12. Who is the real author of Hamlet?

	Doc	Words	Author
Training	1	W1 W2 W3 W4 W5	C (Christopher Marlowe)
	2	W1 W1 W4 W3	C (Christopher Marlowe)
	3	W1 W2 W5	C (Christopher Marlowe)
	4	W5 W6 W1 W2 W3	W (William Stanley)
	5	W4 W5 W6	W (William Stanley)
	6	W4 W6 W3	F (Francis Bacon)
	7	W2 W2 W4 W3 W5 W5	F (Francis Bacon)
Test	8 (Hamlet)	W1 W4 W6 W5 W3	?

Training

Priors:

P(X) = The probability of an Author X

= Number of Author X / total number of Authors = N_X / N

Note:

P(C) = The probability of Author C = 3/7 (i.e., 3 C- Authors / total Authors)

P(W) = The probability of Author W = 2/7 (i.e., 2 W- Authors / total Authors)

P(F) = The probability of Author F = 2/7 (i.e., 2 F- Authors / total Authors)

Conditional probabilities:

P(w|x) = If a document belongs to Author x, the probability that the document has word w.

= The probability the word w appears on the Author x document.

= (count(w, x) + 1) / (count(x)+|V|)

Note:

Original definition of P(w|x) = count(w, x) / count(x)

count(w, x): how many times the word w appears on the x Author documents.

count(x): how many words on the x Author documents.

| V |: number of vocabularies = number of different words

Tunable knobs (i.e., parameters) of Naive Bayes

1 and |V| are used for Laplace Smoothing to prevent the possibility of letting P(w|x) have value of 0 or 1.

Other values can be used to replace 1 and |V|.

The Test only has 5 words: W1, W4, W6, W5, W3.

- P(W1|C) = (count(W1, C) + 1) / (count(C)+|V|) = (4+1) / (12+6) = 5/18
- = The probability the word "W1" appear on the Author "C" documents.

Note:

- 4: how many times the word "W1" appear on the 3 C- Authors.
- 12: how many words in the 3 C- Authors.
- 6: is number of vocabularies: W1, W2, W3, W4, W5, W6
 - P(W1|W) = (count(W1, W) + 1) / (count(W)+|V|) = (1+1) / (8+6) = 2/14
- = The probability the word "W1" appear on the Author "W" documents.

Note:

- 1: how many times the word "W1" appear on the 2 W- Authors.
- 8: how many words in the 2 W- Authors.
- 6: is number of vocabularies: W1, W2, W3, W4, W5, W6
 - P(W1|F) = (count(w1, F) + 1) / (count(F)+|V|) = (0+1)/(9+6) = 1/15
- = The probability the word "W1" appear on the Author "F" documents.

Note:

- 0: how many times the word "W1" appear on the 2 F- Authors.
- 9: how many words in the 2 F- Authors.
- 6: is number of vocabularies: W1, W2, W3, W4, W5, W6
 - P(W3|C) = (count(W3, C) + 1) / (count(C) + |V|) = (2+1)/(12+6) = 3/18

- P(W3|W) = (count(W3, W) + 1) / (count(W) + |V|) = (1+1)/(8+6) = 2/14
- P(W3|F) = (count(W3, F) + 1) / (count(F) + |V|) = (2+1) / (9+6) = 3/15
- P(W4|C) = (count(W4, C) + 1) / (count(C)+|V|) = (2+1) / (12+6) = 3/18
- P(W4|W) = (count(W4, W) + 1) / (count(W) + |V|) = (1+1)/(8+6) = 2/14
- P(W4|F) = (count(W4, F) + 1) / (count(F) + |V|) = (2+1) / (9+6) = 3/15
- P(W5|C) = (count(W5, C) + 1) / (count(C) + |V|) = (2+1) / (12+6) = 3/18
- P(W5|W) = (count(W5, W) + 1) / (count(W) + |V|) = (2+1)/(8+6) = 3/14
- P(W5|F) = (count(W5, F) + 1) / (count(F) + |V|) = (2+1) / (9+6) = 3/15
- P(W6|C) = (count(W6, C) + 1) / (count(C) + |V|) = (0+1)/(12+6) = 1/18
- P(W6|W) = (count(W6, W) + 1) / (count(W)+|V|) = (2+1)/(8+6) = 3/14
- P(W6|F) = (count(W6, F) + 1) / (count(F) + |V|) = (1+1)/(9+6) = 2/15

Test

Decide whether d8 (i.e., document 8) belongs to Author C or Author W or Author F.

• Step 1: Analysis

A. The probability of d8 (i.e., document 8) belonging to Author C

$$P(C|d8) = P(C) * P(d8|C) / P(d8)$$

==> Applying Bayes Theorem

$$= P(C) * P(W1 \cap W4 \cap W6 \cap W5 \cap W3 \mid C) / P(d8)$$

==> Applying Naive Bayes Theorem

$$\propto (P(C) * P(W1|C) * P(W4|C) * P(W6|C) * P(W5|C) * P(W3|C)) / P(d8)$$

$$= P(C) * P(W1|C) * P(W4|C) * P(W6|C) * P(W5|C) * P(W3|C) / P(d8)$$

==> Applying Compare Model

$$P(C|d8) \propto P(C) * P(W1|C) * P(W4|C) * P(W6|C) * P(W5|C) * P(W3|C)$$

= 3/7 * 5/18* 3/18* 1/18 * 3/18 *3/18 = **0.00003061924**

B. The probability of document 8 belonging to Author W.

==> Applying Naive Bayes Theorem

```
P(W|d8) \propto (P(W) * P(W1|W) * P(W4|W) * P(W6|W) * P(W5|W) * P(W3|W)) / P(d8)
```

= P(W) * P(W1|W) * P(W4|W) * P(W6|W) * P(W5|W) * P(W3|W) / P(d8)

==> Applying Compare Model

 $P(W|d8) \propto P(W) * P(W1|W) * P(W4|W) * P(W6|W) * P(W5|W) * P(W3|W)$ = 2/7* 2/14 * 2/14 * 3/14 * 3/14 * 2/14 = **0.00003824936**

C. The probability of document 8 belonging to Author F.

==> Applying Naive Bayes Theorem

$$\begin{split} P(F|d8) & \propto \left(P(F) * P(W1|F) * P(W4|F) * P(W6|F) * P(W5|F) * P(W3|F) \right) / P(d8) \\ & = P(F) * P(W1|F) * P(W4|F) * P(W6|F) * P(W5|F) * P(W3|F) / P(d8) \end{split}$$

==> Applying Compare Model

$$P(F|d8) \propto P(F) * P(W1|F) * P(W4|F) * P(W6|F) * P(W5|F) * P(W3|F)$$

= 2/7 * 1/15 * 3/15 * 2/15 * 3/15 * 3/15 = **0.00002031746**

Step 2: Conclusion

Document 8(Hamlet) should belong to the Author W.

