CS343: Operating System

Disk Management and RAID Structure

Lect36: 7th Nov 2023

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Mass Storage
 - Disk Structure
 - Disk Arm Scheduling
 - Disk Management
 - RAID Structure
- FS Basic
- FS Implementation
- I/O subsystem
- Device Drivers

Disk Management

- Low-level formatting, or physical formatting —
 Dividing a disk into sectors that the disk
 controller can read and write
 - Each sector can hold header information, plus data, plus error correction code (ECC)
 - Usually 512 bytes of data but can be selectable

Disk Management

- To use a disk to hold files, OS still needs to record its own data structures on the disk
 - Partition the disk into one or more groups of cylinders, each treated as a logical disk
 - Logical formatting or "making a file system"
 - To increase efficiency most file systems group blocks into clusters
 - Disk I/O done in blocks
 - File I/O done in clusters

Disk Management (Cont.)

- Raw disk access for apps that want to do their own block management, keep OS out of the way (databases for example)
- Boot block initializes system
 - The bootstrap is stored in ROM
 - Bootstrap loader program stored in boot blocks of boot partition
- Methods such as sector sparing used to handle bad blocks

Booting from a Disk in Windows

Swap-Space Management

- Swap-space Virtual memory uses disk space as an extension of main memory
 - Less common now due to memory capacity increases
- Swap-space can be carved out of the normal file system, or, more commonly
- It can be in a separate disk partition (raw)

<u>RAID</u>

RAID – Redundant Array of Inexpensive Disks

- Creating a Disk System to provide
 - Reliability
 - Availability
 - Performance
 - Capacity

<u>RAID</u>

- RAID redundant array of inexpensive disks
- Started by David Paterson University of Berkley
 - Author of Computer Architecture Book
- RAID
 - Multiple disk drive may provide better throughput and performance via interleaving /stripping
 - multiple disk drives provides reliability via redundancy
- Frequently combined with NVRAM to improve write performance
 - NVRAM: Faster then HDD, slower than RAM
 - Number write bound will not be a problem to use in between HDD and RAM

<u>RAID</u>

- Multiple disk provides reliability via redundancy
- Increases the mean time to failure
- Mean time to repair exposure time when another failure could cause data loss
- Mean time to data loss based on above factors
- Several improvements in disk-use techniques involve the use of multiple disks working cooperatively

RAID (Cont.)

- Disk striping uses a group of disks as one storage unit
- RAID is arranged into six different levels
- RAID schemes improve performance and improve the reliability of the storage system by storing redundant data
 - Mirroring or shadowing (RAID 1) keeps duplicate of each disk
 - Striped mirrors (RAID 1+0) or mirrored stripes (RAID 0+1) provides high performance and high reliability
 - Block interleaved parity (RAID 4, 5, 6) uses much less redundancy

RAID (Cont.)

- RAID within a storage array can still fail
 - if the array fails, so automatic replication of the data between arrays is common
- Frequently, a small number of hot-spare disks are left unallocated
 - Automatically replacing a failed disk and having data rebuilt onto them

RAID 0: David Paterson's

- RAID 0: Main concentration on Performance
 - One HDD: Read/Write using multiple Head from many platter in parallel: Parallel Performance
 - Raid0: Read from multiple HDD in parallel
 - Assume 10 Platter/HDD and 10 HDDs: 100 blocks
 R/W in parallel

- Striping distributes contents of files roughly equally among all disks in the set
 - Which makes concurrent read or write operations on the multiple disks almost inevitable.
- Concurrent operations make the throughput of most read and write operations equal to the throughput of one disk multiplied by the number of disks.

- Increased throughput is the big benefit of RAID
 0 versus spanned volume
- Capacity of a RAID 0 volume
 - -Sum of the capacities of the disks in the set
 - Same as with a spanned volume

- RAID 0 consists of striping, without mirroring or parity.
- There is no added redundancy for handling disk failures, just as with a spanned volume
- Thus, failure of one disk causes the loss of the entire RAID 0 volume, with reduced possibilities of data recovery when compared to a broken spanned volume.

RAID 1: Mirroring, Full redundancy

- But Fully Redundancy (Always have a safe copy if one fail)
- No Capacity Increase
- No Performance Increase

RAID 1+0: Mirroring + Striping

RAID 0+1

• Mirroring and Striping (2)

RAID 2: Bit level Stripping + ECC

 Example 4 for Data and 3 for ECC parity: reduced capacity and performance but reliability

RAID 3: Byte level Stripping +Parity

RAID 4: Block level Stripping +Parity

RAID 5: Stripping + Distributed Parity

