

University of Perpignan Via Domitia LAMPS Laboratory, France

Fast and Efficient Bit-Level Precision Tuning

FPTalks 2021 (SAS'21)

Assalé Adjé <u>Dorra Ben Khalifa</u> Matthieu Martel dorra.ben-khalifa@univ-perp.fr

July 14, 2021

Precision Tuning: A Survey

Static tools Dynamic tools

Try and fail strategies: change more or less randomly the data types and run the program

[S. Cherubin and G. Agosta. Tools for Reduced Precision Computation: A Survey. In ACM Computing Surveys'20]

Preliminary Notations and Definitions ufp, nsb, ulp and computation errors

Preliminary Notations and Definitions ufp, nsb, ulp and computation errors

▶ The **unit in the first place** of a real number *x*

$$\mathsf{ufp}(x) = \left\{ \begin{array}{ll} \min\{i \in \mathbb{Z} : 2^{i+1} > |x|\} = \lfloor \log_2(|x|) \rfloor & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{array} \right.$$

ufp, nsb, ulp and computation errors

▶ The unit in the first place of a real number x

$$\mathsf{ufp}(x) = \left\{ \begin{array}{l} \min\{i \in \mathbb{Z} : 2^{i+1} > |x|\} = \lfloor \log_2(|x|) \rfloor & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{array} \right.$$

- ▶ nsb(x): number of significant bits of x
 - \hat{x} : approximation of x in finite precision
 - $ightharpoonup \varepsilon(x) = |x \hat{x}|$: the absolute error

$$\varepsilon(x) \leq 2^{\operatorname{ufp}(x)-\operatorname{nsb}(x)+1}$$

[Parker, D.S.: Monte carlo arithmetic: exploiting randomness in floating-point arithmetic. Tech. Rep. CSD-970002, University of California'97]

ufp, nsb, ulp and computation errors

- ▶ The unit in the last place of x: ulp(x) = ufp(x) nsb(x) + 1

ufp, nsb, ulp and computation errors

- ▶ The unit in the last place of x: ulp(x) = ufp(x) nsb(x) + 1
- $b ufp_e(x) = ufp(x) nsb(x)$
- nsb_e: number of significant bits of the computation error on x
- ▶ nsb_e(x) is computed as follows:
 - For a constant c, $nsb_e(c) = 0$ (constants assumed exact)

$$\mathsf{nsb}_{\mathsf{e}}(x) = \mathsf{ufp}_{\mathsf{e}}(c_1) - (\mathsf{ufp}_{\mathsf{e}}(c_2) - \mathsf{nsb}_{\mathsf{e}}(c_2) + 1)$$

ufp, nsb, ulp and computation errors

- ▶ The unit in the last place of x: ulp(x) = ufp(x) nsb(x) + 1
- $b ufp_e(x) = ufp(x) nsb(x)$
- nsb_e: number of significant bits of the computation error on x
- ► nsb_e(x) is computed as follows:
 - For a constant c, $nsb_e(c) = 0$ (constants assumed exact)

$$nsb_e(x) = ufp_e(c_1) - (ufp_e(c_2) - nsb_e(c_2) + 1)$$

ufp, nsb, ulp and computation errors

- ▶ The unit in the last place of x: ulp(x) = ufp(x) nsb(x) + 1
- $b ufp_e(x) = ufp(x) nsb(x)$
- nsb_e: number of significant bits of the computation error on x
- ightharpoonup nsb_e(x) is computed as follows:
 - For a constant c, $nsb_e(c) = 0$ (constants assumed exact)

$$\mathsf{nsb}_{\mathsf{e}}(x) = \mathsf{ufp}_{\mathsf{e}}(c_1) - (\mathsf{ufp}_{\mathsf{e}}(c_2) - \mathsf{nsb}_{\mathsf{e}}(c_2) + 1)$$

ightharpoonup ulp_e $(x) = ufp_e(x) - nsb_e(x) + 1$

POP: Precision OPtimizer

Step 1: Parsing and Range Determination Phase

Parsing and Range Determination Phase Pendulum Example


```
1 g = 9.81; I = 0.5;

2 y1 = 0.785398;

3 y2 = 0.785398;

4 h = 0.1; t = 0.0;

5 while (t<10.0) {

6 y1new = y1 + y2 * h;

7 aux1 = \sin(y1);

8 aux2 = aux1 * h * g / I;

9 y2new = y2 - aux2;

10 t = t + h;

11 y1 = y1new;

12 y2 = y2new;

13 };

14 require nsb(y2.20);
```

POP Source File

Parsing and Range Determination Phase

Pendulum Example


```
1 g = 9.81; I = 0.5;

2 y1 = 0.785398;

3 y2 = 0.785398;

4 h = 0.1; t = 0.0;

5 while (t<10.0) {

6 y1new = y1 + y2 * h;

7 aux1 = sin(y1);

8 aux2 = aux1 * h * g / I;

9 y2new = y2 - aux2;

10 t = t + h;

11 y1 = y1new;

12 y2 = y2new;

13 };

14 require nsb(y2, 20);
```

POP Source File

```
1 q^{\ell_1} = 9.81^{\ell_0}: 1^{\ell_3} = 0.5^{\ell_2}:
 2 V1^{\ell_5} = 0.785398^{\ell_4}:
 3 \text{ v2}^{\ell_7} = 0.785398^{\ell_6}:
 4 h^{\ell_9} = 0.1^{\ell_8}: t^{\ell_{11}} = 0.0^{\ell_{10}}:
 5 while (t^{\ell_{13}} <^{\ell_{15}} 10.0^{\ell_{14}})^{\ell_{59}} {
 6 v1new^{\ell_{24}} = v1^{\ell_{17}} + ^{\ell_{23}} v2^{\ell_{19}} *^{\ell_{22}} h^{\ell_{21}};
 7 \operatorname{aux1}^{\ell_{28}} = \sin(y1^{\ell_{26}})^{\ell_{27}};
 8 aux2^{\ell_{40}} = aux1^{\ell_{30}} *^{\ell_{39}} h^{\ell_{32}}
 9 *^{\ell}38 q^{\ell}34 /^{\ell}37 |^{\ell}36 :
10 v2new^{\ell_{46}} = v2^{\ell_{42}} - ^{\ell_{45}} aux2^{\ell_{44}}:
11 t^{\ell_{52}} = t^{\ell_{48}} + t^{\ell_{51}} h^{\ell_{50}}:
12 v1^{\ell_{55}} = v1 \text{new}^{\ell_{54}};
13 y2^{\ell_{58}} = y2new^{\ell_{57}};  };
14 require nsb(v2, 20) 61;
```

POP Label File

Constraints Generation for Bit-Level Tuning Step 2: ILP Formulation

ILP Formulation with Pessimistic Carry Bit Propagation

- Static technique relying on semantical modelling of the propagation of numerical errors
- Reasoning on ufp (known at constraint generation time) and nsb (unknown) of the program values
- Generate an ILP from the program source code
- Optimally solved by a classical LP solver in polynomial time
- ▶ Pessimistic carry bit function: $\xi = 1$

Pendulum Program (ILP)


```
1 g$\(^{\ell}1 = 9.81^{\ell}0\); 1^{\ell}3 = 0.5^{\ell}2\); 2 y1^{\ell}5 = 0.785398^{\ell}4\); 3 y2^{\ell}7 = 0.785398^{\ell}6\;; 4 h^{\ell}9 = 0.1^{\ell}8\;; t^{\ell}11 = 0.0^{\ell}10\;; 5 while (t^{\ell}13 <^{\ell}15 10.0^{\ell}14\)^{\ell}59 { 6 y1new^{\ell}24 = y1^{\ell}17 +^{\ell}23 y2^{\ell}19 *^{\ell}22 h^{\ell}21\; 7 aux1^{\ell}28 = \sin(y1^{\ell}26)^{\ell}27\; 8 aux2^{\ell}40 = \aux1^{\ell}30 *^{\ell}39 h^{\ell}32\] 9 **\(^{\ell}38 \text{g}'34 \cdot /^{\ell}37 \cdot 1^{\ell}36\; 10 y2new^{\ell}48 = y2^{\ell}42 -^{\ell}45 \aux2^{\ell}44\; 11 t^{\ell}52 = t^{\ell}48 *^{\ell}51 h^{\ell}50\; 2 y1^{\ell}55 = y1\ell^{\ell}57\; 3\; 2^{\ell}58 = y2\ell^{\ell}7\; 3\; 14 require_nsb(y2.20)^{\ell}61\; \ell}$
```

POP Label File

Pendulum Program (ILP)

POP Label File

 $t^{\ell}52 = t^{\ell}48 + ^{\ell}51 \text{ h}^{\ell}50$; $y1^{\ell}55 = y1\text{new}^{\ell}54$; $y2^{\ell}58 = y2\text{new}^{\ell}57$; }; 14 require $nsb(y2,20)^{\ell}61$;

Pendulum Program (ILP)


```
C_1 = \left\{ \begin{array}{l} \operatorname{nsb}(\ell_{17}) \geq \operatorname{nsb}(\ell_{23}) + (-1) + \xi(\ell_{23})(\ell_{17},\ell_{22}) - (-1) \ // \text{ADD} \\ \operatorname{nsb}(\ell_{22}) \geq \operatorname{nsb}(\ell_{23}) + 0 + \xi(\ell_{23})(\ell_{17},\ell_{22}) - (1) \ // \text{ADD} \\ \operatorname{nsb}(\ell_{19}) \geq \operatorname{nsb}(\ell_{22}) + \xi(\ell_{22})(\ell_{19},\ell_{21}) - 1 \ // \text{MULT} \\ \operatorname{nsb}(\ell_{21}) \geq \operatorname{nsb}(\ell_{22}) + \xi(\ell_{22})(\ell_{19},\ell_{21}) - 1 \ // \text{MULT} \\ \operatorname{nsb}(\ell_{23}) \geq \operatorname{nsb}(\ell_{24}) \ // \text{ASSIGN} \\ \xi(\ell_{23})(\ell_{17},\ell_{22}) \geq 1, \xi(\ell_{22})(\ell_{19},\ell_{21}) \geq 1 \ // \text{CARRY BIT} \end{array} \right.
  1 a^{\ell} 1 = 9.81^{\ell} 0 : 1^{\ell} 3 = 0.5^{\ell} 2 :
 2 \text{ v1}^{\ell_5} = 0.785398^{\ell_4}:
 3 \text{ y2}^{\ell 7} = 0.785398^{\ell 6};
 4 h^{\ell}9 = 0.1^{\ell}8 : t^{\ell}11 = 0.0^{\ell}10 :
  5 while (t^{\ell_{13}} <^{\ell_{15}} 10.0^{\ell_{14}})^{\ell_{59}} {
  6 v1new^{\ell}24 = v1^{\ell}17 + ^{\ell}23 v2^{\ell}19 *^{\ell}22 h^{\ell}21:
 7 aux1^{\ell}28 = sin(v1^{\ell}26)^{\ell}27:
 8 aux2^{\ell}40 = aux1^{\ell}30 *^{\ell}39 h^{\ell}32
 9 *^{\ell}38 g^{\ell}34 /^{\ell}37 I^{\ell}36:
                                                                                                           Constraints generated for all the
10 v2new^{\ell}46 = v2^{\ell}42 - {\ell}45 \text{ aux}2^{\ell}44:
                                                                                                                      statements of POP programs: if,
11 t^{\ell}52 = t^{\ell}48 + {}^{\ell}51 + h^{\ell}50;
                                                                                                                      while, for, array, sqrt, sin, etc.
12 y1^{\ell}55 = y1 \text{ new}^{\ell}54;
```

POP Label File

13 $v2^{\ell}58 = v2new^{\ell}57$; };

14 require $nsb(y2,20)^{\ell}61$;

[Nielson, F. and Nielson, H. R., and Hankin, C. Principles of Program Analysis. Springer-Verlag, Berlin, Heidelberg'99]

Linear number of constraints / variables.

in the size of the analyzed program

Tuned Pendulum Program (ILP)

File pop_output

▶ 2385 bits (originally) VS 861 bits at bit level after POP analysis

Tuned Pendulum Program (ILP)


```
1 |q|20| = 9.81|20|; 1|20| = 1.5|20|;
2 V1|29| = 0.785398|29|;
3 \text{ V2}|22| = 0.0|22|:
4 \text{ h}|22| = 0.1|22|; t|21| = 0.0|21|;
5 while (t < 1.0) {
     y1new|20| = y1|21| + |20| y2|22| * |22| h|22|;
     aux1|20| = sin(y1|29|)|20|;
     aux2|20| = aux1|20| *|20| h|20|*|20| g|20|/
           |20|1|20|;
     y2new|20| = y2|21| - |20| aux2|18|;
     t|20| = t|21| + |20| h|17|;
     v1|20| = v1new|20|;
     v2|20| = v2new|20|:
12
13 }:
14 require nsb(y2,20);
```

File pop_output

► 2385 bits (originally) VS 861 bits at bit level after POP analysis How to be less pessimistic on carries propagation?

Step 3: PI for Optimized Carry Bit Propagation

Step 3: PI for Optimized Carry Bit Propagation

Step 3: PI for Optimized Carry Bit Propagation

 Very costly over-approximation of ξ in ILP formulation

Step 3: PI for Optimized Carry Bit Propagation

- Very costly over-approximation of ξ in ILP formulation
- $> x^{\ell} = c_1^{\ell_1} + c_2^{\ell_2}$

$$\xi(\ell,\ell_1,\ell_2) = \begin{cases} 0 & \text{ulp}_e(\ell_1) > \text{ufp}_e(\ell_2) \\ 0 & \text{ulp}_e(\ell_2) > \text{ufp}_e(\ell_1) \\ 1 & \text{otherwise} \end{cases}$$

Step 3: PI for Optimized Carry Bit Propagation

- Very costly over-approximation of ξ in ILP formulation
- $x^{\ell} = c_1^{\ell_1} + c_2^{\ell_2}$

$$\xi(\ell,\ell_1,\ell_2) = \begin{cases} 0 & \text{ulp}_e(\ell_1) > \text{ufp}_e(\ell_2) \\ 0 & \text{ulp}_e(\ell_2) > \text{ufp}_e(\ell_1) \\ 1 & \text{otherwise} \end{cases}$$

$$\xi(\ell)(\ell_1,\ell_2) = \min \left(\begin{array}{c} \max \left(\mathsf{ufp}(\ell_2) - \mathsf{ufp}(\ell_1) + \mathsf{nsb}(\ell_1) - \mathsf{nsb}(\ell_2) - \mathsf{nsb_e}(\ell_2), 0 \right), \\ \max \left(\mathsf{ufp}(\ell_1) - \mathsf{ufp}(\ell_2) + \mathsf{nsb}(\ell_2) - \mathsf{nsb}(\ell_1) - \mathsf{nsb_e}(\ell_1), 0 \right), 1 \end{array} \right)$$

Need to estimate the integer quantity nsbe

Step 3: PI for Optimized Carry Bit Propagation

- Very costly over-approximation of ξ in ILP formulation

$$\xi(\ell,\ell_1,\ell_2) = \begin{cases} 0 & \text{ulp}_e(\ell_1) > \text{ufp}_e(\ell_2) \\ 0 & \text{ulp}_e(\ell_2) > \text{ufp}_e(\ell_1) \\ 1 & \text{otherwise} \end{cases}$$

$$\xi(\ell)(\ell_1,\ell_2) = \min \left(\begin{array}{c} \max \left(\mathsf{ufp}(\ell_2) - \mathsf{ufp}(\ell_1) + \mathsf{nsb}(\ell_1) - \mathsf{nsb}(\ell_2) - \mathsf{nsb_e}(\ell_2), 0 \right), \\ \max \left(\mathsf{ufp}(\ell_1) - \mathsf{ufp}(\ell_2) + \mathsf{nsb}(\ell_2) - \mathsf{nsb}(\ell_1) - \mathsf{nsb_e}(\ell_1), 0 \right), 1 \end{array} \right)$$

Need to estimate the integer quantity nsbe

No longer ILP formulation!

Pendulum Program (PI)

$$y1 new^{\ell_{24}} = y1^{\ell_{17}} + ^{\ell_{23}} y2^{\ell_{19}} *^{\ell_{22}} h^{\ell_{21}}$$

$$C_2 = \left\{ \begin{array}{l} \operatorname{nsb}_e(\ell_{23}) \geq \operatorname{nsb}_e(\ell_{17}), \\ \operatorname{nsb}_e(\ell_{23}) \geq \operatorname{nsb}_e(\ell_{22}), \\ \operatorname{nsb}_e(\ell_{23}) \geq -1 - 0 + \operatorname{nsb}(\ell_{22}) - \operatorname{nsb}(\ell_{17}) + \operatorname{nsb}_e(\ell_{22}) + \xi(\ell_{23}, \ell_{17}, \ell_{22}), \\ \operatorname{nsb}_e(\ell_{23}) \geq 0 - (-1) + \operatorname{nsb}(\ell_{17}) - \operatorname{nsb}(\ell_{22}) + \operatorname{nsb}_e(\ell_{17}) + \xi(\ell_{23}, \ell_{17}, \ell_{22}), \\ \operatorname{nsb}_e(\ell_{23}) \geq \operatorname{nsb}_e(\ell_{24}), \\ \operatorname{nsb}_e(\ell_{22}) \geq \operatorname{nsb}(\ell_{19}) + \operatorname{nsb}_e(\ell_{19}) + \operatorname{nsb}_e(\ell_{21}) - 2, \\ \operatorname{nsb}_e(\ell_{22}) \geq \operatorname{nsb}(\ell_{21}) + \operatorname{nsb}_e(\ell_{21}) + \operatorname{nsb}_e(\ell_{19}) - 2, \\ \xi(\ell_{23})(\ell_{17}, \ell_{22}) = \min \left(\begin{array}{c} \max{(0 - 6 + \operatorname{nsb}(\ell_{17}) - \operatorname{nsb}(\ell_{22}) - \operatorname{nsb}_e(\ell_{17}), 0), \\ \max{(6 - 0 + \operatorname{nsb}(\ell_{22}) - \operatorname{nsb}(\ell_{17}) - \operatorname{nsb}_e(\ell_{22}), 0), 1} \end{array} \right\}$$

- $ightharpoonup C = C_1 \cup C_2$: global set of constraints
- \blacktriangleright Activate optimized ξ instead of its over-approximation in pure ILP
- Optimal solution found in few seconds

Tuned Pendulum Program (PI)

File pop_output

▶ 861 bits (ILP) VS 843 bits with PI method

POP(ILP)[1, 2], POP(SMT)[3, 4, 5, 6] and Precimonion

Program	Tool (LOC)	#Bits saved - Time in seconds			
		Threshold 10 ⁻⁴	Threshold 10 ⁻⁶	Threshold 10 ⁻⁸	Threshold 10 ⁻¹⁰
arclength	POP(ILP) (28)	2464b 1.8s.	2144b 1.5s.	1792b 1.7s.	1728b 1.8s.
	POP(SMT) (22)	1488b 4.7s.	1472b 3.04s.	864b 3.09s.	384b 2.9s.
	Precimonious (9)	576b 146.4s.	576b 156.0s.	576b 145.8s.	576b 215.0s.
simpson	POP(ILP) (14)	1344b 0.4s.	1152b 0.5s.	896b 0.4s.	896b 0.4s.
	POP(SMT) (11)	896b 2.9s.	896b 1.9s.	704b 1.7s.	704b 1.8s.
	Precimonious (10)	704b 208.1s.	704b 213.7s.	704b 207.5s.	704b 200.3s.
rotation	POP(ILP) (25)	2624b 0.47s.	2464b 0.47s.	2048b 0.54s.	1600b 0.48s.
	POP(SMT) (22)	1584b 1.85s.	2208b 1.7s.	1776b 1.6s.	1600b 1.7s.
	Precimonious (27)	2400b 9.53s.	2592b 12.2s.	2464b 10.7s.	2464b 7.4s.
accel.	POP(ILP) (18)	1776b 1.05s.	1728b 1.05s.	1248b 1.04s.	1152b 1.03s.
	POP(SMT) (15)	1488b 2.6s.	1440b 2.6s.	1056 - 2.4s.	960b 2.4s.
	Precimonious (0)	-	_	_	-

Adjusting comparison criteria

- Consider only the variables optimized by Precimonious to estimate the quality of the optimization.
- Express all the error thresholds in base 10

[C. Rubio González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H. Bailey, C. Iancu, D. Hough, Precimonious: tuning assistant for floating-point precision, SC'13.]

Takeaways/Future Directions

- New approach for precision tuning with two variants of methods
 - Pure ILP with an over-approximation of the carry functions
 - ► PI technique for more precise carry bit function
- Limitation is the size of the problem accepted by the solver
- Reduce number of variables by assigning the same precision to the whole piece of code
- Technique adaptable for DNN's
- Code synthesis for the fixed-point arithmetic

Main References

- [1] Assalé Adjé, Dorra Ben Khalifa, and Matthieu Martel. Fast and efficient bit-level precision tuning.
 - In Static Analysis 28th International Symposium, SAS, 2021.
- [2] Dorra Ben Khalifa and Matthieu Martel. A study of the floating-point tuning behaviour on the n-body problem. In The 2021 International Conference on Computational Science and Its Applications. Springer, 2021.
- [3] Dorra Ben Khalifa and Matthieu Martel.
 Precision tuning and internet of things.
 In International Conference on Internet of Things, Embedded Systems and Communications, IINTEC 2019, pages 80–85. IEEE, 2019.
- [4] Dorra Ben Khalifa and Matthieu Martel. Precision tuning of an accelerometer-based pedometer algorithm for iot devices. In *International Conference on Internet of Things and Intelligence System, IOTAIS 2020*, pages 113–119. IEEE, 2020.
- [5] Dorra Ben Khalifa and Matthieu Martel. An evaluation of pop performance for tuning numerical programs in floating-point arithmetic. In International Conference on Information and Computer Technologies, ICICT 2021. IEEE, 2021.
- [6] Dorra Ben Khalifa, Matthieu Martel, and Assalé Adjé. POP: A tuning assistant for mixed-precision floating-point computations. In Formal Techniques for Safety-Critical Systems - 7th International Workshop, FTSCS 2019, volume 1165 of Communications in Computer and Information Science, pages 77–94. Springer, 2019.

Thank you! Questions?