

www.**eritecampinas**.com.br

p. 1

PROFESSOR DANILO

FOLHA 14

Apostila 4 ÍNDICE

- Ondas estacionárias
 - Lista: Ondas estacionárias

ONDAS ESTACIONÁRIAS

Veja teoria abaixo e discussão com o professor utilizando programa gráfico. Vamos ver mais detalhes em exercícios.

AMBAS AS EXTREMIDADES FIXAS

- Imagine uma onda produzida em uma corda com ambas as extremidades presas
- Quando refletida ela volta com inversão de fase

- Se o comprimento do fio tiver tamanho adequado dizemos que a onda no fio é uma onda estacionária, pois vemos a onda como se estivesse parada
- Vamos estudar os harmônicos nesse caso

Q. 1 – ONDA ESTACIONÁRIA EM CORDAS – PRIMEIRO HARMÔNICO

Q. 2 – ONDA ESTACIONÁRIA EM CORDAS – SEGUNDO HARMÔNICO

ONDAS ESTACIONÁRIAS - 2° ANO - 28/10/2024

Q. 3 – ONDA ESTACIONÁRIA EM CORDAS – TERCEIRO HARMÔNICO

Q. 4 – ONDA ESTACIONÁRIA EM CORDAS – QUARTO HARMÔNICO

Q. 5 – ONDA ESTACIONÁRIA EM CORDAS – n-ÉSIMO HARMÔNICO

www.**eritecawbinas**.com.br

PROFESSOR DANILO

RESUMINDO O QUE APRENDEMOS:

TUBOS SONOROS

- Instrumentos musicais cujo som é produzido por sopro segue a mesma lógica
- Em geral um dos lados é aberto e o outro é ou aberto ou fechado
 - Quando ambos os lados são abertos, chamamos de tubo aberto;
 - Quando uma extremidade é fechada e a outra aberta chamamos de tubo fechado.

AMBAS AS EXTREMIDADES ABERTAS/LIVRES

Q. 6 – ONDA ESTACIONÁRIA EM TUBO ABERTO – PRIMEIRO HARMÔNICO

ONDAS ESTACIONÁRIAS – 2° ANO – 28/10/2024 Q. 7 – ONDA ESTACIONÁRIA EM TUBO ABERTO – SEGUNDO

Q. 8 – ONDA ESTACIONÁRIA EM TUBO ABERTO – TERCEIRO HARMÔNICO

Q. 9 – ONDA ESTACIONÁRIA EM TUBO ABERTO – QUARTO HARMÔNICO

www.**ecitecampinas**.com.br

PROFESSOR DANILO

Q. 10 – ONDA ESTACIONÁRIA EM TUBO ABERTO – n-ÉSIMO HARMÔNICO

RESUMINDO O QUE APRENDEMOS:

Figura 1: Representação de um tubo sonoro com ambas as extremidades abertas e em seu primeiro harmônico

1° Harmônico	$\lambda_1 = \frac{2L}{1}$
2° Harmônico	$\lambda_2 = \frac{2L}{2}$
3° Harmônico	$\lambda_3 = \frac{2L}{3}$
4° Harmônico	$\lambda_4 = \frac{2L}{4}$
•••	•••
n° Harmônico	$\lambda_n = \frac{2L}{n}$

ONDAS ESTACIONÁRIAS - 2° ANO - 28/10/2024

UMA EXTREMIDADE ABERTA E OUTRA FECHADA

Q. 11 – ONDA ESTACIONÁRIA EM TUBO ABERTO – PRIMEIRO HARMÔNICO

Q. 12 – ONDA ESTACIONÁRIA EM TUBO ABERTO – SEGUNDO HARMÔNICO

Vamos começar tentando desenhar uma onda com a metade do comprimento de onda do primeiro harmônico começando pelo nó à rireita.

Temos uma contradição.

Se, no entanto, começarmos pelo ventre a esquerda, teremos outra contradição:

Conclusão:

HARMÔNICOS PARES NÃO EXISTEM PARA TUBOS FECHADOS.

Q. 13 – ONDA ESTACIONÁRIA EM TUBO ABERTO – TERCEIRO HARMÔNICO

www.**eritecampinas**.com.br

PROFESSOR DANILO

ONDAS ESTACIONÁRIAS – 2° ANO – 28/10/2024

Q. 14 – ONDA ESTACIONÁRIA EM TUBO ABERTO – QUARTO HARMÔNICO

Q. 15 – ONDA ESTACIONÁRIA EM TUBO ABERTO – n-ÉSIMO HARMÔNICO

RESUMINDO O QUE APRENDEMOS:

Figura 2: Representação de um tubo sonoro com uma extremidade fechada e outra aberta. Como tubos soboros com ambas as extremidades fechadas é impossível para um instrumento musical, dizemos que isso é um **tubo fechado**

1° Harmônico	$\lambda_1 = \frac{4L}{1}$
2° Harmônico	Não existe
3° Harmônico	$\lambda_3 = \frac{4L}{3}$
4° Harmônico	Não existe
•••	
n° Harmônico	$\lambda_n = \frac{4L}{n}$

Note que não existe os harmônicos pares