R tools for a code-based data workflow

Contents

Webinar Information	
Description	
Presenters	
When	
Location	
Additional resources	
Outline	
Introduction ($McCrea, 10 min$)	
Planning (McCrea, 10 min)	
Documenting (Adam, 10 min)	
Acquiring (Adam, 10 min)	
Processing (Adam, 10 min)	
Analyzing (Adam, 5 min)	
Sharing (<i>McCrea</i> , 10 min)	
Archiving (McCrea, 5 min)	
An example R project / Live demo (10 min)	
Questions (10 min)	

Webinar Information

Description

After a brief review of the advantages of a code-based workflow for ecological survey data, we introduce participants to some useful tools available via the R programming language for moving data along the data life cycle. We suggest some accessible tools in R for each step of the life cycle, and conclude with a walk through of how the functionality available in R can increase the reliability, efficiency, and transparency of scientific data management.

Presenters

• McCrea Cobb (Refuge Inventory and Monitoring Program, Alaska) and Adam Smith (Refuge Inventory and Monitoring Program, IR2/4)

When

June 24, 2020 (3:00-4:30 EST)

Location

Webinar link

Additional resources

GitHub repository

Outline

Introduction (McCrea, 10 min)

- Data life cycle review
- Manual versus code-based workflow
 - The manual data workflow
 - * Example
 - * Limitations
 - The code-based data workflow
 - * Advantages
 - · Documented
 - · Reproducible
 - · Replicable
 - · More efficient
 - · Less error-prone

Planning (McCrea, 10 min)

- Make an R project self contained and portable
 - File directory structure
 - Relative paths
- Dependency management
 - packrat
 - containers (docker)
- $\bullet\,$ Standardize file naming convention
- Organizing R files (Numeric preface in the names of ordered scripts)
- Recommended RStudio settings
 - E.g., Uncheck "restore .RData into workspace at startup"
- Version control
 - Storing versions
 - Collaboration

Documenting (Adam, 10 min)

- Commenting
- Informative naming
- Explicit dependencies
- Modular code/functions
- Automated documentation

Acquiring (Adam, 10 min)

- Getting data into R
 - flat files
 - relational databases
 - web APIs
 - * AGOL example

Processing (Adam, 10 min)

- Data manipulation
- Tidy data
- QA/QC
 - Data profiling
 - Assertive programming
- EDA/Visualization

Analyzing (Adam, 5 min)

• CRAN task views

Sharing (McCrea, 10 min)

- Reporting
 - RMarkdown
 - * Bat reporting for mobile aucistics
 - Dashboards
 - COVID 19 example
 - Shiny apps
 - * collarviewer
 - * power analysis for butterfly surveys

Archiving (McCrea, 5 min)

• Saving results to ServCat or some other data repository

An example R project / Live demo (10 min)

Questions (10 min)

Resources (Links)

Introduction to R

- An Introduction to R book
- R for Excel Users

Resources for Teaching R

- DataCamp's tidyverse course
- learnr package
- RStudio teaching resources
- Data Wrangling, Exploration and Analysis with R "STAT 545"

R Resources

- Why learn R
- What they forgot to teach you about R
- R cheatsheets
- Project-oriented workflow

Style Guides - Tidyverse style guide - DataNovia R style guide

R Packages

- Packaging your reproducible analysis
- R packages

• Packaging data analytical work reproducibly using R (and friends)

Project management

- Stop working directory insanity!
- A minimal project tree in R
- Organizing the project directory
- Designing projects
- Project management with RStudio
- File structure for data management
- Organizing files for data analysis
- A meaningful file structure for R projects
- An introduction to Docker for R users

Project Directory Templates

- MakeProject package
- rrtools package
- prodigenr package

General Coding Best Practices

- What's in a name? The concepts and language of replication and reproducibility
- Best practices for scientific computing
- Good enough practices in scientific computing
- Ten simple rules for documenting scientific software
- Art of README see examples and checklist
- Introduction to roxygen2 vignette

Version Control

• Happy Git with R

Other

- How to share your data with a statistician
- Tools for reproducible research
- Reproducibility vs. replicability: a brief history of a confused terminology