

ARJUNA NEET BATCH

Atomic Structure

DPP-06

1. If the shortest wavelength in Lyman series of hydrogen atom is A, then the longest wavelength in Paschen series of He⁺ is

(A)
$$\frac{5A}{9}$$
 lowest energy $\rightarrow n_1 = 3 \rightarrow n_2 = 4$ (B) $\frac{9A}{5}$

(C)
$$\frac{36A}{5}$$

 $\frac{36A}{7}$

for Lyman socies

$$\sqrt{100} = \frac{1}{\lambda} = 109,677 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) Z^2 cm^{-1}$$

$$\frac{1}{\lambda} = \frac{109677}{\left(\frac{1}{1} - \frac{1}{\infty}\right) \left(1\right)^2}$$

$$\perp = 109677$$

$$\frac{1}{\lambda} = 109677 \left(\frac{1}{3^2} - \frac{1}{4^2} \right) (2)^2 \text{ cm}^2$$

$$\frac{1}{\lambda} = 109677 \left(\frac{7}{144} \right) \times 4$$

$$\lambda = \frac{1}{109677} \left(\frac{144}{7} \times \frac{36}{7} \right)$$

$$\lambda = \frac{36A}{1}$$

H-spectrum is: (R = Rydberg constant)

$$(A) \frac{5}{36}R$$

(B)
$$\frac{9}{400}R$$

(C)
$$\frac{7}{6}R$$

(D)
$$\frac{3}{4}R$$

$$\nabla = R \left(\frac{1}{\eta_1^2} - \frac{1}{\eta_2^2} \right) Z^2$$

$$= R \left(\frac{1}{2^{2}} - \frac{1}{3^{2}} \right)$$

$$\sqrt[3]{} = \frac{5R}{36}$$

$$\gamma = 1 \qquad (z=1)$$

3. An e^o jumps from 4th Excited state to ground state in H-atom, then find total lines.

Possible lines =
$$(n_2-n_1)(n_2-n_1+1)$$

$$=\left(5-1\right)\left(5-1+1\right)$$

$$M_{\Sigma} = 5$$

4. An e^{Θ} jumps from 4th Excited state to 1st excited state. Find no. of lines in Lyman series. >n= 1

(A)

(B)

(C) 15 Zero

Election jump from $n_1 = 5$ to $n_2 = 2$

$$\eta_1 = 5$$

$$\gamma_1 = 1$$

but for lyman series, $m_1 = 1$. So no lines will fall in $m_1 = 1$

: Zoro spectral lines

Jower energy

5:27

5. The ratio of the frequencies of the long wavelength limits of Lyman and

(B)

Balmer series of hydrogen spectrum is

$$(C)$$
 4:1

Lyman

ン

$$\left(\frac{1}{1^2} - \frac{1}{2^1}\right) \Rightarrow$$

$$\left(\begin{array}{ccc} \bot & - & \bot \\ 2^{1} & - & \bot \end{array}\right) \Rightarrow$$

$$= \frac{3R/4}{5R/3}$$

$$n_1 = 2$$
 to $n_2 = 3$

$$\left(\frac{1}{1} - \frac{1}{4}\right) v = \frac{3}{4} R$$

$$\left(\frac{1}{4} - \frac{1}{4}\right) = \frac{5}{36}$$

$$\frac{3}{4} \times \frac{369}{5} = \frac{27}{5} \Rightarrow \frac{27:5}{5}$$

Ground state to infinity

6. Find the ratio of wavelength of Limiting line of Lyman, Balmer and Paschen.

$$\frac{1}{\lambda} = R \left(\frac{1}{\eta_1^2} - \frac{1}{\eta_2^2} \right)$$

$$R\left(\frac{1}{1}-\frac{1}{\infty}\right)=R$$

$$\Rightarrow$$
 \wedge Lyman = $\frac{1}{R}$

$$R\left(\frac{1}{4}-\frac{1}{60}\right)=\frac{R}{4}$$

$$R\left(\frac{1}{9}-\frac{1}{\infty}\right) = \frac{R}{9} \Rightarrow A_{R}$$

ARJUNA

7. Find the wavelength of light emitted when e⁹ jumps from second excited state to Ground state in H-atom.

$$\frac{1}{\lambda} = 109677 \left(\frac{1}{n_{i}^{2}} - \frac{1}{n_{i}^{2}} \right) cm^{-1}$$

$$1/\lambda = 109677 \left(\frac{1}{7} - \frac{1}{9}\right) cm^{-1}$$

$$= \frac{9}{8\times109677} cm \qquad (1cm = 168 Å)$$

$$\lambda = \underbrace{9\times10^8}_{8\times109677}$$

8. How many spectral lines are seen for hydrogen atom when electron jump from $n_2 = 5$ to $n_1 = 1$ in visible region?

- (A) 2
- (C)

- (B) 3
- (D) 5

$$\eta_s = 5$$
 to $\eta_1 = 2$

Lines = 7

(UV) Lyman

ARJUNA

No af spectral lines = 3

9. Calculate the wavelength of the photon that is emitted when an electron in Bohr orbit n = 2 returns to the orbit n = 1 in the hydrogen atom

$$\frac{1}{1} = \frac{1}{2} n_{1} = 2$$

$$\frac{1}{1} = \frac{1}{2} \frac{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2$$

$$\frac{1}{\lambda} = 109677 \left(\frac{1}{1} - \frac{1}{4} \right)$$

$$\lambda = \frac{4}{3\times109677}$$
 cm = $|1.2156\times10^{-5}$ cm.

$$\sqrt{\eta_1}=1$$
 to $\eta_2=2$

 $/n_1=1$ to $n_2=0$

10. Calculate the wavelengths of the first line and the last line in the Lyman series of hydrogen atom

$$\frac{1}{\lambda} = \frac{109677}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \quad cm^{-1}$$

$$\frac{1}{\lambda} = 109677 \left(\frac{1}{4} - \frac{1}{4} \right) cm^{-1}$$

$$\lambda = 1.2156 \times 16^{-5}$$
 cm

$$\lambda = 121.56 \, \text{nm}$$

ARJUNA

$$\lambda = |2|5.6 \text{ Å}$$

Last line,
$$n_1=1$$
 to $n_2=\infty$

$$\lambda = \frac{1}{109677} \text{ cm}$$

$$|cm = 16^7 nm$$

$$|cm = 10^8 \text{ Å}$$

$$|hm = 10 \text{ A}$$

Thank You