

# Parallel Implementations of a Modified Bellman-Ford Shortest-Path Ray Tracing Algorithm on GPU

#### Somrath Kanoksirirath

Department of Physics, Faculty of Science, Mahidol University, Thailand.

MONDAY, 16 JULY 2018

#### **Outline**

- Introduction
  - Shortest-path problems in Physics
- Methods
  - Shortest-path ray tracing method (SPR)
  - Fast iterative method (FIM)
  - Extended scheme
- Results
  - 2D and 3D results
  - Performance comparison
- Conclusion

# **Shortest-path problems in Physics**

In physics, applying **high frequency approximation**, either wave equation or the Schrödinger equation is transformed to the eikonal equation (1-left).

The eikonal equation is equivalent to the Fermat's principle.

$$|\nabla T| = \frac{1}{v} \longleftrightarrow T = \int_L \frac{1}{v} \, \mathrm{d}I$$
 (1)

#### where

- T is traveltime or the first arrival time (the least time),
- L is the ray path or the path that giving the traveltime,
- v is a spatially dependent velocity or a local wave speed,
- dl is an infinitesimal path length.

Somrath Kanoksirirath | Mahidol University DPST scholar | 3 of 16

### **Shortest-path ray tracing method (SPR)**

Given a domain with a velocity field, and a point source position, we aim to find the traveltimes and ray paths to all receivers in the domain.

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ٥ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ |

Figure 1: Nodes of grid model for 14 × 6 cells together with source (black star) at (3.5).

SPR solves the problem by constructing **a network of small ray paths**, then employs **a single-source shortest-path algorithm**.

# Radius, Neighbors and Edges



Figure 2: Edges linking a node (0,0) to its neighbors (i,j) for  $R_X = 2$  and  $R_V = 2$  are shown in which dashed lines indicate that the edges can be discarded (Edge reduction).

### Straight line approximation (SPR)

The Fermat's principle is discretized to compute the weight of the graph.

$$T = \int_{L} \frac{1}{v} \, \mathrm{d}I \approx \sum_{n=1}^{L(i,j)} \frac{\Delta I_n}{v_n} \tag{2}$$



Figure 3: The length of the segment  $\Delta I_n$  and the velocity of the cell  $v_n$  are used in computing the wight of the edge that connects the node to its neighbor (3,1).

Somrath Kanoksirirath **Mahidol University DPST** scholar 6 of 16

# Single-Source Shortest-Path algorithm

The **Bellman-Ford algorithm** majorly consists of

- Computing possible traveltimes coming from neighbors.
- Comparing them with the traveltime that the node is currently holding.
- Saving the least arrival time, that just found.



- Finished node
- Active node
- Unvisited node

Figure 4: Finished nodes, active nodes, unvisited nodes, and source (star).

### Parallel implementation on GPU

Diving the nodes into groups, **update map** is to save the active groups that surround the active region.

- 1 Node: 1 GPU thread
- 1 Group: 1 GPU block



Figure 5: Three types of nodes, source (star), and active groups (orange cells).

#### Fast iterative method (FIM)

"From programming view point, changing the SPR weight calculation to the Godunov upwind scheme will transform SPR to FIM ".

Applying **upwind finite difference** to the eikonal equation, a quadratic equation is obtained as shown in equation 3—for two dimensional problems.

$$[(T_{i,j} - T_x^{\min})^+]^2 + [(T_{i,j} - T_y^{\min})^+]^2 = h^2 / V_{i,j}^2$$
(3)

where T is traveltime, V is velocity,  $h = h_x = h_y$  is grid spacing and

$$T_{x}^{\min} = \min(T_{i-1,j}, T_{i+1,j}), \quad T_{y}^{\min} = \min(T_{i,j-1}, T_{i,j+1}), \quad (x)^{+} = \begin{cases} x, & x > 0 \\ 0, & x \leq 0 \end{cases}$$

Solving this quadratic equation, we get the Godunov upwind scheme.

Somrath Kanoksirirath Mahidol University DPST scholar 9 of 16

### **Extended scheme (Ex)**

Treating the node as local source, **weight is simply traveltime** from this local source to neighbors.

Additional comparisons by the Godunov upwind scheme are taken place on the gray neighbors, using previously computed SPR traveltime.



Figure 6: The two-dimensional extended scheme when R=2.

#### 2D Marmousi model (2304x752)



#### 3D SEG salt model (336x336x104)



(a) Salt of the SEG-salt model

(b) Ray paths

#### 2D Runtime (Marmousi)



(c) Runtime result of our 2D programs, using NVIDIA GeForce 1050Ti and AMD Ryzen 3 1300X.

### 3D Runtime (SEG-Salt)



(d) Runtime result of our 3D programs and the original FIM, using NVIDIA GeForce 1050Ti.

#### Results | Performance comparison





(e) Two-dimensional accuracy test result of a radial gradient model.





(f) Three-dimensional accuracy test result of a vertical gradient model.

Somrath Kanoksirirath | Mahie

#### Conclusion

- Parallel shortest-path ray tracers are programed on GPU in order to solve shortest-path problems in physics.
- Update map and extended scheme are introduced to improve their performance.
- However, the original fast iterative method is faster and more accurate.
   (although ray paths are not found concurrently)
- Because its accuracy depends on the radius, the parallel SPR is suitable for a small-scale complicated heterogeneous velocity model.

# **Acknowledgement**



#### Dr. Chaiwoot Boonyasiriwat

B.Sc. (Physics), M.Sc. (Computational Engineering and Science),

M.Sc. (Geophysics), Ph.D. (Scientific Computing)

Email: chaiwoot@gmail.com

Webpage: http://mcsc.sc.mahidol.ac.th/chaiwoot

#### References

- Monsegny, J. and W. Agudelo, 2013, Shortest path ray tracing on parallel GPU devices, 3470-3474. SEG.
- Moser, T., 1991, Shortest path calculation of seismic rays: Geophysics, 56, 59-67.
- Jeong, W.K. and R. T. Whitaker, 2008, A fast iterative method for eikonal equations: SIAM Journal on Scientific Computing, 30, 2512-2534.
- Borovskikh, A. V., 2006, The two-dimensional eikonal equation: Siberian Mathematical Journal, 47, 813-834.
- Rawlinson, N., et al., 2006, Seismic ray tracing and wavefront tracking in laterally heterogeneous media, Australian National University, Australia.