

Факультет Компьютерных Наук ВШЭ

Практический анализ данных и машинное обучение

Кашницкий Юрий

Что нас ждет

Обзор курса

- * 10 занятий
- * Основные алгоритмы и их использование
- * Домашние задания и практики
- * Соревнование Kaggle Inclass
- Индивидуальные проекты

Особенности курса

- * Обилие практики задания на каждом занятии и после него
- * Четкие инструкции к заданиям (макет в виде тетрадки Jupyter)
- * Понимание теоретических основ алгоритмов
- * Знакомство с платформой Kaggle
- * В основе всего свой собственный проект

Логистика

- * Все вопросы, все общение в форуме <u>Piazza</u>
- * За домашние задания тах 10 баллов
- * За проект и соревнование тах 30 баллов
- * Текущий рейтинг будет тут
- * Нужны аккаунты GitHub и Kaggle
- * Все материалы курса в <u>проекте</u> на GitHub
- Победителю бонус в карму!

Prerequisites

- * Минимальное владение Python
- * Основы аналитической геометрии (вектора, матрицы, скалярное произведение и т.д.)
- Основы математического анализа (производные, пределы, интегралы)
- * Теория вероятностей и статистика (этого будет не много)

Инструменты

- * Язык Python
- Jupyter notebooks
- * Сборка библиотек Anaconda
- * GitHub
- * Kaggle
- * Виртуальная машина Vagrant (опц.) с Xgboost, Vowpal Wabbit и т.д.

- * Анализ данных с Pandas
- * Практика на знакомство с данными
- * Д3 № 1. Анализ
 демографических данных
 по жителям США

df.head(4)

	wage	exper	union	goodhlth	black	female	married
0	5.73	30	0	1	0	1	1
1	4.28	28	0	1	0	1	1
2	7.96	35	0	1	0	1	0
3	11.57	38	0	1	0	0	1

- * Визуальный анализ данных с Pandas и Seaborn
- * Практика на «рисование»
- * Мастер-класс: 1 часть проекта
- * Д3 № 2. Анализ данных по перелетам между городами США в 2008 году

- * Основы машинного обучения
- * Деревья решений
- * Практика на знакомство с библиотекой Scikit-learn
- * Д3 № 3. Деревья
 решений и кредитный скоринг

- * Линейные модели: логистическая регрессия, метод опорных векторов
- Регуляризация
- * Практика на применение logit
- * Д3 № 4. Сравнение нескольких алгоритмов классификации

- * Композиции алгоритмов, случайный лес
- * Мастер-класс: 2 часть проекта
- * Практика на применение случайного леса и оценке важности признаков
- ДЗ № 5. 1 часть проекта

- * Задача регрессии, Lasso, Ridge, случайный лес
- Практика на понимание основ линейной регрессии
- * Д3 № 6. Отбор
 признаков с Lassoрегрессией

- * Обучение без учителя: РСА, кластеризация, поиск аномалий
- * Практика на кластеризацию данных с Samsung Galaxy S3
- * Д3 № 7. 2 часть проекта

- * Бустинг, градиентный бустинг, Xgboost
- Практика.
 Случайный лес и
 бустинг в задаче
 кредитного скоринга
- * Д3 № 8. Градиентный бустинг и переобучение

- Vowpal Wabbit и основы анализа текстов, t-SNE
- Практика на классификацию текстов по темам
- * Д3 № 9. Vowpal
 Wabbit в одном из
 соревнований Kaggle

- * Стекинг и блендинг моделей классификации и регрессии
- * Практика на блендинг случайного леса и Xgboost
- * Д3 № 10. Смешивание моделей в одном из соревнований Kaggle

Индивидуальный проект

- * В течение всего курса
- * Лучше свои данные
- Четкий план
- Пример работы над проектом в формате мастеркласса
- * Подробный отзыв по проекту
- * Презентации в конце

