Seja $\sum x_i A_i = 0$ um sistema homogêneo, mostrar que todos $X = (x_i)_1^n$, soluções do sistema, formam um espaço vetorial.

Resolução:

Se $A_1, ..., A_n$ são linearmente independentes, teremos como única solução o O, e $\{O\}$ é um espaço vetorial. Se são linearmente dependentes, há uma infinidade de soluções; como estas soluções são um subconjunto do espaço vetorial \mathbb{R}^n , basta mostrar que

- O pertence ao subconjunto, o que é evidente;
- Sejam $v \in w$ dois elementos, v + w também é elemento. De fato, se $v = (v_i)_1^n \in w = (w_i)_1^n$, $\sum_{i=1}^n v_i A_i = 0$ e

$$\sum_{i=1}^{n} w_i A_i = 0, \sum_{i=1}^{n} (v_i + w_i) A_i = 0;$$

• Se c é um escalar e $v=(v_i)_1^n$ é um elemento, $\sum_{i=1}^n cv_iA_i=c\sum_{i=1}^n v_iA_i=0.$

Quod Erat Demonstrandum.

Documento compilado em Wednesday 12th March, 2025, 22:31, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

