Exercice 1

- $\text{I. } \operatorname{DF}(Tab_1,Tab_2)=2+2+0+0+1+1+1+0=7 \text{ (3 points : 2 points pour la réponse, 1)}$ point pour le détail de la somme).
- II. Le pire cas correspond aux tableaux dont tous les éléments sont égaux à un seul et même nombre, car les conditions des si sont toujours vérifiées. La valeur de $DF(Tab_1, Tab_2)$ est alors égale à

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

(4 points : 1 point pour la réponse, 1 point pour la justification, 2 points pour la

III. On peut par exemple prendre:

 $Tab_1 = \begin{bmatrix} 1 & 2 & 3 & 1 & 2 \end{bmatrix}$

La valeur de $\overline{\mathrm{DF}(Tab_1,Tab_2)}$ est alors égale à 0 (2 points : 1 point pour la réponse, 1 point pour la valeur).

Toutes les tailles de tableaux sont acceptées. Les tableaux choisis doivent vérifier $Tab_1[i] \neq Tab_2[j]$ pour $j \geq i$.

IV. a) On obtient la somme suivante (4 points : un point pour chacun des quatre termes) :

$$T(n) = (c_1 + c_6) + c_2(n+1) + \sum_{i=1}^{n} (c_3(n-i+2) + (c_4 + c_5)(n-i+1)). \tag{1}$$

On calcule la somme (3 points : un point pour chaque ligne) :

$$\sum_{i=1}^{n} \left(c_3(n-i+2) + (c_4+c_5)(n-i+1)\right) = \sum_{i=1}^{n} (\left(c_3+c_4+c_5\right)n + 2c_3 + c_4 + c_5) - \sum_{i=1}^{n} \left(c_3+c_4+c_5\right)i + 2c_3 + c_4 + c_5$$

$$= (c_3 + c_4 + c_5)n^2 + (2c_3 + c_4 + c_5)n - (c_3 + c_4 + c_5)\frac{n(n+1)}{2}$$

$$= \frac{c_3 + c_4 + c_5}{2}n^2 + \frac{3c_3 + c_4 + c_5}{2}n.$$

On remplace dans l'équation 1 et on simplifie (2 points) :

$$T(n) = \frac{c_3 + c_4 + c_5}{2} n^2 + \frac{2c_2 + 3c_3 + c_4 + c_5}{2} n + c_1 + c_2 + c_6$$

b) On doit supprimer c_5 et on obtient (2 points) :

$$T(n) = \frac{c_3 + c_4}{2}n^2 + \frac{2c_2 + 3c_3 + c_4}{2}n + c_1 + c_2 + c_6.$$

Exercice 4

a) $n^3 = \omega (100n)$

Soit une constante c>0 (1 point). On doit trouver une constante $n_0>0$ (1 point) telle que

pour tout entier
$$n \ge n_0, 0 \le c(100n) < n^3$$
, (2 points)

ce qui est équivalent à

pour tout entier $n \ge n_0, 0 \le 100c < n^2$.

Il suffit de prendre $n_0 = \sqrt{100c}$. (2 points)

b) $5n^3 \lg (10^n) = \Theta \left(\sqrt{1024^{\log_4(n)}} \frac{n^2}{\sqrt{n}} \right)$

On simplifie d'abord le plus possible ces deux fonctions :

$$5n^3 \lg (10^n) = 5n^3 n \lg (10) = 5n^4 \lg (10) \text{ (3 points)}$$

$$\sqrt{1024^{\log_4(n)}} \frac{n^2}{\sqrt{n}} = \sqrt{n^{\log_4(1024)}} \frac{n^2}{\sqrt{n}} = \sqrt{n^5} \frac{n^2}{\sqrt{n}} = \sqrt{n} n^2 \frac{n^2}{\sqrt{n}} = n^4 \text{ (3 points)}$$

On a donc $5n^3\lg\left(10^n\right)=5\lg\left(10\right)\sqrt{1024^{\log_4(n)}}\ \frac{n^2}{\sqrt{n}}$ pour tout entier $n\geq 1$.

On peut donc prendre $c_1=c_2=5\lg(10)$ et $n_0=1$ (2 points). On a alors bien pour tout $n\geq n_0$:

$$c_1 \sqrt{1024^{\log_4(n)}} \ \frac{n^2}{\sqrt{n}} \leq 5n^3 \lg \left(10^n\right) \leq c_2 \sqrt{1024^{\log_4(n)}} \ \frac{n^2}{\sqrt{n}}. \tag{1 point}$$

Toutes les constantes $0 < c_1 \le 5 \lg(10)$ et $c_2 \ge 5 \lg(10)$ sont acceptées.

- a) T(3) = 6 * 18 9 * 3 = 81 T(4) = 6 * 81 9 * 18 = 324 T(5) = 6 * 324 9 * 81 = 1215(3 points : 1 point par calcul)
- b) Initialisation :

Pour n = 1: $T(1) = 3 = 1 * 3^1$. (1 point)

Pour n = 2: $T(2) = 18 = 2 * 3^2$. (1 point)

 $\textbf{R\'{e}currence}: \text{ on suppose } T(n-1) = (n-1)3^{n-1} \text{ et } T(n-2) = (n-2)3^{n-2} \text{ pour } n \geq 2. \ \textbf{(2 points)}$

On a alors (1 point):

$$T(n) = 6T(n-1) - 9T(n-2)$$

 $T(n) = 6(n-1)3^{n-1} - 9(n-2)3^{n-2}$

On met 3^{n-2} en facteur et on réduit (3 $\mathbf{points})$:

 $T(n) = (6(n-1) * 3 - 9(n-2)) 3^{n-2}$

 $T(n) = (18n - 18 - 9n + 18)3^{n-2}$ $T(n) = (9n) 3^{n-2}$

 $T(n) = n3^n$

 ${\bf Conclusion}: \mbox{ Pour tout entier } n\geq 1, \, T(n)=n3^n. \,\, ({\bf 1} \ {\bf point})$

Exercice 2

$$\begin{split} &\sum_{i=33}^{n+2} \sum_{j=30}^{i+1} \sum_{k=1}^{j} 24i = \sum_{i=32}^{n+2} 24i \sum_{j=30}^{i+1} \sum_{k=15}^{j} 1 = \sum_{i=33}^{n+2} 24i \sum_{j=30}^{i+1} (j-14) = \sum_{i=33}^{n+2} 24i \sum_{l=16}^{i+13} l \\ &= \sum_{i=33}^{n+2} 24i \left(\sum_{l=1}^{i-13} l - \sum_{l=1}^{15} l \right) = \sum_{i=33}^{n+2} 24i \left(\frac{(i-13)(i-12)}{2} - \frac{(15)(16)}{2} \right) \\ &= 12 \sum_{i=33}^{n+2} \left(i^3 - 25i^2 - 84i \right) = 12 \sum_{i=1}^{n+2} \left(i^3 - 25i^2 - 84i \right) - 12 \sum_{i=1}^{32} \left(i^3 - 25i^2 - 84i \right) \\ &= 12 \left(\frac{(n+2)^2(n+3)^2}{4} - 25 \frac{(n+2)(n+3)(2(n+2)+1)}{6} - 84 \frac{(n+2)(n+3)}{2} \right) \\ &- 12 \left(\frac{(32)^2(33)^2}{4} - 25 \frac{(32)(33)(2(32)+1)}{6} - 84 \frac{(32)(33)}{2} \right) \\ &= 12 \left(\frac{1}{4} n^4 - \frac{35}{6} n^3 - \frac{381}{4} n^2 - \frac{2095}{6} n - 368 \right) + 12(51568) \\ &= 3n^4 - 70n^3 - 1143n^2 - 4190n + 614400 \end{split}$$

Barème : 12 points : enlever 1 point pour chaque étape qui manque de détails et 1 point pour chaque erreur de calcul. Différentes étapes peuvent mener à la bonne réponse mais il doit y avoir assez de détails. Ne pas pénaliser plusieurs fois pour une erreur qui se propage.

Exercice 3 On suppose que f(n) = O(g(n)). Il existe donc deux constantes strictement positives c et n_0 telles que

pour tout entier $n > n_0, 0 < f(n) < cq(n)$ (2 points)

On élève au carré puis on multiplie par 2 ces inégalités :

pour tout entier $n \ge n_0, 0 \le 2(f(n))^2 \le 2c^2(g(n))^2$ (3 points)

On ajoute $3(a(n))^2$ des deux côtés :

pour tout entier $n \ge n_0, 0 \le 2(f(n))^2 + 3(g(n))^2 \le (2c^2 + 3)(g(n))^2$ (2 points)

En posant $C = 2c^2 + 3 > 0$ (1 point pour la valeur et 1 point pour préciser que ce nombre est bien strictement positif), on a alors

pour tout entier $n \ge n_0$, $0 \le 2(f(n))^2 + 3(g(n))^2 \le C(g(n))^2$, (2 points)

ce qui démontre que $2(f(n))^2 + 3(g(n))^2 = O((g(n))^2)$. (1 point)

Exercice 6

- a) $T(n) = 27T\left(\lceil \frac{n}{9} \rceil\right) + 5n^3$
 - $a=27, b=9, \log_9(27)=\frac{3}{2}$. Or, $f(n)=5n^3=\Omega\left(n^3\right)$. Le cas 3 s'applique donc en prenant par exemple $\epsilon=\frac{3}{8}>0$, et on obtient ainsi $T(n)=\Theta(n^3)$.

On doit vérifier la deuxième hypothèse :

$$af\left(\frac{n}{b}\right) = 27 * 5\left(\frac{n}{9}\right)^3 = \frac{5n^3}{27}.$$

On peut donc prendre $c = \frac{1}{27} < 1$

- b) $T(n) = 2T(\lceil \frac{n}{4} \rceil) + \sqrt{n} \lg^3(n)$
 - $a=2,b=4,\log_4(2)=\frac{1}{2}.$ Donc $f(n)=\sqrt{n}\lg^3(n)$ croît plus vite que $n^{\log_b(a)}=\sqrt{n}$ mais pas polynomialement plus vite. On ne peut pas appliquer la méthode générale.
- c) $T(n) = 20T(\lceil \frac{n}{10} \rceil) + n \lg(n)$
 - $a=20,b=10,\log_{10}(20)\approx 1,3.$ Comme $f(n)=n\lg(n)=O\left(n^{1,2}\right)$ par exemple, le cas 1 s'applique en prenant par exemple $\epsilon = \log_{10}(20) - 1.2 > 0$, et on obtient ainsi $T(n) = \Theta\left(n^{\log_{10}(20)}\right)$

 $\underline{\text{Barème}}$: 7 points pour la question a), 4 points pour la question b), 5 points pour la question c), 1 point en moins au a) et au c) si ϵ n'est pas clairement identifié, 2 points en moins au a) si la deuxième hypothèse n'est pas vérifiée.

Exercice 7

a)

 $\frac{5n\lg\left(n^3\right)}{9\lg^3(n)+\sqrt{n}\lg(n)}=\Theta\left(\sqrt{n}\right)$

b) $9^{2 \log_3(n)} + 8^{3 \log_4(n)} = \Theta(n^4 \sqrt{n})$

Barème : 4 points par question, 1 point en moins pour chaque simplification manquante

Exercice 8 (5 points)

Le nombre de feuilles est égal à $n^{\log_b(a)} = 4096^{\log_b(5)} = 5^{\log_b(4096)} = 15625$.

Comme $15625 = 5^6$, on obtient $\log_b(4096) = 6$, d'où b = 4 puisque $4^6 = 4096$.

Barème : 3 points pour la bonne réponse et 2 points pour une justification

Remarque : On peut trouver b de manière plus formelle avec par exemple la formule

 $b = e^{\frac{\ln(4096) \ln(5)}{\ln(15625)}}$