# Analog Engineer's Circuit: Data Converters

ZHCA793A – January 2018 – Revised March 2019

# 用于驱动高电压 **SAR ADC** 以进行高电压、真差分信号采集的 电路

Dale Li

| 输入                | ADC 输入      | 数字输出 ADS7042                             |
|-------------------|-------------|------------------------------------------|
| VinDiffMin = −20V | CH_x = +10V | 7FFF <sub>H</sub> ,或 32767 <sub>10</sub> |
| VinDiffMax = +20V | CH_x = −10V | 8000 <sub>H</sub> ,或 32768 <sub>10</sub> |

| 电源   |      |                        |                        |
|------|------|------------------------|------------------------|
| AVDD | DVDD | V <sub>cc</sub> (HVDD) | V <sub>ss</sub> (HVSS) |
| 5.0V | 3.3V | +15V                   | -15V                   |

## 设计 说明

本设计展示了一种用于驱动高压 SAR ADC 以实现高压全差分信号数据采集的解决方案。该差分信号可能具有广泛的共模电压范围,具体取决于放大器的电源和输入信号振幅。使用一个通用高压精密放大器来执行差分到单端信号转换,并以最高吞吐量驱动 ±10V 的高压 SAR ADC 单端输入量程。这种类型的应用在终端设备中十分常见,如: 多功能继电器、交流模拟输入模块以及铁路运输的控制装置。组件选择部分的数值可进行调整,以支持不同级别的差分输入信号、差分 ADC 吞吐量速率以及不同带宽的放大器。





## 规格

| 规格                   | OPA827 计算值         | OPA827 仿真值          | OPA192 计算值         | OPA192 仿真值         |
|----------------------|--------------------|---------------------|--------------------|--------------------|
| 共模输入范围 (Vdif = ±20V) | ±26V               | ±26V                | ±35V               | ±35V               |
| 瞬态 ADC 输入趋稳错误        | < 1/2LSB (< 152µV) | 0.002 LSB (0.568µV) | < 1/2LSB (< 152μV) | 0.006 LSB (1.86µV) |
| 驱动器的相位裕度             | > 45°              | 67.1°               | > 45°              | 68.6°              |
| 噪声 (ADC 输入端)         | 14.128µVrms        | 15.88µVrms          | 5.699µVrms         | 6.44µVrms          |

#### 设计说明

- 1. 根据差分输入信号电平、输入范围的 ADC 配置,确定放大器增益。此内容涵盖在组件选择部分之中。
- 2. 根据共模电压、输入摆幅和电源,确定放大器线性范围。此内容涵盖在组件选择部分之中。
- 3. 在此设计电路中,输入信号共模电压可以为 V<sub>InputCM</sub> 范围内的任意值。此范围的推导过程可参见 OPA827 和 OPA192 的组件选择 部分。
- 4. 请选择 COG 电容器以最大限度减少失真。
- 5. 请使用 0.1% 20ppm/°C 或更高规格的薄膜电阻器,以实现良好的精确度、低增益漂移,并最大限度减少 失真。请查看*误差分析背后的统计数据*,以了解最大限度减少增益、失调电压、漂移及噪声错误的方 法。
- 6. 请参阅 SAR ADC 前端组件选择简介,了解如何选择 Rfilt 和 Cfilt 以实现最佳的趋稳和交流性能。这些组件参数值因放大器带宽、数据转换器采样率和数据转换器设计不同而已。此处所示的规格值可为该示例中的放大器和数据转换器提供良好的趋稳和交流性能。如果对设计进行了修改,则必须选用不同的 RC滤波器。

www.ti.com.cn

#### 组件选择

1. 根据差分输入信号水平和 ADC 满量程输入范围,查找增益。

$$Gain_{OPA} = \frac{\pm V_{ADC(range)}}{\pm V_{Ditin(range)}} = \frac{\pm 10V}{\pm 20V} = 0.5V / V$$

2. 找出差分增益的标准电阻值。通过*模拟工程师计算器*("放大器和计算器\查找放大器增益"部分)找出 Rf/Rg 比标准值。

$$Gain_{OPA} = rac{R_{r}}{R_{\sigma}} = rac{5.05 k \varOmega}{10.1 k \varOmega} = 0$$
 .  $5$ 

3. 找出放大器线性运行的最大和最小输入(即,放大器的共模范围 V<sub>cm\_amp</sub>)。本示例所使用的放大器为OPA827。

$$V_- + 3V < V_{cm\_opa} < V_+ - 3V$$
 from the OPA827 common mode specification  $-12V < V_{cm\_opa} < 12V$  for  $\pm 15V$  supplies

4. 根据放大器输入范围和前面所示的配置,计算最大共模电压范围。参照第一页的原理图,更好地理解  $V_{cm}$  opa、 $V_{InputCM}$  及  $V_{dif}$  与电路的关系。

$$V_{cm\_opa} = (V_{InputCM} \pm \frac{V_{dif}}{2}) \cdot (\frac{R_f}{R_f + R_g})$$

$$V_{cm\_opaMin} \cdot (\frac{R_{r} + R_{g}}{R_{r}}) + \frac{V_{dif}}{2} < V_{InputCM} < V_{cm\_opaMax} \cdot (\frac{R_{r} + R_{g}}{R_{r}}) - \frac{V_{dif}}{2}$$

5. 求解放大器输入共模电压范围 V<sub>InputCM</sub> 的方程式。在本例中 (OPA827),共模输入可为 ±26V,差分输入为 ±20V。根据同一方法,OPA192 的共模输入为 ±35V,差分输入为 ±20V。超过此共模范围会造成信号失真。请注意,此共模范围基于 ±15V 电源计算得出。随着电源电压增加(最高 ±18V),共模范围也可随之扩展。

$$\begin{array}{l} V_{cm\_opaMin} \cdot (\frac{R_{r} + R_{g}}{R_{r}}) + \frac{V_{dif}}{2} < V_{InputCM} < V_{cm\_opaMax} \cdot (\frac{R_{r} + R_{g}}{R_{r}}) - \frac{V_{dif}}{2} \\ (-12V) \cdot (\frac{5.05k\Omega + 10.1k\Omega}{5.05k\Omega}) + \frac{20V}{2} < V_{InputCM} < (12V) \cdot (\frac{5.05k\Omega + 10.1k\Omega}{5.05k\Omega}) - \frac{20V}{2} \\ -26V < V_{InputCM} < 26V \end{array}$$

6. 找出可实现所需的闭环带宽的 Cf 值。在本例中,我们需要的带宽约为 10kHz。注意:如果您需要调整带宽,由于闭环带宽影响趋稳,您需要核实电荷储能滤波器趋稳( $C_{fit}$  和  $R_{fit}$ )。

$$C_f = \frac{1}{2 \cdot \pi \cdot R_f \cdot f_c} = \frac{1}{2 \cdot \pi \cdot (5.05 k\Omega) \cdot (10 kHz)} = 3.1 nF$$
 or  $3nF$  standard value

7. 通过 *TINA SPICE* 和 *SAR ADC 前端组件选择简介* 所述的方法,找出 Cfilt 和 Rfilt 值。本文档展示的 Rfilt 和 Cfilt 值适用于此类电路;但如果您使用了其他放大器或增益设置,必须通过 TINA SPICE 查找新值。



# 直流传输特性

下图展示了 –20V 至 +20V 差分输入的线性输出响应。ADC 的全量程范围 (FSR) 落在输出放大器的线性范围内。请参阅*使用运算放大器时确定 SAR ADC 的线性范围*,了解此主题的详细理论。



# 交流传输特性

仿真带宽为 10.58kHz,增益为 -6.038dB(即线性增益为 0.5V/V)。请参阅输出放大器: 带宽 1 视频了解此主题的更多详情。





# 瞬态 ADC 输入趋稳仿真最高采样速率 - 510ksps (ADS8568+OPA827)

以下仿真显示了使用 OPA827 趋稳至 20V 直流输入信号的情况。这种类型的仿真表明已将采样保持反冲电路正确选定在 LSB 的 ½ 内 (152μV)。请参阅 SAR ADC 前端电路选择简介,了解此主题详情。



瞬态 ADC 输入趋稳仿真较低采样速率 - 200ksps (ADS8568+OPA192)

以下仿真显示了使用 OPA192 趋稳至 20V 直流输入信号的情况。这种类型的仿真表明已将采样保持反冲电路正确选定在 LSB 的 ½ 内 (152μV)。





## 噪声计算

本部分展示了全噪声分析,包括电阻噪声。此外,我们还分析了低于  $f_c$  (噪声增益 = 1.5) 及高于  $f_c$  (噪声增 益 = 1)的噪声。在本例中,噪声主要为宽频放大器噪声,故电阻器的影响不大。但在很多情况下,电阻器 噪声也可能很重要,故我们提供了完整的噪声计算方法。请参阅 计算 ADC 系统总噪声 和 输出放大器: 噪 *声* 1, 了解此主题的更多详细理论。

反馈回路带宽:

$$f_{\rm c} = \frac{1}{2 \cdot \pi \cdot R_{\rm f} \cdot C_{\rm f}} = \frac{1}{2 \cdot \pi \cdot (5.05 \text{k}\Omega) \cdot (3 \text{nF})} = 10.6 \text{kHz}$$

OPA827 噪声: 3.8nV/rtHz

$$E_{n\_amp1} = e_{n\_827} \cdot \sqrt{\textit{K}_{n} \cdot \textit{f}_{c}} = (3.8 nV \, / \, \sqrt{\textit{Hz}}) \cdot \sqrt{(1.57) \cdot (10.6 \textit{kHz})} = 490 \textit{nVrms}$$

反馈回路(
$$R_{f1}$$
 和  $R_{g1}$  )和 RC 同相输入( $R_{f2}$  和  $R_{g2}$  )的热噪声密度: 
$$R_{eq} = R_f \sqcup R_g = \frac{R_f \cdot R_g}{R_f + R_g} = \frac{(5.05 k \Omega) \cdot (10.1 k \Omega)}{5.05 k \Omega + 10.1 k \Omega} = 3.37 k \Omega$$

$$e_{\textit{n\_feedback}} = \sqrt{4 \cdot \textit{K}_{\textit{n}} \cdot \textit{T}_{\textit{K}} \cdot \textit{R}_{eq}} = \sqrt{4 \cdot \left(1.38 \cdot 10^{-23}\right) \cdot \left(298\right) \cdot \left(3.37 \textit{k}\Omega\right)} = 7.4 \textit{nV} \ / \ \sqrt{\textit{Hz}}$$

$$\textit{E}_{\textit{n\_feedback}} = e_{\textit{n\_feedback}} \cdot \sqrt{\textit{K}_{\textit{n}} \cdot \textit{f}_{\textit{c}}} = (7.4 nV \, / \, \sqrt{\textit{Hz}}) \cdot \sqrt{(1.57) \cdot (10.6 \textit{kHz})} = 0.955 \mu \textit{Vrms}$$

来自于同相输入电阻器的噪声与来自于反馈电阻器的噪声相同。

$$E_{n\_input} = E_{n\_feedback} = 0$$
 .  $955\mu Vrms$ 

放大器输出的总噪声(增益值):

$$\begin{split} E_{n\_beloW\_fc} &= (G_n) \sqrt{E_{n\_amp1}^2 + E_{n\_feedback}^2 + E_{n\_input}^2} \\ E_{n\_beloW\_fc} &= (1.5) \sqrt{\left(0.49 \mu V\right)^2 + \left(0.995 \mu V\right)^2 + \left(0.995 \mu V\right)^2} = 2.155 \mu V rms \end{split}$$

超过 fc 的噪声由输出滤波器限定(截止值如下所示):

$$\begin{split} f_{output} &= \frac{1}{2 \cdot \pi \cdot R_{filt} \cdot C_{filt}} = \frac{1}{2 \cdot \pi \cdot (49.9\Omega) \cdot (370pF)} = 8.6MHz \\ E_{n\_above\_fc} &= e_{n\_827} \cdot \sqrt{K_n \cdot f_{output}} = (2.8nV \, / \, \sqrt{Hz}) \cdot \sqrt{(1.57) \cdot (8.6MHz)} = 13.963 \mu V \end{split}$$

施加在 ADC 输入端的总噪声:

$$\textit{E}_{\textit{n\_total}} = \sqrt{\textit{E}_{\textit{n\_below\_fc}}^2 + \textit{E}_{\textit{n\_above\_fc}}^2} = \sqrt{\left(2.155\mu V\right)^2 + \left(13.963\mu V\right)^2} = 14.128\mu \textit{Vrms}$$



# 噪声仿真

仿真结果与计算出的结果基本相符(即,仿真值 =  $15.88\mu Vrms$ ,计算值 =  $14.128\mu Vrms$ )。







# 稳定性测试

此 OPA827 驱动电路的相位裕度为 67.1°,满足大于 45° 的要求且保持稳定。请参阅输出放大器: 1, 了解 有关稳定性分析的详细理论。







#### www.ti.com.cn

## 设计特色器件

| 器件                     | 主要 特性                                 | 链接                               | 类似器件                |
|------------------------|---------------------------------------|----------------------------------|---------------------|
| ADS8568 <sup>(1)</sup> | 16 位、8 通道同步采样、双极性输入 SAR ADC           | www.ti.com.cn/product/cn/ADS8568 | www.ti.com.cn/adcs  |
| OPA827                 | 低噪声、高精度 JFET 输入运算放大器                  | www.ti.com.cn/product/cn/OPA827  | www.ti.com.cn/opamp |
| OPA192                 | 高电压、轨至轨输入/输出、5μV、0.2μV/°C、精密运<br>算放大器 | www.ti.com.cn/product/cn/OPA192  | www.ti.com.cn/opamp |

<sup>(1)</sup> ADS8568 集成了一个可符合大多数设计要求的高精度电压基准,而且由于 ADS8568 针对每个ADC 通道对都提供了内置基准缓冲器,因此 外部 REF5050 可直接连接 ADS8568,无需额外的缓冲器。此外,REF5050 具有精密 SAR 应用中的环流所需的低噪声和低漂移等特性。 添加了 C1,以用于平衡 CMRR(共模抑制比)。为实现 ADC 数据表所载明的最佳性能,需要使用洁净的模拟电源。

#### 设计参考资料

请参阅《模拟工程师电路说明书》,了解有关 TI 综合电路库的信息。

# 主要文件链接 (TINA)

此电路设计文件 - http://www.ti.com/cn/lit/zip/sbac180。

# 修订历史记录

| 修订版本 | 日期      | 更改                                          |
|------|---------|---------------------------------------------|
| Α    | 2019年3月 | 缩短了标题并将标题角色更改为"数据转换器"。<br>添加了电路指导手册登录页面的链接。 |

#### 重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任:(1)针对您的应用选择合适的TI产品;(2)设计、验证并测试您的应用;(3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn/上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司

## 重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司