UNIVERSITÉ de BORDEAUX

ANNÉE UNIVERSITAIRE 2016/2017 Session 1 d'Automne

Master Sciences et Technologies, Mention Mathématiques ou Informatique

Spécialité Cryptologie et Sécurité Informatique

UE 4TCY703U : Arithmétique

Responsable : M. Jean-Paul Cerri Date : 14/12/2016. Durée : 3h.

Exercise 1 – Soient $P(X) = X^3 - X^2 + X + 1 \in \mathbb{F}_7[X]$ et $A = \frac{\mathbb{F}_7[X]}{\langle P(X) \rangle}$.

- 1) Montrer que P(X) est produit de deux irréductibles unitaires de degrés 1 et 2, notés respectivement R(X) et S(X). L'anneau A est-il un corps?
- 2) Quel est le cardinal de A^{\times} le groupe des inversibles de A?
- 3) Montrer que l'ordre de tout élément de A^{\times} divise 48. Le groupe A^{\times} est-il cyclique?
- 4) Combien y a-t-il de polynômes unitaires irréductibles de degré 2 dans $\mathbb{F}_7[X]$?
- 5) Parmi ces polynômes combien sont primitifs?
- **6)** Montrer que S(X) est primitif.
- 7) En déduire un élément de A^{\times} d'ordre 48.

Exercice 2 – Soit p un nombre premier <u>différent de 5</u>. Considérons le polynôme $P(X) = X^4 + X^3 + X^2 + X + 1 \in \mathbb{F}_p[X]$.

- 1) Montrer que 5 | $p^4 1$ et en déduire qu'il existe dans $(\mathbb{F}_{p^4})^{\times}$ un élément d'ordre 5 que l'on notera α .
- 2) Montrer que les racines de P(X) dans \mathbb{F}_{p^4} sont deux à deux distinctes et sont $\alpha, \alpha^2, \alpha^3, \alpha^4$.
- 3) Montrer que
 - si $p \equiv 1 \mod 5$, alors $\alpha \in \mathbb{F}_p$;
 - si $p \equiv -1 \mod 5$, alors $\alpha \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$;
 - si $p \equiv \pm 2 \mod 5$, alors $\alpha \in \mathbb{F}_{p^4} \setminus \mathbb{F}_{p^2}$.
- 4) Donner suivant les trois cas la forme de la décomposition en produit d'irréductibles de P(X) dans $\mathbb{F}_p[X]$.
- **5)** Factoriser P(X) dans $\mathbb{F}_{11}[X]$ et dans $\mathbb{F}_{19}[X]$.
- 6) On pose $\beta = \alpha + \alpha^{-1}$. Montrer que $(2\beta + 1)^2 = 5$.
- 7) En déduire que 5 est un carré dans \mathbb{F}_p si et seulement si p=2 ou $p\equiv \pm 1 \mod 5$.

Exercice 3 – Soit $P(X) = X^4 - X - 1 \in \mathbb{F}_3[X]$.

- 1) Montrer que P(X) est irréductible primitif. On identifie \mathbb{F}_{81} et $\frac{\mathbb{F}_3[X]}{\langle P(X) \rangle}$ et on note α la classe de X dans \mathbb{F}_{81} .
- 2) Dresser la liste des classes cyclotomiques 3-aires modulo 40 et en déduire la forme de la factorisation de $X^{40} 1$ dans $\mathbb{F}_3[X]$.
- 3) Montrer que dans $\mathbb{F}_3[X]$, $X^{40} 1$ est le produit de X 1, X + 1, de tous les irréductibles unitaires de degré 2 et de 8 irréductibles unitaires non primitifs de degré 4.
- 4) En déduire que $X^{40} + 1$ est produit de 10 irréductibles unitaires de degré 4, parmi lesquels 2 ne sont pas primitifs. Notons les R(X) et S(X).
- 5) Prouver que les racines de R(X) et S(X) dans \mathbb{F}_{81} sont exactement les éléments de $(\mathbb{F}_{81})^{\times}$ d'ordre 16 et les exprimer comme puissances de α , en séparant les racines de R(X) et celles de S(X).

6) Montrer qu'il n'y a qu'un sous-corps K de \mathbb{F}_{81} vérifiant $\mathbb{F}_3 \subsetneq K \subsetneq \mathbb{F}_{81}$. Exprimer ses éléments comme ploynômes en α de degrés < 4.

Exercice 4 – On considère la matrice de $M_{4\times15}(\mathbb{F}_2)$ suivante :

- 1) Vérifier que les 4 lignes de G sont des vecteurs linéairement indépendants de $(\mathbb{F}_2)^{15}$.
- 2) On note \mathcal{C} le code binaire linéaire de matrice génératrice G. Quel est le nombre de mots de \mathcal{C} ?
- 3) Soit \mathcal{C}^{\perp} le code dual de \mathcal{C} . Montrer que $(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) \in \mathcal{C}^{\perp}$ et en déduire que tous les mots de \mathcal{C} sont de poids pair.
- 4) Montrer que $(1,0,0,0,1,1,1,1,0,1,0,1,1,0,0) \in \mathcal{C}$ et en déduire que le code \mathcal{C} est cyclique.
- 5) Quel est son polynôme générateur?
- 6) On se propose dans cette question de prouver que tout mot non nul de \mathcal{C} est de poids 8.
 - (a) Montrer que $x \in \mathcal{C} \Leftrightarrow \exists u \in \mathbb{F}_2^4$ tel que x = uG.
 - (b) Soient $u \in \mathbb{F}_2^4$, $u \neq (0,0,0,0)$ et $f : \mathbb{F}_2^4 \to \mathbb{F}_2$ définie par $f(y) = \sum_{i=1}^4 u_i y_i$. Montrer que f est linéaire et que $|\operatorname{Ker} f| = 8$.
 - (c) En remarquant que les colonnes de G sont tous les vecteurs non nuls de \mathbb{F}_2^4 , montrer que si $x \in \mathcal{C}$ est non nul, alors $\omega(x) = 8$.
- 7) Quels sont les paramètres de \mathcal{C} ? Le code \mathcal{C} est-il un code MDS?
- 8) Que vaut e l'ordre de la condition de décodage vérifiée par C?
- 9) On sait par le cours que \mathcal{C}^{\perp} est également cyclique. Quel est le polynôme générateur de \mathcal{C}^{\perp} ? En déduire une matrice de contrôle de \mathcal{C} .
- 10) Quels sont les paramètres de \mathcal{C}^{\perp} ?
- **11)** On envoie un mot $c \in \mathcal{C}$ et le mot reçu est r = (1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0). On admet qu'il y a au plus e erreurs dans r. Retrouver c.

Exercice 5 -

- 1) Montrer que tout polynôme irréductible de degré 7 de $\mathbb{F}_2[X]$ est primitif.
- 2) Montrer que $P(X) = X^7 + X + 1 \in \mathbb{F}_2[X]$ est irréductible primitif. On identifie \mathbb{F}_{128} et $\frac{\mathbb{F}_2[X]}{\langle P(X) \rangle}$.
- **3)** Montrer que P(X) divise $X^{127} 1$ dans $\mathbb{F}_2[X]$.
- 4) Soit \mathcal{C} le code binaire cyclique de longueur 127 engendré par P(X). Quels sont les paramètres de \mathcal{C} ?
- 5) Soit $(s_i)_{i\geqslant 0} \in (\mathbb{F}_2)^{\mathbb{N}}$ la suite définie par $(s_0, s_1, s_2, s_3, s_4, s_5, s_6) = (1, 1, 1, 1, 1, 0, 0)$ et par la relation $s_{i+7} = s_{i+1} + s_i$ pour tout $i \geqslant 0$. Montrer que $(s_i)_{i\geqslant 0}$ est périodique et déterminer sa période r.
- **6)** Soit α la classe de X dans \mathbb{F}_{128} .
 - a) Calculer Tr(1) et expliquer pourquoi $Tr(\alpha) = Tr(\alpha^2) = Tr(\alpha^4) = 0$.
 - b) Exprimer α^{12} et α^{24} comme polynômes en α de degrés < 7 et en déduire $\text{Tr}(\alpha^5)$ et $\text{Tr}(\alpha^3)$.
 - c) Donner la valeur de $Tr(\alpha^i)$, pour $0 \le i \le 6$.
- d) Rappeler pourquoi il existe un entier $k \ge 0$ tel que $s_i = \text{Tr}(\alpha^{i+k})$ pour tout $i \ge 0$ et déterminer k en calculant les premiers termes de $(s_i)_{i \ge 0}$.
- 7) On considère le code \mathcal{C}' constitué par le r-uplet nul et les r-uplets $(s_n, s_{n+1}, \dots, s_{n+r-1})$ $(0 \le n \le r-1)$. Montrer que \mathcal{C}' est linéaire cyclique.
- 8) Quelle est la dimension de C'?
- 9) Quel est l'ordre de la condition de décodage de \mathcal{C}' ?
- 10) Montrer que $P(X) \in \mathcal{C}'^{\perp}$ et en déduire que $\mathcal{C}' = \mathcal{C}^{\perp}$.