

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012

QUÍMICA

TEMA 9: ORGÁNICA

- Reserva 1, Ejercicio 4, Opción B
- Reserva 2, Ejercicio 4, Opción A
- Reserva 3, Ejercicio 4, Opción A
- Reserva 4, Ejercicio 4, Opción A
- Septiembre, Ejercicio 4, Opción B

Dados los siguientes compuestos: CH₃CH₂CH = CH₂; CH₃CH₂CHO; CH₃OCH₃; CH₃CH = CHCH₃; CH₃CH₂OH; CH₃COCH₃. Indique:

- a) Los que son isómeros de posición.
- b) Los que presentan isomería geométrica.
- c) Los que son isómeros de función.

QUIMICA. 2012. RESERVA 1. EJERCICIO 4. OPCIÓN B

RESOLUCIÓN

- a) Son isómeros de posición el: but-1-eno CH₃CH₂CH = CH₂ y el but-2-eno CH₃CH = CHCH₃
- b) El but-2-eno presenta isomería geométrica: CH₃CH = CHCH₃

$$CH_3$$
 $C = C$
 CH_3
 CH_3
 $C = C$
 CH_3
 CH_3
 CH_3
 $C = C$
 CH_3
 CH_3

c) Son isómeros de función el etanol CH₃CH₂OH y el dimetil eter CH₃OCH₃; también, el propanal CH₃CH₂CHO y la acetona CH₃COCH₃

- a) Escriba la reacción de adición de cloruro de hidrógeno a CH₃CH₂CH = CH₂.
- b) Escriba y ajuste la reacción de combustión del propano.
- c) Escriba el compuesto que se obtiene cuando el cloro molecular se adiciona al metilpropeno. QUIMICA. 2012. RESERVA 2. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

a)
$$CH_3 - CH_2 - CH = CH_2 + HCl \rightarrow CH_3 - CH_2 - CHCl - CH_3$$

b)
$$CH_3 - CH_2 - CH_3 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

c)
$$(CH_3)_2 - C = CH_2 + Cl_2 \rightarrow (CH_3)_2 - CCl - CH_2Cl$$

Sean las fórmulas CH₃CHClCH₂CH₂OH y CH₃CH = CHCH₃. Indique, razonadamente:

- a) La que corresponda a dos compuestos que desvían en sentido contrario el plano de polarización de la luz polarizada.
- b) La que corresponda a dos isómeros geométricos.
- c) La que corresponda a un compuesto que pueda formar enlaces de hidrógeno.
- QUIMICA. 2012. RESERVA 3. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

- a) El CH₃C*HClCH₂CH₂OH ya que tiene un carbono asimétrico
- b) El CH₃CH = CHCH₃ tiene isomería geométrica.

$$CH_3$$
 $C = C < H$

cis but-2-eno

$$CH_3$$
 $C = C$ CH_3

trans but-2-eno

c) El CH₃CHClCH₂CH₂OH puede formar enlaces de hidrógeno.

Escriba la fórmula desarrollada de:

- a) Dos compuestos que tengan la misma fórmula empírica.
- b) Un alqueno que no presente isomería geométrica.
- c) Un alcohol que presente isomería óptica.
- QUIMICA. 2012. RESERVA 4. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

a) El acetileno C₂H₂ y el benceno C₆H₆ tienen la misma fórmula empírica

b) El CH₃CH = CH₂ no tiene isomería geométrica.

$$CH_3$$
 $C = C$

c) El CH₃C*HOHCH₂CH₃ presenta isomería óptica ya que tiene un carbono asimétrico.

Dados los siguientes compuestos: $CH_3 - CH = CH_2$ y $CH_3 - CH = CH - CH_3$, elija el más adecuado para cada caso (justifique la respuesta):

- a) El compuesto reacciona con ${\rm H_2O/H_2SO_4}$ para dar otro compuesto que presenta isomería óptica.
- b) La combustión de 2 moles de compuesto producen 6 moles de CO,.
- c) El compuesto reacciona con HBr para dar un compuesto que no presenta isomería óptica. QUÍMICA. 2012. SEPTIEMBRE. EJERCICIO 4. OPCIÓN B

RESOLUCIÓN

a)
$$CH_3 - CH = CH - CH_3 + H_2O/H_2SO_4 \rightarrow CH_3 - CHOH - CH_2 - CH_3$$

b)
$$2CH_3 - CH = CH_2 + 9O_2 \rightarrow 6CO_2 + 6H_2O$$

c)
$$CH_3 - CH = CH_2 + HBr \rightarrow CH_3 - CHBr - CH_3$$