1 Régression linéaire simple

Postulats

 \mathbf{H}_1 Linéarité : $E[\varepsilon_i] = 0$

H₂ Homoscédasticité : $Var(\varepsilon_i) = \sigma^2$

H₃ Indépendance : $Cov(\varepsilon_i, \varepsilon_i) = 0$

H₄ Normalité : $\varepsilon_i \sim N(0, \sigma^2)$

Modèle

$$E[Y_i|x_i] = \beta_0 + \beta_1 x_i$$

$$Var(Y_i|x_i) = \sigma^2$$

$$Y_i|x_i \stackrel{\mathbf{H}_4}{\sim} N(\beta_0 + \beta_1 x_i, \sigma^2)$$

Estimation des paramètres

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} Y_{i} - \bar{Y} \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \bar{x} \sum_{i=1}^{n} x_{i}} = \frac{S_{XY}}{S_{XX}}$$

Estimation de σ^2

$$\hat{\sigma^2} = s^2 = \frac{\sum_{i=1}^n \hat{\varepsilon_i}^2}{n - p'} = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n - 2}$$

Propriété des estimateurs

$$E\left[\hat{\beta}_{1}\right] = \beta_{1} \quad , Var(\hat{\beta}_{1}) = \frac{\sigma^{2}}{S_{XX}}$$

$$\hat{\beta}_{1} \stackrel{H_{4}}{\sim} N(\beta_{1}, \frac{\sigma^{2}}{S_{XX}})$$

$$E\left[\hat{\beta}_{0}\right] = \beta_{0} \quad , Var(\hat{\beta}_{0}) = \sigma^{2}\left(\frac{1}{n} + \frac{\bar{X}^{2}}{S_{XX}}\right)$$

$$\hat{\beta}_{0} \stackrel{H_{4}}{\sim} N(\beta_{0}, \sigma^{2}\left(\frac{1}{n} + \frac{\bar{x}^{2}}{S_{XX}}\right)$$

$$Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) = -\frac{\bar{x}\sigma^{2}}{S_{XX}}$$

Tests d'hypothèse sur les paramètres

$$H_0: \hat{eta} = heta_0$$
 , $H_1: \hat{eta}
eq heta_0$
$$t_{obs} = \frac{\hat{eta} - heta_0}{\sqrt{Var(\hat{eta}}} \sim T_{n-2}$$
 On Rejette H_0 si $t_{obs} > |t_{n-2}(1 - rac{lpha}{2})|$

Intervalle de confiance

Pour la droite de régression ($E[Y_0|x_0]$)

Sachant que $E[Y_0|x_0] = \beta_0 + \beta_1 x_0$, on a l'IC suivant $\hat{Y_0} \pm t_{n-2} \left(\frac{\alpha}{2}\right) \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}$

Pour la prévision de Y_0

Sachant que
$$Y_0 = \beta_0 + \beta_1 x_0 + \varepsilon$$
, on a l'IC suivant
$$\hat{Y_0} \pm t_{n-2} \left(\frac{\alpha}{2}\right) \sqrt{s^2 \left(1 + \frac{1}{m} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}$$

Analyse de la variance (ANOVA)

Source	dl	SS	MS	F
Model	р	$\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 $ (SSR)	$SSR/dl_1 \ (MSR)$	MSR MSE
Residual error	n-p'	$\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{(SSE)}$	$SSE/dl_2 (MSE = s^2)$	
Total	n-1	$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 $ (SST)		

Test F de Fisher pour la validité globale de la régression

 H_0 : La régression n'est pas pertinente (i.e. $\beta_1 = 0$) H_1 : La régression est pertinente

$$F_{obs} = rac{MSR}{MSE} \sim F_{1,n-2}$$
 On rejette H_0 si $F_{obs} > F_{1,n-2}\left(rac{lpha}{2}
ight)$

Distribution d'un résidu ε

$$E\left[\hat{\epsilon_{i}}\right] = 0$$
 , $Var\left(\hat{\epsilon_{i}}\right) = \sigma^{2}(1 - h_{ii})$

où
$$h_{ii} = \frac{1}{n} + \frac{(\bar{x} - x_i)^2}{S_{XX}}$$
.

2 Régression linéaire multiple

Le modèle et ses propriétés

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p'}\boldsymbol{\beta}_{p'\times 1} + \boldsymbol{\varepsilon}_{n\times 1}$$

$$E[\mathbf{Y}] = \mathbf{X}\boldsymbol{\beta} \quad , Var(\mathbf{Y}) = \sigma^2 \mathbf{I}_{n\times n}$$

$$Y \stackrel{H_4}{\sim} N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_{n\times n})$$

Paramètres du modèle

Estimation et propriétés des paramètres

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$$

$$E \left[\hat{\boldsymbol{\beta}} \right] = \boldsymbol{\beta} \quad , Var(\mathbf{Y}) = \sigma^{2} (\mathbf{X}^{\top} \mathbf{X})^{-1}$$

$$\hat{\boldsymbol{\beta}} \stackrel{H_{4}}{\sim} N_{p}(\boldsymbol{\beta}, \sigma^{2} (\mathbf{X}^{\top} \mathbf{X})^{-1})$$

Intervalle de confiance sur les paramètres

$$\begin{split} \left[\hat{\pmb{\beta}} \pm t_{n-p'} (1 - \frac{\alpha}{2}) \sqrt{s^2 v_{jj}} \right] \\ \text{où } v_{jj} \text{ est l'élément } (i,i) \text{ de la matrice } (\mathbf{X}^\top \mathbf{X})^{-1}. \end{split}$$

Estimation de σ^2

$$\hat{\sigma}^2 = s^2 = \frac{\hat{\boldsymbol{\varepsilon}}^\top \hat{\boldsymbol{\varepsilon}}}{n - v'}$$

Test d'hypothèse sur un paramètre du modèle

On rejète
$$H_0: eta_j = 0$$
 si
$$|t_{obs,j}| = rac{eta_j \sqrt{n-p'}}{\sqrt{v_{jj} \hat{oldsymbol{arepsilon}}^{ op}}} > t_{n-p'} \left(1 - rac{lpha}{2}
ight)$$

Propriétés de la droite de régression

Aide-mémoire pour Modèles linéaires en actuariat (ACT-2003)

$$\hat{\mathbf{Y}} = \mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

$$= \mathbf{H}\mathbf{Y}$$
où $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ est la hat matrix.
On a aussi que
$$E\left[\hat{\mathbf{Y}}\right] = \mathbf{X}\boldsymbol{\beta} \quad , Var(\hat{\mathbf{Y}}) = \sigma^{2}\mathbf{H}$$

$$\hat{\mathbf{Y}} \stackrel{H_{4}}{\sim} N_{n}(\mathbf{X}\boldsymbol{\beta}, \sigma^{2}\mathbf{H})$$

Pour les résidus de la droite de régression, on a

$$E\left[\hat{\boldsymbol{\varepsilon}}\right] \stackrel{H_1}{=} 0 \quad , Var(\hat{\boldsymbol{\varepsilon}}) = \sigma^2(\mathbf{I}_{n \times n} - \mathbf{H})$$
$$\hat{\boldsymbol{\varepsilon}} \stackrel{H_4}{\sim} N_n(0, \sigma^2(\mathbf{I}_{n \times n} - \mathbf{H}))$$

Intervalle de confiance pour la prévision

Théorème de Gauss-Markov

I.C pour la prévision de la valeur moyenne $E[Y|X^*]$

I.C pour la valeur prédite $\hat{Y}|X^*$