Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3205	К работе допущен
Студент <u>Степанюк Аврора, Тросько</u> Виктория	Работа выполнена
Преподаватель Шоев В.И.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.10

Изучение свободных затухающих электромагнитных колебаний

1. Цель работы.

Изучение основных характеристик свободных затухающих колебаний.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Провести многократные измерения периода колебаний контура при различных значениях сопротивления магазина.
 - 2. Построить график зависимости логарифмического декремента затухания от сопротивления магазина.
 - 3. Рассчитать полное сопротивление контура и индуктивность катушки на основе экспериментальных данных.
 - 4. Подобрать значение сопротивления магазина, при котором процесс разрядки конденсатора теряет периодичность, и оценить критическое сопротивление контура.
- 3. Объект исследования.

Колебательный контур.

4. Метод экспериментального исследования.

Эксперимент, анализ данных.

5. Рабочие формулы и исходные данные.

Рабочие формулы:

1. $T = \frac{\frac{2\pi}{LC}}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$, где T — период затухающих колебаний, R — сопротивление цепи, C —

емкость конденсатора, L – индуктивность катушки.

- 2. $T = 2\pi\sqrt{LC}$ формула Томсона.
- 3. $R_{\rm kp}=2\sqrt{\frac{L}{c}}$, где $R_{\rm kp}$ критическое сопротивление катушки.
- 4. $\lambda = \frac{1}{n} ln \frac{U_i}{U_{i+n}} \sim \pi R \sqrt{\frac{C}{L}}$, где λ логарифмический декремент, U_i значение напряжения на конденсаторе.
- 5. $R = R_m + R_0$, где R полное сопротивление контура, R_m сопротивление магазина, R_0 – собственное сопротивление контура.
- 6. $L=\frac{\pi^2R^2C}{\lambda^2}$ 7. $Q=\frac{2\pi}{1-exp(-2\lambda)}$ где Q добротность контура.

8. $Q = \frac{1}{R} \sqrt{\frac{L}{c}}$ — формула добротности контура для малых затуханий.

Исходные данные:

1. $C_1 = 0.022 \text{ мк}\Phi$

2. $C_1 = 0.022 \text{ MK}\Phi$ 2. $C_2 = 0.033 \text{ MK}\Phi$ 3. $C_3 = 0.047 \text{ MK}\Phi$ 4. $C_4 = 0.47 \text{ MK}\Phi$ 5. $L = 10 \text{ M}\Gamma\text{H}$

6. Измерительные приборы.

№	Наименование	Используемый	Погрешность
п/п		диапазон	прибора
1	Осциллограф	Настраиваемый	Настраиваемый

7. Схема установки

8. Результаты прямых измерений и их обработки.

Таблица 1.

таолица т	•							
$R_{\scriptscriptstyle \mathrm{M}}$, Om	Т, мс	$2U_i$, дел	$2U_{i+n}$, дел	n	λ	Q	R, Ом	L, мГн
0	5	5,3	2,7	2	0,34	0,29	204,17	78,3
10	5	5,2	2,4	2	0,39	11,6	214,17	65,48
20	5	5	2	2	0,46	10,45	224,17	51,57
30	5	4,95	1,7	2	0,53	9,61	234,17	42,39
40	5	4,7	1,6	2	0,54	9,51	244,17	44,39
50	5	4,5	1,3	2	0,62	8,84	254,17	36,49
60	5	4,1	1,2	2	0,61	8,92	264,17	40,72
70	5	3,9	1	2	0,68	8,45	274,17	35,3
80	5	3,75	0,8	2	0,77	8	284,17	29,57
90	5	3,4	0,7	2	0,79	7,91	294,17	30,11
100	3,7	2,9	0,6	2	0,79	7,91	304,17	32,19
200	2,5	2,4	0,4	2	0,9	7,53	404,17	43,79
300	1,8	1,8	0,2	2	1,1	7,07	504,17	45,61
400	1,3	1,5	0,1	2	1,35	6,74	604,17	43,49

Таблица 2.

С, мкФ	$T_{ m ЭКСП}$, мс	$T_{ m Teop}$, мс	$\delta T = \frac{T_{\text{эксп}} - T_{\text{теор}}}{T_{\text{теор}}}, \%$
0,022	0,08	0,05	0,6
0,033	0,11	0,08	0,38
0,047	0,13	0,1	0,3
0,47	0,43	0,33	0,3

Таблица 3.

$R_{\scriptscriptstyle \mathrm{M}}$, Ом	$T_{ m эксп}$, мс	$T_{ m reop}$, мс
0	0,18	0,09
200	0,15	0,13
400	0,1	0,15

- 9. Расчет результатов косвенных измерений.
 - 1. $\lambda = \frac{1}{n} ln \frac{U_i}{U_{i+n}}$

Для $R_{\scriptscriptstyle
m M}=0$ Ом, T=5 мс, $2U_i=5$,3 дел, $2U_{i+n}=2$,7 дел, n=2 получим $\lambda=rac{1}{2}lnrac{5,3}{2.7}\sim$

0,34.
2.
$$Q = \frac{2\pi}{1 - exp - 2\lambda}$$

Для $\lambda=~0,34$ получим $Q=\frac{2\pi}{1-exp-2\times0,34}\sim~12,73$.

3. Посчитаем коэффициенты аппроксимирующей прямой функции зависимости логарифмического декремента λ от сопротивления магазина $R_{\scriptscriptstyle \rm M}$: $\lambda = AR_{\scriptscriptstyle \rm M} + B$ с помощью МНК.

$$A = 0.0023 \text{ Om}^{-1}$$

$$B = 0,4696$$

Тогда
$$R_0 = \frac{B}{A}$$
; $R_0 = \frac{0.4696}{0.0023} = 95,95 \, \text{Ом.}$

При
$$R_{\scriptscriptstyle \mathrm{M}}=0$$
: $R=0+204$,174 = 204,174 Ом.

4.
$$L = \frac{\pi^2 R^2 C}{\lambda^2}$$

Для
$$R=204,174$$
 Ом, $C_1=0,022$ мк $\Phi,\lambda=0,34$ получим $L=\frac{\pi^2\times 204,174^2\times 0,022}{0,34^2}=$

78,3 мГн.

5.
$$T_{\text{reop}} = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$

Для $L_{\rm cp}=44$,243 мГн, ${\rm R}_0=204$,174 Ом, ${\it C}_1=0$,022 мк Φ получим $T_{\rm reop}=0$,05 мс.

$$6. R_{\rm kp} = 2\sqrt{\frac{L}{c}}$$

$$R_{\text{кр,теор}} = 2236,227 \text{ Om}$$

$$R_{\text{кр,эксп}} = 1200 \text{ Ом}$$

10. Расчет погрешностей измерений.

1.
$$\Delta_{\lambda} = \lambda \sqrt{\left(\frac{\delta \lambda}{\delta U_{i}} \Delta_{U_{i}}\right)^{2} + \left(\frac{\delta \lambda}{\delta U_{i+n}} \Delta_{U_{i+n}}\right)^{2}} = \lambda \sqrt{\left(\frac{\Delta_{U_{i}}}{U_{i}}\right)^{2} + \left(\frac{\Delta_{U_{i+n}}}{U_{i+n}}\right)^{2}} = \lambda \sqrt{(\delta U_{i})^{2} + (\delta U_{i+n})^{2}}$$

$$\Delta_{\lambda} = 0.34\sqrt{0.01 + 0.01} = 0.05$$

$$\begin{split} \Delta_{\lambda} &= 0,34\sqrt{0,01+0,01} = 0,05 \\ 2. \ \ \Delta_{R_0} &= R_0\sqrt{\left(\frac{\Delta_A}{A}\right)^2 + \left(\frac{\Delta_B}{B}\right)^2} \end{split}$$

 $\Delta_{\mathrm{A}} = \sigma_{\mathrm{A}} \stackrel{.}{ imes} t$, где t – коэффициент Стьюдента для 11 измерений.

$$\Delta_{\rm B} = \sigma_{\rm B} \times t$$

$$\begin{split} &\sigma_{A} = \sqrt{\frac{1}{D(N-2)}} \sum_{i=1}^{N} d_{i}^{2} \\ &\sigma_{B} = \sqrt{\frac{1}{D(N-2)}} \sum_{i=1}^{N} d_{i}^{2} \left(\frac{1}{N} + \frac{(R_{i} - \bar{R})^{2}}{D} \right) \\ &d_{i} = \lambda_{i} - (A + BR_{i}); D = \sum_{i=1}^{N} (R_{i}^{2} - \frac{1}{N} (\sum_{i=1}^{N} R_{i})^{2}) \\ &\sigma_{A} = 0.18 \times 10^{-6}; \sigma_{B} = 0.17 \times 10^{-8} \\ &\Delta_{A} = 0.18 \times 2.23 \times 10^{-6} = 0.4 \times 10^{-6} \mathrm{Om^{-1}}; \Delta_{B} = 0.17 \times 2.23 \times 10^{-8} = 0.38 \times 10^{-8} \mathrm{Om^{-1}} \\ &\Delta_{R_{0}} = 204.17 \sqrt{\left(\frac{0.4 \times 10^{-6}}{0.0041}\right)^{2} + \left(\frac{0.38 \times 10^{-8}}{0.3934}\right)^{2}} = 0.93 \times 10^{-2} \mathrm{Om} \\ &3. \quad \Delta_{R} = \Delta_{R_{M}} + \Delta_{R_{0}} \\ &\Delta_{R} = 0.11 \mathrm{Om} \\ &4. \quad \Delta_{L} = L \sqrt{4 \left(\frac{\Delta_{R}}{R}\right)^{2} + \left(\frac{\Delta_{C}}{C}\right)^{2} + 4 \left(\frac{\Delta_{\lambda}}{\lambda}\right)^{2}} \\ &\Delta_{L} = 1.1 \mathrm{M}^{T} \mathrm{H} \\ &5. \quad \Delta_{Q} = \frac{4 \pi \mathrm{e}^{-2\lambda}}{(1 - \mathrm{e}^{-2\lambda})^{2}} \Delta_{\lambda} \\ &\Delta_{Q} = 0.34 \\ &6. \quad \Delta_{L_{cp}} = \sigma_{L_{cp}} \times t \\ &\sigma_{L_{cp}} = \sqrt{\frac{1}{N(N-1)}} \sum_{i=1}^{N} (L_{i} - L_{cp}) \\ &\sigma_{R} = 0.01 \end{split}$$

Таблица 4.

 $\Delta_{L_{\rm cp}}^{} = 0.01 \times 2.23 = 0.02$ Гн

7. $\Delta_{\rm R_{\rm Kp, 9KC\Pi}} = \Delta_{\rm R_{\rm M_{Kp}}} + \Delta_{\rm R_0}$ $\Delta_{\rm R_{\rm Kp, 9KC\Pi}} = 400~{\rm Om}$

т и олинци т.			
Δ_{λ}	$\Delta_{ m Q}$	Δ _R , Ом	$\Delta_{ m L}$, м Γ н
0,05	1,31	0,11	1,73
0,06	1,18	0,11	1,92
0,07	0,97	0,11	1,93
0,07	0,71	0,11	1,72
0,08	0,78	0,11	2,2
0,09	0,65	0,11	2,17
0,09	0,67	0,11	2,55
0,1	0,58	0,11	2,59
0,11	0,48	0,11	2,49
0,11	0,45	0,11	2,65
0,11	0,45	0,11	2,94
0,13	0,39	0,11	6,1
0,16	0,28	0,11	9
0,19	0,18	0,11	11,13
0,05	1,31	0,11	1,73

11. Графики.

График 1. Зависимость логарифмического декремента λ от сопротивления R.

График 2. Зависимость добротности Q от сопротивления R.

График 3. Зависимость периодов $T_{\text{эксп}}$ и $T_{\text{теор}}$ от ёмкости конденсатора \mathcal{C} .

Зависимость периодов $T_{\mathfrak{I} \kappa c n}$ и $T_{\mathsf{T} e o p}$ от ёмкости конденсатора С

Период колебаний возрастает с ростом емкости, однако экспериментальная зависимость меньше теоретической. Формулу Томсона применять можно, так как для ее справедливости необходимо выполнение $\beta \ll \omega$, $\omega = 2\sqrt{\frac{L}{c}}$, в нашем случае $\omega = 2\sqrt{\frac{44,243\times10^{-3}}{0,022\times10^{-6}}} = 2236,227\,\mathrm{Om}$. $R_{max} = 400\,\mathrm{Om} \Rightarrow R_{max} \ll \omega$, значит формула Томсона справедлива.

12. Окончательные результаты.

В результате мы получили следующие значения:

1.
$$L_{\rm cp} = (44,243 \pm 3) \,\mathrm{MFH} = (44,243 \pm 3) \times 10^{-3} \,\mathrm{FH}$$

- 2. $R_0 = 204,17 \pm 0,11 \text{ Om}$
- 3. $R_{\text{кр,эксп}} = 1200 \pm 400 \text{ OM}$
- 4. $R_{\text{Kp,Teop}} = 2236,227 \text{ OM}$

13. Выводы и анализ результатов работы.

В ходе лабораторной работы были изучены характеристики свободных затухающих электромагнитных колебаний в RLC-контуре. Экспериментально определены основные параметры колебаний, такие как период T, логарифмический декремент затухания λ , добротность контура Q и критическое сопротивление $R_{\rm kp}$. Установлено, что при малом сопротивлении контура период колебаний может описываться формулой Томсона $T=2\pi\sqrt{LC}$, так как условие $\beta\ll\omega_0$ выполняется. Также подтверждено, что с увеличением сопротивления контура затухание колебаний усиливается, а добротность контура уменьшается.

15. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Замечания:

- 1. Кажется, что схема не имела внешней синхронизации развертки... График №3: зачем соединять по точкам линией? до этого момента все было хорошо.
 - Аппроксимация, у которой большая часть точек лежит по одну сторону от прямой плохая аппроксимация. Возможно, что есть «выбивающиеся точки»
- 2. Добротность, вычисленная по формуле для малых колебаний, находится слишком низко.
- 3. Выбрать другой способ аппроксимации для 1 графика.
- 4. В таблице 1 везде одинаковый период T.
- 5. Два $R_{\rm Kp}$.

Исправления:

- 1. Изменена аппроксимация для графика 1.
- 2. Убрана линия между точками для графика 3.
- 3. Исправлен график зависимости добротности от сопротивления (забыли перевести в СИ).
 - 4. 1 график аппроксимирован зависимостью $\lambda = k\sqrt{R} + c$.
 - 5. Исправлен период в таблице 1.
 - 6. Было уточнено, что из $R_{\rm KD}$ чем является.