CLASSE: PSI 1

Corrigé de l'exercice et problèmes d'algèbre linéaire N°1

Exercice 1 Racine carrée d'une matrice

On désigne par f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par :

$$A = \begin{pmatrix} 8 & 4 & -7 \\ -8 & -4 & 8 \\ 0 & 0 & 1 \end{pmatrix}$$

1.
$$\det(A - \lambda I_3) = \begin{vmatrix} 8 - \lambda & 4 & -7 \\ -8 & -4 - \lambda & 8 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = -\lambda(\lambda - 1)(\lambda - 4).$$

Ainsi, $det(A - \lambda I_3) = 0 \Leftrightarrow \lambda \in \{0, 1, 4\}.$

2. La résolution des systèmes $(A-\lambda I_3)X=0$ pour $\lambda\in\{0,1,4\}$ montre que

$$\ker(f) = \text{Vect}(v_1) \text{ avec } v_1 = (1, -2, 0),$$

$$\ker(f - \mathrm{id}) = \mathrm{Vect}(v_2)$$
 avec $v_2 = (1, 0, 1)$,

$$\ker(f - 4id) = \operatorname{Vect}(v_3)$$
 avec $v_3 = (1, -1, 0)$.

Et on vérifie que la famille (v_1,v_2,v_3) est effectivement une base de \mathbb{R}^3 en montrant qu'elle est libre.

Dans cette base, la matrice D est donnée par : $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

- 3. La formule de changement de base donne : $A=P\times D\times P^{-1}$, et donc $A^m=P\times D^m\times P^{-1}$.
- 4. En utilisant par exemple la méthode du pivot de Gauss, on trouve :

$$P^{-1} = \begin{pmatrix} -1 & -1 & 1\\ 0 & 0 & 1\\ 2 & 1 & -2 \end{pmatrix}.$$

Après calculs, on trouve que la matrice de f^m dans la base canonique est :

PROF: KHALID EL BAKKIOUI 1/10 ☐ +212 661 645600

$$A^{m} = P \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^{m} \end{pmatrix} \times P^{-1} = \begin{pmatrix} 2 \times 4^{m} & 4^{m} & (1-2) \times 4^{m} \\ -2 \times 4^{m} & -4^{m} & 2 \times 4^{m} \\ 0 & 0 & 1 \end{pmatrix}.$$

En particulier, on vérifie que cela redonne A pour m=1.

5. Soit $M=(m_{ij})_{1\leq i,j\leq 3}$ une matrice qui commute avec D. On écrit que MD=DM, ce qui donne $m_{ij}=0$ si $i\neq j$. Donc nécessairement, M est une matrice diagonale. Réciproquement, toute matrice diagonale commute avec D qui est elle-même diagonale.

Finalement, les matrices qui commutent avec D sont les matrices diagonales.

- 6. On a $HD = DH = H^3$, donc H et D commutent.
- 7. D'après les questions 5) et 6), si $H^2=D$, alors H est une matrice diagonale. La condition $H^2=D$ donne également :

$$H = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 2 \end{pmatrix}$$
 (ce qui fournit 4 solutions).

Pour obtenir les matrices solutions dans la base canonique, on effectue un changement de base : les matrices solutions sont données par $P \times H \times P^{-1}$, où H est l'une des 4 solutions précédentes. Après calculs, on obtient à nouveau 4 solutions, qui sont :

$$\pm \begin{pmatrix} 4 & 2 & -3 \\ -4 & -2 & 4 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } \pm \begin{pmatrix} 4 & 2 & -5 \\ -4 & -2 & 4 \\ 0 & 0 & -1 \end{pmatrix}.$$

Problème 1

Partie 1.1 La condition (C1) implique (C2)

Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie n. On suppose que f est échangeur et on se donne donc une décomposition $E=F\oplus G$ dans laquelle F et G sont des sous-espaces vectoriels vérifiant $f(F)\subset G$ et $f(G)\subset F$. On se propose de montrer que f vérifie la condition (C2).

- 1. Si F est nul, alors G=E et $\Im(f)=f(G)\subset F=\{0\}$. f est donc l'endomorphisme nul qui vérifie immédiatement (C2). On fait la même chose si $G=\{0\}$ (travailler alors avec F=E).
 - On suppose dans la suite de cette partie que $F \neq \{0\}$ et $G \neq \{0\}$, et que $\dim F = p$ et $\dim G = q$.
- 2. Puisque $E = F \oplus G$ alors $\dim E = \dim F + \dim G$ donc n = p + q.
- 3. Soient (e_1,\ldots,e_p) une base de F et (e_{p+1},\ldots,e_n) une base de G. Montrons que $B=(e_1,\ldots,e_n)$ est une base de E. Puisque B est de cardinal $n=\dim E$ il suffit de montrer qu'elle est libre. Pour cela soit $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$ tels que $\sum_{i=1}^n\lambda_ie_i=0$. Donc $\sum_{i=1}^p\lambda_ie_i\in\mathbb{K}$

PROF: KHALID EL BAKKIOUI 2/10 ☐ +212 661 645600

CLASSE: PSI 1

 $F = -\sum_{i=p+1}^{n} \lambda_i e_i \in G$ ce qui implique que les vecteurs $\sum_{i=1}^{p} \lambda_i e_i$ et $\sum_{i=p+1}^{n} \lambda_i e_i$ sont tous les deux dans $F \cap G = \{0\}$ (puisque F et G sont supplémentaires).

Par suite $\sum_{i=1}^{p} \lambda_i e_i = \sum_{i=p+1}^{n} \lambda_i e_i = 0$.

Or (e_1, \ldots, e_p) et (e_{p+1}, \ldots, e_n) sont libres donc $\lambda_1 = \cdots = \lambda_n = 0$.

Autrement : Tout élément x s'écrit sous la forme $x=x_1+x_2$ avec $x_1\in F$ et $x_2\in G$ qui s'écrivent à leur tour dans les bases de F et G sous les formes $x_1=\sum_{i=1}^p\lambda_ie_i$ et $x_2=\sum_{i=p+1}^n\lambda_ie_i$ donc $x=\sum_{i=1}^n\lambda_ie_i$ ce qui assure que la famille est génératrice minimale donc base de E.

- 4. $f(F) \subset G$ indique qu'il y a un bloc de 0 en haut à gauche puisque $\forall j=1,\ldots,p$; $f(e_j)=\sum_{i=p+1}^n\lambda_{ij}e_i$.
 - $f(G) \subset F$ indique qu'il y a un bloc de 0 en bas à droite puisque $\forall j=p+1,\ldots,n$; $f(e_j)=\sum_{i=1}^p \lambda_{ij}e_i$.

Finalement $\operatorname{Mat}_B(f) = \begin{pmatrix} 0_p & B \\ A & 0_q \end{pmatrix}$ avec $A \in \mathcal{M}_{q,p}(\mathbb{C})$ et $B \in \mathcal{M}_{p,q}(\mathbb{C})$.

- 5. $\operatorname{Tr}(f) = \operatorname{Tr}\begin{pmatrix} 0_p & B \\ A & 0_q \end{pmatrix} = \operatorname{Tr}(0_p) + \operatorname{Tr}(0_q) = 0.$
- 6. Soient $A \in \mathcal{M}_{q,p}(\mathbb{C})$ et $B \in \mathcal{M}_{p,q}(\mathbb{C})$. On considère dans $\mathcal{M}_n(\mathbb{C})$ la matrice $M = \begin{pmatrix} 0_p & B \\ A & 0_q \end{pmatrix}$.

Un calcul par blocs montre que $\begin{pmatrix} 0_p & B \\ 0_{q,p} & 0_q \end{pmatrix}^2 = 0_n$ et de même $\begin{pmatrix} 0_p & 0_{p,q} \\ A & 0_q \end{pmatrix}^2 = 0_n$.

M est somme de deux matrices de carré nul.

7. Soit u et v les endomorphismes de E tels que $\operatorname{Mat}_B(u) = \begin{pmatrix} 0_p & 0_{p,q} \\ A & 0_q \end{pmatrix}$ et $\operatorname{Mat}_B(v) = \begin{pmatrix} 0_p & B \\ 0_{q,p} & 0_q \end{pmatrix}$ alors u et v sont de carré nul et vérifient f = u + v.

Partie 1.2 La condition (C2) implique (C1)

Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie n. Dans cette partie, on suppose qu'il existe deux endomorphismes u et v de E tels que f=u+v et $u^2=v^2=0$.

- 1. Si $x \in \Im(u)$, il existe $y \in E$ tel que x = u(y) et donc $u(x) = u^2(y) = 0$. Ainsi $x \in \ker(u)$. Par théorème du rang, $\dim(E) = \dim(\ker(u)) + \dim(\Im(u)) \le 2\dim(\ker(u))$. On a donc $\Im(u) \subset \ker(u)$ et $\dim(\ker(u)) \ge \dim(E)/2$. u et v jouent le même rôle donc $\Im(v) \subset \ker(v)$ et $\dim(\ker(v)) \ge \dim(E)/2$.
- 2. Dans cette question on suppose que *f* est un automorphisme.

(a) Soit $x \in \ker(u) \cap \ker(v)$. On a f(x) = u(x) + v(x) = 0 et comme f est injective x = 0.

Ceci montre que $ker(u) \cap ker(v) = \{0\}.$

D'autre part $\dim \ker(u) \oplus \ker(v) = \dim \ker(u) + \dim \ker(v) \ge \dim(E)/2 + \dim(E)/2 = \dim E$ donc $E = \ker(u) \oplus \ker(v)$.

De plus $\Im(u) \subset \ker(u)$ (car $u^2 = 0$) et $\Im(v) \subset \ker(v)$ (car $v^2 = 0$). $\ker(u) \cap \ker(v) = \{0\}$ entraı̂ne ainsi $\Im(u) \cap \Im(v) = \{0\}$.

Mais on a aussi $\forall x \in E$, $x = f(f^{-1}(x)) = u(f^{-1}(x)) + v(f^{-1}(x)) \in \Im(u) + \Im(v)$ et donc $E = \Im(u) + \Im(v)$ et finalement $E = \Im(u) \oplus \Im(v)$.

Si l'une des inclusions $\Im(u) \subset \ker(u)$ ou $\Im(v) \subset \ker(v)$ était stricte, on aurait $\dim(E) = \dim(\Im(u)) + \dim(\Im(v)) < \dim(\ker(u)) + \dim(\ker(v)) = \dim(E)$ ce qui est une contradiction. Les inclusions sont donc des égalités.

 $\Im(u) = \ker(u)$ et $\Im(v) = \ker(v)$.

- (b) On a $f(\ker(u)) \subset u(\ker(u)) + v(\ker(u)) = v(\ker(u)) \subset \Im(v) = \ker(v)$ et de même $f(\ker(v)) \subset \ker(u)$. Comme $\ker(u)$ et $\ker(v)$ sont supplémentaires, f est échangeur.
- 3. Posons $N_k = \ker(f^k)$ et $I_k = \Im(f^k)$ pour tout $k \in \mathbb{N}$.
 - (a) Montrons que la suite $(N_k)_{k\in\mathbb{N}}$ est croissante :

Soit $k \in \mathbb{N}$. Si $x \in N_k = \ker(f^k)$ alors $f^{k+1}(x) = f(f^k(x)) = f(0) = 0$ et donc $x \in \ker(f^{k+1}) = N_{k+1}$. Ainsi $N_k \subset N_{k+1}$ et $(N_k)_{k \in \mathbb{N}}$ croît pour l'inclusion.

Montrons que la suite $(I_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion :

Soit $k \in \mathbb{N}$. Si $y \in I_{k+1} = \Im(f^{k+1})$ alors il existe $x \in E$ tel que $y = f^{k+1}(x)$ et donc $y = f^k(f(x)) \in \Im(f^k) = I_k$. Ainsi $I_{k+1} \subset I_k$ et $(I_k)_{k \in \mathbb{N}}$ décroît pour l'inclusion.

(b) La suite de terme général $d_k=\dim(N_k)$ est donc aussi croissante. Or, elle est majorée (par $\dim(E)$). Elle est donc convergente. Comme elle est constituée d'entiers, elle finit par stationner. En notant p le rang à partir duquel la suite stationne, on a $\forall k \geq p, \dim N_k = \dim N_p$ et comme $\forall k \geq p, N_p \subset N_k$ on peut conclure que $\exists p \in \mathbb{N}/\forall k \geq p, N_k = N_p$.

En appliquant le théorème du rang on a $\forall k \geq p$, $\dim I_k = \dim I_p$ et comme $\forall k \geq p$, $I_k \subset I_p$ on peut conclure que $\exists p \in \mathbb{N}/\forall k \geq p$, $I_k = I_p$.

(c) Par le théorème du rang on a $\dim N_p + \dim I_p = \dim E$.

Soit $x \in N_p \cap I_p$ alors $f^p(x) = 0$ et il existe $y \in E$ tel que $x = f^p(y)$; ceci entraı̂ne $y \in N_{2p} = N_p$ donc $x = f^p(y) = 0$ par suite $E = N_p \oplus I_p$ et comme $\ker(f^{2p}) = N_{2p} = N_p$ et $\Im(f^{2p}) = I_{2p} = I_p$ on a $E = \ker(f^{2p}) \oplus \Im(f^{2p})$.

- 4. On suppose dans la suite que f n'est pas un automorphisme et on pose $F = \ker(f^{2p})$ et $G = \Im(f^{2p})$.
 - (a) f et f^{2p} commutent donc F et G sont stables par f.
 - (b) Pour tout $x \in F$ on a $f_F^{2p}(x) = f^{2p}(x) = 0$ donc $f_F^{2p} = 0$ ce qui montre que f_F est nilpotente.

Si $x \in \ker f_G$ alors $x \in G$ et f(x) = 0, donc $x \in F \cap G = \{0\}$ par suite x = 0. Ceci montre que f_G est un endomorphisme injectif d'espace vectoriel de dimension finie, c'est donc un automorphisme.

- (c) $f^2=u^2+u\circ v+v\circ u+v^2=u\circ v+v\circ u$. Ainsi $u\circ f^2=u\circ v\circ u=f^2\circ u$. On procède de même avec $f^2\circ v$.
- (d) Comme u commute avec f^2 , il commute avec toutes les itérées de f^2 et donc avec f^{2p} . Donc $G=\Im(f^{2p})$ est stable par u et de même il est stable par v. u_G et v_G sont ainsi des endomorphismes de G et $u_G^2=0$ (idem pour v).
- (e) La restriction f_F de f à F est nilpotente; et la restriction f_G de f à G est inversible. D'après le résultat admis, il existe une décomposition $F = F_1 \oplus F_2$ telle que $f(F_1) \subset F_2$ et $f(F_2) \subset F_1$.

Avec la question précédente, f_G vérifie (C2) et comme c'est un automorphisme, le résultat de la question II.2 s'applique. Il existe une décomposition $G=G_1\oplus G_2$ telle que $f(G_1)\subset G_2$ and $f(G_2)\subset G_1$.

En posant $H_1 = F_1 \oplus G_1$ et $H_2 = F_2 \oplus G_2$ (le caractère direct des sommes découle de $F \oplus G$), on a alors $E = H_1 \oplus H_2$ et $f(H_1) \subset H_2$, $f(H_2) \subset H_1$. Ainsi f est échangeur.

Problème 2

Partie 2.1 Forme linéaire sur $\mathcal{M}_n(\mathbb{K})$

- 1. Découle de la linéarité de la trace.
- 2. Soit $\phi: \mathcal{M}_n(\mathbb{K}) \to (\mathcal{M}_n(\mathbb{K}))^*$ définie par $A \mapsto \phi_A$ où $\phi_A(X) = \operatorname{Tr}(AX)$. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in K$, $\forall X \in \mathcal{M}_n(\mathbb{K})$, $\phi_{A+\lambda B}(X) = \operatorname{Tr}((A+\lambda B)X) = \operatorname{Tr}(AX) + \lambda \operatorname{Tr}(BX) = (\phi_A + \lambda \phi_B)(X)$.

Donc ϕ est linéaire.

$$A \in \ker(\phi) \Rightarrow \phi_A = 0 \Rightarrow \forall X \in \mathcal{M}_n(\mathbb{K}), \operatorname{Tr}(AX) = 0 \Rightarrow \operatorname{Tr}(A^t A) = 0 \Rightarrow A = 0.$$

Donc ϕ est injective et puisque $\dim(\mathcal{M}_n(\mathbb{K}))^* = \dim \mathcal{M}_n(\mathbb{K}) = n^2$ alors ϕ est un isomorphisme.

- 3. Du fait que ϕ est un isomorphisme, on déduit que pour toute forme linéaire f sur $\mathcal{M}_n(\mathbb{K})$ il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que $f = \phi_A$, donc $\forall M \in \mathcal{M}_n(\mathbb{K})$, $f(M) = \operatorname{Tr}(AM)$.
- 4. Soit f un élément de $(\mathcal{M}_n(\mathbb{K}))^*$ tel que $\forall (M,N) \in \mathcal{M}_n(\mathbb{K})^2$, f(MN) = f(NM).
 - (a) D'après le résultat de la question précédente il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que pour tout $M \in \mathcal{M}_n(\mathbb{K})$, f(M) = Tr(AM).
 - (b) Pour tout $M, N \in \mathcal{M}_n(\mathbb{K})$ on a $f(MN) = f(NM) \Leftrightarrow \operatorname{Tr}(AMN) = \operatorname{Tr}(ANM) \Leftrightarrow \operatorname{Tr}(AMN) = \operatorname{Tr}(MAN)$.

Donc d'après l'injectivité de ϕ on a MA = AM.

- (c) Pour $M=(a_{ij})$ et (E_{ij}) la base canonique de $\mathcal{M}_n(\mathbb{K})$ on a $E_{ij}M=\sum_l a_{jl}E_{il}$ et $ME_{ij}=\sum_k a_{ki}E_{kj}$.
 - En identifiant terme à terme on obtient $\forall i \neq j$, $a_{ii} = a_{jj} = \lambda$, $a_{ij} = 0$.

Donc $A = \lambda I_n$.

(d) $\forall M \in \mathcal{M}_n(\mathbb{K}), f(M) = \text{Tr}(AM) = \lambda \text{Tr}(M) \text{ donc } f = \lambda \text{Tr}.$

Partie 2.2 Hyperplan de $\mathcal{M}_n(\mathbb{K})$

- 5. Soit H un hyperplan de $\mathcal{M}_n(\mathbb{K})$.
 - (a) H un hyperplan de $\mathcal{M}_n(\mathbb{K})$ donc H est le noyau d'une forme linéaire non nulle f de $\mathcal{M}_n(\mathbb{K})$, or pour une telle forme linéaire il existe une matrice non nulle $A \in \mathcal{M}_n(\mathbb{K})$ telle que $f(M) = \operatorname{Tr}(AM)$ pour tout $M \in \mathcal{M}_n(\mathbb{K})$ donc $H = \ker f = \{M \in \mathcal{M}_n(\mathbb{K}) \mid \operatorname{Tr}(AM) = 0\}.$
 - (b) Soit x un réel et $(i,j) \in [1,n]^2$ tel que $i \neq j$, $\forall x \in \mathbb{R}$, $\det(I_n + xE_{ij}) = 1 \Rightarrow I_n + xE_{ij} \in \mathrm{GL}_n(\mathbb{K})$.
 - (c) On suppose que $H \cap \operatorname{GL}_n(\mathbb{K}) = \emptyset$. Soit $(i,j) \in [1,n]^2$ tel que $i \neq j$. $\forall x \in \mathbb{R}, I_n + x E_{ij} \in \operatorname{GL}_n(\mathbb{K}) \Rightarrow \forall x \in \mathbb{R}, I_n + x E_{ij} \notin H \Rightarrow \forall x \in \mathbb{R}, \operatorname{Tr}(A(I_n + x E_{ij})) \neq 0 \Rightarrow \forall x \in \mathbb{R}, x \operatorname{Tr}(AE_{ij}) + \operatorname{Tr}(A) \neq 0$.
 - (d) Soit $(i,j) \in [1,n]^2$ tel que $i \neq j$ si $\operatorname{Tr}(AE_{ij}) \neq 0$ alors $x\operatorname{Tr}(AE_{ij}) + \operatorname{Tr}(A)$ s'annule pour $x = -\operatorname{Tr}(A)/\operatorname{Tr}(AE_{ij})$ ce qui contredit le résultat précédent donc $\operatorname{Tr}(AE_{ij}) = 0$ par suite, $E_{ij} \in H$.
 - (e) $J = E_{n1} + \sum_{i=1}^{n-1} E_{i,i+1} \in H$ comme combinaison linéaire des éléments de H.
 - (f) On développant $\det J$ par rapport à la première colonne il vient $\det(J) = 1$. J est donc une matrice inversible dans H absurde, donc $H \cap \operatorname{GL}_n(\mathbb{K}) \neq \emptyset$.

Partie 2.3 Hyperplan de $\mathcal{M}_n(\mathbb{K})$ stables par produit

- 1. D'après le cours, puisque H est un hyperplan et $I_n \notin H$ on a $E_n = \operatorname{Vect}(I_n) \oplus H$.
- 2. Soit la projection p sur $Vect(I_n)$ parallèlement à H.

Soit $(M,N) \in E_n^2$. On utilise la décomposition en somme directe $E_n = \text{Vect}(I_n) \oplus H$:

$$\exists \lambda_1 \in K, \exists A_1 \in H, M = \lambda_1 I_n + A_1 \text{ avec } p(M) = \lambda_1 I_n.$$

$$\exists \lambda_2 \in K, \exists A_2 \in H, N = \lambda_2 I_n + A_2 \text{ avec } p(N) = \lambda_2 I_n.$$

Il vient $MN = \lambda_1 \lambda_2 I_n + \lambda_1 A_2 + \lambda_2 A_1 + A_1 A_2$, car H est stable pour la multiplication matricielle, donc $A_1 A_2 \in H$.

On en déduit que $p(MN) = \lambda_1 \lambda_2 I_n = p(M)p(N)$.

D'où $\forall (M,N) \in E_n^2$, p(MN) = p(M)p(N).

3. Soit $M \in E_n$ telle que $M^2 \in H$. La décomposition $M^2 = 0 + M^2$ avec $0 \in \text{Vect}(I_n)$ et $M^2 \in H$ donne $p(M^2) = 0$.

D'après la question 2., on a $0=p(M^2)=p(M)^2$. Notons $M=\lambda I_n+A$ avec $\lambda\in K$, $A\in H$, alors $p(M)=\lambda I_n$ donc $0=(\lambda I_n)^2=\lambda^2 I_n$ donc $\lambda=0$. On en déduit que p(M)=0 puis $M\in H$.

Ainsi $M^2 \in H \Rightarrow M \in H$.

4. Soit $(i, j) \in [1, n]^2$.

Premier cas : $i \neq j$. On a $(E_{ij})^2 = 0 \in H$ puisque H est un sous-espace vectoriel.

D'après la question 3., $E_{ij} \in H$.

Deuxième cas : i = j. Puisque $n \ge 2$, il existe $j \ne i$. H stable par multiplication contient E_{ij} et E_{ji} donc $E_{ii} = E_{ij}E_{ji} \in H$.

Donc $\forall (i, j), E_{ij} \in H$.

5. On a alors $I_n = \sum E_{ii} \in H$, absurdité puisque $I_n \notin H$.

Ou $E_n = \text{Vect}(E_{ij}) \subset H \subset E_n$, donc $H = E_n$ absurdité.

Dans les deux cas, contradiction donc $I_n \in H$.

Problème 3 Décompositions de $\mathcal{M}_2(\mathbb{C})$ en somme directe de deux sous-espaces vectoriels stables par les endomorphismes ϕ_M

Partie 3.1 Construction de deux sous-espaces non nuls, supplémentaires dans $\mathcal{M}_2(\mathbb{C})$ et stables par tous les endomorphismes ϕ_M

- 1. [A, B] = C, [C, A] = 2A et [C, B] = -2B.
- 2. La famille (I_2, A, B, C) est libre et de cardinal $4 = \dim \mathcal{M}_2(\mathbb{C})$, donc c'est une base de $\mathcal{M}_2(\mathbb{C})$.
- 3. Soit $M = \lambda I_2 + \alpha A + \beta B + \gamma C \in \mathcal{M}_2(\mathbb{C}); \lambda, \alpha, \beta \text{ et } \gamma \text{ étant des complexes.}$
 - (a) Si $\alpha=\beta=\gamma=0$ alors $M=\lambda I_2$ commute avec toutes les matrices de $\mathcal{M}_2(\mathbb{C})$ donc

$$\{N \in \mathcal{M}_2(\mathbb{C}); MN = NM\} = \mathcal{M}_2(\mathbb{C}).$$

(b) Supposons que $(\alpha, \beta, \gamma) \neq (0, 0, 0)$, remarquons d'abord que $\{N \in \mathcal{M}_2(\mathbb{C}); MN = NM\}$ est le noyau de l'endomorphisme φ_M donc c'est bien un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{C})$. Montrons, ensuite, qu'il est engendré par la famille (I_2, M) . Pour cela, soit $N = xI_2 + yA + zB + tC \in \mathcal{M}_2(\mathbb{C})$. En utilisant la linéarité de φ_M et le

fait que [X,Y]=0 chaque fois que les matrices X et Y commutent entre elles et que [X,Y]=-[Y,X], on a :

$$\begin{split} MN &= NM &\Leftrightarrow \varphi_M(N) = 0 \\ &\Leftrightarrow y[M,A] + z[M,B] + t[M,C] = 0 \\ &\Leftrightarrow y[\lambda I_2 + \alpha A + \beta B + \gamma C, A] + z[\lambda I_2 + \alpha A + \beta B + \gamma C, B] \\ &\quad + t[\lambda I_2 + \alpha A + \beta B + \gamma C, C] = 0 \\ &\Leftrightarrow y(\beta[B,A] + \gamma[C,A]) + z(\alpha[A,B] + \gamma[C,B]) \\ &\quad + t(\alpha[A,C] + \beta[B,C]) = 0 \\ &\Leftrightarrow (z\alpha - y\beta)[B,A] + (y\gamma - t\alpha)[C,A] + (z\gamma - t\beta)[C,B] = 0 \\ &\Leftrightarrow (z\alpha - y\beta)C + 2(y\gamma - t\alpha)A - 2(z\gamma - t\beta)B = 0 \\ &\Leftrightarrow \begin{cases} z\alpha - y\beta = 0 \\ y\gamma - t\alpha = 0 \\ z\gamma - t\beta = 0 \end{cases} \end{split}$$

puisque $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ l'un au moins des reels α, β, γ ou λ est non nul , supposons que $\alpha \neq 0$ alors

$$MN = NM \Leftrightarrow \begin{cases} z = y\frac{\beta}{\alpha} \\ t = y\frac{\gamma}{\alpha} \end{cases}$$

$$\Leftrightarrow N = xI_2 + yA + y\frac{\beta}{\alpha}B + y\frac{\gamma}{\alpha}C$$

$$\Leftrightarrow N = xI_2 + \frac{y}{\alpha}(\alpha A + \beta B + \gamma C)$$

$$\Leftrightarrow N = xI_2 + \frac{y}{\alpha}(M - \lambda I_2) = \left(x - \frac{\lambda y}{\alpha}\right)I_2 + \frac{y}{\alpha}M \in \mathbf{Vect}(I_2, M)$$

on fait de meme pour les autres cas , et on deduit que $\{N \in \mathcal{M}_2(\mathbb{C}); MN = NM\} \subset \textbf{Vect}(I_2, M)$. Reciproquement I_2 et M sont dans $\{N \in \mathcal{M}_2(\mathbb{C}); MN = NM\}$ d'ou l'egalite

$$\{N \in \mathcal{M}_2(\mathbb{C}); MN = NM\} = \mathbf{Vect}(I_2, M)$$

D'autre part la famille (I_2, M) est libre, en effet

$$aI_2 + bM = 0$$
 \Leftrightarrow $(a + b\lambda)I_2 + b\alpha A + b\beta B + b\gamma C = 0$
 \Leftrightarrow $(a + b\lambda) = b\alpha = b\beta = b\gamma = 0$
 \Leftrightarrow $a = b = 0$

CLASSE: PSI 1

donc

$$\dim\{N\in\mathcal{M}_2(\mathbb{C});MN=NM\}=2$$

- 4. Dans la suite on note \mathcal{F} le sous-espace vectoriel de $\mathcal{M}_2(\mathbb{C})$ engendre par la famille (A, B, C), et $\mathbb{C}.I_2$ celui engendre par la matrice $I_2: \mathbb{C}.I_2 = \{\lambda I_2; \lambda \in \mathbb{C}\}$
 - (a) $\dim \mathcal{F}=3$ puisque la famille (A,B,C), est une sous famille d'une famille libre donc libre .
 - (b) Si $X \in \mathbb{C}.I_2 \cap \mathcal{F}$ alors $X = \lambda I_2 = \alpha A + \beta B + \gamma C$ avec $(\lambda, \alpha, \beta, \gamma) \in \mathbb{C}^4$ et puisque (I_2, A, B, C) est libre alors $\lambda = \alpha = \beta = \gamma = 0$ donc X = 0 par suite $\mathbb{C}.I_2 \cap \mathcal{F} = \{0\}$, et comme $\dim \mathbb{C}.I_2 + \dim \mathcal{F} = 4 = \dim \mathcal{M}_2(\mathbb{C})$ on deduit que

$$\mathcal{M}_2(\mathbb{C}) = \mathbb{C}.I_2 \oplus \mathcal{F}$$

- (c) Soit $M = \lambda I_2 + \alpha A + \beta B + \gamma C \in \mathcal{M}_2(\mathbb{C})$
 - $\bullet \ {\rm Si} \ X = \lambda I_2 \in \mathbb{C}.I_2 \ {\rm alors} \ \varphi_M(X) = 0 \in \mathbb{C}.I_2 \ {\rm donc} \ \mathbb{C}.I_2 \ {\rm est} \ {\rm stable} \ {\rm par} \ \varphi.$
 - $\bullet \text{ On a } \mathcal{F} = \mathrm{Vect}(A,B,C) \text{ et } \left\{ \begin{array}{l} \varphi_M(A) = \beta[B,A] + \gamma[C,A] = -\beta C + 2\gamma A \in \mathcal{F} \\ \varphi_M(B) = \alpha[A,B] + \gamma[C,B] = \alpha C 2\gamma B \in \mathcal{F} \\ \varphi_M(C) = \alpha[A,C] + \beta[B,C] = -2\alpha A + 2\beta B \in \mathcal{F} \end{array} \right. ;$ donc \mathcal{F} est stable par φ_M .

Partie 3.2 F et $\mathbb{C}I_2$ sont les seuls possibles

- 1. $\varphi_B(A) = -C$ et $\varphi_B(C) = 2B$.
- 2. Soit $\mathcal V$ un sous-espace vectoriel de $\mathcal M_2(\mathbb C)$ stable par φ_M , pour toute matrice $M\in \mathcal M_2(\mathbb C)$. On suppose de plus que $\mathcal V$ contient un element $X=\lambda I_2+\alpha A+\beta B+\gamma C$, avec $(\alpha,\beta,\gamma)\neq (0,0,0)$; λ,α,β et γ etant des complexes.
 - (a) Si $\gamma \neq 0$
 - i. $\varphi_C \circ \varphi_A(X) = \varphi_C \left(\beta \varphi_A(B) + \gamma \varphi_A(C)\right) = \varphi_C \left(\beta C 2\gamma A\right) = -2\gamma \varphi_C \left(A\right) = -4\gamma A$ Puisque $X \in \mathcal{V}$ et \mathcal{V} est assable par φ_C et φ_A alors $-4\gamma A \in \mathcal{V}$, et comme $\gamma \neq 0$ on deduit que $A \in \mathcal{V}$
 - ii. On a $A\in\mathcal{V}$ et $\varphi_B(A)=-C$ donc $C\in\mathcal{V}$ et comme de plus on a $\varphi_B(C)=2B$ on deduit que $B\in\mathcal{V}$
 - iii. On a On a $\mathcal{F} = \text{Vect}(A, B, C)$ et $A, B, C \in \mathcal{V}$ donc $\mathcal{F} \subset \mathcal{V}$.

(b)

- Si $\beta \neq 0$, on montre que $\varphi_A \circ \varphi_C(X) = -2\beta C$, ce qui donne $C \in \mathcal{V}$. Et de $\varphi_A(C) = -2A$ et $\varphi_B(C) = 2B$, on déduit que $A, B \in \mathcal{V}$.
- Si $\alpha \neq 0$ on montre que $\varphi_B \circ \varphi_B(X) = 2\alpha B$ ce qui donne $B \in \mathcal{V}$ et de $\varphi_A(B) = C$ et $\varphi_A(C) = -2A$ on deduit que $A, C \in \mathcal{V}$. Dans tout les cas on a $A, B, C \in \mathcal{V}$ donc $\mathcal{F} \subset \mathcal{V}$.

- 3. Soient \mathcal{V} et \mathcal{W} deux sous-espaces vectoriels non nuls et supplementaires dans $\mathcal{M}_2(\mathbb{C})$. On suppose de plus que \mathcal{V} et \mathcal{W} sont stables par φ_M , pour toute matrice $M \in \mathcal{M}_2(\mathbb{C})$.
 - (a) On suppose qu'il existe $X = \lambda I_2 + \alpha A + \beta B + \gamma C \in \mathcal{V}$ avec $(\alpha, \beta, \gamma) \neq (0, 0, 0)$; λ, α, β et γ etant des complexes. D'apres la question precedente on a $\mathcal{F} \subset \mathcal{V}$, et $\dim \mathcal{F} = 3$ donc $\dim \mathcal{V} \geq 3$ est comme $\dim \mathcal{V} + \dim \mathcal{W} = 4$ et $\dim \mathcal{W} \geq 1$ on a $\dim \mathcal{V} \leq 3$ par suite $\dim \mathcal{V} = 3 = \dim \mathcal{F}$ et $\dim \mathcal{W} = 1$ d'ou $\mathcal{V} = \mathcal{F}$.

Pour montrer que et $W = \mathbb{C}.I_2$, soit $D = xA + yB + zC + \delta I_2$ un element de W, forcement $\delta \neq 0$. Wetant stable par φ_M , pour toute matrice $M \in \mathcal{M}_2(\mathbb{C})$

$$\operatorname{donc} \left\{ \begin{array}{l} \varphi_C \circ \varphi_A(D) = -4zA \in \mathcal{W} \Rightarrow z = 0 \\ \varphi_A \circ \varphi_C(D) = -2yC \in \mathcal{W} \Rightarrow y = 0 \\ \varphi_B \circ \varphi_B(D) = -4xB \in \mathcal{W} \Rightarrow x = 0 \end{array} \right. \quad \operatorname{donc} D = \delta I_2 \text{ par suite } I_2 \in \mathcal{W} \text{ et }$$

comme $\dim \mathcal{W} = 1$ on conclut que $\mathcal{W} = \mathbb{C}.I_2$

(b) Dans le cas contraire montrer les matrices A, B et C n'appartiennent pas a V, soit $(Q_C \circ Q_A(D)) = -4zA \in V \Rightarrow z = 0$

$$D = xA + yB + zC + \delta I_2 \text{ un element de } \mathcal{V} \text{ de } \left\{ \begin{array}{l} \varphi_C \circ \varphi_A(D) = -4zA \in \mathcal{V} \Rightarrow z = 0 \\ \varphi_A \circ \varphi_C(D) = -2yC \in \mathcal{V} \Rightarrow y = 0 \\ \varphi_B \circ \varphi_B(D) = -4xB \in \mathcal{V} \Rightarrow x = 0 \end{array} \right.$$

on déduit que tout element de V et de la forme $D = \delta I_2$ donc $V = \mathbb{C}.I_2$.

Si \mathcal{W} ne contient pas d'element de la forme $X=\lambda I_2+\alpha A+\beta B+\gamma C$ avec $(\alpha,\beta,\gamma)\neq(0,0,0)$ alors un raisonnement analogue montre que $\mathcal{W}=\mathbb{C}.I_2$ ce qui contredit le fait que \mathcal{V} et \mathcal{W} sont supplementaires donc forcement \mathcal{W} contient un element de la forme $X=\lambda I_2+\alpha A+\beta B+\gamma C$ avec $(\alpha,\beta,\gamma)\neq(0,0,0)$ et le resultat de la question precedente permet de conclure que $\mathcal{W}=\mathcal{F}$ et $\mathcal{V}=\mathbb{C}.I_2$.

Fin du Corrigé That's all folks!!

PROF: KHALID EL BAKKIOUI 10/10 ☐ +212 661 645600