ECE 3030 Spring 2025 Hints

- 1. Calculate width x_{n0} on n-side with V plus reverse voltage Vr. Is the base width narrowing significant.
- 2. Use S&B Fig. 7-7(a) caption to define and calculate M1 and M2. Lecture 35, slide 13.
- 3. Indicate relative size of all electron and hole flows by arrow widths. Reverse of Lecture 34, slides 15 and 17.
- 4. (a) Use μ_p^n to calculate D_p and then L_p and finally, W_b/L_p . Assume $\gamma \sim 1$. From slide 16, Lecture 35 or S&B Eq. 7-18(a), 18(b), and 19, with $\Delta p_C \simeq 0$, obtain I_E . Note that $I_C = \text{sech}(W_b/L_p)$. (b) Use S&B Eq. 7-19 or Charge Control Approximation, Lecture 35, slide 10.
- 5. For B, use S&B Eq. 7-26 and Table 7-1 expansion. For γ , use Solution, Example 7-3, p.367 and the Table 7-1 expansion. The Charge Control approximation for $\beta \sim I_C/I_B$ in Eq. 7.20 (b) and (c) also yields β as τ_p/τ_t (Eq. 7-76) and $\tau_t = W_b^2/2$ D_p. Solve for β using τ_p from Problem 4. See also Lecture 37, slide 16.
- 6. See Lecture 36, slide 8 for Q_p . $\tau_t = W_b^2/2$ D_p . Solve for $f_T = 1/2\pi$ τ_t .
- 7. Want δp high at emitter and as close to zero at collector.