17/11/2024, 22:10 2024-11-17-derivee

Derivatives Course

Join our course to understand derivatives!

	Function	Derivative
	f(x)=c	f'(x)=0 Constant Rule
	f(x)=x	f'(x)=1
	$\longrightarrow f(x) = x^n$	$f'(x) = nx^{n-1}$) Power rule
	$f(x)=e^x$	$f'(x)=e^x$
Xamm	$f(x) = \ln(x)$	$f'(x) = rac{1}{x}$
	$f(x)=\sin(x)$	$f'(x) = \cos(x)$
	$f(x)=\cos(x)$	$f'(x) = -\sin(x)$
	f(x) = an(x)	$f'(x) = \sec^2(x)$

	Function	Derivative	Name
	$f(x) = c \cdot g(x)$	$f'(x) = c \cdot g'(x)$	onstant Multiple Rule
f	(x) = g(x) + h(x)	f'(x) = g'(x) + h'(x)	Sum Rule
f	$f(x) = g(x) \cdot h(x)$	$f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$	Product Rule
	$f(x) = \frac{g(x)}{h(x)}$	$f'(x) = rac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h(x)^2}$	Quotient Rule
	f(x)=g(h(x))	$f'(x) = g'(h(x)) \cdot h'(x)$	Chain Rule

Derivative Exercises

1. Basic Derivatives:

- Calculate the derivative of the following functions:
 - $f(x) = 2x^3 5x^2 + 3x 7$
 - $g(x) = \sin(x) + \cos(x)$
 - $\bullet \ h(x) = e^x \ln(x)$

2. Product and Quotient Rules:

- Use the product rule to find the derivative of $f(x)=(3x^2+2x)(x^3-x+1).$
- Use the quotient rule to find the derivative of $g(x)=rac{x^2+1}{x^3-2x}$.

3. Chain Rule:

• Find the derivative of $f(x) = \sin(x^2 + 3x)$ using the chain rule.

• Find the derivative of $g(x)=e^{x^2+1}$ using the chain rule.

4. Higher-Order Derivatives:

- Calculate the second derivative of $f(x)=x^4-3x^3+2x^2-x+5$.
 - Calculate the second derivative of $g(x) = \ln(x^2+1)$.

Derivative Interpretation

$$\left(\chi^3\right)^{1} = 3\chi^2$$

1. Understanding the Function:

- What is the mathematical expression for the cubic function defined in the cell?
- How is the derivative of the cubic function calculated?

2. Plot Interpretation:

- What do the solid and dashed lines represent in the plot?
- How does f' behave when f increases or decreases? > finucases => f'>0

3. Mathematical Concepts:

- What is the significance of the derivative of a function in calculus? # de hers => # 6
- What is the mathematical expression for the second derivative of the cubic function?
- How does f'' behave when f' increases or decreases?

Demonstration of Derivative Functions

Derivative of Simple Functions Using Limits

in creases >

17/11/2024, 22:10 2024-11-17-derivee

The derivative of a function f(x) at a point x is defined as the limit of the average rate of change of the function as the interval around x approaches zero. The derivative of a function f(x) at a point x is denoted as f'(x) or $\frac{df}{dx}$.

The derivative of a function f(x) at a point x is defined as:

$$f'(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

To understand the concept of derivatives, let's start with some simple functions and calculate their derivatives using the limit definition.

1. Derivative of $f(x) = x^2$

The derivative of $f(x) = x^2$ using the limit definition is:

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

Simplifying the expression inside the limit:

$$f'(x) = \lim_{h o 0} rac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h o 0} rac{2xh + h^2}{h} = \lim_{h o 0} (2x + h) = 2x$$

2. Derivative of f(x) = x

The derivative of f(x) = x using the limit definition is:

$$f'(x) = \lim_{h o 0} rac{(x+h) - x}{h}$$

Simplifying the expression inside the limit:

$$f'(x)=\lim_{h o 0}rac{x+h-x}{h}=\lim_{h o 0}rac{h}{h}=\lim_{h o 0}1=1$$

3. Derivative of $f(x) = c \cdot g(x)$

The derivative of $f(x) = c \cdot g(x)$ using the limit definition is:

$$f'(x) = \lim_{h o 0} rac{c\cdot g(x+h) - c\cdot g(x)}{h}$$

Factoring out the constant *c*:

$$f'(x) = c \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

By definition, this is:

$$f'(x) = c \cdot g'(x)$$

•
$$f(x) = 2x^3 - 5x^2 + 3x - 7$$

• $g(x) = \sin(x) + \cos(x)$
• $h(x) = e^x - \ln(x)$
• $h(x) = (2x^3)' - (5x^2)' + (3x)' - (7)'$ SUM TULE

$$= 2 \cdot (x^3)' - 5 \cdot (x^2)' + 3 \cdot (x)' - 0$$

$$(x^n)' = n \cdot x^{n-1} \quad \text{constant multiple rule}$$

$$(x^3)' = 3x^{3-1} = 2 \cdot 3x^2 - 5 \cdot 2x^1 + 3 \cdot 2$$

$$f(x) = 6x^2 - 10x + 3$$

$$g(x) = \sin(x) + \cos(x)$$

$$g'(x) = \sin(x) + \cos(x)$$

$$g'(x) = \cos x - \sin x$$

$$f(x) = \cos x - \sin x$$

$$f(x) = \cos x - \sin x$$

$$f(x) = \cos x - \sin x$$

$$h(x) = e^{x} - \ln x$$

$$h'(x) = (e^{x})' - (\ln x)'$$

$$\sin Rule$$

$$f(x) = (3x^{2} + 2x)_{1}(x^{3} - x + 1).$$

$$g(x) = (x^{2} + 1)_{1}(x).$$

$$f'(x) = \begin{cases} (x) \cdot \int_{2}^{2} (x) + \int_{1}^{2} (x) \cdot \int_{2}^{2} (x) \cdot \int_{2$$

 $= \frac{-X^{4}-5X^{2}+2}{(X^{3}-2X)^{2}}$

f(x) = g(h(x)) $f(x)=\sin(x^2+3x)$ using the chain rule. $\begin{cases}
f(x) = g(h(x)) h(x)
\end{cases}$ f(x) = g(h(x)) comprie g(x) = sin x $h(x) = x^2 + 3x$ étape 1: identifier get h h'(x) = 2x + 3itape 2: calcule h'(x) $g'(x) = \cos x$ $g'(\mathring{h}(x)) = \omega_3(x^2+3x)$ g'(h×1) exat $f(x) = \ell x$ étape 3: j'assemble me réponse $\int_{1}^{\infty} \left(3\right) = 2 \cdot 3$ $f'(X) = \cos(X^2 + 3x) \cdot (2x + 3)$ $f(x^2) = 2x^2$ $f(x) = e^{x+1}$ $f'(x) = \frac{1}{2}$ j'identifie: g(n) = ex ut h(x)=x2+1. et la (x) = 2x painire 9 (x) = ex ln+: 9'(h(x)) = ex2+1 j'assemble: f'(x) = e^{x²+1}.2x. g (h(x)) · h'(x)

- Calculate the second derivative of $f(x)=x^4-3x^3+2x^2-x+5$.
- igwedge Calculate the second derivative of $oldsymbol{y}(x) = \ln(x^2+1)$.

$$\int_{0}^{3} (x) = 4 x^{3} - 3 x^{2} + 4 x - 1$$

$$\int_{0}^{3} (x) = 12 x^{2} - 18x + 4$$

$$f(X) = ln(X^2+1)$$
 chain, Rule!

$$g(x) = ln x$$

$$\frac{1}{h(y)} = X^2 + 4$$

$$k(x) = X^{-1}$$

$$g'(h(x)) = \frac{1}{\sqrt{2}}$$

$$\begin{cases} 1 \\ (X) = \frac{1}{X^2 + 1} \cdot 2X = \frac{2X}{X^2 + 1} \end{cases}$$

$$= \frac{2 \cdot (x^{2}+1) - 2x \cdot 2x}{(x^{2}+1)^{2}}$$

$$= \frac{2 \times^{2} + 2 - 4 \times^{2}}{(\times^{2} + 1)^{2}} = \frac{-2 \times^{2} + 2}{(\times^{2} + 1)^{2}}$$

1 - dérivée de
$$f(x) = 3 \ln(2x^3+1) *$$

$$2 - f(x) = \ln(\cos x) *$$

$$3 - f(x) = \frac{\sin x}{\sin x}$$

$$4 - f(x) = 2 sinse conx$$

$$5 - \left\{ (x) = \left(\ln x \right)^2 \right\}$$