Exemplo: O Princípio de indução estrutural para C (associado à definição indutiva do conjunto C no exemplo inicial) é o seguinte:

Seja P(n) uma condição sobre $n \in C$.

Se:

1 P(0):

 $oxed{2}$ se P(k) , então P(k+2), para todo o $k \in C$;

então P(n), para todo o $n \in C$.

Definição: A função $var : \mathcal{F}^{CP} \longrightarrow \mathcal{P}(\mathcal{V}^{CP})$, que a cada fórmula faz corresponder o conjunto das variáveis proposicionais que nela ocorrem, é definida, por recursão estrutural em fórmulas do CP, do seguinte modo:

- a) $var(\bot) = \emptyset$;
- **b)** $var(p) = \{p\}$, para todo $p \in \mathcal{V}^{CP}$;
- c) $var(\neg \varphi) = var(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- d) $var(\varphi \Box \psi) = var(\varphi) \cup var(\psi)$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in \mathcal{F}^{\mathcal{CP}}$.

Definição: A função $\mathit{subf}: \mathcal{F}^{CP} \longrightarrow \mathcal{P}(\mathcal{F}^{CP})$ é definida, por recursão estrutural em fórmulas do CP, do seguinte modo:

- a) $subf(\varphi) = \{\varphi\}$, para todo $\varphi \in \mathcal{V}^{CP} \cup \{\bot\}$;
- $\textbf{b)} \ \ \textit{subf}(\neg \varphi) = \{\neg \varphi\} \cup \textit{subf}(\varphi), \, \text{para todo} \ \varphi \in \mathcal{F}^\textit{CP}; \,$
- d) $subf(\varphi \Box \psi) = \{\varphi \Box \psi\} \cup subf(\varphi) \cup subf(\psi)$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in \mathcal{F}^{\mathit{OP}}$.

Dadas fórmulas φ e ψ , diremos que φ é uma subfórmula de ψ quando

Definição: Sejam p uma variável proposicional e $\psi \in \mathcal{F}^{CP}$.

A função $[\psi/p]: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}$, que a cada fórmula φ faz corresponder $\varphi[\psi/p]$, a fórmula que resulta de φ por *substituição* das ocorrências de p por ψ , é definida, por recursão estrutural em fórmulas do CP, do sequinte modo:

- a) $\perp [\psi/p] = \perp$;
- **b)** $p_i[\psi/p] = \left\{ egin{array}{ll} \psi & ext{se } p_i = p \ p_i & ext{se } p_i
 eq p \end{array}
 ight.$, para todo $i \in \mathbb{N}_0$;
- c) $(\neg \varphi_1)[\psi/p] = \neg \varphi_1[\psi/p]$, para todo $\varphi_1 \in \mathcal{F}^{CP}$;
- $\begin{array}{l} \textbf{d)} \ \ (\varphi_1 \square \varphi_2)[\psi/p] = \varphi_1[\psi/p] \square \varphi_2[\psi/p], \ \text{para todo} \\ \square \in \{\land, \lor, \to, \leftrightarrow\}, \ \varphi_1, \varphi_2 \in \mathcal{F}^{CP}. \end{array}$

Teorema (Princípio de indução estrutural para fórmulas do CP): Seja $P(\varphi)$ uma condição sobre $\varphi \in \mathcal{F}^{CP}$ Se:

- a) P(⊥);
- **b)** P(p), para todo $p \in \mathcal{V}^{CP}$;
- c) $P(\psi) \implies P(\neg \psi)$, para todo $\psi \in \mathcal{F}^{CP}$;
- d) $P(\psi_1)$ e $P(\psi_2) \Longrightarrow P(\psi_1 \square \psi_2)$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\psi_1, \psi_2 \in \mathcal{F}^{CP}$; então $P(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$.

Definição: Uma função $v: \mathcal{F}^{CP} \longrightarrow \{0,1\}$ é uma *valoração* quando satisfaz as seguintes condições:

- a) $v(\bot) = 0$,
- $\mathbf{b)} \ \ v(\neg \varphi) = f_\neg(v(\varphi)), \, \mathsf{para} \; \mathsf{todo} \; \varphi \in \mathcal{F}^\mathit{CP},$
- c) $v(\varphi \Box \psi) = f_{\Box}(v(\varphi), v(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$ e para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\},\$

onde $f_{\neg}, f_{\wedge}, f_{\vee}, f_{\rightarrow}, f_{\leftrightarrow}$ são as *funções boleanas* determinadas pelas tabelas de verdade dos respetivos conetivos; designadamente:

Definicão:

- I Uma fórmula φ é uma tautologia quando, para qualquer valoração $v, v(\varphi) = 1.$
- f Z Uma fórmula arphi é uma ${\it contradição}$ quando, para qualquer valoração

A notação $\models \varphi$ significará que φ é uma tautologia.

A notação $\not\models \varphi$ significará que φ não é uma tautologia.

- $\mathbf{1}$ φ é tautologia se e só se $\neg \varphi$ é contradição;
- $\mathbf{Q} \varphi$ é contradição se e só se $\neg \varphi$ é tautologia.

Proposição: As seguintes equivalências lógicas são válidas.

$$(\varphi \lor \psi) \lor \sigma \Leftrightarrow \varphi \lor (\psi \lor \sigma) \qquad (\varphi \land \psi) \land \sigma \Leftrightarrow \varphi \land (\psi \land \sigma)$$
(associatividade)

 $\varphi \lor \psi \Leftrightarrow \psi \lor \varphi$ $\phi \wedge \psi \Leftrightarrow \psi \wedge \phi$

(comutatityidade)

 $\varphi \lor \varphi \Leftrightarrow \varphi$ $\varphi \land \varphi \Leftrightarrow \varphi$ (idempotência)

 $\varphi \lor \bot \Leftrightarrow \varphi$ $\phi \land \neg \bot \Leftrightarrow \phi$

(elemento neutro) $\varphi \lor \neg \bot \Leftrightarrow \neg \bot$

(elemento absorvente)

 $\varphi \lor (\psi \land \sigma) \Leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \sigma) \quad \varphi \land (\psi \lor \sigma) \Leftrightarrow (\varphi \land \psi) \lor (\varphi \land \sigma)$ (distributividade)

> $\neg (\varphi \lor \psi) \Leftrightarrow \neg \varphi \land \neg \psi$ $\neg(\varphi \land \psi) \Leftrightarrow \neg\varphi \lor \neg\psi$ (leis de De Morgan)

> > $\varphi \rightarrow \psi \Leftrightarrow \neg \psi \rightarrow \neg \varphi$

 $\varphi \wedge \bot \Leftrightarrow \bot$

(lei da dupla negação) (contrarrecíproco) $\varphi \leftrightarrow \psi \Leftrightarrow (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$ $\varphi \rightarrow \psi \Leftrightarrow \neg \varphi \lor \psi$

 $\varphi \land \psi \Leftrightarrow \neg(\neg \varphi \lor \neg \psi)$

 $\bot \Leftrightarrow \varphi \land \neg \varphi$ $\neg \varphi \Leftrightarrow \varphi \to \perp$ (expressão de um conetivo em termos de outros conetivo

Teorema (Substituição): Sejam $p \in \mathcal{V}^{CP}$ e $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$. Então $\varphi_1 \Leftrightarrow \varphi_2$ sse para todo $\psi \in \mathcal{F}^{CP}$, $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$.

Seja $X \subseteq \{\bot, \neg, \land, \lor, \rightarrow, \leftrightarrow\}$ um conjunto de conetivos.

X diz-se completo quando, para todo $\varphi \in \mathcal{F}^{CP}$, existe $\psi \in \mathcal{F}^{CP}$ tal que $\varphi \Leftrightarrow \psi$ e todos os conetivos de ψ pertencem a X.

Proposição: Os conjuntos de conetivos $\{\rightarrow, \neg\}, \{\rightarrow, \bot\}, \{\land, \neg\}$ e $\{\lor, \neg\}$ são completos.

Definição: Uma fórmula proposicional diz-se um literal se for uma variável proposicional ou se for a negação de uma de variável proposicional.

i) $(l_{11} \vee ... \vee l_{1m_1}) \wedge ... \wedge (l_{n1} \vee ... \vee l_{nm_n})$ **FNC**

ii)
$$(I_{11} \wedge ... \wedge I_{1m_1}) \vee ... \vee (I_{n1} \wedge ... \wedge I_{nm_n})$$
 FND

Mais geralmente, conjunções de literais e disjunções de literais são. em simultâneo, formas normais conjuntivas e disjuntivas.

Todo o literal / é simultaneamente uma FNC e uma FND (nas

Proposição: Para todo $\varphi \in \mathcal{F}^{CP}$:

(i) existem FNC's logicamente equivalentes a φ ; e (ii) existem FND's logicamente equivalentes a φ .

1 Dada uma fórmula do CP φ , dizemos que v satisfaz φ (ou que v é *modelo* de φ), e escrevemos $v \models \varphi$, quando $v(\varphi) = 1$.

Quando \emph{v} $\emph{n\~{a}o}$ $\emph{satisfaz}$ φ (i.e., quando $\emph{v}(\varphi)=0$), escrevemos

2 Dado um conjunto de fórmulas do CP Γ, dizemos que *v satisfaz* Γ (ou que $v \not \in modelo de \Gamma$), e escrevemos $v \models \Gamma$, quando v satisfaz

Quando v não satisfaz Γ (i.e., quando existe $\varphi \in \Gamma$ t.q. $v \not\models \varphi$ ou, equivalentemente, quando existe $\varphi \in \Gamma$ t.q. $v(\varphi) = 0$) escrevemos

para toda a valoração $v, v \models \emptyset$.

- 1 Γ diz-se um conjunto (semanticamente) consistente ou satisfazível quando alguma valoração satisfaz Γ.
- ☐ C diz-se um conjunto (semanticamente) inconsistente ou insatisfazível quando não há valorações que satisfaçam Γ.

Proposição: Sejam Γ e Δ conjuntos de fórmulas do CP tais que $\Gamma \subseteq \Delta$. Então:

- i) se Δ é consistente, então Γ é consistente;
- ii) se Γ é inconsistente, então Δ é inconsistente.
- 1 Dizemos que φ é consequência semântica de Γ, e escrevemos $\models \varphi$, quando, para toda a valoração v, se $v \models \Gamma$, então $v \models \varphi$.
- **2** Escrevemos $\Gamma \not\models \varphi$ quando φ não é consequência semântica de Γ , i.e., quando para alguma valoração v se tem $v \models \Gamma$ e, no entanto,
- 1 $\Gamma \models \varphi$ sse para toda a valoração v, se para todo $\psi \in \Gamma$, $v(\psi) = 1$, então $v(\varphi) = 1$.
- **2** $\Gamma \not\models \varphi$ sse para alguma valoração ν se tem, para todo $\psi \in \Gamma$, $v(\psi) = 1$, bem como $v(\varphi) = 0$.
- a) Se $\varphi \in \Gamma$, então $\Gamma \models \varphi$.
- **b)** Se $\Gamma \models \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \models \varphi$.
- c) Se $\Gamma \models \varphi$ e $\Delta, \varphi \models \psi$, então $\Delta, \Gamma \models \psi$.
- d) $\Gamma \models \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \models \psi$.
- e) Se $\Gamma \models \varphi \rightarrow \psi$ e $\Gamma \models \varphi$, então $\Gamma \models \psi$.

 $\Gamma \models \varphi$ se e só se $\Gamma \cup \{\neg \varphi\}$ é semanticamente inconsistente.

de φ e $\varphi \to \psi$ podemos concluir ψ .

$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$$

se assumindo φ por hipótese podemos concluir ψ , então podemos concluir $\varphi \to \psi$.

Neste raciocínio, φ é uma hipótese temporária usada para concluir ψ .

depende da hipótese temporária φ .

Utilizemos a notação $\dot{\psi}$ para simbolizar a possibilidade de concluir ψ a partir de φ .

Regras de Introdução Regras de Eliminação

Regras de Introdução Regras de Eliminação

Regras de Introdução

Regras de Eliminação

Definição: O conjunto \mathcal{D}^{DNP} das derivações de DNP é o menor conjunto X, de árvores finitas de fórmulas, com folhas possivelmente canceladas, tal que:

- a) para todo $\varphi \in \mathcal{F}^{CP}$, a árvore cujo único nodo é φ pertence a X;
- b) X é fechado para cada uma das regras de inferência de DNP; por exemplo, X é fechado para as regras $\to E$ e $\to I$ quando as seguintes condições são satisfeitas (respetivamente):

- as folhas são chamadas as hipóteses de D;
- as folhas canceladas são chamadas as hipóteses canceladas de D:
- as folhas não canceladas são chamadas as hipóteses não
- Diremos que D é uma derivação de φ a partir de um conjunto de fórmulas Γ quando φ é a conclusão de D e o conjunto das hipóteses não canceladas de D é um subconjunto de Γ. Diremos que D é uma demonstração de φ quando D é uma
- derivação de φ a partir do conjunto vazio

Uma fórmula φ diz-se derivável a partir de um conjunto de fórmulas Γ ou uma consequência sintática de Γ (notação: $\Gamma \vdash \varphi$) quando existem derivações em DNP de φ a partir de Γ .

Escreveremos $\Gamma \not\vdash \varphi$ para denotar que φ não é derivável a partir de Γ .

Uma fórmula φ diz-se um teorema de DNP (notação: $\vdash \varphi$) quando existe uma demonstração de φ em DNP.

Escreveremos $ot \varphi$ para denotar que φ não é teorema de DNP.

Proposição: Para toda a fórmula proposicional φ , φ é teorema de DNP se e só se $\emptyset \vdash \varphi$.

Definição: Seja Γ um conjunto de fórmulas proposicionais

 Γ diz-se sintaticamente inconsistente quando $\Gamma \vdash \perp$.

 Γ dir-se-á *sintaticamente consistente* no caso contrário, i.e. quando $\Gamma \not\vdash \bot$, ou seja, quando não existem derivações de \bot a partir de Γ .

As seguintes afirmações são equivalentes:

- a) Γ é sintaticamente inconsistente;
- **b)** para algum $\varphi \in \mathcal{F}^{\mathit{CP}}$, $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$;
- c) para todo $\varphi \in \mathcal{F}^{CP}$, $\Gamma \vdash \varphi$.
- a) Se $\varphi \in \Gamma$, então $\Gamma \vdash \varphi$.
- **b)** Se $\Gamma \vdash \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \vdash \varphi$.
- c) Se $\Gamma \vdash \varphi$ e $\Delta, \varphi \vdash \psi$, então $\Delta, \Gamma \vdash \psi$.
- **d)** $\Gamma \vdash \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \vdash \psi$.
- e) Se $\Gamma \vdash \varphi \rightarrow \psi$ e $\Delta \vdash \varphi$, então $\Gamma, \Delta \vdash \psi$.

Teorema (*Correção*): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo Γ $\subseteq \mathcal{F}^{CP}$,

se $\Gamma \vdash \varphi$, então $\Gamma \models \varphi$.

Lema: Para todo $D\in\mathcal{D}^{DNP}$, se D é uma derivação de φ a partir de Γ , então $\Gamma\models\varphi$.

De facto, do Teorema da Correção segue que

$$\Gamma \not\models \varphi \Longrightarrow \Gamma \not\vdash \varphi$$
,

o que significa que, para mostrar que não existem derivações em DNP de uma fórmula φ a partir de um conjunto de fórmulas Γ , basta mostar que φ não é consequência semântica de Γ .

Proposição: Seja Γ um conjunto de fórmulas proposicionais. Γ é sintaticamente consistente sse Γ é semanticamente consistente.

Teorema (Completude): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$,

se
$$\Gamma \models \varphi$$
, então $\Gamma \vdash \varphi$.

Teorema (Adequação): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$,

 $\Gamma \vdash \varphi$ se e só se $\Gamma \models \varphi$.

Corolário: Para toda a fórmula proposicional φ , φ é um teorema de DNP se e só se φ é uma tautologia.

Definição: O conjunto \mathcal{T}_L é o menor conjunto de palavras sobre \mathcal{A}_L que satisfaz as seguintes condições:

- a) para todo $x \in \mathcal{V}, x \in \mathcal{T}_I$;
- **b)** para toda a constante c de L, $c \in \mathcal{T}_L$;
- c) para todo o símbolo de função f de L, de aridade $n \ge 1$,

$$\begin{array}{ll} t_1 \in \mathcal{T}_L \text{ e } ... \text{ e } t_n \in \mathcal{T}_L & \Longrightarrow & f(t_1,...,t_n) \in \mathcal{T}_L, \\ & \text{para todo } t_1,...,t_n \in (\mathcal{A}_L)^*. \end{array}$$

Aos elementos de \mathcal{T}_L chamaremos termos de tipo L ou L-termos, ou simplesmente termos (quando for claro qual o tipo de linguagem subantentandido)

Teorema (Indução Estrutural em L-Termos):

Seja P(t) uma condição sobre um L-termo t.

- a) para todo $x \in \mathcal{V}$, P(x);
- **b)** para todo $c \in C$, P(c);
- **c)** para todo $f \in \mathcal{F}$, de aridade $n \ge 1$, e para todo $t_1,...,t_n \in \mathcal{T}_L$, $P(t_1)$ e ... e $P(t_n) \implies P(f(t_1,...,t_n))$;

então, para todo $t \in \mathcal{T}_L$, P(t).

Conjunto de variáveis

- a) $VAR(x) = \{x\}$, para todo $x \in \mathcal{V}$;
- **b)** $VAR(c) = \emptyset$, para todo $c \in C$;
- c) $VAR(f(t_1,...,t_n)) = \bigcup_{i=1}^n VAR(t_i),$ para todo $f \in \mathcal{F}$, de aridade $n \ge 1$, e para todo $t_1,...,t_n \in \mathcal{T}_L$.

Conjunto de subtermos:

- **a)** $subt(x) = \{x\}$, para todo $x \in \mathcal{V}$;
- **b)** $subt(c) = \{c\}$, para todo $c \in C$;
- **c)** $subt(f(t_1,...,t_n)) = \{f(t_1,...,t_n)\} \cup \bigcup_{i=1}^n subt(t_i),$

para todo $f \in \mathcal{F}$, de aridade $n \ge 1$, e para todo $t_1, ..., t_n \in \mathcal{T}_L$.

Substituição

$$\mathbf{a)} \ y[t/x] = \left\{ \begin{array}{l} t, \ \ \text{se} \ \ y = x \\ \\ y, \ \ \text{se} \ \ y \neq x \end{array} \right., \text{para todo} \ y \in \mathcal{V};$$

- **b)** c[t/x] = c, para todo $c \in C$;
- c) $f(t_1,...,t_n)[t/x] = f(t_1[t/x],...,t_n[t/x]),$ para todo $f \in \mathcal{F}$, de aridade $n \ge 1$, e para todo $t_1,...,t_n \in \mathcal{T}_L$.

$R(t_1,...,t_n)$, L-fórmula atómica.

Definição: O conjunto \mathcal{F}_L é o menor conjunto de palavras sobre \mathcal{A}_L que satisfaz as seguintes condições:

- a) $\varphi \in \mathcal{F}_L$, para toda a L-fórmula atómica φ ;
- **b)** $\perp \in \mathcal{F}_L$;
- c) $\varphi \in \mathcal{F}_L \implies (\neg \varphi) \in \mathcal{F}_L$, para todo $\varphi \in (\mathcal{A}_L)^*$;

Aos elementos de \mathcal{F}_L chamaremos *fórmulas de tipo L* ou *L-fórmulas*, ou simplesmente *fórmulas* (quando for claro o tipo de linguagem subentendido).

Teorema (Indução Estrutural em L-Fórmulas): Seja $P(\varphi)$ uma condição sobre uma L-fórmula φ . Se:

- a) $P(\psi)$, para toda a L-fórmula atómica ψ ;
- **b)** *P*(⊥);
- c) $P(\psi) \implies P(\neg \psi)$, para todo $\psi \in \mathcal{F}_L$;
- d) $P(\psi_1) \in P(\psi_2) \Longrightarrow P(\psi_1 \square \psi_2),$ para todo $\square \in \{\land, \lor, \to, \leftrightarrow\}, \psi_1, \psi_2 \in \mathcal{F}_L;$
- e) $P(\psi) \implies P(Qx \psi)$, para todo $Q \in \{\exists, \forall\}, x \in \mathcal{V}, \psi \in \mathcal{F}_L$; então $P(\varphi)$, para todo $\varphi \in \mathcal{F}_L$.

Conjunto de subfórmulas de uma L-fórmula

- a) $\mathit{subf}(\psi) = \{\psi\}$, para toda a $\mathit{L}\text{-f\'ormula}$ atómica ψ ;
- **b)** $subf(\bot) = \{\bot\};$
- c) $subf(\neg \psi) = subf(\psi) \cup \{\neg \psi\},$ para todo $\psi \in \mathcal{F}_L$;
- **d)** $subf(\psi_1 \square \psi_2) = subf(\psi_1) \cup subf(\psi_2) \cup \{\psi_1 \square \psi_2\},$ para todo $\square \in \{\land, \lor, \to, \leftrightarrow\}, \psi_1, \psi_2 \in \mathcal{F}_L;$
- e) $subf(Qx \psi) = subf(\psi) \cup \{Qx \psi\},$ para todo $Q \in \{\exists, \forall\}, x \in \mathcal{V}, \psi \in \mathcal{F}_L$

Definição:

Seja φ uma L-fórmula e seja $Qx \psi$ uma subfórmula de φ , onde $Q \in \{\exists, \forall\}, x \in \mathcal{V} \text{ e } \psi \in \mathcal{F}_L$.

O alcance desta ocorrência do quantificador Qx em φ é a L-fórmula ψ .

Numa L-fórmula φ , uma ocorrência (em subfórmulas atómicas de φ) de uma variável x diz-se livre quando x não está no alcance de nenhuma ocorrência de um quantificador Qx (com $Q \in \{\exists, \forall\}\}$; caso contrário, essa ocorrência de x diz-se ligada.

Substituição das ocorrências livres de x por um L-termo

- a) $R(t_1,...,t_n)[t/x] = R(t_1[t/x],...,t_n[t/x]),$ para todo $R \in \mathcal{R}$, de aridade n, e para todo $t_1,...,t_n \in \mathcal{T}_L;$
- **b)** $\perp [t/x] = \perp;$
- c) $(\neg \psi)[t/x] = \neg \psi[t/x]$, para todo $\psi \in \mathcal{F}_L$;
- **d)** $(\psi_1 \square \psi_2)[t/x] = \psi_1[t/x] \square \psi_2[t/x],$ para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \psi_1, \psi_2 \in \mathcal{F}_L;$

e)
$$(Qy \psi)[t/x] = \begin{cases} Qy \psi \text{ se } y = x \\ Qy \psi[t/x] \text{ se } y \neq x \end{cases}$$
 para todo $Q \in \{\exists, \forall\}, y \in \mathcal{V}, \psi \in \mathcal{F}_L$.

Definição: Sejam x uma variável, t um L-termo e φ uma L-fórmula. Diz-se que x está livre para t em φ ou que x é substitutivel (sem captura de variáveis) por t em φ quando para todas as ocorrências livres de x em φ no alcance de algum quantificador Oy, $y \notin VAR(t)$.

- **1** Se $x \notin LIV(\varphi)$, então x está livre para t em φ .
- 2 Se $VAR(t) = \emptyset$, então x está livre para t em φ .

Se $x \notin LIV(\varphi)$, então $\varphi[t/x] = \varphi$.

Definição: Uma L-fórmula φ diz-se uma sentença de tipo L ou uma fórmula fechada de tipo L (abreviadamente, uma L-sentença ou uma L-fórmula fechada), quando $LIV(\varphi)=\emptyset$.

- 1 x está livre para t em φ ;

Definição: Seja E uma L-estrutura. Uma função $a: \mathcal{V} \longrightarrow dom(E)$ (do conjunto \mathcal{V} das variáveis de primeira ordem para o domínio de E) diz-se uma atribuição em E.

O *valor* de t em E para a é o elemento de D, notado por $t[a]_E$ ou por t[a] (quando é claro qual a estrutura que deve ser considerada), definido, por recursão estrutural em L-termos, do seguinte modo:

- **a)** x[a] = a(x), para todo $x \in \mathcal{V}$;
- **b)** $c[a] = \overline{c}$, para todo $c \in C$;
- c) f(t₁, ..., t_n)[a] = f(t₁[a], ..., t_n[a]), para todo f ∈ F de aridade n ≥ 1 e para todo t₁, ..., t_n ∈ T_L.

Proposição: Sejam a_1 e a_2 duas atribuições numa L-estrutura $E = (D, \overline{})$ e seja t um L-termo.

Se $a_1(x) = a_2(x)$, para todo $x \in VAR(t)$, então $t[a_1] = t[a_2]$.

Escrevemos $a \binom{x}{d}$ para a atribuição $a': \mathcal{V} \longrightarrow dom(E)$ em E definida por:

$$\text{para todo} \ \ y \in \mathcal{V}, \quad \textit{a}'(y) = \left\{ \begin{array}{ll} \textit{d} \ \ \text{se} \ \ y = x \\ \\ \textit{a}(y) \ \ \text{se} \ \ y \neq x \end{array} \right.$$

Proposição: Seja a uma atribuição numa L-estrutura. Seja x uma variável e sejam t_0 e t_1 L-termos . Então,

$$t_0[t_1/x][a] = t_0[a\begin{pmatrix} x \\ t_1[a] \end{pmatrix}].$$

- a) $(\exists x \varphi)[a] = 0$ sse para todo $d \in dom(E), \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 0;$
- **b)** $(\forall x \varphi)[a] = 0$ sse para algum $d \in dom(E), \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}] = 0;$
- c) $(\exists x \varphi)[a] = m \acute{a} x imo \{ \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}] : d \in D \};$
- **d)** $(\forall x \varphi)[a] = minimo\{\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] : d \in D\}.$

Dizemos que ${\it E}$ satisfaz φ para $\it a$, escrevendo $\it E \models \varphi[\it a]$, quando $\varphi[\it a]_{\it E}=1$.

Escrevemos $E \not\models \varphi[\mathbf{a}]$ quando E não satisfaz φ para \mathbf{a} , ou seja, quando $\varphi[\mathbf{a}]_E = \mathbf{0}$.

- a) $E \models \exists x \varphi[a]$ sse existe $d \in dom(E)$ t.q. $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$;
- **b)** $E \models \forall x \varphi[a] \text{ sse } E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}], \text{ para todo } d \in dom(E);$
- c) $E \not\models \exists x \varphi[a]$ sse $E \not\models \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$; d) $E \not\models \forall x \varphi[a]$ sse existe $d \in dom(E)$ t.q. $E \not\models \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}]$.
 - Se $a_1(x) = a_2(x)$, para todo $x \in LIV(\varphi)$, então $E \models \varphi[a_1]$ sse $E \models \varphi[a_2]$.

Corolário: Sejam φ uma L-sentença e E uma L-estrutura. Se para alguma atribuição a em E, $E \models \varphi[a]$, então para toda a atribuição a em E, $E \models \varphi[a]$.

Proposição: Sejam $E=(D,\overline{})$ uma L-estrutura e a uma atribuição em E. Sejam x uma variável, t um L-t ermo e φ uma L-fórmula tais que x está livre para t em φ . Então,

$$E \models \varphi[t/x][a]$$
 sse $E \models \varphi[a\begin{pmatrix} x \\ t[a] \end{pmatrix}]$.

Definição: Dizemos que uma L-fórmula φ é válida numa L-estrutura E ou que E valida φ (notação: $E \models \varphi$) quando, para toda a atribuição a em E, $E \models \varphi[a]$.

Utilizamos a notação $E \not\models \varphi$ quando φ não \acute{e} válida em E, i.e., quando existe uma atribuição a em E tal que $E \not\models \varphi[a]$.

Proposição: Sejam E uma L-estrutura e φ uma L-sentença. Então, $E \models \varphi$ sse para alguma atribuição a em E, $E \models \varphi[a]$.

Definição: Uma L-fórmula φ é (universalmente) válida (notação: $\models \varphi$) quando é válida em toda a L-estrutura.

Utilizamos a notação $\not\models \varphi$ quando φ não é (universalmente) válida.

 $\emph{l.e.}$, quando existe uma $\emph{L-}$ estrutura \emph{E} tal que $\emph{E} \not\models \varphi$. **Observação:** Uma $\emph{L-}$ tórmula φ não é universalmente válida quando existe alguma $\emph{L-}$ estrutura que não valida φ , ou seja, quando existe

alguma L-estrutra E e alguma atribuição a em E t.q. $E \not\models \varphi[a]$. **Definição:** Uma L-tórmula φ é *logicamente equivalente* a uma L-tórmula ψ (notação: $\varphi \leftrightarrow \psi$) quando $\models \varphi \leftrightarrow \psi$, Le., quando para para toda a L-estrutura E e para toda a atribuição a em E, $E \models \varphi[a]$

Proposição: Sejam $x, y \in V$ e $\varphi, \psi \in \mathcal{F}_L$.

- a) $\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$
- **b)** $\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$
- c) $\forall x \varphi \Leftrightarrow \neg \exists x \neg \varphi$

sse $E \models \psi[a]$.

- **d)** $\exists x \varphi \Leftrightarrow \neg \forall x \neg \varphi$
- e) $\forall x(\varphi \land \psi) \Leftrightarrow \forall x\varphi \land \forall x\psi$ f) $\exists x(\varphi \lor \psi) \Leftrightarrow \exists x\varphi \lor \exists x\psi$
- $\mathbf{g}) \models (\forall x \varphi \lor \forall x \psi) \to \forall x (\varphi \lor \psi),$ $\text{mas n\(a \)} \text{on ecessariamente } \models \forall x (\varphi \lor \psi) \to (\forall x \varphi \lor \forall x \psi)$ $\mathbf{h}) \models \exists x (\varphi \land \psi) \to (\exists x \varphi \land \exists x \psi),$
- mas não necessariamente $\models (\exists x \varphi \land \exists x \psi) \rightarrow \exists x (\varphi \land \psi)$
- i) $\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$ j) $\exists x \exists y \varphi \Leftrightarrow \exists y \exists x \varphi$ k) $\models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$,
 - mas não necessariamente $\models \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$
- I) $Qx\varphi \Leftrightarrow \varphi$ se $x \notin LIV(\varphi)$, para todo $Q \in \{\exists, \forall\}$
- m) $Qx\varphi \Leftrightarrow Qy\varphi[y/x]$ se $y \notin LIV(\varphi)$ e x é livre para y em φ para todo $Q \in \{\exists, \forall\}.$
- n) $Qx(\varphi \Box \psi) \Leftrightarrow (Qx\varphi) \Box \psi$ e $Qx(\psi \Box \varphi) \Leftrightarrow \psi \Box (Qx\varphi)$, se $x \notin LIV(\psi)$, para todo $\Box \in \{\land, \lor\}$ e para todo $Q \in \{\exists, \forall\}$

Dizemos que E satisfaz Γ para a ou que o par (E, a) satisfaz Γ , escrevendo $E \models \Gamma[a]$, quando para todo $\varphi \in \Gamma$, $E \models \varphi[a]$.

Caso contrário, dizemos que E não satisfaz Γ para a ou que o par (E, a) não satisfaz Γ , escrevendo $E \not\models \Gamma[a]$.

Definição: Um conjunto de L-fórmulas Γ diz-se satisfazível ou (semanticamente) consistente quando para alguma L-estrutura E e para alguma atribuição a em E, (E, a) satisfaz Γ .

Caso contrário, ſ diz-se insatisfazível ou (semanticamente) inconsistente.

Definição: Sejam E uma L-estrutura e Γ um conjunto de L-fórmulas. Dizemos que E é um *modelo* de Γ ou que E *valida* Γ , escrevendo $E \models \Gamma$, quando para toda a atribuição a em E, $E \models \Gamma[a]$.

Caso contrário, dizemos que E não é modelo de Γ ou que E não valida Γ , escrevendo $E \not\models \Gamma$.

1 Uma L-estrutura E é um modelo de Γ sse para alguma atribuição a

em E, (E, a) satisfaz Γ.

2 Γ é satisfazível sse existem modelos de Γ.

Definição: Uma L-tórmula φ diz-se uma consequência (semântica) de um conjunto de L-tórmulas Γ (notação: $\Gamma \models \varphi$) quando para toda a L-estrutura E e para toda a atribuição a em E, se $E \models \Gamma[a]$, então $E \models \varphi[a]$.

Proposição: Sejam Γ um conjunto de *L*-sentenças e φ uma *L*-sentença. Então, Γ $\models \varphi$ sse todos os modelos de Γ validam φ .

Notação : Adiante, usaremos a notação $LIV(\Gamma)$, com Γ um conjunto de L-fórmulas, para representar o conjunto $\bigcup_{\varphi \in \Gamma} LIV(\varphi)$.

Proposição: Sejam φ e ψ *L*-fórmulas, seja Γ um conjunto de *L*-fórmulas, seja x uma variável e seja t um *L*-termo.

- a) Se $\Gamma \models \forall x \varphi$ e x está livre para t em φ , então $\Gamma \models \varphi[t/x]$.
- **b)** Se $\Gamma \models \varphi$ e $x \notin LIV(\Gamma)$, então $\Gamma \models \forall x \varphi$.
- c) Se $\Gamma \models \varphi[t/x]$ e x está live para t em φ , então $\Gamma \models \exists x \varphi$.
- d) Se $\Gamma \models \exists x \varphi \in \Gamma, \varphi \models \psi, e \ x \not\in LIV(\Gamma \cup \{\psi\}), então \Gamma \models \psi.$