Basic Concepts

Fan-Hsun Tseng

Department of Computer Science and Information Engineering National Cheng Kung University

Outline

- What is Data Structure
- System Life Cycle
- Data Abstraction and Encapsulation
- Algorithm Specification
- Performance Analysis and Measurement

What is Data Structure

- Data Structure + Algorithm = Program
- How to complete programs rapidly?
 - Mainframe / Supercomputer?
 - Expensive GPU with more cores?
 - A good algorithm? An appropriate data structure?
- Summary:
 - Data structure: the way to present data
 - Algorithm: the way to process data
 - Programming language: C/C++

Outline

- What is Data Structure
- System Life Cycle
- Data Abstraction and Encapsulation
- Algorithm Specification
- Performance Analysis and Measurement

What is System Life Cycle

- Good programmers regard large-scale computer programs as systems that contain many complex interacting parts.
- As systems, these programs undergo a development process called the system life cycle, includes five phases:
 - Requirements
 - Analysis
 - Design
 - Refinement and Coding
 - Verification

System Life Cycle

- Requirements
- Analysis:
 - bottom-up vs. top-down
- Design:
 - Data objects: abstract data types
 - Operations: specification & design of algorithms
- Refinement and Coding
 - Choose representations for data objects
 - Write algorithms for each operation on data objects
- Verification
 - Program proving: correctness proofs for the program
 - Testing: correctness & efficiency, testing with a variety of input data
 - Debugging: remove errors to achieve well-documented program

Evaluate Judgements about Programs

- Meet the original specification?
- Work correctly?
- Well-documented?
- Use functions to create logical units?
- Code readable?
- Use storage efficiently?
- Running time acceptable?

Role of Data Structure

- Real problem:
 - Ordering heights
 - Ranking scores
- Abstract problem:
 - Sorting problem
- Algorithm:
 - Bubble sort
 - Quick sort
- Data structure
 - Array
 - Linked list

Outline

- What is Data Structure
- System Life Cycle
- Data Abstraction and Encapsulation
- Algorithm Specification
- Performance Analysis and Measurement

Data Abstraction and Encapsulation

• Data Encapsulation or Information Hiding is the concealing of the implementation details of a data object from the outside world

• *Data Abstraction* is the separation between the *specification* of a data object and its *implementation*

• A data type is a collection of *objects* and a set of *operations* that act on those objects

Data Abstraction and Encapsulation (Contd.)

• A data type is a collection of *objects* and a set of *operations* that act on those objects

- An abstract data type (ADT) is a data type that
 - is organized in such a way that the specification of the objects
 - and the specification of the operations on the objects is separated from the representation of the objects and the implementation of the operations
- In other words, ADT is implementation-independent
 - Just know what it does, but NOT necessarily how it will do it

Data Abstraction and Encapsulation (Contd.)

Specification

- Name of function
- Type of arguments
- Types of result
- Description of what the function does (without implementation details)

• Representation:

- Implementation details
- E.g., char 1 byte, short 2 bytes, int 4 bytes, float 4 bytes, double 8 bytes

Example 1.1 in the Textbook

```
Abstract data type NaturalNumber (p.9)
ADT Natural Number is
 objects: an ordered subrange of the integers starting at
   zero and ending at the maximum integer (INT MAX) on
   the computer
 functions:
   for all x, y ∈ Nat Number; TRUE, FALSE ∈ Boolean
   and where +, -, <, and == are the usual integer
   operations.
   Zero ( ):NaturalNumber ::= 0
   else return TRUE
   Add(x, y):NaturalNumber ::= if ((x+y) <= INT MAX)
                                  return x+y
                                else return INT MAX
   Equal(x,y):Boolean ::= if (x==y) return TRUE
                                else return FALSE
   Successor(x):NaturalNumber ::= if (x == INT MAX)
                                  return x
                                 else return x+1
   Subtract(x,y):NaturalNumber ::= if (x<y) return 0
                                 else return x-y
end Natural Number
```

Outline

- What is Data Structure
- System Life Cycle
- Data Abstraction and Encapsulation
- Algorithm Specification
- Performance Analysis and Measurement

Algorithm Specification

• An algorithm is a finite set of instructions that accomplishes a particular task.

- Criteria
 - Input: zero or more quantities that are externally supplied
 - Output: at least one quantity is produced
 - Definiteness: clear and unambiguous
 - Finiteness: terminate after a finite number of steps
 - Effectiveness: instruction is basic enough to be carried out
- One difference between an algorithm and a program is that the latter does not have to satisfy the fourth condition
 - A program does not have to satisfy the finiteness criteria
 - E.g., OS scheduling

Example 1: Selection Sort

• From those integers that are currently unsorted, find the smallest and place it next in the sorted list.


```
for ( i=0; i<n; i++) {
  examine list[i] to list[n-1] and suppose that smallest integer is list[min]
  interchange list[i] & list[min]
}</pre>
```

Example 1: Selection Sort (Contd.)

```
void sort(int list[], int n)
  for (i=0; i<n-1; i++)
    int min = i;
    for (j=i+1; j< n; j++)
      if (list[j]<list[min])</pre>
        min=j;
      SWAP(list[i], list[min], temp);
```

Example 1: Selection Sort (Contd.)

- Input
 - 20 10 15 6 17 30
- Iteration 1
 - Scan from list[0] to list[5]
 - The smallest one is 6
 - Swap 6 and list[0]
 - 6 10 15 20 17 30

Example 2: Binary Search


```
int compare (int x, int y) /* return -1 for less than, 0 for equal */
int binsearch(int list[], int searchno, int left, int right)
 while (left <= right) {
    middle = (left + right) / 2;
   switch ( COMPARE(list[middle], searchno) ) {
      case -1:
       left = middle + 1;
       break;
      case 0:
       return middle;
      case 1:
       right = middle -1;
```

- Input1 3 7 9 13 20 31
- Search for 7

- Iteration 1 1 3 7 9 13 20 31
 - 1 3 7 9 13 20 31
- Iteration 2 1 3 7 9 13 20 31
 - 1 3 7 9 13 20 31
 - Got it 1 3 7 9 13 20 31

• Search for 16 Start Iteration 1 Iteration 2 Iteration 3 13) Not found

- Comparison between sequential search and binary search
 - Binary search is faster than sequential search
 - However, binary search requires the input to be sorted in advance
- Should we always use binary search?
 - Not necessary

Example 3: Selection Problem

- Selection problem: select the k-th largest among N numbers
- Approach 1
 - Read N numbers into an array
 - Sort the array in decreasing order
 - Return the element in position k
- Approach 2
 - Read k elements into an array
 - Sort them in decreasing order
 - For each remaining elements, read one by one
 - Ignored if it is smaller than the k-th element
 - Otherwise, place in correct place and bumping one out of array

Example 3: Selection Problem (Contd.)

- Input
 - 30, 14, 9, 6, 22, 31
- Find the third largest number
- Read three numbers and sort them in descending order
 - 30, 14, 9
- Read next: "6"
 - 30, 14, 9
- Read next: "22"
 - 30, 22, 14
 - 9 has been kicked out
- Read next: "31"
 - 31, 30, 22
 - 14 has been kicked out
- The third largest number is 22

Example 3: Selection Problem (Contd.)

- Which one is better?
 - Implementation difficulty
 - Efficiency
 - Time complexity analysis
- Remember that time complexity is not the only yardstick
 - Space complexity
 - Easy to implement

Recursive Algorithms

- Recursion is usually used to solve a problem in a "divided-and-conquer" manner
- Direct recursion
 - Functions that call themselves before they are done
- Indirect recursion
 - Functions that call other functions that invoke calling function again
- C(n,m) = n!/[m!(n-m)!]
 - C(n,m)=C(n-1,m-1)+C(n-1,m)
- Boundary condition for recursion

Recursive Summation

```
• sum(1, n) = sum(1, n-1) + n
• sum(1, 1)=1
 int sum(int n)
   if (n==1)
     return (1);
   else
     return(sum(n-1)+n);
```

Recursive Factorial

```
• n!=n\times(n-1)!
• fact(n)=n \times fact(n-1)
• 0!=1
  int fact(int n)
    if (n==0)
      return (1);
    else
    return (n*fact(n-1));
```

Recursive Multiplication

```
• a \times b = a \times (b-1) + a
• a×1=a
  int mult(int a, int b)
    if (b==1)
      return (a);
    else
      return(mult(a,b-1)+a);
```

Recursive Binary Search

```
int binsearch(int list[], int searchno, int left, int right)
 if (left <= right) {
 middle = (left + right)/2;
 switch (COMPARE(list[middle], searchno) ) {
   case -1:
     return binsearch(list, searchno, middle+1, right)
   case 0:
     return middle;
   case 1:
     return binsearch(list, searchno, left, middle-1);
 return -1;
```

Recursive Permutations

- Permutation of {a, b, c}
 - (a, b, c), (a, c, b)
 - (b, a, c), (b, c, a)
 - (c, a, b), (c, b, a)
- Recursion?
 - $a+Perm(\{b,c\})$
 - $b+Perm(\{a,c\})$
 - c+Perm({a,b})

Recursive Permutations (Contd.)

```
void perm(char *list, int i, int n)
 if (i==n) {
   for (j=0; j<=n; j++)
      printf("%c", list[j]);
  else {
    for (j=i; j \le n; j++) {
      SWAP(list[i], list[j], temp);
      perm(list, i+1, n);
      SWAP(list[i], list[j], temp);
```

Outline

- What is Data Structure
- System Life Cycle
- Data Abstraction and Encapsulation
- Algorithm Specification
- Performance Analysis and Measurement

Performance Evaluation

- Criteria
 - Does the program do what we want it to do?
 - Is the code correct?
 - Is the code readable?
- Performance analysis
 - Machine independent
- Performance measurement
 - Machine dependent

Performance Analysis

- Paper and pencil.
- Don't need a working computer program or even a computer.
- Some uses of performance analysis
 - determine practicality of algorithm
 - predict run time on large instance
 - compare 2 algorithms that have different asymptotic complexity
 - e.g., O(n) and $O(n^2)$

Performance Analysis (Contd.)

- Complexity theory
- Space complexity
 - Amount of memory
- Time complexity
 - Amount of computing time

Space Complexity

- Space requirement: $S(P) = c + S_p(I)$
 - P: any program
 - c: constant (fixed space, e.g., instruction, simple variables, constants)
 - $S_p(I)$: depends on characteristics of instance I
 - Characteristics: number, size, values of I/O associated with I
- If *n* is the only characteristic, $S_p(I) = S_p(n)$

Space Complexity (Contd.)

```
• <u>Program 1.16: (p.38)</u>
float Abc(float a, float b, float c)
{
   return a+b+b*c + (a+b-c) / (a+b) + 4.00;
}
```

```
S_{Abc}(n) = 0
```

The space needed by function Abc is independent of the instance characteristics

```
• Program 1.17 (p.39)
float Sum(float *a, const int n)
{
 float s = 0;
 for (int i=0; i < n; i++)
 s += a[i];
 return s;
```

$$S_{Sum}(n) = 0$$

Recall: pass the address of the first element of the array & pass by value

- *n* is passed by value, needs 1 word
- a is actually the address of the first element in a[](i.e. a[0]), the space needs 1 word

Space Complexity (Contd.)

• *Program 1.18 (p.39)*

```
float Rsum(float *a, const int n)
{
   if (n \le 0) return 0;
   else return (Rsum(a, n-1) + a[n-1]);
}
```

Assumptions:

Space needed for one recursive call of the program

$$S_{Rsum}(I) = S_{Rsum}(n) = 4(n+1)$$

Instance	Stack Space		
n	1 word		
a	1 word		
Returned value	1 word		
Return address	1 word		
Depth of recursion	<i>n</i> +1		
Total	4(<i>n</i> +1)		
Ex: <i>n</i> =1000	4004 recursion stack space		

Time Complexity

- $T(P) = c + T_p(I)$
 - c: compile time
 - $T_p(I)$: program execution time
 - Depends on characteristics of instance *I*
- Predict the growth in run time as the instance characteristics change
- Compile time (c)
 - Independent of instance characteristics
- Run (execution) time T_p
- A program step is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics

Methods to Compute the Step Count

- Introduce variable count into programs
- Tabular method
- Determine the total number of steps contributed by each statement step per execution × frequency
- Add up the contribution of all statements

- *Program 1.17 (p.39)*
- **0** float Sum(float *a, const int n)

```
1 {
```

- 2 float s = 0;
- 3 for (int i=0; i< n; i++)
- **4** s += a[i];
- 5 return s;
- **6** }

Line	Step per execution (s/e)	tep per execution (s/e) frequency	
1	0	1	0
2	1	1	1
3	1	n+1	n+1
4	1	n	n
5	1	1	1
6	0	1	0
	2 <i>n</i> +3		

- *Program 1.22 (p.46)*
- 0 line void Add(int **a, int **b, int **c, int m, int n)

```
1 {
2  for (int i=0; i<m; i++)
3  for (int j=0; j<n; j++)
4  c[i][j] = a[i][j] + b[i][j];
5 }</pre>
```

Line	s/e	frequency	Total steps	
1	0	1	0	
2	1	<i>m</i> +1	m+1	
3	1	m(n+1)	mn+m	
4	1	mn	mn	
5	0	1	0	
Tota	2 <i>mn</i> +2 <i>m</i> +1			

- Cases
 - Worst case
 - Best case
 - Average case

- Worst case and average case analysis is much more useful in practice
- Difficult to determine the exact step counts
- What a step stands for is inexact
 - e.g. x := y v.s. x := y + z + (x/y) + ... (both count as one step)
- Exact step count is not useful for comparison
- Step count doesn't tell how much time step takes
- Just consider the growth in run time as the instance characteristics change

Asymptotic Notations

- Big "oh": O
 - $f(n) \le cg(n)$
- Omega: Ω
 - $f(n) \ge cg(n)$
- Theta: Θ
 - $c_1g(n) \le f(n) \le c_2g(n)$

Big "oh": O

- f(n)=O(g(n)) if and only if (iff)
 - \exists a real constant c>0 and an integer constant $n_0 \ge 1$, $\exists f(n) \le cg(n) \ \forall n, n \ge n_0$

Big "oh": O (Contd.)

- Examples
 - 3n+2 = O(n) $3n+2 \le 4n$ for all $n \ge 2$
 - $10n^2+4n+2 = O(n^2)$ $10n^2+4n+2 \le 11n^2 \text{ for all } n \ge 10$
 - $3n+2 = O(n^2)$ $3n+2 \le n^2$ for all $n \ge 4$ Not tight enough
- g(n) should be a least upper bound

Omega: Ω

- $f(n) = \Omega(g(n))$ iff
 - \exists a real constant c>0 and an integer constant $n_0 \ge 1$, $\exists f(n) \ge cg(n) \ \forall n, n \ge n_0$

Omega: Ω (Contd.)

- Examples
 - $3n+3 = \Omega(n)$ $3n+3 \ge 3n$ for all $n \ge 1$
 - $6*2^n + n^2 = \Omega(2^n)$ $6*2^n + n^2 \ge 2^n \text{ for all } n \ge 1$
 - $3n+3 = \Omega(1)$ $3n+3 \ge 3$ for all $n \ge 1$
- g(n) should be a most lower bound

Theta: Θ

- $f(n) = \Theta(g(n))$ iff
 - \exists two positive real constants $c_1, c_2 > 0$, and an integer constant $n_0 \ge 1$, $\exists c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n, n \ge n_0$

Theta: Θ (Contd.)

- Examples
 - $3n+2 = \Theta(n)$ $3n \le 3n+2 \le 4n$, for all $n \ge 2$
 - $10n^2 + 4n + 2 = \Theta(n^2)$ $10n^2 \le 10n^2 + 4n + 2 \le 11n^2$, for all $n \ge 5$
- g(n) should be both lower bound & upper bound

Time Complexity of Some Examples

For loop

```
for (i=0; i<n; i++)
{
    x++;
    y++;
    z++;
}
```

• $n \times 3 = O(n)$

Time Complexity of Some Examples (Contd.)

Nested for loops

```
for (i=0; i <n; i++)
for (j=0; j<n; j++)
k++;
```

• $n \times n = O(n^2)$

Time Complexity of Some Examples (Contd.)

Consecutive statements

```
for (i=0; i<n; i++)

A[i]=0;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

A[i]+=A[j]+i+j
```

• $\max(1\times n, 1\times n\times n)=1\times n\times n=O(n^2)$

Time Complexity of Some Examples (Contd.)

```
• If/Else
 if (i>0) {
   i++;
   j++;
 else {
   for (j=0; j< n; j++)
     k++;
```

• $\max(2, 1 \times n) = O(n)$

Typical Growth Rate

- c: constant
- log log *n*: doubly log
- log *n*: logarithmic
- $\log^2 n$: Log-squared, as well as $(\log(n))^2$
- n: Linear
- nlogn
- n²: Quadratic
- n^3 : Cubic
- 2ⁿ: Exponential

Asymptotic Complexity

Asymptotic Complexity (Contd.)

• Comparison table of execution time between different complexities

log n	n	$n \log n$	n^2	n^3	2 ⁿ
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4,096	65,536
5	32	160	1024	32,768	4,294,967,296

Performance Measurement

- Timing event
- In C's standard library time.h
 - Clock function: system clock
 - Time function