$$i_{t} = g_{m2}v_{2} + (v_{t} + v_{2})/r_{02}$$

$$= v_{t}/r_{02} + (g_{m2} + 1/r_{02})v_{2} \approx v_{t}/r_{02} + g_{m2}v_{2}$$

$$v_{2} = -i_{t}R_{eff}$$

$$\Rightarrow i_{t} = v_{t}/r_{02} - g_{m2}R_{eff}i_{t}$$

$$\Rightarrow R_{0} = v_{t}/i_{t} = r_{02}(1 + g_{m2}R_{eff})$$

- This is a *Golden Equation*, which would be used frequently
 - Carefully note the topology that produces this result
- \succ Exercise: Reverse v_2 and show that the expression for R_0 remains invariant

- ightharpoonup If $r_{\pi 2} >> R_2$, $R_0 = r_{02}(1 + g_{m2}R_2)$
- > If $R_2 >> r_{\pi 2}$, $R_0 \approx \beta_2 r_{02}$ (since $\beta = g_m r_{\pi} >> 1$)
- ► Under the second condition, the circuit produces enormously large value of R_0 ~ 10s of $M\Omega$ or greater
 - Almost approaches a constant current source!
- > It's good to check the relative values of R_2 and $r_{\pi 2}$ before using either of the equations
- This circuit does not have any MOS counterpart for obvious reasons!

• Cascode Current Source:

- > The best and most widely used
- > Almost universal choice for biasing IC stages
- \triangleright Produces extremely high R_0
- \triangleright Original cascode needs higher values of $V_{0,min}$
- ightharpoonup Modified cascode gets rid of this problem and pushes $V_{0,min}$ down
- The topology is basically two simple CMs stacked one upon the other
- > Both npn and NMOS implementations exist

• npn Cascode:

- > All Qs are perfectly matched
- \triangleright Neglecting I_B and V_A :

$$I_0 = I_{REF} = (V_{CC} - 2V_{BE})/R$$

> Show that if I_B can't be neglected, but all Qs have same β :

$$I_0 = \frac{I_{REF}}{1 + \left(4\beta + 2\right)/\beta^2}$$

 \triangleright Thus, β immunity is not that pronounced

 \triangleright All Qs operate with the same V_{BE}

$$\Rightarrow$$
 $V_{B1} = V_{B2} = V_{BE}$, $V_{B3} = V_{B4} = 2V_{BE}$

$$\Rightarrow$$
 $V_{E4} = V_{C2} = V_{BE}$

$$\Rightarrow V_{BE2} = V_{CE2}$$

 $\Rightarrow Q_2$ can never saturate, but Q_4 can!

$$\Rightarrow$$
 V_{0,min} = V_{BE} + V_{CE4}(SS) = 0.7 + 0.2 = 0.9 V

- The output voltage swing is sacrificed quite a bit!
- \triangleright However, the main advantage of this circuit is enormously large R_0

\succ Calculation of R_0 :

Exact Equivalent

• Q_1 and Q_3 diode-connected \Rightarrow r_{E1} and r_{E3}

Note that to a *first-order estimate*, bases of Q_1 - Q_2 and Q_3 - Q_4 can be considered to be at a *fixed DC* potential, and thus, ac ground

$$\Rightarrow$$
 $v_2 = 0 \Rightarrow g_{m2}v_2 = 0$

 \Rightarrow Leads to the *simplified*

equivalent (looks
familiar?)

By inspection:

$$R_0 \approx r_{o4}(1 + g_{m4}r_{\pi 4})$$

$$\approx \beta_4 r_{04}$$
(assuming $r_{o2} >> r_{\pi 4}$)

• Actual analysis gives:

$$R_0 = \beta_4 r_{04}/2$$
 (*large error*!)

Simplified Equivalent