Devoir Maison 2

Exercice 1 Pour $z = \varrho e^{i\theta} \in \mathbb{C} \setminus \mathbb{R}_-$, $\varrho > 0$, $\theta \in]-\pi,\pi[$ on choisit la racine carrée $\sqrt{z} = \varrho^{1/2}e^{i\theta/2}$, $\theta/2 \in]-\pi/2,\pi/2[$. On veut montrer que pour $\tau \in \mathbb{C}$ tel que Im $\tau > 0$,

$$\int_{-\infty}^{+\infty} e^{i\tau x^2} dx = \sqrt{\frac{i\pi}{\tau}}.$$
 (1)

On rappelle que $\int_{\mathbb{R}} e^{-t^2} dt = \sqrt{\pi}$.

- Vérifier que le membre de gauche de (1) est une intégrale convergente pour Im $\tau > 0$.
- Vérifier l'égalité des intégrales de chemin :

$$\int_{-R}^{R} e^{i\tau x^{2}} dx = \sqrt{\frac{i}{\tau}} \int_{[-R\sqrt{\frac{\tau}{i}}, R\sqrt{\frac{\tau}{i}}]} e^{-z^{2}} dz$$

- Expliquer pour quoi $\int_{\gamma_R} e^{-z^2} dz = 0$ où γ_R est le lacet donné par le segment $[-R\sqrt{|\tau|}, R\sqrt{|\tau|}]$ suivi de l'arc de cercle (centré en 0) all ant de $R\sqrt{|\tau|}$ à $R\sqrt{\frac{\tau}{i}}$, puis du segment $[R\sqrt{\frac{\tau}{i}}, -R\sqrt{\frac{\tau}{i}}]$, puis de l'arc de cercle (centré en 0) all ant de $-R\sqrt{\frac{\tau}{i}}$ à $-R\sqrt{|\tau|}$ (faire un dessin en notant que les arcs de cercles on des angles inférieurs à $\pi/4$).
- Conclure en passant à la limite quand $R \to \infty$ (on majorera proprement les intégrales sur les arcs de cercle).

Exercice 2 Principe des zéros isolés et quelques conséquences

On a vu en cours qu'une série entière $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ de rayon de convergence $r_{z_0} > 0$ définissait une fonction holomorphe dans $D(z_0, r_{z_0}) = \{z \in \mathbb{C}, |z-z_0| < r_{z_0}\}$, ce qui nous a amené à la notion de fonction analytique. Nous avons vu également qu'une fonction holomorphe est analytique, d'où l'équivalence entre (f analytique sur $\Omega) \Leftrightarrow (f$ holomorphe sur $\Omega)$.

A part pour les questions 10) et 11) Ω est un ouvert <u>connexe</u>. Pour 10) et 11) on s'y ramènera en travaillant sur les composantes connexes de Ω .

1) Soit f holomorphe sur Ω ouvert connexe, montrer que

$$\mathcal{E} = \left\{ z_0 \in \Omega, \quad \forall k \in \mathbb{N}, \ f^{(k)}(z_0) = 0 \right\}$$

est soit vide soit égal à Ω tout entier. Indication : On expliquera pourquoi \mathcal{E} est à la fois ouvert est fermé.

2) Soit f holomorphe et non constante sur Ω ouvert connexe. Déduire de 1) que pour tout $z_0 \in \Omega$, il existe $k_{z_0} \in \mathbb{N}$, $r_{z_0} > 0$ et g_{z_0} holomorphe dans $D(z_0, r_{z_0})$ ne s'annulant pas, tels que

$$\forall z \in D(z_0, r_{z_0}), \quad f(z) - f(z_0) = (z - z_0)^{k_{z_0}} g_{z_0}(z).$$
 (2)

Si $f(z_0)=0$ on dit que $k_{z_0}\in\mathbb{N}$ est l'ordre d'annulation de f en z_0 .

3) Zéros isolés : Déduire de 2) que pour une fonction f holomorphe non identiquement nulle sur l'ouvert connexe Ω , ses zéros sont isolés et d'ordre fini.

- 4) Prolongement unique: Montrer que si deux fonctions f_1, f_2 holomorphes dans un ouvert connexe Ω sont telles que $\{z \in \Omega, f_1(z) = f_2(z)\}$ admet un point d'accumulation dans Ω alors elles sont égales.
- 5) Déduire de 4) que si Ω_1 et Ω_2 sont deux ouverts connexes et f_1 , f_2 sont deux fonctions holomorphes qui coïncident sur $\Omega_1 \cap \Omega_2$ alors il existe une unique fonction holomorphe f dans $\Omega_1 \cup \Omega_2$ telle que $f|_{\Omega_j} = f_j$, j = 1, 2. Indication : On rappelle que si $\Omega_1 \cap \Omega_2 \neq \emptyset$ alors $\Omega_1 \cup \Omega_2$ est connexe.
- **6)** En utilisant la convergence $(1+u)^{1/k} = \sum_{j=0}^{\infty} \frac{1/k(1/k-1)\dots(1-k-(j-1))}{j!} u^j$ pour |u| < 1, expliquer pourquoi $(1+u)^{1/k}$ définit une fonction holomorphe dans D(0,1) quand $k \in \mathbb{N}$, $k \ge 1$.
- 7) Dans le cadre de la question 2) avec $k_{z_0} = 1$ pour $z_0 \in \Omega$, montrer que f définit un \mathcal{C}^1 -difféomorphisme d'un voisinage de z_0 sur $D(f(z_0), r'_{z_0})$ avec $r'_{z_0} > 0$.
- 8) Déduire de 2) et 7) que, quitte à prendre $r_{z_0} > 0$ assez petit, (2) peut s'écrire

$$\forall z \in D(z_0, r_{z_0}), \quad f(z) - f(z_0) = [(z - z_0)h_{z_0}(z)]^{k_{z_0}}$$
(3)

avec h_{z_0} holomorphe et ne s'annulant pas sur $D(z_0, r_{z_0})$.

- 9) Application ouverte : Déduire de 2)7)8) que si $f:\Omega\to\mathbb{C}$ est holomorphe et non constante avec Ω ouvert connexe, alors $f(\Omega)$ est un ouvert de \mathbb{C} . Indication : On remarquera que $f(z)-f(z_0)$ restreinte à $D(z_0,r_{z_0})$, est la composée de $z\mapsto (z-z_0)h_{z_0}(z)$ et de $v\mapsto v^{k_{z_0}}$.
- **10)** Déduire de 7)8)9) que si $f: \Omega \to \mathbb{C}$ est holomorphe et injective avec Ω ouvert quelconque, alors pour tout $z_0 \in \Omega$, $k_{z_0} = 1$, et $f: \Omega \to f(\Omega)$ est biholomorphe $(f: \Omega \to f(\Omega))$ est bijective et f^{-1} est holomorphe).
- 11) Principe du maximum : On suppose $f:\overline{\Omega}\to\mathbb{C}$ continue et holomorphe dans Ω , ouvert borné quelconque. Déduire de 9) :

$$\max_{z \in \overline{\Omega}} |f(z)| = \max_{z \in \partial\Omega} |f(z)|.$$

Indication : On supposera le maximum atteint en $z_0 \in \Omega$ et à partir de 9) on déduira que f est constante sur la composante connexe de Ω contenant z_0 .

12) Lemme de Schwarz: Montrer que pour $f: D(0,1) \to \mathbb{C}$ telle que f(0) = 0 et $|f(z)| \le 1$ pour tout $z \in D(0,1)$, on doit avoir

$$\forall z \in D(0,1), |f(z)| \le |z| \text{ et } |f'(0)| \le 1.$$

Vérifier de plus que l'existence de $z_0 \in D(0,1) \setminus \{0\}$ tel que $|f(z_0)| = |z_0|$ ou |f'(0)| = 1, implique l'existence de $\lambda \in \mathbb{C}$, $|\lambda| = 1$ tel que $f(z) = \lambda z$. Indication : On considèrera la fonction $g(z) = \frac{f(z)}{z}$ avec g(0) = f'(0) sur $\overline{D(0,r)}$ pour r < 1, à laquelle on appliquera 11).