Introducción

Capítulo 1

Definiciones

Una gráfica dirigida, o digráfica, D consiste de un conjunto de vértices no vacío y de un conjunto de parejas ordenadas de vértices distintos llamadas flechas. Usaremos la siguiente notación:

Sea D = (V, A) una digráfica. V denota el conjunto de vértices y A el de flechas de D.

Figura 1.1 Una digráfica.

El orden de D es el número de vértices en D, es decir, la cardinalidad de D. Por ejemplo, el orden de la digráfica en la figura 1.1 es 6.

Para una flecha (u, v), decimos que u es in-vecino de v, o que u es ex-vecino de v. Si (u, v) es una flecha también decimos que v absorbe a u, y que u domina a v.

Sea D una digráfica. Una flecha $(u,v) \in A(D)$ es simétrica si existe $(v,u) \in A(D)$. Si todas las flechas de una digráfica D son simétricas, decimos que D es simétrica. Si ninguna flecha de D es simétrica entonces decimos que D es asimétrica. Vamos a utilizar la notación $[u,v] \in A(D)$ para denotar que $(u,v) \in A(D)$ o que $(v,u) \in A(D)$.

Figura 1.2 Una digráfica simétrica.

Sea D = (V, A) una digráfica. Sea $K \subset V$. Decimos que K es un conjunto independiente de V, si para cualesquiera $u, v \in K$ no existe ni (u, v) ni $(v, u) \in A$. Si cada vértice que no está en K es absorbido por un vértice en K decimos que K es un conjunto absorbente de vértices. Si K es independiente y dominante decimos que K es un núcleo de D.

Dada una digráfica D, una subdigráfica de D es la digráfica que se forma si tomamos un subconjunto de vértices de D y tomamos todas las flechas que tienen como vértices iniciales o terminales uno de esos vértices.

Por ejemplo, la digráfica de la Figura 1.3 es subdigráfica de la de la Figura 1.2 . Una digráfica inducida por un conjunto de vértices $V' \subseteq V$, denotada por D[V'], es la digráfica que tiene como conjunto de vértices a V' y que contiene a todos las flechas que contiene A sobre ese conjunto de vértices.

Una gráfica es completa si para todo par de vértices u, v existe $(u, v) \in A(D)$. La gráfica subyacente de una digráfica D = (V, A), es la gráfica que tiene como conjunto de vértices a V, y u y v son adyacentes, si y solo si, $(u, v) \in A(D)$ o

Figura 1.3 Una subgráfica inducida por un conjunto de vértices.

 $(v, u) \in A(D)$.

Una digráfica es semicompleta si su gráfica subyacente es completa.

Figura 1.4 Un torneo.

Un torneo es una gráfica dirigida obtenida al asignar una dirección a cada arista en una gráfica completa.

Una digráfica D es m-coloreable si las flechas de D son coloreadas por m colores. Una trayectoria dirigida en D es una secuencia alternante $W = x_1 a_1 x_2 a_2 \dots x_{k-1} a_{k-1} x_k$ de vértices x_i y flechas a_i en D tales que para todo i, a_i sale de x_i y llega a x_{i+1} .

A una trayectoria de u a v le podemos asignar el nombre de uv-trayectoria. Una uv-trayectoria la vamos a denotar también por $u \leadsto v$

Si en una uv-trayectoria todas las flechas tienen el mismo color decimos que es una trayectoria monocromática. Vamos a representar una uv-trayectoria monocromática como $u\leadsto_m v$

Sea D una digráfica. Decimos que C_k es un cíclo en D si C_k es una trayectoria que inicia y termina en el mismo vértice. $C_k = (u_0, u_1, \dots, u_{k-1})$.

Vamos a denotar al cíclo de tres vértices por C_3 y al torneo transtivo de tres vértices por TT_3 . Los vamos a llamar indistintamente triángulos.

Una digráfica es quasi-transitiva si siempre que existen vértices distintos u, v, w

Figura 1.5 Una digráfica 3-coloreable.

Figura 1.6 Una x_1y_1 trayectoria monocromática en una digráfica 3-coloreada.

tales que $(u, v), (v, w) \in A(D)$, entonces $\exists (u, w) \text{ or } (w, u)$

Proposición 1.1. Sea D una digráfica cuasi-transitiva. Supongamos que $P = (x_1, x_2, ..., x_k)$ es una trayectoria dirigida minimal. Entonces D[V(P)] es una digráfica semicompleta $y(x_j, x_i) \in A(D)$ para todo j > i + 1, excepto cuando k = 4.

En ese caso la flecha entre x_1 y x_k puede no existir.

Demostración. Por inducción.

Supongamos que k = 5, $x_1 \rightsquigarrow x_5$ es una trayectoria de longitud 4. Tenemos en la digráfica las trayectorias de longitud 2 (x_1, x_2x_3) , (x_2, x_3, x_4) , (x_3, x_4, x_5) . Recordemos que D es cuasi-transitiva y que, como la trayectoria $x_1 \rightsquigarrow x_5$ es minimal, no podemos tener una trayectoria más corta. Entonces (x_3, x_1) , (x_4, x_2) , $(x_5, x_2) \in A(D)$. (Supongamos que, por ejemplo, $(x_1, x_3) \in A(D)$, entonces tenemos una trayectoria más corta de x_1 a x_5 : (x_1, x_3, x_4, x_5) , una contradicción). Ahora Garantizaremos la existencia de estas flechas en la digráfica, las que sus subíndices van de mayor a menor.

La trayectoria de longitud 2 (x_5, x_3, x_1) da lugar a la flecha $(x_5, x_1) \in A(D)$, no puede

Figura 1.7 Una x_1y_1 trayectoria monocromática en una digráfica 3-coloreada.

ser en el sentido opuesto porque tendríamos la trayectoria de longitud 1 (x_1, x_5) . Análogamente, la trayectoria (x_5, x_1, x_2) da lugar a la flecha (x_5, x_2) , la (x_5, x_2, x_3) a la flecha (x_5, x_3) y finalmente (x_4, x_5, x_1) induce $(x_4, x_1) \in A(D)$.

Por lo tanto el resultado es válido para k=5.

Supongamos que el resultado se cumple para una digráfica con $k \geq 5$ vértices.

Supongamos ahora que P es una x_1x_{k+1} trayectoria minimal, con k+1 vértices.

Sabemos que la subdigráfica inducida por los primero k vértices de P es semi-completa debido a la hipótesis de inducción, y que $(x_j, x_i) \in A(D)$ para todo j > i + 1.

 x_k es adyacente a x_{k+1} . Como la trayectoria $x_1 \rightsquigarrow x_{k+1}$ es minimal, y D es cuasi-transitiva, la trayectoria (x_{k-1}, x_k, x_{k+1}) induce la flecha $(x_{k+1}, x_{k-1}) \in A(D)$. Ahora se forma la trayectoria (x_{k+1}, x_{k-1}, x_1) y por lo tanto $(x_{k+1}, x_1) \in A(D)$. Ahora

que x_{k+1} es invecino a x_1 , existe una trayectoria de x_{k+1} a x_2 pasando por x_1 , entonces $(x_{k+1}, x_2) \in A(D)$, análogamente (x_{k+1}) es invecino a cada uno de los x_i , con i < k. Es así como garantizamos la existencia de las flechas que nos faltaban para que la digráfica inducida por P sea semicompleta.

Supongamos que k = 4, $P = (x_1, u, v, x_2)$ la trayectoria. Supongamos que existen las flechas (u, x_2) y $(v, x_1) \in A(D)$. Notemos que no existe $[x_1, x_2] \in A(D)$, por lo que la gráfica subyacente de D no es completa.

Figura 1.8 Una x_1y_1 trayectoria monocromática en una digráfica 3-coloreada.

Proposición 1.2. Si una digráfica cuasi-transitiva D tiene una trayectoria dirigida $x \rightsquigarrow y$ pero $(x,y) \notin A(D)$, entonces o bien $(y,x) \in A(D)$ o existen vértices $u,v \in V(D) \setminus \{x,y\}$ tales que (x,u,v,y) y (y,u,v,x) son trayectorias dirigidas en D.

Demostración. Supongamos que D tiene una trayectoria xy-trayectoria. Supongamos también que (x, y) no es flecha en D. Si (y, x) no está en A(D), la digráfica inducida por $x \rightsquigarrow y$ no es semicompletaa. Entonces, por la Proposición semicompleta, k = 4, osea, tenemos que la trayectoria es de longitud 3 y existen vértices $v, u \in V(D) \setminus \{x, y\}$ tales que (x, u, v, y) y (y, u, v, x) son dos trayectorias dirigidas en D.

Ver Figura.

Proposición 1.3. Si una digráfica cuasi-transitiva D tiene una trayectoria $x \rightsquigarrow y$ pero no existe $y \rightsquigarrow x \in D$, entonces $(x,y) \in A(D)$.

Figura 1.9 Una x_1y_1 trayectoria monocromática en una digráfica 3-coloreada.

Demostración. Supongamos que existe una trayectoria monocromática en D $x \rightsquigarrow y$ pero no existe ninguna trayectoria de regreso $y \rightsquigarrow_x$. Tomemos una xy-trayectoria minimal P' (P' puede ser P). Como no hay yx-trayectoria, entonces P' no tiene orden 4. Por lo tanto, D[P] es semicompleta, luego $[x, y] \in A(D)$, pero como $(y, x) \notin A(D)$, entonces $(x, y) \in A(D)$. (de hecho P' = (x, y)).

Decimos que un ciclo dirigido $C_k = (u_0, u_1, \dots, u_k, u_0)$ de D es cuasi-transitivo en el borde si para cada $i = (0, 1, 2, \dots, k)$ existe la flecha $(u_i, u_{i+2}) \in A(D)$ o la flecha $(u_{i+2}, u_i) \in A(D)$.

Una digráfica D es fuertemente conexa si para todo par de vértices distintos x y y en D, existen las xy-trayectoria y yx-trayectoria en D.

Una componente conexa de una digráfica D es una subdigráfica inducida maximal de D que es fuertemente conexa.

Figura 1.10 C_1, C_2 y C_3 son componentes conexas de D

Capítulo 2

Generalizaciones de núcleos en digráficas m-coloreadas con clases cromáticas cuasi-transitivas

2.1. La cerradura de una digráfica

Sea D = (V, A) una digráfica m-coloreada. Definamos por $\mathcal{C}(D)$ a la digráfica cerradura de D. $\mathcal{C}(D)$ es tal que su conjunto de vértices es el mismo que el de D y tal que su conjunto de flechas, además de contener las mismas flecahs que D, por cada trayectoria monocromática en D existe una flecha en $\mathcal{C}(D)$.

Lema 2.1. Sea D una digráfica m-coloreada. Si cada clase cromática es cuasi-transitiva y sea C_k un ciclo dirigido de longitud mínima en $Asym(\mathcal{C}(D))$. Existe un vértice u_i en C_k en donde el ciclo tiene cambio de color en las flechas de C_k en algún vértice u_i para algún i

Demostración. Supongamos que el ciclo es monocromático. La u_1u_k -trayectoria monocromática $M = (u_1, u_2, \ldots, u_{k-1}, u_k)$ está en D ya que todas sus aristas están en C_k . Así que la flecha (u_1, u_k) está en C(D). Sin embargo, la flecha (u_k, u_1) en C_k está en D. Por lo tanto la flecha entre u_k y u_1 es simétrica. Luego, (u_k, u_1) no es flecha de C_k , lo que contradice nuestra hipótesis inicial.

Lema 2.2. Sea D una digráfica m-coloreada. Supongamos que cada clase cromática en D es cuasi-transitiva. Si C_k es un ciclo dirigido en $Asym(\mathcal{C}(D))$, entonces C_k es un ciclo dirigido en Asym(D).

Figura 2.1 C_k es un ciclo monocromático D

Demostración. Sea $C_k = (x_1, x_2, \dots, x_{k-1})$ un ciclo dirigido asimétrico en la cerradura de D. Debido al resultado probado en el lema 2.1, sabemos que existe al menos una flecha en C_k que sea de distinto color que las demás. Supongamos que la flecha en donde C_k cambia de color es $a = (x_i, x_{i+1})$. El caso en el que todas las flechas de C_k están en D no necesita explicación, así que supongamos que existe una flecha a en C_k que no es flecha de D. Si a no es flecha de D, debe existir en D una $x_i x_{i+1}$ -trayectoria monocromática. Recordemos que esta flecha es asimétrica ya que C_k es un ciclo asimétrico. Sea P la $x_i x_{i+1}$ -trayectoria monocromática en D que da

Figura 2.2 C_k está en D

lugar a la existencia de a en $\mathcal{C}(D)$. Supongamos que P es minimal. Por hipótesis,

cada clase cromática en D es cuasi-transitiva, y como P es monocromática, podemos utilizar el resultado de la Proposición 1.1. Notemos que, aunque a es una flecha en C(D), hemos supuesto que a no es una flecha de D. Así que descartamos el caso en el que la gráfica inducida de P es semi-completa, ya que por ser C_k un ciclo asimétrico, y a una flecha en C_k , es imposible que exista la flecha $a' = (x_{i+1}, x_i)$ en D, porque existiría en C(D), haciendo simétrica a a. Entonces el orden de P debe ser 4. Deben

Figura 2.3 C_k está en D

existir, dos vértices v_1, v_2 , distintos de x_i y x_{i+1} en D, tales que (x_{i+1}, v, u, x_i) es una trayectoria monocromática del mismo color que P. La trayectoria (x_{i+1}, v_2, v_1, x_i) de longitud 2 está en D, así que existe en C(D) la flecha $a' = (x_{i+1}, x_i)$. Esto hace a la flecha a, que pertenece al ciclo asimétrico C_k , simétrica, lo cual es imposible.

Por lo tanto, no es posible que exista una flecha en C_k que no esté en D como queríamos probar.

2.2. Núcleos por trayectorias monocromáticas

El concepto de núcleo de una digráfica se definió en el capítulo 1. Esta definición utiliza los conceptos de dominación e independencia de un subconjunto de vértices de una digráfica. Podemos hacer la siguiente generalización por trayectorias monocromáticas:

Sea D=(V,A) una digráfica. Sea $K\subset V$. Decimos que K es un conjunto independiente por trayectorias monocromáticas de V, si para cualesquiera $u,v\in K$ no existe ninguna trayectoria entre uv-trayectoria monocromática en D. Decimos

GENERALIZACIONES DE NÚCLEOS EN DIGRÁFICAS M-COLOREADAS CON CLASES CROMÁTICAS CUASI-TRANSITIVAS

que un vértice v domina a un vértice x por trayectorias monocromáticas si existe una xv-trayectoria monocromática en D.

Si para cada vértice x en D que no está en K existe un vértice v en K tal que v domina a x por trayectorias monocromáticas, decimos que K es un conjunto dominante por trayectorias monocromáticas de V. Si K es independiente por trayectorias monocromáticas y dominante por trayectorias monocromáticas decimos que K es un núcleo de D.

Teorema 2.3. Si cada ciclo dirigido de una digráfica D tiene una flecha simétrica, entonces D es kernel-pefecta.

Lema 2.4. K es un conjunto independiente en C(D) si y sólo si K es un conjunto independiente por trayectorias monocromáticas en D.

Demostración. Sean u y v dos vértices en K. Supongamos que K es un conjunto independiente en $\mathcal{C}(D)$ y que P una uv-trayectoria monocromática en D. Si el orden de P es 1, osea, (u,v) está en D, entonces lo está en $\mathcal{C}(D)$, pero esto es imposible debido a la independencia de K. Si P es una trayectoria monocromática de orden mayor a 1, tiene que existir una flecha (u,v) en $\mathcal{C}(D)$ otra vez contradiciendo la independencia de K. Por lo tanto K es independiente por trayectorias monocromáticas en $\mathcal{C}(D)$.

Ahora supongamos que K es independiente por trayectorias monocromáticas en D y que (u,v) es una flecha en $\mathcal{C}(D)$. Entonces (u,v) es una flecha en D (recordemos que una flecha es una trayectoria monocromática de longitud1), o bien, existe una uv-trayectoria monocromática, de orden mayor a 1, en D. contradiciendo la independencia por trayectorias monocromáticas de K. Por lo tanto K es independiente en D.

Lema 2.5. K es un conjunto dominante en C(D) si y sólo si K es un conjunto dominante por trayectorias monocromáticas en D.

Demostración. Sean x un vértice en D que no esté en K. Supongamos que K es un conjunto dominante en $\mathcal{C}(D)$. Existe un vértice v en K tal que la flecha (v,x) está en $\mathcal{C}(D)$. v domina a x por trayectorias monocromáticas: si (v,x) fuera flecha de D, sería una trayectoria monocromática de longitud 1. Si (x,v) no fuera flecha de D, existiría una xv-trayectoria monocromática en D.

Ahora supongamos que K es un conjunto dominante por trayectorias monocromáticas en D. Existe un vértice v en K tal que existe una vx-trayectoria

monocromática en D. Entonces existe la flecha (v, x) en C(D), y por lo tanto v domina a x.

Teorema 2.6. K es un núcleo en C(D) si y sólo si K es un núcleo por trayectorias monocromáticas en D.

Demostración. De los Lemas 2.4 y 2.5 se deduce este resultado

2.3. Resultados

Lema 2.7. Sea D una digráfica m-coloreada sin triángulos policromáticos tal que cada ciclo es cuasi-transitivo en el borde y C_k un ciclo asimétrico dirigido en C(D). Si u_i es un vértice en donde C_k tiene un cambio de color en sus flechas, entonces (u_{i+1}, u_{i-1}) no es flecha de D y (u_{i-1}, u_{i+1}) es flecha de D.

Demostración. Sea $C_k = (u_0, u_1, \dots, u_{k-1}, u_0)$ un ciclo asimétrico en $\mathcal{C}(D)$. Debido al lema 2.1 sabemos que existe un vértice en C_k , digamos u_i , tal que el ciclo cambia de color. Supongamos que las flechas distintas a (u_i, u_{i+1}) en C_k son de color Azul, y la flecha (u_i, u_{i+1}) es de color Rojo.

Figura 2.4 C_k tiene un cambio en el color de sus flechas en un vértice u_i

Notemos que en virtud del lema 2.6, C_k es un ciclo en Asym(D). (u_{i-1}, u_i, u_{i+1}) es una trayectoria monocromática en C_k , que es cuasi-transitivo en el borde por

hipótesis, entonces alguna de las flechas (u_{i-1}, u_{i+1}) o (u_{i+1}, u_{i-1}) está en A(D).

Supongamos que es $a = (u_{i+1}, u_{i-1})$ la flecha en A(D). En D no hay triángulos policromáticos por hipótesis. (u_i, u_{i+1}) es una flecha roja y (u_{i-1}, u_i) es una flecha azul. Si a fuera de color verde, el triángulo $(u_i, u_{i-1}, u_{i+1}, u_i)$ en D tendría sus tres flechas de colores distintos, osea, sería policromático. Por lo tanto, a solo puede estar en la clase cromática Azul o en la clase cromática Roja.

Figura 2.5 La flecha entre u_{i-1} y u_{i+1} es simétrica en D

Figura 2.6 La flecha entre u_{i+1} y u_i es simétrica en D

Supongamos que a es una flecha de la clase cromática Azul. La trayectoria monocromática (u_{i+1}, u_{i-1}, u_i) está en D, así que (u_{i+1}, u_i) está en C(D), ya que todas las clases cromáticas son cuasi-transitivas. Entonces la flecha entre u_i y u_{i+1} es simétrica y por lo tanto (u_i, u_{i+1}) no está en C_k . Esto es una contradicción.

Análogamente, si a fuera una flecha en la clase cromática Roja, y como la trayectoria de longitud 2 monocromática roja (u_{i-1}, u_{i+1}, u_i) está en D, (u_{i-1}, u_i) está en C(D). La flecha entre u_{i-1} y u_i es simétrica y por lo tanto (u_{i-1}, u_i) no está en el ciclo asimétrico C_k . Con esto descartamos también la posibildiad de que a sea una flecha en la clase cromática Roja.

Hemos probado que la flecha en D a no puede ser de color azul ni rojo ni de ningún otro color distinto a estos dos, por lo tanto a no puede estar en D, para futuras referencias notemos que esto no significa que a no pueda estar en C(D). Por lo tanto, $a' = (u_{i-1}, u_{i+1})$ debe estar en D.

Lema 2.8. Sea D una digráfica m-coloreada sin triángulos policromáticos.

Supongamos que cada ciclo C_k en D es cuasi-transitivo en el borde y que cada clase cromática es cuasi-transitiva. Si u_i es un vértice en C_K en donde hay un cambio en el color de las flechas, digamos de rojo a azul, entonces existe una $u_{i+1}u_{i-1}$ -trayectoria monocromática en D que no está ni en la clase cromática Roja ni en la Azul, sino en una clase cromática distinta, digamos la clase cromática Verde.

Demostración. Sea C_k es un ciclo asimétrico de longitud mínima. Probamos en el lema anterior que (u_{i-1}, u_{i+1}) es una flecha en D y por lo tanto es una flecha en C(D). El ciclo $C_{k-1} = (u_0, u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{k-1}, u_k)$ tiene longitud menor que C_k , esto es imposible, porque por hipótesis C_k es un ciclo mínimo en Asym(C(D)).

 u_{k-1} u_0 u_1 u_2 u_{k-2} u_{i+1} u_{i-1}

Figura 2.7 La flecha (u_{i-1}, u_{i+1}) es parte de C_{k-1} en D

Figura 2.8 La flecha entre u_{i+1} y u_i debe ser simétrica en D

Entonces la flecha entre u_{i-1} y u_{i+1} es simétrica en $\mathcal{C}(D)$, y por lo tanto no está en $Asym(\mathcal{C}(D))$. Osea, las flechas a y a' están en $\mathcal{C}(D)$. Como ya probamos que $a = (u_{i+1}, u_{i-1})$ no es una flecha de D, debe existir una $u_{i+1}u_{i-1}$ —trayectoria monocromática en D.

Llamemos P a esta trayectoria. P es del mismo color que (u_{i+1}, u_{i-1}) y tiene que ser distinto de Rojo o Azul:

Si (u_{i+1}, u_{i-1}) fuera Azul, la $u_{i-1}u_i$ -trayectoria Azul se forma en D, y por ende la flecha (u_{i+1}, u_i) está en $\mathcal{C}(D)$, ya que cada clase cromática es cuasi-transitiva. La flecha (u_i, u_{i+1}) también está en $\mathcal{C}(D)$ pues es una flecha de C_k . Por lo tanto la flecha entre u_i y u_{i+1} es simétrica, pero esto es imposible ya que supusimos que (u_i, u_{i+1}) está en C_k , un ciclo asimétrico.

Figura 2.9 Existe una $u_{i-1}u_{i+1}$ -trayectoria monocromática en D

Figura 2.10 Si P es roja, la flecha entre u_i y u_{i+1} es simétrica en $\mathcal{C}(D)$

Figura 2.11 Si P es azul, la flecha entre $(u_{i-1} \text{ y } u_i \text{ es simétrica en } \mathcal{C}(D)$

Si esta flecha fuera Roja, haciendo un análisis similar al anterior, tendríamos la trayectoria monocromática $(u_i, u_{i+1}, \dots, u_{i-1})$ de color Rojo, luego, (u_i, u_{i-1}) es una flecha en $\mathcal{C}(D)$, entonces la flecha entre u_{i-1} y u_i , ambos vértices en C_k , es simétrica en $\mathcal{C}(D)$, lo que contradice la asimetricidad de C_k .

Lema 2.9. Supongamos que D es una digráfica que cumple con las hipótesis de los lemas 2.8 y 2.9. El vértice u_i no forma parte de la $u_{i+1}u_i$ -trayectoria verde en D.

Demostración. Sea P la $u_{i+1}u_i$ -trayectoria en D que existe en virtud del Lema 2.9. Si u_i fuera un vértice v_k de P, la trayectoria $(v_0, v_1, \ldots, v_{k-1}, u_i)$ está en D y está en la clase cromática del Verde. Entonces la flecha (u_{i+1}, u_i) está en C(D). La flecha (u_i, u_{i+1}) no está en C_k , porque es simétrica. Esto es una contradicción. Por lo tanto u_i no es un vértice en P.

Figura 2.12 u_i no es vértice de P

Teorema 2.10. Sea D=(V,F) una digráfica m-coloreada sin triángulos policromáticos. Supongamos que cada ciclo $C_k \in D$ es cuasi-transitivo en el borde y que cada clase cromática es cuasi-transitiva. Entonces

- Existe un vértice u_i en C_k , tal que todas las flechas en el ciclo son de color Azul $y(u_i, u_{i+1})$ es de color Rojo
- (u_{i-1}, u_{i+1}) está en D
- (u_{i+1}, u_{i-1}) no es una flecha en D, (u_{i+1}, u_{i-1}) si una flecha en C(D), y por lo tanto existe P, una $u_{i+1}u_{i-1}$ -trayectoria en D, de color Verde
- \blacksquare u_i no es un vértice de P

Teorema 2.11. Sea D = (V, F) una digráfica m-coloreada sin triángulos policromáticos. Supongamos que cada ciclo C_k en D es cuasi-transitivo en el borde, y que cada clase cromática es cuasi-transitiva. Entonces D tiene un núcleo por trayectorias monocromáticas.

Demostración. Sea $C_k = (u_1, u_2, \dots, u_{k-1}, u_0)$ un ciclo dirigido en $Asym(\mathcal{C}(D))$. Por hipótesis no existen triángulos policromáticos en D, esto evidentemente incluye a los ciclos de longitud 3, siendo así, se cumplen las hipótesis del Teorema 2.5 y podemos afirmar lo siguiente: Supongamos sin pérdida de generalidad que P es de longitud mínima. La clase cromática verde es cuasi-transitiva por hipótesis. La flecha (u_{i-1}, u_{i+1}) no está en la clase cromática del Verde pues D no contiene triángulos policromáticos, recordemos que P es Verde. Se cumplen las hipótesis que nos garantizan en virtud de la Proposición 1.2, que la longitud de la trayectoria debe ser 4 y que existen vértices v_1, v_2 en D distintos a u_{i+1} y a u_{i-1}) tales que las trayectorias dirigidas $(u_{i+1}, v_2, v_1, u_{i-1})$ y $(u_{i-1}, v_1, v_2, u_{i+1})$ están en D. Con estas aristas podemos formar el ciclo $(u_i, u_{i+1}, v_1, v_2, u_{i-1}, u_i)$. Como todos los ciclos en D, es cuasi-trasntivio en el borde por hipótesis, así que debe existir una flecha entre u_i y v_2 en D, como consecuencia de que la trayectoria de longitud dos (u_i, u_{i+1}, v_1) está en D.

Supongamos que (u_i, v_1) es una flecha de D. Si fuera Verde la flecha entre u_{i-1} y u_i estaría en $\mathcal{C}(D)$ contradiciendo la asimetricidad de C_k .

Si esta flecha fuera de un color distinto, tendríamos los triángulos policromáticos (u_i, v_1, u_{i+1}) o (u_i, v_1, u_{i-1}) en D lo cual también contradice nuestras hipótesis.

En resumen, Si C_k fuera un ciclo asimétrico en $\mathcal{C}(D)$, C_k tendría una flecha simétrica, y por lo tanto D sería kernel perfecta y debido al Teorema 2.2, sabemos que D tiene un núcleo por trayectorias monocromáticas.