- 1- ROBABILIDAD CONDICIONADA.
 - Definición
- Leturciou Espado de probabilidad < 25 Galgebe
 - 2. TEOREMAS de la Probab. Condicionada Teoremo axiomático extendidas
 - Teoremo del producto
 - 3-TEORETTA de LO PROBAB, TOTAL
- 4- THA BAYES
- 5_ INDEPENDENCIA de SUCESOS Defuncióu <)
- Implicacioner: A 7 Brudep => / A 7 B - Extensión

ESTAD _ T2. PROBABILIDAD CONDICIONADA.
BUSCAR - TECRETIAS de la PROB. CONDIC. Extender la truen de la axionatica INDEPENDENCIA de SUCESOS. Udualponor al cato de condic. TEORETIA de la PROBAB. TOTAL
de la axionida INDEPENDENCIA de SUCESOS.
de condic. TEORETA de la PROBAB. TOTAL
TEOREMA de BAYES.
1- PROBABILIDAD CONDICIONADA. COO (E, C, P) CP. y SC C 19 P(S)
$F: P(S_1/S) = \frac{P(S_1 \cap S)}{P(S)}$, viempre que $P(S) > 0$
doude S1 -> suceso condicionado
S - suceso condicionante o condición
Idea: Parhendo de la definición de loplone CT P(onna Sayonnos)
El espació de probabilidad resultante es
(S(S, D3, Ps), n'empre que P(S)>0 es un espació de probab.
donde el espação muentral en S=Ens (cito miens) elementales)
la estructura de G-alg es 23=205 (esto moons posibles)
y la privedida de probab el Ps = P(Si/s) para Si εΩ,
Astique estructure de O-depetra:
Le ∈ Ω = p Es= En S ∈ (Ωns) porque E ∈ Ω, G-dp

2-Si $A_{\rm S}\in\Omega_{\rm S}$, subtract $\overline{A}_{\rm S}\in\Omega_{\rm S}$ As = Ans, doude A & Q => A & SQ por ser Q q alp. $\bar{A}_{s=}$ $s-A=sn\bar{A}\in\Omega_{s}=\Omega ns$. 3_ SE Ais € Qs, entrucer PAis € Qs Ais = Ains , doude Aie D. OAis= O(Ains) = (OAi)ns e Ωns por ser 6-alp

Ps es una medida de probabilidad, ja pre verifica los hes axiomas de Kolmagorov:

Ps = P(Sa/s) para P(S)>0. (la pobab. avociado a cf. movo es ou u² no usepctivo)

AXA. P(SA/S) jo por ser un acciente de probab. P(S) \$0.

Ayo, P(F/S) = A (la probab. del espació unestral es 1) Por definición, $P(F/S) = \frac{P(F \cap S)}{P(S)} = \frac{P(S)}{P(S)}$

Ax3. Doda una micesión un morable de ancesa, anticionedos a o dispersión 2 a 2, la probab, de la mison dispersión concerde con la financia de la mison de la probab. Individuales.

Silo (Silo) - \$ 1/5

2 P(Sins) = 5 P(Sins)

la deficición de probabilidad andicionada se extiende faicilmente a 20 mas mossos. An',

$$P(S_4/S_2 \cap S_3) = \frac{P(S_1 \cap S_2 \cap S_3)}{P(S_2 \cap S_3)}$$

$$\frac{6}{P}(S_1 \cap S_2 / S_3) = \frac{P((S_1 \cap S_2 \cap S_3))}{P(S_3)}$$

elcélera

3

2_ TEOREMAS de la PROBAB. CONDICIONADA. -> Teorema del producto (Roglo de la multiplicación). Dados nomicesos, S₁, S₂... S_n, re verifica $P(\hat{n} S_i) = P(S_1) \cdot P(\frac{S_2}{S_1}) \cdot P(\frac{S_3}{S_1 \cap S_2}) \cdot \dots \cdot P(\frac{S_n}{S_n \dots nS_n})$ Day: Por inducción: 1-4=2 $P(S_1 \cap S_2) = P(S_1) \cdot P(S_2/S_1) \rightarrow \infty$ decluce fócilmente de la def. de P(S2/S1) Q_Sp. h-1 cierto, lo demontración para h. n-1 ciedo $\Rightarrow P\left(\bigcap_{i=1}^{n-1}S_i\right) = P(S_1)P(S_2/S_1) \dots P(S_{n-1}/S_n) \dots P(S_{n-1})$ la demostración para u se hace apor a partir de la def. de towardo n-1 cierto probab. Condiciousale $P(S_n/n-1s_i) \stackrel{def}{=} \frac{P(S_n \cap (N-1s_i))}{P(N-1s_i)}$ $= P(S_1 \cap ... \cap S_{n-1} \cap S_n)$ $P(S_1)P(S_2/S_4)P\dots P(S_{N-1}/S_1 \cap \dots \cap S_{N-2})$ y, despejacedo el minerador fueda: $P(S_1 \cap ... \cap S_N) = P(S_1)P(S_2/S_1)...P(S_N-1/S_1)P(S_N-1)S_1$

Brami, bis tomas de la probab. condicionada rou:

1 - Timo producto
2 - TPT
3 - Timo Pages

1 - Lay mas?

(MIRAR)

Teoreman de la mison 7 de la intersección

$$P(\Delta \cap B/c) =$$

(1)
$$P(\Delta UB/C) \stackrel{\text{def}}{=} \frac{P(\Delta UB) \cap C}{P(C)} \stackrel{\text{p.diohib}}{=} \frac{P(C)}{P(C)}$$

with $P(C) \stackrel{\text{p.diohib}}{=} \frac{P(C)}{P(C)} \stackrel{\text{p.diohib}}{=} \frac{P(C)}{P(C)}$

(2)
$$P(\Delta \cap B/C) = \frac{P(\Delta \cap B \cap C)}{P(C)} = \frac{P((\Delta \cap C) \cap (B \cap C))}{P(C)}$$

3_ TEOREMA de la PROBABILIDAD TOTAL.

S@ Sy Dy Dy Soc Og

San Sa... Sn, ma partición del espação muentral

$$SinSi=\emptyset$$
, $\forall i\neq j$ (disjuntor $2a2$)
$$0Si=E$$

$$1S'$$

y æa S un m ceno $t_{\overline{S}}$ $S \cap S_i \neq \emptyset$ entoucer se verifica $P(S) = \sum_{i=1}^{n} P(S/S_i)$, $P(S_i)$

Dewastración:

Al ser Si disjuitos, se puede excubir S como la unión disjunta de SiNS y su probab será la numa

$$S = (S_{n} \cap S) \cup (S_{2} \cap S) \dots \cup (S_{n} \cap S) = \bigcup_{i=1}^{n} (S_{i} \cap S)$$

$$P(s) = P\left(\frac{1}{12}(S, ns)\right) = \frac{\pi}{12}P(S, ns) = C*$$

Por oho lado, de la def. de probab condiciouada se

despeja la probab conjunta

p(
$$S/s$$
;) = $\frac{P(S; \cap S)}{P(S;)}$ => $\frac{P(S, \cap S)}{P(S;)}$

 $P(S) = \sum_{i=1}^{n} P(S/S_i) P(S_i) \quad eqd.$

Nota: Este torcue pude extenderse de manera natural de ma massion municipale, ya pue a tiene extructura de G-álpebrz

4_ Teoretta de BAYES.

El tura de Bayes permite calcular los probab. a posteción a partir de las probab. a priori, doude P(S;) -> probab. a priori (probab. de fue ocurra Si viu imponerte minque condición 7)

P(Si/s) -> probab. a porteriori (probab. de fue courra Si condic. a la ocurrenção de S, S es 6 información adicional)

P(S/S;) + verosimilitudes (conectan prob. a priori 7 a portaisi)

la hipótesis del tena de Bayes son las mismas fue las del TPT, y además se suponen conocidas las vorsimilit.

S₁...S_n particion de E | Sinsj=Ø + i+j con P(Si)>0 lusi = E

S mace ty Sns; # \$ P(S/S;) amocidas

Eutonœs se verifica

Para cado f $P(S_j/S) = \frac{P(S_j/S_j)P(S_j)}{\frac{2}{5}P(S_j/S_j)P(S_j)}$ $\frac{2}{5}P(S_j/S_j)P(S_j)$ $\frac{2}{5}P(S_j/S_j)P(S_j)$

tem: $P(S_i/S) = P(S_i \cap S)$ $P(S_i) = P(S_i \cap S)$

Desc.

tuego $P(S_i/S) = \frac{P(S_i/S_i) \cdot P(S_i)}{2 \cdot P(S_i/S_i) \cdot P(S_i)}$ para æda S_i paulicusu

Nota: Al ignal fue TPT se prode extender a une colección numerable

5_ INDEPENDENCIA de SUCESOS.

Definición: Dos sucesos son independientes mando la probab. de la conrencia conjunta coincide con el probueto de las probab. margineles.

AyBoou indep. (2) P(ANB) = P(A).P(B)

Relación con la probab. condicionada:

Dos sucesos oou indep. cuando la probab. condicionado coincide con la probab. marginal.

Ay Binder (2) P(A/B) = P(A), riempre fue P(B) > 0 $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} = \frac{P(A)}{P(A)}$.

la extensión a tres sucesos es un poco más compleja, ya tre ha de danse la independencia dos a dos y la conjunta, en decir:

P(AnB) = P(A)P(B)

P(AnB) = P(A)P(B)

P(AnC) = P(A)P(C)

P(BnC) = P(B)P(C)

P(AnBnC) = P(A)P(B)P(C)

En general,) S1... Sn, cito fixito de sucesos / son

mutuamente independientes si se venifica:

 $P(S_1 \cap ... \cap S_n) = P(S_1) \cdot ... \cdot P(S_n)$

(aso numerable, x verifice para subojto municipila)

De la definición de independencia de deduce la indep, entre los complementarios.

Sy A y B iudep
$$\Rightarrow$$
 $\begin{pmatrix} A & B & iudep & (2) \\ A & B & iudep & (3) \end{pmatrix}$

(1)
$$A y B$$
 indep. or $P(A \cap B) = P(A) P(B)$

$$A = (A - B) \cup (A \cap B) \text{ disjunts} \Rightarrow P(A) = P(A - B) + P(A \cap B)$$

$$A = (A - B) \cup (A \cap B) \text{ disjunts} \Rightarrow P(A) = P(A - B) + P(A \cap B)$$

$$A = (A - B) \cup (A \cap B) \text{ disjunts} \Rightarrow P(A) = P(A - B) + P(A) P(B)$$

$$P(A) = P(A - B) + P(A) P(B)$$

$$P(A - B) = P(A) \cdot P(B)$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A \cap B) = P(A) \cdot P(B)$$

(2) <u>Aualogo</u> a (1)

(3)
$$\overline{A}$$
 \overline{B} sou since $\overline{p} \Leftrightarrow P(\overline{A} \cap \overline{B}) = P(\overline{A})P(\overline{B})$

By law leyer de \overline{I} torgan,

 $\overline{A} \cap \overline{B} = (\overline{A} \cup \overline{B})$
 $P(\overline{A} \cap \overline{B}) = P(\overline{A} \cup \overline{B}) = 1 - P(\overline{A} \cup \overline{B}) = 1 - [P(\overline{A}) + P(\overline{B}) - P(\overline{A} \cap \overline{B})] = 1 - [P(\overline{A}) + P(\overline{B}) - P(\overline{A})P(\overline{B})] = 1 - [P(\overline{A}) (1 - P(\overline{B})) + P(\overline{B})] = 1 - P(\overline{A}) (1 - P(\overline{B})) - P(\overline{B}) = 1 - P(\overline{B}) - P(\overline{A})(1 - P(\overline{B})) = 1 - P(\overline{B}) P(\overline{A})$
 $= [1 - P(\overline{B})][1 - P(\overline{A})] = P(\overline{B})P(\overline{A})$