Package 'qcrlscR'

April 1, 2025

Date 26-03-2025, Wed
Type Package
Title Quality Control-based Robust LOESS Signal Correction in R
Version 0.1.2
Author Wanchang Lin, Warwick Dunn
Maintainer Wanchang Lin <wanchanglin@hotmail.com></wanchanglin@hotmail.com>
Description Quality control–based robust LOESS signal correction for metabolomics data analysis.
Depends R (>= $3.0.0$)
License GPL (>= 2)
<pre>URL https://github.com/wanchanglin/qcrlscR</pre>
BugReports https://github.com/wanchanglin/qcrlscR/issues
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
•
LazyLoad yes
LazyData yes
ZipData No
Contents
batch_shift
man_qc
mv_filter
mv_filter_qc
mv_perc
qc rlsc
qc_rlsc_wrap
Index 10

2 man_qc

batch_shift

Batch shifting

Description

Remove batch effect withing each block.

Usage

```
batch_shift(x, y, method = "mean", overall_average = TRUE)
```

Arguments

x a data matrix.

y a categorical data for batch/block information.

method method for shifting.

overall_average

a logical value to indicate whether or not an overall average will be added after

shifting.

Value

a shifted data matrix.

References

Silvia Wagner, et.al, Tools in Metabonomics: An Integrated Validation Approach for LC-MS Metabolic Profiling of Mercapturic Acids in Human Urine Anal. Chem., 2007, 79 (7), pp 2918-2926, DOI: 10.1021/ac062153w

Examples

```
names(man_qc)
data <- man_qc$data
meta <- man_qc$meta
## batch shifting
cls.bl <- factor(meta$batch)
res <- batch_shift(data, cls.bl, overall_average = TRUE)</pre>
```

man_qc

man_qc: test data for QC-RLSC

Description

This HPLC data set includes 4 batches with missing values.

Usage

man_qc

mv_filter 3

Format

A list with data matrix and meta data:

data A data frame with 462 replicates (row) and 656 features (column)

meta A data frame with 2 columns:

• batch: 4 batches

• sample_type: QC and Sample

Examples

```
man_qc
t(sapply(man_qc, dim))
# Select data matrix and meta data
data <- man_qc$data
meta <- man_qc$meta
# Select batches and data types
cls.qc <- factor(meta$sample_type)
cls.bl <- factor(meta$batch)</pre>
```

mv_filter

Filtering variable based on the percentage of missing values

Description

This function calculates the percentage of missing values and keeps those features with missing values percentage less than the designed threshold.

Usage

```
mv_filter(x, thres = 0.3)
```

Arguments

x a data matrix. The columns are features.

thres threshold of missing values. Features less than this threshold will be kept. Value

has to be between 0 and 1.

Value

a list of with contents:

- dat the filtered data matrix
- idx a logical vector of index for keeping features.

See Also

```
Other missing value processing: mv_filter_qc(), mv_perc()
```

4 mv_filter_qc

Examples

```
names(man_qc)
data <- man_qc$data
meta <- man_qc$meta
## check missing value rates
tail(sort(mv_perc(data)), 20)
tmp <- mv_filter(data, thres = 0.15)
data_f <- tmp$dat
## compare
dim(data_f)
dim(data)</pre>
```

mv_filter_qc

Data filtering based on "qc" missing values

Description

Data filtering based on "qc" missing values

Usage

```
mv_filter_qc(x, y, thres = 0.3)
```

Arguments

```
x a data matrix.
```

y a character string with contents of "sample", "qc" and "blank".

thres threshold of missing values. Features less than this threshold will be kept.

Value

a list of with contents:

- · dat the filtered data matrix
- idx a logical vector of index for keeping features.

See Also

Other missing value processing: mv_filter(), mv_perc()

Examples

```
names(man_qc)
data <- man_qc$data
meta <- man_qc$meta
## check missing value rates
tail(sort(mv_perc(data)), 20)
## missing values filtering based on QC
cls.qc <- factor(meta$sample_type)
tmp <- mv_filter_qc(data, cls.qc, thres = 0.15)
data_f <- tmp$dat
## compare
dim(data_f)
dim(data)</pre>
```

mv_perc 5

mv_perc

Missing value percentage

Description

Calculate missing value percentage.

Usage

```
mv_perc(x)
```

Arguments

Х

an vector, matrix or data frame.

Value

missing value percentage.

See Also

```
Other missing value processing: mv_filter(), mv_filter_qc()
```

Examples

```
names(man_qc)
data <- man_qc$data
meta <- man_qc$meta
## check missing value rates
tail(sort(mv_perc(data)), 20)</pre>
```

outl_det_u

Univariate outlier detection

Description

Perform outlier detection using univariate method.

Usage

```
outl_det_u(x, method = c("percentile", "median"))
```

Arguments

x a numeric vector.

method

method for univariate outlier detection. Only percentile and median are supported.

6 qc_rlsc

Details

- median: the absolute difference between the observation and the sample median is larger than 2 times of the Median Absolute Deviation divided by 0.6745.
- percentile: either smaller than the 1st quartile minus 1.5 times of IQR, or larger than the 3rd quartile plus 1.5 times of IQR.

Value

a logical vector.

References

Wilcox R R, Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy, Springer 2010 (2nd edition), pages 31-35.

Examples

```
x <- c(2, 3, 4, 5, 6, 7, NA, 9, 50, 50)
outl_det_u(x, "percentile")</pre>
```

qc_rlsc

QC based robust LOESS signal correction (QC-RLSC)

Description

QC based robust LOESS (locally estimated scatterplot smoothing) signal correction (QC-RLSC)

Usage

```
qc_rlsc(x, y, method = c("subtract", "divide"), opti = TRUE, ...)
```

Arguments

x A data frame with samples (row) and variables (column).

y A vector with string of "qc" and "sample".

method Data scaling method.

opti A logical value indicating whether or not optimise 'span'

... Other parameter for 'loess'.

Value

A corrected data frame.

References

Dunn et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols 6, 1060–1083 (2011)

qc_rlsc_wrap 7

Examples

```
names(man_qc)
data <- \ man\_qc\$data
meta <- man_qc$meta</pre>
cls.qc <- factor(meta$sample_type)</pre>
cls.bl <- factor(meta$batch)</pre>
## apply QC-RLSC with optimisation of 'span'
res_1 <- qc_rlsc(data, cls.qc, method = "subtract", opti = TRUE)</pre>
## Not run:
## Use PCA and PCA-LDA to check. Use R package 'mt' here.
## install.packages("mt")
library("mt")
res_fill <- res_1
res_fill <- mv.fill(res_fill, method = "median", ze_ne = TRUE)</pre>
pcaplot(res_fill, cls.qc, pcs = c(2, 1), ep = 1)
pcaplot(res_fill, cls.bl, pcs = c(2, 1), ep = 1)
plot(pcalda(res_fill, cls.bl))
## End(Not run)
## apply QC-RLSC without optimisation of 'span'
res_2 <- qc_rlsc(data, cls.qc, method = "subtract", opti = FALSE)</pre>
## Not run:
res_fill <- res_2
res_fill <- mv.fill(res_fill, method = "median", ze_ne = TRUE)</pre>
pcaplot(res_fill, cls.qc, pcs = c(2, 1), ep = 1)
pcaplot(res_fill, cls.bl, pcs = c(2, 1), ep = 1)
plot(pcalda(res_fill, cls.bl))
## End(Not run)
```

qc_rlsc_wrap

Wrapper function for QC-RLSC

Description

Wrapper function for QC-RLSC

Usage

```
qc_rlsc_wrap(
  dat,
  cls.qc,
  cls.bl,
  method = c("subtract", "divide"),
  intra = FALSE,
```

8 qc_rlsc_wrap

```
opti = TRUE,
log10 = TRUE,
outl = TRUE,
shift = TRUE,
...
)
```

Arguments

dat	A data frame with samples (row) and variables (column).
cls.qc	A vector with string of "qc" and "sample".
cls.bl	A vector with string of batch indicators.
method	Data scaling method. Support "subtract" and "divide"
intra	A logical value indicating whether signal correction is performed inside each batch.
opti	A logical value indicating whether or not 'span' parameters are optimised.
log10	A logical value indicating whether log10 transformation for the data set or not.
outl	A logical value indicating whether or not QC outlier detection is employed.
shift	A logical value indicating whether or not batch shift is applied after signal correction.
	Other parameter for 'loess'.

Value

A corrected data frame.

Examples

```
names(man_qc)
data <- man_qc$data
meta <- man_qc$meta</pre>
cls.qc <- factor(meta$sample_type)</pre>
cls.bl <- factor(meta$batch)</pre>
## apply QC-RLSC wrapper function
method <- "divide" # "subtract"</pre>
intra <- TRUE
opti <- TRUE
log10 <- TRUE
outl <- TRUE
shift <- TRUE
res <- qc_rlsc_wrap(data, cls.qc, cls.bl, method, intra, opti, log10,</pre>
                     outl, shift)
\mbox{\tt ##} Use PCA and PCA-LDA to check. Use R package 'mt' here.
## install.packages("mt")
library("mt")
```

qc_rlsc_wrap 9

```
res_fill <- res

res_fill <- mv.fill(res_fill, method = "median", ze_ne = TRUE)
pcaplot(res_fill, cls.qc, pcs = c(2, 1), ep = 1)
pcaplot(res_fill, cls.bl, pcs = c(2, 1), ep = 1)
plot(pcalda(res_fill, cls.bl))

## End(Not run)</pre>
```

Index

```
* datasets
    man_qc, 2
* missing value processing
    mv_filter, 3
    mv_filter_qc, 4
    mv_perc, 5

batch_shift, 2

man_qc, 2
mv_filter, 3, 4, 5
mv_filter_qc, 3, 4, 5
mv_perc, 3, 4, 5

outl_det_u, 5

qc_rlsc, 6
qc_rlsc_wrap, 7
```