

HUMBOLDT UNIVERSITY OF BERLIN

EINFÜHRUNG IN DAS WISSENSCHAFTLICHE RECHNEN

Documentation of Fraction Application Programming Interface and Command Line Interface Calculator

Christian Parpart & Kei Thoma

Contents

Contents

1	User Manual	3
2	Documentation	3
	2.1 tools3.py	3
	2.2 bruch.py	3
	2.2.1 class Bruch()	3

1 User Manual

2 Documentation

2.1 tools3.py

In this module, we have the two functions to compute the greatest common divisor and the least common multiple. Here, there are no classes, just free functions.

- ggt(arg1, arg2) computes the greatest common divisor via Euclidean algorithm.
 - Arguments
 - 1. arg1 (int): first integer
 - 2. arg2 (int): second integer
 - Returns (int): greatest common divisor of the first and second integer
- kgv(arg1, arg2) determines the least common multiple, utilizing the greatest common divisor, computed by the function ggt(arg1, arg2).
 - Arguments
 - 1. arg1 (int): first integer
 - 2. arg2 (int): second integer
 - Returns (int): least common multiple of the first and second integer.
- main() for testing purposes. Takes no arguments and returns none.

2.2 bruch.py

In this module, we have implemented the class Bruch that represents fractions.

2.2.1 class Bruch()

The objects of this class represent fractions.

Attributes

- zaehler (int): the numerator
- nenner (int): the denominator

Methodes

- kuerzen(self) reduces the fraction. Takes no arguments except for self and returns none.
- __add__(self, other) adds two fractions together via finding the greatest common divisor and reduces afterwards. The result is a new Bruch object.

References

- Arguments
 - 1.
- Returns (Bruch): the sum of the two fractions
- __repr__(self)
- check_validity(self)

References

- [1] Bosch, Siegfried. Algebra. Springer-Verlag Berlin Heidelberg, 7th Edition, 2009.
- [2] Knuth, Donald. The Art of Computer Programming Volume 2. Prentice Hall, 3rd Edition, 1997.