

PRECISION BAROMETER AND ALTIMETER SENSOR

Key Features

- Operation temperature: -40~85°C
- Supply voltage: 1.7V to 3.6V
- Pressure range: 300mBar ~1200mBar
- Pressure temperature sensitivity: < 0.5Pa/K
- Pressure sensor precision: ± 0.005 hPa (or ±5 cm)
- Average current consumption: @1Hz sampling rate,
 Standby: <0.5 µA
- Package:8-pin LGA, 3.8 mm x 3.6mm x 1.2 mm
- Stores up to 32 pressure or temperature measurements
- I2C and SPI (both with optional interrupt)

3.6x3.8x1.2mm

Applications

- Mobile Altimeter / Barometer
- Industrial Pressure and Temperature Sensor System
- Adventure and Sports watches
- Weather Station Equipment
- Indoor Navigation and Map Assist
- Data loggers for pressure, temperature and altitude
- Panel computer
- Barometers

Descriptions

The HP303B-F is a miniaturized Digital Barometric Air Pressure Sensor with a high accuracy and a low current consumption, capable of measuring both pressure and temperature. The pressure sensor element is based on a capacitive principle which guarantees high precision during temperature changes. The small package makes the HP303B-F ideal for mobile applications and wearable devices.

The HP303B-F result FIFO can store up to 32 measurement results, allowing for a reduced host processor polling rate. Sensor measurements and calibration coefficients are available through the serial I2C or SPI interface. The measurement status is indicated by status bits or interrupts on the SDO pin.

1. Pin Configuration

Table 1 Pin Descriptions

Pin	Name	SPI 3-wire	SPI 3-wire with interrupt	SPI 4-wire	I2C	I2C with interrupt					
1	VDDIO		Digital supply voltage for digital blocks and I/O interface								
2	GND			Ground							
3	VDD		S	Supply voltage for a	analog blocks						
4	NC			No conne	ect						
5	SCK		Serial Clock								
6	SDI	Serial data in/out	Serial data in/out	Serial data in	Serial data in/out	Serial data in/out					
7	CSB	Chip select - active low	Chip select - active low	Chip select - active low	Not used - open (internal pull-up) or tie to VDDIO	Not used - open (internal pull- up) or tie to VDDIO					
8	SDO	Not used	Interrupt	Serial data out	Least significant bit in the device address.	Interrupt pin and least significant bit in the device address.					

2. Typical Application Circuit

Figure 1: Application Circuit Example Using the I2C Serial Interface.

Figure 2: Application Circuit Example Using the SPI 4-wire Serial Interface

Figure 3: Application Circuit Example Using the SPI 3-wire Serial Interface

Figure 4: Application Circuit Example Using the SPI 3-wire with Interrupt Interface

Table 2 Component Values

Component	Symbol	Values		Values		Note / Test Condition
		Min.	Тур.	Max.		
Pull-up/down Resistor	R ₁ , R ₂	5		100	ΚΩ	R_2 is optional and will set the address to 0x76 instead of 0x77.
Supply Blocking Capacitor	C ₁ , C ₂	100	100		nF	The blocking capacitors should be placed as close to the package pins as possible.

3. Mechanical and Electrical Specifications

3.1 Operating Range

Table 3 Operating Range

Parameter	Symbol	nbol Values I			Unit	Note / Test Condition
		Min.	Typ. Max.			
Pressure	Pa	300		1200	hPa	
Temperature	Ta	-40		85	°C	
Supply voltage	V_{DD}	1.7		3.6	V	
Supply voltage IO	V_{DDIO}	1.2		3.6	٧	
Supply voltage ramp-up time	t _{vddup}	0.001		5	ms	Time for supply voltage to reach 90% of final value.
Solder drift			-0.8		hPa	Minimum solder height 50um.
Long term stability				1	hPa	12 months

3.2 Absolute Maximum Ratings

Maximum ratings are absolute ratings. Exceeding any one of these values may cause irreversible damage to the integrated circuit.

Table 4 Absolute Maximum Ratings

Parameter	Symbol		Values		Unit	Note / Test
		Min.	Тур.	Max.		Condition
V _{DD} and V _{DDIO}	V_{DDxx_max}			4	V	
Voltage on any pin	V _{max}			4	V	
Storage temperature	Ts	-40		125	°C	
Pressure	P _{max}			10,000	hPa	
ESD	V _{ESD_HBM}	-2		2	KV	HBM (JESD22-A114)

3.3 Current Consumption

Test conditions (unless otherwise specified in the table): V_{DD} = 1.8V and V_{DDIO} =1.8V. Typ. values (P_A =1000hPa and T_A =25°C). Max./Min. values (P_A =950-1050hPa and T_A =0...+65°C).

Table 5 Current Consumption

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Peak Current Consumption	I _{peak}		345		μΑ	during Pressure measurement	
			280		μΑ	during Temperature measurement	
Standby Current Consumption	I _{stb}		<0.5		μΑ		
Current Consumption.	I _{1Hz}		2.1		μΑ	Low precision	
(1 measurement per second.)			11			Standard precision	
			38			High precision	

Note: The current consumption depends on both pressure measurement precision and rate. Please refer to the **Pressure Configuration** (PRS_CFG) register description for an overview of the current consumption in different combinations of measurement precision and rate.

3.4 Temperature Transfer Function

Test conditions (unless otherwise specified in the table): V_{DD} = 1.8V and V_{DDIO} =1.8V. Typ. values (P_A =1000hPa and T_A =25°C). Max./Min. values (P_A =950-1050hPa and T_A =0...+65°C).

Table 6 Temperature Transfer Function

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Temperature accuracy	A _t		+/-0.5		°C	
Temperature data resolution	A _{t_res}		0.01		°C	
Temperature measurement rate	f	1		128	Hz	

3.5 Pressure Transfer Function

Test conditions (unless otherwise specified in the table): V_{DD} = 1.8V and V_{DDIO} =1.8V. Typ. values (P_A =1000hPa and T_A =25°C).

Table 7 Pressure Transfer Function

Parameter	Symbol	Values	Values			Note / Test Condition
		Min.	Тур.	Max.		
Absolute pressure accuracy	A _{p_abs}		+/-20		Pa	P _A =400-1050hPa
						T _A =20+60°C
			+/-100		Pa	P _A =400-1050hPa
						T _A =0+70°C
			+/-170		Pa	P _A =400-1050hPa
						T _A =-2060°C
Relative pressure accuracy	A _{p_rel}		+/-6		Pa	P _A =400-1050hPa
						T _A =20+60°C
Pressure precision	A _{p_prc}		5.0		Pa _{RMS}	Low Power
			1.2			Standard
			0.5			High Precision

Note: Pressure precision is measured as the average standard deviation. Please refer to the **Pressure Configuration** (PRS_CFG) register description for all precision mode options.

Power supply rejection	A _{p_psr}			0.063	Pa _{RMS}	Measured with 217Hz square wave and broad band noise, 100mV _{pp}
Pressure temperature sensitivity of calibrated measurements	A _{p_tmp}			0.5	Pa/K	1000hPa, 25+40°C.
Pressure data resolution	A _{p_res}			0.06	Pa _{RMS}	
Pressure measurement rate	f	1		128	Hz	
Pressure measurement time	t		5.2		ms	Low Power
			27.6			Standard
			105			High Precision

Note: The pressure measurement time (and thus the maximum rate) depends on the pressure measurement precision. Please refer to the **Pressure Configuration** (**PRS_CFG**) register description for an overview of the possible combinations of measurement precision and rate.

3.6 Timing Characteristics

Table 8 Timing Characteristics

Parameter	Symbol	Values	Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Start-up timing						
Time to sensor ready	T _{Sensor_rdy}			12	ms	The SENSOR_RDY bit in the Measurement Configuration register will be set when the sensor is ready.
Time to coefficients are available.	T _{Coef_rdy}			40	ms	The COEF_RDY bit in the Measurement Configuration register will be set when the coefficients can be read out.
Note: Start-up timing is meas	sured from VDD > 1	.2V & VD	DIO > 0.6V	or Soft Rese	et.	
I ² C Clock.	f _{I2C}			3.4	MHz	

10

MHz

4. Functional Description

4.1 Operating Modes

The HP303B-F supports 3 different modes of operation: Standby, Command, and Background mode.

· Standby Mode

SPI Clock

- Default mode after power on or reset. No measurements are performed.
- All registers and compensation coefficients are accessible.

 f_{SPI}

- Command Mode
 - One temperature or pressure measurement is performed according to the selected precision.
 - The sensor will return to Standby Mode when the measurement is finished, and the measurement result will be available in the data registers.
- Background Mode
 - Pressure and/or temperature measurements are performed continuously according to the selected measurement precision and rate. The temperature measurement is performed immediately after the pressure measurement.
 - The FIFO can be used to store 32 measurement results and minimize the number of times the sensor must be accessed to read out the results.

Note: Operation mode and measurement type are set in the Sensor Operating Mode and Status (MEAS_CFG) Register.

4.2 Mode Transition Diagram

The mode transition diagram is shown below.

Figure 5: Mode Transition Diagram

4.3 Start-up Sequence

The star-up sequence of the HP303B-F is shown below. This diagram shows when the registers are accessible for read and/or write and also when the Pressure/Temperature measurements can start.

Figure 6: Start-up Sequence

4.4 Measurement Precision and Rate

Different applications require different measurement precision and measurement rates. Some applications, such as weather stations, require lower precision and measurement rates than for instance indoor navigation and sports applications.

When the HP303B-F is in Background Mode, the measurement precision and rate can be configured to match the requirements of the application. This reduces current consumption of the sensor and the system.

In order to achieve a higher precision, the HP303B-F will read the sensor multiple times (oversampling), and combine the readings into one result. This increases the current consumption and also the measurement time, reducing the maximum possible measurement rate. It is necessary to balance the accuracy and data rate required for each application with the allowable current consumption.

The measurement precision, rate and time is set in the *Pressure Configuration (PRS_CFG)* and *Temperature Configuration (TMP_CFG)* registers. The register descriptions contain information about the current consumption and the possible combinations of measurement precision, time, and rate.

Enabling temperature measurements allows for compensation of temperature drift in the pressure measurement. The rates of these measurements can be set independently, but temperature compensation is more accurate when temperature and pressure measurements are taken together. This reduces the maximum pressure measurement rate, since: Rate_{temperature}*Time_{temperature} + Rate_{pressure}*Time_{pressure}< 1 second.

*Measurement Settings and Use Case Examples contains a table with examples of combinations of pressure and temperature precision and rates for different use cases.

In the figure below is described the Temperature and Pressure measurements sequence in background mode.

Figure 7: Background Mode Temperature and Pressure Measurements Sequence

4.5 Sensor Interface

The HP303B-F can be accessed as a slave device through mode '11' SPI 3-wire, SPI 4-wire, or I²C serial interface.

- I²C interface
 - The sensor's default interface.
 - The sensor's address is 0x77 (default) or 0x76 (if the SDO pin is pulled-down to GND).
- SPI interface
 - The sensor will switch to SPI configuration if it detects an active low on the CSB pin. SPI

4-wire is the default SPI interface.

- To enable SPI3-wire configuration, a bit must be set in the *Interrupt and FIFO configuration (CFG_REG)* register after start up.

More details about digital interfaces are available in the *Digital interfaces*.

4.6 Interrupt

The HP303B-F can generate an interrupt when a new measurement result is available and/or when the FIFO is full. The sensor uses the *SDO* pin for the interrupt signal, and interrupt is therefore not supported if the interface is 4-wire SPI.

The interrupt is enabled and configured in the *Interrupt and FIFO configuration (CFG_REG)* register. In I2C configuration the SDO pin serves as both interrupt and as the least significant bit in the device address. If the SDO pin is pulled low the interrupt polarity must be set to active high and vice versa.

The interrupt status can be read from the *Interrupt Status (INT STS)* register.

4.7 Result Register Operation

After starting the measurements, the latest pressure and temperature raw data will be available in their respective result registers. Temperature measurement can be skipped. The temperature measurements can be disabled if there is a requirement to measure pressure rapidly, but it will make accurate temperature drift compensation impossible.

All measurement data can be read in a single command using auto-increment read. When FIFO is disabled, reading the result register will not affect the register value, it will only be updated when a new measurement is completed. When FIFO is enabled, the pressure result register will update to the next value in the FIFO after each read. When all of the FIFO values have been read, the result register will be set to 0x800000.

4.8 FIFO Operation

The HP303B-F FIFO can store the last 32 measurements of pressure or temperature. This reduces the overall system power consumption as the host processor does not need to continuously poll data from the sensor but can go into standby mode for longer periods of time.

The FIFO can store any combination of pressure and temperature results, according to the background mode measurement rate settings. The pressure rate can for instance be set 4 times higher than the temperature rate and thus only every fifth result will be a temperature result. The measurement type can be seen in the result data. The sensor will set the least significant bit to:

- '1' if the result is a pressure measurement.
- '0' if it is a temperature measurement.
 - The sensor uses 24 bits to store the measurement result. Because this is more bits than is needed to cover the full dynamic range of the pressure sensor, using the least significant bit to label the measurement type will not affect the precision of the result.

The FIFO can be enabled in the Interrupt and FIFO configuration register. The data from the FIFO is read out from the Pressure Data (PRS_Bn) registers regardless of whether the next result in the FIFO is a temperature or a pressure measurement.

When a measurement has been read out, the FIFO will auto increment and place the next result in the data

register. A flag will be set in the FIFO Status register when the FIFO is empty and all following reads will return 0x800000.

If the FIFO is full, the FIFO_FULL bit in the FIFO Status (FIFO_STS) will be set. If the INT_FIFO bit in the Interrupt and FIFO configuration register (CFG_REG) is set, an interrupt will also be generated when the FIFO is full. The FIFO will stop recording measurements results when it is full.

4.9 Calibration and Measurement Compensation

The HP303B-F is a calibrated sensor and contains calibration coefficients. These are used in the application (for instance by the host processor) to compensate the measurement results for sensor non-linearities.

The sections that follow describe how to calculate the compensated results and convert them into Pa

4.9.1 How to Calculate Compensated Pressure Values

Step

- 1. Read the pressure calibration coefficients (c00, c10, c20, c30, c01, c11, and c21) from the Calibration coefficient register
 - Note: The coefficients read from the coefficient register are 16 bit 2's complement numbers.
- 2. Choose scaling factors kT (for temperature) and kP (for pressure) based on the chosen precision rate. The scaling factors are listed in *Table 9*.
- 3. Read the pressure and temperature result from the registers or FIFO.
 - Note: The measurements read from the result registers (or FIF0) are 24 bit 2's complement numbers.

 Depending on the chosen measurement rates, the temperature may not have been measured since the last pressure measurement.
- 4. Calculate scaled measurement results.

$$T_{raw_sc} = T_{raw} / kT$$

 $P_{raw_sc} = P_{raw} / kP$

5. Calculate compensated measurement results.

$$\begin{aligned} &P_{comp}(Pa) = c00 + P_{raw_sc}*(c10 + P_{raw_sc}*(c20 + P_{raw_sc}*c30)) + T_{raw_sc}\\ &*c01 + T_{raw_sc}*P_{raw_sc}*(c11 + P_{raw_sc}*c21) \end{aligned}$$

4.9.2 How to Calculate Compensated Temperature Values

Steps

- **1.** Read the temperature calibration coefficients (c0 and c1) from the *Calibration Coefficients (COEF)* register. *Note: The coefficients read from the coefficient register are 12 bit 2's complement numbers.*
- 2. Choose scaling factor kT (for temperature) based on the chosen precision rate. The scaling factors are listed in *Table 9*.
- 3. Read the temperature result from the temperature register or FIFO.

Note: The temperature measurements read from the temperature result register (or FIFO) are 24 bit 2's complement numbers.

4. Calculate scaled measurement results.

$$T_{raw sc} = T_{raw} / kT$$

5. Calculate compensated measurement results.

$$T_{comp}$$
 (°C) = c0*0.5 + c1* T_{raw} sc

4.9.3 Compensation Scale Factors

Table 9 Compensation Scale Factors

Oversampling Rate	Scale Factor (kP or kT)
1 (single)	524288
2 times (Low Power)	1572864
4 times	3670016
8 times	7864320
16 times (Standard)	253952
32 times	516096
64 times (High Precision)	1040384
128 times	2088960

4.9.4 Pressure and Temperature Calculation Flow

Figure 8: Flow Chart

5. Digital Interfaces

The HP303B-F measurement data, calibration coefficients, Product ID and configuration registers can be accessed through both the I²C and SPI serial interfaces.

The SPI interface can configured to operate in 3-wire or 4-wire mode. In I2C and SPI 3-wire, an interrupt output can be implemented on the SDO pin. The SPI interface support mode '11' only (CPOL=CPHA='1') in 4-wire and 3-wire configuration, The following commands are supported: single byte write, single byte read and multiple byte read using auto increment from a specified start address. The interface selection is done based on CSB pin status. If CSB is connected to V_{DDIO} , the I²C interface is active. If CSB is low, the SPI interface is active. After the CSB has been pulled down once the I²C interface is disabled until the next power-on-reset.

5.1 I2C Interface

The I²C slave interface is compatible with Philips I²C Specification version 2.1. The I²C interface supports standard, fast and high speed mode.

The sensor's address is 0x77 (if SDO pin is left floating or pulled-up to VDDIO) or 0x76 (if the SDO pin is pulled- down to GND). The I²C interface uses the pins described in *Table 1*The basic timing is shown in the diagram below:

Figure 9 I2C Timing Diagram

In one access, without stop, incremental read (address is auto increment) and auto-incremental write is supported. The read and write access is described below:

Figure 10 I2C Write and Read Commands

5.2 SPI Interface

The SPI interface is compatible with SPI mode '11' (CPOL = CPHA = '1'. The SPI interface has two modes: 4-wire and 3-wire.

The protocol is the same for both. The 3-wire mode is selected by setting '1' to the register *Interrupt and FIFO configuration (CFG REG)*

The SPI interface uses the pins like in the *Table 1* Refere to *Application Circuit Example* for connections instructions, The SPI protocol is shown in the diagram below

Figure 11 SPI Protocol, 4-wire without Interrupt

A SPI write is carried out by setting CSB low and sending a control byte followed by register data. The control byte consist of the SPI register address (full register address without bit 7) and the write command (bit7 = RW = '0'). Setting CSB high ends the transaction. The SPI write protocol is described in the diagram below.

A SPI read is initiated by setting CSB low and sending a single control byte. The control byte consist of the SPI register address (= full register address without bit 7) and the read command (bit7 = RW = '1'). After writing the control byte, data is sent out of the SDO pin (SDI in 3-wire mode); the register address is automatically incremented. Sending CSB high ends the SPI read transaction. The SPI read protocol is shown in the diagram below:

Figure 12 SPI Write, Read Protocol Diagram

5.3 Interface Parameters Specification

The general interface parameters are given in the table below:

Table 10 Interface Parameters

Parameter	Symbol		Values	Unit	Note or Test	
		Min.	Тур.	Max.		Condition
Input voltage for low logic level at input pins	Vlow_in			0.3 * V _{DDIO}	V	V _{DDIO} =1.2V to 3.6V
Input voltage for high logic level at input pins	Vhigh_in	0.7 * V _{DDIO}			V	V _{DDIO} =1.2V to 3.6V
Output - low level for I2C	Vlow_SDI			0.1 * V _{DDIO}	V	V _{DDIO} =1.8V, iol=2mA
Output voltage for low level at pin SDI for I2C	Vlow_SDI_1.2			0.2* V _{DDIO}	V	V _{DDIO} =1.20V, iol=1.3mA
Output voltage for high level at pins SDO, SDI	Vhigh_out	0.8 * V _{DDIO}			V	V _{DDIO} =1.8V, iol=1mA (SDO, SDI)
Output voltage for high level at pins SDO, SDI	Vhigh_out_1.2	0.6 * V _{DDIO}		\	V	V _{DDIO} =1.2V, iol=1mA (SDO, SDI)
Pull-up resistor	Rpull	60	120	180	kohm	Internal pull-up resistance to VDDIO
I2C bus load capacitor	Cb			400	pF	On SDI and SCK

5.3.1 I2C Timings

The I^2C timing is shown in the diagram below and corresponding values are given in the table below. The naming refers to I^2C Specification version 2.1, the abbreviations used "S&F mode" = standard and fast mode, "HS mode" = high speed mode, Cb = bus capacitance on SDA line.

Figure 13 I2C Timing Diagram

Table 11 I2C Timings

Parameter	Symbol		Values			Note or Test
		Min.	Тур.	Max.		Condition
Data setup time on SDI pin	t _{Setup}	20			ns	S&F mode
		5			ns	HS mode
Data hold time on SDI pin	t _{Hold}	0			ns	S&F&HSmode,
Duty Cycle	DC			70	%	S&F mode,
				55	%	HS mode,

5.3.2 SPI Timings

The SPI timing diagram is shown in the figure below and the corresponding values are given in the table below. All timings apply both to 4-wire and 3-wire SPI.

Figure 14 SPI Timing Diagram

Table 12 SPI Timings

Parameter	Symbol		Values			Note or Test
		Min.	Тур.	Max.		Condition
Duty Cycle (Thigh%)	SPI_DC	30			%	$V_{DDIO} = 1.2V$
		20			%	$V_{DDIO} = 1.8V/3.6V$
SDI setup time	T_setup_sdi	2			ns	
SDI hold time	T_hold_sdi	2			ns	
Clock	SPI_CLK			10	MHz	
CSB setup time	T_setup_csb	15			ns	
CSB hold time		15			ns	

6. Register Map

Table 13 Register Map

Register Name	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Reset State		
PSR_B2	0x00	PSR[23:1	6] (r)							00 _h		
PSR_B1	0x01	PSR[15:	R[15:8](r)									
PSR_B0	0x02	PSR[7:0](r)							00 _h		
TMP_B2	0x03	TMP[23:1	16] (r)							00 _h		
TMP_B1	0x04	TMP[15:8	3] (r)							00 _h		
TMP_B0	0x05	TMP[7:0]	(r)							00 _h		
PRS_CFG	0x06	-	PM_RATE	[2:0] (rw)		PM_PRC	[3:0] (rw)			00 _h		
TMP_CFG	0x07	TMP_ EXT (rw)	TMP_RAT	E [2:0] (rw	')	TM_PRC	[3:0] (rw)			00 _h		
MEAS_CFG	0x08	COEF_ RDY (r)	SENSOR _ RDY (r)	TMP_ RDY (r)	PRS_ RDY (r)	-	C0 _h					
CFG_REG	0x09	INT_HL (rw)	INT_ SEL [INT_ SEL [2:0] (rw)			PRS_ SHIFT_ EN (rw)	FIFO_ EN (rw)	SPI_ MODE (rw)	00 _h		
INT_STS	0x0A	-	-		-	-	INT_ FIFO_ FULL (r)	INT_ TMP(r)	INT_ PRS(r)	00 _h		
FIFO_STS	0x0B	-	-	-	-	-	-	FIFO_ FULL(r)	FIFO_ EMPTY(r)	00 _h		
RESET	0x0C	FIFO_ FLUSH (w)		-	-	SOFT_RS	ST [3:0] (w))		00 _h		
Product ID	0x0D	REV_ID [3	3:0] (r)			PROD_I) [3:0] (r)			10 _h		
COEF	0x10- 0x21	< see reg	ister descri	ption >						XX _h		
Reserved	0x22- 0x27	Reserved								XX _h		
COEF_SRCE	0x28	TMP_C OEF_SR CE (r)	Reserved							XX _h		

7. Register Description

7.1 Pressure Data (PRS_Bn)

The Pressure Data registers contains the 24 bit (3 bytes) 2's complement pressure measurement value. If the FIFO is enabled, the register will contain the FIFO pressure and/or temperature results (please see *FIFO operation*). Otherwise, the register contains the pressure measurement results and will not be cleared after read.

7.1.1 PRS_B2

The highest byte of the three bytes measured pressure value.

PRS_B2				Address:			00H
Pressure (MSB	data)		Re	eset value:			00H
7	6	5	4	3	2	1	0
PRS23	PRS22	PRS21	PRS20	PRS19	PRS18	PRS17	PRS16

r

Field	Bits	Туре	Description
PRS[23:16]	7:0	r	MSB of 24 bit 2's complement pressure data.

7.1.2 PRS_B1

The middle byte of the three bytes measured pressure value.

 PRS_B1
 Address:
 01H

 Pressure (LSB data)
 Reset value:
 00H

 7
 6
 5
 4
 3
 2
 1
 0

 PRS15
 PRS14
 PRS13
 PRS12
 PRS11
 PRS10
 PRS9
 PRS8

r

Field	Bits	Туре	Description
PRS[15:8]	7:0	r	LSB of 24 bit 2's complement pressure data.

7.1.3 PRS_B0

The lowest byte of the three bytes measured pressure value.

 PRS_B0
 Address:
 02H

 Pressure (XLSB data)
 Reset value:
 00H

 7
 6
 5
 4
 3
 2
 1
 0

 PRS7
 PRS6
 PRS5
 PRS4
 PRS3
 PRS2
 PRS1
 PRS0

r

Field	Bits	Туре	Description
PRS[7:0]	7:0	r	XLSB of 24 bit 2's complement pressure data.

7.2 Temperature Data (TMP_Tn)

The Temperature Data registers contain the 24 bit (3 bytes) 2's complement temperature measurement value (Unless the FIFO is enabled, please see FIFO operation) and will not be cleared after the read.

7.2.1 TMP_B2

The highest byte of the three bytes measured temperature value.

TMP_B2 Address: 03H

Temperature (MSB data) Reset value: 00H

7	6	5	4	3	2	1	0
TMP23	TMP22	TMP21	TMP20	TMP19	TMP18	TMP17	TMP16
					•		

Field	Bits	Туре	Description
TMP[23:16]	7:0		MSB of 24 bit 2's complement temperature data.

7.2.2 TMP_B1

The middle byte of the three bytes measured temperature value.

 TMP_B1
 Address:
 04H

 Temperature (LSB data)
 Reset value:
 00H

 7
 6
 5
 4
 3
 2
 1
 0

 TMP15
 TMP14
 TMP13
 TMP12
 TMP11
 TMP10
 TMP9
 TMP8

r

Field	Bits	Туре	Description
TMP[15:8]	7:0	r	LSB of 24 bit 2's complement temperature data.

7.2.3 TMP_B0

The lowest part of the three bytes measured temperature value.

TMP_B0 Address: 05H
Temperature (XLSB data) Reset value: 00H

 TMP7
 TMP6
 TMP5
 TMP4
 TMP3
 TMP2
 TMP1
 TMP0

r

Field	Bits	Туре	Description
TMP[7:0]	7:0	r	XLSB of 24 bit 2's complement temperature data.

7.3 Pressure Configuration (PRS_CFG)

Configuration of pressure measurement rate (PM_RATE) and resolution (PM_PRC)

 PRS_CFG
 Address:
 06_H

 Pressure measurement configuration
 Reset value:
 00_H

 7
 6
 5
 4
 3
 2
 1
 0

 PM_RATE[2:0]
 PM_PRC[3:0]

Field	Bits	Туре	Description
-	7	-	Reserved.
PM_RATE[2:0]	6:4	rw	Pressure measurement rate:
			000 - 1 measurements pr. sec.
			001 - 2 measurements pr. sec.
			010 - 4 measurements pr. sec.
			011 - 8 measurements pr. sec.
		4	100 - 16 measurements pr. sec.
			101 - 32 measurements pr. sec.
			110 - 64 measurements pr. sec.
			111 - 128 measurements pr. sec.
			Applicable for measurements in Background mode only
PM_PRC[3:0]	3:0	rw	Pressure oversampling rate:
			0000 - Single. (Low Precision)
			0001 - 2 times (Low Power).
			0010 - 4 times.
			0011 - 8 times.
			0100 *) - 16 times (Standard).
		þ	0101 *) - 32 times.
			0110 *) - 64 times (High Precision).
			0111 *) - 128 times.
			1xxx - TBD

^{*}Note: Use in combination with a bit shift. See Interrupt and FIFO configuration (CFG_REG) register

Table 14 Pressure Measurement Time (ms) and Precision (Pa_{RMS})

Oversampling (PRC[3:0])	Single (0000)	2 times (0001)	4 times (0010)	8 times (0011)	16 times (0100)	32 times (0101)	64 times (0110)	128 times (0111)
Measurement time (ms)	3.6	5.2	8.4	14.8	27.6	53.2	104.4	206.8
Precision (Pa _{RMS})	5		2.5		1.2	0.9	0.5	

Table 15 Estimated Current Consumption (uA)

Oversampling (PRC[3:0]) Measurements pr sec. (PM_RATE([2:0])	Single (0000)	2 times (0001)	4 times (0010)	8 times (0011)	16 times (0100)	32 times (0101)	64 times (0110)	128 times (0111)
1 (000)	2.1	2.7	3.8	6.1	11	20	38	75
2 (001)								
4 (010)								
8 (011)				n be calculate ment per. sec		easurement F	Rate *	n.a.
16 (100)							n.a.	n.a.
32 (101)						n.a.	n.a.	n.a.
64 (110)					n.a.	n.a.	n.a.	n.a.
128 (111)			n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Note: The table shows the possible combinations of Pressure Measurement Rate and oversampling when no temperature measurements are performed. When temperature measurements are performed the possible combinations are limited to Rate temperature x Measurement $Time_{temperature} + Rate_{pressure} x$ Measurement $Time_{pressure} < 1$ second.

7.4 Temperature Configuration (TMP_CFG)

Configuration of temperature measurement rate (TMP_RATE) and resolution (TMP_PRC)

Bits	Туре	Description
7	rw	Temperature measurement
		0 - Internal sensor (TBD)
		1 - External sensor (in pressure sensor MEMS element)
		Note: It is highly recommended to use the same temperature sensor as the source of the calibration coefficients. Please see the Coefficient Source register
6:4	rw	Temperature measurement rate:
		000 - 1 measurement pr. sec.
		001 - 2 measurements pr. sec.
		010 - 4 measurements pr. sec.
		011 - 8 measurements pr. sec.
		100 - 16 measurements pr. sec.
		101 - 32 measurements pr. sec.
		110 - 64 measurements pr. sec.
		111 - 128 measurements pr. sec
		Applicable for measurements in Background mode only
2:0	rw	Temperature oversampling (precision):
		000 - single. (Default) - Measurement time 3.6 ms.
		Note: Following are optional, and may not be relevant:
		001 - 2 times.
		010 - 4 times.
		011 - 8 times.
		100 - 16 times.
		101 - 32 times.
		110 - 64 times.
		111 - 128 times.
	6:4	7 rw

7.5 Sensor Operating Mode and Status (MEAS_CFG)

Setup measurement mode

MEAS_CFG H80 Address: Measurement configuration Reset value: C₀H 7 5 3 2 0 6 COEF_RDY SENSOR_RDY TEM RDY PRS RDY MEAS CTRL r r r r rw

Field	Bits	Туре	Description
COEF_RDY	7	r	Coefficients will be read to the Coefficients Registers after start- up:
			0 - Coefficients are not available yet.
			1 - Coefficients are available.
SENSOR_RDY	6	r	The pressure sensor is running through self-initialization after start-up.
			0 - Sensor initialization not complete
			1 - Sensor initialization complete
			It is recommended not to start measurements until the sensor has completed the self-initialization.
TMP_RDY	5	r	Temperature measurement ready
			1 - New temperature measurement is ready. Cleared when temperature measurement is read.
PRS_RDY	4	r	Pressure measurement ready
			1 - New pressure measurement is ready. Cleared when pressure measurement is read.
-	3	-	Reserved.
MEAS_CTRL	2:0	rw	Set measurement mode and type:
			Standby Mode
			000 - Idle / Stop background measurement
			Command Mode
			001 - Pressure measurement
			010 - Temperature measurement
			011 - na.
			100 - na.
			Background Mode
			101 - Continuous pressure measurement
			110 - Continuous temperature measurement
			111 - Continuous pressure and temperature measurement

7.6 FIFO configuration (CFG_REG)

Configuration of interrupts, measurement data shift, and FIFO enable.

CFG_REG 09H Address: **Configuration register** Reset value: 00H 6 5 4 2 0 INT_FIFO INT_TMP INT_PRS T_SHIFT P_SHIFT FIFO_EN SPI_MODE INT_HL

_ rw rw rw _

Bits	Туре	Description
7	rw	Interrupt (on SDO pin) active level:
		0 - Active low.
		1 - Active high.
6	rw	Generate interrupt when the FIFO is full:
		0 - Disable.
		1 - Enable.
5	rw	Generate interrupt when a temperature measurement is ready:
		0 - Disable.
		1 - Enable.
4	rw	Generate interrupt when a pressure measurement is ready:
		0 - Disable.
		1 - Enable.
3	rw	Temperature result bit-shift
		0 - no shift.
		1 - shift result right in data register.
		Note: Must be set to '1' when the oversampling rate is >8 times.
2	rw	Pressure result bit-shift
		0 - no shift.
		1 - shift result right in data register.
		Note: Must be set to '1' when the oversampling rate is >8 times.
1	rw	Enable the FIFO:
		0 - Disable.
		1 - Enable.
0	rw	Set SPI mode:
		0 - 4-wire interface.
		1 - 3-wire interface.
	7 6 5 4 3	7 rw 6 rw 5 rw 2 rw 1 rw

7.7 FIFO Status (FIFO_STS)

FIFO status register

FIFO_STS FIFO status	register			Addres Reset valu	0ВН 00Н		
7	6	5	4	3	2	1	0
			-			FIFO_FULL	FIFL_EMPTY

- r r

Field	Bits	Туре	Description
-	7:2	-	Reserved.
FIFO_FULL	1	r	0 - The FIFO is not full
			1 - The FIFO is full
FIFO_EMPTY	0	r	0 - The FIFO is not empty
			1 - The FIFO is empty

7.8 Soft Reset and FIFO flush (RESET)

Flush FIFO or generate soft reset.

RESET FIFO flush and s	oft reset		R	Address: eset value:	0СН 00Н		
7	6	5	4	3	2	1	0
FIFO_FLUSH		-			SO	FT_RST	
\						W	

Field	Bits	Туре	Description
FIFO_FLUSH	7	w	FIFO flush
			1 - Empty FIFO
			After reading out all data from the FIFO, write '1' to clear all old data.
-	6:4	-	Reserved.
SOFT_RST	3:0	W	Write '1001' to generate a soft reset. A soft reset will run through the same sequences as in power-on reset.

7.9 Product and Revision ID (ID)

Product and Revision ID

ID				Address:			0DH
Product and revision ID			F	Reset value:			0x10H
7	6	5	4	3	2	1	0
	REV	LID			PF	ROD_ID	

Field	Bits	Туре	Description

rieiu	DIIS	Type	Description
REV_ID	7:4	r	Revision ID
PROD_ID	3:0	r	Product ID

7.10 Calibration Coefficients (COEF)

The Calibration Coefficients register contains the 2's complement coefficients that are used to calculate the compensated pressure and temperature values.

Table 16 Calibration Coefficients

Coefficient	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
c0	0x10	c0 [11:4]							
c0/c1	0x11	c0 [3:0]				c1 [11:8]			
c1	0x12	c1[7:0]							
c00	0x13	c00 [19:1	2]						
c00	0x14	c00 [11:4]							
c00/c10	0x15	c00 [3:0]				c10 [19:1	6]		
c10	0x16	c10 [15:8]							
c10	0x17	c10 [7:0]							
c01	0x18	c01 [15:8]							
c01	0x19	c01 [7:0]							
c11	0x1A	c11 [15:8]							
c11	0x1B	c11 [7:0]							
c20	0x1C	c20 [15:8]							
c20	0x1D	c20 [7:0]							
c21	0x1E	c21 [15:8]							
c21	0x1F	c21 [7:0]							
c30	0x20	c30 [15:8]							
c30	0x21	c30 [7:0]							

Note: Generate the decimal numbers out of the calibration coefficients registers data:

```
C20 := reg0x1D + reg0x1C * 2^8

if (C20 > (2^15 - 1))

C20 := C20 - 2^16

end if

C0 := (reg0x10 * 2^4) + ((reg0x11 / 2^4) & 0x0F)

if (C0 > (2^11 - 1))

C0 := C0 - 2^12

end if
```


7.11 Coefficient Source

States which internal temperature sensor the calibration coefficients are based on: the ASIC temperature sensor or the MEMS element temperature sensor. The coefficients are only valid for one sensor and it is highly recommended to use the same temperature sensor in the application. This is set-up in the Temperature Configuration register

Т	MP_COEF_SRCE		Address:					28H
Temperature Coefficients Source			Reset value:					XXH
	7	6	5	4	3	2	1	0
	TMP_COEF_SRCE				-			

r -

Field	Bits	Туре	Description
TMP_COEF_SRCE	7	r	Temperature coefficients are based on:
			0 - Internal temperature sensor (TBD)
			1 - External temperature sensor (of pressure sensor MEMS
			element)
-	6:0	-	Reserved

8. Recommended PAD Layout

Unit: mm

9. Package dimensions

TOP VIEW

SIDE VIEW

BOTTOM VIEW

Notes:

- (1) Mechanical Dimension (unit: mm)
- (2) General tolerance (0.10mm)

HOPE MICROELECTRONICS CO., LTD

Add: 2/F, Building 3, Pingshan Private Enterprise Science and Technology Park, Lishan Road, XiLi Town, Nanshan District, Shenzhen, Guangdong, China

Tel: +86 755 82973805
Fax: +86 755 82973550
Email: sales@hoperf.com
Website: http://www.hoperf.com

http://www.hoperf.cn

This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2018, HOPE MICROELECTRONICS CO., LTD. All rights reserved.

Rev:HP303B datasheet V1.1