CLAIMS

What Is Claimed Is:

1

2

3

1

2

1

2

1

2

4

5

6 7

8

- In a spectral ellipsometer having a source of multi-wavelength light, an
 optical system for directing the light, and a detecting optical system for receiving light
 after contact with a sample surface, the improvement comprising:
- an optical element for receiving the multi-wavelength light directed from
 the optical system and focusing the multiple wavelength light onto a single spot on the
 sample surface.
 - The spectral ellipsometer of Claim 1 wherein the optical element is a spherical prism.
 - The spectral ellipsometer of Claim 1 wherein the optical element is a
 polarizing prism with at least one curved surface for transmitting the multi-wavelength
 light.
 - 4. In a spectral ellipsometer, which includes a light incidence optical system for achieving spot incidence of polarization light of multi-wavelengths onto a sample surface and a detecting optical system for outputting information concerning the sample surface based on an amount of change in elliptical polarization reflected by the sample surface, the improvement comprising a prism polarizer employed in the light incidence optical system with a curved light-incident surface and a curved light-outgoing surface that is orthogonal with respect to a progressing direction of the respective direction of incident and outgoing light.

1	5.	A method of optically determining the characteristics of a sample
2	surface, comprising:	
3		providing a multi-wavelength light;
4		polarizing the multi-wavelength light;
5		directing the polarized multi-wavelength light to focus at an oblique
6	angle on a single point on a sample surface;	
7		measuring the reflected polarized light from the sample surface, and
8		determining the characterization from the change in polarization
9	determined in the measured light.	
1	6.	The method of Claim 5, wherein the directing step includes a spherical
2	prism polarization.	
	_	and the Collins of the collection arises has an incident
1	7.	The method of Claim 6, wherein the polarizing prism has an incident
2	convex surface and an exiting concave surface.	