# Gaussian Mixture Models & Hierarchical Clustering

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

May 8, 2017

## Selayang Pandang

1 Gaussian Mixture Models

2 Hierarchical Clustering

#### Bahan Bacaan

- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann. (Section 9.3)
- VanderPlas, J. (2016). Python Data Science Handbook. (In Depth: Gaussian Mixture Models) http://nbviewer.jupyter.org/github/jakevdp/ PythonDataScienceHandbook/blob/master/notebooks/ 05.12-Gaussian-Mixtures.ipynb
- 3 Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). Springer, Berlin: Springer series in statistics. (Section 14.3.12)

## Gaussian Mixture Models

- Pendekatan probabilistik untuk clustering
- Setiap klaster adalah model generatif, e.g. Gaussian atau multinomial
- Menggunakan parameter
- Didasarkan pada algoritma Expectation Maximisation (EM)



Bagaimana kalau kita tidak tahu kelasnya?

## Expectation Maximisation (EM)

- 1 Inisialisasi dengan dua Gaussians secara acak  $(\mu_a, \sigma_a^2)$ ,  $(\mu_b, \sigma_b^2)$
- 2 Ulangi hingga konvergen
  - a. **E-step**: Apakah  $x_i$  terlihat masuk ke a atau b, i.e.  $P(a|x_i)$ ?<sup>1</sup>

$$a_i = P(a|x_i) = \frac{P(x_i|a)P(a)}{P(x_i)}$$

$$b_i = P(b|x_i) = 1 - a_i$$

b. **M-step**: Perbaiki nilai  $(\mu_a, \sigma_a^2)$ ,  $(\mu_b, \sigma_b^2)$ 

$$\mu_{\mathsf{a}} = \frac{a_1 x_1 + a_2 x_2 + \dots + a_n x_n}{a_1 + a_2 + \dots + a_n}$$

$$\sigma_a^2 = \frac{a_1(x_1 - \mu_a)^2 + \dots + a_n(x_n - \mu_a)^2}{a_1 + a_2 + \dots + a_n}$$



<sup>&</sup>lt;sup>1</sup>Bayes' rule!

## Prior dari Bayes' Rule

- Bisa dibuat tetap, atau
- Dibuat berubah-ubah, i.e.

$$P(a) = \frac{a_1 + a_2 + ... + a_n}{n}$$
  
 $P(b) = 1 - P(a)$ 







## Berapa nilai K?

Model probabilistik → maximum likelihood

$$P(x_1,...,x_n) = \prod_{i=1}^n \sum_{k=1}^K P(x_i|k)P(k)$$

$$\mathcal{L} = \log P(x_i, ..., x_n) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} P(x_i|k) P(k)$$

## Berapa nilai K?

Model probabilistik → maximum likelihood

$$P(x_1,...,x_n) = \prod_{i=1}^n \sum_{k=1}^K P(x_i|k)P(k)$$

$$\mathcal{L} = \log P(x_i, ..., x_n) = \sum_{i=1}^n \log \sum_{k=1}^K P(x_i|k)P(k)$$

•  $\mathcal L$  bisa dimaksimalkan dengan membuat K=n o over fitting!

## Berapa nilai K?

Model probabilistik → maximum likelihood

$$P(x_1,...,x_n) = \prod_{i=1}^n \sum_{k=1}^K P(x_i|k)P(k)$$

$$\mathcal{L} = \log P(x_i, ..., x_n) = \sum_{i=1}^n \log \sum_{k=1}^K P(x_i|k)P(k)$$

- $\mathcal L$  bisa dimaksimalkan dengan membuat K=n o over fitting!
- Occam's razor
  - Bayes. Inf Criterion (BIC):  $\max_{p} (\mathcal{L} \frac{1}{2}p \log n)$
  - Akaike Inf Criterion (AIC):  $\min_{p}(2p \mathcal{L})$

dengan  $\mathcal L$  adalah  $log\ likelihood\ dan\ p$  adalah jumlah parameter



Tenang, sudah ada di scikit-learn!

## AIC dan BIC



Gambar: Nilai terbaik adalah saat  $n_{components}$  antara 8-12 [VanderPlas, 2016]

## Hierarchical Clustering

#### Memilih Nilai K

• Tidak ada algoritma yang bisa memilih nilai K secara langsung

#### Memilih Nilai K

- Tidak ada algoritma yang bisa memilih nilai K secara langsung
- Memilih  $K \sim$  pertanyaan granularity

#### Memilih Nilai K

- Tidak ada algoritma yang bisa memilih nilai K secara langsung
- Memilih  $K \sim$  pertanyaan granularity
- Bagaimana kalau kita membuat hierarki alih-alih menentukan satu nilai K?

#### Hierarki Klaster

- Semakin bawah, semakin granular
- Strategi
  - top-down: satu klaster besar, bagi secara rekursif
  - bottom-up: dari singletons, gabung dengan kriteria tertentu

#### Hierarchical K-means

- Top-down, nilai K ditentukan di awal, bagi secara rekursif
- Setiap rekursi menjadi semakin lebih cepat karena semakin sedikit data yang dimasukkan klaster
- Greedy, ada kemungkinan titik yang berdekatan tidak ada klaster yang sama

## Agglomerative Clustering

- 1 Mulai dari sejumlah C dengan n singletons
- 2 Ulangi hingga menjadi satu klaster
  - a. Cari sepasang klaster terdekat  $min_{i,j} D(c_i, c_j)$
  - b. Gabungkan  $c_i, c_j$  menjadi satu klaster  $c_{i+j}$
  - c. Buang  $c_i, c_j$  dari C, masukkan  $c_{i+j}$

## Agglomerative Clustering

- Bottom-up, setiap poin yang berdekatan akan ada dalam satu klaster
- Menghasilkan dendogram
- Perlu mendefinisikan metode pengukuran jarak antarklaster

## Dendogram



Gambar: Dendogram dari agglomerative clustering dengan average linkage untuk data human tumor microarray [Friedman, et al., 2001]

• Single link:  $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster

- Single link:  $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster
- Complete link:  $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara pasangan elemen terjauh dari kedua klaster

- Single link:  $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster
- Complete link:  $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara pasangan elemen terjauh dari kedua klaster
- Average link:  $D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$ Rata-rata dari jarak setiap pasangan antarklaster

- Single link:  $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster
- Complete link:  $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara pasangan elemen terjauh dari kedua klaster
- Average link:  $D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$ Rata-rata dari jarak setiap pasangan antarklaster
- Centroids:  $D(c_1, c_2) = D\left(\left(\frac{1}{|c_1|}\sum_{x \in c_1}\mathbf{x}\right), \left(\frac{1}{|c_2|}\sum_{x \in c_2}\mathbf{x}\right)\right)$  Jarak antara *centroids* dari kedua klaster

- Single link:  $D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara elemen terdekat dari kedua klaster
- Complete link:  $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$ Jarak antara pasangan elemen terjauh dari kedua klaster
- Average link:  $D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$ Rata-rata dari jarak setiap pasangan antarklaster
- Centroids:  $D(c_1, c_2) = D\left(\left(\frac{1}{|c_1|}\sum_{x \in c_1}\mathbf{x}\right), \left(\frac{1}{|c_2|}\sum_{x \in c_2}\mathbf{x}\right)\right)$  Jarak antara *centroids* dari kedua klaster
- Ward's method:  $TD_{c_1 \cup c_2} = \sum_{x \in c_1 \cup c_2} D(x, \mu_{c_1 \cup c_2})^2$ Perubahan total jarak dengan *centroids* yang dihasilkan

## Lance-Williams Algorithm

- **1**  $D_{i,j} = \text{jarak antara semua pasangan } x_i \text{ dan } x_j$  antara dua klaster
- 2 Untuk N iterasi:
  - a.  $i,j = \arg \min D_{i,j}$ , i.e. pasangan klaster terdekat
  - b. tambahkan klaster i + j, buang klaster i dan j
  - c. untuk setiap sisa klaster k:

$$D_{k,i+j} = \alpha_i D_{k,i} + \alpha_j D_{k,j} + \beta D_{i,j} + \gamma |D_{k,i} - D_{k,j}|$$



## Lance-Williams Algorithm

$$D_{k,i+j} = \alpha_i D_{k,i} + \alpha_j D_{k,j} + \beta D_{i,j} + \gamma |D_{k,i} - D_{k,j}|$$

| Metode                 | $\alpha_i$                      | $\alpha_j$                      | β                                      | $\gamma$ |
|------------------------|---------------------------------|---------------------------------|----------------------------------------|----------|
| Single linkage         | 0.5                             | 0.5                             | 0                                      | -0.5     |
| Complete linkage       | 0.5                             | 0.5                             | 0                                      | 0.5      |
| Group average          | $\frac{n_i}{n_i+n_i}$           | $\frac{n_j}{n_i+n_i}$           | 0                                      | 0        |
| Weighted group average | 0.5                             | 0.5                             | 0                                      | 0        |
| Centroid               | $\frac{n_i}{n_i+n_j}$           | $\frac{n_j}{n_i+n_j}$           | $\frac{-n_i \cdot n_j}{(n_i + n_j)^2}$ | 0        |
| Ward                   | $\frac{n_i+n_k}{(n_i+n_j+n_k)}$ | $\frac{n_j+n_k}{(n_i+n_j+n_k)}$ | $\frac{-n_k}{n_i+n_j+n_k}$             | 0        |

#### Single link:

$$D_{k,i+j} = \frac{1}{2}(D_{k,i} + D_{k,j} - |D_{k,i} - D_{k,j}|) = \min(D_{k,i}, D_{k,j})$$



Salindia ini dibuat dengan sangat dipengaruhi oleh Lavrenko (2014)

#### Referensi



Jake VanderPlas (2016)

In Depth: Gaussian Mixture Models

http://nbviewer.jupyter.org/github/jakevdp/ PythonDataScienceHandbook/blob/master/notebooks/05. 12-Gaussian-Mixtures.ipynb



J. Friedman, T. Hastie, & R. Tibshirani (2001)

The Elements of Statistical Learning (Vol. 1)

Springer, Berlin: Springer series in statistics.

## Terima kasih