

844 EMC

Designing PIC® Microcontroller Circuits for EFT/ESD Compatibility

Electro Magnetic Compliance

(ESD, EFT & Transformerless power supplies)

Overview of EMC

- EMC- Electromagnetic Compatibility
 - Capability of an electronic system to function compatibly with other electronic systems and not produce nor be susceptible to interference
 - A system is electromagnetically compatible if:
 - It does not cause interference with other systems
 - It is not susceptible to emissions from other systems
 - It does not cause interference with itself

Regulations

- FCC-Federal Communications Commission
- IEC International Electrotechnical Commission
- Military
- Medical
- Vehicular
- Other

FCC

Focus on emissions

Any unintentional radiator (device or system) that generates and uses timing pulses at a rate in excess of 9000 pulses (cycles) per second and uses digital techniques...

- Defines two classes
 - Class A: marketed for use in commercial, industrial or business environments
 - Class B: marketed for use in residential environment, but includes use in commercial industrial or business environments

IEC

- International body that processes regulations to facilitate trade between countries
- Regulations focus on both emissions and immunity
- Standards include the IEC 61000-x-x
- Also include CISPR standards
 - International Special Committee on Radio Interference includes CISPR 11, 22
 - Two types of standards
 - Basic standard covers specific interference
 - Product standard covers specific products

Class Objectives

- Focus on EMC subgroups
 - "It is not susceptible to emissions from other systems"
 - Electrical Fast Transients (EFT)
 - Electro Static Discharge (ESD)
 - "It does not cause interference with itself"
 - Inductive Loads
 - Connectors/Cables

IEC Standards

- 60601 -> Medical electrical equipment
- 61000-3 -> Electromagnetic Compatibility
- 61000-4-2 -> Electro Static Discharge (ESD)
- 61000-4-3 -> Radiated Electromagnetic Field
- 61000-4-4 -> Electrical Fast Transients (EFT)
- 61000-4-5 -> Surge
- 61000-4-6 -> RF Field Conducted Disturbances
- 61000-4-11 -> Voltage dips and interruptions

Class Objectives

- Focus Applications
 - Cost-Sensitive Applications (Single/Two layer Printed Circuit Boards (PCB))
 - Typical Application
 - Uses microcontroller and some digital glue logic
 - Uses some analog blocks
 - Does power control through Relays/Triacs
 - May use transformerless power supply

Class Objectives

- Procedure
 - Explain fundamentals
 - Provide simple low-cost Tips & Tricks for:
 - PCB layout & component placement
 - Use cheap (mainly passive) components
 - Component selection

Agenda

- EMC overview
- Noise fundamentals
- EFT standard IEC 61000-4-4
- ESD standard IEC 61000-4-2
- Transformerless power supplies
- PCB layout fundamentals
- Tips & tricks
- Component selection (Bonus)

Composition of EMC

Interference Sources

- External
 - Electro-Static Discharge (ESD)
 - Electrical Fast Transients (EFT)
- Internal
 - Digital
 - Microcontroller/Microprocessor
 - Discrete logic
 - Power Electronics
 - Relays, SCR, Triac

Interference Sources

- Internal
 - Switching (for Gaussian system $3dB^{BW=\frac{0.35}{t_r}}$)

Radiated Noise: B-Field

- Sources
 - On board transformers
 - Switching regulators
 - External noise
- Victims (Receivers)
 - Single-ended, high-impedance inputs
 - Traces that form a circle
 - Classic example: Ground loop
 - Signal loop
 - Long traces (acts like an antenna)

Reducing Radiated Noise

- Identify capacitive coupling problems
- Reduce all trace distances where possible
- Reduce the number of corners with Sensitive traces
- Eliminate all ground loops
- Use GROUND planes
 - One plane
 - Two planes, Analog and Digital

Conducted Noise

- Ground and Power
 - 60 or 50 Hz
 - Digital switching
 - Ground current return paths
 - Supply current return paths
- Signal path
 - Digital switching
 - Noise generated by previous device

Noise Reduction Tools

- Ground and Power Supply
 - Bypass capacitors
 - R/C filters
 - Low-impedance ground and power planes
 - Ferrite beads
 - Component placement on the board
- Signal path
 - Analog and digital filters
 - Analog differential signal path
 - Component placement on the board

Electrical Fast Transients (EFT) IEC 61000-4-4

Why EFT?

Bursts of interference pulses simulates inductively loaded switches

- The "System Level" standard defines
 - Test voltage waveform
 - Range of test levels
 - Test equipment
 - Test set-up
 - Test procedure

Test waveform

Test waveform

IEC 61000-4-4 Test Levels

Level	Power Supply Ports		I/O signal, data and control Ports		
	Voltage Peak kV	Repetition rate kHZ	Voltage Peak kV	Repetition rate kHZ	
1	0.5	5	0.25	5	
2	1	5	0.5	5	
3	2	5	1.0	5	
4	4	2.5	2.0	5	
X	Special	Special	Special	Special	

IEC 61000-4-4 Test equipment

- Polarity: Positive/Negative
- Asynchronous to power supply
- Coupling
 - Power supply ports
 - Internal: Asymmetric: L, N, PE, L-N, L-PE,
 - N-PE, L-N-PE, 3phase
 - I/O and communication ports
 - Capacitive coupler

IEC 61000-4-4 Test set-up (Power Supply ports)

IEC 61000-4-4 Test set-up (Power Supply ports)

Electro-Static Discharge (ESD) IEC 61000-4-2

Why ESD?

- Static Discharge
- ESD a "Context Sensitive" issue
 - Semiconductor
 - Manufacturing
 - End user

Why ESD?

ESD

- Semiconductor perspective
 - JESD22-A114B for HBM
 - JESD22-A115A for MM
 - Microchip corporate guidelines are 4000V-HBM and 400V-MM.
- Manufacturing perspective
 - Anti static work station
 - Wrist band
 - Grounded systems

- End User perspective
- The "System Level" standard defines:
 - Test voltage waveform
 - Range of test levels
 - Test equipment
 - Test set-up
 - Test procedure

Test equipment

Test waveform

IEC 61000-4-2Test Levels

Cor	tact Discharge	Air Discharge		
Level	Test Voltage (kV)	Level	Test Voltage (kV)	
1	2	1	2	
2	4	2	4	
3	6	3	8	
4	8	4	15	
X	Special	X	Special	

IEC 61000-4-2 Waveform Parameters

Level	Voltage (kV)	First Peak Current (A)	Rise time tr nS	Current at 30nS (A)	Current at 60nS (A)
1	2	7.5	0.7 to 1	4	2
2	4	15	0.7 to 1	8	4
3	6	22.5	0.7 to 1	12	6
4	8	30	0.7 to 1	16	8

IEC 61000-4-2 Test set-up (Floor Standing Equipment)

IEC 61000-(4-2 Vs 4-4)

Characteristics	ESD (4-2)	<i>EFT</i> (4-4)
Max Voltage	Up to 15kV	Up to 4kV
Energy	<10mJ	<= 300mJ
Rep Rate	Single Impulse	Multiple Pulses @ 5KHz
Spectrum	~1GHz	~ 100MHz

EMC Testing

- Pre-compliance testing
 - Get data on engineering prototypes
 - Emphasis on quick results
- Compliance testing
 - Test production prototypes
 - Verify compliance to specific standard
 - Requires accuracy and reliability
 - Requires comprehensive testing
 - Requires comprehensive documentation

Cost of Addressing EMC

Failure Mechanism

- Common Failure mechanism
 - Code runs away
 - Reset occurs
 - Port I/O abnormal operation
 - Device hangs, Interrupt/reset can recover
 - Devices latch-up

Latch-up

- Inherent characteristics of CMOS
 - High current flow
 - Destructive
- Prevention
 - Decoupling
 - Current limit (Power supply, I/O)
 - Low-impedance ground

Modern Electronics & EMC

- Smaller Geometry
 - Faster electronics
 - Lower max voltage

EFT Strategy

- Line filters
- Transient protectors
- Isolation transformers
- Voltage regulators
- Isolated high-power circuit

ESD Strategy

- Determine first point of contact
- Limit the current
- Low- inductance ground

Transformerless Power Supplies

Type I

Neutral -> Circuit ground

Type II

Line -> Circuit ground

Type III

- Preferred approach
 - Virtual ground

PCB Layout Fundamentals

PCB Layout Fundamentals

- Primary Goal
 - Connect nodes
- Track
 - Low freq. = Wire; High freq. = Inductor
- Vias
 - Each via introduces ~2 nH & ~0.5 pF
 - Causes impedance mismatches and signal delays

PCB Layout Fundamentals

- Track Width
 - Any variation causes impedance mismatches (Can be helpful for some cases)

PCB Layout Trace Resistance

- Trace resistance is based on:
 - Trace length (x)
 - Trace thickness (t)
 - Trace width (w)

$$ρ = Resistivity$$
 $≈ 680 (nΩ-in), Cu (copper)$

 $t \approx 0.00137 \text{ in/oz, } Cu$

$$R \approx \frac{x}{w} \cdot (0.50 \text{ m}\Omega/\Box), \quad 1 \text{ oz Cu}$$

PCB Layout Trace Inductance

For PCB traces

 $L \approx x (5 \text{ nH/in}) \ln(1 + 2\pi \text{ h/w})$, with ground plane

 $L \approx x (10 \text{ nH/in}) \ln(1 + 2\pi \text{ h/w})$, parallel ground return trace

PCB Layout Vias

Via impedances are quite important

 d_1 = via diameter

 d_2 = via pad diameter

 d_3 = ground clearance hole diameter

h = height of via (e.g., board thickness)

$$R \approx \frac{h (870 \text{ n}\Omega\text{-in})}{d_1^2}$$

$$C \approx \frac{h d_2 \varepsilon_r (1.4 \text{ pF/in})}{d_3 - d_2}$$

 $L \approx h (5 \text{ nH/in}) \ln(1 + 4 \text{ h/d}_1)$

PCB Layout Fundamentals

- PCB Capacitor
 - Two conductors separated by dielectric
 - Low-inductance capacitor

Two Layer PCB

PCB Layout Trace Capacitance

- Capacitance
 - Is caused by an electric field between two conductors
 - Depends on
 - Geometry
 - Separation
 - Dielectric (ε_r)

PCB Layout Trace Capacitance

Without ground plane

$$C_{SH} \approx \frac{x \, \epsilon_r \, (0.71 \, pF/in)}{In(1 + \pi \, h/w)}, \quad x >> w,h$$

$$\frac{Q}{C_{SH}} \quad C_{SH} \quad C_{M} \quad C_{M} \quad C_{M} \quad C_{M} \quad C_{M} \approx \frac{x \, \epsilon_r \, (0.71 \, pF/in)}{In(1 + \pi \, y_s/t)}, \quad x >> t,y_s$$

PCB Layout Fundamentals

Watch out for these antennas

Loop antenna

Dipole antenna

Transmission line

Radiation depends on A, L, I & f

PCB Layout Loop Inductance

- Inductance Is Based on Magnetic Flux
 - Loop Area
 - Geometry

 $L \approx (5 \text{ nH/in}) (2 \times \ln(2 \text{ y/d}) + 2 \times \ln(2 \text{ x/d}))$, single rectangular loop

 $L \approx 2\pi x (5 \text{ nH/in}) (ln(16 \text{ x/d}) - 2)$, single circular loop

PCB Layout

- Main Goal
 - Connect nodes
- For EMC performance
 - Minimize impedance in intended path
 - Maximize impedance in unintended path

Tips & Tricks

Power, Ground & PCB Layout

PCB Layout Grounding

- Two most used grounding techniques
 - Single Point

Multi Point

- Preferred for low frequency
- No ground loops

- Preferred for high frequency
- Lesser parasitic inductance & capacitance

Tip #1 PCB Layout - Hybrid Grounding

- Hybrid Ground
 - Single-point ground for analog system
 - Multi-point ground/grid for digital system
 - Capacitor for high frequency only ground
 - Inductor for low frequency only ground

Tip #2 PCB Layout - Grounding

High Power Supply — HP block
High Power Ground

PCB Layout Power Traces

- Power Traces
 - No loops
 - Verify return paths

PCB Layout Power lines

Poor- Daisy Chain

Best- Single Point

PCB Layout Tip #3 Power Lines

Power Better, Practical Solution Star

PCB Layout Tip #4 Power Traces

Poor

Good

Best

PCB Layout Tip #5 Grounding (Inter-board connection)

$$V = L di/dt$$

$$L = 500 \text{ nH}, I = 10 \text{ mA}, t = 5 \text{ns}$$

$$V = 1 \text{ volts}$$

PCB Layout Tip #6 Signal Return

Carefully route the return path of critical signal

Power supply decoupling

Tip #7

PCB Layout Tip #8 Coupling Noise

- Decrease "L" or increase "d" c = w·L·e_o·e_r pF
- Put ground guard between traces

Tip #9 PCB Layout - Circuit Segmentation

- Circuit Segmentation
 - Physically separate circuits to reduce coupling
 - High current or high switching frequency circuits should be close to power supply

Guard ring of ground

PCB Layout Floor Planning

- Partition into functional areas
 - Separate different signals
 - Low frequency Vs. high frequency
 - Low power Vs. high power
 - Separate different functions
 - Analog Vs. digital
 - Supply Vs. signal
 - Power driver Vs. signal conditioning

PCB Layout Floor Planning

- Add isolation
 - Make high frequency signal paths
 - Short
 - Near the PCB edge connector
 - Use guard rings and traces
 - Add spacing between sections
- Do <u>not</u> use auto routers for analog/power sections

PCB Layout Tip #10 Floor Planning

High Power/Frequency
Components Placed Near
Connector

Separate Digital and Analog Portions of the Circuit

Tip #11 Functional Block Placement

Tip #12a

- Use Multi-layer boards
 - One or more surface dedicated to power and ground
 - Minimizes loop areas
 - Minimizes signal return path (Lower impedance)
 - Minimizes cross talk
 - May provide 10x to 1000x improvement

Tip #12b Two-Layer Board

- Two-layer board can achieve 95% effectiveness of Multi-layer board
 - Route GND/VDD traces carefully
 - Ground plane in selective area
 - Routing of critical signals
 - Return path for critical signals
- May provide optimum Cost/Performance ratio

Tip #13 Board Design Approach

- Identify the power/ground sources and critical signals
- Partition layout into functional blocks
- Position all components with critical signal adjacent to each other
- Route power and ground traces
- Route critical signals and their return paths
- Route rest of the board

Tips & Tricks

Power Electronics

- Use a transient suppressor device
 - Large geometry zeners (TVS) are fastest
 - Multi-layer MOV works well
 - Ferrite + capacitor or RC combination can be used
 - Spark gaps

Power entry & MOV (TS) location

Power filter (FL) location

Inductive Loads

Voltage across Inductor

$$V = L \left(\frac{di}{dt} \right)$$

"Inductive kick" or "Flyback"

Use Snubber

Voltage Snubber with Relay

Voltage Snubber with Triac

Tip #18 Ferrite Bead Placement

Better Noise Source

Tips & Tricks

Analog

Device Noise

Passive devices

- Resistors
- Capacitors
- Inductors
- Ferrite Beads

Active devices

- Operational amplifiers
- Voltage references
- Voltage regulators
- A/D and D/A Converters

Passive Device Noise

- Resistors
 - Johnson or Thermal Noise
 - $V_{RN} = \sqrt{4KTR(BW)}$ {Vrms}
 - K = Boltzman's Constant = 1.38e -23 JK⁻¹
 - T = Temperature in Kelvin
 - R = Resistance in Ohms
 - (BW) = Noise Bandwidth in Hz
- Capacitors Negligible
- Inductors Negligible
- Ferrite Beads Negligible

Tip #19 Reducing Device Noise

- Passive Devices
 - Resistor- Choose lower value resistors
- Op Amps
 - Use lower noise devices if needed
- A/D Converters
 - Select a converter with higher accuracy
 - Remember accuracy vs. resolution issues
 - Keep input frequency bandwidth below one quarter of the sampling frequency

- Use a Shield Cable for sensors & sensitive signals
 - Suggested ground for sensor I/P

Tip #21 PCB Layout Analog Section

Noise in the Analog World

- The Noise will NEVER be Equal to Zero
 - Implement Your Layout Wisely
 - Choose Your Devices Carefully
 - Know the Environment
- Noise Reduction Rules of Thumb
 - Bypass, Bypass, Bypass!!!!!!
 - Always Implement a Ground Plane
 - Examine Current Return Paths
 - Choose Resistors Less than 100K
 - Band Limit the Analog below Nyquist/2

Tips & Tricks

Connectors

Tip #22 Cable Harness Coupling Noise

Decrease "L" or increase "d"

$$C = \frac{W \cdot L \cdot e_o \cdot e_r}{d} \quad pF$$

Tip #23 Cable Harness

- Shield wires for sensitive signals
- Twisted wire pairs for analog
- Separate cable harness
 - Analog and inputs
 - Power control signals
- Ground return wires

- Connector
 - Total # of return line depends on speed

Poor

Better

Tips & Tricks

Microcontroller Circuits

Microcontroller Circuits

- I/O pins
- Interrupt pins
- Reset pin
- Power supply
- Oscillator
- Brown Out Reset (BOR)
- Watch Dog Timer (WDT)

Microcontroller Circuits Tip #27

- Interrupt Pins
 - Edge triggered interrupts susceptible to noise
 - Use level triggered type or sample interrupt pin inside ISR
 - Use line terminations to reduce reflections, ringing or overshoot which can cause false interrupts
 - Carefully route connections to interrupt traces/pins to reduce cross-talk

Microcontroller Circuits Tip #28

Reset Pins

- A series resistor to limit the amount of current entering the MCLR pin due to ESD or EOS
- A decoupling capacitor to attenuate highfrequency noise
- Recommends pull-up resistor to VDD of <40 $K\Omega$

Microcontroller Circuits

- Reset Pins
 - MCLR is also VPP for programming
 - If not performing In-circuit Serial
 Programming™ of the device in circuit, add diode to VDD for additional ESD protection

Microcontroller Circuits

- Reset Pins
 - Some devices have a fuse setting to disable MCLR
 - If MCLR functionality is not required then disable it
 - If MCLR disabled then...

Microcontroller Circuits Tip #29

External Watch Dog/Reset Control

POOR

GOOD

Microcontroller Circuits

- Power Supply
 - Any noise on the power supply will enter all circuits on the board
 - Must have adequate decoupling caps AND bulk charge storage caps

Microcontroller Circuits Oscillator

- Oscillator
 - Oscillator circuits are generally highimpedance
 - Susceptible to highfrequency signal cross-talk or noise
 - Can induce jitter, out of spec duty cycle or complete oscillator failure

Suggested Layout for PICmicro® MCU, Tip#30

Brown-Out Condition

WDT protection from Brown Out

- Enable WDT
- Reset system only through WDT reset
- Use CLRWDT instruction once, and only once
- Fill all unused locations with "goto \$" traps

Defensive Software Tip #31

- Periodic refresh of ports
- Polling inputs
- "Noise Proof" input scan
- Update All ports, once every 50/60 Hz or once in main
- Token passing or subroutine counters
- Reset based recovery
 - Simple State Machine

Defensive Software Tip #32

- Use the watchdog timer
 - Known reset loop
 - Fill unused memory with "goto \$"
- Calculate program memory checksums

Putting it together...

Summary

- IEC 61000-4-4 is a common system-level standard for EFT/ Burst
- IEC 61000-4-2 is a common system-level standard for ESD
- Many other standards are similar to this
- Various systems require various levels of protection

Summary

- Reviewed tips & tricks to improve the system susceptibility against EFT/ESD
- PCB layout and component selection is very important
- Many fixes for EFT & ESD helps for other EMC issues

Top Fixes PCB Layout - Grounding

High Power Supply HP block
High Power Ground

Top Fixes Power Traces

Poor

Good

Best

Top Fixes Functional Block Placement

Top Fixes

Power entry & MOV (TS) location

Top Fixes

Moat Connector -Controller Controller Controller Connector **^**////-Connector onnector Line Best Poor Good Bead

Top Fixes Microcontroller Circuits

- Reset Pins
 - A series resistor to limit the amount of current entering the MCLR pin due to ESD or EOS
 - A decoupling capacitor to attenuate highfrequency noise
 - Recommends pull-up resistor to VDD of <40KΩ

EMC References

- The Designer's Guide to Electromagnetic Compatibility
 by Daryl Gerke and Bill Kimmel EDN (www.ednmag.com)
- Noise Reduction Techniques in Electronic Systems Henry W. Ott
- Printed Circuit Board Design Techniques for EMC Compliance Mark I. Montrose

Standards Web Site

- Federal Communications Commission www.fcc.gov
- International Electrotechnical Commission www.iec.ch
- MIL Standards (military) www.mil-standards.com
- Society of Automotive Engineers www.sae.org

BONUS Component Selection

Resistors

- SMT & Thin film resistors
 - Good for high-frequency response
 - Not good for ESD protection. May arc around resistor
- Metal film suitable for high power density or high accuracy circuits
- Wire wound resistors suitable for high power handling circuits
 - Don't use in high-frequency sensitive circuits

Capacitors - Construction

- Electrolytic- winds metal foil spirally between thin layer of dielectric
- Tantalum- block of dielectric with plates and pins attached
- Ceramic- multiple parallel metal plates in a ceramic dielectric
- Ceramic & tantalum dominate for EMC suppression
 - Low inductance & low ESR

Capacitors - Construction

- Self Resonance (f₀)
 - Impedance of inductor equals that of capacitor
 - Magnitudes of the impedance are same but opposite in sign
 - Net impedance of the circuit is the resistance

Self resonance of various capacitance

Capacitor Value	Leaded	SMT
1.0 µF	2.5 MHz	5 MHz
0.1 μF	8 MHZ 3	16 MHz
0.01 µF	25 MHz	50 MHz
1000 pF	80 MHz	160 MHz
100 pF	250 MHz	500MHz
10 pF	800 MHz	1.6 GHz

<u>Type</u>

Electrolytic

Tantalum

Paper

Mica

Ceramic

Approx. Max Frequency

100 kHz

1 MHz

5 MHz

500 MHz

1 GHz

Capacitors Tip #33

- To provide low impedance for shunting or diverting noise currents to ground
 - Frequency content must be below selfresonance frequency
- Sometimes multiple capacitors are needed to provide wider frequency filtering
- Frequent mistake is to make capacitance bigger to fix problem

- Ceramic capacitors
 - Smaller values of capacitance
 - Maintain ideal behavior up to much higher frequencies
 - Mid- to high-frequency filtering

- Electrolytic & Tantalum
 - Higher capacitance values
 - Low-frequency filtering
 - Used for bulk charge storage
- Electrolytic have high inductance
- Tantalum have low ESR
 - Lower ESR capacitors have better attenuation to signals

Capacitors Tip #34

Bypass

- Shunts undesirable frequencies before they reach susceptible circuits
- Watch self-resonance frequency as well as high-impedance circuits
- Low-impedance loads draw energy away from bypass capacitor
- Usually larger capacitance from electrolytic or tantalum capacitors

Capacitors Tip #35

- Decoupling
 - Devices that are switching couple noise onto the power supply (VDD & GND)
 - Decoupling capacitors filter high-frequency noise on power supply entering a device
 - Should be placed as close to the power pins on the device
 - Ceramic capacitors are usually used for decoupling because of the fast rise and fall times and their low ESR

Inductors

- Open-loop: rod inductor
 - Magnetic field passes through air
- Closed-loop: toroid
 - Magnetic field passes through core
- No parasitic inductance
 - No difference between leaded & SMT

Inductors

Inductors

- Open-loop inductors increase EMI
- Closed-loop inductors have very little susceptibility to external noise
- Two types of core material
 - Iron: useful for low frequency (kHz)
 - Ferrite: useful for high frequency (MHz)

PCB Layout - Inductive Coupling Tip #36

Noise Coupling

Inductors Tip #37

- When using inductors to solve EMC issues
 - Usually only useful on signals that are DC or change infrequently
 - Impedance of load circuit is low
 - Parallel capacitors are better for high impedance loads
- Ferrite bead is basically a single turn inductor
 - Provide ~10 dB attenuation at high frequencies
 - Low attenuation or resistive at low frequencies

Component Selection Transient Voltage Suppression (TVS) Device Comparison

Device	V/I	Speed	Energy	Loss	Follow	Cost
	curve		сар		-on	
ldeal	Sharp/ Flat	Fast	Infinite	None	None	Free
MOV	Sharp/ Non- Lin	Med	High	High	None/ High	Low
SAD	Sharp/ Flat	Fast	Low	Low	None/ High	Mod
GDT	Erratic/ Non- Lin	Slow	High	Low	High	Mod
Thyristor	Sharp/ Flat	Med	High	Low	None/ High	Mod
Spark Gap	Erratic/ Non- Lin	Slow	High	Low	None	Low

Component Selection MOV

- Voltage Dependant Resistor
- Higher capacitance (Typ 1500 pF)
- High power handling capability
 - E.g. 6500 Amps @ 8 X 20 μS Pulse for 20 mmMOV
- Short- If fails
- Higher Leakage E.g. 5 mA @ operating V
- Performance degrades with transients

Hybrid TVS

Hybrid TVS

- Secondary **Protection**
- Used to improve the V/I characteristics or speed
- **Higher Reliability** (Back-up)

