S1 Text. Derivation of the relationship between the dispersion parameter and the mean crowding parameter.

- 1. Let m^* be mean crowding and m be the mean. $m^* = m + (\frac{\sigma^2}{m} 1)$ (by definition of mean crowding) $\implies m^* m = \frac{\sigma^2}{m} 1$

$$\implies m^* - m = \frac{\sigma^2}{m} - 1$$

- 2. Let θ be the dispersion parameter and σ^2 be the variance of the negative binomial distribution.
- $\sigma^2 = m + \frac{m^2}{\theta} \text{ (by definition of negative binomial variance)}$ $\implies \frac{\sigma^2}{m} = 1 + \frac{m}{\theta}$ $\implies \frac{m}{\theta} = \frac{\sigma^2}{m} 1$

- 3. $\frac{m^*}{m}-1=\frac{1}{\theta}$ (by equating the left-hand sides of the results in 1 and 2 and dividing by m) $\implies m^*=m+\frac{m}{\theta}$