

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE
In Physics (4PH1) Paper 1PR and (Science
Double Award) (4SD0) Paper 1PR

Question number	Answer	Notes	Marks
2 (a)	D (ultraviolet); A is incorrect because frequencies lower than visible B is incorrect because frequencies lower than visible C is incorrect because frequencies lower than visible	light are non-ionising	1
(b)	one use for x-rays; e.g. taking photos or detecting of (broken) bones, internal structures (of objects), one use for gamma rays; e.g. radiotherapy, sterilising medical equipment, reference to tracing, airport scanning of luggage, irradiating food (for preservation)	allow treating cancer / sterilising medical equipment allow treating cancer	2
(c) (i)	speed = frequency × wavelength;	allow standard symbols and rearrangements e.g. λ = v / f condone s for speed	1
(ii)	substitution; rearrangement; evaluation; e.g. $3.0 \times 10^8 = 2.8 \times 10^{19} \times \text{wavelength}$ wavelength = speed / frequency (wavelength =) 1.1×10^{-11} (m)	-1 for POT error allow 1.07×10 ⁻¹¹ (m)	3
(d)	B; A is incorrect because it shows an exponential relatio C is incorrect because it shows a proportional relatior D is incorrect because it shows no relationship		1

Total for Question 2 = 8 marks

Questi numb		Answer	Notes	Marks
8 (a)	(i)	reflection;		1
	(ii)	rearrangement; evaluation of correct total distance;	ignore units condone incorrect conversion of time from 43 ms i.e. 43, 43/60, 43 × 1000, 43 × 60	4
		halved to find distance to fish;	accept wherever applied i.e. to the time or to the distance travelled.	
		e.g. 1500 = distance / 0.043 distance = speed × time (distance =) 64.5 (distance = 64.5 ÷ 2) = 32 (m)		
			64.5, 65 = 3 marks (no halving) 32250 etc = 3 marks (POT) 64500 etc = 2 marks (POT and no halving)	
(b)	(i)	3.0 ± 0.5 (cm);	accept '3'	1
	(ii)	 any three from: MP1. all frequencies show reduction in amplitude or intensity with distance; MP2. this reduction is non-linear; MP3. penetration decreases with increasing frequency; MP4. use of data from graph to justify MP3; 	ignore 'inverse proportion' condone '(negative) exponential' however expressed e.g. 2MHz penetrates more than 4 MHz which penetrates more than 10MHz e.g. relative values at a given distance or distances at which the frequencies are at a given value	3

Total for Question 8 = 9 marks

Question number		Answer	Notes	Marks
9 (a)		LED drawn on branch of circuit containing only R_1 ; LED drawn in the correct orientation;		2
(b)	(i)	correct ammeter symbol drawn on main branch of circuit and in series with cell;		1
	(ii)	voltage across R_2 is the same / 4.5 V; (because) they are in parallel;	allow higher level answers in terms of energy transferred per unit charge	2
(c)	(i)	energy (transferred) = charge × voltage;	allow standard symbols and rearrangements e.g. Q = E / V reject C for charge	1
	(ii)	substitution; rearrangement; evaluation; e.g. 4.1 = charge × 4.5 (charge =) 4.1 / 4.5		3
	(iii)	(charge =) 4.1 / 4.5 (charge =) 0.91 (C) idea that a voltmeter is needed; voltmeter should be connected across / in parallel (with R ₂); suitable means of varying circuit current described;	e.g. changing number of cells, using a variable power supply, adding variable resistor to the circuit	3

Total for Question 9 = 12 marks

Question number	Answer	Notes	Marks
10 (a) (i)	substitution into a = $\Delta v / t$; evaluation to 3 or more s.f.;		2
	e.g. acceleration = (4.20 - 1.45) / 0.286 (acceleration =) 9.62 (m/s ²)		
(ii)	idea that air resistance / friction also acts on ball; which opposes the ball's weight;	allow drag allow idea that frictional force is upwards whilst weight is downwards allow idea that resultant force is less that weight ignore idea of reaction time / other human errors	2
(iii)	substitution into $v^2 = u^2 + 2 \times a \times s$; rearrangement;	allow use of a=9.6, 9.8, 9.81 or 10	3
	evaluation;	reject 'change in speed × time' giving 0.78(65) as incorrect physics allow answers using correct average velocity.	
	e.g. $4.20^2 = 1.45^2 + (2 \times 9.6 \times s)$ $s = (v^2 - u^2) / 2a$ (s =) 0.809 (m)	allow range 0.78-0.81 (m)	
(b) (i)	suitable scale on both axes; all points plotted correctly to nearest half square;		2
	Distance between 0.5 sight gates 0.4 sight gat		
(ii)	smooth curve drawn with an even distribution of data points either side;	ECF candidate plotting	1
(iii)	gradient of graph is equal to the speed / velocity of the ball;		3
	gradient is increasing (as time increases); speed / velocity is increasing (as time increases);	allow "curve gets steeper" allow idea of greater distance in a unit of time DOP	
		award 1 mark for idea that graph is a curve if no other marks awarded	

Total for Question 10 = 13 marks

Question number		Answer	Notes	Marks
	(a)	substitution into $p_1 \times V_1 = p_2 \times V_2$ OR rearrangement; evaluation of volume; correctly expressed in standard form; e.g. $100 \times 0.0043 = 270 \times V_2$ OR $V_2 = p_1 \times V_1 / p_2$ $(V_2 =) 0.0016 \text{ (m}^3)$ $(V_2 =) 1.6 \times 10^{-3} \text{ (m}^3)$	allow 0.00159 (m³) allow 1.59×10 ⁻³ (m³)	3
(1	(b) (i)	idea that particles move more slowly at lower temp;	allow RA if clear allow lower kinetic energy (KE) reject no KE	3
		particles collide with walls less often; particles collide with walls less force;	allow particles colliding less hard note: with walls/eq must be mentioned once	
	(ii)	dimensionally correct substitution into $p_1 / T_1 = p_2 / T_2$; conversion of either temperature into kelvin; rearrangement; correct subsequent evaluation of p_2 with consistent conclusion;	ignore units can be implied	4
		e.g. $270 / 293 = p_2 / 275$ $293 \text{ or } 275 \text{ used anywhere in calculation}$ $p_2 = 270 \times 275 / 293$ $(p_2 =) 253 \text{ (kPa) so light will not show}$	27 (kPa) so light will show scores 3 marks 243 (kPa) so light will show scores 2 marks	

Total for Question 11 = 10 marks