Supplementary File for One Gradient Frank-Wolfe for Decentralized Online Convex and Submodular Optimization

Appendix A. Theoretical Analysis for Section 3

In the analysis, we note $\sigma_q(k)$ to be the permutation of k at phase q. We define the average function of the remaining (K-k) functions as

$$\bar{F}_{q,k}(\boldsymbol{x}) = \frac{1}{K - k} \sum_{\ell=k+1}^{K} F_{\sigma_q(\ell)}(\boldsymbol{x}) = \frac{1}{K - k} \sum_{\ell=k+1}^{K} \frac{1}{n} \sum_{i=1}^{n} f_{\sigma_q(\ell)}^{i}(\boldsymbol{x})$$
(10)

where $F_{\sigma_q(\ell)}(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^n f_{\sigma_q(\ell)}^i(\boldsymbol{x})$. We also define

$$\hat{f}_{q,k}^{i} = \frac{1}{K - k} \sum_{\ell = k+1}^{K} f_{\sigma_{q}(\ell)}^{i}(\boldsymbol{x}_{q,\ell}^{i}), \quad \nabla \hat{f}_{q,k}^{i} = \frac{1}{K - k} \sum_{\ell = k+1}^{K} \nabla f_{\sigma_{q}(\ell)}^{i}(\boldsymbol{x}_{q,\ell}^{i})$$
(11)

as the average of the remaining (K-k) functions and stochastic gradients of $f^i_{\sigma_q(\ell)}(\boldsymbol{x}^i_{q,\ell})$ respectively. Then we note,

$$\hat{F}_{q,k} = \frac{1}{n} \sum_{i=1}^{n} \hat{f}_{q,k}^{i}, \quad \nabla \hat{F}_{q,k} = \frac{1}{n} \sum_{i=1}^{n} \nabla \hat{f}_{q,k}^{i}, \tag{12}$$

In the same spririt of $\hat{f}_{q,k}^i$, we define

$$\hat{g}_{q,k}^{i} = \frac{1}{K - k} \sum_{\ell=k+1}^{K} g_{q,\ell}^{i}, \quad \hat{d}_{q,k}^{i} = \frac{1}{K - k} \sum_{\ell=k+1}^{K} d_{q,\ell}^{i}$$
(13)

In the rest of the analysis, we let $\mathcal{F}_{q,1} \subset \cdots \subset \mathcal{F}_{q,k}$ to be the σ -field generated by the permutation up to time k and $\mathcal{H}_{q,1} \subset \cdots \subset \mathcal{H}_{q,k}$ another σ -field generated by the randomness of the stochastic gradient estimate up to time k.

Assumption 5 Let $\left\{\widetilde{d}_{t}\right\}_{1}^{T}$ be a sequence such that $\mathbb{E}\left[\widetilde{d}_{t} \mid \mathcal{H}_{t-1}\right] = d_{t}$ where \mathcal{H}_{t-1} is the filtration of the stochastic estimate up to t-1.

Lemma 8 (Fact 1, Wai et al. (2017)) Let $x^1, \ldots, x^n \in \mathbb{R}^d$ be a set of vector and and $x_{avg} := \frac{1}{n} \sum_{i=1}^n x_i$ their average. Let **W** be non-negative doubly stochastic matrix. The output of one round of the average consensus update $\bar{x}^i = \sum_{j=1}^n W_{ij} x^j$ satisfy:

$$\sqrt{\sum_{i=1}^{n} \left\|\bar{\boldsymbol{x}}^{i} - \boldsymbol{x}_{avg}\right\|^{2}} \leq |\lambda_{2}(\mathbf{W})| \cdot \sqrt{\sum_{i=1}^{n} \left\|\boldsymbol{x}^{i} - \boldsymbol{x}_{avg}\right\|^{2}}$$

where $\lambda_2(\mathbf{W})$ is the second largest eigenvalue of \mathbf{W} .

Lemma 9 For all $1 \le q \le Q$ and $1 \le k \le K$, we have

$$\overline{x}_{q,k+1} = \overline{x}_{q,k} + \eta_k \left(\frac{1}{n} \sum_{i=1}^n v_{q,k}^i - \overline{x}_{q,k} \right)$$
(14)

for convex case, and

$$\overline{\boldsymbol{x}}_{q,k+1} = \overline{\boldsymbol{x}}_{q,k} + \frac{1}{K} \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{v}_{q,k}^{i} \right)$$
 (15)

for submodular case.

Proof

$$\overline{x}_{q,k+1} = \frac{1}{n} \sum_{i=1}^{n} x_{q,k+1}^{i} \qquad (Definition of \overline{x}_{q,k+1})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left((1 - \eta_{k}) y_{q,k}^{i} + \eta_{k} v_{q,k}^{i} \right) \qquad (Definition of x_{q,k}^{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[(1 - \eta_{k}) \left(\sum_{j=1}^{n} W_{ij} x_{q,k}^{j} \right) + \eta_{k} v_{q,k}^{i} \right] \qquad (Definition of y_{q,k}^{i})$$

$$= (1 - \eta_{k}) \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{j=1}^{n} W_{ij} x_{q,k}^{j} \right] + \frac{1}{n} \eta_{k} \sum_{i=1}^{n} v_{q,k}^{i}$$

$$= (1 - \eta_{k}) \frac{1}{n} \sum_{j=1}^{n} \left[x_{q,k}^{j} \sum_{i=1}^{n} W_{ij} \right] + \frac{1}{n} \eta_{k} \sum_{i=1}^{n} v_{q,k}^{i}$$

$$= (1 - \eta_{k}) \frac{1}{n} \sum_{j=1}^{n} x_{q,k}^{j} + \frac{1}{n} \eta_{k} \sum_{i=1}^{n} v_{q,k}^{i}$$

$$= (1 - \eta_{k}) \overline{x}_{q,k} + \frac{1}{n} \eta_{k} \sum_{i=1}^{n} v_{q,k}^{i}$$

$$= (1 - \eta_{k}) \overline{x}_{q,k} + \frac{1}{n} \eta_{k} \sum_{i=1}^{n} v_{q,k}^{i}$$

$$= \overline{x}_{q,k} + \eta_{k} \left(\frac{1}{n} \sum_{i=1}^{n} v_{q,k}^{i} - \overline{x}_{q,k} \right)$$

where we use a property of W which is $\sum_{i=1}^{n} W_{ij} = 1$ for every j. The proof of the second equation is similar.

Lemma 10 For all $k \in \{1, ..., K\}$, it holds that

$$\nabla \hat{F}_{q,k} = \frac{1}{n} \sum_{i=1}^{n} \nabla \hat{f}_{q,k}^{i} = \frac{1}{n} \sum_{i=1}^{n} \hat{g}_{q,k}^{i} = \frac{1}{n} \sum_{i=1}^{n} \hat{d}_{q,k}^{i}$$
(16)

Proof First, we verify that $\forall \ell \in \{1, ..., K\}$

$$\frac{1}{n} \sum_{i=1}^{n} \nabla f_{\sigma_{q}(\ell)}^{i}(\boldsymbol{x}_{q,\ell}^{i}) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{g}_{q,\ell}^{i} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{d}_{q,\ell}^{i}$$
(17)

For the base step $\ell=1$, we have ${m g}^i_{q,\ell}=\nabla f^i_{\sigma_q(1)}({m x}^i_{q,1}).$ Averaging over n yields

$$\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{g}_{q,1}^{i} = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{\sigma_{q}(1)}^{i}(\boldsymbol{x}_{q,1}^{i})$$

Since W is doubly stochastic, we have

$$\frac{1}{n}\sum_{i=1}^{n} \boldsymbol{d}_{q,1}^{i} = \frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{n} W_{ij}\boldsymbol{g}_{q,1}^{j} = \frac{1}{n}\sum_{j=1}^{n} \boldsymbol{g}_{q,1}^{j}\sum_{i=1}^{n} W_{ij} = \frac{1}{n}\sum_{j=1}^{n} \boldsymbol{g}_{q,1}^{j}$$
(18)

For the recurrence step, recall the definition of $g_{q,\ell}^i$

$$\boldsymbol{g}_{q,\ell}^i = \nabla f_{\sigma_q(\ell)}^i(\boldsymbol{x}_{q,\ell}^i) - \nabla f_{\sigma_q(\ell-1)}^i(\boldsymbol{x}_{q,\ell-1}^i) + \boldsymbol{d}_{q,\ell-1}^i$$

Averaging over n and using the recurrence hypothesis $\frac{1}{n} \sum_{i=1}^{n} \nabla f_{\sigma_q(\ell-1)}^i(\boldsymbol{x}_{q,\ell-1}^i) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{d}_{q,\ell-1}^i$, we deduce that

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{g}_{q,\ell}^{i} = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{\sigma_{q}(\ell)}^{i}(\mathbf{x}_{q,\ell}^{i})$$
(19)

Also, using the same techniques in equation (18) for $d_{q,\ell}^i$, we complete the verification for equation (17). The proof of Lemma 10 can be deduced from equation (17) by averaging over $\ell \in \{k+1,\ldots,K\}$

Lemma 11 Suppose that each of $f_{\sigma_q(k)}^i$ is β -smooth. Using the Frank-Wolfe update of $\mathbf{x}_{q,k}^i$, the average of the remaining (K-k) gradient approximation $\hat{\mathbf{d}}_{q,k}^i$ satisfies

$$\max_{i \in [1, n]} \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q, k}^{i} - \nabla \hat{F}_{q, k}\right\|\right] \leq \begin{cases} \frac{N}{k} & k \in \left[1, \frac{K}{2}\right] \\ \frac{N}{K - k + 1} & k \in \left[\frac{K}{2} + 1, K\right] \end{cases}$$

where $N = nGk_0 \max\{\lambda_2 \left(1 + \frac{2}{1 - \lambda_2}\right), 2\}.$

Proof We will prove the lemma by induction following the idea from Lemma 2 of Wai et al. (2017). Let's define following variables

$$\hat{\boldsymbol{d}}_{q,k}^{cat} = \begin{bmatrix} \hat{\boldsymbol{d}}_{q,k}^{1\top}, \dots, \hat{\boldsymbol{d}}_{q,k}^{n\top} \end{bmatrix}^{\top}, \quad \hat{\boldsymbol{g}}_{q,k}^{cat} = \begin{bmatrix} \hat{\boldsymbol{g}}_{q,k}^{1\top}, \dots, \hat{\boldsymbol{g}}_{q,k}^{n\top} \end{bmatrix}^{\top}, \quad \nabla \hat{F}_{q,k}^{cat} = \begin{bmatrix} \nabla \hat{F}_{q,k}^{\top}, \dots, \nabla \hat{F}_{q,k}^{\top} \end{bmatrix}^{\top}$$
(20)

and let the slack variables as

$$\delta_{q,k}^{i} := \nabla \hat{f}_{q,k}^{i} - \nabla \hat{f}_{q,k-1}^{i}, \quad \bar{\delta}_{q,k} := \frac{1}{n} \sum_{i=1}^{n} \left(\nabla \hat{f}_{q,k}^{i} - \nabla \hat{f}_{q,k-1}^{i} \right) = \nabla \hat{F}_{q,k} - \nabla \hat{F}_{q,k-1} \tag{21}$$

then, following the definition in 20, we note

$$\delta_{q,k}^{cat} = \begin{bmatrix} \delta_{q,k}^{1\top}, \dots, \delta_{q,k}^{n\top} \end{bmatrix}^{\top}, \quad \bar{\delta}_{q,k}^{cat} = \begin{bmatrix} \bar{\delta}_{q,k}^{\top}, \dots, \bar{\delta}_{q,k}^{\top} \end{bmatrix}^{\top}$$

By Lemma 8, we have

$$\left\| \hat{\boldsymbol{d}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat} \right\|^{2} = \sum_{i=1}^{n} \left\| \hat{\boldsymbol{d}}_{q,k}^{i} - \nabla \hat{F}_{q,k} \right\|^{2}$$

$$\leq \lambda_{2}^{2} \sum_{i=1}^{n} \left\| \hat{\boldsymbol{g}}_{q,k}^{i} - \nabla \hat{F}_{q,k} \right\|^{2}$$

$$= \lambda_{2}^{2} \left\| \hat{\boldsymbol{g}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat} \right\|^{2}$$
(22)

We can deduce that

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat}\right\|\right] \leq \lambda_{2} \mathbb{E}\left[\left\|\hat{\boldsymbol{g}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat}\right\|\right] \\
= \lambda_{2} \mathbb{E}\left[\left\|\delta_{q,k}^{cat} + \hat{\boldsymbol{d}}_{q,k-1}^{cat} - \nabla \hat{F}_{q,k}^{cat} + \nabla \hat{F}_{q,k-1}^{cat} - \nabla \hat{F}_{q,k-1}^{cat}\right\|\right] \\
\leq \lambda_{2} \left(\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{cat} - \nabla \hat{F}_{q,k-1}^{cat}\right\|\right] + \mathbb{E}\left[\left\|\delta_{q,k}^{cat} - \bar{\delta}_{q,k}^{cat}\right\|\right]\right) \\
\leq \lambda_{2} \left(\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{cat} - \nabla \hat{F}_{q,k-1}^{cat}\right\|\right] + \mathbb{E}\left[\left\|\delta_{q,k}^{cat}\right\|\right]\right) \tag{23}$$

since

$$\left\|\delta_{q,k}^{cat} - \bar{\delta}_{q,k}^{cat}\right\|^{2} = \sum_{i=1}^{n} \left\|\delta_{q,k}^{i} - \bar{\delta}_{q,k}\right\|^{2} \le \sum_{i=1}^{n} \left\|\delta_{q,k}^{i}\right\|^{2} - n\left\|\bar{\delta}_{q,k}\right\|^{2} \le \sum_{i=1}^{n} \left\|\delta_{q,k}^{i}\right\|^{2} = \left\|\delta_{q,k}^{cat}\right\|^{2}$$
 (24)

Notice that we can bound the expected value of δ^{cat} by

$$\mathbb{E}\left[\left\|\delta_{q,k}^{cat}\right\|^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{n}\left\|\delta_{q,k}^{i}\right\|^{2}\right] = \sum_{i=1}^{n}\mathbb{E}\left[\left\|\nabla\hat{f}_{q,k}^{i} - \nabla\hat{f}_{q,k-1}^{i}\right\|^{2}\right] \\
= \sum_{i=1}^{n}\mathbb{E}\left[\mathbb{E}\left[\left\|\nabla\hat{f}_{q,k}^{i} - \nabla\hat{f}_{q,k-1}^{i}\right\|^{2} \mid \mathcal{F}_{q,k-1}\right]\right] \\
= \sum_{i=1}^{n}\mathbb{E}\left[\mathbb{E}\left[\left\|\frac{\sum_{\ell=k+1}^{K}\nabla f_{\sigma_{q}(\ell)}^{i}(\boldsymbol{x}_{q,\ell}^{i})}{K - k} - \frac{\sum_{\ell=k}^{K}\nabla f_{\sigma_{q}(\ell)}^{i}(\boldsymbol{x}_{q,\ell}^{i})}{K - k + 1}\right\|^{2} \mid \mathcal{F}_{q,k-1}\right]\right] \\
= \sum_{i=1}^{n}\mathbb{E}\left[\mathbb{E}\left[\left\|\frac{\sum_{\ell=k+1}^{K}\nabla f_{\sigma_{q}(\ell)}^{i}(\boldsymbol{x}_{q,\ell}^{i})}{(K - k)(K - k + 1)} - \frac{\nabla f_{\sigma_{q}(k)}^{i}(\boldsymbol{x}_{q,k}^{i})}{K - k + 1}\right\|^{2} \mid \mathcal{F}_{q,k-1}\right]\right] \\
\leq n\left(\frac{2G}{K - k + 1}\right)^{2} \tag{25}$$

using Jensen's inequality, we can deduce that

$$\mathbb{E}\left[\left\|\delta_{q,k}^{cat}\right\|\right] \le \sqrt{\mathbb{E}\left[\left\|\delta_{q,k}^{cat}\right\|^{2}\right]} \le \frac{2\sqrt{n}G}{K - k + 1} \tag{26}$$

We are now proving the lemma by induction, when k = 1, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,1}^{cat} - \nabla \hat{F}_{q,1}^{cat}\right\|^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{n}\left\|\hat{\boldsymbol{d}}_{q,1}^{i} - \nabla \hat{F}_{q,1}\right\|^{2}\right] \leq \lambda_{2}^{2}\mathbb{E}\left[\sum_{i=1}^{n}\left\|\hat{\boldsymbol{g}}_{q,1}^{i} - \nabla \hat{F}_{q,1}\right\|^{2}\right]$$
$$\leq \lambda_{2}^{2}\mathbb{E}\left[\sum_{i=1}^{n}\left\|\nabla \hat{f}_{q,1}^{i} - \nabla \hat{F}_{q,1}\right\|^{2}\right] \leq \lambda_{2}^{2}\mathbb{E}\left[\sum_{i=1}^{n}\left\|\nabla \hat{f}_{q,1}^{i}\right\|^{2}\right] \leq n\lambda_{2}^{2}G^{2}$$

where we have used Lipschitzness of f in the last inequality. We now suppose that $1 \le k \le k_0$, from equations (23) and (26)

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat}\right\|\right] \leq \lambda_{2} \left(\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{cat} - \nabla \hat{F}_{q,k-1}^{cat}\right\|\right] + \mathbb{E}\left[\left\|\delta_{q,k}^{cat}\right\|\right]\right) \\
\leq \lambda_{2}^{k-1} \sqrt{n}G + 2\sum_{\tau=1}^{k} \lambda_{2}^{\tau} \sqrt{n}G \\
\leq \lambda_{2} \sqrt{n}G + 2\frac{\lambda_{2}}{1 - \lambda_{2}} \sqrt{n}G \\
= \lambda_{2} \sqrt{n}G \left(1 + \frac{2}{1 - \lambda_{2}}\right) \tag{27}$$

We set $N_0 = k_0 \sqrt{n} G \max\{\lambda_2 \left(1 + \frac{2}{1 - \lambda_2}\right), 2\}$, we claim that $\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat}\right\|\right] \leq \frac{N_0}{k}$ for $k \in \left[k_0, \frac{K}{2} + 1\right]$. Recall that $K - k + 1 \geq k - 1$, by equations (23) and (26) and induction hypothesis, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat}\right\|\right] \leq \lambda_{2} \left(\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{cat} - \nabla \hat{F}_{q,k-1}^{cat}\right\|\right] + \mathbb{E}\left[\left\|\delta_{q,k}^{cat}\right\|\right]\right) \\
\leq \lambda_{2} \left(\frac{N_{0}}{k-1} + \frac{2\sqrt{n}G}{K-k+1}\right) \\
\leq \lambda_{2} \left(\frac{N_{0}}{k-1} + \frac{2\sqrt{n}G}{k-1}\right) \\
\leq \lambda_{2} \left(\frac{N_{0} + 2\sqrt{n}G}{k-1}\right) \\
\leq \lambda_{2} \left(N_{0} \frac{k_{0} + 1}{k_{0}(k-1)}\right) \\
\leq \frac{N_{0}}{k} \tag{28}$$

where we have used the fact that $\lambda_2(\mathbf{W}) \frac{k_0 + 1}{k_0(k - 1)} \leq \frac{1}{k}$ in the last inequality. When $k \in \left[\frac{K}{2} + 1, K\right]$, we claim that $\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat}\right\|\right] \leq \frac{N_0}{K - k + 1}$. The base case $k = \frac{K}{2} + 1$

is verified by equation (28),

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat}\right\|\right] \le \frac{N_0}{\frac{K}{2} + 1} \le \frac{N_0}{\frac{K}{2}} \le \frac{N_0}{K - (\frac{K}{2} + 1) + 1}$$
(29)

For $k \geq \frac{K}{2} + 2$, using equations (23) and (26) and the induction hypothesis, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat}\right\|\right] \leq \lambda_{2} \left(\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{cat} - \nabla \hat{F}_{q,k-1}^{cat}\right\|\right] + \mathbb{E}\left[\left\|\delta_{q,k}^{cat}\right\|\right]\right) \\
\leq \lambda_{2} \left(\frac{N_{0}}{K - k + 2} + \frac{2\sqrt{n}G}{K - k + 1}\right) \\
\leq \lambda_{2} \left(\frac{N_{0} + 2G}{K - k + 1}\right) \\
\leq \lambda_{2} \left(N_{0} \frac{k_{0} + 1}{k_{0}(K - k + 1)}\right) \\
\leq \frac{N_{0}}{K - k + 1} \tag{30}$$

Recall that

$$\frac{1}{\sqrt{n}} \mathbb{E}\left[\sum_{i=1}^{n} \left\| \hat{\boldsymbol{d}}_{q,k}^{i} - \nabla \hat{F}_{q,k} \right\| \right] \leq \mathbb{E}\left[\left(\sum_{i=1}^{n} \left\| \hat{\boldsymbol{d}}_{q,k}^{i} - \nabla \hat{F}_{q,k} \right\|^{2} \right)^{1/2} \right] = \mathbb{E}\left[\left\| \hat{\boldsymbol{d}}_{q,k}^{cat} - \nabla \hat{F}_{q,k}^{cat} \right\| \right]$$
(31)

The desired result followed from equations (28), (30) and (31) where $N = \sqrt{n}N_0$

$$\max_{i \in [1,n]} \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{i} - \nabla \hat{F}_{q,k}\right\|\right] \leq \begin{cases} \frac{N}{k} & k \in \left[1, \frac{K}{2}\right] \\ \frac{N}{K - k + 1} & k \in \left[\frac{K}{2} + 1, K\right] \end{cases}$$
(32)

Lemma 1 For $i \in [n]$, $k \in [K]$. Let $V_d = 2nG\left(\frac{\lambda_2}{1-\lambda_2}+1\right)$, the local gradient is upper-bounded, i.e $\left\|\boldsymbol{d}_{q,k}^i\right\| \leq V_d$

Proof We use the same notation introduced in equation (20). Let's define

$$\boldsymbol{d}_{q,k}^{cat} = \begin{bmatrix} \boldsymbol{d}_{q,k}^{1\top}, \dots, \boldsymbol{d}_{q,k}^{n\top} \end{bmatrix}^{\top} \in \mathbb{R}^{nd}, \quad \nabla f_{\sigma_{q}(k)}^{cat} = \begin{bmatrix} \nabla f_{\sigma_{q}(k)}^{1}(\boldsymbol{x}_{q,k}^{1})^{\top}, \dots, \nabla f_{\sigma_{q}(k)}^{n}(\boldsymbol{x}_{q,k}^{n})^{\top} \end{bmatrix}^{\top} \in \mathbb{R}^{nd}$$
(33)

and

$$\nabla F_{\sigma_q(k)}^{cat} = \left[\nabla F_{\sigma_q(k)}^{\top}, \dots, \nabla F_{\sigma_q(k)}^{\top} \right]^{\top} = \left[\frac{1}{n} \sum_{i=1}^{n} \nabla f_{\sigma_q(k)}^{i}(\boldsymbol{x}_{q,k}^{i})^{\top}, \dots, \frac{1}{n} \sum_{i=1}^{n} \nabla f_{\sigma_q(k)}^{i}(\boldsymbol{x}_{q,k}^{i})^{\top} \right]^{\top}$$

$$(34)$$

Using the local gradient update, we have

$$d_{q,k}^{cat} = (\mathbf{W} \otimes I_d) \left(\nabla f_{\sigma_q(k)}^{cat} - \nabla f_{\sigma_q(k-1)}^{cat} + d_{q,k-1}^{cat} \right)$$

$$= (\mathbf{W} \otimes I_d) \left(\nabla f_{\sigma_q(k)}^{cat} - \nabla f_{\sigma_q(k-1)}^{cat} \right) + (\mathbf{W} \otimes I_d)^2 \left(\nabla f_{\sigma_q(k-1)}^{cat} - \nabla f_{\sigma_q(k-2)}^{cat} + d_{q,k-2}^{cat} \right)$$

$$= \sum_{\tau=1}^{k-1} (\mathbf{W} \otimes I_d)^{k-\tau} \left(\nabla f_{\sigma_q(\tau+1)}^{cat} - \nabla f_{\sigma_q(\tau)}^{cat} \right) + (\mathbf{W} \otimes I_d)^k \nabla f_{\sigma_q(1)}^{cat}$$

$$= \sum_{\tau=1}^{k-1} (\mathbf{W} \otimes I_d)^{k-\tau} \left(\nabla f_{\sigma_q(\tau+1)}^{cat} - \nabla f_{\sigma_q(\tau)}^{cat} \right) + (\mathbf{W} \otimes I_d)^k \nabla f_{\sigma_q(1)}^{cat}$$

$$- \sum_{\tau=1}^{k-1} \left(\nabla F_{\sigma_q(\tau+1)}^{cat} - \nabla F_{\sigma_q(\tau)}^{cat} \right) - \nabla F_{\sigma_q(1)}^{cat} + \nabla F_{\sigma_q(k)}^{cat}$$

$$= \sum_{\tau=1}^{k-1} \left[\left(\mathbf{W}^{k-\tau} - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right) \otimes I_d \right] \left(\nabla f_{\sigma_q(\tau+1)}^{cat} - \nabla f_{\sigma_q(\tau)}^{cat} \right)$$

$$+ \left[\left(\mathbf{W}^k - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right) \otimes I_d \right] \nabla f_{\sigma_q(1)}^{cat} + \left(\frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \otimes I_d \right) \nabla f_{\sigma_q(k)}^{cat}$$
(35)

where the fourth equality holds since $\nabla F_{\sigma_q(k)}^{cat} - \sum_{\tau=1}^{k-1} \left(\nabla F_{\sigma_q(\tau+1)}^{cat} - \nabla F_{\sigma_q(\tau)}^{cat} \right) - \nabla F_{\sigma_q(1)}^{cat} = 0.$ The fifth equality can be deduced using $\nabla F_{\sigma_q(k)}^{cat} = \left(\frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \otimes I_d \right) \nabla f_{\sigma_q(k)}^{cat}$ and $(\mathbf{W} \otimes I_d)^k = (\mathbf{W}^k \otimes I_d)$. Recall that $\|\mathbf{W} \otimes I_d\| = \|\mathbf{W}\|$. Taking the norm on equation (35), we have

$$\left\|\boldsymbol{d}_{q,k}^{cat}\right\| \leq 2\sqrt{n}G\sum_{\tau=1}^{k-1}\lambda_{2}^{k-\tau} + \sqrt{n}G\left(\lambda_{2}^{k}+1\right) \leq 2\sqrt{n}G\left(\frac{\lambda_{2}}{1-\lambda_{2}}+1\right) \tag{36}$$

where we have used $\left\|\nabla f_{\sigma_q(\tau+1)}^{cat} - \nabla f_{\sigma_q(\tau)}^{cat}\right\| \leq 2\sqrt{n}G$, $\left\|\mathbf{W}^k - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T\right\| \leq \lambda_2^k$ and $\left\|\frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T\right\| \leq 1$ in the first inequality. We have $\forall i \in [n]$

$$\|\boldsymbol{d}_{q,k}^{i}\| \leq \sum_{i=1}^{n} \|\boldsymbol{d}_{q,k}^{i}\| \leq \sqrt{n} \left(\sum_{i=1}^{n} \|\boldsymbol{d}_{q,k}^{i}\|^{2}\right)^{1/2} = \sqrt{n} \|\boldsymbol{d}_{q,k}^{cat}\|$$
 (37)

one can obtain the desired result.

Lemma 2 Under Assumption 2 and let $\sigma_1^2 = 4n \left[\left(\frac{G+G_0}{\frac{1}{\lambda_2}-1} \right)^2 + 2\sigma_0^2 \right]$. For $i \in [n], k \in [K]$, the variance of the local stochastic gradient is uniformly bounded.

$$\mathbb{E}\left[\left\|\boldsymbol{d}_{q,k}^{i}-\widetilde{\boldsymbol{d}}_{q,k}^{i}\right\|^{2}\right]\leq\sigma_{1}^{2}$$

Proof We denote \widetilde{d}^{cat} the stochastique version of d^{cat} , following equation (35), we have

$$\widetilde{\boldsymbol{d}}_{q,k}^{cat} = \sum_{\tau=1}^{k-1} \left[\left(\mathbf{W}^{k-\tau} - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right) \otimes I_d \right] \left(\widetilde{\nabla} f_{\sigma_q(\tau+1)}^{cat} - \widetilde{\nabla} f_{\sigma_q(\tau)}^{cat} \right)$$

$$+ \left[\left(\mathbf{W}^k - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right) \otimes I_d \right] \widetilde{\nabla} f_{\sigma_q(1)}^{cat} + \left(\frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \otimes I_d \right) \widetilde{\nabla} f_{\sigma_q(k)}^{cat}$$
(38)

Then, we have

$$\mathbf{d}_{q,k}^{cat} - \widetilde{\mathbf{d}}_{q,k}^{cat} = \sum_{\tau=1}^{k-1} \left[\left(\mathbf{W}^{k-\tau} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T} \right) \otimes I_{d} \right] \left(\nabla f_{\sigma_{q}(\tau+1)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(\tau+1)}^{cat} + \widetilde{\nabla} f_{\sigma_{q}(\tau)}^{cat} - \nabla f_{\sigma_{q}(\tau)}^{cat} \right) + \left[\left(\mathbf{W}^{k} - \frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T} \right) \otimes I_{d} \right] \left(\nabla f_{\sigma_{q}(1)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(1)}^{cat} \right) + \left(\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T} \otimes I_{d} \right) \left(\nabla f_{\sigma_{q}(k)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(k)}^{cat} \right)$$

$$(39)$$

By Assumption 2 and Jensen's inequality, we have

$$\mathbb{E}\left[\left\|\nabla f_{\sigma_{q}(\tau)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(\tau)}^{cat}\right\|^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{n} \left\|\nabla f_{\sigma_{q}(\tau)}^{i}\left(\boldsymbol{x}_{q,\tau}^{i}\right) - \widetilde{\nabla} f_{\sigma_{q}(\tau)}^{i}\left(\boldsymbol{x}_{q,\tau}^{i}\right)\right\|^{2}\right] \\
\leq \sqrt{\sum_{i=1}^{n} \mathbb{E}\left[\left\|\nabla f_{\sigma_{q}(\tau)}^{i}\left(\boldsymbol{x}_{q,\tau}^{i}\right) - \widetilde{\nabla} f_{\sigma_{q}(\tau)}^{i}\left(\boldsymbol{x}_{q,\tau}^{i}\right)\right\|^{2}\right]} \leq \sqrt{n}\sigma_{0} \tag{40}$$

The second moment of equation (39) is written as

$$\mathbb{E}\left[\left\|\mathbf{d}_{q,k}^{cat} - \widetilde{\mathbf{d}}_{q,k}^{cat}\right\|^{2}\right] \\
= \mathbb{E}\sum_{\tau=1}^{k-1} \left[\left(\mathbf{W}^{k-\tau} - \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}\right) \otimes I_{d}\right] \left(\nabla f_{\sigma_{q}(\tau+1)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(\tau+1)}^{cat} + \widetilde{\nabla} f_{\sigma_{q}(\tau)}^{cat} - \nabla f_{\sigma_{q}(\tau)}^{cat}\right) \\
+ \left[\left(\mathbf{W}^{k} - \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}\right) \otimes I_{d}\right] \left(\nabla f_{\sigma_{q}(1)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(1)}^{cat}\right) + \left(\frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T} \otimes I_{d}\right) \left(\nabla f_{\sigma_{q}(k)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(k)}^{cat}\right)^{2} \\
\leq \mathbb{E}\left[\left(\sum_{\tau=1}^{k-1} \left\|\mathbf{W}^{k-\tau} - \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}\right\| \left\|\nabla f_{\sigma_{q}(\tau+1)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(\tau)}^{cat}\right\| + \widetilde{\nabla} f_{\sigma_{q}(\tau)}^{cat} - \nabla f_{\sigma_{q}(\tau)}^{cat}\right\|^{2}\right] \\
+ \mathbb{E}\left[\left\|\left(\mathbf{W}^{k} - \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T} \otimes I_{d}\right) \left(\nabla f_{\sigma_{q}(\tau+1)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(\tau)}^{cat}\right) + \left(\frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T} \otimes I_{d}\right) \left(\nabla f_{\sigma_{q}(k)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(k)}^{cat}\right)^{2} \right] \\
\leq \mathbb{E}\left[\left(\sum_{\tau=1}^{k-1} \left\|\mathbf{W}^{k-\tau} - \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}\right\| \left\|\nabla f_{\sigma_{q}(\tau+1)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(\tau+1)}^{cat} + \widetilde{\nabla} f_{\sigma_{q}(\tau)}^{cat} - \nabla f_{\sigma_{q}(\tau)}^{cat}\right\|^{2}\right] \right] \\
+ 4\left(\mathbb{E}\left[\left\|\mathbf{W}^{k} - \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}\right\|^{2} \left\|\nabla f_{\sigma_{q}(1)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(1)}^{cat}\right\|^{2}\right] + \mathbb{E}\left[\left\|\frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}\right\|^{2} \left\|\nabla f_{\sigma_{q}(k)}^{cat} - \widetilde{\nabla} f_{\sigma_{q}(k)}^{cat}\right\|^{2}\right]\right) \\
\leq 4n\left(G + G_{0}\right)^{2}\left(\sum_{\tau=1}^{k-1} \lambda_{2}^{k-\tau}\right)^{2} + 4n\sigma_{0}^{2}\left(\lambda_{2}^{2k} + 1\right) \\
\leq 4n\left(G + G_{0}\right)^{2}\left(\frac{\lambda_{2}}{1-\lambda_{2}}\right)^{2} + 4n\sigma_{0}^{2}(\lambda_{2} + 1) \leq 4n\left[\left(\frac{G + G_{0}}{\frac{1}{\lambda_{2}} - 1}\right)^{2} + 2\sigma_{0}^{2}\right]$$

where the first inequality holds since $\mathbb{E}\left[\nabla f_{\sigma_q(\tau+1)}^{cat} - \widetilde{\nabla} f_{\sigma_q(\tau+1)}^{cat} + \widetilde{\nabla} f_{\sigma_q(\tau)}^{cat} - \nabla f_{\sigma_q(\tau)}^{cat}\right] = 0$. The second inequality follows the fact that $\|a+b\|^2 \leq 4\left(\|a\|^2 + \|b\|^2\right)$. The third inequality comes from Assumption 2 and the analysis in Lemma 1. Finally, one can obtain the desired result by noticing $\mathbb{E}\left[\left\|\boldsymbol{d}_{q,k}^i - \widetilde{\boldsymbol{d}}_{q,k}^i\right\|^2\right] \leq \sum_{i=1}^n \mathbb{E}\left[\left\|\boldsymbol{d}_{q,k}^i - \widetilde{\boldsymbol{d}}_{q,k}^i\right\|^2\right] = \mathbb{E}\left[\left\|\boldsymbol{d}_{q,k}^{cat} - \widetilde{\boldsymbol{d}}_{q,k}^{cat}\right\|^2\right]$

Lemma 12 (Lemma 6, Zhang et al. (2019)) Under Assumption 5, Lemma 1, Lemma 2 and setting $\rho_k = \frac{2}{(k+3)^{2/3}}$ and $\rho_k = \frac{1.5}{(K-k+2)^{2/3}}$ for $k \in \left[\frac{K}{2}\right]$ and $k \in \left[\frac{K}{2}+1,K\right]$ respectively, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] \leq \begin{cases} \frac{\sqrt{M}}{(k+4)^{1/3}} & k \in \left[\frac{K}{2}\right] \\ \frac{\sqrt{M}}{(K-k+1)^{1/3}} & i \in \left[\frac{K}{2} + 1, K\right] \end{cases}$$
(42)

where $M = \max\{M_1, M_2\}$ where $M_1 = \max\{5^{2/3}(V_d + L_0)^2, M_0\}$, $M_0 = 4(V_d^2 + \sigma^2) + 32\sqrt{2}V_d$ and $M_2 = 2.55(V_d^2 + \sigma^2) + \frac{7\sqrt{2}V_d}{3}$ and $L_0 = \frac{2}{4^{2/3}} \|\widetilde{d}_{q,1}^i\|$

Proof In order to prove the lemma, we only need to bound $\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i}-\widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right]$, following the decomposition in Zhang et al. (2019), we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right] = \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - (1-\rho_{k})\widetilde{\boldsymbol{a}}_{q,k-1}^{i} - \rho_{k}\widetilde{\boldsymbol{d}}_{q,k}^{i}\right\|^{2}\right] \\
= \rho_{k}^{2}\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{d}}_{q,k}^{i}\right\|^{2}\right] + (1-\rho_{k})^{2}\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widehat{\boldsymbol{d}}_{q,k-2}^{i}\right\|^{2}\right] \\
+ (1-\rho_{k})^{2}\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right] \\
+ 2\rho_{k}(1-\rho_{k})\mathbb{E}\left[\left\langle\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{d}}_{q,k}^{i}, \widehat{\boldsymbol{d}}_{q,k-1}^{i} - \widehat{\boldsymbol{d}}_{q,k-2}^{i}\right\rangle\right] \\
+ 2\rho_{k}(1-\rho_{k})\mathbb{E}\left[\left\langle\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{d}}_{q,k}^{i}, \widehat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\rangle\right] \\
+ 2(1-\rho_{k})^{2}\mathbb{E}\left[\left\langle\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widehat{\boldsymbol{d}}_{q,k-2}^{i}, \widehat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\rangle\right] \tag{44}$$

The first part of the above equation is written as

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i}-\widetilde{\boldsymbol{d}}_{q,k}^{i}\right)\right\|^{2}\right] = \mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i}-\widetilde{\boldsymbol{d}}_{q,k}^{i}\right)\right\|^{2}\mid\mathcal{F}_{q,k-1}\right]\right] \\
= \mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i}-\boldsymbol{d}_{q,k}^{i}+\boldsymbol{d}_{q,k}^{i}-\widetilde{\boldsymbol{d}}_{q,k}^{i}\right)\right\|^{2}\mid\mathcal{F}_{q,k-1}\right]\right] \\
\leq \mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i}-\boldsymbol{d}_{q,k}^{i}\right\|^{2}+\left\|\boldsymbol{d}_{q,k}^{i}-\widetilde{\boldsymbol{d}}_{q,k}^{i}\right)\right\|^{2}+2\langle\hat{\boldsymbol{d}}_{q,k-1}^{i}-\boldsymbol{d}_{q,k}^{i},\boldsymbol{d}_{q,k}^{i}-\widetilde{\boldsymbol{d}}_{q,k}^{i}\rangle\mid\mathcal{F}_{q,k-1}\right]\right] \tag{45}$$

Using the definition of $\hat{d}_{q,k-1}^i$, Lemma 1 and Lemma 2 and law of total expectation, we have

$$\mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i}-\boldsymbol{d}_{q,k}^{i}\right\|^{2}\mid\mathcal{F}_{q,k-1}\right]\right]=\mathbb{E}\left[Var_{\sigma}\left(\boldsymbol{d}_{q,k}^{i}\mid\mathcal{F}_{q,k-1}\right)\right]\leq\mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\boldsymbol{d}_{q,k}^{i}\right\|^{2}\mid\mathcal{F}_{q,k-1}\right]\right]\leq V_{\boldsymbol{d}}^{2}$$
(46)

$$\mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\boldsymbol{d}_{q,k}^{i}-\widetilde{\boldsymbol{d}}_{q,k}^{i}\right)\right\|^{2}\right]|\mathcal{F}_{q,k-1}\right] \leq \sigma_{1}^{2}$$
(47)

Recall that $\mathcal{H}_{q,k}$ is the filtration related to the randomness of $\widetilde{d}_{q,k}^i$ and $\widehat{d}_{q,k-1}^i$ and $d_{q,k}^i$ is $\mathcal{F}_{q,k}$ -measurable, then one can write

$$\mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\langle \hat{d}_{q,k-1}^{i} - d_{q,k}^{i}, d_{q,k}^{i} - \widetilde{d}_{q,k}^{i}\right\rangle \mid \mathcal{F}_{q,k-1}\right]\right] \\
= \mathbb{E}\left[\left\langle \hat{d}_{q,k-1}^{i} - d_{q,k}^{i}, d_{q,k}^{i} - \widetilde{d}_{q,k}^{i}\right\rangle\right] \\
= \mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\langle \hat{d}_{q,k-1}^{i} - d_{q,k}^{i}, d_{q,k}^{i} - \widetilde{d}_{q,k}^{i}\right\rangle \mid \mathcal{F}_{q,k}\right]\right] \\
= \mathbb{E}\left[\left\langle \hat{d}_{q,k-1}^{i} - d_{q,k}^{i}, \mathbb{E}_{\sigma}\left[d_{q,k}^{i} - \widetilde{d}_{q,k}^{i} \mid \mathcal{F}_{q,k}\right]\right\rangle\right] \qquad \text{(by } \mathcal{F}_{q,k}\text{-measurability)} \\
= \mathbb{E}\left[\mathbb{E}_{\widetilde{d}}\left[\left\langle \hat{d}_{q,k-1}^{i} - d_{q,k}^{i}, \mathbb{E}_{\sigma}\left[d_{q,k}^{i} - \widetilde{d}_{q,k}^{i} \mid \mathcal{F}_{q,k}\right]\right\rangle\right] \mid \mathcal{H}_{q,k-1}\right] \\
= \mathbb{E}\left[\left\langle \hat{d}_{q,k-1}^{i} - d_{q,k}^{i}, \mathbb{E}_{\widetilde{d}}\left[\mathbb{E}_{\sigma}\left[d_{q,k}^{i} - \widetilde{d}_{q,k}^{i} \mid \mathcal{F}_{q,k}\right] \mid \mathcal{H}_{q,k-1}\right]\right\rangle\right] \\
= \mathbb{E}\left[\left\langle \hat{d}_{q,k-1}^{i} - d_{q,k}^{i}, \mathbb{E}_{\widetilde{d}}\left[\mathbb{E}_{\widetilde{d}}\left[d_{q,k}^{i} - \widetilde{d}_{q,k}^{i} \mid \mathcal{H}_{q,k-1}\right] \mid \mathcal{F}_{q,k}\right]\right\rangle\right] \qquad \text{(by Fubini's theorem)} \\
= 0 \qquad (48)$$

where the last equation holds since $\mathbb{E}_{\tilde{d}}\left[\tilde{d}_{q,k}^{i} \mid \mathcal{H}_{q,k-1}\right] = d_{q,k}^{i}$. Combining equations (46) to (48), equation (45) is upper bounded by

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{d}}_{q,k}^{i}\right)\right\|^{2}\right] \leq V_{\boldsymbol{d}}^{2} + \sigma_{1}^{2} \triangleq V \tag{49}$$

We are now bounding $\mathbb{E}\left[\left\|\hat{d}_{q,k-1}^i - \hat{d}_{q,k-2}^i\right\|^2\right]$, using the definition of $\hat{d}_{q,k}^i$ and Lemma 1. We have

$$\mathbb{E}\left[\left\|\hat{d}_{q,k-1}^{i} - \hat{d}_{q,k-2}^{i}\right\|^{2}\right] \\
= \mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\hat{d}_{q,k-1}^{i} - \hat{d}_{q,k-2}^{i}\right\|^{2} \mid \mathcal{F}_{q,k-2}\right]\right] \\
= \mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\frac{\sum_{\ell=k}^{K} d_{q,\ell}^{i}}{K - k + 1} - \frac{\sum_{\ell=k-1}^{K} d_{q,\ell}^{i}}{K - k + 2}\right\|^{2} \mid \mathcal{F}_{q,k-2}\right]\right] \\
= \mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\frac{\sum_{\ell=k}^{K} d_{q,\ell}^{i}}{K - k + 1} - \frac{\sum_{\ell=k}^{K} d_{q,\ell}^{i}}{K - k + 2} - \frac{d_{q,k-1}^{i}}{K - k + 2}\right\|^{2} \mid \mathcal{F}_{q,k-2}\right]\right] \\
= \mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left\|\frac{\sum_{\ell=k}^{K} d_{q,\ell}^{i}}{(K - k + 1)(K - k + 2)} - \frac{d_{q,k-1}^{i}}{K - k + 2}\right\|^{2} \mid \mathcal{F}_{q,k-2}\right]\right] \\
\leq \mathbb{E}\left[\mathbb{E}_{\sigma}\left[\left(\frac{\sum_{\ell=k}^{K} \left\|d_{q,\ell}^{i}\right\|}{(K - k + 1)(K - k + 2)} + \frac{\left\|d_{q,k-1}^{i}\right\|}{K - k + 2}\right)^{2} \mid \mathcal{F}_{q,k-2}\right]\right] \\
\leq \frac{4V_{d}^{2}}{(K - k + 2)^{2}} \triangleq \frac{L}{(K - k + 2)^{2}} \tag{50}$$

More over, we have

$$\mathbb{E}\left[\left\langle \hat{\boldsymbol{d}}_{q,k-1}^{i} - \tilde{\boldsymbol{d}}_{q,k}^{i}, \hat{\boldsymbol{d}}_{q,k-1}^{i} - \hat{\boldsymbol{d}}_{q,k-2}^{i} \right\rangle\right] \\
= \mathbb{E}\left[\mathbb{E}_{\sigma,\tilde{\boldsymbol{d}}}\left[\left\langle \hat{\boldsymbol{d}}_{q,k-1}^{i} - \tilde{\boldsymbol{d}}_{q,k}^{i}, \hat{\boldsymbol{d}}_{q,k-1}^{i} - \hat{\boldsymbol{d}}_{q,k-2}^{i} \right\rangle \mid \mathcal{F}_{q,k-1}, \mathcal{H}_{q,k-1}\right]\right] \\
= \mathbb{E}\left[\left\langle \mathbb{E}_{\sigma,\tilde{\boldsymbol{d}}}\left[\hat{\boldsymbol{d}}_{q,k-1}^{i} - \tilde{\boldsymbol{d}}_{q,k}^{i} \mid \mathcal{F}_{q,k-1}, \mathcal{H}_{q,k-1}\right], \hat{\boldsymbol{d}}_{q,k-1}^{i} - \hat{\boldsymbol{d}}_{q,k-2}^{i} \right\rangle\right] \\
= 0 \tag{51}$$

since $\mathbb{E}_{\widetilde{\boldsymbol{d}}}\left[\widetilde{\boldsymbol{d}}_{q,k}^{i} \mid \mathcal{H}_{q,k-1}\right] = \boldsymbol{d}_{q,k}^{i}$ and $\mathbb{E}_{\sigma}\left[\boldsymbol{d}_{q,k}^{i} \mid \mathcal{F}_{q,k-1}\right] = \widehat{\boldsymbol{d}}_{q,k}^{i}$. Using the same argument, we can deduce

$$\mathbb{E}\left[\left\langle \hat{d}_{q,k-1}^{i} - \widetilde{d}_{q,k}^{i}, \hat{d}_{q,k-2}^{i} - \widetilde{a}_{q,k-1}^{i} \right\rangle\right] \\
= \mathbb{E}\left[\mathbb{E}_{\sigma,\widetilde{d}}\left[\left\langle \hat{d}_{q,k-1}^{i} - \widetilde{d}_{q,k}^{i}, \hat{d}_{q,k-2}^{i} - \widetilde{a}_{q,k-1}^{i} \right\rangle \mid \mathcal{F}_{q,k-1}, \mathcal{H}_{q,k-1},\right]\right] \\
= \mathbb{E}\left[\left\langle \mathbb{E}_{\sigma,\widetilde{d}}\left[\hat{d}_{q,k-1}^{i} - \widetilde{d}_{q,k}^{i} \mid \mathcal{F}_{q,k-1}, \mathcal{H}_{q,k-1}\right], \hat{d}_{q,k-2}^{i} - \widetilde{a}_{q,k-1}^{i} \right\rangle\right] \\
= 0 \tag{52}$$

where we have use law of total expectation and conditional unbiasness of $\widetilde{d}_{q,k}^i$. Using Young's inequality and equation (50), one can write

$$\mathbb{E}\left[\left\langle \hat{\boldsymbol{d}}_{q,k-1}^{i} - \hat{\boldsymbol{d}}_{q,k-2}^{i}, \hat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i} \right\rangle\right] \\
\leq \mathbb{E}\left[\frac{1}{2\alpha_{k}} \left\| \hat{\boldsymbol{d}}_{q,k-1}^{i} - \hat{\boldsymbol{d}}_{q,k-2}^{i} \right\|^{2} + \frac{\alpha_{k}}{2} \left\| \hat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i} \right\|^{2}\right] \\
\leq \frac{L}{2\alpha_{k}(K - k + 2)^{2}} + \frac{\alpha_{k}}{2} \mathbb{E}\left[\left\| \hat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i} \right\|^{2} \right] \tag{53}$$

With the above analysis, we can deduce that

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right] \leq \rho_{k}^{2}V + (1 - \rho_{k})^{2} \frac{L}{(K - k + 2)^{2}} + (1 - \rho_{k})^{2} \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right] + (1 - \rho_{k})^{2} \left(\frac{L}{\alpha_{k}(K - k + 2)^{2}} + \alpha_{k} \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right]\right) \tag{54}$$

Setting $\alpha_k = \frac{\rho_k}{2}$, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right] \leq \rho_{k}^{2}V + (1 - \rho_{k})^{2}\left(1 + \frac{2}{\rho_{k}}\right)\frac{L}{(K - k + 2)^{2}} + (1 - \rho_{k})^{2}\left(1 + \frac{\rho_{k}}{2}\right)\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right] \\
\leq \rho_{k}^{2}V + \left(1 + \frac{2}{\rho_{k}}\right)\frac{L}{(K - k + 2)^{2}} + (1 - \rho_{k})\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right] \tag{55}$$

For $k \leq \frac{K}{2} + 1$, we set $\rho_k = \frac{2}{(k+3)^{2/3}}$ and recall that $K - k + 2 \geq k$, equation (55) is written as:

$$\mathbb{E}\left[\left\|\hat{d}_{q,k-1}^{i} - \widetilde{a}_{q,k}^{i}\right\|^{2}\right] \\
\leq \frac{4}{(k+3)^{4/3}}V + \left(1 + (k+3)^{2/3}\right)\frac{L}{k^{2}} + \left(1 - \frac{2}{(k+3)^{2/3}}\right)\mathbb{E}\left[\left\|\hat{d}_{q,k-2}^{i} - \widetilde{a}_{q,k-1}^{i}\right\|^{2}\right] \\
\leq \frac{4}{(k+3)^{4/3}}V + \left(1 + (k+3)^{2/3}\right)\frac{16L}{(k+3)^{2}} + \left(1 - \frac{2}{(k+3)^{2/3}}\right)\mathbb{E}\left[\left\|\hat{d}_{q,k-2}^{i} - \widetilde{a}_{q,k-1}^{i}\right\|^{2}\right] \\
\leq \frac{4}{(k+3)^{4/3}}V + \frac{16L}{(k+3)^{4/3}} + \frac{16L}{(k+3)^{4/3}} + \left(1 - \frac{2}{(k+3)^{2/3}}\right)\mathbb{E}\left[\left\|\hat{d}_{q,k-2}^{i} - \widetilde{a}_{q,k-1}^{i}\right\|^{2}\right] \\
\leq \frac{4V + 32L}{(k+3)^{4/3}} + \left(1 - \frac{2}{(k+3)^{2/3}}\right)\mathbb{E}\left[\left\|\hat{d}_{q,k-2}^{i} - \widetilde{a}_{q,k-1}^{i}\right\|^{2}\right] \\
\triangleq \frac{M_{0}}{(k+3)^{4/3}} + \left(1 - \frac{2}{(k+3)^{2/3}}\right)\mathbb{E}\left[\left\|\hat{d}_{q,k-2}^{i} - \widetilde{a}_{q,k-1}^{i}\right\|^{2}\right] \tag{56}$$

We consider the base step where k = 1,

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,0}^{i} - \widetilde{\boldsymbol{a}}_{q,1}^{i}\right\|^{2}\right] = \mathbb{E}\left[\left\|\frac{1}{K}\sum_{\ell=1}^{K}\boldsymbol{d}_{q,\ell}^{i} - \frac{2}{4^{2/3}}\widetilde{\boldsymbol{d}}_{q,1}^{i}\right\|^{2}\right]$$

$$\leq \left(V_{\boldsymbol{d}} + \frac{2}{4^{2/3}}\left\|\widetilde{\boldsymbol{d}}_{q,1}^{i}\right\|\right)^{2}$$

$$\leq \left(V_{\boldsymbol{d}} + \frac{2}{4^{2/3}}G_{0}\right)^{2}$$

$$\triangleq \left(V_{\boldsymbol{d}} + L_{0}\right)^{2} \tag{57}$$

Set $M_1 = \max\left\{5^{2/3}\left(V_d + L_0\right)^2, M_0\right\}$. For $k \in \left[\frac{K}{2} + 1\right]$, we claim that $\mathbb{E}\left[\left\|\hat{d}_{q,k-1}^i - \tilde{a}_{q,k}^i\right\|^2\right] \leq \frac{M_1}{(k+4)^{2/3}}$. Suppose the claim holds for k-1, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right] \leq \frac{M_{1}}{(k+3)^{4/3}} + \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right] \left(1 - \frac{2}{(k+3)^{2/3}}\right) \\
\leq \frac{M_{1}}{(k+3)^{4/3}} + \frac{M_{1}}{(k+3)^{2/3}} \cdot \frac{(k+3)^{2/3} - 2}{(k+3)^{2/3}} \\
\leq \frac{M_{1}\left((k+3)^{2/3} - 1\right)}{(k+3)^{4/3}} \\
\leq \frac{M_{1}}{(k+4)^{2/3}} \tag{58}$$

since
$$\frac{(k+3)^{2/3}-1}{(k+3)^{4/3}} \le \frac{1}{(k+4)^{2/3}}$$
. For $k \in \left[\frac{K}{2}+1,K\right]$, we set $\rho_k = \frac{1.5}{(K-k+2)^{2/3}}$, thus
$$\mathbb{E}\left[\left\|\tilde{\boldsymbol{d}}_{q,k-1}^i - \widetilde{\boldsymbol{a}}_{q,k}^i\right\|^2\right] \le \frac{2.55V}{(K-k+2)^{4/3}} + \left(1 + \frac{4}{3}\left(K-k+2\right)^{2/3}\right) \frac{L}{(K-k+2)^2}$$

$$+ \mathbb{E}\left[\left\|\tilde{\boldsymbol{d}}_{q,k-2}^i - \widetilde{\boldsymbol{a}}_{q,k-1}^i\right\|^2\right] \left(1 - \frac{1.5}{(K-k+2)^{2/3}}\right)$$

$$\le \frac{2.55V}{(K-k+2)^{4/3}} + \frac{L}{(K-k+2)^{4/3}} + \frac{4}{3}\frac{L}{(K-k+2)^{4/3}}$$

$$+ \mathbb{E}\left[\left\|\tilde{\boldsymbol{d}}_{q,k-2}^i - \widetilde{\boldsymbol{a}}_{q,k-1}^i\right\|^2\right] \left(1 - \frac{1.5}{(K-k+2)^{2/3}}\right)$$

$$\le \frac{2.55V + 7L/3}{(K-k+2)^{4/3}} + \mathbb{E}\left[\left\|\tilde{\boldsymbol{d}}_{q,k-2}^i - \widetilde{\boldsymbol{a}}_{q,k-1}^i\right\|^2\right] \left(1 - \frac{1.5}{(K-k+2)^{2/3}}\right)$$

$$\triangleq \frac{M_2}{(K-k+2)^{4/3}} + \mathbb{E}\left[\left\|\tilde{\boldsymbol{d}}_{q,k-2}^i - \widetilde{\boldsymbol{a}}_{q,k-1}^i\right\|^2\right] \left(1 - \frac{1.5}{(K-k+2)^{2/3}}\right)$$
(59)

Let $M = \max\{M_1, M_2\}$ and $k \in \left[\frac{K}{2} + 1, K\right]$, we claim that $\mathbb{E}\left[\left\|\hat{d}_{q,k-1}^i - \tilde{a}_{q,k}^i\right\|^2\right] \leq \frac{M}{(K-k+1)^{2/3}}$. The base step is verified by equation (58). We now suppose the claim holds for k-1, let's prove for k.

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right] \leq \frac{M}{(K-k+2)^{4/3}} + \frac{M}{(K-k+2)^{2/3}} \cdot \frac{(K-k+2)^{2/3} - 1.5}{(K-k+2)^{2/3}} \\
= \frac{M\left((K-k+2)^{2/3} - 0.5\right)}{(K-k+2)^{4/3}} \\
\leq \frac{M}{(K-k+1)^{2/3}} \tag{60}$$

Thus, from equation (58) and equation (60), we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \tilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right] \leq \begin{cases} \frac{M}{(k+4)^{2/3}} & k \in \left[1, \frac{K}{2}\right] \\ \frac{M}{(K-k+1)^{2/3}} & k \in \left[\frac{K}{2} + 1, K\right] \end{cases}$$
(61)

Thus, using Jensen inequality, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] \leq \sqrt{\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right]}$$

$$= \sqrt{\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right]}$$

$$\leq \begin{cases}
\frac{\sqrt{M}}{\left(k+4\right)^{1/3}} & k \in \left[1, \frac{K}{2}\right] \\
\frac{\sqrt{M}}{\left(K-k+1\right)^{1/3}} & k \in \left[\frac{K}{2} + 1, K\right]
\end{cases} (62)$$

Claim 1

$$\mathbb{E}\left[\left\|\nabla \overline{F}_{q,k-1}(\overline{x}_{q,k}) - \nabla \hat{F}_{q,k-1}\right\|\right] \le \beta D \tag{63}$$

Proof of claim. Recall the definition of $\overline{F}_{q,k-1}$ and $\hat{F}_{q,k-1}$,

$$\overline{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) = \frac{1}{K-k+1} \sum_{\ell=k}^{K} \frac{1}{n} \sum_{i=1}^{n} f_{\sigma_{q}(\ell)}^{i}(\overline{\boldsymbol{x}}_{q,k})$$
$$\hat{F}_{q,k-1} = \frac{1}{K-k+1} \sum_{\ell=k}^{K} \frac{1}{n} \sum_{i=1}^{n} f_{\sigma_{q}(\ell)}^{i}(\boldsymbol{x}_{q,\ell}^{i})$$

we have,

$$\mathbb{E}\left[\left\|\nabla \overline{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q}^{k}) - \nabla \hat{F}_{q,k-1}\right\|\right] \\
= \mathbb{E}\left[\left\|\frac{1}{K-k+1} \cdot \frac{1}{n} \sum_{\ell=k}^{K} \sum_{i=1}^{n} \left(\nabla f_{\sigma_{q}(\ell)}^{i}\left(\overline{\boldsymbol{x}}_{q,k}\right) - \nabla f_{\sigma_{q}(\ell)}^{i}\left(\boldsymbol{x}_{q,\ell}^{i}\right)\right)\right\|\right] \\
\leq \mathbb{E}\left[\frac{1}{K-k+1} \cdot \frac{1}{n} \sum_{\ell=k}^{K} \sum_{i=1}^{n} \left\|\nabla f_{\sigma_{q}(\ell)}^{i}\left(\overline{\boldsymbol{x}}_{q,k}\right) - \nabla f_{\sigma_{q}(\ell)}^{i}\left(\boldsymbol{x}_{q,\ell}^{i}\right)\right\|\right] \\
\leq \mathbb{E}\left[\frac{1}{K-k+1} \cdot \frac{1}{n} \sum_{\ell=k}^{K} \sum_{i=1}^{n} \beta \left\|\overline{\boldsymbol{x}}_{q,k} - \boldsymbol{x}_{q,\ell}^{i}\right\|\right] \qquad \text{(by } \beta\text{-smoothness)} \\
\leq \beta D \qquad (64)$$

Claim 2

$$\sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \overline{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] \le \beta D + \left(N + \sqrt{M}\right) 3K^{2/3}$$
(65)

Proof of claim.

$$\sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \overline{F}_{q,k-1}(\overline{x}_{q,k}) - \tilde{a}_{q,k}^{i}\right\|\right] \\
\leq \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \overline{F}_{q,k-1}(\overline{x}_{q,k}) - \nabla \hat{F}_{q,k-1}\right\|\right] + \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \hat{F}_{q,k-1} - \tilde{a}_{q,k}^{i}\right\|\right] \\
\leq \beta D + \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \hat{F}_{q,k-1} - \hat{d}_{q,k-1}^{i}\right\|\right] + \sum_{k=1}^{K} \mathbb{E}\left[\left\|\hat{d}_{q,k-1}^{i} - \tilde{a}_{q,k}^{i}\right\|\right] \tag{66}$$

where we have used Claim 1 and triangle inequality in the last inequality. Using Lemma 11, we have

$$\sum_{k=1}^{K} \mathbb{E} \left[\left\| \nabla \hat{F}_{q,k-1} - \hat{d}_{q,k-1}^{i} \right\| \right] \\
= \sum_{k=1}^{K/2} \mathbb{E} \left[\left\| \nabla \hat{F}_{q,k-1} - \hat{d}_{q,k-1}^{i} \right\| \right] + \sum_{k=K/2+1}^{K} \mathbb{E} \left[\left\| \nabla \hat{F}_{q,k-1} - \hat{d}_{q,k-1}^{i} \right\| \right] \\
\leq \sum_{k=1}^{K/2} \frac{N}{k} + \sum_{k=K/2+1}^{K} \frac{N}{K - k + 1} \tag{67}$$

By Lemma 12, we also have

$$\sum_{k=1}^{K} \mathbb{E} \left[\left\| \hat{d}_{q,k-1}^{i} - \widetilde{a}_{q,k}^{i} \right\| \right] \\
= \sum_{k=1}^{K/2} \mathbb{E} \left[\left\| \hat{d}_{q,k-1}^{i} - \widetilde{a}_{q,k}^{i} \right\| \right] + \sum_{k=K/2+1}^{K} \mathbb{E} \left[\left\| \hat{d}_{q,k-1}^{i} - \widetilde{a}_{q,k}^{i} \right\| \right] \\
\leq \sum_{k=1}^{K/2} \frac{\sqrt{M}}{(k+4)^{1/3}} + \sum_{k=K/2+1}^{K} \frac{\sqrt{M}}{(K-k+1)^{1/3}}$$
(68)

Combining equation (67) and equation (68), equation (66) is written as

$$\sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \overline{F}_{q,k-1}(\overline{x}_{q}^{k}) - \tilde{a}_{q,k}^{i}\right\|\right] \\
\leq \beta D + \sum_{k=1}^{K/2} \left(\frac{N}{k} + \frac{\sqrt{M}}{(k+4)^{1/3}}\right) + \sum_{k=K/2+1}^{K} \left(\frac{N}{K-k+1} + \frac{\sqrt{M}}{(K-k+1)^{1/3}}\right) \\
\leq \beta D + \left(N + \sqrt{M}\right) \sum_{k=1}^{K/2} \frac{1}{(k+4)^{1/3}} + \left(N + \sqrt{M}\right) \sum_{k=K/2+1}^{K} \frac{1}{(K-k+1)^{1/3}} \\
\leq \beta D + \left(N + \sqrt{M}\right) \sum_{k=1}^{K/2} \frac{1}{k^{1/3}} + \left(N + \sqrt{M}\right) \sum_{l=1}^{K/2} \frac{1}{l^{1/3}} \\
\leq \beta D + 2\left(N + \sqrt{M}\right) \int_{0}^{K/2} \frac{1}{s^{1/3}} ds \\
\leq \beta D + 2\left(N + \sqrt{M}\right) \frac{3}{2} \left(\frac{K}{2}\right)^{2/3} \\
\leq \beta D + \left(N + \sqrt{M}\right) 3K^{2/3} \tag{69}$$

A.1. Proof of Theorem 3

Theorem 3 Given a convex set K with diameters D. Assume that function F_t are convex, β -smooth and $\|\nabla F_t\| \leq G$ for $t \in [T]$. Setting $Q = T^{2/5}, K = T^{3/5}, T = QK$ and step-size $\eta_k = \frac{1}{k}$. Let $\rho_k = \frac{2}{(k+3)^{2/3}}$ and $\rho_k = \frac{1.5}{(K-k+2)^{2/3}}$ when $k \in [1, \frac{K}{2}]$ and $k \in [\frac{K}{2} + 1, K]$ respectively. Then, the expected regret of Algorithm 1 is at most

$$\mathbb{E}\left[\mathcal{R}_{T}\right] \leq \left(GD + 2\beta D^{2}\right) T^{2/5} + \left(C + 6D\left(N + \sqrt{M}\right)\right) T^{4/5} + \frac{3}{5}\beta D^{2} T^{2/5} \log(T) \tag{70}$$

where $N = k_0 \cdot nG \max\{\lambda_2 \left(1 + \frac{2}{1 - \lambda_2}\right), 2\}$ and $M = \max\{M_1, M_2\}$ where $M_0 = 4\left(V_d^2 + \sigma_1^2\right) + 128V_d^2$, $M_1 = \max\left\{5^{2/3}\left(V_d + \frac{2}{4^{2/3}}G_0\right)^2, M_0\right\}$ and $M_2 = 2.55\left(V_d^2 + \sigma_1^2\right) + \frac{28V_d^2}{3}$. All the constant are defined in Lemma 1, Lemma 2, Lemma 11 and Lemma 12.

Proof

$$\mathbb{E}\left[\bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k+1}) - \bar{F}_{q,k-1}(\boldsymbol{x}^*)\right] \\
\leq (1 - \eta_k) \mathbb{E}\left[\bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \bar{F}_{q,k-1}(\boldsymbol{x}^*)\right] + \frac{\eta_k}{n} \sum_{i=1}^n \mathbb{E}\left[\left\langle \widetilde{\boldsymbol{a}}_{q,k}^i, \boldsymbol{v}_{q,k}^i - \boldsymbol{x}^* \right\rangle\right] \\
+ \frac{\eta_k}{n} D \sum_{i=1}^n \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \widetilde{\boldsymbol{a}}_{q,k}^i\right\|\right] + \frac{\beta}{2} \eta_k^2 D^2 \tag{71}$$

As $\mathbb{E}\left[\bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \bar{F}_{q,k-1}(\boldsymbol{x}^*)\right] = \mathbb{E}\left[\bar{F}_{q,k-2}(\overline{\boldsymbol{x}}_{q,k}) - \bar{F}_{q,k-2}(\boldsymbol{x}^*)\right]$, we can apply equation (71) recursively for $k \in \{1, \ldots, K\}$, thus

$$\mathbb{E}\left[\bar{F}_{q,0}(\overline{\boldsymbol{x}}_{q}) - \bar{F}_{q,0}(\boldsymbol{x}^{*})\right] \\
\leq \prod_{k=1}^{K} (1 - \eta_{k}) \mathbb{E}\left[\bar{F}_{q,0}(\overline{\boldsymbol{x}}_{q,1}) - \bar{F}_{q,0}(\boldsymbol{x}^{*})\right] + \sum_{k=1}^{K} \prod_{k'=k+1}^{K} (1 - \eta_{k'}) \frac{\eta_{k}}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left\langle \widetilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{v}_{q,k}^{i} - \boldsymbol{x}^{*}\right\rangle\right] \\
+ \sum_{k=1}^{K} \prod_{k'=k+1}^{K} (1 - \eta_{k'}) \frac{\eta_{k}}{n} D \sum_{i=1}^{n} \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] + \frac{\beta}{2} D^{2} \sum_{k=1}^{K} \prod_{k'=k+1}^{K} (1 - \eta_{k'}) \eta_{k}^{2} \\
(72)$$

Choosing $\eta_k = \frac{1}{k}$, we have

$$\prod_{k=r}^{K} (1 - \eta_k) \le \exp\left(-\sum_{k=r}^{K} \frac{1}{k}\right) \le \frac{r}{K}$$

We have then,

$$\mathbb{E}\left[\bar{F}_{q,0}(\overline{\boldsymbol{x}}_{q}) - \bar{F}_{q,0}(\boldsymbol{x}^{*})\right] \\
\leq \frac{1}{K}\mathbb{E}\left[\bar{F}_{q,0}(\overline{\boldsymbol{x}}_{q,1}) - \bar{F}_{q,0}(\boldsymbol{x}^{*})\right] + \sum_{k=1}^{K} \frac{k+1}{K} \cdot \frac{1}{k} \cdot \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left\langle \tilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{v}_{q,k}^{i} - \boldsymbol{x}^{*}\right\rangle\right] \\
+ \sum_{k=1}^{K} \frac{k+1}{K} \cdot \frac{1}{k} \cdot \frac{1}{n} D \sum_{i=1}^{n} \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \tilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] + \frac{\beta}{2} D^{2} \sum_{k=1}^{K} \frac{k+1}{K} \cdot \frac{1}{k^{2}} \tag{73}$$

Which maybe simplified by using $\frac{k+1}{K} \cdot \frac{1}{k} \leq \frac{2}{K}$.

$$\mathbb{E}\left[\bar{F}_{q,0}(\overline{\boldsymbol{x}}_{q}) - \bar{F}_{q,0}(\boldsymbol{x}^{*})\right] \\
\leq \frac{1}{K}\mathbb{E}\left[\bar{F}_{q,0}(\overline{\boldsymbol{x}}_{q,1}) - \bar{F}_{q,0}(\boldsymbol{x}^{*})\right] + \frac{2}{K} \cdot \frac{1}{n} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathbb{E}\left[\left\langle \widetilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{v}_{q,k}^{i} - \boldsymbol{x}^{*}\right\rangle\right] \\
+ \frac{2}{K} \cdot \frac{1}{n} D \sum_{k=1}^{K} \sum_{i=1}^{n} \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] + \frac{\beta D^{2}}{2} \frac{2}{K} \sum_{k=1}^{K} \frac{1}{k} \\
\leq \frac{GD}{K} + \frac{2}{K} \cdot \frac{1}{n} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathbb{E}\left[\left\langle \widetilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{v}_{q,k}^{i} - \boldsymbol{x}^{*}\right\rangle\right] \\
+ \frac{2}{K} \cdot D\left(\beta D + \left(N + \sqrt{M}\right) 3K^{2/3}\right) + \frac{\beta D^{2}}{K} \log K \tag{74}$$

where we have used Claim 2, G-Lipschitz property of $\bar{F}_{q,0}$ and boundedness of \mathcal{K} . Since T = QK and assume that the oracle at round k has a regret of order $\mathcal{O}(\sqrt{Q})$, i.e

$$\mathbb{E}\left[\sum_{q=1}^{Q}\langle\widetilde{m{a}}_{q,k}^i,m{v}_{q,k}^i-m{x}^*
angle
ight] \leq C\sqrt{Q}$$

then, the expected regret of the algorithm upper bounded by

$$\mathbb{E}\left[\mathcal{R}_{T}\right] = \mathbb{E}\left[\sum_{q=1}^{Q} K\left(\bar{F}_{q,0}(\overline{x}_{q}) - \bar{F}_{q,0}(x^{*})\right)\right]$$

$$\leq QGD + CKQ^{1/2} + 2QD\left(\beta D + \left(N + \sqrt{M}\right)3K^{2/3}\right) + Q\beta D^{2}\log K$$

$$\leq QGD + CKQ^{1/2} + 2Q\beta D^{2} + 6D\left(N + \sqrt{M}\right)QK^{2/3} + Q\beta D^{2}\log K$$

$$\leq \left(GD + 2\beta D^{2}\right)Q + CKQ^{1/2} + 6D\left(N + \sqrt{M}\right)QK^{2/3} + Q\beta D^{2}\log K \tag{75}$$

Setting $Q = T^{2/5}$ and $K = T^{3/5}$, we have

$$\mathbb{E}\left[\mathcal{R}_{T}\right] \leq \left(GD + 2\beta D^{2}\right) T^{2/5} + \left(C + 6D\left(N + \sqrt{M}\right)\right) T^{4/5} + \frac{3}{5}\beta D^{2} T^{2/5} \log(T) \tag{76}$$

A.2. Proof of Theorem 4

Lemma 13 If F_t is monotone continous DR-submodular and β -smoothness, $\boldsymbol{x}_{t,k+1} = \boldsymbol{x}_{t,k} + \frac{1}{K}\boldsymbol{v}_{t,k}$ for $k \in [1, \dots, K]$, then

$$F_{t}(\boldsymbol{x}^{*}) - F_{t}(\boldsymbol{x}_{t,k+1}) \leq (1 - 1/K) \left[F_{t}(\boldsymbol{x}^{*}) - F_{t}(\boldsymbol{x}_{t,k}) \right]$$

$$- \frac{1}{K} \left[- \|\nabla F_{t}(\boldsymbol{x}_{t,k}) - \boldsymbol{d}_{t,k} \| D + \langle \boldsymbol{d}_{t,k}, \boldsymbol{v}_{t,k} - \boldsymbol{x}^{*} \rangle \right] + \frac{\beta D^{2}}{2K^{2}}$$
(77)

Proof The proof is essentially based on the analysis of Chen et al. (2018). By β -smoothness of F_t ,

$$F_{t}(\boldsymbol{x}_{t,k+1}) \geq F_{t}(\boldsymbol{x}_{t,k}) + \langle F_{t}(\boldsymbol{x}_{t,k}), \boldsymbol{x}_{t,k+1} - \boldsymbol{x}_{t,k} \rangle - \frac{\beta}{2} \|\boldsymbol{x}_{t,k+1} - \boldsymbol{x}_{t,k}\|^{2}$$

$$\geq F_{t}(\boldsymbol{x}_{t,k}) + \frac{1}{K} \langle F_{t}(\boldsymbol{x}_{t,k}), \boldsymbol{v}_{t,k}^{i} \rangle - \frac{\beta}{2} \frac{D^{2}}{K^{2}} \qquad (\text{since } \|\boldsymbol{v}_{t,k}\| \leq D)$$

$$\geq F_{t}(\boldsymbol{x}_{t,k}) + \frac{1}{K} \left[\langle \nabla F_{t}(\boldsymbol{x}_{t,k}) - \boldsymbol{d}_{t,k}, \boldsymbol{v}_{t,k} - \boldsymbol{x}^{*} \rangle + \langle \nabla F_{t}(\boldsymbol{x}_{t,k}), \boldsymbol{x}^{*} \rangle + \langle \boldsymbol{d}_{t,k}, \boldsymbol{v}_{t,k} - \boldsymbol{x}^{*} \rangle \right] - \frac{\beta}{2} \frac{D^{2}}{K^{2}}$$

$$(78)$$

By Cauchy-Schwarz's inequality, note that,

$$\langle \nabla F_t(\boldsymbol{x}_{t,k}) - \boldsymbol{d}_{t,k}, \boldsymbol{v}_{t,k} - \boldsymbol{x}^* \rangle \ge - \|\nabla F_t(\boldsymbol{x}_{t,k}) - \boldsymbol{t}_{t,k}\| D$$

Using concavity along non-negative direction and monotonicity of F_t , we have,

$$F_{t}(\boldsymbol{x}^{*}) - F_{t}(\boldsymbol{x}_{t,k}) \leq F_{t}(\boldsymbol{x}^{*} \vee \boldsymbol{x}_{t,k}) - F_{t}(\boldsymbol{x}_{t,k})$$

$$\leq \langle \nabla F_{t}(\boldsymbol{x}_{t,k}), (\boldsymbol{x}^{*} \vee \boldsymbol{x}_{t,k}) - \boldsymbol{x}_{t,k} \rangle$$

$$= \langle \nabla F_{t}(\boldsymbol{x}_{t,k}), (\boldsymbol{x}^{*} - \boldsymbol{x}_{t,k}) \vee 0 \rangle$$

$$\leq \langle \nabla F_{t}(\boldsymbol{x}_{t,k}), \boldsymbol{x}^{*} \rangle$$
(79)

then, equation (78) becomes

$$F_{t}(\boldsymbol{x}_{t,k+1}) \geq F_{t}(\boldsymbol{x}_{t,k}) + \langle F_{t}(\boldsymbol{x}_{t,k}), \boldsymbol{x}_{t,k+1} - \boldsymbol{x}_{t,k} \rangle - \frac{\beta}{2} \|\boldsymbol{x}_{t,k+1} - \boldsymbol{x}_{t,k}\|^{2}$$

$$\geq F_{t}(\boldsymbol{x}_{t,k}) + \frac{1}{K} \left[-\|\nabla F_{t}(\boldsymbol{x}_{t,k}) - \boldsymbol{t}_{t,k}\| D + F_{t}(\boldsymbol{x}^{*}) - F_{t}(\boldsymbol{x}_{t,k}) + \langle \boldsymbol{d}_{t,k}, \boldsymbol{v}_{t,k} - \boldsymbol{x}^{*} \rangle \right] - \frac{\beta}{2} \frac{D^{2}}{K^{2}}$$
(80)

Adding and substracting $F_t(x^*)$ and multiply both side by -1 yields lemma 13.

Theorem 4 Given a convex set K with diameters D. Assume that functions F_t are monotone continuous DR-Submodular, β -smooth and G-Lipschitz. Setting $Q = T^{2/5}, K = T^{3/5}, T = QK$ and step-size $\eta_k = \frac{1}{K}$. Let $\rho_k = \frac{2}{(k+3)^{2/3}}$ and $\rho_k = \frac{1.5}{(K-k+2)^{2/3}}$ when $1 \le k \le \frac{K}{2} + 1$ and $\frac{K}{2} + 1 \le k \le K$ respectively. Then, the expected $(1 - \frac{1}{e})$ -regret is at most

$$\mathbb{E}\left[\mathcal{R}_{T}\right] \leq \frac{3}{2}\beta D^{2}T^{2/5} + \left(C + 3D(N + \sqrt{M})\right)T^{4/5} \tag{81}$$

where the constant are defined in Theorem 3

Proof

We apply Lemma 13 with $F_t = \overline{F}_{q,k-1}$, $\boldsymbol{x}_{t,k} = \overline{\boldsymbol{x}}_{q,k}$ and $\boldsymbol{d}_{t,k} = \frac{1}{n} \sum_{i=1}^n \widetilde{\boldsymbol{a}}_{q,k}^i$, we have

$$\bar{F}_{q,k-1}(\boldsymbol{x}^*) - \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k+1}) \leq \left(1 - \frac{1}{K}\right) \left[\bar{F}_{q,k-1}(\boldsymbol{x}^*) - \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k})\right] \\
+ \frac{1}{K} \cdot \frac{1}{n} \sum_{i=1}^{n} \left[\left\| \nabla \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \widetilde{\boldsymbol{a}}_{q,k}^{i} \right\| D + \left\langle \widetilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{x}^* - \boldsymbol{v}_{q,k}^{i} \right\rangle \right] + \frac{\beta}{2} \frac{D^2}{K^2} \tag{82}$$

As $\mathbb{E}\left[\bar{F}_{q,k-1}(\boldsymbol{x}^*) - \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k})\right] = \mathbb{E}\left[\bar{F}_{q,k-2}(\boldsymbol{x}^*) - \bar{F}_{q,k-2}(\overline{\boldsymbol{x}}_{q,k})\right]$, we can apply equation (82) recursively for $k \in \{1, \dots, K\}$, thus

$$\mathbb{E}\left[\bar{F}_{q,0}(\boldsymbol{x}^*) - \bar{F}_{q,0}(\overline{\boldsymbol{x}}_q)\right] \leq \left(1 - \frac{1}{K}\right)^K \mathbb{E}\left[\bar{F}_{q,0}(\boldsymbol{x}^*) - \bar{F}_{q,0}(\overline{\boldsymbol{x}}_{q,1})\right] \\
+ \frac{1}{K} \cdot \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^K \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \widetilde{\boldsymbol{a}}_{q,k}^i\right\| D\right] + \frac{1}{K} \cdot \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^K \mathbb{E}\left[\left\langle \widetilde{\boldsymbol{a}}_{q,k}^i, \boldsymbol{x}^* - \boldsymbol{v}_{q,k}^i \right\rangle\right] + \frac{\beta}{2} \frac{D^2}{K} \right]$$
(83)

Note that $\left(1 - \frac{1}{K}\right)^K \leq \frac{1}{e}$ and $\bar{F}_{q,0}(\overline{\boldsymbol{x}}_{q,1}) \geq 0$, we have

$$\mathbb{E}\left[\left(1 - \frac{1}{e}\right)\bar{F}_{q,0}(\boldsymbol{x}^*) - \bar{F}_{q,0}(\overline{\boldsymbol{x}}_q)\right] \leq \frac{1}{K} \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \tilde{\boldsymbol{a}}_{q,k}^{i}\right\| D\right] + \frac{1}{K} \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \tilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{x}^* - \boldsymbol{v}_{q,k}^{i}\right\rangle\right] + \frac{\beta}{2} \frac{D^2}{K} \tag{84}$$

Let T = QK, using Claim 2 and note that the oracle has a regret $\mathcal{R}_{\mathcal{Q}} \leq C\sqrt{Q}$. We have

$$\mathbb{E}\left[\mathcal{R}_{T}\right] = \mathbb{E}\left[\sum_{q=1}^{Q} K\left[\left(1 - \frac{1}{e}\right) \bar{F}_{q,0}(\boldsymbol{x}^{*}) - \bar{F}_{q,0}(\overline{\boldsymbol{x}}_{q})\right]\right]$$

$$\leq \frac{D}{n} \sum_{q=1}^{Q} \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}(\overline{\boldsymbol{x}}_{q,k}) - \tilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] + \frac{1}{n} \sum_{q=1}^{Q} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \tilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{x}^{*} - \boldsymbol{v}_{q,k}^{i}\right\rangle\right] + \frac{\beta}{2} Q D^{2}$$

$$\leq Q D\left(\beta D + \left(N + \sqrt{M}\right) 3K^{2/3}\right) + K C \sqrt{Q} + \frac{\beta Q D^{2}}{2} \tag{85}$$

Setting $Q = T^{2/5}$ and $K = T^{3/5}$, the expected regret of the algorithm is upper bounded by

$$\mathbb{E}\left[\mathcal{R}_{T}\right] \leq T^{2/5} \left(\beta D^{2} + \left(N + \sqrt{M}\right) 3T^{2/5}\right) + CT^{4/5} + \frac{\beta D^{2}T^{2/5}}{2}$$

$$\leq \frac{3}{2}\beta D^{2}T^{2/5} + \left(C + 3D(N + \sqrt{M}\right)T^{4/5}$$
(86)

Appendix B. Theoretical analysis for Section 4

Let $f_t^{\delta}(\boldsymbol{x}) = \mathbb{E}_{\boldsymbol{v} \in \mathbb{B}^d} \left[f_t \left(\boldsymbol{x} + \delta \boldsymbol{v} \right) \right]$ and recall its gradient $\nabla f_t^{\delta}(\boldsymbol{x}) = \mathbb{E}_{\boldsymbol{u} \in \mathbb{S}^{d-1}} \left[\frac{d}{\delta} f_t \left(\boldsymbol{x} + \delta \boldsymbol{u} \right) \boldsymbol{u} \right]$. We define the average function

$$\bar{F}_{q,k}^{\delta}(\boldsymbol{x}) = \frac{1}{L-k} \sum_{\ell=k+1}^{L} F_{\sigma_q(\ell)}^{\delta}(\boldsymbol{x}) = \frac{1}{L-k} \sum_{\ell=k+1}^{L} \frac{1}{n} \sum_{i=1}^{n} f_{\sigma_q(\ell)}^{i,\delta}(\boldsymbol{x})$$
(87)

and the average of the remaining (L-k) functions of $f_{\sigma_q(\ell)}^{i,\delta}(\boldsymbol{x}_{q,\ell}^i)$ over n agents as

$$\hat{F}_{q,k}^{\delta} = \frac{1}{n} \sum_{i=1}^{n} \hat{f}_{q,k}^{i,\delta} = \frac{1}{L-k} \sum_{\ell=k+1}^{L} \frac{1}{n} \sum_{i=1}^{n} f_{\sigma_{q}(\ell)}^{i,\delta}(\boldsymbol{x}_{q,\ell}^{i})$$
(88)

where $F_{\sigma_q(\ell)}^{\delta}(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^n f_{\sigma_q(\ell)}^{i,\delta}(\boldsymbol{x})$ and $\hat{f}_{q,k}^{i,\delta} = \frac{1}{L-k} \sum_{\ell=k+1}^L f_{\sigma_q(\ell)}^{i,\delta}(\boldsymbol{x}_{q,\ell}^i)$. Then, the one-point gradient $\nabla \bar{F}_{q,k}^{\delta}$ and $\nabla \hat{F}_{q,k}^{\delta}$ come naturally with the above definitions. Let $\mathcal{H}_{q,1} \subset \cdots \subset \mathcal{H}_{q,k}$

be the σ -fields generated by the randomness of the stochastic gradient estimate up to time k.

$$\boldsymbol{g}_{q,k}^{i,\delta} = \mathbb{E}\left[\widetilde{\boldsymbol{g}}_{q,k}^{i}|\mathcal{H}_{q,k-1}\right], \quad \boldsymbol{d}_{q,k}^{i,\delta} = \mathbb{E}\left[\widetilde{\boldsymbol{d}}_{q,k}^{i}|\mathcal{H}_{q,k-1}\right], \quad \nabla f_{\sigma_{q}(k)}^{i,\delta}(\boldsymbol{x}_{q,k}^{i}) = \mathbb{E}\left[\widetilde{\boldsymbol{h}}_{q,k}^{i}\right]$$
(89)

and

$$\hat{g}_{q,k}^{i,\delta} = \frac{1}{L-k} \sum_{\ell=k+1}^{L} g_{q,\ell}^{i,\delta}, \quad \hat{d}_{q,k}^{i,\delta} = \frac{1}{L-k} \sum_{\ell=k+1}^{L} d_{q,\ell}^{i,\delta}, \tag{90}$$

Lemma 14 For $i \in [n]$, $k \in [K]$. Let $V_d^{\delta} = 2n \frac{d}{\delta} B\left(\frac{\lambda_2}{1-\lambda_2}+1\right)$, the local gradient is upper-bounded, i.e $\left\|\boldsymbol{d}_{q,k}^{i,\delta}\right\| \leq V_d^{\delta}$

Lemma 15 Under Assumption 3, the variance of the local gradient estimate is uniformly bounded, i.e

$$\mathbb{E}\left[\left\|\boldsymbol{d}_{q,k}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}\right\|^{2}\right] \leq 4n\left(\frac{d}{\delta}B\right)^{2}\left[\frac{1}{\left(\frac{1}{\lambda_{2}} - 1\right)^{2}} + 2\right]$$
(91)

Proof By Assumption 3, we have

$$\mathbb{E}\left[\left\|\nabla f_{\sigma_{q}(\tau)}^{cat} - \widetilde{\boldsymbol{h}}_{q,\tau}^{cat}\right\|^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{n} \left\|\nabla f_{\sigma_{q}(\tau)}^{i,\delta}\left(\boldsymbol{x}_{q,\tau}^{i}\right) - \widetilde{\boldsymbol{h}}_{q,\tau}^{i}\right\|^{2}\right] \le n\left(\frac{d}{\delta}B\right)^{2}$$
(92)

Following the same analysis in equation (41), we have

$$\mathbb{E}\left[\left\|\boldsymbol{d}_{q,k}^{cat} - \widetilde{\boldsymbol{d}}_{q,k}^{cat}\right\|^{2}\right] \\
\leq \mathbb{E}\left[\left(\sum_{\tau=1}^{k-1}\left\|\mathbf{W}^{k-\tau} - \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}\right\|\left\|\nabla f_{\sigma_{q}(\tau+1)}^{cat} - \widetilde{\boldsymbol{h}}_{q,\tau+1}^{cat} + \widetilde{\boldsymbol{h}}_{q,\tau}^{cat} - \nabla f_{\sigma_{q}(\tau)}^{cat}\right\|\right)^{2}\right] \\
+ 4\left(\mathbb{E}\left[\left\|\mathbf{W}^{k} - \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}\right\|^{2}\left\|\nabla f_{\sigma_{q}(1)}^{cat} - \widetilde{\boldsymbol{h}}_{q,1}^{cat}\right\|^{2}\right] + \mathbb{E}\left[\left\|\frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}\right\|^{2}\left\|\nabla f_{\sigma_{q}(k)}^{cat} - \widetilde{\boldsymbol{h}}_{q,k}^{cat}\right\|^{2}\right]\right) \\
\leq 4n\left(\frac{d}{\delta}B\right)^{2}\left(\sum_{\tau=1}^{k-1}\lambda_{2}^{k-\tau}\right)^{2} + 4n\left(\frac{d}{\delta}B\right)^{2}\left(\lambda_{2}^{2k} + 1\right)$$

$$\leq 4n\left(\frac{d}{\delta}B\right)^2 \left(\frac{\lambda_2}{1-\lambda_2}\right)^2 + 4n\left(\frac{d}{\delta}B\right)^2 (\lambda_2+1) \leq 4n\left(\frac{d}{\delta}B\right)^2 \left[\frac{1}{\left(\frac{1}{\lambda_2}-1\right)^2} + 2\right]$$
(93)

The lemma follows by remarking that
$$\mathbb{E}\left[\left\|\boldsymbol{d}_{q,k}^{i,\delta}-\widetilde{\boldsymbol{d}}_{q,k}^{i}\right\|^{2}\right]\leq\mathbb{E}\left[\left\|\boldsymbol{d}_{q,k}^{cat}-\widetilde{\boldsymbol{d}}_{q,k}^{cat}\right\|^{2}\right]$$

Let $\boldsymbol{x}^* = \arg\max_{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\boldsymbol{x}), \ \boldsymbol{x}^*_{\delta} = \arg\max_{\boldsymbol{x} \in \mathcal{K}'} \sum_{t=1}^T f_t(\boldsymbol{x}) \text{ Let } \boldsymbol{z}^i_{q,k} = \boldsymbol{x}^i_{q,k} + \delta \boldsymbol{u}^i_{q,k},$ we define $\overline{\boldsymbol{z}}_{q,k} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{z}^i_{q,k}$ for $1 \leq k \leq K$.

Lemma 16 Under Assumption 1 and Assumption 3. Let $N = k_0 \cdot nB \frac{d}{\delta} \max \left\{ \lambda_2 \left(1 + \frac{2}{1 - \lambda_2} \right), 2 \right\}$. Then, for $k \in [K]$, we have

$$\max_{i \in [1,n]} \mathbb{E}\left[\left\| \hat{\boldsymbol{d}}_{q,k}^{i,\delta} - \nabla \hat{F}_{q,k}^{\delta} \right\| \right] \le \frac{N}{k}$$
(94)

Proof The proof is essentially based on the one of Lemma 11. Note that we keep the same notation with a superscipt δ to indicate the smooth version of f and related variables. By definition of the one-point gradient estimator and Assumption 3, equation (25) becomes

$$\mathbb{E}\left[\left\|\delta_{q,k}^{cat,\delta}\right\|^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{n}\left\|\delta_{q,k}^{i,\delta}\right\|^{2}\right] = \sum_{i=1}^{n}\mathbb{E}\left[\left\|\nabla\hat{f}_{q,k}^{i,\delta} - \nabla\hat{f}_{q,k-1}^{i,\delta}\right\|^{2}\right] \\
= \sum_{i=1}^{n}\mathbb{E}\left[\mathbb{E}\left[\left\|\nabla\hat{f}_{q,k}^{i,\delta} - \nabla\hat{f}_{q,k-1}^{i,\delta}\right\|^{2} \mid \mathcal{F}_{q,k-1}\right]\right] \\
= \sum_{i=1}^{n}\mathbb{E}\left[\mathbb{E}\left[\left\|\frac{\sum_{\ell=k+1}^{L}\nabla f_{\sigma_{q}(\ell)}^{i,\delta}(\boldsymbol{x}_{q,\ell}^{i})}{L-k} - \frac{\sum_{\ell=k}^{L}\nabla f_{\sigma_{q}(\ell)}^{i,\delta}(\boldsymbol{x}_{q,\ell}^{i})}{L-k+1}\right\|^{2} \mid \mathcal{F}_{q,k-1}\right]\right] \\
= \sum_{i=1}^{n}\mathbb{E}\left[\mathbb{E}\left[\left\|\frac{\sum_{\ell=k+1}^{L}\nabla f_{\sigma_{q}(\ell)}^{i,\delta}(\boldsymbol{x}_{q,\ell}^{i})}{(L-k)(L-k+1)} - \frac{\nabla f_{\sigma_{q}(k)}^{i,\delta}(\boldsymbol{x}_{q,k}^{i})}{L-k+1}\right\|^{2} \mid \mathcal{F}_{q,k-1}\right]\right] \\
\leq n\left(\frac{2B\frac{d}{\delta}}{L-k+1}\right)^{2} \tag{95}$$

By Jensen's inequality, we deduce that

$$\mathbb{E}\left[\left\|\delta_{q,k}^{cat,\delta}\right\|\right] \le \sqrt{\mathbb{E}\left[\left\|\delta_{q,k}^{cat,\delta}\right\|^{2}\right]} \le \frac{2\sqrt{n}B\frac{d}{\delta}}{L-k+1} \tag{96}$$

When k=1, following the same derivation in equation (27), we have

$$\mathbb{E}\left[\left\|\boldsymbol{\hat{d}}_{q,1}^{cat,\delta} - \nabla \hat{F}_{q,1}^{cat,\delta}\right\|^2\right] \leq \lambda_2^2 \mathbb{E}\left[\sum_{i=1}^n \left\|\boldsymbol{\hat{g}}_{q,1}^{i,\delta} - \nabla \hat{F}_{q,1}^{\delta}\right\|^2\right] \leq n\lambda_2^2 \frac{d^2}{\delta^2} B^2$$

Let $k \in [2, k_0]$, from equation (23) and equation (96)

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{cat,\delta} - \nabla \hat{F}_{q,k}^{cat,\delta}\right\|\right] \leq \lambda_{2} \left(\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{cat,\delta} - \nabla \hat{F}_{q,k-1}^{cat,\delta}\right\|\right] + \mathbb{E}\left[\left\|\delta_{q,k}^{cat,\delta}\right\|\right]\right) \\
\leq \lambda_{2}^{k-1} \sqrt{n} \frac{d}{\delta} B + 2 \sum_{\tau=1}^{k} \lambda_{2}^{\tau} \sqrt{n} \frac{d}{\delta} B \\
\leq \lambda_{2} \sqrt{n} \frac{d}{\delta} B + 2 \frac{\lambda_{2}}{1 - \lambda_{2}} \sqrt{n} \frac{d}{\delta} B \\
= \lambda_{2} \sqrt{n} \frac{d}{\delta} B \left(1 + \frac{2}{1 - \lambda_{2}}\right) \tag{97}$$

Let $N_0 = k_0 \cdot \sqrt{n} \max \left\{ \lambda_2 B_{\overline{\delta}}^d \left(1 + \frac{2}{1 - \lambda_2} \right), 2B_{\overline{\delta}}^d \right\}$. We claim that $\mathbb{E}\left[\left\| \hat{\boldsymbol{d}}_{q,k}^{cat,\delta} - \nabla \hat{F}_{q,k}^{cat,\delta} \right\| \right] \le \frac{N_0}{k}$ when $k \in [k_0, K]$. Let $L \ge 2K$, we have then $\frac{1}{L - k + 1} \le \frac{1}{2K - k + 1} \le \frac{1}{K + 1} \le \frac{1}{k + 1}$. Thus, using the induction hypothesis, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k}^{cat,\delta} - \nabla \hat{F}_{q,k}^{cat,\delta}\right\|\right] \leq \lambda_{2} \left(\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{cat,\delta} - \nabla \hat{F}_{q,k-1}^{cat,\delta}\right\|\right] + \mathbb{E}\left[\left\|\delta_{q,k}^{cat,\delta}\right\|\right]\right) \\
\leq \lambda_{2} \left(\frac{N_{0}}{k-1} + \frac{2\sqrt{n}B\frac{d}{\delta}}{L-k+1}\right) \\
\leq \lambda_{2} \left(\frac{N_{0}}{k-1} + \frac{2\sqrt{n}B\frac{d}{\delta}}{k+1}\right) \\
\leq \lambda_{2} \left(N_{0}\frac{k_{0}+1}{k(k-1)}\right) \\
\leq \frac{N_{0}}{k} \tag{98}$$

Using the inequality in equation (31) and the above result, the lemma is then proven.

Lemma 17 (Lemma 10, Lemma 11 Zhang et al. (2019)) Under Lemma 14 and lemma 15 and setting $\rho_k = \frac{2}{(k+3)^{2/3}}$, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] \le \frac{\sqrt{M_0}}{(k+3)^{1/3}}, \qquad k \in [K]$$
(99)

where
$$M_0 = 4^{2/3} \frac{d^2}{\delta^2} B^2 \left[24n^2 \left(\frac{1}{\frac{1}{\lambda_2} - 1} + 1 \right)^2 + 8n \left(\frac{1}{\left(\frac{1}{\lambda_2} - 1 \right)^2} + 2 \right) \right]$$

Proof The proof follows the same idea in Lemma 10 and Lemma 11 of Zhang et al. (2019) with some changes in the constant values. We will evoques in details in the following section. Following the same decomposition in the proof of Lemma 12, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right] = \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - (1-\rho_{k})\widetilde{\boldsymbol{a}}_{q,k-1}^{i} - \rho_{k}\widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}\right\|^{2}\right]$$

$$= \rho_{k}^{2}\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}\right\|^{2}\right] + (1-\rho_{k})^{2}\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widehat{\boldsymbol{d}}_{q,k-2}^{i,\delta}\right\|^{2}\right]$$

$$+ (1-\rho_{k})^{2}\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right]$$

$$+ 2\rho_{k}(1-\rho_{k})\mathbb{E}\left[\left\langle\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}, \widehat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widehat{\boldsymbol{d}}_{q,k-2}^{i,\delta}\right\rangle\right]$$

$$+ 2\rho_{k}(1-\rho_{k})\mathbb{E}\left[\left\langle\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}, \widehat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\rangle\right]$$

$$+ 2(1-\rho_{k})^{2}\mathbb{E}\left[\left\langle\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widehat{\boldsymbol{d}}_{q,k-2}^{i,\delta}, \widehat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\rangle\right]$$

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}\right)\right\|^{2}\right] = \mathbb{E}\left[\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}\right)\right\|^{2} \mid \mathcal{F}_{q,k-1}\right]\right] \\
\leq \mathbb{E}\left[\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \boldsymbol{d}_{q,k}^{i,\delta}\right\|^{2} + \left\|\boldsymbol{d}_{q,k}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}\right\|^{2} + 2\langle\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \boldsymbol{d}_{q,k}^{i,\delta}, \boldsymbol{d}_{q,k}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}\rangle \mid \mathcal{F}_{q,k-1}\right]\right] \tag{100}$$

By the definition in equation (90), we have $\mathbb{E}\left[\boldsymbol{d}_{q,k}^{i,\delta}|\mathcal{F}_{q,k-1}\right] = \hat{\boldsymbol{d}}_{q,k-1}^{i,\delta}$, using Lemma 14, we have

$$\mathbb{E}\left[\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \boldsymbol{d}_{q,k}^{i,\delta}\right\|^{2} \mid \mathcal{F}_{q,k-1}\right]\right] \leq (V_{\boldsymbol{d}}^{\delta})^{2}$$
(101)

Invoking Lemma 15, we have

$$\mathbb{E}\left[\left\|\boldsymbol{d}_{q,k}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}\right)\right\|^{2}\right] \leq \sigma_{2}^{2} \tag{102}$$

and

$$\mathbb{E}\left[\mathbb{E}\left[\left\langle \hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \boldsymbol{d}_{q,k}^{i,\delta}, \boldsymbol{d}_{q,k}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta} \right\rangle \mid \mathcal{F}_{q,k-1}\right]\right] = 0$$
(103)

by following the same analysis in equation (48). We now claim that equation (100) is bounded above by

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}\right)\right\|^{2}\right] \leq (V_{\boldsymbol{d}}^{\delta})^{2} + \sigma_{2}^{2} \triangleq V^{\delta}$$
(104)

More over, taking the idea from equations (50) to (53), we have

$$\mathbb{E}\left[\left\|\hat{d}_{q,k-1}^{i,\delta} - \hat{d}_{q,k-2}^{i,\delta}\right\|^{2}\right] \le \frac{4(V_{d}^{\delta})^{2}}{(L-k+2)^{2}} \triangleq \frac{L^{\delta}}{(L-k+2)^{2}}$$
(105)

$$\mathbb{E}\left[\left\langle \hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}, \hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \hat{\boldsymbol{d}}_{q,k-2}^{i,\delta} \right\rangle\right] = 0 \tag{106}$$

$$\mathbb{E}\left[\left\langle \hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{d}}_{q,k}^{i,\delta}, \hat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i} \right\rangle\right] = 0 \tag{107}$$

and

$$\mathbb{E}\left[\left\langle \hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \hat{\boldsymbol{d}}_{q,k-2}^{i,\delta}, \hat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \tilde{\boldsymbol{a}}_{q,k-1}^{i} \right\rangle\right] \leq \frac{L^{\delta}}{2\alpha_{k}(L-k+2)^{2}} + \frac{\alpha_{k}}{2} \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \tilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right]$$

$$\tag{108}$$

by using Young's inequality. Setting $\alpha_k = \frac{\rho_k}{2}$ similarly to Lemma 12, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right] \leq \rho_{k}^{2} V^{\delta} + \left(1 + \frac{2}{\rho_{k}}\right) \frac{L^{\delta}}{(L - k + 2)^{2}} + (1 - \rho_{k}) \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right]$$
(109)

Setting $L \ge 2K$ and $\rho_k = \frac{2}{(k+2)^{2/3}}$, we have then $\frac{1}{L-k+2} \le \frac{1}{2K-k+2} \le \frac{1}{K+2} \le \frac{1}{k+2}$. Following the derivation from Lemma 11 of Zhang et al. (2019). Equation (109) can be bounded above by

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|^{2}\right] \leq \rho_{k}^{2}V^{\delta} + \left(1 + \frac{2}{\rho_{k}}\right) \frac{L^{\delta}}{(k+2)^{2}} + (1 - \rho_{k}) \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right] \\
\leq \frac{4^{2/3}\left(2V^{\delta} + L^{\delta}\right)}{(k+2)^{4/3}} + \left(1 - \frac{2}{(k+2)^{2/3}}\right) \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right] \\
\triangleq \frac{M_{0}}{(k+2)^{4/3}} + \left(1 - \frac{2}{(k+2)^{2/3}}\right) \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-2}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,k-1}^{i}\right\|^{2}\right] \tag{110}$$

Assume that $\mathbb{E}\left[\left\|\hat{d}_{q,k-1}^{i,\delta} - \tilde{a}_{q,k}^{i}\right\|^{2}\right] \leq \frac{M_{0}}{(k+3)^{2/3}}$ for $k \in [K]$. When k = 1, by definition of $\tilde{a}_{q,1}^{i}$ and $\hat{d}_{q,0}^{i,\delta}$, we have

$$\mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,0}^{i,\delta} - \widetilde{\boldsymbol{a}}_{q,1}^{i}\right\|^{2}\right] \leq \left(V_{\boldsymbol{d}}^{\delta} + \frac{2}{3^{2/3}}\frac{d}{\delta}B\right)^{2} \tag{111}$$

Thus, since $\sigma_2 \geq \frac{2}{3^{2/3}} \frac{d}{\delta} B$, one can observe that

$$\frac{M_0}{(1+2)^{2/3}} = 2V^{\delta} + L^{\delta} \ge 2V^{\delta} = 2\left((V_d^{\delta})^2 + \sigma_2^2\right) \ge \left(V_d^{\delta}\right) + \sigma_2\right)^2 \ge \mathbb{E}\left[\left\|\hat{d}_{q,0}^{i,\delta} - \widetilde{a}_{q,1}^i\right\|^2\right]$$
(112)

Suppose that the induction hypothesis holds for k-1, one can easily verify for k since

$$\mathbb{E}\left[\left\|\hat{d}_{q,k-1}^{i,\delta} - \tilde{a}_{q,k}^{i}\right\|^{2}\right] \leq \frac{M_{0}}{(k+2)^{4/3}} + \left(1 - \frac{2}{(k+2)^{2/3}}\right) \mathbb{E}\left[\left\|\hat{d}_{q,k-2}^{i,\delta} - \tilde{a}_{q,k-1}^{i}\right\|^{2}\right] \\
\leq \frac{M_{0}}{(k+2)^{4/3}} + \left(1 - \frac{2}{(k+2)^{2/3}}\right) \frac{M_{0}}{(k+2)^{2/3}} \\
\leq M_{0} \frac{(k+2)^{2/3} - 1}{(k+3)^{4/3}} \\
\leq \frac{M_{0}}{(k+3)^{2/3}} \tag{113}$$

Claim 3 Under Claim 1, Lemma 16 and Lemma 17.

$$\sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}^{\delta}(\overline{\boldsymbol{x}}_{q,k}) - \widetilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] \leq \beta D + \frac{3}{2} \left(N + \sqrt{M_{0}}\right) K^{2/3}$$
(114)

Proof of claim.

$$\sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}^{\delta}(\overline{\boldsymbol{x}}_{q,k}) - \tilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] \leq \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}^{\delta}(\overline{\boldsymbol{x}}_{q,k}) - \nabla \hat{F}_{q,k-1}^{\delta}\right\|\right] + \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \hat{F}_{q,k-1}^{\delta} - \tilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] \\
\leq \beta D + \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \hat{F}_{q,k-1}^{\delta} - \hat{\boldsymbol{d}}_{q,k-1}^{i,\delta}\right\|\right] + \sum_{k=1}^{K} \mathbb{E}\left[\left\|\hat{\boldsymbol{d}}_{q,k-1}^{i,\delta} - \tilde{\boldsymbol{a}}_{q,k}^{i}\right\|\right] \\
\leq \beta D + \sum_{k=1}^{K} \frac{N}{k} + \sum_{k=1}^{K} \frac{\sqrt{M_0}}{(k+3)^{1/3}} \\
\leq \beta D + \left(N + \sqrt{M_0}\right) \sum_{k=1}^{K} \frac{1}{(k+3)^{1/3}} \\
\leq \beta D + \frac{3}{2}\left(N + \sqrt{M_0}\right) K^{2/3} \tag{115}$$

where Claim 1 is still verified in the second inequality since $f_{\sigma_q(\ell)}^{i,\delta}$ is β -smooth and the third inequality is the result of Lemma 16 and Lemma 17

Claim 4

$$\mathbb{E}\left[\sum_{q=1}^{Q}\sum_{\ell=1}^{L}\left(1-\frac{1}{e}\right)F_{\sigma_{q}(\ell)}^{\delta}(\boldsymbol{x}_{\delta}^{*})-F_{\sigma_{q}(\ell)}^{\delta}(\overline{\boldsymbol{x}}_{q})\right] \leq \frac{L\beta D^{2}}{K}+\frac{3LD\left(N+\sqrt{M_{0}}\right)}{2K^{1/3}}+LC\sqrt{Q}+\frac{\beta QLD^{2}}{2K}$$
(116)

Proof of claim. Using Lemma 13 with $F_t = \bar{F}_{q,k-1}^{\delta}$, $\boldsymbol{x}_{t,k} = \overline{\boldsymbol{x}}_{q,k}$ and $\boldsymbol{d}_{t,k} = \frac{1}{n} \sum_{i=1}^{n} \widetilde{\boldsymbol{a}}_{q,k}^{i}$, we have

$$\bar{F}_{q,k-1}^{\delta}(\boldsymbol{x}_{\delta}^{*}) - \bar{F}_{q,k-1}^{\delta}(\overline{\boldsymbol{x}}_{q,k+1}) \leq \left(1 - \frac{1}{K}\right) \left[\bar{F}_{q,k-1}^{\delta}(\boldsymbol{x}_{\delta}^{*}) - \bar{F}_{q,k-1}^{\delta}(\overline{\boldsymbol{x}}_{q,k})\right] \\
+ \frac{1}{K} \cdot \frac{1}{n} \sum_{i=1}^{n} \left[\left\| \nabla \bar{F}_{q,k-1}^{\delta}(\overline{\boldsymbol{x}}_{q,k}) - \widetilde{\boldsymbol{a}}_{q,k}^{i} \right\| D + \left\langle \widetilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{x}_{\delta}^{*} - \boldsymbol{v}_{q,k}^{i} \right\rangle \right] + \frac{\beta}{2} \frac{D^{2}}{K^{2}} \tag{117}$$

Similarly to the proof of Theorem 4 and using Claim 3, we note

$$\mathbb{E}\left[\left(1 - \frac{1}{e}\right)\bar{F}_{q,0}^{\delta}(\boldsymbol{x}_{\delta}^{*}) - \bar{F}_{q,0}^{\delta}(\overline{\boldsymbol{x}}_{q})\right] \\
\leq \frac{1}{K} \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla \bar{F}_{q,k-1}^{\delta}(\overline{\boldsymbol{x}}_{q,k}) - \tilde{\boldsymbol{a}}_{q,k}^{i}\right\|D\right] + \frac{1}{K} \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \tilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{x}_{\delta}^{*} - \boldsymbol{v}_{q,k}^{i}\right\rangle\right] + \frac{\beta}{2} \frac{D^{2}}{K} \\
\leq \frac{D}{K} \left(\beta D + \frac{3}{2} \left(N + \sqrt{M_{0}}\right) K^{2/3}\right) + \frac{1}{K} \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{E}\left[\left\langle \tilde{\boldsymbol{a}}_{q,k}^{i}, \boldsymbol{x}_{\delta}^{*} - \boldsymbol{v}_{q,k}^{i}\right\rangle\right] + \frac{\beta}{2} \frac{D^{2}}{K} \\
\tag{118}$$

Thus, we can write

$$\mathbb{E}\left[\sum_{q=1}^{Q}\sum_{\ell=1}^{L}\left(1-\frac{1}{e}\right)F_{\sigma_{q}(\ell)}^{\delta}(\boldsymbol{x}_{\delta}^{*})-F_{\sigma_{q}(\ell)}^{\delta}(\overline{\boldsymbol{x}}_{q})\right] = \mathbb{E}\left[\sum_{q=1}^{Q}L\left(1-\frac{1}{e}\right)\bar{F}_{q,0}^{\delta}(\boldsymbol{x}_{\delta}^{*})-\bar{F}_{q,0}^{\delta}(\overline{\boldsymbol{x}}_{q})\right] \\
\leq \frac{LD}{K}\left(\beta D+\frac{3}{2}\left(N+\sqrt{M_{0}}\right)K^{2/3}\right)+LC\sqrt{Q}+\frac{\beta}{2}\frac{QLD^{2}}{K} \\
\leq \frac{L\beta D^{2}}{K}+\frac{3LD\left(N+\sqrt{M_{0}}\right)}{2K^{1/3}}+LC\sqrt{Q}+\frac{\beta QLD^{2}}{2K} \tag{119}$$

Theorem 7 Let K be a down-closed convex and compact set. We suppose the δ -interior K' following Lemma 6. Let $Q = T^{2/9}, L = T^{7/9}, K = T^{2/3}, \delta = \frac{r}{\sqrt{d}+2}T^{-1/9}$ and $\rho_k = \frac{2}{(k+2)^{2/3}}, \eta_k = \frac{1}{K}$. Then the expected $(1 - \frac{1}{e})$ -regret is upper bounded

$$\mathbb{E}\left[\mathcal{R}_{T}\right] \leq ZT^{8/9} + \frac{\beta D^{2}}{2}T^{1/9} + \frac{3}{2}D\frac{d\left(\sqrt{d}+2\right)}{r}P_{n,\lambda_{2}}T^{2/9} + \beta D^{2}T^{3/9}$$
 (120)

 $where \ we \ note \ Z = \left(1 - \frac{1}{e}\right) \left(\sqrt{d} \left(\frac{R}{e} + 1\right) + \frac{R}{r}\right) G \frac{r}{\sqrt{d} + 2} + \left(2 - \frac{1}{e}\right) G \frac{r}{\sqrt{d} + 2} + 2\beta + C \ and \ P_{n, \lambda_2} = k_0 \cdot nB \max \left\{\lambda_2 \left(1 + \frac{2}{1 - \lambda_2}\right), 2\right\} + 4^{1/3} \left(24n^2 \left(\frac{1}{\frac{1}{\lambda_2} - 1} + 1\right)^2 + 8n \left(\frac{1}{\left(\frac{1}{\lambda_2} - 1\right)^2} + 2\right)\right)^{1/2}$

Proof Recall the values of N and M_0 from Lemma 16 and Lemma 17, we have

$$N = k_0 \cdot nB \frac{d}{\delta} \max \left\{ \lambda_2 \left(1 + \frac{2}{1 - \lambda_2} \right), 2 \right\}$$

$$M_0 = 4^{2/3} \frac{d^2}{\delta^2} B^2 \left[24n^2 \left(\frac{1}{\frac{1}{\lambda_2} - 1} + 1 \right)^2 + 8n \left(\frac{1}{\left(\frac{1}{\lambda_2} - 1 \right)^2} + 2 \right) \right]$$

Let
$$P_{n,\lambda_2} = k_0 \cdot nB \max \left\{ \lambda_2 \left(1 + \frac{2}{1 - \lambda_2} \right), 2 \right\} + 4^{1/3} \left(24n^2 \left(\frac{1}{\frac{1}{\lambda_2} - 1} + 1 \right)^2 + 8n \left(\frac{1}{\left(\frac{1}{\lambda_2} - 1 \right)^2} + 2 \right) \right)^{1/2}$$
.

Then, one can easily see that $N + \sqrt{M_0} = \frac{d}{\delta}BP_{n,\lambda_2}$ where P_{n,λ_2} is a constant depending on n and λ_2 . For the next step, we set $\delta = \frac{r}{\sqrt{d+2}}T^{-1/9}$, then $\frac{d}{\delta} = \frac{d(\sqrt{d+2})}{r}T^{1/9}$, $Q = T^{2/9}, L = T^{7/9}$ and $K = T^{2/3}$. From the analysis in Theorem 4 of Zhang et al. (2019),

Lemma 6 and Claim 4, we have

$$\mathbb{E}\left[\mathcal{R}_{\mathcal{T}}\right] \leq \left(1 - \frac{1}{e}\right) \left(\sqrt{d} \left(\frac{R}{e} + 1\right) + \frac{R}{r}\right) GT\delta^{\gamma} + \left(2 - \frac{1}{e}\right) GT\delta + 2BQK$$

$$+ \sum_{q=1}^{Q} \sum_{\ell=1}^{L} \left(1 - \frac{1}{e}\right) F_{\sigma_{q}(\ell)}^{\delta}(x_{\delta}^{*}) - F_{\sigma_{q}(\ell)}^{\delta}(\overline{x}_{q})$$

$$\leq \left(1 - \frac{1}{e}\right) \left(\sqrt{d} \left(\frac{R}{e} + 1\right) + \frac{R}{r}\right) GT\delta^{\gamma} + \left(2 - \frac{1}{e}\right) GT\delta + 2BQK$$

$$+ \frac{L\beta D^{2}}{K} + \frac{3LD \left(N + \sqrt{M_{0}}\right)}{2K^{1/3}} + LC\sqrt{Q} + \frac{\beta QLD^{2}}{2K}$$

$$\leq \left(1 - \frac{1}{e}\right) \left(\sqrt{d} \left(\frac{R}{e} + 1\right) + \frac{R}{r}\right) GT\delta^{\gamma} + \left(2 - \frac{1}{e}\right) GT\delta + 2BQK$$

$$+ \frac{L\beta D^{2}}{K} + \frac{3LD \frac{d}{\delta} P_{n,\lambda_{2}}}{2K^{1/3}} + LC\sqrt{Q} + \frac{\beta QLD^{2}}{2K}$$

$$\leq \left(1 - \frac{1}{e}\right) \left(\sqrt{d} \left(\frac{R}{e} + 1\right) + \frac{R}{r}\right) GT \frac{r}{\sqrt{d} + 2} T^{-1/9} + \left(2 - \frac{1}{e}\right) GT \frac{r}{\sqrt{d} + 2} T^{-1/9}$$

$$+ 2\beta T^{2/9} T^{2/3} + T^{7/9} \beta D^{2} T^{-2/3} + \frac{3}{2} T^{7/9} D \frac{d \left(\sqrt{d} + 2\right)}{r} T^{1/9} P_{n,\lambda_{2}} T^{-2/3}$$

$$+ T^{7/9} CT^{1/9} + \frac{\beta}{2} T^{2/9} T^{7/9} D^{2} T^{-2/3}$$

$$\leq \left[\left(1 - \frac{1}{e}\right) \left(\sqrt{d} \left(\frac{R}{e} + 1\right) + \frac{R}{r}\right) G \frac{r}{\sqrt{d} + 2} + \left(2 - \frac{1}{e}\right) G \frac{r}{\sqrt{d} + 2} + C\right] T^{8/9}$$

$$+ \frac{\beta D^{2}}{2} T^{6/9} + \left[2\beta + \frac{3}{2} D \frac{d \left(\sqrt{d} + 2\right)}{r} P_{n,\lambda_{2}} T^{2/9} + \beta D^{2} T^{4/9}$$

$$\leq \left[\left(1 - \frac{1}{e}\right) \left(\sqrt{d} \left(\frac{R}{e} + 1\right) + \frac{R}{r}\right) G \frac{r}{\sqrt{d} + 2} + \left(2 - \frac{1}{e}\right) G \frac{r}{\sqrt{d} + 2} + 2\beta + C\right] T^{8/9}$$

$$+ \frac{\beta D^{2}}{2} T^{1/9} + \frac{3}{2} D \frac{d \left(\sqrt{d} + 2\right)}{r} P_{n,\lambda_{2}} T^{2/9} + \beta D^{2} T^{3/9}$$
(121)