MT-104 Linear Algebra

National University of Computer and Emerging Sciences

Fall 2020

December 10, 2020

Lecture On Applications to Differential Equations

Systems of Linear Differential Equations

First order linear homogenous differential equation

First order differential Equation

$$x' = kx$$
, k is a constant.

Solution: $x(t) = x_0 e^{kt}$.

First order differential system

$$x' = 4x$$
$$y' = 9y$$

In Matrix form of above system can be written as

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

- Matrix is diagonal
- System is uncoupled

First order linear system of differential equations

General first order linear system

$$x' = ax + by$$
$$y' = cx + dy$$

In Matrix form

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

We can write the above system as

$$X' = AX$$

where
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $X = \begin{bmatrix} x \\ y \end{bmatrix}$.

- A is not a diagonal matrix.
- Can we diagonalize A?

Diagonalization

Aim:

To solve the system X' = AX.

Challenges

Matrix is not diagonal.

Possible Solution

Transform the matrix into a diagonal matrix i.e., diagonalize it.

HOW?

We want to transform

$$X' = AX \xrightarrow{to} Y' = DY.$$

Diagonalization

As $PDP^{-1} = A$, so we can write

$$X' = AX = PDP^{-1}X$$

Pre multiplying by P^{-1} we get

$$P^{-1}X' = DP^{-1}X$$

Since, P is a constant matrix, so

$$\left(P^{-1}X\right)'=D\left(P^{-1}X\right).$$

Put $(P^{-1}X) = Y$ to get

$$Y' = DY$$

Uncoupling system of differential equations

Summary

Coupled system of differential equation

$$X' = AX$$

can be transformed (uncoupled) to

$$Y' = DY$$

by using the transformation

$$X = PY$$
.

Find a solution to the system

$$x' = x + 3y$$
$$y' = 2x + 2y$$

subject to initial conditions x(0) = 0, y(0) = 5.

Solution: In Matrix form, we can write it as

$$X' = AX$$

where
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$$
 and $X = \begin{bmatrix} x \\ y \end{bmatrix}$.

We can uncoupled the system by using the transformation

$$X = PY$$
.

Eigenvalues:

Characteristic Equation:

$$\lambda^2 - 3\lambda - 4 = 0.$$

Eigenvalues are: -1, 4.

Corresponding eigenvectors are

$$\begin{bmatrix} 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Hence,

$$P = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}, \ D = \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix}.$$

By using the transformation X = PY, we get

$$Y'=DY,$$

where
$$Y = \begin{bmatrix} u \\ v \end{bmatrix}$$
.

$$\begin{bmatrix} u' \\ v' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}.$$

Above equations can be written as

$$u' = -u$$
$$v' = 4v.$$

Solving, we get

$$u = c_1 e^{-t}, \ v = c_2 e^{4t}.$$

As X = PY, so, we can write

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}.$$

$$x = 3u + v$$
$$y = -2u + v.$$

Substituting values of u and v, we get

$$x = 3c_1e^{-t} + c_2e^{4t}$$
$$y = -2c_1e^{-t} + c_2e^{4t}.$$

Since,
$$x(0) = 0$$
 and $y(0) = 5$, we get

$$0 = 3c_1 + c_2$$
$$5 = -2c_1 + c_2.$$

Solving, above system we get

$$c_1 = -1, \ c_2 = 3.$$

In matrix form we can the solution as

$$X = -x_1 e^{-t} + 3x_2 e^{4t}$$

where $x_1 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are the eigenvectors corresponding to eigenvalues -1 and 4 respectively.

Find a solution to the system

$$r'(t) = w(t) - 12$$

 $w'(t) = -r(t) + 10$

Solution:

Issue :

Presence of -12 and 10.

How to resolve it : Put
$$w(t) - 12 = y(t)$$
 and $-r(t) + 10 = x(t)$, we get
$$-x'(t) = y(t)$$
$$y'(t) = x(t).$$

In Matrix form, we can write it as

$$X' = AX$$

where
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 and $X = \begin{bmatrix} x \\ y \end{bmatrix}$.

By using the substitution X = PY we get

$$Y' = DY$$

where $P = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$, $D = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$. So, solution is

$$u = c_1 e^{-it}$$
$$v = c_2 e^{it}$$

By using the relation
$$X = PY$$
, we get

$$x = c_1 e^{-it} + c_2 e^{it}$$

 $y = c_1 i e^{-it} - i c_2 e^{it}$.

Solution of the system is

$$egin{aligned} r(t) &= 10 - c_1 e^{-it} - c_2 e^{it} \ w(t) &= 12 + c_1 i e^{-it} - i c_2 e^{it} \end{aligned}$$

▶ In case of single linear differential equation, we have

$$x' = kx$$
, k is a constant.

Solution of the differential equation is

$$x = ce^{kt}$$
.

▶ In case of system of coupled differential equations, we have

$$X' = AX$$
, A is a constant matrix.

Solution of the linear differential system should be

$$X = c e^{At}$$
.

Exponential of a Matrix

Compute
$$e^{Dt}$$
 where $D = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$.

Since,
$$e^x = 1 + x + \frac{x^2}{2!} + ... = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
. so,

$$x + \frac{x}{2!} + \dots = \sum_{n=0}^{\infty} \frac{x}{n!} \cdot \text{so,}$$

$$e^{Dt} = I + Dt + \dots = \sum_{n=0}^{\infty} \frac{D^n t^n}{n!}$$

$$e^{Dt} = \sum_{n=0}^{\infty} \frac{1}{n!} \begin{bmatrix} 4^n t^n & 0\\ 0 & t^n \end{bmatrix}$$

$$\begin{bmatrix} \sum_{n=0}^{\infty} \frac{4^n}{n!} & 0 \end{bmatrix}$$

$$e^{Dt} = I + Dt + \dots = \sum_{n=0}^{\infty} \frac{L}{n!}$$

$$e^{Dt} = \sum_{n=0}^{\infty} \frac{1}{n!} \begin{bmatrix} 4^n t^n & 0\\ 0 & t^n \end{bmatrix}$$

$$e^{Dt} = \begin{bmatrix} \sum_{n=0}^{\infty} \frac{4^n}{n!} & 0\\ 0 & \sum_{n=0}^{\infty} \frac{1^n}{n!} \end{bmatrix}$$

$$e^{Dt} = \begin{bmatrix} e^{4t} & 0\\ 0 & e^t \end{bmatrix}$$

Compute e^{At} where $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ For given matrix, we have

$$P = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}, \ D = \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix}.$$

$$e^{At} = \sum_{n=0}^{\infty} \frac{A^n t^n}{n!}$$

$$e^{At} = \sum_{n=0}^{\infty} \frac{PD^n P^{-1}}{n!}$$

$$e^{At} = P \sum_{n=0}^{\infty} \frac{D^n t^n}{n!} P^{-1}$$

$$e^{At} = Pe^{Dt} P^{-1}$$

$$e^{At} = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{4t} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix} \end{pmatrix}^{-1}.$$

Lecture On Orthogonality

Chapter # 6

Recall: This course is about learning to:

- Solve the matrix equation Ax = b (Echelon Form, Reduced Echelon Form, Column Space, Null Space)
- Solve the matrix equation $Ax = \lambda x$ (Eigenvalues, eigenvectors and their applications)
- ▶ Almost solve the equation Ax = b (We are going to study)

Idea 1: In the real world, data is imperfect.

Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v. Due to measurement error, though, the measured x is not actually in $\mathrm{Span}\{u,v\}$.

In other words, the equation au + bv = x has no solution $(x \in \mathsf{Span} \text{ of } u \text{ and } v)$.

What do you do?

The real value is probably the *closest* point to x on Span $\{u, v\}$.

Which point is that?

Recall: This course is about learning to:

- Solve the matrix equation Ax = b (Echelon Form, Reduced Echelon Form, Column Space, Null Space)
- Solve the matrix equation $Ax = \lambda x$ (Eigenvalues, eigenvectors and their applications)
- ▶ Almost solve the equation Ax = b (We are going to study)

Idea 1: In the real world, data is imperfect.

Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v. Due to measurement error, though, the measured x is not actually in $\mathrm{Span}\{u,v\}$.

In other words, the equation au + bv = x has no solution $(x \in \text{Span of } u \text{ and } v)$.

What do you do?

The real value is probably the *closest* point to x on $Span\{u, v\}$.

Which point is that?

Recall: This course is about learning to:

- Solve the matrix equation Ax = b (Echelon Form, Reduced Echelon Form, Column Space, Null Space)
- ▶ Solve the matrix equation $Ax = \lambda x$ (Eigenvalues, eigenvectors and their applications)
- ▶ Almost solve the equation Ax = b (We are going to study)

Idea 1: In the real world, data is imperfect.

Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v. Due to measurement error, though, the measured x is not actually in $\mathrm{Span}\{u,v\}$.

In other words, the equation au + bv = x has no solution $(x \in \mathsf{Span} \text{ of } u \text{ and } v)$.

What do you do?

The real value is probably the *closest* point to x on $Span\{u, v\}$.

Which point is that?

Idea 2: The cost of producing t books like this one is nearly linear, b=C+Dt, with editing and typesetting in C and then printing and binding in D. C is the set-up cost and D is the cost for each additional book. How to compute C and D? If there is no experimental error, then two measurements of D will determine the line D is the cost for each additional book.

But if there is **error**, we must be prepared to "average" the experiments and find an optimal line. Since there are two unknowns C and D to be determined, we now project onto a two-dimensional subspace. A perfect experiment would give a perfect C and D:

$$C + Dt_1 = b_1$$

$$C + Dt_2 = b_2$$
.....
$$C + Dt_m = b_m :$$

This is an overdetermined system, with m equations and only two unknowns. If errors are present, it will have no solution. The best solution $(\widehat{C}, \widehat{D})$ is the \widehat{x} that minimizes the squared error E^2

The Dot Product

Purpose To find *length* and *angle* between two vectors, and in particular, to understand the notion of *orthogonality* (i.e. perpendicularity).

Definition

The **dot product** of two vectors x, y in \mathbb{R}^n is

$$x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} := x_1 y_1 + x_2 y_2 + \dots + x_n y_n = x^T y.$$

Example

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32.$$

Properties of the Dot Product

- $x \cdot x \ge 0$
- $\triangleright x \cdot x = 0$ if and only if x = 0.
- $\triangleright x \cdot y = y \cdot x$
- $(x+y)\cdot z = x\cdot z + y\cdot z$
- $(cx) \cdot y = c(x \cdot y)$

The Dot Product and Length

Definition

The **length** or **norm** of a vector x in R^n is

$$||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

The Pythagorean theorem!

$$\left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| = \sqrt{3^2 + 4^2} = 5$$

Fact

If x is a vector and c is a scalar, then $||cx|| = |c| \cdot ||x||$.

The Dot Product and Distance

Definition

The **distance** between two points x, y in \mathbb{R}^n is

$$\mathsf{dist}(x,y) = \|y - x\|.$$

This is just the length of the vector from x to y.

Example

Let x = (1, 2) and y = (4, 4). Then

$$dist(x, y) = ||y - x|| = \left\| \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\| = \sqrt{3^2 + 2^2} = \sqrt{13}.$$

Unit Vectors

Definition

A **unit vector** is a vector v with length ||v|| = 1.

Example

The unit coordinate vectors are unit vectors:

$$\|e_1\| = \left\| egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}
ight\| = \sqrt{1^2 + 0^2 + 0^2} = 1$$

Definition

Let x be a nonzero vector in \mathbb{R}^n . The **unit vector in the direction of** x is the vector $\frac{x}{\|x\|}$.

This is in fact a unit vector:

$$\frac{|x|}{||x||} = \frac{1}{||x||} ||x|| = 1.$$

Unit Vectors

Example

Example

What is the unit vector in the direction of $x = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$?

$$u = \frac{x}{\|x\|} = \frac{1}{\sqrt{3^2 + 4^2}} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 \\ 4 \end{pmatrix}.$$

Orthogonality

Definition

Two vectors x, y are **orthogonal** or **perpendicular** if $x \cdot y = 0$.

[3]Why is this a good definition?

The Pythagorean theorem / law of cosines!

$$x$$
 and y are perpendicular $\iff \|x\|^2 + \|y\|^2 = \|x - y\|^2$ $\iff x \cdot x + y \cdot y = (x - y) \cdot (x - y)$ $\iff x \cdot x + y \cdot y = x \cdot x + y \cdot y - 2x \cdot y$ $\iff x \cdot y = 0$

Fact: $x \perp y \iff ||x - y||^2 = ||x||^2 + ||y||^2$

Orthogonality

Definition

Two vectors x, y are **orthogonal** or **perpendicular** if $x \cdot y = 0$.

Notation: $x \perp y$ means $x \cdot y = 0$.

[3]Why is this a good definition?

The Pythagorean theorem / law of cosines!

$$x$$
 and y are perpendicular $\iff ||x||^2 + ||y||^2 = ||x - y||^2$ $\iff x \cdot x + y \cdot y = (x - y) \cdot (x - y)$ $\iff x \cdot x + y \cdot y = x \cdot x + y \cdot y - 2x \cdot y$ $\iff x \cdot y = 0$

Fact: $x \perp y \iff ||x - y||^2 = ||x||^2 + ||y||^2$

Orthogonality

Definition

A set of vectors $\{x_1, x_2, ..., x_k\}$ in R^n is called an **orthogonal set** if $x_i \cdot x_j = 0$ whenever $i \neq j$ for i, j = 1, 2, ..., k.

Problem: Show that $\{x_1, x_2, x_3\}$ is an orthogonal set in \mathbb{R}^3 if

$$x_1 = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \ x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ x_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

$$x_1 \cdot x_2 = 2(0) + 1(1) + (-1)(1) = 0$$

 $x_2 \cdot x_3 = 0(1) + 1(-1) + (1)(1) = 0$
 $x_1 \cdot x_3 = 2(1) + 1(-1) + (-1)(1) = 0$

Orthogonality Example

Problem: Find *all* vectors orthogonal to $v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

We have to find all vectors x such that $x \cdot v = 0$. This means solving the equation

$$0 = x \cdot v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3.$$

The parametric form for the solution is $x_1 = -x_2 + x_3$, so the parametric vector form of the general solution is

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

For instance,
$$\begin{pmatrix} -1\\1\\0 \end{pmatrix} \perp \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$$
 because $\begin{pmatrix} -1\\1\\0 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\-1 \end{pmatrix} = 0$.

Orthogonality Example

Problem: Find all vectors orthogonal to both
$$v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 and $w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Now we have to solve the system of two homogeneous equations

$$0 = x \cdot v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = x_1 + x_2 - x_3$$
$$0 = x \cdot w = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = x_1 + x_2 + x_3.$$

In matrix form:

The rows are
$$v$$
 and $w \longrightarrow \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

The parametric vector form of the solution is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

Theorem

If $\{x_1, x_2, ..., x_k\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then these vectors are linearly independent.

Suppose $\{u_1, u_2, \dots, u_m\}$ is orthogonal. We need to show that the equation

$$c_1u_1 + c_2u_2 + \cdots + c_mu_m = 0$$

has only the trivial solution $c_1 = c_2 = \cdots = c_m = 0$.

$$0 = u_1 \cdot (c_1 u_1 + c_2 u_2 + \cdots + c_m u_m) = c_1 (u_1 \cdot u_1) + 0 + 0 + \cdots + 0.$$

Hence $c_1 = 0$. Similarly for the other c_i .

Definition

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis of W that is an orthogonal set.

Problem Show that $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ forms orthogonal basis of R^2 .

Example

Problem Find an orthogonal basis for the subspace W of R^3 given by

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x - y + 2z = 0 \right\}.$$

We have already studied how to calculate the basis of W.

$$\begin{bmatrix} y - 2z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix},$$

so,
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
, $\begin{bmatrix} -2\\0\\1 \end{bmatrix}$ forms basis of W

They are not orthogonal.

We want to find a vector of W that is orthogonal to either $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ or $\begin{bmatrix} -2\\0\\1 \end{bmatrix}$.

Let
$$w = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 be a vector of W and is orthogonal to $\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$.

As $w \in W$, so we can write

$$x-y+2z=0.$$

Orthogonality condition implies

$$-2x+z=0.$$

Solving above two equations, we get

$$y = 5x, z = 2x.$$

So,

$$w = x \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}.$$

So,
$$\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}$ forms orthogonal basis of W .

Theorem

Let $\{x_1, x_2, ..., x_k\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n and let w be any vector in W. Then the unique scalars $c_1, c_2, ..., c_k$ such that

$$w = c_1 x_1 + c_2 x_2 + ... + c_k x_k$$

are given by

$$c_i = \frac{w \cdot v_i}{v_i \cdot v_i}, \quad i = 1, 2, ..., k.$$

Example

Problem Show that
$$B = \left\{ v_1 = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$
 forms basis of R^2 and write coordinate vector of $w = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ w.r.t B .

As $v_1 \cdot v_2 = (4) \cdot (1) + (2)(-2) = 0$, so, v_1 and v_2 are orthogonal and hence forms basis of \mathbb{R}^2 .

Now, for the coordinate vector

$$w=c_1v_1+c_2v_2.$$

Taking dot product with v_1 , we get

$$w \cdot v_1 = c_1 v_1 \cdot v_1$$
$$c_1 = \frac{w \cdot v_1}{v_1 \cdot v_1}$$

Similarly,
$$c_2 = \frac{w \cdot v_2}{v_2 \cdot v_2}$$
.

As $v_1 \cdot v_1 = 12$, $v_2 \cdot v_2 = 5$, $w \cdot v_1 = 10$, $w \cdot v_2 = -5$. So, $c_1 = \frac{5}{6}$, $c_2 = -1$. Hence, coordinate vector of w is

$$\begin{bmatrix} rac{5}{6} \\ -1 \end{bmatrix}$$