Optimizing of electron beam distribution at Eur. XFEL and FLASH.

FLASH free-electron laser user facility at DESY

Bart Faatz

Outline.

- Layout/parameter FLASH.
- User wishes.
- Requirements on machine settings.
- Tests performed.
- User operation with multi-beamlines.
- Further developments.

Possibilities at FLASH and Eur. XFEL are similar:

- At Eur. XFEL, switching was foreseen from the start.
- At FLASH, the design was modified to allow for switching.

Since FLASH is operating with two beamlines for several years, all parameters in this presentation are taken from FLASH.

Layout FLASH.

FLASH1 in user operation since 2005 (fixed gap undulator).

FLASH2 in user operation since 2016 (variable gap undulator).

FLASHForward R&D beamline for plasma-wakefield acceleration.

3 Injector lasers available of which normally 2 are used simulaneously.

Performance 2017.

FEL Radiation Parameters FL1 / FL2						
Wavelength range (fundamental)	4.2 – 51	4 – 90	nm			
Average single pulse energy	1 – 500	1 – 1100	μJ			
Pulse duration (FWHM)	< 30 -	200 fs	fs			
Peak power (from av.) 1 – 5 GW						
Pulses per second	10 –					
Spectral width (FWHM)	0.7 – 2 %	0.5 – 2 %				
Photons per pulse	10 ¹¹ –	- 10 ¹⁴				
Average Brilliance	10 ¹⁷ -					
Peak Brilliance	10 ²⁸ -					

User wishes (machine side).

Variation in

- Wavelength (including fast wavelength scans or several largely different wavelengths for one experiment).
- Pulse duration (bunch length) → different bunch charge.
- Pulse separation.
- Number of pulses.

- Use variable gap undulators.
- Use two injector lasers.
- Do NOT reduce from 10 to 5 Hz with slow-switching.

BIG CHALLENGE: different charges = different compression/injector settings.

Different compression settings for 500 and 20 pC.

Requirements on machine RF (simulations).

Optimized injector settings for each charge:

- Solenoid
- Spot on the cathode

Bunch Compressors

Accelerating Structures

RF Stations

RF Gun

Lasers

Requirements on machine.

- Solenoid focusing cannot be adjusted: optimization by changing gun phase and amplitude
 - Automatically changes all (on-crest) phases downstream.

Restriction at FLASH:

- Laser spot on cathode cannot be changed (laser1 and laser2)
 - Limit on charge range that can be achieved.
 - Stability and beam quality an issue, especially at short wavelengths.
- Different injector lasers have different pulse duration.

REMARK: for seeding or THz, there are in general different compression settings.

Tests performed at 0.7 GeV.

Bunch length (THz spectrometer) for different charges.

Charge	SASE (μJ)
70	31.3
150	113.9
320	180.7
660	202

Crucial were Gun phase and amplitude.

Charge (pC)	Gun φ	Gun ampl.	ACC1 ϕ	ACC1 ampl.	ACC39 φ	ACC39 ampl.	ACC23 φ	ACC23 ampl.	ACC45 φ	ACC45 ampl.
70	-4.7	3.98	1.1	160.8	-23.97	19.7	22.47	322.6	-6	223.6
150	-3.66	3.977	1.18	160.9	-23.98	19.7	22.52	322.6	-5	223.9
320	-0.6	3.977	0.98	160.9	-24.51	19.8	22.56	322.4	-1	222.8
660	-2.2	3.957	1.18	160.2	-24.36	19.1	23.39	323.4	-4	224.6

Tests performed at 1.1 GeV.

Bunch length (THz spectrometer) for different charges.

Charge	SASE (μJ)
80	31
150	68.4
300	98.3
630	117.8

Crucial were Gun phase and amplitude.

Charge (pC)	Gun φ	Gun ampl.	ACC1 φ	ACC1 ampl.	АСС39 ф	ACC39 ampl.	ACC23 φ	ACC23 ampl.	ACC45 φ	ACC45 ampl.	ACC67 φ	ACC67 ampl.
80	-5.2	3.873	1.16	160.5	-22.29	19.6	13.51	329.1	1.1	259.3	-0.07	345
150	0.1	3.886	1.27	160.4	-22.04	19.7	13.86	329	3.51	259.8	-0.37	344.9
300	-1.9	3.864	1.18	160.5	-22.47	19.6	14.26	329.6	2.5	259.8	-0.37	344.9
630	-2.13	3.862	1.01	161.1	-22.71	19.7	14.26	329.4	2.4	259.8	-0.44	345.7

Beamline switching (FLASH1, 2 and 3).

Requirements LLRF:

- Small tunability of gradient or ACC45 and ACC67 for wavelength scans FLASH1.
- Small tunability in phases of Gun, ACC1, ACC39 for variation in compression FLASH1,2 and 3.
- Allow for SASE in FLASH1 and seeding in FLASH2 or THz in FLASH1 and SASE in FLASH2.

Summary: Switch Times Needed

RF Station	Phase [deg.]	Amplitude [MV]	Transition time [µs]
GUN	+/-8	-0.1[MW]	50
ACC1	+/-2	+/-3	30
ACC39	+/-9	-3	60
ACC23	+/-3	-10	60
ACC45	+/-5	+/-15	100
ACC67	+/-5	+/-15	100

More tests needed for systematic setup.

Enable simultaneous operation.

C - disabled

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000 1100 1200 1300

Special Bunches: A - disabled

D - disabled

- Define which laser is going to what beamline.
 - 8 DESY

Enable simultaneous operation.

Enable simultaneous operation.

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000 1100 1200 1300

FL1 with SASE&THz, FL2 with short pulses SASE.

FL1 with SASE&THz, FL2 with short pulses SASE.

sFLASH SASE and FLASHForward commissioning.

Step in ACC23 gradient and phase (top and bottom picture are not corresponding, but within several minutes).

Transition time increased to $189 \mu s$.

Simultaneous operation: further development.

Past: 50% users were single-bunch users, 50% were multi-bunch users.

Now: most users want multi-bunch.

Needed is a switching that gives both users long pulse trains

- → Switching RF from bunch to bunch.
- → Allow for both beam lines a rep.rate of 1 MHz.

Work in progress: Tests at <250 kHz at FLASH planned.

Thank you

