Durée 1h30

Tout document interdit

Exercice1 (3, 3, 2, 2)

Soit $\alpha: \mathbb{P}(f(y)) \to \forall x \, \mathbb{P}(x)$.

- 1. Montrer que α est valide;
- 2. Montrer, sans utiliser la propriété de complétude que a est un théorème.
- 3. Trouver la formule sous forme normale prenexe logiquement équivalente à α . On désignera cette formule par α_p .
- 4. Montrer sans utiliser les résultats précédents et sans utiliser la propriété de complétude que α_p est un théorème.

Exercice 2 ((1, 1), (2, 2), 2, 2)

- 1. Montrer que $|-x=y\rightarrow (f(x)=f(y))$. En déduire que : $|-x=y\rightarrow (f'(x)=f'(y))$ $(n\geq 2)$
- 2. Montrer que la formule α : $\forall x(x = y)$ n'est pas valide. Est-elle satisfiable? si oui, en donner un modèle.
- 3. Montrer sans utiliser la propriété de complétude que la formule β : $\exists x (x = y)$ est un théorème.
- 4. Vérifier la consistance de l'ensemble Γ : $\{\forall x(x=y), P(x), P(y)\}$

N. B. Remettre, au plus, une seule double feuille et une seule intercalaire.