

데이터 정제와 변환

학습목표

- 입력된 데이터의 누락치, 이상치의 제거와 대체를 통해 올바른 분석 결과를 얻을 수 있다.
- 데이터를 통계 분석에 적절하도록 변환할 수 있다.

학습내용

- 데이터 정제
- 데이터 변환

1 누락 데이터 처리

 머신러닝, 딥러닝에서 데이터의 누락은 전체 예측 결과에 많은 영향을 미침

누락된데이터 경복된데이터 데이터

예측력이 높고 신뢰성 있는 결과를 얻기 위해 바른 처리 필요

 DataFrame에는 데이터가 누락될 경우 NaN(Not a Number)으로 표기됨

데이터 분석 시 보통 데이터의 크기는 수십만 건~수백만 건

엑셀 등의 프로그램에서 눈으로 오류가 있는 데이터를 검증하는 것은 거의 불가능에 가까움

파이썬에서 제공하는 라이브러리, 함수 등을 이용해 누락되거나 특정 범위를 벗어나는 데이터에 대한 처리 필요

1 누락 데이터 처리

- 1 데이터 삭제
 - 1 Isnull 함수
 - 데이터가 NaN이면 True, 아니면 False를 반환함
 - Numpy 연산은 스칼라 연산이 아닌 벡터 연산을 함

import pandas as pd import numpy as np

#NaN은 Numpy를 사용해 직접 입력 가능 s = pd.Series([1,2,3,4,np.nan]) print(s,isnull())

0	False
1	False
2	False
3	False
4	True

1 누락 데이터 처리

- 1 데이터 삭제
 - 2 Sum 함수
 - 인자들의 합계를 반환함
 - Isnull 함수 사용 후 결과값에 Sum 함수 사용
 - True 개수 반환

import pandas as pd import numpy as np

#NaN은 Numpy를 사용해 직접 입력 가능 s = pd.Series([1,2,3,4,np.nan]) print(s.isnull()) print("NaN 값 개수 ", s.isnull().sum())

NaN 값 개수 1

1 누락 데이터 처리

- 1 데이터 삭제
 - 3 Dropna 함수

DataFrame.dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False)[source]

subset에서 지정한 필드에 NaN 값이 있는 행 삭제 inplace=True로 지정하면 사신의 데이터가 수정됨

필드 지정 방법은 list 형태

subset=['필드1', '필드2']

thresh

■ int 값이 필드에서 부여한 개수만큼 NaN이 있는 행·열 삭제

how

- any, all any : 행이나 컬럼값 중에 하나라도 있으면 행이나 열 삭제
- All: 행이나 컬럼값에 모두 NaN이 있을 때 행·컬럼 삭제

axis

- 0은 행, 1은 열을 지칭
- 삭제할 방향을 지시

1 누락 데이터 처리

- 1 데이터 삭제
 - 4 reset_index 함수
 - DataFrame 인덱스를 재지정
 - 새로 필드를 추가하도록 되어 있음
 - ➡ drop 옵션을 True로 지정

import pandas as pd import numpy as np

#NaN은 Numpy를 사용해 직접 입력 가능 s = pd.Series([1,2,3,4,np.nan])

data = s.dropna(how='any', axis=0)
print(data)

data = data.reset_index(drop=True)

1 누락 데이터 처리

- 1 데이터 삭제
 - 5 예제

```
#파일명: exam11 1.pv
import pandas as pd
data = pd.read_csv("./data/data.csv")
print("컬럼명:", data.columns)
print("인덱스:", data.index)
print( data.info() )
#누락된 데이터가 있는지 확인
print( data['height'].value_counts(dropna=False))
print( data['height'].isnull()) #NaN이면 True, 아니면 False 반환
print( data['height'].notnull())
#Null값인 것에 대한 개수 확인
print( data['height'].isnull().sum(axis=0))
#NaN값을 thresh개 가진 열 모두 삭제
data_thresh = data.dropna(axis=1, thresh=3)
```

(계속)

1 누락 데이터 처리

- 1 데이터 삭제
 - 5 예제

```
#합계
print ( data['height'].sum() )

print("데이터 개수")
print(data.shape)
data = data.dropna(subset=['height'], how='any', axis=0)
print("삭제 후 데이터 개수")
print(data.shape)

data = data.dropna(subset=['weight'], how='any', axis=0)
print("삭제 후 데이터 개수")
print(data.shape)

#인덱스 다시 부여
data = data.reset_index(drop=True)
print(data)
```


1 누락 데이터 처리

- 2 누락 데이터 치환
 - 누락 데이터 삭제
 - ➡ 실제 데이터 수집 시 <mark>누락이 많아</mark> 행·열을 삭제할 경우 제대로 분석이 어려운 경우 발생

문제 해결 방법

- 행이나 컬럼 전체를 삭제하는 것보다 대체값을 바꾸는 게 좋음
- 대체값은 보통 평균값 또는 중간값을 사용
- 최댓값과 최솟값 편차가 클 경우에는 평균값보다는 중간값이 집단을 대표하는 경우가 더 많음

1 누락 데이터 처리

누락 데이터 치환

#파일명: exam11_2.py #누락 데이터 치화 import pandas as pd data = pd.read csv("./data/data.csv") #누락된 데이터가 있는지 확인 print(data['height'].value_counts(dropna=False)) print(data['height'].isnull()) #NaN이면 True, 아니면 False 반환 print(data['height'].notnull()) #null값인 것에 대한 개수 확인 print("height 필드 Nan 개 수: ", data['height'].isnull().sum(axis=0)) print("weight 필드 Nan 개 수: ", data['weight'].isnull().sum(axis=0)) print("누락값 대체 후 -----") #누락값 대체 mean_height = data['height'].mean() mean_weight = data['weight'].mean()

1 누락 데이터 처리

- 2 누락 데이터 치환
 - fillna 함수 NaN 값을 특정 값으로 대체
 - inplace 옵션은 True를 입력해야 값이 바뀜

data['height'].fillna(mean_height, inplace=True)
data['weight'].fillna(mean_weight, inplace=True)


```
print("height 필드 Nan 개수:",
data['height'].isnull().sum(axis=0))
print("weight 필드 Nan 개수:",
data['weight'].isnull().sum(axis=0))
```

print(data)

```
weight 필드 Nan 개수 :
누락값 대체 후 ---
height 필드 Nan 개수 :
weight 필드 Nan 개수 :
           height
  name
                       weight
    A1 180.000000
                   92.000000
    A2 176.000000
                   70.000000
1
                   65.000000
2
    A3 175.000000
3
    A4
        172.000000
                   64.000000
4
    Α5
        168.000000
                    67.107143
5
    Α6
        175.000000
                    74.000000
6
        177.000000
    Α7
                   68.000000
7
    Α8
       172.000000
                    65.000000
8
    Α9
        177.888889
                    77.000000
9
   A10 173.000000
                    59.000000
10
   A11
        174.000000
                    66.000000
   A12 177.000000
11
                    63.000000
   A13 179.000000
                    65.000000
```

13	A14	181.000000	72.000000
14	A15	189.000000	79.000000
15	A16	193.000000	84.000000
16	A17	177.888889	34.000000
17	A18	172.000000	160.000000
18	A19	179.000000	84.000000
19	A20	169.000000	64.000000
20	A21	167.000000	56.000000
21	A22	230.000000	12.000000
22	A23	171.000000	15.000000
23	A24	177.888889	80.000000
24	A25	187.000000	78.000000
25	A26	176.000000	67.107143
26	A27	175.000000	59.000000
27	A28	173.000000	62.000000
28	A29	169.000000	53.000000
29	A30	174.000000	59.000000

2 중복 데이터 처리

■ Pandas 라이브러리는 데이터 수집 중 중복된 데이터가 있을 경우 쉽게 중복을 제거할 수 있는 함수를 제공

Dataframe객체['필드명'].duplicated()

- 중복되지 않았을 경우 False, 중복될 경우 True를 반환
- 두 개 이상의 데이터가 중복되어 있을 때 첫 번째 데이터는 False, 그 뒤에 중복되어 나타나는 데이터 항목은 True로 출력됨

Dataframe객체.drop_duplicates()

■ 중복된 필드가 있는 모든 행이 삭제됨

Dataframe객체.drop_duplicates(subset=[필드명])

 subset 필드를 별도로 지정하면 그 필드 내의 데이터가 중복될 경우 모든 행이 삭제됨

2 중복 데이터 처리

```
#파일명: exam11_3.py
#중복 데이터 제거
import pandas as pd
data = {
  'passenger_code':['A101', 'A102', 'A103', 'A101', 'A104', '
                  A101', 'A103'],
  'target':['광주', '서울', '부산', '광주', '대구', '광주', '부산'],
  'price':[25000, 27000, 45000, 25000, 35000, 27000,
         450001
}
df = pd.DataFrame(data)
print( df )
print("중복된 데이터 ")
col = df['passenger_code'].duplicated() #중복된 데이터 확인
print( col )
#중복 제거 시 모든 데이터가 일치된 것만 제거
df2 = df.drop_duplicates()
print(df2)
```

(계속)

2 중복 데이터 처리

```
print("특정 컬럼값이 중복일 때 제거하기 -----")
df3 = df.drop_duplicates(subset=['passenger_code'])
print( df3 )
```


print("두 개의 컬럼값이 중복일 때 제거하기 -----") df3 = df.drop_duplicates(subset=['passenger_code', 'target']) print(df3)

```
중복된 데이터
    False
    False
2
    False
     True
    False
5
     True
     True
Name: passenger code, dtype: bool
 passenger code target price
0
           A101
                    광주.
                         25000
1
           A102
                         27000
2
           A103
                         45000
           A104
                         35000
                   광주
           A101
                         27000
특정 컬럼값이 중복일때 제거하기 -
 passenger_code target price
0
           A101
                    광주.
                         25000
1
                    서울.
                         27000
           A102
2
           A103
                         45000
                   대구
           A104
                         35000
두개의 컬럼값이 중복일때 제거하기
 passenger_code target
                      price
0
                   광주
           A101
                         25000
1
           A102
                   서울
                         27000
2
                         45000
           A103
                         35000
           A104
```


1 정규화 및 단위 전환

머신러닝, 딥러닝에서 데이터의 단위가 너무 다를 경우 전체 예측 평가에 영향을 미칠 수 있음

일부 알고리즘에서는 데이터값을 <mark>평균 0, 분산 1</mark>이 되도록 만들어줘야 함

정규화

정규화 수식

$$x = rac{x - x_{min}}{x_{max} - x_{min}}$$
(정규화하고자 하는 값 - 데이터값 중 최솟값)

사이킷런 (Scikit-learn) 라이브러리

■ 정규화를 지원하는 클래스도 있음

1 정규화 및 단위 전환

 우리나라에서 사용하는 단위와 유럽이나 미국 등 기타 국가들이 사용하는 단위가 달라 데이터를 보기 어려운 경우가 있음

무게의 단위

〈우리나라〉

킬로그램 (kg) 〈일부 국가〉

파운드 (lb)

■ 단위를 일치시키는 것이 데이터를 분석할 때 편리

1 정규화 및 단위 전환

```
#파일명: exam11_4.py
#데이터 표준화
import pandas as pd
data = pd.read_csv('./data/auto-mpg.csv')
print(data.info())
print(data.head())
#컬럼명 변경
data.columns=['mpg', 'cyl', 'disp', 'power', 'weight', 'acce', 'm
odel'l
print(data.head())
          데이터 분석에서 아주 중요한 작업
        ■ 정규화 작업을 해줘야만 하는 머신러닝 알고리즘이 많음
#(정규화하고자 하는 값 - 데이터값 중 최솟값) /
 (데이터값 중 최댓값 - 데이터값 중 최솟값)
data['mpg2'] = (data['mpg'] -
data['mpg'].min())/(data['mpg'].max()-data['mpg'].min())
print(data)
#단위 화산 : 한국 단위로 화산
mpg unit = 1.60934 / 3.78541
data['kpl'] = (data['mpg'] * mpg_unit).round(2)
print( data.head() )
```


2 타입 전환

숫자 형태의 데이터

- 실제 데이터가 엑셀에서 문자·숫자 등 어떤 형태로 저장되든 숫자로 잘 읽어와 크게 문제가 되지 않음
- 엑셀의 경우, 숫자를 문자열 형태 또는 숫자 형태로 저장

수치 자료가 와야 할 열에 수치 자료가 아닌 다른 문자가 있을 때 문제가 발생하므로 처리 필요

문제 해결 방법

- 수치 자료가 와야 할 열에 들어간 문자 제거하기
- 문자가 들어 있는 행의 데이터 버리기
- 유형 전환하기

2 타입 전환

문자 형태의 데이터

- 실제 데이터가 엑셀에서 문자·숫자 등 어떤 형태로 저장되든 숫자로 잘 읽어와 크게 문제가 되지 않음
- 엑셀의 경우, 숫자를 문자열 형태 또는 숫자 형태로 저장

문자열

범주형 자료 타입

.astype 함수를 이용해 타입 전환 필요

2 타입 전환

#파일명 : exam11_5.py #데이터 표준화

import pandas as pd import numpy as np

data = pd.read_csv('./data/auto-mpg.csv')
print(data.info())
print(data.head())

#타입이 맞지 않을 경우 전환하여 사용

- 현재 사용하는 파이썬 버전은 문자열 데이터라도 숫자 형태면 자동으로 수치 자료로 처리
- 파이썬 버전에 따라 다르게 동작할 수 있음

data.columns=['mpg', 'cyl', 'disp', 'power', 'weight', 'acce', 'model']
print(data.dtypes)
print(data.head())

print(data['disp'].unique())

(계속)

2 타입 전환

```
#잘못된 데이터를 NaN으로 먼저 바꿈
data['disp'].replace('?', np.nan, inplace=True)
print(data.head())

data.dropna(subset=['disp'], axis=0, inplace=True)
print(data.head())
print(data.head())
print(data.dtypes)
data['disp'] = data['disp'].astype('float')
print(data.dtypes)

#범주형으로 바꿈
data['model'] = data['model'].astype('category')
print(data.dtypes)
```

- 데이터를 범주형으로 바꿀 때 astype('category') 사용
- 문자열의 형태로 입력된 데이터는 분석 시 반드시 범주형으로 바꾸어 처리

3 구간 나누기와 원핫인코딩

- 1 구간 나누기
 - 경우에 따라 연속 데이터를 불연속 데이터로 전환해야 할
 때가 있음

연비

- 국가에서 특정 조건을 만족할 경우 구간을 나누어 등급 부여
- 숫자 형태의 자료보다 등급 형태가 더 빠른 인식 가능
- 등급별 모델의 평가·분석을 해야 할 경우
- 구간 나누기를 통해 연속 데이터를 불연속 데이터로 전환 가능
- 불연속 데이터로 전환 후 실제 분석 시 특별한 방법을 사용하여 데이터 저장
- 연비를 등급으로 A, B, C, D 4개로 나누었다면, 머신러닝이나 딥러닝 분석에서 이를 그대로 사용하지 못함
- 머신러닝이나 딥러닝은 수학이므로 원핫인코딩 형태로 전환해야 사용 가능

3 구간 나누기와 원핫인코딩

- 2 원핫인코딩(One-hot Encording)
 - 범주형 데이터를 행렬의 형태로 전환
 - 각각의 범주가 갗는 값을 다음과 같이 표현되도록 저장

А	В	C	D	→ 4개의 그룹이 있다고 가정
1	0	0	0	그룹의 형태를 A, B, C, D등급을 필드의 컬럼으로 만듦
0	1	0	0	
0	0	1	0	→ 해당하지 않는 요소의 위치
0	0	0	1	→ 해당하는 요소의 위치

3 구간 나누기와 원핫인코딩

2 원핫인코딩(One-hot Encording)

#파일명: exam11_4.py

#구간 분할

import pandas as pd import numpy as np

data = pd.read_csv('./data/auto-mpg.csv')
print(data.info())
print(data.head())

#타입이 맞지 않을 경우 전환하여 사용

- 현재 사용하는 파이썬 버전은 문자열 데이터라도 숫자 형태면 자동으로 수치 자료로 처리
- 파이썬 버전에 따라 다르게 동작할 수 있음

data.columns=['mpg', 'cyl', 'disp', 'power', 'weight', 'acce',
'model']
print(data.dtypes)

(계속)

3 구간 나누기와 원핫인코딩

② 원핫인코딩(One-hot Encording)

#잘못된 데이터를 NaN으로 먼저 바꿈

잘못된 데이터가 있는 경우

- NaN값으로 먼저 전환
- NaN을 포함하고 있는 행이나 열을 삭제하는 게 빠름

구간 나누기와 원핫인코딩

원핫인코딩(One-hot Encording)

#범주형으로 바꿈

data['model'] = data['model'].astvpe('category')

#연속적인 값을 구간으로 나누어 비연속적인 값(범주형)으로 나눔 #print(data['power'])

print(data['power'].isnull().sum(axis=0)) data.dropna(subset=['power'], inplace=True) count, bin_dividers = np.histogram(data['power'], bins=4) print(bin dividers)

(계속)

np.histogram

- 구간을 나누는 함수
- 데이터의 범위를 알아내서 지정된 구간을 나누고 구간의 경계에 대한 값을 가져옴
- 구간을 나누고자 하는 필드와 구간의 개수를 전달하면 구간의 경계, 구간의 데이터 개수를 반환

(계속)

3 구간 나누기와 원핫인코딩

2 원핫역

원핫인코딩(One-hot Encording)

```
bin_names = ["D", "C", "B", "A"]
data["grade"] = pd.cut( x=data['power'], bins=bin_dividers,
    labels = bin_names, include_lowest=True)
print( data )
```

- cut 함수, x인자에 나누고자 하는 구간의 필드를 정해줌
- bins 인자에 np.histogram이 생성한 구간 정보를 전달
- labels에 각 구간에 붙일 라벨명을 지정
- include_lowest=True는 경계값을 포함하라는 의미

3 구간 나누기와 원핫인코딩

- ② 원핫인코딩(One-hot Encording)
 - 실행 결과

	mpg	cyı	alsp	power	weight	acce	model	grade
1	15.0	8	350.0	165.0	3693	11.5	70	В
2	18.0	8	318.0	150.0	3436	11.0	70	В
3	16.0	8	304.0	150.0	3433	12.0	70	В
4	17.0	8	302.0	140.0	3449	10.5	70	В
5	15.0	8	429.0	198.0	4341	10.0	70	Α
393	27.0	4	140.0	86.0	2790	15.6	82	D
394	44.0	4	97.0	52.0	2130	24.6	82	D
395	32.0	4	135.0	84.0	2295	11.6	82	D
396	28.0	4	120.0	79.0	2625	18.6	82	D
397	31.0	4	119.0	82.0	2720	19.4	82	D

구간 나누기와 원핫인코딩

원핫인코딩(One-hot Encording)

```
Y_class = np.array(data['grade']).reshape(-1,1)
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
enc.fit(Y_class) #분류에 사용되는 클래스 식별, 메타데이터에 기록
Y_class_onehot = enc.transform(Y_class).toarray()
Y_class_recovery = np.argmax(Y_class_onehot, axis=1).
reshape(-1,1)
print(Y_class_onehot)
```


3 구간 나누기와 원핫인코딩

- 2 원핫인코딩(One-hot Encording)
 - 데이터 필드가 1차원인 상태로는 원핫인코딩이 진행되지 않음

reshape 함수

■ 배열의 구조 변환

1차원 Series 타입 2차원 Ndarray 타입

[['A']['B'] ...]

reshape 함수를 이용한 차원 변경 sklearn. preprocessing의 원핫인코더 객체 형성

transform 함수 수행

np.argmax 함수

- 원핫인코딩 복원 시 사용
- 전달받은 함수 중 가장 큰 값을 갖는 인자를 반환하는 함수

학습정리

1. 데이터 정제

- isnull 함수 등을 이용해 데이터의 누락치가 있는지 먼저 체크함
- isnull 함수는 True, False 값만 반환하므로 전체적인 누락 여부 확인이 어려움
- isnull() 결과로 sum() 함수를 호출하면 NaN 데이터가 존재하는지를 쉽게 알 수 있음
- 누락된 데이터의 처리
 - 누락 데이터 건수가 적어서 전체 분석에 영향을 미치지 않을 거라고 판단될 경우 삭제 진행
 - 누락 데이터 건수가 많아서 전체 영향을 미친 거라고 판단되면 평균값이나 등으로 대체해서 사용

학습정리

2. 데이터 변환

- 분석 시 사용하는 데이터
- 연속형 : 평균값을 중요하게 여김
 - 불연속형(비연속형, 범주형): 개수를 중요하게 여김
- 연속형이 아닌 데이터 타입들은 불연속형으로 다뤄야 하기 때문에 문자열형은 불연속형으로 전환해서 사용
- 연속형 데이터라도 불연속형으로 전환해서 분석해야 할 경우 구가 나누기를 사용
- 구간 나누기 후 실제 분석에서는 데이터를 원핫인코딩 방식으로 전화하여 처리