Math 4301 Mathematical Analysis I

Lecture 12

Topic: Differentiability

• Differentiability

Definition A function $f:(a,b)\to\mathbb{R}$ is differentiable at $x_0\in(a,b)$ if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists (and is finite).

In such a case the value of this limit is denoted by $f'(x_0)$ and we call it the *first derivative* of f at x_0 ,

that is

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

• We observe that, if $f'(x_0)$ exists, then

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}, \text{ so}$$

$$\lim_{h \to 0} \left(\frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) \right) = 0, \text{ so}$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0) h}{h} = 0.$$

• Since, $f'(x_0) \in \mathbb{R}$, we may also say that $f:(a,b) \to \mathbb{R}$ is differentiable at x_0 if there is a **real number** $a \in \mathbb{R}$, such that

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - ah}{h} = 0.$$

Example: Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$.

Show that f is differentiable at each $x_0 \in \mathbb{R}$.

• We see that

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h)^2 - x_0^2}{h} = \lim_{h \to 0} \frac{h(h + 2x_0)}{h}$$
$$= \lim_{h \to 0} (h + 2x_0) = 2x_0$$

thus the limit exist.

• Therefore, f is differentiable at x_0 and $f'(x_0) = 2x_0$.

Remark: Assume that $f:(a,b)\to\mathbb{R}$ and f'(x) exists for all $x\in(a,b)$, then we can define a new function, called the derivative of $f, Df:(a,b)\to\mathbb{R}$,

$$Df(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x).$$

• As we can see the derivative of f at x is define as above for function with the domain that is an interval.

1

• It is easy to notice that we can define the first derivative for a function $f:A\subseteq\mathbb{R}\to\mathbb{R}$ for each point

 $x \in \text{Int}(A)$.

Remark: Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and $x_0 \in \text{Int}(A)$,

then there is $\delta > 0$, such that $D(x_0, \delta) \subseteq A$.

• Therefore, we may define

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

since if $0 < |h| < \delta$, then

$$x_0 + h \in D(x_0, \delta)$$
.

Example: Let $f : \mathbb{R} \to \mathbb{R}$, f(x) = |x|.

We show that f is differentiable for all $x \neq 0$.

• We need to check if

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

exists.

- By theorem, $\lim_{h\to 0} \frac{|h|}{h}$ exists iff $\lim_{h\to 0^+} \frac{|h|}{h}$ and $\lim_{h\to 0^-} \frac{|h|}{h}$ both exist and they are equal.
- However, if h < 0, then |h| = -h, and therefore

$$\lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$

and if h > 0, then |h| = h, so

$$\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1.$$

• Since

$$\lim_{h \to 0^-} \frac{|h|}{h} \neq \lim_{h \to 0^+} \frac{|h|}{h}$$

then $\lim_{h\to 0} \frac{|h|}{h}$ does not exist.

Therefore, f is not differentiable.

Example: Let $f: \mathbb{R} \to \mathbb{R}$, be given by

$$f(x) = \begin{cases} \frac{1}{x} & if \quad x \neq 0\\ 1 & if \quad x = 0 \end{cases}$$

- We show that f is differentiable for all $x \in \mathbb{R} \setminus \{0\}$.
- Indeed, we see that, if $x \neq 0$, then

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = -\lim_{h \to 0} \frac{1}{x(x+h)} = -\frac{1}{x^2}$$

SO

$$f'(x) = -\frac{1}{r^2}.$$

Example: Let $f : \mathbb{R} \to \mathbb{R}$, be given by $f(x) = \sqrt{|x|}$.

We show that f is differentiable at each $x \neq 0$.

Exercise: Let $f: \mathbb{R} \to \mathbb{R}$, be given by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & if \quad x \neq 0 \\ 0 & if \quad x = 0 \end{cases}.$$

• Show that f is differentiable, for all $x \neq 0$.

• We see that

$$\lim_{h\to 0}\frac{f\left(0+h\right)-f\left(0\right)}{h}=\lim_{h\to 0}\frac{f\left(h\right)-0}{h}=\lim_{h\to 0}\frac{h^{2}\sin\left(\frac{1}{h}\right)}{h}=\lim_{h\to 0}h\sin\left(\frac{1}{h}\right).$$

• Now, we notice that

$$0 \le \left| h \sin\left(\frac{1}{h}\right) \right| = |h| \left| \sin\left(\frac{1}{h}\right) \right| \le |h|, \text{ since } \left| \sin\left(\frac{1}{h}\right) \right| \le 1, \text{ so}$$

$$0 \le \left| h \sin\left(\frac{1}{h}\right) \right| \le |h|.$$

• Since $\lim_{h\to 0} |h| = 0$, the by the theorem

$$\lim_{h \to 0} \left| h \sin \left(\frac{1}{h} \right) \right| = 0, \text{ so } \lim_{h \to 0} h \sin \left(\frac{1}{h} \right) = 0.$$

• We showed that $\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = 0$, so $f'\left(0\right) = 0$.

Exercise: Let $f: \mathbb{R} \to \mathbb{R}$, be given by

$$f\left(x\right) = \left|x\right|^{3}.$$

Show that f is differentiable, for all $x \in \mathbb{R}$.

Definition Let $f : [a, b] \to \mathbb{R}$ and $a \le x_0 < b$.

Define

$$f'(x_0^+) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided that the limit exists and we call it the *right derivative* at x_0 . Analogously, if $a < x_0 \le b$, then

$$f'(x_0^-) = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided that the limit exists and we call it the left derivative of f at x_0 .

Proposition Let $f : [a, b] \to \mathbb{R}$ and $a < x_0 < b$.

Then f is differentiable at x_0 iff both $f'\left(x_0^+\right)$ and $f'\left(x_0^-\right)$ exist and $f'\left(x_0^+\right) = f'\left(x_0^-\right)$.

Proof. Exercise

• Exercise: Let $f: \mathbb{R} \to \mathbb{R}$, be given by

$$f(x) = \begin{cases} x^2 & if \quad x > 0 \\ -x & if \quad x \le 0 \end{cases}.$$

- Find $f'(0^+)$ and $f'(0^-)$. Is f differentiable at $x_0 = 0$?
- We see that

$$f'(0^{+}) = \lim_{h \to 0^{+}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{+}} \frac{f(h)}{h} = \lim_{h \to 0^{+}} \frac{h^{2}}{h} = 0 \text{ and}$$

$$f'(0^{-}) = \lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{f(h)}{h} = \lim_{h \to 0^{+}} \frac{-h}{h} = -1$$

• By the theorem, since $f'(0^+) \neq f'(0^-)$, f is not differentiable at x = 0. **Theorem** Let $f:(a,b) \to \mathbb{R}$ and $x_0 \in (a,b)$. If f is differentiable at x_0 then f is continuous at x_0 .

Proof. We want to show that

$$\lim_{x \to x_0} f(x) = f(x_0).$$

- Let $\epsilon > 0$ be given.
- Since f is differentiable at x_0 ,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

exists.

• Therefore, there is $\delta_1 > 0$, such that, for all $x \in (a,b)$, if $0 < |x-x_0| < \delta_1$, then

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right| < \frac{\epsilon}{2}.$$

• Hence, if $0 < |x - x_0| < \min\{\delta_1, 1\}$, then

$$|f(x) - f(x_0) - f'(x_0)(x - x_0)| < \frac{\epsilon}{2} |x - x_0| < \frac{\epsilon}{2}.$$

• Therefore, when $0 < |x - x_0| < \min \{\delta_1, 1\}$

$$|f(x) - f(x_0)| = |f(x) - f(x_0) - f'(x_0)(x - x_0) + f'(x_0)(x - x_0)|$$

$$\leq |f(x) - f(x_0) - f'(x_0)(x - x_0)| + |f'(x_0)||x - x_0||$$

• If $0 < |x - x_0| < \frac{\epsilon}{2(|f'(x_0)| + 1)}$, then

$$|f'(x_0)||x - x_0| < \frac{\epsilon |f'(x_0)|}{2(|f'(x_0)| + 1)} \le \frac{\epsilon}{2}.$$

- Let $\delta = \frac{1}{2} \min \left\{ 1, \delta_1, \frac{\epsilon}{2(|f'(x_0)|+1)} \right\} > 0$ and assume that for $x \in (a, b)$,
- if $0 < |x x_0| < \delta$, then

$$|f(x) - f(x_0)| \le |f(x) - f(x_0) - f'(x_0)(x - x_0)| + |f'(x_0)||x - x_0|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

If $x = x_0$, then clearly,

$$|f(x) - f(x_0)| = |f(x_0) - f(x_0)| = 0 < \epsilon.$$

• Therefore, for $\epsilon > 0$, there is $\delta > 0$, such that, for all $x \in (a, b)$, if $|x - x_0| < \delta$, then

$$|f(x) - f(x_0)| < \epsilon$$
.

It follows that f is continuous at x_0 .

• Rules for differentiation

Theorem Let $f, g: (a, b) \to \mathbb{R}$ be differentiable at $x_0 \in (a, b)$. Then

i) $\alpha f + \beta g$ is differentiable at x_0 and

$$\left(\alpha f + \beta g\right)'(x_0) = \alpha f'(x_0) + \beta g'(x_0).$$

ii) fg is differentiable at x_0 and

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

iii) $\frac{f}{g}$ is differentiable at x_0 and

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) g(x_0) - f(x_0) g'(x_0)}{(g(x_0))^2}$$

whenever $g(x_0) \neq 0$.

Proof. Exercise.

• Theorem (Chain Rule) Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ be differentiable at $x_0 \in \text{Int}(A)$ and $g: B \subseteq \mathbb{R} \to \mathbb{R}$ be differentiable at $f(x_0) \in \text{Int}(B)$, where $f(A) \subseteq B$. Then $g \circ f: A \to \mathbb{R}$ is differentiable at x_0 and

$$(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0).$$

Proof. We show that

$$(q \circ f)'(x_0) = q'(f(x_0)) f'(x_0),$$

that is,

$$(g \circ f)'(x_0) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$

= $g'(f(x_0)) f'(x_0)$.

 \bullet Without lose of generality we may assume that:

$$A = (a, b) \text{ and } B = (c, d),$$

 $x_0 \in (a, b), f(x_0) \in (c, d) \text{ and }$
 $f((a, b)) \subseteq (c, d).$

• Since g is differentiable at $f(x_0)$, it follows that

$$\lim_{y \to f\left(x_{0}\right)} \frac{g\left(y\right) - g\left(f\left(x_{0}\right)\right)}{y - f\left(x_{0}\right)} = g'\left(f\left(x_{0}\right)\right).$$

• Define $h:(c,d)\to\mathbb{R}$ by

$$h(y) = \begin{cases} \frac{g(y) - g(f(x_0))}{y - f(x_0)} & if \quad y \neq f(x_0) \\ g'(f(x_0)) & if \quad y = f(x_0) \end{cases}.$$

• Since

$$\lim_{y \to f(x_0)} h(y) = \lim_{y \to f(x_0)} \frac{g(y) - g(f(x_0))}{y - f(x_0)} = g'(f(x_0))$$

it follows that h is continuous at $f(x_0)$, i.e.

$$h\left(f\left(x_{0}\right)\right) = \lim_{y \to f\left(x_{0}\right)} h\left(y\right)$$

- Since f is differentiable at x_0 , f is continuous at x_0 .
- Thus,

$$h \circ f : (a, b) \to \mathbb{R}$$

is continuous at $x_0 \in (a, b)$ as a composition of continuous functions.

• Therefore,

$$\lim_{x \to x_0} (h \circ f)(x) = h(f(x_0)) = g'(f(x_0)).$$

• Recall, since

$$h(y) = \begin{cases} \frac{g(y) - g(f(x_0))}{y - f(x_0)} & if \quad y \neq f(x_0) \\ g'(f(x_0)) & if \quad y = f(x_0) \end{cases}$$

• For all $y \in (c, d)$,

$$g(y) - g(f(x_0)) = h(y)(y - f(x_0)).$$

• Since $f((a,b)) \subseteq (c,d)$, this gives

$$g(f(x)) - g(f(x_0)) = h(f(x))(f(x) - f(x_0)), \text{ for all } x \in (a, b).$$

• Therefore, for all $x \in (a, b)$, if $x \neq x_0$, then

$$\frac{(g \circ f)(x) - (g \circ f)(x_0)}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$

$$= h(f(x)) \frac{f(x) - f(x_0)}{x - x_0}$$

$$= (h \circ f)(x) \frac{f(x) - f(x_0)}{x - x_0}.$$

• It follows that

$$\lim_{x \to x_0} \frac{(g \circ f)(x) - (g \circ f)(x_0)}{x - x_0} = \lim_{x \to x_0} (h \circ f)(x) \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} (h \circ f)(x) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= g'(f(x_0)) f'(x_0).$$

This finishes our proof. ■

• **Example**: Let $f : \mathbb{R} \to \mathbb{R}$, be given by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & if \quad x \neq 0 \\ 0 & if \quad x = 0 \end{cases}.$$

We show that f is differentiable, for all $x \in \mathbb{R}$.

• Indeed, if $x_0 \neq 0$, then

$$u\left(x\right) = \frac{1}{x}$$

is differentiable at x_0 and

• since sin is also differentiable, by the chain rule $\sin \circ u$ is differentiable at x_0 and

$$(\sin \circ u)'(x_0) = \cos (u(x_0)) u'(x_0) = -\frac{1}{x_0} \cos \left(\frac{1}{x_0}\right).$$

• Therefore, by the product rule

$$f'(x_0) = 2x_0 \sin\left(\frac{1}{x_0}\right) - \cos\left(\frac{1}{x_0}\right).$$

• Now, for $x_0 = 0$,

$$\lim_{x \to 0} \frac{f\left(x\right) - f\left(0\right)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0.$$

• Indeed, since

$$0 \le \left| \sin \left(\frac{1}{x} \right) \right| \le 1,$$

for all $x \neq 0$ and

$$\lim_{x \to 0} |x| = 0,$$

for all $x \neq 0$:

$$0 \le |x| \left| \sin \left(\frac{1}{x} \right) \right| \le |x|,$$

so

$$\lim_{x \to 0} \left| x \sin \left(\frac{1}{x} \right) \right| = 0, \text{ hence } \lim_{x \to 0} x \sin \left(\frac{1}{x} \right) = 0.$$

• We see that

$$f' : \mathbb{R} \to \mathbb{R},$$

$$f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & if \quad x \neq 0 \\ 0 & if \quad x = 0 \end{cases}.$$

• One shows that f' is not continuous.

Definition A function $f:(a,b)\to\mathbb{R}$ is called a function of class \mathcal{C}^1 on (a,b) (or *continuously differentiable* on (a,b)) if $f':(a,b)\to\mathbb{R}$ is continuous. We write, $f\in\mathcal{C}^1$ (a,b) if f is of class \mathcal{C}^1 on (a,b).

• We see that the function $f: \mathbb{R} \to \mathbb{R}$, be given by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & if \quad x \neq 0 \\ 0 & if \quad x = 0 \end{cases}.$$

is differentiable, but the derivative

$$f'$$
: $\mathbb{R} \to \mathbb{R}$, defined by
$$f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & if \quad x \neq 0 \\ 0 & if \quad x = 0 \end{cases}$$

is not continuous at x = 0, so f is not class \mathcal{C}^1 on \mathbb{R} .

Proposition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ be injective and differentiable at $x_0 \in \text{Int}(A)$.

If $f^{-1}: f(A) \to \mathbb{R}$ is defined by $f^{-1}(y) = x$ iff y = f(x) and f^{-1} is differentiable at $f(x_0) \in \text{Int}(f(A))$

then $f'(x_0) \neq 0$ and

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$$

Proof. Since $(f^{-1} \circ f)(x) = x$, for all $x \in A$ and both f and f^{-1} are differentiable at x_0 and $f(x_0)$,

• by the chain rule

$$\frac{d}{dx} (f^{-1} \circ f) (x_0) = f' (f (x_0)) f' (x_0) = 1$$

• In particular, $f'(x_0) \neq 0$ and

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

This finishes our proof. ■

• Example: Let $f:(0,\infty)\to (0,\infty)$, be given by $f(x)=x^2$. Then $f^{-1}:(0,\infty)\to (0,\infty)$ is defined by

$$f^{-1}(y) = \sqrt{y}$$

and it is differentiable, for all $y \in (0, \infty)$ and

$$\left(f^{-1}\right)'(y) = \frac{1}{2\sqrt{y}}.$$

• We see that $f'(x) = 2x \neq 0$, for all $x \in (0, \infty)$, then

$$(f^{-1})'(f(x)) = \frac{1}{2\sqrt{f(x)}} = \frac{1}{2x} = \frac{1}{f'(x)}, \text{ for all } x \in (0, \infty).$$

Example: Let $f: \mathbb{R} \to \mathbb{R}$, be given by

$$f(x) = x^3.$$

• Then $f^{-1}: \mathbb{R} \to \mathbb{R}$ is defined by $f^{-1}(y) = \sqrt[3]{y}$ and it is differentiable, for all $y \in \mathbb{R} \setminus \{0\}$ and

$$(f^{-1})'(y) = \frac{1}{3\sqrt[3]{y^2}}.$$

• We see that $f'(x) = 3x^2 \neq 0$, for all $x \in \mathbb{R} \setminus \{0\}$, then

$$(f^{-1})'(f(x)) = \frac{1}{3\sqrt[3]{(f(x))^2}} = \frac{1}{3x^2} = \frac{1}{f'(x)}, \text{ for all } x \in \mathbb{R} \setminus \{0\}.$$

• We observe f^{-1} is not differentiable at y = 0, so the theorem does not apply and we cannot conclude that $f'(0) \neq 0$.

Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and $x_0 \in A$. We say that

i) f has an absolute maximum at x_0 if, for all $x \in A$,

$$f\left(x\right) \leq f\left(x_0\right);$$

ii) f has a local maximum at x_0 if there exists $U \subseteq \mathbb{R}$, U-open, $x_0 \in U$ and for all $x \in A \cap U$,

$$f(x) \leq f(x_0)$$
;

iii) f has an absolute minimum at x_0 if, for all $x \in A$,

$$f(x_0) < f(x)$$
;

iv) f has a local minimum at x_0 if there exists $U \subseteq \mathbb{R}$, U-open, $x_0 \in U$ and for all $x \in A \cap U$,

$$f(x_0) \leq f(x)$$
;

We say that x₀ ∈ A is an extreme point of f if
f has absolute or a local maximum or minimum at x₀.

Proposition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and assume that f is differentiable at $x_0 \in \text{Int}(A)$ and x_0 is a local extremum point. Then

$$f'(x_0) = 0.$$

Proof. Assume without the lose of generality that f has a local maximum at $x_0 \in \text{Int}(A)$.

• Therefore, there is $\delta > 0$, such that,

$$D(x_0, \delta) \subseteq A$$

and for all $x \in D(x_0, \delta)$

$$f\left(x\right) \le f\left(x_0\right).$$

• For $x \in (x_0 - \delta, x_0) \cap A$,

$$f(x) - f(x_0) < 0$$

and $x - x_0 < 0$.

• Therefore,

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0$$
, for all $x \in (x_0 - \delta, x_0) \cap A$,

hence

$$f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

• Analogously, for $x \in (x_0, x_0 + \delta) \cap A$,

$$f\left(x\right) - f\left(x_0\right) \le 0$$

and $x - x_0 > 0$.

• Therefore,

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0$$
, for all $x \in (x_0, x_0 + \delta) \cap A$

hence

$$f'(x_0^+) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0.$$

• Since f is differentiable at x_0 ,

$$0 \ge f'(x_0^+) = f'(x_0) = f'(x_0^-) \ge 0,$$

• it follows that $f'(x_0) = 0$.

This finishes our proof. ■

- **Proposition** Let $f:[a,b] \to \mathbb{R}$ and assume that $f'(b^-)$ exists
- a. If f has a local maximum at b then

$$f'(b^-) \ge 0.$$

b. If f has a local minimum at b then

$$f'\left(b^{-}\right) \le 0.$$

Proof. Exercise ■

• **Proposition** Let $f:[a,b] \to \mathbb{R}$ and assume that $f'(a^+)$ exists

a. If f has a local maximum at a then $f'(a^+) \leq 0$.

b. If f has a local minimum at a then $f'(a^+) \ge 0$.

Proof. Exercise ■

$$f'\left(x_0\right) = 0$$

or f is not differentiable at x_0 .

Example: Let $f: \mathbb{R} \to \mathbb{R}$, be given by

$$f\left(x\right) =x^{3}.$$

• Notice that $x_0 = 0$ is a critical point of f since

$$f'(0) = 3 \cdot 0^2 = 0.$$

• However, f has no local extremum at $x_0 = 0$.

• Indeed, if $\delta > 0$, then for

$$x \in (-\delta, 0), f(x) < 0$$

and for

$$x \in (0, \delta), f(x) > 0,$$

so for $x_0 = 0$ there is no open disk $D(0, \delta)$, such that for $x \in D(0, \delta)$,

$$f\left(x\right) \ge f\left(0\right)$$

nor there is an open disk $D(0,\delta)$, such that, for all $x \in D(0,\delta)$,

$$f\left(x\right) \leq f\left(0\right) .$$

 \bullet The example above shows that critical points of f need not to be necessarily local minima or maxima.

Example: Let $f: \mathbb{R} \to \mathbb{R}$, be given by

$$f\left(x\right) =\left\vert x\right\vert .$$

- We observe that f is not differentiable at $x_0 = 0$, so $x_0 = 0$ is a critical point of f.
- If $\delta > 0$, then for all $x \in D(0, \delta)$,

$$f\left(x\right) \ge f\left(0\right),$$

so $x_0 = 0$ is a local minimum of f.

Theorem (*Rolle's Theorem*) Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f(a) = f(b), then there is $c \in (a,b)$, such that

$$f'(c) = 0.$$

Proof. Since f is continuous on [a, b] and [a, b] is compact,

• by the **extreme value theorem**, there are

$$x^*, y^* \in [a, b],$$

such that,

$$f(x^*) \le f(x) \le f(y^*).$$

• If $x^* = a$ and $y^* = b$ (or $x^* = b$ and $y^* = a$) then

$$f(a) = f(x^*) \le f(x) \le f(y^*) = f(b)$$

and since f(a) = f(b),

$$f(x) = f(a) = f(b),$$

for all $x \in [a, b]$.

• Since f is constant,

$$f'(x) = 0,$$

for all $x \in (a, b)$.

• Therefore, we may assume without lose of the generality that

$$x^* \in (a,b)$$
.

• From the previous theorem it must be $f(x^*) = 0$.

This finishes our proof. ■

• **Theorem** (Mean Value Theorem) Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b).

Then there is $c \in (a, b)$, such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Proof. Let $g:[a,b]\to\mathbb{R}$ be given by

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

- From our assumptions it follows that g is continuous on [a, b] and differentiable on (a, b).
- Since g(a) = 0 and g(b) = 0, so

$$g(a) = g(b)$$
.

• Therefore, g satisfies assumptions of Rolle's Theorem, hence there is $c \in (a, b)$, such that

$$g'(c) = 0.$$

• However,

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a},$$

SO

$$0 = f'(c) - \frac{f(b) - f(a)}{b - a}, \text{ and thus}$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

This finishes our proof. ■

• Theorem (Cauchy Mean Value Theorem) Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then there is $c \in (a, b)$, such that

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).$$

Proof. Let $h:[a,b]\to\mathbb{R}$ be defined by

$$h(x) = f(x) (g(b) - g(a)) - g(x) (f(b) - f(a)).$$

• We see that

$$h(a) = f(a) (g(b) - g(a)) - g(a) (f(b) - f(a))$$

= $f(a) g(b) - f(a) g(a) - f(b) g(a) + f(a) g(a)$
= $f(a) g(b) - f(b) g(a)$

and

$$h(b) = f(b)(g(b) - g(a)) - g(b)(f(b) - f(a))$$

= $f(b)g(b) - f(b)g(a) - f(b)g(b) + f(a)g(b)$
= $f(a)g(b) - f(b)g(a)$

- Since h is clearly continuous on [a, b] and differentiable on (a, b),
- by Rolle's theorem, there is $c \in (a, b)$, such that

$$h'(c) = 0.$$

• Since

$$h'(x) = f'(x) (g(b) - g(a)) - g'(x) (f(b) - f(a)),$$

$$f'(c)\left(g\left(b\right) - g\left(a\right)\right) - g'\left(c\right)\left(f\left(b\right) - f\left(a\right)\right) = 0 \text{ and thus}$$
$$f'\left(c\right)\left(g\left(b\right) - g\left(a\right)\right) = g'\left(c\right)\left(f\left(b\right) - f\left(a\right)\right).$$

This finishes our proof. \blacksquare