

# IIC 3800 Tópicos en CC NLP

https://github.com/marcelomendoza/IIC3800

## - DEPENDENCY PARSING -

| TEXT    | LEMMA   | POS   | TAG | DEP      | SHAPE | ALPHA | STOP  |
|---------|---------|-------|-----|----------|-------|-------|-------|
| Apple   | apple   | PROPN | NNP | nsubj    | Xxxxx | True  | False |
| is      | be      | AUX   | VBZ | aux      | xx    | True  | True  |
| looking | look    | VERB  | VBG | ROOT     | xxxx  | True  | False |
| at      | at      | ADP   | IN  | prep     | xx    | True  | True  |
| buying  | buy     | VERB  | VBG | pcomp    | xxxx  | True  | False |
| U.K.    | u.k.    | PROPN | NNP | compound | x.x.  | False | False |
| startup | startup | NOUN  | NN  | dobj     | xxxx  | True  | False |
| for     | for     | ADP   | IN  | prep     | xxx   | True  | True  |
| \$      | \$      | SYM   | \$  | quantmod | \$    | False | False |
| 1       | 1       | NUM   | CD  | compound | d     | False | False |
| billion | billion | NUM   | CD  | pobj     | xxxx  | True  | False |

**►** Dependencia sintáctica

```
import spacy
from spacy import displacy

nlp = spacy.load("en_core_web_sm")
doc = nlp("This is a sentence.")
displacy.serve(doc, style="dep")
```



| Clausal Argument Relations | Description                                        |
|----------------------------|----------------------------------------------------|
| NSUBJ                      | Nominal subject                                    |
| DOBJ                       | Direct object                                      |
| IOBJ                       | Indirect object                                    |
| CCOMP                      | Clausal complement                                 |
| XCOMP                      | Open clausal complement                            |
| Nominal Modifier Relations | Description                                        |
| NMOD                       | Nominal modifier                                   |
| AMOD                       | Adjectival modifier                                |
| NUMMOD                     | Numeric modifier                                   |
| APPOS                      | Appositional modifier                              |
| DET                        | Determiner                                         |
| CASE                       | Prepositions, postpositions and other case markers |
| Other Notable Relations    | Description                                        |
| CONJ                       | Conjunct                                           |
| СС                         | Coordinating conjunction                           |

Transition-based parser:



Transition-based parser: Deducimos training instances desde un treebank. Podemos determinísticamente registrar las operaciones correctas del parser, creando un training dataset.

| Step | Stack                              | Word List                        | Action   | Relation Added               |
|------|------------------------------------|----------------------------------|----------|------------------------------|
| 0    | [root]                             | [book, me, the, morning, flight] | SHIFT    |                              |
| 1    | [root, book]                       | [me, the, moming, flight]        | SHIFT    |                              |
| 2    | [root, book, me]                   | [the, morning, flight]           | RIGHTARC | $(book \rightarrow me)$      |
| 3    | [root, book]                       | [the, morning, flight]           | SHIFT    |                              |
| 4    | [root, book, the]                  | [morning, flight]                | SHIFT    |                              |
| 5    | [root, book, the, morning]         | [flight]                         | SHIFT    |                              |
| 6    | [root, book, the, morning, flight] | 0                                | LEFTARC  | $(moming \leftarrow flight)$ |
| 7    | [root, book, the, flight]          |                                  | LEFTARC  | $(the \leftarrow flight)$    |
| 8    | [root, book, flight]               | []                               | RIGHTARC | $(book \rightarrow flight)$  |
| 9    | [root, book]                       | []                               | RIGHTARC | $(root \rightarrow book)$    |
| 10   | [root]                             | 0                                | Done     |                              |

Training instances (intermedia):

Stack Word buffer Relations [root, canceled, flights] [to Houston] (canceled  $\rightarrow$  United) (flights  $\rightarrow$  morning) (flights  $\rightarrow$  the)

La transición correcta del parser es *shift*. Luego, creamos training instances de este tipo en el dataset:





Danqi Chen, Christopher D. Manning: A Fast and Accurate Dependency Parser using Neural Networks. EMNLP2014: 740-750

## - ENTITY LINKING -

- Conectar entidades a entidades canónicas de una KB.



**Entity mention detection** 

$$[\mathbf{q}_1 \cdots \mathbf{q}_n] = \mathrm{BERT}([\mathrm{CLS}]q_1 \cdots q_n[\mathrm{SEP}])$$
Embeddings de BERT por token de Q

- Se calcula la verosimilitud de cada span de Q para verificar si es una mención:

$$s_{\text{start}}(i) = \mathbf{w}_{\text{start}} \cdot \mathbf{q}_i, \quad s_{\text{end}}(j) = \mathbf{w}_{\text{end}} \cdot \mathbf{q}_j,$$

se aprenden durante el entrenamiento

**Entity mention detection** 

Luego se usa otro embedding (learnable) para detectar si un token es parte o no de la mención:

$$s_{\text{mention}}(t) = \mathbf{w}_{\text{mention}} \cdot \mathbf{q}_t$$

Las probabilidades de las menciones son obtenidas combinando estos puntajes:

$$p([i,j]) = \sigma \left( s_{\text{start}}(i) + s_{\text{end}}(j) + \sum_{t=i}^{j} s_{\text{mention}}(t) \right)$$

Para conectar la mención con la entidad, calculamos los embeddings de cada token que describe la entidad en la KB:

$$\mathcal{E} = e_1, \cdots, e_i, \cdots, e_w$$
 
$$\mathbf{x}_e = \mathrm{BERT}_{[\mathrm{CLS}]}([\mathrm{CLS}]t(e_i)[\mathrm{ENT}]d(e_i)[\mathrm{SEP}])$$
 
$$\uparrow \qquad \uparrow$$
 Titular Descripción

Calculamos el AWE de la mención:

$$\mathbf{y}_{i,j} = \frac{1}{(j-i+1)} \sum_{t-i}^{j} \mathbf{q}_t$$

y el producto con la entidad:  $s(e,[i,j]) = \mathbf{x}_e^{\cdot} \mathbf{y}_{i,j}$ 

Finalmente usamos una softmax para obtener una distribución sobre la KB:  $p(e|[i,j]) = \frac{\exp(s(e,[i,j]))}{\sum_{e' \in \mathcal{E}} \exp(s(e',[i,j]))}$