$2\sqrt{2}$, $3\sqrt{3}$, $4\sqrt{4}$... $\Rightarrow \frac{100\sqrt{100}}{1000} = 1.047$, $200\sqrt{200} = 1.02$ $\Rightarrow 1$ as $\times \to \infty$ 1.41... 1.94, 1.41 $\frac{1000\sqrt{1000}}{1000} = 1.006$... $\frac{1}{1000}$

1.1.2 cont

1.6.3) Under What Conditions does supE = MaxE? IF set E has a maximum, then it's supremum is that maximum. Some Sets, however, don't have a maximum. 1.6.4) Show For every nonempty Finite set E that SUP E = Mex E. Let P(N): En= \(\frac{2}{2}\), \(\chi_1\), \(\chi_1\) \\
Show P(N) is true \(\chi_1\) \(\chi_1\). Let SCAN be Such that Yn ES, P(n) = true Proof) Industion BASIS STEP DATE DATE $E_1 = \sum X_1 \cdot 3 \cdot Clearly X_1 = \max E_1 \cdot Since X_1 \leq X_1$, and $X_1 \cdot E_1 = \sum \max c F_1 \cdot Since X_1 \leq X_1$. INDUCTION STEP Let K=1 be such that P(K)=true (KES) we know For Use this = Fx = {X1, XK3 Max Ex= sup Ex

Consider Ex+1 = {X1, ... XK1 XK+13 Let Exercises

Consider Ex+1 = {X1, ... XK1 XK+13 Let Exercises Cet MUX FX+1 = SMCX X1 ... Xx3, = {X1 ... Xx3 U {Xx+1} > M 1XKtil 3 Let max Exti = 2 Max 2x1. ... Xx3, xx+1 3 Where positive!

Then $P(k) \Rightarrow P(k+1)$ and $k+1 \in S$, thus S = Nby the principle of methemotical induction (PMI) For $E_n = \{x_1, \dots, x_n\}$ where $x_i \in \mathbb{R}$, mex $E_n = \sup E_n$ is true $\forall n \in \mathbb{N}$ 1.[.5) For every XETR define [x] = max EnEZ: nex3 called the greatest integer fxn. Show that it is well defined to sketch a graph.

man nez: nex3

3.1.0.2.3

The greatest integer fin results in the integer, n closest for the given real #, X.

Let $A = \{n \in \mathbb{Z}: X \ge n\}$. Then $A \ne \emptyset$. There is $n \in \mathbb{N}$ s.t. n > -X, b/c \mathbb{N} is unbounded. But then $-n \in A$.

Let $\alpha = \sup A$. Then there is $n \in A$ such that $\alpha - |C| \le K$. But then $\alpha < n + |C| < x +$

Prove. 2 =n Un EN Winduction BASIS STEP: let SCIN such that the ES, P(n) is true. Cansider n=1 2'≥1 => 2≥1 / true so S is nonempty. :. P(1) is true and IES. INDUCTION STEP; lif K > 1 be such that P(K) is from (KES) K=1 2k >k P(K+1) => 2 K+11.

=24.2

1.6.6) let A be a set of TR. B= 2-x:x ∈ A3. Find a relation bytwo a) MixA and minB and bytwo b) min A and max B.

$$B = \{3, -2, -1\}$$
 a) max $B = -min A$
 $Max B = -1$ b) min $B = -max A$

1.6.16) Let E be a set of P. (If X is not an upper band of E, then FCEE such that XZE)
=> (If X 15 not an your bound of the)
Contradiction (use the negation of the conclusion) Assume X is not an upper band of E and tele XZE Assume X is not an upper band of E, by definition of upper bound
Assume X is not an opportunity of E, by definition of upper bound
Since X is greater than all every ex X te E. Therefore X is
an upper band.
Assuption gives contradiction.
Assume FeEE such that XZE, then X is not an apper bound of E) But that would mean
Assume te EE such Mat XZE and X 15 an upper cont . I
eex YeEE -X

1.6.17) let A be a fet of PR. Show that a real # x is a supof A iff a \(\text{X} \) \ \text{Er all } \\ a \in A \text{ and for every positive # & there is an element a' \in A \text{ such that If X is the sopA, the da EA a EX and YE>O,]a'EA such that X-EZa' Assume X = SupA. By def. XZa $\forall a \in A$. let E > 0. Assume $\forall a \in A$ $X - E \ge a$. This mans x - E is an upper band. Since X - E < X. Since X = SyA is the lowest upper band, X - E is smaller : X-EZa Va'EA