HLA Class I protection in HTLV-I infection

Aidan MacNamara aidan.macnamara@imperial.ac.uk

September 20, 2010

- Introduction
 - The Virus
 - Why study this virus?
 - Aim
- 2 Method
 - Overall Scheme
 - Epitope Prediction Software
- Results
 - Software Validation
 - Binding as a predictor of disease
 - Theory to experiment
 - The role of CTLs and NK cells
- 4 Conclusion

Human T-lymphotropic virus (Type 1)

Figure: Stylised Human T-lymphotropic virus

- Family Retroviridae
- Up to 20 million people infected
- Endemic: Japan, South America, Caribbean
- Infects T-cells, mitosis / cell-cell transmission

Individuals Infected with HTLV-I

```
95% \rightarrow Asymptomatic Carriers (ACs)
2-3% \rightarrow Chronic Inflammatory Diseases e.g. HAM/TSP
2-3% \rightarrow Leukaemia (ATL)
```

Individuals Infected with HTLV-I

```
95% \rightarrow Asymptomatic Carriers (ACs)
2-3% \rightarrow Chronic Inflammatory Diseases e.g. HAM/TSP
2-3% \rightarrow Leukaemia (ATL)
```

Question

What determines these different outcomes to infection?

What determines these different outcomes to infection?

Differences in the host immune response?

- Certain MHC class I alleles confer protection in individuals
- Protective A*02 and Cw*08
- Detrimental B*54

What determines these different outcomes to infection?

Figure: The T-cell receptor recognizes antigens bound to MHC class I

What determines these different outcomes to infection?

Figure: The T-cell receptor recognizes antigens bound to MHC class I

- Why do specific forms of the MHC class I genotype afford greater protection than others?
- Differences in the cytotoxic T lymphocyte (CTL) immune response that they restrict?

What is the role of the CD8⁺ T cell response?

- Test and improve existing epitope prediction software in order to predict HTLV-I epitopes
- Test hypotheses about the epitope properties of protective and detrimental alleles
- Model the CD8⁺ T cell response in terms of its rate of lysis of infected CD4⁺ T cells
- Further understand the role of CTLs and NK cells in HTLV-I infection

How to answer the question?

Cohort of HTLV-I infected individuals:

- 202 asymptomatic carriers
- 230 HAM/TSP patients
- MHC class I genotype
- Proviral load

```
HTLV-I genome \rightarrow Proviral Load Predicted Epitopes \approx MHC Class I \rightarrow Disease Status
```

Software Development

Figure: ROC curve that illustrates epitope prediction performance

Current Software

- NetMHC predicts peptide-MHC binding
- NetCTL also predicts TAP and cleavage events
- Normalise predicted binding affinities

Software Development

Figure: ROC curve that illustrates epitope prediction performance

Metaserver (MacNamara et al. PLoS Comp. Biol. 2009)

- Removes normalising function
- Significant improvement in accuracy

The Rank Method

Weak Strong

		A*02		B*54		C*08	
<u>م</u>	1	Gag	TPKDKTKVL	Tax	LPTTLFQPA	Tax	YLYQLSPPI
Strong	2	Pol	PADPKEKDL	Pro	LPVIPLDPA	Tax	LLFGYPVYV
7	3	Rof	RPPPAPCLL	Env	FPFSLLVDA	Pol	ALLGEIQWV
	4	P12	RPPPAPCLL	Pol	MPVFTLSPV	Pol	SLISHGLPV
Weak	5	Gag	NANKECQKL	Rof	LPITMRFPA	Pol	FQPYFAFTV
	6	Gag	ANNPQQQGL	P12	LPITMRFPA	Gag	FMQTIRLAV
	7	Gag	GAPPNHRPW	Pro	LPFRTTPIV	Pol	LTYDAVPTV
	3389	 P12	 LLLFLLPPS	 Tax	DNDHEPQIS	 Tax	 DNDHEPQIS
					•		•

The Rank Method

		A*02		B*54		C*08	
8	1	Gag	TPKDKTKVL	Tax	LPTTLFQPA	Tax	YLYQLSPPI
Strong	2	Pol	PADPKEKDL	Pro	LPVIPLDPA	Tax	LLFGYPVYV
Ş	3	Rof	RPPPAPCLL	Env	FPFSLLVDA	Pol	ALLGEIQWV
	4	P12	RPPPAPCLL	Pol	MPVFTLSPV	Pol	SLISHGLPV
	5	Gag	NANKECQKL	Rof	LPITMRFPA	Pol	FQPYFAFTV
	6	Gag	ANNPQQQGL	P12	LPITMRFPA	Gag	FMQTIRLAV
Α̈́	7	Gag	GAPPNHRPW	Pro	LPFRTTPIV	Pol	LTYDAVPTV
Weal							
>	3389	P12	LLLFLLPPS	Tax	DNDHEPQIS	Tax	DNDHEPQIS

- From Borghans et al. 2007
- Defines how well an allele binds a specific protein
- Example: $A*02-Gag \rightarrow 1,5,6,7...$

Software Validation for HTLV-I

- Predicted versus laboratory binding affinities
- 50 HTLV-I peptides for 4 alleles
- Strong correlation found

Software Validation

Software Validation for HTLV-I

Conclusion

Metaserver and Epipred predict MHC class I binding affinity to HTLV-I peptides with good accuracy

Do protective alleles bind different proteins?

Do protective alleles (A*02 and Cw*08) have a different binding specificity compared to the detrimental allele (B*54)?

Do protective alleles bind different proteins?

Do protective alleles bind different proteins?

Conclusion

Protective alleles (A*02 and Cw*08) bind HBZ significantly more strongly than a detrimental allele (B*54)

Do ACs and HAM/TSP patients bind different proteins?

202 AC individuals HLA class I type

Predicted epitopes

→ from each protein

Vs.

230 HAM/TSP individuals HLA class I type

Predicted epitopes from each protein

Do ACs and HAM/TSP patients bind different proteins?

Do ACs and HAM/TSP patients bind different proteins?

Conclusion

Asymptomatic carriers possess HLA molecules that strongly bind HBZ

Why is binding HBZ protective?

Hypothesis

Binding HBZ is associated with a reduced proviral load

Why is binding HBZ protective?

Why is binding HBZ protective?

Conclusion

Binding HBZ is associated with a reduced proviral load

Is There a Link Between risk and proviral load with other proteins?

For each protein 2 hypotheses were tested:

- Binding the protein is associated with reduced HAM/TSP risk
- Binding the protein is associated with reduced proviral load

Is There a Link Between risk and proviral load with other proteins?

Conclusion

Is There a Link Between risk and proviral load with other proteins?

Conclusion

 ACs possess alleles that bind more strongly to proteins associated with a reduced proviral load

Is There a Link Between risk and proviral load with other proteins?

Conclusion

- ACs possess alleles that bind more strongly to proteins associated with a reduced proviral load
- This is not related to immunogenicity

Is There a Link Between risk and proviral load with other proteins?

Conclusion

- ACs possess alleles that bind more strongly to proteins associated with a reduced proviral load
- This is not related to immunogenicity
- Strong evidence of a protective CTL response (MacNamara et al. PLoS Pathogens, 2010)

Can we detect HBZ-specific CTL?

Figure: IFN- γ ELISpot that demonstrates a CTL response against HBZ from a HTLV infected patient (compared to control, left)

- Detection of HBZ-specific CD8 $^+$ T cells (IFN γ , CD107a)
- Demonstration of HBZ-specific lysis (B-LCL, naturally infected)

Why HBZ?

HBZ inhibits expression of other HTLV-I genes

⇒Protects cell from immune response

HBZ expression drives infected cell proliferation

Hypothesis

HBZ expressing cells have a survival advantage and blocking this pathway is important

The rate of lysis of infected cells

$$\frac{dy}{dt} = c - \epsilon yz$$

- Flow Cytometry detects level of Tax expression
- CD8⁺ T cells added at increasing concentrations
- The lysis rate measured using model

The role of CTLs and NK cells

The rate of lysis of infected cells

Time course of tax expression

Target CD4⁺ cells divided into Tax^{high} and Tax^{low}

The role of CTLs and NK cells

The rate of lysis of infected cells

Time course of tax expression

Target CD4⁺ cells divided into Tax^{high} and Tax^{low}

HAP

Tax High Eugl
Tax High Model
Tax Low Model
Tax Low Model
Tax Low Model

Lysis of CD4⁺ cells

Rate of lysis measured for Tax^{high} and Tax^{low}

Time

The rate of lysis of infected cells

- Target CD4⁺ cells are killed quicker when expressing higher levels of Tax
- MacNamara et al.
 J. Immunol. 2009

Summary

 Developed accurate epitope prediction software

Validated software experimentally for 200 HTLV-I peptides

Orotective alleles bind HBZ more strongly than a detrimental allele

4 ACs have HLA alleles which are specific for HBZ

Summary

 Binding HBZ is associated with a reduced proviral load

 Proteins that are preferentially targeted by ACs are those associated with a greater reduction in load when bound

HBZ-specific responses exist

 Antigen expression levels affect lysis rate and no KIR:HLA associations were found

Primary supervisor: Dr. B Asquith

Secondary supervisor: Prof. Charles Bangham

Collaborators & Data:

- Aileen Rowan, Silva Youshya
- Ulrich Kadolsky

