الهندسة

ملخص لدرس: التجويلات الاعتبادية في المستوى مع تمارين وأمثلة محلولة

الأهداف والقدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
- بنم النذكير بالتماتا المحوري والتماتا	- النحرف على تقايس وتقابه الأشكال باستعمال	- تــنكير: النماتــل المحــوري، النماتــل
المركزي والإزاحة من خلال أنشطة وتمارين	الإزاحة والتحاكي والتماتل.	المركزي، الإزاحة؛
وتعريفها منجهيا أو تألفيا.	- استعمال الإزاحة والتحاكي والتماتل في حل مسائل	- النّحاكي؛
- يقدم التحاكي من خلال أمثلة وبنفس الطريقة	هندسية.	- الخاصية المميزة لكل من الإزاحة
التي قدمت به التحويلات السابقة.		والتحاكي، حالة التماتل المركزي؛
- تعتبر الصيغ التحليلية لهذه التحويلات خارج		 الحفاظ على معامل استقامية متجهتين؛
المقرر.		- المسافة والتحويلات السابقة؛
		- صور بعض الأشكال (قطعة، مستقيم،
		نصف مستقيم، دائرة، زاوية).

1. التماثل المحوري:

ليكن (D) مستقيما من المستوى.

التماثل المحوري الذي محوره

هو التحويل المستوي $S_{(D)}$ الذي (D)

(P)يربط كل نقطة من المستوى

بالنقطة M' حيث يكون (D) واسطا

القطعة [/MM].

. $S_{(D)}\left(M\right)=M$ فان M تنتمي إلى المستقيم (D) فان M تنتمي الم

 $S_{(D)}(N) = N'$ $S_{(D)}(M) = M'$

2. التماثل المركزي لتكن O نقطة من

المستوى (P). التماثل

الذي S_0 المركزي الذي مركزه O هو التحويل المستوي

يربط كل نقطة M من المستوى (P) بالنقطة M حيث تكون

النقطة O منتصف القطعة [MM].

 $S_o(O) = O$ ملاحظة:

[MM'] تعني O منتصف القطعة $S_O(M) = M'$

3. الإزاحة:

 \overline{u} متجهة غير منعدمة من المستوى. الإزاحة ذات المتجهة \overline{u} هي التحويل المستوي الذي M من M من M'المستوى (P) بالنقطة

 $.\overrightarrow{MM'} = \overrightarrow{u}$ حبث

t(N) = N' t(M) = M'

[AB] معينا مركزه O, و I منتصف معينا مركزه O

[AD] و J منتصف

1) أنشئ الشكل.

 $S_o((AB))$ و $S_o(O)$ و $S_o(B)$ و $S_o(A)$

$S_{(AC)}ig([AB]ig)$ $S_{(AC)}ig(Oig)$ $S_{(AC)}ig(Aig)$ $S_{(AC)}ig(Big)$ (3

 $S_{(AC)}((OI)) \circ S_{(AC)}(I) \circ$

 $t_{\overline{U}}([OB])$ و $t_{\overline{U}}(B)$ و $t_{\overline{BC}}(A)$ حدد (4

أجوبة : (1

(2

 $S_o(A) = C \bullet$ لأن :

OA = OC

 $S_O(B) = D \bullet$

OB = OD : \dot{V}

 $S_o(O) = O \bullet$

نقول النقطة 0

(AB) عن $S_o((AB))$: صورة المستقيم

$$S_{o}\left(\left(AB\right)\right)=\left(CD\right)$$
 : نذن $S_{o}\left(A\right)=C$: لدينا

نلاحظ أن صورة متقيم بواسطة تماثل مركزي هو مستقيم يوازيه

- .[BD] واسطا القطعة (AC) : \dot{V} $S_{(AC)}(B) = D$
- صامدة (AC) كان : كل النقط التي تنتمي الى $S_{(AC)}(A)$ صامدة $S_{(AC)}(A)$
 - النقط التي تنتمي الى $O \in (AC)$ لأن $S_{(AC)}(O) = O$

صامدة (AC)

$$\begin{cases} S_{(AC)}(A) = A \\ S_{(AC)}(B) = D \end{cases} : \dot{\mathcal{C}}^{\Sigma} S_{(AC)}([AB]) = [AD] \bullet$$

 $??????S_{(AC)}(I) \bullet$

 $S_{(AC)}\left(\left[AB\right]\right)=\left[AD\right]$ اذن I انن I $S_{(AC)}(I) = J$ هو منتصف $S_{(AC)}(I)$ هو منتصف $S_{(AC)}(I)$

 $\S^{\S,\S,\S}_{(AC)}((OI)) \bullet$

الأستاذ: عثماني نجيب

 $S_{(AC)}ig(ig(OIig)ig)=ig(OJig)$ اذن $S_{(AC)}ig(Oig)=O$ ادن $S_{(AC)}(I) = J$

 $::: t_{\overline{BC}}(A) \bullet$

 $t_{\overline{BC}}(A) = D$: ومنه $\overline{AD} = \overline{BC}$ معين اذن ABCD لدينا

 $::: t_{\overrightarrow{H}}(B) \bullet$

نعتبر المثلث : ABD : لدينا I منتصف ABD و I[BD] اذن : $\overrightarrow{BD} = 2\overrightarrow{IJ}$ ونعلم أن O منتصف [AD]

 $\overrightarrow{BO} = \overrightarrow{IJ}$: فن $\overrightarrow{BO} = 2\overrightarrow{IJ}$ ومنه : $\overrightarrow{BO} = 2\overrightarrow{BO}$ أي $\overrightarrow{BD} = 2\overrightarrow{BO}$

 $t_{\overline{i}\overline{i}}(B) = O$: وبالتالي

 $????t_{ii}([OB]) \bullet$

 $\overrightarrow{BO} = \overrightarrow{OD}$: اذن $\overrightarrow{BO} = \overrightarrow{IJ}$ ادن $\overrightarrow{BO} = \overrightarrow{IJ}$ ادینا $t_{\overline{II}}(B) = O$: ومنه $t_{\overline{II}}(O) = D$: ومنه $\overline{OD} = \overline{IJ}$ ونعلم أن $t_{\overline{II}}([OB]) = [DO]$: نذن

4. التحاكى:

لتكن Ω نقطة من المستوى و k عددا حقيقيا غير منعدم التحاكي h الذي مركزه Ω و نسبته k هو التحويل المستوي الذي M'يربط كل نقطة M من المستوى (P) بالنقطة

 $. \overrightarrow{\Omega M'} = k \overrightarrow{\Omega M'}$

ملاحظة: إذا كانتk=-1 فان التحويل h هو تماثل مركزي Ω مرکزه

يعنى أن النقط Ω و M و M'مستقيمية. h(M)=M'

 $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$ يعني h(M) = M'

 $\overrightarrow{\Omega N}' = k \overrightarrow{\Omega N}$ يعنى h(N) = N'

تمرین 2: لتکن A و M نقطتین من المستوی و أرسم النقطة

 $\frac{3}{4}$ صورة النقطة M بالتحاكي h ذا المركز A و نسبته M'

 $\overrightarrow{AM'} = \frac{3}{4} \overrightarrow{AM}$ يعني h(M) = M': الجواب

تمرین 3: عبر عن العلاقة المتجهیة : $\overrightarrow{IC} = -\frac{2}{3}\overrightarrow{IB}$ بتحاك

 $k=-\frac{2}{2}$ الجواب: اذا اعتبرنا h التحاكي الذي مركزه I و نسبته

h(B) = C يعني $\overrightarrow{IC} = -\frac{2}{3}\overrightarrow{IB}$: فأن $h(I, -\frac{2}{3})$

تمرين A: حدد نسبة و مركز التحاكي h الذي يحول A إلى B في الحالات التالية :

حيث I نقطة معلومة 2IA + 3AB = 0 .1

حيث Ω نقطة معلومة $2\overrightarrow{\Omega B} = -\overrightarrow{BA}$.2

حيث I نقطة معلومة $3\overrightarrow{IA} - 5\overrightarrow{AB} = \overrightarrow{0}$.3

 $\overrightarrow{IB} = k \overrightarrow{IA}$ يعني h(A) = Bh(I,k): الأجوبة

 $2\overrightarrow{IA} + 3\overrightarrow{AB} = \overrightarrow{0}(1$ $2\overrightarrow{IA} + 3\overrightarrow{AI} + 3\overrightarrow{IB} = \overrightarrow{0}$ يعني $2\overrightarrow{IA} + 3(\overrightarrow{AI} + \overrightarrow{IB}) = \overrightarrow{0}$ يعني $-\overrightarrow{IA} + 3\overrightarrow{IB} = \overrightarrow{0}$ يعنى $2\overrightarrow{IA} - 3\overrightarrow{IA} + 3\overrightarrow{IB} = \overrightarrow{0}$ $h\left(I,\frac{1}{3}\right)$ ومنه $\overrightarrow{IB} = \frac{1}{3}\overrightarrow{IA}$ يعني $2\Omega B = -BA(2)$ $2\overrightarrow{\Omega B} = \overrightarrow{A\Omega} + \overrightarrow{\Omega B}$ یعنی $2\overrightarrow{\Omega B} = \overrightarrow{AB} = \overrightarrow{AB}$ $\Omega B = -\Omega A$ يعنى $2 \overline{\Omega B} - \overline{\Omega B} = -\overline{\Omega A}$ يعنى

[]. الخاصيات المميزة لكل من التحاكي و الازاحة والتماثل المركزي $k \in \mathbb{R}^* - \{1\}$ ليكن T تحويلا اعتياديا في المستوى و

kو نسبته Ω التحاکی الذي مرکزه Ω و نسبته h

 $3\overrightarrow{IA} - 5\overrightarrow{AI} - 5\overrightarrow{IB} = \overrightarrow{0}$ يعني $3\overrightarrow{IA} - 5(\overrightarrow{AI} + \overrightarrow{IB}) = \overrightarrow{0}$ يعني

 $8\overrightarrow{IA} = 5\overrightarrow{IB}$ يعنى $3\overrightarrow{IA} + 5\overrightarrow{IA} - 5\overrightarrow{IB} = \overrightarrow{0}$

 $h\left(I,\frac{8}{5}\right)$ ومنه $\overrightarrow{IB} = \frac{8}{5}\overrightarrow{IA}$ يعني

N' ويحول M إلى M' ويحول M $\overrightarrow{M'N'} = k \overrightarrow{MN}$: بین أن

 $h(\Omega,-1)$ ومنه

 $3\overrightarrow{IA} - 5\overrightarrow{AB} = \overrightarrow{0}(3)$

الجواب:

 $\overrightarrow{\Omega M}' = k \overrightarrow{\Omega M}$ يعني h(M) = M' $\overrightarrow{\Omega N'} = k \overrightarrow{\Omega N}$ يعني h(N) = N'

 $\overrightarrow{M'N'} = \overrightarrow{M'\Omega} + \overrightarrow{\Omega N'} = -\overrightarrow{\Omega M'} + \overrightarrow{\Omega N'}$ $\overrightarrow{M'N'} = -k \overrightarrow{\Omega M} + k \overrightarrow{\Omega N} = k \left(-\overrightarrow{\Omega M} + \overrightarrow{\Omega N} \right)$

 $\overrightarrow{M'N'} = k \left(\overrightarrow{M\Omega} + \overrightarrow{\Omega N} \right) = k \overrightarrow{MN}$

يمكن تعميم النتيجة ونحصل عن الخاصية التالية:

خاصية: (الخاصية المميزة للتحاكي)

 $\overline{M'N'} = k\overline{MN}$: كان كان التحويل تحاكيا نسبته الله وفقط اذا كان تحاكيا نسبته T(N) = N' و T(M) = M': بحیث

M الإزاحة ذات المتجهة u بحيث تحول الإزاحة ذات المتجهة الإناد

N' إلى M' $\overrightarrow{M'N'} = \overrightarrow{MN}$: بين أن

 $\overrightarrow{NN'} = \overrightarrow{u}$ يعني $t_{\overline{u}}(N) = N'$ و $\overrightarrow{MM'} = \overrightarrow{u}$ يعني $t_{\overline{u}}(M) = M'$: الجواب ومنه : $\overrightarrow{NM}' = \overrightarrow{NM}'$ اذن : $\overrightarrow{MM}'N'N$ متوازي الأضلاع $\overrightarrow{M'N'} = \overrightarrow{MN}$: وبالتالي وبالتالي

يمكن تعميم النتيجة ونحصل عن الخاصية التالية:

خاصية: (الخاصية المميزة للازاحة)

یکون التحویل T از احة اذا وفقط اذا کان : $\overline{M'N'} = \overline{MN}$ بحیث : T(N) = N' σ T(M) = M'

ملاحظة: بما أن التماثل المركزي هو تحاكى نسبته k=-1 نحصل على الخاصية التالية ·

خاصية: (الخاصية المميزة للتماثل المركزي) يكون التحويل T تماثلا مركزيا اذا وفقط اذا كان:

T(N) = N' و T(M) = M': بحيث $\overrightarrow{M'N'} = -\overrightarrow{MN}$

$t_{\overline{AB}}\left(\left(AI\right)\right)=\left(BJ\right)$: وبالنالي $\begin{cases} t_{\overline{AB}}\left(I\right)=J\\ t_{\overline{AB}}\left(A\right)=B \end{cases}$: لدينا اذن

الاستنتاج: نعلم أن صورة مستقيم بواسطة ازاحة هو مستقيم يوازيه اذن (AI) || (BJ) ||

$$h(B) = C$$
: أ) لدينا حسب المعطيات (3

ونعلم أن صورة المستقيم (AB) بواسطة تحاك هو مستقيم يوازيه ويمر من صورة B أي يمر من C

(CD) اذن هو المستقيم

h((AB)) = (CD): وبالتالي

 $\overrightarrow{IC} = k\overrightarrow{IB}$ يعني h(B) = C (9

 $3\overrightarrow{CI}=2\overrightarrow{CB}$ ونعلم حسب المعطيات أن: $\overrightarrow{CI}=\frac{2}{3}\overrightarrow{CB}$ يعني

 $3\overrightarrow{CI}=2\overrightarrow{CI}+2\overrightarrow{IB}$ يعني $3\overrightarrow{CI}=2\left(\overrightarrow{CI}+\overrightarrow{IB}
ight)$

 $\overrightarrow{CI}=2\overrightarrow{IB}$ يعني $\overrightarrow{3CI}-2\overrightarrow{CI}=2\overrightarrow{IB}$ يعني $\overrightarrow{IC}=-2\overrightarrow{IB}$ ومنه $\overrightarrow{IC}=-2\overrightarrow{IB}$

 $\text{?????} h(J) = K \left(\int_{-\infty}^{\infty} (5)^{-1} \right)$

 $\overrightarrow{KI}=2\overrightarrow{AB}$: ونعلم حسب المعطيات أن: $\overrightarrow{IJ}=\overrightarrow{DC}$ وأن $\overrightarrow{KI}=2\overrightarrow{IJ}$ اذن : $\overrightarrow{KI}=2\overrightarrow{IJ}$ يعني $\overrightarrow{KI}=2\overrightarrow{IJ}$ وهذا يعني أن : h(J)=K

 $\overrightarrow{CK} = -2\overrightarrow{BJ}$: اذن $\begin{cases} h(J) = K \\ h(B) = C \end{cases}$

(حسب الخاصية المميزة للتحاكي)

ومنه بالمرور الى المنظم نجد : $\left\| \overrightarrow{CK} \right\| = \left\| -2 \right\| \left\| \overrightarrow{BJ} \right\| \stackrel{\text{let}}{\text{let}} = \left\| -2 \overrightarrow{BJ} \right\|$

CK = 2BJ : اذن

وجدنا $\overrightarrow{IJ} = \overrightarrow{AB}$ ادن : $\overrightarrow{IJ} = \overrightarrow{AB}$ متوازي الأضلاع اذن

 $AI = \frac{1}{2}CK$ يعني CK = 2AI : اذن BJ = AI

V. الحفاظ على معامل استقامية متجهتين:

D و C و B و A و B و C و B و C

 $\overrightarrow{AC'}=\frac{2}{3}\overrightarrow{AC}$ و $\overrightarrow{AB'}=\frac{2}{3}\overrightarrow{AB}$: بحیث $\overrightarrow{B'}$ و $\overrightarrow{B'}$ و نعتبر النقطتین $\overrightarrow{B'}$ و لیکن $\overrightarrow{B'}$ منتصف $\overrightarrow{B'C'}$

 $k = \frac{2}{3}$ وليكن h التحاكي الذي مركزه A نسبته

 $: \overline{B'C'} = \frac{2}{3}\overline{BC'}$ ابین أن (1

ين أن النقط J و A و A و A انقط مستقيمية h (2)باستعمال التحاكي h بين أن النقط h h يعني $\overline{AB'}=\frac{2}{3}\overline{AB}$ (1: الأجوية

 $\overrightarrow{B'C'} = \frac{2}{3}\overrightarrow{BC}$: اذن h(C) = C' : يعني $\overrightarrow{AC'} = \frac{2}{3}\overrightarrow{AC}$

(حسب الخاصية المميزة للتحاكي) الدينا I منتصف (BC) منتصف I لدينا (2)

Ⅲ. خاصیات

h(N) = N' و h(M) = M' أرسم h(O;2) : نشاط

ماذا تلاحظ

كل هذه التحويلات تحافظ على المسافة باستثناء التحاكي الذي نسبته k بحيث $k\neq 1$.

♦ كل هذه التحويلات تحافظ على المنتصف.

 كل هذه التحويلات تحافظ على الاستقامية و التوازي و التعامد و قياس الزوايا الهندسية.

IV. صور بعض الأشكال:

مستقيم (Δ) بو اسطة ازاحة أو تماثل مركزي أو تحاك \star

هو مستقیم (Δ') یوازي (Δ) .

حورة قطعة ABهي قطعة AB تقايس AB إذا كان التحويل إزاحة أو تماثلا. أما إذا كان التحويل تحاكيا نسبته AB فان AB'=|k|AB.

حسورة دائرة (E) ذات المركز c و الشعاع r هي دائرة مركزه c' اصورة c و شعاعها r إذا كان التحويل إزاحة أو تماثلا و شعاعها $|k| \cdot r$ أيد كان التحويل تحاكيا نسبته k.

 $\widehat{A'O'B'}$ مورة الزاوية مي الزاوية مي الزاوية هي الزاوية مي الزاوية مي صورة الزاوية الزاوية مي صورة الزاوية الزاوية مي صورة الزاوية الزاوية

 $\widehat{A'OB'} = \widehat{AOB}$

حيث A' و B' و A' هي صور A و B و A على التوالي بالتحويل. A على A يكن ABCD متوازي الأضلاع و A و نقطتين

. $\overrightarrow{IJ} = \overrightarrow{DC}$, $\overrightarrow{CI} = \frac{2}{3}\overrightarrow{CB}$ معر فنین ب

1) أنشئ الشكل.

بين أن (BJ) صورة (AI) بالإزاحة t_{AB} وماذا تستنتج بالنسبة للمستقيمين (BJ)و (AI)?

C نعتبر التحاكي h ذا المركز I و الذي يحاول B إلى (3)

 $\cdot h((AB)) = (CD)$ أ) بين أن

ب) أثبت أن نسبة \hat{h} هي العدد 2-.

 $\overrightarrow{KI} = 2\overrightarrow{AB}$ لتكن \overrightarrow{KI} نقطة حيث (4

 $\cdot h(J) = K$ بين أن (أ

 $\cdot AI = \frac{1}{2}CK$ ب أثبت أن

الأجوبة:1)

 $:: t_{\overline{AB}}(I) = J: :$ نبین أن (2)

 $\overrightarrow{DC} = \overrightarrow{AB}$ اذن \overrightarrow{ABCD} لدينا \overrightarrow{ABCD} متوازي الأضلاع

 $\overrightarrow{IJ} = \overrightarrow{DC}$: ولدينا حسب المعطيات

 $t_{\overline{AB}}(I) = J$:ومنه $\overrightarrow{IJ} = \overrightarrow{AB}$

 $t_{\overline{AB}}(A) = B$ اذن $\overline{AB} = \overline{AB}$: ولدينا

h(I) = J : فان J منتصف J فان Jالنقط J و A و I نقط مستقیمیة الدرس ومنه ملاحظات عامة حول الدرس الأستاذ: عثماني نجيب