Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

OLS #8 (cas Gaussien & tests)

Rappelons que, le paramètre $\pmb{\beta}$ sous un certain nombre d'hypothèses (sans faire d'hypothèses sur la loi de $\pmb{\varepsilon}$) est estimé par

$$\widehat{oldsymbol{eta}}^{ exttt{MCO}} = (\mathbf{X}^{ exttt{T}}\mathbf{X})^{-1}\mathbf{X}\mathbf{Y};$$

et la variance résiduelle est estimée par

$$\hat{\sigma}^2 = \frac{1}{n-p} \|\hat{\boldsymbol{\varepsilon}}\|^2 = \frac{SCR}{n-p}$$

 \mathcal{H}_1 : La matrice de design **X** est de plein rang.

$$\mathcal{H}_2$$
: $\Leftrightarrow \mathbb{E}(\varepsilon) = \mathbf{0}$ et

$$\operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbb{I}_n.$$

$$\mathcal{H}_{\mathbf{2'}}$$
: $\Leftrightarrow \forall n, \mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0}$ et

$$\operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbb{I}_n$$

$$\mu_4 = \mathbb{E}(\varepsilon_i^4) < \infty.$$

 \mathcal{H}_3 : La matrice de design X est telle que lorsque $n \rightarrow \infty$ $\frac{1}{2}(\mathbf{X}^{\top}\mathbf{X}) \rightarrow \mathbf{Q}$ où Q est une matrice définie positive.

- permet de démontrer ▶ *H*₁: l'existence de $\hat{\boldsymbol{\beta}}^{\text{MCO}}$.
- ▶ H₂: permet de démontrer des propriétés pour $\hat{\beta}^{MCO}$ (sans biais, calcul de variance).
- ▶ H₃: permet de démontrer la convergence en moyenne quadratique de $\hat{\mathbf{B}}^{MCO}$.
- $\triangleright \mathcal{H}_{2'}$: permet de démontrer la convergence en moyenne quadratique de $\hat{\sigma}^2$.

 $\mathcal{H}_2^{\text{Gauss}}$. ε est un vecteur gaussien centré de matrice de covariance $\sigma^2 \mathbb{I}_n$, i.e. $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbb{I}_n)$

Sans hypothèses gaussienne: dans ce cas, deux cas de figure seront envisagés,

- soit on dispose de suffisamment d'observations: on utilisera alors des résultats asymptotiques (hypothèse \mathcal{H}_3 sera enrichie).
- > soit la taille d'échantillon n'est pas assez grande: on utilisera alors des techniques de rééchantillonnage pour estimer la distribution des $\hat{\beta}_i$ notamment.

Soit un modèle linéaire homoscédastique vérifiant les hypothèses $\mathcal{H}_1 - \mathcal{H}_2$ Gauss, alors

- ▶ l'estimateur du MV de β vaut $\hat{\beta}^{MV} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$;
- l'estimateur du MV de σ^2 vaut $\hat{\sigma}_{MV}^2 = \frac{\|\hat{\epsilon}\|^2}{2}$.
- $\hat{m{\beta}}^{\mathsf{MV}} = \hat{m{\beta}}^{\mathsf{MCO}}$ (la dépendance MV, MCO sera parfois omise).
- ightharpoonup est un estimateur biaisé de σ^2 ; sa version sans biais sera notée $\hat{\sigma}^2 = ||\hat{\boldsymbol{\varepsilon}}||^2/(n-p)$.

Soit un modèle linéaire homoscédastique vérifiant les hypothèses $\mathcal{H}_1 - \mathcal{H}_2$ Gauss, alors $(\hat{\beta}, \hat{\sigma}^2)$ est une statistique complète et $(\hat{\beta}, \hat{\sigma}^2)$ est de variance minimimum dans la classe des estimateurs sans biais.

Sous les hypothèses $\mathcal{H}_1 - \mathcal{H}_2$ Gauss, nous pouvons établir que

- $\hat{\beta}$ est un vecteur gaussien centré en β et de variance $\sigma^2(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$.
- $(n-p)\hat{\sigma}^2/\sigma^2 \sim \chi^2_{n-p}$
- $\hat{\boldsymbol{\beta}}$ et $\hat{\sigma}^2$ sont indépendants.

Sous les hypothèses \mathcal{H}_1 et \mathcal{H}_2 Gauss, on a

 \triangleright Pour $i=1,\ldots,p$

$$\mathcal{T}_j = rac{\hat{eta}_j - eta_j}{\hat{\sigma}_{\hat{eta}_j}} \sim \mathcal{S}td_{n-p} \quad ext{ où } \hat{\sigma}_{\hat{eta}_j} = \hat{\sigma} \, \sqrt{(\mathbf{X}^{ op}\mathbf{X})_{jj}^{-1}}.$$

▶ Soit **R** une matrice de taille (q, p) (avec $q \le p$) alors

$$\frac{1}{g\hat{\sigma}^2}(\mathsf{R}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}))^{\top}(\mathsf{R}(\mathsf{X}^{\top}\mathsf{X})^{-1}\mathsf{R}^{\top})^{-1}\mathsf{R}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})\sim\mathcal{F}_{q,n-p}.$$

Sous les hypothèses \mathcal{H}_1 et \mathcal{H}_2 Gauss, on a, pour $j=1,\ldots,p$

$$T_j = rac{\hat{eta}_j - eta_j}{\hat{\sigma}_{\hat{eta}_j}} \sim \mathcal{S}td_{n-p} \quad \text{ où } \hat{\sigma}_{\hat{eta}_j} = \hat{\sigma} \sqrt{(\mathbf{X}^{\top}\mathbf{X})_{jj}^{-1}}.$$

```
1 > reg = lm(m2.price~construction.year+surface+no.rooms
     , data=apartments)
2 > summary(reg)
3
 Coefficients:
              Estimate Std. Error t value Pr(>t)
5
 (Intercept) 6295.7095 1884.1995 3.341 0.000865 ***
7 const.year -0.8829 0.9599 -0.920 0.357920
8 surface -9.3827 1.6007 -5.862 6.22e-09 ***
9 no.rooms -80.6139 43.8440 -1.839 0.066264 .
 Residual standard error: 781.8, 996 degrees of freedom
12 Multiple R-squared: 0.2588, Adjusted R-squared: 0.2566
13 F-statistic: 115.9 on 3 and 996 DF, p-value: < 2.2e-16
```

Au niveau de confiance $1 - \alpha$:

• Un intervalle de confiance bilatéral du paramètre β_j , $j=1,\ldots,p$ est donné par

$$IC_{1-\alpha}(\beta_j) = [\hat{\beta}_j + t_1\hat{\sigma}_{\hat{\beta}_j}; \hat{\beta}_j + t_2\hat{\sigma}_{\hat{\beta}_j}],$$

où
$$\hat{\sigma}_{\hat{\beta}_j} = \hat{\sigma} \sqrt{((\mathbf{X}^{\top}\mathbf{X})^{-1})_{jj}}$$
 et où $P(t_1 \leq T_{n-p} \leq t_2) = 1 - \alpha$.

ightharpoonup Un intervalle de confiance bilatéral du paramètre σ^2 est donné par

$$IC_{1-\alpha}(\sigma^2) = [(n-p)\hat{\sigma}^2/q_2; (n-p)\hat{\sigma}^2/q_1]$$
 où $P(q_1 \le \chi^2_{n-p} \le q_2)$.

$$\begin{split} \mathrm{IC}_{1-\alpha}(\beta_j) &= [\hat{\beta}_j + t_1 \hat{\sigma}_{\hat{\beta}_j}; \hat{\beta}_j + t_2 \hat{\sigma}_{\hat{\beta}_j}], \\ \text{où } \hat{\sigma}_{\hat{\beta}_j} &= \hat{\sigma} \, \sqrt{((\mathbf{X}^\top \mathbf{X})^{-1})_{jj}} \text{ et où } \mathrm{P}\big(t_1 \leq T_{n-p} \leq t_2\big) = 1 - \alpha. \end{split}$$

```
1 > confint(reg)
                         2.5 % 97.5 %
                   2598.253225 9993.165719
 (Intercept)
 construction.year
                     -2.766637 1.000815
5 surface
                    -12.523781 -6.241597
                   -166.651179
                                  5.423396
6 no.rooms
```


Une région de confiance pour q $(q \le p)$ paramètres β_j notés $(\beta_{j_1}, \ldots, \beta_{j_q})$ est donné par

$$\begin{aligned} \mathrm{RC}_{1-\alpha}(\mathbf{R}\boldsymbol{\beta}) &= \left\{ \mathbf{R}\boldsymbol{\beta} \in \mathbb{R}^q, \\ &\frac{1}{q\hat{\sigma}^2} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^\top \mathbf{R}^\top (\mathbf{R}(\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{R}^\top)^{-1} \mathbf{R} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \le f_{1-\alpha,q,n-\rho} \right\} \end{aligned}$$

où **R** est la matrice $q \times p$ dont tous les éléments sont nuls sauf les R_{ij_i} qui valent 1 et où $P(F_{q,n-p} \leq f_{1-\alpha}) = 1 - \alpha$.

Soit $e_{ij} = ((\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1})_{ij}$, dans le dernier cas la RC s'écrit

$$\begin{split} &\mathrm{RC}_{1-\alpha}(\beta_1,\beta_2) = \left\{ (\beta_1,\beta_2) \in \mathbb{R}^2, \frac{1}{2\hat{\sigma}^2(e_{11}e_{22} - e_{12}^2)} \times \\ & \left(e_{22}(\hat{\beta}_1 - \beta_1)^2 - 2e_{12}(\hat{\beta}_1 - \beta_1)(\hat{\beta}_2 - \beta_2) + e_{11}(\hat{\beta}_2 - \beta_2)^2 \right) \le f_{1-\alpha,2,n-p} \right\} \end{split}$$

C'est une ellipse centrée en $(\hat{\beta}_1, \hat{\beta}_2)$.

Soit \mathbf{x}_{n+1} une nouvelle valeur.

On veut prédire Y_{n+1} par $\hat{Y}_{n+1} = \mathbf{x}_{n+1}^{\top} \hat{\boldsymbol{\beta}}$

Un "IC pour Y_{n+1} " au niveau $1-\alpha$ est donné par

$$\left[\mathbf{x}_{n+1}'\hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2,n-p}\hat{\sigma}\sqrt{1+\mathbf{x}_{n+1}'(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{x}_{n+1}'^{\top}}\right]$$

```
1 > predict(reg, newdata = data.frame(construction.year
     =1992, surface=80, no.rooms=3), interval = "
    prediction")
        fit lwr upr
3 1 3544.494 2008.663 5080.326
4 > x = c(1, 1992, 80, 3)
5 > t(x)%*%reg$coefficients
          [,1]
7 [1,] 3544.494
t(x)**reg$coefficients+qt(c(.025,.975),n-4)*sqrt(
     sum(residus^2)/(n-4))*sqrt(1+t(x)%*%solve(t(X)%*%X)
     ) % * % x )
9 [1] 2008.663 5080.326
```

Modèsles imbriqués

Soit $Q \subset \{1, ..., p\}$ un ensemble de dimension q, et soit \mathbf{X}_Q la matrice de design correspondant aux $\mathbf{x}_i, j \in Q$ et soit $\boldsymbol{\beta}_Q = (\beta_i)_{i \in Q}$. On souhaite tester: $H_0: \beta_Q = \mathbf{0}$ contre $H_1: \exists j \in Q, \beta_j \neq 0$. Soit $Q^c = \{1, \dots, p\} \setminus Q$. Sous H_0 , $\mathbf{Y} = \mathbf{X}_{Q^c} \boldsymbol{\beta}_{Q^c} + \boldsymbol{\varepsilon}_0$. Sous les hypothèses $\mathcal{H}_1 - \mathcal{H}_2$ Gauss, soit $Q \subset \{1, \dots, p\}$ de dimension $1 \le q < p$, $\mathbf{X}_Q = (\mathbf{x}_i, j \in Q)$, $\boldsymbol{\beta}_Q = (\beta_i)_{i \in Q}$ et soit $p_0 = p - q$. Pour tester les hypothèses

$$H_0: \boldsymbol{\beta}_Q = \mathbf{0} \Leftrightarrow \mathbb{E}(\mathbf{Y}) \in \mathcal{V}(\mathbf{X}_{Q^c})$$

contre

$$H_1: \exists j \in Q, \beta_i \neq 0 \Leftrightarrow \mathbb{E}(\mathbf{Y}) \in \mathcal{V}(\mathbf{X})$$

on s'appuie sur la statistique F qui sous H_0

$$F = \frac{\|\hat{\mathbf{Y}}_0 - \hat{\mathbf{Y}}\|^2 / (p - p_0)}{\|\mathbf{Y} - \hat{\mathbf{Y}}\|^2 / (n - p)} \sim \mathcal{F}_{p - p_0, n - p}$$

Au seuil $\alpha \in (0,1)$ on rejette H_0 pour H_1 si $f_{obs} > f_{1-\alpha,p-p_0,n-p}$ ou si p-value = $\mathbb{P}(F_{p-p_0,p-p} > f_{obs}) < \alpha$.

Soit **R** une matrice de taille (q, p) et soit $\mathbf{r}_0 \in \mathbb{R}^q$. Pour tester les hypothèses $H_0 : \mathbf{R}\boldsymbol{\beta} = r_0$ contre $H_1 : \mathbf{R}\boldsymbol{\beta} \neq r_0$, on s'appuie sous la statistique de test F qui sous H_0 (et sous les hypothèses $H_1 - H_2$ Gauss) s'écrit et suit

$$F = \frac{1}{q\hat{\sigma}^2} (\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r}_0)^\top (\mathbf{R}(\mathbf{X}^\top\mathbf{X})^{-1}\mathbf{R}^\top)^{-1} (\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r}_0) \sim \mathcal{F}_{q,n-p}.$$

```
1 > library(car)
2 > reg = lm(weight ~ reportedWeight, data=Davis)
3 > linearHypothesis(reg, diag(2), c(0,1))
4 Hypothesis:
5 (Intercept) = 0
6 reportedWeight = 1
7
8 Model 1: restricted model
9 Model 2: weight ~ reportedWeight
10 Res.Df RSS Df Sum of Sq F Pr(>F)
11 183 975.00
12 181 914.66 2 60.337 5.97 0.003085 **
```

On peut relâcher l'hypothèse \mathcal{H}_2 Gauss en nous plaçant dans un cadre où les variables ε_i sont des v.a.i.i.d. ayant deux moments, i.e. *H*₂.

on supposera ici que n est "assez" grand

 $\mathcal{H}_3^{\text{tcl}}$: La matrice de design **X** est telle que lorsque $n \to \infty$, $\frac{1}{n}(\mathbf{X}^{\top}\mathbf{X}) \to \mathbf{Q} \text{ où } Q \text{ est une matrice définie positive. De plus,}$ $h_n = \max_{1 \le i \le n} (\mathcal{P}_{\mathbf{X}})_{ij} \to 0 \text{ lorsque } n \to \infty$

Sous les hypothèses \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 tcl, alors lorsque $n \to \infty$

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{\mathcal{L}}{\rightarrow} \mathcal{N}(0, \sigma^2 \mathbf{Q}^{-1})$$

De plus $\hat{\sigma}^2 \to \sigma^2$ en probabilité, ce qui permet d'avoir

$$\hat{\sigma}^{-1}\mathbf{Q}^{1/2}\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})\stackrel{\mathcal{L}}{\rightarrow}\mathcal{N}(0,\mathbb{I}_p)$$

ou encore

$$\hat{\sigma}^{-1}(\mathbf{X}^{\top}\mathbf{X})^{1/2} \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right) \stackrel{\mathcal{L}}{\to} \mathcal{N}(0, \mathbb{I}_p)$$

soit, lorsque $n \to \infty$

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \approx \mathcal{N}\left(0, \hat{\sigma}^2 (\mathbf{X}^{\top} \mathbf{X})^{-1}\right).$$

Sous les hypothèses \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 tel. Soit $j=1,\ldots,p$ et soit \mathbf{R} une matrice de taille (q,p) $(1 \le q \le p)$, alors lorsque $n \to \infty$

$$T_j = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}_{\hat{\beta}_j}} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0,1).$$

$$F = \frac{1}{q\hat{\sigma}^2} (\mathbf{R}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}))^{\top} (\mathbf{R}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{R}^{\top})^{-1} \mathbf{R}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{\mathcal{L}}{\to} \chi_q^2 / q.$$

sous $\mathcal{H}_2^{\text{Gauss}}$, $T_j \sim \mathcal{S}td_{n-p}$ et $F \sim \mathcal{F}_{q,n-p}$.

Rappel: $Std_{n-p} \to \mathcal{N}(0,1)$ et $\mathcal{F}_{q,n-p} \to \chi_q^2/q$ lorsque $n \to \infty$.

- > linearHypothesis(mod.davis, diag(2), c(0,1), test="
 Chisq")
- 2 Linear hypothesis test
- 4 Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)
- 5 1 183 975.00
- 6 2 181 914.66 2 60.337 11.94 0.002554 **

3