Recitation #4

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

recall: norm and inner product

Inner product

Let V be a vector space. An inner product on V is a function \langle , \rangle from pairs of vectors $V \times V$ to $\mathbb R$ that holds the following points

- **1** Symmetry: $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$
- 2 Linearity: $\langle u+w,v\rangle=\langle u,v\rangle+\langle w,v\rangle$ and same for scalar multiplication.
- **3** Positive-defined: $\langle v, v \rangle \geq 0$ with equality if and only if v = 0

practice: inner product

Exercise 1

Explain why the following functions $\langle \cdot, \cdot \rangle$ are not an inner product

- **3** $\langle x, y \rangle = x_1 y_1 + x_2 y_2$

1) Symmetry
$$\times$$
 because $< y_1 \times > = y_1 \times 2 + y_2 \times 3 + y_3 \times 1$ and $y_1 \times 2 + y_2 \times 3 + y_3 \times 1 \neq x_1 + x_2 + y_3 \times 3 \neq x_1 = x_1 + x_2 + x_2 + x_3 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 + x_3 \neq x_1 = x_1 + x_2 + x_2 + x_3 + x_$

practice: inner product

Exercise 1

Explain why the following functions $\langle \cdot, \cdot \rangle$ are not an inner product

- **6** $\langle x, y \rangle = x_1 y_1 + x_2 y_2$

2) himearity
$$\times$$

 $(x+w, y) \neq (x,y) + (w,y)$
because $(a+b)^2 \neq a^2 + b^2$

practice: inner product

Exercise 1

Explain why the following functions $\langle \cdot, \cdot \rangle$ are not an inner product

- 3) Typo: x,yeR3 if x,yeR2 then it would be an inner product !!

Not positive definite because take $\times \in \mathbb{R}^3$ $\times = (001)$ $(\times, \times) = 0$ but $\times \neq 0$

recall: Norm

Norm induced by inner product

(Proposition) If $\langle \cdot, \cdot \rangle$ is an inner product on V then $||v|| = \sqrt{\langle v, v \rangle}$ is its induced norm.

Exercise 2

Compute ||ax|| for $a \in \mathbb{R}$ scalar and $x \in \mathbb{R}^n$ vector.

$$||a \times || = |\langle a \times, a \times \rangle = |a| ||x||$$

limearly

practice: norm

When does
$$||x + y|| = ||x|| + ||y||$$
 for $x, y \in \mathbb{R}^n$?

practice: norm and inner product

Exercise 4

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $x \in \mathbb{R}^n$ a vector. Show that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}$$

Hint: Cauchy-Schwarz inequality $\|\langle u, v \rangle\|^2 \le \langle u, u \rangle \cdot \langle v, v \rangle$

$$A = \begin{pmatrix} r_1 \\ \vdots \\ r_m \end{pmatrix} \text{ as row } ||Ax||^2 = \underbrace{\langle r_1 \rangle x}^2 + \dots + \underbrace{\langle r_m \rangle x}^2 \\ = \underbrace{|| r_1 ||^2 || x ||^2}_{\text{vectors}} + \dots + || r_m || || x ||^2 \\ = \underbrace{|| x ||^2 (|| r_1 ||^2 + \dots + || r_m ||)}_{\text{max}}$$

practice: norm and inner product

Exercise 4

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $x \in \mathbb{R}^n$ a vector. Show that

$$||Ax|| \le ||x|| \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}$$

$$||Ax||^{2} \le ||x||^{2} \le ||A||^{2}$$

$$= ||x||^{2} (||x_{1}||^{2} + ... + ||x_{m}||^{2})$$

$$= ||x_{1}||^{2} (||x_{1}||^{2} + ... + ||x_{m}||^{2})$$

$$= ||x_{1}||^{2} (||x_{1}||^{2} + ... + ||x_{m}||^{2})$$

recall: orthogonal projection

Orthogonality

Two vectors $u,v\in\mathbb{R}^n$ are orthogonal if and only if $\langle u,v \rangle=0$

Projection

Let S be a subspace of \mathbb{R}^n . The orthogonal projection of a vector x onto S is defined as the vector $P_S(x) \in S$ such that minimizes the distance to x:

$$P_{\mathbf{S}}(\mathbf{x}) = \operatorname{argmin}_{y \in \mathbf{S}} \|\mathbf{x} - y\|$$

practice: orthogonality

Exercise 5

Prove that if $v_1, ..., v_k \in \mathbb{R}^n$ are orthogonal vectors then they also are linearly independent.

We know
$$\langle V_i, V_j \rangle = 0$$
 for $i,j = 1,..., K$ $i \neq j$
 $60AL: \alpha_1 V_1 + ... + \alpha_K V_K = 0$ $\Rightarrow \lambda_1 = ... = \alpha_K = 0$
 $xV_1 : \alpha_1 \langle v_1, v_1 \rangle + ... + \alpha_K \langle v_1, v_K \rangle = 0$
 $|\alpha_1 \langle v_1, v_1 \rangle = 0$ $\Rightarrow \alpha_1 = 0$ $\Rightarrow \alpha_1 = 0$ $\Rightarrow \alpha_2 = 0$

practice: orthogonal projection

Exercise 6

Show that if $P_S(x)$ denotes the orthogonal projection onto subspace S then

- **1** $||P_S(x)|| \le ||x||$

Recall: if $v_1, ..., v_k$ is an orthonormal basis of S then the projection onto S can be written as $P_S(x) = \langle x, v_1 \rangle v_1 + ... + \langle x, v_k \rangle v_k$ (Exercise: prove it).

1)
$$\|P_{S}(X)\|^{2} = \|\underbrace{E}(X,V_{1})V_{1}\|^{2}$$
 $= \|X\|^{2}$

Lecange inequality

athonormal basis

practice: orthogonal projection

Exercise 6

Show that if $P_S(x)$ denotes the orthogonal projection onto subspace S then

- **1** $||P_S(x)|| \le ||x||$

Recall: if $v_1, ..., v_k$ is an orthonormal basis of S then the projection onto S can be written as $P_S(x) = \langle x, v_1 \rangle^{V_1} + ... + \langle x, v_k \rangle^{V_1} \cdot ...$

Extend
$$5u_1$$
, ..., $u_k l \in S$ show $(x-P_S(x), S) = 0$
 $\{x \neq v_1, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$
 $\{v_{k+1}, \dots, v_n l \in S \text{ to an orthogonal Larks of } \mathbb{R}^n \}$

practice: orthogonal spaces

But $S \in S$ So $(x - P_S(x)^n 3/S) = 0$ [and orthogonal

Exercise 7

Let S,U be subspaces of a vector space V. Prove the following statement: $S\subset U\longrightarrow U^\perp\subset S^\perp$

we know that eves - vell let well (w, u>=0 for all well he need to show we st

practice: orthogonal spaces

Exercise 8

Let $A \in \mathbb{R}^{n \times m}$ be a matrix. Assume the Euclidean inner product. Prove that

$$Im(A^T) = ker(A)^{\perp}$$

Hint: This is an equality between sets so you need to prove that one is inside the other and viceversa. Start with \subset and use Ex. 6 for the other.

• Proof
$$Im(A) \subset Ken(A)$$

Let $x \in Im(A^7)$ then $\exists y \text{ such that } Ay = x$

Let $v \in Ken(A)$ We need to show that $(x, v) = 0$

Calculate $(x, v) = xv = (Ay)v = y(Av) = 0$
 $x \in Im(A)$
 $v \in Ken(A)$
 $v \in Ken(A)$
 $v \in Ken(A)$

practice: orthogonal spaces

Exercise 8

Let $A \in \mathbb{R}^{n \times m}$ be a matrix. Assume the Euclidean inner product. Prove that

$$Im(A^T) = ker(A)^{\perp}$$

Hint: This is an equality between sets so you need to prove that one is inside the other and viceversa. Start with \subset and use Ex. 7 for the other.