HW 13 Sola

#1. WTS: [a, bn conv.

Following the hist of HW6, #4, define

and write

$$\begin{split} \left| \sum_{n=M}^{N} a_{n}^{k} b_{n} \right| &= \left| \sum_{n=M}^{N+1} (a_{n} - a_{n-1}) S_{n} + a_{N} S_{N} - a_{M}^{k} S_{M-1} \right| \\ &\leq \sum_{n=M}^{N+1} |a_{n}^{k} - a_{n-1}| |S_{n}| + |a_{M}^{k}| |S_{N}| + |a_{M}^{k}| |S_{M-1}| \\ &\leq L \left(\sum_{n=M}^{N+1} |a_{n} - a_{n-1}| |a_{n}| + \cdots + |a_{n-1}| + |a_{N}| + |a_{M}| \right) \end{split}$$

 $(\forall \epsilon > 0, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$ $(Also, \exists N > 0 \text{ at. } |an| < \epsilon \forall n > N_0)$

 $\left| \sum_{n=M}^{N} \alpha_n t_n \right| < L \left(k \epsilon^{k-1} \sum_{n=M}^{N-1} |\alpha_{\lambda} - \alpha_{\lambda-1}| + 2 \epsilon^{k} \right)$

$$< L (k+2) \epsilon^{k-1}$$

Then Eak by conv. follows from Cauchy criterion. D

#2. 04870, 3870 At. 1X1<8 > (1000) frex)-fix) < 8

For anyodxIc 8, we have

$$\begin{split} \left| \frac{f(x) - f(\frac{x}{2})}{x} \right| &\leq \left| \frac{f(x) - f(\frac{x}{2})}{x} \right| + \dots + \left| \frac{f(\frac{x}{2}) - f(\frac{x}{2})}{x} \right| \\ &= \frac{1}{2} \left| \frac{f(x) - f(\frac{x}{2})}{\frac{x}{2}} \right| + \frac{1}{4} \left| \frac{f(\frac{x}{2}) - f(\frac{x}{2})}{\frac{x}{2}} \right| + \dots + \frac{1}{2^{n}} \left| \frac{f(\frac{x}{2}) - f(\frac{x}{2})}{\frac{x}{2}} \right| < \varepsilon \,. \end{split}$$

Let $n\to\infty$, since $\lim_{x\to\infty}f(x)=0$, we obtain $\left|\frac{f(x)}{x}\right|< \varepsilon$.

Hence I'm f(x) =0.

#3; Such f is a const. fin.

VEDO, 35>0 Rt. IV-YICS → Ifinx)-finy) < E. Yn.

In particular, IXI < S → Ifinx)-finy < E. Yn.

For any $x_0 \in \mathbb{R}$, choose I large enough st. $\left|\frac{x_0}{n}\right| < \delta$.

Then we have If(x0)-fo) < E.

This ineq. holds for any Eso, hence f(xo) = f(o) + xo ER.

#4:

- (a). Stace wsx + [-1,1], the rost of x=cosx ear Ponly be in the range [-1,1].
 - . Since x < 0 < cosx & x & [-1,0], the root can only be in the raye (0,1).
 - · WHITH O COUNTY
 - Let $f(x) = x \cos x$, f(0) = -1(0), f(1) > 0. So f has at least one root in (0,1] by IVT.
 - f(x)= |+ sin x > 0 for x \(\ell \) (0,11),

 so \(\text{hese} \) exactly one root.

(16) Call the unique root of X=wsx: Xot (0,1)

Suppose a1 > Xo:

Claim. 79, > 03 > 05> --- > X0 > --- > 26 > 04 > 02 > 0.

- . It's clear that $a_1 > x_0 \Rightarrow x_0 > a_2$, and $a_1 < x_0 \Rightarrow x_0 < a_2$
- · By taking derivative of g(x):= cus (cus x) -x.

 show one can discount that g is monstanically decreasing.

Thus \forall a > xo, we have g(a) < g(xo) = 0.

= a1>d3 > X0

Hence {ainti}, {ain} are both bdd. mondone seg., therefore convergent.

• $a_{2n+1} = cos(cos a_{2n-1}) \Rightarrow \begin{cases} \lim_{n\to\infty} a_{2n+1} = cos(cos \lim_{n\to\infty} a_{2n+1}) \end{cases}$

→ A= Xo.

· Similarly, one can show that time azn = Xo = lim azn = Xo = lim azn = Xo.

There fore (an) is convergent, and the limit is xo.

(c) Zan div. since liman = xo to. [

#5: False. $f(x) = \begin{cases} 1 & x = \frac{1}{10} \text{ for some prime number} \\ 0 & \text{other.} \end{cases}$

#6

Claim: 3 No>0 st. Hallman Pn(x) In> No have the same degree.

Pf Othernise, $V \otimes N > 0$, $\exists M > N$ Set. $P_N(x)$ and $P_M(x)$ have different degrees. Then $\sup_{x \in R} |P_N(x) - P_M(x)| = \infty$.

This contradits of the Country criterion for unif, conv. p

Using the same argument, one can show that $\exists N_1 > 0$ at the coefficients of $P_n(x) \ \forall n > N_1$ are all identical.

Hence the unif. limid, f(x) is obviously a paly.

Consider $h(x) = e^{g(x)} f(x)$. h(a) = h(b) = 0,

By MV7, $\exists x \in (a,b)$ at. h'(x) = 0 $g'(x) e^{g(x)} h(x) + e^{g(x)} f'(x)$

> 9'(x) f(x) + f(x)=0. p

#8.

(c)
$$F(x) = f(x) (g(a) f(b) - g(b) f(a))$$

+ $g'(x) (f(a) f(b) - f(b) f(a))$
+ $f(x) (f(a) g(b) - f(b) g(a)).$

#9. It's dear that the lower sum of any partition P

WTS:
$$u(f) = \inf_{p} u(f,p) = 0$$
, (therefore f is int. & $\int f = 0$)

Ef: YEZO, the set

is a finite set. say Bz= {o<x1<x2<.... < xn=1}.

Choose m large enough at. •
$$\frac{1}{m} < \frac{\varepsilon}{2n}$$
 • $\chi_{i+1} = \frac{1}{2m}$.

Consider the partition
$$P = \{0, X_1 - \frac{1}{\alpha m}, X_1 + \frac{1}{2m}, X_2 - \frac{1}{2m}, X_2 + \frac{1}{2m}, \dots, 1\}$$

#10.

(a) " QCF dense >> Vxcy in F, 3 q & Q & at xcqcy".

PE Supprise 3 xcy in F st. \$\frac{1}{2} q & Q & st. xcqcy.

Then \text{x+y} & Q & is not a limit pt of Q.

\[
\text{\$\t

(b) Start with an upper bound $P_1 \in \mathbb{R}$ and a $q_1 \in \mathbb{R}$ upper bund of S.

Consider $\frac{P_1 + q_1}{2} \in \mathbb{R}$ If $\frac{P_1 + q_1}{2}$ is an upper bound of S, define $P_2 := \frac{P_1 + q_1}{2}$ and $q_2 := q_1$ If $\frac{P_1 + q_1}{2}$ is not an upper bound of S, define $P_2 := P_1$ and $q_2 := \frac{P_1 + q_1}{2}$ construct.

Construct (Pn), (9n) by proceeding the construct

⇒ X ∈ Q. T

Then (pn) CQ is a decreasing seq.

(qn) CQ — increasing seq.

and lim | Pn-9n |=0.

Moreover, O (p1, 91, p2, p3, 92, ---) is Couchy by our construction.

Hence it conveyes to XEF by assuption.

Claim: X & F is the least upper bound of S.

Pf. If x is not an upper bound of S, then $\exists s \in S$ st. x < S.

Since each pn is upon bound of & and limpn=x, VEDO, JNDO 21. NON > |Pn-x| < E.

Pick $\varepsilon = S - X > 0$, then $x > P_n - \alpha \varepsilon \ge S - \varepsilon = x$. $\forall n > N$. \neq . $\not\vdash$

If x is not the least upper bound of S, i.e. If y upper bound of S st. y<x.

Since each 9n is not an upper bond of S and $\lim_{N \to \infty} 9n = X$, let S = X - Y > 0, $\exists N > 0$ at. $n > N \Rightarrow |9n - X| < S$. $\Rightarrow X < 9n + S \leq Y + S = X$. \Rightarrow