Projeto e Análise de Algoritmos I

Aula 11 - Coloração de Grafos

Lucas Nunes Alegre

Inalegre@inf.ufrgs.br

Instituto de Informática
Universidade Federal do Rio Grande do Sul
Porto Alegre, Brasil
2025/1

Última Aula: Planaridade

Grafos Planares

• Fórmula de Euler

$$v + f = e + 2$$

• Teorema (Kuratowski): Um grafo simples é não-planar sss tem como subgrafo uma extensão do grafo $K_{3,3}$ ou K_5

Roteiro: Coloração de Grafos

- 1. Motivação e Aplicações
- 2. Definição
- 3. Número Cromático
- 4. Limites para o Número Cromático
- 5. Teorema das 5 Cores
- 6. Teorema das 4 Cores
- 7. Algoritmo Guloso

Vamos colorir os países da América do Sul de modo que países vizinhos tenham cores diferentes.

Foram necessárias 4 cores para colorir a América do Sul.

Nesta Aula:

Todo grafo planar (e.g., mapas) pode ser colorido com 4 cores!

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

	Bob	Alice	João	Maria
Grafos	Х		х	
E.D.	X	x		x
Cálculo II				X
ARQ I			X	
Lógica		х		

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

	Bob	Alice	João	Maria	Grafos	E.D	
Grafos	х		X				
E.D.	x	X		x			
Cálculo II				x	ARQ I	Lógica	
ARQ I			X		Cála		
Lógica		X			- Cálculo		

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

Alice	João X	Maria	Grafos ——	E.D	
	X				
X		x			
		X	ARQ I	Lógica	
	х		Cálaula		
X			Cálculo		
	X			Cálculo	

Scheduling Problem:

- Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
- Professores querem agendar as datas das provas
- Restrição: nenhum aluno com mais de uma prova no mesmo dia
- Qual o menor número de dias de provas necessário?

	Bob	Alice	João	Maria
Grafos	Х		х	
E.D.	X	X		X
Cálculo II				х
ARQ I			X	
Lógica		х		

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

	Bob	Alice	João	Maria
Grafos	х		х	
E.D.	х	X		X
Cálculo II				х
ARQ I			X	
Lógica		х		

- Scheduling Problem:
 - Disciplinas: Teoria dos Grafos, Estruturas de Dados, ARQ I, Lógica e Cálculo II
 - Professores querem agendar as datas das provas
 - Restrição: nenhum aluno com mais de uma prova no mesmo dia
 - Qual o menor número de dias de provas necessário?

	Bob	Alice	João	Maria
Grafos	х		х	
E.D.	х	X		X
Cálculo II				х
ARQ I			X	
Lógica		х		

Sudoku

- Nodos: células do jogo
- Arestas: restrições
- Cores: valores de 1 a 4

1			
			2
		4	
	3		

1	2	3	4
3	4	1	2
2	1	4	3
4	3	2	1

- Alocação de Registradores
 - Considere o seguinte programa (com variáveis a, b, c, d, e) e 3 registradores (R1, R2, R3)
 - Como alocar as variáveis em registradores de modo a evitar conflitos temporais?
- Nodos: variáveis
- Arestas: restrição temporal entre variáveis
- Cores: registradores

- Alocação de Registradores
 - Considere o seguinte programa (com variáveis a, b, c, d, e) e 3 registradores (R1, R2, R3)
 - Como alocar as variáveis em registradores de modo a evitar conflitos temporais?
- Nodos: variáveis
- Arestas: restrição temporal entre variáveis
- Cores: registradores

- Alocação de Registradores
 - Considere o seguinte programa (com variáveis a, b, c, d, e) e 3 registradores (R1, R2, R3)
 - Como alocar as variáveis em registradores de modo a evitar conflitos temporais?
- Nodos: variáveis
- Arestas: restrição temporal entre variáveis
- Cores: registradores

- Alocação de Registradores
 - Considere o seguinte programa (com variáveis a, b, c, d, e) e 3 registradores (R1, R2, R3)
 - Como alocar as variáveis em registradores de modo a evitar conflitos temporais?
- Nodos: variáveis
- Arestas: restrição temporal entre variáveis
- Cores: registradores

- Frequências de Torres de Rádio
 - Problema: Alocar frequências para torres de rádio.
 - Restrição: Evitar interferência de sinal entre torres próximas.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V \rightarrow C$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V\to C$ tal que, para todo $u,v\in V$,

$$\{u,v\} \in E \Rightarrow f(u) \neq f(v)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V\to C$ tal que, para todo $u,v\in V$,

$$\{u,v\} \in E \Rightarrow f(u) \neq f(v)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

Exemplo:

|img(f)| é o **número de cores** da coloração f.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V\to C$ tal que, para todo $u,v\in V$,

$$\{u,v\} \in E \Rightarrow f(u) \neq f(v)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição. Um grafo G é k-colorível se, e somente se,

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V\to C$ tal que, para todo $u,v\in V$,

$$\{u,v\} \in E \Rightarrow f(u) \neq f(v)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição. Um grafo G é k-colorível se, e somente se, existe uma coloração de G com no máximo k cores.

• Definição. Seja G = (V, E) um grafo simples.

Uma coloração de vértices de G é uma função $f:V\to C$ tal que, para todo $u,v\in V$,

$$\{u,v\} \in E \Rightarrow f(u) \neq f(v)$$

onde $C \subseteq \mathbb{N}$ é o conjunto de cores.

• Definição. Um grafo G é k-colorível se, e somente se, existe uma coloração de G com no máximo k cores.

- <u>Importante</u>:
 - Pseudografos não são coloríveis, pois possuem laços.

Número Cromático

• Definição. O número cromático $\chi(G)$ de um grafo G

Número Cromático

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \notin k$$
-cromático $\Leftrightarrow \chi(G) = k$

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores K tal que G é K-colorível.

$$G \notin k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

(Grafo de Petersen)

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores K tal que G é K-colorível.

$$G \notin k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

10-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores K tal que G é K-colorível.

$$G \notin k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

(Grafo de Petersen)

10-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \notin k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

- 10-colorível
- 9-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores K tal que G é K-colorível.

$$G \notin k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

- 10-colorível
- 9-colorível
- •

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores K tal que G é K-colorível.

$$G \notin k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

- 10-colorível
- 9-colorível
- •
- 3-colorível
- não é 2-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \notin k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exemplo:

- 10-colorível
- 9-colorível

3-cromático

$$\chi(G) = 3$$

- 3-colorível
- não é 2-colorível

• Definição. O número cromático $\chi(G)$ de um grafo G é o menor número de cores k tal que G é k-colorível.

$$G \notin k$$
-cromático $\Leftrightarrow \chi(G) = k$

Exercício: Defina o número cromático dos grafos abaixo:

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se |V| = 0, então $\chi(G) = 0$.

• Se |E| = 0 e |V| > 0, então $\chi(G) = 1$.

• $\chi(G) \leq |V|$.

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se *G* é bipartido, então

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se G é bipartido, então $\chi(G) \leq 2$

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se G é k-partido, então $\chi(G) \leq k$

• Seja $\omega(G)$ o tamanho do maior clique de G,

Seja $\chi(G)$ o número cromático de um grafo simples G = (V, E).

• Se G é k-partido, então $\chi(G) \leq k$

- Seja $\omega(G)$ o tamanho do maior clique de G, então $\chi(G) \ge \omega(G)$
 - Em um clique cada nodo deve obrigatoriamente ter uma cor diferente.

$$\chi(K_5) = 5$$

Teorema: Seja G = (V, E) um grafo simples, onde $\Delta(G)$ é o maior grau de algum vértice em V. Então:

$$\chi(G) \leq \Delta(G) + 1.$$

Ideia: Se algum vértice u possui n vizinhos, então podemos colorir cada vizinho com uma cor diferente,

Teorema: Seja G = (V, E) um grafo simples, onde $\Delta(G)$ é o maior grau de algum vértice em V. Então:

$$\chi(G) \leq \Delta(G) + 1.$$

Ideia: Se algum vértice u possui n vizinhos, então podemos colorir cada vizinho com uma cor diferente, e u com uma cor adicional (n + 1).

- Seja v_1, v_2, \ldots, v_n uma permutação arbitrária dos vértices em V.
- Seja $C = \{c_1, \dots, c_k\}$ um conjunto de $k = \Delta(G) + 1$ cores.

$$\Delta(G) = 3$$

- Seja v_1, v_2, \ldots, v_n uma permutação arbitrária dos vértices em V.
- Seja $C = \{c_1, \dots, c_k\}$ um conjunto de $k = \Delta(G) + 1$ cores.
- Colorindo v_i : Atribua a primeira cor não usada em nenhum vizinho já colorido.

$$\Delta(G) = 3$$

- Seja v_1, v_2, \ldots, v_n uma permutação arbitrária dos vértices em V.
- Seja $C = \{c_1, \dots, c_k\}$ um conjunto de $k = \Delta(G) + 1$ cores.
- Colorindo v_i : Atribua a primeira cor não usada em nenhum vizinho já colorido.

$$\Delta(G) = 3$$

- Seja v_1, v_2, \ldots, v_n uma permutação arbitrária dos vértices em V.
- Seja $C = \{c_1, \dots, c_k\}$ um conjunto de $k = \Delta(G) + 1$ cores.
- Colorindo v_i : Atribua a primeira cor não usada em nenhum vizinho já colorido.

$$\Delta(G) = 3$$

- Seja v_1, v_2, \ldots, v_n uma permutação arbitrária dos vértices em V.
- Seja $C = \{c_1, \dots, c_k\}$ um conjunto de $k = \Delta(G) + 1$ cores.
- Colorindo v_i : Atribua a primeira cor não usada em nenhum vizinho já colorido.
- Pior caso: Há $\Delta(G)$ vizinhos adjacentes de v_i com cores diferentes.

$$\Delta(G) = 3$$

$$k = \Delta(G) + 1 = 4$$

Demonstração.

- Seja v_1, v_2, \ldots, v_n uma permutação arbitrária dos vértices em V.
- Seja $C = \{c_1, \dots, c_k\}$ um conjunto de $k = \Delta(G) + 1$ cores.
- Colorindo v_i : Atribua a primeira cor não usada em nenhum vizinho já colorido.
- Pior caso: Há $\Delta(G)$ vizinhos adjacentes de v_i com cores diferentes.

Portanto precisamos de uma cor adicional $\Delta(G) + 1$.

$$\Delta(G) = 3$$

$$k = \Delta(G) + 1 = 4$$

$$Cor \Delta(G) + 1$$

Coloração e Grafos Planares

• Restringindo nossa atenção a grafos planares, obtemos resultados mais precisos.

- Conjectura das 4 Cores
 - É sempre possível colorir um mapa usando apenas 4 cores.
 - Postulado em 1852 por Francis Guthrie,
 ao colorir o mapa dos condados da Inglaterra.

Teorema das 5 Cores

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Lema. Seja G = (V, E) um grafo simples e planar. Então existe pelo menos um vértice v com no máximo 5 vizinhos.

Prova por contradição. Assuma que todo vértice v tem pelo menos 6 vizinhos.

• Pela fórmula de Euler (aula passada), temos:

$$|E| \le 3|V| - 6$$

• Porém, se todo vértice tem pelo menos 6 vizinhos, então:

$$|E| \ge \frac{6}{2} |V| = 3|V|$$

Contradição.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$. Prova por indução.

Proposição: P(n). Se G é simples, planar e possui n vértices, então $\chi(G) \leq 5$

Caso base:

 $P(n \le 5)$. G possui $n \le 5$ vértices.

Trivial: Cada vértice pode receber uma cor diferente.

$$\chi(G) \leq 5$$

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$. Prova por indução.

Hipótese de Indução:

P(k < n). Se G é simples, planar e possui k < n vértices, então $\chi(G) \le 5$.

Vamos demonstrar que $P(k < n) \rightarrow P(n)$.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução. Considere G com n vértices, e v um vértice com grau máximo S.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução. Considere G com n vértices, e v um vértice com grau máximo 5. Caso 1: v tem no máximo 4 vizinhos.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Caso 1: v tem no máximo 4 vizinhos.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Caso 1: v tem no máximo 4 vizinhos.

Ao remover v, G tem n-1 vertices.

P(n - 1).

O grafo é

5-colorível.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Caso 1: v tem no máximo 4 vizinhos.

Ao remover v, G tem n-1 vertices. P(n-1)Ao reintroduzir v, há uma cor restante.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Caso 1: v tem no máximo 4 vizinhos.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 5$.

Prova por indução.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 4$.

Conhecido como Four Color Theorem (Teorema das Quatro Cores)

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 4$.

- Conhecido como Four Color Theorem (Teorema das Quatro Cores)
- 1852: F. Guthrie propôs a conjectura para seu professor, De Morgan.
- 1879: Alfred B. Kempe anunciou que tinha uma demonstração da conjectura.
 Ele ganhou muito prestígio e foi nomeado membro da Royal Society.
- 1890: Percy Heawood encontrou um erro na prova de Kempe, e provou o Teorema das Cinco Cores.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 4$.

- Somente em 1977, Appel & Haken provaram o teorema com ajuda de computadores.
- Primeira vez que um teorema importante é provado dessa forma!
- Ideia: Criar reduções e testar 1936 configurações.
 possíveis, usando ~1200 horas de computação!
- À mão, levariam 100 mil anos, dedicando-se 60h/semana.
- Simplificações foram feitas na prova deste então.
- Até hoje, não existe prova para o Teorema sem auxílio de computadores.

Teorema. Se G = (V, E) é simples e planar, então $\chi(G) \leq 4$.

- Somente em 1977, Appel & Haken provaram o teorema com ajuda de computadores
- Primeira vez que um teorema importante é provado dessa forma!
- Muitos questionaram a legitimidade da prova.
 - O que conta como uma prova válida?

Computadores se tornaram ubíquos em provas matemáticas.

Propulsor do estudo de Teoria dos Grafos ao longo do tempo.

Algoritmos de Coloração

• Como computar $\chi(G)$ dado um grafo G?

• Como verificar se $\chi(G) = k$ dado um grafo G?

Algoritmos de Coloração

- Como computar $\chi(G)$ dado um grafo G?
 - Problema NP-Hard! -----

Disciplina de Teoria da Computação II Classes de complexidade computacional

- Como verificar se $\chi(G) = k$ dado um grafo G?
 - Problema NP-Completo! (entre os 21 problemas NP-Completos de Karp)

Algoritmos de Coloração

- Como computar $\chi(G)$ dado um grafo G?
 - Problema NP-Hard! -----

Disciplina de Teoria da Computação II Classes de complexidade computacional

- Como verificar se $\chi(G) = k$ dado um grafo G?
 - Problema NP-Completo! (entre os 21 problemas NP-Completos de Karp)

Intuitivamente:

O número de operações para resolver o problema ...
 cresce exponencialmente com o tamanho do grafo.

Algoritmo Guloso (não ótimo)

- Entrada: Grafo simples G = (V, E), cores $C = \{c_1, c_2, \dots, c_k\}$
- Saída: Coloração $f: V \rightarrow C$

- 1. Ordene os vértices v_1, v_2, \dots, v_n em ordem arbitrária
- 2. Para cada vértice v_i :
- 3. Para cada cor c_i :
- 4. Se algum vizinho de v_i possui cor c_i , vá para a próxima cor
- 5. Senão, atribua cor c_i para o vértice v_i : $f(v_i) = c_i$

Algoritmo Guloso (não ótimo)

Visualização:

https://yllberisha.github.io/GraphColoring

Lista de Exercícios

(ver Plano de Aula)

Muito Além das Cores

- Problema clássico de Teoria dos Grafos, com grande relevância histórica e ramificações na Computação, Matemática, e em diversas aplicações do mundo real.
- Coloração mínima (número cromático) é um problema intratável (NP-Difícil)
- Mplicações práticas em problemas reais:
 - Escalonamento de tarefas (ex.: horários de aulas, exames, processadores).
 - Alocação de recursos (ex.: frequências de rádio, registradores em compiladores).
 - Mapas e grafos geográficos (Teorema das 4 Cores).
- Próxima Aula: Algoritmos de Caminhos Mínimos Dijkstra

Referências

- Introduction to Graph Theory (2nd ed), Capítulo 5.1. Douglas B. West. Pearson, 2017.
- Algorithm Design. Jon Kleinberg, Éva Tardos. Addison-Wesley Professional, 2005.
- Algoritmos: Teoria e Prática. Thomas H. Cormen et. al. Gen LTC, 2024.
- Introdução a Teoria dos Grafos. 2020. Edson Prestes.
- Mathematics for Computer Science. A. R. Meyer, E. Lehman, F. T. Leighton.
- Algorithms Illuminated. Tim Roughgarden.