Linear Model

Least Square Method

- Finds the line of best fit for a dataset, providing a visual demonstration of the relationship between the data points.
- The differences between the actual and estimated function values on the training examples are called residuals

$$\epsilon_i = f(x_i) - \hat{f}(x_i).$$

• The *least-squares method*, consists in finding \hat{f} such that $\sum_{i=1}^n \epsilon_i^2$ is minimised

Linear Regression

- Simple:

$$y = b_0 + b_1 x$$

- Multiple:

$$y = b_0 + b_1^* x_1 + ... + b_n^* x_n$$

Ex: Least Square method using Univariate Regression

X	У	x – x mean	y - y mean	(x – x mean)²	(x – x mean). (y – y mean)
1	2	-2	-2	4	4
2	4	-1	0	1	0
3	5	0	1	0	0
4	4	1	0	1	0
5	5	2	1	4	2

$$b_0 = 2.2$$

 $b_1 = .6$
 $\hat{y} = 2.2 + .6 \times$

X	V	x - X	y - y	$(x - \overline{x})^2$	$(x - \overline{x})(y - \overline{y})$
1	2	-2	-2	4	4
2	4	-1	0	1	0
3	5	0	1	0	0
4	4	1	0	1	0
5	5	2	1	4	2
0	1			10	6

mean

$$4 = b_0 + .6(3)$$

$$4 = b_0 + .6(3)$$

$$4 = b_0 + .8$$

$$-1.8$$

$$-1.8$$

$$2.2 = b_0$$

$$b_1 = \frac{6}{10} = .6 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

We know this: Salary (\$) Experience

We can solve this using Linear Regression

But what about this?

Not giving the target

We want something like

How to get it?

Lets say some probabilities are given

X vs Y can be drawn like this

Draw threshold of 50% or 0.5

So, below threshold labelled 0 and above threshold labelled 1

