Experimentelle Übungen I

Versuchsprotokoll M5

Jo-Jo und Kreisel

Hauke Hawighorst, Jörn Sieveneck _{Gruppe 9}

h.hawighorst@uni-muenster.de

j_siev11@uni-muenster.de

betreut von

Betreuer

20. Dezember 2017

Inhaltsverzeichnis

1.	Zusammenfassung	1
2.	Methoden	1
3.	Schlussfolgerung	1
Α.	Anhang	2
	A.1. Verwendete Programme	2
	A.2. Verwendete Gleichungen	2
l it	teratur	3

1. Zusammenfassung

Test 2

$$\frac{M\left(2H_{S}\left(\frac{H_{A}R_{A}^{4}}{2} + \frac{H_{S}^{2}R_{S}^{2}}{12} + \frac{R_{S}^{4}}{4}\right) + 0.5H_{k}\left(R_{a}^{4} - R_{i}^{4}\right)\right)}{H_{A}R_{A}^{2} + H_{k}\left(R_{a}^{2} - R_{i}^{2}\right) + 2R_{S}^{2}R_{i}}$$
Fehler J: $\Delta f = \frac{1}{6}\sqrt{\frac{1}{\left(H_{A}R_{A}^{2} + H_{k}\left(R_{a}^{2} - R_{i}^{2}\right) + 2R_{S}^{2}R_{i}\right)^{4}}\left(4M^{2}R_{S}^{2}\Delta R_{S}^{2}\left(H_{S}\left(H_{S}^{2} + 6R_{S}^{2}\right)\left(H_{A}R_{A}^{2} + H_{k}\left(R_{a}^{2} - R_{i}^{2}\right) + R_{S}^{2}R_{i}\right)^{4}}\right)}$

2. Methoden

3. Schlussfolgerung

A. Anhang

A.1. Verwendete Programme

Die Plots wurden mit Gnuplot oder Python erstellt. Beide Programme nutzten den Levenberg-Marquardt Algorithmus. Die Fehler wurden nach Empfehlung des "GUM", insbesondere mit Hilfe der gaußschen Fehlerfortpflanzung berechnet.

A.2. Verwendete Gleichungen

Standardunsicherheit der Rechteckverteilung u für die Intervallbreite a:

$$u = \frac{a}{2\sqrt{3}} \tag{A.1}$$

Standardunsicherheit der Dreieckverteilung u:

$$u = \frac{a}{2\sqrt{6}} \tag{A.2}$$

Standardunsicherheit des Mittelwertes der Normalverteilung u für die Messwerte x_i und den Mittelwert \bar{x} :

$$u(\bar{x}) = t_p \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)}}$$
 (A.3)

Kominierte Standartunsicherheit der Messgröße $g(x_i)$

$$u(g(x_i)) = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial g}{\partial x_i} u(x_i)\right)^2}$$
(A.4)

Literatur

[1] Markus Donath und Anke Schmidt. Anleitung zu den Experimentellen Übungen zur Optik, Wärmelehre und Atomphysik. Auflage Sommersemester 2015. Westfälische Wilhelms-Universität Münster. Physikalisches Institut, 2015.