Odpowiedzi i schematy oceniania

Arkusz 11

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania	
zadania	odpowiedź		
1.	D.	$W = 10\sqrt{2} - 6\sqrt{2} + 2\sqrt{2} \Rightarrow W = 6\sqrt{2}$	
2.	B.	Pierwsze równanie z przykładu B mnożymy stronami przez 2 i	
		dodajemy stronami do drugiego równania. Otrzymujemy $0 = 10$,	
		czyli sprzeczność.	
3.	A.	$W = 2 - x - 1 - x \Rightarrow W = 2 - x + 1 - x = 3 - 2x$	
4.	B.	$\left(3a^4b^5\right)^3 = 27a^{12}b^{15}$	
5.	C.	Rozwiązaniem danej nierówności jest przedział (-4, 5) – należą do	
		niego liczby całkowite należące do zbioru $\{-3, -2, -1, 0, 1, 2, 3, 4\}$.	
6.	A.	Skorzystaj z zasady zapisu liczby, która przy dzieleniu przez k daje	
		resztę r .	
7.	B.	Dziewczęta stanowią 30% x, a chłopcy 70% x (x – liczba uczniów	
		w klasie), zatem $\frac{0.7x}{0.3x}100\% = 233\frac{1}{3}\%$.	
8.	A.	$\frac{a\sqrt{3}}{6} = 2\sqrt{5} \Rightarrow a = 4\sqrt{15}$	
9.	B.	Funkcja liniowa jest malejąca, gdy ma ujemny współczynnik	
		kierunkowy.	
10.	A.	Dla funkcji z przykładu A $f(2) = -18$, a miejscami zerowymi są	
		podane liczby.	
11.	D.	$S_{BC} = (3,0) \Rightarrow AS_{BC} = \sqrt{(3+2)^2 + 2^2} \Rightarrow AS_{BC} = \sqrt{29}$	
12.	B.	Dane liczby zapisujemy w postaci a_1 , a_1q , a_1q^2 , zatem	
		$(a_1q)^3 = 125 \Rightarrow a_1q = 5 \Rightarrow a_2 = 5.$	
13.	A.	Dane liczby zapisujemy w postaci a_1 , $a_1 + r$, $a_1 + 2r$, zatem	
		$3a_1 + 3r = 12 \Rightarrow a_1 + r = 4 \Rightarrow a_2 = 4.$	

14.	C.	$W = \frac{b(a+b)}{ab} \Longrightarrow W = \frac{a+b}{a}$
15.	C.	$ \overset{=}{\Omega} = 9 \cdot 8, \ \overset{=}{A} = 5 \cdot 4 + 4 \cdot 3 \Rightarrow P(A) = \frac{32}{72} = \frac{4}{9} $
16.	D.	Dany punkt <i>S</i> jest środkiem okręgu i punkt (0, 0) spełnia równanie okręgu z przykładu D.
17.	A.	$ \angle CAD = 20^{\circ} \Rightarrow \angle ADC = 140^{\circ} \Rightarrow \angle BDC = 40^{\circ} \Rightarrow \angle ECD = 50^{\circ}$
18.	D.	$a_l = a_k = -2$
19.	В.	$12 \cdot 9 = 16 \cdot h \Rightarrow h = \frac{27}{4}$
20.	B.	$a = \log_5 100 - \log_5 20 \Rightarrow a = \log_5 5 \Rightarrow a = 1$
21.	B.	Liczba krawędzi bocznych i krawędzi podstawy jest równa 15, zatem ostrosłup ma 15 ścian bocznych i jedną podstawę.

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów
22.	Wyznaczenie pierwiastka trójmianu kwadratowego: $x_0 = -\frac{1}{3}$.	1
	Rozwiązanie nierówności: $x \in R \setminus \left\{-\frac{1}{3}\right\}$.	1
23	Zapisanie trójmianu w postaci iloczynowej:	1
	f(x) = -3(x+6)(x-4).	
	Obliczenie $f(-10): f(-10) = 72$.	1
24.	Zapisanie równania: $2 \cdot (-2)^3 - 2m - 5 = 0$.	1
	Rozwiązanie równania: $m = -\frac{21}{2}$.	1
25.	Wyznaczenie współczynnika kierunkowego prostej $AB: a_{AB} = \frac{1}{2}$.	1
	Wyznaczenie współczynnika kierunkowego prostej $CD: a_{CD} = \frac{1}{2}$,	1

	co dowodzi tezy zadania.	
26.	Zapisanie układu równań: $\begin{cases} 4a = 18 \\ ah = 18 \end{cases}$.	1
	Rozwiązanie układu i podanie odpowiedzi: $\begin{cases} a = \frac{9}{2} \\ h = 4 \end{cases}$	1
27.	Zapisanie liczby za pomocą iloczynu potęg liczb 2 i 5:	1
	$a = 2^{12} 5^{12} 2^{-9} 5^{-12} .$	
	Obliczenie liczby $a: a = 8$.	1
28.	Wyznaczenie prawdopodobieństw zdarzeń	1
	$A, B: P(A) = \frac{1}{3}, P(B) = \frac{7}{9}.$	
	Wykorzystanie twierdzenia o prawdopodobieństwie sumy do	1
	obliczenia prawdopodobieństwa iloczynu: $P(A \cap B) = \frac{14}{45}$.	
29.	Zapisanie parametrów ciągu arytmetycznego:	1
	$a_1 = 10, r = 5, S_n = 220.$	
	Ułożenie równania: $\frac{10+10+(n-1)5}{2}n = 220$.	1
	Rozwiązanie równania: $n_1 = -11$, $n_2 = 8$.	1
	Wybranie odpowiedzi i wyznaczenie ostatniego wyrazu ciągu:	1
	$a_8 = 45$.	
30.	Uzasadnienie podobieństwa trójkątów BFC i ABF: cecha kkk.	1
	Zapisanie proporcji: $\frac{ FC }{ FB } = \frac{ FB }{ AF }$.	1
	Wyznaczenie długości odcinka $FB: FB = 4\sqrt{2}$.	1
	Obliczenie długości boków prostokąta: $ BC = 4\sqrt{3}, AB = 4\sqrt{6}$.	2 (po 1
		punkcie)
31.	Wykonanie rysunku z oznaczeniami lub wprowadzenie	1
	dokładnych oznaczeń:	
	a, h, α – odpowiednio krawędź podstawy i wysokość ostrosłupa	
	oraz kąt nachylenia krawędzi bocznej do płaszczyzny podstawy.	

Zapisanie układu równań: $\begin{cases} \frac{1}{2}a\sqrt{2}h = 20\sqrt{2} \\ \frac{h}{\frac{1}{2}a\sqrt{2}} = \frac{5\sqrt{2}}{4} \end{cases}$	2 (po 1 punkcie za każde równanie)
Rozwiązanie układu: $\begin{cases} a = 4\sqrt{2} \\ h = 5\sqrt{2} \end{cases}.$	2 (po 1 punkcie za każde równanie)
Wyznaczenie objętości ostrosłupa: $V = \frac{160\sqrt{2}}{3}$.	1