Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ροή Λ, 7ο εξάμηνο

Χειμερινό Εξάμηνο 2018 - 2019

Τεχνητή Νοημοσύνη Πρώτη Σειρά Ασκήσεων

Ονοματεπώνυμο Παπασκαρλάτος Αλέξανδρος

A.M. 03111097

<u>Ημερομηνία Υποβολής</u>: 27 Νοεμβρίου 2018

<u>Άσκηση 1.1</u>

<u>1.</u>

Εκτέλεση του Hill Climbing:

Μέτωπο αναζήτησης	Κατάσταση	Παιδιά	Ευριστική	
(s,9)	s	b, c, d	b(6), c(4), d(5)	
(c,4) ^s	С	h	h(5)	
(h,5) ^{s,c}	h			

Αποτυχία, τερματίζουμε χωρίς να φτάσουμε στο g.

Αυτό συμβαίνει διότι η ευριστική του κόμβου h είναι μεγαλύτερη από την ευριστική του κόμβου c (5>4).

Εκτέλεση του Best First:

Μέτωπο αναζήτησης	Κλειστό σύνολο	Κατάσταση	Παιδιά	Ευριστική
(s,9)		s	b, c, d	b(6), c(4), d(5)
(c,4) ^s , (d,5) ^s , (b,6) ^s	s	С	h	h(5)
(d,5) ^s , (h,5) ^{s,c} , (b,6) ^s	s, c	d	h, i	h(5), i(3)
(i,3) ^{s,d} , (h,5) ^{s,c} , (b,6) ^s	s, c, d	i	j	j(3)
$(j,3)^{s,d,i}, (h,5)^{s,c}, (b,6)^s$	s, c, d, i	j	g	g(0)
$(g,0)^{s,d,i,j}, (h,5)^{s,c}, (b,6)^s$	s, c, d, i, j	g		

Επιτυχία, φτάσαμε στο g.

Το μονοπάτι που βρήκαμε είναι το {s, d, i, j, g} με συνολικό κόστος 14.

Εκτέλεση του Α*:

Μέτωπο αναζήτησης	Κλειστό σύνολο	Κατά- σταση	Παιδιά, G	Παιδιά, F
(s,9)		s	b(5), c(2), d(2)	b(11), c(6), d(7)
(c,6) ^s , (d,7) ^s , (b,11) ^s	s	С	h(8)	h(13)
(d,7) ^s , (b,11) ^s , (h,13) ^{s,c}	s, c	d	h(10), i(8)	h(15), i(11)
(b,11) ^s , (i,11) ^{s,d} , (h,13) ^{s,c}	s, c, d	b	e(9), k(7)	e(14), k(9)
(k,9) ^{s,b} , (i,11) ^{s,d} , (h,13) ^{s,c} , (e,14) ^{s,b}	s, c, d, b	k	g(18), h(8)	g(18), h(13)
$(i,11)^{s,d}, (h,13)^{s,c}, (e,14)^{s,b}, (g,18)^{s,b,k}$	s, c, d, b, k	i	j(12)	j(15)
(h,13) ^{s,c} , (e,14) ^{s,b} , (j,15) ^{s,d,i} , (g,18) ^{s,b,k}	s, c, d, b, k, i	h	i(11), j(15)	i(14), j(19)
(e,14) ^{s,b} , (j,15) ^{s,d,i} , (g,18) ^{s,b,k}	s, c, d, b, k, i, h	е	g(18)	g(18)
(j,15) ^{s,d,i} , (g,18) ^{s,b,k}	s, c, d, b, k, i, h, e	j	g(14)	g(14)
(g,14) ^{s,d,i,j}	s, c, d, b, k, i, h, e, j	g		

Επιτυχία, φτάσαμε στο g.

Το μονοπάτι που βρήκαμε είναι το {s, d, i, j, g} με συνολικό κόστος 14.

Λύσεις του προβλήματος:

Οι λύσεις του προβλήματος είναι όλα τα δυνατά μονοπάτια από τον s στον g.

Έχουμε 9 τέτοια μονοπάτια:

```
{s, b, e, g}, {s, b, k, h, i, j, g}, {s, b, k, h, j, g}, {s, b, k, g}, 
{s, c, h, i, j, g}, {s, c, h, j, g}, 
{s, d, h, i, j, g}, {s, d, h, j, g}, {s, d, i, j, g}
```

Εξ' αυτών, **μοναδική βέλτιστη λύση** είναι το μονοπάτι: **{s, d, i, j, g} με συνολικό κόστος 14** από το s στο g.

Απαντήσεις των αλγορίθμων:

Ο αλγόριθμος Hill Climbing δε βρίσκει λύση στο πρόβλημα, καθώς από τον κόμβο c με ευριστική 4, περνάμε στον κόμβο h με ευριστική 5 (5>4), οπότε ο αλγόριθμος τερματίζει αποτυχημένα.

Οι αλγόριθμοι Best First και Α* βρίσκουν λύση και μάλιστα τη βέλτιστη {s, d, i, j, g}.

Εύρεση λύσης από τους αλγορίθμους:

Γενικά, οι αλγόριθμοι **Best First και Α* βρίσκουν πάντα λύση αν υπάρχει**, αν και ενδεχομένως όχι τη βέλτιστη. Εάν θέλουμε οπωσδήποτε βέλτιστη, εφαρμόζουμε Dijkstra και ξεχνάμε τις ευριστικές (πληρώνοντας σε χρόνο).

Όπως βλέπουμε και σε αυτήν την άσκηση, ο Hill Climbing δε βρίσκει πάντα λύση ακόμα και αν υπάρχει.

Από τα βήματα του Hill Climbing, προκύπτει πως για να βρει λύση, πρέπει να υπάρχει μονοπάτι από το s στο g: $\{a_1, a_2,...,a_n\}$, όπου $s=a_1$, $g=a_n$, τέτοιο ώστε για κάθε i<n, το a_{i+1} να έχει μικρότερη ευριστική τόσο από το a_i , όσο και από όλα τα υπόλοιπα παιδιά του a_i .

Εάν δεν ισχύει το παραπάνω, ο Hill Climbing θα "κολλήσει" είτε σε κάποιο μη ακραίο τοπικό ελάχιστο (δηλαδή σε ένα κόμβο που έχει μικρότερη ευριστική από το γονέα του και από όλα τα παιδιά του) ή σε κόμβο που δεν έχει παιδιά (ακραίο τοπικό ελάχιστο).

Εάν όλοι οι κόμβοι (εκτός από το στόχο), έχουν παιδιά, όπως και συμβαίνει εδώ, ο Hill Climbing θα έβρισκε σίγουρα λύση εάν η ευριστική συνάρτηση ήταν γνησίως φθίνουσα, με την έννοια πως κάθε κόμβος του γράφου έχει μεγαλύτερη ευριστική τιμή από τα παιδιά του.

<u>Άσκηση 1.2</u>

1. Εκτέλεση του Minimax:

2. Εκτέλεση του ΑΒ:

Με γκρι χρώμα παρουσιάζονται οι κόμβοι που δεν αποτιμώνται.

Ο μόνος τρόπος για να φτάσουμε σε έναν κόμβο δέντρου είναι να περάσουμε από το γονιό του. Σημείο εκκίνησης αποτελεί η ρίζα του δέντρου.

Ο αλγόριθμος ΑΒ επισκέπτεται με τη σειρά για πρώτη φορά του εξής κόμβους:

1, 2, 5, 11, 23, 24, 12, 25, 6, 13, 28, 29, 14, 30, 15, 31, 32,

3, 7, 16, 33, 4, 9, 18, 38, 39, 40, 19, 41, 10, 20, 43, 44

Σχόλιο

Σημειώνουμε πως η παραπάνω σειρά δεν είναι η σειρά αποτίμησης.

Η σειρά αποτίμησης προκύπτει από τις στιγμές που ο αλγόριθμος "ολοκληρώνει" την επίσκεψή του στον εκάστοτε κόμβο.

Η σειρά αυτή είναι:

23, 24, 11, 25, 12, 5, 28, 29, 13, 30, 14, 31, 32, 15, 6, 2,

33, 16, 7, 3, 38, 39, 40, 18, 41, 19, 9, 43, 44, 20, 10, 4, 1

3. Βέλτιστες ακολουθίες κινήσεων:

Οι βέλτιστες κινήσεις προκύπτουν εύκολα από το πλήρες minimax tree.

Αρκεί να δείξουμε τη βέλτιστη κίνηση του κάθε παίκτη ανάλογα με την παρούσα κατάσταση του παιχνιδιού.

Θεωρούμε δε, χάριν απλότητας, πως **σε περίπτωση ισοδυναμίας δύο κινήσεων, ως βέλτιστη θεωρούμε (αυθαίρετα) την κίνηση με το μικρότερο id.**

Έτσι, η βέλτιστη κίνηση του κάθε παίκτη, ανάλογα με την κατάσταση στην οποία βρίσκεται αυτή τη στιγμή το παιχνίδι είναι:

max:
$$1 \rightarrow 4, 5 \rightarrow 11, 6 \rightarrow 15, 7 \rightarrow 16, 8 \rightarrow 17, 9 \rightarrow 18, 10 \rightarrow 20$$

min:
$$2 \rightarrow 6, 3 \rightarrow 7, 4 \rightarrow 9,$$

 $11 \rightarrow 24, 12 \rightarrow 25, 13 \rightarrow 29, 14 \rightarrow 30, 15 \rightarrow 32, 16 \rightarrow 34, 17 \rightarrow 36,$
 $18 \rightarrow 39, 19 \rightarrow 41, 20 \rightarrow 43, 21 \rightarrow 46, 22 \rightarrow 48$

Ακολουθώντας την παραπάνω ανάλυση, προκύπτουν οι κάτωθι βέλτιστες ακολουθίες κινήσεων για τον κάθε παίκτη.

Θεωρώντας πως ο max παίζει βέλτιστα, ενώ ο min ίσως όχι,

οι βέλτιστες ακολουθίες κινήσεων του max είναι οι εξής

(σταματάμε στην τελευταία κίνηση του max):

max	1 → 4	
(min)	4 → 9	4 → 10
max	9 → 18	10 → 20

Θεωρώντας πως ο min παίζει βέλτιστα, ενώ ο max ίσως όχι,

οι βέλτιστες ακολουθίες κινήσεων του min είναι οι εξής

(θυμίζω, πως χάριν απλότητας, σε περίπτωση ισοδυναμίας δύο κινήσεων, ως βέλτιστη θεωρούμε (αυθαίρετα) την κίνηση με το μικρότερο id):

(max)	1 → 2			1→ 3	1 → 4	
min	2 → 6		3 → 7	4 → 9		
(max)	6 → 13	6 → 14	6 → 15	7 → 16	9 → 18	4 → 19
min	13 → 29	14 → 30	15 → 32	16 → 34	18 → 39	19 → 41