Dimension von Varietäten

Yvan was-ist-dein-Nachname

Emma Ahrens

11. April 2018

Inhaltsverzeichnis

T	Abstract	1
2	Einleitung	1
3	Dimension von Monomidealen	1
4	Dimension von beliebigen Idealen	2
5	Literaturangabe	2

1 Abstract

2 Einleitung

3 Dimension von Monomidealen

Lemma 1. Sei $I \subseteq k[X_1, ..., X_n]$ ein Ideal, das von einer Menge G von Monomen erzeugt wird. Dann liegt ein Polynom $f \in k[X_1, ..., X_n]$ in I genau dann, wenn für jeden Term $a_j X^{\alpha_j}$ von f ein $g \in G$ existiert, welches $a_j X^{\alpha_j}$ teilt.

Beweis. Sei $f \in I$. Dann gilt $f = \sum_{i=1}^{s} h_i g_i$ mit $h_i \in R$ und $g_i \in G$. Damit hat jeder Term die Form $h_i g_i$ und ist somit durch ein Element aus G teilbar. Sei nun andersherum $f \in k[X_1, \ldots, X_n]$ und für jeden Term $a_j X^{\alpha_j}$ von f existiert ein $g \in G$, welches $a_j X^{\alpha_j}$ teilt. Dann kann man f als Linearkombination von Elementen aus G schreiben und damit liegt f nach der Definition eines Ideals in I.

Lemma 2. Sei $(g_i)_{i\geq 1}$ eine Folge von Monomen in $k[X_1,\ldots,X_n]$ mit $g_1 \succeq g_2 \succeq \ldots$ für eine Monomialordnung \preceq . Dann existiert ein $r \in \mathbb{N}$ mit $g_n = g_r$ für alle $n \geq r$.

Beweis. Sei $I=((g_i)_{i\geq 1})$, dann ist I ein Ideal. Nach dem Hilbert'schen Basissatz wissen wir, dass I endlich erzeugt ist. Also existiert ein r, so dass die Menge $G=\{g_1,\ldots,g_r\}$ I erzeugt. Für ein $i\geq r$ und $g_i\in I$ existiert ein $j\in\underline{r}$, so dass $g_j\mid (g_i$ nach Lemma 1. Also $g_i\succeq g_j\succeq g_r$. Andererseits gilt nach Voraussetzung, dass $g_i\preceq g_r$, also folgt $g_i=g_r$.

Lemma 2 sagt uns, dass jede absteigende Kette von Monomen stationär wird und insbesondere in jeder abzählbaren Menge von Monomen ein kleinstes Element existiert.

Proposition 3 (Divisionsalgorithmus). Sei \leq eine Monomialordnung und $f, f_1, \ldots, f_s \in k[X_1, \ldots, X_n]$ nicht null. Dann gilt

$$f = \sum_{i=1}^{s} h_i f_i + r,$$

 $mit\ r, h_1, \ldots, h_s \in k[X_1, \ldots, X_n]$ und $LT(h_i f_i \leq LT(f))$ für alle $h_i \neq 0$ und r = 0 oder kein Term von r wird durch ein $LT(f_i)$ geteilt für $i \in \underline{s}$.

Beweis. \Box

Satz 4. Sei $\{0\} \neq I \subseteq k[X_1,\ldots,X_n]$ ein Ideal und \leq eine Monomialordnung auf $Z_{\geq 0}^n$. Sei G eine Gröbnerbasis von I mit I=(G). Dann ist eine k-Basis von $k[X_1,\ldots,X_n]/I$ gegeben durch die Restklassen von X^{α} mit

$$\alpha \in C(I) := \{ \alpha \in Z^n_{>0} \, | \, LT(g) \nmid X^\alpha \quad \forall g \in G \}.$$

Beweis. Wir zeigen erst, dass die Monome mit Exponent aus C(I) ganz $k[X_1, \ldots, X_n]/I$ aufspannen und anschließend, dass kein Element aus I durch echte Linearkombination solcher Monome dargestellt werden kann.

Sei $G = \{f_1, \ldots, f_s\}$ und $0 \neq f \in k[X_1, \ldots, X_n]$. Dann ist $f = \sum_{i=1}^s h_i f_i + r = f' + r$ nach Proposition 3 mit r = 0 oder $r = a_l X^{\alpha_l} + \ldots + a_0$ mit $LT(f_i) \nmid X^{\alpha_j}$ für jedes $i \in \underline{s}$ und $j \in \underline{l}$. Also ist r eine Linearkombination von Monomen X^{α_j} mit $\alpha_j \in C(I)$. Es gilt außerdem [f] = [r] in $k[X_1, \ldots, X_n]/(G)$ und damit erzeugen die Monome mit $\alpha \in C(I)$ den ganzen Restklassenring.

Angenommen es existiert $f = f' + r \in I$ mit $r \neq 0$ und f' und r wie oben. Dann gilt $0 \neq r = f - f'$. Da $f \in I$ und $f' \in I$ folgt $r \in I$, womit folgt, dass $(LT(r) \in (LT(f_1), \ldots, LT(f_s))$. Nach Lemma 1 existiert dann ein f_i mit $LT(f_i) \mid LT(r)$. Dies ist ein Widerspruch, also folgt r = 0 und die Restklassen von X^{α} mit $\alpha \in C(I)$ sind linear unabhängig in $k[X_1, \ldots, X_n]/I$.

4 Dimension von beliebigen Idealen

5 Literaturangabe