Reinforcement Learning Lecture 7: Function approximation

Lecturer: Prof. Dr. Mathias Niepert

Institute for Artificial Intelligence Machine Learning and Simulation Lab

imprs-is

June 13, 2024

Outline

- 1. Introduction
- 2. Value function approximation
- 3. Prediction
- 4. Control
- 5. Deep Reinforcement Learning

Introduction

Large state spaces

- ▶ Backgammon: 10²⁰ states
- ightharpoonup Go: 10^{170} states
- Continuous spaces:
 - inverted pendulum
 - mountain car
 - helicopter
 - · . . .

3 / 30

Small domains: tabular representation

Introduction

► So far *V* and *Q* were just *lookup tables*:

- Problems with large MDPs:
 - too many states to store in memory
 - too slow to learn
- ► How can we scale the tabular solution methods to arbitrarily large state/action spaces?
 - generalize from previous encounters of similar states (or state-action pairs)
 - function approximation (supervised learning)

Mathias Niepert Reinforcement Learning

 $a \in \{-1, 0, 1\}$ is the action

5 / 30

Introduction

0000

Mathias Niepert Reinforcement Learning

Value function approximation

Idea of value function approximation

lacktriangle Parameterized functional form, with weights $oldsymbol{w} \in \mathbb{R}^d$:

$$\hat{v}_{\pi}(s, \boldsymbol{w}) \approx v_{\pi}(s)$$

- lacktriangle Generally, much less weights than states $d \ll |\mathcal{S}|$
 - obvious for continuous state spaces
 - changing single weight, changes value estimate of many states
 - when one state is updated, change generalizes to many states
- ightharpoonup Update w with MC or TD learning

Function approximators

- Linear combinations of features
 - state aggregation
 - tile coding
 - polynomials
 - radial basis functions (RBFs)
 - Fourier bases
- Neural networks
- Decision trees
- Non-parametric approaches

8 / 30

Function approximators for RL

- ▶ Differentiable function approximators, e.g.:
 - Linear combination of features
 - Neural networks
- ► RL specific problems:
 - non-stationary
 - non-iid data
 - bootstrapping
 - delayed targets

Random variables are *independent and identically distributed* (iid) if they each have the same probability distribution and are mutually independent

- ▶ Approximate value function $\hat{v}(s, w)$
 - ightharpoonup differentiable for all $s \in \mathcal{S}$
- ightharpoonup Weight vector $\boldsymbol{w} = (w_1, w_2, \dots, w_d)^{\top}$
 - \mathbf{w}_t weight vector at time $t = 0, 1, 2, \dots$
- ▶ Gradient of f(w): $\nabla f(w) = \left(\frac{\partial f(w)}{\partial w_1}, \frac{\partial f(w)}{\partial w_2}, \dots, \frac{\partial f(w)}{\partial w_d}\right)^{\top}$
- Do gradient descent by sampling additive parts of the full gradient (i.e., each state consecutively)
- ▶ We can compute our update over smaller sets of inputs

- ▶ When we **approximate** the gradient
- ► For example

$$\mathcal{L}(oldsymbol{w}) = \sum_{n=1}^{N} \mathcal{L}_n(oldsymbol{w})$$

where $oldsymbol{w}$ are weights.

In machine learning

$$\mathcal{L}(\boldsymbol{w}) = -\sum_{n=1}^{N} \log p(y_n \mid \boldsymbol{x}_n, \boldsymbol{w})$$

where $x_n \in \mathbb{R}^D$ are training *inputs* and y_n are the training *targets*

► The corresponding update

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \alpha_t \sum_{n=1}^{N} (\boldsymbol{\nabla} \mathcal{L}_n)(\boldsymbol{w}_t)$$

- Often the gradient is too difficult to compute (CPU/GPU expensive)
- ► Mini-batch: random subset
 - a Large: accurate but costly
 - b Small: noisy but cheep

- Mean squared Value Error: $\mathcal{L}(w) = \sum_{s \in S} \mu(s) \left[v_{\pi}(s) \hat{v}(s, w) \right]^2$
- Adjust w to reduce the error on sample $S_t \mapsto v_{\pi}(S_t)$:

$$\begin{aligned} \boldsymbol{w}_{t+1} &= \boldsymbol{w}_t - \frac{1}{2}\alpha_t(\boldsymbol{\nabla}\mathcal{L}_t)(\boldsymbol{w}_t) \\ &= \boldsymbol{w}_t - \frac{1}{2}\alpha_t\boldsymbol{\nabla}\underbrace{\left[v_{\pi}(S_t) - \hat{v}(S_t, \boldsymbol{w}_t)\right]^2}_{\text{squared sample error}} \\ &= \boldsymbol{w}_t + \alpha_t[v_{\pi}(S_t) - \hat{v}(S_t, \boldsymbol{w}_t)]\nabla\hat{v}(S_t, \boldsymbol{w}) \end{aligned}$$

- $ightharpoonup \alpha_t$ is a step size parameter
- ▶ Why not use $\alpha = 1$, thus eliminating full error on sample?

Linear methods

- ▶ Special case where $\hat{v}(\cdot, \boldsymbol{w})$ is *linear* in the weights
- **Feature vector** x(s) represents state s:

$$\boldsymbol{x}(s) = \begin{bmatrix} x_1(s), & x_2(s), & \dots, & x_d(s) \end{bmatrix}^{\top}$$

- ightharpoonup Each component of x is a feature, examples:
 - distance of robot to landmarks
 - piece on a specific location on a chess board
- ightharpoonup Value function is represented as a linear combination of features x(s):

$$\hat{v}(s, \boldsymbol{w}) = \boldsymbol{w}^{\top} \boldsymbol{x}(s) = \sum_{i=1}^{d} w_i x_i(s)$$

• Gradient is simply $\nabla \hat{v}(s, \boldsymbol{w}) = \boldsymbol{x}(s)$

Prediction

Mathias Niepert Reinforcement Learning 13 / 30

Prediction with function approximation

- lacktriangle We assumed the true value function $v_{\pi}(S_t)$ is known
- ▶ Substitute target U_t for $v_{\pi}(s)$

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \alpha [U_t - \hat{v}(S_t, \boldsymbol{w}_t)] \nabla \hat{v}(S_t, \boldsymbol{w}_t)$$

- $ightharpoonup U_t$ might be a noisy or bootstrapped approximation of the true value
- ▶ Monte Carlo: $U_t = G_t$
- **TD(0):** $U_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, w_t)$
- $\blacktriangleright \ \mathsf{TD}(\lambda): \ U_t = G_t^{\lambda}$

Monte-Carlo with function approximation

► Target is unbiased by definition:

$$\mathbb{E}[U_t|S_t = s] = \mathbb{E}[G_t|S_t = s] = v_{\pi}(S_t)$$

Prediction

000000

Training data:

$$\mathcal{D} = \{(S_1, G_1), (S_2, G_2), \dots, (S_{T-1}, G_{T-1}), (S_T, 0)\}$$

- lacktriangle Using SGD, w is guaranteed to converge to a *local optimum*
- ► MC prediction exhibits local convergence with linear and non-linear function approximation
- ▶ SGD update for sample $S_t \mapsto G_t$:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha [G_t - \hat{v}(S_t, \boldsymbol{w})] \nabla \hat{v}(S_t, \boldsymbol{w})$$

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v}: \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T$ using π

Loop for each step of episode, $t = 0, 1, \dots, T-1$:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[G_t - \hat{v}(S_t, \mathbf{w}) \right] \nabla \hat{v}(S_t, \mathbf{w})$$

TD with function approximation

- ▶ TD-target $U_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, w)$ is biased sample of the true value $v_{\pi}(S_t)$
- ► Training data:

$$\mathcal{D} = \{ (S_1, R_2 + \gamma \hat{v}(S_2, \boldsymbol{w})), (S_2, R_3 + \gamma \hat{v}(S_3, \boldsymbol{w})), \dots, (S_{T-1}, R_T) \}$$

Prediction

000000

▶ SGD update for sample $S_t \mapsto G_t$:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha [R_{t+1} + \gamma \hat{v}(S_{t+1}, \boldsymbol{w}) - \hat{v}(S_t, \boldsymbol{w})] \nabla \hat{v}(S_t, \boldsymbol{w})$$

► Linear TD(0):

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha [\underbrace{R_{t+1} + \gamma \boldsymbol{w}^T \boldsymbol{x}(S_{t+1})}_{U_t: \text{TD-Target}} - \underbrace{\boldsymbol{w}^T \boldsymbol{x}(S_t)}_{\hat{v}: \text{value function}}] \boldsymbol{x}(S_t)$$

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that $\hat{v}(\text{terminal}, \cdot) = 0$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose $A \sim \pi(\cdot|S)$

Take action A, observe R, S'

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})$$

 $S \leftarrow S'$

until S' is terminal

Mathias Niepert Reinforcement Learning 18 / 30

00000

Control with function approximation

- Control via generalized policy iteration (GPI):
 - **policy** evaluation: approximate policy evaluation: $\hat{q}(\cdot,\cdot,w) \approx q_{\pi}$
 - \triangleright policy improvement: ϵ -greedy policy improvement

00000

20 / 30

Types of action—value function approximation

- Action as input: $\hat{q}(s, a, \boldsymbol{w}) \approx q_{\pi}(s, a)$
- Multiple action-value outputs: $\hat{q}_a(s, w) \approx q_{\pi}(s, a)$

Mathias Niepert Reinforcement Learning

00000

Action-value function approximation

- ▶ Approximate action-value function $\hat{q}(s, a, w) \approx q_{\pi}(s, a)$
- Linear case:

$$\hat{q}(s, a, \boldsymbol{w}) = \boldsymbol{w}^T \boldsymbol{x}(s, a) = \sum_{i=1}^d w_i x_i(s, a)$$
$$\nabla \hat{q}(s, a, \boldsymbol{w}) = \boldsymbol{x}(s, a)$$

- lacktriangle Minimize squared error on samples $S_t, A_t \mapsto q_\pi \colon igl[q_\pi \hat{q}(S_t, A_t, m{w})igr]^2$
- Use SGD to find local minimum:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla [q_{\pi}(S_t, A_t) - \hat{q}(S_t, A_t, \mathbf{w}_t)]^2$$

= $\mathbf{w}_t + \alpha [q_{\pi}(S_t, A_t) - \hat{q}(S_t, A_t, \mathbf{w}_t)] \nabla \hat{q}(S_t, A_t, \mathbf{w})$

0000

Control with function approximation

Again, we must substitute target U_t for true action-value $q_{\pi}(s, a)$:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \alpha [U_t - \hat{q}(S_t, A_t, \boldsymbol{w}_t)] \nabla \hat{q}(S_t, A_t, \boldsymbol{w})$$

- ▶ Monte Carlo: $U_t = G_t$
- ▶ One-step Sarsa: $U_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \boldsymbol{w})$

Deep Reinforcement Learning

Recent successes of deep reinforcement learning

Control

Deep (supervised) learning

▶ Deep representation is a composition of many functions

$$x \xrightarrow{\mathbf{w}_1} h_1 \xrightarrow{\mathbf{w}_2} h_2 \xrightarrow{\mathbf{w}_3} \dots \xrightarrow{\mathbf{w}_n} h_n \xrightarrow{\mathbf{w}_{n+1}} y$$

- lacktriangle Linear transformation and non-linear activation functions h_k
- Weight sharing
 - Recurrent neural networks: across time steps
 - ► Convolutional neural networks: across spatial (or temporal) regions
- \triangleright Weights w optimized by stochastic gradient descent (SGD)
- ▶ Powerful function approximation and representation learning
 - ▶ finds compact low-dimensional representation (features)
- ► State-of-the-art for image, text and audio

Naive deep Q-learning

Q-learning update rule:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a} Q(s', a) - Q(s, a)\right)$$

- ightharpoonup Q is represented by a neural network with weights $m{w}$: $\hat{m{q}}(s,a,m{w})$
- Loss is the mean-squared TD-error:

$$\mathcal{L}(oldsymbol{w}) = \mathbb{E}\left[\left(r + \gamma \max_{a} \hat{q}(s', a, oldsymbol{w}) - \hat{q}(s, a, oldsymbol{w}])\right)^{2}
ight]$$

Minimize sample errors with SGD

Stability

Naive Q-learning with neural networks oscillates or diverges:

- 1. Data is non i.i.d!
 - trajectories
 - samples are correlated (generated by interaction)
- 2. Policy changes rapidly with slight changes to Q-values
 - policy may oscillate
- 3. Reward range is unknown
 - gradients can be large
 - instabilities during back-propagation
- 4. Maximization bias

Deep Q-networks (DQN)

Deep Q-networks (DQN) address instabilities through:

- Experience replay
 - \blacktriangleright store transitions (S_t, A_t, R_t, S_{t+1})
 - sample random mini-batches
 - removes correlation, restores i.i.d. property
- Target network
 - second q network (second set of parameters)
 - fixed parameters in target network
 - periodically update target network parameters
- ► Reward clipping/normalization
 - ightharpoonup clip rewards to $r \in [-1, 1]$
 - batch normalization

DQN in Atari

"End-to-end" learning:

- state: stack of 4 frames, raw pixels
- action: joystick commands (18 discrete actions)
- reward: change in score

image from Human-level control through deep reinforcement learning (Google Deepmind / Nature)

image from Human-level control through deep reinforcement learning (Google Deepmind / Nature)

- ▶ When state spaces are **too large** it is not possible to use tables
- Instead we can use function approximation to model v_π and q_π
- Many function models exist in the literature, the most popular and general are Neural Networks.
- ▶ Stochastic Gradient Descent (SGD) is used to optimize the Value Function Error
- ► Value function approximation is used for prediction
- \triangleright ϵ -greedy or other covering policies can be used for improvement
- ► When using a deep-neural network it is important to train in batches using experience replay and other techniques to regularize the problem