Blatt 10

Aufgabe 10.1

(a)

MSS-E

Eingabe: m Maschinen, n Jobs mit Laufzeiten p_1, \ldots, p_n , Schranke b für die beste Lösung

zulässige Lösungen: 1 wenn es eine Zuteilung $s:\{1,\ldots,n\} \to \{1,\ldots,m\}$ der Jobs auf die Maschine gibt, wobei $\max_{1\leq i\leq m}\sum_{j:s(j)=i}p_j\leq b,\,0$ sonst.

(b)

Die Eingabe von Subset-Sum sei $a_1, \ldots, a_N \in \mathbb{N}$ und $b \in \mathbb{N}$.

Die Reduktionsabbildung generiert folgende Eingabe an MSS-E:

2 Maschinen, N+2 Jobs mit Laufzeiten $a_1,\ldots,a_N,2A-b,A+b$ und Schrank 2A wobei $A=\sum_{i=1}^N a_i$. Diese Abbildung ist trivialerweise polynomiell.

Beweis (Korrektheit)

Eingabe Lösung von Subset-Sum ⇒ Abbildung auf Lösung von MSS-E:

Wenn es eine Teilmenge der Zahlen a_1, \ldots, a_N mit Summenwert b gibt, so gibt es auch Menge an Jobs, die hintereinander b lange laufen.

- \Longrightarrow Wir können diese zusammen mit dem Job, der 2A-blange läuft, auf einer der beiden Maschinen laufen lassen.
- \implies Diese Maschine läuft 2A lang.
- \implies Da sich die Gesamtlänge aller Jobs zu 4A aufaddiert, muss die andere Maschine auch 2A lange laufen
- \implies Die Schranke wird nicht überschritten
- ⇒ Eingabe Lösung von MSS-E

Eingabe Lösung von MSS-E \implies Eingabe Lösung von Subset-Sum:

Keine der beiden Maschinen läuft länger als 2A

 \implies Beide Maschinen laufen 2A lang, da insg. alle Jobs 4A.

- \implies Der Job, welcher A+b lange läuft, läuft nicht auf der selben Maschine, wie der 2A-b-Job.
- \implies Es gibt Jobs, die Zusammen b lange laufen
- \implies Es gibt Zahlen, die sich zu b aufsummieren
- ⇒ Eingabe Lösung für Subset-Sum

Aufgabe 10.2

- 1. 3-Partition ist in NP, da die drei Mengen an Indizes als Verifikation für die Lösung angegeben werden können.
- 2. Als NP-Vollständige Sprache wird Partition gewählt.
- 3. Reduktionsabbildung: Man füge der Eingabe a_1, \ldots, a_N noch $\lfloor A/2 \rfloor$ hinzu, wobei $A = \sum_{i=1}^N a_i$.
- 4. Sowohl |w| als auch Aufsummieren der Zahlen liegt in $\mathcal{O}(N \cdot \log(\max_{i \in [1,N]} a_i))$. Daher ist der Algorithmus polynomiell.
- 5. Korrektheit
- a_1,\ldots,a_N hat Lösung bzgl. Partition \Longrightarrow Es gibt zwei Teilmengen, welche sich jeweils zu A/2 aufsummieren \Longrightarrow A ist gerade \Longrightarrow Diese beiden Teilmenge sowie die neu eingefügte Zahl $\lfloor A/2 \rfloor = A/2$ summieren sich alle zu A/2. \Longrightarrow Da die Gesamtsumme der Zahlen für 3-Partition $\frac{3}{2}$ ist, sind diese drei Teilmengen eine Lösung.

 $a_1,\ldots,a_N,\lfloor A/2\rfloor$ hat Lösung bzgl. 3-Partition $\Longrightarrow A$ ist gerade, da $a_1,\ldots,a_N=A$ und sich deshalb zwei Partitionen finden müssen, die den Wert A/2 haben. \Longrightarrow hat Lösung bzgl. Partition

Aufgabe 10.3