### d-c test circuits†



#### TEST TABLE

| CIRCUIT  | INPUTS         | V .              | V      | OUTPUT Y |                 |       | OUTPUT Z |         |       |
|----------|----------------|------------------|--------|----------|-----------------|-------|----------|---------|-------|
| TYPE     | INFOIS         | V <sub>ref</sub> | VID    | νo       | <sup>I</sup> ОН | loL   | Vο       | Іон     | lor   |
|          | A1-A2 or B1-B2 | 15 mV            | ≤11 mV | ≤0.4 V   |                 | 16 mA | ≥2.4 V   | -400 μA |       |
| SN7520   | A1-A2 or B1-B2 | 15 mV            | ≥19 mV | ≥2.4 V   | -400 μA         |       | ≤0.4 V   |         | 16 mA |
| SIN /520 | A1-A2 or B1-B2 | 40 mV            | ≤36 mV | ≤0.4 V   |                 | 16 mA | ≥2.4 V   | -400 μA |       |
|          | A1-A2 or B1-B2 | 40 mV            | ≥44 mV | ≥2.4 V   | -400 μA         |       | ≤0.4 V   |         | 16 mA |
|          | A1-A2 or B1-B2 | 15 mV            | ≤ 8 mV | ≤0.4 V   |                 | 16 mA | ≥2.4 V   | 400 μA  |       |
| CNITCO   | A1-A2 or B1-B2 | 15 mV            | ≥22 mV | ≥2.4 V   | -400 μA         |       | ≤0.4 V   |         | 16 mA |
| SN7521   | A1-A2 or B1-B2 | 40 mV            | ≤33 mV | ≤0.4 V   |                 | 16 mA | ≥2.4 V   | 400 μA  |       |
|          | A1-A2 or B1-B2 | 40 mV            | ≥47 mV | ≥2.4 V   | -400 μA         |       | ≤0.4 V   |         | 16 mA |

NOTE A: Each pair of differential inputs is tested separately with the other pair grounded.

FIGURE 1-VT

<sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

# d-c test circuits† (continued)



NOTES: A. Each preamplifier is tested separately, Inputs not under test are grounded.

B. I<sub>1B</sub> = I<sub>1(1)</sub> or I<sub>1(2)</sub> (limit applies to each); I<sub>1O</sub> = I<sub>1(1)</sub>-I<sub>1(2)</sub>; I<sub>1(1)</sub>and I<sub>1(2)</sub> are the currents into the two inputs of the pair under

#### PIN CONNECTIONS (OTHER THAN THOSE SHOWN ABOVE)

| CIRCUIT TYPES                         | 100 pF to GND                           | APPLY VCC+                      | APPLY GND                               | LEAVE OPEN                    | OTHER |
|---------------------------------------|-----------------------------------------|---------------------------------|-----------------------------------------|-------------------------------|-------|
| SN7520, SN7521                        | C <sub>ext</sub>                        | G <sub>Y</sub> , G <sub>Z</sub> | S <sub>A</sub> , S <sub>B</sub>         | Y, Z<br>(13) (12)             |       |
| SN7522, SN7523                        | C <sub>ext</sub>                        | G<br>(14)                       | S <sub>A</sub> , S <sub>B</sub> , GND 2 |                               | RL, Y |
| SN7524, SN7525                        | C <sub>ext</sub>                        |                                 | 15, 25, GND 2<br>(15) (1) (13)          | 1W, 2W<br>14 12               |       |
| SN7526, SN7527                        |                                         | PRESET, CLEAR                   | S <sub>A</sub> , S <sub>B</sub>         | 0. <b>0</b><br>1213           |       |
| SN7528, SN7529                        | C <sub>ext</sub>                        |                                 | 1S, 2S<br>(14)(11)                      | 1P, 2P, 1W, 2W<br>15 10 13 12 |       |
| SN75232, SN75233,<br>SN75234, SN75235 | , , , , , , , , , , , , , , , , , , , , |                                 | 1S, 2S, GND 2<br>15 11 13               | 1W, 2W<br>14 12               |       |
| SN75238, SN75239                      |                                         |                                 | 15, 2s<br>(14)(1)                       | 1P, 2P, 1W, 2W<br>15 10 13 12 |       |

FIGURE 2-I<sub>IB</sub>, I<sub>IO</sub>

TEXAS INSTRUMENTS
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

<sup>†</sup> Arrows indicate actual direction of current flow. Current into a terminal is a positive value,

# d-c test circuits† (continued)



FIGURE 3-VIH, VIL, VOH, VOL



TEST TABLE

| TEST                                     | INPUT | INPUT | STROBE | STROBE | GATE | GATE |
|------------------------------------------|-------|-------|--------|--------|------|------|
| 1631                                     | A1    | B1    | SA     | SB     | GY   | GZ   |
| I <sub>IH</sub> at STROBE SA             | GND   | GND   | ViH    | VIL    | VIL  | VIL  |
| I <sub>IH</sub> at STROBE S <sub>B</sub> | GND   | GND   | VIL    | VIH    | VIL  | VIL  |
| I <sub>IH</sub> at GATE G <sub>Y</sub>   | VID   | VID   | VIH    | VIH    | VIH  | VIL  |
| I <sub>IH</sub> at GATE GZ               | GND   | GND   | VIL    | VIL    | VIH  | VIH  |
| IIL at STROBE SA                         | VID   | GND   | VIL    | VIL    | VIL  | VIL  |
| IIL at STROBE SB                         | GND   | VID   | VIL    | VIL    | VIL  | VIL  |
| IIL at GATE GY                           | GND   | GND   | VIL    | VIL    | VIL  | VIL  |
| IIL at GATE GZ                           | GND   | GND   | VIL    | VIL    | VIL  | VIL  |

FIGURE 4-I<sub>IH</sub>, I<sub>IL</sub>

TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

<sup>&</sup>lt;sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

# d-c test circuits† (continued)



NOTE A: When testing  $I_{OS(Y)}$ , Pin 10 is open; when testing  $I_{OS(Z)}$ , Pin 10 is grounded.



#### PIN CONNECTIONS (OTHER THAN THOSE SHOWN ABOVE)

| CIRCUIT TYPES    | 100 pF to GND    | APPLY GND                       | LEAVE OPEN                          |
|------------------|------------------|---------------------------------|-------------------------------------|
| SN7520, SN7521   | C <sub>ext</sub> | Gy, Gz, SA, SB<br>(4)(0)(5)(1)  | Y, Z<br>(13)(12)                    |
| SN7522, SN7523   | C <sub>ext</sub> | G, SA, SB, GND 2<br>14 15 11 13 | R <sub>L</sub> , ¥<br>(10)(12)      |
| SN7524, SN7525   | C <sub>ext</sub> | 15, 25, GND 2<br>15(1) (13      | 1W, 2W<br>(14) (12)                 |
| SN7526, SN7527   |                  | SA, SB<br>15 11                 | PRESET, CLEAR, Q, 0<br>10 14 12 13  |
| SN7528, SN7529   | C <sub>ext</sub> | 18, 28                          | 1P, 2P, 1W, 2W<br>15 (10) (13) (12) |
| SN75234, SN75235 |                  | 15, 25, GND 2<br>15(11) (13)    | 1W, 2W<br>14 12                     |
| SN75238, SN75239 |                  | 1S, 2S<br>(14)(11)              | 1P, 2P, 1W, 2W<br>(15)(10)(13)(12)  |

FIGURE 6-ICC+, ICC-

TEXAS INSTRUMENTS

<sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

# d-c test circuits† (continued)



**TEST TABLE** 

| CIRCUIT | INPUTS         | ١.,              |        | ОИТРИТ |         |       |
|---------|----------------|------------------|--------|--------|---------|-------|
| TYPE    | INPUIS         | V <sub>ref</sub> | VID    | Vo     | ІОН     | loL   |
| SN7522  | A1-A2 or B1-B2 | 15 mV            | ≤11 mV | ≥2.4 V | -400 μA |       |
|         | A1-A2 or B1-B2 | 15 mV            | ≥19 mV | ≤0.4 V |         | 16 mA |
|         | A1-A2 or B1-B2 | 40 mV            | ≤36 mV | ≥2.4 V | -400 μA |       |
|         | A1-A2 or B1-B2 | 40 mV            | ≥44 mV | ≤0.4 V |         | 16 mA |
|         | A1-A2 or B1-B2 | 15 mV            | ≤ 8 mV | ≥2.4 V | -400 μA |       |
| 0117500 | A1-A2 or B1-B2 | 15 mV            | ≥22 mV | ≤0.4 V |         | 16 mA |
| SN7523  | A1-A2 or B1-B2 | 40 mV            | ≤33 mV | ≥2.4 V | -400 μA |       |
|         | A1-A2 or B1-B2 | 40 mV            | ≥47 mV | ≤0.4 V |         | 16 mA |

NOTE A: Each pair of differential inputs is tested separately with the other pair grounded.

FIGURE 7--VT



FIGURE 8- $V_{1H}$ ,  $V_{1L}$ ,  $V_{OH}$ ,  $V_{OL}$ 

EXAS INSTRUMENTS

POST OFFICE BOX 5012 - DALLAS, TEXAS 75222

11

<sup>&</sup>lt;sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

# SERIES 7520 SENSE AMPLIFIERS

### PARAMETER MEASUREMENT INFORMATION

# d-c test circuits† (continued)



**TEST TABLE** 

| TEST                                     | INPUT | INPUT | STROBE | STROBE | GATE |
|------------------------------------------|-------|-------|--------|--------|------|
| 1591                                     | A1    | B1    | SA     | SB     | G    |
| I <sub>IH</sub> at STROBE S <sub>A</sub> | GND   | GND   | VIH    | VIL    | VIH  |
| I <sub>IH</sub> at STROBE S <sub>B</sub> | GND   | GND   | VIL    | ViH    | VIH  |
| I <sub>IH</sub> at GATE                  | VID   | VID   | ViH    | VIH    | VIH  |
| IIL at STROBE SA                         | VID   | GND   | VIL    | VIL    | ViH  |
| IIL at STROBE SB                         | GND   | VID   | VIL    | VIL    | VIH  |
| IIL at GATE                              | GND   | GND   | VIL    | VIL    | VIL  |

FIGURE 9-11H, IIL



FIGURE 10-IOH

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

<sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

# d-c test circuits† (continued)



FIGURE 11-IOS



TEST TABLE

| CIRCUIT | INPUTS |                  |        | OUTPUT |         |       |  |
|---------|--------|------------------|--------|--------|---------|-------|--|
| TYPE    | INFUIS | V <sub>ref</sub> | VID    | ٧o     | ІОН     | loL   |  |
| SN7524  | A1-A2  | 15 mV            | ≤11 mV | ≤0.4 V |         | 16 mA |  |
|         | A1-A2  | 15 mV            | ≥19 mV | ≥2.4 V | -400 μA |       |  |
|         | A1-A2  | 40 mV            | ≤36 mV | ≤0.4 V |         | 16 mA |  |
|         | A1-A2  | 40 mV            | ≥44 mV | ≥2.4 V | -400 μA |       |  |
|         | A1-A2  | 15 mV            | ≤ 8 mV | ≤0.4 V |         | 16 mA |  |
| SN7525  | A1-A2  | 15 mV            | ≥22 mV | ≥2.4 V | -400 μA |       |  |
|         | A1-A2  | 40 mV            | ≤33 mV | ≤0.4 V |         | 16 mA |  |
|         | A1-A2  | 40 mV            | ≥47 mV | ≥2.4 V | -400 μA |       |  |

NOTE A: Each pair of differential inputs is tested separately with its corresponding output.

FIGURE 12-VT

†Arrows indicate actual direction of current flow, Current into a terminal is a positive value.

EXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

d-c test circuits† (continued)



FIGURE 13- $V_{IH}$ ,  $V_{IL}$ ,  $V_{OH}$ ,  $V_{OL}$ 



TEST TABLE

| TEST                         | INPUT 1A1       | INPUT 2A1 | STROBE 1S | STROBE 2S |
|------------------------------|-----------------|-----------|-----------|-----------|
| I <sub>IH</sub> at STROBE 1S | GND             | GND       | VIH       | VIL       |
| I <sub>IH</sub> at STROBE 2S | GND             | GND       | VIL       | VIH       |
| IIL at STROBE 1S             | V <sub>ID</sub> | GND       | VIL       | VIL       |
| IIL at STROBE 2S             | GND             | VID       | VIL       | VIL       |

FIGURE 14-IIH, IIL

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

<sup>†</sup>Arrows indicate actual direction of current flow, Current into a terminal is a positive value,





TEST TABLE

| CIRCUIT | CIRCUIT        |                  |        | OUTPUT Q |         |       | оитрит б |         |       |
|---------|----------------|------------------|--------|----------|---------|-------|----------|---------|-------|
| TYPE    | INPUTS         | V <sub>ref</sub> | VID    | νo       | іон     | lOL   | νo       | ІОН     | lOL   |
|         | A1-A2 or B1-B2 | 15 mV            | ≤11 mV | ≤0.4 V   |         | 16 mA | ≥2.4 V   |         | 16 mA |
| 0117500 | A1-A2 or B1-B2 | 15 mV            | ≥19 mV | ≥2.4 V   | –400 μA |       | ≤0.4 V   | -400 μA |       |
| SN7526  | A1-A2 or B1-B2 | 40 mV            | ≤36 mV | ≤0.4 V   |         | 16 mA | ≥2.4 V   |         | 16 mA |
|         | A1-A2 or B1-B2 | 40 mV            | ≽44 mV | ≥2.4 V   | -400 μA |       | ≤0.4 V   | 400 μA  |       |
|         | A1-A2 or B1-B2 | 15 mV            | ≤ 8 mV | ≤0.4 V   |         | 16 mA | ≥2.4 V   |         | 16 mA |
| 0117507 | A1-A2 or B1-B2 | 15 mV            | ≥22 mV | ≥2.4 V   | 400 μA  |       | ≤0.4 V   | -400 μA |       |
| SN7527  | A1-A2 or B1-B2 | 40 mV            | ≤33 mV | ≤0.4 V   |         | 16 mA | ≥2.4 V   |         | 16 mA |
|         | A1-A2 or B1-B2 | 40 mV            | ≽47 mV | ≥2.4 V   | 400 μA  |       | ≤0.4 V   | -400 μA |       |

NOTES: A. The strobe input pulse is supplied by a generator with the following characteristics:  $Z_0 = 50 \Omega$ ,  $t_r = t_f = 15 \pm 5 \text{ ns}$ ,  $t_W = 500 \text{ ns}$ , PRR = 1 MHz.

- B. Each pair of differential inputs is tested separately with the other pair grounded.
- C. Strobe input pulse is applied to Strobe A when inputs A1-A2 are being tested and to Strobe B when inputs B1-B2 are being tested. In each case, the other strobe input is grounded.

171

FIGURE 16-VT

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

<sup>&</sup>lt;sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value

# d-c test circuits† (continued)



FIGURE 17-VIH, VIL, VOH, VOL



TEST TABLE

| PARAMETER       | PRESET | CLEAR |
|-----------------|--------|-------|
| IOS at OUTPUT Q | VIL    | VIH   |
| IOS at OUTPUT Q | VIH    | VIL   |

FIGURE 18-IOS

873

# TEXAS INSTRUMENTS

<sup>&</sup>lt;sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

# d-c test circuits† (continued)



TEST TABLE

| PARAMETER                                | INPUT<br>A1     | INPUT<br>B1 | STROBE<br>S <sub>A</sub> | STROBE<br>SB | PRESET | CLEAR |
|------------------------------------------|-----------------|-------------|--------------------------|--------------|--------|-------|
| I <sub>IH</sub> at STROBE S <sub>A</sub> | GND             | GND         | VIH                      | VIL          | OPEN   | OPEN  |
| I <sub>IH</sub> at STROBE S <sub>B</sub> | GND             | GND         | VIL                      | VIH          | OPEN   | OPEN  |
| I <sub>IH</sub> at PRESET                | GND             | VID         | VIL                      | NOTE B       | VIH    | VIH   |
| I <sub>IH</sub> at CLEAR                 | GND             | GND         | VIL                      | NOTE B       | VIH    | VIH   |
| IIL at STROBE SA                         | VID             | GND         | VIL                      | VIH          | OPEN   | OPEN  |
| I <sub>IL</sub> at STROBE S <sub>B</sub> | GND             | VID         | VIН                      | VIL          | OPEN   | OPEN  |
| I <sub>IL</sub> at PRESET                | GND             | GND         | VIL                      | VIL          | VIL    | VIL   |
| IIL at PRESET                            | VID             | GND         | VIH                      | VIL          | VIL    | VIL   |
| I <sub>IL</sub> at CLEAR                 | ν <sub>ID</sub> | GND         | VIL                      | VIL          | VIL    | VIL   |

NOTES: A. Each input is tested separately,

B. Momentary ground, then V<sub>IH</sub>.

FIGURE 19-IIH, IIL

EXAS INSTRUMENTS

POST OFFICE BOX 5012 + DALLAS, TEXAS 75222

11

<sup>&</sup>lt;sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value.





TEST TABLE

| CIRCUIT | INPUTS |                  | Via    | OUTPUT |         |       |  |
|---------|--------|------------------|--------|--------|---------|-------|--|
| TYPE    | INFUIS | V <sub>ref</sub> | VID    | ٧o     | Іон     | loL   |  |
|         | A1-A2  | 15 mV            | ≤11 mV | ≤0.4 V |         | 16 mA |  |
| SN7528  | A1-A2  | 15 mV            | ≥19 mV | ≥2.4 V | -400 μA |       |  |
| 214/228 | A1-A2  | 40 mV            | ≤36 mV | <0.4 V |         | 16 mA |  |
|         | A1-A2  | 40 mV            | ≽44 mV | ≥2.4 V | -400 μA |       |  |
|         | A1-A2  | 15 mV            | < 8 mV | <0.4 V |         | 16 mA |  |
| CNIZEGO | A1-A2  | 15 mV            | ≥22 mV | ≥2.4 V | -400 μA |       |  |
| SN7529  | A1-A2  | 40 mV            | <33 mV | <0.4 V |         | 16 mA |  |
|         | A1-A2  | 40 mV            | >47 mV | ≥2.4 V | -400 μA |       |  |

NOTE A: Each pair of inputs is tested separately with its corresponding output.

FIGURE 20-VT



Texas Instruments

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

11-37

# d-c test circuits† (continued)



**TEST TABLE** 

| TEST                         | INPUT 1A1 | INPUT 2A1 | STROBE 1S | STROBE 2S |
|------------------------------|-----------|-----------|-----------|-----------|
| I <sub>IH</sub> at STROBE 1S | GND       | GND       | VIH       | VIL       |
| I <sub>IH</sub> at STROBE 2S | GND       | GND       | VIL       | VIH       |
| I <sub>IL</sub> at STROBE 1S | VID       | GND       | VIL       | VIL       |
| IIL at STROBE 2S             | GND       | VID       | VIL       | VIL       |

FIGURE 22-IIH, IIL



<sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

EXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222





| CIRCUIT  |                                  |       |                  |         |         | PUTS             |        |         |       |
|----------|----------------------------------|-------|------------------|---------|---------|------------------|--------|---------|-------|
| TYPE     | V <sub>ref</sub> V <sub>ID</sub> | VID   | SN75232, SN75233 |         |         | SN75234, SN75235 |        |         |       |
|          |                                  | İ     | v <sub>o</sub>   | ЮН      | loL     | V <sub>O</sub>   | ЮН     | loL     |       |
|          | A1-A2                            | 15 mV | ≤11 mV           | 5.25 V  | <250 µA |                  | ≥2.4 V | -400 μA |       |
| SN75232, | A1-A2                            | 15 mV | ≥19 mV           | < 0.4 V |         | 16 mA            | <0.4 ∨ |         | 16 mA |
| SN75234  | A1-A2                            | 40 mV | <36 mV           | 5.25 V  | ≤250 μA |                  | ≥2.4 V | -400 μA |       |
|          | A1-A2                            | 40 mV | ≥44 mV           | < 0.4 V |         | 16 mA            | <0.4 V |         | 16 mA |
|          | A1-A2                            | 15 mV | <8 m∨            | 5.25 V  | <250 µA |                  | ≥2.4 V | -400 μA |       |
| SN75233, | A1-A2                            | 15 mV | ≥22 mV           | ≤ 0.4 V |         | 16 mA            | <0.4 ∨ |         | 16 mA |
| SN75235  | A1-A2                            | 40 mV | ≤33 mV           | 5.25 V  | <250 µA |                  | ≥2.4 V | -400 μA |       |
|          | A1-A2                            | 40 mV | ≽47 mV           | ≤ 0.4 V |         | 16 mA            | ≤0.4 V |         | 16 mA |

NOTE A: Each pair of differential inputs is tested separately with its corresponding output.

#### FIGURE 24-VT



FIGURE 25-VIH, VIL, IOH, VOL

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

873

<sup>&</sup>lt;sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

# d-c test circuits† (continued)



TEST TABLE

| TEST                         | INPUT 1A1       | INPUT 2A1 | STROBE 1S | STROBE 2S |
|------------------------------|-----------------|-----------|-----------|-----------|
| I <sub>IH</sub> at STROBE 1S | GND             | GND       | VIH       | VIL       |
| I <sub>IH</sub> at STROBE 2S | GND             | GND       | VIL       | ViH       |
| IL at STROBE 1S              | V <sub>ID</sub> | GND       | VIL       | VIL       |
| IIL at STROBE 2S             | GND             | VID       | VIL       | VIL       |

FIGURE 26-IIH, IIL

<sup>&</sup>lt;sup>†</sup>Arrows indicate actual direction of current flow. Current into a terminal is a positive value,



FIGURE 27-IOS

11-40

EXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

### d-c test circuits† (continued)



**TEST TABLE** 

| CIRCUIT | INPUTS | V <sub>ref</sub> | VID    | OUTPUT         |         |       |
|---------|--------|------------------|--------|----------------|---------|-------|
| TYPE    |        |                  |        | V <sub>O</sub> | Іон     | loL   |
|         | A1-A2  | 15 mV            | <11 mV | ≥2.4 V         | -400 µA |       |
| SN75238 | A1-A2  | 15 mV            | ≥19 mV | <0.4 ∨         |         | 16 mA |
|         | A1-A2  | 40 mV            | <36 mV | >2.4 V         | -400 µA |       |
|         | A1-A2  | 40 mV            | ≥44 mV | <0.4 V         |         | 16 mA |
| SN75239 | A1-A2  | 15 mV            | < 8 mV | >2.4 V         | -400 µA |       |
|         | A1-A2  | 15 mV            | >22 mV | <0.4 V         |         | 16 mA |
|         | A1-A2  | 40 mV            | ≤33 mV | ≥2.4 V         | -400 μA |       |
|         | A1-A2  | 40 mV            | ≥47 mV | <0.4 ∨         |         | 16 mA |

NOTE A: Each pair of inputs is tested separately with its corresponding output.

# FIGURE 28-VT



†Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

873

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

d-c test circuits† (continued)



TEST TABLE

| TEST                          | INPUT 1A1 | INPUT 2A1       | STROBE 1S | STROBE 2S |
|-------------------------------|-----------|-----------------|-----------|-----------|
| I <sub>IH</sub> at STROBE 1S  | GND       | GND             | VIH       | VIL       |
| I <sub>IH</sub> at STROBE 2S  | GND       | GND             | VIL       | VIH       |
| I <sub>1</sub> L at STROBE 1S | VID       | GND             | VIL       | VIL       |
| IJL at STROBE 2S              | GND       | V <sub>ID</sub> | VIL       | VIL       |

FIGURE 30-IIH, IIL



FIGURE 31-IOS

EXAS INSTRUMENTS

11-42

<sup>&</sup>lt;sup>†</sup>Arrows indicate actual direction of current flow, Current into a terminal is a positive value,

### switching characteristics



#### TEST CIRCUIT



- NOTES: A. The pulse generators have the following characteristics:  $Z_0 = 50 \Omega$ ,  $t_f = 15 \pm 5$  ns,  $t_f = 15 \pm 5$  ns,  $t_{w1} = 100$  ns,  $t_{w2} = 300$  ns, and PRR = 1 MHz.
  - The strobe input pulse is applied to Strobe S<sub>A</sub> when inputs A1-A2 are being tested and to Strobe S<sub>B</sub> when inputs B1-B2 are being tested.
  - C. C<sub>L</sub> includes probe and jig capacitance.

FIGURE 32-SN7520/SN7521 PROPAGATION DELAY TIMES FROM DIFFERENTIAL AND STROBE INPUTS

TEXAS INSTRUMENTS
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

#### switching characteristics (continued)



#### TEST CIRCUIT



#### **VOLTAGE WAVEFORMS**

NOTES: A. The pulse generator has the following characteristics:  $Z_O = 50 \ \Omega$ ,  $t_f = 15 \pm 5 \ ns$ ,  $t_f = 15 \pm 5 \ ns$ ,  $t_W = 100 \ ns$ , and PRR = 1 MHz, B.  $C_L$  includes probe and jig capacitance.

FIGURE 33-SN7520/SN7521 PROPAGATION DELAY TIMES FROM GATE GY

TEXAS INSTRUMENTS
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

11-44

### switching characteristics (continued)





#### **VOLTAGE WAVEFORMS**

NOTES: A. The pulse generator has the following characteristics:  $Z_0 = 50 \Omega$ ,  $t_r = 15 \pm 5$  ns,  $t_f = 15 \pm 5$  ns,  $t_w = 100$  ns, and PRR = 1 MHz. B.  $C_L$  includes probe and jig capacitance.

FIGURE 34-SN7520/SN7521 PROPAGATION DELAY TIMES FROM GATE GZ

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 + DALLAS, TEXAS 75222

11-45

### switching characteristics (continued)



#### **TEST CIRCUIT**



### VOLTAGE WAVEFORMS

- NOTES: A. The pulse generators have the following characteristics:  $Z_{out} \approx 50 \Omega$ ,  $t_r = t_f = 15 \pm 5 \text{ ns}$ ,  $t_{w1} = 100 \text{ ns}$ ,  $t_{w2} \approx 300 \text{ ns}$ , PRR = 1 MHz.
  - B. The strobe input pulse is applied to Strobe SA when testing inputs A1-A2 and to Strobe SB when testing inputs B1-B2.
  - C.  $C_L$  includes probe and jig capacitance.

FIGURE 35-SN7522/SN7523 PROPAGATION DELAY TIMES FROM DIFFERENTIAL AND STROBE INPUTS

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

11

11-46

### switching characteristics (continued)



#### TEST CIRCUIT



#### **VOLTAGE WAVEFORMS**

NOTES: A. The pulse generator has the following characteristics:  $Z_O * 50 \Omega$ ,  $t_f = 15 \pm 5 \text{ ns}$ ,  $t_f = 15 \pm 5 \text{ ns}$ ,  $t_W = 100 \text{ ns}$ , and PRR = 1 MHz. B.  $C_L$  includes probe and jig capacitance.

### FIGURE 36-SN7522/SN7523 PROPAGATION DELAY TIMES FROM GATE INPUT

TEXAS INSTRUMENTS
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

# switching characteristics (continued)



#### TEST CIRCUIT



- NOTES: A. The pulse generators have the following characteristics:  $Z_0 = 50 \ \Omega$ ,  $t_r = 15 \pm 5 \ \text{ns}$ ,  $t_f = 15 \pm 5 \ \text{ns}$ ,  $t_{w1} = 100 \ \text{ns}$ ,  $t_{w2} = 300 \ \text{ns}$ , and PRR = 1 MHz.
  - B. The strobe input pulse is applied to Strobe 1S when inputs 1A1-1A2 are being tested and to Strobe 2S when inputs 2A1-2A2 are being tested.
  - C. C<sub>L</sub> includes probe and jig capacitance.

FIGURE 37-SN7524/SN7525 PROPAGATION DELAY TIMES

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

1.1

### switching characteristics (continued)



TEST CIRCUIT



### **VOLTAGE WAVEFORMS**

NOTES: A. The pulse generators have the following characteristics:  $Z_0 = 50 \Omega$ ,  $t_r = 15 \pm 5$  ns,  $t_f = 15 \pm 5$  ns,  $t_W = 50$  ns, and PRR = 1 MHz.

- B. Each preamplifier is tested separately. Apply 40-mV pulse to input A1 when testing Strobe SA and to B1 when testing Strobe SB.
- C. C<sub>L</sub> includes probe and jig capacitance.

FIGURE 38-SN7526/SN7527 PROPAGATION DELAY TIMES

TEXAS INSTRUMENTS
POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

### switching characteristics (continued)



### TEST CIRCUIT



# VOLTAGE WAVEFORMS

- NOTES: A. The pulse generators have the following characteristics:  $Z_0 = 50 \Omega$ ,  $t_r = 15 \pm 5 \text{ ns}$ ,  $t_f = 15 \pm 5 \text{ ns}$ ,  $t_{w1} = 100 \text{ ns}$ ,  $t_{w2} = 300 \text{ ns}$ , and PRR = 1 MHz.
  - B. The strobe input pulse is applied to Strobe 1S when inputs 1A1-1A2 are being tested and to Strobe 2S when inputs 2A1-2S2 are being tested.
  - C.  $C_L$  includes probe and jig capacitance.

FIGURE 39-SN7528/SN7529 PROPAGATION DELAY TIMES

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

11

# switching characteristics (continued)



### TEST CIRCUIT



### **VOLTAGE WAVEFORMS**

- NOTES: A. The pulse generators have the following characteristics: Z<sub>OUt</sub> = 50 Ω, t<sub>r</sub> = 15 ± 5 ns, t<sub>f</sub> = 15 ± 5 ns, t<sub>w1</sub> = 100 ns, t<sub>w2</sub> = 300 ns, and PRR = 1 MHz.
  - B. The strobe input pulse is applied to Strobe 1S when inputs 1A1-1A2 are being tested and to Strobe 2S when inputs 2A1-2A2 are being tested.
  - C. C<sub>L</sub> includes probe and jig capacitance.

FIGURE 40-SN75232, SN75233, SN75234, and SN75235 PROPAGATION DELAY TIMES

TEXAS INSTRUMENTS
POST OFFICE BOX 5012 - DALLAS, TEXAS 75222

### switching characteristics (continued)



#### TEST CIRCUIT



### **VOLTAGE WAVEFORMS**

- NOTES: A. The pulse generators have the following characteristics:  $Z_0 = 50 \Omega$ ,  $t_f = 15 \pm 5 \text{ ns}$ ,  $t_f = 15 \pm 5 \text{ ns}$ ,  $t_{w1} = 100 \text{ ns}$ ,  $t_{w2} = 300 \text{ ns}$ , and PRR = 1 MHz
  - B. The strobe input pulse is applied to Strobe 1S when inputs 1A1-1A2 are being tested and to Strobe 2S when inputs 2A1-2S2 are being tested.
  - C. C<sub>L</sub> includes probe and jig capacitance.

FIGURE 41-SN75238/SN75239 PROPAGATION DELAY TIMES

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

11

11-52

### TYPICAL CHARACTERISTICS



NORMALIZED THRESHOLD VOLTAGE



DIFFERENTIAL-INPUT BIAS CURRENT



THRESHOLD VOLTAGE



COMMON-MODE FIRING VOLTAGE



DIFFERENTIAL-INPUT OFFSET CURRENT



TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

# TYPICAL CHARACTERISTICS



V<sub>CC+</sub> = 5 V V<sub>CC</sub>\_ = -5 = -5 V ALL CIRCUITS EXCER -Low Level Input Current SN7526 AND SN7527 V\_-Input Voltage-V FIGURE 49

LOW-LEVEL INPUT CURRENT

INPUT VOLTAGE

vs DIFFERENTIAL-INPUT VOLTAGE SN7522, SN7523; Z OUTPUT OF SN7520, SN7521; AND @ OUTPUT OF SN7526, SN7527 V<sub>ref</sub> = 25 mV V<sub>O</sub>-Output Voltage-V V<sub>ref</sub> = 35 mV v<sub>cc+</sub> = 5 v V<sub>CC</sub>- = -5 V OH - -400 #A OL -0

10 15 20

25 30

TA = 25°C 5

**OUTPUT VOLTAGE** 

**OUTPUT VOLTAGE** VS DIFFERENTIAL-INPUT VOLTAGE



HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

 $V_{ID}^{-}$  Differential-Input Voltage- mV

FIGURE 50

LOW-LEVEL OUTPUT CURRENT V<sub>CC+</sub> = 5 V V<sub>CC-</sub> = -5 V -Low-Level Output Voltage-V TA = 25°C 0.4 0.3 0.2

LOW-LEVEL OUTPUT VOLTAGE

VOH-High-Level Output Voltage-V ALL CIRCUITS EXCEPT SN7526, SN7527 SN75232, SN75233 V<sub>CC+</sub> = 5 V V<sub>CC</sub>- - -5 V TA = 25°C -600 -1000 IOH-High-Level Output Current-µA

OL-Low-Level Output Current-mA FIGURE 53

10 12 14 16 18

6 8

FIGURE 52

TEXAS INSTRUMENTS

0,

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

# combined fan-out and wire-AND capabilities

The open-collector TTL gate, when supplied with a proper load resistor (RL), may be paralleled with other similar TTL gates to perform the wire-AND function, and simultaneously, will drive from one to nine Series 54/74 loads. When no other open-collector gates are paralleled, this gate may be used to drive ten Series 54/74 loads. For any of these conditions an appropriate load resistor value must be determined for the desired circuit configuration. A maximum resistor value must be determined which will ensure that sufficient load current (to TTL loads) and off current (through paralleled outputs) will be available while the output is high. A minimum resistor value must be determined which will ensure that current through this resistor and sink current from the TTL loads will not cause the output voltage to rise above the low level even if one of the paralleled outputs is sinking all the current.

In both conditions (low and high level) the value of R<sub>L</sub> is determined by:

$$R_L = \frac{V_{RL}}{I_{RL}}$$

where VRL is the voltage drop in volts, and IRL is the current in amperes.

# high-level (off-state) circuit calculations (see figure I)

The allowable voltage drop across the load resistor (VRL) is the difference between VCC applied and the VOH level required at the load:

The total current through the load resistor (IRL) is the sum of the load currents (IIH) and off-state reverse currents (IOH) through each of the wire-AND-connected outputs:

IRL = 
$$\eta \cdot I_{OH} + N \cdot I_{IH}$$
 to TTL loads

Therefore, calculations for the maximum value of RL would be:

$$R_{L(max)} = \frac{V_{CC} - V_{OH min}}{n \cdot I_{OH} + N \cdot I_{IH}}$$

where  $\eta$  = number of gates wire-AND-connected, and N = number of TTL loads.



#### **APPLICATION DATA**

# low-level (on-state) circuit calculations (see figure J)

The current through the resistor must be limited to the maximum sink-current of one output transistor. Note that if several output transistors are wire-AND connected, the current through R<sub>L</sub> may be shared by those paralleled transistors. However, unless it can be absolutely guaranteed that more than one transistor will be on during low-level periods, the current must be limited to 16 mA, the maximum current which will ensure a low-level maximum of 0.4 volt.

Also, fan-out must be considered. Part of the 16 mA will be supplied from the inputs which are being driven. This reduces the amount of current which can be allowed through R<sub>I</sub>.

Therefore, the equation used to determine the minimum value of RL would be:

$$R_{L(min)} = \frac{V_{CC} - V_{OL} \text{ max}}{I_{OL} \text{ capability } - N \cdot I_{IL}}$$



# driving series 54/74 loads and combining outputs

Table 1 provides minimum and maximum resistor values, calculated from equations shown above, for driving one to ten Series 54/74 loads and wire-AND connecting two to seven parallel outputs. Each value shown for one wire-AND output is determined by the fan-out plus the cutoff current of a single output transistor. Extension beyond seven wire-AND connections is permitted with fan-outs of seven or less if a valid minimum and maximum R<sub>L</sub> is possible. When fanning-out to ten Series 54/74 loads, the calculation for the minimum value of R<sub>L</sub> indicates that an infinite resistance should be used (V<sub>RL</sub>  $\div$  0 = ∞); however, the use of a 4-k $\Omega$  resistor in this case will satisfy the high-level condition and limit the low level to less than 0.43 volt.

|                   | TABLE 1                                |        |
|-------------------|----------------------------------------|--------|
| FAN-OUT<br>TO TTL | WIRE-AND OUTPUTS                       |        |
| LOADS             | 1 2 2 4 5 8 7                          | 1 to 7 |
| 1                 | 5965 4614 3291 2560 2015 1866 467      | 319    |
| 2                 | 2572 ASS, 3132 NO. 100 NO. 160         | 359    |
| 3                 | ARE LIBERT CHEEK VICEN TOOM TOOM       | 410    |
| 4                 | 6341 3636 2657 2241 843 1566 1361      | 479    |
| 5                 | 577, 471, 7719, 7164, 7713, 1590, 1531 | 575    |
| 6                 | 5000 3513 2528 2006 7.4 1494 200       | 718    |
| 7                 | 600 SSL 2520 CDI 1600 1400 TXC         | 958    |
| 8                 | 4561 3176 2425 1986 1886 X X           | 1437   |
| 9                 | 4282 3023 X X X X X X                  | 2875   |
| 10                | 4000 X X X X X X X                     | 4000   |
|                   | MAXIMUM                                | MIN    |
| Į.                | LOAD RESISTOR VALUE IN OHMS            |        |

‡-All values shown in the table are based on:

High-level conditions:  $V_{CC}$  = 5 V,  $V_{OH\ min}$  = 2.4 V Low-level conditions:  $V_{CC}$  = 5 V,  $V_{OL\ max}$  = 0.4 V

X-Not recommended or not possible.

 $\S - \text{The theoretical value is } \infty.$  See explanation in text.

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

1 1

### TYPICAL APPLICATIONS

### small memory systems

171

This application demonstrates an improved method of sensing data from relatively small memory systems. Two individual core planes, usually consisting of 4096 cores each, can be interfaced by each of the dual-channel SN7524 or SN7525 sense amplifiers, see Figure K. Standard TTL or DTL integrated circuits, driven directly from the compatible sense-amplifier outputs, may be selected to serve as the memory data register (MDR).



FIGURE K-SENSING SMALL MEMORY SYSTEMS

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 - DALLAS, TEXAS 75222

11-58

# TYPICAL APPLICATIONS (continued)

#### large memory systems

This application demonstrates an improved method of sensing data from large memory systems. The signal-to-noise ratio can be increased by sectioning the large core planes as illustrated in Figure L. Two segments, usually consisting of 4096 cores each, can be interfaced by each of the dual-input channels of the SN7420/SN7421 or SN7422/SN7423 sense amplifiers. The cascaded output gates of the SN7520/SN7521 circuits may be connected to serve as the memory data register (MDR). A number of SN7522/SN7523 sense amplifiers may be wire-AND connected to expand the input function of the MDR to interface all the segments of the plane. Complementary outputs, clear, and preset functions are provided for the MDR. Rules for combined fan-out and wire-AND capabilities must be observed.



FIGURE L-SENSING LARGE MEMORY SYSTEMS

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

PRINTED IN U.S.A.
TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.