Project Chrono:

Modules, Solvers, and Integrators

Reference Material

Related to general Project Chrono (existing distribution)

- Project Chrono Reference Manual: https://api.projectchrono.org/manual-root.html
- Project Chrono White Papers: https://projectchrono.org/whitepapers/
- Project Chrono FAQs: https://projectchrono.org/faq/
- Project Chrono API: https://api.projectchrono.org/group chrono.html

Related to new developments for 3D-printing and concrete

- Chrono-Concrete Readme
- https://github.com/Concrete-Chrono-Development/chrono-concrete#readme

Related to FreeCAD user interface

- Chrono-Preprocessor Readme
- https://github.com/Concrete-Chrono-Development/chrono-preprocessor#readme

Places to Ask Questions

Related to general Project Chrono (existing distribution)

- Project Chono Forum
- https://groups.google.com/g/projectchrono

Related to new developments for 3D-printing and concrete

- Chrono-Concrete Discussions
- https://github.com/Concrete-Chrono-Development/chrono-concrete/discussions

Related to FreeCAD user interface

- Chrono-Preprocessor Discussions
- https://github.com/Concrete-Chrono-Development/chrono-preprocessor/discussions

Modules to Use

FEA, CSL, LDPM

- Chrono core module
- CPU implementation

DEM

- DEM-Engine
- GPU implementation

SPH

- FSI
- GPU implementation

Categories of Solvers

chrono::ChDirectSolverLS

- Base class for sparse direct linear solvers.
- Sparse linear direct solvers. Cannot handle VI and complementarity problems, so it cannot be used with NSC formulations.

chrono::ChlterativeSolverLS

- Base class for Chrono solvers based on Eigen iterative linear solvers.
- Iterative linear solvers. Cannot handle VI and complementarity problems, so they cannot be used with NSC formulations.

chrono::ChlterativeSolverVI

 Base class for iterative solvers aimed at solving complementarity problems arising from QP optimization problems.

LS: Linear Solver

VI: Variational Inequality

All Solvers

chrono::ChDirectSolverLS

MumpsParadisoMKL and ParadisoProject

SparseLU and SparseQR

chrono::ChlterativeSolverLS

BiCGSTAB

GMRES

MINRES

chrono::ChlterativeSolverVI

MulticoreNSC and MulticoreSMC

ADMM

APGD

BB

Pjacobi

PMINRES

PSOR and PSSOR

MUMPS parallel sparse direct solver

Intel MKL Pardiso or Paradiso Project sparse direct solver

Eigen SparseLU or Eigen SparseQR direct solver

Bi-conjugate gradient stabilized algorithm

Generalized Minimal Residual Algorithm

Minimum Residual Method

NSC – Non-smooth dynamics, SMC – Smooth dynamics

Alternating Direction Method of Multipliers

Nesterov's Projected Gradient Descent

Modified Krylov iteration w/ Barzilai-Borwein

Projective fixed point method (projected Jacobi)

Modified Krylov iteration of MINRES w/ gradient projections

Projective fixed point method and symmetric PSOR

Chrono-Recommended Solvers

SOR

- Low precision: convergence might stall, especially with odd mass ratios
- Supports Differential Variational Inequalites (DVI) (hard contacts, with complementarity)
- Used most often for small problems, solution accuracy is not particularly important

APGD

- Very good convergence, used most often for simulations in which high accuracy in results is desired
- Supports DVI (hard contacts, with complementarity)

BARZILAIBORWEIN

- Good convergence
- Supports DVI (hard contacts, with complementarity)
- Similar to APGD, might be more robust when using large mass ratios

MINRES

- Good convergence
- Supports FEA problems
- Does nor support DVI (hard contacts, with complementarity) for the moment.

Categories of Time Integrators

chrono::ChTimestepperllorder

Base class for 2nd order timesteppers

chrono::ChTimestepperlorder

• Base class for 1st order timesteppers.

All Time Integrators

chrono::ChTimestepperllorder

ChTimestepperEulerExpllIorder: Euler explicit for 2nd order

ChTimestepperEulerImplicit: Euler implicit

ChTimestepperEulerImplicitLinearized: Euler implicit w/ Anitescu/Stewart/Trinkle single-iteration

ChTimestepperEulerImplicitProjected: Semi implicit Euler w/o constraint stabilization; projection

ChTimestepperEulerSemiImplicit: Typical Euler semi implicit

ChTimestepperHHT: Hilber-Hughes-Taylor (HHT) implicit integrator

ChTimestepperLeapfrog: Leapfrog explicit integrator (symplectic w/ 2nd order accu.)

ChTimestepperNewmark: Newmark constrained implicit for 2nd order DAE

ChTimestepperTrapezoidal: Trapezoidal implicit

ChTimestepperTrapezoidalLinearized: Trapazoidal implicit linearized

ChTimestepperTrapezoidalLinearized2: Do not use

chrono::ChTimestepperlorder

• ChTimestepperEulerExpl: Euler explicit

ChTimestepperHeun: Heun explicit

ChTimestepperRungeKuttaExpl: 4th order explicit Runge-Kutta