Меры Лебега

Мера Лебега на \mathbb{R}^n

Теорема 1. Пусть L(x) = Ax + b, $L \colon \mathbb{R}^n \to \mathbb{R}^n$, где $A \in \operatorname{Mat}_{n,n}$, b - вектор. Тогда для всякого измеримого ограниченного множества E верно равенство:

$$\lambda(L(E)) = |\det A| \cdot \lambda(E)$$

Rm: 1. Заметим, что:

$$|\det A| = \sqrt{\det A \cdot \det A} = \sqrt{\det (A \cdot A)} = \sqrt{\det (A^T A)}$$

Как найти элементы матрицы $A^T A$? Если e_1, \ldots, e_n это ортонормированный базис, то её столбцы можно находить так: $A^T A e_j$, но если есть скалярное произведение в пространстве, то можно выразить сам элемент матрицы (см. линейную алгебру):

$$\langle A^T A e_i, e_j \rangle = (A^T A)_{ij} = \langle A e_i, A e_j \rangle \Rightarrow \mathbb{R}_x^n \xrightarrow{y = Ax} \mathbb{R}_y^n$$

Следовательно, кубик, натянутый на (e_1, \ldots, e_n) в \mathbb{R}^n_x , переходит в параллелепипед, натянутый на (Ae_1, \ldots, Ae_n) в \mathbb{R}^n_y . Тогда $v_i = Ae_i$ - вектора на которые натянут определитель A и $(\langle v_i, v_j \rangle)$ это матрица Грама. Таким образом:

$$\lambda(L(E)) = \operatorname{const} \cdot \lambda(E) \Rightarrow \operatorname{const} = \sqrt{\det(\langle v_i, v_j \rangle)}$$

где const вычисляется из того, что мы смотрим в какой параллелепипед переносится единичный куб и для этих векторов: (v_1, \ldots, v_n) считаем матрицу Грама. Такой вариант записи без изменения переносится на всякие плоскости в \mathbb{R}^n и без изменений переносится на кривые поверхности, когда L уже перестает быть линейным отображением и $\lambda(L(E))$ это уже мера Хаусдорфа. В этом случае матрица Грама берется для векторов, соответствующих параллелепипеду - образу единичного куба при отображении, которое для общего отображения является его аффинным приближением по формуле Тейлора.

Мера Лебега на \mathbb{R}^k

Пусть у нас есть \mathbb{R}^n , $\langle v,u\rangle=v_1u_1+\ldots+v_nu_n$ - фиксированы. Возьмем $\Pi_k\subset\mathbb{R}^n$ - k-мерную аффинную плоскость и выбираем в ней прямоугольную систему координат: $(\eta_1,\ldots,\eta_k),\ \langle \eta_i,\eta_j\rangle=\delta_{ij}$ (то есть, с точки зрения фиксированного скалярного произведения это ортонормированные вектора) и тогда каждой точке сопоставляется набор из (y_1,\ldots,y_k) . После такого сопоставления мы отождествляем Π_k с \mathbb{R}^k и с \mathbb{R}^k переносим на Π_k меру Лебега: $\lambda_{\Pi_k} \Rightarrow$ можем измерять k-мерные объемы.

Теорема 2. $L(x) = Ax + b \colon \mathbb{R}^k \to \mathbb{R}^n$, где $n \ge k$ и $\operatorname{rk}(A) = k$. Тогда $L(\mathbb{R}^k) = \Pi_k$ - k-мерная аффинная плоскость в \mathbb{R}^n и верно, что для всякого измеримого ограниченного множества $E \subset \mathbb{R}^k$:

$$\lambda_{\Pi_k}(L(E)) = \sqrt{\det(A^T \cdot A)} \cdot \lambda(E)$$

 ${f Rm}: {f 2}. \ {f Y}$ нас параметрическое задание плоскости в ${\Bbb R}^3$ из аналитической геометрии. Например:

$$L \colon \mathbb{R}^2 \to \mathbb{R}^3, \ L(x) = b + x_1 \eta + x_2 \xi = b + A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ \eta = Ae_1 = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}, \ \xi = Ae_2 = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix}, \ b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

 \square Рассмотрим плоскость $\Pi_k \subset \mathbb{R}^n$, которая задается так: L(x) = Ax + b, то есть к концу вектора b прикладываются всевозможные вектора $Ax \Rightarrow$ получается k-мерная аффинная плоскость. Поместим в конец вектора b прямоугольную систему координат: (η_1, \ldots, η_k) , $\langle \eta_i, \eta_j \rangle = \delta_{ij}$. Тогда у каждой точки Π_k появятся координаты, следовательно: $Ax \mapsto (y_1, \ldots, y_k)$, где $y_j = \langle Ax, \eta_j \rangle$. Получили отображение:

$$B: \mathbb{R}^k_x \to \mathbb{R}^k_y, \ B(x_1, \dots, x_k) = (\langle Ax, \eta_1 \rangle, \langle Ax, \eta_2 \rangle, \dots, \langle Ax, \eta_k \rangle) = (y_1, y_2, \dots, y_k)$$

Очевидно, что B это линейное, невырожденное отображение, поскольку это просто смена системы координат (матрица перехода). Поскольку $\lambda_{\Pi_k}(L(E))$ это по определению ввод ортонормированной системы координат, переписывание L(E) в координатах (y_1, \ldots, y_k) и затем расчёт обычной меры Лебега, то:

$$\lambda_{\Pi_k}(L(E)) = \lambda(B(E)) = |\det B| \cdot \lambda(E) = \sqrt{\det(B^T B)} \cdot \lambda(E) = \sqrt{\det(\langle Be_i, Be_j \rangle)} \cdot \lambda(E)$$

Рассмотрим матрицу ($\langle Be_i, Be_j \rangle$), где $e_i, e_j \in \mathbb{R}^k$. Матрица Грама устроена так:

$$\langle Be_i, Be_j \rangle_{\mathbb{R}^k_y} = \sum_s \langle Ae_i, \eta_s \rangle_{\mathbb{R}^n} \cdot \langle Ae_j, \eta_s \rangle_{\mathbb{R}^n} = \langle Ae_i, Ae_j \rangle_{\mathbb{R}^n} = \langle A^T Ae_i, e_j \rangle_{\mathbb{R}^k_x} \Rightarrow |\det B| = \sqrt{\det(A^T A)}$$

где мы использовали тот факт, что:

$$Be_s = B(0, \dots, 0, \underset{s}{1}, 0, \dots, 0) = (\langle Ae_s, \eta_1 \rangle, \langle Ae_s, \eta_2 \rangle, \dots, \langle Ae_s, \eta_k \rangle), s = i, j$$

Остальные равенства проверяются непосредственным переходом к координатам, например:

$$\langle Ae_i, \eta_s \rangle_{\mathbb{R}^n} = a_{1i} \cdot \eta_{1s} + a_{2i} \cdot \eta_{2s} + \dots + a_{ni} \cdot \eta_{ns} \Rightarrow$$

$$\Rightarrow \langle Ae_i, \eta_s \rangle_{\mathbb{R}^n} \cdot \langle Ae_j, \eta_s \rangle_{\mathbb{R}^n} = a_{1i} \cdot a_{1j} \cdot \eta_{1s}^2 + a_{1i} \cdot a_{2j} \cdot \eta_{1s} \cdot \eta_{2s} + \dots + a_{ni} \cdot a_{nj} \cdot \eta_{ns}^2 + \dots$$

$$\forall i = \overline{1, n}, \sum_{s=1}^k \eta_{is}^2 = 1 = \langle \eta_i, \eta_i \rangle, \quad \forall i \neq j, \sum_{s=1}^k \eta_{is} \eta_{js} = 0 = \langle \eta_i, \eta_j \rangle \Rightarrow$$

$$\Rightarrow \sum_s \langle Ae_i, \eta_s \rangle_{\mathbb{R}^n} \cdot \langle Ae_j, \eta_s \rangle_{\mathbb{R}^n} = a_{1i} \cdot a_{1j} + a_{2i} \cdot a_{2j} + \dots + a_{ni} \cdot a_{nj} = \langle Ae_i, Ae_j \rangle_{\mathbb{R}^n}$$

Мера Хаусдорфа

Пусть мы находимся в пространстве \mathbb{R}^n .

Опр: 1. Пусть $0<\alpha\leq n,\,\delta>0,$ тогда вспомогательной мерой называется функция:

$$H^{\alpha}_{\delta}(E)=\inf\left\{\sum_{j}(\operatorname{diam}F_{j})^{\alpha}\colon E\subset\cup_{j}F_{j},\ F_{j}$$
 - замкнутые, $\operatorname{diam}F_{j}=\sup_{x,y\in F_{j}}|x-y|\leq\delta
ight\}$

Замкнутые множества берем, поскольку при замыкании диаметр не меняется и сумма не меняется также ⇒ если умеем покрывать чем-то, то замыкаем и будем покрывать замкнутыми. При этом на точную нижнюю грань это не скажется никак.

Заметим, что выше, при $\delta \to 0+$ у нас множество становится меньше \Rightarrow точная нижняя грань может лишь только увеличиться \Rightarrow возможно лишь невозрастание $H^{\alpha}_{\delta}(E) \Rightarrow$ функция монотонна.

Опр: 2. Функция: $H^{\alpha}(E) = \lim_{\delta \to 0+} H^{\alpha}_{\delta}(E)$, где допустимо значение $+\infty$, называется мерой Хаусдорфа.

Сделаем ряд полезных наблюдений, когда мы обсуждаем меру Хаусдорфа.

Вычисление длины прямой мерой Хаусдорфа

Пусть у нас есть отрезок длины l и мы хотим метрически определить его длину. Возьмем покрытие отрезка в виде ε -сети (отрезок - компакт \Rightarrow конечное покрытие):

Рис. 1: Покрытие отрезка длины l ε -сетью.

 N_{ε} - количество ε -шаров, покрывающих отрезок \Rightarrow длина будет оцениваться, как $N_{\varepsilon} \cdot 2\varepsilon$. Поскольку покрытие может быть каким угодно и можно покрывать одно и то же место по несколько раз, то естественно взять самое маленькое выражение: inf $N_{\varepsilon} \cdot 2\varepsilon$. Очевидно, что:

$$l \leq \inf N_{\varepsilon} \cdot 2\varepsilon$$

Можно покрывать отрезок дизъюнктно и выбрать покрытие так, чтобы было верно:

$$N_{\varepsilon} = \frac{l}{2\varepsilon} \Rightarrow l \leq \inf N_{\varepsilon} \cdot 2\varepsilon \leq N_{\varepsilon} \cdot 2\varepsilon + 2\varepsilon = l + 2\varepsilon$$

Далее мы сможем устремить $\varepsilon \to 0$. Или подобрать покрытие так, чтобы: $l \le \inf N_{\varepsilon} \cdot 2\varepsilon \le N_{\varepsilon} \cdot 2\varepsilon = l$, поскольку для оценки снизу нам нужно любое покрытие, а для оценки сверху = какое-то. Тоже самое можно проделать с площадью: $\inf N_{\varepsilon} \cdot \pi \varepsilon^2$. По тем же самым соображениям будет получаться:

$$S = \inf N_{\varepsilon} \cdot \pi \varepsilon^2$$

Мера Хаусдорфа в данном случае хороша тем, что ровно таким же способом будем определять площади, длины и так далее, причем уже не важно, какой объект - любое множество будем накрывать любыми замкнутыми множествами (шары не всегда удобны для покрытия).

После покрытия, посчитаем количество покрытий и умножим на диаметр в подходящей степени α (в зависимости от объекта, который хотим посчитать: длина $\Rightarrow \alpha = 1$, площадь $\Rightarrow \alpha = 2$, и так далее), затем будем брать точную нижнюю грань таких выражений:

$$c \cdot l = \inf N_{\varepsilon} \cdot (2\varepsilon)^{\alpha} \Rightarrow \alpha = 1 \Rightarrow c \cdot l = \inf N_{\varepsilon} \cdot (2\varepsilon)$$

В какой-то момент, окажется, что α может быть дробным. Покрытия не обязательно будут одинаковыми, допустим разные элементы покрытия.

Вычисление произвольной кривой мерой Хаусдорфа

Хотелось бы понять, зачем нам нужно $\delta \to 0$, зачем двухступенчатое определение? Рассмотрим:

$$H_*^{lpha}(E)=\inf\left\{\sum_j(\operatorname{diam} F_j)^{lpha}\colon E\subset \cup_j F_j,\ F_j$$
 - замкнутые $ight\}$

Посчитаем длину единичной окружности. Есть замкнутое множество, которое эту окружность покрывает - сама окружность/круг, тогда $H_*^{\alpha}(E) \leq 2$, но при этом длина единичной окружности это 2π .

Рис. 2: Покрытие окружности одним кругом.

Аналогично, если мы возьмем очень изрезанную кривую и не будем требовать, чтобы диаметры покрывающих множеств были маленькие, то мы не сможем поймать геометрическую структуру этой кривой, поскольку её можно будет накрыть одним множеством.

Рис. 3: Измельчение δ позволяет учитывать геометрическую структуру.

Если не будем мельчить покрытие, то никогда не поймаем изгибы, изрезанность или какие-либо другие структуры \Rightarrow для этого приходится брать мельче покрытие \Rightarrow получаем эффект, что уменьшая δ у нас начинает возрастать мера: двигаемся по всё более и более кривой дороге \Rightarrow путь увеличивается.

Утв. 1. H^{α} - внешняя мера и все борелевские множества измеримы.

- \square Проверим, что H^{α}_{δ} это внешняя мера:
 - 1) $\forall \delta>0,\,\varnothing\subset F=\overline{\mathcal{B}}(0,\delta)\Rightarrow$ покрываем точкой \Rightarrow diam $F=0\Rightarrow H^{\alpha}_{\delta}(\varnothing)=0;$
 - 2) $A \subset B \Rightarrow \forall$ покрытия B множествами F_j , diam $F_j \leq \delta$ верно, что:

$$A \subset \cup_j F_j \Rightarrow H^{\alpha}_{\delta}(A) \leq \sum_j (\operatorname{diam} F_j)^{\alpha}$$

поскольку у нас точная нижняя грань в $H^{\alpha}_{\delta}(A)$. Заметим, что $H^{\alpha}_{\delta}(A)$ это нижняя граница для $\sum_{j} (\operatorname{diam} F_{j})^{\alpha}$, а $H^{\alpha}_{\delta}(B)$ это точная нижняя граница, тогда по определению: $H^{\alpha}_{\delta}(A) \leq H^{\alpha}_{\delta}(B)$;

3) Докажем полуаддитивность. Рассмотрим $\cup_m A_m$

$$\forall m, A_m \subset \bigcup_j F_j^m : \operatorname{diam} F_j^m \leq \delta, \sum_j (\operatorname{diam} F_j^m)^\alpha \leq H_\delta^\alpha(A_m) + \frac{\varepsilon}{2^m} \Rightarrow$$

$$\Rightarrow \bigcup_{m} A_{m} \subset \bigcup_{m,j} F_{j}^{m}, \ \sum_{m,j} (\operatorname{diam} F_{j}^{m})^{\alpha} \leq \sum_{m} H_{\delta}^{\alpha}(A_{m}) + \varepsilon \xrightarrow[\varepsilon \to 0]{} \sum_{m} H_{\delta}^{\alpha}(A_{m}) \Rightarrow H_{\delta}^{\alpha}(\cup_{m} A_{m}) \leq \sum_{m} H_{\delta}^{\alpha}(A_{m})$$

По определению:

$$H^{\alpha}(E) = \lim_{\delta \to 0+} H^{\alpha}_{\delta}(E)$$

вместе с этим верно, что $H^{\alpha}_{\delta}(E)$ не убывает при $\delta \to 0$ (то есть, либо растёт, либо остается такой же). Проверим, что $H^{\alpha}(E)$ это внешняя мера:

$$1) \ \forall \delta > 0, \ H^{\alpha}_{\delta}(\varnothing) = 0 \Rightarrow H^{\alpha}(\varnothing) = \lim_{\delta \to 0+} H^{\alpha}_{\delta}(\varnothing) = \lim_{\delta \to 0+} 0 = 0;$$

$$2) \ A \subset B \Rightarrow H^{\alpha}_{\delta}(A) \leq H^{\alpha}_{\delta}(B) \Rightarrow H^{\alpha}(A) = \lim_{\delta \to 0+} H^{\alpha}_{\delta}(A) \leq \lim_{\delta \to 0+} H^{\alpha}_{\delta}(B) = H^{\alpha}(B);$$

3) Поскольку при $\delta \to 0+$ функция $H^{\alpha}_{\delta}(E)$ не убывает, то будет верно:

$$\forall \delta > 0, \ H_{\delta}^{\alpha}(\cup_{m} A_{m}) \leq \sum_{m} H_{\delta}^{\alpha}(A_{m}) \leq \sum_{m} H^{\alpha}(A_{m}) \Rightarrow$$

$$\Rightarrow H^{\alpha}(\cup_{m} A_{m}) = \lim_{\delta \to 0+} H^{\alpha}_{\delta}(\cup_{m} A_{m}) \leq \lim_{\delta \to 0+} \sum_{m} H^{\alpha}(A_{m}) = \sum_{m} H^{\alpha}(A_{m})$$

Проверим, что все борелевские множества измеримы. Воспользуемся утверждением про измеримость:

$$A, B: \forall x \in A, y \in B, ||x - y|| \ge \gamma > 0 \Rightarrow H^{\alpha}(A \cup B) = H^{\alpha}(A) + H^{\alpha}(B)$$

Из полуаддитивности верно неравенство: $H^{\alpha}(A \cup B) \leq H^{\alpha}(A) + H^{\alpha}(B)$. Надо обосновать неравенство в другую сторону. Рассмотрим, как будет устроена H^{α}_{δ} на этих множествах, когда $\delta < \frac{\gamma}{3}$, поскольку если получим неравенство для достаточно маленьких δ , то оно будет верно и в пределе:

$$A \cup B \subset \bigcup_{j} F_{j}$$
: diam $F_{j} \leq \delta \Rightarrow A \subset \bigcup_{j: F_{j} \cap A \neq \emptyset} F_{j} \wedge B \subset \bigcup_{j: F_{j} \cap B \neq \emptyset} F_{j}$

Полученные наборы не пересекаются, поскольку не могут оказаться две точки, находящиеся на расстоянии $<\delta$ и при этом одна из них в A, а другая в B, поскольку расстояние между ними $>3\delta$. Тогда:

$$\sum_{j} (\operatorname{diam} F_{j})^{\alpha} = \sum_{j: F_{j} \cap A \neq \emptyset} (\operatorname{diam} F_{j})^{\alpha} + \sum_{j: F_{j} \cap B \neq \emptyset} (\operatorname{diam} F_{j})^{\alpha} \ge H_{\delta}^{\alpha}(A) + H_{\delta}^{\alpha}(B)$$

Поскольку покрытие $A \cup B$ - произвольное, а $H^{\alpha}_{\delta}(A) + H^{\alpha}_{\delta}(B)$ это его нижняя грань, то будет верно требуемое:

$$H^{\alpha}_{\delta}(A \cup B) \ge H^{\alpha}_{\delta}(A) + H^{\alpha}_{\delta}(B)$$

так как, точная нижняя грань - самая большая из нижних граней (нижняя грань не превосходит точной нижней грани). Перейдем к пределу:

$$H^{\alpha}(A \cup B) = \lim_{\delta \to 0+} H^{\alpha}_{\delta}(A \cup B) \ge \lim_{\delta \to 0+} H^{\alpha}_{\delta}(A) + \lim_{\delta \to 0+} H^{\alpha}_{\delta}(B) = H^{\alpha}(A) + H^{\alpha}(B)$$

<u>Итого</u>: На σ -алгебре измеримых множеств $\mathcal{A}_{H^{\alpha}}$ мера H^{α} это σ -аддитивная мера и $\mathcal{B}(\mathbb{R}^n) \subset \mathcal{A}_{H^{\alpha}}$.

Rm: 3. Пусть F это замкнутое подмножество в \mathbb{R}^n . Будем рассматривать F как самостоятельное метрическое пространство: (F,ρ) , где $\rho(x,y)=|x-y|$. Построим на этом пространстве меру Хаусдорфа \widetilde{H}^{α} (то есть $F_j\subset F$). Таким образом, на F мы получаем две меры: H^{α} и \widetilde{H}^{α} . Если множество замкнуто в F, то оно замкнуто в \mathbb{R}^n . Если взять $E\subset F$ и $E\subset \cup_j F_j$, где F_j это замкнутые в \mathbb{R}^n множества, то тогда можно считать: $E\subset \cup_j (F_j\cap F)$, где $F_j\cap F$ уже будут замкнутыми в F. Заметим, что:

$$(\operatorname{diam} F_j \cap F)^{\alpha} \leq (\operatorname{diam} F_j)^{\alpha} \Rightarrow \widetilde{H}_{\delta}^{\alpha} \leq H_{\delta}^{\alpha}$$

При переходе от F_j к $F_j\cap F$ точная нижняя грань не изменится, поскольку вычисляя \widetilde{H}^α мы сокращаем количество замкнутых множеств $\Rightarrow \widetilde{H}^\alpha_\delta \geq H^\alpha_\delta \Rightarrow$ совпадают меры $H^\alpha_\delta = \widetilde{H}^\alpha_\delta \Rightarrow H^\alpha = \widetilde{H}^\alpha$.

Это важное замечание, поскольку если мы будем говорить про замкнутые подмножества, то можно говорить, что мера Хаусдорфа создана на самих замкнутых подмножествах и совершенно нет разницы, что происходит вовне, она описывает внутреннюю геометрию замкнутых подмножеств.

Утв. 2. Пусть $L: \mathbb{R}^n \to \mathbb{R}^n$ - аффинное отображение, сохраняющее расстояния (то есть какое-то движение/изометрия). Тогда:

$$\forall E, H^{\alpha}(L(E)) = H^{\alpha}(E)$$

Rm: 4. Заметим, что множество E здесь какое угодно.

 \square Поймем это для H^{α}_{δ} , необходимо установить какое-либо неравенство, поскольку L^{-1} также будет сохранять расстояния. Тогда: $E \subset \cup_j F_j$, где F_j - замкнуты и diam $F_j \leq \delta \Rightarrow F_j$ это компакты, тогда:

$$L(E) \subset \bigcup_{j} L(F_j)$$
, diam $F_j = \operatorname{diam} L(F_j) \Rightarrow H_{\delta}^{\alpha}(L(E)) \leq \sum_{j} (\operatorname{diam} F_j)^{\alpha} = \sum_{j} (\operatorname{diam} L(F_j))^{\alpha}$

где $L(F_j)$ это тоже компакты \Rightarrow замкнутые множества, diam $F_j = \text{diam } L(F_j)$ в силу сохранения расстояний отображением L. Поскольку покрытее - любое, то верно:

$$H_{\delta}^{\alpha}(L(E)) \le \inf \sum_{j} (\operatorname{diam} F_{j})^{\alpha} = H_{\delta}^{\alpha}(E)$$

Переходя к пределу, получаем требуемое. Противоположное получается изменением L на L^{-1} .