IS61LV25616

256K x 16 高 SPEED ASYNCHRONOUS CMOS STATIC RAM WITH 3.3V SUPPLY

特性

- 高速存取时间: 8,10,12,和15纳秒
- CMOS 低功耗工作
- TTL兼容接口水平
- 』单 3.3V ± 10% 电源
- 』全静态操作:无时钟或刷新 需
- 1 三态输出
- 』 数据上下字节
- 0 工业温度可

描述介绍

1+51 IS61LV25616 控制是一种高速,4,194,304位静态 RAM 由 262,144位 16 个单词。它是制作使用 1+51的高性能 CMOS技术。这种高度可靠的进程与创新的电路设计技术,产量高的性能和低功率消耗,耦合和灰装置。

当 CE 是高(取消选择),假定一个备用设备 在该模式可以降低功耗与 CMOS 投入水平下降。

易内存扩展是通过使用芯片使能和 输出使能输入提供。 CE 和 OE. 主动低写 启用 (WE) 控制著写作和阅读的记忆。 A 允许高字节数据字节和低字节 (UB) (LB) 访问。

该 IS61LV25616 被包装在 JEDEC 标准 44针400mil SOJ, 44 TSOP-2 和48引脚400mi附 6*8 TF-BGA.

FUNCTIONAL BLOCK 图表

IOSI 保留权利。在任何时候不益温如变更其产品,以报高设计和决查最好的产品。数约不单报任何错误 可数出现在述本刊物的责任。 Φ 版权 2000, 获体电路解决方案公司

针脚 配置 44引脚 TSOP-2和 SOJ

48引脚 TF-BGA

针脚 描述

A0-A17	地址输入
I/O0-I/O15	数据输入/输出
CE	芯片使能輸入
OE	输出使能输入
WE	写使能输入

LB	下个字节的控制 (I/O0-I/O7)
UB	上个字节的控制 (I/O8-I/O15)
NC	无连接
的VCC	电源
GND	地面

TRUTH TABLE

						I/O	针脚	
英式	WE	CE	OE	LB	UB	1/00-1/07 1/08-1/015		当前的VCC
不选择	X	Н	Х	Х	Х	高阻	高阻	ss , ss
輸出残疾人	Н	L	Н	Х	Х	高阻	高阻	Icc
	X	L	Х	Н	Н	高阻	高阻	
阅读	Н	L	L	L	Н	Dout	高阻	Icc
	Н	L	L	Н	L	高阻	D out	
	Н	L	L	L	L	Dout	Dоит	
5	L	L	Х	L	Н	Dın	高阻	Icc
	L	L	Х	Н	L	高阻	DIN	
	L	L	Х	L	L	DIN	Din	

ABSOLUTE 最大 额定值

(1)

符号	参数	价值	单位
VTERM	终端电压偏置下	□ 0.5 至Vcc +0.5	V
TBIAS	的VCC相关 GND	0 45 到 +90	°C
Vcc	贮藏温度就 GND	0.3到 +4.0	V
Tstg	温度	□ 65 到 +150	°C
Рт	功耗	1.0	W

注:

1. 应力比下

ABSOLUTE 最大 额定值所列的更大的可能造成永久性损坏设备。这是一个只和职能额定值 - 佐丹奴国的行动,这些设备或以上的的任何其他条件的应力本规范的范围内时,是不是暗示。世博会绝对最大额定值长时间 CON组,扬长避短确保可能影响可靠性。

操作 RANGE

范围	环境温度	Vcc
一 商业	0°C 到 +70°C	3.3V ± 10%
工亚	□ 40°C 到 +85°C	3.3V ± 10%

操作 RANGE

范围	环境温度	Vcc
商业	0°C 到 +70°C	3.3V ± 10%
工业	□ 40°C 到 +85°C	3.3V ± 10%

DC 电气 特性

(以上经营范围)

象征物	参数		測试条件		闽。	最高。	单位
Vон	输出电压高		Vcc = 最小。ян I= I 4.0 毫安		2.4	0	V
Vol	输出电压低		Vcc = 最小。 a. = 8.0 毫安		0	0.4	V
VIH	輸入高电压				2.0	Vcc + 0.3	V
VıL	电压输入低	(1)			0.3	0.8	V
lu	输入漏		GND \≤V IN \< Vcc	的COM。 工业	0 1 0 5	1 5	μA
Ito	輸出漏		GND \≤V ouт \< Vcc 产出残疾人	的COM。 工业	0 1 0 5	1 5	μА

备注:

1. V 및 (最小值) = 为纳秒脉冲宽度比 및 2.0 V 10 少。

2.对于 8 纳秒的VCC运作范围为 3.3V +10%, -5%.

标志	参数	测试条件			纳秒 。马克斯。		0 纳秒 \。马克斯		纳秒 。马克斯。	-15ණ 。最小。		騨 位
Icc	的VCC工作动态 电流	Vcc = 最大。, lout = 0 毫安,变ax=1	的C <mark>OM</mark> 。 工业	0	350 360	0	320 330	0	290 300	0	260 270	毫安
ss	TTL 待机电流 (TTL 输入)	Vcc = 最大。, Vn = Vн 或 V CE= Vн , f = 0	的 <mark>COM</mark> 。 工业	0	55 65	0	55 65	0	55 65	0	55 65	毫安
lsa	CMOS 待机 当前(CMOS 输入)	Vcc = 最大。, CE= Vcc □ 0.2V, Vn = Vcc □ 0.2V, 或 Vn = 0.2V, f= 0	的COM。 工业	0	10 15	0	10 15	0	10 15	0	10 15	毫 安

注:

1.在f=f MAX,地址和数据输入的最高频率单车,男 = 0 意味着没有输入线的变化。

积体电路解决方案公司

SR040-0C

CAPACITANCE (1)

符号	参数	条件	最高。	单位
CIN	输入电容	VIN = 0V	6	pF的
Соит	输入/输出电容	Vout = 0V	8	pF的

注

一. 初步测试后,任何设计或工艺变化,可能会影响这些参数。

READ CYCLE SWITCHING 特性

(1) 在经营范围()

标志	参数	-8 最小。	最高。	-1 最小。	0 . 马克斯。	- <mark>1</mark> 最小。	2 。马克斯。	- <mark>1</mark> 最小。	5 。马克斯	f₀单位
啿	读周期时间	8	0	10	0	12	0	15	0	纳秒
啿	地址访问时间	0	8	0	10	0	12	0	15	纳秒
啿	输出保持时间	3	0	3	0	3	0	3	0	纳秒
ΨE	CE访问时间	0	8	0	10	0	12	0	15	纳秒
₩ _E	OE交通时间	0	4	0	5	0	6	0	7	纳秒
Щ _{OE}	OE到高阻输出	0	4	0	5	0	6	0	6	纳秒
ŪŽOE	OE 为低- Z的输出	0	0	0	0	0	0	0	0	纳秒
HACE	CE到高阻输出	0	4	0	5	0	6	0	6	纳秒
Ū L CE	CE为低-Z的输出须知	3	0	3	0	3	0	3	0	纳秒
啿	LB, UB交通时间	0	4	0	5	0	6	0	7	纳秒
幔	LB, UB到高阻输出	0	4	0	5	0	6	0	6	纳秒
吨	LB, UB为低- Z的输出	0	0	0	0	0	0	0	0	纳秒

3

- 1.测试条件承担 3 纳秒或更少的信号过渡时代, 1.5V,输入 0 脉冲时序参考水平和产出水平, 3.0V 加载在图1a中指定。 2.测试与图1b中的负荷。转型是指从稳态电压 ±500毫伏。不 100%测试。
- 3. 不 100% 测试。

AC 測试 条件

参数	单位
输入脉冲级	0V 到 3.0V
输入上升和下降时间	3 纳秒
輸入和輸出时序 和参考电平	1.5V
输出负载	见图 1和 2

注释: 1. 纳秒 8 的VCC运作范围为 3.3V +10%,-5%.

AC 測试 LOADS

544494444673

AC WAVEFORMS

READ CYCLE NO. 1 (1.2) (地址控制) (CE = OE = V L , UB 或 LB = V L)

READ CYCLE NO. 2 (1,3)

备注:

- 1. WE 是一个读周期高。
- 2.该设备不断选中。
- 3. 地址是有效的之前或同步同

OE, CE, UB, 或LB = V ℡. CE 低过渡。

WRITE CYCLE SWITCHING 特性

(1.3) (以上经营范围)

赤志	参数	8- 最小。	最高。	-10 最小。	。 马克斯。	-1: 最小。	2 . 马克斯。	-1: 最小。		听。单位
			TEK 1010		-77G7 9 10		-37G 79 10		7 767	
吨	写周期时间	8	0	10	0	12	0	15	0	纳秒
Œε	CE撰写完	7	0	8	0	9	0	10	0	纳秒
呱	地址建立时间 撰写完	7	0	8	0	9	0	10	0	纳秒
吨	地址从收件末页	0	0	0	0	0	0	0	0	纳秒
啿	地址设定时间	0	0	0	0	0	0	0	0	纳秒
Щ _в	LB, UB举办有效的写	7	0	8	0	9	0	10	0	纳秒
ЩE	WE脉冲宽度	7	0	8	0	9	0	10	0	纳秒
啿	数据写入安装完完	4.5	0	5	0	6	0	7	0	纳秒
啿	数据保持从收件末页	0	0	0	0	0	0	0	0	纳秒
₩.E	WE低到高阻输出	0	4	0	5	0	6	0	7	纳秒
ŒWE	WE高为低-Z的输出	3	0	3	0	3	0	3	0	纳秒

备注:

- 1.测试条件承担 3 纳秒或更少的信号过渡时代, 1.5V, 0 输入脉冲水平时序参考水平 3.0V 和输出负载在图1a中指定。
- 2.测试与图1b中的负荷。转型是指从稳态电压 ±500毫伏。不 100%测试。
- 3. 内部写入时间的定义是由 CE 低和 UB 或 LB, 和 WE 重叠 LOW. 所有信号必须在有效的国家发起一写,但任何人可以去写终止无效。数据输入建立和保持时间被引用的上升或下降的信号,即终止写的边缘。

WRITE CYCLE NO. 1 (CE 控制, OE 是高或 LOW) (1)

备注:

- 1. WRITE 是内部产生的信号断言在一国的低重叠关于的 LB 和 UB 投入在低状态正在一。
- 2. WRITE = (CE) [(LB) = (UB)] (WE).

CE 和 WE 投入和至少

WRITE CYCLE NO. 2 (WE 控制。 OE 是高在写周期)

(1,2)

积体电路解决方案公司 SR040-0C

AC WAVEFORMS

WRITE CYCLE NO. 4 (LB, UB 控制,返回到返回写入) (1,3)

备注:

- Taction CE = LOW, 在有效状态,以启动一个写,但任何可以deasserted终止写入。在 引用的上升或下降的信号,即终止写边。

 2. 测试一 OE ns的前最低限度, WE 高 = 低 3. WE 五月举行过很多地址周期和 LB CE = LOW, UB 和重叠/蛇 = LOW,和 WE = LOW.所有信号必须 止写入。在 **嘭**,**嘭**,**嘭**,和 **嘭** 时机

WE 高 = 低放置在一个国家的 I/O HIGH-Z。 LB, UB 引脚低可以用来控制写入功能。

订购 信息 商业范围: 0°C 到 +70°C

订购 信息 工业范围: ■40°C 到 +85°C

速度(納秒)	订购零件号	包装	速度(纳秒)	订购零件号	包裝
8	IS61LV25616-8T	400mil TSOP-2	8	IS61LV25616-8TI	400mil TSOP-2
	IS61LV25616-8K	400mil SOJ		IS61LV25616-8KI	400mil SOJ
	IS61LV25616-8B	6 * 8毫米 TF-BGA		IS61LV25616-8BI	6 * 8毫米 TF-BGA
10	IS61LV25616-10T	400mil TSOP-2	10	IS61LV25616-10TI	400mil TSOP-2
	IS61LV25616-10K	400mil SOJ		IS61LV25616-10KI	400mil SOJ
	IS61LV25616-10B	6 * 8毫米 TF-BGA		IS61LV25616-10BI	6 * 8毫米 TF-BGA
12	IS61LV25616-12T	400mil TSOP-2	12	IS61LV25616-12TI	400mil TSOP-2
	IS61LV25616-12K	400mil SOJ		IS61LV25616-12KI	400mil SOJ
	IS61LV25616-12B	6 * 8毫米 TF-BGA		IS61LV25616-12BI	6 * 8毫米 TF-BGA
15	IS61LV25616-15T	400mil TSOP-2	15	IS61LV25616-15TI	400mil TSOP-2
	IS61LV25616-15K	400mil SOJ		IS61LV25616-15KI	400mil SOJ
	IS61LV25616-15B	6 * 8毫米 TF-BGA		IS61LV25616-15BI	6 * 8毫米 TF-BGA