```
In [53]: #ML for cancer prediction
In [54]: #import packages
In [137... #data handeling
         import pandas as pd
         import numpy as np
         #data viz
         import matplotlib.pyplot as plt
         import seaborn as sns
         #preprocessing
         from sklearn.model selection import train test split
         from sklearn.preprocessing import LabelEncoder
         from sklearn.preprocessing import label_binarize
         from sklearn.preprocessing import MinMaxScaler
         #feature selection
         from sklearn.feature_selection import mutual_info_classif
         #classification
         from sklearn.multiclass import OneVsRestClassifier
         from sklearn.ensemble import RandomForestClassifier
         #performance metrics
         from sklearn.metrics import balanced_accuracy_score,f1_score,precis
         from sklearn.metrics import classification_report
         from sklearn.metrics import plot_confusion_matrix
         from sklearn.metrics import roc_curve, auc
         from sklearn.metrics import roc_auc_score
In [56]: #read data
In [57]: file_path = "/Users/donu/Desktop/cancer_gene_expression.csv"
         data = pd.read_csv(file_path)
In [58]: #to check shape
         print(data.shape)
         (801, 8001)
In [59]: #to check columns
         print(data.columns[0:5])
         Index(['gene_1', 'gene_2', 'gene_3', 'gene_4', 'gene_5'], dtype='ob
         ject')
In [60]: #to check last column
         print(data.columns[-1])
         Cancer_Type
```

10/09/2025, 11:29 Processing_raw

```
In [61]: #to check the missing value
         datanul = data.isnull().sum()
          g=[i for i in datanul if i>0]
          print('columns with missing value:%d'%len(g))
         columns with missing value:0
In [62]: #to check how many cancer types are present in the data
          print(data['Cancer_Type'].value_counts())
         BRCA
                  300
         KIRC
                  146
          LUAD
                  141
         PRAD
                  136
                   78
         COAD
         Name: Cancer_Type, dtype: int64
In [63]: print(data['Cancer_Type'].value_counts().plot.bar())
         Axes(0.125,0.11;0.775x0.77)
          300
          250
          200
          150
          100
           50
            0
                    BRCA
                                              WAD
                                                          PRAD
                                 KIRC
In [64]: print(data['Cancer_Type'].value_counts().plot(kind='pie'))
```

Axes(0.22375,0.11;0.5775x0.77)

In [65]: #data Preprocessing
In [66]: X=data.iloc[:,0:-1]
Y=data.iloc[:,-1]
print(X.shape)
print(Y.shape)

(801, 8000)
(801,)

In [67]: data.iloc[0:10].describe()

Out[67]:

	gene_1	gene_2	gene_3	gene_4	gene_5	gene_6	gene_7	(
count	10.0	10.000000	10.0	10.000000	10.000000	10.000000	10.000000	
mean	0.0	0.092759	0.0	2.779896	0.053715	0.123462	0.123462	
std	0.0	0.293331	0.0	1.067656	0.169861	0.390422	0.390422	
min	0.0	0.000000	0.0	1.173191	0.000000	0.000000	0.000000	
25%	0.0	0.000000	0.0	2.139328	0.000000	0.000000	0.000000	
50%	0.0	0.000000	0.0	3.084558	0.000000	0.000000	0.000000	
75%	0.0	0.000000	0.0	3.315225	0.000000	0.000000	0.000000	
max	0.0	0.927593	0.0	4.746646	0.537147	1.234624	1.234624	

8 rows × 8000 columns

```
In [68]: #encoding
         label_encoder = LabelEncoder()
         label_encoder.fit(Y)
         y_encoded = label_encoder.transform(Y)
         labels = label_encoder.classes_
         classes = np.unique(y_encoded)
In [69]: print(labels)
         print(classes)
         ['BRCA' 'COAD' 'KIRC' 'LUAD' 'PRAD']
         [0 1 2 3 4]
In [70]: #Data splitting
In [71]: x_train,x_test,y_train,y_test = train_test_split(X,y_encoded,test_s
In [72]: #Data Normalization
         min_max_scaler = MinMaxScaler()
         x_train_norm = min_max_scaler.fit_transform(x_train)
         x_test_norm = min_max_scaler.fit_transform(x_test)
In [73]: type(x_train)
Out [73]: pandas.core.frame.DataFrame
In [74]: x_train.iloc[0,3]
Out[74]: 2.18164326123
In [75]: x_train_norm[0,3]
Out[75]: 0.4671305057022768
In [76]: #feature selection
         MI=mutual_info_classif(x_train_norm,y_train)
In [77]: MI.shape
Out[77]: (8000,)
In [78]: MI[0:5]
                           , 0.04015616, 0.06819021, 0.05237047, 0.05047144])
Out[78]: array([0.
In [79]: feature=x_train.columns
In [80]: feature.shape
Out[80]: (8000,)
```

```
In [81]: feature[0:5]
Out[81]: Index(['gene_1', 'gene_2', 'gene_3', 'gene_4', 'gene_5'], dtype='ob
         ject')
In [82]: #now select feautures, lets say 300
         n_features = 300
         selected_score_indices=np.argsort(MI)[::-1][0:n_features]
In [83]: x train selected = x train norm[:,selected score indices]
         x_test_selected = x_test_norm[:,selected_score_indices]
In [84]: x_train_selected.shape
Out[84]: (640, 300)
In [85]: x_test_selected.shape
Out[85]: (161, 300)
In [86]: #Random forest classifier
         RF=OneVsRestClassifier(RandomForestClassifier(max features=0.2))
         RF.fit(x_train_selected,y_train)
         y_pred = RF.predict(x_test_selected)
         pred_prob = RF.predict_proba(x_test_selected)
In [87]: #Model Evaluation
         #accuracy
         balanced_accuracy = np.round(balanced_accuracy_score(y_test, y_pred)
         print('balanced accuracy: %0.4f' % balanced_accuracy)
         #precision
         precision=np.round(precision_score(y_test,y_pred,average='weighted'
         print('precision:%0.4f' %precision)
         #recall
         recall=np.round(recall_score(y_test,y_pred,average='weighted'),4)
         print('recall:%0.4f' %recall)
         #f1_score
         f1score=np.round(f1_score(y_test,y_pred,average='weighted'),4)
         print('f1score:%0.4f' %f1score)
         report=classification_report(y_test,y_pred,target_names=labels)
         print('\n')
         print('classification_report\n\n')
         print(report)
```

balanced accuracy: 0.9633

precision:0.9759
recall:0.9752
f1score:0.9750

classification_report

	precision	recall	f1-score	support
BRCA	0.97	0.98	0.98	60
COAD	1.00	0.88	0.93	16
KIRC	1.00	1.00	1.00	28
LUAD	0.92	0.96	0.94	24
PRAD	1.00	1.00	1.00	33
accuracy			0.98	161
macro avg	0.98	0.96	0.97	161
weighted avg	0.98	0.98	0.98	161

In [88]: #generate confusion matrix
 cm=confusion_matrix(y_test,y_pred)
 cm_df=pd.DataFrame(cm,index=labels,columns=labels)

In [108... cm_df

Out[108]:

	BRCA	COAD	KIRC	LUAD	PRAD
BRCA	59	0	0	1	0
COAD	1	14	0	1	0
KIRC	0	0	28	0	0
LUAD	1	0	0	23	0
PRAD	0	0	0	0	33

```
In [115... #vizualize the confusion matrixusing seaborn
sns.heatmap(cm_df,annot=True,cmap="Blues")
```

plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')

Out[115]: Text(50.7222222222214, 0.5, 'True Labels')

/Users/donu/miniconda3/envs/twin/lib/python3.9/site-packages/sklear n/utils/deprecation.py:87: FutureWarning: Function plot_confusion_m atrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.

warnings.warn(msg, category=FutureWarning)

In [133... pred_prob.shape

Out[133]: (161, 5)

```
In [150... #roc curves will be generated for each classes
         #we will therfore has to bonarize the y_test labels
         #this is done because problities (pred_prob) are calculated for eac
         #we therefore need to put y_test labels is same format as pred_prob
         y_test_binarized=label_binarize(y_test,classes=classes)
         #roc curve for classes
         fpr = \{\}
         tpr = {}
         thresh = {}
         roc_auc = dict()
         n_class = classes.shape[0]
         for i in range(n_class):
             fpr[i], tpr[i], thresh[i], = roc_curve(y_test_binarized[:,i], p
              roc_auc[i] = auc(fpr[i], tpr[i])
             #plotting
             plt.plot(fpr[i], tpr[i], linestyle='--',
                       label='%s vs Rest (AUC=%0.2f)'%(labels[i],roc_auc[i])
         plt.plot([0, 1], [0, 1], 'b--')
         plt.xlim([0,1])
         plt.ylim([0,1.05])
         plt.title('Multiclass roc curve')
         plt.xlabel('False postive rate')
         plt.ylabel('True postive rate')
         plt.legend(loc = 'lower right')
         plt.show()
```


In []: