| 1 | 2a | 2b | 2c | 2d | 3a | 3b | 4 | $\sum$ |
|---|----|----|----|----|----|----|---|--------|
|   |    |    |    |    |    |    |   |        |
|   |    |    |    |    |    |    |   |        |

UFBA - DEPARTAMENTO DE MATEMÁTICA

Prova 1 - MATA01: Geometria analítica - Turma 05

Data: 25/09/2018

 $\star$  Todas as respostas devem ser justificadas.

Questão 1 (2 pts) Considere dois vetores  $\vec{v}$  e  $\vec{w}$  tais que  $|\vec{v}| = 5$ ,  $|\vec{w}| = 2$  e o ângulo entre  $\vec{v}$  e  $\vec{w}$  é  $\pi/3$ . Determine um vetor  $\vec{u}$  como combinação linear de  $\vec{v}$  e  $\vec{w}$  tal que  $\vec{u} \cdot \vec{v} = 20$  e  $\vec{u} \cdot \vec{w} = 5$ .

Questão 2 (3,5 pts) Determine se cada afirmação abaixo é verdadeira ou falsa. Justifique!

- (a) Se  $\vec{u}$  e  $\vec{v}$  são LI, então os vetores  $\vec{u}$ ,  $\vec{v}$  e proj $_{\vec{v}}\vec{u}$  são LI.
- (b) Se  $\vec{i}$ ,  $\vec{j}$  e  $\vec{k}$  é uma base ortonormal, não existe x tal que os vetores  $x\vec{i}+2\vec{j}+4\vec{k}$  e  $x\vec{i}-2\vec{j}+3\vec{k}$  sejam ortogonais.
- (c) Para quaisquer dois vetores  $\vec{v}, \vec{w}, |\vec{v} \times \vec{w}| \leq |\vec{v}| |\vec{w}|$ .
- (d) Se os vetores  $\vec{u}, \vec{v}, \vec{w}$  satisfazem  $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$ , então  $\vec{v} \times \vec{w} = \vec{0}$ .

Questão 3 (2 pts) Considere os pontos P(1,0,1), Q(2,1,3), R(1,1,1), S(2,2,3).

- (a) Determine a área do triângulo PQR.
- (b) Determine se os pontos P, Q, R, e S pertencem ao mesmo plano.

Questão 4 (2,5 pts) Mostre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo às bases, e sua medida é a média aritmética das medidas das bases.

Sugestão: Considere o trapézio da figura abaixo e prove primeiro que  $\vec{MN} = \frac{1}{2}(\vec{AB} + \vec{DC})$ .

