Structure learning with deep neuronal networks

6th Network Modeling Workshop, 6/6/2013

Patrick Michl

Agenda

Autoencoders

Biological Model

Validation & Implementation

Dataset

Model

Real world data usually is high dimensional ...

Dataset

Model

... which makes **structural analysis** and modeling complicated!

Dataset

Model

Dataset

Model

... can not preserve **complex structures**!

Therefore the analysis of unknown structures ...

Dataset

Model

... needs more considerate nonlinear techniques!

Autoencoder

Artificial Neuronal Network

Autoencoders are artificial neuronal networks ...

Autoencoders

Page 11

Autoencoder

Artificial Neuronal Network

Autoencoders are artificial neuronal networks ...

Page 12

Autoencoder

- Artificial Neuronal Network
- Multiple hidden layers

... with **multiple hidden layers**.

Page 13

Autoencoder

- Artificial Neuronal Network
- Multiple hidden layers

Such networks are called **deep networks**.

Page 14

Autoencoders

Autoencoder

- Artificial Neuronal Network
- Multiple hidden layers

Definition (deep network)

Deep networks are artificial neuronal networks with multiple hidden layers

Such networks are called **deep networks**.

Page 15

Autoencoder

• Deep network

Such networks are called **deep networks**.

Page 16

Autoencoders

Autoencoder

- Deep network
- Symmetric topology

Autoencoders have a symmetric topology ...

Page 17

Autoencoders

Autoencoder

- Deep network
- Symmetric topology

... with an **odd number** of hidden layers.

Page 18

Autoencoder

- Deep network
- Symmetric topology
- Information bottleneck

The small layer in the center works lika an information bottleneck

Page 19

Autoencoders

Autoencoder

- Deep network
- Symmetric topology
- Information bottleneck

... that creates a **low dimensional code** for each sample in the input data.

Page 20

Autoencoders

Autoencoder

- Deep network
- Symmetric topology
- Information bottleneck
- Encoder

The upper stack does the **encoding** ...

Page 21

Autoencoder

- Deep network
- Symmetric topology
- Information bottleneck
- Encoder
- Decoder

... and the lower stack does the **decoding**.

Page 22

6/6/2013

Autoencoders

Autoencoder

- Deep network
- Symmetric topology
- Information hottleneck
- Definition (autoencoder)

Autoencoders are *deep networks* with a *symmetric topology* and an odd number of hiddern layers, containing a *encoder*, a low dimensional representation and a *decoder*.

input data X output data X'

... and the lower stack does the **decoding**.

Encoder

Autoencoders

Autoencoder

Problem: dimensionality of data

Idea:

- Train autoencoder to minimize the distance between input X and output X'
- Encode X to low dimensional code Y
- Decode low dimensional code Y to output X'
- Output X' is low dimensional

Autoencoders can be used to reduce the dimension of data ...

Page 24

6/6/2013

Autoencoders

Autoencoder

Problem: dimensionality of data

Idea:

- 1. Train autoencoder to minimize the distance between input **X** and output **X**'
- 2. Encode **X** to low dimensional code **Y**
- 3. Decode low dimensional code Y to output X⁴
- 4. Output **X** is low dimensional

... if we can train them!

Page 25

Autoencoders

Autoencoder

Training

Backpropagation

In feedforward ANNs backpropagation is a good approach.

Training

Backpropagation

(1) The distance (error) between current output \mathbf{X}' and wanted output \mathbf{Y} is computed. This gives a error function

$$X' = F(X)$$

error = $\sqrt{X'^2 - Y}$

output data X'

In feedforward ANNs backpropagation is a good approach.

Page 27

Autoencoders

Autoencoder

Training

Backpropagation

(1) The distance (error) between current output **X**' and wanted output **Y** is computed. This gives a error function

Example (linear neuronal unit with two inputs)

Page 28

Autoencoders

Autoencoder

Training

Backpropagation

- (1) The distance (error) between current output \mathbf{X}' and wanted output \mathbf{Y} is computed. This gives a error function
- (2) By calculating $-\nabla error$ we get a vector that shows in a direction which decreases the error
- (3) We update the parameters to decrease the error

In feedforward ANNs backpropagation is a good approach.

Page 29

6/6/2013

Autoencoder

Training

Backpropagation

- (1) The distance (error) between current output **X**' and wanted output **Y** is computed. This gives a error function
- (2) By calculating $-\nabla error$ we get a vector that shows in a direction which decreases the error
- (3) We update the parameters to decrease the error
- (4) We repeat that

Autoencoder

Training

Backpropagation

Problem: Deep Network

... the problem are the multiple hidden layers!

Autoencoder

Training

Backpropagation

Problem: Deep Network

• Very slow training

Backpropagation is known to be slow far away from the output layer ...

Page 32

Autoencoders

Autoencoder

Training

Backpropagation

Problem: Deep Network

- Very slow training
- Maybe bad solution

... and can converge to poor **local minima**.

Autoencoder

Training

Backpropagation

Problem: Deep Network

- Very slow training
- Maybe bad solution

Idea: Initialize close to a good solution

The task is to **initialize the parameters** close to a good solution!

Autoencoder

Training

Backpropagation

Problem: Deep Network

- Very slow training
- Maybe bad solution

Idea: Initialize close to a good solution

Pretraining

Therefore the training of autoencoders has a **pretraining** phase ...

Autoencoder

Training

Backpropagation

Problem: Deep Network

- Very slow training
- Maybe bad solution

Idea: Initialize close to a good solution

- Pretraining
- Restricted Boltzmann Machines

... which uses **Restricted Boltzmann Machines** (RBMs)

Page 36

Autoencoders

input data X Autoencoder **Restricted Boltzmann Machine** Ba RBMs are Markov Random Fields Pr Ide

Autoencoders

Autoencoder

input data X

Restricted Boltzmann Machine

Ba • RBMs are Markov Random Fields

Markov Random Field

Every unit influences every neighbor
The coupling is undirected

Ide

Pr

Motivation (Ising Model)

A set of magnetic dipoles (*spins*) is arranged in a graph (lattice) where neighbors are coupled with a given strengt

Page 38

Autoencoders

Autoencoder

input data X

Restricted Boltzmann Machine

Ba

- RBMs are Markov Random Fields
- Bipartite topology: **visible** (v), **hidden** (h)

• Use local **energy** to calculate the probabilities of values

Pr

Ide

•

Training:

contrastive divergency

(Gibbs Sampling)

•

6/6/2013

Autoencoders

input data X Autoencoder **Restricted Boltzmann Machine** Ba **Gibbs Sampling** W^T Pr WIde W

6/6/2013

Autoencoders

Autoencoder

Training

Top

 $V \coloneqq \text{set of visible units}$ $x_v \coloneqq \text{value of unit } v, \forall v \in V$ $x_v \in R, \forall v \in V$

 $H \coloneqq \text{set of hidden units}$ $x_h \coloneqq \text{value of unit } h, \forall h \in H$ $x_h \in \{\mathbf{0}, \mathbf{1}\}, \forall h \in H$

The top layer RBM transforms real value data into binary codes.

6/6/2013

Autoencoders

Autoencoder

Training

Top

$$x_v \sim N\left(b_v + \sum_h w_{vh} x_h, \sigma_v\right)$$

 $\sigma_v := \text{std. dev. of unit } v$

 $b_v := \text{bias of unit } v$

 $w_{vh} := \text{weight of edge } (v, h)$

Therefore visible units are modeled with **gaussians** to encode **data** ...

6/6/2013

Autoencoders

Autoencoder

Training

Top

$$x_h \sim \text{sigm}\left(b_h + \sum_v w_{vh} \frac{x_v}{\sigma_v}\right)$$

 $\sigma_v := \text{std. dev. of unit } v$

 $b_h := \text{bias of unit } h$

 $w_{vh} := \text{weight of edge } (v, h)$

... and many hidden units with **simoids** to encode **dependencies**

6/6/2013

Autoencoders

Autoencoder

Training

Top

Local Energy

$$E_{v} := -\sum_{h} w_{vh} \frac{x_{v}}{\sigma_{v}} x_{h} + \frac{(x_{v} - b_{v})^{2}}{2\sigma_{v}^{2}}$$

$$E_{h} := -\sum_{v} w_{vh} \frac{x_{v}}{\sigma_{v}} x_{h} + x_{h} b_{h}$$

$$E_h := -\sum_{v} w_{vh} \frac{x_v}{\sigma_v} x_h + x_h b_h$$

The **objective function** is the sum of the local energies.

6/6/2013

Autoencoders

Autoencoder

Training

Reduction

 $V \coloneqq \text{set of visible units}$ $x_v \coloneqq \text{value of unit } v, \forall v \in V$ $x_v \in \{\mathbf{0}, \mathbf{1}\}, \forall v \in V$

 $H \coloneqq \text{set of hidden units}$ $x_h \coloneqq \text{value of unit } h, \forall h \in H$ $x_h \in \{\mathbf{0}, \mathbf{1}\}, \forall h \in H$

The next RBM layer maps the dependency encoding...

Autoencoder

Training

Reduction

$$x_v \sim \text{sigm}\left(b_v + \sum_h w_{vh} x_h\right)$$

 $b_v := \text{bias of unit v}$

 $w_{vh} := \text{weight of edge } (v, h)$

... from the upper layer ...

6/6/2013

Autoencoder

Training

Reduction

$$x_h \sim \text{sigm}\left(b_h + \sum_v w_{vh} x_v\right)$$

 $b_h := \text{bias of unit h}$

 $w_{vh} := \text{weight of edge } (v, h)$

... to a smaller number of simoids ...

Page 47

Autoencoder

Training

Reduction

Local Energy

$$E_v := -\sum_h w_{vh} x_v x_h + x_h b_h$$

$$E_h := -\sum_{v}^{n} w_{vh} x_v x_h + x_v b_v$$

... which can be trained faster than the top layer

Page 48

Autoencoders

Autoencoder

Training

Unrolling

The **symmetric topology** allows us to skip further training.

Page 49

Autoencoders

Autoencoder

Training

Unrolling

The **symmetric topology** allows us to skip further training.

6/6/2013

Autoencoders

Autoencoder

Training

- Pretraining
 Top RBM (GRBM)
 Reduction RBMs
 Unrolling
- Finetuning
 Backpropagation

After pretraining backpropagation usually finds good solutions

Autoencoders

Autoencoder

Training

Complexity: O(inw)

i: number of iterations

n: number of nodes

w: number of weights

• **Memory Complexity**: O(w)

The algorithmic complexity of RBM training depends on the network size

How to model the topological structure?

Agenda

6/6/2013 Page 58

Autoencoder

Biological Model

```
sf __init__(self,
self.num_hidden =
self.num_visible =
self.learning_rate =
# Initialize a weig'
# a Gaussian distr'
self.weights = 0.
Insert weight
```

Implementation & Results

Validation of the results

- Needs information about the true regulation
- Needs information about the descriptive power of the data

Validation of the results

- Needs information about the true regulation
- Needs information about the descriptive power of the data

Without this infomation validation can only be done, using **artificial datasets**!

Artificial datasets

We simulate data in three steps:

Artificial datasets

We simulate data in three steps

Step 1

Choose number of Genes (E+S) and create random bimodal distributed data

Artificial datasets

We simulate data in three steps

Step 1

Choose number of Genes (E+S) and create random bimodal distributed data

Step 2

Manipulate data in a fixed order

Artificial datasets

We simulate data in three steps

Step 1

Choose number of Genes (E+S) and create random bimodal distributed data

Step 2

Manipulate data in a fixed order

Step 3

Add noise to manipulated data and normalize data

Simulation

Step 1

Number of visible nodes 8 (4E, 4S)

Create random data:

Random $\{-1, +1\} + N(0, \sigma = 0.5)$

Simulation

Page 66

Step 2

Manipulate data

$$e_1 = 0.25s_1 + 0.25s_2 + 0.25s_3 + 0.25s_4$$

 $e_2 = 0.5s_1 + 0.5$ Noise
 $e_3 = 0.5s_1 + 0.5$ Noise
 $e_4 = 0.5s_1 + 0.5$ Noise

Simulation

Step 3

Add noise: N(0, $\sigma = 0.5$)

6/6/2013 Page 68

We analyse the data **X** with an RBM

sim42: $\sigma = 0.5$, no filtering

Average performance: 40.3%

Page 69

We train an autoencoder with 9 hidden layers and 165 nodes:

Layer 1 & 9: 32 hidden units

Layer 2 & 8: 24 hidden units

Layer 3 & 7: 16 hidden units

Layer 4 & 6: 8 hidden units

Layer 5: 5 hidden units

Page 70

We transform the data from **X** to **X**⁶ And reduce the dimensionality

We analyse the transformed data **X**' with an RBM

sim42: $\sigma = 0.5$, (32,24,16,8,4) filtering

Average performance: 69.5%

Lets compare the models

sim42: σ = 0.5, no filtering

Average performance: 40.3%

sim42: $\sigma = 0.5$, (32,24,16,8,4) filtering

Average performance: 69.5%

Another Example with more nodes and larger autoencoder

sim40: $\sigma = 0.5$, no filtering

Average performance: 50.6%

sim40: $\sigma = 0.5$, (64,48,32,16,8) filtering

Average performance: 100.0%

Conclusion

Conclusion

- Autoencoders can improve modeling significantly by reducing the dimensionality of data
- Autoencoders preserve complex structures in their multilayer perceptron network. Analysing those networks (for example with knockout tests) could give more structural information
- The drawback are high computational costs
 Since the field of deep learning is getting more popular (Face recognition / Voice recognition, Image transformation). Many new improvements in facing the computational costs have been made.

6/6/2013 Page 75

Acknowledgement

eilsLABS

Prof. Dr. Rainer König

Prof. Dr. Roland Eils

Network Modeling Group

