Alumno: David Arnal García

Grupo: 3CO2I

TOP: Primer examen de prácticas

SOLUCIONES LINGO EN PÁGINA 3

• Variables de decisión:

 R_i = Número de responsables a contratar en cada turno según la alternativa i (i = 1..6)

 I_i = Número de informadores a contratar en cada turno según la alternativa i (i = 1..6)

• Función objetivo:

• Problema técnico

Problema técnico:

o Los turnos de trabajo son de 8 horas consecutivas.

Horas	Alternativas						Nº mínimo	Nº mínimo
	1	2	3	4	5	6	de responsables	de informadores
0 - 4	1					1	1	2
4 - 8	1	1					2	4
8 - 12		1	1				4	8
12 - 16			1	1			4	10
16 - 20				1	1		2	6

20 - 24			1	1	2	3

• Restricciones:

- [Rturno0_4] R1 + R6 >= 1;
- (Iturno0_4] I1 + I6 >= 2;
- [Rturno4_8] R1 + R2 >= 2;
- \circ [Iturno4_8] I1 + I2 >= 4;
- [Rturno8_12] R2 + R3 >= 4;
- [lturno8_12] I2 + I3 >= 8;
- \circ [Rturno12_16] R3 + R4 >= 4;
- o [lturno12_16] I3 + I4 >= 10;
- [Rturno16_20] R4 + R5 >= 2;
- o [lturno16_20] I4 + I5 >= 6;
- (Rturno20_24] R5 + R6 >= 2;
- [Iturno20_24] I5 + I6 >= 3;

o Condición de no negatividad de las variables de decisión:

- $\blacksquare \quad R_i \geq 0 \; (i=1..6)$
- $I_i \ge 0 \ (i = 1..6)$

Soluciones LINGO

1. LINGO

 $[Rturno0_4] R1 + R6 >= 1;$

 $[Iturno0_4] I1 + I6 >= 2;$

 $[Rturno4_8] R1 + R2 >= 2;$

 $[Iturno4_8] I1 + I2 >= 4;$

 $[Rturno8_12] R2 + R3 >= 4;$

 $[Iturno8_12] I2 + I3 >= 8;$

 $[Rturno12_16] R3 + R4 >= 4;$

 $[Iturno12_16] I3 + I4 >= 10;$

 $[Rturno16_20] R4 + R5 >= 2;$

 $[Iturno16_20] I4 + I5 >= 6;$

 $[Rturno20_24] R5 + R6 >= 2;$

 $[Iturno20_24] I5 + I6 >= 3;$

2. Empleados

Global optimal solution found.

Objective value:

768.0000

Infeasibilities: 0.000000

Total solver iterations: 9

Elapsed runtime seconds: 0.08

Variable	e Value	Reduced Cost
R1	2.000000	0.000000
R2	0.000000	0.000000
R3	4.000000	0.000000
R4	0.000000	0.000000
R6	0.000000	1.600000
R5	2.000000	0.000000
I1	3.000000	0.000000
12	1.000000	0.000000
13	7.000000	0.000000
14	3.000000	0.000000
16	0.000000	20.40000
15	3.000000	0.000000
	R1 R2 R3 R4 R6 R5 I1 I2 I3 I4 I6	R1 2.000000 R2 0.000000 R3 4.000000 R4 0.000000 R6 0.000000 R5 2.000000 I1 3.000000 I2 1.000000 I3 7.000000 I4 3.000000 I6 0.0000000

3. Nuevo empleado

Variables de decisión:

 R_i = Número de responsables a contratar en cada turno según la alternativa i (i = 1..6)

 I_i = Número de informadores a contratar en cada turno según la alternativa i (i = 1..6)

 V_i = Número de vigilantes a contratar en cada turno según la alternativa i (i = 3..4)

 $[Rturno0_4] R1 + R6 >= 1;$

 $[lturno0_4] 11 + 16 >= 2;$

 $[Rturno4_8] R1 + R2 >= 2;$

 $[Iturno4_8] I1 + I2 >= 4;$

 $[Rturno8_12] R2 + R3 >= 3;$

 $[Iturno8_12] I2 + I3 >= 7;$

 $[Rturno12_16] R3 + R4 >= 3;$

 $[Iturno12_16] I3 + I4 >= 9;$

[Rturno16_20] R4 + R5 >= 2;

[lturno16_20] I4 + I5 >= 6;

 $[Rturno20_24] R5 + R6 >= 2;$

[lturno20_24] I5 + I6 >= 3;

o Condición de no negatividad de las variables de decisión:

- $R_i \ge 0 \ (i = 1..6)$
- $I_i \ge 0 \ (i = 1..6)$
- $\qquad \qquad V_i \geq \ 0 \ (i=3,\,4)$