

Data Mining and Organization - Covid-19

Armand Palla

Università degli Studi di Firenze

15 February 2022

Table of contents:

- 1. Understanding the data
- 2. Working with data
- 3. Clustering algorithms

- Civil Protection Department Coronavirus emergency.
- The Italian Civil Protection Department receives daily data by the Italian Ministry of Health, analyzes them and updates the database.
- The database is freely accessible at <u>github.com/pcm-dpc/COVID-19</u>.
- This database contains data of integrated surveillance for the "Coronavirus disease
 2019" in Italy.
- The additional value of these data relies on the real-time (daily update) integrated surveillance of COVID-19 in Italy and on their reliability due to their official source (Italian Civil Protection Department).

- These data are useful because:
 - 1. they provide insight on the spread of SARS-CoV-2.
 - 2. to inform Italian and foreign citizens on the SARS-CoV-2 spread in Italy.
 - 3. to support organizations in the evaluation of the efficiency of current prevention and control measures.
 - 4. to support governments in the future prevention decisions

- The database consists of different folders such as: 'aree', 'dati-andamentonazionale', 'dati-json', 'dati-province', 'dati-regioni', 'schede-riepilogative etc, but we are using:
- 1. dpc-covid19-ita-andamento-nazionale.json
- 2. dpc-covid19-ita-regioni.json
- 3. dpc-covid19-ita-province.json

1. dpc-covid19-ita-andamento-nazionale.json

The folder called 'dati-andamento-nazionale' contains data relating to the national trend of SARS-CoV-2 spread.

I have used **pandas.DataFrame** in order to elaborate with data in .json format.

Inside each file, data are structured in the 24 fields (one column per field).

```
"data": "2020-02-24T18:00:00",
"stato":"ITA",
"ricoverati con sintomi":101,
"terapia_intensiva":26,
"totale ospedalizzati":127,
"isolamento domiciliare":94,
"totale positivi":221,
"variazione_totale_positivi":0,
"nuovi positivi":221,
"dimessi guariti":1,
"deceduti":7,
"casi da sospetto diagnostico":null,
"casi da screening":null,
"totale casi":229,
"tamponi":4324,
"casi testati":null,
"note":null,
"ingressi terapia intensiva":null,
"note test":null,
"note casi":null,
"totale positivi test molecolare":null,
"totale positivi test antigenico rapido":null,
"tamponi_test_molecolare":null,
"tamponi test antigenico rapido":null
```


1. dpc-covid19-ita-andamento-nazionale.json

Then, we have done an analysis based on different covid time intervals:

- Phase 1: 09/03/2020 03/05/2020; Quarantine Period.
- Phase 2: 04/05/2020 14/06/2020 , Relaxation of containment measures.
- Phase 3: 15/06/2020 06/11/2020, living with COVID-19.
- **Second wave:** 06/11/2020 14/12/2021, 06/11/2020-new DPCM that divides Italy into 3 zones(Yellow zone, Orange zone, Red zone).
- **Third wave:** 15/12/2021 until now, the last period when we have seen an increase in positive cases.

In another graph, we have represented the **total positives change** for every day from the initial until now and we can see that in the last week we have a decrease of positive

2. dpc-covid19-ita-regioni.json

The folder called 'dati-regioni' contains data relating to the regional trend of SARS-CoV-2 spread.

Inside each file, data are structured in the 24 fields (one column per field).

```
"data": "2020-02-24T18:00:00",
"stato":"ITA",
"codice regione":13,
"denominazione regione": "Abruzzo",
"lat":42.35122196,
"long":13.39843823,
"ricoverati con sintomi":0,
"terapia intensiva":0,
"totale ospedalizzati":0,
"isolamento domiciliare":0,
"totale positivi":0,
"variazione totale positivi":0,
"nuovi positivi":0,
"dimessi guariti":0,
"deceduti":0,
"casi da sospetto diagnostico":null,
"casi da screening":null,
"totale casi":0,
"tamponi":5,
"casi testati":null,
"note":null,
"ingressi_terapia_intensiva":null,
"note test":null,
"note casi":null,
"totale_positivi_test_molecolare":null,
"totale_positivi_test_antigenico_rapido":null,
"tamponi test molecolare":null,
"tamponi_test_antigenico_rapido":null,
"codice nuts 1":null,
"codice nuts 2":null
```


We have created another dictionary object called **covid**, in which we decided to add the

fields that we think that are the most importants.

Then, we have plotted a heatmap using seaborn library

in order to represent the correlation between the choosen

variables.

```
- 1.0
                                                                  0.22
                                 0.43
                                            0.43
                                                       0.32
terapia intensiva
                                                                               - 0.9
                                                                               - 0.8
                      0.43
                                            0.43
                                                       0.68
                                                                  0.6
   totale positivi
                                                                                - 0.7
                                 0.43
                      0.43
                                                       0.86
        deceduti
                                                                                - 0.6
                                                                                - 0.5
                                                                  0.95
      totale_casi
                      0.32
                                 0.68
                                            0.86
                                                                                 0.4
                      0.22
                                 0.6
                                                       0.95
                                                                                0.3
         tamponi
```

```
covid = {
    'date': json_data.data,
    'regioni': json_data.denominazione_regione,
    'terapia_intensiva': json_data.terapia_intensiva,
    'totale_positivi': json_data.totale_positivi,
    'deceduti': json_data.deceduti,
    'totale_casi': json_data.totale_casi,
    'tamponi': json_data.tamponi,
}
```


After this, we started to plot some different graphs starting from:

1. Positive cases per day

As we can see, the regions with the most number of positive cases are Lombardia, Emilia-Romagna and Veneto.

2. Number of deceased persons

3. Tampons for every regions

4. Evolution of Covid-19, we make a comparison between (totale_positivi, totale_ospedalizzati e deceduti).

3. <u>dpc-covid19-ita-province.json</u>

The folder called 'dati-regioni' contains data relating to the

regional trend of SARS-CoV-2 spread.

Inside each file, data are structured in the 14 fields (one column per field).

```
"data":"2020-02-24T18:00:00",
  "stato":"ITA",
  "codice_regione":13,
  "denominazione_regione":"Abruzzo",
  "codice_provincia":66,
  "denominazione_provincia":"L'Aquila",
  "sigla_provincia":"AQ",
  "lat":42.35122196,
  "long":13.39843823,
  "totale_casi":0,
  "note":null,
  "codice_nuts_1":null,
  "codice_nuts_2":null,
  "codice_nuts_3":null
},
```


After this, we have displayed the Top 20 provinces with the most number of cases in an horizontal bar.

As, we can see from the results, the most infected provinces are Milano, Roma and Napoli.

We have displayed the same results in a graph with 10 provinces.

We work again with docs.org/dpc-covid19-ita-regioni.json dataset and we have taken in

consideration these variables:

```
{'isolamento_domiciliare',
  'ricoverati_con_sintomi',
  'terapia_intensiva',
  'totale_ospedalizzati'}
```

Then, we have constructed a heatmap in order to control for NaN values and after this we have built the correlation matrix between the chosen variables.

The algorithms that we have used in this project are:

- 1. K-Means
- 2. Hierarchical Clustering
- 3. DBScan

The methods that we have used in order to calculate the number of clusters in K-Means and Hierarchical algorithms are:

- 1. Silhouette Coefficient
- 2. Elbow Method

Using Silhoutte coefficient and Elbow Method we can say that the number of clusters we need to use is k=2.

A time series is a collection of observations made sequentially in time.

Then we are using a scatter chart in order to see the correlation of our variables with change over time.

Hierarchical clustering is a general family of clustering algorithms that build nested clusters by merging or splitting them successively.

This hierarchy of clusters is represented as a tree (or dendrogram).

Using Silhoutte coefficient the ideal number of cluster also for the hierarchical clustering

is equal to 2.

In our example we have used agglomerative clustering that start with the points as individual clusters, than at each step it merges the closest pair of clusters until one cluster left.

In our example the linkage criterion that we have used is 'average':

A **dendrogram** is a type of tree diagram showing hierarchical clustering or relationships between similar sets of data. In our example we have constructed a dendrogram just for the last day of <u>dpc-covid19-ita-regioni.json</u> file in order to see how this diagram works.

DBSCAN is one of the most common clustering algorithms, it groups together points that are closely packed together (points with many nearby neighbors), marking as outlier points that lie alone in low-density regions.

In our example the DBScan algorithm is not applied due to the different density present in the data(dpc-covid19-ita-regioni.json) but he have implemented another example in order to represent how it functions.

The DBSCAN algorithm uses two parameters:

minPts: The minimum number of points (a threshold) clustered together for a region to be considered dense.

eps (ϵ): A distance measure that will be used to locate the points in the neighborhood of any point.

In our example we have used another example of DBScan algorithm due to the different density present in the data(dpc-covid19-ita-regioni.json).

The dataset is generated by sklearn.datasets.make_blobs.

The make_blobs() function draws samples from a special Gaussian mixture model.

A **Gaussian mixture model** is a probabilistic model that assumes all the data points are generated from a mixture of a finite number of Gaussian distributions with unknown parameters.

A general Gaussian mixture model with k clusters has a density of the form:

$$p(x) = \sum_{i=1}^k \pi_i \mathcal{N}(\mu_i, \Sigma_i)$$

Isotropic refers to the fact that the covariance matrices will all be diagonal

$$\Sigma_i = \left[egin{array}{cc} \sigma_i^2 & 0 \ 0 & \sigma_i^2 \end{array}
ight]$$

with σ i being the standard deviation that is passed in. By default, all clusters will have the same standard deviation.

A Gaussian mixture model is not Gaussian unless there is only one cluster, but rather a combination of Gaussians.

In our example we will have **eps =0.3**, **minPts=10**, **cluster_std=0.4** that means how tightly data are clustered around the mean, **n_samples=750** total number of points equally divided among clusters.

The results will be:

Estimated number of clusters: 3
Estimated number of noise points: 18
Homogeneity: 0.953
Silhouette Coefficient: 0.626

3. Conclusions

- **Data Understanding:** We have worked with <u>github.com/pcm-dpc/COVID-19</u> dataset and we have analyzed the structure and main files of this directory.
- Data Preprocessing: We have normalized and standardized the data, dropping the unncessary data, we have represented different graphs in order to understand better the persistence of the virus in various provinces and regions of Italy.
- **Clustering algorithms:** The dataset in our possession is very aggregated and since it is a dataset without labels, we have applied K-means clustering and hierarchical clustering for classifying the data.
- We have used Gaussian mixture model as an example for understanding better DBScan algorithm.