Advanced Calculus II: Assignment 3

Chris Hayduk

February 26, 2020

Problem 1.

Let $L_1, L_2, L_3 \in L(\mathbb{R}^n, \mathbb{R}^m)$. Then all of these functions are linear transformation from \mathbb{R}^n to \mathbb{R}^m . We will now use these properties to show that $L(\mathbb{R}^n, \mathbb{R}^m)$ is a vector space:

1. Associativity of addition

$$(L_1 + L_2)(x) + L_3(x) = L_1(x) + L_2(x) + L_3(x)$$

= $L_1(x) + (L_2 + L_3)(x)$

- 2. Commutativity of addition
- 3. Identity element of addition

Let L_0 be the function that assigns the 0 vector in \mathbb{R}^m to every vector in \mathbb{R}^n . We must first show that this is a linear transformation.

Let $u, v \in \mathbb{R}^n$ and let $c \in \mathbb{R}$. Then,

$$L_0(u+v) = 0 = L_0(u) + L_0(v)$$

and,

$$L_0(cu) = 0 = c0 = cL(u)$$

Thus $L_0 \in L(\mathbb{R}^n, \mathbb{R}^m)$. Now to show that it is the identity element of addition in that set:

$$(L_0 + L_1)(x) = L_0(x) + L_1(x)$$

= 0 + L_1(x)
= L_1(x)

4. Inverse elements of addition

Problem 2.

Problem 3.

Problem 4.

Problem 5.