武汉大学 2021-2022 第一学期高等数学 B1 期末试卷 A卷

- 1、(9分) 求极限 $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x\cos x}}{\tan x^3}$.
- 2、(10 分) 已知曲线 $\begin{cases} x = t + \sin t \\ y = e^t \cos t \end{cases}$, 求 $\frac{dy}{dx}$, 并求该曲线在点(0,1)处的切线方程.
- 3、(10 分) 已知 $\int x f(x) dx = \arctan x + C$, 求 f(x), 并计算 $\int f(x) dx$.
- 4、(10分)(1) 求齐次线性微分方程 $y^{(4)} 6y''' + 13y'' = 0$ 的通解;
 - (2) 对于非齐次方程 $y^{(4)} 6y''' + 13y'' = x + e^{3x} \cos 2x$,用待定系数法给出特解的形式(无需求出其中的待定系数的数值).
- 5、(8分) 设函数 $f(x) = \begin{cases} ax + b, & x > 0 \\ \int_0^x e^{t^2} dt, & x \le 0 \end{cases}$ 在 x = 0 处可导,求 a, b 及导函数 f'(x).
- 6、(10 分)设函数 y = y(x) 由方程 $\sin y + x 2y = 0$ 确定,求 $\frac{dy}{dx}\Big|_{x=0}$, $\frac{d^2y}{dx^2}\Big|_{x=0}$, 并讨论曲线 y = y(x)

在点(0,0)附近的凹凸性.

- 7、(7分) 计算反常积分 $\int_0^1 \frac{\ln x}{\sqrt{x}} dx$.
- 8、(7分) 计算极限 $\lim_{n\to\infty} \left(\sin\frac{x}{n} + \cos\frac{x}{n}\right)^n$.
- 9、(7分) 求微分方程 $xy' = \sqrt{x^2 y^2} + y \ (x > 0)$ 的通解.
- 10、(7分) 求曲线 $y = \frac{|x|}{1+x^4}$ 与 x 轴所围成的图形的面积.
- 11、(7 分) 计算抛物线 $y = 2x x^2 与 x$ 轴所围成的图形绕 y 轴旋转一周而成的立体体积.
- 12、(5分)设奇函数 f(x) 在[-a,a](a>0)上二阶可导,且 f(a)=a. 证明:
 - (1) 至少存在一点 $\xi \in (0,a)$, 使得 $f'(\xi) = 1$;
 - (2) 至少存在一点 $\eta \in (-a,a)$, 使得 $f''(\eta) + f'(\eta) = 1$.
- 13、(3分)设函数 f(x) 在区间 $[1,+\infty)$ 内可导, f'(x)<0,且 $\lim_{x\to+\infty}f(x)=A$. 令

$$a_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx$$
. 证明: $\lim_{n \to \infty} a_n$ 存在.

武汉大学 2021-2022 第一学期高等数学 B1 期末试卷 A 卷 参考解答

1、(9分) 求极限 $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x\cos x}}{\tan x^3}$.

M:
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1+x\cos x}}{\tan x^3} = \lim_{x \to 0} \frac{(1+x) - (1+x\cos x)}{x^3(\sqrt{1+x} + \sqrt{1+x\cos x})}$$
 5 \(\frac{\frac{1}{3}}{3}\)

$$= \lim_{x \to 0} \frac{x(1 - \cos x)}{2x^3} = \lim_{x \to 0} \frac{1}{2x^2} \frac{x^2}{2} = \frac{1}{4}$$

2、(10 分) 已知曲线 $\begin{cases} x = t + \sin t \\ y = e^t \cos t \end{cases}$, 求 $\frac{dy}{dx}$, 并求该曲线在点(0,1) 处的切线方程.

解: 由 $dx = (1 + \cos t)dt$, $dy = \cos t de^t + e^t d\cos t = e^t(\cos t - \sin t)dt$, 可得:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^t(\cos t - \sin t)\,\mathrm{d}t}{(1 + \cos t)\,\mathrm{d}t} = \frac{\mathrm{e}^t(\cos t - \sin t)}{1 + \cos t}\,,$$

又点 (0,1) 对应
$$t = 0$$
 解得 $y'|_{x=0,y=1} = \frac{1}{2}$.

因此,切方程为:
$$y = \frac{1}{2}x + 1$$
.

3、(10 分) 已知 $\int x f(x) dx = \arctan x + C$, 求 f(x), 并计算 $\int f(x) dx$.

解: 对等式两边求导可得
$$xf(x) = \frac{1}{1+x^2}$$
,因此 $f(x) = \frac{1}{x(1+x^2)}$ 5分

$$\int f(x) \, \mathrm{d}x = \int \frac{\mathrm{d}x}{x(1+x^2)} = \int \frac{1+x^2-x^2 \, \mathrm{d}x}{x(1+x^2)} = \int \frac{\mathrm{d}x}{x} - \int \frac{x \, \mathrm{d}x}{1+x^2}$$

$$= \ln|x| - \frac{1}{2}\ln(1+x^2) + C = \ln\frac{|x|}{\sqrt{1+x^2}} + C$$

- 4、(10分)(1) 求齐次线性微分方程 $y^{(4)} 6y''' + 13y'' = 0$ 的通解;
 - (2) 对于非齐次方程 $y^{(4)} 6y''' + 13y'' = x + e^{3x} \cos 2x$,用待定系数法给出特解的形式(无需求出其中的待定系数的数值).

解: (1) 该微分方程的特征方程为:
$$\lambda^4 - 6\lambda^3 + 13\lambda^2 = 0$$
, 5分它有特征根: $\lambda_{1,2} = 0$ (二重), $\lambda_{3,4} = 3 \pm 2i$,故而该齐次线性微分方程的通解为: $y = C_1 + C_2 x + (C_3 \sin 2x + C_4 \cos 2x) e^{3x}$. 8分

(2) 非齐次方程的特解的形式为: $y^* = x^2(C_1 + C_2 x) + x(C_3 \cos 2x + C_4 \sin 2x)e^{3x}$. 10 分

5、(8分) 设函数
$$f(x) = \begin{cases} ax + b, & x > 0 \\ \int_0^x e^{t^2} dt, & x \le 0 \end{cases}$$
 在 $x = 0$ 处可导,求 a, b 及导函数 $f'(x)$.

解: 显然
$$f(0) = 0$$
, 因此 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (ax + b) = b = 0$, 得 $b = 0$ 3 分

另一方面,
$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{\int_{0}^{x} e^{t^{2}} dt}{x} = \lim_{x \to 0^{-}} e^{x^{2}} = 1$$
, 而
$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{ax}{x} = a, \text{ 由在 } x = 0 \text{ 处可导可知 } a = 1.$$

易得导函数
$$f'(x) = \begin{cases} 1, & x > 0 \\ e^{x^2}, & x \le 0 \end{cases}$$
.

6、(10 分) 设函数 y = y(x) 由方程 $\sin y + x - 2y = 0$ 确定, 求 $\frac{dy}{dx}\Big|_{x=0}$, $\frac{d^2y}{dx^2}\Big|_{x=0}$, 并讨论曲线 y = y(x)

在点(0,0)附近的凹凸性.

解:由方程可知,
$$x=0$$
时 $y=0$,方程两边对 x 求导得: $\frac{dy}{dx}\cos y+1-2\frac{dy}{dx}=0$ 4分

代入
$$x = 0$$
, $y = 0$ 解得 $\frac{dy}{dx}\Big|_{x=0} = \frac{1}{2 - \cos y}\Big|_{(x,y)=(0,0)} = 1$.

方程
$$\frac{dy}{dx}\cos y + 1 - 2\frac{dy}{dx} = 0$$
 两边对 x 求导得: $\frac{d^2y}{dx^2}\cos y - \left(\frac{dy}{dx}\right)^2\sin y - 2\frac{d^2y}{dx^2} = 0$,

可得
$$\frac{d^2 y}{dx^2}\Big|_{x=0} = 0$$
 8分

此外, $\frac{d^2 y}{dx^2} = \frac{-\left(\frac{dy}{dx}\right)^2 \sin y}{2 - \cos y} = \frac{-\sin y}{(2 - \cos y)^3}$. 由于在点(0,0)处函数的一阶导数大于 0,可知在 x = 0

的左侧充分小的邻域内 y<0,从而 $\frac{d^2y}{dx^2}>0$,曲线下凸;在 x=0 的右侧充分小的邻域内

$$y > 0$$
,从而 $\frac{d^2 y}{dx^2} < 0$,曲线上凸.

7、(7分) 计算反常积分 $\int_0^1 \frac{\ln x}{\sqrt{x}} dx$.

解:
$$\int_0^1 \frac{\ln x}{\sqrt{x}} dx = 2 \int_0^1 \ln x d\sqrt{x}$$
 3 分

$$=2\sqrt{x}\ln x\Big|_{0^{+}}^{1}-2\int_{0}^{1}\sqrt{x}\,d\ln x=-2\int_{0}^{1}\frac{\sqrt{x}}{x}\,dx$$
 5 \(\frac{\frac{1}{2}}{2}\)

$$=-4\sqrt{\chi}\Big|_{0^{+}}^{1}=-4$$

8、(7分) 计算极限 $\lim_{n\to\infty} \left(\sin\frac{x}{n} + \cos\frac{x}{n}\right)^n$.

解:
$$\lim_{n\to\infty} \left(\sin\frac{x}{n} + \cos\frac{x}{n} \right)^n = \lim_{n\to\infty} e^{n\ln\left(\sin\frac{x}{n} + \cos\frac{x}{n}\right)}$$
 3分

由于
$$\lim_{n\to\infty} \left(\sin\frac{x}{n} + \cos\frac{x}{n} \right) = 1$$
,因此 $\ln \left(\sin\frac{x}{n} + \cos\frac{x}{n} \right) \sim \sin\frac{x}{n} + \cos\frac{x}{n} - 1$,又因为

$$\cos\frac{x}{n} - 1 \sim 2\sin^2\frac{x}{2n} = o(\frac{x}{n}), \quad \text{Im} \ln\left(\sin\frac{x}{n} + \cos\frac{x}{n}\right) \sim \sin\frac{x}{n} + \cos\frac{x}{n} - 1 \sim \sin\frac{x}{n} \sim \frac{x}{n}.$$
 5 \(\frac{\partial}{n}\)

因此,
$$\lim_{n\to\infty} \left(\sin\frac{x}{n} + \cos\frac{x}{n} \right)^n = \lim_{n\to\infty} e^{n\ln\left(\sin\frac{x}{n} + \cos\frac{x}{n}\right)} = \lim_{n\to\infty} e^{n\frac{x}{n}} = e^x$$
 7分

9、(7分) 求微分方程 $xy' = \sqrt{x^2 - y^2} + y \ (x > 0)$ 的通解.

解:
$$y' = \sqrt{1 - \left(\frac{y}{x}\right)^2 + \frac{y}{x}}$$
, $\diamondsuit u = \frac{y}{x}$, 则 $y' = xu' + u$,代入得

$$xu' + u = \sqrt{1 - u^2} + u$$
, 化简为 $xu' = \sqrt{1 - u^2}$ 5 分

因而, $1-u^2 \neq 0$ 时, $\frac{\mathrm{d}\,u}{\sqrt{1-u^2}} = \frac{\mathrm{d}\,x}{x}$,积分得 $\arcsin u = \ln x + C$, 变量回代得方程通解:

$$\arcsin \frac{y}{x} = \ln x + C ,$$

(当
$$1-u^2=0$$
时由特解 $y=x$ 及 $y=-x$.)

10、(7分) 求曲线 $y = \frac{|x|}{1+x^4}$ 与 x 轴所围成的图形的面积.

解: 图形面积
$$S = \int_{-\infty}^{+\infty} \frac{|x|}{1+x^4} dx$$
 3 分

$$=2\int_0^{+\infty} \frac{x}{1+x^4} dx = \int_0^{+\infty} \frac{1}{1+x^4} dx^2 = \arctan x^2 \Big|_0^{+\infty}$$
 5 \(\frac{\frac{1}{1+x^4}}{1+x^4} dx^2 = \arctan x^2 \Big|_0^{+\infty} \)

$$=\frac{\pi}{2}$$
 7分

11、 $(7 \, \beta)$ 计算抛物线 $y = 2x - x^2 = x$ 轴所围成的图形绕 y 轴旋转一周而成的立体体积.

解:解法一: 抛物线与x轴交于点(0,0),(2,0),用柱壳法可得旋转体体积:

$$V = \int_0^2 2\pi x y \, \mathrm{d}x$$
 4 \mathcal{H}

$$= 2\pi \int_0^2 x(2x - x^2) \, \mathrm{d}x = 2\pi \left(\frac{2}{3}x^3 - \frac{x^4}{4}\right)\Big|_0^2 = \frac{8\pi}{3}$$

解法二: 解得 $x = \varphi(y) = 1 - \sqrt{1-y}$ 及 $x = \psi(y) = 1 + \sqrt{1-y}$, $y \in [0,1]$ 旋转体体积:

$$V = \int_0^1 \pi(\psi^2(y) - \varphi^2(y)) \, dy$$
 4 \(\frac{1}{2}\)

$$= \int_0^1 4\pi \sqrt{1 - y} \, dy = -\frac{8\pi}{3} (1 - y)^{\frac{3}{2}} = \frac{8\pi}{3}$$

12、(5分)设奇函数 f(x)在[-a,a](a>0)上二阶可导,且 f(a)=a.证明:

- (1) 至少存在一点 $\xi \in (0,a)$, 使得 $f'(\xi) = 1$;
- (2) 至少存在一点 $\eta \in (-a,a)$, 使得 $f''(\eta) + f'(\eta) = 1$.

证明: (1) 由于 f(x) 在 [-a,a] 上二阶可导,因此 f(x) 及 f'(x) 在 [-a,a] 上连续. 又因为 f(x) 是奇函数,因此 f(0)=0. 由拉格朗日中值定理可知至少存在一点 $\xi \in (0,a)$,使得

$$f'(\xi) = \frac{f(a) - f(0)}{a - 0} = \frac{a - 0}{a} = 1.$$

(2) f(x) 是奇函数且 f(a) = a 可知 f(-a) = -a,与(1)的证明相似,可以证明存在 $\xi_1 \in (-a,0)$,使得 $f'(\xi_1) = 1$,因此有

$$f'(\xi)-1=f'(\xi_1)-1=0$$
,

令辅助函数 $\varphi(x) = e^x (f'(x)-1)$,由 f'(x) 在 [-a,a] 上连续可导可知, $\varphi(x)$ 在 [-a,a] 上连续可导,又有 $\varphi(\xi) = \varphi(\xi_1) = 0$,由罗尔定理可知,至少存在一点 $\eta \in (\xi_1,\xi) \subset (-a,a)$ 使得

$$0 = \varphi'(\eta) = e^{\eta} (f'(\eta) - 1) + e^{\eta} f''(\eta) = e^{\eta} (f''(\eta) + f'(\eta) - 1)$$

即有 $f''(\eta) + f'(\eta) - 1 = 0$,也就是 $f''(\eta) + f'(\eta) = 1$.

13、(3分)设函数 f(x) 在区间[1,+∞)内可导, f'(x) < 0,且 $\lim_{x \to +\infty} f(x) = A$.

证明: 方法一: 计算可得 $a_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx = f(1) + \sum_{k=1}^{n-1} \left(f(k+1) - \int_k^{k+1} f(x) dx \right)$,

$$= f(1) + \sum_{k=1}^{n-1} \left(\int_{k}^{k+1} (f(k+1) - f(x)) dx \right).$$

由f'(x) < 0可知f(x)单调递减,因此

$$0 > f(k+1) - f(x) > f(k+1) - f(k), x \in (k, k+1),$$

因此, $0 \ge \int_{k}^{k+1} (f(k+) - f(x)) dx \ge f(k+1) - f(k)$.

所以,数列 a_n 单调递减,且

$$a_n = f(1) + \sum_{k=1}^{n-1} \left(\int_k^{k+1} (f(k+1) - f(x)) dx \right) \ge f(1) + \sum_{k=1}^{n-1} (f(k+1) - f(k)) = f(n) \ge A.$$

即数列 $\{a_n\}$ 单调递减有下界,因此 $\lim_{n\to\infty}a_n$ 存在. 3分

方法二: 计算可得
$$a_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx = \sum_{k=1}^{n-1} \left(f(k) - \int_k^{k+1} f(x) dx \right) + f(n)$$
,

$$= \sum_{k=1}^{n-1} \left(\int_{k}^{k+1} (f(k) - f(x)) dx \right) + f(n).$$

由f'(x) < 0可知f(x)单调递减,因此

$$0 < f(k) - f(x) < f(k) - f(k+1), x \in (k, k+1),$$

因此,

$$0 \le \int_{k}^{k+1} (f(k) - f(x)) dx \le f(k) - f(k+1).$$

所以,数列
$$b_n = \sum_{k=1}^{n-1} \left(\int_k^{k+1} f(k) - f(x) dx \right)$$
 单调递增,且

$$b_n = \sum_{k=1}^{n-1} \left(\int_k^{k+1} (f(k) - f(x)) dx \right) \le \sum_{k=1}^{n-1} (f(k) - f(k+1)) = f(1) - f(n) \le f(1) - A .$$

即 $b_n \leq f(1) - A$,数列 $\{b_n\}$ 单调递增有上界,因此 $\lim_{n \to \infty} b_n$ 存在.

又由
$$\lim_{x\to +\infty} f(x) = A > 0$$
可得 $\lim_{n\to \infty} f(n) = \lim_{x\to +\infty} f(x) = A$. 由 $a_n = b_n + f(n)$ 可知

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n + \lim_{n\to\infty} f(n) , 所以 \lim_{n\to\infty} a_n 存在.$$
 3分