

Water as a Potential Sculptor of the M Dwarf Radius Valley

https://tinyurl.com/ Bennett-Skinner-CASCA2024

Bennett Skinner, Ralph Pudritz, and Ryan Cloutier

skinnb1@mcmaster.ca

Background

- Distribution of planetary radii is bimodal "Radius Valley"
 - Slope w/ instellation implies atmospheric escape^{2,3}
- Slope different around M v. FGK stars⁴
 - Different formation mechanism? Water worlds?⁵

The Project

- McMaster Planet Population Synthesis model⁶
 - Planetesimal accretion in disk around FGK star
 - Planets form in planet traps at dead zone, ice line, and heat transition
 - Disks chemically evolve
- Recalculate planet radii w/ new advances
 - New Equations of State (EOS) for water⁷, iron⁸, silicates⁹, opacities¹⁰
 - Sequestration of water into planetary interior¹¹
- Can radius valley be replicated solely w/ water?

- Updated EOS and sequestration separate water and dry worlds
 - Water does NOT solely replicate radius valley, but could contribute
 - Some water worlds in the valley

Future Work

- Update McMaster Planet Population Synthesis model for M stars
- Increase sample size by running more simulations
- Take advantage of disk chemistry tracking to improve mantle model

Acknowledgements & References ¹Fulton, B. J., Petigura, E. A., Howard, A. W., We would like to Isaacson, H., Marcy, G. W., Cargile, P. A., Hebb, L., Weiss, L. M., Johnson, J. A., Morton, T. D., Sinukoff, thank Caroline Dorn's E., Crossfield, I. J. M., and Hirsch, L. A. (2017)

group, particularly

providing tabulated

planets with water

sequestration.

M-R relationships for

Komal Bali, for

²Lopez, E. D. and Rice, K. (2018) ETH Zürich research ³Gupta, A. and Schlichting, H. E. (2019) ⁴Cloutier, R. and Menou, K. (2020)

W. (2020)

⁵Burn, R., Mordasini, C., Mishra, L., Haldemann, J., Venturini, J., Emsenhuber, A., and Henning, T. (2024) ⁶Alessi, M., Inglis, J., and Pudritz, R. E. (2020) ⁷Haldemann, J., Alibert, Y., Mordasini, C., and Benz,

8Hakim, K., Rivoldini, A., Van Hoolst, T., Cottenier, S., Jaeken, J., Chust, T., and Steinle-Neumann, G. (2018) ⁹Sotin, C., Grasset, O., and Mocquet, A. (2007) ¹⁰Freedman, R. S., Lustig-Yaeger, J., Fortney, J. J., Lupu, R. E., Marley, M. S., and Lodders, K. (2014) ¹¹Luo, H., Dorn, C., and Deng, J. (2024)