Л5. Числовые ряды

В материале могут быть опечатки и ошибки

Новоженов Павел ЭН-26

 Onp . Выражение $a_1+a_2+\ldots+a_k+\ldots=\sum_k=1^\infty a_k$ называется числовым рядом.

Числа $a_1,\ a_2,\dots$ являются членами числовой последовательности $\{a_k\}_{k=1}^\infty.$

 a_k - общий член ряда (часто обозначается с индексом n).

Числа a_1, a_2 и тд, являются членами ряда.

 $\mathit{Onp}.$ Сумма первых n членов ряда называется n-ной частичной суммой ряда.

$$S_n = a_1, a_2, \ldots, a_n = \sum_{k=1}^n a_k$$

Составляется последовательность частичных сумм.

Onp. Если существует конечный предел последовательности частичных сумм, то он называется суммой ряда.

$$S = \lim_{n o \infty} S_n$$

А сам ряд называется сходящимся. Если такой предел равен плюс минус бесконечности или не существует ряд называется расходящимся.

Опр. Остаток числового ряда

$$a_1 + a_2 + a_2 + \ldots + a_n + \ldots$$

$$\sum_{k=1}^{\infty} a_{n+k} - \ \mathit{ocmamo\kappa}\ \mathit{psda}$$

И ряд, и остаток ряда сходятся и расходятся одновременно.

Частичная сумма остатка ряда отличается на некоторое число от частичной суммы исходного ряда. Отбрасывание конечного числа слагаемых в ряде не влияет на сходимость ряда, но изменяют его сумму.

Пример

Например:

$$\sum_{k=1}^{n}$$

Получим последовательность S=1,0,1,0,1,0. Предела нет, ряд расходится.

Пример

Пример: $\sum_{n=1}^{\infty} \frac{1}{(n+1)n}$

$$\sum_{k=1}^{n} \frac{1}{(n+1)n} = \sum_{k=1}^{n} \frac{(k+1)-k}{(k+1)k} = \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1} = \sum_{k=1}^{n} \frac{1}{k} + \sum_{m=2}^{n+1} \frac{1}{m} = 1 - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)n} = 1$$

Пример

$$a+aq+aq^2+\ldots+aq^\infty \ S_n=rac{a(1-q^n)}{1-q} \ S=\lim_{n o\infty}S_n=\infty$$

Свойства сходящихся рядов

Пусть даны два сходящихся ряда $\sum a_k$, $\sum b_k$. Тогда ряды $\sum \alpha a_k$ и $\sum \beta b_k$, $\sum (a_k \pm b_k)$ сходятся и справедливы равенства:

$$egin{aligned} \sum lpha a_k &= lpha \sum a_k \ \sum eta b_k &= eta \sum b_k \ \sum (a_k + b_k) &= \sum a_k + \sum b_k \end{aligned}$$

Критерий Вейерштрасса сходимости числовых рядов

Для того, чтобы числовой ряд сходился $\sum a_k$, необходимо и достаточно, чтобы $\forall \varepsilon \ \exists N(\varepsilon)$ такое чтобы выполнялось неравенство:

$$|a_{k+1}+a_{k+2}+\ldots a_{k+p}|=|S_{n+p}-S_n|N, P=1,2,3$$

У сходящего числового ряда $\lim_{a \to \infty} a_k = 0$. Тогда ряд МОЖЕТ сходиться. Иначе ряд сразу расходится.