We claim:

1. A composition having the formula:

5

wherein:

X¹ is selected from:

10 X² is selected from O, NR and S;

 Y^1 is independently O, S, NR, ${}^+N(O)(R)$, ${}^+N(OR)$, ${}^+N(O)(OR)$, or N-NR₂;

 Y^2 is independently a bond, O, NR, ${}^+N(O)(R)$, ${}^+N(OR)$, ${}^+N(O)(OR)$, N-NR₂, -

 $S(O)_{M2}$ -, or $-S(O)_{M2}$ - $S(O)_{M2}$ -;

Y³ and Z are independently selected from H, OH, OR, NR₂, CN, NO₂, F, Cl, Br, and

15 I;

R^x is independently H, W³, a protecting group, or the formula:

wherein:

5

10

15

25

M1a, M1c, and M1d are independently 0 or 1;

M12c is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12; and

R^y is independently H, W³, or a protecting group;

M2 is 0, 1 or 2;

 R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , and R^8 are independently selected from H, F, Cl, Br, I, OH, $-C(=Y^1)R$, $-C(=Y^1)OR$ or $-C(=Y^1)N(R)_2$, $-N(R)_2$, $-N(R)_3$, -SR, -S(O)R, $-S(O)_2R$, $-S(O)(OR^x)$, $-S(O)_2(OR^x)$, $-OC(=Y^1)R^x$, $-OC(=Y^1)OR^x$, $-OC(=Y^1)(N(R^x)_2)$, $-SC(=Y^1)R^x$, $-SC(=Y^1)OR^x$, $-SC(=Y^1)(N(R^x)_2)$, $-N(R^x)C(=Y^1)R^x$, $-N(R^x)C(=Y^1)OR^x$, or $-N(R^x)C(=Y^1)N(R^x)_2$, amino $(-NH_2)$, ammonium $(-NH_3^+)$, alkylamino, dialkylamino, trialkylammonium, C_1-C_8 alkyl, C_1-C_8 alkylhalide, carboxylate, sulfate, sulfamate, sulfonate, 5-7 membered ring sultam, C_1-C_8 alkylsulfonate, C_1-C_8 alkylamino, 4-dialkylaminopyridinium, C_1-C_8 alkylhydroxyl, C_1-C_8 alkylthiol, alkylsulfone $(-SO_2R)$, arylsulfone $(-SO_2Ar)$, arylsulfoxide (-SOAr), arylthio (-SAr), sulfonamide $(-SO_2NR_2)$, alkylsulfoxide (-SOR), ester (-C(=O)OR), amido $(-C(=O)NR_2)$, 5-7 membered ring lactar

alkylsulfoxide (-SOR), ester (-C(=O)OR), amido (-C(=O)NR₂), 5-7 membered ring lactam, 5-7 membered ring lactone, nitrile (-CN), azido (-N₃), nitro (-NO₂), C_1 - C_8 alkoxy (-OR), C_1 - C_8 alkyl, C_1 - C_8 substituted alkyl, C_1 - C_8 alkenyl, C_1 - C_8 substituted alkynyl, C_1 - C_8 substituted alkynyl, C_6 - C_{20} aryl, C_6 - C_{20} substituted aryl, C_2 - C_{20} heteroaryl,

20 C₂-C₂₀ substituted heteroaryl, polyethyleneoxy, and W³; or

when taken together, two of R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ form a carbocyclic ring of 3 to 7 carbon atoms;

R is C_1-C_8 alkyl, C_1-C_8 substituted alkyl, C_1-C_8 alkenyl, C_1-C_8 substituted alkenyl, C_1-C_8 alkynyl, C_1-C_8 substituted alkynyl, C_6-C_{20} aryl, C_6-C_{20} substituted aryl, C_2-C_{20} heteroaryl, C_2-C_{20} substituted heteroaryl;

 W^3 is W^4 or W^5 ;

 W^4 is R, $-C(Y^1)R$, $-C(Y^1)W^5$, $-SO_2R$, or $-SO_2W^5$;

 W^5 is carbocycle or heterocycle wherein W^5 is independently substituted with 0 to 3 R groups;

with the proviso that when R^3 , R^4 , R^5 , R^6 , R^7 , and R^8 are each H, Y^1 and Y^2 are O and M2 is 0, then R^x is not H.

- 2. The composition of claim 1 wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are H.
 - 3. The composition of claim 1 wherein R3 is C1-8 alkyl.
 - 4. The composition of claim 1 wherein R3 is C1-8 substituted alkyl.
 - 5. The composition of claim 4 wherein R3 is 1-hydroxyethyl.
 - 6. The composition of claim 1 wherein R5 is C1-8 alkyl.
- 7. The composition of claim 1 wherein R5 is C1-8 substituted alkyl.
 - 8. The composition of claim 7 wherein R5 is 1-hydroxyethyl.
 - 9. The composition of claim 1 having the formula:

- 10. The composition of claim 3 wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ are H.
- 15 11. A composition having the formula:

[NUCLEOBASE]
$$X^1$$
 X^2 P Y^1 Y^1 Y^2 Y^2

wherein:

5

X¹ is selected from:

X² is selected from O, NR and S;

Y¹ is independently O, S, NR, ⁺N(O)(R), ⁺N(OR), ⁺N(O)(OR), or N-NR₂;

 Y^2 is independently a bond, O, NR, ${}^+N(O)(R)$, ${}^+N(OR)$, ${}^+N(O)(OR)$, N-NR₂, -S(O)_{M2}-, or -S(O)_{M2}-S(O)_{M2}-;

 Y^3 and Z are independently selected from H, OH, OR, NR₂, CN, NO₂, F, Cl, Br, and I;

R^x is independently H, W³, a protecting group, or the formula:

wherein:

5

10

15

M1a, M1c, and M1d are independently 0 or 1;

M12c is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12; and

R^y is independently H, W³, or a protecting group;

M2 is 0, 1 or 2;

 $R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}, R^{7}, \text{ and } R^{8} \text{ are independently selected from H, F, Cl, Br, I,} \\ OH, -C(=Y^{1})R, -C(=Y^{1})OR \text{ or } -C(=Y^{1})N(R)_{2}, -N(R)_{2}, -N(R)_{3}, -SR, -S(O)R, -S(O)_{2}R, -S(O)(OR^{x}), -S(O)_{2}(OR^{x}), -OC(=Y^{1})R^{x}, -OC(=Y^{1})OR^{x}, -OC(=Y^{1})(N(R^{x})_{2}), -SC(=Y^{1})R^{x}, -SC(=Y^{1})OR^{x}, -SC(=Y^{1})(N(R^{x})_{2}), -N(R^{x})C(=Y^{1})R^{x}, -N(R^{x})C(=Y^{1})OR^{x}, \text{ or } -SC(=Y^{1})CR^{x}, -SC$

20 N(R*)C(=Y1)N(R*)2, amino (-NH2), ammonium (-NH3+), alkylamino, dialkylamino,

trialkylammonium, C₁–C₈ alkyl, C₁–C₈ alkylhalide, carboxylate, sulfate, sulfamate, sulfonate, 5-7 membered ring sultam, C₁–C₈ alkylsulfonate, C₁–C₈ alkylamino, 4-dialkylaminopyridinium, C₁–C₈ alkylhydroxyl, C₁–C₈ alkylthiol, alkylsulfone (–SO₂R), arylsulfone (–SO₂Ar), arylsulfoxide (–SOAr), arylthio (–SAr), sulfonamide (–SO₂NR₂), alkylsulfoxide (–SOR), ester (–C(=O)OR), amido (–C(=O)NR₂), 5-7 membered ring lactam, 5-7 membered ring lactone, nitrile (–CN), azido (–N₃), nitro (–NO₂), C₁–C₈ alkoxy (–OR), C₁–C₈ alkyl, C₁–C₈ substituted alkyl, C₁–C₈ alkenyl, C₁–C₈ substituted alkenyl, C₁–C₈ alkynyl, C₁–C₈ substituted alkynyl, C₆–C₂₀ aryl, C₆–C₂₀ substituted aryl, C₂–C₂₀ heteroaryl, C₂–C₂₀ substituted heteroaryl, polyethyleneoxy, and W³; or

when taken together, two of R¹, R², R³, R⁴, R⁵, R⁶, R⁷, and R⁸ form a carbocyclic ring of 3 to 7 carbon atoms;

R is C_1 – C_8 alkyl, C_1 – C_8 substituted alkyl, C_1 – C_8 alkenyl, C_1 – C_8 substituted alkenyl, C_1 – C_8 alkynyl, C_1 – C_8 substituted alkynyl, C_6 – C_{20} aryl, C_6 – C_{20} substituted aryl, C_2 – C_{20} heteroaryl, C_2 – C_{20} substituted heteroaryl;

 W^3 is W^4 or W^5 :

5

10

15

20

25

 W^4 is R, $-C(Y^1)R$, $-C(Y^1)W^5$, $-SO_2R$, or $-SO_2W^5$;

 W^5 is carbocycle or heterocycle wherein W^5 is independently substituted with 0 to 3 R groups;

with the proviso that when R^3 , R^4 , R^5 , R^6 , R^7 , and R^8 are each H, Y^1 and Y^2 are O and M2 is 0, then R^x is not H.

- 12. The composition of claim 5 wherein NUCLEOBASE is selected from adenine, guanine, cytosine, uracil, thymine, 7-deazaadenine, 7-deazaaguanine, 7-deazaa-8-azaadenine, inosine, nebularine, nitropyrrole, nitroindole, 2-aminopurine, 2-amino-6-chloropurine, 2,6-diaminopurine, hypoxanthine, pseudouridine, pseudocytosine, pseudoisocytosine, 5-propynylcytosine, isocytosine, isoguanine, 7-deazaguanine, 2-thiopyrimidine, 6-thioguanine, 4-thiothymine, 4-thiouracil, O^6 -methylguanine, N^6 -methyladenine, O^4 -methylthymine, 5,6-dihydrothymine, 5,6-dihydrouracil, 4-methylindole, and a pyrazolo[3,4-D]pyrimidine.
 - 13. The composition of claim 11 wherein R3 is C1-8 alkyl.
- The composition of claim 11 wherein R3 is C1-8 substituted alkyl.

- 15. The composition of claim 14 wherein R3 is 1-hydroxyethyl.
- 16. The composition of claim 11 wherein R5 is C1-8 alkyl.
- 17. The composition of claim 11 wherein R5 is C₁₋₈ substituted alkyl.
- 18. The composition of claim 17 wherein R5 is 1-hydroxyethyl.
- 19. A method for the treatment or prevention of the symptoms or effects of HIV infection in an infected animal comprising administering said animal with a pharmaceutical composition or formulation comprising an effective amount of a compound of claim 1.
- 20. A method for the treatment or prevention of the symptoms or effects of HIV infection in an infected animal comprising administering said animal with a pharmaceutical composition or formulation comprising an effective amount of a compound of claim 11.
- 21. A method for the treatment or prevention of the symptoms or effects of HIV infection in an infected animal comprising administering said animal with a pharmaceutical combination composition or formulation comprising an effective amount of a compound of claim 1 and a second compound having anti-HIV properties.
- 22. A method for the treatment or prevention of the symptoms or effects of HIV infection in an infected animal comprising administering said animal with a pharmaceutical combination composition or formulation comprising an effective amount of a compound of claim 11 and a second compound having anti-HIV properties.
- 23. A pharmaceutical composition comprising an effective amount of a compound of claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable diluent, carrier or excipient.
 - 24. A pharmaceutical composition comprising an effective amount of a compound of claim 11, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable diluent, carrier or excipient.

5

10

15

20