MA080G Cryptography Assignment Block 3

Viktor Rosvall

May 14, 2019

Question 3

- c. Explain the discrete logarithm problem.
- d. Explain the operation of the ElGamal public-key cryptosystem

Answer 3

c. The discrete logarithm problem is potential solution to the problem of finding the private exponent d, such that $x \equiv y^d \pmod{n}$ in the RSA cryptosystem.

Definition: given x, y and a prime p such that:

$$y \equiv x^e \pmod{p}$$

find e.

This problem however is believed to be as hard as factorization and not yet proven to be NP-complete. The order or x should be as large as possible to avoid it being broken by a exhaustive search. So x should be chose as a primitive root mod p, which is an element of order $\lambda(p) = p - 1$

d. Let prime p = 23 and the primitive root g = 5.

The ElGamal cryptosystem works as: Bob chooses a prime p and a primitive root $q \mod p$. He then chooses a secret exponent $a \in$

 $\{1, ..., p-1\}$. Let a = 3 and compute

$$h = q^a \text{ MOD } p = 5^3 \text{ MOD } 23 = 23$$

This gives us the *public key* (p, g, h) = (23, 5, 10) and the private component a = 3.

Say Alice want's to send a plaintext message x to Bob, where $x \in \{1, ..., p-1\}$. Let x=6. Alice then choose a *secret* exponent $k \in \{1, ..., p-1\}$. Let k=8 and compute

$$y_1 = g^k \text{ MOD } p$$
 $y_2 = xh^k \text{ MOD } p$
= 58 MOD 23 = 6 * 108 MOD 23
= 16 = 12

where p, g, h is Bob's public key. This gives Alice the ciphertext pair $(y_1, y_2) = (16, 12)$.

Bob receives the message $(y_1, y_2) = (g^k, xh^k) \mod p$. Bob knows his secret number a such that $h = q^a \pmod{p}$, so he can thus compute

$$h^k \equiv (g^a)^k \equiv (g^k)^a \pmod{p}$$

Remember that Bob knows g^k from the ciphertext pair Alice sent. He also knows his secret a. He can thus easily compute

$$h^k \equiv (g^k)^a \pmod p = 16^3 \text{ MOD } 23 = 2$$

For Bob to extract x from xh^k he needs to compute the inverse of h^k , i.e., $(h^k)^{-1}$ with the EEA of h^k and p, which gives us

$$(h^k)^{-1} = \text{EEA}(2,23) = 12$$

Multiply the inverse of with xh^k

$$xh^k * (h^k)^{-1}$$
 MOD $p = x$ MOD $p = x$
$$x = 12 * 12$$
 MOD $23 = 6$
$$x$$
 MOD $23 = 6$

gives us x = 6.