APELLIDOS, NOMBRE: DNI:

Firma

Todos los problemas tienen igual puntuación.

Primer parcial. Asignatura completa: ejercicios 2 y 3.

Ejercicio 1.-

- A) 1) Sean L_1 y L_2 subespacios de un k-espacio vectorial V de dimensión finita tales que $V = L_1 \oplus L_2$. Pruebe que $\dim(V/L_1) = \dim(L_2)$.
 - 2) Razone la veracidad o falsedad de la siguiente afirmación: Todo espacio vectorial de dimensión n > 1 contiene al menos un subespacio vectorial de dimensión r, para todo r = 1, ..., n 1.
- B) Se considera el \mathbb{C} -espacio vectorial $\mathcal{M}(2\times2;\mathbb{C})$ de matrices 2×2 sobre los números complejos y sus subespacios vectoriales:

$$L_1 = \left\langle \begin{pmatrix} 1 & i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1+i & 0 \\ 1 & 0 \end{pmatrix} \right\rangle, \quad L_2: x_1 - (1-i)x_4 = 0,$$

donde se han tomado coordenadas respecto de la base habitual $\{E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$. Halle una base de $L_1 \cap L_2$.

Ejercicio 2.-

- A) Sean V y W dos k-espacios vectoriales y $f:V\to W$ un homomorfismo:
 - 1) Enuncie y demuestre una condición necesaria y suficiente para que f sea inyectivo.
 - 2) Sea $L \subset V$ un subespacio vectorial tal que $L \cap \ker(f) = \{0\}$. Pruebe que si $\{u_1, \ldots, u_r\}$ es una base de L entonces $\{f(u_1), \ldots, f(u_r)\}$ es una base de f(L).
- B) Sean $f:\mathbb{R}^4 \to \mathbb{R}^3$ un homomorfismo cuya matriz, respecto de las bases canónicas, es

$$A = \left(\begin{array}{cccc} 1 & 0 & 2 & 1 \\ 0 & -1 & 1 & 1 \\ 1 & 2 & 0 & 1 \end{array}\right)$$

y el subespacio vectorial $L = \langle (-1,0,1)^t, (0,-1,1)^t \rangle \subset \mathbb{R}^3$. Calcule bases respectivas de $\operatorname{im}(f)$ y $\operatorname{ker}(f)$ y unas ecuaciones implícitas de $f^{-1}(L)$.

Ejercicio 3.-

- A) 1) Sea k un cuerpo, A una matriz $m \times m$ sobre k y $\mathbf{v} \in k^m$ un autovector de A asociado al autovalor $\lambda \in k$. Pruebe que $A^n\mathbf{v} = \lambda^n\mathbf{v}$ para todo $n \geq 1$. Deduzca que si $p(x) = a_nx^n + \cdots + a_1x + a_0 \in k[x]$ es un polinomio tal que $a_nA^n + \cdots + a_1A + a_0I$ es la matriz nula entonces $p(\lambda) = 0$.
 - 2) Sea V un k-espacio vectorial de dimensión finita y $f: V \to V$ un endomorfismo tal que $f \circ f = f$. Demuestre que los únicos autovalores $\lambda \in k$ que f puede tener son $\lambda = 0, 1$.
- B) Sea $f \colon \mathbb{R}^4 \to \mathbb{R}^4$ el endomorfismo cuya matriz respecto de la base canónica es

$$A = \left(\begin{array}{cccc} 2 & 1 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & 0 & \alpha \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Determine para qué valores de $\alpha \in \mathbb{R}$ es f diagonalizable. Para $\alpha = 1$, halle una base $\mathcal{B} \subset \mathbb{R}^4$ de autovectores de f, calcule la matriz de f respecto de \mathcal{B} y obtenga una matriz invertible P tal que $P^{-1}AP$ sea diagonal.

Segundo parcial. Asignatura completa: ejercicios 4 y 6.

Ejercicio 4.-

- A) En el espacio afín euclídeo $\mathbb{A}^4(\mathbb{R})$, y fijado un sistema de referencia métrico, sea L la variedad lineal afín definida por la ecuación $x_1 + x_2 + x_3 + x_4 = 1$.
 - 1. Calcule una base ortonormal de D(L).
 - 2. Amplíe la base anterior a una base ortonormal de \mathbb{R}^4 .
 - 3. Pruebe que existe un sistema de referencia métrico \mathcal{R}' en $\mathbb{A}^4(\mathbb{R})$ tal que la ecuación de L respecto de \mathcal{R}' es de la forma $x_1' = 0$.
- B) Sea A una matriz compleja con todos sus autovalores complejos de módulo 1 y diagonalizable mediante una matriz unitaria. Pruebe que A es unitaria.

Ejercicio 5.-

- A) Sea L una variedad lineal afín en el espacio afín euclídeo $\mathbb{A}^n(\mathbb{R}), n \geq 2$. Si dim $L = r \geq 1$, pruebe que existe una sistema de referencia métrico en $\mathbb{A}^n(\mathbb{R})$ respecto del cual las ecuaciones de L son de la forma $x_1' = 0, \ldots, x_{n-r}' = 0$.
- B) En el espacio afín euclídeo $\mathbb{A}^4(\mathbb{R})$, consideramos los planos

$$\pi_1: \left\{ \begin{array}{l} x_1+x_2=0, \\ x_1-x_3=0, \end{array}, \pi_2: \left\{ \begin{array}{l} x_1-x_2-1=0, \\ x_3=0. \end{array} \right.$$

- 1. Pruebe que $\pi_1 \cap \pi_2 = \emptyset$.
- 2. Calcule la distancia entre π_1 y π_2 .
- 3. Dado Q = (2, 0, 0, 1), justifique si existe alguna perpendicular común a π_1 y π_2 que pase por Q.

Ejercicio 6.-

- A) Sea $f: E \to E'$ una aplicación afín entre espacios afines y $L' \subset E'$ una variedad lineal afín.
 - 1. Defina $f^{-1}(L')$ y $\overrightarrow{f}^{-1}(D(L'))$.
 - 2. Supongamos que $f^{-1}(L')$ es no vacía y sea $P \in f^{-1}(L')$. Se pide demostrar la igualdad

$$f^{-1}(L') = P + (\overrightarrow{f})^{-1}(D(L')).$$

B) En el espacio afín euclíde
o $\mathbb{A}^3(\mathbb{R})$ y fijado un sistema de referencia métrico, se
afel movimiento de matriz

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$

- 1. Demuestre que el conjunto de los puntos fijos de f es una recta, L_f , y describa sus ecuaciones paramétricas.
- 2. Demuestre que para cada punto P, el punto medio entre P y f(P) pertenece a L_f .
- 3. Calcule los autovectores de \overrightarrow{f} sabiendo que sus autovalores son 1 y -1.
- 4. Para cada autovector \boldsymbol{v} de \overrightarrow{f} , calcule el conjunto de rectas fijas que tienen a \boldsymbol{v} como vector director. Describa la posición relativa entre cada una de las rectas obtenidas y L_f .
- 5. Demuestre que los planos fijos de f son precisamente: el haz de planos que contienen a L_f y los planos perpendiculares a L_f .
- 6. Clasifique el movimiento f.