Laboratorul 4: Funcția 'foldr', Evaluare Leneșă

RECOMANDARE Înainte de a începe să lucrați exercițiile din acest laborator finalizați exercițiile din laboratoarele precedente.

În acest laborator vom exersa conceptele prezentate în cursul 3.

I. Funcția foldr.

Funcția foldr este folosită pentru agregarea unei colecții. O definiție intuitivă a lui foldr este:

```
foldr op unit [a1, a2, a3, ..., an] == a1 `op` a2 `op` a3 `op` .. `op` an `op` unit Vom exersa folosirea funcției foldr scriind câteva funcții, mai întâi folosind recursie, apoi folosind foldr.
```

Exercitiul 1

(a) Scrieți o funcție recursivă care calculează produsul numerelor dintr-o listă.

```
produsRec :: [Integer] -> Integer
produsRec = undefined
```

(b) Scrieți o funcție echivalentă care folosește foldr în locul recursiei.

```
produsFold :: [Integer] -> Integer
produsFold = undefined
```

Exercițiul 2

(a) Scrieți o funcție recursivă care verifică faptul că toate elementele dintr-o listă sunt True.

```
andRec :: [Bool] -> Bool
andRec = undefined
```

(b) Scrieți o funcție echivalentă care folosește foldr în locul recursiei.

```
andFold :: [Bool] -> Bool
andFold = undefined
```

Exercitiul 3

(a) Scrieți o funcție recursivă care concatenează o listă de liste.

```
concatRec :: [[a]] -> [a]
concatRec = undefined
```

(b) Scrieți o funcție echivalentă care folosește foldr în locul recursiei.

```
concatFold :: [[a]] -> [a]
concatFold = undefined
```

Exercitiul 4

(a) Scrieți o funcție care elimină un caracter din șir de caractere.

```
rmChar :: Char -> String -> String
rmChar = undefined
```

(b) Scrieți o funcție recursivă care elimină toate caracterele din al doilea argument care se găsesc în primul argument.

```
rmCharsRec :: String -> String
rmCharsRec = undefined

test_rmchars :: Bool
test_rmchars = rmCharsRec ['a'..'l'] "fotbal" == "ot"
```

(c) Scrieți o funcție echivalentă cu cea de la (b) care folosește foldr în locul recursiei.

```
rmCharsFold :: String -> String -> String
rmCharsFold = undefined
```

II. Evaluarea leneșă

Introducere

Haskell este un limbaj lenes. Asta înseamnă că:

- 1. Evaluarea unei expresii este amânată până când devine necesară pentru continuarea execuției programului. În particular, argumentele unei funcții nu sunt evaluate înainte de apelul funcției.
- 2. Chiar și atunci când devine necesară pentru continuarea execuției programului, evaluarea se face parțial, doar atât cât e necesar pentru a debloca execuția programului.
- 3. Pentru a evita evaluarea aceluiaș argument al unei funcții de fiecare dată cănd e folosit în corpul funcției, toate aparițiile unei variabile sunt partajate, expandarea parțială a evaluării făcându-se pentru toate simultan.

Vom folosi în continuare o funcție intenționat definită ineficient pentru a testa ipotezele de mai sus. Funcția logistic simulează o lege de evoluție și a fost propusă ca generator de numere aleatoare.

```
logistic :: Num a => a -> a -> Natural -> a
logistic rate start = f
  where
    f 0 = start
    f n = rate * f (n - 1) * (1 - f (n - 1))
```

Pentru simplificare vom lucra cu o variantă a ei în care rate și start au fost instantiate:

```
logistic0 :: Fractional a => Natural -> a
logistic0 = logistic 3.741 0.00079
```

Exercitiul 1

Pentru exercițiile de mai jos avem nevoie de o expresie a cărei execuție durează foarte mult timp, pentru a putea observa dacă este evaluată sau nu (și pentru a nu folosi undefined).

Testați că evaluarea funcției logistic0 crește exponențial cu valoarea argumentului de intrare. Alegeți o valoare a acestuia ex1 suficient de mare pentru a putea fi siguri dacă expresia se evaluează sau nu.

```
ex1 :: Natural
ex1 = undefined
```

Observație: chiar dacă nu rezolvați acest exercițiu, puteți observa dacă logistic0 ex1 se evaluează deoarece undefined va arunca o excepție.

Amânarea evaluării expresiilor

Exercițiul 2

Evaluarea cărora dintre expresiile definite mai jos va necesita evaluarea expresiei logistic0 ex1?

Încercați să răspundeți singuri la întrebare, apoi testați în interpretor.

```
ex20 :: Fractional a => [a]
ex20 = [1, logistic0 ex1, 3]
ex21 :: Fractional a => a
ex21 = head ex20

ex22 :: Fractional a => a
ex22 = ex20 !! 2
```

```
ex23 :: Fractional a => [a]
ex23 = drop 2 ex20

ex24 :: Fractional a => [a]
ex24 = tail ex20
```

Evaluarea parțială a expresiilor

Exercițiul 3

Definim următoarele funcții auxiliare:

```
ex31 :: Natural -> Bool
ex31 x = x < 7 || logistic0 (ex1 + x) > 2

ex32 :: Natural -> Bool
ex32 x = logistic0 (ex1 + x) > 2 || x < 7</pre>
```

Evaluarea cărora dintre expresiile definite mai jos va necesita evaluarea expresiei logistic0 (ex1 + x)?

Încercați să răspundeți singuri la întrebare, apoi testați în interpretor.

```
ex33 :: Bool
ex33 = ex31 5
ex34 :: Bool
ex34 = ex31 7
ex35 :: Bool
ex35 = ex32 5
ex36 :: Bool
ex36 = ex32 7
```

Exercițiul 4

Evaluarea parțială a expresiilor este esențială în lucrul cu structuri (potențial) infinite de date.

(a)

Scrieți o funcție findFirst care ia ca argument un predicat și o listă de elemente și întoarce primul element din listă pentru care predicatul e adevărat.

```
findFirst :: (a -> Bool) -> [a] -> Maybe a
findFirst = undefined
  (b)
```

Funcția findFirst poate fi folosită pentru a găsi primul număr natural care satisface o proprietate dată:

```
findFirstNat :: (Natural -> Bool) -> Natural
findFirstNat p = n
  where Just n = findFirst p [0..]
```

Observați că folosim o listă infinită. Dar, deoarece findFirst se oprește după ce găsește primul element, faptul că lista e infinită nu contează, dacă elementul este găsit (într-un timp rezonabil).

Dacă nu ați rezolvat punctul (a) puteți folosi funcția find din Data.List.

Calculați parte întreagă superioară din radical din 12347:

```
ex4b :: Natural
ex4b = findFirstNat (n \rightarrow n * n >= 12347)
(c) [optional]
```

Folosind punctul (b) ca inspirație, scrieți o funcție inversa care calculează "inversa" unei funcții monotone:

```
inversa :: Ord a => (Natural -> a) -> (a -> Natural)
inversa = undefined
```

Astfel, dată fiind f:: Natural -> a și y:: a, inversa f x reprezintă cel mai mic număr natural n pentru care f n >= y. Observați că, în particular, inversa f (f x) == x.