# Законы идеального газа Молекулярно-кинетическая теория

Статическая физика и термодинамика

#### Статическая физика и термодинамика

**Макроскопические тела** - это тела, состоящие из большого количества молекул

Методы исследования:

- статистический (молекулярно-кинетический)
- термодинамический

#### Термодинамика

раздел физики, изучающий общие свойства
 макроскопических систем, находящихся в состоянии
 термодинамического равновесия, и процессы перехода
 между этими состояниями

**Термодинамическое равновесие** – состояние тела, при котором все точки системы имеют одинаковые и постоянные значение термодинамических макропараметров

#### Термодинамика

**Термодинамическая система** — совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой).

**Термодинамические макропараметры** (параметры состояния):

Давление, плотность, температура, концентрация, объем, напряженность электрического и магнитного полей

# Температура

 физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы

#### Шкалы:

- Термодинамическая (в кельвинах)
- Международная практическая (в градусах Цельсия)

$$T = t^{\circ}C + 273 \text{ K}$$

#### Молекулярная (статистическая) физика

раздел физики, изучающий строение и свойства
 вещества исходя из молекулярно-кинетических
 представлений, основывающихся на том, что все тела
 состоят из молекул, находящихся в непрерывном
 хаотическом движении

Статистическими метод основан на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы, и усредненными значениями характеристик этих частиц (скорости, энергии и т. д.)

## Молекулярно-кинетическая теория

#### Основные положения:

- 1. Все вещества состоят из мельчайших частиц: молекул, атомов или ионов
- 2. Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества
- 3. Между частицами существуют силы притяжения и отталкивания

## Доказательства МКТ

- Расширение газов
- Смачивание жидкостями
- Диффузия
- Броуновское движение

#### Идеальный газ

- Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда
- Между молекулами газа отсутствуют силы взаимодействия
- **Столкновения** молекул газа между собой и со стенками сосуда абсолютно **упругие**

Внеся поправки, учитывающие собственный объем молекул газа и действующие молекулярные силы, можно перейти к теории реальных газов

#### Законы идеального газа

- Закон Авогадро
- Закон Дальтона
- Закон Бойля-Мариотта
- Закон Гей-Люссака
- Закон Шарля

#### Количество вещества ν

**Постоянная (число) Авогадро** – число молекул в одном моле вещества

$$N_A = 6.022 \cdot 10^{23}$$

**Моль вещества** – количество вещества, содержащее  $N_A$  структурных элементов (атомов, молекул)

## Закон Авогадро

Моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы

При нормальных условиях  $V_m = 22,\!41 \cdot 10^{-3} \; \mathrm{M}^3$ 

#### Закон Дальтона

Давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов

$$P = P_1 + P_2 + \dots + P_n$$

Парциальное давление — давление, которое производил бы газ, если бы он один занимал объем, равный объему смеси при той же температуре

# Закон Бойля—Мариотта

Для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная

**Изотермический процесс –** процесс, протекающий при постоянной температуре

$$PV = const$$

$$P_1V_1 = P_2V_2$$



#### Закон Гей-Люссака

Объем данной массы газа при постоянном давлении изменяется линейно с температурой

Процесс изобарный – процесс, протекающий при постоянном давлении

$$\frac{V}{T} = const$$
$$V = V_0 \alpha T$$



#### Закон Шарля

Давление данной массы газа при постоянном объеме изменяется линейно с температурой

Процесс изохорный – процесс, протекающий при постоянном объеме

$$\frac{P}{T} = const$$

$$P = P_0 \alpha T$$



# Уравнение состояния

– уравнение, связывающее между собой термодинамические (макроскопические) параметры системы

$$f(P, V, T) = 0$$

#### Уравнение Клайперона

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \qquad \frac{PV}{T} = const$$

# Уравнение Клайперона-Менделеева

$$\frac{PV_{\mu}}{T} = R$$
  $PV_{\mu} = RT$   $R = 8.31 \frac{Дж}{моль \cdot K}$ 

$$PV = \nu RT = \frac{m}{\mu}RT$$

$$\mu = \left[\frac{\kappa \Gamma}{MOJIb}\right]$$
 – молярная масса

$$u = \frac{m}{\mu} = [\text{моль}]$$
 – количество вещества

$$R = k \cdot N_A$$

$$k = 1,\!38 \cdot 10^{-23} \, rac{ extstyle exts$$

$$P = \frac{RT}{V_{\mu}} = \frac{N_A}{V_{\mu}} kT = nkT$$

Давление идеального газа при данной температуре прямо пропорционально концентрации его молекул

При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул

$$m_0 v - (-m_0 v) = 2m_0 v$$

 $m_0$  – масса молекулы,  $v_0$  – скорость

Число молекул в цилиндре

$$n \cdot \Delta S \cdot v \cdot \Delta t$$

Число ударов молекул, движущихся в заданном направлении

$$\frac{1}{6}n \cdot \Delta S \cdot v \cdot \Delta t$$



Импульс

$$\Delta p = 2m_0 v \cdot \frac{1}{6} n \cdot \Delta S \cdot v \cdot \Delta t$$

Давление газа

$$P = \frac{F}{\Delta S} = \frac{\Delta p}{\Delta S \cdot \Delta t} = \frac{1}{3} n m_0 v^2$$

Средняя квадратичная скорость

$$\langle v_{\text{\tiny KB}} \rangle = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v_i^2}$$



Средняя квадратичная скорость

$$\langle v_{\text{\tiny KB}} \rangle = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v_i^2}$$

$$\langle v_{\text{\tiny KB}} \rangle = \sqrt{\frac{3RT}{\mu}} = \sqrt{\frac{3kT}{m_0}}$$

$$P = \frac{1}{3} n m_0 \langle v_{KB} \rangle^2$$

Средняя кинетическая энергия поступательного движения одной молекулы идеального газа

$$\langle \varepsilon_0 \rangle = \frac{E}{N} = \frac{m_0 \langle v_{\text{KB}} \rangle^2}{2} = \frac{3}{2} kT$$

Термодинамическая температура является мерой средней кинетической энергии поступательного движения молекул идеального газа

#### Распределение Максвелла

В газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям

Функция распределения молекул по скоростям

## Распределение Максвелла

Функция f(v) определяет относительное число молекул, скорости которых лежат

в интервале от v до v+dv

$$\frac{dN(v)}{N} = f(v)dv$$

$$f(v) = \frac{dN(v)}{Ndv}$$



# Закон о распределения молекул идеального газа по скоростям

$$f(v) = 4\pi \left(\frac{m_0}{2\pi kT}\right)^{\frac{3}{2}} v^2 e^{\left[-\frac{m_0 v^2}{2kT}\right]}$$

$$\int_{0}^{\infty} f(v)dv = 1$$



# Закон о распределения молекул идеального газа по скоростям

Наиболее вероятная скорость

$$v_{\rm B} = \sqrt{\frac{2kT}{m_0}} = \sqrt{\frac{2RT}{\mu}}$$

Средняя арифметическая скорость

$$\langle v \rangle = \int_{0}^{\infty} v f(v) dv = \sqrt{\frac{8kT}{\pi m_0}} = \sqrt{\frac{8RT}{\pi \mu}}$$

#### Распределение Максвелла

Распределение молекул по скоростям

$$dN(v) = N \cdot 4\pi \left(\frac{m_0}{2\pi kT}\right)^{\frac{3}{2}} v^2 e^{\left[-\frac{m_0 v^2}{2kT}\right]} \cdot dv$$

#### Распределение Максвелла

$$v = \sqrt{\frac{2\varepsilon}{m_0}}$$

Распределение молекул по энергиям теплового движения

$$dN(\varepsilon) = \frac{2N}{\sqrt{\pi}} (kT)^{-\frac{3}{2}} \cdot \varepsilon^{\frac{1}{2}} \cdot e^{-\frac{\varepsilon}{kT}} d\varepsilon$$

#### Распределение молекул в силовом поле

Разность давлений

$$P - (P + dP) = \rho \cdot g \cdot dh$$

$$dP = -\rho \cdot g \cdot dh$$

$$\rho = \frac{m}{V} = \frac{P\mu}{RT}$$



#### Распределение молекул в силовом поле

Разность давлений

$$P - (P + dP) = \rho \cdot g \cdot dh \quad dP = -\frac{\mu g}{RT} \cdot P \cdot dh$$

$$dP = -\rho \cdot g \cdot dh$$

$$P_2 = P_1 e^{-\frac{\mu g}{RT}(h_2 - h_1)}$$

$$\rho = \frac{m}{V} = \frac{P\mu}{RT}$$

#### Барометрическая формула

$$P = P_0 e^{-\frac{\mu g h}{RT}}$$

$$P = nkT$$

$$n = n_0 e^{-\frac{m_0 gh}{kT}} = n_0 e^{-\frac{W_{\text{пот}}}{kT}}$$

$$W_{\text{пот}} = m_0 g h$$



$$n = n_0 e^{-\frac{W_{\text{пот}}}{kT}}$$

При постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул



# Длина свободного пробега

расстояние между двумя последовательными столкновениями молекулы

#### Эффективный диаметр молекулы d

 – минимальное расстояние, на которое сближаются при столкновении центры двух молекул



## Длина свободного пробега





 $\langle z \rangle$  – среднее число столкновений, испытываемых одной молекулой газа за 1 с

$$\langle z \rangle = \sqrt{2}\pi d^2 n \langle v \rangle$$