训练1 测试7
% data 分为训练样本集和测试样本集,其中训练样本集中每个标签包含一张图片,测试样本集包含剩下的图片
data_dir = '\data'; % Set this to the location of your data directory
[train_samples,test_samples] = sample_select(data_dir);
disp = 1;
% 制作滤波器组
fb = makeFilterbank();

训练

对样本集中的每个图片,求图片的滤波器组响应,返回样本集的响应

```
samples_res = applyFilterbank(train_samples,fb);

% 样本集的响应中,对每个像素进行 k-means 聚类,k=20,推荐使用 kmeans 函数
k = 20;
tic;
[samples_cluster,centers] = applyKmeans(samples_res,k);
t = toc;

% 求取样本集中每个图片的 texton 直方图
samples_hist = applyHistogram(samples_cluster);

if disp == 1
% 可视化聚类结果
```

 $visualize Samples (samples_cluster)$

%可视化样本集中每个图片的直方图

visualizeHistogram(samples_hist);

end

测试

对测试集中的每个图片,求滤波器组响应

```
test_samples_res = applyFilterbank(test_samples,fb);

% 对每个像素进行归类,推荐使用 pdi st2 函数

test_samples_cluster = predictClasses(test_samples_res,centers);

% 求取测试图片的 texton 直方图

test_samples_hist = applyHistogram(test_samples_cluster);

% 最近邻算法预测类别

test_samples_predict = predictLabels(test_samples_hist,samples_hist);
```

% 计算准确率

accuracy = evalPredict(test_samples_predict,test_samples);

Published with MATLAB® R2018b