

Highlights

- Perfect competition
- Output decision of competitive firm
- Shut-down decision
- Supply curve of a competitive firm
- Long-run equilibrium
- Monopoly output and pricing rule
- Deadweight loss of monopoly

Introduction: A Scenario

- Three years after graduating, you run your own business.
- You must decide how much to produce, what price to charge, how many workers to hire, etc.
- What factors should affect these decisions?
 - Your costs (studied in preceding chapter)
 - How much competition you face
- We begin by studying the behavior of firms in perfectly competitive markets.

Perfect Competition

- Perfectly competitive markets are characterized by:
 - The interaction between many buyers and sellers that are "small" relative to the market.
 - Each firm in the market produces a homogeneous (identical) product.
 - Buyers and sellers have perfect information.
 - No transaction costs.
 - Free entry into and exit from the market.
- The implications of these conditions are:
 - a single market price is determined by the interaction of demand and supply
 - firms earn zero economic profits in the long run.

Demand at the Market and Firm Levels Under Perfect Competition

Short-Run Output Decisions

- The short run is a period of time over which some factors of production are fixed.
- To maximize short-run profits, managers must take as given the fixed inputs (and fixed costs), and determine how much output to produce by changing the variable inputs.

Revenue of a Competitive Firm

Total revenue (TR)

$$TR = P \times Q$$

Average revenue (AR)

$$AR = \frac{TR}{Q} = P$$

Marginal revenue (MR):
 The change in TR from selling one more unit.

$$MR = \frac{\Delta TR}{\Delta Q} = P$$

Revenue, Costs, and Profits for a Perfectly Competitive Firm

Competitive Firm's Demand

 The demand curve for a competitive firm's product is a horizontal line at the market price. This price is the competitive firm's marginal revenue.

$$D^f = P = MR$$

Profit Maximization

- What Q maximizes the firm's profit?
- To find the answer, "think at the margin."
 - If increase **Q** by one unit, revenue rises by *MR*, cost rises by *MC*.
- If MR > MC, then increase Q to raise profit.
- If MR < MC, then reduce Q to raise profit.

Profit Maximization under Perfect

Competitive Output Rule

 To maximize profits, a perfectly competitive firm produces the output at which price equals marginal cost in the range over which marginal cost is increasing.

$$P = MC(Q)$$

Competitive Output Rule In Action

- The cost function for a firm is $C(Q) = 5 + Q^2$.
- If the firm sells output in a perfectly competitive market and other firms in the industry sell output at a price of \$20, what price should the manager of this firm charge? What level of output should be produced to maximize profits? How much profit will be earned?

Answer:

- Charge \$20.
- Since marginal cost is 2Q, equating price and marginal cost yields: $\$20 = 2Q \Longrightarrow Q = 10$ units.
- Maximum profits are: $\pi = 20 \times 10 (5 + 10^2) = 95 .

Short-Run Operating Losses

The Shut-Down Case

Short-run Decision to Shut Down

- Loss if shut down: Fixed cost
- Lost if produce: Fixed cost + variable cost TR
- So, shut down if TR < VC
- Divide both sides by Q: TR/Q < VC/Q
- So, firm's decision rule is:

Shut down if P < AVC

Short-Run Output Decision Under Perfect Competition

• To maximize short-run profits, a perfectly competitive firm should produce in the range of increasing marginal cost where P = MC, provided that $P \ge AVC$. If P < AVC, the firm should shut down its plant to minimize it losses.

Short-Run Firm Supply Curve for a

The Short-Run Firm and Industry Supply Curves

• The short-run supply curve for a perfectly competitive firm is its marginal cost curve above the minimum point on the *AVC* curve.

The Market Supply Curve

Long-Run Decisions: Entry and Exit The Market and Firm's Demand

Long-Run Competitive Equilibrium

Long-Run Competitive Equilibrium

 In the long run, perfectly competitive firms produce a level of output such that

1.
$$P = MC$$

2. $P = minimum \ of \ AC$ (zero economic profits)

Monopoly and Monopoly Power

- Monopoly: A market structure in which a single firm serves an entire market for a good that has no close substitutes.
- Sole seller of a good in a market gives that firm greater market power than if it competed against other firms.
 - Implication:
 - market demand curve is the monopolist's demand curve.
 - However, a monopolist does not have unlimited market power.

The Monopolist's Demand

Sources of Monopoly Power

- Economies of scale: exist whenever long-run average costs decline as output increases.
 - Diseconomies of scale: exist whenever long-run average costs increase as output increases.
- **Economies of scope:** exist when the total cost of producing two products within the same firm is lower than when the products are produced by separate firms.
- Cost complementarity: exist when the marginal cost of producing one output is reduced when the output of another product is increased.
- Patents and other legal barriers

Elasticity of Demand and Total Revenues

Marginal Revenue and Elasticity

The monopolist's marginal revenue function is

$$MR = P \left[\frac{1 + E}{E} \right]$$

, where E is the elasticity of demand for the monopolist's product and P is the price charged.

- For P > 0
 - MR > 0 when E < -1.
 - MR = 0 when E = -1.
 - MR < 0 when -1 < E < 0.

Marginal Revenue and Linear Demand

Given an linear inverse demand function

$$P(Q) = a + bQ$$

, where a>0 and b<0, the associated marginal revenue is

$$MR(Q) = a + 2bQ$$

Marginal Revenue In Action

• Suppose the inverse demand function for a monopolist's product is given by P=10-2Q. What is the maximum price per unit a monopolist can charge to be able to sell 3 units? What is marginal revenue when Q=3?

Answer:

- The maximum price the monopolist can charge for 3 units is: P = 10 2(3) = \$4.
- The marginal revenue at 3 units for this inverse linear demand is: MR = 10 2(2)(3) = -\$2.

Monopoly Output Rule

• A profit-maximizing monopolist should produce the output, Q^M , such that marginal revenue equals marginal cost:

$$MR(Q^M) = MC(Q^M)$$

Costs, Revenues, and Profits Under

Profit Maximization Under Monopoly

Monopoly Pricing Rule

• Given the level of output, Q^M , that maximizes profits, the monopoly price is the price on the demand curve corresponding to the Q^M units produced:

$$P^M = P(Q^M)$$

Monopoly In Action

• Suppose the inverse demand function for a monopolist's product is given by P = 100 - 2Q and the cost function is C(Q) = 10 + 2Q. Determine the profit-maximizing price, quantity and maximum profits.

Answer:

- Profit-maximizing output is found by solving: $100 4Q = 2 \Rightarrow Q^M = 24.5$.
- The profit-maximizing price is: $P^M = 100 2(24.5) = 51 .
- Maximum profits are: $\pi = \$51 \times 24.5 (10 + 2 \times 24.5) = \$1,190.50$.

The Absence of a Supply Curve

- Recall, firms operating in perfectly competitive markets determine how much output to produce based on price (P = MC).
 - Thus, a supply curve exists in perfectly competitive markets.
- A monopolist's market power implies P > MR = MC.
 - Thus, there is no supply curve for a monopolist, or in markets served by firms with market power.

Deadweight Loss of Monopoly

 The consumer and producer surplus that is lost due to the monopolist charging a price in excess of marginal cost.

Deadweight Loss of Monopoly

Monopolistic Competition

- An industry is monopolistically competitive if:
 - There are many buyers and sellers.
 - Each firm in the industry produces a differentiated product.
 - There is free entry into and exit from the industry.
- A key difference between monopolistically competitive and perfectly competitive markets is that each firm produces a slightly differentiated product.
 - Implication: products are close, but not perfect, substitutes; therefore, firm's demand curve is downward sloping under monopolistic competition.

Profit-Maximization under Monopolistic Competition

Profit-Maximization Rule for Monopolistic Competition

- To maximize profits, a monopolistically competitive firm produces where its marginal revenue equals marginal cost.
- The profit-maximizing price is the maximum price per unit that consumers are willing to pay for the profit-maximizing level of output.
- The profit-maximizing output, Q^* , is such that $MR(Q^*) = MC(Q^*)$ and the profit-maximizing price is $P^* = P(Q^*)$.

Long-Run Equilibrium

- If firms in monopolistically competitive markets earn short-run
 - profits, additional firms will enter in the long run to capture some of those profits.
 - losses, some firms will exit the industry in the long run.

Effect of Entry on a Monopolistically Competitive Firm's Demand

Long-Run Equilibrium under Monopolistic Competition

The Long-Run and Monopolistic Competition

- In the long run, monopolistically competitive firms produce a level of output such that:
- 1. P > MC
- 2. P = ATC > minimum of average costs

Take-home Message

- For a firm in a perfectly competitive market,
 price = marginal revenue = average revenue.
- If P > AVC, a firm maximizes profit by producing the quantity where P = MC. If P < AVC, a firm will shut down in the short run.
- With free entry and exit, profits = 0 in the long run, and P = minimum ATC.
- Monopoly firms maximize profits by producing the quantity where marginal revenue equals marginal cost. The monopoly price will be greater than marginal cost, leading to a deadweight loss.