➤ Minimization of the Total Capacitance:

- From the previous analysis, we note that C_E sees the least Thevenin resistance across its two terminals
 - \Rightarrow Let's choose C_E to contribute the $DP f_d$, and let C_C and C_B each contribute poles at $f_d/10$

$$\Rightarrow 48.8 = \sqrt{f_d^2 + 2(f_d/10)^2}$$

$$\Rightarrow$$
 f_d = 48.3 Hz and f_d/10 = 4.83 Hz

■ Thus:

$$C_{E} = 1/(2\pi f_{d}R_{E}^{\infty}) = 101.1 \mu F$$
 $C_{B} = 1/[2\pi (f_{d}/10)R_{B}^{\infty}] = 11 \mu F$
 $C_{C} = 1/[2\pi (f_{d}/10)R_{C}^{\infty}] = 4.7 \mu F$

- Thus, the *total capacitance* requirement comes out to be $116.8 \mu F$, for the *same* f_L of 48.8 Hz
- The original circuit had a total capacitance of 200
 μF
- Thus, this approach gave a *cost saving* of almost
 42% in terms of the *capacitors*
- As an *exercise*, you can pick *either* C_C *or* C_B to *contribute* f_d , and find the *total capacitance* requirement for each case
- Finally, after all, this is a *heuristic*
- To get the *absolute minimum value* of the *total* capacitance, we need to *formulate the problem*, and find the minima of the function mathematically

• Tilt/Sag:

- For *pulse/square wave excitation*, f_L dictates the amount of *tilt/sag* present in the *output*
- \triangleright Due to f_L , the circuit effectively behaves like a HPF, represented by a simple RC circuit
- ➤ Under *step input*, the *output* would be a *spike*

> Thus:

$$V_0 = V_S \exp(-t/\tau_L)$$

$$\tau_L = RC = 1/\omega_L \quad (\omega_L = 2\pi f_L)$$

 \triangleright For t $<< \tau_L$:

$$V_0 \approx V_S (1 - t/\tau_L)$$

$$= V_S (1 - \omega_L t)$$

$$= V_S (1 - 2\pi f_L t)$$

- \succ Thus, V_0 drops linearly with time
- > Quantified by percent tilt/sag (P)

- $P = [(V_S V_0)/V_S] \times 100\%$ $= (t_1/\tau_L) \times 100\%$
 - $t_1 = Time at which the tilt is measured$
- For square wave input, $t_1 = T/2$ (T = period = 1/f, f = cycle frequency)

$$\Rightarrow P = [T/(2\tau_L)] \times 100\% = [\omega_L/(2f)] \times 100\%$$
$$= (\pi f_L/f) \times 100\%$$

- \succ Note: P is directly proportional to f_L and inversely proportional to f
 - \Rightarrow Circuits having low f_L , will show significant amount of tilt/sag at low frequencies

High-Frequency Response

- Will consider 3 methods:
 - > Exact Analysis:
 - The *most accurate* and the *most rigorous*
 - Gives information about all poles and zeros of the system
 - ➤ Miller Effect Approximation:
 - One level of approximation
 - Gives information about the Dominant Pole (DP) and one Non-Dominant Pole (NDP)

- > Zero-Value Time Constant (ZVTC)
 Technique:
 - The easiest one
 - Information regarding only the DP
 - Suppresses information about all other poles and zeros of the system
 - Reasonable accuracy
 - Underestimates f_H slightly (better than overestimating and not achieving it!)
 - Based on heuristic
 - Similar to the IVTC technique, based on an algorithm