

Redes de Computadores $(3^{\circ} \text{ ano LEI})$

Trabalho Prático 3

Relatório de Desenvolvimento

Grupo 4

a
93241 Francisco Reis Izquierdo a
89526 Duarte Augusto Rodrigues Lucas a
96277 Diogo Miguel Serra Silva

23 de Abril de 2022

Conteúdo

1	Introdução	3
2	Captura e análise de Tramas Ethernet	3
	2.1 Pergunta 1	4
	2.2 Resposta 1	4
	2.3 Pergunta 2	4
	2.4 Resposta 2	4
	2.5 Pergunta 3	5
	2.6 Resposta 3	5
	2.7 Pergunta 4	5
	2.8 Resposta 4	6
	2.9 Pergunta 5	7
	2.10 Resposta 5	7
	2.11 Pergunta 6	8
	2.12 Resposta 6	8
	2.13 Pergunta 7	8
	2.14 Resposta 7	8
3	Protocolo ARP	8
J	3.1 Pergunta 8	8
	3.2 Resposta 8	8
		9
		9
	0 × D	9
	9.6 D	9
	3.6 Resposta 10	9
		9
	•	9 10
	8	-
	•	10 10
		10
		$\frac{10}{10}$
		_
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10
	1	10
	8 8 4 4 4 4	11
	3.13 Resposta 14	11
4	Domínios de colisão	11
	4.1 Pergunta 15	11
	T	11
	4.3 Pergunta 16	12
	4.4 Resposta 16	13
5	Conclusão	14

Listings

Lista de Figuras

1	Endereços MAC da caputa do pacote TCP - SYN/ACK	4
2	Endereço MAC	5
3	Tamanho do pacote	6
4	Tamanho do cabeçalho IP	6
5	Tamanho do cabeçalho TCP	7
6	Trama que contém o primeiro byte da resposta HTTP	7
7	Tabela ARP do nosso computador	8
8	Pedido ARP.	9
9	ARP reply	10
10	Diagrama ARP e ICMP	11
11	Comandos executados no departamento A e no departamento B .	12
12	Topologia	13
13	Comando ifconfig	14
14	Tabela de comutação do switch	14

1 Introdução

Para este terceiro trabalho prático, no âmbito da disciplina de Redes de Computadores, o grupo de trabalho realizou uma manipulação e estudo aprofundado sobre deteção e correção de erros, endereços MAC, ARP (Address Resolution Protocol) e Ethernet.

2 Captura e análise de Tramas Ethernet

A captura de tráfego deverá ser efetuada usando a aplicação Wireshark instalada na máquina nativa. Uma vez que as salas de aula atuais não disponibilizam uma ligação com fios a uma rede Ethernet, a captura será realizada na rede Eduroam. Este facto não impacta na realização do trabalho porque, por defeito, o Wireshark disponilibiliza o tráfego capturado ao utilizador como sendo (pseudo) Ethernet.

Assegure-se que a cache do seu browser está vazia.

Ative o Wireshark na sua máquina nativa.

No seu browser, aceda ao URL https://elearning.uminho.pt.

Pare a captura do Wireshark., e proceda da seguinte forma: Localize o estabelecimento da conexão entre o cliente e o servidor HTTP (sequência de tramas com as TCP flags TCP SYN, SYN- ACK, ACK ativas). Após a fase de estabelecimento seguro da conexão, obtenha o número de ordem da sequência de bytes capturada (coluna da esquerda na janela do Wireshark) correspondente à trama que transporta os primeiros dados aplicacionais enviados do cliente para o servidor (Application Data). Identifique também o número de ordem da trama com a resposta proveniente do servidor que contém os dados correspondentes ao acesso web realizado pelo cliente (browser).

Note que os dados aplicacionais são enviados de forma segura usando o protocolo TLS (Transport Layer Security), mapeados para um segmento TCP, transportado num datagrama IP que, por sua vez, é encapsulado no campo de dados da trama Ethernet. Expanda a informação do nível da ligação de dados e observe o conteúdo da trama Ethernet (cabeçalho e dados (payload)). Responda às perguntas seguintes com base no conteúdo da trama Ethernet que contém a mensagem de acesso ao servidor (HTTP GET encriptada).

Sempre que aplicável, deve incluir a impressão dos dados relativa ao pacote capturado (ou parte dele) necessária para fundamentar a resposta à questão colocada. Para imprimir um pacote, use File-¿Print, escolha Selected packet only e Packet summary line, ou Universidade do Minho LEI, Redes de Computadores, 2021/2022 use qualquer outro método que lhe pareça adequado para a captura desses dados. Selecione o mínimo detalhe necessário para responder à pergunta.

2.1 Pergunta 1

Anote os endereços MAC de origem e de destino da trama capturada.

2.2 Resposta 1

Endereço MAC de origem $\rightarrow 90:9c:4a:c8:c8:c4$ Endereço MAC de destino $\rightarrow 00:d0:03:ff:94:00$

Figura 1: Endereços MAC da caputa do pacote TCP - SYN/ACK

2.3 Pergunta 2

Identifique a que sistemas se referem. Justifique.

2.4 Resposta 2

Através do comando *ip link* conseguimos verificar e visualizar o endereço MAC do computador, neste caso tivemos que recorrer a um modo diferente visto que o sistema do computador na qual está ser realizado esta parte do trabalho é MACOS, sendo necessário recorrer às definições do computador. Deste modo, concluímos que a origem refere-se ao nosso computador e o destino é relativo ao servidor *elearning.uminho.pt*.

Figura 2: Endereço MAC

2.5 Pergunta 3

Qual o valor hexadecimal do campo Type da trama Ethernet? O que significa?

2.6 Resposta 3

Através da figura 1 podemos observar que o valor do campo Type é 0x0800, representando o protocolo de camada superior utilizado, neste caso IPv4.

2.7 Pergunta 4

Quantos bytes são usados no encapsulamento protocolar, i.e. desde o início da trama até ao início dos dados do nível aplicacional (Application Data Protocol: http-over-tls)? Calcule e indique, em percentagem, a sobrecarga (overhead) introduzida pela pilha protocolar.

2.8 Resposta 4

A partir da figura 3 é possível concluir que o tamanho do pacote é de 569 bytes, possível observar nas figuras 4 e 5, por sua vez, que o tamanho do cabeçalho IP tem um total de 20 bytes, o cabeçalho TPC tem um total de 32 bytes, o tamanho do cabeçalho ethernet é de \rightarrow 569-(503+20+32) = 14 . Concluímos deste modo temos que o número de bytes utilizado para o encapsulamento protocolar é de 52 bytes. Por fim, (14+32+20)/569=11,6% de overhead.

```
    Frame 45: 569 bytes on wire (4552 bits), 569 bytes captured (4552 bits) on interface en0, id 0

    Interface id: 0 (en0)
    Encapsulation type: Ethernet (1)
    Arrival Time: Apr 26, 2022 14:07:11.658351000 WEST
    [Time shift for this packet: 0.000000000 seconds]
    Epoch Time: 1650978431.658351000 seconds
    [Time delta from previous captured frame: 0.003944000 seconds]
    [Time delta from previous displayed frame: 0.003944000 seconds]
    [Time since reference or first frame: 2.812377000 seconds]
    Frame Number: 45
    Frame Length: 569 bytes (4552 bits)
    Capture Length: 569 bytes (4552 bits)
    [Frame is inpored: False]
    [Frame is inpored: False]
    [Protocols in frame: eth:ethertype:in:to:tls]
```

Figura 3: Tamanho do pacote

```
> Frame 45: 569 bytes on wire (4552 bits), 569 bytes captured (4552 bits) on interface en0, id 0
> Ethernet II, Src: Apple_c8:c8:c4 (90:9c:4a:c8:c8:c4), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)

> Internet Protocol Version 4, Src: 172.26.98.228, Dst: 193.137.9.150

0100 ... = Version: 4

... 0101 = Header Length: 20 bytes (5)
> Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)

Total Length: 555

Identification: 0x0000 (0)
> Flags: 0x40, Don't fragment

... 0 0000 0000 0000 = Fragment Offset: 0

Time to Live: 64
Protocol: TCP (6)
Header Checksum: 0x5eaf [validation disabled]
[Header checksum: status: Unverified]
Source Address: 172. 26. 98. 228
```

Figura 4: Tamanho do cabeçalho IP

```
Internet Protocol Version 4, Src: 1/2.26.98.228, Dst: 193.13/.9.150
Transmission Control Protocol, Src Port: 63111, Dst Port: 443, Seq: 644, Ack: 6171, Len: 503
   Source Port: 63111
  Destination Port: 443
   [Stream index: 4]
   [Conversation completeness: Complete, WITH_DATA (63)]
   [TCP Segment Len: 503]
  Sequence Number: 644 (relative
Sequence Number (raw): 403194729
                                   (relative sequence number)
  [Next Sequence Number: 1147
Acknowledgment Number: 6171
                                          (relative sequence number)]
  (relative ack number)
   Acknowledgment number (raw): 38807638
 1000 .... = Header Length: 32 bytes (8) Flags: 0x018 (PSH, ACK)
  Window: 2048
[Calculated window size: 131072]
   [Window size scaling factor: 64]
   Checksum: 0xdeb0 [unverified]
   [Checksum Status: Unverified]
 Urgent Pointer: 0
Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
   [Timestamps]
   [SEQ/ACK analysis]
TCP payload (503 bytes)
```

Figura 5: Tamanho do cabeçalho TCP

A seguir responda às seguintes perguntas, baseado no conteúdo da trama Ethernet que contém o primeiro byte da resposta HTTP proveniente do servidor.

_								
P	Number Page 227	Source	Destination	Protocol	Length	Info	Z138 A geant.ocsp.sect1qo.com	
	37 2.693551	193, 137, 16, 65	172.26.98.228	DNS			sponse 0x213a A geant.ocsp.sectigo.com CNAME ocsp.sectigo.com CNAME ocsp.comodoca	_
	38 2.695276	172.26.98.228	104.18.32.68	TCP			Seq=0 Win=65535 Len=0 MSS=1460 WS=64 TSval=793001619 TSecr=0 SACK PERM=1	
	39 2.701780	104.18.32.68	172.26.98.228	TCP			ACK] Seg=0 Ack=1 Win=65535 Len=0 MSS=1250 SACK PERM=1 WS=1024	
	40 2.701/80	172.26.98.228	1/2.26.98.228	TCP			ACK] Seq=0 ACK=1 W1n=65535 Len=0 M55=1250 SACK_PERM=1 W5=1024 Seq=1 Ack=1 Win=262144 Len=0	
		172.26.98.228		OCSP			Seq=1 ACK=1 Win=202144 Len=0	
	41 2.702281		104.18.32.68			Request		
	42 2.709277	104.18.32.68	172.26.98.228	TCP			Seq=1 Ack=456 Win=68608 Len=0	
	43 2.808271	104.18.32.68	172.26.98.228	OCSP		Response		
	44 2.808433	172.26.98.228	104.18.32.68	TCP			Seq=456 Ack=1196 Win=260928 Len=0	
Щ	45 2.812377	172.26.98.228	193.137.9.150	TLSv1		Application Data		
	46 2.831622	193.137.9.150	172.26.98.228	TCP			Seq=6171 Ack=1147 Win=262144 Len=0 TSval=3660352159 TSecr=382110930	
	47 2.837822	172.26.98.228	216.58.215.163	TCP			Seq=1 Ack=1 Win=2048 Len=0	
	48 2.852916	216.58.215.163	172.26.98.228	TCP			segment] 80 → 63100 [ACK] Seq=1 Ack=2 Win=265 Len=0 TSval=3406439926 TSecr=27567	
	49 2.897763	193.137.9.150	172.26.98.228	TLSv1		Application Data		
	50 2.897764	193.137.9.150	172.26.98.228	TLSv1		Application Data		
	51 2.897766	193.137.9.150	172.26.98.228	TCP			Seq=8213 Ack=1147 Win=262144 Len=1238 TSval=3660352159 TSecr=382110930 [TCP segm	
	52 2.897941	172.26.98.228	193.137.9.150	TCP			Seq=1147 Ack=9451 Win=127744 Len=0 TSval=382111015 TSecr=3660352159	
	53 2.898518	193.137.9.150	172.26.98.228	TLSv1		Application Data		
	54 2.898519	193.137.9.150	172.26.98.228	TCP	1304	443 - 63111 [ACK]	Seq=10226 Ack=1147 Win=262144 Len=1238 TSval=3660352159 TSecr=382110930 [TCP segi	
	55 2.898520	193.137.9.150	172.26.98.228	TLSv1	841	Application Data		
	EC 2.000E22	103 137 0 150	172 26 00 220	TCD	1204		C12220 A-b-1147 Min-262144 Lam-1220 TC1 2660352150 TC 202110020 TCD	
			s), 569 bytes captured					
			9c:4a:c8:c8:c4), Dst: C	ComdaEnt_ff	:94:00	00:d0:03:ff:94:	90)	
		mdaEnt_ff:94:00 (00:						
	> Source: Apple_c	8:c8:c4 (90:9c:4a:c8	3:c8:c4)					
	Type: IPv4 (0x0							
	Internet Protocol	Version 4, Src: 172	.26.98.228, Dst: 193.13	7.9.150				
			rt: 63111, Dst Port: 44	13, Seq: 64	4, Ack	: 6171, Len: 503		
	Transport Layer So	ecurity						

Figura 6: Trama que contém o primeiro byte da resposta HTTP

2.9 Pergunta 5

Qual é o endereço Ethernet da fonte? A que sistema de rede corresponde? Justifique.

2.10 Resposta 5

O endereço Ethernet da fonte é 90:9c:4a:c8:c4, o seu sistema pertence à interface Ethernert do computador.

2.11 Pergunta 6

Qual é o endereço MAC do destino? A que sistema corresponde?

2.12 Resposta 6

O endereço MAC do destino é 00:d0:03:ff:94:00,e o seu sistema é o router a qual o computador está associado.

2.13 Pergunta 7

Atendendo ao conceito de desencapsulamento protocolar, identifique os vários protocolos contidos na trama recebida.

2.14 Resposta 7

Os vários protocolos continas na trama são:

- Ethernet
- IPv4
- TCP

3 Protocolo ARP

3.1 Pergunta 8

Observe o conteúdo da tabela ARP. Diga o que significa cada uma das colunas.

Figura 7: Tabela ARP do nosso computador.

3.2 Resposta 8

A coluna Address nomeia os endereços, neste caso temos apenas o gateway da rede local. A coluna HWtype explicíta o tipo de protocolo usado, e a coluna HWsddress o endereço MAC. A coluna Flags mostra-nos o tipo de registo que está a ser colocado em memória. Na nossa tabela este valor é C, o que significa que o registo foi obtido dinamicamente pelo protocolo ARP. A coluna Mask corresponde à máscara de subrede. A última coluna, Iface dá-nos a interface da rede, no nosso caso ens3.

3.3 Pergunta 9

Qual é o valor hexadecimal dos endereços origem e destino na trama Ethernet que contém a mensagem com o pedido ARP (ARP Request)? Como interpreta e justifica o endereço destino usado?

3.4 Resposta 9

```
Frame 19: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface veth1.0.e8, id 0
▼ Ethernet II, Src: 00:00:00_aa:00:00 (00:00:00:aa:00:00), Dst: Broadcast (ff:ff:ff:ff:ff)
▶ Destination: Broadcast (ff:ff:ff:ff:ff:ff)
▶ Source: 00:00:00_aa:00:00 (00:00:00:00)
    Type: ARP (0x0806)
▼ Address Resolution Protocol (request)
    | Hardware type: Ethernet (1)
    Protocol type: IPv4 (0x0800)
    Hardware size: 6
    Protocol size: 4
    Opcode: request (1)
    Sender MAC address: 00:00:00_aa:00:00 (00:00:00:aa:00:00)
    Sender IP address: 172.16.0.10
    Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00)
    Target IP address: 172.16.0.1
```

Figura 8: Pedido ARP.

3.5 Pergunta 10

Qual o valor hexadecimal do campo tipo da trama Ethernet? O que indica?

3.6 Resposta 10

O valor é 0x0806. Indica que se trata do protocolo ARP.

3.7 Pergunta 11

Como pode confirmar que se trata efetivamente de um pedido ARP? Identifique que tipo de endereços estão contidos na mensagem ARP? Que conclui?

3.8 Resposta 11

Podemos verificar que se trata de um pedido ARP, uma vez que o campo opcode contém "request" e código 1. Na mensagem estão contidos o IP e MAC origem, como também o IP destino (o MAC destino não está presente visto que foi apagado da tabela ARP previamente).

3.9 Pergunta 12

Explicite que tipo de pedido ou pergunta é feita pelo host de origem.

3.10 Resposta 12

"Who has 172.16.0.1? Tell 172.16.0.10" A máquina origem quer saber quem tem o endereço IP 172.16.0.1, logo pergunta a todos os hosts qual deles é que tem esse endereço, e pede feedback (com o endereço MAC destino) para o endereço IP 172.16.0.10.

3.11 Pergunta 13

Localize a mensagem ARP que é a resposta ao pedido ARP efetuado.

Figura 9: ARP reply.

3.11.1 Pergunta a

Qual o valor do campo ARP opcode? O que especifica?

3.11.2 Resposta a

O valor do campo opcode é "reply (2)", indicando que se trata de uma mensagem ARP reply. O código 2 significa que é do tipo ARP reply.

3.11.3 Pergunta b

Em que campo da mensagem ARP está a resposta ao pedido ARP?

3.11.4 Resposta b

No campo Sender MAC address.

3.12 Pergunta 14

Na situação em que efetua um ping a outro host, assuma que este está diretamente ligado ao mesmo router, mas noutra subrede, e que todas as tabelas ARP se encontram inicialmente vazias. Esboce um diagrama em que indique claramente, e de forma cronológica, todas as mensagens ARP e ICMP trocadas, até à recepção da resposta ICMP do host destino.

3.13 Resposta 14

Figura 10: Diagrama ARP e ICMP.

4 Domínios de colisão

4.1 Pergunta 15

Através da opção tepdump verifique e compare como flui o tráfego nas diversas interfaces do dispositivo de interligação no departamento A (LAN partilhada) e no departamento B (LAN comutada) quando se gera tráfego intra-departamento (por exemplo, fazendo ping IPaddr da Bela para Monstro, da Jasmine para o Alladin, etc.) Que conclui?

4.2 Resposta 15

No departamento A, departamento na qual se trocou o *switch* por um *hub*, após executar o comando ping do computador Bela (192.168.134.228) para o computador Monstro(192.168.134.226) e executar o comando tepdump no *host*SA(192.168.134.227) é possivel verificar o envio de tramas entre os computadores anteriormente mencionados, tais como o echo request e o echo reply. No departamento B foi mantido o *switch* e executaram-se os mesmo comandos, o comando ping do computador Jasmine(192.168.134.196) para Alla-

 $\dim(192.168.134.195)$ e o comando tepdump no hostSB(192.168.134.193), e após uma breve análise foi possível verificar que executando o comando tepdump este não captura as tramas enviadas do computador Jasmine para o Alladin, capturando outras tramas que não estavam relacionadas com o comando ping executado.

Figura 11: Comandos executados no departamento A e no departamento B

4.3 Pergunta 16

Construa manualmente a tabela de comutação do switch do Departamento B, atribuindo números de porta à sua escolha.

4.4 Resposta 16

Figura 12: Topologia

```
condSSD/tea/spoors 4110/CSD, confit spoorfs
(100/CSD, confit of food)
(100/CSD); consent not food
(100/CSD); conse
```

Figura 13: Comando ifconfig

Interface	Endereços Mac	TTL
1	00:00:00:aa:00:00	20
2	00:00:00:aa:00:02	20
3	00:00:00:aa:00:01	20
4	00:00:00:aa:00:03	20

Figura 14: Tabela de comutação do switch

5 Conclusão

A realização deste trabalho prático permitiu aos elementos da equipa de trabalho consolidar os conhecimentos adiquiridos nas aulas acerca de captura e análise de tramas *Ethernet*, protocolo ARP e sobre domínios de colisão. Alado a isto, este trabalho permitiu também um maior domínio sobre o uso de aplicações relacionadas com os temas supramencionados.