

Statistik I

Einheit 7: Hypothesen und Hypothesentests

12.12.2023 | Prof. Dr. Stephan Goerigk

Lernziele:

Sie lernen:

- Was ein Signifikanztest ist
- den Unterschied zwischen der Null- und der Alternativhypothese
- ullet das Signifikanzniveau lpha
- die Abgrenzung zwischen einem einseitigen und einem zweiseitigen Signifikanztest

Wiederholung:

Inferenzstatistik:

- Umfasst alle statistischen Verfahren, die es erlauben, trotz der Informationsunvollständigkeit der Stichprobendaten Aussagen über eine Population zu treffen.
- Wir wissen nun, dass wir einzelne Populationsparameter aus der Stichprobe schätzen können

ABER:

- Das reine Schätzen eines Wertes ist noch keine wissenschaftliche Aussage
- Was für "Aussagen", die wir über die Population treffen, sind gemeint?

CHARLOTTE FRESENIUS HOCHSCHULE UNIVERSITY OF PSYCHOLOGY

Hypothesen und Hypothesentests

Hypothesen

- Statistisch zu prüfende Aussagen: Hypothesen (kennen wir bereits aus QM-1)
- Der Inhalt einer Hypothese muss quantifiziert werden, damit wir sie prüfen können
- Hypothese wird in eine prüfbare Gleichung (oder Ungleichung \rightarrow größer-kleiner Verhältnisse) umgewandelt
 - o inhaltlich: Männer sind im Durchschnitt größer als 173 cm
 - \circ numerisch: $\mu > 173$
- Die Entscheidung über die Gültigkeit der Hypothese erfolgt auf Basis unserer Wahrscheinlichkeitsverteilungen ("wie wahrscheinlich ist es, dass...")
 - "Wie wahrscheinlich ist es, dass unter Annahme, dass die Körpergröße normalverteilt ist, der erwartete Mittelwert der Männer größer ist als 173 cm."
- Trifft eine Hypothese zu spricht man oft vom Vorliegen eines **Effekts**

5 CHARLOTTE FRESENIUS HOCHSCHULE UNIVERSITY OF PSYCHOLOGY

Hypothesen und Hypothesentests

Hypothesentest - To-Do Liste

Zur erfolgreichen Durchführung eines Hypothesentests müssen folgende wichtige Schritte geschehen

- 1. Austellen von Nullhypothese und Alternativhypothese (Hypothesenpaar)
- 2. Bestimmung einer zugrundeliegenden Verteilung
- 3. Festlegung des Annahme- und Ablehnungsbereichs der Nullhypothese (kritischer Wert)
- 4. Beobachtungswert auf Wahrscheinlichkeitsverteilung abbilden
 - \circ Binomialverteilung \rightarrow Wahrscheinlichkeiten
 - $\circ \;$ z-Verteilung o Mittelwerte, wenn σ in Population bekannt
 - \circ t-Verteilung o Mittelwerte, wenn σ in Population nicht bekannt
 - \circ F-Verteilung \rightarrow Varianzen
 - $\circ \chi^2$ -Verteilung \to Häufigkeiten/Proportionen
- 5. Vergleich kritischer Wert und Teststatistik
- 6. Entscheidung: Test signifikant oder nicht signifikant

Hypothesen

Statistische Hypothese:

- Entscheidung basiert darauf, ob sich ein beobachteter Wert überzufällig stark von einem vorgegebenen Wert unterscheidet
- Das heißt einfach, dass man überprüft, ob die Abweichung des beobachteten Wertes vom hypothetisierten Wert zu groß ist, als dass sie noch zufällig sein kann.
- Um alle Wahrscheinlichkeiten für einen Ausgang des Hypothesentests abzudecken formuliert man ein Hypothesenpaar
 - $\circ~H_0$: Der hypothetisierte Effekt liegt nicht vor (Werte unterscheiden sich nicht)
 - $\circ H_1$: Der hypothetisierte Effekt liegt vor (Werte unterscheiden sich)

Nullhypothese und Alternativhypothese

Nullhypothese (H_0) :

- Gegenstück zur eigentlichen Untersuchungshypothese, der Alternativhypothese
- ullet Die H_0 stellt meistens den aktuellen Zustand oder anders ausgedrückt den "Standard" dar gegen den getestet wird

Alternativhypothese (H_1) :

- Die Alternativhypothese beinhaltet oft die neue Annahme, den "Effekt".
- Drückt eine "Unterschiedlichkeit" von einem Referenzwert aus
- \rightarrow Nur über das komplementäre Hypothesenpaar lässt sich eine komplementäre Gesamtwahrscheinlichkeit abdecken:

$$P_{H_0} + P_{H_1} = 1$$

Signifikanzniveau

- Um das Ausmaß der Abweichung zu definieren, welches uns als strengen Wissennschaftler:innen ausreiichend "sicher" erscheint (kritischer Wert) legen wir eine "Irrtumswahrscheinlichkeit" fest
- Diese bezeichnet man als **Signifikanzniveau** α .
- Meistens wird lpha=.05 gewählt (häufige Konvention aus der Wissenschaft)
- Das bedeutet, dass wir eine 5% Wahrscheinlichkeit erlauben unsere Hypothese fälschlicherweise anzunehmen
- Die 5% legen einen bestimmten Bereich auf der Wahrscheinlichkeitsverteilung fest (Verwerfungsbereich)
 - z-Verteilung
 - o t-Verteilung
 - o ...

Signifikanzniveau und Verwerfungsbereich

- ullet Die große Fläche der Verteilung entspricht der Annahme unserer H_0
- Der Erwartungswert ist 0 (kein Effekt \rightarrow daher Null-Hypothese)
- Werte jenseits des "kritischen Werts" sind im **Verwerfungsbereich** der H_0 (dunkelblau).
- ullet Diese sind unter Annahme der H_0 ausreichend unwahrscheinlich.
- Wir glauben nicht mehr an einen Zufall!
- Die H_0 wird verworfen.

p-Wert

- In Statistik-Softwareprodukten wird zusammen mit der Teststatistik eines statistischen Tests ein sogenannter **p-Wert** ausgegeben
- ullet Der p-Wert gibt die **Wahrscheinlichkeit für den Fehler erster Art** an, also die Wahrscheinlichkeit, eine gültige H_0 zu verwerfen aufgrund der beobachteten Daten
- Vorteil des p-Wertes liegt darin, dass bei der Entscheidung keine Tabelle der Verteilung der Teststatistik benötigt wird
- Wird der zweiseitige p-Wert angegeben und die H_1 ist gerichtet, muss man den p-Wert **durch 2 dividieren** und mit α vergleichen.
- ullet Bei einseitigen Hypothesen ist die zusätzliche überprüfung notwendig, ob die Teststatistik tatsächlich im Verwerfungsbereich der H_0 liegt

Fehler beim Hypothesentest

- Beim Treffen von Entscheidungen können Menschen nicht nur in ganz alltäglichen Situationen Fehler unterlaufen
- Konkret gibt es bei Hypothesentests vier Möglichkeiten, wie die Entscheidung ausfallen kann
 - \circ Fehler 1. Art bzw. α -Fehler: Wenn die Nullhypothese fälschlicherweise verworfen wird und die Alternativhypothese angenommen wird
 - \circ Fehler 2. Art bzw. β -Fehler: Wenn die Nullhypothese fälschlicherweise beibehalten wird, obwohl die Alternativhypothese wahr ist

	H₀ ist wahr	H₁ ist wahr	
H₀ wird angenommen	1 - α	β (Fehler 2. Art)	
H ₀ wird verworfen	α (Fehler 1. Art)	1 - β (Power)	

Fehler beim Hypothesentest

- Die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen, entspricht immer maximal dem Signifikanzniveau
- Je kleiner lpha, umso kleiner der Fehler 1. Art $(H_0$ irrtümlich zu verwerfen)
- $\rightarrow \alpha$ möglichst klein wählen, z.B. $\alpha = 0.001$?
- Entscheiden für Signifikanzniveau ist vergleichbar mit dem Abschluss einer Versicherung. Umso besser der Versicherungsschutz gegen einen α -Fehler, umso höher die Kosten.

Kosten eines kleinen (strengen) Signifikanzniveaus:

- Größerer Fehler 2. Art (β -Fehler = H_0 irrtümlich beizubehalten)
- geringere Teststärke $1-\beta$ (Macht oder Power = Wahrscheinlichkeit, H_0 zugunsten einer H_1 zu verwerfen, wenn tatsächlich H_1 gilt)

Beziehungen zwischen Statistischen Fehlern

Dilemma

- Versicherung gegen α -Fehler hat die Kosten eines höheren β -Fehlers und geringerer Macht des Tests
- Versicherung gegen β -Fehler hat die Kosten eines höheren α -Fehlers
- ullet Kompromiss in der Praxis: lpha=.05 oder lpha=.01 je nachdem, welchen Fehler man eher riskieren möchte

Ein- und Zweiseitige Hypothesen

Einseitige Hypothese:

- Der beobachtete Wert ist größer oder kleiner als ein Referenzwert
- Man spricht von einer gerichteten Hypothese
- Beispiel Hypothesenpaar (inhaltlich):
 - $\circ~H_0$: Männer sind durchschnittlich 173 cm groß oder kleiner
 - $\circ H_1$: Männer sind durchschnittlich größer als 173 cm

Zweiseitige Hypothese:

- Der beobachtete Wert unterscheidet sich von dem Referenzwert
- Man spricht von einer ungerichteten Hypothese
- Beispiel Hypothesenpaar (inhaltlich):
 - $\circ~H_0$: Die Durchschnittsgröße von Männern liegt bei etwa 173 cm
 - $\circ~H_1$: Die Durchschnittsgröße von Männern unterscheidet sich von 173 cm

Ein- und Zweiseitige Hypothesen

Einseitige Hypothese:

- Der beobachtete Wert ist größer oder kleiner als ein Referenzwert
- Man spricht von einer gerichteten Hypothese
- Beispiel Hypothesenpaar (statistisch):
 - $\circ H_0$: $\mu \leq 173$ cm
 - $\circ~H_1$: $\mu > 173$ cm

Zweiseitige Hypothese:

- Der beobachtete Wert unterscheidet sich von dem Referenzwert
- Man spricht von einer ungerichteten Hypothese
- Beispiel Hypothesenpaar (statistisch):
 - $\circ \ H_0$: $\mu = 173$ cm
 - $\circ~H_1$: $\mu
 eq 173$ cm

Ein- und Zweiseitige Hypothesen - Graphisch

Gesamte "Unsicherheit" (lpha=0.05) wird auf eine Seite gesetzt (z.B. kleiner vs. größer als 0).

Ein- und Zweiseitige Hypothesen - Graphisch

^{ightarrow} "Unsicherheit" (lpha=0.05) wird auf beide Seiten aufgeteilt (unterschiedlich von 0).

Ein- und Zweiseitige Hypothesen - Graphisch

ullet Erwartungswert: wahrscheinlichster Wert unter Annahme der H_0

Beispiel:

- H_0 : $\mu = 173$
- wenn $\mu=173$ dann $\mu-173=0$
- Erwartungswert unter Annahme der H_0 = 0
- dunkelblaue Fläche: Verwerfungsbereich H_0
- ullet hellblaue Fläche: Annahmebereich H_0

Ein- und Zweiseitige Hypothesen - Graphisch

- rote Linie: Kritischer Wert
- ullet Um zu glauben, dass $\mu
 eq 173~(H_1)$ muss der beobachtete Wert ausreichend weit vom Erwartungswert der $H_0=0$ wegliegen
- Als Schwelle/Entscheidungsgrundlage definiert man einen kritischen Wert
- Dieser liegt oft bei dem Wert, der unter Annahme der Wahrscheinlichkeitsverteilung 5%
 Auftretenswahrscheinlichkeit hat

In Worten: Der beobachtete Wert ist unter Annahme der H_0 nur 5% wahrscheinlich, somit ist es auf Basis der Beobachtung unwahrscheinlich, dass die H_0 zutrifft.

Ein- und Zweiseitige Hypothesen

Festlegung auf eine Formulierung

- Wahl des Hypothesenpaars sollte a priori erfolgen
 - vor der eigenen Untersuchung
 - ohne Berücksichtigung der aktuellen Daten
 - o aufgrund inhaltlicher Kriterien
- Spezialfall einseitige H_1 :
 - Richtung basiert auf einer von den aktuellen Daten unabhängigen Vorinformation

Beispiel 1: Binomialtest (einseitiges Testen)

Ein Therapieverfahren zur Behandlung von Angststörungen soll nach 6 Montaten eine Rückfallquote von maximal 30% haben.

ullet Das Verfahren soll an einer Zufallsstichprobe von N=100 Patient:innnen geprüft werden

Aufstellen des Hypothesenpaares:

- H_0 : $p \ge .3$ (mindestens 30%)
- H_1 : p < .3 (unter 30%)

Fragen:

- Wie viele Patienten in der Stichprobe erleiden einen Rückfall
- Ist dieses Ergebnis überzufällig und somit auf die Population (aller Angstpatient:innen) verallgemeinerbar

Beispiel 1: Binomialtest (einseitiges Testen)

Beobachtung in der Stichprobe (Schätzer):

- ullet In der Stichprobe erleiden n=28 Patienten einen Rückfall
- ullet In absoluten Zahlen spricht das erst einmal für das Verfahren $(rac{28}{100}=28\%<30\%)$

Frage, die der Hypothesentest stellt:

• Ist n=28 (28%) ausreichend weit weg von 30%, sodass wir das Ergebnis verallgemeinern können?

Beispiel 1: Binomialtest (einseitiges Testen)

Bestimmung einer passenden Wahrscheinlichkeitsverteilung:

- Art (und i.d.R.) Name des Tests basiert auf zugrunde liegender Verteilung
- Unsere Zufallsvariable X (s.h. Hypothese) ist in Wahrscheinlichkeiten angegeben (p=.3)
- Wahrscheinlichkeitsverteilung zur Wahrscheinlichkeit von Wahrscheinlichkeiten (p): Binomialverteilung

Auswahl Hypothesentest:

- Wir wählen als Hypothesentest des **Binomialtest**
- Zur Entscheidung über unsere Hypothesen werden wir eine **Binomialverteilungstabelle** nutzen
- Merke:
 - Bei gerichteten (einseitigen) Formulierungen wie "mindestens" oder "höchstens" nutzen wir die kumulierte Binomialverteilungstabelle
 - o Bei ungerichteten Formulierungen wie "genau" nutzen wir die einfache Binomialverteilungstabelle

Beispiel 1: Binomialtest (einseitiges Testen)

Parameter für den Binomialtest:

- p = 30% = .3
- N = 100
- Signifikanzniveau lpha=5%=.05
- k = 28

Ist die Rückfallquote niedrig genug, um die Nullhypothese zu verwerfen?

Beispiel 1: Binomialtest (einseitiges Testen)

Festlegung kritischer Wert (Annahme und Ablehnungsbereich der Nullhypothese):

Fällt das Stichprobenergebnis in den Ablehnungsbereich:

- H_0 : $p \ge .3$ (verwerfen)
- $H_1: p < .3$ (annehmen)

Kritischer Wert kann in der kumulierte Binomialverteilungstabelle nachgesehen werden (**Link zur Tabelle**)

Wir wollen für n=100 und die Wahrscheinlichkeit p=.3 den letzten Wert k finden, der unter Annahme der BV eine Auftretenswahrscheinlichkeit kleiner als unser Signifikanzniveau $(\alpha=.05)$ hat

Beispiel 1: Binomialtest (einseitiges Testen)

Festlegung kritischer Wert (Annahme und Ablehnungsbereich der Nullhypothese):

- Kritischer Wert kann in der kumulierten Binomialverteilungstabelle nachgesehen werden (Link zur Tabelle, S.6)
- ullet Wir wollen für n=100 und die Wahrscheinlichkeit p=.3 den letzten Wert k finden, für den der dazugehörige Wert in der Tabelle unterhalb des Signifikanznveaus lpha=.05 gilt
- → Dieser Wert ist unser kritischer Wert
- In unserem Beispiel ist der kritische Wert k=22 bei einer Wahrscheinlichkeit von p=.0479
- Hätten wir k=22 unterschritten, könnten wir mit 95% Sicherheit glauben, dass das Programm max. 30% Rückfallrate hat.

Beispiel 1: Binomialtest (einseitiges Testen)

Festlegung kritischer Wert (Annahme und Ablehnungsbereich der Nullhypothese):

Es ergibt sich:

- Verwerfungsbereich der H_0 von 1-22
- Annahmebereich der H_0 von 23-100
- Unsere Stichprobe ergab 28 Rückfälle
- Dieser Wert liegt im Annahmebereich der H_0
- Test ist nicht signifikant $o H_0$ beibehalten

Interpretation:

- Numerisch weniger Rückfälle als 30%
- ullet ABER: Wir können nicht mit 95% Wahrscheinlichkeit sagen, dass p < .3

- Hypothesen über μ einer normalverteilten Variable, wobei σ^2 (Populationsvarianz) bekannt ist
- Mögliche Hypothesen:

$$\circ~H_0$$
: $\mu=\mu_0$; H_1 : $\mu
eq\mu_0$ (ungerichtet)

$$\circ \ H_0$$
: $\mu \leq \mu_0$; H_1 : $\mu > \mu_0$ (gerichtet)

$$\circ H_0$$
: $\mu \geq \mu_0$; H_1 : $\mu < \mu_0$ (gerichtet)

- ullet $\mu=$ Populationsmittelwert; $\mu_0=$ hypothetischer Populationsparameter
- Prüft anhand des Mittelwerts einer Stichprobe ob der Erwartungswert in der entsprechenden Population gleich einem vorgegebenen Wert ist (dem unter H_0 erwarteten μ_0).
- Vergleich eines Stichprobenmittelwertes mit dem hypothetischen Populationsparameter μ_0 .

- Ziel: Prüfen, ob der Populationsmittelwert (μ) sich von hypothetischen Populationsparameter (μ_0) unterscheidet
- Methode: Da wir Populationsmittelwert (μ) nicht kennen, nutzen wir den Stichprobenmittelwert (\bar{x})
- Es geht also um den **Unterschied** zwischen μ und μ_0
 - \circ mathematisch können wir diesen als Differenz ausdrücken: $ar{x} \mu_0$.
- ullet Wenn H_0 : $\mu=\mu_0$ und H_1 : $\mu
 eq\mu_0$, dann müsste $ar x-\mu_0
 eq 0$ sein.
 - $\circ~$ In Worten: Wenn ein Unterschied besteht, muss die Differenzeq 0 sein

- ullet Wenn ein Unterschied besteht, muss die Differenz $ar x \mu_0
 eq 0$ sein.
- Dabei reicht uns ein rein numerischer Unterschied nicht
 - o z.B. 1 vs. 1.000000001 ist ein Unterschied, aber dieser ist sehr klein und ggf. nicht sehr bedeutsam
- Wir wollen eine verlässliche Aussage machen (Unterschied muss über gewisse Unsicherheit erhaben sein)
- numerischer Unterschied \neq signifikanter (verlässlicher) Unterschied
- Ziel: Wir müssen für den Unterschied eine Wahrscheinlichkeit angeben können
- Für normalverteilte Variablen können wir dafür die z-Tabelle nutzen

Ein-Stichproben z-Test (Gauß-Test)

Bestimmung des z-Werts

• Wir wandeln den Effekt, über den wir unsere Hypothese aufstellen $(\bar{x}-\mu_0)$ in eine Teststatistik um:

$$z_{emp} = \sqrt{n} \cdot rac{ar{x} - \mu_0}{\sigma}$$

- ullet Da der z-Wert aus den beobachteten Daten berechnet wurde, nenne wir ihn auch empirischen z-Wert (z_{emp})
- z : standardnormalverteilter Wert, für den Wahrscheinlichkeit in Tabelle nachgesehen werden kann (Ziel)
- \bar{x} : Mittelwert in Stichprobe (beobachtet)
- ullet μ_0 : hypothetischer Populationsparameter aus Fragestellung
- σ : Populationsstandardabweichung (bekannt)
- n: Stichprobengröße (muss berücksichtigt werden o größere Stichprobe, mehr Verlässlichkeit)

- Zur Erinnerung: Warhscheinlichkeit, die H_0 abzulehnen, obwohl sie in Wirklichkeit gilt, heißt lpha-Fehler oder Fehler 1. Art
- z-Wert ist signifikant, wenn seine Auftretenswahrscheinlichkeit kleiner ist als das gewählte lpha (H_0 verwerfen)
- ullet Für die Signifikanzprüfung kann der z-Wert (z_{emp}) mit dem kritischen z-Wert (z_{krit}) verglichen werden (in z-Tabelle nachsehen)
- Die Wahl des Signikanzniveaus ist von inhaltlichen Überlegungen abhängig und wird oft als lpha=.05 gewählt.

- $\bullet \;$ Signifikanzniveau $\alpha = .05 \; \mathrm{muss}$ auf beide Seiten aufgeteilt werden
- ullet Damit lpha=.05 erreicht wird, darf z_{krit} nur 2.5% der Fläche abschneiden
- ullet Auftretenswahrscheinlichkeit von z_{emp} muss kleiner als 2.5%
- ullet Ist Betrag von z_{emp} größer als z_{krit} so ist Test signifikant

- Mittelwertsdifferenz muss in vorhergesagte Richtung auftreten
- Gesamte 5% liegen auf vorhergesagter Seite der Verteilung
- ullet Folge: Gleiche empirische Mittelwertsdifferenz wird bei einseitigen Hypothesen leichter signifikant (Betrag von z_{krit} ist kleiner, bzw. Ablehnungsbereich ist größer).

Ein-Stichproben z-Test (Gauß-Test) - Beispiel

- Weicht der Mittelwert einer Zufallsstichprobe aus dem Irak, \bar{x}_I , in einem in Deutschland entwickelten sprachfreien Intelligenztest signifikant vom Populationsparameter in Deutschland, $\mu_D=100$, ab?
- WICHTIG: Nur die iranische Stichprobe wurde in der Studie rekrutiert und gemessen. Der deutsche Referenzwert wird vorgegeben.

Daten:

- n=108, Testpunkte normalverteilt,
- $\bar{x}_I = 99.32$
- $\sigma_I = 15$
- $\alpha = 0.05$

Hypothesen:

- H_0 : $\mu_I = 100$
- H_1 : $\mu_I \neq 100$;

Ein-Stichproben z-Test (Gauß-Test)

Beispiel 1:

- ullet n=108, Testpunkte normalverteilt, $ar{x}_I=99.32$, $\sigma_I=4.03$
- H_0 : $\mu_I = 100$; H_1 : $\mu_I \neq 100$; $\alpha = 0.05$

Teststatistik:

$$z_{emp}=\sqrt{n}\cdotrac{ar{x}-\mu_0}{\sigma}$$
 $z_{emp}=\sqrt{108}\cdotrac{99.32-100}{15}=-0.47$

In z-Tabelle z_{krit} bei $p=1-rac{lpha=.05}{2}=0.975$ (durch 2 teilen, da 2-seitige Fragestellung)

- $z_{krit} = -1.96$
- $-0.47 > -1.96 \rightarrow H_0$ beibehalten
- Interpretation: Der Mittelwert der Zufallsstichprobe aus dem Irak unterscheidet sich nicht signifikant vom deutschen Referenzwert.

Macht eines Tests (Teststärke, aka Power)

- 1β = Power
- Wahrscheinlichkeit dafür, dass ein statistischer Test zugunsten einer H_1 entscheidet, wenn diese gilt (d.h. die H_0 richtigerweise zu verwerfen)
- Die Teststärke hängt von verschiedenen Faktoren ab:
 - \circ Signifikanzniveau α (je kleiner, desto weniger Power)
 - \circ Ein- oder zweiseitige Alternativhypothese (bei einseitiger H_1 höhere Power)
 - o Größe des Effekts (des Unterschiedes zwischen Beobachtungs- und Referenzwerts)
 - \circ Streuung der Variable X in der Population (je größer desto weniger Power)
 - \circ Stichprobenumfang n (je größer, desto mehr Power)
 - o Verwendeter statistischer Test: je höher der verwendete Informationsgehalt der Daten, umso höher seine Macht

Statistische Signifikanz und praktische Relevanz

- ullet Mit genügend großem Stichprobenumfang kann man praktisch jede H_0 verwerfen
- ullet Festlegung einer Effektgröße arepsilon (z.B. praktisch relevanter Unterschied) und einer spezifischen H_1
- Muss aufgrund inhaltlicher Überlegungen vor Datenerhebung festgelegt werden (Poweranalyse)
- ullet Vorteil: notwendiger Stichprobenumfang, der bei gegebenem lpha, gewünschtem 1-eta und bestimmter Effektgröße eine eindeutige Entscheidung ermöglicht, bestimmbar

Kumulierung des lpha-Fehlers

Führt man mehrere statistische Tests durch, hat man bei jedem dieser Tests das Risiko eines α -Fehlers Beispiel:

- Jemand führt drei statistische Tests durch um eine Hypothese zu prüfen
- Annahme: Unabhängigkeit der einzelnen Tests
- ullet Wahrscheinlichkeit, dass mindestens 1 Test signifikant wird $=1-(1-0.05)^3=0.14$
- 14% Fehlerwahrscheinlichkeit statt 5%

Kumulierung des lpha-Fehlers

Führt man k unabhängige statistische Tests zur überprüfung einer H_0 durch, kommt es zu einer Kumulierung des lpha-Fehler Risikos

$$\alpha' = 1 - (1 - \alpha)^k$$

Lösung:

- Lässt es sich nicht vermeiden, mehrere statistische Tests zur Prüfung einer Hypothese durchzuführen, muss eine α -Fehler Korrektur vorgenommen werden
- Der Test wird somit strenger (Grenze für signifikantes Ergebnis niedriger)
- α -Fehler Adjustierung nach Boferroni:

$$lpha_{adj} = 1 - (1-lpha)^{1/k}$$

Beispiel: 3 Tests

$$lpha_{adj} = 1 - (1 - 0.05)^{1/3} = 0.017$$

Darstellung des Ergebnisses eines Hypothesentests

- ullet Voraussetzung: Formulierung der H_0 und H_1
- Angabe von α
- ullet Angabe von N
- Angabe des p-Wertes
- Angabe der Teststatistik (+ df wo nötig)
- Teststärke und Effektgröße
- Korrekte Formulierung bei nicht-signifikantem Ergebnis:
 - $\circ H_0$ wird beibehalten (korrekt)
 - $\circ H_0$ wurde bewiesen (falsch)
- Falsche Interpretationen:
- "Je kleiner der p-Wert, umso größer der Effekt."
 - o Der p-Wert ist keine Effektgröße.
 - $\circ~$ Der p-Wert gibt die Wahrscheinlichkeit für das Zutreffen der H_0 an.
 - \circ Der p-Wert ist die $P(beobachtetesErgebnis|H_0)$

Take-aways

- Zur Prüfung der Geltung einer Hypothese (ja/nein) rechnen wir **Signifikanztests**
- **Auswahl des Tests** richtet sich nach der Wahrscheinlichkeitsverteiltung der Testgrößen (Wahrscheinlichkeit, Mittelwerte, Häufigkeiten...)
- Zur Prüfung muss ein Hypothesenpaar aus Nullhypothese und Alternativhypothese aufgestellt werden.
- Je nach Vorwissen können wir Nullhypothese und Alternativhypothese **gerichtet und ungerichtet** formulieren.
- Als Entscheidungskriterium definieren wir einen **kritischen Wert** (oft Wert mit Auftretenswahrscheinlichkeit 5% unter Annahme der Nullhypothese)
- Ist der Test signifikant wird die Nullhypothese **verworfen** und die Alternativhypothese vorläufig angenommen (s.h. Popper)