投稿類別:工程技術類

篇名:美若天線—天線於汽車喇叭應用之研究

作者:

王彥翔。臺北市立師大附中。高二 1428 班 陳航希。臺北市立師大附中。高二 1428 班 徐浩軒。臺北市立師大附中。高二 1428 班

> 指導老師: 高銘宏 老師

壹、前言

一、 研究動機

ETC 之全面使用,代表了汽車行駛時有許多情況可以改善。一日,看到電視播出討論 聾人是否可應考駕照的專題討論,我們深感興趣,於是上網搜尋相關法規,發現道路交 通安全規則第六十四條第三項規定中有一項訂為:「聽覺機能障礙者:經矯正後其優耳聽 力損失在 90 分貝以上者不得報考大型車駕駛執照。」其中最大的原因就是:汽車喇叭,因 為聾人無法聽到來車喇叭的提醒,以致於無法安全行車,然而這造成聾人不可忽視的困 擾。顯然,喇叭系統存在著相當大的瑕疵。而且喇叭是噪音汙染中的主要來源之一,影 響生活。因此,適當利用天線的特性,以不同於喇叭的方式進行改善,想必對解決這些 問題是一個重大的里程碑。

二、 研究目的

若是使用喇叭的聲響提醒,公路會有雜音的汙染,且聾人也無法滿意地駕駛汽車。因此,我們的研究目的在於製作承襲喇叭優點並創建新的優點的系統,與證實其可行性。

貳、正文

一、製作車用的無線傳輸設備

傳遞訊息方面,要將訊號發射器傳遞之電磁波化為足夠產生提醒的電流。提醒方面,燈泡和音源都可以用來提醒駕駛的好處在於,如果駕駛可自行選擇要用燈泡還是音源提醒自己,那麼聾人便可以選擇用燈泡提醒自己,這樣就不再會有因為聽不到而無法駕駛的問題。除此之外,利用天線傳遞訊號不會像喇叭一樣造成噪音汙染,這也是利用天線傳遞訊號的優勢之一。

二、討論不同距離對於無線傳輸的影響

在這方面,希望天線可以承襲傳統汽車喇叭的優點,使電磁波訊號不會無限制地 擴散,使得傳遞到的汽車過多,造成溝通上的不便。因此設計實驗進行測試,希望可 以使提醒控制於一定距離,否則其可行性將不被接受。

三、討論不同角度對於無線傳輸的影響

欲提醒的駕駛不一定朝向某一個特定的方向,因此全方位的擴散可以提升提醒行 車駕駛的便利性。若測試結果顯示各角度接收到的電壓大小差異不大,代表在距離接 收端同一長度,都會有相似的反應產生,類似於現行的喇叭。反之,則實用性大幅降 低。

四、研究架構

五、製作過程

利用 hfss 模擬軟體設計天線之構造,並將設計圖印出。

在感光板上放置印出之設計圖,並將二者一 同放入曝光機中。開啟曝光機後,等待 120 秒。

4

待曝光完畢後,將曝光板放入顯影劑中, 直到除了天線形狀部分外都變成紅銅色 後,將其取出。 取出後,置於蝕刻劑中,直到除了天線形狀 部分外都變成黃色、且顏色不再變化後,將 其取出。

6

用酒精將天線上剩餘塗料擦拭乾淨。

裁切曝光板的多餘部分。

8

用焊槍將 SMA 接頭連接於天線上。

利用與上述相同之方法製作整流器,並將 SMA 接頭和整流器利用焊槍相連接,從裡面 選擇較好的地方擇一。

美若天線—天線於汽車喇叭應用之研究

用轉接器將天線與整流器透過 SMA 接頭和轉接器連結起來。

為提高電壓,在整流器上連接配有額外電源的放大器。

12

將燈泡或音源連接於放大器上,即完成我 們的接收端。 在模擬用的模型車上分別放置2.45GHz訊號發射器(發射端)和接收端後,即完成取代汽車喇叭的天線系統

六、測試過程

(一)天線之測試

首先利用網路分析儀測試天線性能,測試我們的天線對2.45GHz的電磁波是否有較好的吸收能力,若橫坐標2.45GHz對到的縱座標小於-10dB,則此天線即符合我們對接收端的要求。

圖 4-2:測試天線性能圖 圖片來源:製作實拍

可發現此天線在2.45GHz下會有特別高的接收訊號能力,而在其他頻率下(非2.45之倍數的電磁波),幾乎完全接收不到電磁波訊號,因此天線符合我們對接收端之要求,可以 將發射端的電磁波訊號轉換為電流,而不易受到非2.45GHz之頻率的訊號干擾。

(二)測試不同距離間,吸收到的電磁波的量

將接收端固定,調整發射端與接收端的距離,再以捲尺丈量兩者間的距離,並記錄不同距離間,收到的電磁波大小。測量能使燈泡或音源產生反應的距離極限,以期兩車僅在一定距離限度,才可以接收到發射端所發出之訊號。

(三)測試在不同角度下,吸收到電磁波的量

將接收端與發射端間的距離固定(我們取為3m),以發射端正前方作為基準點0°, 改變接收端的位置,調整接收端和發射端間的角度,再以量角器測量兩者間的角度,並 記錄不同角度下,收到電磁波的大小。測量能使燈泡或音源產生反應的角度,觀察發射 端發射的電磁波是否是全方位擴散

七、成果示意圖

圖 5-1 作品線路圖

上圖為我們的專題接收端的示意圖,當車子要發出訊號提醒附近車輛時,以訊號發射器(發射端)傳送電磁波訊號,而附近車輛的訊號接收端則以天線將此電磁波化為電流。又因為電流太弱,於是我們接上可以放大電壓的變壓器及供給變壓器電力的外加電源,以此

提供燈泡及音源所需的電壓。音源或燈泡接收到電流後發亮,這樣便提醒了駕駛。

圖 5-2 實際模擬圖

上圖為我們的專題的模擬圖,在每輛車子上分別設置接收端與發射端。我們的模擬情況為:將能接收 2.45GHz 電磁波的天線置於其中一車(車 1),而將能發出 2.45GHz 頻率的訊號發射器置於另一車(車 2)。當車 2 駕駛要提醒車 1 駕駛時,車 2 透過訊號發射器(發射端)打出電磁波訊號,車 1 則將此訊號透過接收端將此訊號轉為電流,進而使燈泡發亮,達到提醒車 1 駕駛的功能。

(2)成果說明

上述的天線系統比起喇叭系統少了對附近住家、道路的噪音影響。我們的天線系統因為自行備有接收端與發射端,因而少了如網路需要有基地台才可以運作的環境限制。再加上聾人聽不到喇叭聲,所以我們可以用燈泡代替音響,這樣就不會有聾人聽不到喇叭聲的問題。除此之外,我們也可以讓駕駛自行選擇要使用音響還是燈泡提醒。因此,駕駛如果嫌音響吵,可以改用燈泡提醒;如果聽不到音響聲,可以改用燈泡提醒。如此,我們便改進了傳統喇叭系統的缺陷。

(3)討論

一、距離變化對天線接收到的電磁波產生的影響

1	2	3	4	5	6	7	8	9
1.28	1.27	1.22	1.24	1.18	1.14	1.14	1.12	1.05
1.30	1.29	1.26	1.22	1.15	1.17	1.11	1.07	1.07
1.29	1.3	1.26	1.22	1.2	1.11	1.13	1.1	1.05
1.31	1.25	1.22	1.24	1.15	1.15	1.11	1.08	1.06
1.31	1.23	1.29	1.25	1.21	1.15	1.13	1.05	1.03
1.298	1.268	1.25	1.234	1.178	1.144	1.124	1.084	1.052

距離	10	12.5	15	17.5	20
第一次測量(v)	0.97	0.72	0.52	0.36	0.22
第二次測量(v)	1.02	0.73	0.5	0.33	0.23
第三次測量(v)	0.98	0.69	0.51	0.35	0.26
第四次測量(v)	1.03	0.71	0.51	0.31	0.25
第五次測量(v)	0.96	0.72	0.52	0.32	0.24
平均電壓(v)	0.992	0.714	0.512	0.334	0.24

表 6-1 距離與接收端電壓關係表(距離為 1 至 9m)

得到測試結論:電壓從1.298V開始逐漸下降。當距離超過12.5m時,測到的電壓會急速

美若天線—天線於汽車喇叭應用之研究

下降,到20m時便只剩0.24V。又我們的燈泡及音源分別在10m及12.5m的情況下已達到可以亮的極限,由此可知我們的電磁波訊號不會無限制地擴散,可以傳遞到的車輛是有限制的。角度變化對天線接收到的電磁波產生的影響(3m的情況下)

角度(°)	15°	30°	45°	60°	75°	90°
第一次測量(v)	1.24	1.26	1.26	1.24	1.26	1.21
第二次測量(v)	1.24	1.2	1.27	1.2	1.26	1.26
第三次測量(v)	1.19	1.19	1.25	1.24	1.24	1.26
第四次測量(v)	1.19	1.25	1.25	1.22	1.23	1.24
第五次測量(v)	1.22	1.19	1.25	1.21	1.22	1.24
平均電壓(v)	1.216	1.218	1.256	1.222	1.242	1.242

表 6-3 角度與接收端電壓關係表

得到測試結論:由數據可知,角度的變化不會造成明顯接收到的電壓的差別,故我們的電磁波並非往特定方向前進,而是全方位的擴張。故發射端發出的訊號,四周的車輛都會接收到。

參、結論

本專題是利用天線系統取代現行汽車的喇叭系統,運用電磁波能量會隨距離減小的特性,以及燈泡在電壓過小的情形無法運作的情況,繼承喇叭的聲音在距離過大的情況,不會對駕駛造成干擾的優點;以訊號傳輸器可對四面八方傳遞的性質,承襲喇叭聲音對四周來車皆可傳達提醒的優點,而以燈泡代替喇叭,不但仍然保持提醒的效果,更使噪音減少且聾人開車更為順利。

一、製作車用的無線傳輸設備

若採用燈泡進行提醒,用看的便能進行判斷之特性使聾人開車變得容易,可行性大幅提高。

二、討論不同距離對於無線傳輸的影響

由數據分析可得,在距離大於10m之後,燈泡不會發亮,也就是不會達到提醒功

美若天線—天線於汽車喇叭應用之研究

能,這種在一定距離範圍內有提醒效果的系統,十分適合應用於汽車。

二、討論不同角度對於無線傳輸的影響

汽車並非僅對正前方車輛進行提醒,而天線對四面八方皆可傳輸訊號,而不與角度 有明顯關係的特性也使天線系統更適合應用於汽車駕駛。便能進行判斷之特性

喇叭系統及天線系統之優缺點比較

	喇叭系統	天線系統	
	可辨別音量大小推估遠近	可辨別燈泡或音源聲響、亮	
/百网-6		度辨別距離	
優點	全方位傳輸	全方位傳輸	
	土刀瓜母期	減少噪音汙染	
缺點.	音量有時過大損害聽力	無法難則成市之句	
- 山大黒白	無法提醒聾人	無法辨別來車方向	

肆、引註資料

- (1) 陳士元(2011年4月) 漫談電磁學發展與天線科技 *台大電機系科普系列* 取自 http://ee.ntu.edu.tw/upload/hischool/doc/2011.04.pdf
- (2) 許正興(2015年2月25日) 天線工程導論 取自

http://web.nuu.edu.tw/~hsuch/download/Antenna.pdf

- (3) David Halliday、Robert Resnick、Jearl Walker (2012) 物理(下)(9 版)第 31-32 章 台北市:全華。
- (4) 身心障礙者報考汽、機車駕照要點說明〔公告〕•取自

https://tpcmv.thb.gov.tw/MotorVehicles/DriverLicense/DriverTest/dt09.htm