Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №6 ЭМИССИОННАЯ ТОМОГРАФИЯ ПЛАЗМЫ. РЕШЕНИЕ ИСЛАУ С ПОМОЩЬЮ ЗЛП

4 КУРС, ГРУППА 3630102/60201

Студент Д. А. Плаксин

Преподаватель Баженов А. Н.

Содержание

1.	Список иллюстраций	3
2.	Постановка задачи	4
	Теория	4
4.	Реализация	4
5.	Результаты	5
6.	Список литературы	6
7.	Приложения	7

1 Список иллюстраций

1	Гистограмма решения задачи линейного программирования	1
2	График x решения ЗЛП	1
3	Γ рафик значений ω	6
4	График решения ЗЛП	6

2 Постановка задачи

Матрица хард A получена в лабораторной 4.

Вектор b считан в лабораторной 5.

Поставить для них хадау линейного программирования (ЗЛП) с ограничениями на знак (все $x_i > 0$)

Решить поставленную задачу линейного программирования.

3 Теория

Рассматриваются показатели детектора во временные интервалы с "текущий"-K до "текущий"+ K

 \underline{b} – минимум b в некотором окне радуиса K

 \bar{b} – максимум b в некотором окне радиуса K

Вектор $\mathbf{b} = [\underline{b} + \overline{b}]$

Матрица А – матрица длин хорд.

3.1 Постановка задачи линейного программирования

A – точечная матрица, ${\bf b}$ – интервальный вектор.

Для $Ax \subset \mathbf{b}$ ставится задача линейного программирования в виде: $\min_{x,\omega} \sum_{i=1}^{N} \omega_i$

 $mid\mathbf{b}_i - \omega_i \cdot rad\mathbf{b}_i \leq A_i x \leq mid\mathbf{b}_i + \omega_i \cdot rad\mathbf{b}_i, \ x_i \geq 0, \omega_i \geq 0, i = \overline{1..n}$

 Γ де ω_i – множитель масштаба для правой части. Эти множители вводятся с целью нахождения оптимального радиуса интервала.

3.2 решение задачи линейного программирования

Упростим задачу линейного программирования приведя её к виду: $\min_{z} f^{t}z$, Cz < d, $z_{i} \ge 0$, $i = \overline{1..(n+m)}$

Построим вектор неизвестных: $z = (x_1, x_2, \dots, x_m, \omega_1, \omega_2, \dots, \omega_n)$

Построим матрицу ограничений $C:\begin{pmatrix} A & -diag(r) \\ -A & -diag(r) \end{pmatrix}$

Вектор правой части: $d = \begin{pmatrix} mid\mathbf{b} \\ -mid\mathbf{b} \end{pmatrix}$

Функции цели: $f = \sum\limits_{i=1}^n \omega_i = \sum\limits_{i=m+1}^{m+n} z_i$

4 Реализация

Все задания были выполнены на языке программирования Matlab в среде разработки MATLABR2014b [1]

Данные о расположении и параметрах детектора взяты пособия к лабораторной работе [?]

Значения детектора записаны в файле, полученном от преподавателя

Функция tolsolvty [?]

Для вычисления числа обусловленности интервальной матрицы используется функция HeurMinCond, полученная от преподавателя

5 Результаты

Рис. 1: Гистограмма решения задачи линейного программирования

Рис. 2: График x решения ЗЛП

Рис. 3: График значений ω

6 Список литературы

- [1] Документация по Матлаб: https://www.mathworks.com/help/
- [2] Код функции g_file_extractor_1t: https://cloud.mail.ru/public/5o3T/4G4dD71hL

- [4] Пособие к Лабораторным работам «Построение матриц СЛАУ» $https://vk.com/doc38035266_528474113?hash=8c9ddc720dfadef7b6\&dl=48b180ef19a7dc0f33$

7 Приложения

Koдотчёта: https://github.com/MisterProper9000/computing-complex/tree/lab-6-solve-ZLP/Lab4-6(interval_linear_sistem)/texReport/lab6.tex

Кодлаборатрной: https://github.com/MisterProper9000/computing-complex/tree/lab-6-solve-ZLP/Lab4-6(interval_linear_sistem)/code