RNN

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 380, 32)	121600
dropout_1 (Dropout)	(None, 380, 32)	0
simple_rnn_1 (SimpleRNN)	(None, 16)	784
dense_1 (Dense)	(None, 256)	4352
dropout_2 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 1)	257

Total params: 126,993 Trainable params: 126,993 Non-trainable params: 0

RNN (Dropout =0) the accuracy for RNN is: 0.84444

RNN (Dropout =0.7) the accuracy for RNN is: 0.81111

加入 Dropout 影響:加入 Dropout 後可以看到 accuracy 些微下降,但是 training loss 收斂的幅度大幅增加,且 validation loss 也相對穩定,有明顯改善模型訓練過程的效果。

是否有過度擬合:Dropout = 0 的情況下,train loss 持續在下降,但 validation loss 從第 3 個 epoch 之後不降反升,確實出現過度擬合的情況,應該停止訓練,而 Dropout = 0.7 的 training loss 和 validation loss 在最後幾個 epoch 已經逐漸收斂,且之間相差很小,沒有明顯過度擬合的情況。

Layer (type)	Output Shape	Param #
embedding_3 (Embedding)	(None, 380, 32)	121600
dropout_4 (Dropout)	(None, 380, 32)	0
lstm_1 (LSTM)	(None, 32)	8320
dense_3 (Dense)	(None, 256)	8448
dropout_5 (Dropout)	(None, 256)	0
dense_4 (Dense)	(None, 1)	257

Total params: 138,625 Trainable params: 138,625 Non-trainable params: 0

LSTM (Dropout =0) the accuracy for LSTM is: 0.83333

LSTM (Dropout =0.7) the accuracy for LSTM is: 0.82222

加入 Dropout 影響:加入 Dropout 後 accuracy 些微下降,validation loss 回升的比例減少是否有過度擬合:Dropout = 0 的情況下,train loss 持續在下降,但 validation loss 從第 4 個 epoch 之後不降反升,確實出現過度擬合的情況,應該停止訓練,而 Dropout = 0.7 的 validation loss 在第 6 個 epoch 之後出現回升的現象,有些微的過度擬合的現象。

RNN 與 LSTM 結果比較:以準確率看來 RNN 和 LSTM 的結果沒有相差很多,但 LSTM 的模型在不管有沒有加入 Dropout · training loss 的收斂狀態都比較穩定,相較起來模型訓練的狀況略優於 RNN 模型。