Team SpikCore

Chipathon 2025

Spiking Mosbius

Team members

- Royce Richmond
- Rosendo Valdés
 - Oscar Islas

What is a spiking mosbius? and why?

Spiking mosbius

Develop a reconfigurable neuronal architecture leveraging a crossbar array topology, enabling experimentation with different neural networks configurations, input/output patterns, and domain-specific problem-solving.

Why it matters?

Neuromorphic hardware has the potential to solve computing problems with a fraction of the power consumption compared to digital counterparts. Being able to reconfigure a chip for different tasks, datasets, and outputs can help us develop specialized chips What is a spiking mosbius? and why?

One neuron to rule them all -Axon Hillock neuron

One of the very first VLSI implementations of neurons is the Axon Hillock neuron [1]. We propose a modification that emulates a floating gate and eliminates the membrane capacitance (reducing the layout size)

[1] Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Schaik, A. van, Etienne-Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., & Boahen, K. (2011). Neuromorphic Silicon Neuron Circuits. Frontiers in Neuroscience, 5. https://doi.org/10.3389/fnins.2011.00073

Excitatory inhibitory activity on the brain

Neurons communicate through electrical currents called action potentials, which are either excitatory or inhibitory, the different input of the neurons allows the brain to learn different patterns.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. Excitatory and Inhibitory Postsynaptic Potentials. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11117/

Excitatory inhibitory synapses

The goal is to simplify the building blocks by utilizing synapses that can function as either excitatory or inhibitory. This approach allows us to create diverse types of neurons without requiring distinct designs or specifications for each type.

from paper down to bitstream

We need a way to convert the idea (neural architecture to bitstream), we plan on a python script that will generate said bitstream

Turn on only what you use

We don't need everything to be on all the time. By turning on individual elements, we can reduce static power consumption. While this works in simulation, in reality, we're unsure of its effectiveness due to leakage currents

Expand the hardware and reutilize cells

Existing control path for mosbius

additional control path using an overflow

Expand the existing hardware

The current hardware for controlling the switch matrix already has D-type flip flops, non-overlapping clocks and a platform to upload the Bitstream File into the MOSbius Chip

Why create new hardware? when we can expand the existing one and use the same programming platform (plus some tweaks) to turn on and off elements of our chip

What has been done?

Simulation results on neurons, synapses and transmission gates

Mosbius Pinout

Pinout and characteristics:

- 7 inhibitory/excitatory synapses
- 8 AH neuron subthreshold
- 1 LIF neuron
- 1 LIF neuron subthreshold

The chip can interface with event camera, robotics [2], biophysical signal, etc

Timeline

Week	Task	Responsable	Expected product
28	Project proposal review	All team members	Review proposal with posible updates and tweaks
29	Update and modification to proposal	All team members	Updated project proposal with observations
30	Schematic and symbol creation of neuron, synapse, TG, and read/write subsystem.	Royce Richmond Oscar Islas	Symbol and schematics of building blocks of the peripheral components of spiking mosbius
31	Simulation of TG and characterization	Rosendo Valdés Oscar Islas	Simulation and characteristics of TG
32	Simulation of neuron and synapse with TG (pending FF)	Royce Richmond	Simulation and characteristics of neurons and synapses
33	Top cell simulation	All team members	Top cell integration and simulation

Timeline

Week	Task	Responsable	Expected product
34	Layout of individual cells and post layout simulation	Rosendo Valdes Royce richmond	GDS and spice files
35	Layout of Cross-bar array and interconnects	Royce Richmond Oscar Islas	GDS and spice files
36	Integration of layouts (top cell) and post layout simulation	All team members	Final GDS file of the top cell
37	Layout review	All team members	Reviewed layout and possible annotations
38	Verification of top cell comparison pre vs post layout	Royce Richmond Rosendo valdes	Final layout ready for submission
39	Review process of submission and repository	Royce Richmond Rosendo valdes	Submission for manufacturing
40	Review of submitted file, simulations and data analysis	Oscar Islas	Report with incidents, improvements and results