

SEQUENCE LISTING

<110> Falco, Saverio Carl
Hitz, William D.
Kinney, Anthony J.
Cahoon, Rebecca E.
Rafalski, J. Antoni

<120> PLANT BRANCHED CHAIN AMINO ACID BIOSYNTHETIC ENZYMES

<130> BB-1126

<140>
<141>

<150> 60/063,423
<151> 1997 October 28

<160> 54

<170> Microsoft Word Version 7.0A

<210> 1
<211> 2135
<212> DNA
<213> Zea mays

<400> 1

cacagctcca	cttgtccctg	tccatccatt	catcattccc	cgtcaactcca	ccaattcacc	60
acccaaaacc	ctaaacccca	ttccgtacct	caacggcgcc	gccgcccccc	ccgcccgtgc	120
gatgcagtcc	atggcgctca	cctccccctc	actcccgagg	gtcggccccg	tttccggccg	180
ccgtctccag	cgcacatccgt	ccaccgcgg	atccgacagg	ctcaagctga	acaagtagac	240
cgcgcgcatc	acggagccca	atgcgcagg	cgcctcgcag	gcccgtgcct	atgggtcgg	300
gctcaactgac	gctgacctcc	gcaagccgca	ggtcggcgtc	tcgtcggtgt	ggtacgaggg	360
gaacacactgc	aacatgcacc	tgctccgcct	cgcggaggcc	gtccgtgacg	gcgtccgcga	420
ggccggcatg	gtcggcttcc	ggtttaacac	cgtcggtgtc	agcgacgcca	tttccatggg	480
cacccggggc	atgtgtaca	gcctccagtc	ccgtgacactc	atccgcccaca	gcatcgagac	540
cgtcatggaa	gcccggact	acgacgccaa	catttcata	cctgggtgcg	acaagaacat	600
gcagggtaca	ataatggcaa	tggacgggt	taatcgac	agcataatga	tatatgtgg	660
aactattaag	cctggtaact	ttcaggccaa	ttccttatgt	atagatctg	ctttccagtg	720
ctatggagaa	tatgttagt	gttcaatcac	tgatgagcaa	agaagaagaac	tcctccgcaa	780
ttcatgtcca	ggagcagg	cctgtggtgg	tatgtacaca	gcaaacacta	tggcatctgc	840
tatcgaaact	ttgggcatga	gtcttccata	cagttctcg	acacctgctg	aggaccact	900
aaaactagaa	gagtgcgtc	ttgctggaa	gtatcttta	gagttgctaa	agatggattt	960
gaagcctaag	gacattatca	ctgagaagtc	attgcgaaat	gcaatggta	ttgttatggc	1020
acttgggtgt	tcgactaatg	ctgttctgca	tttgattgcc	attgctcggt	ccgttgggtt	1080
gcatttgact	cttgcattt	tccagaagg	cagtgcacaa	gttccttcc	ttgcagacct	1140
caagcccagt	ggcaaataatg	tcatggagga	tctacataag	attggtgaaa	cacctgcagt	1200
cattcattac	cttttggagc	aaggctttct	tgatgggtat	tgcatgactg	ttactgttaa	1260
aactctagct	gagaatgtca	aaatctccc	tcctctgtt	gaggggcagc	aaataattcg	1320
accacttgac	aatcttca	aaccactgg	ccatctcaa	atactttatg	gaaatcttgc	1380
accggaaagg	tctgtcgaa	aaataactgg	caaagaggaa	ctgttcttct	caggtccgc	1440
attagtttt	gagggtgaag	aatccatgtat	cacagctatc	tcagaaaaacc	cagcgaattt	1500
caagggaaag	gtagtagtaa	tccgaggaga	aggacccaaa	ggagggccag	ggatgcctga	1560
aatgttgact	ccaaacaatgt	caataatggg	tgctggtctc	gaaaaggagt	gcgcctgtct	1620
gacagatgg	agatttcag	gaggctcaca	tggattgtt	gtcggccaca	tatgcctga	1680
agcacaggaa	ggtggccga	ttggccttgc	ccatagtgg	gatgtaatca	ccatcgatgt	1740
aagtaagagg	gtaatcgacg	ttgaccttac	cgagcagcag	ctcgaagaaa	gacggaggaa	1800
atggacccca	ccgcccataca	agtccacactg	tggagcttct	tggaaagtaca	tcaagcttgt	1860
ggctccagcg	tctagaggat	gcgtcactga	tgagtaggat	gtgttacatt	ctgttaggtt	1920
gtgcacatga	tgtgtttgtc	aatcaaaaggc	tgttgcagg	aacaatttcc	ctgttagagt	1980
gattcattgt	agttcggtt	tgcattgtggc	aggtatgaca	ataaattgcc	gtttctaaag	2040
agcttagcaa	tgctgcagaa	actgctgaat	aatcgagtgt	aatcgagggtc	cgtgagcaat	2100
cacatcttg	tcagtcaaaa	aaaaaaaaaa	aaaaaa			2135

<210> 2
<211> 591
<212> PRT
<213> Zea mays

<400> 2
Met Gln Ser Met Ala Leu Thr Ser Pro Ser Leu Pro Glu Val Gly Pro
1 5 10 15
Val Ser Gly Arg Arg Leu Gln Arg Ile Arg Ala Thr Ala Val Ser Asp
20 25 30
Glu Leu Lys Leu Asn Lys Tyr Ser Ala Arg Ile Thr Glu Pro Lys Ser
35 40 45
Gln Gly Ala Ser Gln Ala Val Leu Tyr Gly Val Gly Leu Thr Asp Ala
50 55 60
Asp Leu Arg Lys Pro Gln Val Gly Val Ser Ser Val Trp Tyr Glu Gly
65 70 75 80
Asn Thr Cys Asn Met His Leu Leu Arg Leu Ala Glu Ala Val Arg Asp
85 90 95
Gly Val Arg Glu Ala Gly Met Val Gly Phe Arg Phe Asn Thr Val Gly
100 105 110
Val Ser Asp Ala Ile Ser Met Gly Thr Arg Gly Met Cys Tyr Ser Leu
115 120 125
Gln Ser Arg Asp Leu Ile Ala Asp Ser Ile Glu Thr Val Met Gly Ala
130 135 140
Gln His Tyr Asp Ala Asn Ile Ser Ile Pro Gly Cys Asp Lys Asn Met
145 150 155 160
Pro Gly Thr Ile Met Ala Met Gly Arg Leu Asn Arg Pro Ser Ile Met
165 170 175
Ile Tyr Gly Gly Thr Ile Lys Pro Gly His Phe Gln Gly Asn Ser Tyr
180 185 190
Asp Ile Val Ser Ala Phe Gln Cys Tyr Gly Glu Tyr Val Ser Gly Ser
195 200 205
Ile Thr Asp Glu Gln Arg Lys Asn Val Leu Arg Asn Ser Cys Pro Gly
210 215 220
Ala Gly Ala Cys Gly Gly Met Tyr Thr Ala Asn Thr Met Ala Ser Ala
225 230 235 240
Ile Glu Thr Leu Gly Met Ser Leu Pro Tyr Ser Ser Ser Thr Pro Ala
245 250 255
Glu Asp Pro Leu Lys Leu Glu Glu Cys Arg Leu Ala Gly Lys Tyr Leu
260 265 270
Leu Glu Leu Leu Lys Met Asp Leu Lys Pro Lys Asp Ile Ile Thr Glu
275 280 285
Lys Ser Leu Arg Asn Ala Met Val Ile Val Met Ala Leu Gly Gly Ser
290 295 300
Thr Asn Ala Val Leu His Leu Ile Ala Ile Ala Arg Ser Val Gly Leu
305 310 315 320

His Leu Thr Leu Asp Asp Phe Gln Lys Val Ser Asp Gln Val Pro Phe
 325 330 335
 Leu Ala Asp Leu Lys Pro Ser Gly Lys Tyr Val Met Glu Asp Leu His
 340 345 350
 Lys Ile Gly Gly Thr Pro Ala Val Ile His Tyr Leu Leu Glu Gln Gly
 355 360 365
 Leu Leu Asp Gly Asp Cys Met Thr Val Thr Gly Lys Thr Leu Ala Glu
 370 375 380
 Asn Ala Lys Ile Phe Pro Pro Leu Ser Glu Gly Gln Gln Ile Ile Arg
 385 390 395 400
 Pro Leu Asp Asn Pro Ile Lys Pro Thr Gly His Ile Gln Ile Leu Tyr
 405 410 415
 Gly Asn Leu Ala Pro Glu Gly Ser Val Ala Lys Ile Thr Gly Lys Glu
 420 425 430
 Gly Leu Phe Phe Ser Gly Pro Ala Leu Val Phe Glu Gly Glu Glu Ser
 435 440 445
 Met Ile Thr Ala Ile Ser Glu Asn Pro Ala Asn Phe Lys Gly Lys Val
 450 455 460
 Val Val Ile Arg Gly Glu Gly Pro Lys Gly Gly Pro Gly Met Pro Glu
 465 470 475 480
 Met Leu Thr Pro Thr Ser Ala Ile Met Gly Ala Gly Leu Gly Lys Glu
 485 490 495
 Cys Ala Leu Leu Thr Asp Gly Arg Phe Ser Gly Gly Ser His Gly Phe
 500 505 510
 Val Val Gly His Ile Cys Pro Glu Ala Gln Glu Gly Gly Pro Ile Gly
 515 520 525
 Leu Val His Ser Gly Asp Val Ile Thr Ile Asp Val Ser Lys Arg Val
 530 535 540
 Ile Asp Val Asp Leu Thr Glu Gln Gln Leu Glu Glu Arg Arg Arg Lys
 545 550 555 560
 Trp Thr Pro Pro Pro Tyr Lys Ser Thr Cys Gly Ala Leu Trp Lys Tyr
 565 570 575
 Ile Lys Leu Val Ala Pro Ala Ser Arg Gly Cys Val Thr Asp Glu
 580 585 590

<210> 3
 <211> 2073
 <212> DNA
 <213> Glycine max

<400> 3
 gtaaacccctt tttccatcta gagttgttgc ggctctttc tctgcacact cagaatgcag 60
 tccacactct tcaacccac ccattccctt atccccactt caccacactc tatcgatcc 120
 aattctggtc atgcttctt ctccgttcgc gcctccatcg ccgtggaaac ccccacggag 180
 acgggtgaagc tgaacaagta cagctcccgc atcaccgagc ccaaatcgca gggcgctcc 240
 caggccgtgc tctacggcgt cggtctctcc gaggacgaca tggccaagcc ccaggtcggc 300
 gtctcctcgg tctggtagca gggcaacacc tgcaacatgc acctctccaa cctctccgag 360
 gccgtgcgtg acggcggtgc tgctgttgc atggttccct tccgcttcaa caccgttggc 420
 gtcagcgacg ccatctccat gggcacccgt ggcatgtgct acagcctcca gtccaggac 480
 ctcattgccg acagcatcga gaccgtcatg gcagcgcagt ggtacgatgg caatatttcc 540

atccccggct gtgacaaaaa tatgccaggt actatcattg ccatggggag gctcaacaga 600
cctaggatta tggtttatgg cgggactata aaacctggtc atttgaggg taacacgtt 660
gacatagtgt ctgccttca gtgctatgga gaatatgtga gtggatcaat taatgatgac 720
caaagacaaa atgttattcg caactcatgc cctgggctg gagcctgtgg tggaatgtat 780
acagccaata ccatggctc tgaatagaa gctatggaa tgtctcttcc ctatagctca 840
tctcacacctg ctgaggatcc actaaagttg gatgaggtgc gtttagctgg gaaatatctt 900
cttgagttac tgaaaatgga cttgaagccc cgagatatca tcactcgtaa atcactacgt 960
aatgcaatgg ttatagttat ggcaacttgtt ggatctata atgctgtgtt acatttaatt 1020
gctattgcca agtctgttgg cattgattt actcttgatg atttcagaa gtttagcgat 1080
gagggttcctt ttattgcaga tcttaagcct agtggaaat atgtcatgga agatgttcac 1140
aagattggag ggactcctgc agttatccgc taccttcttgc agcaaggctt ttttagatggt 1200
gactgtatga ctgtcaactgg aaaaacccta gctgaaaatg cagaacttgtt ccctcctctg 1260
tccaaacgggc aggaataat aaggccagta gaaaatccca tcaagaagac ggctcacatt 1320
caaataattat atggaaacct tgcaccacag gttcccttg ctaaaattac tggaaaagaa 1380
gggctgtact tctctggcc tgcacttgc tttgaaggag aggaggcaat gattgtgcc 1440
atttcagagg atccctcgag ttttaagggg aaagtgttg taatcagggg agagggaccc 1500
aagggtggtc cgggaatgccc tgagatgtt acaccaacaa gtgcaataat gggtgcaggt 1560
cttggaaagg aagtgcatt attgactgtt ggaagattt caggaggttc acatggattt 1620
gtgggtggcc atatatgtcc tgaagcacag gaaggtggc caattggctt gattcaaaat 1680
ggagacgtaa tcaatgttga catcaagaat aggagaattt atgttttggg atcagatgag 1740
gagatggaaac cacgcagaa aaagtggact gtcctccat acaaagctaa ccgaggaggt 1800
ctgtacaagt atattaaaaa tttttttttt gttttttttt gatgcgttaa agacgagtag 1860
aaagacatac ctgcagagca aaagctgata gttttttttt gttttttttt gtcttggtt 1920
tccagaacaa gttggtaaaa attcaaaaac aaacctcatt tcagagaatt taaaacaatg 1980
gaattgaatt gctactattt attagtactt atttaatatt tatgatttcc tagagctaaa 2040
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 2073

<210> 4
<211> 601
<212> PRT
<213> Glycine max

<400> 4
Met Gln Ser Thr Leu Phe Asn Pro Thr His Ser Leu Ile Pro Thr Ser
1 5 10 15

Pro His Ser Ile Arg Ser Asn Ser Gly His Ala Ser Leu Ser Val Arg
20 25 30

Ala Ser Ile Ala Val Glu Thr Pro Thr Glu Thr Val Lys Leu Asn Lys
35 40 45

Tyr Ser Ser Arg Ile Thr Glu Pro Lys Ser Gln Gly Ala Ser Gln Ala
50 55 60

Val Leu Tyr Gly Val Gly Leu Ser Glu Asp Asp Met Ala Lys Pro Gln
65 70 75 80

Val Gly Val Ser Ser Val Trp Tyr Glu Gly Asn Thr Cys Asn Met His
85 90 95

Leu Leu His Leu Ser Glu Ala Val Arg Asp Gly Val Ala Ala Ala Gly
100 105 110

Met Val Pro Phe Arg Phe Asn Thr Val Gly Val Ser Asp Ala Ile Ser
115 120 125

Met Gly Thr Arg Gly Met Cys Tyr Ser Leu Gln Ser Arg Asp Leu Ile
130 135 140

Ala Asp Ser Ile Glu Thr Val Met Ala Ala Gln Trp Tyr Asp Gly Asn
145 150 155 160

Ile Ser Ile Pro Gly Cys Asp Lys Asn Met Pro Gly Thr Ile Ile Ala
165 170 175

Met Gly Arg Leu Asn Arg Pro Ser Ile Met Val Tyr Gly Gly Thr Ile
 180 185 190
 Lys Pro Gly His Phe Glu Gly Asn Thr Phe Asp Ile Val Ser Ala Phe
 195 200 205
 Gln Cys Tyr Gly Glu Tyr Val Ser Gly Ser Ile Asn Asp Asp Gln Arg
 210 215 220
 Gln Asn Val Ile Arg Asn Ser Cys Pro Gly Ala Gly Ala Cys Gly Gly
 225 230 235 240
 Met Tyr Thr Ala Asn Thr Met Ala Ser Ala Ile Glu Ala Met Gly Met
 245 250 255
 Ser Leu Pro Tyr Ser Ser Ser Thr Pro Ala Glu Asp Pro Leu Lys Leu
 260 265 270
 Asp Glu Cys Arg Leu Ala Gly Lys Tyr Leu Leu Glu Leu Leu Lys Met
 275 280 285
 Asp Leu Lys Pro Arg Asp Ile Ile Thr Arg Lys Ser Leu Arg Asn Ala
 290 295 300
 Met Val Ile Val Met Ala Leu Gly Gly Ser Thr Asn Ala Val Leu His
 305 310 315 320
 Leu Ile Ala Ile Ala Lys Ser Val Gly Ile Asp Leu Thr Leu Asp Asp
 325 330 335
 Phe Gln Lys Val Ser Asp Glu Val Pro Phe Ile Ala Asp Leu Lys Pro
 340 345 350
 Ser Gly Lys Tyr Val Met Glu Asp Val His Lys Ile Gly Gly Thr Pro
 355 360 365
 Ala Val Ile Arg Tyr Leu Leu Glu Gln Gly Phe Leu Asp Gly Asp Cys
 370 375 380
 Met Thr Val Thr Gly Lys Thr Leu Ala Glu Asn Ala Glu Leu Val Pro
 385 390 395 400
 Pro Leu Ser Asn Gly Gln Glu Ile Ile Arg Pro Val Glu Asn Pro Ile
 405 410 415
 Lys Lys Thr Ala His Ile Gln Ile Leu Tyr Gly Asn Leu Ala Pro Gln
 420 425 430
 Gly Ser Val Ala Lys Ile Thr Gly Lys Glu Gly Leu Tyr Phe Ser Gly
 435 440 445
 Pro Ala Leu Val Phe Glu Gly Glu Ala Met Ile Ala Ala Ile Ser
 450 455 460
 Glu Asp Pro Ser Ser Phe Lys Gly Lys Val Val Val Ile Arg Gly Glu
 465 470 475 480
 Gly Pro Lys Gly Gly Pro Gly Met Pro Glu Met Leu Thr Pro Thr Ser
 485 490 495
 Ala Ile Met Gly Ala Gly Leu Gly Lys Glu Val Ala Leu Leu Thr Asp
 500 505 510
 Gly Arg Phe Ser Gly Gly Ser His Gly Phe Val Val Gly His Ile Cys
 515 520 525

Pro Glu Ala Gln Glu Gly Gly Pro Ile Gly Leu Ile Gln Asn Gly Asp
530 535 540

Val Ile Asn Val Asp Ile Lys Asn Arg Arg Ile Asp Val Leu Val Ser
545 550 555 560

Asp Glu Glu Met Glu Ala Arg Arg Lys Lys Trp Thr Ala Pro Pro Tyr
565 570 575

Lys Ala Asn Arg Gly Ala Leu Tyr Lys Tyr Ile Lys Asn Val Thr Pro
580 585 590

Ala Ser Ser Gly Cys Val Thr Asp Glu
595 600

<210> 5
<211> 517
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (447)

<400> 5
tgccaccagaa ggttcagtag caaaaataac cggcaaggag ggactgtttt tctcaggtcc 60
tgcaactagtt ttgacgggtg aagaatcaat gattacagct atatcagaaa acccagcaaa 120
tttcaaggga aagggtttag tgatccgagg agaaggacca aaaggaggtc ccgggatgcc 180
tgaaatgttgc actccaaacaa gtgcataat gggggctggc ctgggaagg agtgtgcct 240
gctgacagat ggttagattt ctggggggc gcattggattt gttgtgggc acgtatgtcc 300
tgaagcacag gaaggaggcc caattggctc tggtgagaat ggcgatacaa tcacgatcga 360
cgtcggaaag aaagtaattt atgttgattt gacgaaagac cagcttgaac aaaggcgaag 420
gaaatggagc cccgcctccac acaaggntac taatgggagc acttttggaaag tacataaagc 480
tccgtgtcct tcagcctcaa agtgggggtgc gtcaacc 517

<210> 6
<211> 156
<212> PRT
<213> Triticum aestivum

<220>
<221> UNSURE
<222> (149)

<400> 6
Ala Pro Glu Gly Ser Val Ala Lys Ile Thr Gly Lys Glu Gly Leu Phe
1 5 10 15

Phe Ser Gly Pro Ala Leu Val Phe Asp Gly Glu Glu Ser Met Ile Thr
20 25 30

Ala Ile Ser Glu Asn Pro Ala Asn Phe Lys Gly Lys Val Val Val Ile
35 40 45

Arg Gly Glu Gly Pro Lys Gly Gly Pro Gly Met Pro Glu Met Leu Thr
50 55 60

Pro Thr Ser Ala Ile Met Gly Ala Gly Leu Gly Lys Glu Cys Ala Leu
65 70 75 80

Leu Thr Asp Gly Arg Phe Ser Gly Gly Ser His Gly Phe Val Val Gly
85 90 95

His Val Cys Pro Glu Ala Gln Glu Gly Gly Pro Ile Gly Leu Val Glu
100 105 110

Asn Gly Asp Thr Ile Thr Ile Asp Val Gly Lys Lys Val Ile Asp Val
115 120 125

Asp Leu Thr Glu Asp Gln Leu Glu Gln Arg Arg Arg Lys Trp Ser Pro
130 135 140

Pro Pro His Lys Xaa Thr Asn Gly Ser Thr Leu Glu
145 150 155

<210> 7
<211> 585
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 7
Met Gly Leu Leu Thr Lys Val Ala Thr Ser Arg Gln Phe Ser Thr Thr
1 5 10 15

Arg Cys Val Ala Lys Lys Leu Asn Lys Tyr Ser Tyr Ile Ile Thr Glu
20 25 30

Pro Lys Gly Gln Gly Ala Ser Gln Ala Met Leu Tyr Ala Thr Gly Phe
35 40 45

Lys Lys Glu Asp Phe Lys Lys Pro Gln Val Gly Val Gly Ser Cys Trp
50 55 60

Trp Ser Gly Asn Pro Cys Asn Met His Leu Leu Asp Leu Asn Asn Arg
65 70 75 80

Cys Ser Gln Ser Ile Glu Lys Ala Gly Leu Lys Ala Met Gln Phe Asn
85 90 95

Thr Ile Gly Val Ser Asp Gly Ile Ser Met Gly Thr Lys Gly Met Arg
100 105 110

Tyr Ser Leu Gln Ser Arg Glu Ile Ile Ala Asp Ser Phe Glu Thr Ile
115 120 125

Met Met Ala Gln His Tyr Asp Ala Asn Ile Ala Ile Pro Ser Cys Asp
130 135 140

Lys Asn Met Pro Gly Val Met Met Ala Met Gly Arg His Asn Arg Pro
145 150 155 160

Ser Ile Met Val Tyr Gly Gly Thr Ile Leu Pro Gly His Pro Thr Cys
165 170 175

Gly Ser Ser Lys Ile Ser Lys Asn Ile Asp Ile Val Ser Ala Phe Gln
180 185 190

Ser Tyr Gly Glu Tyr Ile Ser Lys Gln Phe Thr Glu Glu Arg Glu
195 200 205

Asp Val Val Glu His Ala Cys Pro Gly Pro Gly Ser Cys Gly Gly Met
210 215 220

Tyr Thr Ala Asn Thr Met Ala Ser Ala Ala Glu Val Leu Gly Leu Thr
225 230 235 240

Ile Pro Asn Ser Ser Phe Pro Ala Val Ser Lys Glu Lys Leu Ala
245 250 255

Glu Cys Asp Asn Ile Gly Glu Tyr Ile Lys Lys Thr Met Glu Leu Gly
260 265 270

Ile Leu Pro Arg Asp Ile Leu Thr Lys Glu Ala Phe Glu Asn Ala Ile
 275 280 285
 Thr Tyr Val Val Ala Thr Gly Gly Ser Thr Asn Ala Val Leu His Leu
 290 295 300
 Val Ala Val Ala His Ser Ala Gly Val Lys Leu Ser Pro Asp Asp Phe
 305 310 315 320
 Gln Arg Ile Ser Asp Thr Thr Pro Leu Ile Gly Asp Phe Lys Pro Ser
 325 330 335
 Gly Lys Tyr Val Met Ala Asp Leu Ile Asn Val Gly Gly Thr Gln Ser
 340 345 350
 Val Ile Lys Tyr Leu Tyr Glu Asn Asn Met Leu His Gly Asn Thr Met
 355 360 365
 Thr Val Thr Gly Asp Thr Leu Ala Glu Arg Ala Lys Lys Ala Pro Ser
 370 375 380
 Leu Pro Glu Gly Gln Glu Ile Ile Lys Pro Leu Ser His Pro Ile Lys
 385 390 395 400
 Ala Asn Gly His Leu Gln Ile Leu Tyr Gly Ser Leu Ala Pro Gly Gly
 405 410 415
 Ala Val Gly Lys Ile Thr Gly Lys Glu Gly Thr Tyr Phe Lys Gly Arg
 420 425 430
 Ala Arg Val Phe Glu Glu Gly Ala Phe Ile Glu Ala Leu Glu Arg
 435 440 445
 Gly Glu Ile Lys Lys Gly Glu Lys Thr Val Val Val Ile Arg Tyr Glu
 450 455 460
 Gly Pro Arg Gly Ala Pro Gly Met Pro Glu Met Leu Lys Pro Ser Ser
 465 470 475 480
 Ala Leu Met Gly Tyr Gly Leu Gly Lys Asp Val Ala Leu Leu Thr Asp
 485 490 495
 Gly Arg Phe Ser Gly Gly Ser His Gly Phe Leu Ile Gly His Ile Val
 500 505 510
 Pro Glu Ala Ala Glu Gly Gly Pro Ile Gly Leu Val Arg Asp Gly Asp
 515 520 525
 Glu Ile Ile Ile Asp Ala Asp Asn Asn Lys Ile Asp Leu Leu Val Ser
 530 535 540
 Asp Lys Glu Met Ala Gln Arg Lys Gln Ser Trp Val Ala Pro Pro Pro
 545 550 555 560
 Arg Tyr Thr Arg Gly Thr Leu Ser Lys Tyr Ala Lys Leu Val Ser Asn
 565 570 575
 Ala Ser Asn Gly Cys Val Leu Asp Ala
 580 585

<210> 8
 <211> 502
 <212> DNA
 <213> Zea mays

<400> 8
cgctgagcaa ccccccggcct acacggcgta gctttgcagg aaatggaata cggcgccgtc 60
ctccggcccg cgccgctcg tgcacggccg aactggctcc tcctctcgcc gccgcaactg 120
gccccgtcta ttccatgtca gaatcgctt tattcgatct cgtcattccc actaaaggct 180
ggacctgtaa gggcatgcag agcttttagca agcaactaca cggaaacatc tgaaacagtt 240
gattggact gggagaacct gggtttggg atttgcaaaa ctgattatat gtatattgct 300
aagtgcggga cagacggaa ttttctgag ggtgaaatgg tgcccttggg acctatacg 360
ctgagtcctt cttctggagt cctaaattat ggacaggat tggggctggg cctaaaggcg 420
tataagaaaa ctgatggatc catcctatta ttccggccag aggaaaatgc tgagaggatg 480
cgacaggtg ctgagaggat gt 502

<210> 9
<211> 153
<212> PRT
<213> Zea mays

<400> 9
Met Glu Tyr Gly Ala Val Leu Ala Ala Ala Pro Leu Val Ala Arg Pro
1 5 10 15
Asn Trp Leu Leu Ser Pro Pro Pro Leu Ala Pro Ser Ile Gln Ile
20 25 30
Gln Asn Arg Leu Tyr Ser Ile Ser Ser Phe Pro Leu Lys Ala Gly Pro
35 40 45
Val Arg Ala Cys Arg Ala Leu Ala Ser Asn Tyr Thr Gln Thr Ser Glu
50 55 60
Thr Val Asp Leu Asp Trp Glu Asn Leu Gly Phe Gly Ile Val Gln Thr
65 70 75 80
Asp Tyr Met Tyr Ile Ala Lys Cys Gly Thr Asp Gly Asn Phe Ser Glu
85 90 95
Gly Glu Met Val Pro Phe Gly Pro Ile Ala Leu Ser Pro Ser Ser Gly
100 105 110
Val Leu Asn Tyr Gly Gln Gly Leu Phe Glu Gly Leu Lys Ala Tyr Lys
115 120 125
Lys Thr Asp Gly Ser Ile Leu Phe Arg Pro Glu Glu Asn Ala Glu
130 135 140
Arg Met Arg Thr Gly Ala Glu Arg Met
145 150

<210> 10
<211> 794
<212> DNA
<213> Zea mays

<400> 10
tcgagttttt tttttttttt ttttgtatcc cctgtggga attatttcaa ggaaggttta 60
tctccatttta atttgtatcg tgaggataaa ttccacccgtg ccagccctgg tggaactgga 120
ggtgtgaaaa ccattggaaa ctatgcctcg gtactgaaag cacaatggat tgcaaaagggg 180
aaaggatatt ctgtatgtct ttatggat gctgttcatg acaaatatct tgaagaagtc 240
tcttcctgca atatttttgt tggaaagac aatgttattt ctacgcctgc cattaaagga 300
acaatacttc ctggataaac gggaaaagt atcattgaag ttgttcagag caaaggtttc 360
aagggttgggg agcgtctggt gtgtgttagat gagttgatc acgctgtatc agttttctgc 420
acggggactg ctgttggat gtcacccgtg gggagtgtt catatatggg gaaaagggtg 480
gaatatggca accaaggagt cgggtcgatc tctcagcaac tatacaagtc acttacaagc 540
ctccagatgg gcaatgtgga ggactggatc ggttggacca tgcaacttaa tcagtagcgg 600
atcacagata ttgccttggc agatccggta ttattacagc tactgggtgc gatagtttt 660
tttttggcag atccatcttgc agcatatttg actgtaccgg ttcccttgc gactaagac 720

aaagtgatct tactgatctt ttgtttcaaa tctaaaacga taaaataaaa tgtggttgc 780
aaaaaaaaaaa aaaa 794

<210> 11
<211> 198
<212> PRT
<213> Zea mays

<400> 11
Ser Ser Phe Phe Phe Phe Phe Val Ser Pro Val Gly Asn Tyr Phe
1 5 10 15
Lys Glu Gly Leu Ser Pro Ile Asn Leu Ile Val Glu Asp Lys Phe His
20 25 30
Arg Ala Ser Pro Gly Gly Thr Gly Val Lys Thr Ile Gly Asn Tyr
35 40 45
Ala Ser Val Leu Lys Ala Gln Lys Ile Ala Lys Gly Lys Gly Tyr Ser
50 55 60
Asp Val Leu Tyr Leu Asp Ala Val His Asp Lys Tyr Leu Glu Glu Val
65 70 75 80
Ser Ser Cys Asn Ile Phe Val Val Lys Asp Asn Val Ile Ser Thr Pro
85 90 95
Ala Ile Lys Gly Thr Ile Leu Pro Gly Ile Thr Arg Lys Ser Ile Ile
100 105 110
Glu Val Ala Gln Ser Lys Gly Phe Lys Val Glu Glu Arg Leu Val Cys
115 120 125
Val Asp Glu Leu Ile Asn Ala Asp Glu Val Phe Cys Thr Gly Thr Ala
130 135 140
Val Val Val Ser Pro Val Gly Ser Val Thr Tyr Met Gly Lys Arg Val
145 150 155 160
Glu Tyr Gly Asn Gln Gly Val Gly Val Val Ser Gln Gln Leu Tyr Lys
165 170 175
Ser Leu Thr Ser Leu Gln Met Gly Asn Val Glu Asp Trp Met Gly Trp
180 185 190
Thr Met Gln Leu Asn Gln
195

<210> 12
<211> 445
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (252)

<220>
<221> unsure
<222> (311)

<220>
<221> unsure
<222> (336)

Zea mays

<220>
<221> unsure
<222> (356)

<220>
<221> unsure
<222> (361)

<220>
<221> unsure
<222> (369)

<220>
<221> unsure
<222> (384)

<220>
<221> unsure
<222> (393)

<220>
<221> unsure
<222> (418)

<220>
<221> unsure
<222> (431)

<220>
<221> unsure
<222> (437)

<400> 12
gtcgtcaagg gcggcggtgg cgccacgccc gacaccgggg gcaccatcct gccgggcattc 60
acgcgcagaaga gcgtcatcga gctcgccagg gaccgcggat acaaggttga ggaacgcctg 120
gtttccatcg acgatctggt ggccgcagac gaggtgttct gcaccggggac cgcgggtgg 180
gttgctcccg tgcgtacact cacgtaccag ggcgagaggt atgagttcag aacggggccg 240
gacaagggtgt cncaggagct gtacacgacg ctgacatcca tttagatggg catggccccc 300
gaggacagca ngggatggac agtaccagta gactanatta ataagggttgg ggaatncatc 360
nccacaacnt tgtttccaca tcantattgt canccgtaa aatgcatact cggttatnac 420
atatgtgtgt ngcacanttg aaaaa 445

<210> 13
<211> 115
<212> PRT
<213> Zea mays

<220>
<221> UNSURE
<222> (104)

<220>
<221> UNSURE
<222> (112)

<400> 13
Val Val Lys Gly Gly Val Val Ala Thr Pro Asp Thr Arg Gly Thr Ile
1 5 10 15
Leu Pro Gly Ile Thr Arg Lys Ser Val Ile Glu Leu Ala Arg Asp Arg
20 25 30
Gly Tyr Lys Val Glu Glu Arg Leu Val Ser Ile Asp Asp Leu Val Ala
35 40 45

Ala Asp Glu Val Phe Cys Thr Gly Thr Ala Val Val Val Ala Pro Val
50 55 60

Ser Thr Val Thr Tyr Gln Gly Glu Arg Tyr Glu Phe Arg Thr Gly Pro
65 70 75 80

Asp Thr Val Ser Gln Glu Leu Tyr Thr Thr Leu Thr Ser Ile Gln Met
85 90 95

Gly Met Ala Ala Glu Asp Ser Xaa Gly Trp Thr Val Pro Val Glu Xaa
100 105 110

Ile Asn Lys
115

<210> 14

<211> 1086

<212> DNA

<213> Oryza sativa

<400> 14

gcacgaggcg atactcagcc gctacggcaa catcgagctc agccccctcct ccggcgcat 60
caactacggc caggggctct tcgagggtct gaaggcgta agggcgccga accaacagg 120
gtcgatcatg ctgttccggc cggaggagaa cgcgcggcgg atgcagcacg gcccggacg 180
catgtgcattt cgcgtccgt cggtggagca gttcgccac gccgtcaagg agaccgtct 240
cgccaaaccgc cgctgggtgc caccgcagg aaaggggcg ctgtacatca ggccgctgct 300
catcgggagc ggaccgattt tcgggctggc tcccgccccg gagtagacacgt tcctcatcta 360
cgccgcacccg gttggAACGT acttcaaggaa gggtctagcg ccgataaaacc ttgtcgtaga 420
ggactcgata caccggggcca tgccgggccc caccgggtgg gtcaagacga tcaccaacta 480
cgcgccggtg ctcaaggcgc agatggacgc caagagcata gggttcactg acgtgctgta 540
cctcgacgcg gtgcacaaga cgtacctggc ggaggccctcc tcctgcaacc tcttcatcgt 600
caaggacggc gtcgtccca cgcggccac cgtggaaacc atcctgcccgg gatatcacgcg 660
caagagcgtc atcgagctcg ccaggggaccg cggctatcag gttgaagaac ggctcgcttc 720
catcgacat ctggtcggcg cagacgaggt gttctgcacc ggaacagcgg tggtcgttgc 780
cccagtatcg agtgttactt accatggca aaggtagcag ttcaggactg gacatgacac 840
gttatcgacg acactgcaca cgactctgac gtccatccag atgggcctgg ctgaggacaa 900
gaaaggatgg acatggcaa tagattaagg atggattatg ggcaaaggaa tcccgattat 960
tcctcatgtc atccaatgt aattttgtc gttttatata tcttcgttaa ggcacagtga 1020
tcacagcgcgca agtggaaattt ggacgaacag gaagcaaatg cagatcatct tactcgtaa 1080
aaaaaaaaa 1086

<210> 15

<211> 307

<212> PRT

<213> Oryza sativa

<400> 15

Glu Gly Ile Leu Ser Arg Tyr Gly Asn Ile Glu Leu Ser Pro Ser Ser
1 5 10 15

Gly Val Ile Asn Tyr Gly Gln Gly Leu Phe Glu Gly Leu Lys Ala Tyr
20 25 30

Arg Ala Ala Asn Gln Gln Gly Ser Tyr Met Leu Phe Arg Pro Glu Glu
35 40 45

Asn Ala Arg Arg Met Gln His Gly Ala Glu Arg Met Cys Met Pro Ser
50 55 60

Pro Ser Val Glu Gln Phe Val His Ala Val Lys Gln Thr Val Leu Ala
65 70 75 80

Asn Arg Arg Trp Val Pro Pro Gln Gly Lys Gly Ala Leu Tyr Ile Arg
85 90 95

Pro Leu Leu Ile Gly Ser Gly Pro Ile Leu Gly Leu Ala Pro Ala Pro
100 105 110

Glu Tyr Thr Phe Leu Ile Tyr Ala Ala Pro Val Gly Thr Tyr Phe Lys
115 120 125

Glu Gly Leu Ala Pro Ile Asn Leu Val Val Glu Asp Ser Ile His Arg
130 135 140

Ala Met Pro Gly Gly Thr Gly Gly Val Lys Thr Ile Thr Asn Tyr Ala
145 150 155 160

Pro Val Leu Lys Ala Gln Met Asp Ala Lys Ser Ile Gly Phe Thr Asp
165 170 175

Val Leu Tyr Leu Asp Ala Val His Lys Thr Tyr Leu Glu Glu Ala Ser
180 185 190

Ser Cys Asn Leu Phe Ile Val Lys Asp Gly Val Val Ala Thr Pro Ala
195 200 205

Thr Val Gly Thr Ile Leu Pro Gly Ile Thr Arg Lys Ser Val Ile Glu
210 215 220

Leu Ala Arg Asp Arg Gly Tyr Gln Val Glu Glu Arg Leu Val Ser Ile
225 230 235 240

Asp Asp Leu Val Gly Ala Asp Glu Val Phe Cys Thr Gly Thr Ala Val
245 250 255

Val Val Ala Pro Val Ser Ser Val Thr Tyr His Gly Gln Arg Tyr Glu
260 265 270

Phe Arg Thr Gly His Asp Thr Leu Ser Gln Thr Leu His Thr Thr Leu
275 280 285

Thr Ser Ile Gln Met Gly Leu Ala Glu Asp Lys Lys Gly Trp Thr Val
290 295 300

Ala Ile Asp
305

<210> 16

<211> 965

<212> DNA

<213> Glycine max

<400> 16

catccttgg tgcctatgtt cccgagttgtt gaatatcagg gactgcctca gtcctccat 60
tgactttcct tggagttgtt agcccgatctt agaagaggctt acgtgtatgtt ccattttcta 120
aagtttaattt tcaactccca atatcacaag ttatataaga tatatgtttt tttgaagag 180
gctcggtccg aattcggcac gagaaaaatg gagagcatc gactaattta cccgatctgc 240
ccctcttagac attcttcctt tcttctctt catcaatctc ctttcctatg cgaaccttct 300
ctctctctca agcttcgaaa gcagttcctt ctcacttcgc agaatgttctt ggaagccgccc 360
tctctctca ggccttccgc cactctgtct tctgtatccctt acagttagac gattgaatta 420
gctgatatacg aatgggacaa cttgggtttt gggcttcaac ccactgatatac 480
atgaaatgca cacgagggtgg aaccttttcc aaaggtgaat tgcagcgttt tgggaacatc 540
gagttgaacc cctccgctgg agtttaaacat tatggccagg gattatttga gggtttggaaa 600
gcataaccgca aacaagatgg gagtataactc ctcttcgttc cgaaagaaaaa tggtttgcgg 660
atgcagatag gtgcggagcg gatgtgcattt ccattcacca ctatggagca gtttggaa 720
gctgtgaagg atactgtttt agctaacaaa cgttgggttc cccctgcagg taaagggttcc 780
ttgttatatta gacctttgtt aatggaaatg ggacctgtac ttgggtgtgc acctgcacca 840
gagtacacat ttctaatata tgttcacctt gttggaaactt acttcaagga aggtttggcc 900
ccaatcaattt tgattgtaga aaatgaattt catcgtaaa ctcctgggtgg cactggagct 960
cgtgc 965

<210> 17
 <211> 252
 <212> PRT
 <213> Glycine max

<400> 17
 Met Glu Ser Ile Arg Leu Ile Tyr Pro Ile Cys Pro Ser Arg His Ser
 1 5 10 15

Ser Phe Leu Leu Ser His Gln Ser Pro Phe Leu Cys Glu Pro Ser Leu
 20 25 30

Ser Leu Lys Leu Arg Lys Gln Phe Pro Leu Thr Ser Gln Asn Val Leu
 35 40 45

Glu Ala Ala Ser Pro Leu Arg Pro Ser Ala Thr Leu Ser Ser Asp Pro
 50 55 60

Tyr Ser Glu Thr Ile Glu Leu Ala Asp Ile Glu Trp Asp Asn Leu Gly
 65 70 75 80

Phe Gly Leu Gln Pro Thr Asp Tyr Met Tyr Ile Met Lys Cys Thr Arg
 85 90 95

Gly Gly Thr Phe Ser Lys Gly Glu Leu Gln Arg Phe Gly Asn Ile Glu
 100 105 110

Leu Asn Pro Ser Ala Gly Val Leu Asn Tyr Gly Gln Gly Leu Phe Glu
 115 120 125

Gly Leu Lys Ala Tyr Arg Lys Gln Asp Gly Ser Ile Leu Leu Phe Arg
 130 135 140

Pro Glu Glu Asn Gly Leu Arg Met Gln Ile Gly Ala Glu Arg Met Cys
 145 150 155 160

Met Pro Ser Pro Thr Met Glu Gln Phe Val Glu Ala Val Lys Asp Thr
 165 170 175

Val Leu Ala Asn Lys Arg Trp Val Pro Pro Ala Gly Lys Gly Ser Leu
 180 185 190

Tyr Ile Arg Pro Leu Leu Met Gly Ser Gly Pro Val Leu Gly Val Ala
 195 200 205

Pro Ala Pro Glu Tyr Thr Phe Leu Ile Tyr Val Ser Pro Val Gly Asn
 210 215 220

Tyr Phe Lys Glu Gly Leu Ala Pro Ile Asn Leu Ile Val Glu Asn Glu
 225 230 235 240

Phe His Arg Ala Thr Pro Gly Gly Thr Gly Ala Arg
 245 250

<210> 18
 <211> 1501
 <212> DNA
 <213> Triticum aestivum

<400> 18
 gcacgagccg cgcggcacgt cggctctcccc cagccccagg ccgcattccgg gcctaccctc 60
 gcaaccatt cagaagcgat tgtccggcag cgccgtctcc gtctccaggc gaggcactgc 120
 ggcaaggagc agcccgttt ccgcctgtat gacggcatca tacaacacag gaactccgga 180
 ccttagtcac ttgcactggg agactttgg atttcaactg gtcccgacgg actttatgtta 240
 tataatgaaa tggtcgatc atgggggttt caccaagggt gaattgggtc catatgggcc 300
 aatcgagctg aaccctgctg ctgcagttt aaattatggc caggattgc tcgaaggct 360

tagagcacac agaaaggagg atggttcagt agttgtttt cgccccaagg aaaacgcgtt 420
 gcggatgagg ataggtgcag atcggttatg catgcctgca ccaagcgttg agcaggccct 480
 atcagctgtc aagcacacta tattggcaaa caagcgttgg gtacccccccttggcaaagg 540
 ttctttatat atcaggccgc tgctgattgg aagtggagct atgcttaggtg tagcaectgc 600
 cccggagttt acattttttg tttatgtttt cccagtttgtt cactatttca aggtggccct 660
 gtcaccaattt agcttatgttga ctgaggaaga atatcaccgc gctgcacctg gtggactgg 720
 tgatattaag acaattggaa attatgtttc gttttagt gctcagagaa gagccaaggaa 780
 gaaaggcat tctgtatgttca ttacttggta tccctgtcat aagaagtttggagaaagg 840
 ttcttcctgt aataatattga tggtaaggaa taatgttattt tacttccac tattaaacggg 900
 aacaattttt cctggaatca caagaagaag tataattgaa attgccccaa atcttggaaat 960
 ccaggtcgaa gagcgcctta ttgcgataga tgatgtctt gacgctgtat aagtcttctg 1020
 tacagggact gccgttgatc tatcaccctgttggccattt gtttccattt gtgtaccacg gaagaagagt 1080
 ggagatgggg ggcgggaagg tcggagcgtt gtcccgacaa ctgtattcgg cacttacagc 1140
 tatccagaaa ggccttggaggacgtat gggatggagt gtgcagttga attagcagct 1200
 tcatcatctg gacggctctt acggcctcc tcggcaagaa aacaatgcaaa aatcaactga 1260
 ccctctgtca ggaaattttt cagaatgttag aatagcataaa ttccctgtg aagatagcaa 1320
 gaggacaca cacaacatag catcaagctg gatcagaaag attaataata atgattaaat 1380
 agctgttgtt tcttcttcatc ctgtttccca agaggactga atgcgttttggatgtgaata 1440
 actccataac atacttgcaat ttcggaaacca tgagacataaa ataattgggttgcaaaaaaaaa 1500
 a 1501

<210> 19
 <211> 348
 <212> PRT
 <213> Triticum aestivum

<400> 19
 Met Thr Ala Ser Tyr Asn Thr Gly Thr Pro Asp Leu Val Asp Phe Asp
 1 5 10 15
 Trp Glu Thr Leu Gly Phe Gln Leu Val Pro Thr Asp Phe Met Tyr Ile
 20 25 30
 Met Lys Cys Ser Ser Asp Gly Val Phe Thr Lys Gly Glu Leu Val Pro
 35 40 45
 Tyr Gly Pro Ile Glu Leu Asn Pro Ala Ala Ala Val Leu Asn Tyr Gly
 50 55 60
 Gln Gly Leu Leu Glu Gly Leu Arg Ala His Arg Lys Glu Asp Gly Ser
 65 70 75 80
 Val Val Val Phe Arg Pro Lys Glu Asn Ala Leu Arg Met Arg Ile Gly
 85 90 95
 Ala Asp Arg Leu Cys Met Pro Ala Pro Ser Val Glu Gln Phe Leu Ser
 100 105 110
 Ala Val Lys His Thr Ile Leu Ala Asn Lys Arg Trp Val Pro Pro Thr
 115 120 125
 Gly Lys Gly Ser Leu Tyr Ile Arg Pro Leu Leu Ile Gly Ser Gly Ala
 130 135 140
 Met Leu Gly Val Ala Pro Ala Pro Glu Tyr Thr Phe Val Val Tyr Val
 145 150 155 160
 Cys Pro Val Gly His Tyr Phe Lys Asp Gly Leu Ser Pro Ile Ser Leu
 165 170 175
 Leu Thr Glu Glu Glu Tyr His Arg Ala Ala Pro Gly Gly Thr Gly Asp
 180 185 190
 Ile Lys Thr Ile Gly Asn Tyr Ala Ser Val Val Ser Ala Gln Arg Arg
 195 200 205

Ala Lys Glu Lys Gly His Ser Asp Val Leu Tyr Leu Asp Pro Val His
 210 215 220
 Lys Lys Phe Val Glu Glu Val Ser Ser Cys Asn Ile Leu Met Val Lys
 225 230 235 240
 Asp Asn Val Ile Ser Thr Pro Leu Leu Thr Gly Thr Ile Leu Pro Gly
 245 250 255
 Ile Thr Arg Arg Ser Ile Ile Glu Ile Ala Gln Asn Leu Gly Ile Gln
 260 265 270
 Val Glu Glu Arg Leu Ile Ala Ile Asp Glu Leu Leu Asp Ala Asp Glu
 275 280 285
 Val Phe Cys Thr Gly Thr Ala Val Val Leu Ser Pro Val Gly Ser Ile
 290 295 300
 Val Tyr His Gly Arg Arg Val Glu Tyr Gly Gly Lys Val Gly Ala
 305 310 315 320
 Val Ser Gln Gln Leu Tyr Ser Ala Leu Thr Ala Ile Gln Lys Gly Leu
 325 330 335
 Val Glu Asp Ser Met Gly Trp Ser Val Gln Leu Asn
 340 345
 <210> 20
 <211> 363
 <212> PRT
 <213> Bacillus subtilis
 <400> 20
 Met Thr Lys Gln Thr Ile Arg Val Glu Leu Thr Ser Thr Lys Lys Pro
 1 5 10 15
 Lys Pro Asp Pro Asn Gln Leu Ser Phe Gly Arg Val Phe Thr Asp His
 20 25 30
 Met Phe Val Met Asp Tyr Ala Ala Asp Lys Gly Trp Tyr Asp Pro Arg
 35 40 45
 Ile Ile Pro Tyr Gln Pro Leu Ser Met Asp Pro Thr Ala Met Val Tyr
 50 55 60
 His Tyr Gly Gln Thr Val Phe Glu Gly Leu Lys Ala Tyr Val Ser Glu
 65 70 75 80
 Asp Asp His Val Leu Leu Phe Arg Pro Glu Lys Asn Met Glu Arg Leu
 85 90 95
 Asn Gln Ser Asn Asp Arg Leu Cys Ile Pro Gln Ile Asp Glu Glu Gln
 100 105 110
 Val Leu Glu Gly Leu Lys Gln Leu Val Ala Ile Asp Lys Asp Trp Ile
 115 120 125
 Pro Asn Ala Glu Gly Thr Ser Leu Tyr Ile Arg Pro Phe Ile Ile Ala
 130 135 140
 Thr Glu Pro Phe Leu Gly Val Ala Ala Ser His Thr Tyr Lys Leu Leu
 145 150 155 160
 Ile Ile Leu Ser Pro Val Gly Ser Tyr Tyr Lys Glu Gly Ile Lys Pro
 165 170 175

Val Lys Ile Ala Val Glu Ser Glu Phe Val Arg Ala Val Lys Gly Gly
180 185 190

Thr Gly Asn Ala Lys Thr Ala Gly Asn Tyr Ala Ser Ser Leu Lys Ala
195 200 205

Gln Gln Val Ala Glu Glu Lys Gly Phe Ser Gln Val Leu Trp Leu Asp
210 215 220

Gly Ile Glu Lys Lys Tyr Ile Glu Glu Val Gly Ser Met Asn Ile Phe
225 230 235 240

Phe Lys Ile Asn Gly Glu Ile Val Thr Pro Met Leu Asn Gly Ser Ile
245 250 255

Leu Glu Gly Ile Thr Arg Asn Ser Val Ile Ala Leu Leu Lys His Trp
260 265 270

Gly Leu Gln Val Ser Glu Arg Lys Ile Ala Ile Asp Glu Val Ile Gln
275 280 285

Ala His Lys Asp Gly Ile Leu Glu Ala Phe Gly Thr Gly Thr Ala
290 295 300

Ala Val Ile Ser Pro Val Gly Glu Leu Ile Trp Gln Asp Glu Thr Leu
305 310 315 320

Ser Ile Asn Asn Gly Glu Thr Gly Glu Ile Ala Lys Lys Leu Tyr Asp
325 330 335

Thr Ile Thr Gly Ile Gln Lys Gly Ala Val Ala Asp Glu Phe Gly Trp
340 345 350

Thr Thr Glu Val Ala Ala Leu Thr Glu Ser Lys
355 360

<210> 21

<211> 1162

<212> DNA

<213> Glycine max

<400> 21

gcacgagttac agcccaaggc ccgcattggc accccgttcc cgcgccacac gctccgcagc 60
atccctgtcc agatgacggc ggcgtccaac tgcggaggg ggtccatccg ctactggctc 120
agcgccggcg gcggcgactt cctcctgtcc tccgcccgtc gcggccggcc ggcgttctac 180
gccgtcgta tccccaccga ctactcccag tgccgccaacg gcgtgcgcgc ggtgaccacg 240
tcggtgccca tgaagccgcc gctttcgcc accatgaaga acgtcaacta cctcccaac 300
gtgctgtcca tcatggacgc cgaggaccgc ggcgcgttcg cgtcggtgtg ggtggacggc 360
gaggcaacg tcggcgaggg gcccatggta aacgtggcgt tcgtcacggc cgccggcgag 420
ctgggtctca cggcggttcga caagatccgc gccgggtgca cggccaacg gctgctcgcg 480
otggcgccga ggctggtga gtccggcctc ctcaaggccg tcaccacccg ccacatcgcc 540
gccgacgagg ccaagcgctg ctccggcag atggcggttcg tcggcagcgg cttccccgtc 600
ctgcccattcg tcgagtggta cgaccagctc atcgccgacgc ggaagggtgg gaagacgatg 660
atggcgctgt cggatctgtc ctgggaggac atgaaatcgg ggccggacag gatcgacgtc 720
ccgtacaagt gatggattat tggagttggg tgaggctctt cggcgatcgtc tcagaaaagag 780
gtgtgctacc gacgtgtgga ttcatgacgg taagttcac ctgttaggta ttcacgtctc 840
ttcgacttta tatgagagga gctacgtcca tcggagatag gaggagaagg gcaacgtgcc 900
gagtatatat gtgttagtcta cgtacgcgtg agcgagctga gatggatatg atgcagttac 960
gtgtcgtttc gtttcgttcc tccttgtgtt catgtgtggc ttgtatggtt ttttatctgt 1020
acgtgtcgtc aacgtaatcc ttgtatggc cggtgtatca gtactgtatg agtgtatgt 1080
tttatacgatt gatcattaaag tgaatgaata atggattctc tcgattcaa atgtaaaaaa 1140
aaaaaaaaaaaaaa aa 1162

<210> 22

<211> 243

<212> PRT
 <213> Glycine max

 <400> 22
 Ala Arg Val Gln Pro Lys Ala Arg Ile Gly Thr Pro Phe Pro Arg Asp
 1 5 10 15

 Thr Leu Arg Ser Ile Leu Val Gln Met Thr Ala Ala Ser Asn Cys Arg
 20 25 30

 Arg Gly Ser Ile Arg Tyr Trp Leu Ser Ala Gly Gly Asp Phe Leu
 35 40 45

 Leu Ser Ser Ala Gly Cys Ala Gly Pro Ala Phe Tyr Ala Val Val Ile
 50 55 60

 Pro Thr Asp Tyr Ser Gln Cys Arg His Gly Val Arg Ala Val Thr Thr
 65 70 75 80

 Ser Val Pro Met Lys Pro Pro Leu Phe Ala Thr Met Lys Asn Val Asn
 85 90 95

 Tyr Leu Pro Asn Val Leu Ser Ile Met Asp Ala Glu Asp Arg Gly Ala
 100 105 110

 Phe Ala Ser Val Trp Val Asp Gly Glu Gly Asn Val Ala Glu Gly Pro
 115 120 125

 Met Val Asn Val Ala Phe Val Thr Ala Ala Gly Glu Leu Val Leu Pro
 130 135 140

 Ala Phe Asp Lys Ile Leu Ala Gly Cys Thr Ala Lys Arg Leu Leu Ala
 145 150 155 160

 Leu Ala Pro Arg Leu Val Glu Ser Gly Leu Leu Lys Ala Val Thr Thr
 165 170 175

 Arg His Ile Ala Ala Asp Glu Ala Lys Arg Cys Ser Ala Glu Met Ala
 180 185 190

 Phe Val Gly Ser Gly Leu Pro Val Leu Pro Ile Val Glu Trp Asp Asp
 195 200 205

 Gln Leu Ile Gly Asp Gly Lys Val Gly Lys Thr Met Met Ala Leu Ser
 210 215 220

 Asp Leu Leu Trp Glu Asp Met Lys Ser Gly Pro Asp Arg Ile Ala Val
 225 230 235 240

 Pro Tyr Lys

<210> 23
 <211> 1045
 <212> DNA
 <213> Glycine max

 <400> 23
 gcacgaggct atggttattc ctatggatga ccacatggtc cacagaggcc acgggtgtctt 60
 tgatactgca gcaataatgg atggataacct atatgagcta gatcaacacc ttgatcgctt 120
 tttaaaggta ccatccatgt ctaaaataga tcccccattt gatcgaggaa gcataagaag 180
 aataactcata caaactgtaa gtgcctccaa gtgtagaaaa ggatcactaa gatattggct 240
 ctcggcagga cctggcgaact ttcatgttac tccctcttgt tgccaccgat caagtctgta 300
 tgcgatagta atacaggatc tgtcaccatc ctcacctaatt tcagggcg taaaaggtagt 360
 cacttcatct attcccatta aacaccccaa gtttgctatc actaagagtg tgaactatct 420
 tccaaatgtg ctctcaaagg tggaagctga agaagctggt gctttgttag gcatttggct 480

tgatggtgaa ggttttgtt ctgaaggccc taatatgaat gtggccttg tcactaaaga 540
 taaggaacctt ataatgccac actttgacaa aattctaagt ggctgcacag ctaagagagt 600
 tttaaccctt gctgagagct ttttaaggga gggtaagctt aaagggataa gggtaaaaac 660
 tttgactgtc gaggaaggta agcaagcaga taaaatgtatg ctcttggca gcggagttct 720
 ttttgcctt gtagtcaat gggatgagca gttattggat gatggcaaag aaggccctat 780
 aacgcaggct ctcttaatc taattgttga ggacatgaaa tcaggtccct ccactgttcg 840
 tatacctgtt ctttatttgc acaactttat ttccttctct tcattttgtt atgaagatta 900
 atcagtagtt gtgatgcccc tacttctaca gggaggaatg actattaata acttcattgt 960
 ctaatggttt ttagagcttg tagtgttata agaaactcta ttccatggag cttagtttc 1020
 aaatgtttt gtggctaaa aaaaa 1045

<210> 24
 <211> 285
 <212> PRT
 <213> Glycine max

<400> 24
 His Glu Ala Met Val Ile Pro Met Asp Asp His Met Val His Arg Gly
 1 5 10 15

His Gly Val Phe Asp Thr Ala Ala Ile Met Asp Gly Tyr Leu Tyr Glu
 20 25 30

Leu Asp Gln His Leu Asp Arg Phe Leu Arg Ser Ala Ser Met Ser Lys
 35 40 45

Ile Asp Pro Pro Phe Asp Arg Gly Ser Ile Arg Arg Ile Leu Ile Gln
 50 55 60

Thr Val Ser Ala Ser Lys Cys Arg Lys Gly Ser Leu Arg Tyr Trp Leu
 65 70 75 80

Ser Ala Gly Pro Gly Asp Phe Gln Leu Ser Pro Ser Cys Cys His Arg
 85 90 95

Ser Ser Leu Tyr Ala Ile Val Ile Gln Asp Leu Ser Pro Ser Ser Pro
 100 105 110

Asn Phe Arg Gly Val Lys Val Val Thr Ser Ser Ile Pro Ile Lys His
 115 120 125

Pro Lys Phe Ala Ile Thr Lys Ser Val Asn Tyr Leu Pro Asn Val Leu
 130 135 140

Ser Lys Val Glu Ala Glu Glu Ala Gly Ala Phe Val Gly Ile Trp Leu
 145 150 155 160

Asp Gly Glu Gly Phe Val Ala Glu Gly Pro Asn Met Asn Val Ala Phe
 165 170 175

Val Thr Lys Asp Lys Glu Leu Ile Met Pro His Phe Asp Lys Ile Leu
 180 185 190

Ser Gly Cys Thr Ala Lys Arg Val Leu Thr Leu Ala Glu Ser Leu Leu
 195 200 205

Arg Glu Gly Lys Leu Lys Gly Ile Arg Val Lys Thr Val Thr Val Glu
 210 215 220

Glu Gly Lys Gln Ala Asp Glu Met Met Leu Leu Gly Ser Gly Val Leu
 225 230 235 240

Val Cys Pro Val Val Gln Trp Asp Glu Gln Val Ile Gly Asp Gly Lys
 245 250 255

Glu Gly Pro Ile Thr Gln Ala Leu Leu Asn Leu Ile Val Glu Asp Met
260 265 270

Lys Ser Gly Pro Ser Thr Val Arg Ile Pro Val Pro Tyr
275 280 285

<210> 25

<211> 1323

<212> DNA

<213> Oryza sativa

<400> 25

gcacgagagg aaccccaactc acaagtcccc tgaggttcaa aatgatggtg attttaaagt 60
tcatctgttc tcttcatcat ccgagttgct tgaaaagctt cataaaaat ggagttcagt 120
ggagaaacca ccatacccaag ctatgtattc tagtattttat ggaggtatca tacttgatcc 180
agcaatgtatg gtaatccccca ttgtatgatca catgttcac agagggcatg gtgtgttga 240
tacagctt gttcttagatg gatacctcta tgagttggat gttcacccct acagattccct 300
aagttcagcc tccaaagcaa agatattc tccctttct ccatcagtc ttacacagcat 360
tctaatacaa ctaactgcag catcaaaatg caagaaggga actctaagat actggctcag 420
tgcaggctt ggagatttct tgctatcatac agcaggatgt ccaacatctg cattctatgc 480
agttagtcatt gaccaagatg tttcccaatg caaagaggga gttaaagtga ttacttccaa 540
cataccaatg aaggcccttc tatttgccac agccaaaaat gtgaactatc ttccaaatgt 600
ccttcagta atggaaagctg aagagaaaagg agcatttct tcttatatggg ttgatgagga 660
aggttatatt gctgaaggc caaatgtgaa tgggttttca ataactcaag acaaggaact 720
tgtcatgcct cctttgtata acatcttaca tgggtgcact gcaaaaaggc tccttgaact 780
ggcacccaaag ttgggtgatc aagggtttct gaaaggtgta gcaactaaaa aactaactgt 840
ggaggaagct aaagctgctg ctgaaatgat gtatgttagga agcacgcctc ctctgttgc 900
tatcatcgctc tgggatgatc aaccattgg caacggagg gtgggagaat taacaatgtt 960
actttcgat atgctttggg atgatatgtt agctggccct ggcacacaga ggataacctgt 1020
tccttatgtt gagtaaacct acaaagtcatac caattacag gctggaaaca actttcttac 1080
ttttctatgtt catgttcata ggagttctcc ttgcaagat ttatcaagag gtttcttctt 1140
gtatgttctt tttgtatttc aagtgtgaaactgaaacaag tcctaaagtg aagcaccagg 1200
tggccctgc aacgaaaaat ttacgtagca gataaaatgtt ctttgcactt tttcacgttg 1260
ttgtattgttataataaa taatgaagac ctttcatgtt gctttgtgcc tgaaaaaaaaa 1320
aaa 1323

<210> 26

<211> 297

<212> PRT

<213> Oryza sativa

<400> 26

Met Tyr Ser Ser Ile Tyr Gly Ile Ile Leu Asp Pro Ala Met Met
1 5 10 15

Val Ile Pro Ile Asp Asp His Met Val His Arg Gly His Gly Val Phe
20 25 30

Asp Thr Ala Ile Val Leu Asp Gly Tyr Leu Tyr Glu Leu Asp Val His
35 40 45

Leu Asp Arg Phe Leu Ser Ser Ala Ser Lys Ala Lys Ile Ser Ser Pro
50 55 60

Phe Ser Arg Ser Val Leu His Ser Ile Leu Ile Gln Leu Thr Ala Ala
65 70 75 80

Ser Lys Cys Lys Lys Gly Thr Leu Arg Tyr Trp Leu Ser Ala Gly Pro
85 90 95

Gly Asp Phe Leu Leu Ser Ser Ala Gly Cys Pro Thr Ser Ala Phe Tyr
100 105 110

Ala Val Val Ile Asp Gln Asp Val Ser Gln Cys Lys Glu Gly Val Lys
115 120 125

Val Ile Thr Ser Asn Ile Pro Met Lys Pro Ser Leu Phe Ala Thr Ala
 130 135 140
 Lys Asn Val Asn Tyr Leu Pro Asn Val Leu Ser Val Met Glu Ala Glu
 145 150 155 160
 Glu Lys Gly Ala Ser Ser Ser Ile Trp Val Asp Glu Glu Gly Tyr Ile
 165 170 175
 Ala Glu Gly Pro Asn Val Asn Val Ala Phe Ile Thr Gln Asp Lys Glu
 180 185 190
 Leu Val Met Pro Pro Phe Asp Asn Ile Leu His Gly Cys Thr Ala Lys
 195 200 205
 Arg Leu Leu Glu Leu Ala Pro Lys Leu Val Asp Gln Gly Leu Leu Lys
 210 215 220
 Gly Val Ala Thr Lys Lys Leu Thr Val Glu Glu Ala Lys Ala Ala Ala
 225 230 235 240
 Glu Met Met Tyr Val Gly Ser Thr Leu Pro Leu Leu Pro Ile Ile Val
 245 250 255
 Trp Asp Asp Gln Pro Ile Gly Asn Gly Arg Val Gly Glu Leu Thr Met
 260 265 270
 Leu Leu Ser Asp Met Leu Trp Asp Asp Met Val Ala Gly Pro Gly Thr
 275 280 285
 Gln Arg Ile Pro Val Pro Tyr Val Glu
 290 295
 <210> 27
 <211> 542
 <212> DNA
 <213> Triticum aestivum
 <400> 27
 gcacgagggtt atcttcatct ggctgtacaa acccagccct ctatgctgtt gttattgaaa 60
 gcccatccctt acaagtaccg tcctgctgca gagtggtcac atcatctata ccgataaaagt 120
 ctcctcaatt tgcagtcatg aaaagcgtga attacttgcc caatgcactc accaagggtgg 180
 aaggagaaga gaatggtgca ttactggca ttggctaga cgatgagggc ttcgttgcag 240
 agggttcgaa catgaatgtt ggcttcgtga caaagaacaa ggagcttctc atgcctcggt 300
 ttgacaagat cctgagtggg tgcacagcaa gacgggttct gaccctcgct gagcatctag 360
 tagctcatgg aaagctcagc agggtaatgt caaggaatgt gagtgtttag gaaggaaaga 420
 tggccgatga gatgatgttc atcggtatgt gcattttgtt caaacctgtt gttcagtggg 480
 atgataagat aattggttct ggacaagaag gcccgtatgc tcaagcgtag tatgacataa 540
 tt 542
 <210> 28
 <211> 180
 <212> PRT
 <213> Triticum aestivum
 <400> 28
 Thr Arg Leu Ser Ser Ser Gly Cys Thr Asn Pro Ala Leu Tyr Ala Val
 1 5 10 15
 Val Ile Glu Ser Pro Ser Leu Gln Val Pro Ser Cys Cys Arg Val Val
 20 25 30
 Thr Ser Ser Ile Pro Ile Lys Ser Pro Gln Phe Ala Val Met Lys Ser
 35 40 45

Val Asn Tyr Leu Pro Asn Ala Leu Thr Lys Val Glu Gly Glu Glu Asn
 50 55 60
 Gly Ala Phe Thr Gly Ile Trp Leu Asp Asp Glu Gly Phe Val Ala Glu
 65 70 75 80
 Gly Ser Asn Met Asn Val Gly Phe Val Thr Lys Asn Lys Glu Leu Leu
 85 90 95
 Met Pro Arg Phe Asp Lys Ile Leu Ser Gly Cys Thr Ala Arg Arg Val
 100 105 110
 Leu Thr Leu Ala Glu His Leu Val Ala His Gly Lys Leu Ser Arg Val
 115 120 125
 Ile Ser Arg Asn Val Ser Val Glu Glu Gly Lys Met Ala Asp Glu Met
 130 135 140
 Met Leu Ile Gly Ser Gly Ile Leu Val Lys Pro Val Val Gln Trp Asp
 145 150 155 160
 Asp Lys Ile Ile Gly Ser Gly Gln Glu Gly Pro Ile Ala Gln Ala Leu
 165 170 175
 Tyr Asp Leu Ile
 180
 <210> 29
 <211> 288
 <212> PRT
 <213> Methanococcus jannaschii
 <400> 29
 Met Lys Ile Tyr Leu Asn Gly Lys Phe Val Asp Glu Lys Asp Ala Lys
 1 5 10 15
 Val Ser Val Phe Asp His Gly Leu Leu Tyr Gly Asp Gly Val Phe Glu
 20 25 30
 Gly Ile Arg Ala Tyr Asp Gly Val Val Phe Met Leu Lys Glu His Ile
 35 40 45
 Asp Arg Leu Tyr Asp Ser Ala Lys Ser Leu Cys Ile Asp Ile Pro Leu
 50 55 60
 Thr Lys Glu Glu Met Ile Asp Val Val Leu Glu Thr Leu Arg Val Asn
 65 70 75 80
 Asn Leu Arg Asp Ala Tyr Ile Arg Leu Val Val Thr Arg Gly Val Gly
 85 90 95
 Asp Leu Gly Leu Asp Pro Arg Lys Cys Gly Lys Pro Thr Ile Phe Cys
 100 105 110
 Ile Ala Ile Pro Met Pro Pro Leu Leu Gly Glu Asp Gly Ile Arg Ala
 115 120 125
 Ile Thr Val Ser Val Arg Arg Leu Pro Val Asp Val Leu Asn Pro Ala
 130 135 140
 Val Lys Ser Leu Asn Tyr Leu Asn Ser Val Leu Ala Lys Ile Gln Ala
 145 150 155 160
 Asn Tyr Ala Gly Val Asp Glu Ala Phe Leu Leu Asp Asp Lys Gly Phe
 165 170 175

Val Val Glu Gly Thr Gly Asp Asn Ile Phe Ile Val Lys Asn Gly Val
180 185 190

Leu Lys Thr Pro Pro Val Tyr Gln Ser Ile Leu Lys Gly Ile Thr Arg
195 200 205

Asp Val Val Ile Lys Leu Ala Lys Glu Glu Gly Ile Glu Val Val Glu
210 215 220

Glu Pro Leu Thr Leu His Asp Leu Tyr Thr Ala Asp Glu Leu Phe Ile
225 230 235 240

Thr Gly Thr Ala Ala Glu Ile Val Pro Val Phe Glu Ile Asp Gly Arg
245 250 255

Val Ile Asn Asn Lys Gln Val Gly Glu Ile Thr Lys Lys Leu Lys Glu
260 265 270

Lys Phe Lys Asp Ile Arg Thr Lys Trp Gly Ile Lys Val Tyr Asp Glu
275 280 285

<210> 30

<211> 1062

<212> DNA

<213> Zea mays

<400> 30

gcaaccacca ttatcgacc ctcctctgcc tgcctcgtca aataaaaaca ttcttgtttgg
gttggagat gaactttgc cccgtaaacag tgcaaaaggtt tcagtgtttt attcagttgt
acaaggagga gatgctgttt gggaaaggttt acgtatataat gatggaaaag tattcaaatt
agatgaacat ttggacagat tgtttgatc tgcaaaagct atggccttca gcaatgtgcc
tactcgtgtat tggattaagg atgcccattt taagactctg attgcaaatg gaatgttcaa
caatgctcat ataaggctca cgctcacccg tggaaaaag gtgacatctg gaatgagtc
agcttcaat ctatgggt gtgccttgc tgcgttgca gagtggaaac caccagttt
tgataactct catggataa aattggttac tgccaccaca cgtcgaaatt ctccaaatag
tatagatccc aagatccatc acaacaatct tatcaacaat attctggcaa agatagaagg
taatcttgc caggctgagg atgcccattt gctagataag gatggcttgc tatcagaaac
aaacgcaaca aatatttttta tggtaaaaaa gggattgttgc ttgacacccatc atgctgacta
ttgccttcca ggcattacgc gagcaactgt catggatctt gtggtgaaag aaaactttgt
gttacatgaa cgacgcattt gtctgtcaga attccatgt gcagatgagg tatggacaac
cgaaacaatgt ggtgaaatca caccgggtt aatgattgttgc acgtgaaa tcggcgacgg
gaaaattgggt ccagtcacta gacaaatcca gaaggcatac aagatcctg cagcaggca
aggagtaccg ataccggggg ttgctgagggt gtaattgtct aagatgcattt cctttatcta
gttaggatca gtcccccaag aagctcaatg atatcaggctt acgcgaacaa taaattaata
atctgcattt atcaactgtt ttcaaaaaaaaaaaaaaaa aa 1020
1062

<210> 31

<211> 310

<212> PRT

<213> Zea mays

<400> 31

Gln Pro Pro Leu Ser Asp Pro Pro Leu Pro Val Pro Ala Asn Lys Asn
1 5 10 15

Ile Leu Val Trp Val Gly Asp Glu Leu Leu Pro Arg Asn Ser Ala Lys
20 25 30

Val Ser Val Phe Asp Ser Val Val Gln Gly Gly Asp Ala Val Trp Glu
35 40 45

Gly Leu Arg Ile Tyr Asp Gly Lys Val Phe Lys Leu Asp Glu His Leu
50 55 60

Asp Arg Leu Phe Asp Ser Ala Lys Ala Met Ala Phe Ser Asn Val Pro
65 70 75 80

Thr Arg Asp Trp Ile Lys Asp Ala Ile Phe Lys Thr Leu Ile Ala Asn
85 90 95

Gly Met Phe Asn Asn Ala His Ile Arg Leu Thr Leu Thr Arg Gly Lys
100 105 110

Lys Val Thr Ser Gly Met Ser Pro Ala Phe Asn Leu Tyr Gly Cys Ala
115 120 125

Leu Ile Val Leu Ala Glu Trp Lys Pro Pro Val Tyr Asp Asn Ser His
130 135 140

Gly Ile Lys Leu Val Thr Ala Thr Thr Arg Arg Asn Ser Pro Asn Ser
145 150 155 160

Ile Asp Pro Lys Ile His His Asn Asn Leu Ile Asn Asn Ile Leu Ala
165 170 175

Lys Ile Glu Gly Asn Leu Ala Gln Ala Glu Asp Ala Ile Met Leu Asp
180 185 190

Lys Asp Gly Phe Val Ser Glu Thr Asn Ala Thr Asn Ile Phe Met Val
195 200 205

Lys Lys Gly Ile Val Leu Thr Pro His Ala Asp Tyr Cys Leu Pro Gly
210 215 220

Ile Thr Arg Ala Thr Val Met Asp Leu Val Val Lys Glu Asn Phe Val
225 230 235 240

Leu His Glu Arg Arg Ile Ser Leu Ser Glu Phe His Ala Ala Asp Glu
245 250 255

Val Trp Thr Thr Gly Thr Met Gly Glu Ile Thr Pro Val Val Met Ile
260 265 270

Asp Gly Arg Glu Ile Gly Asp Gly Lys Ile Gly Pro Val Thr Arg Gln
275 280 285

Ile Gln Lys Ala Tyr Lys Ile Leu Thr Ala Gly Gln Gly Val Pro Ile
290 295 300

Pro Gly Val Ala Glu Val
305 310

<210> 32

<211> 1186

<212> DNA

<213> Triticum aestivum

<400> 32

gcacgagtca aacttgaaga acacttggat agattgttg attctacaaa agctatggcc 60
ttcagcaatg tgcccagtgc tgattggatt aaggatgcaa tatttaagac tcttaacgca 120
aatgggatgt tcaataatgc acatataagg ctcactctca cccgtggaa gaaggtgaca 180
tctggaatga gtccaaacttt caatctatat gggtgtgtct tgattgtact tgcagagtgg 240
aaaccaccag ttatgataa ctcacatggg ataaagttgg taactgccgc cacacgtcgt 300
aattctccaa atagcgtaga ttcaagata catcacaaca atcttattaa caacattctg 360
gcaaagatag aaggtaatct tgcacaggct gaggatgcta tcatgctaga tcaagatgg 420
tttgtatcag aaacaaatgc aacaaacata ttatggta agaaggccat tgtattgaca 480
cctcatgcgg actactgcct tccaggaatt acccggtgcaa ctgtcaagga tcttgggtgt 540
aaagaaaaacc tggtattaca tgaacggcga attagtttat ctgaatttca tgctgcagat 600
gagggtgtga caaccggAAC aatgggtgaa attacaccgg ttgtgtatgt tgacggcgt 660
gaaattgggt atgggaaaat cggctctggc acaagacaaa tcagagcgc atacaaagtc 720
ctgacagcag gggtgggagt aacaattccc aggaatgcgg aggcataatc atttgcgcag 780
acattcttct tgccttttg aaaaggagaa ggcacccatt atctatggac aaactttcay 840

ggttcagttt cgagtaatga taataaatac ccctccatcc ggaattactt gtcgtagaaa 900
tgggtaaaaa tgaatgtatc tagaactaaa aatacgttt gatacatcta tttctccgac 960
aggtagttcc ggatggaggg agtagtagct agcgttcaaa gaagcaccca gtgaaagtgg 1020
cacaccggac agaaaactga gtattcgaaa aatactggct gggtctgtga attcatgatt 1080
tactgtgtgc ctgtgtgcgc cgaacctgtg gctgatcctg gacacagaac agaaaataga 1140
atattatatg cggttttatt ttctgctaaa aaaaaaaaaa aaaaaaa 1186

<210> 33
<211> 255
<212> PRT
<213> Triticum aestivum

<400> 33
Ala Arg Val Lys Leu Glu Glu His Leu Asp Arg Leu Phe Asp Ser Thr
1 5 10 15

Lys Ala Met Ala Phe Ser Asn Val Pro Ser Arg Asp Trp Ile Lys Asp
20 25 30

Ala Ile Phe Lys Thr Leu Asn Ala Asn Gly Met Phe Asn Asn Ala His
35 40 45

Ile Arg Leu Thr Leu Thr Arg Gly Lys Lys Val Thr Ser Gly Met Ser
50 55 60

Pro Thr Phe Asn Leu Tyr Gly Cys Val Leu Ile Val Leu Ala Glu Trp
65 70 75 80

Lys Pro Pro Val Tyr Asp Asn Ser His Gly Ile Lys Leu Val Thr Ala
85 90 95

Ala Thr Arg Arg Asn Ser Pro Asn Ser Val Asp Ser Lys Ile His His
100 105 110

Asn Asn Leu Ile Asn Asn Ile Leu Ala Lys Ile Glu Gly Asn Leu Ala
115 120 125

Gln Ala Glu Asp Ala Ile Met Leu Asp Gln Asp Gly Phe Val Ser Glu
130 135 140

Thr Asn Ala Thr Asn Ile Phe Met Val Lys Lys Gly Ile Val Leu Thr
145 150 155 160

Pro His Ala Asp Tyr Cys Leu Pro Gly Ile Thr Arg Ala Thr Val Lys
165 170 175

Asp Leu Val Val Lys Glu Asn Leu Val Leu His Glu Arg Arg Ile Ser
180 185 190

Leu Ser Glu Phe His Ala Ala Asp Glu Val Trp Thr Thr Gly Thr Met
195 200 205

Gly Glu Ile Thr Pro Val Val Met Ile Asp Gly Arg Glu Ile Gly Asp
210 215 220

Gly Lys Ile Gly Leu Val Thr Arg Gln Ile Gln Ser Ala Tyr Lys Val
225 230 235 240

Leu Thr Ala Gly Leu Gly Val Thr Ile Pro Arg Asn Ala Glu Ala
245 250 255

<210> 34
<211> 210
<212> PRT
<213> Escherichia coli

<400> 34
Met Thr Thr Lys Lys Ala Asp Tyr Trp Asn Gly Met Val Arg Trp Asp
1 5 10 15

Ala Lys Val His Val Met Ser His Ala His Tyr Gly Thr Ser Val Gly
20 25 30

Arg Cys Tyr Asp Ser His Lys Gly Val Val Arg His Arg His Met Arg
35 40 45

His Asp Ser Ala Lys Tyr Arg Val Ser Ser Asp Met Ala Cys Arg Asp
50 55 60

Val Arg Lys Asn Asn Thr Ser Ala Tyr Arg Val Gly Asp Val Gly Met
65 70 75 80

Gly Val Asn Ala Gly Tyr Ser Thr Asp Val Ala Ala Trp Gly Ala Tyr
85 90 95

Gly Ala Ala Gly Asp Ala Met Val Ser Ser Trp Asn Arg Ala Ala Asn
100 105 110

Thr Thr Ala Ala Lys Ala Gly Gly Asn Tyr Ser Ser Val Gly Ser Ala
115 120 125

Arg Arg His Gly Tyr Gly Ala Asp Val Asn Gly Tyr Ser Gly Ala Gly
130 135 140

Asn Val Lys Asp Gly Val Thr Thr Ser Ser Ala Gly Thr Arg Asp Ala
145 150 155 160

Lys Ala Lys Gly Val Arg Val Ser Arg Ser Tyr Ala Asp Val Met Ser
165 170 175

Gly Thr Ala Ala Thr Val Arg Ser Val Asp Gly Val Gly Gly Arg Cys
180 185 190

Gly Val Thr Lys Arg Ala Gly Thr Gly Thr Asp Lys Trp Gly Trp Asp
195 200 205

Val Asn
210

<210> 35

<211> 1626

<212> DNA

<213> Zea mays

<400> 35

gcacgagagc cggggagaa cgtgtgggtg gacatcgacg tgctcatgac gcacgacgtc 60
tgccggcccg gcaccatcg catcttcaag aaggagttcg gggaggatgc caaggctctgg 120
gaccgcgaga aggtcgcat catccccgac cactacatct tcaccagcga cgagcgcgcc 180
aaccgcAACG tcgatatacct cagggacttc tgcctggagc agaacatcaa gtacttctat 240
gatatacagg acctcagcga tttcagggct aatccagact acaagggtgt ctgccacatt 300
gcacttgctc aggaaggcca ctgcccacca ggcgagggttc tcctgggtac tgattctcat 360
acgtgcaatg ctggagcctt tggtaattt gcaaccggaa ttggaaacac tgatgcaggt 420
tttgtatgg gcactggaaa ggctttctc aagggtccac ctactatcg gtttgatatta 480
gatggagaaa tgccgccta ttacttgcg aaggatctga ttttgc当地 tattggtag 540
atttcagttt ctgggtcaac ctacaaatcg atggagtttgc ttggatcaac tgttagaaagt 600
ctaacatgg aagaacgtat gacactatgc aacatgggtt tgaaagctgg tggaaagaac 660
gggtgcgtgc ctgctgtatgaa aactacattt aaataccctt agggtaggac atcagtttat 720
tatcaacctt totacagtta tgctgaggcc agattttta gtgactaccg gtttgatgtt 780
tcgaaaactgg agccagtagt tgccaaagccaa cattccgcctg acaaccgtgc cctagcaaga 840
gaatgcaaag atgtcaagat cgaccgagtc tatattgggtt cctgcactgg tggcaagact 900
gaggacttcc ttgctgccgc aaaggtgttc ttagcctcgaa gaaagaaggtaaaaggccc 960
acattccttg tccctgccac acaaaaagggtt tggatggacg tatatagcct tcctgtacca 1020

ggatctggcg	gaaaaacttg	cggccagata	ttcgaggagg	ctgggttgtga	tacaccagca	1080
agtccataatt	gcggcgcttgc	tctgggtggc	cctcgcgata	cgtatgcacg	gatgaatgaa	1140
cctacggtct	gcgtgtccac	cacgaacagg	aacttcccgg	gcagggatggg	gcacaaggaa	1200
gggcagatct	acctggcgtc	cccc tacacc	gctgcagcct	cgccccgtac	ggggtaacgtc	1260
acggacccttca	gggacttctt	catgtgaacg	atcttgaaac	agccacagag	tgcctgcacc	1320
gctgtttttt	gtgttgaacc	ttagtttagg	cgtgtgcctt	tcgttgagaa	ataaactccc	1380
atgtcgggag	gctgccatttgc	ccattttatgt	tttttgcgtt	atatttatta	cagtgactgc	1440
cgtataacgtt	gtttagcggtt	acaaggggaaa	tacatttcatt	ctttccagta	tcgatggcag	1500
tcactagact	ccgttttttac	aaaaaaaaagg	catgtcgaga	gatcttgtag	ttcacataact	1560
tgtaaaaaca	cttttttgta	caatgtatgg	gaaagaagct	cagtgcaaaa	aaaaaaaaaaa	1620
aaaaaaa						1626

<210> 36
<211> 428
<212> PRT
<213> Zea mays

<400> 36
Ala Arg Glu Pro Gly Glu Asn Val Trp Val Asp Ile Asp Val Leu Met
1 5 10 15

Thr His Asp Val Cys Gly Pro Gly Thr Ile Gly Ile Phe Lys Lys Glu
20 25 30

Phe Gly Glu Asp Ala Lys Val Trp Asp Arg Glu Lys Val Val Ile Ile
35 40 45

Pro Asp His Tyr Ile Phe Thr Ser Asp Glu Arg Ala Asn Arg Asn Val
50 55 60

Asp Ile Leu Arg Asp Phe Cys Leu Glu Gln Asn Ile Lys Tyr Phe Tyr
65 70 75 80

Asp Ile Lys Asp Leu Ser Asp Phe Arg Ala Asn Pro Asp Tyr Lys Gly
85 90 95

Val Cys His Ile Ala Leu Ala Gln Glu Gly His Cys Arg Pro Gly Glu
100 105 110

Val Leu Leu Gly Thr Asp Ser His Thr Cys Asn Ala Gly Ala Phe Gly
115 120 125

Gln Phe Ala Thr Gly Ile Gly Asn Thr Asp Ala Gly Phe Val Met Gly
130 135 140

THE GLY Lys Ala Leu Leu Lys Val Pro Pro THE Ile Arg Phe Val Leu
145 150 155 160

Asp Gly Glu Met Phe Phe Tyr Ile Leu Ala Lys Asp Leu Ile Leu Gln
165 170 175

116 116 116 116 116 Ser Val Ser Glu Ala Thr Tyr Lys Ser Met Glu
180 185 190

THE VAL CITY SCI THE VAL CITY SCI BED THE HED CITY CITY ALG HED THE
195 200 205

210 215 220

225 230 235 240

245 250 255

Arg Phe Asp Val Ser Lys Leu Glu Pro Val Val Ala Lys Pro His Ser
260 265 270

Pro Asp Asn Arg Ala Leu Ala Arg Glu Cys Lys Asp Val Lys Ile Asp
275 280 285

Arg Val Tyr Ile Gly Ser Cys Thr Gly Gly Lys Thr Glu Asp Phe Leu
290 295 300

Ala Ala Ala Lys Val Phe Leu Ala Ser Gly Lys Lys Val Lys Val Pro
305 310 315 320

Thr Phe Leu Val Pro Ala Thr Gln Lys Val Trp Met Asp Val Tyr Ser
325 330 335

Leu Pro Val Pro Gly Ser Gly Gly Lys Thr Cys Ala Gln Ile Phe Glu
340 345 350

Glu Ala Gly Cys Asp Thr Pro Ala Ser Pro Asn Cys Gly Ala Cys Leu
355 360 365

Gly Gly Pro Arg Asp Thr Tyr Ala Arg Met Asn Glu Pro Thr Val Cys
370 375 380

Val Ser Thr Thr Asn Arg Asn Phe Pro Gly Arg Met Gly His Lys Glu
385 390 395 400

Gly Gln Ile Tyr Leu Ala Ser Pro Tyr Thr Ala Ala Ala Ser Ala Leu
405 410 415

Thr Gly Tyr Val Thr Asp Pro Arg Asp Phe Leu Met
420 425

<210> 37

<211> 1688

<212> DNA

<213> Zea mays

<220>

<221> unsure

<222> (1673)

<400> 37

gcacgagctg acgcaccacc csgaagccct cccggcgccgc tcgcagggtg ttgcaccctt 60
cgccccggcgc ccctcacgac atggccttcct ccgttccgc cggccccaag gcccggcg 120
cgttcgcgcga caagggtccag aaggagctgg cggcgccggc gcagcggccgc gggggcttga 180
cccgccggac caagccgtgc agcgtgcggc cctgcgttgc gcccggcgccgc gcccgttgcgt 240
ccacccggctc ggtgaagagc gcgatgacga tgacggagaa gatactggcg cgggcgttcgg 300
agcgcgcggc gctggagccc ggggagaacg tgggttcga ctgcgtacgt ctcatgacgc 360
acgacgtctg cgggccccggc gccttcgaca tcttaagaaa ggagttcggg gaggacgcca 420
gggtctggga cgcgagaag ctgcgtca tccggacca ctacatcttc accaggcagc 480
gccgtccaa acgcaacgtc gacatctca gggacttctg tgccggagcag aacatcaagt 540
acttcttatga catcaaggac ctcagcgatt tcaggctaa tccggactac aaaggcgtct 600
gccacatgc acttgcctag gaagcccact gcccggcagg cgaggttctc ttgggcactg 660
attctcatac atgcaatgtt ggagctttt gtcagggttc aacttggaaatc ggaaacactg 720
atgcagggtt tgggtggc actggaaagg ctcttctcaa ggtgccacct actatcagg 780
ttatattaga tggagatg ccccttatt tacttgcga ggtatctgtt ttgcaatta 840
ttggagatg ttcaatctt ggtgcgacat acaaataat ggttttgtt ggatcaactg 900
tagaaagtct aaccatggaa gagcgtatga cactatgcaa catggttt gaaagctgg 960
gaaagaacgg tgggtgcct gctgtatgaaa ctacattaa ataccttgaa ggttaagacat 1020
cagtgcgatc tgaacctgtc tacagtgtatc ctcaagccag attttttac gactaccgg 1080
tttatgtatc aaaactggag ccagtagttt ccaagccaca ttgcctgac aaccgtgctc 1140
cagcacgaga atgcaaatgtt gtggatgtt accggatctt tattggttt tgcactgg 1200
gtaagaccga ggattccctt gctgtgcata aggttttctt agecctcgaaa aagaaggta 1260
aagttccac atttcttgc cctgccacac aaaaggtgtt gttggacata tatagcctcc 1320
ctgtaccagg atctgtggc aaaacttgctt cccagatatt tgaggaggct ggttgac 1380

caccagcaag tcctaattgt ggtgcttgg tgggtggccc tcgtgataca tatgcacgga 1440
tgaatgaacc tactgtctgc gtgtccacca cgaacaggaa ctttccggc aggatggcc 1500
acaaggaagg gcaaactcac ctggcgcttc cctacactgc ggctgcctca gccctgacgg 1560
ggtatgttac ggaccccaag gacttcctca tgtaaccgtc ttgaaacaac aacagattc 1620
atgatgtaac agagtggtt tactgctgtt tttcggtc aactttgtc cangcatgtc 1680
cttcgttg 1688

<210> 38
<211> 443
<212> PRT
<213> Zea mays

<400> 38
Met Thr Met Thr Glu Lys Ile Leu Ala Arg Ala Ser Glu Arg Ala Ala
1 5 10 15

Leu Glu Pro Gly Glu Asn Val Trp Val Asp Val Asp Val Leu Met Thr
20 25 30

His Asp Val Cys Gly Pro Gly Ala Phe Asp Ile Phe Lys Lys Glu Phe
35 40 45

Gly Glu Asp Ala Arg Val Trp Asp Arg Glu Lys Leu Val Val Ile Pro
50 55 60

Asp His Tyr Ile Phe Thr Ser Asp Gly Arg Ala Lys Arg Asn Val Asp
65 70 75 80

Ile Leu Arg Asp Phe Cys Ala Glu Gln Asn Ile Lys Tyr Phe Tyr Asp
85 90 95

Ile Lys Asp Leu Ser Asp Phe Arg Ala Asn Pro Asp Tyr Lys Gly Val
100 105 110

Cys His Ile Ala Leu Ala Gln Glu Ala His Cys Arg Pro Gly Glu Val
115 120 125

Leu Leu Gly Thr Asp Ser His Thr Cys Asn Ala Gly Ala Phe Gly Gln
130 135 140

Phe Ala Thr Gly Ile Gly Asn Thr Asp Ala Gly Phe Val Leu Gly Thr
145 150 155 160

Gly Lys Ala Leu Leu Lys Val Pro Pro Thr Ile Arg Phe Ile Leu Asp
165 170 175

Gly Glu Met Pro Pro Tyr Leu Leu Ala Lys Asp Leu Ile Leu Gln Ile
180 185 190

Ile Gly Glu Ile Ser Val Ser Gly Ala Thr Tyr Lys Ser Met Glu Phe
195 200 205

Val Gly Ser Thr Val Glu Ser Leu Thr Met Glu Glu Arg Met Thr Leu
210 215 220

Cys Asn Met Val Ile Glu Ala Gly Gly Lys Asn Gly Val Val Pro Ala
225 230 235 240

Asp Glu Thr Thr Phe Lys Tyr Leu Glu Gly Lys Thr Ser Val Asp Tyr
245 250 255

Glu Pro Val Tyr Ser Asp Ala Gln Ala Arg Phe Phe Ser Asp Tyr Arg
260 265 270

Phe Asp Val Ser Lys Leu Glu Pro Val Val Ala Lys Pro His Ser Pro
275 280 285

Asp Asn Arg Ala Pro Ala Arg Glu Cys Lys Asp Val Lys Ile Asp Arg
290 295 300

Val Tyr Ile Gly Ser Cys Thr Gly Gly Lys Thr Glu Asp Phe Leu Ala
305 310 315 320

Ala Ala Lys Val Phe Leu Ala Ser Gly Lys Lys Val Lys Val Pro Thr
325 330 335

Phe Leu Val Pro Ala Thr Gln Lys Val Trp Leu Asp Ile Tyr Ser Leu
340 345 350

Pro Val Pro Gly Ser Gly Gly Lys Thr Cys Ser Gln Ile Phe Glu Glu
355 360 365

Ala Gly Cys Asp Thr Pro Ala Ser Pro Asn Cys Gly Ala Cys Leu Gly
370 375 380

Gly Pro Arg Asp Thr Tyr Ala Arg Met Asn Glu Pro Thr Val Cys Val
385 390 395 400

Ser Thr Thr Asn Arg Asn Phe Pro Gly Arg Met Gly His Lys Glu Gly
405 410 415

Gln Ile Tyr Leu Ala Ser Pro Tyr Thr Ala Ala Ala Ser Ala Leu Thr
420 425 430

Gly Tyr Val Thr Asp Pro Lys Asp Phe Leu Met
435 440

<210> 39
<211> 512
<212> DNA
<213> Oryza sativa

<220>
<221> unsure
<222> (303)...(303)

<220>
<221> unsure
<222> (331)

<220>
<221> unsure
<222> (400)

<220>
<221> unsure
<222> (467)

<220>
<221> unsure
<222> (486)

<220>
<221> unsure
<222> (495)

<220>
<221> unsure
<222> (509)

<400> 39
 cttacagttt gccacgttgc tcttgctcaa gagggtcatt gcagaccagg cgaggttctc 60
 cttggtactg atttcatac atgcaatgct ggaggctttg gccaatttgc aactggaatt 120
 gaaaacactg atgctggttt tgtgatggc actggaaagg ctcttcttaa ggtgcctcca 180
 actatcagt ttgttattaga tggagaaatg ccaccttatt tacttgcaaa ggatctgatt 240
 ttacaatatta ttggtgagat ttctgtatct ggcgaacat acaaattccat ggagtttgtt 300
 ggntcaactg tggaaagtct aaatatggaa nagcgaatga cactgtgcaa catggttatt 360
 gaagctgggt gcaagaatgg tggtgtgcct gcccgcattcan actacattta actatcttga 420
 gggcaagaca tcagttgaat acgagcctgt catagtgtatc ctcaagncaa atttgttagt 480
 gactancgtt ttgangtata caaatttgngn ca 512

<210> 40
 <211> 127
 <212> PRT
 <213> Oryza sativa

<220>
 <221> UNSURE
 <222> (109)

<400> 40
 Val Cys His Val Ala Leu Ala Gln Glu Gly His Cys Arg Pro Gly Glu
 1 5 10 15

Val Leu Leu Gly Thr Asp Ser His Thr Cys Asn Ala Gly Ala Phe Gly
 20 25 30

Gln Phe Ala Thr Gly Ile Gly Asn Thr Asp Ala Gly Phe Val Met Gly
 35 40 45

Thr Gly Lys Ala Leu Leu Lys Val Pro Pro Thr Ile Arg Phe Val Leu
 50 55 60

Asp Gly Glu Met Pro Pro Tyr Leu Leu Ala Lys Asp Leu Ile Leu Gln
 65 70 75 80

Ile Ile Gly Glu Ile Ser Val Ser Gly Ala Thr Tyr Lys Ser Met Glu
 85 90 95

Phe Val Gly Ser Thr Val Glu Ser Leu Asn Met Glu Xaa Arg Met Thr
 100 105 110

Leu Cys Asn Met Val Ile Glu Ala Gly Gly Lys Asn Gly Val Val
 115 120 125

<210> 41
 <211> 823
 <212> DNA
 <213> Glycine max

<400> 41
 cttggggca agacatctct gccatatgaa cctgtttata gtgacgatca agcaagattt 60
 ctcgcagagt atagatttga tgtctaaaaa ttggagccag tggtgccaa gcctcattct 120
 ccggataatc gtgcttggc aagagagtgc aaggatgtga aaatttgacag agtatacata 180
 ggtatcttgc cagggtggcaa aacagaggat ttcatggctg cagcaaaagt ttttctggca 240
 tcaggtaaac aggttcaaaatg ttcatttgc tttgtgcyytgc caacacaaaaa ggttttggatg 300
 gacttgtact ccctccctgt ccctggatct ggtggtaaga catgctcaca gatatttgaa 360
 gaagttgggt gtgacacacc agttagtccct agttgtggtg cttgtttggg tggcccaaaaa 420
 gatacttacg cacgcatgaa tgaacctaag gtttgcgtt caactacgaa caggaacttc 480
 ccggggccgaa tgggacacaa ggaaggtaa atctatttgg cttcccccatt tacagctgct 540
 gcatctgcat tgaccggta tggtactgat cctagagatg tcttgcgtt gaaatgttgc 600
 acaatcatct cattgtgttg tactcggtt tggttatttg tggatctct actctctact 660
 agtcataatgtttaaaaactatattaa gcttaaccaa tcttttagta tttctaaatgtt 720
 gatctttaga atcattcata tatgtgggtt aggtcaattc agatcaacat gaagttcaat 780
 ttcaaattta gtagtgtttt gttttttaaa aaaaaaaaaaaa aaa 823

<210> 42
<211> 195
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (93)

<400> 42
Leu Glu Gly Lys Thr Ser Leu Pro Tyr Glu Pro Val Tyr Ser Asp Asp
1 5 10 15

Gln Ala Arg Phe Leu Ala Glu Tyr Arg Phe Asp Val Ser Lys Leu Glu
20 25 30

Pro Val Val Ala Lys Pro His Ser Pro Asp Asn Arg Ala Leu Ala Arg
35 40 45

Glu Cys Lys Asp Val Lys Ile Asp Arg Val Tyr Ile Gly Ser Cys Thr
50 55 60

Gly Gly Lys Thr Glu Asp Phe Met Ala Ala Lys Val Phe Leu Ala
65 70 75 80

Ser Gly Lys Gln Val Lys Val Pro Thr Phe Leu Val Xaa Ala Thr Gln
85 90 95

Lys Val Trp Met Asp Leu Tyr Ser Leu Pro Val Pro Gly Ser Gly Gly
100 105 110

Lys Thr Cys Ser Gln Ile Phe Glu Glu Val Gly Cys Asp Thr Pro Ala
115 120 125

Ser Pro Ser Cys Gly Ala Cys Leu Gly Gly Pro Lys Asp Thr Tyr Ala
130 135 140

Arg Met Asn Glu Pro Lys Val Cys Val Ser Thr Thr Asn Arg Asn Phe
145 150 155 160

Pro Gly Arg Met Gly His Lys Glu Gly Gln Ile Tyr Leu Ala Ser Pro
165 170 175

Tyr Thr Ala Ala Ala Ser Ala Leu Thr Gly Tyr Val Thr Asp Pro Arg
180 185 190

Glu Phe Leu
195

<210> 43
<211> 530
<212> DNA
<213> Triticum aestivum

<400> 43
gcacgagctt tattgtcgct gcaaagggtgt tccttagcttc gggcaagaag gttaagggttc 60
ccactttctt cgttccgtcg actaaaagg tggatggc cgttatagt ctccccgtac 120
caggatctgg tggaaaaca tgctcccaga tatttgaaaa ggctgggtgt gatacaccag 180
ctagtcctaa ttgtggcgct tgttgggtg gtcctcgta tacatatgca cggatgaatg 240
aacctacggt ctgttatca acgacgaaca ggaacctccc gggcaggatg ggccacaagg 300
aagggcagat ctacctggct tctcccttca ccgcggcggc ctcaagctttg acggatatg 360
tcacggacc cagggacttc ctgtcgtaga gatcttgaaa acaatgaatt tgtgtgcgg 420
accgtcctgt actggactt ttgttcgtg ttcaactg tagtttagat gcgtcatgtg 480
tgtgtcggtc tgagaaataa gctactcaac gagtagcagt tgtaactgtt 530

<210> 44
 <211> 126
 <212> PRT
 <213> Triticum aestivum

<400> 44
 Phe Ile Ala Ala Ala Lys Val Phe Leu Ala Ser Gly Lys Lys Val Lys
 1 5 10 15

Val Pro Thr Phe Leu Val Pro Ala Thr Gln Lys Val Trp Met Asp Val
 20 25 30

Tyr Ser Leu Pro Val Pro Gly Ser Gly Gly Lys Thr Cys Ser Gln Ile
 35 40 45

Phe Glu Glu Ala Gly Cys Asp Thr Pro Ala Ser Pro Asn Cys Gly Ala
 50 55 60

Cys Leu Gly Gly Pro Arg Asp Thr Tyr Ala Arg Met Asn Glu Pro Thr
 65 70 75 80

Val Cys Val Ser Thr Thr Asn Arg Asn Phe Pro Gly Arg Met Gly His
 85 90 95

Lys Glu Gly Gln Ile Tyr Leu Ala Ser Pro Phe Thr Ala Ala Ser
 100 105 110

Ala Leu Thr Gly Tyr Val Thr Asp Pro Arg Asp Phe Leu Ser
 115 120 125

<210> 45
 <211> 424
 <212> PRT
 <213> Methanococcus jannaschii

<400> 45
 Met Gly Met Thr Ile Val Glu Lys Ile Leu Ala Lys Ala Ser Gly Lys
 1 5 10 15

Lys Glu Val Ser Pro Gly Asp Ile Val Met Ala Asn Ile Asp Val Ala
 20 25 30

Met Val His Asp Ile Thr Gly Pro Leu Thr Val Asn Thr Leu Lys Glu
 35 40 45

Tyr Gly Ile Glu Lys Val Trp Asn Pro Glu Lys Ile Val Ile Leu Phe
 50 55 60

Asp His Gln Val Pro Ala Asp Ser Ile Lys Ala Ala Glu Asn His Ile
 65 70 75 80

Leu Met Arg Lys Phe Val Lys Glu Gln Gly Ile Lys Tyr Phe Tyr Asp
 85 90 95

Ile Arg Glu Gly Val Cys His Gln Val Leu Pro Glu Lys Gly His Val
 100 105 110

Ala Pro Gly Glu Val Val Val Gly Ala Asp Ser His Thr Cys Thr His
 115 120 125

Gly Ala Phe Gly Ala Phe Ala Thr Gly Ile Gly Ser Thr Asp Met Ala
 130 135 140

His Val Phe Ala Thr Gly Lys Leu Trp Phe Lys Val Pro Glu Thr Ile
 145 150 155 160

Tyr Phe Asn Ile Thr Gly Asp Leu Gln Pro Tyr Val Thr Ser Lys Asp
165 170 175

Val Ile Leu Ser Ile Ile Gly Glu Val Gly Val Asp Gly Ala Thr Tyr
180 185 190

Lys Ala Cys Gln Phe Gly Gly Glu Thr Val Lys Lys Met Ser Ile Ala
195 200 205

Ser Arg Met Thr Met Thr Asn Met Ala Ile Glu Met Gly Gly Lys Thr
210 215 220

Gly Ile Ile Glu Pro Asp Glu Lys Thr Ile Gln Tyr Val Lys Glu Ala
225 230 235 240

Met Lys Lys His Gly Thr Glu Arg Pro Phe Glu Val Ile Lys Gly Asp
245 250 255

Glu Asp Ala Glu Phe Ala Glu Val Tyr Glu Ile Glu Ala Asp Lys Ile
260 265 270

Glu Pro Val Phe Ala Cys Pro His Asn Val Asp Asn Val Lys Gln Ala
275 280 285

Arg Glu Val Ala Gly Lys Pro Ile Asp Gln Val Phe Ile Gly Ser Cys
290 295 300

Thr Asn Gly Arg Leu Glu Asp Leu Arg Met Ala Ile Lys Ile Ile Glu
305 310 315 320

Lys His Gly Gly Ile Ala Asp Asp Val Arg Val Val Val Thr Pro Ala
325 330 335

Ser Arg Glu Glu Tyr Leu Lys Ala Leu Lys Glu Gly Ile Ile Glu Lys
340 345 350

Phe Leu Lys Tyr Gly Cys Val Val Thr Asn Pro Ser Cys Ser Ala Cys
355 360 365

Met Gly Ser Leu Tyr Gly Val Leu Gly Pro Gly Glu Val Cys Val Ser
370 375 380

Thr Ser Asn Arg Asn Phe Arg Gly Arg Gln Gly Ser Leu Glu Ala Glu
385 390 395 400

Ile Tyr Leu Ala Ser Pro Ile Thr Ala Ala Ala Cys Ala Val Lys Gly
405 410 415

Glu Leu Val Asp Pro Arg Asp Leu
420

<210> 46

<211> 1033

<212> DNA

<213> Zea mays

<400> 46

atcatggcgg cggctctgtc gggacggcg gtgtccacgg cagcgcttct agccccatc 60
cgagctccaa ccagcgcgtt tatccggcgc tcccagctca cctgtcatcg cctccactca 120
ctaaaaatgcc gccgcgctgg gtccatcgct cccgcggccq ctgctgccgc ggccggcagc 180
agctcgccgt cgtcagccgt ttccacggc gagtgcttcg tggtgggcga caatatcgac 240
accgaccaga tcatccccgc cgagcacctc actctggtgc cctccaagcc ggacgagttac 300
cgcaagctcg gttcccttcgc cttcgcgggg ctcccatccg cggcttaccc gacggcgttc 360
gtcgctccgg gtgaggagtc ctcccgctac gccatcattg tcggcggagc caacttcggg 420
tgcgggttcct ctcgcgagca cgcgcggcgtc gcgctgggg ccgctggcgc acgcgcccatt 480
gttgcgsgagg gctacgcgcg catttttt ccgaactccg tggccactgg agaggtgtac 540

cctctggagc	tcacggacgt	tggggcctgg	aaggagtgc	agacagggga	tgtggtcacc	600
gtggaccttgc	ctaactccgt	ttttatataac	cacacctctg	gcaaggagta	caagctgaaa	660
ccaattgtgt	atgtggccc	tgtatggag	gcggggaggga	tctttgccta	cgccccggaaag	720
acaggaatga	ttgcgtcgaa	agctgctgca	tgaggggaaag	cttatgcagc	cgagcctctg	780
cggagatgaa	gaagtaagct	ggagtttagga	ctaagaggtta	ctgcacccat	ttgatgtcga	840
cggtgtctca	aaataagttg	cggcctaccg	aaattatgtat	aatcaatca	atttgggtctt	900
tgtcacagat	cgtttttttt	tgtlactagt	acttgtacaa	ttgtactcct	gcctgctact	960
gttcttatct	gttgaataa	ctgctctgtt	gccaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1020
aaaaaaaaaa	aaa					1033

<210> 47
<211> 249
<212> PRT
<213> Zea mays

<400> 47						
Met Ala Ala Ala Leu Ser Gly Thr Ala Val Ser Thr Ala Ala Leu Leu						
1	5	10			15	
Ala Pro Ile Arg Ala Pro Thr Ser Ala Phe Ile Arg Arg Ser Gln Leu						
20	25	30				
Thr Cys His Arg Leu His Ser Leu Lys Cys Arg Arg Ala Gly Ser Ile						
35	40	45				
Val Pro Ala Ala Ala Ala Ala Gly Ser Ser Ser Pro Ser Ser						
50	55	60				
Ala Val Phe His Gly Glu Cys Phe Val Val Gly Asp Asn Ile Asp Thr						
65	70	75			80	
Asp Gln Ile Ile Pro Ala Glu His Leu Thr Leu Val Pro Ser Lys Pro						
85	90	95				
Asp Glu Tyr Arg Lys Leu Gly Ser Phe Ala Phe Ala Gly Leu Pro Ser						
100	105	110				
Ala Ala Tyr Pro Thr Pro Phe Val Ala Pro Gly Glu Ser Ser Arg						
115	120	125				
Tyr Ala Ile Ile Val Gly Gly Ala Asn Phe Gly Cys Gly Ser Ser Arg						
130	135	140				
Glu His Ala Pro Val Ala Leu Gly Ala Ala Gly Ala Arg Ala Ile Val						
145	150	155			160	
Ala Glu Gly Tyr Ala Arg Ile Phe Phe Arg Asn Ser Val Ala Thr Gly						
165	170	175				
Glu Val Tyr Pro Leu Glu Leu Thr Asp Val Gly Ala Trp Lys Glu Cys						
180	185	190				
Lys Thr Gly Asp Val Val Thr Val Asp Leu Ala Asn Ser Val Phe Ile						
195	200	205				
Asn His Thr Ser Gly Lys Glu Tyr Lys Leu Lys Pro Ile Gly Asp Ala						
210	215	220				
Gly Pro Val Ile Glu Ala Gly Gly Ile Phe Ala Tyr Ala Arg Lys Thr						
225	230	235			240	
Gly Met Ile Ala Ser Lys Ala Ala Ala						
245						
<210> 48						
<211> 1112						

<212> DNA
<213> Oryza sativa

<400> 48

gaagtgggtc tccctcacac actgaacacc atggcgccgg cggcgccgc tccggctcta 60
tccttggccg aggccgcgc ggtgacagca gttctggcac cgtgtcccac gccctcgagg 120
acgttccgcc gcccgagctg ggtcgccgct atctgcccgc cggccctgaa atgcccaccac 180
agtctgtcccc tgaccggccgt ggtcgccgctg gtcgcccgtc cggctgcggc gggggactcg 240
acgtcgccgc gcgtattcca cggcgagtg tcgtcgctgg gggataacat cgacaccgac 300
cagatcatcc cggccgagca cctgaccctg gtcccgtcca agcccgacga gtaccgcaag 360
ctcggctcgta tcgccttcgt cggcctcccc accgcggcct acccgacgac gttcgtcgcc 420
cccggcgagg agaccacccg ctacggcgtc atcatcgccg ggcacactt cgctgcggc 480
tcctcccgcg agcacgcgcg cgtcgccctg ggcgcgcgcg ggcgcgcgc cgctcggtggc 540
gagggtctcg cgcgcacattt cttccgcac tccgtggcca ccgggtgagggt ctaccgttg 600
gagctagccg acactggagc ctggaaaggag tgcaagaccc gggatgtggt cacgggtggaa 660
cttggataatt gcgtcatgt caaccacaca tccggcaagc agtacaagct gaagcctatc 720
ggcgatgcgg ggccggttat tgaggcaggc gggatctttg cctatggccg gaagaccgga 780
atgatcgcat ccaagtctgc gtgagggaaa ggcgagttt gtctgctgtc aagatagtcg 840
aggcctctgc agatagcaag taagactggg ttgtggattt gaacctattt cacctctatg 900
cgattgtcca tcagttgtac tgctgtttt acctaggttt tgtgtcatca gtgggtttt 960
tggaaataagt taaaagttac agagtactga actatgtat attagttccat gtgatcttat 1020
gtaacacccctt atgtaataca ctcgttata cctgcccattt tgccatatctc gtttcgataaa 1080
aaaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aa 1112

<210> 49

<211> 257

<212> PRT

<213> Oryza sativa

<400> 49

Met Ala Ala Ala Ala Ala Pro Ala Leu Ser Leu Ala Glu Ala Ala
1 5 10 15

Pro Val Thr Ala Val Leu Ala Pro Cys Pro Thr Pro Ser Arg Thr Phe
20 25 30

Arg Arg Arg Ser Trp Val Ala Ala Ile Cys Arg Pro Ala Leu Lys Cys
35 40 45

His His Ser Arg Pro Leu Thr Ala Val Val Ala Ala Ala Ala Ala
50 55 60

Ala Ala Ala Gly Asp Ser Thr Ser Ala Gly Val Phe His Gly Glu Cys
65 70 75 80

Phe Val Val Gly Asp Asn Ile Asp Thr Asp Gln Ile Ile Pro Ala Glu
85 90 95

His Leu Thr Leu Val Pro Ser Lys Pro Asp Glu Tyr Arg Lys Leu Gly
100 105 110

Ser Phe Ala Phe Val Gly Leu Pro Thr Ala Ala Tyr Pro Thr Pro Phe
115 120 125

Val Ala Pro Gly Glu Glu Thr Thr Arg Tyr Ala Val Ile Ile Gly Gly
130 135 140

Ala Asn Phe Gly Cys Gly Ser Ser Arg Glu His Ala Pro Val Ala Leu
145 150 155 160

Gly Ala Ala Gly Ala Arg Ala Val Val Ala Glu Gly Tyr Ala Arg Ile
165 170 175

Phe Phe Arg Asn Ser Val Ala Thr Gly Glu Val Tyr Pro Leu Glu Leu
180 185 190

Ala Asp Thr Gly Ala Trp Lys Glu Cys Lys Thr Gly Asp Val Val Thr
195 200 205

Val Glu Leu Asp Asn Cys Val Met Ile Asn His Thr Ser Gly Lys Gln
210 215 220

Tyr Lys Leu Lys Pro Ile Gly Asp Ala Gly Pro Val Ile Glu Ala Gly
225 230 235 240

Gly Ile Phe Ala Tyr Ala Arg Lys Thr Gly Met Ile Ala Ser Lys Ser
245 250 255

Ala

<210> 50
<211> 1107
<212> DNA
<213> Glycine max

<400> 50
tggaaatgag aaaatagacg gaagttagag aggaggact gagcatccaa caatggcatt 60
gcacgagggt ctcttctgcc gcaaccgttc ttccctcgaa cctggcattc accaaactct 120
ccctctctca ctctcacact ctcttacccgc gcttccttc tttcccaact cccaaagtcat 180
caaaccctcg caaccgcgtc gcagtcttc tccaaacccc acgcgctcaa tccgcccgt 240
ccgcttctcc ctccgcctcc ttccacgcgc tctgctacgt cgtcggcgac aatatcgaca 300
ccgaggat cattccgcgc gagtacctca ccctcgcccc ttccaagccc gacgagtacg 360
agaagctcgg ctcctacgccc ctcatcgccc tccccggccac ctacgcacag cgtttcatcg 420
aacccggcga gataaaaacc aagtacgcgc tcgtcatcg tggtgccaaac ttcgggttgcg 480
gctccctcccg cgagcacgcgc cccgtcgccgc tgggcgcctc cggcgccgccc gcagtggtcg 540
cggagtcgta cgctaggatc ttcttcggaa actccgtggc caccggcgag gtgtatccgc 600
tagagtcgga gggacgcctc tgcgaggagt gcaccacccgg cgatgtggtg acgattgagc 660
tcggagagag ccgcttgcata aatcacacca ccggaaaggaa gtatgccttgc aaaccgatcg 720
gcgacgcggg tccagtgtac gaggccgggt qcattttgc ctatgccagg aaaacccggca 780
tgattccctc tcgttgagtt cttaggtga gggcagtgaa ctctgctatc cttagcttgc 840
atgacatgtctcataagaaa tgtattgacc caatggatgc cttagcttgc tccatttatca 900
aataggctag aacttgcaga gatataatac atggcaatag aaagtgtgtt ttaatggttc 960
ttgtatccac gaaatgggac caatttgcc ccatttatca atcagaatgg tacttatttt 1020
tcctcgggca aaaaaaaaaaaaaaa aaaaaaag 1080
1107

<210> 51
<211> 263
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (4)

<400> 51
Met Arg Lys Xaa Thr Glu Val Arg Glu Glu Ala Leu Ser Ile Gln Gln
1 5 10 15

Trp Pro Cys Thr Arg Phe Ser Ser Ala Ala Thr Val Leu Pro Arg Asn
20 25 30

Leu Ala Phe Thr Lys Leu Ser Leu Ser His Ser His Thr Leu Leu Pro
35 40 45

Arg Phe Leu Ser Phe Pro Thr Pro Lys Ser Ser Asn Pro Arg Asn Arg
50 55 60

Val Ala Val Ser Leu Gln Thr Pro Arg Ala Gln Ser Ala Ala Ser Ala
65 70 75 80

Ser Pro Ser Ala Ser Phe His Gly Leu Cys Tyr Val Val Gly Asp Asn
85 90 95

Ile Asp Thr Asp Gln Ile Ile Pro Ala Glu Tyr Leu Thr Leu Val Pro
100 105 110

Ser Lys Pro Asp Glu Tyr Glu Lys Leu Gly Ser Tyr Ala Leu Ile Gly
115 120 125

Leu Pro Ala Thr Tyr Ala Thr Arg Phe Ile Glu Pro Gly Glu Ile Lys
130 135 140

Thr Lys Tyr Ala Ile Val Ile Gly Gly Ala Asn Phe Gly Cys Gly Ser
145 150 155 160

Ser Arg Glu His Ala Pro Val Ala Leu Gly Ala Ser Gly Ala Ala Ala
165 170 175

Val Val Ala Glu Ser Tyr Ala Arg Ile Phe Phe Arg Asn Ser Val Ala
180 185 190

Thr Gly Glu Val Tyr Pro Leu Glu Ser Glu Gly Arg Leu Cys Glu Glu
195 200 205

Cys Thr Thr Gly Asp Val Val Thr Ile Glu Leu Gly Glu Ser Arg Leu
210 215 220

Ile Asn His Thr Thr Gly Lys Glu Tyr Arg Leu Lys Pro Ile Gly Asp
225 230 235 240

Ala Gly Pro Val Ile Glu Ala Gly Gly Ile Phe Ala Tyr Ala Arg Lys
245 250 255

Thr Gly Met Ile Pro Ser Arg
260

<210> 52

<211> 995

<212> DNA

<213> Triticum aestivum

<400> 52

gcacgagcgg cggtgtccac ggcagcgctt ctagccccaa tccgagctcc aaccagcgcg 60
tttatccggc gctccagct cacctgtcat cgcctccact cactaaaatg ccggccgcgt 120
gggtccatcg tcccccgcc cgctgctgcc gcggcgggca gcagctcgcc gtcgtcagcc 180
gttttccacg gcgagtgttt cgtgggtggc gacaatatcg acaccgacca gatcatcccc 240
gcggagcaccc tcactctggt gcccctccaag cggagcggat accgcgaagct cggttccttc 300
gccttcgcgg ggctccatc cggggcctac cggacggcgt tcgtcgctcc gggtgaggag 360
tcctcccgct acggccatcat tgccggcggg gccaatctcg ggtgcgggtc ctctcgcgag 420
cacgcgcccc tcgcgttgg ggccgctggc gcacgcgcca ttgtgcggg gggatcgcg 480
cgcatctttt ttgcgaactc cgtgggcaact ggagagggtt accctctgg gcteacggac 540
gttggggcct ggaaggagtg caagacaggg gatgtggta cccgtggacct tgctaactcc 600
gttttattt accacacctc tggcaaggag tacaagctga aaccaattgg tgatgctggc 660
cctgttaattt aggcgggagg gatcttgc taccggccgg agacagggat gattgcgtcg 720
aaagctgtcg catgagggaa agatcagctt atgcagccga gcctctgcgg agatgaagaa 780
gtaagctgga gttaggacta agagttactg cacctactt atgtcgacgg tgtctaaaa 840
taagttgcgg cctaccggaa ttatgtgaa tcaatcaatt tggtgtttgt cacagatcgt 900
ttttttttgt tacttagtact tgtacaattt tactccgtcc tgctactgtt cttatctgtt 960
tgaataactg ctctgttgc atctaaaaaa aaaaa 995

<210> 53

<211> 244

<212> PRT

<213> Triticum aestivum

<400> 53
 Ala Arg Ala Ala Val Ser Thr Ala Ala Leu Leu Ala Pro Ile Arg Ala
 1 5 10 15
 Pro Thr Ser Ala Phe Ile Arg Arg Ser Gln Leu Thr Cys His Arg Leu
 20 25 30
 His Ser Leu Lys Cys Arg Arg Ala Gly Ser Ile Val Pro Ala Ala Ala
 35 40 45
 Ala Ala Ala Ala Gly Ser Ser Pro Ser Ser Ala Val Phe His Gly
 50 55 60
 Glu Cys Phe Val Val Gly Asp Asn Ile Asp Thr Asp Gln Ile Ile Pro
 65 70 75 80
 Ala Glu His Leu Thr Leu Val Pro Ser Lys Pro Asp Glu Tyr Arg Lys
 85 90 95
 Leu Gly Ser Phe Ala Phe Ala Gly Leu Pro Ser Ala Ala Tyr Pro Thr
 100 105 110
 Pro Phe Val Ala Pro Gly Glu Ser Ser Arg Tyr Ala Ile Ile Val
 115 120 125
 Gly Gly Ala Asn Phe Gly Cys Gly Ser Ser Arg Glu His Ala Pro Val
 130 135 140
 Ala Leu Gly Ala Ala Gly Ala Arg Ala Ile Val Ala Glu Gly Tyr Ala
 145 150 155 160
 Arg Ile Phe Phe Arg Asn Ser Val Gly Thr Gly Glu Val Tyr Pro Leu
 165 170 175
 Glu Leu Thr Asp Val Gly Ala Trp Lys Glu Cys Lys Thr Gly Asp Val
 180 185 190
 Val Thr Val Asp Leu Ala Asn Ser Val Phe Ile Asn His Thr Ser Gly
 195 200 205
 Lys Glu Tyr Lys Leu Lys Pro Ile Gly Asp Ala Gly Pro Val Ile Glu
 210 215 220
 Ala Gly Gly Ile Phe Ala Tyr Ala Arg Lys Thr Gly Met Ile Ala Ser
 225 230 235 240
 Lys Ala Ala Ala

<210> 54
 <211> 113
 <212> PRT
 <213> Lactococcus lactis

<400> 54
 Met Lys Thr Tyr Lys Gly Thr Ser Val Val Met Asn Asp Asn Asp Thr
 1 5 10 15
 Asp Lys Lys Ala Asp Lys Lys Gly Gly Lys Asn Tyr Trp Arg Tyr Lys
 20 25 30
 Asp Tyr Asp Asn Asp Asn Ala Lys Tyr Lys Lys Ala Ser Ser Gly Asp
 35 40 45
 Asn Gly Ser Gly Ser Ser Arg His Ala Ala Trp Ala Ser Asp Tyr Gly
 50 55 60

Arg Ala Ala Gly Ser Tyr Ser Asp Tyr Asn Asn Ala Lys Asn Gly Lys
65 70 75 80

Arg Val Asn Thr Lys Ser Ser Thr Asp His Thr Ser Gly Asp His Asp
85 90 95

Trp Lys Asp Lys Asn Gly Asp Asp Gly Thr Tyr Ala Ser Ala Tyr Lys
100 105 110

Asn