Image Feature

IC614: Computer Vision

- 그레이스케일(grayscale) 영상
 - 색상 정보가 없이 오직 밝기 정보만으로 구성된 영상
- 트루컬러(truecolor) 영상
 - 색상 정보를 가지고 있어서 다양한 색상을 표현할 수 있는 영상
 - 256³ = 16,777,216 색상 표현 가능
- 픽셀(pixel)
 - 영상의 기본 단위, picture element, 畵素

- 그레이스케일 값의 범위
 - 그레이스케일 영상에서 하나의 픽셀은 0부터 255 사이의 정수 값을 가짐.
 - unsigned char 로 표현 (1 byte)
 - 0: 가장 어두운 밝기(검정색)
 - 255 : 가장 밝은 밝기(흰색)

• 영상에서 사용되는 좌표계

$$\mathbf{A} = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,M-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,M-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N-1,0} & a_{N-1,1} & \cdots & a_{N-1,M-1} \end{bmatrix}$$

• 그레이스케일 영상에서 픽셀 값 분포의 예

187	7	187	187	194	197	173	77	25	19	19
190	0	187	190	191	158	37	15	14	20	20
187	7	182	180	127	32	16	13	16	14	12
184	4	186	172	100	20	13	15	18	13	18
180	6	190	187	127	18	14	15	14	12	10
189	9	192	192	148	16	15	11	10	10	9
192	2	195	181	37	13	10	10	10	10	10
189	9	194	54	14	11	10	10	10	9	8
189	9	194	19	16	11	11	10	10	9	9
192	2	88	12	11	11	10	10	10	9	9

• 동적 2차원 배열의 생성 코드의 동작

Features

- Image features (representation)
 - A feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties.
- Global feature vs Local feature
 - Global: A particular property of image involving all pixels
 e.g., CNN, Bag-of-Visual-Words, etc. (usually semantic feature)
 - Local: Distinctively represent the image based on some salient regions e.g., SIFT, ORB, etc. (usually geometric feature)

Basic features

Edge, Corner, Blob

Edge

Goal: Identify visual changes (discontinuities) in an image.

- 에지(edge)는 영상의 두드러진 경계 영역으로 영상 내 물체에 대한 모양, 크기, 텍스처 등의 많은 정보를 가지고 있음
- 에지는 영상 내 물체와 배경 간의 밝기 값 차이가 갑자기 변하는 지점으로, 이러한 지점을 검출하기 위해서 수학적으로 미분 연산자를 이용함
- 대부분의 에지 검출기들은 1차 미분, 2차 미분의 연산을 통해서 에지를 검출

Source: D. Low⁵e

마스크를 이용한 경계선 검출

- 함수의 1차 미분(1st derivative)
 - 함수 *f*(*x*, *y*)의 *x* 축 방향으로의 미분

$$\frac{\partial}{\partial x}f, \quad \frac{\partial f}{\partial x}, \quad f_x$$

공간적 필터링

• 3×3 크기의 마스크를 이용한 필터링 방법

공간적 필터링

- 최외곽 픽셀 처리 방법
 - 최외곽 픽셀은 마스크 연산에서 제외
 - 최외곽 바깥에 가상의 픽셀이 있다고 가정(0또는 주변과 같은 색상 픽셀)

[0][0]	[0][1]	• • •	[0][w-2]	[0][w-1]
[1][0]	[1][1]	• • •	[1][w-2]	[1][w-1]
•	•	•••	•	•
[h-2][0]	[h-2][1]	• • •	[h-2] [w-2]	[h-2] [w-1]
[h-1][0]	[h-1][1]	• • •	[h-1] [w-2]	[h-1] [w-1]

0	0	0	0	
0	[0][0]	[0][1]	[0][2]	
0	[1][0]	[1][1]	[1][2]	• • •
0	[2][0]	[2][1]	[2][2]	
		•		

극한

- $\lim_{x\to a} f(x)$: x 가 a 와 무진장 가까운 값일 때, f(x) 는 뭐랑 무진장 가깝냐? (극한값)
- 다가간다든가, 움직이는 것 아님!
- $\lim_{x \to a} f(x) = L$ 을 만족하는 것을 그래프로 봅시다 (국한 값이 없는 상황은 무엇일 Π 요?)
- . $\lim_{x \to a} f(x) = L$: L 주변 갭으로 어떤 양수 ε 을 잡더라도 요 갭 안으로 싹다

보내버릴 수 있는 a 주변 갭 δ 가 존재하면 a 에서의 극한 값은 L 이다!

• 이것이 바로 $\varepsilon - \delta$ 논법!

도함수

- 그냥 x 에 대해서 미분 값을 구하자! 그것이 도함수 $=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
- f'(x) 와 같이 표기하기도 하고 $\dfrac{dy}{dx}$ 로 표기하기도 한다. (하지만, 분수는 아님!)
- 특정 위치 x=1 에서의 순간 기울기 (미분 값)은 f'(1) 혹은 $\dfrac{dy}{dx}$ 로 표기
- $y = x^2$ 의 도함수를 구해봅시다.

Gradient & Edge Detectors

1. Discrete derivatives

$$\sqrt{I_x(x,y)^2 + I_y(x,y)^2} \approx ||\mathbf{grad} \ I(x,y)||_2$$

Kernel:
$$\begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} / 2 \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} / 2$$

$$I_{y}(x,y) = \frac{I(x,y+\varepsilon) - I(x,y-\varepsilon)}{2\varepsilon} = \frac{I(x,y+1) - I(x,y-1)}{2\varepsilon}$$

2. Sobel operator

$$|S_x(x,y)| + |S_y(x,y)| \approx ||\mathbf{grad} \ I(x,y)||_1$$

Kernel: $\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

3. Canny edge

Input RGB/GRAY

Discrete derivatives

Sobel

Edge detection

- Procedure
 - 1. Filter image with x, y derivatives of Gaussian with σ
 - 2. Find magnitude and orientation of gradient
 - 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
 - 4. 'Hysteresis' Thresholding:
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Corner

- We might recognize the point by looking through a small window.
- We want a window shift in *any direction* to give *a large change* in intensity.

"Flat" region:
no change in all
directions

"Edge": no change along the edge direction

"Corner": significant change in all directions

Corner Detection by Auto-correlation

• Change in appearance of window w(x, y) for shift [u, v]:

I(x, y)

E(u, v)

Blob

- Blob
 - Regions in the image that are either brighter or darker than the surround ing
- Blob detection procedure
 - Smooth image
 - Apply the Laplacian of Gaussian or difference of Gaussians
 - Find the optimal scale and orientation parameters

Feature (Keypoint + Descriptor)

SIFT & ORB

What is feature

- Feature
 - Keypoint and descriptor together
- Keypoint (or interest point)
 - Some particular image intensities "around" it, such as a corner or edge
 - A keypoint can be used for deriving a descriptor
- Descriptor
 - A finite vector which summarizes properties for the keypoint
 - Used for classifying the key point

Best tool for matching pixels across images

Best tool for matching categories

