An Image Is Worth 393 Areas:

Training image Transformers with Area-Attention

Osher Tidhar

Yoav Kurtz

Agenda

Model of choice for NLP problems.

Recently migrated to computer vision.

- Motivation
- Our Method
- Results
- Further Steps

Transformer Overview

Vision Transformer¹

- Motivation
- Our Method
- Results
- Further Steps

- Motivation
- Our Method
- Results
- Further Steps

- Model of choice for NLP problems.
- Recently migrated to vision, showing competitive^{1,2} results.

- Motivation
- Our Method
- Results
- Further Steps

- Model of choice for NLP problems.
- Recently migrated to vision, showing competitive^{1,2} results.

- Motivation
- Our Method
- Results
- Further Steps

- Model of choice for NLP problems.
- Recently migrated to vision, showing competitive^{1,2} results.

• Model of choice for NLP problems.

Recently migrated to vision, showing com

Motivation

¹An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale ²Training data-efficient image transformers & distillation through attention

- Motivation
- Our Method
- Results
- Further Steps
- Attending group of items in the memory that are structurally adjacent.
- Model can attend to combinations of items.

- Z_0
- Z_1
- \overline{Z}
- Z_3

- Motivation
- Our Method
- Results
- Further Steps

- Motivation
- Our Method
- Results
- Further Steps

- Motivation
- Our Method
- Results
- Further Steps

- Motivation
- Our Method
- Result
- Further Steps

- Motivation
- Our Method
- Result
- Further Steps

Vision Transformer + Area Attention

- Motivation
- Our Method
- Results
- Further Steps
- Multi-head self-attention replaced with multi-head area-attention.
- Different AA configurations are tested.

Vision Transformer + Area Attention

- Motivation
- Our Method
- Results
- Further Steps
- Multi-head self-attention replaced with multi-head area-attention.
- Different AA configurations are tested.

Number of areas in ViT + AA

- Motivation
- Our Method
- Results
- In ViT, each image is represented by patches of 16x16 pixels.
- In our model, what is the total number of areas that can be generated?
- → For the following configurations:

(H, W)	(P, P)	max area size
224x224	16x16	2

we got a sequence of length 197:

14x14 patch images + 1 token class.

which corresponds to 393 areas:

197 areas built of 1 element + 196 areas built of a combination of 2 adjacent elements.

Choosing a dataset for our experiments:

Motivation

Results

Our Method

Further Steps

Dataset - CIFAR-10

	Train size	Test size	#classes
CIFAR-10	50,000	10,000	10

Choosing models for our experiments

- Motivation
- Our Method
- Results
- Further Steps

Original architecture of the Vision-Transformer model:

	embedding	#heads	#layers	#params	training resolution
ViT-small	768	12	12	86M	224

Models we used: Vision-Transformers small¹ and tiny²

	embedding	#heads	#layers	# AA layers	#params	training resolution
ViT-small	384	6	12	n/a	22M	224
ViT-small+ AA	384	6	12	2	22M	224
ViT-tiny	192	3	12	n/a	5M	224
ViT-tiny+ AA	192	3	12	2	5M	224

Choosing models for our experiments

- Motivation
- Our Method
- Results
- Further Steps

Original architecture of the Vision-Transformer model:

	embedding	#heads	#layers	#params	training resolution
ViT-small	768	12	12	86M	224

Models we used: Vision-Transformers small

	embedding	#heads	#1- Sal	ne numete	rs params	training resolution
ViT-small	384	6		n/a	22M	224
ViT-small+ AA	384	6	12	2	22M	224
ViT-tiny	192	3	12	n/a	5M	224
ViT-tiny+ AA	192	3	12	2	5M	224

Accuracy achieved with ViT + AA

- Motivation
- Our Method
- Results
- Further Steps
- Accuracy of our pretrained weights on CIFAR-10 Testset:

o ViT-Small model:

	top-1 acc	top-5 acc	loss
ViT-small + AA with max_size=2	92.19	99.68	0.38
ViT-small + AA with max_size=3	89.32	99.51	0.473
ViT-small + AA with max_size=4	85.67	98.29	0.577
Only ViT-small	90.6	99.47	0.411

O ViT-Tiny model:

	top-1 acc	top-5 acc	loss
ViT-tiny + AA with max_size=2	86.14	99.52	0.557
Only ViT-tiny	85.49	99.49	0.576

Accuracy achieved with ViT + AA

- Motivation
- Our Method
- Results
- Further Steps
- Only AA2 configuration achieves better accuracy than only ViT-S.
- Accuracy improves as we decrease the maximum size of an area (for the first 2 blocks).

- ViT-S + AA with max size = 2
- Only ViT-S
- ViT-S + AA with max size = 3
- ViT-S + AA with max size = 4

Accuracy achieved with ViT + AA

- Motivation
- Our Method
- Results
- Further Steps
- Only AA2 configuration achieves better accuracy than only ViT-S.
- Accuracy improves as we decrease the maximum size of an area (for the first 2 blocks).

- ViT-S + AA with max size = 2
- Only ViT-S
- ViT-S + AA with max size = 3
- ViT-S + AA with max size = 4

Further steps

- - **Further Steps**

- Training AA-ViT using network distillation.
 - Plays the same role as the class token, except that it aims at reproducing the label estimated by the teacher.
- Both tokens interact in the transformer through attention
- Achieved results that were competitive with the results of convnets for Imagenet.

Questions?