Structured Prediction

Final words

CS 6355: Structured Prediction

A look back

What is a structure?

The machine learning of interdependent variables

Recall: A working definition of a structure

A structure is a concept that can be applied to any complex thing, whether it be a bicycle, a commercial company, or a carbon molecule. By *complex*, we mean:

- 1. It is divisible into parts,
- 2. There are different kinds of parts,
- 3. The parts are arranged in a specifiable way, and,
- 4. Each part has a specifiable function in the structure of the thing as a whole

From the book Analysing Sentences: An Introduction to English Syntax by Noel Burton-Roberts, 1986.

An example task: Semantic Parsing

Find the largest state in the US

SELECT expression FROM table WHERE condition

MAX (numeric list)

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

US_CITIES US_STATES

name name

population population

state size

capital

Find the largest state in the US

SELECT expression FROM table WHERE condition

MAX numeric list

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

US CITIES

name

population

state

US_STATES

name

population

size

Find the largest state in the US

SELECT expression FROM table WHERE condition

SELECT expression FROM table WHERE condition

MAX numeric list

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

US_CITIES

name

population

state

US STATES

name

population

size

Find the largest state in the US

SELECT expression FROM table WHERE condition

SELECT expression FROM table WHERE condition

MAX numeric list

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

US CITIES

name

population

state

US_STATES

name

population

size

Find the largest state in the US

SELECT expression FROM table WHERE condition

v

name

US STATES

SELECT expression FROM table WHERE condition

MAX numeric list

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

US_CITIES US_STATES

name | name |
population population
state size

Find the largest state in the US

SELECT expression FROM table WHERE condition

name

US_STATES

Expression 1 = Expression 2

SELECT expression FROM table

SELECT expression FROM table WHERE condition

MAX numeric list

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

US_CITIES US_STATES

name name

population population

state size

Find the largest state in the US

SELECT expression FROM table WHERE condition

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

US_CITIES US_STATES

name name

population population

state size

Find the largest state in the US

SELECT expression FROM table WHERE condition

MAX numeric list

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

US_CITIES US_STATES name name population population state size

Find the largest state in the US

Find the largest state in the US

- At each step many, many decisions to make
- Some decisions are simply not allowed
 - A query has to be well formed!
- Even so, many possible options
 - Why does "Find" map to SELECT?
 - Largest by size/population/population of capital?

SELECT expression FROM table WHERE condition

MAX numeric list

ORDERBY predicate

DELETE FROM table WHERE condition

SELECT expression FROM table

Expression 1 = Expression 2

US CITIES

US STATES

size

name

population

state

name

population

size

capital

13

Standard classification tools can't predict structures

X: "Find the largest state in the US."

Y:

```
SELECT name
FROM us_states
WHERE size = (SELECT MAX(size) FROM us_states)
```

Classification is about making one decision

Spam or not spam, or predict one label, etc

We need to make *multiple decisions*

- Each part needs a label
 - Should "US" be mapped to us states or us cities?
 - Should "Find" be mapped to SELECT or DELETE?
- The decisions interact with each other
 - If the outer FROM clause talks about the table us_states, then the inner FROM clause should not talk about utah_counties
- How to compose the fragments together to create the whole structure?
 - Should the output consist of a WHERE clause? What should go in it?

How did we get here?

Binary classification

- Learning algorithms
- Prediction is easy Threshold
- Features (???)

Multiclass classification

- Different strategies
 - One-vs-all, all-vs-all
- Global learning algorithms
- One feature vector per outcome
 - Each outcome scored
- Prediction = highest scoring outcome

Structured classification

- Global models or local models
- Each outcome scored
- Prediction = highest scoring outcome
- Inference is no longer easy!
 - Makes all the difference

Structured output is...

Representation

- A graph, possibly labeled and/or directed
 - Possibly from a restricted family, such as chains, trees, etc.
 - A discrete representation of input
 - Eg. A table, the SRL frame output, a sequence of labels etc
- A collection of inter-dependent decisions

Procedural

- Eg: The sequence of decisions used to construct the output
- The result of a combinatorial optimization problem

Formally

argmax_{y ∈ all outputs}score(x, y)

Challenges with structured output

Two challenges

- 1. We cannot train a separate weight vector for each possible inference outcome
 - For multiclass, we could train one weight vector for each label
- 1. We cannot enumerate all possible structures for inference
 - Inference for binary/multiclass is easy

Solution

- Decompose the output into parts that are labeled
- Define
 - how the parts interact with each other
 - how labels are scored for each part
 - an inference algorithm to assign labels to all the parts

Multiclass as a structured output

- A structure is...
 - A graph (in general, hypergraph), possibly labeled and/or directed
 - A collection of interdependent decisions

The output of a combinatorial optimization problem
 argmax_{y ∈ all outputs} score(x, y)

- Multiclass
 - A graph with one node and no edges
 - Node label is the output
 - Can be composed via multiple decisions

Winner-take-all
 argmax_i $\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}, \mathbf{i})$

Multiclass is a structure: Implications

- 1. A lot of the ideas from multiclass <u>may</u> be generalized to structures
 - Not always trivial, but useful to keep in mind
- 2. Broad statements about structured learning must apply to multiclass classification
 - Useful for sanity check, also for understanding
- Binary classification is the most "trivial" form of structured classification
 - Multiclass with two classes

Structured Prediction
The machine learning of interdependent variables

Computational issues

Computational issues

Say we want to predict four output variables from some input

Say we want to predict four output variables from some input

Recall: Each factor is a local expert about all the random variables connected to it

i.e. A factor can assign a score to assignments of variables connected to it

Option 1: Score each decision separately

Pro: Prediction is easy, each y independent Con: No consideration of interactions

Say we want to predict four output variables from some input

Recall: Each factor is a local expert about all the random variables connected to it

i.e. A factor can assign a score to assignments of variables connected to it

Option 2: Add pairwise factors

Pro: Accounts for pairwise dependencies

Cons: Makes prediction harder, ignores third and higher order dependencies

Say we want to predict four output variables from some input

Recall: Each factor is a local expert about all the random variables connected to it

i.e. A factor can assign a score to assignments of variables connected to it

Option 3: Use only order 3 factors

Pro: Accounts for order 3 dependencies

Cons: Prediction even harder. Inference should consider all triples of labels now

Say we want to predict four output variables from some input

Recall: Each factor is a local expert about all the random variables connected to it

i.e. A factor can assign a score to assignments of variables connected to it

Option 4: Use order 4 factors

Pro: Accounts for order 4 dependencies

Cons: Basically no decomposition over the labels!

Say we want to predict four output variables from some input

Recall: Each factor is a local expert about all the random variables connected to it

i.e. A factor can assign a score to assignments of variables connected to it

How do we decide what to do?

Some aspects to consider

Availability of supervision

 Supervised algorithms are well studied; supervision is hard (or expensive) to obtain

Complexity of model

 More complex models encode complex dependencies between parts; complex models make learning and inference harder

Features

— Most of the time we will assume that we have a good feature set to model our problem. But do we?

Domain knowledge

 Incorporating background knowledge into learning and inference in a mathematically sound way

Computational issues

Training structured models

- Inference in training makes all the difference from multiclass/binary classification
- Empirical risk minimization principle
 - Minimize loss over the training data
 - Regularize the parameters to prevent overfitting
- We have seen different training strategies falling under this umbrella
 - Conditional Random Fields
 - Structural Support Vector Machines
 - Structured Perceptron (doesn't have regularization)
- Different algorithms exist
 - We saw stochastic gradient descent in some detail

Training considerations

Train globally vs train locally

Global: Train according to your final model

Pro: Learning uses all the available information

Con: Computationally expensive

Training considerations

Train globally vs train locally

Local: Decompose your model into smaller ones and train each one separately

Full model still used at prediction time

Con: May not capture global dependencies

Training considerations

- Local vs global
 - Local learning
 - Learn parameters for individual components independently
 - Learning algorithm not aware of the full structure
 - Global learning
 - Learn parameters for the full structure
 - Learning algorithm "knows" about the full structure

How do we choose?

- Depends on inference complexity
- Jury still out on which one is better
- Depends on size of available data too

Computational issues

Inference

- What is inference? The prediction step
 - More broadly, an aggregation operation on the space of outputs for an example: max, expectation, sample, sum
 - Different flavors: MAP, marginal, loss augmented.
- Many algorithms, solution strategies
 - Combinatorial optimization, one size doesn't fit all
 - Graph algorithms, integer linear programming, heuristics, Monte Carlo methods,

How do we choose?

- Some tradeoffs
 - Programming effort
 - Exact vs inexact
 - Is the problem solvable with a known algorithm?
 - Do we care about the exact answer?

Computational issues

How does background knowledge affect your choices?

- Background knowledge biases your predictor in several ways
 - What is the model?
 - Maybe third order factors are not needed... etc
 - Your choices for learning and inference algorithms
 - Feature functions
 - Constraints that prohibit certain inference outcomes

Computational issues

Data and how it influences your model

Annotated data is a precious resource

- Takes specialized expertise to generate
- Or: very clever tricks (like online games that make data as a side effect)

Important directions

- Learning with latent representations, indirect supervision, partial supervision
- In all these cases
 - Learning is rarely a convex problem
 - Modeling choices become very important! Bad model will hurt

Looking ahead

- Big questions (a very limited and biased set)
 - Representations
 - Can we learn the factorization?
 - Can we learn feature functions?
 - Dealing with the data problem for new applications
 - Clever tricks to get data
 - Taming latent variable learning
 - Applications
 - How does structured prediction help you?
 - Gathering importance as computer programs have to deal with uncertain, noisy inputs and make complex decisions