第八章 无限维分析入门

习 题 8.2

(A)

1. 证明在实连续函数空间 C([a,b])中,关系式

$$\langle x, y \rangle = \int_a^b x(t) y(t) dt$$

定义了函数 x = x(t) 与 y = y(t) 的一个内积,从而 C([a,b]) 构成一个实内积空间.

证明 由于 $\forall x, y, z \in C([a,b])$ 及 $\forall \alpha, \beta \in \mathbb{R}$,

$$\langle x, y \rangle = \int_a^b x(t) y(t) dt = \langle y, x \rangle,$$

$$\langle \alpha x + \beta y, z \rangle = \int_a^b (\alpha x + \beta y) z dt = \alpha \int_a^b x z dt + \beta \int_a^b y z dt$$

$$= \alpha \langle x, z \rangle + \beta \langle y, z \rangle,$$

$$\langle x, x \rangle = \int_a^b x^2 dt \ge 0,$$

且若 $x(t) \equiv 0$,则 $\langle x, x \rangle = 0$;

若 $\int_a^b x^2 dt = 0$,则 $x(t) \equiv 0$,如若不然, $\exists t_0 \in [a,b]$,使 $x(t_0) \neq 0$. 不妨设 $x(t_0) > 0$,由连续函数保号性知 $\exists U(t_0,\delta) = (t_0 - \delta,t_0 + \delta)$,使 $\forall x \in U(t_0,\delta)$, $x(t) \geq q > 0$. 从而 $\int_a^b f(t) dt \geq \int_{t_0 - \delta}^{t_0 + \delta} x(t) dt \geq 2q\delta > 0$ 与 $\int_a^b x^2 dt = 0$ 矛盾,故 $x(t) \equiv 0$, $\forall t \in [a,b]$.

4. 设 X 是实内积空间, $x,y \in X$. 证明

(1)
$$\langle x, y \rangle = 0 \Leftrightarrow \|x + y\|^2 = \|x\|^2 + \|y\|^2 (勾股定理);$$

(2)
$$\langle x,y \rangle = \frac{1}{4} \| x + y \|^2 - \frac{1}{4} \| x - y \|^2$$
.

证明 (1) 由于 $\langle x+y,x+y\rangle = \langle x,x\rangle + \langle x,y\rangle + \langle y,x\rangle + \langle y,y\rangle = ||x||^2 + ||y||^2 + 2\langle x,y\rangle$,所以

 $\langle x, y \rangle = 0 \Leftrightarrow ||x + y||^2 = ||x||^2 + ||y||^2.$

(2) 由于 $\|x+y\|^2 = \|x\|^2 + \|y\|^2 + 2\langle x,y\rangle$,

$$\|x-y\|^{2} = \langle x-y, x-y \rangle = \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$
$$= \|x\|^{2} - 2\langle x, y \rangle + \|y\|^{2},$$

故

$$\frac{1}{4} \|x + y\|^2 - \frac{1}{4} \|x - y\|^2 = \langle x, y \rangle.$$

5. 证明在线性空间 R"中,

$$||x||_{*} = \max_{1 \le i \le n} ||x_{i}|| \stackrel{r}{\Rightarrow} ||x||_{1} = \sum_{i=1}^{n} ||x_{i}||$$

都是 $x \in \mathbb{R}^n$ 的范数,因而 \mathbb{R}^n 按照这两种范数分别构成赋范线性空间.

证明 $\|x\|_{\infty}, \|x\|_{\infty}$ 显然满足范数公理的非负性与绝对齐次性. 下面验证 $\|x\|_{\infty}, \|x\|_{\infty}$ 满足三角不等式.

设
$$x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$
,

$$||x + y||_{*} = \max_{1 \le i \le n} |x_i + y_i| \le \max_{1 \le i \le n} ||x_i| + |y_i||_{*}$$

$$\leq \max_{1 \leq i \leq n} |x_i| + \max_{1 \leq i \leq n} |y_i| = ||x||_{\infty} + ||y||_{\infty}.$$

$$||x + y||_{1} = \sum_{i=1}^{n} |x_{i} + y_{i}| \leq \sum_{i=1}^{n} (|x_{i}| + |y_{i}|)$$

$$= \sum_{i=1}^{n} |x_{i}| + \sum_{i=1}^{n} |y_{i}| = ||x||_{1} + ||y||_{1},$$

6. 有界数列全体构成的集合

$$l^* = \{x = (x_1, x_2, \dots, x_n, \dots) \mid x_n \in \mathbb{R}, \sup_{n \in \mathbb{N}_+} |x_n| < + \infty \}$$

按照通常数列的加法和数与数列的乘法构成线性空间.

证明(1) 关系式

$$||x||_{x} = \sup_{n \in \mathbb{N}_{+}} |x_{n}|, x = (x_{1}, x_{2}, \dots, x_{n}, \dots) \in l^{\infty}$$

定义了 l^* 上的一个范数,从而 l^* 构成一个赋范线性空间(称为有界数列空间); (2)在 l^* 中点列按范数收敛等价于按坐标的一致收敛.

证明 (1) 显然 $||x||_x$, $x \in l^*$ 满足范数公理的非负性与绝对齐次性. 下面

证明 || * || 。满足三角不等式.

$$\forall x, y \in l^{\infty}, x = (x_{1}, x_{2}, \dots, x_{n}, \dots), y = (y_{1}, \dots, y_{n}, \dots),$$

$$\|x + y\| = \sup_{n \in \mathbb{N}_{+}} |x_{n} + y_{n}| \leq \sup_{n \in \mathbb{N}_{+}} (|x_{n}| + |y_{n}|)$$

$$\leq \sup_{n \in \mathbb{N}_{+}} |x_{n}| + \sup_{n \in \mathbb{N}_{+}} |y_{n}| = \|x\| + \|y\|,$$

放 l*按范数 || x || x 构成一个赋范线性空间.

 $(2) \ x^{(n)} = (x_1^{(n)}, \cdots, x_k^{(n)}, \cdots) \in l^*, n = 1, 2, \cdots, 为 l^*$ 中一收敛的点列,且 $\lim_{n \to +\infty} x^{(n)} = a = (a_1, \cdots, a_k, \cdots)$. 即 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, 使 $\forall n > \mathbb{N}$, 恒有 $\| x^{(n)} - a \|$ $< \varepsilon$. 因此 $\sup_{k \in \mathbb{N}_+} |x_k^{(n)} - a_k| < \varepsilon$, 从而 $\forall k \in \mathbb{N}_+$, $\exists N$, $\exists n > N$ 时 $|x_k^{(n)} - a_k| < \varepsilon$. 即数列 $|x_k^{(n)}|$ 一致收敛于 a_k , $\forall k = 1, 2, \cdots$.

反之,对 l^* 中的点列 $x^{(n)} = (x_1^{(n)}, x_2^{(n)}, \cdots, x_k^{(n)}, \cdots)$, $n = 1, 2, \cdots$, 若由此点列相应的分量构成的数列 $\{x_1^{(1)}, \cdots, x_1^{(n)}, \cdots\}$, $\{x_2^{(1)}, \cdots, x_2^{(n)}, \cdots\}$, $\{x_k^{(1)}, \cdots, x_k^{(n)}, \cdots\}$, $\{x_k^{(n)}, \cdots\}$, 则下面证明 l^* 中的点列 $\{x_k^{(n)}, \cdots\}$ 收敛于 a.

由于 $\{x_k^{(n)}\}$, $\forall k \in \mathbb{N}$, 一致收敛,即 $\forall \varepsilon > 0$, $\exists N(\varepsilon) \in \mathbb{N}_+$,使 $\forall n > N$,恒有 $\|x_k^{(n)} - a_k\| < \varepsilon$, 对 $\forall k = 1, 2, \cdots$.即 $\forall \varepsilon > 0$, $\exists N(\varepsilon) \in \mathbb{N}_+$,使 $\exists n > N$ 时,

$$\sup_{k\in\mathbb{N}_+}|x_k^{(n)}-a_k|<\varepsilon.$$

故 $\lim x^{(n)} = a$.

9. 证明赋范线性空间中的任一开球 $S(x_0,r)$ 是凸开集(赋范线性空间 X 中的集合 A 称为凸的,如果 $\forall x_1,x_2 \in A$, $t \in [0,1]$,都有 $tx_1 + (1-t)x_2 \in A$).

证明 1° S(x0,r)是开集.

$$\forall x \in S(x_0, r), ||||||x - x_0||| < r. \Leftrightarrow \bar{r} = \frac{r - |||x - x_0|||}{2},$$

則 $\forall y \in S(x,\tilde{r}), \|x-y\| < \tilde{r},$ 从而

$$||y-x_0|| \le ||y-x|| + ||x-x_0|| < \bar{r} + ||x-x_0|| = \frac{r+||x-x_0||}{2} < r.$$

故 $y \in S(x_0,r)$. 于是 $S(x,r) \subseteq S(x_0,r)$, 即 $S(x_0,r)$ 的任一点都是其内点, 故 $S(x_0,r)$ 为开集.

2° S(x,r)为凸集.

$$\forall x_1, x_2 \in S(x_0, r), t \in [0, 1], \emptyset \parallel tx_1 + (1 - t)x_2 - x_0 \parallel$$

$$= \| tx_1 + (1-t)x_2 - [tx_0 + (1-t)x_0] \| \le \| tx_1 - tx_0 \|$$

$$+ \| (1-t)x_2 - (1-t)x_0 \| = t \| x_1 - x_0 \| + (1-t) \| x_2 - x_0 \|$$

$$$$

于是 $tx_1 + (1-t)x_2 \in S(x_0,r)$.

10. 证明赋范线性空间 X 中的任一凸集 A 的内部 A 是凸开集.

证明 1° Å是一开集.

若 $\mathring{A} = \emptyset$,则 \mathring{A} 为开集;若 $\mathring{A} \neq \emptyset$,那么 $\forall x \in \mathring{A}$, $\exists S(x,\delta) \subseteq \mathring{A}$. 由上题 $S(x,\delta)$ 为开集,则 $S(x,\delta)$ 的每一点均为 \mathring{A} 的内点,即 $S(x,\delta) \subseteq \mathring{A}$,即 x 为 \mathring{A} 的内点.由 $x \in \mathring{A}$ 的任意性 \mathring{A} 为开集.

2° Å 为凸集.

若 A = Ø,则 A 显然是凸集;

若 $\mathring{A} \neq \emptyset$,那么对 $\forall x_1, x_2 \in \mathring{A} \subseteq A$ 及 $\alpha \in [0,1]$,由于 A 是凸集,则 $\alpha x_1 + (1-\alpha)x_2 \in A$;又由 \mathring{A} 是开集,则 $\exists \delta > 0$.使开球 $S(x_1,\delta) \subseteq \mathring{A}$, $S(x_2,\delta) \subseteq \mathring{A}$.

(i) $S(\alpha x_1 + (1 - \alpha)x_2, \delta) = \alpha S(x_1, \delta) + (1 - \alpha)S(x_2, \delta) \xrightarrow{\text{def}} | y = \alpha y_1 + (1 - \alpha)y_2 | y_1 \in S(x_1, \delta), y_2 \in S(x_2, \delta) |$.

显然, $\alpha S(x_1, \delta) + (1 - \alpha) S(x_2, \delta) \subseteq S(\alpha x_1 + (1 - \alpha) x_2, \delta)$. 又对 $\forall y \in S(\alpha x_1 + (1 - \alpha) x_2, \delta)$,令 $z = y - [\alpha x_1 + (1 - \alpha) x_2]$,则 $\|z\| < \delta$. 令 $y_1 = x_1 + z$,则 $\|y_1 - x_1\| = \|z\| < \delta$,从而 $y_1 \in S(x_1, \delta)$. 同理可知 $y_2 = x_2 + z \in S(x_2, \delta)$,从 而 $\alpha y_1 + (1 - \alpha) y_2 \in \alpha S(x_1, \delta) + (1 - \alpha) S(x_2, \delta)$. 又 $y = z + [\alpha x_1 + (1 - \alpha) x_2]$ $= \alpha(x_1 + z) + (1 - \alpha)(x_2 + z) = \alpha y_1 + (1 - \alpha)y_2$,故 $y \in \alpha S(x_1, \delta) + (1 - \alpha)S(x_2, \delta)$.

故(i)成立.

(ii) $\alpha S(x_1, \delta) + (1 - \alpha)S(x_2, \delta) \subseteq A$ 显然成立.

由(i),(ii)可得开球 $S(\alpha x_1 + (1-\alpha)x_2,\delta) \subseteq A$,即 $\alpha x_1 + (1-\alpha)x_2 \in A$,从 而 A 为凸集.

13. 证明在赋范线性空间中,任何收敛点列都是基本列,任何基本列都是有界的.

证明 (1) 设 $|x_n|$ ($n=1,2,\cdots$)是一收敛点列. 即 3 常向量 a 使 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, 使 $\forall n > N$. 恒有 $\|x_n - a\| < \varepsilon/2$. 从而 $\forall m, n > N$, $\|x_m - x_n\| \le \|x_m - a\| + \|x_n - a\| < \varepsilon$. 故 $\|x_n\|$ 是基本列.

(2) 设 $\{x_n\}$ 是基本列(其中 $n=1,2,\cdots$),则对 $\varepsilon=1>0$,引 $N\in \mathbb{N}_+$,使 $\forall m>N$,恒有 $\|x_m-x_{N+1}\|<1$,即 $\|x_m\|\leq 1+\|x_{N+1}\|$.令 $M=\max\{1+\|x_{N+1}\|$,十 $\|x_1\|+\|x_2\|$,…, $\|x_N\|+\|x_N\|+\|x_N\|$, 他有 $\|x_m\|\leq M$,即 $\|x_n\|$ 有界.

15. 证明有界数列空间 l* (见第 6 题)是 Banach 空间.

证明 由第 6 题知有界数列空间 l^* 是赋范线性空间,其范数为 $\|x\|_* = \sup_{x \in \mathbb{N}} |x_x|, x = (x_1, \cdots, x_n, \cdots) \in l^*$. 只需证明 l^* 是完备的.

设 $\{x^{(n)}\}$ 是 l^* 中的基本列,则 $\{x^{(n)}\}$ 有界. 即 $\exists M>0$,使 $\|x^{(n)}\|_* < M$. 又设 $\{x^{(n)}\}$ 收敛于 a,则对 s=1, $\exists N\in \mathbb{N}$,使 $\|x^{(n)}-a\|_* < 1$. 从而当 n>N 时, $\|a\|_* \leq 1 + \|x^{(n)}\| \leq 1 + M$,即 a 为有界数列. 故 $a \in l^*$,从而 l^* 是完备的.

16. 设线性方程组 (2.13) 满足条件 $\sum_{i,j=1}^{n}a_{ij}^{2}<1$, 证明该方程组存在唯一的解.

证明 设 $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$,由于 \mathbb{R}^n 按范数

$$\|x\|_{2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$$

构成一 Banach 空间, 定义映射 $T: \mathbb{R}^n \to \mathbb{R}^n$ 如下:

$$Tx = Ax + b.$$

其中 $\mathbf{A} = (a_{ij})_{n \times n}, b = (b_1, b_2, \dots, b_n)^T$, 则对 \mathbf{R}^n 中的任何 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ 与 $\mathbf{y} = (y_1, \dots, y_n)$ 有

 $|| Tx - Ty ||_{2}^{2} = || A(x - y) ||_{2}^{2}$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} (x_{j} - y_{j}) \right)^{2}$$

$$\leq \sum_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{ij}|^{2} \right) \left(\sum_{j=1}^{n} |x_{j} - y_{j}|^{2} \right) (Cauchy - Schwarz 不等式)$$

$$= \left(\sum_{j=1}^{n} |x_{j} - y_{j}|^{2} \right) \sum_{i,j=1}^{n} a_{ij}^{2}.$$

即 $\| Tx - Ty \|_2 \le M \Big(\sum_{j=1}^n \| x_j - y_j \|^2 \Big)^{\frac{1}{2}} = M \| x - y \|_2, 其中 M = \Big(\sum_{i,j=1}^n a_{ij}^2 \Big)^{\frac{1}{2}} < 1.$

故 T 是由 \mathbf{R}^n 到 \mathbf{R}^n 的压缩映射,故有唯一的不动点,即方程有唯一的解. 17. 设 $f \in C([a,b]), K \in C([a,b] \times [a,b]), M = \max_{(t,\tau) \in [a,b] \times [a,b]} |K(t,\tau)|$. 证明第二类 Fredholm 方程

$$x(t) = f(t) + \lambda \int_a^b K(t,\tau)x(\tau) d\tau,$$

当参数 λ 满足 $|\lambda| < \frac{1}{M(b-a)}$ 时,存在唯一解 $x = x(t) \in C([a,b])$.

证明 在 C([a,b]) 上定义映射 T 为

$$(Tx)(t) = f(t) + \lambda \int_a^b K(t,\tau)x(\tau) d\tau.$$

由于 x(t), $f(t) \in C([a,b])$, $K(t,\tau) \in C([a,b] \times [a,b])$, 由连续函数的性质 $Tx \in C([a,b])$, 即 T 为由 C([a,b])到自身的映射, $X \forall x,y \in C([a,b])$, 有

$$\| Tx - Ty \| = \| \lambda \| \max_{t \in [a,b]} \left| \int_a^b K(t,\tau) [x(\tau) - y(\tau)] d\tau \right|$$

$$\leq \| \lambda \| \max_{t \in [a,b]} \int_a^b |K(t,\tau)| |x(\tau) - y(\tau)| d\tau$$

$$\leq \| \lambda \| (b-a) \cdot \max_{(t,\tau) \in [a,b] \times [a,b]} |K(t,\tau)| \max_{t \in [a,b]} |x(t) - y(\tau)|$$

$$\leq \| \lambda \| (b-a) \cdot M \| x - y \| .$$

由于 $|\lambda|(b-a)\cdot M<1$,故 T 为由 C([a,b])到自身的压缩映射,故有唯一的不动点,即 Fredholm 方程有唯一的解 $x(i)\in C([a,b])$.

(B)

- 1. 设X是任一集合,若对任意的 $x,y \in X$,都存在一个实数与它们相对应,记作 $\rho(x,y)$,并且满足下列条件(称为距离公理):
 - (1) 非负性 $\rho(x,y) \ge 0$,且 $\rho(x,y) = 0 \Leftrightarrow x = y$;
 - (2) 对称性 $\rho(x,y) = \rho(y,x)$;
 - (3) 三角不等式 $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$.

则称 $\rho(x,y)$ 为 x 与 y 之间的距离,并称定义了距离的集合 X 为距离空间或度量空间,证明:n 维 Euclid 空间 \mathbb{R}^n ,连续函数空间 C([a,b]) 与 p 方可和数列空间都是距离空间.

证明 设 X 为赋范线性空间, $\forall x,y \in X$, 定义 $\rho(x,y) = \|x-y\|$,则由范数公理可知距离公理成立. 又 n 维 Euclid 空间 \mathbb{R}^n , 连续函数空间 C([a,b]) 与 p 方可和数列空间分别按照其范数是赋范线性空间, 从而是距离空间. 其距离分别为

$$\forall x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n, y = (y_1, \dots, y_2) \in \mathbb{R}^n, 定义 \rho(x, y)$$

$$\rho_1(x, y) = \|x - y\|_1 = \sum_{i=1}^n \|x_i - y_i\|$$
或
$$\rho_2(x, y) = \|x - y\|_2 = \left(\sum_{i=1}^n \|x_i - y_i\|^2\right)^{\frac{1}{2}} \text{(Euclid 距离)}$$
或
$$\rho_\infty(x, y) = \|x - y\|_\infty = \max_{1 \le i \le n} \|x_i - y_i\|_2$$

又
$$\forall x, y \in C([a,b])$$
,定义 $\rho(x,y) = \max_{t \in [a,b]} |x(t) - y(t)|$.

对 $\forall x, y \in l^p$,定义 $\rho(x,y) = ||x - y||_p = \left(\sum_{i=1}^{\infty} |x_i - y_i|^p\right)^{\frac{1}{p}}$.

2. 设在线性空间 X 中定义了两个范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$. 若存在着正常数 m 与 M, 使得

$$m \| x \|_{1} \le \| x \|_{2} \le M \| x \|_{1}, \forall x \in X,$$

则称 ||・||,与||・||2 是两个等价的范数. 证明

(1) 在 R*中,下面三个范数

$$\|x\|_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}}, \|x\|_{\infty} = \max_{1 \le i \le n} |x_{i}|, \|x\|_{1} = \sum_{i=1}^{n} |x_{i}|$$

是等价的;

(2) 在线性空间 X 中两个范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$ 等价的充要条件是对 X 中的点列 $\|x_n\|_1$ $\|x_n\|_1$ $\to 0$ \Leftrightarrow $\|x_n\|_2$ $\to 0$ $(n \to \infty)$.

证明 (1) 设
$$x = (x_1, \dots, x_n) \in \mathbb{R}^n$$
,

$$\|x\|_{1} = \sum_{i=1}^{n} |x_{i}| = \sum_{i=1}^{n} |x_{i}|$$

$$\leq \left(\sum_{i=1}^{n} |x_{i}|^{2} \sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}} \left(\text{Cauchy-Schwarz 不等式}\right)$$

$$= \sqrt{n} \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}} = \sqrt{n} \|x\|_{2}.$$

$$\|x\|_{1} = \left[\left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}} = \left(\sum_{i=1}^{n} |x_{i}|^{2} + 2\sum_{1 \leq i < j \leq n} |x_{i}| | |x_{j}|\right)^{\frac{1}{2}}$$

$$\geq \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}} = \|x_{2}\|,$$

故 ||x||₂≤||x||₁≤√n||x||₂,即||・||₃与||・||₂等价.

又 $\|x\|_{*} = \max_{1 \le i \le n} |x_{i}| \le \sum_{i=1}^{n} |x_{i}| = \|x\|_{1} \le n \cdot \max_{1 \le i \le n} |x_{i}| = n \|x\|_{*}$,故

从而 ||・||1, ||・||2 与||・||* 互相等价.

 $||x_n||_1 \rightarrow 0 \Leftrightarrow ||x_n||_2 \rightarrow 0 (n \rightarrow \infty).$

充分性 用反证法 假设不存在正常数 M 使 $\|x\|_1 \le M \|x\|_2$ 成立. 即对 $\forall n \in \mathbb{N}_+, \exists x_n \in X,$ 使得 $\|x_n\|_1 > n \|x_n\|_2$.

令 $y_n = \frac{x_n}{\|x_n\|_1}$, 一方面 $\|y_n\|_1 = 1$; 另一方面 $0 \le \|y_n\|_2 = \frac{\|x_n\|_2}{\|x_n\|_1} < \frac{1}{n}$ ($\forall n \in \mathbb{N}_+$), 所以 $\|y_n\|_2 \to 0$ ($\le n \to \infty$). 又因为由 $\|x_n\|_2 \to 0 \Leftrightarrow \|x_n\|_1 \to 0$ ($n \to \infty$), 所以 $\|y_n\|_1 \to 0$ ($n \to \infty$). 这显然是矛盾的.

4. 设 X 是 Banach 空间, $|S(x_n, r_n)|$ 是一个闭球套,即

- (1) $\overline{S}(x_1,r_1) \supseteq \overline{S}(x_2,r_2) \supseteq \cdots \supseteq \overline{S}(x_n,r_n) \supseteq \cdots;$
- $(2) \lim_{n\to\infty} r_n = 0.$

证明 存在着唯一的点 $x \in X$, 使 $x \in \bigcap_{n=1}^{\infty} \overline{S}(x_n, r_n)$.

证明 球心所组成的点列 | x | 是基本列.

対 $\forall \varepsilon > 0$,由 $\lim_{n \to \infty} r_n = 0$ 可知 $\exists N \in \mathbb{N}_+$,使 对 \longrightarrow 切 n > N,恒有 $r_n < \varepsilon$. 从而对 $\forall p \in \mathbb{N}_+$,由于 $x_{n+p} \in S(x_{n+p}, r_{n+p}) \subseteq S(x_n, r_n)$,所以 $\|x_{n+p} - x_n\| \le r_n < \varepsilon$. 即 $\|x_n\|$ 为基本列.

由 X 的完备性可知点列 $\{x_n\}$ 收敛于 X 中的一点 x. 由于对 $\forall n, p \in \mathbb{N}_+$,恒有 $\|x_{n+p} - x_n\| \le r_n$. 令 $p \to +\infty$ 可得 $\|x - x_n\| \le r_n$,即对 $\forall n \in \mathbb{N}_+$,恒有 $x \in \overline{S}(x_n, r_n)$,即 $x \in \bigcap_{n=1}^{\infty} \overline{S}(x_n, r_n)$.

下证x的唯一性. 如 $y \in \bigcap_{n=1}^{\infty} \overline{S}(x_n, r_n)$,即对 $\forall n \in \mathbb{N}_+, \|y - x_n\| \le r_n$. 令 $n \to +\infty$,则 $\|y - x\| \le 0$,从而 $\|y - x\| = 0$,于是 y = x. 唯一性得证.

5. 证明

$$A = \{x \in C([0,1]) \mid x = x(t) \ge 0, \forall t \in [0,1]\}$$

是连续函数空间 C([0,1]) 中的一个闭凸集。

证明 (1) A 是凸集.

对 $\forall x,y \in A, \alpha \in [0,1]$,由于对 $\forall t \in [a,b], x(t), y(t) \ge 0$. 由连续函数 的性质 $(\alpha x + (1-\alpha)y)(t) = \alpha x(t) + (1-\alpha)y(t) \in C([a,b])$,且非负. 即 $\alpha x + (1-\alpha)y \in A$.

(2) A 是闭集.

设 $x_n(t) \in A(n=1,2,\cdots)$, 且 $x_n(t)$ 按C([a,b])中的范数 $||x|| = \max_{t \in [a,b]} |x(t)|$ 收敛于x(t). 由C([a,b])的完备性知x(t)在[a,b]上连续. 又函数列 $\{x_n(t)\}$ 按范数收敛等价于 $\{x_n(t)\}$ 一致收敛,从而处处收敛. 又由极限的保

号性知 $\forall t_0 \in [a,b]$,由 $x_n(t_0) \ge 0$ 知 $x(t_0) \ge 0$.即 $x(t) \in A$.

习题 8.3

2. 设
$$A = \bigcup_{n=1}^{\infty} \left\{ x \mid \frac{1}{n+1} \leqslant x \leqslant \frac{1}{n}, x \in \mathbb{R} \right\}$$
,证明 $mA = 1$.

证法 I A=(0,1].

显然
$$A \subseteq \{0,1\}$$
, 又 $\forall x \in \{0,1\}$, 令 $n = \left[\frac{1}{x}\right]$, 由于 $\left[\frac{1}{x}\right] \le \frac{1}{x} \le \left[\frac{1}{x}\right] + 1$, 于 $\frac{1}{n+1} \le x \le \frac{1}{n}$, 故 $x \in A$. 即 $A = \{0,1\}$.

从而 mA = m(0,1] = 1.

证法 \mathbf{I} 令 $I_n = \left\{ x \mid \frac{1}{n+1} < x \leq \frac{1}{n} \right\}$,则 $A = \bigcup_{n=1}^{n} I_n$,且 $\forall i \neq j$, $U_i \cap U_j = \emptyset$.由可测集的完全可加性,

$$mA = \sum_{n=1}^{\infty} mI_n = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1.$$

4. 设 E, 与 E, 都是有界可测集,且 E, ⊆ E, 证明

$$m(E_2 \setminus E_1) = mE_2 - mE_1.$$

证明 由于 $E_1 \subseteq E_2$,则 $E_1 \cup (E_2 \setminus E_1) = E_2$ 且 $E_1 \cap (E_2 \setminus E_1) = \emptyset$.

由可测集的有限可加性 $m(E_1 \cup (E_2 \setminus E_1)) = mE_1 + m(E_2 \setminus E_1) = mE_2$, 于是 $m(E_2 \setminus E_1) = mE_2 - mE_1$.

5. 证明函数f在可测集E上可测的充要条件是对任意实数 α ,集合 $E(f < \alpha)$ 可测.

证明 由于 $E(f < \alpha) = E \setminus \{x \mid f(x) \ge \alpha, x \in E\} = E \setminus E(f \ge \alpha)$,所以 f 在可测集 E 上可测 $\stackrel{\text{定 g3.2}}{\longleftrightarrow} E(f \ge \alpha)$ 可测 $\hookrightarrow E(f < \alpha)$ 可测。

6. 设 f 与 g 都是可测集 E 上的可测函数,证明

$$E(f \ge g) = |x| f(x) \ge g(x), x \in E|$$

也是可测集.

证明 由于有理数集是可数集,则可表示为 $\{r_n\}(n=1,2,\cdots)$.

又 $E(f \geqslant g) = \bigcup_{n=1}^{\infty} (E(f \geqslant r_n) \cap E(g \leqslant r_n))$,而由于f,g 均是可测集 E 上的可测函数,所以 $E(f \geqslant r_n)$ 与 $E(g \leqslant r_n) = E(g \leqslant r_n) \cup \left(\bigcap_{m=1}^{\infty} E(r_n \leqslant g \leqslant r_n + \frac{1}{m}\right)$ 均