Assignment 1: Draw A Histogram Using the given Data Set

Here I am attaching the screen shot after completing the histogram. Later when I try to smoothen the histogram I got a Normal Distribution Curve.

Assignment 2: Skewed Distributions

Normal Distribution (No Skew)	Right Skewed Distribution (Positive Skew)	Left Skewed Distribution (Negative Skew)
Mean = Median = Mode Normal Distribution	Mode Median Mean Right-Skewed (Positive Skewness)	Mode Median Mean Left-Skewed (Negative Skewness)
One half of the distribution is mirror image of the other	Long Tail in the positive direction on the number line.	Long tail in the negative direction on the number line.
half.	Example: Length of the comments on any YouTube	Example: The distribution of age of deaths.
Example: Age, Height, IRIS.	channel, Average Income Distribution.	Age of death from natural causes (heart disease, cancer,
The distribution of heights is roughly symmetrical, with some being shorter	This is because a large percentage of the total people residing in a particular state	etc.). Most such deaths happen at older ages, with fewer cases happening at younger ages.
and some being taller.	tends to fall under the category of a low-income earning group, while only a few people fall	Here Mean is to the left of Median.
Mean=Median=Mode	under the high-income earning group.	Mode>Median>Mean
	Here Mean is to the right of Median	
	Mean>Median>Mode.	

Assignment 3: Confidence Interval

Population SD =100; Sample Size= 25; Sample Mean=520; C.I.= 80%; alpha= 1-0.8= 0.2 Area Under curve (0.1) =1-0.1=0.9 From Z Table Z (0.90147)= 1.29

Higher Fence =520 + Z (0.2/2) *100/5; 520+1.29*20= **545.8** Lower Fence= 520-Z (0.2/2) *100/5; 520-1.29*20=**494.2**

Conclusion: My Population Mean Lies within this Range i.e. 494.2 to 545.8 at 80% confidence Interval.

Assignment 4: Percentile

Que: What is the value of the 99 percentile?

2,2,3,4,5,5,5,6,7,8,8,8,8,9,9,10,11,11,12

Solution:

Here my data is already in ascending order. Total Values :20 Let's Apply Percentile Formula P*(n+1)/100

99*(21)/100= 20.79(Index)= 12

Value of 99 Percentile is 12.

Assignment 5: Hypothesis Testing

Que: A car believes that the percentage of citizens in city ABC that owns a vehicle is 60% or less. A sales manager disagrees with this. He conducted a hypothesis testing surveying 250 residents & found that 170 residents responded yes to owning a vehicle.

- a. State the null & alternate hypothesis.
- b. At a 10% significance level, is there enough evidence to support the idea that vehicle owner in ABC city is 60% or less.

Solution:

Step1: Set up the hypotheses and level of significance

H0: p0<=0.6 H1: p1>0.6 (One Tail Test); Alpha=10%(0.10) p0=0.6; q0=0.4; n=250; x=170;

p^=x/n=170/250=0.68

Step 2: Select and compute the appropriate test statistics

Z test with proportion= p^-p0/Sqrt (p0q0/n) Z(test)=0.68-0.6/Sqrt (0.6*0.4/250) Z(test)=0.08/Sqrt (0.00096) =0.08/0.03098=2.5823

Step 3: Set up the decision Rule

The Decision Rule here is: Reject The Null Hypothesis if test statistics is larger than the critical value. Z(test)>1.28

A sales manager disagrees hence One Tail Test at alpha 0.10 critical value is 1.28.

Step 4: Conclusion: We Reject the Null Hypothesis as 2.58>1.28 we have statistically significant evidence at alpha 10% Which means Sales Manager is right that vehicle owner in city ABC Is more than 60%.