Математический анализ

5 октября 2022 г.

Повторение

Линейные и нормированные пространства

L – линейное пространство

$$\|\cdot\|$$
 – норма

$$\|\alpha x\| = |\alpha| \|x\|, \forall \alpha \in \mathbb{R}(\mathbb{C}), x \in L$$

Нормированное пространство

$$||x + y|| \le ||x|| + ||y||$$

 $||x|| = 0 \Rightarrow x = 0$

Замечание. Норма всегда порождает метрику (нормированное ⇒ метрическое).

Замечание. ∀ конечномерное пространство полное.

Определение. Полное нормированное пространство = банохово.

Пример 1. Неполное нормированное пространство:

$$C([0;1]), \quad ||f||_{<} = \int_{0}^{1} |f(x)| dx$$

$$\int_{0}^{\frac{1}{2}} f_{n}(x) dx \to 0 \quad \exists N : n > N < \frac{\varepsilon}{2}$$

$$\int_{\frac{1}{2}}^{1} (1 - f_{n}(x)) dx \to 0 \quad \exists N : n > N < \frac{\varepsilon}{2}$$

$$\forall \varepsilon \ \exists N \ \forall n, m > \int_{0}^{1} |f_{n}(x) - f_{m}(x)| dx < \varepsilon$$

$$L(0,1) = \{f : [0,1] \to \mathbb{R} : \int_{0}^{1} |f_{n}(x)| dx < \infty\}$$

Линейные операторы

Определение. Линейный оператор

$$A(\alpha x+\beta y)=\alpha Ax+\beta Ay$$
 $A:L\to M$, где $M=\mathbb{R}\setminus\mathbb{C}, A$ - функционал(?)

Замечание. Операторы из \mathbb{R}^m в $\mathbb{R}^n \leftrightarrow$ матрицы $\mathrm{Mat}^{n,m}$

$$\|A\|=\sup_{x\neq 0} \frac{\|Ax\|_M}{\|x\|_L}, \quad M,L$$
 - нормированные пространства

Пример 2. Неограниченный оператор:

$$L = C'([0,1]), \quad M = C([0,1]) \quad ||f|| = \sup_{[0,1]} |f|$$

$$||f|| = \max_{[0,1]} |f|$$

$$(Af)(x) = f'(x)$$

$$f_n(x) = x^n \quad ||f_n|| = 1 \ \forall n \quad Af_n = f'_n = nx^{n-1} \quad ||Af|| = n$$

$$\frac{\|Af_n\|}{\|f_n\|} \xrightarrow[n \to \infty]{} \infty$$

Предложение.

$$\|A\| = \sup_{x \in B_1(x) \backslash \{0\}} \|Ax\| = \sup_{a \in S_1(0)} \|Ax\| = \sup_{x \in B_1(0) \backslash \{x\}} = \inf\{c : \|Ax\| \le c \|x\|\} \quad \forall x \in L$$

 $B_r(x) = \{y \in L : \|y - x\| < r\}$ – открытый шар радиуса r

 $B_r[x] = \{y \in L : \|y - x\| \le r\}$ – замкнутый шар радиуса r

 $\bar{B}_r(x) \neq B_r[x]$, где $\bar{B}_r(x)$ – замыкание

 $S_r(x) = \{ y \in L : ||y - x|| = r \} - c\phi epa$

Предложение. $A \in B(L) \Leftrightarrow A$ непр. в точке $0 \Leftrightarrow A$ непр. в $\forall x \in L \Leftrightarrow A$ равн. непр. на L.

Замечание.

$$||A_1 \cdot A_2|| \le ||A_1|| \cdot ||A_2||$$

$$A: \mathbb{R}^n \to \mathbb{R}^n, \ A \in \mathrm{Mat}^{n,n} \quad \|A\| \leq \sqrt{\sum_{i,k=1}^n |a_{i,k}^2|}$$

Определение. Матрицы $\|\cdot\|$ и $|\cdot|$ эквивалентны, если $\exists c_1, c_2 > 0$ т. ч.

$$\forall x \in L \ c_1 ||x|| \le |x| \le c_2 ||x_2||$$

Тогда
$$||A|| \sim \sum_{i,k=1}^{n} |a_{ik}| \sim \max_{i,k \in \{1,\dots,n\}} |a_{ik}| \sim \sqrt{\sum_{i,k=1}^{n} |a_{ik}|^2}$$

Замечание.

$$A: \mathbb{R}^n \to \mathbb{R} \ \exists a \in \mathbb{R}^n \ \forall x \in \mathbb{R}^n : Ax = (a; x) \quad \|A\| \underset{B(\mathbb{R}^n \mathbb{R})}{=} \|a\|_{\mathbb{R}^n}$$

$$A: \mathbb{R} \to \mathbb{R}^n \ \exists a \in \mathbb{R}^n \ \exists x \in \mathbb{R}: Ax = a \cdot x \quad \|A\| \underset{B(\mathbb{R}, \mathbb{R}^n)}{=} \|a\|_{\mathbb{R}^n}$$

Обратный оператор

 $A:L \to M$ – линейный оператор

- 1. $\exists A: M \to L : AB = I_M$ ед. оператор в пространстве M $B \leftrightharpoons$ правый обратный
- 2.
 $\exists C: M \to L \; : \; CA = I_l$ ед. оператор в пространстве
 L $C \leftrightarrows$ левый обратный
- 3. \exists оба и равны, ьл $A^{-1} \leftrightharpoons$ обратный оператор

$$A \in \operatorname{Mat}^n : \exists A^{-1} \Leftrightarrow \det A \neq 0 \Leftrightarrow \operatorname{Ker} A = \{0\} \Leftrightarrow \cdots \Leftrightarrow \operatorname{rank} A = n$$

Теорема 1. $A \in B(\mathbb{R}^n), \exists A^{-1}, B \in B(\mathbb{R}^n), \|B - A\| < \frac{1}{\|A^{-1}\|}$ Тогда B обратим,

$$||B^{-1}|| \le \frac{1}{\left\|\frac{1}{A^{-1}}\right\| - ||B - A||}, ||B^{-1} - A^{-1}|| \le \frac{||A^{-1}|| \cdot ||B - A||}{\left\|\frac{1}{A^{-1}}\right\| - ||B - A||}$$

Доказательство. $x \in \mathbb{R}^n$

$$\|Bx\| = \|Ax - (A - B)x\| \ge \|Ax\| - \|(B - A)x\| \ge \frac{\|x\|}{\|A^{-1}\|} - \|B - A\| \cdot \|x\| = (\frac{1}{\|A^{-1}\|} - \|B - A\| \|x\|)$$

Так как:

$$||Ax|| \ge \frac{||x||}{||A^{-1}||} \quad x = (A^{-1})(Ax) \quad ||x|| \le ||A^{-1}|| \cdot ||Ax||$$

$$Bx = 0 \Rightarrow ||x|| = 0 \Rightarrow x = 0 \quad \text{Ker } B = \{0\} \Rightarrow \exists B^{-1}$$

$$y = Bx$$

$$x = B^{-1}y \quad ||y|| \ge \left(\frac{1}{||A^{-1}||} - ||B - A||\right) ||B^{-1}y||, \ \forall y \in \mathbb{R}^n$$

$$\Rightarrow ||B^{-1}|| \le \frac{1}{\frac{1}{||A^{-1}||} - ||B - A||}$$

$$B^{-1}A^{-1} = B^{-1}(I - BA^{-1}) = B^{-1}(A - B)A^{-1}$$

$$||B^{-1} - A^{-1}|| \le \frac{||A^{-1}|| \cdot ||B - A||}{\frac{1}{||A^{-1}||} - ||B - A||}$$

Замечание.

- 1. Множество операторов открыто
- 2. Отображение $A \mapsto A^{-1}$ непрерывно

4

Дифференцирование обратной функции

$$D \subset \mathbb{R}^n$$
 $f: D \to \mathbb{R}^n$ $x \in \text{Int } D \quad \exists A \in B(\mathbb{R}^n.\mathbb{R})$

Определение. Если $f(x+h) = f(x) + Ah + o(\|h\|)$, $h \to 0$, тогда говорят A - npouseoдная f в точке <math>x.

Рассмотрим
$$f^{-1} \circ f = \mathrm{id}_D$$

Продифференцируем : $(f^{-1})'(\underbrace{f(x_0)}) \cdot f'(x_0) = I$

Пусть теперь есть функция на открытом множестве: D открыто $f \in C'(D, \mathbb{R}^n)$ $x_0 \in D$ $f'(D_0)$ обратима

Пример 3.

1.
$$f(x,y) = \begin{pmatrix} e^x \cos y \\ e^x \sin y \end{pmatrix}$$
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$f'(x,y) = \begin{pmatrix} e^x \cos y - e^x \sin y \\ e^x \sin y + e^x \cos y \end{pmatrix}$$

2.
$$n=1$$
 $f\in C^1(D,\mathbb{R})$ $f'(x_0)\neq 0$ $f\big|_U$ – биекция между U и V

$$\exists (f^{-1})'(y) = \frac{1}{f(f^{-1}(y))} \quad f \in C^1(U, V)$$

Теорема 2. $D \subset \mathbb{R}^n$ открыто, $f \in C^1(D, \mathbb{R}^n)$ $x_0 \in D$, $f^{-1}(x_0)$ – обратимая матрица Tогда \exists окрестность $x_0, U \subset D$ V := f(U) открыто $u f|_U$ – биекция между $U \ u \ V, f^{-1} \in C^1(V, U)$

$$(f^{-1})'(f(x_0)) = (f'(x_0))^{-1}, \ \forall x \in U \quad f'(x_0) \in I$$

Доказательство.

1. Пусть
$$f'(x_0) = I$$
. При x , близких к $x_0, f(x) \neq f(x_0)$

$$f'(x) = f(x_0) + (x - x_0)o(||x - x_0||)$$

$$\frac{\|f(x) - f(x_0)\|}{x - x_0} = \frac{\|x - x_0\|}{\|x - x_0\|} + o(1), \ x \to x_0$$

 \exists окрестность, в которой $\|o(1)\|<\frac{1}{2}\Rightarrow f(x)-f(x_0)\neq 0$

2.
$$f \in C^1(D, \mathbb{R}^n) \Rightarrow f'(x) \xrightarrow[x \to x_0]{} I$$

$$\exists r > 0 \ x_0 : \|f'(x) - I\| < \frac{1}{2}$$
 для $\forall x \in B_r(x_0)$

$$K = B_{\frac{r}{2}}[x_0] \subset B_r(x_0)$$

3.
$$g(x) = f(x) - x$$

$$g'(x) - f'(x) - I \quad ||g'(x)|| < \frac{1}{2}, \ x \in K$$

$$||g(x_1) - g(x_2)|| \le \frac{1}{2} ||x_1 - x_2||$$
 (т. Лагранжа)

$$||f(x_1)-f(x_2)-(x_1-x_2)|| \leq \frac{1}{2}||x_1-x_2|| \Rightarrow ||f(x_1)-f(x_2)|| \leq \frac{3}{2}||x_1-x_2|| \quad \text{(нер-во треуг.)}$$
$$||f(x_1)-f(x_2)|| \leq C - ||x_1-x_2||$$

f – биекция из K в f(K)

$$f^{-1}$$
 – из $f(K)$ в K непр.

4. $\delta(K)$ компактно

$$||f(\cdot) - f(x_0)||_{\geq 0} \in C(\delta(K), \mathbb{R}), \ x_0 \notin \delta(K)$$

Если
$$\inf_{x \in \delta(K)} \|f(x) - f(x_0)\| = 0$$
, то $\exists x' \in \delta(K) : f(x') = f(x_0)$.

Это означало бы, что $x' = x_0 \in \delta(K)$ (т. к. $f|_K$ биекция)

Значит,
$$\inf_{x \in \delta(K)} \|f(x) - f(x_0)\| > 0$$
. $\exists d > 0 \ B_d(f(x_0) \cap f(\delta(K))) = \emptyset$

5.
$$V = B_{\frac{r}{2}}(f(x_0))$$

$$x \in \delta(K), \ y \in V$$

$$||f(x) - y|| = ||\underbrace{f(x) - f(x_0)}_{\|\cdot\| > d} - \underbrace{(y - f(x_0))}_{\|\cdot\| < \frac{d}{2}}|| > d - \frac{d}{2} = \frac{d}{2}$$

$$h_y(x) = ||f(x) - y||^2 \in C^1(K, \mathbb{R}_+)$$

$$x \in \delta(K)$$
 $h_y(x) > \frac{d^2}{4}$

$$x = x_0$$
 $h_y(x) = ||f(x_0) - y||^2 < \frac{d^2}{4}$

$$\Rightarrow x_y \not\in \delta(K), \ x_y \in \operatorname{Int} K$$

$$h'_y(x_y) = (f(x) - y, f(x) - y)'_{|_{x=x_y}} = 2(f(x) - y)^T \cdot f'(x)|_{x=x_y} = 0$$

$$V \subset f(K) \Rightarrow f(x_y) = y \Rightarrow y \in f(K)$$

6.
$$x \in U$$

$$\underbrace{\frac{f(x+h)-f(h)}{y+k}-\frac{f(h)}{y}}_{y}=f'(x)h+\varphi(x,h) \qquad \frac{\|\varphi(x,h)\|}{\|h\|} \xrightarrow{\|h\|\to 0} x$$

$$\underbrace{\frac{\frac{1}{2}}{\frac{1}{2}} \frac{y}{y+k}}_{k} = f'(x)$$

$$\underbrace{x=f^{-1}(y)}_{x+h=f^{-1}(y+k)}$$

$$k=f^{-1}(x)\cdot (f^{-1}(y+k)-f^{-1}(y))+\varphi(f^{-1}(y,h))$$

$$\underbrace{\left(\text{требовали в п. } 2:\|f'(x)-I\|<\frac{1}{2}\Rightarrow \exists (f'(x))^{-1}\right)}_{=o(\|k\|),\ \|k\|\to 0}$$

$$f^{-1}(y+k)=f^{-1}(y)+(f'(x))^{-1}\cdot k-\underbrace{\left(f'(x)\right)^{-1}\cdot \varphi(f^{-1}(y),h)}_{=o(\|k\|),\ \|k\|\to 0}$$

$$(*)\left(\frac{\|(f(x))^{-1}\cdot \varphi(f^{-1}(y),h)\|}{\|k\|}\right)\leq \frac{\|(f(x))^{-1}\|\cdot \|\varphi(f^{-1}(y),f^{-1}(y+k)-f^{-1}(y))\|}{\|k\|}$$

$$\underbrace{\frac{1}{2}\underbrace{\|x_1-x_2\|}_{h}\leq \underbrace{\|f(x_1)-f(x_2)\|}_{h}\leq \frac{3}{2}\underbrace{\|x_1-x_2\|}_{h}}_{=o(\|k-1)}$$

$$(*)\leq \|(f'(x))^{-1}\|\cdot \underbrace{\|\varphi(f^{-1}(y),f^{-1}(y+k)-f^{-1}(y))\|}_{=o(\|k-1)}\cdot \underbrace{\|f^{-1}(y+k)-f^{-1}(y)\|}_{=o(\|k-1)}$$

$$\Rightarrow \exists (f^{-1})'(f(x))=(f'(x))^{-1}$$

7. $(f^{-1})'(y) = (f'(f^{-1}(y)))^{-1}$