The Fundamental Formula of Post-Quantum Cryptography

Mark Zhandry (Princeton & NTT Research)

Two Revolutionary Ideas

Fundamental Formula of Modern Crypto

[Goldwasser-Micali'82]

Crypto Security "Proof"

Computational Assumption P

+

Precise
Security Def. D

Reduction from P to D

Quantum Computation [Benioff'80, Manin'80, Feynman'82]

Fundamental Formula of PQ Crypto

Post-Quantum Security Proof

Post-quantum
Assumption

+

Precise *PQ*Security Def.

+

Post-quantum
Reduction

Part 1: Cryptographic Assumptions

Hidden Subgroup/Period Finding

Easy Thm: Classically, HSP is unconditionally black box hard

Thm [Simon'94, Shor'94, Kitaev'97]: Abelian HSP is easy, quantumly

Thm [Shor'94]: Factoring, Discrete Log reduce to Abelian HSP

Discrete log: (g,h=ga)

$$F(x,y)=g^{x}\times h^{-y}$$
 Abelian HSP $H=\langle (a,1)\rangle$

Now what?

Lattices

Shortest vector

Group Actions

Discrete log: (g,h=ga)

Recall:

$$F(u,v)=g^{u}\times h^{-v}$$
 Abelian HSP $H=\langle (a,1)\rangle$

Idea [Couveignes'97, Rostovtsev-Stolbunov'06]:

- + show good enough for Diffie-Hellman
- + candidate based on isogenies over elliptic curves

Are Group Actions Post-Quantum Hard?

$$F(u,b) = \begin{cases} g^u \text{ if } b=0 \\ h^u \text{ if } b=1 \end{cases}$$

Quantum Fourier Sampling:

Easy information-theoretically [Ettinger-Høyer-Knill'04], but seems hard computationally

Open Questions

- 1. What are the limits of group actions? How does their utility compare to plain groups?
- 2. Is there a algebraic model which
- (a) Is useful for crypto,
- (b) Has a plausible instantiation, and
- (c) Has unconditional black box quantum hardness?

Part 2: Definitions

Example: Classical Pseudorandomness

Def: G is a secure pseudorandom generator (PRG) if, \forall PPT A, \exists negligible ϵ such that $| \Pr[A(y)=1] - \Pr[A(G(x))=1] | < \epsilon$

(m>n)

What about *post-quantum* pseudorandomness?

Def: G is a p • quantum secure PRG if, \forall QPT A, legligible ϵ such that $| Pr (y)=1 | - Pr[A(G(x))=1 | < \epsilon$

Example: Computationally Binding Commitments

Def: Com is computationally binding if, \forall PPT A, \exists negligible ϵ such that $Pr[Com(m_0;r_0)=Com(m_1;r_1) \land m_0 \neq m_1:$

 $(m_0, m_1, r_0, r_1) \leftarrow A() < \epsilon$

What about *post-quantum* binding?

What is a commitment, really?

Unequivocal: Adv shouldn't be able to do better than guessing challenger's m and committing to it

Thm [Ambainis-Rosmanis-Unruh'14,Unruh'16]: Relative to an oracle, \exists PQ binding *Com* s.t. quantum can win equivocation game with near-perfect probability

Takeaway

The "right" classical definition was probably not binding, since it doesn't capture unequivocality. Certainly binding is wrong quantumly

So why is computational binding OK classically?

Part 3: Security Proofs

Binding Unequivocal Classically Proof: Let A be supposed adversary

$$Pr[Com(m_0,r_0) = Com(m_1,r_1) = c] \ge \epsilon^2$$

Quantum Unequivocal Proof???

Measurement principle: extracting r_0 irreversibly altered A's state

Now what?

Let A be supposed (quantum) adversary

Without measurements, quantum is reversible ⇒ Steps 1+2 cancel

$$V_d := Com(m_d; r_d) == c$$
 $\Longrightarrow Pr[V_1] = \epsilon$

Let A be supposed (quantum) adversary

Lemma [Unruh'12]: $Pr[V_0 \land V_1] \ge \varepsilon^3$

Still not done: r_0 no longer exists!

Solution: Better security for Com

Def: Com is perfectly binding if \nexists $m_0 \neq m_1, r_0, r_1$ s.t. $Com(m_0, r_0) = Com(m_1, r_1)$

- \Rightarrow m₀,r₀ uniquely determined by c
- ⇒ measuring them has no effect
- \Rightarrow Obtain collision \Rightarrow contradiction

Limitation: perfect binding requires large commitments

Solution: Better security for Com

Def [Unruh'16] (inf.): Com is collapse binding if adversary cannot detect measuring \mathbf{r}_0

- \Rightarrow measuring \mathbf{r}_0 has no noticeable effect
- \Rightarrow Obtain collision \Rightarrow contradiction

Collapse binding has become the standard post-quantum notion for commitments

Ambainis-Rosmanis-Unruh ⇒ Not all Com are collapse binding

Thm [Unruh'16]:

Random oracles are collapse binding

Thms [Unruh'16b,Liu-Z'19]:

Lossiness ⇒ Collapsing binding

Open Questions

- 3. Construct collapse-binding commitments from more general tools
- 4. Revisit existing classical defs, make sure they are "right" quantumly

Limitations of [Unruh'12] Rewinding

Lemma [Unruh'12]: $Pr[V_0 \land V_1] \ge \epsilon^3$

Lemma [Don-Fehr-Majenz-Schaffner'19]: $Pr[V_0 \wedge V_1 \wedge ... \wedge V_{k-1}] \geq \epsilon^{2k-1}$

Thm [Z'20]: Only constant rewindings using Unruh's technique

Succinct Arguments

NP statement x

Thm [Kilian'92]: Collision resistant hashing → Classical Succinct Argument

Proving Soundness

Problem:

#(rewindings) ≥ |w| / |comm|

Our Solution

[Chiesa-Ma-Spooner-Z'21]

Success prob

3

Can now get arbitrarily many successes

3>>

æε

Some caveats on applicability. In particular, works provided only extracting bit indicating success

Our Solution [Chiesa-Ma-Spooner-Z'21]

Lingering issue: Need to actually extract transcript, not just success bit.

Use "collapsing" protocol

Lingering issue: Trials not independent

→ how to guarantee extraction?

Careful argument

Our Solution [Chiesa-Ma-Spooner-Z'21]

Thm: "Collapsing hash function" → Post-Quantum Succinct Arguments

Open Questions

5. Explore limits of quantum rewinding. Any protocols where independence is crucial?

6. Gain better intuition for what goes on in various quantum rewinding protocols

The Silver Lining...

Thesis [Brakerski-Christiano-Mahadev-Vazirani-Vidick'18,Z'19,Amos-Georgiou-Kiayias-Z'20] (inf.):

Failed quantum proofs

Novel applications (e.g. quantum money)

Intuition: breaking reduction implies adversary state is quantum + unclonable

Thanks!