

SEQUENCE LISTING

<110> THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE
LEE, Se-Jin
ESQUELA, Aurora F.

<120> METHODS OF DETECTING LIVER CELLS EXPRESSING GROWTH DIFFERENTIATION FACTOR-12

<130> JHU1220-4

<140> US 09/361,655
<141> 1999-07-27

<150> US 08/765,662
<151> 1997-04-28

<150> PCT/ US95/08745
<151> 1995-07-12

<150> US 08/274,215
<151> 1994-07-13

<160> 14

<170> PatentIn version 3.1

<210> 1
<211> 34
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<220>
<221> misc_feature
<222> (12)..(12)
<223> n = inosine

<220>
<221> misc_feature
<222> (18)..(18)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> n = inosine

<220>
<221> misc_feature
<222> (29)..(29)
<223> n = inosine

<400> 1
ccggaattcg gntggmgnva tggrrtnrtnt aycc

<210> 2
<211> 33
<212> DNA

```

<213> Artificial sequence

<220>
<223> PCR primer

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine

<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine

<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine

<400> 2
ccggaattcr cansrcanc ynwcnaclnry cat

```

33

```

<210> 3
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine

<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine

```

```

<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine

<400> 3
ccggaattcr cansrcrant snygnacnry cat

```

33

```

<210> 4
<211> 33
<212> DNA
<213> Artificial sequence

```

```

<220>
<223> PCR primer

```

```

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine

```

```

<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine

```

```

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide

```

```

<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine

```

```

<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine

```

```

<400> 4
ccggaattcr cansrcrant snwcnaclnry cat

```

33

```

<210> 5
<211> 33
<212> DNA
<213> Artificial sequence

```

```

<220>
<223> PCR primer

```

```

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine

```

```

<220>

```

```

<221> misc_feature
<222> (19)..(19)
<223> n = inosine

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine

<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine

<400> 5
ccggaattcr cansrcrant snbtnacnry cat 33

<210> 6
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine

<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine

<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine

<400> 6
ccggaattcr cansrcrang mnnygnacnry cat 33

<210> 7

```

```
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine

<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine

<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine

<400> 7
ccggaattcr cansrcang mnwcnacnry cat
```

33

```
<210> 8
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine

<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide

<220>
<221> misc_feature
```

```

<222> (25)..(25)
<223> n = inosine

<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine

<400> 8
ccggaattcr canscrcanm gnygnacnry cat

```

33

```

<210> 9
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine

<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine

```

```

<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine

<400> 9
ccggaattcr canscrcanm gnwcnaenry cat

```

33

```

<210> 10
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> PCR primer

<220>
<221> misc_feature
<222> (13)..(13)
<223> n = inosine

```

```

<220>
<221> misc_feature
<222> (19)..(19)
<223> n = inosine

<220>
<221> misc_feature
<222> (22)..(22)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> n = inosine

<220>
<221> misc_feature
<222> (28)..(28)
<223> n = inosine

<400> 10
ccggaattcr cansrcanm gnbtnacnry cat 33

<210> 11
<211> 360
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(357)
<223>

<400> 11
cg gcc agg agg acc ccc acc tgt gag cct gcg acc ccc tta tgt 48
Arg Ala Arg Arg Arg Thr Pro Thr Cys Glu Pro Ala Thr Pro Leu Cys
1 5 10 15
tgc agg cga gac cat tac gta gac ttc cag gaa ctg gga tgg cg gac 96
Cys Arg Arg Asp His Tyr Val Asp Phe Gln Glu Leu Gly Trp Arg Asp
20 25 30

tgg ata ctg cag ccc gag ggg tac cag ctg aat tac tgc agt ggg cag 144
Trp Ile Leu Gln Pro Glu Gly Tyr Gln Leu Asn Tyr Cys Ser Gly Gln
35 40 45

tgc cct ccc cac ctg gct ggc agc cca ggc att gct gcc tct ttc cat 192
Cys Pro Pro His Leu Ala Gly Ser Pro Gly Ile Ala Ala Ser Phe His
50 55 60

tct gcc gtc ttc agc ctc ctc aaa gcc aac aat cct tgg cct gcc agt 240
Ser Ala Val Phe Ser Leu Leu Lys Ala Asn Asn Pro Trp Pro Ala Ser
65 70 75 80

acc tcc tgt tgt gtc cct act gcc cga agg ccc ctc tct ctc tac 288
Thr Ser Cys Cys Val Pro Thr Ala Arg Arg Pro Leu Ser Leu Leu Tyr
85 90 95

ctg gat cat aat ggc aat gtg gtc aag acg gat gtg cca gat atg gtg 336

```

Leu Asp His Asn Gly Asn Val Val Lys Thr Asp Val Pro Asp Met Val
 100 105 110

gtg gag gcc tgt ggc tgc agc tag 360
 Val Glu Ala Cys Gly Cys Ser
 115

<210> 12
 <211> 119
 <212> PRT
 <213> Homo sapiens

<400> 12

Arg Ala Arg Arg Arg Thr Pro Thr Cys Glu Pro Ala Thr Pro Leu Cys
 1 5 10 15

Cys Arg Arg Asp His Tyr Val Asp Phe Gln Glu Leu Gly Trp Arg Asp
 20 25 30

Trp Ile Leu Gln Pro Glu Gly Tyr Gln Leu Asn Tyr Cys Ser Gly Gln
 35 40 45

Cys Pro Pro His Leu Ala Gly Ser Pro Gly Ile Ala Ala Ser Phe His
 50 55 60

Ser Ala Val Phe Ser Leu Leu Lys Ala Asn Asn Pro Trp Pro Ala Ser
 65 70 75 80

Thr Ser Cys Cys Val Pro Thr Ala Arg Arg Pro Leu Ser Leu Leu Tyr
 85 90 95

Leu Asp His Asn Gly Asn Val Val Lys Thr Asp Val Pro Asp Met Val
 100 105 110

Val Glu Ala Cys Gly Cys Ser
 115

<210> 13
 <211> 2419
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (218)..(1267)
 <223>

<400> 13
 gagctgtgag ggtcaagcac agctatccat cagatgatct actttcagcc ttccctgagtc 60
 ccagacaata gaagacaggt ggctgtaccc ttggccaagg gttagtgtgg cagtggtgtc 120

tgctgtcaact gtgccctcat tggcccccag caatcagact caacagacgg agcaactgcc		180	
atccgaggct cctgaaccag ggccattcac caggagc atg cggtt ctc cct gat gtc	Met Arg Leu Pro Asp Val	235	
1	5		
cag ctc tgg ctg gtg ctg tgg gca ctg gtg cga gca cag ggg aca		283	
Gln Leu Trp Leu Val Leu Leu Trp Ala Leu Val Arg Ala Gln Gly Thr			
10	15	20	
ggg tct gtg tgt ccc tcc tgt ggg ggc tcc aaa ctg gca ccc caa gca		331	
Gly Ser Val Cys Pro Ser Cys Gly Gly Ser Lys Leu Ala Pro Gln Ala			
25	30	35	
gaa cga gct ctg gtg ctg gag cta gcc aag cag caa atc ctg gat ggg		379	
Glu Arg Ala Leu Val Leu Glu Leu Ala Lys Gln Gln Ile Leu Asp Gly			
40	45	50	
ttg cac ctg acc agt cgt ccc aga ata act cat cct cca ccc cag gca		427	
Leu His Leu Thr Ser Arg Pro Arg Ile Thr His Pro Pro Pro Gln Ala			
55	60	65	70
gcg ctg acc aga gcc ctc cgg aga cta cag cca ggg agt gtg gct cca		475	
Ala Leu Thr Arg Ala Leu Arg Arg Leu Gln Pro Gly Ser Val Ala Pro			
75	80	85	
ggg aat ggg gag gag gtc atc agc ttt gct act gtc aca gac tcc act		523	
Gly Asn Gly Glu Glu Val Ile Ser Phe Ala Thr Val Thr Asp Ser Thr			
90	95	100	
tca gcc tac agc tcc ctg ctc act ttt cac ctg tcc act cct cgg tcc		571	
Ser Ala Tyr Ser Ser Leu Leu Thr Phe His Leu Ser Thr Pro Arg Ser			
105	110	115	
cac cac ctg tac cat gcc cgc ctg tgg ctg cac gtg ctc ccc acc ctt		619	
His His Leu Tyr His Ala Arg Leu Trp Leu His Val Leu Pro Thr Leu			
120	125	130	
cct ggc act ctt tgc ttg agg atc ttc cga tgg gga cca agg agg agg		667	
Pro Gly Thr Leu Cys Leu Arg Ile Phe Arg Trp Gly Pro Arg Arg Arg			
135	140	145	150
cgc caa ggg tcc cgc act ctc ctg gct gag cac cac atc acc aac ctg		715	
Arg Gln Gly Ser Arg Thr Leu Leu Ala Glu His His Ile Thr Asn Leu			
155	160	165	
ggc tgg cat acc tta act ctg ccc tct agt ggc ttg agg ggt gag aag		763	
Gly Trp His Thr Leu Thr Leu Pro Ser Ser Gly Leu Arg Gly Glu Lys			
170	175	180	
tct ggt gtc ctg aaa ctg caa cta gac tgc aga ccc cta gaa ggc aac		811	
Ser Gly Val Leu Lys Leu Gln Leu Asp Cys Arg Pro Leu Glu Gly Asn			
185	190	195	
agc aca gtt act gga caa ccg agg cgg ctc ttg gac aca gca gga cac		859	
Ser Thr Val Thr Gly Gln Pro Arg Arg Leu Leu Asp Thr Ala Gly His			
200	205	210	
cag cag ccc ttc cta gag ctt aag atc cga gcc aat gag cct gga gca		907	
Gln Gln Pro Phe Leu Glu Leu Lys Ile Arg Ala Asn Glu Pro Gly Ala			

215	220	225	230
ggc cg gcc agg agg acc ccc acc tgt gag cct gcg acc ccc tta Gly Arg Ala Arg Arg Arg Thr Pro Thr Cys Glu Pro Ala Thr Pro Leu			955
235	240	245	
tgt tgc agg cga gac cat tac gta gac ttc cag gaa ctg gga tgg cgg Cys Cys Arg Arg Asp His Tyr Val Asp Phe Gln Glu Leu Gly Trp Arg			1003
250	255	260	
gac tgg ata ctg cag ccc gag ggg tac cag ctg aat tac tgc agt ggg Asp Trp Ile Leu Gln Pro Glu Gly Tyr Gln Leu Asn Tyr Cys Ser Gly			1051
265	270	275	
cag tgc cct ccc cac ctg gct ggc agc cca ggc att gct gcc tct ttc Gln Cys Pro Pro His Leu Ala Gly Ser Pro Gly Ile Ala Ala Ser Phe			1099
280	285	290	
cat tct gcc gtc ttc agc ctc ctc aaa gcc aac aat cct tgg cct gcc His Ser Ala Val Phe Ser Leu Leu Lys Ala Asn Asn Pro Trp Pro Ala			1147
295	300	305	310
agt acc tcc tgt tgt gtc cct act gcc cga agg ccc ctc tct ctc ctc Ser Thr Ser Cys Cys Val Pro Thr Ala Arg Arg Pro Leu Ser Leu Leu			1195
315	320	325	
tac ctg gat cat aat ggc aat gtg gtc aag acg gat gtg eca gat atg Tyr Leu Asp His Asn Gly Asn Val Val Lys Thr Asp Val Pro Asp Met			1243
330	335	340	
gtg gtg gag gcc tgt ggc tgc agc tagcaagagg acctggggct ttggagtgaa Val Val Glu Ala Cys Gly Cys Ser			1297
345	350		
gagaccaaga tgaagtttcc cagggcacagg gcatctgtga ctggaggcat cagattcctg atcccacaccc caaccacaaca accacctggc aatatgactc acttgacccc tatgggaccc			1357
aatgggcac tttcttgtct gagactctgg cttattccag gttggctgat gtgttggag atggtaaag cgtttcttct aaaggggtct acccagaaaag catgatttcc tgccctaagt			1417
cctgtgagaa gatgtcaggg actagggagg gagggaggaa aggcagagaa aaattactta gcctctccca agatgaaaaa gtcctcaagt gaggggaggaa ggaaggcagat agatggtcca			1477
gcaggcttga agcagggtaa gcaggctggc ccaggtaag ggctgtttagt gtttttttt ggaaggtaa gagggagatg ggcaaggcgc tgagggaggaa tgcttagggg accccccagaa			1537
acaggagtca ggaaaatgag gcactaagcc taagaagtgc cctggggggat aggacccact gggagacaag catttatact ttctttcttc ttttttattt tttttttttt			1657
gagtctcgct ctgtcaccag gctggagtgc agtgacacga tcttggctca ctgcaaccc cgtctctgg gttcaagtga ttcttctgcc tcagccccc gagcagctgg gattacaggc			1897
gccccactaat ttttgtattc ttagtagaaa cgaggttca acatgttggc caggatggtc tcaatcttctt gaccttcttga tccacccgac ttggccccc gaagtgtatga gattataggc			2017
2077			
tcaatcttctt gaccttcttga tccacccgac ttggccccc gaagtgtatga gattataggc 2137			

gtgagccacc gcgcctggct tatactttct taataaaaag gagaaagaaa atcaacaaat	2197
gtgagtcata aagaagggtt agggtgatgg tccagagcaa cagttttca agtgtactct	2257
gtaggctct gggaggtccc tttcagggg tgtccacaaa gtcaaagcta ttttcataat	2317
aatactaaca tgttatgc ctgtgaatt ctcattatct taaaattgta ttgtggagtt	2377
ttccagaggc cggtgtgacat gtgattacat catcttctg ac	2419

<210> 14
 <211> 350
 <212> PRT
 <213> Homo sapiens

<400> 14

Met Arg Leu Pro Asp Val Gln Leu Trp Leu Val Leu Leu Trp Ala Leu			
1	5	10	15

Val Arg Ala Gln Gly Thr Gly Ser Val Cys Pro Ser Cys Gly Gly Ser		
20	25	30

Lys Leu Ala Pro Gln Ala Glu Arg Ala Leu Val Leu Glu Leu Ala Lys		
35	40	45

Gln Gln Ile Leu Asp Gly Leu His Leu Thr Ser Arg Pro Arg Ile Thr		
50	55	60

His Pro Pro Pro Gln Ala Ala Leu Thr Arg Ala Leu Arg Arg Leu Gln			
65	70	75	80

Pro Gly Ser Val Ala Pro Gly Asn Gly Glu Glu Val Ile Ser Phe Ala		
85	90	95

Thr Val Thr Asp Ser Thr Ser Ala Tyr Ser Ser Leu Leu Thr Phe His		
100	105	110

Leu Ser Thr Pro Arg Ser His His Leu Tyr His Ala Arg Leu Trp Leu		
115	120	125

His Val Leu Pro Thr Leu Pro Gly Thr Leu Cys Leu Arg Ile Phe Arg		
130	135	140

Trp Gly Pro Arg Arg Arg Gln Gly Ser Arg Thr Leu Leu Ala Glu			
145	150	155	160

His His Ile Thr Asn Leu Gly Trp His Thr Leu Thr Leu Pro Ser Ser		
165	170	175

Gly Leu Arg Gly Glu Lys Ser Gly Val Leu Lys Leu Gln Leu Asp Cys
 180 185 190

Arg Pro Leu Glu Gly Asn Ser Thr Val Thr Gly Gln Pro Arg Arg Leu
 195 200 205

Leu Asp Thr Ala Gly His Gln Gln Pro Phe Leu Glu Leu Lys Ile Arg
 210 215 220

Ala Asn Glu Pro Gly Ala Gly Arg Ala Arg Arg Arg Thr Pro Thr Cys
 225 230 235 240

Glu Pro Ala Thr Pro Leu Cys Cys Arg Arg Asp His Tyr Val Asp Phe
 245 250 255

Gln Glu Leu Gly Trp Arg Asp Trp Ile Leu Gln Pro Glu Gly Tyr Gln
 260 265 270

Leu Asn Tyr Cys Ser Gly Gln Cys Pro Pro His Leu Ala Gly Ser Pro
 275 280 285

Gly Ile Ala Ala Ser Phe His Ser Ala Val Phe Ser Leu Leu Lys Ala
 290 295 300

Asn Asn Pro Trp Pro Ala Ser Thr Ser Cys Cys Val Pro Thr Ala Arg
 305 310 315 320

Arg Pro Leu Ser Leu Leu Tyr Leu Asp His Asn Gly Asn Val Val Lys
 325 330 335

Thr Asp Val Pro Asp Met Val Val Glu Ala Cys Gly Cys Ser
 340 345 350