GENERAL CHEMISTRY

Chapter 5Chemical Kinetics

Dr. Huỳnh Kỳ Phương Hạ

Office: 112 B2 Building

Phone: 38650484

Email: hkpha@hcmut.edu.vn

Kinetics

- Kinetics is the study of how fast chemical reactions occur: rxn rate
- There are 4 important factors which affect the rates of chemical reactions:
 - reactant concentration,
 - temperature,
 - action of catalysts, and
 - surface area.
- Reaction mechanism (rxn pathway)

Reaction Rates

- The speed of a reaction is defined as the change that occurs per unit time per unit volume.
 - It is determined by measuring the change in concentration of a reactant or product with time.
 - The speed of the reaction is called the **reaction rate**.
- For a reaction $A \rightarrow B$

Average rate =
$$\frac{1}{Volume}$$
 $\frac{\text{change in number of moles of B}}{\text{change in time}}$
= $\frac{\Delta \left(\text{moles of B}\right)}{V\Delta t} = \frac{\Delta \left(\text{concentration of B}\right)}{\Delta t} = \frac{\Delta C_B}{\Delta t}$

• Suppose A reacts to form B. Let us begin with 1.00 mol A in 1 L-container.

Change in Concentration of Reactions

Calculating Reaction Rates Using Products

- At t = 0 (time zero) there is 1.00 mol A (100 red spheres) and no B present.
- At t = 10 min, there is 0.54 mol A and 0.46 mol B.
- At t = 20 min, there is 0.30 mol A and 0.70 mol B.
- Calculating,

Average rate =
$$\frac{\Delta(\text{moles of B})}{V\Delta t}$$
=
$$\frac{(\text{moles of B at } t = 10) - (\text{moles of B at } t = 0)}{1 \times (10 \text{ min} - 0 \text{ min})}$$
=
$$\frac{0.46 \text{ mol} - 0 \text{ mol}}{1 \times (10 \text{ min} - 0 \text{ min})} = 0.046 \text{ mol/L.min}$$

Calculating Reaction Rates Using Reactants

- For the reaction $A \rightarrow B$ there are two ways of measuring rate:
 - the speed at which the products appear (i.e. change in moles of B per unit time), or
 - the speed at which the reactants disappear (i.e. the change in moles of A per unit time).

Average rate with respect to A =
$$-\frac{\Delta (\text{moles of A})}{V\Delta t} = -\frac{\Delta C_A}{\Delta t}$$

- The equation, when calculating rates of reactants, is multiplied by -1 to compensate for the negative concentration change.
 - By convention rates are expressed as positive numbers.

Reaction Rates

- Most useful units for rates are to look at molarity (mole/L or M). Since volume is constant, molarity and moles are directly proportional.
- Consider:

• $C_4H_9Cl(aq) + H_2O(l) \rightarrow C_4H_9OH(aq) + HCl(aq)$

Reaction Rates for CaroCl

TABLE 14.1	Rate Data for Reaction	of C ₄ H ₉ Cl with Water
Time, <i>t</i> (s)	$[C_4H_9C1]$ (M)	Average Rate (M/s)
0.0 50.0 100.0 150.0 200.0 300.0 400.0 500.0	0.1000 0.0905 0.0820 0.0741 0.0671 0.0549 0.0448 0.0368 0.0200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10,000	0	

Properties of Carolla Reaction

- $C_4H_9Cl(aq) + H_2O(l) \rightarrow C_4H_9OH(aq) + HCl(aq)$
 - We can calculate the average rate in terms of the disappearance of C₄H₉Cl.
 - The units for average rate are mol/L·s or M/s.
 - The average rate decreases with time.
 - We plot [C₄H₉Cl] versus time.
 - The rate at any instant in time (instantaneous rate) is the slope of the tangent to the curve.
 - Instantaneous rate is different from average rate.
 - We usually call the instantaneous rate the rate.

Calculating Reaction Rates Using Reactants

Average rate with respect to
$$A = -\frac{\Delta \text{ (moles of A)}}{V\Delta t}$$

Instantaneous rate with respect to A =
$$\lim_{\Delta t \to 0} -\frac{\Delta C_A}{\Delta t} = -\frac{dC_A}{dt}$$

Instantaneous Reaction Rates

Reaction Rates and Stoichiometry

For the reaction

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

we know

1 mole of N2 disappeared 3 mole of H2 disappear

- 2 mole of NH3 appeared
- Rate(H2) = 3 times the rate(N2)
- Rate(NH3)=2 times the rate(N2)

Reaction Rates and Stoichiometry

In general for

$$aA + bB \rightarrow cC + dD$$

Rate_{rxn} =
$$-\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

Concentration and Rate Table

• In general rates increase as concentrations increase.

$$NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(l)$$

TABLE 14.2	Rate Data for the Reaction of Ammonium and Nitrite Ions in Water at 25°C				
Experiment Number	Initial NH_4^+ Concentration (M)	Initial NO_2^- Concentration (<i>M</i>)	Observed Initial Rate (M/s)		
1	0.0100	0.200	5.4×10^{-7}		
2	0.0200	0.200	10.8×10^{-7}		
3	0.0400	0.200	21.5×10^{-7}		
4	0.0600	0.200	32.3×10^{-7}		
5	0.200	0.0202	10.8×10^{-7}		
6	0.200	0.0404	21.6×10^{-7}		
7	0.200	0.0606	32.4×10^{-7}		
8	0.200	0.0808	43.3×10^{-7}		

Concentration and Rate Equation

For the reaction

$$NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(l)$$

we note

- as $[NH_4^+]$ doubles with $[NO_2^-]$ constant the rate doubles,
- as [NO₂⁻] doubles with [NH₄⁺] constant, the rate doubles,
- We conclude rate \propto [NH₄⁺][NO₂⁻].
- Rate law:

Rate =
$$k[NH_4^+][NO_2^-]$$

• The constant k is the rate constant.

Exponents in the Rate Law

For a general reaction with rate law

Rate = k[reactant 1] m [reactant 2] n

we say the reaction is *m*th order in reactant 1 and *n*th order in reactant 2.

- The overall order of reaction is $m + n + \dots$
- A reaction can be zeroth order if m, n, \ldots are zero.
- Note the values of the exponents (orders) have to be determined experimentally. They are not simply related to stoichiometry.
- k is rate constant, independent on concentration.
- rate=k when [reactant 1]=[reactant 2]=..=1 M
- k is specific rate

Determining Order of Reactions

- A reaction is zero order in a reactant if the change in concentration of that reactant produces no effect.
- A reaction is first order in a reactant if doubling the concentration of that reactant causes the rate to double.
- A reaction is nth order in a reactant if doubling the concentration of that reactant causes an 2^n increase in rate.
- Note that the rate constant does not depend on concentration.

Experiment			Initial Rate	
1	Number		[B] (M)	(M/s)
	1	0.273	0.763	2.83
	2	0.273	1.526	2.83
	3	0.819	0.763	25.47
	'			

Temperature and Rate

The Collision Model

- Most reactions speed up as temperature increases. (E.g. food spoils when not refrigerated.)
- When two light sticks are placed in water: one at room temperature and one in ice, the one at room temperature is brighter than the one in ice.
- The chemical reaction responsible for chemiluminescence is dependent on temperature: the higher the temperature, the faster the reaction and the brighter the light.

The Collision Model

• As temperature increases, the rate increases (very fast).

Q10 rule

- Reaction rate increases very fast with an increase in temperature
- Q10 Rule: temperature increases 10 °C, rate increases Q10 times (2<Q10<4)
- γ times (van Hoff temperature factor)
- temperature increase n*10 °C, rate increases: γⁿ times

Collision Model: The Central Idea

- Goal: develop a model that explains why rates of reactions increase as concentration and temperature increases.
- The collision model: in order for molecules to react they must collide. $A + B \rightarrow P$: A and B must collide
- The greater the number of collisions the faster the rate.
- The more molecules present, the greater the probability of collision and the faster the rate.
- Faster moving molecule collide with greater energy and more frequently, increasing reaction rates.

Collision Model

- Effect of concentration: more molecules present in a unit volume → more chance to collide → faster the rate
- C increases → rate increases
- T increases → molecules move faster → more chance to collide → faster the rate: not enough
- T=298 to 308: average speed increase <3% (10/300), velocity of molecules increase very little (not significant)
- However, rate increases at least 2 times
- Further develop the model, not just use the simple collision

The Speed of a Reaction

The Collision Model

- The higher the temperature, the more energy available to the molecules and the faster the rate.
- Complication: **not all collisions lead to products**. In fact, only a small fraction of collisions lead to product.
 - Why is this?

The Orientation Factor

• In order for reaction to occur the reactant molecules must collide in the correct orientation and with enough energy to form products.

The Orientation Factor

Consider:

$$Cl + NOCl \rightarrow NO + Cl_2$$

 There are two possible ways that Cl atoms and NOCl molecules can collide; one is effective and one is not.

(a) Effective collision

(b) Ineffective collision

Activation Energy

- Arrhenius: molecules must posses a minimum amount of energy to react. Why?
 - In order to form products, bonds must be broken in the reactants.
 - Bond breakage requires energy.
- Activation energy, E_a , is the minimum energy required to initiate a chemical reaction.

Energy Profile for Methyl Isonitrile

Fraction of Molecules Possessing E_a

- How does a methyl isonitrile molecule gain enough energy to overcome the activation energy barrier?
- From kinetic molecular theory, we know that as temperature increases, the total kinetic energy increases.
- We can show the fraction of molecules, f, with energy equal to or greater than E_a is

$$f = e^{-E_a/RT}$$

• where R is the gas constant $(8.314 \text{ J/mol} \cdot \text{K})$.

Activation Energy E Plot

Boltzmann distribution of energy in gas

Room: T=298K, not all the gas molecule are the same energy Some are lower, some are higher. T=298 just the average

Kinetic energy

The Arrhenius Equation

• Arrhenius discovered most reaction-rate data obeyed the Arrhenius equation:

$$k = Ae^{-E_a/RT}$$

- k is the rate constant, E_a is the activation energy, R is the gas constant (8.314 J/K-mol) and T is the temperature in K.
- *A* is called the frequency factor.
 - -A is a measure of the probability of a favorable collision (or correct orientation).
- Both A and E_a are specific to a given reaction.

Determing Activation Energy

• If we have a lot of data, we can determine E_a and A graphically by rearranging the Arrhenius equation:

$$\ln k = -\frac{E_a}{RT} + \ln A$$

• From the above equation, a plot of $\ln k$ versus 1/T will have slope of $-E_a/R$ and intercept of $\ln A$.

Li k versus 1/T

• E_a can be determined by finding the slope of the line.

Catalysis

- A catalyst changes the rate of a chemical reaction.
 - Increase the rate: catalyst; decrease the rate: inhibitor
 - Catalyst lower the overall E_a for a chemical reaction.
- There are two types of catalyst:
 - Homogeneous and heterogeneous

Homogeneous Catalysis

- The catalyst and reaction is in one phase.
- Cl atoms are catalysts for the destruction of ozone

Heterogeneous Catalysis

- The catalyst and reaction exists in a different phase.
- Nickel is catalyst for hydrocracking of petro gas

The Effects of a Catalyst

Reaction pathway

Functions of the Catalysis

- Catalysts can operate by increasing the number of effective collisions (i.e., from the Arrhenius equation: catalysts increase k which results in increasing A or decreasing E_a .
- A catalyst may add intermediates to the reaction.
 - Example: In the presence of Br_1 , $Br_2(aq)$ is generated as an intermediate in the decomposition of H_2O_2 .