Gegeven continu signaal: \sin met f = 100Hz

$$x(t) = \sin \omega t = \sin 2\pi f t = \sin 200\pi t$$

 $\omega = 2\pi f$ met ω hoekfrequentie en f frequentie in Hz

$$T = \frac{2\pi}{\omega} = \frac{1}{f} = \frac{2\pi}{200\pi} = 0.01$$
s

$$x(t) = \sin 200\pi t \text{ met } T = \frac{2\pi}{\omega} = \frac{2\pi}{200\pi} = 0.01 \text{s}$$

Sampelen met $f_s = 1000Hz$, dus $T_s = \frac{1}{1000Hz} = 0.001$ s

$$x(t) = \sin 200\pi t$$
 invullen $t = n \cdot T_s$: $x[n] = \sin(200\pi \cdot 0.001 \cdot n) = \sin\frac{2\pi}{10}n$

$$x[0] = 0$$

$$x[1] = \sin\frac{2\pi}{10} = 0.59$$

$$x[2] = \sin 2\frac{2\pi}{10} = 0.95$$

$$x[3] = \sin 3\frac{2\pi}{10} = 0.95$$

$$x[4] = \sin 4\frac{2\pi}{10} = 0.59$$

etc.

Gesampelde signaal (beginnend bij n = 0):

$$(x[n]):0$$
 0.59 0.95 0.95 0.59 0 -0.59 ...

$$x[n] = \sin \frac{2\pi}{10}n$$
 gestand. frequentie $\Omega = \frac{2\pi}{10}$

Dus hoe van ω naar Ω ? $\Omega = \omega \cdot T_s$

Als gegeven een sinus met analoge frequentie ω :

$$x(t) = \sin \omega \cdot t$$

Sampelen met sampelinterval T_s : $t = n \cdot T_s$ invullen:

$$\sin(\omega \cdot T_s \cdot n) = \sin(\Omega \cdot n)$$

Dan ontstaat sinus met gestandaardiseerde frequentie Ω :

$$x[n] = \sin(\Omega \cdot n)$$

Kan je van Ω naar ω ?

$$\Omega = \omega \cdot T_s \Rightarrow \omega = \Omega/T_s$$

Dat betekent dat je naast de frequentie Ω ook het sampelinterval T_s moet weten om de analoge frequentie ω te achterhalen

Voorbeeld:

$$\Omega = \frac{2\pi}{10} \text{ en } T_s = 0.01 \Rightarrow \omega = \frac{2\pi/10}{0.01} = 20\pi$$

$$\Omega = \frac{2\pi}{100} \text{ en } T_s = 0.001 \Rightarrow \omega = \frac{2\pi/100}{0.001} = 20\pi$$

Frequentie en periode digitaal signaal

$$x[n] = \sin \Omega n$$
 frequentie Ω

Voorbeeld

$$x[n] = \sin \frac{2\pi}{10}n$$
 frequentie $\Omega = \frac{2\pi}{10}$

periode N = 10

$$x[n] = \sin \frac{2\pi}{9}n$$
 frequentie $\Omega = \frac{2\pi}{9}$

periode N=9

$$N = \frac{2\pi}{\Omega} \times k$$
 (Waarom k wordt zo duidelijk)

Opgave 1

 $x(t) = \sin(2\pi \cdot 100 \cdot t) = \sin(200\pi t)$, dus f = 100Hz

Sampel met $T_s = 0.002$, dus $f_s = 500Hz$

Bereken de eerste vijf waarden van x[n]

Wat is de frequentie Ω en wat is de periode N?

Uitwerking opgave 1

$$t = n \cdot T_s \Rightarrow x[n] = \sin(200\pi \cdot 0.002 \cdot n) = \sin(\frac{2\pi}{5}n)$$

$$\Omega = \frac{2\pi}{5} \quad N = 5$$

$$x[0] = 0$$

$$x[1] = \sin\frac{2\pi}{5} = 0.95$$

$$x[3] = \sin 3\frac{2\pi}{5} = -0.59$$

$$x[4] = \sin 4\frac{2\pi}{5} = -0.95$$

$$x[5] = \sin 5\frac{2\pi}{5} = 0$$

Frequentie en periode digitaal signaal

analoog

digitaal

$$\omega \xrightarrow{T_s} sampelen$$

$$\Omega = \omega \cdot T_s$$

$$x(t) = \sin(\omega t)$$

$$x(t) = \sin(\omega t)$$
 $x[n] = \sin(\omega \cdot T_s \cdot n) = \sin(\Omega n)$

$$T = \frac{2\pi}{\omega}$$

$$N = \frac{2\pi}{\Omega} \times k$$

Opgave 2

Gegeven een sinus met frequentie f = 30Hz

Sampel met $f_s=135Hz$, wat is ω , Ω en N?

$$\omega = 2\pi \cdot f = 60\pi \Rightarrow x(t) = \sin(60\pi t) \Rightarrow T = \frac{2\pi}{60\pi} = \frac{1}{30}s$$

$$x[n] = \sin(60\pi \cdot \frac{1}{135} \cdot n) = \sin(\frac{4\pi}{9}n)$$

$$\Omega = \frac{4\pi}{9} \Rightarrow$$

$$N = \frac{2\pi}{\Omega} \times 2 = \frac{2\pi}{4\pi/9} \times 2 = 2\pi \times \frac{9}{4\pi} \times 2 = 9$$

$x[n] = \sin \Omega n$

$$x[n] = \sin \frac{2\pi}{10}n$$

$$\Omega = \frac{2\pi}{10}$$

$$N = 10$$

$x[n] = \sin \Omega n$

$$x[n] = \sin \frac{2\pi}{6}n$$

$$\Omega = \frac{2\pi}{6}$$

$$N = 6$$

$x[n] = \sin \Omega n$

$$x[n] = \sin \Omega n$$

$$x[n] = \sin \frac{2\pi}{2} n$$

$$\Omega = \frac{2\pi}{2} = \pi$$

constant

$$x[n] = \cos \Omega n$$

$$x[n] = \cos \frac{2\pi}{2}n$$

$$\Omega = \frac{2\pi}{2} = \pi$$

N=2 is hoogste frequentie

$$x[n] = \sin \frac{4\pi}{7}n$$

$$x[n] = \sin \frac{3\pi}{7} n \Rightarrow N = 14$$

Opgaven

Wat is de periode N van de volgende signalen?

- 1. $\sin(\frac{\pi}{9}n)$
- 2. $\sin(\frac{4\pi}{9}n)$
- 3. $\sin(\frac{\pi}{5}n) + \sin(\frac{\pi}{10}n)$
- 4. $\sin(0.01\pi n)$
- $5. \sin(\frac{\pi}{4}n) + \cos(\frac{\pi}{2}n)$
- 6. $\sin(n)$

1.
$$\Omega = \frac{\pi}{9} = \frac{2\pi}{18} \Rightarrow N = 18$$

$$2. \ \Omega = \frac{4\pi}{9} \Rightarrow N = 9$$

3.
$$\Omega_1 = \frac{\pi}{5} = \frac{2\pi}{10} \Rightarrow N_1 = 10$$
, $\Omega_2 = \frac{\pi}{10} = \frac{2\pi}{20} \Rightarrow N_2 = 20$

$$\Rightarrow N = 20$$

4.
$$\Omega = \frac{\pi}{100} = \frac{2\pi}{200} \Rightarrow N = 200$$

5.
$$\Omega_1 = \frac{\pi}{4} = \frac{2\pi}{8} \Rightarrow N_1 = 8$$
, $\Omega_2 = \frac{\pi}{2} = \frac{2\pi}{4} \Rightarrow N_2 = 4$

$$\Rightarrow N = 8$$

6. niet periodiek

Sampling frequentie?

Hoe vaak sampelen?

Sampling theorema van Shannon

Als maximale frequentie $f_{max}Hz \Rightarrow f_s = 2f_{max}$

Dus als $f_{max} = 3kHz \Rightarrow 6000$ keer per seconde

2 samples per periode van hoogste frequentie

Basissignalen

eenheidsimpuls $\delta[n]$:

$$\delta[n] = 0$$
 als $n \neq 0$

$$\delta[n] = 1$$
 als $n = 0$

Opgave

Wat is $\delta[n-1]$?

$$\delta[n-1] = 0 \text{ als } n-1 \neq 0 \Rightarrow n \neq 1$$

$$\delta[n-1] = 1 \text{ als } n-1 = 0 \Rightarrow n = 1$$

