COM S 6810 Theory of Computing

February 24, 2009

Lecture 11: Complexity of Counting I

Instructor: Rafael Pass Scribe: Shuang Zhao

1 Basic Concepts

Given a polynomial-time computable relation R, let L_R be the language defined by

$$L_R := \{x \mid \exists y, (x, y) \in R\}.$$

Then it holds that $L_R \in NP$. Next we consider a 'harder' problem: compute number of y's satisfying $(x, y) \in R$.

Definition 1. Define the function $f_R(x): \{0,1\}^* \to \mathbb{N}$ as $f_R(x) = |\{y \mid (x,y) \in R\}|$. Let

$$\#R := \{(x,k) \mid f_R(x) \ge k\}.$$

Proposition 1. For all polynomial-time computable R, deciding #R and computing f_R are Turing-reducible to one another.

Proof. The reduction from $f_R(x)$ to #R is obvious. Conversely, if we have the access to an oracle deciding whether $(x, k) \in \#R$, then $f_R(x)$ can be computed by performing a binary search on the value of k, costing poly(x) time.

Definition 2. #P is defined by the class of languages L such that L=#R for some polynomial-time computable relation R. L is #P-complete if $L \in \#P$ and $R \leq_p L$ for all $R \in \#P$.

For every NP language decided by NTM M, there is a 'generalized' problem in #P which computes the number of certificates that make M accepting a given input x. Therefore,

Fact. $NP \leq \#P \subseteq PSPACE$.

Definition 3. We say f is a parsimonious reduction from #Q to #R, if it is polynomial-time computable and for all x, $f_Q(x) = f_R(f(x))$.

Notation 1. If #R is parsimoniously reducible from Q, we write $\#Q \leq_{par} \#R$.

If f is a parsimonious reduction from #Q to #R, then $L_Q \leq L_R$, since $x \in L_Q$ iff $f(x) \in L_R$. Conversely, if $\#Q \leq_{par} \#R$, then $(x,k) \in \#Q \Leftrightarrow (f(x),k) \in \#R$.

Theorem 1. #SAT is #P-complete.

Conjecture. #L is #P-complete implies that L is NP-complete.

Unfortunately, this conjecture is FALSE:

Theorem 2. There exists a polynomial-time computable relation R such that #R is #P-complete but $L_R \in P$.

Proof. Define R as follows:

$$(x, y') \in R \Leftrightarrow y' = 0 \lor (y' = 1y \land (x, y) \in R_{SAT}),$$

where $(x, y) \in R_{SAT}$ iff the boolean formula ϕ described by x is satisfied by assigning the values described by y to the variables in ϕ .

It is obvious that $L_R \in \mathsf{P}$ since $(x,0) \in R$ for all $x \in \{0,1\}^*$, namely $L_R = \{0,1\}^*$. On the other hand, $\#\mathsf{SAT} \leq_{par} \#R$, since $(x,k) \in \#\mathsf{SAT} \Leftrightarrow (x,k+1) \in \#R$. Therefore #R is $\#\mathsf{P}$ -complete.

Definition 4. Given an $n \times n$ matrix A, its permanent is defined by

$$perm(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n A_{i,\sigma(i)}.$$

Theorem 3 (Valiant). Computing permanent of 0-1 matrices is #P-complete.

As shown in Figure 1, given an $n \times n$ 0-1 matrix A, a bipartite graph G(X,Y,E) can be built as follows: $X = \{x_1, x_2, \dots, x_n\}, Y = \{y_1, y_2, \dots, y_n\}, (x_i, y_j) \in E \Leftrightarrow A_{i,j} = 1$.

Figure 1: Constructing bipartite graph for 0-1 matrix A

Then it is easy to verify that the permanent of A equals the number of perfect matchings in G. Therefore, counting the number of perfecting matchings in a bipartite graph is also #P—complete .

2 Approximate Counting

Theorem 4. Given any polynomial p, there exists a PPT A such that

$$Pr\left[\#\mathrm{SAT}(\phi)\cdot\left(1-\frac{1}{p(n)}\right)\leq A^{\mathsf{NP}}(\phi)\leq \#\mathrm{SAT}(\phi)\cdot\left(1+\frac{1}{p(n)}\right)\right]\geq 1-2^{-n}.$$

Basic idea. For all ϕ , if we can find a rough approximation $A'(\phi)$ such that

$$\#SAT(\phi) \cdot 2^{-i} \le A'(\phi) \le \#SAT(\phi) \cdot 2^{i}$$

for some constant i, then we are able to obtain a tighter approximation by:

- (1) construct ϕ' from ϕ such that $\#SAT(\phi') = \#SAT(\phi)^k$ for some k;
- (2) output $A'(\phi')^{1/k}$.

Since

$$\#SAT(\phi)^k \cdot 2^{-i} = \#SAT(\phi') \cdot 2^{-i} < A'(\phi') < \#SAT(\phi') \cdot 2^i = \#SAT(\phi)^k \cdot 2^i$$

it holds that

$$\#\operatorname{SAT}(\phi) \cdot 2^{-i/k} \le A'(\phi')^{1/k} \le \#\operatorname{SAT}(\phi) \cdot 2^{i/k}.$$

For step (1), ϕ' can be constructed by

$$\phi' = \bigwedge_{i=1}^k \phi(\vec{x}_i),$$

where $\phi(\vec{x}_i)$ is a copy of ϕ with the variables renamed to \vec{x}_i .

Consider GAP-SAT:

$$\Pi_Y = \{ (\phi, k) \mid \#SAT(\phi) \ge 8k \};$$

 $\Pi_N = \{ (\phi, k) \mid \#SAT(\phi) \le k/8 \}.$

Claim. There exists a polynomial-time TM A such that A^O approximates #SAT within factor $8^{1.5}$ where O is an oracle that solves GAP-SAT.

Proof. Let $A(\phi)$ work as follows:

- 1: $i \leftarrow 0$
- 2: while $O(\phi, 8^i) = 1 \text{ do}$
- $i \leftarrow i + 1$
- 4: end while
- 5: return $8^{i-\frac{1}{2}}$

After exiting the while loop, it holds that $O(\phi, 8^i) \neq 1$ and $O(\phi, 8^{i-1}) = 1$, which implies that $8^{i-2} < \#SAT(\phi) < 8^{i+1}$. Thus

$$8^{-1.5} < \frac{\#SAT(\phi)}{8^{i-\frac{1}{2}}} < 8^{1.5}.$$

Next lecture we will show how to solve GAP-SAT (with the power of randomness).