Final Exam of Design and Analysis of Algorithms

June 24, 2015

1. (10%) Consider the 8-puzzle problem with the following initial state (left) and goal state (right). Solve this 8-puzzle instance by using the hill-climbing method (5%) and the best-first search method (5%). You need to define your evaluation functions for these two methods and also draw their searching trees.

2	3	ين دست
8	1	4
7	5	6

Initial state

1	2	3
8	16.	4
7	6	5

Goal state

2. (5%) Find the shortest path from S to T by using the A^* algorithm. Please also draw your searching tree for the given instance.

3. (5%) Consider the following 0/1 knapsack instance:

i	1	2	3	4
P_i	10	10	12	18
W_i	2	4	6	9
M	15			

Solve this 0/1 knapsack instance by the branch-and-bound strategy. Please also draw your searching tree for the given instance.

- 4. (10%) What is the so-called prune-and-search strategy?
- 5. (5%) Let $T(n) = T\left(\frac{3n}{4}\right) + T\left(\frac{n}{7}\right) + 2n^2$. Please find the asymptotic upper bounds of T(n) in big-O notation.
- 6. (5%) Input are a sequence S of n distinct values, not necessarily in sorted ordered, and two integers m_1 and m_2 , where $1 \le m_1, m_2 \le n$. For any value x in S, we define the rank of x in S to be $|\{k \in S: k \le x\}|$. Please design an algorithm to output all the values of S whose ranks fall in the interval $[m_1, m_2]$ in O(n) time.

- 7. (5%) What is the so-called principle of optimality? (2%) Find a problem for which the principle of optimality does not hold and also explain the principle does not hold. (3%)
- 8. (5%) Describe the differences (3%) and similarities (2%) between divide-and-conquer and dynamic programming methods.
- 9. (5%) Consider the following graph and find the shortest path from S to T by the dynamic programming approach.

- 10. (5%) Suppose that X, Y and Z are three given strings, where |X| = n, |Y| = m and |Z| = n + m. Then Z is said to be a *shuffle* of X and Y if and only if Z can be formed by interleaving the characters from X and Y in a way that maintains the left-to-right ordering of the characters from each string. For example, *abcdef* and *acebdf* are shuffles of *ace* and *bdf*, but *aecbdf* is not. Please use the dynamic programming approach to design a polynomial-time algorithm to determine whether Z is a shuffle of X and Y. Please also analyze the time complexity of your algorithm.
- 11. (5%) Please answer the following questions.
 - (a) (2%) What is NP-complete?
 - (b) (3%) Please draw a diagram to show the commonly believed relationships among P, NP, NP-complete and NP-hard.
- 12. (5%) Prove that the partition problem can reduce to the bin packing decision problem. These two problems are defined as follow: Given a set of n positive integers $A = \{a_1, a_2, ..., a_n\}$, the partition problem is to determine whether there is a partition $A = \{A_1, A_2\}$ such that $\sum_{a_i \in A_1} a_i = \sum_{a_i \in A_2} a_i$. Given a set of n items, each of size c_i which is a positive integer, and two positive integers B and C which are the number of bins and the bin capacity respectively, the bin packing decision problem is to determine whether we can assign the n items into B bins such that the sum of c_i 's over all items assigned to each bin does not exceed C.
- 13. (5%) Prove that the Halting problem is NP-hard.
- 14. (5%) Prove that the satisfiability problem with each clause containing at most 3 literals, denoted by ≤3SAT, is NP-complete.

- 15. (20%) Determine whether the following statements are correct or not. If not, please explain your reason (no reason, no point).
 - (a) (2%) In the worst case, the time complexity of the branch-and-bound algorithm for solving the traveling salesperson problem is polynomial.
 - (b) (2%) In an ordinary A^* algorithm, we can terminate the algorithm when a goal node is produced.
 - (c) (2%) If $T(n) = T(\frac{3n}{4}) + n^2$, then T(n) = O(n).
 - (d) (2%) A dynamic programming algorithm saves its computational time by eliminating solutions and avoiding computing the same subproblems repeatedly.
 - (e) (2%) The 0/1 knapsack problem can be solved by a dynamic programming algorithm in polynomial time
 - (f) (2%) The Cook's theorem states that if the SAT problem is in NP, then P = NP.
 - (g) (2%) For an NP-complete problem P, we need to take exponential time to solve this problem P for all kinds of inputs.
 - (h) (2%) An optimization problem is NP-hard if its corresponding decision problem is NP-complete.
 - (i) (2%) If problems P_1 and P_2 are known to be NP-hard, then we can conclude that $P_1 \propto P_2$ and $P_2 \propto P_1$.
 - (j) (2%) Both the 2-SAT and 3-SAT problems are NP-complete.