# Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data

Eduardo Elias Ribeiro Junior <sup>1 2</sup> Walmes Marques Zeviani <sup>1</sup> Wagner Hugo Bonar <sup>1</sup> Clarice Garcia Borges Demétrio <sup>2</sup>

<sup>1</sup>Statistics and Geoinformation Laboratory (LEG-UFPR) <sup>2</sup>Department of Exact Sciences (ESALQ-USP)

23rd July 2017

<jreduardo@usp.br> | <edujrrib@gmail.com>

## **Outline**

- 1. Background
- 2. Reparametrization
- 3. Case studies
- 4. Final remarks

1

# **Background**

### Count data

Random variables that assume non-negative integer values, representing the number of times an event occurs in the observation unit.

Let Y a counting random variable, so y = 0, 1, 2, ...

Examples in experimental researches:

- number of grains produced by a plant;
- number of fruits produced by a tree;
- number of insects on a particular cell;
- among others;

## Poisson model and limitations

#### GLM framework (NELDER; WEDDERBURN, 1972)

- Suitable for a support of the random variable;
- Efficient algorithm for estimation and inference;
- ▶ Relantionship between mean and variance, E(Y) = var(Y);
- Implemented in many software.

#### Limitations

- ▶ Overdispersion (more commom), E(Y) < var(Y)
- ▶ Underdispersion (less commom), E(Y) > var(Y)

## **COM-Poisson distribution**

- Allows for a non-linear decrease in ratios of successive probabilities,  $\frac{\Pr(Y=y-1)}{\Pr(Y=y)} = \frac{y^{\nu}}{\lambda}$ ;
- ▶ Probability mass function (SHMUELI et al., 2005) takes the form

$$\Pr(Y = y \mid \lambda, \nu) = \frac{\lambda^y}{(y!)^{\nu} Z(\lambda, \nu)}, \qquad Z(\lambda, \nu) = \sum_{j=0}^{\infty} \frac{\lambda^j}{(j!)^{\nu}}, \tag{1}$$

where  $\lambda > 0$  and  $\nu \geq 0$ 

- Moments are not available in closed form;
- Expected and variance values can be closely approximeted by

$$E(Y) \approx \lambda^{1/\nu} - \frac{\nu - 1}{2\nu}$$
 and  $var(Y) \approx \frac{\lambda^{1/\nu}}{\nu}$  (2)

with accurate approximations for  $\nu \le 1$  or  $\lambda > 10^{\nu}$  (SHMUELI et al., 2005; SELLERS; BORLE; SHMUELI, 2012)

# Study of the moments approximations



Figure: Quadratic errors for moments approximation. Dotted lines representing the restriction for good approximations by (SHMUELI et al., 2005).

# **COM-Poisson regression models**

#### Model definition

Modelling relationship between E(Y) and x indirectly (SELLERS; SHMUELI, 2010);

$$Y_i \mid \boldsymbol{x}_i \sim \text{COM-Poisson}(\lambda_i, \nu)$$
  
 $\eta(E(Y_i \mid \boldsymbol{x}_i)) = \log(\lambda_i) = \boldsymbol{x}_i^t \boldsymbol{\beta}$ 

#### **Estimation and Inference**

- Obtain parameters estimates by numerical maximization of likelihood;
- Maximization by BFGS algorithm, derivative-free (NOCEDAL; WRIGHT, 1995);
- Standard errors of coefficients are obtained by Wald method;
- Confidence intervals for  $\hat{\mu}_i$  are obtained by delta method.

2

# Reparametrization

# Reparametrized COM-Poisson

### Reparametrization

• Introduced new parameter  $\mu$ , using the mean approximation

$$\mu = \lambda^{1/\nu} - \frac{\nu - 1}{2\nu} \quad \Rightarrow \quad \lambda = \left(\mu + \frac{(\nu - 1)}{2\nu}\right)^{\nu};$$
 (3)

 Precision parameter is taken on the log scale, for avoid restrict parametric support

$$\phi = \log(\nu) \Rightarrow \phi \in \mathbb{R}$$

### Probability mass function

▶ Replacing  $\lambda$  and  $\nu$  as function of  $\mu$  and  $\phi$  in Equation 1

$$\Pr(Y = y \mid \mu, \phi) = \left(\mu + \frac{e^{\phi} - 1}{2e^{\phi}}\right)^{ye^{\phi}} \frac{(y!)^{-e^{\phi}}}{Z(\mu, \phi)}.$$
 (4)

# **COM-Poisson** $\mu$ regression models

#### Model definition

▶ Modelling relationship between E(Y) and x directly

$$Y_i \mid \boldsymbol{x}_i \sim \text{COM-Poisson}_{\mu}(\mu_i, \phi)$$
  
 $\log(E(Y_i \mid \boldsymbol{x}_i)) = \log(\mu_i) = \boldsymbol{x}_i^t \boldsymbol{\beta}$ 

#### Estimation and Inference

- Obtain parameters estimates by numerical maximization of likelihood;
- Maximization by BFGS algorithm, derivative-free (NOCEDAL; WRIGHT, 1995);
- Standard errors of coefficients are obtained by Wald method;
- ▶ Confidence intervals for  $\hat{\mu}_i$  are obtained by delta method.

3

# Case studies

# Artificial defoliation in cotton phenology



**Aim:** to assess the effects of five defoliation levels on the bolls produced at five growth stages;

**Design:** factorial  $5 \times 5$ , with 5 replicates;

**Experimental unit:** a vase with 2 plants;

#### Factors:

- Artificial defoliation (des): 0, 0,25, 0,5, 0,75, 1
- ► Growth stage (est): vegetative, flower bud, blossom, fig, cotton boll

**Response variable:** Total number of cotton bolls;

## Define model

### Linear predictor: following Zeviani et al. (2014)

log(μ<sub>ij</sub>) = β<sub>0</sub> + β<sub>1j</sub>def<sub>i</sub> + β<sub>2j</sub>def<sub>i</sub><sup>2</sup>
 i varies in the levels of artificial defoliation;
 j varies in the levels of growth stages.

#### Models fitted:

- ▶ Poisson ( $\mu_{ij}$ );
- ► COM-Poisson  $(\lambda_{ij}, \phi)$
- ► COM-Poisson<sub> $\mu$ </sub> ( $\mu_{ij}$ ,  $\phi$ )
- Quasi-Poisson (var( $Y_{ij}$ ) =  $\sigma \mu_{ij}$ )

### **Parameter estimates**

Table: Parameter estimates (Est) and ratio between estimate and standard error (SE)

|              | Poisson  |        | COM-Poisson |               | COM-Poisson <sub>µ</sub> |        | Quasi-Poisson |               |  |
|--------------|----------|--------|-------------|---------------|--------------------------|--------|---------------|---------------|--|
|              | Est      | Est/SE | Est         | Est/SE        | Est                      | Est/SE | Est           | Est/SE        |  |
| φ,σ          |          |        | 1,585       | 12,417        | 1,582                    | 12,392 | 0,241         |               |  |
| $\beta_0$    | 2,190    | 34,572 | 10,897      | 7,759         | 2,190                    | 74,640 | 2,190         | 70,420        |  |
| $\beta_{11}$ | 0,437    | 0,847  | 2,019       | 1,770         | 0,435                    | 1,819  | 0,437         | 1,726         |  |
| $\beta_{12}$ | 0,290    | 0,571  | 1,343       | 1,211         | 0,288                    | 1,223  | 0,290         | 1,162         |  |
| $\beta_{13}$ | -1,242   | -2,058 | -5,750      | -3,886        | -1,247                   | -4,420 | -1,242        | -4,192        |  |
| $\beta_{14}$ | 0,365    | 0,645  | 1,595       | 1,298         | 0,350                    | 1,328  | 0,365         | 1,314         |  |
| $\beta_{15}$ | 0,009    | 0,018  | 0,038       | 0,035         | 0,008                    | 0,032  | 0,009         | 0,036         |  |
| $\beta_{21}$ | -0,805   | -1,379 | -3,725      | <i>-2,775</i> | -0,803                   | -2,961 | -0,805        | -2,809        |  |
| $\beta_{22}$ | -0,488   | -0,861 | -2,265      | -1,805        | -0,486                   | -1,850 | -0,488        | <i>-1,754</i> |  |
| $\beta_{23}$ | 0,673    | 0,989  | 3,135       | 2,084         | 0,679                    | 2,135  | 0,673         | 2,015         |  |
| $\beta_{24}$ | -1,310   | -1,948 | -5,894      | -3,657        | -1,288                   | -4,095 | -1,310        | -3,967        |  |
| $\beta_{25}$ | -0,020   | -0,036 | -0,090      | -0,076        | -0,019                   | -0,074 | -0,020        | -0,074        |  |
| LogLik       | -255,803 |        | -208,250    |               | -208,398                 |        | <u> </u>      |               |  |
| AIC          | 533,606  |        | 440,500     |               | 440,795                  |        | _             |               |  |
| BIC          | 564,718  |        | 474,440     |               | 474,735                  |        | _             |               |  |

### **Predictive curves**



Figure: Curves of predicted values with 95% confidence intervals.

## Additional results

▶ Empirical correlations between  $\hat{\phi}$  and  $\hat{\beta}$  estimators is approximately 0 for reparametrized model.

Table: Empirical correlations between dispersion and location parameters estimators.

|                          | $\hat{eta}_0$ | $\hat{eta}_{11}$ | $\hat{eta}_{12}$ | $\hat{eta}_{13}$ | $\hat{eta}_{14}$ | $\hat{eta}_{15}$ | $\hat{eta}_{21}$ | $\hat{eta}_{22}$ | $\hat{eta}_{23}$ | $\hat{eta}_{24}$ | $\hat{\beta}_{25}$ |
|--------------------------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------|
| COM-Poisson              | 266'0         | 0,223            | 0,153            | -0,490           | 0,161            | 0,004            | -0,350           | -0,228           | 0,263            | -0,458           | 600'0-             |
| COM-Poisson <sub>µ</sub> | 0,001         | -0,000           | -0,000           | -0,001           | -0,001           | -0,000           | 00000            | 00000            | 0,001            | 0,002            | 00000              |

▶ The computational time consuming to fit COM-Poisson was 1,404 times the time consuming by COM-Poisson $_{\mu}$ .

4

# Final remarks

## **Conclusions**

### **Future work**

#### Provision



Full-text article is available on ResearchGate (in portuguese) <a href="https://www.researchgate.net/publication/316880329">https://www.researchgate.net/publication/316880329</a>



All codes (in R) and source files are available on GitHub <a href="https://github.com/jreduardo/rbras2017">https://github.com/jreduardo/rbras2017</a>>

### Acknowledgments

► National Council for Scientific and Technological Development (CNPq), for their support

## References

NELDER, J. A.; WEDDERBURN, R. W. M. Generalized Linear Models. *Journal of the Royal Statistical Society. Series A (General)*, v. 135, p. 370–384, 1972.

NOCEDAL, J.; WRIGHT, S. J. Numerical optimization. [S.l.]: Springer, 1995. 636 p. ISSN 0011-4235. ISBN 0387987932.

SELLERS, K. F.; BORLE, S.; SHMUELI, G. The com-poisson model for count data: a survey of methods and applications. *Applied Stochastic Models in Business and Industry*, v. 28, n. 2, p. 104–116, 2012.

SELLERS, K. F.; SHMUELI, G. A flexible regression model for count data. *Annals of Applied Statistics*, v. 4, n. 2, p. 943–961, 2010. ISSN 19326157.

SHMUELI, G. et al. A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. *Journal of the Royal Statistical Society. Series C: Applied Statistics*, v. 54, n. 1, p. 127–142, 2005.

ZEVIANI, W. M. et al. The Gamma-count distribution in the analysis of experimental underdispersed data. *Journal of Applied Statistics*, p. 1–11, 2014.