MACHINE LEARNING GRADIENT DESCENT

Sebastian Engelke

MASTER IN BUSINESS ANALYTICS

Numerical optimization: gradient descent

$$\widehat{\beta}_0 = \operatorname{argmin}_{\beta_0 \in \mathbb{R}} \operatorname{RSS}(\beta_0) = \operatorname{argmin}_{\beta_0 \in \mathbb{R}} J(\beta_0)$$

For simplicity: fix β_1 to the true value β_1^* and only estimate β_0 by least squares.

Gradient descent

- Start with an arbitrary initial value $\beta_0^{(0)} \in \mathbb{R}$.
- ► In the *i*th step:
- ► Compute the gradient/derivative of J at the position $\beta_0^{(i-1)}$:

$$\nabla J(\beta_0^{(i-1)}) = \left. \frac{\partial J(\beta_0)}{\partial \beta_0} \right|_{\beta_0 = \beta_0^{(i-1)}} \qquad \overset{\mathbf{o}}{\mathbf{x}} \quad \overset{\mathbf{g}}{\mathbf{x}}$$

Update your estimate to

$$\beta_0^{(i)} = \beta_0^{(i-1)} - \alpha \nabla J(\beta_0^{(i-1)}),$$

where α is a tuning parameter.

▶ Stop when converged ($\beta_0^{(i)}$ changes no more).

Machine Learning Slide 1

Gradient descent: higher dimensions

$$(\widehat{\beta}_0, \widehat{\beta}_1) = \operatorname{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \operatorname{RSS}(\beta_0, \beta_1) = \operatorname{argmin}_{\theta \in \mathbb{R}^d} J(\theta)$$

Gradient descent

- Start with an arbitrary initial value $\theta^{(0)} \in \mathbb{R}^d$.
- In the ith step:
- Compute the gradient/derivative of J at the position $\theta^{(i-1)}$:

$$abla J(heta^{(i-1)}) = \left. rac{\partial J(heta)}{\partial heta} \right|_{ heta = heta^{(i-1)}} \in \mathbb{R}^d$$

Update your estimate to

$$\theta^{(i)} = \theta^{(i-1)} - \alpha \nabla J(\theta^{(i-1)}) \in \mathbb{R}^d,$$

where α is a tuning parameter.

▶ Stop when converged $(\theta^{(i)})$ changes no more).

Machine Learning Slide 2

Gradient descent: remarks

Gradient descent can be used to solve numerically a minimization problem

$$\operatorname{argmin}_{\theta \in \mathbb{R}^d} J(\theta)$$
.

- ▶ The ingredients are the objective function J and its derivatives in all directions, namely the gradient ∇J .
- ▶ Recall that the gradient $\nabla J(\theta)$ points in the direction of the steepest increase of J at the point θ .
- ▶ Important restriction: *J* needs to be differentiable!
- Gradient descent is a generic method that typically finds a local minimum.
- ▶ Only if the problem is convex, convergence to the global minimum can be guaranteed.
- The tuning parameter, also called <u>learning rate</u>, has to be adapted to the problem (many techniques exist).
- ▶ In complex models, gradient descent is the only way to find a (local) minimum.
- Depending on the model, different implementations/approximations exist, e.g., stochastic gradient descent, backpropagation.

Machine Learning Slide 3