# **EXP:01Developing a Neural Network Regression Model**

|               | I D 4 |  |
|---------------|-------|--|
| Δ             |       |  |
| $\overline{}$ |       |  |

To develop a neural network regression model for the given dataset.

#### **THEORY**

Explain the problem statement

#### **Neural Network Model**

Include the neural network model diagram.

#### **DESIGN STEPS**

#### STEP 1:

Loading the dataset

#### STEP 2:

Split the dataset into training and testing

## STEP 3:

Create MinMaxScalar objects ,fit the model and transform the data.

### **STEP 4:**

Build the Neural Network Model and compile the model.

#### STEP 5:

Train the model with the training data.

#### STEP 6:

Plot the performance plot

#### **STEP 7:**

Evaluate the model with the testing data.

#### **PROGRAM**

```
from google.colab import auth
import gspread
from google.auth import default
import pandas as pd
from sklearn.model_selection import train_test_split
from \ sklearn.preprocessing \ import \ MinMaxScaler
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense
auth.authenticate_user()
creds, _ = default()
gc = gspread.authorize(creds)
worksheet = gc.open('data').sheet1
rows = worksheet.get_all_values()
df = pd.DataFrame(rows[1:], columns=rows[0])
df1 = df.astype({'input':'float'})
df1 = df.astype({'output':'float'})
df1.head()
x = df1[['input']].values
y = df1[['output']].values
x,
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.33,random_state=33)
scaler = MinMaxScaler()
scaler.fit(x_train)
x_train1 = scaler.transform(x_train)
x_train1 = scaler.transform(x_train)
ai_brain = Sequential([
    Dense(8,activation='relu'),
      Dense(10,activation='relu'),
      Dense(1)
1)
ai_brain.compile(optimizer='rmsprop',loss = 'mse')
ai_brain.fit(x_train1,y_train,epochs=2000)
loss_df = pd.DataFrame(ai_brain.history.history)
loss_df.plot()
x_test1 = scaler.transform(x_test)
ai_brain.evaluate(x_test1,y_test)
x_{n1} = [[4]]
x_n1_1 = scaler.transform(x_n1)
ai_brain.predict(x_n1_1)
```

# **OUTPUT:**

#### **SAMPLE DATA:**

| input |   | output |
|-------|---|--------|
|       | 1 | 11     |
|       | 2 | 22     |
|       | 3 | 33     |
|       | 4 | 44     |
|       | 5 | 55     |
|       | 6 | 66     |
|       | 7 | 77     |
|       | 8 | 88     |
|       | 9 | 99     |
| 1     | 0 | 110    |
| 1     | 1 | 121    |
| 1     | 2 | 132    |
| 1     | 3 | 143    |
| 1     | 4 | 154    |

# graph:



## **Test Data Root Mean Squared Error:**

# **New Sample Data Prediction:**

# **Training Loss Vs Iteration Plot**

Include your plot here

# **Test Data Root Mean Squared Error**

Find the test data root mean squared error

## **New Sample Data Prediction**

Include your sample input and output here

## **RESULT**

Thus a neural network regression model for the given dataset is written and executed successfully.