

Circuitos sequenciais síncronos

Sistemas Digitais

Pedro Salgueiro pds@uevora.pt

Circuitos sequenciais síncronos

Sumário

- Circuito sequencial
- Modelo ASM
- Síntese de CSS
 - Exemplo 1
 - Exemplo 2
 - Exemplo 3
 - Exemplo 4
- Análise de CSS
 - Exemplo

Circuito combinatório

- As saídas são determinadas em função
 - Dos valores lógicos presentes nas entradas

Circuito sequencial

- As saídas são determinadas em função
 - Dos valores lógicos presentes nas entradas
 - Das condições anteriores a que o circuito esteve sujeito (estados anteriores)
- Pressupõe a existência de memória
 - Circuitos biestáveis / flip-flops

Conceitos

- Estado de um circuito sequencial
 - Configuração (estado) dos flip-flops que compõem o circuito
 - Com n flip-flops podem existir 2^n estados distintos
- Registo
 - Conjunto de flip-flops do circuito sequencial
- Circuito assíncrono
 - As mudanças de estado são causadas pelas mudanças de valores apresentadas às entradas
- Circuito síncrono
 - As mudanças de estado são definidas por um sinal de referência o sinal de relógio

Circuito sequencial síncrono

- E_t → vector de entradas
- $S_t \rightarrow \text{vector de saídas}$
- $X_t \rightarrow$ estado actual
 - As componentes são as variáveis de estado
- $X_{t+1} \rightarrow$ estado seguinte

f → função de saída

$$- S_t = f(X_t, E_t)$$

• g → função estado seguinte

$$- X_{t+1} = g(X_t, E_t)$$

Modelo ASM

- Diagrama de estados
 - Representação gráfica das transições de estado de um circuito sequencial
- Modelo ASM
 - Algorithmic State Machine
 - Formalismos para representar um diagrama de estados
 - Elementos gráficos
 - Estado
 - Transição
 - Decisão
 - Saída condicional

Elementos gráficos

Caixa de Estado

- Representado por rectângulo
- Informação
 - Mnemónica representada à esquerda do rectângulo
 - Codificação representada na parte superior do rectângulo
 - Saídas activas inscritas no interior do rectângulo

Transição entre estados

- Representada por uma seta
- Liga o estado actual ao seguinte

Caixa de Decisão

- Representada por um losango
- Avalia uma expressão booleana das entradas para escolha do estado seguinte

Elementos gráficos

- Caixa de Saída Condicional
 - Representado por rectângulo arredondado
 - Especifica as saídas condicionadas pelas entradas. São colocadas após as caixas de decisão

Exemplo

Codificação dos estados

Nº de bits

- Depende do nº de estados total do sistema
- Cada bit traduz o estado de um flip-flop

Código

- É normal seguir o CBN
- Se existir exigência de contiguidade usa-se o código de Gray

Codificação dos estados

Flip-Flop JK Q 0

Flip-Flop T Q 0

Síntese de CSS

Síntese de circuito

- 1. Desenhar o diagrama de estados
- 2. Codificar os estados
- 3. Obter a tabela de transições e de saídas
- 4. Escolher flip-flops
- 5. Obter as equações das entradas dos flip-flops e das saídas
- 6. Desenhar o logigrama

Síntese de CSS

Exemplo 1

Pretende-se projectar um circuito que, ao longo de sucessivos impulsos de relógio apresente nas saídas a sequência natural do código binário de 0 a 7.

- Entradas
 - 0
- Saídas:
 - 3 (S2, S1 e S0)
 - Para codificar o número binário de 0 a 7
- Estados:
 - $2^3 = 8$
 - Podem ser identificados com as saídas através da adequada atribuição de códigos aos estados

Passos 1, 2 e 3

	Q _t			Q _{t+1}			S _t	50
x2	x1	x0	x2	x 1	x0	s2	s1	s0
0	0	0	0	0	1	0	0	0
0	0	1	0	1	0	0	0	1
0	1	0	0	1	1	0	1	0
0	1	1	1	0	0	0	1	1
1	0	0	1	0	1	1	0	0
1	0	1	1	1	0	1	0	1
1	1	0	1	1	1	1	1	0
1	1	1	0	0	0	1	1	1

Flip-flops D

Tabela de excitação

Q*	Q	D
0	0	0
0	1	1
1	0	0
1	1	1

- Equação das entradas dos flip-flops
 - $D2 = x2 \oplus (x1 \ x0)$
 - $-D1 = x1 \oplus x0$
 - $-D0 = \overline{x0}$

	x 1:	x0			
	x2	00	01	11	10
D2	0	0	0	1	0
	1	1	1	0	1

	x1:	x0			
	x2	00	01	11	10
D1	0	0	1	0	1
	1	0	1	0	1

UNIVERSIDADE DE ÉVORA

Logigrama

Flip-flops JK

Tabela de excitação

Q*	Q	J	K
0	0	0	-
0	1	1	-
1	0	_	1
1	1	-	0

Equação das entradas dos FF

•
$$J2 = K2 = x1 x0$$

•
$$J1 = K1 = x0$$

•
$$J0 = K0 = 1$$

x1x0 2						
x2	/	00	01	11	10	
J	0	0	0	1	0	
	1	-	-	-	-	
K	0	•	-	-	-	
	1	0	0	1	0	

	1x0	1		
x2	00	01	11	10
0	0	1	-	-
1	0	1	-	
0	-	-	1	0
1	-	-	1	0

	x 1:	x0	C		
x2	/	00	01	11	10
	0	1	-	-	1
	1	1	-	-	1
	0	-	1	1	-
	1	-	1	1	-

UNIVERSIDADE DE ÉVORA

Logigrama

Flip-flops T

Tabela de excitação

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0

Equação das entradas dos FF

•
$$T2 = x1 x0$$

•
$$T1 = x0$$

		T2					
,	x1)	k 0					
x2	/	00	01	11	10		
	0	0	0	1	0		
	1	0	0	1	0		

	T0					
x1:	x0					
x2	00	01	11	10		
0	1	1	1	1		
1	1	1	1	1		

UNIVERSIDADE DE ÉVORA

Logigrama

Síntese de CSS

Exemplo 2

- Contador em código Gray 3 bits com flip-flops T
 - Entradas :0
 - Saídas: 3 (S2, S1 e S0)
 - Para codificar o número binário de 0 a 7
 - Estados: $2^3 = 8$
 - Podem ser identificados com as saídas codificando os estados em código Gray

Passos 1, 2 e 3

Modelo ASM

Transição de estados

Mapas de Karnaugh

,	x1	k 0			
x2	/	00	01	11	10
T1	0	0	1	0	0
	1	0	0	1	0
	92				

		00	01	11	10
то	0	0	0	0	1
T2	1	1	0	0	0

Entradas e logigrama

- Entradas
 - T0 = $\overline{x0 \oplus x1 \oplus x2}$
 - $T1 = x0 \overline{(x1 \oplus x2)}$
 - T2 = $\overline{x0}$ (x1 \oplus x2)
- Logigrama

Síntese de CSS

Exemplo 3

- Gerador de padrões sequenciais
 - ao ritmo dos impulsos de relógio acender um conjunto de oito LEDs segundo a figura

• Entradas:0

Saídas: 8 (S0, S1 e S2)

Estados: ?

- Não são 2³! Neste exemplo não se identifica o vector de estado X_n com o vector de saída S_n.
- Existem apenas 4 configurações distintas. Bastarão 4 estados?

Exemplo 3

• 4 estados. Qual a dimensão de X_n ?

	\mathbf{X}_{n}	$\mathbf{X}_{\text{n+1}}$	s7	s6	s5	s4	s3	s2	s1	s0
	а	b	1							1
*	b	C		1					1	
**	C	d			1			1		
	d	С				1	1			
**	C	b			1			1		
*	b	а		1					1	

Exemplo 3

4 estados. Qual a dimensão de X_n?

	\mathbf{X}_{n}	$\mathbf{X}_{\text{n+1}}$	s7	s6	s5	s4	s3	s2	s1	s0
	а	b	1							1
*	b	C		1					1	
**	C	d			1			1		
	d	С				1	1			
**	C	b			1			1		
*	b	а		1					1	

- Com 4 estados existe ambiguidade na transição!
- Quantos são necessários?
 - 6 estados; dimensão de X_n = 3

UNIVERSIDADE DE ÉVORA

Tabela de transição de estados e saídas

X _n	$\mathbf{X}_{\text{n+1}}$		\mathbf{X}_{n}			$\mathbf{X}_{\text{n+1}}$		S _n							
		x2	x1	x0	x2	x1	x0	s7	s6	s5	s4	s3	s2	s1	s0
а	b	0	0	0	0	0	1	1	0	0	0	0	0	0	1
b	С	0	0	1	0	1	0	0	1	0	0	0	0	1	0
С	d	0	1	0	0	1	1	0	0	1	0	0	1	0	0
d	е	0	1	1	1	0	0	0	0	0	1	1	0	0	0
е	f	1	0	0	1	0	1	0	0	1	0	0	1	0	0
f	а	1	0	1	0	0	0	0	1	0	0	0	0	1	0
		1	1	0											
		1	1	1											

ASM e Flip-Flops T

Modelo ASM

Tabela de excitação Flip-Flops T

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0

Mapas de Karnaugh

Mapas de Karnaugh

- Mapas de Karnaugh
 - Estados não utilizados correspondem a indiferenças.

	x1	x0			
x2	/	00	01	11	10
	0	1	1	1	1
	1	1	1	-	-

,	x1				
x2	/	00	01	11	10
T1	0	0	1	1	0
	1	0	0	ı	•

Entradas e Saídas

$$- TO = 1$$

$$-T1 = x0 \overline{x2}$$

$$- T2 = X0 (x1 + x2)$$

•
$$s0 = s7 = \overline{x0} \overline{x1} \overline{x2}$$

•
$$s1 = s6 = x0 \overline{x1}$$

•
$$s2 = s5 = \overline{x0} (x1 + x2)$$

•
$$s3 = s4 = x0 x1$$

Logigrama

Síntese de CSS

Exemplo 4

- Contador modo variável
 - Por ação de um comutador E, o contador passa de módulo 8 para módulo
 5: com E=0, contador módulo 8; com E=1, contador módulo 5.
 - Entradas: 1
 - Saídas: 3
 - Estados 8

Modelo ASM

- No estado "e", o estado seguinte depende da entrada E
 - $E = 0 \rightarrow "f"$
 - $E = 1 \rightarrow$ "a"

Tabela de transição de estados e saídas

E _n	X _n	X _{n+1}		X _n			X _{n+1}			S _n	
			x2	x1	x0	x2	x1	x0	s2	s1	s0
х	а	b	0	0	0	0	0	1	0	0	0
x	b	С	0	0	1	0	1	0	0	0	1
x	С	d	0	1	0	0	1	1	0	1	0
x	d	е	0	1	1	1	0	0	0	1	1
0	е	f	1	0	0	1	0	1	1	0	0
1	е	а	1	0	0	0	0	0	1	0	0
x	f	g	1	0	1	1	1	0	1	0	1
x	g	h	1	1	0	1	1	1	1	1	0
X	h	а	1	1	1	0	0	0	1	1	1

Mapas de Karnaugh – Flip-Flops T

Mapa de Karnaugh para T0

x1x0								
Ex2	00	01	11	10				
00	1	1	1	1				
01	1	1	1	1				
11	0	1	1	1				
10	1	1	1	1				

Tabela de excitação – Flip-Flop T

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0

Entradas

$$- T0 = \overline{x2} \, \overline{x1} \, \overline{x0} \, E$$

$$T1 = x0$$

$$T2 = x1 x0 + x2 \overline{x1} \overline{x0} E$$

UNIVERSIDADE DE ÉVORA

Mapas de Karnaugh – Flip-Flops T

Análise de CSS

Análise de CSS

- 1) Levantam-se as equações das entradas dos flip-flops e das saídas
- 2) Constrói-se a tabela das entradas dos flip-flops
- 3) Constrói-se a tabela de transições e de saídas
- 4) Obtém-se a tabela de estados e de saídas (através da codificação dos estados)
- 5) Ou em alternativa, desenha-se o diagrama de estados

UNIVERSIDADE DE ÉVORA

Exemplo

Passos 1 e 2

$$-$$
 DA = QA X + QB X

- DB = QA
$$\overline{X}$$

Saída

$$-Z = \overline{X} (QA + QB)$$

Tabela de verdade

 Traduz os circuitos combinatórios dos flip-flops para o instante t

X	\mathbf{Q}_{A}	$Q_{_{\rm B}}$	D _A	D_{B}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

Passo 3

- Transições e saídas
 - Estado actual e saída: instante t
 - Estado seguinte: instante t + 1
 - Entrada D(t) coincide com o estado Q(t+1)

X _(t)	$\mathbf{Q}_{\mathrm{A(t)}}$	$\mathbf{Q}_{\mathrm{B(t)}}$	Q _{A(t+1)}	$\mathbf{Q}_{\mathrm{B(t+1)}}$	Z _(t)
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	1	0	0
1	1	1	1	0	0

Passo 4

Estados

Q_A	Q_B	Estado	
0	0	Α	
0	1	В	
1	0	С	
1	1	D	

X	t	t+1	Z
0	Α	Α	0
0	В	Α	1
0	С	Α	1
0	D	Α	1
1	Α	В	0
1	В	D	0
1	С	С	0
1	D	С	0

Modelo ASM

Tarefas até à próxima aula prática

- Ficha 08 Elementos de memória
 - Todos os exercícios