

National University of Computer & Emerging Sciences, Karachi Spring-2018 CS-Department

MidTerm 2 4th April 2018, 09:00 am – 10:00am

Course Code:	Course Name: Compiler Construction				
Instructor Name / Names: M. Shahzad					
Student Roll No:	Section No:				

Instructions:

- Return the question paper.
- Read each question completely before answering it. There are 3 questions and 2 pages.
- In case of any ambiguity, you may make assumption. But your assumption should not contradict any statement in the question paper.
- All the answers must be solved according to the sequence given in the question paper.
- This paper is subjective. All the questions should be attempted on the answer sheet.
- All questions carry equal marks and equally distributed in sub parts.

Time: 60 minutes. Max Marks: 30 points

SOLUTION PAPER

Question 1 (10 points = 2 * 5):

1) Describe the relationship between a production and an item in an LR(0) grammar.	[2 points]
2) What are the error handling mechanisms in parsing phase?	[2 points]
3) Demonstrate stack implementation in implementation of shift reduce Parsing.	[2 points]
4) What are the requirements of the grammar to be in LL(1) grammar?	[2 points]
5) Explain the limitation of the recursive descent parsing.	[2 points]

Question 2 (10 points = 2 * 5):

Consider the following grammar H (the different productions have been numbered):

- 1. $S \rightarrow [SX]$
- 2. S → a
- 3. X → ε
- 4. X → +SY
- 5. X → Yb
- 6. Y → ε
- 7. Y → -SXc

It contains 3 non-terminals S, X and Y, along with terminals [,], a, b, c, +, - and ϵ .

a) Fill in the table below with the First and Follow sets for the non-terminals in this grammar [5 points]

	First	Follow
S	a, [\$,+,-,],c,b
X	+,-,b, ε],c
Y	-,£],c,b

b) Fill in the parse table below for the grammar H (don't write the productions inside the table; write only their numbers as given above) [5 points]

	a	b	С	+	-	[]	\$
S	2					1		
Χ		5	3	4	5		3	
Y		6	6		7		6	

Question 3 (10 points = 2* 5):

a) Draw the LR(1) parsing DFA for the following grammar.

[5 points]

$$\begin{array}{ccc} S & \rightarrow & aSb \\ S & \rightarrow & c \end{array}$$

Answer: First we need to augment the grammar with an additional production $S' \to S$.

b) Write down the grammar and the action and goto tables corresponding to the following LR(1) parsing DFA. [5 points]

Answer:

	S'	\rightarrow	S
0.	S	\rightarrow	aA
1.	A	\rightarrow	Bb
2.	B	\rightarrow	c

	action			goto			
state	a	b	c	\$	A	B	S
0	s1						3
1			s2		4	5	
2		r_2					
3				accept			
4				r0			
5		s6					
6				r1			

BEST OF LUCK!