Tabla de integrales inmediatas

TABLA DE INTEGRALES INMEDIATAS	
Funciones simples	Funciones compuestas
$\int dx = x + C$	
$\int k dx = kx + C$	
$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \text{n } \neq -1$	$\int u^n \cdot u' \cdot dx = \frac{u^{n+1}}{n+1} + C \qquad n \neq -1$
$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{u'}{u} dx = \ln u + C$
$\int e^x dx = e^x + C$	$\int e^u \cdot u' dx = e^u + C$
$\int a^x dx = \frac{a^x}{\ln a} + C$	$\int a^u \cdot u' dx = \frac{a^u}{\ln a} + C$
$\int \cos x dx = \sin x + C$	$\int \cos u \cdot u' dx = \sin u + C$
$\int sen x dx = -cos x + C$	$\int sen u \cdot u' dx = -cos u + C$
$\int \frac{1}{\cos^2 x} dx = tg x + C$	$\int \frac{1}{\cos^2 u} \cdot u' dx = tg u + C$
$\int (1+tg^2x)dx = tgx + C$	$\int (1+tg^2 \mathbf{u}) \cdot \mathbf{u}' dx = tg u + C$
$\int \frac{-1}{sen^2 x} dx = \cot g \ x + C$	$\int \frac{-1}{sen^2 u} \cdot u' dx = \cot g u + C$
$\int \frac{1}{1+x^2} dx = arc tg x + C$	$\int \frac{1}{1+u^2} \cdot u' dx = arc tg u + C$
$\int \frac{-1}{1+x^2} dx = \operatorname{arc} \cot g \ x + C$	$\int \frac{-1}{1+u^2} \cdot u' dx = \operatorname{arc} \cot g u + C$
$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$	$\int \frac{1}{\sqrt{1-u^2}} \cdot u' dx = arc sen u + C$
$\int \frac{-1}{\sqrt{1-x^2}} dx = \arccos x + C$	$\int \frac{-1}{\sqrt{1-u^2}} \cdot u' dx = \arccos u + C$

Integral Indefinida	Dada una función $f(x)$, decimos que la función $F(x)$ es una primitiva de $f(x)$ si se cumple: $F'(x) = f(x)$. Se representa por: $\int f(x) dx = F(x) + C$
Propiedades de la integral indefinida	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
Integración por sustitución	El método de integración por sustitución consiste en introducir una variable t, que sustituye a una expresión apropiada en función de x, de forma que la integral se transforme en otra de variable t, más fácil de integrar.
Integración por partes	$\int u \cdot dv = u \cdot v - \int v \cdot du$
Integración de funciones racionales	*grado [P(x)] \(\geq \text{grado [Q(x)]} \) $\int \frac{P(x)}{Q(x)} dx = \int C(x) dx + \int \frac{R(x)}{Q(x)} dx$
	* grado [P(x)] < grado [Q(x)] - si Q(x) tiene sólo raíces reales simples: $\int \frac{P(x)}{Q(x)} dx = \int \frac{A}{x-a} dx + \int \frac{B}{x-b} dx + + \int \frac{M}{x-m} dx$ - si Q(x) tiene raíces reales simples y múltiples: $\int \frac{P(x)}{Q(x)} dx = \int \frac{A_1}{x-a} dx + \int \frac{A_2}{(x-a)^2} dx + + \int \frac{A_p}{(x-a)^p} dx + + \int \frac{B_1}{x-b} dx + \int \frac{B_2}{(x-b)^2} dx + + \int \frac{B_p}{(x-b)^q} dx + + \int \frac{M_1}{x-m} dx + \int \frac{M_2}{(x-m)^2} dx + + \int \frac{M_p}{(x-m)^r} dx$ - si Q(x) tiene una raíz real simple y dos complejas conjugadas: $\int \frac{R(x)}{Q(x)} dx = \int \frac{A}{x-a} dx + \int \frac{Mx+N}{px^2+qx+r} dx$
Integración de funciones circulares	- Para calcular la primitiva $\int sen^m x \cdot cos^n x dx$, siendo n o m impares, hacemos el cambio $sen x = t$ o $cos x = t$, respectivamente. - Para calcular la primitiva $\int sen^m x \cdot cos^n x dx$ siendo n y m pares, la transformamos, utilizando las fórmulas del seno y coseno del ángulo doble, en otra más fácil de obtener.