ÍNDICE DE LA PRESENTACIÓN

- 1.- Definición y utilización de los monitores
- 2.- Terminología usada en monitorización
- 3.- Clasificación de los monitores
- 4.- Monitores: Software, Hardware e Híbridos
- 5.- Casos especiales de uso de monitores: Sistemas distribuidos, Ejecución de programas y Contabilizar el uso de sistemas

1. <u>Definición de monitor</u>: Herramienta utilizada para "observar" las actividades de un sistema informático en su funcionamiento habitual

Utilización de los monitores:

Persona	Usa el monitor para
Programador de sistemas	Localizar bloques de código ineficientes o muy usados objetivo: mejorar las prestaciones del software
Administrador de sistemas	Medir la utilización de recursos objetivo: eliminar cuellos de botella Sintonizar un sistema objetivo: ajustar sus parámetros para optimizar el rendimiento
Analista de sistemas	Caracterizar la carga de un sistema objetivo: planificar capacidad o generar cargas sintéticas Medir variables de un sistema objetivo: parametrizar modelos y validarlos

2. Terminología usada en monitorización

- Evento: Es un cambio en el estado de un sistema
- Traza: Secuencia de eventos (almacenada en un fichero)
- Sobrecarga: Porcentaje de recursos consumido por el monitor
- Dominio: Conjunto de actividades observable por un monitor
- Cadencia de entrada: La máxima frecuencia de captura de eventos que puede observar un monitor correctamente

Modo ráfaga: Cadencia soportable sólo durante un corto período Modo sostenido: Cadencia soportable permanentemente

- Resolución: Es la granularidad de la información observada
- Ancho de entrada: Nº de bits de información grabados sobre un evento

Cadencia x Ancho == almacenamiento necesario para almacenar eventos

3. Clasificación de los monitores

Criterio 1: Tecnología de implementación (más usado)

- 1.- Hardware: es un equipo que se conecta al sistema a medir
- 2.- Software: consiste en programas integrados en el sistema a medir
- 3.- Híbrido: combinación de los dos anteriores

Criterio 2: Activación del mecanismo de captura

- Guiado por eventos (event-driven)
 Se activa sólo cuando ocurren ciertos eventos
- 2.- Guiado por tiempos (timer-driven)
 Se activa periódicamente mediante una interrupción de reloj

Criterio 3: Instante de visualización de resultados

- 1.- On-line: visualizan el estado del sistema continuamente o periódicamente
- 2.- Batch: capturan datos para visualizarlos y analizarlos posteriormente

4.1 Monitores software

Cada activación implica la ejecución de varias instrucciones - programa Los Monit SW son adecuados si la cadencia de entrada es moderada

Sobrecarga

Ejemplo: Se dispone de una CPU de 1 MIPS y un Monit SW que ejecuta 100 instrucciones / evento

Tiempo de procesamiento de un evento: $\frac{100 \ inst}{evento} x \frac{1 \ ms}{1000 \ inst} = 0,1 \ ms \ / \ evento$

¿Máxima frecuencia de captura (Sobrecarga máxima = 2,5%)?

$$\frac{2.5 \text{ ms }_\text{ejec}_\text{Mon}}{100 \text{ ms }_\text{ejec}_\text{Aplic}} X \frac{1 \text{ evento}}{0.1 \text{ ms }_\text{ejec}_\text{Mon}} = 0.25 \text{ eventos/ms}$$

Máxima frecuencia = 250 eventos/seg o Mín tiempo entre eventos = 4ms

<u>Problema</u>

Se sabe que un monitor tiene una sobrecarga del 10% y que un programa con 330 milisegundos de tiempo de respuesta según el monitor ha generado 1000 eventos. ¿Cuántos segundos consume el monitor en cada evento?

Problema

Un monitor ejecuta 2000 instrucciones cada vez que captura un evento en una CPU de 1000 MIPS. Si desea que tenga una sobrecarga máxima del 5%, ¿cuál es la máxima frecuencia de captura que puede tener? Incluir las unidades y justificar cuantitativamente.

Hay monitores SW en los que la <u>sobrecarga NO</u> es un factor importante <u>Ejemplo</u>:

Monitor para trazar un programa instrucción a instrucción - Depurador

Después de ejecutar cada instrucción del programa se ejecutan 100 instrucciones del monitor

La monitorización es aceptable si NO se altera:

- 1.- El camino de ejecución del programa
- 2.- La frecuencia de las instrucciones

Condiciones casi imposibles de cumplir:

- Condición 1.- Si el programa de multiproceso (multihilo)
- Condición 2.- Si la CPU dispone de caches

Aspectos importantes en el diseño de monitores software

¿Cómo activar la rutina de captura de datos?: Hay 3 mecanismos típicos

Instrucción TRAP
Consiste en instrumentar el software del sistema con interrupciones software

2 Cambiar la CPU a modo traza

Muchas CPUs soportan el modo traza. La sobrecarga es muy alta Uso típico: Producir un histograma de valores del contador de programa (Traza de direcciones de memoria)

3 Interrupción de temporización

El SO activa periódicamente la rutina de captura de eventos Este mecanismo se denomina muestreo (sampling) La sobrecarga es independiente de la cadencia de generación de eventos

<u>Aspectos importantes en el diseño de monitores software</u>

¿Cómo implementar los buffers de almacenamiento de datos?: Hay 3 aspectos típicos

<u>Tamaño</u>

Para minimizar la frecuencia de escritura en disco1

Para que cada escritura en disco no consuma mucha CPU Para que no se limite la RAM disponible para aplicaciones

Tamaño óptimo = F (cadencia_entrada; ancho_entrada; cadencia_vaciado)

Número

Proceso de monitorización

Mínimo: 2 buffers para permitir la concurrencia de los dos procesos

> Proceso de escritura en disco

Se pierde la Información

Hay que notificar el desbordamiento siempre

4.2 Monitores hardware

Son equipos que se acoplan al sistema a monitorizar mediante sondas Incorporan los siguientes elementos:

- 1) Sondas
- 2) Contadores
- 3) Elementos lógicos
- 4) Comparadores
- 5) Temporizadores
- 6) Módulos de cálculo
- 7) Discos y cintas

Hoy los Monit HW son equipos complejos basados en microprocesadores Los fabricantes suministran librerías para monitorizar diversos dispositivos

Los Monitores HW

- 1.- No consumen recursos del sistema monitorizado = No lo sobrecargan
- 2.- Permiten un cadencia de entrada de eventos muy alta

4.3 Monitores híbridos

Son equipos que combinan hardware y software se integra con el sistema

- Hardware: para capturar los datos

- Software: para configurar el hardware de monitorización y reducir, analizar y presentar los datos

CRITERIO	Monitores HARDWARE	Monitores SOFTWARE
1) Dominio	Difícil medir eventos del SO	Difícil medir eventos hard no relacionados a instrucciones
2) Cadencia_entrada	Son muy rápidos	Limitada por potencia CPU y máx sobrecarga tolerable
3) Resolución temporal	La del reloj del monitor	La del reloj del Sist Op
4) Experiencia analista	Buen conocimiento del Hard	Buen conocimiento del Soft
5) Capacidad de grabación	Limitada por memoria y disco Hoy no es un problema	Limitada por sobrecarga de transmisión de datos
6) Ancho_entrada	Puede grabar varios eventos simultáneamente	Captura simultáneamente sólo con múltiples CPUs
7) Sobrecarga	Ninguna	F(cadencia + ancho entrada)
8) Portabilidad	Usables con varios sistemas	Específicos para Hard+SO
9) Disponibilidad	Monitorizan sistemas que fallan Sirven para depurar fallos	No pueden monitorizar un sistema que falla
10) Errores	Se pueden conectar las sondas en puntos incorrectos	Una vez depurados los errores son raros
11) Coste	Alto	Medio

5.1 Monitores para sistemas distribuidos

Se organizan en varias capas

- Captura de datos en cada subsistema
- Recolección de datos en uno o varios sitios.
 Problema sincronización
- 3) Reducción y análisis de datos capturados
- 4) Presentación de los resultados.Interfaz de usuario

5.2 Monitores de la ejecución de programas

Son monitores software diseñados para observar el software de aplicaciones

Motivos para monitorizar un programa

El objetivo de monitorizar un programa es analizar su comportamiento: camino de ejecución, códigos repetitivos, donde consume más tiempo, verificar relaciones de variables y realizar pruebas de funcionamiento

¿Qué programas deben ser monitorizados?

- 1) Los que tienen restricciones temporales (aplicaciones de tiempo real)
- 2) Los de uso muy frecuente (sistema operativo, editores, etc.)
- 3) Los que consumen muchos recursos (incluyendo el tiempo de los usuarios)

Pasos típicos en la monitorización de la ejecución de programas

1 Añadir instrumentación al programa original de forma manual, automática o mixta

Ejecutar el programa instrumentado bajo el control del monitor

Análisis de los datos capturados con la ayuda de programas de análisis y visualización

5.3 Monitores para la contabilización del uso de sistemas

Son monitores software diseñados originariamente para facturar a los usuarios por el uso del sistema informático (generalmente un mainframe)

Los registros generados se denominan ACCOUNTING LOGS

Ventajas

- Están incluidos en los sistemas operativos
- Recopilan datos durante el funcionamiento normal del sistema ...
 La sobrecarga no es muy elevada
 Muestran el uso real del sistema

Desventajas

- No incluyen buenos programas de análisis, sólo datos textuales
- La granularidad de los datos puede ser inadecuada
- La precisión suele ser baja
- No suelen contener información a nivel de sistema

Los datos de los registros de contabilización

Tiempo de CPU y/o transcurrido Nº total de ops. de E/S y tamaño de los datos

Discos
Páginas mem.
Terminales - Suelen mostrar el uso de recursos

- Todo el sistema - Pueden referirse a Cada programa Cada sesión de usuario recursos usados por
- Violaciones de la seguridad Reinicializaciones del sistema Errores en dispositivos ... - Pueden incluir condiciones anormales de funcionamiento

FORMATO DE "VMSTAT"

[manuel@practicas manuel]\$ vmstat -n 1 4

procs	memory		swap	io sys	tem cpu
r b w	swpd free	buff cache	si so bi	bo in	cs us sy id
1 0 0	0 99168	2856 18172	0 0 28	2 163	27 0 1 99
0 0 0	0 99168	2856 18172	0 0 0	0 105	13 0 1 99
0 0 0	0 99168	2856 18172	0 0 0	0 104	10 0 1 99
0 0 0	0 99168	2856 18172	0 0 0	0 104	10 0 1 99

[manuel@practicas manuel]\$ vmstat -n 1

•			_				•				
		mem	ory	S	swaj	p	10	sys	tem		cpu
swp	d free	buff	cache	si	SO	bi	bo	in	CS	us	sy id
0	77916	3200	24736	0	0	22	1	149	22	1	1 99
0	77716	3216	24892	0	0	161	0	577	344	6	6 88
0	77308	3220	25292	0	0	404	0	1002	249	17	7 76
0	78248	3236	25960	0	0	669	47	1643	256	35	6 60
	swpe 0 0 0	swpd free 0 77916 0 77716 0 77308	swpd free buff 0 77916 3200 0 77716 3216 0 77308 3220	swpd free buff cache 0 77916 3200 24736 0 77716 3216 24892 0 77308 3220 25292	swpd free buff cache si 0 77916 3200 24736 0 0 77716 3216 24892 0 0 77308 3220 25292 0	swpd free buff cache si so 0 77916 3200 24736 0 0 0 77716 3216 24892 0 0 0 77308 3220 25292 0 0	swpd free buff cache si so bi 0 77916 3200 24736 0 0 22 0 77716 3216 24892 0 0 161 0 77308 3220 25292 0 0 404	swpd free buff cache si so bi bo 0 77916 3200 24736 0 0 22 1 0 77716 3216 24892 0 0 161 0 0 77308 3220 25292 0 0 404 0	swpd free buff cache si so bi bo in 0 77916 3200 24736 0 0 22 1 149 0 77716 3216 24892 0 0 161 0 577 0 77308 3220 25292 0 0 404 0 1002	swpd free buff cache si so bi bo in cs 0 77916 3200 24736 0 0 22 1 149 22 0 77716 3216 24892 0 0 161 0 577 344 0 77308 3220 25292 0 0 404 0 1002 249	memory swap io system swpd free buff cache si so bi bo in cs us 0 77916 3200 24736 0 0 22 1 149 22 1 0 77716 3216 24892 0 0 161 0 577 344 6 0 77308 3220 25292 0 0 404 0 1002 249 17 0 78248 3236 25960 0 0 669 47 1643 256 35