Defending Byzantine Attacks in Ensemble Federated Learning: A Reputation-based Phishing Approach

Beibei Li, Member, IEEE, Peiran Wang, Student Member, IEEE, Qinglei Kong, Member, IEEE, Yuan Zhang, Member, IEEE, and Rongxing Lu, Fellow, IEEE

Abstract—Emerging as a promising distributed learning paradigm, federated learning (FL) has been widely adopted in many fields. Nonetheless, a big challenge for FL in realworld implementation is Byzantine attacks, where compromised clients can mislead or poison the training model by falsifying or manipulating the local model parameters. To solve this problem, in this paper, we present a reputation-based Byzantine robust-FL scheme (called FLPhish) for defending Byzantine attacks under the Ensemble Federated Learning architecture (called EFL). Specifically, we first develop a novel ensemble FL architecture, EFL, which allows FL compatible with different deep learning models in different clients. Second, we craft a phishing algorithm for the EFL architecture to identify possible Byzantine behaviors. Third, a Bayesian inference based reputation mechanism is devised to measure each client's level of confidence and to further identify Byzantine clients. Last, we strictly analyze how the FLPhish scheme defend against backdoor attacks. Extensive experiments under different settings demonstrate that the proposed FLPhish achieves great efficacy in defending Byzantine attacks in EFL. FLPhish is tested with different fractions of Byzantine clients and different degrees of distribution imbalance. [1]

Index Terms—Federated learning, ensemble learning, Bayesian inference-based reputation, phishing.

I. INTRODUCTION

ANY elements of our daily lives and society have benefited from deep learning tasks in natural language processing, computer vision, and anomaly detection. To learn complex rules, such activities necessitate a large dataset. In most cases, these huge datasets are acquired by the application developers from users, such as the shopping app users' purchase record data, patients' clinical data and etc. Nonetheless, in recent years, there has been an explosion in social concerns about personal privacy, making it difficult to get data directly from users anymore. Under these circumstances,

This paper is an extended version of the paper titled 'FLPhish: Reputation-Based Phishing Byzantine Defense in Ensemble Federated Learning', which was published in IEEE ISCC 2021, and awarded 'Best Paper'.

B. Li and P. Wang are with the School of Cyber Science and Engineering, Sichuan Universsity, Chengdu, Sichuan, China 610065. Email: libeibei@scu.edu.cn; wangpeiran@stu.scu.edu.cn.

Q. Kong is with the Future Network of Intelligence Institute, The Chinese University of Hong Kong, Shenzhen, China 518172, and also with The University of Science and Technology of China, Hefei, China 230052. Email: kql8904@163.com.

Y. Zhang is with the School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China 610054. Email: zy_loye@126.com.

R. Lu is with the Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada E3B 5A3. Email: rlu1@unb.ca.

TABLE I SUMMARY OF NOTATIONS

Term	Description
\overline{s}	central server in FL
c_i	the <i>i</i> th client in FL, $i = 1, 2, 3,, u$
d_i	the local dataset preserved by the <i>i</i> th client
C	the ensemble of all the clients
u	the number of clients
D_t	the unlabeled dataset chosen by s in each procedure
D	the unlabeled dataset preserved by s
n	the number of samples in D_t
B_t	the labeled dataset ('bait') chosen by s in each
	procedure
B	the labeled dataset preserved by s
m	the number of samples in B_t
a_i^t	the accuracy of predictions of B_t made by c_i in t th
	procedure
q_i	the label of c_i to judge it is a malicious client or not
r_q	the threhold of malicious clients
$egin{array}{c} r_q \ x_l^t \end{array}$	the l th data point in D_t
b_i	the Byzantine attacker
σ	the 'trigger' in the backdoor attack
ι	the backdoor label in the backdoor attack
${f M}$	global model preserved by s
$\mathbf{m_i}$	local models trained by the <i>i</i> th client
$\mathbf{k_{i}^{t}}$	the predictions ('knowledge') made by the ith client
	in the tth procedure
$\mathbf{\hat{y}_{1}^{t}}$	the ensembled prediction of data point x_l^t
$\mathbf{\hat{y}_{i}^{i}}$	the prediction of <i>l</i> th data point made by <i>i</i> th client
$\begin{array}{c} \hat{\mathbf{y}}_{l}^{t} \\ \hat{\mathbf{y}}_{l}^{i} \\ \mathbf{K}_{t} \end{array}$	the aggregated labels (predictions) of the tth itera-
	tion's unlabeled dataset

each individual's data is referred to as an 'Isolated Data Island'. The existence of each 'Isolated Data Island' drives the development of privacy-preserving solutions like Federated Learning (FL) [1]–[3]. Bonawitz *et al.* built the first FL system which is operated on Google's mobile phone to train a global model based on TensorFlow¹. Its FL system could be operated on thousands of mobile phones. Moreover, a team of WeBank developed an FL scheme called FATE² for credit risk prediction. Furthermore, some former researchers have also applied FL in some industrial cyber–physical Systems [4]–[6].

FL is a distributed machine learning paradigm, which allows

¹https://federated.withgoogle.com/

²https://github.com/FederatedAI/FATE

the central server in the paradigm to produce a global model without getting each individual's private data. Instead of gathering private data from each user, the central server in FL aggregates all the model gradient updates from distributed clients to its global model. In each iteration of FL, the central server sends a model to each client. Each client updates the model using its private data and sends the model gradient update back to the central server. In the central server, all the clients' updates are aggregated to a global model gradient update, and the global model gradient update is utilized to update the global model. Thus, FL not only protects each participating individual's privacy, but also leverages the capabilities of the end users' computation and storage.

Since thousands of clients from different sources may participate in the training process, security issues also exist in the distributed FL system. On one hand, former researchers have already studied the privacy problems of FL and have proposed the corresponding schemes to enhance privacy protection in FL [7]–[9]. On the other hand, FL faces threats from the poisoning attacks launched by malicious attackers among the FL clients [10], [11]. And such attacks are referred to as Byzantine attacks in wireless communication network [12]-[15]. By poisoning the clients' datasets or directly manipulating the gradient updates, the incorrect gradient updates are sent by the malicious clients to the central server, which causes the global model to learn incorrect knowledge. As a result, this process renders the central server's global model obsolete. Furthermore, Byzantine attacks can be separated into two types according to the attack consequences. In the first type of Byzantine attacks, called denial-of-service attack (including untargeted attacks, targeted attacks, e.g), the Byzantine attackers intend to disturb the global model thus making it produce wrong predictions of the normal dataset [16]–[20]. In another type of Byzantine attacks, called backdoor attacks, the disturbed global model will make wrong predictions of the data samples which have 'backdoor' in them [21]-[25].

Former researchers have offered certain Byzantine-robust techniques to deal with malicious Byzantine clients under the FL application settings [26]–[35]. Byzantine-robust techniques try to construct a global model with high accuracy in the presence of a finite number of malicious clients. According to their different mechanisms, we divide Byzantine-robust approaches into two major types. The first (named Byzantine-Detection) is based on the development of a Byzantine-robust aggregation algorithm that distinguishes suspected clients from benign clients. The suspected clients' gradient updates are subsequently removed from the aggregation process by the server. For instance, in the DRACO scheme proposed by Chen et al., each node analyzes duplicate gradients that the parameter server uses to mitigate the effects of adversarial updates [27]. Another Byzantine-robust technique (named Byzantine-Tolerance) seeks to ensure that the aggregation process is tolerant to poisoned updates from Byzantine clients without excluding Byzantine clients like Median [29]. In Median, The FL server sorts the values of each parameter and picks the median value of each parameter as the value to be utilized in global model updates. In this study, we provide a unique reputation-based phishing method (named FLPhish) to protect against Byzantine attacks in EFL, based on the preceding research. Our contributions are four-fold:

2

- We design a new FL architecture, Ensemble Federated Learning (called EFL), which utilizes an unlabeled dataset to replace the gradient updates in typical FL. This architecture is flexible for it is compatible with different deep learning models in different clients.
- We craft a 'phishing' method based on EFL to detect Byzantine attacks. The 'phishing' method employs the labeled dataset to detect the potential Byzantine clients in the EFL system, which preserves the security of EFL.
- We present a Bayesian inference-based reputation mechanism to promote FLPhish's aggregation. The reputation mechanism gives each client a reputation to measure its confidence value and identifies the clients with low reputation values as Byzantine clients, which helps FLPhish identify the Byzantine clients with higher accuracy.

II. CONCLUSION

The conclusion goes here.

ACKNOWLEDGMENTS

This should be a simple paragraph before the References to thank those individuals and institutions who have supported your work on this article.

APPENDIX PROOF OF THE ZONKLAR EQUATIONS

Use \appendix if you have a single appendix: Do not use \section anymore after \appendix, only \section*. If you have multiple appendixes use \appendices then use \section to start each appendix. You must declare a \section before using any \subsection or using \label (\appendices by itself starts a section numbered zero.)

REFERENCES SECTION

You can use a bibliography generated by BibTeX as a .bbl file. BibTeX documentation can be easily obtained at: http://mirror.ctan.org/biblio/bibtex/contrib/doc/The IEEEtran BibTeX style support page is: http://www.michaelshell.org/tex/ieeetran/bibtex/

SIMPLE REFERENCES

You can manually copy in the resultant .bbl file and set second argument of \begin to the number of references (used to reserve space for the reference number labels box).

REFERENCES

- [1] K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. M. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan, T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, "Towards federated learning at scale: System design," in 2019 the 2nd Systems and Machine Learning Conference (SysML), Stanford, CA, USA, Mar. 31-Apr. 2 2019.
- [2] Q. Yang, Y. Liu, T. Chen, and Y. Tong, "Federated machine learning: Concept and applications," ACM Trans. Intell. Syst. Tech., vol. 10, no. 2, Jan. 2019.

- [3] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, "A survey on federated learning systems: Vision, hype and reality for data privacy and protection," *IEEE Trans. Knowl. Data Eng.*, pp. 1–1, 2021.
- [4] B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, "DeepFed: Federated deep learning for intrusion detection in industrial cyber–physical systems," *IEEE Trans. Ind. Informat.*, vol. 17, no. 8, pp. 5615–5624, Sep. 2021.
- [5] Q. Kong, F. Yin, R. Lu, B. Li, X. Wang, S. Cui, and P. Zhang, "Privacy-preserving aggregation for federated learning-based navigation in vehicular fog," *IEEE Trans. Ind. Informat.*, Apr. 2021.
- [6] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, "Efficient and privacy-enhanced federated learning for industrial artificial intelligence," *IEEE Trans. Ind. Informat.*, vol. 16, no. 10, pp. 6532–6542, 2020.
- [7] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S. Quek, and H. V. Poor, "Federated learning with differential privacy: Algorithms and performance analysis," *IEEE Trans. Inf. Forensics Security*, vol. 15, pp. 3454–3469, Apr. 2020.
- [8] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, "VerifyNet: Secure and verifiable federated learning," *IEEE Trans. Inf. Forensics Security*, vol. 15, pp. 911–926, Jul. 2020.
- [9] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, "Beyond inferring class representatives: User-level privacy leakage from federated learning," in *IEEE INFOCOM* 2019 - IEEE Conference on Computer Communications (INFOCOM), 2019, pp. 2512–2520.
- [10] C. Miao, Q. Li, L. Su, M. Huai, W. Jiang, and J. Gao, "Attack under disguise: An intelligent data poisoning attack mechanism in crowdsourcing," in *Proceedings of the 2018 World Wide Web Conference*. Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee (WWW), 2018, p. 13–22.
- [11] R. Laishram and V. V. Phoha, "Curie: A method for protecting svm classifier from poisoning attack," arXiv preprint arXiv:1606.01584, 2016.
- [12] C.-Y. Wei, P.-N. Chen, Y. S. Han, and P. K. Varshney, "Local threshold design for target localization using error correcting codes in wireless sensor networks in the presence of byzantine attacks," *IEEE Trans. Inf. Forensics Security*, vol. 12, no. 7, pp. 1571–1584, Feb. 2017.
- [13] X. Liu, T. J. Lim, and J. Huang, "Optimal byzantine attacker identification based on game theory in network coding enabled wireless ad hoc networks," *IEEE Trans. Inf. Forensics Security*, vol. 15, pp. 2570–2583, Feb. 2020.
- [14] R. Cao, T. F. Wong, T. Lv, H. Gao, and S. Yang, "Detecting byzantine attacks without clean reference," *IEEE Trans. Inf. Forensics Security*, vol. 11, no. 12, pp. 2717–2731, Jul. 2016.
- [15] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and D. Zage, "Steward: Scaling byzantine fault-tolerant replication to wide area networks," *IEEE Trans. Dependable Secure Comput.*, vol. 7, no. 1, pp. 80–93, Sep. 2010.
- [16] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, "Model poisoning attacks in federated learning," in *Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS)*, Palais des Congrès de Montréal, Montréal CANADA, Dec. 2-8 2018.
- [17] M. Fang, X. Cao, J. Jia, and N. Gong, "Local model poisoning attacks to byzantine-robust federated learning," in 29th USENIX Security Symposium (USENIX Security), Boston, MA, USA, Aug. 12-14 2020.
- [18] B. Biggio, B. Nelson, and P. Laskov, "Poisoning attacks against support vector machines," in *Proceedings of the 29th International Conference* on Machine Learning (ICML), New York, NY, USA, Jun. 26-Jul. 1 2012.
- [19] C. Yang, Q. Wu, H. Li, and Y. Chen, "Generative poisoning attack method against neural networks," arXiv preprint arXiv:1703.01340, 2017.
- [20] M. Sun, J. Tang, H. Li, B. Li, C. Xiao, Y. Chen, and D. Song, "Data poisoning attack against unsupervised node embedding methods," arXiv preprint arXiv:1810.12881, 2018.
- [21] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein, U. Saini, C. Sutton, J. D. Tygar, and K. Xia, "Exploiting machine learning to subvert your spam filter," in *Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats (LEET)*, San Francisco, California, USA, Apr. 14-15 2008.
- [22] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, "How to backdoor federated learning," in *Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS)*, Virtual, Aug. 26-28 2020.
- [23] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, "Can you really backdoor federated learning?" arXiv preprint arXiv:1911.07963, Nov 2019.
- [24] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J.-y. Sohn, K. Lee, and D. Papailiopoulos, "Attack of the tails: Yes, you really

- can backdoor federated learning," in *Advances in Neural Information Processing Systems (NeurIPS)*. Virtual: Curran Associates, Inc., Dec. 6-12 2020.
- [25] C. Xie, K. Huang, P.-Y. Chen, and B. Li, "Dba: Distributed backdoor attacks against federated learning," in 7th International Conference on Learning Representations (ICLR), New Orleans, USA, May 6-9 2019.
- [26] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, "Machine learning with adversaries: Byzantine tolerant gradient descent," in *Advances in Neural Information Processing Systems (NeurIPS)*, Long Beach, CA, USA, Dec. 4-9 2017.
- [27] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, "DRACO: Byzantine-resilient distributed training via redundant gradients," in *Proceedings of the 35th International Conference on Machine Learning (ICML)*, Stockholmsmässan, Stockholm SWEDEN, Jul. 10-15 2018.
- [28] C. Xie, S. Koyejo, and I. Gupta, "Zeno: Distributed stochastic gradient descent with suspicion-based fault-tolerance," in *Proceedings of the 36th International Conference on Machine Learning (ICML)*, Long Beach, CA, USA, Jun. 9-15 2019.
- [29] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, "Byzantine-robust distributed learning: Towards optimal statistical rates," in *Proceedings of the 35th International Conference on Machine Learning (ICML)*, Stockholmsmässan, Stockholm SWEDEN, Jul. 10-15 2018.
- [30] X. Cao, M. Fang, J. Liu, and N. Gong, "FLTrust: Byzantine-robust federated learning via trust bootstrapping," in 2021 Network and Distributed System Security Symposium (NDSS), Feb. 21-25 2021.
- [31] J. So, B. Güler, and A. S. Avestimehr, "Byzantine-resilient secure federated learning," *IEEE J. Sel. Areas Commun*, pp. 1–1, Jul. 2020.
- [32] A. Ghosh, J. Hong, D. Yin, and K. Ramchandran, "Robust federated learning in a heterogeneous environment," arXiv preprint arXiv:1906.06629, Jun. 2019.
- [33] F. Sattler, K.-R. Müller, T. Wiegand, and W. Samek, "On the byzantine robustness of clustered federated learning," in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Catalonia, Spain, May. 4-8 2020, pp. 8861–8865.
- [34] A. Portnoy and D. Hendler, "Towards realistic byzantine-robust federated learning," arXiv preprint arXiv:2004.04986, Apr. 2020.
- [35] L. Muñoz-González, K. T. Co, and E. C. Lupu, "Byzantine-robust federated machine learning through adaptive model averaging," arXiv preprint arXiv:1909.05125, Sep. 2019.

REFERENCES

- [1] Mathematics Into Type. American Mathematical Society. [Online]. Available: https://www.ams.org/arc/styleguide/mit-2.pdf
- [2] T. W. Chaundy, P. R. Barrett and C. Batey, *The Printing of Mathematics*. London, U.K., Oxford Univ. Press, 1954.
- [3] F. Mittelbach and M. Goossens, The MEXCompanion, 2nd ed. Boston, MA, USA: Pearson, 2004.
- [4] G. Grätzer, More Math Into LaTeX, New York, NY, USA: Springer, 2007.
- [5] M. Letourneau and J. W. Sharp, AMS-StyleGuide-online.pdf, American Mathematical Society, Providence, RI, USA, [Online]. Available: http://www.ams.org/arc/styleguide/index.html
- [6] H. Sira-Ramirez, "On the sliding mode control of nonlinear systems," Syst. Control Lett., vol. 19, pp. 303–312, 1992.
- [7] A. Levant, "Exact differentiation of signals with unbounded higher derivatives," in *Proc. 45th IEEE Conf. Decis. Control*, San Diego, CA, USA, 2006, pp. 5585–5590. DOI: 10.1109/CDC.2006.377165.
- [8] M. Fliess, C. Join, and H. Sira-Ramirez, "Non-linear estimation is easy," Int. J. Model., Ident. Control, vol. 4, no. 1, pp. 12–27, 2008.
- [9] R. Ortega, A. Astolfi, G. Bastin, and H. Rodriguez, "Stabilization of foodchain systems using a port-controlled Hamiltonian description," in *Proc. Amer. Control Conf.*, Chicago, IL, USA, 2000, pp. 2245–2249.

BIOGRAPHY SECTION

If you have an EPS/PDF photo (graphicx package needed), extra braces are needed around the contents of the optional argument to biography to prevent the LaTeX parser from getting confused when it sees the complicated \includegraphics command within an optional argument. (You can create your own custom macro containing the \includegraphics command to make things simpler here.)

If you include a photo:

Michael Shell Use \begin{IEEEbiography} and then for the 1st argument use \includegraphics to declare and link the author photo. Use the author name as the 3rd argument followed by the biography text.

If you will not include a photo:

John Doe Use $\left\{ \text{IEEEbiographynophoto} \right\}$ and the author name as the argument followed by the biography text.