chapter 7

Descriptive Statistics Frequency & Contingency Tables

Instructor: Huang, Jia-Ping

Contents

- Descriptive statistics
- Tables

Descriptive statistics

□ The summary() function

Descriptive statistics

- The summary() does not provide enough information to understand a sample of data.
- Use a combination of sapply() and functions like mean(), sd(), var(), min(), max(), median(), length(), range(), quantile(), etc., to produce the statistics you need.

sapply()

- sapply(x, FUN, options)
- apply() applies a function over the margins of an array
- sapply() applies a function over a list or vector.

Listing 7.2 Descriptive statistics via sapply()

```
> mystats <- function(x, na.omit=FALSE){</pre>
               if (na.omit)
                  x < -x[!is.na(x)]
               m < - mean(x)
               n < - length(x)
               s < - sd(x)
               skew <- sum((x-m)^3/s^3)/n
               kurt < -sum((x-m)^4/s^4)/n - 3
               return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt))
> myvars <- c("mpq", "hp", "wt")</pre>
> sapply(mtcars[myvars], mystats)
                 hp
           mpg
                            wt
  32.000 32.000 32.0000
n
mean 20.091 146.688 3.2172
stdev 6.027 68.563 0.9785
skew 0.611 0.726 0.4231
kurtosis -0.373 -0.136 -0.0227
```

Other useful functions

describe() in the Hmics package

stat.desc() in the pastecs package

describe() in the psych package

The aggregate() function

- We can divide our data set into groups and produce descriptive statistics for each group.
- This can be done by using the aggregate() function.

```
> myvars <- c("mpg", "hp", "wt")
> aggregate(mtcars[myvars], by=list(am=mtcars$am), mean)
    am mpg hp wt
1 0 17.1 160 3.77
2 1 24.4 127 2.41
> aggregate(mtcars[myvars], by=list(am=mtcars$am), sd)
    am mpg hp wt
1 0 3.83 53.9 0.777
2 1 6.17 84.1 0.617
```

The by () function

aggregate() only allows you to use singlevalue functions such as mean().

With by(), you can return several statistics at once.

```
by (data, INDICES, FUN)
```

- > dstats <- function(x)sapply(x, mystats)</pre>
- > myvars <- c("mpg", "hp", "wt")</pre>
- > by(mtcars[myvars], mtcars\$am, dstats)

mtcars\$am: 0

	mpg	hp	wt	
n	19.000	19.0000	19.000	
mean	17.147	160.2632	3.769	
stdev	3.834	53.9082	0.777	
skew	0.014	-0.0142	0.976	
kurtosis	-0.803	-1.2097	0.142	

mtcars\$am: 1

	mpg	hp	wt
n	13.0000	13.000	13.000
mean	24.3923	126.846	2.411
stdev	6.1665	84.062	0.617
skew	0.0526	1.360	0.210
kurtosis	-1.4554	0.563	-1.174

Tables

R provides several methods for creating frequency and contingency tables.

Table 7.1 Functions for creating and manipulating contingency tables

Function	Description
table(var1, var2,, varN)	Creates an N-way contingency table from N categorical variables (factors)
xtabs(formula, data)	Creates an N-way contingency table based on a formula and a matrix or data frame
<pre>prop.table(table, margins)</pre>	Expresses table entries as fractions of the marginal table defined by the margins
margin.table(table, margins)	Computes the sum of table entries for a marginal table defined by the margins
addmargins(table, margins)	Puts summary margins (sums by default) on a table
ftable(table)	Creates a compact, "flat" contingency table

One-way tables

table()

```
> library(vcd)
> mytable <- with(Arthritis, table(Improved))
> mytable
Improved
None Some Marked
42 14 28
```

prop.table()

```
> prop.table(mytable)
Improved
  None Some Marked
  0.500 0.167 0.333
```

Two-way tables

```
mytable <- table(A, B)
mytable <- xtabs(\sim A + B, data=mydata)
> mytable <- xtabs(~ Treatment+Improved, data=Arthritis)</p>
> mytable
          Improved
Treatment None Some Marked
  Placebo 29 7 7
  Treated 13 7 21
```

Take row/column sums

```
> margin.table(mytable, 1)
Treatment
Placebo Treated
3 41
```

The index 1 refers to the first variable in the table() statement.

```
> prop.table(mytable, 1)
Improved
Treatment None Some Marked
Placebo 0.674 0.163 0.163
Treated 0.317 0.171 0.512
```

Treated 0.310 0.500 0.750

> prop.table(mytable) Proportions of the overall sum
Improved
Treatment None Some Marked
Placebo 0.3452 0.0833 0.0833
Treated 0.1548 0.0833 0.2500

Add marginal sums

> addmargins(mytable)

Improved

Treatment	None	Some	Marked	Sum
Placebo	29	7	7	43
Treated	13	7	21	41
Sum	42	14	28	84

> addmargins(prop.table(mytable))

Improved

Treatment	None	Some	Marked	Sum
Placebo	0.3452	0.0833	0.0833	0.5119
Treated	0.1548	0.0833	0.2500	0.4881
Sum	0.5000	0.1667	0.3333	1.0000

Summary

- Descriptive statistics is the first step of statistical analysis.
- Creating frequency/contingency tables is a useful way of data visualization.
- Important functions: summary(), sapply(), aggregate(), by(), table(), prop.table()