Solve each problem on separate sheets of paper, and clearly indicate the problem number and your name on each. Carefully and neatly document your answers. You may use a mathematical solver like Jupyter/iPython. Use plotting software for all plots.

1 All in balance

1.1 One way under consideration for removing harmful " NO_x " (NO + NO_2) from flue gas is the thermal deNOx process, in which NH_3 is used to reduce the NO to NO_2 :

$$_NO(g) + _O_2(g) + _NH_3(g) \longrightarrow _N_2(g) + _H_2O(g)$$

The research lab has several gas tanks available to study this reaction, including one containing 2.0% NO in an N_2 diluent, one containing 10% O₂ in an N_2 diluent, and a bottle of 4% anhydrous ammonia in N_2 . You can assume all gases behave ideally.

- 1. Balance the thermal deNOx reaction, assuming each NH₃ titrates one NO.
- 2. What mass flow rates are necessary to create a stoichiometric mixture at 1 bar total pressure, 400 °C, and 101/s total volumetric flow rate?
- 3. Plot the molar flow rates of all five gases as a function of reaction advancement.
- 4. Plot the total volumetric flow rate as a function of reaction advancement.

1.2 NH $_3$ oxidation is an undesirable side-reaction of thermal deNOx:

$$_\mathrm{NH_3(g)} + _\mathrm{O_2(g)} \longrightarrow _\mathrm{NO(g)} + _\mathrm{H_2O(g)}$$

- 1. Balance the NH_3 oxidation reaction.
- 2. Under the stoichiometric conditions described above, the reactor generates $0.036\,\mathrm{g/s}$ NO and $0.017\,\mathrm{g/s}$ NH₃. How effectively is the NH₃ being used for thermal deNOx? (*Hint:* What are the advancements of the two reactions?)

2 NOx, NOx, who's there?

2.1 A simpler and confounding reaction of NO is it's oxidation to NO₂:

$$_NO(g) + _O_2(g) \longrightarrow _NO_2(g)$$

You can assume all gases behave ideally under the conditions considered in this problem.

- 1. Determine $\Delta H^{\circ}(298\,\mathrm{K})$, $\Delta S^{\circ}(298\,\mathrm{K})$, $\Delta G^{\circ}(298\,\mathrm{K})$, and $K_p(298\,\mathrm{K})$ for the NO oxidation reaction. Be sure to specify your source and the standard state.
- 2. Calculate the equilibrium partial pressure ratio of NO_2 to NO in the atmosphere near the surface of the earth. Assume the mixing ratio of O_2 to be 0.2 and a temperature of 25 °C.
- 3. From standard compilations and at 1 atm standard state, $\Delta H^{\circ}(250) = -116.532 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ and $\Delta S^{\circ}(250) = -152.179 \,\mathrm{J/mol/K}$. Use the van't Hoff relationship to plot $\Delta G^{\circ}(T)$ vs T from room temperature to 600 C. Add a point on your plot for the $\Delta G^{\circ}(298 \,\mathrm{K})$ you found from a tabulation.

Advanced Chemical Reaction Engineering (CBE 60546)

${\bf Homework}~{\bf 1}$

Due September 1, 2021

4. NO oxidation is catalyzed over diesel oxidation catalysts (DOCs) on diesel vehicles. Plot the equilibrium conversion of NO to NO $_2$ vs T from room temperature to 600 C for an isobaric 1 atm reactor presented with 0.1% NO and 5% O $_2$, and balance N $_2$.