20/03/2025

Convergence et méthode des moments

Exercice 1

Déterminer un estimateur convergent et sans biais du paramètre λ pour la loi de Poisson.

Exercice 2

Déterminer un estimateur du paramètre α pour la loi de Pareto par la méthode des moments. (cf. feuille 1)

Exercice 3

Déterminer un estimateur du paramètre p pour une loi géométrique.

Exercice 4

- 1. Déterminer les estimateurs donnés par la méthode des moments pour une loi normale $\mathcal{N}(m, \sigma^2)$.
- 2. Sont-ils convergents? Pourquoi?

Exercice 5

La fonction Γ est définie sur $]0; +\infty[$ par :

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

- 1. Montrer que : $\Gamma(n+1) = n!$ pour tout entier $n \ge 0$.
- 2. En admettant qu'elle est bien définie sur $]0;\infty[$, vérifier que :

$$\Gamma(x+1) = x\Gamma(x)$$

3. Soient $\alpha > 0$ et $\beta > 0$. Justifier que la fonction $f_{\alpha,\beta}$ définie sur $]0; +\infty[$ par

$$f_{\alpha,\beta}(x) = x^{\alpha-1} \frac{\beta^{\alpha} e^{-\beta x}}{\Gamma(\alpha)}$$

définit une densité. Elle définira la loi Gamma de paramètres α et β .

- 4. Justifier que la loi exponentielle est un cas particulier de la loi Gamma.
- 5. Admettons que la fonction caractéristique de la loi Gamma de paramètres α et β est :

$$\phi(t) = \left(\frac{\beta}{\beta - it}\right)^{\alpha}$$

Calculer l'espérance et la variance d'une variable aléatoire suivant une loi Gamma de paramètres α et β .

6. En déduire des estimateurs des paramètres α et β à l'aide de la méthode des moments.

Exercice 6

Soit X une variable aléatoire suivant une loi uniforme sur $[0; \theta]$.

- 1. Quelle est la densité de la variable aléatoire X?
- 2. Quelle est son espérance?
- 3. En déduire un estimateur du paramètre θ par la méthode des moments.

Exercice 7(Une loi faible des grands nombres)

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires L^2 , centrées et deux à deux non corrélées.

Notons, pour $n \geq 1$, $S_n := \sum_{k=1}^n X_k$ et notons σ_n^2 la variance de la variable aléatoire X_n .

Supposons que $\frac{1}{n^2} \sum_{k=1}^{n} \sigma_k^2$ tend vers zéro.

Montrer que la suite $\frac{S_n}{n}$ converge vers 0 en moyenne quadratique.