

CAP1188 Device Family Sampling and Cycle Timing

Author: Burke Davison

Microchip Technology Inc.

OVERVIEW

This application note describes the capacitive sensing cycle timing and recalibration timing parameters used in the CAP1188 family of RightTouch[®] capacitive sensors: CAP1188, CAP1166, CAP1133, CAP1128, CAP1126, and CAP1106. The LED control timing parameters are discussed in AN21.4 CAP1188 Family LED Configuration Options.

AUDIENCE

This application note assumes that the reader is familiar with hardware design and the Microchip data sheet for the device of interest.

REFERENCES

Data Sheet for the RightTouch device of interest

NOMINAL VALUES

Nominal values are used in this document. Actual values may vary by +20%.

DOCUMENT AND DEVICE DIFFERENCES

In this document, the CAP1188 is used to illustrate timing examples. The CAP1166, CAP1133, CAP1128, CAP1126, and CAP1106. devices have the same timing parameters; however, they vary in terms of the number of capacitive touch sensor inputs. In calculations, they can be considered the same as the CAP1188, but with some of the sensors disabled.

TABLE 1: RIGHTTOUCH DEVICE SENSOR INPUTS

Device	Number of Capacitive Sensor Inputs
CAP1188	8
CAP1166	6
CAP1133	3
CAP1128	8
CAP1126	6
CAP1106	6

SENSING CYCLE TIMING PARAMETERS

When a CAP1188 RightTouch family device is active, it automatically initiates a sensing cycle (also referred to as the polling cycle) and repeats the cycle every time it finishes. The cycle polls through each enabled capacitive touch sensor input starting with CS1. It takes the designated number of samples on the channel and averages the result by the number of samples before updating the measurement. After each sensor input is polled, its measurement is compared against a baseline "not touched" measurement. If the delta measurement is large enough, a touch is detected and an interrupt can be generated.

The time it takes to complete a sensing cycle is dependent upon the number of channels enabled, the number of samples per channel, and the sample time. The sensing cycle time is programmable: 35ms, 70ms (default), 105ms, or 140ms. If sampling can be completed in less than the programmed sensing cycle time, the device is idle (placed in a lower power state) for the remainder of the sensing cycle, after which it starts the next sensing cycle.

The parameters that affect the CAP1188 device family sensing cycle timing are shown in Table 2.

TABLE 2: SENSING CYCLE TIMING PARAMETERS

Symbol	Parameter	Description	Control	Options	Default
CSx	# of enabled sensor inputs	Number of sensor inputs enabled in Fully Active State	Sensor Input Enable Register 21h	any or all sensor inputs	all sensor inputs enabled
		Number of sensor inputs enabled in Standby State	Standby Channel Register 40h	any or all sensor inputs	no sensor inputs enabled
AVG	Sensor Input Samples	Number of consecutive samples taken for each sensor input in Fully Active state	Averaging and Sampling Config Register 24h bits 6- 4, AVG[2:0]	8 choices from 1 to 128	8
		Number of consecutive samples taken for each sensor input in Standby state	Standby Configuration Register 41h bits 6-4, STBY_AVG[2:0]		
ST	Single Sample Time	Time to take a single sample in Fully Active state	Averaging and Sampling Config Register 24h bits 3- 2, SAMP_TIME[1:0]	320us, 640us, 1.28ms, and	1.28ms
		Time to take a single sample in Standby state	Standby Configuration Register 41h bits 3-2, STBY_SAMP_TIME[1:0]	2.56ms	
T _{SS}	Sensor Input Sampling Time	Sampling time for each sensor input	Calculated: ST * AVG		10.24ms
ОН	Overhead	Time to switch sensor inputs	Calculation: 0.55 * CSx		4.4ms (CAP1188 or CAP1128), 3.3ms (CAP1166, CAP1126, or CAP1106), 1.65ms (CAP1133)
T _{RR}	Round Robin Cycle Time	Sampling time for all enabled sensor inputs during each round robin sampling cycle.	Calculation: T _{RR} = (T _{SS} * CSx) + OH		86.32ms (CAP1188 or CAP1128), 64.74ms (CAP1166, CAP1126, or CAP1106), 32.34ms (CAP1133)

TABLE 2: SENSING CYCLE TIMING PARAMETERS (CONTINUED)

Symbol	Parameter	Description	Control	Options	Default
CT	Programmed Cycle Time	Programmed, desired goal for cycle time in the Fully Active state	Averaging and Sampling Config Register 24h bits 1- 0, CYCLE_TIME[1:0]	35ms, 70ms, 105ms, and 140ms	70ms
		Programmed, desired goal for cycle time in the Standby state	Standby Configuration Register 41h bits 1-0, STBY_CY_TIME[1:0]		
T _C	Sensing Cycle Time	Time to complete a sensing cycle	Calculation: T _C = CT or T _{RR} (whichever is longer)		86.32ms (CAP1188 or CAP1128), 70ms (CAP1166, CAP1133, CAP1126, or CAP1106)

Figure 1 shows a graphical representation of the parameters that affect the CAP1188 device family sensing cycle timing.

FIGURE 1: CAP1188 Device Family Sensing Cycle Time

Additional Considerations

POWER STATES

There are three operating states for the CAP1188 device family: Fully Active, Standby, and Deep Sleep. In the Deep Sleep state, the device is not monitoring any capacitive touch sensor inputs, so sensing cycle timing is not applicable.

As noted in Table 2, "Sensing Cycle Timing Parameters", separate controls are available for the sensing cycle parameters in the Fully Active and the Standby states. To minimize power consumption in the Standby state, see Table 3.

TABLE 3: STANDBY SETTINGS FOR MINIMUM POWER CONSUMPTION

Register	Bits	Value	Description
Standby Channel Register 40h			disable unnecessary sensor inputs
Averaging and Sampling Config Register 24h	bits 6-4, AVG[2:0]	000b	set the average number of samples per channel to 1
Standby Configuration Register 41h	bits 3-2, STBY_SAMP TIME[1:0]	00b	set single sample time to the lowest setting of 320us
Standby Configuration Register 41h	bits 1-0, STBY_CY TIME[1:0]	11b	set the maximum cycle time of 140ms

SINGLE SAMPLE TIME AND COUNTS

Single sample time is the time allowed to take a single sample for a sensor input. Base count and delta count are both proportional to the single sample time. For example, changing the single sample time from 1.28ms to 2.56ms effectively doubles the number of base counts (see Table 4) as well as the number of delta counts. This is because the device is taking the sample over a period that is twice as long so it can accumulate twice as many counts.

TABLE 4: NOMINAL BASE COUNTS FOR SAMPLE TIME

Sample Time (ms)	Nominal Base Counts
2.56	25,600
1.28	12,800

Thresholds are also proportional to the single sample time. If the sample time is increased, thresholds need to be adjusted to avoid false touch detections. This is because a threshold set for sample time of 1.28ms is based on a certain number of delta counts (X) exceeding the threshold. When single sample time is increased to 2.56ms, the number of delta counts doubles (2X) and the threshold becomes too low and is easily exceeded, resulting in false detections.

PROXIMITY SENSING CYCLE TIMING PARAMETERS

When the goal is to detect proximity, the Standby state sensing cycle parameters should be used. Table 5 shows an example of proximity settings.

TABLE 5: EXAMPLE OF PROXIMITY SETTINGS

,					
Symbol	Parameter	Description	Control	Option	Value
CSx	# of enabled sensor inputs	Number of sensor inputs enabled in Standby State	Standby Channel Register 40h	sensor input 1 enabled	01h
AVG	Sensor Input Samples	Number of consecutive samples taken for each sensor input in Standby state	Standby Configuration Register 41h bits 6-4, STBY_AVG[2:0]	32	101b
ST	Single Sample Time	Time to take a single sample in Standby state	Standby Configuration Register 41h bits 3-2, STBY_SAMP_TIME[1:0]	2.56ms	11b
T _{SS}	Sensor Input Sampling Time	Sampling time for each sensor input	Calculated: ST * AVG		81.92ms
ОН	Overhead	Time to switch sensor inputs	Calculation: 0.55 * CSx		0.55ms
T _{RR}	Round Robin Cycle Time	Sampling time for all enabled sensor inputs during each round robin sampling cycle.	Calculation: T _{RR} = (T _{SS} * CSx) + OH		82.47ms
СТ	Programmed Cycle Time	Programmed, desired goal for cycle time in the Standby state	Standby Configuration Register 41h bits 1-0, STBY_CY_TIME[1:0]	35ms	00b
T _C	Sensing Cycle Time	Time to complete a sensing cycle	Calculation: T _C = CT or T _{RR} (whichever is longer)	2	82.47ms

RECALIBRATION TIMING

Each sensor input is digitally recalibrated at an adjustable rate. By default, the recalibration routine stores the average 64 previous measurements and periodically updates the base count "Not Touched" setting for the capacitive touch sensor input. This routine is disabled automatically if a touch is detected so the touch does not factor into the base count setting.

Note: Automatic recalibration only works when the delta count is below the active sensor input threshold. It is disabled when a touch is detected.

The parameters that affect the CAP1188 RightTouch family recalibration timing are shown in Table 6.

TABLE 6: RECALIBRATION TIMING PARAMETERS

Symbol	Parameter	Description	Control	Options	Default
T _C	Sensing Cycle Time	Time to complete a sensing cycle	Calculation: T _C = CT or T _{RR} (whichever is longer) (see Table 2, "Sensing Cycle Timing Parameters")		86.32ms (CAP1188 or CAP1128), 70ms (CAP1166, CAP1133, CAP1126, or CAP1106) (Fully Active State)
T _U	Update Time	Amount of time (in sensing cycle periods) that elapses before the base count is updated.	Recalibration Configuration Register 2Fh bits 2-0, CAL_CFG[2:0]	256, 1024, 2048, or 4096	N/A
RS	Recalibration Samples	Number of samples that are measured and averaged before the base count is updated		16, 32, 64, 128, or 256	64 samples
T _{CAL}	Calibration Cycle Time	Time interval between two recali- bration updates	$T_{CAL} = T_{C} * RS$ OR $T_{CAL} = T_{C} * T_{U}$		5.52s (CAP1188 or CAP1128) 4.48s (CAP1166, CAP1133, CAP1126,or CAP1106

Table 2 shows a graphical representation of the parameters.

FIGURE 2: Recalibration Time

Calibration cycle time can be based on the number of recalibration samples or the update time. The values for both are stored in the same register bits: Recalibration Configuration Register 2Fh bits 2-0 CAL_CFG[2:0]. If the number of samples is less than 256, calibration cycle time equals the number of samples selected times the sensing cycle time. This method has the shorter recalibration times.

If the number of samples is 256, calibration cycle time is equal to the update time. This method results in longer recalibration times.

When the update time is greater than 256 sensing cycles, a delay is added which postpones update of the base count. This delay, or idle period, is the update time minus 256, with the result multiplied by the sensing cycle time. For example, if the sensing cycle time is the default of 86.32ms and the update time is 1024 (CAL_CFG[2:0] set to 101b), the base counts registers will be updated every 88.39s (86.32×1024). The recalibration routine is completed every 22.1s (86.32×256). The idle time will be 66.29s ((1024-256) $\times 86.32$), which is 3/4 of the time interval between base count updates (66.29 / 88.39).

Additional Considerations

POWER STATE TRANSITIONS

The device will recalibrate all enabled sensor inputs that were disabled when it transitions from the Standby power state to Fully Active. Likewise the device will recalibrate all enabled sensor inputs when waking out of Deep Sleep or coming out of reset.

ON DEMAND RECALIBRATION

Each individual capacitive touch sensor input can be recalibrated at any time by setting the corresponding bit in the Calibration Activate Register 26h. After the register is updated, the recalibration routine will not start until the currently active sensing cycle completes. The analog recalibration takes approximately 4ms for each sensor input selected for recalibration. The digital recalibration takes 16 samples (using the single sample time) for each sensor input selected for recalibration, averages them, and then updates the base counts. Notice that the programmed number of samples is ignored. In addition, the programmed cycle time is ignored, so there's no delay if the selected sensor input can be sampled in less time than the programmed cycle time.

During on demand recalibration routine, the sensor inputs will not detect a press, and the Sensor Input Base Count Registers values will be invalid. Also during this time, any press on the corresponding sensor inputs will invalidate the recalibration. To calculate this time, use the equations in Table 7.

TABLE 7: ON DEMAND RECALIBRATION TIMING PARAMETERS

Symbol	Parameter	Description	Control	Options	Default
CSx	# of enabled sensor inputs	Number of sensor inputs enabled in Fully Active State	Sensor Input Enable Register 21h	any or all sensor inputs	all sensor inputs enabled
		Number of sensor inputs enabled in Standby State	Standby Channel Register 40h	any or all sensor inputs	no sensor inputs enabled
ANA_CAL	Analog Recalibration Time	Time to complete the analog recalibration	ANA_CAL = CSx * 4ms		32ms (CAP1188 or CAP1128) 24ms (CAP1166, CAP1126, or CAP1106), 12ms (CAP1133)
RS	Recalibration Samples	Number of samples that are measured and averaged before the base count is updated	none - this value is fixed		16 samples

TABLE 7: ON DEMAND RECALIBRATION TIMING PARAMETERS (CONTINUED)

Symbol	Parameter	Description	Control	Options	Default
ST	Single Sample Time	Time to take a single sample in Fully Active state	Averaging and Sampling Config Register 24h bits 3-2, SAMP_TIME[1:0]	320us, 640us, 1.28ms, and 2.56ms	1.28ms
		Time to take a single sample in Standby state	Standby Configuration Register 41h bits 3-2, STBY_SAMPTIME[1:0]		
ОН	Overhead	Time to switch sensor inputs	Calculation: 0.55 * CSx		4.4ms (CAP1188 or CAP1128), 3.3ms (CAP1166, CAP1126, or CAP1106), 1.65ms (CAP1133)
DIG_CAL	Digital Recalibration Time	Time to complete the digital recalibration	DIG_CAL = (CSx * RS * ST) + OH		168ms (CAP1188 or CAP1128) 126ms (CAP1166, CAP1126, or CAP1106), 63ms (CAP1133)
T _{OD_CAL}	On Demand Recalibration Time	Time to complete on demand recalibra- tion (see Note 1)	T _{OD_CAL} = DIG_CAL + ANA_CAL		200ms (CAP1188 or CAP1128) 150ms (CAP1166, CAP1126, or CAP1106), 75ms (CAP1133)

Note 1 On demand recalibration time does not take into account the delay due to recalibration not starting until the currently active sensing cycle has completed.

NEGATIVE DELTA COUNTS RECALIBRATION

It is possible that the device loses sensitivity to a touch. This may happen as a result of a noisy environment, an accidental recalibration when the pad is touch but the delta counts do not exceed the threshold, or other environmental changes. When this occurs, the base count for a sensor input may generate negative delta count values. The NEG_DELTA_CNT[1:0] bits in the Recalibration Configuration Register 2Fh can be set to force a recalibration after a specified number (8, 16 (default), or 32 (default)) of consecutive negative delta readings.

Note: During this recalibration, the device will not respond to touches.

DELAYED RECALIBRATION

It is possible that a "stuck button" occurs when something is placed on a button which causes a touch to be detected for a long period. By setting the MAX_DUR_EN bit in the Configuration Register 20h, a recalibration can be forced when a touch is held on a button for longer than the duration specified in the MAX_DUR[3:0] bits in the Button Sensor Input Register 22h.

Note: Delayed recalibration only works when the delta count is above the active sensor input threshold. If enabled, it is invoked when a sensor pad touch is held longer than the time indicated by the MAX_DUR[3:0] setting.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

APPENDIX A: DATA SHEET REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Level and Date	Section/Figure/Entry	Correction
REV A	REV A replaces SMSC version Rev. 1.	1 (11-06-12)
Rev. 1.1 (11-06-12)	Added Microchip logo; modified compa	any disclaimer.
Rev. 1.1 (05-09-11)	Sensing Cycle Timing Parameters on page 2 and Proximity Sensing Cycle Timing Parameters on page 4	Added overhead (OH). As a consequence recalibration cycle timing default for CAP1188 and CAP1128 changed from 5.24s to 5.52ms (updated in Table 6, "Recalibration Timing Parameters").
	Table 7, "On Demand Recalibration Timing Parameters"	Added overhead (OH).
Rev. 1.0 (02-03-11)	Formal document release	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

A more complete list of registered trademarks and common law trademarks owned by Standard Microsystems Corporation ("SMSC") is available at: www.smsc.com. The absence of a trademark (name, logo, etc.) from the list does not constitute a waiver of any intellectual property rights that SMSC has established in any of its trademarks.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 9781620779705

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support
Web Address:

www.microchip.com

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

Fax: 91-80-3090-4123 India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 **Thailand - Bangkok**

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13