

Неперсональные рекомендации

Андрей Зимовнов (Яндекс, ВШЭ)

Неперсональные

Для всех пользователей показываем одни и те же рекомендации

Рейтинги kinopoisk.ru

Гарри Поттер и философский камень

Рейтинги кинокритиков

Рейтинги amazon.com

Проблемы с рейтингами

• Явные рейтинги

- разная шкала (субъективная)
- разброс рейтингов

• Неявные рейтинги

- покупки (понравилось или нет?)
- время на сайте (а если отвлекся?)
- клик (является ли «не клик» сигналом, а что после клика?)

• Накрутки

Средний рейтинг

Явный рейтинг

I love it

I like it

I hate it!

I don't like it

Средний рейтинг

Топ по среднему на Amazon

Bce OK?

Work Smarter Not Harder: 18 Productivity Tips That Boost Your Work Day Performance Mar 25, 2015 by Timo Kiander

Kindle Edition \$0.00

Auto-delivered wirelessly

Essentialism: The Disciplined Pursuit of Less Apr 15, 2014

by Greg McKeown

Hardcover

\$17.50 \$23.00 \(\sqrt{Prime}\)
Get it by Wednesday, May 6

More Buying Choices \$10.61 used & new (62 offers)

Kindle Edition

\$10.99

Whispersync for Voice-ready

Trade-in eligible for an Amazon gift card FREE Shipping on orders over \$35

Excerpt

Page 5: ... some new strategy in time management. It is about pausing ... See a random page in this book.

Проблема

Если мало рейтингов, то оценка неуверенная!

Регуляризация среднего

контролирует минимальное количество наблюдений

Лайки и дизлайки

Рекомендации на evanmiller.org

Bce OK?

normal

209 up, 50 down 👩 🦫

A word made up by this corrupt society so they could single out and attack those who are different

Normal is nothing but a word made up by society

conformists worker bees in crowd followers mindless by Bill Oct 6, 2005 share this add comment

normal

118 up, 25 down

Сортировка по *чистым* лайкам («like» - «dislike»)

Проблема

Разности («like» - «dislike») для разных товаров несравнимы!

Вероятность лайка

Каждый рейтинг принимает только два значения 1 и 0 (like, dislike)

Каждый рейтинг – <u>случайная величина</u> Бернулли с вероятностью *р*

Распределение Бернулли

Вероятность лайка (x = 1): p (успех)

Вероятность дизлайка (x = 0): 1 - p (неуспех)

Частоты:

лайк дизлайк

Сумма независимых величин

Проведем серию из n «подкидываний монеты» Какова вероятность получить k лайков? Построим распределение для $x_1 + \cdots + x_n$

Биномиальное распределение

лайк дизлайк

Нормальное распределение

Величина объясняется суммой большого количества независимых компонент —> ее распределение близко к <u>нормальному</u>

Приблизим нормальным

$$\mu = P$$

$$\sigma = \sqrt{\frac{1}{n}}P(1-P)$$

доля положительных рейтингов квантиль стандартного нормального распределения

$$\frac{1}{1+\frac{1}{z^2}} \left[\hat{p} + \frac{1}{2n} z^2 \pm z \sqrt{\frac{1}{n}} \hat{p} (1-\hat{p}) + \frac{1}{4n^2} z^2 \right]$$

количество наблюдений

n	2	5	10	20	40	50	80	100	1000
наблюдаемое р	80 %	80 %	80 %	80 %	80 %	80 %	80 %	80 %	80 %
нижняя граница	22 %	38 %	49 %	58 %	65 %	67 %	70 %	71 %	77 %
верхняя граница	98 %	96 %	94 %	92 %	90 %	89 %	87 %	87 %	82 %

Зачем нам это все?

Учитываем уверенность

Ранжируем по нижней границе доверительного интервала!

Ранжирование на reddit.com

App idea... Hinder...tells you where Tinder matches are happening so you can show up to cock block.

Ранжирующая функция

Естественное устаревание

Логарифмы линеаризуют

Оба слагаемых теперь линейно меняются

Неперсональное ранжирование

Плюсы:

- Легко сделать
- Хорошо работает для новых пользователей

Минусы:

- Нет персонализации
- Смещенные оценки (люди больше жалуются, чем хвалят)

Hеперсональные рекомендации в ozon.ru

Рекомендации к товару

Дом, в котором... 1D 24277965

Новинка Бестселпер

★★★★★ (155 отзывов) № 566 № 189 У меня это есть

Автор: Мариан Петросян

Издательство: Гаятри/Livebook

ISBN 978-5-904584-69-6; 2015 r.

Язык: Русский

Дополнительные характеристики у

Рекомендуем также

Дом, в котором... В 3 томах (комплект 509,60 Р

В корзину

Тринадцатая сказка 332 Р

В корвину

Дом странных детей 326,40 Р

В корзину

Откуда их взять?

Дом, в котором... 164,90 Р

Скачать

Убить пересмешника... 287,20 ₽

В корзину

Не зависит от пользователя

Наивный подход

Можно посчитать, как часто два товара покупают вместе.

Наивный подход

Можно посчитать, как часто два товара покупают вместе.

Окажется, что туалетную бумагу покупают ко всему ©

Мера Жаккара для множеств

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$$

Что в нашем случае множество?

В нашем случае

Множество для товара – это все пользователи, которые его купили.

Тогда мы будем измерять похожесть двух товаров с точки зрения купивших их пользователей.

Чем чаще покупают вместе редкие товары, тем лучше.

В нашем случае

Рассмотрим матрицу Item-User, где в ячейке записана 1, если пользователь и покупал товар і.

	u1	u2	u3	u4
i1	1		1	1
i2		1		
i3	1	1		

Одним из признаков рекомендательной системы может быть мера Жаккара между строчками матрицы (товарами).

Пример расчета

	u1	u2	u3	u4
i1	1		1	1
i2		1		
i3	1	1		

$$J(i_1, i_2) = \frac{0}{4} = 0$$

Пример расчета

	u1	u2	u3	u4
i1	1		1	1
i2		1		
i3	1	1		

$$J(i_1, i_2) = \frac{0}{4} = 0$$

$$J(i_1, i_3) = \frac{1}{4} = 0.25$$

Алгоритмическая сложность

В реальной задаче:

- Миллионы пользователей (N)
- Миллионы товаров (М)

Как посчитать меру Жаккара для всех товаров?

Алгоритмическая сложность

В реальной задаче:

- Миллионы пользователей (N)
- Миллионы товаров (М)

Как посчитать меру Жаккара для всех товаров?

• Наивный подход: O(M * M * N)

Оптимальный алгоритм

Вклад в числитель только от совместных покупок каждого пользователя!

	u1	u2	u3	u4
i1	1		1	1
i2		1		
i3	1	1		

Считаем на MapReduce

Инвертированный индекс

Мар: $(u, (i_1, i_2, ...)) \rightarrow ((i_k, i_l), 1)$ для всех пар товаров в истории

Reduce: $((i_k, i_l), (1, 1, ...)) \rightarrow ((i_k, i_l), мощность пересечения)$

Как посчитать мощность объединения?

Считаем на MapReduce

Инвертированный индекс

Мар: $(u, (i_1, i_2, ...)) \rightarrow ((i_k, i_l), 1)$ для всех пар товаров в истории

Reduce: $((i_k, i_l), (1, 1, ...)) \rightarrow ((i_k, i_l), мощность пересечения)$

Как посчитать мощность объединения?

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}.$$

Считаем на MapReduce

В реальности <u>терабайт</u> промежуточных данных И <u>пол дня</u> счета

Мы сделали на Hive

```
SELECT
  ic1.itemId,
  ic2.itemId AS jointItemId,
  SUM(ic1.val * ic2.val)
FROM ic AS ic1
  JOIN ic AS ic2 ON ic1.clientId = ic2.clientId
WHERE ic1.itemId < ic2.itemId
GROUP BY ic1.itemId, ic2.itemId;
```


Архитектура платформы

Формула успеха

- 40% Apache Spark (Python) + 50% Hive on TEZ + 10% Hive UDF (Java).
- Парсить данные удобно в Spark на Python, дальше их можно сложить в Hive таблицу и продолжить обработку SQL запросом.
- ~ 70% code reuse между прототипом и продакшеном: как правило на UDF переписываются только критичные по производительности и не очень сложные функции, которые достаточно универсальны.
- Математики могут улучшать алгоритмы (нужно знать Python и SQL)!

Визуализируйте рекомендации!

```
In [50]:
          from NextGen import SparkUtils as SU
          from pyspark import HiveContext
          import ujson as json
          sc = SU.createSparkContext("sb test", 33, "math")
          hivec = HiveContext(sc)
          j = hivec.sql("select related from sb final where search='ipad'").collect()[0]
          items = map(lambda x: x["ItemId"], json.loads(j.related))
          SU.itemIdsToHTML(items[0:100])
Out[50]:
           30481115
                               30481116
                                                   30481117
                                                                                           30481119
                                                                       30481118
           Apple iPad Air 2 Wi-
                               Apple iPad Air 2 Wi-
                                                   Apple iPad Air 2 Wi-
                                                                       Apple iPad Air 2 Wi-
                                                                                           Apple iPad Air 2 Wi-
           Fi + Cellular 16GB.
                               Fi + Cellular 16GB.
                                                   Fi + Cellular 64GB,
                                                                                           Fi + Cellular 128GB.
                                                                       Fi + Cellular 64GB.
           Space Gray
                                                   Space Gray
                                                                                           Space Gray
                               Silver
                                                                       Silver
```


Визуализируйте рекомендации!

Это не сложно

И помогает дебажить в офлайне...

```
def htmlAccs(accs):
   uuid_str = str(uuid.uuid1())
   hostId, accs = accs
    tabNames = [tab[0] for tab in accs]
    tabsCode = u""
   for idx, tabName in enumerate(tabNames):
       tabsCode += u"""<a href="#tabs{uuid}-{idx}">{name}</a>""".format(
           idx=idx+1, name=tabName, uuid=uuid_str)
   tabsCode += u""
   divsCode = u""
   tabItems = [tab[1] for tab in accs]
   for idx, itemList in enumerate(tabItems):
       divsCode += u"""<div id="tabs{uuid}-{idx}">""".format{
          idx=idx+1, uuid=uuid_str)
       for item in itemList:
           divsCode += itemIdToDiv(item)
       divsCode += u"""</div>"""
   from IPython.display import HTML
   output = itemIdToDiv(hostId) + "<br>"*15 + """<div id="tabs{uuid}">""".format(
       uuid=uuid_str) + tabsCode + divsCode + \
           """</div>
              <script>
             $(function() {
                 $("#tabs""" + uuid str + """").tabs();
             });
              </script>"""
   return HTML(output)
```


BIG DATA IS LOVE

NEWPROLAB.COM