**ECE M146** 

Discussion 4

Introduction to Machine Learning

Instructor: Lara Dolecek TA: Zehui (Alex) Chen

1. **Multi-class Least Squares** In this section, you will determine the parameter matrix  $\mathbf{W} \in \mathbb{R}^{m \times p}$  for the Multi-class Least Squares problem.

Given a data matrix  $\mathbf{X} \in \mathbb{R}^{n \times m}$  and target matrix  $\mathbf{T} \in \mathbb{R}^{n \times p}$ , the sum-of-squares error function can be written as

$$Er(\mathbf{W}) = \mathbf{Tr}\{(\mathbf{XW} - \mathbf{T})^T(\mathbf{XW} - \mathbf{T})\}\$$

where  $\mathbf{Tr}$  is the trace of a matrix. You can assume that  $\mathbf{X}$  has full rank.

We will solve this problem by setting the derivative with respect to W to be zero and solve for W. To do this we must first know some matrix derivative properties.

(a) Let **A**, **Z** be two matrices. Prove

$$\frac{d\mathbf{Tr}(\mathbf{AZ})}{d\mathbf{Z}} = \mathbf{A}^T$$

(b) Let  $\mathbf{A}, \mathbf{Z}$  be two matrices. Prove

$$\frac{d\mathbf{Tr}(\mathbf{Z}\mathbf{A}\mathbf{Z}^T)}{d\mathbf{Z}} = \mathbf{Z}\mathbf{A}^T + \mathbf{Z}\mathbf{A}$$

(c) Now, we can take the derivative of  $Er(\mathbf{W})$  and set it to zero. Show that this results in

$$\mathbf{W} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{T}$$

2. In this problem, we will derive the least square solution for multi-class classification. Consider a general classification problem with K classes, with a 1-of-K binary encoding scheme (defined latter) for the target vector  $t, t \in \mathbb{R}^K$ . Suppose we are given a training data set  $\{x_n, t_n\}, n = 1, \dots, n$  where  $x_n \in \mathbb{R}^D$ . For the 1-of-K binary encoding scheme,  $t_n$  has the k-th element being 1 and all other elements being 0 if the n-th data is in class k. We can use the following linear model to describe each class:

$$y_k(x) = w_k^T x + w_{k0},$$

where  $k=1,\cdots,K.$  We can conveniently group these together using vector notation so that

$$y(x) = \tilde{\mathbf{W}}^T \tilde{x},$$

where  $\tilde{\mathbf{W}}$  is a matrix whose k-th column comprises the D+1-dimensional vector  $\tilde{w}=[w_{k0},w_k^T]^T$  and  $\tilde{x}$  is the corresponding augmented input vector  $[1,x^T]^T$ . For each new input with feature x, we assign it to the class for which the output  $y_k=\tilde{w}_k^T\tilde{x}$  is largest. Define a matrix  $\mathbf{T}$  whose n-th row is the vector  $t_n^T$  and together a matrix  $\tilde{\mathbf{X}}$  whose n-th row is  $\tilde{x}_n^T$ , the sum-of-squares error function can be written as

$$J(\tilde{\mathbf{W}}) = \frac{1}{2} \mathbf{Tr} \left\{ (\tilde{\mathbf{X}} \tilde{\mathbf{W}} - \mathbf{T})^T (\tilde{\mathbf{X}} \tilde{\mathbf{W}} - \mathbf{T}) \right\}.$$

Find the closed form solution of  $\tilde{\mathbf{W}}$  that minimizes the objective function  $J(\tilde{\mathbf{W}})$ . Hint: You many use the following two matrix derivative about trace,  $\frac{\partial}{\partial Z} \mathbf{Tr}(\mathbf{AZ}) = \mathbf{A}^T$  and  $\frac{\partial}{\partial Z} \mathbf{Tr}(\mathbf{Z}^T \mathbf{AZ}) = (\mathbf{A}^T + \mathbf{A})\mathbf{Z}$ .