Attorney's Docket No. SPO-611 MAIL STOP AMENDMENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

1

In re Application of:) Group Art Unit: 1714
SATOH; HIMENO; KAZAMA	Examiner: Tae H. Yoon
Serial No.: 10/088,347)
Filed: March 18, 2002)

For: PHOTO-CURABLE REPARATIVE MATERIAL FOR DENTAL USE

APPENDIX A

Please amend the claims as indicated according to 37 C.F.R. \$ 1.121 concerning a manner for making claim amendments.

- 1. (Original) A photocurable dental restorative comprising (i) 100 parts by weight of a polymerizable monomer, (ii) 0.01 to 5 parts by weight of a photopolymerization initiator of acylphosphine oxide, and (iii) 200 to 1900 parts by weight of an inorganic filler, wherein the inorganic filler (iii) is a mixed filler of:
- (A) irregular-shaped inorganic particles having an average particle size of not smaller than 0.1 μm but smaller than 1 μm ;
- (B) spherical inorganic particles having an average primary particle size of not smaller than 0.1 μm but not larger than 5 $\mu m \, ;$ and

BEST AVAILABLE COPY

(C) fine inorganic particles having an average primary particle size of not larger than 0.1 $\mu\text{m}\text{;}$

which are so blended as to satisfy the following mass ratios $\ensuremath{\mathfrak{D}}$ to $\ensuremath{\mathfrak{G}}$:

$$\bigcirc$$
 mA/(mB + mC) = 0.2 to 3

$$@ mB/(mB + mC) = 0.5 to 0.99$$

$$(mB + mC) = 0.01 \text{ to } 0.5$$

where mA, mB and mC are masses of the inorganic particles (A) to (C).

2. (Original) A photocurable dental restorative according to claim 1, wherein said mixed filler (iii) is obtained by so blending the inorganic particles (A) to (C) as to satisfy the following mass ratios ①' to ③';

①'
$$mA/(mB + mC) = 0.4 \text{ to } 2.3$$

②'
$$mB/(mB + mC) = 0.6 \text{ to } 0.9$$

$$3' \text{ mC/(mB + mC)} = 0.1 \text{ to } 0.4.$$

3. (Original) A photocurable dental restorative according to claim 1, wherein in said mixed filler (iii), a maximum size of aggregates of primary particles of the spherical inorganic

particles (B) and a maximum size of aggregates of primary particles of the fine inorganic particles (C) are not larger than 20 μ m, respectively, and a total amount of the aggregates thereof is not larger than 20% by volume of the whole mixed filler (iii).

- 4. (Original) A photocurable dental restorative according to claim 1, wherein said spherical inorganic particles (B) have an average primary particle size of not larger than 1 μm .
- 5. (Original) A photocurable dental restorative according to claim 1, wherein said fine inorganic particles (C) have an average primary particle size of from 0.05 to 0.09 μm .
- 6. (Original) A photocurable dental restorative according to claim 1, wherein said mixed filler (iii) has a volume of the pores of not smaller than 0.08 μm due to strongly aggregated particles of not larger than 0.1 cc/g.
- 7. (Original) A photocurable dental restorative according to claim 1, wherein said mixed filler (iii) has at least one distribution peak at a position of a particle size of not larger than 0.1 µm and at a position of a particle size of not smaller

(I)

than 0.1 μm but not larger than 1 μm , respectively, on particle size distribution based on the volume of particles, but has no distribution peak at a position of a particle size in excess of 5 μm .

8. (Currently amended) A photocurable dental restorative according to claim 1, wherein said acylphosphine oxide is represented by the following general formula (I) or (II)

(II)

$$\begin{bmatrix} R_2 & R_1 & & \\ & & & \\ R_3 & & & \\ & & & \\ R_4 & & R_5 \end{bmatrix}_2^O \xrightarrow{P} - R_6$$

wherein each of R_1 , R_2 , R_3 , R_4 and R_5 is any one of the groups selected from the group consisting of

a hydrogen atom,

a halogen atom,

an alkyl group,

an alkoxy group,

an alkylthio group, and

a substituted or unsubstituted an unsubstituted aryl group or a substituted aryl group substituted by at least one group selected from the group consisting of

a halogen atom,

an alkyl group and

an alkoxy group,

and each of R_6 and R_7 is any one of the groups selected from the group consisting of

a substituted or unsubstituted a substituted alkyl group or a substituted alkyl group substituted by at least one group selected from the group consisting of

a halogen atom,

an alkyl group and

an alkoxy group,

a substituted or unsubstituted a substituted alkenyl group or a substituted alkenyl group substituted by at least one group selected from the group consisting of

a halogen atom,

an alkyl group and

an alkoxy group, and

<u>a substituted or unsubstituted an unsubstituted aryl</u>

group or a substituted aryl group <u>substituted by at least</u>

one group selected from the group consisting of

an alkyl group and an alkoxy group.

9. (Original) A photocurable dental restorative according to claim 1, wherein said irregular-shaped inorganic particles (A) are treated for their surfaces with a silane coupling agent represented by the following general formula (III),

$$CH_{2} = CCO \xrightarrow{(R_{10})_{3-m}} (R_{10})_{3-m}$$

$$CH_{2} = CCO \xrightarrow{(CH_{2})_{n}} Si \xrightarrow{(R_{9})_{m}} (R_{9})_{m}$$

wherein R_8 is a hydrogen atom or a methyl group, R_9 is an alkoxy group, a chlorine atom or an isocyanate group, R_{10} is an alkyl group having 1 to 6 carbon atoms, m is an integer of 2 to 3, and n is an integer of 8 to 20,

and said fine inorganic particles (C) are treated for their surfaces with a silane coupling agent represented by the following general formula (IV),

$$CH_{2} = CCO \xrightarrow{(CH_{2})_{n}} Si \xrightarrow{(R_{13})_{3-m}} (IV)$$

$$CH_{2} = CCO \xrightarrow{(CH_{2})_{n}} Si \xrightarrow{(R_{12})_{m}} (R_{12})_{m}$$

wherein R_{11} is a hydrogen atom or a methyl group, R_{12} is an alkoxy group, a chlorine atom or an isocyanate group, R_{13} is an alkyl group having 1 to 6 carbon atoms, m is an integer of 2 to 3, and n is an integer of 2 to 3.

- 10. (Original) A photocurable dental restorative according to claim 1, wherein an amine compound is contained in an amount of from 0.01 to 5 parts by weight per 100 parts by weight of the polymerizable monomer (i).
- 11. (Original) A method of producing a photocurable dental restorative by preparing an inorganic filler by mixing:
- (A) irregular-shaped inorganic particles having an average particle size of not smaller than 0.1 μm but smaller than 1 μm ;
- (B) spherical inorganic particles having an average primary particle size of not smaller than 0.1 μm but not larger than 5 μm ; and
- (C) fine inorganic particles having an average primary particle size of not larger than 0.1 μm ;

so as to satisfy the following mass ratios $\ensuremath{\mathfrak{O}}$ to $\ensuremath{\mathfrak{G}}$:

①
$$mA/(mB + mC) = 0.2 \text{ to } 3$$

$$② mB/(mB + mC) = 0.5 to 0.99$$

$$(mB + mC) = 0.01 \text{ to } 0.5$$

where mA, mB and mC are masses of the inorganic particles (A) to (C),

and by mixing 100 parts by weight of a polymerizable monomer, 0.01 to 5 parts by weight of a photopolymerization initiator of

10 . . V

USSN 10/088,347 SATOH et al.

acylphosphine oxide, and 200 to 1900 parts by weight of said inorganic filler.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.