A variation on tableau switching and a Pak-Vallejo's conjecture

Olga Azenhas

CMUC
Centre for Mathematics, University of Coimbra

June 26, 2008

Overview

- Fundamental symmetry map and Pak-Vallejo's conjecture
- Interlacing phenomenon and GT patterns
- Decreasing chain sliding/Reverse Schensted row insertion
- The bijection ρ_3
- Senkart-Sottile-Stroomer tableau switching and interlacing phenomenon

Definition (PV04)

The fundamental symmetry is a bijection

$$\rho: LR_n[\lambda/\mu, \nu] \longrightarrow LR_n[\lambda/\nu, \mu].$$

Definition (PV04)

The fundamental symmetry is a bijection

$$\rho: LR_n[\lambda/\mu, \nu] \longrightarrow LR_n[\lambda/\nu, \mu].$$

ρ₁ Benkart-Sottile-Stroomer tableau switching

Definition (PV04)

The fundamental symmetry is a bijection

$$\rho: LR_n[\lambda/\mu, \nu] \longrightarrow LR_n[\lambda/\nu, \mu].$$

- ρ₁ Benkart-Sottile-Stroomer tableau switching
- $\rho_2 = \tau^{-1} \xi \gamma$, ξ Schützenberger involution, τ and γ linear maps
- ρ_2^{-1}

Definition (PV04)

The fundamental symmetry is a bijection

$$\rho: LR_n[\lambda/\mu, \nu] \longrightarrow LR_n[\lambda/\nu, \mu].$$

- ρ₁ Benkart-Sottile-Stroomer tableau switching
- $\rho_2 = \tau^{-1} \xi \gamma$, ξ Schützenberger involution, τ and γ linear maps
- ρ_2^{-1}
- ρ_3 [A. 98;00]

Conjecture [PV04] The fundamental symmetries ρ_1 , ρ_2 , ρ_2^{-1} , ρ_3 are identical involutions.

[DK05] Danilov, Koshevoy: ρ_1 and $\rho_2 = \rho_2^{-1}$ are identical involutions.

$$AB = C \longrightarrow (\mu, \nu, \lambda) \longrightarrow T \in LR_n(\lambda/\mu, \nu)$$

$$AB = C \longrightarrow (\mu, \nu, \lambda) \longrightarrow T \in LR_n(\lambda/\mu, \nu)$$

$$AB = C \longrightarrow (\mu, \nu, \lambda) \longrightarrow T \in LR_n(\lambda/\mu, \nu)$$

$$\big(\mu^{(n-1)},\nu_{[n-1]},\lambda_{[n-1]}\big)\longrightarrow T'\in LR\big(\mu^{(n-1)},\nu_{[n-1]},\lambda_{[n-1]}\big).$$

$$AB = C \longrightarrow (\mu, \nu, \lambda) \longrightarrow T \in LR_n(\lambda/\mu, \nu)$$

$$\begin{array}{c|c}
\rho^{\nu_1} & & & \\
& \cdot & & \\
& & \rho^{\nu_{n-1}} \\
\hline
& & \rho^{\nu_n}
\end{array}$$

$$\begin{array}{c|c}
 & p^{\lambda_1} \\
 & \ddots \\
 & * & p^{\lambda_{n-1}} \\
 & * & p^{\lambda_n}
\end{array}$$

$$(\mu^{(n-1)}, \nu_{[n-1]}, \lambda_{[n-1]}) \longrightarrow T' \in LR(\mu^{(n-1)}, \nu_{[n-1]}, \lambda_{[n-1]}).$$

$$\mu_1^{(n-1)}$$
 $\mu_2^{(n-1)}$ \cdots $\mu_{n-1}^{(n-1)}$ μ_1 μ_2 μ_3 \cdots μ_{n-1} μ_n

GT pattern
$$G=[\mu^{(1)},\ldots,\mu^{(n-1)},\mu^n=\mu]$$
 of base μ and weight $\lambda-\nu$,
$$\sum_{i=1}^i(\mu_j^{(i)}-\mu_j^{(i-1)})=\lambda_i-\nu_i,\ i=1,\ldots,n.$$

$$B^tA^t = C^t \longrightarrow (v, \mu, \lambda) \longrightarrow t(T) \in LR_n(\lambda/v, \mu)$$

$$B^t A^t = C^t \longrightarrow (\nu, \mu, \lambda) \longrightarrow t(T) \in LR_n(\lambda/\nu, \mu)$$

$$B^tA^t=C^t\longrightarrow (\nu,\mu,\lambda)\longrightarrow t(T)\in LR_n(\lambda/\nu,\mu)$$

Question: Does $G = [\mu^{(1)}, \mu^{(2)}, \cdots, \mu^{(n-1)}, \mu]$ define t(T)?

$$B^{t}A^{t} = C^{t} \longrightarrow (\nu, \mu, \lambda) \longrightarrow t(T) \in LR_{n}(\lambda/\nu, \mu)$$

$$\downarrow^{p^{\nu_{1}}} \qquad \qquad \downarrow^{p^{\nu_{1}}} \qquad \qquad \downarrow^{p^{\nu$$

Question: Does
$$G = [\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(n-1)}, \mu]$$
 define $t(T)$?

• Yes, if $t(T') \in LR(\lambda_{[n-1]}/\nu_{[n-1]}, \mu^{(n-1)})$ can be obtained by suppression of the last row of t(T).

LR tableaux and GT patterns

• There is a bijection between $LR_n[\lambda/\nu,\mu]$ and GT patterns $G = [\mu^{(1)}, \cdots, \mu^{(n-1)}, \mu^{(n)}]$ of base μ and weight $\lambda - \nu$,

LR tableaux and GT patterns

• There is a bijection between $LR_n[\lambda/\nu,\mu]$ and GT patterns $G = [\mu^{(1)}, \cdots, \mu^{(n-1)}, \mu^{(n)}]$ of base μ and weight $\lambda - \nu$,

such that

$$v_{i-1}-v_i \ge \sum_{i=1}^r (\mu_j^{(i)}-\mu_j^{(i-1)}) - \sum_{i=1}^{r-1} (\mu_j^{(i)}-\mu_j^{(i-1)}), \quad 1 \le r \le i-1, \quad 2 \le i \le n.$$

Combinatorial scheme of LR tableaux

$$\chi^* = t \circ \delta \circ t$$

$$\nu_{[n-1]} = (\nu_1, \dots, \nu_{n-1}), \qquad \lambda_{[n-1]} = (\lambda_1, \dots, \lambda_{n-1})$$

2.1. Young tableau shape interlacing

Theorem

 $T \in ST_n(\lambda/\mu, m)$

P the rectification of T with $shape(P) = \sigma = (\sigma_1, \dots, \sigma_{n-1}, \sigma_n)$ \tilde{P} the rectification of \tilde{T} with $shape(\tilde{P}) = \tilde{\sigma} = (\tilde{\sigma}_1, \dots, \tilde{\sigma}_{n-1})$

2.1. Young tableau shape interlacing

Theorem

 $T \in ST_n(\lambda/\mu, m)$

P the rectification of T with $shape(P) = \sigma = (\sigma_1, \ldots, \sigma_{n-1}, \sigma_n)$ \tilde{P} the rectification of \tilde{T} with $shape(\tilde{P}) = \tilde{\sigma} = (\tilde{\sigma}_1, \ldots, \tilde{\sigma}_{n-1})$ Then

$$\tilde{\sigma}_1 \qquad \tilde{\sigma}_2 \qquad \dots \qquad \tilde{\sigma}_{n-1} \\
\sigma_1 \qquad \sigma_2 \qquad \sigma_3 \quad \dots \quad \sigma_{n-1} \qquad \sigma_n$$

Young tableau combinatorial scheme

• $T \equiv P$, P with n-1 rows

$$\chi = \mathbf{s} \circ \delta \circ \mathbf{s}$$

$$\nu_{[n-1]} = (\nu_1, \dots, \nu_{n-1}), \qquad \lambda_{[n-1]} = (\lambda_1, \dots, \lambda_{n-1})$$

• If (P,R) is the switching of $(Y(\mu),T)$, the last row of the GT pattern defining the LR tableau R can be obtained by some *sliding up* operations in the last row of T.


```
1 2 2 3 4 4
   4 4 6 7
   5 6 7
                      6
T' = 2 2 3 3 4 4
```

$$T = \begin{cases} 1 & 2 & 2 & 3 & 3 & 4 \\ 2 & 3 & 4 & 6 & 7 \\ 4 & 4 & 6 & 7 \\ 5 & 6 & 7 \end{cases}$$

$$T' = \begin{cases} 2 & 2 & 3 & 3 & 4 \\ 2 & 3 & 4 & 6 & 7 \\ 4 & 4 & 6 & 6 & 7 \\ 5 & 6 & 7 \end{cases}$$

$$T' = \begin{cases} 2 & 2 & 3 & 3 & 4 & 4 \\ 2 & 3 & 6 & 6 & 7 \\ 4 & 4 & 7 & 7 & 7 \\ 5 & 6 & 7 & 7 & 7 \end{cases}$$

$$T' = \begin{cases} 2 & 2 & 3 & 3 & 4 & 4 \\ 4 & 4 & 6 & 6 & 7 \\ 5 & 6 & 7 & 7 & 7 \end{cases}$$

$$T = \begin{cases} 3 & 3 & 4 & 4 & 4 \\ 4 & 4 & 6 & 6 & 7 \\ 5 & 6 & 7 & 7 & 7 \end{cases}$$

$$T = \begin{cases} 3 & 3 & 4 & 4 & 4 \\ 4 & 4 & 6 & 6 & 7 \\ 5 & 6 & 7 & 7 & 7 \end{cases}$$

Proposition $T \in ST_n(\lambda/\mu, m)$, $T \equiv P$, P of normal shape with n-1 rows. If T' is obtained by reverse Schensted row insertion in the last row of T, $T' \in ST_{n-1}(\lambda_{[n-1]}/\mu', m)$ with $T' \equiv T$ and the inner shape μ' of T' interlaces with the inner shape μ of T.

Lemma

$$w \equiv Y(\mu)$$
. Then $shuffle(n...21, w) \equiv Y(\mu + (1, ..., 1))$

Corollary

 $T \in LR(\lambda/\mu, \nu)$, then T can be rectified by reverse Schensted row insertion.

Proposition $T \in ST_n(\lambda/\mu, m)$, $T \equiv P$, P of normal shape with n-1 rows. If T' is obtained by reverse Schensted row insertion in the last row of T, $T' \in ST_{n-1}(\lambda_{[n-1]}/\mu', m)$ with $T' \equiv T$ and the inner shape μ' of T' interlaces with the inner shape μ of T.

Lemma

$$w \equiv Y(\mu)$$
. Then $shuffle(n...21, w) \equiv Y(\mu + (1, ..., 1))$

Corollary

 $T \in LR(\lambda/\mu, \nu)$, then T can be rectified by reverse Schensted row insertion.

4. The bijection ρ_3

4. The bijection ρ_3

- • • 1 1 1 1 1
 • • 1 2 2 2 2
- 3 3 3 1 2 3 3
- 4 1 2 3 3 4

- • • 1 1 1 1 1 • • • • • 1 2 2 2 2
- 3 3 3 1 2 3 3
- $4 \quad \overline{1} \quad \overline{2} \quad \overline{3} \quad \overline{3} \quad \overline{4}$
- • • 1 1 1 1 1 1
- $2 \quad 2 \quad 2 \quad 2 \quad \overline{1} \quad \overline{\overline{2}} \quad \overline{\overline{2}} \quad \overline{\overline{2}} \quad \overline{\overline{2}} \quad \overline{\overline{2}}$
- 3 3 3 1 2 3 3
- $4 \quad \overline{1} \quad \overline{2} \quad \overline{3} \quad \overline{3} \quad \overline{4}$

- 4 1 2 3 3 4

• Can $(Y(\mu^{(n-1)}), Q)$ be obtained by reverse Schensted row insertion from the bottom row of T?

$$\chi = \mathbf{s} \circ \delta \circ \mathbf{s}$$

$$\nu_{[n-1]} = (\nu_1, \dots, \nu_{n-1}), \qquad \lambda_{[n-1]} = (\lambda_1, \dots, \lambda_{n-1})$$

5. Benkart-Sottile-Stroomer tableau switching and interlacing phenomenon

Theorem

Let $T \in St_n(\lambda/\mu, m)$ and $(Y(\mu), T) \stackrel{s}{\leftrightarrow} (P, R)$ where P has n-1 rows and $R \in LR(\lambda/\nu, \mu)$.

If
$$R = R^{(n-1)} \cup [L, r^{\mu_n}]$$
 and $(P, R^{(n-1)}) \stackrel{s}{\leftrightarrow} (Y(\mu^{(n-1)}), Q)$, then

- Q is obtained by reverse Schensted row insertion in the last row of T.
- $L = 1^{r_1} \cdots (n-1)^{r_{n-1}}$ such that $\mu \mu^{(n-1)} = (r_1, \cdots, r_{n-1}, \mu_n)$.

Corollary

$$T \in LR(\lambda/\mu, \nu), (Y(\mu), T) \stackrel{s}{\leftrightarrow} (Y(\nu), R)$$

- The GT pattern defining R can be obtained by successive reverse Schensted row insertion operations starting in the bottom row of T.
- $\rho_3(T) = \rho_1(T) = R$.

Proof by induction on |L|

$$\theta_4 > \theta_3 > \theta_2 > \theta_1$$

1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	•	θ_1
3	3	3	3	3	♦ 1		$ heta_{2}$	
4	X	y	Z	W	V	θ_3		
θ_{4}								

```
2
  2 2 2 2 2 2
  3 3 3 3
3
             ♦1
                $2
4
  X Y Z
          W
2
   2
     2 2
           2 2
                 2
   3 ◊<sub>2</sub>
         3 3 3
                 3
$1
              4
X
   y
     Z
         W
            V
   1
         1
            1
              1
                 1
2
   2
     2
         2
           2
              2
                 2
           V
              3
                 3
      W
♦1
  y
         3
      3
            3
X
   Z
```

```
2
  2 • 2 2 2 2 2
       w v 3 3
♦1
  y ◊2
  z 3 3 3 4
X
       1
         1
   1
     1
1
            1
              1
         v 2 2 2
     ٠
       W
  y
$1
    2 2 2 3
              3
  ♦2
X
     3 3 3 4
z
  2
```

1 1 1 1 1 1 1 1 1 1 1 1 1
$$\frac{1}{x}$$
 $x \Rightarrow_2 2 2 2 2 3 3 4 \theta_3$

1	1	1	1	1	1	1	1	1
٥ ₁	y	^	W	V	θ_3	2	2	θ_1
X	◊ 2	2	2	2	2	3	θ_2	
Z	2	3	3	3	3	4		
θ_{4}								

```
1 1 1
  1 1
          1
             1
\mathbf{v} \theta_3 2 2 \theta_1
   \diamond_2 2 2 2 3 \theta_2
   2 3 3 3 3 4
\theta_4
          1 1
                 1
           \theta_2 V \theta_3 2 2 \theta_1
   y ♠
   \Diamond_2 w 2 2 3 3
X
               3
                 3
    2 2
          3
\theta_4
```

```
1
       1
           1
                  1
               V
                  \theta_3 2 2
    y
           W
♦1
       2
           2
              2 2 3
X
    2
       3 3 3 3 4
    2
\theta_4
           1
               1
                   1
           \theta_2 V \theta_3 2 2
        ٠
♦1
           2 2 2 3 3
        W
X
    $2
          3
    2
       2
               3
                  3
\theta_4
                1
                   1
           1
                   \theta_3 2 2 2
            \theta_1 V
♦1
        \theta_2 2 2
                   2
                       3 3
    $2
            3
        2
               3
                    3
                       4
    W
\theta_4
```

$$(P,R^{(n-1)}) = \begin{pmatrix} \diamond_1 & y & \spadesuit & \theta_1 & v & \theta_3 & 1 & 1 & 1 \\ x & \diamond_2 & \theta_2 & 1 & 1 & 1 & 2 & 2 & 2 \\ z & w & 1 & 2 & 2 & 2 & 3 & 3 \\ \theta_4 & 1 & 2 & 3 & 3 & 3 & 4 \end{pmatrix}$$

 $\theta_4 > \theta_3 \ge v \ge w > \theta_2 > \theta_1$

$\theta_4 > \theta_3 \ge \mathbf{v} \ge \mathbf{w} > \theta_2 > \theta_1$

 θ_1 V θ_3 **♦**1 θ_2 1 1 2 2 2 X 2 2 2 2 3 W 1 1 3 3 2 3 4 θ_4 θ_1 **♦**1 2 2 2 θ_2 1 1 2 X 2 2 2 3 3 W 3 3 4 2 3

```
\theta_4 > \theta_3 \ge v \ge w > \theta_2 > \theta_1
                                                          \theta_3
                            $1
                                               \theta_1
                                        \theta_2
                                                                2
                                                                     2
                                               1
                                                     1
                             X
                                   $2
                                          1
                                               2
                                                     2
                                                          2
                                                                3
                                   W
                             1
                                   2
                                         3
                                               3
                                                     3
                                                           4
                                                                \theta_4
                             01
                                                        2
                                                               2
                                               1
                                                     1
                             X
                                   $2
                                         \theta_2
                                               2
                                                        3
                                                              3
                                                     2
                                                                     \theta_3
                                   W
                                   2
                                               3
                                                     3
                                                        4
                                         3
                                               \theta_1
                                   y
                            ♦1
                                               1
                                                     2
                                                        2
                                                               2
                             X
                                   $2
                                         \theta_2
```

1

2 3 3 3 4

W

v 3

3

 θ_3

```
\theta_4 > \theta_3 \ge v \ge w > \theta_2 > \theta_1
                                $1
                                                     \theta_1
                                                                  \theta_3
                                                                         2
                                                      1
                                                                               2
                                 X
                                        $2
                                              \theta_2
                                                      2
                                                            2
                                                                  2
                                                                         3
                                                                               3
                                        W
                                                1
                                 1
                                        2
                                               3
                                                      3
                                                            3
                                                                  4
                                                                         \theta_4
                                <u>$1</u>
                                                      1
                                                                 2
                                                                        2
                                 X
                                       $2
                                              \theta_2
                                                                 3
                                                                       3
                                                      2
                                                            2
                                                                              \theta_3
                                        W
                                                      3
                                                            3
                                                                 4
                                 1
                                        2
                                               3
                                                     \theta_1
                                        y
                                <u>$1</u>
                                              \theta_2
                                                      1
                                                            2
                                                                 2
                                                                        2
                                 X
                                       $2
                                               2
                                                                  3
                                                                        3
                                                      W
                                                            V
                                                                              \theta_3
                                 1
                                        2
                                               3
                                                      3
                                                            3
                                                                 4
                                                                       \theta_4
                                                                                    \theta_1
                                                              2
                                              1
                                                     2
                                                          2
                                                                      2
                                                                             2
                                        $2
                                                                                    \theta_2
                                                                      3
                                              2
                                                                3
                                                    W
                                                           V
                                                                             \theta_3
```

2 3 3 3 4 θ_4

\bullet $V \ge W \ge Z > \diamond_2 > \spadesuit$

• $V \ge W \ge Z > \diamondsuit_2 > \spadesuit$

1 1 1 1 1 1 1 1 1 θ_1 \diamond_1 $y \spadesuit w v 2 2 2 <math>\theta_2$ $x \diamond_2$ 2 2 2 3 3 θ_3 z 2 3 3 3 4 θ_4

$V \ge W \ge Z > \diamondsuit_2 > \spadesuit$

Conjecture: ρ_1, ρ_2 and ρ_3 coincide with the involution defined by AB = C.