Formal definition of the modified LispKit grammar

```
G = (NT, T, R, S) where:
• NT = {Prog Bind X Exp ExpA E1 T T1 F Y OPA OPM OPP Seq_Exp Lst_Exp Seq_Var}
• T = {let letrec in end = and lambda if then else exp_const ( ) + - * / cons car cdr eq leq atom ,
  var}
• S \in NT, S = Prog
• R \in \wp(NT \times (NT \cup T \cup \{\epsilon\})) is identified by:
Prog ::= let Bind in Exp end | letrec Bind in Exp | \epsilon
Bind ::= var = Exp X
X::= and Bind \mid \epsilon
Exp ::= Prog | İambda (Seq_Var) Exp | ExpA | OPP (Seq_Exp) | if Exp then Exp else Exp
ExpA ::= T E_1
E_1 ::= OPA T E_1 | \epsilon
T ::= F T_1
T_1 ::= OPM F T_1 | \epsilon
F ::= var Y | exp_const | (ExpA)
Y ::= (Seq_Exp) \mid \varepsilon
OPA ::= + | -
OPM ::= * | /
OPP ::= cons | car | cdr | eq | leq | atom
Seq_Exp ::= Exp Seq_Exp | ε
Lst_Exp ::= , Seq_Exp \mid \epsilon
Seq_Var ::= var Seq_Var | ε
```

First and Follow for the modified LispKit grammar

rist and	FOITOM FOR THE MODIFIED LISPKIT	yi dililidi
Non Terminal	First Set	Follow Set
Prog	let letrec) end and then else , in
Bind	var	in
X	and ε	in
Ехр	lambda if let letrec cons car cdr eq leq atom var exp_const () end and then else , in
ExpA	var exp_const () end and then else , in
E1	+ - ε) end and then else , in
T	var exp_const (+ -) end and then else , in
T1	* / ε	+ -) end and then else , in
F	var exp_const (* / + -) end and then else , in
Υ	(ε	* / + -) end and then else , in
OPA	+ -	var exp_const (
OPM	* /	var exp_const (
0PP	cons car cdr eq leq atom	(
Seq_Exp	lambda if let letrec cons car cdr eq leq atom var exp_const (ϵ)
Lst_Exp	, ε)
Seq_Var	var ε)