

Universidade Federal de Ouro Preto Escola de Minas CECAU - Colegiado do Curso de Engenharia de Controle e Automação

Douglas Meneses Barbosa

DESENVOLVIMENTO DE UMA APLICAÇÃO WEB COM O OBJETIVO DE CONSTRUIR E SIMULAR REDES DE PETRI

Monografia de Graduação

Douglas Meneses Barbosa

DESENVOLVIMENTO DE UMA APLICAÇÃO WEB COM O OBJETIVO DE CONSTRUIR E SIMULAR REDES DE PETRI

Trabalho apresentado ao Colegiado do Curso de Engenharia de Controle e Automação da Universidade Federal de Ouro Preto como parte dos requisitos para a obtenção do Grau de Engenheiro de Controle e Automação.

Universidade Federal de Ouro Preto

Orientador: Prof. Dr. Danny Augusto Vieira Tonidandel

Coorientador: Não definido

Ouro Preto 2023

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO **REITORIA** ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA CONTROLE E **AUTOMACAO**

FOLHA DE APROVAÇÃO

Santos Dumont

Como construir um avião?

Monografia apresentada ao Curso de Engenharia de Controle e Automação da Universidade Federal de Ouro Preto como requisito parcial para obtenção do título de Bacharel em Engenharia de Controle e Automação

Aprovada em 26 de fevereiro de 2023

VERSÃO DE DEMONSTRAÇÃO

Membros da banca

[Doutor] - Carlos Chagas - Orientador (Universidade Federal de Ouro Preto)

[Doutora] - Nise da Silveira - Orientador (Universidade Federal da Bahia)

[Doutor] - Leopoldo Nachbin - (Instituto Nacional de Matemática Pura e Aplicada)

[Doutora] - Ruth Sonntag Nussenzweig - (Universidade de São Paulo)

Nise da Silveira, coorientadora do trabalho, aprovou a versão final e autorizou seu depósito na Bilbioteca de Trabalhos de Conclusão de Curso da UFOP em 04/07/2023.

Documento assinado eletronicamente por Nise da Silveira, **PROFESORA DE** MAGISTÉRIO SUPERIOR, em 04/07/2023, às 10:16, conforme horário oficial de Brasília, com fudamento no art. 6°, § 1°, do Decreto no 8.539, de 8 de outubro de 2015.

A autenticidade desde documento pode ser conferida no site http://sei.ufop.br/sei/controlador_externo.php?

acao=documento_conferir&id_orgao_acesso_externo=0,

informando o código verificador 26021982 e o código CRC X3DF4F4

Agradecimentos

Os agradecimentos [são opcionais, e] vem aqui...

Júpiter leva 4332 dias para fazer uma revolução.

Resumo

O resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto.

Palavras-chaves: latex. abntex. editoração de texto.

Abstract

This is the english abstract.

 $\mathbf{Key\text{-}words}:$ latex. abntex. text editoration.

Lista de ilustrações

Figura 1 –	Exemplo de diagrama de fluxo	11
Figura 2 –	Exemplo de diagrama de classe	12
Figura 3 –	Rede de Petri Simples	14
Figura 4 –	Rede de Petri Simples	15
Figura 5 –	Rede de Petri Simples	15
Figura 6 –	Cores dos tipos de transição	17
Figura 7 –	Rede de Petri Temporizada - Estágio 1	17
Figura 8 –	Rede de Petri Temporizada - Estágio 2	17
Figura 9 –	Rede de Petri Temporizada - Estágio 3	18

Sumário

1	INTRODUÇÃO	. 9
1.1	Justificativas e Relevância	. 9
1.2	Objetivo Geral	. 10
1.3	Objetivos Específicos	. 10
1.4	Metodologia	. 10
2	FUNDAMENTAÇÃO TEÓRICA	
2.1	Redes de Petri	. 13
2.2	Tecnologias para o desenvolvimento web	19
2.3	Simuladores Conhecidos	. 19
3	DESENVOLVIMENTO	20
4	CONSIDERAÇÕES FINAIS	21
	Referências	. 22

1 Introdução

nome da aplicação: Online Petri Net Simulator

Em 1962, Carl Adam Petri, por meio de sua dissertação, mostrou para o mundo a sua criação, as redes de Petri (PETRI, 1962). Podemos definir uma rede de Petri como sendo uma ferramenta matemática para modelagem de sistemas concorrentes. Além da modelagem matemática, as redes de Petri podem ser ilustradas graficamente por meio de seus elementos, os lugares, as transições e os arcos. Além disso, com a evolução da industria e da tecnologia, as redes de Petri ganharam ainda mais relevância, uma vez que elas permitem a modelagem de diversos tipos de sistemas, em diferentes áreas.

A evolução da industria e da tecnologia também culminou com a popularização da internet (LINS, 2013). O surgimento do World Wide Web, em 1990, por Tim Berners-Lee, permitiu aos primeiros usuários da internet, como conhecemos hoje, a interação com um sistema de hipertexto. Com o passar dos anos, as aplicações web se tornaram cada vez mais comuns e sofisticadas. O que antes começou com páginas estáticas evoluiu para aplicações dinâmicas, interativas e de fácil acesso para a maioria das pessoas. Atualmente, se consegue ter uma experiência muito próxima as funcionalidades de um computador pessoal, com aplicações desktop, apenas manipulando abas em um navegador.

Diante da facilidade de acesso a aplicativos web por meio dos navegadores, como Google Chrome, Firefox, Safari, Edge, entre outros, surge a seguinte ideia: desenvolver uma aplicação web que possibilite aos usuários a criação e simulação do comportamento de redes de Petri, de forma simples e intuitiva. Para tal, torna-se necessário o conhecimento de tecnologias voltadas para o desenvolvimento web, como HTML5, CSS3 e JavaScript.

Além do conhecimento em desenvolvimento, será necessário compreender os conceitos e práticas de infraestrutura, viabilizando a disponibilidade e o acesso contínuo à aplicação web. Uma vez desenvolvida, a aplicação pode ser disponibilizada para acesso por qualquer usuário que possua conexão com a internet, facilitando a modelagem de redes de Petri.

1.1 Justificativas e Relevância

As redes de Petri representam uma poderosa ferramenta gráfica e matemática para a modelagem e análise de sistemas concorrentes e distribuídos. No entanto, o seu entendimento pode ser um desafio, especialmente para aqueles sem familiaridade com os conceitos e experiência matemática.

Atualmente, existem algumas ferramentas capazes de construir e simular redes de

Petri. Entretanto, muitas delas requerem um conhecimento mínimo de computação, para que possam ser instaladas em sistemas operacionais como Linux, Windows e MacOS. Além disso, algumas delas não são multiplataforma, restringindo o acesso dessas ferramentas pelas pessoas.

Nesse contexto, uma aplicação web, simples e intuitiva, atenderia as necessidades, tanto de usuários comuns, como o de estudantes e pesquisadores interessados em entender o funcionamento das redes de Petri. Através de uma aplicação web, o acesso é simplificado e facilitado, pois elimina a necessidade de instalações complicadas e pré-conhecimento técnico avançado.

1.2 Objetivo Geral

O desenvolvimento de uma aplicação web capaz de criar e simular o comportamento de redes de Petri.

1.3 Objetivos Específicos

- Desenvolvimento de um motor de simulação, capaz de simular o comportamento das redes de Petri criadas, possibilitando a visualização, por parte do usuário, do comportamento em diferentes cenários;
- Desenvolvimento de uma interface simples e intuitiva;
- Aprendizado de tecnologias voltadas para o desenvolvimento web;
- Criação de uma alternativa simples e de fácil acesso para o aprendizado de redes de Petri;
- Alocação da aplicação em um servidor, permitindo o acesso público.

1.4 Metodologia

Inicialmente, para o desenvolvimento da aplicação web, capaz de construir e simular o comportamento de redes de Petri, será necessário entender os requisitos e características mínimas para o funcionamento da aplicação. Analisando softwares já existentes que cumprem essa função, serão desenvolvidas as seguintes funcionalidades básicas:

- Área da tela em que a rede de Petri será renderizada;
- Botões para inserção de lugares, arcos, tokens e transições;

- Botão de simulação em que, ao ser acionado, irá permitir a análise do comportamento da rede de Petri criada;
- Opção de definir labels para os lugares, arcos e posições;
- Alteração de cor da transição quando houver os requisitos mínimos satisfeitos;
- Opção de importação e exportação de projetos.

Com as características básicas da aplicação definidas, será desenvolvido um diagrama de fluxo, ilustrado na figura 1, evidenciando o passo a passo de funcionamento da aplicação.

Figura 1 – Diagrama de fluxo. Fonte: Boyle (1772).

Paralelamente ao desenvolvimento do diagrama de fluxo, será criado um diagrama de classe 2, definindo as diferentes classes de objetos que serão utilizados.

Figura 2 – Diagrama de classe. Fonte: Boyle (1772).

Após a definição do design, com a criação do diagrama de fluxo e do diagrama de classe, inicia-se o processo de programação. A linguagem de programação JavaScript será utilizada, juntamente com HTML e CSS. O desenvolvimento acompanhará o design pré-estabelecido. Com isso, espera-se a criação de um MVP (Minimum Viable Product).

Com a criação do MVP, em um ambiente local, a aplicação será hospedada em um servidor on-premisse da Universidade Federal de Ouro Preto. Após a hospedagem, espera-se que a aplicação esteja disponível para acesso público por meio da internet.

2 Fundamentação teórica

2.1 Redes de Petri

As redes de Petri surgiram por volta da década de 1960 pela mente de Carl Adam Petri. Em 1962, Petri apresentou sua tese intitulada "Kommunikation mit Automaten", em que descreveu pela primeira vez a estrutura e funcionamento das redes de Petri. Esse nova ideia de representar sistemas permitiu a análise de sistemas concorrentes e paralelos.

Com o passar dos anos, a evolução tecnológica durante a terceira revolução industrial (COUTINHO, 1992) evidenciou os benefícios das redes de Petri, e sua aplicabilidade foi ampliada para além da modelagem de processos industriais, sendo adotada também para descrever processos dentro das áreas de Ciência da Computação e Engenharia de Software. Sendo assim, a partir dos anos de 1980, com o crescimento da automação industrial, as redes de Petri começaram a ser adaptadas para atender as necessidades de diferentes áreas. Com isso, surgiram as redes de Petri coloridas, as redes de Petri temporizadas e as redes de Petri estocásticas, como principais exemplos.

O básico de redes de Petri

Segundo (CASSANDRAS; LAFORTUNE, 2008), uma rede de Petri clássica é representada graficamente por lugares, transições e arcos. Os lugares representam os estados do sistema, as transições indicam os eventos ou ações que podem ocorrer durante o funcionamento do sistema. Os arcos direcionados conectam os lugares as transições e as transições aos lugares. Essa estrutura permite a análise de propriedades importantes dos sistemas, como alcançabilidade, vivacidade, deadlock, reversibilidade, entre outras propriedades fundamentais para analise do comportamento de sistemas complexos.

As redes de Petri seguem uma lógica matemática. Sendo assim, seus elementos são definidos como sendo:

$$(P,T,A,w)$$
,

em que

 $P = \{p_1, p_2, ..., p_n\}$ é o conjunto de lugares;

 $T = \{t_1, t_2, ..., t_n\}$ é o conjunto de transições;

 $A\subseteq (P\times T)\cup (T\times P)$ representa os arcos de lugares para transições, e transições para lugares;

 $w: A \to \{1, 2, 3, ...\}$ é a função de peso dos arcos.

Com tais elementos torna-se possível a criação e modelagem de redes de Petri para a representação de sistemas concorrentes. Conforme o exemplo 1 é possível evidenciar uma rede de Petri simples, permitindo a compreensão de sua estrutura e funcionamento das redes de Petri em um âmbito geral.

Exemplo 1 (Uma rede de Petri simples) /

Inicialmente, define-se os conjuntos P, T, A, w.

$$\begin{array}{rcl} P & = & \{p_1,p_2\} \\ & T & = & \{t_1\} \\ & A & = & \{(p_1,t_1)\,,(t_1,p_2)\} \\ & w\,(p_1,t_1) & = & 2 \\ & w\,(t_1,p_2) & = & 1 \end{array}$$

Para esse exemplo, tem-se os lugares p_1 e p_2 . O arco (p_1, t_1) conecta o lugar p_1 a transição t_1 , e seu peso $w(p_1, t_1)$ é igual a 2.O arco (t_1, p_2) conecta a transição t_1 ao lugar p_2 , e seu peso $w(t_1, p_2)$ é igual a 1.

Tendo a lógica matemática definida, pode-se ilustrar graficamente a mesma rede de Petri, conforme a figura 3.

Figura 3 – Rede de Petri Simples. Fonte: Cassandras e Lafortune (2008).

Para a mudança de estado dessa representação é necessário, no mínimo, duas marcações no lugar p_1 . Com essa condição satisfeita, a transição t_1 passa a estar habilitada, tornando possível a mudança de estado, como ilustrado na figura 4.

Figura 4 – Transição t_1 habilitada. Fonte: Cassandras e Lafortune (2008).

Após a execução da transição t_1 , as duas marcações em p_1 somem, e uma marcação em p_2 surge. Essa lógica se dá por meio do peso dos arcos. O arco (p_1,t_1) , anterior a transição t_1 possui peso 2, logo o lugar p_1 cede duas marcações para a transição t_1 ocorrer. De forma análoga, o lugar p_2 ganha uma marcação, pois o arco (t_1,p_2) , posterior a transição t_1 , tem peso igual a 1. Essa lógica é ilustrada pela figura 5.

Figura 5 – Rede de Petri após a transição t_1 ter sido executada. Fonte: Cassandras e Lafortune (2008).

Com o exemplo 1, é possível entender o princípio básico de funcionamento das redes de Petri. Dessa forma, tem-se que:

- (a) habilitação de uma transição: para a habilitação de uma transição t_i é necessário que o número de marcações associados ao lugar p_i , anterior a transição, seja igual, ou superior, ao peso do arco que conecta o lugar p_i a transição t_i ;
- (b) **peso dos arcos:** ...;
- (c) movimentação das marcações:

Exemplo 2 Uma rede de Petri mais desenvolvida

A lógica utilizada nas redes de Petri podem facilmente ser traduzidas para os modelos utilizados na lógica de programação Ladder, uma vez que as redes de Petri também se utilizam da álgebra booleana.

Variantes das redes de Petri clássica

Além da rede de Petri clássica, com o passar dos anos, e com o avanço da tecnologia, houve a necessidade de se adaptar as redes de Petri para atender cenários mais realistas e completos. A partir dessas variações, três delas se destacam, sendo elas as redes de Petri Temporizadas 3, Coloridas 4 e Estocásticas 5. Cada uma delas, permite uma representação mais abrangente dos sistemas do mundo real, pois permitem o desenvolvimento de aspectos como tempo, características distintas e incertezas que compõem os diversos tipos de sistemas.

Temporizada

referenciar o artigo dece.ibilee.unesp.br/ aleardo/cursos/str/cap3.pdf

As redes de Petri Temporizadas surgiram a partir da necessidade de se atribuir uma propriedade temporal a certos atributos de um sistema. Ao contrário das redes de Petri clássicas, que consideram as transições como instantâneas, as redes de Petri Temporizadas reconhecem que uma vasta quantidade de sistemas do mundo real estão intrinsecamente ligados a variáveis de tempo. Tal fato é extremamente relevante, já que a maiorias dos eventos nesses sistemas demanda certo período de tempo para sua execução completa.

Nas redes de Petri Temporizadas, pode-se considerar dois cenários para a associação de variáveis de tempo. No primeiro cenário, se tem a associação de tempo C_i a duração de uma certa transição t_i . Ou seja, o evento representado pela transição terá um intervalo de tempo para ser executado. No segundo cenário, associa-se a variável de tempo C_i aos lugares p_i . Dessa forma, as marcações tornam-se disponíveis apenas após o intervalo de tempo. Define-se assim:

- Tempo C_i associado a transição t_i ;
- Tempo C_i associado ao lugar p_i .

As transições temporizadas, nos modelos gráficos, para se diferenciar das transições instantâneas, possuem uma cor associada diferente, e isso pode ser evidenciado na maioria dos softwares já disponíveis. Enquanto as transições instantâneas possuem fundo preto, as transições temporárias possuem fundo branco. Além disso, quando uma transição estiver disponível para o disparo, ela possuirá fundo vermelho, conforme a figura 6.

No exemplo 3 há uma transição fonte t_0 , que está sempre habilitada, ligada a posição p_0 . O lugar p_0 está ligado a uma transição temporizada t_1 , por meio de um arco $w(p_0,t_1)$ de peso 2. Além disso, a transição t_1 possui um tempo C_1 associado. Ou seja, após o disparo da transição t_1 , haverá um tempo C_1 de espera, indicando o tempo de execução do evento associado a transição. Após a decorrência desse tempo, duas marcações, associadas ao lugar p_0 , se transformarão em apenas uma marcação no lugar p_1 .

Figura 6 – Cores dos tipos de transição. Fonte: Pipe.

Exemplo 3 Temporizada

Figura 7 – Rede de Petri Temporizada - Estágio 1. Fonte: Pipe.

Figura 8 – Rede de Petri Temporizada - Estágio 2. Fonte: Pipe.

Colorida

As redes de Petri Coloridas surgiram com a ideia de diminuir o tamanho das representações (FRANCÊS, 2003), uma vez que muitas representações contam com ideias semelhantes. Através da individualização das marcações, os processos e recursos de um sistema podem agora representar diferentes ideias em uma mesma rede, ou parte dela. O termo "colorida" surge da ideia de termos marcações, com diferentes cores, representando diferentes recursos. Essa forma de representação tem como principal benefício reduzir o

Figura 9 – Rede de Petri Temporizada - Estágio 3. Fonte: Pipe.

tamanho e, consequentemente, a complexidade da representação em uma rede de Petri. Comparando os exemplos, consegue-se analisar tal propriedade. Ambas as redes representam a mesma ideia, porém na segunda representação temos uma quantidade menor de elementos, o que facilita o entendimento.

Uma vez que se consegue representar as marcações com diferentes cores, tornase mais simples a representação de sistemas complexos, diminuindo a complexidade das análises. Nas redes de Petri tradicionais, cada lugar representa um único estado do sistema representado. As redes de Petri coloridas deixam de forma mais intuitiva e clara a representação de múltiplos estados ou recursos.

Exemplo 4 Colorida

Estocásticas

Uma rede de Petri estocástica é mais uma variação das redes de Petri clássicas. Enquanto as redes de Petri clássicas são frequentemente usadas para representar sistemas discretos e determinísticos, as redes de Petri estocásticas permitem incorporar a aleatoriedade e a incerteza na representação.

Nas redes de Petri estocásticas, os elementos básicos, como lugares, transições e arcos, são semelhantes aos das redes de Petri convencionais. No entanto, a principal diferença é que as transições não são ativadas de forma determinística, mas sim com base em probabilidades. Isso significa que a ocorrência de uma transição é governada por um processo estocástico, como um processo de Poisson, e a escolha de qual transição ocorre em um determinado momento é determinada por probabilidades.

Essa abordagem estocástica é especialmente útil para modelar sistemas onde eventos ocorrem de maneira aleatória, como sistemas de comunicação, sistemas biológicos e sistemas de manufatura com variações de tempo e recursos. As redes de Petri estocásticas permitem a análise de propriedades estatísticas do sistema, como a probabilidade de estados específicos serem alcançados ou a distribuição de tempo entre eventos.

Conforme o exemplo 5 é possível analisar o funcionamento de uma rede de Petri estocástica.

Criar exemplo de Rede de Petri estocástica

Exemplo 5 Estocásticas

2.2 Tecnologias para o desenvolvimento web

HTML

CSS

JavaScript

2.3 Simuladores Conhecidos

Pipe

Online Petri-net simulator - OPN

TryRdP

3 Desenvolvimento

4 Considerações Finais

Referências

BOYLE, Robert. The works of the Honourable Robert Boyle. Edição: Thomas Birch. London: J. e F. Rivington, 1772. 6 v. 1062 p. Disponível em: http://bit.ly/boyle-works. Citado 0 vez nas páginas 11, 12.

CASSANDRAS, Christos G.; LAFORTUNE, Stéphane. *Introduction to Discrete Event Systems*. 2. ed. New York: Springer, 2008. ISBN 978-0-387-33332-8. DOI: 10.1007/978-0-387-68612-7. Citado 1 vez nas páginas 13-15.

COUTINHO, Luciano. A terceira revolução industrial e tecnológica. As grandes tendências das mudanças. *Economia e sociedade*, Universidade Estadual de Campinas (UNICAMP), Instituto de Economia, v. 1, n. 1, p. 69, 1992. Citado 1 vez na página 13.

EINSTEIN, Albert. Aether und Relativitaetstheorie. Jerusalém: The Albert Einstein Archives, 1920. Transcrição de uma palestra proferida na Universidade Leyden, Holanda. Disponível em: http://alberteinstein.info/vufind1/Record/EAR000045690. Nenhuma citação no texto.

FRANCÊS, Carlos Renato Lisboa. Introdução às redes de petri. Laboratório de Computação Aplicada, Universidade Federal do Pará, 2003. Citado 1 vez na página 17.

LINS, Bernardo Felipe Estellita. A evolução da Internet: uma perspectiva histórica. *Cadernos Aslegis*, v. 48, p. 11–45, 2013. Citado 1 vez na página 9.

PETRI, Carl. Kommunikation mit Automaten. 1962. Tese (Doutorado) – TU Darmstadt. Citado 1 vez na página 9.