PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS SEGUNDO SEMESTRE DE 2016

MAT1610 * Cálculo I

Interrogación N° 2

1. a) Sean f y g dos funciones derivables en (a,b) y continuas en [a,b] tales que f(a) = g(a) y $f'(x) < g'(x), \forall x \in (a,b).$

Demuestre que f(b) < g(b).

Solución

Sea h(x) = f(x) - g(x) entonces h(x) es función continua en [a,b] y derivable en (a,b), además

$$h'(x) = f'(x) - g'(x)$$

1,0 pro.

Por lo tanto, h(x) cumple con las hipótesis del Teorema del Valor Medio, por lo tanto:

$$\frac{h(b) - h(a)}{b - a} = h(c) \operatorname{con} a < c < b$$

es de decir

$$f(b) - g(b) = (b - a)(f'(c) - g'(c))$$

1,5 pts.

Dado que (b-a)>0 y por hipótesis (f'(c)-g'(c))<0, entonces su producto es negativo, con lo cual

0,5 pts.

b) Demuestre que la ecuación 2x - 1 - sen(x) = 0 tiene exactamente una raíz real.

Solución

Sea $(f(x) = 2x - 1 - \text{sen}(x) \text{ luego } f'(x) = 2 - \cos(x) > 0 \text{ por lo tanto } f(x) \text{ es estritamente creciente en } \mathbb{R}.$

1,0 pto.

Dado que f(0) = -a < 0 y $f(\frac{3\pi}{2}) = 3\pi > 0$ por el teorema de Rolle:

$$\exists c \in (0, \frac{3\pi}{2})(f(c) = 0$$

1,5 pts.

y como f es estrictamente creciente en todo \mathbb{R} este c debe ser único. 0,5 pts.

Observación: Pueden usar cualquier otro intervalo en que f cambie de signo

2. Calcule el polinomio de Taylor de grado 3 centrado en 0 de la función $\cosh(x)$.

Solución

Sea
$$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$$

1,0 pto.

Entonces el polinomio de Taylor de grado 3 centrado en 0 está dado por:

$$T_3(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!}$$

2,0 pts.

Entonces:

Entonces.
$$f'(x) = \frac{e^x - e^{-x}}{2}$$
, $f''(x) = \frac{e^x + e^{-x}}{2}$ y $f'''(x) = \frac{e^x - e^{-x}}{2}$

Por lo tanto

$$f'(0) = 0, f''(0) = 1 \text{ y } f'''(0) = 0$$

2,0 pts.

Reemplazando estos valores en $T_3(x)$ obtenemos:

$$T_3(x) = 1 + \frac{x^2}{2}$$

1,0 pto.

3. a) Sea f una función definida por

$$f(x) = (b-a)\left(\frac{x^3}{6} - \frac{cx^2}{2}\right) \cos c > 0, \ a \neq b$$

Encuentre una condición necesaria y suficiente sobre los números reales a y b que fuerzen a que la función f tenga un máximo local en x = 2c.

Solución

Dado que
$$f(x) = (b-a)\left(\frac{x^3}{6} - \frac{cx^2}{2}\right)$$
 entonces $f'(x) = (b-a)x(\frac{x}{2} - c)$

Como requerimos que f'(2c) = 0 lo que significa que en x = 2c hay un punto crítico. Para que además se produzca un valor máximo, requerimos que f''(2c) < 0.

1,0 pto.

Pero
$$f''(x) = (b-a)(x-c)$$
 y $f''(2c) = (b-a)c$

Luego para que (b-a)c < 0 como c > 0 por hipótesis, se debe cumplir que

1,0 pto.

b) Calcule

$$\lim_{x \to 0} \frac{\tan(x) - x}{x - \sin(x)}$$

Solución

Dado que se trata de un límite de la forma $\frac{0}{0}$ podemos utilizar L'Hospital:

$$\lim_{x \to 0} \frac{\tan(x) - x}{x - \sin(x)} = \lim_{x \to 0} \frac{\sec^{(x)} - 1}{1 - \cos(x)}$$

1,0 pto.

Nuevamente ese límite es de la forma $\frac{0}{0}$ por lo tanto volvemos a usar L'Hospital:

$$\lim_{x \to 0} \frac{\sec^{(x)} - 1}{1 - \cos(x)} = \lim_{x \to 0} \frac{2 \sec^{2}(x) \tan(x)}{\sin(x)} = \lim_{x \to 0} \frac{2}{\cos^{3}(x)}$$

1,5 pts.

Por lo tanto

$$\lim_{x \to 0} \frac{\tan(x) - x}{x - \sin(x)} = 2$$

0,5 pts.

4. Dada la función

$$f(x) = \frac{x}{1 + x^2}$$

- a) Determine intervalos de crecimiento y decrecimiento
- b) Encuentre los valores máximos y mínimos locales
- c) Determine intervalos de concavidad, convexidad y puntos de inflexión.

Solución

a) Para determinar intervalos de crecimiento y decrecimiento, buscamos el signo de la primera derivada de f:

$$f'(x) = \frac{1 - x^2}{(1 + x^2)^2} = -\frac{(x^{-1})^2}{(1 + x^2)^2}$$

Por lo tanto $f'(x) > 0 \leftrightarrow x \in (-1,1)$ Luego:

$$f(x)$$
 crece en $(-1,1)$ y decrece en $(-\infty,-1)$ \cup $(1,\infty)$

2,0 pts.

b) Los puntos crítos de esta función se producen en $\{-1,1\}$. Dado que antes del x=-1 la función decrece y después crece, entonces en x=-1 se produce un mínimo local cuyo valor es:

$$-\frac{1}{2}$$

Dado que antes del x=1 la función crece y después decrece, entonces en x=1 se produce un máximo local cuyo valor es:

$$\frac{1}{2}$$

2,0 pts.

c) Dado que

$$f''(x) = -\frac{2}{x}(3-x^2)(1+x^2)^3 = \frac{2x(x^2-3)}{(1+x^2)^3}$$

el denominador es siempre positivo por lo tanto el signo de la segunda derivada es el signo del numerador a saber en $(-\infty, -\sqrt{3})$ es negativa, en $(-\sqrt{3}, 0)$ es positiva, en $(0, \sqrt{3})$ es negativa y en $(\sqrt{3}, \infty)$ es positiva, por lo tanto

en $(-\infty, -\sqrt{3})$ es cóncava (cóncava hacia abajo), en $(-\sqrt{3}, 0)$ es convexa (cóncava hacia arriba), en $(0, \sqrt{3})$ es cóncava (cóncava hacia abajo) y en $(\sqrt{3}, \infty)$ es convexa (cóncava hacia arriba)

1,5 pts.

Con este estudio se ven que hay tres punto de inflexión, a saber:

$$(0,0), (-\sqrt{3}, -\frac{\sqrt{3}}{4}), (\sqrt{3}, \frac{\sqrt{3}}{4})$$

0,5 pts.