Izvještaj

NENR, 7. Domaća zadaća

Zadatak 1.

Manje vrijednosti parametra \mathbf{s} postrožuju mjeru udaljenosti ulaznih uzoraka s pohranjenim uzorkom. Vidimo da će vrijednost 1 biti sličnija vrijednosti 2 s parametrom $\mathbf{s}=4$ nego s ostalim vrijednostima parametra \mathbf{s} . Izlaz neurona s dvije ulazne vrijednosti izgledat će poput planine u 3D prostoru. Parametri \mathbf{s}_1 i \mathbf{s}_2 određuju strogost sličnosti za pojedine komponente \mathbf{x}_1 i \mathbf{x}_2 , odnosno kontroliraju se strmine planine u smjeru osi x i y.

Zadatak 2.

Razredi sadrže više eliptičnih skupova. Eliptični skupovi su raspoređeni na mreži s 2 retka i 4 stupca. Razredi su linearno neodvojivi. Svaki eliptični skup je pozicioniran dolje desno od eliptičnog skupa iz istog razred.

Zadatak 3.

Za početak izračunamo aritmetičku sredinu svih eliptičnih skupova podataka. Time ćemo dobiti 8 središnjih točki raspoređenih u istoj mreži od 2 retka i 4 stupca. Točke bi bile otprilike (od gore prema dolje, s desna nalijevo):

(0.12, 0.75) (0.38, 0.75) (0.62, 0.75) (0.88, 0.75)

(0.12, 0.25) (0.38, 0.25) (0.62, 0.25) (0.88, 0.25)

Svaki neuron skrivenog sloja ima za zadaću dati podatak koliko je neka ulazna koordinata slična jednoj od 8 središnjih točaka. Tj. 1. neuron skrivenog sloja dati će podatak koliko je ulazna koordinata slična prvoj središnjoj točki (0.12, 0.75). Stoga, za parametar \mathbf{w} 1. neurona uzeo bi vrijednost [0.12, 0.75] itd. Parametre \mathbf{s} prilagodio bi tako da uvjet sličnosti nije previše strog pa da točke na elipsi nisu slične središnjoj točki, a s druge strane da uvjet nije premalo strog pa da su i točke s drugih elipsa previše slični točki koja nije njihova središnja. Vrijednost \mathbf{s}_1 trebala bi biti manja od vrijednosti \mathbf{s}_2 zbog toga što su udaljenosti elipsa po osi x puno manje. Stoga će manji parametar s rezultirati strožom udaljenosti po osi x.

Zadaća neurona izlaznog sloja je na temelju dobivenih podataka od 8 neurona skrivenog sloja odrediti svoj izlaz. Tako će 1. neuron izlaznog sloja imati to veći izlaz ako su među dobivenim podacima najveće sličnosti na ulazu 3, 5, 8 jer se oko tih središnjih točaka nalaze primjeri iz razreda za koji je 1. neuron zadužen. Stoga ćemo za parametar \mathbf{w} 1. izlaznog neurona uzeti nešto poput $[0.1\ 0.1\ 0.9\ 0.3\ 0.9\ 0.1\ 0.1\ 0.9]$. Težine \mathbf{w}_0 možemo postaviti na 0 za početak.

2x8x3

Zadatak 4.

Naučeni uzorci nalaze se u središtu elipsa. Svaki neuron tipa 1 uspoređuje ulazne vrijednosti sa svojim pohranjenim uzorkom i daje mjeru udaljenosti između njih. Y komponenta parametara s je veća od X komponente. Razlog je to što su uzorci puno više zbijeni po smjeru x pa će i računanje udaljenosti morati biti postroženo.

Težine izlaznog sloja su očekivane. Vidimo da 1. izlazni neuron cijeni više 1., 2. i 3. neuron skrivenog sloja, koji upravo sadržavaju središta onih elipsa koji pripadaju 1. razredu. I tako ostala dva izlazna neurona.

Zadatak 5.

Proces učenja je trajao kraće. Dodavanjem jednog sloja neurona tipa 2 povećava se kapacitet mreže odnosno proces učenja se ubrzava. Zadnja dva sloja će se brže prilagoditi podacima od 8 neurona tipa 1 iz skrivenog sloja. Naučeni parametri neurona tipa 1 su u nekim vrijednostima isti kao i u arhitekturi 2x8x3 ali u nekim komponentama dosta odstupaju. Povećanjem broja neurona i slojeva gubi se interpretabilnost neuronske mreže.

Zadatak 6.

S arhitekturom 2x6x4x3 dobivam ispravnu klasifikaciju svih uzoraka. Međutim, gubitkom dva neurona tipa 1 gube se dva središta elipsa s pomoću kojih se mogu preciznije klasificirati uzorci. Time se gubi složenost modela, iako je još uvijek dovoljna složenost. Istotako, gubi se interpretabilnost pošto više nemamo jedan neuron tipa 1 za svako središte elipse.