SPECIFIC INTENSITY

- I_{λ} = energy/time/area/solid angle/wavelength
- $I_v = \text{energy/time/area/solid}$ angle/frequency
- Function of position, direction, wavelength, and polarization

SPECIFIC FLUX

• If a source is resolved by our telescope, we can measure I_{λ}

• If the source is unresolved, we integrate over solid angle and measure the *specific flux* or *flux density*:

$$f_{\lambda} d\lambda = \oint I_{\lambda} d\lambda \cos\theta d\Omega$$

(energy/time/area/wavelength)

KIRCHHOFF'S LAWS

MOMENTS OF SPECIFIC INTENSITY

• Mean intensity
$$J_{\lambda} = \langle I_{\lambda} \rangle = (1/4\pi) \oint I_{\lambda} d\Omega$$

• Specific flux,
$$f_{\lambda}$$
 $F_{\lambda} d\lambda = \oint I_{\lambda} d\lambda \cos\theta d\Omega$

• Specific energy density $u_{\lambda} = (4\pi/c) \langle I_{\lambda} \rangle$

$$P = (1/c) \iint I_{\lambda} \cos^2\theta \, d\Omega \, d\lambda$$