Deep Learning Using TensorFlow and Apache MXNet on AWS SageMaker

MACHINE LEARNING ON THE CLOUD WITH AWS SAGEMAKER

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

SageMaker is a fully managed machine learning service offered by AWS

Build, train and deploy machine learning models on the AWS cloud

Integrated Jupyter notebook instance to develop models

Develop new models or use built-in models on your training data

Bring your own model or container to train and host at scale

Prerequisites and Course Outline

Intermediate to advanced course on training and deploying ML models on AWS

Very comfortable building ML models in Python

Prerequisite Courses

Understanding Machine Learning with Python

Understanding the Foundations of TensorFlow

Building Classification Models with TensorFlow

Related Courses

Getting Started with Azure Machine Learning

Software and Skills

Be very comfortable programming in Python

Be very comfortable with building ML models and neural networks

Familiar with TensorFlow or Apache MXNet

Understand the basics of cloud computing VMs, instances, distributed computing etc.

Course Outline

Introduction to AWS SageMaker

 Using SageMaker to build, train and deploy models at scale on the cloud

Using built-in models in SageMaker

- Train and deploy built-in models with your own data

Bring your own code, model and container

- SageMaker offers support for a variety of ways to train and host models

Distributed training and autoscaling

Introducing AWS SageMaker

Collect data

Data from many sources

 Database, data warehouse, sensors, streaming data

Clean the data

- remove null values, outliers

Standardize and normalize

- Convert to numeric values, standardize categories and names

Pre-process and transform

- Calculate summaries, combine attributes

Collect data

Data Preparation

SageMaker runs Jupyter notebooks on instances in the cloud to explore and prepare data

Collect data

Data Preparation

https://aws.amazon.com/marketplace/search/
results?searchTerms=data+preparation

Train model

Machine learning algorithms

- Traditional models, neural networks

Allocate compute resources

 VMs, memory, scaling parameters, GPUs/ CPUs

Evaluate the model

- AWS SDK for Python (boto), Jupyter notebooks

Train model

Machine learning algorithms

- Traditional models, neural networks

Allocate compute resources

- VMs, memory, scaling parameters, GPUs/ CPUs

Evaluate the model

- AWS SDK for Python (boto), Jupyter notebooks

ML Algorithms on SageMaker

Built-in algorithms

Out-of-the-box models hosted on containers on the AWS cloud

Bring your algorithm

Develop your own code in TensorFlow, Apache MXNet etc.

ML Algorithms on SageMaker

Built-in algorithms

Out-of-the-box models hosted on containers on the AWS cloud

Bring your algorithm

Develop your own code in TensorFlow, Apache MXNet etc.

ML Algorithms on SageMaker

Bring your algorithm

Develop your own code in TensorFlow, Apache MXNet etc.

Bring your own code

Bring your own model

Bring your own container

Amazon hosting services

- Deploy models at scale on multiple instances

HTTPs endpoint

- REST API calls to get model predictions

Decoupled

- Deployment instances separate from training instances

Training a Model on SageMaker

Compute instances for training

AWS SageMaker

Train model

Training Jobs

URL of S3 bucket with training data
Compute resources to run training
URL of S3 bucket to hold the output
Training code

- Built-in algorithms
- ML code in Apache Spark
- Custom code in TensorFlow or Apache MXNet
- Custom code in a container

Deploying a Model on SageMaker

Training a Model

Training a Model

Steps in Deploying a Model

Create a model

Specify model artifacts, give model name

Create an endpoint configuration

Specify model name and compute instances

Create an HTTPs endpoint

Provide endpoint config to SageMaker

Multiple Variants of a Model

Multiple Variants of a Model

Test Model Variants in Production

Test Model Variants in Production

Deploy New Models Without Downtime

Slowly move 100% of the traffic to the new model

Autoscale Model Variants

Autoscaling can be applied to any production variant

Machine Learning Workflow

Deploy and host model

Deployment Jobs

URL of S3 bucket with model artifacts
Compute resources to host model
Endpoint configuration and HTTPs
endpoint

Jupyter Notebook Instances

SageMaker offers Jupyter notebook instances to prepare, explore and preprocess data

Creating a Notebook Instance

Creates network interface

Creates this in the VPC specified by the user

Installs Anaconda packages, other libraries

TensorFlow, Apache MXNet

Provides sample code

Many example
Jupyter notebooks

Launches ML compute instance

Enables traffic between this instance and your VPC

Attaches an ML storage volume

Non-persistent storage, 5GB with the compute instance and 20GB with the notebook instance

Demo

Signing in to Amazon Web Services

Creating a notebook instance to hold the demo Jupyter notebooks

Demo

Setting up an Amazon S3 bucket

Used to hold training data and model atrifacts

Summary

Build, train and deploy cycles using Amazon SageMaker

Develop new models or use built-in models on your training data

Bring your own model or container to train and host at scale

Integrated Jupyter notebook instance to develop models