Chapitre : Vecteur (2) - Colinéarité

I. Vecteurs colinéaires

<u>Définition 1</u> : Soit \vec{u} un vecteur non nul, et \underline{k} un réel	strictement pos	sitif
---	-----------------	-------

1) Le vecteur $k\vec{u}$ est tel que :

2) Le vecteur $-k\vec{u}$ est tel que :

• $k\vec{u}$ et \vec{u} ont :

• $-k\vec{u}$ et \vec{u} ont :

• $k\vec{u}$ et \vec{u} ont :

• $-k\vec{u}$ et \vec{u} ont :

• $||k\vec{u}|| =$

• $||-k\vec{u}|| =$

Propriétés 1 :

- $k(\vec{u} + \vec{v}) =$
- $(k + k')\vec{u} =$
- $k(k'\vec{u}) =$
- $k\vec{u} = \vec{0}$ si et seulement si

<u>Définition 2</u>: Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ un point dans un repère et k un réel.

Le **vecteur** $k\vec{u}$ est le vecteur de coordonnées (

dans le même repère.

Exercice 1 : Multiplication d'un vecteur par un réel et coordonnées

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

Calculer les coordonnées du vecteur $k \vec{u}$ dans les cas suivants :

a.
$$\vec{u} \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$
 et $k = -3$

b.
$$\vec{u} \left(-\frac{2}{3} \right)$$
 et $k = \frac{3}{4}$

c.
$$\vec{u} \left(\frac{\sqrt{2}}{\sqrt{5}} \right)$$
 et $k = \sqrt{3}$

<u>Définition 3</u>: Deux vecteurs non nuls sont _____lorsqu'ils ont

<u>Définition 4 :</u> Deux vecteurs \vec{u} et \vec{v} sont _____s'il existe un réel k tel que :

Remarque : Le vecteur nul est colinéaire à tout vecteur.

<u>Définition 5</u>: Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs.

Le **déterminant** de \vec{u} et \vec{v} , noté $\det(\vec{u}; \vec{v})$, est défini par : $\det(\vec{u}; \vec{v})$ =

Propriété 2:

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs. \vec{u} et \vec{v} sont **colinéaires** si et seulement si :

Application 1: Soient les vecteurs $\vec{u} \begin{pmatrix} 3,2 \\ -0.5 \end{pmatrix}$, $\vec{v} \begin{pmatrix} -1,6 \\ 0.25 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} 6,4 \\ 1 \end{pmatrix}$.

 \vec{u} et \vec{v} sont-ils colinéaires ?

 \vec{u} et \vec{w} sont-ils colinéaires ?

Exercice 2 : Vecteurs colinéaire et coordonnées

Existe-t-il un nombre réel k tel que $\vec{v}=k\vec{u}$ lorsque :

a.
$$\vec{u} \begin{pmatrix} -1.5 \\ 2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 4.5 \\ -6 \end{pmatrix}$?

b.
$$\vec{u} \begin{pmatrix} 0.7 \\ 1.2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 3.5 \\ 5 \end{pmatrix}$?

c.
$$\vec{u} \begin{pmatrix} \frac{2}{3} \\ -8 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \frac{1}{6} \\ -2 \end{pmatrix}$?

d.
$$\vec{u} \begin{pmatrix} \sqrt{8} \\ -10 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \sqrt{2} \\ -5 \end{pmatrix}$?

Exercice 3 : Vecteurs colinéaire et coordonnées

Les vecteurs suivants sont-ils colinéaires ? Si oui déterminer le nombre k tel que $\vec{u}=k\vec{v}$

a.
$$\vec{u} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -9 \\ 9 \end{pmatrix}$?

b.
$$\vec{u} \begin{pmatrix} -2 \\ -6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1,8 \\ 5,4 \end{pmatrix}$?

c.
$$\vec{u} \begin{pmatrix} \frac{1}{4} \\ \frac{5}{3} \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -3 \\ -20 \end{pmatrix}$?

d.
$$\vec{u} \begin{pmatrix} 0.01 \\ 0.001 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 10^{-3} \\ 10^{-4} \end{pmatrix}$?

Définition 6 (rappel) : On se place dans un repère $(0; \vec{i}, \vec{j})$ du plan.

- M a pour coordonnées (x; y) dans le repère $(0; \vec{i}, \vec{i})$ signifie que : $\overrightarrow{OM} =$
- \vec{u} a pour coordonnées $\binom{x}{y}$ dans le repère $(0; \vec{i}, \vec{j})$ signifie que : $\vec{u} =$

Application 2: Dans le plan muni d'un repère $(0; \vec{\iota}, \vec{j})$:

- Si $\overrightarrow{OA} = 2\overrightarrow{i} 4\overrightarrow{j}$ alors les coordonnées de A sont A (... ; ...).
- Dire que $\vec{u} = -\vec{i} + 3\vec{j}$ signifie que les coordonnées de \vec{u} sont \vec{u}
- Si les coordonnées de B sont B(-2;5), alors on a la relation vectorielle suivante :
- Si on sait que $\vec{u} \begin{pmatrix} 0 \\ 7 \end{pmatrix}$ on peut écrire que

Exercice 4 : Combinaisons linéaires et coordonnées de vecteurs

Le plan est muni d'un repère orthonormée $(0; \vec{i}, \vec{i}).$

Déterminer les coordonnées des points A.B.C et D.

1.
$$\overrightarrow{OA} = -2 \vec{i} + 3\vec{i}$$

2.
$$\overrightarrow{OB} = -(\vec{i} + 2\vec{j}) + (-2\vec{i} - \vec{j})$$

3.
$$\overrightarrow{OC} = \frac{1}{4}(\vec{i} - \vec{j}) - \frac{3}{4}(-\vec{i} + \vec{j})$$

4.
$$\overrightarrow{OD} = -3(5 \vec{\imath} - 3\vec{\jmath})$$

Exercice 5: Combinaisons linéaires et coordonnées de vecteurs

Le plan est muni d'un repère orthonormée $(0; \vec{i}, \vec{i}).$

Soit les vecteurs $\vec{u} = -2\vec{i} + \vec{j}$ et $\vec{v} = 3\vec{i} + 4\vec{j}$ Déterminer les coordonnées du vecteur \vec{w} dans les cas suivants :

1.
$$\vec{w} = \vec{u} - \vec{v}$$

2.
$$\vec{w} = 3(-\vec{u} + \vec{v})$$

3.
$$\vec{w} = -5(\vec{u} - \vec{v}) + 3(-\vec{u} - 2\vec{v})$$

Exercice 6 : Combinaisons linéaires et construction de vecteurs

Construire les points B et C

$$\overrightarrow{AB} = 2\overrightarrow{u} + 4\overrightarrow{v} \text{ et } \overrightarrow{AC} = -3\overrightarrow{v} - 2\overrightarrow{u}$$

$$\overrightarrow{AB} = 2\overrightarrow{u} + \frac{3}{2}\overrightarrow{v} \text{ et } \overrightarrow{AC} = -\frac{1}{2}\overrightarrow{v} - \frac{1}{2}\overrightarrow{v}$$

$|\overrightarrow{AB} = 2\overrightarrow{u} + \frac{3}{2}\overrightarrow{v} \text{ et } \overrightarrow{AC} = -\frac{1}{2}\overrightarrow{v} - |\overrightarrow{AB} = \frac{3}{2}(\overrightarrow{u} + \overrightarrow{v}) \text{ et } \overrightarrow{AC} = -2(\overrightarrow{u} - \overrightarrow{v})|$

Exercice 7: Triangle et construction de points vérifiant une combinaison linéaire de vecteurs.

- 1. Tracer un triangle *ABC* rectangle et isocèle en *B* tel que AB = 3 cm
- 2. Construire les points *D* et *E* vérifiant :

a.
$$\overrightarrow{BD} = 2\overrightarrow{BA} + 3\overrightarrow{BC}$$

b.
$$\overrightarrow{AE} = -\overrightarrow{AC} + 2\overrightarrow{AB}$$

Exercice 8 : Rectangle et construction de points vérifiant une combinaison linéaire de vecteurs.

- 1. Tracer un rectangle ABCD de centre O tel que AB = 2 cm et AD = 4 cm
- 2. Construire les points *E* et *F* vérifiant :

a.
$$\overrightarrow{AE} = 2\overrightarrow{BD} - \overrightarrow{OC}$$

b.
$$\overrightarrow{BF} = \frac{3}{2}\overrightarrow{OC} + \frac{3}{4}\overrightarrow{DB}$$

Exercice 9: Multiplication d'un vecteur par un réel et construction

Pour chacune des figures suivantes, trouver le réel k tel que $\vec{v} = k\vec{u}$

Exercice 10 : Octogone et vecteurs colinéaires

Répondre par vrai ou faux et justifier

- a. Les vecteurs \overrightarrow{OH} et \overrightarrow{FE} sont colinéaires.
- b. Les vecteurs \overrightarrow{DE} et \overrightarrow{BG} sont colinéaires.
- c. Les vecteurs \overrightarrow{BC} et \overrightarrow{GF} sont colinéaires.
- d. Les vecteurs \overrightarrow{HB} et \overrightarrow{DF} sont colinéaires.

Propriété 3 : Soit A. B. C et D quatre points distincts.

- A, B et C sont alignés si et seulement si
- (AB) // (CD) si et seulement si

	Figure géométrique	Traduction vectorielle	Traduction analytique (xy'-yx'=0)
Alignement de points	Les points A, B et C sont alignés.	AB et AC sont colinéaires.	$\overrightarrow{AB}(x;y)$ $\overrightarrow{AC}(x';y')$
Parallélisme de droites	A B C D Les droites (AB) et (CD) sont parallèles.	AB et CD sont colinéaires.	$\overrightarrow{AB}(x;y)$ $\overrightarrow{CD}(x';y)$

Application 3:	b) Démontrer que les droites (AE) et (BC) sont parallèles.
ABCD est un parallélogramme. Les points E et F sont définis par $\overrightarrow{DE}=3\overrightarrow{DC}$ et $\overrightarrow{AF}=$	
$-\frac{1}{2}\overrightarrow{AD}$	
1. Exprimer \overrightarrow{FD} en fonction de \overrightarrow{DA}	
	2) a) Calculer les coordonnées du milieu D de $[AE]$.
	b) Démontrer que $ABCD$ est un parallélogramme.
2. Démantres que les neints P. E et E cont elignés	
2. Démontrer que les points B, F et E sont alignés.	
	3) a) Calculer les longueurs AB et AC .
	On donne de plus $BC = \sqrt{10}$ et $BD = 2\sqrt{5}$.
	b) Déterminer, en justifiant soigneusement, la nature exacte du parallélogramme $ABCL$
Application 4:	
Dans un repère orthonormé $(0;\vec{\iota},\vec{j})$ on donne les points suivants :	
A(-1;-2); B(2;-1); C(1;2) et E(-3;4).	
1) a) Calculer les coordonnées des vecteurs \overrightarrow{AE} et \overrightarrow{BC} .	

Exercice 11 : Parallélisme et vecteurs colinéaires

Vérifier si les droites (AB) et (CD) sont parallèles.

- a. A(-3; 2), B(3; 3), C(-3; -3) et D(5; -1).
- b. A(0;5), B(3;0), C(-3;8) et D(3;-2).
- c. A(-1;4), B(3;3), C(-3;1) et D(4;-3).
- d. A(6;5), B(4;1), C(2;3) et D(-0,5;-2).

Exercice 13: Propriétés et vecteurs

Voici une liste de propositions

- a. Le point A est le milieu de BC
- b. ABCD est un parallélogramme
- c. D est le symétrique de B par rapport à A
- d. Le point B est l'image de C par la translation de vecteur \overrightarrow{AD} .

- 1. Si $2\overrightarrow{AB} = 3\overrightarrow{BC}$ alors A, B et C sont alignés
- 2. Si $2\overrightarrow{AB} = 3\overrightarrow{BC}$ alors $A \in [BC]$
- 3. Si $2\overrightarrow{AB} = -3\overrightarrow{DC}$ alors A, B, C et D sont alignés

Exercice 12 : Points alignés et vecteurs colinéaires

Vérifier si les trois points sont alignés

- a. A(-3;3), B(5;-3) et C(1;0).
- b. E(3;3), F(2;1) et G(-1;-3).
- c. H(-2;6), I(-1;3,5) et I(2;-4).
- d. $K(\frac{7}{2};1), L(\frac{4}{2};4)$ et M(1;3).

Dans chaque cas, faire une figure puis trouver dans la liste ci-dessous deux conclusions possibles :

1.
$$\overrightarrow{AB} = \overrightarrow{DC}$$

5.
$$\overrightarrow{BA} = \overrightarrow{AC}$$

2.
$$\overrightarrow{AD} = \overrightarrow{BC}$$

6.
$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{BD}$$

3.
$$\overrightarrow{AD} - \overrightarrow{CB} = \overrightarrow{0}$$

4. $\overrightarrow{CB} = \overrightarrow{AD}$

7.
$$\overrightarrow{CB} = 2\overrightarrow{CA}$$

8. $\overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{0}$

Exercice 14: Vrai ou faux?

- 4. Si $2\overrightarrow{AB} = -3\overrightarrow{DC}$ alors (AB) // (CD)
- 5. Si $2\overrightarrow{AB} = -3\overrightarrow{DC}$ alors \overrightarrow{ABCD} est un trapèze
- 6. Si AB = CD alors ABDC est un parallélogramme

Exercice 15:

Le plan est muni d'un repère $(0: \vec{i}, \vec{i})$.

- 1. Placer les points A(2;1), B(5;3), C(3;-3) et D(6;-1).
- 2. Démontrer que ABDC est un parallélogramme.
- 3. a. Soit E le symétrique de D par rapport à B. En déduire une égalité de deux vecteurs. b. Utiliser cette égalité pour calculer les coordonnées du point E.
- 4. Démontrer que ACBE est un parallélogramme.

Exercice 16:

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

- 1. Placer les points A(-3;-3), B(-2;1), C(2;2) et D(1;-2).
- 2. Calculer les coordonnées des vecteurs \overrightarrow{BC} et \overrightarrow{AD} .
- 3. Que peut-on en déduire pour le guadrilatère ABCD?
- 4. Démontrer que ABCD est un losange.

Exercice 17:

Le plan est muni d'un repère $(0; \vec{\iota}, \vec{l})$.

- 1. Placer les points A(-1;0), B(2;1) et C(3; -2).
- 2. Soit D le point tel que ABCD est un parallélogramme
 - a. Calculer les coordonnées du point D. Vérifier graphiquement la réponse.
 - b. Calculer les longueurs AB, AC et BC.
 - c. Démontrer que l'angle \widehat{ABC} est droit.
- 3. Quelle est la nature du quadrilatère ABCD? Justifier la réponse.

Exercice 18 : Colinéarité en géométrie repérée

Dans le repère $(0; \vec{i}, \vec{j})$, on donne les points A(-2;3), B(4;7) et C(3;2).

- 1. Démontrer que les droites (AB) et (OC) sont parallèles.
- 2. M(x;0) est un point de l'axe des abscisses. Calculer x pour que les points A, B et M soient alignés.

Exercice 19 : Colinéarité en géométrie repérée

Dans le repère $(0; \vec{i}, \vec{j})$, on donne les points A(-2;-1), B(0;4), C(2;-3) et D(6;-1).

- 1. M(x;0) est un point de l'axe des abscisses. Calculer x pour que les points A, B et M soient alignés.
- 2. Démontrer que les droites (CM) et (BD) sont parallèles.

Exercice 20 : Colinéarité en géométrie repérée

Dans le repère $(0:\vec{i},\vec{i})$, on donne les points A(-3;2) et B(-1;7).

Le point $M\left(-6; -\frac{11}{2}\right)$ est-il un point de (AB) ?

Exercice 21 : Colinéarité en géométrie repérée

Dans le repère $(0:\vec{i},\vec{i})$, on donne les points A(3;2), B(7;3), C(-3;y) et D(1;-3). Calculer v pour que les droites (AB) et (CD) soient parallèles.

Exercice 22 : Colinéarité en géométrie non repérée

A et B sont deux points distincts.

On se propose de construire le point *M* tel que :

$$\overrightarrow{MA} + 2\overrightarrow{MB} = \overrightarrow{AB}$$

- 1. A l'aide de la relation de Chasles, démontrer que $3\overrightarrow{AM} = \overrightarrow{AB}$
- 2. Pourquoi *M* est-il un point de la droite (*AB*)? Le construire.

Exercice 24 : Colinéarité en géométrie non repérée

ABCD et AEGF sont deux parallélogrammes tels que :

$$\overrightarrow{BE} = 2\overrightarrow{AB}$$
 et $\overrightarrow{AF} = 3\overrightarrow{AD}$
Démontrer que les points
 A, C et G sont alignés.

Exercice 23 : Colinéarité en géométrie non repérée

ABC est un triangle.

- 1. Construire les points *I* et *J* tels que : $\overrightarrow{AI} = \overrightarrow{AB} + 2\overrightarrow{AC}$ et $\overrightarrow{AI} = 2\overrightarrow{AB} + \overrightarrow{AC}$
- 2. a. Exprimer \overrightarrow{II} en fonction de \overrightarrow{AI} et \overrightarrow{AI} puis en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
 - b. Que peut-on en déduire sur les droites (II) et (BC)?

Exercice 25 : Colinéarité en géométrie non repérée

ABC est un triangle. Le point *I* est le milieu du segment [AB].

$$\overrightarrow{BJ} = \frac{3}{5}\overrightarrow{BC} \text{ et}$$

$$\overrightarrow{AL} = 3\overrightarrow{AC}$$

- 1. Exprimer \overrightarrow{II} et \overrightarrow{IL} en fonction de \overrightarrow{BC} et \overrightarrow{BA} .
- 2. En déduire que les points *I*, *I* et *L* sont alignés.

Exercice 26 : Y'a-t-il équivalence ?

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$.

	P	Q
1	AB = DC	ABCD est un parallélogramme
2	C est l'image de D par la translation de vecteur \overrightarrow{AB}	ABCD est un parallélogramme
3	$\overrightarrow{AB} = -2 \overrightarrow{AC}$	A,B et C sont alignés
4	$\overrightarrow{AB} = -2 \overrightarrow{AC}$	AB = 2AC
5	Il existe un réel k tel que $\overrightarrow{AB} = k \ \overrightarrow{CD}$	(AB) // (CD)
6	AI = IB	I est le milieu du segment $[AB]$
7	$\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$	$2\vec{u}\binom{-2}{6}$
8	$\vec{u} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$	$\vec{u} + \vec{v} \begin{pmatrix} -1 \\ 7 \end{pmatrix}$
9	A(-3;0) et $B(7;3)$	$\overrightarrow{AB} \begin{pmatrix} 10 \\ 3 \end{pmatrix}$

Compléter le tableau suivant en indiquant si les phrases mathématiques sont justes ou fausses.

Numéro	$P\Rightarrow Q$	$Q \Rightarrow P$	$P \Leftrightarrow Q$
1			

ı		١,	ec.	٠		a١		-		الما		•	ᆈ		:+,
	I.	v	eL	ιeι	ш	u	пе	LL	-u	u	uı	œ	u	IU	пLE

Définition 7 : Cait d	o draita at 1 D daw	noints distincts				
<u>Définition 7:</u> Soit d une droite et A, B deux points distincts. On appelle						
les points A et B		à la droite d	đ.			
Autrement dit :						
Un vecteur est appelé	vecteur directeur d'u	ne droite lorsqu'il est				
	à tout vec	cteur \overrightarrow{AB} avec A et B ap	partenant à la droite.			
		<u>'</u>	'			
Propriété 4 : Un vecte	\vec{u} est un vecteur dir	ecteur d'une droite d s'	il existe deux points			
distincts A et B distinc			р			
	B					
\overrightarrow{u}						
A A						
Remarque : une droite	possède une infinité (de vecteurs directeurs.				
Propriété 5 : Deux vec	teurs directeurs d'une	même droite sont	·			
Evample : dessiner une	draita at plain da va	ctours directours				
Exemple : dessiner une	e aroite et piem de vec	cteurs directeurs				
Application 5: Dans up	n repère $(0;\vec{\imath},\vec{\jmath})$, on c	considère les points $A(5)$;-6) et $B(2;-1)$.			
1. Calculer les coordo	nnées du vecteur \overrightarrow{AB} .					
2. Darmi las vastaurs	ivants lasquals sant	des vecteurs directeurs	do la draita (AD) 2			
			` '			
a. $\vec{u}inom{-1,5}{2.5}$	b. $\overrightarrow{v} \begin{pmatrix} 0 \\ 8 \end{pmatrix}$	c. $\overrightarrow{w} \begin{pmatrix} 1 \\ -\frac{5}{2} \end{pmatrix}$	d. $\vec{t} \begin{pmatrix} -2 \\ 3.3 \end{pmatrix}$			
,-		3/	,			

Propriétés 6 : Soit m et k deux réels.
1. Soit d la droite d'équation $y = mx + p$, le vecteur \vec{u} est un vecteur directeur
ded.
2. Soit d la droite d'équation $y=k$, le vecteur \vec{u} $\bigg(\bigg)$ est un vecteur directeur de d .
(Conséquence du 1.)
3. Soit d la droite d'équation $x=k$, le vecteur $\vec{u}\left({2}}\right)$ est un vecteur directeur de d .
Application 6 :
Donner un vecteur directeur des droites suivantes :
1. $d_1: y = -4x + 1$
2. $d_2: y = -4$ (droite parallèle à l'axe des abscisses)
2. $u_2 \cdot y = -4$ (dronte parallele a raxe des abscisses)
2 days 5 (durita graph) la à Verra des anderes (es)
3. $d_3: x=5$ (droite parallèle à l'axe des ordonnées)
Propriété 7 : Soit d une droite de vecteur directeur \vec{u} et d' une droite de vecteur directeur
\vec{v} .
1. $d /\!\!/ d' \Leftrightarrow \vec{u} \text{ et } \vec{v} \text{ sont}$

Propriété 8 : Soit A un point, \vec{u} un vecteur non nul et d la droite passant par A et de vecteur directeur \vec{u} et M un point du plan.

2. $d \perp d' \Leftrightarrow \vec{u}$ et \vec{v} sont _

$$M \in d \Leftrightarrow$$

Application 7:

On considère la droite d de vecteur directeur $\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et passant par le point A(-4;1).

Les points B(1, -7) et C(-1, -3, 5) sont-ils des points de d?

Exercice 27: Vecteurs directeurs

Dire si le vecteur \vec{u} est un vecteur directeur de la droite (AB) dans un repère $(0; \vec{\iota}, \vec{j})$.

- 1. $A(1;2), B(3;7) \text{ et } \vec{u} \begin{pmatrix} -2 \\ -5 \end{pmatrix}$.
- 2. A(-3;2), B(4;7) et $\vec{u} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$.
- 3. $A(-1;3), B(7;3) \text{ et } \vec{u} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

III. Symétrie et homothétie

1) Symétrie centrale

Définition 8:

M et *M'* sont symétrique par rapport au point *O* signifie que:

• *M*, *O* et *M*' sont ______.

Deux figures symétriques par symétrie centrale se superposent par un demi-tour autour du centre de symétrie.

Propriété 9 : Soient A, B, A' et B' quatre points distincts. Si une symétrie centrale transforme A en A' et B en B' alors :

2) Homothétie

Définition 9 :

Homothétie de rapport positif :

M' est l'image de M par l'homothétie de centre O et de rapport 2 signifie que :

- *O*, *M* et *M*' sont ______.
- *M* et *M*' sont _____ par rapport à 0.
- \bullet OM' =

Homothétie de rapport négatif :

M' est l'image de M par l'homothétie de centre O et de rapport -0.5 signifie que :

- *O*, *M* et *M*' sont ______.
- M et M' sont par rapport à O.
- \bullet OM' =

Deux figures homothétiques sont une réduction ou un aarandissement l'une de l'autre.

	
Ici on a : $A'B' =$	$\operatorname{et} A^{"}B^{"} =$
ICI OII a . A D —	elad —

Application 8:

 $\overrightarrow{A'B'} =$

Construire l'image du triangle ABC par l'homothétie de centre O et de rapport 2.

