

BAKALÁŘSKÁ PRÁCE

Michal Hercík

Webový plugin pro vizualizaci sady sekundárních struktur RNA

Katedra softwarového inženýrství

Vedoucí bakalářské práce: doc. RNDr. David Hoksza, Ph.D.

Studijní program: Informatika

Studijní obor: Programování a vývoj software

Prohlašuji, že jsem tuto bakalářskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů. Tato práce nebyla využita k získání jiného nebo stejného titulu.
Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle §60 odst. 1 autorského zákona.
V dne
Podpis autora

TODO: podekovani

Název práce: Webový plugin pro vizualizaci sady sekundárních struktur RNA

Autor: Michal Hercík

Katedra: Katedra softwarového inženýrství

Vedoucí bakalářské práce: doc. RNDr. David Hoksza, Ph.D., Katedra softwaro-

vého inženýrství

Abstrakt: TODO

Klíčová slova: bioinformatika RNA sekundární struktura web plugin

Title: Web plugin for multiple RNA secondary structure visualization

Author: Michal Hercík

Department: Department of Software Engineering

Supervisor: doc. RNDr. David Hoksza, Ph.D., Department of Software Enginee-

ring

Abstract: TODO

Keywords: bioinformatics RNA secondary structure web plugin

Obsah

Ú	vod		2
1	Úvo	od do problematiky	3
	1.1	Seznámení s biologickými pojmy	3
		1.1.1 RNA	3
	1.2	Vizualizace sekundárních RNA struktur	3
	1.3	Podobné projekty	5
		1.3.1 VARNA	5
		1.3.2 RNAStructViz	6
		1.3.3 Forna	7
		1.3.4 R-chie	8
		1.3.5 Shrnutí existujících nástrojů	8
	1.4	Kreslení grafů na základě šablony	9
		1.4.1 TRAVeLer	9
		1.4.2 R2DT	9
2		v i	10
	2.1		10
	2.2		12
	2.3	1 /	13
	2.4	Demonstrace metod	14
3	Dok	tumentace	15
	3.1		$\frac{15}{15}$
	3.2	1	17
	J.2	3	17
	3.3		20
	3.3		20
			20
			20
	3.4		$\frac{20}{20}$
	0.1		$\frac{20}{20}$
			$\frac{20}{21}$
		0.4.2 Rozbot implementace	21
Zá	ivěr		22
Se	znan	n použité literatury	23
Se	znan	n obrázků	24
Se	znan	n tabulek	25
Se	znan	n použitých zkratek	26
Δ	Příl	ohy	27
4 L		·	41 97

$\mathbf{\acute{U}vod}$

TODO: uvod

1. Úvod do problematiky

1.1 Seznámení s biologickými pojmy

1.1.1 RNA

Rozdělit do více kapitol. Jedna z kapitol struktura RNA.

RNA (zkratka z anglického ribonucleic acid) je biomolekula, která hraje klíčovou roli v procesu přenosu genetické informace u všech živých organismů. RNA se skládá z řetězce nukleotidů, které obsahují cukr ribózu, fosfátovou skupinu a jednu z pěti dusíkatých bází (adenin, guanin, cytosin, uracil nebo inosin). Existují různé typy RNA, jako jsou messenger RNA (mRNA), ribozomální RNA (rRNA) a transfer RNA (tRNA), které mají každý svou specifickou funkci v buňce.

RNA sekundární struktura se týká způsobu, jakým se molekula RNA skládá na sebe díky vzniku bázových párů mezi komplementárními nukleotidy. Bázové párování se děje mezi dusíkatými bázemi RNA nukleotidů, přičemž adenin (A) se páruje s uracilem (U) a guanin (G) se páruje s cytosinem (C).

RNA sekundární struktura je důležitá, protože může ovlivnit to, jak RNA molekula funguje. Například stem-loop struktura v mRNA molekule může ovlivnit přístupnost mRNA k ribozomům, což je buněčný mechanismus zodpovědný za překládání mRNA na proteiny.

1.2 Vizualizace sekundárních RNA struktur

Pro reprezentaci sekundární RNA struktury se používají jak textové, tak grafické způsoby. Pro nás jsou nejzajímavějsí ty grafické, ze kterých v této části představíme tři nejpoužívanější - arc diagram, circular diagram a radiate diagram. Obrázky ukázek diagramu v této části jsou získané za pomoci nástroje VARNA[2].

V arc diagramu jsou nukleotidy zobrazeny na rovné čáře ve stejném pořadí jako v sekvenci a bázové páry nukleotidů jsou spojeny obloukem.

Obrázek 1.1: Ukázka arc diagramu

Circular diagram je velmi podobný. Nukleotidy neleží na rovné čáře, ale po obvodu kruhu. Bázové páry jsou spojeny buď čárou nebo obloukem.

Obrázek 1.2: Ukázka circular diagramu

Obě tyto reprezentace postrádají schopnost zachytit motivy sekundární struktury, a proto se radiate diagram používá tam, kde je potřeba detailní vizuální analýza motivů sekundární RNA struktury a její interakce. V radiate diagramu jsou pozice nukleotidů voleny tak, aby bylo možné rozeznat motivy sekundární struktury, jako jsou hairpins, bulges nebo vícevětvené smyčky.

Obrázek 1.3: Ukázka radiate diagramu

1.3 Podobné projekty

chybi motivacni uvod, ktery by rekl, co chceme delat, aby bylo mozne pochopit podobne k cemu

Rádi bychom čtenáře seznámili s některými nástroji, které jsou používáné pro vizualizaci sekundárních RNA struktur. Většina z nich jsou programy s uživatelským rozhraním a mohlo by se proto zdát zbytečné je zmiňovat nebo porovnávat s naší knihovnou. Nicméně u níže zmíněných programů není duležité řešení samotného uživatelského rozhraní, jako především druh zvolených metod pro vizualizaci a následné porovnávání.

Z velkého množství existujících nástrojů, byla snaha vybrat takové, které mají rozdílné přístupy a nabízí nejširší paletu funkcí.

1.3.1 VARNA

VARNA (Visualization Applet for RNA) je nástroj pro automatické kreslení, vizualizaci a anotaci sekundárních RNA struktur, navržený jako doprovodný software pro webové servery a databáze.

VARNA implementuje algoritmy pro vykreslení všech tří výše zmíněných diagramů, podporuje různé textové formáty pro vstup i výstup a je schopný exportovat kresbu do rastrových nebo vektorových formátů. Umožňuje ruční úpravy a strukturální anotace výsledku kresby a je považován za standard pro práci se sekundárními strukturami RNA.

Obrázek 1.4: Snimek nástroje Varna. Zobrazená struktura je d.5.b.A.madurae.

1.3.2 RNAStructViz

RNAStructViz[1] je grafický nástroj pro analýzu sekundárních RNA struktur. Jeho předností je vizuální porovnání tří konfigurací v circular arc diagramu. Doplněné zabudovaným prohlížečem CT-style¹ souboru a prohlížečem radial diagramu podstruktury, která je přímo propojená s arc diagram oknem skrze nástroj pro výběr zoom. Mezi další funkce patří vypočítání číselných informací a možnost exportu obrázků a dat pro pozdější použití.

 $[\]overline{^{1}\mathrm{CT}}$ formát souboru slouží k ukládání informace o sekvenci a bázových párů.

Obrázek 1.5: Snimek nástroje rnaStructViz, zobrazující tři struktury RNA.

1.3.3 Forna

Forna[4] (force-directed rna) nabízí webové rozhraní a server, který umožňuje uživateli vložit sekundární RNA strukturu ve formátu dot-bracket a zobrazí ji jako force-directed graf². Uživatel může následně upravit pozice přetažením myší a lze i upravovat přímo strukturu.

Obrázek 1.6: Snimek nástroje Forna. Nalevo odvozená sekundární RNA struktura URS00000B9D9D_471852 od struktury d.5.b.A.madurae napravo.

²https://cs.brown.edu/people/rtamassi/gdhandbook/chapters/force-directed.pdf

1.3.4 R-chie

R-chie [5] je web server, který umí vygenerovat šest různých typů arc diagramu. Vývoj tohoto nástroje byl se zaměřením především na složitější struktury, které nelze hezky nakreslit v radial diagramu. R-chie umí vygenerovat diagram pro porovnávání dvou sekundárních RNA struktur. Důležitým cílem byla možnost generovat diagramy pro velké množství dat, proto také nenabízí grafické rozhraní a s ním spojenou interakci se strukturami.

Projekt také nabízí balíček napsaný v jazyce R³ zvaný R4RNA, který umožňuje spuštění programu lokálně a napříč operačním systémům.

Obrázek 1.7: Výsledný arc diagram nástroje R-chie, zobrazující dvě sturktury. První struktura je nad horizontální čárou a druhá pod ní.

1.3.5 Shrnutí existujících nástrojů

Nástroje představené v této kapitole se soustředí především na prácí s circular diagramem nebo arc diagramem, a právě pouze pro tyto diagramy nabízí nějaké metody pro porovnávání omezeného množství sekundárních struktur RNA. Forna podporuje pouze radial diagram, ale porovnávání dvou struktur, které sice jdou zobrazit vedle sebe, už nijak neusnadňuje.

Varna Podporuje všechny tři zmíněné diagrami, ale nelze ani zobrazit dvě sekundární rna struktury vedle sebe. Velkou výhodou nástroje VARNA by byla možnost použití na webu, ale k tomu používá Java Applets ⁴, které jsou od roku 2017 považované za zastaralé ⁵.

Ze zmíněných projektů je nejpodobnější tomu našemu R-chie, který se snaží usnadnit porovnávání sekundárních RNA struktur a nabízí i knihovnu napsanou

³https://www.r-project.org/

⁴https://docs.oracle.com/javase/tutorial/deployment/applet/index.html

⁵https://www.oracle.com/java/technologies/javase/9-deprecated-features.html

v jazyce R. Liší se pak v samotném přístupu, protože jejich rozhraní generuje pouze statické circular nebo arc diagramy.

1.4 Kreslení grafů na základě šablony

Níže jsou zmíněné dva projekty, které úzce souvisí s naší knihovnou, protože produkují data ve formátu, se kterým pracuje naše knihovna a metody použité ke generovaní takových dat jsou klíčové pro naší knihovnu.

1.4.1 TRAVeLer

Traveler[3] je nástroj pro vizualizaci cílové sekundární struktury, využívající existující rozložení dostatečně podobné RNA struktury jako vzor. Traveler je založený na algoritmu, který konvertuje cílovou a vzorovou strukturu do odpovídající stromové reprezentace a využije stromovou editační vzdálenost společně s modifikací rozložení k přetvoření vzorové struktury do cílové. Traveler přijme na vstupu sekundární strukturu a vzor rozložení a na výstupu dá rozložení cílové struktury. Je to tedy command-line open source nástroj schopný rychle generovat rozložení i pro největší RNA struktury za poskytnutí dostatečně podobného rozložení.

Do vzniku Traveleru neexistoval žádný nástroj, který by dokázal velké struktury vizualizovat ve standardni notaci, se kterou jsou biologové naučení pracovat a porovnávat struktury napříč druhům.

1.4.2 R2DT

R2DT[6] je metoda pro predikci a vizualizaci široké škály sekundárních RNA struktur ve radial diagramu. R2DT je postaveno na knihovně se 3 647 vzory reprezentujícími většinu známých RNA struktur. R2DT se používá na ncRNA⁶ (non-coding RNA) sekvencích z RNAcentral⁷ databáze a vytvořila více než 27 miliónů diagramů⁸, čímž tvoří největší světovou sadu dat s 2D RNA strukturami. Pro vizualizaci neboli 2D rozložení používá R2DT právě výše zmíněný nástroj Traveler.

⁶RNA, která se nepřekládá do proteinů

⁷https://rnacentral.org/

⁸Číslo je aktuální k datu 11.4. 2023

2. Metody vizualizace a porovnání

Cílem této knihovny je nejen vizualizovat sekundární RNA strukturu, ale především zjednodušit analýzu rozdílů a podobností vícero RNA struktur. Právě proto jsme se zaměřili na práci s radial diagramem.

Zároveň jsme viděli potenciál v generování rozložení na základě vzorové struktury, jako to děla nástroj Traveler. Výstupem Traveleru je soubor ve formátu JSON, který obsahuje mimo jiné informaci o vzoru každého nukletidu a i informaci o provedených editacích.

Rozhodli jsme se proto v našich metodách využívat právě výše zmíněného mapování na vzorovou strukturu. Náš nástroj je tím pádem schopný pracovat s N strukturama, jejiž rozložení je vygenerované na základě stejné vzorové struktury.

2.1 Překládání struktur

Protože jsou struktury odvozené od stejného vzoru jsou typicky velmi podobné, dává proto smysl mít možnost je přeložit přes sebe, aby splynuli společné části a vynikly ty rozdílné. Pouhým přeložením podobných struktur přes sebe získámě poměrně zmatený obrázek, který neukazuje nic zajímavého a není moc přehledný.

Obrázek 2.1: Struktury vedle sebe.

Obrázek 2.2: Struktury přeložené přes sebe.

Proto bylo důležité přijít s nějakým způsobem pousouvání nebo zarovnání. Manipulací se strukturou ručně at už přetažením myši nebo zadáním pozice může být zbytečně otravné především kvůli přesnému zarovnání, kterého se snažíme docílit. Přijde nám proto velmi užitečné mít možnost zarovnat sekundární RNA strukturu na konkrétní nukleotid nebo skupinu nukleotidů. Obojího lze s naší knihovnou pohodlně dosáhnout, včetně nalezení posunutí, kterým lze zarovnat skupiny nukletidů

Obrázek 2.3: Struktury přeložené přes sebe a zarovnané.

Timto přeložením nemusí být jasné které nukleotidy mají společné a jsou překryté, a které naopak nejsou společné. Přidáním průhlednosti lze toto odlišit, protože překryté nukleotidy budou mít sytější barvu oproti těm nepřekrytým.

Obrázek 2.4: Struktury přeložené přes sebe, zarovnané a s průhledností.

Zarovnávání struktur bohužel neřeší všechny problémy. Obrázky se můžou zdá rozmazané, protože ačkoli má nukleotid vzorový nukleotid, od kterého se nijak neliší může stále jeho pozice být mírně posunutá. Je to dáno metodou generování dat. Popisky nukleotidů můžou tím pádem vypadat trochu rozmazaně.

Jako přímočaré řešení by se mohlo zdát posunout jednotilvé nukleotidy, které jsou blízko, aby dokonale překrývali jejich vzor. Věříme, že by to vyřešilo zmíněný problém, nicméně naše knihovna tuto funkci nijak přímo neimplementuje.

2.2 Transformace na vzor

Užitečnou metodou je transformace z a na vzorovou strukturu. Každý nukleotid, který má vzorový nukleotid se přemístí na pozici vzorového nukleotidu a ty nukleotidy, které vzor nemají jsou schovaný. Metoda je velmi příjemná pro práci se dvěma strukturama, které si jsou podobné nebo pro počáteční přehled co je na co namapované. Slabá stránka této metody je zjevná při práci s vícero strukturami nebo strukturami, které jsou velmi odlišné. V takových situacích se toho na displeji děje hodně a je složité se soustředit a vypozorovat něco užitečného.

Obrázek 2.5: Dvě struktury přeložené přes sebe před animací (A) a po animaci (B).

2.3 Mapovací čáry

Vědět který nukleotid se na co mapuje může být velmi užitečné pro odhalení rozdílů a podobností struktur. Snažili jsme se najít další způosob, jak tuto informaci předat ještě před animací a přišli jsme s čárami, které spojují nukletid se vzorovým nukleotidem.

Obrázek 2.6: Dvě struktruy přeložené přes sebe s mapovacíma čárama.

Bohužel tento způsob se zvětšující se velikostí struktury stáva velmi nepře-

hledným, přesto si myslíme že můžou být užitečné a naše knihovna je podporuje.

Obrázek 2.7: Dvě struktury přeložené přes sebe před animací (A) a po animaci (B).

2.4 Demonstrace metod

V rámci naší knihovny vznikla i webová aplikace¹, která demonstruje možnosti naší knihovny. Umožňuje pracovat vždy jen s jednou metodou nebo se všemi metodami usnadňující porovnání dvou sekundárních struktur RNA, které jsou zmíněné v této kapitole.

 $^{^1}$ https://michalhercik.github.io/rna-visualizer/

3. Dokumentace

3.1 Vstupní data

Jak jsme již zmiňovali, naše knihovna využívá výstupní data nástroje Traveler jako vstupní data. Jedná se o data ve formátu JSON, obsahující všechny potřebné informace o rozložení nukleotidů, jejich párování, velikostech popisků, barvách a tlouštkách čar. Kromě informací o rozložení obsahuje také informace o potřebných editacích vzorové sekundární struktury.

V rámci R2DT projektu vzníká i JSON schéma¹, které by mělo popisovat strukturu vstupních dat. Schéma je stále ve vývoji, proto aktuální výstupy R2DT nebo Traveleru neodpovídájí schématu a je dost možné, že se jejich výstupy budou v budoucnu měnit a naše knihovna se jim bude přizpůsobovat, TODO: přepsatprotože RNAcentral, využívající R2DT, je největší databází s 2D RNA strukturama.

Samotná struktura dat není složitá, ale popíšeme zde pouze tu část, kterou aktuálně využíváme, kromě toho, že ostatní data pro nás nejsou duležitá, tak jak již bylo zmíněno samotná struktura dat není pevně daná a může se měnit.

Jedná se o objekt, který má dvě položky - classes, což je pole objektů popisující třídy říkající způsob zobrazení struktury, podobně jako to kaskádové styly (CSS) diktují pro webové stránky a rnaComplexes.

rnaComplexes je pole polí sloužící pro popis celých skupin RNA struktur. Naše knihovna pracuje vždy pouze s nultým prvkem. Neviděli jsme důvod to dělat jinak, a pokud by se nějaký důvod našel v budoucnu, neměl by být problém naší knihovnu přizpůsobit situaci (např. rozšířením o novou metodu pro zachování zpětné kompatibility).

V rámci naší knihovny jsme vytvořili interface, který vstupní data musí splňovat. Struktura zbytku dat by měla být jasně viditelná z následujícího diagramu těchto interfaceů.

¹https://github.com/LDWLab/RNA2D-data-schema

Obrázek 3.1: Interface pro vstupní data

Při vykreslení dat si můžeme všimnout různého obarvení jednotlivých residue. Tyto barvy slouží k lepšímu zorientování ve struktuře vzhledem ke vzorové struktuře. Černá barva značí, že residue leží na poloze vzorového residue se stejným názvem. Zelenou barvou jsou označený ty residue jejiž vzorový residue bylo třeba přejmenovat. Modrou barvou jsou vyznačený posunutý residue. A poslední růžovou barvu mají nově přidaný residue.

Obrázek 3.2: A) Odvozená sekundární RNA struktura URS00000B9D9D_471852, B) Vzorová sekundární RNA struktura d.5.b.A.madurae

3.2 Objektový návrh

Udělat dobrý objektový návrh je pro knihovnu, která má usnadňovat práci velmi důležité, zároveň je tento úkol velmi těžký, speciálně v případě kdy není předem jasné, co všechno má knihovna umět. To v našem případě nebylo, a proto se některá rozhodnutí mohou zdát zpětně zvláštní, při nejmnenším ne ideální.

TODO: přepsatV následující kapitole se pokusíme čtenáře seznámit s objektovým návrhem naší knihovny včetně s myšlenkama, které nás k takovému návrhu dovedli. Nejdříve dáme čtenáři obecný pohled na strukturu a následně rozebere jednotlivé třídy podrobněji.

3.2.1 Obecný pohled na třídy

Srdcem celé knihovny je třída RnaVis, která vykresluje struktury na canvas a nastavuje se přes ní zoom/panning. Kromě toho má v sobě také uložené vrstvy realizované třídou Layer, představující jednotlivé struktury.

Pro určení vykreslovacích parametrů (např. font, barva, velikost) objektů máme třídu Styles. Před každým vykreslení se zeptáme této třídy na vykreslovací parametry pro daný objekt.

Poslední důležitou velkou částí jsou animace. Tuto funkcionalitu zpřístupňují dvě hlavní třídy - TranslationAnim, VisibilityAnim. Obě implementují interface IAnimation.

Níže jsou tři diagramy tříd, které dohromady obsahují každou třídu. Diagramama se snažíme vyjádřit obecnou strukturu, tím pádem pro přehlednost neobsahují všechny informace - všechny metody, některé privátní vlastnosti a některé závislosti.

Obrázek 3.3: Diagram tříd

Obrázek 3.4: Diagram tříd

Obrázek 3.5: Diagram tříd

3.3 Uživatelská dokumentace

3.3.1 Instalace

3.3.2 Rozhraní: IAnimation

Rozhraní pro definici animace.

Implementováno

- TranslationAnim
- VisibilityAnim

Metody

animate

animate(rna, duration, after): void Provede animaci.

Parametry

Název	Тур	Popis
rna	RnaVis	Objekt RnaVis, na kterém se má animace
		provést
duration	number	Délka animace
after	AfterFn	Funkce, která se má zavolat po dokončení
		animace

3.3.3 Příklady

Vykreslení struktur

Transformace

3.4 Vývojová dokumentace

3.4.1 Volba technologií

Programovací jazyk

Volba programovacího jazyka byla poměrně přímočará. Chtěli jsme napsat knihovnu, která se bude používat na webu. Javascript² je v tomto případě jasnou volbou, protože to je v podstatě to jediné, co se používá. Přesto Javascript není jazyk, ve kterým je naše knihovna psaná, protože se jedná o dynamicky typovaný jazyk, což s sebou nese určité výhody pro jednoduché a rychlé psaní kódu, ale u větších projektů se to stává nevýhodou. Naše knihovna je napsaná v Typescriptu³, což je nadmnožina Javascriptu, snažící se řešit jeho slabiny a navíc ho

 $^{^2} https://developer.mozilla.org/en-US/docs/Web/JavaScript$

³https://www.typescriptlang.org/

lze snadno přeložit do Javasrciptu a v této formě distribuovat. Při tomto překladu je možné zachovat i informaci o konkrétních typech, tím pádem projekty, využívající naší knihovnu, psané v Typescriptu nejsou ochuzené o typovou kontrolu, kterou typescript nabízí.

Knihovna D3.js

D3.js⁴ je knihovna v jayzce Javascript pomáhající přivést data k životu využívající především SVG⁵ formát, se kterým se dá v HTML⁶ pohodlně pracovat. Její důraz na webové standardy dává uživateli možnost využívat moderní prohlížeče naplno bez dalších frameworků. S knihovnou není nejjednodušší se naučit pracovat, ale nabízí minimální overhead a její velkou předností je rychlost.

SVG nebo canvas

V počátcích jsme chtěli k zobrazování používat SVG. Jedná se o webový standard, který lze skvěle kombinovat s ostatními standardy jako je CSS⁷, DOM⁸, Javascript. V kombinací s D3.js knihovnou je pak dělání animací nebo aktualizaci stavu SVG objektů jednoduché.

Nebyl důvod SVG nevyužívat, ale později jsme na vlastní kůži pocítili slabinu SVG. SVG se při vykreslování tisícovek objektů stává velmi pomalé. Takového počtu objektů můžeme dosáhnout pouze s jednou sekundární RNA strukturou, my navíc chceme zobrazit více takových struktur a ještě s nimi dynamicky pracovat.

Tím se pro nás stalo SVG nepoužitelné. Další možností bylo využití canvasu⁹, který slibuje výrazně lepší výkon a lze ho stále jednoduše používat.

Některé pro nás klíčové funkce D3.js knihovny lze využít i pro práci s canvasem. Konkrétně se jedná o zoom, panning a animace.

U canvasu jsme nakonec i zůstali, přestože při práci s desítkama velkých struktur vykreslování není plynulé.

3.4.2 Rozbor implementace

⁴https://d3js.org/

⁵https://developer.mozilla.org/en-US/docs/Web/SVG

⁶https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics

⁷https://developer.mozilla.org/en-US/docs/Web/CSS

 $^{{}^{8}} https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model$

⁹https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

Závěr

Seznam použité literatury

- [1] CHENNEY, S., HEITSCH, C., MIZE, C., SWENSON, S., SCHMIDT, M. D., KIRKPATRICK, A. a YOON, I. (2019). Rnastructviz. URL https://github.com/gtDMMB/RNAStructViz/wiki. Accessed on March 29, 2023.
- [2] Darty, K., Denise, A. a Ponty, Y. (2009). VARNA: Interactive drawing and editing of the RNA secondary structure. *Bioinformatics*, **25**(15), 1974–1975.
- [3] ELIAS, R. a HOKSZA, D. (2017). Traveler: a tool for template-based rna secondary structure visualization. *BMC Bioinformatics*, **18**(1), 487. ISSN 1471-2105. doi: 10.1186/s12859-017-1885-4. URL https://doi.org/10.1186/s12859-017-1885-4.
- [4] KERPEDJIEV, P., HAMMER, S. a HOFACKER, I. L. (2015). Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. *Bioinformatics*, **31**(20), 3377–3379. ISSN 1367-4803. doi: 10.1093/bioinformatics/btv372. URL https://doi.org/10.1093/bioinformatics/btv372.
- [5] LAI, D., PROCTOR, J. R., ZHU, J. Y. A. a MEYER, I. M. (2012). R-chie: a web server and R package for visualizing RNA secondary structures. *Nucleic Acids Research*, 40(12), e95–e95. ISSN 0305-1048. doi: 10.1093/nar/gks241. URL https://doi.org/10.1093/nar/gks241.
- [6] SWEENEY, B. A., HOKSZA, D., NAWROCKI, E. P., RIBAS, C. E., MADE-IRA, F., CANNONE, J. J., GUTELL, R., MADDALA, A., MEADE, C. D., WILLIAMS, L. D., PETROV, A. S., CHAN, P. P., LOWE, T. M., FINN, R. D. a PETROV, A. I. (2021). R2dt is a framework for predicting and visualising rna secondary structure using templates. Nature Communications, 12(1), 3494. ISSN 2041-1723. doi: 10.1038/s41467-021-23555-5. URL https://doi.org/10.1038/s41467-021-23555-5.

Seznam obrázků

1.1	Ukázka arc diagramu	3
1.2	Ukázka circular diagramu	4
1.3	Ukázka radiate diagramu	5
1.4	Snimek nástroje Varna. Zobrazená struktura je d.5.b.A.madurae	6
1.5	Snimek nástroje rnaStructViz, zobrazující tři struktury RNA	7
1.6	Snimek nástroje Forna. Nalevo odvozená sekundární RNA struk-	
	tura URS00000B9D9D_471852 od struktury d.5.b.A.madurae na-	
	pravo	7
1.7	Výsledný arc diagram nástroje R-chie, zobrazující dvě sturktury.	
	První struktura je nad horizontální čárou a druhá pod ní	8
2.1	Struktury vedle sebe	10
2.2	Struktury přeložené přes sebe	11
2.3	Struktury přeložené přes sebe a zarovnané	11
2.4	Struktury přeložené přes sebe, zarovnané a s průhledností	12
2.5	Dvě struktury přeložené přes sebe před animací (A) a po animaci	
	(B)	13
2.6	Dvě struktruy přeložené přes sebe s mapovacíma čárama	13
2.7	Dvě struktury přeložené přes sebe před animací (A) a po animaci	
	(B)	14
3.1	Interface pro vstupní data	16
3.2	A) Odvozená sekundární RNA struktura URS00000B9D9D_471852,	
	B) Vzorová sekundární RNA struktura d.5.b.A.madurae	17
3.3	Diagram tříd	18
3.4	Diagram tříd	19
3.5	Diagram tříd	19

Seznam tabulek

Seznam použitých zkratek

A. Přílohy

A.1 První příloha