Question 2.

For this question, solve the recurrence for $T^{(n)}$ and express your answer using Theta (Θ) notation. For each of the cases, assume that $T^{(m)} = \Theta(1)$ for an appropriate constant m. Just state the bounds. No explanation is necessary.

1. (3 points)
$$T(n) = T(\sqrt{n}) + 1$$

2. (3 points)
$$T(n) = 4T(n^{1/4}) + \log n$$

3. (3 points)
$$T(n) = 2T(n/2) + n \log n$$

Question 3.

For this problem, your input is a positive integer n given in its binary encoding.

- 1. **(3 points)** Design the fastest algorithm that you can, to test if the input n is a perfect square, i.e. if there is a positive integer a such that $a^2 = n$.
- 2. **(5 points)** Generalize your ideas in the algorithm in Part (1) to design a fast algorithm for testing if n is a perfect power, i.e. if there exist positive integers a, b such that b > 1 and $a^b = n$.
- 3. (1 point) As a function of n, what is the number of bits in the input for this problem (in big-Oh notation)?
- 4. (1 point) State the upper bound on the running time of your algorithm in Part(2) of this problem in big-Oh notation. No explanation is necessary.

Question 4.

For this question, we will assume that the cost of multiplying a $u \times v$ matrix with a $v \times w$ matrix is O(uvw), where for cost we just count the number of arithmetic operations.

Matrix multiplication is associative, so there are various ways of computing a product of nmatrices based on how we parenthesize the matrices. For instance, let n=4. Then the product $A_1 \times A_2 \times A_3 \times A_4$ of four rectangular matrices A_1, A_2, A_3, A_4 of compatible dimensions can be computed in many different ways based on the parenthesization, e.g., as $A_1 \times ((A_2 \times A_3) \times A_4)$ $(A_1 \times (A_2 \times A_3)) \times A_4 \ (A_1 \times A_2) \times (A_3 \times A_4)$ and a few more ways not mentioned here. Each such parenthesization potentially incurrs a different cost based on the dimensions of these matrices. As an example, let the dimension of A_1 be 50×20 , that of A_2 be 20×1 , that of A_3 be 1×10 and that of A_4 be 10×100 . Then, the cost of computing the product $A_1 \times A_2 \times A_3 \times A_4$ using the three parenthesizations stated above are as follows.

- For $A_1 \times ((A_2 \times A_3) \times A_4)$, the cost is $20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100 = 12020$
- For $(A_1 \times (A_2 \times A_3)) \times A_4$, the cost is $20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100 = 60200$
- For $(A_1 \times A_2) \times (A_3 \times A_4)$, the cost is $50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100 = 7000$

Suppose that we are given n (possibly rectangular) matrices A_1, A_2, \ldots, A_n with integer entries where A_i is of dimension $m_{i-1} \times m_i$. Our goal is to design an algorithm to compute the matrix product $A_1 \times A_2 \times \cdots \times A_n$ by finding an optimal way of parenthesizing the matrices .

- (6 points) Design the fastest algorithm that you can to determine the optimal way of computing the product
 A₁ × A₂ × · · · × A_n, given their dimensions.
- (3 points) Prove the correctness of your algorithm.
- (1 point) State the running time of your algorithm in big-Oh (O) notation (no explanation is necessary).

Question 5.

For this problem, our input is a set of n integers and the goal is to decide if the set contains three elements that sum to zero. For instance, the set $\{1,2,3,\ldots,10\}$ does not contain three elements that sum to zero, whereas the set $\{-100,-2,1,20,-5,7,1000\}$ contains the elements $\{-2,-5,7\}$ that sum to zero.

- 1. **(6 points)** Design an algorithm for this problem that takes $O(n^2)$ arithmetic operations over integers (or the fastest algorithm that you can).
- (2 points) Prove the correctness of the algorithm.
- (2 points) State and prove an upper bound on the running time of your algorithm.