DISCIPLINE SPECIFIC CORE COURSE

DSC FT12: Food Engineering-I

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITE OF THE COURSE

Course title & code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Theory	Tutorial	Practical/Practice		
Food Engineering- I	4	3	0	1	XII Pass with PCM/PCB	Nil

Learning Objectives

- To understand the concept of unit operation, units and dimensions.
- To comprehend the different Heat and mass transfer, refrigeration and Freezing operations.
- To understand the fundamentals of food engineering systems and its process.

Learning Outcomes

After completing this course, students will be able to:

- Understand the principle of unit operation.
- Apprehend the different methods of separation in the food industry.
- Acquire the basic knowledge of thermal properties, methods of heat transfer and mass transfer, principles of refrigeration and freezing.
- Apply these principles for solving numerical problems.

SYLLABUS OF DSC FT12

THEORY Credits: 3; Hours: 45

UNIT I: Introduction

6 Hours

Unit Description: The unit will provide information on the concept of unit operation, mass balance and energy balance system.

Subtopics:

- Concept of Unit operation
- Units and dimensions, Unit conversions, dimensional analysis
- Mass and Energy Balance

UNIT II: Separation Processes

12 Hours

Unit Description: The unit will provide an insight into the principle and equipment design of various separation processes like distillation, extraction, centrifugation, filtration and sedimentation.

Subtopics:

- Distillation principles and methods: steam, batch, continuous distillation with rectification and stripping.
- Extraction : Hildebrandt, Bollman, SCF extraction
- Filtration: Plate and frame, pressure leaf, continuous rotary vacuum, batch and continuous filtration
- Centrifugation: Tubular, disc bowl and basket centrifuge
- Sedimentation : continuous thickener

UNIT III: Heat and Mass Transfer

15 Hours

Unit Description: The unit will provide knowledge of thermal properties of food, design and derivation of heat and mass transfer systems and applications.

Subtopics:

- Systems for heating and cooling food products
- Thermal Properties of Food
- Modes of heat transfer- Conduction, Convection and Radiation
- Applications of steady state heat transfer, estimation of conductive heat transfer coefficient, convective heat transfer coefficient, overall heat transfer coefficient and design of tubular heat exchanger
- Fick's Law of Diffusion
- Related basic numerical
- Membrane separation systems-Electrodialysis system, Reverse Osmosis, Ultra filtration, Microfiltration
- Membrane devices used for RO and UF: Plate and Frame, Tubular, Spiral wound and hollow fiber devices

UNIT IV: Refrigeration and Freezing

12 Hours

Unit Description: The unit will provide concept of refrigerants, VCR cycle, components of Refrigeration system and freezing time calculations

Subtopics:

- Concept, properties and selection of refrigerants
- Description of Vapor compression refrigeration (VCR) cycle
- Pressure Enthalpy charts and Tables
- Mathematical expressions useful in analysis of VCR cycle
- Numerical on VCR system using R -134a, R-717, R-12; Saturated cycle and deviations from the standard
- Freezing time calculation using Plank equation
- Frozen food storage

PRACTICAL Credit: 1, Hours: 30

- 1. Mass and Energy Balance Calculations
- 2. Determination of alcohol insoluble solids using extraction process
- 3. Determination of the osmotic pressure of the given sample
- 4. Estimation of sedimentation rate
- 5. Determination of thermal properties of the given samples
- 6. Mathematical Design of Heat exchanger
- 7. Cooling refrigeration load calculations.
- 8. Determination of Convective heat transfer coefficient and freezing time
- 9. Determination of freezing point depression in given solution

Essential Readings

- Rao, D.G. (2010). Fundamentals of food engineering. PHI learning private ltd.
- Singh, R.P. and Heldman, D.R. (2009) *Introduction to food engineering*2nd edition. 4th edition Academic press.
- Singh, R.P. and Heldman, D.R. (2014) Introduction to food engineering 5th edition. Academic press

Suggested Readings

- Earle, R.L. (1983). *Unit Operations in Food Processing*, 2nd edition. Pergamon press.
- Fellows, P. (2009). Food processing technology. Woodhead publication, 3rd edition
- Garg, M., Chaturvedi, S., Sadhu, S.D. and Barwa, M. and Pani. B., (2020) Practical Handbook of Food Engineering Aryush Education, ISBN NO. 978-81-930437-5-2

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.