Minimizando Inversores com SAT

André Reis

Considere o AIG abaixo

Circuito correspondente ao AIG

Circuito com inversores

Padrão NAND

• Usa sinais a, nb e nx

Padrão NOR

• Usa sinais na, b e x

Sinais válidos

а	b	X	ok
0	0	0	Derruba
0	0	1	Derruba
0	1	0	Derruba
0	1	1	Ok, nor
1	0	0	Ok, nand
1	0	1	Derruba
1	1	0	Derruba
1	1	1	derruba

Sinais válidos

André Reis Transformations (0)

(na+b)*(nb+x)*(a+nx)*(na+x)*(a+nb)*(b+nx)

André Reis Transformations (1)

(na+nb)*(b+x)*(a+nx)*(na+x)*(a+b)*(nb+nx)

André Reis Transformations (2)

(a+b)*(nb+x)*(na+nx)*(a+x)*(na+nb)*(b+nx)

André Reis Transformations (3)

(a+nb)*(b+x)*(na+nx)*(a+x)*(na+b)*(nb+nx)

André Reis Transformations

(na+b)*(nb+x)*(a+nx)*(na+x)*(a+nb)*(b+nx)

(a+b)*(nb+x)*(na+nx)*(a+x)*(na+nb)*(b+nx)

(na+nb)*(b+x)*(a+nx)*(na+x)*(a+b)*(nb+nx)

(a+nb)*(b+x)*(na+nx)*(a+x)*(na+b)*(nb+nx)

Entradas primárias

- Entradas primárias do AIG definem a polaridade de um sinal
- O sinal de entrada deve ter polaridade positiva
- Isto requer cláusulas de um literal só, para fixar a polaridade

Saídas é confuso, mas esclareço

- Uma saida direta requer que o nodo gerador tenha a mesma polaridade da saida
- Uma saida negada requer que o nodo gerador apareça com a polaridade diferente da saida
- As saidas devem ter a polaridade positiva

Saídas é confuso, mas esclareço

- Uma saida direta requer que o nodo gerador tenha a mesma polaridade da saida
- Uma saida negada requer que o nodo gerador apareça com a polaridade diferente da saida
- As saidas devem ter a polaridade positiva

Saídas é confuso, mas esclareço

- Uma saida direta requer que o nodo gerador tenha a mesma polaridade da saida
- Uma saida negada requer que o nodo gerador apareça com a polaridade diferente da saida
- As saidas devem ter a polaridade positiva

- 1) Para o AIG abaixo:
- (1a) gere as clausulas de SAT para minimização de inversores.
- (1b) encontre um assinalamento que dê o numero mínimo de inversores
- (1c) desenhe o circuito correspondente

- 1) Para o AIG abaixo:
- (1a) gere as clausulas de SAT para minimização de inversores.

(a+b)*(nb+x)*(na+nx)*(a+x)*(na+nb)*(b+nx)*(a)*(b)*(x)

- 1) Para o AIG abaixo:
- (1b) encontre um assinalamento que dê o numero mínimo de inversores

```
(a+b)*(nb+x)*(na+nx)*(a+x)*(na+nb)*(b+nx)*(a)*(b)*(x)
a=1; (nb+x)*(na+nx)*(na+nb)*(b+nx)*(b)*(x)
b=1; (nb+x)*(na+nx)*(na+nb)*(x)
x=1; (na+nx)*(na+nb)
na=1; sat

Significado:
Os nomes assinalados =1 existem no circuito
a=1, b=1, x=1, na=1
```

- 1) Para o AIG abaixo:
- (1c) desenhe o circuito correspondente

Significado:

Os nomes assinalados =1 existem no circuito a=1, b=1, x=1, na=1

- 1) Para o AIG abaixo:
- (1c) desenhe o circuito correspondente

Significado:

Os nomes assinalados =1 existem no circuito a=1, b=1, x=1, na=1