Algebraic Topology Homework 4

Michael Nelson

Problem 1

Exercise 1. Show that composition of paths satisfies the following cancellation property: if $f_0 \cdot g_0 \sim f_1 \cdot g_1$ and $g_0 \sim g_1$, then $f_0 \sim f_1$.

Solution 1. Let \widetilde{g}_0 be the inverse path of g_0 , so $\widetilde{g}_0(t) = g_0(1-t)$. Then we have

$$f_{0} \sim f_{0} \cdot (g_{0} \cdot \widetilde{g}_{0})$$

$$\sim (f_{0} \cdot g_{0}) \cdot \widetilde{g}_{0}$$

$$\sim (f_{1} \cdot g_{1}) \cdot \widetilde{g}_{0}$$

$$\sim f_{1} \cdot (g_{1} \cdot \widetilde{g}_{0})$$

$$\sim f_{1} \cdot (g_{0} \cdot \widetilde{g}_{0})$$

$$\sim f_{1}$$

Problem 2

Exercise 2. Show that for a space *X*, the following three conditions are equivalent:

- 1. Every map $S^1 \to X$ is homotopic to a constant map, with image a point.
- 2. Every map $S^1 \to X$ extends to a map $D^2 \to X$.
- 3. $\pi_1(X, x_0) = 0$ for all $x_0 \in X$.

Deduce that a space X is simply-connected iff all maps $S^1 \to X$ are homotopic. [In this problem, 'homotopic' means 'homotopic without regard to basepoints'.]

Solution 2. In this problem, we identify S^1 with the unit circle in the complex plane. Similarly, we identify D^2 with the unit disc in the complex plane.

We first show 1 implies 2. Let $f: S^1 \to X$ be a continuous map. Denote x = f(1) and let $F: S^1 \times I \to X$ be a homotopy from c_x to f (so $F(-,0) = c_x$ and F(-,1) = f). Define $\tilde{f}: D^2 \to X$ by

$$\widetilde{f}(w) = \begin{cases} x & \text{if } w = 0\\ F(w/|w|, |w|) & \text{else} \end{cases}$$

for all $w \in D^2$. Then \tilde{f} is easily seen to be an extension of f.

Next we show 2 implies 3. Pick $x_0 \in X$ and let $f: S^1 \to X$ be a loop in X based at x_0 (so $f(1) = x_0$). Let $F: D^2 \to X$ be a continuous extension of f, so $F|_{S^1} = f$. Next define $H: S^1 \times I \to X$ by

$$H(e^{2\pi i s}, t) = \begin{cases} F(te^{2\pi i (s/t)} + (1-t)) & \text{if } 0 \le s \le t \\ x_0 & \text{if } t \le s \le 1 \end{cases}$$

Notice that when t = 1, we have $H(e^{2\pi is}, 1) = F(e^{2\pi is}) = f(e^{2\pi is})$. Thus H(-, 1) = f. Similarly, when t = 0, we have $H(e^{2\pi is}, 0) = x_0$, thus $H(-, 0) = c_{x_0}$. Finally, it is easy to see that H is a homotopy from c_{x_0} to f with fixed endpoints. It follows that $\pi_1(X, x_0) = 0$.

3 implies 1 follows by definition.

Problem 3

Exercise 3. Find the explicit reparametrization that shows for paths γ_1 , γ_2 , and γ_3 with $\gamma_1(1) = \gamma_2(0)$ and $\gamma_2(1) = \gamma_3(0)$ such that $[(\gamma_1 \cdot \gamma_2) \cdot \gamma_3] = [\gamma_1 \cdot (\gamma_2 \cdot \gamma_3)]$.

Solution 3. Define $H: I \times I \to X$ by

$$H(s,t) = \begin{cases} \gamma_1 \left(\frac{4s}{t+1} \right) & 0 \le s \le \frac{t+1}{4} \\ \gamma_2 \left(4 \left(s - \left(\frac{t+1}{4} \right) \right) \right) & \frac{t+1}{4} < s \le \frac{t+2}{4} \\ \gamma_3 \left(\frac{4}{2-t} \left(s - \left(\frac{t+2}{4} \right) \right) \right) & \frac{t+2}{4} < s \le 1 \end{cases}$$

for all $(s,t) \in I \times I$. Then H is easily seen to be a homotopy from $(\gamma_1 \cdot \gamma_2) \cdot \gamma_3$ to $\gamma_1 \cdot (\gamma_2 \cdot \gamma_3)$. Let's explain what's happening in

 $\gamma_3\left(\frac{4}{2-t}\left(s-\left(\frac{t+2}{4}\right)\right)\right)$

in order to get a better idea of how H is defined. Here, the (t+2)/4 part is telling us to delay γ_3 by (t+2)/4 seconds. Thus when t=0, we wait half a second before follow the γ_3 path. The 4/(2-t) part is telling us to speed up the γ_3 path by 4/(2-t) seconds. Thus when t=0, we follow the γ_3 twice as fast. All of the other parts of H can be understood in an analogous way. One may visualize this homotopy as below:

with horizontal axis being the *s*-axis (*s* is the path variable) and with vertical axis being the *t*-axis (*t* is the homotopy variable). The diagonal lines partition the square into three regions. Note that the left-most diagonal line above is given by the equation t = 4s - 1. Thus when $t \ge 4s - 1$ (or equivalently when $0 \le s \le (t + 1)/4$), we are in the left-most region of the square above.

Remark 1. Usually one uses the horizontal axis as the homotopy axis (so the *t*-axis), however I drew these diagrams in the past and didn't think it was necessary to re-draw them for this problem. The same applies to problem 4 as well.

Problem 4

Exercise 4. Find the explicit homotopy that shows that for a loops γ_1 and γ_2 where $\gamma_2(t) = \gamma_1(1-t)$ the composite $\gamma_1 \cdot \gamma_2$ is homotopic to a constant loop.

Solution 4. Let x be the point at which both γ_1 and γ_2 are based at. Define $H: I \times I \to X$ by

$$H(s,t) = \begin{cases} \gamma_1 \left(\frac{2s}{t}\right) & 0 \le s < \frac{t}{2} \\ c_x \left(\frac{1}{1-t} \left(s - \frac{t}{2}\right)\right) & \frac{t}{2} \le s \le \frac{2-t}{2} \\ \gamma_2 \left(\frac{2}{t} \left(s - \frac{2-t}{2}\right)\right) & \frac{2-t}{2} < s \le 1 \end{cases}$$

for all $(s,t) \in I \times I$. Then H is easily seen to be a homotopy from c_x to $\gamma_1 \cdot \gamma_2$. One may visualize this homotopy as below:

