Logistic Regression

Hongchang Gao Spring 2024

Linear Regression vs Logistic Regression

Given *n* samples:
$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

- Linear regression
 - Y is continuous
 - Model

$$f(x_i) = w_0 + w_1 x_{i,1} + w_2 x_{i,2} + \dots + w_d x_{i,d}$$

Loss function

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Logistic regression
 - Y is discrete
 - Model

$$f(\mathbf{x}_i) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x}_i)}$$

Loss function

$$\min_{\mathbf{w}} - \sum_{i=1}^{n} \{ y_i \log p_i + (1 - y_i) \log(1 - p_i) \}$$

- When the data is balanced, use the classification accuracy
 - Balanced data: #positive samples is almost the same with #negative samples

$$Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$$

Ground-truth	Prediction	Correct?
1	0	N
1	1	Υ
0	0	Υ
0	0	Υ
1	1	Υ
1	1	Υ
0	1	N

Accuracy=5/7

- When the data is imbalanced, does accuracy still work?
 - Imbalanced data: #positive samples is very different from #negative samples

Ground-truth	Prediction	Correct?
1	0	N
0	0	Υ
0	0	Υ
0	0	Υ
0	0	Υ
0	0	Υ
0	0	Υ

Accuracy=6/7

- 1. The classifier gives the same prediction for all samples, But it still has a large accuracy!
- 2. Accuracy is not a good metric for imbalanced data!

Example

- COVID-19 diagnosis: a good classifier should find all positive cases.
- Fraud detection: a good classifier should find all fraud transactions.

Ground-truth	Prediction	Correct?
1	0	N
0	0	Υ
0	0	Υ
0	0	Υ
0	0	Υ
0	0	Υ
0	0	Υ

- 1. This classifier fails to find positive cases or fraud transactions
- 2. But it still has a large accuracy

- True Positive (TP)
 - Prediction is positive, ground-truth is positive
- False Positive (FP)
 - Prediction is positive, ground-truth is negative
- False Negative (FN)
 - Prediction is negative, ground-truth is positive
- True Negative (TN)
 - Prediction is negative, ground-truth is negative

	Positive (ground-truth)	Negative (ground-truth)
Positive (prediction)	True Positive (TP)	False Positive (FP)
Negative (prediction)	False Negative (FN)	True Negative (TN)

• Example: COVID-19 diagnosis

Ground-truth	Prediction
1	1
0	0
1	0
0	1
0	0
0	1
0	0
0	0

	Positive (ground-truth)	Negative (ground-truth)
Positive (prediction)	1 (TP)	2 (FP)
Negative (prediction)	1 (FN)	4 (TN)

- When the data is imbalanced, use recall or precision
 - Recall: the proportion of actual positives is classified correctly

$$Recall = \frac{TP}{TP+FN}$$

Precision: the proportion of positive predictions is actually correct

$$Precision = \frac{TP}{TP+FP}$$

	Positive (ground-truth)	Negative (ground-truth)
Positive (prediction)	True Positive (TP)	False Positive (FP)
Negative (prediction)	False Negative (FN)	True Negative (TN)

Example

Ground-truth	Prediction
1	1
0	0
1	0
0	1
0	0
0	1
0	0
0	0

	Positive (ground-truth)	Negative (ground-truth)
Positive (prediction)	1 (TP)	2 (FP)
Negative (prediction)	1 (FN)	4 (TN)

Recall=1/2
$$Recall = \frac{TP}{TP+FN}$$
 Precision=1/3
$$Precision = \frac{TP}{TP+FP}$$
 Accuracy=5/8

Example

	Positive (ground-truth)	Negative (ground-truth)
Positive (predict)	1	1
Negative (predict)	8	90

Accuracy = (90+1)/100=0.91 But for the positive class, only one sample is classified correctly

Recall=1/(1+8)=0.11 It only correctly recognizes 11% of all positive samples

Precision=1/(1+1)=0.5 When the classifier gives a positive prediction, it is correct 50% of the time

- When to care about recall?
 - It is important to find all positive samples
 - e.g. COVID-19 diagnosis, fraud detection
 - A larger recall means more ground-truth positive samples were founded by the classifier
- When to care about precision?
 - Users are sensitive to the prediction error
 - e.g. google search
 - A larger precision means the positive prediction has a large probability to be correct.

Relationship between recall and precision

- F1 score: harmonic mean of precision and recall
 - conveys the balance between the precision and the recall

$$F_1 = \frac{2 \times Recall \times Precision}{Recall + Precision}$$

Summary

- Build model
 - Linear classifier to separate positive and negative samples

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \{ \log(1 + \exp(\mathbf{w}^T \mathbf{x}_i)) - y_i \mathbf{w}^T \mathbf{x}_i \} + \lambda ||\mathbf{w}||_2^2$$

Optimize the model

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \sum_{i=1}^n \mathbf{x}_i (y_i - \frac{\mathbf{w}_k^T \mathbf{x}_i}{1 + \exp(\mathbf{w}_k^T \mathbf{x}_i)}) - 2\eta \lambda \mathbf{w}_k$$

- Evaluate the model
 - Balanced: Accuracy
 - Imbalanced: Recall, Precision, F1 score

Practical Steps

• 1. Preprocess data

Practical Steps

• 2. Train the model

```
# train logistic regression
clf = LogisticRegression(penalty='12', C=1.0)
clf.fit(X_train, y_train)

y_train_pred = clf.predict(X_train)
acc = accuracy_score(y_train, y_train_pred)
print("Training accuracy: {:.4f}".format(acc))
```

Training accuracy: 0.9259

Practical Steps

• 3. Evaluate the model

```
# evaluate logistic regression
y_test_pred = clf.predict(X_test)
acc = accuracy_score(y_test, y_test_pred)
print("Testing accuracy: {:.4f}".format(acc))
```

Testing accuracy: 0.8000

Model Selection

- Model selection
 - Different hyperparameters lead to different models/performance

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \{ \log(1 + \exp(\mathbf{w}^T \mathbf{x}_i)) - y_i \mathbf{w}^T \mathbf{x}_i \} + \lambda \|\mathbf{w}\|_2^2$$

How to find a model with the best performance?

```
***
```

```
regularization_coefficient = [0.1, 0.5, 1.0, 5.0, 10.0]

for reg in regularization_coefficient:
    clf = LogisticRegression(penalty='12', C=reg)

    clf.fit(X_train, y_train)

    y_test_pred = clf.predict(X_test)

    acc = accuracy_score(y_test, y_test_pred)

print("reg_coeff: {}, acc: {:.3f}".format(1.0/reg, acc))
```

```
reg_coeff: 10.0, acc: 0.533
reg_coeff: 2.0, acc: 0.533
reg_coeff: 1.0, acc: 0.533
reg_coeff: 0.2, acc: 0.800
reg_coeff: 0.1, acc: 0.800
```

- Threefold split:
 - Training set
 - Used for training the model, during the training phase
 - Validation set
 - Used for hyperparameter selection, during the training phase
 - Testing set
 - Used for evaluating the model, after obtaining the model

- How to select the model (hyperparameters)?
 - For each hyperparameter
 - Train the model using the training set
 - Evaluate the model using the validation set
 - Use the performance on the validation set to select the best hyperparameters
- After obtaining the best hyperparameter:
 - Retrain the model with both the training and validation sets
 - Report the performance on the testing set

```
regularization coefficient = [0.1, 0.5, 1.0, 5.0, 10.0]
best acc = 0.0
best req = 0.0
for reg in regularization coefficient:
    clf = LogisticRegression(penalty='12', C=reg)
    clf.fit(X_train, y_train) Using the training set
   y_valid_pred = clf.predict(X_valid) Using the validation set
    acc = accuracy score(y valid, y valid pred)
    if acc > best acc:
        best acc = acc
        best reg = reg
    print("reg coeff: {}, acc: {:.3f}".format(1.0/reg, acc))
clf = LogisticRegression(penalty='12', C=best reg)
clf.fit(X train val, y train val)
y test pred = clf.predict(X test)
acc = accuracy score(y test, y test pred)
print("acc: {:.3f}".format(acc))
```

Model selection based on the validation set

```
reg_coeff: 10.0, acc: 0.571
reg_coeff: 2.0, acc: 0.643
reg_coeff: 1.0, acc: 0.643
reg_coeff: 0.2, acc: 0.714
reg_coeff: 0.1, acc: 0.714
acc: 0.800
```

Retrain the model with the best hyperparameter, Evaluate the model on the testing set

- Pros:
 - Fast and simple
- Cons:
 - Large variance
 - Unreliable estimation of future performance
 - Bad use of data
 - Waste data

Model Selection: Cross-validation

- Training data:
 - Randomly partition it into K folds
 - K-1 folds for training set
 - 1 fold for validation set
- How to select the model?
 - For each hyperparameter
 - Train the model for K times
 - Evaluate the model for K times
 - Use the mean of K evaluation to select model


```
for reg in regularization coefficient:
   sum acc = 0.0
   for fold in range(5):
       index of folds temp = index of folds.copy()
       valid index = index of folds temp[fold,:].reshape(-1)
       train index = np.delete(index of folds temp, fold, 0).reshape(-1)
       X train = X train val[train index]
       y train = y train val[train index]
       X valid = X train val[valid index]
       y valid = y train val[valid index]
                                                                          reg coeff: 2.0, acc: 0.911
                                                                          reg coeff: 1.0, acc: 0.941
       clf = LogisticRegression(penalty='12', C=reg)
       clf.fit(X train, y train)
                                                                          reg coeff: 0.2, acc: 0.948
                                                                          reg coeff: 0.1, acc: 0.948
       y valid pred = clf.predict(X valid)
       acc = accuracy score(y valid, y valid pred)
       sum acc += acc
   cur acc = sum acc / 5.0
   print("reg coeff: {}, acc: {:.3f}".format(1.0/reg, cur acc))
   if cur acc > best acc:
       best acc = cur acc
       best reg = reg
```

reg coeff: 10.0, acc: 0.770

Model Selection: Cross-validation

```
clf = LogisticRegression(penalty='12', C=best_reg)
clf.fit(X_train_val, y_train_val)

y_test_pred = clf.predict(X_test)
acc = accuracy_score(y_test, y_test_pred)

print("acc: {:.3f}".format(acc))
```

acc: 0.867

Model Selection: Cross-validation

- Pros:
 - More data
 - More stable
- Cons:
 - Slower