PREDICTING OUTCOMES OF NFL MATCHUPS

Louie Bafford

PROBLEM CONTEXT

- ▶ NFL has a huge market 8 Billion in revenue in 2017
- ► Top experts ~67% accurate

Predicting NFL Outcomes

- ► Sports gambling platforms
- ▶ NFL Analysts and other analysis platforms

Understanding important components of a winning team

▶ Owners, GMs, Coaches, Talent Scouts, Agents

DATA COLLECTION

Online API - https://profootballapi.com/

- Flexible data collection and feature engineering
- ▶ Leverages domain knowledge
- Aggregate statistics at a yearly level for each team
- ▶ Compare statistics for each team matchup
- Predict winner based upon matchup

FEATURES

- ▶ Data from 2011 to 2017 season
- ► Features should cover many aspects of gameplay
- ▶ Overall ~40 features were chosen (~20 for each team per matchup)
- ▶ Focus on features which can influence team decisions, examples below

Feature	Value
QB Pass/Run ratio	Effectiveness of QB playstyle
Average Pass Length	Effectiveness of play call styles
Turnovers	Impact of turnovers influence risky play calling

EXPLORATORY ANALYSIS

Average statistics of winning teams

- Turnovers are most significant
- Features are more extreme for away teams

STATISTICAL ANALYSIS

- Statistically significant correlation between low passing ratio and winning percentage
- ▶ P-value < .01

- Hypothesis test statistically validates home field advantage
- ▶ P-value < .01

BUILDING THE MODEL

Explore and tune a list of applicable models

- ► Linear Regression
- ► Logistic Regression
- ► SVM
- ► Random Forrest

Choose top model and explore for insights

LINEAR MODEL

- ▶ Train model on the score difference (an integer outcome)
- Convert to binary classification to tune using accuracy as the performance metric

Cross Validation Accuracy

69.2%

Assumption – predictions are normally distributed around correct value

QQPlot shows non-normal distribution weakening the validity of the model

CLASSIFICATION MODELS

Logistic Regression

- ► Top performance among models
- Feature importance visibility

Random Forest/Gradient Boosted Forest

- ▶ Poor model performance
- Feature importance visibility
- Gradient Boosted improved performance but model is still weak

SVM

- ► Top performance among models
- ▶ No feature visibility

Model	CV Accuracy
Logistic	70.28%
Random Forest	63.2%
Boosted RF	67.5%
SVM	70.34%

Logistic Regression selected as final model

Test Accuracy: 66.36%

MODEL INSPECTION

- Confusion Matrix behaving normally
- ► Even counts of misclassification

- ▶ ROC Curve is also normal
- ► Low curve shows room performance increase

FEATURE ANALYSIS

- ** INT CHANCE = (PASS-RUN RATIO OF OPPONENT * INTERCEPTION TAKEAWAYS) **
- ▶ Pass to run ratio important to both home and away teams
- ► Turnovers and takeaways (turnover differential) very important
- ▶ Sacks for home team
- ► Completion percentage for away team

IMPROVEMENTS

Very Noisy Data

- Adding features caused overfitting
- Model performed best with limited features
- Decrease noise with more relevant features
- Further explore feature Engineering

Hierarchical Models?

- ▶ Lots of correlation between features
- ▶ Build relationships between features for a structured model

SOURCES

Revenue

https://qz.com/1383416/amid-controversy-the-nfl-is-still-thriving-financially/

Analyst Predictions

https://www.fantasyfootballnerd.com/nfl-picks/accuracy