

Aprendizagem de Máquina

César Lincoln Cavalcante Mattos

2024

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- 2 Regressão linear analítica
- 3 Tópicos adicionais
- 4 Referências

 Cataterismo cardíaco: procedimento de inserção de um cateter (usualmente pela artéria femural) para diagnosticar problemas de obstrução no coração.

 Cataterismo cardíaco: procedimento de inserção de um cateter (usualmente pela artéria femural) para diagnosticar problemas de obstrução no coração.

 Problema: Dada a altura de um paciente, qual o comprimento do cateter necessário para alcançar seu coração?

 Considere a tabela a seguir relacionando alturas de jovens pacientes e comprimentos do cateter correspondente:

Altura (m)	Comprimento (cm)
1.087	37
1.613	50
0.953	34
1.003	36
1.156	43
0.978	28
1.092	37
0.572	20
0.940	34
0.597	30
0.838	38
1.473	47

 Considere a tabela a seguir relacionando alturas de jovens pacientes e comprimentos do cateter correspondente:

Altura (m)	Comprimento (cm)
1.087	37
1.613	50
0.953	34
1.003	36
1.156	43
0.978	28
1.092	37
0.572	20
0.940	34
0.597	30
0.838	38
1.473	47

 Problema: Dado uma altura não presente na tabela, qual deverá ser o comprimento do cateter?

- A coluna Altura é a entrada do nosso modelo.
- A coluna **Comprimento** é a **saída** do nosso modelo.
- Nosso conjunto de dados é formado por 12 alturas e 12 comprimentos correspondentes.

- A coluna Altura é a entrada do nosso modelo.
- A coluna **Comprimento** é a **saída** do nosso modelo.
- Nosso conjunto de dados é formado por 12 alturas e 12 comprimentos correspondentes.
- Matematicamente, temos:

$$\mathcal{D} = \{(x_1, y_1), \cdots, (x_2, y_2)\} = \{(x_i, y_i)\}_{i=1}^{12},$$

em que x_i é a i-ésima entrada e y_i é a i-ésima saída.

- A coluna **Altura** é a **entrada** do nosso modelo.
- A coluna Comprimento é a saída do nosso modelo.
- Nosso conjunto de dados é formado por 12 alturas e 12 comprimentos correspondentes.
- Matematicamente, temos:

$$\mathcal{D} = \{(x_1, y_1), \cdots, (x_2, y_2)\} = \{(x_i, y_i)\}_{i=1}^{12},$$

em que x_i é a i-ésima entrada e y_i é a i-ésima saída.

• **Objetivo**: Encontrar uma relação entre x_i e y_i que forneça uma predição \hat{y}_i o mais próximo possível da saída real y_i .

Terminologia

• Atributo (feature): Uma dada característica de um padrão.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.
- Função custo (ou função objetivo): Indica o quão mal (ou o quão bem) um modelo aproxima os dados disponíveis.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.
- Função custo (ou função objetivo): Indica o quão mal (ou o quão bem) um modelo aproxima os dados disponíveis.
- Parâmetros: Variáveis que caracterizam o modelo proposto.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.
- Função custo (ou função objetivo): Indica o quão mal (ou o quão bem) um modelo aproxima os dados disponíveis.
- Parâmetros: Variáveis que caracterizam o modelo proposto.
- Risco empírico: Estimativa do risco (custo) obtida a partir dos dados disponíveis.

- Atributo (feature): Uma dada característica de um padrão.
- Padrão (pattern): Um vetor de atributos que representa um exemplo.
- Modelo: Uma função que expressa a relação entre um padrão de entrada e sua saída correspondente.
- Função custo (ou função objetivo): Indica o quão mal (ou o quão bem) um modelo aproxima os dados disponíveis.
- Parâmetros: Variáveis que caracterizam o modelo proposto.
- Risco empírico: Estimativa do risco (custo) obtida a partir dos dados disponíveis.
- Otimização (ou treinamento, aprendizagem): Algoritmo de obtenção dos parâmetros do modelo que minimizem uma função custo (ou maximizem uma função objetivo).

• Considere uma relação linear entre x_i (entrada do modelo) e \hat{y}_i (saída do modelo):

$$\hat{y}_i = w_0 + w_1 x_i.$$

• Considere uma relação linear entre x_i (entrada do modelo) e \hat{y}_i (saída do modelo):

$$\hat{y}_i = w_0 + w_1 x_i.$$

 Escolhemos uma função custo quadrática para os erros obtidos pelo modelo:

$$\mathcal{J}(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} e_i^2,$$

 $e_i = y_i - \hat{y}_i.$

 Escolhemos uma função custo quadrática para os erros obtidos pelo modelo:

$$\mathcal{J}(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} e_i^2,$$

 $e_i = y_i - \hat{y}_i.$

 Esse custo é chamado Erro Quadrático Médio (MSE, Mean Squared Error).

 Desejamos minimizar a função custo em relação aos parâmetros do modelo:

$$\min_{w_0, w_1} \mathcal{J}(w_0, w_1)
\min_{w_0, w_1} \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2
\min_{w_0, w_1} \frac{1}{2N} \sum_{i=1}^{N} (y_i - w_0 - w_1 x_i)^2$$

$$\min_{w_0, w_1} \frac{1}{2N} \sum_{i=1}^{N} (y_i - w_0 - w_1 x_i)^2$$

- Escolhemos valores iniciais para w_0 e w_1 .
- Movimentamos os parâmetros na direção que diminui a função custo $\mathcal{J}(w_0,w_1)$:

$$w_0 \leftarrow w_0 - \alpha \frac{\partial \mathcal{J}}{\partial w_0},$$

$$w_1 \leftarrow w_1 - \alpha \frac{\partial \mathcal{J}}{\partial w_1}$$

• $\alpha > 0$ é um passo de aprendizado.

$$\frac{\partial \mathcal{J}}{\partial w_0} = \frac{\partial}{\partial w_0} \frac{1}{2N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)^2$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = \frac{1}{N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)(-1)$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = -\frac{1}{N} \sum_{i=1}^N e_i$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = \frac{\partial}{\partial w_0} \frac{1}{2N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)^2$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = \frac{1}{N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)(-1)$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = -\frac{1}{N} \sum_{i=1}^N e_i$$

Logo:

$$w_0 \leftarrow w_0 + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = \frac{\partial}{\partial w_1} \frac{1}{2N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)^2$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = \frac{1}{N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)(-x_i)$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = -\frac{1}{N} \sum_{i=1}^N e_i x_i$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = \frac{\partial}{\partial w_1} \frac{1}{2N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)^2$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = \frac{1}{N} \sum_{i=1}^N (y_i - w_0 - w_1 x_i)(-x_i)$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = -\frac{1}{N} \sum_{i=1}^N e_i x_i$$

Logo:

$$w_1 \leftarrow w_1 + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i x_i$$

Gradiente Descendente (GD, gradient descent)

- $oldsymbol{0}$ Escolha um valor α positivo e pequeno.
- 2 Inicialize os parâmetros do modelo na iteração t=0.
- 3 Repita por diversas iterações (épocas):
 - $1 t \leftarrow t + 1;$
 - 2 Calcule os erros do modelo:

$$\hat{y}_i(t-1) = w_0(t-1) + w_1(t-1)x_i, \quad \forall i,$$

 $e_i(t-1) = y_i - \hat{y}_i(t-1), \quad \forall i.$

3 Atualize os parâmetros:

$$w_0(t) = w_0(t-1) + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i(t-1)$$
$$w_1(t) = w_1(t-1) + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i(t-1)x_i$$

Regressão linear simples - Otimização via GD

Gradiente Descendente Estocástico (SGD, stochastic gradient descent)

- **1** Escolha um valor α positivo e pequeno.
- 2 Inicialize os parâmetros do modelo na iteração t=0.
- 3 Repita por diversos ciclos (épocas):
 - 1 Permute aleatoriamente a ordem dos dados.
 - 2 Para cada padrão de entrada, i = 1, ..., N, repita:
 - 1 Faça $t \leftarrow t + 1$.
 - 2 Calcule os erros do modelo:

$$\hat{y}_i(t-1) = w_0(t-1) + w_1(t-1)x_i,$$

$$e_i(t-1) = y_i - \hat{y}_i(t-1).$$

3 Atualize os parâmetros:

$$w_0(t) = w_0(t-1) + \alpha e_i(t-1)$$

$$w_1(t) = w_1(t-1) + \alpha e_i(t-1)x_i$$

• Também chamado de algoritmo LMS (Least Mean Squares).

Regressão linear simples - Otimização via SGD

Regressão linear múltipla
Podemos reconsiderar o problema inserindo o peso do paciente:

Altura (m)	Peso (Kg)	Comprimento (cm)
1.087	18.141	37
1.613	42.404	50
0.953	16.100	34
1.003	13.605	36
1.156	23.583	43
0.978	7.710	28
1.092	17.460	37
0.572	3.855	20
0.940	14.966	34
0.597	4.308	30
0.838	9.524	38
1.473	35.828	47

Regressão linear múltipla

Podemos reconsiderar o problema inserindo o peso do paciente:

Altura (m)	Peso (Kg)	Comprimento (cm)
1.087	18.141	37
1.613	42.404	50
0.953	16.100	34
1.003	13.605	36
1.156	23.583	43
0.978	7.710	28
1.092	17.460	37
0.572	3.855	20
0.940	14.966	34
0.597	4.308	30
0.838	9.524	38
1.473	35.828	47

• Novo modelo linear múltiplo:

$$\hat{y}_i = w_0 + w_1 x_{i1} + w_2 x_{i2}$$

• x_{i1} é a i-ésima **Altura** e x_{i2} é o i-ésimo **Peso**.

Regressão linear múltipla

• Caso façamos $x_{i0} = 1$, temos:

$$\hat{y}_i = w_0 x_{i0} + w_1 x_{i1} + w_2 x_{i2}$$
$$\hat{y}_i = \boldsymbol{w}^\top \boldsymbol{x}_i.$$

Note que:

$$\mathbf{w} = [w_0, w_1, w_2]^{\top},$$

 $\mathbf{x}_i = [1, x_{i1}, x_{i2}]^{\top}.$

Regressão linear múltipla

Gradiente Descendente

• Regra de atualização:

$$\boldsymbol{w}(t) = \boldsymbol{w}(t-1) + \alpha \frac{1}{N} \sum_{i=1}^{N} e_i(t-1)\boldsymbol{x}_i$$

Gradiente Descendente Estocástico

Regra de atualização:

$$\boldsymbol{w}(t) = \boldsymbol{w}(t-1) + \alpha e_i(t-1)\boldsymbol{x}_i$$

Diferença probabilística entre o GD e o SGD

• O erro quadrático \mathcal{J} é uma variável aleatória:

$$\min_{\mathbf{w}} \frac{1}{2} \mathbb{E} \{ \mathcal{J}(\mathbf{w}) \}, \quad \mathcal{J}(\mathbf{w}) = e^2 = (y - \hat{y})^2, \\
\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{2} \frac{\partial}{\partial \mathbf{w}} \mathbb{E} \{ \mathcal{J} \}$$

Diferença probabilística entre o GD e o SGD

• O erro quadrático $\mathcal J$ é uma variável aleatória:

$$\min_{\boldsymbol{w}} \frac{1}{2} \mathbb{E} \{ \mathcal{J}(\boldsymbol{w}) \}, \quad \mathcal{J}(\boldsymbol{w}) = e^2 = (y - \hat{y})^2, \\
\boldsymbol{w} \leftarrow \boldsymbol{w} - \frac{\alpha}{2} \frac{\partial}{\partial \boldsymbol{w}} \mathbb{E} \{ \mathcal{J} \}$$

A média amostral resulta no algoritmo GD:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \frac{\alpha}{2} \frac{\partial}{\partial \boldsymbol{w}} \left(\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \right)$$

Diferença probabilística entre o GD e o SGD

• O erro quadrático $\mathcal J$ é uma variável aleatória:

$$\begin{aligned} & \min_{\boldsymbol{w}} \frac{1}{2} \mathbb{E} \{ \mathcal{J}(\boldsymbol{w}) \}, \quad \mathcal{J}(\boldsymbol{w}) = e^2 = (y - \hat{y})^2, \\ & \boldsymbol{w} \leftarrow \boldsymbol{w} - \frac{\alpha}{2} \frac{\partial}{\partial \boldsymbol{w}} \mathbb{E} \{ \mathcal{J} \} \end{aligned}$$

• A média amostral resulta no algoritmo GD:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \frac{\alpha}{2} \frac{\partial}{\partial \boldsymbol{w}} \left(\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \right)$$

• Uma aproximação estocástica resulta no algoritmo SGD:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \frac{\alpha}{2} \frac{\partial}{\partial \boldsymbol{w}} (y_i - \hat{y}_i)^2$$

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- 2 Regressão linear analítica
- 3 Tópicos adicionais
- A Referências

• Reunimos todos os padrões de entrada $m{x}_i$ em uma matriz $m{X}$:

$$\boldsymbol{X} = [\boldsymbol{x}_1 \ \boldsymbol{x}_2 \ \cdots \ \boldsymbol{x}_N]^{\top} \in \mathbb{R}^{N \times (D+1)}.$$

- -N é o número de observações/amostras/vetores/padrões.
- D é a dimensão da entrada (excluindo o termo $x_{i0} = 1$).
- Agrupamos as saídas disponíveis em um vetor y:

$$\boldsymbol{y} = [y_1, y_2, \cdots, y_N]^{\top} \in \mathbb{R}^N.$$

• Agrupamos as saídas do modelo em um vetor \hat{y} :

$$\hat{\boldsymbol{y}} = [\hat{y}_1, \hat{y}_2, \cdots, \hat{y}_N]^{\top} \in \mathbb{R}^N.$$

• Agrupamos os parâmetros em um vetor w:

$$\boldsymbol{w} = [w_0, w_1, \cdots, w_D]^{\top} \in \mathbb{R}^{D+1}.$$

 Dados do problema do cateterismo cardíaco em formato matricial:

$$\mathbf{X} = \begin{bmatrix} 1 & 1.087 & 18.141 \\ 1 & 1.613 & 42.404 \\ 1 & 0.953 & 16.100 \\ 1 & 1.003 & 13.605 \\ 1 & 1.156 & 23.583 \\ 1 & 0.978 & 7.710 \\ 1 & 1.092 & 17.460 \\ 1 & 0.572 & 3.855 \\ 1 & 0.940 & 14.966 \\ 1 & 0.597 & 4.308 \\ 1 & 0.838 & 9.524 \\ 1 & 1.473 & 35.828 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 37 \\ 50 \\ 34 \\ 36 \\ 43 \\ 28 \\ 37 \\ 20 \\ 34 \\ 30 \\ 38 \\ 47 \end{bmatrix}$$

• Reformulamos nosso modelo linear na forma matricial:

$$\hat{y}_i = \boldsymbol{w}^{\top} \boldsymbol{x}_i,$$

 $\hat{\boldsymbol{y}} = \boldsymbol{X} \boldsymbol{w}.$

Reformulamos nosso modelo linear na forma matricial:

$$\hat{y}_i = \boldsymbol{w}^{\top} \boldsymbol{x}_i, \\ \hat{\boldsymbol{y}} = \boldsymbol{X} \boldsymbol{w}.$$

Reformulamos também a função custo:

$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \hat{\boldsymbol{y}})^{\top} (\boldsymbol{y} - \hat{\boldsymbol{y}})$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^{\top} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})$$

• O mínimo de $\mathcal{J}({m w})$ ocorrerá em $\frac{\partial \mathcal{J}({m w})}{\partial {m w}}=0$:

$$\begin{split} \frac{\partial \mathcal{J}(\boldsymbol{w})}{\partial \boldsymbol{w}} &= \frac{1}{2} 2 (-\boldsymbol{X}^{\top}) (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}) \\ -\boldsymbol{X}^{\top} \boldsymbol{y} + \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} &= 0 \\ \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} &= \boldsymbol{X}^{\top} \boldsymbol{y} \\ \boldsymbol{w} &= (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}. \end{split}$$

• O mínimo de $\mathcal{J}({m w})$ ocorrerá em $\frac{\partial \mathcal{J}({m w})}{\partial {m w}}=0$:

$$\begin{split} \frac{\partial \mathcal{J}(\boldsymbol{w})}{\partial \boldsymbol{w}} &= \frac{1}{2} 2 (-\boldsymbol{X}^{\top}) (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w}) \\ -\boldsymbol{X}^{\top} \boldsymbol{y} + \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} &= 0 \\ \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} &= \boldsymbol{X}^{\top} \boldsymbol{y} \\ \boldsymbol{w} &= (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}. \end{split}$$

• $X^+ = (X^\top X)^{-1} X^\top$, em que $X^+ X = I$, é chamada de inversa de Moore-Penrose ou pseudo-inversa.

Método dos mínimos quadrados ordinários (OLS, *ordinary least squares*)

• O vetor de parâmetros $m{w}$ que minimiza $\mathcal{J}(m{w}) = \frac{1}{2}(m{y} - \hat{m{y}})^{ op}(m{y} - \hat{m{y}})$ é dado por

$$\boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y},$$

em quem $oldsymbol{X}$ é a matriz de vetores de entrada (um por linha) e $oldsymbol{y}$ é o vetor de saídas desejadas.

• OLS equivale ao método de Newton aplicado na função de custo quadrática \mathcal{J} :

$$egin{aligned} oldsymbol{w} &= oldsymbol{w}_0 - \left(rac{\partial^2 \mathcal{J}(oldsymbol{w}_0)}{\partial oldsymbol{w}_0^2}
ight)^{-1} rac{\partial \mathcal{J}(oldsymbol{w}_0)}{\partial oldsymbol{w}_0}, \ rac{\partial^2 \mathcal{J}(oldsymbol{w}_0)}{\partial oldsymbol{w}_0^2} &= oldsymbol{X}^ op oldsymbol{X}, \ oldsymbol{w} &= oldsymbol{w}_0 - (oldsymbol{X}^ op oldsymbol{X})^{-1} \left(-oldsymbol{X}^ op (oldsymbol{y} - oldsymbol{X} oldsymbol{w}_0)
ight) \end{aligned}$$

ullet Podemos escolher $oldsymbol{w}_0 = oldsymbol{0}$ para obter o mínimo global.

$$\boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

• De onde vem a função custo $\mathcal{J}(\boldsymbol{w}) = \frac{1}{2}(\boldsymbol{y} - \hat{\boldsymbol{y}})^{\top}(\boldsymbol{y} - \hat{\boldsymbol{y}})$?

- ullet De onde vem a função custo $\mathcal{J}(oldsymbol{w}) = rac{1}{2} (oldsymbol{y} \hat{oldsymbol{y}})^ op (oldsymbol{y} \hat{oldsymbol{y}})$?
- Considerando um ruído independente $\epsilon \sim \mathcal{N}(0, \sigma^2)$:

$$\begin{aligned} y_i &= \hat{y}_i + \epsilon = \boldsymbol{w}^\top \boldsymbol{x}_i + \epsilon, \\ p(y_i | \boldsymbol{x}_i, \boldsymbol{w}) &= \mathcal{N}(y_i | \boldsymbol{w}^\top \boldsymbol{x}_i, \sigma^2), \\ p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{w}) &= \prod_{i=1}^N \mathcal{N}(y_i | \boldsymbol{w}^\top \boldsymbol{x}_i, \sigma^2) \\ \log p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{w}) &= \sum_{i=1}^N \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \boldsymbol{w}^\top \boldsymbol{x}_i)^2}{2\sigma^2}\right) \\ \log p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{w}) &= \underbrace{-\frac{N}{2} \log(2\pi\sigma^2)}_{\text{const. em relação a } \boldsymbol{w}} - \frac{1}{2\sigma^2} \sum_{i=1}^N (y_i - \boldsymbol{w}^\top \boldsymbol{x}_i)^2 \end{aligned}$$

- Queremos maximizar $\mathcal{L}(w) = \log p(y|X, w)$, o que equivale a minimizar $\mathcal{J}(w) = -\mathcal{L}(w)$.
- Ignorando os termos constantes:

$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \hat{\boldsymbol{y}})^{\top} (\boldsymbol{y} - \hat{\boldsymbol{y}})$$

- Queremos maximizar $\mathcal{L}(\boldsymbol{w}) = \log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w})$, o que equivale a minimizar $\mathcal{J}(\boldsymbol{w}) = -\mathcal{L}(\boldsymbol{w})$.
- Ignorando os termos constantes:

$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{w})$$
$$\mathcal{J}(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{y} - \hat{\boldsymbol{y}})^{\top} (\boldsymbol{y} - \hat{\boldsymbol{y}})$$

Solução de máxima verossimilhança

A solução obtida via OLS (e aproximada via GD e SGD), chamada de solução de **máxima verossimilhança (maximum likelihood)**, é ótima quando o ruído é Gaussiano:

$$w_{\mathsf{OLS}} = w_{\mathsf{ML}} = \arg\max\log p(y|X, w)$$

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- Regressão linear analítica
- 3 Tópicos adicionais
- 4 Referências

• Viés de indução (inductive bias).

- Viés de indução (inductive bias).
- Estimação de parâmetros via solução de máximo a posteriori (MAP, maximum a posteriori):

$$\boldsymbol{w}_{\mathsf{MAP}} = \arg\max[\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) + \log p(\boldsymbol{w})].$$

- Viés de indução (inductive bias).
- Estimação de parâmetros via solução de máximo a posteriori (MAP, maximum a posteriori):

$$w_{\mathsf{MAP}} = \arg \max[\log p(y|X, w) + \log p(w)].$$

- (algumas) Alternativas ao OLS:
 - → Weighted LS ruído heteroscedástico:

$$\boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{\Lambda} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{\Lambda} \boldsymbol{y}, \quad \boldsymbol{\Lambda} = \operatorname{diag}(1/\sigma^2(\boldsymbol{x}_i)).$$

→ Generalized LS - ruído correlacionado:

$$oldsymbol{w} = (oldsymbol{X}^{ op} oldsymbol{\Omega} oldsymbol{X})^{-1} oldsymbol{X}^{ op} oldsymbol{\Omega} oldsymbol{y}, \quad oldsymbol{\Omega} = \operatorname{cov}(oldsymbol{\epsilon} | oldsymbol{X}).$$

→ Iterative Reweighted LS: WLS iterativo para ruído não Gaussiano.

Maldição da dimensionalidade (curse of dimensionality).

Agenda

- Regressão linear iterativa Regressão linear simples Regressão linear múltipla
- 2 Regressão linear analítica
- 3 Tópicos adicionais
- 4 Referências

Referências bibliográficas

- Cap. 9 DEISENROTH, M. et al. Mathematics for machine learning. 2019.
- Caps. 1 e 7 MURPHY, Kevin P. Machine learning: a probabilistic perspective, 2012.
- Caps. 1 e 11 MURPHY, Kevin P. Probabilistic Machine Learning: An Introduction, 2021.
- Caps. 2 e 3 HAYKIN, Simon. Neural Networks and Learning Machines, 3ed., 2010.
- Cap. 3 BISHOP, Christopher M. Pattern recognition and machine learning, 2006.