# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В. И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра систем автоматизированного проектирования

#### ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине «Алгоритмы и структуры данных»

Тема: Самобалансирующие двоичные деревья поиска

| Студентка гр. 3353 | Родачина А. А. |
|--------------------|----------------|
| Преподаватель      | Пестерев Д. О. |

Санкт-Петербург 2024

# Оглавление

| Теоретическая часть                                                                                | 2    |
|----------------------------------------------------------------------------------------------------|------|
| Определение АВЛ дерева                                                                             | 2    |
| Алгоритм вставки/удаления с последующей балансировкой АВЛ-дерева                                   | 2    |
| Верхняя оценка высоты АВЛ-дерева                                                                   | 3    |
| Определение красно-черного дерева                                                                  | 3    |
| Алгоритм вставки/удаления с последующей балансировкой красно-чернодерева                           |      |
| Верхняя оценка высоты красно-черного дерева                                                        | 5    |
| Практическая часть                                                                                 | 6    |
| 1. Структура, балансировка, операции поиска/вставки/удаления                                       | 6    |
| 2. Зависимость высоты дерева поиска от количества ключей (значен ключа – случайная величина)       |      |
| 3.1-4. Зависимость АВЛ-дерева от количества ключей (значения ключемонотонно возрастают)            |      |
| 3.2-4. Зависимость красно-черного дерева от количества ключей (значен ключей монотонно возрастают) |      |
| 5. Обходы в глубину и обход в ширину двоичного дерева                                              | 9    |
| Вывод                                                                                              | . 12 |

# Теоретическая часть

#### Определение АВЛ дерева

<u>АВЛ-дерево</u> — сбалансированное двоичное дерево поиска, в котором поддерживается следующее свойство: для каждой его вершины высота её двух поддеревьев различается не более чем на 1.

#### Алгоритм вставки/удаления с последующей балансировкой АВЛ-дерева

**Алгоритм вставки** для АВЛ-дерева будет отличаться от алгоритма для бинарного дерева тем, что после вставки в АВЛ-дереве обязательна балансировка, иначе не будет выполняться главное условие АВЛ-дерева:

Вставка: чтобы вставить узел в дерево, нужно пройти от его начала вниз, на каждом шаге сравнивая значение нового узла с текущими. Алгоритм доходит до конца какого-либо поддерева и делает новый узел правым или левым его потомком в зависимости от значения. Так сохраняется главное правило двоичного дерева поиска — требование к расположению элементов по значению.

<u>Балансировка</u>: если разница в количестве уровней становится равна 2 или –2, запускается балансировка: связи между предками и потомками изменяются и перестраиваются так, чтобы сохранить правильную структуру. Обычно для этого какой-либо из узлов «поворачивается» влево или вправо, то есть меняет свое расположение. Поворот может быть простым, когда расположение изменяет только один узел, или большим: при нем два узла разворачиваются в разные стороны.

**Алгоритм удаления** для АВЛ-дерева так же будет основан на алгоритме для бинарного дерева, но с некоторыми правками.

<u>Удаление</u>: в дереве ищется узел, который нужно удалить. Если такого узла нет, ничего не делается. Если он находится, надо пройти по правому поддереву удаляемого узла и найти в нем узел с самым маленьким значением (min). После этого удаляемый узел нужно заменить на узел min, и структура дерева перестроится. Если правого поддерева у удаляемого узла нет, вместо min на место узла подставляется его левый потомок. Если левого потомка тоже нет, значит, удаляемый узел — лист, значит его можно просто удалить.

После удаления так же производится балансировка.

### Верхняя оценка высоты АВЛ-дерева

Сначала распишем формулу для определения минимального количества узлов ( $N_h$ ) для ABЛ-дерева с высотой h:

$$N_h = N_{h-1} + N_{h-2} + 1$$

Сразу можно посчитать количество узлов для АВЛ-дерева с высотой 0 и 1:

 $N_0 = 1$  (дерево с высотой 0 имеет 1 узел — корень)

 $N_1 = 2$  (дерево с высотой 1 имеет корень и один потомок)

Формулу для  $N_h$  можно выразить через число Фибоначчи:

$$N_h = F_{h+2} - 1$$
 ( $F_0 = 0$ ,  $F_1 = 1$ ,  $F_k = F_{k-1} + F_{k-2}$ )

Пусть n- общее количество узлов в дереве, тогда  $n \ge N_h$ , подставим:

$$n \ge F_{h+2} - 1$$

Запишем число Фибоначчи через формулу Бине:

$$F_k = \frac{\varphi^k - (-\varphi)^{-k}}{\sqrt{5}}$$
, где  $\varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618$  (золотое сечение)

Для больших k число  $(-\varphi)^{-k}$  будет очень маленьким, так что формулу можно переписать как  $F_k \approx \frac{\varphi^k}{\sqrt{5}}$ . Подставим в формулу с n:

$$n \ge \frac{\varphi^{h+2}}{\sqrt{5}} - 1 = > \sqrt{5}(n+1) \ge \varphi^{h+2}$$

 $\log_{\varphi}\sqrt{5}(n+1) \geq h+2$ , при асимптотической оценке константы опускаются:

$$h \leq log(n)$$

Итоговая верхняя оценка АВЛ-дерева: h=O(log(n))

# Определение красно-черного дерева

<u>Красно-черное дерево</u> - сбалансированное двоичное дерево поиска, которое гарантирует логарифмический рост высоты дерева с помощью черных и красных узлов.

# <u>Алгоритм вставки/удаления с последующей балансировкой красно-</u> <u>черного дерева</u>

**Алгоритм вставки** для красно-черного дерева состоит из двух этапов – добавление нового узла как в бинарном дереве и восстановление свойств красно-черного дерева. Добавляем новый узел (по умолчанию он всегда

красный) и назначаем ему черные листья (nil). Теперь важно восстановить свойства красно-черного дерева (перекрашивание узлов или повороты).

- 1. Если у нового узла родитель черный, то балансировка не требуется.
- 2. Если родитель красный, нарушается свойство о недопустимости двух красных узлов подряд.
  - а. Если дядя (брат родителя) тоже красный, выполняется перекрашивания родителя и дяди в черный, а деда в красный. Повторяется проверка для деда.
  - b. Если дядя черный, требуются повороты для восстановления баланса:
    - b.1 Если новый узел справа от родителя делаем левый поворот, чтобы новый узел стал левым ребенком.
    - b.2 Если новый узел слева от родителя делаем правый поворот вокруг деда. Родитель становится черным, дед красным.

Алгоритм удаления элемента для красно-черного дерева начинается с рассмотрения трех случаев, в зависимости от количества его детей. Если их нет, то изменяем указатель на элемент у родителя на nil. Если у него только один ребёнок, то делаем у родителя ссылку на него вместо этой вершины. Если же имеются оба ребёнка, то находим вершину со следующим значением ключа. У такой вершины нет левого ребёнка. Удаляем уже эту вершину описанным во втором пункте способом, скопировав её ключ в изначальную вершину. Теперь стоит проверить балансировку дерева (рассматривается только при удалении черной вершины):

- 1. Если брат ребёнка удаленного элемента красный, то делаем вращение вокруг ребра между отцом и братом, тогда брат становится родителем отца. Красим его в чёрный, а отца в красный цвет, сохраняя таким образом черную высоту дерева. Хотя все пути по-прежнему содержат одинаковое количество чёрных узлов, сейчас ребенок имеет чёрного брата и красного отца. Таким образом, мы можем перейти к следующему шагу.
- 2. Если брат текущей вершины был чёрным, то получаем три случая:
  - а. Оба ребёнка у брата чёрные. Красим брата в красный цвет и рассматриваем далее отца вершины. Делаем его черным, это не повлияет на количество чёрных узлов на путях, проходящих через брата, но добавит один к числу чёрных узлов на путях, проходящих через ребенка, восстанавливая тем самым влияние удаленного чёрного узла. Таким образом, после удаления

- вершины черная глубина от отца этой вершины до всех листьев в этом поддереве будет одинаковой.
- b. Если у брата правый ребёнок чёрный, а левый красный, то перекрашиваем брата и его левого сына и делаем вращение. Все пути по-прежнему содержат одинаковое количество чёрных узлов, но теперь у ребенка есть чёрный брат с красным правым потомком, и мы переходим к следующему случаю. Ни ребенок, ни его отец не влияют на эту трансформацию.
- с. Если у брата правый ребёнок красный, то перекрашиваем брата в цвет отца, его ребёнка и отца в чёрный, делаем вращение. У ребенка удаленной вершины теперь появился дополнительный чёрный предок: либо родитель стал чёрным, или он и был чёрным и брат был добавлен в качестве чёрного дедушки. Таким образом, проходящие через ребенка пути проходят через один дополнительный чёрный узел. Продолжаем тот же алгоритм, пока текущая вершина чёрная и мы не дошли до корня дерева. Из рассмотренных случаев ясно, что при удалении выполняется не более трёх вращений.

#### Верхняя оценка высоты красно-черного дерева

Одним из главных свойств красно-черного дерева - каждый путь от корня к листу содержит одинаковое количество чёрных узлов. Это количество называется черной высотой  $h_b$ . На любом пути от корня к листу не может быть двух подряд красных узлов. Максимальная высота дерева (общее количество узлов на пути от корня до листа) ограничена вдвое большей чёрной высотой:

$$h \le 2 * h_b$$

Чёрная высота связана с количеством узлов следующим образом: в дереве с n узлами минимальное количество узлов достигается, если все узлы чёрные:

$$n \ge 2^{h_b} - 1$$

Отсюда, подставляя это значение в ограничение на общую высоту:

$$h_b \le 2 * \log_2(n+1)$$

Так как константы при асимптотической оценке опускаются, итоговая верхняя оценка будет равна:

$$O(\log{(n)})$$

# Практическая часть

## 1. Структура, балансировка, операции поиска/вставки/удаления

\*Смотреть раздел с кодом



# 2. Зависимость высоты дерева поиска от количества ключей (значение ключа – случайная величина)

| Количество ключей | Высота дерева | Высота дерева  | Высота дерева |
|-------------------|---------------|----------------|---------------|
|                   | (Best case)   | (Average case) | (Worst case)  |
| 100               | 7             | 13             | 100           |
| 500               | 9             | 18             | 500           |
| 1000              | 11            | 21             | 1000          |
| 2000              | 12            | 25             | 2000          |
| 4000              | 13            | 26             | 4000          |
| 6000              | 15            | 29             | 6000          |
| 8000              | 14            | 28             | 8000          |
| 10000             | 15            | 34             | 10000         |
| 12000             | 16            | 30             | 12000         |
| 14000             | 16            | 33             | 14000         |
| 16000             | 15            | 34             | 16000         |
| 18000             | 16            | 35             | 18000         |
| 20000             | 17            | 36             | 20000         |

Возьмем диапазон количества ключей – от 100 до 20000. Графики построены для трех случаев, по взятым экспериментальным данным из таблицы.



Для лучшего и среднего случая регрессионная кривая, построенная по экспериментальным данным, будет описываться через логарифмические функции:  $1.84 \log n - 1.84$  и  $4.29 \log n - 8.05$ . Это соответствует теоретической оценке высоты дерева –  $O(\log(n))$ .



В худшем случае дерево приобретает линей вид, следовательно высота дерева будет равна количеству ключей: O(n). Это видно и на графике с экспериментальными данными.

3.1- 4. Зависимость АВЛ-дерева от количества ключей (значения ключей монотонно возрастают)

| Количество ключей | Высота дерева |
|-------------------|---------------|
|                   | (Best case)   |
| 100               | 7             |
| 500               | 9             |
| 1000              | 10            |
| 2000              | 11            |
| 4000              | 12            |
| 6000              | 13            |

| 8000  | 13 |
|-------|----|
| 10000 | 14 |
| 12000 | 14 |
| 14000 | 14 |
| 16000 | 14 |
| 18000 | 15 |
| 20000 | 15 |

Проверим свойство балансировки у АВЛ-дерева. Возьмем значения ключей, которые монотонно возрастают:



Видно, что регрессионная кривая, описывающая точки с экспериментальными данными, - логарифмическая функция:  $1.52 \log n - 0.33$ . Она соответствует верхней оценке высоты ABЛ-дерева –  $O(\log(n))$ .

3.2- 4. Зависимость красно-черного дерева от количества ключей (значения ключей монотонно возрастают)

| Количество ключей | Высота дерева |
|-------------------|---------------|
|                   | (Best case)   |
| 100               | 9             |
| 500               | 14            |
| 1000              | 15            |
| 2000              | 16            |
| 4000              | 17            |
| 6000              | 19            |
| 8000              | 18            |
| 10000             | 18            |
| 12000             | 20            |

| 14000 | 20 |
|-------|----|
| 16000 | 19 |
| 18000 | 19 |
| 20000 | 19 |

Проверим свойство балансировки у красно-черного дерева. Возьмем значения ключей, которые монотонно возрастают:



Видно, что регрессионная кривая, описывающая точки с экспериментальными данными, - логарифмическая функция:  $1.84 \log n + 1.76$ . Она соответствует верхней оценке высоты красно-черного дерева –  $O(\log(n))$ .

# 5. Обходы в глубину и обход в ширину двоичного дерева

Обходы в глубину:



# 1. Прямой:

- 1. Посетить текущий узел.
- 2. Рекурсивно обойти левое поддерево.
- 3. Рекурсивно обойти правое поддерево.

#### 2. Симметричный:

- 1. Рекурсивно обойти левое поддерево.
- 2. Посетить текущий узел.
- 3. Рекурсивно обойти правое поддерево.

# 3. Обратный:

- 1. Рекурсивно обойти левое поддерево.
- 2. Рекурсивно обойти правое поддерево.
- 3. Посетить текущий узел.

#### Обход в ширину:



Обход в ширину посещает узлы уровня за уровнем, начиная с корня. Узлы текущего уровня посещаются до перехода к следующему уровню.

Массив для примера: [2, 6, 3, 8, 5, 9, 10, 1, 14, 7]



Обход для бинарного дерева

Обход для АВЛ-дерева

```
Красно-черное дерево:

[В]6

[R]9

[В]10

[В]8

[В]8

[R]7

[R]3

[В]5

[В]2

[В]2

[В]1

Прямой обход: [6, 3, 2, 1, 5, 9, 8, 7, 10, 14]

Симметричный обход: [1, 2, 3, 5, 6, 7, 8, 9, 10, 14]

Обратный обход: [1, 2, 5, 3, 7, 8, 14, 10, 9, 6]

Обход в ширину: [6, 3, 9, 2, 5, 8, 10, 1, 7, 14]
```

Обход для красно-черного дерева

# Вывод

Посмотрев наглядно, как высота бинарного дерева зависит от количества ключей, можно сделать вывод, что теоретическая логарифмическая оценка высоты сходится с регрессионной кривой, описывающей экспериментальные значения. Также мы выяснили, что АВЛ-дерево и красно-черное дерево с помощью самобалансировки лучше работают, так как даже для худшего случая (монотонно возрастающих ключей) оценка высоты будет логарифмической.

Код Вставка/удаление/поиск для бинарного дерева

```
class Node {
       this.right = null;
class BinarySearchTree {
           root.left = insertRec(root.left, key);
       } else if (key > root.key) {
           root.right = insertRec(root.right, key);
```

```
root.key = minValue(root.right);
```

```
public static void picTree bst(BinarySearchTree tree) {
   tree.printTree();
public static void main(String[] args) {
    BinarySearchTree bst = new BinarySearchTree();
    int[] keys = {2, 6, 3, 8, 5, 9, 10, 1, 14, 7};
   System.out.println("Search for " + key + ": " + (bst.search(key) ?
    int delkey = 9;
   System.out.println("Inorder traversal after deleting "+delkey+":");
```

# Вставка/удаление/поиск для АВЛ-дерева

```
import java.util.*;
public class AVL_tree {
    // Узел ABЛ-дерева
    static class AVLNode {
        int value, height;
        AVLNode left, right;

        AVLNode(int value) {
            this.value = value;
            this.height = 1; // Высота нового узла равна 1
        }
    }

    // Реализация АВЛ-дерева
    static class AVLTree {
        AVLNode root;
        int height(AVLNode node) {
            return node == null ? 0 : node.height;
    }
}
```

```
x.height = Math.max(height(x.left), height(x.right)) + 1;
int balance = getBalance(node);
    return rotateLeft(node);
```

```
root.right = delete(root.right, value);
root.right;
                    AVLNode temp = minValueNode(root.right);
                    root.right = delete(root.right, temp.value);
            if (root == null) return root;
            int balance = getBalance(root);
            if (balance < -1 && getBalance(root.right) <= 0) {</pre>
                return rotateLeft(root);
```

```
AVLNode minValueNode (AVLNode node) {
        private void printTree(AVLNode node, String indent, boolean last) {
node.value);
    public static void main(String[] args) {
        AVLTree tree = new AVLTree();
        for (int k : keys) {
        System.out.println("\nПоиск элемента 10: " + tree.search(10));
        tree.delete(8);
```

#### Вставка/удаление/поиск для красно-черного дерева

```
import java.util.*;
public class RandB tree {
    static class RedBlackTree {
                 this.value = value;
                root.left = bstInsert(root.left, newNode);
                 root.left.parent = root;
                 root.right = bstInsert(root.right, newNode);
        private void fixViolations(Node newNode) {
                 Node grandparent = parent.parent;
                 if (parent == grandparent.left) {
                     Node uncle = grandparent.right;
                         grandparent.isRed = true;
                         parent.isRed = false;
                         newNode = grandparent;
                         if (newNode == parent.right) {
                             parent = newNode.parent;
                         rotateRight(grandparent);
                         boolean temp = parent.isRed;
parent.isRed = grandparent.isRed;
                         grandparent.isRed = temp;
```

```
newNode = parent;
            Node uncle = grandparent.left;
                grandparent.isRed = true;
                parent.isRed = false;
                newNode = grandparent;
                if (newNode == parent.left) {
                    rotateRight(parent);
                    newNode = parent;
                    parent = newNode.parent;
                rotateLeft(grandparent);
                boolean temp = parent.isRed;
                parent.isRed = grandparent.isRed;
                grandparent.isRed = temp;
private void rotateLeft(Node node) {
   node.left = temp.right;
    temp.parent = node.parent;
   temp.right = node;
   node.parent = temp;
```

```
String nodeInfo = node.isRed ? "[R]" + node.value : "[B]" +
node.value;
nodeInfo);
        public void delete(int value) {
            Node nodeToDelete = findNode(root, value);
                deleteNode(nodeToDelete);
            if (value < root.value) return findNode(root.left, value);</pre>
            return findNode(root.right, value);
            Node child, parent;
                if (child != null) child.parent = parent;
                else if (node == parent.left) parent.left = child;
                else parent.right = child;
```

```
private Node minValueNode(Node node) {
       private void fixDeletion(Node node, Node parent) {
                if (node == parent.left) {
                        rotateLeft(parent);
                        sibling = parent.right;
                        parent = node.parent;
                        if (sibling.right == null || !sibling.right.isRed) {
                            if (sibling.left != null) sibling.left.isRed =
false;
                            sibling.isRed = true;
                            rotateRight(sibling);
                        parent.isRed = false;
                        rotateLeft(parent);
                        rotateRight(parent);
                        node = parent;
                        parent = node.parent;
false;
                            rotateLeft(sibling);
                            sibling = parent.left;
                        sibling.isRed = parent.isRed;
                        parent.isRed = false;
```

```
if (sibling.left != null) sibling.left.isRed = false;
              rbTree.insert(i);
    System.out.println("\nКрасно-черное дерево:");
    tree.printTree();
public static void main(String[] args) {
    grafik RandB();
    int[] keys = {2, 6, 3, 8, 5, 9, 10, 1, 14, 7};
    picTree RB(tree);
    System.out.println("Дерево после вставки:");
    System.out.println("\nПоиск элемента 1: " + tree.search(1));
System.out.println("Поиск элемента 100: " + tree.search(100));
    System.out.println("\пДерево после удаления 6:");
```

# Обходы для бинарного дерева

```
import java.util.ArrayList;
import java.util.LinkedList;
```

```
import java.util.List;
import java.util.Queue;
public class orders bin {
    static void preOrder(Node node, List<Integer> result) {
    static void inOrder(Node node, List<Integer> result) {
        result.add(node.key);
       result.add(node.key);
        Queue<Node> queue = new LinkedList<>();
        while (!queue.isEmpty()) {
    public static void main(String[] args) {
        BinarySearchTree tree = new BinarySearchTree();
        for (int k : keys) {
            tree.insert(k);
        BinarySearchTree.picTree bst(tree);
        List<Integer> preOrderResult = new ArrayList<>();
        List<Integer> inOrderResult = new ArrayList<>();
        List<Integer> postOrderResult = new ArrayList<>();
```

```
postOrder(tree.root, postOrderResult);

List<Integer> bfsResult = bfs(tree.root);

// Вывод результатов
System.out.println("Прямой обход: " + preOrderResult);
System.out.println("Симметричный обход: " + inOrderResult);
System.out.println("Обратный обход: " + postOrderResult);
System.out.println("Обход в ширину: " + bfsResult);
}
```

#### Обходы для АВЛ-дерева

```
public class orders AVL {
    static void preOrder(AVL_tree.AVLNode node, List<Integer> result) {
       result.add(node.value);
    static void inOrder(AVL tree.AVLNode node, List<Integer> result) {
        inOrder(node.left, result);
       result.add(node.value);
        inOrder(node.right, result);
    static void postOrder(AVL tree.AVLNode node, List<Integer> result) {
       result.add(node.value);
    static List<Integer> bfs(AVL_tree.AVLNode root) {
        while (!queue.isEmpty()) {
            result.add(current.value);
    public static void main(String[] args) {
```

```
int[] keys = {2, 6, 3, 8, 5, 9, 10, 1, 14, 7};
AVL_tree.AVLTree tree = new AVL_tree.AVLTree();
for (int k : keys) {
        tree.insert(k);
}
AVL_tree.picTree_AVL(tree);
// Обходы
        List<Integer> preOrderResult = new ArrayList<>();
        preOrder(tree.root, preOrderResult);

        List<Integer> inOrderResult = new ArrayList<>();
        inOrder(tree.root, inOrderResult);

        List<Integer> postOrderResult = new ArrayList<>();
        inOrder(tree.root, postOrderResult);

        List<Integer> postOrderResult = new ArrayList<>();
        postOrder(tree.root, postOrderResult);

        List<Integer> bfsResult = bfs(tree.root);

        // Bывод результатов
        System.out.println("Прямой обход: " + preOrderResult);
        System.out.println("Симметричный обход: " + inOrderResult);
        System.out.println("Обратный обход: " + postOrderResult);
        System.out.println("Обход в ширину: " + bfsResult);
}
```

## Обходы для красно-черного дерева

```
static List<Integer> bfs(RandB tree.RedBlackTree.Node root) {
    List<Integer> result = new ArrayList<>();
    Queue<RandB tree.RedBlackTree.Node> queue = new LinkedList<>();
    while (!queue.isEmpty()) {
         RandB tree.RedBlackTree.Node current = queue.poll();
         result.add(current.value);
public static void main(String[] args) {
    RandB tree.RedBlackTree tree = new RandB tree.RedBlackTree();
    RandB tree.picTree RB(tree);
    List<Integer> preOrderResult = new ArrayList<>();
    List<Integer> inOrderResult = new ArrayList<>();
    List<Integer> postOrderResult = new ArrayList<>();
    postOrder(tree.root, postOrderResult);
    List<Integer> bfsResult = bfs(tree.root);
    System.out.println("Симметричный обход: " + inOrderResult);
System.out.println("Обратный обход: " + postOrderResult);
System.out.println("Обход в ширину: " + bfsResult);
```

# Ссылка на GitHub

https://github.com/vanda3000/aisd\_laba2