

POWER DEVICE POSITIONING AS A FUNCTION OF POWER AND FREQUENCY

Power SiC Market Overview

SiC modules in Automotive

Roadmap of BEV With System Voltage & Power Semiconductor Choice

SIC DESIGN-WIN MATRIX AS OF Q1-2023

Leading SiC device players' volume production at OEMs (non exhaustive list)

OEM SiC device	TESLA	HYUNDAI MOTOR GROUP	STELU N NTIS	(Mercedes-Benz	JAGUAR LAND-ROVER	VOLVO	gm	⇔ NIO	XPENG	LUCID	
life.ougmented												
Činfineon		0	O							S		
onsemi.	②			②	②				(S
Wolfspeed.				②	0	②	②	②			O	
ROHM											S	

Non-exhaustive list

- As of 2023, major OEMs are looking for double-sourcing SiC devices for their current and future models to be released.
- It's a non-exhaustive list.
- The information is based on Yole's understanding, sources from press releases and industry feedback.
- In Mar-23, Tesla stated the cost reduction on their next generation powertrain, which included 75% reduction on SiC. However, the ODM didn't share more details. Please refer to the slide for the scenario and analysis based on currently available information. <u>Link</u>

POWER SIC DEVICE REVENUES - MARKET DYNAMICS

QUARTERLY POWER SIC COMPONENT REVENUE

POWER SIC SUBSTRATE SHIPMENTS – 6" INCH EQUIVALENT

TESLA'S NEW APPROACH TO USE 75% LESS SIC?

Yole's scenarios

Tesla stated the cost reduction on their next generation powertrain, which included 75% reduction on SiC, but what does that mean?

With limited details in the presentation, there are scenario and potential impacted provide in this slide.

Scenario 1: less device count

Tesla is the first OEM implemented SiC in EV, the solution is based on most innovative technology available in 2017. This 2-in-1 mini module, with 48 bare dies in the inverter is the design almost 10 years ago. From today's perspective, the level of integration is low and the performance of SiC is also limited.

Meanwhile, 800V is the enabler for higher efficiency and fast charging, SiC is the best candidate.

Therefore, a full-SiC module with a lower bare die count, e.g., a reduction from 48 to 12 to replace the current solution with a more advanced design in terms of integration for a more compact solution, could be a better option from cost and scalability perspectives.

Scenario 2: smaller vehicle not requiring high power

Tesla wants to create more accessible vehicle for growing the car sales in volume, for example the new Model 2 or Model Q to be launched in the coming years will need the maximum scalability with a lower cost to support the massive shipment. Therefore, a less powerful car requires less SiC content. However, it's unlikely implanted in current Model 3.

Scenario 3: replacing SiC by other materials

Both SiC and Si-IGBT are already the case for dual-motor models. Does it refer to the opportunity for GaN-on-Si? In our estimation, GaN-on-Si in main inverter is in a 10-year timeframe.

Impacts:

- No short-term impacts on SiC penetration for OEMs, especially for the coming 800V vehicles.
- The trend is in line with our view of transition of the focus, from raw materials to device and system integration.
- Pressure on SiC IDMs to launch more performance and cost competitive solutions, the requirements will arrive with other OEMs.
- Potential negative impacts on the wafer shipment, if a more compact module design is taken.
- Minor impacts on SiC device market, 1200V-rating SiC device and power module have higher price.
- Opportunities for new technologies to penetrate the market, e.g. trench SiC MOSFET for higher power density and new materials. Power GaN could be the option in a long-term perspective.
- Some SiC companies' valuations are also affected. It could lead to some M&A as SiC technology is still not fully accessible to all end-system players.

TESLA'S NEW APPROACH TO USE 75% LESS SIC?

Scenario analysis on the forecasts of SiC device market (\$M) and wafer shipment

Scenario 1 is expected to impact more the wafer shipment, than device market. Less bare die count, from 48 to 12, directly leads to less wafer demand. However, larger die size to carry high power is needed to remain the performance and reliability.

At device level, larger die size and higher level of integration make the device price not decreasing as for wafer shipment. The benefit is to have lower cost at system level, in the inverter. It's expected to remain the growth rate at 26% in the timeframe of 2022-2028.

Scenario 2 & 3 depends on how quick the time-to-market of Model 2. This model is expected to be shipped in high volume in long-term, in order to supply to majority of customers. However, the ramp-up also depends on how the OEM allocate the production in different facilities. It's expected to reach more than 7% of Tesla's total volume.

DEMAND VS CAPACITY

The massive building-up in wafer capacity, especially the new entrants in China

SIC N-TYPE SUBSTRATE/BOULE CAPACITY FORECAST (6"-EQUIVALENT PER YEAR)

In our understanding, the supply matched the demand in 2022, and more volume will be delivered according to the expansion. Please note, capacity doesn't equal production; utilization rate, yield, and quality are critical in SiC substrate production.

Looking into the coming years, the demand for high-quality substrate and 8" substrate will also grow quickly. Therefore, the supply chain could still be tight.

[1] The capacity can also be used for semi-insulating SiC growth used for RF GaN applications. Overall, most (80%) of the total capacity is estimated to be used for power SiC applications.

[2] Based on the industry feedback and estimation, non exhaustive list

[3]onsemi acquired GTAT for \$415M in O4-2021.

[4] Resonac, formerly Showa Denko, acquired the SiC substrate business of Nippon Steel in 2018.

Current capacity

Future capacity

S.C. + S.I. substrates

LEADING POWER SIC DEVICE SUPPLIERS' CAPACITY FORECAST

Yole's estimat	ion			Fab capacity	Future expansion	8" production
Company	2022	2023	2024	2025	2026	2027
Wolfspeed.	5 kwpm 6	" – Durham US 15 ki	wpm (6" Durham + 8"	Marcy) 30 kw	rpm 6"-eq (6"+8")	2 nd 8" wafer fab
life.augmented	12 k	wpm 6" – Catania, Ita	>25 kwp	om 6"-eq. – Catania IT (6' Singapore 6"	"+8") & ~50	kwpm 6"-eq.
infineon	7-8 k	wpm 6" – Villach, Austri	a 15 kwpm	16" >20 kwp		6"-eq. – Villach (6") & Malaysia (6"+8")
onsemi	8kwpm 6" Ko	– Bucheon, rea	20 kwpm 6"	40	kwpm 6"-eq. – 8" in p	production
F Fuji Electric	•	5 kwpm 6" – M	atsumoto JP		8"	
Міспоснір	Fables	ss	10 kwpm 6" – Fab5	fab transfer	Futu	ure expansion
ROHIII	2 kwpm 6' Chikugo		n 6"-eq. 10 kwpm Chikugo		15kwpm 6"-eq.	
BOSCH	Skv	vpm 6" – Reutlingen I	DE 10 kwpm	n 6"-eq.	8"	
GW GlobalWafers Co., Ltd. 環球晶間股份有限公司		0.5 kwpm 6" – [Dongsheng CN		6"	
SICAMORE SEMI		3 kwpm 4" – Ben	d, US	•	6"	
xfab	3kwpm	6" – Lubbock US	5-6k wpm	·	8"	
EPISIL Episil Technologies Inc. 漢磊科技股份有限公司	12 k	wpm 4" – DF1 CN		6" – DF	-2 CN	

Power GaN Market evolutions

POWER GaN DEVICE MARKET DYNAMICS

POWER GaN SUPPLY CHAIN AND BUSINESS MODELS AT A GLANCE

- Non-exhaustive list, including R&D
- Most GaN epihouses could also have GaN-on-sapphire capability.
- Infineon and Panasonic are partnering on an 8" platform
- STMicroelectronics acquired the majority share in Exagan in Q1-20.
- EPC has an asset-light vertically integrated model working exclusively with Episil and internal epitaxy capabilities at Epi-Precision

POWER GAN DEVICE MARKET SHARE IN 2022: INFINEON'S MOVE

INFINEON - POWER GaN DEVICE REVENUE

GAN SYSTEMS - POWER GaN DEVICE REVENUE

A conclusion

2019-2021 KEY PLAYERS AND THE POWER ELECTRONICS LANDSCAPE

DEVICE REVENUE MARKET SHARES: SiC VS. GaN VS. Si

INTRODUCTION TO YOLE GROUP

YOLE GROUP'S MAJOR ACTIVITIES PER ENTITY

Market, technology, and strategy consulting

M&A and evaluation of companies

Direct acces to the analysts

Technology, process & cost analysis

Teardown and reverse engineering

Comparative analysis

Characterization of electro-optical performances and risks

Specification, design and industrialization of systems Performance analysis of photonic systems

A WORLDWIDE PRESENCE

180+ collaborators in 9 different countries

A COMPLETE SET OF PRODUCTS & SERVICES TO ANSWER YOUR NEEDS

REPORTS

Insight

- Yearly reports
- Market, technology and strategy analysis
- > Supply chain changes analysis
- Reverse costing and reverse engineering

Format

- > PDF files with analyses
- > Excel files with graphics and

Topics

- > Photonics, Imaging & Sensing
- › Lighting & Displays
- > Power Electronics & Battery
- Compound Semiconductors
- SemiconductorManufacturing and Packaging
- Computing & Memory

115+ reports per year

MONITORS

Insight

- Quarterly updated market data and technology trends in units value and wafer
- Direct access to the analyst

Format

- Excel files with data
- PDF files with analyses graphs and key facts
- Web access (to be available soon)

Topics

- › Advanced Packaging
- Application Processor
- DRAM & NAND
- Compound Semiconductor
- CMOS Image Sensors
- Micro-controller
- Semiconductor Test Equipment

7 different monitors quarterly updated

TRACKS

Insight

- Teardowns of phones, smart home, wearables and automotive modules and systems
- > Bill-of-Materials
- > Block diagrams

Format

- > Web access
- > PDF and Excel files
- > High-resolution photos

Topics

- Consumer: Smartphones, smart home, wearables
- Automotive: Infotainment, ADAS, Telematics

205+ teardowns per year Daily updates

CUSTOM SERVICES

Insight

- > Specific and dedicated projects
- Strategic, financial, technical, supply chain, market and other semiconductor-related fields
- Reverse costing and reverse engineering

Format

- > PDF files with analyses
- Excel files with graphics and data

Topics

- > Photonics, Imaging & Sensing
- › Lighting & Displays
- > Power Electronics & Battery
- > Compound Semiconductors
- Semiconductor Manufacturing and Packaging
- Computing & Memory

190 custom projects per year

