Aufgabe 1

Es sei $\Omega = \mathbb{N}$ und $\mathcal{F} = \mathcal{P}(\mathbb{N})$. Für welche der folgenden Abbildungen $\mu : \mathcal{F} \longrightarrow \overline{\mathbb{R}}$ wird durch $(\Omega, \mathcal{F}, \mu)$ ein Maßraum definiert? Überprüfen Sie zudem alle μ , die tatsächlich ein Maß darstellen, auf Endlichkeit.

a)
$$\mu(A) = \sum_{i \in A} t(1-t)^{i-1}$$
 für $t \in (0,1)$

b)
$$\mu(A) = \begin{cases} 0 & A \text{ ist endlich,} \\ 1 & A \text{ sonst.} \end{cases}$$

c)
$$\mu(A) = \sum_{i \in A} \frac{1}{i}$$

Aufgabe 2

Es sei $\mathcal{E} := \{(-\infty, c) \mid c \in \mathbb{R}\}$. Zeigen Sie, dass $\sigma(\mathcal{E}) = \mathcal{B}(\mathbb{R})$ gilt. Das heißt, \mathcal{E} ist ein Erzeugendensystem der Borelschen σ -Algebra.

Besprechung und Wiederholung von ausgewählten Themen aus der Vorlesung.