Systems of Linear Equations

Exercise 7

Systems of Linear Equations Report

Author Cesare De Cal Professor
Annie Cuyt
Assistant Professor
Ferre Knaepkens

1 Introduction

In this exercise I am going to use solve a linear system Ax = y using LU decomposition. The first element of the unknowns vector x will contain an approximation of e - 2.

2 Tools

The following programming language and libraries have been used in this exercise:

- C
- GSL (GNU Scientific Library)

The following GSL data types have been used in the exercise:

- gsl_vector
- gsl_matrix
- gsl_permutation

The following GSL methods have been used in the exercise:

- gsl_matrix_alloc(size1, size2)
- gsl_matrix_set_zero(matrix)
- gsl_matrix_set(matrix, row, column, value)
- gsl_matrix_get(matrix, row, column)
- gsl_vector_alloc(size)
- gsl_vector_set_zero(vector)
- gsl_vector_set(size)
- gsl_vector_get(vector, index)
- gsl_permutation_alloc(size)

In order to factorize a matrix into the LU decomposition, and then solve the square system Ax = y using the decomposition of A, I've used the following methods:

- gsl_linalg_LU_decomp(A, permutation, signum)
- gsl_linalg_LU_solve(LU, permutation, b, x)

3 Solving the system

In order to solve the system Ax = y, I first need to build the matrix A by understanding how it's build. The requirements are to build a tridiagonal matrix with the values -1 on the adjacent upper diagonal, the entries +1 on the adjacent lower diagonal, and on the main diagonal the values b_i , with i = 1, ..., n given by

$$b_i = \frac{2(i+1)}{3}, \quad i+1=3,6,9,\dots$$

 $b_i = 1, \quad i+1=2,4,5,7,8,\dots$

By looking closely at the first rule, we see that the i+1 are all multiples of 3 (i+1=3*k, for some k). Hence the i are of the form i=3*k-1, for some k. For n=10, for example, this is what the matrix approximately looks like:

[1.0000]	-1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.0000	2.0000	-1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	1.0000	1.0000	-1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	1.0000	1.0000	-1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	1.0000	4.0000	-1.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	-1.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	-1.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	6.0000	-1.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	-1.0000
[0.0000]	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000

The coefficients matrix A is first alloced by using the gsl_matrix_alloc method, then I set all the elements to zero with gsl_matrix_set_zero and finally nested for loops fill the diagonal values. The coefficients reported above on the diagonal have 5 significant digits for improve the readability of this report.

After that, I created the matrix b I then found the LU decomposition matrix:

4 Observations