

BY

XXXXXXX 17/56EB0XX

A PROJECT SUBMITTED TO THE DEPARTMENT OF MATHEMATICS, FACULTY OF PHYSICAL SCIENCES, UNIVERSITY OF ILORIN, ILORIN, KWARA STATE, NIGERIA.

IN PARTIAL FULFILMENT OF REQUIREMENTS FOR THE AWARD OF BACHELOR OF SCIENCE (B. Sc.) DEGREE IN MATHEMATICS.

February, 2022

CERTIFICATION

This is to certify that this project	was carried out by $XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX$						
with Matriculation Number 17/5	56EB0XX in the Department of Mathemat-						
ics, Faculty of Physical Sciences,	University of Ilorin, Ilorin, Nigeria, for the						
award of Bachelor of Science (B.Sc.) degree in Mathematics.							
Dr. E.O. Titiloye	Date						
Supervisor							
Prof. K. Rauf	Date						
Head of Department							
Prof.o	Date						

External Examiner

ACKNOWLEDGMENTS

All praises

i

DEDICATION

I would like to dedicate the project to God

ABSTRACT

In this project

Table of Contents

T,1	LTLE	PAGE	1
C]	CERTIFICATION		
A	ACKNOWLEDGMENTS		
D.	DEDICATION		
A]	ABSTRACT		iv
TABLE OF CONTENTS			v
1			1
2			2
3			3
4	WORKED EXAMPLES		4
	4.1	Non-linear Volterra Integral Equation using the Adomian De-	
		composition Method \dots	4
	4.2	Non-linear Fredholm Integral Equation using the Adomian	
		Decomposition Method	8

5	SUI	MMARY AND CONCLUSION	11
	5.1	Summary	11
	5.2	Conclusion	11
\mathbf{R}	EFEI	RENCES	12

WORKED EXAMPLES

4.1 Non-linear Volterra Integral Equation using the Adomian Decomposition Method

Example 1

$$y(x) = x + \int_0^x y^4(t)dt$$

Solution

$$\sum_{n=0}^{\infty} y_n(x) = x + \int_0^x \sum_{n=0}^{\infty} A_n(t)dt$$

The Adomian polynomial for y^4

$$A_0 = y_0^4$$
, $A_1 = 4y_1y_0^3$, $A_2 = 4y_2y_0^3 + 6y_1^2y_0^2$, $A_3 = 4y_3y_0^3 + 12y_2y_1y_0^2 + 4y_1^3y_0$

where

$$y_0(x) = x$$
, $y_{k+1}(x) = \int_0^x A_k(t)dt$, $k \ge 0$

$$y_{1}(x) = \int_{0}^{x} y_{0}^{4}(t)dt = \int_{0}^{x} t^{4}dt = \frac{t^{5}}{5} \Big|_{0}^{x} = \frac{1}{5}x^{5}$$

$$y_{2}(x) = \int_{0}^{x} (4y_{1}y_{0}^{3})dt = \int_{0}^{x} \left(\frac{4}{5}t^{5} \cdot t^{3}\right)dt$$

$$= \frac{4}{5} \int_{0}^{x} t^{8}dt = \frac{4}{5} \frac{t^{9}}{9} \Big|_{0}^{x} = \frac{4}{45}x^{9}$$

$$y_{3}(x) = \int_{0}^{x} \left(4y_{2}y_{0}^{3} + 6y_{1}^{2}y_{0}^{2}\right)dt$$

$$= \int_{0}^{x} 4\left(\frac{4}{45}t^{9}\right)(t^{3}) + 6\left(\frac{1}{5}t^{5}\right)^{2}(t^{2})dt$$

$$= \int_{0}^{x} \left(\frac{16}{45}t^{12} + \frac{6}{5}t^{12}\right)dt$$

$$= \frac{14}{9} \int_{0}^{x} t^{12}dt = \frac{14}{9} \frac{t^{13}}{13} \Big|_{0}^{x} = \frac{14}{117}x^{13}$$

$$\therefore y(x) = x + \frac{1}{5}x^{5} + \frac{4}{45}x^{9} + \frac{14}{117}x^{13} + \cdots$$

$$y(x) = x + \int_0^x (t - x)y^2(t)dt$$

Solution

$$\sum_{n=0}^{\infty} y_n(x) = x + \int_0^x (t - x) \sum_{n=0}^{\infty} A_n(t) dt$$

the Adomian polynomial of y^2

$$A_0 = y_0^2$$
, $A_1 = 2y_0y_1$, $A_2 = 2y_2y_0 + y_1^2$, $A_3 = 2y_0y_3 + 2y_1y_2$, $y_0(x) = x$, $y_{k+1}(x) = \int_0^x (t-x)A_k(t)dt$

$$y_{1}(x) = \int_{0}^{x} (t-x)t^{2}dt = \int_{0}^{x} (t^{3}-xt^{2})dt = \frac{t^{4}}{4} - \frac{xt^{3}}{3} \Big|_{0}^{x}$$

$$= \frac{x^{4}}{4} - \frac{x^{4}}{3} = -\frac{1}{12}x^{4}$$

$$y_{2}(x) = \int_{0}^{\infty} (t-x)(2t) \left(-\frac{1}{12}t^{4}\right) dt = \int_{0}^{x} (t-x) \left(-\frac{1}{6}t^{5}\right) dt$$

$$= -\frac{1}{6} \int_{0}^{x} (t^{6}-xt^{5}) dt = -\frac{1}{6} \left[\frac{t^{7}}{7} - \frac{xt^{6}}{6}\right]_{0}^{x}$$

$$= -\frac{1}{6} \left[\frac{x^{7}}{7} - \frac{x^{7}}{6}\right] = -\frac{1}{6} \left[-\frac{1}{42}x^{7}\right] = \frac{1}{180}x^{7}$$

$$y_{3}(x) = \int_{0}^{x} (t-x) \left[\left(\frac{2}{180}t^{7}\right)(t) + \left(-\frac{1}{12}t^{4}\right)^{2}\right] dt$$

$$= \int_{0}^{x} (t-x) \left(\frac{1}{90}t^{8} + \frac{1}{12}t^{8}\right) dt = \int_{0}^{x} (t-x) \left(\frac{17}{180}t^{8}\right) dt$$

$$= \frac{17}{180} \int_{0}^{x} (t^{9}-xt^{8}) dt = \frac{17}{180} \left[\frac{t^{10}}{10} - \frac{xt^{9}}{9}\right]_{0}^{x}$$

$$= \frac{17}{180} \left[\frac{x^{10}}{10} - \frac{x^{10}}{9}\right] = \frac{17}{180} \left[-\frac{1}{90}x^{10}\right] = -\frac{17}{16200}x^{10}$$

$$\therefore y(x) = x - \frac{1}{12}x^{4} + \frac{1}{180}x^{7} - \frac{17}{16200}x^{10}$$

$$y(x) = x + \int_0^x (x^2t - xt^2)y^2(t)dt$$

Solution

$$\sum_{n=0}^{\infty} y_n(x) = x + \int_0^x (x^2t - xt^2) \sum_{n=0}^{\infty} A_n(t) dt$$

$$y_{0}(x) = x, \quad y_{k+1}(x) = \int_{0}^{\infty} (x^{2}t - xt^{2}) A_{k}(t) dt$$

$$y_{1}(x) = \int_{0}^{x} (x^{2}t - xt^{2})(t^{2}) dt = \int_{0}^{x} (x^{2}t^{3} - xt^{4}) dt$$

$$= \frac{x^{2}t^{4}}{4} - \frac{xt^{5}}{5} \Big|_{0}^{x} = \frac{x^{6}}{4} - \frac{x^{6}}{5} = \frac{1}{20}x^{6}$$

$$y_{2}(x) = \int_{0}^{x} (x^{2}t - xt^{2})(2y_{0}y_{1}) dt$$

$$= \int_{0}^{x} (x^{2}t - xt^{2}) \left(\frac{2}{10}t^{7}\right) dt = \frac{1}{10} \int_{0}^{x} (x^{2}t^{8} - xt^{9}) dt$$

$$= \frac{1}{10} \left[\frac{x^{2}t^{9}}{9} - \frac{xt^{10}}{10}\right]_{0}^{x} = \frac{1}{10} \left[\frac{x^{11}}{9} - \frac{x^{11}}{10}\right] = \frac{1}{900}x^{11}$$

$$y_{3}(x) = \int_{0}^{x} (x^{2}t - xt^{2})(2y_{2}y_{0} + y_{1}^{2}) dt$$

$$= \int_{0}^{x} (x^{2}t - xt^{2}) \left[\left(\frac{2}{900}t^{11}\right)(t) + \left(\frac{1}{20}t^{6}\right)^{2}\right] dt$$

$$= \int_{0}^{x} (x^{2}t - xt^{2}) \left(\frac{1}{450}t^{12} + \frac{1}{400}t^{12}\right) dt$$

$$= \int_{0}^{x} (x^{2}t - xt^{2}) \left(\frac{17}{3600}t^{12}\right) dt$$

$$= \frac{17}{3600} \int_{0}^{x} (x^{2}t^{13} - xt^{14}) dt$$

$$= \frac{17}{3600} \left[\frac{x^{2}t^{14}}{14} - \frac{xt^{15}}{15}\right]_{0}^{x} = \frac{17}{3600} \left[\frac{x^{16}}{14} - \frac{x^{16}}{15}\right]$$

$$= \frac{17}{3600} \left[\frac{1}{210}x^{16}\right] = \frac{17}{756000}x^{16}$$

$$y(x) = x + \frac{1}{20}x^{6} + \frac{1}{900}x^{11} + \frac{17}{756000}x^{16} + \cdots$$

4.2 Non-linear Fredholm Integral Equation using the Adomian Decomposition Method

Example 1

$$y(x) = 3 + \lambda \int_0^1 ty^2(t)dt$$

Solution

$$y_{0}(x) = 3, \quad y_{k+1}(x) = \lambda \int_{0}^{1} y^{2}(t)dt$$

$$y_{1}(x) = \lambda \int_{0}^{1} ty_{0}^{2}(t)dt$$

$$= \lambda \int_{0}^{1} 9tdt = \frac{9\lambda t^{2}}{2} \Big|_{0}^{1} = \frac{9\lambda}{2}$$

$$y_{2}(x) = \lambda \int_{0}^{1} (2y_{0}y_{1})tdt$$

$$= \lambda \int_{0}^{1} (6) \left(\frac{9\lambda}{2}\right) tdt = \frac{27\lambda^{2}t^{2}}{2} \Big|_{0}^{1} = \frac{27\lambda^{2}}{2}$$

$$y_{3}(x) = \lambda \int_{0}^{1} \left(81\lambda^{2} + \frac{81\lambda^{2}}{2}\right) tdt = \lambda \int_{0}^{1} \left(\frac{243\lambda^{2}}{2}\right) tdt$$

$$= \frac{243\lambda^{3}t^{2}}{4} \Big|_{0}^{1} = \frac{243\lambda^{3}}{4}$$

$$y_{4}(x) = \lambda \int_{0}^{1} \left(2y_{0}y_{3} + 2y_{1}y_{2}\right)tdt$$

$$= \lambda \int_{0}^{1} \left(\frac{729}{2}\lambda^{3} + \frac{243}{2}\lambda^{3}\right) tdt$$

$$= \lambda \int_0^1 (486\lambda^3) t dt = \frac{486\lambda^4}{2} \Big|_0^1$$

$$= 243\lambda^4$$

$$y(x) = y_0(x) + y_1(x) + y_2(x) + y_3(x) + y_4(x) + \cdots$$

$$y(x) = 3 + \frac{9\lambda}{2} + \frac{27\lambda^2}{2} + \frac{243\lambda^3}{4} + 243\lambda^4 + \cdots$$

$$y(x) = 4 + \lambda \int_0^1 t^2 y^2(t) dt$$

Solution

The Adomian polynomial for $y^2(x)$

$$A_0(x) = y_0^2, \quad A_1(x) = 2y_0y_1,$$

$$A_2(x) = 2y_0y_2 + y_1^2, \quad A_3 = 2y_0y_3 + 2y_1y_2$$

$$y_0(x) = 4$$

$$y_1(x) = \lambda \int_0^1 y^2(t)t^2dt = \lambda \int_0^1 16t^2dt = \frac{16}{3}t^3\lambda \Big|_0^1 = \frac{16}{3}\lambda$$

$$y_2(x) = \lambda \int_0^1 (2y_0y_1)t^2dt = \lambda \int_0^1 \frac{128}{3}\lambda t^2dt = \frac{\lambda^2 128}{9}t^3\Big|_0^1 = \frac{128}{9}\lambda^2$$

$$y_3(x) = \lambda \int_0^1 (2y_0y_2 + y_1^2)t^2dt = \lambda \int_0^1 \left(\frac{1024\lambda^2}{9} + \frac{256\lambda^2}{9}\right)t^2dt$$

$$= \lambda \int_0^1 \frac{1280\lambda^2}{9}t^2dt = \frac{1280}{27}\lambda^3t^3\Big|_0^1 = \frac{1280}{27}\lambda^3$$

$$y_4(x) = \lambda \int_0^1 (2y_0y_3 + 2y_1y_2)t^2 dt = \lambda \int_0^1 \left(\frac{5120}{27}\lambda^3 + \frac{4096}{27}\lambda^3\right)t^2 dt$$
$$= \lambda \int_0^1 \left(\frac{9216}{27}\lambda^3\right)t^3 dt = \frac{9216}{81}\lambda^4 t^4 \Big|_0^1 = \frac{9216}{81}\lambda^4$$
$$y(x) = 4 + \frac{16}{3}\lambda + \frac{128}{9}\lambda^2 + \frac{1280}{27}\lambda^3 + \frac{9216}{81}\lambda^4 + \cdots$$

$$y(x) = 1 + \lambda \int_0^1 y^4(t)dt$$

Solution

The Adomian polynomials of $y^4(t)$ are

$$A_{3}(x) = 4y_{3}y_{0}^{3} + 12y_{2}y_{1}y_{0}^{2} + 4y_{1}^{3}y_{0}$$

$$y_{0}(x) = 1$$

$$y_{1}(x) = \lambda \int_{0}^{1} y_{0}^{4}(t)dt = \lambda \int_{0}^{1} (1^{4})dt = \lambda t \Big|_{0}^{1} = \lambda$$

$$y_{2}(x) = \lambda \int_{0}^{1} 4y_{1}y_{0}^{3}(t)dt = \lambda \int_{0}^{1} 4\lambda dt = 4\lambda^{2}t \Big|_{0}^{1} = 4\lambda^{2}$$

$$y_{3}(x) = \lambda \int_{0}^{1} 4y_{2}y_{0}^{3} + 6y_{1}^{2}y_{0}^{2}(t)dt = \lambda \int_{0}^{1} (16\lambda^{2} + 6\lambda^{2})dt$$

$$= \lambda \int_{0}^{1} 22\lambda^{2}dt = 22\lambda^{3} \Big|_{0}^{1} = 22\lambda^{3}$$

$$y_{4}(x) = \lambda \int_{0}^{1} (4y_{3}y_{0}^{3} + 12y_{2}y_{1}y_{0}^{2} + 4y_{1}^{3}y_{0})dt$$

 $A_0(x) = y_0^4$, $A_1(x) = 4y_1y_0^3$, $A_2(x) = 4y_2y_0^3 + 6y_1^2y_0^2$

$$= \lambda \int_0^1 (88\lambda^3 + 48\lambda^3 + 4\lambda^3) dt = \lambda \int_0^1 140\lambda^3 dt$$

$$= 140\lambda^4 t \Big|_0^1 = 140\lambda^4$$

$$y(x) = 1 + \lambda + 4\lambda^2 + 22\lambda^3 + 140\lambda^4 + \cdots$$

SUMMARY AND CONCLUSION

- 5.1 Summary
- 5.2 Conclusion

REFERENCES