A. find the minimum element of arr

D. sort all elements of arr

elements of arr

This problem set has 19 questions, for a total of 110 points. Answer the questions below and mark your answers in the spaces provided. Additionally, fill out the bubble sheet provided **clearly** for your Gradescope submission. If the question asks for showing your work, you must provide details on how your answer was calculated.

	Your Nam	e:
1.	[5 points]	Which of the following descriptions best describes what mystery does?
	int	mystery(int *arr, int n) {
		if(n == 1) return arr[0]; $int val = mystery(arr + 1, n - 1)$
	}	$\mathbf{return} \ (\operatorname{arr} [0] > \operatorname{val}) \ ? \ \operatorname{arr} [0] \ : \ \operatorname{val};$
	J	

B. find the maximum element of arr

C. find the sum of all

2. [5 points] Which of the following descriptions best describes what mystery does?

```
bool mystery(int n, int i) {
   if (n <= 2)
      return (n == 2) ? true : false;
   if (n % i == 0)
      return false;
   if (i * i > n)
      return true;

   return mystery(n, i + 1);
}
```

A. determine if n is an even number B. determine if n is a prime number C. determine if i evenly divides n D. determine if n is an odd number

3. [5 points] Given the following sorting algorithm, determine if it is **stable**, **in-place**, **both**, or **neither**.

```
int sort(int *arr, int n) {
    if (n <= 1) return;
    sort(arr, n-1);
    int tmp = arr[n-1];
    int j = n-2;
    while (j >= 0 && arr[j] > tmp) {
        arr[j+1] = arr[j];
        j--;
    }
    arr[j+1] = tmp;
}
```

A. stable B. in-place C. both D. neither

4. [10 points] Solve the following recurrence relation: T(0) = 1; T(n) = T(n+1) + 3

A. 3n+1 B. 3n-1 C. 1-3n

4. _____

5. [10 points] Solve the following recurrence relation: T(1) = 1; T(n) = 2T(n/2) + n

A. n + logn B. nlogn C. n + nlogn D. $n^2 + nlogn$

. [5 points] Is a vector the best underlying structure to implement a queue	with: Justily your answer.
A. Yes B. No	
	6
7. [3 points] Would a stack (A) or queue (B) be more efficient for an undo b	outton in a text editor
	7
. [3 points] Would a stack (A) or queue (B) be more efficient for a web serv	ver connection manager
	0
	8
. [3 points] Would a stack (A) or queue (B) be more efficient for a breadth-	-first search
	9
. [3 points] Would a stack (A) or queue (B) be more efficient for a depth-fin	rst search
	10
	10

11. [5 points] Given the following function **mystery**, determine its output assuming **stack** has had the following elements inserted in order: 7, 20, 300, 5, 10

```
int mystery(std::stack<int> stack) {
    int result = 0;
    int loop = stack.size();
    for(int i = 0 ; i < loop; i++) {
        if(!(i % 2)) {
            result += stack.top();
        }
        else {
            result *= stack.top();
        }
        stack.pop();
    }
    return result;
}</pre>
```


A. 2210 B. 60050 C. 7007 D. 10640

12.	[7 points] If a Binary Tree is complete, does that necessarily mean it is also full? drawings of trees.	Justify your answer with
	A. Yes B. No	
		12
13.	[8 points] If a Binary Tree is full, does that necessarily mean it is also complete? drawings of trees.	Justify your answer with
	A. Yes B. No	
		13

14. [5 points] Assume a binary search tree has undergone the following insertions in order: 10, 7, 15, 12, 13,

	1, 5, 4, 8, 7, 13, 1	2, 20, 19, 15, 10			
A. 10, 7, 15, 4, 13, 19, 20 D.		2, 20, 19, 15, 10		14	
13, 19, 20 D. [5 points] Assu		h tree has unde	rgone the following	n order: 20, 10,	
13, 19, 20 D. 5 points] Assur 1, 6, 24, 52, 28,	1, 5, 4, 8, 7, 13, 1 me a binary search	h tree has unde	rgone the following	n order: 20, 10,	
13, 19, 20 D. 5 points] Assur 1, 6, 24, 52, 28,	1, 5, 4, 8, 7, 13, 1 me a binary search	h tree has unde	rgone the following	n order: 20, 10,	
13, 19, 20 D. 5 points] Assur 1, 6, 24, 52, 28,	1, 5, 4, 8, 7, 13, 1 me a binary search	h tree has unde	rgone the following	n order: 20, 10,	
13, 19, 20 D. [5 points] Assu: 1, 6, 24, 52, 28,	1, 5, 4, 8, 7, 13, 1 me a binary search	h tree has unde	rgone the following	n order: 20, 10,	
13, 19, 20 D. [5 points] Assu: 1, 6, 24, 52, 28,	1, 5, 4, 8, 7, 13, 1 me a binary search	h tree has unde	rgone the following	n order: 20, 10,	
13, 19, 20 D. [5 points] Assu: 1, 6, 24, 52, 28,	1, 5, 4, 8, 7, 13, 1 me a binary search	h tree has unde	rgone the following	n order: 20, 10,	
13, 19, 20 D. [5 points] Assu: 1, 6, 24, 52, 28,	1, 5, 4, 8, 7, 13, 1 me a binary search	h tree has unde	rgone the following	n order: 20, 10,	

24, 52, 30, 20 D. 10, 7, 4, 1, 5, 8, 15, 12, 13, 19, 20

For questions 16 - 19, let T be a full k-ary tree,	where $k = 2$ (a.k.a.	binary tree), with n nodes.	Let h
denote the height of T .			

16. [7 points] What is the minimum number of leaves for T of height h? Justify your answer.

Example when h=0: T, being a full tree can have a minimum of 1 leaf.

A. 2^h B. 2h C. 2^{h-1} D. $2^h - 1$ E. h + 1

16. _____

17. [7 points] What is the maximum number of leaves for T? Justify your answer.

A. 2^h B. 2h C. 2^{h-1} D. $2^h - 1$ E. h + 1

			T? Justify your answe	
A. 2^h B. $2h$	a C. 2^{h-1} D. h	E. h + 1		
2. 2. 2.	, e. 2 5. 70	2. 77 1		
				18
[7 points] Wha	at is the maximum	number of internal nodes fo	r T ? Justify your answe	er.
!				
A. 2 ^h B. 2h	$a ext{ C. } 2^{h-1} ext{ D. } 2^h$			