

Colorectal Cancer Predicting Presence of Colorectal Cancer using Metabolites

Luis Aguilar, Claire Hsieh, Michelle Tekawy, Daisy Wang

Background

3rd most common cancer in the US

0

- Second leading cause of cancer death according to the AMA
- Early detection leads to more successful treatments

SEER Stage	5 year Survival rate	
Localized	90%	
Regional	74%	
Dietent	170/	

Background

- Fecal Immunochemical Test (FIT)
- 2. Guaiac Fecal Occult Blood Test (9FOBT)
 - 3. Fecal DNA testing
 - 4. CT-Colonography
 - 5. Colonoscopy

Study Design

- Participants from Purdue University undergoing treatment or colonoscopy
 - Cancer, Healthy, Polyp
- Age and gender matched
- Measured metabolites in their blood

0

Summary Statistics: BMI

Summary Statistics: Smoking

Summary Statistics: Alcohol

LC-MS/MS Data analysis Sample preparation Cell culture Tissue Abundance Relative m/z Plasma Urine 0

MOTIVATION

Data Wrangling: Missing Data

	MISSING	TOTAL
CANCER	29	64
POLYP	37	76
HEALTHY	1	84

Data Wrangling: Missing Data

X-Axis

Actual BMI

Predicted BMI

Graphs of the test set's actual versus predicted bmi's split by group. Colored by gender.

Y = x to represent correct prediction @

Three Graphs

Three groups: Cancer, Healthy, Polyp

Missing Data: Outliers

Δ

Correlation Matrix

HIGHLY CORRELATED (>.85) glucose & lactate & oxalic acid

- weight kg & bmi
- methylhistamine & taurine
- aconitate & citraconic acid
- alpha ketoglutaric acid & glutamine
- asparagine & methyl succinate
- fumaric & maleic acid
- glutaric acid & oxaloacetate
- guanidinoacetate & valine
- guanosine & inosine
- homogentisate & urate
- leucine isoleucine & valine
- sorbitol & tyrosine

PCA

- Dimensionality reduction
- No meaningful clusters
- Recommends standardization

 56 Principal Components explain 95.48% of the variance

PLS-DA

- Partial Least Squares Discriminant Analysis
- Finds principle components that best explains covariance between groups

Classification Models

Trees:

Support Vector Machines (SVM):

- Kth Nearest Neighbor (KNN): good at making predictions
- Naive Bayes (NB): quick works well with small datasets
- Linear Discriminant Analysis (LDA): can handle multicollinearity

Area Under the Curve (AUC)

- Our measurement for "best model"
- Most popular metric in diagnostic testing
- Considers false positives and false negatives
- Better than accuracy

Δ

Decision Trees

- Randomly dropped a variable with |correlation| > .85
- only principal components ≥ .01 (22)
- Histidine
- Oxalic_acid
- Aspartic_acid
- Linolenic_acid
- Pantothenate
- Xanthurenate
- Aminoisobutyrate
- smoking_condition_Some days
- drink_alcohol_At least 1 drink/day
- BMI
- accuracy was about 66.07%

3 Class Model Results (ACC)

0

Random Forest .7424281

Accuracy

of true positives and true negatives

Not good

Doesn't show enough about the data

3 Class Model Results (AUC)

- Area Under the Curve
 Under the ROC curve
- Why
 Considers true positive (sensitivity)
 and false positive (1 specificity)
 rates
- Boosted Trees
 .8741
- Random Forest
 .8541

Important Variables in 3 Class Models

- Moleistoine
- Nit Glycesile hyde
- Epinephrine
- PEF
- Malonic Acid
- N Acetyl Glycine

2 Class Model

- PLS-DA → 2 Class Model
- See how model determines a polyp patient
- Train and test set created on Cancer & Healthy subset

2 Class Model Results (AUC)

- Polynomial Support Vector Machine
- Linear Support Vector
 Machine
 9151449
- **Boosted Trees**
- Random Forest
 .8754

Higher AUC in 2 class model!

2 Class Model Results (Accuracy)

Polynomial Support Vector Machine

.8553768

Linear Support Vector Machine .8383478

Important Variables in 2 Class Models

Important

- Histidine
- Glyceraldehyde

Nested CV

- Cross-Validation (CV) is a technique used to evaluate the performance of a machine learning model.
- However, it has been demonstrated that filtering on the whole dataset creates a bias when determining accuracy of models
- Nested CV is CV nested within a CV
- Train Set of the outer fold becomes the data for the inner fold
- Outer Fold is for model evaluation
- Inner Fold is for hyperparameter tuning
- Reduces Bias and Overfitting
- Computationally Taxing

Nested CV Models (3 Group)

Models <chr></chr>	AUC <dbl></dbl>	Accuracy <dbl></dbl>
Boosted Trees (BT)	0.8344	0.6786
Random Forest (RF)	0.8245	0.6607
Polynomial Support Vector Machine (PSVM)	0.7780	0.5804
Naive Bayes	0.7539	0.5402
Linear Support Vector Machine (LVSM)	0.7584	0.6071
Kth Nearest Neighbor(KNN)	0.7204	0.5179
Linear Discriminant Analysis (LDA)	0.7113	0.5089

^{*}All models ran with 10 outer and 5 inner folds

4

Nested CV: Cancer vs. Healthy

Models <chr></chr>	AUC <dbl></dbl>	Accuracy <dbl></dbl>
Boosted Trees (BT)	0.8875	0.8243
Random Forest (RF)	0.8277	0.7432
Polynomial Support Vector Machine (PSVM)	0.8558	0.7770
Naive Bayes	0.7874	0.7230
Linear Support Vector Machine (LVSM)	0.8186	0.7095
Kth Nearest Neighbor(KNN)	0.6816	0.6284
Linear Discriminant Analysis (LDA)	0.6151	0.6284

*All models ran with 10 outer and 5 inner folds

\subset

Polyp Prediction

Models <chr></chr>	C <dbl></dbl>		CI_95 <chr></chr>
Boosted Trees (BT)	20	56	(0.6232, 0.8313)
Random Forest (RF)	27	49	(0.5266, 0.7512)
Polynomial Support Vector Machine (PSVM)	12	64	(0.7404, 0.9157)
Naive Bayes	20	56	(0.6232, 0.8313)
Linear Support Vector Machine (LVSM)	14	62	(0.7103, 0.8955)
Kth Nearest Neighbor(KNN)	36	40	(0.4084, 0.6421)
Linear Discriminant Analysis (LDA)	14	62	(0.7103, 0.8955)

- We found that an increase in BMI actually decreases the odds ratio of CRC. Why?
- High BMI is correlated with CRC
- Recent weight loss is also strongly correlated with CRC

Odds Ratio

- Estimate:
 - 44% decrease
- Confidence Interval:
 - o [-65%, -18%]
- ρ-Value
 - 0.005
- Marginal

	Log Mean	Standard Deviation	
Cancer	26.21	2.66	
Healthy	28.75	6.39	

 \bigcirc

Smoking & Alcohol

Smoking

 Smoking is correlated with colorectal cancer (CRC), via
 metabolic changes

Some smoking:

- Estimate: 40% decrease
- 95% CI: [-71%, 21%]
- ρ-value: 0.17

Smoking everyday

- Estimate: 10% increase
- 95% CI: [-74%, 236%]
- ρ-value: 0.87

Alcohol

 Alcohol consumption is correlated with CRC by causing changes in genetic abnormalities, epigenetic dysregulation, cell signaling, and changing the tumor microenvironment

Some drinking:

- Estimate: 127% increase
- 95% CI: [-38%, 994%]
- ρ-value: 0.25

One drink a day

- Estimate: 196% increase
 - 95% CI: [-29%, 1100%]
 - ρ-value: 0.2

Δ

0

 \circ

Warburg Effect

What is it?

Glycolysis bypasses Krebs cycle in favor of lactic acid fermentation

Less Energy

greater rate of glucose metabolism

Correlation

Glucose and Lactate have a .886 correlation coefficient

Why?

competition, cell proliferation, or to continue glycolysis

Krebs and ETC

producing 32 ATP VS glycolysis' yield of 2 ATP

Risk Factor

Higher levels of lactate could indicate higher risk for CRC.

Glyceraldehyde

 Glyceraldehyde is needed to produce intermediates in glycolysis

Odds Ratio

- Estimate:
 - 99% increase per unit increase in Glyceraldehyde
- Confidence Interval:
 - o [52%, 155%]
- ρ-Value
 - 0.0001
- Marginal

	Log Mean	Standard Deviation
Cancer	4.85	0.16
Healthy	4.74	0.12

glyceraldehyde: glyceraldehyde 3-phosphate

Histidine

 Amino acid levels are generally inversely related with CRC risk

Odds Ratio

- Estimate:
 - 52% decrease per unit increase in Histidine
- Confidence Interval:
 - o [-67%, -34%]
- p-Value
 - 0.00003

	Log Mean	Standard Deviation	
Cancer	7.16	0.11	
Healthy	7.25	0.12	

Diagnostic Tests	Polyp Detection Accuracy	Cancer Detection Accuracy	Sensitivity	Specificity
Fecal immunochemi cal test (FIT)	51%	95%	74%	95%
gFOBT	64%	58%	100%	60%
Fecal DNA testing	46%	42%	92%	88%
CT-Colonogr aphy	80%	89%	96%	80%
Colonoscopy	96%	95%	91%	73%
Boosted Trees	74%	85%	77%	88%
Random Forest	70%	85%	77%	88%

Future Studies

Glutaminolysis

As a result of this process,
 GLS1 and GDH are both
 upregulated.[[]

LONGITUDINAL

Lipid Biosynthesis

- upregulate de novo lipid biogenesis and cholesterol synthesis pathways
- which in turn upregulates glycolysis and mitochondrial respiration

One Carbon Metabolism

 Phosphoglycerate dehydrogenase (PHGDH), which is tasked with resupplying 1CM with 3-phosphoglycerate through the serine biosynthetic pathway, is another metabolite which is upregulated due to CRC.[[]

A Special Thanks To:

Professor Zhaoxia Yu

Professor Min Zhang

Thanasi Bakis

Thank You!