EXPRESS MAIL LABEL NO. EV 306255333 US ATTORNEY DOCKET NO. N1085-00220 [TSMC2003-0307/TSMC2003-0348]

What is claimed is:

1	1.	Apparatus for adjusting exhaust flow in a hot plate apparatus, comprising:		
2		a programmable exhaust control regulator generating a first input signal to a motor		
3	control circuit;			
4		an exhaust flow meter generating a second input signal to the motor control circuit; and		
5		a motor driven control valve moved to different positions according to the first and		
6	secono	l input signals, the control valve being installed in an exhaust portion of the hot plate		
7	appara	itus.		
1	2.	The apparatus as in claim 1, further comprising:		
2		the regulator having an upper limit set below an exhaust flow that would tend to lift a		
3	semiconductor wafer in the hot plate apparatus.			
1	3.	The apparatus as in claim 1, further comprising:		
2		the regulator having a preset high exhaust flow for operation at an end of a heating cycle		
3	to clea	in particles from an interior of the hot plate apparatus.		
1	4.	The apparatus as in claim 1, further comprising:		
2		the exhaust portion of the hot plate apparatus being an exhaust conduit communicating		
3	with a manifold of a central exhaust conduit.			
1	5.	The apparatus as in claim 1, further comprising:		
2		the exhaust portion of the hot plate apparatus being an exhaust conduit communicating		
3	with a manifold of a central exhaust conduit;			
4		another hot plate apparatus having an exhaust conduit communicating with the manifold;		
5		another flow control valve in the corresponding exhaust conduit; and		
6		another flow meter in the corresponding exhaust conduit.		
1	6.	A method of controlling a thickness and a surface profile of a photo resist layer,		
2	comprising the steps of;			

PH1\1114976.2 8

EXPRESS MAIL LABEL NO. EV 306255333 US ATTORNEY DOCKET NO. N1085-00220 [TSMC2003-0307/TSMC2003-0348]

3		providing a manufacturing recipe of the of a photo resist material with an exhaust flow			
4	value of a PEB apparatus, and				
5		controlling the exhaust flow of the PEB apparatus to the exhaust flow value while the			
6	photo	photo resist material is heated in the PEB apparatus to a solidified photo resist layer of controlled			
7	thickn	ess and surface profile.			
1	7.	The method as in claim 6, further comprising the step of: varying the exhaust flow with a			
2	contro	ol valve.			
1	8.	The method as in claim 6, further comprising the steps of:			
2		varying the exhaust flow with a control valve; and			
3		varying the control valve with a motor.			
1	9.	The method as in claim 6, further comprising the steps of:			
2		varying the exhaust flow with a control valve;			
3		varying the control valve with a motor;			
4		driving the motor with a motor drive circuit; and			
5		providing a first input signal to drive the motor.			
1	10.	The method as in claim 6, further comprising the steps of:			
2		varying the exhaust flow with a control valve;			
3		varying the control valve with a motor;			
4		driving the motor with a motor drive circuit;			
5		providing a first input signal to drive the motor; and			
6		providing a second refined input signal to drive the motor.			
1	11.	A method of cleaning a chamber of a hot plate apparatus, comprising the steps of:			
2		controlling the exhaust flow of the PEB apparatus to the exhaust flow value while the			
3	photo	resist material is heated in the PEB apparatus to a solidified photo resist layer; and			
4		increasing the exhaust flow to clean the chamber.			

PH1\1114976.2 9

EXPRESS MAIL LABEL NO. EV 306255333 US ATTORNEY DOCKET NO. N1085-00220 [TSMC2003-0307]

The method as in claim 11, further comprising the step of: varying the exhaust flow with

2	a control valve.		
1	13.	The method as in claim 11, further comprising the steps of:	
2		varying the exhaust flow with a control valve; and	
3		varying the control valve with a motor.	
1	14.	The method as in claim 11, further comprising the steps of:	
2		varying the exhaust flow with a control valve;	
3		varying the control valve with a motor;	
4		driving the motor with a motor drive circuit; and	
5		providing a first input signal to drive the motor.	
1	15.	The method as in claim 11, further comprising the steps of:	
2		varying the exhaust flow with a control valve;	
3		varying the control valve with a motor;	
4		driving the motor with a motor drive circuit;	
5		providing a first input signal to drive the motor; and	
6		providing a second refined input signal to drive the motor.	

1

12.