

Approach

Error correcting codes:

correct all errors in message.

Error reducing codes:

correct a fraction of the bit errors in a received word, reduce the number of errors.

Algorithms

- LDGM-Staircase Codes (2017)
- Hamming Codes (2016)
- Triangulization codes (2018)

Hamming Codes

- X is message
- G^T * x is encoded message
- Error can be found by multiplying code with parity check matrix

1	1	1	0	0	0	0
1	0	0	1	1	0	0
0	1	0	1	0	1	0
0	0	1	1	0	0	1

G matrix

H matrix

 1
 1
 1
 0
 0
 0
 0

 1
 0
 0
 1
 1
 0
 0

 0
 1
 0
 1
 0
 1
 0

 0
 0
 1
 1
 0
 0
 1

G matrix

 1
 1
 1
 0
 0
 0
 0

 0
 1
 1
 1
 0
 0

 0
 1
 0
 1
 0
 1

 0
 0
 1
 0
 0
 1

New G matrix

Modulo-2 sum of the first two rows

Hamming results

Errors with new G matrix

Other approaches

- Minimum of sums decoding
- Minimum of maximums decoding
- Majority bit decoding

	Average number of errors in decoded message						
Number of errors introduced	Standard decod- ing	Optimized stan- dard decoding	Minimum of sums decoding	Minimum of maximums decoding	Majority bit decoding		
2	1.8571	1.7143	1.4286	1.4643	1.2857		
3	2.2000	2.1714	1.8571	1.7714	1.7857		
4 ¹	1.9429	1.8286	2.1429	2.0571	2.1429		

Test of different approaches

LDGM codes

- Class of linear block codes
- The main disadvantage: high-complexity encoding
- Structured LDPC: ALDPC, MAC, LDGM

Triangulization codes

$$X = [1, 0, 1, 0]$$

$$S = \{1, 2, 3\}$$

$$G = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

$$x*S \rightarrow 1 \quad 0 \quad 1 \quad \Rightarrow maj_{s} \quad (1 \quad 0 \quad 1) \quad \Rightarrow 1$$

Decoding procedure

Initial Message: [1, 0, 1, 0, 1]

Generator Matrix:

[[0 0 1 0 1 0]

[1 1 0 0 0 1]

[0 1 1 1 0 1]

[1 0 0 1 1 1]

[1 1 1 1 1 0]]

Encoded Message: [0, 1, 1, 1, 1, 0]

Triangularization Results

Results

	Params	Time
LGDM	m=100; P=0.8	1.27 s
Hamming	m=100; P=0.8	1.58 s
Triangular	m=100; P=0.8	1.89 s

