1/28/2025 Tuesday

Announcement

Zoom class

- Digital Image Fundamentals
- Pixel-level processing
 - Intensity transformations

Two types of digital image processing

- Pixel-level processing
 - Same function applied to every pixel
- Patch-level processing (filtering)
 - Same filter applied to sub-regions/patches

Pixel-level processing

Same function applied to every pixel

Example: image thresholding

Image

Lookup table

$$I[I >= Th] = 255$$

 $I[I < Th] = 0$

Visualization

Binary segmentation: Find the threshold

Binary segmentation

 Define the patch-level function (input size)

243	222	171		121	111	85
203	145	137	→	101	193	68
209	132	193		104	66	96

$$f: pa \rightarrow p'$$

Input patch

Output pixel

 Slide through every patc 	h
--	---

30	31	32	3	4
0	6	99	30	30
99	35	33	32	98
0	90	90	36	31
32	31	0	90	90

$$p' = median(pa)$$

 Define the patch-level function (input size)

243	222	171		121	111	85
203	145	137	→	101	193	68
209	132	193		104	66	96

$$f: pa \rightarrow p'$$

Input **patch**

Output pixel

 Slide 	through	every	patch	7
---------------------------	---------	-------	-------	---

30	31	32	3	4
0	6	99	30	30
99	35	33	32	98
0	90	90	36	31
32	31	0	90	90

$$p' = median(pa)$$

 Define the patch-level function (input size)

243	222	171		121	111	85
203	145	137	→	101	193	68
209	132	193		104	66	96

$$f: pa \rightarrow p'$$

Input patch

Output pixel

•	Slide	e thro	ough	every	patc	h
---	-------	--------	------	-------	------	---

30	31	32	3	4
0	6	99	30	30
99	35	33	32	98
0	90	90	36	31
32	31	0	90	90

	32	?	

$$p' = median(pa)$$

 Define the patch-level function (input size)

243	222	171		121	111	85
203	145	137	→	101	193	68
209	132	193		104	66	96

$$f: pa \rightarrow p'$$

Input patch

Output pixel

 Slide through every patch

30	31	32	3	4
0	6	99	30	30
99	35	33	32	98
0	90	90	36	31
32	31	0	90	90

32	32	

$$p' = median(pa)$$

 Define the patch-level function (input size)

243	222	171		121	111	85
203	145	137	→	101	193	68
209	132	193		104	66	96

$$f: pa \rightarrow p'$$

Input **patch**

Output pixel

 Slide through every patch

30	31	32	3	4
0	6	99	30	30
99	35	33	32	98
0	90	90	36	31
32	31	0	90	90

	32	32	32	

$$p' = median(pa)$$

 Define the patch-level function (input size)

243	222	171		121	111	85
203	145	137	→	101	193	68
209	132	193		104	66	96

$$f: pa \rightarrow p'$$

Input **patch**

Output pixel

 Slide t 	through	every	patcl	\bigcap
	_	_		

30	31	32	3	4
0	6	99	30	30
99	35	33	32	98
0	90	90	36	31
32	31	0	90	90

32	32	32	
35			

$$p' = median(pa)$$

 Define the patch-level function (input size)

243	222	171		121	111	85
203	145	137	→	101	193	68
209	132	193		104	66	96

$$f: pa \rightarrow p'$$

Input **patch**

Output pixel

Slide through every patch

30	31	32	3	4
0	6	99	30	30
99	35	33	32	98
0	90	90	36	31
32	31	0	90	90

32	32	32	
35	35		

$$p' = median(pa)$$

 Define the patch-level function (input size)

243	222	171		121	111	85
203	145	137	→	101	193	68
209	132	193		104	66	96

$$f: pa \rightarrow p'$$

Input **patch**

Output pixel

 Slide through e 	very patch
-------------------------------------	------------

30	31	32	3	4
0	6	99	30	30
99	35	33	32	98
0	90	90	36	31
32	31	0	90	90

32	32	32	
35	35	36	
33	35	36	

$$p' = median(pa)$$

Example: denoising

Ideal image

Real-world image

Median filter result

Pixel-level vs. patch-level

Pixel-level function

```
for i in range(rows):
    for j in range(cols):
        I[i,j] = f(I[i,j])
```

Patch-level function

Intensity transformation

1x1 Neighborhood → Intensity Transformation → Image Enhancement

Contrast stretching function

Soft thresholding

Thresholding function
Hard thresholding

Some basic intensity transformation functions

- Thresholding Logistic function
- Log transformation
- Power-law (Gamma correction)
- Piecewise-linear transformation
- Histogram processing

Some basic intensity transformation functions

• Image negative: S = L - 1 - r

A digital mammogram

Negative image

Log transformation

- Log function: $s = c\log(1+r)$ $r \ge 0$
 - Stretch low intensity levels
 - Compress high intensity levels

- Inverse log function: $s = c \log^{-1}(r)$
 - Stretch high intensity levels
 - Compress low intensity levels

Log transformation

• If log transformation is applied to the following image, how would it change?

Log transformation

• If log transformation is applied to the following image, how would it change?

Power-law (gamma) transformations

- $s = cr^{\gamma}$
 - More versatile than log transformation
 - Performed by a lookup table

Power-law (gamma) transformations

Monitors have an intensity-to-voltage response with a power function

Image of a human retina

Image as it appears on a monitor

Gammacorrected image

$$S=r^{\frac{1}{2.5}}$$

Gamma-corrected image as viewed on the same monitor

Corrected image, as it appears on the same monitor

Power-law transformations for contrast manipulation $s = r^{0.6}$

$$s = r^{0.6}$$

Washed-Out Appearance caused by a small γ value

Washed-Out Appearance reduced by a large γ value

$$s = r^{0.4}$$

$$s = r^{0.3}$$

$$s = r^4$$

$$s = r$$

Piecewise-linear transformation functions: contrast stretching

Piecewise linear transformation function

A low-contrast electron microscope image of pollen

Result of contrast stretching

Result of thresholding

Contrast stretching examples

What are the effects of these two transformation functions?

Contrast stretching examples

An example of intensity-level slicing

Piecewise-linear transformation functions: bit-plane slicing

An example

Each bit plane is a binary image

Which one is plane 8?

Use for image compression

Less bit planes are sufficient to obtain an acceptable details, while require half of the storage

Histogram processing

 Histogram $h(r_k) = n_k$

 Normalized histogram

•
$$p(r_k) = \frac{n_k}{MN}$$

•
$$p(r_k) = \frac{n_k}{MN}$$

• $\sum_{0}^{255} p(r_k) = 1$

Transformation function

- $s = T(r) \ 0 \le r \le L 1$
- A valid transformation function must satisfy two conditions:
 - (a) T(r) is monotonically increasing, i.e., $T(r_1) \ge T(r_2)$ if $r_1 > r_2$
 - (b) $0 \le T(r) \le L 1$, i.e., the same range as input
 - (a') T(r) is strictly monotonic: one-t—one mapping r = T'(s)

PDF & CDF

- Probability density function
 - Likelihood of a random variable taking on a specific value within a continuous range
 - $p(x) \geq 0$
 - $\int_{-\infty}^{\infty} p(x) = 1$
 - $P(a \le x \le b) = \int_a^b p(x)$
- Cumulative distribution function
 - Cumulative probability that a random variable X is less than or equal to a given value x: $F(x) = \int_{-\infty}^{x} p(t)dt$
 - F(x) is a non-decreasing function
 - $F(x) \in [0,1]$ for all x

Histogram processing

• If T(r) is continuous and differentiable over the range of r, then

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

Probability density function of intensity value

$$s = T(r)$$

$$P(s \in [s, s + ds]) = P(r \in [r, r + dr])$$

$$p_s(s)ds = p_r(r)dr$$

Histogram equalization

A special transformation function

$$s = T(r) = (L-1) \left| \int_{0}^{r} p_r(w) dw \right|$$

Cumulative distribution function of r

Is it a valid transformation function?

- (a) T(r) is monotonically increasing, i.e., $T(r_1) \ge T(r_2)$ if $r_1 > r_2$
- (b) $0 \le T(r) \le L 1$, i.e., the same range as input

Histogram equalization

$$s = T(r) = (L-1) \int_0^r p_r(w) dw \rightarrow p_s(s) = \frac{1}{L-1}$$

How to prove it?

Histogram equalization

$$s = T(r) = (L-1) \int_0^r p_r(w) dw \rightarrow p_s(s) = \frac{1}{L-1}$$

How to prove it?

$$\frac{ds}{dr} = \frac{dT(r)}{dr}$$

$$= (L-1)\frac{d}{dr} \left[\int_0^r p_r(w) dw \right]$$

$$= (L-1)p_r(r)$$

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

$$= p_r(r) \left| \frac{1}{(L-1)p_r(r)} \right|$$

$$= \frac{1}{L-1} \quad 0 \le s \le L-1$$

An example

Suppose that the (continuous) intensity values in an image have the PDF

$$p_r(r) = \begin{cases} \frac{2r}{(L-1)^2} & \text{for } 0 \le r \le L-1\\ 0 & \text{otherwise} \end{cases}$$

$$s = T(r) = (L-1) \int_0^r p_r(w) dw = \frac{2}{L-1} \int_0^r w dw = \frac{r^2}{L-1}$$

$$p_{s}(s) = p_{r}(r) \left| \frac{dr}{ds} \right| = \frac{2r}{(L-1)^{2}} \left| \left[\frac{ds}{dr} \right]^{-1} \right|$$

$$= \frac{2r}{(L-1)^{2}} \left| \left[\frac{d}{dr} \frac{r^{2}}{L-1} \right]^{-1} \right| = \frac{2r}{(L-1)^{2}} \left| \frac{(L-1)}{2r} \right| = \frac{1}{L-1}$$

$$p_r(r_k) = \frac{n_k}{MN} \ k = 0,1,2,...,L-1$$

$$p_r(r_k) = \frac{n_k}{MN} \ k = 0, 1, 2, \dots, L - 1$$

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j) = \frac{L - 1}{MN} \sum_{j=0}^k n_j$$

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Intensity distribution and histogram values for a 3-bit 64x64 digital image

$$p_r(r_k) = \frac{n_k}{MN} \ k = 0,1,2,...,L-1$$

$$p_r(r_k) = \frac{n_k}{MN} \ k = 0, 1, 2, \dots, L - 1$$

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j) = \frac{L - 1}{MN} \sum_{j=0}^k n_j$$

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

$$s_0 = T(r_0) = (L - 1) \sum_{j=0}^{0} p_r(r_j)$$
$$= (8 - 1) * 0.19 = 1.33 \rightarrow 1$$

$$s_7 = T(r_7) = (L - 1) \sum_{j=0}^7 p_r(r_j)$$
$$= (8 - 1) * 1 = 7$$

Intensity distribution and histogram values for a 3-bit 64x64 digital image

$$p_r(r_k) = \frac{n_k}{MN} \ k = 0, 1, 2, \dots, L - 1$$

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j) = \frac{L - 1}{MN} \sum_{j=0}^k n_j$$

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Intensity distribution and histogram values for a 3-bit 64x64 digital image

$$p_r(r_k) = \frac{n_k}{MN} \ k = 0, 1, 2, \dots, L - 1$$

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j) = \frac{L - 1}{MN} \sum_{j=0}^k n_j$$

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Intensity distribution and histogram values for a 3-bit 64x64 digital image

Examples

Histogram of dark image Histogram of light image Histogram of low-contrast image Histogram of high-contrast image

Histogram matching (specification)

Histogram matching (specification)

Histogram matching for continuous data

- Compute the probability distribution function of input data $p_r(r)$
- Perform histogram equalization $\rightarrow s = T(r)$
- Compute s = G(z), where G is the equalization function derived from a specified histogram
- Perform the inverse mapping $z = G^{-1}(s) = G^{-1}(T(r))$

The output image with z values is then of the specified histogram

Histogram matching for discrete data

- Compute the probability distribution function of input data $p_r(r)$
- Perform histogram equalization $\rightarrow s = T(r)$
- Compute s = G(z), where G is the equalization function derived from a specified histogram
- Perform the inverse mapping $z = G^{-1}(s) = G^{-1}(T(r))$

Given the s_k value, find the value of z_q so that $G(z_q)$ is closest to s_k

The output image with z values is then of the specified histogram

A discrete example

	•
•	•
•	•
2 3 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	2 3 4

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Specified $p_z(z_q)$
0.00
0.00
0.00
0.15
0.20
0.30
0.20
0.15

A discrete example

$$r_{0}
ightarrow z_{3}$$
 $r_{1}
ightarrow z_{4}$
 $r_{2}
ightarrow z_{5}$
 $r_{3}, r_{4}
ightarrow z_{6}$
 $r_{5}, r_{6}, r_{7}
ightarrow z_{7}$

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

Two types of digital image processing

- Pixel-level processing (intensity transformation)
 - Same function applied to every pixel
 - Thresholding Logistic function
 - Log transformation
 - Power-law (Gamma correction)
 - Piecewise-linear transformation
 - Histogram processing
- Patch-level processing (filtering)
 - Same filter applied to sub-regions/patches