Name: Gonzalo Ortega Carpintero

Exercise 1

Proof. Let $f: X \to Y$ be a continuous map homotopic to an homotopy equivalence $g: X \to Y$, $f \simeq g$. As g is an homotopy equivalence, there exists $h: Y \to X$ such that $g \circ h \simeq \operatorname{id}_Y$ and $h \circ g \simeq \operatorname{id}_X$. Also, as $f \simeq g$, there exists an homotopy $H: X \times I \to Y$ such that

$$H(x,0) = f(x),$$

$$H(x,1) = g(x).$$

Therefore, we can define the homotopies $H_1: Y \times I \to X$ and $H_2: X \times I \to Y$ as

$$H_1(x,t) := h \circ H(x,t),$$
 $H_2(y,t) := H(h(x),t),$

where

$$H_1(x,0) = h \circ H(x,0) = h \circ f(x),$$
 $H_2(y,0) = H(h(y),0) = f(h(y)) = f \circ h(y),$ $H_1(x,1) = h \circ H(x,1) = h \circ g(x),$ $H_2(y,1) = H(h(y),1) = g(h(y)) = g \circ h(y).$

Hence, $h \circ f \simeq h \circ g \simeq \mathrm{id}_X$ and $f \circ h \simeq g \circ h \simeq \mathrm{id}_Y$, proving that f is also a homotopy equivalence. \square

Exercise 2

Proof. Let X be a topological space.

(a) \Rightarrow (b). Let X be contractible and let x_0 be a single point set, such as $X \simeq x_0$. Let Y be a topological space and $f \colon X \to Y$ a continuous function. Then there exists an homotopy $H \colon X \times I \to X$ such that

$$H(x,0) = id_X = x,$$

 $H(x,1) = x_0.$

Defining $H_*: X \times I \to Y$ as $H_*(x,t) = f \circ H(x,t)$,

$$H_*(x,0) = f \circ H(x,0) = f(x)$$

 $H_*(x,1) = f \circ H(x,1) = f(x_0).$

Hence, f is nullhomotopic.

(b) \Rightarrow (c) If for every topological space Y and every continuous function $f: X \to Y$ is nullhomotopic, in particular the $\mathrm{id}_X \colon X \to X$ is nullhomotopic and there exist an homotopy $H: X \times I \to X$ such that

$$H(x,0) = id_X = x,$$

 $H(x,1) = x_0.$

. If $g: Y \to X$ is continuous we can define $H_*: Y \times I \to X$ as $H_*(x,t) := H(f(x),t)$,

$$H_*(x,0) = H(g(x),0) = g(x)$$

 $H_*(x,1) = H(g(x),1) = x_0.$

Hence, g is nullhomotopic

(c) \Rightarrow (a). If for every topological space Y and every continuous function $g: Y \to X$ is nullhomotopic, in particular, $\mathrm{id}_X: X \to X$ is nullhomotopic. That is $\mathrm{id}_X \simeq x_0$ and X is contractible. \square

Exercise 3

Proof. Let $X = \{(x,y) \in \mathbb{R}^2 : x = t, \ y = t/n, \ t \in [0,1], n \in \mathbb{N}\} \cup \{(x,y) \in \mathbb{R}^2 : x = t, \ y = 0, \ t \in \mathbb{R}^2\}$ [0,1]. Define the homotopy $H: X \times \to X$ such that

$$H((x,y),t) := \begin{cases} (1-2t)(x,y), & \text{if } 0 \le t < \frac{1}{2}, \\ (2t-1,0), & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

Then, $H((x,y),0) = (x,y) = id_X$ and H((x,y),1) = (1,0). As H is continuous, the set $\{(1,0)\}$ is a deformation retract of X.

Suppose $\{(1,0)\}$ is a strong deformation retract of X, then for all $t \in [0,1]$, H((1,0),t) =H((1,0),0)=(1,0). Lets find a $t_0\in[0,1]$ that contradicts this. For every $n\in\mathbb{N}$, there exists a $t_n \in [0,1]$ such that $H((1,\frac{1}{n}),t_n)=(0,0)$, as if not, H would not be continuous. As $\{t_n\}_{n\geq 0}$ is a subset of the compact set [0,1], there exists a sub collection $\{t_{n_k}\}_{k\geq 0}$ such that when $k\to\infty$, $t_{n_k} \to t_0$ and $\frac{1}{t_{n_k}} \to 0$. Therefore

$$H((1,0),t_0) = \lim_{k \to \infty} H(t_{n_k}, t_{n_k}) = \lim_{k \to \infty} (0,0) = (0,0).$$

Exercise 7

Let X be a finite dimensional complex of dimension n. Then

$$X = X^n = \frac{X^{n-1} \sqcup_{\alpha} D_{\alpha}^n}{x \sim \phi_{\alpha}(x)}, \ \forall \alpha \in I, \ \forall x \in S_{\alpha}^{n-1},$$

is a topological space with the quotient topology, were ϕ_{α} is the gluing map. Thus, a n-cell e^n_{α} is open in X if the set $\{x \in X^{n-1} \sqcup_{\alpha} D^n_{\alpha} : [x] \in e^n_{\alpha}\}$ is open in $X^{n-1} \sqcup_{\alpha} D^n_{\alpha}$. But this set is equal to e^n_{α} , and e^n_{α} is open in $X^{n-1} \sqcup_{\alpha} D^n_{\alpha}$ as it is a copy of B^n , witch is open in D^n . some D_{α}^{n} . Therefore, e_{α}^{n} is open in X.

References

[1] Allen Hatcher, Algebraic Topology, Allen Hatcher 2001.