Machine Learning Model Selection - Use Overfitting To Evaluate Different Models

Shoumya Singh

- Introduction
 - Overfitting to evaluate Linear Regression and Non-Linear Regression Models.
- Design
 - Project Description
- ☐ Implementation
 - ☐ Model 1 Linear Regression.
 - ☐ Model 2 Non-Linear Regression.
- Test Results
 - ☐ Training Phase
 - Validation Phase
 - ☐ Test Phase
- Conclusion
- ☐ Bibliography/References

Introduction-Overfitting to evaluate Linear Regression and Non-Linear Regression Models

- A regression is a statistical analysis assessing the association between two variables. It is used to find the relationship between two variables.
- Linear regression is a linear approach to modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables).
- Non-linear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations.

```
Regression Equation(y) = a + bx
Slope(b) = (N\SigmaXY - (\SigmaX)(\SigmaY)) / (N\SigmaX² - (\SigmaX)²)
Intercept(a) = (\SigmaY - b(\SigmaX)) / N
```

Where:

x and y are the variables.

b = The slope of the regression line

a = The intercept point of the regression line and the y axis.

N = Number of values or elements

X = First Score

Y = Second Score

 $\Sigma XY = Sum of the product of first and Second Scores$

 $\Sigma X = Sum of First Scores$

 $\Sigma Y = Sum of Second Scores$

 ΣX^2 = Sum of square First Scores

- Introduction
 - Overfitting to evaluate Linear Regression and Non-Linear Regression Models.
- Design
 - Project Description
- ☐ Implementation
 - ☐ Model 1 Linear Regression.
 - ☐ Model 2 Non-Linear Regression.
- ☐ Test Results
 - ☐ Training Phase
 - Validation Phase
 - ☐ Test Phase
- Conclusion
- ☐ Bibliography/References

Project Description

We have collected a set of sample data and distribute the sample data by

Training phase: 50%Validation phase: 25%

• Test phase: 25%

Evaluate which model is better model - Model 1 or Model 2.

Training Phase				Validation Phase				Test Phase		
Real data Set 1 50% of the collected data		Model 1 : Linear Regression	Linear		ta Set 2 of the ed data	Model 1 : Linear Regression	Model 2 : Non - Linear Regression	Real data Set 3 25% of the collected data	The better model (Model 1 or Model 2) selected from the Validation Phase based on the analysis of overfitting will be used to calculate ŷ	
x	y	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	y	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	ŷ=a1 + b1 * x or ŷ=a2 + b2 * x2	
1	1.8			1.5	1.7			1.4		
2	2.4	Find the v	alues of	2.9	2.7			2.5		
3.3	2.3	a1,b1,a2,k	o2 and ŷ.	3.7	2.5			3.6		
4.3	3.8	- 2		4.7	2.8			4.5		
5.3	5.3	- 2		5.1	5.5	8		5.4		
1.4	1.5	- 2		X	X	X	X	X	X	
2.5	2.2	2		X	X	X	X	X	X	
2.8	3.8	- 2		X	X	X	X	X	X	
4.1	4	- 2		X	X	X	X	X	X	
5.1	5.4			X	X	X	X	X	X	

Project Description

- 1. Initially we will start with Training phase and calculate the value for a 1, b 1, a 2 and b 2.
- 2. Then substitute these values in the linear regression and non-linear regression equations with real data values of x and calculate \hat{y} .

$$\hat{y}=a1 + b1 * x$$

 $\hat{y}=a2 + b2 * x^2$

- 3. After calculating a1, b1, a2, b2 in Training Phase, the values are not changed with the new Real Data Sets in Validation Phase and Test Phase.
- 4. Only ŷ values are changed with the new Real Data Sets.
- 5. In the last test phase the better model is selected with MSE

MSE = max(Training_Set_MSE, Validation_Set_MSE) / min(Training_Set_MSE, Validation_Set_MSE)

6. The Mean Squared Error (MSE) is a measure of how close a fitted line is to data points.

- Introduction
 - Overfitting to evaluate Linear Regression and Non-Linear Regression Models.
- Design
 - Project Description
- Implementation
 - ☐ Model 1 Linear Regression.
 - Model 2 Non-Linear Regression.
- ☐ Test Results
 - ☐ Training Phase
 - Validation Phase
 - ☐ Test Phase
- Conclusion
- ☐ Bibliography/References

Implementation: Model 1 - Linear Regression

Implementation: Model 2 - Non-Linear Regression

- Introduction
 - Overfitting to evaluate Linear Regression and Non-Linear Regression Models.
- Design
 - Project Description
- ☐ Implementation
 - ☐ Model 1 Linear Regression.
 - ☐ Model 2 Non-Linear Regression.
- Test Results
 - Training Phase
 - Validation Phase
 - Test Phase
- Conclusion
- ☐ Bibliography/References

Training Phase

Model 1: Linear Regression	Model 2: Non - Linear Regression
N = 10 X = 1+2+3.3+4.3+5.3+1.4+2.5+2.8+4.1+5.1 = 31.8 Y = 1.8+2.4+2.3+3.8+5.3+1.5+2.2+3.8+4+5.4 = 32.5 XY = 1.8+4.8+7.59+16.34+28.09+2.1+5.5+10.64+16.4+27.54 = 120.8 XX ² = 1+4+10.89+18.49+28.09+1.96+6.25+7.84+16.81+26.01 = 121.34	N=10 \(\textstyle{\t
Slope(b) = $(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$	Slope(b) = $(N\Sigma PY - (\Sigma P) (\Sigma Y)) / (N\Sigma P^2 - (\Sigma P)^2)$
= $((10)^*(120.8)-(31.8)^*(32.5))/((10)^*(121.34)-(31.8)^2)$	= $((10) *(509.74) - (121.34) * (32.5)) / ((10) *(2329.96) - (121.34)^2)$
= 0.86	= 0.134
Intercept(a) = $(\Sigma Y - b(\Sigma X)) / N$	Intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$
= $(32.5 - 0.86(31.8))/10$	= $(32.5 - 0.134(121.34))/10$
= 0.515	= 1.625

Validation Phase

		Training Phase		Validation Phase					
Real data Set 1 50% of the collected data		Model 1 : Linear Regression	Model 2 : Non - Linear Regression	Real da	of the	Model 1 : Linear Regression	Model 2 : Non - Linear Regression		
х у		ŷ=a1 + b1 * x	$\hat{y}=a2+b2*x^2$	x	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$		
		a = 0.515 b = 0.86	a = 1.625 b = 0.134			a = 0.515 b = 0.86	a = 1.625 b = 0.134		
1	1.8	1.375	1.759	1.5	1.7	1.805	1.926		
2	2.4	2.235	2.161	2.9	2.7	3.009	2.751		
3.3	2.3	3.353	3.084	3.7	2.5	3.697	3.459		
4.3	3.8	4.213	4.102	4.7	2.8	4.557	4.585		
5.3	5.3	5.073	5.389	5.1	5.5	4.901	5.11		
1.4	1.5	1.719	1.887	X	X	X	X		
2.5	2.2	2.665	2.462	X	X	X	X		
2.8	3.8	2.923	2.675	X X		X	X		
4.1	4	4.041	3.877	X X		X	X		
5.1 5.4		4.901	5.217	X	X	X	X		

- After calculating a1, b1, a2, b2 in Training Phase, the values are not changed with the new Real Data Sets in Validation Phase and Test Phase.
- Only ŷ values are changed with the new Real Data Sets.

• Substituting the values in the equations in both the models we get all the values for ŷ.

Test Phase

We need calculate the MSE,

Training:

Model1:

$$((1.375 - 1.8)^2 + (2.235 - 2.4)^2 + (3.353 - 2.3)^2 + (4.213 - 3.8)^2 + (5.073 - 5.3)^2 + (1.719 - 1.5)^2 + (2.665 - 2.2)^2 + (2.923 - 3.8)^2 + (4.041 - 4.0)^2 + (4.901 - 5.4)^2) / 10 = 0.2822$$

Model2:

$$((1.759 - 1.8)^2 + (2.161 - 2.4)^2 + (3.084 - 2.3)^2 + (4.102 - 3.8)^2 + (5.389 - 5.3)^2 + (1.887 - 1.5)^2 + (2.462 - 2.2)^2 + (2.675 - 3.8)^2 + (3.877 - 4.0)^2 + (5.217 - 5.4)^2) / 10 = 0.230$$

Validation:

Model1

$$((1.7 - 1.805)^2 + (2.7 - 3.009)^2 + (2.5 - 3.697)^2 + (2.8 - 4.557)^2 + (5.5 - 4.901)^2))/5 = 0.997$$

Model2

$$((1.7 - 1.926)^2 + (2.7 - 2.751)^2 + (2.5 - 3.459)^2 + (2.8 - 4.585)^2 + (5.5 - 5.11)^2))/5 = 0.862$$

Test Phase

Use the formula: MSE = max(Training_Set_MSE, Validation_Set_MSE) / min(Training_Set_MSE, Validation_Set_MSE)

Model 1: 0.997 / 0.2822 = 3.532

Model 2: 0.862/0.230 = 3.747

Model 1 is smaller, which is better

Regression Equation(y) = a + bx= 0.515 + 0.86x

Test Phase						
Real data Set 3 25% of the collected data	The better model (Model 1 or Model 2) selected from the Validation Phase based on the analysis of overfitting will be used to calculate ŷ					
x	Model 1 is better ŷ=a1 + b1 * x					
1.4	1.719					
2.5	2.665					
3.6	3.611					
4.5	4.385					
5.4	5.159					
X	X					
X	X					
X	X					
X	X					
X	X					

- Introduction
 - Overfitting to evaluate Linear Regression and Non-Linear Regression Models.
- Design
 - Project Description
- ☐ Implementation
 - ☐ Model 1 Linear Regression.
 - ☐ Model 2 Non-Linear Regression.
- ☐ Test Results
 - ☐ Training Phase
 - Validation Phase
 - ☐ Test Phase
- Conclusion
- Bibliography/References

Conclusion

Training Phase						Validation Phase			Test Phase	
Real data Set 1 50% of the collected data		Model 1 : Linear Regression	Model 2 : Non - Linear Regression	25% of the		Model 1 : Linear Regression	Model 2 : Non - Linear Regression	Real data Set 3 25% of the collected data	The better model (Model 1 or Model 2) selected from the Validation Phase based on the analysis of overfitting will be used to calculate ŷ	
x	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$			
		a = 0.515 b = 0.86	a = 1.625 b = 0.134	1,5		a = 0.515 b = 0.86	a = 1.625 b = 0.134	x	Model 1 is better ŷ=a1 + b1 * x	
1	1.8	1.375	1.759	1.5	1.7	1.805	1.926	1.4	1.719	
2	2.4	2.235	2.161	2.9	2.7	3.009	2.751	2.5	2.665	
3.3	2.3	3.353	3.084	3.7	2.5	3.697	3.459	3.6	3.611	
4.3	3.8	4.213	4.102	4.7	2.8	4.557	4.585	4.5	4.385	
5.3	5.3	5.073	5.389	5.1	5.5	4.901	5.11	5.4	5.159	
1.4	1.5	1.719	1.887	X	X	X	X	X	X	
2.5	2.2	2.665	2.462	X	X	X	X	X	X	
2.8	3.8	2.923	2.675	X	X	X	X	X	X	
4.1	4	4.041	3.877	X	X	X	X	X	X	
5.1	5.4	4.901	5.217	X	X	X	X	X	X	

Bibliography/References

- https://en.wikipedia.org/wiki/Nonlinear regression
- https://en.wikipedia.org/wiki/linear regression
- https://npu85.npu.edu/~henry/npu/classes/data science/algorithm/slide/linear regression example.html
- https://npu85.npu.edu/~henry/npu/classes/data-science/algorithm/slide/overfit.html