10/719,297

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-7722

(43)公開日 平成5年(1993)1月19日

(51)Int.Cl.5

證別記号 广内整理番号

FΙ

技術表示箇所

B 0 1 D 53/04

F 9042-4D

F 2 4 F 6/08 8816-3L

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号

(22)出願日

特顯平3-161559

平成3年(1991)7月2日

(71)出顧人 000005821

松下電器產業株式会社

大阪府門真市大字門真1006番地

(72)発明者 守屋 好文

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 藤戸 稔也

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

(54) 【発明の名称】 吸着材再生装置の制御方法

(57)【要約】

【目的】 本発明は、吸着材の再生装置の制御運転に関 し、運転の省エネルギー化が実現できる制御技術を提供 する。

【構成】 吸着材1と、同吸着材1に組み込まれた加熱 源2と、同吸着材1に空気を送る送風機3と、同加熱源 2と送風機3とを制御する制御回路4とからなる構成で ある。前記制御回路4は、再生動作時に、前記加熱源2 及び送風機3への入力を最大にする運転と前記加熱源2 及び送風機3への入力を最小にする運転とからなる運転 構成とし吸着材再生装置の制御方法である。吸着材1の 上流部が再生を完了すると、加熱源2の作動を停止し、 送風機3の風量を低下させる。これにより、吸着材1上 流側の冷却と、下流側の再生を同時に行う。

【特許請求の範囲】

【請求項1】吸着材と、前記吸着材の上流に組み込まれ た加熱源と、前記吸着材に送風する送風機と、前記加熱 源と前記送風機とを制御する制御回路とを備え、前記制 御回路は再生動作時に、前記加熱源および前記送風機へ の入力を最大にする運転と、前記加熱源および前記送風 機への入力を最小にする運転とを主体とする制御を行う 吸着材再生装置の制御方法。

【請求項2】制御回路は、再生動作時には、加熱源およ び送風機への入力を最大にする運転を優先させ、加熱源 10 への入力を最小にする運転に切り替えるときには、加熱 源への入力を停止するよう制御する請求項1記載の吸着 材再生装置の制御方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、吸着材を用いた空調装 置において、吸着材の再生を効率的に行う吸着材再生装 置の制御方法に関する。

[0002]

【従来の技術】従来のこの種の吸着材の再生は、例えば 20 図3に示すタイムチャートのように、再生工程時に加熱 源を作動させ、吸着工程時には、加熱源の作動を停止さ せる運転構成で行われていた。

【0003】上記の運転構成では、通常、吸着材に供給 する空気温度を吸着工程時の空気温度より高くして供給 し、吸着材に吸着されている水分を脱離させるTSA (Thermal Swing Adsorption)を採用している。

[0004]

【発明が解決しようとする課題】このような従来の構成 では、送風機、ヒータ、吸着材の順に並べて構成してい 30 るため、再生用空気を加熱源により昇温する時の熱交換 損失、放熱損失が大きい。また、上流側の吸着材と下流 側の吸着材では、再生に要する時間に遅れがあるため、 再生の遅い下流側吸着材の再生が完了するまで、加熱源 を作動させ続けることになる。この構成では加熱源が、 すでに再生を完了している上流側吸着材を加熱し続ける ことになり、再生効率を悪化させている大きな要因であ った。この結果、従来の再生技術は、再生工程時の消費 エネルギーが多くなるという問題を有していた。

【0005】本発明は、このような従来の課題を解決す るもので、消費電力が少ない吸着材再生装置の制御方法 を提供することを目的とするものである。

[0006]

【課題を解決するための手段】吸着材と、前記吸着材の 上流に組み込まれた加熱源と、前記吸着材に送風する送 風機と、前記加熱源と前記送風機とを制御する制御回路 とを備え、前記制御回路は再生動作時に、前記加熱源お よび前記送風機への入力を最大にする運転と、前記加熱 源および前記送風機への入力を最小にする運転とを主体 とする制御を行うようにしたものである。

【0007】また、加熱源および送風機への入力を最大 にする運転を優先させ、加熱源への入力を最小にする運 転に切り替えるときには、加熱源への入力を停止するよ うにしたものである。

2

[0008]

【作用】上記の構成によれば、再生動作に入ると、制御 回路は加熱源の発生熱量が最大になるように作動させ る。加熱源は、送風機により送り込まれた空気を加熱す ることにより、高温風を生成し、吸着材を加熱する。こ の時、熱源機からの輻射熱も、吸着材を加熱することに なる。加熱された吸着材は、吸着していた湿分を放出 し、まず、上流側の吸着材は再生を完了し、下流側の吸 着材は再生条件に近い温度になり、再生を始める。この まま、加熱源を作動させ続けると、加熱源は、すでに再 生を完了している上流側の吸着材を保温することが主と なり、肝心の下流側吸着材の加熱が効率的になされな い。本発明では、この時点で、加熱源の発生熱量を最小 にするか、加熱源の運転を停止することにより、上流側 の吸着材の熱量を、風量を落とした送風機によって、下 流側吸着材に熱伝達させる。この上流側吸着材の余剰熱 量により、下流側吸着材は、加熱源の作動なしに再生を 実現できることとなる。

[0009]

【実施例】以下に本発明の一実施例を図面を参照しなが ら説明する。

【0010】図1に示すように、ハニカム状に成型され た固体吸着材1の前面には電熱ヒータ2が設けられてい る。そして吸着材1の上流側には送風機3が設けられ、 電熱ヒータ2および送風機3は制御回路4でコントロー ルされていて、風路5内に収納されている。制御回路4 は、図2に示すタイムチャートに従い、電熱ヒータ2お よび送風機3を制御する。この制御方法は、再生動作に 入ると、まず電熱ヒータ2を最大能力で一定時間

(tai)作動させた後、停止させ、同時に送風機の送風 能力も低下させ一定時間(taz)運転する制御方法を取 るものである。

【0011】上記の構成により、再生動作に入ると、電 熱ヒータ2が作動する。 電熱ヒータ2は、 送風機3によ り送られた空気を高温風にして、電熱ヒータ2より下流 側の吸着材1を加熱する。また、吸着材1は、電熱ヒー タ2からの輻射熱も同時に受けて加熱される。この高温 風と輻射熱により吸着材1が加熱され、吸着材1中の湿 分は、昇温の速い上流側吸着材1からまず脱離する。電 熱ヒータ2が作動してからtォュ時間経過すると、上流側. 吸着材1は温度が十分に上がって再生を完了する。この 時点で、制御回路4は、電熱ヒータ2の作動を停止し、 送風機3の風量を低下させる。この工程により、上流側 の吸着材1は、送風機3からの冷空気流により、冷却さ れ、つぎの吸着工程に移行する準備が完了する。上流側 50 の吸着材1から熱を受けた空気は、下流側の吸着材1に 3

この熱を与え、再生を促すことになる。こうして ta2時間経過後、吸着材 1 の再生はすべて完了し、再び吸着工程の運転モードに移る。以上のように本発明の再生制御技術によって、電熱ヒータ 2 の消費エネルギを低減することができ、しかも再生動作完了と同時に、吸着材 1 の吸着工程に移行することができる。

[0012]

【発明の効果】以上の実施例の説明からも明らかなよう に本発明の吸着材再生装置の制御方法によれば、下記の 効果が得られる。

- (1) 再生工程時に加熱源、送風機の運転を制御することにより、吸着材の無駄な加熱を防止し、加熱源および 送風機の消費エネルギーを削減することができる。
- (2) 再生工程時に加熱源を停止することにより、上流

4

側の吸着材を冷却することができ、再生工程終了と同時 に、吸着工程に移行することができ、無駄な待ち時間を なくすことができる。

【図面の簡単な説明】

- 【図1】本発明の一実施例の吸着材再生装置の断面図
- 【図2】同制御用タイムチャート
- 【図3】従来の吸着材再生装置の制御用タイムチャート 【符号の説明】
- 1 吸着材
- 10 2 加熱源
 - 3 送風機
 - 4 制御回路
 - 5 風路

時間