IoT e 5G para a Mudança de Paradigmas

Objetivo da Aula

Compreender conceitos básicos e tecnologias envolvidas em aplicações de internet das coisas e telefonia móvel.

Apresentação

Cada vez mais objetos e dispositivos com tecnologia para acesso à internet e para intercomunicação servem para facilitar o dia a dia das pessoas. Essa capacidade permite que uma grande quantidade de informações possa ser trocada mesmo em plataformas distintas e com alta velocidade de dados.

Esta aula irá apresentar para você os conceitos básicos da Internet das Coisas (IoT, do inglês *Internet of Things*), bem como conhecer algumas tecnologias que permitem a aplicação desse conceito por meio da telefonia móvel e computação ubíqua.

1. Primeiros Passos em Internet das Coisas (IoT)

Como você já aprendeu, na década de 1960, surgiram os primeiros desenvolvimentos da tecnologia de comunicação entre computadores, o que hoje chamamos de internet. Essa rede inicial se expandiu, mostrou-se efetiva e, com seu avanço, recebeu novas configurações e finalidades.

Com o aprimoramento da internet e de seus protocolos de comunicação, a partir dos anos de 1990, foi possível criar redes em escala mundial. Isso viabilizou a comunicação entre dispositivos espalhados entre diferentes cidades, países e continentes.

A partir disso, novos conceitos surgiram, como o conceito de Internet das Coisas, o qual iremos abreviar com base no seu termo original em inglês, *Internet of Things* (IoT). Aplicações em IoT se tornaram populares nos últimos anos, graças aos avanços das tecnologias de miniaturização de componentes eletrônicos e das tecnologias de comunicação sem fio.

Destaque

O paradigma IoT estabelece que diversos itens do cotidiano podem ter acesso à internet e se comunicar de forma inteligente.

Assim, quando nos referimos a "coisas", de fato queremos dizer qualquer coisa usável por seres humanos, como carros, roupas ou geladeira. A previsão é que bilhões de "coisas" sejam capazes de se conectar à internet para prover os mais diversos tipos de informações e serviços (PACHECO, 2018).

O conceito dessa tecnologia e as suas soluções envolvem diversas áreas, como planejamento urbano, produção agrícola, logística, produção industrial, transporte de pessoas, saúde, preservação do meio ambiente, entre várias outras possibilidades.

Graças à inserção social da tecnologia, com capacidade de solucionar problemas diversos, presentes no cotidiano das pessoas e na vida econômica dos países, a IoT se torna uma ferramenta indispensável, pois proporciona melhoria na qualidade de vida das pessoas (DE GODOI; ARAÚJO, 2019).

Portanto, pode-se entender a Internet das Coisas como uma infraestrutura global voltada para a era digital, promovendo serviços avançados por meio da interconexão das coisas (Figura 1).

Figura 1: Coisas e Serviços Interconectados através da IoT

Fonte: Wikimedia Commons.

Link

Saiba mais sobre IoT assistindo ao vídeo *Internet das coisas e seus mistérios*, por Renata Rampim, gravado no TEDx Petrópolis. Disponível em: https://youtu.be/-EA9UBEahDY.

2. Tecnologias IoT

As aplicações da IoT possuem utilidades significativas para diferentes setores do conhecimento humano. Com o seu uso, é possível expandir as tecnologias de diversas tarefas específicas de cada setor e, consequentemente, gerar uma economia futura (VENANZI; LEANDRO; SILVA, 2019).

Com a IoT, é possível realizar tarefas que antes eram inexistentes por falta de pessoas especializadas, precisão, custo e tempo. A partir disso, as empresas passam a aprimorar suas atividades e processos em geral e a adquirir mais autonomia, tempo e controle.

Assim, a IoT pode ser entendida como a combinação de diversas tecnologias de comunicação e a integração de objetos em um ambiente físico ao mundo virtual.

Comunicação

Sensores

Serviços

Semântica

Figura 2: IoT

Fonte: Santos et al. (2016).

Quadro 1: Classificação das tecnologias IoT

Classificação	Descrição/Função	Exemplos de tecnologias
Identificação	Trata-se de tecnologias empregadas para identificar os objetos.	RFID.NFC.Comunicação IP.
Sensores ou atuadores	Coletam informações do ambiente onde os objetos se encontram.	Sensores magnéticos.Sensores fotoelétricos.Sensores de imagem.

Classificação	Descrição/Função	Exemplos de tecnologias
Comunicação	São as tecnologias e os métodos computacionais empregados para conectar objetos de forma inteligente.	 Wi-Fi. IEEE 802.15.4. Bluetooth. RFID.
Computação	Executa os algoritmos localmente nos dispositivos computacionais.	 Microcontroladores. Processadores. FPGAs. Computação em nuvem.
Serviços	São serviços de conversão das entidades físicas em virtuais e de agregação de dados, para posterior tratamento inteligente e de forma ubíqua.	 Linguagens de programação. Big Data e análise de dados. Inteligência artificial.

Elaborado pelo autor.

Como você percebeu, no Quadro 1, existe ainda um conjunto de tecnologias que apoiam as aplicações de Internet das Coisas, para que as atividades oferecidas funcionem. O Quadro 2 explica algumas destas e acrescenta outras.

Quadro 2: Tecnologias envolvidas em aplicações IoT

Tecnologia	Descrição	Exemplos de aplicação
RFID	Permite a identificação em tempo real e automática de um objeto.	 Controle de animais. Localização de materiais. Controle de acesso eletrônico. Permissão de acesso a ambientes. Pagamento automático em pedágios. Entrada e saída de funcionários.
Rede de sensores wireless	São sensores de rede sem fio que permitem coletar, processar, analisar e disseminar informações.	Em conjunto com a tecnologia de RFID, pode-se monitorar diversas condições em sistemas de segurança.
Computação em nuvem	É qualquer coisa que envolva a entrega de serviços alocados na internet, por meio de infraestrutura compartilhada pelo mundo.	Utilizado no armazenamento e processamento de dados, bem como para tratamento dos serviços digitais.
Big Data	Alto volume de dados, os quais são diversos, descentralizados e de fontes heterogêneas.	Essa tecnologia agregada a sensores permite capturar grandes quantidades de dados e gerar valor agregado.
Análise de dados	Técnicas que visam transformar dados em informações úteis.	Em conjunto com o Big Data, pode-se deduzir inteligência e tomada de decisão de todos os dispositivos conectados.

Adaptado de Ferreira, Seifert e Venanzi (2020).

3. Rede de Telefonia de Dados

Como você já sabe, a telefonia móvel e os ditos dispositivos móveis estão evoluindo em um ritmo muito acelerado. Claro que esse desenvolvimento tecnológico fortaleceu as redes de comunicação sem fio e intensificou o potencial da internet das coisas.

Estamos, neste momento, entrando em uma nova era das comunicações digitais, que irá aumentar drasticamente o número de equipamentos, comunicando-se na rede, e, futuramente, eles se comunicarão de forma totalmente independente, sem qualquer interferência humana.

A primeira geração de aparelhos celulares foi projetada exclusivamente para a comunicação de voz, utilizando apenas sistemas analógicos, em que um canal era alocado para cada chamada. Já a segunda geração (2G) foi projetada para realizar chamadas de voz de forma completamente digital. Em seguida, veio a tecnologia 3G, que possibilitou integrar a comunicação de voz com o consumo de dados digitais e banda larga de internet móvel.

As redes de terceira geração não só garantiram um melhor acesso à internet, como permitiram novas funcionalidades aos dispositivos móveis – por exemplo, o acesso a transmissões de vídeos e filmes, que antes só era possível em redes que utilizavam cabos.

Na quarta geração (4G), experimentamos o conceito de uma rede "toda em IP", que usa o protocolo IP (*internet protocol*) para comunicação tanto de voz quanto de dados, ou seja, uma comunicação de dados e voz completamente digital.

Atualmente, estamos experimentando a telefonia móvel 5G. Essa geração promete revolucionar nossa comunicação entre nós mesmos e os demais dispositivos.

Destaque

Essa tecnologia irá aumentar o poder de transmissão de dados, bem como a capacidade da rede para mais dispositivos. A 5G permitirá, também, o aumento da segurança da informação e maior eficiência energética (SHAFI *et al.*, 2017). Ou seja, essa geração irá permitir que apliquemos fortemente os conceitos de IoT e a democratização de acesso a serviços.

Figura 3: Uma Antena de Comunicação 5G

Fonte: Wikimedia Commons.

Essas tecnologias juntas permitirão, por exemplo, a automatização de nossos eletrodomésticos e automóveis, permitindo que surjam mais cidades inteligentes.

A tecnologia 5G permitirá soluções inteligentes, por conta da sua alta taxa de transmissão de dados. Alguns serviços serão otimizados, como o monitoramento do trânsito, a iluminação pública, além de melhorias na oferta de serviços públicos. Isso será assunto da nossa próxima aula.

Você Sabia?

A Coreia do Sul foi o primeiro país a implementar a rede nacional 5G, fazendo isso em 85 cidades e rotas de comunicação no ano de 2019. Isso permitiu novos aplicativos que vão da simulação de encontros à realidade virtual, melhorando a qualidade das transmissões em tempo real.

Considerações Finais

A internet se expandiu e seu avanço possibilitou novas configurações e dispositivos interconectados e munidos com inteligência. As tecnologias digitais transformam a maneira como interagimos com nosso ambiente e com as pessoas ao nosso redor.

Assim, pensar em IoT é pensar em dados que geram informação e que conectam sistemas e usuários. É um mundo de coisas inteligentes, casas, carros, geladeiras etc. A Internet das Coisas é um conceito, não uma tecnologia propriamente dita; ela é a integração do mundo real com o virtual, a partir de um grupo de tecnologias, como: computação em nuvem, Big Data, inteligência artificial, robótica avançada, biotecnologia, mobilidade sem fio, impressão tridimensional, entre outras.

Material Complementar

Seção: leitura da seção intitulada "Internet das Coisas (IoT)" do primeiro capítulo (a partir da pág. 18) do livro *Introdução a Big Data e Internet das Coisas (IoT)* da editora Grupo A.

Referências

DE GODOI, M. G.; ARAÚJO, L. S. de. **A internet das coisas: evolução, impactos e benefícios.** Revista Interface Tecnológica, v. 16, n. 1, p. 19–30, 2019.

FERREIRA, D. L. L.; SEIFERT, A. A.; VENANZI, D. Conectividade de processos na supply chain via tecnologias da internet das coisas (IoT) e softwares na empresa ABC. South American Development Society Journal, v. 6, n. 16, p. 1, 2020.

PACHECO, L. A. B. **Arquitetura para privacidade na integração de internet das coisas e computação em nuvem.** Dissertação (Mestrado em Informática) — Departamento de Ciências da Computação, Universidade de Brasília, Brasília, 2018.

SANTOS, B. P. et al. **Internet das coisas: da teoria à prática**. 2016. Disponível em: <u>ht-tps://homepages.dcc.ufmg.br/~mmvieira/cc/papers/internet-das-coisas.pdf</u>. Acesso em: 03 dez. 2022.

SHAFI, M. et al. 5G: *A tutorial overview of standards, trials, challenges, deployment, and practice.* IEEE Journal on Selected Areas in Communications, v. 35, n. 6, p. 1201–1221, 2017.

VENANZI, D.; LEANDRO, C. R.; SILVA, O. R. da. Engenharia de sistemas logísticos e cadeias de suprimentos. Taboão da Serra: Livrus, 2019.