FSL91030(M) chip

SoC User Manual

Manual version: V1.0

Wuhan Feisiling Microelectronics Technology Co., Ltd.

December 2022

Table of contents

1 Function Overview	1
1.1 Functional Block Diagram	
1.2 Bus Characteristics	6
2 Introduction to RISC V Processor Core	7
3 Storage Resources	9
3.1 On-chip storage resources	9
3.2 Off-chip Flash storage resources	9
3.3 On-chip SRAM List	10
3.3.1 ICache	10
3.3.2 Dcache	10
3.3.3 ILM	11
3.3.4 DLM	12
4 Address Allocation	13
5 Power-on Process Control	14
6 Reset Processing	15
7 Top-level Pin Table	16
8 Interrupt Handling	18
8.1 IRQC Interrupt Management	18
8.2 NMI Interrupt Management	18
9 Peripheral Introduction	19
9.1 GPIO	19
9.1.1 GPIO Function Description	19
9.1.2 Port Operation Description	19
9.1.3 GPIO Interrupt Request	20
9.1.4 Hardware I/O Function (IOF)	
9.1.5 Output Inversion	20

	9.1.6 Memory Map20		
	9.1.7 IVAL	21	
	9.1.8 IEN	21	
	9.1.9 OEN	2	
	9.1.10 OVAL	22	
	9.1.11 PUE	22	
	9.1.12 DS	22	
	9.1.13 PDE	23	
	9.1.14 OPEN DRAIN	23	
	9.1.15 PUP	23	
	9.1.16 RISE_IE		23
	9.1.17 RISE_IP		24
	9.1.18 FALL_IE	24	
	9.1.19 FALL_IP		24
	9.1.20 HIGH_IE		24
	9.1.21 HIGH_IP		25
	9.1.22 LOW_IP	25	
	9.1.23 IOF_EN	25	
	9.1.24 IOF_SEL0	25	
	9.1.25 LOW_IE	26	
	9.1.26 IOF_SEL1	26	
	9.1.27 EVENT_RISE_EN	26	
	9.1.28 EVENT_FALL_EN	26	
	9.1.29 OUT_XOR	27	
	9.1.30 SW_FILTER_EN	27	
9.2 Q	SPI	27	
	9.2.1 Register Description	28	
	9.2.2 SPI_SCKDIV	28	
	9.2.3 SPI_SCKMODE	29	

	9.2.4 SPI_CSID	29
	9.2.5 SPI_CSDEF	29
	9.2.6 SPI_CSMODE	29
	9.2.7 SPI_DELAY0	30
	9.2.8 SPI_DELAY1	30
	9.2.9 SPI_FMT	30
	9.2.10 SPI_STATUS	31
	9.2.11 SPI_TXDATA	31
	9.2.12 SPI_RXDATA	31
	9.2.13 SPI_FCTRL	32
	9.2.14 SPI_FFMT	32
	9.2.15 SPI_FFMT1	32
	9.2.16 SPI_RXEDGE	33
	9.2.17 SPI_TXMARK	33
	9.2.18 SPI_RXMARK	33
	9.2.19 SPI_IE	33
	9.2.19 SPI_IE	
9.3 L		34
9.3 L	9.2.20 SPI_IP	34
9.3 L	9.2.20 SPI_IP	34 34
9.3 L	9.2.20 SPI_IP JART	34 34 34
9.3 U	9.2.20 SPI_IP JART 9.3.1 UART Features 9.3.2 UART Interrupt Request	34 34 35
9.3 L	9.2.20 SPI_IP	34 34 35 35
9.3 L	9.2.20 SPI_IP JART 9.3.1 UART Features 9.3.2 UART Interrupt Request 9.3.3 Memory Map 9.3.4 UART_TXDATA	34 34 35 35 36
9.3 L	9.2.20 SPI_IP JART 9.3.1 UART Features 9.3.2 UART Interrupt Request 9.3.3 Memory Map 9.3.4 UART_TXDATA 9.3.5 UART_RXDATA	34 34 35 35 36 36
9.3 L	9.2.20 SPI_IP JART 9.3.1 UART Features 9.3.2 UART Interrupt Request 9.3.3 Memory Map 9.3.4 UART_TXDATA 9.3.5 UART_RXDATA 9.3.6 UART_TXCTRL	34 34 35 36 36 36 36
9.3 L	9.2.20 SPI_IP	34 34 35 36 36 36 36
9.3 U	9.2.20 SPI_IP JART	343435363636363637
9.3 U	9.2.20 SPI_IP JART 9.3.1 UART Features 9.3.2 UART Interrupt Request 9.3.3 Memory Map 9.3.4 UART_TXDATA 9.3.5 UART_RXDATA 9.3.6 UART_TXCTRL 9.3.7 UART_RXCTRL 9.3.8 UART_IE 9.3.9 UART_IP	3434353636363637

	9.3.12 UART_SETUP	38
	9.3.13 UART_ERROR	38
	9.3.14 UART_IRQ_EN	39
	9.4 DMA	39
	9.4.1 Function Introduction	39
	9.4.2 Register Map	39
	9.4.3 DMA_CFG_MSRCADDR	40
	9.4.4 DMA_CFG_MDSTADDR	40
	9.4.5 DMA_CFG_MCTRL	40
	9.4.6 DMA_CFG_RPT	42
	9.4.7 DMA_CFG_MSIZE	42
	9.4.8 DMA_CHX_IRQ_EN	42
	9.4.9 DMA_CHX_IRQ_STAT	43
	9.4.10 DMA_CHX_IRQ_CLR	43
	9.4.11 Accessing switch registers	43
	9.5 I2C	44
	9.5.1 I2C_PRERIo	44
	9.5.2 I2C_PRERhi	44
	9.5.3 I2C_CTR	45
	9.5.4 I2C_TXR	45
	9.5.5 I2C_RXR	45
	9.5.6 I2C_CR	45
	9.5.7 I2C_SR	46
	9.5.8 I2C_TRISE	46
	9.5.9 I2C_FLTER	46
10	Revision Information	48

1. Function Overview

The SoC functions of the FSL91030M chip are summarized as follows:

ÿ Use Nuclei core, a 64-bit reduced instruction set based on RISC-V architecture.

ÿ Equipped with on-chip SRAM as LM:

ÿ 64KB tightly coupled instruction memory

ÿ 64KB tightly coupled data memory

ÿ Equipped with customized SoC bus.

ÿ Equipped with various peripheral IPs

ÿ 2 asynchronous serial transceiver interfaces

ÿ One I2C interface

ÿ General GPIO: Supports 24 general input and output.

ÿ Dedicated reset:

- ÿ 1 System reset interface;
- ÿ 1 POR reset interface;
- ÿ QSPI Flash interface
 - ÿ Support SPI FLASH boot via XIP

1.1 Functional Block Diagram

The block diagram of the FSL91030M SoC is shown in Figure 1-1. In addition to the RSIC V core and bus, the figure also includes related peripherals. For detailed description of each peripheral, refer to Chapter 9.

Figure 1-1 SoC block diagram

The clock of SoC is shown in Figure 1-2.

Figure 1-2 SoC clock

The frequency division unit used is shown in Figure 1-3.

Figure 1-3 Frequency division unit used

The SoC reset is shown in Figure 1-4.

Figure 1-4 SoC reset

1.2 Bus Characteristics

The SoC of the FSL91030M chip defines a custom bus protocol ICB (Internal Chip Bus). The original intention of the ICB bus is In order to combine the advantages of AXI bus and AHB bus as much as possible, and to have both high speed and ease of use, it has the following characteristics:

- ÿ Compared with AXI and AHB, ICB's protocol control is simpler, with only two independent channels, as shown in Figure 1-5. Read and write operations share the address channel and the result return channel.
- ÿ Uses separate address and data phases like the AXI bus.
- ÿ Like the AXI bus, it uses address range addressing and supports any number of masters and slaves, such as one master and one slave, one master and multiple slaves, multiple masters and one slave, multiple masters and multiple slaves, etc.
- ÿ Like the AHB bus, each read or write operation generates an address on the address channel, instead of just generating a start address like in AXI.
- ÿ Like the AXI bus, it supports address non-aligned data access and uses a byte mask (Write Mask) to control some write operations.
- ÿ Like the AXI bus, it supports multiple outstanding transactions.
- ÿ Like the AHB bus, it does not support out-of-order return and out-of-order completion. The feedback channel must return the results in order.
- \ddot{y} As with the AXI bus, it is very easy to add pipeline stages to obtain high-frequency timing.
- \ddot{y} The protocol is very simple and can be easily bridged to other bus types, such as AXI, AHB, APB or TileLink.

Figure 1-5 ICB bus diagram

2 Introduction to RISC V Processor Core

The features of the RISC V core are listed below:

ÿ CPU Core

- ÿ 6-stage variable-length pipeline architecture adopts first-class processor architecture design to achieve industry-leading energy efficiency and comprehensive cost.
- ÿ Support dynamic branch prediction.
- ÿ Configurable instruction prefetch unit that can prefetch two instructions in sequence, thereby hiding the memory access latency of instructions.
- ÿ Supports machine mode, configurable supervisor mode and configurable user Mode (User Mode).
- ÿ Supports non-aligned access to memory.
- ÿ Two-level nested exception recovery.
- ÿ Support hardware single-cycle multiplier.
- ÿ Support hardware multi-cycle divider.
- ÿ Support instruction set architecture (ISA)

The processor core supports 64-bit RISC-V instruction set architecture and RV64I/M/A/C

IMAC is a combination of command subsets that are fixedly supported.

- ÿ Bus interface
 - \ddot{y} Supports 64-bit standard AXI system bus interface for accessing external instructions and data.
 - ÿ Supports 64-bit wide instruction local memory (ILM) bus interface (supports SRAM Interface protocol) for connecting to private instruction local memory.
 - ÿ Supports 64-bit wide Data Local Memory (DLM) bus interface (supports SRAM interface protocol) for connecting private data local memory.
 - ÿ Supports 64-bit wide private peripheral interface (PPI) and standard APB interface Port protocol used to connect private peripherals.
- ÿ Support debugging function
 - ÿ Support standard four-wire JTAG interface.

y Supports a configurable number of hardware breakpoints.

y Supports configurable debugger connection timeout function.

y Support mature interactive debugging tools.

y Support two power consumption management

y Support WFI (Wait For Interrupt) and WFE (Wait For Event) to enter sleep mode.

y Support two levels of sleep mode: light sleep and deep sleep.

y Support Enhanced Core Level Interrupt Controller (ECLIC)

y Support software interrupts, timer interrupts and external interrupts defined by the RISC-V standard.

y Supports a configurable number of external interrupts.

y Supports configurable number of external interrupts.

y Supports configurable number of interrupt levels and priorities, and supports software dynamic programmable modification of the number of interrupt levels and interrupt priorities.

value.

y Support fast vector interrupt processing mechanism.

y Support NMI (Non-Maskable Interrupt).

3 Storage Resources

As shown in Figure 1-1, the memory resources in the FSL91030M SoC are divided into on-chip memory resources and off-chip Flash memory resources, which are introduced in this section.

3.1 On-chip storage resources

The on-chip storage resources of the FSL91030M SoC mainly include ILM, DLM and system RAM.

- ÿ ILM is the instruction memory of the processor core, and its characteristics are as follows:
 - ÿ Size: 64KB.
 - ÿ Configurable address range (default starting address is 0x8000_0000), see Chapter 4 for the complete address allocation of the SoC.
 - ÿ In this supporting SoC, although the ILM SRAM is mainly used to store instructions, its address range can also be used to store data. The processor core can access the ILM through the system memory bus of the SoC.
- ÿ DLM is the data memory of the processor core, and its characteristics are as follows:
 - ÿ Size: 64KB.
 - ÿ Configurable address range (default start address is 0x8001_0000), see Chapter 4 for complete address allocation of SoC.
 - ÿ In this supporting SoC, although DLM SRAM is mainly used to store data, its address range can also be used to store

 The processor core can access the DLM through the SoC's system memory bus.
- ÿ System DDR RAM is the data storage of SOC bus space, and its characteristics are as follows:
 - ÿ Size: 256MB.
 - ÿ Configurable address range (default start address is 0x4000_0000), see Chapter 4 for complete address allocation of SoC.
 - ÿ In this supporting SoC, although DLM SRAM is mainly used to store data, its address range can also be used to store instructions. The processor core can access DLM through the system memory bus of SoC.

3.2 Off-chip Flash storage resources

The SoC off-chip storage resources of the FSL91030M chip are mainly Flash memory, the main points of which are as follows:

- ÿ External Flash can be mapped into a read-only address area through QSPI0 using its XiP (Execution in Place) mode.
 - The address range is $0x2000_0000 \sim 0x2FFF_FFFF$.
- ÿ Users can use the debugger to burn the developed program into Flash, and then use the XiP mode of Flash to directly Executed from Flash.

3.3 On-chip SRAM List

3.3.1 ICache

Tag Single Port SRAM: 8 blocks

Width: 54

Depth: 128

Valid Write-Mask: 1 bit

Data Single Port SRAM: 8 blocks

Width: 64

Depth: 512

Valid Write-Mask: 18bit

Name	Direction W	idth	Description
icache_tag0_cs	0	1	CS signal of Tag RAM0.
icache_tag0_we	0	1	Write enable of Tag RAM0
icache_tag0_addr	0	7	Address of Tag RAM0
icache_tag0_wdata	0	54	Write data of Tag RAM0
icache_tag0_rdata	I	54	Read data of Tag RAM0
clk_icache_tag0	0	1	Tag RAM0's CLK signal
icache_data0_cs	0	1	CS signal of Data RAM0.
icache_data0_wem	0	8	Write enable of Data RAM0, support the byte enable
icache_data0_addr	0	9	Address of Data RAM0
icache_data0_wdata	0	64	Write data of Data RAM0.
icache_data0_rdata	I	64	Read data of Data RAM0.
clk_icache_data0	0	1	Data RAM0's CLK signal

3.3.2 Dcache

Tag Single Port SRAM: 2 blocks

Width: 23

Depth: 128

Valid Write-Mask: 1 bit

Data Single Port SRAM: 4 blocks

Width: 32

Depth: 512

Valid Write-Mask: 4 bits

Name	Direction \	Vidth	Description
dcache_w0_tram_cs	0	1	CS signal of Tag RAM0.
dcache_w0_tram_we	0	1	Write enable of Tag RAM0
dcache_w0_tram_addr	0	10	Address of Tag RAM0
dcache_w0_tram_din	0	20	Write data of Tag RAM0
dcache_w0_tram_dout	I	20	Read data of Tag RAM0
clk_dcache_w0_tram	0	1	Tag RAM0's CLK signal
dcache_dram_b0_cs	0	1	CS signal of Data RAM0.
dcache_dram_b0_wem	0	4	Write enable of Data RAM0, support the byte enable
dcache_dram_b0_addr	0	12	Address of Data RAM0
dcache_dram_b0_din	0	32	Write data of Data RAM0.
dcache_dram_b0_dout	I	32	Read data of Data RAM0.
clk_dcache_dram_b0	0	1	Data RAM0's CLK signal

3.3.3 ILM

ILM Single Port SRAM: 1 block

Width: 64

Depth: 64KB

Valid Write-Mask: 8bit

Name	Direction	Width	Description
iram_ram_cs	0	1	CS signal of Data RAM.
iram_ram_wem	0	8	Write mask of Data RAM, support the byte enable
iram_ram_we	0	1	Write enable of Data RAM
iram_ram_addr	0	13	Address of Data RAM
iram_ram_din	0	64	Write data of Data RAM
iram_ram_dout	I	64	Read data of Data RAM
iram_ram_clk	0	1	Data RAM's CLK signal

3.3.4 DLM

DLM Single Port SRAM: 2 blocks

Width: 32

Depth: 64KB in total

Valid Write-Mask: 4 bits

Name	Direction	Width	Description
dram_ram_cs	0	1	CS signal of Data RAM.
dram_ram_wem	0	4	Write mask of Data RAM, support the byte enable
dram_ram_we	0	1	Write enable of Data RAM
dram_ram_addr	0	13	Address of Data RAM
dram_ram_din	0	32	Write data of Data RAM
dram_ram_dout	I	32	Read data of Data RAM
dram_ram_clk	0	1	Data RAM's CLK signal

4 Address Allocation

The SoC bus address allocation of the FSL91030M chip is shown in Table 4-1.

Table 4-1 SoC address allocation table

Bus Grouping	Components	Address range	describe	
	DEBUG	0x0000_0000 ~	Note: The debug module is mainly used for debugging	
	DEBOG	0x0000_0FFF	Ordinary software programs should not use this interval	
Core internal private	ECLIC	0x0C00_0000 ~	FOLIO laterary Management Hely Address Occasi	
Core internal private	ECLIC	0x0C00_FFFF	ECLIC Interrupt Management Unit Address Space	
	PLIC	0x0800_0000 ~	DUC later at Management Hait Address Cooks	
	1 210	0x0800_FFFF	PLIC Interrupt Management Unit Address Space	
	ILM	0x8000_0000 ~	ILM address range, the range size depends on the size of the ILM configuration	
System Storage	ILIVI	0x8000_FFFF	Small.	
(MEM) Interface	DIM	0x8001_0000 ~	DLM address range, the range size depends on the size of the ILM configuration	
	DLM	0x8001_FFFF	Small.	
	GPIO	0x1001_1000 ~		
	GPIO	0x1001_1FFF	GPIO module register address range	
	UART 0	0x1001_3000 ~	The first UART module register address range	
	OAICI O	0x1001_3FFF	The first OAKT module register address range	
	UART 1	0x1001_2000 ~	Second UART module register address range	
		0x1001_2FFF	Cocond O/IIV Incode register address range	
	I2C QSPI	0x1001_8000 ~	I2C module register address range	
		0x1001_8FFF	, , ,	
System peripherals		0x1001_4000 ~	XPI QSPI module register address range	
		0x1001_4FFF		
	QSPI0	0x1001_6000 ~	QSPI0 module register address range	
		0x1001_6FFF		
	DMA	0x1001_7000 ~	DMA module register address range	
	Off-Chip	0x1001_7FFF		
	QSPI Flash	0x2000_0000 ~	When QSPI is in Flash XiP mode, the external Flash is mapped	
	Read	0x2FFF_FFFF	Read-only address range.	
	SwitchHStab	0x5000_0000 ~		
	le	0x5FFF_FFFF	Table DMA address range when accessing switch registers	
	DDR CFG	0x1001_9000~	Disconfiguration and interest disconnection	
External AXI interface ground	DDK CFG	0x1001_9FFF	Ddr configuration register address range	
Address Space	Local Bus	0x6000_0000 ~	Address range when directly accessing the switch register	
		0x6FFF_FFFF	Addition range when uncomy accessing the switch register	
	DDR RAM	0x4000_0000 ~	DDR RAM address range. The range size depends on the size of	
	221(10.00)	0x4FFF_FFFF	the DDR RAM configuration.	
Other address ranges	The address ranges not used in the table are ignored for writes and return 0 for reads.			

5 Power-on process control

After the processor core in the FSL91030M SoC is powered on and reset, different addresses can be selected for execution using the reset_vector input. Usually the address can be set as follows:

- ÿ Start execution from external Flash
 - ÿ Since the address range of the mapped external Flash (Off-Chip QSPI0 Flash Read) is 0x2000_0000 ~ 0x2FFF_FFFF, if execution starts from the external Flash, the PC reset value of the RISC-V processor core is 0x20000000.
 - ÿ Users can use the debugger to burn the developed program into the Flash. Using the XiP mode of the Flash, the program can be directly Executed from Flash.
- ÿ Start execution from DDR address.
 - ÿ Users can burn the developed program into DDR through the debugger, and the program can be executed directly from DDR.

6 Reset Processing

There are 2 reset domains in the SoC of the FSL91030M chip, including:

- 1. PoR reset domain: Debug module and JTAG DMI module
- 2. System reset domain: including other system modules except PoR reset domain

There are several sources for resetting the SoC.

(1) From the POR (Power-On-Reset) nPOR_RST chip pin.

After the chip is powered on, the external POR outputs a reset signal until the voltage reaches the stable threshold, ensuring that the chip can be automatically reset correctly. This reset source can act on the POR and system reset domains.

(2) From chip pin nSYS_RST.

The nSYS_RST pin can be used for external reset. This reset source only works in the system reset domain.

(3) Reset from Core, including Reset triggered by Debug Module. This reset source only works on the system reset domain.

Any of the above global reset sources can trigger a system reset.

7 Top level pin table

The top-level pins of the FSL91030M chip SoC are shown in Table 7-1.

Table 7-1 Top-level pin table

	Name Function Sys	tem clock input	Auxiliary function 1	Auxiliary function 2
Clock	syst_clk			
clock	rtc_clk	RTC clock input		
system	nPOR_R\$\stem pow	er-on reset signal input		
system		n normal operation reset signal input		
system	JTAG_TCK	JTAG debug port		
system	JTAG_TDI	3 1 2 2 3 3 7 3 7		
system	JTAG_TDO			
system	JTAG_TMS			
system		NMI Input		-
system	ext_nmi	DFT test mode		
	Test_mode	Di i test mode		
	qspi_d0			
	qspi_d1			
QSPI	qspi d2			
	qspi d3			
	qspi sck			
	qspi_cs			
	qspi0 d0			
	qspi0_d1			
QSPI0	qspi0 d2			
401.10	qspi0_d3			
	qspi0 sck			
	qspi0_cs			
I2C	sd			
.20	scl			
UART0	rx			
OAIT10	tx			
UART1	rx			
OAKTI	tx			
DDR	DDR interface			
	ddr init done		8	
GPIO	GPIO0	GPIO0		
GPIO	GPIO1	GPIO1		
GPIO	GPIO2	GPIO2		
GPIO	GPIO3	GPIO3		
GPIO	GPIO4	GPIO4		
GPIO	GPIO5	GPIO5		
GPIO	GPIO6	GPIO6		
GPIO	GPIO7	GPIO7		
GPIO	GPIO8	GPIO8		
GPIO	GPIO9	GPIO9		
GPIO	GPIO10	GPIO10		

GPIO	GPIO11	GPIO11	
GPIO	GPIO12	GPIO12	
GPIO	GPIO13	GPIO13	
GPIO	GPIO14	GPIO14	
GPIO	GPIO15	GPIO15	
GPIO	GPIO16	GPIO16	
GPIO	GPIO17	GPIO17	
GPIO	GPIO18	GPIO18	
GPIO	GPIO19	GPIO19	
GPIO	GPIO20	GPIO20	
GPIO	GPIO21	GPIO21	
GPIO	GPIO22	GPIO22	
GPIO	GPIO23	GPIO23	

8Interrupt handling

This chapter will introduce the interrupt module.

8.1 IRQC Interrupt Management

IRQC can support multiple external interrupt sources. The number of interrupt sources connected in a specific SoC may be different.

GPIO interrupts and other peripheral interrupts are connected as external interrupt sources, and their interrupt allocation is shown in Table 8-1.

Table 8-1 IRQC interrupt management

IRQC interrupt source number	Current new version
19	gpio_0~23
20	uart0
having croe	uart1
bearly too	I2C
maning diseas	QSPI
treamly four	QSPI0
25	udma
26	Watch Dog
27	Switch
28	Pkt_dma_tx_end
29	Pkt_dma_rx_end
30	Pkt_dma_rx_req
31	DDR
32	Axi_cp_intr
33	Dp2reg_intr

8.2 NMI Interrupt Management

NMI interrupt is on the external port of this SoC.

9Peripheral Introduction

This chapter will introduce the peripheral modules mounted on the private device bus of the SoC.

9.1 GPIO

Figure 9-1 GPIO data flow

9.1.1 GPIO Function Description

GPIO stands for General Purpose I/O, and its main points are as follows:

- ÿ GPIO is used to provide a set of I/O general input and output interfaces. Each I/O can be configured as input or output by software. If it is output, the specific output value can be set.
- ÿ Each GPIO I/O is connected to the interrupt source interface of IRQC as an interrupt source.
- ÿ Each I/O can also be configured as an IOF (Hardware I/O Functions), which means that the I/O is provided to other modules inside the SoC.

 Reuse.
- ÿ For example, SPI, UART, etc. The multiplexing and allocation of GPIO by SoC internal modules is shown in Figure 9-1, where each I/O can be multiplexed by two internal modules, and the software can select the signal source by configuring each I/O to select IOF0 or IOF1.

The SoC GPIO pins of the FSL91030M chip are the main general interface for connecting the SoC with the outside world.

9.1.2 Port Operation Description

Each bit of the GPIO port can be configured into multiple modes by software:

ÿ Input pull-up

- ÿ Input pull-down
- ÿ Open drain output
- ÿ Push-pull output
- ÿ Drive strength output

9.1.3 GPIO Interrupt Request

Each GPIO bit can generate an interrupt bit. The interrupt can be driven by the rising or falling edge, or by the level value, and each Each interrupt can be enabled individually.

The input is synchronized before being sampled by the interrupt logic, so the input pulse width must be long enough to be detected by the synchronization logic.

To enable interrupts, set the corresponding bits in rise_ie and/or fall_ie to 1. If the corresponding bits in rise_ip or fall_ip are set is 1, the interrupt pin will go high.

Table 9-1 GPIO interrupt request

Interrupt Source	Interrupt Flag	Interrupt Control bit
rising edge from GPIO falling	RISE_IP	RISE_IE
edge from GPIO high level	FALL_IP	FALL_IE
from GPIO low level from	HIGH_IP	HIGH_IE
GPIO	LOW_IP	LOW_IE

9.1.4 Hardware I/O Function (IOF)

Each GPIO pin can implement up to 2 HW driver functions (IOF) enabled via the IOF_EN register. and IOF_SEL1 registers select which IOF to use.

When the pin is set to perform IOF, the software registers IEN, OEN, OVAL, PUE, DS, PDE, OD,

PUP can directly control the pins. However, the pins can be controlled by the hardware driver IOF. Which functions are controlled by IOF and which functions are controlled by software? register control, fixed in hardware on a per IOF basis. If a pin [x] configured with IOF_EN [x] does not have iof_en, then the pin Will revert to full software control.

9.1.5 Output Inversion

When configured as an output (controlled by SW or IOF), the XOR register of SW can be written in combination with the output to invert it.

9.1.6 Memory Map

The memory map of the GPIO registers is shown in the following table. The GPIO memory map is a 32-bit memory access that requires native access to it.

Table 9-2 GPIO memory address mapping register list

Register Offset	Register Name	Description

FSL91030 (M) Chip SoC User Manual

900	At .	
0x00	IVAL	Pin Value
0x04	IEN	Pin input enable
0x08	OEN	Output enable of Pin
0x0C	OVAL	Output port value
0x10	PUE	Pull-up enable
0x14	DS	Drive Strength
0x18	PDE	Pull-down enable
0x1C	OPEN DRAIN	Open drain enable
0x20	PUP	Push-pull enable
0x24	RISE_IE	Rising edge interrupt enable
0x28	RISE_IP	Rising edge interrupt wait flag
0x2C	FALL_IE	Falling edge interrupt enable
0x30	FALL_IP	Falling edge interrupt wait flag
0x34	HIGH_IE	High level interrupt enable
0x38	HIGH_IP	High level interrupt wait flag
0x3C	LOW_IE	Low level interrupt enable
0x40	LOW_IP	Low level interrupt wait flag
0x44	IOF_EN	HW I/O function enable
0x48	IOF_SEL0	HW I/O function select 0
0x4C	IOF_SEL1	HW I/O function select 1
0x50	EVENT_RISE_EN	Rising edge event enable
0x54	EVENT_FALL_EN	Falling edge event enable
0x58	OUT_XOR	Output XOR
0x5C	SW_FILTER_EN	Active Schmitt trigger input
Mon		

9.1.7 IVAL

Register offset: 0x00

Register Description: Pin Value

Bits	Name	R/W	DescriptionInput	Default
[0:31]	ival	RO	value	0x0

9.1.8 IEN

Register offset: 0x04

Register Description: Pin input enable

Bits	Name	R/W	Description	Default

Wuhan Feisiling Microelectronics Technology Co., Ltd.

FSL91030 (M) Chip SoC User Manual

0:31	ien	R W	Input Enable 0: Input disabled	0x0
			1: Input Enable	

9.1.9 OEN

Register offset: 0x08

Register Description: Pin output enable

Bits	Name	R/W	Description	Default
			Output Enable	
0:31	oen	R W	0: Output disabled	0x0
			1: Output Enable	

9.1.10 OVAL

Register offset: 0x0C

Register Description: Output Port Value

Bits	Name	R/W		Default
0:31	oval	R W	DescriptionOutput value	0x0

9.1.11 PUE

Register offset: 0x10

Register Description: Pull-up Enable

Bits	Name	R/W	DescriptionPull	Default
			-up mode:	
0:31	pue	R W	0: Disable	0x0
			1: Enable	

9.1.12 DS

Register offset: 0x14

Register Description: Drive Strength

Bits	Name R/W		DescriptionWhen	Default
			configured as an output, each pin has a SW controllable drive strength	
0:31	ds	R W	0: Disable	0x0
			1: Enable	

9.1.13 PDE

Register offset: 0x18

Register Description: Pull-down Enable

Bits	Name	R/W	Description	Default
			drop-down mode:	
[0:31]	pde	RW	0: Disable	0x0
			1: Enable	

9.1.14 OPEN DRAIN

Register offset: 0x1C

Register Description: Open Drain Enable

Bits	Name	R/W	DescriptionOpen	Default
			drain mode:	
0:31	open drain	RW	0: Disable	0x0
			1: Enable	

9.1.15 PUP

Register offset: 0x20

Register Description: Push-Pull Enable

Bits	Name	R/W	DescriptionPull	Default
			-up mode:	
0:31	pull-up enable RW		0: Disable	0x0
			1: Enable	

9.1.16 RISE_IE

Register offset: 0x24

Register Description: Rising edge interrupt enable

Bits	Name	R/W	DescriptionRising	Default
			edge interrupt mode:	
0:31	rise ie	RW	0: Disable	0x0
			1: Enable	

FSL91030 (M) Chip SoC User Manual

9.1.17 RISE_IP

Register offset: 0x28

Register Description: Rising edge interrupt wait flag

Bits	Name	R/W	Description	Default
			Rising edge interrupt pending:	
0:31	rise ip	R W	0: Rising edge interrupt driven by GPIO rising edge	0x0
			1: Rising edge interrupt driven by software	

9.1.18 FALL IE

Register offset: 0x2C

Register Description: Falling Edge Interrupt Enable

Bits	Name	R/W	Description	Default
			Falling edge interrupt enable:	
0:31	fall ie	RW	0: Disable	0x0
			1: Enable	

9.1.19 FALL_IP

Register offset: 0x30

Register Description: Falling edge interrupt wait flag

Bits	Name	R/W		Default
0:31	fall in	R W	DescriptionFalling edge interrupt wait flag: 0: Falling edge interrupt driven by the falling edge of GPIO	0x0
0.51	fall ip		1: Falling edge interrupt driven by software	OXO

9.1.20 HIGH_IE

Register offset: 0x34

Register Description: High level interrupt enable

Bits	Name	R/W	DescriptionHigh	Default
			level interrupt enable:	0x0
0:31	high ie	RW	0: Disable	0x0
	_		1: Enable	

9.1.21 HIGH_IP

Register offset: 0x38

Register Description: High level interrupt wait flag

Bits	Name	R/W	DescriptionHigh	Default
			level interrupt waiting flag:	
0:31	high ip	RW	0: Falling edge interrupt driven by the falling edge of GPIO	0x0
			1: Falling edge interrupt driven by software	

9.1.22 LOW_IP

Register offset: 0x40

Register Description: Low level interrupt wait flag

Bits	Name	R/W	DescriptionLow	Default
			level interrupt wait flag:	
0:31	low ip	RW	0: Low level interrupt driven by the falling edge of GPIO	0x0
			1: Low level interrupt driven by software	

9.1.23 IOF_EN

Register offset: 0x44

Register Description: HW I/O function enable

Bits	Name	R/W	Description	Default
[0:31]	iof en	R W	HW I/O function enable	0x0

9.1.24 IOF_SEL0

Register offset: 0x48

Register Description: HW I/O Function Selection 0

Bits	Name	R/W	DescriptionEach	Default
			GPIO pin can implement up to 4 HW driver functions (based on	
			at {iof_sel1,iof_sel0})	
0:31	iof sel0	RW	00: Select HW IOF0	0x0
			01: Select HW IOF1	
			10/11: Reversal	

9.1.25 LOW_IE

Register offset: 0x3C

Register Description: Low level interrupt enable

Bits	Name	R/W	DescriptionLow	Default
			level interrupt enable:	
0:31	low ie	RW	0: Disable	0x0
			1: Enable	

9.1.26 IOF_SEL1

Register offset: 0x4C

Register Description: HW I/O Function Selection 1

Bits	Name	R/W	DescriptionEach	Default
			GPIO pin can implement up to 4 HW driver functions (based on	
			at {iof_sel1,iof_sel0})	
0:31	iof sel1	RW	00: Select HW IOF0	0x0
			01: Select HW IOF1	
			10/11: Reversal	

9.1.27 EVENT_RISE_EN

Register offset: 0x50

Register Description: Rising Edge Event Enable

Bits	Name	R/W		Default
			DescriptionRising edge event enable:	
0:31	event rise en RW		0: Disable	0x0
			1: Enable	

9.1.28 EVENT_FALL_EN

Register offset: 0x54

Register Description: Falling Edge Event Enable

Bits	Name	R/W	Description	Default
			Falling edge event enable:	
0:31	event fell in RW		0: Disable	0x0
			1: Enable	

9.1.29 OUT_XOR

Register offset: 0x58

Register Description: Output Inversion Enable

Bits	Name	R/W	DescriptionOutput	Default
			inversion enable:	
0:31	out xor	RW	0: Disable	0x0
			1: Enable	

9.1.30 SW_FILTER_EN

Register offset: 0x5C

Register Description: Valid Schmitt Trigger Input

Bits	Name	R/W	Description	Default
			Effective Schmitt trigger input in PAD interface:	2
0:31	sw filter en	R W	0: Disable	0x0
			1: Enable	

9.2 QSPI

Figure 9-2 QSPI data flow

In this SoC, there is a QSPI master interface. As a SPI master, it supports sending and receiving data.

4 data lines, but can be configured as single-line (Single-SPI), dual-line (Dual-SPI) and quad-line (Quad-SPI) mode through registers

Supports sending and receiving FIFO buffers, and supports software programmable thresholds (Watermark) to generate interrupts. Supports registering

The device configures the polarity and phase of the SPI clock signal SCK.

ÿ Quad-SPI (QSPI) interface dedicated to connecting external Flash, with dedicated SoC top-level pins.

ÿ The QSPI interface can also be configured by software to be in eXecute-In-Place (XIP) mode. In this mode, the Flash

It can be treated as a read-only section and read directly as memory. After power-on by default, QSPI is in this mode.

Since Flash does not lose data when power is off, the system startup program can be stored in an external Flash, and then the processor

The core directly accesses the external Flash loader to start the boot program through the QSPI interface in eXecute-In-Place mode.

9.2.1 Register Description

The configurable register of QSPI is the memory address mapped register (Memory Address Mapped).

The SPI is loaded on the private device bus of the SoC. The configurable register list of SPI and its offset address are shown in the following table.

Register Offset	Register Name	Description
0x000	SPI_SCKDIV	SCK clock frequency division factor register (xip/normal mode)
0x004	SPI_SCKMODE	SCK mode configuration register (xip/normal mode)
0x00C	SPI_FORCE	SPI unused interface forced output 1 enabled
0x010	SPI_CSID	CS strobe identification (ID) register (xip/normal mode)
0x014	SPI_CSDEF	CS Idle Value Register
0x018	SPI_CSMODE	CS Mode Register
0x01C	SPI_VISION	SPI Version Register Version 1.0
0x028	SPI_DELAY0	XIP transmission delay control register 0 (xip/normal mode)
0x02C	SPI_DELAY1	XIP transmission delay control register 1 (xip/normal mode)
0x040	SPI_FMT	Transfer parameter configuration register (xip/normal mode)
0x07C	SPI_STATUS	Transfer Status Register (Normal Mode)
0x048	SPI_TXDATA	Send data register (normal mode)
0x04C	SPI_RXDATA	Receive data register (normal mode)
0x060	SPI_FCTRL	XIP Mode Control Register (xip)
0x064	SPI_FFMT	XIP transfer parameter control register (xip)
0x078	SPI_FFMT1	XIP transfer parameter control register 1 (xip)
0x080	SPI_RXEDGE	SPI receive data sampling edge control register
0x050	SPI_TXMARK	SPI transmit fifo water level register
0x054	SPI_RXMARK	SPI receive fifo water level register
0x070	SPI_IE	SPI Interrupt Enable Register
0x074	SPI_IP	SPI interrupt pending register

9.2.2 SPI_SCKDIV

Register offset: 0x000

Register Description: Used to set the SCK clock frequency of SPI

28

Bits	Name	R/W	Description is used	Default
0:11	div	R W	to configure the frequency division coefficient of the SCK signal.	0x3

9.2.3 SPI_SCKMODE

Register offset: 0x004

Register Description: Used to set the SCK clock frequency of SPI

Bits	Name	R/W	Description	Default
0	pha	R W	Used to configure	0x0
1	pol	R W	CPHA. Used to configure CPOL.	0x0

9.2.4 SPI_CSID

Register offset: 0x00C

Register Description: The SPI interface can have multiple enable signals. Multiple enable signals are used to connect multiple SPI slave devices on the same bus.

It is possible, but only one SPI slave device can be enabled at a time. The SPI_CSID register is used to select the enable signal for the SPI.

Bits	Name	R/W	DescriptionThe	Default
			value of this field is used to select the index of the enable signal.	
			00: No selection	
0:1	csid	RW	01: Select SS0	0x0
			10: Choose SS1	
			11: Choose SS2	

9.2.5 SPI_CSDEF

Register offset: 0x014

Register Description: CS Idle Register.

Bits	Name	R/W	DescriptionThe	Default
0	cs0def	R W	value of this field indicates the idle value of the CS0 enable	0x1
1	cs1def	R W	signal.The value of this field indicates the idle value of the CS1	0x1
2	cs2def	R W	enable signal.The value of this field indicates the idle value of the	0x1
3	cs3def	R W	CS2 enable signal. The value of this field indicates the idle value of the CS3 enable	_{signal.} 0x1

9.2.6 SPI_CSMODE

Register offset: 0x018

Register Description: CS Mode Register.

- 0			0.	9/	200
	Bits	Name	R/W	Description	Default

0:1	mode	RW Assume that the value of this field is 0, indicating that the configuration enable signal is in AUTO mode.	0x0
		Assume that the value of this field is 2, indicating that the configuration enable signal is in HOLD mode.	
		Assume that the value of this field is 3, indicating that the configuration enable signal is in OFF mode.	

9.2.7 SPI_DELAY0

Register offset: 0x028

Register Description: Used to configure the delay period parameters.

Bits	Name	R/W	Description	Default
			The value of this field specifies the first SCK before starting to send	data.
0:7	cssck	RW	How many cycles before the clock leading edge will	0x0
			The enable signal (SS) is set to a valid value.	
			The value of this field specifies the last	
16:23	sckcs	R W	How many cycles will the SCK clock continue to	0x0
			Keep the enable signal (SS) at a valid value.	

9.2.8 SPI_DELAY1

Register offset: 0x02C

Register Description: Used to configure several delay cycle parameters.

Bits	Name	R/W	Description The value of	Default
0:7	intercs	R W	this field specifies whether the enable signal can be restored from the "valid value to the idle value" (de-assertion)" to "reset to a valid value The minimum number of idle cycles that should last between "assertions" (Minimum CS inactive time).	0x0

9.2.9 SPI_FMT

Register offset: 0x040

Register Description: In FIFO transmit/receive mode, the SPI_TXDATA and SPI_RXDATA registers can be used to send or receive data. When using SPI_TXDATA and SPI_RXDATA to send and receive data, the SPI_FMT register can be used

to configure	several	transmission	parameters.

Bits Nan	Bits Name R/W		Description If	Default	
			the value of this field is 2, the transmission protocol is configured as Quad-SPI.		
			The four data lines DQ0, DQ1, DQ2, and DQ3 are working.		
0:1		R W	If the value of this field is 1, the transmission protocol is configured as Dual-SPI.	0x0	
0.1	proto	Two data lines DQ0 and DQ1 are operational.		Two data lines DQ0 and DQ1 are operational.	0.00
			If the value of this field is 0, the transmission protocol is configured as Single-SPI.		
			There are two data lines DQ0 (working as MOSI) and DQ1 (working as MISO).	g (6	
2	Endian RW	If the value of t	his field is 1, the data is sent low bit first (LSB first).	0x0	

			44 4 44 6 44 6 44 44 44 44 44 44 44 44 4	
			If the value of this field is 0, the data is sent high bit first (MSB first).	
			If the value of this field is 1, it means TX, that is, sending. In this mode, the RX-FIFO	0x0
	dir	****	No data will be received.	
			If the value of this field is 0, it means RX, that is, receiving. In this mode, the RX-FIFO	
3			Will receive data:	
			If the proto domain is configured for Dual or Quad-SPI protocol, all DQ numbers	
			The data lines are in the input state of accepting data.	
			If the proto domain is configured with the Single-SPI protocol, then according to the common SPI protocol, DQ	
			(MOSI) will still be output, and DQ1 (MISO) will receive data as input.	
16:19	lon	The value of this field specifies the number of bits (length value) to send a frame of data. The valid length value	0v1	
	len	R W	The range is 0 to 8.	0x1

9.2.10 SPI_STATUS

Register offset: 0x07C

Register Description: Used to indicate the current transmission status.

Bits	Name	R/W	Description: The	Default
0	tip	RO	value of this field is used to indicate the current transmission status.	0x0

9.2.11 SPI_TXDATA

Register offset: 0x048

Register Description: In FIFO transmit/receive mode, data can be sent through the SPI_TXDATA register.

Bits Na	ame R/W 0:7	txdata	Description /	Default
RO				0x0
			This bit is a read-only field used to indicate whether the SPI TX-FIFO is full.	
31	full RO		If the full bit is 1, it means that the current SPI-TX-FIFO is full and the txdata field is written.	0x0
			The data in the txdata field will be ignored; otherwise, if it is not full, the data written into the txdata field will be received.	

9.2.12 SPI_RXDATA

Register offset: 0x04C

Register Description: In FIFO transmit/receive mode, data can be received through the SPI_RXDATA register.

Bits Na	ame R/W	8	Description If	Default	
0:7 rxc	data RO	xdata RO	the empty field is 0, the data in the txdata field read by the software is valid data	the empty field is 0, the data in the txdata field read by the software is valid data	0x0
			If the empty field is 1, the data read from the txdata field by the software is invalid data. This		
			bit is a read-only field and is used to indicate whether the SPI RX-FIFO status is full.		
31 em	pty RO		If the full bit is 1, it means that the current SPI-TX-FIFO is full and is written to the rxdata domain.	0x0	
			The data in the rxdata field will be ignored; otherwise, it is not full and the data written to the rxdata field will be received.		

9.2.13 SPI_FCTRL

Register offset: 0x060

Register Description: Enable Flash Xip mode of QSPI0 through SPI_FCTRL register.

Bits	Name	R/W	Description If	Default
0			this field is 1, it means that the Flash XiP mode of QSPI0 is enabled.	
	flash_en	R W	If this field is 0, it means that the Flash XiP mode of QSPI0 is not enabled.	0x0
			In normal FIFO transmit/receive mode.	
			If this field is 1, it enables the Flash XiP write mode of QSPI0.	
1	flash_wen RW		If this field is 0, it means that the Flash XiP write mode of QSPI0 is not enabled.	0x0
			The Flash XiP mode can only be used in read mode.	
			If this field is 1, it means that the burst mode of Flash XiP of QSPI0 is enabled.	
3	flash_burst_en RW		If this field is 0, it means that the burst mode of Flash XiP of QSPI0 is not enabled.	0x1
			Only Flash XiP single mode is supported.	

9.2.14 SPI_FFMT

Register offset: 0x064

Register Description: When QSPI0 is in Flash Xip mode, the entire QSPI0 (external Flash) is mapped to a read-only address Reading data or fetching instructions directly from this interval will automatically trigger QSPI0 to read external

Flash. The specific SPI protocol behavior of QSPI0 reading external Flash through the SPI interface is controlled by the SPI_FFMT register.

Bits	Name R/W	Descriptio	n Whether to send the command (Command)	Default
0	consists of the		cmd_en RW addr_len RW The address bit	0x1
1:3	number of byt	es (0 to 4)	The default is 3 bytes (ie 24 bits). 0x3	
4:7	pad_cnt RW		How many Dummy read cycles are sent.	0x0
8:0 cmd	proto RW		The SPI protocol used in the command sending stage, see SPI_FMT register	0x0
0.5 0110	_proto itvv		The definition of the proto field of the device.	
10:11 add	Ir_proto RW		The SPI protocol used in the address sending phase, see SPI_FMT register	0x0
10.11 au	ii_proto itvv		The definition of the proto domain.	
12:13 dat	data_proto RW		The SPI protocol used in the data transmission phase is described in the SPI_FMT register.	0x0
12.15 uai	ata_proto rvv		proto field definition.	
44 -1-4-	andian DW		If the value of this field is 1, the data is sent low bit first (LSB first).	0x0
14 data	_endian RW		If the value of this field is 0, the data is sent high bit first (MSB first).	
40.00	L I. DW		Specific command value. The default value is 0x3.	0x3
16:23 cm	d_code RW		It is the commonly used Winbond/Numonx Flash serial READ command (0x03).	
24:31 pac	_code RW		The first 8 bits sent in Dummay Cycles.	0x0

9.2.15 SPI_FFMT1

Register offset: 0x078

Register Description: XIP transfer parameter control register 1 (xip).

Bits	Name	R/W	Description	Default
0:7	wcmd_code	R W	Flash XiP mode specific write command value. How many	0x2
8:11	wpad_cnt	R W	Dummy write cycles are sent?	0x0

9.2.16 SPI_RXEDGE

Register offset: 0x080

Register Description: SPI receive data sampling edge control register.

Bits	Name	R/W Description RW Rx Receive edge control register.	Default
0	rxedge	0 means receiving data at the rising edge of SCK	0x0
		1 means receiving data at the falling edge of SCK.	

9.2.17 SPI_TXMARK

Register offset: 0x050

Register Description: SPI transmit FIFO water level register.

Bits	Name	R/W Description RW The value of this field indicates the	Default
0:2	txmark	threshold (Watermark) for TX-FIFO to generate an interrupt.	0x0

9.2.18 SPI_RXMARK

Register offset: 0x054

Register Description: SPI receive FIFO water level register.

Bits	Name	R/W Description Default
0:2	rxmark	RW The value of this field indicates the threshold (Watermark) for RX-FIFO to generate an interrupt. 0x0

9.2.19 SPI_IE

Register offset: 0x070

Register Description: SPI interrupt enable register.

Bits	Name	R/W	Description If	Default
0	txie	R W	the txie field is 1, it means enabling the SPI transmit interrupt. If the txie field is 0, it means that the SPI transmit interrupt is disabled.	0x0
1	rxie	RW	If the rxie field is 1, it means that the SPI receive interrupt is enabled. If the rxie field is 0, it means that the SPI receive interrupt is not enabled.	

9.2.20 SPI_IP

Register offset: 0x070

Register Description: SPI interrupt enable register.

Bits	Name	R/W	Description If this	Default
0	0 tvin		field is 1, it indicates that a transmit interrupt is currently being generated.	0x0
	txip	RW	If this field is 0, it means that no transmit interrupt is currently generated.	07.0
1		1 rvin RW	If this field is 1, it means that a receive interrupt is currently generated.	0x0
	rxip		If this field is 0, it means that no receive interrupt has occurred.	UNO UNIO

9.3 UART

UART stands for Universal Asynchronous Receiver-Transmitter, which provides a

Flexible and convenient serial data exchange interface, data frames can be transmitted in an asynchronous manner. UART provides a programmable baud rate generator

The default baud rate is 38400bps, which can generate the specific frequency required for UART transmission and reception. This SoC has two independent UARTs.

Both UARTs multiplex the top-level GPIO pins to communicate with the outside world.

Figure 9-3 UART data flow

9.3.1 UART Features

ÿ Full-duplex asynchronous communication

ÿ Individual enable bits for transmitter or receiver

ÿ Baud rate configurable

- ÿ Configurable parity generation (odd/even) and checking
- ÿ Configurable data word width (5/6/7/8/9)
- ÿ Configurable stop bits (support 0.5/1/1.5/2 stop bits)
- ÿ RX and TX FIFO sizes are configurable at the RTL level

9.3.2 UART Interrupt Request

Interrupt Source tx	Interrupt Flag	Interrupt Control bit
fifo water mark rx fifo	tx_ip	tx_ie
water mark rx fifo	rx_ip	rx_ie
overflow detect parity	rx_error_overflow	overflow_error_en
checking error	rx error parity	parity error en

Figure 9-4 Uart interrupt mapping

9.3.3 Memory Map

The memory map of the UART controller is shown in Table 9-3. The UART memory map only supports 32-bit memory accesses.

Table 9-3 UART register mapping table

Register Offset	Register Name	Description
0x00	UART_TXDATA	Send data register
0x04	UART_RXDATA	Receive data register
0x08	UART_TXCTRL	Transmit Control Register
0x0c	UART_RXCTRL	Receive Control Register
0x10	UART_IE	UART Interrupt Enable Register
0x14	UART_IP	UART interrupt wait register
0x18	UART_DIV	Baud Rate Divisor Register
0x1c	UART_STATUS	RX/TX busy status register
0x20	UART_SETUP	UART setup register
0x24	UART_ERROR	UART Receive Error Status Register
0x28	UART_IRQ_EN	UART Interrupt Request Enable Register

9.3.4 UART_TXDATA

Register offset: 0x00

Register Description: Transmit data register. If the FIFO can receive new data, writing to the txdata register will

The characters are written into the transmit FIFO in sequence; the full flag and data field are returned from the txdata register; the full flag indicates that the transmit FIFO is full. Whether new data can be received. When the full flag is valid, the data written will be ignored.

Bits	Name	R/W	DescriptionSend	Default
0:8	txdata	R W	data is	0x0
9:30	/	/		/
31	full	RW	reserved. Transmit FIFO is full.	0x0

9.3.5 UART_RXDATA

Register offset: 0x04

Register Description: Receive data register. Reading the rxdata register returns the value of the data field. The empty flag indicates whether the receive FIFO is empty. If valid, there is no valid data in the data field.

Bits	Name	R/W	Description Send	Default
0:8	rxdata	R W	data	0x0
9:30	/	/		/
31	full	R W	Reserved Receive data Empty	0x0

9.3.6 UART_TXCTRL

Register offset: 0x08

Register Description: Transmit control register. Reading and writing the txctrl register controls the operation of the transmit channel. The txen bit controls whether the tx channel is in Active state. When cleared, disables transmission of data in the tx FIFO and drives the txd pin high.

Bits	Name	R/W	DescriptionSend	Default
0	txen	R W	enable stop	0x0
			bit configuration: 00: 1 bit	
1:2	nstop	R W	01: 2bit	0x0
			10: 0.5bit	
			11: 1.5bit	
3:15	/	/	Retain	/
16:19	txcnt	RW	Send Watermark Level	0x0
20:31	/	/	Retain	/

9.3.7 UART RXCTRL

Register offset: 0x0C

Register Description: Receive control register. Reading and writing the rxctrl register controls the operation of the receive channel. The rxen bit controls whether the rx channel When cleared, the state of the rxd pin is ignored and data is not written to the rx FIFO.

Bits	Name	R/W	Description Send	Default
0	txen	R W	Enable	0x0
1:15	/	/		/
16:19	rxcnt	R W	Reserve Receive	0x0
20:31	/	/	Watermark Level Reserve	/

9.3.8 UART_IE

Register offset: 0x10

Register Description: UART interrupt enable register.

Bits	Name	R/W	DescriptionSend	Default
0	txie	R W	watermark interrupt	0x0
1	rxie	R W	enableReceive watermark	0x0
2:31	/	/	interrupt enableReserve	/

9.3.9 **UART_IP**

Register offset: 0x14

Register Description: UART interrupt wait register.

Bits	Name	R/W	DescriptionSend	Default
0	txip	RW	watermark interrupt	0x0
1	rxip /	RW	waitingReceive watermark	0x0
2:31		/	interrupt waiting reserved	/

9.3.10 UART_DIV

Register offset: 0x18

Register Description: Baud rate divisor register. The baud rate divisor used to generate the baud rate in the tx and rx channels is specified by reading and writing the baud div register.

The input clock and baud rate can be converted using the following formula: fbaud = fclk_in/(div+1).

Bits	Name	R/W	DescriptionBaud	Default
0:15	baud div	R W	rate divisor	0x21e
16:31	/	/	reserved	/

9.3.11 UART_STATUS

Register offset: 0x1C

Register Description: Uart status register.

Bits	Name	R/W		Default
0	rx_busy	R W		0x0
1	tx_busy /	R W		0x0
2:31		/	DescriptionReceiving dataSend	ing dataReser∕ved

9.3.12 UART_SETUP

Register offset: 0x20

Register Description: Uart setup register.

Bits	Name	R/W	DescriptionParity	Default
			bit generation and checking configuration fields:	
0	parity_en	R W	0: Disable	0x0
			1: Enable	
			Parity mode selection:	
1	parity_sel	R W	0: Even parity	0x0
			1: Odd parity	
2	/	/	1	
	3 clean_fifo	ean_fifo R W	Reserved to clear rx FIFO, set to 0/1 to reset FIFO:	
3			0: Stop clearing the RX FIFO.	0x0
			1: Clear RX FIFO.	
			Character length field:	
			0x0: 5 bits	
4:6		R W	0x1: 6 bits	0x0
4.0	bit_length	\ \ \ \ \ \ \	0x2: 7 bits	0.00
			0x3: 8 bits	
			0x4: 9 bits	
7:31	/	/	reserve	/

9.3.13 UART_ERROR

Register offset: 0x24

Register Description: Uart receive error status register. The error register is a read-only register, and the error status is set by hardware. Software can The software can obtain the overflow and parity check results of the rx fifo by sending a read command. If an overflow or parity check error occurs, the software can command to clear the error status.

Bits	Name	R/W	Description	Default	
			RX FIFO overflow error flag:		
0	rx_error_overflow	RO	0: True	0x0	
			1: RX FIFO overflow error occurred		
1		RO	RX parity error flag:	0x0	
1	rx_error_parity	l KO	0: Yes	0.00	

			1: RX parity error occurred	
2:31	/	/	reserve	/

9.3.14 UART_IRQ_EN

Register offset: 0x28

Register Description: Uart interrupt request enable register.

Bits	Name	R/W	Description	Default
			RX FIFO overflow error flag:	
0	rx_error_overflow	R W	0: True	0x0
			1: RX FIFO overflow error occurred	
			RX parity error flag:	
1	rx_error_parity	RW	0: Yes	0x0
			1: RX parity error occurred	
2:31	/	/	reserve	/

9.4 DMA

A DMA controller is a hardware method for transferring data directly between peripherals/memory and memory without CPU intervention.

Shift the load of large chunks of data from where they are needed.

9.4.1 Function Overview

- ÿ Two SICBs (standard ICBs) are used for data transmission, and one FSICB (simplified ICB) is used for DMA configuration;
- $\ddot{\text{y}}$ Support 1-16 beat incremental burst type memory access;
- ÿ Supports configurable data width of 8, 16, 32, 64, 128 bits for memory access;
- ÿ Support fixed or additional address generation algorithms;
- $\ddot{y} \ \text{Support continuous or repeated configurable N-times transmission mode}; \\$
- ÿ Support independent source and destination base address settings, byte, half-word or word alignment;
- ÿ Support any transmission block size within (1M-1) bytes;
- ÿ Support interrupt generation, masking and clearing.

9.4.2 Register Map

The following table lists the overall memory map (offset) of the DMA controller section. The memory map of different peripherals can be found in the corresponding peripheral documentation.

DMA related register definitions (base address, transfer size, enable, etc.) All register accesses are 32-bit word aligned.

The register mapping (offset) relationship of the DMA controller part is shown in the following table:

Register Offset	Register Name	Description
0x008+0x14	DMA_CFG_MSRCADDR	Source data base address
0x00C+0x14	DMA_CFG_MDSTADDR	Destination base address
0x010+0x14	DMA_CFG_MCTRL	Control Register
0x014+0x14	DMA_CFG_RPT	Transmission repetition times
0x018+0x14	DMA_CFG_MSIZE	Transfer size
0x100+0xC	DMA_CHX_IRQ_EN	M2M interrupt enable
0x104+0xC	DMA_CHX_IRQ_STAT	M2M Interrupt Status
0x108+0xC	DMA_CHX_IRQ_CLR	M2M interrupt clear

9.4.3 DMA_CFG_MSRCADDR

Register offset: 0x008+0x14

Register Description: Source address base register.

	Bits	Name	R/W	DescriptionThe base	Default
5	0:31	src_base	R W	address of the source data block	0x0

9.4.4 DMA_CFG_MDSTADDR

Register offset: 0x00C+0x14

Register Description: Destination data base address register.

Bits	Name	R/W	DescriptionThe base	Default
0:31	dst_base	R W	address of the destination data block	0x0

9.4.5 DMA_CFG_MCTRL

Register offset: 0x010+0x14

Register Description: Control register.

Bits	Name	R/W	Description	Default
0	trans_en	R W	DMA transfer enable, asserting this bit will start mem2mem DMA transf It can be cleared by SW and after the current burst ends The transfer will stop. When a complete transfer is completed or a transfer error occurs The hardware can also clear it when responding, in which case the current The transfer will be aborted. Note that this is only possible if all other configuration bits are set correctly. This bit can only be set during configuration.	er. 0x0
1:2	trans type	R W	mem2mem is fixed to 2'b00	

3:5	trans_per_sel RW		Кеер	0x0	
			transfer mode selection		
			2'b00: single mode transmission;		
		R W	2'b01: Continuous mode transmission, in this mode, complete the current transmission		
6:7	trans_mode		After that, a new transfer will be automatically started with the same transfer configuration;	0x0	
			2'b10: Transmission repeat mode, using the same transmission configuration, the transmission will		
			N consecutive times (defined in the "Transfer Repeat Number Register")		
			2'b11: Reserved		
8:9	priority	R W		0x0	
			Reserves the next address generation algorithm for transferring data to the target memory	ту	
40		D.W	1'b0: Add address mode	00	
12	mdna	R W	1'b1: Fixed address	0x0	
			If fixed addresses are configured, force the start target address to be aligned		
			Next address generation algorithm for fetching data from source memory		
40		D.W	1'b0: Add address mode	2.2	
13	msna	R W	1'b1: Fixed address	0x0	
			If a fixed address is configured, the starting source address is forced to be aligned		
			The transfer width used to transfer data to the destination:		
	mdwidth	R W	3'b000: 8 bits		
			3'b001: 16 bits		
16:18			3'b010: 32 bits	0x0	
			3'b011: 64 bits		
			3'b100: 128 bits		
			Others: Reserved		
			The transfer width obtained from the source		
			3'b000: 8 bits		
			3'b001: 16 bits		
21:23	mswidth	R W	3'b010: 32 bits	0x0	
			3'b011: 64 bits		
			3'b100: 128 bits		
			Others: Reserved		
			The number of transfers in a burst used to transfer data to the destination memory		
			4'b0000: 1 transfer		
			4'b0001: 2 transfers		
			4'b0010: 3 transfers		
24:27	m dburot	R W	4'b0011: 4 transfers	040	
24.21	mdburst	K W	4'b0100: 5 transfers	0x0	
			4'b0101: 6 transfers		
			4'b0110: 7 transmissions		
			4'b1111: 16 transfers		
			The number of transfers in a burst used to transfer data to the destination memory	· · · ·	
			4'b0000: 1 transfer		
28:31	msburst	R W	4'b0001: 2 transfers	0x0	
			4'b0010: 3 transfers		
			4'b0011: 4 transfers		

	4'b0100: 5 transfers	
	4'b0101: 6 transfers	
	4'b0110: 7 transfers	
	4'b1111: 16 transfers	

9.4.6 DMA_CFG_RPT

Register offset: 0x014+0x14

Register Description: Transmission repetition count register.

Bits	Name	R/W	DescriptionWhen	Default
0:11	trans rot	RW	the trans_mode configuration of the DMA_CFG_MCTRL register	0x0
	trans_rpt		When b10 transmits a repeat mode, this field defines the number of repeat cycles.	0.00

9.4.7 DMA_CFG_MSIZE

Register offset: 0x018+0x14

Register Description: Transfer size register.

Bits	Name	R/W	DescriptionThe	Default
			transfer size of a DMA transfer.	
			Do not allow transmission to start with 0; doing so may lead to unexpected results.	
			During a DMA transfer, these bits indicate the remaining bytes to be transferred.	
0:19			If the trans_mode of the DMA_CFG_MCTRL register is configured	
	tsize	R W	Set to b01 or b10 (continuous or repeat mode), then when the current	0x0
			When the transfer is complete, it will automatically reload to the original value for the new	
			transfer; DMA transfer errors may freeze the registers to the previous	
			The value of the successful transmission, but it will restart and automatically record	
			The correct remaining data number for a new transmission.	

9.4.8 DMA_CHX_IRQ_EN

Register offset: 0x100+0xC

Register Description: Interrupt enable register.

Bits	Name	R/W	DescriptionFull	Default
0	ftrans_irq_en RW		output interrupt enable. Half	0x0
1	htrans_irq_en RW		transfer interrupt enable.	0x0
2	rsp_err_irq_en RW		DMA access error interrupt	0x0
3:31	/	/	enable. Reserved	/

9.4.9 DMA_CHX_IRQ_STAT

Register offset: 0x104+0xC

Register Description: Interrupt Status Register.

Bits	Name	R/W		Default
0	ftrans_irq_stat RO		DescriptionInterrupt status flag	0x0
1	htrans_irq_stat RO		for full transfer.Interrupt status	0x0
2	rsp_err_irq_stat RO		flag for half transfer.Interrupt status flag for	0x0
3:31	/	/	DMA access error. Reserved.	/

9.4.10 DMA_CHX_IRQ_CLR

Register offset: 0x108+0xC

Register Description: Interrupt clear register.

Bits	Name	R/W		Default
0	ftrans_irq_clr WO		DescriptionInterrupt status flag	0x0
1	htrans_irq_clr WO		for full transfer.Interrupt status	0x0
2	rsp_err_irq_clr WO		flag for half transfer.Interrupt status flag for	0x0
3:31	/	/	DMA access error. Reserved.	/

9.4.11 Accessing switch registers

If you want to use DMA as a table DMA to access switch registers, you need to configure the registers on the switch side first, and then turn on

DMA. There are three registers on the switch side, namely alarm, configuration, and startup. The alarm register is the flag bit of the alarm signal, and the configuration register is

The register is used to configure DMA transfer related parameters, and the start register is used to enable DMA.

Switch side alarm register

	Register offset		0x50 + TOP_CFG_REG + 0x6000_0000 (TOP_CFG_REG = 0)			
Bit	domain	Read and write charact	eristic reset values	describe		
field [1:0]	name axi_cp_alm	RO		1 write error, 0 read error		

Switch side configuration register

	Register offset		0x54 + TOP_CFG_REG + 0x6000_0000 (TOP_CFG_REG = 0)			
Bit		Read and write characte	ristic reset values	describe		
field	domain	WO		Actual width of the table item (=actual value - 1)		
[5:0] [11:6	i] name seg_limit seg_nun	n WO		Table entry address width (2^n-1, such as 1, 3, 7, 15, etc.).		
				seg_limit=69, then seg_num=127.		
[12]	tx_cnt_endian_swap WO			Data sent to register, big and small endian swap		
[13]	rx_cnt_endian_swap WO			The data sent by the register to the upper end is swapped		

[31:14]	reg_dma_count	RO		Read-only registers, how many registers are operated after start
---------	---------------	----	--	--

Switch side startup register

	Register offset		0x58 + TOP_CFG_REG + 0x6000_0000 (TOP_CFG_REG = 0)		
Bit		Read and write charact	eristic reset values	describe	
field [0]	domain name reg_dma_star	t WO		Write 1 to start DMA	

Configuration operation process:

- 1. Configure the register (0x54), and then configure reg_dma_start (0x58) to 1
- 2. Configure and enable DMA to start transferring data.

9.5 I2C

The I2C register mapping relationship is shown in the following table:

Register Offset 0x00	Register Name	Description
	I2C_PRERIo	Prescaler register lower 8 bytes
0x01	I2C_PRERhi	Prescaler register high 8 bytes
0x02	I2C_CTR	Control Register
0x03	I2C_TXR	Send Register
0x05	I2C_RXR	Receive Register
0x06	I2C_CR	Command Register
0x04	I2C_SR	Status Register
0x07	I2C_TRISE	scl delay register
0x08	I2C_FLTER	Filter register

9.5.1 I2C_PRERIO

Register offset: 0x00

Register Description: Prescaler SCL clock line. Due to the structure of the I2C interface, the core uses 4 * SCL clock internally. The value of the prescaler register should only be changed if the 'EN' bit is cleared.

Bits	Name	R/W		Default
0:7	prerlo	R W	DescriptionPrescaler register low byte.	0xffff

9.5.2 I2C_PRERhi

Register offset: 0x01

Register Description: Prescaler SCL clock line. Due to the structure of the I2C interface, the core uses 4 * SCL clock internally. The value of the prescaler register should only be changed if the 'EN' bit is cleared.

Bits	Name	R/W		Default
0:7	prerhi	R W	DescriptionPrescaler register high byte.	0xffff

9.5.3 I2C_CTR

Register offset: 0x02

Register Description: Control register. The core will respond to new commands only when the "EN" bit is set to 1. Pending commands have completed. The "EN" bit is cleared when no transmission is in progress (i.e. after a STOP command) or when the STO bit of the Command Register is set to 1.

When the process is suspended, the core can suspend the I2C bus.

Bits	Name /	R/W	Description	Default
0:5		R W	reserved.	/
			I2C core enable bits:	
6	ctr_en	R W	1: Enable	0x00
			0: Disable	
			I2C core interrupt enable bit:	
7	ctr_in	R W	1: Enable	0x00
			0: Disable	

9.5.4 I2C_TXR

Register offset: 0x03

Register Description: Send register.

Bits	Name	R/W	Description The	Default
0	txr	wo	next byte to be transmitted	0x00
			during data transmission, this bit represents the LSB of the data.	
1.7	1:7 txr_data WO	WO	If it is a slave address transmission, this bit represents the RW bit.	0x00
1.7		1: Read slave	0.000	
			0: write slave	

9.5.5 I2C_RXR

Register offset: 0x05

Register Description: Receive register.

	Bits	Name	R/W	Description	Default
6	0:7	rxr	RO	The last byte received	0x00

9.5.6 I2C_CR

Register offset: 0x06

Register Description: Command register.

Bits	Name	R/W	DescriptionInterrupt	Default
0	lack	R W	response, when set, clear the pending interrupt.	0x00
1:2	/	R W	Reserved	/
3	ack	RW The r	eceiver sends ACK (ACK = '0') or NACK (ACK = '1')	0x00
4	wr	RW Write s	ave Read slave Generate stop condition	0x00
5	rd	R W	Generate	0x00
6	sto	R W	(repeated) start	0x00
7	sta	R W	condition	0x00

9.5.7 I2C_SR

Register offset: 0x04

Register Description: Status Register.

Bits	Name	R/W		Default
			DescriptionInterrupt flag. When an interrupt is pending, this positi	on is 1. If IEN
0	if	RO	When the bit is set to 1, it will cause the processor to interrupt.	0x00
			Set interrupt flag: complete one byte transfer.	
			Transfer in progress.	
1	tip	RO	1: Transmitting	
			0: Transfer completed	
2:5	1	RO		/
			Reserved to write slave I2C bus busy signal.	
6	busy	RO	"1" after detecting START signal	0x00
	·		After the STOP signal is detected, it is "0"	
			Receive a response from the slave.	
7	rxack	RO	This flag indicates the response of the addressed slave.	0x00
/	IAGUK	1.0	1: No response received	0,000
			0: Received a response	

9.5.8 I2C_TRISE

Register offset: 0x07

Register Description: Delay register, used to shield the frequency division error caused by slave waiting time.

Bits	Name	R/W Description RW Used to shield the frequency	Default
0:7	trise	division error caused by slave waiting time.	0x00

9.5.9 I2C_FLTER

Register offset: 0x08

Register Description: Filter register, used to adjust the filter frequency.

Bits	Name	R/W	Description is used	Default
0:4	flter	RW	to adjust the configuration filter frequency size.	0x00

Note:

1. The registers should satisfy the following relationship:

I2C_FLTR < I2C_PRER;

 $I2C_TRISE > I2C_FLTR*2 + 3;$

(scl frequency) scl = (I2C_PRER * (5 + 1) + I2C_TRISE) (main frequency)

- 2. Both the transmit register and the command register are mapped to address 0x02. The transmit register is the MSB and the command register is the LSB.
- 3. Both the receive register and the status register are mapped to address 0x03. The receive register is the MSB and the status register is the LSB.

Wuhan Feisiling Microelectronics Technology Co., Ltd.

10 Revision Information

Revision time	Version	describe
2022.12.23	V1.0	initial version.