Day 12: Advanced experimental design topics

Erin Rossiter

March, 2022

- Touch base with me about final papers if I haven't given comments yet
- Today: advanced topics
- April 12: wrap up, reflection, and opportunities moving forward
- April 19: final class & presentations!
 - » I'll bring snacks; any food allergies?

- Touch base with me about final papers if I haven't given comments yet
- Today: advanced topics
- April 12: wrap up, reflection, and opportunities moving forward
- April 19: final class & presentations!
 - » I'll bring snacks; any food allergies?

- Touch base with me about final papers if I haven't given comments yet
- Today: advanced topics
- April 12: wrap up, reflection, and opportunities moving forward
- April 19: final class & presentations
 - » I'll bring snacks; any food allergies?

- Touch base with me about final papers if I haven't given comments yet
- Today: advanced topics
- April 12: wrap up, reflection, and opportunities moving forward
- April 19: final class & presentations!
 - » I'll bring snacks; any food allergies?

- Touch base with me about final papers if I haven't given comments yet
- Today: advanced topics
- April 12: wrap up, reflection, and opportunities moving forward
- April 19: final class & presentations!
 - » I'll bring snacks; any food allergies?

Conjoints

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on .
- Choice entails:
 - » preference on each dimension
 - » trade-offs across dimensions

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on
- Choice entails:
 - » preference on each dimension
 - » trade-offs across dimensions

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on .
- Choice entails:
 - » preference on each dimension
 - » trade-offs across dimensions

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on
- Choice entails:
 - » preference on each dimension
 - » trade-offs across dimensions

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on . . .
- Choice entails:
 - » preference on each dimension
 - » trade-offs across dimensions

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on ...
- Choice entails:
 - » preference on each dimensior
 - » trade-offs across dimensions

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on . . .
- Choice entails:
 - » preference on each dimensior
 - » trade-offs across dimensions

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on ...
- Choice entails:
 - » preference on each dimension
 - trade-offs across dimensions

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on ...
- Choice entails:
 - » preference on each dimension
 - » trade-offs across dimensions

- Useful to test treatments that are themselves collections of attributes
- Ex: candidate A vs B
 - » experience
 - » descriptive representation
 - » position on immigration policy
 - » position on ...
- Choice entails:
 - » preference on each dimension
 - » trade-offs across dimensions

- Compare to "traditional" design w/only one attribute
 - » assume a treatment as one-dimensional as possible (low vs. high skilled immigrant)
 - 1. we only learn about one thing from costly experiment
 - 2. external validity concerns (one thing, but a complex decision-making process!)

- Compare to "traditional" design w/only one attribute
 - » assume a treatment as one-dimensional as possible (low vs. high skilled immigrant)
 - 1. we only learn about one thing from costly experiment
 - 2. external validity concerns (one thing, but a complex decision-making process!)

- Compare to "traditional" design w/only one attribute
 - » assume a treatment as one-dimensional as possible (low vs. high skilled immigrant)
 - 1. we only learn about one thing from costly experiment
 - external validity concerns (one thing, but a complex decision-making process!)

- Compare to "traditional" design w/only one attribute
 - » assume a treatment as one-dimensional as possible (low vs. high skilled immigrant)
 - 1. we only learn about one thing from costly experiment
 - 2. external validity concerns (one thing, but a complex decision-making process!)

- Compare to "traditional" design w/only one attribute
 - » assume a treatment as one-dimensional as possible (low vs. high skilled immigrant)
 - 1. we only learn about one thing from costly experiment
 - 2. external validity concerns (one thing, but a complex decision-making process!)

Conjoint analysis

"survey-experimental methods that estimates respondents' preferences given their overall evaluations of alternative profiles that vary across multiple attributes, typically presented in tabular form" (Bansak et al. pg 20)

Conjoint analysis

"survey-experimental methods that estimates respondents' preferences given their overall evaluations of alternative profiles that vary across multiple attributes, typically presented in tabular form" (Bansak et al. pg 20)

Background

- Conjoint analysis became very popular in marketing
- Makes sense right?
- Image from here

Q1. Which of the following would you choose?

	Option 1	Option 2	Option 3	Option 4
Cuisine	Italian	Hamburgers	Thai	Chinese
Ordering method	Phone and online	Phone and app	Phone, online and app	Phone only
Nutrition information	Unavailable	Unavailable	On menu	On menu
Average review rating (out of 5 stars)	3	4.7	4.2	4
	0	\circ	0	0

In the news

CBS News in 2019

- "latent appetite"

- Hainmueller et al. 2014 discuss conjoint data using potential outcomes framework
 - » (not the only one, but first and most widely cited)
- Causally identifying the average marginal component effect (ACME)
 - » What attributes causally increase or decrease the appeal of a Democratic primary candidate, on average, when varied independently of the other candidate attributes included in the design?
- We can also get conditional ACMEs
 - » not talking about that today

- Hainmueller et al. 2014 discuss conjoint data using potential outcomes framework
 - » (not the only one, but first and most widely cited)
- Causally identifying the average marginal component effect (ACME)
 - » What attributes causally increase or decrease the appeal of a Democratic primary candidate, on average, when varied independently of the other candidate attributes included in the design?
- We can also get conditional ACMEs
 - » not talking about that today

- Hainmueller et al. 2014 discuss conjoint data using potential outcomes framework
 - » (not the only one, but first and most widely cited)
- Causally identifying the average marginal component effect (ACME)
 - » What attributes causally increase or decrease the appeal of a Democratic primary candidate, on average, when varied independently of the other candidate attributes included in the design?
- We can also get conditional ACMEs
 - » not talking about that today

- Hainmueller et al. 2014 discuss conjoint data using potential outcomes framework
 - » (not the only one, but first and most widely cited)
- Causally identifying the average marginal component effect (ACME)
 - » What attributes causally increase or decrease the appeal of a Democratic primary candidate, on average, when varied independently of the other candidate attributes included in the design?
- We can also get conditional ACMEs
 - » not talking about that today

- Hainmueller et al. 2014 discuss conjoint data using potential outcomes framework
 - » (not the only one, but first and most widely cited)
- Causally identifying the average marginal component effect (ACME)
 - » What attributes causally increase or decrease the appeal of a Democratic primary candidate, on average, when varied independently of the other candidate attributes included in the design?
- We can also get conditional ACMEs
 - » not talking about that today

Example

	CANDIDATE A	CANDIDATE B	
Military Service Experience	Served in the Navy	Did not serve	
Supports Creating Pathway to Citizenship for	Unauthorized immigrants with no criminal record who entered the U.S. as minors	All unauthorized immigrants with no criminal record	
Previous Occupation	Lawyer	Lawyer	
Age	53	45	
Gender	Female	Female	
Race/Ethnicity	White	Hispanic/Latino	
Sexual Orientation	Gay	Straight	
Position on Climate Change	Ban the use of fossil fuels after 2040, substantially reducing economic growth	Impose a tax on using fossil fuels, moderately reducing economic growth	
Supports Government Healthcare for	Only Americans who are older, poor, or disabled	Only Americans who are older, poor, or disabled	
Prior Political Experience	U.S. Senator	No prior political experience	

Typical design

- Randomly assign attributes in the tables, order of attributes within the tables per respondent, and tables to respondents
- Outcomes:
 - » rating of each candidate
 - » choice between candidates

Typical design

- Randomly assign attributes in the tables, order of attributes within the tables per respondent, and tables to respondents
- Outcomes:
 - » rating of each candidate
 - » choice between candidates

Typical design

- Randomly assign attributes in the tables, order of attributes within the tables per respondent, and tables to respondents
- Outcomes:
 - » rating of each candidate
 - » choice between candidates

Typical design

- Randomly assign attributes in the tables, order of attributes within the tables per respondent, and tables to respondents
- Outcomes:
 - » rating of each candidate
 - » choice between candidates

Notation

- respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_l is total number of levels for attribute I

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- L = 8 candidate attributes
- $-D_1=6$ levels for candidate age

- vector T_{ijk} is the *j*th profile in task *k* given to respondent *i*
- board!

Notation

- − respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes

Example

- N = 311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- L = 8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the *j*th profile in task *k* given to respondent *i*» T_{iikl} refers to the *l*th attribute of the profile
- board

Notation

- − respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_l is total number of levels for attribute l

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- -L=8 candidate attributes
- $-D_1=6$ levels for candidate age

- vector T_{ijk} is the jth profile in task k given to respondent i
 - » T_{ijkl} refers to the lth attribute of the profile
- board!

Notation

- respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_l is total number of levels for attribute l

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- -L=8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the jth profile in task k given to respondent i
 - » T_{ijkl} refers to the /th attribute of the profile
- board!

Notation

- respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_I is total number of levels for attribute I

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- L = 8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the jth profile in task k given to respondent i
 - » T_{ijkl} refers to the /th attribute of the profile
- board!

Notation

- − respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_I is total number of levels for attribute I

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- -L=8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the *j*th profile in task k given to respondent i
 - » T_{ijkl} refers to the /th attribute of the profile
- board!

Notation

- respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_I is total number of levels for attribute I

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- L = 8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the jth profile in task k given to respondent i
 - » T_{ijkl} refers to the /th attribute of the profile
- board!

Notation

- respondents $i \in 1, ..., N$
- $-\ K$ choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_l is total number of levels for attribute l

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- L = 8 candidate attributes
- $-D_1=6$ levels for candidate age

- vector T_{ijk} is the jth profile in task k given to respondent i
 - » I_{ijkl} refers to the lth attribute of the profile
- board!

Notation

- respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_l is total number of levels for attribute l

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- -L=8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the jth profile in task k given to respondent i
 - » T_{ijkl} refers to the /th attribute of the profile
- board!

Notation

- respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_l is total number of levels for attribute l

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- -L=8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the *j*th profile in task k given to respondent i
 - » I_{ijkl} refers to the /th attribute of the profile
- board!

Notation

- − respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_l is total number of levels for attribute l

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- -L=8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the *j*th profile in task k given to respondent i
 - » T_{ijkl} refers to the lth attribute of the profile
- board!

Notation

- − respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_I is total number of levels for attribute I

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- -L=8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the jth profile in task k given to respondent i
 - » T_{ijkl} refers to the *l*th attribute of the profile
- board!

Notation

- respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_I is total number of levels for attribute I

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- -L=8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the *j*th profile in task *k* given to respondent *i*
 - » T_{ijkl} refers to the lth attribute of the profile
- board!

Notation

- respondents $i \in 1, ..., N$
- K choice or rating/choice tasks, where she rates/chooses between J profiles, with L discretely valued attributes
 - » D_l is total number of levels for attribute l

Example

- -N=311 respondents
- -K=6 tasks per respondent
- -J=2 profiles in each task
- -L=8 candidate attributes
- $-D_1 = 6$ levels for candidate age

- vector T_{ijk} is the *j*th profile in task *k* given to respondent *i*
 - » T_{ijkl} refers to the lth attribute of the profile
- board!

$Y_{ik}(\bar{\mathbf{t}})$

- J-dimensional vector (i.e., how many profiles)
- outcome given \overline{t} (i.e., the vector of attributes)

Choice outcome

$$-Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [0,1]$$

Rating outcome

$$-Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [1,2,...,5]$$

$Y_{ik}(\bar{\mathbf{t}})$

- *J*-dimensional vector (i.e., how many profiles)
- outcome given $\bar{\mathbf{t}}$ (i.e., the vector of attributes)

Choice outcome

$$- Y_{i=1,j=1,k=1}(\mathbf{\bar{t}}) \in [0,1]$$

Rating outcome

$$-Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [1,2,...,5]$$

$Y_{ik}(\bar{\mathbf{t}})$

- J-dimensional vector (i.e., how many profiles)
- outcome given \bar{t} (i.e., the vector of attributes)

Choice outcome

$$-Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [0,1]$$

Rating outcome

$$-Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [1,2,...,5]$$

$Y_{ik}(\bar{\mathbf{t}})$

- J-dimensional vector (i.e., how many profiles)
- outcome given $\boldsymbol{\bar{t}}$ (i.e., the vector of attributes)

Choice outcome

$$-Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [0,1]$$

Rating outcome

$$-Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [1,2,...,5]$$

$Y_{ik}(\bar{\mathbf{t}})$

- J-dimensional vector (i.e., how many profiles)
- outcome given \bar{t} (i.e., the vector of attributes)

Choice outcome

-
$$Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [0,1]$$

Rating outcome

$$-Y_{i=1,j=1,k=1}(\mathbf{\bar{t}}) \in [1,2,...,5]$$

$Y_{ik}(\bar{\mathbf{t}})$

- *J*-dimensional vector (i.e., how many profiles)
- outcome given \bar{t} (i.e., the vector of attributes)

Choice outcome

-
$$Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [0,1]$$

Rating outcome

$$-Y_{i=1,j=1,k=1}(\overline{\mathbf{t}}) \in [1,2,...,5]$$

$$Y_{ik}(\bar{\mathbf{t}})$$

- J-dimensional vector (i.e., how many profiles)
- outcome given \bar{t} (i.e., the vector of attributes)

Choice outcome

-
$$Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [0,1]$$

Rating outcome

-
$$Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [1,2,...,5]$$

$$Y_{ik}(\bar{\mathbf{t}})$$

- J-dimensional vector (i.e., how many profiles)
- outcome given \bar{t} (i.e., the vector of attributes)

Choice outcome

-
$$Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [0,1]$$

Rating outcome

-
$$Y_{i=1,j=1,k=1}(\bar{\mathbf{t}}) \in [1,2,...,5]$$

To define causal quantities, we have to make assumptions about these potential outcomes

Assumption 1. Stability and no carry over effects

- potential outcomes remain stable across the choice tasks (i.e., early vs. late in the survey)
- treatment in one task doesn't affect response in later task
- overall, important to remember, no task order effects

$$Y_{ik}(\bar{\mathbf{T}}_i) = Y_{ik}(\bar{\mathbf{T}}_i') \text{ if } \mathbf{T}_{ik} = \mathbf{T}'_{ik'}$$

Assumption 1. Stability and no carry over effects

- potential outcomes remain stable across the choice tasks (i.e., early vs. late in the survey)
- treatment in one task doesn't affect response in later task
- overall, important to remember, no task order effects

$$Y_{ik}(\bar{\mathbf{T}}_i) = Y_{ik}(\bar{\mathbf{T}}_i')$$
 if $\mathbf{T}_{ik} = \mathbf{T}'_{ik'}$

Assumption 1. Stability and no carry over effects

- potential outcomes remain stable across the choice tasks (i.e., early vs. late in the survey)
- treatment in one task doesn't affect response in later task
- overall, important to remember, no task order effects

$$Y_{ik}(\mathbf{\bar{T}}_i) = Y_{ik}(\mathbf{\bar{T}}_i')$$
 if $\mathbf{T}_{ik} = \mathbf{T}'_{ik'}$

Assumption 1. Stability and no carry over effects

- potential outcomes remain stable across the choice tasks (i.e., early vs. late in the survey)
- treatment in one task doesn't affect response in later task
- overall, important to remember, no task order effects

$$Y_{ik}(\bar{\mathbf{T}}_i) = Y_{ik}(\bar{\mathbf{T}}_i')$$
 if $\mathbf{T}_{ik} = \mathbf{T}'_{ik'}$

Assumption 1. Stability and no carry over effects

- potential outcomes remain stable across the choice tasks (i.e., early vs. late in the survey)
- treatment in one task doesn't affect response in later task
- overall, important to remember, no task order effects

$$Y_{ik}(\bar{\mathbf{T}}_i) = Y_{ik}(\bar{\mathbf{T}}_i')$$
 if $\mathbf{T}_{ik} = \mathbf{T}'_{ik'}$

Assumption 1. Stability and no carry over effects

- potential outcomes remain stable across the choice tasks (i.e., early vs. late in the survey)
- treatment in one task doesn't affect response in later task
- overall, important to remember, no task order effects

$$Y_{ik}(\bar{\mathbf{T}}_i) = Y_{ik}(\bar{\mathbf{T}}_i')$$
 if $\mathbf{T}_{ik} = \mathbf{T}'_{ik'}$

- Assumption 1 allows us to simply say $Y_{ij}(\mathbf{t})$ because now which task the attribute profile showed up on (k) doesn't matter!
- Practically, we can now **pool data** across all tasks and disregard order.
- Can always test this assumption
 - » If problems, use each respondents' first task only as robustness check.

- Assumption 1 allows us to simply say $Y_{ij}(\mathbf{t})$ because now which task the attribute profile showed up on (k) doesn't matter!
- Practically, we can now **pool data** across all tasks and disregard order.
- Can always test this assumption
 - » If problems, use each respondents' first task only as robustness check.

- Assumption 1 allows us to simply say $Y_{ij}(\mathbf{t})$ because now which task the attribute profile showed up on (k) doesn't matter!
- Practically, we can now **pool data** across all tasks and disregard order.
- Can always test this assumption.
 - » If problems, use each respondents' first task only as robustness check.

- Assumption 1 allows us to simply say $Y_{ij}(\mathbf{t})$ because now which task the attribute profile showed up on (k) doesn't matter!
- Practically, we can now **pool data** across all tasks and disregard order.
- Can always test this assumption.
 - » If problems, use each respondents' first task only as robustness check.

Assumption 2. No profile-order effects

 potential outcomes remain stable even if we shuffle the order of the profiles within a task

$$Y_{ij}(\mathbf{T}_{ik}) = Y_{ij'}(\mathbf{T}'_{ik}) \text{ if } \mathbf{T}_{ijk} = \mathbf{T}'_{ij'k}$$

if it's a different order of profiles (j'), but attribute profile remains the same in the same task $(\bar{\mathbf{T}}_{ik})$, then potential outcomes should be the same

Assumption 2. No profile-order effects

 potential outcomes remain stable even if we shuffle the order of the profiles within a task

$$Y_{ij}(\mathbf{T}_{ik}) = Y_{ij'}(\mathbf{T}'_{ik}) \text{ if } \mathbf{T}_{ijk} = \mathbf{T}'_{ij'k}$$

if it's a different order of profiles (j'), but attribute profile remains the same in the same task $(\bar{\mathbf{T}}_{ik})$, then potential outcomes should be the same

Assumption 2. No profile-order effects

 potential outcomes remain stable even if we shuffle the order of the profiles within a task

$$Y_{ij}(\mathbf{T}_{ik}) = Y_{ij'}(\mathbf{T}'_{ik})$$
 if $\mathbf{T}_{ijk} = \mathbf{T}'_{ij'k}$

if it's a different order of profiles (j'), but attribute profile remains the same in the same task $(\bar{\mathbf{T}}_{ik})$, then potential outcomes should be the same

Assumption 2. No profile-order effects

 potential outcomes remain stable even if we shuffle the order of the profiles within a task

$$Y_{ij}(\mathbf{T}_{ik}) = Y_{ij'}(\mathbf{T}'_{ik}) \text{ if } \mathbf{T}_{ijk} = \mathbf{T}'_{ij'k}$$

if it's a different order of profiles (j'), but attribute profile remains the same in the same task $(\bar{\mathbf{T}}_{ik})$, then potential outcomes should be the same

- Assumption 2 allows us to drop j subscript, too.
 - $Y_i(\mathbf{t})$
- Practically, we can now ignore order profile was presented within the task and pool data across profiles
- Can test this assumption
 - » Did first profile get chosen more?

- Assumption 2 allows us to drop *j* subscript, too.
 - $Y_i(\mathbf{t})$
- Practically, we can now ignore order profile was presented within the task and pool data across profiles
- Can test this assumption
 - » Did first profile get chosen more?

- Assumption 2 allows us to drop j subscript, too.
 - $Y_i(\mathbf{t})$
- Practically, we can now ignore order profile was presented within the task and pool data across profiles
- Can test this assumption
 - » Did first profile get chosen more?

- Assumption 2 allows us to drop j subscript, too.
 - $Y_i(\mathbf{t})$
- Practically, we can now ignore order profile was presented within the task and pool data across profiles
- Can test this assumption
 - » Did first profile get chosen more?

- Assumption 2 allows us to drop j subscript, too.
 - $Y_i(\mathbf{t})$
- Practically, we can now ignore order profile was presented within the task and pool data across profiles
- Can test this assumption
 - » Did first profile get chosen more?

Assumption 3. Randomization of the profiles

- potential outcomes are statistically independent of the profiles
- holds under randomization!

$$Y_i(\mathbf{t}) \perp T_{ijkl}$$

potential outcomes are fixed pre-treatment

Assumption 3. Randomization of the profiles

- potential outcomes are statistically independent of the profiles
- holds under randomization!

$$Y_i(\mathbf{t}) \perp T_{ijkl}$$

potential outcomes are fixed pre-treatment

Assumption 3. Randomization of the profiles

- potential outcomes are statistically independent of the profiles
- holds under randomization!

$$Y_i(\mathbf{t}) \perp T_{ijkl}$$

potential outcomes are fixed pre-treatment

Assumption 3. Randomization of the profiles

- potential outcomes are statistically independent of the profiles
- holds under randomization!

$$Y_i(\mathbf{t}) \perp T_{ijkl}$$

potential outcomes are fixed pre-treatment

Unit treatment effect

– difference in potential outcome between pair of profile sets t_0 and t_1

$$\pi(\mathbf{t}_1,\mathbf{t}_0)=Y_i(\mathbf{t}_1)-Y_i(\mathbf{t}_0)$$

- effect between counterfactual profiles
- fundamental problem of causal inference actually not the problem here
- instead:
 - » not enough data
 - » not actually what we're interested in

Unit treatment effect

– difference in potential outcome between pair of profile sets $\boldsymbol{t_0}$ and $\boldsymbol{t_1}$

$$\pi(\mathbf{t}_1,\mathbf{t}_0)=Y_i(\mathbf{t}_1)-Y_i(\mathbf{t}_0)$$

- effect between counterfactual profiles
- fundamental problem of causal inference actually not the problem here
- instead:
 - » not enough data
 - » not actually what we're interested in

Unit treatment effect

– difference in potential outcome between pair of profile sets $\boldsymbol{t_0}$ and $\boldsymbol{t_1}$

$$\pi(\mathbf{t_1},\mathbf{t_0}) = Y_i(\mathbf{t_1}) - Y_i(\mathbf{t_0})$$

- effect between counterfactual profiles
- fundamental problem of causal inference actually not the problem here
- instead
 - » not enough data
 - » not actually what we're interested in

Unit treatment effect

– difference in potential outcome between pair of profile sets $\boldsymbol{t_0}$ and $\boldsymbol{t_1}$

$$\pi(\mathbf{t_1},\mathbf{t_0}) = Y_i(\mathbf{t_1}) - Y_i(\mathbf{t_0})$$

- effect between counterfactual profiles
- fundamental problem of causal inference actually not the problem here
- instead
 - » not enough data
 - » not actually what we're interested in

Unit treatment effect

– difference in potential outcome between pair of profile sets $\boldsymbol{t_0}$ and $\boldsymbol{t_1}$

$$\pi(\mathbf{t_1},\mathbf{t_0})=Y_i(\mathbf{t_1})-Y_i(\mathbf{t_0})$$

- effect between counterfactual profiles
- fundamental problem of causal inference actually not the problem here
- instead
 - » not enough data
 - » not actually what we're interested in

Unit treatment effect

– difference in potential outcome between pair of profile sets $\boldsymbol{t_0}$ and $\boldsymbol{t_1}$

$$\pi(\mathbf{t_1},\mathbf{t_0}) = Y_i(\mathbf{t_1}) - Y_i(\mathbf{t_0})$$

- effect between counterfactual profiles
- fundamental problem of causal inference actually not the problem here
- instead
 - » not enough data
 - » not actually what we're interested in

Unit treatment effect

– difference in potential outcome between pair of profile sets $\boldsymbol{t_0}$ and $\boldsymbol{t_1}$

$$\pi(\mathbf{t_1},\mathbf{t_0}) = Y_i(\mathbf{t_1}) - Y_i(\mathbf{t_0})$$

- effect between counterfactual profiles
- fundamental problem of causal inference actually not the problem here
- instead:
 - » not enough data
 - » not actually what we're interested in

Unit treatment effect

– difference in potential outcome between pair of profile sets $\boldsymbol{t_0}$ and $\boldsymbol{t_1}$

$$\pi(\mathbf{t_1},\mathbf{t_0}) = Y_i(\mathbf{t_1}) - Y_i(\mathbf{t_0})$$

- effect between counterfactual profiles
- fundamental problem of causal inference actually not the problem here
- instead:
 - » not enough data
 - » not actually what we're interested in

Unit treatment effect

– difference in potential outcome between pair of profile sets $\boldsymbol{t_0}$ and $\boldsymbol{t_1}$

$$\pi(\mathbf{t_1},\mathbf{t_0}) = Y_i(\mathbf{t_1}) - Y_i(\mathbf{t_0})$$

- effect between counterfactual profiles
- fundamental problem of causal inference actually not the problem here
- instead:
 - » not enough data
 - » not actually what we're interested in

$$\hat{\pi}(\mathbf{t}_1, \mathbf{t}_0) = E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_1] - E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_0]$$

- this looks familiar
- difference in probability of choosing profile with attributes \mathbf{t}_1 vs \mathbf{t}_0
- basic quantity, but not easy/useful to interpret
 - » what does it mean to compare t_1 to t_0 ?
 - » interpret almost like a normal factorial experiment to answer very, very specific questions
 - » don't know what attribute is moving the needle. .
- but, easy to estimate with DIM (just need a huge sample to do it!)

$$\hat{\pi}(\mathbf{t}_1, \mathbf{t}_0) = E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_1] - E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_0]$$

- this looks familiar!
- difference in probability of choosing profile with attributes $\mathbf{t_1}$ vs $\mathbf{t_0}$
- basic quantity, but not easy/useful to interpret
 - » what does it mean to compare t_1 to t_0 ?
 - » interpret almost like a normal factorial experiment to answer very, very specific questions
 - » don't know what attribute is moving the needle. .
- but, easy to estimate with DIM (just need a huge sample to do it!)

$$\hat{\pi}(\mathbf{t}_1, \mathbf{t}_0) = E[Y_{ik}|\mathbf{T}_{ik} = \mathbf{t}_1] - E[Y_{ik}|\mathbf{T}_{ik} = \mathbf{t}_0]$$

- this looks familiar!
- difference in probability of choosing profile with attributes \boldsymbol{t}_1 vs \boldsymbol{t}_0
- basic quantity, but not easy/useful to interpret
 - » what does it mean to compare t_1 to t_0 ?
 - » interpret almost like a normal factorial experiment to answer very, very specific questions
 - » don't know what attribute is moving the needle. .
- but, easy to estimate with DIM (just need a huge sample to do it!)

$$\hat{\pi}(\mathbf{t}_1, \mathbf{t}_0) = E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_1] - E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_0]$$

- this looks familiar!
- difference in probability of choosing profile with attributes \boldsymbol{t}_1 vs \boldsymbol{t}_0
- basic quantity, but not easy/useful to interpret
 - » what does it mean to compare t_1 to t_0 ?
 - » interpret almost like a normal factorial experiment to answer very, very specific questions
 - » don't know what attribute is moving the needle. .
- but, easy to estimate with DIM (just need a huge sample to do it!)

$$\hat{\pi}(\mathbf{t}_1, \mathbf{t}_0) = E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_1] - E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_0]$$

- this looks familiar!
- difference in probability of choosing profile with attributes \boldsymbol{t}_1 vs \boldsymbol{t}_0
- basic quantity, but not easy/useful to interpret
 - » what does it mean to compare t_1 to t_0 ?
 - » interpret almost like a normal factorial experiment to answer very, very specific questions
 - » don't know what attribute is moving the needle. .
- but, easy to estimate with DIM (just need a huge sample to do it!)

$$\hat{\pi}(\mathbf{t}_1, \mathbf{t}_0) = E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_1] - E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_0]$$

- this looks familiar!
- difference in probability of choosing profile with attributes $\mathbf{t_1}$ vs $\mathbf{t_0}$
- basic quantity, but not easy/useful to interpret
 - » what does it mean to compare t_1 to t_0 ?
 - » interpret almost like a normal factorial experiment to answer very, very specific questions
 - » don't know what attribute is moving the needle...
- but, easy to estimate with DIM (just need a huge sample to do it!)

$$\hat{\pi}(\mathbf{t}_1, \mathbf{t}_0) = E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_1] - E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_0]$$

- this looks familiar!
- difference in probability of choosing profile with attributes $\mathbf{t_1}$ vs $\mathbf{t_0}$
- basic quantity, but not easy/useful to interpret
 - » what does it mean to compare t_1 to t_0 ?
 - » interpret almost like a normal factorial experiment to answer very, very specific questions
 - » don't know what attribute is moving the needle...
- but, easy to estimate with DIM (just need a huge sample to do it!)

$$\hat{\pi}(\mathbf{t}_1, \mathbf{t}_0) = E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_1] - E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_0]$$

- this looks familiar!
- difference in probability of choosing profile with attributes $\mathbf{t_1}$ vs $\mathbf{t_0}$
- basic quantity, but not easy/useful to interpret
 - » what does it mean to compare t_1 to t_0 ?
 - » interpret almost like a normal factorial experiment to answer very, very specific questions
 - » don't know what attribute is moving the needle...
- but, easy to estimate with DIM (just need a huge sample to do it!)

$$\hat{\pi}(\mathbf{t}_1, \mathbf{t}_0) = E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_1] - E[Y_{ik} | \mathbf{T}_{ik} = \mathbf{t}_0]$$

- this looks familiar!
- difference in probability of choosing profile with attributes $\mathbf{t_1}$ vs $\mathbf{t_0}$
- basic quantity, but not easy/useful to interpret
 - » what does it mean to compare t_1 to t_0 ?
 - » interpret almost like a normal factorial experiment to answer very, very specific questions
 - » don't know what attribute is moving the needle...
- but, easy to estimate with DIM (just need a huge sample to do it!)

- looks at effect of an individual attribute (vs. comparing entire profiles)
- Ex: does l = highexperience vs. l = lowexperience change probability that profile j is chosen?
 - » effect of / likely depends on values of **other attribute**s
 - » goal is to summarize overall effect of / across other attributes

- looks at effect of an individual attribute (vs. comparing entire profiles)
- Ex: does l = highexperience vs. l = lowexperience change probability that profile j is chosen?
 - » effect of / likely depends on values of other attributes
 - » goal is to summarize overall effect of / across other attributes

- looks at effect of an individual attribute (vs. comparing entire profiles)
- Ex: does I = highexperience vs. I = lowexperience change probability that profile j is chosen?
 - » effect of / likely depends on values of other attributes
 - » goal is to summarize overall effect of / across other attributes

- looks at effect of an individual attribute (vs. comparing entire profiles)
- Ex: does I = highexperience vs. I = lowexperience change probability that profile j is chosen?
 - » effect of / likely depends on values of **other attributes**
 - » goal is to summarize overall effect of / across other attributes

- looks at effect of an individual attribute (vs. comparing entire profiles)
- Ex: does I = highexperience vs. I = lowexperience change probability that profile j is chosen?
 - » effect of / likely depends on values of **other attributes**
 - » goal is to summarize **overall effect** of *I* across other attributes

- looks at effect of an individual attribute (vs. comparing entire profiles)
- Ex: does I = highexperience vs. I = lowexperience change probability that profile j is chosen?
 - » effect of / likely depends on values of **other attributes**
 - » goal is to summarize **overall effect** of *I* across other attributes

ACME estimand

$$\begin{split} \bar{\pi}_{l}(t_{1},t_{0},p(\boldsymbol{t})) &\equiv \mathbb{E}\Big[Y_{i}(t_{1},T_{ijk[-l]},T_{i[-j]k}) - Y_{i}(t_{0},T_{ijk[-l]},T_{i[-j]k})| \big(T_{\bar{y}k[-l]},T_{i[-j]k}\big) \in \widetilde{\mathcal{T}}\Big] \\ &= \sum_{(i,t)\in\widetilde{\mathcal{T}}} \mathbb{E}\Big[Y_{i}(t_{1},t,t) - Y_{i}(t_{0},t,t)| \big(T_{ijk[-l]},T_{i[-j]k}\big) \in \widetilde{\mathcal{T}}\Big] \\ &\times p\Big(T_{\bar{y}k[-l]} = t,T_{i[-j]k} = t| \big(T_{ijk[-l]},T_{i[-j]k}\big) \in \widetilde{\mathcal{T}}\Big), \end{split}$$

- whoa
- marginal effect of attribute / averaged over the joint distribution of the remaining attributes

$$\begin{split} \bar{\pi}_{l}(t_{1},t_{0},p(\boldsymbol{t})) &\equiv \mathbb{E}\Big[Y_{i}(t_{1},T_{ijk[-l]},T_{i[-j]k}) - Y_{i}(t_{0},T_{ijk[-l]},T_{i[-j]k})| \big(T_{ijk[-l]},T_{i[-j]k}\big) \in \widetilde{T}\Big] \\ &= \sum_{(i,t)\in\widetilde{T}} \mathbb{E}\Big[Y_{i}(t_{1},t,t) - Y_{i}(t_{0},t,t)| \big(T_{ijk[-l]},T_{i[-j]k}\big) \in \widetilde{T}\Big] \\ &\times p\Big(T_{ijk[-l]} = t,T_{i[-j]k} = t| \big(T_{ijk[-l]},T_{i[-j]k}\big) \in \widetilde{T}\Big), \end{split}$$

– whoa!

 marginal effect of attribute / averaged over the joint distribution of the remaining attributes

$$\begin{split} \bar{\pi}_{l}(t_{1},t_{0},p(\boldsymbol{t})) &\equiv \mathbb{E}\Big[Y_{i}(t_{1},T_{ijk[-l]},T_{i[-j]k}) - Y_{i}(t_{0},T_{ijk[-l]},T_{i[-j]k})| \big(T_{\bar{y}k[-l]},T_{i[-j]k}\big) \in \widetilde{\mathcal{T}}\Big] \\ &= \sum_{(i,t)\in\widetilde{\mathcal{T}}} \mathbb{E}\Big[Y_{i}(t_{1},t,t) - Y_{i}(t_{0},t,t)| \big(T_{ijk[-l]},T_{i[-j]k}\big) \in \widetilde{\mathcal{T}}\Big] \\ &\times p\Big(T_{\bar{y}k[-l]} = t,T_{i[-j]k} = t| \big(T_{ijk[-l]},T_{i[-j]k}\big) \in \widetilde{\mathcal{T}}\Big), \end{split}$$

- whoa!
- marginal effect of attribute / averaged over the joint distribution of the remaining attributes

$$\begin{split} \bar{\pi}_{l}(t_{1},t_{0},p(\boldsymbol{t})) &\equiv \mathbb{E}\Big[Y_{i}(t_{1},T_{ijk[-l]},T_{i[-j]k}) - Y_{i}(t_{0},T_{ijk[-l]},T_{i[-j]k})| \big(T_{\bar{y}k[-l]},T_{i[-j]k}\big) \in \widetilde{\mathcal{T}}\Big] \\ &= \sum_{(i,t)\in\widetilde{\mathcal{T}}} \mathbb{E}\Big[Y_{i}(t_{1},t,t) - Y_{i}(t_{0},t,t)| \big(T_{ijk[-l]},T_{i[-j]k}\big) \in \widetilde{\mathcal{T}}\Big] \\ &\times p\Big(T_{\bar{y}k[-l]} = t,T_{i[-j]k} = t| \big(T_{ijk[-l]},T_{i[-j]k}\big) \in \widetilde{\mathcal{T}}\Big), \end{split}$$

- whoa!
- marginal effect of attribute / averaged over the joint distribution of the remaining attributes

Intuition:

- prob candidate chosen when l = rich prob identical candidate chosen but l = poor, and chosen over the same other candidate
- repeat calculating the rich vs poor effect, but with different candidate and opponent attributes
- ACME estimand = weighted average of these differences according to joint distribution of attribute combinations

ACME summarizes the average difference in [candidate] preference between two levels of one attribute, averaging over all of the levels of the other attributes

Intuition:

- prob candidate chosen when l = rich prob identical candidate chosen but l = poor, and chosen over the same other candidate
- repeat calculating the rich vs poor effect, but with different candidate and opponent attributes
- ACME estimand = weighted average of these differences according to joint distribution of attribute combinations

ACME summarizes the average difference in [candidate] preference between two levels of one attribute, averaging over all of the levels of the other attributes

Intuition:

- prob candidate chosen when l = rich prob identical candidate chosen but l = poor, and chosen over the same other candidate
- repeat calculating the rich vs poor effect, but with different candidate and opponent attributes
- ACME estimand = weighted average of these differences according to joint distribution of attribute combinations

ACME summarizes the average difference in [candidate] preference between two levels of one attribute, averaging over all of the levels of the other attributes

Intuition:

- prob candidate chosen when l = rich prob identical candidate chosen but l = poor, and chosen over the same other candidate
- repeat calculating the rich vs poor effect, but with different candidate and opponent attributes
- ACME estimand = weighted average of these differences according to joint distribution of attribute combinations

ACME summarizes the average difference in [candidate] preference between two levels of one attribute, averaging over all of the levels of the other attributes

Intuition:

- prob candidate chosen when l = rich prob identical candidate chosen but l = poor, and chosen over the same other candidate
- repeat calculating the rich vs poor effect, but with different candidate and opponent attributes
- ACME estimand = weighted average of these differences according to joint distribution of attribute combinations

ACME summarizes the average difference in [candidate] preference between two levels of one attribute, averaging over all of the levels of the other attributes

Intuition:

- prob candidate chosen when l = rich prob identical candidate chosen but l = poor, and chosen over the same other candidate
- repeat calculating the rich vs poor effect, but with different candidate and opponent attributes
- ACME estimand = weighted average of these differences according to joint distribution of attribute combinations

ACME summarizes the average difference in [candidate] preference between two levels of one attribute, averaging over all of the levels of the other attributes

Estimation

- Since we randomly assign attributes, we can estimate the AMCE!
- Linear regression works! But, I'll give examples of other tools too.

Estimation

- Since we randomly assign attributes, we can estimate the AMCE!
- Linear regression works! But, I'll give examples of other tools too.

- 1. Which attributes to include in the profiles
- Which levels to include in each attribute (and in what proportion)
- How many profiles subjects are asked to rate at a time
- 4. How many sets of profiles subjects are asked to rate in total

- 1. Which attributes to include in the profiles
- Which levels to include in each attribute (and in what proportion)
- How many profiles subjects are asked to rate at a time
- 4. How many sets of profiles subjects are asked to rate in total

- 1. Which attributes to include in the profiles
- Which levels to include in each attribute (and in what proportion)
- How many profiles subjects are asked to rate at a time
- 4. How many sets of profiles subjects are asked to rate in total

- 1. Which attributes to include in the profiles
- Which levels to include in each attribute (and in what proportion)
- How many profiles subjects are asked to rate at a time
- 4. How many sets of profiles subjects are asked to rate in total

- 1. Which attributes to include in the profiles
- Which levels to include in each attribute (and in what proportion)
- 3. How many profiles subjects are asked to rate at a time
- 4. How many sets of profiles subjects are asked to rate in total

- 1. Which attributes to include in the profiles
- Which levels to include in each attribute (and in what proportion)
- 3. How many profiles subjects are asked to rate at a time
- 4. How many sets of profiles subjects are asked to rate in total

- omitting important attribute (i.e., partisanship) → subjects infer it from other attributes (i.e., race)
 - » effect estimates of race then biased
- too many attributes → satisficing (i.e., good enough)
 - » poor data quality because respondents only use some of the info

- omitting important attribute (i.e., partisanship) \rightarrow subjects infer it from other attributes (i.e., race)
 - » effect estimates of race then biased
- too many attributes → satisficing (i.e., good enough)
 - » poor data quality because respondents only use some of the info

- omitting important attribute (i.e., partisanship) \rightarrow subjects infer it from other attributes (i.e., race)
 - » effect estimates of race then biased
- too many attributes ightarrow satisficing (i.e., good enough)
 - » poor data quality because respondents only use some of the info

- omitting important attribute (i.e., partisanship) \rightarrow subjects infer it from other attributes (i.e., race)
 - » effect estimates of race then biased
- too many attributes → satisficing (i.e., good enough)
 - » poor data quality because respondents only use some of the info

- omitting important attribute (i.e., partisanship) \rightarrow subjects infer it from other attributes (i.e., race)
 - » effect estimates of race then biased
- too many attributes \rightarrow satisficing (i.e., good enough)
 - » poor data quality because respondents only use some of the info

2. Which levels to include in each attribute (and in what proportion)

- More and more levels \rightarrow less precision in estimates
- Ask yourself, is adding this level worth it if I'm no longer powered to detect an effect...

2. Which levels to include in each attribute (and in what proportion)

- More and more levels → less precision in estimates
- Ask yourself, is adding this level worth it if I'm no longer powered to detect an effect...

- Hopefully this one is clear given your research question
 - » Candidate choice $\rightarrow 2$
 - » Refugee choice $\rightarrow 1...$
 - » Product choice \rightarrow 4,5,6?

- Hopefully this one is clear given your research question
 - » Candidate choice $\rightarrow 2$
 - » Refugee choice $\rightarrow 1...$
 - » Product choice \rightarrow 4,5,6?

- Hopefully this one is clear given your research question
 - » Candidate choice $\rightarrow 2$
 - » Refugee choice $\rightarrow 1...$
 - » Product choice \rightarrow 4,5,6?

- Hopefully this one is clear given your research question
 - » Candidate choice $\rightarrow 2$
 - » Refugee choice $\rightarrow 1...$
 - » Product choice \rightarrow 4,5,6?

- Hopefully this one is clear given your research question
 - » Candidate choice $\rightarrow 2$
 - » Refugee choice $\rightarrow 1...$
 - » Product choice \rightarrow 4,5,6?

budget!

- recall our assumptions...
- can always discard later tasks if data quality erodes and assumptions violated
 - » Bansak et al (2019) say data quality actually holds up well under many tasks

- budget!
- recall our assumptions. . .
- can always discard later tasks if data quality erodes and assumptions violated
 - » Bansak et al (2019) say data quality actually holds up well under many tasks

- budget!
- recall our assumptions. . .
- can always discard later tasks if data quality erodes and assumptions violated
 - » Bansak et al (2019) say data quality actually holds up well under many tasks

- budget!
- recall our assumptions. . .
- can always discard later tasks if data quality erodes and assumptions violated
 - » Bansak et al (2019) say data quality actually holds up well under many tasks

Summary

Conjoint is great because:

- increased realism of treatment; external validity
- test lots of causal hypotheses in one study
- easily compare relative effects of attributes
- assuage social desirability bias concerns

Summary

Conjoint is great because:

- increased realism of treatment; external validity
- test lots of causal hypotheses in one study
- easily compare relative effects of attributes
- assuage social desirability bias concerns

Summary

Conjoint is great because:

- increased realism of treatment; external validity
- test lots of causal hypotheses in one study
- easily compare relative effects of attributes
- assuage social desirability bias concerns

Summary

Conjoint is great because:

- increased realism of treatment; external validity
- test lots of causal hypotheses in one study
- easily compare relative effects of attributes
- assuage social desirability bias concerns

Summary

Conjoint is great because:

- increased realism of treatment; external validity
- test lots of causal hypotheses in one study
- easily compare relative effects of attributes
- assuage social desirability bias concerns

- DeclareDesign teams call conjoint (and audit and list) experiments descriptive
- Their argument
 - » randomization does not mean our inquiry is a causal one
 - » randomization can still allows us to learn about descriptive inquiries
 - » conjoints measure preferences over candidates
 - are we asking a causal question?
 - » value of AMCE and interpretation changes when you change the attributes, levels, and randomization distribution

- DeclareDesign teams call conjoint (and audit and list) experiments descriptive
- Their argument
 - » randomization does not mean our inquiry is a causal one
 - » randomization can still allows us to learn about descriptive inquiries
 - » conjoints measure preferences over candidates
 - are we asking a causal question?
 - » value of AMCE and interpretation changes when you change the attributes, levels, and randomization distribution

- DeclareDesign teams call conjoint (and audit and list) experiments descriptive
- Their argument
 - » randomization does not mean our inquiry is a causal one
 - » randomization can still allows us to learn about descriptive inquiries
 - » conjoints measure preferences over candidates
 - are we asking a causal question?
 - » value of AMCE and interpretation changes when you change the attributes, levels, and randomization distribution

- DeclareDesign teams call conjoint (and audit and list) experiments descriptive
- Their argument
 - » randomization does not mean our inquiry is a causal one
 - » randomization can still allows us to learn about descriptive inquiries
 - » conjoints measure preferences over candidates
 - are we asking a causal question?
 - » value of AMCE and interpretation changes when you change the attributes, levels, and randomization distribution

- DeclareDesign teams call conjoint (and audit and list) experiments descriptive
- Their argument
 - » randomization does not mean our **inquiry** is a causal one
 - » randomization can still allows us to learn about descriptive inquiries
 - » conjoints measure preferences over candidates
 - are we asking a causal question?
 - » value of AMCE and interpretation changes when you change the attributes, levels, and randomization distribution

- DeclareDesign teams call conjoint (and audit and list) experiments descriptive
- Their argument
 - » randomization does not mean our **inquiry** is a causal one
 - » randomization can still allows us to learn about descriptive inquiries
 - » conjoints measure preferences over candidates
 - are we asking a causal question?
 - » value of AMCE and interpretation changes when you change the attributes, levels, and randomization distribution

- DeclareDesign teams call conjoint (and audit and list) experiments descriptive
- Their argument
 - » randomization does not mean our inquiry is a causal one
 - » randomization can still allows us to learn about descriptive inquiries
 - » conjoints measure preferences over candidates
 - are we asking a causal question?
 - » value of AMCE and interpretation changes when you change the attributes, levels, and randomization distribution

Resources

DeclareDesign

- book chapter draft
- need code here to run it yourself, thanks Alejandra!

Two R packages:

- 1. cregg
- 2. cjoint

Mediation

- Variables that "transmit the influence of an intervention"
- Ex: Limes reduced scurvy amongst 18th Century seafarers!
 - » treatment was limes, but mediating ingredient was vitamin (
- Ex: Learning about outgroup is thought to be a mediator of intergroup contact's effects on prejudice
 - » treatment is contact, but mediating "ingredient" is increased knowledge
- Learning about mediators helps us understand the causal processes
 - » we're after the mechanisms underlying our interventions

- Variables that "transmit the influence of an intervention"
- Ex: Limes reduced scurvy amongst 18th Century seafarers!
 - » treatment was limes, but mediating ingredient was vitamin C
- Ex: Learning about outgroup is thought to be a mediator of intergroup contact's effects on prejudice
 - » treatment is contact, but mediating "ingredient" is increased knowledge
- Learning about mediators helps us understand the causa processes
 - » we're after the mechanisms underlying our intervention:

- Variables that "transmit the influence of an intervention"
- Ex: Limes reduced scurvy amongst 18th Century seafarers!
 - » treatment was limes, but mediating ingredient was vitamin C
- Ex: Learning about outgroup is thought to be a mediator of intergroup contact's effects on prejudice
 - » treatment is contact, but mediating "ingredient" is increased knowledge
- Learning about mediators helps us understand the causal processes
 - » we're after the mechanisms underlying our interventions

- Variables that "transmit the influence of an intervention"
- Ex: Limes reduced scurvy amongst 18th Century seafarers!
 - » treatment was limes, but mediating ingredient was vitamin C
- Ex: Learning about outgroup is thought to be a mediator of intergroup contact's effects on prejudice
 - » treatment is contact, but mediating "ingredient" is increased knowledge
- Learning about mediators helps us understand the causal processes
 - » we're after the mechanisms underlying our interventions

- Variables that "transmit the influence of an intervention"
- Ex: Limes reduced scurvy amongst 18th Century seafarers!
 - » treatment was limes, but mediating ingredient was vitamin C
- Ex: Learning about outgroup is thought to be a mediator of intergroup contact's effects on prejudice
 - » treatment is contact, but mediating "ingredient" is increased knowledge
- Learning about mediators helps us understand the causal processes
 - » we're after the mechanisms underlying our interventions

- Variables that "transmit the influence of an intervention"
- Ex: Limes reduced scurvy amongst 18th Century seafarers!
 - » treatment was limes, but mediating ingredient was vitamin C
- Ex: Learning about outgroup is thought to be a mediator of intergroup contact's effects on prejudice
 - » treatment is contact, but mediating "ingredient" is increased knowledge
- Learning about mediators helps us understand the causal processes
 - » we're after the mechanisms underlying our interventions

- Variables that "transmit the influence of an intervention"
- Ex: Limes reduced scurvy amongst 18th Century seafarers!
 - » treatment was limes, but mediating ingredient was vitamin C
- Ex: Learning about outgroup is thought to be a mediator of intergroup contact's effects on prejudice
 - » treatment is contact, but mediating "ingredient" is increased knowledge
- Learning about mediators helps us understand the causal processes
 - » we're after the mechanisms underlying our interventions

- Variables that "transmit the influence of an intervention"
- Ex: Limes reduced scurvy amongst 18th Century seafarers!
 - » treatment was limes, but mediating ingredient was vitamin C
- Ex: Learning about outgroup is thought to be a mediator of intergroup contact's effects on prejudice
 - » treatment is contact, but mediating "ingredient" is increased knowledge
- Learning about mediators helps us understand the causal processes
 - » we're after the mechanisms underlying our interventions

- whether Z_i induced a change in mediating variable M_i pause
- and, whether a Z_i -induced change in M_i produced a change in Y_i
- Board

- whether Z_i induced a change in mediating variable M_i pause
- and, whether a Z_i -induced change in M_i produced a change in Y_i
- Board

- whether Z_i induced a change in mediating variable M_i pause
- and, whether a Z_i -induced change in M_i produced a change in Y_i
- Board

- whether Z_i induced a change in mediating variable M_i pause
- and, whether a Z_i -induced change in M_i produced a change in Y_i
- Board

- Need to manipulate M_i !

- "Implicit mediation analysis"
 - Design in which you add and subtract different "ingredients" from the treatment
 - » Allows us to
 - 1. get unbias causal estimates
 - 2. explore what ingredients cause a treatment to work

- Need to manipulate M_i !
- "Implicit mediation analysis"
 - » Design in which you add and subtract different "ingredients" from the treatment
 - » Allows us to
 - get unbias causal estimates
 - explore what ingredients cause a treatment to work

- Need to manipulate M_i !
- "Implicit mediation analysis"
 - » Design in which you add and subtract different "ingredients" from the treatment
 - » Allows us to:
 - get unbias causal estimates
 - explore what ingredients cause a treatment to work

- Need to manipulate M_i !
- "Implicit mediation analysis"
 - » Design in which you add and subtract different "ingredients" from the treatment
 - » Allows us to:
 - get unbias causal estimates
 - explore what ingredients cause a treatment to work

- Need to manipulate M_i !
- "Implicit mediation analysis"
 - » Design in which you add and subtract different "ingredients" from the treatment
 - » Allows us to:
 - 1. get unbias causal estimates
 - explore what ingredients cause a treatment to work

- Need to manipulate M_i !
- "Implicit mediation analysis"
 - » Design in which you add and subtract different "ingredients" from the treatment
 - » Allows us to:
 - 1. get unbias causal estimates
 - 2. explore what ingredients cause a treatment to work

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election						
	Experimental Group					
	Control	Civic Duty	Hawthorne	Self	Neighbors	
Percentage Voting N of Individuals	29.7% 191,243	31.5% 38,218	32.2% 38,204	34.5% 38,218	37.8% 38,201	

- control: no mailer

civic duty: encouraged to vote

hawthorne: encourage to vote + monitored

- self: encouraged to vote + monitored + shown past voting

 neighbors: encouraged to vote + monitored + shown past voting + shown others' past voting

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election						
Experimental Group						
	Control	Civic Duty	Hawthorne	Self	Neighbors	
Percentage Voting N of Individuals	29.7% 191,243	31.5% 38,218	32.2% 38,204	34.5% 38,218	37.8% 38,201	

- control: no mailer

- civic duty: encouraged to vote

hawthorne: encourage to vote + monitored

self: encouraged to vote + monitored + shown past voting

 neighbors: encouraged to vote + monitored + shown past voting + shown others' past voting

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election						
	Experimental Group					
	Control	Civic Duty	Hawthorne	Self	Neighbors	
Percentage Voting N of Individuals	29.7% 191,243	31.5% 38,218	32.2% 38,204	34.5% 38,218	37.8% 38,201	

- control: no mailer

civic duty: encouraged to vote

hawthorne: encourage to vote + monitored

self: encouraged to vote + monitored + shown past voting

 neighbors: encouraged to vote + monitored + shown past voting + shown others' past voting

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election						
	Experimental Group					
	Control	Civic Duty	Hawthorne	Self	Neighbors	
Percentage Voting N of Individuals	29.7% 191,243	31.5% 38,218	32.2% 38,204	34.5% 38,218	37.8% 38,201	

- control: no mailer

civic duty: encouraged to vote

hawthorne: encourage to vote + monitored

self: encouraged to vote + monitored + shown past voting

 neighbors: encouraged to vote + monitored + shown past voting + shown others' past voting

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election						
	Experimental Group					
	Control	Civic Duty	Hawthorne	Self	Neighbors	
Percentage Voting N of Individuals	29.7% 191,243	31.5% 38,218	32.2% 38,204	34.5% 38,218	37.8% 38,201	

- control: no mailer

civic duty: encouraged to vote

hawthorne: encourage to vote + monitored

self: encouraged to vote + monitored + shown past voting

 neighbors: encouraged to vote + monitored + shown past voting + shown others' past voting

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election						
	Experimental Group					
	Control	Civic Duty	Hawthorne	Self	Neighbors	
Percentage Voting N of Individuals	29.7% 191,243	31.5% 38,218	32.2% 38,204	34.5% 38,218	37.8% 38,201	

- control: no mailer

civic duty: encouraged to vote

hawthorne: encourage to vote + monitored

self: encouraged to vote + monitored + shown past voting

 neighbors: encouraged to vote + monitored + shown past voting + shown others' past voting