Limites de Funções de Várias Variáveis

Luis Alberto D'Afonseca

Cálculo de Funções de Várias Variáveis – I

 $17 ext{ de agosto de } 2025$

Conteúdo

Limites

Propriedades

Exemplos

Inexistência do Limite

Exemplos

Lista Mínima

Definição

Uma função
$$f\colon R\subset\mathbb{R}^2\to\mathbb{R}\,,\quad f(x,y)\,,$$
 se aproxima do limite L a medida que (x,y) se aproxima de (x_0,y_0) se, para todo $\varepsilon>0$, existe um $\delta(\varepsilon)>0$ tal que, para todo (x,y) no domínio de f
$$|f(x,y)-L|<\varepsilon\quad \text{sempre que}\quad 0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta(\varepsilon)$$

Obs: (x_0, y_0) não precisa estar no domínio de f

Notação

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

$$f(x, y) \rightarrow L$$
 quando $(x, y) \rightarrow (x_0, y_0)$

Conteúdo

Limites

Propriedades

Exemplos

Inexistência do Limite

Exemplos

Lista Mínima

Teorema – Unicidade do Limite

```
Se uma função f(x,y) possui um limite L quando (x,y) se aproxima de (x_0,y_0), então L é único
```

Teorema – Propriedades dos limites de várias variáveis

As propriedades a seguir são verdadeiras se

- ightharpoonup L, M e k forem números reais
- $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$

Regra da Soma e Diferença

$$\lim_{(x,y)\to(x_0,y_0)} \left[f(x,y) + g(x,y) \right] = \lim_{(x,y)\to(x_0,y_0)} f(x,y) + \lim_{(x,y)\to(x_0,y_0)} g(x,y) = L + M$$

$$\lim_{(x,y)\to(x_0,y_0)} \left[f(x,y) - g(x,y) \right] = \lim_{(x,y)\to(x_0,y_0)} f(x,y) - \lim_{(x,y)\to(x_0,y_0)} g(x,y) = L - M$$

Regra da Multiplicação por Constante e do Produto

$$\lim_{(x,y)\to(x_0,y_0)} [kf(x,y)] = k \lim_{(x,y)\to(x_0,y_0)} f(x,y) = kL$$

$$\lim_{(x,y)\to(x_0,y_0)} \left[f(x,y)g(x,y) \right] = \left[\lim_{(x,y)\to(x_0,y_0)} f(x,y) \right] \left[\lim_{(x,y)\to(x_0,y_0)} g(x,y) \right] = LM$$

Regra do Quociente (Divisão)

$$\lim_{(x,y)\to(x_0,y_0)} \left[\frac{f(x,y)}{g(x,y)} \right] = \frac{\lim_{(x,y)\to(x_0,y_0)} f(x,y)}{\lim_{(x,y)\to(x_0,y_0)} g(x,y)} = \frac{L}{M}$$

Desde que $M \neq 0$

Regra da Potência e da Raiz

Para n inteiro positivo

$$\lim_{(x,y) o (x_0,y_0)} \left[f(x,y)
ight]^n = \left[\lim_{(x,y) o (x_0,y_0)} f(x,y)
ight]^n = L^n$$

$$\lim_{(x,y)\to(x_0,y_0)} \sqrt[n]{f(x,y)} = \sqrt[n]{\lim_{(x,y)\to(x_0,y_0)} f(x,y)} = \sqrt[n]{L}$$

Se n for par L precisa ser positivo

Conteúdo

Limites

Propriedades

Exemplos

Inexistência do Limite

Exemplos

Lista Mínima

Exemplo 1

Calcule os limites

1.
$$\lim_{(x,y)\to(a,b)} k$$

$$\lim_{(x,y)\to(a,b)} x$$

3.
$$\lim_{(x,y)\to(a,b)} y$$

4.
$$\lim_{(x,y)\to(a,b)} xy$$

Respostas

$$\lim_{(x,y)\to(a,b)} k = k$$

$$\lim_{(x,y)\to(a,b)} x = a$$

$$\lim_{(x,y)\to(a,b)}y=b$$

$$4. \lim_{(x,y)\to(a,b)} xy = ab$$

Exemplo 2

Calcule o limite
$$\lim_{(x,y)\to(0,1)} \frac{x-xy+3}{x^2y+5xy-y^3}$$
, se ele existir

Assumindo que todos os limites necessários para aplicar as propriedades existam (Isso pode não ser verdade)

$$\lim_{(x,y)\to(0,1)} \frac{x - xy + 3}{x^2y + 5xy - y^3} = \frac{\lim_{(x,y)\to(0,1)} (x - xy + 3)}{\lim_{(x,y)\to(0,1)} (x^2y + 5xy - y^3)}$$

$$= \frac{\lim_{(x,y)\to(0,1)} x - \lim_{(x,y)\to(0,1)} xy + \lim_{(x,y)\to(0,1)} 3}{\lim_{(x,y)\to(0,1)} x^2y + \lim_{(x,y)\to(0,1)} 5xy - \lim_{(x,y)\to(0,1)} y^3}$$

$$= \frac{0 - 0 \times 1 + 3}{0^2 \times 1 + 5 \times 0 \times 1 - 1^3}$$

$$= \frac{3}{-1} = -3$$

Exemplo 3

Calcule o limite
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$
 se ele existir

Assumindo que todos os limites necessários para aplicar as propriedades existam (Isso pode não ser verdade)

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = \frac{\lim_{(x,y)\to(0,0)} (x^2 - xy)}{\lim_{(x,y)\to(0,0)} (\sqrt{x} - \sqrt{y})}$$

$$= \frac{\lim_{(x,y)\to(0,0)} x^2 - \lim_{(x,y)\to(0,0)} xy}{\lim_{(x,y)\to(0,0)} \sqrt{x} - \lim_{(x,y)\to(0,0)} \sqrt{y}}$$

$$= \frac{0 - 0}{0 - 0} = \frac{0}{0} = 1$$

Não existe divisão por zero !!!

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = \frac{\lim_{(x,y)\to(0,0)} (x^2 - xy)}{\lim_{(x,y)\to(0,0)} (\sqrt{x} - \sqrt{y})}$$

$$= \frac{\lim_{(x,y)\to(0,0)} x^2 - \lim_{(x,y)\to(0,0)} xy}{\lim_{(x,y)\to(0,0)} \sqrt{x} - \lim_{(x,y)\to(0,0)} \sqrt{y}}$$

$$= \frac{0 - 0}{0 - 0} = \frac{0}{0} \quad \nexists$$

Então o limite não existe?

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = \frac{\lim_{(x,y)\to(0,0)} (x^2 - xy)}{\lim_{(x,y)\to(0,0)} (\sqrt{x} - \sqrt{y})}$$

$$= \frac{\lim_{(x,y)\to(0,0)} x^2 - \lim_{(x,y)\to(0,0)} xy}{\lim_{(x,y)\to(0,0)} \sqrt{x} - \lim_{(x,y)\to(0,0)} \sqrt{y}}$$

$$= \frac{0 - 0}{0 - 0} = \frac{0}{0}$$

Não podemos aplicar a propriedade do quociente Precisamos remover a indeterminação

Ao calcular o limite consideramos apenas os pontos dentro do domínio da função

Para $x \neq y$

$$\frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = \frac{(x^2 - xy)(\sqrt{x} + \sqrt{y})}{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}$$
$$= \frac{x(x - y)(\sqrt{x} + \sqrt{y})}{x - y}$$
$$= x(\sqrt{x} + \sqrt{y})$$

Calculando o limite

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = \lim_{(x,y)\to(0,0)} x \left(\sqrt{x} + \sqrt{y}\right)$$

$$= \left(\lim_{(x,y)\to(0,0)} x\right) \left[\left(\lim_{(x,y)\to(0,0)} \sqrt{x}\right) + \left(\lim_{(x,y)\to(0,0)} \sqrt{y}\right)\right]$$

$$= 0 \left(\sqrt{0} + \sqrt{0}\right)$$

$$= 0$$

Exemplo 4

Analise o limite de
$$f(x, y) = \frac{y}{x}$$
 quando (x, y) se aproxima de $(0, 0)$

A reta x = 0 não faz parte do domínio de f

O ponto (0,0) não está no domínio de f

Não podemos usar as propriedades diretamente

Não existe manipulação que remova a indeterminação

Analisando f sobre a reta y = x

$$f(x,y)\Big|_{y=x}=f(x,x)=rac{x}{x}=1$$
 pois $x=0$ não está no domínio de f

Analisando f sobre a reta y = 0

$$f(x,y)\Big|_{y=0} = f(x,0) = \frac{0}{x} = 0$$
 pois $x=0$ não está no domínio de f

O que vai acontecer com outas retas da forma y = ax?

Para qualquer $\delta>0$ sempre vai existir um

ponto da forma (x,x) e um ponto da forma (x,0)

dentro da bola de raio δ de centro em (0,0)

Nenhum valor L atende as condições da definição de limite

O limite não existe

Conteúdo

Limites

Propriedades

Exemplos

Inexistência do Limite

Exemplos

Lista Mínima

Teste dos Dois Caminhos

Se f(x, y) tem limites diferentes ao longo de dois caminhos diferentes, no domínio de f, quando (x, y) se aproxima de (x_0, y_0) , então

$$\lim_{(x,y) \to (x_0,y_0)} f(x,y)$$
 não existe

Conteúdo

Limites

Propriedades

Exemplos

Inexistência do Limite

Exemplos

Lista Mínima

Exemplo 5

Verifique se a função $f(x, y) = \frac{2x^2y}{x^4 + v^2}$ possui limite na origem.

O limite na origem leva a uma indeterminação do tipo $^0\!/_{\!0}$

Fazendo y = mx, para $m \neq 0$ e $x \neq 0$, temos

$$f(x,y)\bigg|_{y=mx} = \frac{2x^2y}{x^4 + y^2}\bigg|_{y=mx} = \frac{2mx^3}{x^4 + m^2x^2} = \frac{2mx \, x^2}{(x^2 + m^2) \, x^2} = \frac{2mx}{x^2 + m^2}$$

Calculando o limite $\,x \to 0\,$, que corresponde a $\,(x,y) \to (0,0)\,$

$$\lim_{x \to 0} \frac{2mx}{x^2 + m^2} = \frac{0}{m^2} = 0 \qquad \forall m$$

Portanto,
$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+y^2} = 0$$
 Falso!

Fazendo $y = kx^2$, para $k \neq 0$ e $x \neq 0$, temos

$$f(x,y)\bigg|_{y=kx^2} = \frac{2x^2y}{x^4 + y^2}\bigg|_{y=kx^2} = \frac{2kx^4}{x^4 + k^2x^4} = \frac{2kx^4}{(1+k^2)x^4} = \frac{2k}{1+k^2}$$

Para cada valor de k, a função f se aproxima da origem com um valor diferente Portanto, o limite não existe

Conteúdo

Limites

Propriedades

Exemplos

Inexistência do Limite

Exemplos

Lista Mínima

Lista Mínima

Cálculo Vol. 2 do Thomas 12ª ed. – Seção 14.2

- 1. Estudar o texto da seção
- 2. Resolver os exercícios: 4-6, 13-15, 18, 26, 55

Atenção: A prova é baseada no livro, não nas apresentações