Série 10 Thermodynamique Calorimétrie (MiMo21)

Donner l'expression littérale avant de passer à l'application numérique.

Exercice 1

Une bille d'acier de masse m_1 = 80 g possède une température initiale θ_1 =200°C. Celle-ci est plongée dans une enceinte adiabatique contenant un volume d'eau V_2 = 0,25 L à la température T_2 = 290 K. Les capacités calorifiques sont pour l'acier Cp_1 = 450 J.K⁻¹.kg⁻¹, et pour l'eau Cp_2 = 4190 J.K⁻¹.kg⁻¹ de masse volumique ρ = 1g.cm⁻³. Quelle est la température finale lorsque l'équilibre thermique est atteint ?

Exercice 2

Un calorimètre contient 100g d'eau à 20°C. On ajoute 100g d'eau à 50°C.

- 1- Quelle serait la température d'équilibre si on néglige la capacité thermique du calorimètre.
- 2- La température d'équilibre observée est de 32°C. Calculer la capacité du calorimètre
- 3- Dans ce calorimètre contenant 100g d'eau à 15°C, on plonge un échantillon métallique de masse 25g sortant d'une étuve à 95°C. La température d'équilibre est de 16.7 °C. En déduire la capacité thermique du métal.

On donne : $C_{eau} = 4.18 \text{kJkg}^{-1} \text{K}^{-1}$.

Exercice 3 Les questions 1, 2 et 3 sont indépendantes

- 1- On place 50 g d'eau dans un calorimètre. Au bout d'un certain temps la température lue est de 20 °C. On y ajoute 50 g d'eau à 30 °C. La température finale est de 23 °C. Calculer la capacité de ce calorimètre. La capacité massique de l'eau est $C_e = 4.10^3 J.kg^{-1}.K^{-1}$
- **2-** Dans un calorimètre de capacité 200 J.K⁻¹ contenant 250g d'eau à 20°C, on introduit un bloc de Plomb de masse m_p = 300 g et qui se trouve à la température de 113°C. On mesure la température d'équilibre qui est de 23°C. Calculer la capacité massique du Plomb. On donne : C_e =4.10³J.kg⁻¹.K⁻¹
- **3-** Calculer la quantité de chaleur nécessaire pour convertir 10g de glace à -20°C en liquide à 20°C.

On donne:

Capacité massique de l'eau : $Ce = 4.10^3 J.kg^{-1}.K^{-1}$ Chaleur latente de fusion de la glace $L_f = 335.10^3 J.kg^{-1}$ Capacité massique de la glace $Cg = 2.10^3 J.kg^{-1}.K^{-1}$

A. Zellagui