Dependent Types

Tikhon Jelvis (tikhon@jelv.is)

February 13, 2014

Untyped lambda-calculus

• terms: functions (λ) , variables, application

$$e ::= x \qquad \qquad \text{variable}$$

$$\mid \quad \lambda x.e \qquad \qquad \text{abstraction}$$

$$\mid \quad e_1 e_2 \qquad \qquad \text{application}$$

evaluation via substitution:

$$(\lambda x.e)s \Rightarrow [s/x]e$$

Simply typed lambda-calculus

- extend untyped lambda-calculus with "simple" types
- ▶ simple: atomic "base" types + functions
 - base: unit, int, . . .
 - ▶ function: **unit** → **unit**, . . .
- not Turing-complete any more
 - safety at the expense of expressiveness

Simply typed lambda-calculus

new type-level syntax

evaluation is unchanged

System F

- parametric polymorphism
- allow "families" of simply typed terms
 - ▶ polymorphic id is a family of id_{unit} , id_{int} , $id_{$
- ▶ a "family" is a function from types to values

System F

$\tau ::= unit$	unit type
$\mid \alpha$	type variable
$ au_1 ightarrow au_2$	function types
$\mid \forall \alpha. \tau$	type quantification
e :: = ()	unit value
x	variable
$ \lambda x : \tau.e$	abstraction
$ e_1e_2 $	application
$ \Lambda \alpha.e$	type abstraction
$\mid e_1[au]$	type application

Type abstractions

- type functions: $\Lambda \alpha. \tau$
- qualified types: $\forall \alpha.\tau$
- type application: $e_1[\tau]$
- example:

$$id : \forall \alpha.\alpha \to \alpha$$
$$id = \Lambda \alpha.\lambda(x : \alpha).x$$

Type abstractions

- hey, these are like normal λ s, but simpler
- functions: $\lambda(x:\tau).e$
- function types: $\tau_1 \rightarrow \tau_2$
- ▶ function application: e₁ e₂

Unifying types and terms

- let's combine these two similar constructs
- everything is a term
 - values can appear in types
 - no more clean type/value separation

Why?

- System F: repetition over different types
 - id_{unit}, id_{int}, id_{int→int}, . . .
- consider other repetitive patterns:
 - ightharpoonup int, int imes int imes int, . . .
 - ▶ vector 1, vector 2, vector 3, . . .
- we would love to write

dot : vector $n \times$ vector $n \rightarrow int$

Dependent types

▶ no type syntax: e and τ are **expressions**

$$\begin{array}{lll} e,\tau ::= () & \text{unit value} \\ & | & \text{unit} & \text{unit type} \\ & | & \star & \text{type of types} \\ & | & \chi & \text{variable} \\ & | & \forall (x:\tau).\tau' & \text{dependent function} \\ & | & e_1 & e_2 & \text{application} \\ & | & \lambda(x:\tau).e & \text{abstraction} \end{array}$$

▶ $\forall (x:\tau).\tau'$ replaces function arrows (\rightarrow)

Typing rules: types of types

- ▶ What type does * have?
 - ▶ simple (but dubious) answer: ★:★
 - ▶ more interesting: infinite hierarchy $\star_1 : \star_2 : \star_3 : \dots$
- let's go with simplicity:

$$\overline{\Gamma \vdash \star : \star}$$

Typing rules: dependent abstractions

dependent abstractions are terms too:

$$\frac{\Gamma \vdash \tau : \star \quad \Gamma, x : \tau \vdash \tau' : \star}{\Gamma \vdash (\forall (x : \tau).\tau') : \star}$$

- key idea: τ' can depend on x
- ▶ $\forall (x:\tau).\tau'$ is like a function type $\tau \to \tau'$ except also parametrized by a value x
 - alternative syntax: $(x : \tau) \rightarrow \tau'$

Typing rules: application

▶ remember: the new function type is a ∀:

$$\frac{\Gamma \vdash e_1 : \forall (x : \tau).\tau' \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \ e_2 : [e_2/x]\tau'}$$

- substitution happening at the type level
 - basically like enabling the type system with evaluation

Typing rules: type equivalence

- since types are terms, we need to evaluate them to check for equivalence
- ▶ read $e_1 \Downarrow e_2$ as " e_1 evaluates to e_2 "

$$\frac{\Gamma \vdash e : \tau_1 \quad \tau_1 \Downarrow \tau \quad \tau_2 \Downarrow \tau}{\Gamma \vdash e : \tau_2}$$

- ▶ consider: vector 5 vs vector (2+3) vs vector (3+2)
- again: evaluation in type checking

Typing rules: abstractions

▶ pretty straightforward: \rightarrow just becomes \forall :

$$\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash (\lambda(x : \tau).e) : \forall (x : \tau).\tau'}$$

note: x can occur in body and type

Example: id

from System F:

$$id : \forall \alpha. \alpha \to \alpha$$
$$id = \Lambda \alpha. \lambda(x : \alpha). x$$

with dependent types:

$$id : \forall (\alpha : \star).(\forall (x : \alpha).\alpha)$$
$$id = \lambda(\alpha : \star).(\lambda(x : \alpha).x)$$

• the System F Λ has become a normal λ !

Nicer notation

- often, we just want normal functions
 - ▶ **ignore** argument *x*
- ▶ special syntax: →
- ▶ consider id: $\forall (\alpha : \star).\alpha \rightarrow \alpha$
- ▶ no extra name (x) introduced

Example: vectors

- ▶ assume built-in numbers: \mathbb{N} : \star and n : \mathbb{N}
- vectors indexed by length:

$$\forall (\alpha : \star). \forall (n : \mathbb{N}). \mathsf{vec} \ \alpha \ n$$

constructors:

$$Nil: \forall (\alpha:\star). \mathbf{vec} \ \alpha \ 0$$
 $Cons: \forall (\alpha:\star). \forall (n:\mathbb{N}). \alpha \rightarrow \mathbf{vec} \ \alpha \ n \rightarrow \mathbf{vec} \ \alpha \ (n+1)$

Example: zero vector

- we can have sized vectors in Haskell
 - numbers at the type level—redundant
- however, Haskell can't do this:

zero :
$$\forall (n : \mathbb{N}).$$
vec int n

- creates a vector of length n, full of 0 s
- argument n is part of result type!