FE/SEMI (ALL BRANIHS)

sub-Applied mathematio-In 7770

Con. 5543-10.

(3 Hours)

[Total Marks: 100

5

5

5

5

8

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four from remaining six questions.
- (3) Figures to the right indicate full marks.
- (4) Assume the suitable data if needed with justification.

1. (a) Express $(1+7i)(2-i)^{-2}$ in the form of $r(\cos\theta+i\sin\theta)$ and prove that its fourth power

(b) If
$$u = z \tan^{-1} \frac{y}{x}$$
 find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$

(c) Find
$$\nabla \cdot \overline{F} \& \nabla \times \overline{F}$$
 where $\overline{F} = \frac{1}{(x^2 + y^2)} (x\hat{i} - y\hat{j})$

(d) Test the convergence of the series
$$\sum \frac{\sqrt{n}}{\sqrt{n^2+1}} x_1^n$$

2.(a) Prove that
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^7}{5} - \frac{x^7}{7} + \frac{x^7}{7} + \frac{x^7}{5} - \frac{x^7}{7} + \frac{x^7}{7} + \frac{x^7}{7} + \frac{x^7}{7} + \frac{x^7}{7} + \frac{x^7}{7} + \frac{x^7}{7$$

Hence expand
$$\log(1+x^2)$$
 in powers of x

(b) If
$$z = f(x, y)$$
, $x = ucoshv$, $y = usinhv$, prove that $\left(\frac{\partial z}{\partial u}\right)^2 - \frac{1}{u^2}\left(\frac{\partial z}{\partial v}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2$

(c) Show that for real values of a and b,
$$e^{2aicot^{-1}b} \left[\frac{bi-1}{b\underline{i}+1} \right]^{-a} = 1$$

3.(a) State Euler's theorem for function of 3 variables and

hence verify the same for
$$u = log(\frac{xy+yz+zx}{x^2+y^2+z^2})$$

(b) Determine $y_n(0)$ if $y = \frac{x^3}{x^2-1}$

(b) Determine
$$y_n(0)$$
 if $y = \frac{x^3}{x^2 - 1}$

(c) Find the constants a, b, c if the normal to the surface
$$ax^2 + yz + bxz^3 = c$$
 at

P(1,2,1) is parallel to the normal to the surface
$$y^2 + xz = 61$$
 at Q(10,1,6).

6

8

6

4.(a) Find the cube roots of unity. If w is a complex cube root of unity, prove that

(i)
$$1+w+w^2=0$$

$$(ii) \frac{1}{1+2w} + \frac{1}{2+w} - \frac{1}{1+w} = 0$$

8

(b) Use Rolle's Theorem to prove that the equation $ax^2 + bx = \frac{a}{3} + \frac{b}{3}$ has a root between 0 & 1.

6

(c) Find
$$xu_x + yu_y + zu_z$$
 for $u = \cos \frac{xy + yz}{x^2 + y^2 + z^2} + \sin(\sqrt{x} + \sqrt{y} + \sqrt{z})$

6

5.(a) If
$$\frac{x^2}{a^2+u} + \frac{y^2}{b^2+u} + \frac{z^2}{c^2+u} = 1$$
,

(b) Find a, b, c given that

8

prove that
$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 = 2\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}\right)$$

Find a, b, c given that $\lim_{x\to 0} \frac{ae^x - be^{-x} - be^{-x}}{x - siex}$

6

(c) Prove that $\sin h^{-1}(\tan \theta) = \log \left(\tan \left(\frac{\theta}{2} + \frac{h}{4}\right)\right)$.

6

8

6.(a) if
$$y^{\frac{1}{m}} + y^{\frac{-1}{m}} = 2x$$
,

Prove that $(x^2-1)y_{n+2} + x(2n+1)y_{n+1} + (n^2-m^2)y_n = 0$ (b) The diameter and altitude of a san in shape of right circular cylinder are measured as 4cm & 6cm respectively. The possible error in each measurement is 0.1cm. Find approximately the maximum possible error in the value computed for the volume & lateral surface.

6

(c) If
$$x + iy = c \cot(x + iv)$$
, show that $\frac{x}{\sin 2u} = \frac{-y}{\sinh 2v} = \frac{c}{\cosh 2v - \cos 2u}$

6

7.(a) Find the stationary values of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$

8

(b) If $a = \cos 3\alpha$ $\sin 3\alpha$, $b = \cos 3\beta + i \sin 3\beta$, $c = \cos 3\gamma + i \sin 3\gamma$ then prove that

 $3\sqrt{\frac{ab}{ab}} = 2\cos(\alpha + \beta - \gamma)$

б

(c) if $\vec{r} = a\cos t \hat{i} + a\sin t \hat{j} + at\tan\alpha \hat{k}$, then prove that

(i)
$$\begin{bmatrix} \dot{r} & \ddot{r} & \ddot{r} \end{bmatrix} = a^3 \tan \alpha$$

(ii)
$$|\dot{\vec{r}} \times \ddot{\vec{r}}| = a^2 \sec \alpha$$

6