Devoir 3

Exercice 1: Dans l'espace vectoriel réel des matrices carrées à coefficients réels $M_n(\mathbb{R})$, on considère les sous-ensembles :

$$S_n = \{ A \in M_n(\mathbb{R}) : A^T = A \}$$
 et $A_n = \{ A \in M_n(\mathbb{R}) : A^T = -A \}$

où A^T est la matrice transposée de la matrice A.

- 1. Montrer que S_n et A_n sont des sous-espaces vectoriels de $M_n(\mathbb{R})$.
- 2. Montrer que $M_n(\mathbb{R}) = S_n \oplus A_n$.
- 3. **Application** : Soit $M=\begin{pmatrix}2&1\\3&4\end{pmatrix}$ une matrice de $M_2(\mathbb{R})$. Déterminer les matrices $S\in S_2$ et $A\in A_2$ telles que M=S+A.

Exercice 2: On pose : $\forall P \in \mathbb{R}_2[X], \varphi(P) = (X^2 + 2)P'' + (X + 1)P' + P$.

- 1. Vérifier que φ est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer la matrice de φ dans la base canonique de $\mathbb{R}_2[X]$.
- 3. Déterminer $ker(\varphi 5I)$.
- 4. En déduire une base de $\mathbb{R}_2[X]$ dans laquelle la matrice de φ est diagonale.

Exercice 3 : Soit E un espace vectoriel réel. On rappelle qu'un projecteur P de E est un endomorphisme de E qui vérifie l'égalité $P \circ P = P$.

1. Montrer que si P est un projecteur de E, alors :

$$\operatorname{Im}(I_E - P) = \ker(P)$$
 et $\ker(I_E - P) = \operatorname{Im}(P)$,

où I_E est l'endomorphisme identité de E.

- 2. Soient P et Q deux projecteurs de E.
 - (a) Montrer les équivalences suivantes :

$$\begin{cases} P\circ Q=0 &\iff \operatorname{Im}(Q)\subset \ker(P),\\ \\ P\circ Q=P &\iff \ker(Q)\subset \ker(P),\\ \\ Q\circ P=P &\iff \operatorname{Im}(P)\subset \operatorname{Im}(Q). \end{cases}$$

(b) On pose:

$$E_1 = \ker(Q) \cap \ker(P), \quad E_2 = \ker(Q) \cap \operatorname{Im}(P),$$

 $E_3 = \operatorname{Im}(Q) \cap \ker(P), \quad E_4 = \operatorname{Im}(Q) \cap \operatorname{Im}(P).$

Montrer que si $E = E_1 \oplus E_2 \oplus E_3 \oplus E_4$, alors $P \circ Q = Q \circ P$.

Exercice 4: Soient E un \mathbb{K} -espace vectoriel et $p \in \mathcal{L}(E)$. On dit que p est un projecteur si $p \circ p = p$.

- 1. (a) Montrer que pour tout $y \in \text{Im}(p)$, on a p(y) = y.
 - (b) En déduire que $E = \ker(p) \oplus \operatorname{Im}(p)$. On dit que p est le projecteur sur $\operatorname{Im}(p)$ parallèlement à $\ker(p)$.
- 2. (a) Démontrer que p est un projecteur de E si et seulement si $\mathrm{Id}-p$ est aussi un projecteur de E.
 - (b) Montrer que si p est un projecteur, alors les relations suivantes sont vérifiées :

$$\operatorname{Im}(\operatorname{Id} - p) = \ker(p), \quad \ker(\operatorname{Id} - p) = \operatorname{Im}(p).$$

- 3. Démontrer qu'un projecteur p commute avec un endomorphisme u de E si et seulement si son noyau et son image sont stables par u (c'est-à-dire, $u(\ker(p)) \subset \ker(p)$ et $u(\operatorname{Im}(p)) \subset \operatorname{Im}(p)$).
- 4. On suppose désormais que E est de dimension finie n.
 - (a) Montrer qu'il existe une base \mathcal{B} de E dans laquelle p a pour matrice

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

où r est le rang de p, I_r est la matrice identité d'ordre r et 0_{n-r} est la matrice nulle d'ordre n-r.

(b) En déduire que la trace d'un projecteur est égale à son rang.

Exercice 5: Soient E un espace vectoriel de dimension 3 et φ un endomorphisme de E tel que $\varphi^2 = 0$ (l'application nulle) et $\varphi \neq 0$. Posons $r = rg(\varphi)$.

- 1. Montrer que $\operatorname{Im}(\varphi) \subset \ker(\varphi)$. En déduire que $r \leq 3 r$ et calculer r.
- 2. Soit $e_1 \in E$ tel que $\varphi(e_1) \neq 0$. Posons $e_2 = \varphi(e_1)$.
 - (a) Montrer (sans le chercher) qu'il existe $e_3 \in \ker(\varphi)$ tel que la famille $\{e_2, e_3\}$ soit libre.
 - (b) Montrer que $\{e_1, e_2, e_3\}$ est une base de E.
- 3. Déterminer la matrice de φ dans la base (e_1, e_2, e_3) .

Exercice 6 : Soit E un \mathbb{K} -espace vectoriel de dimension n>1 (avec $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}). Soient f un endomorphisme de E nilpotent d'ordre n (c'est-à-dire, $f^n=0$ et $f^{n-1}\neq 0$). On note :

$$C(f) = \{ g \in \mathcal{L}(E) \mid g \circ f = f \circ g \}.$$

- 1. Montrer que C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$.
- 2. Soit a un vecteur de E tel que $f^{n-1}(a) \neq 0_E$. Montrer que la famille $(a, f(a), \dots, f^{n-1}(a))$ constitue une base de E.
- 3. Soit $\varphi_a:C(f)\to E$ l'application définie par $\varphi_a(g)=g(a)$. Montrer que φ_a est un isomorphisme.
- 4. En déduire que $C(f) = \text{Vect}(\text{Id}, f, \dots, f^{n-1})$.

Yassine Ait Mohamed 2