EDA+ Data Cleaning and Pre-Processing

March 7, 2025

1 Introduction

1.1 Objective

This report provides an exploratory analysis (EDA) of the Auto Loan Credit Decisioning dataset. It includes data visualization, missing value analysis, and necessary pre-processing steps to prepare the data for modeling.

1.2 Data Overview

- 1. Training Dataset: $\sim 21,000$ records
- 2. Testing Dataset: $\sim 5{,}400$ records
- 3. Target variable: bad_flag (Loan performance in recent 12 months. =1 Never delinquent or 2 times or less 30 DPD. =0 One-time 60 DPD or worse, charge off, bankruptcy and repossession.)
- 4. Key Variables:
 - (a) Fico: FICO score
 - (b) amtfinanced_1req: Requested loan amount
 - (c) pti_1req: Payment-to-income ratio
 - (d) ltv_1req: Loan-to-Value ratio

2 EDA

2.1 Data Summary

2.1.1 General Information

- 1. Number of features: 42
- 2. Number of Numerical features: 39
- 3. Number of Categorical features: 3 which are Race, Gender and collateral_dlrinput_newused_1req (if the vehicle is used or not). Note that we removed the Race and Gender as features to ensure fairness in the models.
- 4. Number of Missing Values per column:

2.1.2 Target Distribution

The target is the bad_flag (REVERSED THE DEFINITION OF IT)

2.1 Data Summary 2 EDA

2.1.3 Statistical Summary

Statistics for some columns in the train set:

	fico	aprv_flag	amtfinanced_		ti_1req \	
count	21431.000000	21606.000000	21606.00		.000000	
mean	703.643087	0.738313	29870.86		.025000	
std	82.786470	0.439563	15311.30		.803567	
min	372.000000	0.000000			.080000	
25%	644.000000	0.000000	19370.00		.930000	
50%	701.000000	1.000000	26806.00		.590000	
75%	766.000000	1.000000	36931.25	0000 11	.580000	
max	894.000000	1.000000	189729.00	0000 207	.090000	
	ltv_1req	p12_reh7120_a	p12_bcx7110	_a p12_all	.7170_a \	
count	21601.000000	19694.000000	17917.0000	00 20943.	000000	
mean	101.188938	51.866406	35.8633	70 3.	597288	
std	23.245966	37.352331	33.2259	46 14.	888786	
min	10.350000	0.000000	0.0000	00 0.	000000	
25%	90.520000	16.000000	6.0000	00 0.	000000	
50%	103.470000	52.000000	26.0000	00 0.	000000	
75%	113.800000	88.000000	63.0000	00 0.	000000	
max	955.260000	415.000000	290.0000	00 100.	000000	
	p12_aut7110_a	p12_all7120_	a p12_a		12_all6971_a	\
count	11070.000000	21226.00000	0 2160	6.000000	21562.000000	
mean	66.256459	85.35136	2 14	9.763445	58.454271	
std	24.470168	37.63001	3 18	1.349594	133.394966	
min	0.000000	0.00000	0	1.000000	0.000000	
25%	50.000000	73.00000	0	1.000000	1.000000	
50%	72.000000	94.00000	0 3	0.000000	1.000000	
75%	86.000000	100.00000	0 40	0.000000	1.000000	
max	152.000000	711.00000	0 40	0.000000	400.000000	
	clntr9437_a	clact9429_a	clall5010_a	clall2434_a		a \
count	8952.000000	8952.000000	2390.000000	719.000000	78.00000	0
mean	1.391309		2427.658996	0.020862	0.21794	9
std	3.433233	6.929704	4421.540329	0.143023	0.41552	5
min	0.000000	0.000000	0.000000	0.000000	0.00000	0
25%	0.000000	0.000000	0.000000	0.000000	0.00000	0
50%	0.000000	0.000000	0.000000	0.000000	0.00000	0
75%	1.000000	2.000000	2798.250000	0.000000	0.00000	0
max	73.000000	178.000000 3	3549.000000	1.000000	1.00000	0

Statistics for some columns in the test set:

	fico	aprv_flag	amtfinanced_1	req pti_1re	eq ltv_1req	\
count	5343.000000	5400.000000	5400.000	000 5398.00000	00 5398.000000	
mean	702.706719	0.741481	29782.5503	9.11478	33 101.516121	
std	82.291798	0.437861	14843.983	207 4.37533	22.239436	
min	416.000000	0.000000	3786.000	0.26000	12.350000	
25%	644.000000	0.000000	19638.000	000 5.99000	91.170000	
50%	701.000000	1.000000	26894.000	000 8.71000	00 103.675000	
75%	765.000000	1.000000	36946.500	000 11.68750	00 113.705000	
max	893.000000	1.000000	134500.000	79.27000	304.230000	
	p12_reh7120_a	p12_bcx711	0_a p12_all71	70_a p12_aut71	10_a \	
count	4916.000000	4442.000	000 5206.00	0000 2788.00	00000	
mean	51.010985	35.400	495 3.893	2816 66.22	28121	
std	37.081701	33.378	023 15.480	5130 24.47	4930	
min	0.000000	0.000	0.00	0.00	00000	
25%	15.000000	5.000	000 0.00	0000 51.00	00000	
50%	51.000000	24.000	0.00	0000 71.00	00000	
75%	88.00000	63.000	0.00	0000 86.00	00000	
max	279.000000	154.000	000 100.00	0000 104.00	00000	
	p12_all7120_a				r9437_a \	
count	5295.000000				2.000000	
mean	85.011331				1.428257	
std	39.007500				3.305008	
min	0.000000		1.000000		0.000000	
25%	71.000000		1.000000		0.000000	
50%	94.000000		0.000000		0.000000	
75%	100.000000		0.000000		2.000000	
max	603.000000	40	0.000000 4	00.000000 61	1.000000	
	clact9429_a	clall5010_a			ltra4405_a \	
count	2272.000000	607.000000	200.000000	18.000000	203.000000	
mean	2.311620	2902.642504	0.030000	0.333333	0.004926	
std	6.601955	5030.618640	0.198233	0.485071	0.070186	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	0.000000	
75%	2.000000	3885.000000	0.000000	1.000000	0.000000	
max	117.000000	38755.000000	2.000000	1.000000	1.000000	

3 Visualization

3.1 Univariate Analysis

1. Histogram and KDE plots

2. Box plots

3. Log Transformation of Skewed Features:

We aimed to address features with significant skewness in their distribution. Skewed features can negatively impact the performance of certain machine learning models, which assume more symmetric, normal distributions.

3.2 Bivaiate Analysis

1. Correlation Heatmap

I Removed features that are highly correlated (|correlation| > 0.7).

3.3 Outliers Detection

Using the above boxplots, we saw that there is a lot of outliers. To handle them the values in numerical features were capped at the 99th percentile.

4 Data Cleaning and Pre-Processing

4.1 Reversing definition of Target Variable

I reversed the definition of bad_flag to now represent =0 Never delinquent or 2 times or less 30 DPD. =1 One-time 60 DPD or worse, charge off, bankruptcy and repossession.

4.2 Handling Missing Values

- 1. Drop features that have more than 80% mising data.
- 2. For categorical features, I used SimpleImputer using the most frequent strategy.
- 3. For numerical features, I used SimpleImputer using the median strategy.

4.3 Scaling

Scaling Method: RobustScaler was chosen to transform numerical features, which is effective in handling outliers by using the median and interquartile range (IQR) instead of mean and standard deviation.

4.4 Encoding Categorical Variables

One-hot encoding was applied, creating separate binary columns for each category in a categorical variable.

4.5 Removing Features

I removed Race and Gender for fairness and aprv_flag to avoid data leakage.