Problem 2.2:

Theorem: Let Z be an $n \times r$ null-space matrix for the matrix A. If Y is any invertible $r \times r$ matrix, $\hat{Z} = ZY$ is also a null-space matrix for A.

Proof: Given that Z is an $n \times r$ null-space matrix for matrix A, we know that AZ = 0, we also know that Y is an invertible matrix. We need to show that $A\hat{Z} = 0$ or AZY = 0 for $\hat{Z} = ZY$ to be a null-space matrix for A. Consider the following:

$$A\hat{Z} = A(ZY)$$

$$A(ZY) = (AZ)Y$$

$$A(ZY) = 0Y$$

$$AZY = 0 \text{ or } A\hat{Z} = 0$$

Thus proving $\hat{Z} = ZY$ is also a null-space matrix for A.

Problem 3.1: We will compute a basis for the null space for the following matrices(Denoted with A) using variable reduction:

 $\{i\}$

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$R_1 - R_2 \to R_2$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\frac{R_2}{2} + R_3 \to R_3$$

$$x_1 + x_2 + x_3 + x_4 = 0$$
 $-2x_2 - 2x_3 = 0$ $-x_3 + x_4 = 0$ $x_4 = x_4$ $x_4 = t$ $x_3 = t$ $x_2 = -t$ $x_1 = -t$

Thus
$$\operatorname{null}(\mathbf{A}) = t \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$
 for $t \in \mathbb{R}$

{ii}

$$x_1 + x_2 + x_3 + x_4 = 0$$
 $x_2 = x_2$ $x_3 = x_3$ $x_4 = x_4$ $x_2 = s$ $x_3 = t$ $x_4 = u$ $x_1 = -s - t - u$

 $A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$

Thus null(A) =
$$s\begin{bmatrix} -1\\1\\0\\0\end{bmatrix} + t\begin{bmatrix} -1\\0\\1\\0\end{bmatrix} + u\begin{bmatrix} -1\\0\\0\\1\end{bmatrix}$$
 for $s,t,u\in\mathbb{R}$