

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

THE NINE-POINTS CIRCLE.

By Mr. R. D. Bohannan, University of Virginia.

ABC is a triangle. A_a is the foot of the altitude from A. A_m is the middle point of the side opposite A. The altitudes intersect at O. A_0 is the middle point of AO.

From similar triangles BCC_a, BAA_a,

$$BA_a:BC_a::BA:BC$$

 $::BC_m:BA_m;$
 $\therefore BA_a.BA_m = BC_a.BC_m,$

and therefore A_a , A_m , C_a , C_m , lie on a circle.

From similar triangles COAa, CBCa,

$$CO: CA_a:: CB: CB_a;$$
 $:: CC_0: CA_a:: CA_m: CC_a;$
 $:: CC_0: CC_a = CA_a. CA_m;$
 $:: C_0$ lies on the circle $A_a, A_m, C_a, CA_m, CA_m$

that is, Similarly,

$$A_a, A_m, C_a, C_m, C_0$$
 lie on a circle A_a, A_m, C_a, C_m, A_0 " " " " $A_a, A_m, C_a, C_m, A_0, C_0$ " " " " $A_a, A_m, B_a, B_m, A_0, B_0$ " " " "

Similarly,

These two circles have three points in common;

$$A_a, A_m, A_0, B_a, B_m, B_0, C_a, C_m, C_0$$

lie all on the same circle.

SOLUTIONS OF EXERCISES.

12

The result

$$-\frac{p^2q^2+4p^3r-8q^3+2pqr+9r^3}{(r-pq)^2}$$

is given as the equivalent of the function

$$\left(\frac{\beta-\gamma}{\beta+\gamma}\right)^2 + \left(\frac{\gamma-a}{\gamma+a}\right)^2 + \left(\frac{a-\beta}{a+\beta}\right)^2,$$