Les Nombres Complexes

1 Introduction

L'ensemble des nombres complexes est noté \mathbb{C} ; i est le nombre complexe tel que $i^2 = -1$; $\mathbb{C} = \{(x;y) \in \mathbb{R}; x+iy\}$

Les trois types d'écriture d'un nombres complexes Z:

- \clubsuit écriture algébrique: Z = x + iy
- $\hookrightarrow x = Re(Z)$ est partie réel de nombre complexe Z;
- $\hookrightarrow y = Im(Z)$ est partie imaginaire de nombre complexe Z;
- \clubsuit écriture trigonométrique: $Z = |Z| \cdot (cos(\theta) + isin(\theta))$ ou $Z = [|Z|; \theta]$
- $\Rightarrow |Z| = \sqrt{x^2 + y^2} = \sqrt{\overline{Z}}\overline{Z}$; $\overline{Z} = x iy$; (\overline{Z} est le conjugué de Z)
- $\hookrightarrow \arg(Z) \equiv \theta[2\pi]$
- $\hookrightarrow \cos(\theta) = \frac{\bar{x}}{|Z|}$ et $\sin(\theta) = \frac{y}{|Z|}$
- **\$\rightarrow\$** écriture exponentielle: $Z = |Z|.e^{i\theta}$
- $\hookrightarrow e^{i\theta} = \cos(\bar{\theta}) + i\sin(\theta)$

propriétés

Les Réglés de conjugué

$$* \overline{Z+Z'} = \overline{Z} + \overline{Z'} \qquad * \overline{ZZ'} = \overline{Z}\overline{Z'}$$

*
$$\overline{\overline{Z'}} = \overline{\overline{Z'}}/Z' \neq 0$$
 * $\overline{Z''} = (\overline{Z})^n/n \in \mathbb{N}^*$

Propriété de modulo

$$* |ZZ'| = |Z||Z'|$$
 $* \left| \frac{Z}{Z'} \right| = \frac{|Z|}{|Z'|}$ $* |Z^n| = |Z|^n; n \in \mathbb{N}^* * |Z + Z'| \le |Z| + |Z'|$

Propriété d'argument

$$* arg(ZZ') \equiv arg(Z) + arg(Z')[2\pi]$$
 $* arg(\overline{Z}) \equiv -arg(Z)[2\pi]$

$$* \arg\left(\frac{Z}{Z'}\right) \equiv arg(Z) - arg(Z')[2\pi] \quad * arg\left(\frac{1}{Z}\right) \equiv -arg(Z)[2\pi]$$

*
$$arg(Z^n) \equiv n \times arg(Z)[2\pi]/n \in \mathbb{N}^*$$

Propriété sur la formule trigonométrique $Z = [|Z|; \alpha]$ et $Z' = [|Z'|; \alpha']$

$$* \ Z \times Z' = [|Z||Z'|;\alpha + \alpha'] \qquad * \ Z^n = [|Z|^n;n \times \alpha] \qquad \qquad * \ \frac{Z}{Z'} = \left\lceil \frac{|Z|}{|Z'|};\alpha - \alpha' \right\rceil$$

Propriété sur l'écriture exponentielle $Z=r.e^{i\alpha}$ et $Z'=r'.e^{i\alpha'}$

*
$$Z \times Z' = rr' \cdot e^{i(\alpha + \alpha')}$$

$$* Z^n = r^n.e^{i(n \times \alpha)}$$

*
$$\frac{Z}{Z'} = \frac{r}{r'}.e^{i(\alpha - \alpha')}$$

2 Formule d'Euler ,Formule de Moivre

propriétés

• Formule d'Euler: $(cos(\theta) + i sin(\theta))^n = cos(n\theta) + i sin(n\theta)$; $(e^{i\theta})^n = e^{in\theta}$ $(n \in \mathbb{N})$

3 Interprétation géométrique

A, B et C des points dans le plan complexe avec d'affixe respectivement $Z_A Z_B$ et Z_C

$$\overrightarrow{AB} = Z_B - Z_A$$
 ; $AB = |Z_B - Z_A|$; $\left(\overrightarrow{AB}, \overrightarrow{AC}\right) \equiv arg\left(\frac{Z_C - Z_A}{Z_B - Z_A}\right) [2\pi]$

A,B et C des points alignée $\Leftrightarrow \left(\frac{Z_C - Z_A}{Z_B - Z_A}\right) \in \mathbb{R}$

4 L'équation $aZ^2 + bZ + c = 0$ avec a, b et c des réel $a \neq 0$

Propriétés

le discriminent: $\Delta = b^2 - 4ac$

* Si
$$\Delta > 0$$
 : $Z_1 = \frac{-b + \sqrt{\Delta}}{2a}$; $Z_1 = \frac{-b - \sqrt{\Delta}}{2a}$

* Si
$$\Delta < 0$$
 : $Z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$; $Z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$

* Si
$$\Delta = 0$$
 : $Z = \frac{-b}{2a}$

5 l'ensemble des points M(Z)

Propriétés

Algébriquement	Géométriquement	L'ensemble des points $M(z)$
$ Z_M - Z_A = Z_M - Z_B $	AM = BM	(Δ) est médiatrice de $[AB]$
$ Z_M-Z_A =R$	AM = R	
Z est un nombre réel		
Z est un nombre imaginaire		
pur		