MEETHERE 场地预约与管理系统性能测试报告

作者 彭钧涛 李尚真

华东师范大学 软件工程学院

目录

1	测试	.结果评	价与建议	4
	1.1	测试	结果	4
	1.2	系统'	性能评价	5
		1.2.1	API 响应时间	5
		1.2.2	业务处理能力	5
		1.2.3	稳定性/健壮性	5
	1.3	系统	修改建议	5
2	性能	问题解	决分析	5
	2.1	待解》	决问题	5
		2.1.1	严重性能问题	5
		2.1.2	响应时间问题	5
	2.2	已解》	决问题	5
		2.2.1	严重性能问题	5
		2.2.2	响应时间问题	6
3	独立	/混合场	万景结果	6
	3.1	测试	结果描述	6
	3.2	详细》	测试结果	6
		3.2.1	注册新用户响应时间	6
		3.2.2	注册重复用户响应时间	6
		3.2.3	用户登录响应时间	7
		3.2.4	用户登陆失败响应时间	8
		3.2.5	发表评论响应时间	8
		3.2.6	添加预订记录	9
		3.2.7	查看详细新闻	9

		3.2.8	修改密码时	始终使用错误的	原密码		10
		3.2.9	用户登录—	->点击评论浏览-	>发表评论>	>用户退出	11
				>用户点击场馆?			
		3.2.11	用户登录—	->用户点击预约说	B录—>用户退り	出	12
		3.2.12	用户登录—	->点击新闻浏览-	>查看新闻内?	∽—>用户退占	出12
		3.2.13	用户注册—	->用户登录—>用	户退出		13
4	性能	缺陷统计	十分析				14
	4.1	缺陷層	≖重程度				14
	4.2	缺陷约	类型分析				14
	4.3	缺陷原	原因分析				14
5	测试	环境分	折				15
	5.1	系统势	架构设计				15
	5.2	测试되	不境配置				15
	5.3	环境差	差异分析				15

表目录

未找到图形项目表。

1 测试结果评价与建议

1.1 测试结果

에스+ 표수 드 #8	00404000
测试开始日期	2019.12.30
测试结束日期	2020.01.01
提交缺陷数	1
延期/未解决缺陷数	0
拒绝缺陷数	0
总测试场景	8 个独立场景+5 个混合场景
执行场景数	8 个独立场景+5 个混合场景
场景执行率	100%
缺陷率(%)	7.7% (十三分之一)
投入人数	2
测试生产率	N/A
系统上线建议	部分页面随加压响应时间上升需改进

1.2 系统性能评价

1.2.1 API 响应时间

总体请求响应时间均在1秒以内,大部分都能达到0.1秒的反应时间。但是有个别API响应时间会随时间增长而增加。

1.2.2 业务处理能力

业务处理能力达到要求。

1.2.3 稳定性/健壮性

大部分 API 都能达到稳定, 个别存在反应时间随时间增长而增加的情况, 需要修改。

1.3 系统修改建议

限制新闻、评论部分的查询数量。

2 性能问题解决分析

2.1 待解决问题

2.1.1 严重性能问题

无严重性能问题

2.1.2 响应时间问题

新闻、评论浏览功能没有给 SELECT 查询加以限制,所以响应时间随着新闻评论数量增多而上升

2.2 已解决问题

2.2.1 严重性能问题

未发现严重性能问题。

2.2.2 响应时间问题

未发现响应时间问题。

3 独立/混合场景结果

3.1 测试结果描述

总体请求响应时间均在1秒以内,大部分都能达到0.1秒的反应时间。但是有个别API响应时间会随时间增长而增加。

3.2 详细测试结果

3.2.1 注册新用户响应时间

请求次数如下:

响应时间如下:

由图可知,系统每秒发出的 request 的数量平均在 20 个左右,系统的平均响应时间基本稳定于 0.15 秒以下,响应时间总体趋势平稳。

3.2.2 注册重复用户响应时间

由图可知,系统每秒发出的 request 的数量平均在 2 个左右,系统的平均响应时间基本稳定于 0.09 秒以下,响应时间总体趋势平稳。

3.2.3 用户登录响应时间

请求次数如下:

响应时间如下:

由图可知,系统每秒发出的 request 的数量平均在 40 个左右,系统的平均响应时间基本稳定于 0.09 秒以下,响应时间总体趋势平稳。

3.2.4 用户登陆失败响应时间

请求次数如下:

响应时间如下:

由图可知,系统每秒发出的 request 的数量平均在 6 个左右,系统的平均响应时间基本稳定于 0.1 秒以下,响应时间总体趋势平稳。

3.2.5 发表评论响应时间

请求次数如下:

响应时间如下:

由图可知,系统每秒发出的 request 的数量平均在 30 个左右,系统的平均响应时间基本稳定于 0.1-0.15 秒,响应时间呈缓慢上升趋势,需要改进!!。

3.2.6 添加预订记录

请求次数如下:

响应时间如下:

总体而言,平均每秒发送 20 个 request 的情况下,响应时间都能保持在 0.05 秒以内,虽然偶尔会产生一定的波动,但是依然保持在预期的范围内。

3.2.7 查看详细新闻

在系统刚开始加压时,可以看到有一段明显的上升,但是系统之后始终保持稳定状态,平均每秒发送 20 个 request,响应时间稳定在 0.01 秒左右,符合预期要求。

3.2.8 修改密码时始终使用错误的原密码

请求次数如下:

响应时间如下:

从图中可以看到,当用户数在增长阶段是,响应时间大约在 0.01 秒,当用户不再增长时,响应时间会突然下降,最后稳定在 0.005 秒内,符合预期要求。

3.2.9 用户登录—>点击评论浏览—>发表评论—>用户退出

请求次数如下:

响应时间如下:

可以看到在刚开始启动时,峰值响应时间达到了 0.8 秒左右,但是之后又下降到 0.3 秒以内并保持稳定,尽管有一段突变,但是任意时刻都没有超过 1 秒,符合 预期的系统性能。

3.2.10 用户登录—>用户点击场馆列表—>用户输入信息—>用户预约—> 用户退出

请求次数如下:

响应时间如下:

在用户数稳定后,系统每秒大约发送 90 个 request,此时响应时间保持在 0.05 秒以内,符合预期的性能要求。

3.2.11 用户登录—>用户点击预约记录—>用户退出

请求次数如下:

响应时间如下:

在系统启动后,响应时间就稳定在 0.09 秒附近,在系统稳定时,每秒发送 60 个请求,响应时间依旧稳定在 0.09 秒左右。符合预期的性能要求。

3.2.12 用户登录—>点击新闻浏览—>查看新闻内容—>用户退出

由图可知, 30 分钟加压系统每秒发出的 request 的数量平均在 40 个左右, 系统的平均响应时间基本稳定于 0.02 秒以下。

3.2.13 用户注册—>用户登录—>用户退出

由图可知, 30 分钟加压系统每秒发出的 request 的数量平均在 20 个左右, 系统的平均响应时间基本稳定于 0.1-0.15 秒, 响应时间呈缓慢上升趋势。

4 性能缺陷统计分析

4.1 缺陷严重程度

严重: 如果新闻、评论数量增多会产生严重的查询耗时

4.2 缺陷类型分析

没有限制的 SELECT 语句

4.3 缺陷原因分析

没有限制的 SELECT 语句

5 测试环境分析

5.1 系统架构设计

Windows10 + Locust + Tomcat

5.2 测试环境配置

软件环境(相关软	7件、操作系统等	:)	
名称	版本	数量	获得途径
Windows	10	3	学校正版 Win10
MySQL	8.0	3	开源版
Chrome 浏览器	79	3	网络
硬件环境(网络、	设备等)		
名称	版本	数量	获得途径
			3414.CIE
显示器	1920x1080	3	笔记本电脑自带/购买
显示器 Web 服务器	1920x1080 N/A	3 N/A	
			笔记本电脑自带/购买

5.3 环境差异分析

网页显示保证在 1920x1080 分辨率下对用户友善, 低分辨率下可能出现元素重叠。