

CalGIS LocationCon 2017
Oakland, California · May 22 - 24, 2017

Download GitHub Repo:

https://github.com/berkeley-gif/calgis2017

Workshop Goals

- Learn about Cal-Adapt
- Get an overview of climate data in Cal-Adapt API
- Why Jupyter Notebook?
- Hands-on learning:
 - Search for resources (datasets) on Cal-Adapt API
 - Get data for a location
 - Generate summary statistics from data using Pandas
 - Export data into different formats

Download GitHub Repo:

https://github.com/berkeley-gif/calgis2017

About Us

Shruti Mukhtyar Web Developer

Nancy Thomas Executive Director

Maggi Kelly Faculty Director

Brian Galey Senior Web Developer

Eric Lehmer Web Developer

Introduction to Cal-Adapt

Cal-Adapt

Exploring California's Climate Change Research

Developed by University of California's Geospatial Innovation Facility

- Nancy Thomas (Executive Director)
- Maggi Kelly (Faculty Advisor)
- Brian Galey (Senior Web Developer)
- Shruti Mukhtyar (Web Developer)
- Eric Lehmer (Web Developer)

Funding and oversight by California Energy Commission

- Susan Wilhelm
- Guido Franco
- Advisory Committee

California Climate Change Assessments

First Climate Change Assessment

- Documented the severity of potential impacts
- Helped support passage of AB 32

Third Climate Change Assessment

- Regional and local vulnerability
- Barriers to adaptation
- Resilience options

Fourth assessment due

2005

2006

2009

2012

2016

2018

Executive

Order

#S-3-05

Second Climate Change Assessment

• Adaptation is an essential complement to mitigation

2009 California Climate Adaptation Strategy

Development of Cal-Adapt

Fourth Climate Change Assessment

- Ongoing
- Identify key common scenarios for broad research portfolio
- Enable integration of research across sectors
- Apply best available science to planning

What is Cal-Adapt?

- Launched June 2011
- Resource created by State of California under contract with UC Berkeley's Geospatial Innovation Facility to convey local climate risks based on peer-reviewed science
- Users
 - Local planners and technicians
 - obtain meaningful information and data to help guide locally relevant climate action plans and adaptation strategies
 - General public
 - learn about climate change data relevant to their area
 - Scientific community
 - access primary data relevant to an area of interest

Tools & Visualizations on Cal-Adapt

Precipitation: Decadal Averages

Cal-Adapt 2.0

beta.cal-adapt.org

How Does Cal-Adapt Support the 4th Assessment?

Serve Data

- Climate, hydrological, sea-level rise, snowpack, wildfire risk
- Common scenarios basis for 4th assessment research portfolio
- Enables cross-sector integration of results

Build Tools & Visualizations

- Focus on the energy sector
- Support decision-making
- Communicate results of 4th assessment research

Web API

- Enable access to common scenarios for other organizations
- Build domain specific planning tools using the Cal-Adapt API

Provide Resources & Outreach

- Interface with resilience planning
- Webinars and training sessions
- Focus on energy sector

Cal-Adapt 2.0: Public API

- Open source architecture powered by Django, Django REST framework and Django-Spillway, an open source library developed at the GIF
- Dynamic temporal aggregation of time series data
- Spatial aggregation by counties, climate regions, watersheds, census tracts, legislative districts, etc.
- Allows other organizations to access climate data and build domain specific visualization and planning tools

Cal-Adapt 2.0: Tools & Visualizations

- New tools with enhanced usability
- Built using modern data visualization libraries (e.g. D3) and the Cal-Adapt API
- Goal of enhancements
 - Use latest peer-reviewed data
 - Add support for interpreting data and visualizations
 - Increase responsiveness to utilities resilience needs

New

- Annual Averages (Tmax, Tmin, Precipitation)
- Extreme Heat Days
- Sea Level Rise (Radke et al. 2016)

Under development

- Snowpack
- Hourly Sea Level Rise

Upcoming

Wildfire Risk

Future

- Probabilistic forecasting at seasonal and decadal scales
- Sea Level Rise (CoSMoS)
- Update existing tools with new data

Quick Overview of Climate Data on Cal-Adapt and the API

Underlying Data

- 32 global climate models from institutions all around the world
- Daily data
- Historical run from 1950–2005
- 2 future GHG emissions scenarios from 2006–2100 (or 2099)
 - Middle: "RCP 4.5"
 - High: "RCP 8.5"
- Atmospheric component (temp, precip) and a land surface component (snowpack, soil moisture, evapotranspiration, etc.)
- Problems with global models:
 - Errors (biases) -> bias correction
 - Coarse resolution -> downscaling
 - Land surface models in GCMs vary in quality

Cal-Adapt

Downscaled Climate Projections for CA

Scripps Institution of Oceanography, UC San Diego

- LOCA statistical downscaling technique (<u>loca.ucsd.edu</u>)
- 10 models which are good performers in California
 - Recommended by CA state agencies
 - ACCESS1-0, CCSM4, CESM1-BGC, CMCC-CMS, CNRM-CM5, CanESM2, GFDL-CM3, HadGEM2-CC, HadGEM2-ES, MIROC5
- If still too many, analysis (over 2015-2050) suggests 4 models to use:
 - HadGEM2-ES "warm/dry" model
 - CNRM-CM5 "cool/wet" model
 - CanESM2 "average" model
 - MIROC5 "Complement/Covers range of outputs" model
- Other downscaled projections:
 - Dynamic downscaling (Alex Hall, UCLA)
 - NEX-DCP30 (NASA Earth Exchange)

Data on Cal-Adapt API

- Maximum Temperature, Minimum Temperature, Precipitation
 - (1) LOCA downscaled CMIP5 data from Scripps Institution of Oceanography (<u>Pierce et al. 2014</u>), 10 GCM, 3 scenarios; (2) Gridded observed historical data for 1950–2013 (<u>Livneh et al. 2015</u>)
 - Daily and Annual averages
 - 1/16th degree (~ 6km) spatial resolution
- VIC (land surface model) derived variables Snow Water Equivalent
 - (1) Forced by LOCA, 10 GCM, 3 scenarios; (2) Forced by observed historical
 - Monthly averages
 - 1/16th degree (~ 6km) spatial resolution
- Inundation depths for SF Bay, Sacramento-San Joaquin River Delta and California coast for different SLR projections :
 - No rise, 0.5 m, 1.0 m, 1.41 m
 - Radke et al. 2016, UC Berkeley
- Wildfire Risk (LeRoy Westerling, UC Merced)

Why Jupyter?

Jupyter Notebook

- Web based, open source
- Jupyter notebooks are a series of "cells" containing executable code or explanatory text
 - Text is written using Markup, a popular HTML language
 - LaTeX support for mathematical equations
- Support for Python, R, Julia and other programming languages
- "Literate programming" emphasizes a prose first approach where explanation with human-friendly text is punctuated with code blocks
- Great for demonstration, research, and teaching
- Easy to share
- Python
 - High-level, general-purpose, interpreted
 - Rich ecosystem for data analysis and scientific computing
 - · NumPy, Pandas, SciPy, matplotlib,

Exercises

Hands-on Exercises

- Download repo from GitHub
 - Use git or download zip file and extract it
- For Anaconda users
 - Open Anaconda Navigator
 - Launch Jupyter Notebook app
 - Navigate to calgis2017 folder on your computer
 - Open index.ipynb
- For JupyterHub users
 - Open http://35.185.246.188 in a web browser
 - Login with any username and pwd (remember these if you want to login again)
 - Upload all .ipynb files one at a time
 - Open index.pynb

https://github.com/berkeley-gif/calgis2017

Questions? We welcome your feedback.

support@cal-adapt.org

@cal_adapt

Shruti Mukhtyar mukhtyar@berkeley.edu Brian Galey

bkgaley@berkeley.edu

