Calculus, Algebra, and Analysis for JMC

Marie Amellie

January 14, 2020

Contents

1	Group theory	2
	1.1 Binary operations and groups	2
	1.2 Consequences of the axioms of group	6
2	Applied Mathematical Methods	7
	2.1 Differential Equations	7
	2.1.1 Definitions and examples	7
	2.1.2 General Statement	10
3	linear algebra	11
4	Analysis	12

Chapter 1

Group theory

Study of the simplest algebraic structure on a set.

1.1 Binary operations and groups

Definition 1. Set is a collection of distinct elements. Let G be a set. **Binary operation on G** is a function

$$*: G \times G \to G($$
Closure is included $)$

Example 2.

- $(\mathbb{N},+),(\mathbb{Z},+),(\mathbb{R},\cdot)$
- $(\mathbb{N}, -)$ not a binary op. Not closed.
- $g, h \in G, g * h = h$
- Find a certain $c \in G$, define $g * h = c \forall g, h \in G$

Example 3. Cayley table: Draw a table of all the possible binary operations on a set. How many possible binary operations on a finite set with n elements? In general, there are ∞ -many biniary operations. In this case, there are n^{n^2} possible binary operations. In general, $g_i * g_j \neq g_j * g_i$ (Not commutative!)

3

Definition 4. A binary operation * on a set G is called associative if

$$(q*h)*k = q*(h*k) \forall q, h, k \in G$$

Example 5.

- + on $\mathbb{N}, \mathbb{Z}, \mathbb{R}$? Yes
- - on \mathbb{R} ? No
- $g * h = g^h$ on N? No

Definition 6. A binary operation is called commutative if

$$\forall g, h \in G, g * h = h * g$$

Example 7.

- +, · on $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C}$
- matrix multiplication $(AB \neq BA \text{ in general for } A, B \text{ in } M(\mathbb{R}^n))$
- let $g, h \in \mathbb{R}$, $g * h = 1 + g \cdot h$: commutative but not associative!

Definition 8. Let (G, *) be a set. An element e is called *left identity* (respectively *right identity*) if:

$$e*g=g(\text{resp. }g*e=g)\;\forall\;g\in G$$

Caution: There might be many left/right identities or none.

Example 9.

- 1. let (G, *) be a set with g * h := g. Find the left/right identities. ∞ -many (or equal to the number of elements) right identities since h satisfies definition $\forall h$. No left identities: wanted e * g = g = e by definition of * (unless only one element).
- 2. (G,*), g*h=1+gh. Ex: No right/left identities.

Idea: We want a good unique identity.

Theorem 10. let (G, *) be set, such that * has both a left identity e_1 and a right identity e_2 , then

$$e_1 = e_2 =: e$$
 and e is unique.

Proof.

 $\bullet \ e_1 = e_2$

$$\Rightarrow \left\{ \begin{array}{l} e_1 * g = g \Rightarrow e_1 * e_2 = e_2 \\ g * e_2 = g \Rightarrow e_1 * e_2 = e_1 \end{array} \right\} \forall g \in G \Rightarrow e_1 = e_2$$

• Unicity: Assume there exists another identity e'.

$$\Rightarrow e' * g = g * e' = g$$

$$e' * g = e' * e = e$$

$$g * e' = e * e' = e'$$

Therefore

$$e = e'$$

As soon as you get one left and one right identity, you have a unique identity e.

Definition 11. let (G,*) be a set. Let $g \in G$. An element $h \in G$ is called left (resp. right) inverse if

$$h * q = e \text{ (resp. } q * h = e)$$

<u>Caution</u>: Again inverses might not exist, there might be many, or *not* the same on both sides.

Example 12.

- (1) (\mathbb{N}, \cdot) 1 has an inverse, otherwise *no* inverse.
- (2) Find a binary operation on a set of 4 elements with left/right inverses not the same but identity e.

Theorem 13. Let (G, *) be a set with associative binary operation and identity e. Then if h_1 is left inverse, and h_2 is right inverse, then

$$h_1 = h_2 = g^{-1}$$
 and it is unique

Proof.

• $h_1 = h_2$ $h_1 * g = e, g * h_2 = e$. Therefore $h_2 = e * h_2 = (h_1 * g) * h_2 = h_1 * (g * h_2) = e = h_1$

• unicity: Assume $\exists g'^{-1}$ another inverse.

$$g'^{-1} = e * g'^{-1} = (g^{-1} * g) * g'^{-1} = g^{-1} * (g * g'^{-1}) = g^{-1} * e = g^{-1}$$

(Group) Definition 14. A set (G, *) wth binary operation * is called a *group* if:

- (1) * is associative
- (2) $\exists e \in G$ an identity $\forall g \in G$
- (3) All elements $g \in G$ have an inverse g^{-1}

Attention: The identity and inverses are unique by our previous results.

Example 15.

- $(\mathbb{Z},+),(\mathbb{Z}_n,+)$ are groups.
- $(\mathbb{N}, +)$ not a group \Rightarrow no inverses.
- (\mathbb{C},\cdot) not a group (0 has no multiplicative inverse), but (\mathbb{C}^*,\cdot) is. $(\mathbb{C}^* = \mathbb{C}\setminus\{0\})$
- $(G = \{e\}, *)$ with e * e = e is a group called the *trivial group*.
- Empty set \varnothing is not a group (No identity element.)

Definition 16. Let G be a group. It is called <u>finite</u> if it has finitely many elements.

Notation: |G| = n (number of elements) If $|G| = \infty$, the G is called an infinite group.

Example 17.

- the trivial group is finite, |G| = 1
- let $G = \{1, -1, i, -i\} \subset \mathbb{C}$, with $* = \cdot$. Is it a group? Yes. Check associativity, identity, and inverses.

(Abelian Group) Definition 18. A group is called *Abelian* if * is commutative.

Example 19.

- previous example, tryial group, $(\mathbb{Z}, +), (\mathbb{C}^*, \cdot)$
- let $GL(\mathbb{R}^n)$ be the set of all invertible $n \times n$ matrices, * = matrix multiplication. It is associative: (AB)C = A(BC); It has identity: I_n . It has inverses: yes since we asked for it. So this is a group of matrices. But this is not Abelian since $AB \neq BA$.
- let G be the set of *invertible* functions with $* = \circ$, the composition of functions. Identity is F(x) = x; they are associative, invertible, but not Abelian.

1.2 Consequences of the axioms of group

Chapter 2

Applied Mathematical Methods

2.1 Differential Equations

2.1.1 Definitions and examples

Definition 20. An ordinary differential equation (ODE) for y(x) is an equation involving derivatives of y.

$$f(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2}, \dots, \frac{\mathrm{d}^ny}{\mathrm{d}x^n}) = 0$$
 (2.1)

$$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} = F(x, y, \frac{\mathrm{d} y}{\mathrm{d} x}, \dots, \frac{\mathrm{d}^{n-1} y}{\mathrm{d} x^{n-1}})$$

and we seek a solution (or solutions) for y(x) satisfying the equations. (If there are more independent variables then we have a partial differential equation (PDE).)

Definition 21.

Order is the order of the highest derivative present.

Degree is the power of the highest derivative when fractional powers have been removed.

Linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivative in each term of equation (2.1).

Example 22.

(a) Particle moving along a line with a given force $\to x(t)$ position as function of time t.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = f\left(t, x, \frac{\mathrm{d}x}{\mathrm{d}t}\right)$$

e.g.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 x - 2k \frac{\mathrm{d}x}{\mathrm{d}t}$$

The first term is regarding the restoring force, while the second term is regarding the damping/friction. The function is of order 2, degree 1, and linear.

(b) Radius of curvature of a curve

It can be shown that

$$R(x,y) = \frac{\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{\frac{3}{2}}}{\frac{\mathrm{d}^2y}{\mathrm{d}x^2}}$$

The function is of order 2 and degree 2.

(c) Simple growth and decay

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = kQ$$

The function is of order 1, degree 1, and linear. e.g.

- (1) k > 0. Q as the quantity of money, and $k = (1 + \frac{r}{100})$, and r being the rate of interest.
- (2) k < 0. Q as the amount of radioactive material, and k as the decay rate.

Hence, obviously $Q(t) = Q_0 e^{kt}$ where $Q_0 = Q(0)$ at t = 0.

(d) Population dynamics

P(t) as population over time and F(t) as food over time, with

$$\frac{\mathrm{d}P}{\mathrm{d}t} = aP(a>0) \tag{2.2}$$

$$\frac{\mathrm{d}F}{\mathrm{d}t} = c(c > 0)$$

These two equations form a linear system, with both being of order 1, degree 1.

So $P(t) = P_0 e^{at}$, $F(t) = ct + F_0$. Misery! Population outgrows food supply.

Pierre Verhulst (1845) replaced a in equation (2.2) with (a-bP) so that growth decreases as P increases:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = aP - bP^2 \tag{2.3}$$

This is in fact a *logistic ODE*, with order 1, degree 1, and nonlinear.

<u>Note</u>: Equation (2.3) is *separable*. Alternatively we can note that equation (2.3) is an example of a *Bernoulli differential equation*

$$\frac{\mathrm{d}y}{\mathrm{d}x} + F(x)y = H(x)y^n$$

with $n \neq 0, 1$ Substitution on $z(x) = (y(x))^{1-n} \Rightarrow$ a linear equation for $z(x) \rightarrow$ solution. (See below)

(e) Predator-Prey System

x(t) as prey and y(t) as predators, we have

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax - bxy, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = -cy + \hat{d}xy \tag{2.4}$$

Note: Equation (2.4) is separable when written in principle

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} \Rightarrow y(x) \Rightarrow x(t), y(t)$$

This is of order 1, degree 1, and a nonlinear system.

(f) Combat Model System

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -ay, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = -bx \tag{2.5}$$

This is of order 1, degree 1, and linear system.

Note: Again equation (2.5) is separable when written as $\frac{dy}{dx} = \frac{bx}{ay} \Rightarrow y(x) \Rightarrow x(t), y(t)$

2.1.2 General Statement

Chapter 3 linear algebra

Chapter 4 Analysis