

TD n°1: Analyse Mathématique

SEG - S1 - 2021/2022 - Pr. Hamza El Mahjour

Fonctions d'une variable réelle

Exercice 1

Donner le domaine de définition de chacune des fonctions suivantes :

$$1.f_1(x) = x^3 + 1,$$

$$2.f_2(x) = \sqrt{x+3}$$
,

$$3.f_3(x) = Ln(x-2),$$

$$4. f_4(x) = Ln(x^2 - 2),$$

$$5.f_5(x) = \frac{\sin(x)}{(1+x)(x-\sqrt{3})},$$

$$\frac{1}{1}$$
, $6.f_6(x) = \frac{Ln(x-2)}{\sqrt{x-3}}$

Indication ♥ Ćòrrectión ▼

[01]

Exercice 2

Observez le graphe de la fonction g ci-contre. Donner à chaque fois la limite (si elle existe!).

- a. $\lim_{x \to a} g(x)$
- b. $\lim_{x \to a} g(x)$ c. $\lim_{x \to a} g(x)$
- d. $\lim_{x \to \infty} g(x)$
- e. $\lim_{x \to a} g(x)$ f. $\lim_{x \to a} g(x)$
- g. $\lim_{x \to 2^{-}} g(x)$
- h. $\lim_{x\to 2^+} g(x)$ i. $\lim_{x\to 2} g(x)$

Exercice 3

Soit f la fonction

$$f(x) = \frac{2}{(x-1)^2}$$

- (a) Donnez le domaine de définition de la fonction.
- (b) Calculez les limites $\lim_{x\to 1^-} f(x)$, $\lim_{x\to 1^+} f(x)$, $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- (c) Interprétez les limites précédentes et tracez (approximativement) le graphe de la fonction au voisinage de $1, -\infty$ et $+\infty$.

Correction ▼ [03]

Exercice 4

On rappelle que $x \mapsto \arcsin(x)$ est la fonction **réciproque** de $\sin(x)$. La fonction arcsin est définie et continue sur [-1, 1].

- (a) Calculer $\arcsin(1)$, $\arcsin(-1)$ et $\arcsin(0)$. Tracer approximativement le graphe de $\arcsin(x)$ sur le dessin ci-contre.
- (b) Montrer que $\arcsin(x)$ n'est pas dérivable aux points -1^+ et 1^- et que sa dérivée est la fonction $\frac{1}{\sqrt{1-x^2}}$ sur l'intervalle]-1,1[.

(c) Étudier la fonction $g: x \mapsto \arcsin\left(\frac{2x}{1+x^2}\right)$: domaine de définition, parité, signes de la dérivée, limites importantes, esquisse du graphe.

Indication ▼ Correction ▼ [04]

Exercice 5

Étudier la fonction $f: x \mapsto x^5 - 5x + 1$ sur \mathbb{R} et en déduire que l'équation $x^5 - 5x + 1 = 0$ a trois solutions réelles.

Indication ▼ Correction ▼ [05]

Exercice 6

Soit f une fonction n fois dérivable sur]a,b[s'annulant en n+1 points de]a,b[. Montrer que si $f^{(n)}$ est continue, il existe un point x_0 de]a,b[tel que $f^{(n)}(x_0)=0$.

Indication ▼ Correction ▼ [06]

Exercice 7

Dans l'application du théorème des accroissements finis à la fonction

$$f(x) = \alpha x^2 + \beta x + \gamma$$

sur l'intervalle [a,b]

- 1. Préciser le nombre "c" de]a,b[.
- 2. Donner une interprétation géométrique.

Correction ▼ [07]

Indication pour l'exercice 4 ▲

- (b) Calculer $\lim_{x\to -1^+} \frac{f(x)-f(-1)}{x-(-1)}$. La dérivée de la réciproque est $(f^{-1})'=\frac{1}{f'(f^{-1})}$.
- (c) $\sin(x)^2 + \cos(x)^2 = 1$.

Indication pour l'exercice 5 ▲

Pensez aux limites et au Théorème des valeurs intermédiaires ou Rolle

Indication pour l'exercice 6 ▲

Appliquer Rolle plusieurs fois et à plusieurs ordres de dérivées

Correction de l'exercice 1 🛦

 $\frac{1.D_{f_1} = \mathbb{R} \text{ car c'est une fonction polynomiale. 2. } D_{f_2} = \{x \in \mathbb{R}, \quad x+3 \ge 0\} = \{x \in \mathbb{R}, \quad x \ge -3\} = [-3, +\infty[.3.D_{f_3} = \{x \in \mathbb{R}, \quad x \ge 2\} =]2, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 - 2 > 0\} = \{x \in \mathbb{R}, \quad x^2 > 2\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = \{x \in \mathbb{R}, \quad x^2 > 2\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = \{x \in \mathbb{R}, \quad x^2 > 2\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = \{x \in \mathbb{R}, \quad x^2 > 2\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0\} = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} = \{x \in \mathbb{R}, \quad x^2 > 2 > 0] = [-3, +\infty[.4.D_{f_4} =$ $\left\{x \in \mathbb{R}, \quad x > \sqrt{2} \text{ ou } x < -\sqrt{2}\right\} =]-\infty, -\sqrt{2}[\bigcup]\sqrt{2}, +\infty[.$

Correction de l'exercice 2 A

a. $\lim_{x \to 0^{-}} g(x) = 2.5$ b. $\lim_{x \to 0^{+}} g(x) = 2.5$ c. $\lim_{x \to 0} g(x) = 2.5$. d. $\lim_{x \to 0^{-}} g(x) = 3$ e. $\lim_{x \to 0^{+}} g(x) = 1$ f. $\lim_{x \to 0} g(x)$ n'existe pas $e. \lim_{x \to 0}^{x \to 0} g(x) = 1$

i. $\lim_{x \to a} g(x) = 2 \neq g(2)$ car g est discontinue en ce point. g. $\lim_{x \to a} g(x) = 2$ h. $\lim_{x \to 0} g(x) = 2$

Correction de l'exercice 3

(a) $D_f = \{x \in \mathbb{R}, (x-1)^2 \neq 0\} = \mathbb{R} \setminus \{1\}.$

(b) $\lim_{x \to 1^{-}} = \frac{2}{(0^{-})^{2}} = \frac{2}{0^{+}} = +\infty = \lim_{x \to 1^{+}}$. Et $\lim_{x \to \pm \infty} = \frac{2}{+\infty} = 0$.

(c) f admet une asymptote d'équation x = 1 verticale à droite et à gauche de 1. f admet une asymptote horizontale au voisinage de $\pm \infty$.

Correction de l'exercice 4

(a) On $\arcsin(1) = \frac{\pi}{2}$, $\arcsin(-1) = -\frac{\pi}{2}$ et $\arcsin(0) = 0$.

(b) D'abord on utilise la définition de la dérivée au point -1 à droite. On a

$$\lim_{x \to -1^{+}} \frac{\arcsin(x) - \arcsin(-1)}{x - (-1)} = \lim_{x \to -1^{+}} \frac{\arcsin(x) + \frac{\pi}{2}}{x + 1}.$$

On pose u = sin(x) alors $x \to -1^+ \implies u \to -\frac{\pi}{2}^+$. Donc

$$\lim_{x \to -1^{+}} \frac{\arcsin(x) + \frac{\pi}{2}}{x+1} = \lim_{u \to -\frac{\pi}{2}^{+}} \frac{\arcsin(\sin(x) + \frac{\pi}{2})}{\sin(u) + 1}$$

Posons maintenant $y = \frac{pi}{2} + u$, alors $u \to -\frac{pi}{2}^+ \implies y = 0^+$ et

$$\lim_{u \to -\frac{\pi}{2}^{+}} \frac{\arcsin(\sin(x)) + \frac{\pi}{2}}{\sin(u) + 1} = \lim_{y \to 0^{+}} \frac{y}{1 + \sin(y - \frac{pi}{2})}$$

$$= \lim_{y \to 0^{+}} \frac{y}{1 - \cos(y)},$$

$$= \lim_{y \to 0^{+}} \frac{1}{\frac{1 - \cos(y)}{y}},$$

$$= \frac{1}{0^{+}}$$

$$= +\infty,$$

car $\lim_{x\to 0^+} \frac{1-\cos(x)}{x} = 0^+$. Donc $\arcsin(x)$ n'est pas dérivable en -1^+ . De même pour 1^- . La dérivée sur]-1,1[est

$$\arcsin'(x) = (\sin^{-1})'(x) = \frac{1}{\sin'(\sin^{-1}(x))} = \frac{1}{\cos(\arcsin(x))}$$

On pose $\theta = \arcsin(x)$. On sait que $\sin(\theta)^2 + \cos(\theta)^2 = 1$, donc $\cos(\theta) = \sqrt{1 - \sin(\theta)^2}$ Alors

$$\arcsin'(x) = \frac{1}{\sqrt{1 - \sin(\theta)^2}} = \frac{1}{\sqrt{1 - \sin(\arcsin(x))^2}} = \frac{1}{\sqrt{1 - x^2}}.$$

(c) On a, pour tout $x \in \mathbb{R}$, $(1+x)^2 \geqslant 0 \Longrightarrow 1+x^2 \geqslant -2x$ et $(1-x)^2 \geqslant 0 \Longrightarrow 1+x^2 \geqslant 2x$. Donc $-(x^2+1) \leqslant 2x \leqslant x^2+1$ alors $-1 \leqslant \frac{2x}{x^2+1} \leqslant 1$. Donc la fonction $x \mapsto \frac{2x}{x^2+1}$ va de \mathbb{R} vers [-1,1], et elle est composée avec $x \mapsto \arcsin(x)$ qui est définie sur [-1,1] vers $[-\frac{\pi}{2},\frac{\pi}{2}]$. Donc g est définie de \mathbb{R} dans $[-\frac{\pi}{2},\frac{\pi}{2}]$. Elle est continue comme composée de deux fonctions continues. g est dérivable sur $\mathbb{R} \setminus \{-1,1\}$. Sa dérivée est

$$\frac{2}{1+x^2} \frac{1-x}{\sqrt{(1-x^2)^2}} = \frac{2}{1+x^2} \frac{1-x}{|1-x^2|}.$$

Notons que la fonction g est impaire car c'est une composée de deux fonctions impaires. Donc il suffit de l'étudier sur $[0,\infty]$. Donc la dérivée de g est

$$g'(x) = \begin{cases} \frac{2}{1+x^2} > 0 & \text{si} \quad x \in [0,1[\\ -\frac{2}{1+x^2} < 0 & \text{si} \quad x \in]1, +\infty[\end{cases}$$

Par conséquent, g est strictement croissante sur [0,1[(et aussi]-1,0]) et strictement décroissante sur $]1,+\infty[$ (et aussi $]-\infty,1[$). De plus. On a $\lim_{x\to+\infty}g(x)=-\lim_{x\to-\infty}g(x)=0$, $\lim_{x\to+1^-}g(x)=-\lim_{x\to-1^+}g(x)=\frac{\pi}{2}$ et $\lim_{x\to0^+}g(x)=-\lim_{x\to0^-}g(x)=0$.

x	0		1		+∞
f'(x)	2	+	+1 -1	_	0
f(x)	0		$\pi/2$		0

En plus,

Correction de l'exercice 5 ▲

D'abord on a $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} x^5 = +\infty$ et $\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} x^5 = -\infty$. Donc il existe A<0 assez petit et B>0 assez grand tels que f(A)<0 et f(B)>0. De plus, $f'(x)=5x^4-5$ donc $f'(x)=0 \iff x=-1$ ou x=1. Donc, f'(x)<0 si $x\in]-1,1[$ et f'(x)>0 si $x\in]-\infty,-1[\bigcup]1,+\infty[$. Et on a donc le tableau suivant

On applique alors le théorème des valeurs intermédiaires sur [A,-1], [-1,1] et [1,B]. Avec $f(A) \cdot f(-1) < 0$, $f(-1) \cdot f(1) < 0$ et $f(1) \cdot f(B) < 0$. Et puisque sur chacun des intervalles précédents la fonction est **strictement monotone**, il existe alors d'**uniques** $x_0 \in]A, -1[,x_1 \in]-1,1[$ et $x_2 \in]1,B[$ tels que $f(x_0) = f(x_1) = f(x_2) = 0$.

Correction de l'exercice 6

Puisque f est dérivable n fois donc toutes ses fonctions dérivées jusqu'à $f^{(n-1)}$ sont continues. De plus, f s'annule n+1 fois donc il existe $x_1, x_2, \ldots, x_{n+1}$ tels que $f(x_1) = f(x_2) = \ldots = f(x_{n+1}) = 0$. On

a $f(x_1) = f(x_2)$ alors par le théorème de Rolle $\exists c_{1,1} \in]x_1, x_2[$ tel que $f'(c_{1,1}) = 0$. On répète le même processus pour trouver que $f'(c_{1,2}) = 0$, $f'(c_{1,3}) = 0 \dots f'(c_{1,n}) = 0$. Alors de la même façon nous allons appliquer le théorème de Rolle avec la dérivée de f' c'est à dire $f^{(2)}$. On donne un exemple de la procédure; on a $f'(c_{1,1}) = f'(c_{1,2})$ donc par le théorème de Rolle, il existe $c_{2,1} \in [c_{1,1}, c_{1,2}]$ tel que $(f'(c_{2,1}))' = f^{(2)}(c_{2,1}) = 0$. Comme ça, en répétant, on trouvera $f^{(2)}(c_{2,1}) = f^{(2)}(c_{2,2}) = f^{(2)}(c_{2,3}) = \dots = f^{(2)}(c_{n-1,2}) = 0$. On reprenant la même idée pour les dérivées supérieur on aboutira à la fin à un nombre $c_{1,n} \in [c_{1,n}, c_{2,n}]$ tel que $f^{(n)}(c_{1,n}) = 0$.

Correction de l'exercice 7

- 1. La fonction f est continue et dérivable sur $\mathbb R$ donc en particulier sur [a,b]. Le théorème des accroissement finis assure l'existence d'un nombre $c \in]a,b[$ tel que f(b)-f(a)=f'(c)(b-a). Mais pour la fonction particulière de cet exercice nous pouvons expliciter ce c. En effet f(b)-f(a)=f'(c)(b-a) implique $\alpha(b^2-a^2)+\beta(b-a)=(2\alpha c+\beta)(b-a)$. Donc $c=\frac{a+b}{2}$.
- 2. Géométriquement, le graphe \mathscr{P} de f est une parabole. Si l'on prend deux points A=(a,f(a)) et B=(b,f(b)) appartenant à cette parabole, alors la droite (AB) est parallèle à la tangente en \mathscr{P} qui passe en $M=(\frac{a+b}{2},f(\frac{a+b}{2}))$. L'abscisse de M étant le milieu des abscisses de A et B.