O(n+m) by monotone pointer. easy to construct $\Omega(\min(n,m))$ lower bound.

wlog assume $n \leq m$.

monotone pointer+binary search on each row. if at row i we move left d_i cells, binary search takes $\log(d_i)$ time (use doubling to estimate d_i). $\sum_{i=1}^n d_i = O(m)$, by Jensen's inequality, the running time is $O(n \log(\frac{m}{n}))$. this is optimal: http://twistedoakstudios.com/blog/Post5365_searching-a-sorted-matrix-faster

References