CS 2601 Linear and Convex Optimization 14. Dual LP

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

Dual LP

Interpretation of dual problems

Weak and strong duality

Dual LP via Lagragian

Lower bounds in LP

$$\min_{\mathbf{x} \in \mathbb{R}^2} \quad f(\mathbf{x}) = x_1 + 2x_2$$
s.t. $2x_1 + x_2 \ge 2$
 $x_1, x_2 \ge 0$

Any feasible solution x_0 gives an upper bound on the optimal value f^* ,

$$f^* \le f(\mathbf{x}_0)$$

Can we also get a lower bound f_{LB} on f^* ?

$$f^* \geq f_{\mathsf{LB}}$$

Note. A lower bound on f^* is the same as a lower bound on f(x) for all feasible $x \in X$, i.e.

$$f^* \ge f_{\mathsf{LB}} \iff f(\mathbf{x}) \ge f_{\mathsf{LB}}, \quad \forall \mathbf{x} \in X$$

2

Lower bounds in LP (cont'd)

For any $\mu_1, \mu_2, \mu_3 \ge 0$,

We can set $2\mu_1 + \mu_2 = 1$ and $\mu_1 + \mu_3 = 2$ so the LHS becomes f.

Thus

$$f(\mathbf{x}) \ge \psi(\boldsymbol{\mu}) = 2\mu_1$$

for any $x \in X$ and any μ_1, μ_2, μ_3 s.t.

$$2\mu_1 + \mu_2 = 1$$
, $\mu_1 + \mu_3 = 2$, $\mu_1, \mu_2, \mu_3 \ge 0$

In particular, $f^* = \inf_{\mathbf{x} \in X} f(\mathbf{x}) \ge \psi(\boldsymbol{\mu})$ for such $\boldsymbol{\mu}$.

Lower bounds in LP (cont'd)

The quality of the lower bound $\psi(\mu) = 2\mu_1$ varies for different μ .

 $ullet \psi(0,1,2) = 0$, so

$$0 = \psi(0, 1, 2) \le f^* \le f(1, 0) = 1$$

which also tells us $x_0 = (1,0)^T$ is 1-suboptimal, i.e.

$$f(1,0) - f^* \le 1$$

• $\psi(\frac{1}{2},0,\frac{3}{2})=1$, so

$$1 = \psi(\frac{1}{2}, 0, \frac{3}{2}) \le f^* \le f(1, 0) = 1$$

which tells us $f^* = 1$ and $x_0 = (1,0)^T$ is the optimal solution!

Dual LP

To get the best lower bound, we maximize over μ_1, μ_2, μ_3 ,

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} \ f(\boldsymbol{x}) = x_1 + 2x_2 \\ \text{s.t.} \ 2x_1 + x_2 \ge 2 \\ x_1 \ge 0 \\ x_2 \ge 0$$

$$\text{s.t.} \ 2\mu_1 + \mu_2 = 1 \\ \mu_1 + \mu_3 = 2 \\ \mu_1 \ge 0 \\ \mu_2 \ge 0 \\ \mu_3 \ge 0$$
 primal LP
$$\text{dual LP}$$

The variables μ_1, μ_2, μ_3 are called dual variables.

We have one dual variable for each constraint in the primal problem.

Dual LP (cont'd)

Given $c \in \mathbb{R}^n, A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k, G \in \mathbb{R}^{m \times n}, h \in \mathbb{R}^m$, consider

$$\min_{x} f(x) = c^{T}x$$
s.t. $Ax = b$

$$Gx > h$$

For $\lambda \in \mathbb{R}^k$, $\mu \in \mathbb{R}^m$ and $\mu \geq 0$,

$$\lambda^T A x + \mu^T G x \ge \lambda^T b + \mu^T h =: \psi(\lambda, \mu)$$

If $A^T \lambda + G^T \mu = c$, then we can lower bound f^* by $f^* \ge \psi(\lambda, \mu)$.

To maximize the lower bound, solve the following dual LP

$$\begin{aligned} \max_{\pmb{\lambda},\pmb{\mu}} \quad & \psi(\pmb{\lambda},\pmb{\mu}) = \pmb{b}^T \pmb{\lambda} + \pmb{h}^T \pmb{\mu} \\ \text{s.t.} \quad & \pmb{A}^T \pmb{\lambda} + \pmb{G}^T \pmb{\mu} = \pmb{c} \\ & \pmb{\mu} \geq \pmb{0} \end{aligned}$$

Dual LP (cont'd)

It is common to eliminate dual variables corresponding to $x \ge 0$, and call the result the dual LP. Here are some common forms of dual LP,

$$\begin{array}{ll}
\min_{x} & c^{T}x \\
\text{s.t.} & Ax = b \\
& x \ge 0
\end{array}$$

$$\begin{array}{ll}
\min_{x} & c^{T}x \\
\text{s.t.} & Ax > b
\end{array}$$

$$\max_{\mathbf{y}} \quad \boldsymbol{b}^{T} \boldsymbol{y}$$
s.t. $\boldsymbol{A}^{T} \boldsymbol{y} \leq \boldsymbol{c}$

s.t.
$$Ax \ge b$$

$$\max_{\mathbf{y}} \quad \mathbf{b}^{T}\mathbf{y}$$
s.t.
$$\mathbf{A}^{T}\mathbf{y} = \mathbf{c}$$

$$\mathbf{y} \ge \mathbf{0}$$

$$\min_{x} c^{T}x$$
s.t. $Ax \ge b$

$$x \ge 0$$

$$\max_{\mathbf{y}} \quad \boldsymbol{b}^{T} \mathbf{y}$$
s.t. $\boldsymbol{A}^{T} \mathbf{y} \leq \boldsymbol{c}$
 $\mathbf{y} \geq \mathbf{0}$

7

Outline

Dual LP

Interpretation of dual problems

Weak and strong duality

Dual LP via Lagragian

Manufacturing problem

Suppose company A can manufacture n products from m materials.

- Manufacturing one unit of product i needs a_{ij} units of material j
- The unit price of product i is b_i
- The inventory of material j is c_j

where $a_{ij} > 0$, $b_i > 0$, $c_j > 0$.

Let y_i denote the amount of product i manufactured. To maximize its revenue, the company solves the following LP,

$$\max_{\mathbf{y}} \quad \sum_{i=1}^{n} b_{i} y_{i}$$
s.t.
$$\sum_{i=1}^{n} y_{i} a_{ij} \leq c_{j}, \forall j = 1, 2, \dots, m$$

$$y_{i} \geq 0, \quad i = 1, 2, \dots, n$$

Manufacturing problem (cont'd)

Now suppose company B offers to buy the raw materials at the price of x_j per unit of material j.

The equivalent offer for one unit of product i is $\sum_{j=1}^{m} a_{ij}x_{j}$. Company A will accept the offer only if

$$\sum_{j=1}^{m} a_{ij} x_j \ge b_i, \quad i = 1, 2, \dots, n$$

To minimizes its cost, company B solves the dual LP,

$$\min_{\mathbf{x}} \quad \sum_{j=1}^{m} c_j x_j$$
s.t.
$$\sum_{j=1}^{m} a_{ij} x_j \ge b_i, \forall i = 1, 2, \dots, n$$

$$x_j \ge 0, \quad j = 1, 2, \dots, m$$

Optimal transport problem

Recall the optimal transport problem in §1,

$$\min_{(x_{ij})} \quad \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij}
\text{s. t.} \quad \sum_{i=1}^{n} x_{ij} = b_{j} \quad \text{for} \quad j = 1, 2, \dots, m
\sum_{j=1}^{m} x_{ij} \le a_{i} \quad \text{for} \quad i = 1, 2, \dots, n
x_{ij} \ge 0 \quad \text{for} \quad i = 1, 2, \dots, n; j = 1, 2, \dots, m$$

- x_{ij}: quantity shipped from warehouse i to customer j
- c_{ij}: unit shipping cost from warehouse i to customer j
- a_i: inventory at warehouse i
- b_i: demand at customer j

Optimal transport problem (cont'd)

Now instead of actually shipping the products, you decide to fulfill the orders by trading with another seller of the same product, who

- buys your stock at warehouse i at the unit price μ_i
- delivers the order of customer j at the unit price λ_j

The cost of "sending" one unit from i to j is $\lambda_j - \mu_i$. The deal will be competitive if

$$\lambda_j - \mu_i \le c_{ij}$$

To maximize his profit, the other seller solves the dual LP,

$$\max_{(\lambda_j),(\mu_i)} \quad \sum_{j=1}^m b_j \lambda_j - \sum_{i=1}^n a_i \mu_i$$
s. t. $\lambda_j - \mu_i \le c_{ij}$ for $i = 1, 2, \dots, n; j = 1, 2, \dots, m$

$$\mu_i \ge 0$$
 for $i = 1, 2, \dots, n$

Maximum flow problem

Consider a directed graph G=(V,E), each edge $(i,j)\in E$ of which has a capacity $c_{ij}>0$. There are two special nodes: a source $s\in V$ and a sink $t\in V$, $s\neq t$. Assume G is acyclic and $(s,t)\notin E$ for simplicity.

A flow $f = \{f_{ij} : (i,j) \in E\}$ on G is an assignment of weights to edges that satisfies

- capacity constraint: $0 \le f_{ij} \le c_{ij}$, $\forall (i,j) \in E$
- flow conservation:

$$\sum_{(i,k)\in E} f_{ik} = \sum_{(k,j)\in E} f_{kj}, \quad \forall k \in V \setminus \{s,t\}$$

Maximum flow problem (cont'd)

Max-flow problem. Maximize the value |f| of flow f,

$$\begin{aligned} \max_{f} \quad |f| &\triangleq \sum_{(s,j) \in E} f_{sj} \\ \text{s. t.} \quad 0 &\leq f_{ij} \leq c_{ij}, \qquad \forall (i,j) \in E \\ &\qquad \sum_{(i,k) \in E} f_{ik} = \sum_{(k,j) \in E} f_{kj}, \quad \forall k \in V \setminus \{s,t\} \end{aligned}$$

To find the dual, introduce $a_{ij}, b_{ij} \geq 0$ for $(i,j) \in E, x_k$ for $k \in V \setminus \{s,t\}$,

$$\sum_{(i,j)\in E} (-a_{ij}f_{ij} + b_{ij}f_{ij}) + \sum_{k\in V\setminus \{s,t\}} x_k \left(\sum_{(i,k)\in E} f_{ik} - \sum_{(k,j)\in E} f_{kj}\right) \le \sum_{(i,j)\in E} c_{ij}b_{ij}$$

Maximum flow problem (cont'd)

Renaming the dummy variable k to i and j,

$$\sum_{(i,j)\in E} (b_{ij}f_{ij} - a_{ij}f_{ij}) + \sum_{\substack{(i,j)\in E\\j\neq t}} x_jf_{ij} - \sum_{\substack{(i,j)\in E\\i\neq s}} x_if_{ij} \le \sum_{\substack{(i,j)\in E}} c_{ij}b_{ij}$$

Matching the coefficients for f_{ij} in the objective,

$$\begin{array}{ccccccccc} b_{sj}-a_{sj} & +x_j & = & 1 & & \forall (s,j) \in E \\ b_{it}-a_{it} & -x_i & = & 0 & & \forall (i,t) \in E \\ b_{ij}-a_{ij} & +x_j & -x_i & = & 0 & & \forall (i,j) \in E, i \neq s, j \neq t \end{array}$$

and defining $x_s = 1$, $x_t = 0$, we obtain the dual LP,

$$\begin{aligned} & \min_{a,b,x} & & \sum_{(i,j)\in E} c_{ij}b_{ij} \\ & \text{s.t.} & & b_{ij}-a_{ij}+x_j-x_i=0, & & \forall (i,j)\in E \\ & & & a_{ij}\geq 0, b_{ij}\geq 0, & & \forall (i,j)\in E \end{aligned}$$

Maximum flow problem (cont'd)

Partial minimization over all a_{ij} yields the equivalent dual LP,

$$\min_{b,x} \quad \sum_{(i,j)\in E} c_{ij}b_{ij}$$
s. t.
$$b_{ij} + x_j - x_i \ge 0, \quad \forall (i,j) \in E$$

$$b_{ij} \ge 0, \quad \forall (i,j) \in E$$

This is a relaxation of the following integer programming (IP) problem

$$\min_{b,x} \quad \sum_{(i,j)\in E} c_{ij}b_{ij}$$
s. t.
$$b_{ij} + x_j - x_i \ge 0, \quad \forall (i,j) \in E$$

$$b_{ij} \in \{0,1\}, \quad \forall (i,j) \in E$$

$$x_i \in \{0,1\}, \quad \forall i \in V \setminus \{s,t\}$$

which describes the minimum cut (min-cut) problem.

Minimum cut problem

An s-t cut of G is a partition of the vertex set V into $S \subset V$ and $\bar{S} = V \setminus S$ s.t. $s \in S$ and $t \in \bar{S}$.

The capacity of a cut (S, \bar{S}) is

$$c(S,\bar{S}) = \sum_{\substack{(i,j) \in E \\ i \in S, j \in \bar{S}}} c_{ij}$$

The min-cut problem is

$$\min_{(S,\bar{S}) \text{ is an } s\text{-}t \text{ cut}} c(S,\bar{S})$$

In the integer programming formulation,

- $x_i = 1$ for $i \in S$, and $x_i = 0$ for $i \in \overline{S}$
- $b_{ij} = 1$ if $i \in S, j \in \overline{S}$, and $b_{ij} = 0$ otherwise (use $b_{ij} \ge x_i x_j$)

Outline

Dual LP

Interpretation of dual problems

Weak and strong duality

Dual LP via Lagragian

Weak and strong duality

Consider an LP and its dual. WLOG, consider the inequality form,

$$\begin{array}{c|c}
\min_{x} & c^{T}x \\
\text{s.t.} & Ax \geq b
\end{array} \qquad \begin{array}{c}
\max_{y} & b^{T}y \\
\text{s.t.} & A^{T}y = c \\
y \geq 0
\end{array} \qquad (D)$$

Weak duality. If x is primal feasible and y is dual feasible, then

$$c^T x \geq b^T y$$

Proof.

$$c^T x = (A^T y)^T x = y^T A x \ge y^T b$$

Strong duality. If either (P) or (D) has a finite optimal value, so does the other, the optimal solutions x^* and y^* exist, and $c^Tx^* = b^Ty^*$.

Proof. Will follow from Slater's Theorem. Show weaker form next.

Strong duality

Lemma. If all (equality and inequality) constraint functions are affine, then the KKT conditions hold at a local minimum.

Note. We do not assume the local minimum is a regular point.

Theorem. If (P) has an optimal solution, then (D) also has an optimal solution and strong duality holds.

Proof. Let x^* be the optimal solution of (P). By the KKT conditions, there exist Lagrange multipliers μ^* s.t.

- 1. $c A^T \mu^* = 0$ (stationarity)
- 2. $\mu^* > 0$ (nonnegativity)
- 3. $(\boldsymbol{\mu}^*)^T (A\boldsymbol{x}^* \boldsymbol{b}) = 0$ (complementary slackness)

By 1 and 2, μ^* is feasible for (D). By 1 and 3,

$$\boldsymbol{c}^T \boldsymbol{x}^* = (\boldsymbol{A} \boldsymbol{\mu}^*)^T \boldsymbol{x}^* = \boldsymbol{b}^T \boldsymbol{\mu}^*$$

By weak duality, μ^* is optimal for (D) and hence strong duality holds.

Example

Recall the following pair of primal and dual LP,

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = x_1 + 2x_2
\text{s.t.} 2x_1 + x_2 \ge 2
\mathbf{x} \ge \mathbf{0}$$

$$\max_{\boldsymbol{\mu} \in \mathbb{R}^3} \psi(\boldsymbol{\mu}) = 2\mu_1
\text{s.t.} 2\mu_1 + \mu_2 = 1
\mu_1 + \mu_3 = 2
\mu > \mathbf{0}$$

- The primal LP can be solved graphically, $x^* = (1,0)^T$, $f^* = 1$.
- The dual is equivalent to

$$\begin{array}{ll} \max \limits_{\mu_1} & 2\mu_1 \\ \text{s.t.} & 2\mu_1 \leq 1 \\ & \mu_1 \leq 2 \\ & \mu_1 \geq 0 \end{array}$$

So
$$\mu^* = (\frac{1}{2}, 0, \frac{3}{2})^T$$
, $\psi^* = 1 = f^*$.

Max-flow min-cut theorem

Theorem. The max-flow value is equal to the min-cut capacity.

Proof. The max-flow problem is feasible, since the flow with $f_{ij}=0$ for all $(i,j)\in E$ is feasible. The primal optimal value is finite,

$$0 \le |f| \le \sum_{(i,j) \in E} c_{ij} < +\infty$$

By strong duality, the max-flow value is equal to the optimal value of the LP relaxation of the min-cut problem.

The theorem then follows from the following

Lemma. The min-cut capacity is equal to the optimal value of the LP relaxation.

Max-flow min-cut theorem (cont'd)

Proof of lemma. We refer to the IP formulation as (IP) and its LP relaxation as (LP). Let c_{IP} and c_{LP} be their optimal values. We show $c_{LP} = c_{IP}$.

 $c_{LP} \leq c_{IP}$. A feasible solution of IP is also feasible for LP, so $c_{LP} \leq c_{IP}$.

 $c_{IP} \le c_{LP}$. We show there exists an s-t cut with capacity $\le c_{LP}$ using the probabilistic method.

- Let $(x_i^*), (b_{ij}^*)$ be an optimal solution of (LP), so $c_{LP} = \sum_{(i,j)} c_{ij} b_{ij}^*$.
- Let $U \sim \mathsf{uniform}(0,1)$ be a uniform random variable on (0,1)
- Let $S_U = \{i : U < x_i^*\}$. Then (S_U, \bar{S}_U) is a (random) s-t cut, and

$$\mathbb{E}_{U}[c(S_{U}, \bar{S}_{U})] = \mathbb{E}_{U}[\sum c_{ij} \mathbb{1}\{i \in S_{U}, j \notin S_{U}\}] = \sum c_{ij} \Pr[i \in S_{U}, j \notin S_{U}]$$

$$= \sum c_{ij} \Pr[x_{j}^{*} \leq U < x_{i}^{*}] \leq \sum c_{ij}(x_{i}^{*} - x_{j}^{*})^{+} = \sum c_{ij}b_{ij}^{*}$$

• For some $u \in (0,1)$, the cut (S_u, \bar{S}_u) has capacity $c(S_u, \bar{S}_u) \leq c_{LP}$

Wasserstein distance

In the optimal transport problem, let x_i be the location of warehouse i, and y_j be the location of customer j. Suppose

$$\sum_{i=1}^{n} a_i = 1 = \sum_{j=1}^{m} b_j$$

Note *a*, *b* can be interpreted as two discrete probability distributions,

$$\Pr[\mathbf{X} = \mathbf{x}_i] = a_i, \quad \Pr[\mathbf{Y} = \mathbf{y}_j] = b_j$$

Now suppose the shipping cost c_{ij} is determined by the distance between x_i and y_j ,

$$c_{ij} = d(\boldsymbol{x}_i, \boldsymbol{y}_j)$$

e.g.
$$d(x,y) = ||x - y||_2$$
.

The (first) Wasserstein distance $W_1(a,b)$ between the two distributions a and b is the optimal value of the optimal transport problem.

Wasserstein distance (cont'd)

Note $x_{ij} = a_i b_j$ is feasible (what's the probabilistic interpretation?), and the optimal cost is bounded and hence finite. By strong duality, $W_1(a,b)$ is equal to the dual optimal value.

Note the dual optimal solution satisfies

$$\lambda_j - \mu_i = c_{ij}$$

There exists h s.t. $\lambda_j = h(\mathbf{y}_j)$ and $\mu_i = h(\mathbf{x}_i)$.

- If $x_i = y_j$, then $\lambda_j \mu_i = c_{ij} = d(x_i, y_j) = 0$, and $\lambda_j = \mu_i$
- We can specify the values of h at distinct points

The dual is equivalent to

$$\max_{h} \sum_{j=1}^{m} b_{j}h(\mathbf{y}_{j}) - \sum_{i=1}^{n} a_{i}h(\mathbf{x}_{i})$$
s. t.
$$h(\mathbf{y}_{j}) - h(\mathbf{x}_{i}) \leq d(\mathbf{x}_{i}, \mathbf{y}_{j}), \quad \forall i, j$$

$$h(\mathbf{x}_{i}) \geq 0, \quad \forall i$$

Wasserstein distance (cont'd)

We can

- remove the constraints $h(x_i) \ge 0$, since adding a constant to h doesn't change the optimal value
- add the constraints $h(y_j) h(x_i) \ge -d(x_i, y_j)$, since the optimal solution satisfies $h(y_i) h(x_i) = d(x_i, y_j)$

Thus the dual is equivalent to

$$\max_{h} \sum_{j=1}^{m} b_{j}h(\mathbf{y}_{j}) - \sum_{i=1}^{n} a_{i}h(\mathbf{x}_{i}) = \mathbb{E}_{\mathbf{Y} \sim b} h(\mathbf{Y}) - \mathbb{E}_{\mathbf{X} \sim a} h(\mathbf{X})$$
s. t. $|h(\mathbf{y}_{j}) - h(\mathbf{x}_{i})| \le d(\mathbf{x}_{i}, \mathbf{y}_{j}), \quad \forall i, j$

The condition $|h(y) - h(x)| \le d(x, y)$ simply means h is 1-Lipschitz, so

$$W_1(a,b) = \max_{h \text{ is 1-l inschitz}} \mathbb{E}_{Y \sim b} \ h(Y) - \mathbb{E}_{X \sim a} \ h(X)$$

Note. The general case is given by the Kantorovich-Rubinstein duality.

Outline

Dual LP

Interpretation of dual problems

Weak and strong duality

Dual LP via Lagragian

Dual LP via Lagrangian

The Lagrangian for the general LP on slide 6 is

$$\mathcal{L}(x, \lambda, \mu) = c^{T}x - \lambda^{T}(Ax - b) - \mu^{T}(Gx - h)$$

If $\mu \geq 0$ and $x \in X$, i.e. Ax = b and $Gx \geq h$, then

$$f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \ge \mathbf{c}^T \mathbf{x} - \underbrace{\boldsymbol{\lambda}^T (\mathbf{A} \mathbf{x} - \mathbf{b})}_{=0} - \underbrace{\boldsymbol{\mu}^T (\mathbf{G} \mathbf{x} - \mathbf{h})}_{\ge 0} = \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$$

Taking the infimum over $x \in X$ first and then relaxing the constraint,

$$f^* = \inf_{\boldsymbol{x} \in X} f(\boldsymbol{x}) \ge \inf_{\boldsymbol{x} \in X} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \ge \inf_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) =: \phi(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

To maximize the lower bound, solve the following dual problem

$$\label{eq:problem} \begin{aligned} \max_{\pmb{\lambda},\pmb{\mu}} \quad & \phi(\pmb{\lambda},\pmb{\mu}) \\ \text{s.t.} \quad & \pmb{\mu} \geq \pmb{0} \end{aligned}$$

Dual LP via Lagrangian (cont'd)

Note

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = (\mathbf{c} - \mathbf{A}^T \boldsymbol{\lambda} - \mathbf{G}^T \boldsymbol{\mu})^T \mathbf{x} + \mathbf{b}^T \boldsymbol{\lambda} + \mathbf{h}^T \boldsymbol{\mu}.$$

An affine function is bounded below iff the coefficient for x is zero¹.

The dual problem

$$\max_{\boldsymbol{\lambda},\boldsymbol{\mu}} \quad \phi(\boldsymbol{\lambda},\boldsymbol{\mu}) = \begin{cases} \boldsymbol{b}^T \boldsymbol{\lambda} + \boldsymbol{h}^T \boldsymbol{\mu}, & \text{if } \boldsymbol{c} - \boldsymbol{A}^T \boldsymbol{\lambda} - \boldsymbol{G}^T \boldsymbol{\mu} = \boldsymbol{0} \\ -\infty & \text{otherwise} \end{cases}$$
s.t. $\boldsymbol{\mu} \geq \boldsymbol{0}$

which is equivalent to the dual LP

$$egin{array}{ll} \max _{oldsymbol{\lambda}, oldsymbol{\mu}} & \psi(oldsymbol{\lambda}, oldsymbol{\mu}) = oldsymbol{b}^T oldsymbol{\lambda} + oldsymbol{h}^T oldsymbol{\mu} \ & ext{s.t.} & A^T oldsymbol{\lambda} + G^T oldsymbol{\mu} = oldsymbol{c} \ & oldsymbol{\mu} > oldsymbol{0} \end{array}$$

29

¹Consider $f(x) = a^T x + c$. If a = 0, then $\inf_x f(x) = c$. If $a \neq 0$, letting x = -ta and $t \to +\infty$ yields $\inf_x f(x) < -t ||a||^2 + c \to -\infty$.