

 	S.	rul	EN	TI	DN	O	

MULTIMEDIA UNIVERSITY FINAL EXAMINATION

TRIMESTER 1, 2015/2016

TEM1116 - PROBABILITY AND STATISTICS

(All sections / Groups)

08 OCTOBER 2015 2.30 p.m - 4.30 p.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 9 pages with 4 Questions only.
- 2. Attempt ALL questions. The distribution of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.

1.

- a. A and B are two events with P(A) = 0.6, P(B) = 0.7 and $P(A \cup B) = 0.89$.
 - (i) Find $P(A \cap B)$.

[2 Marks]

(ii) Find $P(A \cap \overline{B})$.

[2 Marks]

b. A committee of 5 is to be chosen from 8 science students and 7 commerce students. How many ways can the committees be chosen

If there is no restriction.

[1 Mark]

- (ii) If there must be more science students than commerce students in the committee. [2 Marks]
- c. If the number of calls received on a day follows a Poisson distribution with mean 1.5. Calculate, correct to three decimal places,

(i) the probability of not receiving any call in a day. [1 Mark]

(ii) the probability of receiving not more than three calls in a day.

[2 Marks]

- (iii) the probability of not receiving any call for two consecutive days. [2 Marks]
- d. The joint probability mass function (pmf) is shown in the following table:

P(A,B)	В					
		0	1	2			
A	0	0.10	0.04	0.02			
	1	0.08	0.20	0.06			
	2	0.06	0.14	0.30			

(i) What is P(A = 1 and B = 1)?

[1 Mark]

(ii) Compute $P(A \le 1 \text{ and } B \le 1)$.

[2 Marks]

Continued...

2,

- a. According to a survey conducted on June 2015 to working men aged between 35-40 years old, 40% of them felt that their financial situation was better than that of their father. Assume that this percentage is true for the current population of all working men aged between 35-40 years old. A recent sample of 25 working men aged between 35-40 years old is randomly selected. Let \hat{p} be the sample proportion of working men aged between 35-40 years old who hold this view.
 - (i) What is the probability that 64% to 70% of them hold this view? [4 Marks]
 - (ii) What is the probability that at least 60% of them hold this view? [3 Marks]
- b. According to a survey conducted by IT World magazine, network engineers earn an average of RM53,600 per year. This survey is based on a random sample of 25 network engineers. Assume that the current annual salaries of all such network engineers is approximating normal distribution and the sample standard deviation is RM6300.
 - (i) Determine a 99% confidence interval for the corresponding population mean. [4 Marks]
 - (ii) Determine a 95% confidence interval for the corresponding population variance. [4 Marks]
- 3.
- a. A questionnaire was sent to a large number of people, asking for opinions about a proposal to alter an examination syllabus. Of the 180 replies received, 134 were in favor of the proposal. Assuming that the people replying were randomly sampled from the population, carry out a hypothesis test at 5% significant level that the population proportion in favor of the proposal is more than 0.7.

[5 Marks]

b. A random variable X is known to have a normal distribution with variance 36 and mean μ . A random sample of 50 observations of X has mean 20.2. Carry out a hypothesis test at 1% significance level with the null hypothesis $\mu = 22$ against the alternative hypothesis $\mu < 22$.

[5 Marks]

Continued...

4. A psychologist believes that daily time spent on internet and the duration of daily free time of teenagers is correlated. He has randomly interviewed 8 teenagers and collected the data as below:

Duration of daily free time, x minutes	80	99	70	76	7 1	83	96	79
Daily time spent, y minutes	69	86	68	75	62	64	60	53

a. Find
$$\sum x$$
, $\sum y$, $\sum x^2$, $\sum y^2$, $\sum xy$, S_{xy} and S_{xx} . [4 Marks]

b. Find the equation of the regression line.

[2 Marks]

- c. How much time will a teenager spend on internet if he/she has 75 minutes of free time on a particular day? [1 Mark]
- **d.** Calculate the correlation coefficient, r. What does this value indicate? [3 Marks]

End of Page

FORMULA LIST

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$E(X) = \mu_X = \sum_{x \in D} x \cdot p(x)$$

$$V(X) = \sigma^2 = \left[\sum_{D} x^2 \cdot p(x)\right] - \mu^2 = E(X^2) - \left[E(X)^2\right]$$

$$b(x; n, p) = {}^{n}C_{x}p^{x}q^{n-x}$$

$$P(X=x) = f(x; \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Joint Continuous Distribution

$$E(XY) = \iint_{x} xy \cdot f(x, y) \, dy \, dx$$
$$cov(X, Y) = E(XY) - E(X) \cdot E(Y)$$

Sampling Distribution Standardize a sample mean value : $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$

Standardize a sample proportion value: $z = \frac{\hat{p} - p}{\sqrt{pq/p}}$

Confidence Interval

$$\bar{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$n = \left(\frac{Z_{\alpha/2} \sigma}{\varepsilon}\right)^{2}$$

$$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$
 OR $\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$

$$\begin{split} \hat{p} - Z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

 $(1-\alpha)100\%$ confidence internal for population variance $=\left(\frac{(n-1)s^2}{\chi_{\alpha/2}^2}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}\right)$

Hypothesis Test

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

Linear Regression and Correlation

$$S_{xy} = \sum xy - \frac{\sum x \sum y}{n}$$

$$S_{xx} = \sum x^2 - \frac{\left(\sum x\right)^2}{n}$$

$$S_{yy} = \sum y^2 - \frac{\left(\sum y\right)^2}{n}$$

$$\beta_1 = \frac{S_{xy}}{S_{xx}}$$

$$\beta_0 = \overline{y} - \beta_1 \overline{x}$$

The regression line equation: $\hat{y} = \beta_0 + \beta_1 x$

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

Table A.3 Standard Normal Curve Areas

 $\Phi(z) = P(Z \leq z)$

Standard narmal density function

						* 1							
ž	.00	.04	.62	.03	.84	405	.66	.97	.08	.09			
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002			
-33	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003			
-3.2	,11007	.0007	,0005	.0006	.0006	.0006	.0006	.0005	.0005	.0005			
-3.1	.0010	.0000	.0009	.0009	.0008	3000	30000	.0008	.0007	.0007			
~3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010			
-2.9	.0019	.0018	.0017	.0017	0015	,0016	.0015	.0015	.0014	.0014			
-28	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019			
=2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026			
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036			
-2.5	.9062	.0050	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0038			
-2.4	.0082	.0080	.0078	.0075	.0073	490771	.0069	.0068	.0066	.0064			
~2.3	.0107	.0104	.0102	.0099	0096	.0094	.0091	.0089	-0087	.0084			
-2.7	.0139	.0136	.0132	.0129	.0125	.D122	.0119	.0116	0113	0110			
-2.1	0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143			
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	0192	.0188	0183			
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233			
-1.8	.0359	.0352	.0344	.0336	.0329	.0322	.0314	.0307	-0301	.0294			
-1.7	.0446	.0436	11427	.0418	.0409	.0401	.0392	.0384	.0375	.0367			
] 6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	0455			
-15	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	0559			
-1 <i>A</i>	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.0681			
-13	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823			
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985			
-[,]	.1357	.1335	.1314	1292	.1271	.1251	.1230	.1210	.1190	.1170			
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379			
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	1685	.1660	.1635	.1611			
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	_1894	1867			
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	2148			
-0.6	2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	2483	.2451			
-0,5	.3085	.3050	.3015	.2981	.2946	2912	.2877	2843	.2810	.2776			
×0.4	3446	.3409	.3372	.3336	3300	.3264	.3228	.3192	3156	.3121			
-0.3	.3821	.3783	.3745	.3707	3669	.3632	.3594	3557	3520	,3482			
-0.2	4207	4168	.4129	.4090	4052	4013	.3974	3936	3897	3859			
~0.I	.4602	.4562	4522	.4483	4443	.44()4	4364	4325	.4286	4247			
-0.0	.5000	.4960	4920	4880	4840	.4801	.4761	4721	.4681	.4641			

Table A.3 Standard Normal Curve Areas (cont.)

 $\tilde{\Phi}(z)=P(Z\leq z)$

2	.00	01	.02	.03	.04	.05	.86	1 07	.48	.09
0.0	.5000	.5040	.5080	.5120	.5160	5199	.5239	5279	5319	.5359
0.1	5398	.5438	.5478	5517	.5557	.5596	5636	5675	.5714	.375.
0.2	5793	.5832	.5871	.5910	.5948	.5987	.5026	.5064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.5406	-6443	.6480	.651
0.4	6554	.6591	.6628	.6664	.6700	.6736	.6772	.5838	.6844	.6875
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	7389	.7422	.7454	.7486	.7517	7549
0.7	.7580	.7611	7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	7939	.7967	.7995	.8023	.8051	.8078	.8106	.8135
0.9	.8159	.8186	.8212	.8238	,8264	8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	4599	.8621
1.1	.8643	.8665	8666	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8388	.8907	,8925	.8944	.8962	.8980	.8997	.9015
1,3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	9192	.9207	.9222	.9236	.9251	.9265	9278	.9292	.9306	.9319
1.5	9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	9452	.9463	.9674	9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	9554	.9564	.9573	.9582	.9591	,9599	.9608	.9616	.5/625	9633
1.8	9641	,9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9350	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9961	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	9922	.9925	.9427	,9929	9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	,9946	.9948	.9949	.9951	.9952
2.6	,9953	.9955	.9956	.9957	.9959	.9960	.9961	9962	.9963	.9964
1.7	.9963	.9966	.9967	.9968	9969	.9970	.9971	.9972	.9973	.9974
	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	,9980	.9981
<u>j</u> g	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
1,1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	9992	,9993	9993
2	.9993	.9993	9994	.9994	.9994	9994	.9994	.9995	.9995	.9995
3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	9996	.9996	.9997
.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	9998

7/9

Table A.S Critical Values for & Distributions

			- 2-40 Mar No. (Cold Washing Chart : 124			D 4 _{66,0}	
*	.10	.05	.025	.01	-005	.001	.4005
I	3.078	6.314	12,706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7,173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	
6	1.440	1.943	2.447	3.143	3.707	5.673 5.20%	6.869
7	L415	1.895	2.365	2.998	3,499	4.785	5.959
8	1.397	1.860	2.306	2.896	3.355		5.406
9	1.383	1.833	2.262	2.821	3.250	4.501 4.297	5,041
10	1.372	1.812	2.228	2.764			4.781
11	1.363	1.796	2.201	2.718	3.169	4.[44	4.587
12	1.356	1,782	2.179	2.681	3.106	4.025	4.437
13	1.350	1.771	2.160	2.550	3.055	3.930	4.318
14	1.345	1.761	2.145	2.624	3.012	3.852	4.224
15	1.341	1.753			2.977	3.787	4.140
16	1.337	1.746	2,331	2,602	2.947	3.733	4.973
17	1.333	1.740 L.740	2.120	2.583	2.921	3.686	4.015
18	1.330	1.734	2.110	2.567	2.898	3.646	3.965
19	1.328		2.101	2.552	2,878	3.610	3.922
		1.729	2.093	2.539	2.861	3.579	3,883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1_323	1.72[2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
25	1.319	1.714	2.069	2.500	2,807	3.485	3.767
24	1.318	1,711	2,064	3.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	
26	1.315	1.705	2.056	2.479	2,779	3.435	3.725
27	1.314	1.703	2.052	1.473	2.771	3.421	3.707
26	1.313	1.701	2.048	2,467	2.763	3,408	3.690
29	E311	1.699	2.045	2.462	2.756	3.396	3,674
30	1.310	1.697	2.042	2.457			3.669
32	1.309	1.694	2.037		2.750	3.385	3.646
34	1.307	1.691	2.032	2,449	2.738	3.365	3.622
36	1.306	1.686	2.028	2.441 2.434	2.728	3.348	3,601
38	1.304	1.686	2.024		2,719	3.333	3.582
(4)				2.429	2.712	3.319	3,566
997 \$10	1.303	1.684	2.021	2.423	2.704	3,307	3.551
90 90	1.299	1.676	2.009	2.403	2.678	3.262	3.496
-	1.296	1.671	2.000	2.390	2.660	3.232	3,460
10	1.289	1.658	1.980	2,358	2.617	3.160	3.373
17	1,282	1.645	1.960	2.325	2.576	3.090	3,291

Table A.7 Critical Values for Chi-Squared Distributions

14	.995	.99	.975	.95	.90	.10	A5	.025	.03	.005
1	0.000	0.000	0.001	0.004	N DEC					73/13
2	0.010	0.020	0.05	0.103	0.016 0.211	2.706	3.843	5.025	6.637	7.88
3	0.072	0.115	0.216	0.352	0.584	4.606	5.992	7.378	9.210	10.59
4	0.207	0.297	0.484	0.711	1.064	6.251	7.815	9,348	11,344	12.83
5	0.412	0.554	0.831	L.145	1,084	7,779	9.488	11.143	13.277	14.86
6	0.576	0.872				9.236	11.070	12.832	15.085	16,74
7	0.989	1.239	1.237	1.635	2.304	10.645	12,592	4.440	16.812	18,54
8	1.344	1.546	1.690	2.167	2.833	12.017	14.067	16.012	18,474	20.27
9	1.735	2.088	2.150 2.700	2733	3.490	13,362	15.507	17.534	20.090	21.95
io I	2.156	2.558		3.325	4,168	14.684	16,919	19.022	21.665	23.58
			3.247	3.940	4.865	13.987	18.307	20.483	23.209	25.18
1	2.603	3.053	3.416	4.575	5.57R	17.275	19.675	21.920	24.724	26.75
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23,337	26.217	26.300
13	3,565	4.107	5.009	5.892	7.041	19.812	22,362	24,735	27.687	29.811
14	4.075	4.660	5.629	6.571	7.790	21,064	23.685	26.119	29.141	31.319
15	4.600	5,229	6.262	7,261	8.547	22.307	24.996	27.488	30.577	32,799
16	5.142	5.812	6.908	7.962	9.312	23.542	26,296	38.845	32,000	34.26
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35,716
18	6.265	7.015	8.231	9.390	10.865	23.989	28.869	31.526	34.805	37,150
19	6.843	7.632	8.906	10.117	11.651	27,203	30.143	32.852	36.190	38.580
20	7,434	8.260	9,591	10.851	12.443	28.412	31,410	34.170	37.566	39:997
11	8.033	8.897	10.283	11.591	13,240	29,615				
2	8.643	9,542	10.982	12.338	14.042	30.813	32.670	35.478	38,930	41.399
3	9.260	10.195	11.688	13,090	14.848	32.007	33.924 35.172	36.781	40.289	42.796
4 [9.886	10.856	12,491	13,848	15,659	33,196	36,415	38.075	41.637	44.179
5 [10.519	11.523	13.120	14.611	16.473	34.381	37.652	39,364	42.980	45.558
6	11.160	12.198	13.844	15,379				40.646	44.313	46,925
7	11.807	12.878	14,573	16.151	17,292	35.563	38.885	41.923	45.642	48,290
8	12.461	13.565	15.308	16.928	18.114	36,741	40.113	43.194	46.962	49.642
9	13.120	14.256	16.147	17.768	18.939	37.916	41,337	44.461	48.278	.50,993
0	13.727	14.954	16.791		19.768	39.087	42.557	45,772	49.586	52.333
1	14.457			18,493	20.599	40.256	43,773	46,979	50.892	53.672
2	15.134	15.655	17.538	19.280	21.433	41.477	44,985	48.231	52,190	55,000
3	15.134	16,362	18.291	20,072	22.271	42.585	46.194	49.480	53.486	56.328
4	16.501	17.073	19.046	20.866	23.110	43.745	47.400	50,724	54.774	57.646
5	17.191	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964
•		18,508	20.569	22.465	24.796	46.059	49.802	53,203	57,340	60,272
6	17.887	19,233	21.336	23.269	25.643	47,212	50.998	54,437	58,619	61.581
7	18.584	19.960	22,105	24.075	26,492	48,363	52,192	55.667	59.891	62.880
8	19.289	20,691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	(A.181
9	19.994	21.425	23.654	25.695	28.196	50.660	54.572	58.119	62,426	65.473
)	20.706	22.164	24,433	26.509	29.050	51.805	55.758	59.342	63.691	66.766
	40, χ ² ≈					-1		PLA 4PLA BY	11,3.09)	90.700

For
$$\nu > 40$$
, $\chi^2_{\mu,\nu} = \nu \left(1 - \frac{2}{9\nu} + z_{\rm w} \sqrt{\frac{2}{9\nu}} \right)^2$