TD 6 Dualité

Exercice 1:

-Donner le dual du primal suivant :

Primal

a) Max
$$Z = 2x1 + 4x2 + 3x3$$

$$3x1 + 4x2 + 2x3 \le 60$$

$$2x1 + x2 + 2x3 \le 40$$

$$x1 + 3x2 + 2x3 \le 80$$

$$x1, x2, x3 \ge 0$$

b) Min
$$Z = 20x1 + 24x2$$

$$x1 + x2 \ge 30$$

$$x1 + 2x2 \ge 40$$

$$x1, x2 \ge 0$$

c) Max
$$Z = 10x1 + 6x2$$

$$x1 + 4x2 \le 40$$

$$3x1 + 2x2 = 60$$

$$2x1 + x2 \ge 25$$

$$x1, x2 \ge 0$$

Exercice 2

Max
$$Z = 40x1 + 50x2$$

$$5x1 + 4x2 \le 80$$

$$x1 + 2x2 \le 24$$

$$3x1+2x2\leq 36$$

$$x1, x2 \ge 0$$

Dual

a) Min
$$w = 60y1 + 40y2 + 80y3$$

$$3y1 + 2y2 + y3 \ge 2$$

$$4y1 + y2 + 3y3 \ge 4$$

$$2y1 + 2y2 + 2y3 \ge 3$$

$$y1 \ge 0, y2 \ge 0, y3 \ge 0$$

b) Max
$$w = 30y1 + 40y2$$

$$y1 + y2 \le 20$$

$$y1 + 2y2 \le 24$$

$$y1 \ge 0, y2 \ge 0$$

c) Min
$$w = 40y1 + 60y2 - 25y3$$

$$y1 + 3y2 - 2y3 \ge 10$$

$$4y1 + 2y2 - y3 \ge 6$$

$$y1 \ge 0$$
, $y3 \ge 0$, $y2$ quelconque

- 1- Donner le dual PL* de ce primal PL
- 2- Résoudre le primal PL par le simplexe ou graphiquement
- 3- Déduire la solution du dual PL*

Corrigé:

1. Donner le dual PL* de ce primal PL

Min w=80y1 + 24y2 + 36y3

$$5y1+y2+3y3 \ge 40$$

 $4y1+2y2+2y3 \ge 50$
 $y1,y2,y3\ge 0$

2. Résoudre le primal PL par le simplexe

V.B	x1	x2	e1	e2	e3	b	Ratio
e1	5	4	1	0	0	80	20
e2	1	2	0	1	0	24	12
e3	3	2	0	0	1	36	18
C.j	40	50	0	0	0	0	0

V.B	x1	x2	e1	e2	e3	b	Ratio
e1	3	0	1	-2	0	32	10.67
x2	0.5	1	0	0.5	0	12	24
e3	2	0	0	-1	1	12	6
C.j	15	0	0	-25	0	600	0

V.B	x1	x2	e1	e2	e3	b
e1	0	0	1	-0.5	-1.5	14
x2	0	1	0	0.75	-0.25	9
x1	1	0	0	-0.5	0.5	6
C.j	0	0	0	-17.5	-7.5	690

La solution est :
$$x_1 = 6$$
, $x_2 = 9$, $z = 690$, $s_1 = 14$, $s_2 = 0$, $s_3 = 0$,

3. Déduire la solution du dual PL*

A l'optimum, le primal et le dual sont liés par les règles suivantes:

- Les fonctions objectifs z et w ont la même valeur optimale $z=cx^* = y^*b=w$
- La valeur marginale d'une variable dans un programme est égale à l'opposé de la valeur optimale de la variable associée dans l'autre programme et réciproquement
- Les variables du primal (x1, x2), étant toutes différentes de 0, alors les contraintes associées du dual sont saturées, d'où pour le dual à résoudre :

$$5y1+y2+3y3 = 40$$

 $4y1+2y2+2y3 = 50$

- La première variable d'écart $\mathbf{s_1}$ est non nulle (La première contrainte du primal n'est pas saturée) donc la première variable de la solution du dual est nulle $y_1=0$, d'où le dual à résoudre est :

$$y2+3y3 = 40$$

 $2y2+2y3 = 50$

	z = 690	x1	x2	s1	s2	s3
Primal	valeurs optimales	6	9	14	0	0
	valeurs marginales	0	0	0	-17.5	-7.5
	$\mathbf{w} = 690$	t1	t2	y1	y2	y 3
Dual	valeurs optimales	0	0	0	17.5	7.5
	valeurs marginales	-6	-9	-14	0	0

Au fait, il n'existe que quatre situations possibles pour une paire de problèmes liés par la dualité :

- 1. Les deux problèmes possèdent des solutions optimales finies (liées par les relations ci-dessus)
- 2. Le problème primal est non borné et le problème dual est impossible
- 3. Le problème primal est impossible et le problème dual est non borné
- 4. Les deux problèmes sont impossibles

Exercice 3:

Un fabricant produit 2 variétés de biscuit, l'une à la noix de coco et l'autre au chocolat, selon le schéma suivant :

Biscuit		Prix de		
	Farine Chocolat Noix de coco		vente	
A	1	0	3	6
В	1	5	0	5
Disponible	8	22	12	

- a) Formuler le problème comme un PL et trouver un plan de fabrication qui maximise le profit ;
- b) Pour quelle variation du prix de vente du biscuit au chocolat, ce plan de fabrication reste optimal?
- c) On annonce une pénurie de chocolat ; déterminer la quantité minimale de chocolat nécessaire en stock, pour que ce plan de fabrication ne soit pas compromis ;
- d) On étudie la production d'un nouveau biscuit à la noix de coco et au chocolat à raison de 1/3 de noix de coco et 2/3 de chocolat. Ce nouveau produit sera vendu à 8F. Quel est le schéma de production optimal ?
- e) Déterminer le dual PL* de ce primal PL
- f) En déduire la solution du dual PL*

Corrigé:

a)
$$\max z = 6x_1 + 5x_2$$
 $\max z = 6x_1 + 5x_2$ $x_1 + x_2 \le 8$ $x_1 + x_2 + s_1 = 8$ (Farine) $5x_2 \le 22$ $3x_1 \le 12$ $3x_1 + s_2 = 12$ (Noix de coco) $x_1, x_2 \ge 0$ $x_1, x_2, s_1, s_2, s_3 \ge 0$

Max Z = 6x1+5x2 Contraintes : x1+x2<=8 5x2<=22 3x1<=12

V.B	x1	x2	e1	e2	e3	b	Ratio
e1	1	1	1	0	0	8	8
e2	0	5	0	1 .	0	22	0
e3	3	0	0	0	1	12	4
C.j	6	5	0	0	0	0	0

V.B	x1	x2	e1	e2	e3	b	Ratio
e1	0	1	1	0	-0.33	4	4
e2	0	5	0	1	0	22	4.4
x1	1	0	0	0	0.33	4	0
C.j	0	5	0	0	-2	24	0

V.B	x1	x2	e1	e2	e3	b
x2	0	1	1	0	-0.33	4
e2	0	0	-5	1	1.67	2
x1	1	0	0	0	0.33	4
C.j	0	0	-5	0	-0.33	44

b)

max
$$z = 6x_1 + C_2 x_2$$

 $x_2 = 4 - s_1 + (1/3) s_3$
 $x_1 = 4 - (1/3) s_3$
avec
 $z = 6(4 - (1/3) s_3) + C_2 (4 - s_1 + (1/3) s_3)$
 $z - (-s_1C_2) - s_3((1/3) C_2 - 2) = 4(6 + C_2)$
 $\Rightarrow -C_2 \le 0$ et $(1/3) C_2 - 2 \le 0$

On en déduit que $C_2 \in [0, 6]$

 $\Rightarrow 0 \le C_2 \le 6$

c)

D'après les coûts marginaux, il nous reste en stock 2 quantité de chocolat, donc la quantité minimale pour que plan de fabrication optimal ne soit pas compromis, il faut avoir en réserve 22-2 =20 quantités de chocolat

d)
Max
$$z = 6x_1 + 5x_2 + 8x_3$$

 $x_1 + x_2 \le 8$
 $5x_2 + (1/3) x_3 \le 22 3$
 $x_1 + (2/3) x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$

e) Déterminer le dual PL* de ce primal PL

Max
$$z = 6x_1 + 5x_2$$

 $x_1 + x_2 \le 8$
 $5x_2 \le 22$
 $3x_1 \le 12$
 $x_1 \ge 0, x_2 \ge 0$
min $w = 8y_1 + 22y_2 + 12y_3$
 $y_1 + 5y_2 + 3y_3 \ge 6$
 $y_1 \ge 5$
 $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$

f) En déduire la solution du dual PL*

$$\mathbf{z} = \mathbf{c}\mathbf{x}^* = \mathbf{y}^*\mathbf{b} = \mathbf{w}$$

	z = 44	x1	x2	s1	s2	s3
Primal	valeurs optimales	4	4	0	2	0
	valeurs marginales	0	0	-5	0	-1/3
	$\mathbf{w} = 44$	t1	t2	y1	y2	у3
Dual	valeurs optimales	0	0	5	0	1/3
	valeurs marginales	-4	-4	0	-2	0