ТЦУКЕНГШЩЗХЪФЫВАПРОЛДЖЭЯЧСМИ
ТЬОЮЙЦУКЕНГШЩЗХЪФЫВАПРОЛДЖЭ
ЯЧСМИТЬ СНОЙЦУКЕНГШШЗХЪФЫВАПРОЛДЖЭЯЧС
МІНІСТЕРСТВО ОСВІТИ І НАУКИ
УКРАЇНИ НАЦІОНАЛЬНОМУ
УНІВЕРСИТЕТІ "ЛЬВІВСЬКА
ПОЛІТЕХНІКА"
Кафедра систем штучного інтелекту
Лабораторна робота №6 3
дисципліни«Дискретна
математика»

ЦУКЕНГШ

Виколадач: Мельникова Н.І.

Виколадач: Мельникова Н.І.

чсмитьбюйцукенгшщзхъфывапрол джэячсмитьбюйцукенгшщзхъфыв апролджэячсмитьбюйцукенгшщзх ьфывапролджэячсмитьбюйц укенгшщзхъфывапролджэячсмить бюйцукенгшщзхъфывапролджэячс

Тема: Генерація комбінаторних конфігурацій

Мета роботи: набути практичних вмінь та навичок при комп'ютерній реалізації комбінаторних задач.

Додаток 1

Варіант № 3

1. У вчителя 4 однакових групи з англійської мови і 3 однакових- з французької. Кожен день він готовиться до однієї мови і проводить заняття в одній групі. Скількома способами він може вести таку підготовку?

Розв'язання

У вчителя загалом є 7 груп (n = 7). Якщо він готується до однієї мови з двох мов (m = 2) незалежно від того, у якій групі проводитиме заняття, то n*m=7*2=14.

2. Садівник протягом трьох днів має посадити 10 дерев десяти різних сортів. Скількома способами він може розподілити за днями свою роботу?

Розв'язання

Щоб розподілити роботу між трьома днями потрібно вибрати два місця для роздільників з дев'яти, щоб кожен день садівник садив хоча б по одному дереву. Отже,

$$C_9^2 = \frac{9!}{2!(9-2)!} = \frac{9!}{2!7!} = 4 * 9 = 36.$$

3. У поштовому відділенні продаються листівки 10 сортів. Скількома способами можна купити в ньому 12 листівок?

Розв'язання

Якщо нам потрібно купити 12 листівок з 10 видів, то елементи одного виду можуть повторюватися. Тобто

$$\overline{C_{10}^{12}} = C_{10+12-1}^{12} = C_{21}^{12} = \frac{21!}{12! (21-12)!} = \frac{21!}{12! 9!} = 293930.$$

4. Скільки існує різних нескоротних дробів, чисельниками і знаменниками яких є числа 2, 3, 4, 5, 6, 7, 11, 13, 17, 19?

Розв'язання

Розміщення $A_{10}^2 = \frac{10!}{(10-2)!} = \frac{10!}{8!} = 90$, щоб уникнути однакових чисел у чисельнику і знаменнику, тобто уникнути ситуацій, коли дроби скоротні. Крім цього, потрібно виключити скоротні дроби, такі як $\frac{2}{4}$, $\frac{2}{6}$, $\frac{3}{6}$, $\frac{4}{6}$ і обернені до них. Отже, 90 - 8 = 82.

5. З цифр 1, 2, 3, 5, 6, 8, 9 утворюють різні п'ятицифрові числа, які не мають однакових цифр. Визначити кількість чисел, у яких зустрічаються цифри 6 і 8 одночасно.

Розв'язання

Спочатку зазначимо, що місце двох цифр у п'ятицифровому числі повинні займати цифри 6 і 8, тобто існує $A_5^2 = \frac{5!}{(5-2)!} = \frac{5!}{3!} = 20$ розміщень цих цифр. Кількість розміщень для цифр які залишилися - $A_5^3 = \frac{5!}{(5-3)!} = \frac{5!}{2!} = 60$. Отже, 20*60 = 1200.

6. Скількома способами можна роздати 6 різних предметів трьом особам так, щоб кожна отримала по 2 предмети?

Розв'язання

Це упорядковане розбиття, де n=6, $n_1=n_2=n_3=2$. Отже,

$$C_6^{2,2,2} = \frac{6}{2! \, 2! \, 2!} = 90.$$

Додаток 2

Задане додатне ціле число n і невід'ємне ціле число r (r \leq n). Розташувати у лексикографічному порядку всі розміщення без повторень із елементів множини $\{1, 2, ..., n\}$. Побудувати розклад $(x + y)^6$.

Код програми

```
#include <iostream>
using namespace std;
int fact(int N)
{
       if (N < 0)
             return 0;
       if (N == 0)
             return 1;
       else
              return N * fact(N - 1);
}
int Newto(int n, int k)
{
       int c = fact(n) / (fact(k) * fact(n - k));
       return c;
}
void Binomm(int z)
       int B = 0;
       cout << "(X + Y)^" << z << " = ";
       for (int k = 0, n = z; k <= z; k++, n--)
              if (k == z)
                     cout << Newto(z, k) << "*X^" << n << "*Y^" << k << endl;</pre>
                     break;
              cout << Newto(z, k) << "*X^" << n << "*Y^" << k << " + ";
       }
}
int main() {
       cout << "N: ";
       int n;
       cin >> n;
       Binomm(n);
       return 0;}
```

Результат роботи програми

