NOM: Prénom: Note:

1. Déterminer le nombre de solutions réelles de l'équation $2x^3 - 3x^2 - 12x + 1 = 0$.

Soit : $x \in \mathbb{R} \mapsto 2x^3 - 3x^2 - 12x + 1$. f est polynomiale donc dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = 6x^2 - 6x - 12 = 6(x-2)(x+1)$.

Comme f est continue et strictement monotone sur chacun des intervalles $]-\infty,-1]$, [-1,2] et $[2,+\infty[$, le corollaire du théorème des valeurs intermédiaires pour les fonctions strictement monotones permet d'affirmer que f s'annule exactement trois fois sur $\mathbb R$. L'équation $2x^3-3x^2-12x+1=0$ admet donc exactement trois solutions.

2. Montrer que $f: x \in \mathbb{R} \mapsto \ln(e^x + 1) - x$ induit une bijection de \mathbb{R} sur un ensemble à déterminer.

 $x \mapsto e^x + 1$ est dérivable sur \mathbb{R} à valeurs dans $]1, +\infty[$ et ln est dérivable sur $]1, +\infty[$ donc f est dérivable sur \mathbb{R} par composition. De plus,

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{e^x}{e^x + 1} - 1 = -\frac{1}{e^x + 1} < 0$$

Ainsi f est strictement décroissante sur \mathbb{R} . Puisque $\lim_{-\infty} \exp = 0$, $\lim_{-\infty} f = +\infty$. De plus,

$$f(x) = \ln(e^x(1 + e^{-x})) - x = \ln(1 + e^{-x})$$

 $\operatorname{donc} \lim_{+\infty} f = 0. \text{ Comme } f \text{ est \'egalement continue sur } \mathbb{R}, \text{ elle induit une bijection de } \mathbb{R} \text{ sur } \mathbb{R}_+^* \text{ d'après le th\'eor\`eme de la bijection.}$

3. Montrer que pour tout $x \in \mathbb{R}$, $e^x \ge x + 1$.

On introduit la fonction $f: x \in \mathbb{R} \mapsto e^x - x - 1$. f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = e^x - 1$. Ainsi f' est-elle négative sur \mathbb{R}_+ et positive sur \mathbb{R}_+ . Par conséquent, f est décroissante sur \mathbb{R}_+ et croissante sur \mathbb{R}_+ . Elle admet donc un minimum en 0. Or f(0) = 0 donc f est bien positive sur \mathbb{R} , ce qui fournit le résultat attendu.

4. Déterminer le minimum et le maximum éventuels de la fonction $f: x \mapsto x^2 \ln(x)$ sur \mathbb{R}_+^* .

La fonction f est dérivable sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$, $f'(x) = x(2\ln(x) + 1)$. Ainsi f' est-elle négative sur $\left[0, e^{-\frac{1}{2}}\right]$ et positive sur $\left[e^{-\frac{1}{2}}, +\infty\right[$. La fonction f est donc décroissante sur $\left[0, e^{-\frac{1}{2}}\right]$ et croissante sur $\left[e^{-\frac{1}{2}}, +\infty\right[$. Elle admet donc un minimum en $e^{-\frac{1}{2}}$ est celui-ci vaut $f\left(e^{-\frac{1}{2}}\right) = -\frac{1}{2e}$. Enfin, $\lim_{t \to \infty} f = +\infty$ par opérations donc f n'admet pas de maximum sur \mathbb{R}_+^* .

5. Etudier la fonction $f: x \mapsto x^{\frac{1}{x}} \operatorname{sur} \mathbb{R}_+^*$ (variations et limites).

Remarquons que pour tout $x \in \mathbb{R}_+^*$, $f(x) = e^{\frac{\ln x}{x}}$. Comme ln est dérivable sur \mathbb{R}_+^* , $x \mapsto \frac{\ln x}{x}$ est également dérivable sur \mathbb{R}_+^* à valeurs dans \mathbb{R} . Enfin, exp est dérivable sur \mathbb{R} donc f est dérivable sur \mathbb{R}_+^* . De plus,

$$\forall x \in \mathbb{R}_+^*, \ f'(x) = \frac{1 - \ln x}{x^2} e^{\frac{\ln x}{x}}$$

Puisque $\lim_{x\to +\infty}\frac{\ln x}{x}=0$ par croissances comparées, $\lim_{t\to 0}f=1$. Enfin, $\lim_{x\to 0^+}\frac{\ln x}{x}=-\infty$ par opérations donc $\lim_{0^+}f=0$. On en déduit le tableau de variations suivant.

x	C) e +∞
f'(x)		+ 0 -
Variations de f		$e^{\frac{1}{e}}$