Example The (15,7) code generated by $g(x) = 1 + X^4 + X^6 + X^7 + X^8$ is double error-correcting. Decode $r(X) = X^2 + X^6 + X^{11} + X^{12}$.

The following is a table of syndromes for the error patterns $0, 1, 1+X, 1+X^2, \dots, 1+X^{14}$.

error pattern	syndrome
0	0
1	1
1+X	1+X
$1 + X^2$	$1 + X^2$
$1 + X^3$	$1 + X^3$
$1 + X^4$	$1 + X^4$
$1 + X^5$	$1 + X^5$
$1 + X^6$	$1 + X^6$
$1 + X^7$	$1 + X^7$
$1 + X^8$	$X^4 + X^6 + X^7$
$1 + X^9$	$X + X^4 + X^5 + X^6$
$1 + X^{10}$	$1 + X + X^2 + X^5 + X^6 + X^7$
$1 + X^{11}$	$X^2 + X^3 + X^4$
$1 + X^{12}$	$1 + X + X^3 + X^4 + X^5$
$1 + X^{13}$	$1 + X^2 + X^4 + X^5 + X^6$
$1 + X^{14}$	$1 + X^3 + X^5 + X^6 + X^7$

$$\begin{array}{lll} r(x) = X^2 + X^6 + X^{11} + X^{12} & s(X) = 1 + X + X^5 + X^6 \\ r^{(1)}(X) = Xr(X) \pmod{X^{15} + 1} & s^{(1)}(X) = Xs(X) \pmod{g(X)} = X + X^2 + X^6 + X^7 \\ r^{(2)}(X) = Xr^{(1)}(X) \pmod{X^{15} + 1} & s^{(2)}(X) = Xs^{(1)}(X) \pmod{g(X)} = 1 + X^2 + X^3 + X^4 + X^6 \\ r^{(3)}(X) = Xr^{(2)}(X) \pmod{X^{15} + 1} & s^{(2)}(X) = Xs^{(1)}(X) \pmod{g(X)} = 1 + X^2 + X^3 + X^4 + X^5 \\ r^{(4)}(X) = Xr^{(3)}(X) \pmod{X^{15} + 1} & s^{(3)}(X) = Xs^{(2)}(X) \pmod{g(X)} = X + X^3 + X^4 + X^5 + X^7 \\ r^{(5)}(X) = Xr^{(4)}(X) \pmod{X^{15} + 1} & s^{(4)}(X) = Xs^{(3)}(X) \pmod{g(X)} = 1 + X^2 + X^5 + X^7 \\ r^{(5)}(X) = Xr^{(4)}(X) \pmod{X^{15} + 1} & s^{(5)}(X) = Xs^{(4)}(X) \pmod{g(X)} = 1 + X + X^3 + X^4 + X^7 \\ r^{(6)}(X) = Xr^{(5)}(X) \pmod{X^{15} + 1} & s^{(6)}(X) = Xs^{(5)}(X) \pmod{g(X)} = 1 + X + X^3 + X^4 + X^7 \\ \text{Hence, } e^{(6)}(X) = 1 + X^{10}. \text{ Since } e^{(6)}(X) = X^6 e(X) \pmod{X^{15} + 1}, \end{array}$$

$$e(X) = X^9 e^{(6)}(X) = X^9 (1 + X^{10}) = X^4 + X^9 \pmod{X^{15} + 1}.$$

The transmitted codeword is $v(X) = r(X) + e(X) = X^2 + X^4 + X^6 + X^9 + X^{11} + X^{12}$.