

Genetic algorithms

An optimization algorithm modelled after Darwin's evolutionary theory

Lecture 1/3 - Introduction

Andreas Dyrøy Jansson

Background

- First described by John Holland (1964)
- Based on evolutionary theory
 - Key concepts include:
 - Representation
 - Chromosomes
 - Genes
 - Crossover
 - Selection
 - Fitness
 - Mutations

Application areas for genetic algorithms

- Multi-dimensional search
 - Multiple parameters
- Optimization problems
 - Design of mechanical parts
 - Visual design
- Pattern recognition
- Text analysis

Algorithm overview

- Generate a random initial population
- Assign a fitness score
- Select the fittest individual(s)
- Recombine features
 - Crossover
 - Mutation
- Repeat until termination criteria is met

Problem representation

- Chromosomes
 - A set of genes (features)
- High-level representation
 - Feature values are used directly
- Low-level representation
 - Values are mapped to a simpler form
 - Binary strings

Evaluation methods

- Depends on the problem one is trying to solve
- Criteria may be static or change over time
- Determines fitness of individuals
 - How "close" are they to the optimum?
 - May be based on cost, speed, effiency etc.

Coming up

- Initial population definition
 - Encoding
 - Generation
- Selection processes
- Crossover
- Mutation

Image credits

- "Flickr is a search engine" by kevin dooley is licensed under CC BY 2.0
- "Sample Analysis at Mars (SAM) Media Day" by NASA Goddard Photo and Video is licensed under CC BY 2.0
- "Chromosomes and DNA double helix" by National Institutes of Health (NIH) is licensed under CC BY-NC 2.0
- "Monitoring and Evaluation System" by World Bank Photo Collection is licensed under CC BY-NC-ND 2.0