Definition 1. (分離公理)

X を位相空間とする. このとき,

- 1. 任意の $x \in X$ について一点集合 $\{x\}$ が閉集合であるとき, X を T_1 空間という.
- 2. 任意の相異なる二点 $x,y \in X$ について $x \in U, y \in V$ かつ $U \cap V = \emptyset$ となるような開集合 U,V が存在するとき, X を T_2 空間あるいは Hausdorff 空間という.
- 3. T_1 空間 X が任意の $x \in X$ と任意の x を含まない閉集合 F に対して、 $x \in U, F \subset V, \ U \cap V = \emptyset$ を満たすような開集合 U, V が存在するとき、X を正則空間という.
- 4. T_1 空間 X が任意の交わらない閉集合 E, F に対して $E \subset U$, $F \subset V$, $U \cap V = \emptyset$ を満たすような開集合 U, V が存在するとき, X を正規空間という.

Theorem 2. -

X を位相空間とする. X が正規空間ならば正則空間であり, 正則空間ならば Hausdorff 空間であり, Hausdorff 空間ならば T_1 空間である.

Proof.

- 1. X を正規空間とする. 任意に点 $x \in X$ を取ってくる. このとき, X は T_1 空間であるので一点集合 $\{x\}$ は閉集合である. 任意の x を含まない閉集合 F を取ってくると, $\{x\} \cap F = \emptyset$ であるので $\{x\} \subset U$, $F \subset V$, $U \cap V = \emptyset$ を満たすような開集合 U, V が存在する. 従って $x \in U$, $F \subset V$, $U \cap V = \emptyset$ であるので X は正則空間である.
- 2. 任意に異なる 2 点 $x,y \in X$ を取ってくる. このとき X が T_1 空間であることより一点集合 $\{x\}$, $\{y\}$ は閉集合である. $x \neq y$ より $x \notin \{y\}$ であるので, $x \in U$, $\{y\} \subset V$, $U \cap V = \emptyset$ であるような開集合 U, V が存在する. 従って $x \in U$, $y \in V$, $U \cap V = \emptyset$ であるので X は Hausdorff 空間である.
- 3. 任意に $x \in X$ を取ってくる. このとき点 x と異なる任意の点 $y \in X$ に対して, $x \in U$, $y \in V$, $U \cap V = \emptyset$ となるような開集合 U, V が存在するので, $y \in U \subset X \setminus \{x\}$ である. 従って $X \setminus \{x\}$ は開集合である.

Theorem 3. (Hausdorff 性の特徴付け)

- X を位相空間とする. このとき以下は同値である.
 - 1. X は Hausdorff 空間である.
 - 2. $\Delta = \{(x, x) \in X \mid x \in X\}$ は直積位相の下 $X \times X$ 上閉である.

Proof.

$1. \Rightarrow 2.$

 $(x,y)\in (X\times X)\setminus \Delta$ なら $x\neq y$ であるので、それぞれ x 、y の開近傍 U 、V で $U\cap V=\varnothing$ であるものが存在する.このとき $x\neq y$ より $U\times V\subset (X\times X)\setminus \Delta$ であり、 $(x,y)\in U\times V$ であるので $(X\times X)\setminus \Delta$ は開集合である.従って対角線集合 Δ は閉集合である.

$2. \Rightarrow 1.$

任意に $x,y \in X, x \neq y$ を取ってくる. このとき $(x,y) \notin \Delta$ であるので、ある開集合 U, V を用いて $(x,y) \in U \times V \subset (X \times X) \setminus \Delta$ とできる. 従って $U \times V \subset (X \times X) \setminus \Delta$ より $U \cap V = \emptyset$ かつ $x \in U, y \in V$ であるので X は Hausdorff 空間である.