CS2700 Homework 2

Phillip Janowski (pajmc2@mail.umsl.edu) October 28, 2018

Question 1.

5.10

For the Hamming code show in Figure 5.10, show what happens when a check bit rather than a data bit is in error ?

Position	12	11	10	9	8	7	6	5	4	3	2	1
Bits	D8	D7	D6	D5	C8	D4	D3	D2	C4	D1	C2	C1
Block	0	0	1	1	1	1	0	0	1	1	1	1
Codes			1010	1001		0111				0011		

Position	Code
Hamming	1111
10	1010
9	1001
7	0111
3	0011
XOR'd	1000

It detects that there is an error in position 8.

Question 2.

5.11

Position	12	11	10	9	8	7	6	5	4	3	2	1
Bits	D8	D7	D6	D5	C8	D4	D3	D2	C4	D1	C2	C1
Block	1	1	0	0		0	0	1		0		
Code	1100	1011					0101					

The check bits are in 8, 4, 2, and 1.

Check bit 8 calculated by values in bit numbers: 12, 11, 10 and 9

 $1 \oplus 1 \oplus 0 \oplus 0 = 0$

Check bit 4 calculated by values in bit numbers: 12, 7, 6, and 5

 $1 \oplus 0 \oplus 0 \oplus 1 = 0$

Check bit 2 calculated by values in bit numbers: 11, 10, 7, 6 and 3

 $1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 1$

Check bit 1 calculated by values in bit numbers: 11, 9, 7, 5 and 3

 $1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0$

Thus, the check bits are: 0 0 1 0

Question 3.

5.12

Two check bits are wrong so the error is in the data p2 and p4 are the two wrong bits so the corrupted bit is 6 00111001 should be 00011001

Question 4.

5.13

 $2^r \ge m + r + 1$

 $2^r \ge 1024 + r + 1, r = 10$

 $2^{1}0 > 1024 + 10 + 1$

 $1024 \ge 1024 + 10 + 1$ false

 $2^{1}1 \ge 1024 + 11 + 1$

2048 > 1036 true

A minimum of 11 check bits needed for 1024-bit Hamming code error correction

Question 5.

6.5

(a) Average Seek Time

Becuase we start at track 0 of 30,000, the most we would have to traverse is 29,999 tracks

Average track number is $\frac{29,999}{2} = 14,999.5$ Average track seek time with a $\frac{100 tracks}{1ms}$ 14,999.5/100 = 149.995 ms

(b) Average Rotational Latency

 $\frac{7200rev}{minute} * \frac{Minute}{60sec} * \frac{Second}{1000ms} = 8.33ms$

Because the average track is in the middle of any two given tracks we divide by 2

 $\frac{8.333}{2} = 4.16\overline{6}ms$

- (c) Transfer time per sector $\frac{600sectors}{track} \text{ or } \frac{600sectors}{revolution} \to \frac{8.333ms}{revolution} * \frac{revolution}{600track} = 0.01389ms$
- (d) Average Total Satisfy Time 149.995 + 4.1660.01389 = 154ms

Question 6.

6.7

- (a) Transfer time sector 1 on track 8 to sector 1 on track 9 $\frac{\frac{60,000}{360}}{\frac{360}{32tracks}} \to 16.67ms$ $\frac{\frac{16.67}{32tracks}}{\frac{31}{32}tracks} = .52ms$ $16.7 * \frac{31}{32} = 16.2ms \text{ rotational delay}$.52 + 16.2 + .52 = 17.24ms
- (b) Transfer all sectors from track 8 to track 9 The write will start on the 5th sector of track 9 .52ms*4 = 2.08ms16.7*2 + 2.08 = 35.48ms