피보나치 수열 특정 번지의 값을 구할 때 재귀함수와 반복문을 이용할 수 있는데 코드 작성 후 테스트 중 두 방법에 속도 차이가 발생한다는 것을 알게 되었다. 오늘 수업 시간에 배운 시간 복잡도라는 개념이 떠올랐고, 각각의 수행시간을 한번 계산해보았다.

int RepetitiveFunction(const int n) {//반복문			
if (n <= 1) return n;			
int now = 1;			
<pre>int prev = 0;</pre>			
int temp;			
for (int i = 2; i <= n; i += 1) {			
temp = now;			
now += prev; prev = temp;			
ριον - τοπρ, }			
return now;			
}			
함수 내부 행 번호	s/e	빈도	단계 수
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	1	N	N
6	1	N – 1	N – 1
7	1	N – 1	N – 1
8	1	N - 1	N - 1
9	0	0	0
10	1	1	1

재귀함수는 총 단계 수가 N^2 - 2N + 2, 반복문은 총 단계 수가 4N + 2로 나왔다. (N > 1 기준) 내 계산이 어느 정도 틀렸을 수도 있지만 어차피 정밀한 계산을 하려면 step per execution이란 요소를 저수준까지 끌고 갈 정도의 이해가 있어야 한다고 생각해서 별 의미를 두지 않기로 했다. 아무튼 빅-오 표기법으로 재귀함수의 시간 복잡도는 O(N^2)이고 반복문의 시간 복잡도는 O(N)이어서 매개 변수의 값이 커질 때 두 방법의 시간 복잡도 차이도 커진다는 결론을 도출했다.