First, note that if $||u|| \le \varepsilon ||v||$, $\forall \varepsilon > 0$, that's the same as saying $||u|| \le \varepsilon$, $\forall \varepsilon > 0$. Also, since both ||u||, $\varepsilon \ge 0$, $||u|| \le \varepsilon \iff ||u||^2 \le \varepsilon$, $\forall \varepsilon$.

It is therefore sufficient to show that $\exists m : \forall \varepsilon > 0, ||T^m v||^2 \le \varepsilon$.

Since $\mathbb{F} = \mathbb{C}$, there exists an orthonormal basis of V such that T is upper triangular. We'll work in that basis. Let λ_i be the ith diagonal element of T. Each λ_i corresponds to an eigenvalue of T, so the absolute value of each $|\lambda_i|$ is less than 1. Also, we know that if T is upper triangular, so is T^m . Any subspace of U is invariant under T, so any subspace of U is also invariant under T^m . We'll prove using induction on the dimension of U.

Base case: dimU = 1. (Since it's trivially true for dimU = 0) Then, $v = a_1e_1$. So, $Tv = a_1\lambda_1^m e_1$. So, $||T^mv||^2 = |a_1\lambda_1^m||^2 = |a_1|^2|\lambda_1|^{2m}$, and since $|\lambda_1| < 1$ picking $m : |\lambda|^{2m} < \frac{\varepsilon}{|a_1|}$ suffices.

Inductive Step: Assume if $U = \text{span}(e_1, ...e_k)$, dimU = k there exists an m that works for all vectors in U. Note that, in fact, if m works for a subspace U, any integer multiple of m does, since $T^m u \in U$. For simplicity, let U' refer to the k dimensional subspace given by $\text{span}(e_1, ...e_k)$. This will make the rest of the proof a lot easier to read.

Now, we need to prove for a k+1 dimensional subspace of V. Let $U=\operatorname{span}(e_1,...e_{k+1})$. Then, $v=a_1e_1+...+a_ke_k+a_{k+1}e_{k+1}$. So, $T^mv=T^m(a_1e_1+...+a_ke_k)+T^m(a_{k+1}e_{k+1})$. Let $T^m(a_1e_1+...+a_ke_k)=L$, and note that since T^m is upper triangular, $T^ma_{k+1}e_{k+1}=a_{k+1}T^me_{k+1}$. T^me_{k+1} is equal to $\lambda_{k+1}^me_{k+1}$ plus some linear combination of $e_1,...e_k$. Call this linear combination v'. So, we have $T^mv=L+v'+a_{k+1}\lambda_{k+1}^me_{k+1}$. Both $L,v'\in U'$.

Since the power of T can be whatever we want, apply T^m to both sides again, getting:

$$T^{m}T^{m}v = T^{m}(L+v') + a_{k+1}\lambda_{k+1}^{m}T^{m}e_{k+1}$$

And, again, for readability, let's let p = 2m. Then, we have:

$$T^{p}v = T^{m}(L + v') + a_{k+1}\lambda_{k+1}^{m}(\lambda_{k+1}^{m}e_{k+1} + v').$$

The claim is that $\forall \varepsilon > 0 \exists p$ so that $||T^p v|| \leq \varepsilon$. Now we expand the left side:

$$\begin{split} ||T^{p}v||^{2} &= \langle T^{p}v, T^{p}v \rangle \\ &= \langle T^{m}(L+v') + a_{k+1}\lambda_{k+1}^{m}v' + a_{k+1}\lambda_{k+1}^{p}e_{k+1}, T^{m}(L+v') + a_{k+1}\lambda_{k+1}^{m}v' + a_{k+1}\lambda_{k+1}^{p}e_{k+1} \rangle \\ &= \langle T^{m}(L+v'), T^{m}(L+v') + a_{k+1}\lambda_{k+1}^{m}v' + a_{k+1}\lambda_{k+1}^{p}e_{k+1} \rangle \\ &+ \langle a_{k+1}\lambda_{k+1}^{m}v', T^{m}(L+v') + a_{k+1}\lambda_{k+1}^{m}v' + a_{k+1}\lambda_{k+1}^{p}e_{k+1} \rangle \\ &+ \langle a_{k+1}\lambda_{k+1}^{p}e_{k+1}, T^{m}(L+v') + a_{k+1}\lambda_{k+1}^{m}v' + a_{k+1}\lambda_{k+1}^{p}e_{k+1} \rangle \\ &= \langle T^{m}(L+v'), T^{m}(L+v') \rangle \\ &+ \langle T^{m}(L+v'), a_{k+1}\lambda_{k+1}^{m}v' + a_{k+1}\lambda_{k+1}^{p}e_{k+1} \rangle \\ &+ a_{k+1}\lambda_{k+1}^{m}\langle v', T^{m}(L+v') \rangle \\ &+ a_{k+1}\lambda_{k+1}^{m}\langle v', a_{k+1}\lambda_{k+1}^{m}v' + a_{k+1}\lambda_{k+1}^{p}e_{k+1} \rangle \\ &+ a_{k+1}\lambda_{k+1}^{p}\langle e_{k+1}, T^{m}(L+v') + a_{k+1}\lambda_{k+1}^{m}v' + a_{k+1}\lambda_{k+1}^{p}e_{k+1} \rangle \\ &= ||T^{p}v||^{2} \\ &+ \overline{a_{k+1}\lambda_{k+1}^{m}}\langle T^{m}(L+v'), v' + \lambda_{k+1}^{m}e_{k+1} \rangle \\ &+ a_{k+1}\lambda_{k+1}^{m}\langle v', T^{m}(L+v') \rangle \\ &+ a_{k+1}\lambda_{k+1}^{m}\langle v', T^{m}(L+v') \rangle \\ &+ a_{k+1}\lambda_{k+1}^{m}\langle v', a_{k+1}\lambda_{k+1}^{m}v' + \lambda_{k+1}^{m}e_{k+1} \rangle \\ &+ a_{k+1}\lambda_{k+1}^{m}\langle v', a_{k+1}\lambda_{k+1}^{m}v' + \lambda_{k+1}^{m}e_{k+1$$

$$\begin{split} &=||T^{p}v||^{2}+\overline{a_{k+1}\lambda_{k+1}^{m}}\langle T^{m}(L+v'),v'\rangle+a_{k+1}\lambda_{k+1}^{m}\langle v',T^{m}(L+v')\rangle+a_{k+1}\lambda_{k+1}^{m}\langle v',a_{k+1}\lambda_{k+1}^{m}v'\rangle\\ &+a_{k+1}\lambda_{k+1}^{p}\langle e_{k+1},a_{k+1}\lambda_{k+1}^{p}e_{k+1}\rangle\\ &=||T^{p}v||^{2}+Re(\overline{a_{k+1}\lambda_{k+1}^{m}}\langle T^{m}(L+v'),v'\rangle)+|a_{k+1}|^{2}|\lambda_{k+1}^{m}|^{2}||v'||^{2}+||a_{k+1}|^{2}|\lambda_{k+1}^{p}|^{2}\\ &=||T^{p}v||^{2}+Re(\overline{a_{k+1}\lambda_{k+1}^{m}}\langle T^{m}(L+v'),v'\rangle)+|a_{k+1}|^{2}|\lambda_{k+1}|^{p}||v'||^{2}+|a_{k+1}|^{2}|\lambda_{k+1}|^{2p} \end{split}$$

Don't worry, almost done. That was gross, but what's important is that in front of every term of that sum there's a factor of either λ_{k+1}^m or λ_{k+1}^p , other than the first term $||T^p v||^2$, and the term that takes the real part of some complex number. Let's address the $||T^p v||^2$ first. Since by induction we know that there's a number k that lets us make the first term as small as we want, we can pick a value of m that's an integer multiple of k that makes $|\lambda_{k+1}^p|$ as small as we want. And of course, if $|\lambda_{k+1}|^p$ is as as small as we want, $|\lambda_{k+1}|^{2p}$ is smaller still. Similarly, $Re(a_{k+1}\lambda_{k+1}^m\langle T^m(L+v'),v'\rangle)$ scales with λ_{k+1} , so we can make that as small as we want by exponentiating λ_{k+1} as well. So, we can pick an m that makes each term as small as we want. For a given ε , we just pick an m that makes each term less or equal to $\frac{\varepsilon}{4}$, and we're done.