

TEL:13600411241 QQ:26872306

概述

SY3511是一款专为移动电源设计的单芯片解决方案IC,高度集成了充电管理模块、LED电量显示模块、同步升压放电管理模块的移动电源管理芯片,极大的简化了外围电路与元器件数量。针对大容量单芯或多芯并联锂电池(锂离子或锂聚合物)的移动电源应用,提供最简单易用的低成本解决方案。

SY3511采用的封装形式为ESOP8。

应用

手机、平板电脑、GPS、电动工具等移动设备 备用电源

特点

- ◆ 线性充电,同步升压放电,内置充电、放电 功率MOS
- ◆ 芯片内部设定1A充电电流
- ◆ 同步升压最大输出电流1A
- ◆ 独创升压输出热调节技术
- ◆ 涓流/恒流/恒压充电,并具有在无过热危险 的情况下实现充电速率最大化的热调节功能
- ◆ C/10 充电终止,自动再充电
- ◆ 预设4.2V充电电压,精度达±1%
- ◆ 放电输出过流、短路、过压、过温保护
- ◆ 4颗LED电量显示、充放电指示及异常指示
- ◆ 双击打开/关闭手电筒

典型应用电路 (5.1V/1A)

PCB LAYOUT 注意事项(重点):

- 1. R1和C1必须尽量靠近LX引脚,LX引脚必须先经过R1和C1后再到电感。
- 2. Cbat尽量靠近BAT脚, Cin尽量靠近VCC 脚,并且走线时都经过电容再到IC管脚。
- 电感L1与LX脚之间存在高频振荡,必须相互靠近并且尽量减小布线面积;其它敏感的器件必须远离电感以减小耦合效应。
- 过孔会引起路径的高阻抗,如果设计中大电流需要通过过孔,建议使用多个过孔以减小 阻抗。
- 5. 芯片GND直接连到系统地,连接的铜箔需要短、粗且尽量保持完整,不被其他走线所截断。
- PCB的地线覆铜面积尽可能大,以利于散热,同时芯片底部的散热焊盘与地线覆铜须有良好的接触,以保证散热良好。
- 7. 应用中所使用的电容必须选用X5R以上的材质。

管脚功能

端口		T/0	T4 46 4# 3-P		
名称	管脚	I/0	功能描述		
LX	1	I	BOOST 开关输出		
GND	2	-	芯片地		
BAT	3	-	电池正极		
VCC	4	I	适配器正电压输入端		
LED1	5	0	LED 指示灯输出端 1		
LED2	6	0	LED 指示灯输出端 2		
KEY	7	1/0	按键输入、手电筒输出复用端		
OUT	8	0	升压输出		
GND	Exposed PAD	-	须与PCB有良好焊接		

订购信息

产品型号	封装形式	TOP MARK	Package Qty
SY3511	ESOP8	SY3511	4000

功能框图

电性参数

电性参数 极限参数 (注1)	oci	n.c	()	m
参数	最小值	最大值	单位	
引脚电压	-0.3	+6	V	
储存环境温度	-65	150	°C	
工作环境温度	-40	85	°C	
工作结温范围	-40	150	°C	
HBM (人体放电模型)	2K	_	V	
MM (机器放电模型)	200	-	V	

注1: 最大极限值是指超出该工作范围芯片可能会损坏。

推荐工作条件

输入电压	2.9V to 5.5V
工作结温范围	-40°C to 125°C
环境温度范围	-20°C to 85°C

移动电源单芯片解决方案 SY3511

(如无特殊说明,VCC=5V,VBAT=3.7V,Ta=25℃)

(如元年	守然说明, VCC=5V, VBAT=3.7V, Ta=25 C)					
符号	参数	测试条件	最小值	典型值	最大值	単位
充电部分			'			
VCC	充电输入电压		4. 4	5	5. 5	V
Ivcc	输入电源电流	待机模式 (充电终止)	-	600	_	μА
V _{FLOAT}	稳定输出(浮充)电压	0°C≤TA≤85°C	4. 158	4. 2	4. 242	V
$I_{ ext{BAT}}$	恒流充电电流	V _{BAT} =3. 7V	-	1000	-	mA
I _{TRIKL}	涓流充电电流	V _{BAT} <v<sub>TRIKL,</v<sub>	90	100	110	mA
V _{TRIKL}	涓流充电阈值电压	VBAT上升	2.8	2. 9	3. 0	V
V _{TRHYS}	涓流充电迟滞电压		-	100	-	mV
V _{UV}	VCC欠压闭锁阈值电压	VCC从低至高	2. 9	3.0	3. 1	V
V _{UVEN'S}	VCC欠压闭锁迟滞		0. 15	0.2	0. 25	V
v	USS ADARCH OF CHALL	VCC从低到高	60	100	140	.,
V _{ASD}	VCC-VBAT闭锁阈值电压	VCC从高到低	5	30	50	mV
ITERM	终止电流门限		_	100	-	mA
Δ V _{RECURG}	再充电电池门限电压	V _{FLOAT} -V _{RECURG}	100	150	200	mV
Tem	限定温度模式中的结温		1 -	100	-	°C
放电部分			į.			
V _{BAT}	电池工作电压	AC)	2.9		4. 35	V
Voct	额定输出电压	V _{BAT} =3. 7V	4. 85	5. 1	5. 25	V
$I_{ ext{STDB}}$	待机电流		-34	100	-	μА
V _{UV_BAT}	电池欠压闭锁阈值电压	VBAT下降	2.85	2. 9	2. 95	V
V _{HYS_BAT}	电池欠压闭锁迟滞	VBAT上升	0. 55	0.6	0.65	V
F_{sw}	工作频率		-	1	-	MHz
I_{OUT}	输出电流	V _{RAT} =2. 9~4. 2V	_	1	_	A
ILIM	周期电流限制	VOUT=5V		2		A
η	转换效率	V _{BAT} =4. 2V VOUT=5. 0V&IOUT=1A	90	U		%
Dwax	最大占空比		-	85	-	%
$I_{ ext{END}}$	放电结束电流		-	20	-	mA
Tov	过温保护		-	150	_	°C
T _{HYS}	过温保护滞回		-	20	-	°C
$V_{\scriptscriptstyle{RIPPLE}}$	输出纹波电压	VOUT=5. OV&IOUT=1A	-	100	-	mV
Tsuur	输出无负载关闭检测时间		_	16	-	s
V _{SHORT}	短路保护电压		-	4.3	-	V
LED 及 KEY 钑	建 部分		•			
F _{LEDx_C}	LEDx充电/低电量闪烁频率		_	1	_	Hz
TDKEY	检测双击KEY键时间		-	1	-	S
I_{KEY}	KEY引脚上拉电流		-	5	-	μА
$V_{\rm FLB}$	KEY引脚FLH驱动压降	I _{LED} =100mA	-	0.9	-	V

功能说明

充电模式

SY3511内部集成了完整的充电模块,利用芯片内部的功率管对电池进行涓流、恒流和恒压充电。充电电流由芯片内部设定,持续充电电流为1.0A,不需要另加阻流二极管和电流检测电阻。芯片内部的功率管理电路在芯片的结温超过100℃时自动降低充电电流,直到140℃以上将电流减小至0。这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心芯片过热而损坏芯片或者外部元器件。

当VCC的输入电压超过3.0V并且大于电池电压时,充电模块开始对电池充电。如果电池电压低于2.9V,充电模块采用涓流模式(小电流)对电池进行预充电。当电池电压超过2.9V时,充电模块采用恒流模式对电池充电。当电池电压接近4.2V时,充电电流逐渐减小,系统进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束。完整的充电过程为涓流一恒流-恒压。

充电结束阈值是恒流充电电流的10%。当电池电压降到再充电阈值以下时,自动开始新的充电周期。

升压输出模式

SY3511提供一路同步升压输出,集成功率MOS,可提供5.1V/1A输出,效率高达90%。SY3511 采用1MHz的开关频率,可有效减小外部元件尺寸。在充电适配器未接入的状态下,系统一直工作在升压输出状态,空载电流为100uA。

在芯片处于非充电状态时,升压输出为芯片内部设定的5.1V。在额定负载的状况下,SY3511 工作在固定频率1MHz,并且逐周期限流;当负载的电流逐渐减小并进入轻负载状况时,SY3511 会进入间歇式输出模式,以保证输出电压调整能力。当负载电流继续减小并低于20mA(典型值)超过16S后,输出电压仍然保持5.1V,LED灯灭,提醒用户外接设备充电已结束。

当电池电压低于2.9V以后,升压模块会被锁定在关闭状态,防止虚电反弹后升压模块重新开启,这时只有插入适配器或单击KEY键可以解除锁定,同时要求电池电压大于3.2V以上升

压模块才会重新启动。

SY3511提供输出过流、输出过压、输出短路、芯片过热以及电池欠压等多种异常保护,可以有效保护电池及系统安全。在发生输出过流、输出短路及芯片过温情况时,SY3511自动关闭升压输出,等待200mS后重新启动,若异常未解除则芯片不断关闭重启(称之为打嗝模式),直到异常解除后,芯片进入正常工作状态。SY3511通过控制续流PMOS可以有效阻止输出电流的倒灌。

系统管理

SY3511充电优先,如果负载与充电电源都有接入的情况,系统将单纯工作在充电模式,无 升压输出。只有将充电电源移除,系统才进入升压输出模式。

KEY 键功能

SY3511提供多功能KEY键,且KEY键为手电筒复用端。在非充电模式下单击KEY键,LED1~LED4显示电池电量,16s后关闭。单击KEY键可以解除升压模块UVLO锁定。在1s内双击KEY键可以触发点亮手电筒并保持;再次双击KEY键,关闭手电筒。

LED 指示

LED1和LED2两个引脚分别外接2个LED灯来指示充放电状态与电量。如典型电路中所示, 其中LED2引脚(PIN6),外接DLED1和DLED2两颗LED;LED1引脚(PIN5),外接DLED3和DLED4 两颗LED。充电时DLED1~DLED4一直工作在指示充电状态,达到电量的LED常亮,当前最高电量的LED以1Hz频率闪烁;

- 1) 电池充满后DLED1~DLED4常亮:
- 2) 拔掉充电电源后DLED1~DLED4灭;
- 3) 待机状态下,若按下KEY键,DLED1~DLED4显示电池电量,16s后关闭;
- 4) 正常放电时, DLED1~DLED4根据电池电压指示当前电量,达到电量的LED常亮,若电池电压低于3.2V且大于2.9V时,LED1以1Hz闪烁,LED2~LED4灭,提醒用户电量过低;当电池电压低于2.9V时,升压模块关闭,进入低压保护模式,DLED1~DLED4灭。电池电压回至3.2V以上才可以再次放电;
- 5) 放电结束,即放电电流小于20mA (典型值) 16s后, DLED1~DLED4灭,输出保持5V;
- 6) 在充电过程中,如果发生异常,无法充电时,DLED1~DLED4灭。在放电过程中,如果发生短路保护、过流保护、过温保护,DLED1~DLED4灭,芯片进入打嗝输出模式。
- 7) 在1s内双击KEY键可以开关手电筒,芯片KEY端可以用来驱动手电筒,最大驱动电流为 100mA。再次双击KEY键,关闭手电筒。

电池电压 (V)	充电				放电/单击电量显示			
电池电压(1)	DLED1	DLED2	DLED3	DLED4	DLED1	DLED2	DLED3	DLED4
VBAT≥4. 2	亮	亮	亮	亮	亮	亮	亮	亮
3. 9≤VBAT<4. 2	亮	亮	亮	1Hz	亮	亮	亮	亮
3. 7≤VBAT<3. 9	亮	亮	1Hz	灭	亮	亮	亮	灭
3. 5≤VBAT<3. 7	亮	1Hz	灭	灭	亮	亮	灭	灭
3. 2≤VBAT<3. 5	1Hz	灭	灭	灭	亮	灭	灭	灭
2. 9≤VBAT<3. 2	1Hz	灭	灭	灭	1Hz	灭	灭	灭
VBAT<2.9	1Hz	灭	灭	灭	灭	灭	灭	灭

IC 封装示意图

ESOP8:

- 77	D I III O I O I O	THE WILL I WIND COLD IN DISTORD					
字符	Min	Max	Min	Max			
Α	1. 350	1. 750	0.053	0.069			
A1	0. 050	0. 150	0.004	0.010			
A2	1. 350	1. 550	0.053	0.061			
b	0. 330	0.510	0.013	0.020			
С	0.170	0. 250	0.006	0.010			
D	4. 700	5. 100	0. 185	0.200			
D1	3. 202	3. 402	0. 126	0.134			
E	3. 800	4. 000	0. 150	0. 157			
E1	5. 800	6. 200	0. 228	0. 244			
E2	2. 313	2. 513	0.091	0.099			
е	1. 270	(BSC)	0.050	(BSC)			
L	0.400	1. 270	0.016	0.050			
Θ	0°	8°	0°	8°			

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)