Programmation Linéaire Simplexe: forme matricielle – dictionnaires

Fabian Bastin DIRO Université de Montréal

Forme matricielle de la méthode du simplexe

Utile pour mieux comprendre, et construire des variantes.

Soit

$$A = [B \ D]$$

où nous supposons que \boldsymbol{B} est une base, et décomposons \boldsymbol{x} et \boldsymbol{c} de manière similaire:

$$x = (x_B, x_D), \quad c = (c_B, c_D).$$

Le programme linéaire standard devient

$$\begin{aligned} \min_{\mathbf{x}} \ z &= \boldsymbol{c}_{B}^{T} \boldsymbol{x}_{B} + \boldsymbol{c}_{D}^{T} \boldsymbol{x}_{D} \\ \text{t.q.} \ \boldsymbol{B} \boldsymbol{x}_{B} + \boldsymbol{D} \boldsymbol{x}_{D} &= b \\ \boldsymbol{x}_{B} &\geq 0, \ \boldsymbol{x}_{D} \geq 0. \end{aligned}$$

Forme matricielle de la méthode du simplexe

La solution de base associée, que nous supposons également réalisable, devient

$$x = (x_B, 0), x_B = B^{-1}b.$$

Dès lors,

$$x_D=0$$
.

Plus généralement,

$$x_B = B^{-1}b - B^{-1}Dx_D.$$

et

$$z = \boldsymbol{c}_{B}^{T} \left(\boldsymbol{B}^{-1} \boldsymbol{b} - \boldsymbol{B}^{-1} \boldsymbol{D} \boldsymbol{x}_{D} \right) + \boldsymbol{c}_{D}^{T} \boldsymbol{x}_{D}$$
$$= \boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{b} + \left(\boldsymbol{c}_{D}^{T} - \boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{D} \right) \boldsymbol{x}_{D}.$$

Dictionnaire

L'écriture

$$\begin{array}{cccc} \boldsymbol{x}_{\boldsymbol{B}} & = & \boldsymbol{B}^{-1}\boldsymbol{b} & -\boldsymbol{B}^{-1}\boldsymbol{D}\boldsymbol{x}_{\boldsymbol{D}} \\ \boldsymbol{z} & = & \boldsymbol{c}_{\boldsymbol{B}}^{T}\boldsymbol{B}^{-1}\boldsymbol{b} & + \left(\boldsymbol{c}_{\boldsymbol{D}}^{T} - \boldsymbol{c}_{\boldsymbol{B}}^{T}\boldsymbol{B}^{-1}\boldsymbol{D}\right)\boldsymbol{x}_{\boldsymbol{D}}. \end{array}$$

est aussi appelée dictionnnnaire.

Avantages du dictionnaire par rapport aux tableaux:

- forme plus compacte;
- implémentation numérique plus directe

Forme matricielle de la méthode du simplexe

Ceci permet s'exprimer n'importe quelle solution en termes de x_D . Dès lors,

$$\boldsymbol{r}_{\boldsymbol{D}}^T = \boldsymbol{c}_{\boldsymbol{D}}^T - \boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{B}^{-1} \boldsymbol{D}$$

est le vecteur des coûts réduits.

En d'autres termes,

$$\begin{pmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{c}^T & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{B} & \mathbf{D} & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_D^T & \mathbf{0} \end{pmatrix}$$

Forme canonique: on multiplie la partie supérieure par \boldsymbol{B}^{-1} et on récupère l'expression de l'objectif en termes de coûts réduits pour la partie inférieure:

$$\begin{pmatrix} \mathbf{I} & \mathbf{B}^{-1}\mathbf{D} & \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} & \mathbf{c}_{\mathbf{D}}^{T} - \mathbf{c}_{\mathbf{B}}^{T}\mathbf{B}^{-1}\mathbf{D} & -\mathbf{c}_{\mathbf{B}}^{T}\mathbf{B}^{-1}\mathbf{b} \end{pmatrix}$$

Considérons le problème

min
$$-x_1 - 2x_2 + x_3$$

s.à. $2x_1 + x_2 + x_3 \le 14$
 $4x_1 + 2x_2 + 3x_3 \le 28$
 $2x_1 + 5x_2 + 5x_3 \le 30$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Variables d'écart

Mettons le système sous forme standard en ajoutant une variable d'écart à chacune des inégalités:

min
$$-x_1 - 2x_2 + x_3$$

s.à. $2x_1 + x_2 + x_3 + s_1 = 14$
 $4x_1 + 2x_2 + 3x_3 + s_2 = 28$
 $2x_1 + 5x_2 + 5x_3 + s_3 = 30$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$
 $s_1 \ge 0, s_2 \ge 0, s_3 \ge 0$

Le système est à présent sous forme canonique.

Dictionnaire initial

Nous réorganisons le système linéaire pour identifier les variables de bases ainsi que l'objectif.

$$s_1 = 14 -2x_1 -x_2 -x_3$$

 $s_2 = 28 -4x_1 -2x_2 -3x_3$
 $s_3 = 30 -2x_1 -5x_2 -5x_3$
 $z = 0 -x_1 -2x_2 +x_3$

Un tel système est appelé dictionnaire.

Les règles de pivotage sont similaires.

Variable entrante

On se concentre sur la ligne de l'objectif

$$z = 0 - x_1 - 2x_2 + x_3$$

Les variables x_1 et x_2 sont toutes deux associées à un coefficient négatif, et sont donc candidates pour entrer dans la base.

En suivant la règle du coût réduit le plus négatif, nous sélectionnons x_2 .

Choix de la variable sortante

Nous partons du dictionnaire en annulant x_1 et x_3 qui restent hors base.

$$s_1 = 14 -x_2$$

 $s_2 = 28 -2x_2$
 $s_3 = 30 -5x_2$
 $z = 0 -2x_2$

Comme nous devons garder s_1 , s_2 , s_3 non-négatifs, nous avons

$$\begin{array}{ccccc} 0 & \leq & 14 & -x_2 \\ 0 & \leq & 28 & -2x_2 \\ 0 & \leq & 30 & -5x_2 \end{array}$$

Dès lors, $x_2 \le \min\{14, 28/2, 30/5\} = 6$. Ainsi, s_3 sort de la base.

Nouveau dictionnaire

Le pivot s'effectue en échangeant s_3 et x_2 dans l'équation du dictionnaire correspondant à s_3 :

$$s_3 = 30 - 2x_1 - 5x_2 - 5x_3$$

$$\Leftrightarrow x_2 = 6 - \frac{2}{5}x_1 - x_3 - \frac{1}{5}s_3.$$

Nous remplaçons ensuite x_2 par son expression en termes des variables hors base dans les autres équations du dictionnaire, ce qui donne

$$x_2 = 6 -\frac{2}{5}x_1 -x_3 -\frac{1}{5}s_3$$

$$s_1 = 8 -\frac{8}{5}x_1 +\frac{1}{5}s_3$$

$$s_2 = 16 -\frac{16}{5}x_1 -x_3 +\frac{2}{5}s_3$$

$$z = -12 -\frac{1}{5}x_1 +3x_3 +\frac{2}{5}s_3$$

Nouveau dictionnaire

Seul x_1 a un coût réduit négatif et donc est choisi pour entrer dans la base. En prenant les rapports entre la colonne de x_1 et celle du terme indépendant, nous voyons que tant s_1 que s_2 peuvent sortir de la base. Choisissons s_1 . Le nouveau dictionnaire est

$$\begin{aligned}
 x_1 &= 5 & -\frac{5}{8}s_1 & +\frac{1}{8}s_3 \\
 x_2 &= 4 & -x_3 & +\frac{1}{4}s_1 & -\frac{1}{4}s_3 \\
 s_2 &= 0 & -x_3 & +2s_1 \\
 z &= -13 & +3x_3 & +\frac{1}{8}s_1 & +\frac{3}{8}s_3
 \end{aligned}$$

Comme il n'y a plus de coût réduit négatif, nous avons convergé. La solution optimale est $x_1 = 5$, $x_2 = 4$, $x_3 = 0$.

Nous allons automatiser l'approche.

Méthode du simplexe révisée

Converge souvent en O(m).

La méthode revisée ordonne les calculs afin d'éviter les opérations inutiles, en particulier pour les variables non concernées par les pivotages.

Soit B^{-1} l'inverse de la base actuelle, et la solution actuelle

$$x_B = y_0 = B^{-1}b.$$

Etape 1 Calculer les coefficients de coûts réduits actuels

$$\mathbf{r}_{\mathbf{D}}^{\mathsf{T}} = \mathbf{c}_{\mathbf{D}}^{\mathsf{T}} - \mathbf{c}_{\mathbf{B}}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{D}$$

On calcule d'abord

$$\lambda^T = c_B^T B^{-1}$$

puis

$$\mathbf{r}_{\mathbf{D}}^{\mathsf{T}} = \mathbf{c}_{\mathbf{D}}^{\mathsf{T}} - \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{D}.$$

Méthode du simplexe révisée

Etape 2 Déterminer le vecteur a_q qui va entrer dans la base en sélectionnant le coût réduit le plus négatif, et calculer

$$\mathbf{y}_q = \mathbf{B}^{-1} \mathbf{a}_q,$$

donnant l'expression de a_q en termes de la base actuelle.

Etape 3 Si aucun y_{iq} n'est > 0, arrêt: le problème n'est pas borné. Sinon, calculer les rapports y_{i0}/y_{iq} pour $y_{iq} > 0$ pour déterminer le vecteur qui va quitter la base.

Etape 4 Mettre à jour B^{-1} et la solution actuelle $B^{-1}b$. Retour à l'étape 1.

La mise à jour de ${\bf B}^{-1}$ se fait en effectuant l'opération classique de pivotage, constituée de ${\bf B}^{-1}$ et ${\bf y}_q$, où le pivot est l'élément approprié dans y_q . On en profite pour mettre à jour ${\bf B}^{-1}{\bf b}$.

$$\max_{x} 3x_1 + x_2 + 3x_3$$
t.q.
$$2x_1 + x_2 + x_3 \le 2$$

$$x_1 + 2x_2 + 3x_3 \le 5$$

$$2x_1 + 2x_2 + x_3 \le 6$$

$$x_1 > 0, x_2 > 0, x_3 > 0$$

Après ajout des variables d'écarts:

$$\max_{x} 3x_{1} + x_{2} + 3x_{3}$$
t.q. $2x_{1} + x_{2} + x_{3} + x_{4} = 2$

$$x_{1} + 2x_{2} + 3x_{3} + x_{5} = 5$$

$$2x_{1} + 2x_{2} + x_{3} + x_{6} = 6$$

$$x_{1} \geq 0, \ x_{2} \geq 0, x_{3} \geq 0$$

Tableau:

$$a_1$$
 a_2
 a_3
 a_4
 a_5
 a_6
 b

 2
 1
 1
 1
 0
 0
 2

 1
 2
 3
 0
 1
 0
 5

 2
 2
 1
 0
 0
 1
 6

 -3
 -1
 -3
 0
 0
 0
 0

On se limite à

Var
$$x_B$$

 x_4 1 0 0 2
 x_5 0 1 0 5
 x_6 0 0 1 6

Nous avons

$$\lambda^T = c_B^T B^{-1} = (0 \ 0 \ 0) B^{-1} = (0 \ 0 \ 0)$$

et

$$\mathbf{r}_D^T = \mathbf{c}_D^T - \lambda^T \mathbf{D} = \begin{pmatrix} -3 & -1 & -3 \end{pmatrix}$$

Dictionnaire

$$x_4 = 2 -2x_1 - x_2 - x_3$$

$$x_5 = 5 -x_1 - 2x_2 - 3x_3$$

$$x_6 = 6 -2x_1 - 2x_2 - x_3$$

$$z = 0 -3x_1 - x_2 - 3x_3$$

On fait entrer a_2 (violant la règle du coût le plus négatif)

Var
$$x_B$$
 y_2 x_4 1 0 0 2 1 x_5 0 1 0 5 2 x_6 0 0 1 6 2

Var
$$x_B$$

 x_2 1 0 0 2
 x_5 -2 1 0 1
 x_6 -2 0 1 2

Nous avons

$$\boldsymbol{B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

Nous avons également

$$\boldsymbol{c}_{\boldsymbol{B}}^{T} = \begin{pmatrix} -1 & 0 & 0 \end{pmatrix},$$

et dès lors

$$\lambda^T = c_B^T B^{-1}$$

$$= \begin{pmatrix} -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$$

Les coûts reduits se calculent de manière similaire

$$\begin{pmatrix} -3 & -3 & 0 \end{pmatrix} - \begin{pmatrix} -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & -2 & 1 \end{pmatrix}$$

En d'autres termes.

$$r_1 = -1, \ r_3 = -2, \ r_4 = 1.$$

$$y_3 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

Le variable entrante retenue est x_3 , et on construit le tableau

Var
$$x_B$$
 y_3 x_2 1 0 0 2 1 x_5 -2 1 0 1 1 x_6 -2 0 1 2 -1

Après le pivot:

Var
$$x_B$$

 x_2 3 -1 0 1
 x_3 -2 1 0 1
 x_6 -4 1 1 3

$$\lambda^T = \begin{pmatrix} -1 & -3 & 0 \end{pmatrix} \begin{pmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ -4 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 0 \end{pmatrix}$$

$$\mathbf{r}_{\mathbf{D}}^{\mathsf{T}} = \begin{pmatrix} -3 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 3 & -2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}$$

= $\begin{pmatrix} -3 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 4 & 3 & -2 \end{pmatrix} = \begin{pmatrix} -7 & -3 & 2 \end{pmatrix}$

On fait entrer a_1 .

$$\mathbf{y}_1 = \begin{pmatrix} 3 & -1 & 0 \\ -2 & 1 & 0 \\ -4 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \\ -5 \end{pmatrix}$$

Var
$$x_B$$
 y_1
 x_2 3 -1 0 1 5
 x_3 -2 1 0 1 -3
 x_6 -4 1 1 3 -5

$$oldsymbol{\lambda}^T = egin{pmatrix} -3 & -3 & 0 \end{pmatrix} oldsymbol{\mathcal{B}}^{-1} = egin{pmatrix} -rac{6}{5} & -rac{3}{5} & 0 \end{pmatrix}$$

$$\mathbf{r}_{D}^{T} = \begin{pmatrix} -1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} -\frac{6}{5} & -\frac{3}{5} & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} -\frac{12}{5} & -\frac{6}{5} & -\frac{3}{5} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{7}{5} & \frac{6}{5} & \frac{3}{5} \end{pmatrix}$$

x = (1/5, 0, 8/5, 0, 0, 4) est une solution optimale.

Simplexe et décomposition LU

 ${\it B}^{-1}$ n'apparaît que dans la résolution de systèmes linéaires. Mais dans ce contexte, on ne calcule jamais ${\it B}^{-1}$ pour des raisons de stabilité numérique.

Reformulons le simplexe pour faire apparaître les termes linéaires.

Etape 1

$$x_{B} = y_{0},$$

avec

$$By_0 = b.$$

Simplexe et décomposition LU

Etape 2 Résoudre

$$\lambda^T B = c_B^T$$

et

$$r_D^T = c_D^T - \lambda^T D.$$

Si $r_D \ge 0$, stop: la solution actuelle est optimale.

Etape 3 Déterminer le vecteur a_q qui va entrer la base en sélectionnant le coefficient de coût réduit le plus négatif, et résoudre

$$By_q = a_q$$
.

Etape 4 Si aucun $y_{iq} > 0$, stop: le problème est non borné. Sinon, calculer les rapports y_{i0}/y_{iq} pour $y_{iq} > 0$, et sélectionner le rapport le plus négatif pour déterminer quel vecteur sortira de la base.

Simplexe et décomposition LU

Etape 5 Mise à jour de **B**. Retour à l'étape 1.

Cette manière de formuler le simplexe offre

- 1. une meilleure stabilité numérique,
- 2. des avantages de stockage mémoire (par exemple, si \boldsymbol{B} est une matrice creuse, \boldsymbol{B}^{-1} peut être pleine).

On décompose **B** comme

$$B = L.U$$

οù

- L est une matrice triangulaire inférieure,
- **U** est une matrice triangulaire supérieure.

Simplexe et décomposition

Alors

$$Bx = b,$$

$$\Leftrightarrow LUx = b$$

$$\Leftrightarrow Ly = b, \quad y = Ux$$

Résoudre un système triangulaire est immédiat!

$$\begin{pmatrix} a_{11} & & \\ a_{21} & a_{22} & \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$x_1 = b_1/a_{11}$$

 $x_2 = (b_2 - a_{21}x_1)/a_{22}$
 $x_3 = (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33}$

Conditions: $a_{ii} \neq 0, \forall i$.

Note: on ne suppose aucun échange de ligne (parfois opéré pour préserver la précision et le caractère creux).

Mise à jour:

$$m{B} = egin{pmatrix} dots & & dots \ m{a}_1 & \cdots & m{a}_m \ dots & & dots \end{pmatrix}$$

Nouvelle base

$$\overline{B} = \begin{pmatrix} \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_{k-1} & \boldsymbol{a}_{k+1} & \cdots & \boldsymbol{a}_m & \boldsymbol{a}_q \\ \vdots & \vdots & & \vdots & & \vdots & \vdots & & \vdots \end{pmatrix}$$

Alors

$$\mathbf{L}^{-1}\overline{\mathbf{B}} = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{L}^{-1}\mathbf{a}_{1} & \cdots & \mathbf{L}^{-1}\mathbf{a}_{k-1} & \mathbf{L}^{-1}\mathbf{a}_{k+1} & \cdots & \mathbf{L}^{-1}\mathbf{a}_{m} & \mathbf{L}^{-1}\mathbf{a}_{q} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

$$= \begin{pmatrix} u_{1} & \dots & u_{k-1} & u_{k+1} & \dots & u_{m} & \mathbf{L}^{-1}\mathbf{a}_{q} \end{pmatrix}$$

$$= \overline{H}.$$

En effet

$$B = LU$$

$$\Leftrightarrow (\mathbf{a}_1 \dots \mathbf{a}_m) = L(\mathbf{u}_1 \dots \mathbf{u}_m)$$

$$\Leftrightarrow L^{-1}(\mathbf{a}_1 \dots \mathbf{a}_m) = (\mathbf{u}_1 \dots \mathbf{u}_m)$$

 $\overline{\boldsymbol{H}}$ a la forme

$$\begin{pmatrix} \times & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & 0 & \times & \times \end{pmatrix}$$

 $\boldsymbol{L}^{-1}\boldsymbol{a}_q$ est un sous-produit du calcul de \boldsymbol{y}_q , aussi c'est "gratuit".

 $\overline{\mathbf{H}}$ peut être ramené à une forme triangulaire supérieure grâce à une série d'éliminations de Gauss.

$$\overline{\mathbf{U}} = \mathbf{M}_{m-1} \mathbf{M}_{m-2} \dots \mathbf{M}_k \overline{\mathbf{H}}$$

où M_i a la forme

$$\overline{\textit{\textbf{B}}} = \overline{\textit{\textbf{L}} \textit{\textbf{U}}}$$

avec

$$\overline{\mathbf{L}} = \mathbf{L} \mathbf{M}_k^{-1} \dots \mathbf{M}_{m-1}^{-1}.$$