PROJET MODELISATION : EVALUATION PROBABILISTE DE LA PREVISION SAISONNIÈRE SUR LA RÉGION MENA

Mohamed EL-BADRI et Nohayla BERRAHMOUCH

October 30, 2024

Plan de la Présentation

- Introduction
- Méthodologie
- État d'avancement
- 4 Résultats préliminaires
- Prochaines étapes
- 6 métriques déterministes
- métriques probabilistes
- 8 données et méthodes

Contexte du projet

Vulnérabilité aux fluctuations climatiques

 La région MENA est vulnérable aux fluctuations climatiques qui impactent des secteurs comme l'agriculture, l'eau, et l'énergie.

Figure: Financement national et international climatique par région

Anticiper les Risques Climatiques pour une Résilience Régionale Renforcée:

- Réduction de l'impact économique
- Sécurité Alimentaire et Hydrique
- Adaptation Sectorielle

Figure: vague de chaleur à l'Algéric

Objectifs

- Évaluation des Modèles et Analyse des Performances :
 - Revue bibliographique des métriques d'évaluation pour les modèles probabilistes et déterministes.
 - Collecte des données de modèles climatiques et calcul des scores de précision (RMSE, Brier, etc.).
- Identification des Meilleurs Modèles : Comparer les performances pour identifier les modèles les plus performants.
- Rédaction et Analyse des Résultats : Analyse des résultats clés et rédaction du rapport final.

Approche Adoptée : Méthodes et Techniques Utilisées

PREVISION DETERMINISTE:

- Une seule prévision.
- Un seul état initial.
- Résolution importante.

PREVISION D'ENSEMBLE:

- Plusieurs scénarios.
- Plusieurs états initiaux.
- Donne la prévision en terme de probabilité.
- Résolution plus faible.

Erreur Quadratique Moyenne (RMSE)

Objectif: Mesurer l'ampleur moyenne de l'erreur de la prévision.

Formule:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}$$
 (1)

où P_i est la valeur prévue et O_i est la valeur observée.

Interprétation : Le plus petit RMSE correspond à la meilleure prévision.

Coefficient de Corrélation des Anomalies (ACC)

Objectif : Mesurer la similarité entre les anomalies prévues et observées.

Formule:

$$ACC = \frac{\sum_{i=1}^{n} (f_i - \bar{f})(o_i - \bar{o})}{\sqrt{\sum_{i=1}^{n} (f_i - \bar{f})^2} \sqrt{\sum_{i=1}^{n} (o_i - \bar{o})^2}}$$

Où:

- f_i : Anomalie prédite par le modèle pour l'élément i
- o_i: Anomalie observée pour l'élément i
- \bar{f} : Moyenne des anomalies prédites
- ō : Moyenne des anomalies observées
- n : Nombre d'éléments (stations, périodes, etc.)

Interprétation : L'ACC varie entre -1 et 1. Une valeur de 1 indique que prévision capture parfaitement les variations des anomalies observées.

Score de Brier

Objectif : Mesure la précision des prévisions probabilistes en comparant les probabilités prédites avec les résultats réels.

Formule:

$$BS = \frac{1}{n} \sum_{i=1}^{n} (p_i - o_i)^2$$
 (2)

où p_i est la probabilité prévue pour un événement, et o_i est 1 si l'événement s'est produit, 0 sinon.

Interprétation : Le score de Brier varie entre 0 et 1. Une valeur plus faible indique une meilleure performance, et une prévision parfaite a un score de Brier de 0.

Courbe ROC (Receiver Operating Characteristic)

Objectif: Évaluer dans quelle mesure les prévisions distinguent correctement les occurrences et les non-occurrences d'événements selon différents seuils de probabilité (discrimination).

Calcul:

• Taux de Vrais Positifs (TPR) : Proportion des événements vrais correctement prévus.

$$TPR = \frac{\text{Vrais Positifs}}{\text{Vrais Positifs} + \text{Faux Négatifs}}$$

• Taux de Faux Positifs (FPR) : Proportion des non-événements incorrectement prévus comme événements.

$$FPR = \frac{\text{Faux Positifs}}{\text{Faux Positifs} + \text{Vrais N\'egatifs}}$$

Courbe ROC et AUC:

On trace la courbe ROC (TPR vs FPR) et on calcule l'aire sous la courbe qui quantifie la capacité du modèle à distinguer entre les événements et les non-événements.

Figure: Courbe ROC et AUC

Interprétation : L'AUC varie entre 0 et 1. Une valeur de 1 représente une discrimination parfaite.

Pratiquement : Climatologie et Anomalies

Étapes pratiques pour le calcul des anomalies :

- Définir la climatologie de référence : On commence par calculer la moyenne des valeurs sur une période de référence, par exemple de 1993 à 2016.
- Calcul des anomalies : Soustraire la moyenne climatologique de chaque valeur prévisionnelle .

Catégorisation et Calcul des Terciles

Catégorisation des prévisions :

- Classer les prévisions en trois catégories : au-dessus de la normale, proche de la normale, en-dessous de la normale.
- Calcul des terciles :
 - P33 : seuil en-dessous duquel se trouvent 33% des prévisions.
 - P66 : seuil en-dessous duquel se trouvent 66% des prévisions.

Exemple:

- Si $P33 = 12^{\circ}C$ et $P66 = 15^{\circ}C$, cela signifie que 33% des prévisions sont en dessous de $12^{\circ}C$ et 66% en dessous de $15^{\circ}C$.
- Les trois catégories deviennent :
 - Anomalies supérieures à P66.
 - Anomalies comprises entre *P*33 et *P*66.
 - Anomalies inférieures à P33.

Planification

RESSOURCES DONNEES & METHODES

Objective Seasonal Outlook Package (OSOP) is a collection of code to support objective seasonal forecasting

DATA

- DWD (Deutscher Wetterdienst, Allemagne): ICON-SEAS
- Météo-France (System 7)
- CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italie)
 : SPS3.
- NCEP (National Centers for Environmental Prediction, États-Unis) : CFSv2.
- UKMO (UK Met Office, Royaume-Uni): GloSea5.
- ECMWF (Centre Européen) : SEAS5.
- JMA (Japan Meteorological Agency, Japon) : JMA/MRI-CPS2.
- ECCC (Environment and Climate Change Canada, Canada): CanSIPS.

Remerciements

Remerciements:

Nous tenons à vous remercier pour votre attention. Votre présence et votre attention ont été grandement appréciées.

Merci encore!

