(18-24-8-11)

(1384,1594,1895)

2

| ATTEA | Perimeter | Compactness |  |  |
|-------|-----------|-------------|--|--|
| 15.26 | 18.84     | 0.8710      |  |  |
| 14.88 | 14:57     | 0.8871      |  |  |
| 14.29 | 14.09     | 0.905       |  |  |
| 13.84 | 13.94     | 0.8955      |  |  |
| 16.14 | 14.99     | 0.9034      |  |  |
| 14.38 | 14.21     | 0.8951      |  |  |
|       |           |             |  |  |

Use K-mean standard algorithm to determine three clusters from the above data set.

$$50|^{n}$$
. Let Arua = xe

Perimeter = y

Compactness = z

Assume,  $A \equiv (x, y, t) \equiv (15.26, 14.84, 0.871)$ 

B = (14.88, 14.57, 0.8811)

e = (14.29, 14.09, 0.905)

D = (13.84, 13.94, 0.8955)

E = (16.14, 14.99, 0.9034)

F = (14.38, 14.21, 0.8951)

Let Centroid selection

class-1: B = (14.88, 14.57, 0.8811) Class-11: D = (13.84, 13.94, 0.8955)Class-111: F = (14.38, 14.21, 0.8051)

1368-046 HT. 88-41) 1 (2000, 60-41,0214)

| Data                  | Class-1:   | Cluss-II: D<br>(13.84,1394,18 | C (655-ET) | f class |
|-----------------------|------------|-------------------------------|------------|---------|
| (15.26, 12.84,0.87)   | 0.466      | 1.68                          | 1.08       | I       |
| (14.88,14.57,08811)   | 0          | 1.216                         | 0.616      | 1       |
| (14.29,14.09,0.90s)   | 0.76       | 0.47                          | 0:15       | TII     |
| (13.84,13.94, ·8955)  | 1.216      |                               | 0.60       | TI      |
| £ (16.14,14.99,.9024) | (1.32)     | 2.52                          | 1.92       | 1       |
| (4.38,14.21,0.895)    | 0.616      | 0.60<br>1.88.71               | 0          | III     |
|                       | ie o leavi | ( II )                        |            |         |

Controid =  $\left(\frac{15.26+(4.88+16.14)}{3}, \frac{14.88,14.57,8811}{3}, \frac{16.14,14.99}{3},0.9034\right)$ 

(1880) = (15.43, 14.8, 0.885)

Class II: D = (13.84, 13.94, 0.8955)

Class III: e F (14.29,14.09,0.905), (14.38,14.21,0.8951)

14.29 + 14.38 , 14.09 + 14.24 , 0.905+.000) . Centroid =

| Thereal ion ?         | 1].                            | i i               |                     |       |
|-----------------------|--------------------------------|-------------------|---------------------|-------|
|                       | ClassI:<br>(15.43,14.8, 0.885) | (13.84,13.94,895) | (14.335,14.15 0.90) | class |
| (15.26, 14.84, 0.871) | 0.175                          | 211.68 amis       | 91.15               | I     |
| (14.88,14.57,0.8811)  | ILE STATE OF THE               | 1.216             | 0-68                | 1     |
| (14.29,14.09,0.90s)   | 1.34                           | 8.47              | 0.075               | LII   |
| (1384, 1394, 0.8955)  | 1.80                           | 0                 | 0.53                | PIT   |
| (16.14,14.99,09034)   | 0.73                           | 2.54              | 1.99                | ÐŢ    |
| (14.38, 14.21, 08951) | 1.20                           | 0.60              | 0.075               | 111   |
| (8 2 '21 class 1      |                                | W ) = No()        |                     |       |

H, B, E; centroid = (15.43, 14.8, 0.885)

; centroid = (13.84, 13.94, 0.895) y dass 1.

Class ss:

Class III: C, F ; centroid = (14.335, 14.15 0.9)

. Cluster I: A (15:26, 14:84, 0.871), B (14:88, 14:57, 0.8811), E(16:14, 14.97, 1953)

Cluster II: D(13.84, 13.94, 0.8955) Cluster III: e(14.29,14.09 0.905), F(14.38,14.21, 0.8951)

220/2 : 11/20

T (14-10-19-00 2

| Student | Score   | Height |  |  |
|---------|---------|--------|--|--|
| Julie   | 18.h/   | 5.5    |  |  |
| John    | []      | 6      |  |  |
| Ryan    | 22013   | :6.20  |  |  |
| Bob     | 18 (288 | 4.8    |  |  |
| Prince  | 15      | 5.8    |  |  |
| Mathew  | 10      | 6.1    |  |  |
| 0       |         |        |  |  |

Apply Single Linkage and complete Linkage clustering algorithm to form harranchical clustering from the above data set and also dreaw dendogram.

Soln: Let solvente : Height = y

1.50 Julie = (x,y) = (11,5.5) (12000, 164) 8841)

:. Thon = (11,6) Bob = (18,4'8)

Prince = (15,5:8)

Ryan = (13, 6.2) Prince = (15, 5.8) Mathew = (10, 6.1)

880, FZ-41/88-41

(cosen 1886) = biotro) ( 11 220/-

(Luster I: A (1624, 1434, 1634) , B J. Ba. (1664, 1404, 2631) A : I roteul

(12080, 12 m. 2001) (12080) pe 21, 1281) 0 - 11 (pub)

## Input distance matrix out solot )

| Student            | Julie    | IThon          | 10       | 101     | 10                 |          |
|--------------------|----------|----------------|----------|---------|--------------------|----------|
|                    | (11,5.5) | Jhon<br>(11,6) | (13,62)  | 1500    | Prince<br>(15,5.8) | (10,6.1) |
| Julie<br>(11,5.5)  | 0        | 6.5            | 21       | 7.03    | 4.01               | 1.17     |
| Jhon (11,6)        | D W      | 0              | 2-01     | 7.1     | 4.0                | 1.00     |
| Ryan (13,62)       |          |                | ٥        | 5-1     | 2.04               | 3-00     |
| 305<br>(18,4.8)    | MANUTE I |                |          | 0       | 3.16               | 8-1      |
| Prince<br>(15,5.8) | 10/3     | in / Pourtes   | भीचे आवा | 7       | 0                  | 5.01     |
| (10,6·1)           |          |                |          | Aby LAT | althar             | 0        |

| Julie and Jhon are combind.                                                                     |
|-------------------------------------------------------------------------------------------------|
| 1-terration 1: John Jhon Ryan Bob Prince Mathew (11,55) (11,85) (13,62) (18,48) (15,58) (1061)  |
| Julie/Jhon<br>C11,5.5)/(11.6) 0 2:01 7.03 4.0 (10)                                              |
| Ryan<br>(13,62) 0 5.1 2.04 3.0                                                                  |
| Prince (15, 5.8)                                                                                |
| Mathew 0 5.01                                                                                   |
| distance                                                                                        |
| destance = min (Julie Thon, Ryan) de = min (Julie Thon, bob) = min (2.1, 2.01) = min (7.03,7.1) |
| d3 = min(Julie/Thon, Prince) = 7.03                                                             |
| = min(4.01, 4.0) = 4.0                                                                          |

. Julie Jhon Mathew and Ryan are combind.



.. Julth | Math | Ry | P and Bob are combind Itercation Wo Student | Julth Ma | RIP/B| Julthmatlerpla Etalor . I make the bounded . The Dendogram of the above solution we have as follows: of a min ( Julie Juan mally Julie Jhon Ryan Bob prince Mathew Data set: de min ( Tulie Dhan Matter Byan , Prima) ( no. 5 , o. 1) dim -2.01 Julie I har Mathin Ria Cord PHINCE OFCE SCANFING 1.0 +0.5 do C FALLE Trabut Thon Mathew Ryan Prince Bob Julie figure: Dendogram Note: Complete Linkage is similartosingle Linkage, except choosing value of two data. That means, need to select maximum data value trather than minimum e.g. max (A15, E) = max ()