

TEORÍA COMPUTACIONAL

EXPRESIONES REGULARES: Ejercicios, Núm. Empleado, Salón ESCOM

UNIDAD 2

Rubio Haro Rodrigo R.

LENGUAJES REGULARES

Expresiones Regulares

1. Ejercicios

Realizar los siguientes ejercicios.

¿Qué cadenas generan las siguientes expresiones regulares dado $\Sigma = \{a, b, c\}$?

- 1. $a^*=\{\varepsilon, a, aaa, aaaa, aaaaa, ...\}$
- 2. $a*b*=\{\varepsilon, a, b, ab, aab, abbb, aaaabb, ...\}$
- 3. (ab)*= $\{\varepsilon$, ab, abab, abababab, ... $\}$
- 4. $(a*b)*=\{\varepsilon, b, ab, aab, aaabaaabbbb, ...\}$
- 5. aa*bb*={ab, aaab, abbbb, aaaaabbbb,....}
- 6. abc*={ab, abc, abccc, abcccccc, ...}
- 7. a+bc*={a, b, bc, bcc, bccccc,}
- 8. $(a+b+c)^*=\{\varepsilon, a, b, c, aa, ab, ac, bc, cc, ...\}$
- 9. c*a+ac*={a, ac, acc, accc, ..., ca, cca, cccca, ...}
- 10. a+b*c+c={a, b, c, bc, bccc, bccccc,}

B. ¿Cuáles son los lenguajes regulares para las expresiones anteriores?

1.
$$L = \{a^n \mid n \ge 0\}$$
 2. $L = \{a^n b^m \mid n, m \ge 0\}$ 3. $L = \{(ab)^n \mid n \ge 0\}$ 4. $L = \{(a^n b)^m \mid n, m \ge 0\}$

5.
$$L = \{aa^nbb^m \mid n, m \ge 0\} = \{a^nb^m \mid n, m \ge 1\}$$
 6. $L = \{abc^n \mid n \ge 0\}$ 7. $L = \{a, bc^n \mid n \ge 0\}$

8.
$$L = \{(a,b,c)^n \mid n \ge 0\}$$
 9. $L = \{c^n a, ac^m \mid n,m \ge 0\}$ **10.** $L = \{a,b^n c,c \mid n \ge 0\}$

Dadas las descripciones de los lenguajes, escribe la correspondiente expresión regular sobre $\Sigma = \{0,1\}$:

- a) El conjunto de cadenas con pares de 0s. $(00)^+$ o $(00)^*$
- b) El conjunto de todas las cadenas que empiezan y terminan con 0. $0(0+1)^*0$
- c) El conjunto de todas las cadenas que contengan al inicio 1. $1(0+1)^*$
- d) El conjunto de impares de ls. 1(11)*
- e) El conjunto de todas las cadenas de 0s y 1s. $(0+1)^*$

Escuela Superior de Cómputo | Instituto Politécnico Nacional

2. Número de empleado

Se requiere formar una expresión regular para el número de empleado de una empresa. Considere el Σ ={[0-9], A, N, R, T, U, -, #}. Los formatos válidos son:

a) NUTRA-DD

B) NUTRA#DD

C) NUTRADDD donde D=[0-9]

Expresión: [NUTRA]([0-9] | # | -)[0-9][0-9]

Regex: $/[NUTRA]+(\d|\#|-)+\d\d/g$

3. Expresión regular para un salón de ESCOM

Edificios: 1 y 2. Pisos 0, 1 y 2. Salones: 14

Espresión: ([[1|2][0 | 1 | 2]][[00-14]])

Regex: /([1|2]+[0|1|2]+[0][0-9] | [1][0-4])/g