Cloud Infrastructure for Portable Al

Nathan Dolbir, Kennedy Fairey, Anirudh Oruganti

Problem Statement

- Portable devices don't have hardware capabilities to host many ML systems
 - Big tech has solved this problem, but developers with limited resources rarely attempt
- Solution: Build an end-to-end cloud computing infrastructure for low powered, portable devices
 - Multiple Transformer models to prove robustness and flexibility
 - Sentiment classifier that is structured like a chatbot app

Technical Challenges

- Projects of this nature usually have many more resources
 - People
 - Money
 - Technology
- Cloud computing for ML is not a widely studied area for ameteur developers
- There are technologies that would make this project much easier, but they cost a lot of money
- Not as much documentation for this kind of project as there is for other areas

Related Work

 Exploring Transformers in Emotion Recognition: a comparison of BERT, DistillBERT, RoBERTa, XLNet and ELECTRA Diogo Cortiz Brazilian Network Information Center (NIC.br) Pontifical Catholic University of São Paulo (PUC-SP)

- Learning rate: 5e-5

- Batch Size: 16

Epochs: 4

Threshold: 0.30

Time to complete	Training	Evaluation
BERT	02:40:00	00:00:40
DistilBERT	00:33:58	00:00:09
RoBERTa	01:08:56	00:00:42
XLNet	01:33:49	00:01:06
ELECTRA	00:13:04	00:00:07

Table 5: Time to Complete for GoEmotion

Emotion	BERT	Distil BERT	RoBERTa	XLNet	Electra
admiration	0.65	0.71	0.73	0.73	0.71
		0.79	0.79	0.73	233760
amusement	0.80	100	100000000000000000000000000000000000000	5253	0.79
anger	0.47	0.49	0.48	0.51	0.47
annoyance	0.34	0.40	0.38	0.37	0.29
approval	0.36	0.37	0.38	0.38	0.31
caring	0.39	0.43	0.47	0.48	0.00
confusion	0.37	0.43	0.43	0.44	0.34
curiosity	0.54	0.55	0.55	0.57	0.53
desire	0.49	0.53	0.58	0.56	0.00
disappointment	0.28	0.24	0.35	0.32	0.00
disapproval	0.39	0.39	0.43	0.41	0.35
disgust	0.45	0.47	0.49	0.47	0.00
embarrassment	0.43	0.54	0.57	0.55	0.00
excitement	0.34	0.33	0.34	0.32	0.00
fear	0.60	0.62	0.68	0.68	0.37
gratitude	0.86	0.90	0.90	0.90	0.90
grief	0.00	0.00	0.00	0.00	0.00
joy	0.51	0.57	0.57	0.56	0.53
love	0.78	0.77	0.79	0.78	0.78
nervousness	0.35	0.34	0.34	0.35	0.00
optimism	0.51	0.59	0.59	0.58	0.54
pride	0.36	0.22	0.00	0.00	0.00
realization	0.21	0.28	0.26	0.28	0.00
relief	0.15	0.00	0.00	0.00	0.00
remorse	0.66	0.71	0.70	0.77	0.63
sadness	0.49	0.55	0.55	0.53	0.48
surprise	0.50	0.53	0.58	0.56	0.47
neutral	0.68	0.66	0.66	0.65	0.68
macro avg	0.46	0.48	0.49	0.48	0.33
std	0.19	0.21	0.23	0.23	0.30

Table 4: Results of different models for GoEmotion Taxonomy

Approach: Implemented Infrastructure

- Use Google Cloud and Firebase for easy integration
- Google Cloud Triggers cause adjustments on UI and input for Cloud models

Approach: Models and Metrics

- Five Transformer models used
 - o BERT
 - DistillBERT
 - RoBERTa
 - ELECTRA
 - MobileBERT
- Metrics used
 - Accuracy
 - o F1 Macro score
 - Time to train
 - Evaluation

Model Parameters

Loss: Sparse Categorical Cross

Entropy

• Optimizer: Adam

Learning rate: 5e-5

Batch Size: 16

Epochs: 4

F1 Macro Score= 2 * (Precision * Recall / Precision + Recall)

Results (Infrastructure Implementation)

- The app works and returns a response
- Limited funds = no constant server
 - Every time the cloud function runs, a new instance is created
 - This takes about 60 seconds
- Calculating response time was unnecessary because of this

Results (Transformer Models)

Emotion	Bert	DistilBe rt		Roberta	MobileB ert
anger	0.8946	0.9270	0.9257	0.91197	0.90652
	32	07	14	2	6
fear	0.8874	0.8687	0.8879	0.8716	0.90868
	17	78	31	71	6
joy	0.9446	0.9448	0.9433	0.9475	0.95018
	49	03	69	89	1
love	0.8247	0.7959	0.8126	0.8044	0.84939
	98	87	98	28	8
sadness	0.9629	0.9615	0.9627	0.9640	0.96366
	01	71	12	41	8
surprise	0.7272	0.7448	0.7438	0.7516	0.70270
	73	28	02	78	3
accuracy	0.919	0.9205	0.924	0.9225	0.928
macro avg	0.8736	0.8738	0.8793	0.8752	0.88019
	12	29	71	3	3
weighted	0.9199	0.9202	0.9233	0.92112	0.92727
avg	62	82	78	2	

Figure 7. Above are the f1-macro avg from [4] D. Cortiz results after fine tuning GoEmotion data.

Models	Training(mi n)	Evalution(mi n)	Evalution(ms g/s)
Bert	39.898933	3.108629	0.093259
DistilBert	20.787233	2.53336	0.076001
Roberta	40.637583	3.122908	0.08981
Electra	12.080952	2.993671	0.093687
MobileBe rt	30.145858	7.588735	0.227662

Figure 8. Above are the elapsed time results for training and evaluation.

	Accuracy	Val Accuracy	Loss	Val Loss
DistillBERT	0.9265	0.9340	0.2069	0.1952
RoBERTa	0.9048	0.9300	0.2680	0.1903
BERT	0.9151	0.9364	0.2399	0.1547
ELECTRA	0.8887	0.9234	0.3096	0.2286
MobileBERT	0.8410	0.8731	0.4623	0.3513

Figure 5. Above are the metrics used to measure the performance of each of the five Transformer models. "Val" stands for validation and each value is the average over four epochs.

Conclusion and Broader Impact

- Proved the infrastructure can be refit for any ML system with custom models and UI with a NoSQL database
- Can be reproduced for research and industrial purposes
- High powered ML can be developed by anyone with a zero budget
- Intend to use and build upon this system going forward for future projects
- May publish work on how to use this infrastructure, reformatting final paper as full-fledged research paper