Diagnostic Test: Trigonometry

R.J github.com/soyceunton

a)
$$SAF$$
 . 180 = 150°

$$\frac{\partial}{\partial x} = \frac{\alpha}{2\pi} \quad \text{arc length}$$

$$\frac{\partial}{\partial x} = \frac{\alpha}{2\pi} \quad \text{arc length}$$

$$\alpha = 80 \quad \text{dircomfore}$$

$$\alpha = 12 \text{ cm} \quad 0 = 30 \quad \text{fg}$$

$$\alpha = 12 \text{ cm} \cdot \frac{\pi}{6} = 2\pi \text{ cm}$$

(a)
$$\tan(\pi/3)$$
 (b) $\sin(7\pi/6)$ (c) $\sec(5\pi/3)$

5. Express the lengths
$$a$$
 and b in the figure in terms of θ .

6. If
$$\sin x = \frac{1}{3}$$
 and $\sec y = \frac{5}{4}$, where x and y lie between 0 and $\pi/2$, evaluate $\sin(x + y)$.

4. a)
$$\tan \left(\frac{\pi}{3}\right) = \tan \left(\frac{180}{3}\right) = \tan 60^{\circ}$$

$$= \sin 60^{\circ} = \frac{3}{2} = \frac{1}{3} = \frac{3}{2} = \frac{3}{3}$$

$$\cos 60^{\circ} = \frac{3}{2} = \frac{3}{2} = \frac{3}{2} = \frac{3}{2}$$

$$\cos 60^{\circ} = \frac{1}{2} = \frac{3}{2} = \frac{3}{2}$$

Sin 90
$$\pm$$
 0 = Cos0
Cos 90 \pm 0 = \mp Sin 0
tan 90 \pm 0 = \mp Cot 0
Cof 90 \pm 0 = \mp tan 0

Sind =
$$\frac{\alpha}{24}$$
 : $\alpha = 24 \sin \theta$
 $\cos \theta = \frac{b}{24}$: $b = 24 \cos \theta$

6. Sin x = \frac{7}{3}

Sec y= 5 x, y=> (0, T/2)

$$Sin(x+y) = \frac{1}{3} \cdot \frac{4}{5} + \frac{2\sqrt{2} \cdot 3}{3} \cdot \frac{3}{5}$$

$$= \frac{4}{15} + \frac{6\sqrt{2}}{15} = \frac{1}{15} (4+6\sqrt{2})$$

(a)
$$\tan \theta \sin \theta + \cos \theta = \sec \theta$$
 (b) $\frac{2 \tan x}{1 + \tan^2 x} = \sin 2x$

- **8.** Find all values of x such that $\sin 2x = \sin x$ and $0 \le x \le 2\pi$.
- **9.** Sketch the graph of the function $y = 1 + \sin 2x$ without using a calculator.

7. a)
$$tan O sinO + CosO$$

 $Sin^2O + Cos^2O = 1 = SecO = RHS$

(080

= Sin 2x

-RHS

b)
$$2 \tan x = 2 \tan x$$

 $1 + \tan^2 x = \frac{2 \tan x}{\cos^2 x + \sin^2 x}$
 $\cos^2 x$

$$\frac{1}{1 + \frac{1}{1 + \frac$$

Sin 0 = 0 Sin 2.0 = 0

Sin 2x = Sinx

Sin 2x - Sinx = 0

2 Sinx (osx - Sinx = 0)

Sinx (2 (osx - 1) = 0

Sinx = 0 (osx =
$$\frac{1}{2}$$
)

x=Sin $\frac{1}{2}$ (0)

x=Cos $\frac{1}{2}$ (1)

= 0

= $\frac{1}{3}$

Here we are asked below 2π : only π ie 2π - π = 5π in π , 2π in π , π ,

8. given 0 = x = 2 TT

we have to find all values such that Sin 2x = Sinx

y= 1+ Sin 2x given 1+ : we shift everything up the yaxis by 1 unit: we know y= a sin bx + C where a samplitude 6 -> period cycle c -> base line here a = 1, b = 2: T = 2T = 2T = T1repeals every IT and base line is at c=1 4 1+ Sin 0 = 7 $T_{4} = 1 + 1 = 2$ $T_{4} = 1 + 1 = 2$ Χ 37/4 1+ Sin 67 1+ Sin Ti = 1 11/2 1+ Sin 271 = 1 11

