DM549/DS(K)820/MM537/DM547

Lecture 1: Propositional Logic

Kevin Schewior Email: kevs@sdu.dk

University of Southern Denmark

September 2, 2024

Logical Propositions

Definition (Definition 1.1.1)

A *proposition* (et udsagn) is a declarative statement (that is, a statement that declares a fact) that is true (sand) or false (falsk) but not both.

Logical Propositions

Definition (Definition 1.1.1)

A *proposition* (et udsagn) is a declarative statement (that is, a statement that declares a fact) that is true (sand) or false (falsk) but not both.

Remarks:

■ We denote a true proposition as T and a false one as F.

Logical Propositions

Definition (Definition 1.1.1)

A *proposition* (et udsagn) is a declarative statement (that is, a statement that declares a fact) that is true (sand) or false (falsk) but not both.

- We denote a true proposition as T and a false one as F.
- Alternatively, one can also think of bits, where 1 corresponds to T and 0 corresponds to F.

Logical Operators

Using *operators* (operatorer), we can build *compound propositions* (sammensatte udsagn) from other (possibly compound) propositions.

Logical Operators

Using *operators* (operatorer), we can build *compound propositions* (sammensatte udsagn) from other (possibly compound) propositions.

Here, p, q, and r will be variables representing propositions.

Logical Operators

Using *operators* (operatorer), we can build *compound propositions* (sammensatte udsagn) from other (possibly compound) propositions.

Here, p, q, and r will be variables representing propositions.

Today, we will get to know the following operators:

- the negation ¬,
- \blacksquare the conjunction \land ,
- the disjunction ∨.
- lacksquare the implication \Rightarrow ,
- the bi-implication ⇔,
- \blacksquare the exclusive or \oplus .

We can define an operator through a so-called truth table (sandhedstabel):

For every value of the operand p, the value of the compound proposition is given.

We can define an operator through a so-called truth table (sandhedstabel):

$$\begin{array}{c|c}
p & \neg p \\
\hline
T & F \\
\hline
F & T
\end{array}$$

For every value of the operand p, the value of the compound proposition is given.

Remarks:

■ Read: "not (ikke) p" or "p's negation (negation)"

We can define an operator through a so-called truth table (sandhedstabel):

$$\begin{array}{c|c}
p & \neg p \\
\hline
T & F \\
\hline
F & T
\end{array}$$

For every value of the operand p, the value of the compound proposition is given.

- Read: "not (ikke) p" or "p's negation (negation)"
- In words: \neg "flips" the truth value of p.

We can define an operator through a so-called truth table (sandhedstabel):

$$\begin{array}{c|c}
p & \neg p \\
\hline
T & F \\
\hline
F & T
\end{array}$$

For every value of the operand p, the value of the compound proposition is given.

- Read: "not (ikke) p" or "p's negation (negation)"
- In words: \neg "flips" the truth value of p.
- Alternative notation: \bar{p} , !p.

We can also define binary (as opposed to unary) operators through truth tables:

р	q	$p \wedge q$	p	q	$p \lor q$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т
F	Т	F	F	Т	Т
F	F	F	F	F	F

For every combination of values of the operands p and q, the value of the compound proposition is given.

We can also define binary (as opposed to unary) operators through truth tables:

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

For every combination of values of the operands p and q, the value of the compound proposition is given.

- Read:
 - $ightharpoonup p \wedge q$: "p and q" ("p og q")
 - $ightharpoonup p \lor q$: "p or q" ("p eller q")

We can also define binary (as opposed to unary) operators through truth tables:

F

р	q	$p \wedge q$	_	р
Т	Т	Т		Т
Т	F	F	-	Т
F	Т	F		F
F	F	F	•	F

For every combination of values of the operands p and q, the value of the compound proposition is given.

- Read:
 - \triangleright $p \land q$: "p and q" (" $p \circ q \circ q$ ")
 - \triangleright $p \lor q$: "p or q" ("p eller q")
- In words:
 - For $p \land q$ to be T, both p and q must be T.
 - For $p \lor q$ to be T, at least one of p and q must be T.

We can also define binary (as opposed to unary) operators through truth tables:

p	q	$p \wedge q$	р
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	F
F	F	F	F

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

For every combination of values of the operands p and q, the value of the compound proposition is given.

- Read:
 - \triangleright $p \land q$: "p and q" (" $p \circ q \circ q$ ")
 - $ightharpoonup p \lor q$: "p or q" ("p eller q")
- In words:
 - For $p \land q$ to be T, both p and q must be T.
 - ▶ For $p \lor q$ to be T, at least one of p and q must be T.
- How to memorize? Perhaps "a\d" helps.

A Quiz

Go to pollev.com/kevs

Another operator:

р	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	T

Another operator:

р	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	T

- Read:
 - "p implies q" ("p medfører q")

Another operator:

р	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Read:
 - "p implies q" ("p medfører q")
 - ▶ "if p, then q" ("hvis p, så q")

Another operator:

р	q	$p \Rightarrow q$
Т	Т	T
Т	F	F
F	Т	T
F	F	T

- Read:
 - "p implies q" ("p medfører q")
 - "if p, then q" ("hvis p, så q")
 - ▶ "q if p" ("q hvis p")

Another operator:

р	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Read:
 - "p implies q" ("p medfører q")
 - ▶ "if p, then q" ("hvis p, så q")
 - "q if p" ("q hvis p")
 - "p only if q" ("p kun hvis q")

Another operator:

р	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Read:
 - "p implies q" ("p medfører q")
 - "if p, then q" ("hvis p, så q")
 - ► "q if p" ("q hvis p")
 - **▶** "*p* only if *q*" ("*p* kun hvis *q*")
 - ightharpoonup "p is a sufficient condition for q" ("p er en tilstrækkelig betingelse for q")

Another operator:

р	q	$p \Rightarrow q$
Т	Т	T
Т	F	F
F	Т	Т
F	F	Т

- Read:
 - "p implies q" ("p medfører q")
 - "if p, then q" ("hvis p, så q")
 - "q if p" ("q hvis p")
 - **▶** "*p* only if *q*" ("*p* kun hvis *q*")
 - ightharpoonup "p is a sufficient condition for q" ("p er en tilstrækkelig betingelse for q")
 - "q is a necessary condition for p" ("q er en nødvendig betingelse for p")

Another operator:

р	q	$p \Rightarrow q$
Т	Т	T
Т	F	F
F	Т	T
F	F	T

- Read:
 - "p implies q" ("p medfører q")
 - "if p, then q" ("hvis p, så q")
 - ► "q if p" ("q hvis p")
 - **▶** "*p* only if *q*" ("*p* kun hvis *q*")
 - ightharpoonup "p is a sufficient condition for q" ("p er en tilstrækkelig betingelse for q")
 - ightharpoonup "q is a necessary condition for p" ("q er en nødvendig betingelse for p")
- $lackbox{ } p$ is called the assumption (antagelse), q the consequence (konsekvens)

Another operator:

р	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Read:
 - ▶ "p implies q" ("p medfører q")
 - "if p, then q" ("hvis p, så q")
 - "q if p" ("q hvis p")
 - "p only if q" ("p kun hvis q")
 - ightharpoonup "p is a sufficient condition for q" ("p er en tilstrækkelig betingelse for q")
 - ightharpoonup "q is a necessary condition for p" ("q er en nødvendig betingelse for p")
- $m{p}$ is called the assumption (antagelse), q the consequence (konsekvens)
- In words: for $p \Rightarrow q$ to be T, q may not be F if p is T

Another operator:

p	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- Read:
 - ▶ "p implies q" ("p medfører q")
 - "if p, then q" ("hvis p, så q")
 - ► "q if p" ("q hvis p")
 - "p only if q" ("p kun hvis q")
 - ightharpoonup "p is a sufficient condition for q" ("p er en tilstrækkelig betingelse for q")

 - $m{p}$ is called the assumption (antagelse), q the consequence (konsekvens)
 - In words: for $p \Rightarrow q$ to be T, q may not be F if p is T
 - Alternative notation: → (book!)

A similarly looking operator:

р	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

A similarly looking operator:

р	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- Read:
 - "p if and only if q" ("p hvis og kun hvis q")

A similarly looking operator:

р	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- Read:
 - "p if and only if q" ("p hvis og kun hvis q")
 - "p iff q" ("p hviss q")

A similarly looking operator:

р	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- Read:
 - "p if and only if q" ("p hvis og kun hvis q")
 - **▶** "*p* iff *q*" ("*p* hviss *q*")
 - "p is a necessary and sufficient condition for q" ("p er en nødvendig og tilstrækkelig betingelse for q")

A similarly looking operator:

р	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	T

- Read:
 - "p if and only if q" ("p hvis og kun hvis q")
 - **▶** "*p* iff *q*" ("*p* hviss *q*")
 - "p is a necessary and sufficient condition for q" ("p er en nødvendig og tilstrækkelig betingelse for q")
- In words: for $p \Leftrightarrow q$ to be T, p and q must have the same truth value.

A similarly looking operator:

р	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- Read:
 - "p if and only if q" ("p hvis og kun hvis q")
 - **▶** "*p* iff *q*" ("*p* hviss *q*")
 - "p is a necessary and sufficient condition for q" ("p er en nødvendig og tilstrækkelig betingelse for q")
- In words: for $p \Leftrightarrow q$ to be T, p and q must have the same truth value.
- Alternative notation: ↔ (book!)

The last operator:

The last operator:

_ <i>p</i>	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- Read:
 - "either p or q" ("enten p eller q")

The last operator:

_ <i>p</i>	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- Read:
 - "either p or q" ("enten p eller q")
 - ▶ "p xor q"

The last operator:

_ <i>p</i>	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- Read:
 - "either p or q" ("enten p eller q")
 - ▶ "p xor q"
- In words: for $p \oplus q$ to be T, p and q must have different truth values.

The last operator:

_ <i>p</i>	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- Read:
 - "either p or q" ("enten p eller q")
 - "p xor q"
- In words: for $p \oplus q$ to be T, p and q must have different truth values.
- Caution: The book uses
 - "either p or q" to say $p \lor q$ and
 - "either p or q but not both" to say $p \oplus q$.

A Quiz

Go to pollev.com/kevs

Precedence order ("order of evaluation") of operators:

$$\blacksquare$$
 \neg , \land , \lor , \Rightarrow , \Leftrightarrow

Precedence order ("order of evaluation") of operators:

- \blacksquare \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- There is no consensus on the position of \oplus .

Precedence order ("order of evaluation") of operators:

- \blacksquare \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- There is no consensus on the position of \oplus .

Note:

■ I (and I believe I speak for a larger group of Mathematicians) would not assume that the reader knows the precedence order among \land and \lor ; neither among \Rightarrow and \Leftrightarrow . In these cases, I am putting parentheses.

Precedence order ("order of evaluation") of operators:

- \blacksquare \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- There is no consensus on the position of \oplus .

Note:

- I (and I believe I speak for a larger group of Mathematicians) would not assume that the reader knows the precedence order among ∧ and ∨; neither among ⇒ and ⇔. In these cases, I am putting parentheses.
- Similarly, if you are not sure about the precedence, just put parentheses.