

Department of Computer Science and Engineering (Data Science)

Experiment 4

(Greedy Algorithm)

Aim: Implementation of fractional Knapsack using greedy algorithm.

Theory:

Given a set of items, each with a weight and a value, determine a subset of items to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.

The knapsack problem is in combinatorial optimization problem. It appears as a subproblem in many, more complex mathematical models of real-world problems. One general approach to difficult problems is to identify the most restrictive constraint, ignore the others, solve a knapsack problem, and somehow adjust the solution to satisfy the ignored constraints.

Applications:

In many cases of resource allocation along with some constraint, the problem can be derived in a similar way of Knapsack problem. Following is a set of example.

- Finding the least wasteful way to cut raw materials
- portfolio optimization
- Cutting stock problems

In this case, items can be broken into smaller pieces, hence the thief can select fractions of items.

According to the problem statement,

- There are n items in the store
- Weight of ith item wi>0
- Profit for ith item p_i>0 and
- Capacity of the Knapsack is W

Pseudocode:

```
Greedy-Fractional-Knapsack (w[1..n], p[1..n], W) for i = 1 to n do x[i] = 0 weight = 0 for i = 1 to n if weight + w[i] \leq W then x[i] = 1 weight = weight + w[i]
```

Department of Computer Science and Engineering (Data Science)

$$\label{eq:second} \begin{split} &else \\ &x[i] = (W - weight) \ / \ w[i] \\ &weight = W \\ &break \\ &return \ x \end{split}$$

Complexity:

Time Complexity: O(n logn).

Example:

Problem: Consider the following instances of the fractional knapsack problem: n = 3, M = 20, V = (24, 25, 15) and W = (18, 15, 20) find the feasible solutions.

Solution:

Arrange items by decreasing order of profit density. Assume that items are labeled as X = (I1, I2, I3), have profit $V = \{24, 25, 15\}$ and weight $W = \{18, 15, 20\}$.

Item (x _i)	Value (v _i)	Weight (w _i)	$p_i = v_i / w_i$
I_2	25	15	1.67
I_1	24	18	1.33
I_3	15	20	0.75

Initialize, Weight of selected items, SW = 0,

Profit of selected items, SP = 0,

Set of selected items, $S = \{ \},$

Here, Knapsack capacity M = 20.

Iteration 1 : $SW = (SW + W_2) = 0 + 15 = 15$

SW \leq M, so select I_2

$$S = \{ I_2 \}, SW = 15, SP = 0 + 25 = 25$$

Iteration 2 : SW + $w_1 > M$, so break down item I_1 .

The remaining capacity of the knapsack is 5 unit, so select only 5 units of item I₁.

frac =
$$(M - SW) / W[i] = (20 - 15) / 18 = 5 / 18$$

Department of Computer Science and Engineering (Data Science)

$$S = \{ I_2, I_1 * 5/18 \}$$

$$SP = SP + v_1 * frac = 25 + (24 * (5/18)) = 25 + 6.67 = 31.67$$

$$SW = SW + w_1 * frac = 15 + (18 * (5/18)) = 15 + 5 = 20$$

The knapsack is full. Fractional Greedy algorithm selects items $\{I_2, I_1 * 5/18 \}$, and it gives a profit of **31.67 units**.

Lab Assignment to Complete:

The capacity of the knapsack W = 60 and the list of provided items are shown in the following table –

Item	A	В	С	D
Profit	280	100	120	120
Weight	40	10	20	24

Sal	lutio	n.
OU	uuu	11.

Code:

Output: