CS130 - Functions Summary Definition A function $f: X \rightarrow Y$ is a relation R CX x y where for every X EX there every item in X aman biguously maps to Values which could an item in Y. X: domain (x) . Y: Co-donais 2: mye which of CZEY for it Nonedatue to be a function) f(x) is called the "image of x under f", or the value of f at x, and is the unique y that is mapped to from an x by f. Image must A stoke fundam $f(x) = y \iff x \mapsto y$ We can also consider the "pre-image" of a value, all the values in the domain Volumes where 5-1(y) = 0 are that map to it, onelement in the co-domain. in the co-domain We write this Set as f - (y) but not the parge f-'(y) = { x & X : f(x) = y} It orly one & I houpen & 5'cy) is a singleton for Failure anditions a well definal muse A relation is not a function if: suchan, there must be no mult-elevit · Blenerts in the domain don't map into the Co-domain pre-images · Elements in the domain may to multiple values in the Lo-domain.

Restricting the damain

Sometimes, we can simplify a poblen by ignoring irrelevant cases in the domain. We can define a new function as a relation bushed of the old one.

 $\xi: X \to Y \quad \& X & X \\
\xi \mid_{X'} = \xi(x, \xi(x)) : x \in X$ Relation definition.

The Codomain can only be restricted if no values in the domain map to the elements to be removed.

Composition of functions

we can compose multiple functions together, applying one's output to another's input in Sequence:

REAXB & Q & B X C

ROQ = Q(R(x)) CAxC.

By the previous definitions of functions:

requirements on the Sets A, B & C exist.

Properies of functions Given a function f: X > Y · Injectivity (one-to-one) is when every value in the domain maps to only one value in the codomain i.e. $\forall \alpha_1, \alpha_2 : \alpha_1 \neq \alpha_2 \rightarrow f(\alpha_1) \neq f(\alpha_2),$ or If Cysl & 1 by EY. · Surjectivity (orto) is when all the elements of the codomain are in the range, i.e. Vy EY 3x EX: f(x)=y Not Surjecture Not Surjecture (2) · Bijectivity (one-to-one collespondence) is when a function is both injective and swiether. $f: X \to Y$ is bijertue iff its invested relation $f^{-1} \subseteq Y \times X$ is also a function. Equinaneous Sets The Sets Kandolan A and B we equinumerous if there exists a bijertive further between them.

This is denoted by:

 $A \cong R$

this property can be used to define categories of sets based on their cardinality

- · finite Sets we equinumerous with one offitting Set X & 2 1N
- · Loundably infinite Sets are againments with the natural numbers, IN
- · Countable Sets are equinumerous with either a finite Set or Countably infinite Sets.
- i.e. not equinuments with any countible set

We can also prove this by writing a pseudo -Code algorithm that maps one set onto another