Targeting Shutdowns by Repurposing WiFi Logs is More Effective than Moving Classes Online for Controlling COVID-19 on Campuses

Authors:

Vedant Das Swain¹, Jiajia Xie¹, James Cai², Sonia Sargolzaei¹, Mannit Madan¹, Munmun De Choudhury¹, Gregory D. Abowd^{1,3}, Lauren Steimle¹, and Aditya Prakash¹

¹Georgia Institute of Technology

²Brown University

³Northeastern University

- ★ Motivation and Goals
- ★ WiFi-based Mobility Data
- ★ Model
 - On-campus agent-based SEIR model with dynamic mobility data
 - Calibration and validation
- ★ Experiments of policies
 - Scenarios
 - Measures of success, impacts, and constraints
- **★** Results
- ★ Further experiment

Motivation

In general, universities are struggling to reopen during the pandemic caused by Covid-19 because ...

To reopen, what universities can do?

- Closure policies
 - → Move classes online
 - ◆ Can be informed by contact networks generated based on course enrollment data ([1], [2])

- → Others
- Others

^[1] Borowiak, Molly, et al. "Controlling the spread of COVID-19 on college campuses." *arXiv preprint arXiv:2008.07293* (2020).

^[2] Weeden, Kim A., and Ben Cornwell. "The small-world network of college classes: implications for epidemic spread on a university campus." *Sociological science* 7 (2020): 222-241.

Great performance in controlling, is it successful?

- Expensive
 - Shutting down too much locations
 - Force too many students away from campus

- Limitations of course-enrollment data
 - > Fail to capture the dynamic mobility pattern of individuals on campus
 - > Exclude activities outside the classrooms (gym, residence, non-students...)

Proposed Method

- Leveraging the managed WiFi network on campus can describe proximity outside courses and residence halls
 - ➤ WiFi access logs can approximate physical collocation of connected users

Research Aims

To compare insights of proximity based social networks with assumptions of registration networks

To design and evaluate efficient policies by simulating disease spread with proximity based networks under reasonable constraints

- **★** Motivation and Goals
- ★ WiFi-based Mobility Data
- ★ Model
 - On-campus agent-based SEIR model with dynamic mobility data
 - Calibration and validation
- ★ Experiments of policies
 - Scenarios
 - Measures of success, impacts, and constraints
- **★** Results
- ★ Further experiment

WiFi-based Network Data

Credit: Sonia Sargolzaei

WiFi-based Mobility Data Vs Course Enrollment Data

Course enrollment data fails to capture the dynamics of mobility pattern and the inside-outside-classrooms activity as the WiFi-based data

Credit: Sonia Sargolzaei

- **★** Motivation and Goals
- ★ WiFi-based Mobility Data
- **★** Model
 - On-campus agent-based SEIR model with dynamic mobility data
 - Calibration and validation
- ★ Experiments of policies
 - Scenarios
 - Measures of success, impacts, and constraints
- **★** Results
- ★ Further experiment

How to model the disease dynamics on campus?

Information refer to ...

- Campus Operation Guideline
 - Surveillance Testing (Asymptomatic)
 - Quarantine in places
 - > ...
- Surrounding Neighborhood
 - > Atlanta
 - Fulton County
 - Georgia
 - **>** ..

https://health.gatech.edu/tech-moving-forward

https://dph.georgia.gov/covid-19-daily-status-report

Dynamic SEIR Asymptomatic/Symptomatic Model

Contact

model

network to

SARS-CoV-2

Based on the information available, we design an SEIR model

- Using the dynamic collocation as the underline contact network
- Captures asymptomatic transmissions
- Isolate symptomatic individuals
- neighborhood

- **★** Motivation and Goals
- ★ WiFi-based Mobility Data
- **★** Model
 - On-campus agent-based SEIR model with dynamic mobility data
 - Calibration and validation
- ★ Experiments of policies
 - Scenarios
 - Measures of success, impacts, and constraints
- **★** Results
- ★ Further experiment

Policies Experiment

Fulton County Data (Fall 2020) for estimating external infection percentage daily, I_{out}(t)

Calibration and validation framework

We are going to calibrate the percentage of new asymptomatic cases out of total testable population to the surveillance positive rate

Ranges of optimal parameters

- **★** Motivation and Goals
- ★ WiFi-based Mobility Data
- ★ Model
 - On-campus agent-based SEIR model with dynamic mobility data
 - Calibration and validation
- ★ Experiments of policies
 - Scenarios
 - Measures of success, impacts, and constraints
- **★** Results
- ★ Further experiment

Policies with Scenarios

We are going to experiment with two policies

- ★ Moving large classes online
- ★ Targeted shutdowns by algorithms (pagerank e.g.)
 - The target policy only use the first 7 days of the semester to identify shutdown locations, and it approximates the same cost as moving classes online.

Under 3 different scenarios

Persistence

 Irrespective of the locations closed, individuals continue their other visiting behaviors

Non-Residential Avoidance

 Non-residential students stop all visits to campus if they have at least three courses and the policy forces their entire schedule online

Complete Avoidance

 Both residential and non-residential students avoid campus if they have at least three courses and all move online

- **★** Motivation and Goals
- ★ WiFi-based Mobility Data
- ★ Model
 - On-campus agent-based SEIR model with dynamic mobility data
 - Calibration and validation
- ★ Experiments of policies
 - Scenarios
 - Measures of success, impacts, and constraints
- **★** Results
- ★ Further experiment

Metrics

We compute the following metrics in the process of simulations

- ★ Peak Infections (outcome measure)
- ★ Total Infections (outcome measure)
- ★ Internal Infections (outcome measure)
- ☐ Locations affected (cost measure)
- ☐ Students Avoiding % (cost measure)
- ☐ Completely isolated on campus % (measure)
- Mobility (edges) reduction (constraint)
- > Risk of exposure (worst case)
 - Unique 1-hop neighbors when 2.5% of individuals are randomly sampled to be positive
 - Meaningful for the surveillance test numbers

Calibration and Validation

(Fall 2020) for estimating external infection percentage daily, I_{out}(t)

(Fall 2020), the target of calibration

Policy experiment framework

Policies data

Results

- **★** Motivation and Goals
- ★ WiFi-based Mobility Data
- **★** Model
 - On-campus agent-based SEIR model with dynamic mobility data
 - Calibration and validation
- ★ Experiments of policies
 - Scenarios
 - Measures of success, impacts, and constraints
- ★ Results
- ★ Further experiment

Credit: Sonia Sargolzaei

Table 1. Comparison of different policies in terms of controlling the disease and impacts on campus

Scenario	Persistence			Non-Res Avoidance			Complete Avoidance		
Policy	Broad	Targ	eted	Broad	Targeted		Broad	Targeted	
Constraint	-	Mobility (95.5%)	Exposure Risk (18800)	-	Mobility (92.3%)	Exposure Risk (16900)	-	Mobility (69.2%)	Exposure Risk (12700)
Infection Reduction Ou	tcomes								
Peak Infections (%)	$25.34(\pm 12)$	36.92(±14)**	34.30(±13)**	$35.44(\pm 10)$	49.33(±11)**	52.19(±10)**	$61.62(\pm7)$	69.34(±5)**	64.44(±6)**
Total Infections (%)	6.99(±5)	10.63(±6)**	8.19(±5)**	14.88(±4)	13.96(±6)*	$15.67(\pm 6)$	$33.00(\pm 5)$	$33.4 (\pm 5)$	26.94(±5)**
Internal Infections (%)	17.13(±9)	22.62(±11)**	21.01(±11)**	$27.58(\pm 8)$	35.35(±12)**	39.20(±11)**	$54.00(\pm 8)$	70.89(±7)**	60.90(±9)**
Impacts to Campus									
Locations Affected	58	18	19	58	38	50	58	192	124
Students Avoiding (%)	0	0	0	17.92	0.68	0.69	27.21	12.2	6.31
Completely Isolated on Campus (%)	6.77	6.47	6.43	7.73	6.85	7.19	9.86	10.04	8.80

Within each scenario, we perform the Kruskal-Wallis H-Test (12) to compare outcomes of targeted policies with moving larger classes online — a type of broad shutdown policy. We find that targeted $(p\text{-value}: < 0.01:^*, < 0.001:^**)$.

Highlights of results

The experimental results inform

- ★ Targeted shutdowns cause greater reduction in peak infections while affecting fewer locations
- ★ Targeted shutdowns lead to comparable reduction in total infections while retaining more students on campus
- ★ Targeted shutdowns cause greater reduction in internal infections without further isolation on campus

Takeaways

To summarize

- ★ WiFi network logs can describe mobility and collocation on campus which gives more insight on contact behavior
- ★ While course enrollment can inform design of policies, the cost is tremendous
- ★ Targeted shutdowns is more efficient and economy

- **★** Motivation and Goals
- ★ WiFi-based Mobility Data
- ★ Model
 - On-campus agent-based SEIR model with dynamic mobility data
 - Calibration and validation
- ★ Experiments of policies
 - Scenarios
 - Measures of success, impacts, and constraints
- **★** Results
- ★ Further experiment

Varying the validation period

Appendix

Parameters Estimations

Table S2. Model Parameters

Parameter	Definition	Value	Std	Category
p	Transmission probability: For any edge between a <i>susceptible</i> and <i>infectious</i> individual in the contact network, p is the probability that the <i>susceptible</i> person will enter into the <i>exposed</i> state. This only dictates internal transmission	200 000	0.007	Estimated
α	Scaling factor of the normalized confirmed cases in the surrounding county(Equation 8). This is the parameter for us to generate $I_{out}(t)$		0.0032	Estimated
I_0	Probability of <i>susceptible</i> persons being <i>asymptomatic</i> at day 0	0.012	0.0009	Estimated

