Company Name	fhned	Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	29 /04 /2020	Client

1 Input Parameters

Module			Tension Members Bolted Design		
Axial (kN) *			400.0		
Length(n	Length(mm) *			2000.0	
		Section			
	Section	n Size*	('100 65	X 6', 'Back to Back Angles')	
	Material *		E 250 (Fe 410 W)A		
	Ultimate strength, fu (MPa)			410	
V Y	Yield Strengt	th , fy (MPa)		230	
R2	Mass	7.5	Iu(mm4)	978000.0	
0 U	Area(mm2) -	958.0	Iv(mm4)	335000.0	
xx	A(mm)	100.0	rz(mm)	32.1	
U Ö	B(mm)	65.0	ry(mm)	18.5	
B	t(mm)	0.0	ru(mm)	32.0	
_Cyey	R1(mm)	8.0	rv(mm)	18.7	
ly \v	R2(mm)	0.0	Zz(mm3)	14500.0	
	Cy(mm)	15.4	Zy(mm3)	6600.0	
	Cz(mm)	32.0	Zpz(mm3)	26400.0	
	Iz(mm4)	980000.0	Zpy(mm3)	6600.0	
	Iy(mm4)	330000.0			
		Bolt Details			
Diameter	(mm)*		[12.0,	16.0,20.0,24.0,30.0,36.0]	
Grade	e *		[3.6, 4.6, 4.8	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Туре	*		Bearing Bolt		
Bolt hole type			Standard		
Bolt Ultimate Stre	Bolt Ultimate Strength (N/mm2)			500.0	
Bolt Yield Stren	Bolt Yield Strength (N/mm2)			300.0	
Slip factor (µ_f)			0.3		
Type of edges			a - Sheared or hand flame cut		
Gap between beam and support (mm)				0.0	
Are the members exposed to	 corrosive	influences		False	

Company Name	fhned	Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	29 /04 /2020	Client	

2 Design Checks

2.1 Member Checks

Check	Required	Provided	Remark
Tension Yielding Capacity (kN)		$T_{dg} = \frac{A_g f_y}{\gamma_{m0}}$ $= \frac{2 * 958.0 * 230}{1.1}$ $= 400.62$	
Tension Rupture Capacity(kN)		$\beta = 1.4 - 0.076 * \frac{w}{t} * \frac{f_y}{f_u} * \frac{b_s}{L_c}$ $\leq \frac{0.9 * f_u * \gamma_{m0}}{f_y * \gamma_{m1}} \geq 0.7$ $= 1.4 - 0.076 * \frac{65.0}{6.0} * \frac{230}{410} * \frac{116.0}{180}$ $\leq \frac{0.9 * 410 * 1.1}{230 * 1.25} \geq 0.7$ $= 1.07$ $T_{dn} = 2 * (\frac{0.9 * A_{nc} * f_u}{\gamma_{m1}} + \frac{\beta * A_{go} * f_y}{\gamma_{m0}})$ $= 2 * (\frac{0.9 * 432.0 * 410}{1.25} + \frac{1.07 * 390.0 * 230}{1.1})$ $= 429.56$	
Block Shear Capacity (KN)		$= 429.56$ $T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 400.36$ $T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)		= Min(400.62, 429.56, 400.36) $= 400.36$	Pass
Slenderness	$\frac{K*L}{r} \le 400$	$\frac{K*L}{r} = \frac{1*2000.0}{34.11}$ $= 58.64$	
Efficiency	$Efficiency \leq 1$	$Efficiency = \frac{F}{Td} = \frac{400.0}{400.36}$ $= 1.0$	

Company Name	fhned	Project Title
Group/Team Nan	ne	Subtitle
Designer		Job Number
Date	29 /04 /2020	Client

2.2 Bolt Checks

Check	Required	Provided	Remark
Diameter(d) (mm)	Bolt Quantity Optimisation	20.0	
Grade	Bolt Grade Optimisation	5.6	
Bolt Hole Diameter(d0) (mm)		22.0	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{500.0 * 2 * 245}{\sqrt{3} * 1.25}$ $= 113.16$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.61 * 20.0 * 12.0 * 410}{1.25}$ $= 120.05$	
Capacity (KN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (113.16, 120.05)$ $= 113.16$	
No of Bolts (n)	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 400.0^{2}}}{113.16}$ $= 4$	4	
No of Columns (nc)		4	
No of Rows (nr)		1	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	60	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 0.0, \ 300 \ mm)$ $= 300$	60	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	0	N/A
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 0.0, \ 300 \ mm)$ $= 300$	0	N/A
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = $1.7 * 22.0 = 37.4$	40	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{230}}$ $= 249.6$	40	Pass

Company Name	fhned	Project Title
Group/Team Nan	ne	Subtitle
Designer		Job Number
Date	29 /04 /2020	Client

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	43.0	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{230}}$ $= 249.6$	43.0	Pass
Capacity (KN)	100.0	113.16	Pass

Company Name	fhned	Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	29 /04 /2020	Client

2.3 Gusset Plate Checks

Check	Required	Provided	Remark
		H = 1 * Depth + clearance	
Height (mm)		= (1*100.0) + 30.0	
		= 130.0	
		L = (nc - 1) * p + 2 * e	
Length (mm)		= (4-1)*60 + (2*40)	
		= 260	
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
TD . 37: 11:		γ_{mo}	
Tension Yielding Capacity (kN)		$=\frac{100.0*20.0*230}{1.1}$	
Capacity (KIV)		= 418.18	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		γ_{m1}	
Tension Rupture		$= \frac{0.9 * (100.0 - 1 * 22.0) * 20.0 * 410}{20.0 * 20.0 * 410}$	
Capacity(kN)		1.25	
		=460.51	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Dlask Chase Canas		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Block Shear Capacity (KN)		$T_{db2} = rac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + rac{A_{tg} f_y}{\gamma_{m0}}$	
,		$T_{db} = min(T_{db1}, T_{db2}) = 667.26$	
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity		= Min(418.18, 460.51, 667.26)	Pass
(kN)		= 418.18	

Company Name	fhned	Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	29 /04 /2020	Client

3 3D View

Figure 1: 3D View