

# Solução de um Problema de Equação de Burgers de Viscosidade Unidimensional Usando Rede Neural Informada por Física (PINN) e Método da Quadratura Gaussiana (GQM)

**Eduardo Furlan** 

**CAP-421 Aprendizado Profundo** 

### Por que PINN?

- Nova abordagem de ML para solução de PDE
- É possível obter modelos substitutos aproximadores
- Pode ser uma alternativa a métodos numéricos
- Pode aumentar a eficiência de modelos existentes
- Avaliar a aplicação em modelos meteorológicos (ex: módulo de radiação ecRad do MONAN)

### Introdução

### Objetivos deste trabalho

- Implementação de um caso de teste (equação de viscosidade 1D de Burgers)
- Uso de 2 abordagens, PINN (aprendizado de máquina) e GQM (método numérico)
- Comparar as eficiências das 2 abordagens

## Abordagens e recursos

### Apenas alguns recursos

- TensorFlow: biblioteca de código aberto para ML e IA
- Fortran 90: usado no método numérico GQM
- OpenMP: biblioteca de paralelização por Threads
- JupyterLab: ambiente interativo e para a web
- SDumont: supercomputador do LNCC



### Caso de teste:

Viscosidade 1D de Burgers

### Caso de teste

Problema da equação de viscosidade 1D de Burgers

$$rac{\partial u}{\partial t} + u rac{\partial u}{\partial x} = 
u rac{\partial^2 u}{\partial x^2}$$

- Implantação 2 modelos matemáticos:
  - Rede Neural Informada por Física (PINN)
  - Método da Quadratura Gaussiana (GQM)

### Rede Neural Informada por Física (PINN)

- PINN embute PDE como parte da ANN
- Pode ser considerado um tipo de RL (reforço) que usa o gradiente como uma função política, e a PDE tem o papel de RL baseado em modelo
- Também pode ser considerada supervisionada, no caso de usar dados experimentais e PDEs que funcionam como supervisão

### A PDE foi embutida na função de perda



### Condições iniciais (IC) e de contorno (BC):

$$u(0, x) = -sen(\pi x),$$
  
 $u(t, -1) = u(t, 1) = 0.$ 

### Exemplo simplificado de implementação

```
u_t + uu_x - (0.01/\pi)u_{xx} = 0
def net u(self, x, t):
    u = self.neural net(tf.concat([x, t], 1), self.weights, self.biases)
    return u
def net f(self, x, t):
      t/= tf gradients(u, t)[0]
                                                        TensorFlow
    u'x = tf.gradients(u, x)[0]
    u^{xx} = tf.gradients(u x, x)[0]
    f = u t + u * u x - self.nu * u xx
    return f
```

### O treinamento minimiza a perda do MSE

Erro Médio Quadrático

$$MSE = MSE_u + MSE_f$$

$$MSE_u = \frac{1}{N_u} \sum_{i=1}^{N_u} |u(t_u^i, x_u^i) - u^i|^2,$$

Condição Inicial (IC) e de contorno (BC)

$$MSE_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(\mathbf{t_f^i, x_f^i})|^2.$$

Pontos de Colocação (CP) aleatórios no domínio da PDE

### **Parâmetros**

- Treinamento: 100 pontos IC+BC, e 10000 CP
  - Aleatórios, dentro do domínio da PDE
- Rede MLP com 10 camadas, sendo que 8 são escondidas com 20 neurônios cada
- Função de otimização: L-BFGS
- Função de ativação: tangente hiperbólica

### Podem ser usadas outras arquiteturas

- Apesar de ter sido usado MLP nesta implementação, na literatura também se encontra outras, como:
  - CNN (Convolucionais)
  - RNN (Recorrente)
  - AE (Auto-encoder)
  - DBN (Deep belief)
  - GAN (Generative adversarial)
  - BDL (Bayesian)

### Método numérico implementado

- Método da Quadratura Gaussiana (GQM)
- Método numérico iterativo de aproximação
- Usa uma grade de 100 pontos tempo X 256 de espaço
- O resultado do GQM é usado para comparar com o resultado da PINN

# 4

# Resultados: análise de desempenho

### **Ambiente (Santos Dumont LNCC)**

- Nó B710: 2x Xeon E5-2695v2 12-core
- Nó B715: 2x Xeon E5-2695v2 12-core + 2x Tesla K40
- Nó Sequana X: 2x Xeon 6152 22-core + 4x Volta V100
- GNU Fortran 4.8.5, OpenMP 3.1, Python 3.7, TensorFlow 1.15, e outros
- Execução paralela (PINN e GQM) usando Threads

### Medição

#### GQM:

 Como o tempo de execução é pequeno, a medição considera 1000 execuções

#### PINN:

- Predição: também 1000 execuções
- Treinamento: executado 1 única vez

### **Resultado PINN**



### Instantâneos de tempo



### Tempos de processam.[s]/Speedup/Eficiência

| nós        |   |
|------------|---|
| <b>B71</b> | 0 |

|                | Number of OpenMP threads |            |           |       |       |
|----------------|--------------------------|------------|-----------|-------|-------|
| Profiling      | 1                        | 4          | 8         | 16    | 24    |
|                | Proces                   | sing time  | e (second | ls)   |       |
| F90            | 20.16                    | 6.49       | 3.74      | 2.71  | 2.06  |
| Train          | 30.33                    | 22.14      | 21.69     | 22.56 | 23.21 |
| Predict        | 100.64                   | 46.77      | 32.06     | 28.52 | 27.57 |
|                |                          | Speedi     | ир        |       |       |
| F90            | 1.00                     | 3.11       | 5.39      | 7.43  | 9.77  |
| Train          | 0.66                     | 0.91       | 0.93      | 0.89  | 0.87  |
| <b>Predict</b> | 0.20                     | 0.43       | 0.63      | 0.71  | 0.73  |
|                | Pa                       | rallel eff | iciency   |       |       |
| F90            | 1.00                     | 0.78       | 0.67      | 0.46  | 0.41  |
| <b>Train</b>   | 0.66                     | 0.23       | 0.12      | 0.06  | 0.04  |
| Predict        | 0.20                     | 0.11       | 0.08      | 0.04  | 0.03  |

### Tempos de processamento[s]



### **Speedup**



### Eficiência paralela



# 5

## **Considerações Finais**

### Considerações finais

- No trabalho foram usadas 2 abordagens, PINN e GQM
- O caso de teste foi executado no SDumont
- TensorFlow/Python e F90 com OpenMP
- A abordagem numérica teve melhor desempenho
- Trabalhos futuros
  - Avaliar o uso de outras arquiteturas ANN
  - Variar hiperparâmetros
  - Usar GPU



### Obrigado!

Código fonte: https://github.com/efurlanm/421/project