Symbolic Music Similarity Presentation

Ali Bektas Paul Kröger

February 3, 2020

Überblick

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Darstellung von Noten

- Melodie: "singbare, in sich geschlossene Folge von Tönen" [?]
- Harmonie : "wohltönender Zusammenklang mehrerer Töne oder Akkorde" [?]
- Schlüssel: "dient in der Musiknotation dazu, im Notensystem festzulegen, welche Tonhöhe die fünf Notenlinien repräsentieren." [?]

Clefs_chord.png

Figure: Source: [?]

Darstellung von Noten

Im Grunde genommen , ermöglicht die herkömmliche Methode von Notendarstellung , Informationen über Rhytmus , Tonlage , Gefühl beim Spielen , vortragsbetreffliche Elemente zu übermitteln.

Figure: Source: IMLSP Archive

Darstellung von Noten

"Representing music as a weighted point set in a two-dimensional space has a tradition of many centuries. Since approximately the 10th century, one popular way of writing music has been to use a set of notes (points) in a two-dimensional space, with time and pitch as coordinates."[?]

Ein Graphbasierter Ansatz

"A Measure of Melodic Similarity Based on a Graph Representation of the Music Structure" [?] von Nicola Orio und Antonio Rodá.

Ein Graphbasierter Ansatz

- Der Inhalt wird schrittweise vereinfacht.
- Dazu sind die **Gewichte** der einzelnen Noten von Bedeutung.
 - die unterliegende harmonische Funktion (harmonic weight)
 - die metrische Position (metric weight)
 - die Differenz der Tonlagen zwischen dem Ton und dem Grundton(melodic weight)

Ein Graphbasierter Ansatz

Figure: Funktionen der Noten im Skala [?]

Ein auf Graphen beruhender Ansatz

- Der Inhalt wird schrittweise vereinfacht.
- Dazu sind die **Gewichte** der einzelnen Noten von Bedeutung.
 - die unterliegende harmonische Funktion (harmonic weight)
 - die metrische Position (metric weight)
 - die Differenz der Tonlagen zwischen dem Ton und dem Grundton(melodic weight)

Ein mathematischer Ansatz

"Algorithms for Computing Geometric Measures of Melodic Similarity" [?] von Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa, Yurai Nunez, David Rappaport, and Godfried Toussaint

Ein mathematischer Ansatz

- Melodien werden als Polygonalketten dargestellt
- Tonlänge wird durch
 Länge der waagerechten □
 Kanten modelliert
- Intervalle werden durch Länge der senkrechten Kanten modelliert

Insert Title

- Ein Wettbewerb und Plattform für Interessierte
- Es gibt verschiedene Kategorien
 - Real-time Audio to Score Alignment (a.k.a Score Following)
 - Discovery of Repeated Themes and Sections
 - Audio Melody Extraction
 - Symbolic Melodic Similarity
 - ...
- Gegeben ein Ziel , treten verschiedene Algorithmen gegeneinander zum Wettkampf an. Derjenige, der die besten Ergebnisse hat , gewinnt.
- Nun eine Frage:Wie kann man Algorithmen miteinander vergleichen?
- Es kommt nicht auf die Laufzeit oder Speicherbedarf an , sondern auf die Qualität der Ergebnisse.
- Welche Messmethoden gibt es , um die Qualität von solcen Ergebnissen zu beurteilen?

Figure: Source: [?]

Inhaltsübersicht

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Ground Truth

- Experten werden befragt, Stücke aus der RISM A/II Sammlung nach deren Ähnlichkeiten zu einer Anfrage zu beurteilen.
- Die Sammlungen sind groß deswegen sind einige Techniken zur Eliminierung unrelevanter Elementen vorzunehmen , wie z.B
 - Nach der Differenz zwischen dem tiefsten und höchsten Ton.
 - Nach dem Verhältnis der kürzesten Note zu der längsten.
 - usw.
- Nicht für alle Stücke werden dieselben Elimierungsverfahren vorgenommen. Die Aspekte, durch die sich ein Stück auszeichnet sind beizubehalten. Das ist wiederum für die Experten zu entscheiden.

Ground Truth I

Figure: Abbildung: Ergebnisse der Befragung [?]

Symbolic Music Similarity

MIREX : Algorithmen treten gegeneinander an

MIREX

LAverage Dynamic Recall

Inhaltsübersicht

- 1. Grundlegendes
- A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Beispiel: Average Dynamic Recall - ADR

Figure: Abbildung: ADR Berechnung [?]

Inhaltsübersicht

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

MIREX 2005

"Melody Retrieval using the Implication/Realization Model" [?]

Maarten Grachten, Josep
Lluis Arcos and Ramon Lopez de Mantaras

mirex_2005_one.pdf

- Ein auf Kognitivwissenschaften basierendes Modell : Implication/Realization Model.
- Dies besagt , dass man nach seinen Erfahrungen (sowohl kulturellen , als auch angeborenen) Erwartungen hat , wie ein Musikstück weitergeht.
- Wir beschäftigen uns hier mit den angeborenen Aspekten.
- I/R Modell besagt: Wir sind dazu geneigt, Elemente nach Konzepten zu gruppieren. Diese Konzepten sind denen der Gestalttheorie ähnlich
 - Proximity : Werden zwei Elemente gleich wahrgenommen?
 - Similarity : Haben zwei Elemente Ähnlichkeiten?

- PRD : kleines Intervall in eine Richtung impliziert noch ein Intervall in dieselbe Richtung
- PID : kleines Intervall impliziert ein kleines Intervall.
- Nach diesen Prinzipien ist ein Alphabet von Strukturen definiert.
- Mithilfe von Edit Distance wird die Ahnlichkeit festgestellt.

MIREX 2005 I

"Combining Multilevel and Multifeature Representation to Compute Melodic Similarity" [?] Nicola Orio

- N-gram
- Jede Wahl von N hat Vor- und Nachteile. Um diese zu beseitigen wird Multilevel Segmentation eingesetzt.

Symbolic Music Similarity

MIREX : Algorithmen treten gegeneinander an

MIREX 2005

"Melody Retrieval using the Implication/Realization Model" [?]

Maarten Grachten, Josep
Lluis Arcos and Ramon Lopez de Mantaras

"Melody Retrieval using the Implication/Realization Model" [?]

Maarten Grachten, Josep
Lluis Arcos and Ramon Lopez de Mantaras

"Melody Retrieval using the Implication/Realization Model" [?]

Maarten Grachten, Josep
Lluis Arcos and Ramon Lopez de Mantaras

Inhaltsübersicht

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

"MelodyShape at MIREX 2014 Symbolic Melodic Similarity" [?] von Julian Urbano

MIREX : Algorithmen treten gegeneinander an

Urbano MelodyShape

Urbano MelodyShape

- Töne werden als Punkt auf Pitch-Time plane dargestellt.
- Darstellung als Funktion durch Interpolation mithile von Splines.

MIREX : Algorithmen treten gegeneinander an

Urbano MelodyShape

Needlemann - Wunsch Algorithmus

ShapeH

Insertion :

$$s(-,n)=-(1-f(n))$$

■ Deletion:

$$s(n,-)=-(1-f(n))$$

Match:

$$s(n,n)=1-f(n)$$

Time

- Insertion : $s(-, n) = -diff_p(n, \Theta(n)) \lambda k_t * diff_t(n, \Theta(n))$
- Deletion: $s(n, -) = -diff_p(n, \Theta(n)) \lambda k_t * diff_t(n, \Theta(n))$
- Match: $2\mu_p + 2\lambda k_t \mu_t = 2\mu_p (1 + k_t)$
- Substitution $s(n, m) = -diff_p(n, m) \lambda k_t * diff_t(n, m)$

Bibliographie I

- [1] Duden: Melodie: Rechtschreibung, Bedeutung, Definition, Herkunft https://www.duden.de/rechtschreibung/Melodie.
- [2] Duden: Harmonie: Rechtschreibung, Bedeutung, Definition, Herkunft https://www.duden.de/rechtschreibung/Harmonie.
- [3] "Notenschlüssel." Wikipedia, Wikimedia Foundation, 11 Dec. 2019, de.wikipedia.org/wiki/Notenschlüssel.
- [4] MIREX,Symbolic Melodic Similarity 2005,https://www.music-ir.org/mirex/wiki/2005:Symbolic_Melodic.
- [5] MIREX,Symbolic Melodic Similarity Results 2007, https://www.musicir.org/mirex/wiki/2007:Symbolic_Melodic_Similarity_Results.

Bibliographie II

- [6] Typke, Rainer. (2007). Music Retrieval based on Melodic Similarity.
- [7] Orio, N., and A. Rodá. 2009. "A Measure of Melodic Similarity Based on a Graph Representation of the Music Structure." In Proceedings of the International Conference for Music Information Retrieval, pp. 543–548.
- [8] Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa, Yurai Nunez, David Rappaport, and Godfried Toussaint, "Algorithms for Computing Geometric Measures of Melodic Similarity" Computer Music Journal, Vol.30, No. 3 (Autumn, 2006), pp. 67-76

Bibliographie III

- [9] Tonal Degrees [Online]. [Accessed 30 Jan 2020]. Available from: http://www.piano-play-it.com/musical-scales.html
- [10] J. Urbano. MelodyShape at MIREX 2014 Symbolic Melodic Similarity. Technical report, Music Information Retrieval Evaluation eXchange, 2014
- [11] Grachten, Maarten & Arcos, Josep Lluís & Mántaras, Ramon. (2020). Melody Retrieval using the Implication/Realization Model.
- [12] Orio, Nicola. "COMBINING MULTILEVEL AND MULTIFEATURE REPRESENTATION TO COMPUTE MELODIC SIMILARITY." (2005).