## Mathématiques R213 CR2 du 15/06/2023

## R&T Saint Malo -FI1A



On numérotera les questions, mais on pourra les traiter dans l'ordre que l'on souhaite.

$$\underline{\text{Rappel}:} \quad \binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \text{ Ainsi } \binom{n}{2} = \frac{n!}{2!(n-2)!} = \ \frac{n(n-1)}{2}$$

Nom Prénom:

exercice 1 : On considère les deux matrices suivantes :

$$A = \begin{pmatrix} -4 & 3 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & -1 \end{pmatrix}$$

Parmi les calculs suivants, faites ceux qui sont possibles, et expliquez pourquoi les autres ne sont pas possibles :

$$A + 2I$$
  $A + B$   $AB$   $BA$ ,  $A^2$   $B^2$ 

exercice 2:

Les matrices 
$$M = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$
 et  $N = \begin{pmatrix} -2 & -1 & 4 \\ 1 & 0 & -1 \\ 1 & 1 & -2 \end{pmatrix}$  sont inverses l'une de l'autre.

Utilisez-les pour résoudre (S) le système d'équations suivant :

(S) 
$$\begin{cases} -2x - y + 4z = 1\\ x - z = 2\\ x + y - 2z = 3 \end{cases}$$

exercice 3: Soit la matrice  $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ 

- 1) Montrer que la matrice A est nilpotente (c'est-à-dire qu'il existe un entier n>0 tel que  $A^n=O$ ).
- 2) Soit la matrice B = A + I. Ecrire les coefficients de la matrice B.
- 3) Calculer  $B \times (I A + A^2)$ . En déduire que B est inversible. Donnez les coefficients de l'inverse de B.
- 4) En utilisant la formule du binôme de Newton, développer  $(A + I)^n$ , pour tout entier n. En déduire l'expression de B<sup>n</sup> sous la forme d'une somme de 3 matrices.
- 5) En déduire les coefficients de B<sup>n</sup>

## exercice 4:

On considère les matrices 
$$A = \begin{pmatrix} -0.5 & 1.5 \\ -1 & 2 \end{pmatrix}$$
,  $P = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$  et  $Q = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$ 

- 1) Montrez que  $Q = P^{-1}$ .
- 2) On appelle D la matrice  $P^{-1}$ . A.P. Vérifiez que la matrice D est une matrice <u>diagonale</u>.
- 3) En déduire les coefficients de  $D^n$  pour tout  $n \in \mathbb{N}$
- 4) Justifier que  $A = PDP^{-1}$ . Donnez, en justifiant, une relation entre  $A^n$  et  $D^n$ . En déduire que

1'on a : 
$$A^n = \begin{pmatrix} \frac{3}{2^n} - 2 & \frac{-3}{2^n} + 3 \\ \frac{2}{2^n} - 2 & \frac{-2}{2^n} + 3 \end{pmatrix}$$

5) On considère les suites  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  définies par  $u_0=1$  et  $v_0=2$  et

$$\begin{cases} u_{n+1} = -0.5u_n + 1.5v_n \\ v_{n+1} = -u_n + 2v_n \end{cases}$$

Ecrivez ce système sous forme d'une relation matricielle faisant intervenir la matrice A.

- 6) En déduire une relation entre  $\binom{u_n}{v_n}$  et  $\binom{u_0}{v_0}$
- 7) En déduire l'expression des termes généraux des suites  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  dans le cas où  $u_0=1$  et  $v_0=2$ . Quelles sont dans ce cas les limites des suites  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$ ?