8. Create an ARIMA model for time series forecasting.

EX.N0:8	Create an ARIMA model for time series forecasting.
DATE : 07/04/2025	

AIM:

To Create an ARIMA model for time series forecasting.

PROGRAM:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
file_path = r"D:/221501507/TIME SERIES ANALYSIS AND FORECASTING/EX06/archive (1)
(1)/FINAL USO.csv"
df = pd.read_csv(file_path, parse_dates=["Date"], index_col="Date")
df.columns = df.columns.str.strip()
target_col = "Adj Close"
if target col not in df.columns:
  raise ValueError(f"'{target_col}' column not found in dataset.")
ts = df[target_col].dropna()
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plot_acf(ts, ax=plt.gca(), lags=40)
plt.title("ACF (AutoCorrelation)")
plt.subplot(1, 2, 2)
plot pacf(ts, ax=plt.gca(), lags=40)
plt.title("PACF (Partial AutoCorrelation)")
plt.tight_layout()
plt.show()
model = ARIMA(ts, order=(5, 1, 2)) # ARIMA(p,d,q)
model_fit = model.fit()
print("\n' ARIMA Model Summary:")
```

```
print(model_fit.summary())

forecast_steps = 30  # Days ahead
forecast = model_fit.forecast(steps=forecast_steps)

plt.figure(figsize=(12, 6))
plt.plot(ts, label='Actual', color='blue')
plt.plot(forecast.index, forecast, label='Forecast', color='red')
plt.title("ARIMA Forecast of Gold Price (Adj Close)")
plt.xlabel("Date")
plt.ylabel("Price")
plt.legend()
plt.grid(True)
plt.show()
```

OUTPUT: ACF (AutoCorrelation) PACF (Partial AutoCorrelation) 1.00 1.00 0.75 0.75 0.50 0.50 0.25 0.25 0.00 0.00 -0.25-0.25-0.50 -0.50-0.75 -0.75 10 15 20 SARIMAX Results Dep. Variable: Adj Close No. Observations: 1718 ARIMA(5, 1, 2) Sat, 12 Apr 2025 12:06:14 -2819.198 Model: Log Likelihood Date: 5654.396

Time:		12:06:	:14 BIC			5697.982
Sample:			0 HQIC			5670.524
		- 17	718			
Covariance Type:			ppg			
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.3127	0.498	-0.628	0.530	-1.289	0.664
ar.L2	0.5132	0.489	1.049	0.294	-0.446	1.472
ar.L3	0.0341	0.052	0.650	0.516	-0.069	0.137
ar.L4	0.0141	0.024	0.578	0.563	-0.034	0.062
ar.L5	0.0322	0.026	1.231	0.219	-0.019	0.083
ma.L1	0.2537	0.499	0.509	0.611	-0.724	1.231
ma.L2	-0.5627	0.461	-1.220	0.222	-1.467	0.341
sigma2	1.5620	0.024	66.248	0.000	1.516	1.608
Ljung-Box (L1) (Q):			0.00	Jarque-Bera	(JB):	9846.34
Prob(Q):			1.00	Prob(JB):		0.00
Heteroskedasticity (H):			0.22	Skew:		-0.68
Prob(H) (two-sided):			0.00	Kurtosis:		14.65

RESULT:

Thus, the program for Create an ARIMA model for time series forecasting is executed successfully.