Internship Program Report

By

Gandham naga ratna priya - 19485A0231

In association with

ROLL No: 19485A0231

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	4
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Drawing for EPC projects	6
28 th May2021: SLD and Load for EPC projects	7
29th May2021: Sizing for EPC projects	7
2nd june2021: Caluculation of lightning and earthing for EPC projects	9
21st May2021: procedure of indoor and outdoor for EPC projects	10
5 th june 2021: Cable sizing for EPC projects	11
7th May2021: Overall plant description for EPC project	11
Conclusion	
FeedbackSilant.	12
1 Internz	

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGEin association with Smart Internz, Hyderabad for the benefit of 3rdyear EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. Rama Krishna –Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar -System Support

Mr. Harikanth-Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

1A. INTRODUCTION TO EPC INDUSTRY EPC – Engineering, procurement & construction EPC companies – Engineering, Procurement & Construction (TECHNIP, TOYO, L&T, JACOBS, JGC, PUNJ LLOYD, TCE) Industry: Oil & gas, Power, Fertilizer, Chemical, Textile, Food & beverage, Utility sectors. Projects: Green Field & Brown Field. Engineering – Basic engineering, FEED (Front End Engineering & Design), Detailed engineering. Detailed Engineering – Engineering (for Procurement) & detailed design (for Construction) Basic Engineering Front End Engineering & design Detailed Engineering & Design & Detailed Engineering & Design & Detailed Engineering &

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables		
	Documentation	Detailed Engineering work flow	Detailed engineering process		
		Document transmission	Document submission and info		
			exchange		
		Deliverables types	Different types of deliverables		

Z

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

5 th May2021: Drawing for EPC projects

3	Document & Drawing	MS Word	Report / Calculations formats		
	tools	MS Excel	Basic excel commands		
		Autocad	Basic line diagrams and layout		
			commends		

3C. AUTOCAD BASIC COMMANDS

A	AUTOCAD BASIC KEYS								
STAND	ARD	DRA	W	MOD	IFY	FORMAT			
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	MO		
OPEN	Ctrl+O	RAY	RAY	COPY	СО	SELECT COLOR	COL		
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA		
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT		
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW		
CUT	Ctrl+X	RECTANGLE	REC	MOVE	М	LT SCALE	LTS		
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI		
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN. STYLE	D		
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN		
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP		
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX				
		POINT	PO	BRAKE	BR				
		HATCH	Н	CHAMFER	CHA				
		GRADIENT	GD	FILLET	F				
		REGION	REG	EXPLODE	X				
		BOUNDARY	ВО						
		DONUT	DO	Ţ.					

	EX	ΓRA		DRAF	TING	PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	(0,0; 1000,1000)		MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID 🖟	F7, Ctrl+G	A1=594*841
ALL	Α	OBJECT SNAP	OB	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Basics line diagrams andlayouts commends.

June 2021

ROLL No: 19485A0231

28th May2021: SLD and Load for EPC projects

4	Estimation of Plant	Load List / Power balance	Load / Maximum demand calculation
	Electrical Load & SLD	Single Line Diagram	Development of SLD
		Power Distribution system	Various power distribution systems

														kW = [A] / [D]	1	Consumed	Load	kVAR = kW	x tan φ	
l. o.	Equipment No.	Ec	quipment Description		Breaker Rating	Breaker Type	Breaker No. of	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor	Efficiency at Load	Power Factor at	Continu		Intermi		Stand-		Rema
	INO.				Hatting	Турс	Poles	Hating	Load	rsating	[A]/[B]		Load	Continu	ous	intermi	ttent	otana.	by	
									[A]	[B]	[0]	[D]	Factor [C]							
					A			mΑ	kW	kW	decimal	decimal	coso	kW	kVAB	kW	kVAB	kW	kVAB	
	PU2315	Silica filter feed pump							38.12		0.85	0.91	0.78	41.89	33.61					
	PU 2314-A	Absorbesnt/Neutral oil	pump (W)						11.07		0.74	0.85	0.73	13.0	12.2					
	PU 2314 -B	Absorbesnt/Neutral oil							9.53		0.87	0.85	0.73		I	I		11.2	10.5	
	PU2305	Feed Pump (Seperator)					L	l	38.50		0.86	0.91	0.78	42.3	33.9		L			
	MX2305	MIXER (W)							38.80		0.86	0.91		42.6	34.2					
	MX 2308	MIXER (S)							38.80		0.86	0.91	0.78					42.6	34.2	
	BW2313	Blower							16.66	18.50	0.90	0.85	0.73	19.6	18.4					
	Rotary valve	TK 2313B (I)							1.62	2.20	0.74	0.85	0.73		I	1.9	1.8			
	SC2314	Screw conveyor (I)					I		3.74	4.70	0.80	0.85	0.73			4.40	4.12			
)	AG 2324A	Citric acid tan agitator	(W)			1	Ī		2.81	3.00	0.94	0.85	0.73	3.31	3.10	I			1	
1	AG 2324B	Citric acid tank agitator	(8)			l	1		2.81	3.00	0.34	0.85	0.73		Ī	1	1	3.3	3.1	
2	AG 2305	Citric oil rection vessol	agitator				1		10.22	11.00	0.93	0.85	0.73	12.02	11.26	1	1			
3	AG 2309	Lye oil reaction vessel a	gitator				İ		3.71	4.70	0.79	0.85	0.73	4.36	4.09	İ	1			
•	AG 2310	Lye oil reaction vessel a					†		3.71		0.79	0.85	0.73	4.36	4.09	İ	T			
5	AG 2314	Soap Adsorbant Tank A				·	t		6.50		0.87	0.85	0.73	7.65	7.16		tt			
							·			·			†		†	†	· · · · · · · · · · · · · · · · · · ·			
••••						†													†	
							1			1			İ		T	1	1			
						I							I		I	1			T	
																I				
		nal running plant load :	193.1			***	kVAB			(kW" +kVAB") =	253.2		TOTAL	191,16	161,98	6.31	5.90	57.16	47.80	
	(Est. xXE + yXF)	iai running plant load :	193.1	KW		163.6	KVAH		sqrt	(8M. +8AVH.) =	253.2	KVA	TOTAL	131.16	161.36	6.31	5.30	51.16	41.00	
	(LSC. XAL + yar)																			
	Peak Load :		198.8	kW		168.5	kVAB		sort	(kW" +kVAB") =	260.6	kVA	kVA	250.5	7	8.6	4	74.51		
	(Est. xXE + yXF +	e2G)								(
	(======================================	,																		
	Assumptions																			
	1) Load factor, El	ficiency and Power facto	r.																	
		Load Rating (kW)				iency		Power f												
		<= 20			0.8			0.73												
					0.			0.78												
		> 20 - <= 45																		
		> 20 - <= 45 > 45 - < 150 >= 150			0.:			0.02												

Topic details:

List of electrical loads indicating continuous, intermittent & standby loads.

29th May2021: Sizing for EPC projects

5	Equipment	Selection	Transformer	Types, Sizing / selection
	& Sizing		DG Set	Types, Sizing / selection

6	SWGR	Types, Sizing / selection
	APFC	Types, Sizing / selection
7	UPS	Types, Sizing / selection
	Bus Duct	Types, Sizing / selection
8	Motor starters / Drives	Types, Sizing / selection
	Motors	Types, Sizing / selection

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	kW.	kTar	k t A	
a. Continuow load	191.16	162.0	250.56	(i)
b. Intermittent load/Diversity Factor	6.31	5.9	8.64	(ii)
C. Stand-by load required ar consumed load	57.16	47.8	74.51	(iii)
Max. Consumed load - ((i) + 30% (ii) + 10% (iii)) -	198.8	168.5	260,60	
Futuro expansion load (20% capacity)	39.8	33.7	52.12	
Total Load -	238.5	202.2	312.72	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 260.6 kVA

 Spare capacity
 52.1 kVA

 Required capacity
 312.7 kVA

 Transformer rated capacity
 120

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

lesul | Duringstarting of max. capacity motor, uhile all other loads are running, the voltage regulation at Transformers econdary terminals is approx. 5.3%, which meets the criteria to maintain less than 15% voltage regulation.

Topic details:

Transformer and DG set calculations, types, sizing or selections

2nd june2021: Caluculation of lightning and earthing for EPC projects

9	Earthing& Lightning	Earthing	Calculations, Procedure & Layouts
	protection	Lightning Protection	Calculations, Procedure & Layouts

Lightning calculation:

		10				
	Location	Vadodara				
	Building	Srtuctural, Industrial				
	Type of Building	Triangle Roofs (c)				
	Building Length (L)	13				
	Building breadth (W)	7				
	Building Height (H)	6				
	Risk Factor Calculation					
1	Collection Area (A.)					
	Α.		=	(3.14°H°H)+(2	"H"L)	
				269.04		
2	Probability of Being Struck (P)					
	P			A, 1N, 110°		
				0.00013452		
3	Overall weighing factor			0.00010402		
•	a) Use of structure (A)		-	1.3		
	b) Type of construction (B)			0.8		
	c) Contents or consequential effects (C)		1.3		
	d) Degree of isolation (D)	0,		1.0		
	e) Type of country (E)		-	0.3		
	Wo - Overall weighing factor		-	A.B.C.D	E	
	in a state in insigning reason		-	0.406	_	
4	Overall Risk Factor	Po	-	P.Ao		
_		Po	-	5.4561E-05		
		Pa		10-5		
	As per clause no. 9.7 of BS- 6651, sugg	rested accentable risk 6:	actor (E		ken as 10 ⁻⁵	
	Since Po > Pa lightning protection req		30(0) [1	oj nas been te	iken as io	
	Air Terminations					
	Air Terminations					
5						
5	Perimeter of the building		=	2(L+W)		
5	Perimeter of the building		:	2(L+W) 40	Mts.	
	Perimeter of the building Down Conductors				Mts.	
					Mts.	
	Down Conductors	imeter	=	40		
	Down Conductors Perimeter of building		:	40	Mts.	
	Down Conductors Perimeter of building No. of down conductors based on per		:	40 40 2	Mts. Nos.	el Str
	Down Conductors Perimeter of building No. of down conductors based on per Hence 2 nos. of Down conductors have	ve been selected.	:	40 40 2	Mts. Nos. Galvanized Stee	el Str

Topic details:

Lightning and earthing protection calculations and procedure

21st May2021: procedure of indoor and outdoor for EPC projects

10	Illumination system	Indoor & Outdoor	Procedure & Layouts
11		Indoor & Outdoor	Calculations with Dialux software

Topic details:

Indoor and outdoor procedure and layouts calculations with Dialux software

5 thjune 2021: Cable sizing for EPC projects

12	Cabling	Types of cables	Cables usage
			Types of laying
13		Cable sizing calculations	Types of calculations

Cable sizing calculations

No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)	Cable Length (M)	Cable Resistanc e (Ohms/kM)	Cable Reactance (Ohms/kM)	Voltage drop (Running) (V)	Voltage drop (Running) (%)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)	Cable size result	OD of Cable (mm)	Gland size
1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	95	0.9300	0.0816	8.65	2.08	51.36	12.38	OK	22	20
1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	95	3.9400	0.0902	10.16	2.45	60.76	14.64	OK	18	20s
1	4.0	4	38	0.98	0.9	1	1	0.882	33.5	60	5.9000	0.0947	8.23	1.98	49.26	11.87	OK	17	20s
1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	7.82	1.88	46.41	11.18	OK	22	20s
1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	75	0.9300	0.0816	6.95	1.67	41.27	9.95	OK	22	20s
1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	105	0.9300	0.0816	9.73	2.34	57.78	13.92	OK	22	20s
1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	100	2.3400	0.0852	9.65	2.33	57.65	13.89	OK	18	20s
1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	100	9.4800	0.1007	3.73	0.90	22.35	5.39	OK	16	20s
1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	2.71	0.65	16.21	3.91	OK	18	20
1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	110	9.4800	0.1007	7.12	1.71	42.65	10.28	OK	16	20s
1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	2.04	0.49	12.18	2.93	OK	18	20
1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	105	3.9400	0.0902	10.36	2.50	62.00	14.94	OK	18	20
1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	0.75	0.18	4.47	1.08	OK	22	32
1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	8.12	1.96	48.63	11.72	OK	16	20s
1	4.0	2.5	28	0.98	0.9	1 /	1	0.882	24.7	65	9.4800	0.1007	9.73	2.34	58.29	14.05	OK	16	20s
'	ı			/						. 1				1 4		I		ı	I

Topic details:

Cable sizing calculations for LV cables and MV/HV cables shall be performed for each load based on cable laying conditions.

7th May2021: Overall plant description for EPC project

14	Electrical system	Assignment	Overall plant description
	design for a small small		
15	project	Approach to detailed design	Sequence of approach

Smart Internz

1C. DETAILED ENGINEERING

Topic details:

Overall plant description, approach to detailed design.

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

Internz

assignment 1 ELECTRICAL LOAD CALCULATIONS LV MCC

												kW = [A] / [D]		Consumed I	Load	kVAR = kW	x tan φ	
.	Equipment	Equipment Description	Breaker				Absorbed	Motor / Load	Load	Efficiency	Power	Continu		Interm	ittant	Ctand	.	Remarks
o.	No.		Rating	Туре	No. of Poles	Rating	Load	Rating	Factor [A] / [B]	at Load Factor [C]	Factor at Load	Continue	ous	Intermi	ılleni	Stand-	by	
					1 0163					i actor [O]	Factor [C]							
							[A]	[B]	[C]	[D]	"							
			Α			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
_		law su s					00.40	17.00			0.70		ļ					
	PU2315	Silica filter feed pump					38.12		0.85	0.91								
	PU 2314-A	Absorbeant/Neutral oil pump (W)					11.07 9.53	15.00	0.74	0.85		13.0	12.2	<u>′</u>		11.0	10.5	
	PU 2314 -B PU2305	Absorbesnt/Neutral oil pump (S)					38.50			0.85 0.91		42.3	33.9	\ <u></u>		11.2	10.5	
	MX2305	Feed Pump (Seperator) MIXER (W)					38.80											
	MX 2308	MIXER (S)					38.80						34.2			42.6	34.2	
	BW2313	Blower					16.66						18.4	<u> </u>		42.0	34.2	
	Rotary valve	TK 2313B (I)					1.62		0.74				10.4	1.9	1.8			
	SC2314	Screw conveyor (I)				+	3.74						1	4.40	4.12			
	AG 2324A	Citric acid tan agitator (W)					2.81	3.00					3.10		7.12			
	AG 2324B	Citric acid tank agitator (S)				+ -	2.81	3.00	0.94				1 30			3.3	3.1	
	AG 2305	Citric oil rection vessol agitator					10.22						11.26	3		5.0	0.1	
	AG 2309	Lye oil reaction vessel agitator				+	3.71		0.79									
	AG 2310	Lye oil reaction vessel agitator				\dagger	3.71	4.70	0.79									
	AG 2314	Soap Adsorbant Tank Agitator					6.50											
		1 0																
_																		
_																		
\dashv		1			<u> </u>								1		1			
	Maximum of norn	nal running plant load : 193.1 kW		163.8	kVAR		sqrt (kW² +kVAR²) =	253.2	kVA	TOTAL	191.16	161.98	6.31	5.90	57.16	47.80	
ŀ	(Est. x%E + y%F)													<u> </u>			
	Peak Load :	198.8 kW		168.5	k\/AD		cart (kW² +kVAR²) =	260.6	μ\/Λ	kVA	250.5	7	8.6		74.51	ı	
	(Est. x%E + y%F			100.5	KVAIX		Sqrt (KVV IKVAIL) -	200.0	NVA	NVA	250.5	1	0.0	4	74.51	•	
ľ	(L3t. X70L · y 701	2700)																l
-	A																	
	Assumptions	fficiency and Power factor.																
	i) Load lactor, El	Load Rating (kW)	Effic	iency		Power fac	stor											
-		<= 20	0.			0.73	, toi											
		> 20 - <= 45	0.			0.78												
		> 45 - < 150	0.			0.82												
		>= 150	0.			0.91												
- [:	2) Coincidence fa	actors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intern	nittent and sta	ndby load.														
ᆚ																		

Calculation for Transformer Capacity

14/--

LVA

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	KVV	kvar	KVA	
a. Continuous load	191.16	162.0	250.56	(i)
b. Intermittent load / Diversity Factor	6.31	5.9	8.64	(ii)
c. Stand-by load required as consumed load	57.16	47.8	74.51	(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	198.8	168.5	260.60	
Future expansion load (20% capacity)	39.8	33.7	52.12	
Total Load =	238.5	202.2	312.72	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

Max. Consumed load = 260.6 kVA
Spare capacity = 52.1 kVA
Required capacity = 312.7 kVA
Transformer rated capacity = 120

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx. 5.3%, which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

120 kVA transformer selected.

	assignment 2		
	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.74	Avg
	Efficiency	0.86	Avg
	Total operating load on DG set in kVA at 0.74 power factor	253.2	
	Largest motor to start in the sequence - load in KW	45	KW
	Running kVA of last motor (CosØ= 0.91)	71	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter)
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	424	KVA
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	182	KVA
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	182	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	607	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd")	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	$Xd^{\prime\prime\prime\prime} = (Xd^{\prime\prime\prime} + Xd^{\prime\prime})/2$	0.089875	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd''' x (1-Transient Voltage Dip) (Transient Voltage Dip)	309	KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	607	KVA
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA	405	KVA
	overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	182	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	309	KVA
	Overload capacity P3	405	KVA
	Considering the last value amongst P1, P2 and P3	405	KVA
	Hence, Existing Generator 405 KVA is adequate to cater the loads as per re-		
	NOTE:VOLTAGE DIP CONSIDERED - 15%		

	10		
Maximum line-to-ground fault in kA for 1 sec	14		
Earthing material (Earth rod & earth strip)	GI		
Depth of earth flat burrial in meter	0.5		
Average depth / length of Earth rod in meters	4		
Soil resistivity Ω-meter	17		
Ambient temperature in deg C	50		
Plot dimensions (earth grid) L x B in meters	65	125	
Number of earth rods in nos.	6		

Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

0.0032
20.10
50
14
1
3.93
419
293
0.123
114
12
15

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I _{I-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	

Ac - Required conductor cross section in sq.mm
Earth flat area in mm
12
Earth flat area (including 25% corrosion allowance) in mm
Selected flat size W * Thk in sq mm
20

Rg - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

$$R_g = \rho \left\{ \frac{1}{L} + \frac{1}{\sqrt{20 \times A}} \left[1 + \frac{1}{1 + h \sqrt{20 / A}} \right] \right\}$$

ρ - Soil resistivity in Ω -meter=	17
L - Total buried length of ground conductor in meter	380
h - Depth of burial in meter	0.5
A - Grid area in sq. meter	8125

Rq - Grid resistance 0.128

Rr - Earth Electrode resistance

Grid resistance can be calculated using Eq. 55 of IEEE 80

$$R_{r} = \frac{\rho}{2 \times \pi \times n_{r} \times L_{r}} \left\{ l_{n} \left[\frac{4 \times L_{r}}{b} \right] - 1 + \frac{2 \times k_{1} \times L_{r}}{\sqrt{A}} \left(\sqrt{n_{r}} - 1 \right)^{2} \right\}$$

ρ - Soil resistivity in $\Omega\text{-meter, }16.96$	17
n - No of earth electrodes	6
Lr - Length of earth electrode in meter	4
b - Diameter of earth electrode in meter	0.020
k1 - co-efficient	1
A - Area of grid in square metre	8125

Rr - Earth Electrode resistance 6.73641

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:

$$R_{s} = \frac{R_{g} \times R_{2} - {R_{m}}^{2}}{R_{g} + R_{2} - 2R_{m}}$$

 R_m - Mutual ground resistance between the group of ground conductors, R_g and group of electrodes, R_r in $\Omega.$ Neglected R_m , since this is for homogenous soil

Rs - Total earthing system resistance 0.126 Ohms

The calculated resistance grounding system is less than the allowable 1 Ω value.

lightning calculations	10
Location	Vadodara
Building	Srtuctural, Industrial
Type of Building	Triangle Roofs (c)
Building Length (L)	13
Building breadth (W)	7
Building Height (H)	6

Risk Factor Calculation

1 Collection Area (A_c)

A_c		=	(3.14*H*H)+(2*H*L) 269.04
2 Probability of Being Struck (P)			
P		=	$A_c * N_g * 10^{-6}$
			0.00013452
3 Overall weighing factor			
a) Use of structure (A)		=	1.3
b) Type of construction (B)		=	0.8
c) Contents or consequential effects (C)		=	1.3
d) Degree of isolation (D)		=	1.0
e) Type of country (E)		=	0.3
Wo - Overall weighing factor		=	A * B * C * D * E
		=	0.406
4 Overall Risk Factor	Po	=	P * Wo
	Ро	=	5.45613E-05

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

Pa

10-5

5 Air Terminations

= 40 Mt	2(L+W)
6 Down Conductors	40 Mts.
o Down Conductors	
Perimeter of building = 40 Mt	40 Mts.
No. of down conductors based on perimeter = 2 No	2 Nos.

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Ste

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

S.NO.	Description	Equipment No.	Description	Consumed Load KW		Voltage (V)	o. Full Load Curren		Load P.F. Running		Motor P.F Staring		Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)		Cable Resistance (Ohms/kM)	Cable Reactance (Ohms/kM)	Voltage drop (Running) (V)	Voltage drop (Running) (%)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)		OD of Cable (mm)	Gland size
3	LV MCC	PU2315	Silica filter feed pump	38.12	45.00	415	66.3	397.76	8.0	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	95	0.9300	0.0816	8.65	2.08	51.36	12.38	OK	22	20
4	LV MCC	PU2322A	Soft water pump	11.07	15.00	415	19.3	115.51	8.0	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	95	3.9400	0.0902	10.16	2.45	60.76	14.64	OK	18	20s
5	LV MCC	PU 2314A	Absorbesnt/Neutral oil pump	9.53	11.00	415	16.6	99.44	8.0	0.6	0.8	0.5	2	1	4.0	4	38	0.98	0.9	1	1	0.882	33.5	60	5.9000	0.0947	8.23	1.98	49.26	11.87	OK	17	20s
6	LV MCC	PU2324	Citric Acid Tank pump	38.50	45.00	415	67.0	401.72	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	7.82	1.88	46.41	11.18	OK	22	20s
7	LV MCC	PU2333	Slop Oil pump	38.80	45.00	415	67.5	404.85	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	75	0.9300	0.0816	6.95	1.67	41.27	9.95	OK	22	20s
8	LV MCC	PU 2322B	Soft water pump-Stand by	38.80	45.00	415	67.5	404.85	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	105	0.9300	0.0816	9.73	2.34	57.78	13.92	OK	22	20s
9	LV MCC	PU2321A	Lye/Simplex Metering Pump	16.66	18.50	415	3 29.0	173.84	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	100	2.3400	0.0852	9.65	2.33	57.65	13.89	OK	18	20s
10	LV MCC	PU2321B	Lye storage tank pump	1.62	2.20	415	3 2.8	16.90	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	100	9.4800	0.1007	3.73	0.90	22.35	5.39	OK	16	20s
11	LV MCC	PU2305	Feed Pump(Seperator)	3.74	4.70	415	6.5	39.02	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	2.71	0.65	16.21	3.91	OK	18	20
12	LV MCC	PU2332	Saop Stock Pump	2.81	3.00	415	3 4.9	29.32	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	110	9.4800	0.1007	7.12	1.71	42.65	10.28	OK	16	20s
13	LV MCC	MX2305	Mixer	2.81	3.00	415	3 4.9	29.32	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	2.04	0.49	12.18	2.93	OK	18	20
14	LV MCC	MX2308	Mixer	10.22	11.00	415	17.8	106.64	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	105	3.9400	0.0902	10.36	2.50	62.00	14.94	OK	18	20
15	LV MCC	CF2312	Separator	3.71	1 4.70	415	6.5	38.71	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	0.75	0.18	4.47	1.08	OK	22	32
16	LV MCC	BW2313	Blower	3.71	4.70	415	6.5	38.71	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	8.12	1.96	48.63	11.72	OK	16	20s
17	LV MCC	RV 2314	Rotary valve	6.50	7.50	415	11.3	67.82	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	65	9.4800	0.1007	9.73	2.34	58.29	14.05	OK	16	20s

1

LT CABI	LES								
CABLE TI	RAY: FROM	LT-4	1	TO	LT-5				
r. No	Cable Route (From-To)	Type & Cable Size	a of Cable (mlo. of Cah	lameter of each	n Cm of Cable OD(m	rWeight of Cable(Kg	/Neight of Cable/K	Remarks
1	PU2315	4	25	1	22	22	1.4	1.4	Remarks
2	PU2322A	4	6	1	18	18	0.7	0.7	
3	PU 2314A	4	4	1	17	17	0.6	0.6	
4	PU2324	4	25	1	22	22	1.4	1.4	
5	PU2333	4	25	1	22	22	1.4	1.4	
6	PU 2322B	4	25	1	22	22	1.4	1.4	
7	PU2321A	<u> </u>	10	1	18	18	0.9	0.9	
8	PU2321B	4	2.5	1	16	16	0.5	0.5	
		4				18		1	
9	PU2305	<u> </u>	6	1	18		0.7	0.7	
10	PU2332	4	2.5	1	16	16	0.5	0.5	
11	MX2305	4	6	1	18	18	0.7	0.7	
12	MX2308	4	6	1	18	18	0.7	0.7	
13	CF2312	4	25	1	22	22	1.4	1.4	
14	BW2313	4	2.5	1	16	16	0.5	0.5	
15	RV 2314	4	2.5	1	16	16	0.5	0.5	
Γotal				15		281	13.3	13.3	
Calculat	ion					Result			
/laximum	Cable Diameter:		22	mm		Selected Cable	ray width:	O.K	
Consider S	Spare Capacity of Cable Tray:		30%			Selected Cable		O.K	
	etween each Cable:	0	mm		Selectrd Cable	Γray Weight:	O.K	Including Spare Capacity	
Calculated Width of Cable Tray:				mm		Selected Cable	Tray Size:	O.K	Including Spare Capacity
	Area of Cable Tray:		8037	Sq.mm					
	r of Cables in Cable Tray:		1			Required Cable		600 x 100	mm
	lo of Cable Tray:	1	Nos.		Required Nos of	-	1	No	
	able Tray Width:	600	mm		Required Cable		90.00	Kg/Meter/Tray	
	Cable Tray Depth:		100	mm Ka/Matan		Type of Cable Ti	ay:	Ladder	
Selected C Type of Ca	able Tray Weight Capacity:		90 Ladder	Kg/Meter	-	Coble Trey Midt	n Area Remaning	39%	
	of Cable Tray:		60000	Sq.mm		Cable Tray Widt		39% 87%	