Pathologies of Neural Models Make Interpretations Difficult

Shi Feng¹ Eric Wallace¹ Alvin Grissom II² Mohit Iyyer^{3,4} Pedro Rodriguez¹ Jordan Boyd-Graber¹

¹University of Maryland ²Ursinus College ³UMass Amherst ⁴Allen Institute for Artificial Intelligence

Abstract

One way to interpret a neural text classifier is to highlight the most important words in the input. Existing methods of word importance estimate reply largely on model confidence—either directly by removing each word from the input, or indirectly with input gradient. To understand the limitations of confidence-based interpretation, we use input reduction, which iteratively removes the least important word. Input reduction produces nonsensical examples that trigger the same model prediction with high confidence. We explain this type of pathological behavior from the perspective of uncertainty estimate and adversarial examples. To mitigate the model deficiencies, we take the reduced examples and impose an entropy regularization. Fine-tuned models become more interpretable under input reduction without accuracy loss on regular examples.

Pathological Examples

Neural models are known to have issues...

Input Reduction

How do we generate those examples?

Question									Confidence
	What	did	Tesla	spend	Astor's	money	on	?	0.78
	What	did	Tesla		Astor's	money	on	?	0.74
	What	did	Tesla		Astor's		on	?	0.76
	₩hat	did	Tesla		Astor's			?	0.80
		did	Tesla		Astor's			?	0.87
		did	Tesla		Astor's				0.82
		did			Astor's				0.89
		did							0.91

Leave-One-Out

Input reduction is not stupid...

Question	Confidence	Highlight
What did Tesla spend Astor's money on ?	0.78	
What did Tesla spend Astor's money on ?	0.67	What
What did Tesla spend Astor's money on ?	0.72	did
What did Tesla spend Astor's money on ?	0.66	Tesla
What did Tesla spend Astor's money on ?	0.74	spend
What did Tesla spend Astor's money on ?	0.76	Astor's
What did Tesla spend Astor's money on ?	0.48	money
What did Tesla spend Astor's money on ?	0.72	on
What did Tesla spend Astor's money on ?	0.73	?

On the Dataset Scale

This happens on the dataset scale...

Human Are Confused

The reduced examples are indeed nonsensical...

Dataset	Original	Reduced	vs. Random
SQuAD	80.58	31.72	53.70
SNLI-E	76.40	27.66	42.31
SNLI-N	55.40	52.66	50.64
SNLI-C	76.20	60.60	49.87
VQA	76.11	40.60	61.60

Heatmap Shifts

Importance measured individually ignores high-order correlation between words...

SQuAD

QuickBooks sponsored a "Small Business Big Game" contest, in which Death Wish Coffee had a 30-second commercial aired free of charge courtesy of QuickBooks. Death Wish Coffee beat out nine other contenders from across the United States for the free advertisement.

Mitigation

There is still hope...

$$\sum_{(\mathbf{x},y)} \log(f(y \mid \mathbf{x})) + \lambda \sum_{\tilde{\mathbf{x}} \in \tilde{\mathcal{X}}} \mathbb{H} \left(f(y \mid \tilde{\mathbf{x}}) \right)$$

Conclusions

- Confidence of a neural model trained with MLE is not reliable for interpretation
- Existing interpretation methods ignore high-order correlation between words