Building an ALU

Jinyang Li

What we've learnt so far

- Basic logic design
 - Logic circuits == Boolean expressions
- How to build a combinatorial logic circuit
 - Specify the truth table
 - Output is the sum of products
- Common CL
 - Decoder
 - Multiplexer

Lesson plan

- ROM
- ALU
 - Logical ops: AND/OR
 - Arithmetic ops: addition, subtraction...

ROM (read-only memory)

- A combinatorial component for storing (fixed) data
- Programmed in the factory or field

ROM (read-only memory)

 A n x m ROM can store the truth table for m functions defined on log₂n variables.

$$X_1 = A$$
$$X_0 = \overline{A} \bullet \overline{B} + A \bullet B$$

				_	
Α	В	X1	X0	00:	01
0	0	0	1	<u></u>	OC
0	1	0	0	B 10:	10
1	0	1	0	11:	11
1	1	1	1		
					V

ROM (read-only memory)

- Both ROM and PLA can impl. boolean functions
- ROM is not as efficient for sparse functions
 - # of entries grows exponentially with inputs
- ROM is easier to change if function changes

Array of logic elements

- So far, our circuits work on 1-bit inputs/outputs
- How to build circuits with n-bit inputs/outputs?

Array of logic elements

• 64-bit multiplexor: an array of 64 1-bit multiplexors

ALU overview

Example

Implementing ALU: AND

Implementing ALU: AND

Implementing ALU: OR

Implementing ALU: adder

	Inputs	Outputs		
a	b	Carryin	CarryOut	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Brute force PLA

We can do better than PLA for CarryOut

$$CarryOut = (b \cdot CarryIn) + (a \cdot CarryIn) + (a \cdot b)$$

 $Sum = (a \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot b \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot CarryIn) + (a \cdot b \cdot CarryIn)$

Inputs			Outputs	
a	b	Carryin	CaryOut	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	8	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1 1

Subtraction

- Idea: a b = a + (-b)
- How to calculate 2's complement?

Subtraction in 1-bit ALU Set Binvert=1 carryIn=1 $Op=(10)_2$ operation carryIn **BInvert** to compute A-B A&B Result A|B Mux $A\pm B$ B Subtraction Mux reuses hardware carryOut for addition

Extend 1-bit ALU to 64-bit

Extend 1-bit ALU to 64-bit ALU

Extend ALU to include NOR

$$A+B = \overline{A} \cdot \overline{B}$$

Set Binvert=1, Ainvert=1 Op=(00)₂ to compute a NOR b

Extend ALU to include slt

- RISC-V slt (set-less-than) instruction
 - Result = (A < B) ? 1 : 0 Signed</p>
 - X86 equivalent: cmpq %rbx,%rax setl %rcx

Extend ALU to include slt

- A < B iff:
 - (A-B) is negative (MSB is 1)
 - (A-B) overflowed

ALU unit for MSB(bit63)

Extend ALU to include slt

Downside of ripple carry?

In search of a faster adder

- Ripple carry:
 - Delay: 64, Gate count: 64*c
- Brute-force (truth table->PLA)
 - Delay: 2, Gate count: $O(2^{64+64})$
- Clever designs in between?
- Idea #1: (Carry lookahead) compute multiple carry-bits at a time

 Idea #1: (Carry lookahead) compute multiple carry-bits at a time

> CarryIn to i-th bit CarryOut of i-th bit = CarryOut of (i-1)-th bit = CarryIn of (i+1)-th bit $c_{i+1} = a_i b_i + (a_i + b_i) c_i$ $g_i = a_i b_i$, $p_i = a_i + b_i$ $C_{i+1} = g_i + p_i C_i$ **Propagate** Generate

> > g_i generates carryOut regardless of carryIn

P_i propagates carryln to carryOut

 Idea #1: (Carry lookahead) compute multiple carry-bits at a time

Computing all carry-bits of a 4-bit adder:

$$c1 = g0 + (p0 \cdot c0)$$

$$c2 = g1 + (p1 \cdot g0) + (p1 \cdot p0 \cdot c0)$$

$$c3 = g2 + (p2 \cdot g1) + (p2 \cdot p1 \cdot g0) + (p2 \cdot p1 \cdot p0 \cdot c0)$$

$$c4 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)$$

$$+ (p3 \cdot p2 \cdot p1 \cdot p0 \cdot c0)$$

Delay? 3 4-bit ripple carry delay: 2 * 4

 Idea #1: (Carry lookahead) compute multiple carry-bits at a time

Computing all result bits in a 4-bit adder:

$$s_i = \overline{c_i} \cdot a_i \cdot b_i + c_i \cdot \overline{a_i} \cdot b_i + c_i \cdot a_i \cdot \overline{b_i}$$
, $i = 0, ..., 3$

Build a 16-bit adder with carry-ahead 4-bit adders

