CS61065: Theory and Applications of Blockchain

Basic Crypto Primitives - II

Department of Computer Science and **Engineering**

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Sandip Chakraborty sandipc@cse.iitkgp.ac.in

Shamik Sural shamik@cse.iitkgp.ac.in

What We have Looked Into

Cryptographically Secured Hash Function

- Collision Free
- Information Hiding
- Puzzle Friendly

Hash Pointers and Data Structures

- Hashchain
- Hash Tree Merkle Tree

Digital Signature

- A digital code, which can be included with an electronically transmitted document to verify
 - The content of the document is authenticated
 - The identity of the sender
 - Prevent non-repudiation sender will not be able to deny about the origin of the document

Purpose of Digital Signature

• Only the **signing authority** can sign a document, but everyone can verify the signature

- Signature is associated with the particular document
 - Signature of one document cannot be transferred to another document

Public Key Cryptography

Also known as asymmetrical cryptography or asymmetric key cryptography

- Key: A parameter that determines the functional output of a cryptography algorithm
 - Encryption: The key is used to convert a plain-text to a cypher-text; M' = E(M, k)
 - **Decryption:** The key is used to convert the cypher-text to the original plain text; M = D(M',k)

Public Key Cryptography

- Properties of a cryptographic key (you need to prevent it from being guessed)
 - Generate the key truly randomly so that the attacker cannot guess it
 - The key should be of sufficient length increasing the length makes the key difficult to guess
 - The key should contain sufficient entropy, all the bits in the key should be equally random

Public Key Cryptography

- Two keys are used
 - Private key: Only Alice has her private key
 - Public key: "Public" to everyone everyone knows Alice's public key

Public Key Encryption - RSA

 Named over (Ron) Rivest – (Adi) Shamir – (Leonard) Adleman – inventors of the public key cryptosystem

- The encryption key is public and decryption key is kept secret (private key)
 - Anyone can encrypt the data
 - Only the intended receiver can decrypt the data

RSA Algorithm

- Four phases
 - Key generation
 - Key distribution
 - Encryption
 - Decryption

https://commons.wikimedia.org/

Public and Private Keys in RSA

• It is feasible to find three very large positive integers e, d and n; such that modular exponentiation for integers m ($0 \le m < n$):

$$(m^e)^d \equiv m \pmod{n}$$

- Even if you know e, n and m; it is extremely difficult to find d
- Note that

$$(m^e)^d \equiv m \pmod{n} = (m^d)^e \equiv m \pmod{n}$$

• (e, n) is used as the public key and (d, n) is used as the private key. m is the message that needs to be encrypted.

RSA Key Generation and Distribution

- ullet Chose two distinct prime integer numbers p and q
 - p and q should be chosen at random to ensure tight security
- Compute $n=pq;\,n$ is used as the modulus, the length of n is called the key length
- Compute $\phi(n) = (p-1)(q-1)$ Euler totient function
- Choose an integer e such that $1 < e < \phi(n)$ and $\gcd(e,\phi(n)) = 1$; e and $\phi(n)$ are co-prime
- Determine $d=e^{-1}(mod\ \phi(n))$: d is the modular multiplicative inverse of $e(mod\ \phi(n))$ [Note $d.\ e=1(mod\ \phi(n))$]

RSA Encryption and Decryption

• Let m be the integer representation of a message M.

• Encryption with public key (e, n) $c \equiv m^e \pmod{n}$

• Decryption with private key (d, n) $m \equiv c^d \pmod{n} \equiv (m^e)^d \pmod{n}$

RSA Encryption and Decryption - Example

Key Selection

- Select 2 prime numbers: p=17, q=11
- Calculate n=pq=17×11=187
- Calculate $\phi(n)=(p-1)(q-1)=16\times 10=160$
- Select e such that e is relatively prime to $\phi(n)=160$ and less than $\phi(n)$; Let e=7
- Determine d such that d.e \equiv 1 mod 160 and d<160; Can determine d = 23 since $23 \times 7 = 161 = 1 \times 160 + 1$

Encryption of Plaintext M = 88

- $C=88^7 \mod 187$
- = $[(88^4 \mod 187) \times (88^2 \mod 187) \times (88^1 \mod 187)] \mod 187 = (88 \times 77 \times 132) \mod 187 = 11$

Decryption of Ciphertext C = 11

- M=11²³ mod 187
- =[$(11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 187) \times (11^8 \mod 187) \times (11^8 \mod 187)$] mod 187
- =(11×121×55×33×33) mod 187 = (79720245) mod 187 = 88

RSA Encryption and Decryption - Demo

https://www.devglan.com/online-tools/rsa-encryption-decryption

Digital Signature using Public Key Cryptography

- Sign the message using the Private key
 - Only Alice can know her private key
- Verify the signature using the Public key
 - Everyone has Alice's public key and they can verify the signature

Reduce the Signature Size

Use the message digest to sign, instead of the original message

Sign the message with her private key

$$S = E(H(M), K_{pri}^A)$$

Verify the signature using Alice's public key

$$H(M) = E(S, K_{pub}^A)$$

Digital Signature in Blockchain

- Used to validate the origin of a transaction
 - Prevent non-repudiation
 - Alice cannot deny her own transactions
 - No one else can claim Alice's transaction as his/her own transaction
- Bitcoin uses Elliptic Curve Digital Signature Algorithm (ECDSA)
 - Based on elliptic curve cryptography
 - Supports good randomness in key generation

A Cryptocurrency using Hashchain and Digital Signatures

- Alice generates 10 coins
- Sign the transaction A:10 using Alice's private key and put that in the blockchain

A Cryptocurrency using Hashchain and Digital Signatures

- Alice transfers 5 coins to Bob
- Sign the transaction A-B:5 using Alice's private key and put that in the blockchain

A Cryptocurrency using Hashchain and Digital Signatures

- Maintain the economy
 - Generate new coins with time
 - Delete old coins with time
- A central authority like bank can create and destroy coins based on economic policies

 Crucial Question: How can we distribute coin management (creation and destroy)

