(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

! TO BE A BUILDING TO BE STOLEN BELLED STOLEN I TO SEN STOLEN BELLED HERDE STOLEN BELL

(43) 国際公開日 2003年12月11日(11.12.2003)

PCT

(10) 国際公開番号 WO 03/102183 A1

C12N 15/09, 7/00, (51) 国際特許分類?: A61K 35/76, 39/395, 48/00, A61P 19/08, 25/00, 37/06, 43/00, C07K 16/18, 16/28, C12P 21/02

(21) 国際出願番号:

PCT/JP03/07005

(22) 国際出願日:

2003 年6 月3 日 (03.06.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

2002年6月3日(03.06.2002) 特願2002-161964

(71) 出願人 (米国を除く全ての指定国について): 株式会 社ディナベック研究所 (DNAVEC RESEARCH INC.) [JP/JP]; 〒305-0856 茨城県 つくば市 観音台 1 丁目 25番11号 Ibaraki (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 井上 誠 (IN-OUE,Makoto) [JP/JP]; 〒305-0856 茨城県 つくば市 観 音台1丁目25番11号 株式会社ディナベック研 究所内 Ibaraki (JP). 長谷川 護 (HASEGAWA, Mamoru) [JP/JP]; 〒305-0856 茨城県 つくば市 観音台 1 丁目 25番11号 株式会社ディナベック研究所内 Ibaraki (JP). 弘中 孝史 (HIRONAKA, Takashi) [JP/JP]; 〒3050856 茨城県 つくば市 観音台1丁目25番11号株 式会社ディナベック研究所内 Ibaraki (JP).

- (74) 代理人: 清水 初志 ,外(SHIMIZU,Hatsushi et al.); 〒 300-0847 茨城県 土浦市 卸町 1 – 1 – 1 関鉄つくばビ ル6階 Ibaraki (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2 文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: PRAMYXOVIRUS VECTORS ENCODING ANTIBODY AND UTILIZATION THEREOF

(54) 発明の名称: 抗体をコードするパラミクソウイルスペクターおよびその利用

(57) Abstract: It is intended to provide a paramyxovirus vector expressing a polypeptide containing antibody variable regions. This vector, which encodes antibody H chain and L chain variable regions, expresses these antibody chains at the same time to form Fab. Also, a single-stranded antibody is successfully expressed at a high level. The above vector is appropriately usable as a gene therapeutic vector to be administered to a living body either in vivo or ex vivo. In particular, a vector expressing an antibody fragment against nerve elongation inhibitor is useful in treating nerve injury. The above vector expressing an antibody which inhibits immunopotentiation signal transfer enables the prolonged expression of a gene from the vector.

本発明は抗体可変領域を含むポリペプチドを発現するパラミクソウイルスベクターを提供する。抗体 H鎖およびL鎖の可変領域をコードする本発明のベクターは、これらの抗体鎖を同時に発現しFabを形成した。また 一本鎖抗体を高レベルで発現させることにも成功した。本発明のベクターは、インビボまたはエクスビボにより生 体内に投与するための遺伝子治療ベクターとして適している。特に神経伸長阻害因子に対する抗体断片を発現する ベクターは、神経損傷への遺伝子治療に有用である。また、免疫活性化シグナル伝達を阻害する抗体を発現する本 発明のベクターは、ベクターからの遺伝子の長期発現を可能にする。

明細書

抗体をコードするパラミクソウイルスベクターおよびその利用

<u>技術分野</u>

本発明は、抗体可変領域を含むポリペプチドをコードするパラミクソウイルス ベクターおよびその利用に関する。

背景技術

モノクローナル抗体は医薬品としてその有用性が広く認識されており、既に10 種以上のモノクローナル抗体医薬が販売もしくは販売に向けて準備が進められている状況にある (Dickman, S., Science 280: 1196-1197, 1998。モノクローナル抗体医薬の特徴はやはりその選択性にあり、唯一特定の抗原と結合し、阻害或いは排除等の活性を発現することから、今後も医薬品としての発展が期待されている。モノクローナル抗体医薬は、通常は哺乳動物のハイブリドーマで作製されるが、一般的には生産コストが高いこと、また通常は全身デリバリーでの投与になるため、軽微な場合でも発熱等の副作用が生じることが問題点として指摘されている。大腸菌等のバクテリア、酵母、あるいは昆虫細胞によって抗体を産生する試みもあるが、糖鎖修飾の違いなどが抗体の生物活性および抗体蛋白質の抗原性に影響を及ぼす懸念がある。

発明の開示

本発明は、抗体可変領域を含むポリペプチドをコードするパラミクソウイルスベクターおよびその利用を提供することを課題とする。

本発明者らは、現在広く利用されている、及び今後利用拡大が予想されるモノ

2

クローナル抗体医薬を、遺伝子導入ベクターを介して発現させることが可能であれば、病巣近辺での局所的な発現が可能となり、副作用の軽減とともに、モノクローナル抗体医薬の開発上必ず発生するコスト面での問題を解決する可能性が高いと考えた。

近年、遺伝子治療を目的として多様な遺伝子導入用ベクターが開発されており 、ベクターの種類にもよるが、遺伝子導入細胞での局所的な発現を期待すること ができる。中でも本発明者らはこれまで、センダイウイルス(SeV)を用いて遺伝 子治療にも使用できる新しい遺伝子導入用および遺伝子治療用のベクターの開発 を行ってきた。SeVは非分節型マイナス鎖RNAウィルスで、パラミクソウィルス(Paramyxovirus) に属し、murine parainfluenza virusの一種である。本発明者ら は、モノクローナル抗体を発現するSeVを新規に構築し、これを用いて生体内でモ ノクローナル抗体を発現させる新たな遺伝子治療を確立するため実験を行った。 本発明者らは、伝播型および伝播能欠損型の2種のSeVを用いて、神経軸索伸長阻 害因子 (NOGO) に対する中和抗体 (IN-1) のFab (H鎖及びL鎖) 遺伝子を搭載した ベクターを構築した。両ベクターともに再構成に成功し、伝播型で29 HAU(約 5×10⁸ CIU/mL)、伝播能欠損型(F遺伝子欠失型)で2.7×10⁷ CIU/mL のベクター を回収することに成功した。このベクターを導入した細胞の培養上清からは、酸 化条件で約47 kDa、還元条件で約30 kDaのバンドが検出され、酸化条件ではH鎖及 びL鎖が結合したFab抗体が形成されていると判断された。軸索伸長阻害因子に対 する抗体を発現するベクターは、脊髄損傷への応用が想定され、本ベクターを用 いた脊髄傷害に対する遺伝子治療が可能となる。

また本発明者らは、抗体を発現するパラミクソウイルスベクターは、免疫原性 が抑制されたベクターとしても有用であることを見出した。ウイルスベクターの 生体内投与においては導入されたウイルスに対する免疫が誘導され、これにより ウイルスベクターが排除され導入遺伝子の長期発現が阻害される。このような状 況では、ベクターの複数回投与も困難となる。ベクターに免疫誘導を抑制する作 用を持たせれば、ベクターに対する免疫反応を抑制し、導入遺伝子の長期発現および複数回投与(繰り返し投与)が可能となる。このためには、免疫シグナル分子に対する抗体を発現するベクターが有効である。例えば、T細胞などの免疫細胞におけるT細胞受容体(TCR)、抗原、及び組織適合性抗原(MHC)に由来するシグナルと共同して働く、第二のシグナルであるコスティミュラトリーシグナル(costimulatory signal;補助刺激)分子に対する抗体をベクターから発現させることにより、この第二のシグナルを欠如させ、T細胞を不活化させることができる。このようなパラミクソウイルスベクターは、ベクターに対する細胞性免疫を抑制し、導入遺伝子の長期発現を可能とする。

このように本発明において提供されるベクターは、特に遺伝子治療等において 生体に投与するベクターとして適しており、種々の疾病および傷害への適用が期 待できる。また、パラミクソウイルスベクターは哺乳動物細胞において導入遺伝 子を極めて高いレベルで発現することが可能であることから、ヒトを含めた哺乳 動物細胞で所望の抗体を大量に製造させることも可能である。このように、抗体 を発現するパラミクソウイルスベクターは、臨床的にも産業的にも高い有用性を 有している。

すなわち本発明は、抗体の可変領域を含むポリペプチドをコードするパラミク ソウイルスベクターおよびその利用に関し、より具体的には、

- (1) 抗体可変領域を含むポリペプチドをコードするパラミクソウイルスベクタ -
- (2) パラミクソウイルスがセンダイウイルスである、(1) に記載のウイルスベクター、
 - (3) 該ポリペプチドが分泌型である、(1) に記載のウイルスベクター、
- (4) 抗体のH鎖可変領域を含むポリペプチド、および抗体のL鎖可変領域を含むポリペプチドをコードしている(1)に記載のパラミクソウイルスベクター、
 - (5) 抗体のH鎖可変領域を含むポリペプチド、および抗体のL鎖可変領域を含

むポリペプチドが、互いに結合してFabを構成する、(4)に記載のウイルスベクター、

- (6) 抗体可変領域の少なくとも1つがリガンドまたは受容体に対する抗体に由来する、(5) に記載のウイルスベクター、
- (7) 抗体が神経細胞の生存、分化、または神経突起伸長を阻害する因子に結合する、(6) に記載のウイルスベクター、
- (8) 抗体がNOGOに対する抗体である、(7) に記載のウイルスベクター、
- (9) 抗体が免疫シグナル伝達の受容体またはそのリガンドに対する抗体である、(6) に記載のウイルスベクター、
- (10) 抗体が、T細胞または抗原提示細胞の表面に発現する受容体またはそのリガンドに対する抗体である、(9) に記載のベクター、
- (11) 該受容体またはそのリガンドが、T細胞または抗原提示細胞のコスティミュラトリーシグナルのシグナル伝達分子である、(10) に記載のベクター、
- (12) 該シグナル伝達分子が、CD28、CD80、CD86、LFA-1、ICAM-1 (CD54)、PD-1、および ICOS からなる群より選択される分子である、 (11) に記載のベクター、
 - (13) さらに他の外来遺伝子をコードしている、(9) に記載のベクター、
 - (14) 抗体可変領域を含む組み換えポリペプチドの製造方法であって、
- (a) (1) に記載のウイルスベクターを哺乳動物細胞に導入する工程、および
- (b) 該ベクターが導入された哺乳動物細胞またはその培養上清から、産生されたポリペプチドを回収する工程、を含む方法、
 - (15) (14) に記載の方法により製造されたポリペプチド、
 - (16) 神経形成を促進する方法であって、神経を形成させる必要がある部位に
 - (7) に記載のベクターを送達する工程を含む方法、
 - (17) 脊髄損傷の治療方法であって、該損傷部位に (7) に記載のベクターを

送達する工程を含む方法、

- (18) (9) に記載のベクターを投与する工程を含む、免疫反応を抑制する方法、
- (19) 免疫シグナル伝達の受容体またはそのリガンドに対する抗体、あるいは CTLA4またはその断片を投与する工程をさらに含む、(18) に記載の方法、
- (20)ベクターからの遺伝子の発現を持続させるおよび/またはベクターの繰り返し投与によるベクターからの遺伝子の発現を増強する方法であって、(9)に記載のベクターを投与する工程を含む方法、
- (21) 免疫シグナル伝達の受容体またはそのリガンドに対する抗体、あるいは CTLA4またはその断片を投与する工程をさらに含む、(20) に記載の方法、
- (22) 発現持続性が上昇したベクター組成物であって、(9) に記載のベクターおよび薬学的に許容される担体を含む組成物、
- (23) 遺伝子導入キットであって、(a) (9) に記載のベクター、ならびに (b) 免疫シグナル伝達の受容体またはそのリガンドに対する抗体あるいはCTLA4 またはその断片、を含むキット、に関する。

本発明において「抗体」とは、イムノグロブリンの可変領域を含むポリペプチドを総称し、具体的にはイムノグロブリン鎖(H鎖またはL鎖)、その可変領域を含む断片、および該断片を含むポリペプチドが含まれる。抗体は、天然の抗体であっても人工的に作出した抗体であってもよい。例えば、2種またはそれ以上の抗体のキメラ(例えばヒトおよび他の哺乳動物のキメラ抗体)などであってもよく、Fc領域の置換あるいはCDRグラフトなどで構築した組み換え抗体(例えばヒト化抗体など)は本発明において抗体に含まれる。「イムノグロブリン可変領域」とは、イムノグロブリンH鎖またはL鎖の可変領域(すなわち V_H または V_L)またはその部分を言う。L鎖は κ 鎖であってもよい。本発明において可変領域は相補性決定領域(CDR)のいずれかを含むアミノ酸配列からなっていてよく、具

体的にはH鎖またはL鎖のCDR1、CDR2、およびCDR3のいずれかを含むものであってよい。好ましくは本発明においてイムノグロブリン可変領域は、H鎖またはL鎖のCDR1、CDR2、およびCDR3の3つのCDRを含む領域である。本発明においてイムノグロブリンは任意のクラスに属するものが含まれ、例えば IgM、IgG、IgA、IgE、および IgD を含む。

組み換えウイルスとは、組み換えポリヌクレオチドを介して生成したウイルスを言う。組み換えポリヌクレオチドとは、自然の状態と同じようには結合していないポリヌクレオチドを言う。具体的には、組み換えポリヌクレオチドは、人の手によってポリヌクレオチド鎖の結合が改変(切断または結合)されたポリヌクレオチドである。組み換えポリヌクレオチドは、ポリヌクレオチド合成、ヌクレアーゼ処理、リガーゼ処理等を組み合わせて、公知の遺伝子組み換え方法により生成させることができる。組み換え蛋白質は、蛋白質をコードする組み換えポリヌクレオチドを発現させることにより生産することができる。組み換えウイルスは、遺伝子操作により構築されたウィルスゲノムをコードするポリヌクレオチドを発現させ、ウイルスを再構築することによって生成することができる。組み換え蛋白質とは、組み換えポリヌクレオチドを介して生成した蛋白質または人工的に合成された蛋白質を言う。

本発明において遺伝子とは遺伝物質を指し、転写単位をコードする核酸を言う。遺伝子はRNAであってもDNAであってもよい。本発明において蛋白質をコードする核酸は、該蛋白質の遺伝子と呼ぶ。また遺伝子は蛋白質をコードしていなくてもよく、例えば遺伝子はリボザイムまたはアンチセンスRNAなどの機能的RNAをコードするものはリボザイムまたはアンチセンスRNAの遺伝子を呼ぶ。遺伝子は天然由来または人為的に設計された配列であり得る。また、本発明において「DNA」とは、一本鎖DNAおよび二本鎖DNAを含む。また蛋白質をコードするとは、ポリヌクレオチドが該蛋白質を適当な条件下で発現できるように、該蛋白質のアミノ酸配列をコードするORFをセンスまたはアンチセンスに含むことを言う。

本発明においてパラミクソウィルスとはパラミクソウィルス科(Paramyxoviridae) に属するウィルスまたはその誘導体を指す。パラミクソウィル スは、非分節型ネガティブ鎖RNAをゲノムに持つウィルスのグループの1つで、パ ラミクソウイルス亜科 (Paramyxovirinae) (レスピロウイルス属(パラミクソウ イルス属とも言う)、ルブラウイルス属、およびモービリウイルス属を含む)お よびニューモウイルス亜科 (Pneumovirinae) (ニューモウイルス属およびメタニ ューモウイルス属を含む)を含む。本発明を適用可能なパラミクソウィルスとし ては、具体的にはセンダイウィルス(Sendai virus)、ニューカッスル病ウィルス (Newcastle disease virus)、おたふくかぜウィルス(Mumps virus)、麻疹ウィル ス(Measles virus)、RSウィルス(Respiratory syncytial virus)、牛疫ウィルス (rinderpest virus)、ジステンパーウィルス(distemper virus)、サルパラインフ ルエンザウィルス (SV5)、ヒトパラインフルエンザウィルス1, 2, 3型等が挙げ られる。より具体的には、例えば Sendai virus (SeV)、human parainfluenza virus-1 (HPIV-1), human parainfluenza virus-3 (HPIV-3), phocine distemper virus (PDV), canine distemper virus (CDV), dolphin molbillivirus (DMV), peste-des-petits-ruminants virus (PDPR), measles virus (MV), rinderpest (RPV) , Hendra virus (Hendra) , Nipah virus (Nipah) , human virus parainfluenza virus-2 (HPIV-2), simian parainfluenza virus 5 (SV5), human parainfluenza virus-4a (HPIV-4a), human parainfluenza virus-4b (HPIV-4b) 、mumps virus (Mumps)、およびNewcastle disease virus (NDV) などが含まれる 。より好ましくは、Sendai virus (SeV)、human parainfluenza virus-1 (HPIV-1), human parainfluenza virus-3 (HPIV-3), phocine distemper virus (PDV), canine distemper virus (CDV), dolphin molbillivirus (DMV), peste-despetits-ruminants virus (PDPR), measles virus (MV), rinderpest virus (RPV) 、Hendra virus (Hendra)、および Nipah virus (Nipah) からなる群より選択さ れるウイルスが例示できる。本発明のウィルスは、好ましくはパラミクソウイル ス亜科(レスピロウイルス属、ルブラウイルス属、およびモービリウイルス属を含む)に属するウイルスまたはその誘導体であり、より好ましくはレスピロウイルス属(genus Respirovirus)(パラミクソウィルス属(Paramyxovirus)とも言う)に属するウィルスまたはその誘導体である。本発明を適用可能なレスピロウイルス属ウィルスとしては、例えばヒトパラインフルエンザウィルス1型(HPIV-1)、ヒトパラインフルエンザウィルス3型(HPIV-3)、ウシパラインフルエンザウィルス3型(BPIV-3)、センダイウィルス(Sendai virus; マウスパラインフルエンザウィルス1型とも呼ばれる)、およびサルパラインフルエンザウィルス10型(SPIV-10)などが含まれる。本発明においてパラミクソウィルスは、最も好ましくはセンダイウィルスである。これらのウィルスは、天然株、野生株、変異株、ラボ継代株、および人為的に構築された株などに由来してもよい。

本発明においてベクターとは、核酸を細胞に導入する担体である。パラミクソウイルスベクターとは、パラミクソウイルスに由来する、核酸を細胞に導入する担体である。SeVなどのパラミクソウィルスは遺伝子導入ベクターとして優れており、宿主細胞の細胞質でのみ転写・複製を行い、DNAフェーズを持たないため染色体への組み込み(integration)は起こらない。このため染色体異常による癌化または不死化などの安全面における問題が生じない。パラミクソウィルスのこの特徴は、ベクター化した時の安全性に大きく寄与している。異種遺伝子発現の結果では、SeVを連続多代継代しても殆ど塩基の変異が認められず、ゲノムの安定性が高く、挿入異種遺伝子を長期間に渡って安定に発現する事が示されている(Yu、D. et al., Genes Cells 2, 457-466(1997))。また、カプシド構造蛋白質を持たないことによる導入遺伝子のサイズまたはパッケージングの柔軟性(flexibility)など性質上のメリットがある。伝播能を有するSeVベクターは、外来遺伝子を少なくとも4kbまで導入可能であり、転写ユニットを付加することによって2種類以上の遺伝子を同時に発現する事が可能である。これにより、抗体のH鎖およびL鎖を同一ベクターから発現させることができる(実施例1)。

また、センダイウイルスは齧歯類にとっては病原性で肺炎を生じることが知ら れているが、ヒトに対しては病原性がない。これはまた、野生型センダイウイル スの経鼻的投与によって非ヒト霊長類において重篤な有害作用を示さないという これまでの報告によっても支持されている (Hurwitz, J. L. et al., Vaccine 15: 533-540, 1997)。更に特筆すべき利点として以下の2点、すなわち「髙感染 性」及び「高発現量」を挙げることができる。SeVベクターは細胞膜蛋白糖鎖のシ アル酸に結合して感染するが、このシアル酸はほとんどの細胞で発現しており、 このことが感染スペクトルを広くする、則ち髙感染性に繋がっている。SeVのレプ リコンをベースにした伝播型ベクターは放出されたウイルスが周囲の細胞にも再 感染し、感染細胞の細胞質で多コピーに複製されたRNPが細胞の分裂に伴い娘細胞 にも分配されるため持続発現が期待される。また、SeVベクターは非常に広い組織 適用範囲を持つ。広範な感染性を有するということは、様々な種類の抗体治療(及び解析)に利用可能であることを示している。また、細胞質のみでの転写・複 製するという特徴的な発現機構であることから、搭載遺伝子の発現量が非常に高 いことが示されている (Moriya, C. et al., FEBS Lett. 425(1) 105-111 (1998); W000/70070)。更に、エンベロープ遺伝子を欠失して非伝播性にしたSeV ベクターの回収にも成功しており (WOOO/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))、「高感染性」及び「高発現量」を維持して、「安全 性」をさらに高めるための改良が進行している。

センダイウイルスのこれらの特徴は、SeVを初めとするパラミクソウィルスベクターは有効な遺伝子治療用および遺伝子導入用ベクターであり、抗体のインビボまたはエクスビボでの発現を目的とした遺伝子治療における有望な選択肢の一つとなることを支持するものである。特にH鎖およびL鎖を高いレベルで共発現することが可能で、ヒトに毒性がないベクターは、臨床的に高い可能性を持つ。パラミクソウィルスベクターに治療用(及び解析用)の抗体遺伝子を搭載して機能を発揮させることで、病巣近辺での局所的な高い発現が可能となり、治療効果の確

実性とともに副作用の軽減が期待される。また、モノクローナル抗体医薬の開発上必ず発生するコスト面での問題を解決する可能性も高い。これらの効果は、一 過的に強発現が誘導される、SeVを初めとするパラミクソウィルスベクターだからこそ、より有効であると考えられる。

パラミクソウイルスベクターは、パラミクソウイルスのゲノムRNAを含んでいる 。ゲノムRNAとは、パラミクソウイルスのウイルス蛋白質と共にRNPを形成し、該 蛋白質によりゲノム中の遺伝子が発現し、該核酸が複製して娘RNPが形成される機 能を持つRNAを言う。パラミクソウイルスは一本鎖ネガティブ鎖RNAをゲノムに持 つウイルスであるので、このようなRNAは搭載遺伝子をアンチセンスとしてコード している。一般にパラミクソウィルスのゲノムは、3'リーダー領域と5'トレイラ 一領域の間に、ウイルス遺伝子がアンチセンスとして並んだ構成をしている。各 遺伝子のORFの間には、転写終結配列(E配列) - 介在配列(I配列) - 転写開始配列 (S配列)が存在し、これにより各遺伝子のORFをコードするRNAが別々のシストロ ンとして転写される。本発明のベクターに含まれるゲノムRNAは、該RNAにコード される遺伝子群の発現およびRNA自身の自律的な複製に必要なウイルス蛋白質であ る N (ヌクレオキャプシド)、P (ホスホ)、およびL (ラージ)をアンチセンス にコードしている。また該RNAは、ウイルス粒子の形成に必要なM(マトリックス) 蛋白質をコードしていてもよい。さらに該RNAは、ウイルス粒子の感染に必要な エンベロープ蛋白質をコードしていてもよい。パラミクソウイルスのエンベロー プ蛋白質としては、細胞膜融合を起こす蛋白質であるF(フュージョン)蛋白質お よび細胞への接着に必要なHN(ヘマグルチニン-ノイラミニダーゼ)蛋白質が挙げ られる。但し、ある種の細胞では感染にHN蛋白質は必要なく (Markwell, M.A. et al., Proc. Natil. Acad. Sci. USA 82(4):978-982 (1985)) 、F蛋白質のみで感 染が成立する。また、F蛋白質および/またはHN蛋白質以外のウイルスエンベロー プ蛋白質をコードさせてもよい。

本発明のパラミクソウイルスベクターは、例えばパラミクソウイルスのゲノム

RNAとウイルス蛋白質からなる複合体、すなわちリボヌクレオプロテイン(RNP)であってよい。RNPは、例えば所望のトランスフェクション試薬と組み合わせて細胞に導入することができる。このようなRNPは、具体的にはパラミクソウイルスのゲノムRNA、N蛋白質、P蛋白質、およびL蛋白質を含む複合体である。RNPは細胞内に導入されると、ウイルス蛋白質の働きによりゲノムRNAからウイルス蛋白質をコードするシストロンが転写されると共に、ゲノム自身が複製され娘RNPが形成される。ゲノムRNAの複製は、該RNAのコピー数の増加をRT-PCRまたはノーザンブロットハイブリダイゼーション等により検出することにより確認することができる。

また本発明のパラミクソウイルスベクターは、好ましくはパラミクソウイルスのウイルス粒子である。ウイルス粒子とは、ウイルス蛋白質の働きにより細胞から放出される、核酸を含む微小粒子を言う。パラミクソウイルスのウイルス粒子は、ゲノムRNAとウイルス蛋白質を含む上記RNPが細胞膜由来の脂質膜(エンベロープという)に含まれた構造をしている。ウイルス粒子は、感染性を示すものであってよい。感染性とは、パラミクソウイルスベクターが細胞への接着能および膜融合能を保持していることにより、接着した細胞の内部にベクター内部の核酸を導入することのできる能力を言う。本発明のパラミクソウイルスベクターは、伝播能を有していてもよく、あるいは伝播能を有さない欠損型ベクターであってもよい。「伝播能を有する」とは、ウイルスベクターが宿主細胞に感染した場合、該細胞においてウイルスが複製され、感染性ウイルス粒子が産生されることを指す。

例えばパラミクソウィルス亜科に属する各ウィルスにおける各遺伝子は、一般に次のように表記される。一般に、N遺伝子は"NP"とも表記される。

レスピロウイルス属 N P/C/V M F HN - L

ルブラウイルス属 N P/V M F HN (SH) L

モービリウイルス属 N P/C/V M F H - L

例えばセンダイウィルスの各遺伝子の塩基配列のデータベースのアクセッショ

ン番号は、N遺伝子については M29343、M30202, M30203, M30204, M51331, M55565, M69046, X17218、P遺伝子については M30202, M30203, M30204, M55565, M69046, X00583, X17007, X17008、M遺伝子については D11446, K02742, M30202, M30203, M30204, M69046, U31956, X00584, X53056、F遺伝子については D00152, D11446, D17334, D17335, M30202, M30203, M30204, M69046, X00152, X02131 HN遺伝子については D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, X56131、L遺伝子については D00053, M30202, M30203, M30204, M69040, X00587, X58886を参照のこと。またその他のウイルスがコードするウイ ルス遺伝子を例示すれば、N遺伝子については、CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025; Mapuera, X85128; Mumps, D86172; MV, K01711; NDV, AF064091; PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; および Tupaia, AF079780、P遺伝子につい ては、CDV, X51869; DMV, Z47758; HPIV-1, M74081; HPIV-3, X04721; HPIV-4a, M55975; HPIV-4b, M55976; Mumps, D86173; MV, M89920; NDV, M20302; PDV, X75960; RPV, X68311; SeV, M30202; SV5, AF052755; および Tupaia, AF079780 、C遺伝子については CDV, AF014953; DMV, Z47758; HPIV-1. M74081; HPIV-3, D00047; MV, AB016162; RPV, X68311; SeV, AB005796; および Tupaia, AF079780 、M遺伝子については CDV, M12669; DMV Z30087; HPIV-1, S38067; HPIV-2, M62734; HPIV-3, D00130; HPIV-4a, D10241; HPIV-4b, D10242; Mumps, D86171; MV, AB012948; NDV, AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U31956; および SV5, M32248、F遺伝子については CDV, M21849; DMV, AJ224704; HPN-1. M22347; HPIV-2, M60182; HPIV-3. X05303, HPIV-4a, D49821; HPIV-4b, D49822; Mumps, D86169; MV, AB003178; NDV, AF048763; PDPR, Z37017; PDV, AJ224706; RPV, M21514; SeV, D17334; および SV5, AB021962、HN (HまたはG) 遺伝子については CDV, AF112189; DMV, AJ224705; HPIV-1, U709498; HPIV-2. D000865; HPIV-3, AB012132; HPIV-4A, M34033; HPIV-4B, AB006954; Mumps,

X99040; MV, K01711; NDV, AF204872; PDPR, Z81358; PDV, Z36979; RPV, AF132934; SeV, U06433; および SV-5, S76876 が例示できる。但し、各ウイルスは複数の株が知られており、株の違いにより上記に例示した以外の配列からなる遺伝子も存在する。

これらのウイルス蛋白質のORFは、ゲノムRNAにおいて上記のE-I-S配列を介して アンチセンスに配置される。ゲノムRNAにおいて最も3'に近いORFは、3'リーダー 領域と該ORFとの間にS配列のみが必要であり、EおよびI配列は必要ない。またゲ ノムRNAにおいて最も5'に近いORFは、5'トレイラー領域と該ORFとの間にE配列の みが必要であり、IおよびS配列は必要ない。また2つのORFは、例えばIRES等の配 列を用いて同一シストロンとして転写させることも可能である。このような場合 は、これら2つのORFの間にはE-I-S配列は必要ない。野生型のパラミクソウイルス の場合、典型的なRNAゲノムは、3'リーダー領域に続き、N、P、M、F、HN、および L蛋白質をアンチセンスにコードする6つのORFが順に並んでおり、それに続いて 5'トレイラー領域を他端に有する。本発明のゲノムRNAにおいては、ウイルス遺伝 子の配置はこれに限定されるものではないが、好ましくは、野生型ウイルスと同 様に、3'リーダー領域に続き、N、P、M、F、HN、およびL蛋白質をコードするORF が順に並び、それに続いて5'トレイラー領域が配置されることが好ましい。ある 種のパラミクソウイルスにおいては、ウイルス遺伝子は6つではないが、そのよう な場合でも上記と同様に各ウイルス遺伝子を野生型と同様の配置とすることが好 ましい。一般に N、P、およびL遺伝子を保持しているベクターは、細胞内で自立 的にRNAゲノムから遺伝子が発現し、ゲノムRNAが複製される。さらにFおよびHN遺 伝子等のエンベロープ蛋白質をコードする遺伝子、およびM遺伝子の働きにより、 感染性のウイルス粒子が形成され、細胞外に放出される。従って、このようなべ クターは伝播能を有するウイルスベクターとなる。抗体可変領域を含むポリペプ チドをコードする遺伝子は、後述するように、このゲノム中の蛋白質非コード領 域に挿入すればよい。

また、本発明のパラミクソウイルスベクターは、野生型パラミクソウイルスが 持つ遺伝子のいずれかを欠損したものであってよい。例えば、M、F、またはHN遺 伝子、あるいはそれらの組み合わせが含まれていないパラミクソウイルスベクタ ーも、本発明のパラミクソウイルスベクターとして好適に用いることができる。 このようなウイルスベクターの再構成は、例えば、欠損している遺伝子産物を外 来的に供給することにより行うことができる。このようにして製造されたウイル スベクターは、野生型ウイルスと同様に宿主細胞に接着して細胞融合を起こすが 、細胞に導入されたベクターゲノムはウイルス遺伝子に欠損を有するため、最初 と同じような感染力を持つ娘ウイルス粒子は形成されない。このため、一回限り の遺伝子導入力を持つ安全なウイルスベクターとして有用である。ゲノムから欠 損させる遺伝子としては、例えばF遺伝子および/またはHN遺伝子が挙げられる。 例えば、F遺伝子が欠損した組み換えパラミクソウイルスベクターゲノムを発現す るプラスミドを、F蛋白質の発現ベクターならびにNP、P、およびL蛋白質の発現べ クターと共に宿主細胞にトランスフェクションすることにより、ウイルスベクタ 一の再構成を行うことができる (国際公開番号 WO00/70055 および WO00/70070; Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000))。また、例えば、F遺 伝子が染色体に組み込まれた宿主細胞を用いてウイルスを製造することもできる 。これらの蛋白質群を外から供給する場合、そのアミノ酸配列はウイルス由来の 配列そのままでなくとも、核酸の導入における活性が天然型のそれと同等かそれ 以上ならば、変異を導入したり、あるいは他のウイルスの相同遺伝子で代用して もよい。

また、本発明のウイルスベクターとして、ベクターゲノムが由来するウイルス のエンベロープ蛋白質とは異なる蛋白質をエンベロープに含むベクターを作製す ることもできる。例えば、ウイルス再構成の際に、ベクターのベースとなるウイ ルスのゲノムがコードするエンベロープ蛋白質以外のエンベロープ蛋白質を細胞 で発現させることにより、所望のエンベロープ蛋白質を有するウイルスベクター を製造することができる。このような蛋白質に特に制限はない。例えば、他のウイルスのエンベロープ蛋白質、例えば水疱性口内炎ウイルス(VSV)のG蛋白質(VSV-G)を挙げることができる。本発明のウイルスベクターには、VSV-G蛋白質などのように、ゲノムが由来するウイルス以外のウイルスに由来するエンベロープ蛋白質を含むシュードタイプウイルスベクターが含まれる。ウイルスのゲノムRNAにはこれらのエンベロープ蛋白質をゲノムにコードされないように設計すれば、ウイルス粒子が細胞に感染した後は、ウイルスベクターからこの蛋白質が発現されることはない。

また、本発明のウイルスベクターは、例えば、エンベロープ表面に特定の細胞に接着しうるような接着因子、リガンド、受容体等の蛋白質、抗体またはその断片、あるいはこれらの蛋白質を細胞外領域に有し、ウイルスエンベロープ由来のポリペプチドを細胞内領域に有するキメラ蛋白質などを含むものであってもよい。これにより、特定の組織を標的として感染するベクターを作り出すこともできる。これらはウイルスゲノムにコードされていてもよいし、ウイルスベクターの再構成時に、ウイルスゲノム以外の遺伝子(例えば別の発現ベクターまたは宿主染色体上などにある遺伝子)の発現により供給されてもよい。

また本発明のベクターは、例えばウィルス蛋白質による免疫原性を低下させるために、またはRNAの転写効率または複製効率を高めるために、ベクターに含まれる任意のウィルス遺伝子が野生型遺伝子から改変されていてよい。具体的には、例えばパラミクソウィルスベクターにおいては、複製因子であるN、P、およびL遺伝子の中の少なくとも一つを改変し、転写または複製の機能を高めることが考えられる。また、エンベロープ蛋白質の1つであるHN蛋白質は、赤血球凝集素であるヘマグルチニン(hemagglutinin)活性とノイラミニダーゼ(neuraminidase)活性との両者の活性を有するが、例えば前者の活性を弱めることができれば、血液中でのウィルスの安定性を向上させることが可能であろうし、例えば後者の活性を改変することにより、感染能を調節することも可能である。また、F蛋白質を

改変することにより膜融合能を調節することもできる。また、例えば、細胞表面の抗原分子となりうるF蛋白質またはHN蛋白質の抗原提示エピトープ等を解析し、これを利用してこれらの蛋白質に関する抗原提示能を弱めたウィルスベクターを作製することもできる。

また本発明のベクターにおいては、アクセサリー遺伝子が欠損したものであってよい。例えばSeVのアクセサリー遺伝子の1つであるV遺伝子をノックアウトすることにより、培養細胞における遺伝子発現および複製は障害されることなく、マウス等の宿主に対するSeVの病原性が顕著に減少する(Kato, A. et al., 1997, J. Virol. 71:7266-7272; Kato, A. et al., 1997, EMBO J. 16:578-587; Curran, J. et al., W001/04272, EP1067179)。このような弱毒化ベクターは、in vivo またはex vivoにおける毒性のない遺伝子導入用ウィルスベクターとして特に有用である。

本発明のベクターは、上記のパラミクソウイルスベクターのゲノムに、抗体可変領域を含むポリペプチドをコードする核酸を有する。抗体可変領域を含むポリペプチドとしては、天然の抗体全長(full body)であってもよく、抗原を認識する限り、抗体の可変領域を含む断片であってもよい。抗体断片としては、例えばFab、F(ab')2、または scFv などが例示できる。抗体断片をコードする核酸の挿入位置は、例えばゲノムの蛋白質非コード領域の所望の部位を選択することができ、例えば3'リーダー領域と3'に最も近いウイルス蛋白質のRFとの間、各ウイルス蛋白質のRFの間、および/または5'に最も近いウイルス蛋白質のRFと5'トレイラー領域の間に挿入することができる。また、FまたはHN遺伝子などを欠失するゲノムでは、その欠失領域に抗体断片をコードする核酸を挿入することができる。パラミクソウイルスに外来遺伝子を導入する場合は、ゲノムへの挿入断片のポリヌクレオチドの鎖長が6の倍数となるように挿入することが望ましい(Journal of Virology, Vol. 67, No. 8, 4822-4830, 1993)。挿入した外来遺伝子とウイルスORFとの間には、E-I-S配列が構成されるようにする。E-I-S配列を介して2または

それ以上の遺伝子をタンデムに並べて挿入することができる。あるいは、IRESを介して目的の遺伝子を挿入してもよい。

本発明のベクターとしては、例えば抗体のH鎖可変領域を含むポリペプチド、および抗体のL鎖可変領域を含むポリペプチドをコードしていてよい。2つのポリペプチドは、互いに結合するための1つまたは複数のアミノ酸を含んでいる。例えば、野生型抗体はH鎖定常領域 C_H1 と C_H2 の間にH鎖とL鎖がジスルフィド結合で結合するシステイン残基を持つ。このシステインを含む抗体断片をベクターから発現させることにより、H鎖とL鎖に由来するペプチド同士を結合させることができる(実施例1)。あるいは、互いに結合するタグペプチドを抗体断片に付加しておき、このタグペプチドを介してH鎖とL鎖に由来するペプチドを結合させてもよい。天然の抗体には、さらにH鎖同士を結合させる2組のジスルフィド結合を形成させるためのシステインが各H鎖に2つ存在する。これらのうち少なくとも1つのシステインを持つH鎖は、互いに結合して2価抗体を形成する。H鎖結合のためのシステインを欠く抗体断片は、Fabのような1価の抗体を形成する。

本発明においてFabとは、抗体H鎖可変領域を含む 1 つのポリペプチド鎖およびL鎖可変領域を含む 1 つのポリペプチド鎖からなる複合体を言う。これらのポリペプチドは互いに結合し1 つの抗原結合部位(1 価)を形成する。Fabは、典型的にはイムノグロブリンをパパインで消化することにより得られるが、これと同等の構造を有するものも本発明においてFabと称す。具体的には、FabはイムノグロブリンL鎖と、H鎖可変領域(V_h)および $C_H 1$ を含むポリペプチド鎖とが結合した二量体蛋白質であってよい。H鎖断片のC末端部位はパパインの切断部位でなくてもよく、他のプロテアーゼまたは薬剤により切断されたもの、あるいは人工的に設計した断片であってよい。Fab'(イムノグロブリンをペプシン消化後、H鎖間のジスルフィド結合を切断して得られる)、および Fab(t)(イムノグロブリンのトリプシン消化で得られる)なども、Fabと同等の構造を有することから、これらは本発明においてFabに含まれる。イムノグロブリンのクラスは限定されず、IgCおよび

IgMなどを含む全てのクラスが含まれる。Fabは、典型的にはH鎖断片およびL鎖断片のC末端付近に、両者がジスルフィド結合を介して結合できるシステイン残基を有している。しかし本発明においてFabは、ジスルフィド結合を介して結合していなくてもよく、例えば相互に結合できるペプチド断片をL鎖とH鎖断片とに付加しておき、これらのペプチドを介して両鎖を結合させFabを形成させてもよい。

本発明においてF(ab')2とは、抗体の定常領域を欠失する抗体またはそれと同等の形態の蛋白質複合体を言い、具体的には抗体H鎖可変領域を含む1つのポリペプチド鎖およびL鎖可変領域を含む1つのポリペプチド鎖からなる複合体を2つ有する蛋白質複合体を言う。F(ab')2は抗原結合部が2つある二価抗体であり、典型的には抗体をpH 4付近でペプシンにより消化して得られ、H鎖のヒンジ領域を有している。しかし本発明においてF(ab')2は、他のプロテアーゼまたは薬剤により切断されたもの、あるいは人工的に設計したものであってよい。ペプチド鎖の結合は、ジスルフィド結合であってもよく、他の結合であってもよい。イムノグロブリンのクラスは限定されず、IgGおよびIgMなどを含む全てのクラスが含まれる。

scFvとは、抗体H鎖可変領域およびL鎖可変領域が一本のポリペプチド鎖に含まれているポリペプチドを言う。H鎖可変領域およびL鎖可変領域は適当な長さのスペーサーを介して連結されており、互いに結合して抗原結合部を形成する。

ベクターに搭載する外来遺伝子の発現レベルは、その遺伝子の上流(ネガティブ鎖の3'側)に付加する転写開始配列の種類により調節することができる(W001/18223)。また、ゲノム上の外来遺伝子の挿入位置によって制御することができ、ネガティブ鎖の3'の近くに挿入するほど発現レベルが高く、5'の近くに挿入するほど発現レベルが低くなる。このように、外来遺伝子の挿入位置は、該遺伝子の所望の発現量を得るために、また前後のウィルス蛋白質をコードする遺伝子との組み合わせが最適となる様に適宜調節することができる。一般に、抗体断片の高い発現が得られることが有利と考えられるため、抗体をコードする外来遺伝子は、効率の高い転写開始配列に連結し、ネガティブ鎖ゲノムの3'端近くに挿

入することが好ましい。具体的には、3'リーダー領域と3'に最も近いウイルス蛋白質ORFとの間に挿入される。あるいは、3'に一番近いウイルス遺伝子と2番目の遺伝子のORFの間に挿入してもよい。野生型パラミクソウイルスにおいては、ゲノムの3'に最も近いウイルス蛋白質遺伝子はN遺伝子であり、2番目の遺伝子はP遺伝子である。逆に、導入遺伝子の高発現が望ましくない場合は、例えばベクターにおける外来遺伝子の挿入位置をネガティブ鎖ゲノムのなるべく5'側に設定したり、転写開始配列を効率の低いものにするなどして、ウィルスベクターからの発現レベルを低く抑えることで適切な効果が得られるようにすることも可能である。

H鎖可変領域を含むポリペプチドおよびL鎖可変領域を含むポリペプチドの2本のポリペプチドをベクターから発現させる場合は、それぞれのポリペプチドをコードする核酸をベクターのゲノムに挿入する。2つの核酸はE-I-S配列を介してタンデムに並べることが好ましい。S配列は転写開始効率の高い配列を用いることが好ましく、例えば5'-CTTTCACCCT-3'(ネガティブ鎖,配列番号:1)を好適に用いることができる。

本発明のベクターは、このように抗体断片をコードする遺伝子を挿入した以外の位置に他の外来遺伝子を保持していてもよい。このような外来遺伝子としては制限はない。例えばベクターの感染をモニターするためのマーカー遺伝子であってもよく、あるいは免疫系を調節するサイトカイン、ホルモン、その他の遺伝子であってもよい。本発明のベクターは、生体における標的部位への直接(in vivo)投与、および患者由来細胞またはそれ以外の細胞に本発明のベクターを導入し、その細胞を標的部位へ注入する間接(ex vivo)投与により遺伝子を導入することができる。

本発明のベクターに搭載される抗体は、宿主の可溶性蛋白質、膜蛋白質、構造蛋白質、酵素などに対する抗体であってよい。好ましくは、シグナル伝達に関与する分泌性蛋白質、その受容体、または細胞内シグナル伝達分子などに対する抗体が挙げられる。例えば受容体の細胞外領域に対する抗体、または受容体のリガ

ンドに対する抗体 (例えばリガンドの受容体結合部位に対する抗体) が挙げられ る。この抗体を発現するベクターを投与することにより、リガンドと受容体との 結合が阻害され、この受容体を介したシグナル伝達を遮断することができる。特 に本発明のベクターに搭載させる抗体としては、疾患または傷害に対して治療効 果を有する抗体が好ましい。抗体遺伝子を搭載した遺伝子導入ベクターについて 、幾つかの報告がなされている。そのほとんどは、ベクターのターゲッティング (targeting) を目的としたものである。例えばレトロウイルス (Somia, N.V. et al., Proc. Natl. Acad. Sci. USA 92(16) 7570-7574 (1995); Marin, M. et al., J. Virol. 70(5) 2957-2962 (1996); Chu, T.H. & Dornburg, R., J. Virol. 71(1) 720-725 (1997); Ager, S. et al., Hum. Gene Ther. 7(17) 2157-2167 (1997); Jiang, A. et al., J. Virol. 72(12) 10148-10156 (1998); Jiang, A. & Durnburg, R. Gene Ther. 6(12) 1982-1987 (1999); Kuroki, M. et al., Anticancer Res. 20(6A) 4067-4071 (2000); Pizzato, M. et al., Gene Ther. 8(14) 1088-1096 (2001); Khare, P.D. et al., Cancer Res. 61(1) 370-375 (2001))、アデノウイルス (Douglas, J.T. et al., Nat. Biotechnol. 14(11) 1574-1578 (1996); Curiel, D.T. Ann. NY Acad. Sci. 886 158-171 (1999); Haisma, H. J. et al., Cancer Gene Ther. 7(6) 901-904 (2000); Yoon, et al., Biochem Biophys. Res. Commun. 272(2) 497-504 (2000); Kashentseva, E.A. et al., Cancer Res. 62(2) 609-616 (2002)) 、アデノ随伴 ウイルス (AAV) (Bartlett, J.S. et al., Nat. Biotechnol. 17(4) 393 (1999))、MVA (Paul, S. et al., Hum. Gene Ther. 11(10) 1417-1428 (2000))、及び 麻疹ウイルス (Hammond, A.L. J. Virol. 75(5) 2087-2096 (2001)) 等でターゲ ッティングを目的として抗体遺伝子を搭載した遺伝子導入ベクターの実施例が報 告されている。ほとんどのケースでsingle-chain antibody (scFv) を利用してお り、また癌細胞へのターゲッティング例が多い。本発明のベクターを利用して、 これらの抗体をエンベロープ表面に持つパラミクソウイルスを作製すれば、特定

の細胞に感染するターゲッティングベクターを構築することも可能である。例えば interleukin(IL)-6 または fibroblast grouth factor (FGF) などの炎症性サイトカインに対する抗体遺伝子を搭載させることで、本発明のベクターを慢性関節リウマチ (RA) などの自己免疫疾患および癌などのターゲッティングベクターとして使用することができる。自殺遺伝子または癌ワクチン蛋白質を発現するこれらのターゲッティングベクターを用いた癌治療への応用が期待される。

しかしながら本発明のベクターは、上記のようなターゲッティング以外の用途 へ適用することができる点でも優れている。例えば本発明は、疾患または傷害に 対して治療効果を有する抗体をコードするパラミクソウイルスベクターを提供す る。これまでに、例えばアデノウイルスベクターに抗erbB-2のscFv遺伝子を intrabody (細胞内で機能する抗体) として搭載し、癌治療を目的とした例 (Kim, M. et al., Hum. Gene Ther. 8(2) 157-170 (1997); Deshane, J. et al., Gynecol. Oncol. 64(3) 378-385 (1997)) について臨床研究が行われている(Alvarez, R.D. & Curiel, D.T. Hum. Gene Ther. 8(2) 229-242 (1997); Alvarez, R.D. et al., Clin. Cancer Res. 6(8) 3081-3087 (2000))。同様の癌 治療へ向けたアデノウイルスベクターのscFv遺伝子に関しては、同じ抗erbB-2を intrabodyではなく分泌型で検討した例 (Arafat, W.O. et al., Gene Ther. 9(4) 256-262 (2002))、抗4-1BB (T cell activation molecule) で検討した例(Hellstrom, Y.Z. et al., Nat. Med. 8(4) 343-348 (2002)) 、及び抗CEA (carcino-embryonic antigen) で検討した例 (Whittington, H.A. et al., Gene Ther. 5(6) 770-777 (1998)) 等が報告されている。これらは主にscFvを利用した ものである。本発明のベクターを利用して、これらの抗体をコードするパラミク ソウイルスを作製すれば、インビボで投与できる治療用ウイルスベクターとして 有用である。本発明のベクターは宿主染色体に組み込まれないため安全であり、 通常、搭載遺伝子を数日~数週間以上にわたって発現可能であるため、種々の疾 患または傷害の治療のために適用される。また本発明のベクターは、上記のよう

なscFvのみならず、Fab、F(ab')2、または full body (全長抗体) といった多量 体を発現させるためにH鎖とL鎖の両鎖の遺伝子を搭載でき、これにより複数の鎖 を含む抗体複合体を産生することができる点で極めて優れている。Fabまたは抗体 のfull body (全長抗体) などを構成するH鎖およびL鎖またはそれらの断片をコードするベクターは、scFvを発現するベクターよりも高い治療効果を期待することができる。

本発明のベクターは、上記に例示したような癌に対する適用以外にも、さまざ まな用途が想定される。例えば癌以外の疾患に対しては、HIVの治療を目的として 、抗REV、抗gp120或いは抗integraseをターゲットにして、レトロウイルスベクタ — (Ho, W.Z. et al., AIDS Res. Hum. Retroviruss 14(17) 1573-1580 (1998)) 、AAVベクター (Inouye, R.T. et al., J. Virol. 71(5) 4071-4078 (1997))、 SV40 (BouHamdan, M. et al., Gene Ther. 6(4) 660-666 (1999)) 或いはプラス ミド (Chen, S.Y. et al., Hum. Gene Ther. 5(5) 595-601 (1994)) での検討が 報告されている。上記例は全てscFvを利用している。他の感染症に対しても、抗 狂犬病ウイルス (rabies virus) 抗体のfull bodyを狂犬病ウイルスのワクチン株 に搭載した例 (Morimoto, K. et al., J. Immunol. Methods 252(1-2) 199-206 (2001)) 、及び抗シンドビスウイルス (Sindbis virus) 抗体のfull bodyをH鎖と L鎖を別個のシンドビスウイルスに搭載した例(Liang, X.H. Mol. Immunol. 34(12-13) 907-917 (1997)) が報告されている。後者2例に関しては、抗体の full bodyをウイルスベクターに搭載し、活性型として大量に分泌することに成功 している。但し、両報告は共にモノクローナル抗体の生産系に関するものであり 、感染症治療のために直接ベクターを投与することに関しては全く想定されてい ない。安全性等の観点からも、実際に治療用として投与して in vivo (臨床応用) で局所的に髙発現させることは期待できない。これに対して本発明のベクター は、抗体の製造における使用、および遺伝子治療における使用の両面で好適に使 用できる点でも優れている。本発明のベクターは、特にヒトに対して病原性がな いことから、ヒトを対象とする安全性の高い遺伝子治療用の抗体遺伝子搭載ベクターとして高い有用性を持っている。本発明のベクターを治療用として局所投与すれば、in vivo (臨床応用) での局所的な高発現を期待できる。

特に本発明のベクターから発現させるのに有用な抗体は、細胞内外のシグナル 伝達に関与する分子に対する抗体である。中でも、神経の生存、分化、または神経突起伸長 (axonal elongation) を抑制するリガンドまたは受容体に対する抗体 は、本発明において好適に適用される。このようなシグナル分子としては、NOGO などの神経伸長阻害因子が挙げられる。神経伸長阻害因子に対する抗体を発現するベクターは、神経損傷に対する新しい遺伝子治療を可能にする。

多くの組織は損傷後も自己再生能力を有しており、神経系でも末梢神経は切断或いは坐滅等の損傷後も、軸索が進展し再生可能である。しかしながら、脳および脊髄等の中枢神経系の神経細胞は、損傷後の軸索の進展は観察されず、再生能を有さない (Ramon y Cajal S, New York: Hafner (1928); Schwab, M.E. and Bartholdi, D. Physiol. Rev. 76, 319-370 (1996))。しかし、中枢神経系の神経細胞でも末梢に移植すると軸索の進展が生じることが示されたことから (David, S. and Aguayo, A. J. Science 214, 931-933 (1981))、中枢神経系の神経細胞も元来は軸索の再生能を有しているが、中枢神経系の環境が軸索の進展を阻害している、則ち中枢神経系には神経細胞の再生 (軸索の進展)を阻害する因子が存在すると予想された。

そして実際に、その一つとしてNOGOが同定された(Prinjha, R. et al., Nature 403, 383-384 (2000); Chen, M.S. et al., Nature 403, 434-439 (2000); GrandPre, T. et al., Nature 403, 439-444 (2000))。 NOGOはNogo-A (Ac. No. AJ242961, (CAB71027)), Nogo-B (Ac. No. AJ242962, (CAB71028)) 及びNogo-C (Ac. No. AJ242963, (CAB71029)) の3つのisoformが知られておりsplice variantsであると予想されている。軸索進展阻害活性は最も大きなNogo-A (分子量約250 kDa) が強いが、活性部位は、3種全てに共通に存在している66アミノ

酸の細胞外ドメインであると予想されている (GrandPre, T. et al., Nature 403, 439-444 (2000))。従って、Nogo-A、Nogo-B、またはNogo-Cに結合する抗体 をコードするパラミクソウイルスベクターは、神経形成を促進するために好適に 用いることができる。このNOGOに対するモノクローナル抗体としてIN-1が知られ ている。IN-1はオリゴデンドロサイト及びミエリンによる軸索進展の阻害をin vitroで中和すると報告されており (Caroni, P. and Schwab, M.E. Neuron 1, 85-96 (1988))、更には、機械的に脊髄損傷を生じさせるラットのin vivoモデル において、損傷部位にIN-1を投与することにより、5%の軸索が損傷部位を越えて 進展し、著しい機能回復が達成されたことが報告されている (Bregman, B.S. et al., Nature 378, 498-501 (1995))。このように、中枢神経において軸索進展阻 害活性を有する生体内の因子に対する中和抗体は、中枢神経系の神経細胞再生に 有効な可能性が高い。NOGO以外に類似活性(軸索進展阻害活性)を有する因子と しては、Semaphorin、ephrin及びSlit等 (Semaphorin: Genbank Ac. Nos. NM_006080 (protein: NP_006071), L26081 (AAA65938); Ephrin: Ac. NM_004093 (NP_004084), NM_001406 (NP_001397); Slit: Ac. Nos. AB017167 (BAA35184), AB017168 (BAA35185), AB017169 (BAA35186))が知られており(Chisholm, A. and Tessier-Lavigne, M. Curr. Opin. Neurobiol. 9, 603-615 (1999))、それぞれの役割が異なるにせよ、これらの因子に対する抗体は、再生 しないと言われていた中枢神経においても軸索の進展を可能にし、IN-1で示され ている脊髄損傷に限らず、種々の神経変性疾患に応用出来る可能性を有している

また、NOGOと同様の軸索伸長阻害活性を持つ因子である myelin-associated glycoprotein (MAG) (ACCESSION NM_002361 (NP_002352), NM_080600 (NP_542167), Aboul-Enein, F. et al., J. Neuropathol. Exp. Neurol. 62 (1), 25-33 (2003); Schnaar, R. L. et al., Ann. N. Y. Acad. Sci. 845, 92-105

(1998); Spagnol, G. et al., J. Neurosci. Res. 24 (2), 137-142 (1989); Sato, S. et al., Biochem. Biophys. Res. Commun. 163 (3), 1473-1480 (1989); Attia, J. et al., Clin. Chem. 35 (5), 717-720 (1989); Quarles, R. H., Crit Rev Neurobiol 5 (1), 1-28 (1989); Barton, D. E. et al., Genomics 1 (2), 107-112 (1987); McKerracher L et al. (1994) Identification of myelinassociated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805-811; Mukhopadhay G et al. (1994) A novel role for myelin associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757-767; Tang S et al. (1997) Soluble myelin-associated glycoprotein (MAG) found in vivo inhibits axonal regeneration. Mol Cell Neurosci 9:333-346、NOGOおよびMAGの共通の受容体であるNogo receptor (Nogo-66 receptor) (ACCESSION NM_023004 (NP_075380, Q9BZR6), Josephson, A., et al., J. Comp. Neurol. 453 (3), 292-304 (2002); Wang, K.C., et al., Nature 420 (6911), 74-78 (2002); Wang, K.C. et al., Nature 417 (6892), 941-944 (2002); Fournier, A. E. et al., Nature 409 (6818), 341-346 (2001); Dunham, I., et al., Nature 402 (6761), 489-495 (1999); Strausberg, R.L. et 16899-16903 (2002);(26),Acad. Sci. U. S. A. 99 Proc. Natl. al., GrandPre, T. et al., Nature 417 (6888), 547-551 (2002); Liu, B. P. et al., Science 297 (5584), 1190-1193 (2002); Woolf, C. J. and Bloechlinger, S., Science 297 (5584), 1132-1134 (2002); Ng, C. E. and Tang, B. L., J. Neurosci. Res. 67 (5), 559-565 (2002))、軸索伸長に阻害作用を及ぼすコンドロイチン硫 酸プロテオグリカン (CSPG) などのグリア周辺の細胞外マトリクス (Rudge JS, Silver J (1990) Inhibition of neurite outgrowth on astroglial scars in vitro. J Neurosci 10:3594-3603; McKeon RJ, et al. (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19:10778-10788;

Smith-Thomas LC et al. (1995) Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors. J Cell Sci 108:1307-1315; Davies SJA, et al. (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390:680-683; Fidler PS et al. (1999) Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J Neurosci 19:8778-8788) 、特にNG2 (Levine JM et al. (1993) Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7:307-321) , neurocan (Asher RA et al. (2000) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J'Neurosci 20:2427-2438; Haas CA et al. (1999) Entorhinal cortex lesion in adult rats induces the expression of the neuronal chondroitin sulfate proteoglycan neurocan in reactive astrocytes. Neurosci 19:9953-9963) , phosphacan (McKeon RJ et al. (1999) chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19:10778-10788), versican (Morven C et al., Cell Tissue Res (2001) 305:267-273) などに対する抗体も有用である (Genbank Ac. Nos. NM_021948 (protein NP_068767), NM_004386 (protein NP_004377)) (McKerracher L and Ellezam B. (2002) Putting the brakes on regeneration. Science 296, 1819-20; McKerracher L and Winton MJ (2002) Nogo on the go. Neuron 36, 345-8)

それぞれの因子間での役割が明らかになるに従って、それぞれの神経変性疾患により適合するリガンドが選択され、その因子に対する抗体が特定の神経変性疾患 患に利用されるようになるかも知れない。

例えば、これらの抗体遺伝子を搭載したパラミクソウィルスベクターについて

脊髄損傷への治療応用を想定した場合、ベクターを損傷部位へ直接投与する方法が可能である。また当該ベクターは発現量が非常に高いことから、損傷部位近傍の脊髄腔内への投与も可能であると予想される。また、損傷を受け軸索が変性した後に、再生のフェーズになるまでには数日間が必要であることから、投与を判断するまでの時間的余裕もあると考えられ、更には損傷直後は変性に伴う炎症反応が盛んに生じることから、実際には損傷数日後、具体的には3日~10日後に投与する可能性が高い。また、当該の軸索進展阻害活性を有する因子に対する中和抗体遺伝子のみではなく、積極的に軸索進展を促進する因子の遺伝子を搭載したベクター、蛋白或いは類似活性を有する化合物との併用を想定することもできる。軸索進展を促進する因子としては、glial cell-derived neurotrophic factor (GDNF) 等の神経栄養因子を挙げることができる。

また本発明は、免疫反応を抑制する抗体の可変領域を含むポリペプチドをコードするパラミクソウイルスベクターに関する。本発明者らは、免疫反応を抑制する抗体遺伝子を搭載することで、ベクター自身が有する免疫原的な性質を減弱することが可能であることを見出した。例えば免疫細胞の補助刺激因子に対する抗体またはその受容体に対する抗体を発現するベクターを用いて、補助刺激因子によるシグナル伝達を抑制することにより免疫系活性化を抑制し、ベクターからの搭載遺伝子の長期発現が可能となる。このような改変ベクターは、生体への遺伝子導入用ベクターとして特に有用である。抗体により阻害する対象となる分子としては、免疫活性化シグナルを伝達する所望のシグナル分子が挙げられ、増殖因子またはサイトカインなどの液性因子または受容体であってよい。

ウィルスに対する生体防御機構は複雑で何重にも防御されていることが知られている。このことは生体防御という観点からはなくてはならない重要なシステムであるが、ウィルスベクターを利用した遺伝子治療という観点からは回避したい項目である。その一つが、RNAウィルスの感染依存的に生成する二本鎖RNAにより活性化されると言われているInterferon regulatory factor 3 (IRF-3: Lin, R.

WO 03/102183 PCT/JP03/07005

et al., Mol. Cell. Biol. 18(5) 2986-2996 (1998); Heylbroeck, C. et al., J. Virol. 74(8) 3781-3792 (2000), Genbank Ac. No. NM_001571 (protein NP_001562)) 及びdouble-stranded RNA-activated protein kinase (PKR: Der, S.D. & Lau, A.S. Proc. Natl. Acad. Sci. U.S.A. 92, 8841-8845 (1995); Dejucq, N. et al., J. Cell. Biol. 139(4) 865-873 (1997), Genbank Ac. No. AH008429 (protein AAF13156)) 等の活性化であり、その下流の転写因子を活性化 しInterferon (IFN) 等の発現を亢進する。例えば、intrabodyのような細胞内で 機能する形で、IRF-3或いはPKRの活性を抑制する抗体をベクターに搭載すれば、 自然免疫反応の一部を抑制し感染の持続化による搭載遺伝子の持続的発現が出来 る可能性がある。実際に、PKRのantisenseを高発現しPKR活性を抑制した細胞にお いては、少なくともin vitroレベルでのencephalomyocarditis virusの持続的感 染が生じることが示されている (Yeung, M.C. et al., Proc. Natl. Acad. Sci. U.S.A. 96(21) 11860-11865 (1999))。また、Toll-like receptor (TLR) ファミ リーの中の、TLR-3がdouble-stranded RNAを認識してウィルス感染による自然免 疫を発動することが示されており (Alexopoulou, L. et al., Nature 413, 732-738 (2001))、TLR-4もrespiratory syncytial virus感染による同作用への関わ りが示されている (Haynes, L.M. et al., J. Virol. 75(22) 10730-10737 (2001))。これらTLR-3或いはTLR-4 (TLR-3: Genbank Ac. No. NM_003265 (protein NP_003256); TLP-4: Genbank Ac. No. AH009665 (protein AAF89753)) に対する中和抗体もウィルスベクターによる持続発現に寄与する可能性がある。

同様に、ウィルスベクターの免疫原的な性質を減弱することを目的として、臓器移植で試みられている方法を応用することも可能である。則ち、末梢性の免疫 寛容を目的とした抗体遺伝子の搭載である。T細胞の活性化に関して次のようなモデルが提唱されている(Schwartz, R.H. et al., Cold Spring Harb. Symp. Quant. Biol. 2, 605-610 (1989))。休止期のT細胞の活性化にはT細胞受容体 (TCR)、抗原、及び組織適合性抗原(MHC)に由来するシグナルに加えて、第二のシ

グナルであるコスティミュラトリーシグナル (co-stimulatory signal;補助刺激) が必要であり、第二のシグナルが欠如した状態で抗原刺激が起きるとT細胞の不 活化から寛容が誘導されるというものである。もし、この様式でウィルスベクタ 一感染細胞の免疫寛容が誘導されれば、他への免疫反応を抑制することなく、ウ ィルスベクターに対してのみ免疫反応を回避することが出来るようになり、理想 的な手法となり得る。T細胞上の補助刺激因子としてCD28 (Ac. No. J02988 (protein AAA60581), AF222341 (AAF33792), AF222342 (AAF33793), AF222343 (AAF33794)) が同定されており、抗原提示細胞上のCD80 (Ac. No. NM_005191 (NP_005182)) , CD86 (Ac. No. U04343 (AAB03814), NM_006889 (NP_008820)) \succeq 相互作用することによりTCRからの刺激を増幅させ、IL-2などの産生によりT細胞 を更に活性化する。一方、CTLA-4 (cytotoxic T lymphocyte antigen 4:CD152) (Ac. No. L15006, (AAB59385)) はCD28と共通のリガンド (CD80, CD86) に高親 和性で結合し、T細胞を抑制する作用がある(Walunas, T.L. et al., Immunity1(5) 405-413 (1994))。同様の活性化リガンドとしてPD-1L、およびそ の受容体PD-1が知られている (PD-1: Genbank Ac. No. U64863 (protein AAC51773), PD-1L: AF233516 (proein AAG18508; 本明細書においてはこれらを PD-1 と総称する))(Finger, L. R. et al., Gene 197, 177-187 (1997); Freeman, G. J. et al., J. Exp. Med. 192, 1027-1034 (2000))。また、T細胞上の Lymphocyte Function-associated Antigen-1 (LFA-1) (Ac. No. Y00057 (CAA68266)) は抗原提示細胞上のInter Cellular Adhesion Molecule-1 (ICAM-1 : CD54) (Ac. No. J03132 (AAA52709), X06990 (CAA30051)) と結合し、同様に 補助刺激に関わっていると言われている。以上の観点から、CD28を抑制する抗体 及びCTLA-4の活性をmimicする抗体遺伝子、および/またはLFA-1とICAM-1間の結合 を阻害する抗体遺伝子を搭載したウィルスベクターは、感染細胞における末梢性 免疫寛容を獲得し、長期の遺伝子発現または複数回投与を達成する可能性がある と予想される。実際に、臓器移植の場合の検討において、該当する抗体の短期投 与によって寛容が誘導出来ることが示されている。例えば、補助刺激因子である CD28の結合を阻害する抗CD28抗体を利用した効果 (Yu, X.Z. et al., J. Immunol. 164(9) 4564-4568 (2000); Laskowski, I.A. et al., J. Am. Soc. Nephrol. 13(2) 519-527 (2002))、逆にT細胞活性化に対して抑制的に機能する CTLA-4そのものをIgG1 Fcに結合した蛋白 (CTLA4-Ig) を利用した効果 (Pearson, T.C. et al., Transplantation 57(12) 1701-1706 (1994; Blazzer, B.R. et al., Blood 85(9) 2607-2618 (1995); Hakim, F.T. et al., J. Immunol. 155(4) 1757-1766 (1995); Gainer, A.L. et al., Transplantation 63(7) 1017-1021 (1997); Kirk, A.D. et al., Proc. Natl. Acad. Sci. U.S.A. 94(16) 8789-8794 (1997); Comoli, P. et al., Bone Marrow Transplant 27(12) 1263-1273 (2001))、LFA-1とICAM-1間の結合を阻害する抗体を利用した効果 (Heagy, W. et al., Transplantation 37(5) 520-523 (1984); Fischer, A. et al., Blood 77(2) 249-256 (1991); Guerette, B. et al., J. Immunol. 159(5) 2522-2531 (1997); Nicolls, M.R. et al., J Immunol. 164(7) 3627-3634 (2000); Poston, R.S. et al., Transplantation 69(10) 2005-2013 (2000); Morikawa, M. et al., Transplantation 71(11) 1616-1621 (2001); Da Silva, M. et al., J. Urol. 166(5) 1915-1919 (2001)) 等多くの報告がなされている。更には、CD28お よびCTLA4と構造的・機能的な類似性があり最近同定された inducible costimulator (ICOS: Wallin, J.J. et al., J. Immunol. 167(1) 132-139 (2001); Sperling, A. I. & Bluestone, J. A. Nat. Immunol. 2(7) 573-574 (2001); Ozkaynak, E. et al., Nat. Immunol. 2(7) 591-596 (2001); Ac. No. AJ277832 (CAC06612)) についても同様の検討がなされており、抗ICOS抗体での効 果が確認されている (Ogawa, S. et al., J. Immunol. 167(10) 5741-5748 (2001); Guo, L. et al., Transplantation 73(7) 1027-1032 (2002))。ウイル スベクターを利用した方法においても報告があり、臓器移植の時にCTLA4-Ig遺伝 子搭載アデノウィルスベクターの応用検討がなされている (Pearson, T.C. et

al., Transplantation 57(12) 1701-1706 (1994); Li, T.S. et al., Transplantation 72(12) 1983-1985 (2001)) .

以上のような臓器移植の場面での末梢性免疫寛容を目的とした手法は、遺伝子 導入用ウィルスベクター利用時においても、免疫寛容を誘導する有効な手法とし てそのまま応用することが可能であり、該当する抗体遺伝子(或いはCTLA4-Ig) の搭載によって長期遺伝子発現或いは繰返し投与を実現することができる。この 観点ではアデノウィルスベクターについて報告がなされており、CTLA4-Ig遺伝子 を搭載したアデノウィルスベクターを、別のマーカー遺伝子 (lacZ) を搭載した ベクターと同時に投与することで、免疫反応が抑制され、マーカー遺伝子の発現 が延長されることが示されている (Ali, R.R. et al., Gene Ther. 5(11) 1561-1565 (1998); Ideguchi, M. et al., Neuroscience 95(1) 217-226 (2000); Uchida, T. et al., Brain Res. 898(2) 272-280 (2001))。この系では唯一、 CTLA4-Ig遺伝子を用いており、マーカー遺伝子は別のベクターへ搭載した単純な 系での検討であり、同じベクターに搭載した例、他の補助刺激因子を抗体遺伝子 で抑制した例、また特にパラミクソウィルスベクターでの効果を見た例は無く、 詳細な検討はなされていない。本発明においては、上記のような種々のシグナル 分子に対する抗体遺伝子を用いてよく、さらに免疫寛容を誘導する抗体遺伝子と 治療遺伝子(またはマーカー遺伝子)などの複数の遺伝子を単一ベクターから発 現させることが可能である。特にT細胞活性化の補助刺激因子の作用を抑制する抗 体遺伝子を用いることにより、例えば投与部位局所の免疫系に限局して作用する 長期遺伝子発現および繰り返し(複数回)投与が可能なベクターを構築すること ができる。

これらの因子または受容体に対する抗体遺伝子を搭載したパラミクソウィルスベクターは、さらに治療用遺伝子を搭載させ治療用ベクターとして用いられる。あるいは、治療遺伝子を搭載した別のベクターとともに投与することにより、治療遺伝子の長期発現および/または繰り返し投与を可能にする。疾患としては遺

伝子治療の対象となりうる任意の疾患が挙げられる。ベクターの投与方法などについては、それぞれの治療用遺伝子を用いた遺伝子治療に則った治療方法を適用すればよい。

免疫寛容を誘導する抗体をコードする本発明のベクターは、この抗体をコードしない対照ベクターに比べ、投与後の生体における発現の持続性が上昇している。発現の持続性は、例えば本発明のベクターと対照ベクターとを同じ力価で同じ部位 (例えば左右対称の部位) に投与し、投与直後を100とした時の相対発現レベルの経時的変化を測定することにより評価することができる。例えば投与後に、相対発現レベルが50、30、または10となるまでの期間、あるいは投与から一定期間後の相対発現レベルを測定すればよい。本発明のベクターは、対照に比べ統計学的有意 (例えば有意水準5%またはさらに有意) に発現持続性が上昇している。統計学的解析は、例えばt検定などにより行うことができる。

また、このとき、コスティミュラトリーシグナルのシグナル分子に対する抗体、あるいはCTLA4またはその断片を投与することによって、ベクターからの遺伝子発現の持続性をさらに延長させることができる。コスティミュラトリーシグナルのシグナル分子に対する抗体としては上記したCD28、CD80、CD86、LFA-1、ICAM-1 (CD54)、または ICOS などに対する抗体を用いることができる。このような抗体断片は、例えば「日本生化学会編 新生化学実験講座12 分子免疫学III 185-195ページ(東京化学同人)」および/または「Current Protocols in Immunology, Volume 1、(John Wiley & Sons, Inc.)」の記載に従って作製することができる。抗体断片は、例えば抗体をペプシン、パパイン、トリプシン等の蛋白質分解酵素で消化することにより得ることができる。あるいは可変領域のアミノ酸配列を解析し、組み換え蛋白質として発現させ調製することが可能である。また抗体には、ヒト型抗体もしくはヒト抗体なども含まれる。抗体は、プロティンAカラムまたはプロテインGカラム等を用いたアフィニティークロマトグラフィーにより精製することができる。CTLA4またはその断片としては、CTLA4の

CD80/CD86結合部位を含み、CD80および/またはCD86と結合してCD28との相互作用を阻害するポリペプチドであれば所望のポリペプチドを用いることができるが、例えばCTLA4の細胞外ドメインにIgG (例えばIgG1) のFc断片を融合させた可溶性ポリペプチドを好適に用いることができる。これらのポリペプチドおよび抗体は、凍結乾燥して製剤化したり、あるいは所望の薬学的に許容される担体、具体的には生理食塩水またはリン酸緩衝生理食塩水 (PBS) などと共に水性組成物とすることができる。本発明は、これらのポリペプチドまたは抗体、および本発明のベクターを含む遺伝子導入キットに関する。このキットは、ベクターの投与後の発現期間を延長させるために使用することができる。特に繰り返し投与におけるベクターからの遺伝子発現の持続性を上昇させるために使用される。

本発明のベクターを製造するには、哺乳動物細胞においてパラミクソウイルスのゲノムRNAを含むRNPの再構成に必要なウイルス蛋白質、すなわちN、P、およびL蛋白質の存在下、本発明のパラミクソウイルスのゲノムRNAをコードするcDNAを転写させる。転写によりネガティブ鎖ゲノム(すなわちウイルスゲノムと同じアンチセンス鎖)を生成させてもよく、あるいはポジティブ鎖(ウイルス蛋白質をコードするセンス鎖)を生成させても、ウイルスRNPを再構成することができる。ベクターの再構成効率を高めるには、好ましくはポジティブ鎖を生成させる。RNA末端は、天然のウイルスゲノムと同様に3'リーダー配列と5'トレイラー配列の末端をなるべく正確に反映させることが好ましい。転写産物の5'端を正確に制御するためには、例えば転写開始部位としてT7 RNAポリメラーゼ認識配列を利用し、該RNAポリメラーゼを細胞内で発現させればよい。転写産物の3'端を制御するには、例えば転写産物の3'端に自己切断型リボザイムをコードさせておき、このリボザイムにより正確に3'端が切り出されるようにすることができる(Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997、Kato, A. et al., 1997, EMBO J. 16: 578-587 及び Yu, D. et al., 1997, Genes Cells 2: 457-466)。

例えば外来遺伝子を有する組み換えセンダイウイルスベクターは、Hasan, M.

K. et al., J. Gen. Virol. 78: 2813-2820, 1997、Kato, A. et al., 1997, EMBO J. 16: 578-587 及び Yu, D. et al., 1997, Genes Cells 2: 457-466の記載等に準じて、次のようにして構築することができる。

まず、目的の外来遺伝子のcDNA塩基配列を含むDNA試料を用意する。DNA試料は、25ng/μ1以上の濃度で電気泳動的に単一のプラスミドと確認できることが好ましい。以下、NotI部位を利用してウィルスゲノムRNAをコードするDNAに外来遺伝子を挿入する場合を例にとって説明する。目的とするcDNA塩基配列の中にNotI認識部位が含まれる場合は、部位特異的変異導入法などを用いて、コードするアミノ酸配列を変化させないように塩基配列を改変し、NotI部位を予め除去しておくことが好ましい。この試料から目的の遺伝子断片をPCRにより増幅し回収する。2つのプライマーの5'部分にNotI部位を付加しておくことにより、増幅された断片の両端をNotI部位とする。ウイルスゲノム上に挿入された後の外来遺伝子のORFとその両側のウイルス遺伝子のORFとの間にE-I-S配列が1つずつ配置されるように、プライマー中にE-I-S配列またはその部分を含めるようにする。

例えば、フォワード側合成DNA配列は、NotIによる切断を保証するために 5'側に任意の2以上のヌクレオチド(好ましくはGCGおよびGCCなどのNotI認識部位由来の配列が含まれない4塩基、更に好ましくはACTT)を選択し、その3'側にNotI認識部位gcggccgcを付加し、さらにその3'側にスペーサー配列として任意の9塩基または9に6の倍数を加えた数の塩基を付加し、さらにその3'側に所望のcDNAの開始コドンATGからこれを含めてORFの約25塩基相当の配列を付加した形態とする。最後の塩基はGまたはCとなるように該所望のcDNAから約25塩基を選択してフォワード側合成オリゴDNAの3'の末端とすることが好ましい。

リバース側合成DNA配列は5'側から任意の2以上のヌクレオチド(好ましくはGCGおよびGCCなどのNotI認識部位由来の配列が含まれない4塩基、更に好ましくはACTT)を選択し、その3'側にNotI認識部位gcggccgcを付加し、さらにその3'側に長さを調節するための挿入断片のオリゴDNAを付加する。このオリゴDNAの長さ

は、付加したE-I-S配列を含む最終的なPCR増幅産物のNotI断片の鎖長が6の倍数になるように塩基数を設計する(いわゆる「6のルール(rule of six)」; Kolakofski, D. et al., J. Virol. 72:891-899, 1998; Calain, P. and Roux, L., J. Virol. 67:4822-4830, 1993; Calain, P. and Roux, L., J. Virol. 67:4822-4830, 1993)。このプライマーにE-I-S配列を付加する場合には、挿入断片のオリゴDNAの3'側にセンダイウィルスのS配列の相補鎖配列、好ましくは5'-CTTTCACCCT-3'(配列番号:1)、I配列の相補鎖配列、好ましくは5'-AAG-3'、E配列の相補鎖配列、好ましくは5'-TTTTTCTTACTACCGG-3'(配列番号:2)、さらにその3'側に所望のcDNA配列の終始コドンから逆に数えて約25塩基相当の相補鎖の最後の塩基がGまたはCになるように長さを選択して配列を付加し、リバース側合成DNAの3'の末端とする。

PCRは、Taqポリメラーゼまたはその他のDNAポリメラーゼを用いる通常の方法を用いることができる。増幅した目的断片はNotIで消化した後、pBluescript等のプラスミドベクターのNotI部位に挿入する。得られたPCR産物の塩基配列をシークエンサーで確認し、正しい配列のプラスミドを選択する。このプラスミドから挿入断片をNotIで切り出し、ゲノムcDNAを含むプラスミドのNotI部位にクローニングする。またプラスミドベクターを介さずにNotI部位に直接挿入し、組み換えセンダイウィルスcDNAを得ることも可能である。

例えば、組み換えセンダイウィルスゲノムcDNAであれば、文献記載の方法に準じて構築することができる(Yu, D. et al., Genes Cells 2: 457-466, 1997; Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997)。例えば、NotI制限部位を有する18bpのスペーサー配列(5'-(G)-CGGCCGCAGATCTTCACG-3')(配列番号: 3)を、クローニングされたセンダイウィルスゲノムcDNA(pSeV(+))のリーダー配列とN蛋白質のORFとの間に挿入し、デルタ肝炎ウィルスのアンチゲノム鎖(antigenomic strand)由来の自己開裂リボザイム部位を含むプラスミドpSeV18'b(+)を得る(Hasan, M. K. et al., 1997, J. General Virology 78:

2813-2820)。pSeV18^tb(+)のNotI部位に外来遺伝子断片を挿入し、所望の外来遺伝子が組み込まれた組み換えセンダイウイルスcDNAを得ることができる。

このようにして作製した組み換えパラミクソウイルスのゲノムRNAをコードする DNAを、上記のウイルス蛋白質 (L、P、およびN) 存在下で細胞内で転写させるこ とにより、本発明のベクターを再構成することができる。本発明は、本発明のベ クターの製造のための、本発明のベクターのウィルスゲノムRNAをコードするDNA を提供する。また本発明は、本発明のベクターの製造に適用するための、該ベク ターのゲノムRNAをコードするDNAの使用に関する。組み換えウイルスの再構成は 公知の方法を利用して行うことができる (WO97/16539; WO97/16538; Durbin, A. P. et al., 1997, Virology 235: 323-332; Whelan, S. P. et al., 1995, Proc. Natl. Acad. Sci. USA 92: 8388-8392; Schnell. M. J. et al., 1994, EMBO J. 13: 4195-4203; Radecke, F. et al., 1995, EMBO J. 14: 5773-5784; Lawson, N. D. et al., Proc. Natl. Acad. Sci. USA 92: 4477-4481; Garcin, D. et al., 1995, EMBO J. 14: 6087-6094; Kato, A. et al., 1996, Genes Cells 1: 569-579; Baron, M. D. and Barrett, T., 1997, J. Virol. 71: 1265-1271; Bridgen, A. and Elliott, R. M., 1996, Proc. Natl. Acad. Sci. USA 93: 15400-15404)。これらの方法により、パラインフルエンザ、水疱性口内炎ウィル ス、狂犬病ウィルス、麻疹ウィルス、リンダーペストウィルス、センダイウィル スなどを含むマイナス鎖RNAウィルスをDNAから再構成させることができる。これ らの方法に準じて、本発明のベクターを再構成させることができる。ウイルスベ クターDNAにおいて、F遺伝子、HN遺伝子、および/またはM遺伝子を欠失させた場 合には、そのままでは感染性のウイルス粒子を形成しないが、宿主細胞に、これ ら欠失させた遺伝子および/または他のウイルスのエンベロープ蛋白質をコードす る遺伝子などを別途、細胞に導入し発現させることにより、感染性のウイルス粒 子を形成させることが可能である。

具体的な手順は、 (a) パラミクソウィルスゲノムRNA (ネガティブ鎖RNA) ま

たはその相補鎖(ポジティブ鎖)をコードするcDNAを、N、P、およびL蛋白質を発現する細胞で転写させる工程、(b)該細胞またはその培養上清から該ゲノムRNAを含む複合体を回収する工程、により製造することができる。転写のために、ゲノムRNAをコードするDNAは適当なプロモーターの下流に連結される。転写されたゲノムRNAは N、L、およびP蛋白質の存在下で複製されRNP複合体を形成する。そして M、HN、およびF蛋白質の存在下でエンベロープに包まれたウイルス粒子が形成される。ゲノムRNAをコードするDNAは、例えばT7プロモーターの下流に連結させ、T7 RNA ポリメラーゼによりRNAに転写させる。プロモーターとしては、T7ポリメラーゼの認識配列を含むもの以外にも所望のプロモーターを利用することができる。あるいは、インビトロで転写させたRNAを細胞にトランスフェクトしてもよい。

DNAからのゲノムRNAの最初の転写に必要なT7 RNAポリメラーゼ等の酵素は、これを発現するプラスミドベクターまたはウイルスベクターの導入によって供給することができるし、または、例えば細胞の染色体にこの遺伝子を、発現を誘導できるように組み込んでおき、ウイルス再構成時に発現を誘導することにより供給することもできる。またゲノムRNA、およびベクター再構成に必要なウイルス蛋白質は、例えばこれらを発現するプラスミドの導入によって供給する。これらのウイルス蛋白質の供給において、野生型またはある種の変異パラミクソウイルスなどのヘルパーウイルスを用いることもできるが、これらのウイルスの混入を招くため好ましくない。

ゲノムRNAを発現するDNAを細胞内に導入する方法には、例えば次のような方法 、①目的の細胞が取り込めるようなDNA沈殿物を作る方法、②目的の細胞による取 りこみに適し、かつ細胞毒性の少ない陽電荷特性を持つDNAを含む複合体を作る方 法、③目的の細胞膜に、DNA分子が通り抜けられるだけに十分な穴を電気パルスに よって瞬間的に開ける方法などがある。

②としては、種々のトランスフェクション試薬が利用できる。例えば、DOTMA(

Roche) , Superfect (QIAGEN #301305) , DOTAP, DOPE, DOSPER (Roche #1811169) などが挙げられる。①としては例えばリン酸カルシウムを用いたトランスフェ クション法が挙げられ、この方法によって細胞内に入ったDNAは貧食小胞に取り込 まれるが、核内にも十分な量のDNAが入ることが知られている (Graham, F. L. and Van Der Eb, J., 1973, Virology 52: 456; Wigler, M. and Silverstein, S., 1977, Cell 11: 223)。ChenおよびOkayamaはトランスファー技術の最適化を 検討し、1) 細胞と共沈殿物のインキュベーション条件を 2~4% CO₂、35℃、15 ~24時間、2) DNAは直鎖状より環状のものが活性が高く、3) 沈殿混液中のDNA濃 度が $20\sim30\,\mu\,\mathrm{g/ml}$ のとき最適な沈殿が得られると報告している (Chen, C. and Okayama, H., 1987, Mol. Cell. Biol. 7: 2745)。②の方法は、一過的なトラン スフェクションに適している。古くはDEAE-デキストラン(Sigma #D-9885 M.W. 5×10⁵) 混液を所望のDNA濃度比で調製し、トランスフェクションを行う方法が 知られている。複合体の多くはエンドソームの中で分解されてしまうため、効果 を高めるためにクロロキンを加えることもできる (Calos, M. P., 1983, Proc. Natl. Acad. Sci. USA 80: 3015)。③の方法は電気穿孔法と呼ばれる方法で、細 胞選択性がないという点で①および②の方法に比べて汎用性が高い。効率はパル ス電流の持続時間、パルスの形、電界(電極間のギャップ、電圧)の強さ、バッ ファーの導電率、DNA濃度、細胞密度の最適条件下で良いとされている。

以上、3つのカテゴリーの中で②の方法は操作が簡便で多量の細胞を用いて多数の検体を検討することができるので、ベクター再構成のためのDNAの細胞への導入には、トランスフェクション試薬が適している。好適には Superfect Transfection Ragent (QIAGEN, Cat No. 301305)、または DOSPER Liposomal Transfection Reagent (Roche, Cat No. 1811169)が用いられるが、これらに制限されない。

cDNAからのウイルスの再構成は具体的には例えば以下のようにして行うことができる。

24穴から6穴程度のプラスチックプレートまたは100mmペトリ皿等で、10%ウシ 胎児血清(FCS)および抗生物質 (100 units/ml ペニシリンGおよび100μg/ml スト レプトマイシン)を含む最少必須培地 (MEM)を用いてサル腎臓由来細胞株LLC-MK2 をほぼ100%コンフルエントになるまで培養し、例えば 1μg/ml psoralen (ソラ レン) 存在下 UV照射処理を20分処理で不活化した、T7 RNAポリメラーゼを発現す る組換えワクシニアウィルスvTF7-3 (Fuerst, T. R. et al., Proc. Natl. Acad. Sci. USA 83: 8122-8126,1986, Kato, A. et al., Genes Cells 1: 569-579, 1996) を2 PFU/細胞で感染させる。ソラレンの添加量およびUV照射時間は適宜調 整することができる。感染1時間後、 $2\sim60\,\mu\,\mathrm{g}$ 、より好ましくは $3\sim20\,\mu\,\mathrm{g}$ の組換え センダイウィルスのゲノムRNAをコードするDNAを、ウィルスRNPの生成に必須なト ランスに作用するウィルス蛋白質を発現するプラスミド (0.5~24μgのpGEM-N、 0.25 \sim 12 μ g \mathcal{O} pGEM-P、 および0.5 \sim 24 μ g \mathcal{O} pGEM-L) (Kato, A. et al., Genes Cells 1: 569-579, 1996) と共にSuperfect (QIAGEN社) を用いたリポフェクショ ン法等によりトランスフェクションする。N、P、およびLをコードする発現ベクタ ーの量比は 2:1:2 とすることが好ましく、プラスミド量は、例えば $1\sim4\mu$ gの pGEM-N、 $0.5\sim2\,\mu$ gのpGEM-P、および $1\sim4\,\mu$ gのpGEM-L程度で適宜調整する。

トランスフェクションを行った細胞は、所望により100μg/mlのリファンピシン (Sigma) 及びシトシンアラビノシド (AraC) 、より好ましくは40μg/mlのシトシンアラビノシド (AraC) (Sigma)のみを含む血清不含のMEMで培養し、ワクシニアウィルスによる細胞毒性を最少にとどめ、ウィルスの回収率を最大にするように薬剤の最適濃度を設定する(Kato, A. et al., 1996, Genes Cells 1: 569-579)。トランスフェクションから48~72時間程度培養後、細胞を回収し、凍結融解を3回繰り返して細胞を破砕した後、RNPを含む破砕物をLLC-MK2細胞に再度トランスフェクションして培養する。または、培養上清を回収し、LLC-MK2細胞の培養液に添加して感染させ培養する。トランスフェクションは、例えばリポフェクトアミンまたはポリカチオニックリポソームなどと共に複合体を形成させて細胞に

導入することが可能である。具体的には、種々のトランスフェクション試薬が利用できる。例えば、DOTMA(Roche)、Superfect(QIAGEN #301305)、DOTAP、DOPE、DOSPER(Roche #1811169)などが挙げられる。エンドソーム中での分解を防ぐため、クロロキンを加えることもできる(Calos, M. P., 1983, Proc. Natl. Acad. Sci. USA 80: 3015)。RNPが導入された細胞では、RNPからのウイルス遺伝子の発現およびRNPの複製の過程が進行しベクターが増幅する。得られたウイルス溶液を希釈(例えば10⁶ 倍)して再増幅を繰り返すことにより、ワクシニアウィルスvTF7-3は完全に除去することができる。再増幅は、例えば3回以上繰り返す。得られたベクターは-80℃で保存することができる。エンベロープ蛋白質をコードする遺伝子を欠損した伝播能を持たないウイルスベクターを再構成させるには、エンベロープ蛋白質を発現するLLC-MK2細胞をトランスフェクションに使用するか、またはエンベロープ発現プラスミドを共にトランスフェクションで使用するか、またはエンベロープ発現プラスミドを共にトランスフェクションすればよい。また、トランスフェクションを行った細胞にエンベロープ蛋白質を発現するLLC-MK2細胞を重層して培養することによって欠損型ウイルスベクターを増幅することもできる(国際公開番号 WO00/70055 および WO00/70070参照)。

回収されたウイルスの力価は、例えばCIU (Cell-Infected Unit) 測定または赤血球凝集活性(HA)の測定することにより決定することができる(W000/70070; Kato, A. et al., 1996, Genes Cells 1: 569-579; Yonemitsu, Y. & Kaneda, Y., Hemaggulutinating virus of Japan-liposome-mediated gene delivery to vascular cells. Ed. by Baker AH. Molecular Biology of Vascular Diseases. Method in Molecular Medicine: Humana Press: pp. 295-306, 1999)。また、GFP (緑色蛍光蛋白質)などのマーカー遺伝子を搭載したベクターについては、マーカーを指標に直接的に感染細胞をカウントすることにより力価を定量することができる(例えばGFP-CIUとして)。このようにして測定した力価は、CIUと同等に扱うことができる(W000/70070)。

ウィルスベクターが再構成する限り、再構成に用いる宿主細胞は特に制限され

ない。例えば、センダイウィルスベクター等の再構成においては、サル腎由来のLLCMK2細胞およびCV-1細胞、ハムスター腎由来のBHK細胞などの培養細胞、ヒト由来細胞等を使うことができる。これらの細胞に適当なエンベロープ蛋白質を発現させることで、その蛋白質をエンベロープに含む感染性ウィルス粒子を得ることもできる。また、大量にセンダイウイルスベクターを得るために、上記の宿主から得られたウイルスベクターを発育鶏卵に感染させ、該ベクターを増幅することができる。鶏卵を使ったウイルスベクターの製造方法は既に開発されている(中西ら編,(1993),「神経科学研究の先端技術プロトコールIII,分子神経細胞生理学」,厚生社、大阪、pp. 153-172)。具体的には、例えば、受精卵を培養器に入れ9~12日間 37~38℃で培養し、胚を成長させる。ウイルスベクターを開殖させる。培養期間等の条件は、使用する組み換えセンダイウイルスベクターを増殖させる。培養期間等の条件は、使用する組み換えセンダイウイルスにより変わり得る。その後、ウイルスを含んだ尿液を回収する。尿液からのセンダイウイルスベクターの分離・精製は常法に従って行うことができる(田代眞人、「ウイルス実験プロトコール」、永井、石浜監修、メジカルビュー社、pp. 68-73,(1995))。

例えば、F遺伝子を欠失したセンダイウイルスベクターの構築と調製は、以下のように行うことができる(国際公開番号 WOOO/70055 および WOOO/70070参照)。
<1> F遺伝子欠失型センダイウイルスゲノムcDNAおよびF発現プラスミドの構築センダイウイルス (SeV) 全長ゲノムcDNA、pSeV18* b(+) (Hasan, M. K. et al., 1997, J. General Virology 78: 2813-2820) (「pSeV18* b(+)」は「pSeV18*」ともいう)のcDNAをSphI/KpnIで消化してフラグメント(14673bp)を回収し、pUC 18にクローニングしてプラスミドpUC18/KSとする。F遺伝子欠損部位の構築はこのpUC18/KS上で行う。F遺伝子の欠損は、PCR-ライゲーション方法の組み合わせで行い、結果としてF遺伝子のORF(ATG-TGA=1698bp)を除いて例えばatgcatgccggcagatga (配列番号: 4) で連結し、F遺伝子欠失型SeVゲノムcDNA (pSeV18*/ΔF)を構築する。PCRは、Fの上流には [forward: 5'-gttgagtactgcaagagc/配列番号

: 5, reverse: 5'-tttgccggcatgcatgtttcccaaggggagagttttgcaacc/配列番号: 6]、F遺伝子の下流には [forward: 5'-atgcatgccggcagatga/配列番号: 7, reverse: 5'-tgggtgaatgagagaatcagc/配列番号: 8]のプライマー対を用いたPCRの産物をEcoT22Iで連結する。このように得られたプラスミドをSacIとSalIで消化して、F遺伝子欠損部位を含む領域の断片(4931bp)を回収してpUC18にクローニングし、pUC18/dFSSとする。このpUC18/dFSSをDraIIIで消化して、断片を回収してpSeV18'のF遺伝子を含む領域のDraIII断片と置き換え、ライゲーションしてプラスミドpSeV18'/ΔFを得る。

外来遺伝子は、例えばpUC18/dFSSのF遺伝子欠失部位にある制限酵素 NsiI および NgoMIV 部位に挿入する。このためには、例えば外来遺伝子断片を、NsiI-tailedプライマーおよびNgoMIV-tailedプライマーで増幅すればよい。

<2> SeV-F蛋白を誘導発現するヘルパー細胞の作製

センダイウイルスのF遺伝子 (SeV-F) を発現するCre/loxP誘導型発現プラスミドの構築はSeV-F遺伝子をPCRで増幅し、Cre DNAリコンビナーゼにより遺伝子産物を誘導発現されるように設計されたプラスミドpCALNdlw (Arai, T. et al., J. Virology 72, 1998, p1115-1121) のユニークサイト SwaI部位に挿入し、プラスミドpCALNdLw/Fを構築する。

F遺伝子欠損ゲノムから感染ウイルス粒子を回収するため、SeV-F蛋白を発現するヘルパー細胞株を樹立する。細胞は、例えばSeVの増殖によく用いられているサル腎臓由来細胞株LLC-MK2細胞を用いることができる。LLC-MK2細胞は、10%の熱処理した不動化ウシ胎児血清 (FBS)、ペニシリンGナトリウム 50 単位/ml、およびストレプトマイシン 50 μ g/mlを添加したMEMで37℃、5% CO_2 で培養する。SeV-F遺伝子産物は細胞傷害性を有するため、Cre DNAリコンビナーゼによりF遺伝子産物を誘導発現されるように設計された上記プラスミドpCALNdLw/Fを、リン酸カルシウム法(mammalian transfection kit(Stratagene))により、周知のプロトコールに従ってLLC-MK2細胞に遺伝子導入を行う。

10cmプレートを用い、40%コンフルエントまで生育したLLC-MK2細胞に $10\,\mu$ gのプラスミドpCALNdLw/Fを導入後、10mlの10% FBSを含むMEM培地にて、37^{\circ}Cの5% CO₂ インキュベーター中で24時間培養する。24時間後に細胞をはがし、10ml培地に懸濁後、10cmシャーレ5枚を用い、5ml 1枚、2ml 2枚、0.2ml 2枚に蒔き、G418 (GIBCO-BRL)を $1200\,\mu$ g/mlを含む10mlの10%FBSを含むMEM培地にて培養を行い、2 日毎に培地交換しながら、14日間培養し、遺伝子の安定導入株の選択を行う。該培地により生育してきたG418に耐性を示す細胞はクローニングリングを用いて回収する。回収した各クローンは10cmプレートでコンフルエントになるまで拡大培養を続ける。

F蛋白質の発現誘導は、細胞を6cmシャーレにてコンフルエントまで生育させた後、アデノウイルスAxCANCreを斉藤らの方法 (Saito et al., Nucl. Acids Res. 23: 3816-3821 (1995); Arai, T. et al., J. Virol 72,1115-1121 (1998)) により例えば moi=3 で感染させて行う。

<3> F遺伝子欠失SeVウイルスの再構築及び増幅

上記 pSeV18*/ ΔF の外来遺伝子が挿入されたプラスミドを以下のようにして LLC-MK2細胞にトランスフェクションする。LLC-MK2 細胞を5×10⁶ cells/dish で 100mmのシャーレに播く。T7 RNAポリメラーゼによりゲノムRNAの転写を行わせる 場合には、細胞培養24時間後、ソラレン(psoralen)と長波長紫外線(365nm)で 20 分間処理したT7 RNAポリメラーゼを発現するリコンビナントワクシニアウイルス (PLWUV-VacT7: Fuerst, T.R. et al., Proc. Natl. Acad. Sci. USA 83, 8122-8126 (1986))をMOI 2程度で室温で1時間感染させる。ワクシニアウイルスへの紫外線照射には、例えば15ワットバルブを5本が装備された UV Stratalinker 2400 (カタログ番号 400676 (100V),ストラタジーン社、La Jolla, CA, USA)を用いることができる。細胞を無血清のMEMで洗浄した後、ゲノムRNAを発現するプラスミド、およびパラミクソウイルスのそれぞれN、P、L、F、およびHN蛋白質を発現する発現プラスミド適当なリポフェクション試薬と用いてこの細胞にトラン

スフェクトする。プラスミドの量比は、これに限定されないが、好適には順に 6 : 2:1:2:2:2 とすることができる。例えば、 $12 \mu g$ のゲノムRNAを発現するプ ラスミド、並びにN、P、L、および FプラスHN蛋白質を発現する発現プラスミド (pGEM/NP, pGEM/P, pGEM/L及びpGEM/F-HN; WO00/70070, Kato, A. et al., Genes Cells 1, 569-579 (1996)) を、それぞれ $12\mu g$, $4\mu g$, $2\mu g$, $4\mu g$ 及び $4\mu g$ / dishの量比トランスフェクトする。数時間培養後、血清を含まないMEMで細胞を2 回洗浄し、 $40 \,\mu\,\mathrm{g/mL}\,$ の Cytosine β -D-arabinofuranoside (AraC : Sigma, St. Louis, MO) 及び7.5μg/mLのTrypsin (Gibco-BRL, Rockville, MD) を含むMEM で培養する。これらの細胞を回収し、ペレットをOptiMEM に懸濁する(107 cells/ml)。 凍結融解を 3 回繰り返して lipofection reagent DOSPER (Boehringer mannheim)と混合し(10⁶cells/25μl DOSPER)室温で15分放置した 後、上記でクローニングしたF発現ヘルパー細胞にトランスフェクション(10^6 cells /well 12-well-plate) し、血清を含まないMEM($40\,\mu\,\mathrm{g/ml}$ AraC, 7.5μg/ml トリプシンを含む)で培養し、上清を回収する。F以外の遺伝子、例え ばHNまたはM遺伝子を欠損したウイルスも、これと同様の方法で調製することがで きる。

ウィルス遺伝子欠損型ベクターを調製する場合、例えば、ベクターに含まれる ウィルスゲノム上で欠損しているウィルス遺伝子が異なる2種またはそれ以上の ベクターを同じ細胞に導入すれば、それぞれで欠損するウィルス蛋白質が、他の ベクターからの発現により供給されるため、互いに相補しあって感染力のあるウ ィルス粒子が形成され、複製サイクルがまわりウィルスベクターが増幅される。 すなわち、2種またはそれ以上の本発明のベクターを、ウィルス蛋白質を相補す る組み合わせで接種すれば、それぞれのウィルス遺伝子欠損型ウィルスベクター の混合物を大量かつ低コストで生産することができる。これらのウィルスは、ウ ィルス遺伝子が欠損しているため、ウィルス遺伝子を欠損していないウィルスに 比ベゲノムサイズが小さくなりサイズの大きい外来遺伝子を保持することができ る。また、ウィルス遺伝子の欠損により増殖性がないこれらのウィルスは細胞外で希釈され共感染の維持が困難であることから、不稔化するため、環境放出管理上の利点がある。例えば抗体H鎖をコードするベクターとL鎖コードするベクターとを互いに相補できるように別々に構築し、これらの共感染させることも考えられる。本発明は、抗体のH鎖可変領域を含むポリペプチドをコードするパラミクソウイルスベクター、および抗体のL鎖可変領域を含むポリペプチドをコードするパラミクソウイルスベクターを含む組成物を提供する。また本発明は、抗体のH鎖可変領域を含むポリペプチドをコードするパラミクソウイルスベクターを含む組成物を提供する。また本発明は、抗体のH鎖可変領域を含むポリペプチドをコードするパラミクソウイルスベクター、および抗体のL鎖可変領域を含むポリペプチドをコードするパラミクソウイルスベクターを含むキットを提供する。これらの組成物およびキットは、同時に感染させることでH鎖およびL鎖からなる抗体を形成させるために使用できる。

なお、伝播性のパラミクソウイルスベクターを個体または細胞に投与後、治療が完了するなどウイルスベクターの増殖を抑止する必要が生じた際には、RNA依存性RNAポリメラーゼ阻害剤を投与すれば、宿主に障害を与えずにウイルスベクターの増殖だけを特異的に抑止することもできる。

本発明の方法によれば、本発明のウイルスベクターは、例えば 1×10^5 CIU/mL以上、好ましくは 1×10^6 CIU/mL以上、より好ましくは 5×10^6 CIU/mL以上、より好ましくは 1×10^7 CIU/mL以上、より好ましくは 5×10^7 CIU/mL以上、より好ましくは 1×10^8 CIU/mL以上、より好ましくは 5×10^8 CIU/mL以上の力価でウイルス産生細胞の細胞外液中に放出させることが可能である。ウイルスの力価は、本明細書および他に記載の方法により測定することができる(Kiyotani, K. et al., Virology 177(1), 65-74 (1990); W000/70070)。

回収したパラミクソウイルスベクターは実質的に純粋になるよう精製することができる。精製方法はフィルトレーション(濾過)、遠心分離、およびカラム精製等を含む公知の精製・分離方法またはその組み合わせにより行うことができる。「実質的に純粋」とは、ウイルスベクターが、それが存在する試料中の成分と

して主要な割合を占めることを言う。典型的には、実質的に純粋なウィルスベクターは、試料中に含まれる全蛋白質(但しキャリアーや安定剤として加えた蛋白質は除く)のうち、ウィルスベクター由来の蛋白質の割合が10%以上、好ましくは20%以上、より好ましくは50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上を占めることにより確認することができる。パラミクソウィルスの具体的な精製方法としては、例えばセルロース硫酸エステルまたは架橋ポリサッカライド硫酸エステルを用いる方法(特公昭62-30752号公報、特公昭62-33879号公報、および特公昭62-30753号公報)、およびフコース硫酸含有多糖および/またはその分解物に吸着させる方法(W097/32010)等を例示することができる。

ベクターを含む組成物の製造においては、ベクターは必要に応じて薬理学的に許容される所望の担体または媒体と組み合わせることができる。「薬学的に許容される担体または媒体」とは、ベクターと共に投与することが可能であり、ベクターによる遺伝子導入を有意に阻害しない材料である。例えばベクターを生理食塩水またはリン酸緩衝生理食塩水 (PBS) などで適宜希釈して組成物とすることができる。ベクターを鶏卵で増殖させた場合等においては尿液を含んでよい。またベクターを含む組成物は、脱イオン水、5%デキストロース水溶液等の担体または媒体を含んでいてもよい。さらに、その他にも、植物油、懸濁剤、界面活性剤、安定剤、殺生物剤等が含有されていてもよい。また保存剤またはその他の添加剤を添加することができる。本発明のベクターを含む組成物は試薬として、および医薬として有用である。

ベクターの投与量は、疾患、患者の体重、年齢、性別、症状、投与目的、投与 組成物の形態、投与方法、導入遺伝子等により異なるが、当業者であれば適宜決 定することが可能である。投与経路は適宜選択することができるが、例えば経皮 的、鼻腔内的、経気管支的、筋内的、腹腔内、静脈内、関節内、脊髄腔内、また は皮下等に行われうるがそれらに限定されない。また局所あるいは全身に投与し 得る。投与されるベクター量は好ましくは約10 6 CIU/mlから約10 11 CIU/ml、より好ましくは約10 7 CIU/mlから約10 6 CIU/ml、最も好ましくは約1×10 8 CIU/mlから約5×10 6 CIU/mlの範囲内の量を薬学上容認可能な担体中で投与することが好ましい。ヒトにおいては1回当たりの投与量は 2×10 5 CIU~2×10 10 CIUが好ましく、投与回数は、1回または臨床上容認可能な副作用の範囲で複数回可能であり、1日の投与回数についても同様である。本発明のベクターを用いて製造された蛋白質製剤であれば、蛋白質の投与量は例えば、10ng/kgから100 μ g/kg、好ましくは100ng/kgから50 μ g/kg、より好ましくは1 μ g/kgから5 μ g/kgの範囲であるとよい。ヒト以外の動物についても、例えば目的の動物とヒトとの体重比または投与標的部位の容積比(例えば平均値)で上記の投与量を換算した量を投与することができる。本発明のベクターを含む組成物の投与対象としては、ヒト、サル、マウス、ラット、ウサギ、ヒツジ、ウシ、イヌなど全ての哺乳動物が含まれる。

図面の簡単な説明

図1は、NOGOの中和抗体のFab(H鎖及びL鎖)をコードするNotI断片の塩基配列を示す図である。蛋白質コード配列は大文字で示した。また、SeVのEシグナル、介在配列、Sシグナルの塩基配列を、実線下線-点線下線-実線下線で示した。波線はNotIと同じ接着末端となる部位を示し、この配列を利用して、H鎖およびL鎖のコード配列を例えば別々のベクターのNotI部位にクローニングすることもできる

図 2 は、図 1 に示したFabをコードする断片の構築に使用したオリゴヌクレオチドを示す図である。SYN80 $F1\sim SYN80$ R16までを順に配列番号: $12\sim 42$ とした。

図3は、図2に示したオリゴヌクレオチドの配置を示す図である。

図 4 は、NOGOの中和抗体のFab遺伝子を搭載した伝播型ウィルス(SeV18+IN-1) (パネルA) および伝播能欠損型ウイルス(SeV18+IN-1/ Δ F) (パネルB) の構造 およびRT-PCRによるウィルスゲノムの確認を示す写真および図である。

図5は、NOGOの中和抗体のFab遺伝子を搭載した伝播型またはF遺伝子欠失型ウィルスからのFabの発現を示す写真である。ネガティブコントロール (NC) として GFP遺伝子を搭載した伝播型SeVベクターを用いた。感染の2日後 (d2) または4日後 (d4) の抗体の発現を示す。

図6は、NIH-3T3細胞の形態に影響するq-poolの活性に対するIN-1遺伝子搭載SeVの作用を示す写真である。各条件での培養開始3日後(SeV感染2日後)のNIH-3T3細胞の顕微鏡写真を示した。(A): q-pool未処理プレートを使用、(B): q-pool処理プレートを使用、(C): q-pool処理プレートを使用しSeV18+GFPをMOI=1で感染、(D): (C) と同一視野でGFP蛍光写真を撮影・重ね合わせ(SeV感染細胞の割合の指標)、(E): q-pool処理プレートを使用しSeV18+IN1をMOI=1で感染。

図 7 は、NIH-3T3細胞の細胞増殖に対するIN-1遺伝子搭載SeVの作用を示す図である。各条件での培養開始3日後(SeV感染2日後)のNIH-3T3細胞の細胞数比率を Alamar blueを用いたミトコンドリア活性を元に測定した。(A): q-pool未処理プレートを使用、(B): q-pool処理(1μ g/cm²)プレートを使用、(C): q-pool処理(10μ g/cm²)プレートを使用、(D): q-pool処理(10μ g/cm²)プレートを使用しSeV18+IN1をMOI=1で感染。

図8は、ラット後根神経節神経細胞の突起伸展に影響するq-poolの活性に対するIN-1遺伝子搭載SeVの作用を示す写真である。各条件でのSeV感染36時間後(培養開始60時間後)のラット後根神経節神経細胞の顕微鏡写真を示した。(A)q-pool未処理プレートを使用しSeV18+GFPを1x10⁵ CIU/500 μ L/wellで感染した細胞。(C)q-pool処理プレートを使用しSeV18+GFPを1x10⁵ CIU/500 μ L/wellで感染した細胞。(B)及び(D)はそれぞれ(A)及び(C)と同視野のGFP蛍光写真。(E)及び(F)q-pool処理プレートを使用しSeV18+IN1を1x10⁵ CIU/500 μ L/wellで感染した細胞。

図9は、GFP遺伝子搭載SeVベクターマウス耳介投与後のGFP由来蛍光の経時変化を示す写真である。GFP遺伝子を有する伝播型SeVベクター(SeV18+GFP: 5x10⁶

GFP-CIU/5 μ L) 或いはF遺伝子欠失型SeVベクター(SeV18+GFP/ Δ F: $5x10^6$ GFP-CIU/5 μ L) をマウス耳介に投与し、GFP蛋白の蛍光を外部から経時的に観察した。

図10は、耳介投与法の定量性評価(1)を示す図である。Luciferase 遺伝子搭載 SeV ベクターでの評価: (A) 投与タイター依存性。Luciferase遺伝子を搭載している伝播型SeVベクター (SeV18+Luci) の投与タイターを変えてマウス耳介に投与し ($5x10^4$, $5x10^5$, $5x10^6$ CIU/ $5\,\mu$ L)、投与2日後に耳介を切除後、組織をホモジナイズし、 Leciferase活性を調べた (n=3)。投与タイター依存的なLuciferase活性の変化が見られた。(B) 経時変化。SeV18+Luci ($5x10^6$ CIU/ $5\,\mu$ L) をマウス耳介に投与し、経時的にそれぞれの耳介を切除後、組織をホモジナイズし、 Leciferase活性を調べた (n=3)。

図11は、耳介投与法の定量性評価(2)を示す写真および図である。GFP遺伝子搭載 SeV ベクターでの評価: SeV18+GFP(5x10⁶ GFP-CIU/5 μ L)をマウス耳介に投与し、GFP蛋白の蛍光を外部から経時的に観察した(n=4)。(A) GFP蛍光写真。(B) GFP蛍光強度の定量化。画像処理ソフトAdobe Photoshopにて緑色蛍光を抽出した後、画像解析ソフトNIH imageにて蛍光強度の定量を行った。

図12は、繰り返し投与での評価法という観点からの耳介投与法の有用性を示す写真および図である。マウス右耳の耳介にSeV18+GFP/ Δ F(5x10 6 GFP-CIU/5 μ L)を投与し(一回目投与)、次に投与1, 2, 4, 6, 8, 28, 62日後に、左耳耳介へSeV18+GFP/ Δ F(5x10 6 GFP-CIU/5 μ L)を投与した(二回目投与)。それぞれの投与後、経時的にGFP蛍光の強度変化を調べた。(A) GFP蛍光写真。(B) GFP蛍光強度の定量化。

図13は、耳介投与法による感染細胞の同定(1)を示す写真である。マウス耳介にSeV18+GFP/ Δ F(5x10 6 GFP-CIU/5 μ L)を投与し、感染2日後に耳介を切除し、凍結切片を作成、蛍光顕微鏡下GFP蛍光を観察した(A)。同連続切片を抗GFP抗体で染色した(C)。(B) はこれらの重ね合わせを示す。

図14は、耳介投与法による感染細胞の同定(2)を示す写真である。マウス耳

介にSeV18+GFP/ΔF (5x10⁶ GFP-CIU/5 μ L) を投与し、感染2日後に耳介を切除し、凍結切片を作成、蛍光顕微鏡下GFP蛍光を観察した(図13とは別の個体)。

図15は、抗CD28抗体遺伝子断片 (SYN205-13) の合成に使用したoligo DNAの配置を示す図である。

図16は、抗CD28抗体遺伝子を搭載するSeVベクターcDNA構築の概略を示す図である。

図 1 7 は、抗CD28抗体遺伝子を搭載するSeVベクター (SeV18+ α CD28cst/ Δ F-GFP) のRT-PCRによるウイルスゲノムの確認を示す写真である。

図 1 8 は、 α CD28遺伝子を搭載するSeVベクター(SeV18+ α CD28cst/ Δ F-GFP)からの抗体の発現を示す写真である。

図19は、抗CD28抗体(α CD28cst)GFP遺伝子搭載SeVベクター(SeV18+ α CD28cst/ Δ F-GFP)のマウス耳介投与後のGFP由来蛍光の経時変化を示す写真である。 $5x10^6$ GFP-CIU/ 5μ Lをマウス耳介に投与し、GFP蛋白の蛍光を外部から経時的に観察した。SeV18+GFP/ Δ F投与群との比較を行った。

図 2 0 は、感染初期のCTLA4-Ig蛋白投与を併用した場合のSeV18+ α CD28cst/ Δ F-GFPのマウス耳介投与後のGFP由来蛍光の経時変化を示す写真である。 $5x10^6$ GFP-CIU/ 5μ Lをマウス耳介に投与し、投与1時間後及び10時間後にCTLA4-Ig蛋白を 0.5 mg/bodyで腹腔内に投与し、GFP蛋白の蛍光を外部から経時的に観察した。同じ処理をしたSeV18+GFP/ Δ F投与群との比較を行った。

図21は、GFP蛍光強度の定量化を示す図である。図19及び図20の蛍光写真を基に、画像処理ソフトAdobe Photoshopにて緑色蛍光を抽出した後、画像解析ソフトNIH imageにて蛍光強度の定量を行った。

図 2 2 は、GFP遺伝子の搭載位置の違いによるGFP由来蛍光強度の違いを示す写真である (in vitroでの確認)。SeV18+GFP/ Δ F或いはSeV18+ α CD28cst/ Δ F-GFPをLLC-MK2細胞にMOI=3で感染し、経時的にGFP蛍光を観察した。

発明を実施するための最良の形態

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例 に制限されるものではない。なお、本明細書中に引用された文献は、本明細書の 一部として組み込まれる。

[実施例1] Fab遺伝子を搭載したSeVベクターの構築

SeVベクターの脊髄損傷への応用の一つとして、軸索伸長阻害因子(NOGO等)の阻害を目的とする治療ベクターを例示する。NOGOの中和抗体として、IN-1(mouse $IgM \kappa 型$)が知られていることから(Brosamle, C. et al., J. Neurosci. 20(21), 8061-8068 (2000) 等)、このIN-1を搭載した伝播型SeVベクターの構築を行った。また、F遺伝子欠失型SeVベクター(伝播能欠損型)についても構築を行った。

1) 遺伝子の全合成

IN-1のFab (H鎖及びL鎖) 遺伝子を搭載したSeVベクターを構築するため、IN-1のFab遺伝子の全合成を実施した。IN-1の single chain Fab 部分の塩基配列 (Accession No. Y08011; Bandtlow, C. et al., Eur. J. Biochem. 241(2) 468-475 (1996)) を元に、His-tagは除き、両端に NotI 認識配列を含み、H鎖 (配列番号:10)及びL鎖 (配列番号:11) がSeVのEIS配列を挟んでtandemに結合するよう配列をデザインした (図1;配列番号:9)。合成に使用したoligo DNAの配列および名称を図2に示し、その配置を図3に示した。NotI断片の全長は6n(6の倍数)となるようにした。

2) IN-1(Fab) 搭載SeV cDNAの遺伝子構築

上記で合成したNotI断片をpBluescript II KS (Stratagene, LaJolla, CA) へ 挿入した。遺伝子配列を確認した後、このプラスミドから、EISを有するNotI断片をNotI切断により切り出し、伝播型 (pSeV18+) (Hasan, M. K. et al., J. Gen. Virol. 78: 2813-2820, 1997、Kato, A. et al., 1997, EMBO J. 16: 578-587 及び Yu, D. et al., 1997, Genes Cells 2: 457-466) 及びF遺伝子欠失型 (

pSeV18+/ΔF) (Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000)) のセンダイウイルスゲノムをコードするプラスミドの+18位 (NotI部位) へ挿入し、それぞれ pSeV18+IN-1 および SeV18+IN-1/ΔF とした。

3) SeV再構成(伝播型: SeV18+IN-1)

ウィルスの再構成はKatoらの報告(Kato, A. et al., Genes Cells 1, 569-579 (1996))に従って行った。LLC-MK2細胞を 5×10⁶ cells/dishで直径100mmのシャーレに播き、24時間培養後、ソラレン(psoralen)と長波長紫外線(365nm)で20 分間処理したT7ポリメラーゼを発現するリコンピナントワクシニアウィルス(PLWUV-VacT7: Fuerst, T.R. et al., Proc. Natl. Acad. Sci. USA 83, 8122-8126 (1986))を37℃で1時間感染させた(MOI=2)。細胞を血清を含まないMEMで洗浄した後、プラスミド pSeV18+IN-1, pGEM/NP, pGEM/P及びpGEM/L(Kato, A. et al., Genes Cells 1, 569-579 (1996))をそれぞれ12μg, 4μg, 2μg及び4μg/dishの量比でOpti-MEM 200μL(Gibco-BRL, Rockville, MD)に懸濁し、1μg DNA/5μL相当のSuperFect transfection reagent(Qiagen, Bothell, WA)を入れて混合し、室温で15分間放置後、最終的に3% FBSを含むOpti-MEM 3mLに入れ、細胞に添加して培養した。5時間培養後血清を含まないMEMで2回洗浄し、40μg/mLの Cytosine β-D-arabinofuranoside (AraC: Sigma, St. Louis, MO)及び7.5μg/mLのTrypsin(Gibco-BRL, Rockville, MD)を含むMEMで3日間培養した(PO)。

これらの細胞を回収し、ペレットを1 mL/dishあたりの PBSに懸濁した。凍結 融解を 3 回繰り返した後、胎生10日齢の有性卵に、前記ライゼートを100 μ L/egg あたり接種した。その後、転卵しながら35.5 $\mathbb C$ で3日間培養した (P1)。4 $\mathbb C$ に4 $\mathbb C$ 6時間放置後、漿尿液を回収し、赤血球凝集活性 (HA活性) 測定を行い、ウイルス 回収の有無を検定した。

HA活性はKatoらの方法 (Kato, A. et al., Genes Cell 1, 569-579 (1996)) に 倣って行った。即ち、丸底の96穴プレートを使用し、ウィルス液を段階的にPBSで

希釈し各well 50μ Lの2倍希釈系列を作製した。その 50μ Lに1%濃度にPBSで希釈したニワトリ保存血(コスモバイオ, Tokyo, Japan) 50μ Lを混合し、 4° Cで30分間 放置し赤血球の凝集を観察し、凝集したもののうち最もウィルス希釈率の高いものの希釈率をHA活性として判定した。また、1 HAUを 1×10^{6} ウィルスと換算して、ウィルス数として算出することができる。

回収したP1の漿尿液を、(HAUが観測された場合には)PBSにて 10^{-6} 及び 10^{-6} 希釈し、(HAUが観測されなかった場合には)希釈率を下げて、胎生10日齢の=ワトリ有性卵に、前記希釈液を $100\,\mu$ L/eggあたり接種し、その後、転卵しながら 35.5° で3日間培養した(P2)。漿尿液を回収後、HA活性を測定してウイルス回収の有無を検定した。回収したP2の漿尿液を 10^{-6} 及び 10^{-6} 希釈後、同様の操作を行い(P3)、P3の漿尿液を回収し、HA活性を測定した。HA活性の上昇が観察され、ウィルスの再構成に成功したと判断された。回収した漿尿液のHA活性値(HAU)を下記に示した。タイターは、P4の試料で 2^{6} HAU(約 5×10^{6} CIU/mL)と計算された。

		3 X 1			
試料	P1	P2	Р3	P4	
SeV18+IN-1	2 ²	210	2 ⁸	2 ⁹	(HAU)

4) SeV再構成 (F遺伝子欠失型: SeV18+IN-1/ΔF)

ウィルスの再構成はLiらの報告 (Li, H.-O. et al., J. Virology 74. 6564-6569 (2000), W000/70070) に従って行った。F遺伝子欠失型ウイルスを再構成させるため、F蛋白のヘルパー細胞を利用した。当該ヘルパー細胞作製にはCre/loxP発現誘導システムを利用している。当該システムはCre DNA リコンビナーゼにより遺伝子産物を誘導発現するように設計されたプラスミドpCALNdLw (Arai, T. et al., J. Virol. 72: 1115-1121 (1988)) を利用したものであり、同プラスミドのトランスフォーマントにCre DNAリコンビナーゼを発現する組み換えアデノウィル

ス (AxCANCre) をSaitoらの方法 (Saito, I. et al., Nucl. Acid. Res. 23, 3816-3821 (1995), Arai, T. et al., J. Virol. 72, 1115-1121 (1998)) で感染させて挿入遺伝子を発現させる。SeV-F蛋白の場合、F遺伝子を有する同トランスフォーマント細胞をLLC-MK2/F7と記載し、AxCANCreで誘導後F蛋白を持続発現している細胞をLLC-MK2/F7/Aと記載することにする。

F遺伝子欠失型SeV (SeV18+IN-1/ Δ F) の再構成は、以下のようにして行った。 則ち、LLC-MK2細胞を 5×10° cells/dishで直径100mmのシャーレに播き、24時間 培養後、PLWUV-VacT7を室温で1時間感染させた(MOI=2)。細胞を血清を含まな いMEMで洗浄した後、プラスミド pSeV18+IN-1/ΔF, pGEM/NP, pGEM/P, pGEM/L及 ${
m CPGEM/F-HN}$ をそれぞれ $12\,\mu\,{
m g},\ 4\,\mu\,{
m g},\ 2\,\mu\,{
m g},\ 4\,\mu\,{
m g}$ 及び $4\,\mu\,{
m g}/{
m di}$ shの量比で0pti-MEM に懸濁し、1μg DNA/5μL相当のSuperFect transfection reagentを入れて混合し 、室温で15分間放置後、最終的に3% FBSを含むOpti-MEM 3mLに入れ、細胞に添加 して培養した。5時間培養後血清を含まないMEMで2回洗浄し、40μg/mLの AraC及 び7.5μg/mLのTrypsinを含むMEMで培養した。24時間培養後、8.5×106 cells/dishあたりにLLC-MK2/F7/ Aを重層し、40μg/mLの AraC及び7.5μg/mLの Trypsinを含むMEMで更に2日間37℃で培養した。これらの細胞を回収し、ペレッ トを2mL/dishあたりの Opti-MEMに懸濁、凍結融解を3回繰り換えしてPO lysate を調製した。一方で、LLC-MK2/F7/Aを24 wellプレートに播き、ほぼコンフルエン トの時に32℃に移し1日間培養した細胞を準備した。この細胞にSeV18+IN-1/ΔF のPO lysateを各200 µ L/wellでトランスフェクションし、40 µ g/mLの AraC及び 7.5μg/mLのTrypsinを含み血清を含まないMEMを用い32℃で培養した。P1 培養上 清を用いてP2以降、6 wellプレートに播いたLLC-MK2/F7/A細胞を用いて、同様の 培養をP3までくり返した。

HA活性にてウィルスの増殖を確認したところ、P1以降のサンプルでHA活性の上昇が見られた。タイターは、P3の4日目の試料(P3d4)で $2.7 \times 10^7 \text{ CIU/mL}$ であった。

5) RT-PCRによるウィルスゲノムの確認

伝播型 (SeV18+IN-1) のウィルス溶液 (P2 sample) からのウィルスRNAの回収は、QIAGEN QIAamp Viral RNA Mini Kit (QIAGEN, Bothell, WA) を利用して行い、RT-PCRは1 stepでSuper Script One-Step RT-PCR with Platinum Taq Kit (Gibco-BRL, Rockville, MD) を利用して行った。RT-PCRは、SYN80F12/SYN80R1の組み合わせをプライマー対として使用して行った。目的の大きさの遺伝子の増幅が確認され、ウィルス遺伝子上にIN-1の遺伝子を搭載していることが確認された(図4パネルA)。

F遺伝子欠失型(SeV18+IN-1/ Δ F)についても同様の方法で行った。P3d4のサンプルを用いて、プライマーは、SYN80F12/SYN80R1の組み合わせで行った。この場合も目的の大きさの遺伝子の増幅が確認され、ウィルス遺伝子上にIN-1の遺伝子を搭載していることが確認された(図4パネルB)。

6) SeV搭載遺伝子に由来する蛋白質発現の確認

IN-1は、mouse IgMの κ型であるため、蛋白発現の確認にはWestern blottingの 2次抗体であるHRP-cojugated anti-mouse IgG+IgM (Goat F(ab')2 Anti-Mouse IgG+IgM (AM14074): BioSource International) を使用したWestern blottingでの検出を試みた(1次抗体無し)。

6 well plateでconfluentになったLLC-MK2にMOI 5でSeV18+IN-1或いは SeV18-IN-1/ Δ F を感染した。感染2日後或いは4日後に培養上清を回収し、そのサンプルについては、PAGE prep Protein Clean-Up and Enrichment Kit (Pierce) を利用して濃縮と不純物の除去を行った。ネガティブコントロール(NC)として、GFP遺伝子を搭載した伝播型SeVベクターを同条件で感染し、回収した培養上清について上記と同様に調製しアプライした。300 μ Lの培養上清を処理し40 μ LのSDS-sampleとして回収しその中の10 μ L/laneでアプライしている。結果を図5に示したが、酸化条件で約47 kDa、還元条件で約30 kDaのバンドが検出された。アミノ酸配列から予想される分子量はH鎖が24.0 kDa、L鎖が23.4 kDaである。酸化条件ではH鎖

及びL鎖の結合状態で、還元条件では解離状態のH鎖及びL鎖の何れか一方のみが検 出されていると判断され、Fabが形成されていることが確認された。

[実施例2] IN-1遺伝子搭載SeVのin vitroにおける機能評価

IN-1は軸索伸長を抑制する因子NOGOに対する中和抗体であることが知られている (Chen, M.S. et al., Nature 403, 434-439 (2000))。そこで、IN-1のFab遺伝子を搭載したSeVの機能評価を行うには、軸索伸長の阻害を抑制する条件、則ち軸索伸長の阻害因子の存在下で伸長を促進する活性を観察する必要がある。阻害因子を含む脊髄抽出液をq-poolと呼び、その調製方法はSpillmannらが報告している方法 (Spillmann, A.A. et al., J. Biol. Chem. 273, 19283-19293 (1998))に従って行った。成体ラット3体より脊髄を摘出し、1.5mgのq-poolを得た。IN-1活性の評価はChen及びSpillmannらの方法 (Chen, M.S. et al., Nature 403, 434-439 (2000)、Spillmann, A.A. et al., J. Biol. Chem. 273, 19283-19293 (1998))に従った。方法としては2種の方法を採用し、マウス繊維芽細胞株 (NIH-3T3)の広がりとラット胎児後根神経節 (DRG: Dorsal Root Ganglion)初代培養系における突起進展で評価した。

NIH-3T3を利用した評価のために、まずq-poolを約30μg/cm² 相当となるように PBSに希釈し96 well培養プレートに添加後、37℃で2時間インキュベートした。 PBSにて2回洗浄後細胞培養に使用した。q-poolで処理した(或いはq-poolで処理していない)96 well plateに1x10³ cells/wellの割合でNIH-3T3細胞を播き、10% FBSを含むD-MEM培地を用いて培養を開始した。培養開始1日後に各種タイターで SeVを感染し、感染2日後に形態学的観察と細胞数の評価を行った。細胞数評価に はAlamar Blue(BIOSOURCE International Inc.: California, USA)を利用した。 形態学的に見ると、q-pool処理をしていないプレートで培養した細胞は、いわゆる繊維芽細胞様の形態をしているが、q-pool処理をしたプレートで培養した場合、球形の細胞が多く見られた(図 6 (B))。 コントロールのSeVベクターである GFP遺伝子を搭載したSeVベクター(SeV18+GFP)をq-pool処理した細胞に感染した

場合も、同様に球形の細胞が多く見られたが(図6(C))、IN-1遺伝子を搭載した SeVベクター(SeV18+IN1)をq-pool処理した細胞に感染した培養系においては、 球形のものは少なく繊維芽細胞様の形態のものが多く見られた(図6(E))。則ち、既に報告されているように、q-poolによるNIH-3T3の形態変化を抑制するIN-1の機能が確認され、SeVベクター搭載遺伝子由来のIN-1が機能を有していると判断された。また、同系において、細胞数(細胞増殖)の観点からの評価を行った。q-poolでの処理を行っていないプレート、及び低濃度のq-poolで処理をしたプレートを用いた場合、SeV18+IN1を高MOIで感染した時(MOI=3,10,30)のみ、NIH-3T3の増殖を抑制する効果が観察された(図7(A)-(C))。形態観察において細胞に明らかな傷害が観察されないので、細胞傷害ではなく増殖抑制が観察されていると判断される。この観点では今までに報告はないが、IN-1の濃度が極端に高い場合にはこのような活性が表れる可能性は考えられる。また、この増殖抑制効果は、高濃度のq-poolで処理した場合には観察されなかった(図7(D))。則ち、この場合はIN-1の活性をq-poolが阻害したことになり、IN-1がq-poolの活性を阻害することを更に補完する結果になっていると考えられる。

もう一つのIN-1活性の評価として、ラットDRG初代培養系における突起進展への影響で評価した。この場合も、まずq-poolを約25 µ g/cm² 相当となるようにPBSに希釈し24 wellのtype I collagen-coated培養プレート(旭テクノグラス,千葉)に添加後、37℃で2時間インキュベートした。PBSにて2回洗浄後細胞培養に使用した。胎生14日齢のSDラット(日本チャールスリバー、神奈川)より後根神経節を取り出し、終濃度100 ng/ml濃度の神経成長因子(NGF:Nerve Growth Factor、Serotec Ltd, U.K.)及び10% FBSを含むD-MEM培地でexplant cultureを行った。培養開始24時間後にSeV18+GFP或いはSeV18+IN1を1x10⁵ CIU/500 µ L/wellで感染した。感染36時間後に顕微鏡下で形態観察を行った。q-poolの処理をしないプレートにおいては、コントロールSeVであるSeV18+GFP感染細胞において突起伸展が見られたが(図8(A))、q-pool処理を行ったプレートにおいては、非常に僅かな突

起進展しか観察されなかった(図8(C))。図8(B) 及び 図8(D) にはそれぞれ 図8(A) 及び 図8(C) におけるSeV18+GFP感染の程度を視覚的に表すために、同 視野におけるGFP蛍光写真を並記している。一方、q-pool処理を行ったプレートに おいても、SeV18+IN1感染細胞においては非常に顕著な突起進展が観察された(図8(E),(F))。則ち、突起進展の観点からも、q-poolによる神経細胞の突起進展阻 害活性を抑制するIN-1の機能が確認され、SeVベクター搭載遺伝子由来のIN-1が機能を有していると判断された。

[実施例3] ベクター発現持続性及びくり返し投与後発現評価のためのin vivo 評価系

ベクター発現持続性及びくり返し投与の可能性評価のためには、より効率的で確実なin vivo評価系の確立が重要である。本実施例においては、新たに開発したマウス耳介投与による評価法を開示する。GFP遺伝子を有する伝播型SeVベクター(SeV18+GFP: $5x10^6$ GFP-CIU/ 5μ L)或いはF遺伝子欠失型SeVベクター(SeV18+GFP/ Δ F: $5x10^6$ GFP-CIU/ 5μ L)をマウス耳介に投与すると、感染細胞に発現しているGFP蛋白の蛍光を非侵襲的に外部から観察可能であることが判明した(図9)。非侵襲的であるため、同一個体を利用して経時的にSeVベクター由来蛋白(GFP)の発現が観察でき、発現持続性の評価に非常に適していると考えられる。また、同一個体での経時変化を追えることは、実験に使用する動物個体数をかなり減少させることができる。実際の経時変化として、GFP蛋白の蛍光は投与2日目をピークに投与4日目まで観察可能であるが、投与5日目から6日目にほとんど消失した(図9)。

このGFP蛍光の変化が、SeVによる発現のKineticsを定量的に反映しているか否かを判定するために、Luciferase遺伝子を搭載している伝播型SeVベクター(SeV18+Luci: Yonemitsu, Y. et al., Nat. Biotech. 18, 970-973 (2000))について同様に耳介投与を行った。まず、投与タイター依存的にLuciferase蛋白の活性の変化が見られることを確認した(図10(A))。次に、耳介内Luciferase蛋白

発現の経時的変化について定量し、投与2日目をピークに投与4日目に少し減少し、投与7日目及び11日目にほとんどベースラインレベルになることを確認した(図10(B))。この時、同タイプのGFP遺伝子搭載SeV(SeV18+GFP)を投与した実験を同時に行い、GFP蛍光の経時変化を調べた。GFP蛍光の写真(図11(A))から、画像処理ソフトAdobe Photoshop(Adobe Systems Incorporated, CA, USA)にて緑色蛍光を抽出した後、画像解析ソフトNIH image(National Institute of Health, USA)にて蛍光強度の定量(図11(B))を行った。Luciferase活性から求めた経時変化(図10(B))と蛍光強度から求めた経時変化(図11(B))に非常に良い相関が見られた。則ち、GFP蛍光の変化はLuciferase活性の変化に良く一致しており、GFP蛍光の強度変化を追うことで、相対的定量性を議論できると判断された。

くり返し投与後の発現評価という観点からも検討を行った。右耳の耳介に SeV18+GFP/ Δ F(5x10 6 GFP-CIU/5 μ L)を投与し、発現を確認した後に、各種投与時期をずらして、左耳耳介への同じSeV18+GFP/ Δ F(5x10 6 GFP-CIU/5 μ L)を投与し、発現の有無を調べた(図12(A))。また、この場合もGFP蛍光強度を定量化して表した(図12(B))。右耳耳介感染1日後、及び2日後であれば、左耳耳介での感染及び発現が確認された。しかし、右耳感染4日後であれば、左耳耳介での感染程度がかなり減少し、右耳感染6日後であれば、左耳耳介での感染はほとんど成立しなかった。右耳感染8日後でも、左耳耳介での感染はほとんど成立しなかった。右耳感染8日後でも、左耳耳介での感染はほとんど成立しなかったが、感染62日後に僅かな感染が確認された。これらの現象については、SeVベクターの免疫系への影響を調べる良い材料になるとともに、くり返し投与後の発現を評価する非常に良い実験系になっていると考えられた。

次に、マウス耳介に投与した場合の感染細胞について調べた。マウス耳介に SeV18+ GFP/ Δ F (5x10 6 CIU/5 μ L) を投与し、感染2日後に耳介を切除し、凍結切 片を作成し、蛍光顕微鏡下GFP蛍光を観察するとともに、抗GFP抗体 (Molecular Probes Inc., Eugene OR, USA) で染色した。GFP蛍光と抗GFP抗体での陽性細胞が

重なったのは真皮の細胞であった(図13)。他の個体の耳介組織で観察したところ、軟骨膜周辺(図14(A))、軟骨膜に近い真皮(図14(B))、表皮に近い真皮(図14(C))等への感染が確認され、表皮及び弾性軟骨への感染はなかった。従って、本投与法にて感染する細胞は、耳介真皮及び軟骨膜(繊維芽細胞含む)であると判断された。

[実施例4] 抗CD28抗体 (αCD28) 遺伝子を搭載したSeVベクターの構築

T細胞の活性化は抗原提示細胞のMHC class II(あるいはclassI)/抗原ペプチド複合体とT細胞レセプターの反応(第1シグナル)及びCD80(CD86)とCD28等の補助刺激分子の反応(第2シグナル(costimulatory signal))により生じ、その後活性化したT細胞はCD80(CD86)とCTLA4等の抑制性補助刺激分子の反応により鎮静化される。これらcostimulatory signalをブロックすることにより末梢で免疫寛容が誘導されることが知られている。そこで生体内における治療用SeVベクターの搭載遺伝子産物の長期発現を実現するために、末梢での免疫寛容を誘導するcostimulatory signal関連遺伝子を阻害する抗体遺伝子搭載ベクターを例示する。CD28に対する抗体によってT細胞の活性化を阻害することにより免疫寛容を誘起するため、当該CD28に対する一本鎖抗体(αCD28)遺伝子を搭載したF遺伝子欠失型SeVベクター(非伝播型)の構築を行った。

1) 遺伝子の全合成

 α CD28遺伝子を搭載したSeVベクターを構築するため、当該遺伝子の全合成を実施した。Grosse-Hovest,L. らの報告している α CD28遺伝子配列(DDBJ database SYN507107)に基づき、 α CD28(LV鎖及びHV鎖の一本鎖抗体)の遺伝子配列の両端にXbaI siteを設けて全合成を行い、この合成XbaI断片(配列番号:43)(この断片をSYN205-13と呼ぶ。両端の各6塩基はXbaI部位とした。 α CD28アミノ酸配列は配列番号:44に示した)をpBluescript II SK+ベクターに導入した(pBluescript/ α CD28)。合成に使用したoligo DNAの配列および名称を以下に示し、その配置を図15に示した。また、ベクター構築の概略図を図16に示した。

一方、mouse antibody κ L chainのシグナルペプチド(配列番号:46)とSeVの EIS配列との間にXbaI siteを有し、その両端にNheI/NotI siteを設けたDNA断片を 作製した。このDNA断片のNheI siteとpGEM-4Zベクター(Promega)のXbaI siteを ライゲーションさせたカセットプラスミド(pGEM-4Zcst)を構築した(配列番号:45、EIS配列を含むNotI断片のみ示した)。pBluescript/ α CD28の α CD28遺伝子を含むXbaI断片をpGEM-4ZcstベクターのXbaI siteに導入し、上記シグナルペプチドとSeVのEIS配列を有する α CD28遺伝子(α CD28cst遺伝子)を構築した。ここで得られる α CD28cst遺伝子を含むNotI断片の全長は6の倍数(6n)となるようにデザインしている。

表 2 合成に使用したoligo DNAの配列および名称

SYN205F01 (配列番号: 47)

TCTAGAGACATCGAGCTCACTCAGTCTCCAGCTTCTTTGGCTGTCTCTAGGGCAGAGAGCCACCATCT

SYN205F02 (配列番号: 48)

AGGGCAGAGGCCACCATCTCCTGCAGAGCCAGTGAGAGTGTTGAATATTATGTCACAAGTTTAATGCAG

SYN205F03 (配列番号: 49)

ATGTCACAAGTTTAATGCAGTGGTACCAGCAGAAGCCAGGACAGCCACCCAAACTCCTCATCTTTGCTGC

SYN205F04 (配列番号:50)

 ${\tt CCTTACACGTTCGGAGGGGGGGCCAAGCTGGAAATAAAACGGGGAGGCGGCGGTTCTGGCGGTGGCGGAT}$

SYN205F05 (配列番号:51)

CGGTTCTGGCGGTGGCGGATCAGGTGGCGGAGGCTCGCAGGTGAAACTGCAGCAGTCTGGACCTGGCCTG

SYN205F06 (配列番号:52)

AGCAGTCTGGACCTGGTGACGCCCTCACAGAGCCTGTCCATCACTTGTACTGTCTCTGGGTTTTC

SYN205F07 (配列番号:53)

GACAACTCCAAGAGCCAAGTTTTCTTAAAAATGAACAGTCTGCAAGCTGATGACACAGCCGTGTATTACT

SYN205F08 (配列番号:54)

TGACACAGCCGTGTATTACTGTGCCAGAGATAAGGGATACTCCTATTACTATTCTATGGACTACTGGGGC

62

SYN205R01 (配列番号:55)

TCTAGACGAGGAGACAGTGACCGTGGTCCCTTGGCCCCAGTAGTCCATAGAAT

SYN205R02 (配列番号:56)

ACTTGGCTCTTGGAGTTGTCTTTGCTGATGCTCTTTCTGGACATGAGAGCCGAATTATAATTCGTGCCTC

SYN205R03 (配列番号:57)

CGAATTATAATTCGTGCCTCCACCAGCCCATATTACTCCCAGCCACTCCAGTCCCTGTCCTGGAGACTGG

SYN205R04 (配列番号:58)

GTCCCTGTCCTGGAGACTGGCGAACCCAGTGAACACCATAGTCGCTTAATGAAAACCCAGAGACAGTACA

SYN205R05 (配列番号:59)

CCCCTCCGAACGTGTAAGGAACCTTCCTACTTTGCTGACAGAAATACATTGCAACATCATCCTCGTCCA

SYN205R06 (配列番号:60)

TGCAACATCATCCTCGTCCACAGGATGGATGTTGAGGCTGAAGTTTGTCCCAGACCCACTGCCACTAAAC

SYN205R07 (配列番号: 61)

 ${\tt CAGACCCACTGCCACTAAACCTGGCAGGGACCCCAGATTCTACGTTGGATGCAGCAAAGATGAGGAGTTT}$

2) α CD28搭載F遺伝子欠失型SeV cDNA(pSeV18+α CD28cst/ΔF-GFP)の遺伝子構築

上記で構築したNotI断片の遺伝子配列を確認した後、このプラスミドから、同NotI断片を切り出し、green fluorescent protein (GFP) を搭載したF遺伝子欠失型SeV cDNA (pSeV18+/ Δ F-GFP) (Li, H.-0. et al., J. Virol. 74(14) 6564-6569 (2000)) の+18位 (NotI部位) へ挿入し、pSeV18+ α CD28cst/ Δ F-GFPを構築した。

3) αCD28搭載F遺伝子欠失型SeV (SeV18+αCD28cst/ΔF-GFP) の再構成 ウイルスの再構成はLiらの報告 (Li, H.-0. et al., J. Virology 74. 6564-

6569 (2000), W000/70070) に従って行った。F遺伝子欠失型ウイルスを再構成させるため、F蛋白のヘルパー細胞を利用した。当該ヘルパー細胞作製にはCre/loxP発現誘導システムを利用している。当該システムはCre DNA リコンビナーゼにより遺伝子産物を誘導発現するように設計されたプラスミドpCALNdLw (Arai, T. et al., J. Virol. 72: 1115-1121 (1988)) を利用したものであり、同プラスミドのトランスフォーマントにCre DNAリコンビナーゼを発現する組み換えアデノウイルス (AxCANCre) をSaitoらの方法 (Saito, I. et al., Nucl. Acid. Res. 23, 3816-3821 (1995), Arai, T. et al., J. Virol. 72, 1115-1121 (1998)) で感染させて挿入遺伝子を発現させた。SeV-F蛋白の場合、F遺伝子を有する同トランスフォーマント細胞をLLC-MK2/F7と記載し、AxCANCreで誘導後F蛋白を持続発現している細胞をLLC-MK2/F7/Aと記載することにする。

SeV18+ α CD28cst/ Δ F-GFPの再構成は、以下のようにして行った。則ち、LLC-MK2細胞を 5×10⁶ cells/dishで直径100mmのシャーレに播き、24時間培養後、PLWUV-VacT7を室温で1時間感染させた(MOI=2)。細胞を血清を含まないMEMで洗浄した後、プラスミドpSeV18+α CD28cst/ Δ F-GFP,pGEM/NP,pGEM/P,pGEM/L及びpGEM/F-HNをそれぞれ12 μg,4 μg,2 μg,4 μg及び4 μg/dishの量比で0pti-MEMに懸濁し、1 μg DNA/5 μ L相当のSuperFect transfection reagentを入れて混合し、室温で15分間放置後、最終的に3% FBSを含む0pti-MEM 3 mLに入れ、細胞に添加して培養した。5時間培養後血清を含まないMEMで2回洗浄し、40 μg/mLの AraC及び7.5 μg/mLのTrypsinを含むMEMで培養した。24時間培養後、8.5×10⁶ cells/dishあたりにLLC-MK2/F7/ Aを重層し、40 μg/mLの AraC及び7.5 μg/mLのTrypsinを含むMEMで培養した。これらの細胞を回収し、ペレットを2mL/dishあたりの 0pti-MEMに懸濁、凍結融解を3回繰り換えしてPO lysateを調製した。一方で、LLC-MK2/F7/Aを24 wellプレートに播き、ほぼコンフルエントの時に32℃に移し1日間培養した細胞を準備した。この細胞にSeV18+αCD28cst/ΔF-GFPのPO lysateを各200 μ L/wellでトランスフェクションし、40 μg/mLの AraC及

び7.5μg/mLのTrypsinを含み血清を含まないMEMを用い32℃で培養した。P1 培養上清を用いてP2以降、6 wellプレートに播いたLLC-MK2/F7/A細胞を用いて、同様の培養をP3までくり返した。

P3の5日目の試料 (P3d5) のウイルス力価は7×10⁶ CIU/礼であった。

4) RT-PCRによるウイルスゲノムの確認

F遺伝子欠失型SeVであるSeV18+ α CD28cst/ Δ F-GFPのウイルス溶液(P3 sample)からのウイルスRNAの回収は、QIAGEN QIAamp Viral RNA Mini Kit(QIAGEN, Bothell, WA)を利用して行い、RT-PCRは1 stepでSuper Script One-Step RT-PCR with Platinum Taq Kit(Gibco-BRL, Rockville, MD)を利用して行った。RT-PCR は、F6(5'-ACAAGAGAAAAAACATGTATGG-3')/R199(5'-GATAACAGCACCTCCTCCCGACT-3')(それぞれ配列番号:62および63)の組み合わせをプライマー対として使用して行った。目的の大きさの遺伝子の増幅が確認され、ウイルス遺伝子上に α CD28cst遺伝子が搭載されていることが確認された(図17)。

5) SeV搭載遺伝子に由来する蛋白質発現の確認

6 well plateでconfluentになったLLC-MK2にMOI 1で SeV18+αCD28cst/ΔF-GFPを感染し、血清を含まないMEM培地1mlを添加して37℃ (5% CO₂存在下)で培養した。感染1日後にMEM培地を交換し、4日後に培養上清を回収して試料とした。ネガティブコントロール(NC)として、GFP遺伝子を搭載したF遺伝子欠失型SeVベクター (SeV18+GFP/ΔF)を同条件で感染して、培養上清を回収した。試料は、PAGE prep Protein Clean-Up and Enrichment Kit (Pierce)を用いて、300μLの培養上清を40μLに濃縮し、これをSDS PAGE電気泳動用の試料としてWestern blottingは5μL/laneでアプライした。一方、Coomassie Brilliant Blue (CBB) 染色には、同様の操作で600μLの培養上清を40μLに濃縮し、これを10μL/laneでアプライして試験を行った。Western blottingの検出用の抗体にはAnti-mouse Ig, horseradish peroxidase linkedwhole antibody (from sheep) (Amersham Bioscience)を使用した。結果を図18に示す。約29 kDaのバンドが検出され、

アミノ酸配列から予想される分子量と一致した。

[実施例 5] 抗CD28抗体遺伝子搭載SeVのin vivoにおける発現持続性の評価 構築した抗CD28抗体 (α CD28cst) 遺伝子搭載F遺伝子欠失型SeV (SeV18+α CD28cst/ΔF-GFP) の機能評価の一環として、in vivoにおける発現持続性を評価した。この時、抗CD28抗体遺伝子を搭載せずGFP遺伝子を搭載しているF遺伝子欠失型SeV (SeV18+GFP/ΔF) をコントロールとして持続性の差を調べた。またこの時、感染初期にはαCD28cst蛋白の発現はない(非常に少ない)ことからその時期の蛋白の発現を補うことを目的として、α CD28cst蛋白と同様の機能が期待されるCTLA4-Ig蛋白質を、SeV投与当日に投与した系も評価した。CTLA4-Ig蛋白質は市販されており(Ancell Corporation)使用可能であるが、今回は既に報告されているものと類似の方法で調製したものを使用した(Iwasaki, N. et al., Transplantation 73(3) 334-340 (2002); Harada, H. et al., Urol. Res. 28(1) 69-74 (2000); Iwasaki, N. et al., Transplantation 73(3) 334-340 (2002);

Glysing-Jensen, T. et al., Transplantation 64(12) 1641-1645 (1997)) .

発現持続の評価は、実施例 3 に示したマウス耳介投与による評価法にて行った。GFP遺伝子を有するSeVベクターをマウス耳介に投与すると、感染細胞に発現しているGFP蛋白の蛍光を非侵襲的に外部から観察可能である。この系を用いることにより、同一個体を利用して経時的にSeVベクター由来発現蛋白(GFP)の発現が観察でき、発現持続性の評価に非常に適している。GFP遺伝子搭載F遺伝子欠失型SeVベクター(SeV18+GFP/ Δ F:5x10 6 CIU/5 μ L)或いはGFP遺伝子とともに抗CD28抗体遺伝子を搭載しているF遺伝子欠失型SeVベクター(SeV18+ α CD28cst/ α F-GFP:5x10 6 CIU/5 μ L)をマウス耳介に投与し、経時的にGFP蛋白の発現を観察した。更に、両投与群の一部のマウスには、SeV感染1時間後及び10時間後に、CTLA4-Ig蛋白質を0.5 mg/bodyで腹腔内に投与した(それぞれn=2)。まず、補助刺激因子抑制を目的とした抗体遺伝子(この場合は α CD28cst)を搭載したSeVベクターがin vivoでも感染することが確認された(図19)。SeV18+GFP/ α FとはGFP発現量

に差が見られるが、この点については後述する。持続性に関しては、SeV18+lphaCD28cst/ A F-GFP投与群で、非常に僅かながら対照に比べGFP蛋白の発現持続が観 察された。則ち、SeV18+GFP/ Δ F投与群では、投与5日後までは明らかなGFP発現が 見られるものの、投与6日後にほとんど見えなくなる様な急激な消失が観察される のに対して、SeV18+αCD28cst/ΔF-GFP投与群では、その減少が僅かながら緩やか であり、投与6日後でもGFP蛋白の蛍光が観察された(図19)。SeV感染当日の CTLA4-Ig蛋白質の投与効果もはっきりと表れた。CTLA4-Ig蛋白質を投与すること により、SeV18+GFP/ΔF投与群、SeV18+αCD28cst/ΔF-GFP投与群ともにGFP蛋白発 現の増強が観察され、更にSeV18+ α CD28cst/ Δ F-GFP投与群においては、感染6日 後でも比較的はっきりとしたGFP蛋白の蛍光が観察された(図20)。GFP蛍光の 写真から、画像処理ソフトAdobe Photoshop (Adobe Systems Incorporated, CA, USA) にて緑色蛍光を抽出した後、画像解析ソフトNIH image (National Institute of Health, USA) にて蛍光強度を定量化した結果を図21に示した。 CTLA4-Ig蛋白質を投与した場合のGFP蛋白発現の増強ととともに、僅かではあるが αCD28cst遺伝子を搭載することによるSeV搭載遺伝子由来蛋白 (この場合はGFP) 発現持続への効果が確認された。この結果は、補助刺激因子活性を抑制すること によるSeV感染及びその持続性への効果を表すものであり、当該コンセプトの確か さを意味している。また、SeVベクターの感染だけでは発現の持続への影響は少な くても、感染初期に同メカニズムを期待する蛋白を同時投与することで、発現の 持続を延長し得る可能性を示している。

SeV18+ α CD28cst/ Δ F-GFP投与群において、SeV18+GFP/ Δ F投与群よりもGFP蛋白の蛍光が弱かったことについて、以下in vitroの系で確認を行った。LLC-MK2細胞にSeV18+GFP/ Δ F或いはSeV18+ α CD28cst/ Δ F-GFPをMOI=5で感染し、経時的に蛍光顕微鏡下でGFP蛋白の発現を観察した(図 2 2)。感染16時間後ではSeV18+GFP/ Δ F感染細胞ではGFPが観察されるのに対して、SeV18+ α CD28cst/ Δ F-GFP感染細胞では、感染24時間後以降

発現したGFP蛋白の蛍光が観察されるものの、SeV18+GFP/ΔF感染細胞よりも常に 弱く、発現量が低いことが確認された。SeVにおいてはゲノム搭載遺伝子の発現量 の違いについて、極性効果が知られている (Glazier, K. et al., J. Virol. 21 (3), 863-871 (1977); Homann, H.E. et al., Virology 177 (1), 131-140 (1990)) 。則ち、RNA polymeraseのrestart効率が高くないために、ゲノムの3'端 に搭載した遺伝子ほど発現量が高く、5'端のものほど発現量は低くなる。実際に 同じマーカー遺伝子を様々な位置に搭載することで、極性効果を証明するととも に発現量制御のデザインが示されている (Tokusumi, T. et al., Virus Res 86, 33-38 (2002))。今回検出に利用しているGFP遺伝子は、SeV18+GFP/ΔFでは3'端 に、SeV18+αCD28cst/ΔF-GFPでは欠失しているF遺伝子の位置に搭載しており、 GFP蛋白量はSeV18+GFP/ΔFで高く、SeV18+αCD28cst/ΔF-GFPでは相対的に低くな るデザインになっている。但し、他のSeV蛋白は両ベクターで同様に(同量程度) 発現していると予想されることから、免疫原性の原因となる蛋白は同量程度で、 検出蛋白 (GFP) のみSeV18+αCD28cst/ΔF-GFP感染細胞で少なくなっていると考 えられる。以上のことを考慮すると、耳介投与系において、SeV18+lpha CD28cst/ Δ F-GFP投与群で確認された僅かながらの遺伝子発現の延長に関して、実際にはGFP 観察で予想されるよりも更に延長効果があることが示唆される。

産業上の利用の可能性

本発明により、抗体可変領域を含むポリペプチドを発現するパラミクソウイルスベクターが提供された。本発明のベクターは、インビボまたはエクスビボにより生体内に投与するための遺伝子治療ベクターとして適している。特に神経伸長阻害因子に対する抗体断片を発現するベクターは、神経損傷への遺伝子治療に有用である。また、免疫活性化シグナル伝達を阻害する抗体を発現する本発明のベクターは、ベクターからの遺伝子の長期発現および繰り返し投与を可能にする。

請求の範囲

- 1. 抗体可変領域を含むポリペプチドをコードするパラミクソウイルスベクター
- 2. パラミクソウイルスがセンダイウイルスである、請求項1に記載のウイルス ベクター。
- 3. 該ポリペプチドが分泌型である、請求項1に記載のウイルスベクター。
- 4. 抗体のH鎖可変領域を含むポリペプチド、および抗体のL鎖可変領域を含むポリペプチドをコードしている、請求項1に記載のパラミクソウイルスベクター
- 5. 抗体のH鎖可変領域を含むポリペプチド、および抗体のL鎖可変領域を含むポリペプチドが、互いに結合してFabを構成する、請求項4に記載のウイルスベクター。
- 6. 抗体可変領域の少なくとも1つがリガンドまたは受容体に対する抗体に由来 する、請求項5に記載のウイルスベクター。
- 7. 抗体が神経細胞の生存、分化、または神経突起伸長を阻害する蛋白質に結合する、請求項6に記載のウイルスベクター。
- 8. 抗体がNOGOに対する抗体である、請求項7に記載のウイルスベクター。
- 9. 抗体が免疫シグナル伝達の受容体またはそのリガンドに対する抗体である、 請求項6に記載のウイルスベクター。
- 10. 抗体が、T細胞または抗原提示細胞の表面に発現する受容体またはそのリガンドに対する抗体である、請求項9に記載のベクター。
- 11. 該受容体またはそのリガンドが、T細胞または抗原提示細胞のコスティミュラトリーシグナルのシグナル伝達分子である、請求項10に記載のベクター。
- 1 2. 該シグナル伝達分子が、CD28、CD80、CD86、LFA-1、ICAM-1 (CD54) 、PD-1 、および ICOS からなる群より選択される分子である、請求項11に記載のベク

ター。

- 13. さらに他の外来遺伝子をコードしている、請求項9に記載のベクター。
- 14. 抗体可変領域を含む組み換えポリペプチドの製造方法であって、
- (a) 請求項1に記載のウイルスベクターを哺乳動物細胞に導入する工程、および
- (b) 該ベクターが導入された哺乳動物細胞またはその培養上清から、産生されたポリペプチドを回収する工程、を含む方法。
- 15. 請求項14に記載の方法により製造されたポリペプチド。
- 16. 神経形成を促進する方法であって、神経を形成させる必要がある部位に請求項7に記載のベクターを送達する工程を含む方法。
- 17. 脊髄損傷の治療方法であって、該損傷部位に請求項7に記載のベクターを送達する工程を含む方法。
- 18. 請求項9に記載のベクターを投与する工程を含む、免疫反応を抑制する方法。
- 19. 免疫シグナル伝達の受容体またはそのリガンドに対する抗体、あるいは CTLA4またはその断片を投与する工程をさらに含む、請求項18に記載の方法。
- 20. ベクターからの遺伝子の発現を持続させるおよび/またはベクターの繰り返し投与によるベクターからの遺伝子の発現を増強する方法であって、請求項9 に記載のベクターを投与する工程を含む方法。
- 21. 免疫シグナル伝達の受容体またはそのリガンドに対する抗体、あるいは CTLA4またはその断片を投与する工程をさらに含む、請求項20に記載の方法。
- 22. 発現持続性が上昇したベクター組成物であって、請求項9に記載のベクターおよび薬学的に許容される担体を含む組成物。
- 23. 遺伝子導入キットであって、(a) 請求項9に記載のベクター、ならびに
- (b) 免疫シグナル伝達の受容体またはそのリガンドに対する抗体あるいはCTLA4 またはその断片、を含むキット。

図 1

qcqqccqtacqqccATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGTT TCGCTACCGTAGCGCAGGCCGAAGTTAAACTGCATGAGTCAGGGCCTGGGCTGGTAAGGC TAGGTTGGGTAAAGCAGAGGCCTGGACATGGACTTGAGTGGATTGGAGATATTTACCCTG CATCCTCCAGCACTGCCTACATGCAGCTCAGTAGCCTGACATCTGAGGACTCTGCTGTCT ATTTCTGTGCAAGATTTTACTACGGTAGTAGCTACTGGTACTTCGATGTCTGGGGCCAAG GCACCACGGTCACCGTCTCCTCAGCAAAGACCACTCCTCCGTCTGTTTACCCTCTGGCTC CTGGTTCTGCGGCTCAGACTAACTCTATGGTGACTCTGGGATGCCTGGTCAAGGGCTATT TCCCTGAGCCAGTGACAGTGACCTGGAACTCTGGATCCCTGTCCAGCGGTGTGCACACCT TCCCAGCTGTCCTGCAATCTGACCTCTACACTCTGAGCAGCTCAGTGACTGTCCCCTCCA GCACCTGGCCCAGCGAGACCGTCACCTGCAACGTTGCCCACCCGGCTTCTAGCACCAAAG TTGACAAGAAAATCGTACCGCGCGACTGCTAAccqtaqtaaqaaaaacttaqqqtqaaaq ttcatcgcggccgtacggccATGAAACAAAGCACTATTGCACTGGCACTCTTACCGTTAC TGTTTACCCCTGTGACAAAAGCCGACATCGAGCTCACCCAGTCTCCAGCAATCATGGCTG CATCTGTGGGAGAAACTGTCACCATCACATGTGGAGCAAGTGAGAATATTTACGGTGCTT TAAATTGGTATCAGCGGAAACAGGGAAAATCTCCTCAGCTCCTGATCTATGGTGCAACCA ACTTGGCAGATGGCATGTCATCGAGGTTCAGTGGCAGTGGATCTGGTAGACAGTATTCTC TCAAGATCAGTAGCCTGCATCCTGACGATGTTGCAACGTATTACTGTCAAAATGTGTTAA GTACTCCTCGGACGTTCGGAGCTGGGACCAAGCTCGAGCTGAAGCGCGCTGATGCTGCAC CGACTGTATCCATCTTCCCACCATCCAGTGAGCAGTTAACATCTGGAGGTGCCTCAGTCG TGTGCTTCTTGAACAACTTCTACCCCAAAGACATCAATGTCAAGTGGAAGATTGATGGCA GTGAACGACAAAATGGCGTCCTGAACAGTTGGACTGATCAGGACAGCAAAGACAGCACCT ACAGCATGAGCACCCTCACGTTGACCAAGGACGAGTATGAACGACATAACAGCTATA CCTGTGAGGCCACTCACAAGACATCAACTTCACCCATTGTCAAGAGCTTCAACAGGAATG AGTGTTAGtccqtaqtaaqaaaaacttaqqqtqaaaqttcatqcgqccgc

2/22

区

区でTACCTACATGATAAACGCATTGCAGTGGCACTGGCTGGG (配列番号:12) たらでTACTGGAAAACGTTAAACGTGAGGACTTGCAGGGCCTGGG (配列番号:13) になるです。このです。このです。このです。このです。このです。このです。このです。この																										9	N/A
AAGCTTGGG () () () () () () () () () () () () () (<u> </u>	576	- T		<u>~</u>	<u></u>	<u> </u>	<u> </u>	<u>~</u>	<u></u>	_	<u></u>	<u> </u>	\overline{a}	<u> </u>	<u></u>	-	<u> </u>	<u></u>	=	_		<u></u>		=		_
AAGCTTGGG () () () () () () () () () () () () () (硫酸	10 10 2. C.	ь ф 	d d	号3	3.	斯	(本:))	海:26	号:28	号:2	号:26	号:25	号:24	2. 9.5	号:2%	号:2]	4:2(13 14 15 16	号:17	号:16	争	号:14	in in	号:12	۱
AAGCTTGGG () () () () () () () () () () () () () (配列番号:36 配列番号:37	医多种 医多种	では、現場を	開資	配列器	配列鐵	配列曲	配列番	四二二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	配列番	配列獅	記列番	配列羅	配列番	配列番	配列番	配列機	記》無	配河鄉	記 細	配列機	图響	記簿	記簿	四河鄉	記名	
CGGAATTCGCGGCCGCTACGGCATACGGCCATACGGCCACTGGCCACTGGCTGCTGCTGCTGCCTGC	AGCACCAAAGTTGACAAGAAAATCGTACCGCGCGCTGCTAACCGTAGTAAGAAAACTTAGGGTGAAAG TGACTCTGGGATGCCTGGTCAAGGGCTATTTCCCTGAGCCAGTGACAGTGACCTGGAAACTTTGGATCCCG		Acceliacieillaceceligidadadaceceadecidacecadeced)	36CATGTCATCGAGGTTCAGTGGCAGTGGATCTGGTAGACAGTATTCTC	ATCTGGTAGACAGTATTCTCTCAAGATCAGTAGCCTGCATCCTGACGATGTTGCAACGTATTACTGTCAAAATGTGTTAA (BM		GTGAACGACAAAATGGCGTCCTGAACAGTTGGACTGATCAGGACAGCAAAGACAGCACCTACAGCATGAG	GACAGCACCTACAGCATGAGCAGCACCCTCACGTTGACCAAGGACGAGTATGAACGACATAACAGCTATA (配利	CTGTGAGGCCACTCACAAGACATCAACTTCACCCATTGTCAAGAGCTTCAACAGGAATG(STGTTAGTCCGTAGTAAGAAAACTTAGGGTGAAAGTTCATGCGGCCGCAAGCTTGGG	GAACAACTICTACCCCAAAGACATCAATGTCAAGTGGAAGATTGATGGCAGTGAACGACAAAATGGCGTC (配列	rctggaggtgcctcagtcgtgtgcttcttgaacaacttctaccccaaag	ACCGCTCGAGCTGAAGCGCCGCTGATGCTGCACCGACTGTATCCATCTTCCCACCATCCAGTGAGCAGTTAAC		rggagcaagtgaatatttacggtgctttaaattggtatcagcggaaa	:CTCCAGCAATCATGGCTGCATCTGTGGGAGAAACTGTCACCATCACAT	GCACCTGGCCCAGCGAGACCGTCACCTGCAACGTTGCCCACCCGGCTTCTAGCACCAAAGTTGACAAGAA (IEN)	ICTGAGCAGCTCAGTGACTGTCCCCTCCAGCACCTGGCCCAGCGAGACC	GCACACCTTCCCAGCTGTCCTGCAATCTGACCTCTACA	AAGATTTTACTACGGTAGTAGCTACTGGTACTTCGATGTCTGGGGCCCAAGGCACCACGGT	GTAGCCTGACATCTGAGGACTCTGCTGTTTTTCTGTGCAAGATTTTACTACGGTAGTA (配列	ACTGCCTACATGCAGCTCAGTAGCCTGACATCTGAGGAC	rggtaaggcctgggacttcagtgaagatatcctgcaaggcttctggcta	CGCTACCGTAGCGCAGGCCGAAGTTAAACTGCATGAGTCAGGGCCTGGG	SGCCATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGG	
F1: F2: F5: F5: F10: F10: F12: F13: F14: F14: F15: F15: F16: F16: F16: F16: F17: F16: F17: F17: F16: F17: F17: F17: F17: F17: F17: F17: F17	R10: R11:	R9:	 22	. 00	R7:	R6:	R5:	R4:	R3:	R2:	R1:	F15:	F14:	F13:	F12:	F11:	F10:	F9:	F8:	F7:	F6:	F5:	F4:	F3:	F2:	<u></u>	
			200			180	180	180	480	180	180	180	180			180	180	180	480	180	N80	N80	N80	N80	N80	08N	

図10

ルシフェラーゼ活性 (RLU) <u>(</u>()

A

図11

12/22

図12

18/22

図18

M:蛋白マーカー

1: SeV18+αCD28cst/ΔF-GFP培養上清

2: SeV/ΔF(GFP)培養上清

SEQUENCE LISTING

- <110> DNAVEC RESEARCH INC.
- <120> Antibody-encoding paramyxovirus vectors and their use
- <130> D3-A0203P
- <150> JP 2002-161964
- <151> 2002-06-03
- <160> 63
- <170> PatentIn version 3.1
- <210> 1
- <211> 10
- <212> DNA
- <213> Sendai virus
- <400> 1

ctttcaccct 10

- ⟨210⟩ 2
- <211> 15

15

<21	2>	DNA
\ /.	/./	1//3/

<213> Sendai virus

<400> 2

tttttcttac tacgg

<210> 3

<211> 18

<212> DNA

<213> Artificial

<220>

<223> Spacer sequence

<400> 3

cggccgcaga tcttcacg 18

<210> 4

<211> 18

<212> DNA

<213> Artificial

<220>

<223> an spacer sequence

4	oo	1>	4

atgcatgccg gcagatga

18

- <210> 5
- <211> 18
- <212> DNA
- <213> Artificial

<220>

 $\langle 223 \rangle$ a primer for amplifing Sendai virus genome fragment

<400> 5

gttgagtact gcaagagc

18

- ⟨210⟩ 6
- **<211> 42**
- <212> DNA
- <213> Artificial

<220>

<223> a primer for amplifing Sendai virus genome fragment

<400> 6

tttgccggca tgcatgtttc ccaaggggag agttttgcaa cc

42

<210> 7

⟨211⟩ 18

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ a primer for amplifing Sendai virus genome fragment

<400> 7

atgcatgccg gcagatga

18

⟨210⟩ 8

<211> 21

<212> DNA

<213> Artificial

<220>

<223> a primer for amplifing Sendai virus genome fragment

<400> 8

tgggtgaatg agagaatcag c

98

<210> 9

<211> 1550

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ a gene framgment encoding V regions of antibody IN-1

<220>

<221> CDS

<222> (18).. (749)

<223>

<220>

<221> CDS

<222> (801).. (1505)

⟨223⟩

<400> 9

gcggccgccg tacggcc atg aaa aag aca gct atc gcg att gca gtg gca 50

Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala

1 5 10

ctg gct ggt ttc gct acc gta gcg cag gcc gaa gtt aaa ctg cat gag Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Glu Val Lys Leu His Glu 15 20 25

tca ggg cct ggg ctg gta agg cct ggg act tca gtg aag ata tcc tgc 146
Ser Gly Pro Gly Leu Val Arg Pro Gly Thr Ser Val Lys Ile Ser Cys
30 35 40

aag gct tct ggc tac acc ttc act aac tac tgg cta ggt tgg gta aag

Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr Trp Leu Gly Trp Val Lys

45 50 55

cag agg cct gga cat gga ctt gag tgg att gga gat att tac cct gga 242
Gln Arg Pro Gly His Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly
60 65 70 75

ggt ggt tat act aac tac aat gag aag ttc aag ggc aag gcc aca ctg

Gly Gly Tyr Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu

80 85 90

act gca gac aca tcc tcc agc act gcc tac atg cag ctc agt agc ctg

Thr Ala Asp Thr Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu

95 100 105

aca tct gag gac tct gct gtc tat ttc tgt gca aga ttt tac tac ggt

Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Phe Tyr Tyr Gly

110 115 120

WO 03/102183

agt a	gc	tac	tgg	tac	ttc	gat	gtc	tgg	ggc	caa	ggc	acc	acg	gtc	acc	434
Ser S	er	Tyr	Trp	Tyr	Phe	Asp	Val	Trp	Gly	Gln	Gly	Thr	Thr	Val	Thr	
1	.25					130					135					
gtc t	cc	tca	gca	aag	acc	act	cct	ccg	tct	gtt	tac	cct	ctg	gct	cct	482
Val S	Ser	Ser	Ala	Lys	Thr	Thr	Pro	Pro	Ser	Val	Tyr	Pro	Leu	Ala	Pro	
140					145					150					155	
ggt 1	tct	gcg	gct	cag	act	aac	tct	atg	gtg	act	ctg	gga	tgc	ctg	gtc	530
Gly S	Ser	Ala	Ala	Gln	Thr	Asn	Ser	Met	Val	Thr	Leu	Gly	Cys	Leu	Val	
				160					165					170)	
aag	ggc	tat	ttc	cct	gag	cca	gtg	aca	gtg	acc	tgg	aac	tct	gga	tcc	578
Lys	G1y	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Thr	Trp	Asn	Ser	Gly	Ser	
			175	;				180)				185	5		
ctg	tcc	agc	ggt	gtg	cac	acc	ttc	cca	gct	gto	cte	g caa	tci	gae	ctc	626
Leu	Ser	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	a Val	Let	ı Glr	s Se	. As	p Leu	
		190)				195	5				200)			
tac	act	ctg	ago	ago	tca	a gtg	g act	t gto	c cc	c tco	c ag	c acc	c tg	g cc	c agc	674
Tyr	Thr	Leu	ı Sei	. Sei	r Sei	r Val	l Thi	r Va	l Pro	Se	r Se	r Thi	r Tr	p Pr	o Ser	
	205	;				210)				21	5				
gag	acc	gto	ace	c tg	c aa	c gt	t gc	c ca	c cc	g gc	t tc	t ag	c ac	c aa	a gtt	722
Glu	Thr	· Val	l Th:	r Cy	s Ası	n Va	l Al	a Hi	s Pr	o Al	a Se	r Se	r Th	r Ly	s Val	

gac aag aaa atc gta ccg cgc gac tgc taaccgtagt aagaaaaact Asp Lys Lys Ile Val Pro Arg Asp Cys tagggtgaaa gttcatcgcg gccgtacggc c atg aaa caa agc act att gca Met Lys Gln Ser Thr Ile Ala ctg gca ctc tta ccg tta ctg ttt acc cct gtg aca aaa gcc gac atc Leu Ala Leu Leu Pro Leu Leu Phe Thr Pro Val Thr Lys Ala Asp Ile gag ctc acc cag tct cca gca atc atg gct gca tct gtg gga gaa act Glu Leu Thr Gln Ser Pro Ala Ile Met Ala Ala Ser Val Gly Glu Thr gtc acc atc aca tgt gga gca agt gag aat att tac ggt gct tta aat Val Thr Ile Thr Cys Gly Ala Ser Glu Asn Ile Tyr Gly Ala Leu Asn tgg tat cag cgg aaa cag gga aaa tct cct cag ctc ctg atc tat ggt Trp Tyr Gln Arg Lys Gln Gly Lys Ser Pro Gln Leu Leu Ile Tyr Gly

PCT/JP03/07005 WO 03/102183 9/45

gca	acc	aac	ttg	gca	gat	ggc	atg	tca	tcg	agg	ttc	agt	ggc	agt	gga	1061
Ala	Thr	Asn	Leu	Ala	Asp	Gly	Met	Ser	Ser	Arg	Phe	Ser	Gly	Ser	G1y	
				320					325					330		
tct	ggt	aga	cag	tat	tct	ctc	aag	atc	agt	agc	ctg	cat	cct	gac	gat	1109
Ser	Gly	Arg	Gln	Tyr	Ser	Leu	Lys	Ile	Ser	Ser	Leu	His	Pro	Asp	Asp	
			335					340					345			
gtt	gca	acg	tat	tac	tgt	caa	aat	gtg	tta	agt	act	cct	cgg	acg	ttc	1157
Val	Ala	Thr	Tyr	Tyr	Cys	G1n	Asn	Val	Leu	Ser	Thr	Pro	Arg	Thr	Phe	
		350					355					360				
gga	gct	ggg	acc	aag	ctc	gag	ctg	aag	cgc	gct	gat	gct	gca	ccg	act	1205
															Thr	
•	365					370					375					
ota	tee	atc	tte	cca	cca	tcc	agt	gag	cag	tta	aca	tct	gga	ı ggt	gcc	1253
															/ Ala	
	261	116	1 110	, 110	385		501	014	. 011	390					395	
380					300	•				000	,					
					44.				. +00				s ato		t atc	1301
															t gtc	1001
Ser	Val	Val	Cys			ı Asn	n Asn	n Phe			ь гу:	s Asj	2 116		n Val	
				400)				405	•				410	U	
																10.10
															c agt	1349
Lys	Trp	Lys	i Ile	e Asp	G13	y Sei	Glu	ı Arg	g Glr	ı Ası	ı Gl	y Va	l Le	u As	n Ser	

415 420 425

tgg act gat cag gac agc aaa gac agc acc tac agc atg agc agc acc

Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr

430

435

440

ctc acg ttg acc aag gac gag tat gaa cga cat aac agc tat acc tgt

Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys

445

450

455

gag gcc act cac aag aca tca act tca ccc att gtc aag agc ttc aac

1493

Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn

460

465

470

475

agg aat gag tgt tagtccgtag taagaaaaac ttagggtgaa agttcatgcg gccgc 1550 Arg Asn Glu Cys

<210> 10

<211> 244

<212> PRT

(213) Artificial

<220>

<223> an immunoglobulin IN-1 heavy chain

<400> 10

Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 15

Thr Val Ala Gln Ala Glu Val Lys Leu His Glu Ser Gly Pro Gly Leu
20 25 30

Val Arg Pro Gly Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr 35 40 45

Thr Phe Thr Asn Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His
50 55 60

Gly Leu Glu Trp Ile Gly Asp Ile Tyr Pro Gly Gly Gly Tyr Thr Asn
65 70 75 80

Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Thr Ser 85 90 95

Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser

100 105 110

Ala Val Tyr Phe Cys Ala Arg Phe Tyr Tyr Gly Ser Ser Tyr Trp Tyr

115 120 125

Phe Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Ala Lys
130 135 140

Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln
145 150 155 160

Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro 165 170 175

Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val 180 185 190

His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser 195 200 205

Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys
210 215 220

Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val 225 230 235 240

Pro Arg Asp Cys

<211> 235

<212> PRT

<213> Artificial

<220>

<223> an immunoglobulin IN-1 light chain

<400> 11

Met Lys Gln Ser Thr Ile Ala Leu Ala Leu Leu Pro Leu Leu Phe Thr

1 5 10 15

Pro Val Thr Lys Ala Asp Ile Glu Leu Thr Gln Ser Pro Ala Ile Met
20 25 30

Ala Ala Ser Val Gly Glu Thr Val Thr Ile Thr Cys Gly Ala Ser Glu 35 40 45

Asn Ile Tyr Gly Ala Leu Asn Trp Tyr Gln Arg Lys Gln Gly Lys Ser 50 55 60

Pro Gln Leu Leu Ile Tyr Gly Ala Thr Asn Leu Ala Asp Gly Met Ser

70 75 80

Ser Arg Phe Ser Gly Ser Gly Ser Gly Arg Gln Tyr Ser Leu Lys Ile 85 90 95 Ser Ser Leu His Pro Asp Asp Val Ala Thr Tyr Tyr Cys Gln Asn Val

100 105 110

Leu Ser Thr Pro Arg Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
115 120 125

Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu
130 135 140

Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe
145 150 155 160

Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg
165 170 175

Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser 180 185 190

Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu
195 200 205

Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser 210 215 220

Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys
225 230 235

(210>	12	
(211)	68	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	a synthetic oligonucleotide for constructing a Fab gene fragmen	ıt
<400>	12	
cggaat	togo ggoogcogta oggocatgaa aaagacagot atogogattg cagtggcact	60
ggctgg	tt	68
<210>	13	

<211> 70

<212> DNA

<213> Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 13

		70
agggcc	tggg	70
<210>	14	
	70	
	DNA	
<213>	Artificial	
<220>		
<223>	a synthetic oligonucleotide for constructing a Fab gene fragme	nt
<400>	14	
tgcatg	agtc agggcctggg ctggtaaggc ctgggacttc agtgaagata tcctgcaagg	60
cttctg	geta	70
<210>	15	
<211>	60	
<212>	DNA	
<213>	Artificial	
<220>		

 $\langle 223 \rangle$ a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 15

actgcagaca catcctccag cactgcctac atgcagctca gtagcctgac atctgaggac

60

⟨210⟩ 16

<211> 60

<212> DNA

(213) Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 16

gtagcctgac atctgaggac tctgctgtct atttctgtgc aagattttac tacggtagta

60

<210> 17

⟨211⟩ 60

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 17

aagattttac tacggtagta gctactggta cttcgatgtc tggggccaag gcaccacggt

19	ነ በነ	\ 1	R

<211> 60

<212> DNA

<213> Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 18

cgggatccct gtccagcggt gtgcacacct tcccagctgt cctgcaatct gacctctaca 60

⟨210⟩ 19

<211> 70

<212> DNA

<213> Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 19

cctgcaatct gacctctaca ctctgagcag ctcagtgact gtcccctcca gcacctggcc 60

70

<210>	20
<211>	70
<212>	DNA
<213>	Artificial
<220>	
<223>	a synthetic oligonucleotide for constructing a Fab gene fragment
<400>	20
gcacct	ggcc cagcgagacc gtcacctgca acgttgccca cccggcttct agcaccaaag 60

⟨210⟩ 21

ttgacaagaa

<211> 70

<212> DNA

<213> Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 21

70

	70
accatcacat	70
accattacat	

⟨210⟩ 22

<211> 70

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 22

agaaactgtc accatcacat gtggagcaag tgagaatatt tacggtgctt taaattggta 60

tcagcggaaa 70

⟨210⟩ 23

<211> 70

<212> DNA

<213> Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400>	23	
taaatt	ggta tcagcggaaa cagggaaaat ctcctcagct cctgatctat ggtgcaacca	60
acttgg	caga	70
<210>	24	
<211>		
	DNA	
<213>	Artificial	
<220>		
<223>	a synthetic oligonucleotide for constructing a Fab gene fragme	ent
<400>		20
accgct	cgag ctgaagcgcg ctgatgctgc accgactgta tccatcttcc caccatccag	60
t an an	ortto an	72
igagca	gtta ac	
<210>	25	
<211>	70	
<212>	DNA	
(213)	Artificial	

<223>	a synthetic oligonucleotide for constructing a Fab gene fragment	;
<400> ccatcca		60
tacccca	aaag	70
<210>	26	
<211>	70	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	a synthetic oligonucleotide for constructing a Fab gene fragmen	it
<400>	26	
gaacaa	cttc taccccaaag acatcaatgt caagtggaag attgatggca gtgaacgaca	60
aaatgg	gcgtc	70

<210> 27

<211> 79

<212> DNA

•	\sim	^	Λ	`
•	٠,	٠,	11	•

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 27

caagagette aacaggaatg agtgttagte egtagtaaga aaaacttagg gtgaaagtte 60

atgcggccgc aagcttggg 79

<210> 28

<211> 80

<212> DNA

(213) Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 28

tgaacgacat aacagctata cctgtgaggc cactcacaag acatcaactt cacccattgt 60

caagagette aacaggaatg 80

<210> 29

<211> 70

acagcatgag

60

70

<212>	DNA
<213>	Artificial
<220>	
⟨223⟩	a synthetic oligonucleotide for constructing a Fab gene fragment
<400>	29
	acct acagcatgag cagcaccctc acgttgacca aggacgagta tgaacgacat 60
gacago	acct acagoatgag cagoaccere acgorgation aggregation commo
	tata 70
aacagc	tata
<210>	30
<211>	70
<212>	DNA
<213>	Artificial
	•
<220>	
<223>	a synthetic oligonucleotide for constructing a Fab gene fragment
<400>	30

gtgaacgaca aaatggcgtc ctgaacagtt ggactgatca ggacagcaaa gacagcacct

<210>	31	
<211>	70	
<212>	DNA	
<213>	Artificial	
•		
<220>		
<223>	a synthetic oligonucleotide for constructing a Fab gene fragmen	t
<400>	31	
ttactg	tcaa aatgtgttaa gtactcctcg gacgttcgga gctgggacca agctcgagcg	60
gaagct	tggg	70

⟨210⟩ 32

⟨211⟩ 80

<212> DNA

<213> Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

⟨400⟩ 32

atctggtaga cagtattctc tcaagatcag tagcctgcat cctgacgatg ttgcaacgta 60

ttactgtcaa aatgtgttaa

ረ 91	Λ\	33

<211> 70

<212> DNA

<213> Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 33

ggtgcaacca acttggcaga tggcatgtca tcgaggttca gtggcagtgg atctggtaga 60

cagtattete 70

<210> 34

<211> 70

<212> DNA

<213> Artificial

<220>

 $\langle 223 \rangle$ a synthetic oligonucleotide for constructing a Fab gene fragment

<400> 34

agctcaccca	70

<210> 35

<211> 70

<212> DNA

<213> Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

⟨400⟩ 35

agaaaaactt agggtgaaag ttcatcgcgg ccgtacggcc atgaaacaaa gcactattgc 60

actggcactc 70

⟨210⟩ 36

<211> 70

<212> DNA

<213> Artificial

<220>

<223> a synthetic oligonucleotide for constructing a Fab gene fragment

<400>	26	
		C O
agcacca	aag ttgacaagaa aatcgtaccg cgcgactgct aaccgtagta agaaaaactt	60
agggtga	aaag	70
<210>	37	
<211>	70	
<212>	DNA	
⟨213⟩	Artificial	
<220>		
<223>	a synthetic oligonucleotide for constructing a Fab gene fragme	nt
<400>	37	
tgactc	tggg atgcctggtc aagggctatt tccctgagcc agtgacagtg acctggaact	60
-0		
		70
ctggat	cccg	10
<210>	38	
<211>	70	
<212>	DNA	

<223>	a synthetic oligonucleotide for constructing a Fab gene fragment	;
<400> gtctgt1		50
atgeetį	ggtc	70
<210>	39	
<211>	70	
<212>	DNA	
<213>	Artificial	
<220>	a synthetic oligonucleotide for constructing a Fab gene fragmen	ıt
(223)	a synthetic originalization constitueing a rab gene in agent	
<400>	39	
tggggc	caag gcaccacggt caccgtctcc tcagcaaaga ccactcctcc gtctgtttac	60
cctctg	ggctc	70

<210> 40

<211> 70

<212> DNA

	\cdot	
<220>		
<223>	a synthetic oligonucleotide for constructing a Fab gene fragmen	t
<400>	40	
gaggtgg	tta tactaactac aatgagaagt tcaagggcaa ggccacactg actgcagaca	60
		70
catccto	ccag	
<210>	41	
<211>	70	
⟨212⟩	DNA	
⟨213⟩	Artificial	
<220>		
<223>	a synthetic oligonucleotide for constructing a Fab gene fragmen	nt
<400>	41	
aaagca	gagg cctggacatg gacttgagtg gattggagat atttaccctg gaggtggtta	60
tactaa	ctac	70

<210> 42

⟨211⟩ 70

(212>	DNA	
(213>	Artificial	
(220>		
(223>	a synthetic oligonucleotide for constructing a Fab gene fragmen	ıt
<400>	42	
tcctgc	aagg cttctggcta caccttcact aactactggc taggttgggt aaagcagagg	60
		70
cctgga	catg	10
<210>	43	
<211>	753	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an anti-CD28 ScFv antibody gene (SYN205-13)	
<400>	43	
tctaga	agaca tegageteae teagteteea gettetttgg etgtgtetet agggeagaga	60
gccac	catct cctgcagagc cagtgagagt gttgaatatt atgtcacaag tttaatgcag	120
tggta	ccage agaagecagg acagecaeee aaaeteetea tetttgetge atecaaegta	180

gaatctgggg to	cctgccag g	gtttagtggc	agtgggtctg	ggacaaactt	cagcctcaac	240
atccatcctg tg	ggacgagga ⁻	tgatgttgca	atgtatttct	gtcagcaaag	taggaaggtt	300
ccttacacgt to	cggaggggg	gaccaagctg	gaaataaaac	ggggaggcgg	cggttctggc	360
ggtggcggat ca	aggtggcgg	aggctcgcag	gtgaaactgc	agcagtctgg	acctggcctg	420
gtgacgccct ca	acagagcct	gtccatcact	tgtactgtct	ctgggttttc	attaagcgac	480
tatggtgttc ac	ctgggttcg	ccagtctcca	ggacagggac	tggagtggct	gggagtaata	540
tgggctggtg g	aggcacgaa	ttataattcg	gctctcatgt	ccagaaagag	catcagcaaa	600
gacaactcca a	gagccaagt	tttcttaaaa	atgaacagtc	tgcaagctga	tgacacagcc	660
gtgtattact g	tgccagaga	taagggatac	tcctattact	attctatgga	ctactggggc	720
caagggacca c	ggtcactgt	ctcctcgtct	aga			753

<210> 44

<211> 247

<212> PRT

<220>

<223> an anti-CD28 ScFv fragment encoded by SYN205-13

<400> 44

Asp Ile Glu Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly

1 5 10 15

Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Glu Tyr Tyr
20 25 30

Val Thr Ser Leu Met Gln Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro
35 40 45

Lys Leu Leu Ile Phe Ala Ala Ser Asn Val Glu Ser Gly Val Pro Ala 50 55 60

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asn Phe Ser Leu Asn Ile His
65 70 75 80

Pro Val Asp Glu Asp Asp Val Ala Met Tyr Phe Cys Gln Gln Ser Arg 85 90 95

Lys Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg

100 105 110

Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gln
115 120 125

Val Lys Leu Gln Gln Ser Gly Pro Gly Leu Val Thr Pro Ser Gln Ser 130 135 140

Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Asp Tyr Gly
145 150 155 160

Val His Trp Val Arg Gln Ser Pro Gly Gln Gly Leu Glu Trp Leu Gly
165 170 175

Val Ile Trp Ala Gly Gly Gly Thr Asn Tyr Asn Ser Ala Leu Met Ser 180 185 190

Arg Lys Ser Ile Ser Lys Asp Asn Ser Lys Ser Gln Val Phe Leu Lys
195 200 205

Met Asn Ser Leu Gln Ala Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg 210 215 220

Asp Lys Gly Tyr Ser Tyr Tyr Tyr Ser Met Asp Tyr Trp Gly Gln Gly
225 230 235 240

Thr Thr Val Thr Val Ser Ser

PCT/JP03/07005 WO 03/102183

<210>	45	
<211>	131	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	a NotI fragmnet containing an EIS sequence in pGEM-4Zcst	
<400>	45	
gcggcc	gcca aagttcaatg gattttcagg tgcagatttt cagcttcctg ctaatcagtg	60
cctcag	tcat aatgtccaga ggatctagac cgtagtaaga aaaacttagg gtgaaagttc	120
atcgcg	gccg c	131
<210>	46	
<211>	22	

<400> 46

<212> PRT

<213> Mus musculus

Met Asp Phe Gln Val Gln Ile Phe Ser Phe Leu Leu Ile Ser Ala Ser

1

5

10

15

Val Ile Met Ser Arg Gly

20

<210> 47

<211> 70

<212> DNA

<213> Artificial

<220>

<223> an synthetic oligonucleotide for constructing an anti-CD28cst
 gene fragment

<400> 47

tctagagaca tcgagctcac tcagtctcca gcttctttgg ctgtgtctct agggcagaga

70

60

gccaccatct

<210> 48

<211> 70

<212> DNA

/	n	9	Λ	`
•	1	1	u	_

<223> an synthetic oligonucleotide for constructing an anti-CD28cst
 gene fragment

<400> 48

agggcagaga gccaccatct cctgcagagc cagtgagagt gttgaatatt atgtcacaag 60

tttaatgcag 70

⟨210⟩ 49

<211> 70

<212> DNA

<213> Artificial

<220>

<223> an synthetic oligonucleotide for constructing an anti-CD28cst
gene fragment

<400> 49

atgtcacaag tttaatgcag tggtaccagc agaagccagg acagccaccc aaactcctca 60

tctttgctgc 70

<21	1>	70

- <212> DNA
- <213> Artificial

<220>

<223> an synthetic oligonucleotide for constructing an anti-CD28cst
gene fragment

<400> 50

ccttacacgt tcggaggggg gaccaagctg gaaataaaac ggggaggcgg cggttctggc 60

ggtggcggat 70

- <210> 51
- <211> 70
- <212> DNA
- <213> Artificial

<220>

<223> an synthetic oligonucleotide for constructing an anti-CD28cst
 gene fragment

<400> 51

gene fragment

PCT/JP03/07005

acctggo	ectg	70
400086		
<210>	52	
<211>	70	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an synthetic oligonucleotide for constructing an anti-CD28cst	
	gene fragment	
<400>		
agcagt	ctgg acctggcctg gtgacgccct cacagagcct gtccatcact tgtactgtct	60
		70
ctgggt	tttc	70
(010)	F0	
<210>	53	
〈211〉	70	
〈212〉	Artificial	
\413/	VI CII ICIAI	
<220>		
<223>	an synthetic oligonucleotide for constructing an anti-CD28cst	

<212> DNA

<400>	53	
gacaact	cca agagccaagt tttcttaaaa atgaacagtc tgcaagctga tgacacagcc	60
		50
gtgtati	tact	70
<210>	54	
(210)	04	
<211>	70	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an synthetic oligonucleotide for constructing an anti-CD28cst	
	gene fragment	
<400>		
tgacac	agcc gtgtattact gtgccagaga taagggatac tcctattact attctatgga	60
		70
ctactg	gggc	70
<210>	55	
<211>	53	

,	n	n	Λ	`
€	1	/	u	,

<223> an synthetic oligonucleotide for constructing an anti-CD28cst
gene fragment

<400> 55

tctagacgag gagacagtga ccgtggtccc ttggccccag tagtccatag aat

53

<210> 56

<211> 70

<212> DNA

<213> Artificial

<220>

<223> an synthetic oligonucleotide for constructing an anti-CD28cst
gene fragment

<400> 56

acttggctct tggagttgtc tttgctgatg ctctttctgg acatgagagc cgaattataa 60

ttcgtgcctc

70

<210> 57

<211> 70

<212>	DNA	
<213>	Artificial	
<220>		
<223>	an synthetic oligonucleotide for constructing an anti-CD28cst	
	gene fragment	
<400>	57	
cgaatt	ataa ttcgtgcctc caccagccca tattactccc agccactcca gtccctgtcc	60
tggaga	ctgg	70
<210>	58	
<211>	70	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an synthetic oligonucleotide for constructing an anti-CD28cst	
	gene fragment	

<400> 58

gtccctgtcc tggagactgg cgaacccagt gaacaccata gtcgcttaat gaaaacccag 60

agacagtaca

<210>	59	
<211>	70	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an synthetic oligonucleotide for constructing an anti-CD28cst	
	gene fragment	
<400>	59	
cccct	ccga acgtgtaagg aaccttccta ctttgctgac agaaatacat tgcaacatca	60
tcctcg	tcca	70
<210>	60	
<211>	70	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an synthetic oligonucleotide for constructing an anti-CD28cst	
	gene fragment	

<400>	60	
tgcaaca	atca tectegteca caggatggat gttgaggetg aagtttgtee cagacecaet	60
gccacta	aaac	70
<210>	61	
⟨211⟩	70	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	an synthetic oligonucleotide for constructing an anti-CD28cst	
	gene fragment	
<400>	61	
cagacc	cact gccactaaac ctggcaggga ccccagattc tacgttggat gcagcaaaga	60
tgagga	gttt	70
<210>	62	
<211>	22	
<212>	DNA	
<213>	Artificial	

/	ŋ	O	Λ	`
<	7	1.	u	

<223> a synthetic primer F6

<400> 62

acaagagaaa aaacatgtat gg

22

<210> 63

<211> 23

<212> DNA

<213> Artificial

<220>

<223> a synthetic primer R199

<400> 63

gataacagca cctcctcccg act

23

International application No. PCT/JP03/07005

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C12N15/09, 7/00, A61K35/76, 39/395, 48/00, A61P19/08, 25/00, 37/06, 43/00, C07K16/18, 16/28, C12P21/02			
According to	International Patent Classification (IPC) or to both nati	onal classification and IPC	
	SEARCHED		
Minimum do Int.	ocumentation searched (classification system followed b C1 ⁷ C12N15/09, 7/00, A61K35/76 25/00, 37/06, 43/00, C07K16	, 39/395, 48/00, A61P19	9/08,
	ion searched other than minimum documentation to the		
Electronic de PubM	ata base consulted during the international search (name ed, BIOSIS/WPI (DIALOG)	of data base and, where practicable, sear	rch terms used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
Y	Li HO, et al., A cytoplasmic from nontransmissible Sendai gene transfer and expression. July, Vol.74, No.14, pages 6564 to	virus with efficient , J.Virol., 2000	1-15,20-23
Y	Masaki I. et al., Angiogenic experimental critical limb is of limb loss by overexpressio endothelial growth factor 165 fibroblast growth factor-2., 2002 (17.05.02), Vol.90, No.9	gene therapy for chemia: acceleration of vascular but not of Circ.Res., 17 May,	1-15,20-23
X Furthe	er documents are listed in the continuation of Box C.	See patent family annex.	
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search O1 September, 2003 (01.09.03) "T" later document published after the international filing date or priority date and not in conflict with the application but cited understand the principle or theory underlying the invention document of particular relevance; the claimed invention can considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention can considered to involve an inventive step when the document combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 16 September, 2003 (16.09.03)			he application but cited to derlying the invention cannot be cred to involve an inventive e claimed invention cannot be pwhen the document is h documents, such in skilled in the art family
Name and	mailing address of the ISA/ anese Patent Office	Authorized officer	,
Faccimile N	No.	Telephone No.	

Inouye RT. et al., Potent inhibition of human immunodeficiency virus type 1 in primary T cells and alveolar macrophages by a combination anti-Rev strategy delivered in an adeno-associated virus vector., J.Virol., 1997 May, Vol.71, No.5, pages 4071 to 4078 Liang XH. et al., Expression of a biologically active antiviral antibody using a sindbis virus vector system., Mol.Immunol., 1997 August-September, Vol.34, No.12-13, pages 907 to 917 MORIMOTO, K. et al., High level expression of a human rabies virus-neutralizing monoclonal	1-15,20-23
active antiviral antibody using a sindbis virus vector system., Mol.Immunol., 1997 August-September, Vol.34, No.12-13, pages 907 to 917 MORIMOTO, K. et al., High level expression of a human rabies virus-neutralizing monoclonal	1-15,20-23
a human rabies virus-neutralizing monoclonal	
antibody by a rhabdovirus-based vector., J. Immunol.Methods., 01 June, 2001 (01.06.01), Vol.252, No.1-2, pages 199 to 206	1-15,20-23
Brosamle C., et al., Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment., J.Neurosci., 01 November, 2000 (01.11.00), Vol.20, No.21, pages 8061 to 8068	7,8
Yu XZ. et al., CD28-specific antibody prevents graft-versus-host disease in mice., J.Immunol., 01 May, 2000 (01.05.00), Vol.164, No.9, pages 4564 to 4568	6,9-13,21-23
	Brosamle C., et al., Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment., J.Neurosci., 01 November, 2000 (01.11.00), Vol.20, No.21, pages 8061 to 8068 Yu XZ. et al., CD28-specific antibody prevents graft-versus-host disease in mice., J.Immunol., 01 May, 2000 (01.05.00), Vol.164, No.9, pages

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet) This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. X Claims Nos.: 16-19 because they relate to subject matter not required to be searched by this Authority, namely: Claims 16 to 19 pertain to methods for treatment of the human body by therapy. 2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fcc. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: The additional search fees were accompanied by the applicant's protest. Remark on Protest No protest accompanied the payment of additional search fees.

発明の属する分野の分類(国際特許分類(IPC))

Int Cl' C12N 15/09, 7/00, A61K 35/76, 39/395, 48/00, A61P 19/08, 25/00, 37/06, 43/00, CO7K 16/18. 16/28. C12P 21/02

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int Cl' Cl2N 15/09, 7/00, A61K 35/76, 39/395, 48/00, A61P 19/08, 25/00, 37/06, 43/00, CO7K 16/18, 16/28, C12P 21/02

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

PubMed, BIOSIS/WPI (DIALOG)

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	Li HO, et al., A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression., J Virol. 2000 Jul, vol. 74, no. 14, p. 6564-6569.	1-15, 20-23
Y	Masaki I, et al., Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2., Circ Res. 2002 May 17, vol. 90, no. 9, p. 966-973.	1-15, 20-23
区欄の続き	・ きにも文献が列挙されている。	紙を参照。

- * 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す「T」国際出願日又は優先日後に公表された文献であって
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの。
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献

もの

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

16.09.03 国際調査を完了した日 国際調査報告の発送日 01.09.03 特許庁審査官(権限のある職員) 4 B 9358 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 小暮 道明 郵便番号100-8915 電話番号 03-3581-1101 内線 3448 東京都千代田区霞が関三丁目4番3号

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	Inouye RT, et al., Potent inhibition of human immunodeficiency virus type 1 in primary T cells and alveolar macrophages by a combination anti-Rev strategy delivered in an adeno-associated virus vector., J Virol. 1997 May, vol. 71, no. 5, p. 4071-4078.	1-15, 20-23
Y	Liang XH, et al., Expression of a biologically active antiviral antibody using a sindbis virus vector system., Mol Immunol. 1997 Aug-Sep, vol. 34, no. 12-13, p. 907-917.	1-15, 20-23
Y	Morimoto K, et al., High level expression of a human rabies virus-neutralizing monoclonal antibody by a rhabdovirus-based vector., J Immunol Methods. 2001 Jun 1, vol. 252, no. 1-2, p. 199-206.	1-15, 20-23
Y	Brosamle C, et al., Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment., J Neurosci. 2000 Nov 1, vol. 20, no. 21, p. 8061-8068.	7,8
Y	Yu XZ, et al., CD28-specific antibody prevents graft-versus-host disease in mice., J Immunol. 2000 May 1, vol. 164, no. 9, p. 4564-4568.	6, 9-13, 21-23
		·
	·	

	国際調査報告	国際出願番号	PCT/JP03/07005
第 I 欄 法第8 st 成しなか	請求の範囲の一部の調査ができないときの意見(第1ペー) を第3項(PCT17条(2)(a))の規定により、この国際調金のである。	ジの2の続き) 全報告は次の理由	日により請求の範囲の一部について作
1. 🗵	請求の範囲 16-19 は、この国際調査機関がつまり、 上記請求の範囲に記載された発明は、人の身体る。		·
2.	請求の範囲 は、有意義な国際調査をない国際出願の部分に係るものである。つまり、	することができ	る程度まで所定の要件を満たしてい
3. 🗌	請求の範囲は、従属請求の範囲であ 従って記載されていない。	ってPCT規則	6.4(a)の第2文及び第3文の規定に
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの30	の続き)	<u> </u>
次に対	☆べるようにこの国際出願に二以上の発明があるとこの国際	調査機関は認めた	.
·			
1.	出願人が必要な追加調査手数料をすべて期間内に納付した の範囲について作成した。	ので、この国際	調査報告は、すべての調査可能な請求

- 2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。

追加調査手数料の異議の申立てに関する注意

- □ 追加調査手数料の納付と共に出願人から異議申立てがあった。
- □ 追加調査手数料の納付と共に出願人から異議申立てがなかった。