Inferencia Estadística Tópicos inferencia no paramétrica

Gabriel Martos Venturini gmartos@utdt.edu

UTDT

Monographs on Statistics and Applied Probability 26

Density Estimation for Statistics and Data Analysis

B.W. Silverman

CHAPMAN & HALL/CRC

- Introducción
- Estimación no paramétrica de la densidad

- Objetivo: Construir métodos de inferencia basados en supuestos "débiles" sobre la distribución de la variable de interés en la población.
- Ejemplo: Asumimos para el modelo estadístico cierto grado de suavidad en f (o la cdf F) de la que se generan los datos.
 - $\underline{X} = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f(x).$
 - ► En vez de asumir $f(x) \equiv f(x; \theta)$, le pedimos a la verdadera f pertenecer al conjunto de funciones \mathcal{F}_c de variabilidad acotada:

$$f \in \mathcal{F}_c \equiv \Big\{ f : \int (f^{''}(x))^2 \mathrm{d}x < c \Big\}.$$

- "... a better name for nonparametric inference might be infinite—dimensional inference" (L. Wasserman).
 - ▶ El modelo estadístico para los datos f(x) pertenece al conjunto " \mathcal{F}_c " que no puede ser indexado mediante una cantidad finita de parámetros.

Example (Estimación de un funcional de f)

Asumimos que $\{X_1,\ldots,X_n,\}\stackrel{iid}{\sim} f$, siendo f una función de densidad continua. Queremos inferir (por ejemplo) $\theta_{\nu}=P(X\leq\nu)=\int_{-\infty}^{\nu}f(x)\mathrm{d}x$. Si logramos construir un estimador $\widehat{f}(x)$, luego: $\widehat{\theta}_{\nu}=\int_{-\infty}^{\nu}\widehat{f}(x)\mathrm{d}x$.

Example (Regresión no paramétrica)

Asumimos que $\{(X_1, Y_1), \dots, (X_n, Y_n)\}$ es una muestra iid del modelo:

$$Y_i = f(X_i) + \varepsilon_i, \quad X_i \in [0,1], \ i = 1,\ldots,n,$$

donde $E(\varepsilon_i)=0$ y $f:[0,1]\to\mathbb{R}$ es la **función de regresión** desconocida. No asumimos ninguna forma paramétrica específica para E(Y|X)=f(X), sino que $f\in\mathcal{F}$ (un conjunto "grande" de funciones). El objetivo es construir un método "adecuado" para inferir f(X) a partir de datos.

- Introducción
- 2 Estimación no paramétrica de la densidad
 - Distribución empírica e histogramas
 - Kernel density estimation

Introducción

- 2 Estimación no paramétrica de la densidad
 - Distribución empírica e histogramas
 - Kernel density estimation

וטוט

Distribución Empírica

Definition (Distribución empírica)

Sea $\{X_1, \dots, X_n\} \stackrel{iid}{\sim} F$, definimos la función de distribución empírica como:

$$F_n(x_0) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le x_0), \text{ para todo } x_0 \in \mathbb{R},$$

donde I es la función indicadora:

$$\mathbb{I}(X_i \le x_0) = \begin{cases} 1 \text{ si } X_i \le x_0, \\ 0 \text{ en otro caso.} \end{cases}$$

- Dada $\underline{x} = \{X_1 = x_1, \dots, X_n = x_n\}$ asignamos 1/n de masa sobre cada punto muestral, de forma que: $F_n(x_0) \equiv F_n(x_0; \underline{x}) = \{\#x_i \le x_0\}/n$.
- A una muestra en particular $\{X_1 = x_1, \dots, X_n = x_n\}$ le corresponderá una estimación empírica de F diferente (ver diapositiva siguiente).

UTDT Inferencia No Paramétrica 8 / 23

• Generamos 100 realizaciones de $\{X_1, \ldots, X_n\} \stackrel{iid}{\sim} N(0,1)...$

Figure: Verdadera F (rojo) y 100 estimaciones de F (intervalos empíricos).

• ... y computamos las 100 estimaciones de F relativas a cada muestra.

¿Qué propiedades tiene el estimador F_n ?

• Si la verdadera F es continua, para cualquier $x \in \mathbb{R}$ fijo:

$$E(F_n(x)) = F(x), y V(F_n(x)) = \frac{F(x)(1 - F(x))}{n}.$$

- Consistencia: $MSE(F_n(x)) \stackrel{n\to\infty}{\longrightarrow} 0$ (¿porqué?)
- Teorema de Glivenko-Cantelli (consistencia uniforme):

$$\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|\to_P 0.$$

• Dvoretzky–Kiefer–Wolfowitz (DKW) inequality: Para $\varepsilon > 0$

$$P\left(\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|>\varepsilon\right)\leq 2e^{-2n\varepsilon^2}.$$

• La probabilidad de que la máxima distancia entre F_n y F sea mayor a ε decrece exponencialmente con el tamaño de la muestra n.

Intervalos de confianza para F (DKW)

- Elegí α y considera $\varepsilon_n = \sqrt{\log(2/\alpha)/(2n)}$.
- Definí: $L(x) = \max \{F_n(x) \varepsilon_n, 0\}$ y $U(x) = \min \{F_n(x) + \varepsilon_n, 1\}$.
- Luego se tiene que para toda F(x) y $x \in \mathbb{R}$:

$$P(L(x) \le F(x) \le U(x)) \ge 1 - \alpha.$$

- [L(x), U(x)] es un intervalos de confianza de nivel 1α para F(x).
- Dada una muestra concreta, podremos computar una estimación empírica de F y con ésta computaremos las funciones I(x) y u(x).
- Ilustración en R.

UTDT

Figure: Simulamos 100 observaciones del modelo $N(\mu=0,\sigma^2=1)$. Las líneas azules representan las bandas de confianza para F (Distribución Empírica.R).

• De la definición de distribución empírica, se tiene que:

$$\widehat{f}_n(x) \equiv \widehat{f}(x; \underline{X}) = \frac{1}{n} \mathbb{I}_{x \in \underline{X}}(x).$$

- Drawback: Discontinuidad.
- Histogramas: Particionamos el soporte de f(x) en un subconjunto de intervalos (bins) de longitud h: B₁ = [x₀, x₀ + h);
 B₂ = [x₀ + h, x₀ + 2h), etc. Luego si x ∈ Bk, entonces:

$$\widehat{f}_n(x;x_0,h) \equiv \widehat{f}(x;\underline{X},x_0,h) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{x \in B_k}(X_i).$$

• Ejemplo en R.

13 / 23

TDT Inferencia No Paramétrica

• Los métodos de kernel suavizan los histogramas.

UTDT Inferencia No Paramétrica 14/23

Introducción

- 2 Estimación no paramétrica de la densidad
 - Distribución empírica e histogramas
 - Kernel density estimation

- El método de estimación no paramétrico más utilizado en la práctica.
- Llamamos función de núcleo (o kernel) a una función $K : \mathbb{R} \to \mathbb{R}^+$ que verifica las siguientes 4 propiedades:

$$K(x) \ge 0$$
, $\int K(x) dx = 1$, $\int xK(x) dx = 0$, $\int x^2 K(x) dx < \infty$.

- Algunos ejemplos de núcleos:
 - Kernel Gaussiano: $K(x) = \frac{1}{\sqrt{\pi}}e^{-x^2/2}$.
 - **2** Boxcar Kernel: $K(x) = \frac{1}{2}\mathbb{I}(|x| < 1)$.
 - **Solution Epanechnikov Kernel:** $K(x) = \frac{3}{4}(1-x^2)\mathbb{I}(|x|<1)$.
 - **1** Tricube Kernel: $K(x) = \frac{70}{81}(1 |x|^3)^3 \mathbb{I}(|x| < 1)$.
- Así lucen estos núcleos...

FIGURE 4.10. Examples of kernels: boxcar (top left), Gaussian (top right), Epanechnikov (bottom left), and tricube (bottom right).

• Dada $\underline{X} = \{X_1, \dots, X_n\} \stackrel{iid}{\sim} f$, un núcleo K y un parámetro de banda h > 0, el estimador no paramétrico de la densidad se define como:

$$\widehat{f}_h(x) \equiv \widehat{f}(x; \underline{X}, K, h) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right).$$

Figure: Notar que no importa como elijas K y h: $\widehat{f}_h(x) \ge 0$ y $\int \widehat{f}_h(x) dx = 1$.

18 / 23

• La elección de K no resulta tan relevante. Elegir correctamente el valor de h nos permite evitar hacer under/oversmoothing.

Código: Estimaciones basadas en núcleos.R.

Consistencia

• Definamos el riesgo cuadrático del estimador en el punto X = x:

$$R_{x}(h) = E(f(x) - \widehat{f}_{h}(x))^{2},$$

- y el riesgo a lo largo de todo el soporte como $R(h) = \int R_x(h) dx$.
- Se puede demostrar que en general:

$$R(h) = \underbrace{c_{1,K}h^4 \int (f''(x))^2 \mathrm{d}x + O(h^6)}_{\text{Bias}^2(h)} + \underbrace{\frac{c_{2,K}}{nh} + O(1/n)}_{\text{Variance}(h)}.$$

- ▶ Con *n* fijo cuando $\downarrow h$, entonces \downarrow Bias y \uparrow Var.
- ▶ Con *n* fijo cuando $\uparrow h$, entonces \downarrow Var y \uparrow Bias.
- ▶ Si $h \to 0$ cuando $n \to \infty$ de tal forma que $nh \to \infty$ (h se va más despacio a 0 de lo que n se va a infinito), el estimador es consistente.

¿y cómo elijo h en la práctica? (LOO-CV)

- Bajo el esquema anterior: $h^* = (c_{2,K}/(c_{1,K}^2 \int (f''(x))^2))^{1/5}$.
- Como no conocemos f ni sus derivadas, aprendemos un h razonable a partir de los datos: Construimos una malla de posibles valores para h; y para cada valor de h estimamos el riesgo del estimador como:

$$\widehat{R}(h) = \int \widehat{f}_h^2(x) d(x) - \frac{2}{n} \sum_{i=1}^n \widetilde{f}_{h,(-i)}(X_i).$$

- $\widetilde{f}_{h,(-i)}$ es el estimador de la densidad omitiendo X_i en la muestra.
- Existen expresiones aproximadas de $\widehat{R}(h)$ sin necesidad de recurrir a integrales numéricas (más detalles técnicos en ANPS § 6.3).
- Ilustración en R.

Figure: Estimación de R(h) y de la densidad con $h^* = 0.375$.

Ejemplo: Distribución del ingreso (EPH)

- Estimación no paramétrica de la distribución del ingreso
- Una vez estimada $\widehat{f_h}$, podemos estimar cualquier parámetro que dependa de la verdadera f haciendo simplemente un plugg—in. Por ejemplo, estimamos $P(X \le \nu)$ haciendo simplemente:

$$\widehat{P}(X \leq \nu) \equiv \int_0^{\nu} \widehat{f}_h(x) dx.$$