上海大学 计算机学院 《数字逻辑实验》报告五

姓名	冯新元	学号 _	18120232	
时间	2019/11/7	机位 _	指导教师	何冰

一、实验目的

- 1、同步二进制计数器
- 2、移位寄存器

二、实验原理

同步时序逻辑电路又称为时钟同步时序逻辑电路,是以触发器状态为标志的。 它的状态存储器是触发器,时钟输入信号连接到所有触发器的时钟控制端,在时 钟信号的有效触发边沿才改变状态,即同步改变。

同步计数器就是将每个触发器的时钟端均接在同一个时钟脉冲源上,各触发器如要翻转,应在时钟脉冲作用下同时翻转,因此时钟端不能再由其它触发器来控制。

寄存器由多个锁存器或触发器组成,用于存储一组二进制信号,是数字系统中常用的器件。

在时种信号的控制下,所寄存的数据依次向左(由低位向高位)或向右(由高位 向低位)移位的寄存器称为移位寄存器。根据移位方向的不同,有左移寄存器、 右移寄存器和双向寄存器之分。

三、实验内容

- 1. 用分立元件构成 4 位同步二进制计数器。
- (1) 实验步骤

用 74LS112 芯片,参照指导书,构成 4 位同步二进制加(减)法计数器输入单步脉冲,测试其功能。

各触发器的驱动方程为: J0=K0=1

 $J1=K1=Q_0$

 $J2=K2=Q_0Q_1$

J3=K3=Q₀Q₁Q₂

计数器的状态方程为: $Q_0^{n+1} = \overline{Q}_0$

 $Q_1^{n+1}=Q_0\overline{Q}_1+\overline{Q}_0Q_1$

 $\mathbb{Q}_2^{n+1}\!\!=\!\!\mathbb{Q}_0\mathbb{Q}_1\overline{\mathbb{Q}}_2\!+\!\overline{\mathbb{Q}_0\mathbb{Q}}_1\mathbb{Q}_2$

 $Q_{3}^{n+1}\!\!=\!\!Q_{0}Q_{1}Q_{2}\overline{Q}_{3}\!+\!\overline{Q_{0}Q_{1}Q_{2}}Q_{3}$

由于电路复杂, 先用 Quartus II 画出模拟电路图。

(2) 实验现象 LED2 为进位, LED3, LED4, LED5, LED6 依次是高位到低位。

(3) 数据记录、分析与处理

输入脉		电路状态				进
冲序号	Q3	Q2	Q1	Q0	等效十进制数	位输出 C
0	0	0	0	0	0	0
1	0	0	0	1	1	0
2	0	0	1	0	2	0

3	0	0	1	1	3	0
4	0	1	0	0	4	0
5	0	1	0	1	5	0
6	0	1	1	0	6	0
7	0	1	1	1	7	0
8	1	0	0	0	8	0
9	1	0	0	1	9	0
10	1	0	1	0	10	0
11	1	0	1	1	11	0
12	1	1	0	0	12	0
13	1	1	0	1	13	0
14	1	1	1	0	14	0
15	1	1	1	1	15	1
16	0	0	0	0	0	0

(4) 实验结论

经测试,4位同步二进制计数器输出符合。

2. 实验任务二:

使用 2 片双 D 触发器 74LS74 构成单向移位寄存器。

(1) 实验现象

在 Quartus II 中设计,仿真模拟输出。图为左移寄存器,右移同理。

K13 为高电平时,输入有效。K12 为输出,

(2) 实验结论 仿真电路与实际输出一致,验证电路正确。

3. 实验任务三:

用所完成的寄存器构成环形计数器和扭环计数器。

(1) 实验步骤 环形计数器

扭环计数器

(2) 实验现象

图为环形计数器的输出。

(3) 实验结论

环形计数器循环左移,输出符合环形计数器要求。 扭环计数器输出符合要求。

四、建议和体会

移位寄存器可以实现很多有意思的功能,通过触发器的配合就能够实现,加深了我对于触发器的理解。

但实验设备老旧,导致在实验操作过程中产生许多不必要的问题,例如:软件报错,电脑死机,芯片无法识别等。建议及时更换,以提高同学们的学习和实验效率。