Application No. 10/669,414 Docket No.: 0234-0469P

Amendment dated December 22, 2005 After Allowance Under 37 C.F.R. 1.312

AMENDMENTS TO THE CLAIMS

1. (Currently amended) A yellow dye-forming coupler represented by formula (I):

formula (I)

$$Q = \begin{pmatrix} N & R_1 & O & (R_2)_m \\ C & N & C & H \\ X & S & -R_4 \end{pmatrix}$$

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R₁)-; R₁ is $-(CH_2)_3O-R_{101}$ - $(CH_2)_3O-R_{101}$ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄ represents an alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

2. (Currently amended) The yellow dye-forming coupler as claimed in claim 1, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IA):

Application No. 10/669,414 Amendment dated December 22, 2005 After Allowance Under 37 C.F.R. 1.312

formula (IA)

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R_1)-; R_1 is - $(CH_2)_30$ - R_{101} - $(CH_2)_30$ - R_{101} in which R_{101} is an alkyl group having 4 to 8 carbon atoms and R_2 represents a substituent; R_{41} represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 's may be the same or different, and the R_2 's may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

(Currently amended) A yellow dye-forming coupler represented by formula (IB):

wherein Q_1 represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the $N=C-N((CH_2)_3O-R_{101})$; $N=C-N((CH_2)_3O-R_{101})$;

or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

4. (Previously presented) A silver halide color photographic light-sensitive material comprising at least one yellow dye-forming coupler represented by formula (I) in at least one layer provided on a support:

formula (I)

$$Q = \begin{pmatrix} N & R_1 & O & (R_2)_m \\ C & N & C & H \\ X & S - R_4 & S - R_4 & C & C \end{pmatrix}$$

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R_1)-; R_1 is -(CH₂)₃O-R₁₀₁ in which R₁₀₁ is an alkyl group having 4 to 8 carbon atoms and R₂ represents a substituent; R₄ represents an alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

5. (Currently amended) The silver halide color photographic light-sensitive light-sensitive material as claimed in claim 4, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IA):

formula (IA)

$$Q \underset{X}{\overset{N^{-R_1}}{\bigvee}} \underset{C-N}{\overset{(R_2)_m}{\bigvee}}$$

wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R_1)-; R_1 is - $(CH_2)_30$ - R_{101} - $(CH_2)_30$ - R_{101} in which R_{101} is an alkyl group having 4 to 8 carbon atoms and R_2 represents a substituent; R_{41} represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 's may be the same or different, and the R_2 's may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

6. (Currently amended) The silver halide color photographic light sensitive light-sensitive material as claimed in claim 5, wherein Q in formula (IA) is a group represented by - C(-R11)=C(-R12)-SO₂- or -C(-R11)=C(-R12)-CO-, -C(-R11)=C(-R12)-CO-, in which R11 R11 and R12 are groups that bond with each other to form a 5- to 7-membered ring together with -C=C-, or they each independently represents a hydrogen atom or a substituent.

7. (Currently amended) The silver halide color photographic light-sensitive light-sensitive material as claimed in claim 5, wherein the yellow dye-forming coupler represented by formula (IA) is a yellow dye-forming coupler represented by formula (IIA):

formula (IIA)

$$(R_3)_n$$
 $(R_2)_m$
 $(R_3)_n$
 $(R_2)_m$
 $(R_3)_m$

wherein R_1 is -(CH₂)₃O-R₁₀₁ in which R_{101} is an alkyl group having 4 to 8 carbon atoms and R_2 represents a substituent; R_{41} represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R_2 's may be the same or different, and the R_2 's may bond with each other to form a ring; R_3 represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R_3 's may be the same or different, and the R_3 's may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

8. (Currently amended) A silver halide color photographic light sensitive light-sensitive light sensitive material, comprising at least one wherein the yellow dye-forming coupler is a yellow dye-forming coupler represented by formula (IB) in at least one layer provided on a support:

formula (IB)

$$Q_1$$
 N Q_1 N Q_2 N Q_3 Q_4 Q_5 Q_5

wherein Q_1 represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the $-N=C \cdot N((CH_2)_3O \cdot R_{101})$; $-N=C \cdot N((CH_2)_3O \cdot R_{101})$ -; $R_{101} \cdot R_{101} \cdot R_{10$

9. (Currently amended) The silver halide color photographic light-sensitive light-sensitive material as claimed in claim 8, wherein Q₁ in formula (IB) is a group represented by - C(R11)=C(R12)SO₂- -C(-R11)=C(-R12)-SO₂- or -C(R11)=C(R12)-CO-, -C(-R11)=C(-R12)-CO-, in which R11 R11 and R12 are groups that bond with each other to form a 5- to 7-membered ring together with -C=C-, or they each independently represent a hydrogen atom or a substituent.

10. (Currently amended) The silver halide color photographic light sensitive light-sensitive material as claimed in claim 8, wherein the yellow dye-forming coupler represented by formula (IB) is a yellow dye-forming coupler represented by formula (IIB):

formula (IIB)

$$(R_3)n_{11}$$
 $(R_3)n_{11}$
 $(R_3)n_{11}$
 $(R_2)m$
 (R_4)

wherein R₁₀₁ represents an alkyl group having 4 to 8 carbon atoms; R₂ represents a substituent; R₄₂ represents a primary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R₂'s may be the same or different, and the R₂'s may bond with each other to form a ring; R₃ represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R₃'s may be the same or different, and the R₃'s may bond with each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

11. (Currently amended) The silver halide color photographic light-sensitive light-sensitive material as claimed in claim 8, wherein R₂ in formula (IB) represents a t-butyl group.

Docket No.: 0234-0469P

12. (Currently amended) The silver halide color photographic light-sensitive light-

sensitive material as claimed in claim 4, wherein the amount of the yellow dye-forming coupler

is 1 x 10⁻³ mole to 1 mole per mole of silver halide.

13. (Currently amended) The silver halide color photographic light-sensitive light-

sensitive material as claimed in claim 4, wherein an emulsion of the layer containing the yellow

dye-forming coupler represented by formula (I) is a silver halide emulsion having silver chloride

content of 90 mol% or more.

14. (Currently amended) The silver halide color photographic light-sensitive light-

sensitive material as claimed in claim 13, wherein the silver halide emulsion is doped with an

iridium complex.

15. (Currently amended) The silver halide color photographic light sensitive light-

sensitive material as claimed in claim 4, wherein a hydrophilic colloid layer is provided between

9

the support and a color-forming silver halide emulsion layer nearest to the support.

MSW/JMK/jmb