In my project I will be looking at a new potential location for a restaurant in Toronto. I will be analysing the area to identify the most popular restaurants and identify a gap in the market. If the area is saturated with too much of a cuisine then it will be tough for a new restaurant to survive, therefore we will be deciding what cuisine after analysing the data.

This would be helpful to anyone who wants to open a restaurants in future as this document will analyse the area and the restaurant market providing information on competitions.

The information for Toronto was obtained through the Wikipedia, which we scraped through and built a data frame. I will clean it and use Foursquare location data to obtain the latitude and longitude for each point.

To build the data frame I took the following steps of installing BeautifulSoup4 and importing necessary program

```
: pip install requests beautifulSoup4
  Requirement already satisfied: requests in /home/jupyterlab/conda/envs/python/lib/python3.6/sit
  e-packages (2.25.0)
  Collecting beautifulSoup4
    Downloading https://files.pythonhosted.org/packages/d1/41/e6495bd7d3781cee623ce23ea6ac73282a3
  73088fcd0ddc809a047b18eae/beautifulsoup4-4.9.3-py3-none-any.whl (115kB)
                | 122kB 6.3MB/s eta 0:00:01
  Requirement already satisfied: chardet<4,>=3.0.2 in /home/jupyterlab/conda/envs/python/lib/pyth
  on3.6/site-packages (from requests) (3.0.4)
  Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/jupyterlab/conda/envs/python/lib/
  python3.6/site-packages (from requests) (1.25.11)
  Requirement already satisfied: certifi>=2017.4.17 in /home/jupyterlab/conda/envs/python/lib/pyt
  hon3.6/site-packages (from requests) (2020.12.5)
  Requirement already satisfied: idna<3,>=2.5 in /home/jupyterlab/conda/envs/python/lib/python3.
  6/site-packages (from requests) (2.10)
  Collecting soupsieve>1.2; python_version >= "3.0" (from beautifulSoup4)
    Downloading https://files.pythonhosted.org/packages/02/fb/1c65691a9aeb7bd6ac2aa505b84cb8b49ac
  29c976411c6ab3659425e045f/soupsieve-2.1-py3-none-any.whl
  Installing collected packages: soupsieve, beautifulSoup4
  Successfully installed beautifulSoup4-4.9.3 soupsieve-2.1
  Note: you may need to restart the kernel to use updated packages.
: from bs4 import BeautifulSoup
  import requests
  import parser
  import pandas as pd
```

We will use the following URL to download the data

I then structed it and cleaned it for analyse

```
columns_names=['PostalCode','Borough','Neighborhood']
df = pd.DataFrame(columns = columns_names)

for tr_cell in table.find_all('tr'):
    row_data=[]
    for td_cell in tr_cell.find_all('td'):
        row_data.append(td_cell.text.strip())
    if len(row_data)==3:
        df.loc[len(df)] = row_data
```

df.head()

0 M1A Not assigned Not assigned 1 M2A Not assigned Not assigned 2 M3A North York Parkwoods 3 M4A North York Victoria Village		PostalCode	Borough	Neighborhood			
2 M3A North York Parkwoods	0	M1A	Not assigned	Not assigned			
	1	M2A Not assigned		Not assigned			
3 M4A North York Victoria Village	2	M3A North York		Parkwoods			
	3	M4A North York		Victoria Village			
4 M5A Downtown Toronto Regent Park, Harbourfro	4	4 M5A Downtown Toronto		Regent Park, Harbourfron			

```
df=df[df['Borough'] !='Not assigned']
```

```
df['Neighborhood'].loc[df['Neighborhood']=='Not assigned']
df.head()
```

	PostalCode Borough Neighborhood			
2	МЗА	North York	Parkwoods	
3	3 M4A North York Victoria Village			
4	M5A Downtown Toronto Regent Park, Harbourfront		Regent Park, Harbourfront	
5	5 M6A North York Lawrence Manor, Lawrence Heights		Lawrence Manor, Lawrence Heights	
6	6 M7A Downtown Toronto Queen's Park, Ontario Provincial Governm			

```
df.shape
(103, 3)
```

My next step was to download the latitude and longitude to each postal code area and add them to

the table. Geo_data=pd.read_csv("Geospatial_Coordinates.csv") Geo_data.head() Postal Code Latitude Longitude **0** M1B 43.806686 -79.194353 1 M1C 43.784535 -79.160497 2 M1E 43.763573 -79.188711 3 M1G 43.770992 -79.216917 **4** M1H 43.773136 -79.239476 Geo_data.rename(columns={'Postal Code':'PostalCode'}, inplace=True) df.set_index("PostalCode") Neighborhood Borough PostalCode МЗА North York Parkwoods M4A North York Victoria Village M5A Downtown Toronto Regent Park, Harbourfront M6A North York Lawrence Manor, Lawrence Heights M7A Downtown Toronto | Queen's Park, Ontario Provincial Government M8X Etobicoke The Kingsway, Montgomery Road, Old Mill North M4Y Downtown Toronto | Church and Wellesley East Toronto M7Y Business reply mail Processing Centre, South C. M8Y Etobicoke Old Mill South, King's Mill Park, Sunnylea, Hu. M8Z Etobicoke Mimico NW, The Queensway West, South of Bloor,.

Geo_data.set_index("PostalCode")

	Latitude	Longitude
PostalCode		
M1B	43.806686	-79.194353
M1C	43.784535	-79.160497
M1E	43.763573	-79.188711
M1G	43.770992	-79.216917
М1Н	43.773136	-79.239476
	•••	•••
M9N	43.706876	-79.518188
мэр	43.696319	-79.532242
M9R	43.688905	-79.554724
M9V	43.739416	-79.588437
мэw	43.706748	-79.594054

103 rows × 2 columns

df=pd.merge(df,Geo_data)

df.head()

	PostalCode	Borough	Neighborhood	Latitude	Longitude		
0	МЗА	North York	Parkwoods	43.753259	-79.329656		
1	1 M4A North York		Victoria Village	43.725882	-79.315572		
2	2 M5A Downtown Toronto		Regent Park, Harbourfront	43.654260	-79.360636		
3	M6A North York		Lawrence Manor, Lawrence Heights	43.718518	-79.464763		
4	М7А	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494		

I then added my foursquare detail

```
CLIENT_ID = 'FMFUJSQWIPKHL4XJUKDILFJH5GPUABK1U2LUOCM4JZO5LWH2'

CLIENT_SECRET = 'JWK25OQ2PGHRTMNKV1ML2OBESTQJ55Y11FTAG4AMSLI3MLVQ'

VERSION = '20210201'
```

My next step was to find venues and point of interest around Toronto

```
def getNearbyVenues(names, latitudes, longitudes):
    radius=500
    LIMIT=100
    venues=[]
    for name, lat, lng in zip(names, latitudes, longitudes):
        print(name)
```

create the API request URL

```
url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(
    CLIENT_ID,
    CLIENT_SECRET,
    VERSION,
    lat,
    lng,
    radius,
    LIMIT)
```

make the GET request

```
results = requests.get(url).json()["response"]['groups'][0]['items']
```

return only relevant information for each nearby venue

```
venues.append([(
        name,
        lat,
        lng,
        v['venue']['name'],
        v['venue']['location']['lat'],
        v['venue']['location']['lng'],
        v['venue']['categories'][0]['name']) for v in results])
nearby venues = pd.DataFrame([item for venue in venues for item in venue])
nearby_venues.columns = ['Neighborhood',
              'Neighborhood Latitude',
              'Neighborhood Longitude',
              'Venue',
              'Venue Latitude',
              'Venue Longitude',
              'Venue Category']
return(nearby_venues)
```

I then created a list of unique venue categories

Venues.head()

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
(Parkwoods	43.753259	-79.329656	Brookbanks Park	43.751976	-79.332140	Park
•	Parkwoods	43.753259	-79.329656	Variety Store	43.751974	-79.333114	Food & Drink Shop
:	Parkwoods	43.753259	-79.329656	Corrosion Service Company Limited	43.752432	-79.334661	Construction & Landscaping
;	Victoria Village	43.725882	-79.315572	Victoria Village Arena	43.723481	-79.315635	Hockey Arena
4	Victoria Village	43.725882	-79.315572	Portugril	43.725819	-79.312785	Portuguese Restaurant

This provided 271 unique categories

print('There are {} uniques categories.'.format(len(Venues['Venue Category'].unique())))

There are 271 uniques categories.

print(list(dict.fromkeys(Venues['Venue Category'])))

['Park', 'Food & Drink Shop', 'Construction & Landscaping', 'Hockey Arena', 'Portuguese Restaurant', 'Coffee Shop', 'French Restaurant', 'Bakery', 'Distribution (enter', 'Spa', 'Restaurant', 'Breakfast Spot', 'Gym / Fitness Center', 'Historic Site', 'Chocolate Shop', 'Farme rs Market', 'Dessert Shop', 'Pub', 'Performing Arts Venue', 'Yoga Studio', 'Café', 'Theater', 'Event Space', 'Shoe Store', 'Brewery', 'Art Gallery', 'Cosmetics Shop', 'Asian Restaurant', 'Electronics Store', 'Beer Store', 'Bank', 'Hotel, 'Wine Shop', 'Antique Shop', 'Boutique', 'Furniture / Home Store', 'Vietnamese Restaurant', 'Restaurant', Beer Store', 'Accessor'is Store', 'Carpet Store', 'Miscellaneous Shop', 'It alian Restaurant', 'Brest Ban', 'Creperle', 'Sushi Restaurant', 'Mexican Restaurant', 'Smoothie Shop', 'Snadwich Place', 'Gym', 'College Gefeteria', 'Caribbean Restaurant', 'Fast Food Restaurant', 'Smoothie Shop', 'Snadwich Place', 'Gym', 'College Gefeteria', 'Caribbean Restaurant', 'Arthletics & Sports', 'Comic Shop', 'Plaza', 'Burger Joint', 'Music Venue', 'Ramen Restaurant', 'Tanning Salon', 'Tea Room', 'Steakho use', 'Shopping Mall', 'College Rec Center', 'Sporting Goods Shop', 'Tha Restaurant', 'Video Game Store', 'Bubble Tea Shop', 'New American Restaurant', 'Department Store', 'Juice Bar', 'Other Great Outdoors', 'Chinese Restaurant', 'Lingerie Store', 'Poutine Place', 'Movie The ater', 'Office', 'Mine Bar', 'Ice Cream Shop', 'Smoke Shop', 'Hookah Bar', 'Filipino Restaurant', 'Home Service', 'Bike Shop', 'Dim Sum Restaurant', 'Supermarket', 'Skating Rink', 'Curling Ice', 'Video Store', 'Food rever', 'New American Restaurant', 'Comfort Food Restaurant', 'Salon / Barbershop', 'Irish Pub', 'Moroccan Restaurant', 'Belgian Restaurant', 'Final', 'Trainis Court', 'Liquor Store', 'Rental Car Location', 'Medical Center', 'Health Food Store', 'Melgiborhood', 'Concert Hall', 'Muse m', 'Salon' Beg Restaurant', 'Spots Bar', 'Fish & Chips Shop', 'Fastern European Restaurant', 'Rowie Maria', 'Good Restaurant', 'Spots Bar', 'Fish Achips '

I then filtered for restaurants which gave me 485 rows of places.

Restaurant = Venues[Venues['Venue Category'].str.contains("Restaurant")]
Restaurant

	and and								
	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category		
4	Victoria Village	43.725882	-79.315572	Portugril	43.725819	-79.312785	Portuguese Restaurant		
6	Victoria Village	43.725882	-79.315572	The Frig	43.727051	-79.317418	French Restaurant		
11	Regent Park, Harbourfront	43.654260	-79.360636	Impact Kitchen	43.656369	-79.356980	Restaurant		
28	Regent Park, Harbourfront	43.654260	-79.360636	Cluny Bistro & Boulangerie	43.650565	-79.357843	French Restaurant		
44	Regent Park, Harbourfront	43.654260	-79.360636	Izumi	43.649970	-79.360153	Asian Restaurant		
2081	Church and Wellesley	43.665860	-79.383160	Asahi Sushi	43.669874	-79.382943	Sushi Restaurant		
2083	Church and Wellesley	43.665860	-79.383160	McDonald's	43.668854	-79.385962	Fast Food Restaurant		
2092	Business reply mail Processing Centre, South C	43.662744	-79.321558	Chick-n-Joy	43.665181	-79.321403	Fast Food Restaurant		
2093	Business reply mail Processing Centre, South C	43.662744	-79.321558	The Green Wood	43.664728	-79.324117	Restaurant		
2111	Mimico NW, The Queensway West, South of Bloor,	43.628841	-79.520999	McDonald's	43.630007	-79.518041	Fast Food Restaurant		

Out of which only 12 had be categorised as an Indian restaurants

Food = Venues[Venues['Venue Category'].str.contains("Indian Restaurant")]
Food

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
415	Woburn	43.770992	-79.216917	Al-Hamd Biryani & Pizza	43.767585	-79.219570	Indian Restaurant
483	Central Bay Street	43.657952	-79.387383	Colaba Junction	43.660940	-79.385635	Indian Restaurant
561	Thorncliffe Park	43.705369	-79.349372	Iqbal Kebab & Sweet Centre	43.705923	-79.351521	Indian Restaurant
568	Thorncliffe Park	43.705369	-79.349372	Hakka Garden	43.704578	-79.349770	Indian Restaurant
850	Harbourfront East, Union Station, Toronto Islands	43.640816	-79.381752	Indian Roti House	43.639060	-79.385422	Indian Restaurant
962	The Danforth West, Riverdale	43.679557	-79.352188	Sher-E-Punjab	43.677308	-79.353066	Indian Restaurant
1282	Bedford Park, Lawrence Manor East	43.733283	-79.419750	The Copper Chimney	43.736195	-79.420271	Indian Restaurant
1364	Dorset Park, Wexford Heights, Scarborough Town	43.757410	-79.273304	Kairali	43.754915	-79.276945	Indian Restaurant
1365	Dorset Park, Wexford Heights, Scarborough Town	43.757410	-79.273304	Karaikudi Chettinad South Indian Restaurant	43.756042	-79.276276	Indian Restaurant
1448	The Annex, North Midtown, Yorkville	43.672710	-79.405678	Roti Cuisine of India	43.674618	-79.408249	Indian Restaurant
1505	Davisville	43.704324	-79.388790	Marigold Indian Bistro	43.702881	-79.388008	Indian Restaurant
1865	St. James Town, Cabbagetown	43.667967	-79.367675	Butter Chicken Factory	43.667072	-79.369184	Indian Restaurant
2036	Church and Wellesley	43.665860	-79.383160	Kothur Indian Cuisine	43.667872	-79.385659	Indian Restaurant

We will now have a look at these restaurants on a map to see the spread across Toronto

```
import folium

Locations = Food[['Venue Latitude','Venue Longitude']]
Locationlist = Locations.values.tolist()
len(Locationlist)
Locationlist[0]

[43.767584639731936, -79.21956957790067]

FoodDrink = folium.Map(location=[43.6532,-79.3832], zoom_start=12)
for i in list(range(len(Locationlist))):
    CinemaMarker = folium.Marker(Locationlist[i])
    CinemaMarker.add_to(FoodDrink)
```



```
print('There are {} uniques neighborhood.'.format(len(Venues['Neighborhood'].unique())))
```

There are 96 uniques neighborhood.

Looking at the map we can see a small cluster of Indian restaurants near central Toronto

```
IndianLocations = Food[['Venue Latitude','Venue Longitude']]
IndianLocationlist = IndianLocations.values.tolist()
len(IndianLocationlist)
IndianLocationlist[0]
```

[43.767584639731936, -79.21956957790067]

We will now look at delivery area of each restaurant to see which area is untouched.

```
Indian = folium.Map(location=[43.6532,-79.3832], zoom_start=12)
for i in list(range(len(IndianLocationlist))):
    CinemaMarker = folium.Circle(Locationlist[i], radius=1000, color='crimson', fill=True, fill_color='crimson')
    CinemaMarker.add_to(Indian)
Indian
```


Looking at the map above I would suggest the best location for a new Indian restaurant is in York as there is no competition for a radius of 1000 and would be able to target untouched consumers.