Drumuri minime

Ca și în laboratorul trecut, fișierul grafpond.in are următoarea structură: numărul de vârfuri n, numărul de muchii/arce m și lista muchiilor/arcelor cu costul lor (o muchie fiind dată prin extremitățile sale și cost).

grafpond.in	
5 7	
1 4 1	
1 3 5	
1 2 10	
2 3 2	
4 2 6	
4 5 12	
5 2 11	

Justificați complexitatea+corectitudinea algoritmilor propuși.

- 1. **Drum critic (Critical Path Method).** Se citesc din fișierul activitati.in următoarele informații despre activitățile care trebuie să se desfășoare în cadrul unui proiect:
 - n numărul de activități (activitățile sunt numerotate 1,..., n)
 - d₁, d₂,, d_n durata fiecărei activități
 - m număr natural
 - m perechi (i, j) cu semnificația: activitatea i trebuie să se încheie înainte să înceapă j Activitățile se pot desfășura și în paralel.
 - a) Să se determine timpul minim de finalizare a proiectului, știind că acesta începe la ora 0 (echivalent să se determine durata proiectului) și o succesiune (critică) de activități care determină durata proiectului (un drum critic v. curs) O(m + n).
 - b) Să se afișeze pentru fiecare activitate un interval posibil de desfășurare (!știind că activitățile se pot desfășura în paralel) O(m + n).

activitati.in	iesire
6	Timp minim 47
7 4 30 12 2 5	Activitati critice: 4 3 6
6	1: 0 7
1 2	2: 7 11
2 3	3: 12 42
3 6	4: 0 12
4 3	5: 42 44
2 6	6: 42 47
3 5	

Robert Sedgewick and Kevin Wayne, Algorithms, 4th Edition, Addison-Wesley, 2011.

2. Se citesc din fișierul grafpond.in informații despre un graf **neorientat** ponderat și de la tastatură un număr k, o listă de k puncte de control ale grafului și un vârf s. Determinați cel mai apropiat punct de control de vârful s și afișați un lanț minim până la acesta, folosind algoritmul lui **Dijkstra** (problema B.1. din laboratorul 1 pentru cazul ponderat) - **O(m log(n)).**

- 3. Pentru fiecare arc al unei rețele de comunicație acestui graf se cunoaște o pondere pozitivă subunitară reprezentând probabilitatea ca legătura corespunzătoare să nu se defecteze (de forma $1/2^p = 2^{-p}$). Aceste probabilități sunt independente, deci **siguranța unui drum** este egală cu produsul probabilităților asociate arcelor care îl compun. Arătați că problema determinării unui drum de siguranță maximă de la un vârf de start s la un vârf destinație t (accesibil din s) se poate reduce la o problemă de determinare a unui drum minim între s și t (pentru un graf cu ponderile modificate). Pornind de la acest fapt, implementați un algoritm bazat pe algoritmul lui **Dijkstra** pentru determinarea unui drum de siguranță maximă între două vârfuri s și t citite de la tastatură pentru o rețea orientată dată în fișierul retea.in prin următoarele informații:
 - n, m numărul de vârfuri, respectiv arce
 - m linii conținând triplete de numere naturale i j p cu semnificația: (i,j) este arc în rețea cu probabilitatea să nu se defecteze egală cu 2^{-p} **O(m log(n)).**

- 4. Drumuri minime din surse multiple http://www.infoarena.ro/problema/catun O(m log(n)).
- 5. a) Dat un graf orientat ponderat (în fisierul grafpond.in), afișați matricea distanțelor dacă graful nu conține circuite de cost negativ și un circuit cu cost negativ în caz contrar. $O(n^3)$
- **b**) Fie G un graf neorientat ponderat. Pentru două vârfuri u și v ale lui G, notăm cu d(u, v) **distanța** de la vârful u la vârful v.

Pentru un vârf v, **excentricitatea** lui v este distanța maximă de la acest vârf la celelalte vârfuri:

$$e(v) = \max\{d(v, u) | u \in V\}$$

Excentricitatea minimă a vârfurilor se numește raza grafului:

$$r(G) = \min\{e(v) | v \in V \}$$

Mulțimea vârfurilor cu excentricitatea minimă (egală cu r(G)) se numește **centrul** grafului:

$$c(G) = \{ v \in V \mid e(v) = r(G) \}$$

Excentricitatea maximă a vârfurilor se numește **diametrul** grafului; altfel spus, diametrul este cea mai mare distanță dintre două vârfuri:

$$diam(G) = max\{e(v)| v \in V \} = max\{d(u, v)| v, u \in V \}$$

Se citesc din fișierul grafpond.in informații despre un graf **neorientat** ponderat G. Să se determine, folosind algoritmul **Floyd-Warhsall**, raza, diametrul, centrul grafului și un lanț diametral (un lant minim P între două vârfuri u si v cu ponderea w(P) = d(u,v) = diam(G)). $O(n^3)$

6. Se dă un graf orientat ponderat (în fisierul grafpond.in) și un vârf s citit de la tastatură. Dacă graful nu conține circuite negative accesibile din s afișați câte un drum minim de la s la fiecare dintre celelalte vârfuri accesibile din s, altfel afișați un astfel de circuit (folosind algoritmul Bellman Ford) **O(nm)**