Нижегородский государственный университет им. Н. И. Лобачевского Институт информационных технологий, математики и механики

Направление подготовки Прикладная математика и информатика

Магистерская программа Вычислительные методы и суперкомпьютерные технологии

Образовательный курс «Методы глубокого обучения для решения задач компьютерного зрения»

Отчёт

по лабораторной работе № 4

«Начальная настройка весов полностью связанных нейронных сетей»

задача

«Классификация персонажей Симпсонов»

Выполнили:

студенты гр. 381603м4 Вершинина О. Розанов А. Рой В.

Нижний Новгород 2017

Оглавление

Постановка задачи	3
Формат данных для предоставления нейронной сети	
Гестовые конфигурации нейронных сетей	
Результаты экспериментов	
OJYNDIGIDI SKONOPHMONIOD	

Постановка задачи

Необходимо использовать методы обучения без учителя, в частности автокодировщики, для начальной настройки значений весов полностью связанных нейронных сетей, построенных для задачи классификации персонажей из мультфильма «Симпсоны».

В ходе работы необходимо решить следующие задачи:

- Выбрать архитектуры полностью связанных нейронных сетей, построенных при выполнении лабораторной работы №2.
- 2. Разработать модели автокодировщиков применительно к выбранным архитектурам нейронных сетей.
- 3. Обучить построенные глубокие модели.
- 4. Обучить выбранные архитектуры с начальной инициализацией весов сетей значениями, полученными в ходе обучения без учителя.
- 5. Протестировать обученные нейронные сети.

Формат данных для предоставления нейронной сети

Исходные данные представляют собой набор jpg изображений, различного разрешения. Несколько примеров представлены на рис. 1.

Рис. 1. Персонажи из Симпсонов. Слева-направо: Гомер Симпсон, Лиза Симпсон, Барт Симпсон, Мардж Симпсон.

Для предварительной обработки данных использован скриптовый язык Python. Интерпретатор языка входит в дистрибутив Anaconda, который содержит ряд пакетов для анализа данных и машинного обучения.

Библиотека глубокого обучения MXNet может работать с различными типами входных данных, в том числе с однородными многомерными массивами ndarray из пакета NumPy. Для того, чтобы привести входные данные к такому формату, необходимо использовать библиотеку OpenCV для Python (opency-python).

Был разработан скрипт, в котором с помощью функции сv2.imread считываются трёхканальные .jpg изображения в формате BGR (стандартное цветовое пространство OpenCV) и конвертируются в формат RGB; нормализуются (значение каждого пикселя делится на 255) и масштабируются до размера 28х28. Формируется массив меток от 0 до 17, соответствующих восемнадцати персонажам. Затем данные случайным образом делятся на обучающую и тестовую выборки в отношении 85% к 15%. Полученные пdarray-массивы X_train, X_test, y_train, y_test сохраняются в файлы для последующего использования нейронной сетью.

Тестовые конфигурации нейронных сетей

Начальная настройка весов с помощью автокодировщиков была реализована для конфигураций полностью связанных нейронных сетей, рассмотренных в лабораторной работе №2.

Конфигурация №1 из лабораторной работы №2 представляет собой полностью связанную нейронную сеть с одним скрытым слоем (300 скрытых нейронов, функция активации — tanh). Для данной сети был построен автокодировщик, состоящий из кодирующего слоя — скрытый слой исходной сети, и декодирующего слоя — слой, обратный к кодирующему. На вход автокодировщику подавались изображения персонажей Симпсонов и сеть обучалась максимально приближать значения выходного сигнала к входному. После обучения веса кодирующего слоя запоминались и использовались для инициализации весов в исходной нейронной сети.

Конфигурация А представляет собой визуальную схему полностью связанной нейронной сети с одним скрытым слоем и построенного к ней автокодировщика.

Конфигурация А.

Конфигурация В — аналогичная схема полностью связанной нейронной сети (конфигурация №4 из лабораторной работы №2) с одним скрытым слоем и построенного к ней автокодировщика.

Конфигурация В.

Конфигурация №2 из лабораторной работы №2 представляет собой полностью связанную нейронную сеть с двумя скрытыми слоями (первый слой: 300 скрытых нейронов, функция активации – tanh; второй слой: 100 скрытых нейронов, функция активации – softrelu). Для настройки параметров такой многослойной сети строился стек автокодировщиков. Каждый автокодировщик обучался последовательно как сеть прямого распространения.

Конфигурация С представляет собой визуальную схему полностью связанной многослойной нейронной сети и построенного к ней стека автокодировщиков.

Конфигурация С.

Конфигурация D — аналогичная схема полностью связанной многослойной нейронной сети (конфигурация N = 5 из лабораторной работы N = 2) и построенного к ней стека автокодировщиков.

Конфигурация D.

Результаты экспериментов

Эксперименты проводились при следующих параметрах обучения: batch size = 10, optimizer = 'sgd', learning rate = 0.01. Обучение сети проводилось от начального приближения весов, построенного с помощью автокодировщиков, до тех пор, пока точность на тренировочной выборке не становилась равной 1. В таблице 1 указаны результаты экспериментов. В последней колонке в скобках указана точность классификации сети без начального приближения весов.

Таблица 1. Результаты экспериментов

Конфигурация №	Время обучения модели, с	Точность классификации на
		тестовой выборке
A	850	0.8236 (0.8068)
В	935	0.8334 (0.8167)
С	980	0.8352 (0.8194)
D	1206	0.8585 (0.8327)

Из таблицы видно, что с начальной инициализацией весов значениями, полученными в ходе обучения без учителя, точность классификации таких сетей увеличилась по сравнению со случаем, когда веса были инициализированы случайными значениями.