ntroduction :Influence Maximization problem
First method : Topological heuristic
Second method : Submodular optimization
Experiments

Near Optimal Strategies under Knapsack Constraint for Targeted Marketing in Social Networks

Matthieu Cordier, Victor Catteau

05/09/2019

- 1 Introduction :Influence Maximization problem
- 2 First method : Topological heuristic
- 3 Second method : Submodular optimization
- 4 Experiments
- Summary

- 1 Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- 3 Second method : Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
- Summary

Introduction to the problem

Problem: Which influencers should you hire to maximize advertising reach on a network?

One star influencer? Several less famous and less costly influencers? What is the optimal selection strategy?

Figure: Visualization of a Facebook Graph

- 1 Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- 3 Second method : Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
- Summary

Diffusion model

We modelize word-of-mouth spread of information in the network as a SIR infection model, with transition rates β_i and γ_i for each node i

 $I_0 \subset V$ subset of initially infected nodes: influencers

Simplifying assumption: β_i and γ_i are constants accross the **network** (not true in reality)

- 1 Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- Second method : Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
- Summary

Influence Maximization Formulation

Influence Maximization Problem

$$S^* \in \operatorname*{argmax} \sigma(S, T)$$
 subject to $c(S) \leq B$ (1)

With the influence function:

$$\sigma(I_0, T) = \mathbb{E}\left[\sum_{v \in V} \mathbf{1}\{t_v < T\}\right] = \mathbb{E}\left[I_T + R_T\right]$$
 (2)

 $I_t \subset V$ and $R_t \subset V$ number of infected and removed nodes at time t.

Cost function linear on degree: $C(S) = \sum_{s \in S} c_s(s)$

The problem is NP-Hard

Main challenge (initially demonstrated by Kempe and al. who proposed a first heuristic, in a simplified model) [1]:

NP-Hardness

Maximizing the influence function $\sigma(I_0, T)$ is a NP-Hard problem

How do we avoid costly Monte-Carlo simulations to approximate the influence function ?

- Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- 3 Second method : Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
- Summary

Predicting the Influence Function

Idea

Simplify the problem by creating a deterministic influence function based on network topology, to avoid having to do Monte-Carlo simulations for each node.

For a single initially infected node, this can be captured with centrality measures

Common centrality measures and calculation time:

- degree centrality: O(1)
- betweeness centrality: O(mn)
- eigenvector centrality: $O(n^2)$
- k-core decomposition index: O(m)

We simulated starting an infection at 300 random nodes on the Facebook experiment network, and estimated the spreading influence function with Monte Carlo simulations

We performed a regression on spreading influence (estimated with Monte Carlo simulation) against those centrality measures.

$$R^2 = 0.85$$

OLS Regression Resul	its						
Dep. Variable:		Spr	ead	R-squ	ared:	0.84	3
Model:		(DLS ,	Adj. R-squ	ared:	0.84	3
Method:	Leas	st Squa	ares	F-stat	istic:	411.0	3
Date:	Tue, 07	May 2	019 Pr	rob (F-stati	istic):	2.55e-11	9
Time:		18:16	3:58 I	Log-Likelih	nood:	-142.5	3
No. Observations:			300		AIC:	295.	1
Df Residuals:			295		BIC:	313.	3
Df Model:			4				
Covariance Type:		nonrot	oust				
		coef	std err	t	P> t	[0.025	0.975]
co		coef 2037	std err 0.075	-	P> t 0.000	-	0.975] -1.057
co	nst -1.			-16.138		-1.351	-
	nst -1.	2037	0.075	-16.138 1.063	0.000	-1.351	-1.057
Degree_centra	nst -1. lity 0.	2037	0.075	-16.138 1.063 -17.759	0.000	-1.351 -0.068	-1.057 0.229

Result

Best predictor of spreading power of a node among common centrality measures: k-core decomposition index.

Definition

The k-core of a graph G is the largest induced subgraph of G in which every vertex has degree at least k.

Figure: k-core decomposition of a small network

It is a good predictor of spreading power because it is both affected by local and global topology of a network at a node.

- Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- 3 Second method : Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
 - Summary

Heuristic 1: Naive Knapsack

We neglect interaction terms to approximate the influence function:

$$\sigma_{approx}(S,T) = \sum_{v \in S} \tilde{\sigma}(c_v,T)$$
 (3)

Heuristic

$$\underset{S}{\operatorname{argmax}} \sum_{v \in S} \tilde{\sigma}(v, T) \text{ s.t. } \sum_{v \in S} c(v) < b \tag{4}$$

Advantage: Very quick to compute (linear time, dynamic programming) Drawback: Tendency to produce naive solution (lots of close central nodes, with overlapping infection area)

Heuristic 2: Penalized Knapsack

We penalize choosing too close nodes, which might have overlapping infection zones:

Heuristic

$$\underset{S}{\operatorname{argmax}} \sum_{v \in S} \tilde{\sigma}(v, T) + \lambda \sum_{v_1, v_2 \in S} \operatorname{dist}(v_1, v_2) \text{ s.t. } \sum_{v \in S} c(v) < b \qquad (5)$$

i.e.

$$\operatorname{argmax} \sum_{v \in V} \tilde{\sigma}(v, T) x_v + \lambda \sum_{v_1, v_2 \in V} \operatorname{dist}(v_1, v_2) y_{v_1, v_2} \tag{6}$$

s.t
$$\begin{cases} \sum_{v \in V} c_v x_v < b \\ \forall v_1, v_2 \in V, \quad y_{v_1, v_2} \le x_{v_1} \\ \forall v_1, v_2 \in V, \quad y_{v_1, v_2} \le x_{v_2} \\ \forall v, t \in V x_v, \quad y_{v, t} \in \{0, 1\} \end{cases}$$
 (7)

- Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- 3 Second method : Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
- Summary

Quick Recall: Submodularity

Definition

For any $R \subseteq S \subseteq V$ and $k \in V$, $k \notin S$, f is submodular if

$$f(S + \{k\}) - f(S) \le f(R + \{k\}) - f(R)$$
 (8)

- Given a set A of colored balls
- f(A): the number of distinct colors contained in the urn
- The incremental value of an object only diminishes in a larger context (diminishing returns).

Figure: Submodularity example ([2])

Desired property for f : submodular and monotone

When f is both monotone and submodular, a greedy algorithm computes near-optimal with theoretical guarantee.

Modified Greedy Algorithm (1)

Algorithm 1 Modified greedy algorithm

```
1: G \leftarrow \emptyset

2: U \leftarrow V

3: \mathbf{while}\ U \neq \emptyset\ \mathbf{do}

4: k \leftarrow \arg\max_{\ell \in U} \frac{f(G \cup \{\ell\}) - f(G)}{(c_\ell)^r}

5: G \leftarrow G \cup \{k\}\ \mathbf{if}\ \sum_{i \in G} c_i + c_k \leq B\ \mathbf{and}

f(G \cup \{k\}) - f(G) \geq 0

6: U \leftarrow U \setminus \{k\}

7: \mathbf{end}\ \mathbf{while}

8: v^* \leftarrow \arg\max_{v \in V, c_v \leq B} f(\{v\})

9: \operatorname{return}\ G_f = \arg\max_{S \in \{\ell v^*\}, G\}} f(S)
```

Figure: Modified Scaled Greedy Algorithm (Lin and Bilmes, 2010 [3])

Modified Greedy Algorithm (2)

Theorem

For normalized monotone submodular function f, Algorithm 1 with $r{=}1$ has a constant approximation factor as follows :

$$f(\hat{S}) \ge (1 - e^{-\frac{1}{2}})f(S^*)$$
 (9)

where S^* is an optimal solution (Lin and Bilmes, 2010 [3]).

Modified Greedy Algorithm (3): "lazy" version

Another improvement in the algorithm : compute the argmax more efficiently using submodular property : **Accelerated Greedy Algorithm** [4]

Figure: Simple example of the speed up in accelerated greedy

- 1 Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- 3 Second method : Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
- Summary

Submodular functions(1) : σ

 σ is **submodular and monotone** [1], so we can optimize it with the modified greedy algorithm. But σ is hard to compute (simulated). Thus, we are looking for another monotone submodular function easier to compute for large networks.

Submodular function (2) : \mathcal{F}_{net} (coverage/diversity function)

Inspired by the document summarization problem [2]...

Coverage/diversity function [2]

$$\forall S \subseteq V, \mathcal{F}_{net}(S) = \mathcal{L}(S) + \lambda \mathcal{R}(S)$$
(10)

$$= \sum_{i \in V} \min \{ \sum_{j \in S} w_{i,j}, \alpha \sum_{j \in V} w_{i,j} \} + \lambda \sum_{i}^{K} \sqrt{\sum_{j \in P_i \cap S} \frac{1}{N} \sum_{i \in V} w_{i,j}}$$
 (11)

 $\mathcal L$ represents the coverage of the network by the subset S (relevance), and $\mathcal R$ reward diversity. The family $\{P_i\}_i$ is a partition of V (spectral clustering to create this partition). The $w_{i,j}$ are cosinus similarity between A_i and A_j where A is the adjacency matrix. $\mathcal F_{net}$ is submodular and monotone, so we can optimize it with the modified greedy algorithm.

- 1 Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- 3 Second method: Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
- Summary

Details on the experiment

Now, the model we will consider is a simple continuous SIR model $(\forall i, \beta_i = \beta, \ \gamma_i = \gamma)$. We first define a number of parameters before presenting the results.

- c (Cost function): The cost function $c: 2^V \to \mathbf{R}$ is define as the number of neighbors of each selected node: $\forall S \subseteq V, c(S) = \sum_{i \in S} deg(i)$
- B: We take the budget as the maximum of neighbors in the graph.
- N_0 (Number of iteration for simulation): We take 100 simulations to get a sufficiently good approximation of σ and to limit time computation.

- 1 Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- 3 Second method : Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
- Summary

Submodular functions and greedy algorithm: optimizing parameters

- We use a dataset from SNAP (facebook) and optimise λ (diversity importance) and α (saturation). We find $\lambda=0.1$ and $\alpha=0.7$.
- We also optimize with a grid-search the parameter r (scale of the return) for the greedy algorithm using \mathcal{F}_{net} and find r = 5.
- We did not optimise r with the greedy algorithm using σ because it is too long (one optimisation over this graph take 11 hours approximately)

Computational time comparison

Figure: Time computation comparison between σ and \mathcal{F}_{net} with accelerated greedy algorithm in function of the number of edges selected (SNAP youtube undirected graph)

- Introduction :Influence Maximization problem
 - Intuition
 - Modelization
 - Influence Maximization Formulation
- 2 First method : Topological heuristic
 - Predicting the Influence Function
 - Optimization heuristics
- 3 Second method : Submodular optimization
 - Desired property for f : submodular and monotone
 - Submodular functions
- 4 Experiments
 - Details on the experiment
 - Submodular functions and greedy algorithm : optimizing parameters
 - Experiment on a real social network
- Summary

Experiment on a real social network (1): Dataset

Figure: SNAP's facebook undirected graph

Experiment on a real social network (2): results

	Random	Greedy σ	Greedy \mathcal{F}_{net}	Naive Knapsack	Penalized Knapsack
$\sigma(\hat{S},T)$	88	264	455	237	331
I ₀	24		372	174	253
Runtime	-	11 h	5 min	1s	4h

Table: Results on the SNAP facebook dataset (T=4)

- Why $\sigma(\hat{S}_{\sigma}) < \sigma(\hat{S}_{\mathcal{F}_{net}})$? The parameter r for the greedy algorithm had been only optimized for \mathcal{F}_{net} (too long to compute for σ)
- Once optimized, the submodular optimization of \mathcal{F}_{net} gives very good result, and is relatively cheap to compute (few min for this large network)
- $|\hat{S}_{\mathcal{F}_{net}}| = 372$: severalmicro-influencers is better than one macro-influencer.

Visualization for greedy \mathcal{F}_{net}

Figure: SNAP's facebook undirected graph. The red node are the nodes selected by greedy \mathcal{F}_{net}

Summary and discussion

- We design methods and function to maximize the contagion. \mathcal{F}_{net} outperforms the rest (even for $\sigma(S,T)-S$)
- For the problem considered, it is better to diversify the budget in a lot of nodes.
- Continuation (1) : use a different model (β_i and γ_i functions of the degree)
- Continuation (2): Simulations for a range of different parameter (T, budget B) and optimize r for greedy σ
- Continuation (3) : Reformulate the problem differently : $S^* \in \operatorname{argmax}_{S \subset V} \sigma(S, T) S$ subject to $c(S) \leq B$

For Further Reading I

David Kempe, Jon Kleinberg, and Éva Tardos. "Maximizing the Spread of Influence Through a Social Network". In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '03. Washington, D.C.: ACM, 2003, pp. 137–146. ISBN: 1-58113-737-0. DOI: 10.1145/956750.956769. URL: http://doi.acm.org/10.1145/956750.956769.

For Further Reading II

Hui Lin and Jeff Bilmes. "Multi-document Summarization via Budgeted Maximization of Submodular Functions". In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. HLT '10. Los Angeles, California: Association for Computational Linguistics, 2010, pp. 912–920. ISBN: 1-932432-65-5. URL:

Michel Minoux. "Accelerated greedy algorithms for maximizing submodular set functions". In: Optimization Techniques. Ed. by J. Stoer. Berlin, Heidelberg: Springer Berlin Heidelberg, 1978, pp. 234–243. ISBN: 978-3-540-35890-9.

http://dl.acm.org/citation.cfm?id=1857999.1858133.