TD1-Compléments

Exercice 1 (Suite récurrente et fonction décroissante)

Soit f la fonction définie sur $]0, +\infty[$ *par :*

$$\forall x \in]0, +\infty[, \quad f(x) = 1 + \frac{2}{x}.$$

On considère la suite récurrente $(u_n)_{n\in\mathbb{N}}$ vérifiant $u_{n+1}=f(u_n)$ et $u_0=1$.

- 1. Étudier le sens de variation de f sur [1,3] et montrer que l'intervalle [1,3] est stable par f.
- 2. En déduire que pour tout $n \in \mathbb{N}$, $u_n \in [1,3]$.
- 3. Soient $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ les suites définies par $v_n=u_{2n}$ et $w_n=u_{2n+1}$.
 - (a) Soit g la fonction définie sur [1,3] par

$$\forall x \in [1,3], g(x) = f \circ f(x).$$

Déterminer l'expression de g et en déduire ses variations.

- (b) Montrer que $(v_n)_{n\in\mathbb{N}}$ vérifie la relation de récurrence $v_{n+1}=g(v_n)$ et en déduire ses variations.
- (c) De même, déterminer les variations de $(w_n)_{n\in\mathbb{N}}$.
- (d) En déduire que (v_n) et (w_n) sont convergentes et déterminer leur limite respective.
- 4. (**) En revenant à la définition de limite, montrer que (u_n) converge aussi.

Exercice 2

Soit n un nombre entier naturel non nul. On se propose d'étudier les racines de l'équation

$$(E_n): e^x = x^n.$$

On introduit la fonction f_n définie sur $[0, +\infty[$ par :

$$\forall x \in [0, +\infty[, f_n(x) = 1 - x^n e^{-x}].$$

- 1. Étude des racines positives de (E_1) et (E_2) .
 - (a) Étudier les variations de f_1 et de f_2 .

- (b) Représenter graphiquement f_1 et f_2 .
- (c) Étudier l'existence de racines positives pour les équations (E_1) et (E_2) .
- 2. Étude des racines positives de l'équation (E_3) .
 - (a) Étudier et représenter la fonction f_3 . En déduire que l'équation (E_3) admet deux racines positives u et v telles que 1 < u < v, et encadrer chacune d'elles entre deux entiers consécutifs.

On donne les valeurs approchées $e^2 \approx 7.4$; $e^3 \approx 20.1$; $e^4 \approx 54.6$ et $e^5 \approx 148.4$.

- (b) Soit $(y_n)_{n\in\mathbb{N}}$ la suite définie par la relation $y_{n+1}=3\ln(y_n)$ et la condition initiale y_0 où y_0 est un nombre réel strictement supérieur à u.
 - i. Montrer que, si $u < y_0 \le v$, alors, pour tout entier naturel n, $u < y_n \le v$.
 - ii. Montrer que, si $v \le y_0$, alors, pour tout entier naturel n, $v \le y_n$.
 - iii. Étudier le signe de $y_{n+1} y_n$ en fonction du signe de $y_n y_{n-1}$. En déduire, selon la position de y_0 par rapport à v, le sens de variation de la suite (y_n) .
 - iv. Étudier enfin la convergence et la limite de la suite (y_n) .
- (c) On choisit désormais $y_0 = 4$.
 - i. Écrire une fonction Scilab qui prend en argument un entier n et calcul y_n .
 - ii. Montrer que : $\forall n \in \mathbb{N}$, $0 \le v y_{n+1} \le 0.75(v y_n)$ En déduire que : $\forall n \in \mathbb{N}$, $0 \le v - y_n \le 0.75^n$.
 - iii. Déduire que $(y_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.
- 3. Étude des racines positives de l'équation (E_n) pour $n \ge 3$.
 - (a) Étudier sur $[0; +\infty[$ la fonction f_n . En déduire que l'équation (E_n) admet deux racines positives u_n et v_n telles que $1 < u_n < v_n$.
 - (b) Déterminer, pour $n \ge 4$, le signe de $f_n(u_{n-1})$. Déduire des variations de la fonction f_n le sens de variation de la suite (u_n) , puis prouver la convergence de celle-ci.

- (c) Montrer que $u_n = \exp\left(\frac{u_n}{n}\right)$, et en déduire la limite ℓ de la suite (u_n) , puis un équivalent simple de $u_n \ell$ quand n tend vers $+\infty$.
- (d) Déterminer, pour $n \ge 4$, le signe de $f_n(v_{n-1})$. Déduire des variations de la fonction f_n le sens de variation de la suite (v_n) , puis étudier la limite de celle-ci.
- (e) Pour tout réel x > 1, on pose $g(x) = x \ln(x)$.
 - i. Montrer que g réalise une bijection de $]1; +\infty[$ sur $]1; +\infty[$.
 - ii. Établir que $g\left(\frac{v_n}{n}\right) = \ln(n)$.
 - iii. Montrer à l'aide de g^{-1} que $\frac{v_n}{n}$ tend vers $+\infty$.
 - iv. Montrer que $\frac{v_n}{n\ln(n)}$ tend vers 1 puis en déduire un équivalent de v_n quand n tend vers $+\infty$.