

4. Knowing that the hyperparameter α should be in the range of 0.001 and 1.0. Which of the following is the recommended way to sample a value for α ?

0/1 point

- r = -3*np.random.rand() alpha = 10**r
- r = 4*np.random.rand() alpha = 10**r
- r = np.random.rand() alpha = 0.001 + r*0.999
- r = -5*np.random.rand() alpha = 10**r

No. This will pick a random value from a uniform scale, which is not the recommended way to choose α .

- 6. When using batch normalization it is OK to drop the parameter $W^{[l]}$ from the forward propagation since it will be subtracted out when we compute $\tilde{z}^{[l]} = \gamma z_{\mathrm{normalize}}^{[l]} + \beta^{[l]}$. True/False?
 - True
 - False

Expand

Correct

Correct. The parameter $W^{[l]}$ doesn't get subtracted during the batch normalization process, although it gets re-scaled.

- 7. In the normalization formula $z_{norm}^{(i)}=\frac{z^{(i)}-\mu}{\sqrt{\sigma^2+\varepsilon}}$, why do we use epsilon?
 - O In case μ is too small
 - To avoid division by zero
 - To have a more accurate normalization
 - To speed up convergence

∠ Expand

○ Correct

8. Which of the following are true about batch normalization?

- $\beta^{[l]}$ and $\gamma^{[l]}$ are hyperparameters that must be tuned by random sampling in a logarithmic scale.
- The parameters $\gamma^{[l]}$ and $\beta^{[l]}$ set the variance and mean of $\tilde{z}^{[l]}$.

✓ Correct

Correct. When applying the linear transformation $\tilde{z}^{(l)} = \beta^{[l]} z_{norm}^{(l)} + \gamma^{[l]}$ we set the variance and mean of $\tilde{z}^{[l]}$.

- $z_{norm}^{(i)} = \frac{z^{(i)} \mu}{\sqrt{\sigma^2}}$
- When using batch normalization we introduce two new parameters $\gamma^{[l]}$, $\beta^{[l]}$ that must be "learned" or trained.

✓ Correct

Correct. Batch normalization uses two parameters β and γ to compute $\tilde{z}^{(i)} = \beta z_{norm}^{(i)} + \gamma$.

Expand

○ Correct

Great, you got all the right answers.

(True

False

Expand

Correct

Correct. This is a good practice to estimate the μ and σ^2 to use since at test time we might not be predicting over a batch of the same size, or it might even be a single example, thus using the μ and σ^2 of a single sample doesn't make sense.