Suffix Notation

James Arthur

September 30, 2020

Contents

1	Bas	ic Definitions
	1.1	Suffix Notation
	1.2	The Kronecker Delta $\delta_{i,j}$
	1.3	The Alternating Tensor, $\varepsilon_{i,j,k}$
	1.4	$\varepsilon_{i,j,k}$ and cross product
	1.5	$arepsilon_{ijk}$ and the scalar triple product
	1.6	A relation between ε_{ijk} and $\delta_{i,j}$
2	Gra	adient, Divergence and Curl
	2.1	Gradient
	2.2	Divergence
	2.3	Curl
3	Cor	nbinations of gradient, divergence and curl
	3.1	Divergence of Gradient
	3.2	Curl of Gradient
	3.3	Gradient of Divergence
	3.4	Divergence of Curl
	3.5	Curl of Curl
4	Sca	lar Field / Vector Fields Defintions
_		Level Sets, Curves and Surfaces

1 Basic Definitions

1.1 Suffix Notation

Let there be a vector $\underline{\mathbf{c}} = \underline{\mathbf{a}} + \underline{\mathbf{b}}$, where $\underline{\mathbf{a}} = a_1 \hat{\mathbf{i}} + a_2 \hat{\mathbf{j}} + a_3 \hat{\mathbf{k}}$ and $\underline{\mathbf{b}} = b_1 \hat{\mathbf{i}} + b_2 \hat{\mathbf{j}} + b_3 \hat{\mathbf{k}}$. Then $\underline{\mathbf{c}}$ is equivalent to:

$$c_i = a_i + b_i$$

In suffix notation:

$$c_i = a_i + b_i$$
 $j = 1, 2, 3$

The inner product of two vectors:

$$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$
$$= \sum_{j=1}^{3} a_j b_j$$

For a vector $\underline{\mathbf{a}} = a_i$, i is a free index. For the dot product above: $\sum_{j=1}^{3} a_j b_j$, j is a dummy suffix.

For suffix notation, an index cannot be repeated more than two times in an equation.

Example 1 Write $(a \cdot b)(c \cdot d)$ in suffix notation

Solution 1 *Here we take that:*

$$a \cdot b = a_i b_i$$
 $j = 1, 2, 3$

and that

$$c \cdot d = c_i d_i$$
 $i = 1, 2, 3$

Now we can say that

$$(a \cdot b)(c \cdot d) = a_i b_i c_i d_i$$
 $i, j = 1, 2, 3$

Example 2 Write $a_j b_i c_j$ in normal vector notation

Solution 2 We know that

$$a_i b_i c_i = a_i c_i b_i$$

Which is:

$$(a \cdot c)b$$

Example 3 Write the vector notation $\underline{\boldsymbol{u}} + (\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}})\underline{\boldsymbol{v}} = |\underline{\boldsymbol{a}}|^2 (\underline{\boldsymbol{b}} \cdot \boldsymbol{v})\underline{\boldsymbol{a}}$ in suffix notation

Solution 3 We know that

$$a_j b_i c_j = a_j c_j b_i$$

Which is:

$$(a \cdot c)b$$

Example 4 Write the vector notation $\underline{u} + (\underline{a} \cdot \underline{b})\underline{v} = |\underline{a}|^2 (\underline{b} \cdot v)\underline{a}$ in suffix notation

Solution 4 Firstly:

$$[\underline{\boldsymbol{u}} + (\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}})\underline{\boldsymbol{v}}]_i = [|\underline{\boldsymbol{a}}|^2 (\underline{\boldsymbol{b}} \cdot \boldsymbol{v})\underline{\boldsymbol{a}}]_i$$

Then,

$$u_i + (a_j b_j) v_i = a_j a_j b_l v_l a_i$$
 $j, l = 1, 2, 3$

1.2 The Kronecker Delta $\delta_{i,j}$

The function is defined:

$$\delta_{i,j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

The suffixes i and j can each take the values 1, 2, 3 so $\delta_{i,j}$ has nine elements.

We can write the function as the identity matrix:

$$\delta_{i,j} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\delta_{i,j}$ is called a substitution tensor, since it's effect when multiplied by a_j is to replace j with i.

$$\delta_{i,j}a_j = \sum_{j=1}^3 \delta_{i,j}a_j$$

$$= \delta_{i1}a_1 + \delta_{i2}a_2 + \delta_{i3}a_3$$

$$= \delta_{11}a_1 + \delta_{12}a_2 + \delta_{13}a_3$$

$$+ \delta_{21}a_1 + \delta_{22}a_2 + \delta_{23}a_3$$

$$+ \delta_{31}a_1 + \delta_{32}a_2 + \delta_{33}a_3$$

$$= a_1 + a_2 + a_3$$

From this we can say: $\delta_{i,j}a_i = a_j$ and $\delta_{i,j}a_j = a_i$ 1.4 $\varepsilon_{i,j,k}$ and cross product

Example 5 $\delta_{i,j}$ and dot product

Solution 5

$$a \cdot b = a_i b_i \quad i = 1, 2, 3$$
$$= \delta_{i,j} a_j b_i$$
$$= a_j \delta_{i,j} b_i$$
$$= a_j b_j$$

1.3 The Alternating Tensor, $\varepsilon_{i,i,k}$

 $\varepsilon_{i,j,k}$ is useful for manipulating expressions involving the cross product of two vectors and curl of a vector.

$$\varepsilon_{i,j,k} = \begin{cases} +1 & \text{if } (i,j,k) = (1,2,3), \ (2,3,1) \text{ or } (3,1,2) \\ -1 & \text{if } (i,j,k) = (3,2,1), \ (2,1,3) \text{ or } (1,3,2) \text{ from the above we show that } \underline{\mathbf{a}} \cdot \underline{\mathbf{b}} \times \underline{\mathbf{c}} = \underline{\mathbf{c}} \cdot \underline{\mathbf{a}} \times \underline{\mathbf{b}}. \\ 0 & \text{if any of } i,j,k \text{ are equal} \end{cases}$$
We can expand $\varepsilon_{ijk} a_i b_j c_k$ to get:

The +1 case can be also written as 1, 2 or 3 are in clockwise order. So if you take a triangle and then go clockwise around it from the first element, that the order they are in. The -1 are in anticlockwise order. Hence meaning the opposite of clockwise.

The six non-zero elements of ε_{ijk} :

$$\begin{split} \varepsilon_{123} &= \varepsilon_{231} = \varepsilon_{312} = +1 \\ \varepsilon_{321} &= \varepsilon_{213} = \varepsilon_{132} = -1 \\ \varepsilon_{ijk} &= 0, \text{ otherwise} \end{split}$$

We can take that; $\varepsilon_{ijk} = \varepsilon_{jki}$ as they are in clockwise order. This also implies $\varepsilon_{ijk} = -\varepsilon_{jik}$ because if ijk are in clockwise order then jik must be in counterclockwise order.

Let $\underline{\mathbf{a}} = a_1 \hat{\mathbf{i}} + a_2 \hat{\mathbf{j}} + a_3 \hat{\mathbf{k}}$ and $\underline{\mathbf{b}} = b_1 \hat{\mathbf{i}} + b_2 \hat{\mathbf{j}} + b_3 \hat{\mathbf{k}}$. Then their cross product is:

$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

and in suffix notation, we can write the above as; $(\underline{\mathbf{a}} \times \underline{\mathbf{b}})_i = \varepsilon_{ijk} a_i b_k$ where j, k are dummy suffixes and must be summed over 1 to 3.

ε_{ijk} and the scalar triple product

We can take the scalar triple product, $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$, then we can do the following:

$$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} \times \underline{\mathbf{c}} = a_i (\underline{\mathbf{b}} \times \underline{\mathbf{c}})_i
= a_i \varepsilon_{ijk} b_j c_k
= \varepsilon_{ijk} a_i b_j c_k
= c_k \varepsilon_{ijk} a_i b_j$$

$$\begin{split} &= \varepsilon_{123}a_1b_2c_3 + \varepsilon_{231}a_2b_3c_1 + \varepsilon_{312}a_3b_1c_2 \\ &+ \varepsilon_{321}a_3b_2c_1 + \varepsilon_{213}a_2b_1c_3 + \varepsilon_{132}a_1b_3c_2 \\ &= a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_3b_2c_1 - a_2b_1c_3 - a_1b_3c_2 \end{split}$$

which is the expanded form of the triple scalar product.

A relation between ε_{ijk} and $\delta_{i,j}$

We are going to prove the following statement:

$$\varepsilon_{ijk}\varepsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$

Since all of the coordinate axis are the same, just consider i = 1:

If then j=1, we get that $\varepsilon_{11k}=0$ and so LHS = 0. Then considering the RHS, we get that $\delta_{1l}\delta_{1m} - \delta_{1m}\delta_{1l} = 0$, so equation holds.

If j = 2, then $\varepsilon_{ijk} = \varepsilon_{12k} = 0$, unless k = 3, so then only k=3 contributes to the sum. So $\varepsilon_{klm}=\varepsilon_{3lm}$, so zero unless l and m are 1 and 2. So we can conclude that $\varepsilon_{ijk}\varepsilon_{klm} = \varepsilon_{123}\varepsilon_{312}$ or $\varepsilon_{123}\varepsilon_{321}$, so the LHS is either ± 1 . Looking at RHS, we have either: $\delta_{11}\delta_{22} - \delta_{12}\delta_{21}$ or $\delta_{12}\delta_{21} - \delta_{11}\delta_{22}$. This gives ± 1 in the same perumtation as the LHS. So equation holds.

2 Gradient, Divergence and 3 Curl

2.1 Gradient

Assume we have a f = f(x, y, z) or $f = f(x_1, x_2, x_3)$, so a scalar calued function. Then we define grad f as:

$$\underline{\nabla} f = \left(\frac{\partial}{\partial x} \hat{\boldsymbol{i}} + \frac{\partial}{\partial y} \hat{\boldsymbol{j}} + \frac{\partial}{\partial z} \hat{\boldsymbol{k}} \right) f$$

We say grad of f is a differential operator. So:

$$\underline{\nabla} f = \left(\frac{\partial f}{\partial x} \hat{\boldsymbol{\imath}} + \frac{\partial f}{\partial y} \hat{\boldsymbol{\jmath}} + \frac{\partial f}{\partial z} \hat{\boldsymbol{k}} \right)$$

and we can write it in suffix notation aswell:

$$[\underline{\nabla} f]_i = \frac{\partial}{\partial x_i} \qquad i = 1, 2, 3$$

2.2 Divergence

Assume we have a vector field, $\underline{\mathbf{u}} = \underline{\mathbf{u}}(x, y, z, t)$. We define the divergence of this vector field as;

$$\underline{\nabla} \cdot \underline{\mathbf{u}} = \left(\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} \right)$$

Placing this in suffix notation, we get that:

$$[\underline{\nabla} \cdot \underline{\mathbf{u}}]_j = \frac{\partial u_j}{\partial x_j}$$

2.3 Curl

the curl of a vector field can be written as:

$$\underline{\nabla} \times \underline{\mathbf{u}}$$

To write this in suffix notation, we can just use the cross produce formula:

$$[\underline{\nabla} \times \underline{\mathbf{u}}]_i = \varepsilon_{ijk} \underline{\nabla}_i u_k$$

which then can be manipulated into:

$$[\underline{\nabla} \times \underline{\mathbf{u}}]_i = \varepsilon_{ijk} \frac{\partial u_k}{\partial x_i}$$
 $j, k = 1, 2, 3$

where i is a free index and j, k are dummy suffixes, so j, k = 1, 2, 3

3 Combinations of gradient, divergence and curl

3.1 Divergence of Gradient

If we take $\nabla \cdot \nabla f$ where $f = (x_1, x_2, x_3, t)$. We can write the div of grad as:

$$\underline{\nabla} \cdot \underline{\nabla} f = \left(\frac{\partial}{\partial x} \hat{\mathbf{i}} + \frac{\partial}{\partial y} \hat{\mathbf{j}} + \frac{\partial}{\partial z} \hat{\mathbf{k}} \right) \cdot \left(\frac{\partial f}{\partial x} \hat{\mathbf{i}} + \frac{\partial f}{\partial y} \hat{\mathbf{j}} + \frac{\partial f}{\partial z} \hat{\mathbf{k}} \right)$$

$$= \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_1} + \frac{\partial}{\partial x_2} \frac{\partial f}{\partial x_2} + \frac{\partial}{\partial x_3} \frac{\partial f}{\partial x_3}$$

$$= \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2}$$

$$= \Delta f$$

Where the $\Delta = \underline{\nabla}^2$ is the laplacian. So how do we write this in suffix notation?

$$\begin{split} \underline{\nabla} \cdot \underline{\nabla} f &= \underline{\nabla}_j [\underline{\nabla} f]_j \\ &= \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_j} \\ &= \frac{\partial^2 f}{\partial x_j} \end{split}$$

3.2 Curl of Gradient

We can write the curl of gradient as:

$$\begin{split} [\underline{\nabla} \times \underline{\nabla} f]_i &= \varepsilon_{ijk} \underline{\nabla}_j \underline{\nabla} f_k \\ &= \varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_k} \\ &= \varepsilon_{ikj} \frac{\partial}{\partial x_k} \frac{\partial f}{\partial x_j} \\ &= -\varepsilon_{ijk} \frac{\partial}{\partial x_k} \frac{\partial f}{\partial x_j} \\ &= -\varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_k} \qquad \text{if } f \in c^2 \\ &\Longrightarrow \nabla \times \nabla f = 0 \end{split}$$

3.3 Gradient of Divergence

Assume we have a $\underline{\mathbf{u}}$, vector field, and we want $\underline{\nabla}(\underline{\nabla} \cdot \underline{\mathbf{u}})$.

$$\begin{split} [\underline{\nabla}(\underline{\nabla} \cdot \underline{\mathbf{u}})]_i &= \underline{\nabla}_i \frac{\partial u_j}{\partial x_j} \\ &= \frac{\partial}{\partial x_i} \frac{\partial u_j}{\partial x_j} \\ &= \frac{\partial^2 u_j}{\partial x_i \partial x_j} \end{split}$$

3.4 Divergence of Curl

We can write divergence of curl as:

$$\begin{split} [\underline{\nabla} \cdot \underline{\nabla} \times \underline{\mathbf{u}}]_i &= \frac{\partial}{\partial x_i} [\underline{\nabla} \times \underline{\mathbf{u}}]_i \\ &= \frac{\partial}{\partial x_i} \varepsilon_{ijk} \frac{\partial u_k}{\partial x_j} \\ i, j, k = 1, 2, 3, \text{ so } i \leftrightarrow j \\ &= \frac{\partial}{\partial x_j} \varepsilon_{jik} \frac{\partial u_k}{\partial x_i} \\ &= -\varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial u_k}{\partial x_i} \\ &= -\varepsilon_{ijk} \frac{\partial}{\partial x_i} \frac{\partial u_k}{\partial x_j} \quad \text{as } \underline{\mathbf{u}} \in c^2 \end{split}$$

As $\underline{\nabla} \cdot (\underline{\nabla} \times \underline{\mathbf{u}}) = -\underline{\nabla} \cdot (\underline{\nabla} \times \underline{\mathbf{u}})$, then we know that $\underline{\nabla} \cdot (\underline{\nabla} \times \underline{\mathbf{u}}) = 0$

3.5 Curl of Curl

We can write curl of curl, $\nabla \times (\nabla \times \mathbf{u})$, as:

$$\begin{split} [\underline{\nabla} \times (\underline{\nabla} \times \underline{\mathbf{u}})]_i &= \varepsilon_{ijk} \frac{\partial}{\partial x_j} (\underline{\nabla} \times \underline{\mathbf{u}})_k \\ &= \varepsilon_{ijk} \frac{\partial}{\partial x_j} \varepsilon_{klm} \frac{\partial u_m}{\partial x_l} \\ &= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \frac{\partial^2 u_m}{\partial x_j \partial x_l} \\ &= \delta_{il} \delta_{jm} \frac{\partial^2 u_m}{\partial x_j \partial x_l} - \delta_{im} \delta_{jl} \frac{\partial^2 u_m}{\partial x_j \partial x_l} \\ &= \frac{\partial^2 u_j}{\partial x_j \partial x_i} - \frac{\partial^2 u_i}{\partial x_j \partial x_j} \\ &= \frac{\partial}{\partial x_i} \frac{\partial u_j}{\partial x_j} - \frac{\partial^2 u_i}{\partial x_j^2} \\ &= [\underline{\nabla} (\underline{\nabla} \cdot \underline{\mathbf{u}})]_i - [\underline{\Delta} \underline{\mathbf{u}}]_i \\ &= [\underline{\nabla} (\underline{\nabla} \cdot \underline{\mathbf{u}}) - \underline{\nabla}^2 \underline{\mathbf{u}}]_i \end{split}$$

4 Scalar Field / Vector Fields Defintions

A scalar or vector quantity is said to be a field if it is a function of position. Examples

- 1. Temperature is a scalar field, $T = T(x, y, z) = T(\underline{\mathbf{r}})$
- 2. Pressure and Density are also scalr fields $P = P(\underline{\mathbf{r}})$ and $\rho = \rho(\underline{\mathbf{r}})$
- 3. if a physical quantity is a scalar we speak of a scalar field or function of position.

If a physical quantity is a vector, such as force $\underline{\mathbf{F}} = \underline{\mathbf{F}}(x,y,z)$. We speak of a vector field or vector function.

A vector-valued function is an $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$. So, for each $\underline{\mathbf{x}} = (x_1, \dots, x_n) \in A$, f assigns a value $f(\underline{\mathbf{x}})$, an m-tuple, in \mathbb{R}^m . These functions, f, are called vector-valued functions if m > 1 and scalar if m = 1.

Example 6 Take the function, $f:(x,y,z)\mapsto (x^2+y^2+z^2)^{\frac{3}{2}}$

Solution 6 It's a scalar function from \mathbb{R}^3 to \mathbb{R} .

Example 7 Take the function $g:(x_1,x_2,x_3)\mapsto (x_1x_2x_3,\sqrt{x_1x_3})$

Solution 7 This is a vector valued function from \mathbb{R}^3 to \mathbb{R}^2

To specify a temperature T in a region A of space requires a function $T, T: A \subset \mathbb{R}^m \to \mathbb{R}$. T = T(x, y, z).

To specify the velocity of a fluid moving in space requires a map, $\underline{\mathbf{v}}: \mathbb{R}^4 \mapsto \mathbb{R}^3$ where $\underline{\mathbf{v}}(x,y,z,t)$ is the velocity of the fluid at (x,y,z) at time t.

When $f: U \subset \mathbb{R}^n \to \mathbb{R}$, we say that f is a real valued function of n-variables with domain U.

Let $f: U: \mathbb{R}^n \to \mathbb{R}$, then graph $f = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^{n+1} : (x_1, \dots, x^n)\}$ If n = 1,

then we can conclude that graph f is curve in \mathbb{R}^2 and if n=2, then graph f is a surface in \mathbb{R}^3 .

4.1 Level Sets, Curves and Surfaces

A level set is a subset of \mathbb{R}^3 on which f is constant. For example, for $f(x,y,z)=x^2+y^2+z^2$, the set where $x^2+y^2+z^2=1$ is alevel set. A level set is a set of (x,y,z):f(x,y,z)=c where $c\in\mathbb{R}$.

For functions f(x,y), we speak of level curves or contours. example, $f:\mathbb{R}^2\mapsto\mathbb{R},\ f(x,y)=x+y+2$, has as it's graph the inclined plane z=x+y+2. The plane intersects the xy plan where z=0 in the line y=-x-2 and the z-axis at (0,0,2). For any $c\in\mathbb{R}$, the level curve of c is the straight line: $y=-x+(c-2):L_c\{(x,y):y=-x+c-2\}\subset\mathbb{R}^2$