Synthèse d'images

Faculté d'informatique USTHE 2022/2023

EMD

A quelles transformations géométriques correspondent les matrices ci-dessous ? (donner l'ordre des transformations et leurs matrices)

[1	0	3	11	[1	0	0	0]	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	2	0	01
0	1	2	1	0	5	0	0	0	1	0	6
0	0	1	1	0	0	2	0 '	0	2	1	0
Lo	0	0	1 1 1 1 1	Lo	0	0	0 0 0 1	10	0	0	11

Donner les matrices qui permettent d'appliquer les transformations 3D suivantes :

- Une rotation de 15° selon l'axe des X puis une rotation de 15° selon l'axe des Y puis une rotation de 15° selon l'axe des X.
- Une translation de deux unités sur l'axe des Z, côté négatif suivie d'une autre translation de deux unités sur l'axe des Y, côté négatif.
- Un changement d'échelle de 3 fois plus petit suivi d'une rotation de 90° selon l'axe X.
- Un shear selon X de 3 et 6 respectivement pour Y et Z.

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} L R_{y} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} L R_{z} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Donner la matrice qui fait transformer l'objet dans le schéma a) vers celui dans b).

Soit la procédure de dessin 3D suivante :

Dessin()

Dessiner_sphère(1); Translation(1,0,0); Dessiner sphère(1); Translation(-0.5,0,0); Scale(1.5,1,1);

Dessiner_cube(1);

Dans Dessiner_cube(x), x est la taille du coté et dans Dessiner_sphère(x), x est le rayon. Ces deux fonctions font centrer l'objet dessiné à l'origine du repère. Les fonctions Translation(x,y,z) et Scale(x,y,z), font une translation et un changement d'échelle respectivement, selon les paramètres x, x et z

Dessiner l'image obtenue avec Dessin() en utilisant l'origine du repère de visualisation, la position de la caméra $P_{cam}(0,0,6)$ et le point de références de visualisation $P_{ref}(0,0,-6)$.

- Qu'est ce qu'on obtient en utilisant l'origine du repère réel au lieu de celui de la visualisation ?
- Modifier la fonction Dessin() afin d'obtenir l'image suivante :

 Avec une projection en perspective, donner un aperçu de l'image précédente lorsqu'on augmente l'angle d'ouverture horizontale. Justifier votre dessin.

Exercice 3: (8,75)

- Donner les tables d'attributs géométriques pour un cube unitaire (modélisation polygonale).
- Écrire une procédure qui remplit les tables d'attributs polygonales à partir d'une série de points définissant un objet quelconque.
- A.S Écrire un algorithme qui détermine si un point est a l'intérieur ou à l'extérieur d'un objet (les paramètres A, B, C et D de toutes les surfaces de l'objet sont connus).
- Écrire un algorithme qui charge une représentation d'une scène en quadtree dans un frame buffer.
 - 4 Écrire un algorithme pour définir les parties visibles en utilisant la méthode du depth buffer sachant que la scène contient des surfaces opaques ainsi que des surfaces transparentes.
 - / Expliquer comment l'algorithme précédent peut être utilise pour définir les zones d'ombre.
 - Quelle est la différence entre la réflexion diffuse et la réflexion spéculaire ?

Rattrapage

Exercice 1:

A quelles transformations géométriques correspondent les matrices ci-dessous ? (donner l'ordre des transformations et leurs matrices)

F1	0	1	6]	[1	0	0	0]	[1	6	0	0]	[1	6	0	6]
0	1	1	6	0				0	1	0	0	0	1	0	0
0	0	1	1'				0'	0	6	1	0 '	0	6	1	6
lo	0	0	6 1 1				1]	Lo	0	0	1]	Lo	0	0	1]

Donner les matrices qui permettent d'appliquer les transformations 3D suivantes :

- Une rotation de 15° selon l'axe des X puis une rotation de 30° selon l'axe des X.
- Un changement d'échelle de 2 fois plus petit suivi d'une translation de 4 selon l'axe X.
- Un shear selon X de 3 et 6 respectivement pour Y et Z.

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} L R_{y} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} L R_{z} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Donner la matrice qui fait transformer l'objet dans le schéma a) vers celui dans b).

Exercice 2:

Soit la procédure de dessin 3D suivante :

```
Dessin()
       Dessiner_sphère(1);
       Translation(1,0,0);
       Dessiner_sphère(2);
       Translation(-1,0,0);
       Scale(2,1,1);
       Dessiner_cube(1);
```

Faculté d'informatique USTHB 2022/2023 Synthèse d'images M2 IV

Dans Dessiner_cube(x), x est la taille du coté et dans Dessiner_sphère(x), x est le rayon. Ces deux fonctions font centrer l'objet dessiné à l'origine du repère. Les fonctions Translation(x,y,z) et Scale(x,y,z), font une translation et un changement d'échelle respectivement, selon les paramètres x, y et z.

- 1- Dessiner l'image obtenue avec Dessin() en utilisant l'origine du repère de visualisation, la position de la caméra $P_{cam}(0,0,6)$ et le point de références de visualisation $P_{ref}(0,0,-6)$.
- 2- Qu'est ce qu'on obtient en utilisant l'origine du repère réel au lieu de celui de la visualisation et les $P_{cam}(6,0,0)$ et $P_{ref}(-6,0,0)$?
- 3- Modifier la fonction Dessin() afin d'obtenir l'image suivante (rester dans la configuration de la question 1) :

4- Avec une projection en perspective, donner un aperçu de l'image précédente lorsqu'on diminue l'angle d'ouverture horizontale. Justifier votre dessin.

Exercice 3:

- Comment fonctionnent les méthodes de modélisation volumique ?
- Écrire une procédure qui remplie les tables d'attributs polygonales à partir d'une série de points définissant un objet quelconque.
- Écrire un algorithme qui détermine si un point est a l'intérieur ou à l'extérieur d'un objet 3D.
- Dessiner l'arbre CSG correspondant à la figure ci-dessous

- Écrire un algorithme pour définir les parties visibles en utilisant la méthode du peintre sachant que la scène contient des surfaces opaques ainsi que des surfaces transparentes.
- Quel est le principe de la technique de détermination des zones d'ombre ?
- Quelles sont les caractéristiques de la réflexion diffuse ? Donner l'équation qui permet de la calculer.

Shearpuis translate... al XX pan sugart 2 to I quis travalate castr. a. sinds D. A. D. 1000 01202000 0 0 he 0 00 N-2 0001000 4000 1/2000 a 0 - 4 0 x 0 31 0 R 0. N. Q. Q. Q. Q. D. M/3. D. 400475200076400 0110100 10.0.0.0. 200 0 1 0 0

Exo.2: Scale (2, 4, 1) Ex0.31 7-14-X2 7-5-4 X 6 X4 X 4. X3, X4 27, X3, X3, X4, X4, X8, 16.5 ... X. 8. Parconnis tons les par \$ 7. 26 24. 26. 57. 26. 4. X 57 X 77 X 3 X.8. 7. X.7. 76.3. tes les mafaces Ax+By+Cz+D>0

(4) On parconne l'antone en grobandem inhagme nound représente le quadrats time continued was lever from and on a son son and or Ditiser le France button in h Roma chaque valeur du round (ha le) Conclem du gadret = volen Diviser quadrant en 4 antes quadrets Initialises 3 butter à l'arrière plus : n charge surface 5 Si Smill pur transporte alors parchagest Calcula Ty Siz & 2 buffer (poit) along 2 buffer - 3 france buffer = @ Pon trances les zones d'unbre, l'algante et applique par rapait au vector flexion deffers dest la maintente de das tous les sens déites te sin spéculaine dépe