Chemistry - Acid-Base Equilibria

Problem Statement

Calculate the concentrations of \(\text{CO}_3^{2-}\), \(\text{H}_3\text{O}^+\), and \(\text{OH}^-\) in a 0.180 M solution of \(\text{H}_2\text{CO}_3\) given that \(K_{a1} = 4.3 \times 10^{-7}\) and \(K_{a2} = 5.6 \times 10^{-11}\).

Given:

- Concentration of \(\text{H}_2\text{CO}_3\)(C) = 0.180 M
- \(K_{a1} = 4.3 \times 10^{-7} \)
- \(K_{a2} = 5.6 \times 10^{-11} \)

Step-by-Step Solution

Step 1: Introduction and Given Data

```
\[ \text{H}_2\text{CO}_3 \right]
```

 $\[\text{HCO}_3^- \right]$

Step 2: Calculate the concentration of \(\text{H}_3\text{O}^+\) from the first ionization

 $[K_{a1} = 4.3 \times 10^{-7}]$

Using the approximation method:

- Let's assume \(x \) is the concentration of \(\text{H}^+ \) formed in the first dissociation.
- \circ \(\\text{H}^+\) and \(\\\text{HCO}_3^-\) will both have concentration \(x\).

\[K_{a1} = \frac{[\text{H}^+][\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \]

 $[4.3 \times 10^{-7} = \frac{x^2}{0.180}]$

Step 3: Solve for \(x \)

 $[x^2 = 4.3 \times 10^{-7} \times 0.180]$

 $[x^2 = 7.74 \times 10^{-8}]$

 $[x = \sqrt{7.74 \times 10^{-8}}]$

\[x \approx 8.80 \times 10^{-4} \text{M} \]

Thus, $\[\left(\left(\left(\left(\right)^+ \right) \right) \right) = 10^{-4} \]$

Step 4: Calculate \(\\text{CO}_3^{2-}\) concentration from the second ionization

```
\[ \text{HCO}_3^- \right]
```

 $[K_{a2} = 5.6 \times 10^{-11}]$

Using approximation:

- Let's assume \(y \) is the concentration of \(\text{CO}_3^{2-} \) formed from the second dissociation.
- \(\\text{H}^+\)\) concentration from the second dissociation will be small compared to the first.
- o \(y = [\text{CO}_3^{2-}]\)
- o \[[\text{HCO}_3^-] \approx x \]

\[K_{a2} = \frac{y[\text{H}^+]}{[\text{HCO}_3^-]} \]

 $[5.6 \times 10^{-11}] = \frac{0.6}{0.80 \times 10^{-4}} [8.80 \times 10^{-4}]]$

\[y = 5.6 \times 10^{-11} \]

Step 5: Calculate \(\\text{OH}^-\) concentration using \(K_w \)

```
\label{eq:linear_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_con
```

Final Answer

 $$$ \left(\operatorname{CO}_3^{2-}, \operatorname{H}_3\left(O\right)^+, \operatorname{COH}^-\right) = 5.6 \times 10^{-11} \left(M\right), 8.80 \times 10^{-4} \left(M\right), 1.14 \times 10^{-11} \left(M\right) \right) $$$