

1.7 波士顿房价预测案例详解 ——数据探索

CSDN学院 2017年10月

▶机器学习任务的一般步骤

- 确定特征
 - 可能是<mark>最重要的</mark>步骤! (收集训练数据)
- 确定模型
 - 目标函数
- 模型训练:根据训练数据估计模型参数
 - 优化计算
- 模型评估:在校验集上评估模型预测性能

▶波士顿房价预测

• 训练数据: $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$

训练样本数目N:506个样本

- 输入房屋属性x:13个特征(CRIM、...、LSTAT)

- 输出房价y: MEDV (y为连续值,所以这是一个回归问题)

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17	396.9	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18	396.9	5.33	36.2

▶第一步:理解任务,准备数据

- 任务描述
- 数据读取
- 数据探索
- 数据工程

▶特征描述

- 輸入地区的属性:13个特征 x
 - CRIM:城镇人均犯罪率
 - ZN:住宅用地超过 25000 sq.ft. 的比例
 - INDUS:城镇非零售商用土地的比例
 - CHAS:是否在查理斯河边(如果边界是河流,则为1;否则为0)
 - NOX: 一氧化氮浓度
 - RM:住宅平均房间数
 - AGE: 1940 年之前建成的自用房屋比例
 - DIS:到波士顿五个中心区域的加权距离
 - RAD:辐射性公路的接近指数
 - TAX:每10000美元的全值财产税率
 - PTRATIO:城镇师生比例
 - B: 1000 (Bk-0.63)², 其中 Bk 指代城镇中黑人的比例
 - LSTAT:人口中地位低下者的比例
- 输出:地区房价均值 *y*
 - MEDV:自住房的平均房价(单位:千美元)

▶数据读取

• Panda支持多种格式的数据

Format Type	Data Description	Reader	Writer
text	<u>CSV</u>	<u>read_csv</u>	to_csv
text	<u>JSON</u>	<u>read_json</u>	<u>to_json</u>
text	<u>HTML</u>	<u>read_html</u>	to_html
text	Local clipboard	read_clipboard	to_clipboard
binary	MS Excel	read_excel	to_excel
binary	HDF5 Format	<u>read_hdf</u>	to_hdf
binary	Feather Format	read_feather	to_feather
binary	<u>Msgpack</u>	read_msgpack	to_msgpack
binary	<u>Stata</u>	<u>read_stata</u>	to_stata
binary	SAS	<u>read_sas</u>	
binary	Python Pickle	read pickle	to pickle
Ullial y	<u>Format</u>	icau_pickie	to_pickie
SQL	<u>SQL</u>	<u>read_sql</u>	to_sql
SQL	Google Big Query	<u>read_gbq</u>	<u>to_gbq</u>

dpath = './data/'
data = pd.read_csv(dpath +"boston_housing.csv")

▶数据探索&特征工程

- 数据规模
- 确定数据类型,是否需要进一步编码
 - 特征编码(以后讲解)
- 数据是否有缺失值
 - 数据填补
- 查看数据分布,是否有异常数据点
 - 离群点处理
- 查看两两特征之间的关系,看数据是否有冗余/相关
 - 降维

▶数据概览

- pandas : DataFrame
 - Head(): 数据前5行,可查看每一列的名字及数据类型
 - Info() :
 - 数据规模:行数&列数
 - 每列的数据类型、是否有空值
 - 占用存储量
 - shape: 行数&列数
 - 例:输入命令 data.shape,输出(506, 14)

data = pd.read_csv(dpath +"boston_housing.csv") data.head()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18	2.31	0	0.538	6.575	65.2	4.0900	1	296	15	396.90	4.98	24.0
1	0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17	396.90	9.14	21.6
2	0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17	392.83	4.03	34.7
3	0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18	394.63	2.94	33.4
4	0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18	396.90	5.33	36.2

▶各属性的统计特性

data.describe()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.593761	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534
std	8.596783	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000
75%	3.647423	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000

▶直方图

- 直方图:每个取值在数据集中出现的样本数目,可视为概率函数(PDF)的估计(seaborn可视化工具比较简单)
 - import seaborn as sns
 - %matplotlib inline (seaborn 是基于matplotlib)
- 连续型特征
 - sns.distplot(data.MEDV.values, bins=30, kde=False)
- 离散型特征
 - sns.countplot(X_train.RAD)

▶离群点

- 离群点:或称奇异点(outlier),指远离大多数样本的样本点。通常认为这些点是噪声,对模型有坏影响
- 可以通过直方图或散点图发现奇异点
 - 直方图的尾巴
 - 散点图上孤立的点
- 可以通过只保留某些分位数内的点去掉奇异点
 - 如0.5%-99.5%,或>99%
 - ulimit = np.percentile(train.price.values, 99)
 - train['price'].ix[train['price']>ulimit] = ulimit

▶相关性

- 相关性可以通过计算相关系数或打印散点图来发现
- 相关系数:两个向量(所有样本在该特征的取值构成一个 向量) x,y之间的线性相关程度

$$- r = \frac{\sum_{i=0}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{N} (x_i - \bar{x})^2 \sum_{i=0}^{N} (y_i - \bar{y})^2}}$$

- $-1 \le r \le 1$
- 通常|r| > 0.5,认为两者相关性比较强

►相关性(cont.)

- 我们希望特征与标签强相关
- 特征与特征之间强相关的话意味着信息冗余
 - 可以两个特征可以只保留一个特征
 - 或采用主成分分析 (PCA)等降维
 - 后续课程讲解

▶ Boston数据集各属性的相关系数

RAD and TAX = 0.91NOX and DIS = 0.77INDUS and NOX = 0.76AGE and DIS = 0.75LSTAT and MEDV = 0.74NOX and AGE = 0.73INDUS and TAX = 0.72INDUS and DIS = 0.71RM and MEDV = 0.70

0.2

▶散点图

• 可以通过两个变量之间的散点图直观感受二者的相关性

▶数据探索小结

- 任务类型
- 特征含义
- 单变量特征分布
 - 直方图/散点图
 - 离群点检测
 - 缺失值处理
- 多变量之间的关系探索
 - 相关系数
 - 散点图

