

X3-Class HiPerFET™ **Power MOSFET**

IXFP130N15X3 IXFH130N15X3

150V 130A $9.0 m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ra	atings
V _{DSS}	T _J = 25°C to 150°C	150	V
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	150	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	130	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	230	Α
I _A	T _C = 25°C	65	Α
E _{AS}	$T_{c} = 25^{\circ}C$	1.2	J
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	50	V/ns
P_{D}	T _c = 25°C	390	W
T _J		-55 +150	°C
T_{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque	1.13 / 10	Nm/lb.in
Weight	TO-220 TO-247	3 6	g g

G = Gate	D	= Drair
S = Source	Tab	= Drain

Features

- International Standard Packages
- Low $R_{\rm DS(ON)}$ and $Q_{\rm G}$ Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Charac Min.	cteristic	Values Max	ζ.
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 1.5 \text{mA}$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 300	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		7.6	9.0	mΩ

Symbol	Test Conditions	Characteristic Values		
$(T_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	50	82	S
R_{Gi}	Gate Input Resistance		1.8	Ω
C _{iss}			5230	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		920	pF
C _{rss}			14	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		585	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1350	pF
t _{d(on)}	Resistive Switching Times		21	ns
t,	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		25	ns
t _{d(off)}			62	ns
t,)	$R_{\rm g} = 5\Omega$ (External)		12	ns
$Q_{g(on)}$			80	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$		27	nC
\mathbf{Q}_{gd}			25	nC
R _{thJC}				0.32 °C/W
\mathbf{R}_{thCS}	TO-220		0.50	°C/W
	TO-247		0.21	°C/W

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C,$	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	V _{GS} = 0V			130	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			520	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
t _{rr} Q _{RM} }	$I_F = 65A$, -di/dt = 100A/ μ s $V_R = 100V$		80 230 5.7		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 65A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 65A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

V_{DS} - Volts

Fig. 14. Forward-Bias Safe Operating Area

SYM	INCHES		MILLIMETERS	
21M	MIN	MAX	MIN	MAX
Α	.169	.185	4.30	4.70
A1	.047	.055	1.20	1.40
A2	.079	.106	2.00	2.70
Ь	.024	.039	0.60	1.00
b2	.045	.057	1.15	1.45
С	.014	.026	0.35	0.65
D	.587	.626	14.90	15.90
D1	.335	.370	8.50	9.40
(D2)	.500	.531	12.70	13.50
Ε	.382	.406	9.70	10.30
(E1)	.283	.323	7.20	8.20
Ф	.100 BSC		2.54	BSC
e1	.200) BSC	5.08 BSC	
H1	.244	.268	6.20	6.80
L	.492	.547	12.50	13.90
L1	.110	.154	2.80	3.90
ØΡ	.134	.150	3.40	3.80
Q	.106	.126	2.70	3.20

SYM	INCH	łES	MILLIMETERS	
STIVI	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
A1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
Ь	.045	.055	1.14	1.40
b2	.075	.087	1.91	2.20
b4	.115	.126	2.92	3.20
С	.024	.031	0.61	0.80
D	.819	.840	20.80	21.34
D1	.650	.690	16.51	17.53
D2	.035	.050	0.89	1.27
Е	.620	.635	15.75	16.13
E1	.545	.565	13.84	14.35
е	.215 BSC		5.45	BSC
J		.010		0.25
K		.025		0.64
L	.780	.810	19.81	20.57
L1	.150	.170	3.81	4.32
ØΡ	.140	.144	3.55	3.65
øP1	.275	.290	6.99	7.37
Q	.220	.244	5.59	6.20
R	.170	.190	4.32	4.83
S	.242	BSC	6.15 BSC	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.