

13. Übungsblatt

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik Sommersemester 2021

23. Juli 2021

Auf diesem Übungsblatt wird der Vorlesungsstoff bis zum Ende des Vorlesungsskripts auf Seite 97 behandelt.

Aufgabe 49 (K):

(i) Es sei die Funktion $f: \mathbb{R} \to \mathbb{C}$ gegeben durch

$$f(t) = \begin{cases} 2\sin(t), & -\pi \le t \le \pi, \\ 0, & \text{sonst.} \end{cases}$$

Berechnen Sie die Fouriertransformierte $\hat{f}: \mathbb{R} \to \mathbb{C}$.

(ii) Es sei $f: \mathbb{R} \to \mathbb{C}$ stückweise stetig und absolut integrierbar. Weiter sei f reellwertig. Zeigen Sie, dass dann $|\hat{f}|$ gerade ist, d.h. dass gilt $|\hat{f}(s)| = |\hat{f}(-s)|$ für alle $s \in \mathbb{R}$.

Lösungsvorschlag zu Aufgabe 49:

(i) Behauptung: Es gilt $\hat{f}(-1) = i$, $\hat{f}(1) = -i$ und

$$\hat{f}(s) = -\mathrm{i} \frac{2\sin(\pi s)}{\pi (1 - s^2)} \quad (s \in \mathbb{R} \setminus \{-1, 1\}).$$

<u>Beweis:</u> Es gilt für $s \neq \pm 1$:

$$2\pi \hat{f}(s) = \int_{-\pi}^{\pi} 2\sin(t)e^{-ist} dt = \int_{-\pi}^{\pi} \frac{1}{i} \left(e^{it} - e^{-it} \right) e^{-ist} dt = \frac{1}{i} \int_{-\pi}^{\pi} e^{i(1-s)t} - e^{-i(1+s)t} dt$$

$$= \frac{1}{i} \left[\frac{e^{i(1-s)t}}{i(1-s)} - \frac{e^{-i(1+s)t}}{-i(1+s)} \right]_{t=-\pi}^{t=\pi} = \frac{2}{i} \left[\frac{e^{i(1-s)t}}{2i(1-s)} + \frac{e^{-i(1+s)t}}{2i(1+s)} \right]_{t=-\pi}^{t=\pi}$$

$$= \frac{2}{i} \left(\frac{\sin((1-s)\pi)}{1-s} + \frac{\sin(-(1+s)\pi)}{1+s} \right) = \frac{2}{i} \left(\frac{-\sin(-\pi s)}{1-s} + \frac{-\sin(-\pi s)}{1+s} \right)$$

$$= \frac{2}{i} \cdot \frac{(1+s)\sin(\pi s) + (1-s)\sin(\pi s)}{1-s^2} = \frac{4\sin(\pi s)}{i(1-s^2)} = -i\frac{4\sin(\pi s)}{1-s^2}.$$

Also ist die Fouriertransformierte auf $\mathbb{R} \setminus \{-1,1\}$ gegeben durch

$$\hat{f}(s) = -i\frac{2\sin(\pi s)}{\pi(1-s^2)}.$$

Wegen der Stetigkeit von \hat{f} und der Regel von de l'Hospital folgt

$$\hat{f}(-1) = i$$
, und $\hat{f}(1) = -i$,

denn:

$$\lim_{s \to \pm 1} \hat{f}(s) = \lim_{s \to \pm 1} -i \frac{2\sin(\pi s)}{\pi (1 - s^2)} = \lim_{s \to \pm 1} -i \frac{2\pi\cos(\pi s)}{-2\pi s} = i \frac{-1}{\pm 1}.$$

(ii) <u>Voraussetzung:</u> Es sei $f: \mathbb{R} \to \mathbb{C}$ stückweise stetig, absolut integrierbar und reellwertig. Behauptung: Dann ist $|\hat{f}|$ gerade, d.h. es gilt $|\hat{f}(s)| = |\hat{f}(-s)|$ für alle $s \in \mathbb{R}$.

 $\underline{Beweis:}$ Da f reellwertig ist, gilt

$$\hat{f}(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-ist} dt = \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} f(t) \cos(st) dt - i \int_{-\infty}^{\infty} f(t) \sin(st) dt \right).$$

Damit folgt

$$|\hat{f}(s)| = \frac{1}{2\pi} \sqrt{\left(\int_{-\infty}^{\infty} f(t)\cos(st) dt\right)^2 + \left(-\int_{-\infty}^{\infty} f(t)\sin(st) dt\right)^2} = |\hat{f}(-s)|.$$

Aufgabe 50:

(i) Es sei $f: \mathbb{R} \to \mathbb{C}$ stetig, stückweise glatt und absolut integrierbar. Weiter sei zudem $g := \hat{f}$ absolut integrierbar. Zeigen Sie, dass dann gilt: $f(t) = 2\pi \hat{g}(-t)$ für alle $t \in \mathbb{R}$.

(ii) Für $\alpha > 0$ sei $\gamma_{\alpha} \colon \mathbb{R} \to \mathbb{C}$ definiert durch $\gamma_{\alpha}(s) := \frac{2\alpha}{\alpha^2 + s^2}$. Zeigen Sie: $\gamma_{\alpha} * \gamma_{\beta} = \gamma_{\alpha + \beta}$ für alle $\alpha, \beta > 0$.

Hinweis: Sie dürfen ohne Beweis verwenden, dass $\gamma_{\alpha} * \gamma_{\beta}$ eine stetig differenzierbare Funktion ist.

Lösungsvorschlag zu Aufgabe 50:

(i) <u>Voraussetzung:</u> Es sei $f: \mathbb{R} \to \mathbb{C}$ stetig, stückweise glatt und absolut integrierbar. Zudem sei auch $g := \hat{f}$ absolut integrierbar.

Behauptung: Dann gilt: $f(t) = 2\pi \hat{g}(-t)$ für alle $t \in \mathbb{R}$.

<u>Beweis:</u> Da f stetig, stückweise glatt und absolut integrierbar ist, liefert der Umkehrsatz für $t \in \mathbb{R}$:

$$f(t) = CH - \int_{-\infty}^{\infty} \hat{f}(s)e^{ist} ds = \int_{-\infty}^{\infty} g(s)e^{-is(-t)} ds = 2\pi \hat{g}(-t),$$

wobei wir bei der zweiten Gleichheit die absolute Integrierbarkeit von $g=\hat{f}$ verwendet haben. \Box

(ii) <u>Beweis:</u> Es reicht, die Identität $\widehat{\gamma_{\alpha} * \gamma_{\beta}} = \widehat{\gamma_{\alpha+\beta}}$ zu überprüfen, weil aus ihr für die stetigen und glatten Funktionen $\gamma_{\alpha} * \gamma_{\beta}$ und $\gamma_{\alpha+\beta}$ aus dem Umkehrsatz Gleichheit folgt (siehe Hinweis).

Zunächst machen wir folgenden Vorüberlegung: Nach der Vorlesung ist die Funktion

$$\frac{\gamma_1(s)}{2\pi} = \frac{1}{\pi} \cdot \frac{1}{1+s^2}$$

die Fouriertransformierte von $e^{-|t|}$, d.h. es gilt $\gamma_1 = \hat{f}$ für $f(t) := 2\pi e^{-|t|}$. Für $\alpha > 0$ ist

$$\gamma_{\alpha}(s) = \frac{2\alpha}{\alpha^2 + s^2} = \frac{\frac{2}{\alpha}}{1 + \left(\frac{s}{\alpha}\right)^2} = \frac{\gamma_1\left(\frac{s}{\alpha}\right)}{\alpha}$$

und somit nach Aufgabe 46 (i) die Fouriertransformierte von $f_{\alpha}(t) := f(\alpha t) = 2\pi e^{-\alpha|t|}$. Nun ist f_{α} stetig, stückweise glatt und absolut integrierbar, und auch $\hat{f}_{\alpha} = \gamma_{\alpha}$ ist absolut integrierbar. Damit folgt aus Teil (i)

$$2\pi \mathrm{e}^{-\alpha|t|} = f_{\alpha}(t) = 2\pi \widehat{\gamma_{\alpha}}(-t), \quad \text{d.h.} \quad \widehat{\gamma_{\alpha}}(t) = \mathrm{e}^{-\alpha|-t|} = \mathrm{e}^{-\alpha|t|}.$$

Insgesamt erhalten wir

$$\widehat{\gamma_{\alpha} * \gamma_{\beta}}(s) = \widehat{\gamma_{\alpha}}(s) \cdot \widehat{\gamma_{\beta}}(s) = e^{-\alpha|s|} e^{-\beta|s|} = e^{-(\alpha+\beta)|s|} = \widehat{\gamma_{\alpha+\beta}}(s).$$

Aufgabe 51 (K):

(i) Es seien die Funktionen $f: \mathbb{R} \to \mathbb{C}, f(x) := xe^{-x^2}$ und

$$g \colon \mathbb{R} \to \mathbb{C}, \quad g(s) := \begin{cases} \frac{\widehat{f''}(s)}{s}, & s \neq 0, \\ 0, & s = 0, \end{cases}$$

gegeben. Zeigen Sie, dass g stetig ist und bestimmen Sie $\int_{-\infty}^{\infty} g(s)e^{ist} ds$ $(t \in \mathbb{R})$.

(ii) Es sei $f: \mathbb{R} \to \mathbb{C}$ schnell fallend, reellwertig und antisymmetrisch, d.h. es gilt f(t) = -f(-t) $(t \in \mathbb{R})$. Zeigen Sie, dass die Fouriertransformierte der Ableitung \hat{f}' reellwertig ist, d.h. dass $\hat{f}'(\mathbb{R}) \subseteq \mathbb{R}$ gilt.

Lösungsvorschlag zu Aufgabe 51:

(i) <u>Behauptung:</u> Es gilt $\int_{-\infty}^{\infty} g(s)e^{ist} ds = i(1-2t^2)e^{-t^2}$ $(t \in \mathbb{R})$.

<u>Beweis:</u> Da f eine schnell fallende Funktion ist, gilt nach Satz 24.9: $\widehat{f''}(s) = \mathrm{i} s \widehat{f'}(s)$. Wegen $g(0) = 0 = \mathrm{i} (\mathrm{i} \cdot 0) \widehat{f}(0) = \mathrm{i} \widehat{f'}(0)$ gilt $g(s) = \mathrm{i} \widehat{f'}(s)$ für alle $s \in \mathbb{R}$, g ist also insbesondere stetig. Damit berechnen wir für $t \in \mathbb{R}$:

$$\int_{-\infty}^{\infty} g(s) \mathrm{e}^{\mathrm{i}st} \, ds = \mathrm{i} \int_{-\infty}^{\infty} \widehat{f}'(s) \mathrm{e}^{\mathrm{i}st} \, ds = \mathrm{i} f'(t) = \mathrm{i} (1 - 2t^2) \mathrm{e}^{-t^2}.$$

(ii) <u>Voraussetzung:</u> Es sei $f: \mathbb{R} \to \mathbb{C}$ schnell fallend, reellwertig und antisymmetrisch, d.h. es gilt $f(t) = \frac{-f(-t) \ (t \in \mathbb{R})}{-f(-t) \ (t \in \mathbb{R})}$.

Behauptung: Dann gilt: $\widehat{f}'(\mathbb{R}) \subseteq \mathbb{R}$.

<u>Beweis:</u> Für $s \in \mathbb{R}$ gilt mit Satz 24.9

$$\widehat{f}'(s) = \mathrm{i} s \widehat{f}(s) = \frac{\mathrm{i} s}{2\pi} \int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{i} s t} \, dt = \frac{\mathrm{i} s}{2\pi} \int_{-\infty}^{\infty} \underbrace{f(-t)}_{=-f(t)} \mathrm{e}^{\mathrm{i} s t} \, dt = -\frac{\mathrm{i} s}{2\pi} \overline{\int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{i} s t} \, dt}$$
$$= -\mathrm{i} s \overline{\widehat{f}(s)} = \overline{\mathrm{i} s \widehat{f}(s)} = \overline{\widehat{f}'(s)},$$

d.h.
$$\widehat{f}'(s) \in \mathbb{R}$$
.

Aufgabe 52:

Die Funktion $\varphi \colon \mathbb{R} \to \mathbb{C}$ sei beliebig oft differenzierbar und es gelte $\varphi(t) = 0$ für $|t| \ge 1$. Zeigen Sie, dass dann $s \mapsto s^n \hat{\varphi}(s)$ für jedes $n \in \mathbb{N}$ eine beschränkte Funktion ist.

Lösungsvorschlag zu Aufgabe 52:

Es sei $n \in \mathbb{N}$ beliebig. Dann ist die Funktion φ nach Voraussetzung n-mal stetig differenzierbar, und wegen $\varphi(t) = 0$ für $|t| \ge 1$ sind φ und sämtliche Ableitungen absolut integrierbar. Gemäß Satz 20.9 aus der Vorlesung hat man also

$$\widehat{\varphi^{(n)}}(s) = (\mathrm{i}s)^n \hat{\varphi}(s).$$

Auf der linken Seite dieser Gleichung steht eine Fouriertransformierte, insbesondere also eine beschränkte Funktion. Damit ist auch die rechte Seite beschränkt, und diese hat den gleichen Betrag wie $s^n \hat{\varphi}(s)$.