1 Dynamik

1.1 Definitionen

1.1.1 Masse

Masse ist Eigenschaft eines Köpers ⇒ überall gleich (im Gegensatz zu Gewicht).

1.1.2 Lineare Impuls

Der lineare Impuls ist definiert als

$$p = mv$$
 mit Einheit $\frac{kg\dot{m}}{s}$

$$\frac{m_A}{m_B} = \frac{v_B}{v_A} \Rightarrow p_A + p_B = 0$$

In einem isolierten System ist der Gesamtimpuls erhalten.

1.1.3 Kraft

Die Kraft ist die zeitliche änderung des Impulses:

$$F = ma(t)$$
 mit Einheiten $1N = \frac{kg \cdot m}{s^2}$

1.2 Newtonsche Gesetze

1.2.1 Trägheitsprinzip

Ein Köper bleibt in Ruhe oder bewegt sich mit konstanter Geschwindigkeit, wenn er isoliert ist.

1.2.2 Aktionsprinzip

Die Beschleunigung eines Köpers ist umgekehrt proportional zu seiner Masse und direkt proportional zur resultierenden Kraft, die auf ihn wirkt.

1.2.3 Aktions-Reaktions-Prinzip

Zu jeder Aktion gehört eine gleich grosse Reaktion, die denselben Betrag besitzt aber in die entgegengesetzte Richtung zeigt.

1.3 Raketenantrieb

- v(t) Geschwindigkeit der Rakete bezüglich dem festen Koordinatensystem
 - u Konstante Ausstossgeschwindigkeit des Gases $relativ\ zur$ Rakete (relativ zum festgelegten Koordinatensystem mit Geschwindigkeit v-u)
- M(t) Gesamtmasse, also Rakete + Treibstoff zur Zeit t

Der Gesamtimpuls der Rakete zur Zeit t ist gleich

$$p(t) = M(t)v(t)$$

Auf die Rakete wirkt die **Schubkraft** F

$$F = u \frac{dm}{dt}$$

Und die Geschwindigkeit

$$v(t) - v_0 = -u(\ln(M_0 - m) - \ln(M_0))$$

wobei M_0 die Anfangsmasse und m die Gesamtmasse des ausgestossenen Gases ist.

Oder als Funktion der ausgestossenen Masse (mit $v_0 = 0$)

$$v = u \ln(\frac{1}{1 - \frac{m}{M_0}})$$

1.4 Schiefe Ebene

1.4.1 Statischer Fall

$$F + N + Mg = 0$$

Daraus folgt

$$F = Mg\sin(\theta)$$

$$N = Mg\cos(\theta)$$

1.4.2 Dynamischer Fall

$$N + Mg = F_{res} = Ma$$

Dank der Normalkraft verschwindet die Beschleunigung in *y*-Richtung. In *x*-Richtung ist sie gleich

$$a_x = -g\sin(\theta)$$

1.5 Federkraft

$$F = -k(x - x_0) = -k\Delta x$$

wobei k die Federkonstante mit Einheit $\frac{N}{m}$, x_0 die Länge der Feder im unbelasteten Zustand ist.

1.6 Bewegung mit Rollen

$$S = Ma$$
$$a = \frac{m}{M+m}g$$

1.7 Atwoodsche Fallmaschine

$$a_1 = -a_2 = \frac{m_2 - m_1}{m_2 + m_1} g$$

$$S = \frac{2m_1 m_2}{m_1 + m_2} g \quad \text{wobei} \quad |a_1| = |a_2| < g$$

1.8 Harmonische Schwingungen

$$x(t) = A\sin(\omega t + \delta)$$

$$v(t) = A\omega\cos(\omega t + \delta)$$

$$a(t) = -A\omega^2 \sin(\omega t + \delta) = -\omega^2 x(t)$$

wobei A die Amplitude, ω die Kreisfrequenz und δ die Phasenkonstante ist.

Die **Kreisfrequenz** ω hängt dabei nur von der Rückstellkraftkonstante k und der Masse m ab

$$\omega = \sqrt{\frac{k}{m}}$$

Der Winkel der Sinusfunktion wird als **Phase** der Schwingung bezeichnet

$$\varphi(t) = \omega t + \delta$$

wobei δ die ursprüngliche Phase zur Zeit t=0 ist.

Die **Periode** T ist die Zeit, die benötigt wird, um eine vollständige Schwingung durchzuführen

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

Die **Frequenz** v ist die Anzahl der Schwingungen pro Zeit

$$v = \frac{1}{T} = \frac{\omega}{2\pi}$$

Die **Kraft** F zeigt immer Richtung Ursprung und ist gleich

$$F(t) = ma(t) = -m\omega^2 x(t)$$

1.9 Gravitation

$$F_{12} = -\frac{Gm_1m_2}{r^2}$$
 wobei $F_{12} = -F_{21}$

Hinweis: Alle Körper, unabhängig von ihren Massen, werden von der Erde gleich beschleunigt.