

CENTRO UNIVERSITARIO UNIRUY

BRUNO SANTOS OLIVEIRA

BRUNA DA SILVA SANTOS

FILIPE SILVA DE PINHO

FELIPE SILVA CHIMERIS CHAVES

MATHEUS DOS SANTOS BRITO

PAULO HENRIQUE RIBEIRO CHAVES

BANCO DE DADOS

SALVADOR 2023

CENTRO UNIVERSITARIO UNIRUY

BRUNO SANTOS OLIVEIRA

BRUNA DA SILVA SANTOS

FILIPE SILVA DE PINHO

FELIPE SILVA CHIMERIS CHAVES

MATHEUS DOS SANTOS BRITO

PAULO HENRIQUE RIBEIRO CHAVES

BANCO DE DADOS

Modelo SGBD voltado para clinicas de pequeno porte

SALVADOR 2023

SUMÁRIO

1- INTRODUÇÃO
2- MODELO CONCEITUAL
2.1- DIAGRAMA DE ENTIDADE-RELACIONAMENTO
3- MODELO LÓGICO
4- MODELO FÍSICO
5- CONCLUSÃO
6- REFERÊNCIAS
U- NEFENCIAS

1. INTRODUÇÃO

O gerenciamento eficaz de informações em ambientes de saúde é crucial para proporcionar um atendimento de qualidade aos pacientes. Nosso objetivo neste trabalho é explorar e aplicar os princípios da modelagem de dados e sistemas de gerenciamento de banco de dados para desenvolver uma solução adaptada às necessidades de uma clínica de pequeno porte.

O projeto a seguir será mostrado a criação do banco de dados a partir das ideias geradas no modelo conceitual, sua concretização no modelo lógico e sua implementação no modelo físico.

2. MODELO CONCEITUAL

Um modelo conceitual é o primeiro modelo que deve ser desenvolvido, sendo uma representação abstrata e de alto nível das informações e das relações entre essas informações em um banco de dados.

O banco de gerenciamento de clínicas é um sistema desenvolvido para ajudar no manuseamento de registro e no acompanhamento de informações críticas em clínicas de pequeno porte. O sistema aborda a relação entre as principais áreas de gestão, incluindo pacientes, médicos, consultas, medicamentos e exames.

Uma boa gestão de dados vai otimizar as operações diárias, reduzindo o tempo gasto em tarefas administrativas e permitindo que a equipe se concentre mais no atendimento ao paciente, além garantir a precisão e a integridade das informações, evitando erros e melhorando a qualidade do atendimento.

2.1 DIAGRAMA DE ENTIDADE-RELACIONAMENTO

Um Diagrama de Entidade-Relacionamento é uma ferramenta valiosa durante a fase de design de banco de dados, pois ajuda a validar requisitos, identificar redundâncias e fornece uma base sólida para a implementação do SGBD.

Cardinalidade do modelo conceitual (Fig1):

MEDICO:

- Um médico pode estar associado a várias receitas (1:N)
- Um médico pode atender a várias consultas e exames (N:M)

PACIENTE:

- Um paciente pode estar associado a várias receitas (1:N)
- Um paciente pode agendar várias consultas e exames (N:M)
- Um paciente pode ter pelo menos um atendimento associado (1:N)

ATENDENTE:

• Um atendente pode estar associado a vários pacientes (1:N)

RECEITA:

- Uma receita está associada a um único médico (N:1)
- Uma receita está associada a um único paciente (N:1)

CONSULTA:

- Uma consulta pode ser atendida por vários médicos (N:M)
- Uma consulta pode ser agendada por vários pacientes (N:M)

EXAME:

- Um exame pode ser atendido por vários médicos (N:M)
- Um exame pode ser agendado por vários pacientes (N:M)

ATENDE_CONSULTA:

- Um médico pode atender a várias consultas (N:1).
- Uma consulta deve ser atendida por pelo menos um médico (1:N).

ATENDE_EXAME:

- Um médico pode atender a vários exames (N:1).
- Um exame deve ser atendido por pelo menos um médico (1:N).

AGENDA_CONSULTA:

- Um paciente pode agendar várias consultas (N:1).
- Uma consulta deve ser agendada por pelo menos um paciente (1:N).

AGENDA_EXAME:

- Um paciente pode agendar vários exames (N:1).
- Um exame deve ser agendado por pelo menos um paciente (1:N).

ATENDIMENTO:

- Um atendente pode estar associado a vários pacientes (1:N).
- Um paciente deve estar associado a pelo menos um atendente (1:N).

Fig1

3. MODELO LÓGICO

Um modelo de dados lógico serve para definir como um sistema deve ser implementado, independentemente do sistema de gerenciamento de banco de dados que está sendo usado. O objetivo de criar um modelo de dados lógico é desenvolver um mapa altamente técnico de regras e estruturas de dados subjacentes facilitando a tradução das ideias conceituais em estruturas tangíveis suportadas pelo SGBD escolhido.

Médico (Tabela MEDICO):

- Cada registro representa um médico identificado por um número único (ID).
- Um médico pode estar associado a várias receitas, indicando que um médico pode prescrever medicamentos a diferentes pacientes.
- Um médico pode atender a várias consultas e exames, permitindo uma flexibilidade maior na gestão das atividades médicas.

Paciente (Tabela PACIENTE):

- Cada registro representa um paciente identificado por um número único (ID).
- Um paciente pode estar associado a várias receitas, indicando os medicamentos prescritos a esse paciente.
- Um paciente pode agendar várias consultas e exames, refletindo o histórico de interações médicas.
- Um paciente pode ter pelo menos um atendimento associado, representando a relação com um atendente.

Atendente (Tabela ATENDENTE):

- Cada registro representa um atendente identificado por um número único (ID).
- Um atendente pode estar associado a vários pacientes, indicando responsabilidades de atendimento a determinados pacientes.

Receita (Tabela RECEITA):

- Cada registro representa uma receita médica identificada por um número único (ID).
- Uma receita está associada a um único médico, indicando quem prescreveu os medicamentos.
- Uma receita está associada a um único paciente, indicando para quem os medicamentos foram prescritos.

Consulta (Tabela CONSULTA):

- Cada registro representa uma consulta identificada por um número único (ID).
- Uma consulta pode ser atendida por vários médicos, refletindo consultas colaborativas ou de especialistas.
- Uma consulta pode ser agendada por vários pacientes, indicando a flexibilidade no agendamento de consultas.

Exame (Tabela EXAME):

- Cada registro representa um exame identificado por um número único (ID).
- Um exame pode ser atendido por vários médicos, permitindo que diferentes médicos estejam envolvidos na análise de um exame.
- Um exame pode ser agendado por vários pacientes, indicando flexibilidade no agendamento de exames.

Atende_Consulta (Tabela ATENDE_CONSULTA):

- Cada registro representa a associação de um médico a uma consulta.
- Um médico pode atender a várias consultas, e uma consulta é atendida por pelo menos um médico.

Atende_Exame (Tabela ATENDE_EXAME):

- Cada registro representa a associação de um médico a um exame.
- Um médico pode atender a vários exames, e um exame é atendido por pelo menos um médico.

Agenda_Consulta (Tabela AGENDA_CONSULTA):

- Cada registro representa a associação de um paciente a uma consulta.
- Um paciente pode agendar várias consultas, e uma consulta é agendada por pelo menos um paciente.

Agenda_Exame (Tabela AGENDA_EXAME):

- Cada registro representa a associação de um paciente a um exame.
- Um paciente pode agendar vários exames, e um exame é agendado por pelo menos um paciente.

Atendimento (Tabela ATENDIMENTO):

- Cada registro representa a associação de um atendente a um paciente.
- Um atendente pode estar associado a vários pacientes, e um paciente está associado a pelo menos um atendente.

Fig2.

4. MODELO FÍSICO

O modelo de dados físico diz respeito a como o sistema será implementado e a fatores no sistema de gerenciamento de banco de dados específico. O objetivo principal é traduzir o modelo lógico em estruturas concretas que possam ser eficientemente gerenciadas pelo SGBD escolhido e que atendam aos requisitos de desempenho e segurança do sistema.

```
CREATE TABLE MEDICO
( ID INT PRIMARY KEY AUTO_INCREMENT,
nome VARCHAR(255),
email VARCHAR(255),
especializacao VARCHAR(255),
numero_de_registro INT,
UNIQUE (numero_de_registro)
);
CREATE TABLE PACIENTE
( email VARCHAR(255),
telefone VARCHAR(255),
cpf INT,
nome VARCHAR(255),
ID INT PRIMARY KEY AUTO_INCREMENT,
UNIQUE (cpf)
):
CREATE TABLE ATENDENTE
( ID INT PRIMARY KEY AUTO_INCREMENT,
nome VARCHAR(255),
email VARCHAR(255),
telefone VARCHAR(255),
turno VARCHAR(255)
);
```

```
CREATE TABLE RECEITA
( descricao VARCHAR(255),
data_da_expedicao VARCHAR(255),
ID INT PRIMARY KEY AUTO_INCREMENT,
ID_MEDICO INT,
ID_PACIENTE INT
);
CREATE TABLE ATENDIMENTO
( ID INT PRIMARY KEY AUTO_INCREMENT,
 ID_PACIENTE INT,
 iD_ATENDENTE INT
);
CREATE TABLE CONSULTA
( especialidade VARCHAR(255),
data_de_atendimento VARCHAR(255),
data_de_solicitacao VARCHAR(255),
ID INT PRIMARY KEY AUTO_INCREMENT
);
CREATE TABLE EXAME
( data_de_atendimento VARCHAR(255),
 tipo_de_exame VARCHAR(255),
 data_de_solicitacao VARCHAR(255),
 ID INT PRIMARY KEY AUTO_INCREMENT
);
CREATE TABLE ATENDE_CONSULTA
( ID INT PRIMARY KEY AUTO_INCREMENT,
 ID_MEDICO INT,
 ID_CONSULTA INT
);
```

```
CREATE TABLE ATENDE_EXAME
( ID INT PRIMARY KEY AUTO_INCREMENT,
 ID_MEDICO INT,
 ID_EXAME INT
):
CREATE TABLE AGENDA_CONSULTA
( ID INT PRIMARY KEY AUTO_INCREMENT.
 ID_PACIENTE INT.
 ID_CONSULTA INT
);
CREATE TABLE AGENDA_EXAME
( ID INT PRIMARY KEY AUTO_INCREMENT,
 ID_PACIENTE INT,
 ID_EXAME INT
);
ALTER TABLE RECEITA ADD FOREIGN KEY(ID_MEDICO) REFERENCES MEDICO (ID);
ALTER TABLE RECEITA ADD FOREIGN KEY(ID_PACIENTE) REFERENCES PACIENTE (ID);
ALTER TABLE
              ATENDIMENTO ADD FOREIGN KEY (ID_PACIENTE) REFERENCES
PACIENTE (ID);
ALTER TABLE ATENDIMENTO ADD FOREIGN KEY (ID_ATENDENTE) REFERENCES
ATENDENTE (ID);
ALTER TABLE ATENDE_CONSULTA ADD FOREIGN KEY (ID_MEDICO) REFERENCES
MEDICO (ID);
ALTER TABLE ATENDE_CONSULTA ADD FOREIGN KEY (ID_CONSULTA) REFERENCES
CONSULTA (ID):
ALTER TABLE ATENDE_EXAME ADD FOREIGN KEY (ID_MEDICO) REFERENCES MEDICO
(ID):
ALTER TABLE ATENDE_EXAME ADD FOREIGN KEY (ID_EXAME) REFERENCES EXAME
(ID);
ALTER TABLE AGENDA_CONSULTA ADD FOREIGN KEY (ID_PACIENTE) REFERENCES
```

ALTER TABLE AGENDA_CONSULTA ADD FOREIGN KEY (ID_CONSULTA) REFERENCES

PACIENTE (ID);

CONSULTA (ID);

5. CONCLUSÃO

Este projeto oferece uma oportunidade valiosa para aplicar e consolidar os conhecimentos adquiridos em modelagem de dados e sistemas de gerenciamento de banco de dados, não apenas alcançamos os objetivos técnicos propostos, mas também adquirimos insights valiosos sobre a interseção entre sistemas de informação e o funcionamento de pequenos negócios.

Além disso, promoveu habilidades essenciais de trabalho em equipe, comunicação e resolução de problemas, aspectos cruciais no desenvolvimento de sistemas de informação.

7. REFERÊNCIAS

- https://www.blrdata.com.br/single-post/2016/03/19/modelagemconceitual-de-dados-conhe%C3%A7a-os-principais-conceitos-epr%C3%A1ticas
- https://estudante.wyden.com.br/disciplinas/uniruy_9465708/temas/2/cont eudos/1
- https://www.tibco.com/pt-br/reference-center/what-is-a-logical-datamodel
- https://pt.stackoverflow.com/questions/294699/qual-a-diferen%C3%A7a-entre-modelagem-conceitual-l%C3%B3gica-e-f%C3%ADsica