Epipolar Constraint Derivation

FOR THE FUNDAMENTAL MATRIX

November 15, 2018

Let p, p' be corresponding points in image 1 and 2 respectively, with cameras related by rotation R and translation t. Let the intrinsic matrices of cameras 1 and 2 be K and K' respectively.

Then p' in camera 1 coordinates is

$$R^{T}((K')^{-1}p'-t) = R^{T}(K')^{-1}p'-R^{T}t$$

This point, along with $R^T t$, lies in the epipolar plane. So a normal to the epipolar plane is

$$\begin{split} R^T t \times (R^T (K')^{-1} p' - R^T t) &= R^T t \times R^T (K')^{-1} p' - R^T t \times R^T t \\ &= R^T (t \times (K')^{-1} p') \end{split}$$

Since $K^{-1}p$ also lies in the epipolar plane, $K^{-1}p$ dotted with this normal should equal 0:

$$(R^{T}(t \times (K')^{-1}p'))^{T}K^{-1}p = 0$$

$$(t \times (K')^{-1}p')^{T}RK^{-1}p = 0$$

$$(T_{x}(K')^{-1}p')^{T}RK^{-1}p = 0$$

$$p'^{T}(K')^{-T}T_{x}^{T}RK^{-1}p = 0$$

$$p'^{T}(K')^{-T}T_{x}RK^{-1}p = 0$$

$$p'^{T}Fp = 0$$

where $F = (K')^{-T} T_x R K^{-1}$ is the fundamental matrix.

 T_x is a skew-symmetric matrix constructed from the translation vector t:

$$\begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$