Lecture 20A & 20B

Energy Resources, Economics and Environment

Primary Energy Analysis

Rangan Banerjee
Department of Energy Science and Engineering

IIT Bombay

ENERGY FLOW DIAGRAM

COAL, OIL, SOLAR, GAS

POWER PLANT, REFINERIES

REFINED OIL, ELECTRICITY

RAILWAYS, TRUCKS, PIPELINES

WHAT CONSUMERS BUY DELIVERED ENERGY

AUTOMOBILE, LAMP, MOTOR, STOVE

MOTIVE POWER RADIANT ENERGY

DISTANCE TRAVELLED, ILLUMINATION, COOKED FOOD etc...

Energy End Uses

End Use	Energy Service	Device
Cooking	Food Cooked	Chullah, stove
Lighting	Illumination	Incandescent
		Fluorescent, CFL
Transport	Distance travelled	Cycle, car, train, motorcycle, bus
Motive Power	Shaft work	motors
Cooling	Space Cooled	Fans,AC, refrig
Heating	Fluid heated	Boiler, Geyser

Decision Types / Perspectives

- System selection
 Yes/No
 Best possible
 amongst options
- System / Component Design
- Decide Operating Strategy
- Decide Policies

- End Users
- Manufacturers
- Utility
- Society / Government
- Others

Criteria

- Cost Initial Cost, Operating Cost,
 Life Cycle Cost
- Reliability-Availability, Unmet Energy
- Emissions Local, Global
- Sustainability
- Equity

Primary Energy Analysis

Compare options based on primary energy input

Primary Energy Analysis

- Water pumping- a) Grid Electricity
 - b) Diesel Engine Pump
 - c) Gasifier=Engine -pump
 - d) Solar PV pumping
- Cars/ Buses a) IC engine vehicle (Diesel)
 - b) Fuel Cell- Hydrogen
 - c) Electric Vehicle- Grid Elec
 - d) Biofuels

Primary Energy Analysis

- Compare options based on primary energy input
- Example : Agricultural Water Pumping
- 3 GJ of end-use /year (typical value)
- Options A) Electric motor-pump
 - B) Diesel engine-pump
 - C) Biomass Gasifier-Dual fuel engine-pump

A)ELECTRIC MOTOR

A)ELECTRIC MOTOR COAL 90 % **COAL MINING/TRANSPORT** η_{cm} 30 % **POWER PLANT** η_{pp} $\eta_{T\&D}$ 78 % **TRANSMISSION & DISTRN. SYSTEM Electricity to Farmer** 88 % $\eta_{\mathbf{m}}$ **MOTOR 75 %** η_p **PUMP Pump output**

B) DIESEL ENGINE

B) DIESEL ENGINE

Comparison of Options

- Motor-Pump
- $\eta = \eta_{cm} \eta_{pp} \eta_{T&D} \eta_{m} \eta_{p}$ $\eta = 0.9*0.3*0.78*0.88*0.75 \eta$ =0.139 (13.9%)
- Electricity bought=
 3*10⁶/(3600*0.75*0.88)
 =1263 kWh

- Diesel Engine-Pump
- $\eta = \eta_R \eta_{DT} \eta_D \eta_D$ $\eta = 0.92*0.95*0.40*0.75$ $\eta = 0.262 (26.2\%)$
- Diesel Input =

 3/(0.75*0.4) = 10 GJ =

 10*10⁶/(9700*4.18*0.85)

 =290 litres

Comparison of Options

- Motor-Pump
- Energy cost Rs 3789

 (@Rs 3/kWh)
- Capital Cost Rs 12000
- Power Cuts
- 1300 kg of coal
- Coal relatively abundant

- Diesel Engine-Pump
- Energy cost Rs 14509 (@Rs 50/litre)
- Capital Cost Rs 24000
- Uninterrupted
- 300 kg of crude oil
- Refinery Mix

Gasifier Option

- 75% Diesel replacement
- 70% gasifier efficiency
- 75 litres diesel, 754 kg biomass
- Biomass price Rs 2/kg Rs 3830
- Capital Cost Rs 48000
- Operation & Maintenance

Distribution Company losses

Solar PV pumping

Solar PV pumps

Sample specifications

	Table 4: MNRE	Indicative Technical	Specifications for Surfa	ice Pumps and Submersible F	umps
--	---------------	----------------------	--------------------------	-----------------------------	------

	•		•	•
Description	Model 1	Model 2	Model 3	Model 4
Centrifugal DC monoblock				
Solar PV Array	900 Wp	1,800 Wp	2,700 Wp	n/a
Motor Capacity	1 HP	2 HP	3 HP	n/a
Max. TDH*	10 mtrs.	15 mtrs.	25 mtrs.	n/a
Submersible motor with electronic controller				
Solar PV Array	1,200 Wp	1,800 Wp	3,000 Wp	4,800 Wp
Motor Capacity	1 HP	1 HP / 2 HP	3 HP	4.6 HP
Max. TDH*	70 mtrs.	70 mtrs.	120 mtrs.	160 mtrs.
			*Max. TDH - Maxi	mum Total Dynamic Hea

Hydrogen pathways

Applications

- A-Distributed Power Generation Rating 100 kW
- B- Vehicle 4 wheeler passenger car (Maruti 800)
- Base Case A1- Diesel Engine Generator (fuel diesel), A2 Gas Engine – Generator (fuel natural gas)
- Base Case B1 IC Engine petrol, B2- CNG engine

FUEL CELL (NG)

Distributed Generation

- A1 Overall efficiency 35%
 0.246 kg of crude /kWh of electricity
- A2 Overall efficiency 37%

 0.25 kg of Natural gas/kWh of electricity

 Fuel cell Overall efficiency 30% 0.307 kg of Natural gas/kWh of electricity
- (37% like A2 FC eff 50%)

Carbon Emissions

- A1 Crude oil (86% Carbon)
 0.211 kg Carbon/kWh
- A2- Natural gas (75% Carbon)
 0.187 kg Carbon/kWh
- Fuel cell (18 kg of Carbon / 1 GJ of Hydrogen energy SMR)
- FC eff 0.4 0.171 kg Carbon/kWh 0.5- 0.136 kg Carbon/kWh

Fuel chains

Fossil fuel chain

Crude oil production centre Intercontinental crude oil transport Refinery Petrol transport (via Rail/Truck) Filling stations (Petrol storage and delivery) Vehicle (Utilization)

Hydrogen fuel chain Primary energy source

Hydrogen production centre (Production and compression)

Pipeline transport

Filling stations (Hydrogen storage and delivery)

Vehicle (On-board storage and utilization)

Base case Fossil fuel based fuel chain

- Small-size passenger car (Maruti 800)
 manufactured by Maruti Udyog Limited
 - Petrol fuelled,
 - 37 bhp (27 kW) IC engine

50% share in Indian passenger vehicle-market

560,000 units sold 2005-6

Vehicle Application

Weight (excl engine +tank) 550 kg Passengers (max) 350 kg Maruti CR 0.01 CD 0.4

2m² front area

100 km travel /day

	Tank	Engine
Petrol	40 kg	60 kg
CNG	140 kg	60 kg
FC	130 kg	15 M +15 FC kg

Indian urban drive cycle

Indian urban drive cycle:-

Low average speed (23.4 km/h) and rapid accelerations (1.73 to -2.1 m/s 2)

European urban drive cycle:-

Average speed (62.4 km/h) and accelerations from 0.83 to -1.4 m/s²

Power required at wheels

- Three forces acts on the vehicle
 (Assumption: vehicle is running on a straight road with a zero gradient). These are
 - Aerodynamic drag $\{F_{Drag}(t)\} = 0.5\rho Av(t)^2 C_d$
 - Frictional resistance $\{F_{Friction}(t)\} = mgC_r$
 - Inertial force $\{F_{Inertia}(t)\} = mf \{f=dv(t)/dt\}$
- $F_{Total}(t) = F_{Drag}(t) + F_{Friction}(t) + F_{Inertia}(t)$
- $\bullet P_{Wheel}(t) = F_{Total}(t) \times v(t)$

Data used for base case vehicle

Parameter	Value
Air density (kg/m³)	1.2
Coefficient of drag resistance	0.4
Coefficient of rolling resistance	0.01
Cargo weight (kg)	250
Frontal area (m ²)	2
Transmission efficiency	0.7
Transmission weight (kg)	114
IC engine weight (kg)	90
Fuel tank weight (kg)	40
Fuel capacity (kg)	24
Vehicle body weight (kg)	406
Total weight (kg)	900

Result for base case vehicle

Parameter	Value
Driving range (km)	434
Cost (Rs/km)	2.8 (0.34)
Non-renewable energy use during operation (MJ/km)	2.6
GHG emissions (g/km)	180

Driving range of hydrogen vehicles should be at least half (~217 kms) for their public acceptance.

- Average daily travel Indian urban <100 kms.
- Vehicle to run for 2-3 days.

Hydrogen fuel chain - Options considered

Hydrogen production – Steam Methane Reforming (SMR)

- Feedstock Natural Gas
- SMR: $CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$
- Life of plant 20 years
- Existing NG price Rs 8/Nm³,
- Price of Hydrogen Rs 48/ kg 4.3 Rs/Nm³ or 400 Rs/GJ

B1) PETROL ENGINE

B2) GAS ENGINE

Vehicle Comparison

- B1 Overall efficiency 19.4%

 3.31 kg of crude /100 km of travel
- B2 Overall efficiency 23.2%
 3.0 kg of Natural gas/ 100 km of travel
 Fuel cell Overall efficiency 24.3%
 2.82 kg of Natural gas/ 100 km of travel

Carbon emissions of different car powertrains by region

The relative carbon footprint of ICE versus electric cars strongly depends on the power sector mix

Source: World Energy Outlook 2019 IEA Used with permission

