

Test report No. : 11920656S-A-R2 Page : 1 of 32 Issued date FCC ID

: April 27, 2018 : 2ADKK-DTG113

RADIO TEST REPORT

Test Report No.: 11920656S-A-R2

Applicant Ueda Japan Radio Co., Ltd.

Type of Equipment Wireless Display Adapter

Model No. **DTG-113**

FCC ID 2ADKK-DTG113

Test regulation FCC Part 15 Subpart F: 2018

Test Result Complied

This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the above regulation.
- The test results in this report are traceable to the national or international standards.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- This report is a revised version of 11920656S-A-R1. 11920656S-A-R1 is replaced with this report.

Date of test: January 23 to February 2, 2018 Representative test engineer: Kenichi Adachi Engineer Consumer Technology Division Approved by:

Toyokazu Imamura Leader

Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920656S-A-R2

 Page
 : 2 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG113

REVISION HISTORY

Original Test Report No.: 11920656S-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11920656S-A	March 15, 2018	-	-
1	11920656S-A-R1	April 25, 2018	p.4, 6, 9, 15, 16, 17, 25	Correction of mistakes and addition of missing information, added data.
2	11920656S-A-R2	April 27, 2018	p.9, p.25	Corrected remarks comments, Corrected error.
			p.20	

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. Page Issued date FCC ID : 11920656S-A-R2 : 3 of 32 : April 27, 2018 : 2ADKK-DTG113

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Conducted Emission	
SECTION 6: Radiated Spurious Emission	
SECTION 7: UWB bandwidth and 99 % occupied bandwi	
SECTION 8: Antenna terminal conducted tests	
APPENDIX 1: Test data	
Conducted Emission	
Data of Radiation Test (Regulation: FCC 15.517 (c))	
Data of Radiation Test (Regulation: FCC 15.517 (d))	
Data of Radiation Test (Regulation: FCC 15.517 (e))	
Data of Antenna terminal conducted Test (Regulation: FC	
Bandwidth (Regulation: FCC 15.503(d), FCC 15.517 (b))	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	
Conducted Emission	
Radiated Spurious Emission	
Pre-check of Worst Case Position	32

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920656S-A-R2

 Page
 : 4 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG113

SECTION 1: Customer information

Company Name : Ueda Japan Radio Co., Ltd.

Address : 2-10-19, Fumiiri, Ueda City, Nagano Prefecture 386-8608, Japan

Telephone Number : +81-268-26-2146 Facsimile Number : +81-268-26-2072 Contact Person : Mitsugu Suzuki

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Wireless Display Adapter

Model No. : DTG-113

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 5 V typical (DC 4.85 V to 5.25 V) (from AC adapter)

AC adapter input: AC 100 V to 240 V, 50 Hz/60 Hz

Receipt Date of Sample : December 5, 2017

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: DTG-113 (referred to as the EUT in this report) is a Wireless Display Adapter.

General Specification

Clock frequency(ies) in the system : 44 MHz (RF part), 20 MHz (baseband), 24 MHz (USB)

Radio Specification

Equipment type : Transceiver

Frequency of operation : 7392 MHz - 8976 MHz

Type of modulation : OFDM
Antenna type : Chip
Antenna connector type : None
Antenna gain : +2.6 dBi max

Operating temperature +5 deg.C to +35 deg.C

Subclass of UWB Indoor communications device

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920656S-A-R2
Page : 5 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart F

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

* The revisions made after testing date do not affect the test specification applied to the EUT.

Title : FCC 47CFR Part15 Radio Frequency Device

Section 15.207 Conducted limits Subpart F Ultra-Wideband Operation

Section 15.517 Technical requirements for indoor UWB systems.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} Also the EUT complies with FCC Part 15 Subpart B.

Test report No. : 11920656S-A-R2
Page : 6 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

3.2 Procedures and results

< Requirements for indoor UWB systems >

Item	Test Procedure	Spec	cification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 8.8		Section 15.207 Section 15.505(a) RSS-220 5.2.1(b)	4.7 dB 0.58522 MHz N, QP	Complied	-
UWB Bandwidth	FCC: Section 15.503(a) ANSI C63.10:2013 6 Standard test methods, 10 Procedures for measuring ultra-wideband devices IC: RSS-220 Annex 2	FCC:	Section 15.503(d) Section 15.517(b)	-	Complied	Radiated
Radiated emission	FCC: Section 15.521(d) ANSI C63.10:2013 6 Standard test methods, 10 Procedures for measuring ultra-wideband devices IC: RSS-Gen 6.5 RSS-220 Annex 4	FCC:	RSS-220 5.1 Section 15.209 Section 15.517 (c), (d) RSS-220 5.2.1(c),(d),(e)	3.0 dB, 8508.161 MHz (mean power) AV, Horizontal, 455.993 MHz (other emission) AV, Vertical	Complied	Radiated (above 30 MHz) / Conducted (below 30 MHz) *1)
Peak level of the Emission	FCC: Section 15.521(e)(g) ANSI C63.10:2013 6 Standard test methods, 10 Procedures for measuring ultra-wideband devices IC: RSS-220 Annex 4	FCC:	Section 15.517 (e) RSS-220 5.2.1(g)	6.6 dB 7694.640 MHz PK, Horizontal	Complied	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC Part 15.31 (e)

This EUT provides stable voltage (DC 1.2 V, DC 2.4 V) constantly to RF part (except base band part) regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} In the frequency range of less than 30 MHz, only measurement of antenna terminal conduction measurement was carried out and the radiated emission measurement was omitted, since it nothing was detected at the antenna terminal.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

: 11920656S-A-R2 Test report No. Page : 7 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG113

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Item	Frequency range		1	Uncertainty (+/-)		
		No. 1 SAC / SR	No. 2 SAC / SR	No. 3 SAC / SR	No. 4 SAC / SR	No. 5,6,8 SR
Conducted emission (AC Mains) LISN	150 kHz-30 MHz	2.5 dB	2.5 dB	2.6 dB	2.6 dB	2.6 dB
Radiated emission	9 kHz-30 MHz	3.2 dB	3.2 dB	3.3 dB	-	-
(Measurement distance: 3 m)	30 MHz-200 MHz	4.3 dB	4.3 dB	4.3 dB	-	-
Γ	200 MHz-1 GHz	5.9 dB	5.9 dB	5.9 dB	-	-
	1 GHz-6 GHz	4.7 dB	4.7 dB	4.7 dB	-	-
	6 GHz-18 GHz	5.3 dB	5.3 dB	5.3 dB	-	-
Γ	18 GHz-40 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
Radiated emission	1 GHz-18 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
(Measurement distance: 1 m)	18 GHz-40 GHz	5.9 dB	5.9 dB	5.9 dB	-	-
Radiated emission	30 MHz-200 MHz	4.8 dB	4.8 dB	4.8 dB	-	-
(Substitution measurement;3m)	200 MHz-1 GHz	3.6 dB	3.6 dB	3.6 dB	-	-
(EUT height 1.5m)	1 GHz-13 GHz	4.4 dB	4.4 dB	4.4 dB	-	-
Radiated emission	1 GHz-13 GHz	5.0 dB	5.0 dB	5.0 dB	-	-
(Substitution measurement;1m)	13 GHz-18 GHz	5.7 dB	5.7 dB	5.7 dB	-	-
(EUT height 1.5m)	18 GHz-26.5 GHz	4.3 dB	4.3 dB	4.3 dB	-	-
Γ	26.5 GHz-40 GHz	4.5 dB	4.5 dB	4.5 dB	-	-
Radiated emission	1 GHz-13 GHz	5.0 dB	5.0 dB	5.0 dB	-	-
(Substitution measurement; 0.5m)	13 GHz-18 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
(EUT height 1.5m)	18 GHz-26.5 GHz	4.2 dB	4.2 dB	4.2 dB	-	-
Γ	26.5 GHz-40 GHz	4.4 dB	4.4 dB	4.4 dB	-	-
Radiated emission	1 GHz-13 GHz	5.1 dB	5.1 dB	5.1 dB	-	-
(Substitution measurement; 0.3m)	13 GHz-18 GHz	5.6 dB	5.6 dB	5.6 dB	-	-
(EUT height 1.5m)	18 GHz-26.5 GHz	4.2 dB	4.2 dB	4.2 dB	-	-
	26.5 GHz-40 GHz	4.4 dB	4.4 dB	4.4 dB	-	-
Radiated emission	1 GHz-13 GHz	5.8 dB	5.8 dB	5.8 dB	-	-
(Substitution measurement; 0.1 m)	13 GHz-18 GHz	5.9 dB	5.9 dB	5.9 dB	-	-
(EUT height 1.5m)	18 GHz-26.5 GHz	4.6 dB	4.6 dB	4.6 dB	-	-
	26.5 GHz-40 GHz	4.8 dB	4.8 dB	4.8 dB	-	-

SAC=Semi-Anechoic Chamber

SR= Shielded Room is applied besides radiated emission

Antenna terminal test	Uncertainty (+/-)
Power Measurement above 1 GHz (Average Detector)_SPM-06	0.48 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-06	0.66 dB
Power Measurement above 1 GHz (Average Detector)_SPM-07	0.47 dB
Power Measurement above 1 GHz (Peak Detector)_SPM-07	0.64 dB
Spurious emission (Conducted) below 1GHz	1.8 dB
Spurious emission (Conducted) 1 GHz-3 GHz	1.7 dB
Spurious emission (Conducted) 3 GHz-18 GHz	2.5 dB
Spurious emission (Conducted) 18 GHz-26.5 GHz	2.5 dB
Spurious emission (Conducted) 26.5 GHz-40 GHz	2.7 dB
Bandwidth Measurement	1.01 %
Duty cycle and Time Measurement	0.012 %

Conducted Emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test
The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920656S-A-R2
Page : 8 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

3.5 Test Location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone: +81 463 50 6400, Facsimile: +81 463 50 6401

JAB Accreditation No. RTL02610

FCC Test Firm Registration Number: 839876

Tee Test Tilli Registi	land and an	1		M aximum
Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	measurement distance
No.1 Semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.2 Semi-anechoic chamber	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10 m
No.3 Semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5 m
No.4 Semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	-
No.1 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.2 Shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	-
No.3 Shielded room	1-	6.3 x 4.7 x 2.7	6.3 x 4.7	-
No.4 Shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	-
No.5 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.6 Shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.8 shielded room	-	3.45 x 5.5 x 2.4	3.45 x 5.5	-
No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920656S-A-R2
Page : 9 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

The EUT exercise program used during testing was designed to exercise the various system components in a manner similar to typical use.

Test Item	Mode			
All items	Transmitting			
	Software: RET Tool, ver.8.14.8			
	Power setting: Fixed			
	*This setting of software is the worst case.			
	Any conditions under the normal use do not exceed the condition of setting.			
	In addition, end users cannot change the settings of the output power of the product.			
	*1) We tested with the operation mode in three channel simultaneous transmission and with the worst case of the modulation operation mode used in actual radio operation.			
	Pre-check was by customer in test of this job while being seen by customers.			
	(This EUT is In a normal communication operation, a transmission operation is always performed in which			
	three channels are transmitted.)			

Justification:

The system was configured in typical fashion (as customer would normally use it) for testing.

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Wireless Display	DTG-113	9990016	Ueda Japan Radio Co., Ltd.	EUT
Α	Adapter				
В	Personal Computer	Latitude E5500	33406843389	Dell	-
C	AC adapter	HA90PE0-00	0W529	Dell	-
D	AC adapter	HPU15-102-UJ/UL	S02205041747	SINPRO	*2)

^{*2)} This is an old specification AC adapter name (HPU15-102-UJ/UL) and this AC adapter is with ferrite core.

However, the new specification AC adapter (ACM18US05) has no ferrite core. However, in the test of FCC 15B of the EMC test conducted on another schedule, it was done with the new AC adapter in UWB transmission mode (communication test).

List of cables used

List of cubics used							
No.	Name	Length (m)	Shield		Remarks		
			Cable	Connector			
1	USB	3.0	Shielded	Shielded	*3)		
2	DC	1.8	Unshielded	Unshielded	-		
3	AC	0.8	Unshielded	Unshielded	1		
4	DVI	3.0	Shielded	Shielded	1		
5	DC	1.2	Unshielded	Unshielded	-		

^{*3)} The USB connector of this product is a connector for maintenance only and it cannot be used with actual products.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} The ferrite core attached to DC cable is not used to reduce the noise from the EUT. Therefore, that does not affect the emission level of the EUT.

Therefore, there is no connection from the USB connector in actual products.

Therefore, it was measured only from the AC adapter at AC conducted emission measurement.

 Test report No.
 : 11920656S-A-R2

 Page
 : 10 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG113

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The table is made of expanded polystyrol and expanded polypropylene and the table top is covered with polycarbonate. That has very low permittivity.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50 ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT via AC adapter in a Shielded room.

The EUT via AC adapter was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920656S-A-R2
Page : 11 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

SECTION 6: Radiated Spurious Emission

Test Procedure

[For below 960 MHz]

EUT was placed on a platform of nominal size, 0.15 m by 0.05 m, raised 0.8 m above the conducting ground plane. The table is made of expanded polystyrol and expanded polypropylene and the table top is covered with polycarbonate. That has very low permittivity.

[For above 960 MHz]

EUT was placed on a platform of nominal size, 0.15 m by 0.05 m, raised 1.5 m above the conducting ground plane. The table is made of expanded polystyrol and expanded polypropylene and the table top is covered with polycarbonate. That has very low permittivity.

(UWB emissions and other emissions)

1) The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

(UWB emissions only)

2) Exchanged the EUT to the Substitution Antenna, the measurement was set for the same height 1.5m as the EUT. The frequency below 1GHz of the Substitution Antenna was used the Half wave dipole Antenna, which was tuned the measured frequency in 1).

The frequency above 1GHz of the Substitution Antenna was used Horn Antenna.

The Substitution Antenna was connected to the Signal Generator, and the polarized electromagnetic radiation of the Substitution Antenna was matched with the one of the measuring Antenna, which was set with the Signal Generator to the measured frequency in 1). Then, we set with the Output power (CW) of the Signal Generator where the measuring electromagnetic field strength is equal to the measured value in 1) by means of varying the measuring antenna height between 1 to 4m to obtain maximum receiving level.

Its Output power of Signal Generator was recorded.

3) Effective radiated power was calculated by subtracting the cable loss and the attenuator loss connected between the Signal Generator and the Substitution Antenna from the Output power of the Signal Generator recorded in 2).

For the usage of the antenna (horn Antenna) except for the half wave dipole antenna (2.15dBi) for the substitution antenna, the equivalent isotropic radiated power was calculated by compensating not the finite difference in the antenna gain of the half wave dipole antenna, and substitution antenna.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920656S-A-R2 Test report No. Page : 12 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG113

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

Frequency	Below 960 MHz	Above 960 MHz	
Instrument used	Test Receiver	Spectrum Analyzer	
Detector	Quasi-Peak (QP)	Peak (PK)	RMS (AV)
IF Bandwidth	BW 120 kHz	(for UWB spurious emission):	(for UWB spurious emission):
		RBW: 1 MHz	RBW: 1 MHz
		VBW: 3 MHz	VBW: 3 MHz
		(for carrier's emission):	(for Peak level of the emission)
		RBW: 3 MHz	RBW: 1 kHz
		VBW: 3 MHz	VBW: 3 kHz
Test Distance	3 m	0.5 m *1) (960 MHz – 10.6 G	Hz),
		0.3 m *2) (10.6 GHz – 17 GHz),	
		0.1 m *3) (above 17 GHz)	

*1) Distance Factor: $20 \times \log (0.5 \text{ m} / 3.0 \text{ m}) = -15.56 \text{ dB}$ *2) Distance Factor: 20 x log (0.3 m / 3.0 m) = -20.00 dB *3) Distance Factor: $20 \times \log (0.1 \text{ m} / 3.0 \text{ m}) = -29.54 \text{ dB}$

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of

maximum noise, and the test was made at the position that has the maximum noise.

Polarity				Frequ	ency [GHz]			
	0.03-0.96	0.96-1	1-4.8	4.8-10.6	10.6-17	17-18	18-26.5	26.5-40
Hor.	Z	Z	Z	X	Z	Z	Y	Z
Ver.	Z	Z	X	Y	Y	Y	Z	Y

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 40 GHz : APPENDIX Test data **Test result** : Pass

SECTION 7: UWB bandwidth and 99 % occupied bandwidth

Test Procedure

The tests were made with below setting by a radiated electric field in semi-anechoic chamber.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
UWB Bandwidth,	2 GHz	1 MHz	1 MHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied							-
Bandwidth							

: APPENDIX Test data

Test result : Pass

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920656S-A-R2 Test report No. Page : 13 of 32 : April 27, 2018 **Issued date** FCC ID : 2ADKK-DTG113

SECTION 8: Antenna terminal conducted tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious	150 kHz to 30 MHz	10 kHz	30 kHz				
Emission *1)							
*1) In the frequency	v range below 30MHz. R	BW was na	rrowed to se	parate the noise conte	nts.		

The test results and limit are rounded off to two decimals place, so some differences might be observed.

: APPENDIX Test data

Test result : Pass

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

 $^{(9 \}text{ kHz} - 150 \text{ kHz}: RBW = 200 \text{ Hz}, 150 \text{ kHz} - 30 \text{ MHz}: RBW = 10 \text{ kHz})$

: 11920656S-A-R2 Test report No. Page : 14 of 32 Issued date : April 27, 2018 : 2ADKK-DTG113 FCC ID

APPENDIX 1: Test data

Conducted Emission DATA OF CONDUCTED EMISSION TEST

UL Japan,Inc. Shonan EMC Lab. No.3 Shielded Room

Date : 2018/01/30

Mode : Trasmittig UWB

: AC 120 V / 60 Hz (EUT's adapter in) : 23 deg.C / 23 %RH Power Temp./Humi

: with AC adapter (HPU15-102-UJ/UL) Remarks

Limit1: FCC 15C (15.207) QP Limit2: FCC 15C (15.207) AV : Kenichi Adachi Engineer

		Read	dina I	1	Res	ulte	Lin	nit I	Mar	ain I		
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Pha se	Comment
110.	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	111400	- Commont
1	0.28122	36.39	17.74	12.52	48.91	30.26	60.78	50.78	11.8	20.5	N	
2	0.42878	30.87	14.18	12.54	43.41	26.72	57.28	47.28	13.8	20.5	N	
3	0.58522	38.68	20.45	12.57	51.25	33.02	56.00	46.00	4.7	12.9	N	
4	3.83962	29.26	13.87	12.93	42.19	26.80	56.00	46.00	13.8	19.2	N	
5	7.18376	28.27	11.78	13.38	41.65	25.16	60.00	50.00	18.3	24.8	N	
6	15.08856	16.34	9.87	14.47	30.81	24.34	60.00	50.00	29.1	25.6	N	
7	0.28122	35.09	17.68	12.52	47.61	30.20	60.78	50.78	13.1	20.5	L1	
8	0.42878	28.66	14.87	12.54	41.20	27.41	57.28	47.28	16.0	19.8	L1	
9	0.58504	37.31	21.86	12.57	49.88	34.43	56.00	46.00	6.1	11.5	L1	
10	3.89240	28.07	14.06	12.94	41.01	27.00	56.00	46.00	14.9	19.0	L1	
11	7.28680	27.55	11.48	13.40	40.95	24.88	60.00	50.00	19.0	25.1	L1	
12	16.60217	17.26	10.58	14.58	31.84	25.16	60.00	50.00	28.1	24.8	L1	

 ${\it Calculation:} Result \ [dBuV] = Reading \ [dBuV] + C.Fac \ (LISN \ (AMN) + Cable + ATT) \ \ [dB] \ LISN: \ SLS-02 + Extention \ cable$

Except for the above table: adequate margin data below the limits.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920656S-A-R2 Test report No. Page : 15 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (c))

Engineer

: Kenichi Adachi

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2 Date February 1, 2018 23 deg. C / 24 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(UWB emission, RBW 1 MHz)

Limit: FCC15.517 (c), Substitution limit

Reading Free Reading Section Art Type Regular General Gene													tomom r	luuoiii
No. Freq. Reading SG Level Ant Gain TX Loss Result Limit Margin Pola Height Angle TX Ant Type (Image) (<< 1	EIRP DATA	>>											
No. Freq. ⟨AV⟩ SG Level (BBI) (GBI) (GB					TY	TY	FIR	P						
	No.	Freq.		SG Level	Ant.Gain				Margin	Pola.	Height	Angle	TX Ant Type	Comment
2 5807.853 57.06 -57.98 13.19 10.28 -55.07 -41.30 13.7 Hori. 155 344 Horn AvRMS 33.59.27 54.18 -55.55 12.98 10.64 -55.21 -41.30 11.9 Hori. 151 291 Horn AvRMS 47.69.46.40 65.20 -44.32 11.55 11.63 -44.40 -41.30 3.1 Hori. 154 0 Horn AvRMS 58.25.980 64.97 -45.53 11.77 12.48 -46.24 -41.30 4.9 Hori. 154 0 Horn AvRMS 66 8508.161 66.42 -43.74 12.03 12.62 -44.33 -41.30 3.0 Hori. 154 0 Horn AvRMS 66 8508.161 66.42 -43.74 12.03 12.62 -44.33 -41.30 3.0 Hori. 154 0 Horn AvRMS 77 5279.837 54.66 67.48 12.74 9.63 -64.37 -41.30 12.30 Vert 131 271 Horn AvRMS 78.5807.853 58.27 -55.98 13.19 10.28 -53.07 -41.30 11.7 Vert 12.8 146 Horn AvRMS 9 6335.927 54.23 -56.88 12.98 10.64 -54.54 -41.30 13.2 Vert 147 0 Horn AvRMS 10 7764.947 63.06 -44.93 11.49 11.76 -45.20 -41.30 3.9 Vert 142 0 Horn AvRMS 11 8314.064 63.26 -44.64 11.75 12.47 -47.16 -41.30 5.8 Vert 142 0 Horn AvRMS		[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[cm]	[deg]	AllLiype	
3 6335.927 54.18 -55.55 12.98 10.64 -53.21 -41.30 11.9 Hori. 141 291 Horn AvRMS 4 7694.640 65.20 -44.32 11.55 11.63 -44.40 -41.30 3.1 Hori. 154 0 Horn AvRMS 5 8325.980 64.97 -45.53 11.77 12.48 -46.24 -41.30 4.9 Hori. 154 0 Horn AvRMS 6 8508.161 66.42 -43.74 12.03 12.62 -44.33 -41.30 3.0 Hori. 154 0 Horn AvRMS 7 5279.837 54.66 -67.48 12.74 9.63 -63.77 -41.30 12.07 Vert 131 271 Horn AvRMS 8 5807.853 58.27 -55.98 13.19 10.28 -53.07 -41.30 11.7 Vert 128 146 Horn AvRMS 9 6335.927 54.23 -56.88 12.98 10.64 -54.54 -41.30 13.2 Vert 147 0 Horn AvRMS 10 7764.947 63.06 -44.93 11.49 11.76 -45.20 -41.30 3.9 Vert 142 0 Horn AvRMS 11 8314.064 63.26 -46.44 11.75 12.47 -47.16 -41.30 5.8 Vert 142 0 Horn AvRMS		5279.837	53.36		12.74	9.63			26.4	Hori.		46	Horn	Av:RMS
4 7694.640 65.20 -44.32 11.55 11.63 -44.40 -41.30 3.1 Hori. 154 0 Horn AvRMS 5 8325.980 64.97 -45.53 11.77 12.48 -46.24 -41.30 4.9 Hori. 154 0 Horn AvRMS 6 8508.161 66.42 -43.74 12.03 12.62 -44.33 -41.30 3.0 Hori. 154 0 Horn AvRMS 7 5279.837 54.66 -67.48 12.74 9.63 -64.37 -41.30 23.0 Vert 131 271 Horn AvRMS 8 5807.853 58.27 -55.98 13.19 10.28 -53.07 -41.30 11.7 Vert 128 146 Horn AvRMS 9 6335.927 54.23 -56.88 12.98 10.64 -54.54 -41.30 13.2 Vert 147 0 Horn AvRMS 10 7764.947 63.06 -44.93 11.49 11.76 -45.20 -41.30 3.9 Vert 142 0 Horn AvRMS 11 8314.064 63.26 -44.44 11.75 12.47 -47.16 -41.30 5.8 Vert 142 0 Horn AvRMS														
5 8325,980 64.97 -45.53 11.77 12.48 -46.24 -41.30 4.9 Hori. 154 0 Horn AvRMS 6 8508.161 66.42 -43.74 12.03 12.62 -44.33 -41.30 3.0 Hori. 154 0 Horn AvRMS 7 5279.837 54.66 -67.48 12.74 9.63 -64.37 -41.30 23.0 Vert 131 271 Horn AvRMS 8 5807.853 58.27 -55.98 13.19 10.28 -53.07 -41.30 11.7 Vert 128 146 Horn AvRMS 9 6335.927 54.23 -56.88 12.98 10.64 -54.54 -41.30 13.2 Vert 147 0 Horn AvRMS 10 7764.947 63.06 -44.93 11.49 11.76 -45.20 -41.30 3.9 Vert 142 0 Horn AvRMS 11 8314.064 63.26 -46.44 11.75 12.47 -47.16 -41.30 5.8 Vert 142 0 Horn AvRMS														
6 8508.161 66.42 -43.74 12.03 12.62 -44.33 -41.30 3.0 Hori. 154 0 Horn AvRMS 7 5279.837 54.66 -67.48 12.74 9.63 -64.37 -41.30 23.0 Vert. 131 271 Horn AvRMS 8 5807.853 58.27 -55.83 13.19 10.28 -53.07 -41.30 11.7 Vert. 128 146 Horn AvRMS 9 6335.927 54.23 -56.88 12.98 10.64 -54.54 -41.30 13.2 Vert. 147 0 Horn AvRMS 10 7764.947 63.06 -44.93 11.49 11.76 -45.20 -41.30 5.8 Vert. 142 0 Horn AvRMS 11 8314.064 63.26 -46.44 11.75 12.47 -47.16 -41.30 5.8 Vert. 142 0 Horn AvRMS														
7 5279.837 54.66 -67.48 12.74 9.63 -64.37 -41.30 23.0 Vert 131 271 Horn AvRMS 8 5807.853 58.27 -55.98 13.19 10.28 -53.07 -41.30 11.7 Vert 128 146 Horn AvRMS 9 6335.927 54.23 -56.88 12.98 10.64 -54.54 -41.30 13.2 Vert 147 0 Horn AvRMS 10 7764.947 63.06 -44.93 11.49 11.76 -45.20 -41.30 3.9 Vert 142 0 Horn AvRMS 11 8314.064 63.26 -46.44 11.75 12.47 -47.16 -41.30 3.9 Vert 142 0 Horn AvRMS														
8 5807.853 58.27 -55.98 13.19 10.28 -53.07 -41.30 11.7 Vert 128 146 Horn AvRMS 9 6335.927 54.23 -56.88 12.98 10.64 -54.54 -41.30 13.2 Vert 147 0 Horn AvRMS 10 7764.947 63.06 -44.93 11.49 11.76 -45.20 -41.30 3.9 Vert 142 0 Horn AvRMS 11 8314.064 63.26 -46.44 11.75 12.47 -47.16 -41.30 5.8 Vert 142 0 Horn AvRMS														
9 6335,927 54,23 -56,88 12,98 10,64 -54,54 -41,30 13,2 Vert 147 0 Horn AvRMS 11,49 11,76 -45,20 -41,30 3,9 Vert 142 0 Horn AvRMS 11 8314,064 63,26 -46,44 11,75 12,47 -47,16 -41,30 5,8 Vert 142 0 Horn AvRMS														
10														
	10	7764.947	63.06	-44.93			-45.20	-41.30		Vert	142	0	Horn	
12 8549.211 64.18 -45.54 11.98 12.64 -46.20 -41.30 4.9 Vert 142 0 Horn AvrRMS													Horn	
	12	8549.211	64.18	-45.54	11.98	12.64	-46.20	-41.30	4.9	Vert	142	0	Horn	Av:RMS
			ł											
			1											
			ł											
			İ								1			
			İ								1			
			İ								1			
			1											
			ł											
			ł											
			ł											
			İ								1			
			1											
			İ								1 1			
			ļ											
			1											
			1											
			l											
			l											
			1											
			ĺ]			
			l											
			1											

Calculation:Result [dBm] =SG level [dB] +Tx Ant Gain [dBi] -Tx Loss (Cable) [dB] Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

st There were no detect UWB emissions in the range that below 5000 MHz, 9000 MHz to 17000 MHz and above 18000 MHz.

Test report No. : 11920656S-A-R2
Page : 16 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2
Date February 2, 2018
Temperature / Humidity 23 deg. C / 24 % RH
Engineer Kenichi Adachi
Mode Transmitting

(UWB emission, RBW 1 MHz)

Limit: FCC15.517 (c), Substitution limit

Engineer : Kenichi Adachi

<< EIRP DATA >>

No.	Freq.	Reading <av></av>	SG Level	TX Ant.Gain	TX Loss	EIR Result	P Limit	Margin	Pola.	Height	Angle	TX Ant.Type	Comment
' '' '	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[c m]	[deg]	AntType	- Common
1	17423.984	48.43	-62.84	11.42	18.08	-69.50	-51.30	18.2	Hori.	154	316		Av:RMS
2	17423.984	48.05	-62.98	11.42	18.08	-69.64	-51.30	18.3	Vert.	166	0	Horn	Av:RMS
-													
-													
-													
- 1													
- 1													
1													
- 1													
- 1													
- [l												
- [
-													
-													
-													
- 1													
- 1													
- 1													
1													
- 1													
- [
-													
-													
- 1													
- 1													
- 1													
- 1													
- 1													
1													
- [l												
-													
-													
-													
-													
1													
1													
	l												
- 1													
- 1													
- [l												
-													
-													
- 1													

Calculation:Result [dBm] =SG level [dB] +Tx Ant Gain [dBi] -Tx Loss (Cable) [dB] Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} There were no detect UWB emissions in the range that below 5000 MHz, 9000 MHz to 17000 MHz and above 18000 MHz.

Test report No. : 11920656S-A-R2 Page : 17 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (c))

(Reference data)

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2 Date February 1, 2018 23 deg. C / 24~% RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(UWB emission, RBW 1 MHz, 3 m distance result)
Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV
Limit2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

: Kenichi Adachi Engineer

<< AV/PK DATA >>

		Rea	ding					Re	sult	Lit	mit	Mai	rgin					
No	Freq.	<av></av>	<pk></pk>	Ant.Fac	Loss	Gain	D.Fac	<av></av>	<pk></pk>	<av></av>	<pk></pk>	<av></av>	<pk></pk>	Pola.	Height	Angle	Ant.	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]			[dB]	[dB]	[H/V]	[cm]	[deg]	Type	
	1 5279.837	53.36		32.06	6.33			31.46	33.44	53.90	73.90	22.4	40.4	Hori.	144	46	SHA03	Av:RMS
1 :	2 5807.853	57.06	58.49	32.67			-15.56	35.97	37.40	53.90	73.90	17.9	36.5	Hori.	155	344		
	6335.927	54.18					-15.56	35.22	36.62	53.90		18.6	37.2	Hori.	141		SHA03	
	7694.640						-15.56	50.65		53.90		3.2	13.7	Hori.	154		SHA03	
	8325.980		74.59				-15.56	51.01		53.90		2.8	13.2	Hori.	154	ō		AvRMS
	8508,161	66.42					-15.56	52.48		53.90		1.4	11.5	Hori.	154	-	SHA03	
	5279.837	54.66					-15.56	32.76		53.90			40.4	Vert.	131		SHA03	
	5807.853						-15.56	37.18		53.90			35.8	Vert.	128		SHA03	
	6335.927	54.23					-15.56	35.27	36.90	53.90			37.0	Vert.	147		SHA03	
1		63.06					-15.56	48.65	58.75	53.90		5.2	15.1		142		SHA03	
1							-15.56	49.31	59.31	53.90			14.5	Vert.	142			
i		64.18					-15.56	50.33		53.90		3.5	13.8		142		SHA03	
1.	0043.211	04.10	70.00	07.31	0.10	74.00	10.00	00.00	00.01	00.30	70.30	0.0	10.0	V CI L	172	ľ	OTIAGO	AVAIIIIO
				ł														
				ł														
				ŀ														
				ŀ														
				-														
				ŀ														
				ŀ														
															l			
															l			
				I														
				l											1			
	1			l											1			
	1	1		İ		İ	1		1						İ			
	1			İ											İ			
				İ											İ			
	1			l											l			
	1																	
1				1														
				1											-			
															-			
1	1	I		ı		1		1	1	ı	1			l	ı		l	1

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*} PK was measured setting was RBW 3 MHz, VBW 50 MHz, peak value, in the frequency range from 7000 MHz to 9000 MHz.

^{*} AV was measured setting was RBW1 MHz, VBW 3 MHz, RMS value, in the frequency range from 7000 MHz to 9000 MHz.

^{*} There were no detect UWB emissions in the range that below 5000 MHz, 9000 MHz to 17000 MHz and above 18000 MHz.

Test report No. : 11920656S-A-R2
Page : 18 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2
Date January 29, 2018
Temperature / Humidity 20 deg. C / 25 % RH
Engineer Yosuke Ishikawa
Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV

Engineer : Yosuke Ishikawa

<< QP DATA >>

• •	QF DATA /	_											
No.	Freq.	Reading <qp></qp>	AntFac	Loss	Gain	Result <qp></qp>	Limit <qp></qp>	Margin <qp></qp>	Pola.	Height	Angle	Ant.	Comment
""	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]		[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	Sommon.
1	72.000	36.30	6.21		32.10	17.61	40.00	22.3	Hori.	100	16	BC	
2	144.000	33.90			32.04	24.14	43.50	19.3	Hori.	131	18	BC	
3	359.999	44.60		9.03	31.85	36.51	46.00	9.4	Hori.	100	298	LP	
4	454.988	44.70	16.73		31.85	39.04	46.00	6.9	Hori.	100	212	LP	
5	584.977	36.70			31.84	33.58	46.00	12.4		100	23	LP	
6	714.975	37.33		10.43		35.77	46.00	10.2		100	5	LP	
7	72.000				32.10	34.11	40.00	5.8		100	327	BC	
8	87.724	38.90			32.09	21.88	40.00	18.1		109	198	BC	
9	119.999	46.80			32.06	35.31	43.50	8.1		100	204	BC	
10	360.000	41.70	14.73	9.03	31.85	33.61	46.00	12.3	Vert	146	134	LP	
11	455.993	48.60	16.75	9.46	31.85	42.96	46.00	3.0	Vert	100	163	LP	
12		41.00	17.69		31.84	36.51	46.00	9.4	Vert	100	3	LP	
13	584.982	37.50	18.75	9.97	31.84	34.38	46.00	11.6	Vert	100	225	LP	
			1										
			1										
			1										
			l										
			1										
			1										
			İ										
			1										
			İ										
			l										
			I										

 $\label{localized-calculation:Result [dBuV/m] = Reading [dBuV] + Ant.Fac [dB/m] + Loss (Cable + ATT) [dB] - Gain (AMP) [dB] \\ Ant.Type = BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn Antenna LP:Logperiodic Antenna SHA**: Horn Antenna LP:Logperiodic Antenna SHA**: Horn Antenna LP:Logperiodic Antenna SHA**: Horn Antenna LP:Logperiodic Antenna SHA**: Horn Antenna LP:Logperiodic Antenna SHA**: Horn Antenna LP:Logperiodic Antenna SHA**: Horn Antenna SHA**:$

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920656S-A-R2 Test report No. Page : 19 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2 Date February 1, 2018 23 deg. C / 24 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV Limit2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Kenichi Adachi

<< AV/PK DATA >>

$\stackrel{\sim}{\Box}$	AV/FIL DAI	Rea	dina					Da	sult	l is	nit	Mai	rain I					
No.	Freq.	<av></av>	<pk></pk>	Ant.Fac	Loss	Gain	D.Fac	<av></av>	<pk></pk>	<av></av>	<pk></pk>	<av></av>	<pk></pk>	Pola.	Height	Angle	Ant.	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]		[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	[c m]	[deg]	Type	
1	1439.987	61.68	63.89	24.94	3.25	43.79	-15.56	30.52	32.73	53.90	73.90	23.3	41.1	Hori.	144	137	SHA03	Av:RMS (other)
2	1583.951	57.16	57.96			43.83		26.36	27.16	53.90	73.90	27.5	46.7	Hori.	141	222	SHA03	Av:RMS (other)
3	2111.966	63.81	64.52			44.07	-15.56	34.51	35.22	53.90	73.90	19.3	38.6	Hori.	139		SHA03	Av:RMS (other)
4	2639.699	64.88	65.42			44.15		37.51	38.05	53.90	73.90	16.3	35.8	Hori.	153		SHA03	Av:RMS (other)
5	3167.998	60.05	60.45			44.28		33.79	34.19	53.90	73.90	20.1	39.7	Hori.	155		SHA03	Av:RMS (other)
6	3695.886	63.69	64.42		5.22		-15.56	38.10	38.83	53.90	73.90	15.8	35.0	Hori.	136		SHA03	Av:RMS (other)
7	4223.999	61.39	62.08			44.24		37.36	38.05	53.90	73.90	16.5	35.8	Hori.	125		SHA03	Av:RMS (other)
8	4751.761	53.78	55.25				-15.56	31.05	32.52	53.90	73.90	22.8	41.3	Hori.	143		SHA03	Av:RMS (other)
10	1439.987	63.07	65.76				-15.56	31.91	34.60 26.44	53.90 53.90	73.90 73.90	21.9 29.9	39.3 47.4	Vert.	155 163		SHA03 SHA03	Av:RMS (other)
11	1583.951 2111.966	54.72 62.48	57.24 63.57			43.83 44.07		23.92 33.18	34.27	53.90	73.90	29.9	39.6	Vert. Vert.	140		SHA03	Av:RMS (other) Av:RMS (other)
12	2639.699	65.13	65.73			44.15		37.76	38.36	53.90	73.90	16.1	35.5	Vert.	151		SHA03	Av:RMS (other)
13	3167.998	59.22	61.77			44.13		32.96	35.51	53.90	73.90	20.9	38.3	Vert.	147		SHA03	Av.RMS (other)
14		62.66				44.43		37.07	38.77	53.90	73.90	16.8	35.1	Vert.	156		SHA03	Av:RMS (other)
15	4223.999	60.76				44.24		36.73	37.82	53.90	73.90	17.1	36.0	Vert.	154	69	SHA03	Av:RMS (other)
16		54.40					-15.56		32.98	53.90		22.2	40.9	Vert.	140			Av:RMS (other)
							İ											
															l			
															1			
							-								1			
															1			
							ł											
							ł											
							l								l			
															İ			
															İ			
							l								l			
							1								l			
							-								-			
													ļ					
													l					
													-					
1			1		1		ı	1		1					1			

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920656S-A-R2 Test report No. Page : 20 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2 Date February 2, 2018 23 deg. C / 24 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV Limit2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Kenichi Adachi

<< AV/PK DATA >>

-1	Freq.	Rea	ding	Ant.Fac	Loss	Gain	D.Fac	Re	sult	Lir	nit	Ma	rgin	Pola.	Height	Angle	Ant	
0.		<av></av>	\PN>					<av></av>	<pk></pk>	<av></av>	<pk></pk>	<av></av>	<pk></pk>				Ant. Type	Comment
1	[MHz]	[dBuV] 50.11	[dBuV] 52.60		[dB]	[dB]	[dB]	[dBuV/m] 40.08	[dBuV/m] 42.57	[dBuV/m] 53.90	73.90	[dB]	[dB]	[H/V] Hori.	[cm]	[deg]	l .	Av:RMS (other
	16895.982 16895.982	49.86	51.39	39.90	11./1	41.70	-20.00 -20.00	39.83	41.36				31.3	Vert.	161 121			AVRMS (other
	10093.902	49.00	31.39	39.90	11.71	41.70	-20.00	39.03	41.30	33.90	73.90	14.0	32.3	Veil	121	04	SHAUS	AV-NINO (ULIR
															l			
	i																	
																İ		
	l															i i		
	l															i i		
																1		
															ŀ			
	i																	
																İ		
																l i		
																İ		
																1		
															ŀ			
	ł																	
	ŀ																	
	l																	
i	İ																	
l	i																	
ĺ	İ																	
Ĺ	i									1					l	i i	İ	ĺ

Calculation:Result [dBuV/m] =Reading [dBuV] +Ant.Fac [dB/m] +Loss (Cable) [dB] +D.Fac [dB] -Gain (AMP) [dB] Ant.Type=BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn Antenna

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920656S-A-R2 Test report No. Page : 21 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2 Date February 2, 2018 23 deg. C / 24 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV Limit2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Kenichi Adachi

<< AV/PK DATA >>

\sim	AV/PK DAI														i	,		
No.	Freq.	Rea <av></av>	ding <pk></pk>	AntFac	Loss	Gain	D.Fac	<av></av>	sult <pk></pk>	<av></av>	nit <pk></pk>	Mai <av></av>	rgin <pk></pk>	Pola.	Height	Angle	Ant. Type	Comment
	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]			[dBuV/m]		[dB]	[dB]	[H/V]	[cm]	[deg]	Type	
1		40.66	42.48				-29.54	17.92	19.74			35.9	54.1	Hori.	164		SHA04	Av:RMS (other)
2		40.31	41.82				-29.54	19.77				34.1	52.6		162			Av:RMS (other)
3		39.32	40.45				-29.54	16.58	17.71	53.90					156			Av:RMS (other)
4		40.07	41.08	39.99	16.29	47.28	-29.54	19.53	20.54	53.90	73.90	34.3	53.3	Vert.	154	344	SHA04	Av:RMS (other)
	25045.307	40.07	41.00	35.39	10.29	47.20	25.07		20.54	30.30	75.50	34.3	33.3	Veic			Sinos	AVIIIIS (MILE)

Calculation:Result [dBuV/m] =Reading [dBuV] +Ant.Fac [dB/m] +Loss (Cable) [dB] +D.Fac [dB] -Gain (AMP) [dB] Ant.Type=BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn Antenna

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

: 11920656S-A-R2 Test report No. Page : 22 of 32 **Issued date** : April 27, 2018 FCC ID : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2 Date February 2, 2018 23 deg. C / 24 % RH Temperature / Humidity Engineer Kenichi Adachi Mode Transmitting

(Other emission)

Limit1: FCC15.209 3m, below 1GHz:QP, above 1GHz:AV Limit2: FCC15.209 3m, below 1GHz:QP, above 1GHz:PK

Engineer : Kenichi Adachi

<< AV/PK DATA >>

No. Freq. All	[cm]	7 20	Type SHA06	AvRMS (othe AvRMS (othe
1 33791.961 75.01 76.43 43.37 18.05 66.50 -29.54 40.39 41.81 53.90 73.90 13.5 32.0 Hori.	157	7 20	SHA06	
				1
		İ		i
		1	1	
	1	İ		İ
	1			
	1	1		1
	1	1		İ
	1	1		
		1		
		1		
	1	1		-
	1	1		ł
	1	1		1
	İ	İ		1
	1	1		
		1		
	1	1		
	İ	İ		1
	1	1		
		1		
		1		
	1	ł		
	1	1		
	1			
	1			
	1			
		1		

Calculation:Result [dBuV/m] =Reading [dBuV] +Ant.Fac [dB/m] +Loss (Cable) [dB] +D.Fac [dB] -Gain (AMP) [dB] Ant.Type=BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn Antenna

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920656S-A-R2

 Page
 : 23 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (d))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2
Date February 2, 2018
Temperature / Humidity 23 deg. C / 24 % RH
Engineer Kenichi Adachi
Mode Transmitting

Engineer : Kenichi Adachi

<< EIRP DATA >>

Free
1239.994 36.28 -95.28 6.27 4.56 -93.57 -85.30 8.2 Hori. 153 342 Horn AvRMS, RBW 1 kHz
1239.994 36.09 -93.14 6.27 4.56 -91.43 -85.30 6.1 Vert 154 0 Horn AvRMS.RBW 1 kHz

Calculation:Result [dBm] =SG level [dB] +Tx Ant Gain [dBi] -Tx Loss (Cable) [dB] Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920656S-A-R2

 Page
 : 24 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (d))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2
Date February 2, 2018
Temperature / Humidity 23 deg. C / 24 % RH
Engineer Kenichi Adachi
Mode Transmitting

Engineer : Kenichi Adachi

<< EIRP DATA >>

$\stackrel{\sim}{}$	CIRP DATA										-		
No.		Reading <av></av>	SG Level	TX Ant.Gain	TX Loss	EIR Result	Limit	Margin	Pola.	Height		TX Ant.Type	Comment
	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[c m]	[deg]	7.11.21.750	
1			-98.45		5.19	-95.44	-85.30	10.1	Hori.	153		Horn	Av:RMS, RBW 1 kHz
2			-93.46		5.23	-90.36		5.0	Hori.	152		Horn	Av:RMS, RBW 1 kHz
3			-99.00		5.19	-95.99	-85.30		Vert.	153		Horn	Av:RMS, RBW 1 kHz
4	1607.991	35.44	-94.69	8.33	5.23	-91.59	-85.30	6.2	Vert.	154	0	Horn	Av:RMS, RBW 1 kHz

Calculation:Result [dBm] =SG level [dB] +Tx Ant Gain [dBi] -Tx Loss (Cable) [dB] Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920656S-A-R2
Page : 25 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

Data of Radiation Test (Regulation: FCC 15.517 (e))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2
Date February 1, 2018
Temperature / Humidity 23 deg. C / 24 % RH
Engineer Kenichi Adachi
Mode Transmitting

Limit : FCC15.517 (e) , (RBW 50 MHz value) Substitution limit Engineer

Engineer : Kenichi Adachi

<< EIRP DATA >>

''	C EIRP DATA 22												
	F===	<pix></pix>	00 1 200	TX Ant Gain	TX	EIRP		Margin	1.	Ilaiah.	Haight Angle		
No.			SG Level		Loss	Result	Limit		Pola.	Height	Angle	TX Ant.Type	Comment
	[MHz]	[dBuV]	[dBm]	[dBi]	[dB]	[dBm]	[dBm]	[dB]		[c m]	[deg]		
1	7694.640	74.69	-30.97	11.55	-12.77	-6.65	0.00		Hori.	154	0	Horn	Peak, RBW 3 MHz
2	8325.980		-34.43		-11.92	-10.74			Hori.	154		Horn	Peak, RBW 3 MHz
3		76.28	-31.46	12.03	-11.78	-7.65	0.00			154			Peak, RBW 3 MHz
4	7764.947	73.16	-32.66	11.49	-12.64	-8.53	0.00			142			Peak, RBW 3 MHz
5			-36.16		-11.93	-12.48	0.00			142			Peak, RBW 3 MHz
6	8549.211	73.86	-34.95	11.98	-11.76	-11.21	0.00	11.2	Vert.	142	0	Horn	Peak, RBW 3 MHz
										ł			
										i			
										i			
										1			
										i			
										i			
	l						l			ı	1		I

Calculation: Result [dBm] = SG level [dB] + Tx Ant Gain [dBi] - Tx Loss (Cable [dB] + RBW converted factor (-24.44 = 20 x log (3 / 50))[dB]) Tx Antenna: Horn (1G-40G) / Rx-Antenna: Horn (1G-40G)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

 Test report No.
 : 11920656S-A-R2

 Page
 : 26 of 32

 Issued date
 : April 27, 2018

 FCC ID
 : 2ADKK-DTG113

Data of Antenna terminal conducted Test (Regulation: FCC 15.517 (c))

Test place Shonan EMC Lab. No.1 Measurement Room

Report No. 11920656S-A-R2
Date January 23, 2018
Temperature / Humidity 22 deg. C / 42 % RH
Engineer Kenichi Adachi
Mode Transmitting

^{*} No detect signal

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920656S-A-R2
Page : 27 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

Bandwidth (Regulation: FCC 15.503(d), FCC 15.517 (b))

Test place Shonan EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11920656S-A-R2
Date February 1, 2018
Temperature / Humidity 23 deg. C / 24 % RH
Engineer Kenichi Adachi
Mode Transmitting

10 dB Bandwidth: 1544.282 MHz (= fH - fL) (Limit: >= 500 MHz)

99 % Occupied Bandwidth: 1545.082 MHz fL = 7409.559 MHz Center Frequency 8181.700 MHz (= (fH + fL)/2) fH = 8953.841 MHz

Date: 19.DEC.2017 01:29:12

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920656S-A-R2
Page : 28 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

APPENDIX 2: Test instruments

Test Instrument						
Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SAEC-03(NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2017/06/11 * 12
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2017/10/02 * 12
SLA-07	Logperiodic Antenna	Schwarzbeck	VUSLP9111B	196	RE	2017/01/26 * 12 *1)
SAT6-08	Attenuator	HIROSE ELECTRIC CO.,LTD.	AT-406(40)	-	RE	2017/08/24 * 12
SCC-C1/C2/C3/C4/ C5/C10/SRSE-03	Coaxial Cable&RF Selector	Fujikura/Fujikura/Suhne r/Suhner/Suhner/Suhner/ TOYO	8D2W/12DSFA/141P E/141PE/141PE/141P E/NS4906	-/0901-271(RF Selector)	RE	2017/04/07 * 12
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2017/02/09 * 12
STR-08	Test Receiver	Rohde & Schwarz	ESW44	101581	RE, CE	2017/11/24 * 12
COTS-SEMI-1	EMI Software	TSJ	TEPTO-DV(RE,CE,R FI,MF)	-	RE, CE	
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2017/10/30 * 12
SJM-02	Measure	KOMELON	KMC-36	-	RE, CE	-
STS-03	Digital Hitester	Hioki	3805-50	080997823	RE, CE	2017/10/16 * 12
SCC-C9/C10/SRSE -03	Coaxial Cable&RF Selector	Suhner/Suhner/TOYO	RG223U/141PE/NS49 06	-/0901-271(RF Selector)	CE	2017/04/07 * 12
SLS-02	LISN	Rohde & Schwarz	ENV216	100512	CE (EUT)	2017/02/10 * 12
SAT3-07	Attenuator	JFW	50HF-003N	-	CE	2017/09/08 * 12
SLS-05	LISN	Rohde & Schwarz	ENV216	100516	CE (AE)	2017/02/27 * 12
STM-12	Terminator	TME	CT-01 BP	-	CE	2017/12/14 * 12
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	CE	2017/12/21 * 12
SAEC-03(SVSWR)	Semi-Anechoic Chamber	TDK	SAEC-03(SVSWR)	3	RE	2017/07/17 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2017/08/23 * 12
SAJ-01	Antenna Tilt Jig	Intelligent System Engineering Co., Ltd	Antenna Tilt Jig	T-S001	RE	Pre Check
SCC-G41	Coaxial Cable	Junkosha	MWX221-01000NFS NMS/B	1612S006	RE	2017/01/08 * 12 *1)
SCC-G07	Coaxial Cable	Junkosha	J12J103316-00-R	OCT-12-17-054	RE	2017/10/23 * 12
SCC-G06	Coaxial Cable	Junkosha	J12J102207-00	MAY-23-16-091	RE	2017/06/13 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

*1) This test equipment was used for the tests before the expiration date of the calibration.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 11920656S-A-R2
Page : 29 of 32
Issued date : April 27, 2018
FCC ID : 2ADKK-DTG113

Test Instruments (2/2)

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	2046104	RE	2017/09/22 * 12
SCC-G43	Coaxial Cable	HUBER+SUHNER	SUCOFLEX_104_E	SN MY 13406/4E	RE	2017/07/10 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2017/05/08 * 12
SHA-04	Horn Antenna	ETS LINDGREN	3160-09	LM9861	RE	2017/07/11 * 12
SAF-08	Pre Amplifier	TOYO Corporation	HAP18-26W	00000019	RE	2017/03/17 * 12
SCC-G33	Coaxial Cable	Junkosha	MWX241-01000KMS	-	RE	2017/04/20 * 12
			KMS			
SCC-G15	Coaxial Cable	Suhner	SUCOFLEX 102	32703/2	RE	2017/03/23 * 12
SHA-06	Horn Antenna	ETS LINDGREN	3160-10	LM3459	RE	2017/03/15 * 12
SAF-10	Pre Amplifier	TOYO Corporation	HAP26-40W	00000010	RE	2017/03/17 * 12
SCC-G19	Coaxial Cable	Suhner	SUCOFLEX 102A	1188/2A	RE	2017/03/23 * 12
SRENT-09	Spectrum Analyzer	Agilent	E4440A	MY46186392	AT	2017/11/08 * 12
SCC-G31	Coaxial Cable	Junkosha	MWX241-01000KMS	OCT-08-13-046	AT	2017/04/20 * 12
			KMS			
SOS-13	Humidity Indicator	Custom	CTH-202	Q.C.17	AT	2017/12/21 * 12
KTS-08	Digital Tester	SANWA	PC500	7019224	AT	2017/03/08 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

*1) This test equipment was used for the tests before the expiration date of the calibration.

Test item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN