1 Samples correlation for different C

All figures for $N=100,\,\langle z\rangle=4,\,T=1.0,\,p=0.50.$

 $\begin{array}{c} C = 400 \\ 0.05 \\ 0.04 \\ 0.02 \\ 0.01 \\ 0 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \end{array}$

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

2 PL performance for different C

All figures for $N=100,\,\langle z\rangle=4,\,T=1.0,\,p=0.50,\,N_{\rm g}=100,\,\tau=2000,\,T_{\rm F}^{\rm ini}=2.0$

Figure 2.5: Dependency between average γ and the number of samples C.

3 PL performance for different au

All figures for $N=100,\,\langle z\rangle=4,\,T=1.0,\,p=0.50,\,N_{\rm g}=100,\,{\rm C}=400,\,T_{\rm F}^{\rm ini}=0.04.$

Figure 3.5: Dependency between average γ and the total number of Monte-Carlo steps τ .

4 Initial Fictitious Temperature effect on the PL performance

All figures for $N=100,\,\langle z\rangle=4,\,T=1.0,\,p=0.50,\,N_{\rm g}=100,\,{\rm C}=400,\,\tau=1000.$

Figure 4.5: Dependency between average γ and the initial fictitious temperature of the simulated annealing.

5 Sample correlation distribution for all graphs with same p.

All figures for $N=100, \langle z \rangle=4, T=1.0, N_{\rm g}=100, C=1000$. Notice the vertical range difference for higher p values.

Figure 5.7

6 Sample correlation distribution for extreme PL performance graphs.

Figure 6.1: $N=100,\,\langle z\rangle=4,\,T=1.0,\,p=0.50,\,N_{\rm g}=100,\,T_{\rm F}^{\rm ini}=2.0.$

Figure 6.2: SEED with less var |q| in Figure 6.1 **Figure 6.3:** SEED with most var |q| in Figure 6.1

Figure 6.4: SEED with less γ in Figure 6.1

7 PL performance for $C = 400, \tau = 2000$

All figures for $N=100,\,\langle z\rangle=4,\,T=1.0,\,N_{\mathrm{g}}=100,\,T_{\mathrm{F}}^{\mathrm{ini}}=0.04.$

Figure 7.7

8 PL performance for different fictitious temperature reduction rhythms.

All figures for $N=100,\ \langle z\rangle=4,\ T=1.0,\ N_{\rm g}=100,\ T_{\rm F}^{\rm ini}=0.04,\ C=400,\ \tau=2000.$ ($t\equiv$ current Monte-Carlo step)

Figure 8.1: $T_{\mathrm{F}}(t) = T_{\mathrm{F}}^{\mathrm{ini}} \left(1 - \frac{t}{\tau}\right)$

Figure 8.2: $T_{\mathrm{F}}(t) = \frac{T_{\mathrm{F}}^{\mathrm{ini}}}{\ln t} \left(1 - \frac{t}{\tau}\right)$

All the figures in this document are done with the Figure 8.1 equation.

9 Consistency of the PL performance

Figure 9.1: PL evolution in 4 different Monte-Carlo simulations for the SEED = 100 with $N=100, \langle z \rangle=4, p=0.50, p=1.0, T_{\rm F}^{\rm ini}=0.04, C=400, \tau=2000.$

Figure 9.2: Gamma distribution in 100 different Monte-Carlo simulations for the SEED = 100 with N=100, $\langle z \rangle=4,~p=0.50,~T=1.0,~T_{\rm F}^{\rm ini}=0.04,~{\rm C}=400,~\tau=2000.$

Figure 9.3: PL evolution in 3 different Monte-Carlo simulations zoomed in for the SEED = 100 with N=100, $\langle z \rangle = 4, \, p=0.50, \, T=1.0, \, T_{\rm F}^{\rm ini}=0.04, \, {\rm C}=400, \, \tau=2000.$

10 Samples correlation for different T

All figures for $N=100,\,C=400,\,\langle z\rangle=4,\,N_{\rm g}=100.$

Figure 10.7

Figure 10.9

Figure 10.11

Figure 10.8

Figure 10.10

Figure 10.12

Figure 10.13

Figure 10.14

11 PL performance for different T

Considering N = 100, $\langle z \rangle = 4$, $N_{\rm g} = 100$, C = 400, $\tau = 2000$ and $T_{\rm F}^{\rm ini} = -\frac{1}{3} \ln \left[\frac{1}{2} \left(1 + \tanh \frac{1}{T} \right) \right]$

Figure 11.1: PL performance in relation to T for different p.

12 Phase Diagram

In [1] the following equations are obtained, for random ferromagnetic and anti-ferromagnetic interactions of equal strength $\pm J$ and a average connectivity $\langle z \rangle$,

$$\langle \tanh^2(J/T_{SG})\rangle_J = \frac{1}{\langle z\rangle} \qquad \langle \tanh(J/T_{FM})\rangle_J = \frac{1}{\langle z\rangle}$$
 (12.1)

So since the pairwise distribution in this project system is

$$P(J_{ij}) = p \cdot \delta(J_{ij} - 1) + (1 - p) \cdot \delta(J_{ij} + 1)$$
(12.2)

and $\langle z \rangle = 4$, the relation between the different phase temperature transition and p are

$$T_{\rm SG}^{-1} = \operatorname{arctanh} \frac{1}{2} \qquad T_{\rm FM}^{-1} = \operatorname{arctanh} \frac{1}{4(2p-1)}$$
 (12.3)

According to [2] the SG-FM transition at T=0 is around p=0.73, with a mixed phase up to p=0.8, with this and knowing from [1] that this phases are split vertically near the multi-critical point, a full phase diagram can be drawn:

Figure 12.1

References

- [1] L.Viana and A.J. Bray *Phase diagrams for dilute spin glasses*, (J. Phys. C: Solid State Phys. 18 3037 (1985)).
- [2] M.O. Hase Spin-glass behaviour on random lattices, (J. Stat. Mech. (2012)).

13 PL performance and average magnetization per sample relation

All figures for $N=100,\,\langle z\rangle=4,\,T=1.0,\,N_{\rm g}=100,\,T_{\rm F}^{\rm ini}=0.04.$

Figure 13.7

14 Average Sample Energy gamma dependency for $C=400,\, \tau=1000$

All figures for $N=100,\,\langle z\rangle=4,\,T=1.0,\,N_{\rm g}=100,\,T_{\rm F}^{\rm ini}=2.0.$

Figure 14.7