

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(10) DE 43 42 548 A 1

(51) Int. Cl. 6:
C 01 B 33/157
F 16 L 59/00

DE 43 42 548 A 1

(21) Aktenzeichen: P 43 42 548.8
(22) Anmeldetag: 14. 12. 93
(23) Offenlegungstag: 22. 6. 95

(71) Anmelder:
Hoechst AG, 65929 Frankfurt, DE

(72) Erfinder:
Jansen, Rolf-Michael, Dr., 65799 Kelkheim, DE;
Zimmermann, Andreas, Dr., 64347 Griesheim, DE;
Jacquinot, Eric, Attichy, FR; Smith, Douglas M.,
Prof., Albuquerque, N. Mex., US

(54) Xerogele, Verfahren zu ihrer Herstellung, sowie ihre Verwendung

(55) Die Erfindung betrifft ein Verfahren zur Herstellung modifizierter SiO₂-Aerogele, "Xerogele" genannt, sowie die so hergestellten Xerogele selbst und deren Verwendung.
Die Xerogele werden dadurch hergestellt, daß man eine wäßrige Wasserglaslösung ansäuert, die dabei entstandene Kieseläsäure durch Zugabe einer Base zu einem SiO₂-Gel polymerisiert, mit einem organischen Lösungsmittel weitgehend das Wasser aus dem Gel auswäscht, dieses mit einem Silylierungsmittel umsetzt und dann bei -30 bis 200°C und 0,001 bis 20 bar trocknet.

DE 43 42 548 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 04.95 · 508 025/37

5/29

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung modifizierter SiO₂-Aerogele, im folgenden "Xerogele" genannt, sowie die so hergestellten Xerogele selbst und deren Verwendung.

Die hergestellten Xerogele sind den üblichen SiO₂-Aerogenen verwandt, aber nicht mit ihnen identisch.

SiO₂-Aerogele sind dafür bekannt, daß sie hervorragende Isolationswirkung besitzen. Sie werden beispielsweise durch saure Hydrolyse von Tetraethylorthosilikat in Ethanol hergestellt. Bei der Hydrolyse entsteht ein Gel, dessen Struktur durch die Temperatur, den pH-Wert und die Dauer des Gelierprozesses bestimmt ist. Jedoch kollabiert die Gelstruktur im allgemeinen bei der Trocknung der nassen Gele, da die bei der Trocknung auftretenden Kapillarkräfte extrem groß sind. Der Gelkollaps kann dadurch verhindert werden, daß die Trocknung oberhalb der kritischen Temperatur und des kritischen Druckes des Lösungsmittels durchgeführt wird. Da in diesem Bereich die Phasengrenze flüssig/gasförmig verschwindet, entfallen auch die Kapillarkräfte und das Gel verändert sich während der Trocknung nicht, d. h. es tritt auch kein Schrumpfen des Gels während der Trocknung auf. Auf dieser Trocknungs-technik basierende Herstellverfahren sind bekannt, z. B. aus EP-A-0 396 076 oder WO 92 03378. Diese Technik erfordert aber beispielsweise bei der Verwendung von Ethanol eine Temperatur über 240°C und Drücke über 40 bar. Der Austausch von Ethanol gegen CO₂ vor der Trocknung erniedrigt zwar die Trocknungstemperatur auf ca. 40°C, der benötigte Druck liegt aber dann bei 80 bar.

Es wurde nun gefunden, daß man SiO₂-Gele bei unterkritischen Bedingungen trocknen kann, wenn man sie vor der Trocknung mit einem Silylierungsmittel umsetzt. Die erhaltenen Produkte werden im folgenden als "Xerogele" bezeichnet. Sie sind hervorragende Wärmeisolationsmittel.

Ein Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Xerogelen, dadurch gekennzeichnet, daß man

- a) eine wäßrige Wasserglaslösung mit Hilfe eines sauren Ionentauscherharzes oder einer Mineralsäure auf einem pH-Wert ≤ 2 bringt,
- b) die dabei entstandene Kieselsäure durch Zugabe einer Base zu einem SiO₂-Gel polymerisiert und, falls in Schritt a) eine Mineralsäure benutzt wurde, das Gel mit Wasser elektrolytfrei wäscht,
- c) das in Schritt b) erhaltene Gel mit einem organischen Lösungsmittel solange wäscht, bis der Wasergehalt des Gels ≤ 5 Gew.-% ist,
- d) das in Schritt c) erhaltene Gel mit einem Silylierungsmittel umsetzt,
- e) das in Schritt d) erhaltene silylierte Gel bei -30 bis 200°C und $0,001$ bis 20 bar trocknet.

In Schritt a) wird vorzugsweise ein saures Ionentauscherharz eingesetzt; dabei sind vor allem solche geeignet, die die Sulfonsäuregruppen enthalten. Falls man Mineralsäuren einsetzt, sind vor allem Salzsäure und Schwefelsäure geeignet. Als Wasserglas wird im allgemeinen Natrium- oder Kaliumwasserglas verwendet.

In Schritt b) wird als Base im allgemeinen NH₄OH, NaOH, KOH, Al(OH)₃ oder kolloidale Kieselsäure eingesetzt. Falls in Schritt a) eine Mineralsäure verwendet

wurde, wird das mit Hilfe der Base erzeugte SiO₂-Gel mit Wasser elektrolytfrei gewaschen; vorzugsweise wird dabei solange gewaschen, bis das ablaufende Waschwasser dieselbe elektrische Leitfähigkeit hat wie entmineralisiertes Wasser.

Vor Schritt c) läßt man das Gel vorzugsweise altern, und zwar im allgemeinen bei 20 bis 90°C , vorzugsweise bei 20 bis 70°C , und einem pH-Wert von 6 bis 11 , vorzugsweise 6 bis 9 . Die Zeit dafür beträgt im allgemeinen 1 bis 48 Stunden, insbesondere 1 bis 24 Stunden.

In Schritt c) wäscht man das Gel vorzugsweise solange mit einem organischen Lösungsmittel, bis der Wasergehalt des Gels kleiner als 2 Gew.-% ist. Als Lösungsmittel werden im allgemeinen aliphatische Alkohole, Ether, Ester oder Ketone, oder aliphatische oder aromatische Kohlenwasserstoffe verwendet. Bevorzugte Lösungsmittel sind Methanol, Ethanol, Aceton, Tetrahydrofuran, Essigsäureethylester, Dioxan, n-Hexan, Toluol. Man kann auch Gemische aus den genannten Lösungsmitteln verwenden. Man kann auch zuerst das Wasser mit einem Alkohol auswaschen und dann diesen mit einem Kohlenwasserstoff auswaschen.

Die Schritte a) bis c) werden im allgemeinen bei einer Temperatur zwischen dem Gefrierpunkt der Lösung und 70°C durchgeführt.

In Schritt d) wird das lösungsmittelhaltige Gel mit einem Silylierungsmittel umgesetzt. Als Silylierungsmittel werden im allgemeinen Silane der Formeln R¹_{4-n}SiCl_n oder R¹_{4-n}Si(OR²)_n mit n = 1 bis 3 eingesetzt, wobei R¹ und R² unabhängig voneinander C₁—C₆-Alkyl, Cyclohexyl oder Phenyl sind. Auch Silazane sind geeignet. Vorzugsweise verwendet man Mono-, Di- oder Trimethylchlorsilan, Trimethylmethoxysilan oder Hexamethyldisilazan. Die Umsetzung wird im allgemeinen bei 20 bis 100°C , vorzugsweise 30 bis 70°C durchgeführt, wenn nötig in einem Lösungsmittel.

Vor Schritt e) wird das silylierte Gel vorzugsweise mit einem protischen oder aprotischen Lösungsmittel gewaschen, bis unumgesetztes Silylierungsmittel im wesentlichen entfernt ist (Restgehalt ≤ 1 Gew.-%). Geeignete Lösungsmittel sind dabei die bei Schritt c) genannten. Analog sind die dort als bevorzugt genannten Lösungsmittel auch hier bevorzugt.

In Schritt e) wird das silylierte, und vorzugsweise danach gewaschene Gel bei Temperaturen von -30 bis 200°C , vorzugsweise 0 bis 100°C , sowie Drücken von $0,001$ bis 20 bar, vorzugsweise $0,01$ bis 5 bar, insbesondere $0,1$ bis 2 bar, getrocknet. Höhere Temperaturen als 200°C und/oder höhere Drücke als 20 bar sind ohne weiteres möglich, aber sie sind mit überflüssigen Aufwand verbunden und bringen keine Vorteile mit sich. Der Vorteil des erfundengemäßen Verfahrens liegt darin, daß bei der Trocknung Temperaturen und Drücke genügen, die für die üblichen Lösungsmittel weit unter deren kritischen Temperaturen und Drücke liegen. Die Trocknung wird im allgemeinen so lange fortgeführt, bis das Gel einen Lösungsmittel-Restgehalt von weniger als $0,1$ Gew.-% hat.

Die erfundengemäßen Verfahren soll an einem Beispiel verdeutlicht werden.

Beispiel

1 l einer Natriumwasserglaslösung (mit einem Gehalt von 8 Gew.-% SiO₂ und einem Na₂O:SiO₂ Verhältnis von $2 : 3$) wurde zusammen mit $0,5$ l eines sauren Ionentauscherharzes (Styroldivinylbenzolcopolymer mit Sulfonsäuregruppen, handelsüblich unter dem Namen

- Leerseite -