In [89]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.formula.api as smf
import statsmodels.api as sm
from statsmodels.graphics.regressionplots import influence_plot
import warnings
warnings.filterwarnings('ignore')
```

1. import dataset

In [90]:

```
startup_data=pd.read_csv('50_Startups (1).csv')
startup_data.head()
```

Out[90]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

2. Initial analysis

In [91]:

```
startup_data.describe()
```

Out[91]:

	R&D Spend	Administration	Marketing Spend	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

```
In [92]:
```

```
\verb|print('There are ', startup_data.shape[0], 'rows and ', startup_data.shape[1], 'columns in the line of the startup_data.shape[1], 'columns in the startup_data.shape[1], '
```

There are 50 rows and 5 columns in the dataset.

In [93]:

```
print('There are',startup_data.duplicated().sum(),'duplicate values in the dateset.') #usin
```

There are 0 duplicate values in the dateset.

In [94]:

```
startup_data.isnull().sum()
```

Out[94]:

R&D Spend 0
Administration 0
Marketing Spend 0
State 0
Profit 0
dtype: int64

In [95]:

```
startup_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	R&D Spend	50 non-null	float64
1	Administration	50 non-null	float64
2	Marketing Spend	50 non-null	float64
3	State	50 non-null	object
4	Profit	50 non-null	float64

dtypes: float64(4), object(1)

memory usage: 2.1+ KB

In [96]:

```
c=startup_data.corr()
c
```

Out[96]:

	R&D Spend	Administration	Marketing Spend	Profit
R&D Spend	1.000000	0.241955	0.724248	0.972900
Administration	0.241955	1.000000	-0.032154	0.200717
Marketing Spend	0.724248	-0.032154	1.000000	0.747766
Profit	0.972900	0.200717	0.747766	1.000000

Inference: We can see that all three columns have a direct relationship with the profit, which is our target variable.

3.EDA on dataset

In [97]:

sns.heatmap(c,annot=True)
plt.show

Out[97]:

<function matplotlib.pyplot.show(close=None, block=None)>

Outliers detection in the target variable

In [98]:

Inference: While looking at the boxplot we can see the outliers in the profit(target variable), but the amount of data is not much (just 50 entries) so it won't create much negative impact.

In [99]:

```
sns.boxplot(x = 'State', y = 'Profit', data =startup_data)
plt.show()
```


Insights:

- 1. All outliers presented are in New York.
- 2. The startups located in California we can see the maximum profits and maximum loss.

Histogram on profit

In [100]:

```
sns.distplot(startup_data['Profit'],bins=5,kde=True)
plt.show()
```


In [101]:

Inference:

- 1. As I can see in the pair pot, Research and development are directly proportional to the investment that we can do.
- 2. The marketing spend seems to be directly proportional (though a little bit outliers are there) with the profit.
- 3. There is no relationship between the second column and profit i.e. our target column.

4.Model Development

In [102]:

```
#splitting startup_data in Dependent & Independent Variables
x=startup_data.iloc[:, :-1].values
y=startup_data.iloc[:, 4].values
```

Label Encoder

In [103]:

```
from sklearn.preprocessing import LabelEncoder
```

In [104]:

```
labelencoder = LabelEncoder()
x[:, 3] = labelencoder.fit_transform(x[:, 3])
x1 = pd.DataFrame(x)
x1.head()
```

Out[104]:

	0	1	2	3
0	165349.2	136897.8	471784.1	2
1	162597.7	151377.59	443898.53	0
2	153441.51	101145.55	407934.54	1
3	144372.41	118671.85	383199.62	2
4	142107.34	91391.77	366168.42	1

5. Spliting the data into training and testing data

In [105]:

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.7,random_state=0)
x_train
Out[105]:
```

```
array([[130298.13, 145530.06, 323876.68, 1],
       [119943.24, 156547.42, 256512.92, 1],
       [1000.23, 124153.04, 1903.93, 2],
       [542.05, 51743.15, 0.0, 2],
       [65605.48, 153032.06, 107138.38, 2],
       [114523.61, 122616.84, 261776.23, 2],
       [61994.48, 115641.28, 91131.24, 1],
       [63408.86, 129219.61, 46085.25, 0],
       [78013.11, 121597.55, 264346.06, 0],
       [23640.93, 96189.63, 148001.11, 0],
       [76253.86, 113867.3, 298664.47, 0],
       [15505.73, 127382.3, 35534.17, 2],
       [120542.52, 148718.95, 311613.29, 2],
       [91992.39, 135495.07, 252664.93, 0],
       [64664.71, 139553.16, 137962.62, 0],
       [131876.9, 99814.71, 362861.36, 2],
       [94657.16, 145077.58, 282574.31, 2],
       [28754.33, 118546.05, 172795.67, 0],
       [0.0, 116983.8, 45173.06, 0],
       [162597.7, 151377.59, 443898.53, 0],
       [93863.75, 127320.38, 249839.44, 1],
       [44069.95, 51283.14, 197029.42, 0],
       [77044.01, 99281.34, 140574.81, 2],
       [134615.46, 147198.87, 127716.82, 0],
       [67532.53, 105751.03, 304768.73, 1],
       [28663.76, 127056.21, 201126.82, 1],
       [78389.47, 153773.43, 299737.29, 2],
       [86419.7, 153514.11, 0.0, 2],
       [123334.88, 108679.17, 304981.62, 0],
       [38558.51, 82982.09, 174999.3, 0],
       [1315.46, 115816.21, 297114.46, 1],
       [144372.41, 118671.85, 383199.62, 2],
       [165349.2, 136897.8, 471784.1, 2],
       [0.0, 135426.92, 0.0, 0],
       [22177.74, 154806.14, 28334.72, 0]], dtype=object)
```

In [106]:

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x_train,y_train)
print('Model has been trained successfully')
```

Model has been trained successfully

6.Model testing

In [107]:

```
y_pred=model.predict(x_test)
y_pred
```

Out[107]:

```
array([104055.1842384 , 132557.60289702, 133633.01284474, 72336.28081054, 179658.27210893, 114689.63133397, 66514.82249033, 98461.69321326, 114294.70487032, 169090.51127461, 96281.907934 , 88108.30057881, 110687.1172322 , 90536.34203081, 127785.3793861 ])
```

In [108]:

```
testing_data_model_score = model.score(x_test, y_test)
print("Model Score/Performance on Testing data",testing_data_model_score)

training_data_model_score = model.score(x_train, y_train)
print("Model Score/Performance on Training data",training_data_model_score)
```

Model Score/Performance on Testing data 0.9355139722149947 Model Score/Performance on Training data 0.9515496105627431

In [109]:

```
df = pd.DataFrame(data={'Predicted value':y_pred.flatten(),'Actual Value':y_test.flatten()}
df  #Comparing the predicted values and actual values
```

Out[109]:

	Predicted value	Actual Value
0	104055.184238	103282.38
1	132557.602897	144259.40
2	133633.012845	146121.95
3	72336.280811	77798.83
4	179658.272109	191050.39
5	114689.631334	105008.31
6	66514.822490	81229.06
7	98461.693213	97483.56
8	114294.704870	110352.25
9	169090.511275	166187.94
10	96281.907934	96778.92
11	88108.300579	96479.51
12	110687.117232	105733.54
13	90536.342031	96712.80
14	127785.379386	124266.90

Inference:

As we can see that the predicted value is close to the actual values i.e the one present in the testing set, Hence we can use this model for prediction. But first, we need to calculate how much is the error generated.

6.Model Evaluation

1. R2 score: R2 score – R squared score. It is one of the statistical approaches by whichwe can find the variance or the spread of the target and feature data.

```
In [110]:
```

```
from sklearn.metrics import r2_score

r2Score = r2_score(y_pred, y_test)
print("R2 score of model is :" ,r2Score*100)
```

R2 score of model is: 93.39448007716634

2. MSE: MSE – Mean Squared Error. By using this approach we can find that how much the regression best fit line is close to all the residual.

In [111]:

```
from sklearn.metrics import mean_squared_error

mse = mean_squared_error(y_pred, y_test)
print("Mean Squarred Error is :" ,mse*100)
```

Mean Squarred Error is : 6224496238.946447

3.RMSE: RMSE - Root Mean Squared Error

In [112]:

```
rmse = np.sqrt(mean_squared_error(y_pred, y_test))
print("Root Mean Squarred Error is : ",rmse*100)
```

Root Mean Squarred Error is : 788954.7666974608

In [113]:

data1=startup_data.rename({'R&D Spend':'RDS','Administration':'ADMS','Marketing Spend':'MKT
data1

Out[113]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92

	RDS	ADMS	MKTS	State	Profit
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

In [137]:

```
#Building SLR and MLR models for insignificant variavles'ADMS' & 'MKTS' &
#Also finding tvalues and pvalues
slr_ADMS=smf.ols('Profit~ADMS',data=data1).fit() #SIMPLE LINEAR REGRESSION
slr_ADMS.tvalues,slr_ADMS.pvalues
```

Out[137]:

(Intercept 3.040044 ADMS 1.419493 dtype: float64,

Intercept 0.003824 ADMS 0.162217

dtype: float64)

In [171]:

```
slr_MKTS=smf.ols('Profit~MKTS',data=data1).fit() #SIMPLE LINEAR REGRESSION
slr_MKTS.tvalues,slr_MKTS.pvalues
```

Out[171]:

(Intercept 7.808356 MKTS 7.802657

dtype: float64,

Intercept 4.294735e-10 MKTS 4.381073e-10

dtype: float64)

In [172]:

```
mlr_ADMS_MKTS=smf.ols('Profit~ADMS+MKTS',data=data1).fit()
mlr_ADMS_MKTS.tvalues,mlr_ADMS_MKTS.pvalues
```

Out[172]:

(Intercept 1.142741 ADMS 2.467779 MKTS 8.281039 dtype: float64,

Intercept 2.589341e-01 ADMS 1.729198e-02 MKTS 9.727245e-11

dtype: float64)

7. Model Validation

Two Techniques: 1. Collinearity Check & 2. Residual Analysis

#1) Collinearity Problem Check

#Calculate VIF = 1/(1-Rsquare) for all independent variables

In [173]:

```
rsq_RDS=smf.ols('RDS~ADMS+MKTS',data=data1).fit().rsquared
vif_RDS=1/(1-rsq_RDS)

rsq_ADMS=smf.ols('ADMS~RDS+MKTS',data=data1).fit().rsquared
vif_ADMS=1/(1-rsq_ADMS)

rsq_MKTS=smf.ols('MKTS~RDS+ADMS',data=data1).fit().rsquared
vif_MKTS=1/(1-rsq_MKTS)

# putting in a data frame format
d1={'Variables':['RDS','ADMS','MKTS'],'VIF':[vif_RDS,vif_ADMS,vif_MKTS]}
pd.DataFrame(d1)
```

Out[173]:

	Variables	VIF
0	RDS	2.468903
1	ADMS	1.175091
2	MKTS	2.326773

None variable has VIF>20, No Collinearity, so consider all varaibles in Regression equation

In [141]:

```
#2) Residual Analysis
# Test for Normality of Residuals (Q-Q Plot) using residual model (model.resid)
```

In [142]:

```
import statsmodels.api as sm
```

In [147]:

```
model=smf.ols("Profit~RDS+ADMS+MKTS",data=data1).fit() #model building
```

In [148]:

```
sm.qqplot(model.resid,line='q')
plt.title('Normal Q-Q plot of residuals')
plt.show()
```


In [149]:

```
list(np.where(model.resid<-30000))</pre>
```

Out[149]:

[array([49], dtype=int64)]

In [150]:

```
# Test for Homoscedasticity or Heteroscedasticity (plotting model's standardized fitted val
def standard_values(vals) : return (vals-vals.mean())/vals.std() # User defined z = (x - mu
plt.scatter(standard_values(model.fittedvalues),standard_values(model.resid))
plt.title('Residual Plot')
plt.xlabel('standardized fitted values')
plt.ylabel('standardized residual values')
plt.show()
```


In [151]:

Test for errors or Residuals Vs Regressors or independent 'x' variables or predictors
using Residual Regression Plots code graphics.plot_regress_exog(model,'x',fig) # exog = x
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'RDS',fig=fig)
plt.show()

In [152]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'ADMS',fig=fig)
plt.show()
```


In [153]:

```
fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'MKTS',fig=fig)
plt.show()
```


In [154]:

```
# Model Deletion Diagnostics (checking Outliers or Influencers)
# Two Techniques : 1. Cook's Distance & 2. Leverage value
# 1. Cook's Distance: If Cook's distance > 1, then it's an outlier
# Get influencers using cook's distance
(c,_)=model.get_influence().cooks_distance
c
```

Out[154]:

```
array([3.21825244e-05, 3.27591036e-03, 3.23842699e-02, 2.17206555e-02, 1.44833032e-02, 1.17158463e-02, 2.91766303e-03, 3.56513444e-03, 4.04303948e-05, 4.86758017e-03, 1.51064757e-02, 1.63564959e-02, 1.15516625e-02, 4.01422811e-03, 6.12934253e-02, 3.40013448e-02, 8.33556413e-03, 3.30534399e-03, 2.16819303e-03, 4.07440577e-02, 4.25137222e-04, 1.09844352e-02, 2.91768000e-03, 2.76030254e-04, 5.04643588e-03, 3.00074623e-03, 3.41957068e-03, 2.98396413e-02, 1.31590664e-03, 1.25992620e-04, 4.18505125e-05, 9.27434786e-06, 7.08656521e-04, 1.28122674e-04, 2.09815032e-02, 6.69508674e-03, 5.55314705e-02, 6.55050578e-05, 5.61547311e-02, 1.54279607e-03, 1.84850929e-03, 1.97578066e-03, 1.36089280e-04, 2.05553171e-02, 1.23156041e-04, 9.03234206e-02, 5.45303387e-02, 5.33885616e-03, 1.90527441e-01, 2.88082293e-01])
```

In [155]:

```
# Plot the influencers using the stem plot
fig=plt.figure(figsize=(20,7))
plt.stem(np.arange(len(data1)),np.round(c,5))
plt.xlabel('Row Index')
plt.ylabel('Cooks Distance')
plt.show()
```


In [156]:

```
# Index and value of influencer where C>0.5
np.argmax(c) , np.max(c)
```

Out[156]:

(49, 0.2880822927543263)

In [157]:

```
# 2. Leverage Value using High Influence Points : Points beyond Leverage_cutoff value are i
influence_plot(model)
plt.show()
```


In [158]:

```
# Leverage Cuttoff Value = 3*(k+1)/n; k = no.of features/columns & n = no. of datapoints
k=data1.shape[1]
n=data1.shape[0]
leverage_cutoff = (3*(k+1))/n
leverage_cutoff
```

Out[158]:

0.36

In [159]:

data1[data1.index.isin([49])]

Out[159]:

	RDS	ADMS	MKTS	State	Profit
49	0.0	116983.8	45173.06	California	14681 4

In [160]:

Improving the Model

Discard the data points which are influencers and reassign the row number (reset_index(dr
data2=data1.drop(data1.index[[49]],axis=0).reset_index(drop=True)
data2

Out[160]:

	RDS	ADMS	MKTS	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84

	RDS	ADMS	MKTS	State	Profit
33	55493.95	103057.49	214634.81	Florida	96778.92
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41

In [161]:

```
# Model Deletion Diagnostics and Final Model
while np.max(c)>0.5 :
    model=smf.ols("Profit~RDS+ADMS+MKTS",data=data2).fit()
    (c,_)=model.get_influence().cooks_distance
    c
    np.argmax(c) , np.max(c)
    data2=data2.drop(data2.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
    data2
else:
    final_model=smf.ols("Profit~RDS+ADMS+MKTS",data=data2).fit()
    final_model.rsquared , final_model.aic
    print("Thus model accuracy is improved to",final_model.rsquared)
```

Thus model accuracy is improved to 0.9613162435129847

In [165]:

```
final_model.rsquared
```

Out[165]:

0.9613162435129847

In [166]:

```
data2
30
      61994.48 115641.28
                                                 99937.59
                            91131.24
                                        Florida
      61136.38 152701.92
31
                            88218.23 New York
                                                 97483.56
      63408.86 129219.61
                            46085.25 California
                                                 97427.84
32
33
      55493.95 103057.49 214634.81
                                        Florida
                                                 96778.92
34
      46426.07 157693.92 210797.67 California
                                                 96712.80
      46014.02
                 85047.44 205517.64 New York
                                                 96479.51
35
36
      28663.76 127056.21 201126.82
                                        Florida
                                                 90708.19
37
      44069.95
                 51283.14 197029.42 California
                                                 89949.14
38
      20229.59
                 65947.93 185265.10 New York
                                                 81229.06
39
      38558.51
                 82982.09 174999.30 California
                                                 81005.76
 40
      28754.33 118546.05 172795.67 California
                                                 78239.91
 41
      27892.92
                 84710.77 164470.71
                                        Florida
                                                 77798.83
```

In [167]:

```
# Model Predictions
# say New data for prediction is
new_data=pd.DataFrame({'RDS':70000,"ADMS":90000,"MKTS":140000},index=[0])
new_data
```

Out[167]:

	RDS	ADMS	MKTS
n	70000	90000	140000

In [168]:

```
# Manual Prediction of Price
final_model.predict(new_data)
```

Out[168]:

0 108727.154753 dtype: float64

In [169]:

```
# Automatic Prediction of Price with 90.02% accurcy
pred_y=final_model.predict(data2)
pred_y
Out[169]:
```

```
Out[169]:
      190716.676999
1
      187537.122227
2
      180575.526396
3
      172461.144642
4
      170863.486721
      162582.583177
5
6
      157741.338633
7
      159347.735318
8
      151328.826941
9
      154236.846778
10
      135507.792682
11
      135472.855621
12
      129355.599449
13
      127780.129139
14
      149295.404796
15
      145937.941975
16
      117437.627921
17
      130408.626295
```

In [170]:

```
# table containing R^2 value for each prepared model
d2={'Prep_Models':['Model','Final_Model'],'Rsquared':[model.rsquared,final_model.rsquared]}
table=pd.DataFrame(d2)
table
```

Out[170]:

	Prep_Models	Rsquared
0	Model	0.950746
1	Final Model	0.961316