

CONTROLLED OXIDATION OF SILANE

 $\mathbf{B}\mathbf{Y}$

K. STRATER

RCA Electronic Components Somerville, N.J.

Summary—The study of SiH,—oxidant systems was undertaken to gain insight into reaction mechanisms that could cause the formation of SiO: in the gas phase or on the reactor wall, rather than on the surface of the silicon wafers to be coated.

A gas reactor system was designed and built to determine the relative stabilities of various SiH,—oxidant combinations and to monitor the oxidation of SiH, to SiO, by observing the change in absorption of the 925 cm⁻¹ peak of the SiH, spectrum. Stability, as defined by the initiation temperatures for the oxidation reaction, indicated that at silane concentration of 0.8% or less, N₂O-SiH₁-N₂ mixtures begin to react from 370 to 525°C and O-SiH₂-N₂ between 140 to 270°C. CO-SiH₄-N₂ was stable to 520°C.

All of the above oxidant—SiH,—N, combinations could be premixed at room temperature without reacting. In order to obtain kinetic data, the decay of SiH, concentration as a function of temperature was obtained by determining the relationship between infrared transmittance and SiH, concentration. From these data the apparent activation energies for the SiH,—O, and SiH,—N.O reactions were found to be 8 kcal and 32 kcal, respectively. Analysis of reaction products between 240 and 450°C indicated that hydrogen rather than water vapor was formed. The most probable reaction equation is SiH, +O, \rightarrow SiO, +2H.

INTRODUCTION

APOR deposition of SiO₂ films by the thermal oxidation of SiH₄ is widely used in the manufacture of solid-state devices and integrated circuits. It is used, for example, to deposit protective layers and electrical insulation,¹ as a means of adjusting capacitance, and as a diffusion source of dopants.^{2,3} The normal deposition temperature is 250 to 475°C.⁴

¹ A. Mayer, et al, "Surface Passivation Techniques for Compound Solid-State Devices," Air Force Contract F33 (657)-11615, Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio.

² A. W. Fisher, J. A. Amick, H. Hyman, and J. H. Scott, Jr., "Diffusion Characteristics and Applications of Doped Silicon Dioxide Layers Deposited from Silane (SiH₄)," RCA Review, Vol. 29, p. 533, Dec. 1968.

³ J. A. Amick, and A. W. Fisher, "Isolation Techniques for Fabricating Integrated Circuits—I. Laminate Substrates," RCA Review, Vol. 29, p. 475, Dec. 1968.

⁴ N. Goldsmith and W. Kern, "Deposition of Vitreous Silicon-Dioxide Films from Silane," RCA Review, Vol. 29, p. 153, March 1967.

A characteristic of the process is that the rate of SiO₂ deposition is quite sensitive to changes in the SiH₄ concentration and changes in the feed stream flow patterns within the reactor. This sensitivity is reflected in significant changes in the deposition rate.

In practice, the SiH_4 oxidation reaction has been observed to occur in the gas phase and on all heated surfaces with the reactor. Depending on reactor design and flow conditions, a variable amount of SiH_4 can be stripped from the feed stream and deposited on reactor walls. For this reason, operating conditions are adjusted so that SiH_4 concentration is as dilute as possible consistent with a reasonable deposition rate (600 to 1500 Å per minute).

To incorporate controlled amounts of boric or phosphoric oxide in the deposit by the simultaneous oxidation of PH_3 or B_2H_6 with SiH_4 , an insight into the oxidation mechanism is desirable. Close control of the doping process is made difficult by differences in the stability of the hydrides in oxygen. This can result in differences in the composition of the deposited layer depending upon the geometry of the reactor and the initiation temperature of the dopant species.

One method of obtaining better control over the SiH₄-SiO₂ deposition process would be to obtain a SiH₄-oxidant combination that would permit the temperature at which the reaction is initiated to be increased. This temperature is determined by the reaction kinetics rather than by the free energy of reaction, because the free energy of formation of SiO2 is so high, relative to practical oxidants, that the reaction should go to completion at room temperature. Thus, in the practical systems examined, which consist of SiH₄ reacting with O₂, N₂O, or CO₂, the free energy of reaction ranges from 190 to 94 kcals/ mole.5 The pronounced differences in initiation temperatures observed here as a function of specific reactants and their concentration levels indicate that the kinetics were affected perhaps by a change from a reaction-controlled mode to a diffusion-controlled mode. Similar considerations may then be applied to oxidation of PH3 and B2H6. An examination of the reaction of SiH4 with O2, N2O, and CO2 was made and is described here.

APPARATUS

A method of monitoring the SiH₄ concentration as a function of time and temperature was developed. A Beckman IR8 Spectrophoto-

⁵ C. E. Wicks and F. E. Block, Thermodynamic Properties of Elements, Their Oxides, Halides, Carbides, and Nitrides, Bulletin 605, Bureau of Mines.

meter was used to determine the infrared spectrum of SiH_4 (Figure 1). The spectrum indicated useable peaks in the 2200 cm⁻¹ and 900 cm⁻¹ regions. The absorption spectra for some of the oxidants (N₂O, CO₂, etc.) and reaction products were found to be limited to the 2200 cm⁻¹ region, while the 900 cm⁻¹ region was occupied only by the SiH_4 lines. The optics of the spectrophotometer, therefore, were aligned on the 925 cm⁻¹ absorption peak, and the variation in peak height as

Fig. 1-Infrared spectrum of SiH4.

percent transmission through a 10-cm gas cell was monitored. An expanded profile of this part of the infrared spectrum is shown in Figure 2.

The monitoring equipment was part of a simplified gas reactor system (Figure 3) consisting of

- (1) flow controls for SiH₄, oxidant, and nitrogen;
- (2) the gas reactor, filled with quartz chips, in a resistance-wound furnace;
- (3) a 10-cm gas cell mounted in a Beckman IR8 Spectrophotometer;
- (4) a dual-channel strip-chart recorder.

The combined gases were piped into the reactor and were exhausted through the 10-cm gas cell. The dc output of the spectrophotometer at 925 cm⁻¹ and the dc output of the chromel-alumel thermocouple inserted in a quartz tube within the reactor were recorded on a dual-channel strip-chart recorder. Thus, SiH₄ concentration was monitored as a function of temperature and time.

PARTIAL SINA SPECTRUM

Fig. 2-Partial SiH. spectrum.

REACTION TEMPERATURES

The test procedure was to adjust the SiH_4 and N_2 gas streams to the required concentration within the reactor at room temperature. The 925 cm⁻¹ absorption peak was used to establish a base line on a strip-chart recorder for SiH_4 in N_2 at room temperature. Oxidant was

Fig. 3—Gas reactor system for SiH₄-oxidant reaction.

then added. If no change occurred, the furnace was turned on and concentration and temperature rise were monitored as a function of time. The concentration range examined for most of the tests was 0.2 to 0.8% SiH₄ and an oxidant/SiH₄ ratio between approximately 2 and 20.

Test results indicated that at room temperature no reaction takes place between SiH_4 (0.2-0.8%) and O_2 , N_2O , or CO_2 . Table I gives the reaction initiation temperatures observed for the 0.2-0.4% SiH_4 range.

Table I-Reaction Initiation Temperatures

$\frac{\text{Mixture}}{\text{SiH}_4 + \text{O}_2 + \text{N}_2}$ $\text{SiH}_4 + \text{N}_2\text{O} + \text{N}_2$ $\text{SiH}_4 + \text{CO}_2 + \text{N}_2$	270_540	Conditions 0.2-0.4 SiH ₄ , Oxidant/SiH ₄ = 2-20 at 0.4% SiH ₄ 0.2-0.4 SiH ₄ , Oxidant/SiH ₄ = 2-20 at 0.4% SiH ₄ 0.2% SiH ₄ , Oxidant/SiH ₄ ≈ 5
SiH4 + N2O + N2 SiH4 + CO2 + N2	520	0.2% SiH ₄ , Oxidant/SiH ₄ ≈ 5

Thus, contrary to prediction, $SiH_4-O_2-N_2$, $SiH_4-N_2O-N_2$, and $SiH_4-CO_2-N_2$ mixtures are stable up to at least 0.8% SiH_4 at room temperature. This was found to be the case whether the gases were transported in Pyrex, copper, or stainless-steel lines.

MEASUREMENT OF SILANE CONCENTRATION

To examine the kinetics of the oxidation of SiH₄ for different SiH₄-oxidant combinations, it was necessary to determine the relationship between infrared transmittance and SiH₄ concentration. Mass-spectrometer analysis of SiH₄ samples were taken over a concentration range of from 0.05 to 0.75%, which corresponds to a transmittance range of from 80 to 15% in the 10-cm cell. These data, plotted in Figure 4, indicate that the relationship between the SiH₄ concentration and log 1/T generally approximates the prediction of linearity from Beer's Law:

$$\log \frac{I_o}{I} = \log \frac{1}{T} = K \cdot C_{\text{SiH}_4}$$

where I_o = intensity of incident beam I = intensity of emerging beam T = transmittance K = constant (absorptivity, cell length)

 $C_{\mathrm{SiH_4}} = \mathrm{molar}$ concentration of $\mathrm{SiH_4}$

REACTION KENETICS

A thermal arrest technique (temperature and concentration held constant) was used to obtain each datum point, and the reaction of SiH_4 with O_2 and N_2O were compared. The decay of a 0.4% SiH_4 concentration at an oxidant/SiH₄ ratio of 7 was monitored. The data, shown in Figure 5, are consistent with previous data in that the initiation temperature for the SiH_4 - N_2O reaction is significantly higher than for the SiH_4 - O_2 reaction.

Fig. 4—SiH, concentration versus infrared transmittance of the 920 to 930 cm⁻¹ (10.8 μ m) peak.

With a calibration curve (IR transmittance versus SiH₄ concentration), the transmittance data was converted to percent SiH₄ reacted as a function of gas temperature. This curve is shown in Figure 6.

The concentration versus temperature curves shown in Figure 6 are not linear, however, and can not be accurately extrapolated to the initial reaction temperature. Since it is difficult to quantitatively compare the two oxidation reactions, a theoretical basis for determining an "apparent activation energy" was considered.

The reaction is bimolecular and would normally be described by a second-order kinetic expression. However, since the oxidant con-

Fig. 5-Infrared monitoring of oxidation of SiH4.

Fig. 6-Reaction of SiH4 with O2 and N2O.

centration is high relative to the amount that reacts, the reaction rate would appear to be predominantly a function of SiH₄ concentration rather than both SiH₄ and oxidant concentrations. Therefore, a unimolecular reaction might describe the reaction kinetics better than a bimolecular reaction.

In the tests plotted in Figure 5, a uniform gas-temperature profile was obtained within the reactor by holding the total gas-flow rate constant (1000 cm³/min) for all tests. This resulted in a calculated reaction or residence time of 4.3 seconds. However, since kinetic data are usually obtained by monitoring a concentration change as a function of time rather than temperature, an unconventional manipulation of the kinetic expressions was required.

For a first-order reaction, the relationships between concentration, time, and temperature are:

$$-\frac{dC_{\text{SiH}_4}}{dt} = kC_{\text{SiH}_4} \tag{1}$$

$$k = k_o \exp\left\{-\frac{\Delta E_A}{RT}\right\} \tag{2}$$

By integrating and combining these equations, an expression is derived that relates a change in reactant concentration and gas temperature to an activation energy:

$$\ln\left(t^{-1}\ln\frac{C_o}{C}\right) = \frac{-\Delta E_A}{RT} + \ln k_o \tag{3}$$

where $C_o = input$ concentration,

C =exhaust concentration,

t = reaction time,

 E_A = apparent activation energy,

T = gas temperature,

k = absolute reaction rate,

 $k_o =$ frequency factor.

From the data in Figure 6, where between 20 and 80% SiH₄ reacted, the reaction rate of $\ln(t^{-1} \ln C_o/C)$ was calculated and plotted against

⁶ A. A. Forst and R. G. Pearson, *Kinetics and Mechanism*, 2nd ed., John Wiley and Sons, Inc., New York (1961).

reciprocal temperature. The resulting curves, Figures 7 and 8, are straight-line functions, indicating that the oxidation of SiH₄ at the stated concentration levels can be considered a monomolecular reaction. The apparent activation energies calculated from the slopes of these curves are

$$SiH_4-O_2$$
 reaction = 8 kcal
 SiH_4-N_2O reaction = 32 kcal

Fig. 7-Temperature dependence of the SiH₂-O₂ reaction.

This indicates that the SiH_4-N_2O combination is considerably more stable than the SiH_4-O_2 mixture.

To determine the range of conditions over which the apparent activation energies were applicable, the effect of varying oxidant/SiH₄ ratio was investigated. To date only preliminary results have been obtained. However, these data indicate that O_2 has an anomalous effect on the oxidation of SiH₄ (see Table II). Contrary to expectation, increased oxygen seems to increase the stability of the SiH₄-N₂-O₂ mixture. Conversely, the stability of SiH₄-N₂-N₂O mixtures is not affected by increased N₂O.

Table II-Initiation Temperatures for Oxidant-SiH. Ratios

Oxidant/SiH, (Calculated volume ratio	Initiation Temperature (°C)	
based on flow-meter settings)	O ₂	N₂O
2 5 20	139 197 257-270	540 525 532

In this series of tests, the input SiH_4 concentration was held at 0.4%. The oxidant concentration in all cases was above the stoichiometric concentration. It is most likely that the oxidant was thoroughly mixed with the SiH_4-N_2 mixture before entering the reactor. Since total flow was held constant (1000 cm³/min), no change in reaction temperature was anticipated.

REACTION PRODUCTS

Further information on the SiH_4 oxidation mechanism was obtained from a materials balance of a partially completed SiH_4 -O $_2$ reac-

Fig. 8-Temperature dependence of the SiH.-N.O reaction,

tion. A typical mass spectrographic analysis of a $SiH_4-O_2-N_2$ mixture before and after reaction is shown in Table III. Analysis of gas mixtures from SiH_4-O_2 reactions up to $450\,^{\circ}\mathrm{C}$ similarly indicate that the only gaseous product formed is H_2 .

These test results indicate that the best overall equation that would describe the SiH_4 - O_2 reaction at 240-450°C for the dilutions employed is

$$SiH_4 + O_2 \rightarrow SiO_2 + 2H_2$$

The analytical data for H_2 in the exhaust stream and H_2 calculated from the SiH_4 reaction are in reasonable agreement. On this basis, the absence of H_2O from the exhaust stream can be explained.

Table III—Material Balance (% Concentration by Volume)
Reaction Temperature—241°C

Gases Reactor Input Reactor Exhaust SiH ₄ 0.365 0.124 O ₂ 0.80 est. 0.575 H ₂ — 0.492 H ₂ O — —	Reacted 0.241 0.225	Calculated H ₂ , Based on SiH ₄ Reacted ————————————————————————————————————
---	---------------------	--

CONCLUSIONS

The room-temperature stability of SiH_4 – N_2 – O_2 mixtures up to 0.8% SiH_4 indicates that these gases can be premixed well before the deposition reactor. As a result, flow controls at the reactor could be greatly simplified. The use of a single feed stream into a deposition reactor could also simplify the gas-flow pattern within a reactor. This could result in more reproducible deposition results. Further, the sensitivity to leaks in SiH_4 delivery lines would be reduced by transporting a stable gas mixture from a gas storage area to the reactor.

This study also indicates that N_2O can be used as an oxidant for SiH_4 . Mixtures of $SiH_4-N_2-N_2O$ are considerably more stable and less temperature sensitive than $SiH_4-N_2-O_2$ mixtures. Thus, the use of N_2O as an oxidant in combination with improved reactor design could lead to a process in which SiO_2 deposition is essentially confined to wafer surfaces, and phosphorus and boron dopant levels are still accurate and reproducibly controlled.

Another factor of some significance in the study of the SiH_4-O_2 reaction is that H_2 rather than H_2O vapor is formed.

ACKNOWLEDGMENTS

The work reported here has been supported by the Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio under AF Contract F33615-68-C-1202 under the supervision of Mrs. E. H. Tarrants.

The author wishes to thank William Stever and Robert Vibronek for helping to construct the reactor system and to obtain the experimental data. David Puotinen was most helpful in aiding the author to formulate a kinetic model for the reaction, and Alfred Mayer gave many valuable suggestions on experimental procedure.