KLAUSUR Informationstechnik

Wintersemester 2016/2017

Musterlösung

Prüfungsfach: Informationstechnik

Studiengang: Wirtschaftsinformatik, Softwaretechnik

Semestergruppe: WKB 1, SWB 1

Fachnummer: 1051002

Erlaubte Hilfsmittel: keine

Zeit: 90 min.

Wichtiger Hinweis für die Bearbeitung der Aufgaben:

Schreiben Sie bitte Ihre Lösungen möglichst auf die Aufgabenblätter. Sollte der vorgesehene Platz nicht reichen, verwenden Sie bitte jeweils die Rückseite.

Viel Erfolg wünscht Ihnen.

Reiner Marchthaler

Prüfungsfach:	Informationstechnik	Wintersemester 2016/2017	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

1 Boolesche Algebra und kombinatorische Schaltung

1.1 Boolesche Algebra

(8 Punkte)

Beweisen Sie entweder durch eine $\underline{\text{vollständige Enumeration}}$ oder durch Anwendung der Regeln der $\underline{\text{Booleschen}}$ Algebra, dass folgender Ausdruck nicht wahr ist:

$$(\mathbf{a} \wedge \mathbf{c}) \vee (\mathbf{a} \wedge \overline{\mathbf{c}} \wedge \mathbf{d}) \vee (\mathbf{a} \wedge \overline{\mathbf{c}} \wedge \overline{\mathbf{d}}) \neq \mathbf{d}$$

Platz für Lösung:

Prüfungsfach:	Informationstechnik	Wintersemester 2016/2017	Hochschule Esslingen		
Name, Vorname:		MatNr.:	University of Applied Sciences		

1.2 Kombinatorische Schaltung

(12 Punkte)

Gegeben ist eine kombinatorische Schaltung. Diese wird durch eine Funktionstabelle (siehe Tabelle 1) beschrieben.

	d	c	b	a	Y	Y
0	0	0	0	0	1	0
1	0	0	0	1	1	0
2	0	0	1	0	1	0
3	0	0	1	1	1	0
4	0	1	0	0	0	1
5	0	1	0	1	1	0
6	0	1	1	0	0	1
7	0	1	1	1	1	0
8	1	0	0	0	1	0
9	1	0	0	1	1	0
10	1	0	1	0	X	X
11	1	0	1	1	1	0
12	1	1	0	0	0	1
13	1	1	0	1	0	1
14	1	1	1	0	0	1
15	1	1	1	1	0	1

Tabelle 1: Funktionstabelle

1. Bestimmen Sie die DMF des Signals Y mit Hilfe des KV-Diagramms und die Funktionslänge l_{DMF} .

$$\mathbf{Y}_{\mathrm{DMF}} = a \, \overline{d} \, \vee \, \overline{c}$$

$$\mathbf{I}_{\mathrm{DMF}} = 4$$

2. Bestimmen Sie die KMF des Signals Y mit Hilfe des KV-Diagramms und die Funktionslänge l_{KMF} .

$$\mathbf{Y}_{\mathbf{KMF}} = \overline{(\overline{a} \, c) \, \vee \, (c \, d)} = (a \vee \overline{c}) \, \wedge \, (\overline{c} \vee \overline{d})$$

$$\mathbf{l}_{\mathbf{KMF}} = 6$$

Prüfungsfach:	Informationstechnik	Wintersemester 2016/2017	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

2 Zahlendarstellung und Codierung

2.1 Festkommadarstellung

(15 Punkte)

Gegeben sind die Zahlen $Z_1 = (-127)_{10}$ und $Z_2 = (64)_{10}$. Wandeln Sie die beiden Zahlen Z_1 und Z_2 jeweils in eine Zahl zur **Basis 16** um, indem Sie eine

1. **Dualcodierung** (Betragszahl) verwenden:

(3 Punkte)

 Z_1 = nicht möglich

 $Z_2 = 0100\ 0000 = (40)_{16}$

2. **2er–Komplement–Codierung** verwenden:

(4 Punkte)

$$Z_1 = -127 + 256 = 129 = 1000\ 0001 = (81)_{16}$$

 $Z_2 = 0100\ 0000 = (40)_{16}$

3. **Offset–Code–Codierung** verwenden:

(4 Punkte)

$$Z_1 = -127 + 128 = 1 = 0000\ 0001 = (\mathbf{01})_{\mathbf{16}}$$

 $Z_2 = 64 + 128 = 192 = 1100\ 0000 = (\mathbf{C0})_{16}$

4. Vorzeichen-Betrags-Codierung verwenden:

(4 Punkte)

$$Z_1 = 1111 \ 1111 = (\mathbf{FF})_{16}$$

 $Z_2 = 0100\ 0000 = (40)_{16}$

Prüfungsfach:	Informationstechnik	Wintersemester 2016/2017	Hochschule Esslingen		
Name, Vorname:		MatNr.:	University of Applied Sciences		

2.2 Zahlendarstellung nach IEEE 754

(10 Punkte)

Eine Gleitkommazahl in einfacher Genauigkeit (32 Bit) ist nach IEEE 754 wie folgt codiert:

Bits	1	8	23		
	VZ von M	E + 127	$ M $ ohne m_0		

- Das Bit 31 (MSB) kennzeichnet das Vorzeichen.
- Die nächsten 8 Bit 30...23 geben den Exponenten an (Offsetdarstellung um 127).
- Die nächsten 23 Bit 22...0 geben die normalisierte Mantisse ohne die Vorkomma–Eins an.

Abbildung 1: Darstellung von Gleitkommazahl in einfacher Genauigkeit (32 Bit) nach IEEE 754

normalisierte Zahl	±	0 < Exponent < max	Mantisse beliebig
denormalisierte Zahl	士	0000 0000	Mantisse nicht alle Bits 0
Null	士	0000 0000	00
Unendlich	±	1111 1111	00
NaN	土	1111 1111	Mantisse nicht alle Bits 0

Tabelle 2: Sonderfälle Gleitkommazahl in einfacher Genauigkeit (32 Bit) nach IEEE 754

Gegeben sind die drei Gleitkommazahlen $Z_1 = (0000\ 0000)_{16}$, $Z_2 = (FFFF\ FFFF)_{16}$ und $Z_3 = (3F00\ 0000)_{16}$ in einfacher Genauigkeit nach IEEE 754. Welchen "Zahlen" entsprechen diese Gleitkommazahlen im Dezimalsystem?

Prüfungsfach:	Informationstechnik	Wintersemester 2016/2017	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

2.3 Blockcodes (9 Punkte)

Das Nachrichten-Codewörter $X_1=[111],\, X_2=[001]$ und $X_3=[010]$ sollen zu einem Empfänger übertragen werden. Um Datenmanipulation zu verhindern werden mit Hilfe der Generatormatrix

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

weitere Kontrollbits hinzugefügt.

Wie lautet das mit Hilfe der Generatormatrix G gezeugte Codewörter Y1, Y2 und Y3?

Gegeben ist der Code **Z** bestehend aus den drei folgenden Codewörtern:

$$Z_1 = 10101011 \qquad Z_2 = 00010111 \qquad Z_3 = 11110000$$

Welche Hammingsdistanz besitzt der Code **Z**?

$$d(Z_1, Z_2) = 5$$
 $d(Z_1, Z_3) = 5$ $d(Z_2, Z_3) = 6$
 $h(Z) = \underline{5}$ (2 Punkt)

Wie viele Einzelbitfehler können bei dem Code Z sicher erkannt und korrigiert werden?

$$e = \frac{h-1}{2} = \frac{5-1}{2} = \mathbf{2}$$
 (1 Punkte)

Prüfungsfach:	Informationstechnik	Wintersemester 2016/2017	Hochschule Esslingen		
Name, Vorname:		MatNr.:	University of Applied Sciences		

3 Hardware

Die in Abbildung 2 dargestellte 8 Bit-ALU enthält neben einem 8 Bit Addierer, eine 8 Bit-Logik-Einheit, ein 8-faches AND-Gatter sowie einen Block "Status" zur Bildung des Carry-Flags (CF), Overflow-Flags (OF), Zero-Flags (Z) und Negativ-Flags (N).

Abbildung 2: Aufbau 8-Bit ALU

Die Signale haben folgende Bitbreite:

Signalname	A	В	X	Y	R	K	AR	C_0	<i>C</i> ₇	C_8	CF	OF	Z	N
Breite in Bit	8	8	8	8	8	4	1	1	1	1	1	1	1	1

Tabelle 3: Bitbreite der Signale

Die gültigen Steuerworte des Steuersignals **K** sind der Tabelle 4 zu entnehmen.

Steuerwort (K)	Ergebnis für Stelle B_i	Logik-Funktion
$(0000) = 0_H$	$B_i = 0$	Kontradiktion
$(0001) = 1_H$	$B_i = 1$	Tautologie
$(0010) = 2_H$	$B_i = X_i$	Identität X
$(0011) = 3_H$	$B_i = Y_i$	Identität Y
$(0100) = 4_H$	$B_i = \overline{X}_i$	Bitweise Invertierung X
$(0101) = 5_H$	$B_i = \overline{Y}_i$	Bitweise Invertierung Y
$(1000) = 8_H$	$B_i = X_i \vee Y_i$	OR
$(1001) = 9_H$	$B_i = X_i \wedge Y_i$	AND

Tabelle 4: Wirkung des Steuersignals (K) auf B_i in Abhängigkeit von X_i und Y_i (i = 0, ..., 7).

Hinweis: AR=0 sperrt das 8-Bit AND-Gatter und AR=1 schaltet X nach A durch!

Prüfungsfach:	Informationstechnik	Wintersemester 2016/2017	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

3.1 ALU - Negation (3 Punkte)

Mit Hilfe der ALU in Abbildung 2 soll eine "Negation" $\mathbf{R} = -(\mathbf{X})$ durchgeführt werden.

Welche Werte müssen die Signale K, AR und C_0 annehmen, wenn die in Tab. 4 aufgeführten Wörter zur Verfügung stehen?

$$K = (0100) = 4_H$$
 $AR = 0$ $C_0 = 1$

3.2 ALU - Shift Arithmetic Left

(15 Punkte)

Mit Hilfe der ALU in Abbildung 2 soll die Operation "Shift Arithmetic Left" mit $\mathbf{X} = (\mathbf{C9})_{Hex}$ durchgeführt werden. Welche Werte müssen die Signale \mathbf{K} , \mathbf{AR} und $\mathbf{C_0}$ annehmen, wenn die in Tab. 4 aufgeführten Wörter zur Verfügung stehen?

$$K = (0010) = 2_H AR = 1 C_0 = 0$$

Führen Sie nun die Operation mit dem Wortaddierer handschriftlich durch und vervollständigen Sie die nachfolgende Tabelle 5.

											Binärwert interpretiert als		
											Betragszahlen	Ganze Zahlen	
	Binärwerte						Dualcode	2er Kompl.					
Operand 1	A=		1	1	0	0	1	0	0	1	201	-55	
Operand 2	B=		1	1	0	0	1	0	0	1	201	-55	
Übertrag	C=	1	1	0	0	1	0	0	1	0			
Ergebnis	R=		1	0	0	1	0	0	1	0	146	-110	

Tabelle 5: Schema für die Operation "Shift Arithmetic Left" mit Hilfe eines Wort-Addierers

Bestimmen Sie die Status-Flags und tragen Sie diese in die Tabelle 6 ein.

CF	OF	Z	N
1	0	0	1

Tabelle 6: Statuswort der ALU nach der Operation

Platz für Nebenrechnungen:

Prüfungsfach:	Informationstechnik	Wintersemester 2016/2017	Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

3.3 Speicher (8 Punkte)

Abbildung 3: Schaltung mit einem RS-Flipflop

Hinweise zu Flip-Flops:

$1S^k$	$1R^k$	Q^{k+1}
0	0	Q ^k
0	1	0
1	0	1
1	1	vermeiden

Tabelle 7: Vereinfachte Funktionstabelle RS-FF

Abbildung 4: Funktionsweise bei Änderung am Eingang eines pos. taktflankengesteuerten Flipflops

Vervollständigen Sie im nachfolgenden Impulsdiagramm die Signale \mathbf{Q} und $\mathbf{Q}_{\mathbf{n}}$ der Schaltung aus Abbildung 3. Die Gatterlaufzeiten sind zu vernachlässigen ($t_{P,clk\to Q,LH}=t_{P,clk\to \overline{Q},LH}=t_{P,clk\to \overline{Q},HL}=t_{P,clk\to \overline{Q},HL}=0$ ns)

Prüfungsfach:	Informationstechnik		Hochschule Esslingen
Name, Vorname:		MatNr.:	University of Applied Sciences

4 Offene Fragen

4.1 Rechnertypen (6 Punkte)

Erklären Sie den Unterschied zwischen einem PC und einem "Embedded System".

- Embedded Systems (eingebettete Systeme) sind speziell an ein Einsatzgebiet angepasst Rechnersysteme
- Sie weisen minimale Kosten, geringen Platz-, Energie- und Speicherverbrauch auf.
- Darüber hinaus benutzen sie stark reduzierte Ressourcen (meist ohne Festplatte, Tastatur oder Bildschirm).
- Wesentlich höhere Zuverlässigkeits- und Zeitanforderungen als bei normaler Computersoftware.
- Die Software wird Firmware genannt (ROM, Flash-Speicher).
- Man verwendet spezielle Real-Time-Betriebssysteme (OSEK, Embedded Linux, Windows CE, etc.)

4.2 Rechnerarchitekturen

(4 Punkte)

- (1) Was ist die Aufgabe des Steuerwerks?
- (2) Was ist die Aufgabe des Rechenwerks?

- (1) Steuerwerk (Instruction Unit): Holt Programmbefehle aus dem Speicher, dekodiert sie und erzeugt die Steuersignale für das Rechenwerk. (2 Punkte)
- (2) Rechenwerk (Execution Unit): Führt Operationen mit den Programmdaten aus und gibt dem Steuerwerk über Statussignale (Flags) Rückmeldungen. (2 Punkte)

Prüfungsfach:	Informationstechnik	Wintersemester 2016/2017	Hochschule Esslingen	
Name, Vorname:		MatNr.:	University of Applied Sciences	

4.3 Compiler (10 Punkte)

Programme durchlaufen mehrere Schritte in einer Werkzeugkette (Toolchain), bevor sie von einer CPU ausgeführt werden können. Beschreiben Sie diese Schritte, gerne auch per Skizze.

