

National Chiao Tung University Institute of Electronic Engineering

CAD HW4 Modeling Mixed-Signal System and Simulating with AMS

Teaching Assistant: Tung Lin

Date: 12/13, 2022

Lab: ED-413

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 2-bit ADC with Verilog-AMS

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 2-bit ADC with Verilog-AMS

What is AMS Designer

- Top-down system-on-chip simulation for complex mixed-signal designs
- A single executable simulator incorporating the fastest in digital and most flexible analog simulation capability
 - Digital: NC-Sim
 - Analog: Spectre
- Simulation of complex designs incorporating any and all of the following:
 - Verilog, VHDL
 - Verilog-A, Verilog-AMS, VHDL-AMS
 - Spectre
 - SPICE
 - Composer schematics

What is AMS Designer(cont.)

Mxed-Signal Electronic Design Automation Lab.

Mixed-Signal Simulation with Model

- The mixed-signal behavioral model simulation can verify:
 - System behavior is correct or not?
 - System requirement is met or not?
 - System performance is satisfied or not?
- Weaknesses:
 - Only time domain information can be obtained directly
 - All behavioral model should be converted into time domain
 - Other characteristics might be calculated from time domain data

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 2-bit ADC with Verilog-AMS

Environment Setting

- NC-Verilog / Verilog-XL
 - e.g > source /usr/cad/cadence/CIC/incisiv.cshrc
- Spectre
 - e.g > source /usr/cad/cadence/CIC/mmsim.cshrc
- Composer / Virtuoso
 - e.g > source /usr/cad/cadence/CIC/ic_06.17.709.cshrc

Simulation Flow

Step 1. > virtuoso &

Step 2. Open library manager

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Open library manager

Simulation Flow

Create Verilog-A Cells

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Create a new cell view

- 1. Choose your library
- Input the name on the Cell Name column
- Choose the **VerilogA** type for Analog model
- 4. OK

Mxed-Signal Electronic Design Automation Lab.

Designing with Verilog-A

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Mxed-Signal Electronic Design Automation Lab.

Create Top Cell - Schematic

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Input the name on the Cell Name column and choose the Schematic

Create Top Cell - Schematic

- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Add Instance: Create→instance (i)

Add connection: Create → wire (w) Add input/output: Create → pin (p)

gnd in the "basic" library

Simulation Environment

 Open Analog Design Environment (ADE) in schematic editing window

Through Setup -> Simulator/Directory/Host

Give input information (1/2)

Give input information (2/2)

Choose Analysis Type

Mixed-Signal Electronic Design Automation Lab.

Save Output Nodes

Submit the Simulation

- Execute the simulation job with Run
- Tools → Results Brower

Mxed-Signal Electronic Design Automation Lab.

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 2-bit ADC with Verilog-AMS

Create Verilog Cells

Design Hierarchy – AMS

 Before creating the top schematic cell (add instance and connection), creating a config view for AMS simulation

Create Config View for Simulation

- The mixed-signal simulation hierarchy is controlled by **Hierarchy-Editor**
 - It must have to be defined in the **config** cell view.

Set New Configuration

Configuration Setting

Open Simulation Tool

- Finish create config
 - Click config at library manager to open simulation tool

• The simulation steps are the same as analog Confirm the title has "config"

Except give input information

Mxed-Signal Electronic Design Automation Lab.

Digital Stimulus

- Create a behavioral or functional view for the stimulus block
 - The stimulus (Verilog) could be created to symbol view as the same procedure with digital cell

```
//Verilog HDL for "PLL", "stimulus_D" "functional"

timescale 1ns/10ps
module stimulus_D (rst);
output rst;
reg rst;
initial begin
   rst=1'b0;
   #1 rst=1'b1;
end
endmodule
```

Analog Stimulus

The analog stimulus can be added as circuit instance

Add Instance

Choose analogLib & vpulse cell

Set voltage & frequency

- 1. Setup
 - ✓ Simulator choose AMS
- 2. Analysis
 - ✓ Tran analysis
 - ✓ Set simulation time and enable
- 3. Outputs
 - ✓ Save all or select on design
- 4. Run
- 5. Waveform viewer

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 2-bit ADC with Verilog-AMS

PLL Analog Model

- All Verilog-A models are given
 - PFD, CP, LF, VCO, sin2plus, divider
- Import the Verilog-A models and setup ADE

Additional Description

- Connection
 - Connect up (sigout_A) signal of PFD to siginc signal of CP
 - Connect <u>dn</u> (<u>sigout_B</u>) signal of <u>PFD</u> to <u>sigdec</u> signal of <u>CP</u>
 - Connect in signal of divider to sin2pulse
 - Charge pump(CP)
 - Connect vsrc to GND
- VDD = 1.8V GND = 0V
- Simulator: **spectre**
- Input
 - Fin=50M Hz : Set the ADE Stimuli
- Simulation time $\geq 6 \mu s$
 - Related to the lock time of PLL

Results

Show the waveform of vctrl signal and schematic view

Top schematic cell Observe the waveform of Vctrl **Open Results Brower**

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 2-bit ADC with Verilog-AMS

PLL Mixed-Signal Model

- All models are given
 - Analog model (Verilog-A): PFD, CP, LF, VCO, sin2plus
 - Digital model (Verilog): divider
- Import all models and create a testbench
 - Testbench: generate rst signal for divider

Mxed-Signal Electronic Design Automation Lab.

Additional Description

- Connection
 - Connect up (sigout_A) signal of PFD to signal of CP
 - Connect <u>dn</u> (<u>sigout_B</u>) signal of <u>PFD</u> to <u>sigdec</u> signal of <u>CP</u>
 - Connect in signal of divider to sin2pulse
 - Charge pump(CP)
 - Connect vsrc to GND
- VDD = 1.8V GND = 0V
- Simulator: AMS
- Input
 - Fin=50M Hz, Adding voltage source instance
- Simulation time $\geq 6 \mu s$
 - Related to the lock time of PLL

Results

• Show the waveform of vctrl, output of the divider and schematic view

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Analog Model Simulation with AMS
 - Lab2: Mixed-Signal Model Simulation with AMS
 - Lab3: 2-bit ADC with Verilog-AMS

Description

Type: AMS


```
connectmodule a2d(i,o);
   parameter vdd = 1.0;
   ddiscrete
                 0;
   input
   output
                 0;

    Support output reg

                 0:
   req
   electrical i;
                    @(\mathbf{cross}(V(i) - vdd/2, +1)) \circ = 1; end
   always begin
   always begin
                    @(\mathbf{cross}(V(i) - vdd/2, -1))o = 0; end
endmodule
```

Parameters of ADC Model

- Input: sin wave
- Amplitude: 4V, Frequency: 25M
- Output : 2 bit output
- R=1k, Vref=4V
- Analysis Type: tran, 100n
- Simulator: AMS

B1,B0 (bit)	Input (V)
00	0
01	1V
10	2V
11	3V

Results

- Hand in:
 - The waveform of outputs of comparators, Encoder and Input
 - Schematic cellview

Hand in

- Please upload a compressed file includes:
 - **Programming files** (Verilog and Verilog-A files)
 - Lab2: Stimuli (testbench.v)
 - Lab3: Encoder file(.vams or .v), comparator file(.vams or .va)
 - Mini report
 - Three simulation waveforms
 - Lab1: Analog simulation (Vctrl)
 - Lab2: Mixed-signal simulation (Vctrl & output of the divider)
 - Lab3: ADC(outputs of comparators, Encoder and Input)
 - Three schematic cellviews
 - What you have learned from this homework
 - Questions and solutions
- Deadline: 23:55, January 8, 2023