Autômatos Finitos e Linguagens regulares

GRAMÁTICAS REGULARES

DEF. Uma gramática regular é uma gramática livre de contexto em que suas regras tem uma das seguintes formas:

- i) $A \rightarrow a$
- ii) A →aB
- iii) $A \rightarrow \epsilon$ onde A, B \in V e a \in T.

DEF. Uma linguagem é dita regular, se for gerada por ao menos uma gramática regular

DEF: Uma Linguagem sobre um alfabeto ∑ é Regular, se:

- i) É um conjunto regular (expressão regular) sobre ∑;
- ii) Se é aceita por AF;
- iii) Se é gerada por uma gramática regular.

Teorema: Se L=L(M) para algum AF, M, então, existe uma expressão regular R, tal que L(R)=L.

Teorema: Se L é uma linguagem definida por uma expressão regular, R (L(R)=L), então existe um AF, M tal que L(M)=L.

Teorema: Se L é uma linguagem regular, então $\overline{L}=\Sigma^*$ - L, é também uma linguagem regular

Teorema: Se L1 e L2 são linguagens regulares então L1∩ L2, são expressões regulares.

GRAMÁTICAS REGULARES- Exemplos

EX1:
$$G = \langle \{S, A\}, \{a,b\}, P, S \rangle$$

P= 1. $S \rightarrow aS$
2. $S \rightarrow bA$
3. $A \rightarrow aA$
4. $A \rightarrow bC$
5. $C \rightarrow aC$
6. $C \rightarrow a$
7. $A \rightarrow b$

L(G) = L(M) = $a \rightarrow b \rightarrow a$