Model-based Reasoning

George M. Coghill

Introduction

- Description of the Field
- Motivations for development
- · Relevance of the Field
- Objectives
- Overview
- Models Background
- Recommended Text:
 "Qualitative Reasoning"
 Ben Kuipers, MIT Press 1994
 £40 if you are really interested!

Model-based Reasoning

- Qualitative Reasoning
 - Symbollic, using no numbers
 - Structural though incomplete
 - Synonyms: Naive physics, Qualitative modelling, Qualitative simulation, Commonsense reasoning, Deep knowledge.
- · Developments
 - Use of any models in the domain reasoning process
 - Numerical, Interval, Semi-quantitative, Fuzzy, Qualitative, Rule-based, Procedural

Systems

- Natural Systems
 - Physical: Fluid behaviour, Chemical reactions
 - Biological: Drug uptake, Cardiac performance, Renal operation, Photosynthesis
 - Ecological
- · Artificial Systems
 - Physical: Electrical circuits,
 Mechanical systems, Chemical plant
 - Economic: Housing markets, Organisations

Motivations

- · Problems with RBS
 - Reasoning from First Principles
 - Dangers with "nearest approximation"
- Modellers requirements
- Second Generation Expert Systems
 - Use deep knowledge
 - Provide explanations of reasoning process
- · Commonsense reasoning
 - Capture how humans reason
 - Enable use of appropriate causality
- · Model reuse
 - Improved ease of ES maintenance

Is MBR relevant? (1)

- Domains of Application
 - Modelling of ecological systems
 - Diagnosis of industrial plant
 - Training of process operators
 - Control of process plant
- · Industrial Investment
 - Number of large collaborative projects involving industry (e.g. Unilever, Siemens, BG) and academia
- Eye to the future
 - Industrial rollout
 - Focus on the essence of 'Modelling'
- · Development methods
 - KADS Expert Systems development
 - ARTIST, PRIDE Model-based Diagnosis

Is MBR relevant (2)

- · Communication infrastructure
 - European Monet
 - National R&R (UK), MQD (France)
- Commercialisation
 - Tiger Diagnosis of Gas Turbines
 - FLAME (Autosteve) FMEA and Diagnosis of car electrics

Objectives

- · Understand basis of QR and MBR
- · Awareness of modelling perspectives
- Understanding of QR ontologies
- Detailed knowledge of constraint approaches - development and application
- · Awareness of domains of application
- Awareness of issues in model construction
- (Understanding of spatial models)

Overview

- · Background and Basics
 - Ontologies, Quantity spaces,
 Qualitative arithmetic, Operations,
 Causality.
- · Major methods of QR
 - Devices, Processes and Constraints
 - Focus on constraint based and developments
- · Reasoning Domains
 - Explanation, Diagnosis, Training, Prediction, Spatial reasoning, Kinematics
- Modelling Methodologies
 - Teleological, Behavioural,
 Multimodelling, Multiple models

What is a Model?

- · Assume knowledge
 - · You've all come across them.
- Physical
 - E.g. Doorlock mechanism
- Mathematical
 - Declarative Structure
 - · Representation
 - Executable but distinct from inference mechanism.

- Prediction:
 - What value will it have?
- Explanation
 - Why did it happen that way?
 - Facilitates understanding of system

Basic Principles of QR

- · Terminology and Concepts
 - new(ish) field: proliferation of terms
 - underlying concepts basis for all QR
- Symbollically represents the important (qualitative) distinctions in a system
 - increasing, steady, decreasing
 - high, medium, low
- · Scales of Measurement
 - nominal, ordinal, interval, ratio
- · Qualitative versus Quantitative?

Qualitative Reasoning

- · Components of a Qualitative Model
 - Ontology (a way of looking at the world)
 - Variables (things that change)
 - Quantity space (values variables take)
 - Relations (what variables do to each other)
- · Quantity Spaces

Qualitative Relations

· Behavioural Abstraction

- Incompleteness
 - Not the same as "Uncertainty"
 - · but is related to "Precision"
 - Known model structure (assumed)
 - Imprecise knowledge of system functional relations
- · Operators
 - ADD, MULT, DERIV

Precision and Uncertainty

Arithmetic Operations

• Sign Algebra

MULT

8	+	0	-
+	+	0	_
0	0	0	0
_	_	0	+

DIV

0	+	0	_
+	+	X	_
0	0	X	0
_	_	X	+

Aritmetic Operations (2)

ADD

\oplus	+	0	_
+	+	+	?
0	+	0	_
_	?	_	_

	Φ	+	0	-
SUB	+	?	+	+
зов	0	_	0	+
	_	_	_	?

Arithmetic Operations (3)

$$A = B - C$$

where B & C both have value [+], A will be undefined

- Disambiguation
 - may be possible from other information
 - A = [+] if B > C
 - A = [0] if B = C
 - A = [-] if B < C
- Functional Relations
 - $Y = \mathbf{M} + (X)$
 - $Y = \mathbf{M} (X)$

Qualitative Vectors

- Convenient representation of state and behaviour
- Consists of Magnitude and first *n* derivatives of a variable:

 $x \rightarrow d^0$ (zeroth derivative) $x' \rightarrow d^1$ (first derivative) $x'' \rightarrow d^2$ (second derivative)

. . .

$$[x] = (d^0, d^1, d^2 \dots)$$

• Usually need at least two elements in a vector (three is better because curve shapes can be seen).

Qualitative Vectors (2)

Qualitative Calculus

For Integration:

$$d^0_I = d^0 + d^1 = d^1_I + d^2_I$$

(by Taylor's Theorem)

For Differentiation:

d²_D: depends on what is known of the original function (or system in which it appears)

Model Types

- Static (Equilibrium)
 - algebraic equations only

$$[A] = [B] + [C]$$

$$[X] = M + ([Y])$$

$$M = U * V$$

- Dynamic
 - contains derivatives,
 - requires integration

$$x' = k.x$$

$$y = \int x dt$$

- may also have algebraic parts
- NB: Dynamic is not the same as time varying!!!

Model Types (2)

- Continuous
 - no gaps in quantity space
 - no jumps allowed
 - focus of QR (mainly)

- Discontinuous/Discrete
 - finite number of gaps in quantity space
 - jumps can occur

Behaviour Types

- Results of Simulation/Inference are known as **ENVISIONMENTS**
- TOTAL ENVISIONMENT
 - All possible behaviours for all possible inputs
- COMPLETE ENVISIONMENT
 - All possible behaviours for a specific input
- ATTAINABLE ENVISIONMENT
 - All behaviours from a specified initial value and input ~ with a fixed quantity space
- PARTIAL ENVISIONMENT
 - All behaviours from a specified initial value and input ~ with landmark generation

Behaviour Types (2)

- Envisionments are represented as a graph or a tree
- BEHAVIOUR
 - Single path through an envisionment graph or behaviour tree
- HISTORY
 - Behaviour of a single variable removed from its envisioned context.

Ontology

- A way of representing what there is in the world (closed)
- Two (main) perspectives:
 - Functional: focuses on purpose (design)
 - Behavioural: focuses on operation
- Three Behavioural Ontologies:
 - Devices (Components): pipes, tanks valves
 - Processes: heating, reacting, decomposing
 - Constraints: relations between variables