# Response Editing

Yu Wu

# An Era of Conversational Agents/Bots



## An Ideal bot











# Three typical approaches

### **Template based**

 Respond users with handcrafted features.



- Reliable and controllable
- Hard to scalable

#### **Retrieval based**

 Select a proper response from an index



- Fluent and informative responses
- Easy to implement
- Heavily depend on a predefined index

#### **Generation based**

 Generate a response with NLG techniques



- Flexible
- Suffer from safe response problem
- Require more resource

## Ensemble Approaches

### • Input:

- User issued query
- Some retrieved query-response pairs.

### • Model:

• Generate a response with the query and pairs.

### • Output:

• An appropriate response.

## Previous ensemble approaches



Figure 2: The multi-seq2seq model, which takes a query q and k retrieved candidate replies  $r^*$  as the input and generate a new reply  $r^+$  as the output.

AN ENSEMBLE OF RETRIEVAL-BASED AND GENERATION-BASED HUMAN-COMPUTER CONVERSATION SYSTEMS. Song et al. IJCAI 2018

## Previous ensemble approaches



- Multiple encoders.
- Weight prototypes with a matching model.
- Still use query as a source language

Figure 1: A schematic illustration of the EED network. The input context-response pair is (c, r), while the exemplar context-response pairs are  $(c^{(k)}, r^{(k)})$ ,  $1 \le k \le K$ .

Exemplar Encoder-Decoder for Neural Conversation Generation. Pandey et al. ACL 2018

## Motivation

• Prototype controls rough semantic.

• Context difference determines how to revise the response.

• Ensemble retrieval and generation approaches.

| Context           | My friends and I <del>went to some</del> vegan place for <del>dessert</del> yesterday.    |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Prototype context | My friends and I <u>had Tofu and</u> vegetables at a vegan place <u>nearby</u> yesterday. |  |  |  |  |  |  |
| Prototype         | Raw green vegetables are very bene-                                                       |  |  |  |  |  |  |
| response          | ficial for your health.                                                                   |  |  |  |  |  |  |
| Revised           | <b>Desserts</b> are very <b>bad</b> for your health.                                      |  |  |  |  |  |  |
| response          | Desserts are very bad for your hearth.                                                    |  |  |  |  |  |  |

Table 1: An example of context-aware prototypes editing. <u>Underlined words</u> mean they do not appear in the original context, while <u>words with strikethrough</u> mean they are not in the prototype context. Words in bold represent they are modified in the revised response.

# Advantages

- Prototype response provides a good start-point for our editing model.
  - Informative and fluent.
- We regard prototype response and revised response as a source language and a target language respectively.
  - Easy to learn alignment

| Context           | My friends and I <del>went to some</del> vegan place for <del>dessert</del> yesterday.    |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Prototype context | My friends and I <u>had Tofu and</u> vegetables at a vegan place <u>nearby</u> yesterday. |  |  |  |  |  |  |
| Prototype         | Raw green vegetables are very bene-                                                       |  |  |  |  |  |  |
| response          | ficial for your health.                                                                   |  |  |  |  |  |  |
| Revised           | <b>Desserts</b> are very <b>bad</b> for your health.                                      |  |  |  |  |  |  |
| response          | Desserts are very bad for your health.                                                    |  |  |  |  |  |  |

Table 1: An example of context-aware prototypes editing. <u>Underlined words</u> mean they do not appear in the original context, while <u>words with strikethrough</u> mean they are not in the prototype context. Words in bold represent they are modified in the revised response.

# Background

- Build a training set of lexically similar sentence pairs (x,x')
- For each pair (x,x')
  - Identify words that differ between x and x'.
  - Embed those into a vector.
  - Add noise to get edit vector z.
  - Train s2s mapping (z,x) -> y



Generating Sentences by Prototype Editing. Guu et al. 2018 TACL

## Model Overview



## Model Overview



 $Edit_{vec} = [I; D]$  (Concatenate two vectors)

Append the edit vector to each hidden vector to compute the output word.

 $p(output) = f(edit\_vec, hidden)$ 

**Insertion vector**:  $I = \sum_{w_i \in Ins} \alpha_i \cdot w_i$ , where  $w_i$  is a word embedding and  $\alpha_i$  is its corresponding weight.

**Deletion vector**:  $D = \sum_{w_i \in Del} \beta_i \cdot w'_i$ , where  $w'_i$  is a word embedding and  $\beta_i$  is its corresponding weight.

## Dataset: Douban Corpus

- Training data: Given (C,R), search similar (C',R') with response similarity.
  - $Jaccard(R, R') \in (0.3, 0.7)$
- Test data: Given C, search similar (C',R') with context similarity.

|                                    | train                   | val   | test |  |  |
|------------------------------------|-------------------------|-------|------|--|--|
| context-response pairs for s2s     | 20M                     | 10k   | 10k  |  |  |
| context-response pairs for editing | 20M (Samle<br>from 40M) | 10k   | 10k  |  |  |
| Vocabulary                         |                         | 30000 |      |  |  |

## Baseline Methods

- S2SA: the standard S2S model with an attention mechanism. We use the implementation with Blocks https://github.com/mila-udem/blocks
- S2SA-MMI: the model proposed by Li et al. (Li et al.2015). We implement this baseline by the code published by the authors at
- CVAE: recent work for response generation with a conditional variational auto-encoder (Zhao, Zhao, and Esk enazi).
- Retrieval models: Retrieval-default uses results given by Lucene. Retrieval-rerank ranks top 20 results given by Lucene with LSTM.
- Ensemble models: It has multiple encoders to encode prototype response information, and generate the response with the concatenation result of context representation and prototype representation.

## **Automatic Evaluation**

Table 2: Automatic evaluation results. Numbers in bold mean that improvement from the model on that metric is statistically significant over the baseline methods (t-test, p-value < 0.01).  $\kappa$  denotes Fleiss Kappa (Fleiss 1971), which reflects the agreement among human annotators.

|                   | Relevance |         | Diversity |            | Originality | Fluency    |       |       |      |       |          |
|-------------------|-----------|---------|-----------|------------|-------------|------------|-------|-------|------|-------|----------|
|                   | Average   | Extrema | Greedy    | Distinct-1 | Distinct-2  | Not appear | +2    | +1    | 0    | Avg   | $\kappa$ |
| S2SA              | 0.346     | 0.180   | 0.350     | 0.032      | 0.087       | 0.208      | 94.0% | 5.2%  | 0.8% | 1.932 | 0.89     |
| S2SA-MMI          | 0.379     | 0.189   | 0.385     | 0.039      | 0.127       | 0.297      | 91.6% | 7.6%  | 0.8% | 1.908 | 0.83     |
| CVAE              | 0.360     | 0.183   | 0.363     | 0.062      | 0.178       | 0.745      | 83.8% | 12.7% | 3.5% | 1.803 | 0.84     |
| Retrieval-default | 0.288     | 0.130   | 0.309     | 0.098      | 0.549       | 0.000      | 92.8% | 6.8%  | 0.4% | 1.924 | 0.88     |
| Retrieval-Rerank  | 0.380     | 0.191   | 0.381     | 0.067      | 0.460       | 0.000      | 91.7% | 7.8%  | 0.5% | 1.912 | 0.88     |
| Ensemble-default  | 0.352     | 0.183   | 0.362     | 0.035      | 0.097       | 0.223      | 91.3% | 7.2%  | 1.5% | 1.898 | 0.84     |
| Ensemble-Rerank   | 0.372     | 0.187   | 0.379     | 0.040      | 0.135       | 0.275      | 91.3% | 7.2%  | 1.5% | 1.898 | 0.84     |
| Edit-default      | 0.297     | 0.150   | 0.327     | 0.071      | 0.300       | 0.796      | 89.6% | 9.2%  | 1.2% | 1.884 | 0.87     |
| Edit-1-Rerank     | 0.367     | 0.185   | 0.371     | 0.077      | 0.296       | 0.794      | 93.2% | 5.6%  | 1.2% | 1.920 | 0.79     |
| Edit-N-Rerank     | 0.386     | 0.203   | 0.389     | 0.068      | 0.280       | 0.860      | 87.2% | 10.8% | 2.0% | 1.852 | 0.85     |

- We evaluate models from relevance, diversity, originality and fluency.
- Our model shows good results on relevance and originally

## Human side by side evaluation

Table 3: Human side-by-side evaluation results. Fleiss Kappa is denoted as  $\kappa$ . If a row name is "a v.s.b", win means that "a" is better than "b" according to human evaluation.

|                             | Loss | Tie  | Win  | $\kappa$ |
|-----------------------------|------|------|------|----------|
| Ed-Default v.s. R-Default   | 23.6 | 41.2 | 35.2 | 0.54     |
| Ed-Default v.s. Ens-Default | 29.4 | 47.8 | 22.8 | 0.59     |
| Ed-1-Reran v.s. R-Rerank    | 29.2 | 45.3 | 25.5 | 0.60     |
| Ed-N-Reran v.s. Ens-Rerank  | 24.9 | 42.1 | 33.0 | 0.55     |
| Ed-N-Reran v.s. R-Rerank    | 25.2 | 44.8 | 30.0 | 0.62     |

# Editing analysis

- Identical: our generation result is identical with the prototype response .
- Paraphrase: our generation result is a paraphrase of the prototype response.
- On the same topic: our generation results talk about the same topic with the prototype.
- Unrelated: : our generation result and prototype response are completely unrelated.



#### Case 1:

Context: 身在国外,寂寞无聊就化妆 // I am abroad. If I feel bored, I try some makeup.

Prototype Context: 无聊 就 玩 // If you feel bored, go to play.

Prototype Response: 嗯 // Well..

Revised Response: 我也喜欢化妆// I love make up as well.

#### Case 2:

**Context**: 我比较常吃辛拉面 // I often eat spice noodles.

Prototype Context: 我在台湾时候常吃辛拉面和卤肉饭// When I lived at Taiwan, I often eat spicy Noodles and braised pork

rice..

Prototype Context: 我也喜欢卤肉饭 // I love braised pork rice as well...

Revised Response: 我也喜欢 // I love it as well. (In Chinese, model just deletes the phrase ``braised pork rice" without adding any

word.)

#### Case 3:

Context: 纹身 有 没有 办法 全部 弄 干净 // Is there any way to get all tattoos clean?

Prototype Context: 把药抹头发上能把头发弄干净么// Is it possible to clean your hair by wiping the medicine on your

hair?.

Prototype Context: 抹 完 真的 头发 干净 很多// After wiping it, hair gets clean

Revised Response: 抹完纹身就会掉很多// After wiping it, most of tattoos will be cleaned.

## Summary and Future work

### Summary

- This paper proposes a new **paradigm**, prototype-then-edit, for response generation.
- We elaborate a simple but effective **context-aware editing model** for response generation.

#### Future work

More powerful context-aware editing models.

# We are hiring

- Position
  - Research intern of MSRA NLC Group
- Research Interest
  - Machine Reading Comprehension
  - Machine Translation
  - Semantic Parser
  - Fundamental NLP
- Requirement:
  - At least 6 months internship