Raman Spectroscopy

Tuesday, March 29, 2016

11:54 AM

E brick wilson molecular vibration

VIII A brief Look at Raman

- -previously: single photon absorbed or emitted
- -Raman: 2 photons are involved
- -irradiate and measure another

A type of light scattering

- 1. Rayleigh Scattering
 - a. Elastic scattering
 - b. E_{photon} , λ remains the same
 - c. Direction can change
 - i. Scattering distribution depends on λ
- 2. Raman Scattering
 - a. The scattered photon has a different energy then incident
 - b. $hv_{intial} = hv_{scattered} \pm hv_{molecule}$
 - i. Rovibratioan energy of a molecule

If the scattered photon has lost energy, then it is (red shifted), this is a stokes shifted If the photon has gained energy, then it is (blue shifted), then it is anti stokes

The blue shift requires the molecule to be in a higher excited state

The Raman Shift

$$\Delta v = |v - v_{inc}|$$

3. Scattering Process

But intensity of Raman Scattering light depends on the λ_{inc}

- Enabled by tunable lasers
- 4. Dielectric Polarizability
 - Necessary for RS

$$\circ \vec{E} \text{ field induces a } \vec{\mu}$$
$$\bullet \mu_j = \Sigma_i \alpha_{ji} E_i$$

α is a 2nd rank tensor

 α_{ij} has a principal axis system

- Here α_{ij} 3 × 3 matrix
- Rovibrational Raman

$$\circ \left(\frac{\partial \alpha_{ij}}{\partial Q_i}\right)_0 \neq 0$$

o Raman Active