DLP based Cryptography

Prof. Ashok K Bhateja

IIT Delhi

Discrete logarithm

- Let G be a finite cyclic group of order n. Let α be a generator of G, and let $\beta \in G$. The discrete logarithm of β to the base α , denoted $\log_{\alpha} \beta$, is the unique integer x, $0 \le x \le n 1$, s.t. $\beta = \alpha^x$.
- Ex: $\alpha = 3$ and $\beta = 19683$, since $3^9 = 19683$
 - $\log_3 19683 = 9$

Discrete logarithm problem

Definition DLP: Example: Given a prime p, a generator α of Z_p^* , and an element $\beta \in Z_p^*$, find the integer x, $0 \le x \le p - 2$, such that

$$\alpha^x \equiv \beta \pmod{p}$$
.

Let p = 97. Z_{97}^* is a cyclic group of order 96.

A generator of Z_{97}^* is $\alpha = 5$.

Since $5^{32} \equiv 35 \pmod{97}$ therefore $\log_5 35 = 32 \text{ in } \mathbb{Z}_{97}^*$.

Definition GDLP: Given a finite cyclic group G of order n, a generator α of G, and an element $\beta \in G$, find the integer x, $0 \le x \le n - 1$, such that $\alpha^x \equiv \beta$.

ElGamal public-key cryptosystem

- The security of the ElGamal public-key encryption scheme is based on the intractability of the discrete logarithm problem.
- It has the advantage the same plaintext gives a different ciphertext (with near certainty) each time it is encrypted.
- ElGamal has the disadvantage that the ciphertext is twice as long as the plaintext.

Key generation for ElGamal public-key encryption

- Each entity creates a public key and a corresponding private key
- Generate a large random prime p and a generator α of the multiplicative group Z_p^* of the integers modulo p.
- ► Select a random integer d, $1 \le d \le p$ 2, and compute $\beta = \alpha^d \mod p$
- lacktriangle A's public key is (p, α, β)
- \blacksquare A's private key is d.

ElGamal Encryption & Decryption

Encryption:

- To encrypts a message m $(0 \le m \le p)$
- choose a random integer k, $1 \le k \le p 2$
- $\blacksquare \text{ find } r \equiv \alpha^k \bmod p \quad \& \quad t \equiv \beta^k \cdot m \bmod p$

The encrypted message c = (r, t)

Decryption:

- Compute $r^{p-1-d} \pmod{p}$
- Compute $m = t \cdot r^{p-1-d} \pmod{p}$

ElGamal Cryptosystem: Justification

```
\beta = \alpha^{d} \mod p
r \equiv \alpha^{k} \mod p \quad \& \quad t \equiv \beta^{k} \cdot m \mod p
\text{Claim: } m = t \cdot r^{p-1-d} \pmod p
t \cdot r^{p-1-d} \pmod p = \alpha^{kd} m \alpha^{k(p-1-d)} \mod p
= \alpha^{k(p-1)} m \mod p
= (\alpha^{p-1})^{k} m \mod p
\equiv m \mod p \qquad \text{using Fermat's theorem}
```

Example

Entity A selects prime p = 107, generator $\alpha = 2$, and private key d = 67

Compute $\beta = \alpha^d \mod p = 2^{67} \pmod{107} \equiv 94$.

A's public key: $(p, \alpha, \beta) = (107, 2, 94)$

A's private key is d = 67.

Encryption: To encrypt a message m = 66

B selects a random integer k = 45

Find
$$(r, t) = (\alpha^k \mod p, \beta^k m)$$

 $\equiv (2^{45} \mod 107, 94^{45} \cdot 66 \mod 107) \equiv (28, 9)$

B sends the encrypted message (28, 9) to A.

Example

A receives the message (r, t) = (28, 9)

Decryption (by A):

Compute
$$r^{(p-1-d)} \pmod{p} = 28^{107-1-67} \mod 107$$

= 43

Compute
$$m = t \cdot r^{p-1-d} \pmod{p} = 9 \times 43 \mod 107$$

= 66

Security of ElGamal Encryption

- An eavesdropper knows p, α , β , r, t where $\beta \equiv \alpha^d \mod p$ and $r \equiv \alpha^k \mod p$.
- Determining m from (r, t) is equivalent to computing $\alpha^{d k} \mod p$, since $t \equiv \beta^{k} \cdot m \mod p$.
- ► Here, m is masked by the quantity $\alpha^{dk} \mod p$.
- ightharpoonup Both d, k are unknown to the attacker.
- So, the ability to solve the Discrete Logarithm problem lets the eavesdropper break ElGamal encryption.
- Practically, we require p to be of size ≥ 1024 bits for achieving a good level of security.

Common System-wide parameters

- All entities may use the same prime p and generator α , in which case p and α need not be published as part of the public key.
- Advantage:
 - Size of public keys will be small
 - Exponentiation can then be expedited via precomputations
- Disadvantage:
 - Precomputation of a database of factor base logarithms
 - requirement of Index Calculus algorithm
 - will compromise the secrecy of all private keys derived using p.

Fixed-base exponentiation algorithms

To find α^e , write exponent e in a base-b representation, i.e.

$$e = e_0 b^0 + e_1 b^1 + e_2 b^2 + \dots + e_t b^t$$

e is a (t+1) - digit base *b* integer with $b \ge 2$

- The look-up table of $\alpha_i = \alpha^{b^i}$, i = 0, ..., t precomputed
- **Example:** Compute α^{862}

Base
$$b = 4$$
, $e = (862)_{10} = (31132)_4$
= $2 + 3 \cdot 4^1 + 1 \cdot 4^2 + 1 \cdot 4^3 + 3 \cdot 4^4$

The needed precomputations are α^{4^0} , α^{4^1} , α^{4^2} , α^{4^4}

Diffie-Hellman Key Exchange

- Discovered by Whitfield Diffie and Martin Hellman in 1976 and published in "New Directions in Cryptography."
- Diffie-Hellman key agreement provided the first practical solution to the key distribution problem.
- The protocol allows two users to exchange a secret key over an insecure medium without any prior secrets.
- Security Intractability of Discrete Logarithm problem
- This key can then be used to encrypt subsequent communications using a symmetric key cipher.

Introduction: Diffie-Hellman Key Exchange

- Security of transmission is critical for many network and Internet applications
- Requires users to share information in a way that others can't decipher the flow of information

"It is insufficient to protect ourselves with laws; we need to protect ourselves with mathematics."

-Bruce Schneier

Introduction: Diffie-Hellman Key Exchange

- Let Z_p^* be a cyclic group, with a generator $\alpha \in Z_p^*$
- $\triangleright p$ and α are both publicly available numbers
 - p is at least 512 bits
- \blacksquare Users pick private values a and b may be randomly.

Diffie-Hellman Key Exchange Protocol

Alice and Bob agree upon and make public two numbers α and p, where p is a prime and α is a generator of Z_p^* .

Alice Bob

choose a random number a

compute
$$u = \alpha^a \pmod{p}$$

choose a random number b

$$v \leftarrow v \qquad \text{compute } v = \alpha^b \pmod{p}$$

$$\text{compute } u^b$$

Compute v^a

i.e.
$$v^a = (\alpha^b)^a \pmod{p}$$

The key
$$k = \alpha^{ab} \pmod{p}$$

$$u^b = (\alpha^a)^b \pmod{p}$$

$$key k = \alpha^{ab} \pmod{p}$$

Ashok K Bhateja IIT Delhi

Example: Diffie-Hellman Key Exchange Protocol

- Alice and Bob get public numbers
 - $p = 23, \ \alpha = 9$
 - Alice private number a = 4
 - Bob private number b = 3
- Alice and Bob compute public values
 - $u = 9^4 \mod 23 = 6561 \mod 23 = 6$
 - $v = 9^3 \mod 23 = 729 \mod 23 = 16$
- Alice and Bob exchange public numbers

Example: Diffie-Hellman Key Exchange Protocol

- Alice and Bob compute symmetric keys
 - $k = v^a \mod p = 16^4 \mod 23 = 9$
 - $-k = u^b \mod p = 6^3 \mod 23 = 9$
- Alice and Bob now can talk securely!

Difie-Hellman in other groups

- The Diffie-Hellman protocol, and those based on it, can be carried out in any group in which both the discrete logarithm problem is hard, and exponentiation is efficient.
- The most common examples of such groups used in practice are
 - the multiplicative group Z_p^*
 - The multiplicative group of F_2m
 - the group of points defined by an elliptic curve over a finite field.

Choice of prime p

- Sophie Germain prime: a prime number p is a Sophie Germain prime if 2p + 1 is also prime. The number 2p + 1 associated with a Sophie Germain prime is called a safe prime.
- Example: 11 is a Sophie Germain prime and $2 \times 11 + 1 = 23$ is its associated safe prime.
 - 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113 are SG primes
- The order of group should have a large prime factor to prevent use of the Pohlig–Hellman algorithm to obtain discrete log.