薄膜相關新技術應用於電導度控制及處理成本分析

梁德明

工研院環安中心環境科技研究組

一.前言

電導度是水體中所含之陰陽離子(鈣、鎂、鈉、鉀、碳酸根、硫酸根、 氯離子)等離子性物質之導電值得總和。溶性鹽類越多,則溶液濃度越高, 電導度越高。電導度值的測定原理是基於水容液中電解質的濃度越高者, 其導電性也越好,因此將電流通過兩電極間所產生的電阻之倒數(即導電 度),用來表示水溶液電導度的強度。電阻的單位為歐姆(ohm),電阻的倒數 即導電度,單位為姆歐(mho),目前漸以"S"(Siemens)代替 mho。電導度之 量測值受溫度影響,一般在常溫(25)下量測,電導度值與溶液中之總鹽類 濃度成正比。總溶解固體物(Total dissolved solid, TDS)約等於 0.5~0.6 係數 乘以電導度,亦即 TDS (mg/L)= (0.5~0.6) x 電導度(uS/cm)。

工廠廢水電導度來源

- 1. 高電導度用水水源
- 2. 原物料帶入
- 3. 管末處理之化學藥劑(H₂SO₄、NaOH、PAC、Al₂(SO₄)₃、NaHSO_{3...})

薄膜處理設施可以用來去除水體中的鹽類降低電導度。例如以壓力作為驅動力的薄膜系統有逆滲透(Reverse osmosis, RO)或 Nanofiltration (NF, 又稱低壓 RO 膜)。以電力為驅動力的薄膜系統為電透析(electrodialysis, ED) 處理法。圖 1 為 RO 與 ED 薄膜處理程序機制之示意圖。圖 2 為各種薄膜使用之範圍,RO 與 EDR 均適用於分離溶解性的陰陽離子與鹽類。NF 膜則可去除一部分鹽類與較大物質,如病毒與腐植酸等。

使用於脫鹽的程序有離子交換樹脂、逆滲透與電透析,這三種程序的經濟性與水中鹽類含量有很大的關係。由圖 3 簡單區分為四類,含低濃度鹽類(小於 500 mg salt/L)適用於離子交換樹脂;中高濃度鹽類(500 < C_{salt} <

3,000 mg/L) 適用於 ED/EDR 程序; 含超過 3,000 mg salt/L 者較適用於 RO 程序,如超過 10,000 mg/L 以上則需考慮其他更經濟之處理程序。

圖 1 為 RO 與 ED 薄膜處理程序機制之示意圖

圖 2.不同薄膜使用於分離物質之適用範圍(AWWA,1995)

圖 3.各種商業化脫鹽技術比較 (Richard W. Baker, 2000)

二.RO與 NF 膜

RO 是最廣泛使用在海水或鹹水脫鹽的程序,最常使用的模組型式為纏繞式 (spiral wound, SW)。RO 的壽命與進流水的前處理有很大的關係,如何減少 fouling 與 scaling,必須進行過濾與調整進水 pH 值。淤泥阻塞指數(silt density index, SDI) 是造成 fouling 重要參考指標,在RO使用最好 SDI < 2。 Biofoling 是由菌體造成,加入適當的抑菌劑是必要的措施(表 1),表2 是用來清洗已經生成的生物膜時之使用藥劑濃度。Scaling 的問題可借助原水 pH 調整,或使用抑垢劑防止沉澱產生,對鈣鎂可以產生螯合的藥劑常可以使用,如檸檬酸、EDT、NTA 與多磷酸鹽等。

表 1. 防止薄膜生成生物膜的藥劑

藥劑種類	藥劑名稱	薄膜種類	濃度
Biocides	Chlorine	CA,PS	0.1-1.0 mg/L
oxidizing	Monochloramine	All	0.5 - 5.0 mg/L
	Peracetic	CA,PS	0.1 1.0 mg/L
	Hydrogen peroxide	All	0.1 - 1.0 mg/L
Biocides	Formaldehyde	All	0.5-5.0 %
Nonoxidizing	Glutaraldehyde	All	0.5-5.0 %
	Bisulfite	All	1.0-100 mg/L
	Quaternary amines	CA,PS	0.01-1.0 %
	Benzoate	All	0.1-1.0 %
	EDTA	All	0.01-1.0 %

表 2. 清洗薄膜的生物膜的藥劑

藥劑種類	藥劑名稱	薄膜種類	濃度
Detergent	SDS	CA,PA,PS	0.01-2.0%
	SDBS	CA,PA,PS	0.01-2.0%0.01-2.0%
	Triton series	CA,PS,PE	0.01-2.0%
	Quaternary amines	CA,PS,PE	
Enzyme(s)	Proteases	ALL	10-100mg/L
	Esterases		10-100mg/L
	Lipases		10-100mg/L
	Polysaccharidase		10-100mg/L
Chelating	Citrate	ALL	0.1-1.0%
agents	EDTA		0.1-1.0%
Biocides	Sodium bisulfite	ALL	10-100mg/L
	Quaternary amines	CA,PS,PE	0.1-1.0%
	Formaldehyde	All	0.1-5.0%
	Glutaraldehyde	All	0.1-5.0%
	Isothiozolinone	All	0.1-1.0%
	sodium benzoate	All	0.1-1.0%
	Monochloramine	CA,PA,PS	0.5-5.0 mg/L
	EDTA	All	0.1-1.0%

RO 膜對陰陽離子分離的選擇性如下列所示:

陽離子

 $Fe^{3+}>Ni^{2+}, Cu^{2+}>Mg^{2+}>Ca^{2+}>Na^{+}>K+陰離子$ $PO4^{3-}>SO4^{2-}>HCO3^{-}>Br^{-}>Cl^{-}>NO3^{-}, F^{-}$

NF 膜又稱為低壓的 RO 膜, 其特性與 RO 膜相近, 可以操作在較低的的壓力去除部分的鹽類, 尤以二價離子容易被分離, 一價離子只有部分被分離, 因此適合用在軟化或是在少量脫鹽即可的處理方式。RO 常操作壓力大於 $20~kg/cm^2$, NF 通常操作在 $10~kg/cm^2$ 。如表 3~ 為各種商業化膜的脫鹽效果。表 4~ 為各種 NF 膜的脫鹽功能。

Farameter	Seawater membrane (SW-30)	Brackish water membrane (CA)	Nanofiltration membrane (NTR-7250)
Pressure (lb/in ²)	800-1000	300-500	100-150
Solution concentration (%)	1-5	0.2-0.5	0.05
Rejection (%)			Heere
NaClg	99.5	97	GO
MgClg	99.9	99	89
MgSO ₄	99.9	99.9	99
Na ₂ SO ₄	99.8	99.1	99
NaNO ₂	90	90	45
Ethylene glycol	70	_	
Glycerol	96	-	-
Ethanol	_	20	20
Sucrose	100	99.9	99.0

表 3 各種商業化薄膜的脫鹽率(Richard W. Baker)

圖 4. 各種商業化低壓薄膜的脫鹽率(操作條件; 500 mg/L NaCl, 7.5 kg/cm₂; Richard W. Baker, 2000)

三.電透析

3-1 電透析原理

電透析(electrodialysis, ED)處理技術是利用不同特性的薄膜對水中的離子作分離選擇,水中離子的移動則是靠正負直流電來當吸引的驅動力。 倒極式電透析(electrodialysis reversal, EDR)是將電透析處理技術作進一步修正,乃利用直流電正負極和內部導流的切換來延長薄膜使用壽命 電透析用於脫鹽原理則是利用陽離子只能穿透陽離子交換膜,而陰離子只穿透陰離子交換膜的特性,在外加直流電場的作用下,水中的陰離子移向陽極、陽離子移向陰極,最後得到淡水及濃水,達到淡化除鹽的目的

圖 5. 離子交換膜的離子選擇性

圖 6. 電透析展開圖 (Andrew Porteous, 1983)

電透析(ED)及逆電透析(EDR)的設計視處理需求及原液水質而定,主要構成為膜架(membrane stacks)、薄膜(membrane)、電極(electrodes)及隔間(spacers),圖 6 為其展開圖,於室膜的二端設置陽極與陰極(在此只圖示其中一端),在框的上緣、下緣開設溶液流通的通路孔,通路孔在透析槽裝配、重疊時彼此形成液路,這些通路孔交替以細流路連通液室。進流經由此設計,分為淡液(dilution)與濃液(concentration)經不同室離開,各室以陽離子和

陰離子交換膜隔開,室間設間隔物,使液室保持一定間隙,並有助於液流的混合。室對數目需視原液水質及欲達目的而定,典型的每日產 $189~\text{m}^3/\text{d}$ (50,000~gpd)的工廠,每膜架約含 500~對。圖 7~ 為電透析脫鹽之示意圖。

A:陰離子交換膜C:陽離子交換膜

圖 7.電透析脫鹽示意圖

3-2.電透析操作影響因子

1. 極限電流密度

而當離子膜通過電流時,隨電流密度增加,通過薄膜的離子較通過溶液者快,造成離子耗竭,增加的電壓會導致稀釋層的水分子裂解,產生濃度分極現象(polarization),則溶液 pH 改變,並發生氫氧化物在薄膜上的沉積問題,造成能量耗損及電流效率降低,此濃度分極發生時電流密度稱極限電流密度(Limiting current density),一般與分離物濃度成正比,故在操作上有其限制,一般而言,最大操作值不應超過界限電流密度的 70%,以免濃度分極的現象發生。

界限電流密度通常低於最適電流密度,為提高此操作值,有許多研究 致力於增加界限電流密度的對策,因界限電流密度與原液的濃度、溫度、 粘度等相關,受液-膜交界的水力條件影響,利用防止濃度分極的基本對策, 加上減低擴散層的厚度,即可有效提高電流密度的界限值。

2.極水導電度對脫鹽率的影響

極水導電度過低時,脫鹽率顯著偏低,而當極水導電度超過某一臨界值時,脫鹽率幾乎保持定值

3.原水導電度對脫鹽率的影響

原水導電度在 800-4,000 µs/cm 之間,對脫鹽率的影響不大。

4.原水流量對脫鹽率的影響

流量越小脫鹽率越高,但流量過低較不經濟,且過低的線性速度較易 產生濃度極化的現象。

藉由操作策略提高回收率,如(1)濃縮液及稀釋液的迴流,(2)外載產物迴流(off-specification product recycle, OSPR),亦即將電極極性反轉時的出流水迴流,而不直接排放,以避免水質的惡化,(3)極性反轉頻率與 OSPR時間的配合,(4)電極液迴流,(5)化學藥劑的添加,抗垢劑可容許較高的結垢物質濃度,控制結垢情形,使系統可操作在較高的功率下。

3-3.電透析操作方法分為

- 1.批式
- 2.feed-and-bleed (原水進料量»淡水產量)
- 3.連續式三種,連續式又可分為一次流通式(one-pass)及部分循環式

3-4.EDR 程序特點

ED 膜較 RO 膜有較好的物理性及抗化性(含抗 SiO₂), EDR 更對雜質、 膠質及細菌的容忍度較 RO 為高,高水回收率及低能源消耗是 ED 的兩大優點。RO 因為滲透壓的關係,所能達到的濃縮倍數較 ED 為低,因此水回收率較 ED 低,但可達到相當好的出水水質(脫鹽率>95%)。EDR 在國外已有相當多的廢水回收實績,且經由評估實驗證明 EDR 的總效益優於其他方法(如 RO, UF/RO),其優點如下:

- 1.高濃水濃度: EDR 處理的濃水濃度可達 TDS 100,000 mg/L
- 2.排放水溫可達 45° C ,且溫度提高可增加 EDR 的效率
- 3.耐化學性優:pH 1-10,可用 5%HCl 清洗膜表面結垢或用 H_2O_2 及氯殺菌
- 4.原水淤泥阻塞指數(silt density index, SDI)要求較低:RO 為 SDI₅<5, EDR 為 SDI₅<15
- 5.EDR 膜面不易結垢(fouling & scaling), CaSO₄ 飽和度可達 175%, 若添加 抗垢劑於 EDR 濃縮迴流中, CaSO₄ 飽和度更可達 400%
- 6.能源消耗低:低壓(45-90psi)操作,動力消耗低
- 7.水回收率高: EDR 的迴流設計可達 95%的水回收率
- 8.清洗維修週期長
- 9.壽命長,操作管理簡單

EDR 在水回收應用上最需要考慮的有三項因素,分述如下:

1.膠質結垢 (fouling by colloidal materials)

由於 EDR 膜較 RO 及 ED 膜厚 2-3 倍,因此可使用彎流式分隔片(tortuous flow path spacer),故其線性流速較傳統的柵網式分隔片(screen spacer)快 2-5 倍,同時配合定期的倒極操作,進而使膠質結垢較不容易發生,不過一般原水的 SDI_5 最好控制在 12 以下。

2.有機物結垢 (fouling by natural and man-made organics)

由於小分子量的有機物可以透過膜,大分子量的有機物可以在倒極時被洗出,因此最容易造成膜結垢的是中分子量的有機物(MW=250-700),且因天然水中有機物所帶電荷多為負,故陰離子交換膜較容易產生有機物結垢的問題。一般原水的 TOC 最好控制在 2mg/L 以下,但有一實廠是取Blackstone River 之水作為冷卻水之水源,利用 EDR 等單元處理河水,EDR的原水 TOC 為 10-20mg/L,長期操作下仍非常穩定。有機物結垢亦可用定期的鹽洗方式來克制,5%NaCl 及少量 NaOCl 以維持 25-50mg/L 的自由餘氯,每次清洗 1 小時即可。

3.生物結垢 (biofouling)

一般已連續加氯 (自由餘氯= 0.5 mg/L)或加 H_2O_2 即可避免此問題的發生。

3-4. EDR 前處理

EDR 之前可選擇設置或不設置 UF 若不設置 UF 則 EDR 倒極的頻率須較高(約 15 分鐘一次),因此水回收率較低

若設置 UF 則可以延長 EDR 薄膜的壽命

TOC 去除 (活性碳, BAC, BioNET 等)

pH control (concentrate)

脫鹽率下降的情形,使用稀鹽酸循環清洗方式可達到脫鹽率恢復的效果。 在此水質下,EDR的操作方式可較傳統ED方式節省60%的酸洗水量。

3-5 大陸的 EDR 設備應用

大陸的電透析多只用於水的淡化處理(即脫鹽),尤其在海水淡化及河水、地下水處理至工業用水再生上有相當多實績,常用的陰、陽離子交換膜各只有兩種(一般異相膜及耐氯異相膜)。在水的淡化處理領域上,大陸電

透析設備的總處理水量佔了全球的一半,具有相當大的價格優勢。日本及歐美的電透析膜則朝高品質的同相膜發展,除了用在水的淡化處理上,尚可用於無機酸、有機酸及重金屬的回收,陰、陽離子交換膜的產品種類非常多,但電透析設備相對昂貴許多。大陸的電透析設備應用在清洗廢水的循環再生具有很高潛力。

表 4.大陸膜與日本膜測試比較

期試條件 測試溶液		大連	英		日本膜				
	股鹽率* (%)	電流效率 (%)	換問電 壓(V)	操作電 克(A)	原鹽率* (%)	電流效率 (%)	庭間電 壓(V)	操作電 流(A)	
1,000 mg/L NaCl	91.6	76.6	9.4	0.15	92.6	77.7	10.8	0.15	
1,000 mg/L MgSO₄	85.8	73.4	8.0	0.07	79.1	68.6	8.4	0.07	
1,000 mg/L Al ₂ (SO ₄) ₃	50.7 *	9.4	8.0	0.10	84.7	13.6	9.6	0.16	

^{*} 脱鹽率以等電度為指標

3-5-1 案例 A 廠地下水與清洗水測試結果

案例 A 廠為鋁箔電容器工廠,該廠的主要用水來源為地下水,因擴廠需增加水處理設備,將地下水以電透析處理,以了解是否可取代原有的 RO 系統前處理單元(包括軟化),並減輕 RO 系統的負荷。該廠的地下水的水質如表 5 所示,此部份的實驗在小型電透析設備中進行,操作方式如圖 8,此乃因長期的一次流通式實驗需相當大的水量,而理論上淡水與濃水混合後的水質應與原水相同,因此這種操作方式可模擬一次流通式,處理結果則如表 6。

表5 案例A廠地下水的水質

рН	導電度	TOC	Na ⁺	Al ³⁺	Mg ²⁺	Ca ²⁺	Cl ⁻	NO ₃	SO ₄ ²⁻
	(µs/cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
7.7	1,970	6.1	66.2	3.6	22.1	23.2	123	12.4	120

[&]quot;大陸膜處理Al₂(SO₄)₃溶液之脫鹽幸以最低之導電度為計算基準

圖8 案例A廠地下水處理的操作方式

表6 案例A廠地下水處理的水質

		<u>}</u> :	操作條件		分析	結果1				
時間	F1	P1	F2	P2	電壓	電流	導電度	(µ s/	cm)	脫鹽率
(hr)	(L/min)	(kg/cm ²)	(L/min)	(kg/cm ²)			原水桶	濃水	淡水	(%)
	原水	濃水	原水	濃水	(Volt)	(Amp)				
1	1.70	0.35	1.80	0.35		0.53	2050	3470	429	79.1
2	1.70	0.35	2.00	0.35	50.1	0.53	2120	3270	472	77.7
3	1.65	0.35	2.00	0.35	50.0	0.67	2060	3800	587	71.5
4	1.65	0.34	2.00	0.34	50.1	0.55	2110	3440	496	76.5
6	1.70	0.34	1.82	0.33	50.1	0.57	2040	3560	577	71.7
8	1.70	0.30	2.10	0.30	50.1	0.62	2020	3450	532	73.7
10	1.70	0.30	1.98	0.30	50.1	0.6	2170	3410	474	78.2
12	1.65	0.30	1.95	0.25	50.0	0.56	2210	3700	476	78.5
14	1.70	0.32	1.80	0.30	50.1	0.58	2050	3510	491	76.0
16	1.70	0.30	1.70	0.25	50.1	0.56	2130	3480	497	76.7
18	1.68	0.28	2.10	0.28	50.1	0.55	2110	3540	492	76.7
20	1.68	0.28	2.10	0.28	50.0	0.64	2200	3510	457	79.2

表 6 顯示脫鹽率可穩定維持在 70-80%之間,原水桶中大部分離子的 濃度變化不大,唯獨 Ca^{2+} 及 Mg^{2+} 的濃度逐漸降低,這可能是異相 ED 膜中的離子交換樹脂粉末造成的交換現象。另外,同時針對該廠的清洗水進行水回收測試,清洗水的水質如表 7 所示,操作方式如圖 8,由於原水的 pH 偏酸(pH=3),操作 2 小時後即發現原水桶中的 pH 上升至 6 左右,導電度則由 570 μ s/cm 降至 300 μ s/cm 左右,如圖 9 所示。在操作 18 小時後,以 2% HCl 酸洗 100min,發現有 pH 下降而導電度上升的現象。推究其原因,初期 pH 上升的原因應該是 H⁺被 ED 膜中的離子交換樹脂粉末迅速交換(交換出 Na^+),此點可由原水桶中 Na^+ 濃度的增加相呼應。酸洗後則因 ED 膜中的離子交換樹脂粉末已含飽和的 H^+ ,因此變成 H^+ 被交換出來而造成 PH 下降及導電度上升的現象。整個操作過程中淡水的 PH 約為 EE 5.4-5.7,淡水導電度在 EE 15-60%之間,脫鹽率則維持在 EE 79-90%之間。

表7 案例A廠清洗水的水質

pН	導電度	Na ⁺	Al ³⁺	Mg ²⁺	Ca ²⁺	Fe	Cl	NO ₃	PO ₄ ³⁻	SO ₄ ²⁻
	(µs/cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
3.0	570	6.0	15	0.23	0.82	3.1	25	8.6	8	132

圖9 案例A廠清洗水實驗中原水桶的水質變化

3-5-2 案例 B 廠廢水處理廠放流水回收處理

案例 B 廠為印刷電路板廠,其廢水經混凝沉澱與生物處理後放流。現今考慮進行高級處理,評估水回收的可行性。因此使用砂濾、活性碳、UF、EDR、RO、樹脂等後段處理單元以放流水直接進行測試。單就控制電導度而言,各單元導電度的分析結果如表 8, SDI (silt density index,淤泥指數)的分析結果如表 9。RO 與 EDR 均有良好的脫鹽效果。

表 8 砂濾、活性碳、UF、EDR、樹脂等處理單元的導電度分析結果

	12/6	12/1	11/29	11/24	11/23	11/22	11/17	11/16	11/15	11/9
砂濾進水	2230	3370	3130			3090	3680	2710	4350	2360
活性碳出水	2570	3490	3250		3110	3020	3710	2880	4430	2380
UF出水	2760	3400	3440	3470	2970	2960	3710	2910	4570	2370
UF濃水	2740	3590	3570	3580	3090	3080		3010		
ED淡水	816	1103	1634	1121	1141	632	995	504	1498	651
ED濃水	6100	7190	7430	8820	6890	5250	4740	10700	7900	
RO進水	2900	3370								
RO淡水	139	147			141					
RO濃水	5850	6350								
樹脂出水						21.4		3.5		

表 9 砂濾、活性碳、UF、EDR、樹脂等處理單元的 SDI 分析結果

SDI ₅	11/22	11/16	11/15	11/9
砂濾進水		28.6	25	
活性碳出水	54.5	24	20	19.2
UF出水	10.9	6.8	12.3	14.9
ED淡水		14.4	25	19
ED濃水		20		

4.EDR 與 RO 操作成本

EDR 的操作成本如表 10 的典型案例。在 TDS = 1,500 mg/L , 產水的 TDS=300 mg/L 左右 , 水回收率在 80% , 操作總動力費用約 1KW-h/m³ , 直流電約 0.45 KW-h/m³ , 幫浦動力約 0.55 KW-h/m³。EDR 脫鹽成本與原水中所含的鹽類濃度有很大的關聯 , 圖 10 說明單位水量之脫鹽動力消耗 , 濃度愈高去除 1 g TDS 消耗動力最低可達 0.5 KWh/m³。

圖 11 顯示 EDR、RO 與 NF 的動力消耗,各有適用的範圍,摘要比較如表 11。在 TDS< 1,000 mg/L,使用 EDR 是最節省操作成本。TDS> 1,000以 NF 是最節省操作成本。超過 2,000 mg/L 以上之 TDS 濃度是以 RO 較為經濟。表 12 為 EDR 與 RO 單元使用藥劑比較,RO 的藥劑費用比 EDR 稍高,與水質與回收率有很大的關係。 表 13 為 EDR 與 RO 的初設費用(不含土木),大陸製的 EDR 初設費用較低,主要原因可能在於離子交換膜為異相膜,製造成本較其他大公司為低。薄膜壽命跟水質有很大的關係,大

陸製的 EDR 壽命可達 2~3 年。

5.結語

EDR、RO 與 NF 處理技術均有適用的範圍,考慮不同程序的組合也是作為 脫鹽與控制電導度的方法。原水水質的特性與產水的用途決定使用前處理 與處理技術的種類與操作成本,可以依據不同需求選擇。

表 10 典型 EDR 操作成本分析
Engineering summary for EDR system used in Buckeye, Ariz.

	A	В	System
Number of plants	1	-1	2
Number of lines per plant	2	3	- 5
Number of stages per line	3	3	3
Source water TDS, mg/L	1,587	1,587	1,587
Product water TDS, mg/L	246	325	287
Concentrate TDS, mg/L	6,951	6,623	6,787
Percent salt removal	84.5	79.3	81.9
Product water capacity, gpd	300,000	600,000	900,000
Source water capacity, gpd	375,000	750,000	1,125,000
Concentrate capacity, gpd	75,000	150,000	225,000
Percent water recovery	80.0	80.0	80.0
Source water temperature, °F	80	50	80
Concentrate Langelier		I I I I I I I I I I I I I I I I I I I	
Saturation index	+1.79	+1.73	+1.76
Concentrate percent calcium		450	
fluoride (CaF2) saturation	214.3	218.4	216.4
Total electrical consumption,		25,550	0.0000
kW-h/1,000 gal	4.0	3.9	3.95
DC power consumption.		3707.	383966
hW·h/1,000 gal	1.8	1.9	1.85
Pump power consumption,			2.00
kW-h/1,000 gal	2.2	2.0	2.10
Source water	Well water	Well water	Well water
Pretreatment	Not required	Not required	Not required
Permeate use	Drinking water	Drinking water	Drinking water

Source: Ionies Inc.

圖 10. 去除 1g TDS 消耗的動力與 TDS 濃度有關 (B. Pilat, 2001)

圖 11. EDR 與低壓 RO 與超低壓 RO(NF)的操作成本(AWWA, 1995)

表 11.EDR、RO 與 NF 的動力消耗

TDS, mg/L	EDR, KWh/m ³	RO, KWh/m ³	NF, KWh/m ³
500	0.3	0.6	0.6
1,000	0.6	0.75	0.6
2,000	1.25	1	0.6

表 12. EDR 與 RO 的藥劑費用

設備	EDR	RO
使用藥劑	酸鹼	抑垢劑
	抑垢劑	酸鹼
		清洗劑
來源	中國大陸	一般
費用	$0.2 \sim 0.5$ 元/m ³	0.5~1 元/m³

表 13. EDR 與 RO 的初設費用

設備	EDR	RO
規格	TDS: 1,000 mg/L	TDS: 1,000 mg/L
	水量: 1,000 CMD	水量: 1,000 CMD
	脫鹽率 60%	脫鹽率 90%
來源	中國大陸	一般
初設成本 (不含前處理設備)	0.3~0.5 萬/m ³	0.8~1.2 萬/m ³

參考文獻

- American Water Works Association. Electrodialysis and electrodialysis reversal. Denver: American Water Works Association, 1995.
- Allison R.P. (1995) Electrodialysis reversal in water reuse applications. Desalination 103, 11-18. Andrew Porteous. Desalination technology: developments and practice. London: Applied Science Publishers 1983. New York.
- Mallevialle J, Odendaal PE, Wiesner MR, editors. Water treatment membrane processes. AWWA. 1996.
- Nevill J.B., Christopher P.J. and Mark D.N. (1991) Electrochemical ion exchange. *J. Chem. Tech. Biotechnol.* **50**, 469-481.
- Renz R.P., Fritchley T. R., Sun J.J., Taylor E.J. and Zhou C.D. (1998) In-process recycling of plating rinse water for PWB operations using an electrochange recovery system. 19th AESF/EPA Pollution prevention control conference., 147-156.
- Richard W. Baker (2000) Membrane Technology and Applications. McGraww-Hill.
- Taylor E.J. *et al.* (1997) Electrolysis of electroactive species using pulsed current. *US patent* 5599437, Faraday Technology, Inc., Ohio.
- van der Hoek J.P., Rijnbende D.O., Lokin C.J.A., Bonne P.A.C., Loonen M.T., Hofman J.A.M.H. (1998) Electrodialysis as an alternative for reverse osmosis in an integrated membrane system. *Desalination* **117**, 159-172.
- Zhou C.D., Taylor E.J., Stortz E.C. and Sun J.J. (1997) In-process recycling of plating wastewater with a novel ELECTROCHANGE recovery system. 18th AESF/EPA Pollution prevention control conference., 245-256.
- Zhou C.D. *et al.* (1998) Method of removing metal salts from solution by electrolysis an electrode closely associated with an ion exchange resin. *US patent 5804057*, Faraday Technology, Inc., Ohio.
- 張根生、周長發、繆道英、葛賢欽 (1981) 電滲析水處理技術,北京:科學出版社 張維潤、姚復寶、鍾學文 (1995) 電滲析工程學,北京:科學出版社 許永昌 (1994) 交互式電透析系統在純水及廢水回收之應用,化工技術,14,105-109.