DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY DELHI MINOR TEST I 2016-2017 FIRST SEMESTER MTL104 (LINEAR ALGEBRA AND APPLICATIONS)

Time: 1 hour

Max. Marks: 25

 \mathcal{F} 1a. If W is any subspace of a vector space V(F), then show that the set $\frac{V}{W}$ of all cosets W+x where x is any vector in V(F) forms a vector space over F, under the operations defined by

$$(W+x) + (W+y) = W + (x+y), \quad x, y \in V$$

 $\alpha(W+x) = W + \alpha x, \quad \alpha \in F.$

Also, prove that

$$\dim(\frac{V}{W}) = \dim V - \dim W. \tag{5}$$

 \sim 1b. Let V(F) be a vector space. Let W_1, W_2, \ldots, W_n be subspaces of V. Suppose

$$V = W_1 + W_2 + \ldots + W_n$$
 and $W_i \cap \{\sum_{j=1, j \neq i}^n W_j\} = \{0\}, 1 \le i \le n.$

Prove or disprove that
$$V = W_1 \oplus W_2 \oplus \ldots \oplus W_n$$
. (3)

2a. Let V and W be two finite dimensional vector spaces and $N \subseteq V$, $R \subseteq W$ be two subspaces such that dim $N + \dim R = \dim V$. Is there a linear transformation $T \in L(V, W)$ such that N(T) = N and R(T) = R? Give reasons for your answer. (5)

- \nearrow **2b.** Let V(F) be the vector space of all arithmetic sequences over the field F (real). i.e. all sequences of the form $\{a, a+d, a+2d, \ldots\}$. Then prove or disprove that V(F) is isomorphic to F^2 .
- 3. Let p,m and n be positive integers and F be a field. Let V be the space of $m \times n$ matrices over F and W the space of $p \times n$ matrices over F. Let B be a fixed $p \times m$ matrix and let T be the linear transformation from V into W defined by T(A) = BA. Prove that T is invertible if and only if p = m and B is an invertible $m \times m$ matrix. (3)

4a. Let $R^{2\times 2}$ denote the collection of all 2×2 matrices with real elements. Define $f:R^{2\times 2}\longrightarrow R$, a linear functional as follows:

$$f\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 2, \quad f\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 3, \quad f\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = 4, \quad \text{and} \quad f\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 9.$$
 Determine a basis for $N(f)$, where $N(f)$ denotes null space of f. (3)

4b. Let W_1 and W_2 be subspaces of a finite dimensional vector space of V(F). Then prove or disprove that $(W_1 + W_2)^0 = W_1^0 \cap W_2^0.$

(3)