Automorphic Corrections

and diagonal divisor genus 2 Siegel modular forms

Game Plan

- Diagonal Divisor Siegel Modular Forms
- Igusa's Cusp form Δ_5 of Weight 5
- Trivial transfer of automorphic forms from $\mathbf{Sp}_4(\mathbb{Z})$ to $\mathbf{O}(\Lambda^{3,2})_+$
- Reflection groups $W_{I}^{\left(2\right)},\,W_{II}^{\left(2\right)}$
- The Weyl vector ρ
- Fourier-coefficients of Δ_5 and the hyperbolic lattice $\Lambda_{II}^{2,1}$
- Automorphic correction and a generalized Borcherds-Kac-Moody super algebra \mathfrak{g}_{Δ_5}
- Root super-multiplicities of \mathfrak{g}_{Δ_5} and the weak Jacobi form $\phi_{0,1}$ of index 1
- Arithmetic geometry of some Calabi-Yau 3-folds

Diagonal Divisor Siegel Modular Forms

• Integral symplectic groups Γ_t , and corresponding congruence subgroups of Hecke Type (*Paramodular groups of genus 2*)

$$t, n \in \mathbb{Z}_{+} : \Gamma_{t}(N) = \left\{ \begin{pmatrix} * & *t & * & * \\ * & *t & * & * \\ * & * & *t^{-1} \\ *Nt & *Nt & * & * \\ *Nt & *Nt & *t & * \end{pmatrix} \in \mathbf{Sp_{4}}(\mathbb{Q}) \, | \, * \in \mathbb{Z} \right\}$$

• Which Siegel modular forms with respect to $\Gamma_t(N)$ (with character/multiplier system) vanish exactly along $\Gamma_t(N)$ -translates of the diagonal $\{ \begin{pmatrix} a \\ b \end{pmatrix} | a,b \in \mathbb{H}_1 \} \subset \mathbb{H}_2 \text{ precisely to order 1?}$

Diagonal Divisor Siegel Modular Forms

• **Theorem** For congruence subgroups $\Gamma_t(N) < \Gamma_t$ there are exactly eight dd-modular forms

•
$$M_5(\Gamma_1, \nu_2) = \Delta_5$$

$$M_2(\Gamma_2, \nu_4)$$

$$M_3(\Gamma_1(2), \nu_2)$$

$$M_1(\Gamma_3, \nu_6)$$

$$M_2(\Gamma_1(3), \nu_2)$$

$$M_{\frac{1}{2}}(\Gamma_4, \nu_8)$$

$$M_{\frac{3}{2}}(\Gamma_1(4), \nu_4)$$

$$M_1(\Gamma_2(2), \nu_4)$$

•
$$SM(\mathbf{Sp}_4(\mathbb{Z})) = \mathbb{C}[E_4, E_6, \Delta_{10}, \Delta_{12}]$$

•
$$\Delta_{10} = (\Delta_5)^2$$

• Δ_5 cusp form weight 5, non-trivial multiplier system $u_{\Delta_5}: \mathbf{Sp}_4(\mathbb{Z}) \to \mathbb{C}$

$$\Delta_5 = \prod_{(a,b) \in (\mathbb{Z}/2\mathbb{Z})^2, tab \equiv 0 \mod 2} \nu_{a,b}$$

$$\nu_{ab}(z) = \sum_{l \in \mathbb{Z}^2} \exp(\pi i (z(l + \frac{1}{2}a)z(l + \frac{1}{2}a) + tbl))$$

- $\nu_{\Delta_5}: \mathbf{Sp}_4(\mathbb{Z}) \to \mathbb{C}$ found explicitly by Maas
- $\bullet | \nu_{\Delta_5}(g) | = 1$

$$\boldsymbol{\nu}_{\Delta_5} \begin{pmatrix} \mathbf{I}_2 \\ -\mathbf{I}_2 \end{pmatrix} = 1$$

$$\nu_{\Delta_5} \begin{pmatrix} \mathbf{I}_2 & B \\ \mathbf{I}_2 \end{pmatrix} = (-1)^{b_1 + b_2 + b_3}$$

$$\nu_{\Delta_5} \begin{pmatrix} {}^t A^{-1} \\ A \end{pmatrix} = (-1)^{(1+a_1+a_4)(1+a_2+a_3)+a_1a_4}$$

$$A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \in \mathbf{GL}_2(\mathbb{Z}) \quad \text{and} \quad B = \begin{pmatrix} b_1 & b_2 \\ b_2 & b_3 \end{pmatrix} \in M_{2\times 2}(\mathbb{Z})$$

• Expression in terms of even theta constants + Maas' multiplier system

$$\Rightarrow \Delta_5(z) = \sum_{\substack{n, l, m = 1 \text{ mod } 2,\\ 4nm - l^2 > 0,\\ n, m > 0}} f(n, l, m) \exp(\pi i (nz_1 + lz_2 + mz_3))$$

$$z = \begin{pmatrix} z_0 & z_1\\ z_2 & z_3 \end{pmatrix}$$

• f(1,1,1) = 64 and 64|f(n,l,m)

• Lemma
$$1 + \frac{1}{64} \sum_{n \in \mathbb{N}} f(1 + 2t, 1, 1) q^t = \prod_{k \in \mathbb{N}} (1 - q^k)^9$$

proof (sketch).
$$\Delta_5(Z) = \sum_{m>0, \ m=1 \mod 2} \phi_{5,m}(z_1,z_2) \exp(\pi i m z_3)$$

. First Fourier-Jacobi coefficient $\phi_{5,m}$ is a Jacobi cusp form of index $\frac{1}{2}$ and non-trivial character

Jacobi theta-series

$$\nu_{11}(z_1, z_2) = \sum_{n \in \mathbb{Z}} (-1)^n \exp(\frac{\pi i}{4} (2n+1)^2 z_1 + \pi i (2n+1) z_2)$$

Jacobi-triple-product-formula ⇒

$$\nu_{11} = q_1^{\frac{1}{8}} q_2^{-\frac{1}{2}} \prod_{n \ge 1} (1 - q_1^{n-1} q_2) (1 - q_1^n q_2^{-1}) (1 - q_1^n)$$

• $\psi_{5,\frac{1}{2}}\exp(2\pi itz_3)=\eta(z_1)^9\nu_{11}(z_1,z_2)$ is another Jacobi cusp form of index $\frac{1}{2}$ $\eta=\exp(\frac{\pi i\tau}{12})\prod_{n\geq 1}(1-\exp(2\pi in\tau))$ is Dedekind's η -function

- Pass to squares \rightarrow get Jacobi cusp forms of weight 10 index 1
- Up to a constant, unique and coincides with first Fourier-Jacobi-coefficient of $\Delta_{10}=(\Delta_5)^2$

$$\frac{1}{64}\phi_{5,1} = \psi_{5,\frac{1}{2}} = -q_1^{\frac{1}{2}}q_2^{-\frac{1}{2}} \prod_{n>1} (1 - q_1^{n-1}q_2)(1 - q_1^n q_2^{-1})(1 - q_1^n)^{10}$$

• Compare Fourier-coeffients + apply Jacobi-triple-product identity to coefficient of $q_2^{\frac{1}{2}}$ Q.E.D.

- $\Lambda^4 = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2 \oplus \mathbb{Z}e_3 \oplus \mathbb{Z}e_4$
- \mathbb{Z} -linear maps $g:\Lambda^4\to\Lambda^4$ induce $\Lambda^2\,g:\Lambda^4\wedge\Lambda^4\to\Lambda^4\wedge\Lambda^4$
- Induces action of $\mathbf{SL}_4(\mathbb{Z})$
- Pfaffian scalar product $(,):\Lambda^4 \wedge \Lambda^4 \to \mathbb{C}$

$$u \wedge v = (u, v)e_1 \wedge e_2 \wedge e_3 \wedge e_4 \in \wedge^4 \Lambda^4$$

• $\mathbf{SL}_4(\mathbb{Z})$ -invariant signature (3,3) even unimodular integral symmetric binilear form

- Take $q = e_1 \wedge e_3 + e_2 \wedge e_4 \in \Lambda^4 \wedge \Lambda^4$
- $-x \wedge y \wedge q = B_q(x,y)e_1 \wedge e_2 \wedge e_3 \wedge e_4$ defines integral skew-symmetric bilinear form (elements $q \in \Lambda^4 \wedge \Lambda^4$ define such forms)
- $\{g: \Lambda^4 \to \Lambda^4 \mid (g \land g)(e_1 \land e_3 + e_2 \land e_4) = e_1 \land e_3 + e_2 \land e_4\} \simeq \mathbf{Sp}_4(\mathbb{Z})$

•
$$\Lambda^{3,2} = (e_1 \wedge e_3 + e_2 \wedge e_4)^{\perp} \subset \Lambda^4 \wedge \Lambda^4$$

$$\Lambda^{3,2} \simeq \Lambda^{1,1} \oplus \Lambda^{1,1} \oplus \mathbb{Z} \simeq \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \oplus [2]$$

Fix the basis

$$f_1 = e_1 \land e_2, f_2 = e_2 \land e_3, f_3 = e_1 \land e_3 - e_2 \land e_4, f_{-2} = e_4 \land e_1, f_{-1} = e_4 \land e_3$$

• $\mathbf{O}_{\mathbb{R}}(\Lambda^{3,2}) = \mathbf{O}_{\mathbb{R}}(\Lambda^{3,2} \otimes \mathbb{R})$ acts on

$$\mathbb{H}^{IV} = \{ Z \in \mathbb{P}(\Lambda^{3,2} \otimes \mathbb{C}) \mid (Z,Z) = 0, (Z,\overline{Z}) < 0 \} = \mathbb{H}^{IV}_+ \cup \overline{\mathbb{H}^{IV}_+}$$

• In (f_i) -basis

$$\mathbb{H}_{+}^{IV} = \{ Z = {}^{t}((z_{2}^{2} - z_{1}z_{3}), z_{3}, z_{2}, z_{1}, 1) \cdot z_{0} \in \mathbb{H}^{IV} | \operatorname{Imag}(z_{1}) > 0 \}$$

- Observe $(Z,\overline{Z})<0$ equivalent to $y_1y_3-y_2^2>0$ for $y_i=\operatorname{Imag} z_i$
- $\mathbb{H}_{+}^{IV} = \left\{ \begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} \mid \text{positive def. imaginary part} \right\}$

- $\mathbf{O}_{\mathbb{R}}(\Lambda^{3,2})$ has four connected components
- $\mathbf{O}_{\mathbb{R}}(\Lambda^{3,2})_+$ subgroup of index 2 fixing \mathbb{H}^{IV}_+
- Kernel of action of $\mathbf{O}_{\mathbb{R}}(\Lambda^{3,2})_+$ on \mathbb{H}^{IV}_+ is $\pm\mathbf{I}_5$
- $\Lambda^{3,2}$ odd-dimensional $\Longrightarrow \mathbf{O}_{\mathbb{R}}(\Lambda^{3,2})_{+} = \pm \mathbf{I}_{5}\mathbf{SO}_{\mathbb{R}}(\Lambda^{3,2})_{+}$
- Notations: $\mathbf{O}(\Lambda^{3,2})_{+} = \mathbf{O}_{\mathbb{R}}(\Lambda^{3,2})_{+} \cap \mathbf{O}(\Lambda^{3,2})$ $\mathbf{SO}(\Lambda^{3,2})_{+} = \mathbf{SO}_{\mathbb{R}}(\Lambda^{3,2})_{+} \cap \mathbf{O}(\Lambda^{3,2})$

- Elementary exercise: lift generators of $\mathbf{Sp}_4(\mathbb{Z})$ to $\wedge^2(\Lambda^4)$
- Lemma The map \wedge^2 defines an isomorphism

$$\wedge^{2} : \mathbf{Sp}_{4}(\mathbb{Z})/\{\pm \mathbf{I}_{5}\} \to \mathbf{SO}_{+}(\Lambda^{3,2}) \simeq \mathbf{O}(\Lambda^{3,2})_{+}/\{\pm \mathbf{I}_{5}\}$$

$$\mathbb{H}_{2} \longrightarrow \mathbb{H}_{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{H}_{+}^{IV} \xrightarrow{g \wedge g} \mathbb{H}_{+}^{IV}$$

Fix some primitive hyperbolic sub lattice

$$\Lambda^{2,1} = \Lambda^{1,1} \oplus [2] \simeq \mathbb{Z}f_2 \oplus \mathbb{Z}f_3 \oplus \mathbb{Z}f_{-2}$$

• Extending $g \in \mathbf{O}(\Lambda^{2,1})$ to the identity on $(\Lambda^{2,1})^{\perp}$ yields embedding

$$\mathbf{O}(\Lambda^{2,1}) \to \mathbf{O}(\Lambda^{3,2})$$

• Automorphy of Δ_5 wrt $\mathbf{O}(\Lambda^{2,1})$?

• To every primitive element $\alpha \in \Lambda^{2,1}$ with $(\alpha, \alpha) > 0$ and $(\alpha, \alpha) \mid 2(\Lambda^{2,1}, \alpha)$

$$s_{\alpha}: x \mapsto 2 \frac{(x, \alpha)}{(\alpha, \alpha)} \alpha$$

- $s_{\alpha}(\alpha) = -\alpha$ and $s_{\alpha}|_{\alpha^{\perp}}$ is the identity
- For any α , $(\alpha, \alpha) = 2$ we get $s_{\alpha} : x \mapsto (x, \alpha)\alpha$

• Lemma Consider α of square 2:

• if
$$\alpha \in \{\delta_1 = 2f_2 - f_3, \delta_2 = 2f_{-2} - f_3, \delta_3 = f_3\}$$

$$\Delta_5(s_{\alpha}z) = -\Delta_5(z)$$

• If
$$\alpha \in \{f_{-2} - f_2, f_2 - f_3, f_2 + f_3\}$$

$$\Delta_5(s_{\alpha}z) = \Delta_5(z)$$

• Proof Let
$$\overline{U}=\wedge^2\begin{pmatrix} tU^{-1} & 0 \\ 0 & U \end{pmatrix}$$
) with $U\in \mathbf{GL}_2(\mathbb{Z})$ then

•
$$s_{f_{-2}-f_2} = -\overline{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}, s_{f_3} = -\overline{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}, s_{f_2-f_3} = -\overline{\begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}}$$

apply Maas' explicit formula for multiplier; Q.E.D.

- $\Lambda^{2,1}$ hyperbolic; defines cone $\mathscr{C}(\Lambda^{2,1}) = \{x \in \Lambda^{2,1} \otimes \mathbb{R} \mid (x,x) < 0\}$
- $\mathscr{C}(\Lambda^{2,1})$ union of two half-cones; pick $\mathscr{C}(\Lambda^{2,1})_+$ by constraining complex cone

$$\Omega(\mathscr{C}(\Lambda^{2,1})_+) = \Lambda^{2,1} \otimes \mathbb{R} + i\mathscr{C}(\Lambda^{2,1})_+ \subset \mathscr{H}_+^{IV}$$

- Let $\mathbf{O}(\Lambda^{2,1})_+$ be the subgroup of $\mathbf{O}(\Lambda^{2,1})$ of index 2 fixing the above positive cone
- $\Lambda^{2,1}$ hyperbolic $\Longrightarrow \mathbf{O}(\Lambda^{2,1})_+$ discrete in the hyperbolic space
- Lemma $\Lambda^{2,1}$ hyperbolic $\Longrightarrow \mathscr{C}(\Lambda^{2,1})/\mathbb{R}_{>0}$ has fundamental domain of finite volume

• any $\alpha \in \Lambda^{2,1}$, $(\alpha,\alpha) > 0$ is a reflection in a hyperplane

$$\mathcal{H}_{\alpha} = \{ \mathbb{R}_{>0} x \in \mathcal{C}(\Lambda^{2,1})_{+} / \mathbb{R}_{>0} | (x, \alpha) = 0 \}$$

• And the reflection maps the half-space

$$\mathcal{H}_{+\alpha} = \{ \mathbb{R}_{>0} x \in \mathcal{C}(\Lambda^{2,1})_{+} / \mathbb{R}_{>0} | (x, \alpha) \le 0 \}$$

- To the *opposite* half-space $\mathcal{H}_{-\alpha}$
- Call α orthogonal to both \mathcal{H}_{α} , $\mathcal{H}_{-\alpha}$

All reflections generate a reflection subgroup

$$W(\Lambda^{2,1}) \subset \mathbf{O}(\Lambda^{2,1})_+ \simeq PGL_2(\mathbb{Z})$$

- The lattice $\Lambda^{2,1}$ is special: we know $Aut(\Lambda^{2,1})$ explicitly.
- Define $\Delta^{(k)}(\Lambda^{2,1})=\{\delta\in\Lambda^{2,1}\,|\,(\delta,\delta)=k,\delta \text{ primitive}\}$ $W^{(k)}=\{s_{\delta}\,|\,\delta\in\Delta^{(k)}(\Lambda^{2,1})\}$
- Lemma $W(\Lambda^{2,1})=W^{(2)}$ and every reflection s_δ is one of two types Type I: $(\delta,\Lambda^{2,1})=\mathbb{Z}$

Type II:
$$(\delta, \Lambda^{2,1}) = 2\mathbb{Z}$$

- Sub lattices $\Lambda_I^{2,1},\Lambda_{II}^{2,1}$ generated by primitive squares δ_I,δ_{II} normal subgroups $W^{(2)}(\Lambda_I^{2,1}),W^{(2)}(\Lambda_{II}^{2,1})$ of index 2 and 6
- $\Lambda_I^{2,1} = \{ mf_2 + lf_3 + nf_{-2} \in \Lambda^{2,1} | m+l+n = 0 \mod 2 \}$ $\Lambda_{II}^{2,1} = \{ mf_2 + lf_3 + nf_{-2} \in \Lambda^{2,1} | m=n = 0 \mod 2 \}$
- Fundamental polyhedra $\{\mathscr{P},\mathscr{P}_I,\mathscr{P}_{II}\}\ni\mathscr{P}'=\bigcap_{\delta\in\mathscr{P}'_{prim}}\mathscr{H}_{+\delta}$, $A(\mathscr{P}')=\{g\in\mathbf{O}(\Lambda^{2,1})_+\,|\,g\mathscr{P}'=\mathscr{P}'\}$

 $\mathscr{P}'_{\mathit{prim}}$ set of square 2 primitive orthogonal vectors to \mathscr{P}

$$\mathcal{P}_{prim} = \{f_2 - f_3, f_{-2} - f_2, f_3\} \qquad \qquad A(\mathcal{P}) = <1 >$$

$$\mathcal{P}_{I,prim} = \{f_2 - f_3, f_{-2} - f_2, f_2 + f_3\} \qquad \qquad A(\mathcal{P}_I) = < s_{f_3} > \simeq S_2$$

$$\mathcal{P}_{II,prim} = \{\delta_1 = 2f_2 - f_3, \delta_2 = 2f_{-2} - f_3, f_3\} \qquad A(\mathcal{P}_{II}) = < s_{f_2 - f_3}, s_{f_{-2} - f_2} > \simeq S_3$$

•
$$\mathbf{O}(\Lambda^{2,1})_+ \simeq W^{(2)}(\Lambda^{2,1}) \simeq W^{(2)}(\Lambda_I^{2,1}) \rtimes Aut(\mathcal{P}_I) \simeq W^{(2)}(\Lambda_{II}^{2,1}) \rtimes Aut(\mathcal{P}_{II})$$

$$PGL_2(\mathbb{Z}) \simeq W^{(2)}(\Lambda_{II}^{2,1}) \rtimes S_3$$

 \mathscr{P}_{II} and hyperbolic space $\mathscr{C}(\Lambda^{2,1})_+/\mathbb{R}_{>0}$

- Lemma Δ_5 is either invariant or ant-invariant wrt $\mathbf{O}(\Lambda^{2,1})_+$
 - $w \in W^{(2)}(\Lambda_I^{2,1})$ and $a \in Aut(\mathcal{P}_{I,prim})$

$$\Delta_5(w \cdot az) = \det(a)\Delta_5(z)$$

• $w \in W^{(2)}(\Lambda_{II}^{2,1})$ and $a \in Aut(\mathcal{P}_{II,prim})$

$$\Delta_5(w \cdot az) = \det(w)\Delta_5(z)$$

The Weyl vector ρ

- Consider cone $\Delta(\Lambda_{II}^{2,1})_+ = \mathbb{R}_{\geq 0}\delta_1 \oplus \mathbb{R}_{\geq 0}\delta_2 \oplus \mathbb{R}_{\geq 0}\delta_3$ dual cone $\Delta(\Lambda_{II}^{2,1})_+^* = \{x \in \Lambda^{2,1} \otimes \mathbb{R} \mid (x, \delta_i) \leq 0\}$
- $\begin{array}{c} \bullet \ \, \text{Cone} \, \overline{\mathscr{C}(\Lambda^{2,1})_+}^* = \overline{\mathscr{C}(\Lambda^{2,1})_+} \, \text{self-dual} \\ \\ \mathscr{P}_{II} \subset \mathscr{C}(\Lambda^{2,1})_+ / \mathbb{R}_{>0} \, \text{has finite volume} \Longleftrightarrow \end{array}$

$$\Delta(\Lambda_{II}^{2,1})_{+}^{*} \subset \overline{\mathscr{C}(\Lambda^{2,1})_{+}^{*}} = \overline{\mathscr{C}(\Lambda^{2,1})_{+}} \subset \Delta(\Lambda_{II}^{2,1})_{+}$$

The Weyl vector ρ

- . Recall lattice Weyl vector ρ satisfies $(\rho, \delta_i) = -\frac{1}{2}(\delta_i, \delta_i) = -1$
- Consider cone $\Delta(\Lambda_{II}^{2,1})_+ = \mathbb{R}_{\geq 0}\delta_1 \oplus \mathbb{R}_{\geq 0}\delta_2 \oplus \mathbb{R}_{\geq 0}\delta_3$ dual cone $\Delta(\Lambda_{II}^{2,1})_+^* = \{x \in \Lambda^{2,1} \otimes \mathbb{R} \mid (x, \delta_i) \leq 0\}$
- $\begin{array}{l} \bullet \ \, \text{Cone}\, \overline{\mathscr{C}(\Lambda^{2,1})_+}^* = \overline{\mathscr{C}(\Lambda^{2,1})_+} \, \text{self-dual} \\ \\ \text{and} \ \, \mathscr{P}_{II} \subset \mathscr{C}(\Lambda^{2,1})_+/\mathbb{R}_{>0} \, \text{has finite volume} \Longrightarrow \end{array}$

$$\Delta(\Lambda_{II}^{2,1})_{+}^{*} \subset \overline{\mathscr{C}(\Lambda^{2,1})_{+}}^{*} = \overline{\mathscr{C}(\Lambda^{2,1})_{+}} \subset \Delta(\Lambda_{II}^{2,1})_{+}$$

The Weyl vector ρ

• Gram matrix of $\Lambda_{II}^{2,1}=\mathbb{Z}\delta_1\oplus\mathbb{Z}\delta_1\oplus\mathbb{Z}\delta_1$

$$(\delta_i, \delta_j) = \begin{pmatrix} 2 & -2 & -2 \\ -2 & 2 & -2 \\ -2 & -2 & 2 \end{pmatrix}$$

- so $W^{(2)}(\Lambda_{II}^{2,1})$ has $\rho=\frac{1}{2}\delta_1+\frac{1}{2}\delta_2+\frac{1}{2}\delta_3=f_2-\frac{1}{2}f_3+f_{-2}$
- Identifying $\Lambda^{2,1} \otimes \mathbb{Q} \simeq \Lambda_{II}^{2,1} \otimes \mathbb{Q}$ then $\rho \in \Delta(\Lambda_{II}^{2,1})_+^*$

• Use $W^{(2)}(\Lambda^{2,1})$ to study Fourier-coefficients of Δ_5

• Let
$$z = z_1 f_{-2} + z_2 f_3 + z_3 f_2 \in \Lambda^{2,1} \otimes \mathbb{R} + i \mathscr{C}(\Lambda^{2,1})_+$$

= $\Lambda_{II}^{2,1} \otimes \mathbb{R} + i \mathscr{C}(\Lambda_{II}^{2,1})_+$

. Recall
$$(\Lambda_{II}^{2,1})^* = \mathbb{Z} \frac{1}{2} f_2 + \mathbb{Z} \frac{1}{2} f_3 + \mathbb{Z} \frac{1}{2} f_{-2} = \frac{1}{2} \Lambda^{2,1}$$

$$\rho = \frac{1}{2} \delta_1 + \frac{1}{2} \delta_2 + \frac{1}{2} \delta_3 = f_2 - \frac{1}{2} f_3 + f_{-2}$$

• For $n, l, m \in \mathbb{Z}$ s.t. $n, m > 0, n \equiv m \equiv l \equiv 1 \mod 2, 4nm - l^2 > 0$

•
$$\frac{1}{64}f(n, l, m)\exp(\pi i(nz_1 + lz_2 + mz_3))$$

= $\frac{1}{64}f(n, l, m)\exp(-\pi i(nf_2 - lf_3\frac{1}{2} + mf_{-2}, z))$
= $m(a)\exp(-\pi i(\rho + a, z))$

•
$$a = (n-1)f_2 - (l-1)\frac{1}{2}f_3 + (m-1)f_2 \in (\Lambda^{2,1})^* = \frac{1}{2}\Lambda_{II}^{2,1}$$

 $m(a) = -\frac{1}{64}f(n, l, m)$

•
$$\rho + a \in \mathscr{C}(\Lambda^{2,1})_+, m(a) \in \mathbb{Z}$$
 and $m(0) = -1$

- Lemma Δ_5 is either invariant or anti-invariant wrt $\mathbf{O}(\Lambda^{2,1})_+$
 - $w \in W^{(2)}(\Lambda_{II}^{2,1})$ and $a \in Aut(\mathcal{P}_{II,prim})$

$$\Delta_5(w \cdot az) = \det(w)\Delta_5(z)$$

$$\frac{1}{64} \Delta_5(z) = \sum_{w \in W^{(2)}(\Lambda_{II}^{2,1})} \det(w) \left(\sum_{\rho + a \in (\Lambda_{II}^{2,1})^* \cap \Lambda_{II}^{2,1}} m(a) \exp(-\pi i(w(\rho + a), z)) \right)$$

•
$$\rho + a \in (\Lambda_{II}^{2,1})^* \cap \Lambda_{II}^{2,1} \Longrightarrow (\rho + a, \delta_i) \le 0$$

- When $(\rho + a, \delta_i) = 0$ then m(a) = 0
 - $\Longrightarrow (\rho + a, \delta_i) \in \mathbb{Z}$ and $(\rho + a, \delta_i) < 0$
- Construction of $\rho \implies (a, \delta_i) \leq 0$ $\implies a \in \Delta(\Lambda_{II}^{2,1})_+^* = \text{dual of}$ $\Delta(\Lambda_{II}^{2,1})_+ = \mathbb{R}_{\geq 0}\delta_1 \oplus \mathbb{R}_{\geq 0}\delta_2 \oplus \mathbb{R}_{\geq 0}\delta_3$

Cone embeddings

$$\Delta(\Lambda_{II}^{2,1})_{+}^{*} \subset \overline{\mathscr{C}(\Lambda^{2,1})_{+}}^{*} = \overline{\mathscr{C}(\Lambda^{2,1})_{+}} \subset \Delta(\Lambda_{II}^{2,1})_{+} \Longrightarrow$$

$$a \in \mathbb{R}_{\geq 0} \mathscr{C}(\Lambda_{II}^{2,1})_{+}^{*} \cap \overline{\mathscr{C}(\Lambda^{2,1})_{+}} = \mathbb{R}_{\geq 0} \mathscr{P}_{II}$$

- So $a \in \mathbb{R}_{>0} \mathcal{P}_H$ if $a \neq 0$ and if a = 0 m(a) = -1
- Hence $a \in 2(\Lambda^{2,1})^* = \Lambda_{II}^{2,1}$!

Cone embeddings

$$\Delta(\Lambda_{II}^{2,1})_{+}^{*} \subset \overline{\mathscr{C}(\Lambda^{2,1})_{+}}^{*} = \overline{\mathscr{C}(\Lambda^{2,1})_{+}} \subset \Delta(\Lambda_{II}^{2,1})_{+} \Longrightarrow$$

$$a \in \mathbb{R}_{\geq 0} \mathscr{C}(\Lambda_{II}^{2,1})_{+}^{*} \cap \overline{\mathscr{C}(\Lambda^{2,1})_{+}} = \mathbb{R}_{\geq 0} \mathscr{P}_{II}$$

- So $a \in \mathbb{R}_{>0} \mathcal{P}_H$ if $a \neq 0$ and if a = 0 m(a) = -1
- Hence $a \in 2(\Lambda^{2,1})^* = \Lambda_{II}^{2,1}$!

. Change range of summation to $a \in \Lambda_{II}^{2,1} \cap \mathbb{R}_{>0} \mathcal{P}_{II}$ to get $\frac{\Delta_5(z)}{64} =$

$$\sum_{w \in W^{(2)}(\Lambda^{2,1})} \det(w)(\exp(-\pi i(w(\rho), z)) - \sum_{a \in \Lambda_{II}^{2,1} \cap \mathbb{R}_{>0} \mathscr{P}_{II}} m(a) \exp(-\pi i(w(\rho + a), z)))$$

Fourier coefficients of χ_5 and the lattice $\Lambda_{II}^{2,1}$

- Consider $a_0 \in \Lambda_{II}^{2,1} \cap \mathbb{R}_{>0} \mathcal{P}_{II}$ satisfying $(a_0,a_0)=0$
- $Aut(\mathcal{P}_{II})$ is transitive on the three $a_0 \in \{2f_2, 2f_{-2}, 2f_2 2f_3 + 2f_{-2}\}$ vertices at ∞
- $Aut(\mathcal{P}_{II})$ preserves the Fourier expansion
- So pick, say, $a_0 = 2f_2$

$$1 + \frac{1}{64} \sum_{t \in \mathbb{N}} f(1 + 2t, 1, 1) q^t = \prod_{k \in \mathbb{N}} (1 - q^k)^9 \text{ similarly holds for all three vertices at } \infty$$

i.e.
$$1 - \sum_{t \in \mathbb{N}} m(ta_0)q^t = \prod_{t \in \mathbb{N}} (1 - q^t)^{\tau(ta_0)}$$
 implicitly defines some coefficients $\tau(a)$ for multiples of a_0

Borcherds-Kac-Moody theory:

$$(\delta_i, \delta_j) = \begin{pmatrix} 2 & -2 & -2 \\ -2 & 2 & -2 \\ -2 & -2 & 2 \end{pmatrix} \mapsto \mathfrak{g}$$

- g infinite dimensional
- But Fourier expansion, and esp. coefficients m(a) and $\tau(a) = 9$ suggest a modification (originally due to Borcherds)

• Let
$$\Delta_{\overline{0}}^{im} = \{\tau(a)a \,|\, (a,a) = 0, \tau(a) > 0\}$$
 $\Delta_{\overline{1}}^{im} = \{m(a)a \,|\, (a,a) < 0, m(a) < 0\}$ $\Delta_{\overline{1}}^{im} = \Delta_{\overline{0}}^{im} \cup \Delta_{\overline{1}}^{im}$

• Let
$$\Delta^{re} = \Delta^{re}_{\overline{0}} = \mathcal{P}_{II,prim} = \mathbb{Z}\delta_1 \oplus \mathbb{Z}\delta_2 \oplus \mathbb{Z}\delta_3$$

• Then $\Delta = \Delta^{re} \cup \Delta^{im}$ is a root system for a strictly larger algebra

• By construction
$$\alpha \in \Delta^{re} \implies (\alpha, \alpha) > 0$$

$$\alpha \in \Delta^{im} \implies (\alpha, \alpha) \leq 0$$

• $(\alpha, \alpha') \leq 0$ for all distinct $\alpha, \alpha' \in \Delta$

$$2\frac{(\alpha,\alpha')}{(\alpha,\alpha)} \in \mathbb{Z}$$

• Δ is indeed a root system

- Generate a super-lie algebra \mathfrak{g}_{Δ_5} by $\{e_\alpha,h_\alpha,f_\alpha\,|\,\alpha\in\Delta\}$
 - Subject to

$$\begin{split} [h_{\alpha},e_{\alpha'}] &= (\alpha,\alpha')e_{\alpha'} \\ [h_{\alpha},f_{\alpha'}] &= -(\alpha,\alpha')f_{\alpha'} \\ [e_{\alpha},f_{\alpha'}] &= h_{\alpha} \text{ if } \alpha = \alpha', \text{ else } 0 \\ \text{if } (\alpha,\alpha') &= 0 \text{ then } [e_{\alpha},e_{\alpha'}] = [f_{\alpha},f_{\alpha'}] = 0 \\ \alpha &\in \Delta^{re} \\ (\text{ad}e_{\alpha})^{1-2\frac{(\alpha,\alpha')}{\alpha,\alpha)}}e_{\alpha'} &= (\text{ad}f_{\alpha})^{1-2\frac{(\alpha,\alpha')}{\alpha,\alpha)}}f_{\alpha'} = 0 \quad \text{Serre relations} \end{split}$$

- The algebra \mathfrak{g}_{Δ_5} is graded by $\Lambda_{II}^{2,1}$

Integral cone of simple roots
$$\mathscr{C}_{\Delta} = \sum_{\alpha \in \Delta} \mathbb{Z}_{+} \alpha \subset \Lambda_{II}^{2,1}$$

• Triangular decomposition $\mathfrak{g}_{\Delta_5}=\oplus_{\alpha\in\mathscr{C}_\Delta}\mathfrak{g}_\alpha\oplus\Lambda^{2,1}_{II}\oplus_{\alpha\in-\mathscr{C}_\Delta}\mathfrak{g}_\alpha$

- The algebra \mathfrak{g}_{Δ_5} is graded by $\Lambda_{II}^{2,1}$
- Integral cone of simple roots $\mathscr{C}_{\Delta} = \sum_{\alpha \in \Delta} \mathbb{Z}_{+} \alpha \subset \Lambda_{II}^{2,1}$
- Triangular decomposition $\mathfrak{g}_{\Delta_5}=\oplus_{\alpha\in\mathscr{C}_\Delta}\mathfrak{g}_\alpha\oplus\Lambda^{2,1}_{II}\oplus_{\alpha\in-\mathscr{C}_\Delta}\mathfrak{g}_\alpha$
- $\bullet \ \ \Delta_{\pm} = \pm \, \mathscr{C}_{\Delta} \cap \Delta$
- For every root α denote $\mathbf{mult}_{\alpha} = \mathbf{mult}_{\overline{0}} + \mathbf{mult}_{\overline{1}} = \mathbf{dimg}_{\overline{0}} \mathbf{dimg}_{\overline{1}}$

 GBKM theory allows us to apply the Weyl-Kac-Borcherds character formula to ℂ trivial module

$$\Phi = \sum_{w \in W^{(2)}(\Lambda_{II}^{2,1})} \det(w)(\exp(-2\pi i(w(\rho), z)) - \sum_{a \in \Lambda_{II}^{2,1} \cap \mathbb{R}_{>0} \mathscr{P}_{II}} m(a)\exp(-2\pi i(w(\rho + a), z)))$$

$$= \exp(-2\pi i(\rho, z)) \prod_{\alpha \in \Delta_{+}} (1 - \exp(-2\pi i(\alpha, z)))^{\text{mult}\alpha}$$

• Valid for $z \in \Omega(\Lambda_{II}^{2,1}) = \Lambda_{II}^{2,1} \otimes \mathbb{R} + i\mathscr{C}(\Lambda_{II}^{2,1})_+$

• Theorem (Borcherds-Gritsenko-Nikulin)

$$\frac{1}{64}\Delta_5(2z) = \Phi(z)$$

The denominator of the automorphic corrected \mathfrak{g}_{Δ_5} is the Siegel modular cusp form of genus 2 and weight 5

$$\Delta_5 = \sum_{w \in W^{(2)}(\Lambda_{II}^{2,1})} \det(w)(\exp(-2\pi i(w(\rho), z)) - \sum_{a \in \Lambda_{II}^{2,1} \cap \mathbb{R}_{>0} \mathscr{P}_{II}} m(a) \exp(-2\pi i(w(\rho + a), z)))$$

$$= \exp(-2\pi i(\rho, z)) \prod_{\alpha \in \Delta_+} (1 - \exp(-2\pi i(\alpha, z)))^{\mathbf{mult}\alpha}$$

• We determine $\mathbf{mult}\alpha$ in terms of a weak Jacobi form

- Fourier-Jacobi expansion of $\Delta_{12} o \phi_{12,1}$ Jacobi cusp form of weight 12

•
$$\phi_{12,1} = (r^{-1} + 10 + r)q + (10r^{-2} - 88r^{-1} - 132 - 88r + 10r^{2})q^{2} + \dots$$

. Let
$$\phi_{0,1} = \frac{\phi_{12,1}}{\delta_{12}} = \sum_{n \geq 0, l \in \mathbb{Z}} f(n,l) \exp(2\pi i (nz_1 + lz_2))$$

$$\delta_{12} = q \prod_{n \geq 1} (1 - q^n)^{24} \text{ is a } \mathbf{SL}_2(\mathbb{Z}) \text{ cusp form}$$

•
$$\phi_{0,1} = (r^{-1} + 10 + r) + q(10r^{-2} - 64r^{-1} + 108 - 64r + 10r^{2}) + \dots$$

Theorem

$$\frac{1}{64}\Delta_5 = \exp(\pi i(z_1 + z_2 + z_3)) \prod_{\substack{n,l,m \in \mathbb{Z}, (n,l,m) > 0}} (1 - \exp(2\pi i(nz_1 + lz_2 + mz_3)))^{f(nm,l)}$$

• (n, l, m) > 0 means that $n \ge 0, m \ge 0$ and l is arbitrary integral if n > 0 or m > 0 and l < 0 if n = m = 0.

- Analyze Fourier coefficients of $\phi_{12,1}$ express as linear combination of Jacobi-theta functions
- $\implies \phi_{0,1}$ has asymptotic behaviour of $f(n,l) \sim O(\exp(\sqrt{4n-l^2}))$
- Kac Infinite Dimensional Lie Algebras \Longrightarrow product converges on any neighborhood of the zero-dimensional cusp of $Sp_4(\mathbb{Z})$

•
$$\exp(\pi i(z_1 + z_2 + z_3))$$

$$\prod_{\substack{n>0,l \in \mathbb{Z} \text{or} n=0,l<0\\ n\geq 0,m>0,l \in \mathbb{Z}}} (1 - \exp(2\pi i(nz_1 + lz_2))^{f(0,l)}$$

•
$$f(0,0) = 10, f(0,-1) = 1, f(0,l) = 0$$
 if $l < -1$

Denote big products A & B

- $T_{-}(m)$ minus embeddings $\operatorname{GL}_2(\mathbb{Z})$ -Hecke operators
 - Jacobi form ϕ weight k index $t\mapsto (\phi|_kT_-(m))$ Jacobi form index mt

$$\log(B) = -\sum_{m \ge 1} m^2 (\phi_{0,1} \exp^{2\pi i t z_3} |_0 T_{-}(m)))$$

- Invariant wrt maximal parabolic subgroup $\Gamma_\infty \subset \mathbf{Sp_4}(\mathbb{Z})$

•
$$A = \psi_{5,\frac{1}{2}} \exp(2\pi i t z_3) = \eta(z_1)^9 \nu_{11}(z_1, z_2)$$

•
$$\eta = \exp(\frac{\pi i \tau}{12}) \prod_{n>1} (1 - \exp(2\pi i n \tau))$$

Dedekind's η function

$$\nu_{11}(z_1, z_2) = \sum_{n \in \mathbb{Z}} (-1)^n \exp(\frac{\pi i}{4} (2n+1)^2 z_1 + \pi i (2n+1) z_2)$$

Jacobi-theta series

• Properties of A & B taken together \Longrightarrow product transforms as modular form for Jacobi group $\Gamma_\infty/\pm I$ with determined character $\nu_\infty:\Gamma_\infty/\pm I\to\pm 1$

Test against
$$S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 yields anti-invariance of product

- Jacobi group and S generate $\mathbf{PSp_4}(\mathbb{Z}) \Longrightarrow$
 - Product transforms as a Siegel modular form of weight 5 with the same character as Δ_5
- Compare first fourier coefficient. Q.E.D.

- Let (S, g_N, h_M) be a K3 surface S with two symplectic automorphisms of finite order $N, M \leq 8$
- Let (E,e_0) be a non-singular elliptic curve with an N-torsion point e_0
- $\mathbb{Z}/N\mathbb{Z}$ acts freely on $S \times E$ preserving the CY form by

$$(s,e)\mapsto (gs,e+e_0)$$

• The quotient $X = (S \times E)/\mathbb{Z}/N\mathbb{Z}$ is a smooth projective CY3

• Let $(S, s \mapsto s + s_2(\pi(s)), id)$ an elliptically fibered K3: $\pi: S \to \mathbb{P}^1$ admitting sections

$$s_1, s_2: \mathbb{P}^1 \to S$$

such that s_2 is of order N relative to s_1 , treated as zero-section

Consider the N sections

$$s_1, s_2, ..., s_k = s + s_2(\pi(s_{k-1})), ..., s_N$$

• Let $F \in Pic(S)$ be a class of a fiber of $\pi: S \to \mathbb{P}^1$. Consider

$$\beta_h = \frac{1}{N}(s_1 + \dots + s_N + hF), \text{ for } h \ge 0$$

. Let $<\alpha,\beta>: \int_S \alpha \cup \beta$ be the intersection pairing on S and form

$$Z^{X}(q,t,p) = \sum_{h=0}^{\infty} \sum_{d=0}^{\infty} \sum_{n \in \mathbb{Z}} \mathbf{D} \mathbf{T}_{n,(\beta_{h},d)}^{X} q^{d-1} t^{\frac{1}{2} < \beta_{h},\beta_{h} > (-p)^{n}}$$

- Defined as follows:
 - let $\operatorname{Hilb}^n(X, \beta_h)$ the Hilbert scheme of 1-dimensional subschemes $Z \subset X$, such that

$$[Z] = \beta_h, \qquad \chi(\mathcal{O}_Z) = n \in \mathbb{Z}$$

• E acts on X inducing an action on $Hilb^n(X, \beta_h)$

$$\mathbf{DT}^{X}_{n,(\beta_h,d)} = \int_{\mathrm{Hilb}^n(X,\beta_h)/E} \nu de = \sum_{k\in\mathbb{Z}} k \cdot e(\nu^{-1}(k)) \quad \text{ where. } \nu : \mathrm{Hilb}^n(X,\beta_h) \to \mathbb{Z} \text{ is Behrend's function}$$

• Theorem Let N=1 i.e. consider $X=S\times E$ a smooth projective CY3 arising from an elliptically fibered K3 surface and an elliptic curve

$$Z^{S\times E} = -\frac{C}{(\Delta_5)^2}$$

• Moreover, the elliptic genus of a K3 surface is $2\phi_{0.1}$

- Let X come from (S,g_N^r,g_N^s) and (E,e_0) where S is elliptically fibered, more generally (S,g_N,h_M) with a lattice polarization L
- We can define the $L-(h_{\!M}=g_N^{\scriptscriptstyle S})$ -twisted series $Z_{\!L,h_{\!M}}^{\!X}(q,t,p)$
- Conjecture all dd Siegel modular forms arise, up to constant, as

$$\sqrt{\frac{1}{Z_{L,h_{M}}^{X}(q,t,p)}}$$

and there is a GBKM algebra with correction $\mathfrak{g}\subset\mathfrak{g}_L$, depending on L, given by $\mathrm{a}(g_N,h_M)$ -twisted elliptic genus of a K3-surface $F_L^{(g_N,h_M)}$, a Jacobi form of weight 0, index 1

. Let
$$A = \frac{1}{4}\phi_{0,1}$$
 B = $\phi_{-2,1} = \frac{\nu_1^2}{\eta^6}$

• Case $N \in \{1,2,3,5,7\}$ For all $1 \le s, r \le N-1$ and $0 \le k \le N-1$

$$F^{(0,0)}(\tau,z) = \frac{8}{N} A(\tau,z)$$

$$F^{(0,s)}(\tau,z) = \frac{8}{N(N+1)} A(\tau,z) - \frac{2}{N+1} B(\tau,z) \mathcal{E}_N(\tau)$$

$$F^{(r,rk)}(\tau,z) = \frac{8}{N(N+1)} A(\tau,z) + \frac{2}{N(N+1)} B(\tau,z) \mathcal{E}_N\left(\frac{\tau+k}{N}\right)$$

• Case N = 4 For all $s \in \{0,1,2,3\}$

$$F^{(0,0)}(\tau,z) = 2A(\tau,z),$$

$$F^{(0,1)}(\tau,z) = F^{(0,3)}(\tau,z) = \frac{1}{4} \left[\frac{4A}{3} - B \left(-\frac{1}{3} \mathcal{E}_2(\tau) + 2\mathcal{E}_4(\tau) \right) \right],$$

$$F^{(1,s)}(\tau,z) = F^{(3,3s)} = \frac{1}{4} \left[\frac{4A}{3} + B \left(-\frac{1}{6} \mathcal{E}_2(\frac{\tau+s}{2}) + \frac{1}{2} \mathcal{E}_4(\frac{\tau+s}{4}) \right) \right],$$

$$F^{(2,1)}(\tau,z) = F^{(2,3)} = \frac{1}{4} \left(\frac{4A}{3} - \frac{B}{3} (5\mathcal{E}_2(\tau) - 6\mathcal{E}_4(\tau)) \right),$$

$$F^{(0,2)}(\tau,z) = \frac{1}{4} \left(\frac{8A}{3} - \frac{4B}{3} \mathcal{E}_2(\tau) \right),$$

$$F^{(2,2s)}(\tau,z) = \frac{1}{4} \left(\frac{8A}{3} + \frac{2B}{3} \mathcal{E}_2(\frac{\tau+s}{2}) \right).$$

• Case N = 6 For all $s \in \{0,1,2,3\}$

$$\begin{split} F^{(0,0)} &= \frac{4}{3}A \\ F^{(0,1)} &= F^{(0,5)} = \frac{1}{6} \left[\frac{2A}{3} - B \left(-\frac{1}{6}\mathcal{E}_2(\tau) - \frac{1}{2}\mathcal{E}_3(\tau) + \frac{5}{2}\mathcal{E}_6(\tau) \right) \right], \\ F^{(0,2)} &= F^{(0,4)} = \frac{1}{6} \left[2A - \frac{3}{2}B\mathcal{E}_3(\tau) \right], \\ F^{(0,3)} &= \frac{1}{6} \left[\frac{8A}{3} - \frac{4}{3}B\mathcal{E}_2(\tau) \right]. \\ F^{(1,k)} &= F^{(5,5k)} = \frac{1}{6} \left[\frac{2A}{3} + B \left(-\frac{1}{12}\mathcal{E}_2(\frac{\tau+k}{2}) - \frac{1}{6}\mathcal{E}_3(\frac{\tau+k}{3}) + \frac{5}{12}\mathcal{E}_6(\frac{\tau+k}{6}) \right) \right], \\ F^{(2,2k+1)} &= \frac{A}{9} + \frac{B}{36} \left[\mathcal{E}_3(\frac{\tau+2+k}{3}) + \mathcal{E}_2(\tau) - \mathcal{E}_2\left(\frac{\tau+k+2}{3}\right) \right], \\ F^{(4,4k+1)} &= \frac{A}{9} + \frac{B}{36} \left[\mathcal{E}_3(\frac{\tau+1+k}{3}) + \mathcal{E}_2(\tau) - \mathcal{E}_2\left(\frac{\tau+k+1}{3}\right) \right], \end{split}$$

• Case N = 6 For all $s \in \{0,1,2,3\}$

$$F^{(3,1)} = F^{(3,5)} = \frac{A}{9} - \frac{B}{12}\mathcal{E}_3(\tau) - \frac{B}{72}\mathcal{E}_2(\frac{\tau+1}{2}) + \frac{B}{8}\mathcal{E}_2(\frac{3\tau+1}{2}),$$

$$F^{(3,2)} = F^{(3,4)} = \frac{A}{9} - \frac{B}{12}\mathcal{E}_3(\tau) - \frac{B}{72}\mathcal{E}_2(\frac{\tau}{2}) + \frac{B}{8}\mathcal{E}_2(\frac{3\tau}{2}),$$

$$F^{(2r,2rk)} = \frac{1}{6}\left[2A + \frac{1}{2}B\mathcal{E}_3(\frac{\tau+k}{3})\right],$$

$$F^{(3,3k)} = \frac{1}{6}\left[\frac{8A}{3} + \frac{2}{3}B\mathcal{E}_2(\frac{\tau+k}{2})\right].$$

• Case N = 8

$$\begin{split} F^{(0,0)} &= A, \\ F^{(0,1)} &= F^{(0,3)} = F^{(0,5)} = F^{(0,7)}, \\ &= \frac{1}{8} \left[\frac{2A}{3} - B \left(-\frac{1}{2} \mathcal{E}_4(\tau) + \frac{7}{3} \mathcal{E}_8(\tau) \right) \right]. \\ F^{(r,rk)} &= \frac{1}{8} \left[\frac{2A}{3} + \frac{B}{8} \left(-\mathcal{E}_4(\frac{\tau+k}{4}) + \frac{7}{3} \mathcal{E}_8(\frac{\tau+k}{8}) \right) \right], r = 1, 3, 5, 7 \\ F^{(2,1)} &= F^{(6,3)} = F^{(2,5)} = F^{(6,7)}, \\ &= \frac{1}{8} \left[\frac{2A}{3} + \frac{B}{3} \left(-\mathcal{E}_2(2\tau) + \frac{3}{2} \mathcal{E}_4(\frac{2\tau+1}{4}) \right) \right]; \\ F^{(2,3)} &= F^{(6,5)} = F^{(2,7)} = F^{(6,1)}, \\ &= \frac{1}{8} \left[\frac{2A}{3} + \frac{B}{3} \left(-\mathcal{E}_2(2\tau) + \frac{3}{2} \mathcal{E}_4(\frac{2\tau+3}{4}) \right) \right]. \end{split}$$

• Case N = 8

$$F^{(0,2)} = F^{(0,6)} = \frac{1}{8} \left(\frac{4A}{3} - B \left(-\frac{1}{3} \mathcal{E}_2(\tau) + 2\mathcal{E}_4(\tau) \right) \right),$$

$$F^{(0,4)} = \frac{1}{8} \left(\frac{8A}{3} - \frac{4B}{3} \mathcal{E}_2(\tau) \right),$$

$$F^{(2,2s)} = F^{(6,6s)} = \frac{1}{8} \left(\frac{4A}{3} + B \left(-\frac{1}{6} \mathcal{E}_2(\frac{\tau + s}{2}) + \frac{1}{2} \mathcal{E}_4(\frac{\tau + s}{4}) \right) \right),$$

$$F^{(4,4s)} = \frac{1}{8} \left(\frac{8A}{3} + \frac{2B}{3} \mathcal{E}_2(\frac{\tau + s}{2}) \right),$$

$$F^{(4,2s)} = F^{(4,6)} = \frac{1}{8} \left(\frac{4A}{3} - \frac{B}{3} (3\mathcal{E}_2(\tau) - 4\mathcal{E}_2(2\tau)) \right),$$

$$F^{(4,2k+1)} = \frac{1}{8} \left(\frac{2A}{3} + B \left(\frac{4}{3} \mathcal{E}_2(4\tau) - \frac{2}{3} \mathcal{E}_2(2\tau) - \frac{1}{2} \mathcal{E}_4(\tau) \right) \right).$$