SICO7O SISTEMAS INTELIGENTES 2

Aula 03 - ADALINE

Prof. Rafael G. Mantovani

Roteiro

- 1 Introdução
- 2 ADALINE
- 3 Algoritmo de Treinamento para ADALINE
- 4 Exemplo / Exercício
- 5 Referências

Roteiro

- 1 Introdução
- 2 ADALINE
- 3 Algoritmo de Treinamento para ADALINE
- 4 Exemplo / Exercício
- 5 Referências

Perceptron

- ADALINE (Widrow & Hoff)
 - **ADA**ptive **LINE**ar neuron/element
 - Aplicações voltadas a filtros lineares

Perceptron ADALINE

Roteiro

- 1 Introdução
- 2 ADALINE
- 3 Algoritmo de Treinamento para ADALINE
- 4 Exemplo / Exercício
- 5 Referências

□ ADALINE → Neurônio de McCulloch-Pitts

□ ADALINE → Neurônio de McCulloch-Pitts

□ ADALINE → Neurônio de McCulloch-Pitts

Função de ativação linear

Objetivo: Aproximação de funções (regressão)

ADALINE aproxima uma função por meio de um hiperplano

Pode ser adaptada para classificação

- Pode ser adaptada para classificação
 - Função de ativação:
 - Treinamento (linear): $\phi(v) = v$

• Teste (degrau):
$$\phi(v) = \begin{cases} 1, v \ge 0 \\ 0, v < 0 \end{cases}$$

Perceptron é um separador linear (classificação)

ADALINE é um aproximador linear de funções (regressão)

Função de ativação:

Roteiro

- 1 Introdução
- 2 ADALINE
- 3 Algoritmo de Treinamento para ADALINE
- 4 Exemplo / Exercício
- 5 Referências

Aprendizado:

- Estocástico: atualiza W sempre (para todos os exemplos)
- Batch: atualiza W considerando todos os exemplos de uma vez (cálculo matricial)

Aprendizado:

- Estocástico: atualiza W sempre (para todos os exemplos)
- Batch: atualiza W considerando todos os exemplos de uma vez (cálculo matricial)

Perceptron atualiza W quando um exemplo está errado.

Gradiente Descendente

$$w(n+1) \leftarrow w(n) + \eta * (d(n) - y(n)) * x(n)$$

Gradiente Descendente

$$w(n+1) \leftarrow w(n) + n * (d(n) - y(n)) * x(n)$$

Extremamente sensível ao valor de <a>n

Extremamente sensível ao valor de

a) taxa de aprendizado alta: gradiente se perde

Extremamente sensível ao valor de

b) taxa de aprendizado pequena: demora muito, pode cair em mínimos locais

Extremamente sensível ao valor de n

a) taxa de aprendizado alta: gradiente se perde

b) taxa de aprendizado pequena: demora muito, pode cair em mínimos locais

□ Solução (convergência) → normalização dos dados

□ Solução (convergência) → normalização dos dados

$$X_{N,std} = (X_N - \mu_N)/\sigma_N$$

□ Solução (convergência) → normalização dos dados

$$X_{N,std} = (X_N - \mu_N)/\sigma_N$$

 XN: coluna / atributo do conjunto de treinamento

□ Solução (convergência) → normalização dos dados

$$X_{N,std} = (X_N - \mu_N)/\sigma_N$$

XN: coluna / atributo do conjunto de treinamento

uN: média dos valores do atributo N

□ Solução (convergência) → normalização dos dados

$$X_{N,std} = (X_N - \mu_N)/\sigma_N$$

XN: coluna / atributo do conjunto de treinamento uN: média dos valores do atributo N

····▶ σN: desvio padrão dos valores do atributo N

 Embora similar ao algoritmo de atualização de pesos do Perceptron, possui duas diferenças:

- Embora similar ao algoritmo de atualização de pesos do Perceptron, possui duas diferenças:
 - a saída obtida pela rede é um **número real**, não uma classe (categoria)
 - o ajuste sináptico é calculado baseado em todas as amostras de treinamento

- Embora similar ao algoritmo de atualização de pesos do Perceptron, possui duas diferenças:
 - a saída obtida pela rede é um **número real**, não uma classe (categoria)
 - o ajuste sináptico é calculado baseado em todas as amostras de treinamento

Algoritmo Online: Gradiente Descendente Estocástico (SGD)

Algoritmo Batch: Gradiente Descendente (GD)

Algoritmo de Treinamento

Entradas:

Algoritmo de Treinamento

Entradas:

- conjunto de treinamento com exemplos rotulados [X | D]
 - X são os exemplos de treinamento
 - D são as saídas reais, esperadas
- taxa de aprendizagem (η)
- pesos sinápticos iniciais (W) [opcional]
- número máximo de iterações para treinamento (max.epochs)
- tolerância do erro quadrático médio (error.tol)

Algoritmo de Treinamento

Entradas:

- conjunto de treinamento com exemplos rotulados [X | D]
 - X são os exemplos de treinamento
 - D são as saídas reais, esperadas
- taxa de aprendizagem (η)
- pesos sinápticos iniciais (W) [opcional]
- número máximo de iterações para treinamento (max.epochs)
- tolerância do erro quadrático médio (error.tol)

Saídas:

- W ajustados para todos os exemplos de treinamento
- Epocas: numero de épocas
- _ ...

```
// Inicialização
```

ADALINE_Online(X, W, tol.error, max.epochs):

// Inicialização
 Iniciar o vetor W com valores aleatórios pequenos, se W não for fornecido
 Iniciar o contador de número de épocas (épocas ← 0)
 Normalizar os atributos de X

	I	// Inicialização					
1.	l	lniciar o vetor W com valores aleatórios pequenos, se W não for fornecido					
2.	lı	Iniciar o contador de número de épocas (<mark>épocas ← 0</mark>)					
3.	1	Normalizar os atributos de X					
4.	R	Repetir enquanto (error < tol.error & epoca < n.lter)					
5.	Para todas as amostras de treinamento em X (em ordem aleatória), fazer:						

		// Inicialização						
1.	١	lniciar o vetor W com valores aleatórios pequenos, se W não for fornecido						
2.	١	Iniciar o contador de número de épocas (<mark>épocas ← 0</mark>)						
3.		Normalizar os atributos de X						
4.	ı	Repetir enquanto (error < tol.error & epoca < n.lter)						
5.		Para todas as amostras de treinamento em X (em ordem aleatória), fazer:						
6.		V = W' * X //Calcular o sinal do neurônio (spike)						
7.		Y = phi(V) // Ativação Linear						

```
// Inicialização
 1.
       Iniciar o vetor W com valores aleatórios pequenos, se W não for fornecido
 2.
       Iniciar o contador de número de épocas (épocas ← 0)
       Normalizar os atributos de X
 3.
4.
       Repetir enquanto (error < tol.error & epoca < n.lter)
 5.
          Para todas as amostras de treinamento em X (em ordem aleatória), fazer:
            V = W' * X //Calcular o sinal do neurônio (spike)
 6.
7.
            Y = phi(V) // Ativação Linear
            // Atualiza os pesos sinápticos da rede para todos os exemplos (SEMPRE)
8.
            W = W + \eta * (D - Y) * X
 9.
10.
           Fim Para.
```

```
11. | epocas ← epocas + 1 // Incrementar o contador do numero de épocas
```

```
11. | epocas ← epocas + 1 // Incrementar o contador do numero de épocas
12. | // Computar o erro quadrático médio da época (MSE) usando todas instâncias
13. | error ← (1/N) * Σ (D - X * W)²
```

```
11. | epocas ← epocas + 1 // Incrementar o contador do numero de épocas
12. | // Computar o erro quadrático médio da época (MSE) usando todas instâncias
13. | error ← (1/N) * Σ (D - X * W)²
14. | Fim Repita.
15. | Fim Pseudocódigo.
```

Roteiro

- 1 Introdução
- 2 ADALINE
- 3 Algoritmo de Treinamento para ADALINE
- 4 Exemplo / Exercício
- 5 Referências

Exercício

 Treinar o ADALINE para reconhecer o problema lógico AND usando Gradiente Descendente Estocástico. Dados:

$$w0 = w1 = w2 = 0.5$$

- \Box bias = +1
- $\eta = 0.1$

X1	X2	D	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Exercício

- Treinar o ADALINE para reconhecer o problema lógico AND usando
 Gradiente Descendente Estocástico. Dados:
 - $\sim 0 = 1 = 2 = 0.5$
 - \Box bigs = ± 1
 - $\eta = 0.1$

Hands On! Hora de codar!

Algoritmo Online: Gradiente Descendente Estocástico (SGD)

Síntese/Revisão

- ADALINE
 - um neurônio de McCulloch Pitts
 - bias
 - função de ativação linear
- Gradiente Descendente (Estocástico)

Roteiro

- 1 Introdução
- 2 ADALINE
- 3 Algoritmo de Treinamento para ADALINE
- 4 Exemplo / Exercício
- 5 Referências

Literatura Sugerida

(Haykin, 1999)

Literatura Sugerida

[Faceli et al, 2011]

[Braga et al, 2007]

Perguntas?

Prof. Rafael G. Mantovani

rgmantovani@gmail.com