EMRG-409 Training Course

EMERGENCY MEASURES RADIO GROUP

OTTAWA ARES

Two Names - One Group - One Purpose

Introduction To CTCSS

Continuous Tone Coded Squelch

Date Of Last Change: 2009-10-31 Version: 1.0

Course Introduction

Course Number: EMRG-409

Course Name: Introduction To CTCSS

Instructor Led: Optional

Prerequisites:

None

What You Should Learn From This Course:

 From this course you should learn the difference of tone Encode and Decode, why CTCSS tones are used and best practices for using CTCSS

Recommended Reading:

Read your radio manuals to understand how each of your radios implements CTCSS

Motorola Creates CTCSS

- Motorola invented CTCSS (Continuous Tone Coded Squelch System) in the early 1960's and patented it as "PL" short for "Private line".
- Other manufacturers came up with "Channel Guard", "Quiet Channel", "Call Guard".
- CTCSS is also referred to as "tone squelch", and "sub-audible tone".

WHAT IS CTCSS

- CTCSS is a continuous tone, so low in frequency (67 Hz to 250 Hz) and amplitude (volume) that it is <u>almost</u> impossible to hear with the un-aided ear.
- This "sub-audible tone" is sent over the air from the Transmitter, to the Receiver.
- The receiver doesn't let any sound through to the speaker until it hears the specific tone it was programmed with.

CTCSS TONE LISTS

- There is no published standard for CTCSS tones.
- Some radios have a minimal set of 38 tones, others have more.
- Motorola used a two digit code for their PL tones, such as 4Z for 136.5 Hz.
- EMRG uses the following tones; 100.0, 123.0 and 136.5 Hz

NS ¹	PL	Hz
1	XZ	67.0
	WZ	² 69.3
2	XA	71.9
3	WA	74.4
4	XB	77.0
5	WB ³	79.7
6	YZ	82.5
7	YA	85.4
8	YB	88.5
9	ZZ	91.5
10	ZA	94.8
11	ZB	⁴ 97.4

NS ¹	PL	Hz
12	1Z	100.0
13	1 A	103.5
14	1B	107.2
15	2Z	110.9
16	2A	114.8
17	2B	118.8
18	3Z	123.0
19	3A	127.3
20	3B	131.8
21	4Z	136.5
22	4 A	141.3
23	4B	146.2
24	5Z	151.4
25	5A	156.7
26	5B	162.2
27	6Z	167.9
28	6A	173.8
29	6B	179.9
30	7Z	186.2
31	7A	192.8
		199.5
	8Z ⁵	206.5
	6	213.8
	6	221.3
	9Z ⁵	229.1
	6	237.1
	6	245.5
	075	254.1

NS ¹	PL	Hz
		159.8
		165.5
		171.3
		177.3
		183.5
		189.9
		196.6
32	M1	203.5
33	M2	210.7
34	М3	218.1
35	M4	225.7
36	M5	233.6
37	M6	241.8
38	M7	250.3

ENCODE - DECODE

Encode - Adds a CTCSS tone to the Transmit signal

Tone Encode

Called **Tone** or **T** on most Amateur radios

Decode - Detects the CTCSS tone at the receiver

Called **Tone Squelch** or **TS** on most Amateur radios.

Provides Encode & Decode

WHY USE CTCSS

- Reduce interference on receivers used in high RF environments.
 - Radios capable of decoding the tone will not hear other interference on the channel that would otherwise open the squelch on the radio.
- Allow the same repeater frequencies to be reassigned within a shorter distance.
- Contrary to popular belief, needing a tone to access a repeater does NOT mean it is closed.

EMERGENCIES & CTCSS

Some Amateurs believe repeaters should not use CTCSS because there are amateurs who have radios that cannot support CTCSS.

This is not an issue for three reasons;

- 1. Most amateur radios do support CTCSS
- 2. Many people will be partnered with someone and will be using the other persons equipment
- 3. Some locations have permanent radios, plus EMRG has a supply of radios.

SIMPLEX

- Generally CTCSS is not used on simplex frequencies
- CTCSS should be used on simplex frequencies when accessing a cross band repeater or during a special event
- You may struggle to get your radio to work if you forget you have a CTCSS tone on a simplex frequency, so you can't hear anything.

EXAMPLE 1:

REPEATER TRANSMITS A TONE

- Repeaters transmit (encode) a tone so users have the option to program Tone Decode in their radio.
- All repeaters should do this as a minimum.
- Useful in areas with intermod, which often breaks the squelch making listening annoying.

emrg.ca

EXAMPLE 2:

Two Repeaters Same Frequency

- Repeater coverage areas often overlap especially during certain atmospheric conditions.
- Radio may or may not receive/transmit to both repeaters
- Using CTCSS in the radio, means only the desired repeater is used.
- Problem if both repeaters transmit at the same time.

EXAMPLE 3a:

- EMRG has two community repeaters that operate on the same frequency pair (146.985 – MHz)
- Use different CTCSS tones. Stittsville = 123.0 Hz, Cumberland = 100.0 Hz.
- The repeaters use the tone on the input and transmit the same tone on their output.

EXAMPLE 3b:

- Two local Amateurs have programmed their radios for the repeaters and are talking to each other. One amateur owns Radio 1 and the other Radio 2.
- Other Amateurs using these repeaters are having difficulty communicating with the Amateurs who own Radio 1 and Radio 2.

EXAMPLE 3c:

- Both Amateurs have programmed their radios to transmit the tone so the repeater will work, and both are not using a tone on their radio receive.
- Both radios will receive repeaters A & B because there is no tone Decode programmed on either radio.

EXAMPLE 3d:

- Radio 1 is programmed with the 123 Hz Tone Encode for the Stittsville repeater, so only the Stittsville repeater will activate when radio 1 transmits.
- Radio 2 is programmed with the 100 Hz Tone Encode for the Cumberland repeater, so only the Cumberland repeater will activate when radio 2 transmits.

EXAMPLE 3e:

- The Amateurs using Radio 1 and Radio 2 can communicate but it uses 2 repeaters and other radio users programmed properly to use either of these repeaters will only hear 1 side of the conversation.
- MAKE SURE YOU DO NOT DO THIS!!!!

CTCSS IS OUR FRIEND

- CTCSS is used in all commercial radio systems because it allows greater sharing of spectrum.
- Amateurs need to understand and embrace the use of CTCSS.
- The SLVRC (Saint Lawrence Valley Repeater Council) now requires CTCSS on many new repeater frequency assignments.
- UNDERSTAND YOUR RADIO AND HOW TO USE CTCSS!

Self Test

- 1. What are some other names for CTCSS?
- 2. What is the value of using CTCSS?
- 3. Is using CTCSS a problem for emergency communications?
- 4. If a repeater is transmitting a CTCSS tone, do you program Tone Encode or Tone Decode in your radio?
- 5. Should you use CTCSS on Simplex frequencies?
- 6. If two repeaters share the same frequency and use CTCSS, do you need to program both CTCSS encode and decode? Why?
- 7. If a repeater uses CTCSS, does that mean it is a closed repeater?

Answers

- 1. What are some other names for CTCSS?
 - Answers: Sub Audible Tone, Tone Squelch, Private Line (PL), Channel Guard, Quiet Channel, Call Guard
- 2. What is the value of using CTCSS?
 - Answers: Reduce Interference, More efficient use of spectrum
- 3. Is using CTCSS a problem for emergency communications? Why?
 - Answers: Most Amateur radios support CTCSS, many people will be paired up with another Amateur so one will support CTCSS, there are spare radios available.
- 4. If a repeater is transmitting a CTCSS tone, do you program Tone Encode or Tone Decode in your radio?
 - Answer: Tone Decode
- 5. Should you use CTCSS on Simplex frequencies?
 - Answer: Generally the answer is no, but there are special circumstances where it is best to use CTCSS, such as cross band repeaters
- 6. If two repeaters share the same frequency and use CTCSS, do you need to program both CTCSS encode and decode? Why?
 - Answer: Yes you need Encode and Decode. Without the Decode, you will hear both repeaters and may be using the wrong repeater without realizing it.
- 7. If a repeater uses CTCSS, does that mean it is a closed repeater?
 - Answer: NO

www.emrg.ca

The EMRG web site provides information related to Amateur radio emergency communications, specifically as it relates to the City of Ottawa.

- Project Information
- Newsletters
- Upcoming Events
- Documentation
- Links to related information

Information: training @ emrg . ca