

B4 – Mathématiques : Statistique Descriptive

Amine ILMANE

Le module B4 – Mathématiques

Dans ce chapitre nous allons voir comment déterminer la loi de probabilité ou à défaut des caractéristiques tel que la moyenne ou l'écart-type ...

Les caractéristiques se regroupent en deux catégories :

- Celles qui mesurent la tendance centrale
- Celles qui mesurent la dispersion

206neutrinos

No mean task here...

Desperately seeking sterile

The three known types of neutrino might be "balanced out" by a bashful fourth type

ELECTRON NEUTRINO	MUON NEUTRINO	TAU NEUTRINO	STERILE NEUTRINO
V _e	V_{μ}	V _v	V _s
MASS	< 1 electr	onvolt	>1 electronvolt
FORCES THEY RESPOND TO	Weak ford Gravity	е	Gravity
DIRECTION OF SPIN	All three "	left handed"	"Right handed"

Mesure de la vitesse des neutrinos

Effet Cerenkov dans un réacteur nucléaire

Mesure de la vitesse des neutrinos

Effet Cerenkov

Réacteur nucléaire

Acquisition des données

Le problème "how to manage Big data?" se résout en partie en utilisant des <u>techniques de statistiques</u>, comme nous allons le voir dans de ce chapitre.

Acquisition des données

Le problème "how to manage Big data?" se résout en partie en utilisant des <u>techniques de statistiques</u>, comme nous allons le voir dans de ce chapitre.

Acquisition des données

Le problème "how to manage Big data?" se résout en partie en utilisant des <u>techniques de statistiques</u>, comme nous allons le voir dans de ce chapitre.

Projet 206: neutrinos

Projet 206: neutrinos

Chapitre 6 : Statistique descriptive

- Définitions
- Mesure de tendance centrale
- Mesure de dispersion

Mesure de tendance Centrale

Au lieu de stocker toutes les données nous les remplaçant par leur moyenne et nous stockerons que la moyenne.

Pour bien comprendre l'idée, imaginons que ces données sont vos dépenses journalières :

Au bout de 5 jours, vous aurez dépensé **24 euros,** ce qui revient à dépenser **4,8 euros/jour**

indice	Données	Tendance centrale
1	5	4,8
2	8	4,8
3	1	4,8
4	6	4,8
5	4	4,8

- Ce dernier chiffre est plus simple à retenir, et permet de rapidement d'estimer un total rien qu'on connaissant le nombre de jour !! De plus, les données ne seront pas stockées, juste la valeur moyenne.
- Mais il existe différents des moyennes : le choix d'une moyenne dépend de la façon dont une caractéristique s'exprime en fonction de la données.

Moyenne arithmétique

$$\overline{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

Lorsque chaque donnée \mathbf{x}_i admet un effectif \mathbf{e}_i , on parle de moyenne arithmétique **pondérée**

$$\overline{x} = \frac{e_1 \cdot x_1 + e_2 \cdot x_2 + \dots + e_n \cdot x_n}{e_1 + e_2 + \dots + e_n} = \frac{1}{N} \sum_{i=1}^n e_i \cdot x_i \qquad N = e_1 + e_2 + \dots + e_n$$

Trouver la relation de récurrence entre \overline{x}_{n+1} et \overline{x}_n

Moyenne arithmétique

Formules de récurrence

$$\bar{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

on pose
$$S = x_1 + x_2 + \dots + x_n$$
 ce qui donne $\bar{x}_n = \frac{S}{n} \implies \bar{S} = \bar{x}_n \times n$

$$\bar{x}_{n+1} = \frac{x_1 + x_2 + \dots + x_n + x_{n+1}}{n+1} = \frac{S + x_{n+1}}{n}$$

$$\bar{x}_{n+1} = \frac{\bar{x}_n \times n + x_{n+1}}{n+1}$$

Moyenne quadratique (root mean square)

Elle est liée à l'écart-type et la moyenne arithmétique

$$Q = \sqrt{\frac{1}{n}(x_1^2 + x_2^2 + \dots + x_n^2)}$$

Exemple

8, 10, 9, 12, 13

$$Q = \sqrt{\frac{1}{5}(8^2 + 10^2 + 9^2 + 12^2 + 13^2)} = \sqrt{\frac{558}{5}} = \sqrt{111, 6} \simeq 10,564$$

Moyenne quadratique (root mean square)

- Nous pouvons utiliser notre donnée x; pour calculer une caractéristique F qui dépend d'elle.
- Dans le cas où la caractéristique est $\mathbf{F} = \mathbf{x_i}^2$, il serait faux d'utiliser la moyenne arithmétique pour calculer une valeur moyenne de \mathbf{F} , il faut utiliser la moyenne quadratique

$$var = Q^2 - A^2$$

Exemple

$$E_{cin\acute{e}tique} = \frac{1}{2}m(v_1^2 + v_2^2 + \dots + v_n^2) = \frac{1}{2}m \, n \, V^2$$

$$(v_1^2 + v_2^2 + \dots + v_n^2) = n V^2$$
 \rightarrow $V^2 = \frac{v_1^2 + v_2^2 + \dots + v_n^2}{n}$

$$V_{quadratique} = \sqrt{\frac{v_1^2 + v_2^2 + \dots + v_n^2}{n}}$$

Moyenne harmonique

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

Exemple

8, 10, 9, 12, 13

$$H = \frac{5}{\frac{1}{8} + \frac{1}{10} + \frac{1}{9} + \frac{1}{12} + \frac{1}{13}} \simeq \frac{5}{0,496} \simeq 10,073$$

Moyenne harmonique

Lorsqu'il s'agit de données dont les unités sont composées (comme la vitesse : m/s) la vitesse moyenne n'est pas celle que l'on croit

$$\bar{v} = \frac{v_1 + v_2}{2} = 20 \text{ km/h}$$

20 km en 1 h

$$\bar{v}_{harmonique} = \frac{2}{\frac{1}{10} + \frac{1}{30}} = 15 \text{ km/h}$$

20 km en en 1h 20mn

Moyenne géométrique

$$G = \sqrt[n]{x_1.x_2...x_n} = (x_1.x_2...x_n)^{\frac{1}{n}}$$

$$log(G) = \frac{1}{n} \cdot (log(x_1) + log(x_2) + \dots + log(x_n)) = \frac{1}{n} \cdot \sum_{i=1}^{n} log(x_i)$$

Exemple 8, 10, 9, 12, 13 $G = \sqrt[5]{8.10.9.12.13} = \sqrt[5]{112320} \simeq 10,235$

Moyenne géométrique

Lorsqu'il s'agit de données qui sont des **coefficient multiplicatif** par exemple les taux de variation d'un indice boursier (en pourcentages)

$$\bar{p} = \frac{1,1+1,3}{2} = 1,2$$

$$100 \times 1,2 = 120$$

$$120 \times 1,2 = 144$$

$$\bar{p}_{g\acute{e}om\acute{e}trique} = \sqrt[2]{1,1.1,3} = 1,19583$$

$$100 \times 1,19583 = 119,583$$

 $119,583 \times 1,19583 = 143,001$

Benchmark des moyennes

$$H \le G \le \overline{x} \le Q$$

$$10,073 \le 10,235 \le 10,4 \le 10,564$$

Exemple

8, 10, 9, 12, 13

$$\overline{x} = 10, 4$$

$$Q \simeq 10,564$$

$$G \simeq 10,235$$

$$H \simeq 10,073$$

Médiane

$$x_1 \le x_2 \le \dots \le x_n$$

Si n est impair, n=2p+1

$$med = x_{p+1}$$

Exemple 8, 9, 10, 12, 13 p = 2 $5 = 2 \times 2 + 1$ $med = x_3 = 10$

Si n est pair, n=2p

$$med = \frac{x_p + x_{p+1}}{2}$$

Exemple 2, 5, 8, 10, 14, 15 p = 3 6 = 2 x 3 $med = \frac{x_3 + x_4}{2} = \frac{8 + 10}{2} = 9$

$$= 3 \qquad 6 = 2 \times 3$$

$$med = \frac{x_3 + x_4}{2} = \frac{8 + 10}{2} = 9$$

Mesure de dispersion

Variance et écart-type

Écart moyen

Pour calculer la moyenne quadratique on peut utiliser le fait que $Var(x) = E(x^2) - E(x)^2$

$$\sigma = \sqrt{Var(x)}$$

Exemple 8, 9, 10, 12, 13

$$Var(x) = \frac{8^2 + 10^2 + 9^2 + 12^2 + 13^2}{5} - 10, 4^2 = \frac{558}{5} - 108, 16 = 3, 44$$
$$\sigma = \sqrt{3, 44} \approx 1,855$$

$$\overline{E} = \frac{1}{n} \cdot \sum_{i=1}^{n} |x_i - \overline{x}|$$

Exemple 8, 9, 10, 12, 13

$$\overline{E} = \frac{1}{5}.(|8-10,4|+|10-10,4|+|9-10,4|+|12-10,4|+|13-10,4|) = \frac{8,4}{5} = 1,68$$

Concentration autour de la moyenne

Dans l'intervalle $[\mu-\sigma,\mu+\sigma]$ centré autour de la moyenne μ , il y a 68% de la masse de la distribution $\mathcal{N}(\mu,\sigma^2)$

$$\mathbb{P}[\mu - \sigma \le X \le \mu + \sigma] \simeq 0.68.$$

Variance et écart-type

Trouver le lien avec la moyenne quadratique

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \boxed{\frac{1}{n} \sum_{i=1}^{n} x_i^2} - \overline{x}^2$$

Pour calculer la moyenne quadratique on peut utiliser le fait que $Var(x) = E(x^2) - E(x)^2$

$$\sigma = \sqrt{Var(x)}$$
 $var = Q^2 - A^2$

$$var = Q^2 - A^2$$

Exemple 8, 9, 10, 12, 13

$$Var(x) = \frac{8^2 + 10^2 + 9^2 + 12^2 + 13^2}{5} - 10, 4^2 = \frac{558}{5} - 108, 16 = 3, 44$$
$$\sigma = \sqrt{3, 44} \simeq 1,855$$

Écart moyen

$$\overline{E} = \frac{1}{n} \cdot \sum_{i=1}^{n} |x_i - \overline{x}|$$

Exemple 8, 9, 10, 12, 13

$$\overline{E} = \frac{1}{5}.(|8-10,4|+|10-10,4|+|9-10,4|+|12-10,4|+|13-10,4|) = \frac{8,4}{5} = 1,68$$

Écart médian

$$E_m = \frac{1}{n} \cdot \sum_{i=1}^{n} |x_i - med|$$

Exemple 8, 9, 10, 12, 13

$$8 \le 9 \le 10 \le 12 \le 13$$

$$E_m = \frac{1}{5}.(|8-10|+|10-10|+|9-10|+|12-10|+|13-10|) = \frac{8}{5} = 1,6$$