Government Agency Creation: A Machine Learning Case Study

Guy Freedman

October 21, 2020

The Problem

How to identify observations that relate to the creation of government agencies in the old congressional hearings dataset?

- 1868 1946 (40th–79th Congress).
- N = 30.551

Proposed Solution

Supervised machine learning!

Proposed Solution

Supervised machine learning!

- Use existing data that have already been manually coded for agency-creation.
- The algorithm identifies patterns that maximize accuracy of prediction and can be applied to unseen data.
- Congressional hearings 1946 2017 (79th–115th Congress).
- N = 100,254 (91,872 are useable).

Supervised Machine Learning

Spoiler Alert: Results

- Narrowed down results:
- High probability agency-creation hearings: N = 1,225.
 - Next: Manually review.
- Low probability agency-creation hearings: N = 3,130.
 - Next: Manually review a random sample (N = 1,000).
- Not likely agency-creation hearings: N = 26,191.
 - Next: Manually review a random sample (N = 1,000).
- Bottom line: Manually review 3,225 observations instead of 30,551 (10.6%).

§ Important Differences between Inference and Prediction §

- Goal: Predict with high accuracy; less important to confirm theoretical argument through statistical inference.
- Independent variables and/or effects may be nonsensical or difficult to interepret . . .
 - because they're based on some mathematical transformation.
 - because they have lots of categories.
 - because they involve high-order interactions.

But we're not interested in interpreting their effects!

§ Important Differences between Inference and Prediction §

- Goal: Predict with high accuracy; less important to confirm theoretical argument through statistical inference.
- To some extent, willing to violate some assumptions (like multicollinearity) . . .
 - if it improves prediction.
 - because biases in variance and lack of interpretation are less of a concern.

But some assumptions are very important (like the consequences of measurement error) - if violating them hurt our prediction and make it hard to generalize to unseen data.

§ Important Differences between Inference and Prediction §

- Goal: Predict with high accuracy; less important to confirm theoretical argument through statistical inference.
- Much like in inference, overfitting the model to our training set is the biggest concern.
 - In the entire process, we're constantly trying to balance optimizing our prediction based on the training set, with avoiding overfitting the model to our training set.

Things the Human User Needs to Decide

(or: Things that you have control over and affect the performance of the model)

- 1 Figure out what your population data are.
- Test set size, structure, ratio between categories of DV, observations to include/exclude, population to sample from.
- Training set size, structure, ratio between categories of DV, observations to include/exclude, population to sample from.
- ◆ The model the algorithm, the features, resampling methods, tuning parameters.
- **⑤** Assessing performance − choosing a final training set, a final model, a threshold for prediction and apply to the test set.
- 6 Apply to unseen data.

Population Data

Population Data

Modern Data - Usable

8382 missing / insufficient text.

Test Set

Test Set

Random sample of each category (~0.3 of all agency observations*; Ratio: 5:1)

Now leave your test set alone!

Training set

Training set

- You can play all you want with your training set, but DO NOT in any way let your test set inform the algorithm or your training set.
- Training set = a sample of your population data after excluding your test set.
- Try different sample sizes, different ratios between categories, include/exclude specific observations.

Training Set

All agency observations (excluding test set)
Random sample of non–agency*; Ratio: 5:1)

*Performed best on training set; also tried 1:1, 2:1, 9:1.

The Model

Choosing an approriate algorithm

Trees

https://www.acadian-asset.com/viewpoints/machine-learning-in-quant-investing-revolution-or-evolution and the second contract of the sec

Trees

https://www.acadian-asset.com/viewpoints/machine-learning-in-quant-investing-revolution-or-evolution and the state of th

Choosing an approriate algorithm

- DV: Categorical (dichotomous) = classification problem.
- Popular classification algorithms:
 - Logistic regression (terrible with imbalanced data)
 - Decision trees (is one enough?)
 - Random forest (lots of trees! Bagging method, underperforms with imbalanced data, can handle multiple categories in DV)
 - GBM Gradiant boosting (lots of trees! Boosting method = each tree tries to correct the errors of the previous tree, better with imbalanced data)
 - catboost an improvement on GBM, can have categorical predictors (and not just binary/numeric)
- Sometimes worth trying different ones on your training set.

Model Features

- Independent variables are often termed features.
- Features often make theoretical sense, but may be difficult to interpret (complicated calculations, high order interactions, etc.)
- Features do not have to be causal; they have to be strong predictors, maximizing explained variance.
- In our example:
 - Text features words/terms from the hearings' description.
 - Metadata things we know about the hearing that is not expressed in the text.

§ Text Features – Pre-processing §

- Remove stop words common words like a, the, etc.
- Removing numbers, punctuation, whitespace keep only letters.
- Stemming is often (but not always!) recommended (econom instead of economy/economic) — groups together different variants of the same word.
- Removing sparse terms crucial to prevent overfitting to the training data. Can try different sparsity levels to find optimal level.
 - In our data, keeping only .999 most frequent terms reduced the number of terms from 14,447 to 1,070.
 - Each term is a feature, i.e. a predictor in a statistical model!

§ Example Code §

```
# import data
hearings <- read_csv("https://comparativeagendas.s3.amazonaws.com/datas
# remove missing cases
hearings <- filter(hearings, filter_Agency %in% c(0,1))
# create unique id
hearings$myid <- 1:nrow(hearings)</pre>
# pre-process data
fulldtm <- as.data.frame(hearings) %>%
  filter(grepl("[a-z]",description, ignore.case = T)) %>%
  unnest_tokens(output = word, input = description) %>%
  filter(!str_detect(word, "^[0-9]*$")) %>% # remove numbers
  anti_join(stop_words) %>% # remove stop words
  mutate(word = SnowballC::wordStem(word)) # stem the words
```

§ Example Code §

```
# create documen-term-matrix
fulldtm <- fulldtm %>%
    count(myid, word) %>% # count of each word in each observation
    cast_dtm(document = myid, term = word, value = n) # no weights
```

§ Example Code §

```
mygbm50 <- train(x = as.matrix(mytrain), # training set
                  y = factor(trainingset2$filter_Agency, # DV
                             levels = c(0.1).
                             labels = c("NotAgency", "Agency")),
                  method = "gbm", # use "ranger" for RF
                 # resampling:
                 trControl = trainControl(method = "repeatedcv",
                                            number = 10.
                                            repeats = 3,
                                            classProbs = T.
                                            savePredictions = T).
                 # tuning parameters:
                 tuneGrid = data.frame(n.trees = 50.
                                          n.minobsinnode = 2,
                                          interaction.depth = 10,
                                          shrinkage = .1))
```

§ Tuning Parameters §

- Usually best to play with tuning parameters after finalizing your training set and choosing your algorithm.
- Tuning parameters improve your predictions slightly a good model will become a better model; a bad model will still be pretty bad.
- Different models have different parameters; common ones include number of trees, minimum number of observations and interaction depth.

Assessing Performance

Predicted Probabilities: Training Set

Pr(Agency)==.5?

Pr(Agency)==.75?

Pr(Agency)==.25 ?

Pr(Agency)== Qauntile .6 (60%) ?

§ Performance Metrics §

- Accuracy
- Precision
- Specificity, TRUE-NEGATIVE-RATE
- Sensitivity, TRUE-POSITIVE-RATE, Recall

Confusion Matrix (quantile >= .6)

ROC Curve and AUC

Adding Non-Textual Features

- House
- Joint
- subtopic_count_scaled
- prop_subtopic
- Party control:
 - SamePartyAll
 - SamePartyHouseSenate
 - SamePartyHousePresident
 - SamePartySenatePresident
- DW:
 - avg_dw
 - avg_dw_chamber
 - avg_dw_dem
 - avg_dw_rep
 - avg_dw_dem_chamber
 - avg_dw_rep_chamber

Features: Illustration

•	econom [‡]	employ [‡]	feder [‡]	inflat ‡	insur ‡	
1	0	0	0	0	0	
2	1	0	0	0	0	
3	1	0	0	0	0	
4	1	0	0	0	0	
5	1	0	0	0	0	
6	1	0	0	0	0	
7	0	0	1	1	0	
8	0	0	0	0	0	
9	2	0	0	0	0	
10	2	0	0	0	0	
11	0	0	0	0	0	
12	1	0	0	1	0	
13	0	0	0	0	0	
14	1	0	0	0	0	
15	0	0	0	0	0	
16	1	0	0	0	0	
17	1	1	0	0	0	
		_		_		

Features: Illustration

^	econom [‡]	employ [‡]	feder [‡]	inflat ‡	insur ‡	House [‡]	prop_subtopic [‡]	SamePartyAll [‡]	avg_dw_rep [‡]	avg_dw_cham
1	0	0	0	0	0	0	0.0070103093	0	0.2539383	-0.056156863
2	1	0	0	0	0	1	0.0101098901	0	0.2502565	-0.075153153
3	1	0	0	0	0	1	0.0123924269	0	0.2616513	-0.065850679
4	1	0	0	0	0	1	0.0123924269	0	0.2616513	-0.065850679
5	1	0	0	0	0	0	0.0123924269	0	0.2616513	-0.065625000
6	1	0	0	0	0	0	0.0123924269	0	0.2616513	-0.065625000
7	0	0	1	1	0	0	0.0123924269	0	0.2616513	-0.064647059
8	0	0	0	0	0	1	0.0144014401	0	0.2661351	-0.121886621
9	2	0	0	0	0	0	0.0144014401	0	0.2661351	-0.115621771
10	2	0	0	0	0	0	0.0129440925	1	0.2674595	-0.112181651
11	0	0	0	0	0	0	0.0084724005	1	0.2910297	-0.081489871
12	1	0	0	1	0	0	0.0084724005	1	0.2910297	-0.081489871
13	0	0	0	0	0	1	0.0116556291	0	0.3072680	-0.032970721
14	1	0	0	0	0	0	0.0116556291	0	0.3072680	0.030455446
15	0	0	0	0	0	1	0.0116556291	0	0.3072680	-0.032970721
16	1	0	0	0	0	0	0.0116556291	0	0.3072680	-0.021216514
17	1	1	0	0	0	1	0.0068662455	0	0.3210000	-0.063120729
1.8	1	n	n	0	n	1	0.0068662455	0	0.3210000	-0.063120720

Adding Non-Textual Features

Variable Importance (Top 20)

Word (GBM 50)	Variable (GBM 50 $+$)
establish	establish
examin	avg_dw
creation	avg_dw_dem
creat	creation
reorgan	avg_dw_rep
commiss	commiss
review	creat
h.r	reorgan
mainten	prop_subtopic
coordin	avg_dw_rep_chamber
indian	improv
park	SamePartyAll
ethic	indian
program	mainten
hear	research
center	subtopic_count_scaled
preserv	advisori
improv	ethic
nation	park
nomin	addit

Confusion Matrix (quantile >= .6)

Finally, back to our test set!

§ Applying our model to our test set §

 $^{^{}st}$ We can apply several models (from several training sets) to the same test set to compare.

Applying our model to our test set

Pr(Agency)== Qauntile .6 (60%)

Test Set: Confusion Matrix (quantile \geq .6)

And now, for our unseen data

§ Pre-processing §

- Calculate non-textual features for this dataset.
- Create document-term-matrix for this dataset.
- Keep only terms that are included in the list of predictors in the training set – the predictors have to be identical!

§ Applying our model to our unseen data §

Distribution of Probabilities

Distribution of Probabilities: Quantiles

- 0%-4%: Probabilities 0.056-0.061
- 5%-85%: Probabilities 0.068
- 86%-95%: Probabilities 0.083-0.137
- 96%-100%: Probabilities 0.152-0.901

Distribution of Probabilities: Quantiles

Distribution of Predictions

Next Steps

- Manually review all "Agency" predictions (N = 1225)
- Manually review a sample of "Maybe Agency" predictions (N=1000)
- Manually review a sample of "Not Agency" predictions (N=1000)
- Bottom line: Manually review 3,225 observations instead of 30,551.

github

https://github.com/freedmanguy/agency

github

Questions