Remarks
6,
7,

5) (a) (i) write an ALP to perform addition, subtraction of two 32-bit numbers using pre post indexing.

ARM Code:

AREA SBSC, CODE, READONLY
ENTRY

LDR RO, = 0x40000000

LDR R1, [RO], #04

LDR R2, [RO], #04

ADDS R3, R1, R2

STR R3, [RO]

UP B UP END

Results:

Obtained the sum of two 32-bit numbers using post-indexing with an ARM7 assembly language program.

(ii) Write an ALP to perform subtraction of two 32-bit numbers using post pre-indexing.

ARM Code:

AREA SBSC, CODE, READONLY

ENTRY

LDR RO, = 0x40000000

LDR R1, [R0, #04]

LDR R2, [RO, #08]

SUBS R3, R2, R1

STR R3, [RO]

UP B UP

END

Results:

obtained the difference of two 32-bit numbers using pre-indexing with an ARM7 assembly language program.

5) (a) Output (Addition):

	Danielave	Values		
	Registers	Pre-execution	Post - execution	
RO		0x0000000	0x40000000	
	RI	0×00000000	0x00000001	
	R2	0x0000000	0x00000006	
	R3	0x0000000	0x00000007	
	R4	0x00000000	0x 00000000	
	R5	0x0000000	0x00000000	
	R6	0x00000000	0x0000000	
1		1 1	1 1	
	RI5	0x00000000	0x00000014	
	CPSR	0x000000d3	0x800000d3	
	NO		O	
	ZO		0	
	C	0	0	
	V 0		\bigcirc	
	1		1	
	F		1	
	T	0	0	
	M	0×13	0×13	

5(a) Output (Subbraction)

) auc	Values			
Registers	Pre-execution	Post-execution		
RO	0x00000000	Ox 40000008		
RI	0x00000000	0x00000001		
R2	0000000000	0x0000006		
R3	0x00000000	0x00000005		
) 1 }	1 1 1	1 1		
R14	0x00000000	0x00000000		
R15	0200000000	0x00000014		
CPSR	0x000000d3	0x200000d3		
N	0	\circ		
Z	0			
C	0	1		
V	0	0		
1				
F		1		
T	0	0 0×13		
M	0×13	0×13		

5)(b) Write an ALP to perform an addition of five 32 bit numbers stored in memory using conditions book and indexing.

ARM code:

AREA SBSC, CODE, READONLY ENTRY

LDR R2, = 0x00000000

LDR R3, = 0x00000005

LDR R5, = 0x40000040

LDR RO, = 0x40000000

LC LDR R1, [RO], #04

ADDS R2, R2 R1

ADDCS R6, R6, #1

SUBS R3, R3, #1.

BNE LC

STR R2, [R5] #04

STR R6, [R5]

UP B UP END

Result:

Pre-indexing commands were used in looping of a program and to add 2 numbers.

0 100	Values			
Registers	Pre-execution	Post - execution		
RO	0x00000000	0x40000014		
R1	0x00000000	0x000 10co5		
R2	0 x 0 00 00 00 0	0x0005000f		
R3	0x00000000	Ox 000000000		
R4	0x00000000	0x 000000000		
R5	OX0000000	0x400000044		
1.		1		
	1 1	1		
R14	0 x 0 0 0 0 0 0 0	0x00000000		
R15	0x000000000000000000000000000000000000	0x0000002C		
CPSR	0x000000d3	0x000000 d3		
N	0	0		
Z	0	1 -		
C	0	1		
V	0	0		
I	1	1		
F		1		
T	0	\mathcal{O}		
M	0×13	0x13		

(a) Write an ALP to perform multiplication of 32-bit numbers using MUL instruction.

ARM Code:

AREA SBCS, CODE, READONLY
ENTRY

LDR RO, = 0x40000000

LDR R1, [RO], #04

LDR R2, [RO], #04

LDR R4, = 0x40000030

MUL R3, R1, R2

STR R3, [RO]

UP B UP
END

Result:

Multiplication of two 32-bit numbers was performed using MUL instruction.

6) (a) Output:

0 310	Value		
Register	Pre-execution	Post-execution	
RO	0x0000000	0x40000008	
RI	0x0000000	0x00000a43	
R2	0×00000000	0 x 00000 200	
R3 R4 	0x0000000 -x 1x - 0x00000000 0x00000000	0x0014ec9e 0x4000030 -x1x- 0x0000000 0x0000000	
RI5	0x0000000	0x00000018	
N	0	0	
Z	0	$oldsymbol{\epsilon}$	
C	0		
W	0x13	0×13	

6)(b) Output:

Registers	Values			
regisu.	Pre-execution	Post-execution		
RO	0x0000000	0x40000008		
RI	0x00000000	0x 000000a01		
R2	0x0000000	0x000c0b00		
R3	0,00000000	0x00000000		
R4	0 x 000000000	0x787a0b00		
-1-	$-\times1\times-$	- x ix-		
R14	0x0000000	0,00000000		
R15	0x0000000	0x0000001C		
CPSR	0x000000d3	0x000000d3		
N	0	0		
Z	0	\circ		
С	0			
V	0			
I	\			
F	}			
T	0	0		
M	0×13	0x13		

6) (b) Write an ALP to perform multiplication of 32-bit numbers using UMULL instructions.

ARM Code:

AREA SBCS, CODE, READONLY

ENTRY

LDR RO, = 0x40000000

LDR R5, = 0x40000030

LDR R1, [Ro], #04

LDR R2, [RO], #04

UMULL R4, R3, R1, R2.

STR R4, [R5], #04

STR R3, [R5]

UP B UP

END.

Result:

Multiplication of two 32-bit numbers was performed using UMULL.

6) (c) Output:

Registers	Values		
	Pre-execution	Post-execution.	
RO	0x00000000	0x40000028	
RI	0x00000000	0x000d0013	
R2	0x00000000	0x00003200	
R3	0200000000	00000000	
R4	00000000000	0x000000aa	
R5	0x0000000	0x1c029c00	
R6	0000000000	0x0000000	
R7	0x00000000	0x40000044	
XIX	-x/x-	-x/x-	
R14	0x0000000	0x00000000	
RI5	0x00000000	0x00000030	
CPSR	0x000000d3	0x600000d3	
N	0	\odot	
Z	0	1	
C	O	1	
V	0	0	
100	1	1	
エ F	1	1	
T	0	0	
M	0x13	0x13	

operation of 5 32-bit numbers.

ARM Code:

AREA SBSCS, CODE, READONLY ENTRY LDR RO, = 0x400000000, LDR RS, = 0x00000000 LDR RS, = 0x00000000 LDR R6, = 0x5 LDR R7, = 0x40000040

LO LDR R1, [R0], #04

LDR R2, [R0], #04

UMLAL R5, R4, R1, R2

SUBS R6, R6, #1

BNE LO

STR R4, [R7], #04

STR R5, [R7]

UP B UP

Result: Multiplied 5 32-bit numbers using ALP.

Memory Block Outputs -

(6) (a):	6(b):
Memory Address: 0x40000000	Memory Address: Oxhoooooo
0x400000000: 43 0A 00 00	0x400000000: 01 0A 00 00
0x400000004: 0A 02 00 00	0x40000004:00 0B 0C 00
0x40000008: 9E EC 14 00	0x40000030: 00 OB 7A 78
	0x40000034:00 00 00 00

6)(c):

Memory Address: Dx40000000					
0x400000000:	00	OA	00	00	
0x40000004:	OB	32	00	00	
0x400000 08:	00	14	OA	00	
0x4000000C:	03	00	OC	00	
Ox 40000010:	00	04	AD	00	
0 x 4 00 000 14:	EA	31	00	00	
0x40000018:	OA	00	32	00	
0x 400000 1C:	00	42	00	00	
0x 400000 20:	13	00	OD	00	
0x 400 000 24:	00	32	00	00	