Exercise sheet 3: Sequence Alignment

Exercise 1 - Alignments		
For the given examples which ones can be called alignments:		
1a)		
AGTTTTT AGGTTTTT		
Hide		
Solution True		
1b)		
CCGTTTTTT -AGGTTTTT		
Hide		
Solution True		
1c)		
CCCGTTTTTGC -CGGTTTTT		
Hide		
Solution False. In an alignment both strings must have the same length		

1d)

AG-TTTTTT AG-GTTTTTT

Hide

Solution False. Gaps cannot be aligned with gaps

Exercise 2 - Hands on Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm enables the calculation of the optimal pairwise sequence alignment with linear gap cost. Given the following two sequences S1, S2 and the given cost function complete the tasks A-D.

$$S1 = TACCGCGC \tag{1}$$

$$S2 = TCCGA (2)$$

$$w(x,y) = \begin{cases} +1 & if \ x = `-` \lor \ y = `-` \\ -1 & if \ x = y \\ 0 & else \end{cases}$$

2a)

Complete the provided table with the correct initialization step.

Hide

Hint1: Formulae

$$D_{0,0} = 0 (3)$$

$$\forall i \le |S1| : D_{i,0} = \sum_{k=1}^{i} w(S1_i, -) \tag{4}$$

$$\forall j \le |S2| : D_{0,j} = \sum_{k=1}^{j} w(-, S2_j)$$
 (5)

Solution

2b)

Hide Using dynamic programming technique fill in all values in the matrix.

Hint1: Formulae

$$\forall i, j > 0 : D_{i,j} = min \begin{cases} D_{i-1,j-1} + w(S1_i, S2_j) \\ D_{i,j-1} + w(-, S2_j) \\ D_{i-1,j} + w(S1_i, -) \end{cases}$$

Solution

2c)

Using the matrix from 1B) find the optimal alignment of the given sequences.

Hide

Solution

TACGCGC | | | | | : T-C-CGA

2d)

Find an optimal alignment of the given sequences, while assuming that the first G character in each sequence has to be matched/aligned.

Hide

Hint1: You can split the alignment at the G and treat it as two separate alignments

Solution

```
TACGCGC TACGCGC TACGCGC |:|| :|| : |:|| : |:|| : TCCGA-- TCCG-A- TCCG-A
```

Exercise 3 - Hirschberg recursion

Which statements about Needleman-Wunsch and the Hirschberg recursion are True and which are False.

3a)

State	ements
	Hirschberg computes global alignment in $O(n^2)$ space. Needleman-Wunsch computes global alignment in $O(n^2)$ time. The Hirschberg recursion is a space optimized version of the Needleman-Wunsch algorithm. Hirschberg computes global alignment in $O(n)$ time.
Solut	ion
\boxtimes	Hirschberg computes global alignment in $O(n^2)$ space. Needleman-Wunsch computes global alignment in $O(n^2)$ time. The Hirschberg recursion is a space optimized version of the Needleman-Wunsch algorithm. Hirschberg computes global alignment in $O(n)$ time.
Exe	ercise 4 - Programming assignment
	amming assignments are available via Github Classroom and contain automatic tests.
We re	commend doing these assignments since they will help you to further understand this topic.
Acces	s the Github Classroom link: Programming Assignment: Sheet 03.