

CURSO DE SISTEMAS DE INFORMAÇÃO

CIRCUITOS DIGITAIS

SISTEMAS DE NUMERAÇÃO

PROFESSOR: ANTÔNIO JOSÉ DIAS DA SILVA

SISTEMAS DE NUMERAÇÃO

INTRODUÇÃO:

O homem, através dos tempos, sentiu a necessidade da utilização de sistemas numéricos.

Existem vários sistemas numéricos, dentre os quais se destacam: o sistema decimal, o binário, o octal e o hexadecimal.

SISTEMAS DE NUMERAÇÃO

O sistema decimal é utilizado por nós no dia-a-dia é é, sem dúvida, o mais importante dos sistemas numéricos. Trata-se de um sistema que possui dez algarismos, com os quais podemos formar qualquer número através da lei de formação.

Outros sistemas, em especial o binário e o hexadecimal, são muito importantes nas áreas de técnica digitais e informática. No decorrer do estudo, vocês irão perceber a ligação existente entre circuitos lógicos e estes sistemas de numeração.

SISTEMA DECIMAL DE NUMERAÇÃO

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Decomposição de um número decimal:

Ex 1:
$$3546 = (3 \times 10^3) + (5 \times 10^2) + (4 \times 10^1) + (6 \times 10^0)$$

= $3000 + 500 + 40 + 6$
= 3546
Ex 2: $8291 = (8 \times 10^3) + (2 \times 10^2) + (9 \times 10^1) + (1 \times 10^0)$
= $8000 + 200 + 90 + 1$
= 8291

SISTEMA BINÁRIO DE NUMERAÇÃO 0, 1.

Conversão do Sistema Binário para o Sistema Decimál:

Ex 1:
$$1011_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^6)$$

= $8 + 0 + 2 + 1$
= 11

Ex 2:
$$11101_2 = (1 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$$

= $16 + 8 + 4 + 0 + 1$
= 29

Ex 3:
$$110101_2 = (1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$$

= $32 + 16 + 0 + 4 + 0 + 1$
= 53

Ex 4:
$$1011111_2 = (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$

= $32 + 0 + 8 + 4 + 2 + 1$
= 48

Ex 5:
$$1110101_2 = (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$$

= $64 + 32 + 16 + 0 + 4 + 0 + 1$
= 117

Conversão do Sistema Decimal para o Sistema Binário:

Ex 1: $11 = 1011_2$

11	2		
1	5	2	
		2	2
		0	1

Ex 2: $29 = 11101_2$

29	2			
1	14	2		
		7	2	
			3	2
			1	1

Ex 3: $53 = 110101_2$

53	2				
1	26	2			
		13	2		
			6	2	
				3	2
				1	1

OBRIGADO!