Probability and Statistics

Probability: Given Model, how likely is Data? \rightarrow Well-formed since these are Mathematical questions.

Statistics: Given Data, how likely is Model? \rightarrow Ill-formed since many Models can generate the same data!

There are two interpretations for what the Probability of an Event means:

- 1. **Frequentists**: *limiting frequency* of the Event
- 2. **Bayesians**: *subjective belief* that the Event occurs

Probability Space

Probability Space: a triple (Ω, F, P) consisting of:

- 1. Ω the **Sample Space**
- 2. $F \subseteq 2^{\Omega}$ a σ -algebra¹ on Ω i.e.
 - (a) $\Omega \in F$
 - (b) $E \in F \Rightarrow E^{\complement} \in F$
 - (c) $E_1, E_2, \dots \in F \Rightarrow \bigcup_{i=1}^{\infty} E_i \in F$
- 3. $P: F \mapsto [0, 1]$ a **Probability Measure** i.e.
 - (a) $P(E) \ge 0$ for $E \in F$
 - (b) $P(\Omega) = 1$
 - (c) $P\left(\bigsqcup_{i=1}^{\infty} E_i\right) \Rightarrow \sum_{i=1}^{\infty} P(E_i)$ for $E_i \in F$

Given **Events** $E_i, E \in F$, P also satisfies:

1. Upward and Downward continuity of *P*:

(a)
$$E_i \uparrow E \Rightarrow \lim_{n \to \infty} P(E_n) = P(E)$$

(b)
$$E_i \downarrow E \Rightarrow \lim_{n \to \infty} P(E_n) = P(E)$$

2. **Monotonicity** of P:

(a)
$$E_i \subseteq E_j \Rightarrow P(E_i) \leq P(E_j)$$

Conditional Probability

We can compute Probabilities of Events Conditioned on other Events.

Conditional Probability of event A on event B with P(B) > 0 is:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B)}$$

A set of events $\{A_i\}$ are **Mutually Independent** if, for any subset of $\{A_i\}_{i \in k}$:

$$P\left(\bigcap_{j\in k}A_j\right) = \prod_{j\in k}P(A_j)$$

Law of Total Probability: Given Events A and **Partition** $\{B_i\}$ (i.e. where $\bigsqcup_{i=1}^{\infty} B_i = \Omega$)

$$P(A) = \sum_{i=1}^{\infty} P(A \mid B_i) P(B_i)$$

Random Variables

A **Random Variable** is a \mathbb{B} -Measurable function $X: (\Omega, F) \mapsto (\mathbb{R}, \mathbb{B})^2$

- 1. For $A \in \mathbb{B}$ we can compute $P(X \in A)$
- 2. $P(X \in A) := P(X^{-1}(A)) = P(\{\omega \in \Omega : X(\omega) \in A\})$
- 3. $P(X^{-1}(\cdot)) := P_X(\cdot)$ which is called the **Push-Forward Measure** of P by X on $\mathbb R$
- 4. Hence X induces a new Probability Space $(\mathbb{R}, \mathbb{B}, P_X)$ from the original (Ω, F, P)

"world of possibilities"

"measurements"

Random Variables can be uniquely determined by their CDF: $F_X(t) := P_X\left((-\infty,t]\right) = P(X \le t)$

- 1. Right Continuous
- 2. Non-Negative
- 3. $\lim_{t \to \infty} F_X(t) = 1$, $\lim_{t \to -\infty} F_X(t) = 0$

Any function satisfying above properties is the CDF for some random variable.

Random Variables studied are usually either **Continuous** or **Discrete** (they can also be **Singular** or **Mixed**).

- 1. If F_X Absolutely Continuous then X is a Continuous RV.³
 - (a) **Absolutely Continuous**: F differentiable a.e. and $\exists f(x)$ s.t. $F_X(x) = \int_{-\infty}^x f(u) du$
 - (b) $\Rightarrow \frac{d}{dx}F_X(x) = f(x)$ wherever F is differentiable
 - (c) f is called the **PDF**
 - (d) f is unique a.e. (may not be everywhere!)
 - (e) If X also Non-Negative then **Hazard** of X is $\lambda(t) = \frac{f(t)}{1 F(t)}$

i.
$$1 - F(t) = \exp\left(-\int_0^t \lambda(x) dx\right)$$

- ii. $\lambda(t)$ interpreted as instantaneous survival rate at
- iii. $\lambda(t) = c \ \forall t \iff X \sim Exp(c)$
- 2. If $X(\Omega)$ is countable then X is Discrete.
 - (a) $f(x) := P(\{X = x\})$
 - (b) analogously, $F_X(t) = \sum_{i=0}^t f(i)^4$
 - (c) f is called the **PMF**

Random Vectors

Joint CDF for $\vec{X} = (X_1, X_2, ..., X_n)$ is $F(t_1, ..., t_n) = P(X_1 \le t_1, ..., X_n \le t_n)$

1. Marginal PDF of $\vec{X}_{1:p} = (X_1, \cdots X_p)$ is

$$f_{\vec{X}_{1:p}}\left(\vec{u}_{1:p}\right) = \int_{\vec{X}_{(p+1):n}} f_{\vec{X}}\left(\vec{u}_{1:p}, \vec{X}_{(p+1):n}\right) d\vec{X}_{(p+1):n}$$

2. Conditional PDF on $\vec{X}_{1:p}$ given $\vec{X}_{(p+1):n}$ is

$$f_{\vec{X}_{1:p}|\vec{X}_{(p+1):n}}\left(\vec{u}_{1:p}, \vec{u}_{(p+1):n}\right) = \frac{f_{\vec{X}}\left(\vec{u}_{1:p}, \vec{u}_{(p+1):n}\right)}{f_{\vec{X}_{(p+1):n}}\left(\vec{u}_{(p+1):n}\right)}$$

- 3. **kth Order Statistic** $X_{(k)}$ of \vec{X} is the kth smallest value
 - (a) $f_{X_{(1)}}(u) = \sum_{i=1}^{n} f_{X_i}(u) \prod_{j \neq i} (1 F_{X_j}(u))$
 - (b) $f_{X_{(n)}}(u) = \sum_{i=1}^{n} f_{X_i}(u) \prod_{j \neq i} F_{X_j}(u)$

Moments of a Random Variable

 $\mathbb{E}_X(X^r):=\mathbb{E}(X^r)$ is the textbfrth Moment of X under the distribution of X

1.
$$\mathbb{E}(X) = \int_0^\infty 1 - F_X(t) dt - \int_{-\infty}^0 F_X(t) dt$$

- 2. If X Continuous, $\mathbb{E}(X) = \int_{-\infty}^{\infty} t \cdot f_X(t) dt$
- 3. LOTUS: $\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(t) \cdot f_X(t) dt$
- 4. Moments need not exist! (i.e. $E(|X^r|) = \pm \infty$)

Can generate Moments using the MGF of X: $M_X(t) = \mathbb{E}\left(\exp(Xt)\right)$, if $\exists \epsilon > 0$ s.t. $\forall |t| < \epsilon$, $M_X(t) < \infty$

- 1. $\exists \epsilon > 0$ s.t. $\forall |t| < \epsilon, M_X(t) = M_Y(t) \Rightarrow X$ and Y have
 - 2. $\mathbb{E}(|X^r|) = \frac{\partial^r}{\partial^r t} M_X(t) \big|_{t=0}$, if M_X exists.
 - 3. If $\{X_i\}$ independent RVs, then $M_{\sum X_i}(t) = \prod M_{X_i}(t)$

Moments most commonly analyzed are:

1. **Mean** of $X: \mathbb{E}(X) := \mu_X$

same distribution

2. Variance of $X: Var(X) = \mathbb{E}((X - \mu_X)^2) = \sigma_X^2$

For random vectors \vec{X} we have:

1.
$$\mathbb{E}(\vec{X}) = [\mathbb{E}(X_1), \cdots, \mathbb{E}(X_n)] = \vec{\mu}$$

2.
$$Cov(\vec{X}) = \mathbb{E}[(\vec{X} - \vec{\mu})(\vec{X} - \vec{\mu})^{\mathsf{T}}] = \Sigma$$

If X and Y are Random Variables on the same Probability Space

- 1. Law of Total Expectation: If $\mathbb{E}(|X|) < \infty$ $\mathbb{E}(X) = \mathbb{E}_Y(\mathbb{E}_{X|Y}(X \mid Y))$
- 2. Law of Total Variance: If $Var(X) < \infty$ $Var(X) = \mathbb{E}(Var(X \mid Y)) + Var(\mathbb{E}(X \mid Y))$

Parametric Family

A **parametric model** is a family of distributions that is defined by a fixed finite number of parameters. Formally,

$$\mathcal{P}_{\Theta} = \{ p_{\theta}(\cdot; \theta) \mid \theta \in \Theta \}$$

- 1. $p_{\theta}(\cdot; \theta)$ is a possible density depending on the **Parameter** θ , and Θ is the **Parameter Space**
- 2. Most important Parametric family: Normal Distribution:
 - (a) $X \sim \mathcal{N}_p(\mu, \Sigma)$ with $\mu \in \mathbb{R}^p$, $\Sigma \in \mathbb{R}^{p \times p}$ Symmetric and Positive Definite iff
 - (b) $\forall a \in \mathbb{R}^p$ we have that $a^{\mathsf{T}}x \sim \mathcal{N}_p(a^{\mathsf{T}}\mu, a^{\mathsf{T}}\Sigma a)$
 - (c) If Σ non-singular, $f(x)=(2\pi)^{-\frac{p}{2}}|\Sigma|^{-\frac{1}{2}}\exp\left\{-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\right\}$
- 3. Another important family: Multinoulli Distribution
 - (a) X is a discrete RV over K choices. We encode X as a **one-hot encoding**: a random vector taking values in the unit bases in \mathbb{R}^K .
 - (b) i.e. $X(\Omega) = \{e_1, e_2, \dots, e_K\}$ where $e_j = \begin{pmatrix} 0 & \dots & 1 & \dots & 0 \end{pmatrix}^T \in \mathbb{R}^K$
 - (c) $\Theta = \Delta_K$ is the **Probability Simplex** on K choices, and is given by:

$$\Delta_K = \left\{ \pi \in \mathbb{R}^K \; ; \; \forall j \; \pi_j \ge 0 \text{ and } \sum_{j=1}^K \pi_j = 1 \right\}$$

- (d) $f(x) = p(x; \pi) = \prod_{j=1}^K \pi_j^{x_j}$ where $x_j \in \{0, 1\}$ is the j^{th} component of x
- 4. From this we get the: Multinomial Distribution
 - (a) $X = \sum_{i=1}^{n} X_i$ where each X_i are IID multinoulli with same parameter π .

(b)
$$X(\Omega)=$$

$$\left\{(n_1,\ldots,n_K)\;;\;\forall j\;n_j\in\mathbb{N}\;\mathrm{and}\;\sum_{j=1}^Kn_j=n\right\}$$

Statistical Decision Theory

Maximum Likelihood Estimation

Given some data x_1, \dots, x_n . We want to infer the model which generated the data.

Likelihood Function for some IID observations, coming from a Parametric model is denoted as $\mathcal{L}(\theta)$:

$$\mathcal{L}(\theta) = p(x_1, \dots, x_n; \theta) = \prod_{i=1}^{n} p(x_i; \theta)$$

Bayesian Statistics

The Bayesian approach is very simple philosophically: it treats all uncertain quantities as random variables.

$$p(\theta \mid X = x) = \frac{p(x \mid \theta)p(\theta)}{p(x)}$$

where,

 $p(\theta \mid X = x)$ is the posterior belief,

 $p(x \mid \theta)$ is the *likelihood* or the observation model,

 $p(\theta)$ is the *prior belief* and

p(x) is the *normalization* or "marginal likelihood"

Notes

- 1. For some Ω we cannot use 2^{Ω} as a σ -algebra since this may contain sets which do not satisfy all of the axioms. See [1] for an example.
- 2. Where $\mathbb B$ is the **Borel** σ -algebra: the smallest σ -algebra containing all the open intervals. This must contain all intervals of the form $(-\infty,x]$, and since X measurable \Rightarrow F_X guarenteed to exist.
- 3. Continuity of X as a function on Ω has nothing to do with its continuity as a Random Variable (which depends on the absolute continuity of its CDF) [2]
- 4. For Discrete RVs, taking P to be the **Counting Measure**

and $F=2^\Omega$, it can be shown that Lebesgue integrals are sums. Throughout this cheatsheet whenever we display integrals the reader can replace these with sums as needed.

References

- [1] J. S. Rosenthal, *A first look at rigorous probability theory.* World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, second ed., 2006.
- [2] pidgeot, "On clarifying the relationship between distribution functions in measure theory and probability theory." Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/976739 (version: 2014-10-16).