CSC343 Worksheet 12 Solution

June 30, 2020

1. • Keys

- {id of molecule}
- {x position, y position, z position}
- Functional Dependencies
 - 1. id of molecule \rightarrow x position, y position, z position, x velocity, y velocity, z velocity
 - 2. x position, y position, z position \rightarrow id of molecule, x velocity, y velocity, z velocity

Notes:

- Function Dependencies
 - Functional Dependency is a relationship between two attributes typically between the key and other non-key attributes within a table.

Example:

 $SIN \rightarrow Name$, Address, Birthdate

Example 2:

 $ISBN \rightarrow Title$

- Key of Relations
 - One or more attributes $\{A_1, A_2, ..., A_n\}$ is a key for a relation R if
 - 1. Those attributes functionally determine all other attributes of the relation
 - 2. No proper subset of $\{A_1, A_2, ... A_n\}$ functionally determines all other attributes of R

Example:

Given relation

R = Movies1(title, year, length, genre, studioName, starName)

i. {title, year, starName } form a key for the relation Movies1

- ii. { year, starName } is not a key. Same star can be in multiple movies per year
- Superkeys
 - * Means a a set of attributes that contains a key
 - * Don't need to be minimal

Example:

Given relation

R = Movies1(title, year, length, genre, studioName, starName)

- · { title, year, starName } is a key and superkey
- { title, year, starName, title, year, length} is a superkey

References:

- 1) OpenTextBC, Chapter 11 Functional Dependencies, link
- 2. a) **Notes:**
 - The Splitting / Combining Rule
 - Combining Rule

*
$$A_1, A_2, \dots, A_n \to B_i$$
 for $i = 1, 2, ..., m$ to $A_1, A_2, \dots, A_n \to B_1, B_2, \dots, B_m$

Example:

Given

title year \rightarrow length title year \rightarrow genre title year \rightarrow studioName

it's combined form is

title year \rightarrow length genre studioName

- Splitting Rule

*
$$A_1, A_2, \cdots A_n \rightarrow B_1, B_2, \cdots B_m$$

to
 $A_1, A_2, \cdots, A_n \rightarrow B_i \text{ for } i = 1, 2, ..., m$

Example:

```
Given
```

```
title year \rightarrow length It's splitted form is
```

```
\begin{array}{l} {\rm title} \rightarrow {\rm length} \\ {\rm year} \rightarrow {\rm length} \end{array}
```

- \bullet Trivial Functional Dependencies
 - A functional dependency $FD: X \to Y$ is **trivial** if Y is a subset of X

Exmaple:

title year \rightarrow title