《工科数学分析》课程教学大纲

学时与学分

基本教学(必选): 课堂教学学时: 128 学时+64 学时习题课=192 学时,学分 5,主要为《工科数学分析》的核心内容; 考核方式:

基础教学部分:平时成绩(作业、论文、测验) 15%,期中考试(闭卷笔试)40%,期末考试(闭卷笔试)45%

一、《工科数学分析》上 课程内容、基本要求及学时分配		
第1章 数列极限		
课堂内容(10 学时+4	1. 数列极限的定义,熟练应用 $arepsilon - N$ 语言证明极限存在	
学时习题课)	2. 收敛数列的基本性质(唯一性、有界性、子列收敛性、保号保序性、四则运算性质、夹逼定理)	
	3. 单调有界定理,闭区间套定理	
	4. 确界定理,理解实数的连续性	
	5. Cauchy 收敛原理,理解实数的完备性	
	6. 了解有限覆盖定理	
自学内容	了解数列的上极限、下极限概念以及基本性质,掌握 Stolz 定理的证明与应用这个在课堂上要给出计算例子(习题课)	
备注		

第2章 函数极限	
课堂内容	$1.$ 掌握集合映射的基本概念、函数极限的定义,熟练运用 ε $-\delta$ 语言证明极限存在
10学时+4学时习题课	2. 函数极限的基本性质((唯一性、局部有界性、保号保序性、 四则运算、复合函数极限、夹逼定理)及其证明方法
	3. 函数极限的 Heine 定理和 Cauchy 收敛原理
	4. 无穷小与无穷大的阶的定义与计算
	5. 函数的连续与一致连续
	6. 有限闭区间上连续函数的性质
自学内容	连续函数保序性、四则运算性质、复合函数的连续性、反函数的连续性,应用函数的连续性求极限
备注	
第3章 函数的导数	与微分
	1. 理解导数概念,导数的应用背景
 课堂内容	2. 基本初等函数的求导公式和导数四则运算法则
14学时+4学时习题课	3. 掌握复合函数求导的链式法则
	4. 高阶导数概念,熟练掌握莱布尼茨公式求函数高阶导数的方法
	5. Rolle 定理、Lagrange 中值定理和 Cauchy 中值定理
	6. 函数的单调性和极值、最值、凹凸性及拐点的判定
	7. L'Hospital 法则求函数的极限
自学内容	函数作图

备注	有时间的话,可以给一些 "导数的综合应用实例"
第4章 泰勒公式	
课堂内容 4 学时+2 学时习题课	1. 函数微分的概念
	2. Taylor 定理(Peano 余项)以及近似计算
	3. Taylor 定理((Lagrabge 余项, Cauchy 余项)
备注	期中考到此(预计时间:第九周或第十周,讲完前四章的那个周末期中考试)
第5章 不定积分	
课堂内容	1. 原函数的概念
6 学时+2 学时习题课	2. 利用两类换元法求不定积分
	3. 分部积分法求不定积分
自学内容	几类特殊函数的不定积分求解方法:有理函数积分、三角函数等其实有时间的话主讲老师讲
备注	
第6章 定积分	
课堂内容 6 学时+2 学时习题课	1. 定积分概念及其基本性质
0 子时元 子时 7 趣味	3. 微积分基本定理
	4. 积分中值定理
	5. 定积分的分部与换元积分法
备注	可积的充分必要条件达布上和、下和定理、Lebesgue 定理有时间的话主讲老师可以简单介绍

第 7 章 定积分的应用	
2 学时+习题课 2 学时	1.平面面积,旋转体体积,旋转曲面面积的计算方法
	2.平面曲线的曲率与弧长的计算方法
	3. 定积分的物理应用:变力做功、重心坐标、转动惯量等物理量的求解方法有时间的话主讲老师讲,没时间的话可
	由助教讲
第8章 广义积分	
课堂内容	1. 无穷区间上广义积分的定义与计算
4 学时+2 学时习题课	2. 无穷区间上非负函数广义积分收敛的判别方法及其应用
	3. 无穷区间上广义积分收敛的 Dirichlet \Abel 判别法及其应用
备注	瑕积分收敛的定义和基本结论 (可以直接给出结论)
第 14 章 常微分方程	
课堂教学	1. 微分方程的基本概念、变量分离方程、一阶线性微分方程
4 学时+2 学时习题课	2. 二阶线性微分方程几个基本问题、齐次和非齐次微分方程解的结构、 二阶常系数线性齐次和非齐次微分方程的解法
自学内容	几类特殊形式的一阶微分方程的求解方法:变量分离方程、齐次方程、可化为齐次方程的方程、一阶线性微分方程、Bernoulli
	方程、全微分方程
备注	二阶常系数线性齐次和非齐次微分方程的解法(重要)

备注: 期末考试

《工科数学分析》 上 考核内容到此结束

笠 0 辛 粉π5织粉	每~李料压机料	
第 9 章 数项级数		
课堂内容 8 学时+4 学时习题课	1. 无穷级数收敛的概念及其基本性质	
	2. 正项级数的判别法以及应用(比较判别法,Cauchy 判别法,D'Alembert 判别法)	
	3. 一般项级数收敛的判别方法: 交错级数的 Leibniz 判别法、Dirichlet 判别法和 Abel 判别法	
	4. 绝对收敛和条件收敛以及更序定理	
备注	级数乘法与无穷乘积问题(可以适当讲,不讲证明)	
二、《工科数学分析》下课程内容、基本要求及学时分配(新版教学计划)		
第 10 章 函数项序	第 10 章 函数项序列与函数项级数	
课堂内容	1. 函数项序列一致收敛的定义以及一致收敛性的判别定理及其应用	
10学时+4学时习题课	2. 函数项级数一致收敛的定义以及一致收敛性的判别定理: Cauchy 收敛原理、Weierstrass 判别法、Dirichlet 判别法、Abel	
	判别法	
	3. 函数项级数的和函数的分析性质:连续性,可微性,可积性	
	4. 函数的幂级数展开与简单应用	
第 11 章 Fourier 级	数与 Fourier 变换	
课堂内容	1. Fourier 级数的基本概念	
4 学时+2 学时习题课		
	级数.	
备注	Fourier 级数逐点收敛定理与 Fourier 级数平方收敛 (<mark>不讲</mark>)	
第 12 章 多元函数的极	第 12 章 多元函数的极限与连续	

课堂内容 8 学时+4 学时习题课	$1.N$ 维线性空间与 Euclid 空间的定义以及基本性质, \mathbf{R}^n 中点集(开集,闭集,补集,边界,区域)的基本概念与性质
	2. Euclid 空间中点列的极限与基本定理
	3. 多元函数极限的定义和相关基本结论
	4. 多元函数重极限和累次极限的关系
	5. 多元函数的连续与一致连续的概念
	6. 有界闭集上多元连续函数的基本结论及其证明方法
第13章 多元函数的	
课堂内容	1. 多元函数的偏导数与微分的定义
12学时+4学时习题课	2. 多元函数的求导法则(四则运算和复合函数运算)
	3. 方向导数和梯度的计算方法
	4. 高阶偏导数的计算方法
	5. 多元函数的无约束极值问题求解法方法
	6. 隐函数和隐函数组的存在定理以及求导的方法
	7. 条件极值与 Lagrange 乘数法的基本原理及其应用.
	'
第 15 章 重积分	·
课堂内容	1. 平面图形面积的定义以及相关基本结论
10学时+8学时习题课	2. 二重积分的定义及其基本性质

	3. 二重积分可积性的基本结论	
	4. 掌握二重积分的计算方法: 直角坐标下的二重积分的计算、二重积分的换元公式、极坐标下的二重积分计算	
	5. 掌握三重积分的定义及计算方法: 三重积分的定义与基本性质; 直角坐标系下三重积分的计算、三重积分的换元公式、柱面	
	坐标变换与三重积分计算、球坐标变换与三重积分计算	
自学内容	掌握重积分的物理应用:空间物体的重心、转动惯量、引力等物理量的计算方法也可由助教讲	
第 16 章 向量场的曲	第 16 章 向量场的曲线积分与格林公式	
课堂教学	1. 第一型曲线积分的定义与计算	
8 学时+4 学时习题课	2. 第二型曲线积分的定义与计算	
	3. Green 公式及其应用	
	4. 积分与路径无关的等价命题	
第 17 章 向量场的曲	面积分与场论初步	
课堂教学	1. 空间曲面的参数方程表示以及面积的计算方法	
8 学时+4 学时习题课	2. 第一型曲面积分的定义与计算方法	
	3. 第二型曲面积分的定义与计算方法	
	4. 两类曲面积分的关系	
	5. Gauss 公式与 Stokes 公式	
	6. 了解数量场的梯度、向量场的通量与散度、向量场的环量与旋度、有势场和势函数等概念和基本结论	