for every $x \in E$. From Proposition 39.1, we have

$$Df(a)(u_j) = D_{u_j}f(a) = \partial_j f(a),$$

and from Proposition 39.10, we have

$$Df(a)(u_i) = Df_1(a)(u_i)v_1 + \dots + Df_i(a)(u_i)v_i + \dots + Df_m(a)(u_i)v_m,$$

that is,

$$Df(a)(u_j) = \partial_j f_1(a)v_1 + \dots + \partial_j f_i(a)v_i + \dots + \partial_j f_m(a)v_m.$$

Since the j-th column of the $m \times n$ -matrix representing Df(a) w.r.t. the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m) is equal to the components of the vector $Df(a)(u_j)$ over the basis (v_1, \ldots, v_m) , the linear map Df(a) is determined by the $m \times n$ -matrix $J(f)(a) = (\partial_j f_i(a))$, (or $J(f)(a) = (\frac{\partial f_i}{\partial x_i}(a))$):

$$J(f)(a) = \begin{pmatrix} \partial_1 f_1(a) & \partial_2 f_1(a) & \dots & \partial_n f_1(a) \\ \partial_1 f_2(a) & \partial_2 f_2(a) & \dots & \partial_n f_2(a) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_1 f_m(a) & \partial_2 f_m(a) & \dots & \partial_n f_m(a) \end{pmatrix}$$

or

$$J(f)(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \frac{\partial f_2}{\partial x_n}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \frac{\partial f_m}{\partial x_2}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{pmatrix}$$

Definition 39.5. The matrix J(f)(a) is called the *Jacobian matrix* of Df at a. When m = n, the determinant, $\det(J(f)(a))$, of J(f)(a) is called the *Jacobian* of Df(a).

From a previous result, we know that this determinant in fact only depends on Df(a), and not on specific bases. However, partial derivatives give a means for computing it.

When $E = \mathbb{R}^n$ and $F = \mathbb{R}^m$, for any function $f : \mathbb{R}^n \to \mathbb{R}^m$, it is easy to compute the partial derivatives $\frac{\partial f_i}{\partial x_j}(a)$. We simply treat the function $f_i : \mathbb{R}^n \to \mathbb{R}$ as a function of its j-th argument, leaving the others fixed, and compute the derivative as in Definition 39.1, that is, the usual derivative.

Example 39.3. For example, consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$, defined such that

$$f(r, \theta) = (r\cos(\theta), r\sin(\theta)).$$