

Departamento de Matemática, Universidade de Aveiro Álgebra Linear e Geometria Analítica — Agrup. IV 2.ª Prova de Avaliação Discreta; 7 de dezembro de 2018 Duração: 1h20min

- Justifique todas as respostas e indique os cálculos efetuados -

1.	Considere a matriz $D =$	1	1	-2	-1	
		3	3	-6	5	,

[20pts]

(a) Qual é a dimensão do espaço das colunas de D? Justifique.

[40pts]

- (b) Sejam \mathcal{P}_1 e \mathcal{P}_2 os planos de equações x+y-2z=1 e 3x+3y-6z+5=0, respetivamente. Indique, justificando, a posição relativa dos planos e calcule a distância de \mathcal{P}_1 a \mathcal{P}_2 .
- 2. Seja $\mathcal{B} = (X_1, X_2, X_3)$ uma base de \mathbb{R}^3 , onde $X_1 = (1, 1, 0), X_2 = (0, 1, 1)$ e $X_3 = (1, -1, 1)$.

[25pts]

(a) Mostre que $T = (X_1 + 3X_2, X_2 - X_3, 2X_1)$ é uma base de \mathbb{R}^3 .

[20pts]

(b) Determine a matriz de mudança de base de \mathcal{T} para \mathcal{B} .

[20pts]

- (c) Calcule o vetor das coordenadas de Y na base \mathcal{B} sabendo que $[Y]_{\mathcal{T}} = \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}$.
- 3. Seja $\mathcal W$ o subespaço vetorial de $\mathbb R^3$ gerado por $\mathcal K=\left\{(-\frac13,\frac23,\frac23),(0,\frac{\sqrt2}2,-\frac{\sqrt2}2)\right\}$

[20pts]

(a) Verifique que \mathcal{K} é uma base ortonormada de \mathcal{W} .

[20pts]

(b) Determine $Z_1 \in \mathcal{W}$ e $Z_2 \in \mathbb{R}^3$ ortogonal a \mathcal{W} tais que $(1,2,3) = Z_1 + Z_2$.

[35pts]

ts] 4. Mostre que $S = \{ax^2 + bx + c \in P_2 : a + b - 2c = 0\}$ é um subespaço vetorial de P_2 .