Combo 10

July 3, 2024

1 Defina, relativo al lenguaje S^{Σ} , "estado"

Un estado es un par

$$(\vec{s}, \vec{\sigma}) = ((s_1, s_2, ...), (\sigma_1, \sigma_2, ...)) \in \omega^{[\mathbf{N}]} \times \Sigma^{*[\mathbf{N}]}.$$

Si $i \geq 1$, entonces diremos que s_i es el contenido o valor de la variable $N\bar{\imath}$ en el estado $(\vec{s}, \vec{\sigma})$ y σ_i es el contenido o valor de la variable $P\bar{\imath}$ en el estado $(\vec{s}, \vec{\sigma})$. Es decir, intuitivamente hablando, un estado es un par de infinituplas que contiene la informacion de que valores tienen alojados las distintas variables.

2 Defina, relativo al lenguaje S^{Σ} , "descripción instantánea"

Una descripcion instantanea es una terna $(i, \vec{s}, \vec{\sigma})$ tal que $(\vec{s}, \vec{\sigma})$ es un estado e $i \in \omega$. Es decir que $\omega \times \omega^{[\mathbf{N}]} \times \Sigma^{*[\mathbf{N}]}$ es el conjunto formado por todas las descripciones instantaneas. Intuitivamente hablando, cuando $i \in \{1, ..., n(\mathcal{P})\}$, la descripcion instantanea $(i, \vec{s}, \vec{\sigma})$ nos dice que las variables estan en el estado $(\vec{s}, \vec{\sigma})$ y que la instruccion que debemos realizar es $I_i^{\mathcal{P}}$.

3 Defina, relativo al lenguaje S^{Σ} , $S_{\mathcal{P}}$

Dado un programa \mathcal{P} definiremos a continuación una función

$$S_{\mathcal{D}}: \omega \times \omega^{[\mathbf{N}]} \times \Sigma^{*[\mathbf{N}]} \to \omega \times \omega^{[\mathbf{N}]} \times \Sigma^{*[\mathbf{N}]}$$

la cual le asignara a una descripcion instantanea $(i, \vec{s}, \vec{\sigma})$ la descripcion instantanea sucesora de $(i, \vec{s}, \vec{\sigma})$ con respecto a \mathcal{P} . Daremos la definicion matematica de $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma})$, segun se den distintos casos posibles:

Caso
$$i \notin \{1, ..., n(\mathcal{P})\}$$
. Entonces $S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i, \vec{s}, \vec{\sigma})$
Caso $Bas(I_i^{\mathcal{P}}) = N\bar{k} \leftarrow N\bar{k} - 1$. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, (s_1, ..., s_{k-1}, s_k - 1, s_{k+1}, ...), \vec{\sigma})$$

Caso
$$Bas(I_i^{\mathcal{P}}) = N\bar{k} \leftarrow N\bar{k} + 1$$
. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, (s_1, ..., s_{k-1}, s_k + 1, s_{k+1}, ...), \vec{\sigma})$$

Caso $Bas(I_i^{\mathcal{P}}) = N\bar{k} \leftarrow N\bar{n}$. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, (s_1, ..., s_{k-1}, s_n, s_{k+1}, ...), \vec{\sigma})$$

Caso $Bas(I_i^{\mathcal{P}}) = N\bar{k} \leftarrow 0$. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, (s_1, ..., s_{k-1}, 0, s_{k+1}, ...), \vec{\sigma})$$

Caso $Bas(I_i^{\mathcal{P}}) = \text{IF N}\bar{k} \neq 0$ GOTO L \bar{m} . Entonces tenemos dos subcasos. Subcaso a. El valor de N \bar{k} en $(\vec{s}, \vec{\sigma})$ es 0. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, \vec{\sigma})$$

Subcaso b. El valor de $N\bar{k}$ en $(\vec{s}, \vec{\sigma})$ es no nulo. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l : I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$$

Caso $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow {}^{\frown}P\bar{k}$. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i + 1, \vec{s}, (\sigma_1, ..., \sigma_{k-1}, ^{\sim} \sigma_k, \sigma_{k+1}, ...))$$

Caso $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow P\bar{k}.a.$ Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i + 1, \vec{s}, (\sigma_1, ..., \sigma_{k-1}, \sigma_k a, \sigma_{k+1}, ...))$$

Caso $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow P\bar{n}$. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i + 1, \vec{s}, (\sigma_1, ..., \sigma_{k-1}, \sigma_n, \sigma_{k+1}, ...))$$

Caso $Bas(I_i^{\mathcal{P}}) = P\bar{k} \leftarrow \varepsilon$. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i + 1, \vec{s}, (\sigma_1, ..., \sigma_{k-1}, \varepsilon, \sigma_{k+1}, ...))$$

Caso $Bas(I_i^{\mathcal{P}})=$ IF P\$\bar{k}\$ BEGINS \$a\$ GOTO L\$\bar{m}\$. Entonces tenemos dos subcasos.

Subcaso a. El valor de $P\bar{k}$ en $(\vec{s}, \vec{\sigma})$ comiensa con a. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l : I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$$

Subcaso b. El valor de $P\bar{k}$ en $(\vec{s}, \vec{\sigma})$ no comiensa con a. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, \vec{\sigma})$$

Caso $Bas(I_i^{\mathcal{P}}) = \text{GOTO L}\bar{m}$. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (\min\{l : I_l^{\mathcal{P}} \text{ tiene label } L\bar{m}\}, \vec{s}, \vec{\sigma})$$

Caso $Bas(I_i^{\mathcal{P}}) = SKIP$. Entonces

$$S_{\mathcal{P}}(i, \vec{s}, \vec{\sigma}) = (i+1, \vec{s}, \vec{\sigma})$$

4 Defina, relativo al lenguaje S^{Σ} , "estado obtenido luego de t pasos, partiendo del estado $(\vec{s}, \vec{\sigma})$ "

Diremos que

$$\overbrace{S_{\mathcal{P}}(...S_{\mathcal{P}}(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma}))...)}^{t \text{ veces}}$$

es la descripcion instantanea obtenida luego de
t pasos, partiendo del estado $(\vec{s},\vec{\sigma}).$ Si

$$\overbrace{S_{\mathcal{P}}(...S_{\mathcal{P}}(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma}))...)}^{t \text{ veces}} = (j, \vec{u}, \vec{\eta})$$

diremos que $(\vec{u}, \vec{\eta})$ es el estado obtenido luego de t
 pasos, partiendo del estado $(\vec{s}, \vec{\sigma})$.

5 Defina, relativo al lenguaje S^{Σ} , " \mathcal{P} se detiene (luego de t pasos), partiendo del estado $(\vec{s}, \vec{\sigma})$ "

Cuando la primer coordenada de

$$\overbrace{S_{\mathcal{P}}(...S_{\mathcal{P}}(S_{\mathcal{P}}(1,\vec{s},\vec{\sigma}))...)}^{t \text{ veces}}$$

sea igual a $n(\mathcal{P})+1$, diremos que \mathcal{P} se detiene (luego de t pasos), partiendo desde el estado $(\vec{s}, \vec{\sigma})$.