

Measuring Heart and Respiratory Rate with IMU Sensors and ICA

- Measuring Heart and Respiratory rates may be:
 - Obtrusive
 - Not available
 - Impractical
- Smartphone Inertial Measurement Unit (IMU)
 - Accelerometer & Gyroscope

Related Work

Related Work Features and Methods

					_				
	Heart Rate	Respiratory Rate	Accel	Gyro	Multiple Axis	Fs	Signal Filter	Method	
[1] Bates 2010						64 Hz	Low-pass 1Hz	PCA	
[2] Lapi 2014						128 Hz	Lowpass 2Hz	Visual Analysis of Waveform	
[3] Jia 2015						80 Hz	Hilbert & Butterworth 0.67 to 3.33Hz	L2 Norm & 6th Order AR Model	
[4] Lahdenoja 2015						800 Hz	Bandpass	Autocorrelation Analysis	
[5] Hernandez 2018						250 Hz	Bandpass 0.8 to 5 Hz	Distance Between Peaks	
Proposed Solution						500Hz	Butterworth and Bandpass	ICA, L2 Norm and FFT	

Data Collection & Dataset

Statale Vital Signs iOS App

Dataset

Collected Dataset Composition

- 30 Samples (of 60 second)
- Sampling Frequency of 500Hz
- Respiratory Rate Range 12 30 (Breaths per Minute)
- Heart Rate Range 55 102 (Beats per Minute)

Collected Dataset Composition

- 5 Healthy Subjects
- 4 Women
 - Age 27, 51, 54, 88
- 1 Men
 - Age 67

- NAMEOORROO-OOBPM.csv
- "True" Respiratory Rate collected through metronome controlled respiration
- "True" Heart Rate collected through oximeter

Methodology

Overview

Model Overview - Signal Separation

Model Overview - Frequency Identification/

- Blind source separation technique
- Assume HR and RR to be statistically independent and non-gaussian

• Problems:

- Generation of components not guaranteed
- Identification not straightforward

- Respiratory Rate Signal resembles a simple sine wave.
- Correlation of each component to a sine wave
- Select most similar component

Sample Execution Subject 21 RR 80 BMP

Sample Execution - Subject 21 RR 80 BPM

Experimental Setup & Validation

- 30 Repetitions on the 30 samples dataset
- 4 Components
- Metrics
 - Mean Absolute Error
 - Root Mean Squared Error
 - Accuracy

	Mean Absolute Error	Root Mean Squared Error	Accuracy
Respiratory Rate	0.71	2.69	0.82
Heart Rate	6.84	14.57	

Conclusions and Future Work

- Results were favorable and consistent for the respiratory rate
- The heart rate provides an good initial estimate but error could be reduced
- The heart rate error can be also higher due to the oximeter error

- Implement iOS App for Monitoring Signals
- Improve sensor fusion by Kalman Filters
- Apply PCA before performing ICA
- Design an identification method of heart rate signal

References

- 1. Bates, Andrew, et al. "Respiratory rate and flow waveform estimation from tri-axial accelerometer data." *International Conference on Body Sensor Networks*. IEEE, 2010.
- 2. Lapi, Sara, et al. "Respiratory rate assessments using a dual-accelerometer device." Respiratory physiology & neurobiology 191 (2014): 60-66.
- 3. Jia, Wenyan, et al. "Estimation of heart rate from a chest-worn inertial measurement unit." International Symposium on Bioelectronics and Bioinformatics (ISBB). IEEE, 2015.
- 4. Lahdenoja, Olli, et al. "Heart rate variability estimation with joint accelerometer and gyroscope sensing." *Computing in Cardiology Conference (CinC)*. IEEE, 2016.
- Hernandez, Joel Ezequiel, and Edmond Cretu. "Simple heart rate monitoring system with a MEMS gyroscope for sleep studies." *IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)*. IEEE, 2018.

Thank You! Questions?

