Heaps

6.006 Lecture 4

Today's plan

- Priority Queues
- Heaps
 - Heapsort: Another O(n log n) sorting algorithm!

Priority Queue

An abstract data structure implementing a set *S* of elements, each associated with a *key*, supporting the following operations:

insert(S, x): insert element x = (name(x), key(x)) into set S

 $\max(S)$: return element of S with largest key

extract_max(S): return element of S with largest key and

remove it from S

increase_key(S, x, k): Change key-value of x to k

(assumed to be increase)

Tons of applications!

e.g. triage in hospital based on how bad things are going

Priority Queue

```
insert(S, x): insert element x = (name(x), key(x)) into set S
```

```
\max(S): return element of S with largest key
```

extract_max(S): return element of S with largest key and
remove it from S

increase_key(S, x, k): increase the value of element x's key to new value k (assumed to be as large as current value)

S: Insert(S, (Ronitt,5)): Extract_max(S): Increase_key(S, (Ronitt,33)):

 $(Debayan, 25) \\ (Erik, 15) \\ (Erik, 15) \\ (Ronitt, 5) \\ (Ronitt, 5) \\ (Ronitt, 5) \\ (Ronitt, 33) \\ (Ronitt, 3$

How do we best implement it?

Priority Queue: First (slow) idea

Maintain an (unsorted) array?

```
insert(S, x): insert x into S O(1)
```

 $\max(S)$: return largest element O(n) to find

extract_max(S): return largest element and remove

O(n) to find

increase_key(S, x, k): increase the value of element x' s key to new value k

(assumed to be as large as current value)

O(n) to find

Priority Queue: Second (slow) idea

Maintain a sorted array (based on keys)?

```
\operatorname{insert}(S,x): \operatorname{insert}x\operatorname{into}S O(n) to shift others right \operatorname{max}(S): return largest element O(1) to find \operatorname{extract\_max}(S): return largest element and remove O(1) to find, then O(n) to shift others left \operatorname{increase\_key}(S,x,k): increase the value of element x' s key to \operatorname{new} \operatorname{value} k (assumed to be as large as current value)
```

O(n) to find, then O(n) to shift left

Let's apply our 6.006 data structure superpowers!

New data structure

(Max) Heap

- A nearly complete binary tree
- Max Heap Property (MHP): key of a node ≥ keys of its children (Min Heap defined analogously)

Important fact:

Height of the tree is always O(log n)

Missing only rightmost nodes on bottom level

Heap Operations

insert:

max:

extract_max:

increase_key:

build_max_heap: produce a max-heap from an unordered

array

max_heapify: correct a single violation of the heap

property at the root (rest of heap is fine)

Heap operations can be used to implement priority queue!

Representation via array

root: first element in the array (i=1)

parent(i): floor(i/2) returns index of node's parent

left(i): 2i returns index of node's *left* child

right(i): 2i+1 returns index of node's right child

(Why? No pointers needed!)

Important detail: index elements starting from **i=1**

Why Heaps?

Key consequence of Max Heap Property:

Root/first element is always the max \rightarrow can do max(S) in $\Theta(1)$ time! (Note: the array is not sorted though!)

But: How to maintain the Max Heap Property property after insert/extract_max/increase_key?

max_heapify(A[i]): Corrects a single violation of Max Heap Property in a subtree rooted at i only

How to implement it?

- \rightarrow Assume that the trees rooted at left(i) and right(i) are Max Heaps
- → If element A[i] violates the MHP, correct violation by "trickling" this element down the tree, making the subtree rooted at i a Max Heap (Important: Always swap with the <u>larger</u> of two children. Why?)

max_heapify(A[i]): Corrects a **single** violation of Max Heap Property in a subtree rooted at **i only**

In other words:

- \rightarrow Assume that the trees rooted at left(i) and right(i) are Max Heaps
- → If element A[i] violates the MHP, correct violation by "trickling" this element down the tree, making the subtree rooted at i a Max Heap (Important: Always swap with the <u>larger</u> of two children)

max_heapify(A[i]): Corrects a **single** violation of Max Heap Property in a subtree rooted at **i only**

In other words:

- \rightarrow Assume that the trees rooted at left(i) and right(i) are Max Heaps
- → If element A[i] violates the MHP, correct violation by "trickling" this element down the tree, making the subtree rooted at i a Max Heap (Important: Always swap with the <u>larger</u> of two children)

max_heapify(A[i]): Corrects a single violation of Max Heap Property in a subtree rooted at i only

In other words:

- \rightarrow Assume that the trees rooted at left(i) and right(i) are Max Heaps
- → If element A[i] violates the MHP, correct violation by "trickling" this element down the tree, making the subtree rooted at i a Max Heap (Important: Always swap with the <u>larger</u> of two children)

 Swap the root with the last element of the heap

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP:Max_heapify the root

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP:Max_heapify the root

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP:Max_heapify the root

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP:Max_heapify the root

- Swap the root with the last element of the heap
- Now we can remove it from the heap (decrease the heap size by one)
- To fix MHP: Max_heapify the root
- Done!

Run time?

- \rightarrow $\Theta(1)$ (swapping) + $\Theta(1)$ (removal) + $O(\log n)$ (max_heapify)
- \rightarrow total: $\Theta(\log n)$ (worst case)

(in a sense: "reversing" the extract_max)

Run time?

- \rightarrow $\Theta(1)$ (addition) + O (log n) (promotion up the tree)
- \rightarrow total: $\Theta(\log n)$ (worst case)

(Similar to Insert)

(Similar to Insert)

(Similar to Insert)

- Increase the key value
- To fix MHP:

Again, "promote" the new element up the tree

(Similar to Insert)

Increase the key value

Again, "promote" the new element up the tree

Run time?

- \rightarrow $\Theta(1)$ (key value increase) + $O(\log n)$ (promotion up the tree)
- \rightarrow total: $\Theta(\log n)$ (worst case)

How to build a heap from a scratch?

Simple way:

- → Start with an empty heap
- → Insert all the **n** elements into it
- \rightarrow Total time: $\Theta(n \log n)$ (worst-case)

Iterative (and in-place) way:

build_max_heap(A):
for i=n downto 1
do max_heapify(A,i)

→ Total time? At first glance: ②(n log n) (cost of n max_heapify)

O(n log n)

Actually: Θ(n)

Build_Max_Heap Analysis

Converts A[1...n] to a max heap

Build_Max_Heap(A):
for i=n/2 downto 1
do Max_Heapify(A, i)

O(l) time for nodes that are l levels above leaves. We have n/4 nodes with level 1, n/8 with level 2,...

Build_Max_Heap Analysis

Converts A[1...n] to a max heap

Total amount of work in the for loop can be summed as:

$$n/4 (1 c) + n/8 (2 c) + n/16 (3 c) + ... + 1 (lg n c)$$

Setting $n/4 = 2^k$ and simplifying we get:

c
$$2^k(1/2^0 + 2/2^1 + 3/2^2 + ... (k+1)/2^k)$$

The term is brackets is bounded by a constant!

This means that Build_Max_Heap is O(n)

Cool application: Sorting

Heapsort: Sorting using a heap/priority queue

- → Build a heap out of all elements
- → Extract_max all elements one-by-one in an (inversely) sorted order!
- \rightarrow Total time: $\Theta(n \log n)$ (worst-case)

This is a different algorithm than Merge sort!

In particular: Heapsort is actually an in-place algorithm (once we unravel the implementation of the heap)

More applications of heaps:

Source: xkcd.com