TOPICS IN DIFFERENTIAL TOPOLOGY

RANDALL R. VAN WHY

1. Morse Theory: The C^2 Topology

Definition 1.1. Let U be an open subset of \mathbb{R}^n . A map $L: U \to \mathbb{R}^m$ is called linear if for any $x, y \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$, $L(\alpha x + \beta y) = \alpha L(x) + \beta L(y)$

Lemma 1.2. Suppose U is an open set in \mathbb{R}^n . If $L: U \to \mathbb{R}^m$ is a linear map, then $dL_x = L$ for all $x \in U$.

Proof.

$$dL_x(h) = \lim_{t \to 0} \frac{L(x+th) - L(x)}{t} = \lim_{t \to 0} \frac{L(x) + tL(h) - L(x)}{t} = \lim_{t \to 0} \frac{tL(h)}{t} = L(h)$$

Definition 1.3. We let $Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R})$ denote the set of all linear maps $f: \mathbb{R}^n \to \mathbb{R}$.

Theorem 1.4. $Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R})$ is a vector space.

Theorem 1.5. $Hom_{\mathbb{R}}(\mathbb{R}^n,\mathbb{R}) \cong \mathbb{R}^n$

Corollary 1.6. $Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R})$ is a smooth manifold.

Theorem 1.7. (Sard's Theorem) Let $f: U \to \mathbb{R}^n$ be a smooth map defined on some open set U of \mathbb{R}^n . Let

$$C = \{x \in U : rank(d_x f) < n\}$$

Then f(C) has Lebesgue measure 0 in \mathbb{R}^n .

Lemma 1.8. If $f: U \to \mathbb{R}$ with U open is a C^2 mapping, then, for almost all linear mappings $L: \mathbb{R}^n \to R$, the function f + L has only nondegenerate critical points.

Proof. Consider the manifold $U \times Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R})$. This manifold has a submanifold $M = \{(x,L)|d_x(f+L) = 0\}$. Since $d_x(f+L) = 0$, by Lemma 1.2, we know $d_x f + L = 0$ and thus $L = -d_x f$. Then the correspondence $x \mapsto (x, -df(x))$ is a diffeomorphism of U onto M. Each $(x,L) \in M$ corresponds to a critical point of f+L. This critical point is degenerate when the Hessian H is singular. We have the projection $\pi: M \to Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R})$ defined by $\pi(x,L) = L$.

Now, $L = -d_x f$ and so $\pi(x) = -d_x f$. Thus π is critical at $(x, L) \in M$ when $d\pi = -H$ is singular. Thus f + L has a degenerate critical point if and only if L is the image of a critical point of $\pi: M \to Hom_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R}) \cong \mathbb{R}^n$. By Sard's Theorem, the set of these points has measure 0 in \mathbb{R}^n .

 $Date \hbox{: October 22, 2015}.$

Lemma 1.9. Let K be a compact subset of an open set U in \mathbb{R}^n . If $f: U \to \mathbb{R}$ is C^2 and has only non-degenerate critical points in K, then there is a number $\delta > 0$ such that if $g: U \to \mathbb{R}$ is C^2 and at all points of K satisfies

$$(1) \left| \frac{\partial f}{\partial x_i} - \frac{\partial g}{\partial x_i} \right| < \delta, \ (2) \left| \frac{\partial^2 f}{\partial x_i \partial x_j} - \frac{\partial^2 g}{\partial x_i \partial x_j} \right| < \delta$$

i, j = 1, ..., n, then g likewise has only non-degenerate critical points.

Proof. Let $|df| = \sqrt{(\frac{\partial f}{\partial x_1})^2 + \ldots + (\frac{\partial f}{\partial x_n})^2}$. Then the condition $|df| + |det(\frac{\partial^2 f}{\partial x_i \partial x_j}) > 0$ holds for all point in K. For δ small enough, we can ensure that any C^2 function satisfying (1) and (2) also satisfies $|df| + |det(\frac{\partial^2 g}{\partial x_i \partial x_j})| > 0$ and thus has no non-degenerate critical points.

Lemma 1.10. Suppose $h: U \to U'$ is a diffeomorphism and carries a compact subset $K \subset U$ onto $K' \subset U'$. Given a number $\varepsilon > 0$, there is a number $\delta > 0$ such that if a smooth map $f: U' \to \mathbb{R}$ satisfies

$$|f|<\delta, |\frac{\partial f}{\partial x_i}|<\delta, |\frac{\partial^2 f}{\partial x_i\partial x_j}|<\delta, i,j=1,...,n$$

At all points of $K' \subset U'$, then $f \circ h$ satisfies

$$|f\circ h|<\varepsilon, |\frac{\partial f\circ h}{\partial x_i}|<\varepsilon, |\frac{\partial^2 f\circ h}{\partial x_i\partial x_j}|<\varepsilon, i,j=1,...,n$$

at all points of K.

Proof.

The C^2 topology on a set $C^{\infty}(M)$ of smooth real valued functions on a compact manifold, M, with boundary may be defined as follows.

Definition 1.11. Let $\{U_{\alpha}\}$ be a finite coordinate covering with coordinate maps $h_{\alpha}: U_{\alpha} \to \mathbb{R}^n$, and let $\{C_{\alpha}\}$ be a compact refinement of $\{U_{\alpha}\}$. For every positive constant $\delta > 0$, define a subset $N(\delta)$, of $C^{\infty}(M)$ consisting of all maps $g: M \to \mathbb{R}$ such that, for all α ,

$$|g_{\alpha}| < \delta, \left| \frac{\partial g_{\alpha}}{\partial x_i} \right| < \delta, \left| \frac{\partial^2 g_{\alpha}}{\partial x_i \partial x_i} \right| < \delta$$

at all points in $h_{\alpha}(C_{\alpha})$ where $g_{\alpha} = gh_{\alpha}^{-1}$ and i, j = 1, ..., n. If we take the sets $N(\delta)$ as a base of neighborhoods of the zero functions in the additive group $C^{\infty}(M)$, the resulting topology is called the C^2 topology.

Remark 1.12. The sets of the form $f + N(\delta) = N(f, \delta)$ give a base of neighborhoods for any map $f \in C^{\infty}(M)$, and $g \in N(F, \delta)$ means that for all α ,

$$|f_{\alpha} - g_{\alpha}| < \delta, \left| \frac{\partial f_{\alpha}}{\partial x_{i}} - \frac{\partial g_{\alpha}}{\partial x_{i}} \right| < \delta, \left| \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} - \frac{\partial^{2} g}{\partial x_{i} \partial x_{j}} \right| < \delta$$

at all points of $h_{\alpha}(C_{\alpha})$

Remark 1.13. Lemma C ensures that the topology is independent of coordinate covering.