TUTORIAL 2

- (1) For each of the following functions $f: \mathbb{R} \to \mathbb{R}$, determine whether f is injective and/or surjective. If f is bijective, find a formula for f^{-1} . If f is not bijective, determine nontrivial subsets $S, T \subset \mathbb{R}$ such that the restriction of f to S determines a bijection $S \to T$.
 - (a) f(x) = 3x + 2.
 - (b) $f(x) = \sin x$.
 - (c) $f(x) = e^x$.
 - (d) $f(x) = x^3 1$.
 - (e) $f(x) = x^3 x + 1$.
- (2) Determine which of the following statements are true. Give proofs of the true statements and counterexamples for the false statements.
 - (a) Every increasing function from \mathbb{R} to \mathbb{R} is surjective.
 - (b) Every increasing function from \mathbb{R} to \mathbb{R} is injective.
 - (c) Every injective function from \mathbb{R} to \mathbb{R} is either increasing or decreasing.
 - (d) Every surjective function from \mathbb{R} to \mathbb{R} is unbounded.
 - (e) Every unbounded function from \mathbb{R} to \mathbb{R} is surjective.
- (3) Let A be a finite set with n elements, and let $f: A \to A$ be a function.
 - (a) Prove that f is injective if and only if f is surjective. Is this equivalence true if A is infinite?

1

- (b) How many different functions $f: A \to A$ are there?
- (c) How many different bijections $f: A \to A$ are there?

Just for fun.

(1) For which n and m, is it possible to L-tile an $n \times m$ rectangle?