INTEGRALES DE WALLIS

On considère la suite (I_n) définie pour tout entier naturel n par : $I_n = \int_0^{\frac{\pi}{2}} \cos^n t \, dt$.

PARTIE I – CALCUL DES PREMIERS TERMES

I.1)
$$I_0 = \int_0^{\frac{\pi}{2}} \cos^0 t \, dt = \int_0^{\frac{\pi}{2}} dt = \frac{\pi}{2} - 0 = \frac{\pi}{2} \text{ et}$$

$$I_1 = \int_0^{\frac{\pi}{2}} \cos^1 t \, dt = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1.$$

I.2) Soit f définie sur
$$\mathbf{R}$$
: $f(x) = \sin x \cos^n x$ avec $n \in \mathbf{N}^*$.

$$f'(x) = (uv)' = u'v + uv'$$
 avec :

$$u = \sin x$$
 et $u' = \cos x$, et

$$v = \cos^n x$$
 et $v' = -n \sin x \cos^{n-1} x$.

$$f'(x) = \cos^{n+1} x - n \sin^2 x \cos^{n-1} x$$
.

En remarquant que $\sin^2 x = 1 - \cos^2 x$, on peut écrire :

$$f'(x) = \cos^{n+1} x - n\cos^{n-1} x + n\cos^{n+1} x$$
, soit

$$f'(x) = (n+1)\cos^{n+1} x - n\cos^{n-1} x$$
 pour tout $n \in \mathbb{N}^*$.

En intégrant cette expression sur $[0; \frac{\pi}{2}]$, on obtient :

$$\int_0^{\frac{\pi}{2}} f'(x) dx = (n+1) \int_0^{\frac{\pi}{2}} \cos^{n+1} x \, dx - n \int_0^{\frac{\pi}{2}} \cos^{n-1} x \, dx.$$

Le premier terme de cette égalité est égal à

$$f\left(\frac{\pi}{2}\right) - f(0) = \sin\left(\frac{\pi}{2}\right)\cos^n\left(\frac{\pi}{2}\right) - \sin(0)\cos^n(0) = 0.$$

Le second terme est égal à

$$(n+1)I_{n+1}-nI_{n-1}$$
.

On en déduit que pour tout $n \in \mathbb{N}^*$, $I_{n+1} = \frac{n}{n+1}I_{n-1}$.

Et si on applique cette formule à l'indice n de I, on obtient $I_n = \frac{n-1}{n}I_{n-2}$ pour tout n > 1

I.3) L'algorithme de Xavier ne fonctionne pas car il calcule I_n selon la formule $I_n = \frac{n-1}{n}I_{n-1}$ au lieu de $I_n = \frac{n-1}{n}I_{n-2}$. On propose un algorithme modifié qui utilise une variable supplémentaire, V:

VARIABLES

V, U, Uprec sont des réels

N, I sont des entiers

DEBUT ALGORITHME

Lire N

Uprec prend la valeur PI/2

Afficher **Uprec**

U prend la valeur 1

Pour Lallant do 2 à 1

Pour I allant de 2 à N

V prend la valeur Uprec*(I-1)/I
Uprec prend la valeur U

Afficher **Uprec**

U prend la valeur **V**

Fin Pour

FIN ALGORITHME

PARTIE II – ETUDE DE LA CONVERGENCE

II.1) On a
$$\frac{n-1}{n}$$
 < 1, d'où I_n < I_{n-2} pour tout $n > 1$, ce qui montre que (I_n) est décroissante.

II.2) On a
$$\frac{I_n}{I_{n-2}} = \frac{n-1}{n}$$
, d'où $\lim_{n \to +\infty} \left(\frac{I_n}{I_{n-2}} \right) = 1$, ce qui montre que (I_n) est convergente.

II.3) On constate que l'égalité
$$(n+1)I_nI_{n+1} = \frac{\pi}{2}$$
 est vraie pour $n=0$.

Si l'égalité
$$(n+1)I_nI_{n+1} = \frac{\pi}{2}$$
 est vraie pour un certain entier $n \ge 0$, montrons qu'elle est vraie

pour n + 1, c'est à dire que l'on doit avoir $(n + 2)I_{n+1}I_{n+2} = \frac{\pi}{2}$. Comme d'après I.1)

$$I_{n+2} = \frac{n+1}{n+2}I_n$$
, on peut écrire :

$$(n+2)I_{n+1}I_{n+2} = (n+2)I_{n+1}\frac{n+1}{n+2}I_n = (n+1)I_nI_{n+1} = \frac{\pi}{2}.$$

Et, par récurrence, l'égalité
$$(n+1)I_nI_{n+1} = \frac{\pi}{2}$$
 est démontrée pour tout $n \ge 0$.

4) On a vu que la suite
$$(I_n)$$
 est convergente, ce qui veut dire que ses termes I_n tendent vers une limite l quand n tend vers $+\infty$. On peut alors écrire que

$$\lim_{n\to+\infty}I_nI_{n+1}=l^2=\lim_{n\to+\infty}\left\lfloor\frac{\pi}{2(n+1)}\right\rfloor=0.$$

D'où $l = \lim_{n \to +\infty} I_n = 0$.