Data Mining

Ensemble Techniques Assignment Project Exam Help

Introduction to Data Mining, 2nd Edition Add WeChat powcoder by

Tan, Steinbach, Karpatne, Kumar

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of test records by combining the predictions label of test records by combining
 - E.g. by majoritywethat powcoder

General Approach

Estimate "combined" error rate

C*: take the consensus prediction

Why Ensemble Methods work?

- Suppose there are 25 base classifiers
 - Each classifier has

 error rates ignment Project Exam l

 Assume errors made
 - Assume errors made
 by classifier states://powcoder.com
 uncorrelated
 Add WeChat powcoder
 - Probability that the ensemble classifier makes a wrong prediction:

Voting using the predictions of base classifiers

$$P(X = 13) = \sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$
 X: number of base classifiers with wrong prediction

Re-examine our assumption

	~1	<i>a</i>	<i>a</i> .	Which ensemble
Record X1 X2 X3 Class		C2	C3	
0 2 1 +	+	+	-	classifier will
1 1 0 -	-	+	-	Classifici Will
1 2 1 -	-	-	+	1 /1
0 2 0 +	-	+	+	work (i.e. can
1 1 1 -	-	+	+	•
1 0 1 4 - •	+	(D	-, T	xaninppopve the
$\frac{1}{0}$ $\frac{1}{2}$ $\frac{1}{0}$ Assign	ımen	t Pro	iect E	xami inglove lite
1 1 0 +				
	-	T .	т	classification
0 1 1 -	- ,	+	-	Glassification
0 0 0 0 - ht	tns://	now	coder	performance)?
	rps.//	Pow	JOGCI .	hertormance)?
				portorriarioc):

				A	11 17	7 (1		. 1
Record	X1	X2	X3	Class A	aa w	euna	at pov	wcoder
1	0	2	1	+	+	+	T.	
2	1	1	0	-	+	+	+	
3	1	2	1	-	-	-	-	
4	0	2	0	+	+	+	+	
5	1	1	1	-	-	-	+	
6	1	0	1	-	-	-	-	
7	0	2	0	+	-	-	-	
8	1	1	0	+	+	+	+	
9	0	1	1	-	+	+	+	
10	0	0	0	-	-	-	-	

Types of Ensemble Methods

- Manipulate data distribution (our focus)
- Example: bagging, boosting
 Manipulate input features
 - Example: Itandom forcests (construct multiple trees using a subset of features. Works well for data sets with redundant features)

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	80	10D	8	2	V 5	10	110	5	9
Bagging (Round 2)	orgi	пдС	1191		- 12 L	Agii	1 51	117	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

https://powcoder.com

- □ Build classifie
- Each sample has probability 1-(1 1/n)ⁿ of being selected

n is the number of samples in the original data. Think about the probability that a sample is not chosen in n trials.

Bagging Algorithm

Algorithm 5.6 Bagging Algorithm

- 1: Let k be the nucles ig hyperst Project Exam Help 2: for i = 1 to k do

- Create a bootstrap sample of size n, D_i .

 Train a base classified topological the power of the power of
- 5: end for
- 6: $C^*(x) = \arg \max_y \sum_i A(dx) \forall e Chat power degument is true, and 0$ otherwise.}

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	Ass	<u>ignn</u>	nent	Proje	ect E	xam	Hel	P 1	1

- Classifier is a decision stump
 - Decision ruled West persuser > k
 - Split point k is chosen based on entropy

Baggir	ng Rour	nd 1:									•
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9)
у	1	1	1	1	-1	-1	-1	-1	1	1)

$$x \le 0.35 \Rightarrow y = 1$$

 $x > 0.35 \Rightarrow y = -1$

Assignment Project Exam Help

https://powcoder.com

Baggin	ng Rour	nd 1:									
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x \le 0.35 \Rightarrow y = 1$
У	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \Rightarrow y = -1$
Baggin	ng Rour										
X	0.1	0.2	0.3	04	0.5	$\mathbf{p}_{r}^{0.5}$	0.9	\mathbf{x}^{1}	n He	$1n^1$	$x \le 0.7 \Rightarrow y = 1$
У	1	1	1 100	51	10-11	1 -10 J	90	7	1	1 1	$x > 0.7 \rightarrow y = 1$
Baggir	ng Rour	nd 3:		http	os://p	owc	ode	r.cor			
X	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.9	$x \le 0.35 \Rightarrow y = 1$
у	1	1	1	Λ ¹ d	1 11/	Che	lt po	w-1 ₀	dor	1	$x > 0.35 \implies y = -1$
Baggir	ng Rour			7 100	4 ***		•	W C C	GCI		
X	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x <= 0.3 \rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.3 \implies y = -1$
Baggin	ng Rour	nd 5:									
X	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	$x \le 0.35 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	1	1	1	$x > 0.35 \implies y = -1$

x 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1 $x <= 0.75 \Rightarrow y = -1$ y 1 -1 -1 -1 -1 -1 1 1 1 $x > 0.75 \Rightarrow y = -1$ Bagging Round 7: x 0.1 0.4 0.4 0.5 0.6 0.7 0.7 0.8 0.9 1 $x <= 0.75 \Rightarrow y = -1$ $x > 0.75 \Rightarrow y = 1$ Bagging Round 8:	Bagging Round 6:				I		
Bagging Round 7: x	x 0.2 0.4	0.5 0.6	0.7	0.7 0.7	0.8 0.9	1	_
x 0.1 0.4 0.4 0.6 0.7 0.7 0.8 0.9 1 $x < 0.75 \Rightarrow y = -1$ Bagging Round 8:	y 1 -1	-1 -1	-1	-1 -1	1 1	1	$x > 0.75 \implies y = 1$
x 0.1 0.4 0.4 0.6 0.7 0.7 0.8 0.9 1 $x < 0.75 \Rightarrow y = -1$ Bagging Round 8:							
Bagging Round 8:	Bagging Round 7:						
Bagging Round 8:	x 0.1 0.4	0.4	mant I	0.9	0.9	$1n^1$	_
	y 1 -1	51	-1101	4 4	1	1 1	$x > 0.75 \implies y = 1$
x 0.1 0.2 0.5 0.5 0.7 0.7 0.8 0.9 1 $x <= 0.75 \Rightarrow y = -1$ y 1 1 -1		1	,,	1			
y 1 1 -1 A1dd WeChat 1 $x > 0.75 \Rightarrow y = 1$ Bagging Round 9: x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1 $x < 0.75 \Rightarrow y = -1$ y 1 1 -1 -1 -1 -1 1 1 1 1 $x > 0.75 \Rightarrow y = -1$ Bagging Round 10:	Bagging Round 8:	hti	ps://po	owcode	r.com		
Bagging Round 9:	x 0.1 0.2	0.5 0.5	0.5	0.7 0.7	0.8 0.9	1	_
Bagging Round 9: $ \begin{array}{c cccccccccccccccccccccccccccccccc$	y 1 1	-1 _1		Chatho	whodat	1	$x > 0.75 \implies y = 1$
x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1 $x < 0.75 \Rightarrow y = -1$ y 1 1 -1 -1 -1 -1 1 1 1 1 1 $x > 0.75 \Rightarrow y = 1$ Bagging Round 10:		7 1		chat po	W COGCI		
y 1 1 -1 -1 -1 -1 1 1 1 $x > 0.75$ → y = 1 Bagging Round 10:	Bagging Round 9:						
Bagging Round 10:	x 0.1 0.3	0.4 0.4	0.6	0.7 0.7	0.8 1	1	_
	y 1 1	-1 -1	-1	-1 -1	1 1	1	$x > 0.75 \implies y = 1$
						_	
$\mathbf{x} = 0.1 \pm 0.1 \pm 0.1 \pm 0.1 \pm 0.3 \pm 0.3 \pm 0.8 \pm 0.8 \pm 0.9 \pm 0.9 \pm 0.9 \pm 0.9 \pm 0.05 \Rightarrow y = 1$	Bagging Round 10:						
	x 0.1 0.1	0.1 0.1	0.3	0.3 0.8	0.8 0.9	0.9	
y 1 1 1 1 1 1 1 1 1 1 $x > 0.05 \Rightarrow y = 1$	y 1 1	1 1	1	1 1	1 1	1	x > 0.05 -y y - 1

Summary of Training sets:

	_		Right Class	
1Ass	ignmen	t Projec	t Exam I	Ielp
2	0.7	1	1	
3	h435./	nowcod	er cóm	
4	0.3	1	-1	
5	0.35	~ 1	-1	
6	70.75	ecijai j	owqode.	
7	0.75	-1	1	
8	0.75	-1	1	
9	0.75	-1	1	
10	0.05	1	1	

- Assume test set is the same as the original data
- Use majority vote to determine class of ensemble classifier

Assignment Project Exam Help

Round	x=0.1								x=0.9	x=1.0
1	1 1	ttha	1/20	W CO	der.c	-1	-1	-1	-1	-1
2	1	ccps	77 PO	W PO	40,1	O HI	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1 <i>A</i>	Add	Wel	hat	DOW	code	T -1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, alignment records as a single bed by a light weights https://powcoder.com
 - Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights entertailed Exam Help

https://powcoder.com

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7.4	dd V	V&C	hæt r	OWO	oele	r 4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- Base classifiers: C₁, C₂, ..., C⊤
- Error rate of each C_i:

For every sample j=1 to N, w_j is the weight, δ is the identity function ($\delta(x)$ =1 if x is true

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

AdaBoost Algorithm

Weight update:

$$w_{i}^{(j+1)} = \frac{w_{i}^{(j)}}{\text{Assign needs of Project Next and Welp}} \begin{cases} \exp^{-\alpha_{j}} & \text{if } C_{j}(x_{i}) = y_{i} \\ & \text{Project Next and Welp} \end{cases}$$

where Z_j is the normalization factor

- If any intermediatewoundsperoduce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification:

$$C^*(x) = \underset{y}{\operatorname{arg max}} \sum_{j=1}^{T} \alpha_j \delta(C_j(x) = y)$$

AdaBoost Algorithm

Algorithm 5.7 AdaBoost Algorithm

```
1: \mathbf{w} = \{w_i = 1/n \mid j = 1, 2, \dots, n\}. {Initialize the weights for all n instances.}
 Let k be the number of boosting rounds.
 3: for i = 1 to k do 3: Create training SSignment Project Exam Helprding to w.
        Train a base classifier C_i on D_i.
 5:
      Apply C_i to all instances in the original training set C_i \epsilon_i = \frac{1}{n} \left[ \sum_j w_j \ \delta \left( C_i(x_j) \neq y_j \right) \right] / \left[ \text{Calculate the weighted error} \right]
        if \epsilon_i > 0.5 then
            \mathbf{w} = \{w_j = 1/n \mid j \text{Add} \cdot \text{WeChatspoweighter} \text{ all } n \text{ instances.} \}
 9:
            Go back to Step 4.
10:
         end if
11:
       \alpha_i = \frac{1}{2} \ln \frac{1 - \epsilon_i}{\epsilon_i}.
12:
        Update the weight of each instance according to equation (5.88).
13:
14: end for
15: C^*(\mathbf{x}) = \arg \max_y \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y).
```

AdaBoost Example

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	Ass	<u>ignn</u>	nent	Proje	ect E	xam	Hel	P 1	1

- Classifier is a decision stump
 - Decision ruled West persuser > k
 - Split point k is chosen based on entropy

AdaBoost Example

Training sets for the first 3 boosting rounds:

Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example

Weights

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029 ASS	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009
· c:	H221	giiii	lent	Proj	ect 1	ZXaI		пр		

Classification

		1-44-			0.10	* O O 16				
Round	x=0.1	*=014	x= 0.1	₩ ₩	XFOR	% =0.8	k=0.7	x=0.8	x = 0.9	x=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	A^1dc	$\mathbf{W}\epsilon$	\mathbf{Cha}	t එo	weo	let	1	1	1
3	1	1	1	-1	- 1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class for x=0.2:

C1: -1, C2: 1, C3=1

-1: 1.738

 Round
 Split Point
 Left Class
 Right Class
 alpha

 1
 0.75
 -1
 1
 1.738

 2
 0.05
 1
 1
 2.7784

 3
 0.3
 1
 -1
 4.1195

1: 2.77+4.11. Thus, the prediction is 1 (correct)

Exercise: what is the prediction for x=0.4?

Data Mining Classification: Alternative Techniques

Imbalanced Class Problem Assignment Project Exam Help

Introduction to Data Mining, 2nd Edition Add WeChat powcoder by

Tan, Steinbach, Karpatne, Kumar

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit Assistment Project Exam Help
 - Intrusion dettestiquowcoder.com
 - Defective products in manufacturing assembly line

Challenges

- Evaluation measures such as accuracy is not well-suited for imbalanced class
- Detecting the rare class is like finding needle in a haystack
 https://powcoder.com

Confusion Matrix

Confusion Matrix:

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy

PREDICTED CLASS				
	Class=Yes	Class=No		
ment Pro		Help _b (FN)		
ittps://powo Class=No Add WeCh	(ED)	d (TN)		

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
 Assignment Project Exam Help

Record	X1	X2	X3	Class	C1
1	0	² http:	s://po	₩code	er.com
2	1	1	0	-	-
3	1	² Add	WeC	hat no	owcode
4	0	2	0	prat po	, we could
5	1	1	1	-	-
6	1	0	1	-	-
7	0	2	0	-	-
8	1	1	0	-	-
9	0	1	1	-	-
10	0	0	0	-	-

In the left example, what is the accuracy of the classifier C1?

T How is the performance of C1 on predicting + class?

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
 Assignment Project Exam Help
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misfeading because the model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTANIS	Class=Yes nment Pro	ject Exam	Help ^b			
	Class=No ttps://powo					

Predicible (c) hat
$$\frac{a}{a + c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

	PRE	DICTED CL	ASS	Precision (p) = $\frac{10}{10+10}$ = 0.5		
		Class=Yes	Class=No	Recall (r) = $\frac{10}{10+0}$ = 1		
ACTUAL	Class=Yes	10 ignment	o Project l	Example (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62		
CLASS	Class=No	10	980	Accuracy = $\frac{990}{1000}$ = 0.99		
nttps://powcoder.com 1000						

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes Class=No	10 signment	Project I			
	0.0.00 7.00					

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5

Recall (r) =
$$\frac{10}{10+0}$$
 = 1

Example (F) =
$$\frac{2*1*0.5}{1+0.5}$$
 = 0.62

https://powcoder.com Accuracy =
$$\frac{990}{1000}$$
 = 0.99

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	1	9			
CLASS	Class=No	0	990			

Precision (p) =
$$\frac{1}{1+0}$$
 = 1

Recall (r) =
$$\frac{1}{1+9}$$
 = 0.1

F - measure (F) =
$$\frac{2*0.1*1}{1+0.1}$$
 = 0.18

Accuracy =
$$\frac{991}{1000}$$
 = 0.991

	PRE	DICTED CL	ASS	
		Class=Yes	Class=No	Precision (p) = 0.8 Recall (r) = 0.8
ACTUAL CLASS	Class=Yes Class=No	⁴⁰ ignment	Project 1	F-measure (F) = 0.8 Exam Helpacy = 0.8

https://powcoder.com

Alternative Measures (balanced vs unbalanced)

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes Class=No	40 ignment	Project I		

Precision (p) = 0.8

Recall(r) = 0.8

F - measure (F) = 0.8

xam Helpacy = 0.8

https://powcoder.com

Add WeChat powcoder

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	1000	4000		

Precision (p) = ~ 0.04

Recall(r) = 0.8

F - measure (F) = ~ 0.08

Accuracy = ~ 0.8

Measures of Classification Performance

	PREDICTED CLASS				
		Yes	No		
ACTUA L	Yes	TP	A FN or		
CLASS	No	FP	TN		

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

ErrorRate = 1 - accuracy

$$ment_{ctsion}$$
 $percentage = \frac{TP}{TP + FP}$

 α is the probability that we reject the sensitivity = TP Rate = $\frac{TP}{TP + FN}$ the null hypothesis when it is true. This is a Type I error or a false positive (FP).

β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

Recall = Sensitivity =
$$TP$$
 Rate = $\frac{TP}{TP + TP}$

Add WeChat powcoder_{TN} Specificity = TN Rate = $\frac{1}{TN + FP}$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

$$Power = sensitivity = 1 - \beta$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes Class=No	40 ignment	Project I

Precision (p) = 0.8

TPR = Recall(r) = 0.8

FPR = 0.2

F - measure (F) = 0.8

m Helpacy = 0.8

https://powcoder.com

Add WeChat powcoder

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	1000	4000

Precision (p) = ~ 0.04

TPR = Recall(r) = 0.8

FPR = 0.2

F - measure (F) = ~ 0.08

Accuracy = ~ 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	10	40
	Class=No	10	40

Precision (p) = 0.5

TPR = Recall(r) = 0.2

FPR = 0.2

Assignment Project Exam Help

	PF	REPHETERSELA	60wcode	$r.com_{Precision(p) = 0.5}$
		Class=Yes	Class=No	TPR = Recall (r) = 0.5
ACTUAL	Class=Yes	Add W	eChat no	$WCOder_{R} = 0.5$
ACTUAL CLASS	Class=No	25	25	$\mathbf{FFR} = 0.3$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	40	10
	Class=No	40	10

Exercise: for the left table, what is precision, TRP, and FPR?

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals Project Exam Help
- ☐ ROC curve plotsps: Ppo agailes.tc 5 mR
 - Performange of a model represented as a point in an ROC curve
 - Changing the threshold parameter of classifier changes the location of the point

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare evienything Project Exam Help to be positive class ive class https://powec.com

0.9

0.8

(1,0): ideal

- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

ROC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive relative record class record https://powcoder.com
- Many classifiers Aproblement pisoretel outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM

ROC Curve Example

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t is classified as positive

Using ROC for Model Comparison

How to Construct an ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87 _{SS1}	gnment P
4	0.85	-
5	0.85	https://po
6	0.85	+
7	0.76	Add_WeC
8	0.53	+
9	0.43	-
10	0.25	+
		- +

- Use a classifier that produces a continuous-valued score for each instance
- The more likely it is for the roject Exstence pe in the + class, the higher the score
- wcosort channstances in decreasing order according to the score that ppycatereshold at each unique
 - Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)

value of the score

• FPR = FP/(FP + TN)

How to construct an ROC curve

Handling Class Imbalanced Problem

- Class-based ordering (e.g. RIPPER)
 - Rules for rare class have higher priority

Assignment Project Exam Help Cost-sensitive classification

- - Misclassifying rafe class as majority class is more expensive than misclassifying majority as rare class

Sampling-based approaches

Sampling-based Approaches

- Modify the distribution of training data so that rare class is well-represented in training set

 - Undersample the majority class
 Assignment Project Exam Help
 Oversample the rare class

https://powcoder.com