Prof. Ki-Hoon Lee

Dept. of Computer Engineering

Kwangwoon University

#### Graphs

- G = (V, E)
- V is the vertex set.
- Vertices are also called nodes and points.
- E is the edge set.
- Each edge connects two *different* vertices.
- Edges are also called arcs and lines.
- Directed edge has an orientation <u, v>.

$$u \longrightarrow v$$

• <u, v> and <v, u> represent two different edges.

#### Graphs (cont.)

• Undirected edge has no orientation (u, v).

u — v

- (u, v) and (v, u) represent the same edges.
- Undirected graph 

  no oriented edge.
- Directed graph (digraph) → every edge has an orientation.

#### Examples



- $V(G_1) = \{0, 1, 2, 3\}$  $E(G_1) = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}$
- $V(G_2) = \{0, 1, 2, 3, 4, 5, 6\}$  $E(G_2) = \{(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)\}$
- $V(G_3) = \{0, 1, 2\}$  $E(G_3) = \{<0, 1>, <1, 0>, <1, 2>\}$

#### Applications—Communication Network



• Vertex = city, edge = communication link.

### Applications—Street Map



• Some streets are one way.

#### Number of Edges—Directed Graph

- Each edge is of the form <u, v>, u != v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge <u, v> is not the same as edge <v,</li>
   u>, the number of edges in a complete directed graph is n(n-1).
- Number of edges in a directed graph is  $\leq n(n-1)$ .

#### Number of Edges—Undirected Graph

- Each edge is of the form (u, v), u != v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u, v) is the same as edge (v, u), the number of edges in a complete undirected graph is n(n-1)/2.
- Number of edges in an undirected graph is  $\leq n(n-1)/2$ .

#### Complete Undirected Graph

Has all possible edges.

n(n-1)/2 (=  ${}_{n}C_{2}$ ) edges for a graph with n vertices



#### **Definitions**

- If (u, v) is an edge in E(G),
  - The vertices u and v are adjacent
  - The edge (u, v) is *incident* on vertices u and v
- If <u, v> is a directed edge,
  - Vertex u is adjacent to v, and v is adjacent from u
- A subgraph of G is a graph G' such that  $V(G') \subseteq V(G)$  and  $E(G') \subseteq E(G)$

#### Examples



- A *path* from vertex u to vertex v in graph G is a sequence of vertices u, i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>k</sub>, v such that (u, i<sub>1</sub>), (i<sub>1</sub>, i<sub>2</sub>), ..., (i<sub>k</sub>, v) are edges in E(G)
- The *length* of a path is the number of edges on it
- A *simple path* is a path in which all vertices except possibly the first and last are distinct
  - Example: A path 0, 1, 3, 2 of G<sub>1</sub> is a simple path, but a path 0, 1, 3, 1 is not.

- A *cycle* is a simple path in which the first and last vertices are the same
  - A path 0, 1, 2, 0 is a cycle in  $G_1$



• In an undirected graph, G, two vertices u and v are *connected* iff there is a path in G from u to v (or from v to u)

- An undirected graph G is connected iff for every pair of distinct vertices u and v in V(G), there is a path from u to v in G
  - Example:  $G_1$  and  $G_2$  are connected, whereas  $G_4$  is not



#### **Connect Components**

- A *connected component* (or simply a component), H, of an undirected graph is a *maximal* connected subgraph
  - By maximal, we mean that G contains no other subgraph that is both connected and properly contains H
  - $-G_4$  has two components,  $H_1$  and  $H_2$



#### Strongly Connect Components

• A directed graph G is *strongly connected* iff for every pair of distinct vertices u and v in V(G), there is a directed path from u to v and also from v to u



 $G_3$ 

- Example: G<sub>3</sub> is not strongly connected, as there is no path from vertex 2 to 1
- A *strongly connected component* is a maximal subgraph that is strongly connected
  - Example: G<sub>3</sub> has two strongly connected components

- A *tree* is a graph that is connected and acyclic (i.e., has no cycles)
- The *degree* of a vertex is the number of edges incident to that vertex
  - Example: The degree of vertex 0 in  $G_1$  is 3
- For a directed graph, the *in-degree* (*out-degree*) of a vertex *v* is the number of edges that have *v* as the head (tail)
  - Example: In G<sub>3</sub>, Vertex 1: in-degree 1, out-degree 2, degree 3



### Sum of Vertex Degrees



Sum of degrees = 2e (e is number of edges)

#### In-Degree of a Vertex



in-degree is number of incoming edges

in-degree(2) = 1, in-degree(8) = 0

#### Out-Degree of a Vertex



out-degree is number of outgoing edges

out-degree(2) = 1, out-degree(8) = 2

#### Sum of In- and Out-Degrees

• Each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex

• sum of in-degrees = sum of out-degrees = the number of edges in the digraph

#### Graph Representation

- Adjacency Matrix
- Adjacency Lists
  - Linked Adjacency Lists
  - Array Adjacency Lists

#### Adjacency Matrix

- $n \times n$  matrix A, where n = # of vertices in G
- A[i][j] = 1 iff (i, j) is an edge in E(G)
- A[i][j] = 0 iff (i, j) is not an edge in E(G)
- (i, j) is changed to  $\langle i, j \rangle$  for a digraph



|   | 1 | 2 | 3 | 4                     | 5 |
|---|---|---|---|-----------------------|---|
| 1 | 0 | 1 | 0 | 1                     | 0 |
| 2 | 1 | 0 | 0 | 0                     | 1 |
| 3 | 0 | 0 | 0 | 0                     | 1 |
| 4 | 1 | 0 | 0 | 0                     | 1 |
| 5 | 0 | 1 | 1 | 1<br>0<br>0<br>0<br>1 | 0 |

## Adjacency Matrix Properties (Undirected Graph)



- Diagonal entries are zero.
- Adjacency matrix of an undirected graph is symmetric.
  - A[i][j] = A[j][i] for all i and j.
- The degree of any vertex i is its row sum

# Adjacency Matrix Properties (Digraph)



- Diagonal entries are zero.
- Adjacency matrix of a digraph is asymmetric.
- The row sum is the out-degree and the column sum is the in-degree

#### Adjacency Matrix

- n<sup>2</sup> bits of space
- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
  - (n-1)n/2 bits
- O(n) time to find vertex degree and/or vertices adjacent to a given vertex.
- $O(n^2)$  time to answer a question about graphs
  - Example: How many edges are there in G?

#### Adjacency Matrix

- In a *sparse graph*, most of the terms in the adjacency matrix are zero
- Counting the number of edges could be answered in O(n + e) time, where e is the number of edges in G, and e << n<sup>2</sup> for sparse graphs
- Such a speed-up can be made possible through the use of a representation in which only the edges that are in G are explicitly stored
- This leads to the next representation for graphs, adjacency lists

#### Adjacency Lists

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i
  - # of nodes in the adjacency list: the degree of i for an undirected graph or the out-degree of i for digraph
- An array of n adjacency lists



$$aList[1] = (2,4)$$

$$aList[2] = (1,5)$$

$$aList[3] = (5)$$

$$aList[4] = (5,1)$$

$$aList[5] = (2,4,3)$$

#### Linked Adjacency Lists

• Each adjacency list is a chain



Array Length = n

# of chain nodes = 2e (undirected graph)

# of chain nodes = e (digraph)

#### Array Adjacency Lists

• Each adjacency list is an array list



Array Length = n

# of list elements = 2e (undirected graph)

# of list elements = e (digraph)

#### Weighted Graphs

- Weighted adjacency matrix
  - W(i,j) = weight of edge (i,j)
- Adjacency lists => each list element is a pair (adjacent vertex, edge weight)
- A graph with weighted edges is called a network

#### Summary

- Graph representations
  - Adjacency Matrix
  - Adjacency Lists
    - Linked Adjacency Lists
    - >Array Adjacency Lists
  - 3 representations
- Graph types
  - Directed and undirected
  - Weighted and unweighted
  - $2 \times 2 = 4$  graph types

-DFS

-BFS

• A vertex u is reachable from vertex v iff there is a path from v to u



 A search method starts at a given vertex v and visits/labels/marks every vertex that is reachable from v



- Many graph problems solved using a search method
  - Path from one vertex to another
  - Is the graph connected?
  - Find a spanning tree
  - Etc.
- Commonly used search methods: depth-first search and breadth-first search
- There are problems for which BFS is better than DFS and vice versa

#### Depth-First Search (DFS)

- A recursive graph searching technique
- While doing a DFS, we maintain a set of visited nodes (Initially this set is empty)
- When DFS is called on any vertex (say v), first that vertex is marked as visited and then for every edge going out of that vertex, (v, w), such that w is unvisited, we call DFS on w
- Finally, we return when we have exhausted all the edges going out from v

#### Depth-First Search

```
□virtual void Graph::DFS() // Driver
   visited = new bool [n];
     // visited is declared as a bool* data member of Graph
   fill(visited, visited+n, false);
   DFS(0); // start search at vertex 0
   delete [] visited;
□virtual void Graph::DFS(const int v) // Workhorse
 {// Visit all previously unvisited vertices that are reachable from vertex v.
   visited[v] = true;
   for (each vertex w adjacent to v) // actual code uses an iterator
     if (!visited[w]) DFS(w);
```



Start search at vertex 1.

Label vertex 1 and do a depth first search from either 2 or 4. Suppose that vertex 2 is selected.



Label vertex 2 and do a depth first search from either 3, 5, or 6. Suppose that vertex 5 is selected.



Label vertex 5 and do a depth first search from either 3, 7, or 9. Suppose that vertex 9 is selected.



Label vertex 9 and do a depth first search from either 6 or 8. Suppose that vertex 8 is selected.



Label vertex 8 and return to vertex 9.

From vertex 9 do a DFS(6).



Label vertex 6 and do a depth first search from either 4 or 7. Suppose that vertex 4 is selected.



Label vertex 4 and return to 6. From vertex 6 do a DFS(7).



Label vertex 7 and return to 6. Return to 9.



Return to 5.



Do a DFS(3).



Label 3 and return to 5.



Return to 2.



Return to invoking method.

#### Depth-First Search Property

• All vertices reachable from the start vertex (including the start vertex) are visited.

#### Time Complexity



- $O(n^2)$  when adjacency matrix used
- O(n+e) when adjacency lists used (e is number of edges)

#### Path from Vertex v to Vertex u

- Start a depth-first search at vertex v.
- Terminate when vertex **u** is visited or when DFS ends (whichever occurs first).
- Time
  - $O(n^2)$  when adjacency matrix used
  - O(n+e) when adjacency lists used (e is number of edges)

#### Is the Graph Connected?

- Start a depth-first search at any vertex of the graph.
- Graph is connected iff all n vertices get visited.
- Time
  - $O(n^2)$  when adjacency matrix used
  - O(n+e) when adjacency lists used (e is number of edges)

#### Connected Components

- Start a depth-first search at any as yet unvisited vertex of the graph.
- Newly visited vertices (plus edges between them) define a component.
- Repeat until all vertices are visited.

# **Connected Components**



# Spanning Tree



Depth-first search from vertex 1. Depth-first spanning tree.

#### Spanning Tree

- Start a depth-first search at any vertex of the graph.
- If graph is connected, the n-1 edges used to get to unvisited vertices define a spanning tree (depth-first spanning tree).
- Time
  - $O(n^2)$  when adjacency matrix used
  - O(n+e) when adjacency lists used (e is number of edges)

#### Breadth-First Search

- Visit the start vertex and put into a FIFO queue.
- Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices into the queue.

#### Breadth-First Search (cont.)

```
□ virtual void Graph::BFS(int v)
\pm \{// A breadth first search of the graph is carried out beginning at vertex v.
 // visited[i] is set to true when v is visited. The function uses a queue.
   visited = new bool [n];
   fill(visited, visited+n, false);
   visited[v] = true;
   Queue<int> q;
   q.Push(v);
   while (!q.lsEmpty()) {
     v = q.Front();
     q.Pop();
     for (all vertices w adjacent to v) // actual code uses an iterator
       if (!visited[w]) {
         q.Push(w);
         visited[w] = true;
   } // end of while loop
   delete [] visited;
```



Start search at vertex 1.



Visit/mark/label start vertex and put in a FIFO queue.



Remove 1 from Q; visit adjacent unvisited vertices; put in Q.



Remove 1 from Q; visit adjacent unvisited vertices; put in Q.



Remove 2 from Q; visit adjacent unvisited vertices; put in Q.



Remove 2 from Q; visit adjacent unvisited vertices; put in Q.



Remove 4 from Q; visit adjacent unvisited vertices; put in Q.



Remove 4 from Q; visit adjacent unvisited vertices; put in Q.



Remove 5 from Q; visit adjacent unvisited vertices; put in Q.



Remove 5 from Q; visit adjacent unvisited vertices; put in Q.



Remove 3 from Q; visit adjacent unvisited vertices; put in Q.



Remove 3 from Q; visit adjacent unvisited vertices; put in Q.



Remove 6 from Q; visit adjacent unvisited vertices; put in Q.



Remove 6 from Q; visit adjacent unvisited vertices; put in Q.



Remove 9 from Q; visit adjacent unvisited vertices; put in Q.



Remove 9 from Q; visit adjacent unvisited vertices; put in Q.



Remove 7 from Q; visit adjacent unvisited vertices; put in Q.



Remove 7 from Q; visit adjacent unvisited vertices; put in Q.



Remove 8 from Q; visit adjacent unvisited vertices; put in Q.



Queue is empty. Search terminates.

#### Time Complexity



- Each visited vertex is put on (and so removed from) the queue exactly once.
- When a vertex is removed from the queue, we examine its adjacent vertices.
  - O(n) if adjacency matrix used
  - O(vertex degree) if adjacency lists used
- Time
  - $O(n^2)$  when adjacency matrix used
  - O(n+e) when adjacency lists used (e is number of edges)