Exercises Category Theory and Coalgebra Lecture 2

If you have any questions, email jrot@cs.ru.nl. The deadline is 11 February 23:59 PM, CET. Please hand in your work via brightspace. In case you upload hand-written notes, please use a scanner app (instead of photos). Explain your answers! In all exercises, let A be an arbitrary set unless otherwise specified. Given $a \in A$, a^{ω} denotes the constant stream (a, a, a, ...). The last question, marked by (*) is an extra hard bonus question.

1. We define the maps $g, h: A^{\omega} \to A^{\omega}$ by stream differential equations:

Prove, by defining suitable bisimulations, that for all $\sigma, \tau \in A^{\omega}$:

$$g(\sigma) = zip(\sigma, \sigma)$$
.

2. Given functions $f, g: A \to A$, we define $\varphi_{f,g}: A^{\omega} \to A^{\omega}$ by

$$\varphi_{f,g}(\sigma) = (f(\sigma(0)), g(\sigma(1)), f(\sigma(2)), g(\sigma(3)), \dots).$$

- (a) Characterise $\varphi_{f,g}$ in terms of stream differential equations (initial value and derivative).
- (b) Characterise the map alt: $A^{\omega} \times A^{\omega} \to A^{\omega}$, given by $\mathsf{alt}(\sigma, \tau) = (\sigma(0), \tau(1), \sigma(2), \tau(3), \ldots)$, by stream differential equations.
- (c) Show that for any functions $f, g: A \to A$ and streams $\sigma, \tau \in A^{\omega}$ we have

$$\varphi_{f,g}(\mathsf{alt}(\sigma,\tau)) = \mathsf{alt}(\varphi_{f,f}(\sigma), \varphi_{g,g}(\tau))$$

using bisimulations.

- 3. Define a stream system $\langle o, f \rangle$: $A^{\omega} \times A^{\omega} \to A \times A^{\omega} \times A^{\omega}$ such that the unique homomorphism from $(A^{\omega} \times A^{\omega}, \langle o, f \rangle)$ to the final stream system over A coincides with alt: $A^{\omega} \times A^{\omega} \to A^{\omega}$ (see the second exercise). Explain your answer.
- 4. In the lecture, we only defined bisimulations on the final stream system; we now generalise this to arbitrary stream systems. For a stream system $(X, \langle o, f \rangle)$, we say $R \subseteq X \times X$ is a bisimulation if
 - (a) o(x) = o(y), and
 - (b) $(f(x), f(y)) \in R$.

Now suppose $(X, \langle o, f \rangle)$ and $(Y, \langle p, g \rangle)$ are stream systems and $h: X \to Y$ is a homomorphism between them. Show that:

- if $R \subseteq X \times X$ is a bisimulation, then so is $\{(h(x), h(y) \mid (x, y) \in R\}$.
- if $S \subseteq Y \times Y$ is a bisimulation, then so is $\{(x,y) \mid (h(x),h(y)) \in S\}$.
- 5. Finish the proof from the lecture that $(A^{\omega}, \langle i, d \rangle)$ is a final stream system, by showing that if k, l are homomorphisms from an arbitrary stream system $(X, \langle o, t \rangle)$ to $(A^{\omega}, \langle i, d \rangle)$ then k = l.
- 6. (*) Show that the stream system $(A^{\omega} \times A^{\omega}, \langle o, t \rangle)$, defined by $o((\sigma, \tau)) = \sigma(0)$ and $t(\sigma, \tau) = (\tau, \sigma')$, for all $(\sigma, \tau) \in A^{\omega} \times A^{\omega}$, is final.