

High power fiber lasers and amplifiers

Jens Limpert

Friedrich-Schiller University Jena, Institute of Applied Physics, Jena, Germany and Fraunhofer Institut of Applied Optics and Precission Engeniering, Jena, Germany

Outline of the talk

High power fiber lasers and amplifiers

- Properties of Fiber Lasers
- Advanced Fiber Designs
- Selected Experiments of High Power Fiber Lasers
- Conclusion and Outlook

Double-clad fiber laser

Properties of Rare-Earth-Doped Fibers

- no or reduced free space propagation
- · immune against thermo-optical problems
- excellent beam quality
- high gain
- efficient, diode-pumped operation

Power evolution of single-mode fiber lasers

V. Fornin et al, "3 kW Yb fibre lasers with a single-mode output," International Symposium on High Power Fiber Lasers and their applications (2006)

Performance-limiting effects

End-facet damage

Non-linear effects

Thermal effects

Available pump power

MM Input Fibers (6 shown)

for connection to Broad Area Emitters

Source: www.specialtyphotonics.com

Institute of Applied Physics

Performance-limiting effects

End-facet damage

Non-linear effects

Thermal effects

Available pump power

MM Input Fibers (6 shown)

for connection to Broad Area Emitters

Source: www.specialtyphotonics.com

Index control of doped fiber cores

NA ~ 0.02

significantly larger single-mode core possible

NA~ 0.06

The air-cladding region

high numerical aperture inner cladding no radiation has contact to coating material

"rod-type" photonic crystal fiber

"rod-type" fiber: 30 dB/m Pumplichtabsorption, 71 µm Modenfelddurchmesser, M² ~ 1.2

Limpert et. al., "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005)

Rod-type photonic crystal fiber laser

→ 320 W continuous-wave, >10 mJ ns-pulses extracted

Rare-earth doped photonic crystal fibers

Design freedom to tailor optical, mechanical and thermo-optical properties

Advantages of PCF

higher index control
 larger SM cores
 shorter fibers possible (0.5 m)
 comparable heat dissipation
 intrinsically polarizing without drawbacks

Fiber laser systems

Institute of Applied Physics

High power continuous-wave fiber laser

Scaling approach: Incoherent Combining

Polarizing PCF, 1.5 m, 40 µm core

Combining-efficiency 95 % Degree of Polarization 98%

S. Klingebiel, F. Röser, B. Ortac, J. Limpert, A. Türmermann, "Spectral beam combining of Yb-doped fiber lasers with high efficiency," JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 24 (8): 1716-1720 (2007)

Combining of pulsed fiber lasers

Q-switching of fiber lasers

Microscope image of the rod-type photonic crystal fiber and close-up to the inner cladding and core region.

Fiber parameter:

outer diameter: up to 2 mm

60 μm Yb-doped core, A_{eff} ~ 2000 μm²,
180 μm (NA ~ 0.6) inner cladding
30 dB/m pump absorption @ 976 nm,
(0.5 m absorption length)

Q-switching of fiber lasers

output characteristics @ 100 kHz

output characteristics vs. rep. rate

O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, A. Tünnermann, "Millijoule pulse energy Q-switched short-length fiber laser," Optics letters Vol.32, No.11, 1551-1553, 2007

Quasi-monolithic, passively Q-switched microchip laser

- -Unmatched simplicity
- -No moving parts in the resonator
- -Simple gluing technique
- -Spin on glass glue
- *high dielectric strength
- *high transparency
- AR@808nm, T=10% @ 1064nm
- b) Spin on glass glue,
- e) SESAM, ΔR=20%, TR= 320ps,
- •1µJ, 50 ps, 40kHz •0.5µJ, 110ps, 170kHz

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, "High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime," Opt. Lett. 32, 2115-2117 (2007)

100µm, 0,22NA

Current production costs:~300€

Fiber based amplification of ps-µchip lasers

Ultra-short pulse generation

•active medium (AM)
-e.g. Yb-doped fiber

·saturable absorber (SA)

- -favours pulse against noise background
- -initiates mode-locking

·dispersion compensation (DC)

- keeps the pulse short during roundtrip

High-energy femtosecond fiber laser

Modulation depth 30% Fast relaxation time 200 fs Slow relaxation time 500 fs

Total cavity dispersion: + 0.012 ps² Repetition rate: 10.18 MHz

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Optics Express, vol. 15, pp. 10725-10732, 2007.

High-energy femtosecond fiber laser - Results

Extra-cavity compression

Output pulse duration = 4 ps

Compressed pulse duration = 400 fs

Single pulse characterization:

Average output power: 2.7 W

Energy per pulse: 265 nJ

Compression efficiency: 75 %

Energy per pulse: 200 nJ

Peak power: 500 kW

Institute of Applied Physics

High-energy femtosecond fiber laser - Results

Optical Spectrum

Extra-cavity compression

Spectral bandwidth = 8.4 nm

Compressed pulse duration = 400 fs

Single pulse characterization:

Average output power: 2.7 W

Energy per pulse: 265 nJ

Compression efficiency: 75 %

Energy per pulse: 200 nJ

Peak power: 500 kW

Institute of Applied Physics

Ultra-short pulse fiber amplification systems

^{*} Röser et. al., "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495 (2007)

* Röser et. al., "90 W average power 100 µJ energy femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 2230 (2007)

Influence of self-phase modulation (SPM)

Nonlinear phase:

Accumulated nonlinear phase (B-integral):

$$\phi_{NL}^{SPM}(z,T) = \gamma |A(z,T)|^2 z$$

$$B = \frac{2 \cdot \pi}{\lambda} \int_{0}^{L} n_{2} \cdot I(z) dz$$

Simulated autocorrelation traces

Reduction of pulse quality

D. Strickland and G. Mourou, "Compression of amplified optical pulses," Opt. Comm. 56, 3, 219 (1985).

grating stretcher

am plifier

Rod-type photonic crystal fiber

High pump light absorption (30dB/m) -> short fiber length + large mode area (>100x of standard fiber) -> ultralow Nonlinearity

Limpert et. al., "High-power rod-type photonic crystal fiber laser," Opt. Express 13, 1055-1058 (2005)

200/80 Rod-type PCF, 1.2m length

Near field image

MFD = 71 μ m -> MFA ~ 4000 μ m²

Beam quality-measurement

 $M_{x}^{2} = 1.17$, $M_{y}^{2} = 1.26$ (SpiriconTM, 4 σ method)

- multilayer dielectric reflection gratings average power scalable
- 70% compressor throughput efficiency

Output characteristics

100 W compressed @ 200 kHz -> 0.5 mJ pulse energy

50 W compressed @ 50 kHz

→ 1 mJ pulse energy

Wavelength [nm]

1030

Wavelength [nm]

ASE supression better than 30 dB Extended measurement shows no sign of Stimulated Raman Scattering (1st stokes expected at 1080nm)

1040

1050

Autocorrelation

Average power scalability of main amplifier

Laser trepanning with high average power on copper

Copper (Cu 99.9%)
Thickness: 0.5 mm

Rep.rate.: 975 kHz

Pulse Energy : 70 µJ

Focal length: 80mm

Fluence: ~ 2.32 J/cm²

Number of rounds: 50

trepanning radius	75 μm	
rotating speed	106 rounds/s	
breakthrough time	75 ms	

