# Today's Agenda

#### Introduce Dataset 1

- Brainstorm models
- Begin univariate analyses

Justin Leinaweaver (Spring 2022)



#### Scientific models are:

- Neither true nor false
- Limited in their accuracy
- Partial representations
- Useful for only some uses
- A reflection of the interests of the designer

# **Dataset 1: The Motivating Problem**

What drives economic investment in US states?

Why do some states attract greater investment by companies and individuals than others?

# **Dataset 1: The Motivating Problem**

What drives economic investment in US states?

- Literature Review
- Exploratory Data Analysis

#### **Dataset 1: Literature Review**

# What are the important causal mechanisms that explain business investment in states?

- The Young Entrepreneur Council. (2017, Nov 1). 9 Things to Remember Before Relocating Your Business. *Small Business Trends*.
- ② Gonzales, C., Kerlin, M., Schaf, R., and Tucker-Ray, S. (2019). How state and local governments win at attracting companies. McKinsey & Company.

### **Dataset 1: The Economies of the US States**

|    | Α           | В      | С    | D        | Е            | F            | G                    | Н                   |
|----|-------------|--------|------|----------|--------------|--------------|----------------------|---------------------|
| 1  | State       | abbrev | year | min_wage | gdp_millions | unemployment | population_thousands | rental_vacancy_rate |
| 2  | Alabama     | AL     | 2020 |          | 224870.6     | 6            | 4921.532             | 13.6                |
| 3  | Alaska      | AK     | 2020 | 10.19    | 50246.7      | 7.9          | 731.158              | 7                   |
| 4  | Arizona     | AZ     | 2020 | 12       | 372461       | 7.9          | 7421.401             | 5.5                 |
| 5  | Arkansas    | AR     | 2020 | 10       | 129073.9     | 6.1          | 3030.522             | 8.4                 |
| 6  | California  | CA     | 2020 | 12       | 3091871.5    | 10.2         | 39368.078            | 4                   |
| 7  | Colorado    | CO     | 2020 | 12       | 390098.7     | 7.3          | 5807.719             | 4                   |
| 8  | Connecticut | CT     | 2020 | 12       | 280900.3     | 7.9          | 3557.006             | 5.6                 |
| 9  | Delaware    | DE     | 2020 | 9.25     | 75512.5      | 7.9          | 986.809              | 6.1                 |
| 10 | Florida     | FL     | 2020 | 8.56     | 1095888.2    | 7.9          | 21733.312            | 7.3                 |
| 11 | Georgia     | GA     | 2020 | 7.25     | 619240       | 6.6          | 10710.017            | 7.1                 |
| 12 | Hawaii      | HI     | 2020 | 10.1     | 89856.2      | 11.8         | 1407.006             | 7.5                 |
| 13 | Idaho       | ID     | 2020 | 7.25     | 84032.2      | 5.4          | 1826.913             | 4.4                 |
| 14 | Illinois    | IL     | 2020 | 10       | 863516.7     | 9.6          | 12587.53             | 7.9                 |
| 15 | Indiana     | IN     | 2020 | 7.25     | 372636.7     | 7.2          | 6754.953             | 9.3                 |
| 16 | Iowa        | IA     | 2020 | 7.25     | 192710.2     | 5.3          | 3163.561             | 8.9                 |
| 17 | Kansas      | KS     | 2020 | 7.25     | 173298.3     | 5.9          | 2913.805             | 12.1                |
| 18 | Kentucky    | KY     | 2020 | 7.25     | 210024.2     | 6.6          | 4477.251             | 6.1                 |

### "Three Rules of Tidy Data"



Source: Wickham (2018) R for Data Science. O'Reilly.

### **Dataset 1: The Economies of the US States**

|    | Α           | В      | С    | D        | Е            | F            | G                    | Н                   |
|----|-------------|--------|------|----------|--------------|--------------|----------------------|---------------------|
| 1  | State       | abbrev | year | min_wage | gdp_millions | unemployment | population_thousands | rental_vacancy_rate |
| 2  | Alabama     | AL     | 2020 |          | 224870.6     | 6            | 4921.532             | 13.6                |
| 3  | Alaska      | AK     | 2020 | 10.19    | 50246.7      | 7.9          | 731.158              | 7                   |
| 4  | Arizona     | AZ     | 2020 | 12       | 372461       | 7.9          | 7421.401             | 5.5                 |
| 5  | Arkansas    | AR     | 2020 | 10       | 129073.9     | 6.1          | 3030.522             | 8.4                 |
| 6  | California  | CA     | 2020 | 12       | 3091871.5    | 10.2         | 39368.078            | 4                   |
| 7  | Colorado    | CO     | 2020 | 12       | 390098.7     | 7.3          | 5807.719             | 4                   |
| 8  | Connecticut | CT     | 2020 | 12       | 280900.3     | 7.9          | 3557.006             | 5.6                 |
| 9  | Delaware    | DE     | 2020 | 9.25     | 75512.5      | 7.9          | 986.809              | 6.1                 |
| 10 | Florida     | FL     | 2020 | 8.56     | 1095888.2    | 7.9          | 21733.312            | 7.3                 |
| 11 | Georgia     | GA     | 2020 | 7.25     | 619240       | 6.6          | 10710.017            | 7.1                 |
| 12 | Hawaii      | HI     | 2020 | 10.1     | 89856.2      | 11.8         | 1407.006             | 7.5                 |
| 13 | Idaho       | ID     | 2020 | 7.25     | 84032.2      | 5.4          | 1826.913             | 4.4                 |
| 14 | Illinois    | IL     | 2020 | 10       | 863516.7     | 9.6          | 12587.53             | 7.9                 |
| 15 | Indiana     | IN     | 2020 | 7.25     | 372636.7     | 7.2          | 6754.953             | 9.3                 |
| 16 | Iowa        | IA     | 2020 | 7.25     | 192710.2     | 5.3          | 3163.561             | 8.9                 |
| 17 | Kansas      | KS     | 2020 | 7.25     | 173298.3     | 5.9          | 2913.805             | 12.1                |
| 18 | Kentucky    | KY     | 2020 | 7.25     | 210024.2     | 6.6          | 4477.251             | 6.1                 |

# **Dataset 1: The Motivating Problem**

What drives economic investment in US states?

Why do some states attract greater investment by companies and individuals than others?

#### **Dataset 1: The Economies of the US States**

|    | Α           | В      | С    | D            | Е                   | F        |
|----|-------------|--------|------|--------------|---------------------|----------|
| 1  | State       | abbrev | year | gdp_millions | gdp_category        | gdp_rate |
| 2  | Alabama     | AL     | 2020 | 224870.6     | Under \$1 trillion  | -0.0143  |
| 3  | Alaska      | AK     | 2020 | 50246.7      | Under \$100 billion | -0.0761  |
| 4  | Arizona     | AZ     | 2020 | 372461       | Under \$1 trillion  | 0.0063   |
| 5  | Arkansas    | AR     | 2020 | 129073.9     | Under \$1 trillion  | -0.0144  |
| 6  | California  | CA     | 2020 | 3091871.5    | Above \$1 trillion  | -0.0131  |
| 7  | Colorado    | CO     | 2020 | 390098.7     | Under \$1 trillion  | -0.0073  |
| 8  | Connecticut | CT     | 2020 | 280900.3     | Under \$1 trillion  | -0.0240  |
| 9  | Delaware    | DE     | 2020 | 75512.5      | Under \$100 billion | -0.0204  |
| 10 | Florida     | FL     | 2020 | 1095888.2    | Above \$1 trillion  | -0.0096  |
| 11 | Georgia     | GA     | 2020 | 619240       | Under \$1 trillion  | -0.0103  |
| 12 | Hawaii      | HI     | 2020 | 89856.2      | Under \$100 billion | -0.0615  |
| 13 | Idaho       | ID     | 2020 | 84032.2      | Under \$100 billion | 0.0044   |
| 14 | Illinois    | IL     | 2020 | 863516.7     | Under \$1 trillion  | -0.0249  |
| 15 | Indiana     | IN     | 2020 | 372636.7     | Under \$1 trillion  | -0.0186  |
| 16 | Iowa        | IA     | 2020 | 192710.2     | Under \$1 trillion  | -0.0100  |
| 17 | Kansas      | KS     | 2020 | 173298.3     | Under \$1 trillion  | -0.0181  |

[1] 237 222 186 115 200 232 164 131 125 145 217 165 164 181 175 233 243 233 138 146 147 211 133 [24] 185 164 127 193 189 178 249 181 231 162 108 186 243 193 106 124 105 114 237 111 163 196 174 [47] 182 240 244 166 164 190 236 204 122 121 135 190 244 210 201 246 121 127 229 154 109 113 169 [70] 241 191 121 171 105 205 159 192 209 167 166 169 219 146 218 104 220 137 132 218 160 229 208 [93] 156 244 160 112 129 136 135 234 214 176 137 228 159 245 170 215 195 118 110 228 133 123 159 [116] 235 166 221 224 141 123 200 209 142 235 212 246 153 217 118 232 104 111 213 229 149 243 139 [139] 186 159 150 127 110 191 108 248 184 244 145 190 122 222 153 180 242 122 135 142 228 149 131 [162] 176 229 108 223 119 132 197 242 154 201 103 149 197 106 111 185 163 120 218 166 245 132 123 [185] 205 181 211 138 231 233 158 100 209 231 159 242 225 233 168 206 136 154 221 110 113 126 152 [208] 117 102 240 218 120 124 133 150 222 210 146 213 142 193 174 197 178 154 132 183 145 156 104 [231] 150 172 147 200 128 231 139 240 213 125 183 158 169 180 196 127 210 240 123 141 203 128 203 [254] 218 110 176 114 139 144 183 192 154 116 225 103 156 222 157 113 105 229 110 115 149 249 105 [277] 224 188 143 118 108 137 224 204 135 178 174 153 122 126 206 154 105 178 192 152 241 250 212 [300] 173 187 193 144 211 208 223 136 139 105 166 182 137 137 195 240 187 211 150 104 216 119 183 [323] 246 199 142 171 189 160 180 165 191 139 126 182 100 240 205 111 115 235 116 209 159 125 245 [346] 182 145 159 186 177 241 182 178 138 247 226 181 180 225 145 233 200 175 244 153 127 174 133 [369] 200 231 172 177 108 240 220 230 188 153 249 164 217 240 154 227 167 149 234 241 101 164 243 [392] 246 230 140 187 135 114 131 118 165 153 191 167 190 205 162 228 210 135 203 125 105 245 223 [415] 106 126 155 244 147 171 153 169 180 103 104 135 119 162 155 174 139 222 122 162 126 148 230 [438] 190 170 158 113 172 114 200 110 152 188 218 241 156 131 133 115 186 237 134 123 180 195 205 [461] 147 190 101 214 162 204 140 148 141 153 156 176 139 225 111 128 200 248 117 191 182 119 192 [484] 134 165 164 109 178 133 187 146 204 169 207 146 140 141 194 163 225 149 113 203 217 150 244 [507] 170 238 143 122 186 234 190 106 224 160 125 177 143 141 175 233 171 115 110 117 144 125 226

```
[1] 237 222 186 115 200 232 164 131 125 145 217
[12] 165 164 181 175 233 243 233 138 146 147 211
 [23] 133 185 164 127 193 189 178 249 181 231 162
 [34] 108 186 243 193 106 124 105 114 237 111 163
[45] 196 174 182 240 244 166 164 190 236 204 122
 [56] 121 135 190 244 210 201 246 121 127 229 154
[67] 109 113 169 241 191 121 171 105 205 159 192
[78] 209 167 166 169 219 146 218 104 220 137 132
[89] 218 160 229 208 156 244 160 112 129 136 135
[100] 234 214 176 137 228 159 245 170 215 195 118
[111] 110 228 133 123 159 235 166 221 224 141 123
[122] 200 209 142 235 212 246 153 217 118 232 104
[133] 111 213 229 149 243 139 186 159 150 127 110
[144] 191 108 248 184 244 145 190 122 222 153 180
[155] 242 122 135 142 228 149 131 176 229 108 223
[166] 119 132 197 242 154 201 103 149 197 106 111
[177] 185 163 120 218 166 245 132 123 205 181 211
[188] 138 231 233 158 100 209 231 159 242 225 233
[199] 168 206 136 154 221 110 113 126 152 117 102
[210] 240 218 120 124 133 150 222 210 146 213 142
[221] 193 174 197 178 154 132 183 145 156 104 150
[232] 172 147 200 128 231 139 240 213 125 183 158
[243] 169 180 196 127 210 240 123 141 203 128 203
[254] 218 110 176 114 139 144 183 192 154 116 225
```

• The middle?

• The range?

• The variation?

# **Defining Statistics: Level 1**

Statistics is a set of tools we use to summarize data

Summarize: "give a brief statement of the main points of (something)" (Oxford Dictionary).

# **Defining Statistics: Level 2**

"The practice or science of collecting and analyzing numerical data in large quantities, **especially for** the purpose of inferring proportions in a whole from those in a representative sample" (Oxford Dictionary).

#### **Descriptive Statistics (Johnson 2012)**

Measures of Central Tendency

- Mean
- Median

**Deviations from Central Tendency** 

Standard deviation

Measures of Variability

- Range
- IQR

#### **Descriptive Statistics (Johnson 2012)**

Measures of Central Tendency

- Mean
- Median

**Deviations from Central Tendency** 

Standard deviation

Measures of Variability

- Range = Maximum Minimum
- IQR = 75th 25th percentile

### **Descriptive Statistics in Excel: Using Functions**

| F3 * : X \( \sqrt{f_x} \) |                 |      | =AVERAGE(C2:C51 | L) |                |          |
|---------------------------|-----------------|------|-----------------|----|----------------|----------|
| 4                         | Α               | В    | С               | D  | E              | F        |
| 1                         | state           | year | gdp_millions    |    |                |          |
| 2                         | Alabama         | 2018 | 221735.5        |    | Mean           |          |
| 3                         | Alaska          | 2018 | 54734.1         |    | GDP (millions) | 406455.9 |
| 4                         | Arizona         | 2018 | 348297.1        |    |                |          |
| 5                         | Arkansas        | 2018 | 128418.9        |    |                |          |
| 6                         | California      | 2018 | 2997732.8       |    |                |          |
| 7                         | Colorado        | 2018 | 371749.6        |    |                |          |
| 8                         | Connecticut     | 2018 | 275726.9        |    |                |          |
| 9                         | 9 Delaware 2018 |      | 73481.3         |    |                |          |
|                           |                 |      |                 |    |                |          |

#### **Descriptive Statistics in Excel: Using Functions**

| D2 | D2 ▼ : × ✓ f <sub>x</sub> =C2/1000 |      |              |              |   |                |          |
|----|------------------------------------|------|--------------|--------------|---|----------------|----------|
| 4  | Α                                  | В    | С            | D            | Е | F              | G        |
| 1  | state                              | year | gdp_millions | gdp_billions |   |                |          |
| 2  | Alabama                            | 2018 | 221735.5     | 221.7355     |   | Mean           |          |
| 3  | Alaska                             | 2018 | 54734.1      | 54.7341      |   | GDP (millions) | 406455.9 |
| 4  | Arizona                            | 2018 | 348297.1     | 348.2971     |   | GDP (billions) | 406.4559 |
| 5  | Arkansas                           | 2018 | 128418.9     | 128.4189     |   |                |          |
| 6  | California                         | 2018 | 2997732.8    | 2997.7328    |   |                |          |
| 7  | Colorado                           | 2018 | 371749.6     | 371.7496     |   |                |          |
| 8  | Connecticut                        | 2018 | 275726.9     | 275.7269     |   |                |          |
| 9  | Delaware                           | 2018 | 73481.3      | 73.4813      |   |                |          |

# For Thursday

#### **Variables**

- Minimum wage
- Unemployment
- Population
- Homeowner Rate
- Manufacturing

#### **Descriptive Statistics**

- Mean
- Median
- Standard deviation
- Minimum
- Maximum
- 25th Percentile
- 75th Percentile

### For Thursday

Predictors to Analyze (5): Min wage, unemployment, population, homeowner rate and manufacturing

```
\begin{array}{lll} \text{Mean} & = \text{AVERAGE} \\ \text{Median} & = \text{MEDIAN} \\ \text{Standard deviation} & = \text{STDEV.S} \\ \text{Minimum} & = \text{MIN} \\ \text{Maximum} & = \text{MAX} \\ 25\text{th Percentile} & = \text{QUARTILE.EXC (quart} = 1) \\ 75\text{th Percentile} & = \text{QUARTILE.EXC (quart} = 3) \\ \end{array}
```