

李志宏

中国原子能科学研究

核物理所12室

国内外研究现状

- •丰富人们对宇宙的认识
- •恒星的形成与演化机制
- •恒星的结构及能量释放
- •元素的产生机制

11个物理学未解之谜

- What is dark matter?
- What is dark energy?
- How were the heavy elements from iron to uranium made?
- Do neutrinos have mass (and how much)?
- Where do ultra-energy particles come from?
- Is a new theory of light and matter needed to explain what happens at very high temperature?
- Are there new states of matter at ultrahigh temperatures and densities?
- Are protons unstable?
- What is gravity?
- Are there additional dimensions?
- How did the Universe begin?

利用加速器研究天体核过程

核天体物理学家利用加速器产生的带电粒子束轰击靶原子,模拟 宇宙中的元素合成和能量产生过程,从而阐释元素的起源、恒星 的结构以及演化过程

恒星演化过程

Asymptotic Giant Branch Star

涉及13C的关键核反应

S过程

s过程是恒星演化进程中最重要的核合成过程之一,铁以上的核素中有大约一半是通过该过程产生的;

中子源

发生s过程最可能发生的天体物理环境是AGB星;其中¹³C(a,n)¹⁶O是最主要的中子源反应。

核反应

产生与消灭¹³C的反应会影响恒星中 ¹³C的丰度,进而影响中子的产生及 重元素的生成。

产生和摧毁¹³C的反应

产生¹³C的反应

• 12 C(p, γ) 13 N(β -) 13 C, 12 C(n,g) 13 C, 12 B(p, γ) 13 C

消灭13C的反应

•13C(p, γ)14N,13C(n, γ)14C

中子源反应

•13C(α,n)16O

低能外推的不确定性

实验设备—Q3D磁谱仪

由¹³C(¹¹B, ⁷Li)¹⁷O*反应导出¹⁷O 阈下 共振态的宽度

13C(α,n)16O反应的天体物理S因子

测量了^{12,13}C(⁷Li, ⁷Li)与¹²C(⁷Li, ⁶He)¹³N 反应的角分布

导出了¹²C(p,γ)¹³N天体物理S因子

启动CNO循环的反应,13N衰变后生成13C,为中子源反应增加燃料

12C(p,γ)13N天体物理反应率

13C(7Li, 7Li/6He)反应的角分布

Channel	$^{7}\text{Li} + {}^{13}\text{C}$		$^{6}{\rm He} + {}^{14}{\rm N}$	
	Set I	Set II	Set Ⅲ	Set IV
U_V	159.0	198.75	124.88	131.65
r_R	0.63	0.52	0.52	0.60
a_R	0.81	0.90	1.02	0.91
W_V	8.16	8.70	15.37	7.14
r_I	1.33	1.31	1.30	1.31
a_I	0.78	0.73	0.54	0.7
r_C	1.25	1.0	1.0	1.0
χ^2/p		15.22	6.37	1.35

 0.67 ± 0.09 0.73 ± 0.10

¹³C(p, γ)¹⁴N反应的天体物理S因子

13C(p, γ)14N天体物理反应率

12C(n,γ)13C反应的激发函数

12C/13C比例随温度的变化曲线

⁶He(d,n)⁷Li反应与⁶He(p,γ)⁷Li反应的 激发函数

6He(d,n)7Li反应的角分布

 6 He(p, γ) 7 Li反应的激发函数

⁷Li(⁶Li, ⁷Li)⁶Li反应与⁶Li(n, γ)⁷Li 激发函数

7Li(6Li, 7Li)6Li反应的角分布

⁶Li(n, γ)⁷Li反应的激发函数

7Li+12,13C弹性散射的角分布

¹³C(⁷Li, ⁸Li_{0,1})¹²C转移反应的角分布

7Li(n,γ)8Li反应的激发函数

⁷Be(p,γ)⁸B反应的天体物理S因子

¹³²Sn(n, γ)¹³³Sn from ¹³²Sn(d,p)¹³³Sn

E _x (keV)	$\int_{}^{\pi}$	Configuration	S
0	7/2 ⁻	$^{132} {\sf Sn_{gs}} \otimes \nu_{f7/2}$ $^{132} {\sf Sn_{gs}} \otimes \nu_{p3/2}$ $^{132} {\sf Sn_{gs}} \otimes \nu_{p1/2}$ $^{132} {\sf Sn_{gs}} \otimes \nu_{f5/2}$	0.86 ± 0.16
854	3/2 ⁻		0.92 ± 0.18
1,363 ± 31	(1/2 ⁻)		1.1 ± 0.3
2,005	(5/2 ⁻)		1.1 ± 0.2

Nature 465(2010 May)454

研究结果为影响因子较高的APJS引用

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 189:240-252, 2010 July

doi:10.1088/0067-0049/189/1/240

© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS

RICHARD H. CYBURT^{1,2,9}, A. MATTHEW AMTHOR^{1,2,3}, RYAN FERGUSON^{1,2,3}, ZACH MEISEL^{1,2,3}, KARL SMITH^{1,2,3},

from Tang et al. (2004). We therefore adopt the most recent Li et al. (2006) results as our recommended value.

capture components. Therefore, we adopt the rate from Guo et (2006).

The previously found small discrepancies between model calculations and observations may be solved with a better understanding of the nuclear input.

研究结果被应用情况

二十六项研究成果为EXFOR和REACLIB收录

解决了模型计算与观察结果之间的矛盾, ¹³N(p,γ)¹⁴O与²⁶Si(p,γ)²⁷P被推荐为标准值

We therefore adopt the most recent Li et al. (2006) results as our recommended Value.

Therefore, we adopt the rate from Guo et al. (2006).

近两年来完成的工作

- 原初核合成锂丰度异常的研究
 - ²H(⁶He, ⁷Li)n反应的实验研究
 - 6 Li(n, γ) 7 Li天体物理反应率
 - 7 Li(n, γ) 8 Li天体物理反应率
 - ⁶He(p,γ)⁷Li天体物理S因子的间接测量
- 恒星演化过程中的关键核反应研究
 - ¹³C(p, γ)¹⁴N反应的研究
 - 13C(a,n)16O核天体物理反应的实验研究
 - ¹²C(p, γ) ¹³N反应的天体物理S因子
 - 7Be(p,γ)8B反应的天体物理S因子
 - ¹³²Sn(n,γ)¹³³Sn天体物理反应率

Thank You!

