DECLARATION

We hereby declare that this submission is our own work that, to the best of our knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text.

Signature:

Name: Vaibhav Chaudhary

Roll number: 1603231209

Date:

Signature:

Name: Suryansh Singh

Roll number: 1603231196

Date:

Signature:

Name: Sumit Kumar Singh

Roll number: 1603231194

Date:

Signature:

Name: Vatsala Misra

Roll number: 1603231214

Date:

CERTIFICATE

This is to certify that project report entitled "OPTIMIZATION OF CNC LASER ENGRAVER/ CUTTING MACHINE" which is submitted by Vaibhav Chaudhary, Suryansh Singh, Sumit Kumar Singh and Vatsala Misra in partial fulfillment of the requirement for the award of degree B.Tech. in Department of Electronics and Communication Engineering of Dr. A.P.J. Abdul Kalam, Technical University, is a record of the candidates' own work carried out by them under my supervision. The matter embodied in this thesis is original and has not been submitted for the award of any other degree.

Date: (Supervisor Signature)

Name

Designation

Electronics & Communication Engineering

ABES Engineering College, Ghaziabad.

ACKNOWLEDGEMENT

It gives us a great sense of pleasure to present the report of the B.Tech. Project undertaken

during B.Tech Final Year. We owe special debt of gratitude to Assistant Professor Mr.

of Electronics & Communication Engineering, ABES Engineering College, Manish

Ghaziabad for his constant support and guidance throughout the course of our work. His

sincerity, thoroughness and perseverance have been a constant source of inspiration for us.

It is only his cognizant efforts that our endeavors have seen light of the day.

We also take the opportunity to acknowledge the contribution of **Professor** (**Dr.**) **S. K. Singh**,

Head of Department of Electronics & Communication Engineering, ABES Engineering

College, Ghaziabad for his full support and assistance during the development of the project.

We also do not like to miss the opportunity to acknowledge the contribution of all faculty

members of the department for their kind assistance and cooperation during the envelopment

of our project. Last but not the least, we acknowledge our friends for their contribution in the

completion of the project.

Signature:

Name: Vaibhav Chaudhary

Roll number: 1603231209

Date:

Signature:

Name: Vatsala Misra

Roll number: 1603231214

Date:

Signature:

Name: Suryansh Singh

Roll number: 1603231196

Date:

Signature:

Name: Sumit Kumar Singh

Roll number: 1603231194

Date:

ABSTRACT

Laser engraving process is non conventional machining process used for marking/engraving of almost each material which cannot be mark by conventional machining processes. In laser engraving process the surface of material is heat up and subsequently vaporizes the material. With the use of laser engraving machine the marking/engraving is possible by using different input parameter as spot diameter, laser power, laser frequency, different wave length etc, and get the changes in output parameter like material removal rate, surface finish and indentation. To optimization of all these parameters with multiple performances characteristic based on the Grey relational analysis. Taguchi method of orthogonal array will be performed to determine the best factor level condition. By analyzing Grey relational grade, it will be observed that which parameter has more effect on responses of input parameter to the output parameter. In this the fundamental goal is to design and fabricate the laser cutting and engraving machine which is convenient to controlled by the Arduino CNC. It is accessible and perfect utilization for small and medium scale industries. This model is small, simple to work, cost of manufacturing and to effortlessly transport from one work station to other work station.

TABLE OF CONTENT

Title	Page No.
Declaration	iii
Certificate	iv
Acknowledgement	v
Abstract	vi
List of Table	ix
List of Figure	X
List of Abbreviation	xi
Chapter 1: Introduction	1-8
1.1 Background	1
1.2 CNC Machines	1
1.2.1 Overview of CNC Machining Process	2
1.2.2 CAD File Conversion	2
1.2.3 Machine Setup	3
1.2.4 Machining Operation Execution	3
1.2.5 Types of CNC Machining Operations	3
1.2.5.1CNC Drilling	4
1.2.5.2CNC Milling	4
1.2.5.3CNC Turning	5-7
1.3Numerical Control (NC) Machine	7
1.4 Comparison of CNC and NC	8
Chapter 2: Literature Review	9-20
2.1. Introduction	9
2.2. Effects of parameters on performance of	9
2.3. Technological Option for Energy Efficiency	12
2.3.1 Description of technology	12-14
2.3.2 CNC LASER Cutting Machine	14-15
2.3.3 Technology specification	15-16
2.3.4 Suitability with existing process	16-18
2.3.5 Superiority over existing technology	18-20
2.3.6 Availability of technology	20

Chapter 3: Tools Used	21-26
3.1 Objective	21
3.2 Methodology	21
3.3 Material Used	21
3.4 Specifications	21-22
3.4.1 Arduino Uno	21
3.4.2 Stepper Motor	22
3.4.3 Relay Module	22
3.5 Stepper motor & Accessories	22
3.6 Power Supply	23
3.7 Stepper Motor Drivers	23
3.8 CNC Shield	24
3.9 LASER Module	24
Chapter 4: Project Work	27-
4.1 Cutting of Acrylic Sheet	27
4.2 Preparing the slider	27
4.3 Assembling the Slider Rails for the Y-Axis	27-28
4.4 Assembling the Slider Rails for the X-Axis	28
4.5 Wiring of Stepper Motors	29
4.6 Combing the X and Y Axis	29-30
4.7 The Electronics	30-31
4.8 Configuring Micro Stepping for Each Axis	31-32
4.9 Adjusting the Stepper Driver Current	32-33
4.10 Laser Assembly	33-34
4.11 Getting Ready	34
4.12 Firmware	34-35
4.13 Benbox Settings	35-36
4.14 BENBOX user interface	36
Chapter 5: Result & Discussions	37-39
5.1. Experimental Programme	37
5.2 Advantages	38

5.3 Disadvantages	39
Chapter 6: Future Scope of Work	40-44
6.1 Conclusions	40
6.2 Future Prospects	41
6.2.1 Improvement in product quality	41
6.2.2 Reduction in raw material consumption	42
6.2.3 Reduction in GHG emission	42
6.2.4 Reduction in other emissions like Sox	42
6.2.5 Cost of technology implementation	42
6.2.6 Prospects of Use of LASER	42-44
References	45-46
Appendix	47-50

LIST OF TABLES

No.	Title	Page No.
1	Comparison between NC and CNC Machine	16-17
2	Specification of Arduino	31
3	Specification of A4988 Stepper Motor	31
4	Specification of 5V Relay Module for Arduino	31

LIST OF FIGURES

No	. Title	Page No.
1	Stepper Motor	32
2	Power Supply Adaptor	32
3	Stepper Motor Driver	32
4	CNC Shield	33
5	Laser Diode Module	33
6	Universal G-code Sender	34
7	Benbox UI	34
8	Axis Sliders	46
9	Sliding Screw	37
10	Mounted Slider Assembly	37
11	Stepper Motors	38
12	Slider Assembly	39
13	Arduino Board Connection	41
14	Power Driving PCB	41
15	Laser Module Assembly	42
16	Final Project Hardware	43
17	Software UI	44
18	Top View of Assembly	46
19	Sample Design	46

LIST OF ABBREVIATIONS

CNC Computer Numerical Controlled

NC Numerical Controlled

CAD Computer Aided Design

CAM Computer Aided Manufacturing

MIT Massachusetts Institute of Technology

Nd Neodymium

EE Energy Efficiency

m/s Meter per second

SMPS Switch Mode Power Supply

IDE Integrated Development Environment

ASCII American Standard Code for Information Interchange

PCB Printed Circuit Board

HP Horsepower

kWh kilo Watt Hour

INR Indian National Rupee

DPR Detailed Project Report

NPV Net Present Values