# CSCE-642 Reinforcement Learning Trust Regions



Instructor: Guni Sharon

Based on slides by: Pascal Poupart and John Schulman

## CSCE-689, Reinforcement Learning



#### RL as an optimization problem

- ML: reduce learning to numerical optimization problem
  - Supervised learning: minimize training error
- RL: use all observations (environment interactions) to compute the optimal policy
  - Q learning: can (in principle) consider all transitions seen so far, however, we're optimizing a proxy objective (q instead of  $\pi$ )
  - PG methods: optimizes  $\pi$  but are not sample efficient (on policy learning)
  - We would like to formalize a gradient update step as an optimization over all previous samples
    - Input: data sampled from some policy
    - Output: a new policy which maximizes the expected return

#### Limitations of "vanilla" PG methods

- Hard to choose step size
  - Input data is nonstationary due to changing policy: state and reward distributions are non-stationary

 Bad step size is more damaging than in supervised learning, since it affects the trajectory distribution

- Step too far -> bad policy
- Next batch: collected under bad policy
- Can't recover collapse in performance
- Sample efficiency
  - Only one gradient step per environment sample
    - Need to better utilize previous experience
  - Dependent on scaling of coordinates
    - Uses the same learning rate for all states and all tunable parameters



#### Find the optimal point

- **PG:** Line search methods (e.g., gradient ascend/decent)
  - Find direction of improvement
  - Select step length
- Today: Trust region methods
  - Select a trust region radius (analog to max step length)
  - Find optimal point within trust region



Line search (like gradient ascent)



Trust region

#### Trust region methods

- Idea:
  - Approximate objective f with a simpler function  $\tilde{f}$
  - Solve:  $\tilde{x}^* = \arg\min_{x} \tilde{f}(x)$
- Problem: The optimum  $\tilde{x}^*$  might be in region where  $\tilde{f}$  poorly approximates f so  $\tilde{x}^*$  might be far from  $x^*$
- Solution: restrict the search to a region where we trust  $\tilde{f}$  to approximate f well
  - Solve:  $\tilde{x}^* = argmin_{x \in trustRegion} \tilde{f}(x)$

## Taylor series for approximation

- Approximate an unknown point f(x') around a known point x
  - Assuming known derivatives  $\frac{d^n f}{dx^n}$

• 
$$f(x') = f(x) + \frac{df}{dx}(x) \frac{(x'-x)^1}{1!} + \frac{d^2f}{dx^2}(x) \frac{(x'-x)^2}{2!} + \dots + \frac{d^nf}{dx^n}(x) \frac{(x'-x)^n}{n!}$$





#### Newton's method

- When considering a high dimensional (n) optimization problem, the k order partial derivatives is size  $n^k$  (grows exponentially!)
- Approximate f(x) by a second order Tylor approximation around a know point c
- $f(X) \approx f(c) + \nabla f(c)^{\mathsf{T}} (X c) + \frac{1}{2} (X c) H(c) (X c)$ 
  - Where  $\nabla f(c)$  is the gradient and H(c) is the Hessian at a known point c
- The delta of c from optimum X in the approximated function is found by setting its gradient (with respect to (X-c)) equal to zero, which gives:
- Newton step direction =  $(X c) = -H^{-1}(c)\nabla f(c)$

## Add a trust region

- Assume  $\tilde{f}$  is a second-order Taylor polynomial
- $f(X) \approx \tilde{f}(X) = f(c) + \nabla f(c)^{\top} (X c) + \frac{1}{2!} (X c) H(c) (X c)$
- The closer we are to c the more accurate
- Trust regions are often chosen to be a hypersphere (e.g., I2 norm)  $||X c||_2 \le \delta$
- But it might be that there is no local optimum within the trust region (no point with  $\nabla f = [0]^d$ )
  - Use Lagrange method to set the trust region boundaries!
  - (Lagrange method provides the optimum under constraint)

#### Generic algorithm

```
trustRegionMethod
    init \delta, x_0^*, n=0
    Repeat:
        n \leftarrow n + 1
        Solve: x_n^* = \arg\min_{x} \tilde{f}(x) s.t. ||x - x_{n-1}^*||_2 \le \delta
        If \tilde{f}(x_n^*) \approx f(x_n^*) than increase \delta
         Else decrease \delta
    Until convergence
```

## Finding the optimal point

- Assume  $\tilde{f}$  is a second-order Taylor polynomial
- $f(x) \approx \tilde{f}(x) = f(c) + \nabla f(c)^{\mathsf{T}}(x c) + \frac{1}{2!}(x c)H(c)(x c)$ 
  - Subject to:  $||x c||_2 \le \delta$
- If *H* is a positive (semi-)definite matrix
  - (Strictly) convex optimization
  - Can find the global optimum in closed form
  - Usually not the case in practical problems
- If H is not a positive semi-definite matrix
  - Non-convex optimization
  - Use gradient-based approaches that guarantee improvement per step
  - Find local optima

#### Non-convex optimization

- Solve:  $x_n^* = \arg\min_{x} \tilde{f}(x)$  s.t.  $||x x_{n-1}^*||_2 \le \delta$
- First: define an appropriate loss function

#### What loss do we minimize in PG?

• 
$$\theta_{t+1} = \theta_t + \alpha \nabla L$$

- Policy gradient (working backwards)
  - $\nabla \hat{j}(\theta) = \hat{A}(a_t, s_t) \nabla_{\theta} \ln \pi(a_t | s_t; \theta)$
  - $L^{PG}(\theta) = \hat{A}(a_t, s_t) \ln \pi(a_t | s_t; \theta)$
- Recall that:  $\nabla_{\theta} \ln \pi(a_t|s_t;\theta) = \frac{\nabla_{\theta}\pi(a_t|s_t;\theta)}{\pi(a_t|s_t;\theta)} = \nabla_{\theta} \frac{\pi(a_t|s_t;\theta)}{\pi(a_t|s_t;\theta_{old})}$
- $L^{IS}(\theta) = \hat{A}(a_t, s_t) \frac{\pi(a_t|s_t; \theta)}{\pi(a_t|s_t; \theta_{old})}$

 $\pi(a_t|s_t;\theta_{old})$  is a constant

Important sampling ratio (see slide 28 from "4.Monte-Carlo")

## What do we actually want to optimize in PG?

- $\max_{\theta} \mathbb{E}_{s_t \sim \pi_{\theta}, a_t \sim \pi_{\theta}}[A(s_t, a_t)]$  (but we don't observe  $s_t \sim \pi_{\theta}$  and  $a_t \sim \pi_{\theta}$ )
  - We sample from  $\theta_{old}$  instead... Let's use importance sampling!

• = 
$$\mathbb{E}_{s_t \sim \pi_{\theta_{old}}, a_t \sim \pi_{\theta_{old}}} \left[ \frac{\pi(A_t | S_t; \theta)}{\pi(A_t | S_t; \theta_{old})} A(s_t, a_t) \right] = L^{IS}(\theta)$$

- $\mathit{L}^{\mathit{IS}}(\theta)$  approximates the performance difference between  $\theta$  and  $\theta_{old}$
- Similarity between  $\pi_{\theta}$  and  $\pi_{\theta_{old}}$  affects the variance in the approximated value
  - When  $\pi_{\theta}$  and  $\pi_{\theta_{old}}$  are far from each other than the  $L^{IS}(\theta)$  approximation is usually untrustworthy

#### Trust Region Policy Optimization

- Define the following trust region update:
  - $\max_{\theta} \widehat{\mathbb{E}}_t \left[ \hat{A}(A_t, S_t) \frac{\pi(A_t | S_t; \theta)}{\pi(A_t | S_t; \theta_{old})} \right]$
  - s.t.  $\widehat{\mathbb{E}}_t \left[ D_{KL} \left[ \pi(\cdot | S_t; \theta_{old}), \pi(\cdot | S_t; \theta) \right] \right] \le \delta$
  - That is, find the best next policy based on data from current policy while bounding the distance between the policies' distributions (KL divergence)
  - Off policy (IS-based) estimations are usually noisier the further they are from the behavior policy hence the necessity of bounding the change
- The constraint can be written as a penalty in the objective function (a Lagrangian)
  - $\max_{\theta} \widehat{\mathbb{E}}_t \left[ \widehat{A}(A_t, S_t) \frac{\pi(A_t | S_t; \theta)}{\pi(A_t | S_t; \theta_{old})} \right] \beta \widehat{\mathbb{E}}_t \left[ D_{KL} \left[ \pi(\cdot | S_t; \theta_{old}), \pi(\cdot | S_t; \theta) \right] \right]$
  - For any  $\delta$  in the constraint variant there is a  $\beta$  value such that both approaches result in the same optimality point [follows from the method of Lagrange multipliers]

## Monotonic improvement results

• 
$$J(\theta) \ge L_{\theta_{old}}^{IS}(\theta) - C \max_{s} D_{KL}[\pi(\cdot|s;\theta_{old}),\pi(\cdot|s;\theta)]$$

- Where:  $J(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t\right]$  is the expected return,  $C = \frac{2\epsilon\gamma}{(1-\gamma)^2}$ ,  $\epsilon = \max_{s} \left|\mathbb{E}_{a \sim \pi(a|s;\theta)}\left[A_{\theta_{old}}(s,a)\right]\right|$
- The optimal point in  $L(\theta) CD_{KL}$ 
  - Guaranteed to improve  $I(\theta)$  over  $I(\theta_{old})$

Note that the original paper considers costs instead of rewards so \ge becomes \le



#### TRPO algorithm

**for** iteration= $1, 2, \ldots$  **do**Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps

maximize 
$$\sum_{n=1}^{N} \frac{\pi_{\theta}(a_n \mid s_n)}{\pi_{\theta_{\text{old}}}(a_n \mid s_n)} \hat{A}_n$$
 subject to  $\overline{\text{KL}}_{\pi_{\theta_{\text{old}}}}(\pi_{\theta}) \leq \delta$ 

Take the mean or the max?
The monotonic improvement
guarantees hold only for max but
in practice mean works better
(max is too conservative)

#### end for

## Solving KL penalized problem

- maximize  $L^{IS}(\pi_{\theta}) \beta \cdot \overline{KL}(\pi_{\theta_{old}}, \pi_{\theta})$
- ullet Use a linear approximation for L and a quadratic approximation for  $\overline{KL}$
- maximize  $g(\theta \theta_{old}) \frac{\beta}{2} \cdot (\theta \theta_{old})^{\mathsf{T}} F(\theta \theta_{old})$
- $g = \frac{\partial L}{\partial \theta}$  (the policy gradient),  $F = \frac{\partial^2 \overline{KL}}{\partial \theta^2}$  (the fisher information matrix)
- Newton step direction:  $F^{-1}g$
- AKA: natural policy gradient [Kakade, 2002]

#### TRPO as a general PG algorithm

maximize 
$$\sum_{n=1}^{N} \frac{\pi_{\theta}(a_{n} \mid s_{n})}{\pi_{\theta_{\text{old}}}(a_{n} \mid s_{n})} \hat{A}_{n}$$
 subject to  $\overline{\text{KL}}_{\pi_{\theta_{\text{old}}}}(\pi_{\theta}) \leq \delta$ 

- Linear-quadratic approximation + penalty = Natural gradient
- No constraint ( $\delta = \infty$ ): policy iteration
  - New policy updated to be the best one step policy over states visited during the previous policy
- Euclidean constraint instead of KL (corresponds to learning rate) = vanilla policy gradient

#### Review

- Optimize a surrogate loss  $L^{PG}$  or  $L^{IS}$ 
  - The loss that results in the policy gradient
- Add a constraint in the form of bounded KL divergence
- Under linear (for  ${\cal L}^{IS}$ ) and quadratic (for KL) Tylor approximations it corresponds to natural gradient step  $F^{-1}g$
- We can approximate the Fisher matrix relatively fast using Conjugate gradient [Kakade, 2002]
- The Fisher matrix can be very big  $(|\theta| \times |\theta|)$

## Avoiding the Fisher matrix computation

- Use only first order approximation + Euclidian bound
- Proximal Policy Optimization [Schulman et al., 2017]

• 
$$\max_{\theta} \widehat{\mathbb{E}}_t \left[ \hat{A}(A_t, S_t) \frac{\pi(A_t | S_t; \theta)}{\pi(A_t | S_t; \theta_{old})} - \beta D_{KL}[\pi(\cdot | S_t; \theta_{old}), \pi(\cdot | S_t; \theta)] \right]$$

- Becomes:
- $\max_{\theta} \widehat{\mathbb{E}}_t \left[ \min(\rho_t(\theta) \hat{A}_t, \operatorname{clip}(\rho_t(\theta), 1 \epsilon, 1 + \epsilon) \hat{A}_t) \right]$
- Where  $\rho_t(\theta) = \frac{\pi(A_t|S_t;\theta)}{\pi(A_t|S_t;\theta_{old})}$ ,  $\hat{A}_t = \hat{A}(A_t,S_t)$ ,  $\epsilon$  is a hyperparameter

#### Proximal Policy Optimization [Schulman et al., 2017]

- $\max_{\theta} \widehat{\mathbb{E}}_t \left[ \min(\rho_t(\theta) \hat{A}_t, \operatorname{clip}(\rho_t(\theta), 1 \epsilon, 1 + \epsilon) \hat{A}_t) \right]$
- The **first** term will find the policy that maximizes return assuming the state distribution is similar to the old policy (policy iteration)
- The second modifies the surrogate objective by clipping  $\rho_t(\theta)$ , which removes the incentive for moving  $\rho_t$  outside of the interval
- Take the minimum so the final objective is a lower bound (i.e., a pessimistic bound) on the unclipped objective
- We only ignore the change in probability ratio when it would make the objective improve

#### Proximal Policy Optimization [Schulman et al., 2017]

•  $\max_{\theta} \widehat{\mathbb{E}}_t \left[ \min(\rho_t(\theta) \hat{A}_t, \operatorname{clip}(\rho_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$ 





#### Results

No clipping or penalty:  $L_t(\theta) = r_t(\theta)\hat{A}_t$ 

Clipping:  $L_t(\theta) = \min(r_t(\theta)\hat{A}_t, \text{clip}(r_t(\theta)), 1 - \epsilon, 1 + \epsilon)\hat{A}_t$ 

KL penalty (fixed or adaptive)  $L_t(\theta) = r_t(\theta) \hat{A}_t - \beta \operatorname{KL}[\pi_{\theta_{\text{old}}}, \pi_{\theta}]$ 

Results from continuous control benchmark. Average normalized scores (over 21 runs of the algorithm, on 7 environments) for each algorithm / hyperparameter setting.

| algorithm                             | avg. normalized score |
|---------------------------------------|-----------------------|
| No clipping or penalty                | -0.39                 |
| Clipping, $\epsilon = 0.1$            | 0.76                  |
| Clipping, $\epsilon = 0.2$            | 0.82                  |
| Clipping, $\epsilon = 0.3$            | 0.70                  |
| Adaptive KL $d_{\text{targ}} = 0.003$ | 0.68                  |
| Adaptive KL $d_{\text{targ}} = 0.01$  | 0.74                  |
| Adaptive KL $d_{\text{targ}} = 0.03$  | 0.71                  |
| Fixed KL, $\beta = 0.3$               | 0.62                  |
| Fixed KL, $\beta = 1$ .               | 0.71                  |
| Fixed KL, $\beta = 3$ .               | 0.72                  |
| Fixed KL, $\beta = 10$ .              | 0.69                  |

#### RESULTS 2

Comparison on several MuJoCo environments training for one million time steps



#### What did we learn?

- PG is sensitive to the policy update step size
- A big step at some direction might seem like a good idea but in practice it will send us over a cliff
- When observing policy  $\pi$  and trying to evaluate a policy  $\pi'$ 
  - The more similar  $\pi$  and  $\pi'$  are (measured with KL divergence) the more trust we have in the evaluation of  $\pi'$
- Limit the magnitude of change between successive policies such that you are guaranteed to see an improvement (natural gradient)
- Improvement guarantees require too conservative steps sizes
  - Forsake such guarantees to get better performance in practice

#### What next?

- **Lecture**: Soft Actor-Critic
- Assignments:
  - A2C
  - REINFORCE
  - Deep Q-Learning
- Quiz (on Canvas):
  - Policy Gradient
  - Deep Q-Learning
- Project:
  - Literature survey