MAΣ026

Μαθηματικά για Μηχανικούς ΙΙ

Σ. Δημόπουλος και Σ. Παπαπαναγίδης

Κεφάλαιο 5: ΠΟΛΛΑΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

- 5.1 Διπλά Ολοκληρώματα
- 5.2 Διπλό Ολοκλήρωμα κάτω από γενικότερα χωρία
- 5.3 Τριπλά Ολοκληρώματα
- 5.4 Θεώρημα Αλλαγής Μεταβλητών

Αυτή η εργασία χορηγείται με άδεια Creative Commons Αναφορά δημιουργού-Μη εμπορική-Παρόμοια διανομή 4.0 International License.

Διπλά Ολοκληρώματα

<u>Υπενθύμιση:</u> Το ολοκλήρωμα δημιουργήθηκε αρχικά για τον υπολογισμό εμβαδού κάτω από καμπύλη y = f(x).

Ουσιαστικά διαμερίζουμε το διάστημα [a,b] σε υποδιαστήματα $[x_0,x_1],[x_1,x_2],\cdots,[x_{n-1},x_n]$ όπου $x_0=a$ και $x_n=b$, και προσεγγίζουμε το εμβαδόν με το άθροισμα εμβαδων πολυγώνων με βάσεις $[x_i,x_{i+1}],i=0,\cdots,n-1$ και ύψος $f(x_i^*),x_i^*\in [x_i,x_{i+1}].$

Προσέγγιση =
$$\sum\limits_{i=0}^{n-1} f(x_i^*) \Delta x_i, \Delta x_i = x_{i+1} - x_i$$

$$\sum_{i=0}^{n-1} f(x_i^*) \Delta x_i \xrightarrow{n \to \infty} \int_a^b f(x) dx$$
 (Εάν υπάρχει)

Διπλό Ολοκλήρωμα

 $\frac{ \text{Πρόβλημα:}}{R} \text{ Εάν } z = f(x,y) \text{ μη-αρνητική συνεχής συνάρτηση σε περιοχή } \\ R \text{ του } xy - \text{επιπέδου, να υπολογιστεί ο όγκος του στερεού που } \\ \text{περιέχεται μεταξύ του γραφήματος και του } R.$

Θα προσεγγίσουμε τον όγκο με παραλληλεπίπεδα. Δεδομένου ότι το R περιέχεται σε κάποιο ορθογώνιο στο \mathbb{R}^2 , διαμερίζουμε το R σε πιο μικρά ορθογώνια της μορφής $[x_i,x_{i+1}]\times[y_j,y_{j+1}]$.

Θεωρούμε ότι η f είναι σταθερή σε κάθε τέτοιο ορθογώνιο και υπολογίζουμε τον όγκο του παραλληλεπίπεδου που είναι ίσος με

$$f(x_i^*, y_j^*)(x_{i+1} - x_i)(y_{j+1} - y_j) = f(x_i^*, y_j^*) \Delta x_i \Delta y_j = f(x_i^*, y_j^*) \Delta A_{ij}.$$

Το άθροισμα

$$\sum_{i,j=0}^{n-1} f(x_i^*, y_j^*) \Delta A_{ij}$$

προσεγγίζει τον ζητούμενο όγκο. Καθώς $n \to \infty$, εάν το όριο υπάρχει είναι ίσο με τον όγκο δεδομένου ότι η f είναι θετική. Γενικότερα, αν το όριο υπάρχει ορίζεται ως το διπλό ολοκλήρωμα της f επί του R και συμβολίζεται ως

$$\iint\limits_R f(x,y) \, dx \, dy \, \, \mathring{\eta} \, \, \iint\limits_R f(x,y) \, dA$$

Μερικά Ολοκληρώματα

Έστω f συνάρτηση δύο μεταβλητών

• Μερικό Ολοκλήρωμα ως προς x: $\int_a^b f(x,y) \, dx$ Ολοκληρώνουμε ως προς x θεωρώντας την μεταβλητή y σταθερή $\int_0^1 x^2 y \, dx =$

• Μερικό Ολοκλήρωμα ως προς y: $\int_a^b f(x,y) \, dy$ Ολοκληρώνουμε ως προς y θεωρώντας την μεταβλητή x σταθερή $\int_0^1 x^2 y \, dy =$

Διαδοχικά Ολοκληρώματα

Ολοκληρώνουμε αρχικά ως προς την μία μεταβλητή και μετά ως προς την άλλη. Π.χ.

$$\int_{1}^{3} \int_{2}^{4} (40 - 2xy) \, dy \, dx =$$

Διαδοχικά Ολοκληρώματα

$$\int_{2}^{4} \int_{1}^{3} (40 - 2xy) \, dx \, dy =$$

Τα διαδοχικά ολοκληρώματα υπολογίζουν τον όγκο (εάν f θετική) με κοπές ως προς τον άξονα των x ή των y και αποδυκνύεται πως είναι ίσα με το διπλό ολοκλήρωμα στο αντίστοιχο ορθογώνιο.

Θεώρημα Fubini

Εάν $R=[a,b]\times[c,d]$ ορθογώνιο στο \mathbb{R}^2 και f(x,y) συνεχής στο R τότε η f είναι ολοκληρώσιμη και

$$\iint\limits_R f(x,y) dA = \int_a^b \int_c^d f(x,y) dy dx = \int_c^d \int_a^b f(x,y) dx dy$$

Το Θεώρημα Fubini μας επιτρέπει να υπολογίζουμε διπλά ολοκληρώματα πάνω σε ορθογώνια με την βοήθεια διαδοχικών ολοκληρωμάτων.

Παράδειγμα

Να βρεθεί ο όγκος του στερεού που φράσσεται από το επίπεδο z=4-x-y και το ορθογώνιο $[0,1]\times[0,2].$

Παράδειγμα

Να υπολογιστεί το ολοκλήρωμα

$$\iint\limits_R y^2 x \, dA$$

εάν
$$R = \{(x, y) | -3 \le x \le 2, 0 \le y \le 1\}.$$

Ιδιότητες Διπλών Ολοκληρωμάτων

$$\iint\limits_R cf(x,y)\ dA = c\iint\limits_R f(x,y)\ dA, c \in \mathbb{R}$$

$$\iint\limits_R f(x,y) \pm g(x,y) \, dA = \iint\limits_R f(x,y) \, dA \pm \iint\limits_R g(x,y) \, dA$$

• Εάν $R=R_1\cup R_2$ και $R_1\cap R_2=\emptyset$, τότε

$$\iint\limits_R f(x,y) dA = \iint\limits_{R_1} f(x,y) dA + \iint\limits_{R_2} f(x,y) dA$$

Διπλό Ολοκλήρωμα κάτω από γενικότερα χωρία

Υπάρχει περίπτωση ένα διαδοχικό ολοκλήρωμα να περιέχει όρια με μεταβλητές. Π.χ.

$$\int_0^1 \int_{-x}^{x^2} y^2 x \, dy \, dx =$$

Τέτοια ολοκληρώματα προκύπτουν από χώρια της πιο κάτω μορφής

Ορισμός

Ένα υποσύνολο του \mathbb{R}^2 λέγεται **Τύπου Ι ή** x-**απλό** αν υπάρχουν σταθερές $a,b\in\mathbb{R}$ και συνάρτήσεις $g_1(x),g_2(x)$ όπου $g_1(x)\leqslant g_2(x), \forall x\in[a,b]$ τέτοιες ώστε το χώριο να όρίζεται από τίς σχέσεις

$$a \leqslant x \leqslant b, g_1(x) \leqslant y \leqslant g_2(x).$$

Ορισμός

Ένα υποσύνολο του \mathbb{R}^2 λέγεται **Τύπου ΙΙ ή** y-**απλό** αν υπάρχουν σταθερές $c,d\in\mathbb{R}$ και συνάρτήσεις $h_1(y),h_2(y)$ όπου $h_1(y)\leqslant h_2(y), \forall y\in[c,d]$ τέτοιες ώστε το χώριο να όρίζεται από τίς σχέσεις

$$c \leqslant y \leqslant d, h_1(y) \leqslant x \leqslant h_2(y).$$

Θεώρημα Fubini για χωρία Τύπου Ι και ΙΙ

• Αν R είναι χωρίο τύπου Ι και f συνεχής στο R, τότε

$$\iint_{R} f(x, y) \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \, dy \, dx$$

• Αν R είναι χωρίο τύπου ΙΙ και f συνεχής στο R, τότε

$$\iint\limits_{R} f(x, y) \, dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \, dx \, dy$$

Παράδειγμα

Να υπολογιστεί το $\iint_R xy \; dA$ όπου R το χωρίο μεταξύ των $y=\frac{1}{2}x, y=\sqrt{x}, x=2, x=4$

Παράδειγμα

Να υπολογιστεί το $\iint_R (2x-y^2) \, dA$ όπου R το χωρίο μεταξύ των y=-x+1, y=x+1, y=3

Εναλλακτικά

Παράδειγμα

Να υπολογιστεί με διπλά ολοκληρώματα ο όγκος του τετραέδρου που ορίζεται από τα επίπεδα xy, yz, xz και z = 4 - 4x - 2y.

Παράδειγμα

Να υπολογιστεί ο όγκος του στερεού που ορίζεται από τον κύλινδρο $x^2 + y^2 = 4$ και τα επίπεδα x + z = 4 και z = 0.

Εάν το χώριο ολοκλήρωσης είναι x ή y απλό, τότε το ολοκλήρωμα είναι πιθανόν να μπορεί να υπολογιστεί μόνο με έναν από τους δύο τρόπους έκφρασης. Π.χ.

$$\int_0^2 \int_{\frac{y}{2}}^1 e^{x^2} dx dy =$$

Εμβαδόν χωρίου στο χυ- επίπεδο

Υπενθύμιση: Μήκος Διαστήματος $[a,b]=b-a=\int_a^b 1\ dx$

Αντίστοιχα, το εμβαδόν φραγμένου χωρίου $R \subset \mathbb{R}^2$ είναι ίσο με

$$\iint\limits_R 1\,dA = \iint\limits_R \,dA$$

Παράδειγμα

Να υπολογιστεί με διπλό ολοκλήρωμα το εμβαδόν του χωρίου R που περικλείεται από τις καμπύλες $y=\frac{1}{2}x^2$ και y=2x.

Συνέχεια

Εμβαδόν Επιφάνειας της μορφής z = f(x, y)

Διαμερίζουμε το R σε ορθογώνια $R_k, k=1,\cdots n$ με διαστάσεις Δx_k και Δy_k .

Προσεγγίζουμε το εμβαδόν της επιφάνειας που αντιστοιχεί στο ορθογώνιο R_k με το εμβαδόν του εφαπτόμενου επιπέδου στο σημείο $P_k(x_k,y_k)$ στο αντίστοιχο χωρίο.

Η επιφάνεια του εφαπτομένου επίπέδου πάνω από το R_k είναι ένα παραλληλόγραμμο που ορίζεται από τα διανύσματα

$$\overrightarrow{q_k} = (\Delta x_k, 0, f_x(x_k, y_k) \Delta x_k), \overrightarrow{r_k} = (0, \Delta y_k, f_y(x_k, y_k) \Delta y_k)$$

Το εμβαδον του παραλληλογράμμου είναι ίσο με

$$\|\overrightarrow{q_k} \times \overrightarrow{r_k}\| = \cdots = \sqrt{f_x^2(x_k, y_k) + f_y^2(x_k, y_k) + 1} \Delta x_k \Delta y_k$$

Το άθροισμα

$$\sum_{k=1}^{n} \sqrt{f_{x}^{2}(x_{k}, y_{k}) + f_{y}^{2}(x_{k}, y_{k}) + 1} \Delta x_{k} \Delta y_{k}$$

προσεγγίζει το ζητούμενο εμβαδό. Προφανώς, εάν το όριο υπάρχει, είναι ίσο με το ζητούμενο εμβαδό και τείνει στο

$$\iint\limits_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \, dx \, dy$$

καθώς $n \to \infty$.

Θεώρημα

Έστω z=f(x,y) συνάρτηση ορισμένη σε φραγμένο χωρίο $R\subset\mathbb{R}^2$ με συνεχείς μερικές παραγώγους. Τότε, το εμβαδόν επιφάνειας της συνάρτησης που αντιστοιχεί στο R είναι ίσο με

$$\iint\limits_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \, dA$$

Παράδειγμα

Να βρεθεί το εμβαδόν επιφάνειας της συνάρτησης $z=\sqrt{4-x^2}$ πάνω από το ορθογώνιο $R=[0,1]\times[0,4]$ του xy- επιπέδου.

Τριπλά Ολοκληρώματα

ullet f(x) ορισμένη στο $[a,b]\subset \mathbb{R}$

$$\int_{a}^{b} f(x) dx$$

ullet f(x,y) ορισμένη στο $R \subset \mathbb{R}^2$

$$\iint\limits_{R} f(x,y) \, dA$$

• f(x, y, z) ορισμένη στο $G \subset \mathbb{R}^3$

$$\iiint\limits_G f(x,y,z)\,dV$$

Τριπλό Ολοκλήρωμα

- G φραγμένο στερεό στο χώρο (Περικλείεται σε ορθογώνιο παραλληλεπίπεδο)
- Διαμερίζουμε το παραλληλεπίπεδο σε μικρά παραλληλεπίπεδα $G_k, k=1,\cdots,n$ με όγκο $\Delta V_k=\Delta x_k\Delta y_k\Delta z_k$ αφού αφαιρέσουμε όσα βρίσκονται εκτός του G
- Η f είναι προσεγγιστικά σταθερή σε κάθε κάθε τέτοιο παραλληλεπίπεδο και ίση με $f(x_k^*,y_k^*,z_k^*)$, όπου $(x_k^*,y_k^*,z_k^*) \in G_k$.

Θεωρούμε το άθροισμα Riemann

$$\sum_{k=1}^{n} f(x_{k}^{*}, y_{k}^{*}, z_{k}^{*}) \Delta x_{k} \Delta y_{k} \Delta z_{k} = \sum_{k=1}^{n} f(x_{k}^{*}, y_{k}^{*}, z_{k}^{*}) \Delta V_{k}.$$

Αν το όριο καθώς $n \to \infty$ υπάρχει, τότε ορίζεται ως το τριπλό ολοκλήρωμα της f στο G και συμβολίζεται ως εξής

$$\iiint\limits_G f(x,y,z)\ dx\ dy\ dz\ \acute{\eta}\ \iiint\limits_G f(x,y,z)\ dV$$

Ιδιότητες Τριπλών Ολοκληρωμάτων

$$\iiint\limits_{G}cf(x,y,z)\,dV=c\iiint\limits_{G}f(x,y,z)\,dV,c\in\mathbb{R}$$

 $\iiint\limits_G f(x,y,z) \pm g(x,y,z) \, dV = \iiint\limits_G f(x,y,z) \, dV \pm \iiint\limits_G g(x,y,z) \, dV$

• Εάν $G=G_1\cup G_2$ και $G_1\cap G_2=\emptyset$, τότε

$$\iiint\limits_{G} f(x,y,z) dV = \iiint\limits_{G_{1}} f(x,y,z) dV + \iiint\limits_{G_{2}} f(x,y,z) dV$$

•

•

Όπως και με τα διπλά ολοκληρώματα, για να υπολογίσουμε ένα τριπλό ολοκλήρωμα, το ανάγουμε σε διαδοχικό ολοκλήρωμα.

Θεώρημα

Εάν $G \subset \mathbb{R}^3$ το ορθογώνιο παραλληλεπίπεδο $[a,b] \times [c,d] \times [k,l]$ και f συνεχής στο G, τότε

$$\iiint\limits_{G} f(x, y, z) dV = \int_{a}^{b} \int_{c}^{d} \int_{k}^{l} f(x, y, z) dz dy dx$$
$$= \int_{k}^{l} \int_{c}^{d} \int_{a}^{b} f(x, y, z) dx dy dz = \cdots$$

Παράδειγμα

Να υπολογιστεί το ολοκλήρωμα $\iiint\limits_G 12xy^2z^3\ dV$, εάν

$$G = [-1, 2] \times [0, 3] \times [0, 2].$$

Τριπλά ολοκληρώματα σε γενικότερα χωρία

Ορισμός

Ένα υποσύνολο του \mathbb{R}^3 λέγεται xy-απλό αν φράσσεται από δύο επιφάνειες $z=g_1(x,y)$ και $z=g_2(x,y)$, η προβολή του στο xy-επίπεδο είναι ένα x-απλό ή y-απλό χωρίο R και $g_1(x,y)\leqslant g_2(x,y), \forall x\in R.$ Παρόμοια, ορίζουμε xz και yz-απλές περιοχές.

Θεώρημα Fubini

Αν G είναι xy – απλό χωρίο και f συνεχής στο G, τότε

$$\iiint\limits_{G} f(x,y,z) \, dV = \iint\limits_{R} \int_{g_{1}(x,y)}^{g_{2}(x,y)} f(x,y,z) \, dz \, dA$$

Παρόμοια, για yz-απλά χωρία και xz-απλά χωρία.

Παράδειγμα

Εάν G το κομμάτι που προκύπτει από την αποκοπή του κυλινδρικού στερεού $y^2+z^2\leqslant 1$ από τα επίπεδα y=x και z=0 στο πρώτο ογδοοημόριο, να υπολογιστεί το ολοκλήρωμα

$$\iiint_G z \, dV.$$

Συνέχεια

Εναλλακτικά

Εναλλακτικά

• Μήκος ευθύγραμμου τμήματος [a,b]

$$\int_{a}^{b} 1 \, dx$$

• Εμβαδον επιφάνειας R

$$\iint\limits_R 1\,dA$$

• Όγκος στερεού G

$$\iiint\limits_{G} 1\,dV$$

Παράδειγμα

Να υπολογιστεί με τριπλό ολοκλήρωμα ο όγκος του στερεού που περικλείεται από τον κύλινδρο $x^2+y^2=9$ και τις επιφάνειες z=1 και z+x=5.

Συνέχεια

Παράδειγμα

Να υπολογιστεί ο όγκος του στερεού που περικλείεται από τα παραβολοειδή $z=5x^2+5y^2$ και $z=6-7x^2-y^2$.

Συνέχεια

Θεώρημα Αλλαγής Μεταβλητών

Αντικατάσταση στο ολοκλήρωμα $\int_a^b f(x) dx$

Εάν x=g(u), a < b και g παραγωγίσιμη και 1-1 από ένα κλειστό σιάστημα στο [a,b] (αύξουσα ή φθίνουσα), τότε

$$\int_{a}^{b} f(x) dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(u))g'(u) du.$$

Έστω $\alpha,\beta=g^{-1}(a)$ ή $g^{-1}(b)$ ούτως ώστε $\alpha<\beta$. Εάν g φθίνουσα στο [a,b] (g'<0), τότε $\alpha=g^{-1}(b)< g^{-1}(a)=\beta$ και

$$\int_{a}^{b} f(x)dx = \int_{\beta}^{\alpha} f(g(u))g'(u)du =$$

$$-\int_{\alpha}^{\beta} f(g(u))g'(u)du = \int_{\alpha}^{\beta} f(g(u))|g'(u)|du.$$

Παρόμοια, αν g αύξουσα.

Γενίκευση στο \mathbb{R}^2

Θεωρούμε τον 1-1 μετασχηματισμό (αντικατάσταση)

$$T(u, v) = (x(u, v), y(u, v))$$

από το *uv* στο *xy* επίπεδο. Γραφικά, σχετίζουμε χωρία στο *uv* επίπεδο με χωρία στο *xy* επίπεδο.

Αφού T είναι 1-1, ορίζεται και ο αντίστροφος μετασχηματισμός.

Για να προβούμε στην αλλαγή μεταβλητών στο \mathbb{R}^2 , πρέπει να βρούμε το διαφορικό dA. Αυτό δίνεται από την **Ιακωβιανή**.

Ορισμός

Έστω ο μετασχηματισμός T(u,v)=(x(u,v),y(u,v)). Η Ιακωβιανή του T συμβολίζεται με J(u,v) ή $\frac{\partial(x,y)}{\partial(u,v)}$ και είναι ίση με

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

Αποδυκνείεται πως αν εφαρμόσουμε τον μετασχηματισμό T σε διπλό ολοκλήρωμα, τότε dx dy = |J(u, v)| du dv.

Θεώρημα

Εάν ο μετασχηματισμός T(u,v)=(x(u,v),y(u,v)) απεικονίζει το χωρίο S του uv-επιπέδου στο χωρίο R του xy-επιπέδου και η ιακωβιανή $\frac{\partial(x,y)}{\partial(u,v)}$ είναι μη-μηδενική και δεν αλλάζει πρόσημο στο S τότε

$$\iint\limits_R f(x,y) \, dA_{xy} = \iint\limits_S f(x(u,v),y(u,v)) |\frac{\partial(x,y)}{\partial(u,v)}| \, dA_{uv}$$

ή

$$\iint\limits_R f(x,y)\,dx\,dy = \iint\limits_S f(x(u,v),y(u,v)) |\frac{\partial(x,y)}{\partial(u,v)}|\,du\,dv$$

Πότε κάνουμε αλλαγή μεταβλητής:

- Όταν το χωρίο ολοκλήρωσης είναι διαφορετικό από τα όσα είδαμε μέχρι στιγμης.
- Όταν η συνάρτηση ολοκλήρωσης είναι περίπλοκη.

Παράδειγμα

Να υπολογιστεί το ολοκλήρωμα

$$\iint\limits_{R} \frac{x-y}{x+y} \, dA$$

εάν το R περικλείεται από τις x-y=0, x-y=1, x+y=1, x+y=3.

Συνέχεια

Συνέχεια

Να υπολογιστεί το ολοκλήρωμα

$$\iint\limits_R e^{xy} dA$$

εάν το R χωρίο που περικλείεται από τις $y=\frac{1}{2}x$, y=x, $y=\frac{1}{x}$ και $y=\frac{2}{x}$.

Μία ειδική περίπτωση είναι ο μετασχηματισμός σε πολικές συντεταγμένες.

$$x = r \cos \theta, y = r \sin \theta$$

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r\cos^2\theta + r\sin^2\theta = r$$

Συνεπώς,

$$\iint\limits_R f(x,y) \, dx \, dy = \iint\limits_S f(r\cos\theta, r\sin\theta) r \, dr \, d\theta$$

Να βρεθεί ο όγκος της σφαίρας με $x^2 + y^2 + z^2 = a^2$ με διπλό ολοκλήρωμα.

Να υπολογιστεί το ολοκλήρωμα

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2)^{\frac{3}{2}} \, dx \, dy$$

με πολικές συντεταγμένες.

Γενικά, όταν το χωρίο ολοκλήρωσης είναι κυκλική συμμετρία ή η συνάρτηση f(x,y) περιέχει την έκφραση x^2+y^2 , τότε συνήθως ευνοείται η αλλαγή σε πολικές συντεταγμένες.

Αλλαγή μεταβλητών σε Τριπλά Ολοκληρώματα

Γίνεται με την βοήθεια μετασχηματισμών της μορφής

$$T(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w))$$

Η Ιακωβιανή του μετασχηματισμού είναι ίση με

$$J(u, v, w) = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Θεώρημα

Εάν ο μετασχηματισμος T(u,v,w)=(x(u,v,w),y(u,v,w),z(u,v,w)) απεικονίζει το χωρίο S του $uvw-\chi$ ώρου στο χωρίο του $xyz-\chi$ ώρου, η Iακωβιανή $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ είναι μη-μηδενική και έχει σταθερό πρόσημο στο S τότε

$$\iiint\limits_{R} f(x,y,z) dx dy dz =$$

$$\iiint_{\mathcal{L}} f(x(u,v,w),y(u,v,w),z(u,v,w)) |\frac{\partial(x,y,z)}{\partial(u,v,w)}| dudvdw$$

Ειδική περίπτωση - Κυλινδρικές Συντεταγμένες

$$x = r \cos \theta, y = r \sin \theta, z = z$$

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \begin{vmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{vmatrix} = r$$

Συνεπώς,

$$\iiint\limits_R f(x,y,z) \, dx \, dy \, dz = \iiint\limits_S f(r\cos\theta,r\sin\theta,z)r \, dr \, d\theta \, dz$$

Ειδική περίπτωση - Σφαιρικές Συντεταγμένες

$$x = \rho \cos \theta \sin \phi, y = \rho \sin \theta \sin \phi, z = \rho \cos \phi$$

$$\frac{\partial(x,y,z)}{\partial(\rho,\theta,\phi)} = \begin{vmatrix} \cos\theta\sin\phi & -\rho\sin\theta\sin\phi & \rho\cos\theta\cos\phi \\ \sin\theta\sin\phi & \rho\cos\theta\sin\phi & \rho\sin\theta\cos\phi \\ \cos\phi & 0 & -\rho\sin\phi \end{vmatrix} = \dots = -\rho^2\sin\phi$$

Συνεπώς,

$$\iiint\limits_R f(x,y,z)\,dx\,dy\,dz = \iiint\limits_S f(\rho,\theta,\phi)\rho^2\sin\phi\,d\rho\,d\theta\,d\phi$$

Σημείωση: $f(\rho,\theta,\phi)=f(\rho\cos\theta\sin\phi,\rho\sin\theta\sin\phi,\rho\cos\phi)$.

Να βρεθεί με Τριπλό Ολοκλήρωμα ο όγκος του στερεού G που περικλείεται από το ημισφαίριο $z=\sqrt{25-x^2-y^2}$ από πάνω, από το xy-επίπεδο από κάτω και περιμετρικά από τον κύλινδρο $x^2+y^2=9$.

Να υπολογιστεί το ολοκλήρωμα

$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} x^2 \, dz \, dy \, dx.$$

Να βρεθεί ο όγκος του στερεού G που περικλείεται από τη σφαίρα $x^2+y^2+z^2=16$ και από κάτω από τον κώνο $z=\sqrt{x^2+y^2}$.

Να υπολογιστεί το ολοκλήρωμα

$$\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_0^{\sqrt{4-x^2-y^2}} z^2 \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx.$$

