PRIMER PARCIAL (T1)

ANÁLISIS MATEMÁTICO II

Mayo 5 de 2022

Tiempo máximo para la realización de la evaluación: 2hs.

- P1) Siendo $f \in C^1$, $f'(\overline{A}, (0.6; 0.8)) = 3$ y $f'(\overline{A}, (0.8; 0.6)) = 11$. Calcular $f'(\overline{A}, (-0.8; 0.6))$
- P2) **Calcular** mediante una aproximación lineal el valor de z para (x, y) = (1.03; 1.98) siendo $xz + e^{yz-2} 2 = 0$
- P3) Siendo $f \in C^1$, $\nabla f(2,1,3) = (3,7,1)$ y $\overline{g}(x,y) = (xy-y,xy-3,xy-1)$. Calcular la derivada direccional máxima de $h(x,y) = f(\overline{g}(x,y))$ en (2,2). Indicar la dirección.
- P4) La superficie Σ queda definida implícitamente por la ecuación $xz + y + \ln(x^2 + y + z 5) 3 = 0$ en un entorno del punto $\overline{A} = (2,1,z_0)$. Siendo π_0 el plano tangente a Σ en \overline{A} , **indicar** el punto de intersección de π_0 con el eje X.
- T1) **Definir** mínimo local de una función escalar de "n" variables.

Demostrar que la función $f(x, y) = -1 + x^6 + y^4$ tiene un mínimo local en el origen.

T2) Calcular "m" de modo tal que la función $y(x) = e^{m \cdot x}$ sea solución de la ecuación diferencial $y'' + p \cdot y' + q \cdot y = 0$. Expresar m como función de p y q.

Utilizar la expresión hallada para **calcular** una solución de la ecuación y'' - y' - 2y = 0