

Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding

Zequn Sun, Wei Hu*

Nanjing University, China

Chengkai Li

University of Texas at Arlington, USA

- Introduction
- Preliminaries
- JAPE Joint Attribute-Preserving Embedding
- Evaluation
- Conclusion and Future Work

Background

- Knowledge bases (KBs) store rich structured real-world facts
 - Often suffer from two issues: low coverage and multi-linguality gap
 - It is both necessary and beneficial to integrate cross-lingual KBs

Cross-lingual entity alignment

- Find entities in two KBs that refer to the same real-world object
 - Each KB is labeled in a different natural language
 - e.g., "Vienna" in English vs. "维也纳" in Chinese
- Why important?
 - Play a vital role in automatically integrating multiple KBs
 - Help construct a coherent KB
 - Enable different expressions of knowledge across diverse natural languages

Challenges for Existing Methods

- Traditional methods
 - rely on machine translation to eliminate the language barrier
 - costly
 - error-prone
- Embedding-based Methods
 - based solely on relationship triples
 - ignore attributes
 - use existing alignment as supervision
 - usually account for a small proportion

Motivation of Our Approach

- Leverage KB embedding for cross-lingual entity alignment
 - Independent of diverse natural languages
- Methodology
 - Map two KBs into a unified vector space
 - Structure Embedding (SE)
 - two alignable KBs are likely to have many aligned relationship triples
 - Attribute Embedding (AE)
 - aligned entities have high similarity in attributes
- Make full use of seed alignment
 - Each pair of seed alignment shares the same embedding

- Introduction
- Preliminaries
- JAPE Joint Attribute-Preserving Embedding
- Evaluation
- Conclusion and Future Work

Knowledge Base Embedding

- Knowledge Base Embedding
 - Encode entities and relations as vectors
- Translation-based KB Embedding [Bordes et al., 2013]
 - Interpret a relationship as the translation from its head entity to its tail entity
 - Given a relationship triple (h, r, t), $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$ is expected.

h, r and t denote head entity, relationship and tail entity, respectively. **Boldface** denotes the corresponding vector.

Word2vec

- Learn word embeddings that capture precise syntactic and semantic word relationships [Mikolov et al., 2013].
- Skip-gram model
 - Learn word embeddings that are good at predicting the nearby words.

w(t-2), w(t-1), w(t+1), w(t+2) are the contextual words of w(t).

- Introduction
- Preliminaries
- JAPE Joint Attribute-Preserving Embedding
- Evaluation
- Conclusion and Future Work

Framework of JAPE

- Input: two KBs, and seed alignment
- Structure Embedding (SE) models relationship structures of KBs
- Attribute Embedding (AE) models correlations of attributes
- Joint: refine SE representations by clustering entities with AE-based similarities
- Output: search the nearest neighbors in the embedding space

Structure Embedding

We use the score function of TransE to measure the plausibility of relationship triples:

$$f(tr) = \|\mathbf{h} + \mathbf{r} - \mathbf{t}\|_2^2$$

where tr denotes a relationship triple (h, r, t).

We minimizes the following objective function:

$$\mathcal{O}_{SE} = \sum_{tr \in T^+} \sum_{tr' \in T_{tr}^-} f(tr) - \alpha \cdot f(tr')$$

Attribute Embedding

We call a set of attributes correlated if they are commonly used together to describe an entity.

- AE captures the correlations of attributes
 - Given an attribute, AE predicts its correlated attributes
 - AE assigns higher correlations to the attributes that have the same range type

$$O_{AE} = -\sum_{(a,c)\in H} w_{a,c} \cdot \log p(c|a)$$

- p(c|a) denotes the probability that c is a correlated attribute of a
- $w_{a,c}$ is the weight for the attribute pair (a, c)

Joint Embedding

attribute embeddings

entity representations

pairwise similarities of entities

We want similar entities to be clustered to refine their embeddings:

$$O_{S} = \left\| \mathbf{E}_{SE}^{(1)} - \mathbf{S}^{(1,2)} \mathbf{E}_{SE}^{(2)} \right\|_{F}^{2} + \beta \cdot (\left\| \mathbf{E}_{SE}^{(1)} - \mathbf{S}^{(1)} \mathbf{E}_{SE}^{(1)} \right\|_{F}^{2} + \left\| \mathbf{E}_{SE}^{(2)} - \mathbf{S}^{(2)} \mathbf{E}_{SE}^{(2)} \right\|_{F}^{2})$$

To preserve both the structure and attribute information of two KBs, we jointly minimize the combined objective function:

$$O_{joint} = O_{SE} + \delta \cdot O_{S}$$

- Introduction
- Preliminaries
- JAPE Joint Attribute-Preserving Embedding
- Evaluation
- Conclusion and Future Work

Evaluation

 Gold standard: 15K matched entity pairs from DBpedia inter-language links

KBs		Entities	Relationships	Rel. triples	Attributes	Att. triples
DBP15K _{EN-ZH}	English	98,125	2,317	237,674	7,173	567,755
	Chinese	66,469	2,830	153,929	8,113	379,684
DBP15K _{EN-JA}	English	95,680	2,096	233,319	6,066	497,230
	Japanese	65,744	2,043	164,373	5,882	354,619
DBP15K _{EN-FR}	English	105,889	2,209	278,590	6,422	576,543
	French	66,858	1,379	192,191	4,547	528,665

- Hits@K: the proportion of correct entities ranked in the top-k
- Mean rank: the mean of these ranks
- Higher Hits@K and lower mean rank indicate better performance

Results

- DBP15K_{EN-ZH} with 30% supervising data
 - JAPE > MTransE > JE
 - Negative examples and attribute embedding are all useful

Approaches		ZH → EN				EN → ZH			
		Hits@1	Hits@10	Hits@50	Mean	Hits@1	Hits@10	Hits@50	Mean
JE		21.27	42.77	56.74	776	19.52	39.36	53.25	841
MTransE		30.83	61.41	79.12	154	24.78	52.42	70.45	208
JAPE	SE w/o neg.	38.34	68.86	84.07	103	31.66	59.37	76.33	147
	SE	39.78	72.35	87.12	84	32.29	62.79	80.55	109
	SE + AE	41.18	74.46	88.90	64	40.15	71.05	86.18	73

Same conclusions on DBP15K_{EN-JA} and DBP15K_{EN-FR}

Results

- Sensitivity to Proportion of Seed Alignment
 - Results become better with the increase of the proportion
 - Still achieved promising results even with a very small proportion of seed alignment like 10%

Example visualization

- Aligned entities are embedded closely
- Correlated attributes are embedded closely

Results

- Comparison between JAPE and the MT-based method
 - Employs Google Translate to translate the labels
 - Consider the lower rank of the two results as the combined rank

Annuaches	ZH → EN				EN → ZH			
Approaches	Hits@1	Hits@10	Hits@50	Mean	Hits@1	Hits@10	Hits@50	Mean
MT-based	55.76	67.61	74.30	820	40.38	54.27	62.27	1,551
JAPE	41.18	74.46	88.90	64	40.15	71.05	86.18	73
MT-based & JAPE	73.09	90.43	96.61	11	62.70	85.21	94.25	26

- Machine translation achieves satisfying results due to the high accuracy of Google Translate
- The combined results are significantly better, which reveals the mutual complementarity between JAPE and machine translation

- Introduction
- Preliminaries
- JAPE Joint Attribute-Preserving Embedding
- Evaluation
- Conclusion and Future Work

Conclusion and Future Work

Our contributions

- We propose an embedding-based approach to cross-lingual entity alignment, which does not depend on machine translation between cross-lingual KBs
- To the best of our knowledge, we are among the first to learn embeddings of cross-lingual KBs while preserving their attribute information

Future work

- Introduce attribute values
- Extend it for holistic alignment of entities, relations and attributes or for cross-lingual KB completion

Thank you for your time!

- This work is supported by the National Natural Science Foundation of China (Nos. 61370019, 61572247 and 61321491)
- Codes and datasets of JAPE are now available at https://github.com/nju-websoft/JAPE