Brüel & Kjær 3630 Calibration Platform

and

7763 SLM Calibration Application

Ib Sofussen Webex-2006-10-02

Agenda

- Basics
- SLM calibration type approval, periodic calibration and check (sensitivity adjustment)
- 3630 system versus SLM block diagram and IEC 60651
 - walk through of various 3630 tests
- 3630 re- calibration and traceability

Calibration Business Group

- Development, marketing and installation of calibration systems
- Support to international calibration centers (B&K and others)
- DPLA (Danish Primary Institute of Acoustics) activities

Manager: Jesper Bo Vedel

Plus 6 engineers/calibration specialists (3 of these are Product Managers)

SLM Standards and Precision Classes

The picture right now:

- IEC 60651: Sound Level Meters
- IEC 60804: Integrating Sound Level Meters
- OIML 58 and OIML 88 (refers to IEC standards above)
- Equivalent national standards (DIN, ANSI, JIS, BS....)
- Precision classes: 0, 1, 2 and 3 (zero is the most precise, 1 and 2 the most used)
 These standards describe the type approval (pattern approval) requirements
- A suited subset of the IEC 60651 tests can be used for periodic verification

Soon to come:

- IEC 61672 (see next slide for details)
- 2237 Controller, 2238 Mediator and 2260 Investigator and Observer plus the 2250 all fulfil the current 61672draft

IEC 61672 Status per May-2006

- IEC 61672 replaces IEC 60651 & IEC 60804
- IEC 61672 consists of 3 parts:
- Part 1: Specification
 - has been approved Q2 2002

Part 2: Pattern approval (type approval)

has been approved Q2 – 2003

Part 3: Periodic verification

- Voted on in early 2005
- FDIS in August 2005
- Will be issued late 2006
- Use of old (IEC 60651) SLM equipment is normally "legal" for some time after the new standard has been approved (Country Dependant).

Major Differences IEC 61672 vs. IEC 61651

- Only 2 performance classes (class 1 and 2)
- Uncertainties included in test tolerances
- Maximum permitted uncertainties for test houses
- Tighter tolerances on the tone burst response (tolerances for new class 2 is smaller than old type 0)
- Requirements for a very detailed Instruction Manual

Some other differences:

- Multi channel (cross-talk)
- Under range indication
- Display devices digital output
- Z-weighting, flat (as specified by the manufacturer) and no B-weighting
- Directional response at ± 150 degrees

IEC 61672 Part 3: Acoustical tests

- After some discussion it has been agreed that it is necessary to do acoustical tests at more frequencies than the calibration check frequency (1000 Hz)
- It is up to the test houses to choose the method for acoustical test (true free-field, multi-tone calibrator, simulated free-field, electrostatic actuator, ...), and document that the associated uncertainties is within the tolerances
- For Brüel & Kjær this means that we will continue to use the 4226 for the acoustical part of the calibration
- We can calibrate SLM's if 4226 corrections are known and agreed upon with the customer

The Sound Level Meter

Sound Level Parameters

Time Weighting

Frequency Weighting Curves

Sound parameters.

SPL or LP (sound pressure level) Max RMS level within the last sec.

Inst. (instantaneous)

Leq (equivalent continuous sound level)

SEL (Sound Exposure Level) SEL is Leq value compressed to 1 sec.

Possible Tests

- DC output *
- Self generated noise *
- Frequency weighting
- Level range control
- Linearity range
- RMS detector
- Time weighting
- Time averaging
- Pulse Range
- Overload indicator
- Acoustical response

^{*} not specified in standard

Absolute Acoustical Sensitivity Level @ 1 kHz

- The microphone is placed in a coupler with a known SPL (nominally 94 dB)
- Now the SLM under calibration is adjusted to a specific nominal reading (most often 93.8 dB)
- The rest of the calibration is performed with this sensitivity setting of the SLM

Frequency Weighting (acoustical)

IEC 651: 4.4, 6.1, 9.1, 9.2.2

IEC 804: 4.4, 5.1, 9.1, 9.2, 9.2.2

- The test checks the various weighting filters in the SLM.
- The microphone is placed in the 4226 coupler.
- Measurements are rel. 1 kHz
- The expected reading is:

$$L_C - C_{ff} + M_{fw} - C_{bi}$$

This is compared with the actual response at discrete frequencies
Aux filter response can be checked:
e.g. Random incidence correction

Acoustical response.

IEC 651: 4.4, 6.1, 9.1, 9.2, 9.2.1, 9.2.2 IEC 804: 4.4, 5.1, 9.1, 9.2, 9.2.1, 9.2.2

 The SLM itself is disturbing the sound field. Therefore we must make special considerations.

Example of "Body influence"

Acoustical Calibration.

IEC 651: 4.4, 6.1, 9.1, 9.2, 9.2.1, 9.2.2 IEC 804: 4.4, 5.1, 9.1, 9.2, 9.2.1, 9.2.2

- Response of the SLM with the microphone mounted in multi tone calibrator.
- Test of complete instrument including the microphone
- The program makes correction for body influence if the information is available

OBS:

This test requires knowledge about 4226 microphone corrections

Electrical Inherent Noise

IEC 651: None

IEC 804: None

- The SLM input is short circuited via the capacitive adaptor
- The noise is measured and reported
- Noise can be measured in all or some FW settings
- OK means that the noise level does not exceed the lower limiting level - 12 dB.

Determining Electrical Level @ 94 dB

- An electrical signal corresponding to a nominal reading of 94 dB'is connected to the input through a capacitive adaptor
- The adaptor capacitance must equal the microphone capacitance within 5.5 %
- The deviation from the nominal reading is used to correct the signal levels in all following electrical measurements
- Example
 - Anticipated 94.0 dB
 - Actual reading 94.7 dB
 - Frror 0.7 dB
 - The correction for all following electrical measurements will then be 0.7 dB

DC-output

IEC 651: None IEC 804: None

- This test is not defined in the standards.
- Test from FS 5dB to LL + 5dB
- This test verifies the correlation between the DCoutput and the indicator.
- 5 dB steps in the ref. Range
- 2 points check in other ranges

Frequency Weighting (electrical)

IEC 651: 4.4, 6.1, 9.1, 9.2.2

IEC 804: 4.4, 5.1, 9.1, 9.2, 9.2.2

- The test checks the various weighting filters in the SLM
- The level of the input signal is kept constant at FSD – 5 dB in the ref range
- The results are reported relative to 1 kHz

<u> Testfreq.: 1/3 octave frequencies in specified freq. range f. the SLM</u>

Level range control.

IEC 651: 6.3, 9.3.2

IEC 804: 5.2, 6.4, 9.3.1

- The SLM is tested for errors introduced in the level range control.
- The input to the SLM is changed in each measuring range by the same amount as attenuator has been changed. This generates a constant level to the RMS-detector, thus isolating level range errors
- Ref. Level is 94 dB in the reference range

Testfreq.: 20 - 31.5 - 1k - 4k - 8k or 12.5kHz

Linearity range.

IEC 651: 7.9, 7.10 IEC 804: 6.2, 9.3.3

- The SLM is tested for differential level linearity and overall linearity referred to the reference level.
- Test performed in 10 dB and 1 dB steps
- The linearity in the SLM can be tested in SPL, Leq and SEL mode.

Testfreq.: 20 - 31.5 - 1k - 4k - 8k or 12.5kHz (for SPL. For Leq and SEL at 4 kHz)

RMS-detector.

IEC 651: 7.5, 9.4.2

IEC 804: None

 Test of RMS detector at various CF's

- The RMS-detector is an advanced AC to DC circuit or it is realized in the DSP
- CF is controlled by burst duration
 0.5 to 5.5 msec. for CF 3 to 10

Crest factor CF is the ratio between peak-value and RMS-value of the signal.

$$CF = rac{V_{ extit{peak}}}{V_{ extit{RMS}}}$$

Time weighting.

IEC 651: 4.5, 7.2 - 7.5, 9.4.1, 9.4.3, 9.4.4

IEC 804: None

 Test of the time weighting characteristics Slow, Fast and Impulse, Peak detector test and test of meter overshoot.

Time averaging.

IEC 651: None

IEC 804: 4.5, 6.1, 9.3.2

 This test compares the reading for a continuous sine signal with readings from a sine tone burst sequence having the same RMS value.

Example:

Overload indicator.

IEC 651: 6.5, 9.3.1

IEC 804: 4.6, 7.1, 7.2, 7.3, 9.3.5

- Overload test is performed in SPL or SEL mode.
- Test starts 5 dB below the maximum A-weighted sound pressure level the SLM is designed to measure using an inverse A-curve

This test verifies, that the overload detection is <u>before</u> the AC/DC converter and weighting filters

3630 System Elements

- BK Portable PULSE Multifunction Analyzer
- BK 4226 Acoustic Multifunction Calibrator
- Set of adapters
- Agilent 34970A DMM and MUX
- 3111 Output Module
- PC with WIN 2000 or XP and MS Office PRO
- LAN interfaces (N Ports)
- Software package 7762 and 7763

3630 System Architecture

Software Architecture

Traceability

- AC/DC voltage traceability via Agilent DMM
- Sound Pressure traceability via Brüel & Kjær 4226
- Frequency traceability via Agilent DMM
- Capacitive adaptors via external calibration
- Comprehensive self calibration facilities of system

Recommended Calibration Policy

- System self calibration
 - when needed, max, interval 12 months
- System self verification
 - max interval 1 month
- DMM calibration
 - once every 12 months
- 4226 calibration (OBS.must use external gen. option)
 - max. interval 12 months
- Capacitive adaptors
 - 24 months interval
- PULSE
 - no need for external cal

3630 Database and Report

Platform Highlights

- The new platform is
 - Modular and flexible (lower entry level price)
 - Has as much functionality as possible in sw (and not hw)
 - Based on the PULSE (B&K product philosophy)
 - Suited for accreditation (documentation level)

Summary

- Calibration to international standards
- Automatic, semi automatic or manual test possible
- Certificate with comprehensive test report (optionally)
- Flexible report generator
- Combination of electrical and acoustical measurements saves time
- Traceability to international standards
- Documentation eases the accreditation process
- Other applications available
 - Noise dose meters
 - Accelerometers
 - Sound calibrators
 - Microphones

Link to Product Data on Web

- 3630 SLM Calibration System
 - http://www.bksv.com/pdf/Bp1922.pdf
- 3629 Accelerometer Calibration System
 - http://www.bksv.com/pdf/Bp1975.pdf
 - http://www.bksv.com/pdf/bp2119.pdf

3630 Front View

3630 Rear - only 2 Cables Needed

SLM under Cal. – Only 2 Cables Needed Here Also

Walk Through of a Calibration Process

- Start screen, (user log in and user levels)
- Select SLM Type to be calibrated
- Select Calibration procedure
- Enter DUT info
- View test tree
 - expand test tree
- Start test
 - show relevant windows
- Comment Result Window in detail
- Test finished
- Report tool
- Define new DUT tool

4226 Calibration Values

4226 Microphone Correction Values

Select B&K 4226

	ID	Name	SerialNumber	EquipmentRegNum	Enabled	Туре	
1	-7	[NULL]	1428029	1428029	▽	509,001	
2	8	[NULL]	1439998	11.1314.11	✓	509,001	
	4						Þ.

Date of Calibration:

Text1

10/10/2001 12:00:00 am 🕌

94 db Values

	Freq.	Cal. SPL	Cal. Unc.
1	10.00	94.00	0.10
2	12.58	94.00	0.10
3	15.84	94.00	0.10
2 3 4 5 6	19.95	94.00	0.10
5	25.19	94.00	0.10
6	31.62	94.00	0.10
7	39.81	94.00	0.10
8 9	50.12	94.00	0.10
	63.10	94.00	0.10
10	79.43	94.00	0.10
11	100.00	94.00	0.10
12	125.89	94.00	0.10
13	158.49	94.00	0.10

104 db Values

	Freq.	Cal. SPL	Cal. Unc.	
1	10.00	104.00	0.10	
2	12.58	104.00	0.10	
3	15.84	104.00	0.10	
2 3 4 5 6 7	19.95	104.00	0.10	
5	25.19	104.00	0.10	
6	31.62	104.00	0.10	
	39.81	104.00	0.10	
9	50.12	104.00	0.10	
	63.10	104.00	0.10	
10	79.43	104.00	0.10	
11	100.00	104.00	0.10	
12	125.89	104.00	0.10	
13	158.49	104.00	0.10	
1.4	100 FO	104.00	0.10	L

114 db Values

	Freq.	Cal. SPL	Cal. Unc.	
1	10.00	114.00	0.10	•
2	12.58	114.00	0.10	
2 3 4 5 6 7	15.84	114.00	0.10	
4	19.95	114.00	0.10	
5	25.19	114.00	0.10	
6	31.62	114.00	0.10	
7	39.81	114.00	0.10	
8	50.12	114.00	0.10	
9	63.10	114.00	0.10	
10	79.43	114.00	0.10	
11	100.00	114.00	0.10	
12	125.89	114.00	0.10	
13	158.49	114.00	0.10	
1.4	100 50	114.00	0.10	М

<u>0</u>K

Cancel

<u>A</u>pply

4226 cal. data

Summary

- SLM calibration to international standards
- Automatic or semi automatic calibration
- Calibration Certificate and comprehensive test report easy to adopt to local requirements
- Combination of electrical and acoustical measurements for faster cost effective calibration
- Traceability to national or international standards
- Uncertainty budgets to EA 4/02
- Will be accepted by accreditation bodies in several countries
- Uses standard hardware (PULSE) easy to maintain

Features Advantages and Benefits

Feature	Advantage	Customer Benefit
Windows Interface	Ease of use	Reduced training cost, flexibility
Modularity	Buy (and pay) only what you need	Cost effective, flexibility
Integration in MS Office	Easy reporting	Cost savings, data format compatibility
Tailored at s&v	Accurate measurements	Reduces error cost, Competitive edge
Automated cal.	Fast calibration	Cost savings, no operator errors
Conforms with standards	Avoid discussions	Cost savings, confidence
PULSE based	Standard product, lots of functionality	Protection of investment, flexibility