

www.ti.com SPRS617A – JANUARY 2012

MPEG4/H.263 Encoder (v01.00.00) on HDVICP2 and Media Controller Based Platform

FEATURES

- MPEG4 Simple Profile levels 0, 0b, 1, 2, 3, 4A,
 5 and 6 supported
- H.263 baseline profile levels 10, 20, 30, 40, 45, 50, 60 and 70 supported
- Only Progressive frame type picture encoding supported
- AC prediction supported
- Half-pel interpolation for motion estimation supported
- Unrestricted motion vector search that allows motion vectors to be outside the frame boundary is supported
- Custom picture format and GOB interval of H.263 is supported
- Resolution upto 2Kx2K supported
- 1MV/4MV per macro block is supported
- Header Extension Code (HEC) encoding support exists
- Supports low latency features sub frame level synchronization for input data and bit-stream. Input Data synchronization is based upon MB row and output data synchronization is based upon slices and fixed length of bit-stream
- Encodes multiple slices per picture by inserting Resync Marker(RM), based on H.241 packetization or fixed number of macroblocks
- Rate control for low delay and storage applications
- Image width and height that are multiple of 16 are supported
- Supports Image height being non-multiple of 16 but multiple of 2

- Supports Image width being non-multiple of 16 but multiple of 2
- Supports user configurable Group of Pictures (GOP) length
- IDR frequency control is supported
- Supports different Intra Refresh mechanism
- · Force I frame feature
- Scene change detection algorithm supported
- The other explicit features that TI's MPEG4/H.263 Encoder provides are:
 - eXpressDSP Digital Media (XDM IVIDENC2) interface compliant
 - Supports booting of HDVICP2
 - Implements Power Optimization schemes
 - Supports YUV420 semi planar color sub-sampling formats
 - Independent of any Operating System
 - Ability to plug in any multimedia frameworks (For example, Codec engine, OpenMax, GStreamer etc.)
 - Multi-channel functionality supported

DESCRIPTION

MPEG4(from ISO/IEC) is a popular video coding algorithm enabling high quality multimedia services on a limited band width network. MPEG4 standard defines several profiles and levels. which specify restrictions on the bit-stream, and hence limits the capabilities needed encode/decode the bit-streams. MPEG4/H.263 Encoder is validated on HDVICP2 and Media Controller Based Platform with Code Composer Studio version 4.2.0.09000 and code generation tools version 4.5.1.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Performance and Memory Summary

This section describes the performance and memory of the MPEG4/H.263 Encoder.

Table 1. Configuration Table

CONFIGURATION	ID .
MPEG4 Simple profile levels 0, 0b, 1, 2, 3, 4, 5 and 6. With 4MV, Rate control, adaptive intra refresh	MPEG4_ENC_001
H.263 baseline profile levels 10, 20, 30, 40, 45 ,50, 60, and 70. With Rate control, adaptive intra refresh	MPEG4_ENC_002
MPEG4 Simple profile levels 0, 0b, 1, 2, 3, 4, 5 and 6. With 4MV, Rate control, adaptive intra refresh, H.241 with packet size of 1200 Bytes	MPEG4_ENC_003

Table 2. Cycles Information – Profiled on DM816x REV-A2 EVM with Code Generation Tools Version 4.5.1

CONFIGURATION ID	HDVICP2 PERFORMANCE STATISTICS (MEGA CYCLES PER SECOND) ⁽¹⁾					
CONFIGURATION ID	TEST DESCRIPTION (2)	AVERAGE ⁽³⁾	PEAK ⁽⁴⁾			
	mobile_p352x288_30fps_420nv12_300fr.yuv, YUV420/CIF @ 1Mbps @ 30 frames per second	18.36	18.5			
MDEC4 ENC 004	parkrun_p720x480_25fps_420nv12_252fr.yuv, YUV420/D1 @ 2Mbps @ 30 frames per second	44.12	44.9			
MPEG4_ENC_001	parkrun_p1280x720_30fps_420nv12_302fr.yuv, YUV420/720P @ 4Mbps @ 30 frames per second	105.19	105.96			
	catriverbedvipertrain_p1920x1080_24fps_420nv12_60fr.yuv, YUV420/1080p @ 8Mbps @ 30 frames per second	231.09	233.05			
	mobile_p352x288_30fps_420nv12_300fr.yuv, YUV420/CIF @ 1Mbps @ 30 frames per second	19.14	19.27			
MREC4 ENC 002	parkrun_p720x480_25fps_420nv12_252fr.yuv, YUV420/D1 @ 2Mbps @ 30 frames per second	46.89	48.04			
MPEG4_ENC_002	parkrun_p1280x720_30fps_420nv12_302fr.yuv, YUV420/720P @ 4Mbps @ 30 frames per second with	112.41	113.47			
	catriverbedvipertrain_p1920x1080_24fps_420nv12_60fr.yuv, YUV420/1080p @ 8Mbps @ 30 frames per second	236.93	239.47			
	mobile_p352x288_30fps_420nv12_300fr.yuv, YUV420/CIF @ 1Mbps @ 30 frames per second	19.73	23.54			
MPEG4_ENC_003	parkrun_p720x480_25fps_420nv12_252fr.yuv, YUV420/D1 @ 2Mbps @ 30 frames per second	47.96	60.34			
	parkrun_p1280x720_30fps_420nv12_302fr.yuv, YUV420/720P @ 4Mbps @ 30 frames per second with	114.27	115.89			
	catriverbedvipertrain_p1920x1080_24fps_420nv12_60fr.yuv, YUV420/1080p @ 8Mbps @ 30 frames per second	250.38	254.25			

⁽¹⁾ Measured on DM816x REV-A2 EVM having Cortex-A8 @ 1GHz, HDVICP2 @ 533 MHz, Media Controller @ 250 MHz, L3 interconnect @ 500 MHz and DDR2 @ 400 MHz and there could be a variation of around 1-2% in the numbers.

⁽a) Media Controller code is placed in cacheable memory region in DDR.

⁽b) No Latency from system at process call and processing unit as frame (no sub-frame level communications) is assumed.

⁽c) All Luma 2D Video buffers of codec being in TILED_8 Bit Memory and all Chroma 2D Video buffers of codec being in TILED_16 Bit Memory

⁽²⁾ Intra frame period is 0 and 1 slice per picture for Non-H241 configurations, assuming no Latency from system at process call, and processing unit as frame (no sub-frame level communications).

⁽³⁾ It is computed based on worst case cycles having 2 extra input frame buffer.

⁽⁴⁾ It is based on worst case cycles having no extra input frame buffer.

Table 3. Memory Statistics of Media Controller - Generated with Code Generation Tools Version 4.5.1

CONFIGURATION ID RESOL	RESOLUTION	MEMORY STATISTICS ⁽¹⁾					TOTAL		
		PROGRAM DATA MEMORY ⁽²⁾							
		MEMORY	INTERNAL	EXTERNAL			STACK		
					PERSISTENT(3)		CONST		
		TILED8 (numBufs x Width x Height)	TILED16 (numBufs x Width x Height)	TILEDPAGE/R AW(KBytes)	RAW				
MPEG4_ENC_002 (MPEG4_ENC_003 (352x288 (Progressive)	14	0	2x416x352	2x416x208	476	108	16	1069
	720x480 (Progressive)	14	0	2x784x544	2x784x304	1374	108	16	2811
	1280x720 (Progressive)	14	0	2x1344x784	2x1344x424	3492	108	16	6802
	1920x1088 (Progressive)	14	0	2x1984x1152	2x1984x608	7785	108	16	14743
	2048x2048 (Progressive)	14	0	2x2112x2112	2x2112x1088	15527	108	16	28865

- (1) All memory requirements are expressed in kilobytes (1 K-byte = 1024 bytes) and there might be rounding to next interger K-byte. Stack can be kept in internal/external memory, negligible performance impact can be observed in Media Controller cycles if it is placed in external memory
- (2) Codec's request of memory container can be over-ridden by application, adhering to the below rule:
 - (a) TILED PAGE can be overridden by RAW
 - (b) TILED8, TILED16 can be overridden by TILED PAGE, RAW
 - (c) TILED16 can be overridden by TILED8, RAW, TILED PAGE

However, in case of overriding of 2(b) and 2 (c), there can be some performance impact

(3) Persistent memory is instance specific and does not include I/O buffers.

Table 4. Split-up of Media Controller Internal Data Memory Statistics

	DATA MEMORY - INTERNAL (1) SHARED		
CONFIGURATION ID			
	CONSTANTS	SCRATCH	INSTANCE
MPEG4_ENC_001 MPEG4_ENC_002 MPEG4_ENC_003	0	0	0

(1) Internal memory refers to on-chip memory. If the system doesn't have enough internal memory, then external memory can also be used. Memory requirements are expressed in kilobytes.

Notes

- I/O buffers:
 - Input buffer size = 3037. 5 K-bytes (1080p, one YUV420 SP)
 - Output buffer size = 3037.5 K-bytes (for encoding one 1080p frame)
- None of the buffers at input and output level is accessed by Media Controller processor hence the data should be valid in DDR (not in cache)
- Total data memory for N non pre-emptive instances = Constants + Runtime Tables + Scratch + N * (Instance + I/O buffers + Stack)
- Total data memory for N pre-emptive instances = Constants + Runtime Tables + N * (Instance + I/O buffers + Stack + Scratch)
- MAIL BOX FIFO #0 and #1 are used and user numbering for Media Controller as 2 and for HDVICP2 as 3 is assumed
- It is assumed that RTS library from ARM is available in system because few symbols like memcpy, div are
 used in codec
- All constants and Input Output Buffer to encoder is assumed in vDMA addressable space in DDR

References

- ISO/IEC 14496-2:2004, Information technology Coding of audio-visual objects -- Part 2: Visual (Approved in 2004-05-24)
- H.263 ITU-T Standard Video Coding for low bit rate communication
- MPEG4/H.263 Encoder on HDVICP2 and Media Controller based platform User's Guide (Literature Number: SPRUGQ2)

Glossary

Term	Description
Constants	Elements that go into .const memory section
Scratch	Memory space that can be reused across different instances of the algorithm
Shared	Sum of Constants and Scratch
Instance	Persistent-memory that contains persistent information - allocated for each instance of the algorithm

Acronyms

Acronym	Description
AIR	Adaptive Intra Fresh
CIF	Common Intermediate Format
DMA	Direct Memory Access
EVM	Evaluation Module
GOB	Group of Blocks
GOP	Group of Pictures
H241	Packetization scheme based on Bytes encoded
MV	Motion Vector
QCIF	Quarter Common Intermediate Format
QPI	Quarter Pel Interpolation
QVGA	Quarter Video Graphics Array
SQCIF	Sub Quarter Common Intermediate Format
UMV	Unrestricted Motion Vectors
VGA	Video Graphics Array
XDM	eXpressDSP Digital Media