ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ Государственное автономное образовательное учреждение высшего образования города Москвы «Московский городской педагогический университет» (ГАОУ ВО МГПУ)

Институт цифрового образования Департамент информатики, управления и технологий

Практическая (лабораторная) работа № 3.1 по дисциплине «Платформы Data Engineering»

Выполнил: студент группы <u>БД-251м</u> Направление подготовки/Специальность 38.04.05 - Бизнес-информатика <u>Варданян Роберт Барсегович</u> (Ф.И.О.)

Проверил: Доцент департамента информатики, управления и технологий, доктор экономических наук (ученая степень, звание) Босенко Т.М. (Ф.И.О.)

Оглавление

Введение	4
Задачи:	4
Описание выбранного варианта	
Основные метрики:	
Рекомендуемые визуализации:	4
Процесс разработки	5
Заключение	9
Сравнительный анализ Yandex DataLens и Tableau:	.10
Рекомендации по выбору инструмента:	.10

Введение

Цель работы: Разработать интерактивный аналитический дашборд для мониторинга и анализа производственной цепочки поставок с использованием Yandex DataLens.

Задачи:

- Создать дашборд в Yandex DataLens на основе индивидуального варианта
- Реализовать ключевые метрики анализа производственных процессов
- Применить принципы эффективного дизайна дашбордов
- Обеспечить интерактивность для глубокого анализа данных
- Сравнить функциональность Yandex DataLens c Tableau

Описание выбранного варианта

Тема: Анализ цепочки поставок

Набор данных: Производственные данные оборудования (manafcturingdataset.csv)

Основные метрики:

- Надежность оборудования
- Уровень производственных рисков
- Качество продукции (уровень сервиса)
- Эффективность использования ресурсов

Рекомендуемые визуализации:

- Матрица рисков (реализована через точечную диаграмму)
- Диаграмма Санкея движения товаров (адаптирована в круговую и линейчатую диаграммы)
- Карта поставщиков (заменена на рейтинг проблемных зон)

1. Подключение к источнику данных

В качестве источника данных использовался CSV-файл (manafcturingdataset.csv), содержащий информацию о работе производственного оборудования с следующими полями:

Таблица 1 — Поля источника данных

Поле	Описание	Тип данных
Timestamp	Временная метка	Дата и время
	измерения	
Machine Speed	Скорость работы	Дробное число
	оборудования	
Production Quality Score	Оценка качества	Дробное число
	продукции	
Vibration Level	Уровень вибрации	Дробное число
Energy Consumption	Потребление энергии	Дробное число
Optimal Conditions	Флаг оптимальных	Целое число
	условий	

2. Создание и подготовка датасета

Все поля были проверены и приведены к корректным типам данных. Далее были созданы следующие вычисляемые поля для бизнес-анализа:

Ключевые вычисляемые поля:

1. Рабочий час (для агрегации):

```
```sql
 DATETRUNC([Timestamp], 'hour')
2. Надежность оборудования:
 ```sql
 AVG([Optimal Conditions])
3. Уровень сервиса (качество продукции):
 ```sql
 AVG(IF [Production Quality Score] >= 8.5 THEN 1 ELSE 0 END)
 ...
4. Температурный риск:
 ```sql
 ABS([Temperature] - 74)
5. Риск вибрации:
 ```sql
 IF [Vibration Level] > 0.07 THEN 1 ELSE 0 END
 • • • •
6. Индекс риска:
 ```sql
 [Температурный риск] + [Риск вибрации] + (1 - [Optimal Conditions])
```

7. Категория риска:

```
"`sql

IF [Индекс риска] >= 2.5 THEN 'Критический'

ELSEIF [Индекс риска] >= 1.5 THEN 'Высокий'

ELSEIF [Индекс риска] >= 0.5 THEN 'Средний'

ELSE 'Низкий'

END
```

3. Разработка чартов

Индикаторы ключевых метрик:

- Средний уровень надежности: AVG([Надежность])
- Средний уровень риска: AVG([Индекс риска])
- Средний уровень сервиса: AVG([Уровень сервиса])

Матрица рисков (Точечная диаграмма):

- Обоснование выбора: Классическая матрица рисков позволяет оценить корреляцию между температурными рисками и вибрацией оборудования
- Настройка:
- Ось Х: Температурный риск
- Ось Y: Vibration Level
- Цвет: Категория риска
- Размер точек: Energy Consumption
- Подписи: Рабочий час

Доля измерений по категориям риска (Круговая диаграмма):

- Обоснование выбора: Наглядно показывает распределение рабочего времени по уровням производственного риска
- Настройка:

- Цвет: Категория риска

- Показатели: COUNT()

Проблемные часы (Столбчатая диаграмма):

- Обоснование выбора: Выявляет наиболее проблемные периоды работы для фокусировки улучшений
- Настройка:
- Ось Х: Рабочий час
- Ось Y: COUNT IF([Категория риска] = 'Критический')
- Сортировка: по оси Y (по убыванию)

Детальная статистика по часам (Сводная таблица):

- Обоснование выбора: Предоставляет детализированную информацию по всем показателям в разрезе часов работы
- Настройка:
- Строки: FORMAT_DATETIME([Рабочий час], 'HH:mm')
- Показатели: AVG([Production Quality Score]), AVG([Machine Speed]), COUNT_IF([Категория риска] = 'Критический'), AVG([Energy Consumption])

4. Сборка и настройка дашборда

Композиция дашборда:

- Верхний ряд: Индикаторы КРІ (самые важные метрики)
- Центральная часть: Матрица рисков и круговая диаграмма (ключевые визуализации)

- Нижняя часть: Детальная аналитика (таблицы и рейтинги)

Настройка селекторов:

- Период времени (Рабочий час)
- Категория риска
- Уровень качества продукции

Интерактивность:

- Настроено связывание всех чартов
- Реализована перекрестная фильтрация при клике на элементы
- Добавлены всплывающие подсказки и описания

Заключение

В ходе работы был успешно разработан интерактивный дашборд для анализа производственной цепочки поставок в Yandex DataLens. **Основные**

достижения:

- Реализованы ключевые метрики анализа производственных процессов через вычисляемые поля
- Создана комплексная система визуализации, включающая матрицу рисков, анализ распределения и детализацию по временным периодам
- Обеспечена высокая интерактивность через систему связанных селекторов и перекрестной фильтрации
- Применены принципы эффективного дизайна для создания понятного и информативного интерфейса

Дашборд позволяет бизнес-пользователям:

- Выявлять проблемные периоды работы через матрицу рисков
- Анализировать распределение рабочего времени по уровням риска

- Детализировать анализ по конкретным часам и категориям
- Принимать обоснованные решения по оптимизации производственных процессов
- Мониторить ключевые показатели эффективности в реальном времени

Сравнительный анализ Yandex DataLens и Tableau:

Критерий	Yandex DataLens	Tableau
Простота подключения	5	4
Подготовка данных	3	5
Язык вычисляемых	3	5
полей		
Визуализации	3	5
Интерактивность	4	5
дашбордов		
UI/UX и порог	5	3
вхождения		
Стоимость	5	3

Рекомендации по выбору инструмента:

- Yandex DataLens предпочтительнее для быстрого старта, ограниченного бюджета и стандартных задач анализа
- Tableau рекомендуется для сложных аналитических задач, требующих глубокой кастомизации и мощных вычислительных возможностей (отдаю предпочтение ему т.к работал с ним, мб поэтому кажется удобнее)

Работа подтвердила, что Yandex DataLens является эффективным инструментом для оперативного создания дашбордов мониторинга производственных процессов.