Introduction to LATEX

Rob J Hyndman

6 June 2008

Outline

- What is LaTEX?
- 2 Getting started
- 3 Document style
- Breaks and spaces
- **5** Fancy characters
- **Mathematics**
- Tables and graphics
- Cross-references and bibliographies
- User-defined commands
- Final tips

Outline

- What is LTEX?
- Q Getting started
- Document style
- Breaks and spaces
- **5** Fancy characters
- Mathematics
- **Tables and graphics**
- Cross-references and bibliographies
- User-defined commands
- Final tips

History

- **1977:** Donald Knuth started writing TEX $(\tau \varepsilon \chi)$ for his own books.
 - Powerful and flexible typesetting utility
 - Quality of professional printers
 - Especially good for mathematics

History

- **1977:** Donald Knuth started writing TEX $(\tau \varepsilon \chi)$ for his own books.
 - Powerful and flexible typesetting utility
 - Quality of professional printers
 - Especially good for mathematics
- 1980: Leslie Lamport released LATEX
 - Added commands over standard T_EX
 - Separates content from style enabling structured documents.
 - Automates numbering, cross-referencing, bibliography, etc.

Introduction to LATEX What is LATEX? 4

History

- **1977:** Donald Knuth started writing TEX $(\tau \varepsilon \chi)$ for his own books.
 - Powerful and flexible typesetting utility
 - Quality of professional printers
 - Especially good for mathematics
- 1980: Leslie Lamport released LATEX
 - Added commands over standard T_EX
 - Separates content from style enabling structured documents.
 - Automates numbering, cross-referencing, bibliography, etc.
- **2008:** LATEX the standard software for mathematical typesetting for books, journals, theses, papers, etc.

Introduction to MTEX What is MTEX? 5

What is LATEX?

A structured document markup language

What you type

```
\documentclass[11pt]{article}
\begin{document}
This is my \emph{first} document prepared
in \LaTeX.
\end{document}
```

Introduction to LATEX What is LATEX? 5

What is LATEX?

A structured document markup language

What you type

```
\documentclass[11pt]{article}
\begin{document}
This is my \emph{first} document prepared
in \LaTeX.
\end{document}
```

What you get

This is my first document prepared in LATEX.

What is Late X?

```
What you type
\documentclass[11pt]{article}
\begin{document}
\section{Introduction}
Blah blah
\subsection{More stuff}
Here is the sample mean:
\begin{equation}
\text{bar}\{y\} = \sum_{i=1}^n y_i
\end{equation}
\end{document}
```

What you get

1 Introduction

Blah blah

1.1 More stuff

Here is the sample mean:

$$\bar{y} = \sum_{i=1}^{n} y_i \tag{1}$$

What you type

```
\documentclass[11pt]{article}
\setlength{\parindent}{0cm}
\setlength{\parskip}{2ex}
\begin{document}
\title{Fantastic forecasting}
\author{Rob J Hyndman}
\maketitle
\begin{abstract}
Forecasting is fascinating, fantastic
and often fallacious.
\end{abstract}
\section{Introduction}
```

Forecasts of business sales, the weather, or

What you get

Fantastic forecasting

Rob J Hyndman

June 2, 2008

Abstract

Forecasting is fascinating, fantastic and often fallacious.

1 Introduction

What is LATEX?

What you type

```
\section{Introduction}
```

Forecasts of business sales, the weather, or the football results require statistical models.

This is my second paragraph. \textbf{Bold} is sometimes useful. So is \emph{italics}. But never \underline{underline}. Mathematical symbols such as \$\mu\$ are easy.

So are equations: \begin{equation}\label{stdev} s^2 = \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}. \end{equation} Equation (\ref{stdev}) shows the sample

\section{Literature review}

standard deviation.

The best book on this topic is Hyndman et al.\
(2008) \emph{Forecasting with exponential smoothing: the state space approach}.

What you get

Forecasts of business sales, the weather, or the football results require statistical models.

This is my second paragraph. **Bold** is sometimes useful. So is *italics*. But never underline. Mathematical symbols such as μ are easy.

So are equations:

$$s^{2} = \sqrt{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}.$$
 (1)

Equation (1) shows the sample standard deviation.

2 Literature review

The best book on this topic is Hyndman et al. (2008) Forecasting with ex-

Introduction to LATEX What is LATEX?

Why not use MS-Word?

LEX...

- allows much greater control of formatting.
- separates content from style leaving you to concentrate on what you write rather than how it looks.
- automatically numbers sections, equations, etc., thus avoiding errors.
- automatically generates bibliography, table of contents, cross-references.
- is more portable.
- produces much higher quality output, especially of mathematics.

Introduction to LATEX What is LATEX? 10

Why not use MS-Word?

₽T_EX...

- has better kerning, justification and hyphenation algorithms.
- is easily scalable. Large documents are no more difficult than short ones.
- never crashes.
- has no viruses.
- is free.
- is usually much faster.
- is programmable.

MikTEX

 LATEX is free. You normally download and install it yourself.

MikTEX

- Lactorial Expression of the Express
- The best Windows implementation is called MikTEX (www.miktex.org).

MikTEX

- LATEX is free. You normally download and install it yourself.
- The best Windows implementation is called MikTEX (www.miktex.org).
- You also need a text editor. The best Windows text editor for LaTeX is WinEdt (www.winedt.com).

- LATEX is free. You normally download and install it yourself.
- The best Windows implementation is called MikTEX (www.miktex.org).
- You also need a text editor. The best Windows text editor for LaTeX is WinEdt (www.winedt.com).
- Instructions for installation at www.robhyndman.info/latex

\section{Introduction}


```
This is my second paragraph.
\textbf{Bold} is sometimes useful.
So is \emph{italics}.
```

Forecasts of business sales, the weather, or the football results require statistical models.

But never \underline{\underline}.

Mathematical symbols such as \$\mu\$ are easy.

So are equations:

 $\label{stdev} $$ s^2 = \sqrt{\frac{sum_{i=1}^n (y_i - bar\{y\})^2}}.$

\end{equation}
Equation (\ref{stdev}) shows the sample standard deviation.

\section{Literature review}

WinEdt provides a LATEX-aware text editing environment.

• Hit F9 to compile into pdf form.

WinEdt provides a LATEX-aware text editing environment.

- Hit F9 to compile into pdf form.
- Or click the brown teddy

WinEdt provides a LATEX-aware text editing environment.

- Hit F9 to compile into pdf form.
- Or click the brown teddy
- Colour coding for LATEX commands.

WinEdt provides a LATEX-aware text editing environment.

- Hit F9 to compile into pdf form.
- Or click the brown teddy

Spell-checking

WinEdt provides a LATEX-aware text editing environment.

- Hit F9 to compile into pdf form.
- Or click the brown teddy

- Spell-checking
- Error checking: 106

WinEdt provides a LATEX-aware text editing environment.

- Hit F9 to compile into pdf form.
- Or click the brown teddy
- Colour coding for LATEX commands.
- Spell-checking
- Error checking:
- Menus if you can't remember the correct commands.

WinEdt provides a LATEX-aware text editing environment.

- Hit F9 to compile into pdf form.
- Or click the brown teddy
- Colour coding for LATEX commands.
- Spell-checking
- Error checking:
- Menus if you can't remember the correct commands.
- Learn by poking around!

You create a text file myfile.tex

- You create a text file myfile.tex
- LATEX generates various other files when it "compiles" your file.

- You create a text file myfile.tex
- LATEX generates various other files when it "compiles" your file.
 - myfile.aux contains a lot of auxiliary information (e.g., for cross-references)

- You create a text file myfile.tex
- LATEX generates various other files when it "compiles" your file.
 - myfile.aux contains a lot of auxiliary information (e.g., for cross-references)
 - myfile.log contains a log of any errors that occurred.

- You create a text file myfile.tex
- LATEX generates various other files when it "compiles" your file.
 - myfile.aux contains a lot of auxiliary information (e.g., for cross-references)
 - myfile.log contains a log of any errors that occurred.
 - myfile.toc contains information for the table of contents (if required)

- You create a text file myfile.tex
- LATEX generates various other files when it "compiles" your file.
 - myfile.aux contains a lot of auxiliary information (e.g., for cross-references)
 - myfile.log contains a log of any errors that occurred.
 - myfile.toc contains information for the table of contents (if required)
 - myfile.pdf contains a pdf version of your file (if you used pdflaTEX)

- You create a text file myfile.tex
- LATEX generates various other files when it "compiles" your file.
 - myfile.aux contains a lot of auxiliary information (e.g., for cross-references)
 - myfile.log contains a log of any errors that occurred.
 - myfile.toc contains information for the table of contents (if required)
 - myfile.pdf contains a pdf version of your file (if you used pdfLTEX)
 - myfile.dvi contains a dvi version of your file (if you used LATEX)

- You create a text file myfile.tex
- LATEX generates various other files when it "compiles" your file.
 - myfile.aux contains a lot of auxiliary information (e.g., for cross-references)
 - myfile.log contains a log of any errors that occurred.
 - myfile.toc contains information for the table of contents (if required)
 - myfile.pdf contains a pdf version of your file (if you used pdfPTEX)
 - myfile.dvi contains a dvi version of your file (if you used LATEX)
- You print or email myfile.pdf.

Outline

- What is LTEX?
- Quantity of the second of t
- Document style
- Breaks and spaces
- **5** Fancy characters
- Mathematics
- Tables and graphics
- Cross-references and bibliographies
- User-defined commands
- Final tips

Login

Username: ilnie1

Password: ecrnet0605

My first document

Your name

June 2, 2008

1 Introduction

This is my first document. I typed it on June 2, 2008. I now know about 1% of LATEX which is enough to get me started, but I still have a lot to learn. For example, "Quotations are sometimes tricky" (Hyndman, 2008).

My first equation defines α :

$$\alpha = 3 + x - \beta$$
.

17

What you type

```
\documentclass[11pt]{article}
\setlength{\parindent}{0cm}
\setlength{\parskip}{1.3ex}
\begin{document}
\title{My first document}
\author{Your name}
\maketitle
\section{Introduction}
This is my \emph{first} document. I typed it on \today.
I now know about 1\% of \LaTeX\ which is enough to get
me started, but I still have a lot to learn. For example,
"Quotations are sometimes tricky" (Hyndman, 2008).
My first equation defines $\alpha$:
```

\1

Exercise 1

\section{Introduction}

What you type

```
This is my \emph{first} document. I typed it on \today.
I now know about 1\% of \LaTeX\ which is enough to get
me started, but I still have a lot to learn. For example,
"Quotations are sometimes tricky" (Hyndman, 2008).
My first equation defines $\alpha$:
\[
\alpha = 3 + x - \beta
```

```
\begin{flushright}
That's all!
\end{flushright}
\end{document}
```

• \today gives today's date

- \today gives today's date
- \emph{} gives italics (emphasis)

- \today gives today's date
- \emph{} gives italics (emphasis)
- % is used to comment out a line. Use \% for a % sign.

- \today gives today's date
- \emph{} gives italics (emphasis)
- ullet % is used to comment out a line. Use \% for a % sign.
- For quotation marks, use '' and ''.

- \today gives today's date
- \emph{} gives italics (emphasis)
- ullet % is used to comment out a line. Use \% for a % sign.
- For quotation marks, use '' and ''.
- Use \$...\$ for inline mathematics.

- \today gives today's date
- \emph{} gives italics (emphasis)
- ullet % is used to comment out a line. Use % for a % sign.
- For quotation marks, use '' and ''.
- Use \$...\$ for inline mathematics.
- Use \[. . . \] for displayed mathematics without numbering.

18

- \today gives today's date
- \emph{} gives italics (emphasis)
- \bullet % is used to comment out a line. Use \% for a % sign.
- For quotation marks, use '' and ''.
- Use \$...\$ for inline mathematics.
- Use \[. . . \] for displayed mathematics without numbering.
- Use \begin{equation} ... \end{equation} for displayed mathematics with numbering.

- \today gives today's date
- \emph{} gives italics (emphasis)
- ullet % is used to comment out a line. Use % for a % sign.
- For quotation marks, use '' and ''.
- Use \$...\$ for inline mathematics.
- Use \[. . . \] for displayed mathematics without numbering.
- Use \begin{equation} ... \end{equation} for displayed mathematics with numbering.
- Use \begin{flushright} ... \end{flushright} for right-justified text.

STYLE	Command
roman	\textrm{roman}
sans serif	<pre>\textsf{sans serif}</pre>
typewriter	\texttt{typewriter}
boldface	\textbf{boldface}
italic	\textit{italic}
slanted	\textsl{slanted}
SMALL CAP	<pre>\textsc{small cap}</pre>

• These can be *combined*: \textbf{\emph{combined}}

- These can be **combined**: \textbf{\emph{combined}}}
- Emphasis is smart: \textit{A polygon of three sides is called a \emph{triangle}}. A polygon of three sides is called a triangle.

- These can be **combined**: \textbf{\emph{combined}}}
- Emphasis is smart:

```
\textit{A polygon of three sides is
called a \emph{triangle}}.
A polygon of three sides is called a triangle.
```

- These can be *combined*: \textbf{\emph{combined}}
- Emphasis is smart:

\textit{A polygon of three sides is
called a \emph{triangle}}.

A polygon of three sides is called a triangle.

\textbf{A polygon of three sides is
called a \emph{triangle}}.

A polygon of three sides is called a *triangle*.

Size

Size commands are relative to the default document size

```
{\tiny size}
size
         {\scriptsize size}
size
         {\footnotesize size}
size
size
         {\small size}
size
         {\normalsize size}
size
         {\large size}
size
         {\Large size}
size
         {\LARGE size}
size
         {\huge size}
         {\Huge size}
```

Justification

The following environments are available:

- \begin{center}...\end{center}
- \begin{flushright}...\end{flushright}
- \begin{flushleft}...\end{flushleft}

Justification

The following environments are available:

- \begin{center}...\end{center}
- begin{flushright}...\end{flushright}
- \begin{flushleft}...\end{flushleft}

Use sparingly!

Special characters

```
\textasciitilde
       \#
       \$
       \%
       \textasciicircum
&
       \&
       \textbackslash
```

• Title \title{}

- Title \title{}
- Author \author{}

- Title \title{}
- Author \author{}
- Date \date{}

- Title \title{}
- Author \author{}
- Date \date{}
- \maketitle

- Title \title{}
- Author \author{}
- Date \date{}
- \maketitle
- \begin{abstract}...\end{abstract}

- Title \title{}
- Author \author{}
- Date \date{}
- \maketitle
- \begin{abstract}...\end{abstract}
- \section{}

- Title \title{}
- Author \author{}
- Date \date{}
- \maketitle
- \begin{abstract}...\end{abstract}
- \section{}
- \subsection{}

- Title \title{}
- Author \author{}
- Date \date{}
- \maketitle
- \begin{abstract}...\end{abstract}
- \section{}
- \subsection{}
- \subsubsection{}

- Title \title{}
- Author \author{}
- Date \date{}
- \maketitle
- \begin{abstract}...\end{abstract}
- \section{}
- \subsection{}
- \subsubsection{}
- \footnote{This is a footnote}

• itemize, enumerate, and description are useful listing environments.

- itemize, enumerate, and description are useful listing environments.
- Always let LateX automatically generate your numbers. It avoids errors.

- itemize, enumerate, and description are useful listing environments.
- Always let LATEX automatically generate your numbers. It avoids errors.

What you type

```
My favourite teas are:
\begin{enumerate}
\item Earl Grey
\item Russian Caravan
\item Lapsang Souchong
\item Yunnan
\end{enumerate}
```

- itemize, enumerate, and description are useful listing environments.
- Always let LATEX automatically generate your numbers. It avoids errors.

What you get

My favourite teas are:

- 1. Earl Grey
- 2. Russian Caravan
- 3. Lapsang Souchong
- 4. Yunnan

- itemize, enumerate, and description are useful listing environments.
- Always let LATEX automatically generate your numbers. It avoids errors.

```
What you type
```

```
My favourite teas are:
\begin{itemize}
\item Earl Grey
\item Russian Caravan
\item Lapsang Souchong
\item Yunnan
\end{itemize}
```

Lists

- itemize, enumerate, and description are useful listing environments.
- Always let LATEX automatically generate your numbers. It avoids errors.

What you get

My favourite teas are:

- Earl Grey
- Russian Caravan
- Lapsang Souchong
- Yunnan

Lists

- itemize, enumerate, and description are useful listing environments.
- Always let LATEX automatically generate your numbers. It avoids errors.

```
What you type
```

```
\documentclass[11pt]{article}
\begin{document}
\begin{description}
\item[First] This is my first item. I don't have
much to say about it but I will rave on anyway.

\item[Second] Next one.
\end{description}
\end{document}
```

Lists

- itemize, enumerate, and description are useful listing environments.
- Always let LATEX automatically generate your numbers. It avoids errors.

What you get

First This is my first item. I don't have much to say about it but I will rave on anyway.

Second Next one.

26

Exercise 2

My second document

Your name

The best things in life are free. Although $\mbox{\sc E}^{\gamma}\mbox{\sc E}^{\gamma}\mbox{\sc E}_{\gamma}$ costs 0, it can help me with

- my thesis
- working papers
- seminars
- letters to my Mum

To get the most out of it, I must

- 1. read a manual
- 2. use it regularly
- 3. put in some effort to learn the commands.
 - (a) mathematics
 - (b) sectioning
 - (c) bibliography
 - (d) graphics

Exercise 2

What you type

\ 1C++ + 1

```
\documentclass[11pt]{article}
\setlength{\parindent}{0cm}
\setlength{\parskip}{1.3ex}
\begin{document}
\title{My second document}
\author{Your name}
\date{}
\maketitle
The best things in life are free. Although \LaTeX\ costs \$0,
it can help me with
\begin{itemize}
\item my thesis
\item working papers
\item seminars
\item letters to my Mum
```

Exercise 2

What you type

```
\end{itemize}
To get the most out of it, I must
\begin{enumerate}
\item read a manual
\item use it regularly
\item put in some effort to learn the commands.
\begin{enumerate}
\item mathematics
\item sectioning
\item bibliography
\item graphics
\end{enumerate}
\end{enumerate}
```

\LaTeX\ will never guess what you wanted! It waits for your commands.

Outline

- What is LATEX?
- **Getting started**
- Document style
- Breaks and spaces
- **Fancy characters**
- **Mathematics**
- Tables and graphics
- **Cross-references and bibliographies**
- **User-defined commands**
- Final tips

What you type

```
\documentclass[a4paper,11pt] {article}
\usepackage{natbib,amsmath,paralist,hyperref,graphicx}
\usepackage[a4paper,text={16cm,24cm},centering] {geometry}
\setlength{\parindent}{0cm}
\setlength{\parskip}{1.3ex}
\begin{document}
```

• article is the document class.

28

What you type

```
\documentclass[a4paper,11pt]{article}
\usepackage{natbib,amsmath,paralist,hyperref,graphicx}
\usepackage[a4paper,text={16cm,24cm},centering]{geometry}
\setlength{\parindent}{0cm}
\setlength{\parskip}{1.3ex}
\begin{document}
```

- article is the document class.
- Use report for a thesis and article for a paper.

What you type

```
\documentclass[a4paper,11pt]{article}
\usepackage{natbib,amsmath,paralist,hyperref,graphicx}
\usepackage[a4paper,text={16cm,24cm},centering]{geometry}
\setlength{\parindent}{0cm}
\setlength{\parskip}{1.3ex}
\begin{document}
```

- article is the document class.
- Use report for a thesis and article for a paper.
- 11pt is specified font size. Default is 10pt.

What you type

```
\documentclass[a4paper,11pt]{article}
\usepackage{natbib,amsmath,paralist,hyperref,graphicx}
\usepackage[a4paper,text={16cm,24cm},centering]{geometry}
\setlength{\parindent}{0cm}
\setlength{\parskip}{1.3ex}
```

\begin{document}

- article is the document class.
- Use report for a thesis and article for a paper.
- 11pt is specified font size. Default is 10pt.
- Packages are very useful for providing new functionality and for changing the document style and layout.

Useful packages

- **natbib** for bibliographies.
- **amsmath** for additional mathematics formatting commands.
 - paralist for additional control over itemized and enumerated lists.
- hyperref to put hyperlinks in documents
 graphicx to include graphics files in documents.
 geometry to control the page dimensions and text
- mathpazo to use the Palatino font.

dimensions.

times to use the Times Roman font.

Page style

```
\pagestyle{...}
```

plain Page header is empty. Footer contains centered page number.

empty Header and footer empty.

headings Footer empty. Header contains page number and either name of chapter, section or subsection

fancy Must use package **fancyhdr**. Allows very flexible control over the header and footer.

Outline

- What is LaTeX?
- **Getting started**
- Document style
- Breaks and spaces
- **Fancy characters**
- **Mathematics**
- Tables and graphics
- **Cross-references and bibliographies**
- **User-defined commands**
- Final tips

Hard space: ~

- Hard space: ~
- Normal space \

- Hard space: ~
- Normal space \
- Normal space after period \@.

- Hard space: ~
- Normal space \
- Normal space after period \@.
- Line breaks: \\ or \newline

- Hard space: ~
- Normal space \
- Normal space after period \@.
- Line breaks: \\ or \newline
- Page breaks: \newpage or \pagebreak or \clearpage

- Hard space: ~
- Normal space \
- Normal space after period \@.
- Line breaks: \\ or \newline
- Page breaks: \newpage or \pagebreak or \clearpage
- Some horizontal space: \hspace{2cm} or \hspace*{2cm}

- Hard space: ~
- Normal space \
- Normal space after period \@.
- Line breaks: \\ or \newline
- Page breaks: \newpage or \pagebreak or \clearpage
- Some horizontal space: \hspace{2cm} or \hspace*{2cm}
- Some vertical space: \vspace{2cm} or \vspace*{2cm}

Columns

• Load the **multicol** package

Columns

- Load the multicol package
- For two columns, use \begin{multicols}{2} \end{multicols}

Outline

- What is LaTeX?
- **Getting started**
- **Document style**
- Breaks and spaces
- Fancy characters
- Mathematics
- Tables and graphics
- **Cross-references and bibliographies**
- **User-defined commands**
- Final tips

Accents

Accents

```
\'e é
\'e è
\^e ê
\"e ë
```

\~n ñ

Quotation marks

Always use ' and '

Accents

```
\'e é
\'e è
\^e ê
\"e ë
```

\~n ñ

Quotation marks

- Always use ' and '
- Use '' and '' for double quotes.

Accents

```
\'e é
\'e è
\^e ê
\"e ë
```

\~n ñ

Quotation marks

- Always use ' and '
- Use '' and '' for double quotes.
- Never use ".

Hyphens: socio-economic -

En-dash: 1997–1998 ---

Em-dash: Make no mistake—dashes ---

are important.

Dots: "In the beginning ..." \dots

 $1+2+\cdots+n$ \dots (assuming **amsmath** package loaded)

Outline

- What is LATEX?
- **Q** Getting started
- Ocument style
- Breaks and spaces
- **5** Fancy characters
- Mathematics
- Tables and graphics
- Cross-references and bibliographies
- User-defined commands
- 10 Final tips

Reminder ...

• Use \$...\$ for inline mathematics.

Reminder ...

- Use \$...\$ for inline mathematics.
- Use \[... \] for displayed mathematics without numbering.

Reminder . . .

- Use \$...\$ for inline mathematics.
- Use \[... \] for displayed mathematics without numbering.
- Use

```
\begin{equation}...\end{equation}
for displayed mathematics with
numbering.
```

```
Superscripts:
                x^2
Subscripts:
                x n
Integrals:
               \int_a^b
               \frac{1}{2}
Fractions:
Greek letters:
                \alpha\beta\Gamma
                                              \alpha\beta\Gamma
Infinity:
                \infty
                                              \infty
Square root:
                \sqrt{2}
Summation:
                \sum_{i=1}^n
                \prod_{\ell=1}^\infty
Products:
Hats:
                \hat{y}
Tilde:
                \tilde{y}
Bar:
                \bar{x}
                                              \bar{x}
```

Combination:

 $\frac{-b\pm\sqrt\{b^2-4ac\}}{2a}$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Exercise 3

Please type this

$$e^{i\pi} + 1 = 0 \tag{1}$$

$$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2} dx = 1$$
 (2)

$$\int_{1}^{\sqrt[3]{3}} z^{2} dz \times \cos\left(\frac{3\pi}{9}\right) = \log(\sqrt[3]{e}) \tag{3}$$

Exercise 3

What you type

```
\documentclass[11pt]{article}
\begin{document}
\begin{equation}
e^{i\pi}+1=0
\end{equation}
\begin{equation}
             \frac{1}{\sigma \left(1\right)} \int_{-\pi \left(1\right)} \int_
                           e^{-\frac{1}{2}(x-\mu)^2/\frac{1}{2}}dx = 1
\end{equation}
\begin{equation}
\int_{1}^{s} |x^2| dx \leq 1
                                       \cos\left(\frac{3\pi}{9}\right) = \log(\sqrt{3}{e})
\end{equation}
```

Delimiters

```
\left(\frac{3}{9}\right)
\left(\frac{3}{9}\right)
\left(\frac{3}{9}\right)
```

Relations

```
\le
                  \leq \geq \neq
\ge
\ne
\sim
\times
                  X
\pm
\rightarrow
```

Matrices and vectors

Matrices

(with the **amsmath** package)

```
\begin{bmatrix}
3 & 4\\
5 & 2
\end{bmatrix}
```

Matrices and vectors

Matrices

(with the **amsmath** package)

```
\begin{bmatrix}
3 & 4\\
5 & 2
\end{bmatrix}
```

Bold symbols

```
(with the bm package)
```

```
\bm{x} x.
```

Text in equations

• Use \text. For example Y \sim \text{Poisson}(\lambda) $Y \sim \text{Poisson}(\lambda)$

Text in equations

- Use \text. For example Y \sim \text{Poisson}(\lambda) $Y \sim \text{Poisson}(\lambda)$
- Some functions are predefined including \sin, \cos, \log, \exp . For example:

 $\log(x)$ looks better than $\log(x)$.

Aligned and multiline equations

Use the align environment from the amsmath package):

$$y_t = \mathbf{w}' \mathbf{x}_{t-1} + \varepsilon_t \tag{1}$$

$$\mathbf{x}_t = \mathbf{F} \mathbf{x}_{t-1} + \mathbf{g} \varepsilon_t \tag{2}$$

```
\begin{align} $y_t &= \sum_{x}^{t-1} + \m_{x}_{t-1} + \m_{x}_t &= \sum_{t-1} + \m_{g}^{t-1} + \m_{g}
```

Aligned and multiline equations

Use the multline environment if no alignment required.

```
\begin{multline}
v_{n+h|n} = \sigma^2\bigg[1 + \alpha^2(h-1) + \frac{\beta\phi h}{
  \left\{2\alpha(1-\phi) + \beta\phi \right\} \\
  - \frac{\beta\phi(1-\phi^h)}{(1-\phi)^2(1-\phi^2)}
  \left\{ 2\alpha(1-\phi^2) + \beta\phi(1+2\phi-\phi^h)\right\}\\
  + \gamma h_m(2\alpha+\gamma) +
  \frac{2\beta\gamma\phi}{(1-\phi)(1-\phi^m)}
  \left\{h_m(1-\phi^m) - \phi^m(1-\phi^{m})\right\}\bigg]\,
\end{multline}
```

Aligned and multiline equations

Use the multline environment if no alignment required.

$$\begin{aligned} v_{n+h|n} &= \sigma^2 \left[1 + \alpha^2 (h-1) + \frac{\beta \phi h}{(1-\phi)^2} \left\{ 2\alpha (1-\phi) + \beta \phi \right\} \right. \\ &- \frac{\beta \phi (1-\phi^h)}{(1-\phi)^2 (1-\phi^2)} \left\{ 2\alpha (1-\phi^2) + \beta \phi (1+2\phi-\phi^h) \right\} \\ &+ \gamma h_m (2\alpha + \gamma) + \frac{2\beta \gamma \phi}{(1-\phi)(1-\phi^m)} \left\{ h_m (1-\phi^m) - \phi^m (1-\phi^{mh_m}) \right\} \right]. \end{aligned}$$

Cases

```
y = \left\{\begin{array}{11}
      \frac{x^{\lambda} - 1} \& \text{if } \
      \log(x) \& \text{if } \
      \end{array}\right.
```

$$y = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda > 0; \\ \log(x) & \text{if } \lambda = 0. \end{cases}$$

Exercise 4

Let $\mu_t = \hat{y}_t = \ell_{t-1} + b_{t-1}$ denote the one-step forecast of y_t assuming we know the values of all parameters. Also let $\varepsilon_t = y_t - \mu_t$ denote the one-step forecast error at time t. Then

$$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t, \tag{1}$$

and so we can write

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \tag{2}$$

$$b_t = b_{t-1} + \beta^* (\ell_t - \ell_{t-1} - b_{t-1}) = b_{t-1} + \alpha \beta^* \varepsilon_t.$$
 (3)

We simplify the last expression by setting $\beta = \alpha \beta^*$. The three equations above constitute a state space model underlying Holt's method. We can write it in standard state space notation by defining the state vector as $\mathbf{x}_t = (\ell_t, b_t)'$ and expressing (1)–(3) as

$$y_t = \begin{bmatrix} 1 & 1 \end{bmatrix} \boldsymbol{x}_{t-1} + \varepsilon_t \tag{4}$$

$$\boldsymbol{x}_{t} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \boldsymbol{x}_{t-1} + \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \varepsilon_{t}. \tag{5}$$

The model is fully specified once we state the distribution of the error term ε_t . Usually we assume that these are independent and identically distributed, following a Gaussian distribution with mean 0 and variance σ^2 , which we write as $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

Outline

- What is LaTeX?
- **Getting started**
- Document style
- Breaks and spaces
- Fancy characters
- **Mathematics**
- **Tables and graphics**
- **Cross-references and bibliographies**
- **User-defined commands**
- Final tips

```
What you type
```

```
\documentclass[11pt]{article}
\begin{document}
\begin{tabular}{lrc}
\hline
Country & GDP (pc) & Exchange rate \\
\hline
Australia & US\$30,666 & \$0.96 \\
Burma & US\$2,029 & \$0.16 \\
New Zealand & US\$26,725 & \$0.78 \\
\hline
\end{tabular}
\end{document}
```

What you get

Country	GDP (pc)	Exchange rate
Australia	US\$30,666	\$0.96
Burma	US\$2,029	\$0.16
New Zealand	US\$26,725	\$0.78
•		

What you type

```
\documentclass[11pt]{article}
\usepackage{multirow}
\begin{document}
\begin{tabular}{|1|1|1|}
\hline
\multicolumn{3}{|c|}{\textbf{Team sheet}}
                                                       \\ \hline
                                                       \\ \hline
Goalkeeper
                            & GK
                                      & Paul Robinson
\multirow{4}{*}{Defenders}
                            & LB
                                      & Lucus Radebe
                                                       11
                            & DC
                                      & Michael Duberry \\
                                      & Dominic Matteo \\
                            & DC
                            & R.B
                                      & Didier Domi
                                                        \\ \hline
\multirow{3}{*}{Midfielders} & MC
                                      & David Batty
                                                       11
                                      & Eirik Bakke
                            & MC
                            & MC
                                      & Jody Morris \\ \hline
                                                       \\ \hline
Forward
                            & FW
                                      & Jamie McMaster
\multirow{2}{*}{Strikers}
                                      & Alan Smith
                            & ST
                                                        11
                                                        \\ \hline
                            & ST
                                      & Mark Viduka
\end{tabular}
\end{document}
```

What you get

Team sheet						
Goalkeeper	GK	Paul Robinson				
Defenders	LB	Lucus Radebe				
	DC	Michael Duberry				
	DC	Dominic Matteo				
	RB	Didier Domi				
Midfielders	MC	David Batty				
	MC	Eirik Bakke				
	MC	Jody Morris				
Forward	FW	Jamie McMaster				
Strikers	ST	Alan Smith				
	ST	Mark Viduka				

• \hline for horizontal lines

- \hline for horizontal lines
- cline{3-4} for a horizontal line spanning columns 3 and 4 only.

- \hline for horizontal lines
- cline{3-4} for a horizontal line spanning columns 3 and 4 only.
- \multicolumn for spanning multiple columns.

- \hline for horizontal lines
- cline{3-4} for a horizontal line spanning columns 3 and 4 only.
- \multicolumn for spanning multiple columns.
- \multirow for spanning multiple rows.

Exercise 5

Please create the following table.

		$\alpha = 0.5$			$\alpha = 0.8$		
	h	γ_1	γ_2		γ_1	γ_2	
$\sigma = 0.05$	1	0.15	0.04		0.15	0.04	
	5	0.21	0.08		0.28	0.14	
	10	0.27	0.13		0.39	0.28	
$\sigma = 0.10$	1	0.30	0.16		0.30	0.16	
	5	0.43	0.33		0.58	0.60	
	10	0.55	0.55		0.81	1.19	

\end{tabular} \end{center}

Exercise 5

```
\begin{center}
\begin{tabular}{lrccccc}
\hline
     & \multicolumn{2}{c}{$\alpha = 0.5$} & \multicolumn{2}{c}{$\alpha = 0.8$} \
\cline{3-4}\cline{6-7}
               & $h$ & $\gamma_1$ & $\gamma_2$ & & $\gamma_1$ & $\gamma_2$ \\
\hline
\sigma = 0.05 & 1
                  & 0.15
                                & 0.04
                                             & & 0.15
                                                           & 0.04 \\
               & 5 & 0.21
                                 & 0.08
                                             & & 0.28
                                                           & 0.14 \\
               & 10 & 0.27
                                 & 0.13
                                                           & 0.28 \\[0.2cm]
                                             & & 0.39
$\sigma = 0.10$ & 1 & 0.30
                                & 0.16
                                             & & 0.30
                                                           & 0.16 \\
               & 5 & 0.43
                                                           & 0.60 \\
                                & 0.33
                                             & & 0.58
               & 10 & 0.55
                                 & O.55
                                             & & 0.81
                                                           & 1.19 \\
\hline
```

 Larger tables should be "floated" to the best nearby location.

- Larger tables should be "floated" to the best nearby location.
- begin{table}[htb] means put it "here", or "top of page" or "bottom of page", trying positions in the order stated.

- Larger tables should be "floated" to the best nearby location.
- \begin{table}[htb] means put it "here", or "top of page" or "bottom of page", trying positions in the order stated.
- Other possibilities are p for "whole page" and ! meaning "ignore the constraints on where to place figures".

What you type

```
\begin{table}[htb]
\centering
\begin{tabular}{|11|}
\hline
A & B \\
\hline
\end{tabular}
\caption{This is a very boring floating table.}
\end{table}
```

What you type

```
\begin{table}[htb]
\centering
\begin{tabular}{|11|}
\hline
A & B \\
\hline
\end{tabular}
\caption{This is a very boring floating table.}
\end{table}
```

What you get

A B

Table 1: This is a very boring floating table.

• You need the **graphicx** package.

- You need the **graphicx** package.
- Main command: \includegraphics{file}

- You need the graphicx package.
- Main command: \includegraphics{file}
- The file should be a jpg, pdf or png file if you use pdflATFX

- You need the graphicx package.
- Main command: \includegraphics{file}
- The file should be a jpg, pdf or png file if you use pdflATFX
- The file should be a eps file if you use LATEX.

- You need the graphicx package.
- Main command: \includegraphics{file}
- The file should be a jpg, pdf or png file if you use pdflATFX
- The file should be a eps file if you use LATEX.
- Controlling size: \includegraphics[width=14cm]{file}

- You need the graphicx package.
- Main command: \includegraphics{file}
- The file should be a jpg, pdf or png file if you use pdflATFX
- The file should be a eps file if you use LATEX.
- Controlling size: \includegraphics[width=14cm]{file}

- You need the graphicx package.
- Main command: \includegraphics{file}
- The file should be a jpg, pdf or png file if you use pdfLATEX
- The file should be a eps file if you use LATEX.
- Controlling size:

```
\includegraphics[width=14cm]{file}
```

What you type

```
\begin{figure}[htb]
\centering
\includegraphics[width=\textwidth]{myfigure}
\caption{Scatterplot of half-hourly electricity demand against temperature.}
\end{figure}
```

Outline

- What is LATEX?
- 2 Getting started
- 3 Document style
- 4 Breaks and spaces
- **5** Fancy characters
- Mathematics
- Tables and graphics
- Cross-references and bibliographies
- User-defined commands
- Final tips

Cross-references

• Use \label{xx} and \ref{xx}.

Cross-references

- Use \label{xx} and \ref{xx}.
- Make sure your \label command comes immediately after the number would have been created. e.g., after \section{...}, or after \begin{equation}, or after \caption{...}.

Cross-references

- Use \label{xx} and \ref{xx}.
- Make sure your \label command comes immediately after the number would have been created. e.g., after \section{...}, or after \begin{equation}, or after \caption{...}.
- Use \pageref{xx} for page numbers. E.g., In Table \ref{tab1} on page \pageref{tab1}.

Table of contents

• Use \tableofcontents

Table of contents

- Use \tableofcontents
- \setlength{tocdepth}{2} controls how many levels of sections appear in the Table of Contents

What you type

```
@ARTICLE{HY02,
  author = {Rob J Hyndman and Qiwei Yao},
  title = {Nonparametric estimation and symmetry tests for
    conditional density functions},
  journal = {Journal of Nonparametric Statistics},
  vear = \{2002\},\
 volume = \{14\},
  pages = \{259-278\},
  number = \{3\},
@BOOK{HKOSO8.
  title = {Forecasting with exponential smoothing: the state
    space approach},
  publisher = {Springer-Verlag},
  address = {Berlin},
  year = \{2008\},\
  author = {Rob J Hyndman and Anne B Koehler and J Keith Ord
    and Ralph D Snyder},
  url = {www.exponentialsmoothing.net}
```

```
What you type
```

```
\documentclass[11pt]{article}
\usepackage{natbib}
\bibliographystyle{chicago}
\begin{document}
In \citet{HY02}, symmetry is discussed. This has nothing
to do with exponential smoothing \citep{HKOSO8}. However,
\citet[p34]{HY02} is a startling result.
\bibliography{example}
\end{document}
```

What you get

In Hyndman and Yao (2002), symmetry is discussed. This has nothing to do with exponential smoothing (Hyndman et al., 2008). However, Hyndman and Yao $(2002, \, p34)$ is a startling result.

References

Hyndman, R. J., A. B. Koehler, J. K. Ord, and R. D. Snyder (2008). Fore-casting with exponential smoothing: the state space approach. Berlin: Springer-Verlag.

Hyndman, R. J. and Q. Yao (2002). Nonparametric estimation and symmetry tests for conditional density functions. *Journal of Nonparametric Statistics* 14(3), 259–278.

Useful bibliography styles

- agsm
- chicago
- apalike
- elsevier
- Many more at http://jo.irisson.free.fr/bstdatabase/

Create a bib file with three entries: a book, a paper and a techreport. Then create a tex file that cites all three. Use a mix of \citet and \citep citation styles.

Outline

- What is LaTeX?
- **Getting started**
- Document style
- Breaks and spaces
- Fancy characters
- Mathematics
- Tables and graphics
- **Cross-references and bibliographies**
- User-defined commands
- Final tips


```
\mbox{\newcommand{\half}{\frac{1}{2}}}
```

```
\newcommand{\half}{\frac{1}{2}} When you type \half you get \frac{1}{2}
```

```
\newcommand{\half}{\frac{1}{2}}
When you type \backslashhalf you get \frac{1}{2}
\newcommand{\y}[2]{\hat{y}_{#1|#2}}
```

```
\newcommand{\half}{\frac{1}{2}}
When you type \half you get \frac{1}{2}
\newcommand{\y}[2]{\hat{y}_{#1|#2}}
When you type y_{n+h} you get \hat{y}_{n+h|n}.
```

Create your own environments

```
What you type
```

```
\documentclass[11pt]{article}
\usepackage{color}
\newenvironment{exercise}{\par
  \textbf{\textcolor{red}{Exercise:}}
  \begin{itshape}}{\end{itshape}}
\begin{document}
\begin{exercise}
If $x=3$ and $y=5$, what is $z$?
\end{exercise}
\end{document}
```

What you get

Exercise: If x = 3 and y = 5, what is z?

 Counters are used to keep track of equations, page numbers, etc. For example, \arabic{page} gives the current page number in arabic numerals.

- Counters are used to keep track of equations, page numbers, etc. For example, \arabic{page} gives the current page number in arabic numerals.
- \newcounter{fred} creates a new counter.

- Counters are used to keep track of equations, page numbers, etc. For example, \arabic{page} gives the current page number in arabic numerals.
- \newcounter{fred} creates a new counter.
- \setcounter{fred}{3} gives fred the value 3.

- Counters are used to keep track of equations, page numbers, etc. For example, \arabic{page} gives the current page number in arabic numerals.
- \newcounter\fred\} creates a new counter.
- \setcounter{fred}{3} gives fred the value 3.
- \addtocounter{fred}{1} adds 1 to the value of fred.

Exercise 7

- (a) Write a command to produce reciprocals. e.g., \recip{7} produces $\frac{1}{7}$.
- (b) Write a new environment for numbered examples with the text in italics and the heading in small caps.

Exercise 7

What you type

```
\newcommand{\recip}[1]{\frac{1}{#1}}
\newcounter{eg}
\setcounter{eg}{0}
\newenvironment{example}{\par\addtocounter{eg}{1}
    \textsc{Example~\arabic{eg}:~}\begin{itshape}}
    {\end{itshape}\par}
```

Outline

- What is LaTeX?
- **Getting started**
- Document style
- Breaks and spaces
- Fancy characters
- **Mathematics**
- Tables and graphics
- **Cross-references and bibliographies**
- **User-defined commands**
- Final tips

Introduction to LATEX Final tips

Where to find out more

• Useful links at www.robhyndman.info/latex

Introduction to LATEX Final tips

- Useful links at www.robhyndman.info/latex
- The best online introduction: www.maths.tcd.ie/ dwilkins/LaTeXPrimer/

Introduction to ATEX Final tips

- Useful links at www.robhyndman.info/latex
- The best online introduction: www.maths.tcd.ie/ dwilkins/LaTeXPrimer/
- The best online reference: sarovar.org/download.php/120/ltxprimer-1.0.pdf

- Useful links at www.robhyndman.info/latex
- The best online introduction: www.maths.tcd.ie/ dwilkins/LaTeXPrimer/
- The best online reference: sarovar.org/download.php/120/ltxprimer-1.0.pdf
- Excellent online tutorials: www.andy-roberts.net/misc/latex/

- Useful links at www.robhyndman.info/latex
- The best online introduction: www.maths.tcd.ie/ dwilkins/LaTeXPrimer/
- The best online reference: sarovar.org/download.php/120/ltxprimer-1.0.pdf
- Excellent online tutorials: www.andy-roberts.net/misc/latex/
- More excellent tutorials: www.tug.org.in/tutorial/

- Useful links at www.robhyndman.info/latex
- The best online introduction: www.maths.tcd.ie/ dwilkins/LaTeXPrimer/
- The best online reference: sarovar.org/download.php/120/ltxprimer-1.0.pdf
- Excellent online tutorials: www.andy-roberts.net/misc/latex/
- More excellent tutorials: www.tug.org.in/tutorial/
- Finding packages: ctan.unsw.edu.au/help/Catalogue/

- Useful links at www.robhyndman.info/latex
- The best online introduction: www.maths.tcd.ie/ dwilkins/LaTeXPrimer/
- The best online reference: sarovar.org/download.php/120/ltxprimer-1.0.pdf
- Excellent online tutorials: www.andy-roberts.net/misc/latex/
- More excellent tutorials: www.tug.org.in/tutorial/
- Finding packages: ctan.unsw.edu.au/help/Catalogue/
- More Math into LATEX by Grätzer (Springer, 2007, 4th ed.)

- Useful links at www.robhyndman.info/latex
- The best online introduction: www.maths.tcd.ie/ dwilkins/LaTeXPrimer/
- The best online reference: sarovar.org/download.php/120/ltxprimer-1.0.pdf
- Excellent online tutorials: www.andy-roberts.net/misc/latex/
- More excellent tutorials: www.tug.org.in/tutorial/
- Finding packages: ctan.unsw.edu.au/help/Catalogue/
- More Math into LaTeX by Grätzer (Springer, 2007, 4th ed.)
- Guide to LTEX by Kopka and Daly (Addison-Wesley, 2004, 4th ed.)

- Useful links at www.robhyndman.info/latex
- The best online introduction: www.maths.tcd.ie/ dwilkins/LaTeXPrimer/
- The best online reference: sarovar.org/download.php/120/ltxprimer-1.0.pdf
- Excellent online tutorials: www.andy-roberts.net/misc/latex/
- More excellent tutorials: www.tug.org.in/tutorial/
- Finding packages: ctan.unsw.edu.au/help/Catalogue/
- More Math into LaTeX by Grätzer (Springer, 2007, 4th ed.)
- Guide to LaTeX by Kopka and Daly (Addison-Wesley, 2004, 4th ed.)
- The <u>PTEX Companion</u> by Mittelbach and Goossens (Addison-Wesley, 2004, 2nd ed.)

Exercise 8

Either ...

• Create your own research paper in LATEX using the tools we have learned.

OR

- Create a document about your own research that includes the following features:
 - An itemized or enumerated list.
 - Inline mathematics.
 - Displayed mathematics.
 - A bibliography.
 - At least one table.
 - At least one figure.