2.5.6)
$$A \subseteq X, B \subseteq Y$$

 $T: \operatorname{Int}(A \times B) = \operatorname{Int}A \times \operatorname{Int}B$

Int
$$(A \times B) = UU = UU = UVV$$
 Int $A \times JntB$

Use $A \times B$

That $A \times JntB \subseteq Jnt(A \times B)$

Falst; W topologic produlatories to to total shionor dombnity h $A_t \subseteq X_t$ to $X_t = X_t$ to $X_t = X_t$.

Dowod: $X_t = X_t = X_t \times X_t$.

Dowod: $X_t = X_t = X_t \times X_t \times X_t$. $X_t = X_t \times X_t \times$

a)
$$T: \overline{A \times B} = \overline{A} \times \overline{B}$$

 $\overline{A} \times \overline{B}$ - produket abvorow dombniety h, with jest dombniety w XXY Skoro $\overline{A} \times \overline{B}$ - dombniety i zawiera $A \times B$, to $\overline{A} \times \overline{B} = \overline{A} \times B$, Posostoje dowieść' \subseteq "; wesny $(X, y) \in \overline{A} \times B$.

Posotoje dowieść \subseteq'' ; wesmy $(x,y) \in A \times B$. Chcemy: $(x,y) \in A \times B$. Wesmy dowohne otosenie (x,y), b.5.0. otosenie basowe $U \times V$. Pobosemy, zi ono się knoi z $A \times B$: $x \in U$, $y \in V$, ale też $x \in \overline{A}$, $y \in B$, wie $U \cap A \neq \emptyset$, $V \cap B \neq \emptyset$, Z atem $A \times B \cap U \times V = (A \cap U) \times (B \cap V) \neq \emptyset$, a tego chcieliómy. Zatem $(A \cap V) \in \overline{A \times B}$.

(C) Chusowe: (IntA×IntB)= (IntA) × YUX×(IntB)

$$B = B \times (A \times B)$$

2.8. Tigesti $d(x_n, y) \rightarrow 0$, to $|x_n - y| \rightarrow 0$ $2! \sqrt{x_n} - \sqrt{y} = 0$ $(\sqrt{x_n} \rightarrow \sqrt{y})$ $(\sqrt{x_n} + \sqrt{y}) \rightarrow 0$ $|x_n - y| = |\sqrt{x_n} - \sqrt{y}| (\sqrt{x_n} + \sqrt{y}) \rightarrow 0$ Kula w of to $B(x,r) = \{y: d(x,y) < r\} =$ $= \{y: (h(x) - h(y)) | x \}$ jest postaci h(x), bo wiech $[B_{\alpha}(x,n)] = Ay: |h(x)-y| < r \} = B_{e}(h(x),r), h-hijelseja$ wiec 2 homeomorpiczności h $B_e(h(x),r) \in \mathcal{T}(d)'$. Podobnie, nizywając h⁻¹, many, ze $B_d(x,r) \in \mathcal{T}(de)$. Skoro 2 biory basowe (kule) to spetniają, to 2 biory otwarte (ich sumy) też, wiec $\mathcal{T}(d) = \mathcal{T}(de)$.