# 1. Ábécék, nyelvek, műveletek (jegyzet, 9-10. oldal)

### 2.7. példa - Nyelvműveletek - Gyakorló feladat

Legyen  $V = \{a, b, c\}$ ,  $L_1 = \{a, c, bb, aba\}$ ,  $L_2 = \{a, abba, baba, caba, abbaba, babaabba\}$ . Adjuk meg az  $L_1 \cup L_2$ ,  $L_1 \cap L_2$ ,  $L_1 L_1$  halmazokat.  $\bigstar$ 

#### 2.8. példa - Nyelvek konkatenációja

Adjunk példát olyan  $L_1$  és  $L_2$  V ábécé feletti nyelvekre, amelyekre  $L_1$   $L_2$  =  $L_2$   $L_1$ . Keressünk nem triviális megoldást is.

#### Triviális megoldások:

- $L_1 = \emptyset$ ,  $L_1 = \{\lambda\}$  vagy a szimmetria miatt  $L_2$ -re teljesül az előző esetek egyike.
- $L_1 = L_2$ .
- V ábécé egyelemű.
- Az egyik nyelvben benne szerepel  $\lambda$ , a másik nyelv pedig a  $V^*$  (univerzális nyelv).

#### Egy nem triviális megoldás:

legyen  $V = \{a, b\}, L_1 = \{\lambda, a\}, L_2$  pedig legyen azon V feletti szavak halmaza, amelyekben pontosan egy b szerepel. Ekkor  $L_1$   $L_2 = L_2$   $L_1 = L_2$ .  $\bigstar$ 

## 2.9. példa - Nyelvek számossága - Gyakorló feladat

Adottak  $L_1$  és  $L_2$  véges nyelvek V ábécé felett, hogy  $|L_1| = n$ ,  $|L_2| = m$ . Mennyi lehet a számossága az  $L_1 \cup L_2$ ,  $L_1 \cap L_2$ ,  $L_1 L_2$  nyelvműveletekkel előálló nyelveknek? Adjunk meg alsó felső korlátot, és példákat.  $\bigstar$ 

Megalden:

• max(m,n) 
$$\leq |L_1 \cup L_2| \leq m + n$$

pl.:  $|\{\{a_i,b_i,c\}\} \cup \{\{a_i,b\}\}| = 3$ 
 $|\{\{a_i,b_i,c\}\} \cup \{\{a_i,b\}\}| = 5$ 

•  $0 \leq |L_1 \cap L_2| \leq \min(m,n)$ 

pl.:  $|\{\{a_i,b_i,c\}\} \cap \{\{a_i,b\}\}| = 0$ 
 $|\{\{a_i,b_i,c\}\} \cap \{\{a_i,b\}\}| = 2$ 

• 
$$\max(w_1) \le |f_1 \cdot f_2| \le |w_1|$$
 $|f_1| : |f_2| : |f_3| : |f_4| : |f_5| = 3$ 
 $|f_4| : |f_4| : |f_4| : |f_5| = 6$ 

Depl:

 $|f_1| : |f_3| : |f_4| : |f_4| : |f_5| : |$ 

## 2.10. példa - Formális nyelvek, nyelvműveletek 1.feladat

Igazoljuk vagy cáfoljuk, hogy  $(L_1 \cup L_2)^* = L_1^* \cup L_2^*$ !

Megoldás: Az állítás hamis. Vegyük a következő ellenpéldát: Legyen  $L_1 = \{a\}$  és  $L_2 = \{b\}$ , ekkor  $(L_1 \cup L_2)^*$  az akárhány a-t és b-t tartalmazó szavak halmaza, még  $L_1^* \cup L_2^*$  a csupa a-t és csupa b-t tartalmazó szavak nyelve lesz.  $\bigstar$ 

#### 2.11. példa - Formális nyelvek, nyelvműveletek 2.feladat

Mivel egyenlő  $L^2$ , ha

$$L = \{ a^n b^n | n > 0 \} ?$$

Megoldás:  $L^2 = \{ a^n b^n a^m b^m | n, m > 0 \}. \star$ 

# 2. Nyelvek→ reguláris kifejezések (jegyzet, 80. oldal)

#### 5.2. példa - Nyelv megadása reguláris kifejezéssel 1. feladat

Adjuk meg reguláris kifejezéssel azt a nyelvet a {0,1} ábécé felett, amely azon szavakból áll, amelyek tartalmazzák részszóként a 010 szót!

Megoldás:  $L=(0+1)^*010(0+1)^* \star$ 

#### 5.3. példa - Nyelv megadása reguláris kifejezéssel 2. feladat

Adjuk meg reguláris kifejezéssel azt a nyelvet a {0,1} ábécé felett, amely azon szavakból áll, amelyek tartalmazzák részszóként a 000 vagy az 111 szót!

Megoldás:  $L=(0+1)^*(000+111)(0+1)^* \star$ 

### 5.4. példa - Nyelv megadása reguláris kifejezéssel 3. feladat

Adjuk meg reguláris kifejezéssel azt a nyelvet a {0,1} ábécé felett, amely azon 1-esre végződő szavakból áll, amelyek nem tartalmazzák részszóként a 00 szót!

Megoldás: *L*=(1+01)\* ★

## 5.5. példa - Nyelv megadása reguláris kifejezéssel 4. feladat

Adjuk meg reguláris kifejezéssel azt a nyelvet a {0,1} ábécé felett, amely azon szavakból áll, melynek 3. betűje 0!

Megoldás:  $L=(00+01+10+11)0(0+1)^* \star$ 

### 5.6. példa - Nyelv megadása reguláris kifejezéssel 5. feladat

Adjuk meg reguláris kifejezéssel azt a nyelvet a {0,1} ábécé felett, amely azon szavakból áll, melyek tartalmaznak legalább három 1-est!

Megoldás: 
$$L=(0+1)^*1(0+1)^*1(0+1)^*1(0+1)^* \star$$

## 5.7. példa - Nyelv megadása reguláris kifejezéssel 6. feladat

Adjuk meg reguláris kifejezéssel azt a nyelvet a {0,1} ábécé felett, amely azon szavakból áll, melyek 5-tel osztható 1-est tartalmaznak!

Megoldás: 
$$L=(0^*10^*10^*10^*10^*10^*)^* \star$$

# 3. Nyelvek → véges automaták

Adjunk olyan determinisztikus véges automatát, ami az alábbi nyelvet fogadja el.

 Az összes olyan { a, b } feletti szót, melyben az "a" betűk száma és a "b" betűk száma is páros.

Megoldás:



- Állapot 1: "a" betűk száma páros, "b" betűk száma páros.
- Állapot 2: "a" betűk száma páratlan, "b" betűk száma páros.
- Állapot 3: "a" betűk száma páros, "b" betűk száma páratlan.
- Állapot 4: "a" betűk száma páratlan, "b" betűk száma páratlan.

b) Az összes olyan { a, b } feletti szót, melyben minden "a" betűt (ha van) "bb" követ.

Megoldás:



b) Az összes olyan { a, b } feletti szót mely "ab"-re végződik.

Megoldás:



# 4. Véges automata determinizálása (jegyzet 88. oldal)

### 5.19. példa - Automata determinizálása 1. feladat

Adjunk meg az  $A=(\{a_0, a_1, a_2\}, \{x, y\}, a_0, \delta, \{a_1\})$  nemdeterminisztikus, parciálisan definiált, véges automatával ekvivalens  $A_d$  determinisztikus, teljesen definiált automatát!

| δ | $a_0$              | $a_1$              | $a_2$            |
|---|--------------------|--------------------|------------------|
| x | { a <sub>2</sub> } | { a <sub>0</sub> } | $\{ a_1, a_2 \}$ |
| у | { a1 }             | { a <sub>2</sub> } | -                |

#### Megoldás



Illetve ha teljesen specifikált automatát akarunk, akkor:



### Ha az állapotokat az alábbiak szerint átnevezzük:

$$b_0 = \{ a_0 \}, b_1 = \{ a_2 \}, b_2 = \{ a_1 \}.$$
  
 $b_3 = \{ a_1, a_2 \}, b_4 = \emptyset.$   
 $b_5 = \{ a_0, a_1, a_2 \}.$ 

### akkor az állapot-átmenet reláció táblázatban:

| δ' | $b_0$ | $b_1$                 | $b_2$ | <i>b</i> <sub>3</sub> | $b_4$ | <i>b</i> <sub>5</sub> |
|----|-------|-----------------------|-------|-----------------------|-------|-----------------------|
| x  | $b_1$ | <i>b</i> <sub>3</sub> | $b_0$ | $b_5$                 | $b_4$ | $b_5$                 |
| у  | $b_2$ | $b_4$                 | $b_1$ | $b_1$                 | $b_4$ | <i>b</i> <sub>3</sub> |

### A véges automata tehát:

- Az  $A_d$  automata bemenő jeleinek halmaza megegyezik az A automata bemenő jeleinek a halmazával.
- Az  $A_d$  automata kezdőállapota az A automata kezdőállapotához rendelt  $b_i$  lesz.
- Az  $A_d$  automata végállapotainak a halmaza pedig tartalmazni fog minden olyan  $b_j$  állapotot, melynek mint halmaznak eleme az A automata bármely végállapota.

#### Jelen esetben:

$$A_d = (\{ b_0, b_1, b_2, b_3, b_4, b_5 \}, \{ x, y \}, b_0, \delta', \{ b_2, b_3, b_5 \}).$$

### 5.20. példa - Automata determinizálása 2. feladat

Adjunk meg az  $A = (\{a_0, a_1\}, \{x, y\}, a_0, \delta, \{a_1\})$  nemdeterminisztikus, parciálisan definiált, véges automatával ekvivalens  $A_d$  determinisztikus, teljesen definiált automatát!

| δ | $a_0$              | $a_1$          |
|---|--------------------|----------------|
| x | $\{a_1\}$          | $\{a_0, a_1\}$ |
| у | { a <sub>0</sub> } | -              |

#### Megoldás:

I.  $b_0=\{a_0\}, b_1=\{a_1\}, b_2=\{a_0, a_1\}, b_3=\emptyset$ .

| II. | δ' | $b_0$ | $b_1$ | $b_2$ | <i>b</i> <sub>3</sub> |
|-----|----|-------|-------|-------|-----------------------|
|     | x  | $b_1$ | $b_2$ | $b_2$ | $b_3$                 |
|     | у  | $b_0$ | $b_3$ | $b_0$ | $b_3$                 |

 $IIIA_d = (\{b_0, b_1, b_2, b_3\}, \{x, y\}, b_0, \delta', \{b_1, b_2\}).$ 



### 5.21. példa - Automata determinizálása 3. feladat

Adjunk meg az  $A = (\{a_0, a_1\}, \{x, y, z\}, a_0, \delta, \{a_0\})$  nemdeterminisztikus, parciálisan definiált, véges automatával ekvivalens  $A_d$  determinisztikus, teljesen definiált automatát!

| δ | $a_0$          | $a_1$          |
|---|----------------|----------------|
| x | $\{a_1\}$      | -              |
| у | -              | $\{a_0, a_1\}$ |
| z | $\{a_0, a_1\}$ | $\{a_0\}$      |

#### Megoldás:

I. 
$$b_0=\{a_0\}, b_1=\{a_1\}, b_2=\emptyset, b_3=\{a_0, a_1\}.$$

| II. | δ' | $b_0$                 | $b_1$ | $b_2$ | $b_3$ |
|-----|----|-----------------------|-------|-------|-------|
|     | x  | $b_1$                 | $b_2$ | $b_2$ | $b_1$ |
|     | у  | $b_2$                 | $b_3$ | $b_2$ |       |
|     | z  | <i>b</i> <sub>3</sub> | $b_0$ | $b_2$ |       |

 $IIIA_d = (\{b_0, b_1, b_2, b_3\}, \{x, y, z\}, b_0, \delta', \{b_0, b_3\}).$ 

#### 5.22. példa - Automata determinizálása 4. feladat

Adjunk meg az  $A = (\{a_0, a_1\}, \{x, y\}, a_0, \delta, \{a_1\})$  nemdeterminisztikus, parciálisan definiált, kimenő jel nélküli, iniciális, végállapotokkal bővített véges automatával ekvivalens  $A_d$  determinisztikus, teljesen definiált automatát!

| δ | $a_0$          | $a_1$          |
|---|----------------|----------------|
| x | $\{a_0, a_1\}$ | $\{a_0, a_1\}$ |
| у | $\{a_0, a_1\}$ | -              |

#### Megoldás:

I.  $b_0 = \{ a_0 \}, b_1 = \{ a_0, a_1 \}.$ 

| II. | δ' | $b_0$ | $b_1$ |
|-----|----|-------|-------|
|     | X  | $b_0$ | $b_1$ |
|     | y  | $b_1$ | $b_1$ |

 $III.A_d = (\{b_0, b_1\}, \{x, y\}, b_0, \delta', \{b_1\}).$ 



### 5.23. példa - Automata determinizálása 5. feladat

Adjunk meg az  $A = (\{a_0, a_1, a_2\}, \{x, y\}, a_0, \delta, \{a_0, a_1\})$  nemdeterminisztikus, parciálisan definiált, véges automatával ekvivalens  $A_d$  determinisztikus, teljesen definiált automatát!

| δ | $a_0$              | $a_1$              | $a_2$              |
|---|--------------------|--------------------|--------------------|
| x | { a <sub>2</sub> } | $\{a_1\}$          | $\{a_1, a_2\}$     |
| у | { a <sub>0</sub> } | { a <sub>2</sub> } | { a <sub>0</sub> } |

#### Megoldás:

I. 
$$b_0=\{a_0\}, b_1=\{a_2\}, b_2=\{a_1, a_2\}, b_3=\{a_0, a_2\}.$$

| II. | δ' | $b_0$ | $b_1$ | $b_2$ | <i>b</i> <sub>3</sub> |
|-----|----|-------|-------|-------|-----------------------|
|     | x  | $b_1$ | $b_2$ | $b_2$ | $b_2$                 |
|     | у  | $b_0$ | $b_0$ | $b_3$ | $b_0$                 |

 $III.A_d = (\{\ b_0,\ b_1,\ b_2,\ b_3\ \},\ \{\ x,\ y\ \},\ b_0,\ \delta',\ \{\ b_0,\ b_2,\ b_3\ \}).$ 

#### 5.24. példa - Automata determinizálása 6. feladat

Adjunk meg az  $A = (\{a_0, a_1, a_2\}, \{x, y\}, a_0, \delta, \{a_1\})$  nemdeterminisztikus, parciálisan definiált, véges automatával ekvivalens  $A_d$  determinisztikus, teljesen definiált automatát!

| δ | $a_0$              | $a_1$          | $a_2$              |
|---|--------------------|----------------|--------------------|
| x | { a <sub>1</sub> } | $\{a_1, a_2\}$ | { a <sub>2</sub> } |
| у | -                  | -              | $\{a_1\}$          |

#### Megoldás:

I.  $b_0=\{a_0\}, b_1=\{a_1\}, b_2=\emptyset, b_3=\{a_1, a_2\}.$ 

| II. | δ' | $b_0$ | $b_1$ | $b_2$ | <i>b</i> <sub>3</sub> |
|-----|----|-------|-------|-------|-----------------------|
|     | x  | $b_1$ | $b_3$ | $b_2$ | $b_3$                 |
|     | у  | $b_2$ | $b_2$ | $b_2$ | $b_1$                 |

 $III.A_d = (\{ b_0, b_1, b_2, b_3 \}, \{ x, y \}, b_0, \delta', \{ b_1, b_3 \}).$ 



## 5.25. példa - Automata determinizálása 7. feladat

Adjunk meg az  $A = (\{a_0, a_1, a_2\}, \{x, y, z\}, a_0, \delta, \{a_1, a_2\})$  nemdeterminisztikus, parciálisan definiált, véges automatával ekvivalens  $A_d$  determinisztikus, teljesen definiált automatát!

| δ | $a_0$              | $a_1$              | $a_2$          |
|---|--------------------|--------------------|----------------|
| x | { a <sub>0</sub> } | -                  | $\{a_0, a_2\}$ |
| у | $\{a_1, a_2\}$     | { a <sub>0</sub> } | -              |
| z | -                  | $\{ a_0, a_1 \}$   | -              |

#### Megoldás:

I.  $b_0 = \{a_0\}, b_1 = \{a_1, a_2\}, b_2 = \emptyset, b_3 = \{a_0, a_2\}, b_4 = \{a_0, a_1\}, b_5 = \{a_0, a_1, a_2\}.$ 

| II. | δ' | $b_0$ | $b_1$ | $b_2$ | <i>b</i> <sub>3</sub> | $b_4$ | $b_5$ |
|-----|----|-------|-------|-------|-----------------------|-------|-------|
|     | X  | $b_0$ | $b_3$ | $b_2$ | $b_3$                 | $b_0$ | $b_3$ |
|     | У  | $b_1$ | $b_0$ | $b_2$ | $b_1$                 | $b_5$ | $b_5$ |
|     | z  | $b_2$ | $b_4$ | $b_2$ | $b_2$                 | $b_4$ | $b_4$ |

 $III.A_d = (\{ b_0, b_1, b_2, b_3, b_4, b_5 \}, \{ x, y, z \}, b_0, \delta', \{ b_1, b_3, b_4, b_5 \}).$ 

### 5.26. példa - Automata determinizálása 8. feladat

Adjunk meg az  $A = (\{ a_0, a_1, a_2, a_3 \}, \{ x, y, z \}, a_0, \delta, \{ a_1, a_3 \})$  nemdeterminisztikus, parciálisan definiált, kimenő jel nélküli, iniciális, végállapotokkal bővített véges automatával ekvivalens  $A_d$  determinisztikus, teljesen definiált automatát!

| δ | $a_0$               | $a_1$          | $a_2$          | <i>a</i> <sub>3</sub> |
|---|---------------------|----------------|----------------|-----------------------|
| x | { a <sub>0</sub> }  | -              | $\{a_2, a_3\}$ | $\{a_1, a_2\}$        |
| у | $\{a_1, a_2, a_3\}$ | $\{a_0\}$      | -              | { a <sub>0</sub> }    |
| z | -                   | $\{a_1, a_2\}$ | $\{a_1, a_3\}$ | { a <sub>1</sub> }    |

#### Megoldás:

I. 
$$b_0=\{a_0\}, b_1=\{a_1, a_2, a_3\}, b_2=\emptyset$$
.

| II. | δ' | $\delta'$ $b_0$ $b_1$ |       | $b_2$ |  |
|-----|----|-----------------------|-------|-------|--|
|     | x  | $b_0$                 | $b_1$ | $b_2$ |  |
|     | у  | $b_1$                 | $b_0$ | $b_2$ |  |
|     | z  | $b_2$                 | $b_1$ | $b_2$ |  |

III. $A_d$ =({  $b_0$ ,  $b_1$ ,  $b_2$  }, { x, y, z },  $b_0$ ,  $\delta'$ , {  $b_1$  }).

# 5. Determinisztikus véges automata minimalizálása

(jegyzet 92. oldal)

### 5.27. példa - Véges elfogadó automata minimalizálása 1. feladat

Készítsük el az Aufenkamp-Hohn-féle minimalizációs algoritmus segítségével az

$$A = (\{a_0, a_1, a_2, a_3, a_4, a_5, a_6\}, \{x, y\}, a_0, \delta, \{a_2, a_4, a_5, a_6\})$$

véges automatával ekvivalens  $A_0$  minimális állapotszámú automatát!

| δ | $a_0$ | $a_1$                 | $a_2$                 | <i>a</i> <sub>3</sub> | <i>a</i> <sub>4</sub> | $a_5$ | $a_6$ |
|---|-------|-----------------------|-----------------------|-----------------------|-----------------------|-------|-------|
| х | $a_2$ | <i>a</i> <sub>5</sub> | $a_1$                 | $a_1$                 | $a_2$                 | $a_1$ | $a_0$ |
| у | $a_1$ | $a_0$                 | <i>a</i> <sub>3</sub> | $a_4$                 | <i>a</i> <sub>5</sub> | $a_3$ | $a_2$ |

#### Megoldás:

(O.) Mielőtt az érdemi munkához hozzáfognánk, meg kell vizsgálni, hogy mely állapotok érhetőek el az *A* automata kezdőállapotából. Azokat az állapotokat, melyek nem érhetőek el, egyszerűen töröljük, mivel nem fognak előfordulni semelyik számítás során sem.

Jelen esetben az  $a_0$  állapotból elérhető állapotok:

 $\{a_0,a_2,a_1,a_3,a_5,a_4\}.$ 

Látható, hogy semmilyen input szó esetén sem kerülhet az A automata  $a_6$  állapotba, ezért ezt az állapotot töröljük. Az így kapott

A ' automatát kell a továbbiakban minimalizálnunk az

Aufenkamp-Hohn-féle minimalizációs algoritmus segítségével:

 $A = (\{a_0, a_1, a_2, a_3, a_4, a_5\}, \{x, y\}, a_0, \delta', \{a_2, a_4, a_5\}).$ 

| δ' | $a_0$ | $a_1$                 | $a_2$ | <i>a</i> <sub>3</sub> | $a_4$ | <i>a</i> <sub>5</sub> |
|----|-------|-----------------------|-------|-----------------------|-------|-----------------------|
| x  | $a_2$ | <i>a</i> <sub>5</sub> | $a_1$ | $a_1$                 | $a_2$ | $a_1$                 |
| у  | $a_1$ | $a_0$                 | $a_3$ | $a_4$                 | $a_5$ | $a_3$                 |

(I.) A feladat megoldásának első lépéseként különböző osztályokba fogjuk sorolni az *A* ' automata belső állapotait. A kezdeti osztályozáskor mindig két osztályba kerülnek az állapotok, attól függően, hogy végállapotok, vagy pedig nem végállapotok.

#### Jelen esetben:

 $C_1 = \{a_0, a_1, a_3\}, \{a_2, a_4, a_5\}.$ 

Ezek után a  $C_{i+1}$ -edik osztályozás esetén két állapot akkor esik egy osztályba, ha egyrészt a  $C_i$ -edik osztályozás esetén is azonos osztályba tartoztak, másrészt pedig minden bemenő jel hatására azonos  $C_i$ -beli osztályban található állapotokba mennek át. Az osztályozás véget ér, amennyiben  $C_i$ = $C_{i+1}$  valamely  $i \ge 1$  esetén.

#### Jelen esetben:

$$C_2 = \{a_0, a_1\}, \{a_3\}, \{a_2, a_5\}, \{a_4\}.$$

$$C_3 = \{a_0, a_1\}, \{a_3\}, \{a_2, a_5\}, \{a_4\}.$$

Mivel  $C_2=C_3$ , ezért az osztályozás véget ért. A  $C_2$  osztályait jelöljük valamely új betűvel, például b-vel:

$$b_0 = \{a_0, a_1\}, b_1 = \{a_3\}, b_2 = \{a_2, a_5\}, b_3 = \{a_4\}.$$

(II.) Készítsük el az A' automatával ekvivalens, minimális állapotszámú  $A_0$  automatát, mely állapothalmazát az osztályozás és az új jelölés bevezetése után kapott  $b_i$  betűk alkotják, a bemenő jeleinek halmaza megegyezik

az A automata bemenő jeleinek halmazával, az átmenetfüggvényét megkapjuk úgy, hogy megnézzük, hogy az adott  $b_i$  osztálybeli állapotok az adott bemenő jel hatására mely  $b_j$  osztálybeli állapotokba mentek át az A' automata esetén, az új kezdőállapot az a  $b_i$  lesz, melynek eleme  $a_0$ , és végül az  $A_0$  automata végállapotait azon  $b_{k_1},...,b_{k_m}$  osztályok alkotják, mely osztályok elemei az A' automata végállapotaiból állnak.

#### Jelen esetben:

 $A_0 = (\{b_0, b_1, b_2, b_3\}, \{x, y\}, b_0, \delta_0, \{b_2, b_3\}).$ 

| $\delta_0$ | $b_0$ | $b_1$ | $b_2$ | <i>b</i> <sub>3</sub> |
|------------|-------|-------|-------|-----------------------|
| X          | $b_2$ | $b_0$ | $b_0$ | $b_2$                 |
| у          | $b_0$ | $b_3$ | $b_1$ | $b_2$                 |



### 5.28. példa - Véges elfogadó automata minimalizálása 2. feladat

Készítsük el az Aufenkamp-Hohn-féle minimalizációs algoritmus segítségével az

 $A = (\{a_0, a_1, a_2, a_3, a_4, a_5, a_6\}, \{x, y\}, a_0, \delta, \{a_0, a_1, a_2, a_3\})$ 

véges automatával ekvivalens  $A_0$  minimális állapotszámú automatát!

| δ | $a_0$          | $a_1$ | $a_2$ | <i>a</i> <sub>3</sub> | $a_4$                 | <i>a</i> <sub>5</sub> | $a_6$ |
|---|----------------|-------|-------|-----------------------|-----------------------|-----------------------|-------|
| X | $a_6$          | $a_6$ | $a_6$ | $a_6$                 | <i>a</i> <sub>5</sub> | $a_0$                 | $a_2$ |
| у | a <sub>6</sub> | аз    | $a_0$ | <i>a</i> <sub>3</sub> | $a_1$                 | $a_4$                 | $a_1$ |

#### Megoldás:

(O.) Az  $a_0$  kezdőállapotból elérhető belső állapotok:  $\{a_0, a_6, a_2, a_1, a_3\}$ .

$$A'=(\{a_0,a_1,a_2,a_3,a_6\},\{x,y\},a_0,\delta',\{a_0,a_1,a_2,a_3\}).$$

| δ' | $a_0$ | $a_1$ | $a_2$ | $a_3$ | $a_6$            |
|----|-------|-------|-------|-------|------------------|
| х  | $a_6$ | $a_6$ | $a_6$ | $a_6$ | $a_2$            |
| у  | $a_6$ | $a_3$ | $a_0$ | $a_3$ | $\overline{a}_1$ |

(I.)

 $C_1 = \{a_0, a_1, a_2, a_3\}, \{a_6\}.$ 

у

 $C_2 = \{a_0\}, \{a_1, a_2, a_3\}, \{a_6\}.$ 

 $C_3 = \{a_0\}, \{a_1, a_3\}, \{a_2\}, \{a_6\}.$ 

 $C_4 = \{a_0\}, \{a_1, a_3\}, \{a_2\}, \{a_6\}.$ 

 $b_0 = \{a_0\}, b_1 = \{a_1, a_3\}, b_2 = \{a_2\}, b_3 = \{a_6\}.$ 

(II.)

 $A_0 = (\{b_0, b_1, b_2, b_3\}, \{x, y\}, b_0, \delta_0, \{b_0, b_1, b_2\}).$ 

| $\delta_0$ | $b_0$ | $b_1$ | $b_2$ | $b_3$                 |
|------------|-------|-------|-------|-----------------------|
| X          | $b_3$ | $b_3$ | $b_3$ | $b_2$                 |
| $\delta_0$ | $b_0$ | $b_1$ | $b_2$ | <i>b</i> <sub>3</sub> |

 $b_1$ 

 $b_0$ 

 $b_1$ 



## 5.29. példa - Véges elfogadó automata minimalizálása 3. feladat

Készítsük el az Aufenkamp-Hohn-féle minimalizációs algoritmus segítségével az

 $b_3$ 

 $A = (\{a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}, \{x, y\}, a_0, \delta, \{a_2, a_7\})$ 

véges automatával ekvivalens  $A_0$  minimális állapotszámú automatát!

| δ | $a_0$                 | $a_1$          | $a_2$                 | $a_3$ | $a_4$ | $a_5$          | $a_6$ | a <sub>7</sub> | $a_8$          |
|---|-----------------------|----------------|-----------------------|-------|-------|----------------|-------|----------------|----------------|
| X | <i>a</i> <sub>3</sub> | a <sub>5</sub> | <i>a</i> <sub>7</sub> | $a_0$ | $a_2$ | $a_0$          | $a_4$ | $a_2$          | a <sub>5</sub> |
| у | $a_8$                 | $a_1$          | $a_3$                 | $a_2$ | $a_6$ | a <sub>7</sub> | $a_3$ | a <sub>5</sub> | $a_2$          |

#### Megoldás:

(O.) Az  $a_0$  kezdőállapotból elérhető belső állapotok:  $\{a_0, a_3, a_8, a_2, a_5, a_7\}$ .

 $A'=(\{a_0,a_2,a_3,a_5,a_7,a_8\},\{x,y\},a_0,\delta',\{a_2,a_7,a_8\}).$ 

| δ' | $a_0$ | $a_2$ | $a_3$ | $a_5$          | a <sub>7</sub> | $a_8$ |
|----|-------|-------|-------|----------------|----------------|-------|
| X  | $a_3$ | $a_7$ | $a_0$ | $a_0$          | $a_2$          | $a_5$ |
| у  | $a_8$ | $a_3$ | $a_2$ | a <sub>7</sub> | $a_5$          | $a_2$ |

```
(I.) C_1 = \{a_0, a_3, a_5, a_8\}, \{a_2, a_7\}. C_2 = \{a_0\}, \{a_3, a_5, a_8\}, \{a_2, a_7\}. C_3 = \{a_0\}, \{a_3, a_5\}, \{a_8\}, \{a_2, a_7\}. C_4 = \{a_0\}, \{a_3, a_5\}, \{a_8\}, \{a_2, a_7\}. b_0 = \{a_0\}, b_1 = \{a_3, a_5\}, b_2 = \{a_8\}, b_3 = \{a_2, a_7\}. (II.) A_0 = (\{b_0, b_1, b_2, b_3\}, \{x, y\}, b_0, \delta_0, \{b_3\}).
```

| $\delta_0$ | $b_0$ | $b_1$ | $b_2$                 | <i>b</i> <sub>3</sub> |
|------------|-------|-------|-----------------------|-----------------------|
| X          | $b_1$ | $b_0$ | $b_1$                 | $b_3$                 |
| у          | $b_2$ | $b_3$ | <i>b</i> <sub>3</sub> | $b_1$                 |

## 5.30. példa - Véges elfogadó automata minimalizálása 4. feladat

Készítsük el az Aufenkamp-Hohn-féle minimalizációs algoritmus segítségével az

 $A = (\{a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7\}, \{x, y, z\}, a_0, \delta, \{a_2, a_4, a_5, a_7\})$  kimenő jel nélküli, iniciális, végállapotokkal bővített véges automatával ekvivalens  $A_0$  minimális állapotszámú automatát!

| δ | $a_0$                 | $a_1$          | $a_2$ | <i>a</i> <sub>3</sub> | $a_4$ | <i>a</i> <sub>5</sub> | $a_6$                 | $a_7$ |
|---|-----------------------|----------------|-------|-----------------------|-------|-----------------------|-----------------------|-------|
| X | $a_6$                 | a <sub>3</sub> | $a_1$ | a <sub>7</sub>        | $a_1$ | $a_0$                 | $a_4$                 | $a_1$ |
| у | <i>a</i> <sub>4</sub> | a <sub>7</sub> | $a_0$ | $a_2$                 | $a_3$ | $a_1$                 | <i>a</i> <sub>5</sub> | $a_6$ |
| z | a <sub>5</sub>        | $a_2$          | $a_6$ | $a_1$                 | аз    | a <sub>6</sub>        | $a_0$                 | $a_6$ |

#### Megoldás:

#### (O.) Az *a*<sub>0</sub> kezdőállapotból elérhető belső állapotok:

 $\{a_0, a_6, a_4, a_5, a_1, a_3, a_7, a_2\}.$ 

Mivel a kezdőállapotból minden állapot elérhető, ezért nem törlünk egyetlen állapotot sem, tehát A'=A.

(I.)

$$C_1 = \{a_0, a_1, a_3, a_6\}, \{a_2, a_4, a_5, a_7\}.$$

$$C_2 = \{a_0, a_1\}, \{a_3, a_6\}, \{a_2, a_4, a_5, a_7\}.$$

$$C_3 = \{a_0, a_1\}, \{a_3, a_6\}, \{a_2, a_5\}, \{a_4, a_7\}.$$

$$C_4 = \{a_0, a_1\}, \{a_3, a_6\}, \{a_2, a_5\}, \{a_4, a_7\}.$$

$$b_0 = \{a_0, a_1\}, b_1 = \{a_3, a_6\}, b_2 = \{a_2, a_5\}, b_3 = \{a_4, a_7\}.$$

(II.)

$$A_0 = (\{b_0, b_1, b_2, b_3\}, \{x, y, z\}, b_0, \delta_0, \{b_2, b_3\}).$$

| $\delta_0$ | $b_0$ | $b_1$ | $b_2$ | <i>b</i> <sub>3</sub> |
|------------|-------|-------|-------|-----------------------|
| X          | $b_1$ | $b_3$ | $b_0$ | $b_0$                 |
| у          | $b_3$ | $b_2$ | $b_0$ | $b_1$                 |
| z          | $b_2$ | $b_0$ | $b_1$ | $b_1$                 |

# 6. Véges automata → reguláris kifejezés

Konstruáljunk reguláris kifejezést az alábbi automaták által elfogadott nyelvekhez.



Reg. Lif.: baa\*



Reg. 4:1: 6\*a (c6\*a+6)\*(c6\*+ x)+6\*



leg. rit: ast (6+aba) (aasta +as)\*(7+aas\*)

Az automata két állapottal rendelkezik ( $q_1,q_2$ ), ezért két egyenletünk lesz. Az automata álta elfogadott nyelvet leíró reguláris kifejezést  $Q_1$ -re megoldva fogjuk kapni.

Írjuk fel tehát először  $Q_1$ -et:

$$Q_1 = bQ_1 + aQ_2.$$

A jobboldalon egy kéttagú unió szerepel: b-vel maradhatunk  $q_1$ -ben, ezért jelenik meg  $bQ_1$ , míg a-vel átléphetünk  $q_2$ -be, ezért lesz  $aQ_2$ .

Folytassuk  $Q_2$ -vel:

$$Q_2 = aQ_2 + \lambda$$
.

Itt csak egyetlen állapotátmenetet kellett figyelembe vennünk: a-val  $q_2$ -ben maradunk. Ez $\epsilon$  felül megjelenik egy  $\lambda$  tag is, hiszen  $q_2$  elfogadó állapot.

Az egyenleteket felírva, kezdjük el a megoldást! Dolgozzunk először a második egyenletünkkel:

$$Q_2 = aQ_2 + \lambda$$
.

Erre alkalmazhatjuk az Arden lemmát, hiszen (a nyelveket reguláris kifejezésekkel leírva):

- $L = Q_2$ ,
- U = a.
- $V = \lambda$ .

Azaz

$$Q_2 = a^*\lambda = a^*$$
.

Az első egyenletünkben  $Q_2$  helyére beírhatjuk az előző egyenlet jobb oldalát:

$$Q_1 = bQ_1 + a(a^*) = bQ_1 + aa^*.$$

Végül újra alkalmazhatjuk az Arden lemmát:

$$Q_1 = b^*aa^*$$
.

Mivel  $q_1$  az automata kezdőállapota, ezért készen vagyunk, az automata által elfogadott nyelvet leírhatjuk a

$$b^*aa^*$$

reguláris kifejezéssel.

Írjuk fel az egyenletrendszert:

$$Q_1 = bQ_1 + aQ_2 + \lambda$$
  $Q_2 = bQ_2 + cQ_1 + \lambda$ 

Kezdjük a megoldást a második egyenlettel:

$$egin{aligned} Q_2 &= bQ_2 + cQ_1 + \lambda \ Q_2 &= b^*(cQ_1 + \lambda) \ Q_2 &= b^*cQ_1 + b^* \end{aligned} \qquad ext{(Arden lemma)}$$

Folytassuk  $Q_1$ -gyel:

Készen vagyunk, a megoldás a következő:

$$(b+ab^*c)^*(ab^*+\lambda).$$

Írjuk fel az egyenletrendszert:

$$Q_1=aQ_2+bQ_3$$
  $Q_2=bQ_2+aQ_3+\lambda$   $Q_3=aQ_1+\lambda$ 

Kezdjük a megoldást a második egyenlettel:

$$egin{aligned} Q_2 &= bQ_2 + aQ_3 + \lambda \ Q_2 &= b^*(aQ_3 + \lambda) \end{aligned} \qquad & ext{(Arden lemma)} \ Q_2 &= b^*aQ_3 + b^* \qquad & ext{(konkatenáció)} \ Q_2 &= b^*a(aQ_1 + \lambda) + b^* \qquad & ext{(beírunk $Q_3$ helyére)} \ Q_2 &= b^*aaQ_1 + b^*a + b^* \qquad & ext{(konkatenáció)} \end{aligned}$$

Folytassuk az első egyenlettel:

$$\begin{array}{ll} Q_1=aQ_2+bQ_3\\ Q_1=aQ_2+b(aQ_1+\lambda) & \text{(beĭrunk }Q_3\text{ helyére)}\\ Q_1=aQ_2+baQ_1+b & \text{(konkatenáció)}\\ Q_1=a(b^*aaQ_1+b^*a+b^*)+baQ_1+b & \text{(beĭrunk }Q_2\text{ helyére)}\\ Q_1=ab^*aaQ_1+ab^*a+ab^*+baQ_1+b & \text{(konkatenáció)}\\ Q_1=(ab^*aa+ba)Q_1+ab^*a+ab^*+b & \text{(kiemelünk }Q_1\text{ elé)}\\ Q_1=(ab^*aa+ba)^*(ab^*a+ab^*+b) & \text{(Arden lemma)} \end{array}$$

Készen vagyunk, a megoldás a következő:

$$(ab^*aa + ba)^*(ab^*a + ab^* + b).$$

# 7. reguláris kifejezés → véges automata

(J. Martin 113. oldal, M. Sipser 69. oldal)

Konstruáljunk véges automatát ami az  $((aa + b)^*(aba)^*bab)^*$  reguláris kifejezés által leírt nyelvet fogadja el.



In Figure 1.59, we convert the regular expression  $(a \cup b)^*aba$  to an NFA. A few of the minor steps are not shown.



# 8. Pumpálási lemma reguláris nyelvekre (M. Sipser 81. oldal)

EXAMPLE 1.75 .....

Let  $F = \{ww | w \in \{0,1\}^*\}$ . We show that F is nonregular, using the pumping lemma.

Assume to the contrary that F is regular. Let p be the pumping length given by the pumping lemma. Let s be the string  $0^p10^p1$ . Because s is a member of F and s has length more than p, the pumping lemma guarantees that s can be split into three pieces, s = xyz, satisfying the three conditions of the lemma. We show that this outcome is impossible.

Condition 3 is once again crucial, because without it we could pump s if we let x and z be the empty string. With condition 3 the proof follows because y must consist only of 0s, so  $xyyz \notin F$ .

Observe that we chose  $s = 0^p 10^p 1$  to be a string that exhibits the "essence" of the nonregularity of F, as opposed to, say, the string  $0^p 0^p$ . Even though  $0^p 0^p$  is a member of F, it fails to demonstrate a contradiction because it can be pumped.

## Magyarázatképpen:

A fenti könyv a következő módon mondja ki a pumpálási lemmát:

**Pumping lemma** If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each  $i \geq 0$ ,  $xy^i z \in A$ ,
- 2. |y| > 0, and
- 3.  $|xy| \leq p$ .

azaz a "p pumping length" jelenti azt a számot, aminél hosszabb egy "elég hosszú" szó. A "condition 3" pedig a 3. feltétel, vagyis az, hogy az xyz felosztás xy részének hossza kisebb mint p.

A "p pumping length" és a "condition 3" a következő magyarázatokban is a fentiekre vonatkozik, "condition 2" pedig azt mondja ki, hogy az xyz felosztás y része nem üres.

Sometimes "pumping down" is useful when we apply the pumping lemma. We use the pumping lemma to show that  $E = \{0^i 1^j | i > j\}$  is not regular. The proof is by contradiction.

Assume that E is regular. Let p be the pumping length for E given by the pumping lemma. Let  $s = 0^{p+1}1^p$ . Then s can be split into xyz, satisfying the conditions of the pumping lemma. By condition 3, y consists only of 0s. Let's examine the string xyyz to see whether it can be in E. Adding an extra copy of y increases the number of 0s. But, E contains all strings in  $0^*1^*$  that have more 0s than 1s, so increasing the number of 0s will still give a string in E. No contradiction occurs. We need to try something else.

The pumping lemma states that  $xy^iz \in E$  even when i = 0, so let's consider the string  $xy^0z = xz$ . Removing string y decreases the number of 0s in s. Recall that s has just one more 0 than 1. Therefore xz cannot have more 0s than 1s, so it cannot be a member of E. Thus we obtain a contradiction.

#### EXAMPLE **1.76**

Here we demonstrate a nonregular unary language. Let  $D = \{1^{n^2} | n \ge 0\}$ . In other words, D contains all strings of 1s whose length is a perfect square. We use the pumping lemma to prove that D is not regular. The proof is by contradiction.

Assume to the contrary that D is regular. Let p be the pumping length given by the pumping lemma. Let s be the string  $1^{p^2}$ . Because s is a member of D and s has length at least p, the pumping lemma guarantees that s can be split into three pieces, s=xyz, where for any  $i\geq 0$  the string  $xy^iz$  is in D. As in the preceding examples, we show that this outcome is impossible. Doing so in this case requires a little thought about the sequence of perfect squares:

$$0, 1, 4, 9, 16, 25, 36, 49, \dots$$

Note the growing gap between successive members of this sequence. Large members of this sequence cannot be near each other.

Now consider the two strings xyz and  $xy^2z$ . These strings differ from each other by a single repetition of y, and consequently their lengths differ by the length of y. By condition 3 of the pumping lemma,  $|xy| \le p$  and thus  $|y| \le p$ . We have  $|xyz| = p^2$  and so  $|xy^2z| \le p^2 + p$ . But  $p^2 + p < p^2 + 2p + 1 = (p+1)^2$ . Moreover, condition 2 implies that y is not the empty string and so  $|xy^2z| > p^2$ . Therefore the length of  $xy^2z$  lies strictly between the consecutive perfect squares  $p^2$  and  $(p+1)^2$ . Hence this length cannot be a perfect square itself. So we arrive at the contradiction  $xy^2z \notin D$  and conclude that D is not regular.

# 5.48. példa - Iterációs lemma alkalmazása

Legyen  $L=\{a^mb^m|m>0\}$ . Felhasználva a reguláris pumpáló lemmát, kimutatjuk, hogy ez a nyelv nem reguláris. Tegyük fel hogy az, s jelöljön n egy konstanst, mely mellett L kielégíti a reguláris pumpáló lemma tulajdonságait. Ilyen n- t viszont nem fogunk találni, hiszen az  $a^nb^n$  szó minden olyan uvw felbontására, melyre  $|uv| \le n$  és |v| > 0, azt kapjuk, hogy  $uw = a^{n-|v|}b^n$ , azaz  $uw \notin L$ . (Hasonlóan, minden i > 1- re  $uv^iw = a^{n+(i-1)|v|}b^n \notin L$ .) Ezt az ellentmondást csak az indirekt feltevésünk hamissága okozhatja, tehát L nem reguláris.  $\bigstar$ 

The Language 
$$\{x \in \{a, b\}^* \mid n_a(x) > n_b(x)\}$$

Let L be the language

$$L = \{x \in \{a, b\}^* \mid n_a(x) > n_b(x)\}\$$

The first sentence of a proof using the pumping lemma is always the same: Suppose for the sake of contradiction that there is an FA M that accepts L and has n states. There are more possibilities for x than in the previous example; we will suggest several choices, all of which satisfy  $|x| \ge n$  but some of which work better than others in the proof.

First we try  $x = b^n a^{2n}$ . Then certainly  $x \in L$  and  $|x| \ge n$ . By the pumping lemma, x = uvw for some strings u, v, and w satisfying conditions 1–3. Just as in Example 2.30, it follows from conditions 1 and 2 that  $v = b^k$  for some k > 0. We can get a contradiction from condition 3 by considering  $uv^iw$ , where i is large enough that  $n_b(uv^iw) \ge n_a(uv^iw)$ . Since  $|v| \ge 1$ , i = n + 1 is guaranteed to be large enough. The string  $uv^{n+1}w$  has at least n more b's than x does, and therefore at least 2n b's, but it still has exactly 2n a's.

Suppose that instead of  $b^n a^{2n}$  we choose  $x = a^{2n} b^n$ . This time x = uvw, where v is a string of one or more a's and  $uv^iw \in L$  for every  $i \ge 0$ . The way to get a contradiction now is to consider  $uv^0w$ , which has fewer a's than x does. Unfortunately, this produces a contradiction only if |v| = n. Since we don't know what |v| is, the proof will not work for this choice of x.

The problem is not that x contains a's before b's; rather, it is that the original numbers of a's and b's are too far apart to guarantee a contradiction. Getting a contradiction in this just barely satisfied, then ideally any change in the right direction will cause it to fail. A better choice, for example, is  $x = a^{n+1}b^n$ . (If we had used  $x = b^na^{n+1}$  instead of  $b^na^{2n}$  for our first choice, we could have used i = 2 instead of i = n to get a contradiction.)

Letting  $x = (ab)^n a$  is also a bad choice, but for a different reason. We know that x = uvw for some strings u, v, and w satisfying conditions 1–3, but now we don't have enough information about the string v. It might be  $(ab)^k a$  for some k, so that  $uv^0 w$  produces a contradiction; it might be  $(ba)^k b$ , so that  $uv^2 w$  produces a contradiction; or it might be either  $(ab)^k$  or  $(ba)^k$ , so that changing the number of copies of v doesn't change the relationship between  $n_a$  and  $n_b$  and doesn't give us a contradiction.

# The Language $L = \{a^{i^2} \mid i \ge 0\}$

Whether a string of a's is an element of L depends only on its length; in this sense, our proof will be more about numbers than about strings.

Suppose L can be accepted by an FA M with n states. Let us choose x to be the string  $a^{n^2}$ . Then according to the pumping lemma, x = uvw for some strings u, v, and w satisfying conditions 1-3. Conditions 1 and 2 tell us that  $0 < |v| \le n$ . Therefore,

$$n^2 = |uvw| < |uv^2w| = n^2 + |v| \le n^2 + n < n^2 + 2n + 1 = (n+1)^2$$

This is a contradiction, because condition 3 says that  $|uv^2w|$  must be  $i^2$  for some integer i, but there is no integer i whose square is strictly between  $n^2$  and  $(n+1)^2$ .