UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

Sannolikhetsteori 1

Rami Abou Zahra

Contents

1. Repetition - (K2.1)	2
1.1. Mängdlära	2
1.2. Begrepp	2
2. Regler för sannolikheter - (K2.2)	3
2.1. Kolmogorovs Axiom	3
$2.2. A^c$	5
2.3. B-A	5
3. Tolkning av sannolikheter	6
3.1. Sannolikhetsmåttet P	6
4. Betingade sannolikheten $P(A B)$	8
4.1. Oberoende utsagor	9

1. Repetition - (K2.1)

1.1. Mängdlära.

Tips för hela kursen! Rita venndiagram

1.2. Begrepp.

- Om A och B är disjunkta säger vi att de är **oförenliga**, dvs $A \cap B = \emptyset$
- A, B och C är disjunkta om $A \cap B = \emptyset$ och $A \cap C = \emptyset$ och $B \cap C = \emptyset$
- $\lambda \subseteq 2^{\Omega}$ är disjunkta om $A \cap B = \emptyset$ för alla $A, B \in \lambda$
- Sannolikhetsrum = (Ω, P)
- $x \in \Omega$: x är ett element/utfall i Ω
- $A\subseteq \Omega {:} A$ är en delmängd/händelse till Ω
- $2^{\Omega} = \{A : A \subseteq \Omega\}$, kallas även för potensmängden
- \bullet Ω är vår grundmängd/utfallsrum

Definition/Sats 1.1: Utfall, händelser, utfallsrum

Resultatet av ett slumpförsök kallas ett *utfall*. Mängden av möjliga utfall från ett visst slumpförsök kallas *utfallsrum*. En viss specifierad mängd utfall kallas för en *händelse*. Från detta följer det att ett utfall även är en händelse, precis som hela utfallsrummet också är en händelse

Det är viktigt här att notera att vi arbetar med mängder, och element i mängder behöver nödvändigtvis inte vara tal.

Det som är även viktigare att inse är att i den klassiska definitionen man kanske sett på högstadiet/gymnasiet så hade alla utfall "samma vikt", det vill säga om vi har totalt 2 möjliga utfall så har varje utfall en sannolikhet på $\frac{1}{2}$ att inträffa. Det som är fiffigt med denna definition är att det bilr enkelt att inse att sannolikheten för att hela utfallsrummet skall ske är 1 (vilket är något vi bevarar i vår definition), men verkligheten är lite annorlunda. Det kanske är så att sannolikheten för ett utfall faktiskt är $\frac{1}{6}$ men det andra är $\frac{5}{6}$.

Vi definierar följande:

Definition/Sats 1.2: Likformig sannolikhetsfördelning

Ett slumpexperiment med ändligt utfallsrum sägs ha $Likformig\ sannolikhetsf\"ordelning\ om\ alla$ utfall har samma sannolikhet.

Det vi noterar från definitionen ovan är att om vi har n:st utfall så kommer sannolikheten för varje utfall att vara $\frac{1}{n}$. Detta kallade vi för "klassiska" sannolikheten eftersom det är den man kanske klassiskt stött på, men faktum är att vi faktiskt definierar klassisk sannolikhet som just det:

Definition/Sats 1.3: Klassiska sannolikhetsdefinitionen

För ett slumpexperiment med ändligt utfallsrum och med likformig sannolikhetsfördelning gäller att sannolikheten för en händelse är lika med antalet utfall i händelsen dividerat med antalet utfall i utfallsrummet, dvs antalet gynnsamma utfall dividerat med antalet möjliga utfall.

Om händelsen A innehåller n(A) utfall och utfallsrummet har $n(\Omega)$ utfall gäller alltså att:

$$P(A) = \frac{n(A)}{n(\Omega)}$$

2. Regler för sannolikheter - (K2.2)

2.1. Kolmogorovs Axiom.

Ett **sannolikhetsmått** är en funktion $P:2^{\Omega} \to \mathbb{R}$ som uppfyller:

- $P(A) \ge 0 \quad \forall A \in 2^{\Omega}$
- $P(\Omega) = 1$ $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=0}^{\infty} P(A_i)$ om A_i är parvis disjunkta

Exempel:

Singla slant är det klassiska exemplet, där har vi 2 möjliga utfall (krona eller klave). Utfallsrummet Ω är mängden $\{krona, klave\}$

Ett rimligt antagande är att sannolikheten att landa på krona är $\frac{1}{2}$ och samma för klave, dvs $P(\{krona\})$

$$\frac{1}{2} \text{ och } P(\{klave\}) = \frac{1}{2}$$

$$P(\Omega) = 1, P(\emptyset) = 0$$

Exempel:

Singla slant 2 gånger

Utfallsrummet bör rimligtvis vara kopplad till föregående exempel:

$$\Omega = \{kr, kl\} \times \{kr, kl\} = \{(kr, kr), (kr, kl), (kl, kr), (kl, kl)\}$$

$$P(\{x\}) = \frac{1}{4}, P(\text{minst en krona}) = P\left(\{(kr, kr), (kr, kl), (kl, kr)\}\right) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

Exempel:

Singla slant n gånger:
$$\Omega = \{kr, kl\}^n$$

$$P(\lbrace x \rbrace) = \frac{1}{2^n} \quad \forall x \in \Omega, \quad P(A) = \sum_{x \in A} \frac{1}{2^n}$$

Singla slant
$$n$$
 gånger: $\Omega = \{kr, kl\}^n$

$$P(\{x\}) = \frac{1}{2^n} \quad \forall x \in \Omega, \quad P(A) = \sum_{x \in A} \frac{1}{2^n}$$

$$P(\text{exakt } k \text{st krona}) = \sum_{xx \text{ innehåller } k \text{ kronor } \frac{1}{2^n} = \binom{n}{k} \left(\frac{1}{2^n}\right)$$

Exempel:

Tärningskast är återigen ett klassiskt exempel, då är $\Omega = \{1, 2, 3, 4, 5, 6\}$

Är det en normal tärning så är sannolikheten för varje kast $\frac{1}{6}$, $P(\{x\}) = \frac{1}{6}$

Antag att jag har en riggad tärning sådant att ettan är ombytt till en sexa. Då kommer följande gälla: $P(\{1\}) = 0$ och $P(\{6\}) = \frac{1}{3}$

Sannolikheter ska man tänka som proportioner, som associerar en vikt till varje delmängd

Exempel:

Låt
$$\Omega = \mathbb{N}_+, P(\{n\}) = \frac{1}{2^n}$$

Eftersom
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$$
 gäller det att $P(\Omega) = 1$

Kopplar vi detta exempel till verkligheten så kan detta vara "hur stor är sannolikheten att slinga krona n gånger" eller "sannolikheten att slinga krona för första gången på n:te slinglen"

Exempel:

Vad är sannolikheten att tärningen hamnar på en sexa på n:te slinglen?

Jo,
$$P(\lbrace x \rbrace) = \underbrace{\left(\frac{5}{6}\right)^{n-1}}_{\text{alla andra siftror}} \cdot \frac{1}{6}$$

Exempel:

Slumpa ett reellt tal mellan 0 och 1:

$$\Omega = (0,1) \subseteq \mathbb{R}$$
, då är $P(A) =$ längden på intervallet $A = 1$

Notera att det inte spelar roll om det är ett öppet eller slutet intervall

Vill man räkna ut unionen av sannolikheten summerar man sannolikheterna:

$$P\left(\left[\frac{1}{2},\frac{1}{4}\right] \cup \left(\frac{3}{4},\frac{7}{8}\right)\right) = \frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$

Vad är då sannolikheten att vi slumpar ett rationellt tal mellan (0,1)? Vi får inte glömma att \mathbb{Q} är uppräknelig:

$$P(\mathbb{Q} \cap (0,1)) = P\left(\bigcup_{q \in \mathbb{Q} \cap (0,1)} \{q\}\right) = \sum_{q \in \mathbb{Q} \cap (0,1)} P(\{q\}) = 0$$

Hur ser P(irrationellt tal) ut?

$$P(\mathbb{Q}^{c} \cap (0,1)) \underbrace{(\mathbb{Q} \cap (0,1)) \cup (\mathbb{Q}^{c} \cap (0,1))}_{\text{disjunkta}} = \Omega$$

$$1 = P(\Omega) = \underbrace{P(\mathbb{Q} \cap (0,1))}_{=0} + P(\mathbb{Q}^{c} \cap (0,1)) \Rightarrow P(\text{irrationellt tal}) = 1 - 0 = 1$$

Exempel:

Ta en Riemann-integrerbar funktion $f:[0,1]\to\mathbb{R}$ så $\int_0^1 f(x)dx=1.$

Vi sätter
$$P(A) = \int_A f(x) dx$$

Exempel:

Tag enhetskvadraten $\Omega = [0,1]^2$, P(A) = arean. Slumpa ett tal i kvadraten

Definition/Sats 2.1: Diskreta Sannolikhetsrum

Sannolikhetsrummet (Ω, P) kallas för **diskret** om det finns en uppräknelig delmängd $A \subseteq \Omega$ så att:

$$P(B) = \sum_{x \in B \cap A} P(\{x\})$$

Alternativ beskrivning:

$$\exists A \subseteq \Omega :$$

$$\sum_{x \in A} P(\{x\}) = 1$$

Definition/Sats 2.2: Kontinuerliga Sannolikhetsrum

Icke-diskreta sannoliketsrum (förutom blandade osv, men vi kommer inte arbeta med dessa ändå)

2.2. A^c .

Med komplementet menar vi $x \in A^c \Leftrightarrow x \in A \text{ där } (x \in \Omega, A \subseteq \Omega)$

$$P(A \cup A^c) = P(\Omega) = 1 = P(A) + P(A^c) \Rightarrow P(A^c) = 1 - P(A)$$

2.3. **B-A.**

$$x \in B \setminus A \Rightarrow x \in B \land x \notin A$$

$$\Rightarrow x \in B \land x \in A^{c}$$

$$x \in B \cap A^{c}$$

$$P(B) = P(A \cap B) + P(B \setminus A) \Rightarrow P(B \setminus A) = P(B) - P(A \cap B)$$

$$\Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3. Tolkning av sannolikheter

Om vi tar exemplet att singla slant. Vad betyder det att sannolikheten är $\frac{1}{2}$?

Man kan tolka det som att "det finns 2 fall, och båda har lika stor chans att inträffa"

Eller en mer data-inriktad tolkning, det vill säga om man singlar slant 100ggr, kommer ungefär hälften av kasten resultera i krona eller klave.

Det finns däremot tolkningar via Kolmogorovs axiom, det vill säga:

- P(A) = p betyder att A utgör p enheter av utfallsrummet Ω
- Om vi upprepat slumpar ett $x \in \Omega$ så kommer tillslut $x \in A$ inträffa med frekvens p (stora talens lag)

3.1. Sannolikhetsmåttet P.

Uppfyller följande:

- $P(A^c) = 1 P(A)$
- $P(\emptyset) = P(\Omega^c) = 1 P(\Omega) = 1 1 = 0$
- A, B disjunkta gäller $P(A \cup B) = P(A \cup B \cup \emptyset \cdots)$ (ty axiomet säger att vi skall ha oändliga disjunkta par, vi kan därför fylla ut med oändligt många tomma mängder) $\Rightarrow P(A) + P(B)$
- $P(B \setminus A) = P(B) P(A \cap B)$
- Om $A \subseteq B$ så gäller $A \cap B = A$ och $P(B \setminus A) = P(B) P(A)$
- Om $P(B \setminus A) \ge 0$ så $A \subseteq B \Rightarrow P(A) \le P(B)$
- $P(A \cup B) = P(A) + P(B) \underbrace{P(A \cap B)}_{\geq 0}$
- $P(A \cup B) \le P(A) + P(B)$ (Booles olikhet)

Definition/Sats 3.1

Om $A_1 \subseteq A_2 \subseteq \cdots \subseteq \Omega$ så gäller

$$P(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} P(A_n)$$

Kallas även för att sannolikhetsmåttet är kontinuerligt ovanifrån

Bevis 3.1: Bevis av föregående sats

$$\underbrace{A_1}_{B_1}, \underbrace{A_2 \setminus A_1}_{B_2}, \underbrace{A_3 \setminus A_2}_{B_3} \cdots \underbrace{A_{n+1} \setminus A_n}_{B_{n+1}}$$

 B_i är disjunkta, och följande gäller:

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$$

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} P(B_i) = \lim_{n \to \infty} (P(B_1) + P(B_2) + P(B_3) + \dots + P(B_n))$$

$$\Leftrightarrow \lim_{n \to \infty} (P(A_1) + (P(A_2) - P(A_1)) + (P(A_3) - P(A_2)) + \dots + (P(A_n) - P(A_{n-1})))$$

$$\Leftrightarrow \lim_{n \to \infty} P(A_n)$$

Definition/Sats 3.2

Låt $A_3 \subseteq A_2 \subseteq A_1 \cdots \subseteq \Omega$:

$$P\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} P(A_n)$$

Lemma 3.1: De morgans lagar

- $\bullet \ \left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$ $\bullet \ \left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} A_i^c$

Bevis 3.2: Bevis av Lemma

$$x \in \left(\bigcup_{i=1}^{\infty} A_i\right)^c \Leftrightarrow x \notin \bigcup_{i=1}^{\infty} A_i$$
$$\Leftrightarrow x \notin A_i \quad \forall i$$
$$\Leftrightarrow x \in A_i^c \quad \forall i$$
$$\Leftrightarrow x \in \bigcap_{i=1}^{\infty} A_i^c$$

Bevis 3.3: Bebis av sats

Vi har $A_1^c \subseteq A_2^c \subseteq A_3^c \subseteq \cdots$:

$$\begin{split} P\left(\bigcap_{i=1}^{\infty}A_i\right) &= 1 - P\left(\left(\bigcap_{i=1}^{\infty}A_i\right)^c\right) = 1 - P\left(\bigcup_{i=1}^{\infty}A_i^c\right) \\ \Rightarrow 1 - \lim_{n \to \infty}P(A_i^c) &= \lim_{n \to \infty}(1 - P(A_i^c)) = \lim_{n \to \infty}P(A_n) \end{split}$$

4. Betingade sannolikheten P(A|B)

Definition/Sats 4.1: Betingade sannolikheten

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \text{Sannolikheten för } A \text{ givet } B \text{ förutsatt att } P(B) > 0 \text{ och } P(A) > 0$$

Detta är sannolikheten att $x \in A$ givet att $x \in B$

Exempel:

Låt
$$\Omega = \{1, 2, 3, 4, \dots\}, P(\{n\}) = \frac{1}{2^n}$$

Detta sade vi kunde representera antalet slantsinglingar som krävs för att landa på krona (eller klave) Säg nu att vi sätter det här B = första försöket landar på klave = $\{1\}^c = \{2, 3, 4, 5, \cdots\}$

Vi förväntar oss att P(1|B) = 0 (B gäller, alltså att vi har fått klave på första försöket, men då gäller det att det inte finns någon chans att vi får krona på första försöket)

Med motiveringen över gäller $P(2|B) = \frac{1}{2}$ och följande:

$$P(n|B) = \frac{1}{2^{n-1}} = \frac{P(\{n\} \cap B)}{P(B)} = \frac{P(\{n\})}{1/2} = 2P(n) = 2 \cdot \frac{1}{2^n} = \frac{1}{2^{n-1}}$$

Vi kan definiera ett sannolikhetsmått $Q: 2^B \to \mathbb{R}$ (för något $B \in \Omega$) och $Q(A) = \frac{P(A)}{P(B)}$ = betingade sannolikheten

Mer generellt kan vi definiera $Q: 2^{\Omega} \to \mathbb{R}$ genom $Q(A) = \frac{P(A \cap B)}{P(B)}$ (med andra ord, den betingade sannolikheten)

För att visa att Q är ett sannolikhetsmått måste vi visa att den uppfyller Kolmogorovs axiom:

- $P(A) \ge 0 \quad \forall A \in 2^{\Omega}$
- $P(\Omega) = 1$ $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=0}^{\infty} P(A_i)$ om A_i är parvis disjunkta

Detta kommer inte vara så svårt, om vi visar det för $Q: 2^{\Omega} \to \mathbb{R}$ så har vi visat det för $Q: 2^{B} \to \mathbb{R}$. Vi visar första axiomet:

$$Q(A) = \frac{P(A \cap B)}{P(B)} \ge 0 \quad \forall A \in 2^{\Omega}$$

Andra axiomet:

$$Q(\Omega) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

Tredje axiomet:

Antag A_1, A_2, \cdots disjunkta. Då är $B \cap A_1, B \cap A_2, \cdots$ också disjunkta. Vi vill räkna följande:

$$Q\left(\bigcup_{i=1}^{\infty} A_i\right) = \frac{P\left(\left(\bigcup_{i=1}^{\infty} A_i\right) \cap B\right)}{P(B)}$$

Notera:

$$\left(\bigcup_{i=1}^{\infty}A_{i}\right)\cap B=\bigcup_{i=1}^{\infty}(A_{i}\cap B)\text{ ty f\"oljande:}$$

$$x\in\left(\bigcup_{i=1}^{\infty}A_{i}\right)\cap B\Rightarrow x\in A_{i}\text{ f\"or n\'agot }i\text{ och }x\in B$$

$$\Leftrightarrow x\in A_{i}\cap B\text{ f\"or n\'agot }i$$

$$\Leftrightarrow x\in\bigcup_{i=1}^{\infty}(A_{i}\cap B)$$

Vi får då:

$$Q\left(\bigcup_{i=1}^{\infty} A_i\right) = \frac{P(\bigcup_{i=11}^{\infty} A_i \cap B)}{P(B)} = \frac{\sum_{i=1}^{\infty} P(A_i \cap B)}{P(B)} = \underbrace{\frac{\sum_{i=1}^{\infty} P(A_i \cap B)}{P(B)}}_{Q(A_i)} = \underbrace{\sum_{i=1}^{\infty} Q(A_i)}_{Q(A_i)}$$

Nu följer det till exempel att:

- $P(A^c|B) = 1 P(A|B)$
- $P(A \cup C|B) = P(A|B) + P(C|B) P(A \cap C|B)$ Om $A \cap B \subseteq A_2 \cap B \subseteq A_2 \cap B \subseteq \cdots$ så gäller $P(\bigcup_{i=1}^{\infty} A_i|B) = \lim_{n \to \infty} P(A_n|B)$

4.1. Oberoende utsagor.

Antag att P(A) > 0 och P(B) > 0. Vi säger att A och B är **oberoende** om P(A|B) = P(A) och P(B|A) = P(B)

Anmärkning:

 $P(B|A) = P(B) \Leftrightarrow P(A|B) = P(A)$. Kan bevisas genom Bayes sats.

Ytterliggare något att notera är att oberoende är ej en ekvivalensrelation ty den är ej transitiv.

Exempel:

Singla slant 2ggr, $\Omega = \{kr, kl\}^2$.

Vi ansätter A =första försöket ger krona $= \{(kr, kr), (kr, kl)\}$

Vi ansätter $B = \text{andra f\"ors\"oket ger krona} = \{(kl, kr), (kr, kr)\}$

Vi får då följande:

$$P(A) = \frac{1}{2} = P(B) \qquad P(A \cap B) = P(kr, kr) = \frac{1}{4}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/4}{1/2} = \frac{1}{2} = P(A)$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{1/4}{1/2} = \frac{1}{2} = P(B)$$

 $\Rightarrow A$ och B är oberoende

Exempel:

Låt $\Omega =$ Uppsalas vuxna befolkning.

Låt
$$A = \{Man\}$$
 $B = \{Bruna \ddot{o}gon\}$ $C = \{\ddot{O}ver 170cm\}$

Avgör vilka som är oberoende

Definition/Sats 4.2: Bayes sats

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Bevis 4.1: Bays sats

$$\frac{P(A|B)P(B)}{P(A)} = \frac{\frac{P(A\cap B)}{P(B)}P(B)}{P(A)} = \frac{P(A\cap B)}{P(A)} = P(B|A)$$

Definition/Sats 4.3

Om A&B är oberoende så $\Leftrightarrow A^c\&B$ oberoende $\Leftrightarrow A\&B^c$ oberoende $\Leftrightarrow A^c\&B^c$ oberoende

Bevis 4.2

Antag A&B är oberoende. Antag även att $P(A)>0, P(B)>0, P(A^c)>0, P(B^c)>0Q(A)=P(A|B)$ är ett sannolikhetsmått, då gäller:

$$Q(A^c) = 1 - Q(A)$$

Det vill säga:

$$P(A^c|B) = 1 - \underbrace{P(A|B)}_{P(A)} = 1 - (P(A)) = P(A^c) \Rightarrow A^c \& B$$
 är oberoende

Alla andra riktningar/implikationer följer på samma vis.

Definition/Sats 4.4: Enkel liten sats

A&B är oberoende $\Leftrightarrow P(A \cap B) = P(A)P(B)$

Bevis 4.3: Enkel liten sats

$$P(A|B) = P(A) \Leftrightarrow \frac{P(A \cap B)}{P(B)} = P(A) \Leftrightarrow P(A \cap B) = P(A)P(B)$$

Definition/Sats 4.5: Oberoende (part 2)

Detta är definitionen av oberoende vi i princip alltid kommer använda: A och B är oberoende om $P(A \cap B) = P(A)P(B)$

Anmärkning:

Vad hännder om P(A) eller P(B) är 0?

Antag att P(A) = 0, eftersom $A \cap B \subseteq A \Rightarrow 0 \leq P(A \cap B) \leq P(A) = 0$

Detta ger då att $P(A \cap B) = 0 = P(A \cap B) = 0 \cdot P(B)$

Men då betyder det att A och B alltid är oberoende om P(A) = 0

Anmärkning:

Vad händer om P(A) = 1?

Rimligtvis borde $P(A \cap B) = 1 \cdot P(B) = P(B)$. Detta sker:

$$A \subseteq A \cup B \Rightarrow 1 = P(A) \le P(A \cup B) \le 1 \Rightarrow P(A \cup B) = 1$$

$$\underbrace{P(A \cup B)}_{1} = \underbrace{P(A)}_{1} + P(B) - P(A \cap B)$$

$$P(B) - P(A \cap B) = 0 \Leftrightarrow P(A \cap B) = P(B) = P(B)P(A)$$

 $Om\ P(A) = 1$ så är A och B alltid oberoende, alltså kan vi utöka Sats 4.3 till godtyckliga hänelser A och

Definition/Sats 4.6: Oberoende i flera variabler

$$S \subseteq 2^{\Omega}$$
 är obereonde om $A_1, \dots, A_n \in S \Rightarrow P(A_1 \cap \dots \cap A_n) = P(A_1) \cdot \dots \cdot P(A_n)$

Exempel:

Säg att vi har en mängd $\{A, B, C\}$, mängden är obereonde om $P(A \cap B) = P(A)P(B)$ samt $P(A \cap C) = P(A)P(B)$ P(A)P(C) samt $P(B \cap C) = P(B)P(C)$ och $P(A \cap B \cap C) = P(A)P(B)P(C)$

Sista likheten är vitkig, ty om vi antar de 3 andra likheterna (parvis oberoende) är helt annat än full oberoende.

Exempel:

Låt
$$\Omega = \{1, 2, 3, 4\}, P(n) = \frac{1}{4} \text{ samt } A = \{1, 2\}, B = \{1, 3\}, C = \{2, 3\}$$

$$P(A \cap B) = \frac{1}{4} = P(B \cap C) = P(A \cap C) \Rightarrow \text{ parvis oberoende}$$

Exempel: Låt $\Omega = \{1, 2, 3, 4\}$, $P(n) = \frac{1}{4}$ samt $A = \{1, 2\}$, $B = \{1, 3\}$, $C = \{2, 3\}$ Först och främst, $P(A) = \frac{1}{2} = P(B) = P(C)$ $P(A \cap B) = \frac{1}{4} = P(B \cap C) = P(A \cap C) \Rightarrow \text{parvis oberoende}$ Om vi kollar sista grejen man måste kolla för obereonde, $P(A \cap B \cap C) = P(\emptyset) = 0$, men P(A)P(B)P(C) = 1 $\frac{1}{8} \neq 0,$ alltså ej oberoende i alla variabler.

Anmärkning:

Om A, B, C är parvis oberoende så är inte A, B, C nödvändigtvis oberoende, men om vi lägger till att Aoch $B \cap C$ är oberoende, så är A, B, C oberoende.

Detta gäller eftersom $P(A \cap (B \cap C)) = P(A)P(B \cap C) = P(A)P(B)P(C)$

Exempel:

Det är 22 personer i klassrummet, vad är sannolikheten att alla i klassrummet har olika födelsedagar? Vi kommer behöva göra några antaganden för att göra det här lite lättare för oss.

Vi betecknar $A_n = \text{person } 1, \dots, n$ har olika födelsedagar. Det vi söker är A_{22} (22 är en speciell siffra för det här problemet).

Antaganden:

- Antag att $P(A_1) = 1$ (uppenbart att en person har samma födelsedag som en person) $P(A_{n+1}|A_n) = \frac{365 n}{365}$ lika stor sannolikhet att födas på alla dagar (inga skottår i vår miljö)

Notera,
$$A_{n+1} \subseteq A_n \Rightarrow A_n \cap A_{n+1} = A_{n+1}$$
 samt $P(A_{n+1}|A_n) = \frac{P(A_{n+1})}{P(A_n)}$

Vi har då
$$P(A_{22}) = P(A_{22}|A_{21})P(A_{21}) = P(A_{22}|A_{21})P(A_{21}|A_{20})P(A_{20})$$

= $\cdots = \underbrace{P(A_{22}|A_{21})}_{\frac{344}{365}} \cdots = \frac{364!}{343!365^{21}} \approx 0.52$

Detta var för
$$P(A_{22})$$
, för $P(A_n) = \frac{364!}{(365-n)!365^{n-1}}$

Vi sade även att 22 var ett speciellt tal, detta ty $P(A_{23}) \approx 0.49$, alltså där vi bryter 50 procent steget.

Exempel:

Antag att 80 procent av klassen gjorde inlämningsuppgifterna. Av de som gjorde inlämningsuppgifterna, så klarade 90 procent tentamen. Av de som inte gjorde inlämningsuppgifterna klarade 70 procent tentamen.

- Hur stor andel klarade tentamen?
- Hur stor andel av de som klarade tentamen hade gjort inlämningsuppgifterna?

Strategin här går ut på att skriva om uppgiften i matte-termer.

 $\Omega = \text{klassen}, A = \text{de som gjorde inlämningsuppgifterna}$

 $B = \text{de som inte gjorde inlämningsuppgifterna} = A^c$

C =de som klarade tentamen

Det vi har givet är att P(A) = 0.8, samt att $P(B) == P(A^c) = 0.2$, P(C|A) = 0.9, $P(C^c|B) = 0.7$ $P(C^c|A^c)$

Vi söker P(C). Vi vet även att $A \cup B$ samt att $A \cap B = \emptyset$ (disjunkta).

Vi får då att $(A \cap C) \cup (B \cap C) = C$ samt $(A \cap C) \cap (B \cap C) = \emptyset$

Vi skriver om $P(C) = P((C \cap A) \cup (C \cap B)) = \underbrace{P(A \cap C)}_{P(C|A)P(A)} + \underbrace{P(B \cap C)}_{P(C|B)P(B)}$

$$P(C|A)P(A)$$
 $P(C|B)P(B)$

$$\Rightarrow 0.9 \cdot 0.8 + 0.7 \cdot 0.2 = 0.86 = P(C)$$

Nästa uppgift söker efter P(A|C). Här kan vi använda Bayes sats:

$$P(A|C) = \frac{P(C|A)P(A)}{P(C)} = \frac{0.9 \cdot 0.9}{0.86} \approx 0.837$$

Man kan tänka på det på följande sätt:

Figure 1.

Från högstadiet kanske vi minns att om vi vill veta sannolikheten att C-A-C och C-B-C inträffar så multiplicerar viP(C)P(A)P(C)och adderar produkten P(C)P(B)P(C),men detta är ju precis det vi har ägnat föreläsningen åt!

Figure 2.

Definition/Sats 4.7: Lagen om total sannolikhet

Antag att A_1, \dots, A_n är disjunkta och $B \subseteq \bigcup_{i=1}^n$. Då är:

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Specialfall: $A \cap A^c \Rightarrow P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)$