

Walinformationssystem

Gruppe 3 - Lea Rieger - Markus Sosnowski

Einfach aufzusetzendes System

Stimmabgabe aktuell

Im Walinformationssystem: elektronische Stimmabgabe

Zuordnung von Wahlergebnissen zu Personen möglich (2013 und 2017)

Auswirkungen der Stimmabgabe in Echtzeit zu beobachten

DEMO

Eingesetzte Technologien - Backend

- → docker (-compose)
- → Java Spring
- → Postgres DB
- → PostgreSQL JDBC Connector
- → gradle

Eingesetzte Technologien - Frontend

- → Angular
- → ng2-charts (Chart.js)
- → Bootstrap

Implementierung der Sitzverteilung

100% SQL mit Hochzählverfahren

- 1. Berechne Sitze pro Land (1. Oberverteilung)
- Berechne die Verteilung der Sitze pro Land auf die Parteien (1. Unterverteilung)
- 3. Zwischenschritt: berechne Mindestsitzanzahl für die einzelnen Parteien
- 4. Berechne die Ausgleichsmandate (2. Oberverteilung)
- 5. Berechne die Verteilung der Mandate pro Partei auf die Landeslisten (2. Unterverteilung)

Ergebnisse Benchmarktest

n: Anzahl der simulierten Browser

t: Ø Abstand zwischen zwei Queries eines Browsers

	n = 100 t = 5s	n = 100 t = 10s	n = 10 t = 5s	n = 10 t = 10s
Ø	34.632s	29.171s	1.426s	1.084s
min	0.031s	0.027s	0.012s	0.011s
max	486.068s	435.444s	26.573s	15.961s