Homework 2

Samuel Lindskog

September 4, 2024

Problem 1

(a) $A = (1, 2) \cup (2, \infty)$.

Proof: Let $(n,2n)=A_n$ with $n\in\mathbb{N}$, then $A_1=(1,2)$. Iff $x\in\bigcup_{n=2}^3A_n$, then

$$x \in (2,4) \land x \in (3,6) \Leftrightarrow 2 < x < 6 \Leftrightarrow x \in (2,6).$$

So $\bigcup_{n=2}^{3} A_n = (2,6)$. By inductive hypothesis, if $m \in \mathbb{N}$ with $m \geq 2$ then $\bigcup_{n=2}^{m} A_n = (2,2m)$. If $x \in \bigcup_{n=2}^{m+1} A_n$ then

$$x \in \bigcup_{m=2}^{m} A_n \cup (m+1, 2(m+1)) \Leftrightarrow (2 < x < 2m) \lor (m+1 < x < 2(m+1)) \Leftrightarrow x \in (2, 2(m+1))$$

Therefore $\bigcup_{n=1}^{m+1} A_n = (2, 2(m+1))$. Because for all $\epsilon > 0$ there exists $N = \lceil \epsilon \rceil$ such that $2N > \epsilon$, We see that $\bigcup_{n=2}^{\infty} A_n = (2, \infty)$, so $A = (1, 2) \cup (2, \infty)$.

(b) $C = (-\infty, \infty)$.

Proof: Let $C_n = (n, n+2)$. Then $C_0 = (0, 2)$, $C_1 = (1, 3)$, and $C_2 = (2, 4)$, and thus $\bigcup_{n=0}^{2} C_n = (0, 4)$. By inductive hypothesis, if $m \in \mathbb{N}$ then $\bigcup_{n=1-m}^{1+m} C_m = (1-m, 3+m)$. Then

$$\bigcup_{n=1-(m+1)}^{1+(m+1)} C_n \Leftrightarrow (-m < x < 2-m) \lor (2+m < x < 4+m) \lor (1-m < x < 3+m) \Leftrightarrow x \in (1-(m+1), 3+(m+1)).$$

Because for all $\epsilon > 0$ there exists $N = 3[\epsilon]$ such that $|3 + N|, |1 - N| > \epsilon$, so $C = (-\infty, \infty)$.

Problem 2

Define $f:(1,4)\to\mathbb{R}$

- (a) Is f one-to-one? No. $f^{-1}(\{-\frac{1}{2}\}) = \{2,3\}.$
- (b) What is f((1,2))? $(-\infty,-1/2)$. f(x) has no critical points on the interval (1,2), so f((1,2)) is the interval $(\lim_{x\to 1^+} f(x), f(2))$.
- (c) What is f((1,3))? $(-\infty, -\frac{4}{9})$. f(x) has one critical point at x=2.5, and because $\lim_{x\to 1^+} f(x) = -\infty$ and f(3=-1/2), $f(2.5)=\frac{4}{9}$ is the relative maximum value on (1,3).

Problem 3

- (a) Is f one-to-one? No. $f(\frac{4}{3}) = f(-\frac{2}{3})$.
- (b) Is f onto? No. The codomain of f is always positive so there exists x in the codomain \mathbb{Z} such that $x \notin f(\mathbb{Z})$.

Problem 4

- (a) The pre-image of (0,1) in \mathbb{R} , $f^{-1}((0,1)) = (-\infty, \frac{1}{2})$.
- (b) $f^{-1}((1,2)) = (\frac{1}{2},1).$
- (c) $f^{-1}((-\infty,2)) = (-\infty,1)$.

Problem 5

- (a) The image of $\{1,2\}$ in \mathbb{R} , $g(\{1,2\}) = \{1,2\}$.
- (b) $g((1,2)) = \{1, \frac{3}{2}\}.$
- (c) $g([1,2]) = \{1, \frac{3}{2}, 2\}.$