2.1

(a)
$$\Omega_{1} = \int_{A}^{A} \int_{A/b}^{A/3} d\Omega = \int_{A/a}^{A/3} d\varphi \int_{A/b}^{A/3} \sin \theta d\theta = \frac{\sqrt{2}}{24}\pi$$

(b) $\Omega_{1} = \Delta \theta \cdot \Delta \varphi = (\theta_{2} - \theta_{1}) (\varphi_{2} - \varphi_{1}) = \frac{\pi^{2}}{72}$

(c) $\Omega_{1} = \Delta \theta \cdot \Delta \varphi = (\theta_{2} - \theta_{1}) (\varphi_{2} - \varphi_{1}) = \frac{\pi^{2}}{72}$

(d) $\Omega_{1} = \frac{\pi^{2}}{24} \approx 30.1\%$

(b)

(b)

(c) $\partial_{1} = \frac{4\pi}{24} \approx 91.7$

(d) $\partial_{1} = \partial_{1} =$

10) Wrad = $\frac{1}{2}$ Re[$\vec{E} \times \vec{H}^*$] = $\frac{|\vec{E}|^2}{2H} = \frac{1}{2} |\vec{E}|^2 = 12.5 \text{ V/m}^2$ (b) Prad = $\frac{1}{2}$ Re[$\vec{E} \times \vec{H}^*$] ds = $\frac{1}{2}$ As ds = $\frac{1}{2}$ SX/ $\frac{1}{2}$ T