

CSC380: Principles of Data Science

Statistics 4

Xinchen Yu

Review: Sample Mean for Bernoulli

Sample mean:
$$\hat{p} = \frac{1}{N} \sum_{i} X_{i}$$

Expectation:
$$\mathbf{E}[\hat{p}(X)] = \mathbf{E}\left[\frac{1}{N}\sum_{i}X_{i}\right]$$

$$\stackrel{\text{(a)}}{=}\frac{1}{N}\sum_{i}\mathbf{E}\left[X_{i}\right]$$

$$\stackrel{\text{(b)}}{=}\frac{1}{N}Np = p$$

Variance:
$$\mathbf{Var}(\hat{p}) = \mathbf{Var}\left(\frac{1}{N}\sum_{i}X_{i}\right)$$

$$\stackrel{(a)}{=} \frac{1}{N^2} \mathbf{Var} \left(\sum_i X_i \right)$$

$$\stackrel{(b)}{=} 1 \sum_i X_i \left(X_i \right)$$

$$\stackrel{(b)}{=} \frac{1}{N^2} \sum \mathbf{Var} \left(X_i \right)$$

$$\stackrel{(c)}{=} \frac{1}{N^2} \sum_{i=1}^{n} p(1-p) = \frac{1}{N} p(1-p) = \frac{1}{N} \mathbf{Var}(X)$$

Review: Sample Mean for Gaussian

(Property of Gaussian:
$$E[X] = \mu_x$$
, $Var[X] = \sigma_x^2$)

Expectation:
$$\mathbf{E}[\hat{p}(X)] = \mathbf{E} \left[\frac{1}{N} \sum_{i} X_{i} \right]$$

$$\stackrel{\text{(a)}}{=} \frac{1}{N} \sum_{i} \mathbf{E}[X_{i}]$$

Variance:
$$\mathbf{Var}(\hat{p}) = \mathbf{Var}\left(\frac{1}{N}\sum_{i}X_{i}\right)$$

$$\stackrel{(a)}{=} \frac{1}{N^{2}}\mathbf{Var}\left(\sum_{i}X_{i}\right)$$

$$\stackrel{(b)}{=} \frac{1}{N^{2}}\sum_{i}\mathbf{Var}(X_{i})$$

$$= \frac{1}{N}\mathbf{Var}(X)$$

Review: Sample Variance

Sample variance:
$$\hat{\sigma}^2 = \frac{1}{N} \sum_i (X_i - \hat{\mu})^2$$
 Source of bias: plug-in mean estimate

Expectation:
$$\mathbf{E}[\hat{\sigma}^2] = \frac{1}{N} \sum_{i} \mathbf{E}\left[(X_i - \hat{\mu})^2 \right] = \text{boring algebra} = \frac{N-1}{N} \sigma^2$$

Correcting bias :
$$\hat{\sigma}_{\text{unbiased}}^2 = \frac{N}{N-1} \hat{\sigma}^2 = \frac{1}{N-1} \sum_i (X_i - \hat{\mu})^2$$

$$E \left[\hat{\sigma}_{\text{unbiased}}^2 \right] = \sigma^2$$

Biased version has lower MSE: Bias-Variance tradeoff

Point estimate vs Interval estimate

- Point estimate: a sample statistic calculated using the sample data to estimate the most likely value of the corresponding unknown population parameter.
- Interval estimate: a range of values constructed from sample data so that the population parameter will likely occur within the range at a specified probability.

Confidence Intervals

Informally, find an interval such that we are *pretty sure* it encompasses the true parameter value.

failure rate

Given data X_1, \ldots, X_n and confidence $\alpha \in (0, 1)$ find interval (a, b) such that,

$$P(\theta \in (a,b)) \ge 1 - \alpha$$

The interval (a,b) contains the true parameter value θ with probability **at least** $1-\alpha$

Interval Estimate of the Population Mea based on sample data

Confidence Intervals

The interval (a,b) contains the true parameter value θ with probability **at least** $1-\alpha$

- Intervals must be computed from data: i.e., $a(X_1, ..., X_n)$ and $b(X_1, ..., X_n)$
- Interval (a,b) is random
- parameter θ is **not random** (it is fixed)

• Usually, you compute an estimator $\hat{\theta}$ and then set $a = \hat{\theta} - \epsilon_a$ and $b = \hat{\theta} - \epsilon_b$ for a carefully chosen $\epsilon_a, \epsilon_b > 0$

Finding Confidence Interval

- Suppose X follows a distribution, given: $P(X \in [-1.96, 1.96]) = 0.95$
 - We are 95% sure that X will fall into the interval [-1.96, 1.96]
- If we find the distribution of $\widehat{\mu} \mu$, we can get the interval that has the probability as 95% (or 99%, can choose confidence level)
- Use $\widehat{\mu}$ and the interval to calculate a range for μ , so that we are 95% sure μ fall into the range

Q: how to find the distribution of $\widehat{\mu} - \mu$?

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 . Let $\hat{\mu} := \frac{1}{n} \sum_i X_i$.

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

quiz candidate

$$\sqrt{n}\frac{\widehat{\mu}-\mu}{\sigma}\sim N(0,1)$$

Recall:

Closed under additivity:

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$
 $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

• Closed under affine transformation (a and b constant):

$$aX + b \sim \mathcal{N}(a\mu_x + b, a^2\sigma_x^2)$$

$$\sum_{i=1}^n X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$
 Use this with $X = \sum_{i=1}^n X_i$, $a = \frac{1}{n}$, $b = 0$.

CDF of Normal Distribution

(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

$$P(Z \in [-\mathbf{z}, \mathbf{z}]) = 1 - 2(1 - \Phi(\mathbf{z}))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

$$P(Z \in [-z, z]) = 1 - 2(1 - \Phi(z))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

(Corollary)

$$P\left(\hat{\mu} \in \left[\mu - \frac{z\sigma}{\sqrt{n}}, \mu + \frac{z\sigma}{\sqrt{n}}\right]\right) = 1 - 2\left(1 - \Phi(z)\right)$$

hints: use the fact $\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \sim N(0,1)$. Set $Z \coloneqq$

$$\sqrt{n}\frac{\hat{\mu}-\mu}{\sigma}$$
 and use Fact 2.

Terminology: "standard" normal distribution := $\mathcal{N}(0,1)$

Gaussians almost do not have tails!

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 . Let $\hat{\mu} := \frac{1}{n} \sum_i X_i$.

Fact 1
$$\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \sim N(0, 1)$$

$$Z \sim N(0, 1)$$

$$P(Z \in [-z, z]) = 1 - 2(1 - \phi(z))$$

$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$z = 1.96: \text{RHS} \approx .95, 95\% \text{ confident}$$

$$z = 2.58: \text{RHS} \approx .99,$$

$$P\left(\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \in [-z, z]\right) = 1 - 2(1 - \phi(z))$$

$$P\left(\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \in [-z, z]\right) = P\left(\widehat{\mu} \in \left[\mu - \frac{z\sigma}{\sqrt{n}}, \mu + \frac{z\sigma}{\sqrt{n}}\right]\right)$$

Finally, by our corollary,

$$P\left(\widehat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\widehat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

note we can switch $\hat{\mu}$ and μ $P\left(\mu \in \left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]\right)$ ≥ 0.95

$$\widehat{\mu} \in [\mu - 3, \mu + 3]$$

$$\mu - 3 \le \widehat{\mu} \le \mu + 3$$

$$\widehat{\mu} - 3 \le \mu \le \widehat{\mu} + 3$$

This is a confidence bound for the mean μ !!

=> Compute
$$\left|\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right|$$
. Done!

Warning

Question How should we interpret a confidence interval (e.g. 95%)?

$$P(\theta \in (a(X), b(X))) \ge 0.95$$

Hint Think about what is random and what is not...

This is NOT about the randomness of θ

Wrong If someone reveals θ when we have exactly the same data, then θ will be in the interval with probability at least 95%

the moment you compute the interval with the data, whether or not θ is in the interval is determined.. you just don't know it!

This is commonly misinterpreted

Caveat: interpreting confidence intervals

Recommended point of view:

universe 1: get confidence interval 1

universe 2: get confidence interval 2

.

universe m: get confidence interval m

Caveat: interpreting confidence intervals

Recommended point of view:

- Assume: Heights of UA students follow a normal distribution $\mathcal{N}(\mu, 1)$ with unknown μ
- Fork m <u>parallel universes</u>. For each universe $u \in \{1, 2, ..., m\}$,
 - Subsample n UA students randomly, take the sample mean $\hat{\mu}^{(u)}$.
 - Compute the confidence bound $\left[\hat{\mu}^{(u)} \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu}^{(u)} + \frac{1.96\sigma}{\sqrt{n}}\right]$

- The fraction of parallel universes where the random interval includes μ is approximately at least 0.95 if m is large enough.
- As m goes to infinity, the fraction will become arbitrarily close to a value that is at least 0.95.

Confidence bounds for arbitrary distributions

Recall: If $X_1, ..., X_n$ from an **arbitrary** distribution, can we still use the same method used for Gaussian?

Short answer: YES, if n is large enough.

Central limit theorem

$$\lim_{N \to \infty} \frac{\sqrt{N}}{\sigma} (\bar{X}_N - \mu) \to \mathcal{N}(0, 1)$$

Q: What if n is not large enough (<30)?

Method 1: Gaussian (Corrected)

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 .

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma} \sim N(0,1)$$
 T-dist
(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

$$P(Z \in [-\mathbf{z}, \mathbf{z}]) = 1 - 2(1 - \Phi(\mathbf{z}))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

Let:
$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$P\left(\widehat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\widehat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

=> Compute $\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$. Done!

Q: what if σ^2 is unknown and sample size is small (< 30)?

Method 1: Gaussian (Corrected)

Recall: Gaussian confidence interval with $\sqrt{n} \frac{\hat{\mu}_n - \mu}{\sigma} \sim \mathcal{N}(0,1)$. What if we use $\hat{\sigma}^2$ instead of σ ?

(Theorem) $X_1, ..., X_n$ with unknown μ, σ^2 .

Let
$$\widehat{UVar}_n \coloneqq \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2$$
 (unbiased version of sample variance). Then, $\sqrt{n} \frac{\widehat{\mu}_n - \mu}{\sqrt{UVar}_n} \sim \text{student-t(mean 0, scale 1, degrees of freedom = } n-1)$

As df approaches infinity, T distribution becomes gaussian

T scores for different df

(recall: 1.96 for gaussian)

much larger number compensates for the inaccuracy of $\hat{\sigma}^2$

import scipy.stats as st alpha = 0.05 st.t.ppf(1-alpha/2,df=2) => 4.302652729911275

st.t.ppf(1-alpha/2,df=5) => 2.5705818366147395

st.t.ppf(1-alpha/2,df=10) => 2.2281388519649385

st.t.ppf(1-alpha/2,df=30) => 2.0422724563012373

st.t.ppf(1-alpha/2,df=100) => 1.9839715184496334

T Table

Degrees	Significance level					
of	20%	10%	5%	2%	1%	0.1%
freedom	(0.20)	(0.10)	(0.05)	(0.02)	(0.01)	(0.001)
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31.598
3	1.638	2.353	3.182	4.541	5.841	12.941
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.859
6	1.440	1.943	2.447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.405
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
40	1.303	1.684	2.021	2.423	2.704	3.551
60	1.296	1.671	2.000	2.390	2.660	3.460
120	1.289	1.658	1.980	2.158	2.617	3.373
œ	1.282	1.645	1.960	2.326	2.576	3.291

Method 1: Gaussian (Corrected)

With a similar derivation we have done before, With at least 95% confidence:

$$\left[\hat{\mu}-t_{\alpha/2,n-1}\frac{\hat{\sigma}}{\sqrt{n}},\hat{\mu}+t_{\alpha/2,n-1}\frac{\hat{\sigma}}{\sqrt{n}}\right]$$

Where $t_{\alpha/2,n-1}$ can be computed numerically.

Key take away: more conservative!
=> more likely to be correct.

<u>Common practice</u>: Apply this method even if we do not know whether true distribution is Gaussian.

(recall: 1.96 for gaussian)

much larger number compensates for the inaccuracy of $\hat{\sigma}^2$

import scipy.stats as st alpha = 0.05 st.t.ppf(1-alpha/2,df=2) => 4.302652729911275

st.t.ppf(1-alpha/2,df=5) => 2.5705818366147395

st.t.ppf(1-alpha/2,df=10) => 2.2281388519649385

st.t.ppf(1-alpha/2,df=30) => 2.0422724563012373

st.t.ppf(1-alpha/2,df=100) => 1.9839715184496334

Method 2: Bootstrap

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 .

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

$$P(Z \in [-\mathbf{z}, \mathbf{z}]) = 1 - 2(1 - \Phi(\mathbf{z}))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

Let:
$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$P\left(\widehat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\widehat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

=> Compute
$$\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$$
. Done!

Directly approximate distributions of $\widehat{\mu} - \mu$