計算機構成論(おまけ)

CとPythonの比較

2023年度春学期 情報理工学部 Rクラス担当 越智裕之

例題1:1から10までの整数の総和 (1) c言語の場合

```
#include <stdio.h>
                      始めの呪文
int main( void ) {
                      使う変数の宣言
 int s,i;
 s = 0;
                             文末には
                      代入文
 i = 1;
                              : が必要
 while (i <= 10) {
   s = s + i;
                      while文による繰り返し
   i = i + 1;
                      繰り返す文を { と } で囲む
                      変数sの値を表示する呪文
 printf("%d\n",s);
                      終わりの呪文
```

例題1:1から10までの整数の総和 (2) Python言語の場合

```
始めの呪文は不要
                    使う変数の宣言は不要
                          文末の
                    代入文
                           ;は無くても可
while i <= 10 :
                    while文による繰り返し
 s = s + i
                    繰り返す文を
 i = i + 1
                    インデントで表す
print(s)
                    変数sの値を表示する呪文
                    終わりの呪文は不要
```

例題1:1から10までの整数の総和 ソースコードの比較

• Pythonの方が簡潔だが、基本的には似ている

```
#include <stdio.h>
int main( void ) {
  int s,i;
  s = 0;
  i = 1;
  while (i <= 10) {
    s = s + i;
    i = i + 1;
  printf("%d\formalf",s);
```

```
s = 0
i = 1
while i <= 10 :
  s = s + i
  i = i + 1
print(s)
```

例題1:1から10までの整数の総和 実行方法の比較

Cはコンパイルが必要

```
% gedit sum.c
% gcc -o sum sum.c
% ./sum
55
% printf 文の表示
```

ソースファイルの編集 (拡張子は.c)

コンパイラ gcc を使い 実行形式ファイルを生成

実行

• Pythonはすぐに実行できる

```
% gedit sum.py
% python sum.py
55
% print 文の表示
```

ソースファイルの編集 (拡張子は.py)

pythonコマンドにソー スファイルを読ませる ことで実行

例題2:ライプニッツの公式アルゴリズム

・以下の無限級数で円周率の近似値を求める

$$\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots + \frac{1}{4i+1} - \frac{1}{4i+3} \dots = \frac{\pi}{4}$$

例題2:ライプニッツの公式 (1) c言語のソースコード

```
#include <stdio.h>
int main(void) {
  double s;
  int i;
  s = 0.0;
  i = 1000;
  while (i>=0) {
    s = s + 1.0/(4*i+1) - 1.0/(4*i+3);
    i = i-1;
  printf("%13.11f\n",4*s);
```

例題2:ライプニッツの公式 (2) Python言語のソースコード

```
s = 0.0
i = 1000
while i >= 0:
    s = s + 1.0/(4*i+1) - 1.0/(4*i+3);
    i = i-1;
print(4*s)
```

例題2:ライプニッツの公式 実行結果

iの初期値	計算結果	Pythonの 実行時間	cの 実行時間
10	3.09616152646	0.0秒	0.0秒
100	3.13664218887	0.0秒	0.0秒
1000	3.14109315312	0.0秒	0.0秒
10000	3.14154265859	0.0秒	0.0秒
100000	3.14158765364	0.1秒	0.0秒
1000000	3.14159215359	0.3秒	0.0秒
10000000	3.14159260359	2.4秒	0.0秒
10000000	3.14159264859	24.2秒	0.2秒
100000000	3.14159265309	297.1秒	2.1秒

[※] Intel Core i7 10thGen. CPU搭載PCで実験

CとPythonの比較 まとめ

- 文法は様々な違いがあるが、類似点も多い
 - Pythonの方が、プログラムは概して簡潔になる
 - 1つの言語をしっかりマスターすれば、別の言語を修得するのは、そんなに大変ではない
- Pythonはインタプリタ型、Cはコンパイル型の言語
 - ・Pythonは、ソースコードをインタプリタに読ませることで 実行できる(コンパイル不要)
 - Cはソースコードをコンパイルして実行形式(機械語)ファイルを生成し、それを実行させる
- 実行性能は大きく差が出る
 - ・Cはコンパイラで機械語に翻訳してから実行するので、高い 性能が得られる
 - ・ 先ほどの実験では約140倍ぐらいの差がみられた