

Academia DTI

/ University of Porto

Advanced Learning models

/ University of Porto

Agenda

09h30 – 11h00 Introduction to Reinforcement Learning

Multi-Armed bandits

Exercises

11h00 - 11h15

Break

11h15 - 13h00

Q-learning

SARSA

Exercises

Deep RL in the wild

/ University of Porto

Introduction to Reinforcement Learning

/ University of Porto

- · Labeled data
- · Direct feedback
- · Predict outcome/future

- · No labels
- No feedback
- · "Find hidden structure"

- Decision process
- · Reward system
- · Learn series of actions

,,

Action-Reward feedback loop

Environment: world

Agent: learner

State: information about the

agent in the environment

Reward: feedback from world

Policy: learning agent's way of

behaving at a given time

Value: future reward

Goal is to maximize total cumulative reward, i.e. Return

$$Return = \sum_{t=1}^{T} reward_t$$

/ University of Porto

States, Actions and Policy

State \ Action	left	up	right	down
2,1				
2,2				
2,3				
2,4				
3,4				
4,4				
4,3				
4,2				
5,2				
6,2				
6,3				
7,2				

Reward function

- Defines good and bad events
- Numerical value indicating desirability of that transaction
- Short-term
- Primary

Value function

- Defines policy's worth
- Total amount of reward accumulated in the future
- Long-term
- Secondary it needs rewards to exist

RL focuses on actions that maximize Value, rather than Reward. Why?

/ University of Porto

Rewards

State \ Action	left	up	right	down
2,1	0	0	1	0
2,2	-1	0	1	0
2,3	-1	0	1	0
2,4	-1	0	0	1
3,4	0	-1	0	1
4,4	1	-1	0	0
4,3	1	0	-1	0
4,2	0	0	-1	1
5,2	0	-1	0	1
6,2	0	-1	-1	1
6,3	1	0	-1	0
7,2	0	-1	0	1

/ University of Porto

Values

State \ Action	left	up	right	down
2,1	0	0	200	0
2,2	-100	0	180	0
2,3	-100	0	150	0
2,4	-100	0	0	130
3,4	0	-100	0	120
4,4	110	-100	0	0
4,3	100	0	-100	0
4,2	0	0	-100	100
5,2	0	-100	0	100
6,2	0	-100	-300	200
6,3	100	0	-400	0
7,2	0	-100	0	100

Episodic

- E.g.: game of chess
- It reaches an end
 - Finite amount of time
- Episodes are independent
 - Reset to initial state
- Return can be calculated more easily

Return =
$$\sum_{t=1}^{T} reward_t$$

Continuing

- E.g.: personal assistance robot
- Never reaches an end
 - Infinite amount of time
- There is no terminal state
- Discounting factor γ
 - Recent actions assigned more reward

Return =
$$\sum_{t=1}^{T} \gamma^{t} reward$$

/ University of Porto

Multi-Armed bandits

/ University of Porto

Multi-Armed bandits

Exploration vs Exploitation

- Try other options
- Allows to find better options
- Optimizes for the long term

- Choose best option
- Best reward given current knowledge
- Optimizes for the short term

MUST ITERATE BETWEEN BOTH OPTIONS

/ University of Porto

MAB algorithms

- Greedy vs ε-greedy
- Upper-Confidence Bound (UCB)
- Thompson Sampling

/ University of Porto

Greedy

- Value of arm is given by average reward
- Best arm is simply choosing argmax

$$Q_k(a) = \frac{1}{k} (r_1 + r_2 + r_3 + \dots + r_k)$$

$$a_{greedy} = argmax_a Q_k(a)$$

ε-greedy

- Simple method to balance exploration and exploitation
- ε is a hyper-parameter
 - usually a small number
 - Must tune on specific use case
- Greedy method does not trade-off - always chooses highest paying arm
 - Cannot properly explore

UCB (Upper confidence bound)

- Optimism in the face of uncertainty
 - Exponentially decays as number of pulls increase
 - Boosts arms that have been explored less

$$UCB(a,t) = \sqrt{\frac{2 \log(t)}{k}}$$

Selection of best arm

$$a_{greedy} = argmax_a \left(Q_k(a) + UCB(a,t)\right)$$
EXPLOIT EXPLORE

/ University of Porto

Thompson Sampling

- Each arm is modeled as a beta distribution
 - α: # successful events
 - β: # unsuccessful events
- Each arm value is sampled from distribution
 - Sampling allows exploration-exploitation
- Selected arm is the one with highest value

- Demo:
 - https://cse442-17f.github.io/LinUCB/
- 2 bandits example:
 - https://colab.research.google.com/drive/18nRNu-fl4u0t6d0t7P9Zo_ZEmqgnLg8V
- 10 bandits example
 - Exercise:
 - https://colab.research.google.com/drive/1dQXVN7OF8IwSeEdKsZTB_v3mCPLTEIGt
 - Solution:
 - https://colab.research.google.com/drive/1p4ufAC3puDT7M_zU11k9apZCym2NuLL9

/ University of Porto

Full Reinforcement Learning methods

/ University of Porto

/ University of Porto

Markov Decision Process (MDP)

- Stochastic decision-making process
 - Used in sequential decisions over time

- MDPs evaluate actions considering current environment
 - Probability of next state is the same whether dependency is of current state or all previous states

	$MDP = \langle S, A, T, R, \gamma \rangle$
S	States
Α	Actions
Т	Transition probabilities
R	Rewards
Υ	Discount factor

$$P(S_{t+1}|S_t) = P(S_{t+1}|S_1, S_2, \dots, S_t)$$

Markov Decision Process (MDP) example

/ University of Porto

Bellman Equations

- State-Value Function
 - Depends only on current state
- Action-Value Function
 - Depends on current state and action

https://builtin.com/machine-learning/markov-decision-process

/ University of Porto

Dynamic Programming

O-Learning vs SARSA

State-Value Function

$$V(S_t) = V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

- Action-Value Function
 - SARSA

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, a_{t+1}) - Q(S_t, A_t)]$$

Q-Learning

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$$

/ University of Porto

On-policy vs off-policy

On-policy

- Q(s,a) function is learned from actions using the current policy
 - E.g. SARSA

Off-policy

- Q(s,a) function is learned from taking different actions, e.g. random, expert, etc.
 - Q-Learning

iversity	of Por	t
	iversity	iversity of Por

	On-Policy	Off-Policy	
Advantages	 Learns safer strategy Often converges faster Often has better online performance 	 More likely to find optimal policy Less likely to get stuck in local minimum Can utilize experience replay Data can be collected via various method 	
Disadvantages	 May become trapped in local minima Less likely to find optimal policy Data must be collected following current policy 	 Policy learned may not be as safe May not perform as well online 	

• Exercise:

https://colab.research.google.com/drive/12iWBgnfBSR0YHbxopq27TxwFzYrjwXS2

Solution:

https://colab.research.google.com/drive/1m_HzekTsR5ZDzq_x2RLv8w4999KuJzCi

/ University of Porto

Reinforcement Learning in the wild

/ University of Porto

Deep Reinforcement Learning

Deep Q Learning

/ University of Porto

Self Driving Cars - Simulator

/ University of Porto

Games - Mario Brothers

/ University of Porto

Drone Flight Race

More resources

- Sutton and Barto Reinforcement Learning: An introduction http://incompleteideas.net/book/the-book-2nd.html
- Reinforcement Learning Specialization in Coursera
 https://www.coursera.org/specializations/reinforcement-learning
- Reinforcement Learning Lecture Series by Google DeepMind <u>https://www.deepmind.com/learning-resources/reinforcement-learning-lecture-series-2021</u>
- Deep Reinforcement Learning from UC Berkeley https://rail.eecs.berkeley.edu/deeprlcourse/

Wrap-up

/ University of Porto

- ✓ Conclusion #1 Reinforcement Learning uses agents and their interaction with the world to learn policies on how to solve a task
- ✓ Conclusion #2 Multi-Armed bandits are simple agents which can learn the value of each action, disregarding the state information
- ✓ Conclusion #3 Almost all reinforcement Learning problems can be formulated via a Markov Decision Process
- ✓ Conclusion #4 Q-learning is a generic and powerful method to learn the optimal policy in MPDs
- ✓ Conclusion #5 Deep Reinforcement Learning allows to bring Reinforcement Learning to the next level, by leveraging the power of Deep Learning

