Lectura de *Q/E* desde la matriz de estados distinguibles: ejemplo 3

 Considérese el autómata finito determinista cuya función de transición se muestra en la siguiente tabla:

	0	1
$\rightarrow A$	В	A
B	\boldsymbol{A}	C
\boldsymbol{C}	D	В
*D	D	\boldsymbol{A}
\boldsymbol{E}	D	F
F	G	E
G	F	G
H	G	D

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_0 = \{c_0 = \{A, B, C, E, F, G, H\}, c_1 = \{D\} \}, Q/E_1 = \{c_0 = \{A, B, F, G\}, c_{01} = \{C, E, \}, c_{02} = \{H\}, c_1 = \{D\} \}$$

Q/E_0	
Q/E_1	

A	В	С	D	Е	F	G	Н
0	0	0	1	0	0	0	0
0			1				

#class

Identificar inicio clase

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_0 = \{c_0 = \{A, B, C, E, F, G, H\}, c_1 = \{D\} \}, Q/E_1 = \{c_0 = \{A, B, F, G\}, c_{01} = \{C, E, \}, c_{02} = \{H\}, c_1 = \{D\} \}$$

Q/E_0	
Q/E_1	

A	В	C	D	Е	F	G	Н
0	0	0	1	0	0	0	0
0			1				
0	0		1		0	0	

#class

Identificar inicio clase

Marcar las que siguen con A en 0

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_0 = \{c_0 = \{A, B, C, E, F, G, H\}, c_1 = \{D\} \}, Q/E_1 = \{c_0 = \{A, B, F, G\}, c_{01} = \{C, E, \}, c_{02} = \{H\}, c_1 = \{D\} \}$$

Q/E_0	
Q/E_{1}	

A	В	С	D	Е	F	G	Н
0	0	0	1	0	0	0	0
0			1				
0	0		1		0	0	
0	0		1		0	0	

#class

Identificar inicio clase

Marcar las que siguen con A en 0

Y las que siguen con D en 1

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_0 = \{c_0 = \{A, B, C, E, F, G, H\}, c_1 = \{D\} \}, Q/E_1 = \{c_0 = \{A, B, F, G\}, c_{01} = \{C, E, \}, c_{02} = \{H\}, c_1 = \{D\} \}$$

Q/E_0	
Q/E_1	

A	В	С	D	Е	F	G	Н
0	0	0	1	0	0	0	0
0			1				
0	0		1		0	0	
0	0		1		0	0	

#class

Identificar inicio clase

Marcar las que siguen con A en 0

Y las que siguen con D en 1

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_0 = \{c_0 = \{A, B, C, E, F, G, H\}, c_1 = \{D\} \}, Q/E_1 = \{c_0 = \{A, B, F, G\}, c_{01} = \{C, E, \}, c_{02} = \{H\}, c_1 = \{D\} \}$$

Q/E_{0})
Q/E_{I}	,

	A	В	C	D	Е	F	G	Н
	0	0	0	1	0	0	0	0
	0			1				
	0	0		1		0	0	
Ī	0	0		1		0	0	
	0	0	2	1	2	0	0	

#class: 0,1,2

Identificar inicio clase

Marcar las que siguen con A en 0

Y finalmente creamos la clase de la primera celda vacía (C que era de 0, por lo que hay que mirar E y H)

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_0 = \{c_0 = \{A, B, C, E, F, G, H\}, c_1 = \{D\}\}, Q/E_1 = \{c_0 = \{A, B, F, G\}, c_{01} = \{C, E, \}, c_{02} = \{H\}, c_1 = \{D\}\}\}$$

B \mathbf{C} D E F G H Α Q/E_0 00001 000 0 1 0 $\mathbf{0}$ 1 0 $\mathbf{0}$ 0 0 1 0 $\mathbf{0}$ 2 2 0 0 0 $\mathbf{0}$ Q/E_1 3 0 2 2 0 0 $\mathbf{0}$

#class: 0,1,2,3

Identificar inicio clase

Marcar las que siguen con A en 0

Y finalmente creamos la clase de la primera celda vacía (C que era de 0, por lo que hay que mirar E y H) Y así con todas las vacías: H que era de 0 y se queda sola

No quedan celdas vacías, Hemos acabado esta iteración

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_{I} = \{c_{0} = \{A, B, F, G\}, c_{0I} = \{C, E,\}, c_{02} = \{H\}, c_{I} = \{D\} \}, Q/E_{2} = \{c_{0} = \{A, G\}, c_{03} = \{B, F\}, c_{0I} = \{C, E,\}, c_{02} = \{H\}, c_{I} = \{D\} \}$$

($)/F_{-}$
\succeq	
)/F
\succeq	J_2

A	В	С	D	Е	F	G	Н
0	0	2	1	2	0	0	3
0		2	1				3

#class: 3

Identificar inicio clase

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_{I} = \{c_{0} = \{A, B, F, G\}, c_{0I} = \{C, E, \}, c_{02} = \{H\}, c_{I} = \{D\} \}, Q/E_{2} = \{c_{0} = \{A, G\}, c_{03} = \{B, F\}, c_{0I} = \{C, E, \}, c_{02} = \{H\}, c_{I} = \{D\} \}$$

 Q/E_1 Q/E_2

A	В	C	D	Е	F	G	Н
0	0	2	1	2	0	0	3
0		2	1				3
0		2	1			0	3

#class: 3

Identificar inicio clase

Marcar las que siguen con A en 0

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_{I} = \{c_{0} = \{A, B, F, G\}, c_{0I} = \{C, E, \}, c_{02} = \{H\}, c_{I} = \{D\} \}, Q/E_{2} = \{c_{0} = \{A, G\}, c_{03} = \{B, F\}, c_{0I} = \{C, E, \}, c_{02} = \{H\}, c_{I} = \{D\} \}$$

()/E.
($\frac{\partial E_1}{\partial E_2}$

A	В	С	D	Е	F	G	Н
0	0	2	1	2	0	0	3
0		2	1				3
0		2	1			0	3
0		2	1			0	3

#class: 3,4

Identificar inicio clase

Marcar las que siguen con A en 0

Y con D en 1

Y con C en 2, 3 sólo tiene 1

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_{I} = \{c_{0} = \{A, B, F, G\}, c_{0I} = \{C, E, \}, c_{02} = \{H\}, c_{I} = \{D\} \}, Q/E_{2} = \{c_{0} = \{A, G\}, c_{03} = \{B, F\}, c_{0I} = \{C, E, \}, c_{02} = \{H\}, c_{I} = \{D\} \}$$

Q/E_1
O/E_{α}
$\mathcal{L}/\mathcal{L}_2$

A	В	C	D	Е	F	G	Н
0	0	2	1	2	0	0	3
0		2	1				3
0		2	1			0	3
0		2	1			0	3
0	4	2	1	2	4	0	3

#class: 3,4

Identificar inicio clase

Marcar las que siguen con A en 0

Y con D en 1

Y con C en 2, 3 sólo tiene 1 Creamos la clase de la primera celda vacía (B que era de 0, por lo que hay que mirar F)

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_{I} = \{c_{0} = \{A, B, F, G\}, c_{0I} = \{C, E,\}, c_{02} = \{H\}, c_{I} = \{D\} \}, Q/E_{2} = \{c_{0} = \{A, G\}, c_{03} = \{B, F\}, c_{0I} = \{C, E,\}, c_{02} = \{H\}, c_{I} = \{D\} \}$$

B \mathbf{C} D E F G H Α Q/E_1 03 01 03 0 1 1 3 00 0 1 $\mathbf{0}$ 3 2 0 4 4 0 Q/E_2

#class: 3,4

Identificar inicio clase

Marcar las que siguen con A en 0

Y con D en 1

Y con C en 2, 3 sólo tiene 1
Creamos la clase de la primera
celda vacía (B que era de 0, por lo
que hay que mirar F)
No quedan celdas vacías,
Hemos acabado esta iteración

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_3 = Q/E_2 = \{c_0 = \{A, G\}, c_{03} = \{B, F\}, c_{01} = \{C, E_1\}, c_{02} = \{H\}, c_1 = \{D\}\}$$

	11	D
Q/E_2	0	4
Q/E_3	0	4

A	В	C	D	Е	F	G	Н
0	4	2	1	2	4	0	3
0	4	2	1				3

#class: 3,4

Identificar inicio clase

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_3 = Q/E_2 = \{c_0 = \{A, G\}, c_{03} = \{B, F\}, c_{01} = \{C, E_1\}, c_{02} = \{H\}, c_1 = \{D\}\}$$

Q/E_2	
Q/E_3	

A	В	C	D	Е	F	G	Н
0	4	2	1	2	4	0	3
0	4	2	1				3
0	4	2	1			0	3

#class: 4

Identificar inicio clase

Marcar las que siguen con A en 0 sólo hay que mirar G

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_3 = Q/E_2 = \{c_0 = \{A, G\}, c_{03} = \{B, F\}, c_{01} = \{C, E_1\}, c_{02} = \{H\}, c_1 = \{D\}\}$$

Q/E_2	
Q/E_3	

A	В	С	D	Е	F	G	Н
0	4	2	1	2	4	0	3
0	4	2	1				3
0	4	2	1			0	3
0	4	2	1	2		0	3

#class: 4

Identificar inicio clase

Marcar las que siguen con A en 0 sólo hay que mirar G D está sola, miramos quién sigue con C en 2 (E)

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_3 = Q/E_2 = \{c_0 = \{A, G\}, c_{03} = \{B, F\}, c_{01} = \{C, E_1\}, c_{02} = \{H\}, c_1 = \{D\}\}$$

	A	В	С	D	Е	F	G	Н
Q/E_2	0	4	2	1	2	4	0	3
	0	4	2	1				3
	0	4	2	1			0	3
	0	4	2	1	2		0	3
Q/E_3	0	4	2	1	2	4	0	3

#class: 4

Identificar inicio clase

Marcar las que siguen con A en 0 sólo hay que mirar G D está sola, miramos quién sigue con C en 2 (E)

H está sola en 3, miramos quién sigue con B en 4

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_3 = Q/E_2 = \{c_0 = \{A, G\}, c_{03} = \{B, F\}, c_{01} = \{C, E_1\}, c_{02} = \{H\}, c_1 = \{D\}\}$$

	A	В	C	D	Е	F	G	Н
E_2	0	4	2	1	2	4	0	3
	0	4	2	1				3
	0	4	2	1			0	3
	0	4	2	1	2		0	3
$/E_3$	0	4	2	1	2	4	0	3

#class: 4

Identificar inicio clase

Marcar las que siguen con A en 0 sólo hay que mirar G D está sola, miramos quién sigue con C en 2 (E)

H está sola en 3, miramos quién sigue con B en 4
No quedan celdas vacías,
Hemos acabado esta iteración

Otros algoritmos: cálculo de las clases de equivalencia sin utilizar la matriz: ej 3

- A partir del algoritmo anterior podrías prescindir de la matriz si el objetivo sólo fuera calcular las clases de equivalencia.
- Veámoslo en el ejemplo 3, ya sabemos qué parejas se separan en cada iteración

$$Q/E_3 = Q/E_2 = \{c_0 = \{A, G\}, c_{03} = \{B, F\}, c_{01} = \{C, E,\}, c_{02} = \{H\}, c_1 = \{D\}\}$$

A	В	С	D	Е	F	G	Н
0	4	2	1	2	4	0	3

#class: 4

Identificar inicio clase

Marcar las que siguen con A en 0
sólo hay que mirar G
D está sola, miramos quién sigue
con C en 2 (E)
H está sola en 3, miramos quién
sigue con B en 4
No quedan celdas vacías,
Hemos acabado esta iteración

No hay cambios: hemos terminado

Algoritmo propuesto

 Observa que puedes realizar todo el trabajo con el siguiente algoritmo para calcular directamente las clases de equivalencia

Partimos de Q y Q' para iterar hasta el cálculo de las clases

- While (No hay cambios)
 - 1. While (no hay celdas vacías en Q')
 - 1. Identificar inicio clase
 - 2. Desde la clase primera hasta la máxima en esta iteración
 - 1. Marcar las celdas que siguen en cada clase anterior
 - 3. Para todas las celdas vacías
 - 1. Asignamos una nueva clase
 - 2. Marcamos todas las vacías que estaban en la misma clase y comprobamos si siguen en esta clase nueva