Quick Overview of VDM Operators

General

```
if predicate then Expression else Expression
exists p in set setOfP & predicate(p)
forall p in set setOfP & predicate(p)
cases expression:
    (pattern list 1)-> Expression 1,
    (pattern list 2),
    (pattern list 3)-> Expression 2,
    others -> Expression 3
    end;
for all value in set setOfValues
    do Expression
dcl variable : type := Variable creation;
let variable : type = Variable creation in Expression
```

The Boolean type

Operator	Name	Signature
not b	Negation	$\mathtt{bool} o \mathtt{bool}$
a and b	Conjunction	$\verb bool *bool \rightarrow \verb bool $
a or b	Disjunction bool * bool → boo	
a => b	Implication	$\verb bool * \verb bool \rightarrow \verb bool $
a <=> b	Biimplication	$\verb bool *bool \rightarrow \verb bool $
a = b	Equality	$\verb bool *bool \rightarrow \verb bool $
a <> b	Inequality	$\mathtt{bool} * \mathtt{bool} o \mathtt{bool}$

The numeric types

Operator	Name	Signature
-x	Unary minus	$\mathtt{real} o \mathtt{real}$
abs x	Absolute value	$\mathtt{real} o \mathtt{real}$
x + y	Sum	$ exttt{real} * exttt{real} ightarrow exttt{real}$
х - у	Difference	$ exttt{real} * exttt{real} ightarrow exttt{real}$
х * у	Product	$ exttt{real} * exttt{real} ightarrow exttt{real}$
х / у	Division	$ exttt{real} * exttt{real} ightarrow exttt{real}$
x div y	Integer division	$ exttt{int} * exttt{int} ightarrow exttt{int}$
x mod y	Modulus	$ exttt{int} * exttt{int} ightarrow exttt{int}$
x**y	Power	$ exttt{real} * exttt{real} ightarrow exttt{real}$
х < у	Less than	$ exttt{real} * exttt{real} ightarrow exttt{bool}$
х > у	Greater than	$\mathtt{real} * \mathtt{real} o \mathtt{bool}$
х <= у	Less or equal	$ exttt{real} * exttt{real} ightarrow exttt{bool}$
х >= у	Greater or equal	$ exttt{real} * exttt{real} ightarrow exttt{bool}$
х = у	Equal	$ exttt{real} * exttt{real} ightarrow exttt{bool}$
х <> у	Not equal	$ exttt{real} * exttt{real} ightarrow exttt{bool}$

The character, quote and token types

Operator Name		Signature	
c1 = c2	Equal	$\mathtt{char} * \mathtt{char} o \mathtt{bool}$	
c1 <> c2	Not equal	$\mathtt{char} * \mathtt{char} o \mathtt{bool}$	

Tuple types

Operator	Name Signature	
t1 = t2	Equality	$T * T \rightarrow \texttt{bool}$
t1 <> t2	Inequality	$T * T \rightarrow \texttt{bool}$

Record types

[Operator Name		Signature	
ſ	r.i	Field select	$A * Id \rightarrow Ai$	
	r1 = r2	Equality	$A * A \rightarrow \texttt{bool}$	
	r1 <> r2	Inequality	$A * A \rightarrow \texttt{bool}$	
	is_ A(r1)	Is	$\operatorname{Id} * \operatorname{MasterA} o \operatorname{bool}$	

Union and optional types

Operator	Name	Signature
t1 = t2	Equality	$A * A \rightarrow bool$
t1 <> t2	Inequality	$A * A \rightarrow \texttt{bool}$

Set types

Operator	Name	Signature
e in set s1	Membership	$A * set of A \rightarrow bool$
e not in set s1	Not membership	$A * \mathtt{set} \ \mathtt{of} \ A o \mathtt{bool}$
s1 union s2	Union	$\texttt{set of } A * \texttt{set of } A \to \texttt{set of } A$
s1 inter s2	Intersection	$\texttt{set of } A * \texttt{set of } A \to \texttt{set of } A$
s1 \ s2	Difference	$\texttt{set of } A * \texttt{set of } A \to \texttt{set of } A$
s1 subset s2	Subset	$\texttt{set of } A * \texttt{set of } A \to \texttt{bool}$
s1 = s2	Equality	$\texttt{set of } A * \texttt{set of } A \to \texttt{bool}$
s1 <> s2	Inequality	$\verb"set" of A * \verb"set" of A \to \verb"bool"$
card s1	Cardinality	$\texttt{set} \ \texttt{of} \ A \to \texttt{nat}$
dunion ss	Distributed union	set of set of $A \rightarrow$ set of A
dinter ss	Distributed intersection	set of set of $A \to \text{set}$ of A

Sequence types

Operator	Name	Signature
hd l	Head	seq1 of $A \rightarrow A$
t1 1	Tail	$\mathtt{seq1}$ of $A o \mathtt{seq}$ of A
len 1	Length	$\texttt{seq of } A \rightarrow \texttt{nat}$
elems 1	Elements	$\texttt{seq of } A \to \texttt{set of } A$
inds 1	Indices	$\texttt{seq of } A \to \texttt{set of nat1}$
11 ^ 12	Concatenation	$(\mathtt{seq}\ \mathtt{of}\ A) * (\mathtt{seq}\ \mathtt{of}\ A) \to \mathtt{seq}\ \mathtt{of}\ A$
conc 11	Distributed concatenation	$\texttt{seq of seq of } A \to \texttt{seq of } A$
l ++ m	Sequence modification	$egin{array}{cccccccccccccccccccccccccccccccccccc$
l(i)	Sequence index	$\texttt{seq of } A * \texttt{nat1} \rightarrow A$
11 = 12	Equality	$(\mathtt{seq}\ \mathtt{of}\ A) * (\mathtt{seq}\ \mathtt{of}\ A) \to \mathtt{bool}$
11 <> 12	Inequality	$(\texttt{seq of }A) * (\texttt{seq of }A) \rightarrow \texttt{bool}$

Mapping types

Operator	Name	Signature
dom m	Domain	$(\texttt{map}\ A\ \texttt{to}\ B) \to \texttt{set}\ \texttt{of}\ A$
rng m	Range	$(\texttt{map}\ A\ \texttt{to}\ B) \to \texttt{set}\ \texttt{of}\ B$
m1 munion m2	Map union	$(\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) * (\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) \to \operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B$
m1 ++ m2	Override	$(\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) * (\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) \to \operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B$
merge ms	Distributed merge	set of $(\text{map } A \text{ to } B) \rightarrow \text{map } A \text{ to } B$
s <: m	Domain restrict to	$(\textbf{set of }A) * (\textbf{map }A \textbf{ to }B) \rightarrow \textbf{map }A \textbf{ to }B$
s <-: m	Domain restrict by	$(\textbf{set of }A) * (\textbf{map }A \textbf{ to }B) \rightarrow \textbf{map }A \textbf{ to }B$
m :> s	Range restrict to	$(\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) * (\operatorname{\mathtt{set}}\ \operatorname{\mathtt{of}}\ B) \to \operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B$
m :-> s	Range restrict by	$(\operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B) * (\operatorname{\mathtt{set}}\ \operatorname{\mathtt{of}}\ B) \to \operatorname{\mathtt{map}}\ A\ \operatorname{\mathtt{to}}\ B$
m(d)	Mapping apply	$(\texttt{map}\ A\ \texttt{to}\ B)*A \to B$
m1 = m2	Equality	$(\texttt{map}\ A\ \texttt{to}\ B)*(\texttt{map}\ A\ \texttt{to}\ B)\to \texttt{bool}$
m1 <> m2	Inequality	$(\texttt{map}\ A\ \texttt{to}\ B) * (\texttt{map}\ A\ \texttt{to}\ B) \to \texttt{bool}$

Class Example

```
class Person
public String = seq of char;
values
protected Name : seq of char = "Peter";
instance variables
public nationality : seq of char:="Danish";
comment
                : String;
yearOfBirth
                 : int;
                : Male | Female;
friends
                 : map String to Person;
operations
public GetAge : int ==> int
GetAge(year) == CalculateAge(year, yearOfBirth)
pre pre_CalculateYear(year,yearOfBirth);
functions
public CalculateAge : int * int -> int
CalculateAge (year,bornInYear) == year-bornInYear
pre year >= bornInYear;
thread
while true do
 skip;
traces
 Mytrace: regular expression using operation calls
end Person
class Male is subclass of Person
end Male
class Female is subclass of Person
end Female
```

Listing 1: Class Example