

AOD476

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AOD476 uses advanced trench technology and design to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

- -RoHS Compliant
- -Halogen Free*

Features

 $V_{DS}(V) = 20V$

 $I_D = 25A (V_{GS} = 10V)$

 $R_{DS(ON)}$ <21 m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ <28 m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ <79 m Ω (V_{GS} = 2.5V)

100% UIS Tested! 100% Rg Tested!

Absolute Maximum Ratings 1 _A -23 C unless otherwise noted		Absolute Maximum Ratings	I _A =25°C unless otherwise noted
--	--	--------------------------	---

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	20	V	
Gate-Source Voltage		V_{GS}	±16	V	
Continuous Drain	T _C =25°C ^G		25		
Current	T _C =100°C	I _D	20	A	
Pulsed Drain Current ^Ċ		I _{DM}	75		
Avalanche Current ^C		I _{AR}	13	Α	
Repetitive avalanche energy L=0.3mH ^C		E _{AR}	25	mJ	
	T _C =25°C	В	33.3	W	
Power Dissipation ^B	T _C =100°C	$-P_D$	16.7	VV	
	T _A =25°C	В	2.5	10/	
Power Dissipation A	T _A =70°C	-P _{DSM}	1.6	W	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	17	25	°C/W	
Maximum Junction-to-Ambient ^A	Steady-State	IN _θ JA	40	50	°C/W	
Maximum Junction-to-Case ^B	Steady-State	$R_{ heta JC}$	3.6	4.5	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =16V, V _{GS} =0V			1 5	uA
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±16V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250μA	0.6	1.26	2	V
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V	75			A
-D(ON)		V _{GS} =10V, I _D =20A		14	21	
_	R _{DS(ON)} Static Drain-Source On-Resistance	T _J =125°C		21		1
$R_{DS(ON)}$		V _{GS} =4.5V, I _D =10A		20	28	mΩ
	V _{GS} =2.5V, I _D =4A		57	79		
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =20A		19		S
V _{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.77	1	V
I _S		ximum Body-Diode Continuous Current ^G			30	Α
	PARAMETERS			I.	I	
C _{iss}	Input Capacitance			900		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz		162		pF
C _{rss}	Reverse Transfer Capacitance	1		105		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.9	1.35	Ω
SWITCHI	NG PARAMETERS			•		•
Q _q (10V)	Total Gate Charge			15	18	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =10V, I _D =20A		7.2	9	nC
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -10V, I _D -20A		1.8		nC
Q_{gd}	Gate Drain Charge			2.8		nC
t _{D(on)}	Turn-On DelayTime			4.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =10V, R_{L} =0.5 Ω ,		9.2		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		18.7		ns
t _f	Turn-Off Fall Time			3.3		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=100A/μs		18		ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=100A/μs		9.5		nC

A: The value of R $_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with

Rev2: Oct. 2008

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

 T_A =25°C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175 $^{\circ}$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature T $_{J(MAX)}$ =175°C.

D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175°C.

G. The maximum current rating is limited by bond-wires.

H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA curve provides a single pulse rating.

^{*}This device is guaranteed green after data code 8X11 (Sep 1 ST 2008).

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 2: Transfer Characteristics

Figure 4: On-Resistance vs. Junction Temperature

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

0.1 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

10

1

100

1000

0.001 0.00001 Single Pulse

0.001

0.01

0.0001

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

