Chapter 1

Performance – More Examples

CPU Time Example

Exercise:

A program takes 10 seconds to run on a 2 GHz CPU. The same program on another CPU would take 20% extra clock cycles, yet it finishes in 6 seconds. What is the other CPU clock rate?

CPU-1:

10 sec =
$$\frac{\text{CPU clock cycles}}{2 \times 10^9}$$
 \Rightarrow CPU1 clock cycles = 20×10^9

CPU2 clock cycles =
$$1.2 \times 20 \times 10^9 = 24 \times 10^9$$

$$6 \sec = \frac{24 \times 10^9}{\text{Clock Rate}} \rightarrow \text{CPU2 clock rate} = 4 \times 10^9 \text{ Hz}$$

CPI Example

Ор	Freq	CPI _i	Freq x CPI _i
ALU	50%	1	.5
Load	20%	5	1.0
Store	10%	3	.3
Branch	20%	2	.4
			$\Sigma = 2.2$

.5	.5	.25
.4	1.0	1.0
.3	.3	.3
.4	.2	.4
1.6	2.0	1.95

 How much faster would the machine be if a better data cache reduced the average load time to 2 cycles?

CPU time new = $1.6 \times IC \times CC$ so 2.2/1.6 means 37.5% faster

 How does this compare with using branch prediction to shave a cycle off the branch time?

CPU time new = $2.0 \times IC \times CC$ so 2.2/2.0 means 10% faster

What if two ALU instructions could be executed at once?

CPU time new = $1.95 \times IC \times CC$ so 2.2/1.95 means 12.8% faster