QUIZ 1 & 2 SOLUTION (SEC 13)

Thursday, July 24, 2025 8:22 PM

1. Two languages are defined as follows over the alphabets Σ = { 0 , 1 }:

 $\begin{array}{l} L_1 \equiv \{ \ w \ | \ doesn't \ end \ with \ 01 \ \} \\ L_2 \equiv \{ \ w \ | \ w \ ends \ with \ odd \ number \ of \ 0s \ \} \\ L_3 \equiv \{ \ w \ | \ the \ number \ of \ '01' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ to \ the \ number \ of \ '10' \ substrings \ is \ equal \ the \ number \ of \ '10' \ substrings \ is \ equal \ the \ number \ of \ '10' \ substrings \ is \ equal \ the \ number \ of \ '10' \ substrings \ is \ equal \ is \ equal \ is \ equal \ equa$

a.	Give a state diagram for that DFA that recognizes L ₁	[4
b.	Give a state diagram for that DFA that recognizes L ₂	[4]
C.	If you were to use the "cross product" construction shown in class	to

obtain L₁ U L₂, how many states would it have?
d. Give a state diagram for that DFA that recognizes L₃ [3] [3]

2. Design a DFA for the language L = { $w \mid w$ contains "abba" as a substring } over the alphabets Σ = { a, b }

Two languages are defined as follows over the alphabets Σ = { 0 , 1 }:

 $L_1 = \{ w \mid doesn't end with 10 \}$ $L_2 = \{ w \mid w ends with odd number of 1s \}$

 $L_{\rm S}$ = { w | the number of '01' substrings is not equal to the number of '10' substrings in w }

Give a state diagram for the DFA that recognizes L_1

b. Give a state diagram for the DFA that recognizes L_2 [4 c. If you were to use the "cross product" construction shown in class to [4]

obtain $L_1 \cup L_2$, how many states would it have? [3] d. Give a state diagram for the DFA that recognizes L₃

2. Design a DFA for the language L = { w | w contains "baab" as a substring} over the alphabets $\Sigma = \{a, b\}$

1. Let, $\Sigma = \{0, 1\}$. Give regular expressions for the following languages over Σ .

a. { w : w doesn't end with 0 }

b. $\{w: w \text{ contains at least one 1 and odd 0's after the last 1}\}$ [3]

[3]

c. { w : w doesn't contain the substring "00" and starts and ends with 1) [3]

d. { w : strings that have neither consecutive 1s, nor consecutive 0s } [3]

e. { w : w is a string in which the number of 0s is odd. } [3]

2. Convert the following Regular expression into NFA: [5]

(ab + ba)* | aba* (a + ba*)

1. Let, Σ = {0, 1}. Give regular expressions for the following languages over Σ .

a. { w : w doesn't start with 1 } [3] b. { w : w contains at least one 0 and odd 1's after the last 0 }

[3]

[3]

[3]

c. { w : w doesn't contain the substring "11" and starts and ends with 0} [3]

d. { w: w contains only "01" and "10" substring in w } e. { w : w is a string in which the number of 1's is even }

2. Convert the following Regular expression into NFA: [5]

ba*(a + ba)* | a* (ab* + b)

1(a) (0+1)* 1 + e 1(b) (0+1)* 1 (00)*0 1(c) 1 (1 | 01) * 1 + 1 1(a) 0 (0+1)* + e 1(b) (0+1)* 0 (11)*1 1(c) 0 (0 | 10) * 0 + 0 1(a) (0+1)* 1 + e 1(b) (0+1)* 1 (00)*0 1(c) 1 (1 | 01) * 1 + 1 1(d) (10)*(1+e) + (01)* (0+e) 1(e) (1* 0 1* 0 1*)* 1* 01*

1(a) 0 (0+1)* + e 1(b) (0+1)* 0 (11)*1 1(c) 0 (0 | 10) * 0 + 0 1(d) (10)*(1+e) + (01)* (0+e) 1(e) (0* 1 0* 1 0*)* + 0*

