Non-Equilibrium Transport Through Two Defect Bonds in a Free-Fermion Chain

Model

Consider a one-dimensional chain of L spinless fermions with nearest-neighbour hopping amplitude J, except for two consecutive defect bonds of reduced strength J_{imp} . Label the defect bonds between sites $j_0 \leftrightarrow j_0 + 1$ and $j_0 + 1 \leftrightarrow j_0 + 2$. The single-particle Hamiltonian is

$$h_{ij} = \frac{J_j}{2} (\delta_{i,j+1} + \delta_{i+1,j}), \quad J_j = \begin{cases} J_{\text{imp}}, & j = j_0 \text{ or } j = j_0 + 1, \\ J, & \text{otherwise.} \end{cases}$$

Initial State and Quench

At t=0, the left half (sites $0, \ldots, j_0$) is prepared in a zero-temperature Fermi sea at chemical potential μ_L , and the remainder (sites $j_0+1, \ldots, L-1$) in a Fermi sea at μ_R with $\mu_L > \mu_R$. The many-body initial state Ψ_0 factorizes into two equilibrium vacua.

Correlation-Matrix Formalism

Define the single-particle correlator

$$C_{ij}(t) = \langle \Psi_0 | c_i^{\dagger}(t) c_j(t) | \Psi_0 \rangle, \quad c_j(t) = e^{iHt} c_j e^{-iHt}.$$

If $\{\phi_n, \varepsilon_n\}$ diagonalize h, then

$$C(t) = U(t) C(0) U^{\dagger}(t), \quad U(t) = \phi e^{-i\varepsilon t} \phi^{\dagger},$$

and C(0) is block-diagonal with fillings prescribed by μ_L and μ_R .

Real and Imaginary Parts

- $\Re C_{ii}(t)$ gives site occupations $\langle n_i \rangle$.
- $\Im C_{ij}(t)$ is antisymmetric ($\Im C_{ij} = -\Im C_{ji}$) and encodes the particle current from j into i:

$$j_{j\to i}(t) \propto \Im C_{ij}(t).$$

Defect-Bond Current

The two weakened links carry currents

$$j_{j_0 \to j_0+1}(t) = 2J_{\text{imp}} \Im C_{j_0, j_0+1}(t),$$