Logistic Regression Model

Cost Function

For linear regression, we had our cost function as:

$$J(heta) = rac{1}{m} \cdot \sum_{i=1}^{m} rac{1}{2} \cdot (h_{ heta}(x^{(i)}) - y^{(i)})^2$$

We'll use an alternateway of writing the cost function. Instead of using the squared error term as above, we'll use:

$$J(heta) = rac{1}{m} \cdot \sum_{i=1}^m cost(h_{ heta}(x^{(i)}), y^{(i)})$$

$$=> cost(h_{ heta}(x),y)=rac{1}{2}(h_{ heta}(x)-y)^2$$

If we plot this function for logistic regression, when

$$h_{ heta}(x) = rac{1}{1 + e^{- heta^T x}}$$

We'll get a plot of non-convex function like this:

This function will have many local optima, and we cannot run gradient descent on this sort of function. Instead, we want a convex function which will guarantee that gradient descent will converge on the global minimum.

We'll therefore use,

$$cost(h_{ heta}(x),y) = egin{cases} -log(h_{ heta}(x)) & ext{if } y=1 \ -log(1-h_{ heta}(x)) & ext{if } y=0 \end{cases}$$

If y=1 and $h_{ heta}(x)=1$, then cost=0

But as
$$h_{ heta}(x)
ightarrow 0$$
 , $cost
ightarrow \infty$

It captures intuition that if $h_{\theta}(x)=0$, [predict $P(y=1|x;\theta)=0$], but y=1, we'll penalize the learning algorithm by a very large cost. It's like the probability of a patient to have a malignant tumor is 0, even though the value of y=1.

Therefore,

$$cost(h_{ heta}(x),y) = egin{cases} 0 & ext{if } h_{ heta}(x) = y \ \\ \infty & ext{if } y = 0 ext{ and } h_{ heta}(x)
ightarrow 1 \ \\ \infty & ext{if } y = 0 ext{ and } h_{ heta}(x)
ightarrow 0 \end{cases}$$

In logistic regression, the cost function for our hypothesis outputting (predicting) $h_{\theta}(x)$ on a training example that has label $y \in \{0,1\}$ is:

$$cost(h_{\theta}(x), y) = \left\{ egin{aligned} -log(h_{\theta}(x)) & ext{if } y = 1 \ -log(1 - h_{\theta}(x)) & ext{if } y = 0 \end{aligned}
ight.$$

Which of the following are true? Check all that apply.

- \blacksquare If $h_{\theta}(x) = y$, then $cost(h_{\theta}(x), y) = 0$ (for y = 0 and y = 1)
- lacksquare If y=0, then $cost(h_{ heta}(x),y) o\infty$ as $h_{ heta}(x) o1$
- lacksquare If y=0, then $cost(h_{ heta}(x),y) o\infty$ as $h_{ heta}(x) o0$
- lacksquare Regardless of whether y=0 or y=1, if $h_{ heta}(x)=0.5$, then $cost(h_{ heta}(x),y)>0$