Encryption steps

- step1: generate a pair of keys
- step2: keep the private key / secret key (SK) and distribute the public key (PK) – place PK in a public register or other accessible file
- step3: Bob encrypts the message with Alice's PK
- step4: upon receiving the ciphertext (CT), Alice decrypt CT with SK

Public-Key Encryption: Definition

- Three parts:
 - KeyGen() \rightarrow PK, SK: Generate a public/private keypair, where PK is the public key, and SK is the private (secret) key
 - Enc(PK, M) \rightarrow C: Encrypt a plaintext M using public key PK to produce ciphertext C
 - Dec(SK, C) $\rightarrow M$: Decrypt a ciphertext C using secret key SK
- Properties
- Maore to one mapping • Correctness: Decrypting a ciphertext should result in the message that was originally encrypted
 - Dec(SK, Enc(PK, M)) = M for all PK, SK \leftarrow KeyGen() and M
 - **Efficiency**: Encryption/decryption should be fast
 - Security: 1. Alice (the challenger) just gives Eve (the adversary) the public key, and Eve doesn't request encryptions. Eve cannot guess out anything; 2. computationally infeasible to recover M with PK and ciphertext (P 14 , Cyphertext)

Review

Public-Key application

can classify uses into 3 categories:

encryption/decryption (provide secrecy)

digital signatures (provide authentication)

• key exchange (of session keys)

The algorithms are suitable for the session keys) some algorithms are suitable for all uses; others are specific to one

• Either of the two related keys can be used for encryption, with the other used for decryption

	Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
١	RSA	Yes	Yes	Yes
	Diffie-Hellman	No	No	Yes
	DSS	No	Yes	No
•	Elliptic curve	Yes	Yes	Yes

Security of Public Key Schemes

- Keys used are very large (>512bits)
 - like private key schemes brute force **exhaustive search** attack is always theoretically possible
- Security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyze) problems
 - more generally the hard problem is known, it's just made too hard to do in practice
- Requires the use of very large numbers, hence is slow compared to private/symmetric key schemes

N=P.9