МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки: «Прикладная математика и информатика» Магистерская программа: «Вычислительные методы и суперкомпьютерные технологии»

Образовательный курс «Глубокое обучение»

ОТЧЕТ

по лабораторной работе №5

Применение переноса обучения для решения задачи, поставленной во второй лабораторной работе

Выполнили:

студенты группы 381703-3м Гладкова Татьяна Крутоборежская Ирина Крюкова Полина Подчищаева Мария

Содержание

Цели	3
Задачи	
Решаемая задача	
Метрика качества решения задачи	6
Тренировочные и тестовые наборы данных	6
Тестовые конфигурации нейронных сетей	7
Результаты экспериментов	8
Выволы	8

Цели

Цель настоящей работы состоит в том, чтобы исследовать возможности переноса обучения для решения целевой задачи, выбранной изначально для выполнения практических работ.

Задачи

Выполнение лабораторной работы предполагает решение следующих задач:

- 1. Поиск исходной задачи (близкой по смыслу к целевой задаче) и поиск натренированной моделидля решения исходной задачи.
- 2. Выполнение трех типов экспериментов по переносу знаний (типы экспериментов описаны влекции).
- 3. Сбор результатов экспериментов.

Решаемая задача

Была выбрана задача бинарной классификации: «кошки» - «собаки». Были использованы картинки из наборов данных https://www.kaggle.com/tongpython/cat-and-dog и https://www.kaggle.com/c/dogs-vs-cats/data. Получившийся набор состоит из 35029 изображений.

Рис. 2 Пример изображения из класса «собаки»

С помощью скрипта на руthопданные были преобразованы к размеру 128×128. С помощью скрипта im2rec.py, который входит в библиотеку MXNet, изображения были сконвертированы в формат .rec.

Метрика качества решения задачи

В качестве метрики точности решения используется отношение угаданных животных ко всем втестовой выборке:

$$Accuracy = \frac{CorrectAnswersCount}{ImagesCount}$$

Тренировочные и тестовые наборы данных

В качестве тренировочной выборки используем тренировочную выборку первого и второго наборов данных, всего 16500 изображений котов и 16505 изображений собак. В качестве тестовой выборки используем тестовую выборку только из первого набора данных, т.к. во втором наборе данных тестовая выборка не разбита на изображения котов и собак. Всего в тестовой выборке 2042 изображения, котов и собак поровну.

Тестовые конфигурации нейронных сетей

В качестве исходной задачи была выбрана задача классификации изображений на основе базы данных ImageNet, которая содержит 1000 классов различных изображений. В качестве натренированной модели была выбрана нейронная сеть resnet-50, которая содержит 52 сверточных слоя, 49 слоев с функцией активации relu, 2 слоя с пространственным объединением и 1 полносвязный слой на 1000 нейронов с функцией активации softmax.

В данной лабораторной работе были проведены следующие эксперименты:

- 1. Использовались модели без изменений (за исключением того, что на последнем слое на выходе 2 нейрона вместо 1000), но с полным ее обучением. Веса инициализировались случайным образом.
- 2. Замена классификатора в исходной модели. Веса в нем инициализируются случайным образом. Оставшаяся часть модели используется как метод выделения признаков и данная часть модели не переобучается. В качестве нового классификатора был выбран классификатор с одним полносвязным скрытым слоем на 500 нейронов и функцией активации tanh и еще одним полносвязным слоем с функцией активации softmax.

3. Тонкая настройка параметров модели. В данном эксперименте обучается вся нейронная сеть. При этом классификатор заменяется на новый со случайными весами. А оставшаяся часть модели инициализируется весами из натренированной модели. В качестве нового классификатора был выбрал классификатор с одним полносвязным слоем на 10 нейронов с функцией активации softmax.

Результаты экспериментов

Эксперименты проводились при следующих параметрах обучения: batch_size = 8, optimizer = 'sgd', learningrate = 0.01.

Тестовая инфраструктура

Вычисления производились на машине со следующими характеристиками:

• OC: Windows 10

• Процессор: Intel(R) Core(TM) i7-6700k CPU @ 4.00GHz 4.01 GHz

• Установленная Память (ОЗУ): 16,0 ГБ

• Тип системы: 64 – разрядная операционная система, процессор х64

• Видеокарта: NVIDIA GeForce GTX 1070

Nº	Количество	Результат		
	эпох	Точность на тренировочном множестве	Точность на тестовом множестве	Время, с
1	5	0.74	0.81	1470,24
2	5	0.98	0.99	13,06
3	2	0.99	0.99	610,15

Выводы

Достигнута очень высокая точность, за исключением первого эксперимента, где обучалась сеть без изменений. В первом эксперименте случайная инициализация весов, а во втором и третьем использовалась сеть с предобученнными весами. Результаты во втором и третьем эксперименте получились примерно одинаковыми, но вторая сеть обучилась быстрее, так как обучались только последние 2 слоя сети.