$$f(x_i) = \frac{e^{x_i^{\text{col}}}}{\sum_{j=1}^m e^{x_j}}$$
; m being the number of different categories

function

· Used for multi-class classification problems

Multi-class classification

- It is a generalization of sigmoid function
- It produces output between 0 and 1

Online training

0 1)	
Batch	trainin

Obs.		Fat		Salt	Acceptance
	1		0.2	0.9	ike
*	2		0.1	0.1	dislike
4	3		0.2	0.4	dislike
¥	4		0.2	0.5	dislike
4	5		0.4	0.5	like
1	6		0.3	0.8	like

Obs.	Fat		Salt		Acceptance
1		0.2	П	0.9	like
2		0.1		0.1	dislike
3		0.2		0.4	dislike
4		0.2		0.5	dislike
5		0.4		0.5	like
6		0.3		0.8	like

[0-2,01] 0.3

$$mem = old - 7 \frac{\partial J}{\partial w}$$

Min max Scaling:
$$\frac{X - \min(X)}{\max(X) - \min(X)}$$

$$min(x) = 2$$

$$max(x) = 13$$

$$\frac{X}{5}$$

$$(5-2)(13-2)$$

$$8 (8-2)/(13-2)$$

$$2 (2-2)/(13-2) = 0$$

$$9 (9-2)/(13-2)$$

$$13 (13-2)/(13-2) = 1$$

Regularizers $\begin{array}{c|c}
l_1 := \sum_{i} |\beta_i| \\
l_2 := \sum_{i} |\beta_i|^2
\end{array}$ $\begin{array}{c|c}
l_1 = l_2
\end{array}$