

Captura del Sistema Físico

Procesamiento de Imágenes

Preprocesamiento

Se convirtió el video al espacio de color HSV.

Detección del Objeto

Se juntaron dos máscaras HSV para crear una combinada y detectar correctamente el péndulo.

Operaciones Morfológicas

Se aplicaron operaciones de dilatación y erosión.

Detección del Péndulo y Cálculo del Centroide

Se identificó el contorno más grande y se calculó su centroide mediante momentos.

Análisis del Movimiento

Cálculo de Ángulo

Cálculo de Velocidad Angular

Cálculo de Aceleración Angular

Análisis de Resultados

- Segmentación del Péndulo
 Separación precisa usando
 HSV y morfología.
- Trayectoria del Centroide
 Movimiento oscilatorio en el
 eje horizontal.
- Desplazamiento Angular Comportamiento periódico del ángulo θ(t).

- Velocidad Angular
 Patrón sinusoidal con amortiguamiento.
- Aceleración Angular: Teoría vs
 Experimento
 Alta concordancia, con pequeñas desviaciones.
- Conclusiones del Análisis
 Validación del modelo MAS con visión artificial.

Conclusiones

- El seguimiento del péndulo permitió analizar su comportamiento dinámico.
- Los resultados experimentales confirmaron el modelo teórico del MAS.
- El procesamiento de imágenes demostró ser una herramienta precisa y útil para el estudio de sistemas físicos reales.

