TO: Prof. Pierre-Emmanuel Gaillardon, Course Instructor

FROM: David Venegas **DATE:** February 2nd, 2024

SUBJECT: Post-Lab 01 (Intro/GPIO)

1. What are the GPIO control registers that the lab mentions? Briefly describe each of their functions.

Each of the GPIO ports has four 32-bit memory-mapped control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os. The GPIOx_MODER register is used to select the I/O mode (input, output, AF, analog). The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (pushpull or open-drain) and speed. The GPIOx_PUPDR register is used to select the pull-up/pull-down whatever the I/O direction.

2. What values would you want to write to the bits controlling a pin in the GPIOx_MODER register in order to set it to analog mode?

[11]: Analog mode

3. Examine the bit descriptions in GPIOx_BSRR register: which bit would you want to set to clear the fourth bit in the ODR?

$$BR[19] = (1 << 19)$$

- 4. Perform the following bitwise operations:
- $0xAD \mid 0xC7 = 0xEF$
- 0xAD & 0xC7 = 0x85
- $0xAD \& \sim (0xC7) = 0x28$
- $0xAD ^0xC7 = 0x6A$
- 5. How would you clear the 5th and 6th bits in a register while leaving the other's alone?

6. What is the maximum speed the STM32F072R8 GPIO pins can handle in the lowest speed setting?

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
x0	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	2	MHz
	t _{f(IO)out}	Output fall time		-	125	- ns
	t _{r(IO)out}	Output rise time		-	125	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DDIOx} < 2 V	-	1	MHz
	t _{f(IO)out}	Output fall time		-	125	- ns
	t _{r(IO)out}	Output rise time		-	125	

7. What RCC register would you manipulate to enable the following peripherals: (use the comments next to the bit defines for better peripheral descriptions)

• TIM1 (TIMER1): RCC_APB2ENR

• **DMA1:** RCC_AHBENR

• I2C1: RCC_APB1ENR