Algorithmic Machine Learning Hw#3 Weijun Zhu. likelihood function = fe(t/\lambda) -- fe(t/\lambda)
= \(\cape^{-\taken \lambda} \cdots \cape^{-\taken \lambda} \) 3.1a). $= \Lambda C \Rightarrow \text{Known constant} : t_n \text{ unknown} : \lambda$ $\log(\text{likelihood function}) = \log(\lambda^n e^{-\lambda \sum_{i=1}^{n} \lambda_i})$ (b). = nlog2 - 22ti \$ (nlog) - > Zti)= + Zti = 0 (C). > = Zti → ZML= N Posterior distribution = $f_{e}(t_{1}|\lambda) - f_{e}(t_{n}|\lambda)$ Prior distribution = $\lambda e^{-t_{1}\lambda} - \lambda e^{-t_{n}\lambda}$ $\frac{\lambda^{2.5}}{\Gamma(3.5)} \lambda^{2.5} e^{-\lambda\lambda p}$ = $\lambda^{n} e^{-\lambda(\overline{z}t_{1}+\lambda p)} \cdot \frac{\lambda^{2.5}}{\Gamma(3.5)} \cdot \lambda^{n+2.5}$ (d). log (Posterior) = log ($e^{-\lambda(Et)+\lambda P}$). $\frac{\lambda^{35}}{1(3.5)} \cdot \lambda^{0+2.5}$ (0). = $-\lambda(\Sigma t_i + \lambda_P) + \log(\frac{\lambda_2 \cdot S}{\Gamma(3 \cdot S)}) + (n+2 \cdot S) \log \lambda$ $\frac{d}{d\lambda} \log(\text{posterior}) = \frac{d}{d\lambda} \left[-\lambda (Zt_{\lambda} + \lambda P) + \log(\frac{\lambda^{3.5}}{F(3.5)}) + (\Lambda + 2.5) \log \lambda \right]$ (f). $\Rightarrow -(Zt_1+)_P)+\frac{0+2.5}{\lambda}=0$ The dota timeto exerts influence in the outcome.