Матан третья домашка.

Шахматов Андрей, Б02-304 28 апреля 2024 г.

Содержание

1	T.25	2
2	T.29	3
3	8.3	3
4	8.4	3
5	T.36	3
6	4.18	4
7	4.19	4
8	8.13	4
9	7.24	5
10	7.26	5
11	8.33	5
12	8.34	6
13	8.35	6
14	9.29	6
15	10.3	6
16	10.4	6
17	10.9	6
18	10.10	6

19	0.12	7
20	0.15	7
21	0.16	7
22	0.17	7
23	0.24	7
24	0.30	7
25	2.12	7
26	7.6	7
27	7.7	8
28	7.8	8
29	7.9	8
30	7.11	8
31	7.12	8
32	7.16	9
33	7.17	9
34	7.19	9
35	7.22	10

1 T.25

Такое множество является объединением двух множеств $X = X_1 \cup X_2$:

$$X_1 = \{(x, y) \mid x \in \mathbb{Q}\}\$$

$$X_2 = \{(x, y) \mid x \in \mathbb{Q}\}$$

В свою очередь X_1 :

$$X_1 = \bigcup_{x \in \mathbb{Q}}^{\infty} \{ (x, y) \mid y \in \mathbb{R} \}$$

Так как $\{(x,y)\mid y\in\mathbb{R}\}$ по существу является прямой, то оно измеримо с мерой 0. Тогда X_1 в силу счётной аддитивности тоже измеримо с мерой 0. Аналогично измеримо и X_2 . Тогда X измеримо так как является объединением измеримых.

2 T.29

Рассмотрим множество конечной меры, тогда его можно приблизить элементарным $K = \sum_{k=1}^{n} P_k$, где P_k - промежутки, так, что $\mu(X \triangle K) < \varepsilon$. Тогда имеем:

$$\mu(X \setminus X + t) \le \mu(X \triangle K) + \mu(X + t \triangle K + t) + \mu(K \triangle K + t)$$

Из этого следует, что достаточно доказать для элементарного K. Возьмём t меньше, чем $\min dist(P_i, P_j)$. Тогда верно:

$$\mu(K\triangle K + t) = \sum_{k=1}^{n} \mu(P_k \triangle P_k + t) \le \sum_{k=1}^{n} 2t = 2nt$$

Тогда взяв $t < \frac{\varepsilon}{2n}$ получу нужное неравенство.

3 8.3

$$f^{-1}(\{+\infty\}) = \bigcap_{i=1}^{\infty} f^{-1}((i, +\infty])$$
$$f^{-1}(\{-\infty\}) = A \setminus \bigcup_{i=1}^{\infty} f^{-1}((-i, +\infty])$$
$$f^{-1}(\mathbb{R}) = A \setminus (f^{-1}(\{-\infty\}) \cup f^{-1}(\{+\infty\}))$$

4 8.4

$$f^{-1}((a,b)) = f^{-1}((a,+\infty]) \setminus \left(\bigcap_{i=1}^{\infty} f^{-1}((b-\frac{1}{i},+\infty])\right)$$

5 T.36

Нужно доказать измеримость множества:

$$X = \{x \in X \mid f'(x) < c\} = \left\{ x \in X \mid \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} < c \right\} = \left\{ x \in X \mid \exists n \, f\left(x + \frac{1}{n}\right) - f(x) < \frac{c}{n} \right\}$$

Представим ввиде объёдинения:

$$= \bigcup_{n=1}^{\infty} \left\{ x \in X \mid f\left(x + \frac{1}{n}\right) - f(x) < \frac{c}{n} \right\}$$

Теперь, так как f(x) - измерима, то и $f(x+\frac{1}{n})$ - измерима. Также так как сумма измеримых измерима, то $f(x+\frac{1}{n})-f(x)$ - измерима. Тогда получим, что множество X - измеримо как счётное объединение измеримых.

$6 \quad 4.18$

Так как функция монотонна, то у неё могут быть разрывы только первого рода, тогда пусть функция разрывна в точке x, из монотонности следует, что $f(+x) < f(t), t \in [a,x)$. И также $f(t) \le f(x-), t \in (x,b]$. Тогда $f([a,b]) \cap (f(x-),f(+x)) \subset \{f(x)\}$ - противоречие с всюду плотнотью.

7 - 4.19

Рассмотрим множество A - множество Кантора, вспомним, что множество Кантора является множеством всех чисел, троичная запись которых не содержит единицу, тогда для $\forall x \in A$:

$$x = \sum_{n=1}^{\infty} \frac{2a_n}{3^n}, a_n \in \{0, 1\}$$

Тогда рассмотрим функцию, определённую как

$$c(x) = \begin{cases} \sum_{n=1}^{\infty} \frac{a_n}{2^n}, x \in A \\ \sup \{c(y) \mid y \in A \land y \le x\}, x \not\in A \end{cases}$$

сужение такой функции на множество множество Кантора очевидно монотонно, тогда так как c(0) = 0 и c(1) = 1 то построенная функция обязана быть монотонной на всём [0,1] по построению.

8 8.13

Так как функция h(t) - непрерывна, то её прообраз открытого есть открытое. Пусть $f^{-1}(X) = A$, тогда так как A - открытое, то оно представляется в виде счётного объединения открытых декартовых произведений по рациональным точкам:

$$A = \bigcup_{q \in \mathbb{Q}^n | q \in A} \prod_{i=1}^n (q_i - \alpha_q, q_i + \alpha_q),$$

где α_q - некоторые коэффициенты. Докажем это утверждение, рассмотрим $q \in \mathbb{Q}^n \mid q \in A$. Тогда вместе с q в A содердится некоторая окрестность, очевидно, что такой окрестностью может быть

$$U_q(r_0) = U_q(dist(q, \mathbb{R}^n \setminus A))$$

Так как известно, что в любой открытый шар можно поместить открытое декартово произведение интервалов, с расстоянием $\frac{r_0}{\sqrt{2}}$:

$$\prod_{i=1}^{n} \left(q_i - \frac{r_0}{\sqrt{n}}, q_i + \frac{r_0}{\sqrt{n}} \right).$$

То есть $\alpha_q = \frac{r_0}{\sqrt{n}}$. Очевидно, что такое объединение содержится в множестве A. Теперь покажем обратное, пусть $a \in A$. Пусть $D = dist(a, \mathbb{R}^n \setminus A)$, веберем окрестность с радиусом $d = \frac{D}{1+\sqrt{n}}$ и выберем произвольное рациональное число q из неё:

$$dist(q, \mathbb{R}^n \setminus A) \ge D - d = d\sqrt{n} \implies d \le \frac{dist(q, \mathbb{R}^n \setminus A)}{\sqrt{n}}.$$

Тогда очевидно $a \in \prod_{i=1}^n \left(q_i - \frac{r_0}{\sqrt{n}}, q_i + \frac{r_0}{\sqrt{n}}\right)$. Вернёмся к задаче, обозначим $f(x) = (f_1(x_1), f_2(x_2), \dots, f_n(x_n))$ тогда

$$f^{-1}(A) = \bigcup_{q \in A} \bigcap_{i=1}^{n} f_i^{-1} \left(q_i - \frac{r_0}{\sqrt{n}}, q_i + \frac{r_0}{\sqrt{n}} \right),$$

что измеримо как счётное объединение измеримых.

9 7.24

Так как оба множества измеримы, найдём такие множества, для которых выполняется $\mu_J^*(A\triangle A_\varepsilon) < \frac{\varepsilon}{2}$ и $\mu_J^*(B\triangle B_\varepsilon) < \frac{\varepsilon}{2}$. Тогда

$$(A \cap B) \triangle (A_{\varepsilon} \cap B_{\varepsilon}) \subset (B \triangle B_{\varepsilon}) \cup (A \triangle A_{\varepsilon})$$

Из чего следует

$$\mu_J^*((A \cap B) \triangle (A_{\varepsilon} \cap B_{\varepsilon})) \le \mu_J^*((B \triangle B_{\varepsilon}) \cup (A \triangle A_{\varepsilon})) \le \varepsilon.$$

аналогичные неравенства получаются с симметрической разностью.

10 - 7.26

В одну сторону неравенство очевидно по субаддитивности. Докажем неравенство во вторую сторону. Найдём такие приближающие множества B_{ε} и C_{ε} , что их расстояние до множеств B, C меньше ε . Тогда

$$A\triangle(B_{\varepsilon}\cup C_{\varepsilon})=(B\cup C)\triangle(B_{\varepsilon}\cup C_{\varepsilon})\subset (B\triangle B_{\varepsilon})\cup (C\triangle C_{\varepsilon}),$$

Учитывая, что $C \cap B = \emptyset$ следует, что

$$\mu(B_{\varepsilon} \cap C_{\varepsilon}) \le 2\varepsilon.$$

Запишем формулу включений-исключений:

$$\mu(C_{\varepsilon} \cup B_{\varepsilon}) = \mu(B_{\varepsilon}) + \mu(C_{\varepsilon}) - \mu(B_{\varepsilon} \cap C_{\varepsilon}) > \mu(B) + \mu(C) - 4\varepsilon.$$

Тогда получим

$$\mu(A) \ge \mu(B_{\varepsilon} \cup C_{\varepsilon}) - \mu(A \triangle (B_{\varepsilon} \cup C_{\varepsilon})) \ge \mu(B) + \mu(C) - 6\varepsilon.$$

Неравенство выполняется для любого ε , а значит оно выболняется и при $\varepsilon=0$. Что и требовалось доказать.

11 8.33

Подходит функция Кантора из задачи 4.19, она монотонна неубывает, непостоянна, дифференцируема на $[0,1] \setminus K$, где K - множесвто Кантора, то есть всюду кроме множества меры 0. Причем производная равна нулю, так как $c(x \in [0,1] \setminus K) = const$.

12 8.34

Тоже функция кантора c(x), так как $\mu(c(K)) = 1 - \mu(c([0,1] \setminus K)) = 1 - 0 = 0$.

13 8.35

Функция f(x) = x + c(x). На множестве кантора $\mu(f(K)) = 1$.

$14 \quad 9.29$

ляяя ну надо бы сделать

$15 \quad 10.3$

Пусть есть два набора множеств A_k и B_k представляющие ступенчатую функцию. Тогда рассмотрим $C_k = A_k \cap B_k$, очевидно исходная функция также будет иметь ступенчатый вид на C_k . Тогда:

$$\sum_{k=1}^{n} p_k \mu A_k = \sum_{k=1}^{n} \sum_{t=1}^{m} p_{k,t} \mu (A_k \cap B_t) = \sum_{t=1}^{m} \sum_{k=1}^{n} p_{k,t} \mu (A_k \cap B_t) = \sum_{t=1}^{n} p_t \mu B_t$$

Показали, что определения эквивалентны для любого набора множеств.

$16 \quad 10.4$

Рассмотрим такое C_k на котором обе функции ступенчатые. Тогда

$$\int_{X} (af(x) + bg(x)) d\mu = \sum_{k=1}^{n} af(x_{k} \in C_{k}) + bg(x_{k} \in C_{k})\mu C_{k} =$$

$$a \sum_{k=1}^{n} f(x_{k} \in C_{k})\mu C_{k} + b \sum_{k=1}^{n} f(x_{k} \in C_{k})\mu C_{k} = a \int_{X} f(x) dx + b \int_{X} g(x) dx$$

17 10.9

$$\int_{A} f(x) dx = \sum_{k=1}^{n} f(x_{k} \in A_{k}) \mu A_{k} = \sum_{k=1}^{n} f(x_{k} \in B \cap A_{k}) \mu(A_{k} \cap B) + f(x_{k} \in C \cap A_{k}) \mu(A_{k} \cap C) =$$

$$\sum_{k=1}^{n} f(x_{k} \in B_{k}) \mu(B_{k}) + \sum_{k=1}^{n} f(x_{k} \in C_{k}) \mu(C_{k}) = \int_{B} f(x) dx + \int_{C} f(x) dx$$

$18 \quad 10.10$

$$\lim_{n \to \infty} \int_X f_n(x) \, \mathrm{d}x = \lim_{n \to \infty} \sum_{k=1}^p f_n(x_k) \mu X_k = \sum_{k=1}^p \lim_{n \to \infty} f_n(x_k) \mu X_k \ge \sum_{k=1}^p f(x_k) \mu X_k = \int_X f(x) \, \mathrm{d}x$$

Ладно, эту нужно переделать...

19 10.12

Рассмотрим последовательность:

$$f_n = \sum_{k=1}^n k \chi_{\left[\frac{1}{k+1}, \frac{1}{k}\right]}(x)$$

Тогда для любого $n f_n < f$ и

$$\int_{(0,1)} f(x) dx \ge \sup_{n} \int_{(0,1)} f_n(x) dx = \sup_{n} \sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

20 10.15

потом,, , . .

 $21 \quad 10.16$

 $22 \quad 10.17$

 $23 \quad 10.24$

 $24 \quad 10.30$

 $25 \quad 12.12$

Докажем, что множество $E = \{(x,y) \in \mathbb{R}^2 \mid x \in A \land 0 \le y \le f(x)\}$. Это становится очевидно, если рассмотреть f(x,y) = f(x), тогда из измеримости f(x) следует измеримость f(x,y), а значит и измеримость E. Тогда по теореме Фубини:

$$\mu E = \int_{\mathbb{R}^2} \chi_E \, \mathrm{d}x \mathrm{d}y = \int_X \left(\int_0^{+\infty} \chi_E \, \mathrm{d}y \right) \, \mathrm{d}x$$

Так как интеграл $\int_0^{+\infty} \chi_E \, \mathrm{d}y$ при фиксированном x это просто интеграл характеристической функции отрезка $\mu[0,f(x)]=f(x)$, то

$$\mu E = \int_X f(x) \, \mathrm{d}x$$

26 T.6

a)

$$f(x) = \frac{\sqrt{x}}{1+x^3}, x = 1, y = 0$$

Тогда площадь фигуры равна:

$$\int_0^1 \frac{\sqrt{x}}{1+x^3} \, \mathrm{d}x = \frac{2}{3} \int_0^1 \frac{\mathrm{d}t}{1+t^2} = \frac{\pi}{6}$$

$27 \quad T.7$

а) Длина выражается как

$$\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \sqrt{1 + (f'(x))^2} \, \mathrm{d}x = \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{\mathrm{d}x}{\sin x} = \ln 3$$

28 T.8

б) Плохое условие

29 T.9

Вспомним, что положительно определённая квадратичная форма представляется в виде $Q = C^T C$:

$$Q(x) = x^T C^T C x = (Cx)^T (Cx) = |Cx|^2$$

Тогда так как $\det C^T = \det C$ получим, что $\det C = \sqrt{\det Q}$. По теореме о линейной замене переменной:

$$\int_{\mathbb{R}^n} e^{-|Cx|^2} dx = \frac{1}{\det C} \int_{\mathbb{R}^n} e^{-x^2} dx = (\det Q)^{-\frac{1}{2}} \pi^{\frac{n}{2}}$$

30 T.11

Представим двойной факториал через обычный и воспользуемся формулой Стирлинга:

$$(2n-1)!! = \frac{(2n)!}{2^n n!} = \frac{\sqrt{4\pi n} \cdot (2n)^{2n} e^{-2n}}{2^n \sqrt{2\pi n} \cdot n^n e^{-n}} = \sqrt{2} \cdot 2^n n^n e^{-n}$$

31 T.12

Разложим $x^{-x} = \sum_{n=0}^{\infty} \frac{(-x \ln x)^n}{n!}$. Заменим сумму и интеграл местами:

$$\int_0^1 x^{-x} dx = \sum_{n=1}^\infty \frac{1}{n!} \int_0^1 x^n (-\ln x)^n dx$$

Сделаем подстановку $-\ln x = \frac{t}{n+1}$:

$$\int_0^1 x^n (-\ln x)^n \, \mathrm{d}x = (n+1)^{-n-1} \int_0^{+\infty} t^n e^{-t} \, \mathrm{d}x = (n+1)^{-n-1} n!$$

Тогда

$$\int_0^1 x^{-x} \, \mathrm{d}x = \sum_{n=0}^\infty (n+1)^{-n-1} = \sum_{k=1}^\infty k^{-k}$$

$32 \quad T.16$

Так как фукнция дифференцируема с ограниченной производной, то она Липшицева, тогда по теореме 5.159 формула Ньютона-Лейбница работает.

$33 \quad T.17$

Приблизим функцию $\int_{-\infty}^{\infty} |f(x) - h(x)| \, \mathrm{d}x < \frac{\varepsilon}{3}$:

$$h(x) = \sum_{k=1}^{n} a_k \chi_{A_k}(x)$$

Тогда разность интегралов:

$$\int_{-\infty}^{\infty} |f(x+t) - f(x)| \, \mathrm{d}x \le \int_{-\infty}^{\infty} |f(x+t) - h(x+t)| \, \mathrm{d}x + \int_{-\infty}^{\infty} |f(x) - h(x)| \, \mathrm{d}x + \int_{-\infty}^{\infty} |h(x+t) - h(x)| \, \mathrm{d}x$$

Рассмотрим отдельно:

$$\int_{-\infty}^{\infty} |h(x+t) - h(x)| \, \mathrm{d}x = \int_{-\infty}^{\infty} \left| \sum_{k=1}^{n} a_k (\chi_{A_k}(x+t) - \chi_{A_k}(x)) \right| \, \mathrm{d}x \le \int_{-\infty}^{\infty} \sum_{k=1}^{n} |a_k| |\chi_{A_k}(x+t) - \chi_{A_k}(x)| \, \mathrm{d}x$$

Заменим знаки интеграла и суммы:

$$\sum_{k=1}^{n} |a_k| \int_{-\infty}^{\infty} |\chi_{A_k}(x+t) - \chi_{A_k}(x)| \, \mathrm{d}x = \sum_{k=1}^{n} |a_k| \mu \left((A_k + t) \triangle A_k \right)$$

 $\mu\left((A+t)\triangle A\right)\to 0, t\to 0$ аналогично одной из предыдущих задач. Тогда всю сумму можно сделать меньше $\frac{\varepsilon}{3}$ взяв достаточно маленькое t. Тогда возвращаясь к изначальному равенству:

$$\int_{-\infty}^{\infty} |f(x+t) - f(x)| \, \mathrm{d}x \le \frac{2\varepsilon}{3} + \int_{-\infty}^{\infty} |h(x+t) - h(x)| \, \mathrm{d}x \le \varepsilon$$

$34 \quad T.19$

Приблизим в среднем фукнцию ступенчатой h(x):

$$\int_{-\infty}^{\infty} f(x) - h(x) \, \mathrm{d}x < \varepsilon,$$

где

$$h(x) = \sum_{k=1}^{n} a_k \chi_{A_k}(x)$$

Тогда для любого $\mu X < \delta$:

$$\int_{X} f(x) dx \le \int_{X} f(x) - h(x) dx + \int_{X} h(x) dx \le \varepsilon + \int_{-\infty}^{\infty} \sum_{k=1}^{n} a_{k} \chi_{A_{k} \cap X}(x) dx \le \varepsilon + \max a_{k} \sum_{k=1}^{n} \mu A_{k} \cap X \le \varepsilon + \max a_{k} \delta$$

Взяв $\delta = \frac{\varepsilon}{\max a_k}$ получим неравенство для 2ε .

35 T.22

Пусть $f=\lim_{n\to\infty}f_n$ и по условию $\int_{[a,b]}f_n(x)\,\mathrm{d}x\to 0.$ Рассмотрим

$$\int_{[a,b]} f(x) dx = \lim_{n \to \infty} \int_{[a,b]} f_n(x) dx = 0$$

Значит f=0 почти всюду, то есть $\lim_{n\to\infty} f_n(x)=0$. Что и требовалось доказать.