Exercises

Part 1: Section 3.7

1.1) Exercise 6

6.a) Impurity measures for binary classification problem:

Gini index for parent node:

$$Total count = 7 + 3 = 10$$

 $7 \in class 0, 3 \in class 1$

$$I_g = 1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2$$
$$= 1 - 0.49 - 0.09$$
$$= 0.42$$

Misclassification error rate:

$$= 1 - max \left[\frac{7}{10}, \frac{3}{10} \right]$$
$$= 1 - 0.7$$
$$= 0.3$$

6.b) **Gini index** of the child nodes:

Node C1: Total count = 3

 $3 \in class 0, 0 \in class 1$

$$I_g = 1 - \left(\frac{3}{3}\right)^2 - \left(\frac{0}{3}\right)^2$$
$$= 1 - 1 - 0$$

$$= 0$$

Node C2: Total count = 4 + 3 = 7

 $4 \in class 0, 3 \in class 1$

$$I_g = 1 - \left(\frac{4}{7}\right)^2 - \left(\frac{3}{7}\right)^2$$
$$= 1 - 0.32 - 0.18$$
$$= 0.5$$

Weighted Gini Index of child nodes $= \frac{3}{10} \cdot 0 + \frac{7}{10} \cdot 0.5 = 0.35$

Gini Measure =
$$0.42 - 0.35 = 0.07$$

Yes, I would consider this attribute test condition because of the significant drop in Gini Measure.

6.c) Misclassification of child nodes

Node C1:

$$= 1 - max \left[\frac{3}{3}, \frac{0}{3} \right]$$
$$= 1 - 1$$
$$= 0$$

Node C2:

$$= 1 - max \left[\frac{4}{7}, \frac{3}{7} \right]$$
$$= 0.43$$

Weighted Misclassification of child nodes $=\frac{3}{10}\cdot 0 + \frac{7}{10}\cdot 0.43 = 0.30$ Misclassification Measure =0.30-0.30=0

No, I would not consider this attribute test condition because there is no difference between weighted child node and parent node Misclassification error.

1.2) Exercise 1

The decision tree is already simplified.

- 1.2) Exercise 3
- 3.a) Total examples = 9, Positive = 4, Negative = 5

Therefore, P+ =
$$\frac{4}{9}$$
 and P- = $\frac{5}{9}$

$$\mathsf{Entropy} = -\tfrac{4}{9} \cdot \log_2\left(\tfrac{4}{9}\right) - \tfrac{5}{9} \cdot \log_2\left(\tfrac{5}{9}\right)$$

$$= 0.9911$$

3.b) Entropy for a1:

$$= \frac{4}{9} \left(-\frac{3}{4} \cdot \log_2 \frac{3}{4} - \frac{1}{4} \cdot \log_2 \frac{1}{4} \right) + \frac{5}{9} \left(-\frac{1}{5} \cdot \log_2 \frac{1}{5} - \frac{4}{5} \cdot \log_2 \frac{4}{5} \right)$$
$$= 0.7618$$

Information gain for a1 = 0.9911 - 0.7618 = 0.2292

Entropy for a2:

$$= \frac{5}{9} \left(-\frac{2}{5} \cdot \log_2 \frac{2}{5} - \frac{3}{5} \cdot \log_2 \frac{3}{5} \right) + \frac{4}{9} \left(-\frac{2}{4} \cdot \log_2 \frac{2}{4} - \frac{2}{4} \cdot \log_2 \frac{2}{4} \right)$$
$$= 0.9839$$

Information gain for a2 = 0.9911 - 0.9839 = 0.0072

3.c)

a3	Class	Split point	Entropy	Gain
1	+	2.0	0.8484	0.1427
3	-	3.5	0.9885	0.0026
4	+	4.5	0.9183	0.0728
5	-			
5	-	5.5	0.9839	0.0072
6	+	6.5	0.9728	0.0183
7	+			
7	-	7.5	0.8889	0.1022

- 3.d) According to information gain, a1 produces the best split, since it's the highest.
- 3.e) The best split a1 since its error rate is lower, $\left(\frac{2}{9} < \frac{4}{9}\right)$.
- 3.f) Gini Index for a1 is lower therefore a1 is better split.

Gini index for a1 = 0.3444

Gini index for a2 = 0.4889