Lesson Objective: Add and subtract integers.

Vocabulary Box

integers — The set of numbers containing 0, the natural numbers, and all the negatives of the natural numbers. Examples: –7, 0, and 4.

opposites — Two numbers that lie the same distance from 0 on the number line. Examples: 6 and -6, -13 and 13, and $\frac{2}{3}$ and $-\frac{2}{3}$.

additive inverse — For any number x, the number that, when added to x, equals 0. Examples: The additive inverse of 5 is -5, of -11 is 11, of 4.3 is -4.3, and of 0 is 0.

additive identity — The number 0, because the sum of 0 and any number is that number. Examples: 2 + 0 = 2; -9 + 0 = -9.

You will complete the following practice problems with your partner. Then your teacher will review the answers. Make sure you show all your work.

I. <u>Directions</u>: Use your two-color counters. Find each sum.

II. <u>Directions</u>: Rewrite each difference as an equivalent sum by adding the opposite of the subtracted number. Then find each answer.

Example: $2-(-10) = \underline{2+10} = \underline{12}$

A. Vocabulary Words

<u>Directions</u>: Unscramble each vocabulary word. Then write the definition in your own words, and give an example.

diieadtv ietdtniy --

adtveiid iersnev —

rsegenti —

tesosiopp —

lesson one - student resource sheet

B. Summarize What We Learned Today

<u>Directions</u>: Write three sample addition problems and six sample subtraction problems and solve them. Then explain in words how to add and subtract integers. You will use this explanation as a personal reminder.

lesson two - student resource sheet

Lesson Objective: Add and subtract integers.

Vocabulary Box

integers — The set of numbers containing 0, the natural numbers, and all the negatives of the natural numbers. Examples: –7, 0, and 4.

opposites — Two numbers that lie the same distance from 0 on the number line. Examples: 6 and -6, -13 and 13, and $\frac{2}{3}$ and $-\frac{2}{3}$.

additive inverse — For any number x, the number that, when added to x, equals 0. Examples: The additive inverse of 5 is -5, of -11 is 11, of 4.3 is -4.3, and of 0 is 0.

additive identity — The number 0, because the sum of 0 and any number is that number. Examples: 2 + 0 = 2; -9 + 0 = -9.

Please complete the following practice problems on your own. Your teacher will review the answers. Make sure you show all your work.

I. <u>Directions</u>: Find the following sums.

II. <u>Directions</u>: Change each subtraction problem into an equivalent addition problem. Then find the answer.

1. 9 - (-6) =____=__=

2. -4 - 7 =____= ____

3. -8 - (-17) = _____ = ____

4. 1 – 5 = _____ = ____

5. 32 – (–12) = _____ = ____

6. -16 - 11 = ____ = ____

7. -20 - (-5) = _____ = ____

8. 177 – 241 = _____ = ____

III. Directions: Draw lines to connect the problems that have the same answer.

A. 4 + 7

B. 4 + (-7)

C. -4 + (-7)

D. -4 + 7

E. 7+ (-4) F. -4 - (-7)

G. 4-7

H. 7 - (-4)

I. -7 - (-4)

J. -4-7 K. -7-4 L. 4-(-7)

- 1. Add: $-3\frac{3}{8} + (-1\frac{3}{4})$
- 2. Subtract: $-2\frac{2}{5} (-7\frac{1}{5})$

lesson two - student resource sheet

1. In Ohio, the residents have experienced some extreme weather in the past 150 years. On July 21, 1934, the temperature rose to a record 113°F in Gallipollis (sounds like *galla-police*). The residents of Milligan braved temperatures of –39°F on February 10, 1899.

Find the difference between Ohio's record high temperature and its record low temperature.

2. One share of stock for the Diamond Trading Card Company cost \$2.50 when the stock market opened on Monday morning. At noon the price of a share had decreased by 1¹/₄ dollars. At 2:00 pm the stock rose 3¹/₂ dollars, and at the close of the market it was down again by 1³/₄ dollars. What was the final cost of a share of stock on Monday?

2. 12 – (–9) is equal to which of the following? _____

A)
$$12 - 9$$

B)
$$12 + 9$$

lesson three - student resource sheet

Lesson Objective: Multiply integers with like and unlike signs.

Vocabulary Box

product — The result when two or more numbers are multiplied. Example: In the problem $12 \times 3 = 36$, 36 is the product.

like signs — Signs that are the same. Examples: Positive-positive or negative-negative.

unlike signs — Signs that are different. Examples: Positive-negative or negative-positive.

Integer Rules for Multiplication

Multiplying Integers with the Same Sign

If the signs are the same, the product is positive.

Multiplying Integers with *Different Signs*

If the signs are different, the product is negative.

$$-2 \times (10) = -20$$
 $2 \times (-10) = -20$

Multiplying Integers by Zero

The product of any number and 0 is 0.

$$0 \times 9 = 0$$
 $(-12) \times 0 = 0$

Please complete the following practice problems. Then your teacher will review the answers. Make sure you show all your work.

I. Find each product.

5.
$$13 \times 0 =$$

II. Evaluate 3n for each value of n. (Remember "3n" means 3 times n.)

$$2. n = -2$$

3.
$$n = 11$$

4.
$$n = -8$$

6.
$$n = 6$$

Summary/Closure

A. Vocabulary Words

<u>Directions</u>: Each sentence is a <u>false</u> statement. Rewrite the sentence to make the statement true.

1. A product is the result when one number is divided by another number.

lesson three - student resource sheet

2.	When integers are multiplied, if the signs are different, the product is positive.
3.	When integers are multiplied, if the signs are the same, the product is negative.
4.	The product of any number and 0 is 1.
5.	Zero is a positive number.

B. Summarize What We Learned Today

 $\underline{\text{Directions}}$: Write three sample problems and solve them. Then explain in words or symbols how to multiply integers. You will use these problems as a study guide and as helpful hints.