Examen

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

- **Exercice 1.** Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire définie par f(x,y) = (x+y, x-y, x+y).
 - 1. Déterminer le noyau Ker f de f. L'application f est-elle injective?
 - 2. Déterminer l'image $\operatorname{Im} f$ de f et en donner une base. L'application f est-elle surjective?
- **Exercice 2.** Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
 - 1. Exprimer A^2 en fonction de A.
 - 2. En déduire l'inverse de A.

Exercice 3. Soit M la matrice réelle 3×3 suivante :

$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

- 1. Déterminer les valeurs propres de M.
- 2. Montrer que M est diagonalisable.
- 3. Déterminer les vecteurs propres associés aux valeurs propres.
- 4. Donner alors la matrice P inversible et la matrice diagonale D telles que $M = PDP^{-1}$. (On ne demande pas de calculer P^{-1}).

Exercice 4. On effectue l'ACP du nuage de points (en 2d) suivant :

	x 3 4 6 6 6 7 7 8 9 9 9 10 11 12 12 13 13 13 14 15 17 17 18 20																								
x	3	4	6	6	6	7	7	8	9	9	9	10	11	12	12	13	13	13	13	14	15	17	17	18	20
y	2	10	5	8	10	2	13	9	5	8	14	7	12	10	11	6	14	15	17	7	13	13	17	19	20

La matrice de covariance associée est $C = \begin{pmatrix} 19.4656 & 14.9616 \\ 14.9616 & 23.0976 \end{pmatrix}$. Les valeurs propres de C sont

 $\lambda_1 = 36.35300772$ et $\lambda_2 = 6.21019228$ et les vecteurs propres associés sont $v_1 = (0.6631391, -0.74849618)$ et $v_2 = (-0.74849618, -0.6631391)$ respectivement.

- 1. Comment est calculée la matrice C?
- 2. Quelle propriété vérifie les vecteurs propres de C?
- 3. Quelle est la proportion de variance expliquée par chaque vecteurs propre?
- 4. La somme des vecteurs propres est égale à quelle quantité?

Exercice 5. Soit A une matrice carrée de taille $n \times n$. On suppose que A est inversible et que $\lambda \in \mathbb{R}$ est une valeur propre de A.

- 1. Démontrer que $\lambda \neq 0$.
- 2. Démontrer que si x est un vecteur propre de A pour la valeur propre λ alors il est vecteur propre de A^{-1} de valeur propre $\frac{1}{\lambda}$.