Санкт-Петербургский государственный электротехнический Университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

Программный модуль обработки сигналов стандарта DMR

Студент: Боржонов А.И.

Руководитель: Андреева О.М. Консультант: Литвиненко С.А.

Место выполнения ВКР: Отдел ПОиП ООО «СТЦ»

Цель

Реализация программного модуля обработки сигналов стандарта DMR

Задачи

- изучение стандарта DMR Air Interface protocol;
- изучение принципов формирования сигнала физического уровня;
- разработка алгоритма обработки сигнала;
- реализация алгоритма на языке программирования С++;
- верификация и тестирование ПО.

Требования и ограничения

- реализация с использованием объектно-ориентированного стиля программирования;
- использование готовых модулей библиотеки цифровой обработки сигналов ООО «СТЦ»;
- вероятность ложной тревоги при обнаружении сигнала не более 10^{-4} ;
- быстродействие алгоритма не хуже чем 1:1;
- входные данные массив комплексных отсчетов;
- выходные данные статус обнаружения и системная информация.

Стандарт DMR

Информационные биты		Символ	Девиация
Бит 1	Бит О		4FSK
0	1	+3	+1,944 кГц
0	0	+1	+0,648 кГц
1	0	-1	-0,648 кГц
1	1	-3	-1,944 кГц

Основные этапы алгоритма

Методы обнаружения синхрогруппы:

- 1) по комплексным отсчетам;
- 2) по демодулированным отсчетам частоты;
- 3) по демодулированным символам.

Демодуляция 4FSK

Обнаружение синхрогруппы

По комплексным отсчетам

- X(t) сигнал на входе обнаружителя;
- $Y_{IQ}(t)$ сигнал синхрогруппы;
- *h* порог;
- К коррелятор;
- ПУ пороговое устройство.

Обнаружение синхрогруппы

По демодулированным отсчетам частоты

Обнаружение синхрогруппы

По демодулированным символам

Сравнение методов

Метод	Первый метод	Второй метод	Третий метод
обнаружения			
ОСШ, дБ	-8.6	5.8	-2.7

Декодирование

Структура реализованного программного модуля

Быстродействие

	Время, мкс			
Этап	Первый метод	Второй метод	Третий метод	
Обнаружение	27	20	17	
Демодуляция	21			
Декодирование	5			
Полный цикл	1725			

Заключение

В результате выполнения выпускной квалификационной работы был разработан и реализован программный модуль обработки сигнала стандарта DMR.

Демодуляция FM

$$x_{FM}(t) = \frac{\frac{dI}{dt} * Q - \frac{dQ}{dt} * I}{Q^2 + I^2}$$

 $x_{FM}(t)$ - частотная функция принятого сигнала; I - синфазная составляющая; Q - квадратурная составляющая.

АЧХ фильтров демодулятора 4FSK

Турбо код ВРТС(196,96)

Обобщенная схема устройства АРМ

