What's a customer worth?

Etsy

Roberto Medri Etsy aparadosso

Five things about me

- 1. On the Internet for the first time at age 19
- 2. Never wears black
- 3. Majored in Ancient Greek, Latin, and Film
- 4. Played billiards competitively with a twotime world champion at age 16
- 5. Former management consultant

Five things about me

- 1. On the Internet for the first time at age 19
- 2. Never wears green
- 3. Majored in Ancient Greek, Latin, and Film
- 4. Played billiards competitively with a two-time world champion at age 16
- 5. Former management consultant

One of these is a lie.

Some Etsy numbers

- **\$525M GMS in 2011**
- 800,000 active sellers
- 16,000,000 listings
- 90M visits per month
- 2.8M iPhone app downloads
- >25% open rate for marketing emails

What do data scientists do at Etsy

We help PMs make good decisions.

We help marketing get the best bang fir their buck.

We help make Etsy products better.

This talk

What Customer Lifetime Value (CLV) is

A stochastic approach to estimating CLV

How we act against CLV at Etsy

What CLV is

What CLV is Customer Lifetime Value in the open

"I know the customer lifetime value of my business is \$200, so that's how much I can spend to acquire a customer"

What CLV is Customer Lifetime Value in the open

"I know the customer lifetime value of my business is \$200, so that's how much I can spend to acquire a customer"

How many things are wrong with this?

1. Not all customers have the same CLV

- 1. Not all customers have the same CLV
- 2. CLV is a forward-looking concept, you can't know how much it is

- 1. Not all customers have the same CLV
- 2. CLV is a forward-looking concept, you can't know how much it is
- 3. What we are really interested in is Residual Lifetime Value (RLV), not past spend

- 1. Not all customers have the same CLV
- 2. CLV is a forward-looking concept, you can't know how much it is
- 3. What we are really interested in is Residual Lifetime Value (RLV), not past spend
- 4. Comparing a future, uncertain quantity (CLV) to a current, certain one

What CLV is Not all customers have the same CLV

Cluster	P(churn)	%CB
Low risk	0.06	70
Medium risk	0.35	20
High risk	0.65	10

What CLV is Not all customers have the same CLV

Continuous Distribution: every customer has her own CLV

500

1000 Days between first and second purchase 1500

2000

What CLV is Segmentation

Demographics?

What CLV is Segmentation

Demographics?

What CLV is Segmentation: Behavior

Transaction log

Frequency and Recency

What CLV is A definition

The present value of the sum of expected cash flows of an individual customer.

Individual-level estimates:

E(transactions) over next k years E(\$) over next k years P(alive) P(returning)

Estimating CLV

Estimating Lifetime Value A checklist

- 1. What's the objective or the decision?
- 2. What do we want to model?
- 3. How do we model the behavior?
- 4. Deriving the mixture model
- 5. Fit the model to existing data
- 6. Predict
- 7. Check
- 8. Act upon your findings

Estimating Lifetime Value 1. Objective

Model predictive statistics around future spend (RLV), in order to drive, e.g.:

Acquisition/Retention resource allocation

Individually targeted actions

Estimating Lifetime Value 2. What we want to Model

Future spend at the individual level

How many transaction/money will David Barton spend over the next 2 years?

Estimating Lifetime Value 3. How we want to model it

At every moment, customer flips two coins:

The first coin determines if the customer lives or dies.

The second coin determines if she buys or not.

Estimating Lifetime Value 4. How we want to model it

Customers have their own, individual live/die probabilities

Customers have their own, individual buy/not buy probabilities

Everyone has two unique coins.

Estimating Lifetime Value 4. Nasty Math

Survival process: exponential (one parameter!), latent parameter distributed gamma (two parameters)

Transaction process: Poisson process, latent parameters distributed gamma (two parameters)

Four parameters: fits in Excel.

Estimating Lifetime Value 5. Fit the model

Solve the double integral MLE (maximize log likelihood)

$$L(r, \alpha, s, \beta \mid x, t_x, T)$$

$$= \frac{\Gamma(r+x)\alpha^{r}\beta^{s}}{\Gamma(r)} \left\{ \left(\frac{s}{r+s+x} \right) \frac{{}_{2}F_{1}(r+s+x,s+1;r+s+x+1;\frac{\alpha-\beta}{\alpha+t_{x}})}{(\alpha+t_{x})^{r+s+x}} + \left(\frac{r+x}{r+s+x} \right) \frac{{}_{2}F_{1}(r+s+x,s;r+s+x+1;\frac{\alpha-\beta}{\alpha+T})}{(\alpha+T)^{r+s+x}} \right\}, \text{ if } \alpha \geq \beta$$

$$L(r, \alpha, s, \beta \mid x, t_x, T)$$

$$=\frac{\Gamma(r+x)\alpha^{r}\beta^{s}}{\Gamma(r)}\left\{\left(\frac{s}{r+s+x}\right)\frac{{}_{2}F_{1}(r+s+x,r+x;r+s+x+1;\frac{\beta-\alpha}{\beta+t_{x}})}{(\beta+t_{x})^{r+s+x}}\right\}$$

 R_{-N}

Estimating Lifetime Value Fit the model

Excel

R

\$B\$3 Set Target Cell: Solve Equal To: Close By Changing Cells: \$B\$1:\$B\$2 Guess Subject to the Constraints: Options \$B\$1:\$B\$2 >= 0.00001 Add Change Reset All Delete Help

Solver Parameters

C / FORTRAN / Cython

Estimating Lifetime Value Predict

Pareto/NBD predicts the discounted expected number of future transactions

Multiply by the average monetary value of transaction and margin to get RLV

Estimating Lifetime Value Conditional Expectations

Estimating Lifetime Value Isovalue RF Curves

Estimating Lifetime Value Segmentation and Allocation

Bin recency and frequency for behavioral-based segmentation

		Recency			
	Frequency	0	1	2	3
M=0	0	\$4.40			
M=1	1		\$6.39	\$20.52	\$25.26
	2		\$7.30	\$31.27	\$41.55
	3		\$4.54	\$48.74	\$109.32
M=2	1		\$9.02	\$28.90	\$34.43
	2		\$9.92	\$48.67	\$62.21
	3		\$5.23	\$77.85	\$208.85
M=3	1		\$16.65	\$53.20	\$65.58
	2		\$22.15	\$91.09	\$120.97
	3		\$10.28	\$140.26	\$434.95

		Recency				
	Frequency	0	1	2	3	
M=0	0	\$53,000				
M=1	1		\$7,700	\$9,900	\$1,800	
	2		\$2,800	\$15,300	\$17,400	
	3		\$300	\$12,500	\$52,900	
M=2	1		\$5,900	\$7,600	\$2,300	
	2		\$3,600	\$26,500	\$25,800	
	3		\$500	\$37,200	\$203,000	
M=3	1		\$11,300	\$19,700	\$3,700	
	2		\$7,300	\$45,900	\$47,900	
	3		\$1,000	\$62,700	\$414,900	

Estimating Lifetime Value Check your model

Don't use (only) in-sample fit

Out of sample fit
Divvy up your training set
Remove random observations

Semplicity and Consistency of the story

Estimating Lifetime Value Who has the highest RLV?

Estimating Lifetime Value Who has the highest RLV?

Estimating Lifetime Value Who has the highest RLV?

Estimating Lifetime Value Covariates & Context

Other information we have about customers can be brought in as a covariate

Is the customer mobile? What category they buy in? Seasonality Media/PR event Etc.

Acting on CLV

Acting on CLV Etsy Lifetime Value Stack

Acting on CLV Customers of interest

Who are your best customers?

Recent high-profile customers

Old-time best customers about to churn or just churned

Acting on CLV Retention campaigns

Sent an email to 7.5M customers who hadn't bought in 60 days or more

Set aside a 5% control group

Emailed customer bought 11c more over the next 15 days vs. control (p < .05)

Made \$800K GMS directly, plus raised their RLV, total expected benefit \$4-6M GMS

Acting on CLV Future: individualized, vectorized retention

E.g. send email when p(returning) falls below threshold

Takes into account each customer's intrinsic order frequency/spam fatigue

Acting on CLV Future: Longitudinal customer treatments

Keep track of all treatments/controls at the customer level, together with their purchasing patterns

Trying out bandit strategies in marketing (explore/exploit)

Acting on CLV Fun stuff with fitted CLV datasets

Sum all RLV expectations across customers to value the company.

Look up and talk to your best customers.

Acting on CLV Behavioral customer segmentation

One-time customers: reinforcement, nudges

Repeat customers: premium services

Top customers: recognition

Three things to remember from this talk

Customers have their own individual CLV. There's no one figure.

Don't use in-sample fit to judge a marketing model.

Who are your best customers? Really, what are their names?

Resources

Most of this content was developed by marketing scientists in the 60s.

Peter Fader, Wharton School at Upenn Bruce Hardie, London Business School http://www.brucehardie.com/
https://www.custora.com/

Three things to remember

Customers have their own individual CLV. There's no one figure.

Don't use in-sample fit to judge a marketing model.

Who are your best customers? Really, what are their names?

QUESTIONS?

Etsy