Определения к экзамену по Математическому Анализу 3 семестр

Данил Заблоцкий

19 марта 2024 г.

Содержание

1	Функции многих переменных	6
	1.1 Производная функции по вектору	6
	1.2 Теорема о существовании производной функции по вектору.	6
	1.3 Градиент функции	6
	1.4 Производная по направлению вектора	7
2	Основные теоремы дифференциального исчисления функ-	
	ций многих переменных	7
	2.5 Теорема о среднем (аналог теоремы Лагранжа)	7
	2.6 Следствие теоремы о среднем	7
	2.7 Достаточное условие дифференцируемости функции	7
	2.8 Производные высших порядков	7
	2.9 Теорема о смешанных производных	8
	2.10 Формула Тейлора	8
	2.11 Локальный экстремум функции многих переменных	8
	2.12 Необходимое условие локального экстремума	8
	2.13 Критическая точка функции	8
	2.14 Достаточное условие локального экстремума	9
	2.15 Неявная функция	9
	2.16 Теорема о неявной функции	9
3	Приложение теоремы о неявной функции	10
	3.17 Диффиоморфизм, гомеоморфизм	10
	3.18 Теорема о неявной функции	10
	3.19 <i>К</i> -мерная поверхность	10
	3.20 Параметризация К-мерной поверхности	11
	3.21 Касательная плоскость (касательное пространство) к <i>K</i> -мерной	
	поверхности в \mathbb{R}^n	11
	3.22 Теорема о структуре касательного пространства	12
	3.23 Задача на условный экстремум, условный экстремум	12
	3.24 Линия уровня	12
	3.25 Необходимое условие условного локального экстремума	13
	3.26 Функция Лагранжа	13

	0.05	N. H.	10
		Метод Лагранжа	
	3.28	Достаточное условие условного локального экстремума	14
4	Т		
4		F	14
		F	14
		1	15
			15
		11	15
		1	15
			16
	4.35	1 / /	16
		1	16
	4.37	Первый признак сравнения	16
	4.38	Второй признак сравнения	16
	4.39	Третий признак сравнения	16
			17
			17
			17
			17
		1	18
		1 0 1	18
		1 1 1	18
			19
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19
		11 1	19
			19
			19
			19
			$\frac{19}{20}$
		1	20 20
		1 / 1 1	
			20
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20
	4.57	Теорема Римана о перестановке членов условно сходящегося	~ ^
			20
		1 11	21
			21
			21
			21
		± • • • • • • • • • • • • • • • • • • •	22
			22
	4.64	- · · · · · · · · · · · · · · · · · · ·	22
	4.65		23
	4.66	Теорема о связи сходимости двойного и простого рядов	23
5	Пот	очечная и равномерная сходимость семейства функций 2	23
	5.67	Семейство функций, зависящих от параметров	23
	5.68	Сходимость семейства функций по базе	24
	5.69	Область сходимости семейства функций по базе	24
			24
	5.71	Поточечная сходимость семейства функций по базе	24

	5.72 Равномерная сходимость семейства функций по базе	24
	5.73 Поточечная сходимость последовательности функций	25
	5.74 Равномерная сходимость последовательности функций	25
	5.75 Критерий Коши сходимости семейства функций	25
	5.76 Следствие из критерия Коши сходимости семейства функций	25
6	Функциональный ряд	2 6
	6.77 Функциональный ряд	26
	6.78 Поточечная сходимость функциональных рядов	26
	6.79 Равномерная сходимость функциональных рядов	26
	6.80 Критерий Коши равномерной сходимости ряда	26
	6.81 Следствие из критерия Коши равномерной сходимости ряда.	27
	6.82 Признак сравнения	27
	6.83 Признак Вейерштрасса	27
	6.84 Признак Абеля	27
	6.85 Признак Дирихле	28
7	Свойства предельной функции	28
	7.86 Условия коммутирования двух предельных переходов	28
	7.87 Непрерывность предельной функции	29
	7.88 Интегрируемость предельной функции	29
	7.89 Теорема Дини	29
	7.90 Дифференцируемость предельной функции	30
	7.91 Следствие из теоремы о непрерывности предельной функции	30
	7.92 Следствие из теоремы об интегрируемости предельной функции	
	7.93 Следствие из теоремы о дифференцируемости предельной функ-	
	ции	31
8	Степенные ряды	31
	8.94 Степенной ряд	31
	8.95 Теорема о сходимости степенного ряда	31
	8.96 Радиус сходимости степенного ряда (определение)	32
	8.97 Теорема Абеля о сумме степенного ряда	32
	8.98 Теорема об интегрировании степенного ряда	32
	8.99 Теорема о дифференцировании степенного ряда	32
	8.100 Теорема о единственности степенного ряда	33
	8.101Ряд Тейлора	33
	8.102Утверждение о связи степенного ряда и ряда Тейлора	33
	8.103Разложение элементарных функций в степенной ряд	33
9	Интегралы, зависящие от параметра	33
	9.104Собственный интеграл, зависящий от параметра	33
	9.105 Теорема о непрерывности собственного интеграла, зависяще-	
	го от параметра	34
	9.106Теорема о дифференцировании собственного интеграла, зави-	
	сящего от параметра	34
	9.107Теорема об интегрировании собственного интеграла, завися-	_
	щего от параметра	34
	9.108Несобственный интеграл, зависящий от параметра	35

	9.109Равномерная сходимость несобственного интеграла, завися-	
	щего от параметра	35
	9.110Утверждение об эквивалентности сходимости несобственного	
	интгерала, зависящего от параметра и семейства функций –	
	интегралов по верхнему пределу, зависящих от параметра	35
	9.111Критерий Коши равномерной сходимости несобственных ин-	
	тегралов, зависящих от параметра	35
		J (
	9.112Следствие критерия Коши равномерной сходимости несоб-	0.0
	ственных интегралов, зависящих от параметра	36
	9.113Признак Вейерштрасса и его следствие	36
	9.114Признак Абеля	36
	9.115Признак Дирихле	37
10	Функциональные свойства несобственного интеграла, зави-	
	сящего от параметра	37
	10.11 Георема о предельном переходе под знаком несобственного	
	интеграла, зависящего от параметра	37
	10.11 Теорема о непрерывности несобственного интеграла, завися-	01
	щего от параметра	37
		31
	10.11 Георема о дифференцировании несобственного интеграла, за-	0.0
	висящего от параметра	38
	10.11 Георема об интегрировании несобственного интеграла, зави-	
	сящего от параметра	38
	10.12 Теорема о перестановке двух несобственных интегралов, за-	
	висящих от параметра	36
11	Эйлеровы интегралы	39
	11.12Бетта-функция	39
	11.12 У амма-функция	39
	11.12©войства бетта-функции	39
	11.12 Свойства гамма-функции	41
	11.12 Фортства тамма-функции	41
12	Кратные интегралы. Мера Жордана в \mathbb{R}^n	42
	12.12 К летка в \mathbb{R}^n	4^{2}
	12.12 Клеточное множество в \mathbb{R}^n	4°_{2}
	12.12 Свойства клеточных множеств (1-6)	42
	12.12 Мера клеточного множества	43
	12.129 мма о корректности определения меры клеточного множе-	
	СТВа	43
	12.13 Свойства меры клеточных множеств (1-4)	43
	12.13Множество, измеримое по Жордану	44
	12.13 Мера измеримого по Жордану множества	44
		44
	12.133 Гемма о корректности определения меры измеримого по Жор-	4
	дану множества	44
	12.13 Множество меры нуль	44
	12.13Свойства множества меры нуль (1-3)	45
	12.13 К ритерий измеримости множества в \mathbb{R}^n	45
	12.13 Свойства множеств, измеримых по Жордану (1-2, без доказа-	
	тельств)	45

13	Определение и свойства кратного интеграла Римана	46
	13.13 Разбиение множества	46
	13.13 Мелкость разбиения	46
	13.14 Продолжение разбиения	46
	13.14Интегральная сумма Римана	46
	13.14 С уммы Дарбу	46
	13.14 Кратный интеграл Римана	47
	13.14 Критерий интегрируемости (без доказательства)	47
	13.14 Критерий интегрируемости более сильный (без доказательства)	47
	13.14 Классы интегрируемых функций (2 теоремы, без доказательств)	48
	13.14 Свойства кратного интеграла (1-8, без доказательств)	48
	13.14 Георема о сведении двойного интеграла по прямоугольнику к	
	повторному интегралу	50
	13.14 Георема о сведении двойного интеграла по элементарной об-	
	ласти к повторному интегралу	50
	13.15 Теорема Фубини (без доказательства)	50
	13.15Формула замены переменной в кратном интеграле (без дока-	
	зательства)	51
14	Криволинейные и поверхностные интегралы	51
	14.15 Криволинейный интеграл первого рода	51
	14.15 Свойства криволинейного интеграла первого рода (1-3, без до-	
	казательств)	52
	14.15 Криволинейные интегралы второго рода	52

1 Функции многих переменных

1.1 Производная функции по вектору

Определение 1. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ x_0 \in D, \ \vec{v} \in T\mathbb{R}^n_{x_0}$. Производной функции f по вектору \vec{v} называется величина

$$\frac{\partial f}{\partial \vec{v}}(x_0) = D_{\vec{v}}f(x_0) \coloneqq \lim_{t \to 0} \frac{f(x_0 + t\vec{v}) - f(x_0)}{t}, \text{ если lim } \exists.$$

Примечание. $x = (x_1, x_2, x_3) = x(t), f(x(t)) = f(x_1, x_2, x_3) \Rightarrow$

$$\frac{df(x(t))}{dt} = \frac{\partial f}{\partial x_1} \cdot \frac{dx_1}{dt} + \frac{\partial f}{\partial x_2} \cdot \frac{dx_2}{dt} + \frac{\partial f}{\partial x_3} \cdot \frac{dx_3}{dt} =
= \frac{\partial f}{\partial x_1} \cdot v_1 + \frac{\partial f}{\partial x_2} \cdot v_2 + \frac{\partial f}{\partial x_3} \cdot v_3,$$

 $\vec{v} = \{v_1, v_2, v_3\}$ — скорость частицы, перемещающейся по γ -ну x(t). $T\mathbb{R}^n_{x_0}$ — касательное пространство к \mathbb{R}^n в точке x_0 , т.е. совокупность всех векторов, исходящих из точки x_0 .

1.2 Теорема о существовании производной функции по вектору

Утверждение. $f:D \to \mathbb{R}$ диф-ма в $x_0 \in D \Rightarrow \forall \vec{v} \in T\mathbb{R}^n_{x_0}$

$$\exists \frac{\partial f}{\partial \vec{v}}(x_0) = \frac{\partial f}{\partial x_1}(x_0) \cdot v_1 + \frac{\partial f}{\partial x_2}(x_0) \cdot v_2 + \ldots + \frac{\partial f}{\partial x_n}(x_0) \cdot v_n = df(x_0) \cdot \vec{v}.$$

Примечание. $df(x_0) \cdot \vec{v}$ – скалярное произведение,

$$df(x_0) = \left\{ \frac{\partial f}{\partial x_1}(x_0), \frac{\partial f}{\partial x_2}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0) \right\},$$

$$\vec{v} = \{v_1, v_2, \dots, v_n\}.$$

1.3 Градиент функции

Определение 2. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}$ диф-ма в $x_0 \in D, \ \vec{a} \in \mathbb{R}^n: \ df(x_0) \cdot h = \vec{a} \cdot h, \ h \in \mathbb{R}$ называется градиентом функции f в x_0 и обозначается

$$gradf(x_0)$$
.

Примечание. Если в \mathbb{R}^n зафиксировать ортонормированный базис, то

$$gradf(x_0) = \left\{ \frac{\partial f}{\partial x_1}(x_0), \frac{\partial f}{\partial x_2}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0) \right\}.$$

1.4 Производная по направлению вектора

Определение 3. $\vec{v} \in T\mathbb{R}^n_{x_0}, \, |\vec{v}| = 1 \Rightarrow \frac{\partial f}{\partial \vec{v}}(x)$ называется производной по направлению вектора \vec{v} .

- 2 Основные теоремы дифференциального исчисления функций многих переменных
- 2.5 Теорема о среднем (аналог теоремы Лагранжа)

Теорема 1. $D \subset \mathbb{R}^n$, $[x; x+h] \subset D$, $f: D \to \mathbb{R}$ диф-ма на (x; x+h) и непрерывна на $[x; x+h] \Rightarrow \exists \xi \in (x; x+h)$:

$$f(x+h)-f(x)=f'(\xi)\cdot h=\frac{\partial f}{\partial x_1}(\xi)\cdot h^1+\frac{\partial f}{\partial x_2}(\xi)\cdot h^2+\ldots+\frac{\partial f}{\partial x_n}(\xi)\cdot h^n.$$

Примечание. $\{1, 2, ..., n\}$ над h – индексы.

2.6 Следствие теоремы о среднем

Следствие. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}$ — диф-ма на D и $\forall x \in D \ df(x) = 0 \Rightarrow f(x) = const.$

2.7 Достаточное условие дифференцируемости функции

Теорема 2. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}$ имеет непрерывные частные производные в каждой окрестности $x \in D \Rightarrow f$ диф-ма в x.

2.8 Производные высших порядков

Определение 4. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}$. Производная по x^j от производной по x^i называется второй производной функции f по x^i, x^j и обозначается

 $\frac{\partial^2 f}{\partial x^i \partial x^j}(x)$ или $f''_{x^i,x^j}(x)$.

2.9 Теорема о смешанных производных

Теорема 3. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}$ имеет в D непрерывные смешанные производные (второго порядка) \Rightarrow производные не зависят от порядка диф-ния.

2.10 Формула Тейлора

Теорема 4. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ f \in C^{(k)}(D,\mathbb{R}), \ [x;x+h] \subset D \Rightarrow$

$$f(x+h) = f(x) + \sum_{i=1}^{k-1} \frac{1}{i!} \left(\frac{\partial f}{\partial x^1} \cdot h^1 + \ldots + \frac{\partial f}{\partial x^n} \cdot h^n \right)^i \cdot f(x) + R^k.$$

Примечание. R^k – остаточный член,

$$R^{k} = \frac{1}{k!} \left(\frac{\partial f}{\partial x^{1}} \cdot h^{1} + \dots + \frac{\partial f}{\partial x^{n}} \cdot h^{n} \right)^{k} \cdot f(x + \xi \cdot h),$$
$$x = (x^{1}, \dots, x^{n}), \quad h = (h^{1}, \dots, h^{n}).$$

2.11 Локальный экстремум функции многих переменных

Определение 5. $X - \text{MII}, f: X \to \mathbb{R}, x_0$ называется точкой локального максимума (минимума), если $\exists U(x_0) \subset X: \ \forall x \in U(x_0)$

$$f(x) \le f(x_0) \quad (f(x) \ge f(x_0))$$

2.12 Необходимое условие локального экстремума

Теорема 5. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ x_0 \in D$ точка локального экстремума \Rightarrow в $x_0 \ \forall i=\overline{1,n}$

$$\frac{\partial f}{\partial x^i}(x_0) = 0.$$

2.13 Критическая точка функции

Определение 6. $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}^k$ диф-ма в $x_0 \in D$, x_0 называется *критической точкой функции* f(x), если:

$$rank\Im f(x_0) < \min(n,k).$$

Примечание. $\Im f(x_0)$ – матрица Якоби функции $f(x_0)$.

2 ОСНОВНЫЕ ТЕОРЕМЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИ**Ж** ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

Достаточное условие локального экстремума

Теорема 6. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ f \in C^2(D,\mathbb{R}), \ f$ диф-ма в $x \in D$ – критической точке для f. Тогда, если:

- 1. Q(h) знакоположительна $\Rightarrow x$ лок. min.
- 2. Q(h) знакоотрицательна $\Rightarrow x$ лок. max.
- 3. Q(h) может принимать различные значения (> 0,< 0) \Rightarrow в x нет экстремума.

2.15 Неявная функция

Определение 7. $D, \Omega \subset \mathbb{R}^k, \ F: D \times \Omega \to \mathbb{R}^k, \ f: D \to \Omega$:

$$y = f(x) \Leftrightarrow F(x, y) = 0.$$

Уравнение F(x,y) = 0 неявно задает y.

2.16 Теорема о неявной функции

Теорема 7. $U(x_0, y_0) \subset \mathbb{R}^2$, $F(x, y) : U(x_0, y_0) \to \mathbb{R}$. Пусть F имеет следующие свойства:

- 1. $F(x_0, y_0) = 0$.
- 2. $F(x,y) \in C^P(U,\mathbb{R}), p \ge 1.$
- 3. $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$.

Тогда \exists открезки $I_x, I_y: f: I_x \to I_y$:

- 1. $I_x \times I_y \subset U(x_0, y_0)$.
- 2. $\forall x \in I_x \ y = f(x) \Leftrightarrow F(x,y) = 0.$ 3. $f \in C^P(I_x, I_y).$
- 4. $\forall x \in I_x \ f'(x) = -\frac{F'_x(x,y)}{F'_y(x,y)}$.

3 Приложение теоремы о неявной функции

3.17 Диффиоморфизм, гомеоморфизм

Определение 8. $D,G \subset \mathbb{R}^n, \ f:D \to G$ называтеся диффиоморфизмом класса $C^{(p)}, \ p \geqslant 0, \ \text{если}$:

- 1. f обратимое.
- 2. $f \in C^{(p)}(D, G)$.
- 3. $f^{-1} \in C^{(p)}(D, G)$.

При p = 0 f называется гомеоморфизмом.

Примечание. f — гомеоморфизм, если f — взаимно однозначное отображение и f, f^{-1} — непрерывны.

3.18 Теорема о неявной функции

Теорема 8. $U(x_0, y_0) \subset \mathbb{R}^{m+n}, \ F : U(x_0, y_0) \to \mathbb{R}^n$:

- 1. $F \in C^{(p)}(U, \mathbb{R}^n), p \ge 1.$
- 2. $F(x_0, y_0) = 0$.
- 3. $F_y'(x_0, y_0)$ обратная матрица.

Тогда $\exists (n+m)$ -мерный промежуток $I = I_x^m \times I_y^n \subset U(x_0; y_0)$, где

$$\begin{split} I_x^m &= \left\{ x \in \mathbb{R}^m \ \middle| \ |x - x_0| < \alpha \right\}, \\ I_x^m &= \left\{ y \in \mathbb{R}^n \ \middle| \ |y - y_0| < \beta \right\}, \end{split}$$

то есть $f: I_x^m \to I_y^n$:

- $\forall (x,y) \in I_x^m \times I_y^n \ F(x,y) = 0 \Leftrightarrow y = f(x).$
- $f'(x) = -[F'_y(x,y)]^{-1} \cdot F'_x(x,y)$.

3.19 К-мерная поверхность

Определение 9. $S \subset \mathbb{R}^n$ называется k-мерной поверхностью, если $\forall x \in S \ \exists U(x) \subset \mathbb{R}^n$ и \exists диффиоморфизм $\phi : U(x) \to I^n$:

$$\phi(U(x)\cap S)=I^k.$$

Примечание.

$$I^{n} = \left\{ x \in \mathbb{R}^{n} \mid |x^{i}| < 1 \right\}$$
$$I^{k} = \left\{ x \in \mathbb{R}^{n} \mid x^{k+1} = x^{k+2} = \dots = x^{n} = 0 \right\}$$

3.20 Параметризация К-мерной поверхности

Определение 10. S-k-мерная поверхность в $\mathbb{R}^n, x_0 \in S$ и $\phi: U(x_0) \to I^n$ – диффиоморфизм:

$$\phi(U(x_0)\cap S)=I^k.$$

Ограничение ϕ^{-1} на I^k будем называть локальной картой или параметризацией поверхности S в окрестности точки x_0 .

3.21 Касательная плоскость (касательное пространство) к K-мерной поверхности в \mathbb{R}^n

Определение 11. S-k-мерная поверхность в $\mathbb{R}^n, x_0 \in S, x = x(t)$: $\mathbb{R}^k \to \mathbb{R}^n$ – параметризация S в окрестности $x_0 = x(0)$.

Kacameльным пространством (или плоскостью) к S в точке x_0 называется k-мерная плоскость, заданная уравнением:

$$x = x_0 + x'(0) \cdot t, \tag{1}$$

$$x_0 = (x_0^1, x_0^2, \dots, x_0^n)$$

$$x(t) = \begin{cases} x^1(t^1, \dots, t^k) \\ x^2(t^1, \dots, t^k) \\ \vdots \\ x^n(t^1, \dots, t^k) \end{cases}$$

$$x'(t) = \begin{pmatrix} \frac{\partial x^1}{\partial t^1} & \cdots & \frac{\partial x^1}{\partial t^k} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^n}{\partial t^1} & \cdots & \frac{\partial x^n}{\partial t^k} \end{pmatrix} (t), \quad t = \begin{pmatrix} t^1 \\ t^2 \\ \vdots \\ t^k \end{pmatrix}$$

Таким образом касательное пространство задается системой из 1:

$$\begin{cases} x^1 = x_0^1 + \frac{\partial x^1}{\partial t^1}(0) \cdot t^1 + \ldots + \frac{\partial x^1}{\partial t^k}(0) \cdot t^k \\ x^2 = x_0^2 + \frac{\partial x^2}{\partial t^1}(0) \cdot t^1 + \ldots + \frac{\partial x^2}{\partial t^k}(0) \cdot t^k \\ \vdots \\ x^n = x_0^n + \frac{\partial x^n}{\partial t^1}(0) \cdot t^1 + \ldots + \frac{\partial x^n}{\partial t^k}(0) \cdot t^k \end{cases}$$

3.22 Теорема о структуре касательного пространства

Теорема 9. S - k-мерная поверхность в \mathbb{R}^n , $x_0 \in S \Rightarrow$ касательное пространство TS_{x_0} в x_0 состоит из направляющих векторов касательных к гладким кривым на S, проходящих через x_0 .

3.23 Задача на условный экстремум, условный экстремум

Задача. Пусть требуется найти условный экстремум функции $f: D \to \mathbb{R}$, $D \subset \mathbb{R}^n$, на поверхности S, заданной системой уравнений:

$$\begin{cases} F^{1}(x^{1},\ldots,x^{n}) = 0 \\ \vdots \\ F^{k}(x^{1},\ldots,x^{n}) = 0 \end{cases}$$

Составим функцию Лагранжа:

$$L(x,\lambda) = L(x^1,\ldots,x^n,\lambda^1,\ldots,\lambda^k) =$$

$$= f(x^1,\ldots,x^n) + \sum_{i=1}^k \lambda^i \cdot F^i(x^1,\ldots,x^n),$$

 $\lambda = (\lambda^1, \dots, \lambda^k), \ \lambda^i \in \mathbb{R}$ — коэффициент, в общем случае пока неизвестен. Необходимое условие локального экстремума для функции L:

$$\left\{ \begin{array}{l} \frac{\partial L}{\partial x^1} = \frac{\partial f}{\partial x^1} + \sum_{i=1}^k \lambda^i \cdot \frac{\partial F^i}{\partial x^1} = 0 \\ \vdots \\ \frac{\partial L}{\partial x^n} = \frac{\partial f}{\partial x^n} + \sum_{i=1}^k \lambda^i \cdot \frac{\partial F^i}{\partial x^n} = 0 \\ \frac{\partial L}{\partial \lambda^1} = F^1(x^1, \dots, x^n) = 0 \\ \vdots \\ \frac{\partial L}{\partial \lambda^k} = F^k(x^1, \dots, x^n) = 0 \end{array} \right\} \text{ поверхность } S$$

Определение 12. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ S$ – поверхность в $D, \ y$ словным экстремумом функции f называется экстремум функции $f|_S$.

3.24 Линия уровня

Определение 13. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}$. Линией уровня (с-уровнем) функции f называется множество

$$N_c = \{x \in D \mid f(x) = c\}.$$

3.25 Необходимое условие условного локального экстремума

Теорема 10. Пусть система уровнений

$$\begin{cases}
F^1(x^1, \dots, x^n) = 0 \\
\vdots \\
F^{n-k}(x^1, \dots, x^n) = 0
\end{cases}$$
(3)

задает (n-k)-мерную гладкую поверхность S в $D \subset \mathbb{R}^n$. Функция $f:D \to \mathbb{R}$ — гладкая. Если $x_0 \in S$ является точкой условного ло-кального экстремума для функции f, то существует такой набор чисел $\lambda_1, \lambda_2, \ldots, \lambda_{n-k} \in \mathbb{R}$:

$$gradf(x_0) = \sum_{i=1}^{n-k} \lambda_i \cdot gradF^i(x_0).$$

3.26 Функция Лагранжа

Примечание. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ f \in C^{(2)}(D,\mathbb{R}), \ S - (n-k)$ -мерная поверхность в D, заданная системой уравнений:

$$\begin{cases} F^1(x^1, \dots, x^n) = 0 \\ \vdots \\ F^k(x^1, \dots, x^n) = 0 \end{cases}$$

Функция Лагранжа:

$$L(x,\lambda) = f(x^1,\ldots,x^n) + \sum_{i=0}^k \lambda_i \cdot F^i(x^1,\ldots,x^n).$$

Здесь $\lambda_1, \dots, \lambda_k$ выбираются таким образом, чтобы было выполнено необходимое условие условного экстремума в точке x_0 (2).

$$\begin{cases} \frac{\partial L}{\partial x^i} = 0 \\ \vdots & \Rightarrow x_0, \quad \lambda_1, \dots, \lambda_k. \\ \frac{\partial L}{\partial \lambda_i} = 0 \end{cases}$$

3.27 Метод Лагранжа

Я запутался.

3.28 Достаточное условие условного локального экстремума

Теорема 11. Если при введенных выше условиях квадратичная форма

$$Q(\xi) = \sum_{i,j=1}^{n} \frac{\partial^{2} L}{\partial x^{i} \partial x^{j}}(x_{0}) \cdot \xi^{i} \xi^{j}, \quad (\xi = (\xi^{1}, \dots, \xi^{n}))$$

- 1. Знакоопределена на TS_{x_0} :
 - ullet если Q знакоположительна, то точка x_0 точка условного локального min
 - ullet если Q знакоотрицательна, то точка x_0 точка условного локального max
- 2. Если Q может принимать значения разных знаков, то в точке x_0 условного экстремума не наблюдается.

4 Теория рядов

4.29 Числовой ряд

Определение 14. Рядом называется выражение:

$$a_1 + a_2 + \ldots + a_n + \ldots, \quad a_i \in \mathbb{R}.$$

$$\sum_{n=1}^{\infty} a_n \tag{4}$$

Рассмотрим числа:

$$A_1 = a_1,$$

 $A_2 = a_1 + a_2,$
 \vdots
 $A_n = a_1 + a_2 + \ldots + a_n.$

Числа A_1, A_2, \dots, A_n называются частичными суммами ряда 4.

Замечание. Числа a_i называются членами ряда, $a_n - n$ -ым членом ряда.

4.30 Сходимость числового ряда

Определение 15. Ряд 4 сходится, если

$$\exists \lim_{n \to \infty} A_n = A.$$

Тогда сумма бесконечного ряда 4 полагается равной

$$A = \sum_{n=1}^{\infty} a_n.$$

4.31 Критерий Коши сходимости числовых рядов

Теорема 12. Ряд 4 сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N, \ \forall p > 0$

$$|a_{n+1} + \ldots + a_{n+p}| < \varepsilon.$$

4.32 Необходимое условие сходимости числового ряда

Теорема 13. Ряд 4 сходится \Rightarrow

$$\lim_{n\to\infty} a_n = 0.$$

4.33 Теорема об остатке ряда

Определение 16. Пусть дан ряд 4. Ряд вида

$$\sum_{n=m+1}^{\infty} a_n \tag{5}$$

называется m-ым остатным ряда 4.

Теорема 14. Следующие условия эквивалентны:

- 1. Ряд 4 сходится.
- 2. Любой его остаток сходится.
- 3. Некоторый его остаток 5 сходится.

4.34 Теорема о сумме рядов и умножении ряда на число

Теорема 15. Ряды (A),(B) сходятся \Rightarrow

- 1. $\forall \alpha \in \mathbb{R} \ \sum_{n=1}^{\infty} \alpha a_n$ сходится и его сумма равна $\alpha \cdot A, \ A = \sum_{n=1}^{\infty} a_n.$
- 2. Ряд (A+B) сходится и его сумма равна $A^*+B^*,\ A^*=\sum_{n=1}^\infty a_n,\ B^*=\sum_{n=1}^\infty b_n.$

4.35 Положительный числовой ряд

Определение 17. Ряд (*A*) называется *положительным*, если $\forall n \ a_n > 0$.

4.36 Основная теорема о сходимости положительных рядов

Теорема 16. Положительный ряд (A) сходится $\Leftrightarrow \exists M > 0: \forall n \ A_n < M$.

4.37 Первый признак сравнения

Теорема 17. Даны $(A),(B), \forall n \ a_n,b_n>0, \exists N \in \mathbb{N}: \forall n>N \ a_n \leqslant b_n \Rightarrow$

- 1. Из сходимости $(B) \Rightarrow$ сходимость (A).
- 2. Из расходимости $(A) \Rightarrow$ расходимость (B).

4.38 Второй признак сравнения

Теорема 18. Даны $(A),(B), \ \forall n \ a_n,b_n>0, \ \lim_{n\to\infty}\frac{a_n}{b_n}=k\in[0,\infty]\Rightarrow$

- 1. При $k = \infty$ из сходимости (A) ⇒ сходимость (B).
- 2. При k = 0 из сходимости $(B) \Rightarrow$ сходимость (A).
- 3. Иначе (A) и (B) ведут себя одинаково.

4.39 Третий признак сравнения

Теорема 19. Даны $(A),(B), \ \forall n \ a_n,b_n>0, \ \exists N \in \mathbb{N} \cup \{0\}: \forall n>N \ \frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n} \Rightarrow$

- 1. Из сходимости $(B) \Rightarrow$ сходимость (A).
- 2. Из расходимости $(A) \Rightarrow$ расходимость (B).

4.40 Интегральный признак сходимости Коши-Маклорена

Теорема 20. Дан положительный ряд (A), f(x) удовлетворяет условиям:

- 1. $f(x): [1; +\infty) \to \mathbb{R}$.
- 2. f(x) непрерывна.
- 3. f(x) монотонна.
- 4. $f(x) = a_n, \forall n \in \mathbb{N}$.

Тогда (A) и $\int_{1}^{\infty} f(x)dx$ ведут себя одинаково.

4.41 Радикальный признак Коши

Теорема 21. Дан положительный ряд $(A), \ \overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = q \Rightarrow$

- 1. q < 1 : (A) сходится.
- 2. q > 1 : (A) расходится.
- 3. q = 1 : (A) может как сходиться, так и расходиться.

4.42 Признак Даламбера

Теорема 22. Дан положительный ряд (A), $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=d\Rightarrow$

- 1. d < 1 : (A) сходится.
- 2. d > 1 : (A) расходится.
- 3. d = 1 : (A) может как сходиться, так и расходиться.

4.43 Признак Раббе

Теорема 23. Дан положительный ряд $(A), \lim_{n \to \infty} n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) = r \Rightarrow$

- 1. r > 1 : (A) сходится.
- 2. r < 1 : (A) расходится.
- 3. r = 1 : (A) может как сходиться, так и расходиться.

4.44 Признак Кумера

Теорема 24. Дан положительный ряд $(A), c_1, c_2, \ldots, c_n, \ldots: \forall n > N \ c_n > 0$ и ряд $\sum_{n=1}^{\infty} c_n$ расходится. Если

$$\lim_{n\to\infty} \left(c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} \right) = k,$$

TC

- 1. k > 0: (A) сходится.
- 2. k < 0 : (A) расходится.
- 3. k = 0: (A) может как сходиться, так и расходиться.

4.45 Признак Бертрана

Теорема 25. Дан положительный ряд (A). Если

$$\lim_{n\to\infty} \ln n \cdot \left[n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) \right] = B,$$

то

- 1. B > 1 : (A) сходится.
- 2. B < 1 : (A) расходится.
- 3. B = 1: (A) может как сходиться, так и расходиться.

4.46 Признак Гаусса

Теорема 26. Ряд $(A), \ a_n > 0, \ \forall n \in \mathbb{N}, \ \lambda, \mu \in \mathbb{R}$. Если

$$\frac{a_n}{a_{n+1}} = \left(\lambda + \frac{\mu}{n}\right) + O\left(\frac{1}{n^2}\right),\,$$

TO

- 1. $\lambda > 1 : (A)$ сходится.
- 2. $\lambda < 1 : (A)$ расходится.
- 3. $\lambda = 1$ и
 - (a) $\mu > 1 \Rightarrow (A)$ сходится.
 - (b) $\mu \leq 1 \Rightarrow (A)$ расходится.

4.47 Знакопеременные ряды

Примечание. Дан ряд (A). Если $\exists N: \forall n > N$ a_n не меняет знак, то исследование сходимости такого ряда сводится к исследованию сходимости положительных рядов. Будем считать, что «+» и «-» бесконечно много. Такие ряды будем называть *знакопеременными*.

4.48 Абсолютно сходящийся ряд

Определение 18. Ряд (A) называется *абсолютно сходящимся*, если сходится ряд

$$(A^*) \sum_{n=1}^{\infty} |a_n|.$$

4.49 Условно сходящийся ряд

Определение 19. Если ряд (A) сходится, а ряд (A^*) расходится, то ряд (A) называется условно сходящимся.

4.50 Следствие абсолютной сходимости ряда

Утверждение. Если ряд (A) абсолютно сходящийся, то он сходящийся.

4.51 Знакочередующиеся ряды

Определение 20. Ряд (A) называется знакочередующимся, если $\forall n \in \mathbb{N}$

 $a_n \cdot a_{n+1} < 0$. Обозначим знакочередующийся ряд:

$$(\overline{A}) \sum_{n=1}^{\infty} (-1)^{n-1} \cdot a_n, \quad a_n > 0 \ \forall n \in \mathbb{N}.$$

4.52 Признак Лейбница

Теорема 27. Пусть ряд $(\overline{A}), \forall n \ a_n > 0$ удовлетворяет условиям:

- 1. $a_1 \geqslant a_2 \geqslant a_3 \geqslant \ldots \geqslant a_n \geqslant \ldots$
- $2. \lim_{n\to\infty} a_n = 0.$

Тогда ряд (\overline{A}) сходится и его сумма $S: 0 < S \le a_1$.

4.53 Признак Абеля

Теорема 28. Если

- ullet последовательность $\{a_n\}$ монотонна и ограничена,
- ряд $\sum_{n=1}^{\infty} b_n$ сходится,

то ряд $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

4.54 Признак Дирихле

Теорема 29. Если

- последовательность $\{a_n\}$ монотонна и $\lim_{n\to\infty} a_n = 0$,
- частичные суммы ряда (B) ограничены, то есть $\exists k > 0$: $\forall n \mid \sum_{m=1}^{n} b_m \mid < k$,

то $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

4.55 Сочетательное свойство сходящихся рядов

Теорема 30.

- 1. Если ряд (A) сходится, то для любой возрастающей последовательности n_k ряд (\widetilde{A}) сходится и их суммы совпадают $(A = \widetilde{A})$.
- 2. Если ряд (\widetilde{A}) сходится и внутри каждой скобки знак не меняется, то ряд (A) сходится и их суммы совпадают, то есть $\widetilde{A} = A$.

4.56 Переместительное свойство сходящихся рядов

Теорема 31. Если ряд (A) абсолютно сходится, то его сумма не зависит от перестановки членов ряда.

4.57 Теорема Римана о перестановке членов условно сходящегося ряда

Теорема 32. Если ряд (A) условно сходится, то $\forall B \in \mathbb{R}$ (в том числе $B = \pm \infty$) \exists перестановка ряда (A) такая, что полученный ряд сходится и имеет сумму B. Более того, \exists перестановка ряда (A) такая, что частичные суммы полученного ряда не стремятся ни к конечному, ни к бесконечному пределу.

Произведение рядов

Определение 21. Произведением рядов (A) и (B) назовем ряд, членами которого ялвяются элементы на строке таблицы $a_i b_j$, взятые в произвольном порядке.

Если числа выбираются по диагоналям, то произведение называется формой Коши:

$$a_1b_1 + (a_1b_2 + a_2b_1) + \dots$$

4.59 Теорема Коши о произведении рядов

Теорема 33. Ряды (A), (B) абсолютно сходятся, A, B – их суммы $\Rightarrow \forall$ их произведение абсолютно сходится и равно $A \cdot B$.

4.60 Повторный ряд

Определение 22. Повторным рядом называются выражения

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk},\tag{6}$$

$$\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{nk}.$$
 (7)

Ряд 6 сходится, если сходятся все ряды (A_n) по строкам $(\sum_{k=1}^\infty a_{n_k}=A_n)$ и сходится ряд $\sum_{n=1}^\infty A_n$.

4.61 Двойной ряд

Определение 23. Двойным рядом называется выражение:

$$\sum_{n,k=1}^{\infty} a_{nk} \tag{8}$$

Ряд 8 сходится, если:

$$\exists A = \lim_{\substack{K \to \infty \\ N \to \infty}} A_{NK} = \lim_{\substack{K \to \infty \\ N \to \infty}} \sum_{n=1}^{N} \sum_{k=1}^{K} a_{nk}.$$

То есть $\forall \varepsilon > 0 \ \exists N_0$ и $K_0: \ \forall N > N_0$ и $\forall k > K_0$

$$\left|\underbrace{\sum_{n=1}^{N}\sum_{k=1}^{K}a_{nk}}_{A_{NK}}-A\right|<\varepsilon.$$

4.62 Простой ряд

Определение 24. Пусть ряд

$$\sum_{r=1}^{\infty} U_r \tag{9}$$

построен из элементов таблицы, взятых в произвольном порядке. Такой ряд будем называть *простым*, связанным с данной таблицей.

4.63 Теорема о связи сходимости простого и повторного рядов

Теорема 34.

- 1. Ряд $\sum_{r=1}^{\infty} U_r$ абсолютно сходится $\Rightarrow \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk}$ сходится и его сумма равна U.
- 2. Если после замены элементов таблицы (*) их модулями ряд $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |a_{nk}|$ сходится, то ряд $\sum_{r=1}^{\infty} U_r$ сходится абсолютно и суммы рядов $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk}$ и $\sum_{r=1}^{\infty} U_r$ совпадают.

4.64 Свойства двойного ряда

Теорема 35.

1. Если ряд $\sum_{n,k=1}^{\infty} a_{nk}$ сходится, то

$$\lim_{\substack{n\to\infty\\k\to\infty}} a_{nk} = 0.$$

2. (Критерий Коши) Ряд $\sum_{n,k=1}^\infty a_{nk}$ сходится \Leftrightarrow $\forall \varepsilon>0$ $\exists N_0,K_0: \forall n>N_0,\ \forall k>K_0,\ \forall p>0,\ \forall q>0$

$$\left| \sum_{n=1}^p \sum_{k=1}^q a_{(N_0+n)(K_0+k)} \right| < \varepsilon.$$

3. Если ряд $\sum_{n,k=1}^{\infty} a_{nk}$ сходится, то $\forall c \in \mathbb{R}$ ряд

$$\sum_{n,k=1}^{\infty} (c \cdot a_{nk})$$

сходится, и его сумма равна $c \cdot A$ (где $A = \sum_{n,k=1}^{\infty} a_{nk}$).

4. Если ряд $\sum_{n,k=1}^{\infty} a_{nk}$ сходится и ряд

$$\sum_{n,k=1}^{\infty} b_{nk}$$

сходится, то

$$\sum_{n,k=1}^{\infty} (a_{nk} + b_{nk}) = A + B,$$

а к тому же - сходится.

5. Если $\forall n, \ \forall k \ a_{nk} \geqslant 0,$ то ряд $\sum_{n,k=1}^{\infty} a_{nk}$ сходится \Leftrightarrow его частичные суммы ограничены в совокупности.

4.65 Теорема о связи сходимости двойного и повторного рядов

Теорема 36. Если

- ряд $\sum_{n,k=1}^{\infty} a_{nk}$ сходится (двойной),
- все ряды по строкам сходятся,

тогда повторный ряд $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk}$ сходится и

$$A = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{nk} = \sum_{n,k=1}^{\infty} a_{nk}.$$

4.66 Теорема о связи сходимости двойного и простого рядов

Теорема 37. Ряд $\sum_{n,k=1}^{\infty} |a_{nk}|$ сходится \Rightarrow сходится $\sum_{r=1}^{\infty} U_r$. И наоборот, если сходится $\sum_{r=1}^{\infty} |U_r| \Rightarrow$ сходится $\sum_{n,k=1}^{\infty} a_{nk}$.

В обоих случаях суммы рядов равны:

$$\sum_{n,k=1}^{\infty} a_{nk} = \sum_{r=1}^{\infty} U_r$$

5 Поточечная и равномерная сходимость семейства функций

5.67 Семейство функций, зависящих от параметров

Определение 25. Семейство функций – это произвольное множество

Пусть $f: X \times T \to Y$. Если по каким-либо соображениям элементам множества T уделяется особое внимание, то будем их называть параметрами.

To есть $\forall t \in T$ можно рассмотреть функцию

$$f_t(x) = f(x,t).$$

5 ПОТОЧЕЧНАЯ И РАВНОМЕРНАЯ СХОДИМОСТЬ СЕМЕЙСТВ 23 ФУНКЦИЙ

В этом случае будем говорить, что задано семейство функций, зависящих от параметра t.

5.68 Сходимость семейства функций по базе

Определение 26. Будем говорить, что семейство $\{f_t\}$ сходится в точке $x \in X$, если $f_t(x)$ как функция аргумента t имеет предел по базе \mathfrak{B} , то есть $\exists y_x \in Y_\rho: \ \forall \varepsilon > 0 \ \exists B \in \mathfrak{B}: \ \forall t \in B$

$$\rho(f_t(x), y_x) < \varepsilon.$$

5.69 Область сходимости семейства функций по базе

Определение 27. Множество $E = \{x \in X : \{f_t\} \text{ сходится в точке } x\}$ называется областью сходимости семейства $\{f_t\}$ по базе \mathfrak{B} .

5.70 Предельная функция

Определение 28. На Е введем функцию, положив

$$f(x) = \lim_{\mathfrak{B}} f_t(x).$$

Функция f(x) называется предельной.

5.71 Поточечная сходимость семейства функций по базе

Определение 29. Дано семейство $f_t: X \to Y_u, \ f: X \to Y$. Будем говорить, что f_t сходится по базе $\mathfrak B$ *поточечно* к f на X, если $\forall x \in X \ \forall \varepsilon > 0 \ \exists B_x \in \mathfrak B: \ \forall t \in B_x$

$$\rho(f_t(x), f(x)) < \varepsilon.$$

Обозначение:

$$f_t \xrightarrow{\mathfrak{B}} f$$
 (Ha X)

5.72 Равномерная сходимость семейства функций по базе

Определение 30. Семейство $\{f_t\}$ сходится равномерно по базе \mathfrak{B} к f на X, если $\forall \varepsilon > 0 \ \exists B \in \mathfrak{B}: \ \forall t \in B$ и $\forall x \in X$

$$\rho(f_t(x), f(x)) < \varepsilon.$$

Обозначение:

$$f_t \underset{\infty}{\Longrightarrow} f \text{ (Ha } X)$$

5 ПОТОЧЕЧНАЯ И РАВНОМЕРНАЯ СХОДИМОСТЬ СЕМЕЙСТВ**2**4 ФУНКЦИЙ

5.73 Поточечная сходимость последовательности функций

Определение 31. Пусть $f_n: X \to \mathbb{R}$ – последовательность функций и $f: X \to \mathbb{R}$. Семейство $\{f_n\}$ сходится поточечно к f на X, если $\forall x \in X \ \exists f(x) = \lim_{n \to \infty} f_n(x), \ \forall \varepsilon > 0 \ \exists N: \ \forall n > N$

$$|f_n(x)-f(x)|<\varepsilon.$$

Обозначение:

$$f_n \xrightarrow[n \to \infty]{} f$$
 (Ha X)

5.74 Равномерная сходимость последовательности функций

Определение 32. Последовательность $\{f_n\}$ равномерно сходится к f на X при $n \to \infty$, если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n > N \ \forall x \in X$

$$|f_n(x) - f(x)| < \varepsilon.$$

Обозначение:

$$f_n \Longrightarrow_{n \to \infty} f$$
 (Ha X)

5.75 Критерий Коши сходимости семейства функций

Теорема 38. Пусть Y – полное метрическое пространство, $f_t: X \to Y, \ t \in T$ – семейство $\{f_t\}$ равномерно сходится на X по базе $\mathfrak{B} \Leftrightarrow \forall \varepsilon > 0 \ \exists B \in \mathfrak{B}: \ \forall t_1, t_2 \in B$ и $\forall x \in X$

$$\rho(f_{t_1}(x); f_{t_2}(x)) < \varepsilon.$$

5.76 Следствие из критерия Коши сходимости семейства функций

Следствие. Пусть X,Y — метрические пространства, $E \subset X, \ x_0 \in E$ — предельная точка для E. Семейство $f_t: X \to Y$:

- 1. f_t сходится на E по базе \mathfrak{B} .
- 2. f_t расходится в точке x_0 по базе \mathfrak{B} .
- 3. $\forall t \ f_t$ непрерывно в точке x_0 .

Тогда на E семейство f_t сходится неравномерно.

6 Функциональный ряд

6.77 Функциональный ряд

Определение 33. Пусть $f_n: X \to \mathbb{R}, \ X$ – произвольное множество. Φ ункциональным рядом называется выражение вида

$$\sum_{n=1}^{\infty} f_n(x) \tag{10}$$

6.78 Поточечная сходимость функциональных рядов

Примечание. Говорят, что ряд 10 сходится на X *поточечно*, если на X сходится поточечно последовательность его частичных сумм.

Ряд 10 равномерно сходится на X, если на X равномерно сходится последовательность его частичных сумм.

6.79 Равномерная сходимость функциональных рядов

Теорема 39. Пусть ряды (A),(B) такие, что:

- 1. $\forall n$ функции $a_n(x)$ и $b_n(x)$ определены на X.
- $2. \ \exists N: \ \forall n > N$

$$|a_n(x)| \le b_n(x) \quad \forall x \in X.$$

3. Ряд (B) сходится на X равномерно.

Тогда ряд (A) сходится на X равномерно.

6.80 Критерий Коши равномерной сходимости ряда

Теорема 40. Ряд 10 равномерно сходится на $X \Leftrightarrow \forall \varepsilon > 0 \ \exists N: \ \forall n > N \ \forall p > 0 \ \forall x \in X$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| < \varepsilon.$$

6.81 Следствие из критерия Коши равномерной сходимости ряда

Следствие. Если:

- 1. Ряд 10 сходится на (a; b).
- 2. Расходится в точке b.
- 3. $\forall n \ f_n(x)$ непрерывно в точке b.

Тогда ряд 10 сходится на (a; b) неравномерно.

6.82 Признак сравнения

Я не нашел.

6.83 Признак Вейерштрасса

Следствие. Пусть

- 1. $\forall n \ \exists M_n : \ |a_n(x)| \leqslant M_n \quad \forall x \in X.$
- 2. Ряд $\sum_{n=1}^{\infty} M_n$ сходится.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится на X абсолютно и равномерно.

6.84 Признак Абеля

Теорема 41. Пусть функции $a_n(x)$ и $b_n(x)$ удовлетворяют условиям:

- ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на X,
- последовательность $\{b_n(x)\}$ равномерно ограничена на X и монотонна (то есть $\exists L > 0: \ \forall n \in \mathbb{N} \ u \ \forall x \in X \ |b_n(x)| \leqslant L),$

тогда ряд

$$\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x) \right)$$

сходится на X равномерно.

6.85 Признак Дирихле

Теорема 42. Пусть

- частичные суммы ряда $\sum_{n=1}^{\infty} a_n(x)$ равномерно ограничены на X (то есть $\exists M > 0: \ \forall n \ \text{и} \ \forall x \in X \ \left| \sum_{k=1}^{n} a_k(x) \right| \leq M$),
- последовательность $\{b_n(x)\}$ монотонна и равномерно на X стремится к 0,

тогда ряд

$$\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x) \right)$$

сходится на X равномерно.

7 Свойства предельной функции

7.86 Условия коммутирования двух предельных переходов

Теорема 43. Пусть X,T – множества, \mathfrak{B}_x – база на $X,\ \mathfrak{B}_T$ – база на $T,\ Y$ – полное МП, $f_t:X\to Y,\ f:X\to Y$:

- $f_t \Longrightarrow_T f$ на X,
- $\bullet \ \forall t \in T \ \exists \lim_{\mathfrak{B}_X} = A_t,$

тогда существуют и равны два повторных предела:

$$\underset{\mathfrak{B}_T\mathfrak{B}_X}{\operatorname{limlim}} f_t(x) = \underset{\mathfrak{B}_X\mathfrak{B}_T}{\operatorname{limlim}} f_t(x).$$

Запишем условия и утверждение теоремы в форме диаграмы:

$$\begin{array}{ccc}
f_t(x) & \Longrightarrow & f(x) \\
& & & \\
\forall t, \, \mathfrak{B}_X & & \downarrow & \\
A_t & \xrightarrow{---} & A
\end{array}$$

→ - дано, -- - утверждение

7.87 Непрерывность предельной функции

Теорема 44. Пусть X,Y – метрические пространства, $\mathfrak B$ – база на $T,\ f_t:X\to Y,\ f:X\to Y$:

- $\forall t \in T$ функция f_t непрерывна в точке $x_0 \in X$,
- семейство $f_t \Longrightarrow f$ на X,

тогда функция f непрерывна в точке x_0 .

7.88 Интегрируемость предельной функции

Теорема 45. Пусть $f_t:[a;b] \to \mathbb{R}, \ f:[a;b] \to \mathbb{R}$:

- $\forall t \in T$ f_t интегрируема по Риману на [a;b],
- $f_t \underset{\mathfrak{B}}{\Longrightarrow} f$ на [a;b] (\mathfrak{B} база на T),

тогда:

- 1. f интегрируема по Риману на [a;b].
- 2.

$$\int_{a}^{b} f(x)dx = \lim_{\mathfrak{B}} \int_{a}^{b} f_{t}(x)dx \Leftrightarrow \lim_{\mathfrak{B}} \int_{a}^{b} f_{t}(x)dx = \int_{a}^{b} \lim_{\mathfrak{B}} f_{t}(x)dx.$$

7.89 Теорема Дини

Теорема 46. Пусть X – компактное метрическое пространство. Последовательность $f_n: X \to \mathbb{R}$ монотонна на X и $\forall x \ f_n$ непрерывна на X.

Если $f:X \to \mathbb{R}$ непрерывна на X, то эта сходимость равномерная.

7.90 Дифференцируемость предельной функции

Теорема 47. Пусть $-\infty < a < b < +\infty \ (a,b - \text{конечны}), \ f_t : (a;b) \to \mathbb{R}, \ f : (a;b) \to \mathbb{R}$:

- $\forall t \in T$ f_t дифференцируема на (a; b),
- $\exists \phi : (a;b) \to \mathbb{R} : f'_t \Longrightarrow_{\mathfrak{B}} \phi$ на (a;b),
- $\exists x_0 \in (a;b) : f_t(x_0) \to f(x_0),$

тогда:

- 1. $f_t \underset{\mathfrak{B}}{\Longrightarrow} f$ на (a;b).
- 2. f дифференцируема на (a;b).
- 3. $\forall x \in (a;b) \ f'(x) = \phi(x)$.

7.91 Следствие из теоремы о непрерывности предельной функции

Следствие. Если

- $\forall n \ f_n(x)$ непрерывна на (a;b),
- ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на (a;b),

то его сумма $f(x) = \sum_{n=1}^{\infty} f_n(x)$ непрерывна на (a;b), то есть $\forall x_0 \in (a;b)$

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} f_n(x).$$

7.92 Следствие из теоремы об интегрируемости предельной функции

Следствие. Если

- $\forall n \ f_n(x) \in R[a;b]$ (интегрируема на [a;b]),
- ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на [a;b],

то его сумма интегрируема на $\left[a;b\right]$ и

$$\int_a^b \sum_{n=1}^\infty f_n(x) dx = \sum_{n=1}^\infty \int_a^b f_n(x) dx.$$

7.93 Следствие из теоремы о дифференцируемости предельной функции

Следствие. Если

- $\forall n \ f_n(x)$ дифференцируема на (a;b),
- $\exists x_0 \in [a;b]$: ряд $\sum_{n=1}^{\infty} f_n(x_0)$ сходится,
- ряд $\sum_{n=1}^{\infty} f'_n(x)$ сходится равномерно на (a;b),

то

- 1. Ряд сходится на (a; b) равномерно.
- 2. Его сумма дифференцируема на (a; b).
- 3. $\forall x \in (a; b)$

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

8 Степенные ряды

8.94 Степенной ряд

Определение 34. Степенным рядом называется выражение вида

$$\sum_{n=0}^{\infty} \left(a_n \cdot (x - x_0)^n \right)$$

или

$$\sum_{n=0}^{\infty} (a_n \cdot x^n). \tag{11}$$

8.95 Теорема о сходимости степенного ряда

Теорема 48.

- 1. Областью сходимости степенного ряда 11 является промежуток (-R;R), где $R\geqslant 0$ $(+\infty)$.
- 2. $\forall [\alpha; \beta] \subset (-R; R)$ ряд 11 сходится равномерно на $[\alpha; \beta]$.
- 3. Число R, называемое радиусом сходимости степенного ряда 11, может быть вычислено:

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}.$$

8.96 Радиус сходимости степенного ряда (определение)

Определение 35. Число R, называемое радиусом сходимости степенного ряда 11, может быть вычислено:

$$R = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}.$$

8.97 Теорема Абеля о сумме степенного ряда

Теорема 49. Если R – радиус сходимости ряда 11 и ряд $\sum_{n=0}^{\infty} (a_n \cdot R^n)$ сходится, то

$$\lim_{x \to R} \sum_{n=0}^{\infty} (a_n \cdot x^n) = \sum_{n=0}^{\infty} (a_n \cdot R^n).$$

8.98 Теорема об интегрировании степенного ряда

Теорема 50. Пусть дан ряд 11. Пусть S(x) – его сумма, R – радиус сходимости ряда 11. Тогда $\forall \overline{x} \in (-R;R)$ функция S(x) интегрируема на $[0;\overline{x}]$ (или на $[\overline{x};0]$) и

$$\int_0^{\overline{x}} S(x) dx =$$

$$= \int_0^{\overline{x}} \left(\sum_{n=0}^{\infty} (a_n \cdot x^n) \right) dx = \sum_{n=0}^{\infty} \int_0^{\overline{x}} (a_n \cdot x^n) dx =$$

$$= \sum_{n=0}^{\infty} \left(\frac{a_n}{n+1} \cdot \overline{x}^{n+1} \right).$$

Если ряд 11 сходится при x = R, то утверждение остается верным и для \overline{x} = R.

8.99 Теорема о дифференцировании степенного ряда

Теорема 51. Пусть дан ряд 11. Пусть S(x) – его сумма, R – радиус сходимости ряда 11. Тогда $\forall x \in (-R; R)$ функция S(x) дифференцируема в точке x и

$$S'(x) = \left(\sum_{n=0}^{\infty} (a_n \cdot x^n)\right)' = \sum_{n=0}^{\infty} (a_n \cdot x^n)' = \sum_{n=0}^{\infty} (a_n \cdot n \cdot x^{n-1}).$$

Если ряд $\sum_{n=0}^{\infty} (a_n \cdot n \cdot x^{n-1})$ сходится при x = R (-R), то утверждение теоремы остается верно и при x = R.

8.100 Теорема о единственности степенного ряда

Теорема 52. Если существует окрестность U точки x=0 суммы рядов $\sum_{n=0}^{\infty}(a_n\cdot x^n)$ и $\sum_{n=0}^{\infty}(b_n\cdot x^n)$ совпадают для всех $x\in U$, то $\forall n$

$$a_n = b_n$$

8.101 Ряд Тейлора

Определение 36. Пусть f(x) бесконечно дифференцируема в окрестности точки x_0 . *Рядом Тейлора* функции f(x) в этой окрестности называется ряд:

$$f(x) \approx f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + \dots$$

8.102 Утверждение о связи степенного ряда и ряда Тейлора

Утверждение. Если функция f(x) в окрестности точки x_0 является суммой степенного ряда $\sum_{n=0}^{\infty} \left(a_n \cdot (x-x_0)^n\right)$, то этот ряд является ее рядом Тейлора.

8.103 Разложение элементарных функций в степенной ряд

Лемма 1. Если f(x) — ∞-но дифференцируемая функция на [0;H] и $\exists L>0: \ \forall n\in\mathbb{N}$ и $\forall x\in[0;H]$

$$\left|f^{(n)}(x)\right| \leqslant L,$$

то на [0;H] функция f может быть разложена в степенной ряд (ряд Тейлора).

9 Интегралы, зависящие от параметра

9.104 Собственный интеграл, зависящий от параметра

Определение 37. *Интегралом, зависящим от параметра* называется функция

$$F(y) = \int_{E_y} f(x, y) dx = \int_{\alpha(y)}^{\beta(y)} f(x, y) dx.$$

9.105Теорема о непрерывности собственного интеграла, зависящего от параметра

Теорема 53. Если функция f(x,y) непрерывна на P = $[a;b] \times [c;d]$, то функция $F(y) = \int_a^b f(x,y)dx$ непрерывна на [c;d].

9.106 Теорема о дифференцировании собственного интеграла, зависящего от параметра

Теорема 54. Пусть:

- α(y), β(y) дифференцируемые на [c;d],
 ∀y ∈ [c;d] a ≤ α(y) ≤ b и a ≤ β(y) ≤ b,
 f(x,y) непрерывна на P = [a;b] × [c;d],
 ∂f/∂y непрерывна на P,

тогда F(y) = $\int_{\alpha(y)}^{\beta(y)} f(x,y) dx$ дифференцируема на [c;d] и

$$F'(y) = \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x,y) dx + f(\beta(y),y) \cdot \beta'(y) - f(\alpha(y),y) \cdot \alpha'(y)$$

(формула Лейбница)

9.107Теорема об интегрировании собственного интеграла, зависящего от параметра

Теорема 55. Если f(x,y) непрерывна на $P = [a;b] \times [c;d]$, то функция $F(y) = \int_a^b f(x,y) dx$ интегрируема на [c;d] и

$$\int_{c}^{d} F(y)dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y)dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx.$$

Обычно пишут:

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy.$$

9.108 Несобственный интеграл, зависящий от параметра

Определение 38. Пусть $\forall y \in Y \ \exists \int_a^{\omega} f(x,y) dx$.

 $Hecoбcmвенным\ uнтегралом,\ зависящим\ om\ napaметра\ y$ называется функция

 $F(y) = \int_{a}^{\omega} f(x, y) dx. \tag{12}$

9.109 Равномерная сходимость несобственного интеграла, зависящего от параметра

Определение 39. Говорят, что интеграл 12 сходится на Y равномерно, если $\forall \varepsilon > 0 \ \exists B \in [a;\omega): \ \forall b \in (B;\omega)$

$$\left| \int_b^{\omega} f(x,y) dx \right| < \varepsilon.$$

9.110 Утверждение об эквивалентности сходимости несобственного интгерала, зависящего от параметра и семейства функций – интегралов по верхнему пределу, зависящих от параметра

Примечание. Далее, рассмотрим семейство функций

$$F_b(y) = \int_a^b f(x, y) dx, \ b \in [a; \omega). \tag{13}$$

Утверждение. Интеграл 12 сходится на Y равномерно \Rightarrow семейство функций 13 сходится на Y равномерно при $b \to \omega$.

9.111 Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

Теорема 56. Интеграл $F(y) = \int_a^\omega f(x,y) dx$ равномерно сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists B \in [a;\omega): \ \forall b_1,b_2 \in (B;\omega) \ \forall y \in Y$

$$\left| \int_{b_1}^{b_2} f(x, y) dx \right| < \varepsilon.$$

9.112 Следствие критерия Коши равномерной сходимости несобственных интегралов, зависящих от параметра

Следствие. Пусть f(x,y) непрерывна на множестве $[a;\omega) \times [c;d],$ $\int_a^\omega f(x,y) dx$ сходится на [c;d) и расходится в точке y=d. Отсюда следует, что $\int_a^\omega f(x,y) dx$ на [c;d) сходится неравномерно.

9.113 Признак Вейерштрасса и его следствие

Теорема 57. Пусть

1. $\forall y \in Y$ и $\forall x \in [a; \omega)$

$$|f(x,y)| \leq g(x,y).$$

2. $\int_a^\omega g(x,y)dx$ — равномерно сходится на Y.

Тогда $\int_a^\omega f(x,y)dx$ – равномерно сходится на Y.

Следствие. Если $\forall y \in Y, \ \forall x \in [a; \omega)$

$$|f(x,y)| \geqslant g(x),$$

то из сходимости $\int_a^\omega g(x)dx \Rightarrow$ равномерна сходимость

$$\int_a^{\omega} f(x,y)dx \text{ Ha } Y.$$

9.114 Признак Абеля

Теорема 58. Если

- 1. $\int_a^\omega g(x,y)dx$ равномерно сходится на Y.
- 2. $\forall y \in Y$ функция f(x,y) монотонна по x и равномерно ограничена, то есть $\exists M>0: \ \forall x \in [a;\omega)$ и $\forall y \in Y$

$$|f(x,y)| \leq M$$
.

Тогда

$$\int_{a}^{\omega} \big(f(x,y) \cdot g(x,y) \big) dx - \text{сходится равномерно на } Y.$$

9.115Признак Дирихле

Теорема 59. Если

1. $\int_a^b g(x,y) dx$ ограничена в совокупности, то есть $\exists L > 0: \ \forall y \in Y$ и $\forall b \in [a;\omega)$

$$\left| \int_{a}^{b} g(x,y) dx \right| \leqslant L.$$

2. $\forall y \in Y \ f(x,y)$ монотонна по x и $f(x,y) \to 0$ равномерно при $x \to \omega$.

Тогда

$$\int_a^{\omega} \big(f(x,y)\cdot g(x,y)\big) dx - \text{сходится равномерно на } Y.$$

10 Функциональные свойства несобственного интеграла, зависящего от параметра

10.116 Теорема о предельном переходе под знаком несобственного интеграла, зависящего от параметра

Теорема 60. Если

$$f(x,y) \Longrightarrow_{\mathfrak{B}_y} \phi(x)$$

 $f(x,y) \Longrightarrow_{\mathfrak{B}_y} \phi(x)$ на [a;b], где \mathfrak{B}_y – база на Y. 2. $\int_a^\omega f(x,y) dx$ сходится равномерно на Y.

$$\lim_{\mathfrak{B}_{y}} F(y) = \lim_{\mathfrak{B}_{y}} \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} \lim_{\mathfrak{B}_{y}} f(x,y) dx = \int_{a}^{\omega} \phi(x) dx.$$

10.117Теорема о непрерывности несобственного интеграла, зависящего от параметра

Следствие. Если

- 1. f(x,y) непрерывна на $[a;\omega)\times[c;d]$. 2. $\int_a^\omega f(x,y)dx$ равномерно сходится на [c;d].

Тогда $F(y) = \int_a^{\omega} f(x,y) dx$ непрерывна на [c;d].

10.118 Теорема о дифференцировании несобственного интеграла, зависящего от параметра

Теорема 61. Если

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$ и имеет непрерывную производную по y.
- 2. $\int_a^\omega f_y'(x,y)dx$ равномерно сходится на [c;d].
- 3. $\int_a^\omega f(x,y)dx$ сходится хотя бы в одной точке $y_0\in (c;d).$

Тогла

- 1. $\int_a^\omega f(x,y)dx$ сходится равномерно на $[c';d'] \in (c;d).$
- 2. $F(y) = \int_a^\omega f(x,y) dx$ дифференцируема на (c;d).
- 3. $F'(y) = \left(\int_a^{\omega} f(x, y) dx \right)_y' = \int_a^{\omega} f_y'(x, y) dx$.

10.119 Теорема об интегрировании несобственного интеграла, зависящего от параметра

Теорема 62. Если

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$.
- 2. $\int_a^{\omega} f(x,y) dx$ равномерно сходится на [c;d].

Тогда функция $F(y) = \int_a^\omega f(x,y) dx$ интегрируема по Риману на [c;d] и

$$\int_c^d dy \int_a^\omega f(x,y) dx = \int_a^\omega dx \int_c^d f(x,y) dy.$$

10.120 Теорема о перестановке двух несобственных интегралов, зависящих от параметра

Теорема 63. Пусть

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;\widetilde{\omega})$.
- 2. $\forall d \in [c;\widetilde{\omega}) \ \int_a^{\omega} f(x,y) dx$ сходится равномерно на [c;d].
- 3. $\forall b \in [a; \omega) \int_c^{\widetilde{\omega}} f(x, y) dx$ сходится равномерно на [a; b].
- 4. Существует хотя бы одни из интегралов:

$$\int_a^{\omega} dx \int_c^{\widetilde{\omega}} \big| f(x,y) \big| dy \quad \text{или} \quad \int_c^{\widetilde{\omega}} dy \int_a^{\omega} \big| f(x,y) \big| dx.$$

Тогда существует

$$\int_{a}^{\omega} dx \int_{c}^{\widetilde{\omega}} f(x,y) dy = \int_{c}^{\widetilde{\omega}} dy \int_{a}^{\omega} f(x,y) dx.$$

11 Эйлеровы интегралы

11.121 Бетта-функция

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} \cdot (1-x)^{\beta-1} dx$$

11.122 Гамма-функция

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} \cdot e^{-x} dx$$

11.123 Свойства бетта-функции

1. **ООФ**

Утверждение. $B(\alpha, \beta)$ определенная при всех $\alpha > 0, \beta > 0$.

2. Симметричность

Утверждение.

$$B(\alpha,\beta) = B(\beta,\alpha).$$

3. Формула понижения

Примечание.

$$B(\alpha,\beta) = \int_{0}^{1} \underbrace{x^{\alpha-1}}_{u} \underbrace{(x-1)^{\beta-1} dx}_{v} =$$

$$= \begin{vmatrix} u = x^{\alpha-1} & du = (\alpha-1)x^{\alpha-2} dx \\ v = -\frac{1}{\beta}(1-x)^{\beta} & dv = (x-1)^{\beta-1} dx \end{vmatrix} =$$

$$= -x^{\alpha-1}(1-x)^{\beta} \cdot \frac{1}{\beta} \Big|_{0}^{1} + \int_{0}^{1} \frac{1}{\beta}(1-x)^{\beta}(\alpha-1)x^{\alpha-2} dx =$$

$$= \frac{\alpha-1}{\beta} \int_{0}^{1} x^{\alpha-2}(1-x)^{\beta} dx = \frac{\alpha-1}{\beta} \int_{0}^{1} \frac{1-x}{1-x} x^{\alpha-2}(1-x)^{\beta} dx =$$

$$= \frac{\alpha-1}{\beta} \int_{0}^{1} (1-x)x^{\alpha-2}(1-x)^{\beta-1} dx =$$

$$= \frac{\alpha-1}{\beta} \int_{0}^{1} (x^{\alpha-2}(1-x)^{\beta-1} - x^{\alpha-1}(1-x)^{\beta-1}) dx =$$

$$= \frac{\alpha-1}{\beta} \left(\int_{0}^{1} (1-x)^{\beta-1} dx - \int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} dx \right) =$$

$$= \frac{\alpha-1}{\beta} \left(B(\alpha-1,\beta) - B(\alpha,\beta) \right).$$

$$B(\alpha,\beta) = \frac{\alpha - 1}{\beta} \Big(B(\alpha - 1,\beta) - B(\alpha,\beta) \Big) \Rightarrow$$

$$\Rightarrow B(\alpha,\beta) \Big(1 + \frac{\alpha - 1}{\beta} \Big) = \frac{\alpha - 1}{\beta} B(\alpha - 1,\beta).$$

$$B(\alpha,\beta) = \frac{\alpha - 1}{\beta + \alpha - 1} - B(\alpha - 1,\beta), \quad \alpha > 1, \ \beta > 0.$$

Пусть $\beta = 1$:

$$B(\alpha,1) = \int_0^1 x^{\alpha-1} dx = \frac{x^{\alpha}}{\alpha} \Big|_0^1 = \frac{1}{\alpha}.$$

Далее, если $\beta = n \in \mathbb{N}$, то

$$B(\alpha, n) = B(n, \alpha) =$$

$$= \frac{n-1}{\alpha + n - 1} \cdot B(n-1, \alpha) = \frac{n-1}{\alpha + n - 1} \cdot \frac{n-2}{\alpha + n - 2} \cdot B(n-2, \alpha) =$$

$$= \frac{(n-1)!}{(\alpha + n - 1)(\alpha + n - 2) \dots (\alpha + 1)} \cdot B(\alpha, 1) =$$

$$= \frac{(n-1)!}{(\alpha + n - 1) \dots (\alpha + 1) \alpha}.$$

Отсюда:

$$B(m,n) = \frac{(n-1)!}{(m+n-1)\dots(m+1)m} = \frac{(n-1)!\cdot(m-1)!}{(m+n-1)!}$$

11.124 Свойства гамма-функции

OOΦ

Утверждение. $\Gamma(\alpha)$ определенная при $\alpha > 0$.

2. Правило дифференцирования Γ(α)

Утверждение. $\forall \alpha > 0 \ \Gamma(\alpha)$ дифференцируема в точке α и

$$\Gamma'(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln x dx.$$

Более того, $\Gamma(\alpha)$ бесконечно дифференцируема в точке α и n-ная производная

$$\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln^n x dx.$$

3. Формула понижения

Примечание.

$$\Gamma(\alpha+1) = \int_0^{+\infty} x^{\alpha} e^{-x} dx =$$

$$= \begin{vmatrix} u = x^{\alpha} & du = \alpha x^{\alpha-1} dx \\ v = -e^{-x} & dv = e^{-x} dx \end{vmatrix} = x^{\alpha} (-e^{-x}) \Big|_0^{+\infty} + \int_0^{+\infty} \alpha x^{\alpha-1} e^{-x} dx =$$

$$= \alpha \int_0^{+\infty} x^{\alpha-1} e^{-x} dx = \alpha \Gamma(\alpha).$$

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

Пусть $\alpha = n \Rightarrow$

$$\Rightarrow \Gamma(n+1) =$$

$$= n\Gamma(n) = n(n-1)\Gamma(n-1) = n(n-1)(n-2)\Gamma(n-2) =$$

$$= n(n-1)\dots\Gamma(1),$$

$$\Gamma(1) = \int_0^{+\infty} x^0 e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1.$$

$$\Gamma(n+1) = n!$$

12 Кратные интегралы. Мера Жордана в \mathbb{R}^n

12.125 Клетка в \mathbb{R}^n

Определение 40. Множество

$$\Pi = \left\{ (x_1, \dots, x_n) : \ a_i \leqslant x_i < b_i, \ i = \overline{1, n} \right\}$$

$$\tag{14}$$

называется κ леткой в \mathbb{R}^n .

Пустое множество также считается клеткой.

в \mathbb{R} — [a;b) полуинтервалы

клетки: в \mathbb{R}^2 — прямоугольники, у которых удалены соответствующиеся стороны

в \mathbb{R}^3 — параллелепипеды, у которых удалены соответствующиеся грани

12.126 Клеточное множество в \mathbb{R}^n

Определение 41. Множество $A \subset \mathbb{R}^n$ называется *клеточным*, если оно является объединением конечного числа попарно непересекающихся клеток.

12.127 Свойства клеточных множеств (1-6)

Свойсто (1)

Утверждение. Пересечение двух клеток есть клетка.

Свойсто (2)

Утверждение. Объединение конечного числа непересекающихся клеточных множеств является клеточным множеством.

Свойсто (3)

Утверждение. Пересечение двух клеточных множеств есть клеточное множество.

Свойсто (4)

Утверждение. Разность двух клеток есть клеточное множество.

Свойсто (5)

Утверждение. Разность двух клеточных множеств есть клеточное множество.

Свойсто (6)

Утверждение. Объединение конечного числа клеточных множеств есть клеточное множество.

12.128 Мера клеточного множества

Определение 42. *Мерой* m(A) *клеточного множества* A, разбитого на клетки $\Pi_1, \Pi_2, \ldots, \Pi_n$ называется число:

$$m(A) = \sum_{i=1}^{n} m(\Pi_i)$$
(15)

12.129 Лемма о корректности определения меры клеточного множества

Лемма 2. Мера клеточного множества не зависит от способа разбиения множества на клетки.

12.130 Свойства меры клеточных множеств (1-4)

Свойсто (1)

Утверждение. Если клеточные множества A_1, \ldots, A_n попарно не пересекаются, то

$$m(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} m(A_i)$$
 (16)

Свойство (2)

Утверждение. Если A и B – клеточные множества и $A \subset B$, то

$$m(B) = m(A) + m(B \setminus A) \tag{17}$$

и $m(A) \leq m(B)$.

Свойство (3)

Утверждение. Если A_1, \ldots, A_n – клеточные множества, то

$$m(\bigcup_{i=1}^{n} A_i) \leqslant \sum_{i=1}^{n} m(A_i)$$

$$\tag{18}$$

Свойство (4)

Утверждение. Для \forall клеточного множества A и $\forall \varepsilon > 0$ \exists клеточное множество

$$A_{\varepsilon}: A_{\varepsilon} \subset \overline{A_{\varepsilon}} \subset A^{\circ} \subset A,$$

где $\overline{A_{\varepsilon}}$ – замыкание множества $A_{\varepsilon},\ A^{\circ}$ – совокупность все внутренних точке множества A.

12.131 Множество, измеримое по Жордану

Определение 43. Множество $Q \subset \mathbb{R}$ называется *измеримым по Жор-* $\partial a h y$, если $\forall \varepsilon > 0 \; \exists$ клеточные множества A и B:

$$A \subset \Omega \subset B$$
 и $m(B) - m(A) < \varepsilon$.

12.132 Мера измеримого по Жордану множества

Определение 44. Если Ω – измеримое по Жордану множество, то его мерой $m(\Omega)$ называется число для $\forall A$ и B – клеточных множеств: $A \subset \Omega \subset B$ выполнено

$$m(A) \leqslant m(i) \leqslant m(B)$$
.

12.133 Лемма о корректности определения меры измеримого по Жордану множества

Лемма 3. Определение меры измеримого по Жордану множества корректно, число $m(\Omega)$ \exists и !, причем

$$m(\Omega) = \sup_{A \subset \Omega} m(A) = \inf_{B \supset \Omega} m(B).$$

12.134 Множество меры нуль

Утверждение. Если $E \subset \mathbb{R}^n$ и $\forall \varepsilon > 0 \ \exists B = B_\varepsilon : E \subset B$ и $m(B) < \varepsilon \Rightarrow m(E) = 0$.

Определение 45. Множество, удовлетворяющее условию утверждения, называется *множеством меры нуль*.

12.135 Свойства множества меры нуль (1-3)

Свойство (1)

Утверждение. Если $E \subset \mathbb{R}^n$ и $\forall \varepsilon > 0 \ \exists B = B_\varepsilon \colon E \subset B$ и $m(B) < \varepsilon \Rightarrow m(E) = 0.$

Свойство (2)

Утверждение. Объединение конечного числа множеств меры нуль есть множество меры нуль.

Свойство (3)

Утверждение. Подмножество множества меры нуль есть множество меры нуль.

12.136 Критерий измеримости множества в \mathbb{R}^n

Теорема 64. Множество $\Omega \subset \mathbb{R}$ измеримо по Жордану $\Leftrightarrow \Omega$ – ограничено и $m(G\Omega)=0$ (его граница меры нуль).

12.137 Свойства множеств, измеримых по Жордану (1-2, без доказательств)

Свойство (1)

Утверждение. Если множества Ω_1 и Ω_2 измеримы по Жордану, то множества $\Omega_1 \cup \Omega_2, \ \Omega_1 \cap \Omega_2, \ \Omega_1 \setminus \Omega_2$ также измеримы по Жордану.

Свойство (2)

Утверждение. Если множества $\Omega_i,\ i=\overline{1,n}$ измеримы по Жордану, то множество $\bigcup_{i=1}^n \Omega_i$ измеримо по Жордану и

$$m\left(\bigcup_{i=1}^{n}\Omega_{i}\right) \leqslant \sum_{i=1}^{n}m(\Omega_{i})$$

и более того, если Ω_i попарно не пересекаются, то

$$m\left(\bigcup_{i=1}^n \Omega_i\right) = \sum_{i=1}^n m(\Omega_i).$$

13 Определение и свойства кратного интеграла Римана

13.138 Разбиение множества

Определение 46. Пусть множество $G \subset \mathbb{R}^n$ измеримо по Жордану. Совокупность измеримых по Жордану множеств $G_i \subset \mathbb{R}^n$, $i = \overline{1, N}$, попарно пересекающихся $G = \bigcup_{i=1}^{n} G_i$ называются разбиением множества

Обозначение: $T = \{G_i\}$

13.139 Мелкость разбиения

Определение 47. Число $l(T) = \max d(G_i)$ называется мелкостью разбиения T.

13.140Продолжение разбиения

Не нашел.

13.141 Интегральная сумма Римана

Определение 48. Пусть функция $f(x) = f(x_1, ..., x_n) : G \to \mathbb{R}$ определена на измеримом по Жордану множестве $G \subset \mathbb{R}^n$, $T = \{G_{ij}\}$ – разбиение множества G.

Возьмем $\xi_i \in G_i$, $i = \overline{1, N}$.

Выражение

$$\sigma_T = \sigma_T(f, \xi, G) = \sum_{i=1}^N f(\xi_i) m(G_i)$$

называется интегральной суммой Римана от функции $f(x) = f(x_1, \dots, x_n)$ на множестве, соответствующей разбиению T и выборке $\xi = (\xi_1, ..., \xi_N)$.

13.142 Суммы Дарбу

Не нашел.

13.143 Кратный интеграл Римана

Примечание. Число I будем называть $\kappa pamным$ интегралом Pumanaот функции f(x) по множеству G, а функцию f(x) – интегрируемой на множестве G.

При n=2 кратный интеграл Римана называется двойным и обозна-

$$\iint\limits_{C} f(x,y)dxdy.$$

При n = 3 - mpoйным и обозначается

$$\iiint\limits_G f(x,y,z)dxdydz.$$

13.144 Критерий интегрируемости (без доказательства)

Теорема 65. Ограниченная формула f(x) интегрируема на измеримом по Нордану множестве $G \subset \mathbb{R}^n \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0: \; \forall T \; l(T) < \delta$

$$\overline{S_T} - S_T < \varepsilon$$
 (то есть $\overline{S_T} - S_T \to 0$ при $l(T) \to 0)$

13.145Критерий интегрируемости более сильный (без доказательства)

Теорема 66. Ограниченная функция f(x) интегрируема на измеримом по Жордану множестве $G \subset \mathbb{R}^n \Leftrightarrow \forall \varepsilon > 0 \ \exists T$ множества G:

$$\overline{S_T} - S_T < \varepsilon$$
.

13.146 Классы интегрируемых функций (2 теоремы, без доказательств)

Теорема 67. Непрерывная на измеримом по Жордану компактном множестве G, функция f(x) интегрируема на этом множестве.

Теорема 68. Пусть функция f(x) ограничена на измеримом компакте $G \subset \mathbb{R}^n$ и множество разрыва f(x) имеет Жорданову меру нуль. Тогда f(x) интегрируема на G.

13.147 Свойства кратного интеграла (1-8, без доказательств)

Свойство (1)

Утверждение. Справедливо равенство

$$\int_G 1dx = m(G).$$

Свойство (2)

Утверждение. Если f(x) > 0 и f(x) – интегрируемая на измеримом по Жордану множестве G функция, то

$$\int_{G} f(x)dx \geqslant 0.$$

• Свойство (3)

Утверждение. Если $f_1(x)$ и $f_2(x) = f_2(x_1, ..., x_n)$ – интегрируемые на измеримом по Жордану множестве G функции, $\alpha, \beta \in \mathbb{R}$, то и функция $\alpha \cdot f_1(x) + \beta \cdot f_2(x)$ интегрируема на G и

$$\int_{G} (\alpha \cdot f_1(x) + \beta \cdot f_2(x)) dx = \alpha \int_{G} f_1(x) dx + \beta \int_{G} f_2(x) dx.$$

Свойство (4)

Утверждение. Если $f_1(x)$ и $f_2(x)$ – интегралы на измеримом по Жордану множестве G и $\forall x \in G$ $f_1(x) \leqslant f_2(x)$, то

$$\int_{G} f_1(x)dx \le \int_{G} f_2(x)dx.$$

• Свойство (5)

Утверждение. Если функция f(x) непрерывна на измеримом связном компакте G, то $\exists \xi \in G$:

$$\int_G f(x)dx = f(\xi)m(G).$$

Свойство (6)

Утверждение. Если G_k , $k = \overline{1,m}$ если разбиение множества G, то функция f(x) интегрируема на $G \Leftrightarrow f(x)$ интегрируема на $G_k,\ k$ = $\overline{1,m},$ при этом

$$\int_{G} f(x)dx = \sum_{k=1}^{m} \int_{G_{k}} f(x)dx.$$

Свойство (7)

Утверждение. Произведение интегрируемых на измеримом множестве G функцией является интегрируемой на G функцией.

Свойство (8)

Утверждение. Если f(x) интегрируема на множестве G функция, то функция |f(x)| также интегрируема

$$\left| \int_{G} f(x) dx \right| \leq \int_{G} |f(x)| dx.$$

13.148 Теорема о сведении двойного интеграла по прямоугольнику к повторному интегралу

Теорема 69. Пусть

1. Функция f(x,y) интегрируема на прямоугольнике

$$\Pi = \{(x,y): a \leqslant x \leqslant b, c \leqslant y \leqslant d\}.$$

2. $\int_c^d f(x,y)dy \exists \forall x \in [a;b].$

Тогда функция $F(x) = \int_{c}^{d} f(x,y) dy$ интегрируема на отрезке [a;b]и справедлива формула:

$$\iiint_{\Pi} f(x,y) dx dy = \int_{a}^{b} dx \int_{c}^{d} f(x) dy$$

13.149 Теорема о сведении двойного интеграла по элементарной области к повторному интегралу

Теорема 70. Пусть Ω – элементарная относительно оси Oy область, функция f(x,y) интегрируема на $\overline{\Omega} = \Omega \cup G\Omega$ и $\forall x \in [a;b] \exists \int f(x,y)dx$. Тогда справедлива следующая формула:

$$\iint_{\Omega} f(x,y)dxdy = \int_{a}^{b} dx \int_{\phi(x)}^{\psi(x)} f(x,y)dy.$$
 (19)

Теорема Фубини (без доказательства) 13.150

кто это

13.151 Формула замены переменной в кратном интеграле (без доказательства)

Теорема 71. Пусть отображение $F: \Omega \to \mathbb{R}^n$ ($\Omega \subset \mathbb{R}^n$ – открытое множество) является взаимнооднозначным и удовлетворяет условиям 1.-3. Пусть G – измеримый компат: $G \subset \Omega$. Тогда, если функция $f(x) = f(x_1, \ldots, x_n)$ непрерывна на множестве G' = F(G), то справедлива следующая формула замены переменных в кратном интеграле:

$$\int_{G'} f(x)dx = \int \dots \int_{G'} f(x_1, \dots, x_n) dx_1 dx_2 \dots dx_n =$$

$$= \int_{G} f(\phi_1(u), \dots, \phi_n(u)) |\Im(u)| du,$$

$$u = (u_1, \dots, u_n), \quad du = du_1 du_2 \dots du_n.$$

14 Криволинейные и поверхностные интегралы

14.152 Криволинейный интеграл первого рода

Примечание. Пусть на некотором множестве, содержащем кривую Γ задано непрерывная функция R(x, y, z).

Если гладкая кривая Г задана уравнением

$$\overline{r} = \overline{r}(A)$$
 или
$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}, \ \alpha \leqslant t \leqslant \beta,$$

то определенный интеграл

$$\int_{\alpha}^{\beta} R(x(t), y(t), z(t)) \cdot |\overline{r}'(t)| dt =$$

$$= \int_{\alpha}^{\beta} R(x(t), y(t), z(t)) \cdot \sqrt{x'^{2}(t) + y'^{2}(t) + z'^{2}(t)} dt.$$

Будем называть $\kappa puволинейным$ интегралом I-го poda от функции R(x,y,z) по кривой Γ и обозначать:

$$\int_{\Gamma} R(x,y,z)ds$$

То есть

$$\int_{\Gamma} R(x,y,z)ds = \int_{\alpha}^{\beta} R(x(t),y(t),z(t)) |\overline{r}'(t)| dt.$$

14.153 Свойства криволинейного интеграла первого рода (1-3, без доказательств)

Свойство (1)

Утверждение. Криволинейный интеграл I-го рода не зависит от параметризации кривой.

Свойство (2)

Утверждение. Криволинейный интеграл I-го рода не зависит от ориентации кривой, то есть

$$\int_{\Gamma} R(x,y,z)ds = \int_{\overline{\Gamma}} \overline{R}(x,y,z)ds.$$

• Свойство (3)

Утверждение. Криволинейный интеграл I-го рода аддитивен относительно кривой, если $\Gamma = \bigcup_{i=1}^{N} \Gamma_i$, то

$$\int\limits_{\Gamma} R(x,y,z)ds = \sum\limits_{i=1}^{N} \int\limits_{\Gamma_{i}} R(x,y,z)ds.$$

14.154 Криволинейные интегралы второго рода

Примечание. Пусть $\Omega \subset \mathbb{R}^3$ – область, в каждой точке которой задан вектор. Тогда говорят, что в области Ω *задано векторное поле.*

Если фиксирована декартова прямоугольная система координат, то векторное поле можно задать при помощи трех скалярных функций:

$$\overline{F}(x,y,z) = \{ P(x,y,z), Q(x,y,z), R(x,y,z) \}.$$

Если функции P,Q,R непрерывны в области Ω , то и поле $\overline{F}(x,y,z)$ называется непрерывным в области Ω .

Если P,Q,R непрерывно дифференцируемы в $\Omega,$ то и векторное поле \overline{F} называется непрерывно дифференцируемым в $\Omega.$

Если можно так подобрать ДСК, что $R\equiv 0,$ а P и Q не зависят от z, то векторное поле \overline{F} называется *плоским*:

$$\overline{F}(x,y) = \{P(x,y), Q(x,y)\}.$$

Пусть в области $\Omega \subset \mathbb{R}^3$ определено непрерывное векторное поле $\overline{F}(x,y,z) = \{P(x,y,z), Q(x,y,z), R(x,y,z)\}, \ \overline{r} = \overline{r}(t), \ \alpha \leqslant t \leqslant \beta, \$ уравнение гладкой (кусочно гладкой) кривой $\Gamma \subset \Omega$.

Тогда

$$\int_{\alpha}^{\beta} \overline{F}(x(t), y(t), z(t)) \cdot \overline{r}'(t) dt = \int_{\alpha}^{\beta} \left(P(x(t), y(t), z(t)) \cdot x'(t) + Q(x(t), y(t), z(t)) \cdot y'(t) + R(x(t), y(t), z(t)) \cdot z'(t) \right) dt$$

называется $\kappa puволинейным$ интегралом II-го poda от векторного поля \overline{F} на кривой $\Gamma \subset \Omega.$

Тогда по определению

$$\int_{\Gamma} (\overline{F}, d\overline{r}) = \int_{\alpha}^{\beta} F(x(t), y(t), z(t)) \overline{r}'(t) dt.$$