

Procesamiento de Lenguaje Natural

Olivia Gutú y Julio Waissman

Maestría en Ciencia de Datos Semana 8: Modelos continuos de bolsa de palabras

Objetivos de esta semana

- Identificar los conceptos claves de la representación de palabras
- Generar word embedding vectors
- Preparar el texto para el aprendizaje automático
- Implementar el modelo continuo de bolsa de palabras

Representación vectorial básica de palabras

- Un *integer i* por palabra: muy simple pero 'cero' sentido semántico.
- one-hot vectors: vectores e_i en $\mathbb{R}^{|V|}$, simple, no hay orden, pero vectores enormes, sin sentido semántico, la distancia entre cualquier par de vectores es 1.
- word embedding vectors: baja dimensión, significado semántico, inferencia. vectores cercanos semánticamente tienen distancia coseno cercana.

Significado de los vectores

Significado de los vectores

Tipos de procesos de word embedding

Universidad de Sonora

Básicos:

- word2vec (Google, 2013)
 - CBOW
 - Skip-Gram
- GloVe (Stanford, 2014)
- fastText (Facebook, 2016)
 - Soporte de OOV

Avanzados (deep learning)

- BERT (Google, 2018)
- ELMo (Allen Institute for AI, 2018)
- GPT-2 (OpenAI, 2018)

Proceso de word embedding

Universidad de Sonora

Limpieza y tokenización

- Uniformizar mayúsculas y minúsculas canto = Canto = CANTO lowecase/uppercase
- Puntuación . ! . ? ??? !!! → . "" «» " → Ø
- Números 1 2 3 9 10 \rightarrow Ø 3.1416 \rightarrow < NUMBER >
- Caracteres especiales % \$ § → Ø
- Tokens especiales ② #nezahualcoyotl →: happy: #nezahualcoyotl

- tamaño de ventana = 5 (window size)
- C = 2 (context half-size)

Universidad de Sonora

amo el del cenzontle
el canto cenzontle pájaro
canto del pájaro de
del cenzontle de cuatrocientas
:

canto del cenzontle pájaro :

Universidad de Sonora

Codificación inicial de las palabras centrales

 $V = \{\text{amo, canto, cenzontle, cuatrocientas, de, del, el, pájaro, voces}\}$

()) ()	()	1
1	0 0		0	
0	1		0	
1 0 0	0			
0	0		1 0 0	
0	0		0	
0 0 0	0			
0	0		0	
0	0		0	
0	0 0		0	
ι,	ı (J	l,	

Γ.	1
0	
0	
0	
1	
0	
0	
0	
0	
0	
l	

()		, ()	٠ .) ()	
0	0	0	0	0	
0	0	0	0	0	
0 0	0	0	0	0	
	0	0	0	0	
1	0	0	0	0 0	
0 1 0 0 0	1	0		0	
0	0	1	0 0 1 0	0 0	
0	0	1 0	1	0	
0	0	0	0	1	
Ų,	IL,	II,	J.	J	

Universidad de Sonora

Codificación inicial del contexto: 'promedio' de las palabras involucradas.

Universidad de Sonora

Preparación final

contexto	vector contexto	palabra central	vector palabra central
amo el del cenzontle	[0.25,0,0.25,0,0,0.25,0.25,0,0]	canto	[0,1,0,0,0,0,0,0,0]
:	:	:	:

Arquitectura del modelo CBOW

- ReLU(z) = max(0, z) entrada por entrada (rectified linear unit)
- softmax $(z)_i = \frac{\exp(z_i)}{\sum_{k=1}^{|V|} \exp(z_k)}$

Dimensiones (entrada en batch)

Entrenamiento

Universidad de Sonora

$$J = -(y_1 \log \hat{y}_1 + y_2 \log \hat{y}_2 + \dots + y_{|V|} \log \hat{y}_{|V|})$$

vector real de

vector de predicción de palabra central

$$J = -\sum_{i=1}^{n} = 0.397$$

$$J_{\mathsf{batch}} = \frac{1}{m} \sum_{i=1}^{m} J_i$$

■ Backpropagation

Descenso de gradiente

$$(W_1, W_2, b_1, b_2) := (W_1, W_2, b_1, b_2) - \alpha \text{Grad} J_{\text{batch}}$$

Backpropagation

$$\begin{split} & \frac{\partial J_{\text{batch}}}{\partial W_1} = \frac{1}{m} \text{ReLU} \left(W_2^T (\hat{Y} - Y) \right) X^T \\ & \frac{\partial J_{\text{batch}}}{\partial W_2} = \frac{1}{m} (\hat{Y} - Y) H^T \\ & \frac{\partial J_{\text{batch}}}{\partial b_1} = \frac{1}{m} \text{ReLU} \left(W_2^T (\hat{Y} - Y) \right) (1, \cdots, 1)_m^T \\ & \frac{\partial J_{\text{batch}}}{\partial b_2} = \frac{1}{m} (\hat{Y} - Y) (1, \cdots, 1)_m^T \end{split}$$

Descenso de gradiente

$$W_{1} := W_{1} - \alpha \frac{\partial J_{\text{batch}}}{\partial W_{1}}$$

$$W_{2} := W_{2} - \alpha \frac{\partial J_{\text{batch}}}{\partial W_{2}}$$

$$b_{1} := b_{1} - \alpha \frac{\partial J_{\text{batch}}}{\partial b_{1}}$$

$$b_{2} := b_{2} - \alpha \frac{\partial J_{\text{batch}}}{\partial b_{1}}$$

 α : tasa de aprendizaje

https://www.coursera.org/lecture/neural-networks-deep-learning/derivatimes-of-mactivation-functionsmacs

Extracción de vectores de palabra: opción 1

Extracción de vectores de palabra: opción 2

Extracción de vectores de palabra: opción 3

$$W_3 = \frac{1}{2}(W_1 + W_2^T)$$

$$W_3 = \begin{bmatrix} w^{(1)} & \cdots & w^{(|V|)} \end{bmatrix} \uparrow N$$

- Analogías
 - Semánticas: 'México' es a 'CDMX' lo que 'Argentina' es a <? >
 - Sintácticas: 'cantó' es a 'cantar' lo que 'bailó' es a <? >
- Clustering fuente: Google news

