Poster Presentation

May 2023

VICTORINO John Noel 2023年5月23日

Overview for May

- ABC 2023 Paper: Handling Class Imbalance with Non-Uniform Negative Sampling, Log Odds Correction, and Oversampling in Forecasting Parkinson's Disease Wearing-off with Fitness Tracker Dataset
 - Paper: In Progress
 - Code & Results: In Progress
 - Presentation: for May 2023 Poster Presentation

Proposed Method

Forecasting Wearing-off using Negative Sampling and Log Odds Correction

- 1. Train "pilot model" using uniform sampling of both classes with equal sample sizes.
- 1. Score data using pilot model.
- 2. Sample data using **Negative Sampling**.
- 3. Correct likelihod using Log Odds Correction.

Contributions

- Application of Negative Sampling and Log Odds Correction to assign larger probabilities to more informative instances, i.e., wearing-off labels and informative normal labels.
- Improves forecasting of wearing-off by X% as compared to ABC 2022 paper.
- Paper category: Application-based paper

Forecasting Wearing-off Task

- **Wearing-off** is a phenomenon where the effect of a drug wears off before the next dose is taken.
- Let $\{(X_t, y_t)\}_{t=1}^N$ be the training data that satisfies

$$Pr(y_{t+1} = 1|M) = p(M; heta), M = egin{bmatrix} X_t, & y_t \ dots & dots \ X_{t-1 ext{hour}}, & y_{t-1 ext{hour}} \end{bmatrix}$$

- $y \in \{0,1\}$ is wearing-off (1) or not (0),
- ullet M is the feature matrix of X and y from the last hour until time t,
- ullet heta is the model parameters

Forecasting Wearing-off Task

For example, if the dataset is in 15-minute interval.

- Forecast: y_{t+4}
- Input:

$$egin{array}{c} egin{array}{c} X_t & y_t \ X_{t-1} & y_{t-1} \ X_{t-2} & y_{t-2} \ X_{t-3} & y_{t-3} \ X_{t-4} & y_{t-4} \ \end{array}$$

Imbalance in Wearing-off Dataset

Wearing-off Statistics

• Mean: 8.276%

• Median: 7.682%

- ullet Standard Deviation: \pm 3.624
- Participants Below Median:
 1, 2, 7, 9, 12, 13
- Participants Equal / Above
 Median: 3, 4, 5, 6, 8, 10, 11

Participant	Normal ($y=0$)	Wearing-off ($y=1$)
1	92.361	7.639
2	97.348	2.652
3	86.771	13.229
4	90.492	9.508
5	92.318	7.682
6	89.815	10.185
7	98.821	1.179
8	87.973	12.027
9	92.992	7.008
10	86.771	13.229
11	90.705	9.295
12	92.519	7.481
13	93.528	6.472

Imbalanced Data Definition

- ullet Let N_1 wearing-off cases, N_0 normal cases, and $N=N_1+N_0$ total cases.
- When N_1 much smaller than N_0 , appropriate to assume that N_1 increases in slower rate compared with N_0 , i.e.,

$$rac{N_1}{N_0} \stackrel{P}{ o} 0 ext{ and } N_1 \stackrel{P}{ o} \infty ext{ as } N o \infty$$

ullet This requires that $Pr(y_{t+1}=1) o 0$ as $N o \infty$ on model side.

Imbalanced Data Definition

Assume that $\theta = (\alpha, \beta^T)^T$, log odds is as follows:

$$g(M; heta) := \log\{rac{p(M; heta)}{1-p(M; heta)}\} = lpha + f(M;eta)$$

- $f(M; \beta)$ is the smooth function of β , e.g., neural network or logistic regression.
- ullet The true parameter $heta^* = (lpha *, eta^{*T})^T$ with assumption that
 - $\circ \ lpha^* o -\infty$ as $N o \infty$,
 - \circ β^* is essentially fixed, as long as β^* has a finite limit
- For both assumptions indicate that marginal & conditional probabilities of positive instance are **small**.
- This means that changes in covariates do not convert small probability event to large probability event.

Number of Positive Instance Matter

- ullet For rare event, estimation error rate for heta is related to N_1 instead of N.
- Using the full training data, maximum likelihood estimator (MLE) of θ is

$$\hat{ heta}_{MLE} := rgmax \sum_{i=1}^N \{y_{t+1_i} \cdot g(M_i; heta) - \log(1 + e^{g(M_i; heta)})\}$$

(1) Negative Sampling

- Keep all wearing-off instances while significantly subsampling negative instances, since available information ties with wearingoff instances instead of full training data.
 - Uniform sampling: keeping the ratio of positive to negative samples.
 - Reduce the number of negative samples using **nonuniform sampling**.

(1) Negative Sampling

Algorithm 1: Negative Sampling

```
For i=1,\ldots,N: if y_{t+1_i}=1, include \{M_i,y_{t+1_i},\pi(M,y_{t+1})=1\} in the sample. if y_{t+1_i}=0, include \{M_i,y_{t+1_i},\pi(M,y_{t+1})=\rho\varphi(M)\} in the sample if u_i\leq \rho\varphi(M), where generate u_i\sim \mathbb{U}(0,1).
```

- ρ : sampling rate on negative instances.
- $\pi(M,y_{t+1})$: sampling probability for given (M,y_{t+1}) . • $\pi(M)$: sampling probability for negative cases, as shorthand.
- ullet arphi(M): "pilot model" from uniform sampling of both classes with equal sample sizes.
- $\delta=1$ if data point is selected; otherwise, $\delta=0$.

(2) Log Odds Correction

Recap...

$$Pr(y_{t+1}=1|M)=p(M; heta)=rac{1}{1+e^{-g(M; heta)}},$$

$$\hat{ heta}_{MLE} := rgmax_{ heta} \sum_{i=1}^N \{y_{t+1_i} \cdot g(M_i; heta) - \log(1 + e^{g(M_i; heta)})\}.$$

For the **Log Odds Correction**, for the data included in the subsample (where $\delta=1$), the conditional probability of $y_{t+1}=1$

$$Pr(y_{t+1}=1|M,\delta=1)=rac{1}{1+e^{-g(M; heta)-l}}, ext{where } l=-\log\{\pi(M)\}$$

$$\hat{ heta}_{lik} := rgmax \sum_{i=1}^N \delta_i[y_{t+1_i} \cdot g(M_i; heta) - \log\{1 + e^{g(M_i; heta) + l_i}\}]$$

This is done to

- avoid assigning smaller weights to more informative instances
- avoid biased estimator due to Algorithm 1

Summary of Method

Forecasting Wearing-off using Negative Sampling and Log Odds Correction

- 1. Train "pilot model" using uniform sampling of both classes with equal sample sizes.
- 1. Score data using pilot model.
- 2. Sample data using Algorithm 1: Negative Sampling.
- 3. Correct likelihod using Log Odds Correction.

Initial Results

- Still in Progress: Because of wrong coding.
- Baseline Model using XGBoost

1 300,00	0.2	, 02, 02, 02, 02,	023		
ecall: 0	.277	777777777778			
accuracy:	0.8	5326086956521	74		
		precision	recall	f1-score	support
	0.0	0.92	0.92	0.92	166
	1.0	0.26	0.28	0.27	18
accur	acy			0.85	184
macro	avg	0.59	0.60	0.59	184
veighted	avg	0.86	0.85	0.86	184

- The idea of the proposed method is to:
 - Reduce negative samples and as a result improve the performance of the model.
 - Boost probabilities from positive samples.

Next Steps

- Finish ABC paper (if forecast results have improved.)
- Otherwise, try to improve forecast results using other methods previously studied.
 - Then, submit to journal.
- Prepare data collection using new Garmin App Collector to include
 - Accelerometer
 - HRV
- Development work on Pose Estimation
- Work on Additional tasks due to ABC 2023 challenge