→ Final project: Predict whether income exceeds \$50K/yr.

Data Set Information:

Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))

Prediction task is to determine whether a person makes over 50K a year.

Attribute Information:

Listing of attributes:

- earn: >50K, <=50K (Target atribute)
- age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov State-gov, Without-pay, Never-worked.
- · fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th,
 Doctorate, 5th-6th, Preschool.
- · education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Admclerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- · relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- sex: Female, Male.
- · capital-gain: continuous.
- · capital-loss: continuous.
- · hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

```
#Import main libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

We will use adult.data from UCI ML repository: https://archive.ics.uci.edu/ml/datasets/Census+Income

```
#Load DataSet
df_adult = pd.read_csv("/content/adult.data",sep=',',header=None)
```

▼ 1.Exploratory data analysis

#DataFrame visualization
df_adult.head()

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in- family	White	Male	2174	0	40	United- States	<=50K
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0	0	40	United- States	<=50K
_		B: 4	004704	444	7	Married-civ-	Handlers-	11 6 4	nt ii		^	^	40	United-	. 501/

#Dataframe size:

df_adult.head()

print('Size DF: ',df_adult.shape)

Size DF: (32561, 15)

OBS:

• There are not header for each feature (column). So, it will be necessary to rename each column.

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	h
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	2174	0	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Ma l e	0	0	

#Check data Type
df_adult.dtypes

age int64
workclass object
fnlwgt int64
education object
education-num object
occupation object
relationship
race object
sex object
capital-gain int64
nours-pen-week int64
native-country object
dary object
dary object

OBS:

- There are 6 numeric variables and 9 categorical variable.
- Target variable is "earn".

```
# Let us explore more about "earn" variable:
df_adult['earn'].value_counts()
```

<=50K 24720 >50K 7841 Name: earn, dtype: int64

OBS:

• Consider that target variable is not balanced in DataSet.

#Check for missing Values:
df_adult.isnull().sum()

age 0
workclass 0
finlwgt 0
education 0
education-num 0
marital-status 0
occupation 0
relationship race 8
sex 0
capital-gain 0
capital-loss 0
hours-per-week 0
native-country 0
earn dtype: int64

▼ 2.Correlation and Outliers

Let us briefly analyze the correlation between variables and the presence of any outliers.

#Import Ordinal Encoder from scikit-learn from sklearn.preprocessing import OrdinalEncoder

#Create a copy from original DataSet
df_adult_enc = df_adult.copy(deep=True)

oc = OrdinalEncoder()
df_adult_enc = pd.DataFrame(oc.fit_transform(df_adult_enc), columns =col_names)
df_adult_enc.head()

ag	e workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hour pe we
0 22.	7.0	2671.0	9.0	12.0	4.0	1.0	1.0	4.0	1.0	25.0	0.0	3!
1 33.	6.0	2926.0	9.0	12.0	2.0	4.0	0.0	4.0	1.0	0.0	0.0	1:
2 21.	0.4.0	14086.0	11.0	8.0	0.0	6.0	1.0	4.0	1.0	0.0	0.0	3!
3 36.	0 4.0	15336.0	1.0	6.0	2.0	6.0	0.0	2.0	1.0	0.0	0.0	3!

```
#Heatmap for correlation:
fig = plt.figure(figsize=(12,10))
sns.heatmap(df_adult_enc.corr(), annot=True,cmap='coolwarm')
plt.title('Correlation')
plt.show()
```


OBS

• Apparently, some feature like 'fnlwgt', 'race' or 'native-country' have low correlation with target feature 'earn'.

de in a

its at ex

#let us check for outliers:
for i in col_names:
 plt.figure(figsize=(6,6))
 sns.boxplot(data=df_adult_enc, y=i)
 plt.show()

• There are some outliers for 'age', 'education'and education-num'. We will continue with data processing.

→ 3.Data Processing

```
#Separete Data Frame into 'x' variable and 'y' variable:
x = df_adult.drop(['earn'],axis=1)
y = df_adult['earn']
#Libraries to create the model:
from sklearn.model_selection import train_test_split
```

```
#30% for 'test' and 70% for 'train':
  x_train, x_test, y_train, y_test_= train_test_split(x,y,test_size=0.30, random_state=43)
  #Check the size of train and test:
  x_train.shape, x_test.shape
       ((22792, 14), (9769, 14))
  y_train.shape, y_test.shape
       ((22792,), (9769,))
  #Let us check the content of x_{train}:
  x_train.head()
               sex capital- capital
                                                               Never-
                                                                             Prof-
        20717 24 Local-gov 32950 Bachelors
                                                         13
                                                                                    Not-in-family White
                                                                                                         Male
                                                                                                                     0
                                                                          specialty
                                                                           Other-
        11366 37
                    State-gov 34996
                                        HS-grad
                                                          9 Separated
                                                                                      Unmarried White Female
                                                                           service
                                                              Married-
                                                       13
                                                                             Prof-
        28940 46
                       Private 189498 Rachelors
                                                                                       Husband White
                                                                                                        Male
                                                                                                                     0
                                                                                                                            184
  x_train.dtypes
                          int64
       age
workclass
                        object
       fnlwgt
education
                         int64
object
       education-num
                          int64
                         object
object
       marital-status
       occupation
relationship
                         object
                         object
object
       capital-gain
                          int64
       capital-loss
hours-per-week
native-country
                          int64
                        object
       dtype: object
          04]
  OBS:
     • we have numeric and categorical variables for 'X' (train and test). In order to continue with the algorithms, we will code the categorical
       variable.

▼ 4.Training model: Decision Tree

  #if needed: !pip install category-encoders
  !pip install category-encoders
  #import category encoders:
  import category_encoders as ce
  encoder = ce.Ordinal Encoder (cols=['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country']) \\
  x train = encoder.fit transform(x train)
  x_test = encoder.transform(x_test)
  #Check transformation:
  x train.head()
              age workclass fnlwgt education education marital-
num status occupation relationship race sex capital- capital-
loss
                           1 32950
                           2 34996
                                                                                                                           0
        28940 46
                           3 189498
                                              1
                                                         13
                                                                    3
                                                                               1
                                                                                             3
                                                                                                   1 1
                                                                                                                 0
                                                                                                                        1848
       28302 50
                           3 301583
                                              2
                                                         9
                                                                                                                 0
                                                                                                                           0
  #Import Decision Tree
  from sklearn.tree import DecisionTreeClassifier
  #Create mode, depth=2 (x train <5k)
  tree = DecisionTreeClassifier(max_depth=2, random_state=43)
  #Training:
  tree.fit(x_train, y_train)
                      DecisionTreeClassifier
       DecisionTreeClassifier(max_depth=2, random_state=43)
```

▼ 4.1.Evaluation model: Decision Tree

#Calculate predictions for Train and Test
y_train_pred_tree = tree.predict(x_train)
y_test_pred_tree = tree.predict(x_test)

```
#Import metrics:
from sklearn.metrics import accuracy_score

#Accuracy for Train and test:
train_accuracy_tree = accuracy_score(y_train, y_train_pred_tree)
```


OBS:

- Using "Desicion Tree model", apparently features "marital-status" and "capital-gain" have more importace.
- Consider that accuracy for Train and test are too similar.
- Comparing "Feature Importances" and "Correlation" there are some feature like 'education' or 'sex' that should be compared.

▼ 5.Training model: Random Forest

```
#Import random forest
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators = 10, random_state=43)
rf.fit(x_train, y_train)
```

```
RandomForestClassifier
RandomForestClassifier(n_estimators=10, random_state=43)
```

```
#Predictions for Random Forest:
y_train_pred_rf = rf.predict(x_train)
y_test_pred_rf = rf.predict(x_test)
```

▼ 5.1.Evaluation model: Random Forest

```
#Import metrics (if needed)
from sklearn.metrics import accuracy_score

#Accuracy for Train and Test:
train_accuracy_rf = accuracy_score(y_train, y_train_pred_rf)
test_accuracy_rf = accuracy_score(y_test, y_test_pred_rf)

print('Accuracy_train: ',train_accuracy_rf.round(4)*100)

#Important: we could reduce estimators numbers to avoid overfitting
```

Accuracy_train: 98.77 Accuracy_test: 85.16

OBS:

• "Accuracy_Test" improved using Random Forest, but "Accuracy_train" is almost overfitting.

fnlwgt	0.163847
age	0.152644
capital-gain	0.119785
education-num	0.105336
relationship	0.084091
hours-per-week	0.081711
marital-status	0.078482
occupation	0.071368
workclass	0.039424
capital-loss	0.035409
education	0.025792
native-country	0.017718
race	0.013689
sex	0.010705
dtype: float64	

#BarPlot:

plt.figure(figsize=(10,6))
sns.barplot(x=features_scores, y=features_scores.index)
plt.xlabel('Features Importance Score')
plt.ylabel('Feature')
plt.file('Features Importance')
plt.show()

OBS:

- Using random forest algorithm, feature like 'fnlwgt' and 'age' become more relevant than 'capital-gain'.
- 'education-num', 'relationship', 'hours-per-week' become more relevant than 'marital-stauts'.

```
# Confusion Matrix for Ranfom Forest
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_test_pred_rf)
print('Matriz de confusion: \n\n',cm)
```

Matriz de confusion:

[[6963 471] [979 **1**356]]

#Plot confusion matrix
from sklearn.metrics import ConfusionMatrixDisplay

cmp = ConfusionMatrixDisplay(cm, display_labels =rf.classes_)
fig, ax = plt.subplots(figsize=(8,8))
cmp.plot(ax=ax)
plt.show()

#Random Forest Metrics: from sklearn.metrics import classification_report print(classification_report(y_test, y_test_pred_rf))

	precision	recall	f1-score	support
<=50K >50K	0.88 0.74	0.94 0.58	0.91 0.65	7434 2335
7301	0.74	0.56	0.05	2555
accuracy			0.85	9769
macro avg	0.81	0.76	0.78	9769
weighted avg	0.84	0.85	0.84	9769

Final Observations:

- Using Radom Forest give us more precision than decision tree, but there are some considerations
 - Dataset is unbalanced (look at Confusion Matrix).
 - "Precision", "Recall", "f1-score" and "support" have better results for '<=50k' (because of unbalanced dataset)
- Comparing "Correlation" and "Randon Forest Feature importance" there are many similitude, except for feature "fnlwgt". It would be interesting to understand the relevance of this feature.