Bézout's identity:

Let a and b be integers with greatest common divisor d. Then there exist integers x and y such that ax + by = d. Moreover, the integers of the form az + bt are exactly the multiples of d. Computed by Extended Euclidean algorithm

- 1. Identify secret message x.
- 2. Use \underline{CRT} to distribute shares (r_i, p_i) . Note that the shares are non-threshold shares.
- 3. Publish hash(Πp_i) for the verifying purpose.
- 4. Find a reliable person (P).
- 5. P publishes his ElGamal model (G, g, K_p) .
 - a. G is a multiplicative group (mod x).
 - b. g is a generator.
 - c. K_p is $g^p mod x$ can't calculate p from K_p .
- 6. For each shareholder:
 - a. Find a random number as their own key, K_{ei}
 - b. Publish $p_i * K_p^{K_{ei}}$ and $g^{K_{ei}} \mod x$
- 7. P gathers data, compute $\Pi p_i^* * K_p^{K_{ei}}$ and Πg^{K_e}
- 8. DA how has $p_1 * p_2 * ... * p_n * K_p^{K_{e1} + K_{e2} + ... + K_{en}}$ and $g^{K_{e1} + K_{e2} + ... + K_{en}}$
- 9. Simplify: $p_1 * p_2 * ... * p_n * g^{p(K_{e_1} + K_{e_2} + ... + K_{e_n})}$
- 10. Calculate $(g^{K_{e1}+K_{e2}+...+K_{en}})^p = g^{p(K_{e1}+K_{e2}+...+K_{en})}$
- 11. DA finds $(g^{p(K_{e1}+K_{e2}+...+K_{en})})^{-1}$ and multiplies that with $p_1 * p_2 *... * p_n * K_p^{K_{e1}+K_{e2}+...+K_{en}}$ to get the product of the prime numbers. Verify it with the hash code.

Trusted P: Publish g^p .

Shareholder: Calculate $g^{K_{ei}}$ and $p * (g^p)^{K_{ei}} = p_1 * g^{p*K_{ei}}$

Trusted P: multiply from each shareholder and get $g^{K_{e1}+K_{e2}+...+K_{en}}$ and

$$p_1 * p_2 * ... * p_n * g^{p(K_{e1} + K_{e2} + K_{e3} + ... + K_{en})}$$

Now we only need to find the inverse of $g^{p(K_{e1}+K_{e2}+K_{e3}+...+K_{en})}$

We can find $g^{p(K_{e1}+K_{e2}+K_{e3}+\ldots+K_{en})}$ by calculating $g^{K_{e1}+K_{e2}+\ldots+K_{en}}$.

And then find the inverse and get $p_1 * p_2 * ... * p_n$.

Put the product into hash function and compare the hash result.