Hypothesis Testing

One Sample, Two Sample, Chi-Square

Learning Objectives

- What is Hypothesis Testing?
- One Sample Testing
- Two Sample Testing
- Power of Test
- Chi-Square Testing for 1 & 2 Categorical variables

What is a hypothesis?

• It is a claim about a population parameter

- Example: Population mean
- The mean salaries of Data Scientists in India is \$50,000

Null Hypothesis

- States the claim to be tested.
- It always talks about population parameter and not sample statistic.
- Can use "=" , "<=" or ">=" conditions only.
- It may or may not be rejected
- It is similar to the notion of innocent until proven guilty as we begin with the assumption that Null Hypothesis is true.

Alternate Hypothesis

- Opposite of the Null Hypothesis
- Challenges the claim made
- Can use "!=", "<" or ">" only
- This is generally the statement which we are trying to prove
- May or may not be proved.

Claim to be tested

- Example:
- Null Hyp: The population mean salary in India is INR 1,000
- Alternate Hyp: The mean salary is not equal to INR 1,000
- Steps to follow Sample the population and obtain sample mean
- Suppose the sample mean salary is = INR 1800

Claim to be tested

- This is significantly higher than the population mean.
- If the null hypothesis were true, then the sample mean would have been closer to the population mean, so we reject the null hypothesis based on some statistical conditions.
- In other words, getting a sample mean of 1800 is so unlikely if population mean is 1000, hence we reject the population mean of 1000 claim.

Test Statistic & Critical Values

Possible errors in hypothesis testing

THE DECISION
THE
ANALYST MAKES

	THE TRUTH		
	The null hypothesis	The null hypothesis	
	(H _o) is true	(H ₀) is not true	
	(H _a is false)	(H _a is true)	
Reject H _o	TYPE I (α) error/	Correct Decision	
	Alpha Risk/	(1 - β)	
(support H _a)	p – value		
		Power of the test	
	Overreacting		
	$(1 - \alpha) = $ the Confidence		
	level of the test		
Fail to Reject H _o	Correct Decision	TYPE II (β) error/	
_		Beta Risk	
(do not support Ha)			
		Underreacting	

Type 1 and Type 2 error

- They both cannot happen at the same time.
- Type 1 error can occur if Null Hyp is True
- Type 2 error can occur only if Null Hyp is false
- That is, if one increases the other decreases.

Level of significance and rejection region

Positive one-tailed test

H0: Pop.mean<=1000

H1: Pop.mean>1000

Level of significance - 5%

Confidence Interval - 95%

H0: Pop.mean>=1000 H1: Pop.mean<1000

H0: Pop.mean=1000 H1: Pop.mean!=1000

Hypothesis test for mean

- There are two methods to test for the means
- Z-test is used when population SD is known
- T-test is used when population SD is unknown

Approach to testing

- Convert the sample statistic or sample mean into the z-statistic or t-statistic
- Determine the critical z or t values for a specified level of significance (alpha) from a table
- Decision rule If the test statistic falls in the rejection region, then we reject null
 hypothesis, else we do not reject the null hypothesis

Power of Test

- Type 1 Error
- Type 2 Error
- Power of Test calculation

Two Sample Test

- Paired vs Unpaired Test
- Parametric vs Non-Parametric Tests

Chi-Square Test

- Goodness of fit test
- Can be used to check the proportions for a single categorical variable.
- Also, to check the dependency between 2 categorical variables using the Observed and Expected frequencies.