Staatsexamen 66115 / 2021 / Frühjahr / Thema Nr. 1 / Teilaufgabe Nr. 2 / Aufgabe Nr. 4

Aufgabe 4 [Kürzeste-Wege-Bäume und minimale Spannbäume]

Die Algorithmen von Dijkstra und Jarník-Prim gehen ähnlich vor. Beide berechnen, ausgehend von einem Startknoten, einen Baum. Allerdings berechnet der Algorithmus von Dijkstra einen Kürzesten-Wege-Baum, während der Algorithmus von Jarník-Prim einen minimalen Spannbaum berechnet.

(a) Geben Sie einen ungerichteten gewichteten Graphen G mit höchstens fünf Knoten und einen Startknoten s von G an, so dass $\mathbf{Dijkstra}(G,s)$ und $\mathbf{Jarník-Prim}(G,s)$ ausgehend von s verschiedene Bäume in G liefern. Geben Sie beide Bäume an.

(b) Geben Sie eine unendlich große Menge von Graphen an, auf denen der Algorithmus von Jarník-Prim asymptotisch schneller ist als der Algorithmus von Kruskal, der ebenfalls minimale Spannbäume berechnet.

Hinweis: Für einen Graphen mit n Knoten und m Kanten benötigt Jarník-Prim $\mathcal{O}(m+n\log n)$ Zeit, Kruskal $\mathcal{O}(m\log m)$ Zeit.

(c) Sei Z die Menge der zusammenhängenden Graphen und $G \in Z$. Sei n die Anzahl der Knoten von G und m die Anzahl der Kanten von G. Entscheiden Sie mit Begründung, ob $\log m \in \Theta(\log n)$ gilt.

Github: Staatsexamen/66115/2021/03/Thema-1/Teilaufgabe-2/Aufgabe-4.tex