Assessment Schedule – 2016

Calculus: Apply integration methods in solving problems (91579)

Evidence Statement

Q1	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$x^2 - \ln x + c$	Correct solution. Absolute value signs not required. c not required.		
(b)	$\frac{1}{3}\sec(3x)+c$	Correct solution. Accept 0.3, 0.33 c not required.		
(c)	$\int 3y dy = \int \cos x dx$ $\frac{3y^2}{2} = \sin x + c$ $x = \frac{\pi}{6}, y = 1 \Rightarrow \frac{3}{2} = \sin\left(\frac{\pi}{6}\right) + c$ $\frac{3}{2} = \frac{1}{2} + c$ $c = 1$ $\frac{3y^2}{2} = \sin x + 1$ $x = \frac{7\pi}{6} \Rightarrow \frac{3y^2}{2} = \sin\left(\frac{7\pi}{6}\right) + 1$ $= -0.5 + 1$ $= 0.5$ $3y^2 = 1$ $y^2 = \frac{1}{3}$ $y = \pm \sqrt{\frac{1}{3}} \text{ or } \pm \frac{1}{\sqrt{3}} \text{ or } \pm 0.577$	Correct integral. c not required.	Correct solution with correct integral. Accept positive solution only.	
(d)	Area = $\int_{0}^{1.2} (e^{2x} - e^{-3x}) dx$ = $\left[\frac{e^{2x}}{2} + \frac{e^{-3x}}{3} \right]_{0}^{1.2}$ = $\left(\frac{e^{2.4}}{2} + \frac{e^{-3.6}}{3} \right) - \left(\frac{1}{2} + \frac{1}{3} \right)$ = 4.69	Correct integral [inside square brackets]. c not required.	Correct solution with correct integral. Accept any correct numerical substitution (2nd last line)	

(e)	$\frac{\mathrm{d}v}{\mathrm{d}t} = -kvt$	Correct integral.		
	$\int \frac{1}{v} dv = -\int kt dy$ $\ln v = \frac{-kt^2}{2} + c$			
	$ \ln v = \frac{-kt^2}{2} + c $			
	$t = 0 \Rightarrow c = \ln 3000$ $t = 20$			
	$\ln 2400 = \frac{-k \times 20^2}{2} + \ln 3000$			
	$\ln 3000 - \ln 2400 = 200k$ $k = \frac{\ln 1.25}{200} = 0.00112$		Correct integral and correct	Correct integral and correct
	t = 96		value of k.	solution. Accept any
	$\ln v = \frac{-0.00112 \times 96^2}{2} + \ln 3000$			correct numerical substitution
	$= 2.8454$ $v = e^{2.8454} = 17.2 \text{ mL}$			

NØ	N1	N2	A3	A4	M5	М6	E7	E8
No response; no relevant evidence.	ONE answer demonstrating limited knowledge of integration techniques.	lu	2u	3u	lr	2r	It with minor error(s).	1t

Q2	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$5x^5 - \frac{10x^3}{3} + x + c$	Correct solution.		
(b)	7	Correct solution.		
(c)	$a(t) = 0.2t + 0.3t^{\frac{1}{2}}$ $v(t) = 0.1t^{2} + 0.2t^{\frac{3}{2}} + c$ $t = 4$	Correct integral.		
	$v(4) = 0.1 \times 16 + 0.2 \times 8 + c = 5$ $3.2 + c = 5$ $c = 1.8$			
	$v(t) = 0.1t^{2} + 0.2t^{\frac{3}{2}} + 1.8$ $s(t) = \frac{0.1t^{3}}{3} + 0.08t^{\frac{5}{2}} + 1.8t + k$ Distance travelled in first 9 seconds $s(9) = \frac{0.1 \times 9^{3}}{3} + 0.08 \times 9^{\frac{5}{2}} + 1.8 \times 9$ $= 59.94 \text{ m}$		Correct solution with correct integral. Accept 59.9, 60. 2nd last line acceptable.	
(d)	$\int_{m}^{2m} (2x - m)^{2} = \left[\frac{1}{6} (2x - m)^{3} + c \right]_{m}^{2m}$ $= \frac{1}{6} \left[(4m - m)^{3} - (2m - m)^{3} \right]$ $= \frac{1}{6} \left[(3m)^{3} - m^{3} \right]$ $= \frac{26m^{3}}{6}$	Correct integration [inside square brackets].		
	$= \frac{13m^3}{3}$ $\therefore \frac{13m^3}{3} = 117$ $m^3 = \frac{117 \times 3}{13} = 27$ $m = 3$		Correct solution with correct integration.	

		1		
(e)	$(k-1)x^2 = 9 - x^2$			
	$kx^2 = 9$			
	$kx^2 = 9$ $x^2 = \frac{9}{k}$			
	$x = \frac{\pm 3}{\sqrt{k}}$			
	Area = $2 \times \int_{0}^{\frac{3}{\sqrt{k}}} ((9-x^{2})-(k-1)x^{2})dx$			
	$=2\times\int_{0}^{\frac{3}{\sqrt{k}}}(9-kx^{2})dx$			Correct solution.
	$=2\times\left[9x-\frac{kx^3}{3}\right]_0^{\frac{3}{\sqrt{k}}}$		Correct integral. Accept	For E7: $\int_{0}^{\frac{3}{\sqrt{k}}} = 24$
	$=2\times\left(\frac{27}{\sqrt{k}}-\frac{9}{\sqrt{k}}\right)$	$\frac{kx^3}{3} - 9x$	$\left \frac{kx^3}{3} - 9x \right $	leads to
	$=\frac{36}{\sqrt{k}}$			$\frac{18}{\sqrt{k}} = 24$ $\sqrt{k} = \frac{3}{4}$ $k = \frac{9}{16}$
	$\therefore \frac{36}{\sqrt{k}} = 24$			$\sqrt{k} = \frac{1}{4}$ $k = \frac{9}{1}$
	$\sqrt{k} = 1.5$			
	k = 2.25			(E7)
			1	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE answer demonstrating limited knowledge of integration techniques.	1u	2u	3u	1r	2r	It with minor error(s).	1t

Q3	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$\int_{1}^{4} \left(4 + \frac{k}{x^{2}}\right) dx = \left[4x - \frac{k}{x}\right]_{1}^{4}$ $= \left(16 - \frac{k}{4}\right) - (4 - k)$ $= 12 + \frac{3k}{4}$ $12 + \frac{3k}{4} = 0$ $k = -16$	Correct solution with correct integration.		
(b)	7.8	Correct solution.		
(c)	$2-x^{2} = -x$ $x^{2} - x - 2 = 0$ $(x-2)(x+1) = 0$ $x = 2, -1$ Area = $\int_{-1}^{2} [(2-x^{2}) - (-x)] dx$ $= \int_{-1}^{2} (2-x^{2} + x) dx$ $= \left[2x - \frac{x^{3}}{3} + \frac{x^{2}}{2}\right]_{-1}^{2}$ $= \left(4 - \frac{8}{3} + 2\right) - \left(-2 + \frac{1}{3} + \frac{1}{2}\right)$ $= 4.5$	Correct integration [inside square brackets]. Both integrals completed separately is ok for <i>u</i> .	Correct solution with correct integration	
(d)	$\int \left(\frac{e^{3x} - x^2}{e^{3x} - x^3}\right) dx = \frac{1}{3} \int \left(\frac{3e^{3x} - 3x^2}{e^{3x} - x^3}\right) dx$ $= \frac{1}{3} \ln \left \left(e^{3x} - x^3\right) \right + c$		Correct solution. Absolute value signs not required. Brackets not required.	

(e)	$\sec x \cdot \frac{dy}{dx} = e^{y + \sin x}$ $\frac{1}{\cos x} \cdot \frac{dy}{dx} = e^{y} \cdot e^{\sin x}$ $\int \frac{1}{e^{y}} dy = \int \cos x \cdot e^{\sin x} dx$ $\int e^{-y} dy = \int \cos x \cdot e^{\sin x} dx$ $-e^{-y} = e^{\sin x} + c$ $x = 0, y = -1$ $-e^{1} = e^{0} + c$ $c = -e^{1} - 1$ $\therefore -e^{-y} = e^{\sin x} - e - 1$ $e^{-y} = e + 1 - e^{\sin x}$ $x = \frac{\pi}{2}$ $e^{-y} = e + 1 - e$ $e^{-y} = 1$ $y = 0$	Correct integration of 1 side.	Correct integration of both sides.	Correct solution with correct integration. Answer may not be exactly zero if the value of c is evaluated numerically. E.g. $c = -3.7183$ leads to $y = -0.0611$. Accept continuity.
-----	---	--------------------------------	------------------------------------	---

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE answer demonstrating limited knowledge of integration techniques.	1u	2u	3u	1r	2r	It with minor error(s).	1t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0–6	7–13	14–19	20–24