Name, Vorname:

Matrikel-Nr.:

Aufgabe NUS I-2: Leistungsanpassung

20 Punkte

Gegeben ist eine Gleichstromschaltung gemäss Fig. 2 (a), die aus der Stromquelle I=3 A, der Spannungsquelle U=12 V und vier Widerständen besteht. Der jeweilige Widerstandswert ist ein ganzzahliges Vielfaches des Grundwertes $R=12\,\Omega$.

Fig. 2: Gleichstromschaltung (a) und Belastungsnetzwerk (b).

a) Zeichnen Sie für die Gleichstromschaltung in Fig. 2 (a) zunächst das elektrische Ersatzschaltbild einer Ersatzspannungsquelle mit Innenwiderstand bezüglich der Klemmen A und B. Berechnen Sie dann algebraisch den Innenwiderstand $R_{\rm E}$ und die Leerlaufspannung $U_{\rm E}$ dieser Ersatzspannungsquelle als Funktion von R, I und U.

(8 Pkt.)

b) Geben Sie Zahlenwerte für $R_{\rm E}$, $U_{\rm E}$ und den Kurzschlussstrom $I_{\rm E}$ der Ersatzspannungsquelle aus Teilaufgabe a) an.

(4 Pkt.)

Für alle weiteren Teilaufgaben gelte nun $R_{\rm E}=5\,\Omega$ und $U_{\rm E}=15\,{\rm V}.$

An den Klemmen A und B der Gleichstromschaltung wird ein Belastungsnetzwerk gemäss Fig. 2 (b) angeschlossen. Es besteht aus den beiden Widerständen $R_1 = 20 \Omega$ und $R_2 = 11.5 \Omega$ sowie dem unbekannten Widerstand R_3 .

c) Für welchen Wert des Widerstands R_3 wird die in R_2 (!) umgesetzte Leistung maximal?

(4 Pkt.)

d) Wie gross ist mit dem Ergebnis aus Teilaufgabe \mathbf{c}) der Spannungsabfall über dem Widerstand R_2 und welche Leistung wird von R_2 aufgenommen?

(4 Pkt.)