TO ATTACK, OR NOT TO ATTACK...

... that is the question.

Group Project by Jeremias Lenzi & Ramazan Maliqi

Smart Contracts and Decentralized Blockchain Applications University of Basel, Prof. Dr. Fabian Schär, 10. December 2019

SITUATION

A big jackpot is sitting around on the blockchain

We're somewhat poor students and want to get it!

Coordination among attackers needed to succeed

There is COSTS associated with the attack.
Poor students!

We do not know how many attackers are sufficient

COOL!

NOT COOL!

SITUATION SUMMARISED

INTUITION OF THE GAME

- Attackers win proportional to their bet over total attackers' bets
- Defenders always get refund
- Defenders make "false bets" to deceive other players
- There is a cost on attacking
- Players that try to misbehave loses their bets
- Players are incentivized to attack, increasingly through the rounds

Resistance = $90\% \Rightarrow Attack\ Failed \Rightarrow Jackpot\ increases$!!! Resistance = $20\% \Rightarrow Attack Succeeded \Rightarrow Winners take price$

A BIT OF THEORY: COMMIT-REVEAL

Commit is linked to player and Keccak256-hash Commit = Hash gets stored private Step

31password

3 = player's bet in ETH (has to be an uint between 1 and 9) 1 = player's decision to attack (0 if no attack intended) password = player's personal password (e.g. wewillwin)

Plain text («31password») Reveal = do they really match Player's decision is public

TIMELINE OF THE GAME

HOW DOES IT WORK ON THE **BLOCKCHAIN?**

Let's gamble on Rinkeby testnet!

THANK YOU