KNOWLEDGE TRANSFER IN PERMUTATION INVARIANT TRAINING FOR SINGLE-CHANNEL MULTI-TALKER SPEECH RECOGNITION

Tian Tan¹, Yanmin Qian^{1†}, Dong Yu²

ADAPTIVE PERMUTATION INVARIANT TRAINING WITH AUXILIARY INFORMATION FOR MONAURAL MULTI-TALKER SPEECH RECOGNITION

Xuankai Chang¹, Yanmin Qian^{1†}, Dong Yu²

¹SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

²Tencent AI Lab, Tencent, Bellevue, WA, USA

{xuank@sjtu.edu.cn, yanminqian@tencent.com, dyu@tencent.com}

Lu Huang

2018-08-01

Single-channel Multi-talker

Linearly mixed single-microphone signal

$$y_t = \sum_n x_t^n$$

- Mask based spectra estimation
 - Amplitude Mask (AM)

$$\mathcal{J}_{ ext{mask}} = \sum_n ext{MSE}(\hat{\mathbf{M}}_n \odot \mathbf{Y}, \mathbf{X}_n)$$

Phase Sensitive Mask(PSM)

$$\mathcal{J}_{\text{mask}} = \sum_{n} \text{MSE}(\hat{\mathbf{M}}_n \odot \mathbf{Y}, \mathbf{X}_n \odot \cos(\theta_y - \theta_n))$$

Conventional Speech Separation

Kolbæk, Morten, et al. "Multitalker speech separation with utterance-level permutation invariant training of deep recurrent neural networks." TASLP 25.10 (2017): 1901-1913.

Permutation Invariant Training

Yu, Dong, et al. "Permutation invariant training of deep models for speaker-independent multi-talker speech separation." ICASSP 2017.

Utterance-level PIT

Extended to utterance level

$$\mathcal{J}_{\text{u-PIT}} = \sum_{u} \min_{s'} \sum_{t} \sum_{n} \text{MSE}(\hat{\mathbf{M}}_{utn} \odot \mathbf{Y}_{ut}, \mathbf{X}_{utn}^{s'})$$

- Speaker tracing by
 - Utterance level training criterion: forcing frames belonging to the same speaker to the same output streams
 - Deep (B)LSTM: Capturing long-term dependency
- How to recognize?
 - Separation -> Recognition
 - Directly recognition (PIT-CE)

uPIT CE

Loss

$$\mathcal{J}_{\text{PIT-CE}} = \sum_{u} \min_{s'} \sum_{t} \sum_{n} \text{CE}(\mathbf{O}_{unt}, l_{unt}^{s'})$$

CNTK NN + Kaldi Decode

Table 2: WER (%) of the baseline BLSTM-RNN system on twotalker mixed AMI IHM speech

SNR Condition	High E Spk	Low E Spk
0db	85.0	100.5
5db	68.8	110.2
10db	51.9	114.9
15db	39.3	117.6
20db	32.1	118.7

Table 3: WER (%) of the propsoed PIT-ASR model on two-talker mixed AMI IHM speech

SNR Condition	High E WER	Low E WER
0db	49.74	56.88
5db	40.31	60.31
10db	34.38	65.52
15db	31.24	73.04
20db	29.68	80.83

ADAPTIVE PERMUTATION INVARIANT TRAINING WITH AUXILIARY INFORMATION FOR MONAURAL MULTI-TALKER SPEECH RECOGNITION

Xuankai Chang¹, Yanmin Qian^{1†}, Dong Yu²

¹SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

²Tencent AI Lab, Tencent, Bellevue, WA, USA

{xuank@sjtu.edu.cn, yanminqian@tencent.com, dyu@tencent.com}

Motivation

- PIT-CE's WER is still much higher than that in single-talker case.
- Speaker adaptation reduces the mismatch between the training and testing speakers in single-talker ASR.
- PIT-MSE and CE are much harder on same-gender task, so the gender information may be useful.

Speaker Adaptation

- Three kinds of methods:
 - Feature space transform, eg. CMLLR, fMLLR;
 - Adapting all or part of parameters of NN;
 - Auxiliary features, like i-vector, pitch, T60...
- In this paper
 - Pitch + i-vector
 - Speaker-dependent feature can make the speaker tracing of PIT-CE more easier.

Gender-pair Prediction with MTL

- 3-dimensional one-hot vector:
 - Male + Male, Female + Female, Opposite-Gender.
- Multi-task learning
 - Add a branch to predict the gender-pair information
 - Will be deprecated when decoding

$$J^{MTL} = J + \lambda \sum_{t} CE(\ell_t^{2nd}, \mathbf{O}_t^{2nd})$$

CNN-BLSTM

- Add CNN layers before BRNN:
 - CNN layers only use the normal features (LFBK)
 - Modeling the correlation along frequency axis

Experiment Setup

- Data
 - Mixed two-talker AMI IHM corpus.
 - 80hr train; 8hr evaluation.
- Tools: CNTK NN + Kaldi Decode
- Features: 40-dim LFBk, 3-dim pitch, 10-dim i-vector
- Multi-task Learning: $\lambda = 0.3$
- Model
 - 6-layer BLSTM(768)
 - 2-layer CNN + 4-layer BLSTM (CNN-BLSTM)
 - 11×40; 32*(9×9-1×1); 64*(3×3-2×2)

BLSTM vs. CNN-BLSTM

Model	Gender Combination	WER 1	WER 2
	All	55.21	64.23
BLSTM	opposite	52.41	61.61
	same	58.48	67.27
	All	51.93	60.13
CNN-BLSTM	opposite	49.40	57.90
	same	54.89	62.72

With/without auxiliary feature

Model	Adapt on	WER 1	WER 2
	_	55.21	64.23
BLSTM	pitch	51.88	60.54
	i-vector	51.61	59.99
	pitch + i-vector	51.29	59.78
CNN-BLSTM	pitch + i-vector	50.64	58.78

gender-pair prediction with multi-task Learning

Model	2nd Task	Adapt on	WER 1	WER 2
	_	_	55.21	64.23
BLSTM	gender pitch+i-vecto		52.47	60.31
		pitch+i-vector	51.11	59.35
CNN-BLSTM	_	_	51.93	60.13
	candar		51.10	58.76
	gender	pitch+i-vector	50.21	58.17

Conclusions

- CNN-BLSTM outperforms BSLTM.
- Auxiliary feature and gender-pair prediction with MTL benefits the PIT-CE.
 - PIT can be combined with advanced techniques, like adaptation and MTL.
 - PIT is a nice modeling technique for multi-taker speech separation or recognition.

KNOWLEDGE TRANSFER IN PERMUTATION INVARIANT TRAINING FOR SINGLE-CHANNEL MULTI-TALKER SPEECH RECOGNITION

Tian Tan¹, Yanmin Qian^{1†}, Dong Yu²

¹SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China ²Tencent AI Lab, Tencent, Bellevue, WA, USA { tantian@sjtu.edu.cn, yanminqian@tencent.com, dyu@tencent.com}

Motivation

- The performance gap between the multi-talker and single-talker speech recognition is still large.
- Distills knowledge from the single-talker model to improve the multi-talker model in the PIT framework.
- How to further improve the PIT-CE system using multiple teachers?
- How to use the untranscribed data for data augmentation or domain adaptation?

Teacher-student Training

Multiple Teachers

Average soft label

$$p_{\text{teacher}}(y|\mathbf{o}_t^{\mathbf{s}_s'}) = \sum_k w_k p_k(y|\mathbf{o}_t^{\mathbf{s}_s'})$$

Progressive ensemble learning scheme

Algorithm 1 Progressive ensemble teacher-student training

- Sort teacher models in ascending order of the performance on single-talker task
- 2: **for** each *i* in all teachers **do**
- 3: **for** each j in all minibatches of training data **do**
- 4: Generate soft-targets for minibatch *j* using teacher model *i*
- 5: Update neural network model with minibatch j
- 6: end for
- 7: Repeat 3 until converge
- 8: end for

Unsupervised Knowledge

Use only soft labels

$$J = \frac{1}{S} \min_{\mathbf{s}' \in permu(S)} \sum_{s} \sum_{t} \sum_{y} p_{teacher}(y|\mathbf{o}_{t}^{\mathbf{s}'s}) \log p_{\theta}(y|\mathbf{o}_{t})$$

- Data augmentation
 - Use the unlabeled data to improve the model
- Domain adaptation
 - Use the in-domain data to adapt the general model

Experiment Setup

- Data
 - Mixed two-talker AMI IHM corpus.
 - 400hr train (80hr for fast training); 8hr evaluation
 - WSJ two-talker mixed speech (40hr train, 5hr test)
- Tools: CNTK NN + Kaldi Decode
- Features: 40-dim LFBK with CMVN
- Teacher Model: CNN; BLSTM(3*768)
- Student Model: BLSTM(6*768)

Teacher-student training

Table 1. WER (%) of the baseline systems on original AMI IHM single-talker corpus

Model	WER
CNN	26.6
BLSTM	27.0

Table 2. WER (%) of the PIT model with teacher-student training using different configurations on the 80hr AMI IHM-2mix dataset. TS means teacher-student training.

Model	Init	λ .	WER		
	Hill	<i>\</i>	SPK1	SPK2	
PIT	Random	_	55.21	64.23	
+TS	PIT	0.5	52.44	60.49	
	FII	1	51.84	60.34	
	Random	0.5	51.28	59.27	
	Kandoni	1	51.07	59.12	

- Multiple teachers
 - CNN outperforms BLSTM
 - Because the BLSTM-RNN is used in PIT-ASR model while CNN is not and thus provides more complementary information.
 - Posteriors provided by CNNs are more informative.

Table 3. WER (%) of the teacher-student training using ensemble of single-speaker teacher models on 80hr AMI IHM-2mix dataset

Model	Teacher	\mathbf{W}	ER
MIOGEI	ici icaciici		SPK2
PIT	_	55.21	64.23
+TS	BLSTM	51.07	59.12
	CNN	48.95	57.52
	BLSTM+CNN: interpolated	49.34	57.78
	BLSTM+CNN: progressive	48.03	56.46

Data augmentation using untranscribed data

Table 4. Compare WER (%) with and without using the untranscribed data in the teacher-student training framework on the AMI IHM-2mix dataset

Model	del Teacher Data		Label	WER	
Model	reaction	Data	Label	SPK1	SPK2
PIT	_	80hr	Labeled	55.21	64.23
FII		400hr	Labeled	49.19	57.06
+TS	BLSTM	80hr	Labeled	51.07	59.12
		+320hr	Unlabeled	45.11	53.31
	CNN	80hr	labeled	48.95	57.52
	CIVIN	+320hr	Unlabeled	44.59	52.25
	BLSTM+CNN	80hr	labeled	48.03	56.46
		+320hr	Unlabeled	43.58	51.29

- Domain adaptation from AMI to WSJ
 - Meeting -> reading

Table 5. Efficient domain adaptation from AMI Meeting speech to WSJ Reading speech for multi-talker speech recognition with only untranscribed WSJ data. WER (%) on WSJ-2mix

System	Teacher	WER
PIT Baseline AMI 80hr	_	51.81
+ WSJ domain adaptation	AMI BLSTM	38.77
PIT-TS AMI 400hr	AMI BLSTM	43.50
+ WSJ domain adaptation	AMI BLSTM	36.59
PIT-TS AMI 400hr	AMI BLSTM+CNN	38.56
+ WSJ domain adaptation	AMI BLSTM+CNN	35.21

Conclusions

- Knowledge transferred from signal-talker model significantly improve the accuracy of multi-taker model.
- Progressive teacher ensemble technique can improve the results of multiple teachers.
- The teacher-student architecture can use unlabeled data for augmentation or in-domain data for adaptation of the general model.

Thx & QA