ДИСЦИПЛИНА	Операционные системы
	(полное наименование дисциплины без сокращений)
ИНСТИТУТ	Институт информационных технологий
КАФЕДРА	информационных технологий в атомной энергетике
	(полное наименование кафедры)
ВИД УЧЕБНОГО	Лекция
МАТЕРИАЛА	(в соответствии с пп 1-11)
ПРЕПОДАВАТЕЛЬ	Пугачев Андрей Васильевич
	(фамилия, имя, отчество)
CEMECTP	IV семестр 2024 – 2025 учебный год
	(указать семестр обучения, учебный год)

Лекция № 6: «Носители информации»

«Операционные системы»

МИРЭА – Российский технологический университет

Москва. 2024-2025 у.г.

Носитель информации (информационный носитель) — любой материальный объект или среда, содержащий (несущий) информацию и способный, в течении какого-то времени, сохранять в своей структуре занесённую в него информацию.

Классификация носителей

- 1. По устойчивости записи и возможности перезаписи.
- 2. По типу доступа.
- 3. По физическому принципу.

По устойчивости записи и возможности перезаписи

- постоянные;
- > записываемые;
- перезаписываемые;
- оперативные.

По типу доступа

- устройства с последовательным доступом;
- устройства с произвольным доступом;
- устройства с прямым доступом;
- устройства с ассоциативным доступом.

По физическому принципу

- перфорационные;
 - перфокарта;
 - перфолента.
- магнитные;
 - магнитные диски:
 - жёсткий магнитный диск;
 - гибкий магнитный диск.
 - магнитные ленты;
 - магнитные карты.
- оптические;
 - CD;
 - ► DVD;
 - ▶ Blu-ray Disc;
- полупроводниковые;
- ▶ и т.д.

Магнитные носители информации

Структура гибкого магнитного диска

Структура жесткого диска

Скрытые области жёсткого диска

Сектора, адресуемые пользователем HPA DCO

Скрытые области жёсткого диска

- HPA (host protected area) специальная область диска, предназначенная для сохранения данных и невидимая для постороннего наблюдателя.
- DCO (Device Configuration Overlay) ограничивает доступ к некоторым функциям жёсткого диска.

Способы адресации

- ► CHS;
- ► LBA.

Адресация CHS

- 1. Перемещение головок и выбор необходимого цилиндра (С).
- 2. Выбор необходимой головки (Н).
- 3. Считывание требуемого сектора (S).

Дискеты 1.44 Mb

- 1. 80 дорожек (цилиндров).
- 2. 2 стороны.
- 3. 18 секторов.

Плюс и минусы CHS

- + удобен и логичен для дискет и жестких дисков малого размера;
- не логичен для носителей иной структуры;
- имеет ограничения на объем.

Прерывание 13h

02Н читать секторы

вход: DL = номер диска

DH = номер головки чтения/записи

СН = номер дорожки (цилиндра)

CL = номер сектора

AL = число секторов

ES:BX = адрес буфера вызывающей программы

Максимальный адрес CHS

$$MaxByte = 512 \cdot (2^{24} - 1) = (2^9) \cdot (2^{24} - 1) = 2^{33} - 2^9.$$

Адресация LBA

 LBA^{1} — способ логической адресации кластеров, использующий в качестве адреса порядковый номер кластера.

¹Logocal Block Addres

Трансляция адреса CHS в LBA

Если кластер равен сектору

$$Addr_{lba} = ((C \cdot H_{max}) + H) \cdot S_{max} + S - 1$$

где:

- ► $Addr_{lba}$ LBA сектора;
- ightharpoonup C,H,S адрес сектора в координатах (C,H,S);
- $ightharpoonup H_{max}$ количество головок цифрового носителя;
- $ightharpoonup S_{max}$ количество секторов в цилиндре.

- 1. объединение нескольких носителей в один;
- 2. разбиение одного носителя на несколько.

 \underline{Tom} — совокупность адресуемых секторов, которые могут использоваться ОС и приложениями для хранения данных. $\underline{Pa3den}$ — совокупность смежных секторов тома.

Причины объединения

- ▶ увеличение объема;
- увеличение скорость;

Причины разделения

- ограничение на максимальный размер тома;
- создание резервной области ОС;
- уменьшение взаимовлияния содержимого каталогов;
- установка нескольких ОС.

Использование томов в UNIX-подобных ОС

Использование томов в ОС семейства Windows

КНИГА

Брайан Кэрриэ. "Криминалистический анализ файловых систем"

Форматы записей

- ► MBR master boot records
- ► GPT GUID Partition Table

MBR

Таблица разделов

Таблица разделов

Table: Первый сектор раздела

Смещение	Размер	Название
0x0000	446	Код загрузчика
0x01BE	64	Таблица разделов
0x01FE	2	Сигнатура (0х55АА)

Table: Таблица разделов

Смещение	Размер	Название
0x01BE	16	Раздел 1
0x01CE	16	Раздел 2
0x01DE	16	Раздел 3
0x01EE	16	Раздел 4

Структура записи о тома

Смещение	Размер	Название
0x0	1	Флаг загрузочного раздела
0x1	3	Начальный адрес CHS
0x4	1	Тип раздела
0x5	3	Конечный адрес CHS
0x8	4	Начальный адрес LBA
0x12	4	Размер в секторах

Типы разделов

- 0х5 Расширенный
- 0x6 FAT16
- 0x7 HPFS/NTFS/exFAT
- 0xb FAT32
- 0x82 Linux swap
- 0x83 Linux
- 0xee GPT

GPT

GUID Partition Table

Структура данных заголовка GPT

С-е	Р-р	Название
0x00	8	Сигнатура ("EFI PART")
0x08	4	Версия
0x0C	4	Размер заголовка GPT в байтах
0x10	4	Контрольная сумма заголовка GPT (CRC32)
0x14	4	Зарезервировано
0x18	8	Адрес LBA текущей структуры заголовка GPT
0x20	8	Адрес LBA другой структуры заголовка GPT
0x28	8	Адрес LBA начала области раздела
0x30	8	Адрес LBA конца области раздела
0x38	16	Код GUID диска
0x48	8	Адрес LBA начала таблицы разделов
0x50	4	Количество записей в таблице разделов
0x54	4	Размер каждой записи в таблице разделов
0x58	4	Контрольная сумма таблицы разделов (CRC32)
0x5C	420	Зарезервировано

Структура данных записей таблицы разделов GPT

С-е	P-p	Название
0x00	16	Код GUID типа раздела
0x10	16	Уникальный код GUID раздела
0x20	8	Начальный адрес LBA раздела
0x28	8	Конечный адрес LBA раздела
0x30	8	Атрибуты раздела
0x56	72	Имя раздела в Юникоде

Файловые системы

Определения

 $\underline{\Phi a u n}$ — поименованная область данных на цифровом носителе. $\underline{\Phi a u noвая}$ — способ организации упорядоченного хранения файлов на цифровом носителе. $\underline{K a m a no e}$ (Директория) — объект файловой системы, предназначенный для структурирования хранимых данных.

КНИГА

УДК 002(038) ББК 81.2Рус-4 Ф88

> Рецензент: профессор кафедры прикладной математики РГПУ им. А.И. Терцена *Ю.К. Кулиецов* Научный редактор: профессор, доктор педагогических наук, кандидат физико-математических наук *А.Р. Есаян*

> > Оформление выполнено дизайн-студией «Дикобраз»

Подписано в печать с готовых диапозитивов 20.06.2002. Гарнитура «Ньютон». Бумага типографская. Печать офсетная. Формат 84×1081/зг. Усл. печ. л. 14,28. Тираж 5100 экз. Заказ 1618.

Санитарно-эпидемиологическое заключение № 77.99.11.953.11.002870.10.01 от 25.10.2001 г. Общероссийский классификатор продукции OK-005-93, том 2; 953005 — литерятура учебная

Фридланд А.Я.

Ф88 Информатика и компьютерные технологии: Основные термины: Толков. слов.: Более 1000 базовых понятий и терминов. – 3-е изд., испр. и доп. / А.Я. Фридланд, Л.С. Ханамирова, И.А. Фридланд. – М.: ООО «Издательство Астрель»: ООО «Издательство АСТ», 2003. – 272 с.

ISBN 5-17-014546-2 (ООО «Издательство АСТ») ISBN 5-271-04324-X (ООО «Издательство Астрель»)

Определение

Файловая система — часть операционной системы, обеспечивающая запись и чтение файлов на дисковых носителях (магнитных, магнитооптических, оптических).

ВАЖНО

Файловая система не является программной реализацией!!!

Это набор правил, следуя которым программы могут в полной мере использовать все возможности, указанные в описании файловой системы.

Определение

<u>Драйвер файловой системы</u> — часть операционной системы, предоставляющая программный интерфейс взаимодействия с файловой системой.

Возможности файловых систем

- именование файлов;
- разграничение прав доступа;
- обеспечение совместной работы с файлами;
- ▶ восстановление после сбоя/отказа;
- ▶ и т.д.

Классификация файловых систем

- по иерархии каталогов;
- по способу размещения данных;
- по типу носителя.

Иерархия каталогов

файловая система.

Сетевая файловая система.

По способу размещения данных

- с последовательным размещением;
- с произвольным размещением;
- с сетевым размещением;
- с виртуальным размещением.

По типу носителя

- для носителей с произвольным доступом;
- для носителей с последовательным доступом;
- для оптических носителей;
- для флеш-памяти;
- для сетевых хранилищ;
- для виртуальных носителей.

Порядок рассмотрения файловых систем

- 1. Основные элементы файловой системы и их структуры.
- 2. Каким образом связаны элементы файловой системы.
- 3. Размещение элементов файловой системы в разделе.
- 4. Архитектурные особенности файловой системы.
- 5. Порядок использования файловой системы.

Основные элементы файловой системы и их структуры.

Архитектурные особенности

- 1. Жесткие/мягкие ссылки.
- 2. Журналирование.
- 3. Чувствительно к регистру символов.

Порядок использования файловой системы

- 1. Создание/удаления файлов/директорий.
- 2. Доп. особенности / «хвосты».

Вопросы?