

ALGEBRA Chapter 16

FUNCIONES I

APLICACIONES

EL SUELDO DE UNA PERSONA DEPENDE DE LA CANTIDAD DE HORAS QUE LA PERSONA TRABAJE.

EL PAGO DE MENSUALIDAD DE LUZ DEPENDE DEL CONSUMO QUE REALICE EL CONSUMIDOR.

FUNCIONESI

PAR ORDENADO

Es un conjunto de los elementos a y b con un orden determinado, que se simboliza de la siguiente forma: (a;b).

Donde: a: Primera Componente

b: Segunda Componente

Observación:

1)
$$(a;b) \neq (b;a)$$

2)
$$(a;b) = (c;d) \Rightarrow a=c \ y \ b=d$$

II) PRODUCTO CARTESIANO

Dados dos conjuntos A y B no vacíos, se define el producto cartesiano como:

$$A \times B = \{ (a;b) \in A \times B / a \in A \times b \in B \}$$

EJEMPLO: Sea A={ 2;5} y B={3;4;6}

$$\rightarrow$$
 A x B = {(2;3), (2;4), (2;6) , (5;3),(5;4),(5;6)}

Observación:

1) $A \times B \neq B \times A$

2) $n(A \times B) = n(A) \cdot n(B)$

3)
$$A^2 = A \times A$$

III) RELACION BINARIA

<u></u>

Dados los conjuntos A y B no vacíos se denomina relación R de A en B a todo subconjunto del producto cartesiano A×B (R \subset A×B), es decir R = {(x, y) \in A×B / P(x, y)} donde P(x; y) es la regla de correspondencia

EJEMPLO:

IV) DOMINIO Y RANGO DE UNA RELACIÓN

Dominio: Es el conjunto de las primeras componentes de los pares ordenado.

Rango: Es el conjunto de las segundas componentes de los pares ordenado.

Sea la relación

$$R = \{ (1;4),(8;7),(3;4),(5;2),(8;9) \}$$

$$\Rightarrow$$
 Ran(R) = { 2;4;7;9}

V) **FUNCIONES**

Dados dos conjuntos A y B no vacíos, una función F es aquella correspondencia de $F: A \rightarrow B$ tal que para algún elemento x ϵ A le corresponde a lo más, un elemento y ϵ B.

¿F, G SON FUNCIONES?

TEOREMA Siendo F un conjunto de pares ordenados; subconjunto de unode determinado A×B donde ∃ dos pares (a, b) y (a, c) que le pertenecen. Este conjunto F será función solamente si aquellos pares son iguales; esto es

F es función \leftrightarrow b = c

<u>Ejemplo:</u>

Calcular a y b para que el conjunto de pares ordenados sea una función:

$$F = \{(2; a-3), (3; b-1), (5; 12), (2; 7), (3; 9-b)\}$$

$$a-3 = 7 \qquad b-1 = 9-b$$

$$a = 10 \qquad b = 5$$

Evaluación de una función

$$(x; y) \in F / y = F(x)$$

Ejemplo:

Dada la función
$$F = \{(1; 5), (2; 8), (3; 10), (4; 12)\}$$

Calcular F(1)+F(2)-F(4)

Resolucion:

$$F(1)=5$$
 $F(2)=8$ $F(4)=12$ $F(1)+F(2)-F(4)=5+8-12=1$

HELICO PRACTICE

PROBLEMA 1 Si el conjunto de pares ordenados:

$$F = \{(8; a), (a + 2; 2b), (1; 9), (8; 6 - a), (5; b + 7)\}$$

representa una función, calcule la suma de los elementos del rango.

Resolución

Como F es función:

$$(8; a) = (8; 6 - a)$$

$$\Rightarrow$$
 $a=6-a$

$$\Rightarrow a = 3$$

reemplazamos

$$F = \{(8;3),(5;2b),(1;9)(5;b+7)\}$$

F es función

$$(5; 2b) = (5; b + 7)$$

⇒ $2b=b+7$

⇒ $b=7$

Luego el rango es:

$$Ran(F) = {3;14;9}$$

$$\Sigma = 3+14+9=26$$

PROBLEMA 2 Sea la función de R en R

$$f = \{(2; 1), (4; 1), (b; 2), (4; b^2 - 3)\}$$

Determine el valor de f(2)+f(4)+b

Resolución

Como f es función

$$(4;1)=(4;b^2-3)$$

$$1 = b^2 - 3$$

$$4 = b^2$$

$$b = 2 \lor b = -2$$
 (no cumple)

Reemplazamos:

$$f = \{(2; 1), (4; 1), (-2; 2)\}$$
 calculamos

$$f(2)=1$$
; $f(4)=1$

$$\Rightarrow$$
 f(2)+f(4)+b =1+1-2
Rpta: 0

PROBLEMA 3 Halle el dominio de la función

$$\mathbf{F}(\mathbf{x}) = \sqrt{x-3} + \sqrt{7-x}$$

Resolución

$$x-3 \ge 0 \qquad \land \qquad 7-x \ge 0$$

$$x \ge 3 \qquad \land \qquad 7 \ge x$$

$$3 \le x \le 7$$

Rpta:
$$Dom(F) = [3; 7]$$

PROBLEMA 4 Halle el rango de la función

$$f(x) = 5 - 3x; x \in \{-1, 4\}$$

Resolución

Rpta:
$$Ran(F) = [-7; 8 >$$

PROBLEMA 5 Halle el rango de la función:

$$f(x) = \frac{2x+5}{x+1}$$
 si el Dom (f) = <3;5>

Resolución

$$f(x) = \frac{2x+2+3}{x+1}$$

$$f(x) = \frac{2(x+1)+3}{x+1}$$

$$f(x) = \frac{2(x+1)}{x+1} + \frac{3}{x+1}$$

$$f(x)=2+\frac{3}{x+1}$$

PROBLEMA 6 El pago mensual de un obrero es 8T, soles donde T coincide con el producto de valores enteros positivos de calcular el dominio de la

función:

$$g(x) = \sqrt{\frac{x^2 - 2x - 15}{1 - x}}$$

¿Cuánto es lo que percibe mensualmente dicho obrero?

Resolución

$$(\frac{x^2-2x-24}{2-x}\geq 0)por-1$$

$$\frac{x^2-2x-15}{x-1}\leq 0$$

$$\frac{(x-5)(x+3)}{x-1} \le 0 \quad x = 5$$
Puntos criticos: $x = -3$
 $x = 1$

$$Dom(g) = \langle -\infty; -3] \cup \langle 1; 5]$$

→ Valores enteros positivos= $\{2; 3; 4; 5\}$ T = (2)(3)(4)(5) = 120

el obrero percibe 8T = s/960

PROBLEMA 7

Francisco y Napoleón vive en un mismo pueblo de la selva, el cuadro representa las temperaturas (en grados Celsius) de su pueblo, registradas a las 12:00 horas de cada uno de los días de la primera semana de agosto, (mediante una función f que depende del número de día) f se expresa en la siguiente tabla adjunta:

Día	1	2	3	4	5	6	7
Temperatura (en °C)	a	30	b	a+c	35	32	3 <i>c</i>

en donde se considera que 1 representa el día lunes, 2 el día martes, 3 el día miércoles y así sucesivamente. Pero Napoleón le dice a Francisco que las temperaturas de los días lunes, miércoles y domingo fueron (3a - 48)°C, (105 - 4b)°C y (c+18)°C respectivamente, halle el promedio aritmético de las temperaturas registradas los días lunes, miércoles y jueves.

Resolución:

Lunes (dia 1)
$$a = 3a - 48$$

 $a = 24$

Miercoles (dia 3)
$$b = 105 - 4b$$

 $b = 21$

domingo (dia 7)
$$c = c + 18$$
$$c = 9$$

Jueves (dia 4)
$$\Rightarrow$$
 $a+c=33$

$$Promedio = \frac{24 + 21 + 33}{3}$$

 $Promedio = 26^{\circ}$