Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação Curso de Ciência da Computação

Projeto e Análise de Algoritmos Parte 1

Raquel Mini raquelmini@pucminas.br

O que é um algoritmo?

- Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores como entrada e produz algum valor ou conjunto de valores como saída
- Sequência de passos computacionais que transformam a entrada na saída
- Sequência de ações executáveis para a obtenção de uma solução para um determinado tipo de problema
- Descrição de um padrão de comportamento, expresso em termos de um conjunto finito de ações
- Sequência não ambígua de instruções que é executada até que determinada condição se verifique

Algoritmo correto X incorreto

- Um algoritmo é correto se, para cada instância de entrada, ele pára com a saída correta
- Um algoritmo incorreto pode não parar em algumas instâncias de entrada, ou então pode parar com outra resposta que não a desejada

Algoritmo eficiente X ineficiente

- Algoritmos eficientes são os que executam em tempo polinomial
- Algoritmos que necessitam de tempo superpolinomial são chamados de ineficientes

Problema tratável X intratável

- Problemas que podem ser resolvidos por algoritmo de tempo polinomial são chamados de tratáveis
- Problemas que exigem tempo superpolinomial são chamados de intratáveis

Tratabilidade

Problema decidível X indecidível

- Um problema é decidível se existe algoritmo para resolvê-lo
- Um problema é indecidível se não existe algoritmo para resolvê-lo

Decidibilidade

Análise de algoritmos

- Analisar a complexidade computacional de um algoritmo significa prever os recursos de que o mesmo necessitará:
 - Memória
 - Largura de banda de comunicação
 - Hardware
 - Tempo de execução
- Geralmente existe mais de um algoritmo para resolver um problema
- A análise de complexidade computacional é fundamental no processo de definição de algoritmos mais eficientes para a sua solução
- Em geral, o tempo de execução cresce com o tamanho da entrada

- O tempo de computação e o espaço na memória são recursos limitados
 - Os computadores podem ser rápidos, mas não são infinitamente rápidos
 - A memória pode ser de baixo custo, mas é finita e não é gratuita
- Os recursos devem ser usados de forma sensata, e algoritmos eficientes em termos de tempo e espaço devem ser projetados
- Com o aumento da velocidade dos computadores, torna-se cada vez mais importante desenvolver algoritmos mais eficientes, devido ao aumento constante do tamanho dos problemas a serem resolvidos

 Suponha que para resolver um determinado problema você tem disponível um algoritmo exponencial (2ⁿ) e um computador capaz de executar 10⁴ operações por segundo

_		2 ⁿ na máquina 10 ⁴	
	tempo (s)	tamanho	
	0,10	10	
	1	13	
1 minuto	60	19	
1 hora	3.600	25	
1 dia	86.400	30	
1 ano	31.536.000	38	

 Compra de um novo computador capaz de executar 109 operações por segundo

		2 ⁿ na máquina 10 ⁴	2 ⁿ na máquina 10 ⁹	
	tempo (s)	tamanho	tamanho	
	0,10	10	27	
	1	13	30	
1 minuto	60	19	36	
1 hora	3.600	25	42	
1 dia	86.400	30	46	
1 ano	31.536.000	38	55	

Aumento na velocidade computacional tem pouco efeito no tamanho das instâncias resolvidas por algoritmos ineficientes

• Investir em algoritmo:

Você encontrou um algoritmo quadrático (n²) para resolver o problema

		2 ⁿ na máquina 10 ⁴	2 ⁿ na máquina 10 ⁹	n ² na máquina 10 ⁴	n ² na máquina 10 ⁹
	tempo (s)	tamanho	tamanho	tamanho	tamanho
	0,10	10	27	32	10.000
	1	13	30	100	31.623
1 minuto	60	19	36	775	244.949
1 hora	3.600	25	42	6.000	1.897.367
1 dia	86.400	30	46	29.394	9.295.160
1 ano	31.536.000	38	55	561.569	177.583.783

Novo algoritmo oferece uma melhoria maior que a compra da nova máquina

Porque estudar projeto de algoritmos?

- Algum dia você poderá encontrar um problema para o qual não seja possível descobrir prontamente um algoritmo publicado
- É necessário estudar técnicas de projeto de algoritmos, de forma que você possa desenvolver algoritmos por conta própria, mostrar que eles fornecem a resposta correta e entender sua eficiência

Exercício

1. Para cada função f(n) e cada tempo t na tabela a seguir, determine o maior tamanho n de um problema que pode ser resolvido no tempo t, supondo-se que o algoritmo para resolver o problema demore f(n) segundos

	1 seg.	1 min.	1 hora	1 dia	1 mês	1 ano	1 século
<u>log</u> n							
\sqrt{n}							
n							
n log n							
n ²							
n ³							
2 ⁿ							
n!							

Medida do Tempo de Execução de um Programa

Ziviani – págs. 1 até 11

Cormen – págs. 3 até 20

Tipos de problemas na análise de algoritmos

- Análise de um algoritmo particular
- Análise de uma classe de algoritmos

Análise de um algoritmo particular

- Qual é o custo de usar um dado algoritmo para resolver um problema específico?
- Características que devem ser investigadas:
 - Análise do número de vezes que cada parte do algoritmo deve ser executada
 - Estudo da quantidade de memória necessária

Análise de uma classe de algoritmos

- Qual é o algoritmo de menor custo possível para resolver um problema particular?
- Toda uma família de algoritmos é investigada
- Procura-se identificar um que seja o melhor possível
- Colocam-se limites para a complexidade computacional dos algoritmos pertencentes à classe

Custo de um algoritmo

- Determinando o menor custo possível para resolver problemas de uma dada classe, temos a medida da dificuldade inerente para resolver o problema
- Quando o custo de um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada
- Podem existir vários algoritmos para resolver o mesmo problema
- Se a mesma medida de custo é aplicada a diferentes algoritmos, então é possível compará-los e escolher o mais adequado

Função de complexidade

- Para medir o custo de execução de um algoritmo é comum definir uma função de custo ou função de complexidade T
- T(n) é a medida do tempo necessário para executar um algoritmo para um problema de tamanho n
- Função de complexidade de tempo: T(n) mede o tempo necessário para executar um algoritmo para um problema de tamanho n
- Função de complexidade de espaço: T(n) mede a memória necessária para executar um algoritmo para um problema de tamanho n
- Utilizaremos T para denotar uma função de complexidade de tempo daqui para a frente
- Na realidade, a complexidade de tempo não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada

Exemplo: Maior elemento

• Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros A[1..n], $n \ge 1$

```
function Max (var A: Vetor): integer;
var i, Temp: integer;
begin
  Temp := A[1];
  for i:=2 to n do if Temp < A[i] then Temp := A[i];
  Max := Temp;
end;</pre>
```

- Seja T uma função de complexidade tal que T(n) seja o número de comparações entre os elementos de A, se A contiver n elementos
- Logo T(n) = n 1 para $n \ge 1$
- Vamos provar que o algoritmo apresentado no programa acima é ótimo

Exemplo: Maior elemento

- **Teorema**: Qualquer algoritmo para encontrar o maior elemento de um conjunto com n elementos, $n \ge 1$, faz pelo menos n-1 comparações
- **Prova**: Cada um dos n-1 elementos tem de ser mostrado, por meio de comparações, que é menor que algum outro elemento
- Logo n-1 comparações são necessárias
- O teorema acima nos diz que, se o número de comparações for utilizado para medida de custo, então a função Max do programa anterior é ótima

Tamanho da entrada de dados

- A medida do custo de execução de um algoritmo depende principalmente do tamanho da entrada de dados
- É comum considerar o tempo de execução de um programa como uma função do tamanho da entrada
- Para alguns algoritmos, o custo de execução é uma função da entrada particular dos dados, não apenas do tamanho da entrada
- No caso da função \max do programa do exemplo, o custo é uniforme sobre todos os problemas de tamanho n
- Já para um algoritmo de ordenação isso não ocorre: se os dados de entrada já estiverem quase ordenados, então o algoritmo pode ter que trabalhar menos

Melhor caso, pior caso e caso médio

• Melhor caso:

Menor tempo de execução sobre todas as entradas de tamanho n

Pior caso:

- Maior tempo de execução sobre todas as entradas de tamanho n
- Se T é uma função de complexidade baseada na análise de pior caso, o custo de aplicar o algoritmo nunca é maior do que T(n)

Caso médio (ou caso esperado):

Média dos tempos de execução de todas as entradas de tamanho n

Melhor caso, pior caso e caso médio

- Na análise do caso esperado, supõe-se uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n e o custo médio é obtido com base nessa distribuição
- A análise do caso médio é geralmente muito mais difícil de obter do que as análises do melhor e do pior caso
- É comum supor uma distribuição de probabilidades em que todas as entradas possíveis são igualmente prováveis
- Na prática isso nem sempre é verdade

Exemplo: Registros de um arquivo

- Considere o problema de acessar os registros de um arquivo
- Cada registro contém uma chave única que é utilizada para recuperar registros do arquivo
- O problema: dada uma chave qualquer, localize o registro que contenha esta chave
- O algoritmo de pesquisa mais simples é o que faz a pesquisa sequencial

Exemplo: Registros de um arquivo

- Seja T uma função de complexidade tal que T(n) é o número de registros consultados no arquivo (número de vezes que a chave de consulta é comparada com a chave de cada registro)
 - Melhor caso: T(n) = 1 (registro procurado é o primeiro consultado)
 - Pior caso: T(n) = n (registro procurado é o último consultado ou não está presente no arquivo)
 - Caso médio: $T(n) = \frac{(n+1)}{2}$

Exemplo: Registros de um arquivo

- No estudo do caso médio, vamos considerar que toda pesquisa recupera um registro
- Se p_i for a probabilidade de que o i-ésimo registro seja procurado, e considerando que para recuperar o i-ésimo registro são necessárias i comparações, então

$$T(n) = (1 \times p_1) + (2 \times p_2) + (3 \times p_3) + \Lambda + (n \times p_n)$$

- Para calcular T(n) basta conhecer a distribuição de probabilidades p_i
- Se cada registro tiver a mesma probabilidade de ser acessado que todos os outros, então $p_i = 1/n, 1 \le i \le n$

• Neste caso
$$T(n) = \frac{1}{n}(1+2+3+\Lambda+n) = \frac{1}{n}\left(\frac{n(n+1)}{2}\right) = \frac{n+1}{2}$$

 A análise do caso esperado revela que uma pesquisa com sucesso examina aproximadamente metade dos registros

Exercício

2. No problema de acessar os registros de um arquivo, seja T uma função de complexidade tal que T(n) é o número de registros consultados no arquivo. Seja q a probabilidade de que uma pesquisa seja realizada com sucesso (chave procurada se encontra no arquivo) e (1-q) a probabilidade da pesquisa sem sucesso (chave procurada não se encontra no arquivo). Considere também que nas pesquisas com sucesso todos os registros são igualmente prováveis. Encontre a função de complexidade para o caso médio.

- Considere o problema de encontrar o maior e o menor elemento de um vetor de inteiros A[1..n], $n \ge 1$
- Um algoritmo simples pode ser derivado do algoritmo apresentado no programa para achar o maior elemento

- Seja T(n) o número de comparações entre os elementos de A, se A tiver n elementos
- Logo T(n) = 2 (n-1), para n > 0, para o melhor caso, pior caso e caso médio.

- MaxMin1 pode ser facilmente melhorado:
 - a comparação A[i] < Min só é necessária quando o resultado da comparação A[i] > Max for falso

```
procedure MaxMin2 (var A: Vetor; var Max, Min: integer);
var i: integer;
begin
   Max := A[1];   Min := A[1];
   for i := 2 to n do
        if A[i] > Max
        then Max := A[i]
        else if A[i] < Min then Min := A[i];
end;</pre>
```

- Para a nova implementação temos:
 - Melhor caso: T(n) = n-1 (quando os elementos estão em ordem crescente)
 - Pior caso: T(n) = 2(n-1) (quando o maior elemento está na 1ª posição)
 - Caso médio: $T(n) = \frac{3n}{2} \frac{3}{2}$
- Caso médio:
 - A[i] é maior do que Max a metade das vezes
 - Logo, $T(n) = n-1 + \frac{n-1}{2} = \frac{3n}{2} \frac{3}{2}$, para n > 0

- Considerando o número de comparações realizadas, existe a possibilidade de obter um algoritmo mais eficiente:
 - 1. Compare os elementos de A aos pares, separando-os em dois subconjuntos (maiores em um e menores em outro), a um custo de $\lceil n/2 \rceil$ comparações
 - 2. O máximo é obtido do subconjunto que contém os maiores elementos, a um custo de $\lceil n/2 \rceil 1$ comparações
 - 3. O mínimo é obtido do subconjunto que contém os menores elementos, a um custo de $\lceil n/2 \rceil 1$ comparações


```
procedure MaxMin3(var A: Vetor;
                 var Max, Min: integer);
var i,
   FimDoAnel: integer;
begin
  {Garante uma qte par de elementos no vetor para evitar caso de exceção}
 if (n \mod 2) > 0
 then begin
        A[n+1] := A[n];
        FimDoAnel := n;
      end
 else FimDoAnel := n-1;
  {Determina maior e menor elementos iniciais}
 if A[1] > A[2]
 then begin
        Max := A[1]; Min := A[2];
      end
 else begin
        Max := A[2]; Min := A[1];
      end;
```

```
i:= 3;
 while i <= FimDoAnel do
   begin
    {Compara os elementos aos pares}
    if A[i] > A[i+1]
    then begin
           if A[i] > Max then Max := A[i];
           if A[i+1] < Min then Min := A[i+1];
         end
    else begin
           if A[i] < Min then Min := A[i];</pre>
           if A[i+1] > Max then Max := A[i+1];
         end;
    i := i + 2;
    end;
end;
```

- Os elementos de A são comparados dois a dois e os elementos maiores são comparados com Max e os elementos menores são comparados com Min
- Quando n é impar, o elemento que está na posição A[n] é duplicado na posição A[n+1] para evitar um tratamento de exceção
- Para esta implementação, $T(n) = \frac{n}{2} + \frac{n-2}{2} + \frac{n-2}{2} = \frac{3n}{2} 2$ para n > 0, para o melhor caso, pior caso e caso médio

Comparação entre os algoritmos MaxMin1, MaxMin2 e MaxMin3

- A tabela abaixo apresenta uma comparação entre os algoritmos dos programas MaxMin1, MaxMin2 e MaxMin3, considerando o número de comparações como medida de complexidade
- Os algoritmos MaxMin2 e MaxMin3 são superiores ao algoritmo MaxMin1 de forma geral.
- O algoritmo MaxMin3 é superior ao algoritmo MaxMin2 com relação ao pior caso e bastante próximo quanto ao caso médio

Ostrês	T (n)			
algoritmos	Melhor caso	Pior caso	Caso médio	
MaxMin1	2(n-1)	2(n-1)	2(n-1)	
MaxMin2	n-1	2(n-1)	3n/2 - 3/2	
MaxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2	

Comparação entre os algoritmos MaxMin1, MaxMin2 e MaxMin3

Exercício

3. Apresente a função de complexidade de tempo para os algoritmos abaixo, indicando em cada caso qual é a operação relevante:

```
a)
ALG1()
for i ← 1 to 2 do
    for j ← i to n do
        for k ← i to j do
        temp ← temp + i + j + k
```

```
b) INSERTION-SORT (A)

for j \leftarrow 2 to n do

chave \leftarrow A[j]

i \leftarrow j - 1

A[0] \leftarrow \text{chave} //sentinela

while A[i] > \text{chave} do

A[i+1] \leftarrow A[i]

i \leftarrow i-1

A[i+1] \leftarrow \text{chave}
```

Exercício

```
C) BUBBLE-SORT(A)
  for i ← 1 to n do
    for j ← n downto i+1 do
       if A[j] < A[j-1] then
          A[j] ↔ A[j-1]</pre>
```

```
d)
    SELECTION-SORT(A)
    for i ← 1 to n-1 do
        Min ← i
        for j ← i+1 to n do
        if A[j] < A[Min] then
            Min ← j
        A[Min] ↔ A[i]</pre>
```

Comportamento Assintótico

Ziviani – págs. 11 até 19

Cormen - págs. 32 até 49

Comportamento assintótico de funções

- O parâmetro n fornece uma medida da dificuldade para se resolver o problema
- Para valores suficientemente pequenos de *n*, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes
- A escolha do algoritmo não é um problema crítico para problemas de tamanho pequeno
- Logo, a análise de algoritmos é realizada para valores grandes de n
- Estuda-se o comportamento assintótico das **funções de custo** (comportamento de suas funções de custo para valores grandes de *n*)
- Para entradas grandes o bastante, as constantes multiplicativas e os termos de mais baixa ordem de um tempo de execução podem ser ignorados

Dominação assintótica

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares
- A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada
- **Definição**: Uma função f(n) **domina assintoticamente** outra função g(n) se existem duas constantes positivas c e n_0 tais que, para $n \ge n_0$, temos $|g(n)| \le c \times |f(n)|$

Exemplo:

- Sejam $g(n) = (n+1)^2$ e $f(n) = n^2$
- As funções g(n) e f(n) dominam assintoticamente uma a outra, já que
- $|(n+1)^2| \le 4 |(n^2)|$ para $n \ge 1$ e
- $|(n^2)| \le |(n+1)^2|$ para $n \ge 0$

Como medir o custo de execução de um algoritmo?

Função de Custo ou Função de Complexidade

- T(n) = medida de custo necessário para executar um algoritmo para um problema de tamanho n
- Se T(n) é uma medida da quantidade de tempo necessário para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de tempo de algoritmo
- Se T(n) é uma medida da quantidade de memória necessária para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de espaço de algoritmo

Observação: tempo não é tempo!

 É importante ressaltar que a complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada

Custo assintótico de funções

- É interessante comparar algoritmos para valores grandes de
- O custo assintótico de uma função T(n) representa o limite do comportamento de custo quando n cresce
- Em geral, o custo aumenta com o tamanho *n* do problema
- Observação:
 - Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado

Notação assintótica de funções

- Existem três notações principais na análise de assintótica de funções:
 - Notação Θ
 - Notação O ("O" grande)
 - Notação Ω

Notação ⊖

$$f(n) = \Theta(g(n))$$

Notação ⊖

- A notação Θ limita a função por fatores constantes
- Escreve-se $f(n) = \Theta(g(n))$, se existirem constantes positivas c_1 , c_2 e n_0 tais que para $n \ge n_0$, o valor de f(n) está sempre entre $c_1g(n)$ e $c_2g(n)$ inclusive
- Neste caso, pode-se dizer que g(n) é um limite assintótico firme (em inglês, asymptotically tight bound) para f(n)

$$f(n) = \Theta(g(n)), \exists c_1 > 0, c_2 > 0 \text{ e } n_0$$

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n), \ \forall n \ge n_0$$

Notação ⊕: Exemplo

• Mostre que $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

Para provar esta afirmação, devemos achar constantes $c_1 > 0$, $c_2 > 0$, $n_0 > 0$, tais que:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

para todo $n \ge n_0$

Se dividirmos a expressão acima por n² temos:

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

Notação ⊕: Exemplo

Notação ⊕: Exemplo

- A inequação mais a direita será sempre válida para qualquer valor de $n \ge 1$ ao escolhermos $c_2 \ge \frac{1}{2}$
- Da mesma forma, a inequação mais a esquerda será sempre válida para qualquer valor de $n \ge 7$ ao escolhermos $c_1 \le \frac{1}{14}$
- Assim, ao escolhermos $c_1=1/14$, $c_2=1/2$ e $n_0=7$, podemos verificar que $\frac{1}{2}n^2-3n=\Theta(n^2)$
- Note que existem outras escolhas para as constantes c_1 e c_2 , mas o fato importante é que a escolha existe
- Note também que a escolha destas constantes depende da função $\frac{1}{2}n^2 3n$
- Uma função diferente pertencente a $\Theta(n^2)$ irá provavelmente requerer outras constantes

Exercício

4. Prove que:

- $a) 2n^2 + n = \Theta(n^2)$
- **b)** $3n^3 + 2n^2 + n = \Theta(n^3)$
- $\mathbf{C)}\log_5^n = \Theta(\log n)$
- $d) 7n \log n + n = \Theta(n \log n)$
- 5. Usando a definição formal de Θ , prove que $6n^3 \neq \Theta(n^2)$.

Notação O

$$f(n) = \mathcal{O}(g(n))$$

Notação O

- A notação O define um limite superior para a função, por um fator constante
- Escreve-se f(n) = O(g(n)), se existirem constantes positivas c e n_0 tais que para $n \ge n_0$, o valor de f(n) é menor ou igual a cg(n). Neste caso, pode-se dizer que g(n) é um limite assintótico superior (em inglês, *asymptotically upper bound*) para f(n)

$$f(n) = O(g(n)), \exists c > 0 e n_0 | 0 \le f(n) \le cg(n), \forall n \ge n_0$$

• Escrevemos f(n) = O(g(n)) para expressar que g(n) domina assintoticamente f(n). Lê-se f(n) é da ordem no máximo g(n)

Notação O: Exemplos

- Seja $f(n) = (n + 1)^2$
 - Logo f(n) é $O(n^2)$, quando $n_0 = 1$ e c = 4, já que $(n+1)^2 \le 4n^2$ para $n \ge 1$
- Seja f(n) = n e $g(n) = n^2$. Mostre que g(n) não é O(n)
 - Sabemos que f(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$
 - Suponha que existam constantes c e n_0 tais que para todo $n \ge n_0$, $n^2 \le cn$. Assim, $c \ge n$ para qualquer $n \ge n_0$. No entanto, não existe uma constante c que possa ser maior ou igual a n para todo n

Notação O: Exemplos

- Mostre que $g(n) = 3n^3 + 2n^2 + n$ é $O(n^3)$
 - Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 0$
 - A função $g(n) = 3n^3 + 2n^2 + n$ é também $O(n^4)$, entretanto esta afirmação é mais fraca que dizer que g(n) é $O(n^3)$

- Mostre que $h(n) = \log_5 n$ é $O(\log n)$
 - O $\log_b n$ difere do $\log_c n$ por uma constante que no caso é $\log_b c$
 - Como $n = c^{\log_c n}$, tomando o logaritmo base b em ambos os lados da igualdade, temos que $\log_b n = \log_b c^{\log_c n} = \log_c n \times \log_b c$

Notação O

- Quando a notação O é usada para expressar o tempo de execução de um algoritmo no pior caso, está se definindo também o limite superior do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é O(n²) no pior caso
 - Este limite se aplica para qualquer entrada
- O que se quer dizer quando se fala que "o tempo de execução é $O(n^2)$ " é que no pior caso o tempo de execução é $O(n^2)$
 - ou seja, não importa como os dados de entrada estão arranjados, o tempo de execução em qualquer entrada é $O(n^2)$

Operações com a notação O

```
f(n) = O(f(n))
c \times O(f(n)) = O(f(n)) \ c = constante
O(f(n)) + O(f(n)) = O(f(n))
O(O(f(n)) = O(f(n))
O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
O(f(n))O(g(n)) = O(f(n)g(n))
f(n)O(g(n)) = O(f(n)g(n))
```

Operações com a notação O: Exemplos

- Regra da soma O(f(n)) + O(g(n))
 - Suponha três trechos cujos tempos de execução sejam $O(n), O(n^2)$ e $O(n \log n)$
 - O tempo de execução dos dois primeiros trechos é $\mathrm{O}(\max(n,n^2))$, que é $\mathrm{O}(n^2)$
 - O tempo de execução de todos os três trechos é então $O(\max(n^2, \log n))$, que é $O(n^2)$
- O produto de $[\log n + k + O(1/n)]$ por $[n + O(\sqrt{n})]$ é $n \log n + kn + O(\sqrt{n} \log n)$

Exercício

6. Mostre se f(n) = O(g(n)) para os seguintes casos.

a)
$$f(n) = \frac{1}{2}n^2 - 3n$$
 e $g(n) = n^2$

- **b)** $f(n) = n \log n 3n$ e $g(n) = n^2$
- c) $f(n) = n \log n 3n$ e g(n) = n

Notação Ω

$$f(n) = \Omega(g(n))$$

Notação Ω

- A notação Ω define um limite inferior para a função, por um fator constante
- Escreve-se $f(n) = \Omega(g(n))$, se existirem constantes positivas c e n_0 tais que para $n \ge n_0$, o valor de f(n) é maior ou igual a cg(n)
 - Pode-se dizer que g(n) é um limite assintótico inferior (em inglês, asymptotically lower bound) para f(n)

$$f(n) = \Omega(g(n)), \exists c > 0 \in n_0 \mid 0 \le cg(n) \le f(n), \forall n \ge n_0$$

Notação Ω

- Quando a notação Ω é usada para expressar o tempo de execução de um algoritmo no melhor caso, está se definindo também o limite (inferior) do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é $\Omega(n)$ no melhor caso
 - O tempo de execução do algoritmo de ordenação por inserção é $\Omega(n)$
- O que significa dizer que "o tempo de execução" (i.e., sem especificar se é para o pior caso, melhor caso, ou caso médio) é $\Omega(g(n))$?
 - O tempo de execução desse algoritmo é pelo menos uma constante vezes g(n) para valores suficientemente grandes de n

Notação Ω: Exemplos

• Para mostrar que $f(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 \ge n^3$ para $n \ge 0$

Limites do algoritmo de ordenação por inserção

- O tempo de execução do algoritmo de ordenação por inserção está entre $\Omega(n)$ e $O(n^2)$
- Estes limites são assintoticamente os mais firmes possíveis
 - Por exemplo, o tempo de execução deste algoritmo não é $\Omega(n^2)$, pois o algoritmo executa em tempo $\Theta(n)$ quando a entrada já está ordenada

Teorema

• Para quaisquer funções f(n) e g(n),

$$f(n) = \Theta(g(n))$$

se e somente se,

$$f(n) = O(g(n))$$
, e

$$f(n) = \Omega(g(n))$$

Mais sobre notação assintótica de funções

- Existem duas outras notações na análise assintótica de funções:
 - Notação o ("O" pequeno)
 - Notação ω
- Estas duas notações não são usadas normalmente, mas é importante saber seus conceitos e diferenças em relação às notações O e Ω , respectivamente

Notação o

- O limite assintótico superior definido pela notação O pode ser assintoticamente firme ou não
 - Por exemplo, o limite $2n^2 = O(n^2)$ é assintoticamente firme, mas o limite $2n = O(n^2)$ não é
- A notação o é usada para definir um limite superior que não é assintoticamente firme
- Formalmente a notação o é definida como:

$$f(n) = o(g(n))$$
, para qualquer $c > 0$ e $n_0 \mid 0 \le f(n) < cg(n), \forall n \ge n_0$

• Exemplo, $2n = o(n^2)$ mas $2n^2 \neq o(n^2)$

Notação o

- As definições das notações O e o são similares
 - A diferença principal é que em f(n) = o(g(n)), a expressão $0 \le f(n) < cg(n)$ é válida para todas constantes c > 0
- Intuitivamente, a função f(n) tem um crescimento muito menor que g(n) quando n tende para infinito. Isto pode ser expresso da seguinte forma:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

Alguns autores usam este limite como a definição de o

Notação ω

- Por analogia, a notação ω está relacionada com a notação Ω da mesma forma que a notação o está relacionada com a notação O
- Formalmente a notação ω é definida como:

$$f(n) = \omega(g(n))$$
, para qualquer $c > 0$ e $n_0 \mid 0 \le cg(n) < f(n), \forall n \ge n_0$

- Por exemplo, $\frac{n^2}{2} = \omega(n)$, mas $\frac{n^2}{2} \neq \omega(n^2)$
- A relação $f(n) = \omega(g(n))$ implica em

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

se o limite existir

Exercício

7. Utilizando as definições para as notações assintóticas, prove se são verdadeiras ou falsas as seguintes afirmativas.

a)
$$3n^3 + 2n^2 + n + 1 = O(n^3)$$

$$b) 7n^2 = O(n)$$

$$(2^{n+2}) = O(2^n)$$

d)
$$2^{2n} = O(2^n)$$

e)
$$5n^2 + 7n = \Theta(n^2)$$

f)
$$6n^3 + 5n^2 \neq \Theta(n^2)$$

$$\mathbf{g)} 9n^3 + 3n = \Omega(n)$$

h)
$$9n^3 + 3n = o(n^3)$$

Comparação de programas

- Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade
- Um programa com tempo de execução $\Theta(n)$ é melhor que outro com tempo $\Theta(n^2)$
 - Porém, as constantes de proporcionalidade podem alterar esta consideração
- Exemplo: um programa leva 100n unidades de tempo para ser executado e outro leva $2n^2$. Qual dos dois programas é melhor?
 - Depende do tamanho do problema
 - Para n < 50, o programa com tempo $2n^2$ é melhor do que o que possui tempo 100n
 - Para problemas com entrada de dados pequena é preferível usar o programa cujo tempo de execução é $\Theta(n^2)$
 - Entretanto, quando n cresce, o programa com tempo de execução $\Theta(n^2)$ leva muito mais tempo que o programa $\Theta(n)$

Classes de Comportamento Assintótico Complexidade Constante

- $f(n) = \Theta(1)$
 - O uso do algoritmo independe do tamanho de n
 - As instruções do algoritmo são executadas um número fixo de vezes
 - O que significa um algoritmo ser $\Theta(2)$ ou $\Theta(5)$?

Classes de Comportamento Assintótico Complexidade logarítmica

- $f(n) = \Theta(\log n)$
 - Ocorre tipicamente em algoritmos que resolvem um problema transformando-o em problemas menores
 - Nestes casos, o tempo de execução pode ser considerado como sendo menor do que uma constante grande
- Supondo que a base do logaritmo seja 2:
 - Para n = 1000, $\log_2 \approx 10$
 - Para $n = 1\ 000\ 000, \log_2 \approx 20$
- Exemplo:
 - Algoritmo de pesquisa binária

Classes de Comportamento Assintótico Complexidade linear

- $f(n) = \Theta(n)$
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada
 - Esta é a melhor situação possível para um algoritmo que tem que processar/produzir n elementos de entrada/saída
 - Cada vez que n dobra de tamanho, o tempo de execução também dobra

• Exemplo:

Algoritmo de pesquisa sequencial

Classes de Comportamento Assintótico Complexidade linear logarítmica

- $f(n) = \Theta(n \log n)$
 - Este tempo de execução ocorre tipicamente em algoritmos que resolvem um problema quebrando-o em problemas menores, resolvendo cada um deles independentemente e depois agrupando as soluções
 - Caso típico dos algoritmos baseados no paradigma divisão-econquista
- Supondo que a base do logaritmo seja 2:
 - Para $n = 1\ 000\ 000,\ \log_2 \approx 20\ 000\ 000$
 - Para $n = 2\ 000\ 000$, $\log_2 \approx 42\ 000\ 000$
- Exemplo:
 - Algoritmo de ordenação MergeSort

Classes de Comportamento Assintótico Complexidade quadrática

- $f(n) = \Theta(n^2)$
 - Algoritmos desta ordem de complexidade ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro do outro
 - Para n = 1000, o número de operações é da ordem de 1000000
 - Sempre que n dobra o tempo de execução é multiplicado por 4
 - Algoritmos deste tipo são úteis para resolver problemas de tamanhos relativamente pequenos

• Exemplos:

Algoritmos de ordenação simples como seleção e inserção

Classes de Comportamento Assintótico Complexidade cúbica

- $f(n) = \Theta(n^3)$
 - Algoritmos desta ordem de complexidade geralmente são úteis apenas para resolver problemas relativamente pequenos
 - Para n = 100, o número de operações é da ordem de 1000000
 - Sempre que n dobra o tempo de execução é multiplicado por 8

• Exemplo:

Algoritmo para multiplicação de matrizes

Classes de Comportamento Assintótico Complexidade Exponencial

- $f(n) = \Theta(2^n)$
 - Algoritmos desta ordem de complexidade não são úteis sob o ponto de vista prático
 - Eles ocorrem na solução de problemas quando se usa a força bruta para resolvê-los
 - Para n = 20, o tempo de execução é cerca de 1000000
 - Sempre que n dobra o tempo de execução fica elevado ao quadrado

• Exemplo:

Algoritmo do Caixeiro Viajante

Classes de Comportamento Assintótico Complexidade Exponencial

- $f(n) = \Theta(n!)$
 - Um algoritmo de complexidade $\Theta(n!)$ é dito ter complexidade exponencial, apesar de $\Theta(n!)$ ter comportamento muito pior do que $\Theta(2^n)$
 - Geralmente ocorrem quando se usa força bruta na solução do problema

Considerando:

- n = 20, temos que 20! = 2432902008176640000, um número com 19 dígitos
- -n = 40 temos um número com 48 dígitos

Comparação de funções de complexidade

Função	Tamanho n					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2 ⁿ	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3 ⁿ	0,059	58	6,5	3855	10 ⁸	10 ¹³
	s	min	anos	séc.	séc.	séc.

		Computador 100	
custo de tempo	atual	vezes mais rápido	vezes mais rápido
n	t_1	100 t ₁	1000 t ₁
n^2	t_2	10 t ₂	$31,6 t_2$
n^3	t_3	$4, 6 t_3$ $t_4 + 6, 6$	10 t ₃
2^n	t_4	$t_4 + 6, 6$	$t_4 + 10$

Algoritmo exponencial × Algoritmo polinomial

- Funções de complexidade:
 - Um algoritmo cuja função de complexidade é $\Omega(c^n)$, c > 1, é chamado de algoritmo exponencial no tempo de execução
 - Um algoritmo cuja função de complexidade é O(p(n)), onde p(n) é um polinômio de grau n, é chamado de algoritmo polinomial no tempo de execução
- A distinção entre estes dois tipos de algoritmos torna-se significativa quando o tamanho do problema a ser resolvido cresce
- Esta é a razão porque algoritmos polinomiais são muito mais úteis na prática do que algoritmos exponenciais
 - Geralmente, algoritmos exponenciais são simples variações de pesquisa exaustiva

Algoritmo exponencial × Algoritmo polinomial

- Os algoritmos polinomiais são geralmente obtidos através de um entendimento mais profundo da estrutura do problema
- Tratabilidade dos problemas:
 - Um problema é considerado intratável se ele é tão difícil que não se conhece um algoritmo polinomial para resolvê-lo
 - Um problema é considerado tratável (bem resolvido) se existe um algoritmo polinomial para resolvê-lo
- Aspecto importante no projeto de algoritmos

Algoritmo exponencial × Algoritmo polinomial

- A distinção entre algoritmos polinomiais eficientes e algoritmos exponenciais ineficientes possui várias exceções
- Exemplo: um algoritmo com função de complexidade $f(n) = 2^n$ é mais rápido que um algoritmo $g(n) = n^5$ para valores de n menores ou iguais a 20
- Também existem algoritmos exponenciais que são muito úteis na prática
 - Exemplo: o algoritmo Simplex para programação linear possui complexidade de tempo exponencial para o pior caso mas executa muito rápido na prática.
- Tais exemplos não ocorrem com frequência na prática, e muitos algoritmos exponenciais conhecidos não são muito úteis.

Algoritmo exponencial O Problema do Caixeiro Viajante

- Um caixeiro viajante deseja visitar n cidades de tal forma que sua viagem inicie e termine em uma mesma cidade, e cada cidade deve ser visitada uma única vez
- Supondo que sempre há uma estrada entre duas cidades quaisquer, o problema é encontrar a menor rota para a viagem
- Seja a figura que ilustra o exemplo para quatro cidades c_1 , c_2 , c_3 e c_4 em que os números nas arestas indicam a distância entre duas cidades

O percurso $< c_1, c_3, c_4, c_2, c_1 >$ é uma solução para o problema, cujo percurso total tem distância 24

Exemplo de algoritmo exponencial

- Um algoritmo simples seria verificar todas as rotas e escolher a menor delas
- Há (n-1)! rotas possíveis e a distância total percorrida em cada rota envolve n adições, logo o número total de adições é n!
- No exemplo anterior teríamos 24 adições
- Suponha agora 50 cidades: o número de adições seria 50! ≈ 10⁶⁴
- Em um computador que executa 10⁹ adições por segundo, o tempo total para resolver o problema com 50 cidades seria maior do que 10⁴⁵ séculos só para executar as adições
- O problema do caixeiro viajante aparece com frequência em problemas relacionados com transporte, mas também aplicações importantes relacionadas com otimização de caminho percorrido

Fundamentos Matemáticos

Cormen – págs. 835 até 844

Hierarquias de funções

 A seguinte hierarquia de funções pode ser definida do ponto de vista assintótico:

$$1 \pi \log \log n \pi \log n \pi n^{\varepsilon} \pi n \pi n^{c} \pi n^{\log n} \pi c^{n} \pi n^{n} \pi c^{c^{n}}$$

onde ε e c são constantes arbitrárias com $0 < \varepsilon < 1 < c$

$$f(n) \pi g(n) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Funções Usuais

Logaritmos e Exponenciais:

$$a^{x} = y \Leftrightarrow \log_{a} y = x$$

$$\log_{a} a^{x} = x$$

$$a^{0} = 1 \implies \log_{a} 1 = 0$$

$$a^{x+y} = a^{x} \times a^{y} \implies \log_{a} p + \log_{a} q = \log_{a} pq$$

$$a^{x-y} = \frac{a^{x}}{a^{y}} \implies \log_{a} \frac{p}{q} = \log_{a} p - \log_{a} q$$

$$(a^{x})^{y} = a^{xy} \implies \log_{a} x^{y} = y \log_{a} x$$

$$(a^{x})^{y} = a^{xy} \implies \log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$

Aproximação de Stirling:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

Somatórios

- Notação de somatório: $\sum_{i=1}^{n} a_i = a_1 + a_2 + \Lambda + a_n$
- Propriedades: $\sum_{i=1}^{n} (ca_i + b_i) = c \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$

Alguns somatórios

$$\sum_{i=1}^{n} 1 = n$$

Série aritmética

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Somas de quadrados e cubos

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

Alguns somatórios

- Série geométrica (ou exponencial)
 - Para a ≠ 1

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \Lambda + a^{n}$$

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

- Para |a| < 1

$$\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$$

Integração e diferenciação de séries

- Fórmulas adicionais podem ser obtidas por integração ou diferenciação das fórmulas anteriores
 - Exemplo: diferenciando-se ambos os lados de:

$$\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$$

– temos:

$$\sum_{i=0}^{\infty} ia^i = \frac{a}{(1-a)^2}$$

Técnicas de Análise de Algoritmos

Ziviani – págs. 19 até 23 e 35 até 42

Cormen – págs. 21 até 31 e 50 até 72

Técnicas de análise de algoritmos

- Determinar o tempo de execução de um programa pode ser um problema matemático complexo
- Determinar a ordem do tempo de execução, sem preocupação com o valor das constantes envolvidas, pode ser uma tarefa mais simples
- A análise utiliza técnicas de matemática discreta, envolvendo contagem ou enumeração dos elementos de um conjunto:
 - manipulação de somas
 - produtos
 - permutações
 - fatoriais
 - coeficientes binomiais
 - solução de equações de recorrência

Análise do tempo de execução

- Comando de atribuição, de leitura ou de escrita: $\Theta(1)$
- Sequência de comandos: determinado pelo maior tempo de execução de qualquer comando da sequência
- Comando de decisão: tempo dos comandos dentro do comando condicional, mais tempo para avaliar a condição, que é $\Theta(1)$
- Anel: soma do tempo de execução do corpo do anel mais o tempo de avaliar a condição para terminação (geralmente Θ(1)), multiplicado pelo número de iterações

Análise do tempo de execução

Procedimentos não recursivos:

- Cada um deve ser computado separadamente um a um, iniciando com os que não chamam outros procedimentos
- Avalia-se então os que chamam os já avaliados (utilizando os tempos desses)
- O processo é repetido até chegar no programa principal

Procedimentos recursivos:

- É associada uma função de complexidade T(n) desconhecida, onde n mede o tamanho dos argumentos
- Obtemos uma equação de recorrência para T(n)
- Resolvemos a equação de recorrência

- Considerando que a operação relevante seja o número de atribuições à variável a, qual é a função de complexidade da função exemplo1?
- Qual a ordem de complexidade da função exemplo1?

```
void exemplo1 (int n)
{
   int i, a;
   a=0;
   for (i=0; i<n; i++)
      a+=i;
}</pre>
```

- Considerando que a operação relevante seja o número de atribuições à variável a, qual é a função de complexidade da função exemplo2?
- Qual a ordem de complexidade da função exemplo2?

```
void exemplo2 (int n)
{
   int i,j,a;
   a=0;
   for (i=0; i<n; i++)
      for (j=n; j>i; j--)
      a+=i+j;
   exemplo1(n);
}
```

- Ordenação por Seleção
 - Seleciona o menor elemento do conjunto
 - Troca este com o primeiro elemento A [0]
 - Repita as duas operações acima com os n-1 elementos restantes, depois com os n-2, até que reste apenas um

```
void Ordena (int A[]) {
     /*ordena o vetor A em ordem ascendente*/
     int i, j, min, x;
     for (i = 0; i < n-1; i++) {
(1)
(2)
        min = i;
(3)
       for (j = i + 1; j < n; j++)
(4)
            if (A[j] < A[min])
(5)
               min = j;
        /*troca A[min] e A[i]*/
(6)
        x = A[min];
        A[min] = A[i];
(8)
        A[i] = x;
```

 Considerando que a operação relevante seja o número de comparações com os elementos do vetor:

$$T(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} (n-1-i-1+1) = \sum_{i=0}^{n-2} (n-i-1)$$

$$= \sum_{i=0}^{n-2} n - \sum_{i=0}^{n-2} i - \sum_{i=0}^{n-2} 1 = n(n-1) - \frac{(n-2)(n-1)}{2} - (n-1)$$

$$= n^2 - n - \frac{n^2 - 3n + 2}{2} - n + 1 = \frac{n^2}{2} - \frac{n}{2}$$

• Se considerarmos o número de movimentações com os elementos de A, o programa realiza exatamente 3 (n-1) operações

Exercício

8. O que faz essa função ? Qual é a operação relevante? Qual a sua ordem de complexidade?

```
void p1 (int n)
{
   int i, j, k;

   for (i=0; i<n; i++)
      for (j=0; j<n; j++) {
        C[i][j]=0;
      for (k=n-1; k>=0; k--)
        C[i][j]=C[i][j]+A[i][k]*B[k][j];
   }
}
```

Exercício

9. O que faz essa função ? Qual é a operação relevante? Qual a sua ordem de complexidade?

```
void p2 (int n)
{
  int i, j, x, y;

  x = y = 0;
  for (i=1; i<=n; i++) {
    for (j=i; j<=n; j++)
        x = x + 1;
    for (j=1; j<i; j++)
        y = y + 1;
  }
}</pre>
```

Exercício

10. Qual é a função de complexidade para o número de atribuições ao vetor x?

```
void Exercicio3(int n) {
   int i, j, a;
   for (i=0; i<n; i++) {
      if (x[i] > 10)
         for (j=i+1; j<n; j++)</pre>
             x[j] = x[j] + 2;
      else {
         x[i] = 1;
         j = n-1;
         while (j \ge 0) {
             x[j] = x[j] - 2;
             j = j - 1;
```

Algoritmos recursivos

- Um objeto é recursivo quando é definido parcialmente em termos de si mesmo
- Um algoritmo que chama a si mesmo, direta ou indiretamente, é dito ser recursivo
- Recursividade permite descrever algoritmos de forma mais clara e concisa, especialmente problemas recursivos por natureza ou que utilizam estruturas recursivas

Algoritmos recursivos

- Exemplo 1: Números naturais
 - a) 1 é um número natural
 - b) O sucessor de um número natural é um número natural
- Exemplo 2: Função fatorial
 - a) 0! = 1
 - b) Se n > 0 então n! = n (n 1)!
- Exemplo 3: Árvores
 - a) A árvore vazia é uma árvore
 - b) Se T₁ e T₂ são árvores então T' é uma árvore

Algoritmos recursivos

- Normalmente, as funções recursivas são divididas em duas partes
 - Chamada recursiva
 - Condição de parada
- A chamada recursiva pode ser direta (mais comum) ou indireta (A chama B que chama A novamente)
- A condição de parada é fundamental para evitar a execução de loops infinitos

Algoritmos recursivos

- Internamente, quando qualquer chamada de função é feita dentro de um programa, é criado um registro de ativação na pilha de execução do programa
- O registro de ativação armazena os parâmetros e variáveis locais da função bem como o "ponto de retorno" no programa ou subprograma que chamou essa função
- Ao final da execução dessa função, o registro é desempilhado e a execução volta ao subprograma que chamou a função

Exemplo: fatorial recursivo

```
int fat (int n) {
   if (n<=0)
      return (1);
   else
      return (n * fat(n-1));
}</pre>
```

```
int main() {
   int f;
   f = fat(5);
   printf("%d",f);
   return (0);
}
```

```
fat(5) = 5 * fat(4)

fat(4) = 4 * fat(3)

fat(3) = 3 * fat(2)

fat(2) = 2 * fat(1)

fat(1) = 1 * fat(0)

fat(0) = 1
```

Complexidade: fatorial recursivo

 A complexidade de tempo do fatorial recursivo é O(n) (em breve iremos ver a maneira de calcular isso usando equações de recorrência)

 Mas a complexidade de espaço também é O(n), devido a pilha de execução

Complexidade: fatorial iterativo

 A complexidade de espaço do fatorial não recursivo é O(1)

```
int fatiter (int n) {
   int f;
   f = 1;
   while(n > 0) {
      f = f * n;
      n = n - 1;
   }
   return (f);
}
```

Recursividade

 Portanto, a recursividade nem sempre é a melhor solução, mesmo quando a definição matemática do problema é feita em termos recursivos

Exemplo: série de Fibonnaci

Série de Fibonnaci:

```
- F_n = F_{n-1} + F_{n-2}  n > 2,

- F_0 = F_1 = 1

- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...
```

```
int Fib(int n) {
   if (n<2)
      return (1);
   else
      return (Fib(n-1) + Fib(n-2));
}</pre>
```

Complexidade: série de Fibonacci

Ineficiência em Fibonacci

- Termos F_{n-1} e F_{n-2} são computados independentemente
- Número de chamadas recursivas = número de Fibonacci!
- Custo para cálculo de F_n $O(\phi^n)$ onde $\phi = (1 + \sqrt{5})/2 = 1,61803...$ Exponencial!!!

Exemplo: série de Fibonacci iterativo

```
int FibIter(int n) {
   int i, k, F;

i = 1; F = 0;
   for (k = 1; k <= n; k++) {
      F += i;
      i = F - i;
   }
   return F;
}</pre>
```

- Complexidade: O(n)
- Conclusão: não usar recursividade cegamente!

Quando vale a pena usar recursividade?

- Recursividade vale a pena para algoritmos complexos, cuja a implementação iterativa é complexa e normalmente requer o uso explícito de uma pilha
 - Dividir para Conquistar (Ex. Quicksort)
 - Caminhamento em Árvores (pesquisa, backtracking)
- Evitar o uso de recursividade quando existe uma solução óbvia por iteração:
 - Fatorial
 - Série de Fibonacci

Exemplo: régua

```
void regua(int 1, r, h) {
  int m;

if (h > 0) {
    m = (1 + r) / 2;
    marca(m, h);
    regua(1, m, h - 1);
    regua(m, r, h - 1);
}
```


Exemplo: régua

Exemplo: régua

Exercícios

11. Implemente uma função recursiva para computar o valor de 2ⁿ

12. O que faz a função abaixo?

```
int f(int a, int b) {
    // considere a > b
    if (b == 0)
       return a;
    else
      return (f(b,a%b));
}
```

Análise de procedimento recursivo

```
Pesquisa(n);

(1) if n ≤ 1

(2) then "inspecione elemento" e termine
else begin

(3) para cada um dos n elementos "inspecione elemento";

(4) Pesquisa(n-1);
end;
```

- Para cada procedimento recursivo é associada uma função de complexidade T(n) desconhecida, onde n mede o tamanho dos argumentos para o procedimento
- Obtemos uma equação de recorrência para T(n)
- Equação de recorrência: maneira de definir uma função por uma expressão envolvendo a mesma função

Análise de procedimento recursivo

- Seja T(n) uma função de complexidade que represente o número de inspeções nos n elementos do conjunto.
- O custo de execução das linhas (1) e (2) é O(1) e da linha (3) é O(n)
- Usa-se uma equação de recorrência para determinar o número de chamadas recursivas
- O termo T(n) é especificado em função dos termos anteriores T(1), T(2), ..., T(n-1)

$$\begin{cases} T(n) = T(n-1) + n \\ T(1) = 1 \end{cases}$$
 (para $n = 1$, fazemos uma inspeção)

Resolução de equação de recorrência

$$\begin{cases} T(n) = T(n-1) + n \\ T(1) = 1 \end{cases}$$

$$T(n) = T(n/-1) + n$$

$$T(n/-1) = T(n/-2) + n - 1$$

$$T(n/-2) = T(n/-3) + n - 2$$

$$T(n/-3) = T(n/-4) + n - 3$$

$$N$$

$$T(n - (n/-2)) = T(n/(n-1)) + 2$$

$$T(n - (n/-1)) = 1$$

$$n + (n-1) + (n-2) + \Lambda + 2 + 1 = \sum_{i=1}^{n} i$$

$$T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2}$$

Logo, o programa do exemplo é $\Theta(n^2)$

Análise da função fat

Seja a seguinte função para calcular o fatorial de n:

```
int fat (int n) {
   if (n<=1)
      return (1);
   else
      return (n * fat(n-1));
}</pre>
```

Seja a seguinte equação de recorrência para esta função:

$$\begin{cases} T(n) = T(n-1) + c & n > 1 \\ T(1) = d & \end{cases}$$

- Esta equação diz que quando n = 1, o custo para executar fat é igual a d
- Para valores de n maiores que 1, o custo para executar fat é c mais o custo para executar T(n-1)

Resolvendo a equação de recorrência

$$\begin{cases} T(n) = T(n-1) + c & n > 1 \\ T(1) = d & \end{cases}$$

$$T(n) = T(n/-1) + c$$

$$T(n/-1) = T(n/-2) + c$$

$$T(n/-2) = T(n/-3) + c$$

$$T(n-(n/-2)) = T(n-(n/-1)) + c$$

$$T(n) = c(n-1) + d$$

Logo, o programa do exemplo é O(n)

Exercícios

13. Resolva as seguintes equações de recorrência:

a)
$$\begin{cases} T(n) = T\left(\frac{n}{2}\right) + 1 & (n \ge 2) \\ T(1) = 0 & (n = 1) \end{cases}$$

b)
$$T(n) = 2T\left(\frac{n}{2}\right) + n \quad (n \ge 2)$$

$$T(1) = 0 \quad (n = 1)$$

c)
$$\begin{cases} T(n) = T\left(\frac{n}{3}\right) + n & (n > 1) \\ T(1) = 1 & (n = 1) \end{cases}$$

Teorema Mestre

Recorrências das forma

$$T(n) = aT(n/b) + f(n)$$

onde $a \ge 1$ e b > 1 são constantes e f(n) é uma função assintoticamente positiva, podem ser revolvidas usando o Teorema Mestre

 Neste caso, não estamos achando a forma fechada da recorrência mas sim seu comportamento assintótico

Teorema Mestre

• Sejam as constantes $a \ge 1$ e b > 1 e f(n) uma função definida nos inteiros não-negativos pela recorrência:

$$T(n) = aT(n/b) + f(n)$$

onde a fração n/b pode significar $\lfloor n/b \rfloor$ ou $\lceil n/b \rceil$. A equação de recorrência T(n) pode ser limitada assintoticamente da seguinte forma:

- 1. Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = O(n^{\log_b a})$
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$ e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e para n suficientemente grande, então $T(n) = \Theta(f(n))$

Comentários sobre o teorema Mestre

• Nos três casos estamos comparando a função f(n) com a função $n^{\log_b a}$. Intuitivamente, a solução da recorrência é determinada pela maior das duas funções.

Por exemplo:

- No primeiro caso a função $n^{\log_b a}$ é a maior e a solução para a recorrência é $T(n) = \Theta(n^{\log_b a})$
- No terceiro caso, a função f(n) é a maior e a solução para a recorrência é $T(n) = \Theta(f(n))$
- No segundo caso, as duas funções são do mesmo "tamanho". Neste caso, a solução fica multiplicada por um fator logarítmico e fica da forma $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(f(n) \log n)$

Tecnicalidades sobre o teorema Mestre

- No primeiro caso, a função f(n) deve ser não somente menor que $n^{\log_b a}$ mas ser polinomialmente menor. Ou seja, f(n) deve ser assintoticamente menor que $n^{\log_b a}$ por um fator de n^{ε} , para alguma constante $\varepsilon > 0$
- No terceiro caso, a função f(n) deve ser não somente maior que $n^{\log_b a}$ mas ser polinomialmente maior e satisfazer a condição de "regularidade" que $af(n/b) \le cf(n)$. Esta condição é satisfeita pela maior parte das funções polinomiais encontradas neste curso.

Tecnicalidades sobre o teorema Mestre

- Teorema **não** cobre todas as possibilidades para f(n):
 - Entre os casos 1 e 2 existem funções f(n) que são menores que $n^{\log_b a}$ mas não são polinomialmente menores
 - Entre os casos 2 e 3 existem funções f(n) que são maiores que $n^{\log_b a}$ mas não são polinomialmente maiores

Se a função f(n) cai numa dessas condições, ou a condição de regularidade do caso 3 é falsa, então não se pode aplicar este teorema para resolver a recorrência

$$T(n) = 9T(n/3) + n$$

Temos que,

$$a = 9$$
, $b = 3$, $f(n) = n$

Desta forma,

$$n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$$

• Como $f(n) = O(n^{\log_3 9 - \epsilon})$, onde $\epsilon = 1$, podemos aplicar o caso 1 do teorema e concluir que a solução da recorrência é

$$T(n) = \Theta(n^2)$$

$$T(n) = T(2n/3) + 1$$

Temos que,

$$a = 1$$
, $b = 3/2$, $f(n) = 1$

Desta forma,

$$n^{\log_b a} = n^{\log 3/2} = n^0 = 1$$

• O caso 2 se aplica já que $f(n) = O(n^{\log_b a}) = \Theta(1)$. Temos então que a solução da recorrência é

$$T(n) = \Theta(\log n)$$

$$T(n) = 3T(n/4) + n\log n$$

Temos que,

$$a = 3$$
, $b = 4$, $f(n) = n \log n$

Desta forma,

$$n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$$

• Como $f(n) = \Omega(n^{\log_4 3 + \epsilon})$, onde $\epsilon \approx 0.2$, o caso 3 se aplica se mostrarmos que a condição de regularidade é verdadeira para f(n)

Para um valor suficientemente grande de n

$$af(n/b) = 3(n/4)\log(n/4) \le (3/4)n\log n = cf(n)$$

• Para $c = \frac{3}{4}$. Consequentemente, usando o caso 3, a solução para a recorrência é:

$$T(n) = \Theta(n \log n)$$

$$T(n) = 2T(n/2) + n\log n$$

Temos que,

$$a = 2$$
, $b = 2$, $f(n) = n \log n$

Desta forma,

$$n^{\log_b a} = n$$

• Aparentemente o caso 3 deveria se aplicar já que $f(n) = n \log n$ é assintoticamente maior que $n^{\log_b a} = n$. Mas no entanto, não é polinomialmente maior. A fração $f(n)/n^{\log_b a} = (n \log n)/n = \log n$ que é assintoticamente menor que n^{ε} para toda constante positiva ε . Consequentemente, a recorrência cai na situação entre os casos 2 e 3 onde o teorema não pode ser aplicado.

Exercício

14. Use o teorema mestre para derivar um limite assintótico Θ para da seguinte recorrência:

$$T(n) = 4T(n/2) + n$$