

Students:

Théo PANTECOUTEAU **Hugo SEQUIER** 



### **TABLE OF CONTENTS**

Ins and outs of the subject

PROJECT MANAGEMENT How did we work?

DATA PROCESSING

Data preparation, data visualization and modeling

How did we transformed our model into an API?

# O1 INTRODUCTION

Ins and outs of the subject

### **A BIT OF CONTEXT**



#### **BIKE SHARES IN SEOUL**

Our project focus on predicting the number of bike shares in Seoul based on meteorological data.



#### **PRACTICAL APPLICATION**

Urban Planning
Traffic management
Supporting the growth of
eco-friendly transportation
methods



#### THE PROBLEM IN THE STUDY CONTEXT



## D2 PROJECT MANAGEMENT

How did we work?

### **HOW DID WE WORK?**



Facilitates collaboration, allowing to work simultaneously without overriding each other's work.



Allow us to work on different features or fixes in isolation, without affecting the main or 'master' branch.



# O3 DATA PROCESSING

Data preparation, data visualization and modeling

#### RangeIndex: 8760 entries, 0 to 8759 Data columns (total 14 columns): Non-Null Count Dtype # Column Date 8760 non-null object Rented Bike Count 8760 non-null int64 8760 non-null int64 Temperature(°C) 8760 non-null float64 Humidity(%) int64 8760 non-null Wind speed (m/s) 8760 non-null float64 Visibility (10m) 8760 non-null int64 Dew point temperature(°C) 8760 non-null float64 Solar Radiation (MJ/m2) 8760 non-null float64 Rainfall(mm) float64 8760 non-null 10 Snowfall (cm) 8760 non-null float64 11 Seasons object 8760 non-null 12 Holiday object 8760 non-null 13 Functioning Day 8760 non-null object

| Date                      | 0 |
|---------------------------|---|
| Rented Bike Count         | 0 |
| Hour                      | 0 |
| Temperature(°C)           | 0 |
| Humidity(%)               | 0 |
| Wind speed (m/s)          | 0 |
| Visibility (10m)          | 0 |
| Dew point temperature(°C) | 0 |
| Solar Radiation (MJ/m2)   | 0 |
| Rainfall(mm)              | 0 |
| Snowfall (cm)             | 0 |
| Seasons                   | 0 |
| Holiday                   | 0 |
| Functioning Day           | 0 |
|                           | _ |

#### DATA PRE-PROCESSING / 1

|                           | count  | mean        | std        | min   | 25%    | 50%     | 75%     | max     |
|---------------------------|--------|-------------|------------|-------|--------|---------|---------|---------|
| Rented Bike Count         | 8760.0 | 704.602055  | 644.997468 | 0.0   | 191.00 | 504.50  | 1065.25 | 3556.00 |
| Hour                      | 8760.0 | 11.500000   | 6.922582   | 0.0   | 5.75   | 11.50   | 17.25   | 23.00   |
| Temperature(°C)           | 8760.0 | 12.882922   | 11.944825  | -17.8 | 3.50   | 13.70   | 22.50   | 39.40   |
| Humidity(%)               | 8760.0 | 58.226256   | 20.362413  | 0.0   | 42.00  | 57.00   | 74.00   | 98.00   |
| Wind speed (m/s)          | 8760.0 | 1.724909    | 1.036300   | 0.0   | 0.90   | 1.50    | 2.30    | 7.40    |
| Visibility (10m)          | 8760.0 | 1436.825799 | 608.298712 | 27.0  | 940.00 | 1698.00 | 2000.00 | 2000.00 |
| Dew point temperature(°C) | 8760.0 | 4.073813    | 13.060369  | -30.6 | -4.70  | 5.10    | 14.80   | 27.20   |
| Solar Radiation (MJ/m2)   | 8760.0 | 0.569111    | 0.868746   | 0.0   | 0.00   | 0.01    | 0.93    | 3.52    |
| Rainfall(mm)              | 8760.0 | 0.148687    | 1.128193   | 0.0   | 0.00   | 0.00    | 0.00    | 35.00   |
| Snowfall (cm)             | 8760.0 | 0.075068    | 0.436746   | 0.0   | 0.00   | 0.00    | 0.00    | 8.80    |

Object Values which we'll need to encode Normalize to ensure consistency in interpretation

No missing values Keeping outliers



#### DATA PRE-PROCESSING / 2

```
df['Day'] = df['Date'].dt.day
df['Month'] = df['Date'].dt.month
df['Year'] = df['Date'].dt.year
df['WeekDay']=df['Date'].dt.day_name()
df.drop(columns=['Date'], inplace=True)
```

Analyze the data by day and month Correlated values





#### **DATA VISUALIZATION / 1**









#### **DATA VISUALIZATION / 2**







|                               | Adjusted R-Squared | R-Squared | RMSE | Time Taken |
|-------------------------------|--------------------|-----------|------|------------|
| Model                         |                    |           |      |            |
| HistGradientBoostingRegressor | 0.94               | 0.94      | 0.24 | 0.49       |
| LGBMRegressor                 | 0.94               | 0.94      | 0.24 | 0.11       |
| ExtraTreesRegressor           | 0.94               | 0.94      | 0.24 | 4.07       |
| XGBRegressor                  | 0.94               | 0.94      | 0.25 | 0.22       |
| RandomForestRegressor         | 0.93               | 0.93      | 0.27 | 8.01       |
|                               |                    |           |      |            |

Best parameters: {'bootstrap': False, 'max\_features': 'sqrt', 'min\_samples\_leaf': 1, 'min\_samples\_split': 2, 'n\_estimators': 200}

Mean Squared Error: 0.08255609946587276

Mean Absolute Error: 0.1740232928362238

R^2 Score: 0.9175770526251155





#### MODELING / 2





### 04 API

How did we transformed our model into an API?



#### **PREDICTION**

Pickle to read our model and use it



#### **FAST API**

Ensuring efficient handling of requests and responses



#### **REACT**

Familiar with it. Create a form where the user inserts his data





### THANKS!

Do you have any questions?