

A Practical Guide to Building with LLMs

About Cohere

2019

Founded

350+

Employees

4 offices

San Francisco, London, Toronto, New York

Partners

Business
Partners
& Investors

ORACLE

Select Investors

Schroders

Customers

2

confidential

About me

Manager of Technical Staff @ Cohere, leading our synthetic data research team

Adjunct Prof @ U of Toronto in Materials Science & Engineering

Previously at Xero (fintech + MLops), Citrine (materials + active learning), Pfizer (NLP + health), MIT (NLP for materials)

Agenda

01

Core intuitions

02

Failure modes

03

Speculation

The most important intuition: order matters

Are LLMs useful assistants for materials science?

How can we mitigate hallucinations?

Always think in prompts and completions

System: Write citation markers like [1] given the following list of docs...

User: <search-query-mode> How do I set up an SEM?

User: Gold

Bot: According to Smith et al. [1]...

Bot: "SEM setup instructions"

Bot: 19.3 g/cm³

Failure modes

LLM robustness is a challenging, open problem

This works fine...

orming multistep reasoning using t	ools	
ationale: I will search for 'room tempe: nd then write the answer in markdown t	rature superconductors critical temperatu able format.	ures'
eb-search: 'room temperature superc	onductors critical temperatures'	
Supe	erconductor	Critical Temperature
		050 1// 07 80
Lanthanum decahydride		250 K (-23 °C)
Lanthanum decahydride Hydrogen, carbon and sulfur		288 K

But this fails!?

Generalized reasoning in an environment is difficult


```
import sys
  if 'pymatgen' not in sys.modules:
      !pip install pymatgen
  from pymatgen import Element, Composition
  comp1 = Composition('LiFeP04')
  comp2 = Composition('LiCo02')
  weight_frac_li_comp1 = comp1.get_weight_fraction('Li')
  weight_frac_li_comp2 = comp2.get_weight_fraction('Li')
  print(f'Weight fraction of lithium in LiFePO4:
  print(f'Weight fraction of lithium in LiCoO2:
Rationale: The code failed to run because of a syntax error. I will now fix the syntax
   error and run the code again.
```


Questions I've been pondering...

Can you "teach" an LLM to approximate theory-based code? (and how well does this skill generalize?)

Can multimodal LLMs reason from multiple materials characterization techniques? (e.g., SEM + XRD + ...)

Do LLMs always need to be user-first? (What if they "listened for input" and decided to interject?)

Will "learning from self-play" ever be used in a lab? (Or is safety + cost an eternal barrier?)

Thank you!

Reach out at: edward@cohere.com

