

Revisão de Sistemas de Banco de Dados

Roteiro

- Conceitos e características de banco de dados
- Ciclo de vida de um sistema de banco de dados
- Modelo Entidade-Relacionamento
- Modelo Relacional
 - Normalização
 - Álgebra Relacional
 - •SQL

Sistemas de Banco de Dados

Sistemas de Banco de Dados

- Abstração de dados
- Independência de dados
- Esquema e Instância

Arquitetura em Três Camadas de Abstração

Sistema Gerenciador de Banco de Dados

- Conjunto integrado de programas que permite descrever, armazenar, mantnipular, interrogar e tratar o conjunto de dados que compõem o banco de dados.
 - Provê independência física e lógica dos dados
 - Controle de redundância de dados
 - Facilidade de consulta aos dados.
 - Garantia de integridade dos dados
 - Compartilhamento dos dados

Linguagens de Banco de Dados

- Linguagem de Definição de Dados (DDL)
 - Define o esquema do banco de dados

```
CREATE TABLE ALUNO(
cod_alu INT,
nom_alu VARCHAR(35),
end_alu VARCHAR(30)
):
```

- Linguagem de Manipulação de Dados (DML)
 - Manipula (consulta, insere, deleta, atualiza) as instâncias do banco de dados

SELECT nom_alu FROM ALUNO

Ciclo de Vida de um Sistema de Banco de Dados

- Fase 1: Coleta e análise dos requisitos
- Fase 2: Projeto Conceitual usando um modelo de dados conceitual. Ex: MER
 - Escolha da tecnologia de banco de dados (tecnologia relacional, por exemplo) e do SGBD
- Fase 3: Projeto Lógico mapeamento do modelo conceitual (MER) para o modelo do SGBD escolhido (relacional)
- Fase 4: Projeto Físico implementação do banco de dados usando SGBD e vendo estruturas físicas de armazenamento através dos critérios:
 - tempo de resposta
 - espaço utilizado
 - número de transações

Projeto Conceitual

- Desenho do esquema conceitual utilizando um modelo de dados
 - Alto nível de abstração
 - Independente do SGBD
 - MER Modelo Entidade-Relacionamento

Componentes Básicos do MER

- Entidades
 - Fortes e Fracas
- Relacionamentos
 - Grau
 - ·Binários, N-Ários ou Auto-relacionamentos
 - Cardinalidade
 - •1:1
 - •1:N
 - •M:N

Escolha do Paradigma de Banco de dados e de um SGBD

- Fatores técnicos, econômicos e políticos
- •Custos:
 - do SGBD
 - do hardware
 - da manutenção
 - criação ou conversão
 - Pessoal
 - Treinamento
 - Operação
- Popularidade, familiaridade, desempenho, suporte...

Projeto Lógico

- Transformar o Modelo de Dados Conceitual, em um modelo de dados lógico com base em alguma tecnologia de banco de dados.
- No modelo relacional, transformar as entidades (conceitual) em tabelas (lógico) e definir as restrições de integridade dos dados

Modelo Lógico

- Modelo Relacional
 - Relações
 - Esquema da relação
 - Domínios
 - Atributos
 - Chaves
 - Candidata, Primária e Estrangeira
 - Restrições de Integridade

Álgebra Relacional

Mapeamento de Modelos

- Mapear: mudar de representação
- Método: mapear as representações do Modelo ER para representações equivalentes no Modelo Relacional.
- Muitas ferramentas CASE (Computer-Aided Software Engineering) baseadas no modelo entidade-relacionamento (MER) convertem automaticamente o modelo lógico para um esquema de banco de dados relacional e geram a DDL para um SGBD específico.

Mapeamento de Entidades

•Todas as <u>entidades</u> são mapeadas para uma <u>tabela</u> contendo os mesmos atributos do MER.

Ex: EMPREGADO (<u>RG</u>,nome,idade)

Mapeamentos de Entidades Fracas

- Identificador da entidade forte torna-se
 - parte da chave primária na tabela correspondente à entidade fraca (tabelaFraca)
 - chave estrangeira na <u>tabelaFraca</u>
 - Ex: DEPENDENTE (<u>RG_emp,RG_dep,</u> nome_dep)

Mapeamento de Atributos

- Mantenha nomes de atributos curtos e padronizados
- Indexe atributos muito consultados
- Atributos simples se transformam em colunas
- Compostos
 - Viram atributos simples
 - •Ex: CLIENTE(cod_cli, nom_cli, rua_cli,no_cli,cid_cli)
- Multivalorados
 - Viram outra tabela onde a parte da chave primária é a chave estrangeira da tabela "originária"

Mapeamento de Especializações

- Três alternativas são geralmente adotadas
- 1. tabela única para entidade genérica e suas especializações
- 2. tabelas para a entidade genérica e as entidades especializadas
- 3. tabelas apenas para as entidades especializadas

Exemplos

- 1.Conta (<u>no_conta</u>, sal_conta, tx_juros,lim_esp, tipo_conta)
- Conta (<u>no_conta</u>, sal_conta)
 Poupança (<u>no_conta</u>, tx_juros)
 Corrente (<u>no_conta</u>, lim_esp)
- 3. Poupança (<u>no_conta</u>, sal_conta,tx_juros)
 Corrente (<u>no_conta</u>, sal_conta,lim_esp)

Mapeamentos de Relacionamentos

- Recomendações de mapeamento baseiam-se na análise da cardinalidade dos relacionamentos
 - com base nesta análise, algumas alternativas de mapeamento podem ser adotadas
 - 1. entidades relacionadas podem ser fundidas em uma única tabela
 - 2. tabelas podem ser criadas para o relacionamento
 - 3. chaves estrangeiras podem ser criadas em tabelas a fim de representar adequadamente o relacionamento

Relacionamento 1:1

- Escolha uma das relações envolvidas no relacionamento
 - E inclua como chave estrangeira nesta relação a chave primária da outra relação

Relacionamento 1:N

- •À tabela que representa a entidade no lado N, acrescenta-se como chave estrangeira a chave primária da entidade do lado 1
 - •Ex: Pedido(<u>cod ped</u>, data ped, cod cli)

Relacionamento de N:N

- •É criada uma nova tabela contendo como chaves estrangeiras as chaves primárias das entidades participantes, mais os atributos do relacionamento.
 - •Ex: Pedido Contem Produto (cod ped,cod pro,qtde pro)

Auto-Relacionamento

- Valem as mesmas recomendações anteriores
 - Ex: Empregados (<u>RG</u>, Nome, Idade)
 Gerência(<u>RGe, RGg</u>)

Empregados (RG, Nome, Idade, RGg)

Relacionamento Ternário

O mapeamento ocorre de forma semelhante ao descrito para relacionamentos N:N

Normalização

- •É uma ferramenta para ser utilizada no projeto lógico de BD
 - Objetivo 1: remover redundâncias entre atributos não-chave.
 - Objetivo 2: manter integridade dos dados após remoção, inserção, atualização.
- O processo de normalização consiste em decompor um conjunto de tabelas em um outro conjunto de tal forma que o novo conjunto não tenha anomalias tornando o esquema do bd mais simples e regular.

Exemplo de Tabela não Normalizada

- Manutenção do histórico de entrada de estrangeiros no país
- Deseja controlar a entrada de cada estrangeiro
 - •é necessário saber se o estrangeiro já tem ficha na Polícia Federal
 - para todos os controles relativos à entrada, é necessário saber as informações relativas à nacionalidade e respectiva embaixada
 - em caso de expratriamento por morte, a embaixada comunica à PF,
 e o estrangeiro é removido do sistema

Exemplo de Tabela não Normalizada

<u>Data</u>	<u>Passap</u>	Nome	Vôo	Nacionalidade	Nasc	Já-ficha	Embaixada
10/09/12	Pas1	João	RG 121	Argentina	1/1/65	Não	Endereço 1
10/09/12	Pas2	José	AR876	Argentina	22/4/50	Sim	Endereço 1
10/09/12	Pas3	Hans	RG 121	Alemanha	12/09/50	Não	Endereço 2
11/09/12	Pas4	Maria	RG 121	EUA	12/07/70	Não	Endereço 3
11/09/12	Pas5	Kanda	JL 234	Japão	12/08/78	Não	Endereço 4
20/09/12	Pas1	João	VS 987	Argentina	1/1/65	Não	Endereço 1

Redundância e Anomalias

- A tabela do exemplo exibe dados redundantes.
- Estas redundâncias produzem várias anomalias:
 - Anomalia de atualização
 - Anomalia de remoção
 - Anomalia de inserção

Anomalias de Inserção

- •É necessário inserir valores nulos para os atributos cujo valor ainda não foi determinado ou valores inválidos, quando esses atributos pertencem à chave primária, o que conduz a inconsistência
 - •No exemplo, quando se insere uma nova estrangeiro é necessário introduzir valores nulos e valores inválidos para os atributos que ainda não são conhecidos. A "alternativa" consiste em não inserir dados de um novo estrangeiro enquanto a alocação não for efetuada
- •A duplicação de alguns dados poderá dar origem a erros de inserção, o que resulta em inconsistência.

Anomalias de Alteração

- •A existência de redundância conduz ao perigo de após uma atualização, apenas parte dos dados terem sido atualizados.
 - No exemplo, se alterar o endereço da embaixada da Argentina, poderá ocorrer uma anomalia deste tipo se não se atualizaram todas as ocorrências da mesma embaixada

Anomalias de Remoção

- •A remoção de determinados dados podem levar à eliminação de outra informação que não se pretendia apagar.
 - A remoção de uma estrangeiro pode conduzir à perda de informação relativa a uma embaixada

Dependência Funcional

- Considere dois conjuntos de atributos X e Y de uma relação R.
- •X→Y (o atributo X determina funcionalmente o atributo Y) ↔ sempre que duas tuplas quaisquer de R tiverem o mesmo valor para X, elas possuem também o mesmo valor para Y. Ou seja, para qualquer par de tuplas t1 e t2 em R, se

$$t1[X] = t2[X]$$
, então $t1[Y] = t2[Y]$

•Se v(X) ocorrer em duas ou mais linhas em R, v(Y) deve ser o mesmo em todas estas linhas.

Determinante: X Determinado: Y

Dependência Funcional Exemplos

- Empregado(<u>matrícula</u>, nome, CPF, salário, matricula_supervisor)
 - matrícula → nome
 - matrícula →CPF
 - CPF →matrícula
 - •{CPF, matrícula} →{nome, CPF}
 - matrícula →{matricula_supervisor, salário}
- Projeto(<u>número</u>, nome, verba, localização)
 - número → {nome, localização}

- Alocação (matrícula_empr, número_proj, qtd_horas)
 - •{matrícula_empr, número_proj} → qtd_horas

Propriedades de uma DF

- •Dependência funcional total (completa):
 - •Se X determina totalmente Y, então Y não é funcionalmente dependente de nenhum subconjunto dos atributos que compõem X
 - cidade --> ddd (total)
 - cidade, nome --> ddd (parcial)
- Sejam a, b, g atributos (simples ou compostos)
 - Transitividade:
 - •se a \rightarrow b e b \rightarrow g, então a \rightarrow g
 - •cpf → cidade e cidade → DDD, então cpf → DDD

Normalização x DF

- O conhecimento de dependência funcional é útil na detecção de redundâncias.
- Considere uma relação R com três atributos, XYZ.
 - •Se nenhuma dependência funcional existe, então não há redundância.
 - Porém se X →Y, temos várias tuplas em R podendo ter o mesmo valor para X e, conseqüentemente, terão o mesmo valor para Y.
- Sintetizando: o processo de normalização consiste basicamente em remover dependências funcionais.

Formas Normais

- Para eliminar redundâncias e anomalias de um conjunto de relações, precisamos levar este conjunto através de diversas formas normais:
 - •1a Forma Normal (1FN)
 - 2a Forma Normal (2FN)
 - 3a Forma Normal (3FN)
- •Dizemos que uma relação está em uma certa FN, se esta relação obedece ao conjunto de regras estabelecidas por esta FN.
- A normalização é um processo em cadeia:
 - Para uma relação estar na 3FN, ela deve estar na 2FN que por sua vez deve estar na 1FN

1a Forma Normal – 1FN

- •Uma tabela está na 1FN se:
 - Não tem grupos repetidos de atributos
 - Cada um de seus atributos é atômico
 - Um atributo é atômico se não há necessidade de decompor este valor

2a Forma Normal – 2FN

- Uma tabela está na 2FN se está na 1FN, e cada um dos atributos não pertencentes à chave primária for dependente total dessa chave.
- Ou seja, se uma coluna de uma tabela não pertence à chave e pode ter seu valor determinado por parte da chave é dita como "dependente parcialmente da chave".
- Portanto, para levar um conjunto de tabelas à 2FN, o objetivo é remover dependências parciais.

2a Forma Normal – 2FN

•Carro = (placa, licença_dono, nome_dono, modelo, qtd_km_rodados, qtd_km_rodados_por_dono)

- •Relação1 = (licença_dono, nome_dono)
- Relação2 = (placa_carro, modelo, qtd_km_rodados)
- Relação3=(placa_carro, licença_dono, qtd_km_rodados_por_dono)

3a Forma Normal – 3FN

- Uma tabela está na 3FN se está na 2FN, e cada um dos atributos não pertencentes à chave primária NÃO possui dependência funcional transitiva com essa chave.
- Carro (<u>placa</u>, modelo, quantidade_km_rodados, código_fabricante, nome_fabricante)
 - Carro (placa, modelo, quantidade_km_rodados, código_fabricante
)
 - Fabricante (código, nome)

Voltando ao Exemplo Inicial

- •Quanto objetos a tabela ESTRANGEIROS descreve ao mesmo tempo?
 - países (nacionalidade)
 - estrangeiros (passaporte)
 - entradas no país (data, passaporte)
- Quantos relacionamentos a tabela ESTRANGEIROS descreve ao mesmo tempo?
 - estrangeiros e entrada no país
 - estrangeiros e sua nacionalidade

Dependências Funcionais

- Estrangeiros
 - passaporte → nome, nacionalidade, nasc, já-ficha
- Nacionalidade
 - nacionalidade → embaixada, ex -visto
- Entrada
 - data, passaporte → voo

Depois da Normalização

ESTRANGEIROS

ENTRADAS

<u>Data</u>	<u>Passap</u>	Voo
10/09	Pas1	RG121
10/09	Pas2	AR876
10/09	Pas3	RG121
11/09	Pas4	RG121
11/09	Pas5	JL234
20/09	Pas1	VS987

Passap	Nome	Nacionalidade	Nasc	Já-ficha
Pas1	João	Argentina	1/1/65	Não
Pas2	José	Argentina	22/4/50	Sim
Pas3	Hans	Argentina	12/09/50	Não
Pas4	Maria	EUA	12/07/70	Não
Pas5	Kanda	Japão	12/08/78	Não

NACIONALIDADE

<u>Nacionalidade</u>	Embaixada
Argentina	Endereço 1
Alemanha	Endereço 2
EUA	Endereço 3
Japão	Enddereço 4

Projeto Físico

- •Especificação em SQL do esquema relacional para o SGBD escolhido.
- Critérios a atender :
 - Tempo de resposta
 - Espaço de armazenamento
 - Volume de transações suportado
- Estruturas de armazenamento e de recuperação de informações
- Mecanismos de acesso devem ser escolhidos, visando sempre o aprimoramento da performance dos aplicativos de BD.

Projeto Físico

- Devem ser especificados não apenas as tabelas criadas, mas também
 - os índices necessários,
 - as restrições de integridade,
 - •algumas operações de inclusão, exclusão e atualização de dados para cada tabela,
 - •bem como as consultas que a aplicação deve realizar.

Implementação do Sistema de Banco de Dados

- Com instruções da DDL e da DML (SQL)
 - •Faz-se a carga do Banco de Dados

Dúvidas??? Perguntas??? Questionamentos???

