EE-305 PROJECT RESULTS

GROUP-09

Kaparthi Divya; Roll no.190002028 Goli Teja Sree; Roll no.190002023 Amogh Dixit; Roll no. 190002004 Bhavyash Gautam; Roll no. 190002013

PROJECT DESCRIPTION: Determine the polarisation (linear/circular/elliptical, and right-/left-handed) of a uniform plane wave, whose electric field is expressed in phasor notation as $\overrightarrow{E}(z,t) = \widehat{a_x}E_{10}e^{-j\beta z} + \widehat{a_y}E_{20}e^{-j\beta z}e^{-j\varphi}$. Plot the instantaneous electric field intensity E(z,t). Assume a lossless medium (α = 0). The parameter values E_{10} , E_{20} , β , φ will be provided from the user-end.

PROJECT RESULT: Every wave can be either linearly polarised or elliptically (or circularly) polarised. Elliptically polarised waves can be further classified into (i) right-handed elliptically polarised and (ii) left-handed elliptically polarized.

Following images correspond to the results obtained for different values of the input parameters E_{10} , E_{20} , β and ϕ .

1. Linearly Polarised Electric Field Wave

2. Left-handed Circularly Polarised Electric Field Wave

3. Right-handed Circularly Polarised Electric Field Wave

4. Left-handed Elliptically Polarised Electric Field Wave

5. Right-handed Elliptically Polarised Electric Field Wave

