1 Registers

The following table lists the conventional function and names¹ of the 32 registers of the **Register File**.

Register	Name	Function	Register	Name	Function
r0	zero	0x00000000	r16	s0	Saved Register
r1	at	Assembler Temporary	r17	s1	Saved Register
r2	v0	Return Value	r18	s2	Saved Register
r3	v1	Return Value	r19	s3	Saved Register
r4	a0	Register Arguments	r20	s4	Saved Register
r5	a1	Register Arguments	r21	s5	Saved Register
r6	a2	Register Arguments	r22	s6	Saved Register
r7	a3	Register Arguments	r23	s7	Saved Register
r8	t0	Temporary Register	r24	et	Exception Temporary
r9	t1	Temporary Register	r25	bt	Breakpoint Temporary
r10	t2	Temporary Register	r26	gp	Global Pointer
r11	t3	Temporary Register	r27	sp	Stack Pointer
r12	t4	Temporary Register	r28	fp	Frame Pointer
r13	t5	Temporary Register	r29	ea	Exception Return Address
r14	t6	Temporary Register	r30	ba	Breakpoint Return Address
r15	t7	Temporary Register	r31	ra	Return Address

2 Instruction Encoding

3 Instructions

The following table lists the instructions implemented by a Nios II processor. We write "rA_s" to consider the rA as signed, and "rA_u" when it is unsigned. We write "imm_s", when the immediate value is signed extend, and "imm_u", when the immediate value is unsigned (i.e., extended with zeros).

 $^{^1}$ To improve the readability of the code, we extend the official Nios II registers naming: we added names to the registers 2 to 2 3, which were unnamed. These names are only supported by the **Nios2Sim** simulator.

Category	OP/OPX/TYPE	Instruction	ı			Meaning
	0x04/-/I	addi	rB,	rA,	imm	$rB \leftarrow rA + imm_s$
Arithmetic	0x3a/0x31/R	add	rC,	rA,	rB	$rC \leftarrow rA + rB$
	0x3a/0x39/R	sub	rC,	rA,	rB	$rC \leftarrow rA - rB$
	0x3a/0x0e/R	and	rC,	rA,	rB	$\texttt{rC} \leftarrow \texttt{rA} \ and \ \texttt{rB}$
	0x0c/-/I	andi	rB,	rA,	imm	$\mathtt{rB} \leftarrow \mathtt{rA} \ and \ \mathtt{imm}_u$
	0x3a/0x16/R	or	rC,	rA,	rB	$\mathtt{rC} \leftarrow \mathtt{rA} \ or \ \mathtt{rB}$
Logical	0x14/-/I	ori	rB,	rA,	imm	$\mathtt{rB} \leftarrow \mathtt{rA} \ or \ \mathtt{imm}_u$
Ü	0x3a/0x1e/R	xor	rC,	rA,	rB	$\mathtt{rC} \leftarrow \mathtt{rA} \ xor \ \mathtt{rB}$
	0x1c/-/I	xori	rB,	rA,	imm	$\mathtt{rB} \leftarrow \mathtt{rA} \ xor \ \mathtt{imm}_u$
	0x3a/0x06/R	nor	rC,	rA,	rB	$\texttt{rC} \leftarrow \texttt{rA} \ nor \ \texttt{rB}$
	0x08/-/R	cmpgei	rB,	rA,	imm	$\mathtt{rB} \leftarrow (\mathtt{rA} \geq \mathtt{imm}_s)? \ 1:0$
	0x10/-/I	cmplti	rB,	rA,	imm	$\mathtt{rB} \leftarrow (\mathtt{rA} < \mathtt{imm}_s)? \ 1:0$
	0x18/-/I	cmpnei	rB,	rA,	imm	$\mathtt{rB} \leftarrow (\mathtt{rA} \neq \mathtt{imm}_s)? \ 1:0$
	0x20/-/I	cmpeqi	rB,	rA,	imm	$\mathtt{rB} \leftarrow (\mathtt{rA} = \mathtt{imm}_s)? \ 1:0$
	0x28/-/I	cmpgeui	rB,	rA,	imm	$\mathtt{rB} \leftarrow (\mathtt{rA}_u \geq \mathtt{imm}_u)? \ 1:0$
Comparator	0x30/-/I	cmpltui	rB,	rA,	imm	$\mathtt{rB} \leftarrow (\mathtt{rA}_u < \mathtt{imm}_u)? \ 1:0$
Comparator	0x3a/0x08/R	cmpge	rC,	rA,	rB	$\mathtt{rC} \leftarrow (\mathtt{rA} \ge \mathtt{rB})? \ 1:0$
	0x3a/0x10/R	cmplt	rC,	rA,	rB	$\mathtt{rC} \leftarrow (\mathtt{rA} < \mathtt{rB})? \ 1:0$
	0x3a/0x18/R	cmpne		rA,		$rC \leftarrow (rA \neq rB)$? $1:0$
	0x3a/0x20/R	cmpeq	rC,	rA,	rB	$rC \leftarrow (rA = rB)? 1:0$
	0x3a/0x28/R	cmpgeu	rC,	rA,	rB	$\mathtt{rC} \leftarrow (\mathtt{rA}_u \geq \mathtt{rB}_u)? \ 1:0$
	0x3a/0x30/R	cmpltu	rC,	rA,	rB	$\mathtt{rC} \leftarrow (\mathtt{rA}_u < \mathtt{rB}_u)? \ 1:0$
	0x3a/0x13/R	sll		rA,		$\texttt{rC} \leftarrow \texttt{rA} \ll \texttt{rB}_{40}$
	0x3a/0x12/R	slli		rA,		$\mathtt{rC} \leftarrow \mathtt{rA} \ll \mathtt{imm}_{40}$
	0x3a/0x1b/R	srl		rA,		$\mathtt{rC} \leftarrow \mathtt{rA}_u \gg \mathtt{rB}_{40}$
01.16	0x3a/0x1a/R	srli		rA,		$\mathtt{rC} \leftarrow \mathtt{rA}_u \gg \mathtt{imm}_{40}$
Shift	0x3a/0x3b/R	sra		rA,		$\texttt{rC} \leftarrow \texttt{rA}_s \gg \texttt{rB}_{40}$
	0x3a/0x3a/R	srai		rA,		$\operatorname{rC} \leftarrow \operatorname{rA}_s \gg \operatorname{imm}_{40}$
	0x3a/0x03/R	rol		rA,		$\texttt{rC} \leftarrow \texttt{rA} \ rol \ \texttt{rB}_{40}$
	0x3a/0x0b/R	ror		rA,		$rC \leftarrow rA \ ror \ rB_{40}$
	0x3a/0x02/R	roli		rA,	1mm	$\mathtt{rC} \leftarrow \mathtt{rA} \ rol \ \mathtt{imm}_{40}$
	0x07/-/I	ldb		imm	(rA)	$r_{B_{70}} \leftarrow MEM[imm_s + rA]_{70}$
Memory	0x17/-/I	ldw			(rA)	$rB \leftarrow MEM[imm_s + rA]$
,	0x05/-/I	stb			(rA)	$MEM[imm_s+rA]_{70} \leftarrow rB_{70}$
	0x15/-/I	stw	rB,	ımm	(rA)	$\text{MEM}[\text{imm}_s + \text{rA}] \leftarrow \text{rB}$
	0x06/-/I	br	imm	_		goto PC+4+imm _s
	0x0e/-/I	bge		rB,		if $(rA \ge rB)$ goto $PC+4+imm_s$
D 1	0x16/-/I	blt		rB,		if $(rA < rB)$ goto $PC+4+imm_s$
Branch	0x1e/-/I	bne		rB,		if $(rA \neq rB)$ goto $PC+4+imm_s$
	0x26/-/I	beq		rB,		if $(rA = rB)$ goto $PC+4+imm_s$
	0x2e/-/I	bgeu		rB,		if $(rA_u \ge rB_u)$ goto PC+4+imm _s
	0x36/-/I	bltu		rB,	THILL	if $(rA_u < rB_u)$ goto PC+4+imm _s
	0x00/-/J	call	imm			goto imm $\ll 2$; ra \leftarrow PC+4
т	0x3a/0x1d/R	callr	rA			goto rA; ra ← PC+4
Jump	0x3a/0x05/R	ret	- 7			goto ra
	0x3a/0x0d/R	jmp	rA			goto rA
	0x01/-/J	jmpi	imm			$\verb"goto" imm \ll 2$