A coil of one loop is made by a wire of length L and there after a coil of two loops is made by same wire. The ratio of magnetic field at the centre of coils respectively :-(1) 1 : 4 (3) 1 : 8 (4) 4 : 1 (2) 1 : 1Magnetic field at point O will be :-

(1)
$$\frac{\mu_0 I}{2R} \otimes$$
 (2) $\frac{\mu_0 I}{2R} \odot$ (3) $\frac{\mu_0 I}{2R} \left(1 - \frac{1}{\pi}\right) \otimes$ (4) $\frac{\mu_0 I}{2R} \left(1 + \frac{1}{\pi}\right) \odot$

The vector form of Biot savart law for a current carrying element is :-

carrying element is :-

(1)
$$d\vec{B} = \frac{\mu_0}{4} \frac{id\ell \sin \phi}{2}$$
 (2) $d\vec{B} = \frac{\mu_0}{4} \frac{i\vec{d\ell} \times \hat{r}}{2}$

(1)
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{id\ell \sin \phi}{r^2}$$
 (2) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{i\vec{d\ell} \times \hat{r}}{r^2}$
(3) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{i\vec{d\ell} \times \hat{r}}{r^3}$ (4) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{i\vec{d\ell} \times \hat{r}}{r^2}$

A and B are two concentric circular loop carrying current i1 and i2 as shown in figure. If ratio of their radii is 1:2 and ratio of the flux densities at the centre O due to A and B is 1:3 then the value of $\frac{\mathbf{1}_1}{\mathbf{1}_2}$ will be :-

(1)
$$\frac{1}{2}$$
 (2) $\frac{1}{3}$ (3) $\frac{1}{4}$ (4) $\frac{1}{6}$

For the given current distribution the magnetic field at point, 'P' is :-

5A P 2.5A
$$\bigcirc P$$

$$\bigcirc$$