Accelerated Reconstruction

TECHNION
Israel Institute of Technology

Noam Korngut, Nitzan Avidan
Spring 2021

KIKI-net

- Purpose:
- ▶ To demonstrate accurate MR image reconstruction from undersampled kspace data using **cross-domain** convolutional neural networks (CNNs).

The network architecture operating on k-space, image, k-space, and image sequentially

KIKI-net

Cross-domain CNNs consist of 3 components:

- 1. KCNN a deep CNN operating on the k-space (as Raki)
- 2. ICNN a deep CNN operating on an image domain (as Unet)
- 3. IDC Interleaved data consistency operations

Problem Formulation

Problem formulation

$$\arg\min_{wi,wk} \left| \left| Im - ICNN \left(F^{-1} \left(KCNN(\downarrow k) \right) \right) \right| \right|^2 +$$

$$\lambda \mid \mid \downarrow k - \downarrow F(ICNN(F^{-1}(KCNN(\downarrow k))) \mid \mid^2$$

KIKI Architecture

KCNN

Deep CNN for k-space completion

KIKI Architecture

ICNN

Deep CNN for image restoration

KIKI Architecture

FIGURE 2 Block diagram for data flow and intermediate operations of cross-domain CNNs (CD-CNNs)

Dataset - fastMRI

- ▶ Facebook, NYU, UFlorida
- An Open Dataset and Benchmarks for Accelerated MRI
- A large-scale collection of both raw MR measurements and clinical MR images, that can be used for training and evaluation of machine-learning approaches to MR image reconstruction

fastMRI

- Goal
 - make rapid advances in the state of the art for MR image reconstruction

- Single Coil track: knee only
 - Center cropped to 256X256
 - Raw knee space

Image normalize to range 0-1

Undersampling mask

Results

200 -

R=3

MSE = 0.002602 NMSE = 0.007142 PSNR = 28.28 SSIM = 0.6785

Results

Experiment 2 - adding skip connection to K-net

MSE = 0.003901 NMSE = 0.01071 PSNR = 26.53 SSIM = 0.6079

Experiment 3 – 35 layers

R=4

MSE = 0.003256 NMSE = 0.008937 PSNR = 27.31 SSIM = 0.6125

Experiment 4 – Huber loss

R=2

MSE = 0.001747 NMSE = 0.004796 PSNR = 30.01 SSIM = 0.7858

Summary and conclusion

Conclusion

- Noisy data
- Pre processing of the data
- Data consist term

Thanks for listening!

