Imperial College London

What is Artificial Intelligence?

How does it relate to Machine Learning?

Acting Humanly

"The art of creating machines that perform functions that require intelligence when performed by people."

(Kurzweil, 1990)

"The study of how to make computers do things at which, at the moment, people are better."

(Rich & Knight, 1991)

Turing test

Chinese room

Acting Rationally

"Computational Intelligence is the study of the design of intelligent agents." (Poole et al.,1998)

"AI . . . is concerned with intelligent behavior in artifacts."

(Nilsson, 1998)

Thinking Rationally

"The study of mental faculties through the use of computational models."

(Charniak and McDermott, 1985)

"The study of the computations that make it possible to perceive, reason, and act."

(Winston, 1992)

Thinking Humanly

"The exciting new effort to make computers think ... machines with minds, in the full and literal sense."

(Haugeland, 1986)

"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning ..."

(Bellman, 1978)

Artificial Intelligence

Techniques that enable computers to mimic human behaviour and intelligence. Could be using logic, if-then rules, machine learning, etc.

Machine Learning

Subset of AI techniques using statistical methods that enable the systems to learn and improve with experience.

Deep Learning

Subset of machine learning techniques using multi-layer artificial neural networks and vast amounts of data for learning.

Application: Helping doctors

Al doctor could boost chance of survival for sepsis patients

by Kate Wighton 22 October 2018

Scientists have created an artificial intelligence system that could help treat patients with sepsis.

The technology, developed by researchers from Imperial College London, was found to predict the best treatment strategy for patients.

Our new AI system was able to analyse a patient's data – such as blood pressure and heart rate – and decide the best treatment strategy.

Dr Aldo Faisal
 Study author

The system 'learnt' the best treatment strategy for a patient by analysing the records of about 100,000 hospital patients in intensive care units and every single doctor's decisions affecting them.

The findings, published in the journal Nature Medicine, showed the AI system made more reliable treatment decisions than human doctors.

The team behind the technology

https://www.imperial.ac.uk/news/188705/ai-doctor-could-boost-chance-survival/

http://wp.doc.ic.ac.uk/bglocker/

Application: Analysing images

Application: Working with language

https://translate.google.com

https://writeandimprove.com

Application: Quick draw

https://quickdraw.withgoogle.com

So, what *exactly* is Machine Learning?

"The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience."

Tom Mitchell (1997)

$$f(CW1,CW2,Exam) = Module Grade$$

Machine Learning settings

Supervised learning

Clustering

Dimensionality reduction

Reinforcement learning

DQN from DeepMind

Kormushev et al., 2010

Policy search

Find which action an agent should take, depending on its current state, to maximise the received rewards.

Things are not always clear cut!

- Semi-supervised learning
 - Some data have labels, some do not

- Weakly-supervised learning
 - Inexact output labels

Supervised learning

Classification and regression

The two most popular ML tasks

Classification

Classification

"The average criminal bar barrister working fulltime is earning some £84,000." Claim is False

7/20/14, 8:05 AM

Classification

Binary classification

Multi-class classification

Multi-label classification

Classification

$$)=y$$
 Discrete/categorical

$$)=y$$
 Real-valued continuous

Supervised learning The pipeline

Are you a good binary classifier?

Try this!

Are you a good binary classifier?

Try this!

Are you still a good binary classifier?

Number of points

Linear classifier

What have we learnt?

More data == more accurate predictions

Selecting good features is crucial!

Classifiers make predictions differently

Classifiers make predictions differently

Classifiers make predictions differently

The supervised learning pipeline

Feature encoding

Understanding your data

- Sometimes given as raw measurements
 - an image, a news article, a tweet, a graph, a time series, a molecular shape, etc.

Understanding your data

Always examine your data!

- Clues to help you design your classifier
- Objective of class labels?
 - Balanced?
 - Imbalanced?

Measurement space **Dataset** Feature space Number of points Colour

Understanding your features

$$\left\{ ilde{X}^{(i)}
ight\}^N$$
 N instances

$$\{\tilde{X}^{(i)}\}^{n}$$
 N instances $\{\tilde{X}^{(i)}\}^{n}$, $\tilde{X}_{1}^{(i)}$, $\tilde{X}_{2}^{(i)}$, $\tilde{X}_{3}^{(i)}$, ..., $\tilde{X}_{K}^{(i)}$ K-dimensional features

Categorical Integers Real numbers

More features == better?

Only up to a certain point!

The curse of dimensionality

The curse of dimensionality

Increased computational complexity

Data sparsity

Overfitting

• Raw measurements: sometimes inefficient

Feature spaces

The deep learning era

Machine learning algorithms

Lazy vs. Eager Learning

Lazy Learner

Stores the training examples and postpones generalising beyond these data until an explicit request is made at test time.

Eager Learner

Constructs a general, explicit description of the target function based on the provided training examples.

Non-parametric model

Nearest neighbour

Linear model

Linearly separable

Feature space transformation

Support Vector Machines (SVM)

Neural Networks

Combine multiple simple classifiers

Decision Trees

Bias-variance trade-off

One of the most important ML concepts!

Occam's razor: More things should not be used than are necessary.

Evaluation

How well does the model perform?

Evaluation metric/measure

$$Accuracy = \frac{Number\ of\ correct\ predictions}{Number\ of\ test\ instances}$$

How well does the model perform?

Evaluation metric/measure

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

Is 85% accuracy any good?

"It is all relative..."

Baseline

- Chance/random performance [lower bound]
- Is there a stronger baseline?
- The base performance before any improvements

Is 85% accuracy any good?

"It is all relative..."

Upper bound

The best case (usually comparison to human)

"Superhuman performance"?

Course Roadmap

