- 1. Descripció del curs
- 2. Objectius
- 3. Mètode docent i material d'estudi
- 4. Recomanacions per a l'estudi
- 5. Avaluació
- 6. Pràctiques de laboratori
- 7. Equip docent
- 8. Grups: horaris, professors i aules
- 9. Planificació docent
- 10. Bibliografia i altres recursos

1. Descripció del curs

El curs de *Mecànica* del Grau en Enginyeria en Tecnologies Industrials de l'ETSEIB se centra en l'estudi del moviment general a l'espai del sòlid rígid i de sistemes formats per sòlids rígids, per bé que també inclou la consideració de les partícules materials. Consta de dos blocs fonamentals: cinemàtica i dinàmica vectorial. En el primer, es presenta la descripció precisa del moviment dels sòlids rígids a l'espai. En el segon, s'estudia l'aplicació dels Teoremes Vectorials de la dinàmica newtoniana a sistemes de sòlids rígids.

2. Objectius

Objectiu general: Aprofundir en l'estudi de la Mecànica amb l'enfocament i rigor necessaris per a la seva aplicació en l'àmbit de l'Enginyeria.

Objectius específics:

- Descriure amb precisió el moviment general dels sòlids rígids a l'espai.
- Aplicar amb rigor les lleis i teoremes que regeixen la dinàmica dels sistemes de sòlids rígids.
- Aprendre a formular hipòtesis de simplificació lícites per poder abordar l'estudi de sistemes mecànics.
- Interpretar els resultats i avaluar-ne la seva versemblança.

3. Mètode docent i material d'estudi

L'assignatura té una càrrega docent de 6 ECTS repartits entre *Teoria, Problemes, Pràctiques de Laboratori* i estudi autònom.

Hi ha 4 hores setmanals previstes (2 blocs de 2 hores seguides). Els conceptes teòrics clau de la setmana es presentaran bàsicament en el primer bloc, tot i que pot ser que ocasionalment alguns es presentin en el segon. En ambdós blocs es treballaran qüestions i problemes d'aplicació.

Les sessions de laboratori permeten enfrontar-se amb la realitat de la mecànica, i posen de manifest que la intuïció sol ser molt enganyosa en aquest terreny i que convé substituir-la per la capacitat de raonament ràpid basat en l'aplicació dels conceptes. Tenen una durada d'una hora o una hora i mitja, i es desenvolupen en grups de 15 persones. Al final de cada sessió s'entrega un breu qüestionari que cal resoldre *in situ* i entregar.

Al *Campus Digital Atenea* hi ha reculls dels dibuixos de les qüestions i dels sistemes mecànics que s'analitzen a les classes, així com els guions per a les sessions de laboratori.

4. Recomanacions per a l'estudi

A més de les 4 hores setmanals descrites a l'apartat anterior, és necessari que l'alumnat dediqui més hores per reforçar la comprensió i aprenentatge de la matèria. Aquesta assignatura no és una assignatura de procediments sinó de conceptes. Per aquest fet, cal defugir de l'aplicació sistemàtica i a cegues de les equacions i teoremes.

No es tracta de treballar per sobre gran quantitat de problemes i qüestions, sinó d'aprofundir i entendre completament tot allò que es fa a classe més un nombre semblant de problemes i qüestions addicionals (dels llibres de l'assignatura o d'exàmens de cursos anteriors).

Per avaluar el vostre grau de coneixement de cada tema, hi ha **qüestionaris d'autoavaluació a Atenea** que es generen automàticament a petició de l'alumnat. Se'n pot fer un nombre il·limitat, i no tenen cap repercussió en la nota final de l'assignatura.

5. Avaluació

Totes les proves estan previstes com a proves presencials.

Tasques puntuals (es fan a classe al llarg del quadrimestre; nota **TP**)
Aquesta nota es té en compte només si s'ha fet un 80% de les tasques.

Examen Parcial (8 d'abril de 2025 a les 8:00, nota EP)
TEST (*) amb güestions multiresposta sobre cinemàtica.

Examen final (16 de juny de 2025 a les 9:00, nota EF = 0,5PB + 0,5PG)

PROBLEMES BREUS (nota PB) i PROBLEMA GLOBAL (nota PG) relatius a la totalitat del programa.

Pràctiques de laboratori (al llarg del quadrimestre)

Els questionaris realitzats al final de cada pràctica es tindran en compte en la nota TP.

Nota Final = suprem { 0,3 EP + 0,7 EF; EF; 0,15 TP + 0,25 EP + 0,6 EF; 0,15 TP + 0,85 EF }

Examen de Reavaluació (juliol de 2025, nota ER)

TEST (*) amb questions multiresposta relatives a la totalitat del programa.

Nota reavaluació = suprem { 0,3 EP + 0,7 ER; ER; 0,15 TP + 0,25 EP + 0,6 ER; 0,15 TP + 0,85 ER }

- (*) En la qualificació dels TEST parcial i de reavaluació en modalitat multiresposta:
 - Cada resposta CORRECTA hi aporta el mateix valor.
 - Cada resposta INCORRECTA la disminueix en un valor igual a 1/4 del d'una resposta correcta.

L'equip docent es reserva el dret d'introduir modificacions a la normativa de les proves i l'avaluació.

Normes de realització dels exàmens:

- Quant a material escrit, es pot disposar del formulari oficial publicat a *Atenea* (sense informació afegida).
- Els TEST consten de qüestions amb 5 respostes entre les quals cal escollir l'única correcta. Les respostes incorrectes resten una quarta part del que sumen les respostes correctes.

Recuperació d'exàmens:

Si algú no pot realitzar un examen en la data prevista, cal que enviï un correu a la sotsdirectora de grau (penya.sd.etseib@upc.edu) exposant les raons i adjuntant els justificants pertinents. L'examen només es podrà recuperar si des de la sots direcció se'ns informa oportunament.

Procediment de revisió dels exàmens:

- La revisió dels exàmens s'efectuarà presencialment, no es podrà delegar a una altra persona i tindrà una durada limitada a 15 minuts amb un únic professor.
- En cas de no poder assistir a la revisió dels exàmens per motius de força major, cal que es notifiqui abans de la revisió per correu electrònic a la coordinadora de l'assignatura. El professorat farà la revisió i en notificarà el resultat (també per correu electrònic).
- En cap cas es discutiran els criteris de correcció.

6. Pràctiques de Laboratori

- L1 Derivació temporal de vectors i composició de moviments
- L2 **Cinemàtica a l'espai de sistemes multisòlid:** Anàlisi geomètrica de la distribució de velocitats en sòlids rígids i sistemes multisòlid.
- L3 **Cinemàtica plana del sòlid rígid:** El rodolament perfecte. Propulsió d'un vehicle per mitjà d'un fil que actua sobre un mecanisme: cas de la bicicleta i altres vehicles.
- L4 Caracterització del torsor d'enllaç: Caracterització immediata i analítica, aplicació a un conjunt de casos. El problema de la indeterminació. Anàlisi de diverses realitzacions tècniques dels enllaços: coixinets de fricció, coixinets de rodolament, ròtules esfèriques, etc.
- Cinemàtica de vehicles amb rodes omnidireccionals: Introducció a la cinemàtica de vehicles convencionals. Concepte de roda omnidireccional. El vehicle VAKOMVOLS, el robot TFGPS, l'SPHERIK 3x3 i la cadira de rodes TRIESFÈRICA. Programació del robot TFGPS.
- L6 **Identificació de paràmetres dinàmics:** Oscil·lacions d'un sistema mecànic. Determinació de paràmetres dinàmics mitjançant diversos mètodes.

Les pràctiques es realitzaran al **Laboratori Docent de Mecànica** (Pavelló D, a la planta 0).

7. Equip docent

Ana Barjau Condomines [Coordinadora] Professora titular ana.barjau@upc.edu Pavelló D, planta 0 (Lab. de Mecànica)

Daniel Clos Costa Professor col.laborador daniel.clos@upc.edu Edifici H, planta 4 (CREB)

Míriam Febrer Nafria Professora lectora miriam.febrer@upc.edu Edifici H, planta 4 (CREB)

Lluís Ros Giralt Professor associat a temps parcial ros@iri.upc.edu Pavelló E, planta 1

Javier Sistiaga Vidal-Ribas
Professor associat a temps parcial
fco.javier.sistiaga@upc.edu
Pavelló D, planta 0 (Lab. de Mecànica)

Álvaro Guarner Escribano
Professor associat a temps parcial
alvaro.guarner.escribano@upc.edu
Pavelló D, planta 0 (Lab. de Mecànica)

Amadeu Segura
Professor associat a temps parcial
amadeu.segura@upc.edu
Pavelló D, planta 0 (Lab. de Mecànica)

8. Grups: horaris, professors i aules

Grup	dl.	dt.	dc.	dj.	dv.	Horari	Aula	Professors
10		•		•		10:00 -12:00	B.2	Ana Barjau (T) Lluís Ros (P)
20			•		•	8:00 - 10:00	0.2	Daniel Clos (T) Javier Sistiaga (P)
30		•		•		8:00-10:00	0.3	Ana Barjau (T) Álvaro Guarner (P)
40		•			•	16:00-18:00	B.2	Daniel Clos (T) Lluís Ros (P)

Professorat de les Pràctiques de Laboratori: Míriam Febrer, Amadeu Segura

9. Planificació docent

Sessió	Contingut	G10	G20	G30	G40						
1T	Referència (espai i temps). Cinemàtica del punt. Derivació geomètrica de vectors. Comps. Intrínseques. Diagrama de moviments relatius (DMR) i graus de llibertat (GL).	11 febrer – 14 febrer									
1P	Problemes de derivació geomètrica i de comps. Intrínseques.										
2T	Bases vectorials. Derivació analítica de vectors.	17 febrer – 21 febrer									
2P	Problemes de derivació analítica.										
3Т	Orientació i velocitat angular a l'espai: Rotacions d'Euler	- 24 febrer – 28 febrer									
3P	Exemples d'angles d'Euler i problemes de derivació.										
4T	Composició de moviments.	3 març – 7 març									
4P	Qüestions de composició de moviments.	5 mary 7 mary									
5T	Cinemàtica del sòlid rígid: Moviment general a l'espai. Eix Instantani de Rotació i Lliscament.	10 març – 14 març									
5P	Qüestions de cinemàtica del sòlid rígid 3D	10 mary – 14 mary									
6T	Cinemàtica del sòlid rígid: Moviment pla. Centre Instantani de Rotació.	17 març – 21 març									
6P	Cinemàtica directriu de vehicles.										
7T	Dinàmica de la partícula en referència Galileana. Classificació d'nteraccions entre partícules, partícula-superfície.	24 20									
7P	Condicions límit enllaç partícula-superfície. Molles i amortidors lineals.	24 març – 28 març									
8T	Problemes de dinàmica de partícula. Dinàmica en Referència no Galileana i forces d'inèrcia.	31 març – 4 abril									
8P	Qüestions de cinemàtica i de dinàmica de partícula.	,									
EXAMEN PARCIAL: 8 abril, 8:00 – 9:15											
9T	Caracterització de forces d'enllaç: Torsor d'enllaç directe.	21 abril – 25 abril									
9P	Geometria de masses: tensor d'inèrcia.	ZI duiii — ZJ duiii									
10T	Teorema de la quantitat de moviment i Teorema del moment cinètic.	28 abril – 2 maig									
10P	Teoremes Vectorials: DGI, exemples 3D.	25 april 2 maig									
11T	Descomposició baricèntrica. Qüestions: càlcul del moment cinètic.	- 5 maig – 9 maig									
11P	Teoremes Vectorials: exemples 2D.										
12T	Enllaç indirecte. Sòlids Auxiliars d'Enllaç (SAEs).	12 maria 16 maria									
12P	Teoremes Vectorials: exemples 3D.	12 maig – 16 maig									
13T	Dinàmica de sòlids en rotació: importància de les direccions principals; inestabilitat.	19 maig –23 maig									
13P	Teoremes Vectorials: exemples 3D.										
14T	Teoremes Vectorials: conservacions.	- 26 maig – 30 maig									
14P	Teoremes Vectorials: exemples.										

10. Bibliografia i altres recursos

Lloc web amb tot el contingut teòric, exemples i exercicis resolts: mec.etseib.upc.edu.

Bibliografia bàsica disponible en accés obert al web agullobatlle.cat, a la secció activitat docent:

- Agulló i Batlle, Joaquim (2002) Mecànica de la partícula i del sòlid rígid. 3a ed., OK Punt, ISBN 8492085061
- Agulló i Batlle, Joaquim (2005) Mecànica: resolucions de qüestions i problemes, vol. 1, OK Punt, ISBN 8492085088

Bibliografia bàsica disponible en accés obert per a la comunitat UPC:

- Batlle, J. A., Barjau, A. (2020) Rigid Body Kinematics. 1st ed., Cambridge University Press, ISBN 1108479073
- Batlle, J. A., Barjau, A. (2022) Rigid Body Dynamics. 1st ed., Cambridge University Press, ISBN 1108842135

Altres recursos, disponibles a Atenea organitzats en unitats docents setmanals:

- Formulari oficial de l'assignatura.
- Material per a les sessions de Teoria i Problemes a l'aula (reculls de qüestions i problemes).
- <u>Guions</u> per a les pràctiques de Laboratori.
- Qüestionaris d'autoavaluació, relacionats amb el temari de cada unitat docent setmanal.
- Altres exercicis recomanats, relacionats amb el temari de cada unitat docent setmanal.
- Relació entre el temari de cada unitat docent setmanal i el contingut del web mec.etseib.upc.edu.
- Mostra significativa d'enunciats d'exàmens amb solucions dels test i resolució dels problemes.