Interro 6 le 27/11.

Exercice 1. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est

$$A = \begin{pmatrix} 2 & -1 & -2 \\ 2 & -1 & -4 \\ -1 & 1 & 3 \end{pmatrix}$$

- 1. Déterminer ker(f).
- 2. Soient u=(1,2,-1), v=(1,1,0) et w=(2,0,1). On admet que $\mathcal{B}=(u,v,w)$ est une base de \mathbb{R}^3
 - (a) Déterminer f(u), f(v) et f(w).
 - (b) En déduire la matrice de f dans la base \mathcal{B} .

Réponses.

Nom : Prénom :

Interro 6 le 27/11.

Exercice 1. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est

$$A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \\ 1 & -1 & 3 \end{pmatrix}$$

- 1. Déterminer ker(f).
- 2. Soient u=(0,1,1), v=(1,1,0) et w=(1,1,1). On admet que $\mathcal{B}=(u,v,w)$ est une base de \mathbb{R}^3
 - (a) Déterminer f(u), f(v) et f(w). Vérifier que f(w) = u + v + 2w.
 - (b) En déduire la matrice de f dans la base \mathcal{B} .

Réponses.