Assignment 3

杨乐天

Problem 1

The induction hypothesis is stated as follows: for any Σ , α satisfying $\Sigma \vdash \alpha$ within height h-1, we know that $\Sigma \vDash \alpha$. Given the induction hypothesis, we work on the case when height is h.

(a)

Assume we prove $\Sigma \vdash \beta$ through \bot -introduction, let $\beta = \alpha \to \bot$, then we know that $\Sigma; \alpha \vdash \bot$ within height h-1. By induction hypothesis, for any truth assignment v, if $\forall \gamma \in \Sigma; \alpha, \ \bar{v}(\gamma) = T$, then $\bar{v}(\bot) = T$. However, $\bar{v}'(\bot) = F$ for any assignment v'. Therefore, $\Sigma; \alpha$ is unsatisfiable, which means any assignment v satisfying all elements in Σ has $\bar{v}(\alpha) = F$, and thus $\bar{v}(\alpha \to \bot) = \bar{v}(\alpha) \to \bar{v}(\bot) = F \to F = T$.

(b)

Assume we prove $\Sigma \vdash \alpha$ through \bot -elimination, then $\Sigma \vdash \bot$ within height h-1. Similarly, we know from $\Sigma \vDash \bot$ that Σ is unsatisfiable, which naturally leads to $\Sigma \vDash \alpha$.

Problem 2

(a)

With complexity seen in directly proving this wff, we prove it through the completeness of sentential logic. For any truth assignment $v, \ \bar{v}(A \to B) = F$ iff. v(A) = T and v(B) = F. Therefore, if v(A) = T and v(B) = F, $\bar{v}(A \land \neg B) = v(A) \land \neg v(B) = T$; otherwise, $\bar{v}(A \to B) = T$. Consequently, $\bar{v}((A \to B) \lor (A \land \neg b)) = T$. Then by completeness of sentential logic, this wff is provable.

(b)

Let v(A) = T and v(B) = F, then $\bar{v}((A \to B) \lor (A \land B)) = \bar{v}(A \to B) \lor \bar{v}(A \land B) = F \lor F = F$. Similarly, by the completeness of sentential logic, this wff is not provable.

Problem 3

```
In \forall y(Pxy \to \forall xPxy), the first x occurs free.
In \forall x(Qy \to \exists yPxz), z and the first y occurs free.
In (\neg \exists yR(fyz)) \land (\forall x \forall yR(fyz)), the only free-occurring variable is z.
```

Problem 4

Let Pxy denotes x shaves y. Then the problem is to derive $\neg \exists x \forall y (Pxy \leftrightarrow \neg Pyy)$.

Problem 5

(a)

(b)

Problem 6

The four statements are (1) $\forall x (Yx \land Hx \rightarrow Bx)$, (2) $\forall x (Ax \rightarrow Hx)$, (3) $\exists x (Yx \land Ax)$, (4) $\exists x Bx$.

TYXONAXO] (UX (AX -> HX))

AXO AX. -> HXO [VXONAXO]

YXO [VX(YXNHX-> BX)]

YXONHXO YXONHXO-> BXO

AX BX

TX BX

TYXONAXO]