッ化ビニリデン系樹脂100重量部に対し、可塑剤とフッ化ビニリデン系樹脂の良溶媒とを合計量で100~300重量部、好ましくは140~220重量部且つそのうち良溶媒の割合が8~22重量%、好ましくは10~22重量%となるように添加し、得られた組成物を中空糸状に溶融押出し、中空部に不活性ガスを注入しつつ不活性液体中に導いて冷却固化した後、可塑剤を抽出して多孔質中空糸を回収することを特徴とする。

図面の簡単な説明

25 第1図は、本発明の多孔質中空糸の性能評価のために用いた試長Lの変化に対応 する透水率Fの測定装置の概略図である。

第2図は、第1図の装置による実施例および比較例で得られた多孔質中空糸についての測定結果を表わすグラフである。

30 発明を実施するための最良の形態

• - - - -

本発明のフッ化ビニリデン系樹脂多孔質中空糸は、重量平均分子量(Mw)が30万以上のフッ化ビニリデン系樹脂からなる。Mwが30万以上であることは、主

ŧ

として多孔質中空糸の濾過処理能力に関する下記要件(イ)~(ニ)を満たしつつ、要求される中空糸膜の機械的強度を担保するために必要とされる。

本発明のフッ化ビニリデン系樹脂多孔質中空糸は、更に、試長L=0.2~0.

8 (m) の範囲において差圧100kPa、水温25℃の条件で測定される透水率 F (m³/m²・day) と試長しの直線関係式:F=C・L+F。(式1) において、

- (イ) 平均傾きC (/day) が $-20 \le C \le 0$,
- (ロ) 切片 (基礎透水率) F_a (m³/m²·day) がF_a≥30、
- (ハ) F_o (m³/m²·day) とハーフドライ法による平均孔径P (μm) の関係がF_o/P≥300、および
 - (二) 外径が3mm以下

10

15

25

* 21.3

の要件(イ)~(二)を満すことを特徴とする。

以下、各要件 (1) ~ (-) の意義について説明するが、その前に上記式 (1) における試長 L (m) の多孔質中空糸、ないしは中空糸多孔膜の透水率 F $(m^3/m^2 \cdot d \cdot a \cdot v)$ を用いるために用いた測定法について説明する。

(透水率測定方法)

試料多孔質中空糸をエタノールに15分間浸漬し、次いで純水に15分間浸漬して親水化した後、図1に示した透水率測定装置に試長(濾過が行われる部分の長さ)が所定の長さLになるように取り付け、両端は引き出し部として圧力容器の外に20 取り出した。引き出し部(濾過が行われない部分であり、圧力容器との接合部を含む)の長さは両端それぞれ50mmとした。

多孔質中空糸が測定終了時まで純水に十分に浸かるように耐圧容器内に純水(水温 25 \mathbb{C})を満たした後、耐圧容器内を圧力 100 \mathbb{k} \mathbb{P} a に維持しながら所定の時間に両端から流れ出た水の体積を測定し、透水率 \mathbb{F} \mathbb{C} $\mathbb{$

[数1]

膜面積 (m^2) =外径×π×試長

長さ200~800mmの範囲で試長を変更して透水率を測定し、試長と透水率 の関係をグラフにプロットし、試長と透水率の直線関係式:F=C・L+F。(式 1)を求めた。図2に後述する実施例、比較例で得た多孔質中空糸についての測定 結果のプロットを示す。

10

次いで上記要件 $(A) \sim (a)$ の各々の意義について説明する。 (要件 (A) および (a) の意義)

前述したように中空糸膜の実際の使用形態は長さ0.2m~2mに裁断してモジュールに組み込んでの使用である。有限の長さをもった中空糸膜の濾過処理量を制約する抵抗成分は中空糸壁面を透過する水の流動抵抗と、集水管(糸の中空部)の水の流動抵抗の和である。膜の透水性能を向上させると集水管に流れ込む水量が増大して、集水管での流速増大により流動抵抗が増大し、中空糸膜の濾過処理量に無視できない影響を与えるようになり、長さ(膜面積と比例する)に比例して処理量が増大しなくなる。すなわち試長を変えて透水率(m³/m²・day)を評価したときには、式1が強い負の傾きを持つようになり、膜の真の透水率が試長に比例して損われるように観測される。試長0に外挿した時の透水率が膜の真の透水率に相当する。傾きCが大きいほど(0に近いほど)、モジュールに組み込んで使用する際に真の膜性能に近い性能を発揮することができる。

集水管での流動抵抗に関与する要因としては、集水管の直径(中空糸の内径)や 壁面の粗さなど複数あるが、集水管内の水の流れが層流であり、Hagen-Poiseiulle の法則に従うと仮定すると、内径の寄与(4乗で寄与)が最も大きいと考えられる 。膜の真の透水率に応じて内径を設計する必要がある。ただし、大きすぎる内径は 耐圧性の低下、モジュールへの充填密度の低下を招く。

したがって 1 本の中空糸膜としてみたときに、濾過処理量を大きくするには膜の 20 真の透水率(基礎透水率 F_0)を大きくし、かつ長さ依存性を小さく(=傾き C の 符号を含めた値が大)にする必要があるが、本発明の二つの主要な特徴は、(p_0 F_0 が 30 f_0 f_0

また上記(イ)の要件について更に説明すると、負の係数 C の絶対値が小さい($25-20 \le C$ となる)ためには、単位流量当りの中空糸中の流動抵抗が小さいこと(逆に言えば、流動抵抗の割に透水能 F_0 が大であること)が必須である。この流動抵抗は、上記したようにHagen-Poiseuille の法則に従い内径Di (mm)の 4 乗に反比例する。この点に留意して、本発明者らによれば、C 値の絶対値と F_0 / Di^4 の値とには良好な相関関係が見出された。すなわち、上記(イ)

30 -20≦C≦0の条件が満たされるためには経験式として

[数2]

· · .

 $F_0/Di^4 \leq 75$

の条件が満たされることが必要であることが見出されている(後記表1中のデータ 参照)。これは、本発明の多孔質中空糸を規定する補足的な好ましい条件である。 (要件(ハ))

膜の透水率(中空糸壁を通過する透水率)は、(貫通)孔の数が同じならば孔径 が大きいほど大きくなる。一方、分離対象物に応じて孔径には制約があり、分離対象物の大きさより孔径が小さくないと濾過膜として用をなさない。孔径 (P) に比して基礎透水率 (F₀) が大きいことは膜の分離性能と透水性能が高いレベルで両立していることを意味する。さらには、十分な貫通孔数を確保するのに必要な高い空孔率を有しているにもかかわらず、十分に大なる内径を有しながら、且つ十分な 耐圧性を確保しているということができる。

かくして本発明の多孔質中空糸の第3の特徴は、F₀/Pが300以上、より好ましくは500以上と大なることである。

(要件(二))

中空糸膜の実際の使用形態であるモジュールとしてみたときに、中空糸の外径が小さいと、モジュールに充填できる中空糸の密度が大きくなり(モジュールの単位断面積あたりの中空糸本数が多くなり)、モジュールとしての濾過処理量が大きくなる。前述の内径を大きくする思想と両立させるためには、膜厚さを薄くする必要があり、成形上の難易さ、膜の力学的強度、ピンホールなど分離性能の信頼性などを解決する必要がある。

20 本発明の多孔質中空糸は、(二)外径を3mm以下と小さく保ちつつ上記要件(イ)~(ハ)を達成することにより、モジュールの容積当りの濾過能力の向上を可能としたものである。

以下、本発明のフッ化ビニリデン系樹脂多孔膜を、その好ましい製造方法である 本発明の製造方法に従って順次説明する。

25 (フッ化ビニリデン系樹脂)

*21.5

本発明においては、主たる膜原料として、重量平均分子量(Mw)が $30万以上(これは<math>\eta_{inh}$ (樹脂 4 gを 1 リットルのN,N ージメチルホルムアミドに溶解させた溶液の30%における対数粘度)が1.2(d 1 / g)以上に相当する)であるフッ化ビニリデン系樹脂を用いる。これは前述したように、主として多孔質中空糸の濾過処理能力に関する上記要件(A)~(二)を満足させつつ、必要な機械的強度(特に引張強度および破断伸度)を満足させるためであり、Mwが $40万以上(<math>\eta_{inh} \ge 1.5$ に相当)であることがより好ましい。

10

30

+200

本発明において、フッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体、すなわちポリフッ化ビニリデン、他の共重合可能なモノマーとの共重合体あるいはこれらの混合物が用いられる。フッ化ビニリデン系樹脂と共重合可能なモノマーとしては、四フッ化エチレン、六フッ化プロピレン、三フッ化エチレン、三フッ化塩化エチレン、フッ化ビニル等の一種又は二種以上を用いることができる。フッ化ビニリデン系樹脂は、構成単位としてフッ化ビニリデンを70モル%以上含有することが好ましい。なかでも機械的強度の高さからフッ化ビニリデン100モル%からなる単独重合体を用いることが好ましい。上記したような比較的高フッ化ビニリデンのフッ化ビニリデン系樹脂は、好ましくは乳化重合あるいは緊濁重合、特に好ましくは懸濁重合により得ることができる。

必要な特性の多孔質中空糸を本発明法に従い円滑に製造するために、フッ化ビニ リデン系樹脂は、ある程度広い分子量分布を持つことが好ましい。これは重量平均 分子量(Mw)と数平均分子量(Mn)の比がMw/Mnが2.0以上、好ましく は2.2以上、更に好ましくは2.4以上、特に好ましくは2.5以上であること で代表される。但し、重量平均分子量 (Mw) が40万以上と大きい場合には、M 15 w/Mnの比としては緩和される傾向にあり、より好ましくは2.1以上であるが 、2.0以上でも良好**な**結果が得られている。このような広い分子量**分布**のフッ化 ビニリデン系樹脂は、簡便には、異なる平均分子量の少なくとも二種のフッ化ビニ リデン系樹脂をそれぞれ重合法により得て、これらを混合することにより得られる 。すなわち、本発明の好ましい態様によれば、重量平均分子量(Mw1)が40万 ~120万、好ましくは60万~120万である第1のフッ化ビニリデン系樹脂2 ~49重量%と、重量平均分子量(Mw2)が15万~60万、好ましくは20万 ~50万、である第2のフッ化ビニリデン系樹脂51~98重量%とを含有し、且 つ第1のフッ化ビニリデン系樹脂の重量平均分子量/第2のフッ化ビニリデン系樹 脂の重量平均分子量の比Mw1/Mw2が1.2以上、好ましくは1.5以上、特 25 に好ましくは2.0以上である混合物を主たる膜原料として用いる。

本発明で用いるフッ化ビニリデン系樹脂は、未架橋であることが後述する組成物の溶融押出しの容易化のために好ましく、またその融点は、160~220℃であることが好ましく、より好ましくは170~180℃、さらに好ましくは、175~179℃である。160℃未満では、生成する多孔膜の耐熱変形性が不充分となりがちであり、220℃を超えると、溶融混合性が低下し、均一な膜形成が難しくなる。

融点は示差走査熱量計 (DSC) により測定される樹脂の結晶融解に伴なう吸熱のピーク温度を意味する。

本発明に従い、上記のフッ**化**ビニリデン系樹脂に、フッ化ビニリデン系樹脂の可 塑剤および良溶媒を加えて膜形成用の原料組成物を形成する。

5 (可塑剤)

10

可塑剤としては、一般に、二塩基酸とグリコールからなる脂肪族系ポリエステル、例えば、アジピン酸ープロピレングリコール系、アジピン酸ー1,3ーブチレングリコール系等のアジピン酸系ポリエステル;セバシン酸ープロピレングリコール系、アゼライン酸系ポリエステル;アゼライン酸ープロピレングリコール系、アゼライン酸ー1,3ーブチレングリコール系等のアゼライン酸系ポリエステル等が用いられる。

(良溶媒)

また、フッ化ビニリデン系樹脂の良溶媒としては、20~250℃の温度範囲でフッ化ビニリデン系樹脂を溶解できる溶媒が用いられ、例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、メチルエチルケトン、アセトン、テトラヒドロフラン、ジオキサン、酢酸エチル、プロピレンカーボネート、シクロヘキサン、メチルイソブチルケトン、ジメチルフタレート、およびこれらの混合溶媒等が挙げられる。なかでも高温での安定性からN-メチルピロリドン (NMP) が好ましい。

20 (組成物)

25

30

٠, .,

膜形成用の原料組成物は、好ましくはフッ化ビニリデン系樹脂100重量部に対し、可塑剤とフッ化ビニリデン系樹脂の良溶媒とを合計量で140~220重量部且つそのうち良溶媒の割合が10~22重量%となるように添加することが好ましい。

可塑剤と良溶媒との合計量が少な過ぎると溶融押出時の組成物の粘度が過大となり、多過ぎると粘度が過度に低下する。いずれの場合も、均質で適度に高い空孔率、従って濾過性能(透水量)を有する多孔質中空糸を得ることが困難となる。また両者の合計量中の良溶媒の割合が過少であると、フッ化ビニリデン系樹脂と可塑剤の均一混合が損われ、あるいは混合に時間がかかる。また良溶媒の割合が過大であると、却って可塑剤の抽出による効率的な空孔形成が阻害され、可塑剤量に見合った空孔率が得られない。

(混合・溶融押出し)

溶融押出組成物は、一般に140~270℃、好ましくは150~200℃、の温度で、中空ノズルから中空糸膜状に押出される。最終的に、上記温度範囲の均質組成物が得られる限りにおいて、フッ化ビニリデン系樹脂、可塑剤および良溶媒の混合並びに溶融形態は任意である。このような組成物を得るための好ましい態様の一つによれば、二軸混練押出機が用いられ、(好ましくは第1および第2のフッ化ビニリデン系樹脂の混合物からなる)フッ化ビニリデン系樹脂は、該押出機の上流側から供給され、可塑剤と良溶媒の混合物が、下流で供給され、押出機を通過して吐出されるまでに均質混合物とされる。この二軸押出機は、その長手軸方向に沿って、複数のブロックに分けて独立の温度制御が可能であり、それぞれの部位の通過物の内容により適切な温度調節がなされる。

(冷却)

10

15

20

25

- J 🚠

本発明法に従い、溶融押出された中空糸膜状物は、その中空部に不活性ガスを注入しつつ、不活性液体中に導いて外側から冷却・固化される。

不活性ガスの中空糸膜中空部への導入は、主として中空糸内径を調製するために行われ、不活性液体中への導入は溶融状態の中空糸膜状物を外側から優先的に除熱するために行われる。外側からの優先的除熱により厚み方向に緩やかに形成された結晶粒度分布を得ることができ、その後の延伸を円滑化することができる。不活性ガスは、溶融押出された中空糸膜と反応しないものであればよく、空気あるいは窒素等が好適に用いられる。これら不活性ガスは、一般に押出のための中空ノズル中心部に設けた通気口から供給され、所望の中空糸内径が得られるように、一定流量あるいは一定圧力にて供給される。不活性液体としては、溶融押出された中空糸膜に対し不活性な、実質的な溶解性を示さない任意の液体が用いられるが、好ましくは水が用いられる。不活性液体の温度は5~120℃と、かなり広い温度範囲から選択可能であるが、好ましくは10~100℃、特に好ましくは30~80℃の範囲である。

(抽出)

冷却・固化された中空糸膜は、次いで抽出液浴中に導入され、可塑剤および良溶媒の抽出除去を受ける。抽出液としては、ポリフッ化ビニリデン系樹脂を溶解せず、可塑剤や良溶媒を溶解できるものであれば特に限定されない。例えばアルコール類ではメタノール、イソプロピルアルコールなど、塩素化炭化水素類ではジクロロメタン、1,1,1ートリクロロエタンなど、の沸点が30~100℃程度の極性溶媒が適当である。

<好ましい付加的処理工程>

上記工程を通して本発明のフッ化ビニリデン系樹脂多孔質中空糸が得られるが、 好ましくは次のような処理工程が任意に採用される。

(延伸)

5 上記可塑剤の抽出の前およびまたは後に、中空糸膜の延伸を行って製品多孔質中空糸の多孔度を増大して透水率を増大することも好ましい。例えば、周速度の異なるローラ対等による中空糸膜の長手方向への一軸延伸を行うことが好ましい。これは、本発明の多孔質中空糸の多孔率と強伸度を調和させるためには、延伸方向に沿って延伸フィブリル(繊維)部と未延伸ノード(節)部が交互に現われる微細構造が好ましいことが知見されているからである。延伸倍率は、1.2~4.0倍、特に1.4~3.0倍程度が適当である。

(熱処理)

15

20

25

*,...

延伸を可塑剤の抽出後に行う場合は、引き続く延伸操作性の向上のために、80 \sim 160 $^\circ$ 、好ましくは100 \sim 140 $^\circ$ の範囲で、1秒 \sim 3600秒、好ましくは3秒 \sim 90**0秒**、熱処理して、結晶化度を増大させることが好ましい。

(溶離液処理)

延伸後の中空糸膜を、更に溶離液による浸漬処理に付すことが著しく好ましい。この溶離液処理により、本発明の中空糸膜の特質が本質的に損なわれることなく、その透水量が増大するからである。溶離液としては、アルカリ液、酸液または可塑剤の抽出液が用いられる。

上記溶離液処理により、多孔膜の透水量が著しく増大する理由は、必ずしも明かではないが、延伸により拡開された微細孔壁に残存する可塑剤が露出し、溶離液処理により効率的に除かれるためではないかと推察される。溶離液としてのアルカリおよび酸は、フッ化ビニリデン系樹脂の可塑剤として用いられるポリエステルを分解して可溶化することによりその溶離・除去を促進する作用を有するものと解される。

したがって、アルカリ液としはて、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の強塩基の水または水/アルコール溶液でpHが12以上、より好ましくは13以上のものが好ましく用いられる。他方、酸液としては、塩酸、硫酸、

また、可塑剤の抽出液としては、延伸前に用いたものと同様に、ポリフッ化ビニ

10

リデン系樹脂を溶解せず、可塑剤を溶解できるものであれば特に限定されない。例えばアルコール類では、メタノール、イソプロピルアルコールなど、塩素化炭化水素類ではジクロロメタン、1, 1, 1-トリクロロメタンなど、の沸点が30~100℃程度の極性溶媒が適当である。

5 溶離液処理は、中空糸膜を必要に応じて親液性を向上するための前浸漬を行った 後、5~100℃程度の温度で10秒~6時間溶離液中に浸漬することにより行われる。溶離液処理を、加温下に行うときは、中空糸膜の収縮が起らないように固定 した状態で行われることが好ましい。

また溶離処理後の中空糸膜については、溶離液を除去し、更に得られる製品中空 糸の寸法安定性を向上するために、熱固定処理を行うことが好ましい。熱固定処理 は、例えば、回分処理の場合、80~160℃で、1分~60時間、好ましくは3 分~15時間程度行われるが、溶離液処理からの連続処理の場合、同様な温度で、 1秒以上、好ましくは3秒以上の処理でも効果がある。

(フッ化ビニリデン系樹脂多孔質中空糸)

15 上記のようにして得られる本発明のフッ化ビニリデン系樹脂多孔質中空糸によれ ば、一般に空孔率が55~90%、好ましくは60~85%、特に好ましくは65 ~80%、引張り強度が5MPa以上、破断伸度が5%以上の特性が得られる。ま た中空糸は、好ましくは外径が $0.3\sim3$ mm、特に $1\sim3$ mm程度が適当であり 、内径は $0.8\sim2.98$ mm、特に $0.9\sim2.98$ mmであることが好ましく 20 、膜厚は0.01~0.4mmの範囲が好ましい。またハーフドライ法による平均 孔径Pは、0.01 \sim 0.25 μ m、より好ましくは0.03 \sim 0.20 μ m、特 に 0.05~0.15μmであることが好ましい。本発明の多孔質中空糸膜は、特 に膜厚が小さく、平均孔径Pが小さくとも透水率Fが大であり、且つその長さ依存 性が小さいことが特徴である。このような透水率の長さ依存性が小さいという特徴 25 を生かして、モジュールを形成させる本発明の中空糸膜の1本の長さは、従来の0 . 2~2mに比べて若干長めの0. 5~3m、特に0. 8~2. 5mの範囲にする ことが好ましい。

【実施例】

* - · .:.

以下、実施例、比較例により、本発明を更に具体的に説明する。以下の記載を含 30 め、上記した透水率FおよびF。以外の本明細書に記載の特性は、以下の方法によ る測定値に基くものである。

(重量平均分子量 (Mw) および数平均分子量 (Mn))

日本分光社製のGPC装置「GPC-900」を用い、カラムに昭和電工社製の「Shodex KD-806M」、プレカラムに「Shodex KD-G」、溶媒にNMPを使用し、温度40℃、流量10ml/分にて、ゲルバーミエーションクロマトプラフィー(GPC)法によりポリスチレン換算分子量として測定した。

5 (空孔率)

多孔質中空糸膜の長さ、並びに外径および内径を測定して中空糸膜の見掛け体積 $V(cm^2)$ を算出し、更に中空糸膜の重量W(g)を測定して次式より空孔率を求めた。

[数3]

空孔率(%) = $(1 - W/(V \times \rho)) \times 100$ $\rho: PVDF$ の比重(=1.78 g/cm^2)

(平均孔径)

ASTM F316-86およびASTM E1294-89に準拠し、Porous Materials, Inc. 社製「パームポロメータCFP-200AEX」を用いてハーフドライ法により平均孔径を測定した。試液はパーフルオロポリエステル(商品名「Galwick」)を用いた。

(最大孔径)

15

20

30

-- 1

ASTM F316-86およびASTM E1294-89に準拠し、Porous Materials, Inc. 社製「パームポロメータCFP-200AEX」を用いてバブルポイント法により最大孔径を測定した。試液はパーフルオロポリエステル(商品名「Galwick」)を用いた。

(引張り強度および破断伸度)

引張り試験機(東洋ボールドウィン社製「RTM-100」)を使用して、温度 23℃、相対湿度50%の雰囲気中で初期試料長100mm、クロスヘッド速度2 00mm/分の条件下で測定した。

25 実施例1

重量平均分子量 (Mw) が6.91×10⁵の第1のポリフッ化ビニリデン (P VDF) (粉体) とMwが2.59×10⁵の第2のポリフッ化ビニリデン (P V DF) (粉体) を、それぞれ25重量%および75重量%となる割合でヘンシェルミキサーを用いて混合して、Mwが3.67×10⁵、Mw/Mn (数平均分子量) の比が2.95である混合物Aを得た。

脂肪族系ポリエステルとしてアジピン酸系ポリエステル可塑剤(旭電化工業株式

10

15

20

25

البائية

会社社製「PN-150」)と、溶媒としてN-メチルピロリドン(NMP)を、それぞれ87.5重量%および12.5重量%となる割合で常温にて**境**拌混合して、混合物Bを得た。

同方向回転噛み合い型二軸押出機(プラスチック工学研究所社製「BT-30」、スクリュー直径30mm、L/D=48)を使用し、シリンダ最上流部から80mmの位置に設けられた粉体供給部から混合物Aを供給し、シリンダ最上流部から480mmの位置に設けられた液体供給部から温度100℃に加熱された混合物Bを、混合物A/混合物B=40/60(重量%)の割合で供給して、バレル温度220℃で混練し、混練物を外径7mm、内径5mmの円形スリットを有するノズルから吐出量9.8g/minで中空糸状に押し出した。この際、ノズル中心部に設けた通気口から空気を流量6.2ml/minで糸の中空部に注入した。

次に、この第1中間成形体を長手方向に収縮しないように固定したままジクロロメタン中に振動を与えながら室温で30分間浸漬し、ついでジクロロメタンを新しいものに取り替えて再び同条件にて浸漬して、脂肪族系ポリエステルと溶媒を抽出し、次いで固定したまま温度120℃のオーブン内で1時間加熱してジクロロメタンを除去するとともに熱処理を行い第2中間成形体を得た。

次に、この第2中間成形体を雰囲気温度の25℃で長手方向に1.8倍の倍率に延伸し、ついで長手方向に収縮しないように固定したままジクロロメタン中に振動を与えながら室温で30分間浸漬し、ついでジクロロメタンを新しいものに取り替えて再び同条件にて浸漬して、ついで固定したまま温度150℃のオーブン内で1時間加熱してジクロロメタンを除去するとともに熱固定を行い、ポリフッ化ビニリデン系多孔質中空糸を得た。

得られたポリフッ化ビニリデン系多孔質中空糸は、平均孔径が $0.129\mu m$ 、最大孔径が $0.275\mu m$ の微細孔を有し膜の分離性能が優れ、 F_0 値が40.4 $(m^3/m^2 \cdot day)$ であり膜の透水性能が大きく、C値の絶対値が小さいため実際のモジュールに組み込んだときにも膜の透水性能が十分に発揮される。

得られたポリフッ化ビニリデン系多孔質中空糸の製造条件および物性を下記実施

例および比較例の結果とともにまとめて、後記表1に示す。

また試長Lを変化させて測定した透水率Fのデータを下記実施例、比較例のそれとともに図2に示す。

実施例2

5 第2のポリフッ化ビニリデン (PVDF) をMwが3.39×10⁵のPVDF (粉体)と変更した混合物Aを用い、混合物Aと混合物Bの供給比率を35.3/64.7 (重量%)、エアギャップを70mm、延伸倍率を1.6倍に変更する以外は実施例1と同様にして多孔質中空糸を得た。

実施例3

10 第2のポリフッ化ビニリデン (PVDF) をMwが4.12×10⁵のPVDF (粉体)と変更した混合物Aを用い、可塑剤と良溶媒の混合比率を82.5/17.5 (重量%)と変更した混合物Bを用い、混合物Aと混合物Bの供給比率を34.3/65.7 (重量%)、エアギャップを350mm、延伸倍率を1.4倍に変更する以外は実施例1と同様にして多孔質中空糸を得た。

15 実施例 4

第1のポリフッ化ビニリデン (PVDF) をMwが9.36×10⁵のPVDF (粉体)、および第2のポリフッ化ビニリデン (PVDF) がMwが3.39×10⁵のPVDF (粉体)と変更し、第1のPVDFと第2のPVDFの混合比率を15/85 (重量%)と変更した混合物Aを用い、可塑剤と良溶媒の混合比率を85/15 (重量%)と変更した混合物Bを用い、混合物Aと混合物Bの供給比率を35.3/64.7 (重量%)、エアギャップを150mm、延伸倍率を1.8倍に変更する以外は実施例1と同様にして多孔質中空糸を得た。

実施例 5

第2のポリフッ化ビニリデン (PVDF) をMwが4. 12×10⁵のPVDF (粉体)と変更し、第1のPVDFと第2のPVDFの混合比率を5/95 (重量%)と変更した混合物Aを用い、可塑剤と良溶媒の混合比率を82. 5/17. 5 (重量%)と変更した混合物Bを用い、混合物Aと混合物Bの供給比率を35. 7/64. 3 (重量%)、エアギャップを150mm、延伸倍率を1. 5倍に変更する以外は実施例4と同様にして多孔質中空糸を得た。

30 <u>実施例 6</u>

25

• 20.2

延伸倍率を1. 7倍に変更する以外は実施例5と同様にして多孔質中空糸を得た

<u>実施例 7</u>

ノズル外径を5mm、ノズル内径を3.5mm、エアギャップを170mmに変更する以外は実施例6と同様にして多孔質中空糸を得た。

比較例1

5 第1のPVDFと第2のPVDFの混合比率を12.5/87.5 (重量%)と変更した混合物Aを用い、混合物Aと混合物Bの供給比率を37.5/62.5 (重量%)にて、エアギャップを10mm、ノズル中心部の通気口から積極的に空気を注入することなく、溶融物の自然なドローダウンにより糸の中空部をサイジングして押し出し、延伸倍率を1.6倍に変更する以外は実施例1と同様にして多孔質中空糸を得た。

得られたポリフッ化ビニリデン系多孔質中空糸は、平均孔径が $0.089\mu m$ 、最大孔径が $0.181\mu m$ の微細孔を有し膜の分離性能が優れ、 F_0 値が66.3(m^3/m^2 ・day)であり、膜の透水性能も大きいが、C値が小さいため実際のモジュールに組み込んだときに膜の透水性能が低下する傾向を示すものであった。

15 得られたポリフッ化ビニリデン系多孔質中空糸の製造条件および物性を表1に示す。

比較例2

ノズル中心部に設けた通気口から空気を流量 6.2 ml/minで糸の中空部に 注入した以外は比較例 1 と同様にして押し出したところ、水浴中で糸の中空部がつ ぶれて中空糸を得ることができなかった。

比較例3

20

混合物Aと混合物Bの供給比率を35.3/64.7 (重量%) に変更する以外は実施例1と同様にして押し出したところ、水浴中の糸の中空部がつぶれて中空糸を得ることができなかった。

[表1]

			実施例 1	実施例2	実施例3	実施例4	実施例 5	実施例 6	東施例 7	比較例 1	比較例2	上章を使り
原料組成	混合物 A	第1のPVDFのMw (×10 ⁵)	6.91	6.91	6.91	9.36	9.36	9.36	9.36	6.91	6.91	
		第2のPVDFのMw (×10 ⁵)	2.59	3.39	4.12	3.39	4.12	4.12	412	2.59	2.50	2.50
		第1Mw/第2Mw比	2.67	2.04	1.68	2.76	2.27	2.27	2.27	2.67	267	2.53
		第1のPVDF/第2のPVDF 混合比率(重量%)	25/75	25/75	22/15	15/85	5/95	5/35	5/85	12.5/87.5	12.5/87.5	25/75
		混合物のMw (×10 ⁵)	3.67	4.27	4.82	4.29	4.38	4.38	4.38	3.13	3.13	3.67
		Mw/Mn	2.95	2.29	2.23	2.15				2.58	2.58	2 95
	海合物 8	木リエステル可塑剤	PN-150									
		溶媒	NMP	dWN	NMP	MMP	NMP	dWN	NMP	dWN	dWN	MM
		ホリエステル可塑剤 /溶媒混合比率(重量%)	87.5/12.5	87.5/12.5	82.5/17.5	85/15	82.5/17.5	82.5/17.5	82.5/17.5	87.5/12.5	87.5/12.5	87.5/12.5
	混合物A/混合物Bの供給比率(重量%)		40/60	35.3/64.7	34.3/65.7	35.3/64.7	35.7/64.3	35.7/64.3	35.7/64.3	37.5/62.5	37.5/62.5	35.3/64.7
抗糸·延伸条件		(mm)	۷	7	7	-	_	-	2	_	-	7
		(mm)	5	5	ည	2	5	5	3.5	3.5	2	. 2
	エア注入量	(ml/min)	6.2	6.2	6.2	6.2	6.2	6.2	6.2	自然吸気	6.2	6.2
	エアキャップ	(mm)	30	70	350	150	150	150	170	20	30~350	30~350
	水浴温胶	(၁,)	90	99	9	90	09	9	8	8	8	99
	引取速度	(m/min)	8	ĸ	ຮ	5	5	80	50	EC.	85	87
	抽出前外径	(min)	2.051	1.812	1.879	1.739	1.943	1.949	1.949	1.905	(中亞条)	(中四条
	抽出前內径	(mm)	1.462	1.223	1.265	1.200	1.363	1.369	1.378	0.907	得られず)	命られず)
	計坦	(%)	1.8	1.6	1.4	1.8	1.5	1.7	1.7	9.1		
参 在	-	(mm)	1.626	1.495	1.532	1.455	1.567	1.57	1.57	1.546		
	内径 Di	(mm)	1.133	0.958	0.989	0.941	1.061	1.065	1.072	727.0		
	膜厚み	(mm)	0.247	0.269	0.272	0.257	0.253	0.253	0.249	0.410		
	空孔平	(%)	74.5	74.3	73.8	75.7	72.5	76.1	75.9	75		
	平均孔径 P	(μη)	0.129	0.104	.0.095	0.120	0.103	0.13	0.131	0.089		
	最大孔径	. (ш <i>п</i>)	0.275	0.220	0.190	0.260	0.229	0.278	0.277	0.181		
	透水性能	C(直(/day, 100kPa at25°C)	-4.9	-9.8	-11.7	-19.0	-10.0	-8.5	-8.7	-37.1		
		Fb(直(m³/m²·day, 100kPa at25°C)	40.4	48.9	59.3	58.2	59.3	71.1	72.2	66.3		
	F ₀ /P	•	313.2	470.2	624.2	485.0	575.7	546.9	551.1	744.9		
	F _o /Di ⁴	1	26.3	58.1	62.0	74.2	46.8	55.3	54.7	237.3		
	引張り強度	(MPa)					·	11.4	10.9	9.7		
	破断伸度	(%)						21.2	18.2	13		

産業上の利用可能性

上記したように、本発明によれば、一本当りの透水率が大きく且つ長さ依存性が 少ないとともに、濾過モジュール容量当りの処理効率の大なる精密濾過部材として の使用に適したフッ化ビニリデン系樹脂多孔質中空糸が得られる。

請求の範囲

- 1. 重量平均分子量が 30 万以上のフッ化ビニリデン系樹脂からなる多孔質中空糸であって、試長L=0. $2\sim0$. 8 (m) の範囲において差圧 100 k P a、水温 25 \mathbb{C} の条件で測定される透水率 F (m 3 /m 2 ·day) と試長Lの直線関係式: $F=C\cdot L+F_0$ (式 1) において、
 - (イ) 平均傾きC (/day) が $-20 \le C \le 0$,
 - (ロ)切片(基礎透水率) F_o(m³/m²·day)が F_o≥30、
- (ハ) F_0 (m^3/m^2 ・day) とハーフドライ法による平均孔径P (μ m) の 関係が F_0/P \geq 300、および
- (二)外径が3mm以下
- の要件(イ)~(二)を満すことを特徴とするフッ化ビニリデン系樹脂多孔質中 空糸。
- 2. 基礎透水率 F_0 (m^3 / m^2 ・day)と中空糸内径Di(mm)との間に F_0 / $Di^4 \le 75$ の関係が満たされる請求項1に記載の多孔質中空糸。
 - 3. 重量平均分子量が40万以上のフッ化ビニリデン系樹脂からなる請求項1または2に記載の多孔質中空糸。

20

22.7.7

5

10

- 4. 重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnが2.0以上であるフッ化ビニリデン系樹脂からなる請求項1~3のいずれかに記載の多孔質中空糸。
- 5. フッ化ビニリデン系樹脂が、重量平均分子量(Mw1)が40万~120万で ある第1のフッ化ビニリデン系樹脂2~49重量%と、重量平均分子量(Mw2) が15万~60万である第2のフッ化ビニリデン系樹脂51~98重量%を含 有し、かつ第1のフッ化ビニリデン系樹脂の重量平均分子量(Mw1)と第2の フッ化ビニリデン系樹脂の重量平均分子量(Mw2)の比Mw1/Mw2が1.
- 30 2以上である請求項4に記載の多孔質中空糸。
 - 6. 多孔質中空糸の内径が 0. 8~2. 98 m m であり、かつ膜厚が 0. 01~0

WO 2005/032700 PCT/JP2004/014416

18

. 4 mmである請求項1~5のいずかに記載の多孔質中空糸。

- 7. 重量平均分子量が30万以上であるフッ化ビニリデン系樹脂100重量部に対し、可塑剤とフッ化ビニリデン系樹脂の良溶媒とを合計量で100~300重量部且つそのうち良溶媒の割合が8~22重量%となるように添加し、得られた組成物を中空糸状に溶融押出し、中空部に不活性ガスを注入しつつ不活性液体中に導いて冷却固化した後、可塑剤を抽出して多孔質中空糸を回収することを特徴とするフッ化ビニリデン系樹脂多孔質中空糸の製造方法。
- 10 8. 可塑剤の抽出の前または後に延伸を行う請求項7に記載の製造方法。

*41.2

*si-_;

第1図

第2図

INTERNATIONAL SEARCH REPORT

* ~ 1.4

International application No.

			2004/014416		
A. CLASSIFI Int.Cl	CATION OF SUBJECT MATTER 7 B01D71/34, D01F6/12, D06M13,	/08			
	ternational Patent Classification (IPC) or to both nation	nal classification and IPC			
B. FIELDS SI					
Minimum docu Int.Cl	mentation searched (classification system followed by 6 B01D71/34, D01F6/12, D06M13/	classification symbols) (08			
Documentation	searched other than minimum documentation to the ext	tent that such documents are included in the	na fields cansohed		
Jitsuyo	Shinan Koho 1926-1996 J	ritsuyo Shinan Toroku Koho Poroku Jitsuyo Shinan Koho	1996-2004 1994-2004		
Electronic data t	pase consulted during the international search (name of	f data base and, where practicable, search t	erms used)		
WPIL					
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where		ppropriate, of the relevant passages	Relevant to claim No.		
Y	JP 07-173323 A (Kureha Chemi	ical Industry	1-8		
	Co., Ltd.), 11 July, 1995 (11.07.95), Par. Nos. [0012] to [0015], & US 5626805 A	[0029]			
Y	WO 2001/028667 Al (Asahi Kas 26 April, 2001 (26.04.01), Claims; examples 1 to 11 & EP 1230970 Al	asei Corp.), 1-3			
Y	JP 2000-309672 A (Kureha Che Co., Ltd.), 07 November, 2000 (07.11.00), Par. Nos. [0032] to [0048] (Family: none)	,	1-3		
× Further do	cuments are listed in the continuation of Box C.	See notest family appear	<u> </u>		
ļ		See patent family annex.			
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is		"I" later document published after the int date and not in conflict with the applic the principle or theory underlying the i	ation but cited to understand nvention		
		"X" document of particular relevance; the considered novel or cannot be consistep when the document is taken alone	dered to involve an inventive		
cited to establish the publication date of another citation or other special reason (as specified)		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is			
"O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed		considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			
Date of the actual	completion of the international search	Date of mailing of the international search report			
20 Dece	20 December, 2004 (20.12.04) Date of maining of the international search report 11 January, 2005 (11.01.05)				
	gaddress of the ISA/ e Patent Office	Authorized officer			
Facsimile No.		Telephone No.			
	(second sheet) (January 2004)				

INTERNATIONAL SEARCH REPORT

International application No.

(Cantinuation). DOCUMENTS CONSIDERED TO BE RELEVANT		2004/014416
Category*	Citation of document, with indication, where appropriate, of the relev		
A	<u>! </u>	ant passages	Relevant to claim No.
A	JP 61-233026 A (Asahi Chemical Industry Co., Ltd.), 17 October, 1986 (17.10.86), Claims & GB 2168981 A & US 4623670 A & FR 2575480 A		1-8
A	JP 09-324067 A (Shin-Etsu Polymer Co., L 16 December, 1997 (16.12.97), Claims (Family: none)	td.),	1-8
	JP 2001-179062 A (Asahi Kasei Corp.), 03 July, 2001 (03.07.01), Claims (Family: none)		1-8
Α	JP 2001-087633 A (Asahi Kasei Corp.), 03 April, 2001 (03.04.01), Claims (Family: none)		1-8
A	JP 2003-210954 A (Toray Industries, Inc. 29 July, 2003 (29.07.03), Claims (Family: none)		1-8

نے ^{ہے۔}

発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl⁷ B01D71/34, D01F6/12, D06M13/08

調査を行った分野

•

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl B01D71/34, D01F6/12, D06M13/08

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1996年

日本国公開実用新案公報 1971-2004年

日本国実用新案登録公報 1996-2004年

日本国登録実用新案公報 1994-2004年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

WPIL

lc. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 07-173323 A (呉羽化学工業株式会社) 1995. 07. 11, [0012]-[0015], [0029] & US 5626805 A	1-8
Y	WO 2001/028667 A1 (旭化成株式会社) 2001. 04. 26, 特許請求の範囲, 実施例1-11 & EP 1230970 A1	1-8
Y	JP 2000-309672 A (呉羽化学工業株式会社) 2000. 11. 07, [0032]-[0048] (ファミリーなし)	1-8

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自用である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

20, 12, 2004

国際調査報告の発送日

11. 1. 2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 斉藤光子

4D | 3030

電話番号 03-3581-1101 内線 6429

国際調査報告

国際出願番号 PCT/JP2004/01/11 8

(A)	E STATE OF THE STA	-1/ 1120	04/014416
C (続き) 417	Mate すると認められる文献		
引用文献の カテゴリー*		箇所の表示	関連する 請求の範囲の番号
A	JP 61-233026 A (旭化成工業株式会社) 1986. 10. 17, 特許請求の範囲 & GB 2168981 A & US 4623670 & FR 2575480 A	A	1-8
A	JP 09-324067 A (信越ポリマー株式会社) 1997. 12. 16, 特許請求の範囲 (ファミリーな		1-8
A	JP 2001-179062 A (旭化成株式会社) 2001.07.03,特許請求の範囲(ファミリーな	c L)	1 - 8
A	JP 2001-087633 A (旭化成株式会社) 2001.04.03,特許請求の範囲(ファミリーな	t)	1-8
A	JP2003-210954 A (東レ株式会社) 2003.07.29,特許請求の範囲(ファミリーな	こし)	1-8
		·	
	·		
		1	