From $\lambda x.x$ to Facebook - practical Lambda Calculus and its origins

Functional Miners Meetup

May 21, 2019

Contents

- Introduction
- What is Lambda Calculus
 - Definition
 - Grammar in BNF Notation
 - Normal and Applicative orders
 - Beta, Eta Reductions
 - Alpha Conversion, Free and Bound Variables
- Practical Lambda Calculus
 - What can we encode?
 - Pairs
 - Conditionals
 - Bool expressions
 - Natural Numbers

Contents

- Introduction
- What is Lambda Calculus
 - Definition
 - Grammar in BNF Notation
 - Normal and Applicative orders
 - Beta, Eta Reductions
 - Alpha Conversion, Free and Bound Variables
- Practical Lambda Calculus
 - What can we encode?
 - Pairs
 - Conditionals
 - Bool expressions
 - Natural Numbers

3 / 53

Introduction

Let us talk some history

May 21, 2019

4 / 53

Alonzo Church (1903-1995)

American mathematician and logician who made a major contributions to mathematical logic and theoretical computer science, creator of Lambda Calculus. Professor at Princeton and California (UCLA). Teacher of Alan Turing, Stephen Cole Kleene and Rosser, J. Barkley.

Biggest accomplishments:

Church-Rosser Theorem

Alonzo Church (1903-1995)

American mathematician and logician who made a major contributions to mathematical logic and theoretical computer science, creator of Lambda Calculus. Professor at Princeton and California (UCLA). Teacher of Alan Turing, Stephen Cole Kleene and Rosser, J. Barkley.

Biggest accomplishments:

- Church-Rosser Theorem
- Church-Turing Theorem

Alonzo Church (1903-1995)

American mathematician and logician who made a major contributions to mathematical logic and theoretical computer science, creator of Lambda Calculus. Professor at Princeton and California(UCLA). Teacher of Alan Turing, Stephen Cole Kleene and Rosser, J. Barkley.

Biggest accomplishments:

- Church-Rosser Theorem
- Church-Turing Theorem
- Church Thesis

Alonzo Church (1903-1995)

American mathematician and logician who made a major contributions to mathematical logic and theoretical computer science, creator of Lambda Calculus. Professor at Princeton and California(UCLA). Teacher of Alan Turing, Stephen Cole Kleene and Rosser, J. Barkley.

Biggest accomplishments:

- Church-Rosser Theorem
- Church-Turing Theorem
- Church Thesis
- Formal system of computation Lambda Calculus

Work on Foundations Of Mathematics

- Work on Foundations Of Mathematics
- (1936) formal system: computability based on notion of function and logic formalization

- Work on Foundations Of Mathematics
- (1936) formal system: computability based on notion of function and logic formalization
- Kleene/Rosser proved system inconsistent

- Work on Foundations Of Mathematics
- (1936) formal system: computability based on notion of function and logic formalization
- Kleene/Rosser proved system inconsistent
- Church's formal system stripped of logic formalization Lambda Calculus

- Work on Foundations Of Mathematics
- (1936) formal system: computability based on notion of function and logic formalization
- Kleene/Rosser proved system inconsistent
- Church's formal system stripped of logic formalization Lambda Calculus
- ullet Church and Rosser prove LC to be confluent under eta-reduction

- Work on Foundations Of Mathematics
- (1936) formal system: computability based on notion of function and logic formalization
- Kleene/Rosser proved system inconsistent
- Church's formal system stripped of logic formalization Lambda Calculus
- ullet Church and Rosser prove LC to be confluent under eta-reduction

• Scarce capabilities of the system

- Scarce capabilities of the system
- Kleene defines predecessor function (during a dentist visit he says)

Andrzej Spiess (λ) Functional Miners May 21, 2019 7 / 53

- Scarce capabilities of the system
- Kleene defines predecessor function (during a dentist visit he says)
- Church Thesis about universal description of computation again on the spotlight

- Scarce capabilities of the system
- Kleene defines predecessor function (during a dentist visit he says)
- Church Thesis about universal description of computation again on the spotlight
- Turing's model of computation

Types of Lambda Calculus:

- 1934 Simply (implicitly) Typed Lambda Calculus (Haskell Curry)
- 1940 Simply (explicitly) Typed Lambda Calculus (Church)
- 1972 System F, System ω (Girard)

Contents

- Introduction
- What is Lambda Calculus
 - Definition
 - Grammar in BNF Notation
 - Normal and Applicative orders
 - Beta, Eta Reductions
 - Alpha Conversion, Free and Bound Variables
- Practical Lambda Calculus
 - What can we encode?
 - Pairs
 - Conditionals
 - Bool expressions
 - Natural Numbers

What is Lambda Calculus

What it really is?

Definition

A formal system in mathematical logic for expressing computation based on function abstraction

May 21, 2019

Definition

A formal system in mathematical logic for expressing computation based on function abstraction

Let X be the infinite, countable set of variables then lambda expression is defined as:

• if $a \in X$ then a is a lambda expression

Definition

A formal system in mathematical logic for expressing computation based on function abstraction

Let X be the infinite, countable set of variables then lambda expression is defined as:

- if $a \in X$ then a is a lambda expression
- if M is a lambda expression and $x \in X$, then $\lambda x.M$ is a lambda expression

Definition

A formal system in mathematical logic for expressing computation based on function abstraction

Let X be the infinite, countable set of variables then lambda expression is defined as:

- if $a \in X$ then a is a lambda expression
- if M is a lambda expression and $x \in X$, then $\lambda x.M$ is a lambda expression
- if N and M are lambda expressions then (N M) is a lambda expression

Andrzej Spiess (λ)

BNF:

BNF:

Haskell:

• a variable, mainly letters e.g. a, b, x, y

Andrzej Spiess (λ)

- a variable, mainly letters e.g. a, b, x, y
- a function abstraction called <u>lambda abstraction</u> which corresponds directly to function definition, e.g. λ x.y

May 21, 2019

- a variable, mainly letters e.g. a, b, x, y
- a function abstraction called <u>lambda abstraction</u> which corresponds directly to function definition, e.g. λ x.y
- An application, for us programmers a function invocation e.g. (λx . y x)

What is Lambda Calculus

There are two ways of evaluating function applications. All occurrences of bound variable are then replaced by either:

There are two ways of evaluating function applications. All occurrences of bound variable are then replaced by either:

• the value of the argument expression - **Applicative Order**

There are two ways of evaluating function applications. All occurrences of bound variable are then replaced by either:

- the value of the argument expression Applicative Order
- the unevaluated argument expression Normal Order

There are two ways of evaluating function applications. All occurrences of bound variable are then replaced by either:

- the value of the argument expression Applicative Order
- the unevaluated argument expression Normal Order

double
$$x = plus x x$$

average
$$x y = divide (plus x y) 2$$

Lets evaluate:

Normal order of evaluation - rewrite the leftmost outermost occurrence of a function application

• *double* (*average 2 4*) =>

- double (average 2 4) =>
- plus (average 2 4) (average 2 4) =>

- double (average 2 4) =>
- plus (average 2 4) (average 2 4) =>
- plus (divide (plus 2 4) 2) (average 2 4) =>

- double (average 2 4) =>
- plus (average 2 4) (average 2 4) =>
- plus (divide (plus 2 4) 2) (average 2 4) =>
- plus (divide 6 2) (average 2 4) =>

- double (average 2 4) =>
- plus (average 2 4) (average 2 4) =>
- plus (divide (plus 2 4) 2) (average 2 4) =>
- plus (divide 6 2) (average 2 4) =>
- plus 3 (average 2 4) =>

- double (average 2 4) =>
- plus (average 2 4) (average 2 4) =>
- plus (divide (plus 2 4) 2) (average 2 4) =>
- plus (divide 6 2) (average 2 4) =>
- plus 3 (average 2 4) =>
- plus 3 (divide (plus 2 4) 2) =>

- double (average 2 4) =>
- plus (average 2 4) (average 2 4) =>
- plus (divide (plus 2 4) 2) (average 2 4) =>
- plus (divide 6 2) (average 2 4) =>
- plus 3 (average 2 4) =>
- plus 3 (divide (plus 2 4) 2) =>
- plus 3 (divide 6 2) =>

- double (average 2 4) =>
- plus (average 2 4) (average 2 4) =>
- plus (divide (plus 2 4) 2) (average 2 4) =>
- plus (divide 6 2) (average 2 4) =>
- plus 3 (average 2 4) =>
- plus 3 (divide (plus 2 4) 2) =>
- plus 3 (divide 6 2) =>
- *plus* 3 3 =>

- *double* (*average 2 4*) =>
- plus (average 2 4) (average 2 4) =>
- plus (divide (plus 2 4) 2) (average 2 4) =>
- plus (divide 6 2) (average 2 4) =>
- plus 3 (average 2 4) =>
- plus 3 (divide (plus 2 4) 2) =>
- plus 3 (divide 6 2) =>
- plus 3 3 =>
- 6

Applicative Order of reduction - rewrite the leftmost innermost occurrence of a function application first

• *double* (*average 2 4*) =>

Applicative Order of reduction - rewrite the leftmost innermost occurrence of a function application first

- *double* (*average* 2 4) =>
- double (divide (plus 2 4) 2) =>

May 21, 2019

17 / 53

Andrzej Spiess (λ) Functional Miners

- double (average 2 4) =>
- *double* (*divide* (*plus* 2 4) 2) =>
- *double* (*divide* 6 2) =>

- double (average 2 4) =>
- *double* (*divide* (*plus* 2 4) 2) =>
- *double* (*divide* 6 2) =>
- *double 3* =>

- double (average 2 4) =>
- *double* (*divide* (*plus* 2 4) 2) =>
- *double* (*divide* 6 2) =>
- double 3 =>
- plus 3 3 =>

- double (average 2 4) =>
- double (divide (plus 2 4) 2) =>
- *double* (*divide* 6 2) =>
- double 3 =>
- plus 3 3 =>
- 6

What is Lambda Calculus evaluationstrategies()

- Strict
 - Call by value (Swift, C)
 - Call by address/reference (C++)
 - Call by sharing (Java)
- Non-strict
 - Call by name (Haskell)
 - Call by need (memoization)
 - Lazy Evaluation (Miranda)

What is Lambda Calculus β reduction()

Definition

Beta reduction is a reduction in form of susbtitution of lambda expressions among terms called beta redexes that may lead to beta normal form of the expression

- Beta redex is a term of form $(\lambda x.A)M$
- Beta Normal Form term is in normal form if no beta reduction is possible

19 / 53

Let
$$M = \underline{x}y$$

Andrzej Spiess (λ) Functional Miners May 21, 2019 20 / 53

Let
$$M = \underline{x}y$$
 ($\lambda x.M$ E)

Let
$$M = \underline{x}y$$

$$(\lambda x.M E) \xrightarrow{(\lambda x.M E)} M[x := E]$$

Let
$$M = \underline{x}y$$

$$(\lambda x.M E) \xrightarrow{M[x := E]} \underline{E}y$$

 $\lambda y.y$ is a normal form of:

Andrzej Spiess (λ) Functional Miners May 21, 2019 21 / 53

 λ y.y is a normal form of:

• $(\lambda x.\lambda y.y (\lambda z.z z \lambda z.zz))$

21 / 53

 λ y.y is a normal form of:

- (λx.λy.y (λz.z z λz.zz))
- λx.x
- ...

 λ y.y is a normal form of:

- (λx.λy.y (λz.z z λz.zz))
- λx.x
- ...

Is there only one unique normal form?

 λ y.y is a normal form of:

- (λx.λy.y (λz.z z λz.zz))
- λx.x
- ...

Is there only one unique normal form? **Yes!**

 λ y.y is a normal form of:

- (λx.λy.y (λz.z z λz.zz))
- λx.x
- ...

Is there only one unique normal form?

Yes!

Can we always obtain a normal form of an expression?

 λ y.y is a normal form of:

- (λx.λy.y (λz.z z λz.zz))
- λx.x
- ...

Is there only one unique normal form?

Yes!

Can we always obtain a normal form of an expression?

No! Consider:

$$(\lambda z. (z z) \lambda x. (x x))$$

•
$$(\lambda z. (z z) \lambda x. (x x)) =>$$

Andrzej Spiess (λ) Functional Miners May 21, 2019 22 / 53

- $(\lambda z. (z z) \lambda x. (x x)) =>$
- $(\lambda x. (x x) \lambda x. (x x)) =>$

May 21, 2019

22 / 53

- $(\lambda z. (z z) \lambda x. (x x)) =>$
- $(\lambda x. (x x) \lambda x. (x x)) =>$
- $(\lambda x. (x x) \lambda x. (x x)) =>$

- $(\lambda z. (z z) \lambda x. (x x)) =>$
- $(\lambda x. (x x) \lambda x. (x x)) =>$
- $(\lambda x. (x x) \lambda x. (x x)) =>$
- ...

What is Lambda Calculus churchrossertheorem()

Church Rosser Theorem I Corollary

Value of normal form does not depend on order, if reduction terminates it provides a unique normal form.

Church Rosser Theorem II Corollary

If an expression has a normal form, it can be reached by normal order evaluation.

What is Lambda Calculus alphaconversion()

$$((\lambda func.\lambda arg.(func arg) arg) z)$$

- => $(\lambda arg.(arg arg) z)$
- => (z z)(!)

using α conversion we rename arg to arg1:

- == $((\lambda \text{func}.\lambda \text{arg1}.(\text{func arg1}) \text{ arg}) \text{ z})$
- => $(\lambda arg1.(arg arg1) z)$
- $\bullet => (arg z)$

What is Lambda Calculus debruijn()

Nicolaas Govert de Bruijn

$$\lambda x.\lambda y.\lambda z. \times z$$
 (y z) $\xrightarrow{\text{de bruijn}} \lambda \lambda \lambda \lambda 3 1$ (2 1)

Andrzej Spiess (λ)

Contents

- Introduction
- What is Lambda Calculus
 - Definition
 - Grammar in BNF Notation
 - Normal and Applicative orders
 - Beta, Eta Reductions
 - Alpha Conversion, Free and Bound Variables
- Practical Lambda Calculus
 - What can we encode?
 - Pairs
 - Conditionals
 - Bool expressions
 - Natural Numbers

$$(\lambda x.x \underline{5}) => \underline{5}$$

$$(\lambda x.x \underline{5}) => \underline{5}$$
$$(\lambda x.x \underline{\lambda f.\lambda x.(f x)}) => \underline{\lambda f.\lambda x.(f x)}$$

$$(\lambda x.x \underline{5}) => \underline{5}$$

$$(\lambda x.x \underline{\lambda f. \lambda x. (f x)}) => \underline{\lambda f. \lambda x. (f x)}$$

$$(\lambda x.x \underline{\lambda z.z}) => \underline{\lambda z.z}$$

What can we encode?

but can we represent numbers, boolean expressions, types?

28 / 53

Lets start with a pair:

Andrzej Spiess (λ) Functional Miners May 21, 2019 29 / 53

Lets start with a pair:

Definition

 $\mathsf{pair} = \lambda \mathsf{x}.$

Lets start with a pair:

Definition

pair = $\lambda x. \lambda y$.

Lets start with a pair:

Definition

 $pair = \lambda x. \lambda y. \lambda f. ((f x) y)$

Lets start with a pair:

Definition

$$pair = \lambda x. \lambda y. \lambda f. ((f x) y)$$

• pair 1 2

Lets start with a pair:

Definition

$$pair = \lambda x. \lambda y. \lambda f. ((f x) y)$$

- pair 1 2
- == $((\lambda x.\lambda y.\lambda f. ((f x) y) 1) 2)$

Lets start with a pair:

Definition

 $pair = \lambda x. \lambda y. \lambda f. ((f x) y)$

- pair 1 2
- == $((\lambda x. \lambda y. \lambda f. ((f x) y) 1) 2)$
- => $(\lambda y.\lambda f. ((f 1) y) 2)$

Lets start with a pair:

Definition

 $pair = \lambda x. \lambda y. \lambda f. ((f x) y)$

- pair 1 2
- $\bullet == ((\lambda x.\lambda y.\lambda f. ((f x) y) 1) 2)$
- => $(\lambda y.\lambda f. ((f 1) y) 2)$
- => λf . ((f 1) 2)

What if we want to get the first value?

What if we want to get the first value?

Definition

first = λx .

What if we want to get the first value?

Definition

 $\mathsf{first} = \lambda \mathsf{x}.\lambda \mathsf{y}.$

What if we want to get the first value?

Definition

 $\mathsf{first} = \lambda \mathsf{x}.\lambda \mathsf{y}.\mathsf{x}$

What if we want to get the first value?

Definition

first =
$$\lambda x. \lambda y. x$$

• => ... =>
$$(\lambda f. ((f 1) 2) first)$$

What if we want to get the first value?

Definition

first =
$$\lambda x. \lambda y. x$$

- => ... => $(\lambda f. ((f 1) 2) first)$
- => ((first 1) 2)

What if we want to get the first value?

Definition

first =
$$\lambda x. \lambda y. x$$

- => ... => $(\lambda f. ((f 1) 2) first)$
- => ((first 1) 2)
- == $((\lambda x.\lambda y.x 1) 2)$

What if we want to get the first value?

Definition

$$\mathsf{first} = \lambda \mathsf{x}.\lambda \mathsf{y}.\mathsf{x}$$

- => ... => $(\lambda f. ((f 1) 2) first)$
 - => ((first 1) 2)
 - $\bullet == ((\lambda x. \lambda y. x 1) 2)$
 - => $(\lambda y.1) 2$

What if we want to get the first value?

Definition

first = $\lambda x. \lambda y. x$

- => ... => $(\lambda f. ((f 1) 2) first)$
 - => ((first 1) 2)
 - $\bullet == ((\lambda x. \lambda y. x 1) 2)$
 - => $(\lambda y.1) 2)$
 - $\bullet => 1$

You have just encoded pairs!

Pair

 $\lambda x.\lambda y.\lambda f.$ ((f x) y)

Select First

 $\lambda x. \lambda y. x$

Select Second

 $\lambda x. \lambda y. y$

Haskell implementation

pair ::
$$a \rightarrow b \rightarrow (forall \ c. \ (a \rightarrow b \rightarrow c) \rightarrow c)$$
pair $x \ y = f \rightarrow f \ x \ y$

first :: $a \rightarrow b \rightarrow a$
first $x \ y = x$

second :: $a \rightarrow b \rightarrow b$
second $x \ y = y$

< condition >? < expression >:< expression >

Andrzej Spiess (λ) Functional Miners May 21, 2019 33 / 53

< condition >? < expression >:< expression > e.g.
$$max = x > y?x : y$$

< condition >? < expression >:< expression >
e.g.
$$max = x > y?x : y$$

Lets model a condition abstraction using our pair definition:

Definition

$$if = \lambda e1.\lambda e2.\lambda c.((c e1) e2)$$

if expression1 expression2

• == $((\lambda e1.\lambda e2.\lambda c.((c e1) e2) expression1) expression2)$

Andrzej Spiess (λ) Functional Miners May 21, 2019 34 / 53

if expression1 expression2

- == $((\lambda e1.\lambda e2.\lambda c.((c e1) e2) expression1) expression2)$
- => $(\lambda e2.\lambda c.((c expression1) e2) expression2)$

if expression1 expression2

- == $((\lambda e1.\lambda e2.\lambda c.((c e1) e2) expression1) expression2)$
- => $(\lambda e2.\lambda c.((c expression1) e2) expression2)$
- => λ c.((c expression1) expression2)

if expression1 expression2

- == $((\lambda e1.\lambda e2.\lambda c.((c e1) e2) expression1) expression2)$
- => $(\lambda e2.\lambda c.((c expression1) e2) expression2)$
- => λ c.((c expression1) expression2)

if expression1 expression2

- == $((\lambda e1.\lambda e2.\lambda c.((c e1) e2) expression1) expression2)$
- => $(\lambda e2.\lambda c.((c expression1) e2) expression2)$
- => λ c.((c expression1) expression2)

(λ c.((c expression1) expression2) first)

- == $(\lambda c.((c expression1) expression2) \lambda.x..x)$
- => $((\lambda.x.\lambda y.x expression1) expression2)$
- => $(\lambda y. expression1 expression2)$
- => expression1

Definition

true = λ .x. λ y.x

Definition

 $\mathsf{false} = \lambda.\mathsf{x}.\lambda\mathsf{y}.\mathsf{y}$

Practical Lambda Calculus not()

X	NOT X
TRUE	FALSE
FALSE	TRUE

Lets look at C-ish example:

x ? false : true

and using if:

(((if false) true) x)

Practical Lambda Calculus not()

 $\bullet == (((if false) true) x)$

37 / 53

Andrzej Spiess (λ) Functional Miners May 21, 2019

Practical Lambda Calculus not()

- $\bullet == (((if false) true) x)$
- == (((λ e1. λ e2. λ c.((c e1) e2) false) true) x)

(((if false) true) x)

- $\bullet == (((if false) true) x)$
- == $(((\lambda e1.\lambda e2.\lambda c.((c e1) e2) false) true) x)$
- => $((\lambda e2.\lambda c.((c false) e2) true) x)$

(((if false) true) x)

- $\bullet == (((if false) true) x)$
- == $(((\lambda e1.\lambda e2.\lambda c.((c e1) e2) false) true) x)$
- => $((\lambda e2.\lambda c.((c false) e2) true) x)$
- => $((\lambda c.((c false) true) x)$

(((if false) true) x)

- $\bullet == (((if false) true) x)$
- == $(((\lambda e1.\lambda e2.\lambda c.((c e1) e2) false) true) x)$
- => $((\lambda e2.\lambda c.((c false) e2) true) x)$
- => $((\lambda c.((c false) true) x)$
- => ((x false) true)

(((if false) true) x)

- $\bullet == (((if false) true) x)$
- == $(((\lambda e1.\lambda e2.\lambda c.((c e1) e2) false) true) x)$
- => $((\lambda e2.\lambda c.((c false) e2) true) x)$
- => $((\lambda c.((c false) true) x)$
- => ((x false) true)

Definition

 $not = \lambda x.((x false) true)$

Lets check if our negation is correctly encoded

Andrzej Spiess (λ) Functional Miners May 21, 2019 38 / 53

Lets check if our negation is correctly encoded

not true

38 / 53

Lets check if our negation is correctly encoded

not true

• == $(\lambda x.((x false) true) true)$

Andrzej Spiess (λ) Functional Miners

Lets check if our negation is correctly encoded

- == $(\lambda x.((x false) true) true)$
- => ((true false) true)

Lets check if our negation is correctly encoded

- == $(\lambda x.((x false) true) true)$
- => ((true false) true)
- == $((\lambda x. \lambda y. x false) true)$

Lets check if our negation is correctly encoded

- == $(\lambda x.((x false) true) true)$
- => ((true false) true)
- == $((\lambda x. \lambda y. x false) true)$
- => $(\lambda y.false true)$

Lets check if our negation is correctly encoded

- == $(\lambda x.((x false) true) true)$
- => ((true false) true)
- == $((\lambda x. \lambda y. x \text{ false}) \text{ true})$
- => $(\lambda y.false true)$
- => <u>false</u>

not false

Andrzej Spiess (λ) Functional Miners May 21, 2019

not false

• == $(\lambda x.((x false) true) false)$

Andrzej Spiess (λ) Functional Miners May 21, 2019 39 / 53

not false

- == $(\lambda x.((x false) true) false)$
- $\bullet => ((false false) true)$

Andrzej Spiess (λ)

not false

- == $(\lambda x.((x false) true) false)$
- $\bullet => ((false false) true)$
- == $((\lambda x. \lambda y. y \text{ false}) \text{ true})$

not false

- == $(\lambda x.((x false) true) false)$
- => ((false false) true)
- == $((\lambda x. \lambda y. y \text{ false}) \text{ true})$
- => $(\lambda y.y true)$

not false

- == $(\lambda x.((x false) true) false)$
- => ((false false) true)
- == $((\lambda x. \lambda y. y \text{ false}) \text{ true})$
- => $(\lambda y.y true)$
- => <u>true</u>

X	Υ	X AND Y
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	FALSE	FALSE
FALSE	TRUE	FALSE

Lets look at C-ish example:

and using if:

$$\bullet == (((if y) false) x)$$

41 / 53

Andrzej Spiess (λ) Functional Miners May 21, 2019

- $\bullet == (((if y) false) x)$
- == (((λ e1. λ e2. λ c.((c e1) e2) y) false) x)

- $\bullet == (((if y) false) x)$
- == $(((\lambda e1.\lambda e2.\lambda c.((c e1) e2) y) false) x)$
- => $((\lambda e2.\lambda c.((c y) e2) false) x)$

- $\bullet == (((if y) false) x)$
- == $(((\lambda e1.\lambda e2.\lambda c.((c e1) e2) y) false) x)$
- => $((\lambda e2.\lambda c.((c y) e2) false) x)$
- => $(\lambda c.((c y) false) x)$

- $\bullet == (((if y) false) x)$
- == $(((\lambda e1.\lambda e2.\lambda c.((c e1) e2) y) false) x)$
- => $((\lambda e2.\lambda c.((c y) e2) false) x)$
- => $(\lambda c.((c y) false) x)$
- $\bullet => ((x y) \text{ false})$

- $\bullet == (((if y) false) x)$
- == $(((\lambda e1.\lambda e2.\lambda c.((c e1) e2) y) false) x)$
- => $((\lambda e2.\lambda c.((c y) e2) false) x)$
- => $(\lambda c.((c y) false) x)$
- $\bullet => ((x y) \text{ false})$

Definition

and =
$$\lambda x. \lambda y. ((x y) \text{ false})$$

Lets check if our and is correctly encoded

Lets check if our and is correctly encoded

and true true

42 / 53

Andrzej Spiess (λ) Functional Miners May 21, 2019

Lets check if our and is correctly encoded

and true true

• == $((\lambda x. \lambda y. ((x y) \text{ false}) \text{ true})$

Andrzej Spiess (λ)

Lets check if our and is correctly encoded

- == $((\lambda x. \lambda y. ((x y) \text{ false}) \text{ true})$
- => $(\lambda y.((true y) false) true)$

Lets check if our and is correctly encoded

- == $((\lambda x. \lambda y. ((x y) \text{ false}) \text{ true})$
- => $(\lambda y.((true y) false) true)$
- => ((true true) false)

Lets check if our and is correctly encoded

- == $((\lambda x. \lambda y. ((x y) \text{ false}) \text{ true})$
- => $(\lambda y.((true y) false) true)$
- => ((true true) false)
- == $((\lambda x. \lambda y. x \text{ true}) \text{ false})$

Lets check if our and is correctly encoded

- == $((\lambda x. \lambda y. ((x y) \text{ false}) \text{ true})$
- => $(\lambda y.((true y) false) true)$
- => ((true true) false)
- == $((\lambda x. \lambda y. x \text{ true}) \text{ false})$
- => $(\lambda y.true false)$

Lets check if our and is correctly encoded

- == $((\lambda x. \lambda y. ((x y) \text{ false}) \text{ true})$
- => $(\lambda y.((true y) false) true)$
- => ((true true) false)
- == $((\lambda x. \lambda y. x \text{ true}) \text{ false})$
- => (λ y.true false)
- => <u>true</u>

and true false

Andrzej Spiess (λ) Functional Miners May 21, 2019 43 / 53

and true false

• == $((\lambda x. \lambda y. ((x y) false) true) false)$

May 21, 2019

43 / 53

Andrzej Spiess (λ) Functional Miners

and true false

- == $((\lambda x.\lambda y.((x y) false) true) false)$
- => $(\lambda y.((true y) false) true)$

and true false

- == $((\lambda x. \lambda y. ((x y) false) true) false)$
- => $(\lambda y.((true y) false) true)$
- => ((true false) false)

Practical Lambda Calculus and()

and true false

- == $((\lambda x. \lambda y. ((x y) false) true) false)$
- => $(\lambda y.((true y) false) true)$
- => ((true false) false)
- == $((\lambda x. \lambda y. x \text{ false}) \text{ false})$

Practical Lambda Calculus and()

and true false

- == $((\lambda x. \lambda y. ((x y) false) true) false)$
- => $(\lambda y.((true y) false) true)$
- => ((true false) false)
- == $((\lambda x. \lambda y. x \text{ false}) \text{ false})$
- => $(\lambda y.false)$ false)

Practical Lambda Calculus and()

and true false

- == $((\lambda x. \lambda y. ((x y) \text{ false}) \text{ true}) \text{ false})$
- => $(\lambda y.((true y) false) true)$
- => ((true false) false)
- == $((\lambda x. \lambda y. x \text{ false}) \text{ false})$
- => $(\lambda y.false)$ false)
- => <u>false</u>

Practical Lambda Calculus or()

X	Υ	X OR Y
TRUE	TRUE	TRUE
TRUE	FALSE	TRUE
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE

Lets look at C-ish example:

and using if:

Practical Lambda Calculus or()

 $\bullet == (((if true) y) x)$

Andrzej Spiess (λ)

Practical Lambda Calculus or()

- $\bullet == (((if true) y) x)$
- => ... => ((x true) y)

Definition

or =
$$\lambda x. \lambda y. ((x true) y)$$

Definition

zero = identity

Definition

 $succ = \lambda n. \lambda s. ((s false) n)$

$$\underline{\mathsf{one}} = \mathsf{succ} \; \mathsf{zero}$$

- == $(\lambda n.\lambda s.((s false) n) zero)$
- => λ s.((s false) zero)

47 / 53

Andrzej Spiess (λ) Functional Miners May 21, 2019

$$\underline{\mathsf{one}} = \mathsf{succ} \; \mathsf{zero}$$

- == $(\lambda n.\lambda s.((s false) n) zero)$
- => λ s.((s false) zero)

$$\underline{\mathsf{two}} = \mathsf{succ} \; \mathsf{one}$$

- == $(\lambda n.\lambda s.((s false) n) \lambda s.((s false) zero))$
- => λ s.((s false) λ s.((s false) zero))

- == $(\lambda n. \lambda s. ((s false) n) zero)$
- => λ s.((s false) zero)

 $\underline{\mathsf{two}} = \mathsf{succ} \; \mathsf{one}$

- == $(\lambda n.\lambda s.((s false) n) \lambda s.((s false) zero))$
- => λ s.((s false) λ s.((s false) zero))

 $\underline{\mathsf{three}} = \mathsf{succ} \; \mathsf{two}$

- == $(\lambda n.\lambda s.((s false) n) \lambda s.((s false) \lambda s.((s false) zero)))$
- => λ s.((s false) λ s.((s false) λ s.((s false) zero)))

Andrzei Spiess (λ) Functional Miners May 21, 2019 47 / 53

By having a number encoded as a function with an argument that can be used as a selector we can try to extract values from them by using our pair first and second functions

By having a number encoded as a function with an argument that can be used as a selector we can try to extract values from them by using our pair first and second functions

 $(\lambda s.(s false) number) first)$

By having a number encoded as a function with an argument that can be used as a selector we can try to extract values from them by using our pair first and second functions

$$(\lambda s.(s false) number) first)$$

- == $(\lambda s.(s false) number) \lambda x.\lambda y.x)$
- => $(\lambda x. \lambda y. x \text{ false}) number)$
- => $(\lambda y. false number)$
- => false

We used *first* as a selector before, lets now use *second* and see what will we get from the number:

 $(\lambda s.(s false) number) second)$

We used *first* as a selector before, lets now use *second* and see what will we get from the number:

$$(\lambda s.(s false) number) second)$$

• == $(\lambda s.(s false) number) \lambda x.\lambda y.y)$

We used *first* as a selector before, lets now use *second* and see what will we get from the number:

$$(\lambda s.(s false) number) second)$$

- == $(\lambda s.(s false) number) \lambda x.\lambda y.y)$
- => $(\lambda x. \lambda y. y \text{ false}) number)$

We used *first* as a selector before, lets now use *second* and see what will we get from the number:

$$(\lambda s.(s false) number) second)$$

- == $(\lambda s.(s false) number) \lambda x.\lambda y.y)$
- => $(\lambda x. \lambda y. y \text{ false}) number)$
- => number

Definition

 $pred = \lambda n.(n second)$

Now we cought up to where **Kleene** was in 1936.

50 / 53

Sources I

An Introduction to Functional Programming Through Lambda Calculus.

Dover Publications, 1989.

Pat Helland.

Immutability changes everything.

Felice Cardone Roger Hindley.
History of lambda-calculus and combinatory logic.

Henk Barendregt.

The impact of the lambda calculus in logic and computer science.

Stephanie Weirich Justin Hsu Richard A. Eisenberg. System fc with explicit kind equality.

Sources II

Russel Church.

Some properties of conversion.

Haskell.org.

Representation of the ghc core language.

From $\lambda x.x$ to Facebook - practical Lambda Calculus and its origins

Functional Miners Meetup

May 21, 2019