Visual Data Analytics - Formulas

Adrian Castro

February 2021

1 General Knowledge

Visualization Pipeline:

- \bullet Data Acquisition
- Filtering/Enhancement (obtain useful data/cleaning)
- Visualization/Mapping (how to represent data)
- Rendering (generate 2D images/video) Indipendent Variables: 2D/3D space, time

Dependent Variables: temperature, velocity

Characteristics of data values:

- Attribute types
- Domain
- Value range
- Dimension
- Error & Uncertainty
- Physical Interpretration

Qualitative data: categorical, non-measurable, discrete

Nominal data: no natural ordering, membership

Ordinal data: natural ordering Categorical data: values from fixed number or categories

Scalar data: if we can map from higher dimensional data to a lower dimensional

data $(f(x): \mathbb{R}^n \to \mathbb{R})$

Tensor data: multi-dimensional data

Tensor data: multi-c

Interpolation

ISOContours: all points lying on the same line with the same values

Goal of interpolation: construct continuous function f which approximates given values

2.1 Radial Basis Functions

Each point (p_i, f_i) influences f(x) based on distance:

$$r = ||p_i - x||$$

$$f(x) = \sum_{i=1}^{N} f_i \cdot \varphi(\|p_i - x\|)$$

$$\varphi(r) = e^{-r^2}$$

Weighted radial basis functions $f(p_j)$ interpolates the value f_j

$$f(p_j) = \sum_{i=1}^{N} w_i \cdot \varphi(\|p_i - p_j\|) = f_j$$

Yields a system of linear equations to be solved for w_i :

$$A = \begin{pmatrix} \varphi(\|p_1 - p_1\|) & \cdots & \varphi(\|p_N - p_1\|) \\ \vdots & \ddots & \vdots \\ \varphi(\|p_1 - p_N\|) & \cdots & \varphi(\|p_N - p_N\|) \end{pmatrix}$$

$$W = \begin{bmatrix} w_1 \\ \vdots \\ w_N \end{bmatrix} F = \begin{bmatrix} f_1 \\ \vdots \\ f_N \end{bmatrix}$$
$$W = A^{-1} \cdot F$$

Drawbacks: global influence of every sample, adding a new point requires solving the equation system, computationally expensive

Inverse Distance Weighting

Assumption: Nearby points are more similar than those further away.

$$f(x) = \sum_{i=1}^{N} f_i \varphi(\|p_i - x\|)$$

$$d_i = ||p_i - x||$$
 $\varphi(r) = \frac{\frac{1}{r^2}}{\sum_{i=1}^{N} \frac{1}{d_i^2}}$

Adjusted formula:

$$\sum_{i=1}^{N} \frac{f_i}{\|p_i - x\|^2} / \sum_{i=1}^{N} \frac{1}{\|p_i - x\|^2}$$

Drawbacks: still costly, still global influence of every sample

2.2 Triangulation

Giving up smooth, precise reconstruction in favor of speed

Generating a Triangulation

Goals: avoid long and thin triangles, maximize minimum angle in the triangulation, maximize radius of circle radius of circumcircle

Delaunay Triangulation

- 1. Circumcircle does not contain another point of the set
- 2. Maximizes minimum angle of triangulation
- **3**. Triangulation is unique for all but trivial cases

Voronoi Diagram

Every **Voronoi Sample** (a, b, c) is a vertex of a **Delaunay** triangulation

2.3 Interpolation Inside a Triangle

Find a function f that interpolates f_i at the point p_i such that:

$$f(p_i) = f_i i = 0, \cdots, N$$

Linear function:

$$f(x) = a + bx + cy$$

Where a, b, c can be obtained with:

$$X = \begin{pmatrix} 1 & x_0 & y_0 \\ 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \end{pmatrix} A = \begin{bmatrix} a \\ b \\ c \end{bmatrix} F = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix}$$

$$A = X^{-1} \cdot F$$

2.4 Baricentric Interpolation

We want to have a smooth, continuous interpolation $\forall \alpha \in [0, 1]$

$$f(\alpha) = \alpha \cdot p_0 + (1 - \alpha) \cdot p_0$$

$$p_0 \qquad \qquad x \qquad \qquad p_1$$

$$\alpha \qquad \qquad 1 - \alpha$$

$$\alpha_0 = A_0/A, \ \alpha_1 = A_1/A, \ \alpha_2 = A_2/A$$

Where A =area of the triangle

$$x = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2$$
$$\alpha_0 + \alpha_1 + \alpha_2 = 1$$

If α_i are known, then f(x) can be interpolated from values f_i at the vertices via:

$$f(x) = \alpha_0 f_0 + \alpha_1 f_1 + (1 - \alpha_0 - \alpha_1) \cdot f_2$$

Given a point Q we can find α by solving the linear system:

$$P = \begin{pmatrix} p_{0x} & p_{1x} & p_{2x} \\ p_{0y} & p_{1y} & p_{2y} \\ 1 & 1 & 1 \end{pmatrix}$$
$$A = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} X = \begin{bmatrix} Q_x \\ Q_y \\ 1 \end{bmatrix}$$
$$A = P^{-1} \cdot X$$

2.5 Scalar Interpolation

Formula of tetrahedron:

$$f(x) = a + bx + cy + dz$$

Can get values a, b, c, d by solving linear system:

$$X = \begin{pmatrix} 1 & x_0 & y_0 & z_0 \\ 1 & x_1 & y_1 & z_1 \\ 1 & x_2 & y_2 & z_2 \\ 1 & x_3 & y_3 & z_3 \end{pmatrix}$$
$$A = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} F = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{bmatrix}$$
$$A = X^{-1} \cdot F$$

Computing Gradient of Scalar Field

The gradient in a scalar field f(x):

$$\nabla f(x) = \begin{pmatrix} \frac{\delta f(x)}{\delta x} \\ \frac{\delta f(x)}{\delta y} \\ \frac{\delta f(x)}{\delta z} \end{pmatrix}$$

In the case of a tetrahedron with function the gradient is always constant:

$$f(x) = a + bx + cy + dz$$

$$\nabla f(x) = \begin{pmatrix} \frac{\delta f(x)}{\delta x} \\ \frac{\delta f(x)}{\delta y} \\ \frac{\delta f(x)}{\delta z} \end{pmatrix} = \begin{bmatrix} b \\ c \\ d \end{bmatrix}$$

2.6 Piece-Wise Linear Interpolation

For data points $(x_0, y_0), \dots, (x_N, y_N)$ Evaluate

$$f(x) = (1 - \alpha)y_i + \alpha y_i$$

where:
$$\alpha = \frac{x - x_1}{x_{i+1} - x_i}$$

Bilinear Interpolation

$$f(\alpha, \beta) = f_{ij} \cdot (1 - \alpha)(1 - \beta) +$$

$$f_{i+i,j} \cdot \alpha(1 - \beta) +$$

$$f_{i,j+1} \cdot (1 - \alpha)\beta +$$

$$f_{i+1,j+1} \cdot \alpha\beta$$

Asymptotic Decider Hyperbola form:

$$f(\alpha, \beta) = \gamma(\alpha - \alpha_0)(\beta - \beta_0) + \delta$$

where δ is the value at point (α_0, β_0)

Transform to hyperbola form:

$$f(\alpha, \beta) = A\alpha + B\beta + C\alpha\beta + D$$

$$A = f_{i+1,j} - f_{ij}$$

$$B = f_{i,j+1} - f_{ij}$$

$$C = f_{ij} - f_{i,j+1} - f_{i+1,j} + f_{i+1,j+1}$$

$$D = f_{ij}$$

$$\delta = (f_{ij} \cdot f_{i+1,j+1} - f_{i+1,j} \cdot f_{i,j+1})$$

$$\alpha_0 = -B/C$$

$$\beta_0 = -A/C$$

3 Phong Illumination Model

Ambient Light: background light, constant everywhere

Diffuse Reflector: reflects equally into all directions

Specular Reflector: reflects mostly into the mirror direction

3.1 Lighting

 $\gamma = C$

$$C = K_a C_a O_d$$

 K_a : ambient reflection coefficient $\in [0, 1]$

 C_a : color of the ambient light

 O_a : object color

3.2 Diffuse Reflection

$$C = K_d C_p O_d \cdot \cos \theta$$

$$\cos\theta = \frac{\vec{n} \cdot \vec{l}}{|\vec{n}| \cdot |\vec{l}|}$$

 K_d : diffuse reflection coefficient $\in [0,1]$

 C_p : color of point of light

 O_d : object color

 $\cos\theta$: angle between light vector \vec{l} and \vec{n}

3.3 Specular Reflection

$$C = K_s C_p O_d \cdot \cos^n \varphi$$
$$\cos^n \varphi = \frac{\vec{r} \cdot \vec{v}}{|\vec{r}| \cdot |\vec{v}|}$$

 K_s : specular reflection coefficient $\in [0,1]$

 C_p : color of point of light

 O_d : object color

 $\cos^n \varphi$: angle between reflected light ray \vec{r} and the vector to the viewer \vec{v}

 $(\cdots)^n$: shininess factor (extent of highlight)

4 Volume Visualization

- Indirect Volume Rendering
- Direct Volume Rendering
- Voxel: point sample in 3D
- \bullet Transfer Function: maps data values

to color & opacity

4.1 Direct Volume Rendering

Each **voxel** emits light of the color assigned to it, and absorbs light according to its opacity.

4.2 Light Emission and Attenuation

Volume rendering integral:

$$C(s) = \int_{s_0}^{s} C(s') \cdot e^{-\int_{s'}^{s} \alpha(t) dt} ds'$$

We are calculating the accumulated color until C(s'), with the absorption coefficient between the last color s' and the point of view s.

4.3 Ray Casting - Compositing Front-to-back Strategy

$$C_{in} = (0, 0, 0), \alpha_{in} = 0$$

$$C_{out} = C_{in} + (a - \alpha_{in}) \cdot \alpha \cdot C$$

$$\alpha_{out} = \alpha_{in} + (a - \alpha_{in}) \cdot \alpha$$

4.4 Direct Volume Rendering: Phong Shading

We have to evaluate Phong's illumination model based on: • **position** of current sample and light source

- sample's color emission assigned by transfer function
- sample's **normal/gradient** (central difference)

4.5 Gradient Estimation

We can estimate the gradient using finite differencing. However, this technique is not feasible with large amounts of data.

$$\nabla f(x, y, z) \simeq \frac{1}{2h} \begin{pmatrix} f(x+h, y, z) - f(x-h, y, z) \\ f(x, y+h, z) - f(x, y-h, z) \\ f(x, y, z+h) - f(x, y, z-h) \end{pmatrix}$$

4.6 Compositing Schemes

- Surface Rendering/First-Hit: stop ray traversal if an ISOSurface is hit
- Average: simply accumulate colors, but ignore opacity
- ullet Maximum: take maximum color along axis and display it