EXAM REDO

EMMANUEL FLORES

Let X be a Hausdorff space. Prove that X is compact if and only of for any open set O in X and any collection of closed sets $\{C_{\alpha}\}_{{\alpha}\in\Lambda}$ such that $\cap_{{\alpha}\in\Lambda}C_{\alpha}\subset O$, then there exist a finite number of the sets C_{α} whose intersection lies in O.

Proof. \Longrightarrow

Let O be an open set in X, and $\{C_{\alpha}\}_{{\alpha}\in\Lambda}$ be a collection of closed sets in X such that $\cap_{{\alpha}\in\Lambda}C_{\alpha}\subset O$. Since the intersection of C_{α} 's in contained in O, by taking complements we have

$$X \setminus O \subset \cup_{\alpha \in \Lambda} (X \setminus C_{\alpha}),$$

but becasue O is closed, its complement is open, and for the same reason; each one of $X \setminus C_{\alpha}$ is open. Now we just found an open cover of the closed set $X \setminus O$, this is $\cup_{\alpha \in \Lambda} (X \setminus C_{\alpha})$. Now, since X is compact, and $X \setminus O$ is closed, it follows that $X \setminus O$ is also compact. Thus there exists a finite subcover

$$\{X \setminus C_{\alpha_1}, \cdots X \setminus C_{\alpha_n}\}$$

of $X \setminus O$, this is

$$X \setminus O \subset (X \setminus C_{\alpha_1}) \cup \cdots \cup (X \setminus C_{\alpha_n}),$$

and taking complements again, we have

$$C_{\alpha_1} \cap \cdots \cap C_{\alpha_n} \subset O$$
.

 \Leftarrow

Now, let's prove the other direction. Let $\{U_{\alpha}\}$ be an open cover of X. Since each one of the U_{α} 's is open, their complement is closed, and even more, their intersection is empty, since the union of all of them covers the whole space X. This is $\cap_{\alpha \in \Lambda} (X \setminus U_{\alpha}) = \emptyset$. On the other hand, the empty set is subset of any set, in particular any open set; so by taking any open set U_{β} from the original cover, we have $\cap_{\alpha \in \Lambda} (X \setminus U_{\alpha}) \subset U_{\beta}$, and by assumption, there exist finitely many sets $X \setminus U_{\alpha_1} \cdots X \setminus U_{\alpha_n}$ such that

$$(X \setminus U_{\alpha_1} \cap \cdots \cap (X \setminus U_{\alpha_n})) \subset U_{\beta},$$

and taking the complements back again, we have

$$X \setminus U_{\beta} \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$$

and from this it follows that $X = U_{\beta} \cup (X \setminus U_{\beta}) \subset$, this is we have a finite subsocer of X, thus X is compact. \square

Date: November 25, 2024.