EEL 4837Programming for Electrical Engineers II

Qiangeng Yang Teaching Assistant

Department of Electrical and Computer Engineering
University of Florida at Gainesville

Excursion 1 – Circuit Analysis Tool

Readings:

- Excursion 1 Description

Electronic Circuit

- **Electronic circuit**: a collection of interconnected electronic components.
- A circuit has a well-defined deterministic functionality when running:
 - Voltage sources
 - Current sources
 - Resistors
 - Inductors
 - Capacitors
 - Diodes
 - Transistors
 - O ...

Electronic Circuit (cont.)

- The functionality of a circuit is fully characterized by:
 - The **current** through each component.
 - The voltage drop/rise through each component.
 - The voltage potential at each of the interconnections relative to a ground node.

Circuit Analysis

- **Circuit analysis**: a sequence of methods to answer some questions about circuit.
 - e.g., what is the voltage drop/rise across a resistor?
- To do that, we may need:
 - Measuring tools.
 - e.g., Galvanometer, voltmeter, ohmmeter, etc.
 - Theories.
 - e.g., Ohm's Law, Voltage Law, Current Law, etc.
- Limitations:
 - Sometimes we can only answer questions as needed about the circuit at a time.

Circuit Simulation

- **Circuit simulation**: a technique to check and verify the design of circuits prior to manufacturing and deployment.
- Almost replaced physical prototype.
- What can we do with simulation?
 - Model a linear circuit with a single matrix algebraic equation.

From: <u>CircuitLab</u>

Schematic Diagrams and Digraphs

• Schematic diagram: a graphical representation of an electrical circuit.

- Directed graph (digraph): can represent a circuit more abstractly.
 - From graph theory.

Circuit Netlist

- Netlist: describes the connectivity of an electronic circuit.
- It consists of:
 - a list of electronic components;
 - a list of nodes they are connected to.
- Format:
 - Branch label
 - First character indicates component type.
 - Source node label
 - Destination node label
 - Numeric component value

Circuit Netlist

- Some conventions:
 - Ground node is always labeled as 0, while other node can be labeled in any order.
 - Use positive numeric values.
 - Current travels from source to destination.
 - Voltage drops from source to destination.

V1 1 0 5 R1 1 2 10 R2 2 0 20

Circuit in Computer

How can we represent a circuit in computer?

Excursion 1 Goal

- Design an elementary interactive circuit analysis tool to:
 - Read a circuit.
 - Compute the currents and voltages across different components.

- You can assume that the given circuits only contain:
 - voltage sources
 - resistors

Steps Overview

- 1. Create a netlist as input to represent a circuit.
- 2. Use KCL, KVL and Ohm's law to construct three matrix equations.
- 3. Combine all the matrix equations to solve all the unknown parameters (e, v, i of each part).

Step 1: Create a Netlist

 Based on a circuit diagram, create its corresponding netlist as input.

How can we represent the netlist in computer?

branch

Assume "1" is source and "-1" is destination.

In each column, we put a "1" in the source node row and "-1" in the destination node row.

R1

 10Ω

5V

• (Cont.) We can further remove the row for one node (e.g., ground node) to get a reduced incidence matrix.

- Kirchoff's Current Law (KCL): the algebraic sum of currents that leave any node is zero.
- 5V + $R2 \lesssim$

R1

- KCL equation for each node:
 - Assume leaving is positive and coming is negative:
 - At Node 0: branch currents i_1 and i_3 are coming, so $-i_1-i_3=0$
 - At Node 1: branch currents i_1 and i_2 are leaving, so $i_1+i_2=0$
 - At Node 2: branch current i_2 is coming, while i_3 is leaving, so $-i_2+i_3=0$

(Cont.) Now we have:

$$-i_1 - i_3 = 0$$

$$i_1 + i_2 = 0$$

$$-i_2 + i_3 = 0$$

Represent these equations with matrices:

- Kirchhoff's Voltage Law (KVL): the voltage drop between any two nodes is equal to the difference of the two node voltages.
- KVL equation for each pair of nodes:
 - Voltage drop between n_0 and n_1 (branch 1): $v_1 = e_1 0$
 - Voltage drop between n_1 and n_2 (branch 2):

$$v_2 = e_1 - e_2$$

• Voltage drop between n_0 and n_2 (branch 3):

$$v_3 = e_2 - 0$$

• (Cont.) Now we have:

$$v_1 = e_1 - 0$$

 $v_2 = e_1 - e_2$
 $v_3 = e_2 - 0$

Represent these equations with matrices:

$$\begin{bmatrix} v_1 \\ v_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \qquad \boldsymbol{v} = \boldsymbol{A}^T \boldsymbol{e}$$

Comparison between KCL and KVL:

KCL

$$\begin{bmatrix} -1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

$$Ai = 0$$

KVL

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

$$v = A^T e$$

Combine the KCL and KVL equations:

$$Ai = 0$$
 $v = A^T e$

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & A \\ -A^T & \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} e \\ v \\ i \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

- Ohm's law: the current through a conductor between two points is directly proportional to the voltage across the two points.
 - $I = \frac{V}{R}$
- Ohm's law equation for each component:

$$v_1 = 5$$

$$v_2 = 10i_2$$

$$v_3 = 20i_3$$

• (Continue) Represent these equations with matrices:

Format: $av_b + bi_b = u_b$

$$Mv + Ni = u_s$$

Step 3: Calculate Unknown Parameters

- Now, what do we have?
 - KCL + KVL:

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & A \\ -A^T & \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{vmatrix} e \\ v \\ i \end{vmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Ohm's Law:

$$Mv + Ni = u_s$$

• Combine all the equations to create the sparse matrix representation:

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & A \\ -A^T & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & M & N \end{bmatrix} \begin{bmatrix} e \\ v \\ i \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ u_s \end{bmatrix}$$

$$Tw = u$$

Step 3: Calculate Unknown Parameters

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & A \\ -A^T & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & M & N \end{bmatrix} \begin{bmatrix} e \\ v \\ i \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ u_s \end{bmatrix}$$

Put everything we know into the matrices

Final goal: calculate e, v, and i!

Steps Review

- 1. Create a netlist as input to represent a circuit.
- 2. Use KCL, KVL and Ohm's law to construct three matrix equations.
 - Construct A, M, N, and u_s to represent the netlist.
- 3. Combine all the matrix equations to solve all the unknown parameters (e, v, i of each part).
 - Use Gauss Elimination, LU Factorization, etc.

Example 1

- Input:
 - V1106
 - R1126
 - R2 2 0 3.33
 - R3 2 3 3
 - R4 3 0 11
 - R5 3 4 4
 - R6 4 0 7
 - R7457
 - R8507

Example 1

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Input: V1 1 0 6 R1 1 2 6 R2 2 0 3.33 R3 2 3 3 R4 3 0 11 R5 3 4 4 R6 4 0 7 R7 4 5 7 R8 5 0 7

Example 1

Thank you!

Readings:

- Excursion 1 Description