第二十三届全国青少年信息学奥林匹克联赛初赛

提高组 C++语言试题

竞赛时间: 2017年10月14日14:30~16:30

۱Æ	-	~~	₩.	
选	ᆂ	汼	Ħ	
~~	J	11	恳	ě

选引	F:注意:
•	试题纸共有10页, 答题纸共有2页, 满分100分。请在答题纸上作答,写
	在试题纸上的一律无效。
•	不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资
	料。
	单项选择题(共 15 题,每题 1.5 分,共计 22.5 分;每题有且仅有一个正确
选项	页)
1.	从()年开始,NOIP 竞赛将不再支持 Pascal 语言。

NE PAR I	,			/			
	()年开始 2020					D.	2023
	E 8 位二进制补码 43						
	↑辨率为 1600x9 2812.5KB		16 位色的位图 4218.75KB				
	017年10月1日 星期三		星期日,1949 年 星期日		•		星期二
オ	t G 是有 n 个结 能使得 G 变成 m – n + 1	一棵	树。		通图,必须删 。 m+n+1		
6. 若 T(T(HI = II + I F某算法的计算I (N) = 2T(N / 2) + (1) = 1 可以 I (S算法的时间) O(N)	时间 ³ N log 复杂/	表示为递推关系 ; N 	式:			
	趁式 a * (b + c) a b c d * + *					D.	b + c * a * d
8. ∄ A.	可个不同的点数 32	均成的 B.		i图的 C.		° D.	41

9.	将 7 个名额分给 同的分配方案。	4 个	不同的班级,	允许不	有的班	级没有名	召额,	有()种不
A	. 60	B.	84	C.	96		D.	120	
10.	若 f[0] = 0, f[1] = :	1, f[n	+ 1] = (f[n] + f				的增	大 , f]	i]将接近于
A	. 1/2	B.	2/3	C.	$\frac{\sqrt{5}-}{2}$	1	D.	1	7>/
	设 A 和 B 是两个数组,请问任何 ()次比较。	以元	素比较作为基	本运算	算的归				
A	n^2	B.	n log n	C.	2n		D.	2n-1	
12.	在 n(n≥3)枚码如果只有一架天不合格的硬币的。	平可	以用来称重且	L称重的	的硬币	数没有队	灵制,		
	a. $A \leftarrow X \cup Y$ b. $A \leftarrow Z$ c. $n \leftarrow A $								
	算法 Coin(A, n)								
	异仏 $k \leftarrow n/3 $								
	- , -	分成	X, Y, Z三						
	3. if $W(X) \neq$		(Y) //W	V(X), V	V(Y)ケ	分别为 X	或Y	的重量	型 型
	4. then 5. else	-/	/ \//						
	6	X/	///						
	7. if $n>2$ then go	oto 1	X //						
			A中1枚硬币				不等	,则'	它不合格;
	9. if n=1 then A		等,则 A 中乘 更币不合格	制卜的(便 巾 イ	〉合格.			
	正确的填空顺序	是() 。						
A	正确的填空顺序 . b, c, a) 。 c, b, a	C.	c, a,	b	D.	a, b,	c
	. b, c, a 有正实数构成的	B. 数字	c, b, a 三角形排列形	/式如	图所示	No	D.	a, b,	c
	. b, c, a 有正实数构成的 第一行的数为 a ₁	B. 数字 1; 第	c, b, a 三角形排列形 二行的数从左	ジ式如日 ご到右位	图所示 依次为	; ;			С
	. b, c, a 有正实数构成的 第一行的数为 a ₁ a ₂₁ , a ₂₂ ; ···第 n 名	B. 数字 1;第 亍的数	c, b, a 三角形排列形 二行的数从左 数为 an1, an2, ·	が式如り こ到右で ・・・, a _{nn} 。	图所示 依次为 从 a ₁	; ; 1	a	a_{11}	
	. b, c, a 有正实数构成的 第一行的数为 a ₁	B. 数字第 近的数 a _{ij}	c, b, a 三角形排列形 二行的数从左 数为 anı, an₂, · 只有两条边可	《式如》 正到右位 ··, a _{nn。} 丁以分》	图所示 依次为 从 a ₁ 别通向		a_{31}	a_{11} a_{21} a_{22}	a_{33}

个数的路径,使得该路径上的数之和达到最大。

令 C[i,j]是从 a₁₁到 a_{ij}的路径上的数的最大和,并且 C[i,0]=C[0,i]=0, 则 C[i,i]= ()。

- A. $\max\{C[i-1,j-1], C[i-1,j]\} + a_{ij}$
- B. C[i-1,j-1] + C[i-1,j]
- C. $\max\{C[i-1,j-1], C[i-1,j]\} + 1$
- D. $\max\{C[i,j-1],C[i-1,j]\} + a_{ij}$
- 14. 小明要去南美洲旅游,一共乘坐三趟航班才能到达目的地,其中第1个航班 准点的概率是 0.9, 第 2 个航班准点的概率为 0.8, 第 3 个航班准点的概率为 0.9。如果存在第 i 个 (i=1,2) 航班晚点,第 i+1 个航班准点,则小明将赶不 上第 i+1 个航班, 旅行失败; 除了这种情况, 其他情况下旅行都能成功。请 问小明此次旅行成功的概率是()。
 - A. 0.5
- B. 0.648
- C. 0.72
- D. 0.74

15. 欢乐喷球: 儿童游乐场有个游戏叫"欢 乐喷球",正方形场地中心能不断喷出 彩色乒乓球,以场地中心为圆心还有一 个圆形轨道,轨道上有一列小火车在匀 速运动,火车有六节车厢。假设乒乓球 等概率落到正方形场地的每个地点,包 括火车车厢。小朋友玩这个游戏时,只 能坐在同一个火车车厢里,可以在自己 的车厢里捡落在该车厢内的所有乒乓 球,每个人每次游戏有三分钟时间,则 一个小朋友独自玩一次游戏期望可以 得到()个乒乓球。假设乒乓球喷 出的速度为2个/秒,每节车厢的面积 是整个场地面积的 1/20。

- A. 60
- B. 108
- C. 18
- D. 20
- 二、不定项选择题(共5题,每题1.5分,共计7.5分;每题有一个或多个正确 选项,多选或少选均不得分)
- 1. 以下排序算法在最坏情况下时间复杂度最优的有(
 - A. 冒泡排序/
- B. 快速排序 C. 归并排序 D. 堆排序
- 2. 对于入栈顺序为 a, b, c, d, e, f, g 的序列,下列()不可能是合法的出栈序
 - A. a, b, c, d, e, f, g

B. a, d, c, b, e, g, f

C. a, d, b, c, g, f, e

D. g, f, e, d, c, b, a

- 3. 下列算法中, () 是稳定的排序算法。

- A. 快速排序 B. 堆排序 C. 希尔排序 D. 插入排序
- 4. 以下是面向对象的高级语言的有()。
 - A. 汇编语言 B. C++
- C. Fortran
- Java
- 5. 以下和计算机领域密切相关的奖项有()。
 - A. 奥斯卡奖 B. 图灵奖
- C. 诺贝尔奖

三、问题求解(共2题,每题5分,共计10分)

1. 如右图所示, 共有 13 个格子。对任何一个格子进行一 次操作,会使得它自己以及与它上下左右相邻的格子中 的数字改变(由1变0,或由0变1)。现在要使得所 有的格子中的数字都变为 0, 至少需要

			1			
		0	0	1		
	0	1	0	0	1	
ľ		0	1	1		
	,		0			

2. 如下图所示, A 到 B 是连通的。假设删除一条细的边的代价是 1, 删除一条 粗的边的代价是 2, 要让 A、B 不连通, 最小代价是 (2分), 最 小代价的不同方案数是 (3分)。(只要有一条删除的边不同,就 是不同的方案)

四、阅读程序写结果(共4题,每题8分,共计32分)

1. #include <iostream> using namespace std;

```
return 1;
       for (i = x; i <= m / n; i++)
           ans += g(m - i, n - 1, i);
       return ans;
   }
   int main() {
       int t, m, n;
       cin >> m >> n;
       cout << g(m, n, 0) << endl;</pre>
       return 0;
   }
   输入: 8 4
   输出: ____
2. #include <iostream>
   using namespace std;
   int main() {
       int n, i, j, x, y, nx, ny;
       int a[40][40];
       for (i = 0; i < 40; i++)
           for (j = 0; j < 40; j++)
               a[i][j] = 0;
       cin >> n;
       y = 0; x = n - 1;
       n = 2 * n - 1;
       for (i = 1; i \leftarrow n * n; i++) {
           a[y][x] = i;
           ny = (y - 1 + n) \% n;
           nx = (x + 1) \% n;
           if ((y == 0 \&\& x == n - 1) || a[ny][nx] != 0)
              y = y + 1;
           else \{ y = ny; x = nx; \}
       for (j = 0; j < n; j++)
         cout << a[0][j] << " ";
       cout << endl;</pre>
       return 0;
   输入: 3
```

3. #include <iostream> using namespace std; int n, s, a[100005], t[100005], i; void mergesort(int 1, int r) { if (l == r)return; int mid = (1 + r) / 2; int p = 1; int i = 1; int j = mid + 1; mergesort(1, mid); mergesort(mid + 1, r); while (i <= mid && j <= r) { if (a[j] < a[i]) { s += mid - i + 1; t[p] = a[j];p++; j++; } else { t[p] = a[i]; p++; i++; } } while (i <= mid) { t[p] = a[i]; p++; i++; while (j <= r) { t[p] = a[j];p++; j++; for $(i = 1; i \leftarrow r; i++)$ a[i] = t[i];int main() {

```
cin >> n;
      for (i = 1; i <= n; i++)
          cin >> a[i];
      mergesort(1, n);
       cout << s << endl;</pre>
      return 0;
   }
   输入: 6
        2 6 3 4 5 1
   输出:
4. #include <iostream>
   using namespace std;
   int main() {
       int n, m;
      cin >> n >> m;
      int x = 1;
      int y = 1;
      int dx = 1;
      int dy = 1;
       int cnt = 0;
      while (cnt != 2) {
          cnt = 0;
          x = x + dx;
          y = y + dy;
          if (x == 1 | x == n)
              ++cnt;
              dx = -dx;
          }
          if (y == 1 || y == m) {
              ++cnt;
              dy = -dy;
      cout << x << " " << y << endl;
       return 0;
   输入1:43
   输出 1:
                    (2分)
   输入 2: 2017 1014
```

```
输出 2: _____ (3分)
输入 3: 987 321
输出 3: ____ (3分)
```

五、完善程序(共2题,每题14分,共计28分)

1. (大整数除法)给定两个正整数 p 和 q, 其中 p 不超过 10¹⁰⁰, q 不超过 100000, 求 p 除以 q 的商和余数。(第一空 2 分, 其余 3 分)

输入: 第一行是 p 的位数 n, 第二行是正整数 p, 第三行是正整数 q。输出: 两行,分别是 p 除以 q 的商和余数。

```
#include <iostream>
using namespace std;
int p[100];
int n, i, q, rest;
char c;
int main() {
   cin >> n;
   for (i = 0; i < n; i++) {
       cin >> c;
       p[i] = c - '0';
   }
   cin >> q;
   rest =
   i = 1;
   while (<u>(2)</u>
                       && i < n) {
       rest = rest * 10 + p[i];
       i++;
    }
   if (rest < q)
       cout << 0 << endl;</pre>
   else {
       cout << <u>(3)</u>;
       while (i < n) {
           rest = (4);
           i++;
           cout << rest / q;</pre>
       cout << endl;</pre>
```

2. (最长路径)给定一个有向无环图,每条边长度为 1,求图中的最长路径长度。(第五空 2 分,其余 3 分)

输入:第一行是结点数 n(不超过 100)和边数 m,接下来 m 行,每行两个整数 a, b, 表示从结点 a 到结点 b 有一条有向边。结点标号从 0 到(n-1)。

输出:最长路径长度。

提示: 先进行拓扑排序, 然后按照拓扑序计算最长路径。

```
#include <iostream>
using namespace std;
int n, m, i, j, a, b, head, tail, ans;
int graph[100][100]; // 用邻接矩阵存储图
                    // 记录每个结点的入度
int degree[100];
int len[100];
                    // 记录以各结点为终点的最长路径长度
int queue[100];
                    // 存放拓扑排序结果
int main() {
   cin >> n >> m;
   for (i = 0; i < n; i++)
      for (j = 0; j < n; j++)
          graph[i][j] = 0;
   for (i = 0; i < n; i++)
      degree[i] = 0;
   for (i = 0; i < m; i++)
      cin >> a >> b;
      graph[a][b] = 1;
       (1);
   }
   tail = 0;
   for (i = 0; i < n; i++)
      if ( (2) ) {
         queue[tail] = i;
          tail++;
   head = 0;
   while (tail < n - 1) {
      for (i = 0; i < n; i++)
          if (graph[queue[head] ][i] == 1) {
             (3);
```

```
if (degree[i] == 0) {
                  queue[tail] = i;
                  tail++;
              }
           }
         (4)
   }
   ans = 0;
   for (i = 0; i < n; i++) {
       a = queue[i];
       len[a] = 1;
       for (j = 0; j < n; j++)
           if (graph[j][a] == 1 && len[j] + 1 > len[a])
              len[a] = len[j] + 1;
       if (<u>(5)</u>)
          ans = len[a];
   cout << ans << endl;</pre>
   return 0;
}
```

