6.6 1) Soient
$$u, v \in \text{Ker}(h)$$
 et $\alpha \in \mathbb{R}$. Par définition $h(u) = h(v) = 0$.

(a)
$$h(u+v) = h(u) + h(v) = 0 + 0 = 0$$
 signifie que $u+v \in \text{Ker}(h)$

(b)
$$h(\alpha \cdot u) = \alpha \cdot h(u) = \alpha \cdot 0 = 0$$
 implique que $\alpha \cdot u \in \text{Ker}(h)$

2) Soient $u, v \in \text{Im}(h)$ et $\alpha \in \mathbb{R}$.

Il existe $u^*, v^* \in E$ tels que $h(u^*) = u$ et $h(v^*) = v$.

(a)
$$u+v=h(u^{\star})+h(v^{\star})=h(u^{\star}+v^{\star})$$

Comme $u^{\star}+v^{\star}\in \mathcal{E}$, on en déduit que $u+v\in \mathrm{Im}(h)$.

(b) $\alpha \cdot u = \alpha \cdot h(u^*) = h(\alpha \cdot u^*)$ Vu que $\alpha \cdot u^* \in E$, on conclut que $\alpha \cdot u \in Im(h)$.