

Algorithmique Avancée & Programmation

Séance 3 : complexité

Test 3

- Déposer fichiers sources + makefile sur moodle
- 20 minutes

(centralelille

Cadrage séance 3 : Complexité

- Test papier : exos sur structures de piles/listes
 - Surtout pratique

- Présentation d'algorithmes, étude de leur complexité
- Equations de récurrence
 - Théorème maître
- Implémentation de tris

(🔴 centrale**lille**

Rappels Cf. Capsule 6

Complexité

Méfiez-vous de ceux qui affirment :

"Pourquoi s'embêter ? Il suffit d'attendre !"

- « A coût constant, la rapidité des processeurs double tous les 18 mois » - Les capacités de stockage suivent la même loi
 - Gordon Moore, co-fondateur d'Intel, 1965
- « Software is getting slower more rapidly than hardware becomes faster » - Le logiciel ralentit plus vite que le matériel n'accélère!
 - Niklaus Wirth, Prix Turing, 1995

entralelille

Complexité: effet d'une amélioration

- Soit N, la taille maximale des données que l'on peut aujourd'hui traiter en 1 heure
- Quelle taille pourra-t-on traiter en 1 heure avec le même programme lorsque les ordinateurs seront 100 fois plus rapides?

- Exemple 1 : $T(n) = \Theta(n^2)$
 - Aujourd'hui : $v \times N^2 = 1h$
 - Demain : v/100 × N'² = 1h
 - \circ N' = 10.N
- Exemple 2 : $T(n) = \Theta(2^n)$
 - Aujourd'hui : $v \times 2^N = 1h$
 - Demain : $v/100 \times 2^{N'} = 1h$
 - \circ N' = 6,6 + N
- ⇒ Le surcroît de puissance importe peu!
- ⇒ Analysez la complexité de vos algorithmes !
- ⇒ Tâchez d'en produire de complexité raisonnable !

Gnuplot

- Interface pour la représentation graphique de données provenant d'un fichier texte
- Paquet gnuplot à installer sur votre distribution
- Présentation : https://doc.ubuntu-fr.org/gnuplot
- Galerie de démos : http://gnuplot.sourceforge.net/demo/

centralelille

Exemple

\$ gnuplot gnuplot> plot "./resultats" using 1:5 with lines

- using valeurs_abs:val_ord
 - Spécifier données en abs/ord
- with lines
 - Relier les points par une ligne brisée

Fenêtre anuplot 0

AAP - 2022 8 Centralelillo

Plan

- Notations de Landau, classes de complexité
- Diviser pour régner, Résolution d'équations de récurrence
- Développement de fonctions récursives, expression des équations de coût
- Tris rapides
- Code Couleur

entralelille

Après cette séance, vous devez savoir :

- Ecrire des équations de récurrence correspondant à vos algorithmes
- Résoudre des équations de récurrence "manuellement" ou avec le théorème maître

centralelille

AAP - 2022 10

Notations asymptotiques de Landau

https://fr.wikipedia.org/wiki/Comparaison_asymptotique

centralelille

3h30

Objectifs

- L'évolution des matériels informatiques et la complexité des problèmes traités aujourd'hui et à traiter demain nécessitent une réelle analyse
- Besoins d'outils mathématiques permettant l'analyse des performances d'un algorithme
 - Avoir une idée de ce qui est faisable et infaisable actuellement
 - Améliorer les performances des problèmes faciles
 - Savoir comment aborder les problèmes difficiles

AAP - 2022 12 (• centralelill

Complexité des algorithmes

- L'exécution d'un programme a toujours un coût et il existe deux paramètres essentiels pour l'évaluer :
 - Le temps d'exécution : la complexité temporelle
 - L'espace mémoire requis : la complexité spatiale
- Aujourd'hui la complexité temporelle est le point sensible

AAP - 2022 13 Contralelill

Analyse de la complexité des algorithmes : Objectifs

- Proposer des méthodes pour estimer le coût d'un algorithme
- Être capable de comparer deux algorithmes sans avoir à les programmer
- Définir une mesure :
 - Indépendante de l'ordinateur
 - Indépendante du langage de programmation
 - i.e. indépendante des spécificités d'implémentation

AAP - 2022 14 (centralelii

Analyse de la complexité des algorithmes : Opération de base

 Une opération de base d'un algorithme est une opération élémentaire significative pour le problème traité et qui, à une constante près, est effectuée au moins aussi souvent que n'importe quelle autre opération élémentaire de l'algorithme

Exemples :

- Pour les algorithmes de tri (par comparaison), l'opération de base est la comparaison de deux valeurs (ou de deux clés)
- Pour la multiplication de matrices, l'opération de base est la multiplication de deux nombres

AAP - 2022 15 (entraleli

Quelle complexité?

- On distingue trois sortes de complexité :
 - La complexité dans le meilleur des cas
 - La complexité dans le pire des cas
 - La complexité en moyenne
 - On calcule le coût pour chaque jeu de données possible puis on divise la somme de ces coûts par le nombre de jeux de données différents
- En analyse de complexité, on étudie souvent le pire cas qui donne une borne supérieure de la complexité de l'algorithme

AAP - 2022 16 entralelille

Remarques

- Le cas moyen et le pire cas sont souvent de complexité équivalente
- Lorsqu'on étudie la complexité d'un algorithme, on ne s'intéresse pas au temps de calcul réel mais à un ordre de grandeur
 - Pour une complexité polynomiale, par exemple, on ne s'intéresse qu'au terme de plus grand ordre
- Lorsqu'on analyse deux algorithmes de traitement d'un même problème, on compare leur complexité asymptotiquement
- On exprime la complexité d'un algorithme comme une fonction f(n) de Ŋ dans ℝ

Notation Θ (grand Theta)

- Soient f et g deux fonctions de $\mathbb N$ dans $\mathbb R$.
- On dit que g(n) est une borne approchée asymptotique pour f(n) s'il existe deux constantes c₁ > 0 et c₂ > 0, ainsi que n₀ ∈ N tels que pour tout n ≥ n₀ on ait :
 - $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$
- Ceci revient à dire que :
 - f(n) a une croissance comparable à celle de g(n)
- On écrit f(n) = Θ(g(n))

(centralelille

Notation Θ (grand Theta) Illustration

La notation Θ borne asymptotiquement une fonction à la fois par excès et par défaut

AAP - 2022 19 (e) centralelill

Exemple

- $f(n) = n^2/2 \mp 3n = \Theta(n^2)$
- Il faut déterminer c₁, c₂ et n₀ tels que :
 - $0 \le c_1 n^2 \le n^2/2 \mp 3n \le c_2 n^2 \qquad 0 \le n_0 \le n$
 - $\circ \quad c_1 \le \frac{1}{2} \mp 3/n \le c_2$
- Pour $n_0 = 8$, $c_1 \le 4/8 \mp 3/8 \le c_2$
- Pour $n_0 \le n$, $\frac{1}{8} \le \frac{1}{2} \mp \frac{3}{n} \le \frac{7}{8}$
 - \Rightarrow c₁ = $\frac{1}{8}$ c₂ = $\frac{7}{8}$ et n₀ = 8

Evaluation d'un polynôme

Opération de base : multiplication entre nombres réels

- $P(x_0) = \sum_{k=0 \to n} a_k x_0^k$
 - n additions
 - n(n+1)/2 multiplications

$$P = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_0$$

$$1 + (n-1) = n$$

$$1 + (n-2) = n-1$$

$$0$$
multiplications
multiplications
multiplication

$$\Rightarrow \Theta(n^2)$$

Mise sous forme de Horner (cf. <u>TEA S2 - 2021</u>)

$$\mathrm{P}(x_0) = ((\dots((a_nx_0 + a_{n-1})x_0 + a_{n-2})x_0 + \dots)x_0 + a_1)x_0 + a_0$$

n multiplications et n additions

$$\Rightarrow \Theta(n)$$

Notation O (grand O)

- On dit que g(n) est une borne supérieure asymptotique pour f(n) s'il existe une constante c > 0, ainsi qu'un entier naturel n₀ tels que pour tout n ≥ n₀ on ait :
 - \circ 0 \leq f(n) \leq c g(n)
- Ceci revient à dire que :
 - f(n) est inférieure à g(n) pour n assez grand
- On écrit f(n) = O(g(n))

(ocentralelille

Notation O (grand O) Illustration

La notation O (grand O) est utilisée quand on ne dispose que d'une borne supérieure asymptotique

AAP - 2022 23 Contralelille

Exemples

- $f(n) = a n^2 + b n + c avec a > 0$
 - $\circ f(n) = \Theta(n^2)$
 - On a également $f(n) = O(n^2)$
- f(n) = b n + c
 - $\circ f(n) = \Theta(n)$
 - Les propositions $f(n) = O(n^2)$ et f(n) = O(n) sont vraies!
- $f(n) = n \log n + 12 n + 567 = O(n \log n)$
- $f(n) = 123 n^{10} 45n^7 + 67 n^4 + 2^n / 890 = 0(2^n)$

Notation Ω (grand Omega)

- On dit que g(n) est une borne inférieure asymptotique pour f(n) s'il existe une constante c > 0 ainsi qu'un entier naturel n₀ tels que pour tout n ≥ n₀ on ait :
 - \circ 0 \leq c g(n) \leq f(n)
- Ceci revient à dire que f(n) est supérieure à g(n) pour n assez grand.
- On écrit f(n) = Ω(g(n))

(ocentralelille

Notation Ω (grand Omega) Illustration

La notation Ω (grand Ω) est utilisée quand on ne dispose que d'une borne inférieure asymptotique

AAP - 2022 26 centralelille

Exemple

- f(n) = b n + c
 - $\circ f(n) = \Theta(n)$
 - On a également $f(n) = \Omega(n)$
- $f(n) = a n^2 + b n + c avec a > 0$
 - $\circ f(n) = \Theta(n^2)$
 - Les propositions $f(n) = \Omega(n^2)$ et $f(n) = \Omega(n)$ sont vraies!

Propriétés

- $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$
- $f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n))$
- $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) = f(n) = \Omega(g(n))$
- Les notations Θ, Ο, Ω sont transitives
- Les notations Θ, Ο, Ω sont réflexives
- Seule la notation Θ est symétrique

Règles de sommation

- $O(f(n)) + O(g(n)) \rightarrow O(max((f(n),g(n)))$
- Si g (n) est d'ordre inférieur à f(n) :
 - $\circ \quad \textbf{O(} f(n) \pm g(n) \textbf{)} \rightarrow \textbf{O(} f(n) \textbf{)}$
- Considérons un programme constitué de deux blocs en séquence P et Q, respectivement de complexité en O(f(n)) et O(g(n))
- P; Q; \rightarrow **O(** f(n) + g(n) **)**

Conditionnelle/Itération entre a et b inclus :

nombre d'éléments

- Si le test d'une instruction conditionnelle ne comporte pas d'appel à une fonction :
 - o if (test) P; else Q; \rightarrow O(max(f(n), g(n)))
- Boucle for :
 - o for $(i = a; i \le b; i ++) P; \rightarrow O((b-a+1)) f(n)$
- De même, pour une boucle while, on compte le nombre d'itérations i(n) :
 - o while (test) P; \rightarrow O(i(n) f(n))

Exemple: ex1

- Tester les algorithmes de tris présentés ci-dessous
 - Compter le nombre d'affectations et de comparaisons pour chacun d'eux
- Afficher les courbes représentant leur comportement
 - Vérifier les évaluations formelles de complexité
- Ajouter la courbe correspondant à l'expression formelle de complexité aux courbes produites par nos programmes
 - ⇒ Il suffit d'ajouter, x**2 à la fin des commandes plot dans les fichiers output/.../*.plt, puis d'exécuter la commande gnuplot output/.../*.plt

(centralelille

Gnuplot Cf. Capsule 6

- Interface pour la représentation graphique de données provenant d'un fichier texte
- Paquet gnuplot à installer sur votre distribution
- Présentation : https://doc.ubuntu-fr.org/gnuplot
- Galerie de démos : <u>http://gnuplot.sourceforge.net/demo/</u>

AAP - 2022 32 Centralelill

Exemple

\$ gnuplot

gnuplot> plot "./resultats.dem" using 1:5 with lines title 'demo', x**2

- using valeurs_abs:val_ord
 - Spécifier données en abs/ord
- with lines
 - Relier les points par une ligne brisée
- title 'demo'
 - Titre de la courbe dans la légende

AAP - 2022 33 (example)

Tri Insertion Le tri du joueur de cartes...

Opération de base : comparaison entre éléments de A

```
i = 1;
while (i < n) {
   aux = A[i];
   j = i - 1;
   while (j \ge 0 \&\& A[j] > aux) {
      A[j+1] = A[j] ;
      j-- ;
   A[j+1] = aux ;
   i++;
```

- Que fait ce code ?
- Quelle complexité ?
 - o meilleur cas ?
 - o pire cas?

(ocentralelille

Tri Insertion

Opération de base : comparaison entre éléments de A

```
i = 1;
                                                   n-1 itérations
while (i < n) {
    aux = A[i];
    j = i - 1;
                                                      Meilleur cas: 1 comparaison
    while (j >= 0 \&\& A[j] > aux) {
                                                      \sum_{i=1\rightarrow n-1} 1 = n-1 \Rightarrow 0 (n)
        A[j+1] = A[j] ;
                                                      Pire cas: i comparaisons
        j-- ;
                                                      \sum_{i=1\to n-1} i = (n-1).n/2
                                                      \Rightarrow O ( n^2 )
    A[j+1] = aux ;
    i++;
```

Tri Sélection Les cartes sont sur la table..

Opération de base : comparaison entre éléments de A

```
for (i = 0; i < n-1; i++) {
   imin = i;
   for (j = i+1; j < n; j++)
      if (A[j] < A[imin])
         imin = j;
   if (i != imin) {
      aux = A[imin];
      A[imin] = A[i];
      A[i] = aux;
```

- Que fait ce code ?
- Quelle complexité ?

Tri Sélection Quelle complexité?

Opération de base : comparaison entre éléments de A

```
for (i = 0; i < n-1; i++) {
                                                              n-1 itérations
    imin = i;
    for (j = i+1; j < n; j++)
        if (A[j] < A[imin])
                                              —— n-i-1 comparaisons
            imin = j;
    if (i != imin) {
                                      \sum_{i=0\to n-2} (n-1)-i = \sum_{i=0\to n-1} (n-1)-i = \sum_{i=0\to n-1} i = (n-1).n/2
        aux = A[imin];
        A[imin] = A[i];
                                       \Rightarrow O ( n^2 )
        A[i] = aux;
```

(🛑 centrale**lille**

Programmes de test test_utils.h

- Dans chaque fonction, compter les comparaisons et opérations représentatives de la complexité de l'algorithme mis en oeuvre
 - stats.nbComparisons ++;
 - stats.nbOperations ++;

```
typedef struct {
    unsigned long long nbComparisons; // nombre de comparaisons effectuées
    unsigned long long nbOperations; // nombre d'opérations effectuées
    clock_t duration_clock_t; // durée de la fonction en nombre de tops d'horloge
} T_stat;
extern T_stat stats;
```

(ocentralelille

Programmes de test test_utils.h

- Toutes les fonctions à tester doivent respecter ces contraintes :
 - Arg 1 : données du problème : T_data : T_elt + pointeur sur T_elt
 - Arg 2 : entier n : taille du problème considéré
 - Valeur de retour : T_data : T_elt + pointeur sur T_elt
- Exemple : T_data foo(T_data d, int n)

```
typedef struct {
    T_elt elt; // un elt
    T_elt * pElt; // ET un pointeur sur T_elt (adresse d'un T_elt ou d'un tableau de T_elt)
} T_data;
```

AAP - 2022 39

T_data genData(T_elt e, T_elt * pE); // renvoie une structure T_data initialisée

pElt

elt

Utilisation des arguments

T_data

t d f

```
int foo (T_elt t[], int d, int f) {
```

// Comment appeler la fonction foo2 pour qu'elle manipule le tableau t entre les indices d et f compris ?

```
foo2(genData(0,t+d), f-d+1);

// On pouvait aussi utiliser &(t[d])
```



```
T_data foo2(T_data d, int n) {
    // Comment renvoyer la valeur et l'adresse de la case i ?
    return genData(d.pElt[i], d.pElt+i);
```

}

```
Test_Fn
Test_FnV2
```

```
T_mode m[] = {

{MODE_TAB_ORDONNE, "ordonne", 0, 1}, // tableau initialement ordonné (meilleur cas)

{MODE_TAB_ALEATOIRE, "aleatoire", 0, 1}, // tableau initialement organisé aléatoirement

{MODE_TAB_INVERSE, "inverse", 0, 1}, // tableau initialement ordonné à l'envers (pire cas)

{MODE_EVAL_X, "x=2.0", 2.0, 0} // évaluation de la fonction à tester au point X = 2.0

...
```

void Test_Fn (const char * nom, T_pFToTest fn, T_elt Table[], int nmax, T_mode mode)

- Exécute fn sur des jeux de données de taille croissante jusqu'à nmax, organisés suivant le mode souhaité
- Affiche les indicateurs de complexité à l'écran
- Ex: Test_Fn("TRI INSERTION", insertSort, tab, MAX_ELT/10, m[MODE_TAB_ORDONNE])
 - Appelle la fonction insertSort en lui fournissant des tableaux déjà ordonnés, de taille croissante, jusqu'à la taille MAX_ELT/10

void Test_FnV2 (const char * nom, T_pFToTest fn,T_elt Table[], int nmax, T_mode mode)

- Idem mais produit des courbes au format png (utilisation de gnuplot)
- Ex: Test_FnV2("TRI INSERTION", insertSort, tab, 512, m[MODE_TAB_ALEATOIRE])
 - Appelle la fonction insertSort en lui fournissant des tableaux organisés aléatoirement, de taille croissante, jusqu'à la taille 512

AAP - 2022 41 (• c=

Classes de Complexité

Classes de complexité

- Lors de l'analyse de complexité, on se ramène généralement aux classes suivantes, présentées par complexité croissante
- Complexité logarithmique : Coût en Θ(log n)
 - Exemple : Recherche dichotomique dans un tableau ordonné de n éléments, puissance rapide
- Complexité linéaire : Coût en Θ(n)
 - Exemple : Calcul du produit scalaire de deux vecteurs de taille n, recherche dans un tableau non trié

AAP - 2022 43 (centralelill

Classes de complexité

- Complexité quasi-linéaire : coût en Θ(n log n)
 - Exemple : Tri par fusion, tri rapide, tri par tas
- Complexité polynomiale : coût en O(nk) avec k>1
 - Exemple : Multiplication de deux matrices carrées d'ordre n : Θ(n³)
 - Complexité quadratique : ⊖(n²)
 - Exemple : tris "lents"
- Complexité exponentielle : coût en Θ(aⁿ) avec a>1
 - Exemple : Tours de Hanoï

🛑 centrale**lille**

Diviser pour régner

Arbre récursif Théorème Maître

Diviser pour régner

- Principe de conception d'algorithmes et de décomposition d'un problème complexe en sous-problèmes plus faciles à traiter
- Algorithme récursif
- Trois étapes à chaque niveau de récursivité :
 - Diviser le problème en un certain nombre de sous-problèmes
 - Régner sur les sous-problèmes en les résolvant récursivement
 - Si la taille d'un sous-problème est assez réduite, on peut le résoudre directement
 - Combiner les solutions des sous-problèmes en une solution complète pour le problème initial

AAP - 2022 47 • centralelill

Diviser pour régner : Équation de récurrence

- « Équation de coût »
- T(n) = a T(n/b) + f(n)
- a : nombre de sous-problèmes
- b : facteur de division du problème en sous-problèmes
- f(n): coût des opérations de division / combinaison

(centralelille

Arbre récursif

$$T(1) = c$$

 $T(n) = 2 T(n/2) + c.n, pour n > 1$

Depuis chaque noeud, on crée deux nouveaux noeuds pour changer de niveau

On remplace n par n/2 en descendant à chaque sous-niveau

Le coût de division du problème (cn) est rapporté en chaque noeud

entralelille

Arbre récursif

$$T(1) = c$$

 $T(n) = 2 T(n/2) + c.n, pour n > 1$

T(n/4)

T(n/4)

T(n/4)

Depuis chaque noeud, on crée deux nouveaux noeuds pour changer de niveau

On remplace n par n/2 en descendant à chaque sous-niveau

Le coût de division du problème (cn) est rapporté en chaque noeud

T(n/4)

a = 2; b = 2; $log_b(a) = 1$ $a^{log_b(n)} = n^{log_b(a)} = n$

Arbre récursif

$$T(1) = c$$

 $T(n) = 2$ $T(n/2) + c.n, pour n > 1$

Théorème maître

Attention : il existe des cas qui ne peuvent pas être réglés par le théorème !

- S'applique à des équations de récurrence de la forme :
 T(n) = a T(n/b) + f(n) avec a ≥ 1, b > 1
- Trois cas, selon l'importance du surcoût induit par f(n)
- Ce surcoût se mesure en fonction de la croissance asymptotique de f(n) par rapport à n^c
 - c = log_b(a) représente l'exposant critique
- Sens physique :
 - log_b(n) = hauteur de l'arbre récursif
 - o $n^c = n^{\log_b(a)} = a^{\log_b(n)} = nombre de feuilles de l'arbre récursif$
 - Coût de tous les cas de base = Θ(n^{log_b(a)}) = Θ(n^c)

(centralelille

Théorème maître : Sens physique

AAP - 2022 53 Centralelille

Théorème maître : sélection de la règle : On compare la croissance de $n^c = n^{\log_b(a)}$ à celle de f(n)

Règle 1 : n^c croît plus vite que f(n)

```
○ Si f(n) = O(n^{\log_b(a-\epsilon)}) avec \epsilon > 0 \equiv f(n) = O(n^d) avec d < c ○ Alors, T(n) = O(n^c)
```

- Règle 2 : n^c et f(n) ont des croissances équivalentes
 - Si $f(n) = \Theta(n^c \cdot \log^k(n))$ avec $k \ge 0$ (généralement, k=0)
 - $\circ \quad \text{Alors, T(n) = } \mathbf{\Theta(n^c. log^{k+1}(n))}$
- Règle 3 : n^c croît moins vite que f(n), et f(n) satisfait une condition de régularité
 - Si $f(n) = Ω(n^{log_b(a+ε)})$ avec ε>0 $≡ f(n) = Ω(n^d)$ avec d>c
 - Et \exists k<1 tq. a $f(n/b) \le k f(n)$ pour n suffisamment grand
 - Alors, $T(n) = \Theta(f(n))$

(ocentralelille

Théorème maître : exemple 1 T(n) = 16T(n/4) + n

```
• a = 16,
```

•
$$b = 4$$

•
$$c = log_b(a)$$

= 2

•
$$n^c = n^2$$

Théorème maître : sélection de la règle : On compare la croissance de $n^c = n^{\log_b(a)}$ à celle de f(n)

- Règle 1 : n^c croît plus vite que f(n)
 - Si $f(n) = O(n^{\log_b(a-\epsilon)})$ avec $\epsilon > 0$ $\equiv f(n) = O(n^d)$ avec d < c
 - Alors, T(n) = Θ(n°)
- Règle 2 : n^c et f(n) ont des croissances équivalentes
 - Si $f(n) = \Theta(n^c \cdot \log^k(n))$ avec $k \ge 0$ (généralement, k=0)
 - Alors, T(n) = Θ(n^c. log^{k+1}(n))
- Règle 3 : n° croît moins vite que f(n), et f(n) satisfait une condition de régularité
 - o Si f(n) = Ω($n^{log_b(a+ε)}$) avec ε>0 ≡ f(n) = Ω(n^d) avec d>c
 - Et \exists k<1 tq. a f(n/b) \leq k f(n) pour n suffisamment grand
 - Alors, T(n) = Θ(f(n))

Théorème maître : exemple 1

- T(n) = 16T(n/4) + n
 - \circ a = 16, b = 4
 - \circ c = $\log_{h}(a) = 2$, $n^{c} = n^{2}$
 - $\circ f(n) = n = \Theta(n) = O(n)$
- Cas n°1 : $f(n) = O(n^{\log_4(16-\epsilon)})$ en prenant $\epsilon = 12$
- Alors $T(n) = \Theta(n^2)$

- Règle 1 : n^c croît plus vite que f(n)
 - o $f(n) = O(n^{\log_b(a-ε)})$ avec ε>0
 - \circ Alors, $T(n) = \Theta(n^c)$

Théorème maître : exemple 2 T(n) = T(n/2) + 1

- a = 1
- b = 2
- $c = log_b(a)$ = 0
- $n^c = 1$
- f(n) = 1= $\Theta(1)$

Théorème maître : sélection de la règle : On compare la croissance de $n^c = n^{\log_b(a)}$ à celle de f(n)

- Règle 1 : n^c croît plus vite que f(n)
 - o Si $f(n) = O(n^{\log_b(a-\epsilon)})$ avec ε>0

= $f(n) = O(n^d)$ avec d<c

- Alors, T(n) = Θ(n^c)
- Règle 2 : n^c et f(n) ont des croissances équivalentes
 - Si $f(n) = \Theta(n^c \cdot \log^k(n))$ avec $k \ge 0$ (généralement, k=0)
 - o Alors, $T(n) = \Theta(n^c, \log^{k+1}(n))$
- Règle 3 : n° croît moins vite que f(n), et f(n) satisfait une condition de régularité
 - o Si $f(n) = \Omega(n^{\log_b(a+\epsilon)})$ avec ε>0

- \equiv f(n) = Ω (n^d) avec d>c
- Et \exists k<1 tq. a f(n/b) \leq k f(n) pour n suffisamment grand
- Alors, T(n) = ⊖(f(n))

(centralelille

Théorème maître : exemple 2

- T(n) = T(n/2) + 1• a = 1, b = 2• $c = log_b(a) = 0$, $n^c = 1$ • $f(n) = 1 = \Theta(1)$
- Cas numéro 2 en prenant k = 0

- Règle 2 : n° et f(n) ont des croissances équivalentes
 - o f(n) = O(n^c. log^k(n)) avec k ≥ 0 (généralement, k=0)
 - \circ Alors, T(n) = Θ (n^c. log^{k+1}(n))

Théorème maître : exemple 3T(n) = 3T(n/2) + n^2

```
• a = 3
```

•
$$b = 2$$

•
$$c = log_b(a)$$

= $log_2(3)$
 ≈ 1.58

•
$$n^c = n^{1.58}$$

•
$$f(n) = n^2$$

= $\Theta(n^2)$
= $\Omega(n^2)$

Théorème maître : sélection de la règle : On compare la croissance de $n^c = n^{\log_b(a)}$ à celle de f(n)

Règle 1 : n^c croît plus vite que f(n)

```
o Si f(n) = O(n^{\log_b(a-\epsilon)}) avec \epsilon > 0 \equiv f(n) = O(n^d) avec d < c o Alors, T(n) = O(n^c)
```

- Règle 2 : n^c et f(n) ont des croissances équivalentes
 - Si $f(n) = \Theta(n^c \cdot \log^k(n))$ avec $k \ge 0$ (généralement, k=0)
 - Alors, T(n) = Θ(n^c. log^{k+1}(n))
- Règle 3 : n° croît moins vite que f(n), et f(n) satisfait une condition de régularité

```
o Si f(n) = Ω( n^{log_b(a+ε)} ) avec ε>0 ≡ f(n) = Ω( n^d) avec d>c
```

- Et \exists k<1 tq. a f(n/b) \leq k f(n) pour n suffisamment grand
- Alors, $T(n) = \Theta(f(n))$

Théorème maître : exemple 3

- $T(n) = 3T(n/2) + n^2$
 - \circ a = 3, b = 2
 - $c = log_b(a) = log_2(3) \approx 1.58, n^c \approx n^{1.58}$
 - o $f(n) = n^2 = \Theta(n^2) = \Omega(n^2)$
- Cas n°3 : $f(n) = \Omega(n^{\log_2(3+\epsilon)})$ en prenant $\epsilon = 1$
 - $3 (n/2)^2 \le k n^2$ en prenant k = 3/4 < 1
 - Alors $T(n) = \Theta(n^2)$
 - Règle 3 : n° croît moins vite que f(n), et f(n) satisfait une condition de régularité
 - o $f(n) = \Omega(n^{\log_b(a+\epsilon)})$ avec ε>0
 - \exists k<1 tq. af(n/b) \leq k f(n) pour n suffisamment grand
 - Alors, T(n) = Θ(f(n))

Théorème maître : bibliographie

- https://fr.wikipedia.org/wiki/Master theorem
- https://en.wikipedia.org/wiki/Master theorem (analysis of algorithms)
- https://people.csail.mit.edu/thies/6.046-web/master.pdf
- http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap04.htm
- https://www.cs.cornell.edu/courses/cs3110/2012sp/lectures/lec20-master/l ec20.html
- http://www2.hawaii.edu/~nodari/teaching/s18/Notes/Topic-07.html
- Algorithmique, 3è édition, Dunod, 2009
 - Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, et Clifford Stein
 - http://www.euroinformatica.ro/documentation/programming/!!!Algorithms CORMEN!!!/ DDU0027.html

AAP - 2022 61

Récursivité

Développement de fonctions récursives Expression des fonctions de coût

Récursivité

- En C, il est possible de développer une fonction qui s'appelle elle-même
 - Fonction récursive
- Processus de développement similaire à la démonstration par récurrence en mathématiques
- Pas forcément performant, mais rapide à développer !
 - Sollicite beaucoup la... pile d'exécution !
- Attention aux boucles infinies!

AAP - 2022 63 © centrale

Récursivité

- En Maths
- Exprimer la propriété P(n)
 - Ordre de la récurrence : n
- Vérifier P(0)
- Faire l'hypothèse P(n)
 - Vérifier P(n+1)

En Info

- Identifier l'ordre de la récurrence
 - un paramètre entier, la taille d'une liste, d'un tableau…
- Coder foo():
 - Coder le cas de base (si ordre d'appel = ordre initial)
 - Coder le cas général en utilisant des appels récursifs à foo()
 - Vérifier que l'ordre de la récurrence a strictement diminué entre l'appel initial et l'appel récursif!
 - Sinon... Boucle infinie!

(centralelille

Exponentiation

Opération de base : multiplication entre T_elt

```
T elt Puissance (T elt x, int n) {

    Calcul de x<sup>n</sup>

   T elt Result;
                                             Quelle complexité?
   if (n == 0) return 1;
   for (Result = x; n > 1; n--) \leftarrow n-1 itérations
       Result *= x;
                              1 multiplication
   return Result;
```


- Écrire la fonction Puissance en récursif
 - Quelle complexité ?
- Quel problème se présente lorsque l'on calcule des puissances trop grandes avec la version récursive ?

centralelille

Exponentiation Rapide ("indienne")

```
Principe:

x^{n} = \begin{cases} 1 & \text{si } n = 0 \\ (x^{2})^{n/2} & \text{si } n \text{ pair} \\ x * (x^{2})^{(n-1)/2} \text{ si } n \text{ impair} \end{cases}
```

```
T elt PuissanceRapide(T elt x, int n){
    T elt Result = 1;
    while (n > 0) {
                                                Llog_2(n)J + 1 itérations
        if ((n \% 2) == 1){
            Result *= x;
                                                1 multiplication
            n--;
        x = x^*x;
                                                1 multiplication
        n = n > 1; // équivalent à n = n/2
    return Result;
                                                             ⇒ Coût en O(log n)
```

(ocentralelille

Opérateur >> Décalage arithmétique ou logique

$$n = \sum_{k=0\to 7} a_k 2^k$$

$$= a_0 + 2. \sum_{k=1\to 7} a_k$$

$$2^{k-1}$$

0 (décalage logique, si X est unsigned)

0 ou 1 (décalage arithmétique, conservation du bit de signe, cf. capsule 5)

68 (entralelille

Pourquoi Llog₂(n) J + 1 itérations ?

- Considérons une valeur V représentée sur m bits
 - Il faut m-1 décalages vers la droite (opérateur >>) pour obtenir 1

- Quelles valeurs V se représentent sur m bits ?
- $2^{m-1} \le V \le 2^m 1 < 2^m$

NB:
$$\sum_{k=0 \to m-1} 2^k = 2^m -1$$

- $m-1 \le \log_2(V) < m$
 - m-1 est le plus grand entier ≤ log₂(V)
 - On le dénote Llog₂(V)J

「n₁: plus petit entier supérieur ou égal à n

LnJ: plus grand entier inférieur ou égal à n

Pourquoi Llog₂(n)J + 1 itérations?

- Décalage vers la droite = division euclidienne par la base
 - o En binaire : division par 2
- Llog₂(V)J
 - Plus grand entier inférieur ou égal à log₂(V)
 - Nombre de divisions successives de V par 2 permettant d'atteindre la valeur 1
- 「log₂(V)]
 - Plus petit entier supérieur ou égal à log₂(V)
- Llog₂(V) + 1
 - Nombre de divisions successives de V par 2 permettant d'atteindre la valeur 0
 - Nombre de symboles nécessaires pour représenter V en binaire
 - Llog₁₀(V) + 1 : nombre de chiffres nécessaires pour représenter V en base 10

(<mark>| o centrale**lille** |</mark>

Exercice corrigé: ex3: Exponentiation Rapide ("indienne")


```
Principe:

x^{n} = \begin{cases}
1 & \text{si } n = 0 \\
(x^{2})^{n/2} & \text{si } n \text{ pair} \\
x * (x^{2})^{(n-1)/2} & \text{si } n \text{ impair}
\end{cases}
```

- Ecrire le code de l'exponentiation rapide en récursif
- Etudier le comportement de la fonction expérimentalement
- Ecrire l'équation de coût
- Résoudre cette équation

Opération de base : Recherche dichotomique comparaison de T_elt

- Recherche dans une table ordonnée
- A chaque étape, réduire de moitié l'intervalle de recherche

centralelille

Recherche dichotomique

```
int RechercheDicho (T elt T[], int n, T elt e) {
    int Debut = 0, Fin = n - 1, Milieu;
    int Test:
    while (Debut <= Fin) {</pre>
        Milieu = (Debut + Fin) / 2;
                                                           Fonction de comparaison
                                                           qui retourne 0 si égalité ou
         Test = Comparaison(e, T[Milieu]);
                                                           une valeur positive ou
         if (Test == 0)
                                                           négative
             return Milieu;
         if (Test < 0)
                                                           Recherche dans la moitié
                                                           inférieure
             Fin = Milieu - 1;
         else
                                                           Recherche dans la moitié
             Debut = Milieu + 1+
                                                           supérieure
    return -1; /* e n'est pas dans T */
```

AAP - 2022 73 centralelille

int Comparaison(T_elt e1, T_elt e2) int Comparaison(const T_elt * pE1,const T_elt * pE2)

- Une "bonne" fonction de comparaison doit renvoyer un entier vérifiant les critères suivants :
 - 0 si les éléments e1 et e2 sont égaux
 - < 0 si e1 est avant e2 pour la relation d'ordre considérée</p>
 - > 0 si e1 est après e2 pour la relation d'ordre considérée
- Cf. fonction standard de comparaison des chaînes de caractères :

int strcmp(const char *s1, const char *s2)

Cf. argument compar dans le prototype de la fonction qsort :

void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *));

AAP - 2022 74 (centralelill

Recherche dichotomique

- Combien d'appels à Comparaison(e, T[Milieu]) ?
 - 1 dans le meilleur des cas
- Égal au nombre de passages dans la boucle while
 - À chaque itération, on réduit l'intervalle de recherche de moitié
 - La taille initiale de l'intervalle vaut n
 - Llog₂(n) lest le nombre d'itérations permettant de réduire l'intervalle de recherche à 1
 - Llog₂(n)J+1 est le nombre d'itérations permettant de réduire l'intervalle de recherche à zéro
 - ⇒ Coût en O(log n)

Exercice corrigé: ex4: Recherche dichotomique en récursition par la companie de la contraction de la

- Implémenter en récursif
- Etudier le comportement de la fonction expérimentalement
- Ecrire l'équation de coût, la résoudre
- Résolution par substitution

(centralelille

Résolution par substitution

- Procède par intuition de la solution et vérification par substitution
- Exemple : recherche dichotomique
 - \circ T(n) = 1 + T(n/2) pour n>0; T(0) = 0; T(1) = 1
 - Intuition : $T(n) = \Theta(\log_2(n))$
- Hypothèse : $T(n) = a.log_2(n) + c$
 - o Donc, $T(n/2) = a.log_2(n) a + c$
- T(n) = 1 + T(n/2) $\Leftrightarrow a.log_2(n) + c = 1 + a.log_2(n) - a + c \Leftrightarrow c = 1 - a + c \Leftrightarrow a = 1$
- Puisque T(1) = 1, on déduit c=0
- $T(n) = log_2(n)$

Tours de Hanoï

Opération de base : déplacement d'un disque

- Déplacer un disque à la fois
- Ne jamais placer un disque sur un disque plus petit
- Objectif : déplacer tous les disques d'une colonne à une autre

AAP - 2022 78 centralelille

Exercice corrigé : ex5 : Tours de Hanoï

- Implémenter en récursif
- Etudier le comportement de la fonction expérimentalement
- Ecrire l'équation de coût
- Résolution de manière itérative

(centralelille

AAP - 2022 80 centralelille

Résolution itérative

- Procède par développement et sommations
- Exemple : tours de Hanoï
 - T(n) = 2 T(n-1) + 1 pour n>0 ; T(0) = 0
 - $T(n) = 2(2T(n-2) + 1) + 1 = 2^2T(n-2) + 2 + 1$
 - $T(n) = 2^2 (2 T(n-3) + 1) + 2 + 1 = 2^3 T(n-3) + 2^2 + 2 + 1$
 - $T(n) = 2^{i} T(n-i) + 2^{i-1} + ... + 2 + 1$
 - o T(n) = 2^n T(0) + 2^{n-1} + ... + 2 + 1 Iorsque i=n
 - $T(n) = 2^{n-1} + ... + 2 + 1 = 2^n 1$
 - Complexité exponentielle : Θ(2ⁿ)

entralelille

Tris Optimaux

(ocentralelille

Tris: vocabulaire https://fr.wikipedia.org/wiki/Algorithme_d e tri

- Clé de tri : valeur associée aux éléments à trier qui sert de critère de comparaison entre ces éléments
- Tri en place : Tri qui modifie directement la structure qui est en train d'être triée, ne nécessite pas d'espace mémoire supplémentaire
- Tri stable : Tri qui préserve l'ordre initial des éléments que l'ordre considère comme égaux
- Tri optimal : Tri en O(n log(n))
 - On peut montrer que la borne inférieure de complexité d'un algorithme de tri par comparaisons est n . log₂(n)

AAP - 2022 83 (centrale||||||

Tri Optimal: O(n log(n)) Intuition de la démonstration

Arbre de décision correspondant au tri de 3 éléments

http://icps.u-strasbg.fr/~vivien/Enseignement/Algo-2001-2002/Corrige-TD08.pdf

AAP - 2022 84 (o cer

Tri Optimal: Intuition

- Considérer l'arbre de décision correspondant au tri de n éléments
- Le résultat d'un tri correspond à une feuille de cet arbre de décision
- Le coût du tri, exprimé en nombre de comparaisons, est fonction de la profondeur de la feuille considérée
- Le coût minimum d'un tri capable de discriminer n éléments est donc égal à la hauteur de l'arbre de décision
 - Si on ne descend pas tout en bas, il y a des configurations différentes d' éléments qu'on ne pourra pas discriminer
- → Quelle est la hauteur minimale d'un arbre de décision de n éléments ?

AAP - 2022 85 (centrale

Tri Optimal: Intuition

- Le nombre maximum de feuilles d'un arbre binaire de hauteur h est 2^h : f ≤ 2^h
 - La hauteur minimale d'un arbre comportant f feuilles est log₂(f) : log₂(f) ≤ h
- Un arbre de décision correspondant au tri de n éléments comporte n! feuilles (n! permutations possibles de n éléments)
- Sa hauteur minimale est donc log₂(n!) = Θ(n log₂(n))

• Cf. formule de Stirling :
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \theta\left(\frac{1}{n}\right)\right)$$

(ocentralelille

Tri fusion

- Diviser : diviser la séquence d'éléments à trier en deux sous-séquences d'éléments de tailles égales (à 1 élément près)
- Régner : trier chaque sous-séquence à l'aide du tri fusion (appels récursifs)
- Combiner : fusionner les sous-séquences triées pour produire la réponse triée

centralelille

Tri fusion: exemple

AAP - 2022 88 Contralelille

Tri fusion: code C

```
void tri fusion(T elt t [], int debut, int fin) {
    int milieu;
    if (debut < fin)
                                              Diviser
        milieu = (debut + fin)/2;
        tri_fusion(t, debut, milieu);
                                                        Régner
        tri fusion(t, milieu + 1, fin);
        fusionner(t, debut, milieu, fin);
                                                  Combiner
```

(ocentralelille

Tri fusion

- Soit n la taille de l'ensemble à trier. L'opération de base est la comparaison entre éléments de l'ensemble
- Hypothèse : le coût de fusionner est en Θ(n)
- $T(n) = 2 \times T(n/2) + \Theta(n)$ pour n > 1
 - \circ T(1) = 0 et T(0) = 0

Fusionner

Opération de base : comparaison de T_elt

```
d m m+1 f

t

aux

0 m-d f-d
```

```
void fusionner(T elt t [], int d, int m, int f) {
     T elt aux[f - d + 1]; // !! Allocation dynamique sur la pile (standard C99)
     int i, j, k;
     memcpy(aux, &t[d], (f - d + 1) * sizeof(T_elt)); // Copie des données à fusionner
     i = 0; j = m - d + 1; k = 0;
                                                        f-d+1 itérations au maximum
     while (i \leq m - d && j \leq f - d) {
          if (aux[i] \le aux[j]) t[d + k++] = aux[i++]; // aux[i] est plus petit : on le place dans t
          else
                    t[d + k++] = aux[j++];
                                                              // aux[i] est plus petit : on le place dans t
     for (; i \le m - d; t[d + k++] = aux[i++]); // le reste du tableau gauche
     for (; j \le f - d; t[d + k++] = aux[j++]); // le reste du tableau droit
```

AAP - 2022 91 (centralelill

Tri Fusion: Résolution itérative $T(n) = 2 \times T(n/2) + \Theta(n)$, T(1) = 0, T(0) = 0

- T(n) = 2 T(n/2) + cn
- T(n) = 2 (2 T(n/4) + cn/2) + cn = 4 T(n/4) + 2 cn
- $T(n) = 4 (2 T(n/8) + cn/4) + 2 cn = 2^3 T(n/2^3) + 3 cn$
- $T(n) = 2^i T(n/2^i) + i cn$
- Quand $i = Llog_2(n)J$:
- $T(n) = n T(1) + Llog_2(n) J cn = Llog_2(n) J cn$
- $T(n) = \Theta(n \log_2(n))$

(<mark>| </mark> centrale**lille**

Tri Fusion: Théorême Maître
$$T(n) = 2 \times T(n/2) + \Theta(n)$$
, $T(1) = 0$, $T(0) = 0$

- a = 2, b = 2, $c = log_b(a) = 1$, $n^c = n$
- $f(n) = \Theta(n)$
- Règle 2 avec k=0
- $T(n) = \Theta(n \log(n))$

- Règle 2 : n° et f(n) ont des croissances équivalentes
 - $f(n) = \Theta(n^c \cdot \log^k(n))$ avec $k \ge 0$ (généralement, k=0)
 - $\circ \quad \text{Alors, T(n) = } \mathbf{\Theta(n^c. log^{k+1}(n))}$

(ocentralelille

Tri fusion: conclusion

- Complexité en Θ(n× log(n))
 - Quel que soit l'état initial de l'ensemble à trier
- Tri stable
- Ce n'est pas un tri en place si l'ensemble est un tableau
 - Nécessité d'une table auxiliaire
- Tri en place si l'ensemble est une liste chaînée
 - Pas d'échange de valeurs : seuls les pointeurs sont modifiés
 - Pas d'espace mémoire supplémentaire nécessaire

AAP - 2022 94 © centralelille

Exercice: ex6: TEA

- Implémenter tri fusion d'un tableau
- Implémenter tri fusion d'une liste avec affichage graphique des listes
- Etudier le comportement de vos algorithmes de tri

centralelille

Tri rapide

- Quicksort : inventé par Tony Hoare en 1960
- Diviser : décomposer l'ensemble des éléments en deux partitions :
 - Une partition contenant les éléments dont la clé est inférieure à celle d'un élément particulier appelé pivot
 - Une partition contenant tous les éléments dont la clé est supérieure à celle du pivot
- Régner : appels récursifs à la procédure de tri pour chacune de ces partitions
- Combiner : inutile ici

(centralelille

Tri rapide: code C

```
void Tri rapide( T elt t[], int debut, int fin) {
   int iPivot;
                                                Diviser
   if (fin > debut) {
      iPivot = Partitionner(t, debut, fin);
      Tri rapide(t, debut, iPivot - 1);
      Tri rapide(t, iPivot + 1, fin); -
                                                Régner
```

(ocentralelille

Tri rapide: coûts

- Cas favorable : chaque partition contient n/2 éléments (à ± 1 près)
 - o $T(n) = 2 T(n/2) + <math>\Theta(n)$ pour n > 1, T(0) = 0, T(1) = 0
 - $\circ T(n) = \Theta(n \log(n))$
- Cas défavorable : une partition vide, l'autre contenant tous les éléments sauf le pivot
 - o $T(n) = T(n-1) + <math>\Theta(n)$ pour n > 1, T(0) = 0, T(1) = 0
 - $\circ T(n) = \Theta(n^2)$
- En moyenne : $T(n) = O(n \log(n))$
 - \circ T(0) = 0, T(1) = 0
 - \circ T(n) = n-1 + 1/n $\sum_{i=0 \to n-1}$ (T(i) + T(n-i-1)) n>1

(centralelille

Tri rapide: coût moyen

Même coût

•
$$T(n) = n-1 + 1/n \sum_{i=0 \to n-1} (T(i) + T(n-i-1))$$

- $T(n) = n-1 + 2/n \sum_{i=0 \to n-1} T(i)$
- $n T(n) = n (n-1) + 2 \sum_{i=0 \to n-1} T(i)$ (1)
- $(n-1) T(n-1) = (n-1) (n-2) + 2 \sum_{i=0 \to n-2} T(i)$ (2)
- Après avoir calculé (1) (2)
- nT(n) (n+1)T(n-1) = 2 (n-1)
- T(n)/(n+1) T(n-1)/n = 2(n-1)/(n(n+1))

Tri rapide: coût moyen

- T(n)/(n+1) T(n-1)/n = 2(n-1)/(n(n+1))
- D(n) = T(n) / (n+1)
- D(n) = D(n-1) + 2(n-1) / (n(n+1))
- $D(n) \approx D(n-1) + 2 / (n+1) \approx D(2) + 2 \sum_{k=4, n+1} 1/k$
- D(n) < D(2) + 2 log(n)
- T(n) < (n+1) T(2)/3 + 2 (n+1) log(n)
- $T(n) = O(n \log(n))$

(centralelille

Partitionner

```
int Partitionner (T elt t [], int d, int f){
     int i=d, j=f-1; // On utilise i et j comme « pointeurs » qui se déplacent
     int pivot = f; // On choisit le dernier élément comme pivot
     while (i<j) {
          // On déplace i et j jusqu'à trouver des valeurs incohérentes % pivot
           while ((i < j) \&\& (t[i] <= t[f])) i++;
           while ((i<j) && (t[j]>t[f])) j--;
           if (i < j) {
                                                      // Après la boucle principale,
                echanger(t,i,j);
                                                      // les pointeurs i et j sont inversés : i >= j
                i++ ; j-- ;
                                                      // On sait que tous ceux avant i sont plus petits ou égaux
                                                      // Tous ceux apres i sont strictement plus grands
                                                      // - - - - i(-) i(+) + + + Piv.
     if (t[i]<=t[f]) i++; // Cf. ci-contre
                                                      // - - - - j = i(?) + + + + + Piv.
                                                      // Où replacer le pivot ?
     echanger(t, i, f);
                                                      // On choisit de le replacer en i
     return i;
                                                      // Il faut vérifier la valeur de la case i
```

AAP - 2022 101 (e) centralelill

Partitionner (1) ipivot = Partitionner(T, d, f)

d +0 +1 +2 +3 +4 +5 +6 +7 +8 d +9 =

7 3 1 6 4 9 4 2 7 6

↑

←---- j

- Choix du pivot : par exemple le dernier
- L'indice i remonte dans T jusqu'à trouver un élément qui n'est pas inférieur à pivot
 - i est initialisé à d
- L'indice j redescend dans T jusqu'à trouver un élément qui est inférieur à pivot
 - j est initialisé à f 1.
- Lorsque le premier élément supérieur ou égal à pivot est trouvé à partir du rang i en remontant ET lorsque le premier élément inférieur à pivot à partir du rang j, en descendant, sont trouvés:
 - Permutation de ces deux éléments, ET
 - o Incrémentation de l'indice i, ET
 - Décrémentation de l'indice j

AAP - 2022 102

Partitionner (2)

- On recommence à partir des rangs i et j
- Lorsque le premier élément supérieur ou égal à pivot est trouvé à partir du rang i en remontant, ET lorsque le premier élément inférieur à pivot à partir du rang j, en descendant, sont trouvés :
 - Permutation de ces deux éléments, ET
 - o Incrémentation de l'indice i, ET
 - Décrémentation de l'indice j
- La procédure s'arrête lorsque les indices i et j se croisent

AAP - 2022 103 © centralelill

Partitionner (3)

+0 +1 +2 +3 +4 +5 +6 +7 +8 d +9 = f

2 3 1 4 4 9 6 7 7 6

j i f

- Il ne reste plus qu'à permuter l'élément d'indice i avec le pivot (d'indice f)
- ... et à retourner l'indice de l'élément contenant la valeur pivot, c'est-à-dire l'indice i

(centralelille

Tri rapide: conclusion

- Tri qui peut dégénérer
- Rendre le tri indépendant des données :
 - Utiliser un pivot aléatoire
 - Appliquer au tableau une permutation aléatoire avant de le trier
- Tri non stable
- Tri en place

(centralelille

Tri rapide dans la librairie standard

- void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *))
- La fonction qsort() trie un tableau contenant nmemb éléments de taille size
- L'argument base pointe sur le début du tableau

centralelille

Exercice: ex7: TEA

- Implémenter le tri rapide d'un tableau
- Mettre en évidence la dégénérescence
- Développer un moyen de l'éviter
- Comparer les performances de vos implémentations à qsort, tri fusion et tri fusion de listes

centralelille

TEA

- Sujet : <u>TEA S3 2021</u>
- A remettre 24h avant la prochaine séance, sur moodle

entralelille

Code Couleur

(centralelille

AAP - 2022

Légende des textes

- mot-clé important, variable, contenu d'un fichier, code source d'un programme
- chemin ou url, nom d'un paquet logiciel
- commande, raccourci
- commentaire, exercice, citation
- culturel, optionnel

entralelille

Culturel / Approfondissement

- A ne pas connaître intégralement par coeur
 - Donc, le reste... est à maîtriser parfaitement !
- Pour anticiper les problématiques que vous rencontrerez en stage ou dans d'autres cours
- Pour avoir de la conversation à table ou en soirée...

entralelille

AAP - 2022

Exemples ou Exercices

- Brancher le cerveau
- Participer
- Expérimenter en prenant le temps...

centralelille

Bonnes pratiques, prérequis

- Des éléments d'organisation indispensables pour un travail de qualité
- Des rappels de concepts déjà connus

centralelille

AAP - 2022 113