Assignment 2

Question 1)

- a) 1001101010
- b) {2, 4, 6, 7, 9}

Question 2)

- a) {Ø}
- b) {Ø, a, {a}, {a, b}, {b}}
- c) $\{(\emptyset, \emptyset), (\emptyset, \{a\}), (\emptyset, \{b\}), (a, \emptyset), (a, \{a\}), (a, \{b\}), (\{a, b\}, \emptyset), (\{a, b\}, \{a\}), (\{a, b\}, \{b\})\}$
- d) $\{\emptyset, \{\emptyset\}, \{a\}, \{\{a, b\}\}, \{\emptyset, a\}, \{\emptyset, \{a, b\}\}, \{a, \{a, b\}, \{\emptyset, a, \{a, b\}\}\}\}$

Question 3)

a)
$$\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$$

Left Hand Side

$$= x \in \overline{A \cap B \cap C} \rightarrow x \notin A \cap B \cap C$$
 (Definition of Complement)

=
$$\neg$$
 ($x \in A \land x \in B \land x \in C$) (Definition of Intersection)

$$= \neg (x \in A) \lor \neg (x \in B) \lor \neg (x \in C)$$
 (De Morgan's Law)

$$= x \notin A \lor x \notin B \lor x \notin C$$
 (Definition of \notin)

$$= x \in \overline{A} \lor x \notin \overline{B} \lor x \notin \overline{C}$$
 (Definition of complement)

$$= x \in \overline{A} \cup \overline{B} \cup \overline{C}$$
 (Definition of union of sets)

∴ Equals to RHS

ABC	A ∩ B ∩ C	Ā	B	C	$\overline{A} \cup \overline{B} \cup \overline{C}$
111	0	0	0	0	0
110	1	0	0	1	1
101	1	0	1	0	1
100	1	0	1	1	1
011	1	1	0	0	1
010	1	1	0	1	1
001	1	1	1	0	1
000	1	1	1	1	1

Question 4)

- a) Transitive, Antisymmetric.
- b) Reflexive, Symmetric, Transitive
- c) Reflexive, Symmetric

Question 5)

a) The number of nonzero entries in the matrix representing \mathbb{R}^{-1} is k.

Since R^{-1} is the inverse of R, (b,a) $\in R^{-1}$ when (a,b) $\in R$ and (b,a) $\notin R^{-1}$ when (a,b) $\notin R$.

Therefore, the matrix representing R^{-1} would have the same number of nonzero entries as the matrix representing R.

Hence number of nonzero entries is k.

b) The number of nonzero entries in the matrix representing \overline{R} is $n^2 - k$.

Since \overline{R} is the complement of R. $(a,b) \in \overline{R}$ when $(a,b) \notin R$ and $(a,b) \notin \overline{R}$ when

(a,b) ∈ R.

Therefore, since there are k entries in the matrix representing R that is nonzero, k will be the number of entries in the matrix \overline{R} that are zero.

And since the relation R is on the set A with n elements, the dimensions of the matrix representing R would be n x n. Therefore, the number of entries in the matrix representing R is n^2 .

Therefore, number of nonzero entries in the matrix representing \overline{R} is $n^2 - k$.

Question 6)

 a) For a relation to be an equivalence relation, it has to be reflexive, symmetric and transitive.

Reflexive: If $((a,b),(a,b)) \in R$ for every $(a,b) \in A$

Since a + b = b + a (commutative property of addition)

$$((a,b),(a,b)) \in R$$

Therefore, R is reflexive.

Symmetric: $((a,b),(c,d)) \in R \rightarrow ((c,d),(a,b)) \in R$

$$(a,b)R(c,d) \Leftrightarrow a+d=b+c$$

$$d + a = c + b$$

$$c + b = d + a$$

$$c + b = d + a \rightarrow ((c,d),(a,b)) \in R$$

Therefore, R is symmetric.

Transitive: $((a,b),(c,d)) \in R \land ((c,d),(e,f)) \in R \rightarrow ((a,b),(e,f)) \in R$

$$(a,b)R(c,d) \Leftrightarrow a+d=b+c$$

$$(c,d)R(e,f) \Leftrightarrow c + f = d + e$$

Rearranging the equations

$$a = b + c - d$$

$$f = d + e - c$$

$$a + f = (b + c - d) + (d + e - c)$$

$$= b + e$$

$$a + f = b + e \rightarrow ((a,b),(e,f)) \in R$$

Therefore, R is transitive.

Hence R is an equivalence relation.

b)
$$[2,1] = \{(a+1,a) \mid a \in Z^+\}$$

Question 7)

For a relation to be a partial order, it must be reflexive, antisymmetric and transitive

- a) The relation represented by the digraph is not a partial order relation. This is because the relation fails to meet the transitive property. For a relation to be transitive $\forall a \forall b \forall c \ ((a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R \)$. However in the digraph, $(a,b) \in R \land (b,d) \in R$ but $(a,d) \notin R$. Therefore, fails the transitive property. Hence it is not a partial order relation.
- b) The relation represented by the digraph is also not a partial order relation. As it fails to meet the transitive property. For a relation to be transitive $\forall a \forall b \forall c \ ((a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R \)$. However, in the digraph $(c,d) \in R \land (d,b) \in R$ but $(c,b) \notin R$. Therefore, fails the transitive property. Hence it is not a partial order relation.

Question 8)

a) If a string is a palindrome, first half of the string is equal to the second half of the string. And a bit string has only two cases, 1 and 0.

Two cases: n is even, or n is odd.

No. of permutations when

n is even =
$$\left(\underbrace{2 * 2 * 2 * 2 * 2 * 2 * ...}_{n/2}\right) * 1$$

n is odd =
$$\left(\underbrace{2 * 2 * 2 * 2 * 2 * 2 *}_{(n-1)/2}\right) * 2 * 1$$

= $2^{\frac{n-1}{2}} * 2$
= $2^{\frac{n+1}{2}}$

b) Only have to consider first 4 bits of the string due to being a palindrome.

Due to having to contain 2 consecutive 0s, can therefore be grouped as 1.

So only have to find permutations of first 3 bits.

However, creates an overlap of repeated numbers, therefore have to take 4.

No of permutations = 3 * 2 * 2 - 4

= 8

c) First case: All zeros

1 way.

Second case: Having only one 1 in the first 4 bits

10000001 01000010 00100100

00011000

Therefore 4 ways

Third case: Having two 1s in the first 4 bits

11000011

01100110

00111100 (Not accepted as contains 3 consecutive 1s)

10100101

01011010

10011001

Therefore 5 ways

Fourth case: Having three 1s in the first 4 bits

10111101 (Not Accepted as contains 3 consecutive 1s) 11011011

Therefore only 1 way.

Adding all 4 cases, gives us 11 ways to form a bit string palindrome without 3

consecutive 1s.

Question 9)

a) =
$$C(15.8) * \left(\frac{P(8.8)}{8}\right) * \left(\frac{P(7.7)}{7}\right)$$

$$= C(15,8) * 7! * 6!$$

$$= 2.3351328 * 10^{10}$$
 ways

b) Case 1: They sit on the 8-seat table

$$C(13,6) * \left(\frac{P(7,7)}{7}\right) * 2! * \left(\frac{P(7,7)}{7}\right)$$

Case 2: They sit on the 7-seat table

$$C(13,5) * \left(\frac{P(6,6)}{6}\right) * 2! * \left(\frac{P(8,8)}{8}\right)$$
Ans = $C(13,6) * \left(\frac{P(7,7)}{7}\right) * 2! * \left(\frac{P(7,7)}{7}\right) + C(13,5) * \left(\frac{P(6,6)}{6}\right) * 2! * \left(\frac{P(8,8)}{8}\right)$
= 3335904000 ways

c) Total numbers of ways:

$$= 2.335 * 10^{10}$$
 ways

Number of ways two people are sitting on the same table:

Case 1: Sitting on the 8-seat table

$$C(13,6) * \left(\frac{P(8,8)}{8}\right) * \left(\frac{P(7,7)}{7}\right)$$

Case 2: Sitting on the 7-seat table

$$C(13,5) * \left(\frac{P(7,7)}{7}\right) * \left(\frac{P(8,8)}{8}\right)$$

Number of ways =
$$C(13.6) * \left(\frac{P(8.8)}{8}\right) * \left(\frac{P(7.7)}{7}\right) + C(13.5) * \left(\frac{P(7.7)}{7}\right) * \left(\frac{P(8.8)}{8}\right)$$

= $1.08972864 * 10^{10}$

Number of ways two people are not sitting on the same table:

= total number of ways - number of ways they are sitting on the same table

$$= 2.3351328 * 10^{10} - 1.08972864 * 10^{10}$$

=
$$1.24540416 * 10^{10}$$
 ways

ANS =
$$1.24540416 * 10^{10}$$
 ways

Question 10)

a) Number of possible characters to choose = 26 + 26 + 10 + 6

Number of ways for each password Lengths

8 characters = 68^8

9 characters = 68^9

10 characters = 68^{10}

11 characters = 68^{11}

12 characters: 68^{12}

Total number of ways = $68^8 + 68^9 + 68^{10} + 68^{11} + 68^{12}$

$$= 9.920671339 * 10^{21}$$
 ways

Each possible password takes 1 nano second, therefore it will take

 $9.920671339*10^{21}$ nanoseconds.

b) Number of possible characters to choose if not including special character

$$= 26 + 26 + 10$$

= 62

Number of ways containing no special characters

$$=62^8+62^9+62^{10}+62^{11}+62^{12}$$

$$= 3.279156378 * 10^{21}$$
 ways

Therefore, number of ways for password containing at least 1 special character:

(Total number of ways) - (Number of ways containing no special character)

$$= 9.920671339 * 10^{21} - 3.279156378 * 10^{21}$$
$$= 6.641514961 * 10^{21} \text{ ways.}$$

c)

Inclusion-exclusion principle for set of 4.

$$|A \cap B \cap C \cap D| = |A| + |B| + |C| + |D| - (|A \cap B| + |A \cap C| + |A \cap D| + |B \cap C| + |B \cap D| + |C \cap D|) + (|A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D|) - |A \cup B \cup C \cup D|$$

A = contains at least one lower case

B = contains at least one upper case

C = contains at least one digit

D = contains at least one special character

$$A = 9.920671339 * 10^{21} - 3.086433436 * 10^{19}$$

$$= 9.889807005 * 10^{21}$$

$$B = 9.889807005 * 10^{21}$$

$$C = 8.446020983 * 10^{21}$$

$$D = 6.641514961 * 10^{21}$$

$$|A \cap B|$$
 = 9.889807005 * 10²¹ + 9.889807005 * 10²¹ - 9.920671339 * 10²¹ - 3.002396888 * 10¹⁴
= 9.858942971 * 10²¹

$$|A \cap C| = 9.889807005 * 10^{21} + 8.446020983 * 10^{21} - 9.920671339 * 10^{21} - 1.190112485 * 10^{18}$$

$$= 8.416346761 * 10^{21}$$

$$|A \cap D| = 9.889807005 * 10^{21} + 6.641514961 * 10^{21} - 9.915797575 * 10^{21}$$

$$= 6.615524391 * 10^{21}$$

$$|B \cap C| = 8.416346761 * 10^{21}$$

$$|B \cap D| = 6.615524391 * 10^{21}$$

$$|C \cap D| = 8.446020983 * 10^{21} + 6.641514961 * 10^{21} - 9.920671339 * 10^{21} - 3.985412605 * 10^{20}$$

$$= 4.768323345 * 10^{21}$$

$$|A \cap B \cap C| = 9.920671339 * 10^{21} - 2611802880 - (9.889807005 * 10^{21} + 9.889807005 * 10^{21} + 8.416346761 * 10^{21} + 8.416346761 * 10^{21}$$

$$= 8.386672839 * 10^{21}$$

$$|A \cap B \cap D| = 9.920671339 * 10^{21} - 1.1111 * 10^{12} - (9.889807005 * 10^{21} + 9.889807005 * 10^{21} + 6.641514961 * 10^{21}) + 9.858942971 * 10^{21} + 6.615524391 * 10^{21}$$

$$+ 6.615524391 * 10^{21}$$

$$= 6.58953412 * 10^{21}$$

$$= 6.58953412 * 10^{21}$$

$$|A \cap C \cap D| = 9.920671339 * 10^{21} - 9.924610658 * 10^{16} - (9.889807005 * 10^{21} + 8.446020983 * 10^{21} + 6.641514961 * 10^{21}) + 8.416346761 * 10^{21} + 8.446020983 * 10^{21} + 6.641514961 * 10^{21}) + 8.416346761 * 10^{21} + 6.615524391 * 10^{21}$$

$$+ 4.768323345 * 10^{21}$$

$$= 4.743423641 * 10^{21}$$

$$= 4.743423641 * 10^{21}$$

 $|A \cap B \cap C \cap D|$

$$= 9.889807005 * 10^{21} + 9.889807005 * 10^{21} + 8.446020983 * 10^{21}$$

$$+ 6.641514961 * 10^{21}$$

$$- (9.858942971 * 10^{21} + 8.416346761 * 10^{21} + 6.615524391$$

$$* 10^{21} + 8.416346761 * 10^{21} + 6.615524391 * 10^{21}$$

$$+ 4.768323345 * 10^{21})$$

$$+ (8.386672839 * 10^{21} + 6.58953412 * 10^{21} + 4.743423641$$

$$* 10^{21} + 4.743423641 * 10^{21}) - 9.920671339 * 10^{21}$$

$$= 4.718524236 * 10^{21} ways$$

$$ANS = 4.718524236 * 10^{21} ways$$

Question 11)

a) D = Have Covid-19

P = Tests positive

$$P(D) = 0.0001$$

$$P(P|D) = 0.99$$

$$P(P|\overline{D}) = 0.002$$

$$P(D|P) = \frac{P(D) * P(P|D)}{P(D) * P(P|D) + P(P|\overline{D}) * P(\overline{D})}$$
$$= \frac{0.0001 * 0.99}{0.0001 * 0.99 + 0.002 * 0.9999}$$
$$= 0.04717$$

$$= 4.717\%$$

b)
$$P(\bar{P}|D) = 1 - 0.99 = 0.01$$

 $P(\bar{P}|\bar{D}) = 1 - 0.002 = 0.998$

$$P(D|\bar{P}) = \frac{P(D) * P(\bar{P}|D)}{P(D) * P(\bar{P}|D) + P(\bar{P}|\bar{D}) * P(\bar{D})}$$

$$= \frac{0.0001 * 0.01}{0.0001 * 0.01 + 0.998 * 0.9999}$$

$$= 1.0021 * 10^{-6}$$

$$= 0.0001\%$$

Question 12)

a)

$$P(send\ 0) = \frac{2}{3}$$

$$P(send\ 1) = \frac{1}{3}$$

$$P(received\ 0\ | send\ 1) =\ 0.1$$

 $P(received \ 0 | send \ 0) = 0.8$

 $P(receive\ 0) = P(correctly\ received\ 0) * P(incorrectly\ received\ 0)$

= $P(received \ 0 | send \ 0) * P(send \ 0) + P(received \ 0 | send \ 1) * P(send \ 1)$

$$= (0.8 * \frac{2}{3}) + (0.1 * \frac{1}{3})$$

$$= 0.567$$

b)

P(send 0 | received 0)

$$= \frac{P(send \ 0) * P(received \ 0 \ | send \ 0)}{P(send \ 0) * P(received \ 0 \ | send \ 0) + P(received \ 0 \ | send \ 1) * P(send \ 1)}$$

$$= \frac{\left(\frac{2}{3}\right) * 0.8}{\left(\frac{2}{3}\right) * 0.8 + 0.1 * \frac{1}{3}}$$

$$= 0.941$$