Matemática Discreta y Lógica Matemática Test Grafos-Combinatoria

APELLIDOS, NOMBRE:

(c) $\begin{pmatrix} 15 \\ 5 \end{pmatrix} \cdot [10]_5$

Cada pregunta tiene una única respuesta correcta. Cada pregunta respondida correctamente puntuará 1 punto. Cada pregunta respondida incorrectamente puntuará -0,5 puntos. Las preguntas sin contestar puntuarán 0 puntos.

Ŀ	iscribe en el cuadradito la letra de la respuesta elegida.	
1.	Sea $n \geq 2$ se define el grafo $G_n = (V_n, E_n)$, como: $V_n = \{a_i \mid 1 \leq i \leq n\} \cup \{b_i \mid 1 \leq i \leq n\} \text{ y } E_n = \{\{a_i, a_{i+1}\} \mid 1 \leq i < n\} \cup \{\{b_i, b_{i+1}\} \mid 1 \leq i < n\} \cup \{\{a_i, b_i\} \mid 1\}$ Indica la respuesta correcta. (a) Si n es par, G_n es euleriano y hamiltoniano	$\leq i \leq n$
	(b) Si G_n es semieuleriano y hamiltoniano, n es impar (c) Si n es impar G_n es semieuleriano y hamiltoniano (d) G_n no puede ser euleriano	
2.	Sea $G_n=(V_n,E_n)$ el grafo definido en la pregunta anterior. Si $ E_n =151$ entonces: (a) $ V_n =50$ (b) $ V_n =51$ (c) $ V_n =102$	
	(d) $ V_n = 102$	
3.	Sea $m > 1$. Si $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son dos árboles m -ádicos de la misma talla, se cumple: (a) $ E_1 = E_2 $ pero pueden no ser isomorfos (b) G_1 y G_2 son isomorfos si son completos (c) G_1 y G_2 tienen exactamente m ramas	
	(d) Ninguna de las anteriores	
4.	Sean $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ dos grafos isomorfos, entonces: (a) $V_1 = V_2$ y $E_1 = E_2$ (b) G_1 es Hamiltoniano si y solo si G_2 es Hamiltoniano	
	(c) G_1 y G_2 son conexos (d) Ninguna de las anteriores	
5.	Marca la afirmación correcta (a) Si un grafo no tiene ningún punto de corte es hamiltoniano (b) Si un grafo es isomorfo a su complementario, tiene un número par de vértices (c) Cualquier multigrafo con dos o más vértices de los cuales solo dos son de grado impar es semieuleriano	
	(d) Ninguna de las anteriores	
6.	¿De cuántas formas se pueden distribuir 15 semáforos iguales entre los 5 distritos de una ciudad de manera que a cada distrito al menos uno?	e le toqu
	(a) $5 \cdot \frac{10!}{5!}$ (b) $5 \cdot \begin{bmatrix} 5 \\ 10 \end{bmatrix}$	

7. ¿Cuántas palabras se pueden formar con las letras de la palabra RETRATAR que tengan las tres R's seguidas?

(a)
$$\begin{pmatrix} 8 \\ 3,2,2,1 \end{pmatrix} / 3$$
 (b) $6 \cdot 5!$ (c) $6 \cdot \frac{5!}{2! \cdot 2!}$ (d) $\begin{pmatrix} 8 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2,2,1 \end{pmatrix}$

(d) $\begin{pmatrix} 14\\10 \end{pmatrix}$

8. Sea X un conjunto con 12 elementos. Sea Y	el conjunto de las palabras de longitud 5, construidas con el alfabeto	X
que tienen al menos dos posiciones seguidas	con el mismo símbolo, (por ejemplo, si $a,b,c\in X$, entonces $baaac\in$	Y
$aacbb \in Y$, pero $ababc \notin Y$). El cardinal de Y	es:	

(a)
$$[12]_5 - (12)_5$$

(b)
$$\sum_{i=2}^{5} {5 \choose i} [12]_{5-i}$$
 (d) Ninguna de las anteriores

(c)
$$[12]_5 - 12 \cdot 11^4$$

9. En el desarrollo del polinomio $(3x+2y^2-z)^6$ el coeficiente del término xy^2z^4 es:

(a)
$$30 \cdot 3 \cdot 2$$

(b)
$$\begin{pmatrix} 6 \\ 4 \end{pmatrix} \cdot 3 \cdot 2$$

$$\begin{array}{c} \text{(b)} \left(\begin{array}{c} 6 \\ 4 \end{array} \right) \cdot 3 \cdot 2 \\ \text{(d)} - \left(\begin{array}{c} 6 \\ 1, 1, 4 \end{array} \right) \cdot 3 \cdot 2^2 \end{array}$$

10. Considera un tablero 4×4 . El número de formas de colocar en él solo dos ceros y dos unos, de modo que en cada columna haya uno y solo un número (de los cuatro a colocar), es:

(a)
$$\binom{4}{2}4!$$

(c)
$$6 \cdot 4 \cdot 3 \cdot 2 \cdot 2$$

(d)
$$\binom{4}{2}4^4$$