Department of Computer Science Ashoka University

Introduction to Machine Learning

Assignment 2B

Collaborators: None Name: Rushil Gupta

Question 1

Done on the jupyter notebook.

Question 2

Done on the jupyter notebook.

Question 3

Done on the jupyter notebook.

Question 4

1.
$$h(x) = 1(a < x), a \in \mathbb{R}$$

Claim: The VC dimension of this hypothesis class is 1.

To shatter 1 point: Given a single point x_1 , we can achieve both labelings by setting a appropriately:

- For (+): Choose $a < x_1$
- For (-): Choose $a > x_1$

Impossible to shatter 2 points: For points $x_1 < x_2$, the labeling (+, -) cannot be achieved with any choice of threshold a, as any a that makes x_1 positive (i.e., $a < x_1$) would also make x_2 positive since $x_1 < x_2$. This threshold function can only create a single decision boundary, resulting in all points to the right being positive and all points to the left being negative.

2.
$$h(x) = \mathbb{1}(a < x < b), a, b \in \mathbb{R}$$

Claim: The VC dimension of this hypothesis class is 2.

To shatter 2 points: Given points $x_1 < x_2$, all four labelings can be achieved by setting a and b appropriately:

- For (+,+): Choose $a < x_1$ and $b > x_2$
- For (-,-): Choose $a > x_2$ or $b < x_1$
- For (-,+): Choose $a < x_2 < b$ with $a > x_1$
- For (+, -): Choose $a < x_1 < b < x_2$

Cannot shatter 3 points: For points $x_1 < x_2 < x_3$, the labeling (+, -, +) is impossible with this hypothesis class. If x_1 and x_3 are within the interval (positive), then x_2 must also be within the interval (positive) since the hypothesis represents a single connected interval. This shows that any arrangement of 3 points on a line cannot be shattered by this hypothesis class.

3. $h(x) = 1(a \sin x > 0), a \in \mathbb{R}$

Claim: The VC dimension of this hypothesis class is 1.

To shatter 1 point: For any single point x_1 with $\sin x_1 \neq 0$, both labelings can be achieved:

- For (+): Choose a with the same sign as $\sin x_1$, making $a \sin x_1 > 0$
- For (-): Choose a=0 or a with the opposite sign as $\sin x_1$, making $a \sin x_1 \leq 0$

Impossible to shatter 2 points: For any two points x_1, x_2 :

- If $\sin x_1$ and $\sin x_2$ have opposite signs, the labeling (+,+) is impossible.
- If they have the same sign, the labelings (+,-) and (-,+) are impossible.

This is because the parameter a can only control the sign of the hypothesis, giving us at most three distinct functions: positive when $\sin x > 0$ (when a > 0), positive when $\sin x < 0$ (when a < 0), or identically 0 (when a = 0). Therefore, the VC dimension is 1.

4.
$$h(x) = \mathbb{1}(\sin(x+a) > 0), a \in \mathbb{R}$$

Claim: The VC dimension of this hypothesis class is 2.

To shatter 2 points: For any two points x_1, x_2 whose distance is less than π (e.g., $x_2 = x_1 + \frac{\pi}{2}$), all four labelings can be achieved by selecting an appropriate shift a:

- For (+,+): Choose a so that both $x_1 + a$ and $x_2 + a$ lie within a region where sin is positive
- For (-,-): Choose a so that both $x_1 + a$ and $x_2 + a$ lie within a region where sin is negative
- For (+,-): Choose a so that $x_1 + a$ is in a positive region and $x_2 + a$ is in a negative region
- For (-,+): Choose a so that $x_1 + a$ is in a negative region and $x_2 + a$ is in a positive region

Cannot shatter 3 points: For any three points $x_1 < x_2 < x_3$, the labeling (+, -, +) is impossible. If $\sin(x_1 + a) > 0$ and $\sin(x_3 + a) > 0$, then $x_1 + a$ and $x_3 + a$ must lie in the same positive interval of length π . Since this interval is contiguous, the entire segment between them, including $x_2 + a$, must also lie in this positive region, forcing $h_a(x_2) = 1$. This contradiction shows that no set of three points can be shattered, so the VC dimension is 2.

Question 5

Question 5.1

- 1. (a) Can be shattered.
- 2. **(b)** Cannot be shattered.
- 3. (c) Can be shattered.

Question 5.2

Since the hypothesis class could shatter a set of 4 points, it has a VC dim of at least 4.