Höhere Mathematik

Jil Zerndt, Lucien Perret January 2025

Rechnerarithmetik

Maschinenzahlen Eine maschinendarstellbare Zahl zur Basis B ist ein Element der Menge:

$$M = \{ x \in \mathbb{R} \mid x = \pm 0. m_1 m_2 m_3 \dots m_n \cdot B^{\pm e_1 e_2 \dots e_l} \} \cup \{0\}$$

- $m_1 \neq 0$ (Normalisierungsbedingung)
- $m_i, e_i \in \{0, 1, \dots, B-1\}$ für $i \neq 0$
- $B \in \mathbb{N}, B > 1$ (Basis)

Zahlenwert
$$\hat{\omega} = \sum_{i=1}^n m_i B^{\hat{e}-i}, \quad \text{mit} \quad \hat{e} = \sum_{i=1}^l e_i B^{l-i}$$

B = Basis, n = Mantissenlänge, l = Exponentenlänge $m_i = \text{Mantissenstelle}, e_i = \text{Exponentenstelle}$

Werteberechnung einer Maschinenzahl

- 1. Normalisierung überprüfen: $m_1 \neq 0$ (für $x \neq 0$)
 - Sonst: Mantisse verschieben und Exponent anpassen
- 2. Exponent berechnen: $\hat{e} = \sum_{i=1}^{l} e_i B^{l-i}$ Von links nach rechts: Stelle · Basis hochgestellt zur Position
 3. Wert berechnen: $\hat{\omega} = \sum_{i=1}^{n} m_i B^{\hat{e}-i}$ Mantissenstellen · Basis hochgestellt zu (Exponent Position)
- 4. Vorzeichen berücksichtigen

Werteberechnung Berechnung einer vierstelligen Zahl zur Basis 4:

$$\underbrace{0.3211}_{n=4} \cdot \underbrace{4^{12}}_{l=2} \qquad \text{Exponent: } \hat{e} = 1 \cdot 4^{1} + 2 \cdot 4^{0} = 6$$

$$\text{Wert: } \hat{\omega} = 3 \cdot 4^{5} + 2 \cdot 4^{4} + 1 \cdot 4^{3} + 1 \cdot 4^{2} = 3664$$

IEEE-754 Standard definiert zwei wichtige Gleitpunktformate:

Single Precision (32 Bit) Vorzeichen(V): 1 Bit Exponent(E): 8 Bit (Bias 127) Mantisse(M): 23 Bit + 1 hidden bit

Double Precision (64 Bit) Vorzeichen(V): 1 Bit Exponent(E): 11 Bit (Bias 1023) Mantisse(M): 52 Bit + 1 hidden bit

IEEE-754 Details

- Overflow: Zahlen $\notin [-x_{max}, x_{max}]$ führen zum Abbruch mit inf
- Underflow: Zahlen in $[-x_{min}, x_{min}]$ werden zu 0 gerundet

Darstellungsbereich Für jedes Gleitpunktsystem existieren:

- Grösste darstellbare Zahl: $x_{\text{max}} = (1 B^{-n}) \cdot B^{e_{\text{max}}}$
- Kleinste darstellbare positive Zahl: $x_{\min} = B^{e_{\min}-1}$

Maschinengenauigkeit analysieren

- 1. Anzahl Maschinenzahlen bestimmen: $2 \cdot (B-1) \cdot B^{n-1} \cdot (B^l-1)$
- 2. Darstellungsbereich bestimmen: x_{max}, x_{min} 3. Maschinengenauigkeit berechnen: $eps = \frac{B}{2}B^{-n}$

Maschinenzahlen analysieren Gegeben: 15-stellige Gleitpunktzahlen mit 5-stelligem Exponenten im Dualsystem.

- 1. Basis B = 2, n = 15, l = 5
- 2. Anzahl verschiedener Zahlen:

 - Pro Stelle: B-1=1 mögliche Ziffern Mantisse: $(B-1)B^{n-1}=2^{14}$ Kombinationen
 - Exponent: $B^l = 2^5 = 32$ Kombinationen
- Mit Vorzeichen: $2 \cdot 2^{14} \cdot 31 = 1015\,808$ Zahlen 3. Maschinengenauigkeit: $eps = \frac{2}{2}2^{-15} = 2^{-15} \approx 3.052 \cdot 10^{-5}$
- → kleineres eps bedeutet höhere Genauigkeit

Approximations- und Rundungsfehler -

Fehlerarten Sei \tilde{x} eine Näherung des exakten Wertes x:

Absoluter Fehler:

Relativer Fehler:

$$|\tilde{x} - x|$$

$$\left|\frac{\tilde{x}-x}{x}\right|$$
 bzw. $\frac{|\tilde{x}-x|}{|x|}$ für $x \neq 0$

Maschinengenauigkeit eps ist die kleinste positive Zahl, für die gilt:

Allgemein: eps := $\frac{B}{2} \cdot B^{-n}$

Dezimal: $eps_{10} := 5 \cdot 10^{-n}$

Sie begrenzt den maximalen relativen Rundungsfehler: $\left| \frac{rd(x) - x}{x} \right| \le \text{eps}$

Rundungseigenschaften Für alle $x \in \mathbb{R}$ mit $|x| > x_{\min}$ gilt:

Absoluter Fehler:

Relativer Fehler:

$$|rd(x) - x| \le \frac{B}{2} \cdot B^{e-n-1}$$

$$\left| \frac{rd(x) - x}{x} \right| \le \text{eps}$$

Fehlerfortpflanzung

Konditionierung Die Konditionszahl K beschreibt die relative Fehlervergrösserung bei Funktionsauswertungen:

$$K:=\frac{|f'(x)|\cdot|x|}{|f(x)|} \quad \begin{array}{ll} \bullet & K\leq 1: \ \text{gut konditioniert} \\ \bullet & K>1: \ \text{schlecht konditioniert} \\ \bullet & K\gg 1: \ \text{sehr schlecht konditioniert} \end{array}$$

Fehlerfortpflanzung Für *f* (differenzierbar) gilt näherungsweise:

Absoluter Fehler:

Relativer Fehler:

$$|f(\tilde{x}) - f(x)| \approx |f'(x)| \cdot |\tilde{x} - x|$$

$$\frac{|f(\tilde{x}) - f(x)|}{|f(x)|} \approx K \cdot \frac{|\tilde{x} - x|}{|x|}$$

$$\frac{|f(\tilde{x}) - f(x)|}{|f(x)|} \approx K \cdot \frac{|\tilde{x} - x|}{|x|}$$

Analyse der Fehlerfortpflanzung einer Funktion

- 1. Berechnen Sie f'(x) und die Konditionszahl K
- 2. Schätzen Sie den absoluten und den relativen Fehler ab
- 3. Beurteilen Sie die Konditionierung anhand von K

Konditionierung berechnen Für
$$f(x) = \sqrt{1+x^2}$$
 und $x_0 = 10^{-8}$:
1. $f'(x) = \frac{x}{\sqrt{1+x^2}}$, $K = \frac{|x \cdot x|}{|\sqrt{1+x^2} \cdot (1+x^2)|} = \frac{x^2}{(1+x^2)^{3/2}}$

- 2. Für $x_0 = 10^{-8}$:
 - $K(10^{-8}) \approx 10^{-16}$ (gut konditioniert)
 - Relativer Fehler wird um Faktor 10⁻¹⁶ verkleinert

Fehleranalyse Beispiel: Fehleranalyse von $f(x) = \sin(x)$

- 1. $f'(x) = \cos(x), K = \frac{|x\cos(x)|}{|\sin(x)|}$
- 2. Konditionierung:
 - Für $x \to 0$: $K \to 1$ (gut konditioniert)
 - Für $x \to \pi$: $K \to \infty$ (schlecht konditioniert)
 - Für x = 0: $\lim_{x \to 0} K = 1$ (gut konditioniert)
- 3. Der absolute Fehler wird nicht vergrössert, da $|\cos(x)| < 1$

Praktische Fehlerquellen der Numerik

Kritische Operationen häufigste Fehlerquellen:

- Auslöschung bei Subtraktion ähnlich großer Zahlen
- Überlauf (overflow) bei zu großen Zahlen • Unterlauf (underflow) bei zu kleinen Zahlen
- Verlust signifikanter Stellen durch Rundung

Vermeidung von Auslöschung

- 1. Identifizieren Sie Subtraktionen ähnlich großer Zahlen
- 2. Suchen Sie nach algebraischen Umformungen
- 3. Prüfen Sie alternative Berechnungswege
- 4. Verwenden Sie Taylorentwicklungen für kleine Werte
- Beispiele für bessere Formeln: • $\sqrt{1+x^2}-1 \to \frac{x^2}{\sqrt{1+x^2}+1}$
- $1 \cos(x) \to 2\sin^2(x/2)$
- $\ln(1+x) \to x \frac{x^2}{2}$ für kleine x

Numerische Lösung von Nullstellenproblemen

Nullstellensatz von Bolzano Sei $f:[a,b] \to \mathbb{R}$ stetig. Falls

$$f(a) \cdot f(b) < 0$$

dann existiert mindestens eine Nullstelle $\xi \in (a, b)$.

Nullstellenproblem systematisch lösen

- 1. Existenz prüfen:
 - Intervall [a, b] identifizieren
 - Vorzeichenwechsel prüfen: $f(a) \cdot f(b) < 0$
- Stetigkeit von f sicherstellen
- 2. Verfahren auswählen:
 - Fixpunktiteration: einfache Umformung x = F(x) möglich
 - Newton: f'(x) leicht berechenbar
- Sekantenverfahren: f'(x) schwer berechenbar
- 3. Konvergenz sicherstellen:
 - Fixpunktiteration: |F'(x)| < 1 im relevanten Bereich
 - Newton: $\left|\frac{f(x)f''(x)}{[f'(x)]^2}\right| < 1$ im relevanten Bereich
 - Sekanten: Konvergenzgeschwindigkeit beachten
- 4. Geeigneten Startwert wählen:
 - Fixpunkt: x_0 im Intervall und nahe Fixpunkt (|f'(x)| < 1)
 - Newton: $f'(x_0) \neq 0$
 - Bei mehrfachen Nullstellen: Start zwischen Wendepunkt und Nullstelle
 - Für Polynome: Startwerte zwischen -1 und 1 oft geeignet
 - Sekanten: Zwei Startwerte x_0 und x_1 : $f(x_0) \neq f(x_1)$
 - Idealerweise auf verschiedenen Seiten der Nullstelle
- 5. Abbruchkriterien festlegen:
 - Funktionswert: $|f(x_n)| < \epsilon_1$
 - Iterationsschritte: $|x_{n+1} x_n| < \epsilon_2$
 - Maximale Iterationszahl

Verfahrensauswahl

Finden Sie die positive Nullstelle von $f(x) = x^3 - 2x - 5$

- 1. Existenz:
 - f(2) = -1 < 0 und f(3) = 16 > 0
- \Rightarrow Nullstelle in [2, 3]
- 2. Verfahrenswahl:
 - $f'(x) = 3x^2 2$ leicht berechenbar
 - ⇒ Newton-Verfahren geeignet
- 3. Konvergenzcheck:
 - f'(x) > 0 für x > 0.82
 - f''(x) = 6x monoton
 - ⇒ Newton-Verfahren konvergiert

Fixpunktgleichung ist eine Gleichung der Form: F(x) = xDie Lösungen \bar{x} , für die $F(\bar{x}) = \bar{x}$ erfüllt ist, heissen Fixpunkte.

Grundprinzip der Fixpunktiteration sei $F:[a,b] \to \mathbb{R}$ mit $x_0 \in [a,b]$

Die rekursive Folge $x_{n+1} \equiv F(x_n), \quad n = 0, 1, 2, \dots$

heisst Fixpunktiteration von F zum Startwert x_0 .

Konvergenzverhalten

Sei $F:[a,b]\to\mathbb{R}$ mit stetiger Ableitung F' und $\bar{x}\in[a,b]$ ein Fixpunkt von F. Dann gilt für die Fixpunktiteration $x_{n+1} = F(x_n)$:

Anziehender Fixpunkt: $|F'(\bar{x})| < 1$

: Abstossender Fixpunkt:
$$|F'(\bar{x})| > 1$$

$$x_n$$
 konvergiert gegen \bar{x} , falls x_0 nahe genug bei \bar{x}

 x_n konvergiert für keinen Startwert $x_0 \neq \bar{x}$

Banachscher Fixpunktsatz $F:[a,b] \rightarrow [a,b]$ und \exists Konstante α :

- $0 < \alpha < 1$ (Lipschitz-Konstante)
- $|F(x) F(y)| \le \alpha |x y|$ für alle $x, y \in [a, b]$

Dann gilt:

Fehlerabschätzungen:

•
$$F$$
 hat genau einen Fixpunkt \bar{x} in $[a, b]$

a-priori:
$$|x_n - \bar{x}| \le \frac{\alpha^n}{1-\alpha} \cdot |x_1 - x_0|$$

- Die Fixpunktiterati- \bar{x} für alle $x_0 \in [a, b]$
 - on konvergiert gegen **a-posteriori:** $|x_n \bar{x}| \le \frac{\alpha}{1-\alpha} \cdot |x_n x_{n-1}|$

Konvergenznachweis für Fixpunktiteration

- 1. Bringe die Gleichung in Fixpunktform: $f(x) = 0 \Rightarrow x = F(x)$
- Form mit kleinstem |F'(x)| wählen
- 2. Prüfe, ob F das Intervall [a, b] in sich abbildet:
 - Wähle geeignetes Intervall ([a, b] F(a) > a und F(b) < b)
- 3. Bestimme die Lipschitz-Konstante α : \rightarrow Berechne F'(x)
 - Finde $\alpha = \max_{x \in [a,b]} |F'(x)|$ und prüfe $\alpha < 1$
- 4. Fehlerabschätzung:
 - A-priori: $|x_n \bar{x}| \leq \frac{\alpha^n}{1-\alpha} |x_1 x_0|$
- A-phon: $|x_n \bar{x}| \leq \frac{1-\alpha+1}{1-\alpha}|x_n x_{n-1}|$ A-posteriori: $|x_n \bar{x}| \leq \frac{\alpha}{1-\alpha}|x_n x_{n-1}|$ 4. Berechnen Sie die nötigen
 Iterationen für Genauigkeit tol: $n \geq \frac{\ln(\frac{tol\cdot(1-\alpha)}{|x_1-x_0|})}{\ln \alpha}$

Fixpunktiteration Nullstellen von $f(x) = e^x - x - 2$

Umformung in Fixpunktform: $x = \ln(x+2)$, also $F(x) = \ln(x+2)$

- 1. $F'(x) = \frac{1}{x+2}$ monoton fallend
- 2. Für I = [1,2]: F(1) = 1.099 > 1, F(2) = 1.386 < 23. $\alpha = \max_{x \in [1,2]} |\frac{1}{x+2}| = \frac{1}{3} < 1$
- 4. Konvergenz für Startwerte in [1, 2] gesichert
- 5. Für Genauigkeit 10^{-6} benötigt: n > 12 Iterationen

Fixpunktiteration Bestimmen Sie $\sqrt{3}$ mittels Fixpunktiteration.

- 1. Umformung: $x^2 = 3 \Rightarrow x = \frac{x^2 + 3}{2x} =: F(x)$
- 2. Konvergenznachweis für [1, 2]: $F'(x) = \frac{x^2-3}{2x^2}$
- 3. $F([1,2]) \subseteq [1,2]$ und $|F'(x)| \le \alpha = 0.25 < 1$ für $x \in [1,2]$
- 4. Für Genauigkeit 10^{-6} :

 - $|x_1 x_0| = |1.5 2| = 0.5$ $n \ge \frac{\ln(10^{-6} \cdot 0.75/0.5)}{\ln 0.25} \approx 12$

Newton-Verfahren

Grundprinzip Newton-Verfahren

Approximation der NS durch sukzessive Tangentenberechnung: Konvergiert, wenn für alle x im

arch chung:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 e x im
$$\left| \frac{f(x) \cdot f''(x)}{[f'(x)]^2} \right| < 1$$

Newton-Verfahren anwenden

relevanten Intervall gilt:

- 1. Funktion f(x) und Ableitung f'(x) aufstellen
- 2. Geeigneten Startwert x_0 nahe der Nullstelle wählen
- Prüfen, ob $f'(x_0) \neq 0$
- 3. Iterieren bis zur gewünschten Genauigkeit: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- 4. Abbruchkriterien prüfen:
 - Funktionswert: $|f(x_n)| < \epsilon_1$
 - Änderung aufeinanderfolgenden Werte: $|x_{n+1} x_n| < \epsilon_2$
 - Maximale Iterationszahl nicht überschritten
- 5. Fehlerabschätzung:
 - $|x_n \bar{x}| < \epsilon$ falls
 - $f(x_n \epsilon) \cdot f(x_n + \epsilon) < 0$

Newton-Verfahren Nullstellen von $f(x) = x^2 - 2$ Ableitung: f'(x) = 2x, Startwert $x_0 = 1$

1.
$$x_1 = 1 - \frac{1^2 - 2}{2 \cdot 1} = 1.5$$

$$\rightarrow$$
 Konvergenz

2.
$$x_2 = 1.5 - \frac{1.5^2 - 2}{2 \cdot 1.5} = 1.4167$$

gegen $\sqrt{2}$ nach wenigen Schritten

3.
$$x_3 = 1.4167 - \frac{1.4167^2 - 2}{2 \cdot 1.4167} = 1.4142$$

Vereinfachtes Newton-Verfahren

Alternative Variante mit konstanter Ableitung:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$

Konvergiert langsamer, aber benötigt weniger Rechenaufwand.

Sekantenverfahren

Alternative zum Newton-Verfahren ohne Ableitungsberechnung. Verwendet zwei Punkte $(x_{n-1}, f(x_{n-1}))$ und $(x_n, f(x_n))$:

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \cdot f(x_n)$$

Benötigt zwei Startwerte x_0 und x_1 .

Sekantenverfahren Nullstellen von $f(x) = x^2 - 2$

Startwerte
$$x_0 = 1$$
 und $x_1 = 2$

$$=1-\frac{1-2}{1^2-2}\cdot 1=1.5$$
 \to Konvergenz

2.
$$x_3 = 1.5 - \frac{1.5 - 1}{1.5^2 - 2} \cdot 1.5 = 1.4545$$

gegen
$$\sqrt{2}$$
 nach wenigen Schritten

1.
$$x_2 = 1 - \frac{1-2}{1^2-2} \cdot 1 = 1.5$$

2. $x_3 = 1.5 - \frac{1.5-1}{1.5^2-2} \cdot 1.5 = 1.4545$
3. $x_4 = 1.4545 - \frac{1.4545-1.5}{1.4545^2-2} \cdot 1.4545 = 1.4143$

Newton für Nichtlineare Systeme Bestimmen Sie die Nullstelle des Systems: $f_1(x,y) = x^2 + y^2 - 1 = 0$ $f_2(x,y) = y - x^2 = 0$

- 1. Jacobi-Matrix aufstellen: $J = \begin{pmatrix} 2x & 2y \\ -2x & 1 \end{pmatrix}$
- 2. Newton-Iteration:

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ y_k \end{pmatrix} - J^{-1}(x_k, y_k) \begin{pmatrix} f_1(x_k, y_k) \\ f_2(x_k, y_k) \end{pmatrix}$$

3. Mit Startwert (0.5, 0.25) erste Iteration durchführen

Fehlerabschätzung

Fehlerabschätzung für Nullstellen

So schätzen Sie den Fehler einer Näherungslösung ab:

- 1. Sei x_n der aktuelle Näherungswert
- 2. Wähle Toleranz $\epsilon > 0$
- 3. Prüfe Vorzeichenwechsel: $f(x_n \epsilon) \cdot f(x_n + \epsilon) < 0$
- 4. Falls ja: Nullstelle liegt in $(x_n \epsilon, x_n + \epsilon)$
- 5. Damit gilt: $|x_n \xi| < \epsilon$

Praktische Fehlerabschätzung Fehlerbestimmung bei $f(x) = x^2 - 2$

- 1. Näherungswert: $x_3 = 1.4142157$
- **Also**: $|x_3 \sqrt{2}| < 10^{-5}$
- 2. Mit $\epsilon = 10^{-5}$: 3. $f(x_3 - \epsilon) = 1.4142057^2 - 2 < 0$
- \rightarrow Nullstelle liegt in
- 4. $f(x_3 + \epsilon) = 1.4142257^2 2 > 0$
- (1.4142057, 1.4142257)

Konvergenzverhalten ---

Konvergenzordnung Sei (x_n) eine gegen \bar{x} konvergierende Folge. Die Konvergenzordnung a > 1 ist definiert durch:

$$|x_{n+1} - \bar{x}| \le c \cdot |x_n - \bar{x}|^q$$

wo c > 0 eine Konstante. Für q = 1 muss zusätzl. c < 1 gelten.

Konvergenzordnungen der Verfahren Konvergenzgeschwindigkeiten

Newton-Verfahren: Quadratische Konvergenz: q=2

Vereinfachtes Newton: Lineare Konvergenz: q = 1

Sekantenverfahren: Superlineare Konvergenz: $q = \frac{1+\sqrt{5}}{2} \approx 1.618$

Konvergenzgeschwindigkeit Vergleich der Verfahren:

Startwert $x_0 = 1$. Funktion $f(x) = x^2 - 2$. Ziel: $\sqrt{2}$

\mathbf{n}	Newton	Vereinfacht	Sekanten
1	1.5000000	1.5000000	1.5000000
2	1.4166667	1.4500000	1.4545455
3	1.4142157	1.4250000	1.4142857
4	1.4142136	1.4125000	1.4142136

Fehleranalyse der Verfahren Vergleich der Fehlerkonvergenz für $f(x) = e^x - x - 2$:

- Newton: $|e_{n+1}| \le C|e_n|^2$ mit $e_n = x_n \xi$
- Sekanten: $|e_{n+1}| \le C|e_n|^{1.618}$
- Fixpunkt: $|e_{n+1}| \le \alpha |e_n|$ mit $\alpha < 1$

Praktisch:

Mit $x_0 = 1$:

n	$ x_n - \xi _{Newton}$	$ x_n - \xi _{Sekanten}$	$ x_n - \xi _{Fixpunkt}$
1	1.0e-1	2.3e-1	3.1e-1
2	5.2e-3	4.5e-2	9.6e-2
3	1.4e-5	3.8e-3	3.0e-2

LGS und Matrizen

Matrizen

Matrix Tabelle mit m Zeilen und n Spalten: $m \times n$ -Matrix A a_{ij} : Element in der *i*-ten Zeile und *j*-ten Spalte

Addition und Subtraktion

- A + B = C
- $c_{ij} = a_{ij} + b_{ij}$

Skalarmultiplikation

- $k \cdot A = B$
- $b_{ij} = k \cdot a_{ij}$

Rechenregeln für die Addition und skalare Multiplikation von Matrizen

Kommutativ-, Assoziativ- und Distributiv-Gesetz gelten für Matrix-Addition

Matrixmultiplikation $A^{m \times n}$, $B^{n \times k}$

Bedingung: A n Spalten, B n Zeilen. Resultat: C hat m Zeilen und k Spalten.

- $A \cdot B = C$
- $c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \ldots + a_{in} \cdot b_{nj}$
- $A \cdot B \neq B \cdot A$

	Ţ	→	$\begin{pmatrix} 0.1 \\ 0.3 \\ 0.5 \end{pmatrix}$	0.2 0.4 0.6
$\binom{1}{4}$	2	3	(2.2	2.8
	5	6	4.9	6.4

Rechenregeln für die Multiplikation von Matrizen

Assoziativ, Distributiv, nicht Kommutativ!

Transponierte Matrix $A^{m \times n} \rightarrow (A^T)^{n \times m}$

- A^T : Spalten und Zeilen vertauscht
- $(A^T)_{ij} = A_{ji} \text{ und } (A \cdot B)^T = B^T \cdot A^T$

Spezielle Matrizen

- Symmetrische Matrix: $A^T = A$
- Einheitsmatrix/Identitätsmatrix: E bzw. I mit $e_{ij} = 1$ für i = j und $e_{ij} = 0$ für $i \neq j$
- Diagonalmatrix: $a_{ij} = 0$ für $i \neq j$
- **Dreiecksmatrix**: $a_{ij} = 0$ für i > j (obere Dreiecksmatrix) oder i < j (untere Dreiecksmatrix)

Lineare Gleichungssysteme (LGS) -

Lineares Gleichungssystem (LGS) Ein lineares Gleichungssystem ist eine Sammlung von Gleichungen, die linear in den Unbekannten sind. Ein LGS kann in Matrixform $A \cdot \vec{x} = \vec{b}$ dargestellt werden.

- A: Koeffizientenmatrix
- \vec{x} : Vektor der Unbekannten
- \vec{b} : Vektor der Konstanten

Rang einer Matrix ra(A) = Anzahl Zeilen - Anzahl Nullzeilen⇒ Anzahl linear unabhängiger Zeilen- oder Spaltenvektoren

Zeilenstufenform (Gauss)

- Alle Nullen stehen unterhalb der Diagonalen, Nullzeilen zuunterst
- Die erste Zahl $\neq 0$ in jeder Zeile ist eine führende Eins
- Führende Einsen, die weiter unten stehen \rightarrow stehen weiter rechts

Reduzierte Zeilenstufenform: (Gauss-Jordan)

Alle Zahlen links und rechts der führenden Einsen sind Nullen.

Zeilenperationen erlaubt bei LGS (z.B. Gauss-Verfahren)

- Vertauschen von Zeilen
- Multiplikation einer Zeile mit einem Skalar
- Addition eines Vielfachen einer Zeile zu einer anderen

Gauss-Jordan-Verfahren

- 1. bestimme linkeste Spalte mit Elementen $\neq 0$ (Pivot-Spalte)
- 2. oberste Zahl in Pivot-Spalte = 0
- \rightarrow vertausche Zeilen so dass $a_{11} \neq 0$
- 3. teile erste Zeile durch $a_{11} \rightarrow$ so erhalten wir führende Eins
- 4. Nullen unterhalb führender Eins erzeugen (Zeilenperationen) nächste Schritte: ohne bereits bearbeitete Zeilen Schritte 1-4 wiederholen, bis Matrix Zeilenstufenform hat

Lösbarkeit von linearen Gleichungssystemen

- Lösbar: rq(A) = rq(A|b)
- unendlich viele Lösungen:
- genau eine Lösung: rq(A) = n rq(A) < n

Parameterdarstellung bei unendlich vielen Lösungen

Führende Unbekannte: Spalte mit führender Eins Freie Unbekannte: Spalten ohne führende Eins $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & -2 & 0 & 3 & | & 5 \\ 0 & 0 & 1 & 1 & | & 3 \end{pmatrix}$

Auflösung nach der führenden Unbekannten:

- $1x_1 2x_2 + 0x_3 + 3x_4 = 5$ $x_2 = \lambda \rightarrow x_1 = 5 + 2 \cdot \lambda 3 \cdot \mu$
- $0x_1 + 0x_2 + 1x_3 + 1x_4 = 3$ $x_4 = \mu \rightarrow x_3 = 3 \mu$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 + 2\lambda - 3\mu \\ 3 - \mu \\ \mu \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

Homogenes LGS $\vec{b} = \vec{0} \rightarrow A \cdot \vec{x} = \vec{0} \rightarrow rq(A) = rq(A \mid \vec{b})$ nur zwei Möglichkeiten:

- eine Lösung $x_1 = x_2 = \cdots = x_n = 0$, die sog. triviale Lösung.
- unendlich viele Lösungen

Koeffizientenmatrix, Determinante, Lösbarkeit des LGS

Für $n \times n$ -Matrix A sind folgende Aussagen äquivalent:

- $det(A) \neq 0$
- Spalten von A sind linear unabhängig. • Zeilen von A sind linear unabhängig.
- rq(A) = n
 - LGS $A \cdot \vec{x} = \vec{0}$
- A ist invertierbar

hat eindeutige Lösung $x = A^{-1} \cdot 0 = 0$

Quadratische Matrizen -

Inverse einer quadratischen Matrix A A^{-1}

 A^{-1} existiert, wenn rq(A) = n. A^{-1} ist eindeutig bestimmt.

A ist invertierbar / regulär, wenn A^{-1} existiert, sonst A singulär

Eigenschaften invertierbarer Matrizen

- $A \cdot A^{-1} = A^{-1} \cdot A = E$ und $(A^{-1})^{-1} = A$
- $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$ Die Reihenfolge ist relevant!
- A und B invertierbar $\Rightarrow AB$ invertierbar $(A^T)^{-1} = (A^{-1})^T$ A invertierbar $\Rightarrow A^T$ invertierbar

Inverse berechnen einer quadratischen Matrix $A^{n \times n}$

$$A \cdot A^{-1} = E \to (A|E) \rightsquigarrow \text{Zeilenoperationen} \rightsquigarrow (E|A^{-1})$$

Inverse einer 2 × 2-Matrix
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 mit $det(A) = ad - bc$

$$A^{-1} = \frac{1}{\det(A)} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \text{ NUR Invertierbar falls } ad - bc \neq 0$$

LGS mit Inverse lösen $A \cdot \vec{x} = \vec{b}$

$$A^{-1} \cdot A \cdot \vec{x} = A^{-1} \cdot \vec{b} \rightarrow \vec{x} = A^{-1} \cdot \vec{b}$$

Beispiel:

$$\underbrace{\begin{pmatrix} 1/2 & 0 \\ 0 & 1/3 \end{pmatrix}}_{A^{-1}} \cdot \underbrace{\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x \\ y \end{pmatrix}}_{\vec{x}} = \underbrace{\begin{pmatrix} 1/2 & 0 \\ 0 & 1/3 \end{pmatrix}}_{A^{-1}} \cdot \underbrace{\begin{pmatrix} 4 \\ 5 \end{pmatrix}}_{\vec{b}}$$

Numerische Lösung linearer Gleichungssysteme

Permutationsmatrix P ist eine Matrix, die aus der Einheitsmatrix durch Zeilenvertauschungen entsteht.

Für die Vertauschung der i-ten und j-ten Zeile hat P_k die **Form**:

- $p_{ii} = p_{jj} = 0$
- $p_{ij} = p_{ji} = 1$
- Sonst gleich wie in E_n
- Wichtige Eigenschaften: • $P^{-1} = P^T = P$
- Mehrere Vertauschungen:
- $P = P_1 \cdot ... \cdot P_1$

Zeilenvertauschung für Matrix A mit Permutationsmatrix P_1 :

$$\underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}}_{P_1} = \begin{pmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix} \qquad \Rightarrow A \cdot P_1 \text{ bewirkt die Vertauschung von Zeile 1 und 3}$$

Pivotisierung

Spaltenpivotisierung

Strategie zur numerischen Stabilisierung des Gauss-Algorithmus durch Auswahl des betragsmäßig größten Elements als Pivotelement. Vor jedem Eliminationsschritt in Spalte i:

- Suche k mit $|a_{ki}| = \max\{|a_{ji}| \mid j = i, ..., n\}$
- Falls $a_{ki} \neq 0$: Vertausche Zeilen i und k
- Falls $a_{ki} = 0$: Matrix ist singulär

Gauss-Algorithmus mit Pivotisierung

- 1. Elimination (Vorwärts):
- Für i = 1, ..., n-1:
 - Finde $k \ge i$ mit $|a_{ki}| = \max\{|a_{ji}| \mid j = i, ..., n\}$
 - Falls $a_{ki} = 0$: Stop (Matrix singulär)
 - Vertausche Zeilen i und k

$$* z_j := z_j - \frac{a_{ji}}{a_{ji}} z_i$$

- Für $j=i+1,\ldots,n$: $*\ z_j:=z_j-\frac{a_{ji}}{a_{ii}}z_i$ 2. Rückwärtseinsetzen: $x_i=\frac{b_i-\sum_{j=i+1}^na_{ij}x_j}{a_{ii}},\quad i=n,n-1,\ldots,1$

Gauss mit Pivotisierung $A = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 2 \\ 36 \end{pmatrix}$

Eliminationsschritte:

Rückwärtseinsetzen:

$$\begin{pmatrix} 2 & 4 & -2 & | & 2 \\ 0 & 3 & 15 & | & 36 \\ 0 & 1 & 1 & | & 4 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 & 4 & -2 & | & 2 \\ 0 & 3 & 15 & | & 36 \\ 0 & 0 & -2 & | & -8 \end{pmatrix} \qquad \begin{matrix} x_3 & & = \frac{-8}{2} = 4 \\ x_2 & & = \frac{36 - 15(4)}{3} = 1 \\ x_1 & = \frac{2 - 4(4) + 2}{2} = -6 \end{matrix}$$

Vorteile der Permutationsmatrix

- Exakte Nachverfolgung aller Zeilenvertauschungen
- Einfache Rückführung auf ursprüngliche Reihenfolge durch P^{-1}
- Kompakte Darstellung mehrerer Vertauschungen
- Numerisch stabile Implementierung der Pivotisierung

Dreieckszerlegung Eine Matrix $A \in \mathbb{R}^{n \times n}$ kann zerlegt werden in:

Untere Dreiecksmatrix L: $l_{ij} = 0$ für j > iDiagonale normiert $(l_{ii} = 1)$ Obere Dreiecksmatrix R: $r_{ij} = 0$ für i > j

Diagonalelemente $\neq 0$

LR-Zerlegung ---

LR-Zerlegung

Jede reguläre Matrix A, für die der Gauss-Algorithmus ohne Zeilenvertauschungen durchführbar ist, lässt sich zerlegen in: A=LR wobei L eine normierte untere und R eine obere Dreiecksmatrix ist.

$\textbf{LR-Zerlegung durchführen} \quad (E|A|E) \underbrace{\leadsto}_{Gauss} (P|R|L)$

- 1. Zerlegung bestimmen:
 - Gauss-Elimination durchführen
 - Eliminationsfaktoren $-\frac{a_{ji}}{a_{ii}}$ in L speichern
 - Resultierende obere Dreiecksmatrix ist R
- 2. System lösen:
 - Vorwärtseinsetzen: Ly = b
 - Rückwärtseinsetzen: Rx = y
- 3. Bei Pivotisierung:
 - Permutationsmatrix P erstellen
 - PA = LR speichern
 - Ly = Pb lösen

E = Einheitsmatrix, P = Permutationsmatrix

LR-Zerlegung
$$\underbrace{\begin{pmatrix} -1 & 1 & 1 \\ 1 & -3 & -2 \\ 5 & 1 & 4 \end{pmatrix}}_{A}, \underbrace{\begin{pmatrix} 0 \\ 5 \\ 3 \end{pmatrix}}_{b} \rightarrow \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} \begin{vmatrix} -1 & 1 & 1 \\ 1 & -3 & -2 \\ 5 & 1 & 4 \end{vmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Schritt 1: Erste Spalte

Max. Element in 1. Spalte: $|a_{31}| = 5$, also Z1 und Z3 tauschen:

Schritt 2: Zweite Spalte

Max. Element in 2. Spalte unter Diagonale: |-3.2|>|1.2|, keine Vertauschung nötig. Eliminationsfaktor: $l_{32}=\frac{1.2}{-3.2}=-\frac{3}{8}$

Nach Elimination:
$$\underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} 5 & 1 & 4 \\ 0 & -3.2 & -2.8 \\ 0 & 0 & 0.75 \end{bmatrix}}_{R} \underbrace{\begin{bmatrix} \frac{1}{5} & 0 & 0 \\ \frac{1}{5} & 1 & 0 \\ -\frac{1}{5} & -\frac{3}{8} & 1 \end{bmatrix}}_{T}$$

Lösung des Systems

1.
$$Pb = \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix}$$

- 2. Löse Ly = Pb durch Vorwärtseinsetzen: $y = \begin{pmatrix} 3 \\ 4.4 \\ 2.25 \end{pmatrix}$
- 3. Löse Rx = y durch Rückwärtseinsetzen: $x = \begin{pmatrix} -1 \\ -4 \\ 3 \end{pmatrix}$

Probe:
$$Ax = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -3 & -2 \\ 5 & 1 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \\ 3 \end{pmatrix} = b$$

QR-Zerlegung

QR-Zerlegung

Eine orthogonale Matrix $Q \in \mathbb{R}^{n \times n}$ erfüllt: $Q^TQ = QQ^T = I_n$ Die QR-Zerlegung einer Matrix A ist: A = QRwobei Q orthogonal und R eine obere Dreiecksmatrix ist.

Householder-Transformation

Eine Householder-Matrix hat die Form: $H = I_n - 2uu^T$ mit $u \in \mathbb{R}^n$, ||u|| = 1. Es gilt:

- H ist orthogonal $(H^T = H^{-1})$ und symmetrisch $(H^T = H)$
- $H^2 = I_n$

QR-Zerlegung mit Householder

- 1. Initialisierung: $R := A, Q := I_n$
- 2. Für i = 1, ..., n 1:
 - Bilde Vektor v_i aus i-ter Spalte von R ab Position i
 - $w_i := v_i + \text{sign}(v_{i1}) ||v_i|| e_1$
 - $u_i := w_i / ||w_i||$
 - $H_i := I_{n-i+1} 2u_i u_i^T$
 - Erweitere H_i zu Q_i durch I_{i-1} links oben
 - $R := Q_i R$ und $Q := Q Q_i^T$

QR-Zerlegung mit Householder
$$A = \begin{pmatrix} 2 & 5 & -1 \\ -1 & -4 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$

Schritt 1: Erste Spalte

Erste Spalte a_1 und Einheitsvektor e_1 : $a_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$, $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ Householder-Vektor für erste Spalte:

- 1. Berechne Norm: $|a_1| = \sqrt{2^2 + (-1)^2 + 0^2} = \sqrt{5}$
- 2. Bestimme Vorzeichen: $sign(a_{11}) = sign(2) = 1$
 - Wähle positives Vorzeichen, da erstes Element positiv
 - Dies maximiert die erste Komponente von \boldsymbol{v}_1
 - $\bullet\,$ Verhindert Auslöschung bei der Subtraktion

3.
$$v_1 = a_1 + \operatorname{sign}(a_{11})|a_1|e_1 = \begin{pmatrix} 2\\-1\\0 \end{pmatrix} + \sqrt{5} \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 2+\sqrt{5}\\-1\\0 \end{pmatrix}$$

4. Normiere
$$v_1$$
: $|v_1| = \sqrt{(2+\sqrt{5})^2 + 1} \Rightarrow u_1 = \frac{v_1}{|v_1|} = \begin{pmatrix} 0.91 \\ -0.41 \\ 0 \end{pmatrix}$

Householder-Matrix berechnen: $H_1 = I - 2u_1u_1^T = \begin{pmatrix} -0.67 & -0.75 & 0 \\ -0.75 & 0.67 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

A nach 1. Transformation: $A^{(1)} = H_1 A = \begin{pmatrix} -\sqrt{5} & -6.71 & 0.45 \\ 0 & -0.89 & 1.79 \\ 0 & 2.00 & 1.00 \end{pmatrix}$

Schritt 2: Zweite Spalte

Untermatrix für zweite Transformation: $A_2 = \begin{pmatrix} -0.89 & 1.79 \\ 2.00 & 1.00 \end{pmatrix}$ Householder-Vektor für zweite Spalte:

- 1. $|a_2| = \sqrt{(-0.89)^2 + 2^2} = 2.19$
- 2. $sign(a_{22}) = sign(-0.89) = -1$ (da erstes Element negativ)
- 3. $v_2 = \begin{pmatrix} -0.89 \\ 2.00 \end{pmatrix} 2.19 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -3.09 \\ 2.00 \end{pmatrix}$
- 4. $u_2 = \frac{v_2}{|v_2|} = \begin{pmatrix} -0.84\\ 0.54 \end{pmatrix}$

Erweiterte Householder-Matrix: $Q_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -0.41 & -0.91 \\ 0 & -0.91 & 0.41 \end{pmatrix}$

nach 2. Transformation: $R = Q_2 A^{(1)} = \begin{pmatrix} -\sqrt{5} & -6.71 & 0.45 \\ 0 & -2.19 & 1.34 \\ 0 & 0 & -1.79 \end{pmatrix}$

Endergebnis

Die QR-Zerlegung A = QR ist:

$$Q = H_1^T Q_2^T = \begin{pmatrix} -0.89 & -0.45 & 0 \\ 0.45 & -0.89 & 0 \\ 0 & 0 & 1 \end{pmatrix}, R = \begin{pmatrix} -\sqrt{5} & -6.71 & 0.45 \\ 0 & -2.19 & 1.34 \\ 0 & 0 & -1.79 \end{pmatrix}$$

Prohe

- 1. QR = A (bis auf Rundungsfehler)
- 2. $Q^T Q = QQ^T = I$ (Orthogonalität)
- 3. R ist obere Dreiecksmatrix

Wichtige Beobachtungen

- Vorzeichenwahl bei v_k ist entscheidend für numerische Stabilität
- Ein falsches Vorzeichen kann zu Auslöschung führen
- Betrag der Diagonalelemente in R = Norm transformierter Spalten
- \bullet Q ist orthogonal: Spaltenvektoren sind orthonormal

Iterative Verfahren ---

Zerlegung der Systemmatrix A zerlegt in: A = L + D + R

- L: streng untere Dreiecksmatrix
- D: Diagonalmatrix
- R: streng obere Dreiecksmatrix

Jacobi-Verfahren Gesamtschrittverfahren

Iteration:
$$x^{(k+1)} = -D^{-1}(L+R)x^{(k)} + D^{-1}b$$

Komponentenweise:
$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right)$$

Gauss-Seidel-Verfahren Einzelschrittverfahren

Iteration:
$$x^{(k+1)} = -(D+L)^{-1}Rx^{(k)} + (D+L)^{-1}b$$

Komponentenweise:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$

Konvergenzkriterien Ein iteratives Verfahren konvergiert, wenn:

- 1. Die Matrix A diagonal dominant ist:
 - $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ für alle i
- 2. Der Spektralradius der Iterationsmatrix kleiner 1 ist: $\rho(B) < 1$ mit B als jeweilige Iterationsmatrix

Implementierung von Jacobi- und Gauss-Seidel-Verfahren

Vorhereitungenhase

- Matrix zerlegen in A = L + D + R
- Diagonaldominanz prüfen: $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ für alle i
- Sinnvolle Startwerte wählen (z.B. $x^{(0)} = 0$ oder $x^{(0)} = b$)
- Toleranz ϵ und max. Iterationszahl n_{max} festlegen

Verfahren durchführen

- Jacobi: Komponentenweise parallel berechnen
- Gauss-Seidel: Komponentenweise sequentiell berechnen

Konvergenzprüfung/Abbruchkriterien -

- Absolute Änderung: $||x^{(k+1)} x^{(k)}|| < \epsilon$
- Relatives Residuum: $\frac{\|Ax^{(k)} b\|}{\|b\|} < \epsilon$
- Maximale Iterationszahl: $k < n_{max}$

A-priori Fehlerabschätzung

- Spektralradius ρ der Iterationsmatrix bestimmen
- Benötigte Iterationen n für Genauigkeit ϵ :

$$n \ge \frac{\ln(\epsilon(1-\rho)/\|x^{(1)}-x^{(0)}\|)}{\ln(\rho)}$$

Matrix- und Vektornormen

Eine Vektornorm $\|\cdot\|$ erfüllt für alle $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$:

- ||x|| > 0 und $||x|| = 0 \Leftrightarrow x = 0$
- $\|\lambda x\| = |\lambda| \cdot \|x\|$
- $||x+y|| \le ||x|| + ||y||$ (Dreiecksungleichung)

Wichtige Normen

1-Norm:
$$||x||_1 = \sum_{i=1}^n |x_i|, ||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$$

2-Norm:
$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}, ||A||_2 = \sqrt{\rho(A^T A)}$$

$$\infty$$
-Norm: $||x||_{\infty} = \max_{i} |x_{i}|, ||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$

Fehlerabschätzung für LGS

Sei $\|\cdot\|$ eine Norm, $A \in \mathbb{R}^{n \times n}$ regulär und Ax = b, $A\tilde{x} = \tilde{b}$

Absoluter Fehler:

Relativer Fehler:

$$|x - \tilde{x}|| \le ||A^{-1}|| \cdot ||b - \tilde{b}||$$

$$||x - \tilde{x}|| \le ||A^{-1}|| \cdot ||b - \tilde{b}||$$
 $\frac{||x - \tilde{x}||}{||x||} \le \operatorname{cond}(A) \cdot \frac{||b - \tilde{b}||}{||b||}$

Mit der Konditionszahl cond $(A) = ||A|| \cdot ||A^{-1}||$

Konditionierung

Die Konditionszahl beschreibt die numerische Stabilität eines LGS:

- $\operatorname{cond}(A) \approx 1$: gut konditioniert
- $\operatorname{cond}(A) \gg 1$: schlecht konditioniert
- $\operatorname{cond}(A) \to \infty$: singulär

Konditionierung
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1.01 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 2.01 \end{pmatrix}$$

Konditionszahl: $cond(A) = ||A|| \cdot ||A^{-1}|| \approx 400$

Absoluter Fehler:
$$||x - \tilde{x}|| \le 400 \cdot 0.01 = 4$$

Relativer Fehler:
$$\frac{\|x-\tilde{x}\|}{\|x\|} \le 400 \cdot \frac{0.01}{2} = 2$$

Vergleich Lösungsverfahren $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

- Matrix ist symmetrisch und nicht streng diagonaldominant
- $\operatorname{cond}_{\infty}(A) \approx 12.5$

Verfahren	Iterationen	Residuum	Zeit
LR mit Pivot	1	$2.2 \cdot 10^{-16}$	1.0
QR	1	$2.2 \cdot 10^{-16}$	2.3
Jacobi	12	$1.0 \cdot 10^{-6}$	1.8
Gauss-Seidel	7	$1.0 \cdot 10^{-6}$	1.4

- Direkte Verfahren erreichen höhere Genauigkeit
- Iterative Verfahren brauchen mehrere Schritte

Konvergenzverhalten
$$\begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Die Matrix ist diagonaldominant: $|a_{ii}| = 4 > 1 = \sum_{i \neq i} |a_{ij}|$

k	Residuum		Rel. F	ehler'
	Jacobi	G-S	Jacobi	G-S
0	3.74	3.74	-	-
1	0.94	0.47	0.935	0.468
2	0.23	0.06	0.246	0.125
3	0.06	0.01	0.065	0.017
4	0.01	0.001	0.016	0.002

- Gauss-Seidel konvergiert etwa doppelt so schnell wie Jacobi
- Das Residuum fällt linear (geometrische Folge)
- Die Konvergenz ist gleichmäßig (keine Oszillationen)

Vorgehen und Implementation -

Systematisches Vorgehen bei LGS

- 1. Eigenschaften der Matrix analysieren:
 - Diagonaldominanz prüfen
 - Konditionszahl berechnen oder abschätzen
 - Symmetrie erkennen
- 2. Verfahren auswählen:
 - Direkte Verfahren: für kleinere Systeme
 - Iterative Verfahren: für große, dünnbesetzte Systeme
 - Spezialverfahren: für symmetrische/bandförmige Matrizen
- 3. Implementation planen:
 - Pivotisierung bei Gauss berücksichtigen
 - Speicherbedarf beachten
 - Abbruchkriterien festlegen

Zeilenvertauschungen verfolgen

- 1. Initialisiere $P = I_n$
- 2. Für jede Vertauschung von Zeile i und j:
 - Erstelle P_k durch Vertauschen von Zeilen i, j in I_n
 - Aktualisiere $P = P_k \cdot P$
 - Wende Vertauschung auf Matrix an: $A := P_k A$
- 3. Bei der LR-Zerlegung mit Pivotisierung:
 - PA = LR
 - Löse Ly = Pb und Rx = y

Komplexe Zahlen

Fundamentalsatz der Algebra

Eine algebraische Gleichung n-ten Grades mit komplexen Koeffizienten:

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0$$

besitzt in C genau n Lösungen (mit Vielfachheiten gezählt).

Komplexe Zahlen

Die Menge der komplexen Zahlen $\mathbb C$ erweitert die reellen Zahlen $\mathbb R$ durch Einführung der imaginären Einheit i mit der Eigenschaft:

$$i^2 = -1$$

Eine komplexe Zahl z ist ein geordnetes Paar (x, y) mit $x, y \in \mathbb{R}$:

$$z = x + iy$$

Die Menge aller komplexen Zahlen ist definiert als:

$$\mathbb{C} = \{ z \mid z = x + iy \text{ mit } x, y \in \mathbb{R} \}$$

Bestandteile komplexer Zahlen

Realteil: Re(z) = xImaginärteil: Im(z) = yBetrag: $|z| = \sqrt{x^2 + y^2} = \sqrt{z \cdot z^*}$ Konjugation: $\overline{z} = x - iy$

Darstellungsformen

- Normalform: z = x + iy
- Trigonometrische Form: $z = r(\cos \varphi + i \sin \varphi)$
- Exponential form: $z = re^{i\varphi}$

Umrechnung zwischen Darstellungsformen komplexer Zahlen

Von Normalform in trigonometrische Form/Exponentialform

- 1. Berechne Betrag $r = \sqrt{x^2 + y^2}$
- 2. Berechne Winkel mit einer der Formeln:
 - $\varphi = \arctan(\frac{y}{2})$ falls x > 0
 - $\varphi = \arctan(\frac{\overline{y}}{x}) + \pi \text{ falls } x < 0$
 - $\varphi = \frac{\pi}{2}$ falls x = 0, y > 0
 - $\varphi = -\frac{\pi}{2}$ falls x = 0, y < 0
- φ unbestimmt falls x = y = 0
- 3. Trigonometrische Form: $z = r(\cos \varphi + i \sin \varphi)$
- 4. Exponential form: $z = re^{i\varphi}$

- 1. Realteil: $x = r \cos \varphi$
- 2. Imaginärteil: $y = r \sin \varphi$
- 3. Normalform: z = x + iy

- 1. Trigonometrische Form durch Euler-Formel:
 - $re^{i\varphi} = r(\cos\varphi + i\sin\varphi)$
- 2. Dann wie oben in Normalform umrechnen

- Achten Sie auf das korrekte Quadranten beim Winkel
- Winkelfunktionen im Bogenmaß verwenden
- Bei Umrechnung in Normalform Euler-Formel nutzen
- Vorzeichen bei Exponentialform beachten

Rechenoperationen mit komplexen Zahlen

Für $z_1 = x_1 + iy_1$ und $z_2 = x_2 + iy_2$ gilt:

Addition:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
 $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$

Multiplikation:
$$z_1 \cdot z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

$$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$
 (in Exponential form)

Division:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot z_2^*}{z_2 \cdot z_2^*} = \frac{(x_1 x_2 + y_1 y_2) + i(y_1 x_2 - x_1 y_2)}{x_2^2 + y_2^2}$$
$$= \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)} \text{ (in Exponential form)}$$

Potenzen und Wurzeln

Für eine komplexe Zahl in Exponentialform $z=re^{i\varphi}$ gilt:

- n-te Potenz: $z^n = r^n e^{in\varphi} = r^n (\cos(n\varphi) + i\sin(n\varphi))$
- n-te Wurzel: $z_k = \sqrt[n]{r}e^{i\frac{\varphi+2\pi k}{n}}, k=0,1,\ldots,n-1$

Komplexe Operationen Gegeben $z_1 = 1 + i$ und $z_2 = 2 - i$:

- $z_1: r_1=\sqrt{2}, \varphi_1=\frac{\pi}{4}$
- $z_2: r_2 = \sqrt{5}, \ \varphi_2 = -\arctan(\frac{1}{2})$

- $z_1 \cdot z_2 = (2-i)(1+i) = (2+1) + i(2-1) = 3+i$ $z_1^3 = (\sqrt{2})^3(\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4}))$

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren

Für eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt $\lambda \in \mathbb{C}$ Eigenwert von A, wenn es einen Vektor $x \in \mathbb{C}^n \setminus \{0\}$ gibt mit:

$$Ax = \lambda x$$

Der Vektor x heißt dann Eigenvektor zum Eigenwert λ .

Bestimmung von Eigenwerten

Ein Skalar λ ist genau dann Eigenwert von A, wenn gilt:

$$det(A - \lambda I_n) = 0$$
(charakteristische Gleichung)

charakteristisches Polynom von $A: p(\lambda) = \det(A - \lambda I_n)$

Eigenschaften von Eigenwerten Für eine Matrix $A \in \mathbb{R}^{n \times n}$ gilt:

Determinante:
$$det(A) = \prod_{i=1}^{n} \lambda_i$$
 Spur: $tr(A) = \sum_{i=1}^{n} \lambda_i$

- Bei Dreiecksmatrix sind die Diagonalelemente die Eigenwerte
- Ist λ Eigenwert von A, so ist $\frac{1}{\lambda}$ Eigenwert von A^{-1}

Vielfachheiten Für einen Eigenwert λ unterscheidet man:

- Algebraische Vielfachheit:
 - Vielfachheit als Nullstelle des charakteristischen Polynoms
- Geometrische Vielfachheit:
 - Dimension des Eigenraums = $n rg(A \lambda I_n)$

Die geometrische Vielfachheit ist stets kleiner oder gleich der algebraischen Vielfachheit.

Diagonalisierbarkeit Eine Matrix A ist genau dann diagonalisierbar, wenn sie n linear unabhängige Eigenvektoren besitzt. Dies ist äquivalent zu:

- Die algebraischen Vielfachheiten der Eigenwerte entsprechen den geometrischen Vielfachheiten
- Die Summe der geometrischen Vielfachheiten ist n
- Die Matrix Aist ähnlich zu einer Diagonalmatrix
- Die Matrix Ahat nlinear unabhängige Eigenvektoren

Ähnliche Matrizen

Zwei Matrizen $A,B\in\mathbb{R}^{n\times n}$ heißen ähnlich, wenn es eine reguläre Matrix Tgibt mit:

$$B = T^{-1}AT$$

Eine Matrix Aheißt diagonalisierbar, wenn sie ähnlich zu einer Diagonalmatrix Dist:

$$D = T^{-1}AT$$

Eigenschaften ähnlicher Matrizen

Für ähnliche Matrizen A und $B = T^{-1}AT$ gilt:

- 1. A und B haben dieselben Eigenwerte mit gleichen algebraischen Vielfachheiten
- 2. Ist x Eigenvektor von B zum Eigenwert $\lambda,$ so ist Tx Eigenvektor von A zum Eigenwert λ
- 3. Bei Diagonalisierbarkeit:
 - Die Diagonalelemente von D sind die Eigenwerte von A
 - Die Spalten von T sind die Eigenvektoren von A

Bestimmung von Eigenwerten

Charakteristisches Polynom aufstelle

- $p(\lambda) = \det(A \lambda I)$ berechnen und auf Standardform bringen
- Spezialfälle:
 - Bei 2×2 Matrizen direkt: $det(A \lambda I)$
 - Bei 3×3 Matrizen: Entwicklung nach einer Zeile/Spalte
 - Bei größeren Matrizen: Spezielle Eigenschaften nutzen (z.B. Dreiecksform, Symmetrie)

Polynom vereinfachen und auf Nullform bringen

- Ausmultiplizieren
- Zusammenfassen nach Potenzen von λ
- Form: $p(\lambda) = (-1)^n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0$

Nullstellen bestimme

- Quadratische Formel für n = 2 (Grad des Polynoms)
- Cardano-Formel oder Substitution für n=3
- Numerische Verfahren für n > 3

Vielfachheiten bestimmen

- Algebraische Vielfachheit: Nullstellenordnung
- Geometrische Vielfachheit: $n \text{rang}(A \lambda I)$

Charakteristisches Polynom

Bestimmen Sie die Eigenwerte von: $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$

Lösung

1.
$$p(\lambda) = \det(A - \lambda I)$$
:
$$\begin{vmatrix} 2-\lambda & -1 & 0 \\ -1 & 2-\lambda & -1 \\ 0 & -1 & 2-\lambda \end{vmatrix}$$

- 2. Determinante: $p(\lambda) = (2 \lambda)^3 2(2 \lambda) = -\lambda^3 + 6\lambda^2 11\lambda + 6$
- 3. Nullstellen: $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$

Bestimmung von Eigenvektoren

Eigenvektoren bestimme

- 1. Für jeden Eigenwert λ_i :
 - Matrix $(A \lambda_i I)$ aufstellen
 - Homogenes LGS $(A \lambda_i I)x = 0$ lösen
 - Lösungsvektor normieren falls gewünscht
- 2. Bei mehrfachen Eigenwerten:
 - Geometrische Vielfachheit bestimmen
 - Basis des Eigenraums bestimmen
 - Linear unabhängige Eigenvektoren finden

Kontrol

- Für jeden Eigenvektor x_i prüfen: $Ax_i = \lambda_i x_i$
- Bei symmetrischen Matrizen: Orthogonalität der Eigenvektoren pr
 üfen
- Linear unabhängigkeit der Eigenvektoren überprüfen
- Bei 2×2 Matrix: $\lambda_1 + \lambda_2 = \operatorname{tr}(A)$ und $\lambda_1 \cdot \lambda_2 = \det(A)$
- Bei 3×3 Matrix zusätzlich: $\sum \lambda_i = \operatorname{tr}(A)$ und $\prod \lambda_i = \det(A)$
- Bei reellen Matrizen: Komplexe Eigenwerte treten in konjugierten Paaren auf

Spezialfälle beachten

- Bei Dreiecksmatrizen: Eigenwerte sind die Diagonalelemente
- Bei symmetrischen Matrizen: Alle Eigenwerte sind reell
- Bei orthogonalen Matrizen: $|\lambda_i| = 1$ für alle Eigenwerte
- Bei nilpotenten Matrizen: Alle Eigenwerte sind 0 nilpotente Matrix: $A^k = 0$ für ein $k \in \mathbb{N}$

Eigenwertberechnung Gegeben ist die Matrix $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}$

1. Charakteristisches Polynom aufstellen:

$$\det(A - \lambda I) = \begin{vmatrix} 2-\lambda & 1 & 0\\ 1 & 2-\lambda & 1\\ 0 & 1 & 2-\lambda \end{vmatrix}$$

2. Entwicklung nach 1. Zeile:

$$p(\lambda) = (2 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & 2 - \lambda \end{vmatrix}$$

3. Ausrechnen:

$$p(\lambda) = (2 - \lambda)((2 - \lambda)^2 - 1) - ((2 - \lambda) - 1) = -\lambda^3 + 6\lambda^2 - 11\lambda + 6\lambda^2$$

- 4. Nullstellen bestimmen: $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$
- 5. Eigenvektoren bestimmen für $\lambda_1 = 1$:

$$(A-I)x = 0$$
 führt zu $x_1 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$

Eigenvektoren Bestimmen Sie die Eigenvektoren zum Eigenwert $\lambda=2$ der Matrix:

$$A = \left(\begin{smallmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 2 \end{smallmatrix} \right)$$

Lösung:

1. (A-2I)x=0:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

- 2. Homogenes System lösen:
 - $x_2 = 0$ (aus 1. Zeile)
 - x_1, x_3 frei wählbar
- 3. Basis des Eigenraums:

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Eigenwerte und Eigenvektoren Bestimmen Sie Eigenwerte und - vektoren von:

$$A = \left(\begin{smallmatrix} 2 & -1 \\ -1 & 2 \end{smallmatrix} \right)$$

.ösung:

1. Charakteristisches Polynom:

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 - 1 = 0$$

- 2. Eigenwerte: $\lambda_1 = 3$, $\lambda_2 = 1$
- 3. Eigenvektoren für $\lambda_1 = 3$:

$$(A-3I)x = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}x = 0 \Rightarrow x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

4. Eigenvektoren für $\lambda_2 = 1$:

$$(A-I)x = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} x = 0 \Rightarrow x_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

QR-Verfahren -

QR-Verfahren

Das QR-Verfahren transformiert die Matrix A iterativ in eine obere Dreiecksmatrix, deren Diagonalelemente die Eigenwerte sind:

- 1. Initialisierung: $A_0 := A$, $P_0 := I_n$
- 2. Für i = 0, 1, 2, ...:
 - QR-Zerlegung: $A_i = Q_i R_i$
 - Neue Matrix: $A_{i+1} = R_i Q_i$
 - Update: $P_{i+1} = P_i Q_i$

QR-Verfahren

Voraussetzungen

- Matrix $A \in \mathbb{R}^{n \times n}$
- Eigenwerte sollten verschiedene Beträge haben für gute Konvergenz

Algorithmus

- 1. Initialisierung:
 - $A_0 := A \text{ und } Q_0 := I_n$
 - Maximale Iterationszahl und Toleranz festlegen
- 2. Für $k = 0, 1, 2, \dots$ bis zur Konvergenz:
 - QR-Zerlegung von A_k berechnen: $A_k = Q_k R_k$
 - Neue Matrix berechnen: $A_{k+1} = R_k Q_k$
 - Transformationsmatrix aktualisieren: $P_{k+1} = P_k Q_k$
- 3. Abbruchkriterien prüfen:
 - Subdiagonalelemente nahe Null: $|a_{i+1,i}| < \varepsilon$
 - Änderung der Diagonalelemente klein
 - Maximale Iterationszahl erreicht

Auswertung

- Eigenwerte: Diagonalelemente von A_k
- Eigenvektoren: Spalten der Matrix P_k
- Bei 2×2 -Blöcken: Komplexe Eigenwertpaare

QR-Verfahren Gegeben sei die Matrix $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

- 1. Erste Iteration:
 - QR-Zerlegung: $Q_1 = \begin{pmatrix} 0.45 & 0.89 & 0 \\ 0.89 & -0.45 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $R_1 = \begin{pmatrix} 2.24 & 2.24 & 0.45 \\ 0 & -1 & 0.89 \\ 0 & 0 & 1 \end{pmatrix}$
 - $A_1 = R_1 Q_1 = \begin{pmatrix} 2.24 & 0.45 & 0.45 \\ 0.45 & 0.38 & 0.89 \\ 0.45 & 0.89 & 1 \end{pmatrix}$
- 2. Nach Konvergenz: $A_k \approx \begin{pmatrix} 3 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{pmatrix}$

Eigenwerte sind also $\lambda_1 = 3, \lambda_2 = 0, \lambda_3 = 0$

QR-Iteration Gegeben: $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

Lösung

- 1. QR-Zerlegung von A: $Q_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, R_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 1 \\ 0 & -1 \end{pmatrix}$
- 2. Neue Matrix: $A_1 = R_1 Q_1 = \begin{pmatrix} 1.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix}$
- 3. Konvergenz nach mehreren Iterationen gegen:

$$A_{\infty} \approx \begin{pmatrix} \phi & 0 \\ 0 & -\phi^{-1} \end{pmatrix}$$
 mit $\phi = \frac{1+\sqrt{5}}{2}$

4. Eigenwerte: $\lambda_1 = \phi, \lambda_2 = -\phi^{-1}$

Von-Mises-Iteration

Von-Mises-Iteration (Vektoriteration)

Für eine diagonalisierbare Matrix A mit Eigenwerten $|\lambda_1|>|\lambda_2|\geq\cdots\geq|\lambda_n|$ konvergiert die Folge:

$$v^{(k+1)} = \frac{Av^{(k)}}{\|Av^{(k)}\|_2}, \quad \lambda^{(k+1)} = \frac{(v^{(k)})^T Av^{(k)}}{(v^{(k)})^T v^{(k)}}$$

gegen einen Eigenvektor v zum betragsmäßig größten Eigenwert λ_1 . \Rightarrow sehe Spektralradius auf nächster Seite

Von-Mises-Iteration / Vektoriteration

Voraussetzungen

• Matrix diagonalisierbar und $|\lambda_1| > |\lambda_2|$

Iteration durchführen

- Startvektor $v^{(0)}$ wählen:
 - Zufälligen Vektor oder $(1, ..., 1)^T$ wählen
- Auf Länge 1 normieren: $||v^{(0)}||_2 = 1$
- Für $k = 0, 1, 2, \dots$ bis zur Konvergenz:
- 1. Iterationsvektor berechnen: $w^{(k)} = Av^{(k)}$
- 2. Normieren: $v^{(k+1)} = \frac{w^{(k)}}{\|w^{(k)}\|_2}$
- 3. Eigenvertapproximation: $\lambda^{(k+1)} = \frac{(v^{(k)})^T A v^{(k)}}{(v^{(k)})^T v^{(k)}}$ (Rayleigh-Quotient)
- Abbruchkriterien prüfen:
 - Änderung des Eigenvektors: $\|v^{(k+1)} v^{(k)}\| < \varepsilon$
 - Änderung des Eigenwertes: $|\lambda^{(k+1)} \lambda^{(k)}| < \varepsilon$
 - Maximale Iterationszahl erreicht
- Konvergenz:
 - $-v^{(k)} \to \text{Eigenvektor zu } |\lambda_1|$
 - $-\lambda^{(k)} \rightarrow |\lambda_1|$

Verifikation -

- Prüfen ob $Av^{(k)} \approx \lambda^{(k)}v^{(k)}$
- Residuum berechnen: $||Av^{(k)} \lambda^{(k)}v^{(k)}||$
- Orthogonalität zu anderen Eigenvektoren prüfen

Von-Mises-Iteration Gegeben sei die Matrix $A = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3 \end{pmatrix}$ Mit Startvektor $v^{(0)} = \frac{1}{1/2}(1,1,1)^T$:

- 1. Erste Iteration:
 - $w^{(0)} = Av^{(0)} = \frac{1}{\sqrt{2}}(4,0,2)^T$
 - $v^{(1)} = \frac{w^{(0)}}{\|w^{(0)}\|} = \frac{1}{\sqrt{20}} (4, 0, 2)^T$
 - $\lambda^{(1)} = (v^{(0)})^T A v^{(0)} = 3.33$
- 2. Zweite Iteration:
 - $w^{(1)} = Av^{(1)} = \frac{1}{\sqrt{20}}(18, -2, 8)^T$
 - $v^{(2)} = \frac{w^{(1)}}{\|w^{(1)}\|} = \frac{1}{\sqrt{388}} (18, -2, 8)^T$
 - $\lambda^{(2)} = 5.12$

Konvergenz gegen $\lambda_1 \approx 5.17 \text{ und } v = (0.89, -0.10, 0.39)^T$

Inverse Iteration

Inverse Iteration Die inverse Iteration berechnet einen Eigenvektor zu einem bekannten oder geschätzten Eigenwert μ durch:

$$v^{(k+1)} = \frac{(A - \mu I)^{-1} v^{(k)}}{\|(A - \mu I)^{-1} v^{(k)}\|_2}$$

Konvergiert typischerweise gegen den Eigenvektor zum betragsmäßig kleinsten Eigenwert $\lambda_i - \mu$.

Inverse Iteration anwenden

- 1. Vorbereitung:
 - Näherungswert μ für Eigenwert wählen
 - Zufälligen Startvektor $v^{(0)}$ normieren
 - LR-Zerlegung von $(A \mu I)$ berechnen
- 2. Iteration durchführen:
 - LR-System $(A \mu I)w^{(k)} = v^{(k)}$ lösen
 - Neuen Vektor normieren: $v^{(k+1)} = \frac{w^{(k)}}{\|w^{(k)}\|_2}$
 - Rayleigh-Quotient berechnen für Eigenwert
- 3. Abbruch wenn:
 - Residuum $||(A \lambda^{(k)}I)v^{(k)}|| < \epsilon$
 - Maximale Iterationszahl erreicht

Inverse Iteration Bestimmen Sie einen Eigenvektor zum Eigenwert $\lambda \approx 2$ der Matrix:

$$A = \begin{pmatrix} 2.1 & -0.1 & 0.1 \\ -0.1 & 2.0 & 0.2 \\ 0.1 & 0.2 & 1.9 \end{pmatrix}$$

ösuna.

- 1. $\mu = 2.0$ als Näherung wählen
- 2. Startvektor $v^{(0)} = \frac{1}{\sqrt{3}}(1,1,1)^T$
- 3. Erste Iteration:
 - $(A 2I)w^{(0)} = v^{(0)}$ lösen
 - $v^{(1)} = \frac{w^{(0)}}{\|w^{(0)}\|} \approx (0.61, 0.63, 0.48)^T$
 - $\lambda^{(1)} \approx 2.01$

Allgemeine Hinweise

Numerische Aspekte der Verfahren

- Wahl des Startpunkts:
 - Von-Mises: zufälliger normierter Vektor
 - Inverse Iteration: Näherung für u wichtig
 - QR: Matrix vorher auf Hessenberg-Form
- Konvergenzprüfung:
- Residuum $||Ax^{(k)} \lambda^{(k)}x^{(k)}||$
- Änderung in aufeinanderfolgenden Iterationen
- Subdiagonalelemente bei QR

Vergleich der Eigenwertverfahren

Vergleich der Eigenwertverfahren

- 1. Von-Mises Iteration:
 - Findet betragsmäßig größten Eigenwert
 - Einfach zu implementieren
 - Langsame lineare Konvergenz
- 2. Inverse Iteration:
 - Braucht Näherung für Eigenwert
 - Schnelle Konvergenz
 - LR-Zerlegung pro Schritt nötig
- 3. QR-Verfahren:
 - Berechnet alle Eigenwerte
 - Kubischer Aufwand pro Iteration
 - Globale und stabile Konvergenz

Numerischer Vergleich Matrix $A = \begin{pmatrix} 4 & -1 \\ 1 & 3 \end{pmatrix}$ mit $\lambda_1 = 5, \lambda_2 = 2$

Verfahren	Iterationen	Genauigkeit	Zeit
Von-Mises	23	10^{-8}	1.0
Inverse Iteration	6	10^{-8}	1.5
QR	8	10^{-12}	2.3

- · Von-Mises braucht viele Iterationen
- Inverse Iteration konvergiert schnell
- · OR liefert höchste Genauigkeit

Spektralradius und Konvergenz -

Spektralradius Der Spektralradius einer Matrix A ist definiert als:

$$\rho(A) = \max\{|\lambda| \mid \lambda \text{ ist Eigenwert von } A\}$$

Er gibt den Betrag des betragsmäßig größten Eigenwerts an.

Bedeutung des Spektralradius Der Spektralradius ist wichtig für:

- Konvergenz von Iterationsverfahren
- Stabilität dynamischer Systeme
- Abschätzung von Matrixnormen
- Konvergenz von Potenzreihen mit Matrizen

Konvergenzsatz Für eine Matrix $A \in \mathbb{R}^{n \times n}$ sind äquivalent:

- $\rho(A) < 1$
- $\lim_{k \to \infty} A^k = 0$
- Die Neumannsche Reihe $\sum_{k=0}^{\infty} A^k$ konvergiert
- (I-A) ist invertierbar mit $(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$

Spektralradius bestimmen und anwenden

- 1. Berechnung:
 - Eigenwerte λ_i bestimmen
 - Maximum der Absolutbeträge bilden
 - Bei großen Matrizen: numerische Verfahren
- 2. Konvergenzanalyse:
 - Bei Iterationsverfahren: $\rho(M) < 1$ prüfen
 - Bei Matrixpotenzen: $\rho(A) < 1$ prüfen
 - Konvergenzgeschwindigkeit $\approx |\rho(A)|^k$
- 3. Abschätzungen:
 - $\rho(A) < ||A||$ für jede Matrixnorm
 - $\rho(AB) = \rho(BA)$ für beliebige Matrizen
 - $\rho(A^k) = [\rho(A)]^k$ für $k \in \mathbb{N}$

Anwendungen des Spektralradius

- 1. Iterative Verfahren:
 - Jacobi: $\rho(-D^{-1}(L+R)) < 1$
 - Gauss-Seidel: $\rho(-(D+L)^{-1}R) < 1$
 - SOR: Optimaler Parameter ω bestimmen
- 2. Matrixreihen:
 - Konvergenz von $\sum_{k=0}^{\infty} A^k$ Existenz von $(I-A)^{-1}$

 - Abschätzung der Reihensumme
- 3. Stabilitätsanalyse:
 - Diskrete dynamische Systeme
 - Numerische Integration
 - Differenzenverfahren

Spektralradius und Konvergenz Untersuchen Sie die Konvergenz des Jacobi-Verfahrens für:

$$A = \left(\begin{array}{ccc} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{array}\right)$$

1. Zerlegung A = D + L + R:

$$D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}, L + R = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

2. Jacobi-Matrix $M = -D^{-1}(L+R)$:

$$M = \left(\begin{array}{ccc} 0 & 1/4 & 0 \\ 1/4 & 0 & 1/4 \\ 0 & 1/4 & 0 \end{array}\right)$$

- 3. Eigenwerte von M: $\lambda_1 = 0.5$, $\lambda_2 = 0$, $\lambda_3 = -0.5$
- 4. Spektralradius: $\rho(M) = 0.5 < 1$
- 5. Schlussfolgerung:
 - Jacobi-Verfahren konvergiert
 - Fehler reduziert sich pro Iteration etwa um Faktor 0.5
 - Konvergenzrate ist linear

Prüfungstipps

Typische Fallstricke

- Bei Konditionierung:
 - Vorzeichen bei Fehlerabschätzungen beachten
 - Grenzwertbetrachtungen durchführen
 - Auf Sonderfälle achten (z.B. $x \to 0$)
- Bei Nullstellenproblemen:
 - Konvergenzradius beachten
 - Startwert sinnvoll wählen
 - Abbruchkriterien definieren
- Bei LGS:
 - Pivotisierung nicht vergessen
 - Zeilenvertauschungen dokumentieren
 - Diagonaldominanz pr

 üfen
- Bei Eigenwerten:
 - Vielfachheiten unterscheiden
 - Auf komplexe Eigenwerte achten
 - QR-Schritte sauber durchführen

Beispiele