

RELATÓRIO PRÁTICO DE CIRCUITOS ELÉTRICOS 1

Prática 3 Linearidade e Superposição

Guilherme Rodrigues do Santos - RA: 2199580

Luiz Eduardo Caldas Kramer - RA: 2199661

1) Linearidade:

a)

Aplicando o método das malhas com a tensão inicial de 2V:

Malha 1:

$$330(I_1 - I_3) + 470(I_1 - I_2) - 2 = 0$$

 $330I_1 - 330I_3 + 470I_1 - 470I_2 = 2$
 $800I_1 - 470I_2 - 330I_3 = 2$

Malha 2:

$$1000I_{2} + 470(I_{2} - I_{1}) + 100(I_{2} - I_{3}) = 0$$

$$1000I_{2} + 470I_{2} - 470I_{1} + 100I_{2} - 100I_{3} = 0$$

$$-470I_{1} + 1570I_{2} - 100I_{3} = 0$$

Malha 3:

$$1200I_3 + 330(I_3 - I_1) + 100(I_3 - I_2) = 0$$

$$1200I_3 + 330I_3 - 330I_1 + 100I_3 - 100I_2 = 0$$

$$-330I_1 - 100I_2 + 1630I_3 = 0$$

Assim, ao montar um sistema linear temos:

$$800I_{1} - 470I_{2} - 330I_{3} = 2$$
$$-470I_{1} + 1570I_{2} - 100I_{3} = 0$$
$$-330I_{1} - 100I_{2} + 1630I_{3} = 0$$

E ao resolver o sistema com auxílio computacional, obtemos:

$$I_1 = 3,451 \text{mA}$$
 $I_2 = 1,081 \text{mA}$

Como tanto I_1 quanto I_2 incidem no resistor de 470 Ω :

V1 = 470
$$\Omega(I_1 - I_2)$$
 = 470 $\Omega(3, 451mA - 1, 081mA)$ = 470 $\Omega(2,37 \text{ mA})$ = 1,113V

E como no resistor de 1k somente passa a corrente ${\cal I}_2$, temos:

$$V2 = 1k\Omega(I_2) = 1k\Omega(1,081mA) = 1.081V$$

Visto que o circuito atende aos requisitos da linearidade em que:

KRi(t) = Kv(t)

de modo que ao multiplicar a tensão inicial por uma constante k, obtemos:

Para k = 2, V = 4V. E assim:

KV1 = 2(1.113V) = 2.226V

KV2 = 2(1.081V) = 2.162V

Para k = 3, V = 6V. E assim:

KV1 = 3(1.113V) = 3.339V

KV2 = 3(1.081V) = 2.162V

Para k = 4, V = 8V. E assim:

KV1 = 4(1.113V) = 4.452V

KV2 = 4(1.081V) = 4.324V

	V1 [V] (calculado)	V1 [V] (simulado)	V2 [V] (calculado)	V2 [V] (simulado)
V = 2V	1.113V	1.11V	1.081V	1.08V
V = 4V	2.226V	2.23V	2. 162V	2.16V
V = 6V	3.339V	3.34V	3.243V	3.25V
V = 8V	4.452V	4.45V	4.324V	4.33V

b)

V1[V] x V

2) Superposição:

a)

i)
$$VA = 2.67V$$

i) VA = 2.67V

$$P = \frac{V^2}{R} = \frac{(2.67V)^2}{3k3\Omega} = 2,16 \text{ mW}$$

$$ii)VA = 2.32V$$

ii)VA = 2.32V

$$P = \frac{V^2}{R} = \frac{(2.32V)^2}{3k3\Omega} = 1.63 \text{ mW}$$

iii)
$$VA = 4.99V$$

iii) VA = 4.99V

$$P = \frac{V^2}{R} = \frac{(4.99V)^2}{3k3\Omega} = 7,54 \text{ mW}$$

VA'	2.67V
VA"	2.32V
VA' + VA''	4.99V
VA'	4.99V

Tabela 1

PR1'	2.16mW
PR1"	1.63mW
PR1' + PR1"	3.79mW
PR1	7.54mW

b) Sim, se aplica, pois o resultado da soma das tensões do circuito com as fontes isoladas é igual a tensão do circuito com as duas fontes juntas. Como pode se observar na tabela 1.

Já no caso das potências não se aplica, pois o resultado da soma das potências no circuito com as fontes isoladas é diferente da potência com as fontes juntas. Como pode se observar na tabela 2.