An Algebraic Approach to Programming

1 + 1 = ?

1 + 1 + 0 + 0 + 0 = 1 + 1

1 * 1 * 1 * 2 = 2

$2^3 + 2^2 + 2^1$

Independent Value in Term

```
1 / (1 / 1)
1 / (1 / 2)
1 / (1 / 3)
1 / (1 / x)
```

Dependent Value in Term

$$1 + 2 + 3 + (4 + 5) = 15$$

 $1 + 2 + (3 + 4) + 5 = 15$
 $1 + (2 + 3) + 4 + 5 = 15$

Associative Across

1 + 1/(1/(1/(1/1))) = 1 + 1

Associative in Depth

$$1 + 1/(1/(1/1)) + 1$$

$$[1] + [[1]/[[1]/[[1]/[1]]] + [1]$$

$$[] \otimes [[] \otimes [[] \otimes []] \otimes []]$$

Infinite List of Trees of Trees

Infinitely Long

Where ⊗ is a binary operation This is a Monoid

Infinitely Deep

Where ⊗ is a binary operation
This is a Monad

$$[1] + [2] + [3] + [4] = [10]$$

Map & Fold(aka Reduce) over Each Term

х	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

$$f(x) = y$$

For every input there is only one unique output

Monoid

[1,2,3,4]

Monoid

$2^3 + 2^2 + 2^1 = 14$

Functional Programming can be think of as composing polynomial equation