

PHYSICS

Chapter 12

HIDROSTÁTICA I

APLICACIÓN DE LA PRESIÓN

Es la cantidad física, que

caracteriza la distribución

de una fuerza sobre una

Su valor se obtiene

con:

Su unidad en el S.I. es el:

16F

$$\frac{N}{m^2}$$
 = pascal: Pa

superficie.

16A

PRESIÓN HIDROSTÁTICA

Una serie de experimentos nos demuestra que un liquido a una determinada profundidad ejerce una presión denominada presión hidrostática, que aumenta con la profundidad.

CÁLCULO DE LA PRESIÓN HIDROSTÁTICA

$$P_{hid(A)} = \rho_{liquido x} g_x h_{(A)}$$

ρ: densidad del liquído $(\frac{\text{kg}}{\text{m}^3})$

g: aceleración de la gravedad

h: profundidad (m)

Principio fundamental de la hidrostática

$$P_A - P_B = \rho_{Liq} g(h_A - h_B)$$

Densidad del agua 1000 kg/m³

Todos los puntos de un mismo liquido en reposo ,que se encuentran al mismo nivel soportan la misma presión hidrostática.

PRESIÓN ATMOSFERICA

La presión atmosférica, es aquella que ejerce la atmosfera de nuestro planeta sobre cada punto de la superficie; debido a la fuerza de gravedad que se ejerce sobre la columna de aire que esta por encima del punto en donde medimos la presión.

La **presión atmosférica** es el peso determinado que tiene el aire de la Atmósfera Al ejercer una fuerza sobre la Tierra cuando es atraído por la fuerza de la gravedad

Depende de:

- La altitud: a menor altura menor presión atmosférica y Viceversa
- La **temperatura**: el aire caliente al pesar menos que el frío ejerce menos presión.

PRESION ATMOSFERICA = 100kPa

Patm = 100 kPa

•

Un bloque de granito de 52 kg reposa en un piso horizontal como se muestra. Determine la presión que ejerce en la base de apoyo, debido a su peso. $(g = 10 \text{ m/s}^2)$

ermine ejerce apoyo, o.

<u>Cálculo del área</u> <u>de la zona de contacto</u>

$$L = 0.2 m$$

$$A = 0.2 \text{ m} \times 0.2 \text{ m} = 0.04 \text{ m}^2$$

$$P = \frac{520N}{0.04m^2}$$

P = 13 000 Pa

$$P = 13 \text{ kPa}$$

2

Un cilindro herméticamente cerrado está lleno de aceite. Determine la presión en el fondo interior del cilindro de 2 m de altura. (ρ_{aceite} = 800 kg/m³, g = 10 m/s²)

RESOLUCIÓN

Cálculo de la presión

$$P_{H} = \rho_{(Liquido)} g h$$

$$P_{\rm H} = (800 \, \text{kg/m}^3)(10 \, \text{m/s}^2)(2 \, \text{m})$$

$$P_{H} = 16\,000\,Pa$$

$$\therefore P_H = 16 \text{ kPa}$$

Una piscina de 5 m de profundidad está llena de agua. Determine la presión que soporta el fondo de la piscina. ($P_{atm} = 100 \text{ kPa}, g = 10 \text{ m/s}^2$)

$$P_{Total} = P_H + P_{atm}$$

$$P_{atm} = 100 \text{ kPa}$$

$$P_{H} = \rho_{(Liquido)} g h$$

$$P_{H} = (1 000 \text{ kg/m}^{3})(10 \text{ m/s}^{2})(5\text{m})$$

$$P_H = 50 \text{ k Pa}$$

$$\therefore P_{Total} = 150 \text{ k Pa}$$

Determine la presión en el fondo del recipiente. ($P_{atm} = 100 \text{ kPa}$) ($g = 10 \text{ m/s}^2$)

RESOLUCIÓN

Cálculo de la presión total

$$P_{Total} = P_{atm} + P_{h(A)} + P_{h(B)}$$

$$P_{(atm)} = 100 \text{ kPa}$$

$$P_{h(A)} = 600x10x0,8 = 4800 Pa = 4,8 kPa$$

$$P_{h(B)} = 800x10x0,5 = 4000 Pa = 4 kPa$$

$$P_{Total} = 108,8 \text{ kPa}$$

5

Determine el módulo de la fuerza que soporta en el fondo de 0,4 m² de área, del recipiente mostrado. (\rho_{aceite}=800 kg/m³, \rho_{agua}=1000 kPa)

RESOLUCIÓN

RECORDANDO

$$P = \frac{F}{A}$$

Cálculo de la presión total

$$P_{Total} = P_{atm} + P_{h(A)} + P_{(agua)}$$

$$P_{atm} = 100 \text{ kPa}$$

$$P_{h(Aceite)} = 800x10x0,5 = 4000 Pa = 4 kPa$$

$$P_{h(h_2O)} = 1000x10x0,5 = 5000 Pa = 5 kPa$$

$$P_{Total} = 109 \text{ kPa}$$

109 kPa =
$$\frac{F}{0.4m^2}$$

$$F = 43, 6 \text{ kN}$$

6

Un tubo en U contiene dos líquidos no miscibles. Determine la densidad del líquido A si B es agua.

RESOLUCIÓN

SE CUMPLE

$$P_1 = P_2$$

$$P_{Liq(A)} = P_{liq(B)}$$

$$P_h = \rho \times g \times H$$

$$\rho_A x g x h_A = \rho_B x g x h_B$$

$$\rho_{\rm A}(50 \, {\rm cm}) = (10^3 \, \frac{{\rm kg}}{{\rm m}^3})(20 \, {\rm cm})$$

$$\rho_{A}(5) = 10x(100 \frac{\text{kg}}{\text{m}^{3}})(2)$$

$$\rho_{A} = 400 \; \frac{\mathrm{kg}}{\mathrm{m}^{3}}$$

El recipiente mostrado contiene un gas encerrado por un fluido de ρ =2500 kg/m³ y una salida en contacto con la atmósfera. Determine la presión del gas en el interior del recipiente. (g=10 m/s², P_{atm} =100 kPa)

SE CUMPLE

$$P_1 = P_2$$

$$P_{gas} = P_{liq} + P_{Atm}$$

$$P_h = \rho \times g \times$$

$$P_{gas} = 2500 (10)(0,5)Pa + 100kPa$$

$$P_{qas} = 12,5kPa + 100kPa$$

$$P_{gas} = 112,5 \text{ kPa}$$

En el sistema en equilibrio, determine la presión del gas encerrado si de ρA = 4000 kg/m³, ρ_B = 2000 kg/m³, g = 10 m/s² y Patm=100 kPa.

RESOLUCIÓN

SE CUMPLE

$$P_X = P_Y$$

$$P_{gas} + P_{(A)} = P_{(B)} + P_{Atm}$$

$$P_h = \rho \times g \times H$$

$$P_{gas} + 4000(10)(0,5)Pa = 2000(10)(1)Pa + 100kPa$$

$$P_{gas}+20kPa = 20 kPa + 100kPa$$

$$P_{gas} = 100 \text{ kPa}$$