CHAP 4 - GENERALITES SUR LES FONCTIONS

Dans l'ensemble de ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Généralités

1.1 Transformations de courbes

On rappelle que l'on définit une fonction f sur un ensemble de réels D à valeurs dans \mathbb{K} en associant à chaque réel de D un unique élément de \mathbb{K} .

Lorsque $\mathbb{K} = \mathbb{R}$, on dit que f est une fonction réelle; lorsque $\mathbb{K} = \mathbb{C}$ on dit que f est une fonction complexe.

On note $\mathscr{F}(D,\mathbb{K})$ l'ensemble des fonctions définies sur D à valeurs dans \mathbb{K} .

Définition 1

Le plan étant muni d'un repère (O, \vec{i}, \vec{j}) , on appelle **représentation graphique** ou **courbe** d'une fonction réelle f définie sur D l'ensemble des points du plan de coordonnées (x, y) telles que $x \in D$ et y = f(x).

Proposition 1

Soit f une fonction réelle définie sur \mathbb{R} . On note \mathscr{C} sa représentation graphique dans un repère (O, \vec{i}, \vec{j}) . a désigne un réel non nul.

- La représentation graphique de la fonction $x \mapsto f(x) + a$ s'obtient en appliquant à \mathscr{C} une translation de vecteur $a\vec{j}$.
- La représentation graphique de la fonction $x \mapsto f(x+a)$ s'obtient en appliquant à \mathscr{C} une translation de vecteur $-a\vec{i}$
- La représentation graphique de la fonction $x \mapsto -f(x)$ s'obtient en appliquant à $\mathscr C$ une symétrie d'axe (O, \vec{i}) .
- La représentation graphique de la fonction $x \mapsto af(x)$ s'obtient (au compas) en multipliant les ordonnées des points de \mathscr{C} par a. Cette transformation s'appelle **affinité de rapport** a **parallèlement** à (Oy).
- La représentation graphique de la fonction $x \mapsto f(ax)$ s'obtient (au compas) en divisant les abscisses des points de \mathscr{C} par a. Cette transformation s'appelle **affinité de rapport** $\frac{1}{a}$ **parallèlement à** (Ox).

Proposition 2

Si f établit une bijection sur \mathbb{R} , la représentation graphique de la fonction réciproque f^{-1} est la courbe symétrique de \mathscr{C} par rapport à la droite d'équation y = x.

1.2 Fonctions obtenues à partir d'une fonction complexe

Définition 2

Pour une fonction complexe f définie sur un ensemble D, on définit sur D les fonctions suivantes :

- $|f|: x \mapsto |f(x)|$, appelée fonction module de f;
- $\overline{f}: x \mapsto \overline{f(x)}$, appelée fonction conjuguée de f;
- $Re(f): x \mapsto Re(f(x))$, appelée fonction partie réelle de f;
- $\operatorname{Im}(f): x \mapsto \operatorname{Im}(f(x))$, appelée fonction partie imaginaire de f.

1.3 Propriétés

Définition 3

Soit f une fonction réelle définie sur un ensemble D.

• On dit que f est paire si

$$\forall x \in D, \quad -x \in D \text{ et } f(-x) = f(x)$$

• On dit que f est **impaire** si

$$\forall x \in D, \quad -x \in D \text{ et } f(-x) = -f(x)$$

• On dit que f est **périodique** si

$$\exists T \in \mathbb{R}_+^*, \forall x \in D, \quad x + T \in D, x - T \in D \text{ et } f(x + T) = f(x)$$

Le réel T est appelé une **période** de f.

Remarque 1

- (a) Si f est une fonction paire, alors sa représentation graphique dans un repère orthonormé (O, \vec{i}, \vec{j}) admet l'axe (O, \vec{j}) pour axe de symétrie.
 - On étudie donc une fonction paire sur les réels positifs de D, le reste se déduisant par symétrie.
- (b) Si f est une fonction impaire, alors sa représentation graphique dans un repère orthonormé (O, \vec{i}, \vec{j}) admet le point O pour centre de symétrie.
 - On étudie donc une fonction impaire sur les réels positifs de D, le reste se déduisant par symétrie.
- (c) Si f est une fonction périodique de période T alors pour tous $x \in D$ et $k \in \mathbb{Z}$, f(x+kT) = f(x). Ainsi, il suffit d'étudier la fonction sur un intervalle d'amplitude T, le reste de la courbe dans un repère (O, \vec{i}, \vec{j}) se déduisant à l'aide de translations de vecteurs $kT\vec{i}$, avec $k \in \mathbb{Z}^*$.

Définition 4

Soit f une fonction réelle définie sur D.

 \bullet On dit que f est **majorée** si

$$\exists M \in \mathbb{R}, \forall x \in D, f(x) \leq M$$

On dit alors que M est un **majorant** de f.

 \bullet On dit que f est **minorée** si

$$\exists m \in \mathbb{R}, \forall x \in D, f(x) \geq m$$

On dit alors que m est un **minorant** de f

• On dit que f est bornée si f est majorée et minorée.

Proposition 3

Soit f une fonction réelle définie sur D. f est bornée si, et seulement si |f| est majorée.

1.4 Variations

Définition 5

Soit f une fonction réelle définie sur un intervalle I non réduit à un point.

 \bullet On dit que f est **constante** sur I si

$$\forall (x, y) \in I, f(x) = f(y)$$

 \bullet On dit que f est **croissante** sur I si

$$\forall (x, y) \in I, x < y \Rightarrow f(x) \le f(y)$$

 \bullet On dit que f est **strictement croissante** sur I si

$$\forall (x, y) \in I, x < y \Rightarrow f(x) < f(y)$$

 $\bullet\,$ On dit que f est **décroissante** sur I si

$$\forall (x, y) \in I, x < y \Rightarrow f(x) \ge f(y)$$

ullet On dit que f est strictement décroissante sur I si

$$\forall (x, y) \in I, x < y \Rightarrow f(x) > f(y)$$

Si f est (strictement) croissante sur I ou (strictement) décroissante sur I on dit qu'elle est (strictement) **monotone** sur I.

Proposition 4

Soient f et g des fonctions réelles définies sur un intervalle I non réduit à un point

- Si f et q sont monotones sur I, alors f + q est monotone sur I, avec la même monotonie.
- Si f est croissante sur I, alors -f est décroissante sur I.

Proposition 5

Soient I et J des intervalles, f et g des fonctions réelles définies respectivement sur I et J avec $f(I) \subset J$. On suppose que f et g sont monotones sur leurs domaines.

- Si f et g ont la même monotonie, alors $g \circ f$ est croissante;
- si f et g n'ont pas la même monotonie, alors $g \circ f$ est décroissante.

1.5 Limites

Définition 6

Soit f une fonction réelle définie sur un intervalle I. a désigne un réel de I ou une borne finie de I. On dit que f admet $L \in \mathbb{R}$ pour limite en a si tout intervalle ouvert contenant L contient toutes les images f(x) pour x suffisamment proche de a:

$$\forall \varepsilon > 0, \exists r > 0, \forall x \in I \quad (|x - a| \le r \Rightarrow |f(x) - L| \le \varepsilon)$$

Définition 7

Soit f une fonction réelle définie sur un intervalle de la forme $I = [a, +\infty[$ (resp. $I =] - \infty, a]$).

• On dit que f admet $L \in \mathbb{R}$ pour limite en $+\infty$ (resp. $-\infty$) si tout intervalle ouvert contenant L contient toutes les images f(x) pour x (resp. -x) suffisamment grand :

$$\forall \varepsilon > 0, \exists x_0 \in \mathbb{R}, \forall x \in I \quad (x \ge x_0 \text{ (resp. } x \le x_0) \Rightarrow |f(x) - L| \le \varepsilon)$$

• On dit que f admet $+\infty$ pour limite en $+\infty$ (resp. $-\infty$) si tout intervalle de la forme $[M, +\infty[$ contient toutes les images f(x) pour x (resp. -x) suffisamment grand :

$$\forall M \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in I \quad (x \ge x_0 \text{ (resp. } x \le x_0) \Rightarrow f(x) \ge M)$$

• On dit que f admet $-\infty$ pour limite en $+\infty$ (resp. $-\infty$) si tout intervalle de la forme $]-\infty, M]$ contient toutes les images f(x) pour x (resp. -x) suffisamment grand :

$$\forall M \in \mathbb{R}, \exists x_0 \in \mathbb{R}, \forall x \in I \quad (x \ge x_0 \text{ (resp. } x \le x_0) \Rightarrow f(x) \le M)$$

Proposition 6

Si une fonction réelle f admet une limite, finie ou infinie, en un réel a (resp. en $\pm \infty$), alors cette limite est unique. On la note $\lim_{x\to a} f(x)$ (resp. $\lim_{x\to +\infty} f(x)$).

Définition 8

Si une fonction réelle f admet une limite finie en chacun des réels de son domaine de définition D, on dit qu'elle est **continue** sur D.

Théorème 1 Théorème de bijection

Si une fonction f est continue et strictement monotone sur un intervalle I, alors elle établit une bijection entre I et f(I).

1.6 Dérivation

Définition 9

Soit f une fonction réelle définie sur D.

On dit que f est dérivable en $a \in D$ si la fonction **taux d'accroissement** de f en $a: x \mapsto \frac{f(x) - f(a)}{x - a}$ admet une limite finie en a.

On note alors f'(a) cette limite, appelé **nombre dérivé** de f en a. On a également :

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Définition 10

Soit f une fonction réelle définie sur D. On dit que f est **dérivable** sur $I \subset D$ si f est dérivable en tout point de I.

Si f est dérivable sur I, on appelle **dérivée** de f sur I la fonction qui associe à tout réel $x \in I$ le nombre dérivé de f en x:

$$f': x \mapsto f'(x)$$

Définition 11

Si f est dérivable sur D et si sa dérivée f' est continue sur D, on dit qu'elle est de classe C^1 sur D. L'ensemble des fonctions réelles de classe C^1 sur D se note $C^1(D, \mathbb{R})$.

Définition 12

Si f est dérivable sur D et si sa dérivée est dérivable sur D on dit que f est deux fois dérivable sur D. La dérivée de la dérivée, appelée dérivée d'ordre 2 est notée f''.

On définit ainsi par récurrence la **dérivée d'ordre** k comme la dérivée de la dérivée d'ordre k-1, lorsqu'elle existe.

Si une fonction est k fois dérivable, $k \in \mathbb{N}^*$, et si sa dérivée d'ordre k est continue, on dit que f est de classe C^k sur D. On note $f \in C^k(D, \mathbb{R})$.

Si f admet des dérivées d'ordre k pour tout entier k, on dit qu'elle est de classe C^{∞} , et on note $f \in C^{\infty}(D, \mathbb{R})$.

Proposition 7

Soient f et g des fonctions dérivables sur D, λ et μ des réels.

- La fonction $\lambda f + \mu g$ est dérivable sur D et pour tout $x \in D, (\lambda f + \mu g)' = \lambda f' + \mu g'.$
- La fonction f g est dérivable sur D et pour tout $x \in D$, (f g)' = f'g + f g'.
- Si g ne s'annule pas sur D, la fonction $\frac{f}{g}$ est dérivable sur D et pour tout $x \in D$, $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.

Proposition 8

Soient f une fonction réelle définie sur D, et g une fonction définie sur un ensemble E tel que $f(D) \subset E$. Si f et g sont dérivables sur leurs domaines respectifs, alors $g \circ f$ est dérivable sur D et

$$\forall x \in D, \quad (g \circ f)'(x) = g'(f(x)) \times f'(x)$$

Proposition 9

Soit f une fonction dérivable sur D. Si f établit une bijection entre D et E et si pour tout $x \in D, f'(x) \neq 0$, alors f^{-1} est dérivable sur E et

$$\forall x \in E, \quad (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Théorème 2

Soit f une fonction réelle dérivable sur un intervalle I.

- Si pour tout $x \in I$, f'(x) = 0 alors f est constante sur I.
- Si pour tout $x \in I$, $f'(x) \le 0$ alors f est décroissante sur I.
- Si pour tout $x \in I$, f'(x) < 0 sauf éventuellement en des points isolés de I où f'(x) = 0, alors f est strictement décroissante sur I.
- Si pour tout $x \in I, f'(x) \ge 0$, alors f est croissante sur I.
- Si pour tout $x \in I$, f'(x) > 0 sauf éventuellement en des points isolés de I où f'(x) = 0 alors f est strictement croissante sur I.

Définition 13

Une fonction complexe f définie sur D est dérivable sur D si Re(f) et Im(f) sont dérivables sur \mathbb{R} . On note f', encore appelée **fonction dérivée** de f, la fonction définie sur D par

$$f'(x) = \left(\operatorname{Re}(f)\right)'(x) + \mathrm{i}\left(\operatorname{Im}(f)\right)'(x)$$

2 Fonctions usuelles

2.1 Fonctions logarithmes

Définition 14

On appelle **fonction logarithme** toute fonction f non identiquement nulle définie et dérivable sur \mathbb{R}_+^* vérifiant pour tous réels a et b strictement positifs :

$$f(ab) = f(a) + f(b)$$

Proposition 10

Si f est une fonction logarithme, alors :

- f(1) = 0
- $\forall x > 0, \forall y > 0, f\left(\frac{1}{x}\right) = -f(x), \quad f\left(\frac{x}{y}\right) = f(x) f(y)$
- $\forall n \in \mathbb{Z}, \forall x > 0, f(x^n) = nf(x)$

Proposition 11

Si f est une fonction logarithme, alors pour tout réel strictement positif x, on a : $f'(x) = \frac{f'(1)}{x}$.

Définition 15

On appelle fonction logarithme népérien, la fonction logarithme, notée ln, telle que $\ln'(1) = 1$.

Remarque 2

- (a) La fonction ln est la primitive de la fonction inverse sur \mathbb{R}_+^* , qui s'annule en 1.
- (b) La fonction ln est strictement croissante sur \mathbb{R}_+^* .

Proposition 12

Si u est une fonction dérivable sur un intervalle I, à valeurs strictement positives, alors la fonction $\ln(u)$ est dérivable sur I et on a :

$$\forall x \in I, \quad (\ln(u))'(x) = \frac{u'(x)}{u(x)}$$

Proposition 13

Pour tout réel x > -1 on a :

$$\ln(1+x) \le x$$

Proposition 14

$$\lim_{x\to +\infty} \ln(x) = +\infty, \quad \lim_{x\to 0} \ln(x) = -\infty, \quad \lim_{x\to 0} \frac{\ln(1+x)}{x} = 1.$$

Proposition 15

Une fonction f est une fonction logarithme si, et seulement si il existe $a \in \mathbb{R}_+^* \setminus \{1\}$ tel que pour tout réel $x \in \mathbb{R}_+^*$,

$$f(x) = \frac{\ln(x)}{\ln(a)}$$

Définition 16

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. On appelle **logarithme de base** a, et on note \log_a la fonction définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \quad \log_a(x) = \frac{\ln(x)}{\ln(a)}$$

On note en particulier log le logarithme de base 10, et on a : pour tout $n \in \mathbb{Z}$, $\log(10^n) = n$ (résultat très utilisé en physique et en chimie!)

Remarque 3

- (a) \log_a est dérivable sur \mathbb{R}_+^* et $\log_a'(x) = \frac{1}{\ln(a) x}$.
- (b) Si a > 1, alors \log_a est strictement croissante sur \mathbb{R}_+^* .
- (c) Si 0 < a < 1 alors \log_a est strictement décroissante sur \mathbb{R}_+^*

2.2 Fonctions exponentielles

Les fonctions logarithmes sont continues et strictement monotones sur \mathbb{R}_+^* ; de plus, elles prennent toutes les valeurs de \mathbb{R} .

D'après le théorème de bijection, elles établissent une bijection entre \mathbb{R}_+^* et \mathbb{R} .

Définition 17

On appelle fonctions exponentielles les bijections réciproques des fonctions logarithmes.

En particulier, on note **exp** la bijection réciproque de ln :

$$\begin{cases} y = \exp(x) \\ x \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x = \ln(y) \\ y \in \mathbb{R}_+^* \end{cases}$$

Pour $a \in \mathbb{R}_+^* \setminus \{1\}$, la bijection réciproque de la fonction \log_a s'appelle **exponentielle de base** a:

$$\begin{cases} y = \exp_a(x) \\ x \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} x = \log_a(y) \\ y \in \mathbb{R}_+^* \end{cases}$$

Proposition 16

Pour tout $(x, y) \in \mathbb{R}^2$, on a :

- $\exp(x+y) = \exp(x) \exp(y)$
- $\exp(x y) = \frac{\exp(x)}{\exp(y)}$
- Pour tout $n \in \mathbb{Z}$, $\exp(nx) = (\exp(x))^n$

Notations:

On note $e = \exp(1)$ ($e \simeq 2,718$). Pour tout $n \in \mathbb{Z}$, $\exp(n) = e^n$.

Par extension et par convention, on note pour tout $x \in \mathbb{R} : \exp(x) = e^x$.

Pour tout $a \in \mathbb{R}_+^* \setminus \{1\}, \exp_a(x) = e^{x \ln(a)}$. On note $\exp_a(x) = a^x$.

Remarque 4

La fonction exp est une fonction exponentielle de base e, simplement appelée fonction exponentielle.

Proposition 17

Pour $(a,b) \in (\mathbb{R}_+^* \setminus \{1\})^2$, $(x,y) \in \mathbb{R}^2$, on a:

- $\ln(a^x) = x \ln(a)$; cette égalité étant également vraie pour a = 1.
- $a^{x+y} = a^x a^y$ et $a^{x-y} = \frac{a^x}{a^y}$.
- $\bullet (a^x)^y = a^{xy}.$
- $\bullet (ab)^x = a^x b^x.$

Proposition 18

La fonction exp est dérivable sur \mathbb{R} et on a :

$$\forall x \in \mathbb{R}, \quad \exp'(x) = \exp(x)$$

Pour tout $a \in \mathbb{R}_+^* \setminus \{1\}$ la fonction \exp_a est dérivable sur \mathbb{R} et on a :

$$\forall x \in \mathbb{R}, \quad \exp'_a(x) = \ln(a) \exp_a(x) = \ln(a) a^x$$

Remarque 5

- (a) la fonction exp est strictement croissante sur \mathbb{R} .
- (b) Si a > 1, la fonction \exp_a est strictement croissante sur \mathbb{R} .
- (c) Si 0 < a < 1, la fonction \exp_a est strictement décroissante sur \mathbb{R} .

Proposition 19

Si u est une fonction dérivable sur un intervalle I, alors la fonction e^u est dérivable sur I et on a :

$$(e^u)' = u' e^u$$

Proposition 20

Pour tout réel x on a :

$$\exp(x) \ge x$$

Proposition 21

$$\lim_{x \to +\infty} \mathbf{e}^x = +\infty, \quad \lim_{x \to -\infty} \mathbf{e}^x = 0, \quad \lim_{x \to 0} \frac{\mathbf{e}^x - 1}{x} = 1$$

2.3 Fonctions puissances

Définition 18

On appelle fonctions puissances les fonctions définies sur \mathbb{R}_+^* , pour un réel a donné par

$$f_a: x \mapsto x^a = e^{a \ln(x)}$$

Proposition 22

Soient $(a,b) \in \mathbb{R}^2$, $(x,y) \in (\mathbb{R}_+^*)^2$. On a :

$$(xy)^a = x^a y^a, \quad x^{a+b} = x^a x^b, \quad (x^a)^b = x^{ab}$$

Proposition 23

Etant donné $a \in \mathbb{R}$, la fonction f_a est dérivable sur \mathbb{R}_+^* et on a :

$$\forall x > 0, \quad f_a'(x) = a \ x^{a-1}$$

Remarque 6

- (a) Si a > 0, f_a est strictement croissante sur \mathbb{R}_+^* ;
- (b) Si a = 0, f_a est constante;
- (c) Si a < 0, f_a est strictement décroissante sur \mathbb{R}_+^* .

Définition 19

Lorsque $a = \frac{1}{n}$ où $n \in \mathbb{N}^*$, la fonction f_a est appelée **racine** n-ème et on note pour x > 0, $(x)^{\frac{1}{n}} = \sqrt[n]{x}$. On a :

$$\begin{cases} y = \sqrt[n]{x} \\ x \in \mathbb{R}_+^* \end{cases} \Leftrightarrow \begin{cases} x = y^n \\ y \in \mathbb{R}_+^* \end{cases}$$

Remarque 7

La fonction racine *n*-ème se prolonge pour x=0 en posant $\sqrt[n]{0}=0$.

Théorème 3 Croissances comparées

Pour a et b strictement positifs, on a :

$$\lim_{x \to +\infty} \frac{(\ln(x))^a}{x^b} = 0, \quad \lim_{x \to 0} x^b |\ln(x)|^a = 0, \quad \lim_{x \to +\infty} \frac{e^{ax}}{x^b} = +\infty, \quad \lim_{x \to -\infty} |x|^b e^{ax} = 0$$

2.4 Fonctions hyperboliques

Définition 20

 \bullet On appelle fonction $\mathbf{cosinus}$ hyperbolique la fonction, notée ch, définie sur $\mathbb R$ par :

$$\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$$

ullet On appelle fonction sinus hyperbolique la fonction, notée sh, définie sur $\mathbb R$ par :

$$\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$$

Remarque 8

- (a) La fonction chest paire et la fonction shest impaire.
- (b) La fonction ch est une fonction positive sur \mathbb{R} .

Proposition 24

Pour tout réel x on a :

$$\operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x) = 1$$

Proposition 25

Les fonctions ch et sh sont dérivables sur \mathbb{R} et on a :

$$\forall x \in \mathbb{R}, \operatorname{ch}'(x) = \operatorname{sh}(x) \quad \text{et} \quad \operatorname{sh}'(x) = \operatorname{ch}(x)$$

Proposition 26

- La fonction ch est strictement décroissante sur \mathbb{R}^- et strictement croissante sur \mathbb{R}^+ .
- La fonction sh est strictement croissante sur \mathbb{R}

2.5 Fonctions circulaires réciproques

2.5.1 Fonction Arcsinus

La fonction sin est continue et strictement croissante de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur [-1, 1].

D'après le théorème de bijection, elle admet donc une fonction réciproque de [-1,1] sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

Définition 21

On appelle Arcsinus notée Arcsin la fonction définie sur [-1, 1] par :

$$\begin{cases} y = \operatorname{Arcsin}(x) \\ x \in [-1, 1] \end{cases} \Leftrightarrow \begin{cases} x = \sin(y) \\ y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{cases}$$

Remarque 9

$$\forall x \in [-1, 1], \quad \sin\left(\operatorname{Arcsin}(x)\right) = x \quad \text{et} \quad \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad \operatorname{Arcsin}(\sin(x)) = x$$

Proposition 27

- La fonction Arcsin est impaire.
- La fonction Arcsin est strictement croissante sur [-1,1].

Proposition 28

$$\forall x \in [-1, 1], \quad \cos(\operatorname{Arcsin}(x)) = \sqrt{1 - x^2}$$

Proposition 29

La fonction Arcsin est dérivable sur]-1,1[et on a :

$$\forall x \in]-1,1[, Arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$$

Proposition 30

Si u est une fonction dérivable sur un intervalle I à valeurs dans]-1,1[, alors Arcsin(u) est dérivable sur I et on a :

$$(\operatorname{Arcsin} u)' = \frac{u'}{\sqrt{1 - u^2}}$$

2.5.2 Fonction Arccosinus

La fonction cos est continue et strictement décroissante de $[0, \pi]$ sur [-1, 1]. D'après le théorème de bijection, elle admet donc une fonction réciproque de [-1, 1] sur $[0, \pi]$.

Définition 22

On appelle $\mathbf{Arccosinus}$ notée \mathbf{Arccos} la fonction définie sur [-1,1] par :

$$\left\{ \begin{array}{l} y = \operatorname{Arccos}(x) \\ x \in [-1,1] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = \cos(y) \\ y \in [0,\pi] \end{array} \right.$$

Remarque 10

$$\forall x \in [-1, 1], \quad \cos(\operatorname{Arccos}(x)) = x \quad \text{et} \quad \forall x \in [0, \pi], \quad \operatorname{Arccos}(\cos(x)) = x$$

Proposition 31

La fonction Arccos est strictement décroissante sur [-1, 1].

Proposition 32

$$\forall x \in [-1, 1], \quad \sin(\operatorname{Arccos}(x)) = \sqrt{1 - x^2}$$

Proposition 33

La fonction Arccos est dérivable sur]-1,1[et on a :

$$\forall x \in]-1,1[, Arccos'(x) = \frac{-1}{\sqrt{1-x^2}}$$

Proposition 34

Si u est une fonction dérivable sur un intervalle I à valeurs dans]-1,1[, alors Arccos(u) est dérivable sur I et on a :

$$(\operatorname{Arccos} u)' = \frac{-u'}{\sqrt{1 - u^2}}$$

Fonction Arctangente 2.5.3

La fonction tan est continue et strictement croissante de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ sur } \mathbb{R}.$

D'après le théorème de bijection, elle admet donc une fonction réciproque de \mathbb{R} dans $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.

Définition 23

On appelle $\mathbf{Arctangente}$ notée \mathbf{Arctan} la fonction définie sur $\mathbb R$ par :

$$\left\{ \begin{array}{l} y = \operatorname{Arctan}(x) \\ x \in \mathbb{R} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = \tan(y) \\ y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\end{array} \right.$$

Remarque 11

$$\forall x \in \mathbb{R}, \quad \tan(\operatorname{Arctan}(x)) = x \quad \text{et} \quad \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \quad \operatorname{Arctan}(\tan(x)) = x \right]$$

Proposition 35

- La fonction Arctan est impaire.
- La fonction Arctan est strictement croissante sur \mathbb{R} . $\lim_{x \to -\infty} \operatorname{Arctan}(x) = -\frac{\pi}{2}$ et $\lim_{x \to +\infty} \operatorname{Arctan}(x) = \frac{\pi}{2}$

Proposition 36

$$\forall x \in \mathbb{R}^*, \quad \begin{cases} \operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = \frac{\pi}{2} & \text{si } x > 0 \\ \operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = -\frac{\pi}{2} & \text{si } x < 0 \end{cases}$$

Proposition 37

La fonction Arctan est dérivable sur \mathbb{R} et on a :

$$\forall x \in \mathbb{R}, \quad \operatorname{Arctan}'(x) = \frac{1}{1+x^2}$$

Proposition 38

Si u est une fonction dérivable sur un intervalle I, alors Arctan(u) est dérivable sur I et on a :

$$(\operatorname{Arctan} u)' = \frac{u'}{1 + u^2}$$

