1

GATE 2023 Assignment EE1205 Signals and Systems

Kurre Vinay EE23BTECH11036

Question: In the circuit shown $\omega = 100\pi \text{rads/s}$, R1=R2=2.2 Ω and L=7mH. the capacitance C for which Y_{in} is purely real is ____ mF

(GATE IN 2023)

Solution:

From Table I

variable	value	description	formulae
Yin	??	Admittance of circuit	$\frac{R_1 - Ls}{R_1^2 - (Ls)^2} + \frac{R_2 - \frac{1}{sC}}{R_2^2 - \left(\frac{1}{sC}\right)^2}$
X_L	$7s\Omega$	Inductive reactance	sL
X_C	$\frac{1}{sC}\Omega$	Capacitive reactance	1 sC
S	100πj	Laplace complex frequency	jω
ω	100πrads/s	Angular frequency	-
V	$V_0\cos(\omega t)$	voltage of source	-
R_1, R_2	2.2Ω	resistance of resistors	-
TABLE I			

TABLE: INPUT PARAMETERS

$$Y_{in} = \frac{R_1 - Ls}{R_1^2 - (Ls)^2} + \frac{R_2 - \frac{1}{sC}}{R_2^2 - \left(\frac{1}{sC}\right)^2}$$
(1)

$$Im(Y_{in}) = \frac{-Ls}{R_1^2 - (Ls)^2} + \frac{-\frac{1}{sC}}{R_2^2 - \left(\frac{1}{sC}\right)^2}$$
(2)

According to the question given, Y_{in} is purely real, so imaginary part should be equal to zero

Take the values from Table I

$$\frac{-1}{4.4} + \frac{\frac{1}{(100\pi)C}}{(2.2)^2 + \left(\frac{1}{(100\pi)C}\right)^2} = 0$$
(3)

$$\frac{\frac{1}{(100\pi)C}}{(2.2)^2 + \left(\frac{1}{(100\pi)C}\right)^2} = \frac{1}{4.4}$$
 (4)

$$(2.2)^2 - \frac{4.4}{(100\pi)C} + \left(\frac{1}{(100\pi)C}\right)^2 = 0$$
 (5)

$$\left(2.2 - \frac{1}{(100\pi)C}\right)^2 = 0\tag{6}$$

$$\frac{1}{(100\pi)C} = 2.2\tag{7}$$

$$C = \frac{700}{484} \text{mF} \tag{8}$$

$$C = 1.446281 \text{mF}$$
 (9)

The capacitance of capacitor C is 1.45mF

Fig. 1. the graph opf admittance (Y_{in}) amplitude