

Linguagens de Programação

Aula 6

Tipos de dados: primitivos, cadeias, matrizes, registros, uniões e ponteiros

2º semestre de 2019 Prof José Martins Junior

Introdução

Tipo de dado

Domínio de valores de dados e operações predefinidas sobre eles

Grupos

- Básicos, que representam unidades de tipos primitivos (numéricos, p.e), e outros (dependendo da linguagem)
- Estruturados (não escalares), que podem ser
 - Arranjos homogêneos (vetores e matrizes)
 - Registros, ou estruturas compostas

Um descritor qualifica uma variável

Contém atributos como tipo, endereço e tamanho da alocação (offset)

Tipagem

- Forte: o tipo é verificado pela LP em tempo de compilação
- Fraca: permite-se a mudança de tipo da variável durante a execução

Tipos de dados primitivos

São tipos oferecidos pela plataforma (hardware e SO)

Inteiro

- Representam valores decimais inteiros, sem casas decimais
- Há vários tipos e tamanhos
 - Em C: char, short, int, long (ou long int), long long
 - Em Java: byte, short, int, long
- Bit de sinal
 - Em Java, e se nada for dito em C, os tipos inteiros reservam o MSB para representar o sinal, ou seja, metade do intervalo para cada grupo
- Em Python, o tamanho longo pode ser ilimitado
 - Deve ser expresso com L no final
 - Exemplo: 243725839182756281923L
 - Além disso, faz conversão direta, quando a variável intermediária com o resultado superar operandos inteiros

Ponto flutuante

Modelam números reais

- São representações limitadas (aproximações) para muitos valores reais
- Operações aritméticas geram perda de precisão
- IEEE Floating-Point Standard 754 (padrão p/ computadores modernos)

Simples precisão (float)

Tamanho padrão geralmente armazenado em 4 bytes de memória

Dupla precisão (double)

- Normalmente ocupa o dobro de armazenamento (8 bytes)
- Fornece ao menos o dobro do número de bits de fração

Tipos complexo e decimal

- Algumas LPs suportam o tipo complexo (Fortran, Python, p.e)
 - Valores s\(\tilde{a}\) representados como pares ordenados de valores de ponto flutuante
 - Em Python, a parte imaginária de um literal complexo é especificada seguindo a por j ou J
 - Exemplo: (7 + 3j)
- Computadores de grande porte geralmente preveem decimal
 - Decimais armazenam um número fixo de dígitos decimais, com o ponto decimal em uma posição fixa no valor
 - São suportados por LPs como COBOL, VB e C# e são úteis para processamentos de dados de negócios

Tipo booleano

- Representam apenas dois elementos, verdadeiro ou falso
 - Em C89 (e também em ANSI C), qualquer valor diferente de zero é verdadeiro, e falso se zero
 - Em linguagens subsequentes, como Java e C#, isso não ocorre
 - Apesar de necessitarem de apenas um único bit, geralmente são armazenados em células de um byte na memória
 - Byte é a menor célula eficientemente endereçável

Tipos e tamanhos em Java

		Valores possíveis			
Tipos	Primitivo	Menor	Maior	Valor Padrão	Tamanho
Inteiro	byte	-128	127	0	8 bits
	short	-32768	32767	0	16 bits
	int	-2.147.483.648	2.147.483.647	0	32 bits
	long	-9.223.372.036.854.770.000	9.223.372.036.854.770.000	0	64 bits
Ponto Flutuante	float	-1,4024E-37	3.40282347E + 38	0	32 bits
	double	-4,94E-307	1.79769313486231570E + 308	0	64 bits
Caractere	e char 0 65535		65535	\0	16 bits
Booleano	boolean	false	true	false	1 bit

Tipos e tamanhos em C

Tipo	Tam (bits)	Formato scanf	Início	Fim
char	8	%c	-128	127
unsigned char	8	%c	0	255
signed char	8	%c	-128	127
int	16	%d	-32768	32767
unsigned int	16	%u	0	65535
signed int	16	%i	-32768	32767
short int	16	%hi	-32768	32767
unsigned short int	16	%hu	0	65535
signed short int	16	%hi	-32768	32767
long int	32	%li	-2147483648	2147483647
signed long int	32	%li	-2147483648	2147483647
unsigned long int	32	%lu	0	4294967295
long long	64	%lld	-922337203685477807	922337203685477807
unsigned long long	64	%llu	0	18446744073709551616

Obs.: o tipo int varia, de acordo com a plataforma. Em compiladores 16 bits, tem o tamanho do short (como acima); em compiladores 32 bits, o tamanho do long

Conversão implícita e explícita

- Os tipos numéricos podem ser convertidos entre si
 - Conversão direta (implícita)
 - Se um tipo de menor tamanho for atribuído a um parâmetro de função ou variável onde se pede um maior

```
• Ex. em Java: int n = 10; double d = n; //d receberá 10.000000
```

- Conversão indireta ou casting (explícita)
 - Quando se deseja converter um tipo maior para um menor (atribuição, parâmetro, etc) deve-se explicitar (casting) a conversão
 - Implica em perda de precisão

```
• Ex. em Java: double d = 10.5;
int n = (int) d; //n receberá 10
```

Caractere

- Representam um único símbolo, ou caractere
 - Em muitas linguagens, são armazenados como números
 - Padrão ASCII codifica valores de 0 a 255 (1 byte) para representar dígitos alfanuméricos, pontuações, entre outros caracteres
 - Exemplo em C: char c = 'a'; printf("%c\n", c); //imprimirá a printf("%d\n", c); //imprimirá 97
 - Em 1991, o consórcio Unicode criou o padrão UCS-2, como extensão do ASCII, com tamanho de 16 bits,
 - Permitiu incluir símbolos da maioria das linguagens naturais do mundo
 - Java foi a primeira linguagem amplamente usada a adotar o Unicode
 - Desde então, ele foi adotado em JavaScript, Python, Perl e C#

Tabela ASCII (e estendida)

```
Regular ASCII Chart (character codes 0 - 127)
                                                     064 e
                                                               080 P
                                                                        096
000
       \langle nu1 \rangle
                016 ► (dle)
                                 032 sp
                                            048 0
                                                                                 112 p
                017 ∢ ⟨dc1⟩
                                 033 !
                                           049 1
                                                     065 A
                                                              081 Q
                                                                        097 a
001 ⊕ (soh)
                                                                                 113 g
                                 034 "
                018 ‡ (dc2)
                                           050 2
                                                              082 R
                                                                        098 ъ
002 8 (stx)
                                                     066 B
                                                                                 114 r
                019 !! (dc3)
                                 035 #
                                           051 3
                                                     067 C
                                                              083 S
                                                                        099 с
                                                                                 115 s
003 ♥ (etx)
                020 ¶ (dc4)
                                 036 $
                                           052
                                                     068 D
                                                              084 T
                                                                        100 d
                                                                                 116 t
004 ♦ (eot)
005 ☆ (eng)
                                           053 5
                                                     069 E
                021 § (nak)
                                 Ø37 %
                                                              Ø85 U
                                                                        101 e
                                                                                 117 u
                022 - (syn)
                                 038 &
                                                     070 F
                                                                        102 f
006 ★ (ack)
                                           054 6
                                                              086 V
                                                                                 118 v
                023 1 (etb)
007 • (bel)
                                 039 '
                                           055
                                                     071 G
                                                              087 W
                                                                        103 g
                                                                                 119 w
                024 T (can)
                                           Ø56
                                                     072 H
                                                              088 X
                                                                        104 h
008 🗖 (bs)
                                 040 (
                                                                                 120 x
                Ø25 ↓ (em)
                                           057
                                                     073 I
                                                              089 Y
                                                                        105 i
                                                                                 121 y
009 < (tab)
                                 041 >
                Ø26 → (eof)
                                 042 ×
                                           Ø58
                                                     074 J
                                                              090 Z
                                                                        106 j
                                                                                 122 z
010
       (1f)
                                                                        107 k
011 & (ut)
                027 ← (esc)
                                 043 +
                                           059
                                                     075 K
                                                              091 [
                                                                                 123 {
012 P (np)
                Ø28 - (fs)
                                 044
                                           060 <
                                                     076 L
                                                              092 \
                                                                        108 1
                                                                                 124
                                                              093 1
                029 + (gs)
                                 045 -
                                                     077 M
                                                                        109 m
013
                                           061 =
                                                                                 125 >
       (cr)
                030 A (rs)
                                 Ø46
                                                               094 ^
                                                                                 126
014 / (so)
                                            062 >
                                                     078 N
                                                                        110 n
                                                                                 127 △ (del)
015 * (si)
                Ø31 ▼ (us)
                                 047 /
                                           Ø63
                                                     079 0
                                                               095
                                                                        111 o
               Extended ASCII Chart (character codes 128 - 255)
                                                                    228 õ
229 õ
                              172 ¼
173 i
                                                           214 í
215 î
                                                                              242 = 243 ¾
           143 A
                     158 \times
                                        186 ||
                                                 200 L
  128
      Ç
                     159 f
  129
           144 É
                                        187
                                                  201
                                                      <u> II</u>
                                                           216 Ï
217 J
                     160 á
                              174 «
                                        188
                                                  202
                                                                    230 μ
  130
      é
           145 æ
                                                                              244 ¶
                                                                    231 Þ
232 Þ
233 Ú
                                        189 ¢
190 ¥
      â
                     161 í
                              175 »
                                                                              245 ₹
           146 Æ
                                                  203
  131
                     162 ó
163 ú
                              176
177
178
      ä
                                                  204
                                                           218 F
219
  132
           147 ô
                                                                              246 ÷
  133
      à
           148 ö
                                        191
                                                  205 =
                                                                              247
                                                      #
                                                                    234 û
                                                                              248
  134
           149 ò
                     164 ñ
                                        192
                                                  206
                                                           220
                     165 Ñ
           150 û
                              179
                                        193
                                                           221
                                                                    235 ù
  135
      ê
                                                 207
                                                                              249
                                                  208 ð
                                                           222 ì
  136
           151 ù
                     166 º
                              180
                                                                    236
                                        194
                                                                              250
      ëèï
                                                           223
  137
           152 ÿ
153 ö
                     167 º
                              181 Á
                                        195
                                                  209 Đ
                                                                    237
                                                                              251 1
                              182 Â
183 À
                                                 210 Ê
                                                                    238
  138
                     168 ¿
                                                           224 ó
                                                                              252
                                        196
                                        197 +
198 ã
199 ã
                                                                    239
           154 Ü
                     169 ®
                                                  211 Ë
                                                           225 B
  139
                                                                              253 <sup>2</sup>
                                                                    240 -
  140
           155 ø
                     170 ¬
                              184 ©
                                                 212 È
                                                           226 ô
                                                                              254
           156 £
                              185 引
                                                           227 ò
                     171 %
                                                  213
                                                                    241 ±
                                                                              255
  141
  142
           157 Ø
```

Cadeias de caracteres

- Sequências de caracteres (strings) que formam palavra e frases
 - C e C++ usam vetores para armazenar cadeias de caracteres
 - Exemplo: char str[] = "apples";
 - Cria um vetor com 7 posições e na última insere um terminador \ 0
 - O terminador é de suma importância para as funções que manipulam strings em C, como strlen, strcat, strtok, e até mesmo o formato %s no printf
 - Java e C# possuem classes para representar strings e outras mais para complementar suas manipulações (StringBuilder, StringTokenizer, p.e)
 - As strings em Java e C# não têm tamanho prefixado (declaração), como em C
 - A maioria das linguagens permitem operações com strings usando expressões regulares

Tipo enumeração

- Permite definição de conjunto restrito de possíveis opções
 - São como constantes agrupadas e indexadas
 - Exemplo em Java:

```
enum Day {Mon, Tue, Wed, Thu, Fri, Sat, Sun};
Day d = Day.Mon;
System.out.println(d.Mon); //imprimirá Mon
System.out.println(d.ordinal()); //imprimirá 0
```

Vetores e matrizes

- São agregados homogêneos de dados
 - Cada elemento é referenciado por seu índice (posição)
 - Em várias linguagens, como C e Java, o índice começa em 0
 - Em outras, como Pascal e VB, pode-se definir o índice
 - Muitas linguagens (como Java) alertam sobre acessos fora do intervalo do índice, gerando um erro
 - Cuidado! Em C, pode-se acessar índices inválidos para o limite do arranjo
 - Na maioria das LPs são alocados estaticamente na declaração
 - Assume um lugar fixo (tamanho e endereço) na memória
 - Para fins de desempenho, a maioria das linguagens passam a referência do endereço, quando uma matriz é fornecida como parâmetro de função
 - Em algumas, permite-se cópia, realocação e redimensionamento
 - Em muitas LPs, todos os elementos dever ser do mesmo tipo
 - Em outras, como JavaScript, permite-se a combinação de elementos de tipos diferentes

Acesso a posições da matriz

- As matrizes possuem um índice por dimensão que permite buscar cada dado alocado na memória
 - A combinação dos índices indica a posição relativa do item na matriz
 - Em Java, cada índice vai de 0 até n-1 (onde n é o tamanho da dimensão)
 - Para a matriz mXn (m=3 linhas, por n=4 colunas)

```
int[][] matriz2 = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};
                                                                            3

    Possui 3 linhas, com índice de 0 a 2 (m-1)

    Possui 4 colunas, com índice de 0 a 3 (n-1)

                                                                       3
                                                       0
                                                                            4
                                             matriz2
                                                       1
                                                                 6
                                                                            8
                                                       2
                                                            9
                                                                            12
                                                                 10
                                                                      11
        matriz2[1][2] = 17;
```

 Atribui o valor 17 ao elemento na segunda linha e terceira coluna da matriz (onde havia o valor 7)

```
System.out.println(matriz2[2][1]);
```

 Acessa e imprime o elemento da terceira linha e segunda coluna da matriz (o valor 10)

Posição na memória

- Apesar de manipularmos matrizes com diferentes índices, para linha e coluna, a alocação na memória é um bloco sequencial (como fosse um vetor com a mesma quantidade de itens)
 - O índice nesse "vetor" corresponde a (i * colunas + j)
 - Onde
 - i é o índice da linha desejada
 - colunas corresponde à quantidade de colunas da matriz
 - j é o índice da coluna desejada
- Exemplo

Registros

- Registros são conjuntos de dados não indexados
 - Podem conter campos nomeados, de diferentes tipos
 - Usados para representar dados compostos (entidades de dados)

Exemplo em COBOL:

```
01 EMPLOYEE-RECORD.
  02 EMPLOYEE-NAME.
     05 FIRST PICTURE IS X(20).
     05 MIDDLE PICTURE IS X(10).
     05 LAST PICTURE IS X(20).
  02 HOURLY-RATE PICTURE IS 99V99.
```

Referência a campo em COBOL:

```
MIDDLE OF EMPLOYEE-NAME OF EMPLOYEE-
RECORD
```

Exemplo em ADA:

```
type Employee Name Type is record
    First: String (1..20);
   Middle: String (1..10);
   Last : String (1..20);
end record;
type Employee Record Type is record
    Employee Name: Employee Name Type;
    Hourly Rate: Float;
end record;
Employee Record: Employee Record Type;
```

Referência a campo em ADA:

Employee Record. Employee Name. Middle

Uniões

- Permite variáveis armazenarem valores de diferentes tipos em vários momentos durante a execução de um programa
 - No descritor de uma união, todos os campos são descriminados quanto ao nome, tipo e offset (deslocamento)
 - Em sua instância, reserva-se quantidade de memória equivalente o suficiente para armazenar o campo de maior tipo envolvido
 - Geralmente, a referência aos tipos não é checada em tempo de compilação

Exemplo de união em C

```
union flexType {
    int intEl;
    double doubleEl;
};
union flexType el1;
int x;
el1.doubleEl = 27.5;
x = ell.doubleEl;
printf("%d\n", x);
printf("%u\n", sizeof(el1));
  Quando executado, imprimirá
27
```

Estruturas em C

- Estruturas em C são equivalentes a registros em outras LPs
 - Sua implementação deriva de uniões
 - É reservada quantidade de memória em bytes equivalente ao múltiplo do maior tipo envolvido, sendo maior ou igual a soma dos campos
 - Exemplo:

```
struct exemplo {
    int cod;
    double val
};
struct exemplo x;
x.cod = 1;
x.val = 5.5;
printf("Cod: %d\tVal: %f\n", x.cod, x.val);
printf("Tamanho: %u\n", sizeof(x));
```

– Imprimirá:

```
Cod: 1 Val: 5.500000
Tamanho: 16
```

Ponteiros

- Variáveis especiais que contém o endereço de outras variáveis
 - Muitas linguagens, como Java e Python, escondem ponteiros
 - Exemplo em C:

– Imprimirá:

```
Cod: 1 Val: 5.500000
```

Alocação dinâmica

- Alocação dinâmica de memória
 - Alocação de espaço na memória, em tempo de execução
 - Usada para guardar dados simples ou compostos (registros)
 - Função em C: void *malloc(size t size);
 - Retorna um ponteiro para void que pode ser convertido para o tipo de ponteiro apropriado para o registro armazenado
 - Exemplo em C

```
struct exemplo *p2;
p2 = (struct exemplo *) malloc(sizeof(struct exemplo));
```

Aritmética de ponteiros

- As operações aritméticas sobre ponteiros são diferentes
 - Geralmente, o valor unitário, aplicado a um incremento, é a quantidade de bytes referentes ao tipo do ponteiro
 - Exemplo em C:

- Imprimirá:

```
10 20 30 40 50
```

Bibliografia

 SEBESTA, R. W. Conceitos de Linguagens de Programação. Porto Alegre: Bookman, 2011. 792p.