Introduction to Audio Content Analysis

Module 5.1: Terminology & Notation of Pitch

alexander lerch

introduction

overview

corresponding textbook section

Chapter 5 — Tonal Analysis: pp. 82-91

- lecture content
 - pitch-related music terminology: interval, mode, tonic, chord
- learning objectives
 - name musical intervals and notate them in score notation
 - explain pitch distance
 - discuss whether a chord is a harmony

introduction

overview

corresponding textbook section

Chapter 5 — Tonal Analysis: pp. 82-91

- lecture content
 - pitch-related music terminology: interval, mode, tonic, chord
- learning objectives
 - name musical intervals and notate them in score notation
 - explain pitch distance
 - discuss whether a chord is a harmony

musical pitch notation and names

each octave (freq factor 2) is split into 12 pitch classes

musical pitch intervals

Interval	Enharmonic Equivalent	Δ ST	6						
Unison	Diminished Second	0	- 9	0 0	0 0	o o	o 90	0	0
Minor Second	Augmented Unison	1		Unison	Min. 2nd	Maj. 2nd	Min. 3rd	Maj. 3rd	4th
(Major) Second	Diminished Third	2	_0						
Minor Third	Augmented Second	3	6	20	0	20	0	>0	•
Major Third	Diminished Fourth	4	9	0	•	•	0	•	0
(Perfect) Fourth	Augmented Third	5		Dim. 5th	5th	Min. 6th	Maj. 6th	Min. 7th	Maj. 7th
Augmented Fourth	Diminished Fifth/Tritone	6							
(Perfect) Fifth	Diminished Sixth	7							
Minor Sixth	Augmented Fifth	8							
Major Sixth	Diminished Seventh	9							
Minor Seventh	Augmented Sixth	10							
Major Seventh	Diminished Octave	11							
(Perfect) Octave	Augmented Seventh	12							

musical pitch MIDI pitch

$$\mathfrak{p}(f) = 69 + 12 \cdot \log_2 \left(\frac{f}{f_{A4}}\right)$$

$$f(\mathfrak{p}) = f_{A4} \cdot 2^{\frac{\mathfrak{p}-69}{12}}$$

MIDI pitch mapping to pitch class

$$PC(\mathfrak{p}) = \mod(\mathfrak{p}, 12)$$

musical pitch MIDI pitch

Georgia Center for Music Tech Technology

$$\mathfrak{p}(f) = 69 + 12 \cdot \log_2 \left(\frac{f}{f_{A4}}\right)$$

$$f(\mathfrak{p}) = f_{A4} \cdot 2^{\frac{\mathfrak{p}-69}{12}}$$

MIDI pitch mapping to pitch class

$$PC(\mathfrak{p}) = \mod(\mathfrak{p}, 12)$$

musical pitch (MIDI) pitch distance

Georgia Center for Music Tech Technology

cent: pitch distance between two frequencies

$$\Delta C(f_1, f_2) = 100 \cdot (\mathfrak{p}(f_1) - \mathfrak{p}(f_2))$$

$$= 100 \cdot \left(\left(69 + 12 \cdot \log_2 \left(\frac{f_1}{f_{A4}} \right) \right) - \left(69 + 12 \cdot \log_2 \left(\frac{f_2}{f_{A4}} \right) \right) \right)$$

$$= 1200 \cdot \log_2 \left(\frac{f_1}{f_2} \right)$$

 \Rightarrow 100 cents span one semiton

musical pitch (MIDI) pitch distance

Georgia Center for Music Tech Technology

cent: pitch distance between two frequencies

$$\begin{split} \Delta C(f_1, f_2) &= 100 \cdot \left(\mathfrak{p}(f_1) - \mathfrak{p}(f_2) \right) \\ &= 100 \cdot \left(\left(69 + 12 \cdot \log_2 \left(\frac{f_1}{f_{A4}} \right) \right) - \left(69 + 12 \cdot \log_2 \left(\frac{f_2}{f_{A4}} \right) \right) \right) \\ &= 1200 \cdot \log_2 \left(\frac{f_1}{f_2} \right) \end{split}$$

 \Rightarrow 100 cents span one semiton

musical pitch (MIDI) pitch distance

Georgia Center for Music Tech Techology

cent: pitch distance between two frequencies

$$\begin{split} \Delta C(f_1, f_2) &= 100 \cdot \left(\mathfrak{p}(f_1) - \mathfrak{p}(f_2) \right) \\ &= 100 \cdot \left(\left(69 + 12 \cdot \log_2 \left(\frac{f_1}{f_{A4}} \right) \right) - \left(69 + 12 \cdot \log_2 \left(\frac{f_2}{f_{A4}} \right) \right) \right) \\ &= 1200 \cdot \log_2 \left(\frac{f_1}{f_2} \right) \end{split}$$

 \Rightarrow $100\,\mathrm{cents}$ span one semitone

musical pitch temperament

Georgia Center for Music Tech Technology

- equally tempered scale:
 - octave split into 12 equidistant notes (on log scale)
 - not key dependent, any modulation possible
 - enharmonic equivalence: $C\sharp = D\flat$
 - typical scale for keyboard instruments

$$\frac{f_1}{f_2}=2^{N/12}$$

• other scales can sound purer for specific keys but are less commonly used

- **expressive intonation**: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals
- vibrato
 - periodic modulation around mean pitch
 - frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with

- **expressive intonation**: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals
- vibrato
 - periodic modulation around mean pitch
 - frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with
 - continuous frequency scales: vocals, string instruments, trombone
 - other possibilities to adjust frequency: guitar, wind instruments,

- **expressive intonation**: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals
- vibrato
 - periodic modulation around mean pitch
 - frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with
 - continuous frequency scales: vocals, string instruments, trombone. . . .
 - other possibilities to adjust frequency: guitar, wind instruments, ...

- **expressive intonation**: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals
- vibrato
 - periodic modulation around mean pitch
 - frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with
 - continuous frequency scales: vocals, string instruments, trombone, ...
 - other possibilities to adjust frequency: guitar, wind instruments, ...

- **expressive intonation**: deviation of pitch frequency from temperament depending on musical context
 - leading tones
 - "pure" intervals
- vibrato
 - periodic modulation around mean pitch
 - frequency: app. 4–10 Hz, range: app. 20–300 cents
- applies only to instruments with
 - continuous frequency scales: vocals, string instruments, trombone, ...
 - other possibilities to adjust frequency: guitar, wind instruments, ...

summary

lecture content

- pitch
 - each octave split into 12 pitches
 - pitch class is an octave-independent representation of pitch
- intervals
 - distance between two pitches
- cent
 - metric for pitch distance

