U F <u>m</u> G

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Física Prof. Nelson Yokomizo

Relatividade Geral

Data de entrega: 04/09/2020

Avaliação

Exercício 1. [20pt] Considere eventos $A,\ B\in C$ no espaço-tempo de Minkowski com coordenadas dadas por

$$A^{\mu} = (0, 0, 0, 0), \qquad B^{\mu} = (3, 5, 0, 0), \qquad C^{\mu} = (5/4, 3/4, 0, 0).$$

em um referencial inercial S.

- a) Determine se o intervalo entre os eventos A e B é de tipo tempo, espaço ou luz.
- b) Construa uma transformação de Lorentz $\Lambda^{\mu'}_{\mu}$ para um novo referencial S' tal que no novo referencial os eventos A e B sejam simultâneos.
 - c) Determine as coordenadas do evento C em S'.

Exercício 2. [20pt] No espaço-tempo de Minkowski, sejam $V^{\mu}=(-1,2,0,-2)$ e $X^{\mu\nu}$ um tensor com componentes

$$X^{\mu\nu} = \begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix}$$

onde o índice μ indica a linha e o coeficiente ν indica a coluna do componente $X^{\mu\nu}$ na matriz. Calcule as seguintes quantidades:

- a) $V^{\mu}V_{\mu}$
- b) $V_{\mu}X^{\mu\nu}$
- c) X^{μ}_{ν}
- d) $X_{[\mu\nu]}$

Em cada caso, expresse explicitamente a quantidade a ser calculada em termos de V^{μ} , $X^{\mu\nu}$ e $\eta_{\mu\nu}$.

Exercício 3. [20pt] Uma partícula massiva realiza um movimento helicoidal em um dado referencial. O movimento da partícula é descrito por:

$$x = R\cos\omega t$$
, $y = R\sin\omega t$, $z = ut$,

onde R, ω e u são constantes. Determine a quadrivelocidade U^{μ} e a quadriaceleração a^{μ} da partícula no referencial em questão. Calcule a aceleração própria $|a^{\mu}a_{\mu}|$.

Exercício 4. [20pt] O referencial S' se move com uma velocidade $v \hat{e}_x$ no sentido positivo do eixo x em relação ao referencial S. No referencial S', uma barra de comprimento L paralela ao eixo x' se move no sentido positivo do eixo y' com velocidade constante $u \hat{e}_{y'}$. Mostre que, para $u \neq 0$, a barra aparece inclinada em relação ao eixo x no referencial S e determine o ângulo de inclinação.

Exercício 5. [20pt] O tensor energia-momento de um fluido perfeito é definido como

$$T^{\mu\nu} = (\rho + p)U^{\mu}U^{\nu} + p\eta^{\mu\nu} ,$$

onde ρ é a densidade de energia e p a pressão do fluido. A condição de conservação de energia é expressa por

$$\partial_{\mu}T^{\mu\nu} = 0.$$

Um fluido específico é caracterizado por uma equação de estado $p=p(\rho)$ relacionando sua pressão à densidade de energia.

- a) A energia escura satisfaz a equação de estado $p_{\Lambda} = -\rho_{\Lambda}$. Impondo a condição de conservação de energia, mostre que ρ_{Λ} deve ser constante no espaço-tempo.
- b) O caso p=0 descreve o fluido chamado de poeira. Impondo a condição de conservação de energia, obtenha as seguintes condições sobre a densidade de energia:

$$\partial_{\mu}(\rho U^{\mu}) = 0$$
, $\rho U^{\mu} \partial_{\mu} U^{\nu} = 0$.

Data de entrega: 04/09/2020 Enviar para: yokomizo@fisica.ufmg.br