

Machine Learning- Exercise 3 AdaBoost

Ali Athar & Idil Esen Zulfikar <lastname>@vision.rwth-aachen.de

RWTH Aachen University - Computer Vision Group http://www.vision.rwth-aachen.de/

2020-22-12

Content

1. AdaBoost

Content

1. AdaBoost

Adaboost[Freund & Schapire, 1996]-Recap

- ► Main idea
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.
- Components
 - $ightharpoonup c_k(\mathbf{x})$: "weak" or base classifier
 - ightharpoonup Condition: < 50% training error over any distribution
 - \triangleright $C(\mathbf{x})$: "strong or final classifier
- Adaboost:
 - Construct a strong classifier as a thresholded linear combination of the weighted classifiers:

$$C(\mathbf{x}) = \operatorname{sign}\left(\sum_{k=1}^{K} \alpha_k c_k(\mathbf{x})\right)$$

Adaboost - Recap

Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Adaboost - Recap

Final classifier is combination of the weak classifiers.

Adaboost - Algorithm

- ▶ Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1, ..., N.
- For k = 1, ..., k iterations
 - ► Train a new weak classifier $c_k(\mathbf{X})$ using current weights $\mathbf{W}^{(k)}$ by minimizing the weighted error function
 - estimate the weighted error of this classifier on X:

$$\epsilon_{k} = \frac{\sum_{n=1}^{N} w_{n}^{(k)} I(c_{k}(\mathbf{X}) \neq y_{n})}{\sum_{n=1}^{N} w_{n}^{(k)}}$$

▶ Calculate a weighting coefficient for $c_k(\mathbf{X})$:

$$\alpha_k = \ln\left\{\frac{1 - \epsilon_k}{\epsilon_k}\right\}$$

Update the weighting coefficients:

$$w_n^{(k+1)} = w_n^{(k)} \exp\{\alpha_k I(c_k(\mathbf{X}) \neq y_n)\}\$$