ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Расходомеры-счётчики электромагнитные ЭСКО-Р

Назначение средства измерений

Расходомеры-счётчики электромагнитные ЭСКО-Р (далее расходомеры) предназначены для непрерывных измерений объемных расходов и объемов питьевой, технической, теплофикационной воды и конденсата водяного пара в системах водо- и теплоснабжения, а также других электропроводящих жидкостей в трубопроводах с Ду от 15 до 300 мм для учета воды в системах сбора данных, контроля и управления технологическими процессами, а также в составе теплосчетчиков.

Описание средства измерений

При прохождении электропроводящей жидкости через магнитное поле в ней, как в движущемся проводнике, наводится ЭДС, пропорциональная скорости жидкости. ЭДС снимается двумя электродами, расположенными диаметрально противоположно в одном поперечном сечении трубы расходомера. Сигнал от расходомера экранированными проводами подается на вход теплосчётчика, обеспечивающего его дальнейшую обработку.

Расходомеры состоят из полнопроходного электромагнитного первичного преобразователя расхода (ППР) и измерительного блока (ИБ), объединенных в моноблок.

Расходомеры могут поставляться потребителю в вариантах комплектации, которые различаются:

По конструктивному исполнению:

- с фланцевым присоединением (базовый вариант);
- с бесфланцевым (байонетным или резьбовым) присоединением (по заказу).

По конструктивному исполнению ИБ:

- -ИБ без дисплея (базовый вариант);
- -ИБ с дисплеем (по заказу).

Расходомеры обеспечивают представление результатов измерений в следующей форме:

- выходной частотный сигнал прямоугольной формы с программируемой частотой прямо пропорциональной расходу;
- выходной числоимпульсный сигнал с программируемым весовым коэффициентом (л/имп);
- отображение на дисплее измеренных значений объемного расхода, объема (для исполнения с дисплеем);
- последовательный интерфейс RS-232C, который используется изготовителем в технологических целях.

В расходомерах, ИБ которых по конструктивному исполнению выполнены с двухстрочным жидкокристаллическим дисплеем, информация о результатах измерений выводится в виде представленном на рисунке 1.

> Gv,m³/q XX,XXX V₁, m³ XXXX,XXX

Общий вид расходомера-счётчика приведен на рис. 2, 3:

Рис. 2

Рис. 3

Место пломбирования расходомера-счётчика ЭСКО-Р приведён на рис.4:

- 1- пломба-наклейка предприятия-изготовителя (технологический разъём);
- 2— чашка для мастичной пломбы, исключающей несанкционированный доступ к элементам электрической схемы.

Программное обеспечение

ПО у всех исполнений одной версии.

Задачей микропрограммы является обеспечение непрерывных измерений сигналов от ППР, обработка измерительной информации, и вывод результатов измерений на дисплей (накопленный объём, текущий объёмный расход) в виде выходных частотных сигналов прямоугольной формы с программируемой частотой прямо пропорциональной расходу, либо числоимпульсных сигналов с программируемым весовым коэффициентом.

Таблица 2. Идентификационные параметры программного обеспечения (ПО)

Наименование ПО	Идентифика-	Номер версии	Цифровой иденти-	Алгоритм вычис-
	ционное на-	(идентифика-	фикатор ПО (кон-	ления цифрового
	именование ПО	ционный но-	трольная сумма ис-	идентификатора
		мер) ПО	полняемого кода)	ПО
Микропрограмма	ESCO_R.hex	1.00	f57f796bbc309678d90	MD5
ЭСКО-Р	_		284432c35e82c	

Уровень защиты ПО от непреднамеренных и преднамеренных изменений "С" по MИ3286-2010.

Программа, реализуемая расходомером-счётчиком, защищена от несанкционированного доступа к настройкам при помощи пломбирования и паролями входа в программы изменения настроек.

Метрологические и технические характеристики

Значения измеряемых расходов, в зависимости от Ду расходомеров и исполнения приведены в таблице 1.

Таблина 1

Пополужи		Диаметр условного прохода (Ду), мм										
Параметр			15	25	32	40	50	80	100	150	200	300
Расход наи-	Исп.	1	0,016	0,045	0,073	0,113	0,175	0,45	0,7	1,58	2,825	6,35
меньший G _{min} ,		2	0,032	0,09	0,15	0,23	0,35	0,9	1,4	3,15	5,65	12,7
$M^3/4$		3	0,064	0,18	0,29	0,45	0,7	1,8	2,8	6,3	11,3	25,4

Попомотр	Диаметр условного прохода (Ду), мм									
Параметр	15	25	32	40	50	80	100	150	200	300
$egin{aligned} & ext{Расход наибольший } G_{ ext{max}}, \ & M^3/q \end{aligned}$	6,4	18	29	45	70	180	280	630	1130	2540
Масса, кг	5	7	9	10	11	18	23	49	70	160
Габаритные размеры, мм	150×	200×	200×	200×	200×	250×	250×	310×	380×	454×
	95×	115×	135×	145×	160×	195×	215×	280×	322×	441×
	155	177	195	205	217	255	277	350	380	457

Пределы допускаемой относительной погрешности при измерениях объемного расхода и объема в зависимости от диапазона расхода:

для $0.04G_{\max} \le G_i \le G_{\max}$	± 1,5 %
для $G_{\min} \leq G_i < 0.04G_{\max}$	± 3,0 %
Диапазон температуры измеряемой среды	1150 °C
Электропроводность измеряемой среды	$10^{-3}10 \text{ Cm/m}$
Диапазон температуры окружающего воздуха	550 °C
Диапазон температуры при транспортировании в закрытом	-2550 °C
транспорте	

Напряжение питания осуществляется от источника перемен- 36±3,6 В и частотой 50 Гц

ного тока с напряжением Потребляемая мощность не более

Средняя наработка на отказ не менее

4 B·A 40000 ч

Средний срок службы не менее

12 лет

Частотно- импульсные выходы - пассивные цепи, представляющие собой оптопары с транзисторными ключами на выходе. Постоянное напряжение, подаваемое на пассивные выходы - от +5 до +12 В при токе до 20 мА. Длительность импульса - 20 мс.

Максимальное программируемое значение выходной частоты расходомера f_{max} , соответствующей $G_{\text{max}}(M^3/4)$ - 10 кГц.

На дисплее расходомера отображаются значения накопленного объёма (м³) и текущего объёмного расхода $(m^3/4)$.

Знак утверждения типа

наносится на корпус расходомера-счётчика и титульный лист паспорта типографским способом.

Комплектность средства измерений

Таблина 2

		•
Наименование и условное обозначение	Кол., шт.	Примечание
Расходомер-счетчик электромагнитный ЭСКО-Р	1	В соответствии с заказом
Комплект монтажных частей	1*	*- в соответствии с дого-
		вором поставки
Паспорт. ЭСКО. 23367.021. ПС	1	
Руководство по эксплуатации ЭСКО. 23367.021. РЭ	1	
Методика поверки ЭСКО. 23367.021. МП	1*	*- в соответствии с дого-
		вором поставки

Поверка

осуществляется по методике "ГСИ. Расходомеры-счётчики электромагнитные ЭСКО-Р. Методика поверки", ЭСКО.23367.021 МП, утвержденной ГЦИ СИ ФГУП "ВНИИМС" в апреле 2011 г.

Основное поверочное оборудование:

- поверочная расходомерная установка «Протвино-ЭСКО», погрешность ±0,3 %; пределы измерений (0.02...200) м³/ч;

- поверочная расходомерная установка УПСЖ-1000, погрешность ± 0.25 %; пределы измерений (0.03...1000) м³/ч;
- магазины сопротивлений типа P4831 кл.0,02; диапазон измерений 0,01...1111111,1 Ом;
- частотомер электронносчетный Ч3-64/1, частота $0,005~\Gamma$ ц...150~M Γ ц, напряжение входного сигнала 0,03...10~B;
- генератор импульсов типа Γ 5-75 погрешность $\pm 10^{-3}$ T, период от 0,1 мкс до 9,99 c;
- калибратор тока П320, погрешность \pm (0,02·Ik+0,01) мкA, диапазон измерений от 10^{-9} до 10^{-1} A.

Сведения о методиках (методах) измерений

изложены в руководстве по эксплуатации ЭСКО. 23367.021. РЭ.

Нормативные и технические документы, устанавливающие требования к расходомерам-счётчикам электромагнитным ЭСКО-Р

- 1. ГОСТ Р 52931-2008. Изделия ГСП. Общие технические условия.
- 2. ГОСТ 28723-90. Расходомеры скоростные, электромагнитные и вихревые. Общие технические требования и методы испытаний.
- 3. ГОСТ 8.145-75 Государственная система обеспечения единства измерений. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений объемного расхода жидкости в диапазоне от $3\cdot10^{-6}$ до $10\text{ m}^3/c$.
- 4. ТУ 4218-003-11323367-2011 Расходомеры-счётчики электромагнитные ЭСКО-Р. Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- выполнение торговых и товарообменных операций.

Разработчик и изготовитель

Закрытое акционерное общество "Энергосервисная компания 3Э" 125362, г. Москва, ул. Водников, д. 2, стр. 14

Телефон/факс: 8-(499) 929-84-27

Испытательный центр

ГЦИ СИ ФГУП "ВНИИМС" (аттестат аккредитации № 30004-08) 119361, Москва, ул. Озерная, 46 тел. +7(495) 437-57-77, факс +7(495) 437-56-66. E-mail: office@vniims.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

"	"	2011 г.

В.Н. Крутиков

М.п.