

PES UNIVERSITY, Bangalore

UE18/19CS351

(Established under Karnataka Act No. 16 of 2013)

END SEMESTER ASSESSMENT (ESA) - B.TECH VI SEMESTER - May, 2022

UE18/19CS351 - COMPILER DESIGN

Time: 3 Hrs Answer All Questions Max Marks: 100

With a neat diagram, explain the interaction between first two phases of the compiler 10 using the following input: x = a + b * c;(Note: clearly mention ALL input(s) and output of each phase and their role) **Solution:** Diagram: 2 marks token Program Lexical Analysis Analysis > Parse tree get next taken from exical analyzer Symbol Role of a Lexer: 1 marks (any 2 points) To generate tokens To remove comments and extra whitespaces Correlate error messages with line numbers Role of a Parser: 1 marks (any 2 points) To validate the syntax of the programming language To generate Parse tree as output To report syntax errors if any. Input to lexer: 2 marks Source code • Set of patterns with corresponding rules Input to Parser: 2 marks Tokens generated by lexer Grammar file : $S \rightarrow id = E, E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow id$ Output of lexer: 1 mark <id, x> < = > <id, a> <arith_op, +> <id, b> <arith_op, *> <id, c> <;> Output of Parser: 1 mark

CDNI					
SKN					

П			
		S	
		<id,x> = E :</id,x>	
		- L ,	
		E + T	
		T	
		F F (id,c)	
		10,02	
		<id,a> <id,b></id,b></id,a>	
	b	Given the lex script, answer the following:	5
		%%	(2+1+2)
		a?aab printf("2"); a?b printf("1");	
		a?b printf("1"); aab printf("3");	
		I. What will be output of a lexer for the input string: aab	
		II. Specify an input string for which the lexer will print 321 as the output.	
		III. Which of the aforementioned rules are useless and why?	
		Solution:	
		I. 2	
		II. No such input exists	
		III. aab printf("3"); is useless as aab will always be matched by a?aab pattern	~
	С	With a neat diagram explain the design of a lexical analyzer. Solution:	5
		The program that serves as the lexical analyzer includes a fixed program that simulates an automaton;	
		at this point we leave open whether that automaton is deterministic or nondeterministic. The rest of the	
		lexical analyzer consists of components that are created from the Lex program by Lex itself. These components are:	
		a) A transition table for the automaton.	
		b) Those functions that are passed directly through Lex to the output	
		c)The actions from the input program, which appear as fragments of code to be invoked at the appropriate time by the automaton simulator.	
		To construct the automaton, we begin by taking each regular-expression pattern in the Lex program and	
		converting it to an NFA. We need a single automaton that will recognize lexemes matching any of the	

SRN					

	grammar is not i)	al bo	$\frac{b}{A \to B}$ $B \to b$		\$		
B C The		$A \rightarrow a$ $B \rightarrow \lambda$ $C \rightarrow ab$ $in LL(1) a$)	al bac					
C		$C \rightarrow ab$		al bac	$B \rightarrow b$	С			
The		in LL(1) a		al had					
			as M[A	al ba			ļ.		_
G-1	Grammar: $1. S^{\circ} \rightarrow S$ $2. S \rightarrow L = R$ $3. S \rightarrow R$ $4. L \rightarrow {}^{*}R$ $5. L \rightarrow id$ $6. R \rightarrow L$ tion:	0 s 1 2 3 4 s 5			ring: *	7 8			5

Stack	Input Buffer	Action
\$0	*id = id \$	A[0,*] = s4
\$0*4	id = id \$	A[4, id] = s5
\$0*4 id 5	= id \$	A $[5, =] = r5, (L \rightarrow id)$
\$0*4L9	= id \$	$A[9, =] = r6, (R \to L)$
\$0*4R7	= id \$	$A[7, =] = r4, (L \rightarrow *R)$
\$0L2	= id \$	A[2, =] = s6
\$0L2=6	id \$	A[6, id] = s5
\$0L2=6id5	\$	$A[5,\$] = r5, (L \to id)$
\$0L2=6L9	\$	$A[9,\$] = r6, R \to L$
\$0L2=6R8	\$	$A[8,\$] = r2, S \rightarrow L = R$
\$0S1	\$	A[1,S] = accept

SRI	V		
	С	When does s/r and r/r conflict occur in SLR parser? Explain with an example or a dummy state diagram to depict the scenarios. Solution: A s/r conflict occurs in SLR parser when there is a final item and a shift on a terminal such that follow(A) of final item contains symbol 'a' on which the parser is shifting:	5
		A \rightarrow Aa. A \rightarrow Ba.a A r/r conflict occurs in SLR parser when there are two final items and	
		follow(A) \cap follow(B) $\neq \Phi$ $A \to a.$ $B \to a.$	
3	a	Write short notes on: I. Types of attributes II. Types of Syntax Directed Definitions III. Procedure to convert SDD to SDT scheme	10 (4+4+2)

- Solution:
 - Types of attributes There are two types of attributes: I.
 - 1. **Synthesized Attributes** These are those attributes which derive their values from their children nodes i.e. value of synthesized attribute at node is computed from the values of attributes at children nodes in parse tree.
 - 2. **Inherited Attributes –** These are the attributes which derive their values from their parent or sibling nodes i.e. value of inherited attributes are computed by value of parent or sibling nodes.
 - II. Types of Syntax Directed Definitions
 - 1. S-attributed Definitions: Syntax directed definition that involves only synthesized attributes is called S-attributed.

		edges of go from l definition	dependency graph for the attributes in production body, can left to right and not from right to left is called L-attributed as. Attributes of L-attributed definitions may either be seed or inherited.						
		If the attr	ributes are inherited, it must be computed from:						
		• Inherite	ed attribute associated with the production head.						
	 Either by inherited or synthesized attribute associated with the production located to the left of the attribute which is being computed. Either by inherited or synthesized attribute associated with the attribute under consideration in such a way that no cycles can be formed by it in the dependency graph. III. Procedure to convert SDD to SDT scheme: 								
	Synthesized attribute calculation must be kept at the end of the rule [1 mark] inherited attribute calculation must be kept before the non-terminal appears in the production.								
id D T L	$\begin{array}{c} \text{dentific} \\ \to \text{T} \\ \to \text{in} \end{array}$	ers L. L t float id id	e type declaration consisting of basic type T and list of	5					
		PRODUCTION	SEMANTIC RULES						
	1)	$D \to T \; L$	L.inh = T.type						
	2)	$T o \mathbf{int}$	T.type = integer						
	3)	$T \to \mathbf{float}$	T.type = float						
	4)	$L \to L_1$, id	$L_1.inh = L.inh$						
	-\	7	addType(id.entry, L.inh)						
	5)	$L \to \mathbf{id}$	$addType(\mathbf{id}.entry, L.inh)$						

SRN

CDNI						
SKIN						
	ı					

		С	Carry out the given SDD over the input string $5 * 2 * 3$ and provide an annotated parse tree as output. PRODUCTION SEMANTIC RULES 1) $T \rightarrow FT'$ $T'.inh = F.val$	5
3) $T' \rightarrow \epsilon$ $T'.syn = T'.inh$ $T'.syn = T'.inh$ $T'.syn = digit.lexval$ Solution: Solution: Twiles of the solution Twiles of the so				
Solution: 4			$T'.syn = T'_1.syn$	
Solution: Solution: Solution: Answer the following: I. What is a basic block? [1 mark] B. How are leaders identified? [3 marks] II. What is Code Optimization? [1 mark] Briefly explain the following optimizations with an example: A. Constant folding and propagation [2 marks] B. Loop optimization (Any one) [2 marks] Solution: I. Basic block: A basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit.			3) $T' \rightarrow \epsilon$ $T'.syn = T'.inh$	
-1 if correct attribute names are not used -1 if dependency graph not shown. 4 a Answer the following: I. What is a basic block? [1 mark] A. What is a leader? [1 mark] B. How are leaders identified? [3 marks] II. What is Code Optimization? [1 mark] Briefly explain the following optimizations with an example: A. Constant folding and propagation [2 marks] B. Loop optimization (Any one) [2 marks] Solution: I. Basic block: A basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit.			4) $F \rightarrow \mathbf{digit}$ $F.val = \mathbf{digit}.lexval$	
4 a Answer the following: I. What is a basic block? [1 mark] A. What is a leader? [1 mark] B. How are leaders identified? [3 marks] II. What is Code Optimization? [1 mark] Briefly explain the following optimizations with an example: A. Constant folding and propagation [2 marks] B. Loop optimization (Any one) [2 marks] Solution: I. Basic block: A basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit.			tight lexical = 3 production of the state of	
I. What is a basic block? [1 mark] A. What is a leader? [1 mark] B. How are leaders identified? [3 marks] II. What is Code Optimization? [1 mark] Briefly explain the following optimizations with an example: A. Constant folding and propagation [2 marks] B. Loop optimization (Any one) [2 marks] Solution: I. Basic block: A basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit.			-1 if dependency graph not shown.	
Briefly explain the following optimizations with an example: A. Constant folding and propagation [2 marks] B. Loop optimization (Any one) [2 marks] Solution: I. Basic block: A basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit.	4	a	I. What is a basic block? [1 mark] A. What is a leader? [1 mark]	10 (5+5)
Solution: I. Basic block: A basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit.			Briefly explain the following optimizations with an example: A. Constant folding and propagation [2 marks]	
in except to the entry and no branches out except at the exit.				
A. The first statement in some block is called a leader .				
D. Idontifying I and are				
B. Identifying Leaders : 1. The first statement is a leader.				

 · · · ·		
b Convert the	 2. Statement L is a leader if there is an conditional or unconditional goto statement like: ifgoto L or goto L. 3. Instruction L is a leader if it immediately follows a goto or conditional goto statement like: if goto B or goto B. be code optimization in the synthesis phase is a program transformation chnique, which tries to improve the intermediate code by making it consume wer resources (i.e. CPU, Memory) so that faster-running machine code will sult. A. Constant Folding: This is an optimization technique which eliminates expressions that calculate a value that can be determined before code execution. If operands are known at compile time, then the compiler performs the operations statically. An Example, int x = (2 + 3) * y → int x = 5 * y int z = 300 * 78 * 6 → int z = 140400 Constant Propagation: This is the substitution of values of known constants and expressions. That is, if the value of a variable is known to be a constant, then the compiler will replace its use by that constant. The value of the variable is propagated forward from the point of assignment. An example, int x = 5; int y = x * 2; optimize int y = 10; B. Loop optimization: Loop Optimization is the process of increasing execution speed and reducing the overheads associated with loops. Loop Optimization Techniques: (Any one) Frequency Reduction (Code Motion): In frequency reduction, the amount of code in loop is decreased. A statement or expression, which can be moved outside the loop body without affecting the semantics of the program, is moved outside the loop. Loop Unrolling:Loop unrolling is a loop transformation technique that helps to optimize the execution time of a program. We basically remove or reduce iterations. Loop unrolling increases the program's speed by eliminating loop control instruction and loop test instructions. or strength reduction using induction variables. 	5
x = a[i];	- Br. en Breggmin en port tormi	
if $x > n$		
x = x - r	n;	
else $x = x + n$,.	
y = x + 1 $y = x * 5;$	1,	
Solution:		

SRN

		$x_1 = a[i_0]$; //-1 if student uses a_1 or a_0 as array names are immutable) if $x_1 > n_0$ $x_2 = x_1 - n_0$; //1 mark else $x_3 = x_1 + n_0$; //1 mark $x_4 = PHI(x_2, x_3)$; //2 marks $y_1 = x_4 * 5$; //1 mark									
	С	Given the flow g	raph, perform liv	ve variable analys	is.		5				
		$ \begin{array}{c c} \hline \text{if } a \leq 11 \\ \hline \text{B4} \end{array} $ $ \begin{array}{c c} T \\ \text{t1} = x \\ a = t \\ \end{array} $	n B2 T = a + 1 B3 a + b								
		Block use def in out									
		B1	{ }	{a, b, c, n}	{ }	{a, b, c, n}					
		B2	{a, n}	{}	{a, b, c, n}	{a, b, c, n}					
		В3	{a}	{a}	{a, b, c, n}	{a, b, c, n}					
		B4	{a}	{}	{a, b, c}	{a, b, c}					
		B5	{a, b, c}	{a, t1}	{a, b, c}	{}					
		B6 {} {} {}									
		-1 for each of the	e highlighted par	ts, if wrong							
5	a	-1 for each of the highlighted parts, if wrong Consider the C code to compute Fibonacci numbers recursively. The questions below assume that the initial call is f(5). int f(int n) { int t, s; if (n < 2) return 1; s = f(n-1); t = f(n-2);									

SRN					

	return s+t; } I. Show the complete activation tree. II. How does the stack and its activation records look like the first time f(1) is about to return? Solution:	
	f(5) f(4) f(3) f(2) f(2) f(3) f(3) f(3) f(3) f(3) f(3) f(4) f(5) f(6) f(7) f(8) f(8)	
	f(2) f(1) f(0) f(1) f(0) / f(1) f(0) II.	
	f(5) f(5), 5, s = f(4), t = f(3) f(4) f(4), 4, s = f(3), t = f(2) f(3) f(3), 3, s = f(2), t = f(1)	
b	f(2)	5
	1. $x = y+z$ 2. $z = x*x$ 3. $y = z$ 4. $x = y+z$	

==	

		Target Code Instruction	Registe	Register Descriptor		Address Descriptor		
	x= y+z		R1	R1 R2		у	z	
					х	у	z	
		LD R1, y	у		x	y,R1	z	
		LD R2, z	у	z z	x R1	y,R1	z,R2	
		ADD R1, R1, R2	x				z,R2	
	z= x * x	MUL R2, R1, R1	x	z	R1	у	R2	
	y = z		x	z,y	R1	R2	R2	
	x = y + z	ADD R1, R2, R2	x	z,y	R1	R2	R2	
	exit	ST x, R1	x	z,y	x,R1	R2	R2	
		ST y, R2	x	z,y	x,R1	y,R2	R2	
		ST z, R2	x	z,y	x,R1	y,R2	z,R2	
С	Solution: (frame point	fp Returned value Actual parameter Optional control Optional access Save machine sta Local data Temporaries	rs link link					