Computational Numerical Methods

CS 374

Prosenjit Kundu

Number of iteration needed.

This will be satisfied. It:
$$\frac{1}{2^{n+1}}\left(50-a_{0}\right) \leq \varepsilon.$$

$$n+1 > \log_{2}\left(\frac{5o-no}{\varepsilon}\right)$$

$$n > \log_{2}\left(\frac{5o-no}{\varepsilon}\right)-1$$

Newton's Method / Newton - Raphson Method. f(x) = f(x) + + (2) (x, - x0) $f_1 = f(\chi_0) + f'(\chi_0)(\chi_1 - \chi_0)$ f(no) + f'(no) (n,-no) 20. 1, = 200 A

$$n_{2} = n_{1} - \frac{f(n_{1})}{f'(n_{1})}$$

$$-\frac{f(n_{1})}{f'(n_{1})}$$

$$2n_{2} = n_{1} - \frac{f(n_{1})}{f'(n_{1})}$$

E CO	f(n) =	N 6 - N -	.1 +'	$(h) = 6 \pi \sqrt{1} - 1$	
٠,٩٠	14	₹(n~)	1 m- 1 m-1	~- Nn-1	1~ na H/m)
Q	1.2	6.89 x pt	_		1.3049088.
1	1.30490	2.54 xx	-2 ×10-1	- 3.65 ×10-1	1.18148047
2	1.18(4804	0.535	- 119 -0.119	- 1.66 x (0-)	1.13945559
3	1.13945559	0.0492	-0.042	4.68 x10-2	113477767
4	1.13477	1.000 55	-0.00488	-4.72×10-3	1113472415
•	1.13472415	0.000000	71 Zeo 00.00	-5.32 ×10-2	1.13472419
6	118472414	1.57(0-11	-6-91×10-9	-6.91×10-9	

Early days computer anithmetic. Suppose me nædt find @ a/L. F Try to find out & Then # To solve to Consider $f(n) = b - \frac{1}{n}$. Here are assume

COMPUR 9. L

 $f'(n) = \frac{1}{n^2}$

Xn+1 = Xn (2-64n)

assume No >0

Show Hat Rel (NnH) = [Red (Nn)] Rel (nn) = d-nn Relative roor when considering the GD-the. approximetrem of a 2 ts. we must have -Hen Re1 (n.)/<1

岩一二

Error Analysis

$$f(x) = f(x_n) + (x_n) f(x_n) + \frac{1}{2} (x_n^{-1}x_n)^{\frac{1}{2}} f(x_n^{-1}x_n)^{\frac{1}{2}} f(x_n^{-1}$$

$$0 = u_n - \eta_{nH} + (\alpha - \chi_n) + \frac{1}{2} (\pi - \eta_n) + \frac{1}{4!} (\pi_n)$$

: $\alpha - \eta_{n+1} = \frac{(\alpha - \eta_n)^L}{2. + 1(\alpha_n)}$

The error in not plath the rundon. is nearly proportional to see square of few.

error in not iteration.

$$F(((x)) = x_0 - x_{-1}$$

$$F(((x)) = x_0 - x_{-1}$$

$$-\frac{f''(cn)}{2f'(Nn)} \approx \frac{-f''(\alpha)}{2f'(\alpha)} = \frac{-30 \times 4}{2(6\alpha(-1))} = -2.42$$