ΜΑΣ026 - Μαθηματικά για Μηχανικούς ΙΙ Εαρινό εξάμηνο 2020

Ασκήσεις 6ου Κεφαλαίου

1. Αποδείξτε ότι η $\phi(x,y)=\tan^{-1}(xy)$ είναι συνάρτηση δυναμικού του πεδίου $F(x,y)=\frac{y}{1+x^2y^2}\imath+\frac{x}{1+x^2y^2}\jmath$.

2. Να βρεθεί η απόκλιση και ο στροβιλισμός του διανυσματικού πεδίου $F(x,y,z) = x^2 \imath - 2\jmath + yzk$.

3. Έστω τα διανυσματικά πεδία $F(x,yz)=2x\imath+\jmath+4yk,$ $G(x,y,z)=x\imath+y\jmath-zk.$ Να υπολογίσετε το $\nabla\cdot(F\times G).$

4. Έστω $F: \mathbb{R}^3 \to \mathbb{R}^3$ ένα δύο φορές παραγωγίσιμο διανυσματικό πεδίο. Ποιες από τις παρακάτω εκφράσεις έχουν νόημα; Αυτές που έχουν, ορίζουν βαθμωτή συνάρτηση ή διανυσματικό πεδίο;

i) $\operatorname{curl}(\operatorname{grad} F)$

ii) grad(curl F)

iii) $\operatorname{div}(\operatorname{grad} F)$

iv) grad(div F)

v) curl(div F)

vi) $\operatorname{div}(\operatorname{curl} F)$

5. Να υπολογιστούν τα παρακάτω ολοκληρώματα.

i)
$$\int_C \frac{1}{1+x} ds$$
, $C: r(t) = ti + \frac{2}{3} t^{3/2} j$ $(0 \le t \le 3)$,

ii)
$$\int_C \frac{x}{1+y^2} ds$$
, $C: x = 1+2t$, $y = t \quad (0 \le t \le 1)$.

6. Να υπολογιστεί το ολοκλήρωμα $\int_C F \cdot dr$, όπου $F(x,y) = 2\imath + 5\jmath$ και C το ευθύγραμμο τμήμα από το (1,-3) στο (4,-3).

7. Να υπολογιστεί το ολοκλήρωμα $\int_C (3x+2y)dx + (2x-y)dy$ στις παρακάτω περιπτώσεις.

- i) C το ευθύγραμμο τμήμα από το (0,0) στο (1,1),
- ii) C το παραβολικό τόξο $y = x^2$ από το (0,0) στο (1,1),
- iii) C η καμπύλη $y=\sin(\pi x/2)$ από το (0,0) στο (1,1),
- iv) C η καμπύλη $x = y^3$ από το (0,0) στο (1,1).

8. Να ελέγξετε αν τα παρακάτω διανυσματικά πεδία είναι συντηρητικά και αν είναι, να βρεθεί η συνάρτηση δυναμικού.

i)
$$F(x,y) = xi + yj$$

ii)
$$F(x,y) = x^2yi + 5xy^2j$$

iii)
$$F(x,y) = (\cos y + y \cos x)i + (\sin x - x \sin y)j$$

9. Υπολογίστε το ολοκλήρωμα $\int\limits_{(2,-2)}^{(-1,0)} 2xy^3 \, dx + 3y^2x^2 \, dy$ αφού πρώτα δείξετε ότι είναι ανεξάρτητο της διαδρομής.

1

10. Έστω το διανυσματικό πεδίο $F = (x^3 - 2xy^3)i - 3x^2y^2j$.

- i) Να δειχθεί ότι το F είναι συντηρητικό πεδίο..
- ii) Να βρεθεί βαθμωτή συνάρτηση ϕ ώστε $F = \nabla \phi$.
- iii) Να υπολογιστεί το ολοκλήρωμα του πεδίου F κατά μήκος της παραμετρικής καμπύλης $x=\cos^3\theta$, $y=\sin^3\theta$, $\theta\in[0,\pi/2]$.
- 11. Να υπολογιστούν τα παρακάτω ολοκληρώματα με χρήση του Θεωρήματος Green.
 - i) $\oint_C y^2 dx + x^2 dy$, C το τετράγωνο με κορυφές (0,0), (1,0), (1,1) και (0,1).
 - ii) $\oint_C (x^2 y) dx + x dy$, C ο κύκλος $x^2 + y^2 = 4$
 - iii) $\oint_C \ln(1+y) \, dx \frac{xy}{1+y} \, dy$, C το τρίγωνο με κορυφές (0,0), (2,0) και (0,4).