CSE216 Programming Abstraction

Instructor: Zhoulai Fu

State University of New York, Korea

What is a program?

Let us consider an expression x + y*10

- Think of this expression as a program in a programming language
- This is actually a program written in a programming language used by a calculator
- Today we will analyze the syntax of a general program Syntax analysis
- Syntax analysis can take a whole semester to learn; we will touch only the surface

Syntax analysis

Regular expression specification looks like this in Ocaml

```
rule Token = parse
  | [' ' '\t' '\n' '\r'] { Token lexbuf }
  ['0'-'9']+ \{ CSTINT (...) \}
  ['a'-'z''A'-'Z']['a'-'z''A'-'Z''0'-'9']*
                          { keyword (...) }
   ' + '
                          { PLUS }
   ′_′
                          { MINUS }
   ' *'
                          { TIMES }
  | '('
                          { LPAR }
  | ')'
                          { RPAR }
  l eof
                          { EOF }
                          { lexerError lexbuf "Bad char" }
```

Context-free grammar specification looks like this in Ocaml

Menu for Today

- Regular expressions
- Finite State Automata
- Nondeterministic Finite Automaton (NFA)
- Deterministic Finite Automaton (DFA)

Python basics

Regular expressions

r	Meaning	Language $\mathcal{L}(r)$
a	Character a	{"a"}
arepsilon	Empty string	{""}
$r_1 r_2$	r_1 followed by r_2	$\left\{ s_{1}s_{2}\mid s_{1}\in\mathcal{L}\left(r_{1} ight),s_{2}\in\mathcal{L}\left(r_{2} ight) ight\}$
r *	Zero or more r	$\{s_1 \ldots s_n \mid s_i \in \mathcal{L}(r), n \geq 0\}$
$r_1 r_2$	Either r_1 or r_2	$\mathcal{L}\left(r_{1}\right)\cup\mathcal{L}\left(r_{2}\right)$

Examples

```
ab* represents {"a","ab","abb",...}

(ab)* represents {"","ab","abab",...}

(a|b)* represents {"","a","b","aa","ab","ba",...}
```

Exercise

What does (a|b)c* represent?

Regular expression abbreviations

Abbrev.	Meaning	Expansion
[aeiuo]	Set	a e i o u
[0-9]	Range	0 1 8 9
[0-9a-Z]	Ranges	0 1 8 9 a b y z
<i>r</i> ?	Zero or one <i>r</i>	r arepsilon
<u>r</u> +	One or more <i>r</i>	rr*

Exercises

Write regular expressions for:

- Non-negative integer constants
- Integer constants
- Floating-point constants:
 - 3.14
 - 3E8
 - +6.02E23
- Java variable names:
 - xy
 - x12
 - _X
 - \$x12

Finite State Automata

- A finite automaton, FA, is a graph of states (nodes) and labelled transitions (edges)
- An FA accepts string s if there is a path from start to an accept state such that the labels make up s
- Epsilon (ε) does not contribute to the string
- This automaton is nondeterministic (NFA)
- It accepts string b
- Does it accept a or aa or ab or aba?

Regular expression = finite automata

- For every regular expression r, there exists a deterministic finite automaton that recognizes precisely the strings described by r.
- The converse is also true.
- Construction: Regular expression ⇒ Nondeterministic finite automaton (NFA) ⇒ Deterministic finite automaton (DFA)
- Results in an efficient way of determining whether a given string is described by a regular expression

From regular expression to NFA

Build NFA recursively by the case of the regular expression.

$r_1|r_2$

r_1r_2

Exercise:

- Make NFA for (ab) *
- Make NFA for (a|b) *

Deterministic Finite Automata

- No ε-transitions
- Distinct transitions from each state
- Multiple accepting states OK

Why DFA

State	Input	Go to
1	a	2
1	b	3
2	a	2
2	b	3
3	a	fail
3	b	fail

- A DFA is easy to implement with table lookup:
 - next_state = table[current_state][next_symbol]
- Decides in linear time whether it accepts a string s
- For every NFA there is a corresponding DFA that accepts the same set of strings.

Summary

- Basic Python:
 - https:// colab.research.google.com/ drive/ 15eilquB2QVacfZWadm_jlw5 Xv2ihl60J#scrollTo=UhcbBQ **UiStHG**