KINETICS

The Law of Mass Action

In the case of reacting systems,

$$aA + bB \rightleftharpoons cC + dD$$

stoichiometric coefficients are positive for products and negative for reactants

where a, b, c, and d are the stoichiometric coefficients of species A, B, C, and D generically represented by v_i

The Law of Mass Action states that the velocity of the reaction at a given temperature proportional to the product of the active masses of the reacting substances.

$$r_1 = k_1[A]^a[B]^b$$

$$r_2 = k_2[C]^c[D]^d$$

At equilibrium, $\Delta G = 0$ and $r_1 = r_2$

Equilibrium constant
$$K = \frac{k_1}{k_2} = \frac{\begin{bmatrix} c \\ b \end{bmatrix}}{\begin{bmatrix} A \\ a \end{bmatrix}} \begin{bmatrix} b \\ b \end{bmatrix}$$

The free energy of a system is simply the sum of the free energy contributions of each of the components measured using chemical potentials

$$\Delta G = \sum v_i \mu_i$$

When all the components are in their standard states the standard Gibbs free energy, ΔG_0 , is given by:

$$\Delta G^0 = \sum v_i \mu_i^0$$

Now,
$$\mu_i = \mu_i^0 + RT \ln a_i$$

$$\Delta G - \Delta G^0 = RT \sum_{i} v_i \ln a_i = RT \ln \left(\prod_{i} a_i^{v_i} \right)$$

At equilibrium, then, $\Delta G = 0$, and the activities of the products and reactants, a_i , are related to their respective concentrations:

Thus.
$$\Delta G^0 = -RT \ln K$$

$$K = \exp\left(\frac{-\Delta G^0}{RT}\right)$$

Both k₁ and k₂ can also be expressed as:

$$k = k_0 \exp(-E_a/RT)$$

ΔH is the heat of reaction and may be negative (exothermic)or positive (endothermic)

Figure 3.1 Activation energy barrier for a chemical reaction.

Kinetics of Inter-metallic Formation

Dissolution of Ti in molten aluminum to form the inter-metallic TiAl₃

Temperature (°C)	Rate of Ti Dissolution, k_{Ti} (cm/s)	Rate of TiAl ₃ Formation, k_{TiAl_3} (cm/s)
700	1.51×10^{-6}	1.042×10^{-5}
750	2.605×10^{-6}	1.98×10^{-5}
800	4.17×10^{-6}	2.777×10^{-5}
850	6.13×10^{-6}	3.798×10^{-5}
900	9.36×10^{-6}	6.805×10^{-5}

Figure 3.2 Rate of dissolution of Ti at various temperatures.

Figure 3.3 Rate of formation of TiAl₃ at various temperatures.

$$E_{a,Ti} = 86 \text{ kJ/mol}; k_{0,Ti} = 0.06$$

$$E_{a,TiAl_3} = 84 \text{ kJ/mol}; k_{0,TiAl_3} = 5.3$$

The fact that the two activation energies calculated are essentially equivalent tells us that the rate of the chemical reaction between these two metals, and not the diffusion of either aluminum or titanium through the intermetallic layer formed on the surface of the solid titanium determines the overall rate of TiAl₃ formation.

Kinetics of Phase Transformations in Metals and Alloys

Crystallization or devitrification process

Amorphous or glassy solid → crystallization

Isothermal case

$$\frac{dx}{dt} = nk(1-x)t^{n-1}$$

Solution:
$$x = 1 - \exp[-kt^n]$$

Johnson–Mehl–Avrami (JMA) equation

Taking the natural log of this equation twice

$$\ln[-\ln(1-x)] = \ln k + n \ln t$$

Table 3.1 Values of the Growth Dimension, *n* (a.k.a Reaction Order), for Different Crystallization Processes

Mechanism	n	
Bulk nucleation, 3-dimensional growth	4	
Bulk nucleation, 2-dimensional growth	3	
Bulk nucleation, 1-dimensional growth	2	
Surface nucleation	1	

Non-isothermal case

1)
$$\ln[-\ln(1-x)] = n \ln \phi + \ln k + \text{constant}$$

 φ is the heating rate, usually in K/min,

2)
$$\ln\left(\frac{\phi}{T_p^2}\right) = \text{constant} - \frac{E_a}{RT_p}$$

 T_p is the temperature at which the transformation rate is a maximum Determined from DSC or DTA

KINETIC PROCESSES IN CERAMICS AND GLASSES

Consider solidification from melt L → S transformation

At T_m:

$$\Delta G_v = \Delta H_f - T_m \Delta S_f = 0$$

 ΔG_v is the free energy change per unit volume for fusion, ΔH_f is the enthalpy of fusion and ΔS_f is the entropy of fusion

$$\Delta S_f = \frac{\Delta H_f}{T_m}$$

Assuming that the entropy and enthalpy are relatively independent of temperature

$$\Delta G_v = \Delta H_f \left[\frac{(T_m - T)}{T_m} \right]$$

NUCLEATION

Figure 3.12 Representation of activation energy barrier for nucleation. From K. M. Ralls, T. H. Courtney, and J. Wulff, *Introduction to Materials Science and Engineering*. Copyright © 1976 by John Wiley & Sons, Inc. This material is used by permission John Wiley & Sons, Inc.

HOMOGENEOUS NUCLEATION

$$\left(\frac{4\pi r^3}{3}\right)\Delta G_v \qquad 4\pi r^2 \gamma$$

$$\Delta G = \left(\frac{4\pi r^3}{3}\right) \Delta G_v + 4\pi r^2 \gamma$$

$$r^* = \frac{-2\gamma}{\Delta G_v}$$

$$\Delta G^* = \frac{16\pi \,\gamma^3}{3\Delta G_v^2}$$

Heterogeneous nucleation

FIGURE 4.7

Wetting of a flat substrate by an epitaxial deposit. (Adapted from Ghandhi, S.K., VLSI Fabrication Principles, Silicon and Gallium Arsenide, 2nd ed., Wiley, New York, 1994. With permission.)

$$\gamma_s = \gamma_i + \gamma_e \cos \theta$$

$$\theta = \cos^{-1}\left(\frac{\gamma_s - \gamma_i}{\gamma_e}\right)$$

$$\Delta G = \frac{\pi r^3}{3} (1 - \cos \theta)^2 (2 + \cos \theta) \Delta G_v + \pi r^2 (\gamma_i - \gamma_s) \sin^2 \theta + 2\pi r^2 (1 - \cos \theta) \gamma_e$$

$$\Delta G_{het}^* = \Delta G_{homo}^* \left[\frac{ (+\cos\theta) + \cos\theta}{4} \right]$$

$$\Delta G_{het}^* = \frac{16\pi\gamma_e^3 \mathbf{Q} + \cos\theta \mathbf{J} - \cos\theta^2}{12\Delta G_v^2}$$

$$N = \nu n_s n^*$$

where \mathbb{N} is the number of critical nuclei that form per unit volume per unit time, n_s is the number of molecules in contact with critical nucleus, n^* is the number of critical size clusters per unit volume, and v is the collision frequency of single molecules with the nuclei

Figure 3.14 Schematic illustration of a nucleation site formation.

$$n^* = n_0 \exp(-\Delta G^*/k_{\rm B}T)$$

where n_0 is the number of single molecules per unit volume, k_B is Boltzmann's constant, and T is absolute temperature.

$$v = v_0 \exp(-\Delta G_m/k_{\rm B}T)$$

where v_0 is the molecular jump frequency, and G_m is the activation energy for transport across the nucleus–matrix interface

For homogeneous nucleation

$$N = v_0 n_s n_0 \exp(-\Delta G^*/k_B T) \exp(-\Delta G_m/k_B T)$$

For heterogeneous nucleation

$$N = \nu_0 n_s n_0 \exp(-\Delta G_s^* / k_B T) \exp(-\Delta G_m / k_B T)$$

Recall

$$\Delta G^* = \frac{16\pi \gamma^3}{3(\Delta G_v)^2}$$

Also

$$\Delta G_v = \frac{\Delta H_v(T_m - T)}{T_m}$$

$$N = v_0 n_s n_0 \exp\left[\frac{-16\pi \gamma^3 T_m^2}{3k_{\rm B} T \Delta H_v^2 (T_m - T)^2}\right] \exp\left(\frac{-\Delta G_m}{k_{\rm B} T}\right)$$

Figure 3.15 Effects of temperature and undercooling on homogeneous and heterogeneous nucleation rates.

GROWTH

- thermally activated (diffusion controlled)
- •diffusionless (martensitic) already discussed

thermally activated

$$\mathbb{R} = A[1 - \exp(\Delta G/k_{\rm B}T)]$$

The form of the preexponential factor, *A, depends on the type of theory*

OVERALL PHASE TRANSFORMATION RATE

Figure 3.16 Schematic representation of transformation rates involved in crystallization by nucleation and growth kinetics.

Figure 3.17 Schematic time-temperature cycle for the controlled crystallization of a glass-ceramic body.

Figure 3.32 Processes involved in chemical vapor deposition. From Chemistry of Advanced Materials: An Overview, L. V. Interrante and M. J. Hampden-Smith, eds. Copyright © 1998 by John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc.

Figure 3.33 Arrhenius plot for the deposition of Si₃N₄. Reprinted, by permission, from F. Galasso, Chemical Vapor Deposited Materials, p. 23. Copyright © by CRC Press.

Figure 3.34 Arrhenius plot for the deposition of B₄C at various total pressures. Reprinted, by permission, from R. Naslain, CVI composites, in *Ceramic-Matrix Composites*, R. Warren, ed., pp. 199−244. Copyright © 1992 by Chapman & Hall, London.

Figure 3.35 Classification of chemical vapor infiltration processes. From Carbide, Nitride, and Boride Materials Synthesis and Processing, A. W. Weimer, ed. p. 563. Copyright © 1997 by Chapman & Hall, London, UK, with kind permission of Kluwer Academic Publishers.

Figure 3.36 Schematic diagram of pore-filling process in the chemical vapor infiltration of a fiber bundle. From Carbide, Nitride, and Boride Materials Synthesis and Processing, A. W. Weimer, ed., p. 566, Copyright © 1997 by Chapman & Hall, London, with kind permission of Kluwer Academic Publishers.

$$R-(H_{2}C-CHCI)_{x}-CH_{2}-C\cdot + H_{2}C=CHCI$$

$$CI \qquad \downarrow k_{p}$$

$$R-(H_{2}C-CHCI)_{x+1}-CH_{2}-C\cdot$$

$$CI \qquad \downarrow k_{p}$$

termination by combination

termination by disproportionation

Table 3.8 Comparison of Polymerization Processes

Туре	Advantages	Disadvantages
Batch bulk	Minimum contamination	Poor heat control
	Simple equipment	Broad MW distribution
Continuous bulk	Better heat control Narrower MW distribution	Requires stirring, separation, and recycle
Solution	Good heat control Direct use of solution possible	Not useful for dry polymer
		Solvent removal difficult
Suspension	Excellent heat control	Requires stirring
	Direct use of suspension possible	Contamination by stabilizer possible
		Additional processing (washing, drying) required
Emulsion	Excellent heat control	Contamination by emulsifier likely
	Narrow MW distribution High MW attainable Direct use of emulsion possible	Additional processing (washing, drying) required

Source: Adapted from F. W. Billmeyer, Textbook of Polymer Science, Wiley, New York.

Figure 3.21 Schematic diagram of vinyl chloride bulk, continuous polymerization. Reprinted, by permission, from A. Krause, Chem. Eng., 72, p. 72. Copyright © 1965 by McGraw-Hill.

Figure 3.23 Schematic diagram of ethylene solution polymerization process.

Figure 3.24 Schematic diagram of styrene suspension polymerization process. Reprinted, by permission, from Chem. Eng., 65, 98. Copyright © 1958 by McGraw-Hill.

Figure 3.25 Schematic diagram of methyl methacrylate suspension polymerization process. Reprinted, by permission, from E. Guccione, Chem. Eng., 73, 138. Copyright © 1966 by McGraw-Hill.

Figure 3.26 Schematic representation of micelle formation in emulsion polymerization.

Figure 3.27 Schematic diagram of a typical emulsion polymerization reactor. Reprinted, by permission, from J. A. Brydson, *Plastic Materials*, p. 160. Copyright © 1966 by Van Nostrand.

Figure 3.28 Schematic diagram of ethylene gas phase polymerization process, Reprinted, by permission, from Chem. Eng., 80, 71. Copyright © 1979 by McGraw-Hill.