

Report No:CCISE170202506

FCC REPORT

(UNII)

Applicant: APRIX LATINOAMERICA S.A.

Address of Applicant: ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE

CABAL PANAMA

Equipment Under Test (EUT)

Product Name: Phablet

Model No.: Aprix_Phat6

Trade Mark: APRIX

FCC ID: 2AHJQ-APT695

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 21 Feb., 2017

Date of Test: 21 Feb., to 08 Mar, 2017

Date of report issued: 13 Mar., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	13 Mar., 2017	Original

Test Engineer Tested by: 13 Mar., 2017 Date:

Reviewed by: 13 Mar., 2017 Date:

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VE	RSION	2
3		NTENTS	
4	TES	ST SUMMARY	4
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS ANDMEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.7	Spurious Emission	
	6.7.		
	6.7.		
	6.8	FREQUENCY STABILITY	45
7	TES	ST SETUP PHOTO	47
R	FIL	T CONSTRUCTIONAL DETAILS	49

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass
26dB Occupied Bandwidth	15.407 (a)	Pass
6dB Emission Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407 (a)	Pass
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	APRIX LATINOAMERICA S.A.	
Address of Applicant:	ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL PANAMA	
Manufacturer:	Todos industrial limited	
Address of Manufacturer:	Room 3A03, Block B, huashenghui, Xi'xiang Town, Bao'an District shenzhen China	

5.2 General Description of E.U.T.

Product Name:	Phablet
Model No.:	Aprix_Phat6
Operation Frequency:	Band 1: 5180MHz-5240MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4,802.11n40: 2
Channel separation:	802.11a/802.11n20:20MHz, 802.11n40:40MHz
Modulation technology: (IEEE 802.11a)	BPSK,QPSK,16-QAM,64-QAM
Modulation technology: (IEEE 802.11n)	BPSK,QPSK,16-QAM,64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps,MCS1:13Mbps,MCS2:19.5Mbps,MCS3:26Mbps, MCS4:39Mbps,MCS5:52Mbps,MCS6:58.5Mbps,MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps,MCS1:30Mbps,MCS2:45Mbps,MCS3:60Mbps, MCS4:90Mbps,MCS5:120Mbps,MCS6:135Mbps,MCS7:150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
AC adapter:	Model: BY120502000 Input: AC100-240V 50/60Hz 0.3A Output: DC 5.0V, 2A
Power supply:	Rechargeable Li-ion Battery DC3.7V-4000mAh

Operation Frequency each of channel

	Band 1				
802.11a/	′802.11n20	802.11n40			
Channel	Frequency Channel Frequen		Frequency		
36	5180MHz	39	5190MHz		
40	5200MHz	45	5230MHz		
44	5220MHz				
48	5240MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802.11n20 802.11n40					
Channel	Frequency	Channel	Frequency		
The lowest channel	5180MHz	The lowest channel	5190MHz		
The middle channel	5200MHz	The highest channel	5230MHz		
The highest channel	5240MHz				

5.3 Test environment andmode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure: 1010 mbar			
Tost mode:			

Continuously transmitting mode | Keep the EUT in 100% duty cycle transmitting with modulation.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case. Mode Data rate 802.11a 6Mbps 802.11n20 6.5Mbps 802.11n40 13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup"6Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13.5 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performedwith duty cycle above 98%, meet the requirements of KDB789033.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

●FCC- Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully describedin a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017
6	Pre-amplifier (18-40GHz)	A.H System	PAM-1840	GTS219	04-01-2016	03-31-2017
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2017	03-31-2017
11	Spectrum Analyzer	HP	8564E	CCIS0150	02-25-2017	02-24-2018

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	03-28-2016	03-28-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
6	DC Power Supply	Shenzhen XinNuoEr Technologies Co., Ltd.	WYK-10020K	CCIS0201	10-31-2016	10-30-2017
7	Temperature Humidity Chamber	Fo Shan Heng Pu Electronics Co., Ltd.	HPGDS-500	CCIS0240	11-18-2016	11-27-2017

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirementdoes not apply to carrier currentdevices or to devices operated underthe provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbances ensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 1	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.4: 2014	ANSI C63.4: 2014			
TestFrequencyRange:	150kHz to 30MHz	150kHz to 30MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kH	Ηz			
Limit:	Frequency range	Limit (,		
	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	 Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). Itprovides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details.				
Test results:	Passed				

Measurement Data

Line:

Trace: 25

CCIS Shielding Room FCC PART15 B QP LISN LINE

Site Condition

EUT Phablet : Aprix_Phat6 : 5GWIFI mode Model Test Mode Power Rating : AC120/60Hz

: Temp: 23 °C Huni:56% Atmos:101KPa Environment

Test Engineer: YT Remark

Cable Read LISN Limit Over Freq Level Factor Loss Level Line Limit Remark MHz dBuV ďΒ ₫B dBuV dBuV dB 0.182 39.16 10.77 50.08 64.42 -14.34 QP 0.15 54.20 -19.32 Average 50.90 -15.32 Average 234567 0.186 0.277 23.97 34.88 35.58 0.15 10.76 24.68 0.16 10.74 60.19 -10.37 QP 0.302 38.92 0.16 10.74 49.82 0.22 0.22 0.373 40.39 10.73 51.34 58.43 -7.09 QP 0.377 23.17 10.72 34.11 48.34 -14.23 Average 0.24 0.486 23.27 10.76 34.27 46.23 -11.96 Average 8 9 0.567 42.28 10.77 53.32 56.00 -2.68 QP -6.13 Average 0.582 28.82 0.28 39.87 46.00 10.77 0.26 23.31 34.44 46.00 -11.56 Average 10 1.032 10.87 0.26 1.037 56.00 -4.09 QP 56.00 -5.83 QP 10.87 11 40.78 51.91 0.29 12 1.472 38.96 10.92 50.17

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Phablet Model : Aprix_Phat6
Test Mode : 5GWIFI mode
Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT Remark

vewark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu∛	dBu₹	<u>dB</u>	
1	0.202	40.54	0.15	10.76	51.45	63.54	-12.09	QP
2	0.202	33.98	0.15	10.76	44.89	53.54	-8.65	Average
1 2 3 4 5 6 7 8 9	0.299	33.09	0.19	10.74	44.02	50.28	-6.26	Average
4	0.302	39.92	0.19	10.74	50.85	60.19	-9.34	QP
5	0.486	28.99	0.24	10.76	39.99	46.23	-6.24	Average
6	0.573	43.32	0.28	10.77	54.37	56.00	-1.63	QP
7	0.595	33.11	0.29	10.77	44.17	46.00	-1.83	Average
8	0.783	40.55	0.31	10.81	51.67	56.00	-4.33	QP
9	1.088	28.37	0.26	10.88	39.51	46.00	-6.49	Average
10	1.359	40.73	0.26	10.91	51.90	56.00	-4.10	QP
11	2.474	27.65	0.28	10.94	38.87	46.00	-7.13	Average
12	2.636	39.78	0.29	10.93	51.00	56.00	-5.00	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)					
Test Method:	ANSI C63.10: 2013, KDB789033					
Limit:	Band 1: 24dBm					
Test setup:	Spectrum Analyzer E.U.T					
	Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Band 1

Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result
	Lowest	-0.92	24.00	Pass
802.11a	Middle	-0.93	24.00	Pass
	Highest	-0.84	24.00	Pass
	Lowest	-1.10	24.00	Pass
802.11n20	Middle	-2.02	24.00	Pass
	Highest	-1.91	24.00	Pass
802.11n40	Lowest	-1.94	24.00	Pass
	Highest	-1.73	24.00	Pass

Test plot as follows:

Band 1

Middle channel

Highest channel

Middle channel

Highest channel

Lowest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)							
Test Method:	ANSI C63.10:2013 and KDB 789033							
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth)							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Measurement Data

Band 1:

Toot Channel	26dB	Limit	Result			
Test Channel	802.11a 802.11n20 802.11n40				Result	
Lowest	19.91	20.09	39.94			
Middle	19.86	20.26		N/A	N/A	
Highest	19.86	19.91	39.25			

Toot Channal	99% (Limit	Result		
Test Channel	802.11a 802.11n20 802.11n40				LIIIIL
Lowest	16.82	17.78	36.12		i
Middle	17.06	17.90		N/A	N/A
Highest	16.86	17.90	36.12		

Test plot as follows:

Band 1:

26 dB EBW - 802.11a

Date: 10.MAR.2017 17:52:38

Date: 10.MAR.2017 17:53:34

Lowest channel Receiver Spectrum (X) Ref Level 11.50 dbm Offset 6.50 dB RBW 300 kHz RBW Auto FFT Input AC Att 20 dB SWT 18.9 µs VBW 1 MHz Mode Auto FFT Input AC Att 01Pk Ma: 10.53 dE 5.2027790 GH 26.00 d -10 dBr -20 dBm -30 dBm 40 dBm 70 dBm -80 dBm CF 5.2 GF Type | Ref | Trc | Function Result 19.855 MHz Function ndB down

Middle channel Receiver Spectrum X Offset 6.50 dB • RBW 300 kHz SWT 18.9 µs • VBW 1 MHz Ref Level 11.50 dBm Att 20 dB Mode Auto FFT Input AC 10.63 dE -10.63 di 5.2327060 G 26.00 19.855000000 M -10 dBm -20 dBm -30 dBm -70 dBm -80 dBm-CF 5.24 G Function Result
19.855 MHz
26.00 dB
263.5 Y-value Type | Ref | Trc | Function ndB down

Highest channel

Date: 10.MAR.2017 17:54:03

Highest channel

Lowest channel

Highest channel

Lowest channel

Date: 10.MAR.2017 18:11:20

Highest channel

Highest channel

Lowest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) &(a) (3)						
Test Method:	ANSI C63.10:2013, KDB 789033						
Limit:	Band 1: 11 dBm/MHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Band 1

Baild I									
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result					
	Lowest	-12.45	11.00	Pass					
802.11a	Middle	-12.66	11.00	Pass					
	Highest	-12.51	11.00	Pass					
	Lowest	-12.83	11.00	Pass					
802.11n20	Middle	-12.84	11.00	Pass					
	Highest	-12.72	11.00	Pass					
902 11540	Lowest	-15.62	11.00	Pass					
802.11n40	Highest	-15.49	11.00	Pass					

Test plot as follows:

Band 1:

Highest channel

Highest channel

Date: 13.MAR.2017 09:07:09

Lowest channel

Highest channel

6.6 Band Edge

0.0 Danu Luge									
Test Requirement:	FCC Part15 E Section 15.407 (b)								
Test Method:	ANSI C63.10:2013 , KDB 789033								
Receiver setup:	Detector	RBW	VBW	Remark					
	Quasi-peak	120kHz	300kHz	Quasi-peak Value					
	RMS	1MHz	3MHz	Average Value					
Limit:	Band		V/m @3m)	Remark					
	Band 1		.20	Peak Value					
	Demonto	54	.00	Average Value					
	Remark: 1. Band 1 limit:								
		RP[dBm] + 95.2=68.	2 dBuV/m,for El	IPR[dBm]=-27dBm.					
Test Procedure:	 The EUT was the groundat at todetermine the standard and todetermine the standard and the ground to wer. The antenna has the ground to we and the make the mea For each suspicate and then meters and the tofind the maximum specified Band If the emission the limit specified the EUT wo have 10dB maximum at todet and the standard and the specified the specified the standard and the specified the spec	placed on the top a 3 meter camber. The position of the haset 3 meters away have mounted on the light is varied from the determine the maximum reading. The protection of the EUT fied, then testing cauld be reported. Cargin would be re-tamber.	of a rotating to The table was alighest radiation of the top of a variation of the top of a variations of the top of a variations of the EUT was alsuned to heightned from 0 depends to Peak Detenum Hold Mode in peak mode ould be stoppotherwise the elected one by elected one by the table top of the top of the table top of the table top of the table top of the table	able 1.5 meters above is rotated 360 degrees on. Inference-receiving ariable-height antenna of four meters above of the field strength. It is antenna are set to a se					
Test setup:	130m	AE EUT (Turntable) Ground Rel Test Receiver	Horn Artenna An An An Artenna An	ntenna Tower					
Test Instruments:	Refer to section 5.6	6 for details							
Test mode:	Refer to section 5.3								
Test results:	Passed								

Band 1:

				802.11a						
Test ch	nannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	42.57	36.23	7.05	41.93	43.92	68.20	-24.28	Horizontal		
5150.00	41.36	36.23	7.05	41.93	42.71	68.20	-25.49	Vertical		
	802.11a									
Test cl	nannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.78	36.23	7.05	41.93	34.13	54.00	-19.87	Horizontal		
5150.00	31.26	36.23	7.05	41.93	32.61	54.00	-21.39	Vertical		
				802.11a						
Test cl	nannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	41.75	35.37	7.11	41.89	42.34	68.20	-25.86	Horizontal		
5350.00	42.29	35.37	7.11	41.89	42.88	68.20	-25.32	Vertical		
				802.11a						
Test ch	nannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	31.26	35.37	7.11	41.89	31.85	54.00	-22.15	Horizontal		
5350.00	32.24	35.37	7.11	41.89	32.83	54.00	-21.17	Vertical		

802.11n-HT20								
T				002.1111-1120	1		_	-
Test cl		Lowest			Le	vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	43.26	36.23	7.05	41.93	44.61	68.20	-23.59	Horizontal
5150.00	42.75	36.23	7.05	41.93	44.10	68.20	-24.10	Vertical
			8	02.11n-HT20)			
Test cl	nannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	32.17	36.23	7.05	41.93	33.52	54.00	-20.48	Horizontal
5150.00	32.57	36.23	7.05	41.93	33.92	54.00	-20.08	Vertical
			8	02.11n-HT20)			
Test cl	nannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	43.36	35.37	7.11	41.89	43.95	68.20	-24.25	Horizontal
5350.00	41.75	35.37	7.11	41.89	42.34	68.20	-25.86	Vertical
			8	02.11n-HT20)			
Test cl	nannel		Highest		Le	vel	Average	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.14	35.37	7.11	41.89	33.73	54.00	-20.27	Horizontal
5350.00	31.27	35.37	7.11	41.89	31.86	54.00	-22.14	Vertical

802.11n-HT40								
Test cl	hannel		Lowest	Level Peak		Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	42.56	36.23	7.05	41.93	43.91	68.20	-24.29	Horizontal
5150.00	43.31	36.23	7.05	41.93	44.66	68.20	-23.54	Vertical
			8	02.11n-HT40)			
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	32.28	36.23	7.05	41.93	33.63	54.00	-20.37	Horizontal
5150.00	33.37	36.23	7.05	41.93	34.72	54.00	-19.28	Vertical
			8	02.11n-HT40)			
Test cl	hannel	Highest			Level		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	43.21	35.37	7.11	41.89	41.89	68.20	-26.31	Horizontal
5350.00	42.78	35.37	7.11	41.89	41.89	68.20	-26.31	Vertical
			8	02.11n-HT40)			
Test cl	hannel		Highest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.78	35.37	7.11	41.89	34.37	54.00	-19.63	Horizontal
5350.00	32.26	35.37	7.11	41.89	32.85	54.00	-21.15	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1	Restricted Band											
	Test Requirement:	FCC Part15 E Section 15.407(b)										
	Test Method:	ANSI C	63.10: 2	013						-		
	TestFrequencyRange:	Band 1:	4.5 GH	z to 5.15	GHz	and 5.35GH	z to 5.4	6GHz				
	Test site:	Measur	ement D	istance:	3m							
	Receiver setup:	Frequ	ency	Detect	tor	RBW		3W	Remai			
		Above	1GHz	Peak		1MHz	_	1Hz	Peak Va			
		710070	RMS		3	1MHz	31/	1Hz	Average \	/alue		
	Limit:	F	requenc	у	Limit (dBuV/m @3m)				Remark			
		Ab	Above 1GHz 74.00 54.00					Peak Value Average Value				
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters about the groundat a 3 meter camber. The table was rotated 360 degree todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height anter tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degree to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower that the limitspecified, then testing could be stopped and the peak value of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quale peak or average method as specified andthen reported in a data sheet. 							oove ees j enna ve n. to st 4 ees			
	Test setup:		150cm	(Turntable	· W	Ground Reference Plane	Pra.	Antenna To	ower			
	Test Instruments:	Refer to	section	5.6 for d	letaile	<u> </u>						
	Test mode:			5.3 for d								
	Test results:	Passed	, 5000011	3.0 IOI U	otani							
	root rooulto.	1 43304										

Band 1: 802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.56	34.50	6.80	42.05	42.81	74.00	-31.19	Horizontal
4500.00	42.21	34.50	6.80	42.05	41.46	74.00	-32.54	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	33.37	34.50	6.80	42.05	32.62	54.00	-21.38	Horizontal
4500.00	32.24	34.50	6.80	42.05	31.49	54.00	-22.51	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Horizontal
5460.00	43.37	34.90	7.18	41.85	43.60	74.00	-30.40	Vertical
Test cl	hannel		Highest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.54	34.90	7.18	41.85	32.77	54.00	-21.23	Horizontal
5460.00	33.37	34.90	7.18	41.85	33.60	54.00	-20.40	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	42.52	34.50	6.80	42.05	41.77	74.00	-32.23	Horizontal
4500.00	43.31	34.50	6.80	42.05	42.56	74.00	-31.44	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.24	34.50	6.80	42.05	31.49	54.00	-22.51	Horizontal
4500.00	33.68	34.50	6.80	42.05	32.93	54.00	-21.07	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.21	34.90	7.18	41.85	42.44	74.00	-31.56	Horizontal
5460.00	43.75	34.90	7.18	41.85	43.98	74.00	-30.02	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.24	34.90	7.18	41.85	32.47	54.00	-21.53	Horizontal
5460.00	33.21	34.90	7.18	41.85	33.44	54.00	-20.56	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.25	34.50	6.80	42.05	42.50	74.00	-31.50	Horizontal
4500.00	42.17	34.50	6.80	42.05	41.42	74.00	-32.58	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	33.34	34.50	6.80	42.05	32.59	54.00	-21.41	Horizontal
4500.00	32.21	34.50	6.80	42.05	31.46	54.00	-22.54	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Horizontal
5460.00	43.31	34.90	7.18	41.85	43.54	74.00	-30.46	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.57	34.90	7.18	41.85	32.80	54.00	-21.20	Horizontal
5460.00	33.34	34.90	7.18	41.85	33.57	54.00	-20.43	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10:20	013								
TestFrequencyRange:	30MHz to 40GH	łz								
Test site:	Measurement D	istance: 3m	า							
Receiver setup:	Frequency	Detector		RBW	VI	BW	Remark			
'	30MHz-1GHz	Quasi-pea	ak	100kHz 30)kHz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	31\	ИHz	Peak Value			
Limit:	Frequenc		Limi	it (dBuV/m @3	Bm)		Remark			
	30MHz-88M	1Hz		40.0			uasi-peak Value			
	88MHz-216N	ИHz		43.5			uasi-peak Value			
	216MHz-960			46.0		Qι	uasi-peak Value			
	960MHz-1G	SHz		54.0		Qı	uasi-peak Value			
	Fragueno	· ·	1:	imit (dBm/MHz	١		Remark			
	Frequenc	У	LI	68.20)		Peak Value			
	Above 1GI	Hz -		54.00			Average Value			
Test Procedure:	1. The EUT w /1.5m(abov was rotated radiation. 2. The EUT w antenna, w tower. 3. The antenr ground to c horizontal a measurem. 4. For each s and thenth and the rot maximum v 5. The test-re SpecifiedB 6. If the emiss limitspecifie EUT would 10dB marg	EIRP[dBm] - vas placed of vas placed of ve 1GHz) abd 360 degree vas set 3 methichwas month and vertical ent. uspected entere antenna watablewas treading. ceiver system and width with sion level of ed, then testibe reported in would be	on the pove to see to see the counter of the man polar mission was to urned the E ting of the E ting of the tere-tere	the groundate determine the away from the away from the don the top of the done of the aximum value fizations of the condition of the condition of the aximum Hold EUT in peak recould be stopperwise the eround the condition of the could be stopperwise the could be stopperwise.	e interof a value of the e anter to the e anter to the e anter to the e anter to the following the mode of the ped armission one us	tion of the state	m(below 1GHz) mber. The table he highest e-receiving height antenna heters above the rength. Both e set to make the to its worst case er to 4 meters egrees to find the etion and dB lower than the heak values of the did not have k, quasi-peak or			

Below 1GHz

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : Phablet Site Condition EUT

: Phablet

Model : Aprix_Phat6
Test mode : 5GWIFI mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

шини		Readi	Antenna	Cable	Dreamn		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∀	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	44.743	32.14	17.44	1.28	29.86	21.00	40.00	-19.00	QP
2	70.337	41.24	6.77	1.52	29.72	19.81	40.00	-20.19	QP
1 2 3	153.200	45.93	10.41	2.54	29.19	29.69	43.50	-13.81	QP
4	248.552	43.86	11.89	2.81	28.55	30.01	46.00	-15.99	QP
4 5	377.259	50.52	15.16	3.09	28.68	40.09	46.00	-5.91	QP
6	492.469	37.08	16.72	3.55	28.94	28.41	46.00	-17.59	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

: rnablet

Model : Aprix_Phat6
Test mode : 5GWIFI mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: YT
REMARK :

	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	44.743	41.57	17.44	1.28	29.86	30.43	40.00	-9.57	QP
2	84.999	45.97	7.50	1.83	29.60	25.70	40.00	-14.30	QP
2	124.569	47.00	12.04	2.22	29.36	31.90	43.50	-11.60	QP
	385.281	41.97	15.40	3.09	28.72	31.74	46.00	-14.26	QP
4 5	492.469	38.66	16.72	3.55	28.94	29.99	46.00	-16.01	QP
	857.025	31.30	21.09	4.12	27.99	28.52	46.00	-17.48	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	50.57	40.10	9.82	41.97	58.52	68.20	-9.68	Vertical				
10360.00	49.61	40.10	9.82	41.97	57.56	68.20	-10.64	Horizontal				
		802.11	a mode Low	est channe	l (AverageV	alue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	40.72	40.10	9.82	41.97	48.67	54.00	-5.33	Vertical				
10360.00	39.32	40.10	9.82	41.97	47.27	54.00	-6.73	Horizontal				

	802.11a mode Middle channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	50.95	40.00	9.85	41.95	58.85	68.20	-9.35	Vertical				
10400.00	51.34	40.00	9.85	41.95	59.24	68.20	-8.96	Horizontal				
		802.11	a mode Mido	dle channe	I (AverageVa	alue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	40.72	40.00	9.85	41.95	48.62	54.00	-5.38	Vertical				
10400.00	41.39	40.00	9.85	41.95	49.29	54.00	-4.71	Horizontal				

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	50.19	39.70	9.96	41.88	57.97	68.20	-10.23	Vertical			
10480.00	50.27	39.70	9.96	41.88	58.05	68.20	-10.15	Horizontal			
		802.11	a mode High	est channe	el (Average)	'alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	40.29	39.70	9.96	41.88	48.07	54.00	-5.93	Vertical			
10480.00	40.72	39.70	9.96	41.88	48.50	54.00	-5.50	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	50.39	40.10	9.82	41.97	58.34	68.20	-9.86	Vertical				
10360.00	49.69	40.10	9.82	41.97	57.64	68.20	-10.56	Horizontal				
		802.11n	20 mode Lov	west chann	el (Average	Value)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10360.00	40.78	40.10	9.82	41.97	48.73	54.00	-5.27	Vertical				
10360.00	39.52	40.10	9.82	41.97	47.47	54.00	-6.53	Horizontal				

	802.11n20 mode Middle channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	50.49	40.00	9.85	41.95	58.39	68.20	-9.81	Vertical				
10400.00	49.76	40.00	9.85	41.95	57.66	68.20	-10.54	Horizontal				
		802.11n	20 mode Mid	ddle chann	el (Average ⁾	√alue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	40.28	40.00	9.85	41.95	48.18	54.00	-5.82	Vertical				
10400.00	39.75	40.00	9.85	41.95	47.65	54.00	-6.35	Horizontal				

802.11n20 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	51.29	39.70	9.96	41.88	59.07	68.20	-9.13	Vertical
10480.00	51.26	39.70	9.96	41.88	59.04	68.20	-9.16	Horizontal
	802.11n20 mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	41.78	39.70	9.96	41.88	49.56	54.00	-4.44	Vertical
10480.00	41.29	39.70	9.96	41.88	49.07	54.00	-4.93	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	51.27	40.00	9.85	41.95	59.17	68.20	-9.03	Vertical
10380.00	50.26	40.00	9.85	41.95	58.16	68.20	-10.04	Horizontal
	802.11n40 mode Lowest channel (AverageValue)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	41.23	40.00	9.85	41.95	49.13	54.00	-4.87	Vertical
10380.00	40.57	40.00	9.85	41.95	48.47	54.00	-5.53	Horizontal

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	51.27	39.80	9.92	41.90	59.09	68.20	-9.11	Vertical
10460.00	52.65	39.80	9.92	41.90	60.47	68.20	-7.73	Horizontal
	802.11n40 mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10460.00	41.56	39.80	9.92	41.90	49.38	54.00	-4.62	Vertical
10460.00	42.27	39.80	9.92	41.90	50.09	54.00	-3.91	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)			
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.			
Test setup:	Temperature Chamber			
	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector			
Test procedure:	Note: Measurement setup for testing on Antenna connector 1. The EUT is installed in an environment test chamber with external			
	 Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.			
Test results:	Passed			

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions			Mar De tation (com)		
Temp(°C)	Voltage(dc)	Frequency(MHz)	Max. Deviation (ppm)		
	4.37V	5179.997456	0.49		
20	3.80V	5179.974596	4.90		
	3.23V	5179.963854	6.98		

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Francisco est/MILE)	Mary Davistian (nam.)		
Voltage(dc)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)		
	-20	5179.987451	2.42		
	-10	5179.995623	0.84		
	0	5179.968524	6.08		
3.80V	10	5179.987459	2.42		
3.00 V	20	5179.996528	0.67		
	30	5179.974158	4.99		
	40	5179.963952	6.96		
	50	5179.974950	4.84		