

Regularization

Overfitting

Regression

$$f(x) = W_1 \times + V_2 \times^2 + ...$$

 $\times ... + W_3 \times^3 + W_4 \times^4$
 $\dots + b$

High Variance Over Lithing.

Classification

High Bins

$$f(\vec{x}) = g(2)$$

Under Litting
 $z = W_1 \times_1 + W_2 \times_2 + b$

Migh Variance Over Litting

Addressing Overfitting condition

- · Collect more training examples (data)
- Feature Selection (Reduce number of features)
- Regularization

Collect more training examples

Feature Selection

					-		
size	bedrooms	floors	age	avg		distance to	price
\C_	×	~		income		distance to coffee shop	
×1	\ \ \ \ \ \ \	^>	Xh	×_		×50	Y
	I				I	l l	l

Regularization

Regularization (intuition)

Regularization

size	bedrooms	floors	age	avg income	 distance to coffee shop	
	^ L	×>	×μ	×ç	×5-0	

$$W_1, W_2, W_3, \dots W_{50}$$
, b

Regularization

Parameter

$$J(\vec{x}, b) = \frac{1}{2m} \sum_{i=1}^{\infty} \left(\int_{-\infty}^{\infty} \vec{x}(i) - y^{(i)} \right)^2 + \frac{1}{2m} \sum_{j=1}^{\infty} W_j$$

optimal

High Variance

Regularization

1 - 10 Just Right

size

$$\lim_{n \to \infty} J(\vec{w}, b) = \lim_{n \to \infty} \left[\frac{1}{2m} \sum_{i=1}^{\infty} \left(\vec{x}^{(i)} \right) - y^{(i)} \right]^{2} + \frac{1}{2m} \sum_{j=1}^{\infty} w_{j}^{2}$$

$$\lim_{n \to \infty} J(\vec{w}, b) = \lim_{n \to \infty} \left[\frac{1}{2m} \sum_{i=1}^{\infty} \left(\vec{x}^{(i)} \right) - y^{(i)} \right]^{2} + \frac{1}{2m} \sum_{j=1}^{\infty} w_{j}^{2}$$