#### DEIS - Departamento de Engenharia Informática e de Sistemas ISEC - Instituto Superior de Engenharia de Coimbra

### Conhecimento e Raciocínio 2015/2016 LEI-RAMOS - Recurso

Data: 2016/9/16 Hora: 14h30m Duração: 2h30m



Pg.1/4

| Núm | Nome |
|-----|------|
|     |      |

- 1. A Rede Bayesiana seguinte representa um sistema de avaliação de itens de modelismo (automóveis, combóios, aviões...), em que Ant é a antiguidade, Est o estado de conservação, Cx a existência ou não de caixa, Rar o grau de raridade do item e VAL o valor do item. Estes itens são transacionados no site de leilões eBay. Pretende completar-se o modelo de modo a que ele possa prever o valor do lance vencedor, VLV (VLV=baixo, VLV=alto). Este valor também depende do dia da semana (DS=dia útil, DS=fim de semana), da hora a que termina o leilão (H=dia, H=noite) e da credibilidade do vendedor, CV (CV<100 ou CV > = 100).
- a) (0.5) Complete o diagrama abaixo de acordo com o enunciado acima apresentado. Junto ao nó DS desenhe a tabela de probabilidade respetiva.



b) (1.25) Calcule a probabilidade de o item ser da Época1 quando VAL= Alto, Est=Bom, Cx=Sim e Rar=Raro.

$$p(x_1 \mid x_2...x_n) = \frac{p(x_1, x_2...x_n)}{p(x_2...x_n)}$$

$$P(x_1, x_2...x_n) = \prod_{i=1}^{n} P(x_i \mid Parents(X_i))$$

$$P(x_1, x_2...x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$

# DEIS - Departamento de Engenharia Informática e de Sistemas ISEC - Instituto Superior de Engenharia de Coimbra

### Conhecimento e Raciocínio 2015/2016 LEI-RAMOS - Recurso

Data: 2016/9/16 Hora: 14h30m Duração: 2h30m



| Nι  | úm          |           | Nome         |           |         |           |         |              |          |           |                  |    |
|-----|-------------|-----------|--------------|-----------|---------|-----------|---------|--------------|----------|-----------|------------------|----|
|     |             |           |              |           |         |           |         |              |          |           |                  |    |
| 2.  | Para o      | o mesmo   | objectivo, i | mplemen   | tou-se  | um sister | na de i | inferência   | difusa.  | Para isso | foram definido   | S  |
| os  | seguintes   | termos    | linguístico  | s, todos  | em      | alfa-cut: | Antig   | guidade:     | Epoca    | 1=(1970,  | 1985,1985,2000)  | ;  |
| Ере | oca2=(198   | 5,2000,20 | 00,2015);    | Estado:   | Во      | m=(1,1,1) | ,1);    | Mau=(0,0     | 0,0,0);  | Caixa:    | Sim=(1,1,1,1)    | ;  |
| Na  | o=(0,0,0,0) | ; Rarida  | de: Raro=    | (0, 0.25, | 0.25, ( | 0.5); Con | num=(   | (0.5, 0.75   | , 0.75,  | 1) em qu  | ue estes valore  | s  |
| rep | resentam a  | frequên   | cia de ocori | ência no  | merca   | do; Valor | r: Baix | o = (0, 100) | , 100, 2 | 00); Alto | =(100, 200, 200) | i, |

300). Com base na inferência de Mamdani e nas seguintes regras, infira o valor de um item de 1990, em bom estado, com caixa e cuja probabilidade de ocorrência no eBay é de 0.375. (siga os passos indicados nas alíneas

seguintes)

1. Se Epoca1 e Estado Bom => valor alto

2. Se Epoca1 e Estado Mau => valor baixo

3. Se Epoca2 => valor baixo

4. Se Raro => valor alto

5. Se Comum => valor baixo

6. Se não tem caixa => valor baixo

7. Se tem caixa  $\Rightarrow$  valor alto

**a)** (0.5) Desenhe as funções de pertença dos termos linguísticos respeitantes às variáveis Antiguidade, Estado, Raridade e Valor.



b) (0.5) Fuzifique os factos referidos no enunciado apresentando os valores de u para cada um deles

|            | Antiguidade | Estado | Caixa | Raridade |
|------------|-------------|--------|-------|----------|
| Valor de μ |             |        |       |          |
| Valor de μ |             |        |       |          |

# DEIS - Departamento de Engenharia Informática e de Sistemas ISEC - Instituto Superior de Engenharia de Coimbra

### Conhecimento e Raciocínio 2015/2016 LEI-RAMOS - Recurso

Data: 2016/9/16 Hora: 14h30m Duração: 2h30m

Núm. \_\_\_\_\_ Nome \_\_\_\_\_



|           |            | T           |
|-----------|------------|-------------|
|           | Valor=Alto | Valor=Baixo |
| μ Regra 1 |            |             |
| μ Regra 2 |            |             |
| μ Regra 3 |            |             |
| μ Regra 4 |            |             |
| μ Regra 5 |            |             |
| μ Regra 6 |            |             |
| u Regra 7 |            |             |

- d) (0.5) i) Há necessidade de agregação? Sim Não (resposta errada desconta). Se sim, execute-a.
- e) (0.5) i) Do ponto de vista da avaliação (VAL) este modelo é preferível à Rede Bayesiana de 1): Sim Não (resposta errada, desconta)
  - (0.5) ii) Calcule o valor numérico de VAL (apresente os cálculos)
- **3.** Para o modelo inicial, descrito em 1), implementou-se também uma rede neuronal:
  - a) (0.25) Quantas entradas deveria ter a rede?

E quantas saídas?

**b)** (1.25) Considere as seguintes regras:

Se Epoca1 & Raro & TemCaixa => ValorAlto Se Epoca2 | | Comum | | NãoTemCaixa => ValorBaixo

Na seguinte rede neuronal, composta por percetrões de função degrau, coloque sobre cada ligação o valor do coeficiente sinático respetivo de modo a que a rede possa realizar estas inferências. Em cada unidade escreva a função lógica pretendida (AND, OR ou NOT). Considere que todas as entradas são normalizadas em [0, 1], considerando-se "1" o valor indicado no diagrama e "0" o valor contrário.



# DEIS - Departamento de Engenharia Informática e de Sistemas ISEC - Instituto Superior de Engenharia de Coimbra

### Conhecimento e Raciocínio 2015/2016 LEI-RAMOS - Recurso

Data: 2016/9/16 Hora: 14h30m Duração: 2h30m



| Núm.        | Nome                                                                                                                                                                            |                    |             |     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|-----|
|             |                                                                                                                                                                                 | · ŕ                |             |     |
| 4.          | Considere as seguintes regras, em que EP repre<br>1. => Valor=0<br>2. Se EP=1 => Valor= Valor+15<br>3. Se EP=1 e Caixa => Valor = Valor+5<br>4. Se EP=1 e Raro => Valor=Valor+5 | 5. Se E<br>6. Se E |             |     |
| <b>a)</b> ] | Escolha uma de entre as respostas possíveis (erra  i) (0.25) Pode realizar a inferência em forward o                                                                            | -                  | nta)<br>SIM | NÃO |
|             | ii) (0.25) A prioridade da regra 7 é irrelevante?                                                                                                                               | 0                  | SIM         | NÃO |
|             | iii) (0.25) A regra 1 dispara sempre?                                                                                                                                           |                    | SIM         | NÃO |

**b)** (1.25) Considerando os atributos época, caixa e raridade, e a solução Valor, preencha as linhas necessárias na tabela seguinte de modo a que ela constitua uma Case Library, com o número mínimo de casos de um possível sistema CBR. Use o símbolo "X" para indicar situações em que o valor de um dado atributo (já) não interessa.

|    | Atributos |      | Solução<br>Valor |
|----|-----------|------|------------------|
| EP | Caixa     | Raro | Valor            |
|    |           |      |                  |
|    |           |      |                  |
|    |           |      |                  |
|    |           |      |                  |
|    |           |      |                  |

**5. a)** (0.75) De acordo com o sistema de avaliação exposto em 1, e assumindo que o estado não se deteriora nem a caixa se perde, apresente a matriz de transição e o diagrama de estados de uma cadeia de Markov destinada a representar a evolução futura da avaliação de um item. Assuma que a probabilidade de CE evoluir de "Baixo" para "Alto" é de 0.4.

|                   | Futuro Alto | Futuro Baixo |
|-------------------|-------------|--------------|
| Presente<br>Alto  |             |              |
| Presente<br>Baixo |             |              |

**b)** (0.75) Sabendo que actualmente os itens de valor alto são 30%, diga se no futuro é previsível que este número aumente ou baixe. Justifique.