Chapter 1

Real Analysis

1.1 Algebra of Sets

Definitions 1.1. set a well-defined collection of objects

subset set A is a subset of set B if each element of set A is also in set B

equal Two sets A and B equal if they have the same elements

Remark. $A = B \iff A \subset B \text{ and } B \subset A$

Null set, ϕ is the set which contains no elements.

Power set, P(X) is the family of all subsets of the set X.

 \mathbb{N} set of all natural numbers

 \mathbb{Z} set of all integers

 \mathbb{Q} set of all rationals

 \mathbb{R} set of all real numbers

 $\mathbb C$ set of all complex numbers

Definitions 1.2. Set operations,

Union/Join $A \cup B = \{x : x \in A \text{ or } x \in B\}$

Intersection/Meet $A \cap B = \{x : x \in A \text{ and } x \in B\}$

Complement/Difference $A - B = \{x \in A : x \notin B\}$

Symmetric Difference $A\Delta B = (A-B) \cup (B-A)$

Remark. Inclusive property,

- 1. $A \subset A \cup B$
- 2. $A \cap B \subset A$
- $3. A B \subset A$

Remark.
$$A \subset B \iff A \cap B = A \iff A \cup B = B \iff A - B = \phi$$

Remark. Union and Intersection are idempotent, commutative, associative and distributive.

disjoint Two sets A and B are disjoint if $A \cap B = \phi$

Definitions 1.3. The (cartesian) product, $A \times B = \{(x,y) : x \in A, y \in B\}$

Theorem 1.4. Augustus de Morgan

1.
$$X - (A \cup B) = (X - A) \cap (X - B)$$

2.
$$X - (A \cap B) = (X - A) \cup (X - B)$$

1.2 Functions

Definitions 1.5. A binary relation R from a set A to a set B is a subset of their cartesian product. ie, $R \subset A \times B$.

Remark. Let $X = \{1, 2, 3\}$. Then $R = \{(1,2), (1,3), (2,3)\}$ is a relation on X (to X itself). This relation R is the 'less than' (<) relation on X.

Definitions 1.6. A function $f: A \to B$ is a subset of $A \times B$ such that for every $x \in A$ there exists a unique $y \in B$ where $(x, y) \in f$.

image of x Let $(x,y) \in f$, then the image of x, f(x) = y

Inverse image $f^{-1}(y) = \{x \in A : y = f(x)\}$ is the fibre of f over y[?]

domain of f is the set A

co-domain of f is the set B

range of f is the set $\{y \in B : \exists x \in A, y = f(x)\}$

Remark.
$$f(x) = y \implies x \in f^{-1}(y)$$

Definitions 1.7. Let functions $f: A \to B$ and $g: B \to C$, then the composition $g \circ f: A \to C$ is function such that $g \circ f(x) = g(f(x))$.

Theorem 1.8. Let $f: A \to B$ and $g: B \to C$ be functions, then

- 1. domain of $g \circ f$ is the domain of f
- 2. co-domain of $g \circ f$ is the co-domain of g
- 3. range of $g \circ f$ is the range of image of A

Remark. Function composition is not commutative.

Definitions 1.9. Let $f: A \to B$ be a function, then

injective f is injective if images of distinct elment of A are distinct.

surjective f is surjective if elements of B are images of some elements of A.

1.2. FUNCTIONS

3

bijective = injective + surjective = one-one + onto

Definitions 1.10. Let $f: A \to B$ and $g: B \to A$ are both injective functions such that $g = \{(b, a) \in B \times A : (a, b) \in f\}$, then g is the inverse function of f, f^{-1} .

Remark. $f: X \to Y$ is injective iff

1. f has left inverse. ie, $\exists g: Y \to X$, $gf = id_X$

2.
$$C \cap D = \phi \iff f(C) \cap f(D) = \phi$$

 $f: X \to Y$ is surjective function iff

1. f has right inverse. ie, $\exists g: Y \to X$, $fg = id_Y$

 $f: A \to B$ is a bijection iff

1.
$$f^{-1} \circ f = id_A \text{ and } f \circ f^{-1} = id_B$$

Theorem 1.11 (Schroder-Bernstein). \exists injective function $f: A \to B$, \exists injective function $g: B \to A \implies \exists$ bijection $h: A \to B$.

Remark. functions & sets

1.
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

2.
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

3.
$$f^{-1}(A - B) = f^{-1}(A) - f^{-1}(B)$$

4.
$$f(A \cup B) = f(A) \cup f(B)$$

Remark. Let $f: A \to B$

$$\forall y \in B, |f^{-1}(y)| = \begin{cases} \leq 1, & \text{f is injective} \\ = 1, & \text{f is bijection} \\ \geq 1, & \text{f is surjective} \end{cases}$$

Remark. The following statements are equivalent:

- 1. $f: X \to Y$ is injective
- 2. $\forall A, B \subset X, \ f(A \cap B) = f(A) \cap f(B)$
- 3. $\forall A, B \subset X$, f(A B) = f(A) f(B)
- 4. $\forall A \subset X, \ A = f^{-1} \circ f(A)$

Remark. The following statements are equivalent:

- 1. $f: X \to Y$ is surjective
- 2. $\forall A \subset Y, A = f(f^{-1}(A))$

Remark. Some non-equal sets,

1.
$$f(A \cap B) \neq f(A) \cap f(B)$$
, $f(A) \cap f(B) \not\subset f(A \cap B)$

2.
$$f(A-B) \neq f(A) - f(B)$$
, $\therefore f(A-B) \not\subset f(A) - f(B)$

3.
$$A \neq f \circ f^{-1}(A)$$
, $\therefore A \not\subset f \circ f^{-1}(A)$

4.
$$A \neq f^{-1} \circ f(A)$$
, $\therefore A \not\subset f^{-1} \circ f(A)$

Definitions 1.12. The restriction of a function $f: A \to B$ into a subset $C \subset A$ is the function $f|_C: C \to B$, such that $\forall x \in C$, $f|_C(x) = f(x)$

Definitions 1.13. An extension of a function $f: A \to B$ into a superset $C \supset A$ is the function $F: C \to B$, such that $\forall x \in A$, F(x) = f(x).

1.3 Partial Order

Definitions 1.14. A (binary) relation \leq between set A and set B is a subset of the cartesian product, $A \times B$. $(x,y) \in \leq$ may be written as $x \leq y$. A relation on S is a relation from S into S.

reflexive $x \in S \implies xRx$

symmetric $\forall xRy, \ x \neq y \implies yRx$

antisymmetric $\forall xRy, \ x \neq y \implies \neg yRx$

transitive $xRy \wedge yRz \implies xRz$

connex $\forall x, y \in R \implies (xRy) \lor (yRx)$

Remark. Every connex relation is reflexive.

An equivalence relation R is a reflexive, symmetric and transitive relation.

Definitions 1.15. An order < is a transitive relation such that,

$$\forall x, y \in S, \ x < y \ OR \ x = y \ OR \ y < x$$

An order is a reflexive, antisymmetric and transitive relation.

ordered set is a set with an order on it.

strict order is a non-reflexive, antisymmetric and trasitive relation.

diagonal on S is the set $\Delta S = \{(x, x) \in S \times S : x \in S\}$

total/linear/simple order is a antisymmetric, trasitive and connex relation.

Remark. For any set X, The set inclusion \subset is a partial order on P(X).

Axiom 1.16 (Choice). If $\{A_i : i \in I\}$ is a non-empty family of sets such that A_i is non-empty for each $i \in I$, then $\prod A_i$ is non-empty

Lemma 1.17 (Zorn). If every chain in a partially ordered set X has an upper bound in X, then X has a maximal element.

Remark. Zorn's lemma is equivalent to the axiom of choice.[?]

5

1.4 Cardinality

Definitions 1.18. *Set* A,B *are have same cardinality, if there exists a bijection* $f: A \to B$.

Remark. $card(X) \leq card(Y)$ if there exists an injective function, $f: X \to Y$ $card(Y) \leq card(X)$ if there exists an surjective function, $f: X \to Y$

Remark. Cardinality is an equivalence relation on the family of all sets.

Definitions 1.19. A set S is finite if $\exists n \in \mathbb{N}$, such that card(S) = n.

A set S is countably infinite if $card(S) = card(\mathbb{N})$.

A set S is countable if it is finite or countably infinite.

A set S is uncountable if it neither finite nor countably inifinite.

Theorem 1.20. Every infinite subset of a countably set is countable.

Remark. Countability is the smallest infinity.

Theorem 1.21. Every infinite set contains a countable subset.

Theorem 1.22. For an infinite set A, the following statements are equivalent: [?]

- 1. A is countable
- 2. There exists a subset $B \subset \mathbb{N}$ and a surjective function $f: B \to A$
- 3. There exists an injective function $q: A \to \mathbb{N}$

Theorem 1.23. Every subset of finite(countable) set is finite(countable).

Theorem 1.24. Finite union of finite sets is finite. Countable union of countable sets is countable.

Remark. The sets \mathbb{N}, \mathbb{Q} are countable. The sets $(0,1), \mathbb{R}$ are uncountable.

Theorem 1.25. The set of all sequences in $\{0,1\}$ is uncountable.

Remark. The set of all di-adic real numbers is uncountable. The set of all integerts is not uncountable?

Theorem 1.26 (well-ordering). Every nonempty subset of \mathbb{N} has a smallest element in it.

Theorem 1.27 (induction). If $p(1) \land (p(k) \implies p(k+1))$, then $\forall n \in \mathbb{N}, p(n)$

Remark. Well-ordering \mathcal{E} induction principles are equivalent.

Theorem 1.28. Countable union of countable sets is countable.

Theorem 1.29. Finite product of countable sets is countable.

Remark. Countable product of countable sets is not necessarily countable.

Remark. If $card(A) \leq card(B)$ and $card(B) \leq card(A)$, then there exists a bijection $f: A \rightarrow B$. Thus card(A) = card(B).

Theorem 1.30 (Cantor). If A is a set, then $card(A) \leq card(P(A))$ and $card(A) \neq card(P(A))$.

Remark. Cardinality of the null set is 0. $card(\mathbb{N}) = \aleph_0$

$$cara(\mathbb{N}) = \aleph_0$$

 $card(P(\mathbb{N})) = card(\mathbb{R}) = \aleph_1$

Remark (Continuum hypothesis). There is no cardinal number between \aleph_0 and \aleph_1 .

Remark (Generalised Continuum hypothesis). For any infinite cardinal \aleph_k , there is no cardinal number between \aleph_k and \aleph_{k+1} .

1.5 Real Field

Definitions 1.31. A binary operation on the set A is a function $\star : A \times A \to A$.

Remark. $\star(a,b) = c$ may be written as $a \star b = c$ instead of $(a,b) \star c$

Axiom 1.32 (Field). A set F with two binary operations $+, \times$ is a field if it satisfies

- 1. $\forall x, y \in F, x + y \in F$
- 2. $\forall x, y \in F, x + y = y + x$
- 3. $\forall x, y, z \in F, (x+y) + z = x + (y+z)$
- 4. $\exists a \ unique \ 0 \in F, \ \forall x \in F, \ x+0=x$
- 5. $\forall x \in F, \ \exists (-x) \in F, \ x + (-x) = 0$
- 6. $\forall x, y \in F, \ x \times y \in F$
- 7. $\forall x, y \in F, \ x \times y = y \times x$
- 8. $\forall x, y, z \in F$, $(x \times y) \times z = x \times (y \times z)$
- 9. $\exists a \ unique \ 1 \in F, \ \forall x \in F, \ x \times 1 = x$
- 10. $\forall x \in F, \ x \neq 0, \ \exists x^{-1} \in F, \ x \times x^{-1} = 1$
- 11. $\forall x, y, z \in F$, $x \times (y + z) = (x \times y) + (x \times z)$

Remark. Let 0,1 be additive and multiplicative identities, then $\forall x, y, z \in \mathbb{R}$,

- $1. \ x+y=x+z \iff y=z$
- 2. $x + y = x \iff y = 0$
- $3. \ x + y = 0 \iff y = -x$
- 4. $x + y = z \iff x = z + (-y)$
- 5. -(-x) = x
- 6. For $x \neq 0$, $xy = xz \iff y = z$
- 7. For $x \neq 0$, $xy = x \iff y = 1$
- 8. $xy = 1 \iff y = x^{-1}$

9.
$$xy = z \iff x = zy^{-1}$$

10.
$$(x^{-1})^{-1} = x$$

11.
$$0x = 0$$

12.
$$(-1)x = -x$$

13.
$$(-1)(-1) = 1$$

14.
$$xy = 0 \iff a = 0 \text{ or } b = 0$$

15.
$$(-x)(-y) = xy$$

Remark. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.

Theorem 1.33. There doesn't exist a rational number r such that $r^2 = 2$.

Axiom 1.34 (Order). An ordered field F is a field with an order < such that,

1.
$$\forall a, b \in F$$
 exactly one of the statements $a < b$, $a = b$, $b < a$ is true.

2.
$$\forall x, y, z \in F, \ y < z \implies (x+y) < (x+z)$$

$$3. \forall x, y \in F, \ 0 < x, \ 0 < y \implies 0 < (x \times y)$$

Remark. Let x, y, z in ordered field \mathbb{R} ,

1.
$$x < 0 \iff -x > 0$$

$$2. x - y > 0 \iff x > y$$

3.
$$x > 0, y < z \implies xy < xz$$

4.
$$x < 0, y < z \implies xy > xz$$

$$5. \ x \neq 0 \implies x^2 > 0$$

6.
$$1 > 0$$

7.
$$0 < x < y \iff 0 < y^{-1} < x^{-1}$$

8.
$$x < y \implies x < \frac{x+y}{2} < y$$

Definitions 1.35. Absolute value of a real number r, |r| = r if $r \ge 0$ and |r| = -r if r < 0

Remark. Properties,

1.
$$|-a| = |a|$$

2.
$$|ab| = |a||b|$$

3.
$$|a+b| \le |a| + |b|$$

4.
$$|a| \le b \iff -b \le a \le b$$

5.
$$-|a| \le a \le |a|$$

6.
$$|a+b| \le |a| + |b|$$

7.
$$(1+a)^n \le 1 + na, \forall n \in \mathbb{N}$$

Definitions 1.36. Given $a_j < b_j, \forall j$, the set of all points $\mathbf{x} \in \mathbb{R}^n$ such that $a_j \leq x_j \leq b_j$, $\forall j$ is an n-cell.

Definitions 1.37. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n)$, $\mathbf{y} = (y_1, y_2, \dots, y_n)$. Then, $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$, $c\mathbf{x} = (cx_1, cx_2, \dots, cx_n)$ and

$$|\mathbf{x}.\mathbf{y}| = \sum_{j=1}^{n} x_j y_j$$
 & $|\mathbf{x}| = \left(\sum_{j=1}^{n} |x_j|^2\right)^{\frac{1}{2}}$

Remark. Let $x, y, z \in \mathbb{R}^n$,

1. For
$$x \neq 0$$
, $|x| > 0$

2.
$$|cx| = |c||x|$$

$$\beta. |\mathbf{x}.\mathbf{y}| \leq |\mathbf{x}||\mathbf{y}|$$

4.
$$|x+y| \leq |x| + |y|$$

Remark.

Lagrange's identity,
$$\left(\sum_{j=1}^{n} a_j b_j\right)^2 = \sum_{j=1}^{n} a_j^2 \sum_{k=1}^{n} b_k^2 - \frac{1}{2} \sum_{j,k=1}^{n} (a_j b_k - b_k a_j)^2$$

$$(1.1)$$

Cauchy's inequality,
$$\left(\sum_{j=1}^{n} a_j b_j\right)^2 \le \sum_{j=1}^{n} a_j^2 \sum_{k=1}^{n} b_k^2$$
 (1.2)

Triangular inequality,
$$\left(\sum_{j=1}^{n} (a_j + b_j)^2\right)^{\frac{1}{2}} \le \left(\sum_{j=1}^{n} a_j\right)^{\frac{1}{2}} + \left(\sum_{j=1}^{n} b_j^2\right)^{\frac{1}{2}}$$
 (1.3)

Remark.

Bernouli's inequality,
$$(1+x)^n \ge 1 + nx$$
 (1.4)

by Mean Value Theorem, $a^r b^{(1-r)} \le ra + (1-r)b$, 0 < r < 1, a > 0, b > 0(1.5)

$$AB \le \frac{A^p}{p} + \frac{B^q}{q}, \quad where \frac{1}{p} + \frac{1}{q} = 1$$
 (1.6)

Holder's inequality,
$$\sum_{j=1}^{n} a_j b_j \le \left(\sum_{j=1}^{n} a_j^p\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} b_j^q\right)^{\frac{1}{q}}$$
 (1.7)

Minkowski's inequality,
$$\left(\sum_{j=1}^{n} (a_j + b_j)^r\right)^{\frac{1}{r}} \le \left(\sum_{j=1}^{n} a_j^r\right)^{\frac{1}{r}} + \left(\sum_{j=1}^{n} b_j^r\right)^{\frac{1}{r}}$$
(1.8)

Chebyshev's inequality,
$$\left(\frac{1}{n}\sum_{j=1}^{n}a_{j}^{r}\right)^{\frac{1}{r}}\left(\frac{1}{n}\sum_{j=1}^{n}b_{j}^{r}\right)^{\frac{1}{r}} \leq \left(\frac{1}{n}\sum_{j=1}^{n}(a_{j}b_{j})^{r}\right)^{\frac{1}{r}}, \quad a_{j} \leq a_{j+1}, \ b_{j} \leq b_{j+1}$$

$$(1.9)$$

Definitions 1.38. A subset X of \mathbb{R}^n is convex if for any two points $\mathbf{x}, \mathbf{y} \in X$ and real number λ such that $0 < \lambda < 1$, every points $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in X$.

Definitions 1.39. extrema of A,

maximal An element $x \in A$ is maximal if $\not\exists y \in A$ such that x < y.

minimal An element $x \in A$ is minimal if $\exists y \in A$ such that y < x.

maximum An element $x \in A$ is maximum if $\forall y \in A, y < x$.

minimum An element $x \in A$ is minimum if $\forall y \in A, x < y$.

Definitions 1.40. An element x of an ordered set S,R is an upper bound a subset $E \subset S$ if $\forall y \in E$, $\neg xRy$. A subset E of the ordered set S is bounded above if \exists a upper bound of E, x in S.

Definitions 1.41. An element x of an ordered set S,R is a lower bound a subset $E \subset S$ if $\forall y \in E$, $\neg yRx$. A subset E of the ordered set S is bounded below if \exists a lower bound of E, x in S.

Definitions 1.42. The supremum of a subset E, $\sup E$ of an ordered set S is the lower bound of all upper bounds of the set E in S.

Definitions 1.43. The infimum of a subset E, inf E of an ordered set S is the upper bound of all lower bounds of the set E in S.

Remark. ϵ Characterisation,

- 1. $x = \sup E \iff \forall \epsilon > 0, \exists y \in E, such that x \epsilon < y$
- 2. $x = \inf E \iff \forall \epsilon > 0, \ \exists y \in E, \ such \ that \ y < x + \epsilon$

Remark. Properties,

- 1. $\sup_{x,y} f(x,y) = \sup_x \sup_y f(x,y) = \sup_y \sup_x f(x,y)$
- 2. $\sup_{y} \inf_{x} f(x, y) \leq \inf_{x} \sup_{y} f(x, y)$
- 3. $\sup(a + f(x)) = a + \sup f(x)$

4.
$$\inf f + g(x) \le \inf f(x) + \inf g(x) \le \sup f(x) + \sup g(x) \le \sup f + g(x)$$

Definitions 1.44. An ordered set S is complete if every nonempty subset $E \subset S$, which is bounded above, has $\sup E \in S$.

Theorem 1.45. There exists a unique complete ordered field \mathbb{R} , that contains \mathbb{Q} .

Axiom 1.46 (Completeness). A set S is complete, if every nonempty subset $E \subset S$, which is bounded above has a least upper bound in S.

Remark. Every cachy sequence in a complete space is convergent.

Theorem 1.47. There exists a complete ordered field \mathbb{R} . Moreover $\mathbb{Q} \subset \mathbb{R}$.

Remark.
$$S \subset T \implies \inf S \le \inf T \le \sup T \le \sup S$$
 $\sup A \cup B = \max\{\sup A, \sup B\} \quad \inf A \cup B = \min\{\inf A, \inf B\}$

Remark. It is possible for a set to have no maximum and yet be bounded above. But, if a set is not bounded above, it doesn't have a maximum. For example: Open interval, (0,1) doesn't have it's extrema.

Remark. inf $\phi = \infty$, and $\sup \phi = -\infty$ Set E is unbounded above, then $\sup E = \infty$ Set E is unbounded below, then $\inf E = -\infty$

Theorem 1.48. \mathbb{N} is not bounded above.

Theorem 1.49 (Archimedean). $\forall x, y \in \mathbb{R}, \ 0 < x, \ \exists n \in \mathbb{N} \ such \ that \ y < nx$

Remark. The following statements are equivalent,

- 1. $\exists n \in \mathbb{N} \text{ such that } y < nx$
- 2. $\exists n \in \mathbb{N} \text{ such that } 0 < \frac{1}{n} < y$
- 3. $\exists n \in \mathbb{N} \text{ such that } n-1 \leq y < n$

Theorem 1.50. A subset A of \mathbb{R} is open iff it is a countable union of open intervals.

Theorem 1.51. For every positive real number $x \in \mathbb{R}$, there exists a unique $y \in R$, such that $y^n = x$. We write, $y = x^{\frac{1}{n}}$.

Corollary 1.51.1. Let a, b be positive real numbers and n be a positive integer.

$$(ab)^{\frac{1}{n}} = a^{\frac{1}{n}}b^{\frac{1}{n}}$$

.

Theorem 1.52 (nested interval). Let $I_1 \supset I_2 \cdots I_n$ be a sequence of closed, bounded, non-empty intervals, then there exists $x \in \mathbb{R}$ such that $x \in J_k$, $\forall k$

Remark. The family of closed, bounded intervals have countable intersection property. The nested interval theorem fails for open intervals.

Theorem 1.53 (nested cell). Let $\{J_n\}$ be a sequence of non-empty, closed nested cells in \mathbb{R}^k , then there exists $\mathbf{x} \in \mathbb{R}^k$ such that $\mathbf{x} \in J_k$, $\forall k$

Theorem 1.54. Every nonempty finite subset of \mathbb{R} has its extrema in it.

Theorem 1.55. \mathbb{Q} is dense in \mathbb{R} . $\forall x, y \in \mathbb{R}$, $\exists q \in \mathbb{Q}$ such that x < q < y

1.6 Complex Field

Definitions 1.56. A complex number $z \in \mathbb{C}$ is an ordered pair of real numbers, $(u, v) \in \mathbb{R} \times \mathbb{R}$.

Theorem 1.57. The set of all complex numbers is a field with addition, $+: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$, defined by (a,b)+(c,d)=(a+c,b+d) and multiplication, $\cdot: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$, defined by (a,b)(c,d)=(ac-bd,ad+bc)

11

Remark. \mathbb{C} is a field on \mathbb{R}^2 . There doesn't exists a field on \mathbb{R}^n for n > 2.

Definitions 1.58. i = (0, 1)

Theorem 1.59. $i^2 = (-1, 0), (a, b) = a + ib$

Definitions 1.60. The conjugate of a complex number a + ib is a - ib.

Theorem 1.61. If $z, w \in \mathbb{C}$,

1.
$$\overline{z+w} = \bar{z} + \bar{w}$$

2.
$$\overline{zw} = \overline{z}\overline{w}$$

3.
$$z + \bar{z} = 2\Re(z)$$

4.
$$z - \bar{z} = 2\Im(z)$$

5. For $z \neq 0$, $z\bar{z}$ is a positive real number

Definitions 1.62. The absolute value |z| is the non-negative square root of $z\bar{z}$.

Theorem 1.63. Let $z, w \in \mathbb{C}$,

1.
$$|z| = |\bar{z}|$$

2.
$$|zw| = |z||w|$$

$$3. |\Re(z)| \le |z|$$

4.
$$|z+w| < |z| + |w|$$

Definitions 1.64. Let $\mathbf{z}, \mathbf{w} \in \mathbb{C}^n$, $\mathbf{z} = (a_1, a_2, \dots, a_n)$, $\mathbf{w} = (b_1, b_2, \dots, b_n)$. Then,

$$|\mathbf{z}.\mathbf{w}| = \left|\sum_{j=1}^n a_j \bar{b_j}\right|$$
 & $\|\mathbf{z}\| = \left(\sum_{j=1}^n |a_j|^2\right)^{\frac{1}{2}}$

Theorem 1.65 (Cauchy-Schwarz-Buniakowsky). $|z.w| \le ||z|| ||w||$

$$\left| \sum_{j=1}^{n} a_j \bar{b_j} \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2$$

1.7 Sequences

Definitions 1.66. A sequence $\{x_n\}$ in set \mathbb{R} is a function $x: \mathbb{N} \to \mathbb{R}$ where $x_n = x(k)$.²

Definitions 1.67. The range of a sequence $\{x_n\}$ is the set $\{x_k : k \in \mathbb{N}\}$. The range of any sequence is countable.

¹proof reference : not found yet

²A sequence $\{x_n\}$ on the set X is a function $x: \mathbb{N} \to X$. The kth term x_k of the given sequence is the image $x(k) \in X$.

Definitions 1.68. Given a sequence $\{x_n\}$, $f: \mathbb{N} \to X$, $x_n = f(n)$ and a monotone function $g: \mathbb{N} \to \mathbb{N}$, $n_k = g(k)$, then the sequence $\{y_k\}$, $y_k = x_{n_k} = (f \circ g)(k)$ is a subsequence of $\{x_n\}$.

Axiom 1.69 (Dependent Choice). Let \leq be a relation on X such that every element $x \in X$ is related to some element of X, then there exists a sequence for each element $x \in X$ such that $x_1 = x$ and $x_k \leq x_{k+1}$ for every integer $k \in \mathbb{N}$.[?]

Theorem 1.70 (Recursive Definition). Given a function $f: X \to X$, for every $x \in X$ there exists a unique sequence $\{x_n\}$ such that $x_1 = x$, $x_{k+1} = f(x_k)$, $\forall k \in \mathbb{N}$

Corollary 1.70.1 (Generalised Recursive Definition). Given a sequence of functions $f_n: X^n \to X$, for every $x \in X$ there exists a unique sequence $\{x_n\}$ such that $x_1 = x$, $x_k + 1 = f_k(x_1, x_2, \dots, x_k)$, $\forall k \in \mathbb{N}$

1.8 Convergence of Sequences

Definitions 1.71. A sequence $\{x_n\}$ converges to $x \in \mathbb{R}$ if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|x - x_n| < \epsilon$ for every $k \ge N$. The real number x is the limit of the sequence $\{x_n\}$.

Definitions 1.72. A sequence is cauchy if for every $\epsilon > 0$, there exists an integer $N \in \mathbb{N}$ such that for every n, m > N, $|x_n - x_m| < \epsilon$

Remark. A sequence of real numbers converges iff cauchy.

Theorem 1.73. Every bounded monotone sequence $\{x_n\}$ in \mathbb{R} converges. If monotone decreasing, limit is $\inf\{x_n\}$. If monotone increasing, limit is $\sup\{x_n\}$.

Definitions 1.74. A real number x is a limit point (cluster point) of the sequence $\{x_n\}$ if for every $\epsilon > 0$ and every integer $N \in \mathbb{N}$, there exists an integer k > N such that $|x_n - x| < \epsilon$.

Remark. A real number x is a limit point of the sequence $\{x_n\}$ iff there is a subsequence converging to x.

Remark. Every convergent sequence is bounded.

Remark. A sequence of real numbers can have atmost one limit.

Remark. Suppose $\lim x_n = x$, $\lim y_n = y$

- 1. $x_n \leq y_n \implies x \leq y$
- 2. $\lim(\alpha x_n + \beta y_n) = \alpha x + \beta y$
- 3. $\lim x_n y_n = xy$
- 4. Suppose $|y_n| \ge \delta$ for some $\delta > 0$, then $\lim \frac{x_n}{y_n} = \frac{x}{y}$

Lemma 1.75 (Sandwitch). Suppose $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ are sequences such that $x_n \leq z_n \leq y_n$, $\forall n \in \mathbb{N}$. If $\lim x_n = \lim y_n = x$, then $\lim z_n = x$.

1.9 limits superior, limits inferior

Definitions 1.76. limit inferior, $\underline{\lim}\{x_n\} = \sup\{\inf\{x_m : m \ge n\}\}\$ limit superior, $\overline{\lim}\{x_n\} = \inf\{\sup\{x_m : m \ge n\}\}\$

Remark. Let $\{x_n\}$ be a bounded sequence, then limit superior and limit inferior are the largest and smallest limit points of it.[?] $\underline{\lim}\{x_n\} \leq \overline{\lim}\{x_n\}$

Remark. For $\{x_n\}$, $\{y_n\}$ such that $x_n \leq y_n$ for every integer $n \in \mathbb{N}$

- 1. $\overline{\lim}\{x_n\} \leq \overline{\lim}\{y_n\}$
- 2. $\underline{\lim}\{x_n\} \leq \underline{\lim}\{y_n\}$

1.10 Convergence Test by Sandwitch Lemma

Convergence of sequences can be tested using the Sandwitch Lemma.

Remark.

$$\underline{\lim}\{x_n\} + \underline{\lim}\{y_n\} \le \underline{\lim}\{x_n + y_n\} \le \overline{\lim}\{x_n + y_n\} \le \overline{\lim}\{x_n\} + \overline{\lim}\{y_n\}$$

If $\{x_n\}$ or $\{y_n\}$ converges, then $\lim\{x_n + y_n\} = \lim x_n + \lim y_n$

Remark. Let $\{x_n\}$ such that $\sqrt{n} = (1 + x_n)^n$. By Bernouli's inequality, $\sqrt{n} = (1 + x_n)^n \ge 1 + nx \implies 0 < x < \frac{1}{\sqrt{n}}$.

$$\varliminf \frac{\lim}{x_n+1} \leq \varliminf \sqrt[n]{n} \leq \varlimsup \sqrt[n]{n} \leq \varlimsup \frac{x_n+1}{x_n}$$

And $\lim \frac{x_n+1}{x_n} = 1$. Thus $\lim \sqrt[n]{n} = 1$

Definitions 1.77. Sequence $\{a_n\}$ such that $a_k = \frac{1}{k} \sum_{n=1}^k x_k$ is the sequence of the averages of a sequence $\{x_n\}$

Remark. Let $\{a_n\}$ be the sequence of averages of the sequence $\{x_n\}$,

- 1. $\lim x_n \le \lim a_n \le \overline{\lim} a_n \le \overline{\lim} x_n$
- 2. If $\{x_n\}$ converges, then $\{a_n\}$ converges.
- 3. If $\{a_n\}$ diverges, then $\{x_n\}$ diverges.
- 4. $\{a_n\}$ converges, then $\{x_n\}$ need not converge. ³

Remark (Results by Average Sequence). 1. $x_{n+1} - x_n \to x \implies \frac{x_n}{n} \to x$

- 2. If $\{x_n\}$ is bounded and $2x_n \le x_{n+1} + x_{n-1} \implies \{x_n + 1 x_n\}$ is monotone increasing to 0. pending pp.28 exr 12b[?]
- 3. $0 < x_1 < 1$, $x_{n+1} = 1 \sqrt{1 x_n}$, then x_n monotone decreasing to 0 and $\frac{x_{n+1}}{x_n}$ convergent to $\frac{1}{2}$.

 $^{3\{}x_n\}$ such that $x_n = -1^n$

- 4. $\{x_n\}, x_n = \left(1 + \frac{1}{n}\right)^n$ is convergent
- 5. $\{x_n\}, |x_n x_{n-1}| \le \alpha |x_{n+1} x_n|, 0 < \alpha < 1 \text{ is convergent}$
- 6. $x_1 = 1$, $x_{n+1} = \frac{1}{3+x_n}$ is convergent to ?
- 7. $x_1 = 1$, $x_{n+1} = 1 + \frac{1}{1+x_n}$ is convergent to $\sqrt{2}$
- 8. $x_1 = 1, \ x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$ is convergent to $\sqrt{2}$

1.11 Series

Definitions 1.78. A series $\sum_{n=1}^{\infty} x_n$ is convergent if the sequence of partial sums $\{y_k\}$ such that $y_k = \sum_{n=1}^k x_n$ is convergent.

Definitions 1.79. A series $\sum_{n=1}^{\infty} x_n$ is rearrangement invariant if for every bijection $\sigma: \mathbb{N} \to \mathbb{N}$, $\sum_{k=1}^{\infty} x_{\sigma_k}$ converges and is invariant.

Theorem 1.80. A series $\sum_{n=1}^{\infty} x_n$ is rearrangement invariant if for every integer $n \in \mathbb{N}$, $x_n \geq 0$.

Remark. Series that are rearrangement invariant are unconditionally convergent.

1.12 Double Series

Definitions 1.81. A double series $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} x_{n,m}$ is $\lim_{k\to\infty} \sum_{n=1}^{k} \sum_{m=1}^{\infty} x_{n,m}$.

Theorem 1.82. If for every $n, m \in \mathbb{N}$, $a_{n,m} \geq 0$, then $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} x_{n,m} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{n,m}$.

Theorem 1.83 (double series into single series). If for every $n, m \in \mathbb{N}, \ x_{n,m} \geq 0$ and for every bijection $\sigma : \mathbb{N} \to \mathbb{N} \times \mathbb{N}, \ \sum_{k=1}^{\infty} x_{\sigma_k} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} x_{n,m}$

Corollary 1.83.1. If for every $n, m \in \mathbb{N}$, $x_{n,m} \geq 0$ and for every bijection $\sigma: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} x_{\sigma_{j,k}} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} x_{n,m}$

1.13 Convergence of series

1.14 Bolzano-Weierstrass Theorem

Theorem 1.84. Every sequence $\{x_n\}$ in \mathbb{R} has subsequences converging to $\underline{\lim}\{x_n\}$ and $\overline{\lim}\{x_n\}$.

Remark. A sequence $\{x_n\}$ is convergent iff $\underline{\lim}\{x_n\} = \overline{\lim}\{x_n\}$

Theorem 1.85. Every bounded sequence in \mathbb{R} has a convergent subsequence.⁴

Theorem 1.86. Every bounded sequence $\{x_n\}$ in \mathbb{R} converges iff $\underline{\lim}\{x_n\} = \overline{\lim}\{x_n\}$.

⁴Every bounded sequence in \mathbb{R} has subsequences converging to $\overline{\lim}$ and $\overline{\lim}$. [?]

Definitions 1.87. A sequence $\langle x_k \rangle$ is Cauchy, if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n, m > N$, $|a_n - a_m| < \epsilon$.

Theorem 1.88 (Cauchy). A sequence in \mathbb{R} is convergent iff it is a Cauchy sequence.

Remark. For a sequence $\{x_n\}$ in \mathbb{R} following statements are equivalent:

- 1. $\{x_n\}$ converges to x
- 2. Every subsequence of $\{x_n\}$ has a subsequence converging to x
- 3. $\{n_k\}, \{m_k\}$ be sequences in \mathbb{N} , then $\lim x_{n_k} = \lim x_{m_k} = x$

Remark. $\lim\{x_n\} = x \text{ iff } \lim\{x_{2n}\} = \lim\{x_{2n+1}\} = x$

Theorem 1.89 (Bolzano-Weierstrass). Every bounded, infinite subset A of \mathbb{R}^k has a cluster point.

Remark. Cluster points of $A \cup B$ are either cluster points of A or of B.

1.15 Heine-Borel Theorem

Theorem 1.90. A subset of \mathbb{R}^p is compact iff closed and bounded.

Remark. Applications

- 1. Cantor Intersection Theorem
- 2. Lebesgue Covering Theorem
- 3. Nearest Point Theorem
- 4. Circumscribing Contour Theorem

Theorem 1.91 (Cantor intersection). Let F_1, F_2, \cdots be non-empty, closed, bounded subsets of \mathbb{R}^p such that $F_1 \supset F_2 \supset \cdots$. Then there exists a point y such that $y \in F_k$, $\forall k$.

Theorem 1.92 (Lebesgue covering). Let K be a compact subset of \mathbb{R}^p and \mathcal{U} be a cover of K. There exists a real number r > 0 such that $\forall x \in K$, $B(x,r) \subset U$ for some $U \in \mathcal{U}$.

Theorem 1.93 (Nearest Point). Let K be a compact subset of \mathbb{R}^p and $x \notin K$, then there exists $y \in K$ such that $|x - y| \leq |x - z|$, $\forall z \in K$.

Theorem 1.94 (Circumscribing contour). Let K be a compact subset of \mathbb{R}^2 and G be an open set containing K. Then there exists a closed curve contained in G made up of arcs of finite number of circles in G such that K is contained in it.

1.16 Continuity

Definitions 1.95. $f: X \to Y$ is continuous if $\forall \epsilon > 0, \ \forall x \in X, \ \exists \delta_x > 0$ such that $|x - y| < \delta_x \implies |f(x) - f(y)| < \epsilon$.

Definitions 1.96 (continuity). f is continuous at x if Cauchy - $\forall \epsilon > 0$, $\exists \delta$ such that $|x - y| < \delta \Longrightarrow |f(x) - f(y)| < \epsilon$. Heine - Sequence $\langle x_k \rangle \rightarrow x \Longrightarrow \langle f(x_k) \rangle \rightarrow f(x)$. Topology - $\forall V \in \mathcal{N}_{f(x)}$, $\exists U \in \mathcal{N}_x$ such that $f(U) \subset V$.

1.17 Uniform Continuity

Definitions 1.97. $f: X \to Y$ is uniformly continuous if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall x \in X$, $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$.

Remark. f is continuous at y if $\lim_{x\to -y} f(x) = \lim_{x\to +y} f(x) = f(y)$

Theorem 1.98. A continuous function from a closed bounded interval into \mathbb{R} is uniformly continuous.

Theorem 1.99. A continuous function from a closed bounded interval into \mathbb{R} is bounded and attains its extrema.

1.18 Differentiability

Definitions 1.100. f is differentiable at y if $\lim_{x\to y} \frac{f(x)-f(y)}{x-y}$ exists.

1.19 Mean Value Theorem

Theorem 1.101 (intermediate value). Let continuous function $f : [a, b] \to \mathbb{R}$, then f([a, b]) = [f(a), f(b)].

1.20 Sequence of functions

1.21 Bounded sequence of functions

Definitions 1.102. A sequence of functions $\{f_n\}$ is bounded if there exists a real-valued function g such that for every $x \in X$ and for every integer $n \in \mathbb{N}$, $|f_n(x)| < g(x)$.

Definitions 1.103. If the sequence $\{f_n\}$ is a bounded sequence of functions, then $\overline{\lim} f_n$ and $\underline{\lim} f_n$ are functions defined by $(\overline{\lim} f_n)(x) = \overline{\lim} f_n(x)$ and $(\underline{\lim} f_n)(x) = \underline{\lim} f_n(x)$

1.22 Series of functions

1.23 Uniform Convergence

Chapter 2

Linear Algebra

2.1 Vector Space

Axiom 2.1 (Field). A set F together with two binary operations +, \cdot is a field if it satisfies

- 1. Addition is commutative, $\forall x, y, z \in F$, x + y = y + x
- 2. Addition is associative, $\forall x, y, z \in F$, x + (y + z) = (x + y) + z
- 3. Existence of additive identity, $\exists 0 \in F, x + 0 = x$
- 4. Existence of additive inverses, $\forall x \in F, \exists -x \in F, x + (-x) = 0$
- 5. Multiplication is commutative, $\forall x, y \in F, xy = yx$
- 6. Multiplication is associative, $\forall x, y, z \in F$, x(yz) = (xy)z
- 7. Existence of multiplicative identity, $\exists 1 \in F, \ \forall x \in F, \ 1x = x$
- 8. Existence of multiplicative inverses, $\forall x \in F, \ x \neq 0, \ \exists x^{-1} \in F, \ xx^{-1} = 1$
- 9. Multiplication is distributive over addition, $\forall x, y, z \in F$, x(y+z) = xy + xz

Remark. A few fields,

- \mathbb{Q} field of all rational numbers
- \mathbb{R} field of all real numbers
- \mathbb{C} field of all complex numbers
- \mathbb{Z}_{p^n} Galois field of prime powers
- $\mathbb{Q}(v)$ algebraic extensions of \mathbb{Q}
- $\mathbb{R}(v)$ algebraic extensions of \mathbb{R}

Axiom 2.2 (Vector Space). A set V of vectors and a field F of scalars together with two binary operations, vector addition, $+: V \times V \to V$ and scalar muliplication $\cdot: F \times V \to V$ is a vector space V over F, if it satisfies

- 1. Addition is commutative, $\forall u, v \in V, u+v=v+u$
- 2. Addition is associtive, $\forall u, v, w \in V, u + (v + w) = (u + v) + w$
- 3. Additive identity, $\exists 0 \in V$, such that $\forall v \in V$, 0 + v = v
- 4. Additive inverses, $\forall v \in V$, there exists $-v \in V$ such that v + (-v) = 0
- 5. Scalar Multiplication is associtive, $\forall a, b \in F, \ \forall v \in V, \ a(bv) = (ab)v$
- 6. Scalar Multiplication is distributive over vector addition, $\forall a \in F, \ \forall u, v \in V, \ a(u+v) = au + av$
- 7. Scalar Multiplication is distributive over scalar addition, $\forall a,b \in F, \ \forall v \in V, \ (a+b)v = av + bv$
- 8. Scalar Multiplication identity, $\forall v \in V, \ 1v = v$

Remark. Scalar multiplication is trivially commutative. ie, av = va

Remark. A few vector spaces,

 F^n n-tuple space

 $F^{m \times n}$ space of all $m \times n$ matrices

 F^S space of all functions $f: S \to F$

F(x) space of all polynomial functions on F

Definitions 2.3. A vector b is a linear combination of the set of vectors $\{a_1, a_2, \dots, a_n\}$ if there exists scalars $c_i \in F$ such that $b = \sum c_i a_i$.

Axiom 2.4. Let V be a vector space, then inner product of V is a function, $\cdot: V \times V \to \mathbb{R}$ satisfying,

- 1. $\forall x \in V, \ x \cdot x > 0$
- 2. $x \cdot x = 0 \iff x = 0$
- 3. Inner product is commutative, $\forall x, y \in V, \ x \cdot y = y \cdot x$
- 4. $\forall x, y, z \in V$, $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(x+y) \cdot z = x \cdot z + y \cdot z$
- 5. $\forall x, y \in V, \ \forall a \in F, \ (ax) \cdot y = a(x \cdot y) = x \cdot (ay)$

Definitions 2.5. A vector space V with inner product is an inner product space.

Axiom 2.6. Let V be a vector space, then a norm on V is a function $||||: V \to \mathbb{R}$ satisfying,

- 1. $\forall x \in V, ||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. $\forall x \in V, \ \forall a \in F, \ ||ax|| = |a|||x||$
- 4. triangular inequality, $\forall x, y \in V, ||x + y|| \le ||x|| + ||y||$

Definitions 2.7. A vector space with a norm is a normed space.

2.2. SUBSPACE 19

Remark. Let V be a vector space with inner product \cdot . Then inner product induced norm is given by $\forall x \in V, ||x|| = \sqrt{x \cdot x}$

Theorem 2.8. Let V be a vector space with inner product induced norm, then $x \cdot y \leq ||x|| ||y||$. And equality holds iff x = cy.

Corollary 2.8.1 (Cauchy-Schwarz-Buniakowsky). $|x \cdot y| \le ||x|| ||y||$

Remark. $x = (a, b), y = (b, a) \implies Geometric Mean \leq Arithmetic Mean$

Remark (parallelogram identity). $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$

Remark (orthogonal). $x, y \in V$ are orthogonal if $x \cdot y = 0$.

Theorem 2.9. Let $x \in \mathbb{R}^n$, then $|x_i| \leq ||x|| \leq \sqrt{n} \sup\{|x_1|, |x_2|, \dots, |x_n|\}$.

2.2 Subspace

Definitions 2.10. Let V be a vector space over F with vector addition, + and scalar multiplication, \cdot , then a subspace W of V is a subset W of V if it is a vector space over F with the same operations restricted to W.

Theorem 2.11. A non-empty subset W of V is a subspace of V over the same field F iff for every pair of vectors $u, v \in W$ and every scalar $c \in F$, $cu + v \in W$

Theorem 2.12. Let V be a vector space over the field F, then the intersection of any collection of subspace of V is a subspace of V

Theorem 2.13 (Subspace spanned by W). Let V be a vector space over the field F and $W \subset V$, then the intersection of all subspace of V that contains W is the subspace spanned/generated by W.

Theorem 2.14. The subspace spanned by W is the set of all linear combinations of vectors in W.

Definitions 2.15. The sum of subsets $W_1, W_2, \dots W_n$ of V is the set of all vectors, $w_1 + w_2 + \dots + w_n$ where $w_k \in W_k$.

Theorem 2.16. Let W_1, W_2, \dots, W_n be subspace of the vector space V, then $W_1 + W_2 + \dots + W_n$ is the subspace of V containing each of the subspaces W_k .

Definitions 2.17. Let A be an $m \times n$ matrix over the field F, then the row space of A is the subspace of F^n spanned by the row vectors of A. And the column space of A is the subspace of F^m spanned by the column vectors of A.

Remark. Every linear combination of zero-sum vectors gives zero-sum. Thus there is unique zero-sum (n-1)-dimensional subspace for every n-dimensional vector space.¹

Remark. Let a Cube has corners (x,y,z), $x,y,z \in \{0,1\}$, then (0,1,0) - (1,1,0) is an edge and (0,1,0) - (1,1,0) - (1,1,0) is a face. There are $\binom{n}{k-1}2^{n-k+1}$ k-dimensional subspaces for such an n-cube. ie, n-cube has 2^n corners, $n2^{n-1}$ edges, $n(n-1)2^{n-3}$ faces . . .

¹zero-sum vectors[?]: vectors whose components add to zero. eg. (1, -2, 1).

2.2.1 Basis & Dimension

Definitions 2.18. A set of vectors $\{v_1, v_2, \dots, v_n\}$ is linearly dependent if there exists scalars $c_1, c_2, \dots, c_n \in F$, not all of them are zero such that $c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$.

Remark. 1. Any set containing the zero vector is linearly dependent.

- 2. Any set containing linearly dependent set is linearly dependent.
- 3. Any subset of a linear independent set is linearly independent.
- 4. S is linearly independent iff every finite subset of S is linearly independent. \star

Definitions 2.19. A basis for V is a linearly independent set of vectors that spans V. V is finite dimensional if it has a finite basis.

Remark. Let A be an invertible $n \times n$ matrix, then the column vectors of A is a basis for F^n .

Theorem 2.20. Let V be a vector space is spanned by a finite set of n vectors, then any independent set of vectors in V is finite and contains no more than n elements.

Corollary 2.20.1. If V is a finite dimensional vector space, then any two bases of V contains the same number of elements.

Corollary 2.20.2. If V is n-dimensional, then any subset of more than n vectors is dependent and no subset with fewer than n vectors can span V.

Lemma 2.21. Let S be an independent subset of V and $v \in V$ is not in the subspace spanned by S, then $S \cup \{v\}$ is an independent subset of V.

Theorem 2.22. If W is a subspace of a finite dimensional vector space V, then every independent subset of W is finite and is part of a basis for W.

Corollary 2.22.1. If W is a proper subspace of a finite dimensional vector space V, then W is finite dimensional and $\dim W < \dim V$.

Corollary 2.22.2. Let A be an $n \times n$ matrix. If row vectors of A are linearly independent in F^n , then A is invertible.

Corollary 2.22.3. If W_1, W_2 are finite dimensional subspaces of V, then $W_1 + W_2$ is finite dimensional and dim $W_1 + W_2 = \dim W_1 + \dim W_2 - \dim W_1 \cap W_2$

2.2.2 Change of Basis

Definitions 2.23. The co-ordinates of a vector $v \in V$ with respect to an ordered basis B, $[v]_B$ is the column vector of scalars c_1, c_2, \dots, c_n such that $v = c_1b_1 + c_2b_2 + \dots + c_nb_n$ where $b_k \in B$.

Theorem 2.24 (Change of Basis). Let V be an n-dimensional vector space over the field F and B, B' be two ordered bases for V, then there exists an $n \times n$ invertible matrix P such that $[v]_B = P[v]_{B'}$.

Theorem 2.25. For every invertible $n \times n$ matrix, P and basis B of the vector V over the field F, there exists another basis B' such that $[v]_B = P[v]_{B'}$ for every vector $v \in V$.

Definitions 2.26. Row rank and Column rank,

row rank dimension of row space of A

 ${f column\ rank}\ dimension\ of\ column\ space\ of\ A$

Theorem 2.27. Row-equivalent matrices have the same row space.

Theorem 2.28. Non-zero row vectors of a row-reduced echelon matrix, R forms a basis for the row space of R.

Theorem 2.29. For every subspace W of F^n with $\dim W \leq m$, there exists a unique $m \times n$ row-reduced echelon matrix, R such that its row space is W.

Theorem 2.30. Every $m \times n$ matrix over the field F is row-equivalent to a unique row-reduced echelon matrix.

Theorem 2.31. The following statements are equivalent,

- 1. A, B are row-equivalent.
- 2. A, B have same row space.
- 3. There exists an invertible matrix, P such that A = PB
- 4. AX = 0, BX = 0 has same solution space.

2.3 Linear Transformations

Definitions 2.32. Let V, W be vector spaces over the same field F. A linear transformation T is a function, $T: V \to W$ such that T(cu + v) = cTu + Tv where $u, v \in V$ and $c \in F$.

Remark. A few linear transformations,

- 1. The set of all polynomials over the field $\mathbb C$ with differentiation.
- 2. $F^{m \times n}$ with matrix multiplication.
- 3. The set of all continuous real functions with integration.

Remark. Properties of linear transformations,

- 1. T(0) = 0
- 2. T preserves linear combinations

Theorem 2.33. Let $B = \{b_1, b_2, \dots, b_n\}$ be an ordered basis for an n-dimensional vector space V over the field F and W be any vector space over the field F and $b'_1, b'_2, \dots, b'_n \in W$, then there exists a unique linear transformation $T: V \to W$ such that $T(b_k) = b'_k$, $\forall k$.

Remark. A few subspaces from linear transformations,

- 1. T(V) is a subspace of W
- 2. $\{v \in V : Tv = 0\}$ is a subspace of V

Definitions 2.34. Subspaces from transformations and their dimensions,

Null space/Kernel of T $N(T) = \{v \in V : Tv = 0\}$

Nullity of T $nullity(T) = \dim N(T)$

Range space of T $R(T) = \{w \in W : Tv = w, v \in V\}$

Rank of T $rank(T) = \dim R(T)$

Theorem 2.35 (rank-nullity). Let T be a linear transformation from a finite dimensional space V into W, then $rank(T) + nullity(T) = \dim V$

Theorem 2.36. Let $A \in F^{m \times n}$, then row $rank(A) = column \ rank(A)$

Theorem 2.37. Let V, W be vector spaces over the field F, then the set of all linear transformations $T: V \to W$ with addition, (T+U)v = Tv + Uv and multiplication, (cT)v = c(Tv) is a vector space, L(V, W) over the field F.

Theorem 2.38. Let dim V = n, dim W = m, then dim L(V, W) = mn

Theorem 2.39. Let $T \in L(V, W)$, $U \in L(W, Z)$, then $UT = \in L(V, Z)$

Remark. A linear operator on V is a linear tranformation, $T: V \to V$.

Lemma 2.40 (linear algebra with identity). \star Let V be a vector space over the field F, then the set of all linear operators on V, L(V,V) is a linear algebra with identity. Let $U, T_1, T_2 \in L(V, V)$, then

- 1. $\exists I \in L(V, V) \text{ such that } UI = U = IU$
- 2. $U(T_1 + T_2) = UT_1 + UT_2$ and $(T_1 + T_2)U = T_1U + T_2U$
- 3. c(UT) = (cU)T

Theorem 2.41. Linear tranformation $T: V \to W$ is invertible iff T is bijective, then $T^{-1}: W \to V$ is also bijective.

non-singular T is non-singular if $Tv = 0 \implies v = 0$ ie, $N(T) = \{0\}$

Theorem 2.42. A linear transformation, T is injective iff T is non-singular.

Theorem 2.43. Linear transformations preserve independence iff non-singular. \star

Remark. Let V be an n-dimensional vector space over the field F and $T: V \to V$ be a linear operator. For any basis B of V, $B' = \{Tb_1, Tb_2, \cdots, Tb_n\}$, $b_j \in B$ is also a basis for V iff the linear operator $T: V \to V$ is invertible.

Theorem 2.44. Let $T: V \to W$ and $U: W \to Z$ be invertible linear transformations, then $UT: V \to Z$ is invertible and $(UT)^{-1} = T^{-1}U^{-1}$

Theorem 2.45. Let V, W be finite dimensional vector spaces over the field F such that $\dim V = \dim W$. And $T: V \to W$ be a linear transformation, then the following statements are equivalent,

2.4. MATRIX 23

- 1. T is invertible.
- 2. T is non-singular.
- 3. T is surjective.

Theorem 2.46. The set of all invertible linear operators with on V with composition is a non-abelian group.

Theorem 2.47. Every n-dimensional vector space over the field F is isomorphic to F^n .

Theorem 2.48. Let U, V be vector spaces over the field $F, U : V \to W$ be an isomorphism, then $\phi : L(V, V) \to L(W, W)$, $\phi(T) = UTU^{-1}$ is an isomorphism.

2.4 Matrix

Definitions 2.49. An $m \times n$ matrix over the field F is a function $A : \{1, 2, \dots, m\} \times \{1, 2, \dots, n\} \to F$.

upper triangular $a_{ij} = 0, i > j$

lower triangular $a_{ij} = 0, i < j$

symmetric $a_{ij} = a_{ji}$

skew-symmetric $a_{ij} = -a_{ji}$

hermitian $a_{ij} = \overline{a_{ji}}$

Remark. There are three elementary row operations on an $m \times n$ matrix

- 1. Multiplication of one row by non-zero scalar
- 2. Replacing row r by row r plus c times row r
- 3. Interchanging two rows

Remark. Elementary row operations on A does not affect the set of solutions of the homogenous system of linear equations, AX = 0. The inverse of any elementary row operation is of the same kind.

Definitions 2.50. A matrix B is row-equivalent to matrix A if B can be obtained from A by a finite sequence of row operations.

If A and B are row-equivalent, then the homogeneous systems of linear equations, AX = 0 and BX = 0 have exactly the same solutions.

Definitions 2.51. An $m \times n$ matrix is row-reduced if

- 1. first non-zero entry, pivot of each non-zero row is 1
- 2. each pivot column has all other entries zero

Remark. Every $m \times n$ matrix is row-equivalent to a row-reduced $m \times n$ matrix.

Definitions 2.52. An $m \times n$ matrix is an echelon matrix if

- 1. non-zero rows are above every zero-rows
- 2. pivot column of any row is less than pivot column of any row below it

Theorem 2.53. Every $m \times n$ matrix is row-equivalent to a unique $m \times n$ row-reduced echelon matrix.

Theorem 2.54. If A is an $m \times n$ matrix and m < n, then AX = 0 has a non-trivial solution.

Theorem 2.55. A is row-equivalent to $n \times n$ identity matrix iff AX = 0 has only the trivial solution.

Definitions 2.56. $A_{m \times n} \times B_{n \times p} = C_{m \times p}, \ c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Remark. Matrix multiplication is not commutative. Matrix multiplication is associative.

Definitions 2.57. An $n \times n$ matrix is an elementary matrix if it can be obtained from $n \times n$ identity matrix by a single elementary row operation.

Remark. An elementary operation is equivalent to the left-multiplication by corresponding elementary matrix.

Two $m \times n$ matrices are row-equivalent if one can be obtained from the other by left-multiplying a finite number of $m \times m$ elementary matrices. (or by right-multiplying a finite number of $n \times n$ elementary matrices)

Definitions 2.58. Let A be an $n \times n$ matrix over the field F. If BA = I, then B is the left-inverse of A. If AB = I, then B is the right-inverse of A. If AB = BA = I, then B is the inverse of A and A is an invertible matrix.

Theorem 2.59. If A, B are invertible, then $(AB)^{-1} = B^{-1}A^{-1}$. The product of invertible matrices is invertible. Elementary matrices are invertible.

Theorem 2.60. The following statements are equivalent:

- 1. A is invertible.
- 2. A is row-equivalent to $I_{n \times n}$.
- 3. A is a product of elementary matrices.
- 4. AX = 0 has only trivial solution.
- 5. AX = Y has a unique solution X for each Y.

Corollary 2.60.1. If A is invertible, a sequence of elementary row operations would reduce A to the identity. The same sequence of elementary row operations would convert I to A^{-1} .

Corollary 2.60.2. If A, B are row-equivalent $m \times n$ matrices, then B = PA where P is an invertible $m \times m$ matrix and $A = P^{-1}B$.

An $n \times n$ matrix with either left or right inverse is invertible.

Let $A = \prod A_k$. A is invertible iff each A_k is invertible.

2.5. RANK 25

- 2.5 Rank
- 2.6 Determinant
- 2.7 Linear Equations
- 2.8 Eigenvalues & Eigenvectors
- 2.9 Cayley-Hamilton Theorem

2.10 Transformation Matrix

Theorem 2.61. Let V, W be vector spaces over field F of dimensions n, m. Let B, B' be ordered bases for V, W, then for each linear transformation $T: V \to W$ there exists an $m \times n$ matrix such that $[Tv]_{B'} = [T]_{BB'}[v]_B$ where the columns of $[T]_{BB'}$ are co-ordinates, $[Tb_j]_{B'}$ for each vector in the ordered basis B of V.

Theorem 2.62. Let V, W be vector spaces over the field F of dimensions n, m and B, B' be ordered bases for V, W. For each such pair of ordered bases, the function $\phi: L(V, W) \to F^{m \times n}$, $\phi(T) = [T]_{BB'}$ is an isomorphism.

Theorem 2.63. Let V, W, Z be finite dimensional vector spaces over the field F with ordered bases B, B', B'' and T, U be linear transformations, $T: V \to W$, $U: W \to Z$, then $[UT]_{BB''} = [U]_{B'B''}[T]_{BB'}$.

Corollary 2.63.1. Let $T:V\to V$ be an invertible linear operator, then $[T^{-1}]_{BB}=[T]_{BB}^{-1}$.

Corollary 2.63.2. Let $T: V \to V$ be a linear operator and B, B' be two ordered bases for V, then $[T]_{B'B'} = [I]_{BB'}[T]_{BB}[I]_{B'B}$.

Theorem 2.64. Let $T: V \to V$ be a linear operator and B, B' be two ordered bases for V, then there exists an invertible linear operator $U: V \to V$, $Ub_j = b'_j$ such that $[T]_{B'B'} = [U]_{BB}^{-1}[T]_{BB}[U]_{BB}.*$

Remark. Let V be a vector space over field F with ordered bases B, B', then there exists a linear operator $U: V \to V$, $Ub_j = b'_j$ such that $[I]_{B'B} = [U]_{BB}$.

Definitions 2.65. Two $n \times n$ matrices A, B are similar if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$.

Remark. Let B, B' be ordered bases for n-dimensional vector space V over field F and $T: V \to V$ be a linear operator, then $[T]_{BB}, [T]_{B'B'}$ are similar.

Remark. If linear operator $T: V \to V$ is invertible, then $[T]_{BB}$ is invertible and is similar to $I_{n \times n}$.

Remark. Let V be an n-dimensional vector space over field F and A be an invertible $n \times n$ matrix over field F, then there exists a pair of ordered bases B, B' for V such that $[I]_{BB'} = A$. And there exists an invertible linear operator $U: V \to V$, $Ub_i = b'_i$ such that $[U]_{BB} = A$.

2.11 Linear Functionals

Definitions 2.66. Let V be a vector space over the field F, then linear transformation $f: V \to F$ is a linear functional on V.

Definitions 2.67. Let V be a vector space over the field F, then the set of all linear functionals on V is a dual space $V^* = L(V, F)$ of V.

Remark. dim $V^* = \dim V$

Theorem 2.68. Let $B = \{b_1, b_2, \dots, b_n\}$ be an ordered basis for the vector space V over the field F, then $B^* = \{f_1, f_2, \dots, f_n\}$ such that $f_i(b_j) = \delta_{ij}$ is a dual basis for V^* . And for each $v \in V$, the co-ordinates of v are $f_j(v)$.

Remark. Let f be a non-zero linear functional on the vector space V over the field F, then $\dim N(f) = \dim V - 1$. If V is finite-dimensional, then the null space of any non-zero functional on V is a hyperspace of V.

Definitions 2.69. Let S be a subset of the vector space V over the field F, then the annihilator of S, S^0 is the set of all linear functionals on V such that f(v) = 0, $\forall v \in S$.

Remark. S^0 is the set of all linear functionals on V such that S is contained in the nullspace of all those functionals. The set of all linear functional that map vectors in S into 0.

Theorem 2.70. Let W be a subspace of a finite dimensional vector space V over the field F, then $\dim W + \dim W^0 = \dim V$.

Corollary 2.70.1. Let W be a k-dimensional subspace of an n-dimensional vector space V over the field F, then W is the intersection of (n-k) hyperspaces in V.

Corollary 2.70.2. Let W_1, W_2 be subspaces of a finite dimensional vector space, then $W_1 = W_2$ iff $W_1^0 = W_2^0$.

Definitions 2.71. Let V be a vector space over the field F, then double dual V^{**} of V is the set of all linear functionals on the dual space V^* .

Theorem 2.72. Let V be a finite-dimensional vector space over the field F, then $\phi: V \to V^{**}$, $\phi(v) = L_v$ such that $\forall f \in V^*$, $L_v(f) = f(v)$ is an isomorphism.

Corollary 2.72.1. Let V be a finite dimensional vector space over the field F, then for every linear functional $L \in V^{**}$, there exists a unique vector $v \in V$ such that for every linear function $f \in V^*$, L(f) = f(v).

Corollary 2.72.2. Let V be a finite dimensional vector space over F, then each basis for V^* is the dual of some basis for V.

Theorem 2.73. Let S be a subset of a finite dimensional vector space V over the field F, then S^{0^0} is the subspace spanned by $S.\star$

Definitions 2.74. A hyperspace of a vector space is a maximal, proper subspace of it.

Theorem 2.75. Let V be a vector space over the field F, then the null space of a non-zero functional f on V is a hyperspace in V. And every hyperspace in V is the null space of some non-zero linear functional on V.

Lemma 2.76. Let f, g be linear functionals on a vector space V over the field F, then g is a scalar multiple of f iff null space of g contains null space of f.

Theorem 2.77. Let g, f_1, f_2, \dots, f_n be linear functionals on a vector space V over the field F and N, N_1, N_2, \dots, N_n be the respective null spaces, then g is a linear combination of f_js iff N contains $\cap_{j=1}^n N_j$.

Theorem 2.78. Let V, W be vector spaces over the field F, then for each linear transformation, $T: V \to W$ there exists a unique linear transformation, $T^t: W^* \to V^*$ such that for each $v \in V$ and $g \in W^*$, $T^t g(v) = g(Tv)$.

Definitions 2.79. Let V, W be vector spaces over the field F and $T: V \to W$ be a linear transformation, then the linear transformation, $T^t: W^* \to V^*$ such that $T_t g(v) = g(Tv), \forall v \in V, \forall g \in W^*$ is the transpose/adjoint of T.

Theorem 2.80. Let V, W be vector spaces over the field F and $T : V \to W$ be a linear transformation, then the null space of T^t is the annihilator of the range of T.

Corollary 2.80.1. Let V, W be finite dimensional vector spaces over the field F, then $rank(T^t) = rank(T)$ and $R(T^t) = N(T)^0$

Theorem 2.81. Let V, W be finite dimensional vector spaces over the field F with ordered bases B, B' and B^*, B'^* are respective dual bases for V^*, W^* and $T: V \to W$ be a linear transformation with transpose of $T, T^t: W^* \to V^*$, then $[T]_{BB'}$ is the transpose of the matrix $[T^t]_{B'^*B^*}$.

2.12 Canonical Forms

- 2.12.1 Diagonal Forms
- 2.12.2 Triangular Forms
- 2.12.3 Jordan Forms
- 2.13 Inner Product Spaces
- 2.14 Orthonormal Basis
- 2.15 Quadratic Forms
- 2.16 Reduction & Classification of Quadratic Forms

Chapter 3

Topology

3.1 Metric Space

Definitions 3.1. A function $d: X \times X \to \mathbb{R}$ is a metric on X if it satisfies

- 1. $d(x,y) \ge 0$, $d(x,y) = 0 \iff x = y$
- 2. d(x,y) = d(y,x)
- 3. d(x,y) = d(x,z) + d(z,y)

Definitions 3.2. A set X together with a metric on X is a metric space.

neighbourhood A subset N is a neighbourhood of a point x if there exists a positive real number r such that $y \in N$ for every y satisfying d(x, y) < r.

limit point A point x is a limit point of a subset A if every neighbourhood of x has some another point from the subset A.

isolated point A point which is not a limit point of the subset A.

closed A subset A of X is closed if it has every limit point of it. $\overline{A} = A$

interior point A point x is an interior point the subset A if there exists some neighbourhood of x, which is contained in the subset A. $x \in A^0$

open A subset A is open if each point of it is an interior point in it.

complement The subset of all points which are not in the subset A is the complement of A.

perfect A subset A is perfect if it is closed and has each point of it as its limit point.

bounded A subset A is bounded if there is a point x and a positive real number r such that for each point $y \in A$, d(x,y) < r.

dense A subset A is dense if every point of X is either in A or is a limit point of A.

boundary A point x is a boundary point of subset A of X if every neighbourhood of x has some point from A as well as X - A. $x \in \partial(A)$

Remark. 1.
$$\overline{A} \cap \overline{B} \neq \overline{A \cap B}$$
 eg. $\overline{(1,2)} \cap \overline{(2,3)} = \{2\}, \overline{(1,2)} \cap \overline{(2,3)} = \{\}$

- 2. There exists countable, dense subsets of \mathbb{R} with empty interior. eq. \mathbb{Q}
- 3. There exists uncountable, dense subsets of \mathbb{R} with empty interior.
- 4. $A \times B$ is open(or closed) iff both A, B are open(or closed).
- 5. For Cantor set C, $C^0 = \phi$, $\overline{C} = C$, $\partial(C) = C$
- 6. C can't be expresses as countable union of closed intervals.
- 7. $\mathbb{R} \mathcal{C}$ can be expresses as countable union of open intervals.
- **Remark.** 1. For any bounded subset A, there exists a point x such that d(x,y) < r for every $y \in A$. Then for any point $z \in A$, d(z,y) < 2r for every $y \in A$.
- **Definitions 3.3. radius** The radius of a bounded subset A is the smallest real number r such that for a particular $x \in X$, d(x,y) < r for every point $y \in A$.

3.2 Topological Space

Definitions 3.4. A set X together with a family \mathcal{T} of subsets of X is a topological space if it satisfies

- 1. T is closed under arbitrary unions
- 2. \mathcal{T} is closed under finite intersections

usual
$$d(x,y) = |x-y|$$

discrete $d(x,y) = \delta_{xy}$

taxicab d(x,y) = |x| + |y|

Definitions 3.5. A set is separable if it has a countable dense subset.