Notes (To Be Deleted)

- Nvidia article has some refs to earliest uses/applications of GNNs at https://blogs.nvidia.com/blog/what-are-graph-neural-networks/; https://ieeexplore.ieee.org/document/4700287 First in 2009, really first application in 2016 https://arxiv.org/abs/1609.02907
- Pinterest in 2017 published GraphSage https://arxiv.org/abs/1706.02216

Other application placeholder

ETA analysis for travel, 2021 https://arxiv.org/pdf/2108.11482.pdf

Graphical Neural Networks

Dominic DiSanto

Department of Biostatistics, Harvard University

November 27, 2023

Outline

Set-Up and Motivation 5ish minutes

Quantification Services of Construction 10-20ish minutes

3 Applications and Extensions 20-25ish minutes

Downloadable Slides

Outline (Redux)

Set-Up and Motivation 5ish minutes

Quantification 20 General Construction 10-20ish minutes

3 Applications and Extensions 20-25ish minutes

Goals

- Outline the architecture of Graphical Neural Networks (GNN)
 - Motivation for necessity of GNN's
 - Provide a general framework
- Describe applications and extensions of the general GNN model
 - List specific instances here

Notation/Set-Up

- Consider the graph $\mathcal{G} = (V, E), E \subseteq V \times V$, where any node v has a related "feature vector" $x_v \in \mathbb{R}^d$
- Let $\mathcal{N}_s(v)$ represent the s-hop neighborhood of any node v (and implicitly $\mathcal{N}(v) \equiv \mathcal{N}_1(v)$)
- Can construct adjacency matrix $A \in \mathbb{R}^{|V| \times |V|}$ describing edge set E
 - $A_{ij} = \mathbb{I}\{(i,j) \in E\}$
 - Adjacency "lists" often used for memory efficiency and permutation invariance

Undirected Graph

Directed Graph

Other application

Image here

Multi-modal Biomedical Data

Multimodal knowledge graph of 17,080 disease phenotypes

Image courtesy of partial figure from McDermott et al. *Structure-inducing* pre-training [3]

November 27, 2023

Molecular/Biochemical

(Left) 3d representation of the Caffeine molecule (Center) Adjacency matrix of the bonds in the molecule (Right) Graph representation of the molecule.

Image courtesy of https://distill.pub/2021/gnn-intro/ [4]

Motivation

- Want to utilize the input structure of the graph
 - Respect/Maintain
 - Update/Estimate
- Why do "regular" NN's/CNN's fail on graphical data? 2009 paper offers pre-GNN data processing led to information loss
- Permutation invariance/Permutation invariant hypotheses
- Applications in chemistry/drug-discovery, large text data(?), multimodal data source analyses

Adjacency Representations

- Adjacency matrix can be prohibitively large but likely sparse, is also permutable but DNN's are not permutation invariant, undesirable
- Can store an adjacency list
- Can use Laplacian matrix $L = \text{diag}(A\mathbf{1}_{|V|}) A$

What do we estimate about graph structure?

See supp note 1 on Multimodal learning with graphs

GNN's can be
$$\begin{cases} \mathsf{Node\text{-}wise}\ \Phi(\mathcal{G},x): (x\in V)\to \mathbb{R}^m\\ \\ \mathsf{Edge\text{-}wise}\ \Phi(\mathcal{G},e): (e\in E)\to \mathbb{R}^m\\ \\ \mathsf{Graph\text{-}level}\ \mathsf{level}\ \Phi(\mathcal{G}): \mathcal{G} \end{cases}$$

Outline (Redux)

Set-Up and Motivation 5ish minutes

General Construction 10-20ish minutes

3 Applications and Extensions 20-25ish minutes

An overly simple representation:

$$V^{(0)} \longrightarrow \Phi_V(V) \longrightarrow V^{(K)}$$

$$E^{(0)} \longrightarrow \Phi_E(E) \longrightarrow E^{(K)}$$

$$\mathcal{G}^{(0)} \longrightarrow \Phi_{\mathcal{G}}(\mathcal{G}) \longrightarrow \mathcal{G}^{(K)}$$

General Framework¹

General structure:

Can succinctly represent the κ th layer as:

$$\mathbf{h}_{v}^{(\kappa+1)} = \mathsf{Update}\left(x_{v}^{(\kappa)}, \mathsf{Aggregate}(h_{v}^{(\kappa)}, x_{u}^{(\kappa)}, e_{u,v}^{(\kappa)})\right)$$

Choices of (differentiable) functions for Aggregate, Update, and Readout determine the architecture of your GNN

Downloadable Slides

¹See [1, 5]

Graph Convolutional Network

Proposed in 2017 by Thomas Kipf, Max Welling [2]

$$\mathbf{h}_{v}^{(\kappa+1)} = \sigma\left(\mathbf{\Omega}\mathbf{H}^{(\kappa)}\mathbf{\Theta}\right)$$

- $\sigma(\cdot) = \text{ReLu}(\cdot)$ activation function
- Learned weight/parameter matrix Θ
- ullet Including Ω normalizing matrix (with known closed form) for computational stability

Review paper, comment on applications briefly (KG setting)

${\sf Aggregate}/{\sf Update}$

Readout

- Permutation invariant function
- Simple function vs pooling

Outline (Redux)

Set-Up and Motivation 5ish minutes

Quantification 20 General Construction 10-20ish minutes

3 Applications and Extensions 20-25ish minutes

References I

- Some diagrams generated in conjunction with ChatGPT 3.5
- [1]Yasha Ektefaie et al. "Multimodal learning with graphs". en. ln: Nature Machine Intelligence 5.4 (Apr. 2023). Number: 4 Publisher: Nature Publishing Group, pp. 340–350.
- [2] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. arXiv:1609.02907 [cs, stat]. Feb. 2017.
- [3] Matthew B. A. McDermott et al. "Structure-inducing pre-training". en. In: Nature Machine Intelligence 5.6 (June 2023). Number: 6 Publisher: Nature Publishing Group, pp. 612–621.
- Benjamin Sanchez-Lengeling et al. "A Gentle Introduction to Graph |4| Neural Networks". en. In: Distill 6.9 (Sept. 2021), e33.

References II

[5] Keyulu Xu et al. How Powerful are Graph Neural Networks? arXiv:1810.00826 [cs, stat]. Feb. 2019.

Appendix Slides

