MAT436 problem set 2

 $\begin{array}{c} {\rm Jack\ Ceroni} \\ {\rm (Dated:\ Friday\ 27^{th}\ September,\ 2024)} \end{array}$

I. Problem 1 (First Suggested Problem)

Part A. We can make use of the formula for the sum of a finite geometric series in the case that $e^{2\pi ix} \neq 0$ (this formula holds over the unit-norm complex numbers, as is easy proved via induction). More specifically,

$$D_N(x) = \sum_{n=-N}^{N} \chi_n(x) = \chi_0(x) + \sum_{n=1}^{N} \chi_n(x) + \chi_{-n}(x)$$
(1)

$$=1+\sum_{n=1}^{N}e^{2\pi inx}+e^{-2\pi inx}$$
 (2)

$$=1+\frac{e^{2\pi ix}(1-e^{2\pi iNx})}{1-e^{2\pi ix}}+\frac{e^{-2\pi ix}(1-e^{-2\pi iNx})}{1-e^{-2\pi ix}}$$
(3)

$$=1 - \frac{e^{\pi ix}(1 - e^{2\pi iNx})}{2i\sin(\pi x)} + \frac{e^{-\pi ix}(1 - e^{2\pi iNx})}{2i\sin(\pi x)}$$
(4)

$$=1+\frac{2i\sin\left(\left(N+\frac{1}{2}\right)2\pi x\right)-2i\sin(\pi x)}{2i\sin(\pi x)}\tag{5}$$

$$=\frac{\sin\left(\left(N+\frac{1}{2}\right)2\pi x\right)}{\sin(\pi x)}\tag{6}$$

as desired. When x=0 and $e^{2\pi ix}=1$, we obviously have $\sum_{n=-N}^{N}e^{2\pi inx}=2N+1$. From here, note that

$$\int_{[0,1]} e^{2\pi n i x} \ dx = 0 \quad \text{for } n \neq 0$$
 (7)

and is 1 for n=0. Thus, distributing the integral over terms of the sum yields $\int_{[0,1]} D_N(x) dx = 1$ as desired.

Part B. Of course, we have

$$T_N f = \sum_{n=-N}^{N} \int_{[0,1]} f(x) \chi_n(x) \ dx = \sum_{n=-N}^{N} \int_{[0,1]} f(x) e^{2\pi i n x} \ dx = \sum_{n=-N}^{N} a_n^f \chi_n(0) = s_N^f(0)$$
 (8)

as desired.

Part C. We have

$$|T_N f| = \left| \int_{\mathbb{T}} f(x) D_N(x) \right| \le \int_{\mathbb{T}} |f(x)| |D_N(x)| \ dx \le ||f||_{\infty} \int_{\mathbb{T}} |D_N(x)| \ dx. \tag{9}$$

It follows that if we can saturate this bound, then we will have shown that $||T_N|| = \int_{\mathbb{T}} |D_N(x)| dx$. Indeed, this is the case. To see this, note that for any N, there exist a finite number of roots $x_1 < x_2 < \cdots < x_{n-1} < x_n$ where $D_N(x)$ changes sign (we set $x_0 = 0$ and $x_{n+1} = 1$). Thus, the function $F_N(x) = |D_N(x)|D_N(x)^{-1}$ is, almost-everywhere, a well-defined continuous function (i.e. everywhere except for the x_j). Since integrals are invariant under altering a function on a measure-0 set, we can, for our purposes, think of F as being defined on the entire domain \mathbb{T} , setting it to 0, perhaps, at the x_j .

From here, note that it is a well-known result in Fourier theory that we may L^1 -approximate step functions with continuous functions. In particular, let us define

$$S^{(j)}(x) = \begin{cases} F_N(x) = |D_N(x)|D_N(x)^{-1} & \text{if } x \in [x_j, x_{j+1}] \\ 0 & \text{if } x \notin [x_j, x_{j+1}] \end{cases}$$
(10)

We then define $S_{\varepsilon}^{(j)}$ to be the ε -continuous approximation in L^1 norm, which is to say that

$$\int_{\mathbb{T}} |S_{\varepsilon}^{(j)}(x) - S^{(j)}(x)| \, dx < \varepsilon \tag{11}$$

We then let $P_{\varepsilon}(x) = S_{\varepsilon}^{(1)}(x) + \cdots + S_{\varepsilon}^{(n)}(x)$, also a continuous function. Note that $||P_{\varepsilon}||_{\infty} = 1$, of course, as the x_i form a partition of [0,1]. We then have

$$|T_N P_{\varepsilon}| = \left| \int_{\mathbb{T}} D_N(x) P_{\varepsilon}(x) \right| = \left| \int_{\mathbb{T}} D_N(x) \left(P_{\varepsilon}(x) - F_N(x) + F_N(x) \right) dx \right| \tag{12}$$

$$= \left| \int_{\mathbb{T}} |D_N(x)| \, dx + \int_{\mathbb{T}} D_N(x) (P_{\varepsilon}(x) - F_N(x)) \, dx \right| \tag{13}$$

$$\geq \left| \int_{\mathbb{T}} |D_N(x)| \ dx - \left| \int_{\mathbb{T}} D_N(x) (P_{\varepsilon}(x) - F_N(x)) \right| \right| \tag{14}$$

$$\geq \int_{\mathbb{T}} |D_N(x)| - \int_{\mathbb{T}} |D_N(x)| |P_{\varepsilon}(x) - F_N(x)| \ dx \tag{15}$$

$$\geq \int_{\mathbb{T}} |D_N(x)| - ||D_N||_{\infty} \sum_{i=0}^{n+2} ||S_{\varepsilon}^{(j)}(x) - S^{(j)}(x)||_1 \tag{16}$$

$$\leq \int_{\mathbb{T}} |D_N(x)| ||D_N||_{\infty} (n+2)\varepsilon \tag{17}$$

and since ε was arbitrary, we can find continuous functions f such that

$$|T_N f| \ge \int_{\mathbb{T}} |D_N(x)| \ dx - \varepsilon$$
 (18)

for any $\varepsilon > 0$. It follows immediately that $||T_N|| = \int_{\mathbb{T}} |D_N(x)| \ dx$, as desired.

Part C. Note that

$$||T_N|| = \int_{\mathbb{T}} |D_N(x)| \ dx = \int_{[0,1]} \left| \frac{\sin\left(\left(N + \frac{1}{2}\right) 2\pi x\right)}{\sin(\pi x)} \right| \ dx \tag{19}$$

$$\geq \int_{[0,1]} \frac{\left|\sin\left(\left(N + \frac{1}{2}\right)2\pi x\right)\right|}{\pi x} dx \tag{20}$$

$$= \int_{[0,2N+1]} \frac{|\sin(\pi x)|}{\pi x} dx \tag{21}$$

Note that on each interval [k+1/4,k+3/4], for integer k, we have $|\sin(\pi x)| \ge \frac{1}{\sqrt{2}}$. Thus,

$$\int_{[0,2N+1]} \frac{|\sin(\pi x)|}{\pi x} dx \ge \frac{1}{\sqrt{2}\pi} \sum_{k=0}^{2N} \frac{1}{k+1} = \frac{1}{\sqrt{2}\pi} \sum_{k=1}^{2N} \frac{1}{k}$$
 (22)

which will diverge as $N \to \infty$. Thus, $||T_N|| \to \infty$ for $N \to \infty$.

Part D. Let us recall the principle of uniform boundedness. Given X Banach and Y a normed vector space, and B(X,Y) the set of bounded linear operators from X to Y. Given some collection $F \subset B(X,Y)$, if $\sup_{T \in F} ||Tx|| < \infty$ for all $x \in X$, then

$$\sup_{T \in F} ||T|| = \sup_{T \in F, ||x|| \le 1} ||Tx|| < \infty \tag{23}$$

In particular, suppose F is the collection of T_N . Suppose there existed no such function with diverging Fourier series at x=0. Since $T_N f=s_N(0)$, it would immediately follow that $\sup_N |T_N f| < \infty$ for every f. Thus, we would necessarily have $\sup_N ||T_N f|| < \infty$ as well, which we have shown not to be the case. Hence, there must exist some f where $|T_N f| = |s_N(0)|$ approaches ∞ for $N \to \infty$, implying the Fourier series diverges at 0.

A. Problem 2

As a problem, I thought I would try to prove an interesting lemma from Pedersen independently (without consulting his proof).

Lemma I.1. If X is a normed vector space and D is a closed subspace such that both D and X/D are Banach spaces, then X is a Banach space.

Proof. Recall that if D is a closed subpsace, then the infimum seminorm on X/D becomes a true norm. In particular, if $\pi: X \to X/D$ is the quotient, we define

$$||\pi(x)|| = \inf_{y \in D} ||x - y|| \tag{24}$$

Let x_n be a Cauchy sequence in X. Consider the sequence $\pi(x_n)$. Note that

$$||\pi(x_n) - \pi(x_m)|| = \inf_{y \in D} ||x_n - x_m - y|| \le ||x_n - x_m||$$
(25)

as $0 \in D$, so it follows that the sequence $\pi(x_n)$ is Cauchy. Thus, since X/D is complete, this sequence converges to some $\pi(x) \in X/D$. In particular, the quantity

$$||\pi(x_n) - \pi(x)|| = \inf_{y \in D} ||x_n - x - y|| := C_n$$
 (26)

will become arbitrarily small, as we make n large. For each n, let us choose some $y_n \in D$ such that $||x_n - x - y_n|| - C_n \le \frac{1}{n}$ (we can do this as C_n is the infimum). Let us now consider the sequence of y_n . Note that

$$||y_n - y_m|| = ||(y_n + x - x_n) + (x_m - x - y_m) + (x_n - x_m)||$$
(27)

$$\leq ||x_n - x - y_n|| + ||x_m - x - y_m|| + ||x_n - x_m|| \tag{28}$$

$$\leq C_n + \frac{1}{n} + C_m + \frac{1}{m} + ||x_n - x_m|| \tag{29}$$

Since $C_n, C_m \to 0$ for $n, m \to \infty$, it follows that we can choose n and m sufficiently large such that the above sum is arbitrarily small. Thus, y_n is a Cauchy sequence, so it converges to some $y^* \in D$. Finally, we claim that x_n converges to $x + y^*$. Indeed,

$$||x_n - x - y^*|| \le ||x_n - x - y_n|| + ||y_n - y^*|| \le C_n + \frac{1}{n} + ||y_n - y^*||$$
(30)

which goes to 0 for $n \to \infty$, so it follows that $x_n \to x + y^* \in X$, so X is complete and thus by definition a Banach space.

B. Problem 3 (Suggested Problem 2)

Recall that $L^{\infty}(X,\mu)$ is the set of all functions which are essentially bounded relative to μ (i.e. those which are bounded except possibly on a set of measure-0). We assume $gf \in L^2(X,\mu)$ for all $f \in L^2(X,\mu)$. Suppose $g \notin L^{\infty}(X,\mu)$. It follows that $\mu(\{x \mid |g(x)| \geq N\}) = \mu(|g|^{-1}([N,\infty)) > 0$ for each integer N, where we know g is measurable, so $|g|^{-1}([N,\infty))$ is measurable.

From here, note that the statement that $gf \in L^2(X,\mu)$ and $f \in L^2(X,\mu)$ is precisely the statement that

$$\int |gf|^2 d\mu < \infty \quad \text{and} \quad \int |f|^2 d\mu < \infty \tag{31}$$

for all f. Let $X_N = |g|^{-1}([N,\infty))$. We define the simple function ϕ_N to be $\mu(X_N)^{-1/2}N^{-1} < \infty$ on X_N and 0 everywhere else. Obviously, $\int |\phi_N|^2 d\mu = \frac{1}{N^2}$. If we then let $\phi = \phi_1 + \phi_2 + \cdots$, note that we will have

$$\int |\phi|^2 \le \sum_j \int |\phi_j|^2 = \sum_{j=1}^{\infty} \frac{1}{j^2} < \infty$$
 (32)

so this function is L^2 . Moreover,

$$\int |\phi g|^2 d\mu \le \sum_{j=1}^{\infty} \mu(X_j)^{-1} j^{-2} \int_{X_j} |g|^2 d\mu \ge \sum_{j=1}^{\infty} \mu(X_j)^{-1} j^{-2} \cdot j^2 \mu(X_j) = \sum_{j=1}^{\infty} 1 = \infty$$
 (33)

so it follows that $fg \notin L^2$, a contradiction. Thus, we must have $g \in L^{\infty}$. From here, we have $M_g(f) = gf$. Obviously it is linear. Note that each set $X_n = |g|^{-1}([n,\infty))$ for $n < ||g||_{\infty}$ will have positive measure. Let $Y_n = X_{||g||_{\infty}-n^{-1}}$. We then let ψ_n be the simple function which is $\mu(Y_n)^{-1/2}$ on X_n . We have

$$||M_g(\psi_n)|| = \left(\int |\psi_n g|^2 d\mu\right)^{1/2} = \left(\mu(X_n)^{-1} \int_{Y_n} |g|^2\right)^{1/2} \ge ||g||_{\infty} - \frac{1}{n}.$$
 (34)

where this holds for any n, so $||M_g|| \ge ||g||_{\infty}$. Of course, we can also see that

$$\left(\int |fg|^2 d\mu\right)^{1/2} \le ||g||_{\infty} \left(\int |f|^2 d\mu\right)^{1/2} = ||g||_{\infty} ||f|| \tag{35}$$

so that $||M_g|| \le ||g||_{\infty}$. Thus, we have inequalities both ways, so $||M_g|| = ||g||_{\infty}$, and the proof is complete.