PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-035078

(43) Date of publication of application: 09.02.2001

(51)Int.Cl.

G11B 20/10 G06F 12/08

(21)Application number: 11-210773

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

26.07.1999

(72)Inventor: MAEHASHI TAKEMASA

MORITA MITSUAKI

(54) DATA RECORDING AND REPRODUCING DEVICE AND DATA TRANSFERRING METHOD **THEREFOR**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a data recording and reproducing device capable of executing a recording processing and a producing processing simultaneously by controlling data transfer.

SOLUTION: Data on a write cache CW are transferred to a buffer for recording BW and, at the same time, data on a medium M are transferred to a buffer for reproduction BR, and then data on the buffer for recording BW are transferred to the medium M and, at the same time, data on the buffer for reproduction BR are transferred to a read cache CR.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

Searching PAJ

decision of rejection] [Date of extinction of right]

(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-35078 (P2001 - 35078A)

(43)公開日 平成13年2月9日(2001.2.9)

(51) Int.Cl. ⁷		識別記号		FΙ			Ť	-7]-ド(参考)
G11B	20/10			G 1	1 B 20/10		Α	5B005
		301					3 0 1 Z	5D044
G06F	12/08			G 0 (5 F 12/08		В	
							G	
							Q	
	•		審查請求	未請求	請求項の数7	OL	(全 16 頁)	最終頁に続く

(21)出願番号 特願平11-210773

(22)出願日 平成11年7月26日(1999.7.26) (71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 前橋 健雅

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 森田 光秋

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100083172

弁理士 福井 豊明

最終頁に続く

(54) 【発明の名称】 データ記録再生装置及びそのデータ転送方法

(57)【要約】

【課題】 データ転送を制御することにより記録処理と 再生処理とを同時に実行できるようにしたデータ記録再 生装置を提供する。

【解決手段】 ライトキャッシュ Cw 上のデータを記録 用バッファBw に転送すると同時にメディアM上のデー タを再生用バッファBR に転送した後、記録用バッファ Bw 上のデータをメディアMに転送すると同時に再生用 バッファ B_R 上のデータをリードキャッシュ C_R に転送 する。

【特許請求の範囲】

【請求項1】 メディアに記録するデータを一時記憶す る記録用バッファおよびメディアから読み出したデータ を一時記憶する再生用バッファを備えたディスク装置 と、ライトキャッシュに一時記憶されたデータをメディ アに記録するよう記録アプリケーションより指示を受け たときに上記ディスク装置に対して記録要求を発行する とともに、メディアに記録されたデータをリードキャッ シュに読み出すよう再生アプリケーションより指示を受 けたときに上記ディスク装置に対して再生要求を発行す 10 る録再制御部とを備えたデータ記録再生装置において、 上記録再制御部が、ライトキャッシュに一時記憶された データを記録用バッファに転送するための第1の記録要 求および記録用バッファに一時記憶されたデータをメデ ィアに記録するための第2の記録要求を上記記録要求に 基づいて生成するとともに、メディアに記録されたデー タを再生用バッファに読み出すための第1の再生要求お よび再生用バッファに一時記憶されたデータをリードキ ャッシュに転送するための第2の再生要求を上記再生要 求に基づいて生成する要求生成手段と、該要求生成手段 20 によって生成された各要求の発行順序を所定の手順でス ケジューリングするスケジューリング手段とを備えたこ とを特徴とするデータ記録再生装置。

【請求項2】 上記スケジューリング手段が、第1の記 録要求および第1の再生要求を第2の記録要求および第 2の再生要求より優先してスケジューリングする請求項 1に記載のデータ記録再生装置。

【請求項3】 更に、第1の記録要求および第1の再生 要求の処理時間を予測する要求処理時間予測部を備え、 上記要求生成手段が、要求処理時間予測部の予測結果に 30 基づき第1の記録要求を複数に分割することによって、 第1の再生要求に比べ処理時間の短い記録要求を生成す る請求項1に記載のデータ記録再生装置。

更に、第1の記録要求および第1の再生 【請求項4】 要求の処理時間を予測する要求処理時間予測部を備え、 上記要求生成手段が、要求処理時間予測部の予測結果に 基づき第1の再生要求を複数に分割することによって、 第1の記録要求に比べ処理時間の短い再生要求を生成す る請求項1に記載のデータ記録再生装置。

【請求項5】 更に、第1の記録要求の処理時間を予測 する要求処理時間予測部と、再生アプリケーションより 次に指示を受けるまでの時間を予測する要求発生時間予 測部とを備え、

上記要求生成手段が、要求処理時間予測部の予測結果と 要求発生時間予測部の予測結果とに基づき第1の記録要 求を複数に分割することによって、再生アプリケーショ ンより次に指示を受けるまでの時間より短い処理時間の 記録要求を生成する請求項1に記載のデータ記録再生装 置。

【請求項6】

する要求処理時間予測部と、記録アプリケーションより 次に指示を受けるまでの時間を予測する要求発生時間予 測部とを備え、

上記要求生成手段が、要求処理時間予測部の予測結果と 要求発生時間予測部の予測結果とに基づき第1の再生要 求を複数に分割することによって、記録アプリケーショ ンより次に指示を受けるまでの時間より短い処理時間の 再生要求を生成する請求項1に記載のデータ記録再生装

【請求項7】 メディアへのデータ記録およびメディア よりのデータ再生が可能なデータ記録再生装置のデータ 転送方法において、

ライトキャッシュ上のデータを記録用バッファに転送す ると同時にメディア上のデータを再生用バッファに転送 した後、記録用バッファ上のデータをメディアに転送す ると同時に再生用バッファ上のデータをリードキャッシ ュに転送することを特徴とするデータ記録再生装置のデ ータ転送方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディスク装置への データ記録およびディスク装置よりのデータ再生が可能 なデータ記録再生装置に関し、特に、光ディスク等のメ ディアを用いたデータ記録再生装置に関するものであ る。

[0002]

【従来の技術】図12は、従来のデータ記録再生装置2 0の概略機能ブロック図であり、以下にその構成を説明 する。

【0003】DMA(Direct Memory Access)方式等の 転送方式を用いてエンコーダ10よりライトキャッシュ Cw に映像音声データが書き込まれ、ライトキャッシュ Cwにおける映像音声データの蓄積量が所定値以上にな ると、この蓄積量を管理している記録アプリケーション (以下「記録アプリ」という) 21は、(1) ライトキャ ッシュ Cw 上のアドレスad_Cw と、(2) データ長 Lw と、(3) メディアM上のアドレスad_Mw とを指定した 記録要求Dw (ad__Cw , Lw , ad__Mw)を録再制御 部22に対して発行する。これを受けた録再制御部22 40 は、データバス24を介してディスク装置30に上記記 録要求Dw を渡し、このように記憶要求Dw を受けたデ ィスク装置30の録再処理部31は、ライトキャッシュ Cw 上のアドレスad_Cw よりデータ長Lw の映像音声 データ(以下「記録データ」という)を読み出してディ スク装置30の記録用バッファBw に転送した後、この 記録用バッファBw 上の記録データをアドレスad Mw を指定してメディアMに書き込む (図12、(a) 参 照)。

【0004】また、リードキャッシュCR よりデコーダ 更に、第1の再生要求の処理時間を予測 50 40に映像音声データが読み出され、リードキャッシュ

CR における映像音声データの消費量が所定値以上にな ると、この消費量を管理している再生アプリケーション (以下「再生アプリ」という) 23は、(1) メディアM 上のアドレスad_MR と、(2) データ長LR と、(3)リ ードキャッシュ CR 上のアドレスad_CR とを指定した 再生要求 DR (ad_MR, LR, ad_CR) を録再制御 部22に対して発行する。これを受けた録再制御部22 は、データバス24を介してディスク装置30に上記再 生要求DR を渡し、このように再生要求DR を受けたデ ィスク装置30の録再処理部31は、メディアM上のア ドレス ad_MR よりデータ長LR の映像音声データ (以 下「再生データ」という)を読み出してディスク装置3 Oの再生用バッファBR に転送した後、この再生用バッ ファBR 上の再生データをアドレスad_CR を指定して リードキャッシュ CR に書き込む (図12、(b) 参 照)。

【0005】なお、再生アプリ23より再生要求 D_R を受けた録再制御部22は、デコーダ40に読み出すための映像音声データが不足しないように、所定時間分あるいは所定サイズ分の再生データをリードキャッシュ C_R に先読みするようにしている。

[0006]

【発明が解決しようとする課題】上記従来のデータ記録再生装置 20には、データバス 24が未使用であればコマンドキューイング機能によって記録アプリ 21 や再生アプリ 23 より次の要求を受け付けることはできるが、このように受け付けた要求を直ちに処理できないという問題があった。すなわち、上記従来のデータ記録再生装置 20 では、各要求 D_W ・ D_R を一連の手順で処理するようにしているため、記録処理と再生処理とを同時に実行できない。

【0007】例えば、ライトキャッシュCw より記録用 バッファBw に記録データを転送している間、データ転 送路32は未使用であってもデータバス24は使用中で あるため、録再制御部22はディスク装置30に対して 再生要求DR を発行できない。また、上記転送が終了す ると、データバス24が未使用となるため録再制御部2 2はディスク装置30に対して再生要求DR を発行でき るが、このように再生要求DR を発行したときにはデー 夕転送路32が使用中である(上記転送を終了したディ スク装置30の録再処理部31は記録用バッファBwよ りメディアMへの書き込みを開始している) ため、上記 再生要求DR を受けたディスク装置30の録再処理部3 1はメディアMより再生データを読み出せない。更に、 メディアMから再生用バッファBR に再生データを読み 出している間、データバス24は未使用であるため録再 制御部22はディスク装置30に対して記録要求Dw を 発行できるが、この時点ではデータ転送路32が使用中 であるため、上記記録要求Dw を受けたディスク装置3 0の録再処理部31は記録用バッファBw よりメディア Mに記録データを書き込めない。

【0008】本発明は上記従来の事情に基づいて提案されたものであって、データ転送を制御することにより記録処理と再生処理とを同時に実行できるようにしたデータ記録再生装置を提供することを目的とするものである。

[0009]

【課題を解決するための手段】本発明は上記目的を達成するために以下の手段を採用している。すなわち、図1 に示すように、メディアMに記録するデータを一時記憶する記録用バッファ B_R を備えたディスク装置30と、ライトキャッシュ C_R に一時記憶されたデータをメディアMに記録するよう記録アプリケーション21より指示を受けたときに上記ディスク装置30に対して記録要求を発行するとともに、メディアMに記録されたデータをリードキャッシュ C_R に読み出すよう再生アプリケーション23より指示を受けたときに上記ディスク装置30に対して再生要求を発行する録再制20 御部22とを備えたデータ記録再生装置20を前提としている。

【0010】ここで、上記録再制御部22の要求生成手 段22aは、ライトキャッシュCwに一時記憶されたデ ータを記録用バッファBw に転送するための第1の記録 要求および記録用バッファ Bw に一時記憶されたデータ をメディアMに記録するための第2の記録要求を上記記 録要求に基づいて生成するとともに、メディアMに記録 されたデータを再生用バッファBR に読み出すための第 1の再生要求および再生用バッファBR に一時記憶され たデータをリードキャッシュCR に転送するための第2 の再生要求を上記再生要求に基づいて生成する。また、 上記録再制御部22のスケジューリング手段22bは、 ライトキャッシュCw 上のデータが記録用バッファBw に転送されると同時にメディアM上のデータが再生用バ ッファBR に転送された後、記録用バッファBw 上のデ ータがメディアMに転送されると同時に再生用バッファ BR 上のデータがリードキャッシュ CR に転送されるよ う、上記要求生成手段 2 2 a によって生成された各要求 の発行順序をスケジューリングする。

0 [0011]

30

【発明の実施の形態】以下に本発明の実施の形態を図面に従って詳細に説明する。(第1の実施の形態)図1は、本実施の形態におけるデータ記録再生装置20の概略機能ブロック図であり、以下その構成を、記録要求DWと再生要求DRとを同時に受けた場合の処理手順とともに説明する。

【0012】上記従来と同様の手順で記録アプリ21より記録要求Dw(ad_Cw,Lw,ad_Mw)を受けた録再制御部22の要求生成手段22aは、記録データの転送を2段階に分割すべく以下の処理を実行する。すな

わち、要求生成手段22aは、(1) ライトキャッシュC w 上のアドレスad_Cw と、(2) データ長 Lw と、(3) 記録用バッファBw 上のアドレスad_Bw とを指定した 第1の記録要求Dw1(ad_Cw, Lw, ad_Bw)、及 び、(1) 記録用バッファBw 上のアドレスad_Bw と、 (2) データ長Lw と、(3) メディアM上のアドレスad Mw とを指定した第2の記録要求Dw2 (ad_Bw, Lw, ad_Mw) を上記記録要求Dw に基づいて生成し た後、これら記録要求Dw1・Dw2をスケジューリング手 段22bに渡す(図4、ステップS1→S2→S3)。 【0013】また、上記記録要求Dw を受けると同時 に、上記従来と同様の手順で再生アプリ23より再生要 求DR (ad_MR, LR, ad_CR) を受けた録再制御 部22の要求生成手段22aは、再生データの転送を2 段階に分割すべく以下の処理を実行する。すなわち、要 求生成手段22aは、(1) メディアM上のアドレスad__ M_R と、(2) データ長 L_R と、(3) 再生用バッファ B_R 上のアドレスad_BR とを指定した第1の再生要求DR1 (ad_M_R, L_R, ad_B_R)、及び、(1) 再生用バッ ファBR 上のアドレスad_BR と、(2) データ長L R と、(3) リードキャッシュ C_R 上のアドレス ad_C_R とを指定した第2の再生要求DR2 (ad_BR, LR, ad __CR)を上記再生要求DR に基づいて生成した後、こ れら再生要求DR1・DR2をスケジューリング手段22b に渡す(図4、ステップS4 \rightarrow S5 \rightarrow S6)。

【0015】このようにすれば、ディスク装置30の録再処理部31によって、第1の再生要求 D_{R1} についての 40 処理(すなわちメディアMに記録された再生データを再生用バッファ B_R に読み出す処理)と第1の記録要求 D_{R1} についての処理(すなわちライトキャッシュ C_{R1} に一時記憶された記録データを記録用バッファ B_{R1} に転送する処理)とがほぼ同時に実行され(図7、Q及びQ7 参照)、これら要求 D_{R1} ・ D_{W1} についての処理が完了すると、第2の記録要求 D_{W2} についての処理(すなわち記録用バッファ B_{R1} に一時記憶された記録データをメディアMに記録する処理)と第2の再生要求 D_{R2} についての処理(すなわち再生用バッファ D_{R1} に一時記憶された再生 50

データをリードキャッシュ C_R に転送する処理)とがほぼ同時に実行されることになる(図7、Q及びQ)参照)。

【0016】なお、第1の記録要求 D_{W1} ・第2の記録要求 D_{W2} ・第1の再生要求 D_{R1} ・第2の再生要求 D_{R2} において指定する項目は、上記した項目に限定されるものではない。例えば、第1の記録要求 D_{W1} では、(1) ライトキャッシュ C_{W} 上のアドレス ad_{CW} と、(2) データ長 L_{W} と、(3) 記録用バッファ B_{W} 上のアドレス ad_{BW} とを指定することしているが、(1) ライトキャッシュ C_{W} において記録データが一時記憶されている区間の先頭アドレス及び終了アドレスと、(2) 記録用バッファ B_{W} 上のアドレス ad_{BW} とを指定するようにしても上記と同様の効果が得られる。

(第2の実施の形態)上記第1の実施の形態では、ディスク装置30の録再処理部31が要求を処理するに要する時間(以下「要求の処理時間」という)については特に言及していないが、データ転送を効率よく行うためには上記処理時間を考慮することが重要である。例えば、第1の再生要求 D_{R1} の処理時間の方が長い場合、第1の再生要求 D_{R1} の処理が完了しても第1の記録要求 D_{W1} の処理が継続中である間は第2の記録要求 D_{W2} と第2の再生要求 D_{R2} とを発行できない(要求発行待ち時間が生じる)。

【0017】そこで、本実施の形態では、データバス24やデータ転送路32の転送速度、転送データ(記録データや再生データ)のデータ長、メディアMに対する書き込み速度や読み出し速度、ヘッドの現在位置情報に基づいて要求の処理時間を予測する要求処理時間予測部25(図2参照)を備えるようにしており、以下その構成を上記第1の実施の形態と異なる点のみ説明する。

【0019】ここで、要求生成手段22aは、処理時間 T_{W1} と処理時間 T_{R1} とを比較し、処理時間 T_{W1} が処理時間 T_{R1} を越える場合(図5、ステップS15: No)には、第1の記録要求 D_{W1} と第2の記録要求 D_{W2} とをそれぞれ2つに分割する。すなわち要求生成手段22aは、第1の記録要求 D_{W1} に基づいて、処理時間 T_{R1} に比べ処理時間の短い第1(1) の記録要求 $D_{W1}(1)$ とその残余である第1(2) の記録要求 $D_{W1}(2)$ とを生成するととも

√の に、第2の記録要求Dw2に基づいて、処理時間TR1に比

べ処理時間の短い第 2 (1) の記録要求 D_{W2} (1) とその残余である第 2 (2) の記録要求 D_{W2} (2) とを生成する(図 5 、ステップ S 1 6)。なお、処理時間の短い要求は、そのデータ長を短くすれば生成できることはいうまでもない。

【0020】その後、要求生成手段22aは、上記のように生成した記録要求 $D_{W1}(1)$ ・ $D_{W1}(2)$ ・ $D_{W2}(1)$ ・ $D_{W2}(2)$ を再生要求 D_{R1} ・ D_{R2} とともにスケジューリングするようスケジューリング手段22bは、第1の再指示を受けたスケジューリング手段22bは、第1の再生要求 D_{R1} →第1(1)の記録要求 $D_{W1}(1)$ →第2(1)の記録要求 $D_{W2}(1)$ →第2の再生要求 D_{R2} の順番にスケジューリングをする(図5、ステップS17)。なお、ここでスケジューリング対象から外れた記録要求 $D_{W1}(2)$ ・ $D_{W2}(2)$ は、次の記録要求 D_{W1} ・ D_{W2} として取り扱うようにしている。

【0021】一方、処理時間 T_{W1} が処理時間 T_{R1} 以内である場合(図5、ステップS15:Yes)は、上記第1の実施の形態と同様、要求生成手段22aが要求 D_{W1} ・ D_{W2} ・ D_{R1} ・ D_{R2} をスケジューリング手段22bに渡し、スケジューリング手段22bが第1の再生要求 D_{R1} →第1の記録要求 D_{W1} →第2の記録要求 D_{W2} →第2の再生要求0 (図5、ステップ18)。

【0022】以上のような手順によれば、図8(I) に示す" \mathbb{O} 第1の再生要求 D_{R1} "についての処理が完了したときには、図8(I) に示す" \mathbb{O} "第1(I) の記録要求 $D_{W1}(I)$ "についての処理も完了していることになり、また、図8(II)に示す"910 の再生要求 D_{R1} "についての処理が完了したときには、図8(II)に示す"910"第1010 の記録要求1110 での処理も完了していることになるため、要求発行待ち時間が生じない(1110 である。

【0023】なお、ここでは、記録要求 $D_{W1} \cdot D_{W2}$ をそれぞれ2つに分割することとしているが、このような分割数は3つ以上であってもかまわない。

【0024】また、記録処理よりも再生処理を優先するのが通常であるため、処理時間 T_{W1} が処理時間 T_{R1} 以内である場合(図5、ステップS15:Yes)は上記第1の実施の形態と同様の手順としているが、本発明はこれに限定されるものではない。すなわち、再生処理よりも記録処理を優先したいのであれば、処理時間 T_{W1} が処理時間 T_{R1} 以内である場合、再生要求 $D_{R1} \cdot D_{R2}$ をそれぞれ分割すればよい。

【0025】更に、ここでは、要求発行待ち時間が生じるという不具合を回避するために要求を分割することとしているが、本発明はこれに限定されるものではない。例えば、データ長 L_W の方が記録用バッファ B_W のサイズより大きい場合やデータ長 L_R の方が再生用バッファ B_R のサイズより大きい場合に、これらデータ長 L_W ・

 L_R をそのまま要求 $D_{W1} \cdot D_{R1}$ において指定するとバッファ B_W $\cdot B_R$ に対する書き込みエラーが生じるという不具合を回避するため、記録要求 $D_{W1} \cdot D_{W2}$ 或いは再生要求 $D_{R1} \cdot D_{R2}$ をそれぞれ分割するようにしてもかまわない。

【0026】更に、上記の説明では、記録要求か再生要 求のいずれか一方を分割することになるが、本発明はこ れに限定されるものではない。例えば、記録データのビ ットレートと再生データのビットレートとが異なる場合 (後述する) には、記録要求と再生要求の両方を分割す るようにしている。すなわち、上記と同様の手順で第1 の記録要求DW1・第2の記録要求DW2・第1の再生要求 DR1・第2の再生要求DR2を生成(図5、ステップS1 3・ステップS23) した要求生成手段22aは、第1 の記録要求DW1及び第2の記録要求DW2をそれぞれm個 に分割することによって、第1(1)の記録要求DW1(1) ~第1(m) の記録要求Dw1(m) 及び第2(1) の記録要求 Dw2(1) ~ 第2(m) の記録要求Dw2(m) を生成するとと もに、第1の再生要求DR1及び第2の再生要求DR2をそ れぞれ n 個に分割することによって、第1(1)の再生要 求D_{R1}(1) ~第1(n) の再生要求D_{R1}(n) 及び第2(1) の再生要求D_{R2}(1) ~第 2 (n) の再生要求D_{R2}(n) を生 成する。この場合のスケジューリング例(但しm<n) を以下に示す。

[0027]

 $D_{R1}(n) \rightarrow D_{R2}(n)$

このようにすれば、記録データのビットレートと再生データのビットレートとが異なる場合であっても、記録要求と再生要求の両方を適切な数に分割することによって、第1(1) の記録要求 $D_{W1}(1)$ の処理時間の方が第1(1) の再生要求 $D_{R1}(1)$ の処理時間よりも長くならないように、また、第2(1) の記録要求 $D_{W2}(1)$ の処理時間の方が第2(1) の再生要求 $D_{R2}(1)$ の処理時間よりも長くならないようにすることができる。

【0028】なお、上記適切な数を決定するためには記録データ及び再生データのビットレートを検出する必要があるが、このような検出技術は公知である為ここでは説明を省略する。

【0029】また、ここではm < nを前提としているため、上記スケジューリング例においてm+1行目以降に発行されるのは再生要求だけとなるが、アプリ $21\cdot 2$ 3が記録要求 D_W および再生要求 D_R を連続して発行する状況下では、これら再生要求 D_{R1} (m+1) $\sim D_{R1}$ (n) 及 σ 0 σ 1 σ 2 σ 3 σ 3 σ 4 σ 50 σ 70 σ 70

てスケジューリングするようにしている。(第3の実施の形態)上記第1及び第2の実施の形態では、記録要求 D_W と再生要求 D_R とを同時に受けた場合の処理手順を説明したが、本実施の形態では、記録要求 D_W を受けたタイミングと再生要求 D_R を受けたタイミングとが異なる場合の処理手順を図3に従って上記第2の実施の形態

【0030】まず、第1の記録要求 D_{W1} と第2の記録要求 D_{W2} とを生成(図6、ステップS $31 \rightarrow$ S $32 \rightarrow$ S3)した要求生成手段22aは、この第1の記録要求 D_{W1} の処理時間を要求処理時間予測部25に問い合わせるとともに、後述する発生時間を要求発生時間予測部26に問い合わせる。

と異なる点のみ説明する。

【0031】上記問い合わせを受けた要求処理時間予測部 25 は、第1 の記録要求 D_{W1} の処理時間 T_{W1} を予測して要求生成手段 22 a に返し(図6、ステップ 83 4)、上記問い合わせを受けた要求発生時間予測部 26 は、再生アプリ 23 が次に再生要求 D_R を発行するまでの時間を予測し、この予測結果を発生時間 T_P D_R として要求生成手段 22 a に返す(図6、ステップ 83 5)。発生時間 T_P D_R の予測方法としては、リードキャッシュ C_R における映像音声データの消費量を時間とともに管理する方法や、映像音声データに記録されているビットレート情報を用いる方法など様々ある。

【0032】ここで、要求生成手段22aは、処理時間 TW1と発生時間TP __DR とを比較し、処理時間TW1が 発生時間 T_P __D_R を越える場合(図 6、ステップ S 3 6:No)には第1の記録要求Dw1を2つに分割する (図6、ステップS37)。すなわち要求生成手段22 aは、第1の記録要求DW1に基づいて、発生時間TP _ DR に比べ処理時間の短い第1(1) の記録要求DW1(1) とその残余である第1(2)の記録要求Dw1(2)とを生成 した後、これら記録要求DW1(1) · DW1(2) を第2の記 録要求Dw2とともにスケジューリングするようスケジュ ーリング手段22bに指示する。この指示を受けたスケ ジューリング手段22bは、第1(1)の記録要求D w1(1) →第1(2) の記録要求Dw1(2) →第2の記録要求 Dw2の順番にスケジューリングをした後これら要求Dw1 (1) · Dw1(2) · Dw2を発行するよう要求発行手段22 cに指示し、この指示を受けた要求発行手段22cは、 上記順番に従って先ず第1(1)の記録要求DW1(1)を発 行する(図6ステップS38→S39、図9(I) ①及び 図9(II)①) 上記第1(1) の記録要求Dw1(1) について の処理が完了すると、通常は、要求発生時間予測部26 が予測した通り、再生アプリ23によって発行された再 生要求DR が第1の再生要求DR1及び第2の再生要求D R2として要求発行手段22cに渡される(図6、ステッ プS 5 1 → S 5 2 → S 5 3 → S 4 0 : Y e s) 。そこ で、要求発行手段22cは、第1の再生要求DRIを発行 した後ただちに第1(2)の記録要求DW1(2)を発行し、

これら要求 $D_{R1} \cdot D_{W1}$ (2) についての処理が完了すると、第2の記録要求 D_{W2} を発行した後ただちに第2の再生要求 D_{R2} を発行する(図6ステップS41、図9(I) ② → ② → ③ → ③)。

【0033】しかしながら、ユーザによって再生が停止された場合等、上記第1(1)の記録要求 D_{W1} (1)についての処理が完了しても、再生アプリ23によって再生要求 D_R が発行されない場合もある(図6、ステップS40:No)。この場合、要求発行手段22cは、先ず第1(2)の記録要求 D_{W1} (2)についての処理が完了すると第2の記録要求 D_{W2} を発行する(図6ステップS42、図9(II)②→③)。

【0034】一方、処理時間 T_{W1} が発生時間 T_{P} _ D_{R} 以内である場合(図6、ステップS36:Yes)は、要求生成手段22aが、記録要求 D_{W1} ・ D_{W2} をスケジューリングするようスケジューリング手段22bが、第1の記録要求 D_{W1} →第2の記録要求 D_{W2} の順番にスケジューリング(図6、ステップS43)をした後、これら記録要求 D_{W1} ・ D_{W2} を発行するよう要求発行手段22 cに指示する。そして、この指示を受けた要求発行手段22 cに指示する。そして、この指示を受けた要求発行手段22 cに指示する。そして、この指示を受けた要求発行手段27 cに指示する。そして、この指示を受けた要求発行手段22 cに指示する。そして、この指示を受けた要求発行手段22 cに指示する。そして、この指示を受けた要求発行手段22 cに指示する。そして、この指示を受けた要求発行手段24 cに分の第1の記録要求 D_{W1} についての処理が完了すると第2の記録要求 D_{W2} を発行する(図6ステップS4A→S4A5:A7、図10(I) A0→A2)。

【0035】但し、上記第2の記録要求D $_{W2}$ についての処理が完了するまでに、再生アプリ23が次の再生要求 D_R を発行する可能性がある場合(図6、ステップS45:Yes)は、図10(II)に示すように、先ず第1の30 再生要求 D_{R1} についての処理を実行し、この処理が完了すると、第2の記録要求 D_{W2} についての処理と第2の再生要求 D_{R2} についての処理とを実行するようにしている(図6、ステップS46、図10(II)② \rightarrow ③ \rightarrow ③ $^{\circ}$)。なお、上記可能性があるかないかは、第2の記録要求 D_{W2} についての処理時間 T_{W2} を処理時間予測部25が予測するようにし、この処理時間 T_{W2} と発生時間 T_{P} D_{R} とを比較すれば判定可能である。

【0036】以上のような手順によれば、再生アプリ23より再生要求 D_R を受けたときには、この再生要求 D_R 40 Rを第1の再生要求 D_{R1} として直ちに発行できる。

【0037】なお、ここでは、記録要求 D_W のみを受けている状況を前提としているため、処理時間 T_{W1} と発生時間 T_{P} $_{D}$ $_{R}$ $_{R}$ とを比較することとしているが、再生要求 D_{R} のみを受けている状況では、第1 の再生要求 D_{R1} の処理時間 T_{R1} $_{R1}$ $_{R1}$ $_{R2}$ $_{R3}$ $_{R4}$ $_{R4}$

50 [0038]

【発明の効果】本発明によれば、ディスク装置の性能を 最大限に引き出すことができ、実効転送速度を理論値で 最大100%、通常のディスク装置のスペック値でも最 大30%程度改善できる。

【0039】近い将来、映像音声データを記録する装置 には、可搬性の大容量メディアとして代表的な光ディス ク装置が標準となることが予想され、その使用方法とし て、複数の番組を同時に録再したいという要望が出てく るものと考えられる。このとき、本発明を適用すること によって、1台のディスク装置に対して実行する記録/ 10 再生の本数を増やすことができる。例えば録再が同時に 1本ずつしかできない従来のディスク装置では、その実 効転送速度を30%改善することによって、記録1本と 再生2本とを同時に実行できるようになる。

【0040】また、映像音声データ記録再生装置のよう な民生機器では、パーソナルコンピュータのように、接 続するディスク装置の選択幅や増設を考えて高速なデー タバスを用いる必要がない。すなわち、どのようなデー タバスを用いるかはディスク装置の転送速度に合わせて 決定すればよいため、データバス周辺回路のコストを削 20 22b スケジューリング手段 減できる。

【0041】以上のように、ディスク装置の性能を最大 限に引き出すことができる本発明の効果は大きい。

【図面の簡単な説明】

【図1】第1の実施の形態におけるデータ記録再生装置 の機能ブロック図である。

【図2】第2の実施の形態におけるデータ記録再生装置 の機能ブロック図である。

【図3】第3の実施の形態におけるデータ記録再生装置 の機能ブロック図である。

【図4】第1の実施の形態におけるフローチャートであ る。

【図5】第2の実施の形態におけるフローチャートであ

【図6】第3の実施の形態におけるフローチャートであ

る。

【図7】第1の実施の形態における各要求によって転送 されるデータの流れである。

【図8】第2の実施の形態における各要求によって転送 されるデータの流れである。

【図9】第3の実施の形態における各要求によって転送 されるデータの流れ(1/2)である。

【図10】第3の実施の形態における各要求によって転 送されるデータの流れ(2/2)である。

【図11】従来のデータ記録再生装置の機能ブロック図 である。

【図12】従来における各要求によって転送されるデー タの流れである。

【符号の説明】

10 エンコーダ

20 データ記録再生装置

2 1 記録アプリ

2 2 録再制御部

22a 要求生成手段

22c 要求発行手段

23 再生アプリ

24 データバス

2 5 要求処理時間予測部

要求発生時間予測部 26

3 0 ディスク装置

3 1 録再処理部

3 2 データ転送路

40 デコーダ

ライトキャッシュ *30* Cw

> リードキャッシュ C_R

記録用バッファ $\mathbf{B}\mathbf{w}$

 B_R 再生用バッファ

メディア M

【図1】

第1の実施の形態におけるデータ記録再生装置の補助機能プロック国

【図 2 】 第2の実施の形態におけるデータ記録再生装置の振鳴機能プロック図

【図3】

【図 7】 第1の実施の形態における各要求によって転送されるデータの流れ

【図4】 第1の実施の形態におけるフローチャート

【図5】

【図6】

【図11】

従来のデータ記録再生装置の振路機能プロック図

【図8】

第2の実施の形態における各要求によって転送されるデータ

(I) " TW1>TR1" の場合

(II) " Tw1≦TR1"の場合

【図9】

第3の実施の形態における各要求によって転送されるデータの流れ(1/2)

(I)" Twi>TP__DR" 且つ" 再生要求DRあり" の場合

(II)" TW1>TP_DR" 且つ" 再生要求DRなし" の場合

【図10】

第3の実施の形態における各要求によって転送されるデータの流れ(2/2)

(1)" Tw1≦TP_DR"且つ"再生要求DRなし"の場合

(II)" TW1≦TP__DR" 且つ" 再生要求DRあり" の場合

【図12】

従来における各要求によって転送されるデータの流れ

フロントページの続き

(51) Int. Cl. ⁷

識別記号

F I

テーマコード(参考)

G 0 6 F 12/08

320

G 0 6 F 12/08

320

Fターム(参考) 5B005 JJ12 MM12 MM23 NN01 NN12

NN72

5D044 AB05 AB07 BC06 CC04 DE91 EF03 FG10 GK11 HL01

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.