# **EEVblog 121GW Review**

## Introduction

Hi, I am Tom, amateur radio call sigh N8FDY. This is a review of the EEVblog 121GW multimeter for use in hobby electronics projects primarily related to amateur radio.

#### Disclaimer

I am not a professional, I am a hobbyist. This review is not sponsored; I bought this multimeter with my own money. I only used and tested this multimeter in CAT I and CAT II environments. I do not have a way to review or test the safety of this meter. I leave the CAT III and CAT IV environments to trained and licensed professionals. It may seem like I am a Fluke fan boy, but I recognize their flaws along with their advantages. There may be unintended mistakes and/or errors in this review.

#### Overview



I am testing and demonstrating this EEVblog 121GW multimeter that I purchased from Amazon for \$225.00. I only used it in CAT I and CAT II environments. CAT I is for measurements on circuits not directly connected to mains. For example, battery-operated electronics, or radio gear connected to a 13V DC power supply. CAT II is for measurements performed on circuits directly connected to 120V (240V in some countries) power outlets at least 15 feet from the distribution panel. For example, your 120V AC to 13V DC power supply or a vintage piece of ham radio gear we lovingly call "boat anchors" that plug into a 120V AC outlet. First, we will look at the features of the multimeter, then we will look at the accuracy of the meter. We will then go over the ergonomics. We will wrap up with the pros, cons and conclusion. I will not be using the test leads that came with the meter. I have not liked any test leads that came with

I will not be using the test leads that came with the meter. I have not liked any test leads that came with multimeters except the Fluke TL175 TwistGuard® test leads that were bundled with the Fluke 87V MAX. I also use Probe Master Series 8000 Test Leads.

## Objectives

This review was produced to help you decide if the EEVblog 121GW multimeter will fit your purpose and budget. This is part of a series of multimeters reviews.

A good multimeter for hobby electronics projects should be able to measure millivolts, volts, microamps, milliamps, amps, ohms, nanofarads and microfarads.

If you want to measure picofarads, nanohenrys, microhenrys or reactance you will need an LCR meter. I cover the two LCR meters I own in another review.

#### **Features**

- Dual 50000-count display with bargraph.
- 0.05% + 5 Basic DCV Accuracy.
- Auto-Hold measurement.
- 600V CAT-III with independent UL 61010 certification by ETL.
- Safe operation through HRC fuse + TVS + PTC + MOV + Diode Bridge protection.
- Bluetooth connectivity (multi-device capability).
- Open-Source Cross Platform application software (Android + Windows).
- 15V Diode Test Voltage (useful for Zeners + LED strings etc.).
- VA Power measurement.
- Low Burden<sup>TM</sup> voltage.
- Unique burden voltage display.
- Micro SD Card data logging + firmware updating.

## Accuracy



I do not have reference standards. Instead, I use a Keithley DMM6500 6.5 digit bench multimeter that was calibrated recently to measure voltages, currents, resistances and capacitances. I take a reading from the Keithley and based on the Keithley stated tolerance for that range and reading, I compute the lowest and highest value the reading could be, then I use the meter under test to take a reading. I calculate the meter-under-test reading uncertainty value and subtract it from the lowest value and add it to the highest value. If the reading is within the range of the lower and higher limits, it meets meter-under-test accuracy specification.

For example, I have a voltage source that is 5 V. I take a reading with the Keithley and I get a value of 5.00090 and based on the Keithley specifications for that range  $\pm (0.0025\% \text{ of reading} + 0.0005\% \text{ of range})$ ; that value could be anywhere from 5.00072 to 5.00108. I then use the meter-under-test (for this example my Fluke 289, my most accurate hand-help meter) reading of 5.0006. The Fluke 289's accuracy at this range is  $\pm (0.025\% \text{ of } -0.005\% \text{ of$ 

reading + 2 least significant digits) for an uncertainty value of 0.00145015 volts. So, subtracting this from the lowest value the Keithley reading gives us 4.99927V for the low value limit and adding to the highest value, the Keithley gives us 5.00253V for the high value limit. The meter-under-test reading (5.0006) is within the limits, so the meter-under-test meets its accuracy target for 5 volts.



## DC Volts

| Source   | Reading | Specification | Uncertainty | Low Bound | High Bound |
|----------|---------|---------------|-------------|-----------|------------|
| mV       |         |               |             |           |            |
| 1.0060   | 1.017   | 0.1%+10       | 0.011017    | 0.9946    | 1.0174     |
| 10.0012  | 10.003  | 0.1%+10       | 0.020003    | 9.9805    | 10.0219    |
| 100.0187 | 100.02  | 0.1%+10       | 0.20002     | 99.8153   | 100.2221   |
| 500.097  | 500.11  | 0.1%+10       | 0.60011     | 499.4784  | 500.7156   |
| V        |         |               |             |           |            |
| 1.000909 | 1.0011  | 0.05% + 5     | 0.00100055  | 0.9998    | 1.0020     |
| 2.00013  | 2.0004  | 0.05% + 5     | 0.00150020  | 1.9985    | 2.0017     |
| 2.50054  | 2.5009  | 0.05% + 5     | 0.00175045  | 2.4987    | 2.5024     |
| 3.00134  | 3.0018  | 0.05% + 5     | 0.00200090  | 2.9992    | 3.0035     |
| 4.00001  | 4.0005  | 0.05% + 5     | 0.00250025  | 3.9974    | 4.0027     |
| 5.00030  | 5.0013  | 0.05% + 5     | 0.00300065  | 4.9971    | 5.0035     |
| 5.00091  | 5.0015  | 0.05% + 5     | 0.00300075  | 4.9977    | 5.0041     |
| 6.00142  | 6.001   | 0.05% + 5     | 0.00800050  | 5.9932    | 6.0096     |
| 7.00018  | 7.000   | 0.05% + 5     | 0.00850000  | 6.9915    | 7.0089     |
| 7.50167  | 7.502   | 0.05% + 5     | 0.00875100  | 7.4927    | 7.5107     |
| 10.00153 | 10.002  | 0.05% + 5     | 0.01000100  | 9.9912    | 10.0118    |
| 97.7528  | 97.73   | 0.05% + 5     | 0.09886500  | 97.6494   | 97.8562    |
| 191.276  | 191.25  | 0.05% + 5     | 0.14562500  | 191.1167  | 191.4353   |
| 281.295  | 281.20  | 0.05% + 5     | 0.19060000  | 281.0871  | 281.5029   |
| 381.899  | 381.84  | 0.05% + 5     | 0.24092000  | 381.6368  | 382.1612   |
| 490.268  | 489.96  | 0.05% + 5     | 0.29498000  | 489.9474  | 490.5886   |
| 601.023  | 600.9   | 0.1% + 10     | 1.60090000  | 599.3900  | 602.6560   |

The meter met its accuracy specifications for all the DC voltages I tested. The DC millivolts and volts ranges accuracy specification are the worst for this group of 50000-count meters.

| VDC Input  | 11 ΜΩ |
|------------|-------|
| mVDC input | 10 ΜΩ |

Both VDC and mVDC inputs have  $10 \text{ M}\Omega$  or greater resistance, which is good, so the meter is less likely to load down a high-impedance circuit when checking voltage.

### **AC Volts**

| Source           | Reading | Specification | Uncertainty | Low Bound | High Bound |
|------------------|---------|---------------|-------------|-----------|------------|
| 100Hz Squarewave |         |               |             |           |            |
| 4.99906          | 4.9946  | 0.3% + 10     | 0.0159838   | 4.9771    | 5.0210     |
| 60 Hz Sinewave   |         |               |             |           |            |
| mV               |         |               |             |           |            |
| 1.0335           | 1.018   | 1.2% + 15     | 0.02721600  | 1.0056    | 1.0614     |
| 10.0397          | 10.05   | 1.2% + 15     | 0.27060000  | 9.7630    | 10.3164    |
| 100.0742         | 100.15  | 0.8% + 10     | 0.90120000  | 99.1129   | 101.0355   |
| 250.565          | 250.75  | 0.8% + 10     | 2.10600000  | 248.3084  | 252.8216   |
| 500.110          | 499.88  | 0.8% + 10     | 4.09904000  | 495.7106  | 504.5094   |
| Volts            |         |               |             |           |            |
| 0.500130         | 0.5000  | 0.3% + 10     | 0.00250000  | 0.4970    | 0.5032     |
| 1.000213         | 1.0013  | 0.3% + 10     | 0.00400390  | 0.9953    | 1.0051     |
| 2.00184          | 2.0043  | 0.3% + 10     | 0.00701290  | 1.9906    | 2.0131     |
| 3.01276          | 3.0147  | 0.3% + 10     | 0.01004410  | 2.9979    | 3.0276     |
| 4.01248          | 4.0130  | 0.3% + 10     | 0.01303900  | 3.9940    | 4.0309     |
| 5.01209          | 5.0095  | 0.3% + 10     | 0.01602850  | 4.9901    | 5.0341     |
| 6.00816          | 6.007   | 0.3% + 10     | 0.02802100  | 5.9735    | 6.0428     |
| 7.00644          | 7.007   | 0.3% + 10     | 0.03102100  | 6.9682    | 7.0447     |

The meter met its accuracy specifications for all the AC voltages that I tested. The AC volts for 60 Hz accuracy specification is the highest in this group of 50000-count meters. The

| ACV 1V 3dB cutoff | 415 kHz |
|-------------------|---------|
|-------------------|---------|

The frequency of the cutoff is second place in this group of meters.

#### AC+DC

This meter has an AC+DC measurement mode.

The formula for measuring True-RMS with AC and DC components:

$$Vrms = \sqrt{Vac^2 + Vdc^2}$$

A meter with AC+DC calculates this for you.

| Source      | Reading | Specification | Uncertainty | Low Bound  | High Bound |
|-------------|---------|---------------|-------------|------------|------------|
| AC+DC       |         |               |             |            |            |
| 2.067530907 | 2.0634  | 1.0% + 10     | 0.030634    | 2.03280819 | 2.10225408 |
| 3.356147086 | 3.3506  | 1.0% + 10     | 0.043506    | 3.30831091 | 3.40398455 |
| 3.36282066  | 3.3642  | 1.0% + 10     | 0.043642    | 3.31732839 | 3.40831644 |
| 4.73159436  | 4.7143  | 1.0% + 10     | 0.057143    | 4.67194386 | 4.79124782 |

The meter met its accuracy specifications for all the AC+DC values I tested.

## Current

| Source              | Reading | Specification | Uncertainty | Low Bound | High Bound |
|---------------------|---------|---------------|-------------|-----------|------------|
| AC 100Hz Squarewave |         |               |             |           |            |
| 0.999694            | 0.9997  | 1.0%+5        | 0.014997    | 0.9833    | 1.0161     |
| DC μΑ               |         |               |             |           |            |
| 0.89695             | 0.894   | 1.5%+15       | 0.02841000  | 0.8676    | 0.9263     |
| 9.21851             | 9.17    | 1.5%+15       | 0.15255000  | 9.0613    | 9.3757     |
| 99.0500             | 99.06   | 1.5%+15       | 1.50090000  | 97.4995   | 100.6005   |
| 131.913             | 131.94  | 1.5%+15       | 1.99410000  | 129.8590  | 133.9670   |
| DC mA               |         |               |             |           |            |
| 1.008954            | 1.0093  | 0.25%+5       | 0.00302325  | 1.0054    | 1.0125     |
| 9.99241             | 9.993   | 0.25%+5       | 0.02998250  | 9.9599    | 10.0249    |
| 99.4213             | 99.48   | 0.25%+5       | 0.29870000  | 99.0977   | 99.7449    |
| 100.7828            | 100.83  | 0.25%+5       | 0.30207500  | 100.4556  | 101.1100   |
| 200.666             | 200.68  | 0.25%+5       | 0.55170000  | 200.0340  | 201.2980   |
| DC Amps             |         |               |             |           |            |
| 0.500068            | 0.50012 | 0.75%+15      | 0.00390090  | 0.4959    | 0.5042     |
| 1.000128            | 1.0004  | 0.75%+15      | 0.00900300  | 0.9907    | 1.0096     |
| 2.000383            | 2.0011  | 0.75%+15      | 0.01650825  | 1.9828    | 2.0180     |
| 3.000047            | 3.0012  | 0.75%+15      | 0.02400900  | 2.9744    | 3.0257     |

The meter met its accuracy specifications for all the current values I tested. The AC milliamps has the lowest accuracy specifications for this group of 50000-count meters.

| A Shunt Resistance  | .04 Ω   |
|---------------------|---------|
| mA Shunt Resistance | 2.84 Ω  |
| μA Shunt Resistance | 102.8 Ω |

It is always good to know how much resistance you are adding to your circuit when you make current measurements.

## Resistance

| Source   | Reading | Specification | Uncertainty | Low Bound | High Bound |
|----------|---------|---------------|-------------|-----------|------------|
| Ohms     |         |               |             |           |            |
| 1.004105 | 1.015   | 0.5%+20       | 0.025075    | 0.9787    | 1.0295     |
| 10.00762 | 10.025  | 0.5%+20       | 0.070125    | 9.9364    | 10.0788    |
| 100.0731 | 100.26  | 0.3%+5        | 0.35078     | 99.7118   | 100.4344   |
| Kiloohms |         |               |             |           |            |
| 1.000200 | 1.0000  | 0.2%+5        | 0.0025      | 0.9976    | 1.0028     |
| 10.00230 | 10.000  | 0.2%+5        | 0.025       | 9.9765    | 10.0281    |
| 100.0375 | 100.02  | 0.2%+5        | 0.25004     | 99.7794   | 100.2956   |
| Megaohms |         |               |             |           |            |
| 0.993891 | 0.9930  | 0.3%+5        | 0.003479    | 0.9903    | 0.9975     |
| 9.96999  | 9.970   | 1.2%+20       | 0.13964     | 9.8263    | 10.1137    |
| 100.1114 | N/A     |               |             |           |            |

The meter met its accuracy specifications for all the resistance values I tested. The accuracy specifications for the resistance ranges below 1 Megaohm are the worst for this group of 50000-count meters.

| Resistance Test Voltage |        |  |  |  |
|-------------------------|--------|--|--|--|
| Low Range 2.11 V        |        |  |  |  |
| Medium Range            | 1.00 V |  |  |  |
| High Range 1.99 V       |        |  |  |  |

## Capacitance

| Source | Reading | Specification | Uncertainty | Low Bound | High Bound |
|--------|---------|---------------|-------------|-----------|------------|
| nF     |         |               |             |           |            |
| 0.0149 | 0.009   | 2.5%+5        | 0.005225    | 0.0046    | 0.0252     |
| 0.1040 | 0.104   | 2.5%+5        | 0.0076      | 0.0906    | 0.1174     |
| 1.0073 | 0.986   | 2.5%+5        | 0.02965     | 0.9646    | 1.0500     |
| 9.940  | 9.912   | 2.5%+5        | 0.2528      | 9.6374    | 10.2426    |
| 99.48  | 99.41   | 2.5%+5        | 2.53525     | 96.4468   | 102.5132   |
| μF     |         |               |             |           |            |
| 1.0083 | 1.0096  | 2.5%+5        | 0.02574     | 0.9775    | 1.0391     |
| 10.841 | 10.828  | 2.5%+5        | 0.2757      | 10.5119   | 11.1701    |
| 112.81 | 110     | 2.5%+5        | 7.75        | 104.5088  | 121.1112   |
| 1005.5 | 992     | 3.0%+5        | 34.76       | 965.2125  | 1045.7875  |

The meter met its accuracy specifications for all the capacitance values I tested. The uncertainty value is too high for the 10pF reading to be meaningful. The high nano-farad and low microfarad ranges have the worst accuracy specifications for this group of 50000-count meters.

### Diode

| Max Diode Voltage | 15.918 V |
|-------------------|----------|
| Max Diode Current | 4.85 mA  |
| Low Diode Voltage | 3.213 V  |
| Low Diode Current | 0.729 mA |

This meter has a special 15-volt mode for testing Zener diodes and LEDs. It also has a mode the corresponds with the other meter is this group.

This lit the LEDs I tested and the Schottky, Small Signal and Power diodes measured correctly.

## Continuity

It is fast and latches; the backlight also flashes.

#### dBm

This meter can measure dBm (decibel-milliwatts) using a one impedance value of  $600\Omega$ .

#### **VA** Measurements

The EEVBlog 121GW has an unusual function that measures DC power and AC VA. I only had the means to test DC power.

| Source  | Reading | Specification | Uncertainty | Low Bound | High Bound |
|---------|---------|---------------|-------------|-----------|------------|
| DC mVA  |         |               |             |           |            |
| 69.89   | 69      | 0.5% + 5      | 5.345       | 64.51     | 75.26      |
| 699.32  | 698     | 0.5% + 5      | 8.49        | 690.50    | 708.15     |
| 3503.49 | 3506    | 0.5% + 5      | 22.53       | 3478.23   | 3528.74    |
| 7513.60 | 7515    | 0.5% + 5      | 42.575      | 7465.29   | 7561.91    |
| DC VA   |         |               |             |           |            |
| 15.02   | 15.02   | 1.0% + 10     | 0.2502      | 14.76     | 15.28      |

The meter met its accuracy specifications for DC mVA and VA values I tested.

#### Test Leads

The test leads were a soft silicone type. The meter also came with a thermocouple for measuring temperature. I did not test temperature measurements.

## **Ergonomics**

The rotary switch is easy to turn and firmly clicks into place.

It has a large display with big numbers, it looks washed out at 90° but gets better as you rotate the meter top up to 45°. The backlight is bright and evenly lit, except for a hotspot on the right.

The following features are displayed when you push the Setup button. You can adjust them by holding down the setup button until the secondary display flashes. You can save the change by holding down the Setup button until the secondary display stops flashing.

| Second Display | Name                    | Feature                                                        |  |  |
|----------------|-------------------------|----------------------------------------------------------------|--|--|
| 25.8c          | Temperature             | Display temperature                                            |  |  |
| bAt5.5         | Battery Voltage         | Display battery voltage                                        |  |  |
| APOon/APOof    | Auto Power Off (APo)    | Activate or deactivate auto power off after 30 minutes         |  |  |
| b-OFF/b-On     | Buzzer On/Off (b-Off)   | Enable or disable buzzer                                       |  |  |
| LCD-4          | LCD Contrast            | Adjuct LCD contrast                                            |  |  |
| 2023           | Year                    | Set the year for the logger                                    |  |  |
| 8-11           | Month-Day               | Set the month and day for the logger                           |  |  |
| 14-27          | Hour-Minute             | Set the 24-hour clock for the logger                           |  |  |
| 00000          | Multimeter ID           | Set the meter id for the logger                                |  |  |
| Ln 0           | Logging Interval (In 0) | Set logging interval in seconds (0 represents 20 milliseconds) |  |  |

Setup functions only available in specific modes.

| Mode         | Second Display               | Name                                  | Feature                                                                                                          |  |  |
|--------------|------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| ACV and ACmV | 0060 Hz                      | Frequency                             | Display frequency of AC signal                                                                                   |  |  |
| ACV          | -70.0 dBm                    | dBm                                   | Decibels per milliwatt of AC signal                                                                              |  |  |
| Continuity   | dn 30/UP 30/dn<br>300/UP 300 | Level threshold/Short<br>or Open Beep | Choose trigger threshold between $30\Omega$ and $300\Omega$ ; Choose to beep on open (UP) or beep on short (dn). |  |  |
| Temperature  | 26.8c/80.1F                  | Celsius or Fahrenheit                 | Select temperature scale for primary and secondary display                                                       |  |  |

## Accuracy Specifications Within the Group

| Value       | Brymen<br>BM789 | EEVblog<br>121GW | Greenlee<br>DM-860A | Uni-T<br>UT181A | Fluke<br>289FVF |
|-------------|-----------------|------------------|---------------------|-----------------|-----------------|
| Cost        | \$173.52        | \$225.00         | \$346.44            | \$399.75        | \$876.59        |
| Count       | 60,000          | 50,000           | 50,000              | 60,000          | 50,000          |
| DC mV Low   | 0.03%+2         | 0.1%+10          | 0.02%+2             | 0.025%+20       | 0.05%+20        |
| DC mV High  | 0.03%+2         | 0.1%+10          | 0.02%+2             | 0.025%+5        | 0.025%+2        |
| DC V Low    | 0.03%+2         | 0.05%+5          | 0.02%+2             | 0.025%+5        | 0.025%+2        |
| DC V High   | 0.05%+5         | 0.1%+10          | 0.04%+2             | 0.03%+5         | 0.03%+2         |
| AC mV       | 0.5%+30         | 0.8%+10          | 0.3%+20             | 0.6%+60         | 0.3%+25         |
| AC V        | 0.5%+30         | 0.3%+10          | 0.3%+30             | 0.3%+30         | 0.3%+25         |
| AC V + DC V | 1.2% + 40       | 1.0% + 10        | 0.5% + 80           | 1% + 80         | 0.5% + 80       |
| DC µA       | 0.075%+20       | 1.5%+15          | 0.15%+2             | 0.08%+20        | 0.075%+20       |
| DC mA       | 0.15%+20        | 0.25%+5          | 0.15%+20            | 0.15%+10        | 0.15%+2         |
| DC A        | 0.3%+20         | 0.75%+15         | 0.5%+2              | 0.5%+10         | 0.3%+10         |
| AC µA       | 0.9%+20         | 2.0%+20          | 0.5%+5              | 0.6%+40         | 1%+20           |
| AC mA       | 0.9%+20         | 1.0%+5           | 0.5%+5              | 0.6%+20         | 0.6%+5          |
| AC A        | 1%+30           | 1.5%+15          | 0.5%+5              | 1%+20           | 0.8%+20         |
| Ω           | 0.085%+10       | 0.5%+20          | 0.07%+1             | 0.05%+10        | 0.15% + 20      |
| Low kΩ      | 0.085%+4        | 0.2%+5           | 0.07%+2             | 0.05%+2         | 0.05%+2         |
| High kΩ     | 0.15%+4         | 0.2%+5           | 0.1%+2              | 0.05%+2         | 0.05%+15        |
| Low MΩ      | 1.5%+5          | 0.3%+5           | 0.3%+6              | 0.3%+10         | 0.15%+4         |
| High MΩ     | 2.0%+5          | 1.2%+20          | 2%+6                | 2%+10           | 3.0%+2          |
| Low nF      | 1%+10           | 2.5%+5           | 0.8%+3              | 3%+10           | 1%+5            |
| High nF     | 1%+2            | 2.5%+5           | 0.8%+3              | 2%+5            | 1%+5            |
| Low µF      | 1%+2            | 2.5%+5           | 1.5%+3              | 2%+5            | 1%+5            |
| High μF     | 1.8%+4          | 3.0%+5           | 5% + 5              | 5% + 5          | 1%+5            |

The accuracy specifications are from the meters' respective manuals. Red lettering for the meter's name indicates the meter has failed to meet an accuracy specification. The red lettering in the accuracy specification indicates that one, or more meter readings did not meet this accuracy specification. The background color code shows the extreme low and high accuracy specifications. Green is the highest, yellow is lowest, and white is everything in-between.

The EEVblog 121GW is in about last place in overall accuracy specifications. It is one of the two meters in this group that met its accuracy specifications for all measurements taken.

## Logging

I was able to log to the Micro SD card.



I opened the file in Excel.



I also tried the Bluetooth software. The Android EEVBlog 121GW software would not install on my Android version 12L Lenovo 11.5" Tab P11 Tablet 2nd Gen.



Also, the Android version of Meteor for 121GW would not install.



I was able to install and run Meteor for 121GW on my iPhone and iPad both running IOS 16. 5.1(c).



I also was able to run the PC software on a Virtual Windows 11 ARM running on Parallels on my Mac Studio.



## Battery

The meter uses four AA batteries accessible from the back by removing the boot, then removing the battery compartment door. The battery door has two captive Philips screws screwed into metal inserts. The manual claims 500-hour battery life.



## **Fuses**

The fuses are accessible from the battery compartment.



Version 1.0, 14-Aug-2023

By Tom, N8FDY

The manual states the fuses are:

mA/μA current input fuse: 400 mA / 600 V DC/AC, IR 10 kA HRC FAST; Designed to UL 248-1; Dimension: 6mm x 32 mm; Recommended: ASTM HV610.0.4 400 mA (600V) or HV620.0.4 (1000V)

A/500 mA current input fuse: 11 A/1000 V DC/AC, IR 20 kA HRC FAST; Dimension: 10mm x 38 mm 5AG;

Recommended: ASTM HV110.11A, Bussmann DMM-B-11A, or Little-fuse FLU011

#### Micro SD Card Slot

The battery compartment also has a Micro SD card slot for data logging and firmware updates.



#### **Pros**

- Third-party safety tested by ETL for US and Canada.
- The AC Volts accuracy specification is the highest in this group of 50000-count meters.
- The high megaohm accuracy specification is the highest in this group of 50000-count meters.
- All measurements taken met accuracy specifications in the manual.
- Micro SD card and Bluetooth logging.
- Remembers last mode used at each switch position.
- Setup menu to customize many operations.
- Useful secondary display.
- VA measurements.
- Built-in ambient temperature reading.
- Fuses can be changed from the battery compartment.

#### Cons

- Most ranges have the lowest accuracy specifications in this group of 50000-count meters.
- Only measures up to 600 Volts.
- Must send to Australia for service.
- Android software will not install on a device running 12L.
- Red writing around dial is difficult to read.

### Conclusion

The EEVblog 121GW is the only meter in the 50000-count group I tested that that has a Micro SD card for data logging and firmware upgrade. It is also the only meter in this group that can measure AC Volt-Amps and DC power. If also has Bluetooth connectivity. In general, it has higher accuracy specifications than 6000-count meters and of course higher resolution. If also has AC+DC True-RMS. It also can measure dBm at  $600\Omega$  impedances.

The EEVblog 121GW has everything and more, except tight accuracy specifications. In many of my tests the reading exceeded accuracy specifications, but this is a random sample of one. So, this meter is a tradeoff between low price, many features, small size vs accuracy specifications.

After this meter testing project is done, this is one of the meters I am keeping.