Convexity, Global Minima and Global Landscape

Ruoyu Sun

This Lecture

- Convexity and Global Minima
- ► After this lecture, you will be able to
 - describe sufficient conditions for existence of global optima
 - check whether a function is convex
 - understand the importance of convexity
 - plot the optimization landscape of a function
 - compute all stationary points and global optima of a quadratic minimization problem

Outline

Existence of Optimal Solutions

Convexity, Global Optimality Condition

Visualization of Landscape

Case Study: Quadratic Minimization

Recall: Limitation of Optimality Conditions

Recall tentative-method 1: check all stationary points, and among them find x^* with the minimal function value.

However, x^* may or may not be a global-min.

Correction:

- **Positive** side: verify that $f(x) \ge f(x^*), \forall x$ (then x^* is global-min)
 - ▶ Eg1: in machine learning applications, the loss $f \ge 0$. so if a candidate solution x^* has a value $f(x^*) = 0$, then done.
- ▶ **Negative** side: show that f(x) can go to $-\infty$ (then no global-min exists)

Next: Let us analyze the cause, and propose other corrections.

Failure of Optimality Condition

- **Example 1**: $f(x) = x^3$.
- ▶ 1st order optimality condition: $3(x^*)^2 = 0$, i.e. $x^* = 0$.
- ▶ 2nd order optimality condition (necessary): $\nabla^2 f(x^*) = 6x^* = 0$.
- $x^* = 0$ is the only "candidate", but not a global-min:

What if Sufficient Condition Holds?

- In Example 1, only necessary conditions are satisfied.
- What if sufficient conditions are also satisfied? Could you give one counter-example?
- **Example 2:** $f(x) = x^2 x^4$.

 $\boldsymbol{x}^* = \boldsymbol{0}$ is a unique local-min satisfying the sufficient condition, but ...

this unique local-min is NOT a global-min

Is Lower-bounded Enough?

- In the above two examples, the function has no lower bound, so no global-min exists.
- ▶ Is "lower bounded" enough for existence of global-min?

Conjecture 1: Consider a differentiable function f. Suppose:

- ▶ f has a global lower bound, i.e, $f(x) \ge f_0, \forall x$.
- ▶ The set of stationary points is S, and $f(x^*) \leq f(x), \forall x \in S$.

Then x^* is the global minimum of f^* .

Counter-example to Conjecture 1

Example 3:

$$\min_{x \in \mathbb{R}} \exp(-x^2) = ? \tag{1}$$

Since $f'(x) = -2x \exp(x^2)$, we have: $f'(x^*) = 0$ iff $x^* = 0$.

- ▶ Thus x^* is the unique stationary point.
- ▶ In addition, $\exp(-x^2) \ge 0, \forall x$; i.e., has a lower bound 0

The conjecture states: $x^* = 0$ is a global-min.

Counter-example to Conjecture 1

Let's draw the plot of $f(x) = \exp(-x^2)$:

 $x^* = 0$ is not a global-min!

In fact, the function has no global-min!

▶ It has global infimum ∞ and $-\infty$, and infimum value 0

How to Fix

Answer: besides applying Method 1 and 2, only need to ensure existence of global-min

Claim 1: Consider a differentiable function f. Suppose:

- ► (C1) *f* has at least one global minimizer;
- ▶ (C2) The set of stationary points is S, and $f(x^*) \leq f(x), \forall x \in S$.

Then x^* is a global minimizer of f^* .

Think: how does this extra condition fix the logical gap?

Proof: Existence of Global-min is a Fix (reading)

Claim 1 (repeat): Consider a differentiable function f. Suppose:

- ► (C1) *f* has at least one global minimizer;
- ▶ (C2) The set of stationary points is S, and $f(x^*) \leq f(x), \forall x \in S$.

Then x^* is a global minimizer of f^* .

Proof: Suppose \hat{x} is a global minimizer of f, i.e.,

$$f(\hat{x}) \le f(x), \forall x. \tag{2}$$

By the necessary optimality condition, we have $\nabla f(\hat{x})=0,$ thus $\hat{x}\in S.$ By (C2), we have

$$f(x^*) \le f(\hat{x}). \tag{3}$$

Combining (2) and (3), we have $f(\hat{x}) \leq f(x^*) \leq f(\hat{x})$, thus $f(\hat{x}) = f(x^*)$. Plugging into (2), we have $f(x^*) \leq f(x), \forall x$. Thus x^* is a global minimizer of f^* . \square

Local-min and Global-min On a Set

- ▶ **Objective function** $f: \mathbb{R}^n \to \mathbb{R}$ is a continuous function
- ▶ Optimization variable $x \in X$
- ▶ local minimum of f on X: $\exists \epsilon > 0$ s.t. $f(x) \geq f(\hat{x})$, for all $x \in X$ such that $||x \hat{x}|| \leq \epsilon$; i.e., x^* is the best in the intersection of a small neighborhood and X
- ▶ Global minimum of f on X: $f(x) \ge f(x^*)$ for all $x \in X$
- "Strict global minimum", "strict local minimum" "local maximum", "global maximum" of f on X are defined accordingly

Existence of Global-min

- Bolzano-Weierstrass Theorem (compact domain) Any continuous function f has at least one global minimizer on any compact set X.
 - That is, there exists an $x^* \in X$ such that $f(x) \ge f(x^*), \forall x \in X$.
- ▶ Corollary (bounded level sets): Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is a continuous function. If for a certain c, the level set

$$\{x \mid f(x) \le c\} \tag{4}$$

is non-empty and compact, then the global minimizer of f exists, i.e., there exists $x^* \in \mathbb{R}^d$ s.t.

$$f(x^*) = \inf_{x \in \mathbb{R}^d} f(x).$$

- ▶ Corollary (coercive): Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is a continuous function. If $f(x) \to \infty$ as $||x|| \to \infty$, then the global minimizer of f over \mathbb{R}^d exists.
 - " $f(x) \to \infty$ as $||x|| \to \infty$ " means: for any sequence $x^k \to \infty$, we have $f(x^k) \to \infty$.

Examples: Checking Existence

▶ **Example 1**: $f(x) = x^3$. Level sets $\{x \mid x^3 \le c\}$ is $\{x \mid x \le c^{1/3}\}$: unbounded.

If $x \to -\infty$, then $f(x) \to -\infty$. So NOT coercive.

Example 2: $f(x) = x^2$.

Level set $\{x \mid x^2 \le 1\}$ is $\{x \mid -1 \le x \le 1\}$: non-empty compact.

Thus there exists a global minimum.

14/44

Coercive implies One Bounded Level Set (reading)

 $\label{eq:coercive} \textbf{Coercive} \Rightarrow \textbf{one non-empty bounded level set}; \textbf{but not the other way}.$

▶ **Eg**: Mexican hat function has a bounded level set $\{x \mid f(x) \le -0.1\}$, but NOT coercive.

Claim (all level sets bounded \Leftrightarrow coercive): Let f be a continuous function, then f is coercive iff $\{x \mid f(x) \leq \alpha\}$ is compact for any α .

Proof:

Proof. We first show that the coercivity of f implies the compactness of the sets $\{x \mid f(x) \leq \alpha\}$. We begin by noting that the continuity of f implies the closedness of the sets $\{x \mid f(x) \leq \alpha\}$. Thus, it remains only to show that any set of the form $\{x \mid f(x) \leq \alpha\}$ is bounded. We show this by contradiction. Suppose to the contrary that there is an $\alpha \in \mathbb{R}^n$ such that the set $S = \{x \mid f(x) \leq \alpha\}$ is unbounded. Then there must exist a sequence $\{x^\nu\} \subset S$ with $\|x^\nu\| \to \infty$. But then, by the coercivity of f, we must also have $f(x^\nu) \to \infty$. This contradicts the fact that $f(x^\nu) \leq \alpha$ for all $\nu = 1, 2, \ldots$ Therefore the set S must be bounded.

Let us now assume that each of the sets $\{x \mid f(x) \leq \alpha\}$ is bounded and let $\{x^*\} \subset \mathbb{R}^n$ be such that $\|x^\nu\| \to \infty$. Let us suppose that there exists a subsequence of the integers $J \subset \mathbb{N}$ such that the set $\{f(x^*)\}_J$ is bounded above. Then there exists $\alpha \in \mathbb{R}^n$ such that $\{x^*\}_J \subset \{x \mid f(x) \leq \alpha\}$. But this cannot be the case since each of the sets $\{x \mid f(x) \leq \alpha\}$ is bounded while every subsequence of the sequence $\{x^*\}$ is unbounded by definition. Therefore, the set $\{f(x^*)\}_J$ cannot be bounded, and so the sequence $\{f(x^*)\}$ contains no bounded subsequence, i.e. $f(x^*) \to \infty$.

Use of Optimality Condition: Finding Optimal Solutions

► How to find a global minimum? (modify Tentative-method-1 & 2)

Method of finding-global-min-among-stationary-points (FGMSP):

Step 0: Verify coercive or bounded level set:

- **Case 1**: success, go to Step 1.
- Case 2: otherwise, try to show non-existence of global-min. If success, exit and report "no global-min exists".
- Case 3: cannot verify coercive or bounded level set; cannot show non-existence of global-min. Exit and report "cannot decide".

Step 1: Find all stationary points (candidates) by solving $\nabla f(\mathbf{x}) = 0$;

Step 2 (optional): Find all candidates s.t. $\nabla^2 f(\mathbf{x}) \succeq 0$.

Step 3: Among all candidates, find one candidate with the minimal value. Output this candidate, and report "find a global min".

Remarks

Remark 1: The method in the last page is not a "practical algorithm".

- ▶ Main reason: finding *all* stationary points can be quite hard.
- Educational-algorithm: find global-min for very simple functions in homework/exam.

Remark 2: "cannot decide" is due to the lack of available tools.

 For any given function, either there exists a global-min, or there does not exist a global-min.
 But we may or may not be able to tell which case it is.

Correct Use of Optimality Condition

- **Example 1:** $\min \frac{1}{2}(x-b)^2$
- ▶ Step 0: Since $f(x) \to \infty$ as $|x| \to \infty$, f is coercive. Step 1: Set gradient $x^* - b = 0$, get $x^* = b$. It is the unique global-min.
- **Example 2:** min $x^2 + 2y^2 + 3xy$.
- **Step 0**: Denote $f(x,y) = x^2 + 2y^2 + 3xy = (x+1.5y)^2 0.25y^2$.
 - Let y = M, x = -1.5M, then $f(x, y) = -0.25M^2$.
 - ▶ As $M \to \infty$, $f(x,y) \to -\infty$, so there is no global minimizer!

Outline

Existence of Optimal Solutions

Convexity, Global Optimality Condition

Visualization of Landscape

Case Study: Quadratic Minimization

Convexity and Optimal Conditions

- Sufficient condition for global optimality? Difficult to find.
- Most well-known conditions:

Convexity + first order condition \Rightarrow global optimal.

For a convex function, any stationary point is a global-min.

Convexity and Optimal Conditions

- ▶ Convex set C: $x, y \in C$ implies $\lambda x + (1 \lambda)y \in C$, for any $\lambda \in [0, 1]$.
- ▶ Convex function (0-th order): f is convex in a convex set C iff $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y), \forall x, y \in C, \forall \alpha \in [0, 1].$
- **Property** (1st order) If f is differentiable, then f is convex iff

$$f(z) \ge f(x) + (z - x)' \nabla f(x), \quad \forall x, z \in C.$$

▶ **Property** (2nd order): If *f* is twice differentiable, then *f* is convex iff

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in C.$$

Strictly convex: when ≥ becomes > in any of the above relations.

Illustration of Convex Sets

Illustration of Convex Sets

(c) Convex set

(d) Non-convex set

Illustration of Convex Functions

Illustration of Non-Convex Functions

$$f(\mathbf{x}) = 418.9829d - \sum_{i=1}^{d} x_i \sin(\sqrt{|x_i|})$$

Convex and Non-convex Functions

Convex Functions:

- Linear: a'x + b
- exponential: e^x , $-\log x$
- (convex) quadratic: x^2 , $||Ax b||^2$

Non-convex Functions:

- ▶ Bilinear: $(wv 1)^2$, $||UV M||_F^2$;
- Neural network: $||Y U\phi(VX)||_F^2$; or

$$\min_{v \in \mathbb{R}^{m \times 1}, W \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} (y_i - v^T \sigma(W x_i))^2,$$

where $(x_k, y_k), k = 1, 2, \dots, n$ are the training data.

See more non-convex functions at https://www.sfu.ca/ ssurjano/optimization.html

Convexity and Optimal Conditions

- **Proposition 1** (Prop. 1.1.2 of textbook): Let $f: X \longmapsto \mathbb{R}$ be a convex function over the convex set X.
 - (a) A local-min of f over X is also a global-min over X.
 - (b) If X is open (e.g. \mathbb{R}^n), then $\nabla f(x^*) = 0$ is a necessary and sufficient condition for x^* to be a global minimum.
- Proof based on a property (Prop. B.3): If f is differentiable over C, then f is convex iff

$$f(z) \ge f(x) + (z - x)' \nabla f(x), \quad \forall x, z \in C.$$

Concave Function and Optimal Conditions

Definition: A function f is a concave function iff -f is a convex function.

Corollary 1 (corollary of Prop 1): Let $f: X \longrightarrow \mathbb{R}$ be a **concave** function over the convex set X.

- (a) A local-max of f over X is also a global-max over X.
- (b) If X is open (e.g. \mathbb{R}^n), then $\nabla f(x^*) = 0$ is a necessary and sufficient condition for x^* to be a global maximum.

Some functions are more "convex"

Convex functions may look quite different from each other.

Left to right: more and more "convex".

How to measure the "degree of convexity"?

Strong convexity

Definition: We say $f:C\to\mathbb{R}$ is a μ -strongly convex function in a convex set C if f is differentiable and

$$\langle \nabla f(w) - \nabla f(v), w - v \rangle \ge \mu \|w - v\|^2, \quad \forall w, v \in C.$$
 (5)

▶ If f is twice differentiable, then f is μ -strongly convex iff

$$\nabla^2 f(x) \succeq \mu I, \quad \forall x \in C.$$

- ▶ Namely, all eigenvalues of the Hessian at any point is at least μ .
- if f(w) is convex, then $f(w) + \frac{\mu}{2} ||w||^2$ is μ -strongly convex.
 - In machine learning, easy to change a convex function to a strongly convex function: just add a regularizer

Outline

Existence of Optimal Solutions

Convexity, Global Optimality Condition

Visualization of Landscape

Case Study: Quadratic Minimization

Non-convex functions

Convex optimization is a very important branch of optimization, since they are tractable (e.g. Steven Boyd's book "Convex optimization".)

Nonconvex problems are much harder, since there may exist sub-optimal local-min (or stationary points).

Naive division: convex = easy; non-convex = hard.

However, some non-convex problems are much easier than others.

One way to get a bit more understanding of an unconstrained problem: **visualization**.

Visualization of Non-convex functions

Two types of visualization:

- ▶ **Image** (θ, f) , where θ is the argument, $f(\theta)$ is the function value.
- ▶ Contour (level sets): $\{\theta \mid f(\theta) \leq c\}$, for c=0,0.1,0.3,0.5,1,1.5, etc. Can color it .

One example of "nice" non-convex function: $F(v, w) = (vw - 1)^2$.

Figure: Visualization of $(vw-1)^2$. Left: 3D plot. Right: contour.

Coding tips: for matlab, you can search "Creating 3-D plots, Mathworks" at google.

Check commands "plot", "surf", "contour"

Visualization of Non-convex functions: High-dim functions

Plots only show low-dimension (at most 2 or 3), what about **high-dim**?

Idea: Projection onto low-dim space!

Consider visualizing a function $f(\theta)$, where $\theta \in \mathbb{R}^d$.

Method: 1) Pick a point $\hat{\theta}$ that you want to visualize around;

- 2) Pick two vectors $u, v \in \mathbb{R}^d$ (e.g. random Gaussian vectors);
- 3) Define a new function $f_{low}(s,t) = f(\hat{\theta} + su + tv)$. Visualize $f_{low}(s,t)$ for $s,t \in [-1,1]$.
 - ▶ To visualize it, can draw 3D plot $(s, t, f_{low}(s, t)), s, t \in [-1, 1]$, or draw the contour.

Practical tips: To get a good result, you may need to adjust u, v.

- Eg1: Multiply u, v by constant C (e.g., 0.01, 10, 1000) to see how the plot changes
- ► Eg2: If $\angle(u,v)$ is too small, then you may re-sample u,v

Visualization of Non-convex functions

Figure: 3D Visualization of two neural networks. Left: bad; right: good.

Figure: Contour Visualization of four neural networks.

Outline

Existence of Optimal Solutions

Convexity, Global Optimality Condition

Visualization of Landscape

Case Study: Quadratic Minimization

Unconstrained Quadratic Optimization: Toy Problems

Toy Problem 1:

$$\min_{x,y \in \mathbb{R}} x^2 + y^2 + \alpha xy.$$

Discuss the set of stationary points, global minima and global optimal value for every value of α .

Toy Problem 2:

$$\min_{x,y\in\mathbb{R}}y^2-x.$$

Solution to Toy Problem 1

Toy Problem 1: $\min_{x,y\in\mathbb{R}} f(x,y) \triangleq x^2 + y^2 + \alpha xy$.

Step 1: First order condition: $2x^* + \alpha y^* = 0$, $2y^* + \alpha x^* = 0$.

- We get $4x^* = -2\alpha y^* = \alpha^2 x^*$. So $(4 \alpha^2)x^* = 0$.
- ▶ Case 1: $\alpha^2 = 4$. If $x^* = -\alpha y^*/2$, then (x^*, y^*) is a stationary point.
- ► Case 2: $\alpha^2 \neq 4$. Then $x^* = 0$; $y^* = -\alpha x^*/2 = 0$. So (0,0) is stat-pt.

Step 2: Check convexity. Hessian
$$\nabla^2 f(x,y) = \begin{pmatrix} 2 & \alpha \\ \alpha & 2 \end{pmatrix}$$
.

Eigenvalues λ_1, λ_2 satisfy $(\lambda_i - 2)^2 = \alpha^2, i = 1, 2$.

Thus $\lambda_{1,2}=2\pm |\alpha|$.

- ▶ If $|\alpha| \le 2$, then $\lambda_i \ge 0, \forall i$. Thus f is convex. Any stat-pt is global-min.
- ▶ If $|\alpha| > 2$, at least one $\lambda_i < 0$, thus f is not convex.

Step 3: For non-convex case ($|\alpha| > 2$), prove no lower bound.

$$f(x,y)=(x+\alpha y/2)+(1-\alpha^2/4)y^2$$
. Pick $y=M, x=-\alpha M/2$, then $f(x,y)=(1-\alpha^2/4)M^2\to -\infty$ as $M\to \infty$.

Summary: If $|\alpha| > 2$, no global-min, (0,0) is stat-pt;

if $|\alpha|=2$, any $(-0.5\alpha t,t),t\in\mathbb{R}$ is a stat-pt and global-min;

if $|\alpha| < 2$, (0,0) is the unique stat-pt and global-min.

What is Special About Toy Problem 1?

We have studied a similar problem before $(x^2 + 2y^2 + 3xy)$; toy problem 1 considers more general α .

Observation 1: Compare to FGMSP method, here we introduce an extra step of checking convexity

we do not check coercive or bounded level sets

Observation 2: For cvx case, stat-pts are global-min. For non-convex case, no global-min exists.

- Implication: we can either find a global-min, or decide "no global-min exists"
- There is no case of "cannot decide" (which might happen in FGMSP method)

Next: this property holds for general quadratic problems!

Unconstrained Quadratic Optimization

$$\begin{aligned} & \text{minimize} & & f(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{Q}\mathbf{w} - \mathbf{b}^T\mathbf{w} \\ & \text{subject to} & & \mathbf{w} \in \mathbb{R}^d, \end{aligned}$$

where \mathbf{Q} is a symmetric $d \times d$ matrix. (what if non-symmetric?)

Necessary condition for (local) optimality

$$\mathbf{Q}\mathbf{w} = \mathbf{b}, \quad \mathbf{Q} \succeq 0 \tag{6}$$

- ▶ Case 1: $\mathbf{Q}\mathbf{w} = \mathbf{b}$ has no solution, i.e. $\mathbf{b} \notin R(\mathbf{Q})$. No stationary point, can achieve $-\infty$ (how?).
- ▶ Case 2: Q is not PSD (f is non-convex) No local-min. Can achieve $-\infty$ (how?).
- ▶ Case 3: $\mathbf{Q} \succeq 0$ and $\mathbf{b} \in R(\mathbf{Q})$.

Any stationary point is a global optimal solution.

40/44

Proof (reading)

Claim 1: If Qw = b has no solution, then: (i) there is no stationary point; (ii) f(w) can achieve $-\infty$.

Proof: (i) is because a stationary point must satisfy $\mathbf{Q}\mathbf{w} = \mathbf{b}$. Now we prove (ii). \mathbf{Q} must be singular (otherwise $\mathbf{Q}\mathbf{w} = \mathbf{b}$ has a solution). We can write $\mathbf{b} = \mathbf{b}_{\parallel} + \mathbf{b}_{\perp}$, and $\mathbf{w} = \mathbf{w}_{\parallel} + \mathbf{w}_{\perp}$, where \mathbf{b}_{\parallel} , $\mathbf{w}_{\parallel} \in R(\mathbf{Q})$ and \mathbf{b}_{\perp} , $\mathbf{w}_{\perp} \perp R(\mathbf{Q})$. By $\mathbf{Q}\mathbf{w} = \mathbf{b}$ has no solution, we have $\mathbf{b}_{\perp} \neq 0$. Then

$$f(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{Q} \mathbf{w} - \mathbf{b}^T \mathbf{w} = \frac{1}{2} \mathbf{w}_{\parallel}^T \mathbf{Q} \mathbf{w}_{\parallel} - \mathbf{b}_{\parallel}^T \mathbf{w}_{\parallel} - \mathbf{b}_{\perp}^T \mathbf{w}_{\perp}$$

Pick $\mathbf{w}_{\perp} = M\mathbf{b}_{\perp}$ and $\mathbf{w}_{\parallel} = 0$, we have $f(\mathbf{w}) = -M\|\mathbf{b}_{\perp}\|^2 \to -\infty$ as $M \to -\infty$. Thus $f(\mathbf{w})$ can achieve $-\infty$. \square

Claim 2: If **Q** is not PSD, then: (i) there is no local-min; (ii) $f(\mathbf{w})$ can achieve $-\infty$.

Proof: (i) is because a local-min must satisfy $\mathbf{Q}\succeq 0$. To prove (ii), we write the eigen-decomposition of \mathbf{Q} as $\mathbf{Q}=\sum_{i=1}^d \lambda_i \mathbf{v}_i \mathbf{v}_i^{\top}$ where $\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_d$. Since \mathbf{Q} is not PSD, λ_1 must be negative. Pick $\mathbf{w}=M\mathbf{v}_1$, then $f(\mathbf{w})=0.5M^2\lambda_1-M\mathbf{v}_1^T\mathbf{b}$. Since $\lambda_1<0$, as $M\to\infty$, $f(\mathbf{w})\to -\infty$. \square

Linear Regression (Least Squares)

$$\begin{aligned} & \text{minimize} & & f(\mathbf{w}) = \frac{1}{2} \|\mathbf{X}^T \mathbf{w} - \mathbf{y}\|^2 \\ & \text{subject to} & & \mathbf{w} \in \mathbb{R}^d, \end{aligned}$$

where
$$\mathbf{X} = [x_1, x_2, \dots, x_n] \in \mathbb{R}^{d \times n}$$
, $\mathbf{y} \in \mathbb{R}^{n \times 1}$

- ightharpoonup n data points, d features
- X may be wide (under-determined), tall (over-determined), or rank-deficient
- Note that comparing with the previous case, $\mathbf{Q} = \mathbf{X}\mathbf{X}^T \in \mathbb{R}^{d \times d}$, $\mathbf{b} = \mathbf{X}\mathbf{y} \in \mathbb{R}^{d \times 1}$
 - Q ≥ 0; Case 2 never happens!
- First order condition $\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{w}^* = \mathbf{X}\mathbf{y}$.
 - It always has a solution (why?); Case 1 never happens!

Claim: Linear regression problem is always convex; it has global-min.

Linear Regression (Least Squares)

First order condition

$$\mathbf{X}\mathbf{X}^{\top}\mathbf{w}^{*} = \mathbf{X}\mathbf{y}.$$

which always has a solution.

- ▶ If $XX^{\top} \in \mathbb{R}^{d \times d}$ is invertible (only happen when $n \geq d$), then there is a unique stationary point $x = (A^{\top}A)^{-1}A^{\top}b$. It is also a global minimum.
- If XX[⊤] ∈ R^{d×d} is not invertible, then there can be infinitely many stationary points, which are the solutions to the linear equation.
 All of them are global minima, giving the same function value.

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩ ≡ √0,00

43/44

Summary

Two conditions that ensure existence of global minimizers:

- Coercive
- One (non-empty) bounded level set

Convexity ensures every stationary point is global-min.

High-dim function landscape can be visualized by projection onto low-dim space

Minimizing quadratic function $\mathbf{x}^T \mathbf{Q} \mathbf{x} - 2 \mathbf{x}^T \mathbf{b}$:

- ► Case 1: $\mathbf{b} \notin R(\mathbf{Q})$: no stationary point; no lower bound
- Case 2: Q not PSD: non-convex; no lower bound
- ► Case 3: Q PSD; $\mathbf{b} \in R(\mathbf{Q})$: convex; has global-min

Linear regression: always Case 3.