10495.204-WO.ST25.txt SEQUENCE LISTING

	SEGULIACE ELISTING											
<110>	Lassen, Soren Flensted											
<120>	Improved fusion proteases and methods for producing them											
<130>	10495.204-wo											
<160>	53											
<170>	PatentIn version 3.2											
<210> <211> <212> <213>	1 1062 DNA Nocardiopsis sp. NRRL 18262											
<220> <221> <222> <223>	misc_feature (1)(495) Encodes the pro-region shown in positions -165 to -1 of SEQ ID NO:43.											
<220> <221> <222> <223>	misc_feature (496)(1059) Encodes the mature region shown in positions 1-188 of SEQ ID NO:43.											
<400>	1 Quad cattacetea dictectaca estgangeag attacamenta and	•										
	ggag cattacctca gtctcctaca cctgaagcag atgcagtatc gatgcaagaa	60										
	caac gtgatcttga tcttacatca gctgaagctg aggaattact tgctgcacaa	120										
	gcct ttgaagttga tgaagctgcc gctgaagcag ctggtgatgc atatggtggt	180										
	ttcg atactgaatc actcgaactt actgtactag tgaccgatgc agcagctgtt	240										
	gttg aagccacagg tgcaggtaca gagctcgtat cttatggtat tgatggatta	300										
	atcg tacaagagct taatgcagct gatgccgttc caggtgtagt tggatggtat	360										
	gtag caggtgatac tgttgtctta gaagttcttg aaggctctgg agctgatgtt	420										
	cttt tagcagacgc aggagtcgat gcatccgcgg ttgaagtgac cacgtcagat	480										
	gaac tctatgccga tatcattgga ggcctagcgt acacaatggg tggtcgctgc	540										
	ggat ttgcagccac aaatgcagct ggacaacctg gcttcgtgac agctggacat	600										
	cgcg tcggtacaca ggttactatc ggcaatggaa gaggtgtctt tgagcaaagc	660										
	cccg ggaatgatgc tgccttcgtt agaggtacgt ccaactttac gcttactaac	720										
ttagtat	tcta gatacaacac tggcggatat gcaactgtag caggtcacaa tcaagcacct	780										
attggct	tcta gcgtctgccg ctcagggtcg actacaggat ggcattgtgg aaccattcaa	840										
gctagag	ggtc agagcgtgag ctatcctgaa ggtaccgtaa cgaacatgac tcgtacgact	900										
gtatgtg	gcag aaccaggtga ctctggaggt tcatatatca gcggtacgca agcgcaaggc	960										
	COR standards to standards and standards	L020										
	tag tagactata agreeates a	L062										

.10495.204-WO.ST25.txt

```
<210> 2
<211> 1143
<211>
<212>
           DNA
```

Artificial sequence <213>

<220> <223> A synthetic 10R gene (10Rsynt-15) encoding a S2A protease denoted "10R" fused by PCR in frame to the signal peptide encoding sequence of a heterologous protease, Savinase.

<400> 2						
atgaagaaac	cgttggggaa	aattgtcgca	agcaccgcac	tactcatttc	tgttgctttt	60
agttcatcga	tcgcatcggc	tgctactgga	gcattacctc	agtctcctac	acctgaagca	120
gatgcagtat	cgatgcaaga	agcattacaa	cgtgatcttg	atcttacatc	agctgaagct	180
gaggaattac	ttgctgcaca	agatacagcc	tttgaagttg	atgaagctgc	cgctgaagca	240
gctggtgatg	catatggtgg	ttcagtattc	gatactgaat	cactcgaact	tactgtacta	300
gtgaccgatg	cagcagctgt	tgaagctgtt	gaagccacag	gtgcaggtac	agagctcgta	360
			gtacaagagc			420
ccaggtgtag	ttggatggta	tcctgatgta	gcaggtgata	ctgttgtctt	agaagttctt	480
gaaggctctg	gagctgatgt	ttctggactt	ttagcagacg	caggagtcga	tgcatccgcg	540
gttgaagtga	ccacgtcaga	tcagcctgaa	ctctatgccg	atatcattgg	aggcctagcg	600
			tttgcagcca			660
ggcttcgtga	cagctggaca	ttgcggccgc	gtcggtacac	aggttactat	cggcaatgga	720
agaggtgtct	ttgagcaaag	cgtatttccc	gggaatgatg	ctgccttcgt	tagaggtacg	780
tccaacttta	cgcttactaa	cttagtatct	agatacaaca	ctggcggata	tgcaactgta	840
gcaggtcaca	atcaagcacc	tattggctct	agcgtctgcc	gctcagggtc	gactacagga	900
tggcattgtg	gaaccattca	agctagaggt	cagagcgtga	gctatcctga	aggtaccgta	960
acgaacatga	ctcgtacgac	tgtatgtgca	gaaccaggtg	actctggagg	ttcatatatc	1020
			ggtggatccg			1080
			gtgaactctt			1140
taa					_	1143

<220> <223> C-terminal amino acid tail expressed as fusion to protease of the invention.

<400> 3

Gln Ser His Val Gln Ser Ala Pro 5

<210> 4

<210> 3 <211> 8 <212> PRT <213> Artificial sequence

```
10495.204-WO.ST25.txt
 <211>
        24
 <212>
        DNA
 <213>
        Artificial sequence
 <220>
 <223>
        Polynucleotide encoding a C-terminal amino acid tail expressed as
        fusion to protease of the invention.
 <400>
 caatcgcatg ttcaatccgc tcca
                                                                            24
<210>
        5
 <211>
        4
 <212>
        PRT
        Artificial sequence
 <213>
<220>
        C-terminal amino acid tail expressed as fusion to protease of the
 <223>
        invention.
<400>
        5
Gln Ser Ala Pro
<210>
        6
12
<211>
<212>
       DNA
       Artificial sequence
<213>
<220>
<223>
        Polynucleotide encoding a C-terminal amino acid tail expressed as fusion to protease of the invention.
<400> 6
caatcggctc ct
                                                                            12
<210>
       2
<211>
<212>
       PRT
<213>
       Artificial sequence
<220>
       C-terminal amino acid tail expressed as fusion to protease of the
<223>
       invention.
<400>
      7
Gln Pro
<210> 8 ·
<211>
      6
<212>
       DNA
<213>
      Artificial sequence
<220>
       Polynucleotide encoding a C-terminal amino acid tail expressed as
       fusion to protease of the invention.
<400>
       8
```

6

caacca

```
10495.204-WO.ST25.txt
 <210>
 <211>
        1
 <212>
        PRT
 <213>
       Artificial sequence
 <220>
        C-terminal amino acid tail expressed as fusion to protease of the
 <223>
        invention.
 <400>
Pro
<210>
        10
<211>
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
        Polynucleotide encoding a C-terminal amino acid tail expressed as fusion to protease of the invention.
<400>
       10
cca
                                                                             3
<210>
       11
<211>
       45
<212>
       DNA
<213> Artificial sequence
<220>
<223> Primer #252639
catgtgcatg tgggtaccgc aacgttcgca gatgctgctg aagag
                                                                            45
<210>
       12
<211>
       44
<212> DNA
<213> Artificial sequence
<220>
<223> Primer #251992
<400> 12
catgtgcatg tggtcgaccg attatggagc ggattgaaca tgcg
                                                                           44
<210>
       13
<211> 44
<212> DNA
<213> Artificial sequence
<220>
<223> Primer #179541
<400> 13
gcgttgagac gcgcggccgc gagcgccgtt tggctgaatg atac
                                                                           44
<210>
       14
<211>
      43
<212>
       DNA
<213> Artificial sequence
```

Page 4

<220> <223>	Primer #179542	
<400> gcgttg	14 agac agctcgagca gggaaaaatg gaaccgcttt ttc	43
<210> <211> <212> <213>	15 64 DNA Artificial sequence	
<220> <223>	Primer #179539	
<400> ccattt atcc	15 gatc agaattcact ggccgtcgtt ttacaaccat tgcggaaaat agtcataggc	60 64
<210> <211> <212> <213>	16 60 DNA Artificial sequence	
<220> <223>	Primer #179540	
<400> ggatcc	16 agat ctggtacccg ggtctagagt cgacgcggcg gttcgcgtcc ggacagcaca	60
<210> <211> <212> <213>	17 37 DNA Artificial sequence	
<220> <223>	Primer #179154	
<400> gttgtaa	17 aaac gacggccagt gaattctgat caaatgg	37
<210> <211> <212> <213>	18 37 DNA Artificial sequence	
<220> <223>	Primer #179153	
	18 Cgac actagacacg ggtacctgat ctagatc	37
<211> <212>	19 22 DNA Artificial sequence	
<220> <223>	Primer #317	
	19 atc ggtaccatgg gg	22
<212> <213> <220> <223> <400>	DNA Artificial sequence Primer #317 19	22

<210> <211> <212> <213>	20 40 DNA Art	ificial sec	juence		·		
<220> <223>	Pri	mer #139 No	otI				
<400> catgtgc	20 catg	cggccgcatt	aacgcgttgc	cgcttctgcg	ı		40
<210> <211> <212> <213>	21 744 DNA Art	3 ificial seq	uence				
<220> <223>	Seq	uence of pl	asmid pMB15	08			
<400> tcgcgcg	21 Jttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	60
cagcttg	tct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120
ttggcgg	gtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgta	ctgagagtgc	180
						atcaggcgcc	240
						tcttcgctat	300
						acgccagggt	360
						gctttttttg	420
						gaattgtaac	480
				aatacgttat			540
						aactatagaa	600
				aaatataact			660
				caatatataa			720
				actataccta			780
				acttatttat			840
				gtataaatta			900
				atttgcaccg			960
				tggagctctg			1020
				aagcaccgca			1080
				agcaaaagaa			1140
				acaagtagag			1200
				attgcttcat			1260
				ggacgcgctt			1320
				aatggcgcaa Page 6			1380
				i age 0			

aacgcgttaa	a tccgcggata	tatagcggcc	gcagatctgg	gaccaataat	aatgactaga	1440
gaagaaagaa	tgaagattgt	tcatgaaatt	aaggaacgaa	tattggataa	agtgggatat	1500
ttttaaaata	tatatttatg	ttacagtaat	attgactttt	aaaaaaggat	tgattctaat	1560
gaagaaagca	a gacaagtaag	cctcctaaat	tcactttaga	taaaaattta	ggaggcatat	1620
caaatgaact	ttaataaaat	tgatttagac	aattggaaga	gaaaagagat	atttaatcat	1680
tatttgaaco	aacaaacgac	ttttagtata	accacagaaa	ttgatattag	tgttttatac	1740
cgaaacataa	aacaagaagg	atataaattt	taccctgcat	ttattttctt	agtgacaagg	1800
gtgataaact	caaatacagc	ttttagaact	ggttacaata	gcgacggaga	gttaggttat	1860
tgggataagt	tagagccact	ttatacaatt	tttgatggtg	tatctaaaac	attctctggt	1920
atttggacto	: ctgtaaagaa	tgacttcaaa	gagttttatg	atttatacct	ttctgatgta	1980
gagaaatata	atggttcggg	gaaattgttt	cccaaaacac	ctatacctga	aaatgctttt	2040
tctctttcta	ttattccatg	gacttcattt	actgggttta	acttaaatat	caataataat	2100
agtaattaco	ttctacccat	tattacagca	ggaaaattca	ttaataaagg	taattcaata	2160
tatttaccgc	tatctttaca	ggtacatcat	tctgtttgtg	atggttatca	tgcaggattg	2220
tttatgaact	ctattcagga	attgtcagat	aggcctaatg	actggctttt	ataatatgag	2280
ataatgccga	ctgtactttt	tacagtcggt	tttctaacga	tacattaata	ggtacgaaaa	2340
agcaacttt	tttgcgcitta	aaaccagtca	taccaataac	ttaagggtaa	ctagcctcgc	2400
cggaaagagc	gaaaatgcct	cacatttgtg	ccacctaaaa	aggagcgatt	tacatatgag	2460
ttatgcagtt	tgtagaatgc	aaaaagtgaa	atcagctgga	ctaaaagggg	ccgcagagta	2520
gaatggaaaa	ggggatcgga	aaacaagtat	ataggaggag	acctatttat	ggcttcagaa	2580
aaagacgcag	gaaaacagtc	agcagtaaag	cttgttccat	tgcttattac	tgtcgctgtg	2640
ggactaatca	tctggtttat	tcccgctccg	tccggacttg	aacctaaagc	ttggcatttg	2700
tttgcgattt	ttgtcgcaac	aattatcggc	tttatctcca	agcccttgcc	aatgggtgca	2760
	ttgcattggc					2820
ttaagcggat	tcgggaataa	gaccatttgg	cttatcgtta	tcgcattctt	tatttcccgg	2880
ggatttatca	aaaccggtct	cggtgcgaga	atttcgtatg	tattcgttca	gaaattcgga	2940
	ttggactttc					3000
	atacggcgcg					3060
gaaacattcg	gatcaagccc	ggcaaatgga	acagagagaa	aaatcggtgc	attcttatta	3120
aaaaccggtt	ttcaggggaa	tctgatcaca	tctgctatgt	tcctgacagc	gatggcggcg	3180
aacccgctga	ttgccaagct	ggcccatgat	gtcgcagggg	tggacttaac	atggacaagc	3240
tgggcaattg	ccgcgattgt	accgggactt	gtaagcttaa	tcatcacgcc	gcttgtgatt	3300
tacaaactgt	atccgccgga	aatcaaagaa	acaccggatg	cggcgaaaat	cgcaacagaa	3360
aaactgaaag	aaatgggacc	gttcaaaaaa	tcggagcttt Page 7	ccatggttat	cgtgtttctt	3420

ttggtgcttg	tgctgtggat	ttttggcggc	agcttcaaca	tcgacgctac	cacaaccgca	3480
ttgatcggtt	tggccgttct	cttattatca	caagttctga	cttgggatga	tatcaagaaa	3540
gaacagggcg	cttgggatac	gctcacttgg	tttgcggcgc	ttgtcatgct	cgccaacttc	3600
ttgaatgaat	taggcatggt	gtcttggttc	agtaatgcca	tgaaatcatc	cgtatcaggg	3660
ttctcttgga	ttgtggcatt	catcatttta	attgttgtgt	attattactc	tcactatttc	3720
tttgcaagtg	cgacagccca	catcagtgcg	atgtattcag	catttttggc	tgtcgtcgtg	3780
gcagcgggcg	caccgccgct	tttagcagcg	ctgagcctcg	cgttcatcag	caacctgttc	3840
gggtcaacga	ctcactacgg	ttctggagcg	gctccggtct	tcttcggagc	aggctacatc	3900
ccgcaaggca	aatggtggtc	catcggattt	atcctgtcga	ttgttcatat	catcgtatgg	3960
cttgtgatcg	gcggattatg	gtggaaagta	ctaggaatat	ggtagaaaga	aaaaggcaga	4020
cgcggtctgc	ctttttttat	tttcactcct	tcgtaagaaa	atggattttg	aaaaatgaga	4080
aaattccctg	tgaaaaatgg	tatgatctag	gtagaaagga	cggctggtgc	tgtggtgaaa	4140
aagcggttcc	atttttccct	gcaaacaaaa	ataatggggc	tgattgcggc	tctgctggtc	4200
tttgtcattg	gtgtgctgac	cattacgtta	gccgttcagc	atacacaggg	agaacggaga	4260
caggcagagc	agctggcggt	tcaaacggcg	agaaccattt	cctatatgcc	gccggttaaa	4320
gagctcattg	agagaaaaga	cggacatgcg	gctcagacgc	aagaggtcat	tgaacaaatg	4380
aaagaacaga	ctggtgcgtt	tgccatttat	gttttgaacg	aaaaaggaga	cattcgcagc	4440
gcctctggaa	aaagcggatt	aaagaaactg	gagcgcagca	gagaaatttt	gtttggcggt	4500
tcgcatgttt	ctgaaacaaa	agcggatgga	cgaagagtga	tcagagggag	cgcgccgatt	4560
ataaaagaac	agaagggata	cagccaagtg	atcggcagcg	tgtctgttga	ttttctgcaa	4620
acggagacag	agcaaagcat	caaaaagcat	ttgagaaatt	tgagtgtgat	tgctgtgctt	4680
gtactgctgc	tcggatttat	tggcgccgcc	gtgctggcga	aaagcatcag	aaaggatacg	4740
ctcgggcttg	aaccgcatga	gatcgcggct	ctatatcgtg	agaggaacgc	aatgcttttc	4800
gcgattcgag	aagggattat	tgccaccaat	cgtgaaggcg	tcgtcaccat	gatgaacgta	4860
tcggcggccg	agatgctgaa	gctgcccgag	cctgtgatcc	atcttcctat	agatgacgtc	4920
atgccgggag (cagggctgat	gtctgtgctt	gaaaaaggag	aaatgctgcc	gaaccaggaa	4980
gtaagcgtca a	acgatcaagt	gtttattatc	aatacgaaag	tgatgaatca	aggcgggcag	5040
gcgtatggga 1	ttgtcgtcag	cttcagggag	aaaacagagc	tgaagaagct	gatcgacaca	5100
ttgacagagg 1	ttcgcaaata	ttcagaggat	ctcagggcgc	agactcatga	attttcaaat	5160
aagctttatg (cgattttagg	gctgcgtcga	cctgcaggca	tgcaagcttg	gcgtaatcat	5220
ggtcatagct o	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	aacatacgag	5280
ccggaagcat a	aagtgtaaa	gcctggggtg	cctaatgagt	gagctaactc a	acattaattg	5340
cgttgcgctc a	ctgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg (attaatgaa	5400
tcggccaacg c	:gcggggaga (ggcggtttgc	gtattgggcg Page 8	ctcttccgct 1	cctcgctca	5460

ctgactcgct	gcgctcggt	gttcggctgc	ggcgagcggt	atcagctcac	tcaaaggcgg	5520
taatacggti	t atccacagaa	ı tcaggggata	acgcaggaaa	gaacatgtga	gcaaaaggcc	5580
agcaaaaggo	caggaaccgt	: aaaaaggccg	cgttgctggc	gtttttccat	aggctccgcc	5640
ccctgacga	a gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	ccgacaggac	5700
tataaagata	ccaggcgttt	cccctggaa	gctccctcgt	gcgctctcct	gttccgaccc	5760
tgccgcttac	cggatacctg	tccgcctttc	tcccttcggg	aagcgtggcg	ctttctcata	5820
gctcacgctg	taggtatcto	agttcggtgt	aggtcgttcg	ctccaagctg	ggctgtgtgc	5880
acgaaccccc	cgttcagcco	gaccgctgcg	ccttatccgg	taactatcgt	cttgagtcca	5940
acccggtaag	acacgactta	tcgccactgg	cagcagccac	tggtaacagg	attagcagag	6000
cgaggtatgt	aggcggtgct	acagagttct	tgaagtggtg	gcctaactac	ggctacacta	6060
gaaggacagt	atttggtatc	tgcgctctgc	tgaagccagt	taccttcgga	aaaagagttg	6120
gtagctcttg	atccggcaaa	caaaccaccg	ctggtagcgg	tggtttttt	gtttgcaagc	6180
agcagattac	gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	tctacggggt	6240
ctgacgctca	gtggaacgaa	aactcacgtt	aagggatttt	ggtcatgaga	ttatcaaaaa	6300
ggatcttcac	ctagatcctt	ttaaattaaa	aatgaagttt	taaatcaatc	taaagtatat	6360
atgagtaaac	ttggtctgac	agttaccaat	gcttaatcag	tgaggcacct	atctcagcga	6420
tctgtctatt	tcgttcatcc	atagttgcct	gactccccgt	cgtgtagata	actacgatac	6480
gggagggctt	accatctggc	cccagtgctg	caatgatacc	gcgagaccca	cgctcaccgg	6540
caccggattt	atcagcaata	aaccagccag	ccggaagggc	cgagcgcaga	agtggtcctg	6600
caactttatc	cgcctccatc	cagtctatta	attgttgccg	ggaagctaga	gtaagtagtt	6660
cgccagttaa	tagtttgcgc	aacgttgttg	ccattgctac	aggcatcgtg	gtgtcacgct	6720
cgtcgtttgg	tatggcttca	ttcagctccg	gttcccaacg	atcaaggcga	gttacatgat	6780
cccccatgtt	gtgcaaaaaa	gcggttagct	ccttcggtcc	tccgatcgtt	gtcagaagta	6840
agttggccgc	agtgttatca	ctcatggtta	tggcagcact	gcataattct	cttactgtca	6900
tgccatccgt	aagatgcttt	tctgtgactg	gtgagtactc	aaccaagtca	ttctgagaat	6960
agtgtatgcg	gcgaccgagt	tgctcttgcc	cggcgtcaat	acgggataat	accgcgccac	7020
atagcagaac	tttaaaagtg	ctcatcattg	gaaaacgttc	ttcggggcga	aaactctcaa	7080
ggatcttacc	gctgttgaga	tccagttcga	tgtaacccac	tcgtgcaccc	aactgatctt	7140
cagcatcttt	tactttcacc	agcgtttctg	ggtgagcaaa	aacaggaagg	caaaatgccg	7200
caaaaaaggg	aataagggcg	acacggaaat	gttgaatact	catactcttc	ctttttcaat	7260
attattgaag	catttatcag	ggttattgtc	tcatgagcgg	atacatattt	gaatgtattt	7320
agaaaaataa	acaaataggg	gttccgcgca	catttccccg	aaaagtgcca	cctgacgtct	7380
aagaaaccat	tattatcatg	acattaacct	ataaaaatag	gcgtatcacg	aggccctttc	7440
gtc						7443
			Page 9			

<210> 22 <211> 5718 <212> DNA <213> Artificial sequence	
<220> <223> Sequence of MB1510 genomic integration region	
<400> 22 gagcgccgtt tggctgaatg atacaacagt ctcacttcct tactgcgtct ggttgcaaaa	60
acgaagaagc aaggattccc ctcgcttctc atttgtccta tttattatac acttttttaa	120
gcacatcttt ggcgcttgtt tcactagact tgatgcctct gaatcttgtc caagtgtcac	180
ggtccgcatc atagacttgt ccatttttca ccgctttgag atttttccag agcgggttcg	240
ttttccactc atctacaatg gttttgcctt cgttggctga gatgaacaaa atatcaggat	300
cgattttgct caattgctca aggctgacct cttgataggc gttatctgac ttcacagcgt	360
gtgtaaagcc tagcatttta aagatttctc cgtcatagga tgatgatgta tgaagctgga	
aggaatccgc tcttgcaacg ccgagaacga tgttgcggtt ttcatctttc ggaagttcgg	420 480
cttttagatc gttgatgact tttttgtgct cggcaagctt ttcttttcct tcatcttctt	540
tatttaatgc tttagcaatg gtcgtaaagc tgtcgatcgt ttcgtcatat gtcgcttcac	
ggctttttaa ttcaatcgtc ggggcgattt ttttcagctg tttataaatg tttttatggc	600
gctcagcgtc agcgatgatt aaatcaggct tcaaggaact gatgacctca agattgggtt	660
cgctgcgtgt gcctacagat gtgtaatcaa tggagctgcc gacaagcttt ttaatcatat	720
cttttttgtt gtcatctgcg atgcccaccg gcgtaatgcc gagattgtga acggcatcca	780
agaatgaaag ctcaagcaca accacccgct taggtgtgcc gcttactgtc gtttttcctt	840
cttcgtcatg gatcactctg gaatccttag actcgctttt gccgcttccg ttgttattct	900
ggcttgatga acagccggat acaatgaggc aggcgagcaa taaaacactc atgatggcaa	960
tcaacttgtt agaataggtg cgcatgtcat tcttcctttt ttcagattta gtaatgagaa	1020
tcattatcac atgtaacact ataatagcat ggcttatcat gtcaatattt ttttagtaaa	1080
gaaagctgcg tttttactgc tttctcatga aagcatcatc agacacaaat aagtggtatg	1140 1200
cagcgttacc gtgtcttcga gacaaaaacg catgggcgtt ggctttagag gtttcgaaca	
tatcagcagt gacataagga aggagagtgc tgagataacc ggacaatttc ttttctattt	1260
catctgttag tgcaaattca atgtcgccga tattcatgat aatcgagaaa acaaagtcga	1320
tatcgatatg aaaatgttcc tcggcaaaaa ccgcaagctc gtgaattcct ggtgaacatc	1380
cggcacgctt atggaaaatc tgtttgacta aatcactcac aatccaagca ttgtattgct	1440
gttctggtga aaagtattgc attagacata cctcctgctc gtacggataa aggcagcgtt	1500
tcatggtcgt gtgctccgtg cagcggcttc tccttaattt tgattttct gaaaataggt	1560
cccgttccta tcactttacc atggacggaa aacaaatagc tactaccatt cctcctgttt	1620
ttctcttcaa tgttctggaa tctgtttcag gtacagacga tcgggtatga aagaaatata	1680
Page 10	1740

gaaaacatga	20020022+2	+50000				
					ı caaatgacga	1800
					aggatgtata	1860
					acgccaacac	1920
					ataaaaaagg	1980
agacgagcto	: cgcaataaaa	ttcacgaaat	cggttttct	gaagatgaag	ccgctcaatt	2040
					aaaaagtgaa	2100
agcttgggca	taaagcaagg	aaaaaaccaa	aaggccaatg	tcggcctttt	ggttttttg	2160
cggtctttgc	ggtgggattt	tgcagaatgc	cgcaatagga	tagcggaaca	ttttcggttc	2220
tgaatgtccc	tcaatttgct	attatattt	tgtgataaat	tggaataaaa	tctcacaaaa	2280
tagaaaatgg	gggtacatag	tggatgaaaa	aagtgatgtt	agctacggct	ttgtttttag	2340
gattgactcc	agctggcgcg	aacgcagctg	atttaggcca	ccagacgttg	ggatccaatg	2400
atggctgggg	cgcgtactcg	accggcacga	caggcggatc	aaaagcatcc	tcctcaaatg	2460
tgtataccgt	cagcaacaga	aaccagcttg	tctcggcatt	agggaaggaa	acgaacacaa	2520
cgccaaaaat	catttatatc	aagggaacga	ttgacatgaa	cgtggatgac	aatctgaagc	2580
cgcttggcct	aaatgactat	aaagatccgg	agtatgattt	ggacaaatat	ttgaaagcct	2640
atgatcctag	cacatggggc	aaaaaagagc	cgtcgggaac	acaagaagaa	gcgagagcac	2700
gctctcagaa	aaaccaaaaa	gcacgggtca	tggtggatat	ccctgcaaac	acgacgatcg	2760
					agtgataacg	2820
					tggttgtaaa	2880
acgacggcca	gtgaattctg	atcaaatggt	tcagtgagag	cgaagcgaac	acttgatttt	2940
ttaattttct	atcttttata	ggtcattaga	gtatacttat	ttgtcctata	aactatttag	3000
					aggaaaatct	3060
					gcagatgctg	3120
ctgaagagat	tattaaaaag	ctgaaagcaa	aaggctatca	attggtaact	gtatctcagc	3180
		agaggctatt				3240
		tatagggaaa				3300
		attgaaagga				3360
		ggttgacatt				3420
		cgaaacgtaa				3480
		aatgttaagc				3540
		tacaaaaaaa				3600
		ttcggacgga				3660
atgacataca	agcacaacct	tgaaaatttg	aaaatataac	taccaataaa	Cttattcata	3720
tgaattatcg	ctgtatttaa	ttttctcaat	tcaatatata	atatoccaa+	acattottac	3780
			Page 11	<i>5</i> = 3 = 4		J. 00

	_					
					agtattaaat	3840
					atattttct	3900
attggaatga	ttaagattco	: aatagaatag	tgtataaatt	atttatcttg	aaaggaggga	3960
tgcctaaaaa	cgaagaacat	taaaaacata	tatttgcacc	gtctaatgga	tttatgaaaa	4020
atcattttat	cagtttgaaa	attatgtatt	atggagctct	gaaaaaaagg	agaggataaa	4080
					ttcagaaaaa	4140
					cgctgtggga	4200
ctaatcatct	ggtttattcc	cgctccgtcc	ggacttgaac	ctaaagcttg	gcatttgttt	4260
					gggtgcaatt	4320
gcaattttg	cattggcggt	tactgcacta	actggaacac	tatcaattga	ggatacatta	4380
					ttcccgggga	4440
					attcggaaaa	4500
aaaacccttg	gactttctta	ttcactgcta	ttcagtgatt	taatactttc	acctgctatt	4560
					attatccgaa	4620
acattcggat	caagcccggc	aaatggaaca	gagagaaaaa	tcggtgcatt	cttattaaaa	4680
					ggcggcgaac	4740
					gacaagctgg	4800
					tgtgatttac ·	4860
					aacagaaaaa .	4920
		caaaaaatcg				4980
gtgcttgtgc	tgtggatttt	tggcggcagc	ttcaacatcg	acgctaccac	aaccgcattg	5040
atcggtttgg	ccgttctctt	attatcacaa	gttctgactt	gggatgatat	caagaaagaa	5100
cagggcgctt	gggatacgct	cacttggttt	gcggcgcttg	tcatgctcgc	caacttcttg	5160
aatgaattag	gcatggtgtc	ttggttcagt	aatgccatga	aatcatccgt	atcagggttc	5220
tcttggattg	tggcattcat	cattttaatt	gttgtgtatt	attactctca	ctatttcttt	5280
gcaagtgcga	cagcccacat	cagtgcgatg	tattcagcat	ttttggctgt	cgtcgtggca	5340
gcgggcgcac	cgccgctttt	agcagcgctg	agcctcgcgt	tcatcagcaa	cctgttcggg	5400
tcaacgactc	actacggttc	tggagcggct	ccggtcttct	tcggagcagg	ctacatcccg	5460
caaggcaaat	ggtggtccat	cggatttatc	ctgtcgattg	ttcatatcat	cgtatggctt	5520
gtgatcggcg	gattatggtg	gaaagtacta	ggaatatggt	agaaagaaaa	aggcagacgc	5580
ggtctgcctt	tttttatttt	cactccttcg	taagaaaatg	gattttgaaa	aatgagaaaa	5640
ttccctgtga	aaaatggtat	gatctaggta	gaaaggacgg	ctggtgctgt	ggtgaaaaag	5700
cggttccatt	tttccctg				- 0	5718
						· ·

10495.204-WO.ST25.txt <210> 23 27 <211> <212> DNA <213> Artificial sequence <220> <223> Primer 1605 <400> 23 gacggccagt gaattcgata aaagtgc 27 <210> 24 <211> 42 <212> DNA <213> Artificial sequence <220> <223> Primer 1606 <220> <221> <222> misc_feature (13)..(13)<223> n is a, c, g, or t <220> <221> misc_feature <222> (16)..(16)<223> n is a, c, g, or t <400> ccagatctct atnktnktgt acggagtcta actccccaag ag 42 <210> 25 <211> 1112 <212> DNA <213> Nocardiopsis dassonvillei DSM 43235 <400> gcttttagtt catcgatcgc atcggctgct ccggcccccg tcccccagac ccccgtcgcc 60 gacgacagcg ccgccagcat gaccgaggcg ctcaagcgcg acctcgacct cacctcggcc 120 gaggccgagg agcttctctc ggcgcaggaa gccgccatcg agaccgacgc cgaggccacc 180 gaggccgcgg gcgaggccta cggcggctca ctgttcgaca ccgagaccct cgaactcacc 240 gtgctggtca ccgacgcctc cgccgtcgag gcggtcgagg ccaccggagc ccaggccacc 300 gtcgtctccc acggcaccga gggcctgacc gaggtcgtgg aggacctcaa cggcgccgag 360 gttcccgaga gcgtcctcgg ctggtacccg gacgtggaga gcgacaccgt cgtggtcgag 420 gtgctggagg gctccgacgc cgacgtcgcc gccctgctcg ccgacgccgg tgtggactcc 480 tcctcggtcc gggtggagga ggccgaggag gccccgcagg tctacgccga catcatcggc 540 ggcctggcct actacatggg cggccgctgc tccgtcggct tcgccgcgac caacagcgcc 600 ggtcagcccg gtttcgtcac cgccggccac tgcggcaccg tcggcaccgg cgtgaccatc 660 ggcaacggca ccggcacctt ccagaactcg gtcttccccg gcaacgacgc cgccttcgtc 720 cgcggcacct ccaacttcac cctgaccaac ctggtctcgc gctacaactc cggcggctac 780 cagtcggtga ccggtaccag ccaggccccg gccggctcgg ccgtgtgccg ctccggctcc 840

Page 13

```
accaccggct ggcactgcgg caccatccag gcccgcaacc agaccgtgcg ctacccgcag
                                                                           900
 ggcaccgtct actcgctcac ccgcaccaac gtgtgcgccg agcccggcga ctccggcggt
                                                                           960
 tcgttcatct ccggctcgca ggcccagggc gtcacctccg gcggctccgg caactgctcc
                                                                          1020
 gtcggcggca cgacctacta ccaggaggtc accccgatga tcaactcctg gggtgtcagg
                                                                          1080
 atccggacct aatcgcatgt tcaatccgct cc
                                                                          1112
 <210>
        26
 <211>
       48
 <212>
       DNA
       Artificial sequence
 <220>
 <223> Primer 1423
 <400> 26
gcttttagtt catcgatcgc atcggctgct ccggcccccg tcccccag
                                                                            48
<210>
        27
 <211>
       45
 <212>
       DNA
 <213> Artificial sequence
<220>
<223> Primer 1475
<400>
ggagcggatt gaacatgcga ttaggtccgg atcctgacac cccag
                                                                           45
<210>
        28
        354
<211>
<212> PRT
<213> Nocardiopsis dassonvillei DSM 43235
<220>
<221>
       PROPEP
       (1)..(166)
<220>
<221> mat_peptide
<222> (167)..(354)
<400> 28
Ala Pro Ala Pro Val Pro Gln Thr Pro Val Ala Asp Asp Ser Ala
-165 -155
Ala Ser Met Thr Glu Ala Leu Lys Arg Asp Leu Asp Leu Thr Ser -150 -145 -140
Ala Glu Ala Glu Glu Leu Leu Ser Ala Gln Glu Ala Ile Glu
-135 -125
Thr Asp Ala Glu Ala Thr Glu Ala Ala Gly Glu Ala Tyr Gly Gly
-120 -115 -110
```

Ser Leu Phe Asp Thr Glu Thr Leu Glu Leu Thr Val Leu Val Thr Asp
-105 -100 -95

Ala Ser Ala Val Glu Ala Val Glu Ala Thr Gly Ala Gln Ala Thr Val -90 -85 -80 -75

Val Ser His Gly Thr Glu Gly Leu Thr Glu Val Val Glu Asp Leu Asn -70 -65 -60

Gly Ala Glu Val Pro Glu Ser Val Leu Gly Trp Tyr Pro Asp Val Glu -55 -50 -45

Ser Asp Thr Val Val Val Glu Val Leu Glu Gly Ser Asp Ala Asp Val -40 -35

Ala Ala Leu Leu Ala Asp Ala Gly Val Asp Ser Ser Val Arg Val -25 -20 -15

Glu Glu Ala Glu Glu Ala Pro Gln Val Tyr Ala Asp Ile Ile Gly Gly -10 -5 -1 1 5

Leu Ala Tyr Tyr Met Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr $10 \hspace{1cm} 15 \hspace{1cm} 20$

Asn Ser Ala Gly Gln Pro Gly Phe Val Thr Ala Gly His Cys Gly Thr 25 30 35

Val Gly Thr Gly Val Thr Ile Gly Asn Gly Thr Gly Thr Phe Gln Asn 40 45 50

Ser Val Phe Pro Gly Asn Asp Ala Ala Phe Val Arg Gly Thr Ser Asn 55 60 70

Phe Thr Leu Thr Asn Leu Val Ser Arg Tyr Asn Ser Gly Gly Tyr Gln
75 80 85

Ser Val Thr Gly Thr Ser Gln Ala Pro Ala Gly Ser Ala Val Cys Arg 90 95 100

Ser Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Gln Ala Arg Asn 105 110 115

Gln Thr Val Arg Tyr Pro Gln Gly Thr Val Tyr Ser Leu Thr Arg Thr 120 130

Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Phe Ile Ser Gly 135 140 145 150

Ser Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Ser Val 155 160 165

Gly Gly Thr Thr Tyr Tyr Gln Glu Val Thr Pro Met Ile Asn Ser Trp
170 175 180

Gly Val Arg Ile Arg Thr 185

<210> 29

<211> 498

<212> DNA

<213> Nocardiopsis dassonvillei DSM 43235

<400> 29

gctccggccc ccgtcccca gacccccgtc gccgacgaca gcgccgccag catgaccgag 60 gcgctcaagc gcgacctcga cctcacctcg gccgaggccg aggagcttct ctcggcgcag 120 gaagccgcca tcgagaccga cgccgaggcc accgaggccg cgggcgaggc ctacggcggc 180 tcactgttcg acaccgagac cctcgaactc accgtgctgg tcaccgacgc ctccgccgtc 240 gaggcggtcg aggccaccgg agcccaggcc accgtcgtct cccacggcac cgagggcctg 300 accgaggtcg tggaggacct caacggcgcc gaggttcccg agagcgtcct cggctggtac 360 ccggacgtgg agagcgacac cgtcgtggtc gaggtgctgg agggctccga cgccgacgtc 420 gccgccctgc tcgccgacgc cggtgtggac tcctcctcgg tccgggtgga ggaggccgag 480 gaggccccgc aggtctac 498

<210> 30

<211> 166

<213> Nocardiopsis dassonvillei DSM 43235

<400> 30

Ala Pro Ala Pro Val Pro Gln Thr Pro Val Ala Asp Asp Ser Ala Ala 1 10 15

Ser Met Thr Glu Ala Leu Lys Arg Asp Leu Asp Leu Thr Ser Ala Glu 20 25 30

Ala Glu Glu Leu Leu Ser Ala Gln Glu Ala Ala Ile Glu Thr Asp Ala 35 40 45

Glu Ala Thr Glu Ala Ala Gly Glu Ala Tyr Gly Gly Ser Leu Phe Asp 50 60

Thr Glu Thr Leu Glu Leu Thr Val Leu Val Thr Asp Ala Ser Ala Val 65 75 80

Glu Ala Val Glu Ala Thr Gly Ala Gln Ala Thr Val Val Ser His Gly
85 90 95

Thr Glu Gly Leu Thr Glu Val Val Glu Asp Leu Asn Gly Ala Glu Val 100 105 110

10495.204-WO.ST25.txt
Pro Glu Ser Val Leu Gly Trp Tyr Pro Asp Val Glu Ser Asp Thr Val
115 120 125

Val Val Glu Val Leu Glu Gly Ser Asp Ala Asp Val Ala Ala Leu Leu 130 140

Ala Asp Ala Gly Val Asp Ser Ser Ser Val Arg Val Glu Glu Ala Glu 145 150 155 160

Glu Ala Pro Gln Val Tyr 165

<210> 31 <211> 1146

<212> DNA

<213> Artificial sequence

<220>

The DNA sequence coding for the pro-region of SEQ ID NO: 29 fused in frame to A1918L2 protease tail-variant encoding gene; whole construct: 10R(proA1918L2).

<400> 31 atgaagaaac cgttggggaa aattgtcgca agcaccgcac tactcatttc tgttgctttt 60 agttcatcga tcgcatcggc tgctccggcc cccgtccccc agacccccgt cgccgacgac 120 180 gaggagette teteggegea ggaageegee ategagaeeg aegeegagge caeegaggee 240 gcgggcgagg cctacggcgg ctcactgttc gacaccgaga ccctcgaact caccgtgctg 300 gtcaccgacg cctccgccgt cgaggcggtc gaggccaccg gagcccaggc caccgtcgtc 360 tcccacggca ccgaggcct gaccgaggtc gtggaggacc tcaacggcgc cgaggttccc 420 gagagcgtcc tcggctggta cccggacgtg gagagcgaca ccgtcgtggt cgaggtgctg 480 gagggctccg acgccgacgt cgccgccctg ctcgccgacg ccggtgtgga ctcctcctcg 540 gtccgggtgg aggaggccga ggaggccccg caggtctatg ccgatatcat tggaggccta 600 gcgtacacaa tgggtggtcg ctgcagcgta ggatttgcag ccacaaatgc agctggacaa 660 cctggcttcg tgacagctgg acattgcggc cgcgtcggta cacaggttac tatcggcaat 720 ggaagaggtg tctttgagca aagcgtattt cccgggaatg atgctgcctt cgttagaggt 780 acgtccaact ttacgcttac taacttagta tctagataca acactggcgg atatgcaact 840 gtagcaggtc acaatcaagc acctattggc tctagcgtct gccgctcagg gtcgactaca 900 ggatggcatt gtggaaccat tcaagctaga ggtcagagcg tgagctatcc tgaaggtacc 960 gtaacgaaca tgactcgtac gactgtatgt gcagaaccag gtgactctgg aggttcatat 1020 atcagcggta cgcaagcgca aggcgttacc tcaggtggat ccggtaactg taggacaggt 1080 ggcacaacgt tctaccagga agtgacaccg atggtgaact cttggggagt tagactccgt 1140 acataa 1146

10495.204-WO.ST25.txt

60

```
<210>
        1068
 <211>
 <212>
        DNA
 <213>
        Nocardiopsis Alba DSM 15647
 <400>
 gcgaccggcc ccctcccca gtcccccacc ccggatgaag ccgaggccac caccatggtc
gaggccctcc agcgcgacct cggcctgtcc ccctctcagg ccgacgagct cctcgaggcg
                                                                       120
 caggccgagt ccttcgagat cgacgaggcc gccaccgcgg ccgcagccga ctcctacggc
                                                                       180
ggctccatct tcgacaccga cagcctcacc ctgaccgtcc tggtcaccga cgcctccgcc
                                                                       240
gtcgaggcgg tcgaggccgc cggcgccgag gccaaggtgg tctcgcacgg catggagggc
                                                                       300
ctggaggaga tcgtcgccga cctgaacgcg gccgacgctc agcccggcgt cgtgggctgg
                                                                       360
taccccgaca tccactccga cacggtcgtc ctcgaggtcc tcgagggctc cggtgccgac
                                                                       420
gtggactccc tgctcgccga cgccggtgtg gacaccgccg acgtcaaggt ggagagcacc
                                                                       480
accgagcagc ccgagctgta cgccgacatc atcggcggtc tcgcctacac catgggtggg
                                                                       540
cgctgctcgg tcggcttcgc ggccaccaac gcctccggcc agcccgggtt cgtcaccgcc
                                                                       600
ggccactgcg gcaccgtcgg caccccggtc agcatcggca acggccaggg cgtcttcgag
                                                                       660
cgttccgtct tccccggcaa cgactccgcc ttcgtccgcg gcacctcgaa cttcaccctg
                                                                       720
accaacctgg tcagccgcta caacaccggt ggttacgcga ccgtctccgg ctcctcgcag
                                                                       780
gcggcgatcg gctcgcagat ctgccgttcc ggctccacca ccggctggca ctgcggcacc
                                                                       840
gtccaggccc gcggccagac ggtgagctac ccccagggca ccgtgcagaa cctgacccgc
                                                                       900
accaacgtct gcgccgagcc cggtgactcc ggcggctcct tcatctccgg cagccaggcc
                                                                       960
cagggcgtca cctccggtgg ctccggcaac tgctccttcg gtggcaccac ctactaccag
                                                                      1020
gaggtcaacc cgatgctgag cagctggggt ctgaccctgc gcacctga
                                                                      1068
<210>
       33
<211>
       355
<212>
       PRT
       Nocardiopsis Alba DSM 15647
<220>
<221>
       PROPEP
<222>
       (1)..(167)
<220>
<221>
       mat_peptide (168)..(355)
<222>
<400> 33
Ala Thr Gly
           Pro Leu Pro Gln Ser
                                  Pro Thr Pro Asp Glu Ala Glu
            Met Val Glu Ala Leu Gln Arg Asp Leu Gly Leu Ser
Ala Thr Thr
        -150
                             -145
Pro Ser Gln Ala Asp Glu Leu Leu Glu Ala Gln Ala Glu Ser Phe
```

Page 18

-135 10495.204-WO.ST25.txt -130 -125

Glu Ile Asp Glu Ala Ala Thr Ala Ala Ala Ala Asp Ser Tyr Gly
-120 -110

Gly Ser Ile Phe Asp Thr Asp Ser Leu Thr Leu Thr Val Leu Val Thr -105 -95

Asp Ala Ser Ala Val Glu Ala Val Glu Ala Ala Gly Ala Glu Ala Lys -90 -85 -80

Val Val Ser His Gly Met Glu Gly Leu Glu Glu Ile Val Ala Asp Leu -75 -65 -60

Asn Ala Ala Asp Ala Gln Pro Gly Val Val Gly Trp Tyr Pro Asp Ile
-55 -50 -45

His Ser Asp Thr Val Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp
-40 -35 -30

Val Asp Ser Leu Leu Ala Asp Ala Gly Val Asp Thr Ala Asp Val Lys
-25
-15

Val Glu Ser Thr Thr Glu Gln Pro Glu Leu Tyr Ala Asp Ile Ile Gly
-10 -5 -1 1 5

Gly Leu Ala Tyr Thr Met Gly Gly Arg Cys Ser Val Gly Phe Ala Ala 10 15 20

Thr Asn Ala Ser Gly Gln Pro Gly Phe Val Thr Ala Gly His Cys Gly 25 30 35

Thr Val Gly Thr Pro Val Ser Ile Gly Asn Gly Gln Gly Val Phe Glu
40 45 50

Arg Ser Val Phe Pro Gly Asn Asp Ser Ala Phe Val Arg Gly Thr Ser 55 60 65

Asn Phe Thr Leu Thr Asn Leu Val Ser Arg Tyr Asn Thr Gly Gly Tyr 75 80 85

Ala Thr Val Ser Gly Ser Ser Gln Ala Ala Ile Gly Ser Gln Ile Cys 90 95 100

Arg Ser Gly Ser Thr Thr Gly Trp His Cys Gly Thr Val Gln Ala Arg 105 110 115

Gly Gln Thr Val Ser Tyr Pro Gln Gly Thr Val Gln Asn Leu Thr Arg 120 125 130

Thr Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Phe Ile Ser Page 19

10495.204-WO.ST25.txt 135 Gly Ser Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys 150 160

Phe Gly Gly Thr Thr Tyr Tyr Gln Glu Val Asn Pro Met Leu Ser Ser 170 175 180

Trp Gly Leu Thr Leu Arg Thr 185

<210> 34 <211> 43 DNA Artificial sequence <213> <220> <223> Primer 1421 <400>

gttcatcgat cgcatcggct gcgaccggcc ccctcccca gtc 43

<210> 35 <211> 31 <212> DNA Artificial sequence <220> <223> Primer 1604 <400> 35

gcggatccta tcaggtgcgc agggtcagac c 31

<210> 36 <211> 1062 <212> DNA Nocardiopsis prasina DSM 15648

<400> gccaccggac cgctcccca gtcacccacc ccggaggccg acgccgtctc catgcaggag gcgctccagc gcgacctcgg cctgaccccg cttgaggccg atgaactgct ggccgcccag

120 gacaccgcct tcgaggtcga cgaggccgcg gccgcggccg ccggggacgc ctacggcggc 180 tccgtcttcg acaccgagac cctggaactg accgtcctgg tcaccgacgc cgcctcggtc 240

60

720

gaggctgtgg aggccaccgg cgcgggtacc gaactcgtct cctacggcat cgagggcctc 300

gacgagatca tccaggatct caacgccgcc gacgccgtcc ccggcgtggt cggctggtac 360

ccggacgtgg cgggtgacac cgtcgtcctg gaggtcctgg agggttccgg agccgacgtg 420 agcggcctgc tcgccgacgc cggcgtggac gcctcggccg tcgaggtgac cagcagtgcg 480

cagcccgagc tctacgccga catcatcggc ggtctggcct acaccatggg cggccgctgt 540

tcggtcggat tcgcggccac caacgccgcc ggtcagcccg gattcgtcac cgccggtcac 600

tgtggccgcg tgggcaccca ggtgagcatc ggcaacggcc agggcgtctt cgagcagtcc 660 atcttcccgg gcaacgacgc cgccttcgtc cgcggcacgt ccaacttcac gctgaccaac

Page 20

10495.204-WO.ST25.txt

ctggtcagcc	gctacaacac	cggcggttac	gccaccgtcg	ccggccacaa	ccaggcgccc	780
atcggctcct	ccgtctgccg	ctccggctcc	accaccggct	ggcactgcgg	caccatccag	840
gcccgcggcc	agtcggtgag	ctaccccgag	ggcaccgtca	ccaacatgac	ccggaccacc	900
gtgtgcgccg	agcccggcga	ctccggcggc	tcctacatct	ccggcaacca	ggcccagggc	960
gtcacctccg	gcggctccgg	caactgccgc	accggcggga	ccaccttcta	ccaggaggtc	1020
acccccatgg	tgaactcctg	gggcgtccgt	ctccggacct	aa		1062

<210> 37 353

Nocardiopsis prasina DSM 15648

<220> <221> **PROPEP**

(1)..(165)

<220>

mat_peptide (166)..(353) <221>

<400> 37

Ala Thr Gly Pro Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala -165 -155

Val Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Gly Leu Thr Pro
-150 -140

Leu Glu Ala Asp Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu -135 -125

Val Asp Glu Ala Ala Ala Ala Ala Ala Gly Asp Ala Tyr Gly Gly -120 -110

Ser Val Phe Asp Thr Glu Thr Leu Glu Leu Thr Val Leu Val Thr Asp -105 -95 -90

Ala Ala Ser Val Glu Ala Val Glu Ala Thr Gly Ala Gly Thr Glu Leu
-85 -80 -75

Val Ser Tyr Gly Ile Glu Gly Leu Asp Glu Ile Ile Gln Asp Leu Asn
-70 -65 -60

Ala Ala Asp Ala Val Pro Gly Val Val Gly Trp Tyr Pro Asp Val Ala -55 -50 -45

Gly Asp Thr Val Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val -40 -35 -30

Ser Gly Leu Leu Ala Asp Ala Gly Val Asp Ala Ser Ala Val Glu Val -25 -15 -10 Page 21

10495.204-WO.ST25.txt

Thr Ser Ser Ala Gln Pro Glu Leu Tyr Ala Asp Ile Ile Gly Gly Leu
-5 -1 1

Ala Tyr Thr Met Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr Asn 10 20

Ala Ala Gly Gln Pro Gly Phe Val Thr Ala Gly His Cys Gly Arg Val 25 30 35

Gly Thr Gln Val Ser Ile Gly Asn Gly Gln Gly Val Phe Glu Gln Ser 40 50 55

Ile Phe Pro Gly Asn Asp Ala Ala Phe Val Arg Gly Thr Ser Asn Phe 60 65 70

Thr Leu Thr Asn Leu Val Ser Arg Tyr Asn Thr Gly Gly Tyr Ala Thr 75 80 85

Val Ala Gly His Asn Gln Ala Pro Ile Gly Ser Ser Val Cys Arg Ser 90 95 100

Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Gln Ala Arg Gly Gln 105 115

Ser Val Ser Tyr Pro Glu Gly Thr Val Thr Asn Met Thr Arg Thr Thr 120 135

Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Tyr Ile Ser Gly Asn 140 145 150

Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr Gly
155 160 165

Gly Thr Thr Phe Tyr Gln Glu Val Thr Pro Met Val Asn Ser Trp Gly 170 180

Val Arg Leu Arg Thr 185

<210> 38

<211> 43 <212> DNA

<213> Artificial sequence

<220>

<223> Primer 1346

<400> 38

gttcatcgat cgcatcggct gccaccggac cgctccccca gtc

<210> 39 <211> 38 43

38

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1062

10495.204-WO.ST25.txt <212> DNA Artificial sequence <213> <220> <223> Primer 1602 <400> gcggatccta ttaggtccgg agacggacgc cccaggag <210> 40 <211> 1062 <212> DNA <213> Nocardiopsis prasina DSM 15649 <400> gccaccggac cactcccca gtcacccacc ccggaggccg acgccgtctc catgcaggag gcgctccagc gcgacctcgg cctgaccccg cttgaggccg atgaactgct ggccgcccag gacaccgcct tcgaggtcga cgaggccgcg gccgaggccg ccggtgacgc ctacggcggc tccgtcttcg acaccgagac cctggaactg accgtcctgg tcaccgactc cgccgcggtc gaggcggtgg aggccaccgg cgccgggacc gaactggtct cctacggcat cacgggcctc gacgagatcg tcgaggagct caacgccgcc gacgccgttc ccggcgtggt cggctggtac ccggacgtcg cgggtgacac cgtcgtgctg gaggtcctgg agggttccgg cgccgacgtg ggcggcctgc tcgccgacgc cggcgtggac gcctcggcgg tcgaggtgac caccaccgag cagcccgagc tgtacgccga catcatcggc ggtctggcct acaccatggg cggccgctgt tcggtcggct tcgcggccac caacgccgcc ggtcagcccg ggttcgtcac cgccggtcac tgtggccgcg tgggcaccca ggtgaccatc ggcaacggcc ggggcgtctt cgagcagtcc atcttcccgg gcaacgacgc cgccttcgtc cgcggaacgt ccaacttcac gctgaccaac ctggtcagcc gctacaacac cggcggctac gccaccgtcg ccggtcacaa ccaggcgccc atcggctcct ccgtctgccg ctccggctcc accaccggtt ggcactgcgg caccatccag gcccgcggcc agtcggtgag ctaccccgag ggcaccgtca ccaacatgac gcggaccacc gtgtgcgccg agcccggcga ctccggcggc tcctacatct ccggcaacca ggcccagggc gtcacctccg gcggctccgg caactgccgc accggcggga ccaccttcta ccaggaggtc acccccatgg tgaactcctg gggcgtccgt ctccggacct aa <210> 41 <211> 353 <213> Nocardiopsis prasina DSM 15649

```
<212>
<220>
<221>
       PROPEP
       (1)..(165)
<220>
<221>
       mat_peptide
       (166)..(353)
<400>
       41
```

10495.204-WO.ST25.txt

Ala Thr Gly Pro Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala -165 -155

Val Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Gly Leu Thr Pro -140 -140

Leu Glu Ala Asp Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu -135 -125

Val Asp Glu Ala Ala Glu Ala Ala Gly Asp Ala Tyr Gly Gly -120 -110

Ser Val Phe Asp Thr Glu Thr Leu Glu Leu Thr Val Leu Val Thr Asp -105 -95 -90

Ser Ala Ala Val Glu Ala Val Glu Ala Thr Gly Ala Gly Thr Glu Leu -85 -80 -75

Val Ser Tyr Gly Ile Thr Gly Leu Asp Glu Ile Val Glu Glu Leu Asn -70 -65 -60

Ala Ala Asp Ala Val Pro Gly Val Val Gly Trp Tyr Pro Asp Val Ala -55 -45

Gly Asp Thr Val Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val -40 -35 -30

Gly Gly Leu Leu Ala Asp Ala Gly Val Asp Ala Ser Ala Val Glu Val -25 -15 -10

Thr Thr Glu Gln Pro Glu Leu Tyr Ala Asp Ile Ile Gly Gly Leu
-5 -1 1 5

Ala Tyr Thr Met Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr Asn 10 15 20

Ala Ala Gly Gln Pro Gly Phe Val Thr Ala Gly His Cys Gly Arg Val 25 30 35

Gly Thr Gln Val Thr Ile Gly Asn Gly Arg Gly Val Phe Glu Gln Ser 45 50 55

Ile Phe Pro Gly Asn Asp Ala Ala Phe Val Arg Gly Thr Ser Asn Phe 60 65 70

Thr Leu Thr Asn Leu Val Ser Arg Tyr Asn Thr Gly Gly Tyr Ala Thr 75 80 85

Val Ala Gly His Asn Gln Ala Pro Ile Gly Ser Ser Val Cys Arg Ser 90 95 100

10495.204-WO.ST25.txt

Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Gln Ala Arg Gly Gln 105 115

Ser Val Ser Tyr Pro Glu Gly Thr Val Thr Asn Met Thr Arg Thr Thr 120 135 130

Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Tyr Ile Ser Gly Asn 140 145 150

Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr Gly
155 160 165

Gly Thr Thr Phe Tyr Gln Glu Val Thr Pro Met Val Asn Ser Trp Gly 170 180

Val Arg Leu Arg Thr 185

<210> 42

<211> 43

DNA Artificial sequence

<220>

<223> Primer 1603

<400> 42

gttcatcgat cgcatcggct gccaccggac cactccccca gtc

43

<210> 43 <211> 353

<212> PRT

<213> Nocardiopsis sp. NRRL 18262

<220>

<221> PROPEP

(1)..(165)

<220>

<221> <222> mat_peptide

(166)..(1059)

<400> 43

Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala -165 -155

Val Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Thr Ser -145 -140

Ala Glu Ala Glu Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu -135 -125

Val Asp Glu Ala Ala Ala Glu Ala Ala Gly Asp Ala Tyr Gly Gly -120 -110

10495.204-WO.ST25.txt

Ser Val Phe Asp Thr Glu Ser Leu Glu Leu Thr Val Leu Val Thr Asp -105 -95 -90Ala Ala Ala Val Glu Ala Val Glu Ala Thr Gly Ala Gly Thr Glu Leu -85 -80 -75 Val Ser Tyr Gly Ile Asp Gly Leu Asp Glu Ile Val Gln Glu Leu Asn
-70 -65 -60 Ala Ala Asp Ala Val Pro Gly Val Val Gly Trp Tyr Pro Asp Val Ala -55 -50 -45 Gly Asp Thr Val Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val -40 -35 -30 Ser Gly Leu Leu Ala Asp Ala Gly Val Asp Ala Ser Ala Val Glu Val -25 -15 -10Thr Thr Ser Asp Gln Pro Glu Leu Tyr Ala Asp Ile Ile Gly Gly Leu
-5 -1 1 Ala Tyr Thr Met Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr Asn 10 15 20 Ala Ala Gly Gln Pro Gly Phe Val Thr Ala Gly His Cys Gly Arg Val Gly Thr Gln Val Thr Ile Gly Asn Gly Arg Gly Val Phe Glu Gln Ser 40 50 From 55Val Phe Pro Gly Asn Asp Ala Ala Phe Val Arg Gly Thr Ser Asn Phe 60 65 70 Thr Leu Thr Asn Leu Val Ser Arg Tyr Asn Thr Gly Gly Tyr Ala Thr 75 80 85 Val Ala Gly His Asn Gln Ala Pro Ile Gly Ser Ser Val Cys Arg Ser 90 95 100 Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Gln Ala Arg Gly Gln 105 115 Ser Val Ser Tyr Pro Glu Gly Thr Val Thr Asn Met Thr Arg Thr Thr 120 135 Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Tyr Ile Ser Gly Thr 140 145 150 Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr Gly 155 160

10495.204-WO.ST25.txt

Gly Thr Thr Phe Tyr Gln Glu Val Thr Pro Met Val Asn Ser Trp Gly 180

Val Arg Leu Arg Thr 185

-85

<210> 44 <211> <212> 1164 DNA Artificial sequence <213> <220> <223> Synthetic protease encoding gene <220> CDS (1)..(1164) Full length protease <221> <222> <220> <221> <222> sig_peptide (1)..(81) <220> <221> <222> misc_feature (82)..(1164) Propeptide <220> mat_peptide (577)..(1164) <221> <222> <400> 44 atg aaa aaa ccg ctg gga aaa att gtc gca agc aca gca ctt ctt Met Lys Lys Pro Leu Gly Lys Ile Val Ala Ser Thr Ala Leu Leu -180 45 att tca gtg gca ttt agc tca tct att gca tca gca gct aca gga Ile Ser Val Ala Phe Ser Ser Ser Ile Ala Ser Ala Ala Thr Gly 90 gca tta ccg cag tct ccg aca ccg gaa gca gat gca gtc tca atg Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val Ser Met -160 -150 135 caa gaa gca ctg caa aga gat ctt gat ctt aca tca gca gaa gca Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Thr Ser Ala Glu Ala 180 -140 gaa gaa ctt ctt gct gca caa gat aca gca ttt gaa gtg gat gaa Glu Glu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val Asp Glu -130 -120 225 gca gcg gca gaa gca gga gat gca tat ggc ggc tca gtt ttt Ala Ala Ala Glu Ala Ala Gly Asp Ala Tyr Gly Gly Ser Val Phe -115 -105 270 gat aca gaa tca ctt gaa ctt aca gtt ctt gtt aca gat gca gca Asp Thr Glu Ser Leu Glu Leu Thr Val Leu Val Thr Asp Ala Ala Ala 318 gtt gaa gca gtt gaa gca aca gga gca gga aca gta ctt gtt tca tat Val Glu Ala Val Glu Ala Thr Gly Ala Gly Thr Val Leu Val Ser Tyr 366

Page 27

-80

											J. 2.	J. L.X.	•			
gg G1 -7	a at y Il O	t ga e As	t gg p Gl	c ct y Le	t ga u As -6		a ati	t gt e Va	t caa l Glr	a gaa 1 Glu -60	ı re	g aa u As	t gc n Al	a go a Al	t gat a Asp -55	414
gc Al	t gt a Va	t cc 1 Pr	g gg o Gl	c gt y Va -5		t ggd 1 Gly	tgg / Tr	g tai 7 Tyi	t ccg r Pro -45	, wor	t gt	t gci l Ala	t gg	a ga y As -4	t aca p Thr 0	462
gt Va	t gt 1 Va	c ct l Le	t gaa u Glu -3!	a gt u Va 5	t cti l Lei	t gaa u Glu	gga Gly	a tca / Sei -30	a ggo G Gly	gca Ala	a ga a As _i	t gti	t tca l sea -2!	a gg r Gl	c ctg y Leu	510
ct: Lei	g gca u Ala	a ga a As _i -20	c gca p Ala O	a gga a Gly	a gto / Va	c gat l Asp	gca Ala -15	- 501	a gca Ala	gtt Val	gaa Glu	a gti u Val -10	Th	a ac	a tca r Ser	558
ga: Asi	caa Gli -5	a cci	g gaa o Glu	a cti I Lei	t tat J Tyr -1	gca Ala 1	gat Asp	att Ile	att Ile	ggc Gly 5	ggo Gly	cto Lei	gca I Ala	a ta a Ty	t tat r Tyr 10	606
atg Me1	gge Gly	ggo Gly	c aga / Arg	tgo Cys 15	ago Ser	gtt Val	ggc Gly	ttt Phe	gca Ala 20	gca Ala	aca Thr	aat Asn	gca	a tca Sei 25	a ggc Gly	654
caa Glr	CCO Pro	g ggo	ttt Phe 30	gtt Val	aca Thr	gca Ala	ggc Gly	cat His 35	tgc Cys	ggc Gly	aca Thr	gtt Val	ggo Gly 40	aca Thi	cca Pro	702
gtt Val	tca Ser	att Tle 45	ggc Gly	aat Asn	ggc Gly	aaa Lys	ggc Gly 50	gtt Val	ttt Phe	gaa Glu	cga Arg	agc Ser 55	att Ile	ttt Phe	ccg Pro	750
	60	•				65	A1 9	СТУ	1111	ser	70	Pne	Thr	Leu	aca Thr	798
75				J	80				diy	85	Ald	ınr	vaı	Ala	ggc Gly 90	846
				95		. ,	50,	AIQ	gtt Val 100	Cys	Arg	ser	GIY	Ser 105	Thr	894
			110	•		••••	~	115	gca Ala	Arg	ASII	GIN	120	vai	Arg	942
		125				٠,,	130	Leu	aca Thr	Airg	inr	135	vaı	Cys	Ala	990
	140	-	•		,	145	JC,	יעי	att Ile	ser.	150	ınr	GIN	Ala	Gln	1038
155					160		. ,	7311		165	AId	GIY	GIY	Inr	Thr 170	1086
				175				LCu	agt Ser 180	tca Ser	tgg Trp	ggc Gly	ctt Leu	aca Thr 185	ctt Leu	1134
aga Arg	aca Thr	caa Gln	tcg Ser 190	cat His	gtt Val	caa Gln :	ser .	gct Ala 195	cca Pro	-						1164

Page 28

10495.204-WO.ST25.txt

<210> 45

<211> 388

<213> Artificial sequence

<220>

<223> Synthetic Construct

<400> 45

Met Lys Lys Pro Leu Gly Lys Ile Val Ala Ser Thr Ala Leu Leu -180 -180

Ile Ser Val Ala Phe Ser Ser Ser Ile Ala Ser Ala Ala Thr Gly -175 -165

Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val Ser Met
-160 -150

Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Thr Ser Ala Glu Ala -145 -135

Glu Glu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val Asp Glu -130 -125 -120

Ala Ala Ala Glu Ala Ala Gly Asp Ala Tyr Gly Gly Ser Val Phe -115 -105

Asp Thr Glu Ser Leu Glu Leu Thr Val Leu Val Thr Asp Ala Ala Ala -100 -95 -90

Val Glu Ala Val Glu Ala Thr Gly Ala Gly Thr Val Leu Val Ser Tyr -85 -75

Gly Ile Asp Gly Leu Asp Glu Ile Val Gln Glu Leu Asn Ala Ala Asp -70 -65 -60 -55

Ala Val Pro Gly Val Val Gly Trp Tyr Pro Asp Val Ala Gly Asp Thr
-50 -45 -40

Val Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val Ser Gly Leu -35 -30 -25

Leu Ala Asp Ala Gly Val Asp Ala Ser Ala Val Glu Val Thr Thr Ser -20 -15 -10

Asp Gln Pro Glu Leu Tyr Ala Asp Ile Ile Gly Gly Leu Ala Tyr Tyr
-5 -1 1 5 10

Met Gly Gly Arg Cys Ser Val Gly Phe Ala Ala Thr Asn Ala Ser Gly 15 20 25

Gln Pro Gly Phe Val Thr Ala Gly His Cys Gly Thr Val Gly Thr Pro 30 35 40

Val Ser Ile Gly Asn Gly Lys Gly Val Phe Glu Arg Ser Ile Phe Pro
45 50 55

Gly Asn Asp Ser Ala Phe Val Arg Gly Thr Ser Asn Phe Thr Leu Thr 60 70

Asn Leu Val Ser Arg Tyr Asn Ser Gly Gly Tyr Ala Thr Val Ala Gly 75 80 85 90

His Asn Gln Ala Pro Ile Gly Ser Ala Val Cys Arg Ser Gly Ser Thr 95 100 105

Thr Gly Trp His Cys Gly Thr Ile Gln Ala Arg Asn Gln Thr Val Arg 110 115 120

Tyr Pro Gln Gly Thr Val Tyr Ser Leu Thr Arg Thr Thr Val Cys Ala 125 130 135

Glu Pro Gly Asp Ser Gly Gly Ser Tyr Ile Ser Gly Thr Gln Ala Gln 140 150

Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Ser Ala Gly Gly Thr Thr 160 165 170

Tyr Tyr Gln Glu Val Asn Pro Met Leu Ser Ser Trp Gly Leu Thr Leu 175 180 185

Arg Thr Gln Ser His Val Gln Ser Ala Pro 190 195

<210> 46

<211> 165

<212> PRT <213> Artificial sequence <220>

Shuffled propeptide 0-2.19

<220>

<221> **PROPEP**

(1)..(165)

<400> 46

Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val 1 10 15

Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Thr Ser Ala Glu 20 25 30

Ala Glu Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val Asp Glu Page 30

35 10495.204-WO.ST25.txt 40 45

Ala Ala Ala Ala Ala Gly Asp Ala Tyr Gly Gly Ser Val Phe Asp 50 60

Thr Glu Ser Leu Thr Leu Thr Val Leu Val Thr Asp Ala Ser Ala Val 65 70 75 80

Glu Ala Val Glu Ala Ala Gly Ala Glu Ala Lys Val Val Ser His Gly 85 90 95

Met Glu Gly Leu Glu Glu Ile Val Ala Asp Leu Asn Ala Ala Asp Ala 100 105 110

Gln Pro Gly Val Val Gly Trp Tyr Pro Asp Ile His Ser Asp Thr Val 115 120 125

Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val Asp Ser Leu Leu 130 140

Ala Asp Ala Gly Val Asp Ala Ser Ala Val Glu Val Thr Thr Ser Asp 145 150 150 160

Gln Pro Glu Leu Tyr 165

<210> 47 <211> 166

<212> PRT

<213> Artificial sequence

<220> <223> Shuffled propeptide G-2.73

<220> <221> PROPEP

<222> (1)..(166)

<400> 47

Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val 1 10 15

Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Ser Ser Ala Glu 20 25 30

Ala Glu Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val Asp Glu 35 40 45

Ala Ala Gly Ala Ala Gly Asp Ala Tyr Gly Gly Ser Val Phe Asp 50 60

Thr Glu Thr Leu Glu Leu Thr Val Leu Val Thr Asp Ala Ser Ala Val 65 70 75 80 Page 31

10495.204-WO.ST25.txt

Glu Ala Val Glu Ala Ala Gly Ala Glu Ala Lys Val Val Ser His Gly 85 90 95

Met Glu Gly Leu Glu Glu Ile Val Ala Asp Leu Asn Ala Ala Asp Ala 100 105 110

Gln Pro Gly Val Val Gly Trp Tyr Pro Asp Ile His Ser Asp Thr Val 115 120 125

Val Val Glu Val Leu Glu Gly Ser Gly Ala Asp Val Asp Ser Leu Leu 130 140

Ala Asp Ala Gly Val Asp Thr Ala Asp Val Lys Val Glu Ser Thr Thr 145 150 155 160

Glu Gln Pro Glu Leu Tyr 165

<210> 48

<211> <212> 166

PRT

Artificial sequence

<220>

<223> Shuffled propeptide G-1.43

<220>

<221> <222> **PROPEP**

(1)..(166)

<400> 48

Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val 1 15

Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Gly Leu Ser Ser Gln 20 25 30

Ala Glu Glu Leu Leu Asp Ala Gln Ala Glu Ser Phe Glu Ile Asp Glu 35 40 45

Ala Ala Ala Ala Ala Gly Asp Ala Tyr Gly Gly Ser Ile Phe Asp 50 60

Thr Asp Ser Leu Thr Leu Thr Val Leu Val Thr Asp Ala Ser Ala Val 65 70 75 80

Glu Ala Val Glu Ala Ala Gly Ala Glu Ala Lys Val Val Ser His Gly 85 90 95

Met Glu Gly Leu Glu Glu Ile Val Ala Asp Leu Asn Ala Ala Asp Ala 100 110

10495.204-WO.ST25.txt

Gln Pro Gly Val Val Gly Trp Tyr Pro Asp Ile His Ser Asp Thr Val 115 120 125

Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val Asp Ser Leu Leu 130 140

Ala Asp Ala Gly Val Asp Thr Ala Asp Val Lys Val Glu Ser Thr Thr 145 150 160

Glu Gln Pro Glu Leu Tyr 165

<210> 49

<211> 166

Artificial sequence

<223>

<220>

Shuffled propeptide G-2.6

<400>

Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val 10 15

Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Thr Ser Ala Glu 20 25 30

Ala Glu Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val Asp Glu 35 40 45

Ala Ala Ala Ala Ala Gly Asp Ala Tyr Gly Gly Ser Ile Phe Asp 50 60

Thr Glu Thr Leu Glu Leu Thr Val Leu Val Thr Asp Ser Ser Ser Val 65 70 75 80

Glu Ala Val Glu Ala Ala Gly Ala Glu Ala Lys Val Val Ser His Gly 85 90 95

Met Glu Gly Leu Glu Glu Ile Val Ala Asp Leu Asn Ala Ala Asp Ala 100 110

Gln Pro Gly Val Val Gly Trp Tyr Pro Asp Ile His Ser Asp Thr Val 115 120 125

Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val Asp Ser Leu Leu 130 140

Ala Gly Ala Gly Val Asp Thr Ala Asp Val Lys Val Glu Ser Thr Thr 145 155 160

Glu Gln Pro Glu Leu Tyr

165

<210> 50

<211> <212> **PRT**

Artificial sequence

<220>

<223> Shuffled propeptide G-2.5

<220>

PROPEP

<221> <222> (1)..(165)

<400>

Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val 1 10 15

Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Gly Leu Thr Pro Leu Glu 20 25 30

Ala Glu Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val Asp Glu 35 40 45

Ala Ala Glu Ala Ala Gly Asp Ala Tyr Gly Gly Ser Val Phe Asp 50 60

Thr Glu Thr Leu Glu Leu Thr Val Leu Val Thr Asp Ala Ser Ala Val 65 70 75 80

Glu Ala Val Glu Ala Ala Gly Ala Glu Ala Lys Val Val Ser His Gly 85 90 95

Met Glu Gly Leu Glu Glu Ile Val Ala Asp Leu Asn Ala Ala Asp Ala 100 110

Gln Pro Gly Val Val Gly Trp Tyr Pro Asp Ile His Ser Asp Thr Val

Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val Asp Ser Leu Leu 130 140

Ala Asp Ala Gly Val Asp Ala Ser Ala Val Glu Val Thr Pro Ala Ala 150 155 160

Arg Pro Glu Leu Tyr 165

<210> 51

<211> 166 PRT

Artificial sequence

<220>

10495.204-WO.ST25.txt Shuffled propeptide G-2.3

<220>

<221> **PROPEP**

(1)..(166)

<400>

Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Asp Gly Ala Glu Ala 10 15

Thr Thr Met Val Glu Ala Leu Gln Arg Asp Leu Gly Leu Thr Pro Ala 20 30

Glu Ala Glu Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val Asp 35 40 45

Glu Ala Ala Ala Ala Ala Gly Asp Ala Tyr Gly Gly Ser Ile Phe 50 60

Asp Thr Asp Ser Leu Thr Leu Thr Val Leu Val Thr Asp Ala Ala Ala 65 70 75 80

Val Glu Ala Val Glu Ala Ala Gly Ala Glu Ala Lys Val Val Ser His 85 90 95

Gly Met Glu Glu Glu Glu Ile Val Ala Asp Leu Asn Ala Ala Asp 100 105 110

Ala Val Pro Gly Val Val Gly Trp Tyr Pro Asp Val Ala Gly Asp Thr
115 120 125

Val Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val Tyr Ser Leu 130 140

Leu Ala Asp Ala Gly Val Asp Ala Ser Ala Val Glu Val Thr Pro Ala 145 150 160

Ala Gln Pro Glu Leu Tyr 165

<210> 52

<211> <212> 166

PRT Artificial sequence

<220> <223> Shuffled propeptide G-1.4

<220> <221> <222> **PROPEP**

(1)..(166)

<400> 52

10495.204-WO.ST25.txt
Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val
5 10 15

Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Gly Leu Ser Ser Gln 20 25 30

Ala Glu Glu Leu Leu Asp Ala Gln Ala Glu Ser Phe Glu Ile Asp Glu 35 40 45

Ala Ala Ala Ala Ala Asp Ser Tyr Gly Gly Ser Ile Phe Asp 50 60

Thr Asp Ser Leu Thr Leu Thr Val Leu Val Thr Asp Ala Ser Ala Val 65 70 75 80

Glu Ala Val Glu Ala Ala Gly Ala Glu Ala Lys Val Val Ser His Gly 85 90 95

Met Glu Gly Leu Glu Glu Ile Val Ala Asp Leu Asn Ala Ala Asp Ala 100 105 110

Gln Pro Gly Val Val Gly Trp Tyr Pro Asp Ile His Ser Asp Thr Val 115 120 125

Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val Asp Ser Leu Leu 130 140

Ala Asp Ala Gly Val Asp Thr Ala Asp Val Lys Val Glu Ser Thr Thr 145 150 155 160

Glu Gln Pro Glu Leu Tyr 165

<210> 53 <211> 166 <212> PRT

<213> Artificial sequence

<220> <223> Shuffled propeptide G-1.2

<220> <221> **PROPEP**

(1)..(166)

<400> 53

Ala Thr Gly Ala Leu Pro Gln Ser Pro Thr Pro Glu Ala Asp Ala Val 1 15

Ser Met Gln Glu Ala Leu Gln Arg Asp Leu Asp Leu Thr Ser Ala Glu 20 25 30

Ala Glu Glu Leu Leu Ala Ala Gln Asp Thr Ala Phe Glu Val Asp Glu Page 36

35

10495.204-WO.ST25.txt 40 45

Ala Ala Ala Ala Ala Gly Asp Ala Tyr Gly Gly Ser Ile Phe Asp 50 60

Thr Glu Thr Leu Glu Leu Thr Val Leu Val Thr Asp Ser Ser Ser Val 70 75 80

Glu Ala Val Glu Ala Ala Gly Ala Glu Ala Lys Val Val Ser His Gly 85 90 95

Met Glu Gly Leu Glu Glu Ile Val Ala Asp Leu Asn Ala Ala Asp Ala 100 105 110

Gln Pro Gly Val Val Gly Trp Tyr Pro Asp Ile His Ser Asp Thr Val 115 120 125

Val Leu Glu Val Leu Glu Gly Ser Gly Ala Asp Val Asp Ser Leu Leu 130 140

Ala Gly Ala Gly Val Asp Thr Ala Asp Val Lys Val Glu Ser Thr Thr 150 155 160

Glu Gln Pro Glu Leu Tyr 165