United College of Engineering & Research, Prayagraj

Department of Computer Science & Engineering

Automata Theory(KCS-402)

Assignment-2

Q. No.	Question	СО	Bloom's level
	Section-A		
1	Explain in brief about the Kleen's Theorem.	CO3	L1
2	State the pumping lemma theorem for regular languages.	CO3	L1
3	Write regular expression for set of all strings such that number of a's	CO3	L2
	divisible by 3 over $\Sigma = \{a,b\}.$		
4	Find regular expression for the set, $L = \{a^m b^n \mid m > 1, n > 2 \text{ and } mn > 7\}.$	CO3	L2
5	What do you mean by ε-Closure in FA?	CO3	L1
	Section-B		
6	Prove that the compliment, homomorphism, inverse homomorphism, and closure of a regular language is also regular.	CO3	L2
7	Explain Myhill-Nerode Theorem using suitable example.	CO3	L2
8	Prove that the language L={a ⁿ b ⁿ ! n ≥1} is not regular language.	CO3	L3
9	Write regular expression for each of the following languages over the alphabet {a,b}:- (a) The set of all strings in which every pair of adjacent 0's appears before	CO3	L3
	any pair of adjacent 1's.		
10	(b) The set of all strings not containing 101 as a substring. Design a NFA to recognize following set of strings 0101, 101 and 011.	CO3	L2
10	Alphabet set is {0, 1}. Find the equivalent regular expression.	COS	LZ
11	Find the regular expression corresponding to the finite automata given bellow: q ₀ q ₂ q ₂	CO3	L3
12	Show that L={a ^p ! p is prime) is not regular?	CO3	L3
13	For regular expression, prove that (a+b)* ≠ a*+b*.	CO3	L2
14	Describe the language to the given regular expression:- (1+01)*(0+01)*	CO3	L2
15	What is regular expression? Construct regular expression for the regular expression, (00+001)*1.	CO3	L3

CO - Course Outcome

Bloom's Levels

1- Remembering 2-Understanding 3-Applying

4-Analyzing 5-Evaluating 6-Creating