UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

TAREA 2.

Análisis Funcional y Aplicaciones I. 525401.

Segundo Semestre 2006.

Caracterización del dual de ℓ^1 : $(\ell^1)' \equiv \ell^{\infty}$.

El objetivo de esta primera parte es probar que el dual de ℓ^1 es isomorfo a ℓ^{∞} . Para ello, considere la siguiente aplicación:

$$T: \quad \ell^{\infty} \quad \to \quad (\ell^{1})' \\ x \quad \mapsto \quad Tx = \varphi_{x}$$
 (1)

 $\text{con } \varphi_x \text{ definido por } <\varphi_x, y> = \varphi_x(y) = \sum_{k \in \mathbb{N}} x_k y_k \text{ para todo } y = (y_k)_{k \in \mathbb{N}} \in \ell^1, \text{ y } x = (x_k)_{k \in \mathbb{N}} \in \ell^\infty.$

- 1. Pruebe que T está bien definido, es lineal y continuo.
- 2. Pruebe que ||Tx|| = ||x|| y que T es inyectivo.
- 3. Para demostrar que T es sobreyectivo considere $\varphi \in (\ell^1)'$ y prosiga de la siguiente manera:
 - (a) Sea $w=(w_k)_{k\in\mathbb{N}}$ definido por $w_k=1/k,$ para todo $k\in\mathbb{N};$ pruebe que $w\in\ell^2.$
 - (b) Pruebe que la aplicación $f \in \ell^2 \mapsto \langle \varphi, wf \rangle$, con $wf = (f_k/k)_{k \in \mathbb{N}}$, es una aplicación lineal y continua en ℓ^2 .
 - (c) Usando el Teorema de representación de Riesz para la aplicación lineal continua en (b), pruebe que existe un $z \in \ell^2$ tal que

$$\langle \varphi, wf \rangle = (z, f) = \sum_{k \in \mathbb{N}} z_k f_k, \quad \forall f \in \ell^2.$$

(d) Defina $x = (x_k)_{k \in \mathbb{N}}$ con $x_k = kz_k$; luego tomando

$$f_k = \begin{cases} 1 & \text{si } z_k > 0 \text{ e } k \leqslant n \\ -1 & \text{si } z_k \leqslant 0 \text{ e } k \leqslant n \\ 0 & \text{si } k > n \end{cases} \in \ell^2,$$

pruebe usando la ecuación en (c) que $\sup_{k\leqslant n}|x_k|\leqslant \|\varphi\|_{(\ell^1)'}.$

- (e) Pasando al límite cuando $n \to \infty$ en (d) deduzca que existe $x \in \ell^{\infty}$ tal que $||x||_{\ell^{\infty}} \le ||\varphi||_{(\ell^1)'}$ y además $<\varphi, wf> = \sum_{k \in \mathbb{N}} x_k w_k f_k$, para todo $f \in \ell^2$.
- (f) Sea finalmente $y \in \ell^1$; escogiendo $f_k = y_k/w_k$ si $k \le n$, y $f_k = 0$ si k > n, y luego pasando al límite cuando $n \to \infty$, deduzca que $\varphi = \varphi_x = Tx$.

El dual de ℓ^{∞} no se identifica con ℓ^{1} : $\left(\ell^{1}\right)' \not\equiv \ell^{\infty}$.

Haciendo el razonamiento equivalente al de la primera parte de esta tarea, considere:

$$S: \quad \ell^1 \quad \to \quad (\ell^{\infty})'$$
$$y \quad \mapsto \quad Sy = \psi_y$$

1

con ψ_y definido por $\langle \psi_y, x \rangle = \psi_x(y) = \sum_{k \in \mathbb{N}} x_k y_k$ con $y = (y_k)_{k \in \mathbb{N}} \in \ell^1$, $y = (x_k)_{k \in \mathbb{N}} \in \ell^\infty$.

- 4. Verifique que S está bien definida, es lineal, continua, e inyectiva con ||Sy|| = ||y|| para todo $y \in \ell^1$, y luego concluya que que ℓ^1 es isomorfo a un subconjunto cerrado del dual de ℓ^{∞} (pero no necesariamente a ℓ^{∞} entero).
- 5. Para comprobar que hay elementos del dual de ℓ^{∞} que no tienen representante en ℓ^1 , considere el funcional lineal continuo de ℓ^{∞} en $\mathbb R$ definido como el límite gereneralizado de Banach (analizado en la Tarea 1). Pruebe que si este funcional tuviera un representante $y=(y_k)_{k\in\mathbb N}\in\ell^1$, entonces (mediante la aplicación a suceciones de ℓ^{∞} adecuadas) $y_k=0$, para cada $k\in\mathbb N$ lo que es un absurdo.

Otras particularidades de los espacios de dimensión infinita ℓ^1 , ℓ^2 y ℓ^∞ .

- 6. Pruebe que $c_0 = \left\{ x = (x_n)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \lim_n x_n = 0 \right\}$ no tiene suplementario topológico en ℓ^{∞} . Para ello siga los siguientes pasos:
 - (a) Suponga que c_0 admite un suplementario topológico, y deduzca que c_0 es entonces imagen de una proyección continua $P:\ell^\infty\to\ell^\infty$, y también el nucleo de T=Id-P; designando $\pi_n:\ell^\infty\to\mathbb{R}$ la proyección de la n-ésima coordenada $(i.e.\ \pi_n(x)=x_n)$, deduzca que c_0 es la intersección numerable de hiperplanos cerrados: $c_0=N(T)=\bigcap_{n\in\mathbb{N}}N\left(\pi_n\circ T\right)$.
 - (b) Pruebe que para cada $\lambda \in \mathbb{R}$, existe un conjunto infinito $N_{\lambda} \subset \mathbb{N}$ de modo que si $\lambda \neq \mu$ se tiene que $N_{\lambda} \cap N_{\mu}$ es un conjunto vacío, o a lo más finito: para ello considere una ordenación $(q_n)_{n \in \mathbb{N}}$ de los racionales y para cada λ elija una sucesión de racionales S_{λ} distintos que converja a λ ; tome $N_{\lambda} = \{n \in \mathbb{N} \mid q_n \in S_{\lambda}\}.$
 - (c) Sea x_{λ} la función característica de N_{λ} , pruebe que $x_{\lambda} \in \ell^{\infty} \setminus c_0$.
 - (d) Sea $T_n = \pi_n \circ T \in (\ell^{\infty})'$ definido en (a). Sea $A_k = \left\{\lambda \in \mathbb{R} \mid |T_n(x_{\lambda})| \geqslant \frac{1}{k}\right\}$. Pruebe que A_k es un conjunto finito.
 - (e) Deduzca de (d) que $A = \{\lambda \in \mathbb{R} \mid |T_n(x_\lambda)| \neq 0\} = \bigcup_{k \in \mathbb{N}} A_k$ es numerable, y por lo tanto $\mathbb{C}(N(T))$ en ℓ^{∞} también lo es.
 - (f) Deduzca que existe $\lambda \in \mathbb{R} \setminus A$ para el cual $x_{\lambda} \in N(T) \setminus c_0$ lo que contradice (a).
- 7. Sea $N = T(c_0) \subset (\ell^1)'$ con T definido en (1) y c_0 definido en "6.". Pruebe que $N^{\perp \perp} = (\ell^1)' \equiv \ell^{\infty}$, es decir $N^{\perp \perp} \neq \overline{N}$.
- 8. Sea $A: \ell^2 \to \ell^2$ definido por $Ax = \left(\frac{1}{n}x_n\right)_{n \in \mathbb{N}}$. Pruebe que $A = A^*$.; pruebe que A^* (resp. A) es inyectivo pero A (resp. A^*) no es sobreyectivo; pruebe que A y A^* son de imagenes densas no cerradas.
- 9. Diga en qué los resultados en 6., 7., 8., no se asemejan a lo que conoce en dimensión finita.

Fecha de Entrega : 27 de Septiembre de 2006. MSC/msc

(13-Septiembre-2006)