GetMyFlight

Cheapest Flight Rates in No Time

Group No - 3

Aastha Grover
Ankur Bag
Neelesh Saxena
Tushar K

Problem Statement

- Unpredictability and uncertainty of flight fares.
- 'The earlier you book, the cheaper you get' is always not true.
- Flight Reservation websites are in a rush to provide their customers with the cheapest flights.
- Nobody is bothered how the rates will vary in the future. This is where our research is centered.

Our Proposal/Suggestion:

- Build a flight recommendation system -
 - To predict the flight rates for a particular destination during the proposed dates,
 - To predict the date on which flight rates may fall or increase

Actor/Use Cases

Actor

User is the sole actor of the system.

Use Case

- → User will register and Login into the application.
- → User will input Preferred dates and Source-Destination.
- → System will predict the cheapest flights flight recommender.

Milestones

Key Milestones		Start Date	End Date
A. B. C.	Discusión on Relevant Factors (Feature Selection). Dataset Created with Relevant Factors. Decide the architecture of the application.	11/3/2016	11/10/2016
A. B.	Data Analysis - Data Visualization, Data Cleansing / Manipulation Decide on the algorithm suitable for our application.	11/10/2016	11/17/2016
A.	Build the Predictive algorithm/Model.	11/17/2016	11/24/2016
A.	Application Integration , Backend Complete	11/24/2016	12/1/2016
A.	Application Test Run Executed, FrontEnd Completed	12/1/2016	12/8/2016

Probable Factors

- Source Destination
- Distance from source to destination.
- Number of unsold seats (and recent fluctuations on that number), as a measure of demand.
- State of competing options on the same route (number of available seats on similar flights, current price for those flights, recent price fluctuations).
- Date/time of booking, especially days left until departure.
- Recent price for the same ticket, and recent fluctuations of the price
- Oil Rates

Scope

- Number of Rows 100,000
- Round Trip/One-Way

Acceptance Criteria

- Number Of Carrier (4)
- Number Of Cities to be Analysed(6)
- ❖ 3 successful predictions out of 5.

Architecture

Code Repository

https://github.com/ankurbag/CSYE7200_Scala_Project_Group3

Programming In Scala

Apache Spark - data parsing, data cleaning, data manipulation

Zeppellin - scala notebook for data ingestion and collaboration

Play - create an application based on scala

Spark mlib - use machine learning algorithms supported by scala

^{*}These is according to our current planning model. As we go ahead from here, this section might increase.

Thank You:)