(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年6月24日(24.06.2004)

PCT

(10) 国際公開番号 WO 2004/053861 A1

(51) 国際特許分類7:

G11B 7/26.

7/24, C23C 14/34, C22C 5/06

(21) 国際出願番号:

PCT/JP2003/015696

(22) 国際出願日:

2003年12月9日(09.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-358040

2002年12月10日(10.12.2002) JP

(71) 出願人(米国を除く全ての指定国について): 田中貴 金属工業株式会社 (TANAKA KIKINZOKU KOGYO K.K.) [JP/JP]; 〒103-8206 東京都 中央区 日本橋茅場 町2丁目6番6号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 毛塚 弘之 (KE-DUKA, Hiroyuki) [JP/JP]; 〒259-1146 神奈川県 伊勢原 市 鈴川 2 6 番地 田中貴金属工業株式会社伊勢原工 場内 Kanagawa (JP). 柳原 浩 (YANAGIHARA, Hiroshi) [JP/JP]; 〒259-1146 神奈川県 伊勢原市 鈴川 2 6 番地 田中貴金属工業株式会社伊勢原工場内 Kanagawa (JP). (74) 代理人: 田中 大輔 (TANAKA, Daisuke); 〒113-0033 東 京都 文京区 本郷1丁目15番2号 第1三沢ビル Tokyo (JP).

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特 許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッ パ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: SILVER ALLOY FOR REFLECTIVE FILM OF OPTICAL RECORDING MEDIUM

(54) 発明の名称: 光記録媒体の反射膜用の銀合金

(57) Abstract: A silver alloy for reflective films of optical recording media contains silver as the main component and indium and/or tin as additional elements. The concentration of the additional elements is preferably 0.1-25 weight%; and especially when the concentration is 0.1-5.0 weight%, lowering of the reflectance can be suppressed. In view of the thermal conductivity of a reflective layer, the concentration of the additional elements is further limited to 0.1-0.5 weight%, so that the reflective layer can have a high thermal conductivity.

(57)要約:本発明は、銀を主成分とし、添加元素としてインジウム及び/又は錫を含んでなる光記録媒体の反射膜 用の銀合金である。この添加元素の濃度は、0. 1~25重量%が好ましく、特に、0. 1~5. 0重量%の範囲 で反射率の低下を抑制することができる。また、反射層の熱伝導率を考慮すれば、添加元素の濃度を更に限定し、 ▶ 0. 1~0. 5重量%とすることで高熱伝導率の反射層とすることができる。

Carlotte And Election

明細書

光記録媒体の反射膜用の銀合金

技術分野

本発明は、光記録媒体の反射膜の構成材料として好適な銀合金に関する。特に、長期の使用においても反射率の低下を抑制することができる反射膜用の銀合金に関する。

背景技術

CD-ROM、DVD-ROM等の光記録媒体は、通常、基板上に記録層、反射膜層、保護層(オーバーコート)とからなる。この反射層には古くはコスト面、反射率を考慮してアルミニウム合金が用いられてきたが、光記録媒体の主流が追記・書換型の媒体(CD-R/RW、DVD-R/RW/RAM)へ推移するに伴いより高反射率の材料の適用が求められている。これは、追記・書換型媒体の記録層の構成材料として有機色素材料が広く用いられるようになっており、有機色素材料では光ビームの減衰が大きくなるため、反射層の反射率を向上させることによりこの減衰を補足しようとすることによる。

反射率の観点から、光記録媒体の反射層の材料として適用されているのが銀である。銀は反射率が高い上に、同じく高反射率を有する金よりも安価であることから好適な材料である。しかし、銀は耐酸化性、耐硫化性に乏しく、酸化、硫化により腐食し黒色に変色して反射率を低下させるという問題がある。とりわけ銀は、追記・書換型の光記録媒体の記録層で適用される有機色素材料に対しては耐食性が悪く長期間の使用により反射率の低下がみられるという問題がある。

そして、光記録媒体の使用に伴う反射率低下の問題に対応すべく、 従来から、反射率を確保しつつ耐食性を向上させた銀合金を反射層と して適用した光記録媒体の開発が行われている。これらの多くは銀を 主成分として、これに種々の添加元素を1種又は2種以上添加するも

のであり、例えば、銀に $0.5\sim10$ 原子%のルテニウム及び $0.1\sim10$ 原子%のアルミニウムを添加するもの、銀に $0.5\sim4.9$ 原子%のパラジウムを添加したもの等が開示されている。そして、これらの銀合金は、耐食性が良好で使用環境下でも反射率を維持することができ、反射層に好適であるとしている(これらの先行技術の詳細については、特開平11-134715号公報及び特開2000-109943号公報を参照)。

以上の銀合金については、耐食性について一応の改善はみられる。 しかしながら、これらの銀合金であっても使用環境下で全く腐食しないという訳ではない。そして、反射率の低下についてもこれを完全に 保証するものではなく、より高い次元で反射率を維持できる材料が求められる。

また、光記録装置の分野では、現在のところ記録用光源としては赤色の半導体レーザー(波長650nm)が適用されているが、最近になって青色レーザー(波長405nm)の実用化の見通しが立ってきている。この青色レーザーを適用すると、現在の光記録装置の5~6倍の記憶容量が確保できることから、次世代の光記録装置は青色レーザーを適用したものが主流になると考えられている。ここで、本発明者等によれば、反射層の反射率の変化は照射するレーザーの波長により異なることが確認されており、特に短波長のレーザー照射に対しては腐食の有無に関わらず反射率が低下し、腐食による反射率低下も長波長レーザー照射の場合よりも顕著になることが多いことが確認されている。従って、今後の記録用光源の推移に対応可能な記録媒体を製造する為には、短波長域のレーザー照射に対しても高反射率を有し、更に実用範囲の維持が可能な材料の開発が望まれる。

本発明は以上のような背景の下になされたものであり、光記録媒体の反射層を構成する銀合金であって、長期の使用によっても反射率を

低下させること無く機能することのできる反射層用の材料を提供する ことを目的とする。また、短波長のレーザー光に対しても高い反射率 を有する材料を提供する。

発明の開示

かかる課題を解決すべく、本発明者等は従来技術と同様、銀を主体としつつ、従来技術とは異なる方向から好適な反射層用材料を見出すこととした。銀を主成分とするのは、上記のような銀の有する利点(高反射率、低コスト)を考慮したからである。そして、本発明者等が採用した従来と異なるアプローチとは、従来技術が添加元素の添加により耐食性のみを向上させていたことに対応するものである。即ち、使用過程における反射層の腐食(酸化)は、実際には回避することが不可能である。そこで、本発明者等は使用過程の酸化を敢えて許容しつつ、酸化しても反射率の低下が生じない銀合金であればそれも反射層用材料として好適であると考えた。そして、この酸化しても反射率の低下が生じない銀合金として、銀よりも優先的に酸化し且つ酸化しても反射率に影響を与えないインジウム及び/又は錫を添加した銀合金を見出し本発明に想到するに至った。

本発明は、銀を主成分とし添加元素としてインジウム及び/又は錫を含んでなる光記録媒体の反射膜用の銀合金である。

本発明で添加元素として添加されるインジウム、錫の酸化物は、これまで透明電極材料として広く適用されていることからも分かるように透明である。本発明にかかる銀ーインジウム/錫合金は、使用過程においてインジウム及び/又は錫が酸化するが酸化物は透明であり合金の反射率を損なうことはない。また、本発明に係る合金では、合金内部にはインジウム酸化物、錫酸化物が分散し、合金表面にはインジウム酸化物、錫酸化物が分散し、合金表面にはインジウム酸化物、錫酸化物からなる酸化皮膜が形成される。そして、この酸化皮膜が合金の更なる酸化の保護層として機能し母材となる銀の酸化を抑制する。本発明に係る合金により形成される反射層は、以上の

ような作用により反射率を維持することができる。

また、光記録媒体の中でもDVD-ROMにおいては記憶容量確保の観点から、記録層、反射膜層の組合せを2重にした2重構造を有するものがある。この2重構造のDVD-ROMにおいては、上層の記録層のデータ読み出しの際に、入射レーザー光の焦点を変化させて、基板及び下層の記録層、及び反射層を透過させる必要がある。従って、DVD-ROMの反射膜には、反射特性のみならず透過特性も要求させることとなる。本発明に係る合金は、透過率にも優れ、2重構造を有するDVD-ROMの反射膜にも適用可能である。

本発明において添加元素となるインジウム、錫の含有量は、反射率の維持のみを考慮するならば、インジウム及び錫のいずれも 0.1~25重量%の濃度とするのが好ましい。 0.1未満の添加量では、反射率維持の効果がなく、また、添加元素濃度が 25%を超えると、使用環境、入射レーザ光の波長によっては反射率の低下が大きくなり実用上支障が生じることがあるからである。そして、特に好ましい濃度は 0.1~5.0重量%である。この範囲では、使用環境、レーザー光波長によらず反射率をより高い次元で維持することができるからである。尚、これらの濃度範囲は、すべての添加元素の濃度範囲を示し、インジウム、錫の双方を含有する場合には、各元素の濃度の合計がこれらの範囲内であることを示す。

本発明に係る銀合金は、光記録媒体の反射層用の材料として好適であるが、反射層用の材料として具備しているとより好ましい特性として、熱伝導率が高いことが挙げられる。反射層の熱伝導率が低いと記録媒体の感度を低下させることがあるからである。そこで、反射率の維持と高熱伝導率の双方において好ましい特性を持たせる、本発明に係る銀合金はインジウム、錫の添加元素濃度を0.1~0.5重量%とするのが更に好ましい。本発明者等によれば、0.5重量%を超える合金は熱伝導率が低く、合金の主成分たる銀の熱伝導率の数分の一

の熱伝導率となるからである。

以上説明した本発明に係る反射層材料としての銀合金は、溶解鋳造 法により製造可能である。この溶解鋳造法による製造においては特段 に困難な点はなく、各原料を秤量し、溶融混合して鋳造する一般的な 方法により製造可能である。

ところで、実際の反射層の製造は、反射層用材料からなるターゲットを用いてスパッタリング法により薄膜形成することにより行なわれることが多い。そして、上記で説明したように、本発明に係る銀合金では含有するインジウム、錫が優先的に酸化し、この際生成する酸化物が保護膜として、その後の酸化、硫化を抑制できるとしている。そこで、本発明に係る銀合金を反射膜とする際には、スパッタリング法において、スパッタリング装置内へ導入するアルゴンガスに酸素を混合させ、反応性スパッタリングさせて反射層を酸化させつつ形成することができる。

一方、この反応性スパッタリングは、反射層の酸化の程度を制御するために酸素ガス導入に微妙な制御が必要となることから、反射層の製造効率を損なうおそれがある。そこで、発明者等は、本発明に係る合金について、予め添加元素であるインジウム、錫を酸化させておくことにより、微妙な制御を要する酸素ガス導入を行うことなく、通常のスパッタリング工程で反射層に保護膜を形成できると考えた。即ち、本発明者等は、銀を主成分とし、添加元素としてインジウム及び/又は錫を含む本発明に係る銀合金について、添加元素であるインジウム及び/又は錫を含む本発明に係る銀合金について、添加元素であるインジウム及び/又は錫の一部又は全部を内部酸化させることとした。この内部酸化した合金をターゲットとして薄膜を製造すると、薄膜製造時よりインジウム、錫の酸化物が均一分散した薄膜を形成することができることを見出した。

ここで、この内部酸化された銀合金の製造については、インジウム

及び/又は錫を所定組成含有する銀合金を製造し、これを高圧酸素雰囲気中で加圧、加熱することにより合金中の一部又は全部のインジウム、錫を酸化させることで製造可能である。具体的な酸化条件としては、酸素圧 0.1~1MPaの雰囲気下で700~800℃で60~80時間の加圧・加熱処理を行なうのが好ましい。

以上説明した本発明に係る銀合金は、反射層として好ましい特性を有し、使用過程において反射率の低下が抑制されている。また、後述のように、短波長のレーザー光照射下においても、従来の反射層用材料よりも良好な反射率及びその維持を示す。そして、上記のように光記録媒体の反射層の製造においてはスパッタリング法が一般に適用されている。従って、本発明に係る銀合金からなるスパッタリングターゲットは好ましい特性を有する反射層を備える光記録媒体を製造することができる。

発明を実施するための最良の形態

以下、本発明の好適な実施形態を比較例と共に説明する。

<u>実施例1</u>:ここでは、銀合金としてAg-1.2重量%In-0.8 重量%Sn組成のターゲットを製造して、これをもとにスパッタリン グ法にて薄膜を形成した。そして、この薄膜について種々の環境下で の腐食試験(加速試験)を行い、腐食試験後の反射率の変化について 検討した。

銀合金の製造は、各金属を所定濃度になるように秤量し、高周波溶解炉中で溶融させて混合して合金とする。そして、これを鋳型に鋳込んで凝固させインゴットとし、これを鍛造、圧延、熱処理した後、成形してスパッタリングターゲットとした。

薄膜の製造は、基板(ホウ珪酸ガラス)及びターゲットをスパッタリング装置に設置し、装置内を 5.0×10^{-3} Paまで真空に引いた後、アルゴンガスを 5.0×10^{-1} Paまで導入した。スパッタリング条件は、直流 1kWで 1分間の成膜を行ない、膜厚を 1000 Åと

した。尚、膜厚分布は±10%以内であった。

薄膜の腐食試験は、薄膜を下記の各環境中に暴露し、分光光度計に て波長を変化させつつ試験後の薄膜の反射率を測定することにより行 い、成膜直後の銀の反射率を基準としてその変化を検討した。

①大気中で250℃で2時間加熱

薄膜をホットプレート上に載置し、上記温度、時間にて加熱した。 この試験環境は、薄膜の耐酸化性を検討するためのものである。

②温水中に30分浸漬

薄膜を60℃の純水中に浸漬した。この試験環境は、薄膜の耐湿性 を検討するためのものである。

③アルカリ溶液中に浸漬

薄膜を3%水酸化ナトリウム溶液(温度30℃)に10分間浸漉した。この試験環境は、薄膜の耐アルカリ性を検討するためのものである。

比較例:本実施形態に係る銀合金に対する比較として、本発明と同様の目的で開発されている、Ag-1.0重量%Au-1.0重量%Cu、Ag-1.0重量%Cu、Ag-1.0重量%Nd-1.0重量%Cu、Ag-1.0重量%Nd-1.0重量%Cuの3種類の銀合金金からなるターゲットから薄膜を製造して、同様の腐食試験を行い、同じく反射率の変化を測定した。

この実施例の腐食試験の結果を表 1 ~表 3 に示す。これらの表で示す反射率は、成膜直後の銀の反射率を 1 0 0 とした相対値である。また、各測定値は、波長 4 0 0 n m、 5 6 0 n m、 6 5 0 n m(各々、青色、黄色、赤色レーザーの波長に相当する。)における反射率である。

<u>表 1</u>

入射光波長: 650nm

	実施例 1		比較例				
	Ag-In-Sn	Ag-Au-Cu	Ag-Pd-Cu	Ag-Nd-Cu			
成膜直後	97	83	84	88			
250°C−2. 0 h	94	88	92	93			
温水浸漬	95	85	88	90			
アルカリ浸漬	96	95	95	90			
平均值	96	88	90	90			

表 2

入射光波長: 560nm

	実施例 1		比較例				
	Ag-In-Sn	Ag-Au-Cu	Ag-Pd-Cu	Ag-Nd-Cu			
成膜直後	95	82	80	80			
250°C−2. 0 h	91	82	88	90			
温水浸漬	94	84	84	82			
アルカリ浸漬	94	93	93	82			
平均值	94	85	86	84 .			

表 3

入射光波長:400nm

	実施例 1	比較例				
	Ag-In-Sn	Ag-Au-Cu	Ag-Pd-Cu	Ag-Nd-Cu		
成膜直後	77	72	69	65		
250°C−2. 0 h	70	57	69	69		
温水浸漬	78	72	71	65		
アルカリ浸漬	76	75	75	65		
平均値	75	69	71	66		

この結果から、全体的な傾向として、入射光波長が短くなると反射率の低下がみられる(成膜直後の腐食試験なしの薄膜についても同様である)。そして、本実施例に係る銀合金により製造される薄膜は、反射率の値をみるといずれの比較例よりも高い値を示す。特に、本実施例は、いずれの環境で腐食試験をしたものでも成膜直後の反射率を維持しているが、比較例の場合は、腐食試験の環境により反射率にバラッキがみられる。従って、本実施例に係る薄膜は、反射層として従来技術より好ましいことがわかる。

実施例2:この実施例では、銀合金の添加元素濃度と腐食試験後の反射率との関係について調査し、その上限値を検討した。ここで製造、使用した銀合金はAg-Sn合金であり、錫濃度を2~50重量%まで変化させた銀合金について検討を行なった。尚、この実施例での銀合金の製造方法は、実施例1と同様であるが、腐食試験環境について

は、実施例1での試験環境に加えて、耐硫化性を検討するため、0. 01%の硫化ナトリウム水溶液(温度25℃)に1時間浸漬する試験 を行った。腐食試験後の反射率測定は実施例1と同様にして行った。 その結果を表4~表6に示す。

<u>表 4</u>

入射光波長: 650nm

成膜		腐食試験条件							
Sn 濃度	直後	大気中加熱 (250℃×2h)	温水浸漬 (60℃×0.5h)	アルカリ浸漬 (3%NaOH×10min)	硫化物溶液浸漬 (0.01%Na ₂ S×1h)				
2重量%	100	95	99	99	98				
3 重量%	99	97	99	99	98				
4重量%	98	97	99	98	. 94				
5 重量%	97	97	98	98	86				
10 重量%	93	96	90	87	89				
15 重量%	77	87	85	84	80				
20 重量%	89	91	84	78	85				
25 重量%	84	86	84	85	84				
30 重量%	84	84	62	81	83				
40 重量%	· 78	76	72	78	77				
50 重量%	70	74	73	55	72				

<u>表 5</u>

入射光波長: 560nm

0- 39 55	成膜	腐食試験条件							
Sn 濃度	直後	大気中加熱 (250℃×2h)	温水浸漬 (60℃×0.5h)	アルカリ浸漬 (3%NaOH×10min)	硫化物溶液浸漬 (0.01%Na₂S×1h)				
2 重量%	100	92	99	99	97				
3 重量%	99	96	99	98	96				
4重量%	97	96	99	97	92				
5重量%	96	96	98	97	94				
10 重量%	90	95	86	81	85				
15 重量%	68	76	77	75	73				
20 重量%	86	88	79	70	80				
25 重量%	81	83	80	82	81				
30 重量%	81	80	59	79	81				
40 重量%	74	71	68	74	73				
50 重量%	67	67	68	53	69				

<u>表 6</u>

入射光波長:400nm

				八羽元汉及					
c_ na ka		腐食試験条件							
Sn 濃度	直後	大気中加熱 (250℃×2h)	温水浸漬 (60℃×0.5h)	アルカリ浸漬 (3%NaOH×10min)	硫化物溶液浸渍 (0.01%Na ₂ S×1h)				
2重量%	96	71	97	94	90				
3 重量%	90	84	95	89	87				
4重量%	83	81	93	87	75				
5重量%	83	76	88	82	80				
10 重量%	75	84	71	68	71				
15 重量%	61	56	67	65	60				
20 重量%	73	67	65	60	65				
25 重量%	72	66	71	73	73				
30 重量%	72	61	52	70	72				
40 重量%	66	55	61	66	64				
50 重量%	63	46	55	51	63				

以上の結果から、反射層としての合格基準を60(銀の反射率を100とする)と設定すると、本実施例の傾向から、25重量%以上の添加元素を添加すると、入射光波長によっては初期状態(成膜直後)の反射率が低く、また、腐食が僅かに生た場合に合格基準を下回る場合が多くなる。従って、添加元素の含有量は25重量%が上限値と推察される。そして、反射率をより高い次元で維持するためには(80以上の値を示すためには)、添加元素濃度は5.0重量%以下とするのがより好ましいこともわかる。

<u>実施例3</u>:ここでは添加元素の下限値を検討すべく、インジウム及び

錫を0.05~0.5重量%含有するAg-In-Sn合金を製造し、これから薄膜を製造し、腐食試験による反射率の変化を測定した。合金の製造方法、腐食試験環境等は、実施例2と同様である。この結果を表7~9に示す。

表 7

入射光波長: 650nm

添加元	表濃度()	重量%)		腐食試験条件			
In	Sn	合計	成膜直後	大気中加熱 (250℃×2h)	温水浸漬 (60℃×0.5h)	アルカリ浸漬 (3%NaOH ×10min)	硫化物溶液浸渍 (0.01%Na ₂ S ×1h)
0. 025	0. 025	0.05	101	43	100	73	98
0. 05	0. 05	0. 1	100	94	100	100	97
0.1	0.1	0. 2	99	80	99	99	97
0. 2	0. 2	0.4	98	98	99	99	96
0. 25	0. 25	0. 5	99	98	98	98	96

表 8

入射光波長: 560nm

添加元章	希濃度(:	重量%)		腐食試験条件			
ln	Sn	合計	成膜直後	大気中加熱 (250℃×2h)	·温水浸漬 (60℃×0.5h)	アルカリ浸漬 (3%NaOH ×10min)	硫化物溶液浸漬 (0.01%Na ₂ S ×1h)
0. 025	0. 025	0. 05	101	36	100	72	97
0.05	0. 05	0. 1	101	92	100	100	97
0. 1	0.1	0. 2	99	78	99	99	96
0. 2	0. 2	0.4	97	97	99	98	95
0. 25	0. 25	0.5	99	97	98	98	95

<u>表 9</u>

入射光波長: 400nm

添加元	素濃度(重量%)		腐食試験条件			
ln	Sn	合計	成膜直後	大気中加熱 (250℃×2h)	温水浸漬 (60℃×0.5h)	アルカリ浸漬 (3%NaOH ×10min)	硫化物溶液浸漬 (0.01%Na₂S ×1h)
0. 025	0. 025	0.05	105	20	103	73	96
0. 05	0. 05	0. 1	104	78	103	103	95
0. 1	0.1	0. 2	97	62	. 98	97	94
0. 2	0. 2	0.4	93	88	95	95	91
0. 25	0. 25	0, 5	89	83	93	92	89

この結果から、実施例3で検討した銀合金は、成膜直後の反射率は良好であるが、大気加熱による反射率の変化が大きく、添加元素濃度と反射率との間には相関関係がみられ、添加元素濃度が減少するに従い加熱後の反射率は減少傾向にある。そして、実施例2と同様、合格基準を60とした場合、添加元素濃度が0.1重量%未満(0.05%)の薄膜は、大気酸化後の反射率の維持ができなくなっているのがわかる。従って、添加元素濃度の下限値は0.1重量%とするのが適当と考えられる。

<u>実施例4</u>:ここでは添加元素の濃度と熱伝導率との関係を検討すべく、インジウム及び錫を0.05~2.0重量%含有するAgーInーSn合金を製造し、これから薄膜を製造し、その熱伝導率を求めた。薄膜の形成は、実施例1、2と同様である。また、薄膜の熱伝導率は、これを直接測定することが困難であるため、まず、比抵抗を測定し、その値からウィーデマンーフランツの法則により熱伝導率を算出することにより求めた。この結果を表10に示す。表10には、実施例1の

比較例として製造したAg-1. 0重量%Au-1. 0重量%Cu、Ag-1. 0重量%Cu、Ag-1. 0重量%N d-1. 0重量%Cu0 3 つの銀合金、及び、純銀薄膜の熱伝導率を合わせて示した。

表 1 0

添加元	表濃度 (重量%)	熱伝導率 Wm ⁻¹ K ⁻¹				
1n	Sn	合計	Ag-In-Sn (本実施例)	Ag	Ag-Au-Cu	Ag-Pd-Cu	Ag-Nd-Cu
0. 025	0. 025	0. 05	237				
0. 05	0. 05	0. 1	226				
0. 1	0.1	0. 2	196	240	106	106 45	63
0. 2	0. 2	· 0. 4	163	240	100		
0. 25	0. 25	0. 5	122				
1.0	1.0	2. 0	76				

表10より、この実施例のAg-In-Sn合金薄膜は、添加元素 濃度の上昇に伴い熱伝導率が低下するのがわかる。そして、熱伝導率 が銀の50%以上であることを合格ラインと考えると、熱伝導率を考 慮すると、添加元素の添加量は0.5重量%以下に抑えるのが適当で あると考えられる。そして、実施例3の結果を合わせて考慮すると、 反射率の維持と高熱伝導率の2つ条件に関し、好ましい添加元素濃度 としては0.1~0.5重量%であることが確認された。尚、比較例 の銀合金薄膜は、いずれも銀の50%未満の熱伝導率であった。

産業上の利用可能性

以上説明したように、本発明に係る銀合金は、従来の発想とは異な

り、酸化しても反射率に悪影響を与えない酸化物を生成する元素を添加することにより、使用過程における反射率の低下が抑制するものである。本発明によれば、長期使用によっても反射率の低下の少ない反射層を製造することができ、これにより光記録媒体の寿命を長期化できる。また、本発明に係る銀合金は、短波長のレーザー光照射下においても、従来の反射層用材料よりも良好な反射率及びその維持を示す。従って、今後の主流となるであろう短波長レーザーを光源とする光記録装置用の記録媒体にも対応可能である。

請求の範囲

1. 銀を主成分とし、添加元素としてインジウム及び/又は錫を含んでなる光記録媒体の反射膜用の銀合金。

- 2. 添加元素の濃度は、0. 1~25重量%である請求項1記載の光 記録媒体の反射膜用の銀合金。
- 3. 添加元素の濃度は、0.1~5.0重量%である請求項1記載の 光記録媒体の反射膜用の銀合金。
- 4. 添加元素の濃度は、0.1~0.5 重量%である請求項1記載の 光記録媒体の反射膜用の銀合金。
- 5. 添加元素であるインジウム及び/又は錫の一部又は全部が内部酸化されてなる請求項1~請求項4記載の光記録媒体の反射膜用の銀合金。
- 6. 請求項1~請求項5記載の銀合金からなるスパッタリングターゲット。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/15696

	SIFICATION OF SUBJECT MATTER C1 ⁷ G11B7/26, 7/24, C23C14/34,	, C22C5/06							
According to International Patent Classification (IPC) or to both national classification and IPC									
B. FIELD	S SEARCHED								
Minimum d	ocumentation searched (classification system followed	by classification symbols)							
Int.	Cl ⁷ G11B7/26, 7/24, C23C14/34,	. C22C5/06							
Documentat	tion searched other than minimum documentation to the								
	uyo Shinan Koho 1922-1996 i Jitsuyo Shinan Koho 1971-2003	-							
Electronic d	data base consulted during the international search (nam	e of data base and, where practicable, sear	rch terms used)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.						
. P,X	JP 2003-160859 A (Mitsubishi 06 June, 2003 (06.06.03), Par. No. [0008] (Family: none)	Materials Corp.),	1-4,6						
X Y	JP 6-243509 A (Ricoh Co., Lt 02 September, 1994 (02.09.94) Full text (Family: none)		1 2-6						
X Y	JP 2001-35014 A (Ricoh Co., 09 February, 2001 (09.02.01), Par. No. [0021] (Family: none)		1,6 2-5						
다 Fuelbe	er documents are listed in the continuation of Box C.	See patent family annex.	<u> </u>						
	I categories of cited documents: ent defining the general state of the art which is not	"T" later document published after the inte priority date and not in conflict with th							
conside	ered to be of particular relevance document but published on or after the international filing	understand the principle or theory under "X" document of particular relevance; the o							
date	ent which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone	red to involve an inventive						
cited to	establish the publication date of another citation or other	"Y" document of particular relevance; the o	claimed invention cannot be						
"O" docume	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	documents, such						
	ent published prior to the international filing date but later e priority date claimed	combination being obvious to a person document member of the same patent if							
Date of the a	actual completion of the international search becember, 2003 (26.12.03)	Date of mailing of the international search 20 January, 2004 (2	ch report 20 - 01 - 04)						
	nailing address of the ISA/ nnese Patent Office	Authorized officer							
Escrimite N		Telephone No.							

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	JP 2002-117587 A (Target Technology Co., LLC.), 19 April, 2002 (19.04.02), Par. Nos. [0066] to [0069] & EP 1174868 A2 & WO 02/07919 A1 & US 2002/34603 A1	1-4,6
Y .	JP 61-6220 A (Tanaka Kikinzoku Kogyo Kabushiki Kaisha), 11 January, 1986 (11.01.86), Full text; all drawings (Family: none)	5
Y	JP 61-6223 A (Tanaka Kikinzoku Kogyo Kabushiki Kaisha), 11 January, 1986 (11.01.86), Full text (Family: none)	5
Y	JP 62-130245 A (Tanaka Kikinzoku Kogyo Kabushiki Kaisha), 12 June, 1987 (12.06.87), Full text (Family: none)	5
A	JP 61-73847 A (Tanaka Kikinzoku Kogyo Kabushiki Kaisha), 16 April, 1986 (16.04.86), Page 2, upper right column to lower left colum (Family: none)	1-6
A	JP 62-243725 A (Seiko Epson Corp.), 24 October, 1987 (24.10.87), Page 2, lower left column to lower right column (Family: none)	1-6
A	JP 3-36221 A (Mitsubishi Materials Corp.), 15 February, 1991 (15.02.91), Table 1 (Family: none)	1-6
A	JP 11-257355 A (Toyota Motor Corp.), . 21 September, 1999 (21.09.99), Example 9 (Family: none)	1-6
A	JP 8-1374 A (Tanaka Kikinzoku Kogyo Kabushiki Kaisha), 09 January, 1996 (09.01.96), Full text (Family: none)	1-6
A	US 6139652 A (Carrano et al.), 31 October, 2000 (31.10.00), Full text (Family: none)	1-6

A. 発明の風する分野の分類(国際特許分類 (IPC))

Int. Cl. 7 G11B7/26, 7/24, C23C14/34, C22C5/06

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. 7 G11B7/26, 7/24, C23C14/34, C22C5/06

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2003年

日本国登録実用新案公報

1994-2003年

日本国実用新案登録公報

1996-2003年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献		
引用文献の カテ ゴ リー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
PX	JP 2003-160859 A (三菱マテリアル株式会社) 2003.06.06 【0008】 (ファミリーなし)	1-4, 6
X Y	JP 6-243509 A (株式会社リコー) 1994.09.02 全文 (ファミリーなし)	$\begin{array}{c} 1 \\ 2-6 \end{array}$
X Y	JP 2001-35014 A (株式会社リコー) 2001.02.09 【0021】 (ファミリーなし)	1, 6 2-5

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に雪及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

26.12.03

国際調査報告の発送日 2.0

20.1.2004

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区段が関三丁目4番3号

特許庁審査官(権限のある職員)

電話番号 03-3581-1101 内線 3550

5 D

3045

様式PCT/ISA/210 (第2ページ)·(1998年7月)

C (続き) .	関連すると認められる文献	
引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	JP 2002-117587 A (ターケット・テクノロシュー・カンパュー・エルエルシー) 2002.04.19 【0066】 - 【0069】 & EP 1174868 A2 & WO 02/07919 A1 & US 2002/34603 A1	1-4, 6
Y	JP 61-6220 A (田中貴金属工業株式会社) 1986.01.11 全文、全図 (ファミリーなし)	5
Y	JP 61-6223 A (田中貴金属工業株式会社) 1986.01.11 全文 (ファミリーなし)	5
Y .	JP 62-130245 A (田中貴金属工業株式会社) 1987.06.12 全文 (ファミリーなし)	5
A	JP 61-73847 A (田中貴金属工業株式会社) 1986.04.16 第2頁右上欄一左下欄 (ファミリーなし)	1-6
A	JP 62-243725 A (セイコーエプソン株式会社) 1987.10.24 第2頁左下欄一右下欄 (ファミリーなし)	1-6
A	JP 3-36221 A (三菱マテリアル株式会社) 1991.02.15 第1表 (ファミリーなし)	1-6
A	JP 11-257355 A (トヨタ自動車株式会社) 1999.09.21 実施例9 (ファミリーなし)	1-6
A	JP 8-1374 A (田中貴金属工業株式会社) 1996.01.09 全文 (ファミリーなし)	1-6
A	US 6139652 A (Carrano et al.) 2000. 10. 31 全文 (ファミリーなし)	1-6

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LÌNES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		
Потигр.		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.