4 x 4 Multiport Register

The MC14580B is a 4 by 4 multiport register useful in small scratch pad memories, arithmetic operations when coupled with an adder, and other data storage applications. It allows independent reading of any two words (or the same word at both outputs) while writing into any one of four words.

Address changing and data entry occur on the rising edge of the clock. When the write enable input is low, the contents of any word may be accessed but not altered.

- · No Restrictions on Clock Input Rise or Fall Times
- 3-State Outputs
- Single Phase Clocking
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–power TTL Loads or one Low–power Schottky TTL Load Over the Rated Temperature Range
- Pin Compatible with CD40108

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	- 0.5 to + 18.0	V
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to $V_{DD} + 0.5$	V
I _{in} , I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
P_{D}	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating:

Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C Ceramic "L" Packages: – 12 mW/°C From 100°C To 125°C

BLOCK DIAGRAM

MC14580B

L SUFFIX CERAMIC CASE 623

P SUFFIX PLASTIC CASE 709

DW SUFFIX SOIC CASE 751E

ORDERING INFORMATION

MC14XXXBCP Plastic MC14XXXBCL Ceramic MC14XXXBDW SOIC

 $T_A = -55^{\circ}$ to 125° C for all packages.

PIN ASSIGNMENT

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			V _{DD}	- 5	5°C		25°C		125	5°C	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0 V _{in} = V _{DD} or 0	" Level	VOL	5.0 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD}	" Level	VOH	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage "0 (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	" Level	V _{IL}	5.0 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
"1 $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	" Level	VIH	5.0 10 15	3.5 7.0 11	_ _ _	3.5 7.0 11	2.75 5.50 8.25	_ _ _	3.5 7.0 11	_ _	Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	_ _ _ _	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	- 1.7 - 0.36 - 0.9 - 2.4	_ _ _ _	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	l _{OL}	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4	_ _ _	mAdc
Input Current		l _{in}	15	_	±0.1	_	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	_ _ _	5.0 10 20	_ _ _	0.010 0.020 0.030	5.0 10 20	_ _ _	150 300 600	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs buffers switching)		lτ	5.0 10 15			$I_{T} = (1$.18 μΑ/kHz) † .91 μΑ/kHz) † .67 μΑ/kHz) †	f + I _{DD}			μAdc
Three-State Leakage Curren	t	l _{TL}	15	_	± 0.1	_	±0.0001	±0.1	_	±3.0	μAdc

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μ A (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.004.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

^{**}The formulas given are for the typical characteristics only at 25 $^{\circ}\text{C}.$

SWITCHING CHARACTERISTICS* ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD}	Min	Тур #	Max	Unit
Output Rise and Fall Time t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns t _{TLH} , t _{THL} = (0.55 ns/pF) C _L + 9.5 ns	tTLH, tTHL (Figures 3 and 6)	5.0 10 15	_ _ _	100 50 40	200 100 80	ns
Propagation Delay Time Clock to Output	tPLH, tPHL (Figures 3 and 6)	5.0 10 15	_ _ _	650 250 170	1300 500 340	ns
Write Enable Setup Time (Enabling a Write or Read)	t _{su} (Figure 5)	5.0 10 15	800 300 200	400 150 100	 _ _	ns
Write Enable Removal Time (Disabling a Write or Read)	^t rem (Figure 5)	5.0 10 15	0 0 0	- 100 - 50 - 35	_ _ _	ns
Setup Time** Address, Data to Clock	t _{su} (Figure 3)	5.0 10 15	50 30 25	20 0 0	_ _ _	ns
Hold Time** Clock to Address, Data	th (Figure 3)	5.0 10 15	480 195 150	160 65 50	_ _ _	ns
3-State Enable/Disable Delay Time	tPHZ, tPLZ tPZH, tPZL (Figures 4 and 7)	5.0 10 15	_ _ _	130 60 45	260 120 90	ns
Clock Pulse Width	t _W (Figure 3)	5.0 10 15	820 330 220	410 165 110	_ _ _	ns

^{**} When loading repetitive highs, the output may glitch low momentarily after the rising edge of Clock. However, data integrity remains unaffected and data is valid after the propagation delays listed in the Switching Characteristics Table.

	Sink Current	Source Current
Position of S1	2	1
V _{GS} =	V_{DD}	– V _{DD}
V _{DS} =	V _{out}	$V_{out} - V_{DD}$

Figure 1. Output Drive Current Test Circuit

Figure 2. Power Dissipation Test Circuit and Waveforms (3–State Inputs are High)

Figure 3.

Figure 4.

DEVICE UNDER TEST CL

Figure 5.

Figure 6. Test Circuit

Figure 7. Test Circuit

LOGIC DIAGRAM

TRUTH TABLE

		·										
Clock	WE	Write 1	Write 0	Read 1 _A	Read 0 _A	Read 1 _B	Read 0 _B	3-State A	3-State B	D _n	Q _n A	Q _n B
	1	0	1	0	1	0	1	1	1	1	1	1
	1	0	1	0	1	0	1	1	1	0	0	0
_	Χ	Х	Х	Х	Х	Х	Х	1	1	Х	No	No
											Change	Change
Х	Х	Х	Х	Х	Х	Х	Х	0	0	Х	Z	Z
0	Х	Х	Х	Х	Х	Х	Х	1	1	Х	No	No
											Change	Change
1	Χ	Х	Х	Х	Х	Х	Х	1	1	Х	No	No
											Change	Change
	1	0	0	0	1	1	0	1	1	D _n to	Contents	Contents
										word 0	of word 1	of word 2
_											displayed	displayed
	0	0	0	0	1	1	0	1	1	Word 0	Contents	Contents
										not	of word 1	of word 2
										altered	displayed	displayed

Z = High Impedance

X = Don't Care

OUTLINE DIMENSIONS

L SUFFIX

CERAMIC DIP PACKAGE CASE 623-05 ISSUE M

- NOTES:

 1. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 2. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (WHEN FORMED DAS ALL EL) PARALLEL).

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	31.24	32.77	1.230	1.290	
В	12.70	15.49	0.500	0.610	
C	4.06	5.59	0.160	0.220	
D	0.41	0.51	0.016	0.020	
F	1.27	1.52	0.050	0.060	
G	2.54	BSC	0.100 BSC		
J	0.20	0.30	0.008	0.012	
K	3.18	4.06	0.125	0.160	
Г	15.24 BSC		0.600	BSC	
M	0 °	15°	0 °	15°	
N	0.51	1.27	0.020	0.050	

P SUFFIX

PLASTIC DIP PACKAGE CASE 709-02 **ISSUE C**

- OTES:

 1. POSITIONAL TOLERANCE OF LEADS (D),
 SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM
 MATERIAL CONDITION, IN RELATION TO
 SEATING PLANE AND EACH OTHER.
 2. DIMENSION L TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	31.37	32.13	1.235	1.265	
В	13.72	14.22	0.540	0.560	
С	3.94	5.08	0.155	0.200	
D	0.36	0.56	0.014	0.022	
F	1.02	1.52	0.040	0.060	
G	2.54	BSC	0.100 BSC		
Н	1.65	2.03	0.065	0.080	
J	0.20	0.38	0.008	0.015	
K	2.92	3.43	0.115	0.135	
L	15.24 BSC		0.600	BSC	
M	0 °	15°	0 °	15°	
N	0.51	1.02	0.020	0.040	

OUTLINE DIMENSIONS

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSIONS A AND B DO NOT INCLUDE
- MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE. 5 DIMENSION DIDGES NOT INCLUDE DAMBAR

		MILLIMETERS	INCHES	
	MAIL	RIAL CONDITION.		
		SS OF D DIMENSION	MUMIXAM TA NC	
			0.13 (0.005) TOTA	L IN
	PROT	RUSION. ALLOWA	BLE DAMBAR	
v.	DIIVIL	TOTOTT D DOLOTTO	T INCLUDE DI MIDI	

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	15.25	15.54	0.601	0.612
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.41	0.90	0.016	0.035
G	1.27	BSC	0.050	BSC
J	0.23	0.32	0.009	0.013
K	0.13	0.29	0.005	0.011
М	0°	8°	0°	8°
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912: Phoenix. Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

