

Lógica de Predicados

Disciplina: Lógica para Computação

Profs. Larissa Freitas, Renata Reiser, André Du Bois

{larissa,reiser,dubois}@inf.ufpel.edu.br

Lógica de Predicados

- Árvore de Refutação
 - Regras para quantificadores universal e existencial

• Quantificação Universal (\forall): Se uma wff da forma $\forall \beta \phi$ aparece num ramo aberto, e se α é uma letra nominal que ocorre numa wff desse ramo, então escrevemos $\phi \uparrow \alpha / \beta$ no final do ramo. Se nenhuma wff contendo uma letra nominal, aparece no ramo, então escolhemos uma letra nominal α , e escrevemos $\phi \uparrow \alpha / \beta$ no final do ramo. Em cada caso, não marcamos $\forall \beta \phi$.

• Exemplo: $\forall x(F(x) \rightarrow G(x)), \forall xF(x) \vdash G(a)$

• Exemplo: F(a) - G(b), $\forall x \sim F(x) \vdash \sim G(b)$

Inválida $Fa \rightarrow Gb$ $\forall x \sim Fx$ 3~~Gb Gb5 $\sim Fa$ $2 \forall$ ~Fb $2 \forall$ 6 Gb $\sim Fa$

• Quantificação Existencial Negada (\sim 3): Se uma wff não-marcada da forma \sim 3 $\beta\phi$ aparece num ramo aberto, marcamos ela e escrevemos $\forall \beta\sim\phi$ no final de cada ramo aberto que contém a wff marcada recentemente.

• Quantificação Universal Negada ($\sim \forall$): Se uma wff nãomarcada da forma $\sim \forall \beta \phi$ aparece num ramo aberto, marcamos ela e escrevemos $\exists \beta \sim \phi$ no final de cada ramo aberto que contém a wff marcada recentemente.

• Exemplo: $\forall x(F(x) \rightarrow G(x)), ^\exists xG(x) \vdash ^F(a)$

 $\forall x(Fx \rightarrow Gx)$ Válida $\mathbf{2}$ $\sim \exists x Gx$ 3~~Fa $\forall x \sim Gx$ 2∼∃ 5 $\sim Ga$ $4 \forall$ 6 $Fa \rightarrow Ga$ $1 \forall$ $\sim Fa$ $6 \rightarrow$ Ga3,7~ 5, 7~ \boldsymbol{X}

• Exemplo: ${}^{\sim}\exists x(F(x) \land G(x)) \vdash {}^{\sim}F(a)$

1
$$\sqrt{ }$$
 $\sim \exists x (Fx \& Gx)$
2 $\sqrt{ }$ $\sim \sim Fa$
3 $\forall x \sim (Fx \& Gx)$ 1 $\sim \exists$
4 Fa 2 $\sim \sim$
5 $\sqrt{ }$ $\sim (Fa \& Ga)$ 3 \forall
6 $\sim Fa$ 5 $\sim \&$

Inválida

• Exemplo: $\forall x F(x) \rightarrow \forall x G(x), \ ^\exists x G(x) \vdash \exists x ^\backprime F(x)$

• Quantificação Existencial (\exists): Se uma wff não marcada da forma $\exists \beta \phi$ aparece num ramo aberto, marcamos ela. Escolhemos, então, uma letra nominal α que ainda não apareceu naquele ramo e escrevemos $\phi \uparrow \alpha / \beta$ no final de cada ramo aberto contendo a wff recentemente marcada.

• Exemplo: $\exists x F(x) \vdash \forall x F(x)$

 $1 \quad \checkmark$

 $\exists x Fx$

Inválida

2 /

 $\sim \forall x F x$

3

Fa

1 ∃

4

 $\exists x \sim Fx$

2 ~∀

5

~*Fb*

4 ∃

• Exemplo: $\exists x(F(x) \land G(x)) \vdash \exists xF(x) \land \exists xG(x)$

• <u>Identidade (=):</u> Se uma wff da forma $\alpha = \beta$ aparece num ramo aberto e se outra wff ϕ , contendo ou α ou β , aparece nãomarcada naquele ramo, então escrevemos no final do ramo qualquer wff que ainda não esteja no ramo, que é o resultado da substituição de uma ou mais ocorrências de qualquer uma dessas letras nominais pela outra em ϕ . Não marcamos $\alpha = \beta$ nem ϕ .

• <u>Identidade Negada (~=):</u> Fecha-se qualquer ramo aberto no qual uma wff da forma $\alpha = \alpha$ ocorra.

• **Exemplo**: $a = b \vdash F(a,b) -> F(b,a)$

1
$$a = b$$

$$\sim (Fab \rightarrow Fba)$$

$$3 \quad \sqrt{} \sim (Faa \rightarrow Faa)$$

$$1, 2 =$$

$$3 \sim \rightarrow$$

$$3 \sim \rightarrow$$

• Exemplo: $a = b \vdash b = a$

1
$$a = b$$

$$2 - b = a$$

$$3 \sim a = a$$

Válida

Lógica de Predicados

E-mail para dúvidas:

larissa@inf.ufpel.edu.br

Resolvam os exercícios!

Exercícios

- 1. $\exists x F(x) \vdash F(a)$
- 2. $\forall x F(x) \vdash F(a)$
- 3. $F(a) \vdash \exists x F(x)$
- 4. $F(a) \vdash \forall x F(x)$
- 5. $\forall x F(x) \vdash \sim \exists x \sim F(x)$
- 6. ${}^{\sim}\exists x {}^{\sim}F(x) \vdash \forall x F(x)$
- 7. $\forall x \sim F(x) \vdash \sim \forall x F(x)$
- 8. ${}^{\sim} \forall x F(x) \vdash \forall x {}^{\sim} F(x)$
- 9. $\forall x F(x) \lor \forall x G(x) \vdash \forall x (F(x) \lor G(x))$
- 10. $\forall x(F(x) \lor G(x)) \vdash \forall xF(x) \lor \forall xG(x)$

Exercícios

11.
$$\vdash \forall x (F(x) \lor {}^{\sim}F(x))$$

12.
$$\vdash \forall x \sim (F(x) \rightarrow F(x))$$

13.
$$\vdash \exists x F(x) <-> \neg \forall x \sim F(x)$$

14.
$$\exists x(F(x) \land {}^{\sim}F(x)) \vdash P$$

15.
$$\exists x F(x) \land \exists x \ \ F(x) \vdash P$$

16.
$${}^{\sim}\exists xF(x) \vdash \forall x(F(x) \rightarrow P)$$

17.
$$\forall x \forall y (L(x,y) -> L(y,x)), \exists x L(a,x) \vdash \exists x L(x,a)$$

18.
$$\exists x \exists y L(x,y) \vdash \exists x L(x,x)$$

19.
$$\forall x(F(x) -> \forall yG(y)) \vdash \forall xG(x)$$

20.
$$\forall x(F(x)$$
−> $\exists yG(y)) \vdash G(a)$

