CENTRO DE ESTATÍSTICA APLICADA - CEA - USP

RELATÓRIO DE CONSULTA

TÍTULO DO PROJETO: Desempenho de crianças com distúrbios de aprendizagem em testes envolvendo processamento auditivo temporal

PESQUISADORA: Cristina Ferraz Borges

ORIENTADORA: Eliane Schochat

INSTITUIÇÃO: Departamento de Fisiopatologia da FMUSP

FINALIDADE DO PROJETO: Dissertação de mestrado

PARTICIPANTES DA ENTREVISTA: Cristina Ferraz Borges

Eliane Scholachat

Carlos Alberto de Bragança Pereira

Julio da Motta Singer

João Fernando S. R. de Mello

DATA: 16/09/2003

FINALIDADE DA CONSULTA: Cálculo de tamanho amostral.

RELATÓRIO ELABORADO POR: João Fernando S. R. de Mello

1. INTRODUÇÃO

Existem diversas causas de distúrbios de aprendizagem. Apesar do grande número de pesquisas realizadas sobre o assunto, as causas etiológicas das dificuldades de aprendizagem da leitura e escrita ainda permanecem controversas. Acredita-se que distúrbios auditivos sejam uma delas. Com a motivação de auxiliar a busca dessas causas, este trabalho tem dois objetivos: estudar a associação entre a capacidade auditiva e a consciência fonológica (habilidade que consiste em identificar e manipular estruturas fonológicas da linguagem, bem como utilizar um código para representá-las) em crianças e estudar as diferenças quanto a capacidade auditiva de um grupo de crianças com dificuldades de leitura e outro sem.

O objetivo dessa entrevista é obter uma sugestão para o número de indivíduos necessário para que se possam cumprir os objetivos do estudo.

2. DESCRIÇÃO DO ESTUDO

Serão observadas crianças de dois grupos: um grupo, denominado *experimental*, composto de crianças que apresentam problemas de aprendizado, e outro, *controle*, de crianças que apresentam um grau de aprendizado considerado bom. Os grupos serão definidos de acordo com o resultado de um teste de leitura, cuja pontuação varia entre 0 e 30, que será aplicado às crianças antes do estudo. Em seguida, serão aplicados testes que medem sua consciência fonológica. Serão também aplicados testes para medir a sua capacidade auditiva.

Características diferentes da consciência fonológica das crianças serão medidas através de 4 testes. Cada um desses testes possui 5 itens com respostas do tipo acerto ou erro, de modo que o resultado é o número de acertos, variando entre 0 e 5. O resultado pode ser resumido por meio do número médio de acertos nos 4 testes.

Para medir a capacidade auditiva serão realizados testes que consistem na emissão de dois sons, que podem ter freqüências iguais ou diferentes. A criança tem que identificar se estas freqüências são iguais ou diferentes. Esses testes são classificados em 8 tipos e cada tipo é realizado com 5 níveis de dificuldade, num total de 40 testes. Cada um dos 40 testes possui 8 itens, de forma que a resposta ao teste é

um número de acertos que pode variar entre 0 e 8. Os 5 níveis de dificuldade são definidos conforme o espaço de tempo entre os dois estímulos (quanto menor o espaço de tempo, maior a dificuldade). Esses espaços de tempo são de 50 ms, 100 ms, 150 ms, 200 ms e 250 ms.

Para se ter uma idéia da variabilidade desses dados, foi observada uma amostra piloto de 32 crianças com idades entre 9 e 12 anos de uma escola particular, sendo que 20 delas pertencem a um grupo que apresenta queixas no desempenho escolar e as 12 restantes pertencem a outro grupo de crianças com conduta escolar elogiável. Esses grupos correspondem aos grupos *experimental* e *controle*, mas a classificação foi realizada subjetivamente. Foram aplicados os mesmos testes que serão utilizados no projeto para medir a consciência fonológica e a capacidade auditiva das crianças. O teste preliminar de leitura que, para a amostra definitiva, será usado como critério de diferenciação dos grupos experimental e controle também foi aplicado.

Antes de cada teste de audição, a criança realiza um treinamento que consiste em um procedimento muito parecido com o teste propriamente dito, realizado em itens, mas de dificuldade reduzida. Na amostra piloto, algumas crianças erraram todos os itens no treinamento, e para esses indivíduos, o teste correspondente não foi realizado. Os 4 indivíduos que apresentaram dados omissos foram desconsiderados nas análises.

3. DESCRIÇÃO DAS VARIÁVEIS E PROCESSO DE COLETA DE DADOS

Para o estudo de correlação entre consciência fonológica e capacidade auditiva, podemos trabalhar com o número médio de acertos dos 40 testes auditivos e o número médio de acertos dos testes de leitura de cada criança. Estas variáveis serão denominadas respectivamente como Fono e Audi.

Para o objetivo de estudar a diferença entre os grupos quanto à capacidade auditiva, trabalharemos com o número médio de acertos em cada uma das dificuldades (de cada criança). Os dados estão sendo armazenados em planilha eletrônica, sendo que cada linha corresponde um indivíduo, e cada coluna à pontuação de cada teste auditivo e de consciência fonológica.

4. SITUAÇÃO DO PROJETO

Foram coletados dados referentes a uma amostra piloto. Com base nesses dados, calculamos o tamanho amostral necessário para o estudo que será realizado.

5. SUGESTÕES DO CEA

5.1 Evitar dados omissos

Sugerimos que os testes auditivos sejam realizados com todos os indivíduos, independentemente do seu desempenho no treinamento preliminar, para evitar dados omissos. Dessa forma, se o número de acertos do indivíduo no treinamento for zero, a sua pontuação estará sujeita às mesmas regras que as dos demais indivíduos, e assim, poderá ser comparada com as demais.

5.2 Tamanho amostral para estudo de correlação linear

Para estudar a correlação linear entre consciência fonológica e a capacidade de audição de crianças, sugerimos que o número de crianças utilizado seja entre 30 e 40 no grupo experimental, pois nos permite estimar o coeficiente de correlação com um erro de no máximo 0,205; a magnitude do erro depende do valor do coeficiente de correlação populacional.

Por exemplo, se observarmos uma amostra de tamanho 30 e um coeficiente de correlação igual a zero (pior caso), obteremos um intervalo de credibilidade de tamanho 0,41 (que corresponde a um erro máximo entre a estimativa e o verdadeiro parâmetro de 0,205); mas se o coeficiente de correlação observado for 0,7, o intervalo de credibilidade produzido terá tamanho igual a 0,25 (que corresponde a um erro máximo de 0,125 entre a estimativa e o verdadeiro parâmetro). Para detalhes técnicos, ver Apêndice A.

5.3 Estudo da diferença entre os grupos

Para estudar as possíveis diferenças entre os grupos quanto à capacidade auditiva, sugerimos que sejam observadas 30 crianças em cada grupo, pois dessa forma será possível estimar o valor da diferença média entre as pontuações dos testes auditivos dos grupos com um erro máximo entre a estimativa e a verdadeira diferença igual a 1, o que já representa uma diferença clinicamente significativa. Para detalhes técnicos, ver Apêndice A.

6. REFERÊNCIAS BIBLIOGRÁFICAS

BUSSAB, W. O. e MORETTIN, P. A. (2002). **Estatística Básica**, 5.ed. São Paulo: Saraiva, 526p.

DEGROOT, M. H. e SCHERVISH, M. J. (2002). **Probability and statistics**, 3.ed. Boston: Addison-Wesley, 861p.

Apêndice A

A1. Cálculo do tamanho amostral para estudo de correlação linear

Para estudar a correlação linear entre consciência fonológica e a capacidade de audição de crianças, utilizamos o coeficiente de correlação de Pearson (ρ), que pode ser estimado por:

$$R = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 / \sum_{i=1}^{n} (X_i - \overline{X})^2}}$$

O valor r que R assume quando a amostra é observada é denominado estimativa de ρ.

O tamanho amostral para o estudo da correlação ρ será determinado a partir da amplitude do intervalo de credibilidade para ρ .

Para estimar ρ consideremos a transformação z abaixo:

$$Z = Z(R) = \frac{1}{2} \ln \left(\frac{1+R}{1-R} \right).$$

Quando o número de observações é grande (pelo menos 25), a distribuição de Z é aproximadamente normal, com média $\xi = \frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho} \right)$ e variância 1/(n-3).

Depois de observada a amostra, os valores de Z serão representados por z.

Na amostra piloto de tamanho n_0 =16, obtivemos uma estimativa para o coeficiente de correlação r_0 =0,78 com um correspondente z_0 =1,05. A verossimilhança parametrizada por ξ é a função de densidade normal com média z_0 e variância 1/(n-3)=1/13. Esperamos que a população de interesse tenha um comportamento semelhante ao observado na amostra piloto, portanto, uma boa distribuição a priori para ξ é a distribuição Normal com média 1,05 e variância 0,24. Após ser observada uma nova amostra de tamanho n, teremos a seguinte distribuição a posteriori para ξ :

$$\xi \mid dados \sim N(m, v)$$
,

com
$$m = \frac{13 \times 1,05 + z \times n - 3}{13 + n - 3}$$
 e $v = \frac{1}{17 + n - 3}$.

Notemos que m é a média entre o valor esperado da distribuição a priori e o valor observado na nova amostra, ponderados pelo inverso de suas respectivas variâncias. A

variância da distribuição a posteriori é o inverso da soma dos pesos utilizados na média. Temos aqui um caso particular das fórmulas apresentadas em DeGroot (2002).

Um intervalo para ξ com 90% de credibilidade tem como limite inferior I₁=m-1,64DP e limite superior I₂=m+1,64DP onde DP= $\sqrt{\nu}$. Podemos avaliar a qualidade do intervalo de credibilidade através do seu comprimento. Um bom comprimento para o intervalo de credibilidade é 0,2 (10% do espaço paramétrico). Fixando o menor intervalo com 90% de probabilidade para para ρ =0 (caso menos favorável) como sendo [-0,1;+1,0], o intervalo correspondente para ξ seria [-0,10034;+1,0034], com comprimento

$$I_2$$
- I_1 =0,20068 =2(1,64 \sqrt{v}) =3,28[17+ n -3]-0,5.

Resolvendo a equação para n temos n=254.

Esta amostra é necessária para uma credibilidade de no mínimo 90%, mesmo para o caso menos favorável de ρ =0. Entretanto, suponhamos que o coeficiente de correlação amostral seja r=0,9. Neste caso teríamos como intervalo para ξ , [1,3450;1,5454]. O intervalo correspondente para ρ sería [0,8729;0,9130] cujo comprimento é 0,0402. Como conseqüência da normalidade da densidade a posteriori, é interessante ressaltar que os comprimentos dos intervalos para ξ são iguais enquanto que para ρ eles diminuem conforme o valor de ρ se distancia de zero.

Vamos supor agora que a restrição devido ao custo da amostragem obriga a pesquisadora a tomar n=80 no máximo. O intervalo com credibilidade 90% para x, com base na observação r=0,7, lembrando que $\zeta | (r = 0,7) \sim \zeta | (z = 8673) \sim N(0,8995;0,0106)$, seria [0,7304;0,0687] e o correspondente para ρ , [0,6233;0,7890] com comprimento 0,1657. Este intervalo parece ser razoavelmente informativo.

Na Tabela A.1, estão relacionados o número de crianças necessário em cada grupo para se garantir um comprimento de intervalo igual a d, e o comprimento do intervalo para diferentes valores do coeficiente de correlação amostral r.

Tabela 1 – Comprimento máximo do intervalo de credibilidade para amostras de tamanho n, e tamanhos dos intervalos de credibilidade correspondentes para diferentes valores esperados do coeficiente de correlação:

Tamanho da	Valor esperado para o coeficiente de						
amostra	correlação						
(n)	0*	0,4	0,6	0,7	0,8		
30	0,46	0,41	0,29	0,25	0,20		
40	0,43	0,39	0,27	0,22	0,17		
50	0,40	0,36	0,25	021	0,16		
75	0,35	0,32	0,21	0,18	0,13		
100	0,31	0,29	0,19	0,16	0,12		
250	0,20	0,19	0,13	0,10	0,07		

Por exemplo, se tomarmos uma amostra de 40 indivíduos, o intervalo de credibilidade de tamanho máximo é 0,46; se o coeficiente de correlação esperado for de 0,7, a amplitude do intervalo será de 0,22.

A2. Cálculo de tamanho de amostra para o estudo das diferenças entre os grupos

O segundo objetivo do estudo é comparar os dois grupos quanto às médias das variáveis de audição para os 5 diferentes testes auditivos. Estudaremos a diferença entre os grupos a partir da variável que possui maior desvio padrão observado.

As variâncias para essas medidas observadas no estudo piloto estão dispostas na Tabela 2:

Tabela 2 – Desvios padrão observados na amostra piloto para as médias dos números de acertos nos diferentes testes auditivos.

Espaçamento	Desvio padrão		
entre os sons			
50 ms	0,78		
100 ms	0,80		
150 ms	0,78		
200 ms	0,71		
250 ms	0,76		

Considerando-se que o número de crianças (n₁) a serem amostradas no grupo experimental para se atingir o primeiro objetivo já tenha sido determinado, estudaremos o número necessário de crianças no grupo controle (n₂) para que se possa atingir o segundo objetivo.

Conforme observamos na amostra piloto, esperamos que a maior variância para os 5 tipos de teste esteja em torno de 0,80. Sejam μ_1 e μ_2 as médias populacionais do número de acertos no grupo experimental e no grupo controle respectivamente, e seja $\delta = \mu_1 - \mu_2$ a diferença populacional entre ambos; seja d a sua diferença observada na amostra. O cálculo do tamanho amostral para este objetivo será realizado com base na precisão (ϵ) que corresponde à maior diferença tolerável entre o parâmetro (δ) desejado e sua estimativa (d) obtida para este parâmetro, com uma confiança $\gamma = 95\%$.

A expressão para a precisão (ϵ) desejada pode ser obtida como função do desvio padrão (σ), do número de pessoas em cada grupo (n_1 e n_2), e de um valor $Z_{\alpha/2}$, obtido de uma tabela da distribuição Normal partir de um nível de significância α . A expressão para a precisão é:

$$\varepsilon = Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n_1}} + \frac{\sigma}{\sqrt{n_2}} \right),$$

em que $Z_{\alpha/2}$ é o quantil de ordem 1- $\alpha/2$ da distribuição normal. Resolvendo a equação acima em relação a n_2 , teremos:

$$n_2 = \left(\frac{2z_{\alpha/2}\sigma}{\varepsilon - \frac{2z_{\alpha/2}\sigma}{\sqrt{n_1}}}\right)^2$$

Na Tabela 3 temos o número necessário de crianças no grupo controle para se estimar a diferença entre os dois grupos, com precisão ϵ , desvio padrão populacional do resultado do teste auditivo σ e número de indivíduos no grupo experimental n_1 . Para algumas combinações de variância e número de pessoas no grupo experimental, não se pode atingir determinadas precisões. Indicamos esses casos, com um traço (-) na tabela.

Tabela 3 – Número de crianças necessário no grupo controle para se estimar a diferença média de acertos no teste auditivo entre os dois grupos.

		Desvio padrão (σ)				
n1	Precisão ε	0,6	0,8	1,0	1.5	
	0,1	-	-	-	-	
	0,5	17	54	191	-	
30	1,0	3	5	191	41	
	1,5	1	2	10	10	
	2,0	1	1	3	5	
40	0,1	-	-	-	-	
	0,5	15	39	107	6994	
	1,0	3	5	9	31	
	1,5	1	2	3	9	
	2,0	1	1	2	4	
50	0,1	-	-	-	-	
	0,5	13	32	78	1219	
	1,0	2	5	8	26	
	1,5	1	2	3	8	
	2,0	1	1	2	4	

Por exemplo, se a precisão desejada for 1, o desvio padrão for populacional for σ =0,8 e o número de crianças observadas no grupo 1 for n_1 =30, precisaremos de n_2 =54 crianças para estudar a diferença média do número de acertos do teste auditivo entre os grupos com um intervalo de 95% de confiança e com a precisão δ =1 desejada.