2301 COL 202 Tutorial 5.3

Abhinav Rajesh Shripad

TOTAL POINTS

2/2

QUESTION 1

1Q32/2

- **√ 0 pts** Correct
 - 1 pts First part incorrect
 - 1 pts Second part incorrect
 - Thanks for using Latex!

COL 202 Assignment 5

Abhinav Shripad(2022CS11596)

August 2023

1 Problem Statement

Prove that if $A_0, A_1, ..., A_n, ...$ is an infinite sequence of countable sets, then so is

$$\bigcup_{n=0}^{\infty} A_n$$

A complex number α is called algebraic if there exists a uni-variate polynomial p(x) with rational coefficients such that $p(\alpha) = 0$. Conclude using the first part of the question that the set of algebraic numbers is countable.

2 Solution

2.1 Part 1

Let $A_i(j)$ denote the j^{th} element of the set A_i . We define a mapping $f:\bigcup_{n=0}^{\infty}A_n\to\mathbf{N}$ as follows:

$$f(A_i(j)) = 2^i 3^j$$

To prove that f is into, let's consider an arbitrary natural number $n \in \mathbb{N}$. Consider the element $A_i(j)$, by construction, $f(A_i(j)) = 2^i 3^j$, thus by using the argument of highest power of 2 and 3 dividing $f(A_i(j))$ implies that f is a into function.

Since the range of f is a subset of \mathbf{N} and f is into, the domain of f, that is, the set $\bigcup_{n=0}^{\infty} A_n$ is countable.

2.2 Part 2

For a particular integer n, the set of uni-variate polynomials with degree n and rational coefficients is countable. This is because each coefficient of the polynomial is rational, and the number of coefficients is finite (n coefficients as it is uni-variate). The set of rational numbers is countable, and the Cartesian product of countable sets is also countable. Therefore, the set of such polynomials is countable.

Denote A_i as the set of roots of uni-variate rational polynomials of degree i. We aim to demonstrate the countability of each A_i .

Consider any A_i . Since a polynomial of degree i has at most i distinct roots, the set A_i can be at most a countable collection of elements. Furthermore, we have previously established that the set of uni-variate rational coefficient polynomials of degree i is countable. This implies that for each specific degree i, the set A_i —which consists of the roots of such polynomials—is indeed countable.

Using the above notation, each A_i is countable, and the number of different A_i is countable as well, since each A_i corresponds to a degree of polynomial which is a natural number. Thus, the union:

$$\bigcup_{n=0}^{\infty} A_n$$

is a countable union of countable sets, and therefore countable.

This completes the proof that the set of algebraic numbers is countable, as it is a subset of $\bigcup_{n=0}^{\infty} A_n$.

1 Q 3 2 / 2

- **√ 0 pts** Correct
 - 1 pts First part incorrect
 - 1 pts Second part incorrect
 - Thanks for using Latex!