

planetmath.org

Math for the people, by the people.

the only compact metric spaces that admit a positively expansive homeomorphism are discrete spaces

 $Canonical\ name \qquad The Only Compact Metric Spaces That Admit A Positively Expansive Homeomorph Properties of the Compact Metric Spaces That Admit A Positively Expansive Homeomorph Properties of the Compact Metric Spaces That Admit A Positively Expansive Homeomorph Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Spaces That Admit A Positive Properties of the Compact Metric Properties of the Compact Metric$

Date of creation 2013-03-22 13:55:11 Last modified on 2013-03-22 13:55:11

Owner Koro (127) Last modified by Koro (127)

Numerical id 10

Author Koro (127) Entry type Theorem Classification msc 37B99 **Theorem.** Let (X, d) be a compact metric space. If there exists a positively expansive homeomorphism $f: X \to X$, then X consists only of isolated points, i.e. X is finite.

Lemma 1. If (X, d) is a compact metric space and there is an expansive homeomorphism $f: X \to X$ such that every point is Lyapunov stable, then every point is asymptotically stable.

Proof. Let 2c be the expansivity constant of f. Suppose some point x is not asymptotically stable, and let δ be such that $d(x,y) < \delta$ implies $d(f^n(x), f^n(y)) < c$ for all $n \in \mathbb{N}$. Then there exist $\epsilon > 0$, a point y with $d(x,y) < \delta$, and an increasing sequence $\{n_k\}$ such that $d(f^{n_k}(y), f^{n_k}(x)) > \epsilon$ for each k By uniform expansivity, there is N > 0 such that for every u and v such that $d(u,v) > \epsilon$ there is $n \in \mathbb{Z}$ with |n| < N such that $d(f^n(x), f^n(y)) > c$. Choose k so large that $n_k > N$. Then there is n with |n| < N such that $d(f^{n+n_k}(x), f^{n+n_k}(y)) = d(f^n(f^{n_k}(x)), f^n(f^{n_k}(y))) > c$. But since $n+n_k > 0$, this contradicts the choce of δ . Hence every point is asymptotically stable.

Lemma 2 If (X, d) is a compact metric space and $f: X \to X$ is a homeomorphism such that every point is asymptotically stable and Lyapunov stable, then X is finite.

Proof. For each $x \in X$ let K_x be a closed neighborhood of x such that for all $y \in K_x$ we have $\lim_{n\to\infty} d(f^n(x), f^n(y)) = 0$. We assert that $\lim_{n\to\infty} \operatorname{diam}(f^n(K_x)) = 0$. In fact, if that is not the case, then there is an increasing sequence of positive integers $\{n_k\}$, some $\epsilon > 0$ and a sequence $\{x_k\}$ of points of K_x such that $d(f^{n_k}(x), f^{n_k}(x_k)) > \epsilon$, and there is a subsequence $\{x_{k_i}\}$ converging to some point $y \in K_x$.

From the Lyapunov stability of y, we can find $\delta > 0$ such that if $d(y, z) < \delta$, then $d(f^n(y), f^n(z)) < \epsilon/2$ for all n > 0. In particular $d(f^{n_{k_i}}(x_{k_i}), f^{n_{k_i}}(y)) < \epsilon/2$ if i is large enough. But also $d(f^{n_{k_i}}(y), f^{n_{k_i}}(x)) < \epsilon/2$ if i is large enough, because $y \in K_x$. Thus, for large i, we have $d(f^{n_{k_i}}(x_{k_i}), f^{n_{k_i}}(x)) < \epsilon$. That is a contradiction from our previous claim.

Now since X is compact, there are finitely many points x_1, \ldots, x_m such that $X = \bigcup_{i=1}^m K_{x_i}$, so that $X = f^n(X) = \bigcup_{i=1}^m f^n(K_{x_i})$. To show that $X = \{x_1, \ldots, x_m\}$, suppose there is $y \in X$ such that $r = \min\{d(y, x_i) : 1 \le i \le m\} > 0$. Then there is n such that $\dim(f^n(K_{x_i})) < r$ for $1 \le i \le m$ but since $y \in f^n(K_{x_i})$ for some i, we have a contradiction.

Proof of the theorem. Consider the sets $K_{\epsilon} = \{(x,y) \in X \times X : d(x,y) \geq \epsilon\}$ for $\epsilon > 0$ and $U = \{(x,y) \in X \times X : d(x,y) > c\}$, where 2c is the expansivity constant of f, and let $F: X \times X \to X \times X$ be the mapping given by F(x,y) = (f(x),f(y)). It is clear that F is a homeomorphism. By

uniform expansivity, we know that for each $\epsilon > 0$ there is N_{ϵ} such that for all $(x, y) \in K_{\epsilon}$, there is $n \in \{1, \dots, N_{\epsilon}\}$ such that $F^{n}(x, y) \in U$.

We will prove that for each $\epsilon > 0$, there is $\delta > 0$ such that $F^n(K_{\epsilon}) \subset K_{\delta}$ for all $n \in \mathbb{N}$. This is equivalent to say that every point of X is Lyapunov stable for f^{-1} , and by the previous lemmas the proof will be completed.

Let $K = \bigcup_{n=0}^{N_{\epsilon}} F^n(K_{\epsilon})$, and let $\delta_0 = \min\{d(x,y) : (x,y) \in K\}$. Since K is compact, the minimum distance δ_0 is reached at some point of K; i.e. there exist $(x,y) \in K_{\epsilon}$ and $0 \le n \le N_{\epsilon}$ such that $d(f^n(x), f^n(y)) = \delta_0$. Since f is injective, it follows that $\delta_0 > 0$ and letting $\delta = \delta_0/2$ we have $K \subset K_{\delta}$.

Given $\alpha \in K - K_{\epsilon}$, there is $\beta \in K_{\epsilon}$ and some $0 < m \leq N_{\epsilon}$ such that $\alpha = F^m(\beta)$, and $F^k(\beta) \notin K_{\epsilon}$ for $0 < k \leq m$. Also, there is n with $0 < m < n \leq N_{\epsilon}$ such that $F^n(\beta) \in U \subset K_{\epsilon}$. Hence $m < N_{\epsilon}$, and $F(\beta) = F^{m+1}(\alpha) \in F^{m+1}(K_{\epsilon}) \subset K$; On the other hand, $F(K_{\epsilon}) \subset K$. Therefore $F(K) \subset K$, and inductively $F^n(K) \subset K$ for any $n \in \mathbb{N}$. It follows that $F^n(K_{\epsilon}) \subset F^n(K) \subset K \subset K_{\delta}$ for each $n \in \mathbb{N}$ as required.