Tempo and Mode of Evolutionary Radiation in Iguanian Lizards

Luke J. Harmon, James A. Schulte II, Allan Larson, Jonathan B. Losos

Supporting Online Material

Materials and methods

Phylogenies were constructed using an approximately 1800 base-pair mitochondrial DNA region from the protein-coding regions ND1 to COI including the complete ND2 gene, the origin of light-strand replication, and eight tRNAs (tRNAIle, tRNAGIn, tRNAMet, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr [S1, S2, S3, S4, S5]). All sequences have been deposited in GenBank (Table S1). Sequences were aligned manually for protein-coding regions and by secondary structural models for tRNAs. For the phrynosomatines, sequences of an additional 17 species were obtained from the mitochondrial DNA region of 12S and 16S (S6). Tree reconstructions are based on maximum-likelihood analyses using the GTR+I+Γ model of sequence evolution on the basis of hierarchical hypothesis-testing of alternative models with Modeltest 3.06 (S7). All phylogenetic hypotheses were generated using PAUP* beta version 4.0b10 (S8). Phylogenies contained 40-87% of the species in that clade (Table 1) and sampled all major clades; missing species are likely to be relatively closely related to species included in the phylogeny and hence the deep phylogenetic structure of the clades is unlikely to be affected by missing taxa. For Anolis, we restricted our analysis to Caribbean species. Trees with branch lengths were estimated using maximum likelihood without assuming a molecular clock. Branch lengths were then scaled proportional to

time using nonparametric rate smoothing (S9) as implemented in the program TreeEdit (S10).

We measured continuous variables for these lizards pertaining to the limbs, girdles, head and tail, as well as snout-vent length. In addition, for *Anolis*, we included the number of subdigital lamellae under the third and fourth phalanges of pedal digit IV and mass. We measured a majority of the species included in the phylogenetic analyses (65 *Liolaemus*, 69 phrynosomatines, 73 *Anolis*, and 57 Australian agamids). Data were log-transformed prior to all analyses. For each clade, dimensionality of the data was reduced using a principal-components analysis (PCA) on the correlation matrix of the original data. The first four principal components, which accounted for at least 96% of variation in all clades, were retained. In all cases, measurements were taken on adult males. For most species, at least two individuals were measured, from which species mean values were calculated. Characters showed approximately equal coefficients of variation among clades, with *Anolis* exhibiting the most variability and *Liolaemus* the least (Table S2).

We performed null model analyses of the relationship between LDI and MDI to investigate how likely the observed correlation between LDI and MDI is to occur by chance. We simulated both phylogenetic trees and morphological characters to create 1000 random four-clade data sets; within each data set, the four simulated clades corresponded to the four real clades in our analysis. For each simulated data set, trees were simulated using a birth-death process, with the total number of taxa in each tree equal to the number included in the phylogeny we used for our analysis (*S11*; Table 1). For the morphological analysis, these trees were randomly pruned to contain the same number of taxa as were included in our morphological analysis (*S11*), and character

evolution was simulated on those trees under a Brownian-motion model. Thus, the simulated phylogenies for each clade contained the same number of species and with the same morphological variance as the four real clades in our analysis (Table 1). For each simulation for each clade, we calculated the MDI and LDI statistic as described above. In only 4 of 1000 simulations was the absolute value of the correlation between LDI and MDI greater than that observed in the real data (p = 0.004).

We also conducted similar analyses using the real phylogenies from our analyses and the LDI statistics calculated for them, but simulating morphological character evolution on these phylogenies. In these analyses, we obtained correlation values for the MDI – LDI relationship greater in magnitude than that actually observed in only 0.3% of the simulations.

We used simulations to determine the effect of incomplete sampling on the MDI statistic. Since we do not know the morphologies of species not included in our study, we could not determine their effect on the MDI statistic. Instead, we conducted 100 simulations which used the species we have included as a starting point, and randomly sampled them so that the proportion of species included was the same as the proportion of species used in our morphological analyses compared to the total number of species in the phylogeny (e.g., we had morphological data for 82.6% of the species in our phylogeny for Australian agamids; thus, in the simulations, we randomly eliminated 10 of 57—17.5%—species). These 100 simulations started from the original phylogenetic tree for each clade and then randomly pruned species until the tree was of the desired size. We then calculated an MDI statistic for each pruned tree using the same methods outlined in the main text of this report, but only including those species not pruned from the tree. To determine what effect, if any, such incomplete sampling had on the MDI - LDI

correlation, we regressed the mean pruned MDI for each clade from the simulations on the original LDI values. As with the original data, the correlation was significantly negative (r = -0.98, p = 0.02). This suggests that our conclusion, that LDI and MDI are negatively correlated, is robust to incomplete sampling of morphology.

Supporting figures

Fig. S1. Hypothetical phylogeny of 8 species (A), showing how disparity is calculated. The first branching event breaks the clade into two subclades, numbered 2 and 3 (B). Disparity is calculated for each subclade and expressed as a ratio relative to disparity of the entire clade (A). The next speciation event (C) results in lineages defining three subclades: 2, 4, and 5. Relative disparity is calculated for each, and, in a similar fashion, for the four subclades in the bottom right (D). Relative disparity for each time period is calculated by averaging over all subclades whose ancestral lineage was present at that time.

Figure S2. Disparity pattern i. This example illustrates a case in which subclades contain large amounts of variation relative to the entire clade. Colors represent the clade coloring as above. The figure indicates that subclades have diversified extensively and have high values of relative disparity. Subclades overlap substantially in a two-dimensional morphological space, which indicates that species have evolved to fill similar regions of morphological space.

Fig. S3. Disparity pattern ii. By contrast, variation is partitioned among subclades. Each subclade diversifies little and thus has low relative disparity. Little or no overlap exists among subclades.

Fig. S4. Relative disparity plot for patterns i and ii. This plot illustrates average relative disparity of subclades versus time for the two patterns shown above. Clearly, pattern i has higher average relative disparity through time, indicating the great variation within subclades and the greater overlap between subclades. The four points for each pattern correspond to the stages of the phylogeny discussed above.

Figure S5. Relationship of LDI and MDI assuming a speciational model of character evolution. For each clade, 1000 morphological data sets were simulated on a phylogeny with the same topology as the tree used in the analysis in Figure 2, but with the expected amount of change equal on all branches of the phylogeny (i.e., a speciational model of character evolution). These data sets were then used to generate disparity-through-time plots, as above, and these plots were then used as a null model for the disparity analysis. We calculated the area between the original data and the median of the null simulations. The results of this analysis are presented below, where they are compared to the results from the gradual analysis from Figure 3; the original, gradual model results are in black, while the speciational model results are in purple. Although changing the null model altered the calculated disparity index for all four clades, the relationship between LDI and MDI was still strongly negative ($r^2 = 0.91$, p < 0.05).

Figure S6. Effect of extinction on diversity patterns. To investigate the effect of departures from a pure-birth model on the lineage diversity index (LDI), we used parametric bootstrapping to construct distributions of LDI statistics for each of the four clades under various models of speciation and extinction. To do this, we simulated phylogenies using the program PhyloGen (S11). For each clade, every simulation had the same net diversification rate, but we used three different extinction rates: no extinction (equivalent to the original analysis presented in figure 1), extinction rate equal to half of the net diversification rate, and extinction rate equal to the net diversification rate. In these simulations, probability of extinction of all lineages was equal. We created 1000 simulated data sets per extinction rate per clade, producing phylogenies to match the total number of known species in the clade. We used these simulated phylogenies to create lineage-through-time plots, which were standardized to a relative time scale as in Figure 1. To create the parametric bootstrapped distribution of LDI statistics, we generated a set of 1000 LDI statistics from these simulated phylogenies. We used these simulations as null models (just as the pure birth model is the null model in Figure 1) and for each one calculated the area between the simulated data set and the actual lineage-through-time plot for that clade, using only the first 2/3 of the phylogeny. The means for these bootstrapped distributions of areas are plotted below and show that at any extinction rate, the expected ordering of the four clades does not change.

At each extinction level, we also used parametric bootstrapping to calculate a distribution of correlation coefficients for the LDI – MDI relationship. To do this, we used the simulations just described. For each set of simulations of the four clades, we regressed the calculated LDI value on the MDI values for each clade. For each regression, we calculated the correlation coefficient (r), thus generating a bootstrapped

distribution of correlation coefficients for each level of extinction. We used these distributions to calculate a p-value, which was the number of simulations producing correlations ≥ 0 divided by 1000. This p-value can be converted (by subtracting from 1 and multiplying by 100%) to the smallest one-sided confidence interval on r that would include zero; if this confidence interval exceeds 95%, then the analysis would provide significant support for a negative relationship between LDI and MDI. This test showed significantly negative correlations between MDI and LDI for each level of extinction (extinction = 0, p = 0.015; extinction = 0.5 * net diversification rate, p = 0.012; extinction = 1.0 * net diversification rate, p = 0.001).

For a more conservative test incorporating variability in extinction rates among the four clades, we generated another parametrically-bootstrapped distribution of correlation coefficients by randomly selecting an extinction rate for each clade independently (extinction = 0, 0.5, or 1.0 * net diversification rate). The significance-testing procedure was then the same as in the previous analysis, which used the same extinction rate for all clades. This result was also significant (p = 0.009). Thus, our results for the correlation between MDI and LDI are robust to departures from the assumptions of a pure birth model.

Extinction rate as proportion of net diversification rate

Figure S7. Effect of sampling on diversity patterns. To investigate the effect of incomplete sampling on the lineage diversity index, we generated parametricallybootstrapped distributions of the LDI values for the four clades that included both stochasticity in the birth process and incomplete sampling. For this analysis, we simulated and resampled phylogenies using the program PhyloGen (Rambaut 2002). For each clade, we simulated phylogenies using a pure-birth model, creating 1000 simulated data sets per clade. We simulated phylogenies to match the total number of known species in the clade, and then randomly selected taxa to exclude until the phylogeny contained the same number of species that were actually sampled in this study. For example, for the agamid clade, we first simulated trees with 79 species and then randomly chose 10 species to be excluded, creating trees of 69 species. We used these simulated phylogenies to create lineage-through-time plots, which were standardized to a relative time scale. As in figure S6, we used these simulations to generate a bootstrapped distribution of LDI statistics for each clade, considering the simulated data sets as a null model that accounts for differences in the completeness of sampling among the groups and stochasticity in the birth process. We generated this null distribution by calculating the area between each simulated data set and the reconstructed lineage-through-time plot for that clade using only the first 2/3 of the phylogeny. The means for these distributions of areas are plotted below and compared to the pure-birth analysis in Figure 1, with the original, pure-birth results in black and the results corrected for incomplete sampling in purple. Correcting for incomplete sampling did not affect the expected order of the four clades on the lineage diversity axis. Furthermore, the negative correlation between the morphological disparity index and this corrected lineage diversity index is still significant (parametric bootstrap, probability value calculated as in Figure S6, p = 0.012).

This null model correcting for sampling is conservative because it assumes that every lineage is equally likely to be excluded from the data set. If all unsampled species occur on branches in the last 1/3 of the tree, then sampling would not affect the results presented in Figure 1, because those branches are not incorporated into the analysis. The null model here assumes, by contrast, that species are excluded randomly, in which case many branches would occur in the first 2/3 of the tree. For our data, due to the process of taxon selection, most unsampled species have close relatives that are included in our sampling; consequently, most branches leading to unsampled species probably occurred in the most recent 1/3 of the tree and as a result, the two models presented here bracket the range of possibilities resulting from species sampling.

Supporting tables

Table S1. GenBank accession numbers for all sequences used in this study. Newly published sequences are those with no reference listed.

Taxon	Species	Accession Number	Reference
Australian agamids	Amphibolurus muricatus	AF128468	S12
•	Amphibolurus nobbi	AY132999	S4
	Amphibolurus nobbi coggeri	AY133000	S4
	Amphibolurus norrisi	AY133001	S4
	Amphibolurus temporalis	AY133002	S4
	Caimanops amphiboluroides	AF128472	S12
	Chelosania brunnea	AF128465	S12
	Chlamydosaurus kingii	AF128469	S12
	Ctenophorus adelaidensis	AF128471	S12
	Ctenophorus caudicinctus	AF375623	S3
	Ctenophorus clayi	AF375620	S3
	Ctenophorus cristatus	AF375622	S3
	Ctenophorus decresii	AF128470	S12
	Ctenophorus femoralis	AF375627	S3
	Ctenophorus fionni	AF375638	S3
	Ctenophorus fordi	AF375626	S3
	Ctenophorus gibba	AF375625	S3
	Ctenophorus isolepis	AF375629	S3
	Ctenophorus maculatus	AF375628	S3
	Ctenophorus maculosus	AF375621	S3
	Ctenophorus mckenziei	AF375631	S3
	Ctenophorus nuchalis	AF375633	S3
	Ctenophorus ornatus	AF375624	S3
	Ctenophorus pictus	AF375635	S3
	Ctenophorus reticulatus	AF375634	S3
	Ctenophorus rubens	AF375630	S3
	Ctenophorus rufescens	AF375636	S3
	Ctenophorus salinarum	AF375640	S3
	Ctenophorus scutulatus	AF375632	S3
	Ctenophorus tjantjalka	AF375637	S3
	Ctenophorus vadnappa	AF375639	S3
	Diporiphora albilabris	AY133003	S4

Taxon	Species	Accession Number	Reference
Australian agamids	Diporiphora arnhemenica	AY133004	S4
_	Diporiphora australis	AY133005	S4
	Diporiphora bennettii	AY133006	S4
	Diporiphora bilineata	AF128473	S12
	Diporiphora Ialliae	AY133007	S4
	Diporiphora linga	AY133008	S4
	Diporiphora magna	AY133009	S4
	Diporiphora pindan	AY133010	S4
	Diporiphora reginae	AY133011	S4
	Diporiphora winneckei	AY133012	S4
	Hypsilurus (Arua) modestus	AF128464	S12
	Hypsilurus boydii	AY133013	S4
	Hypsilurus bruijnii	AY133014	S4
	Hypsilurus dilophus	AF128466	S12
	Hypsilurus nigrigularis	AY133016	S4
	Hypsilurus papuensis	AY133017	S4
	Hypsilurus spinipes	AY133018	S4
	Lophognathus gilberti	AY133019	S4
	Lophognathus longirostris	AF128462	S12
	Moloch horridus	AF128467	S12
	Physignathus lesueurii	AF128463	S12
	Pogona barbata	AF128474	S12
	Pogona brevis	AY133020	S4
	Pogona henrylawsoni	AY133021	S4
	Pogona minima	AY133022	S4
	Pogona minor	AY133023	S4
	Pogona mitchelli	AY133024	S4
	Pogona nullarbor	AY133025	S4
	Pogona vitticeps	AY133026	S4
	Rankinia diemensis	AF375619	S3
	Tympanocryptis centralis	AY133030	S4
	Tympanocryptis cephalus	AY133027	S4
	Tympanocryptis houstoni	AY133028	S4
	Tympanocryptis intima	AY133029	S4
	Tympanocryptis lineata	AF128475	S12
	Tympanocryptis pinguicolla	AY133031	S4
	Tympanocryptis tetraporophora	AY133032	S4
Phrynosomatines	Callisaurus draconoides	AY297492	
	Cophosaurus texanus Holbrookia maculata	AY297489 AY297490	
	поіргоокіа піасиіата	A129/490	

Taxon	Species	Accession number	Reference
Phrynosomatines	Holbrookia propingua	AY297491	
•	Petrosaurus mearnsi	L40444; L41450	S13
	Petrosaurus thalassinus	AF049858	S14
	Phrynosoma asio	L40446; L41452	S13
	Phrynosoma cornutum	AY297487	
	Phrynosoma coronatum	AY297485	
	Phrynosoma hernandesi	U82686	S15
	Phrynosoma mcallii	AY297486	
	Phrynosoma modestum	AY297484	
	Phrynosoma platyrhinos	AY297488	
	Phrynosoma solare	AF528739	S16
	Phrynosoma taurus	AF346844	S17
	Sator angustus	AF049859	S14
	Sceloporus adleri	AY297519	
	Sceloporus bicanthalis	AF000800;	S18
		AF000840 [°]	
	Sceloporus carinatus	AY297496	
	Sceloporus cautus	AY297522	
	Sceloporus chrysostictus	L40451; L41458	S13
	Sceloporus clarkii	AY297511	
	Sceloporus cyanogenys	AY297524	
	Sceloporus dugesii	L40454; L41461	S13
	Sceloporus formosus	AY297498	
	Sceloporus graciosus	AF049860	S14
	Sceloporus grammicus	AY297509	
	Sceloporus horridus	AF000804;	S18
	·	AF000844	
	Sceloporus hunsakeri	AY297506	
	Sceloporus insignis	AF000806;	S18
		AF000846	
	Sceloporus jalapae	AY297504	
	Sceloporus jarrovii	AY297512	
	Sceloporus licki	AF000808;	S18
		AF000848	
	Sceloporus lundelli	AY297499	
	Sceloporus maculosus	AY297501	
	Sceloporus magister	AF528741	S16
	Sceloporus malachiticus	AY297518	0.40
	Sceloporus megalepidurus	AF000822;	S18
	Saalanarua malanarhinua	AF000862 AF000812;	S18
	Sceloporus melanorhinus	AF000812, AF000852	376
	Sceloporus merriami	AY297520	
	Sceloporus mucronatus	AY297497	
	•	AY297497 AY297515	
	Sceloporus occidentalis	AF528743	S16
	Sceloporus ochoterenae	AF528743 AY297521	310
	Sceloporus olivaceus		
	Sceloporus orcutti	AY297508	
	Sceloporus ornatus	AY297523	

_	•	Accession	5 (
Taxon	Species	number	Reference
Phrynosomatines	Sceloporus parvus	AF000792;	S18
	0.4	AF000832	
	Sceloporus pictus	AY297500	
	Sceloporus poinsettii	AY297510	
	Sceloporus pyrocephalus	AY297502	
	Sceloporus scalaris	AF528742	S16
	Sceloporus siniferus	AY297494	
	Sceloporus smaragdinus	AY297517	
	Sceloporus spinosus	AY297525	
	Sceloporus squamosus	AY297495	
	Sceloporus taeniocnemis	L41426; L41476	S13
	Sceloporus teapensis	AY297505	
	Sceloporus torquatus	AF000827; AF000867	S18
	Sceloporus undulatus	AY297514	
	Sceloporus utiformis	AF528740	S16
	Sceloporus variabilis	AY297507	
	Sceloporus virgatus	AY297516	
	Sceloporus woodi	AY297513	
	Sceloporus zosteromus	AY297503	
	Uma scoparia	AF049861	S14
	Urosaurus graciosus	AF049862	S14
	Urosaurus microscutatus	L41434; L41485	S13
	Urosaurus nigricaudus	L41435; L41486	S13
	Urosaurus ornatus	AY297493	
	Uta palmeri	L41437; L41488	S13
	Uta stansburiana	AF049863	S14
Liolaemus	Liolaemus abaucan	AF099263	S5
	Liolaemus albiceps	AF099267	S5
	Liolaemus alticolor	AF099218	S5
	Liolaemus andinus	AF099251	S5
	Liolaemus audituvelatus	AF305792	
	Liolaemus austromendocinus	AF099239	S5
	Liolaemus bellii	AF099223	S5
	Liolaemus bibronii	AF099221	S5
	Liolaemus bitaeniatus	AF099219	S5
	Liolaemus boulengeri	AF099275	S5
	Liolaemus buergeri	AF099275	S5
	Liolaemus canqueli	AY297536	33
	Liolaemus chacoensis	AF099270	S5
	Liolaemus chiliensis	AF099224	S5
	Liolaemus coeruleus	AF099224 AF099217	S5
	Liolaemus coeruleus Liolaemus cuyanus	AF099217 AF099252	S5
	-		
	Liolaemus cyanogaster	AF099225	S5
	Liolaemus darwinii	AF099274	S5
	Liolaemus dorbignyi	AF099248	S5
	Liolaemus elongatus	AF099240	S5
	Liolaemus famatinae	AF099246	S5
	Liolaemus fitzingerii	AF099253	S5

		Accession	
Taxon	Species	number	Reference
Liolaemus	Liolaemus fuscus	AF099232	S5
	Liolaemus gracilis	AF099222	S5
	Liolaemus gravenhorstii	AY297527	
	Liolaemus hernani	AY297529	
	Liolaemus huacahuasicus	AY297533	
	Liolaemus irregularis	AF099268	S5
	Liolaemus koslowskyi	AF099264	S5
	Liolaemus kriegi	AY297530	
	Liolaemus laurenti	AF099273	S5
	Liolaemus lemniscatus	AF099229	S5
	Liolaemus leopardinus	AF099235	S5
	Liolaemus lineomaculatus	AF099241	S5
	Liolaemus lutzae	AF099255	S5
	Liolaemus magellanicus	AF099243	S5
	Liolaemus melanops	AF099261	S5
	Liolaemus monticola	AF099230	S5
	Liolaemus multicolor	AF099250	S5
	Liolaemus multimaculatus	AF099257	S5
	Liolaemus nigromaculatus	AY297526	
	Liolaemus nigroviridis	AF099233	S5
	Liolaemus nitidus	AF099231	S5
	Liolaemus occipitalis	AF099256	S5
	Liolaemus olongasta	AF099271	S5
	Liolaemus orientalis	AF099247	S5
	Liolaemus ornatus	AF099266	S5
	Liolaemus paulinae	AY297531	
	Liolaemus petrophilus	AF099238	S5
	Liolaemus pictus	U82684	S15
	Liolaemus platei	AY297528	
	Liolaemus poecilochromus	AF099249	S5
	Liolaemus pseudoanomalus	AF099254	S5
	Liolaemus quilmes	AF099265	S5
	Liolaemus riojanus	AY297534	
	Liolaemus robertmertensi	AF099220	S5
	Liolaemus rothi	AF099262	S5
	Liolaemus ruibali	AF099244	S5
	Liolaemus salinicola	AF099259	S5
	Liolaemus scapularis	AF099258	S5
	Liolaemus schroederi	AF305791	
	Liolaemus somuncurae	AF099242	S5
	Liolaemus stolzmanni	AY297532	
	Liolaemus tenuis	AF099228	S5
	Liolaemus uspallatensis	AF099269	S5
	Liolaemus walkeri	AF305790	
	Liolaemus wiegmannii	AF099260	S5
	Liolaemus xanthoviridis	AY297535	
	Liolaemus zapallarensis	AF099227	S5

_		Accession	
Taxon	Species	number	Reference
Anolis	Anolis acutus	AF055926	S1
	Anolis aeneus	AF055950	S1
	Anolis ahli	AY296148	S19
	Anolis alayoni	AY296149	S19
	Anolis alfaroi	AY296150	S19
	Anolis aliniger	AF055959	S 1
	Anolis allisoni	AY296151	S19
	Anolis allogus	AY296152	S19
	Anolis alumina	AY296153	S19
	Anolis alutaceus	AF055971	S1
	Anolis angusticeps	AF055967	S1
	Anolis argenteolus	AY296154	S19
	Anolis armouri	AY263012	S20
	Anolis bahorucoensis	AF055932	S1
	Anolis baleatus	AY296155	S19
	Anolis baracoae	AY296156	S19
	Anolis barahonae	AF055972	S1
	Anolis bartschi	AF055960	S1
	Anolis bimaculatus	AF055930	S1
	Anolis bremeri	AY296157	S19
	Anolis brevirostris	AY296158	S19
	Anolis brunneus	AY296159	S19
	Anolis carolinensis	AF294279	S21
	Anolis caudalis	AY296161	S19
	Anolis centralis	AY296162	S19
	Anolis chlorocyanus	AY296163	S19
	Anolis christophei	AF055957	S1
	Anolis coelestinus	AY296164	S19
	Anolis conspersus	AF294304	S21
	Anolis cooki	AY296165	S19
	Anolis cristatellus	AY296166	S19
	Anolis cuvieri	AF055973	S1
	Anolis cybotes	AY263133	S20
	Anolis desechensis	AY296167	S19
	Anolis distichus	AY296168	S19
	Anolis dolichocephalus	AY296169	S19
	Anolis equestris	AF055978	S1
	Anolis ernestwilliamsi	AY296170	S19
	Anolis etheridgei	AF055934	S1
	Anolis eugenegrahami	AY296171	S19
	Anolis evermanni	AY296172	S19
	Anolis ferreus	AY296173	S19
	Anolis fowleri	AY296174	S19
	Anolis garmani	AF294289	S21
	Anolis garridoi	AY296175	S19
	Anolis grahami	AF294299	S21
	Anolis griseus	AY296176	S19
	Aliolis gliseus	711200170	013

		Accession	
Taxon	Species	number	Reference
Anolis	Anolis haetianus	AY263042	S20
	Anolis hendersoni	AY296178	S19
	Anolis homolechis	AY296179	S19
	Anolis imias	AF294314	S21
	Anolis inexpectatus	AY296180	S19
	Anolis insolitus	AF055933	S1
	Anolis isolepis	AY296181	S19
	Anolis jubar	AY296182	S19
	Anolis krugi	AF055928	S1
	Anolis leachii	AY296183	S19
	Anolis lineatopus	AF294295	S21
	Anolis longiceps	AY296184	S19
	Anolis longitibialis	AY263010	S20
	Anolis loysianus	AF055964	S1
	Anolis luciae	AF055951	S1
	Anolis lucius	AF055962	S1
	Anolis luteogularis	AF055977	S1
	Anolis macilentus	AY296185	S19
	Anolis marcanoi	AY263006	S20
	Anolis marmoratus	AY296186	S19
	Anolis marron	AY296187	S19
	Anolis maynardi	AF055969	S1
	Anolis mestrei	AF337779	S19
	Anolis monensis	AY296188	S19
	Anolis monticola	AY296189	S19
	Anolis noblei	AY296190	S19
	Anolis occultus	AF055976	S1
	Anolis oculatus	AY296191	S19
	Anolis olssoni	AF055945	S1
	Anolis opalinus	AF294305	S21
	Anolis ophiolepis	AF055942	S1
	Anolis paternus	AF055965	S1
	Anolis placidus	AY296192	S19
	Anolis pogus	AY296193	S19
	Anolis poncensis	AY296194	S19
	Anolis porcatus	AY296195	S19
	Anolis pulchellus	AY296196	S19
	Anolis pumilus	AF055963	S1
	Anolis quadriocellifer	AY296197	S19
	Anolis reconditus	AY296198	S19
	Anolis richardi	AF055949	S1
	Anolis roquet	AY296199	S19
	Anolis sagrei	AF337778	S19
	Anolis scriptus	AY296200	S19
	Anolis semilineatus	AY296201	S19
	Anolis sheplani	AF055966	S1
	Anolis shrevei	AY263036	S20
	Anolis singularis	AY296202	S19

Taxon	Species	Accession number	Reference
Anolis	Anolis smallwoodi	AY296203	S19
	Anolis smaragdinus	AF055968	S1
	Anolis strahmi	AY263008	S20
	Anolis stratulus	AF055929	S1
	Anolis trinitatis	AY296204	S19
	Anolis valencienni	AF294310	S21
	Anolis vanidicus	AF055970	S1
	Anolis vermiculatus	AF055961	S1
	Anolis wattsi	AF055931	S1
	Anolis websteri	AY296205	S19
	Anolis whitemani	AY263024	S20
	Chamaeleolis barbatus	AY296146	S19
	Chamaelinorops barbouri	AF055946	S1
	Chamaeleolis chamaeleonides	AF055975	S1
	Chamaeleolis guamuhaya	AF055974	S1
	Chamaeleolis porcus	AY296147	S19

Table S2. Average coefficients of variation, with standard deviations, over all variables for each lizard taxon included in this study.

Average coefficient of variation
(± sd)
0.183 ± 0.055
0.141 ± 0.044
0.101 ± 0.039
0.212 ± 0.264

References:

- S1. T. R. Jackman, A. Larson, K. de Queiroz, J. B. Losos, *Syst. Biol.* 48, 254 (1999).
- S2. J. A. Schulte II, *A Phylogenetic and Ecological Analysis of Iguanian Lizard Evolution*, thesis, Washington University (2001).
- S3. J. Melville, J. A. Schulte II, A. Larson, *J. Exp. Zool.* **291**, 339 (2001).
- S4. J. A. Schulte II, J. Melville, A. Larson, *Proc. R. Soc. London Ser. B* **270**, 597 (2003).
- S5. J. A. Schulte II, J. R. Macey, R. E. Espinoza, A. Larson, *Biol. J. Linn. Soc.* **69**, 75 (2000).
- S6. J. J. Wiens, Syst. Biol. 47, 427 (1998).
- S7. D. Posada, K. A. Crandall, *Bioinformatics* 14, 817 (1998).
- S8. D. L. Swofford, *PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods)* (Sinauer, New York, 2002).
- S9. M. J. Sanderson, *Mol. Biol. Evol.* **14**, 1218 (1997).
- S10. A. Rambaut and M. Charleston, TreeEdit version 1.0 alpha 4-61

(http://evolve.zoo.ox.ac.uk/software/TreeEdit/main.html) (2000).

S11. A. Rambaut., PhyloGen version 1.1

(http://evolve.zoo.ox.ac.uk/software/PhyloGen/main.html) (2001).

- S12. J. R. Macey et al., Syst. Biol. 49, 233 (2000).
- S13. T. W. Reeder, Mol. Phylogenet. Evol. 4, 203 (1995).
- S14. J. A. Schulte II, J. R. Macey, A. Larson, and T. J. Papenfuss, *Mol. Phylogenet. Evol.* **10**, 367 (1998).
- S15. J. R. Macey, A. Larson, N. B. Ananjeva, T. J. Papenfuss, *J. Mol. Evol.* **44**, 660 (1997).
- S16. J. A. Schulte II, J. P. Valladares, A. Larson, *Herpetologica*, in press.

- S17. T. W. Reeder, R. R. Montanucci, Copeia 2001, 309 (2001).
- S18. J. J. Wiens, T. W. Reeder, Herpetological Monographs 11, 1 (1997).
- S19. J. B. Losos, M. Leal, R. E.Glor, K. de Queiroz, P. E. Hertz, L. Rodríguez Schettino,
- A. Chamizo Lara, T. R. Jackman, A. Larson, *Nature* 424, 542 (2003).
- S20. R. E. Glor, J. J. Kolbe, R. Powell, A. Larson, J.B. Losos, Evolution, in press.
- S21. T. R. Jackman, D. J. Irschick, K. de Queiroz, J. B. Losos, A. Larson, *J. Exp. Zool.* **294**, 1 (2002).