Visual Odom 仕様書

名城大学メカトロニクス工学科 ロボットシステムデザイン研究室 2019 年 12 月 11 日

目次	
1. はじめに	p.2
1.1. コンポーネント概要	
1.2. 本書を読むにあたって	
1.3. 動作環境	
1.4. 開発環境	
2. RTC 仕様	
2.1. インターフェース仕様	
2.2. 座標系	p.3
2.3. TimedPose3DQuaternion.idl	
3. RTC の導入	
4. 実機制御方法	
41 環境構築	

4.2. 動作方法

1. はじめに

1.1. コンポーネント概要

本仕様書では RGB-D カメラから画像情報をベースとした位置姿勢情報取得を行う RT コンポーネント VisualOdom を扱う。

1.2. 本書を読むにあたって

本書は、RTミドルウェアに関する基礎知識を有した利用者を対象としている。

1.3. 動作環境

RTC の動作確認環境を以下に示す。

OS	Ubuntu18.04		
RTミドルウェア	OpenRTM-aist-1.2.0-RELEASE		
RealSense SDK	2.28.0		

1.4. 開発環境

RTC の開発環境を以下に示す。

OS	Ubuntu18.04		
RTミドルウェア	OpenRTM-aist-1.2.0-RELEASE		
RealSense SDK	2.28.0		
言語	C++		

2. RTC 仕様

2.1. インターフェース仕様

RTCの名称						
VisualOdom		Pose3DQuaternion VisualOdom0				
出力ポート						
名称	データ型		説明			
Pose3DQuaternion	TimedPose3DQuaternion		位置姿勢情報			
主なコンフィギュレーション						
名称	データ型	デフォルト値	説明			
SensorNumber	int	0	0: T265			
			1: D435			

2.2. 座標系

今回使用する位置姿勢情報の座標系は以下の2項目で表される。

- · Translation:メートル単位の変位。初期位置からの相対をとる。
- ・Rotation:回転。クォータニオン回転で表される、初期位置に対する相対をとる。

なお、RealSenseT265 に対応した座標系について、センサに対応した座標は Intel® RealSense™ SDK(https://github.com/IntelRealSense/librealsense/blob/master/doc/img/T265_orientation_axis.png) より以下の図のように示される。

2.3. TimedPose3DQuaternion.idl

本章では、独自データポートを宣言している、TmedPose3DQuaternion.idl について説明をする。

データ名	データ型	説明
Tm	RTC::Time	タイムスタンプ
Point3D	RTC::Point3D	三次元位置
Quaternion	RTC::Quaternion	四元数

3. RTC の導入

ダウンロードしたコンポーネントディレクトリの階層で、以下のコマンドを実行する。

\$ mkdir build

\$ cd build

\$ cmake ..

\$ make

4. 実機制御方法

4.1. 環境構築

本環境では、OpenRTM-aist はインストールされているものとする。以下に動作環境で必要となる Intel® RealSense™ SDK のインストール方法をまとめる。なお、Intel® RealSense™ SDK のバージョンは 2.28.0 を推奨する。

・Intel® RealSense™ SDK のインストール

https://github.com/IntelRealSense/librealsense

4.2. 動作方法

メイン PC に RealSense T265 を接続後、RT コンポーネントの起動及びアクティベートを行う。