Comprehensive Predictive Modeling of Ames House Prices

June 17, 2024

1 Comprehensive Predictive Modeling of Ames House Prices

Introduction (200 words) • Overview of Real Estate Price Prediction (100 words): Discuss the significance of predicting real estate prices, its impact on industries like marketing, business intelligence, and urban planning. • Scope and Objectives (50 words): Outline the aims of the research, including developing predictive models and evaluating their effectiveness. • Structure of the Report (50 words): Briefly describe the structure of the report, summarizing the main sections.

2 2. Exploratory Data Analysis

2.1 Dataset Description

• Description of the Dataset (100 words): Explain the key attributes (e.g., zoning, lot size, building characteristics, neighborhood factors). • Source (25 words): Cite the dataset source (e.g., Kaggle, UCI Machine Learning Repository).

Import libraries

```
[]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from scipy.stats import skew

%matplotlib inline
sns.set_style('darkgrid')
```

Load data

```
[]: dataset = pd.read_csv("house-price-data-apr2024.csv")
   dataset.describe()
```

```
[]:
            LotFrontage
                               LotArea
                                        OverallQual
                                                      OverallCond
                                                                     MasVnrArea
     count 1201.000000
                                         1460.000000
                                                      1460.000000
                                                                    1452.000000
                           1460.000000
              70.049958
                          10516.828082
                                            6.099315
                                                         5.575342
                                                                     103.685262
     mean
     std
              24.284752
                           9981.264932
                                            1.382997
                                                         1.112799
                                                                     181.066207
    min
              21.000000
                           1300.000000
                                            1.000000
                                                         1.000000
                                                                       0.000000
```

25%	59.000000	7553.50000	5.00000	0 5.00000	0.000000	
50%	69.000000	9478.50000	6.00000	0 5.00000	0.000000	
75%	80.000000	11601.50000	7.00000	0 6.00000	0 166.000000	
max	313.000000	215245.00000	0 10.00000	0 9.00000	0 1600.000000	
	BsmtFinSF1	BsmtFinSF2	${\tt BsmtUnfSF}$	${\tt TotalBsmtSF}$	1stFlrSF	\
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	
mean	443.639726	46.549315	567.240411	1057.429452	1162.626712	
std	456.098091	161.319273	441.866955	438.705324	386.587738	
min	0.000000	0.000000	0.000000	0.000000	334.000000	
25%	0.000000	0.000000	223.000000	795.750000	882.000000	
50%	383.500000	0.000000	477.500000	991.500000	1087.000000	
75%	712.250000	0.000000	808.000000	1298.250000	1391.250000	
max	5644.000000	1474.000000	2336.000000	6110.000000	4692.000000	
	GarageCars	GarageArea	${\tt WoodDeckSF}$	OpenPorchSF	EnclosedPorch	\
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	
mean	1.767123	472.980137	94.244521	46.660274	21.954110	
std	0.747315	213.804841	125.338794	66.256028	61.119149	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	334.500000	0.000000	0.000000	0.000000	
50%	2.000000	480.000000	0.000000	25.000000	0.000000	
75%	2.000000	576.000000	168.000000	68.000000	0.000000	
max	4.000000	1418.000000	857.000000	547.000000	552.000000	
	3SsnPorch	${\tt ScreenPorch}$	PoolArea	MiscVal	SalePrice	
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	
mean	3.409589	15.060959	2.758904	43.489041	180921.195890	
std	29.317331	55.757415	40.177307	496.123024	79442.502883	
min	0.000000	0.000000	0.000000	0.000000	34900.000000	
25%	0.000000	0.000000	0.000000	0.000000	129975.000000	
50%	0.000000	0.000000	0.000000	0.000000	163000.000000	
75%	0.000000	0.000000	0.000000	0.000000	214000.000000	
max	508.000000	480.000000	738.000000	15500.000000	755000.000000	

[8 rows x 32 columns]

2.1 Feature Distributions Relative to target

A comprehensive initial assessment of how each of the 46 features is distributed relative to the target variable SalePrice is visualized.

```
[]: # Assuming 'dataset' is your DataFrame
df = dataset.copy() # Make a copy to avoid modifying the original dataset

# List of features to visualize
features = df.columns.tolist()
features.remove('SalePrice')
```

```
target = 'SalePrice'
# Number of rows and columns for subplots
num_rows = 8
num_cols = 6
# Create subplots
fig, axes = plt.subplots(num_rows, num_cols, figsize=(25, 4*num_rows))
axes = axes.flatten()
# Plot each feature and calculate skewness
for i, feature in enumerate(features):
   # Plotting scatterplot
   sns.scatterplot(x=df[feature], y=df[target], ax=axes[i])
   axes[i].set_title(f'{feature} vs {target}')
   axes[i].set_xlabel(feature)
   axes[i].set_ylabel(target)
# Remove any unused subplots
for j in range(i + 1, len(axes)):
   fig.delaxes(axes[j])
plt.tight_layout()
plt.show()
```


2.2 Sale Price

```
[]: saleprice = dataset["SalePrice"]
sns.displot(saleprice,kde = True)
```

```
plt.title("House Price Distribution")
plt.show()
```


From the plot the distribution of SalePrice data is apparently right skewed. Its Skewness and Kurtosis statistics are checked. This was expected as few people can afford very expensive houses.

```
[]: print(f"""Skewness: {saleprice.skew()}
Kurtosis: {saleprice.kurt()}""")
```

Skewness: 1.8828757597682129 Kurtosis: 6.536281860064529

2.3 Numerical Features

There are total 31 numercial features.

```
[]: numerical_data = df.select_dtypes(include="number")
numerical_list = numerical_data.columns.tolist()
numerical_list.remove("SalePrice")
```

```
print("Number of numerical variables" , len(numerical_list))
```

Number of numerical variables 31

Correlation coefficient with target variable

To have a first glance of which numeric variables have a high correlation with the SalePrice. The correlation coefficient is computed. All coefficient>0.4 is initially defined as a relative strong linear relationship and visualized. However, it is clear that the multicollinearity is an issue. For example: the correlation between GarageCars and GarageArea is very high (0.89), while both have relatively high correlations with SalePrice.

Pearson Correlation Range	Strength of Correlation	Interpretation
0.7 to 1.0 (positive or negative)	Strong	Indicates a strong linear relationship where one variable tends to increase (or decrease) as the other variable increases.
0.5 to 0.7 (positive or negative)	Moderate to Strong	Suggests a meaningful linear relationship between the variables, though not as strong as the highest range.
0.3 to 0.5 (positive or negative)	Weak to Moderate	The relationship exists but is less pronounced and may not be as influential in linear models.
0 to 0.3 (positive or negative)	Weak or No Correlation	Indicates a weak linear relationship or no linear relationship between the variables.

```
[]: corr = numerical_data.corr()

corr_sorted = corr["SalePrice"].sort_values(ascending=False)
corr_high = corr_sorted[abs(corr_sorted)>0.4].index.tolist()
corr_numVar = corr.loc[corr_high,corr_high]

sns.heatmap(corr_numVar, cmap="YlGnBu", annot=True)
plt.title("Correlation Coefficient of numerical variables and price")
plt.show()
```


Skewness

Skewness Range	Description
Near Zero (0) Moderate Skewness	Data is symmetric, with skewness between -0.5 and 0.5. Data is moderately asymmetric, with skewness between -1 to -0.5 or 0.5 to
High Skewness	1. Data is highly skewed, with skewness greater than 1 or less than -1. Transformations needed.

```
[]: # Make a copy of numerical_data to avoid modifying the original dataset
numerical = numerical_data.drop(columns=["SalePrice"]).copy()
features = numerical.columns.tolist()
skewed_features = []
num_rows = 8
num_cols = 6
```

```
# Create subplots for visualization
fig, axes = plt.subplots(num rows, num_cols, figsize=(25, 4*num rows))
axes = axes.flatten()
# Iterate over each feature
for i, feature in enumerate(features):
    # Plot histogram with KDE (Kernel Density Estimate)
    sns.histplot(numerical[feature], kde=True, ax=axes[i])
    # Calculate skewness for the current feature
    skewness = skew(numerical[feature].dropna())
    # Identify and store features with skewness greater than 1
    if skewness > 1:
        skewed_features.append(feature)
    axes[i].set_title(f'{feature} - Skewness: {skewness:.2f}')
    axes[i].set_xlabel(feature)
    axes[i].set_ylabel('')
print("Skewed Features:", skewed_features)
for j in range(i + 1, len(axes)):
    fig.delaxes(axes[j])
plt.tight_layout()
plt.show()
```

```
Skewed Features: ['LotFrontage', 'LotArea', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'TotalBsmtSF', '1stFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtHalfBath', 'KitchenAbvGr', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal']
```


Characteristics summary of numercial variable derived from EDA

Numercial Variable	Characteristics summary derived from EDA
LotFrontage	Skewed data, initially had outliers, strong correlation with SalePrice.
LotArea	Skewed data, initially had outliers, moderate correlation with SalePrice.
OverallQual	Strong positive correlation with SalePrice.
OverallCond	Weak negative correlation with SalePrice.
MasVnrArea	Skewed data, moderate correlation with SalePrice.
BsmtFinSF1	Skewed data, moderate correlation with SalePrice.
BsmtFinSF2	Skewed data, low correlation with SalePrice.
$\operatorname{BsmtUnfSF}$	Low correlation with SalePrice.
TotalBsmtSF	Skewed data, initially had outliers, strong correlation with SalePrice.
1stFlrSF	Skewed data, moderate correlation with SalePrice.
2ndFlrSF	Low correlation with SalePrice.

Numercial Variable	Characteristics summary derived from EDA		
LowQualFinSF	Low correlation with SalePrice.		
GrLivArea	Skewed data, strong correlation with SalePrice.		
BsmtFullBath	Low correlation with SalePrice.		
BsmtHalfBath	Skewed data, low correlation with SalePrice.		
FullBath	Moderate correlation with SalePrice.		
HalfBath	Low correlation with SalePrice.		
$\operatorname{BedroomAbvGr}$	Low correlation with SalePrice.		
KitchenAbvGr	Skewed data, weak negative correlation with SalePrice.		
${\bf TotRmsAbvGrd}$	Moderate correlation with SalePrice.		
Fireplaces	Moderate correlation with SalePrice.		
GarageYrBlt	Low correlation with SalePrice.		
GarageCars	Moderate correlation with SalePrice.		
GarageArea	Moderate correlation with SalePrice.		
WoodDeckSF	Skewed data, moderate correlation with SalePrice.		
OpenPorchSF	Skewed data, moderate correlation with SalePrice.		
EnclosedPorch	Low correlation with SalePrice.		
3SsnPorch	Low correlation with SalePrice.		
ScreenPorch	Low correlation with SalePrice.		
PoolArea	Low correlation with SalePrice.		
MiscVal	Skewed data, initially had outliers, low correlation with SalePrice.		

2.4 Categorical Features

There are total 16 categorical features.

```
[]: categorical_data = df.select_dtypes(exclude="number")
   categorical_list = categorical_data.columns.tolist()
   print("Number of categorical variables" , len(categorical_list))
```

Number of categorical variables 16

[]: print(categorical_list)

```
['LandContour', 'BldgType', 'HouseStyle', 'RoofStyle', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'GarageFinish', 'GarageQual', 'GarageCond']
```

To have an initial feel of categorical variables 's characteristics. The cardinality of categorical variables is visualized. Categorical variables with high cardinality (i.e. HouseStyle, RoofSytle, BsmtFinType1, and BsmtFinType2) may have a significant impact on the analysis or modeling process.

```
[]: cardinality = {var: df[var].nunique() for var in categorical_list}
cardinality_df = pd.DataFrame(cardinality.items(), columns=["Variable",

→"Cardinality"])
cardinality_df=cardinality_df.sort_values(by="Cardinality",ascending=False)
```


3 3. Data Preprocessing

3.1 Missing Value

For numerical variables, given that the missing percentage for LotFrontage and GarageYrBlt is relatively high (17.7% and 5.5% respectively), creating missing value indicators is more suitable compared to other approaches such as mean imputation. Each of these variables are replaced by a new variable that works as a missing value indicator. If the value in the original variable is missing then the corresponding value in the new variable should be 1, otherwise it should be 0.

```
"Count": numerical_missing})
     numerical_missing_data.head(10)
[]:
                      Percent Count
    LotFrontage
                    17.739726
                                  259
     GarageYrBlt
                     5.547945
                                   81
     MasVnrArea
                     0.547945
                                   8
     BedroomAbvGr
                     0.000000
                                    0
     MiscVal
                     0.000000
                                    0
     PoolArea
                     0.000000
                                    0
     ScreenPorch
                     0.000000
                                    0
     3SsnPorch
                     0.000000
                                    0
     EnclosedPorch
                     0.000000
                                    0
     OpenPorchSF
                     0.000000
                                    0
[]: vars with missing = []
     for var in df.select_dtypes(include="number").columns:
        if df[var].isnull().any():
           vars_with_missing.append(var)
     for var in vars_with_missing:
        df[var+"_missing"] = df[var].isnull().astype(int)
        df.drop(columns=[var],inplace=True)
     sum(df.select_dtypes(include="number").isna().sum())
```

[]: 0

For categorical variables, the proportion of missing values is relatively low (GarageFinish, GarageQual, and 'BsmtExposure range between 2.5% and 5.5%, this is considered low) and unlikely to skew the data. Mode imputation for categorical variables replaces missing values with the most frequent category.

```
[]:
                    Percent Count
     GarageFinish 5.547945
                                81
     GarageQual
                   5.547945
                                81
     GarageCond
                   5.547945
                                81
     BsmtExposure 2.602740
                                38
     BsmtFinType2 2.602740
                                38
     BsmtQual
                                37
                   2.534247
     BsmtCond
                   2.534247
                                37
     BsmtFinType1 2.534247
                                37
```

```
LandContour 0.000000 0
BldgType 0.000000 0
```

```
for column in categorical_data.columns:
    mode_value = df[column].mode()[0]
    df[column].fillna(mode_value,inplace=True)
    sum(df.select_dtypes(exclude="number").isna().sum())
```

[]:0

3.2 Label Encoding

Many machine learning algorithms require numerical input. Label encoding is necessary to transform these categories into numerical values. All ordinal categorical variables are encoded into numbers based on the mean value of the target variable (SalePrice). The smaller value corresponds to the category that has the smaller mean house sale price. That is, the category that has the smallest mean house sale price can be replaced with 0, the next category with 1, and so on. Compared to one-hot encoding, which creates binary columns for each category, this approach reduces the dimensionality of the feature space.

```
for var in cat_vars:
    # Calculate mean sale price for each category in the training set
    mean_sale_price = df.groupby(var)['SalePrice'].mean().sort_values()

# Create a mapping dictionary for encoding
    encoding_map = {category: i for i, category in enumerate(mean_sale_price.
    index)}

# Apply encoding to both training and testing datasets
    # Define the default value to assign to missing values in the test dataset
    # This value represents the encoding for missing categories that were not__
    present in the training dataset

df ["encoded_" + var] = df[var].map(encoding_map)

df ["encoded_" + var] = df[var].map(encoding_map)

# Drop original categorical variables
df.drop(columns=[var], inplace=True)
```

4 4. Feature Engineering

4.1 Split Data into Training and Testing Sets

Split the data into training and test sets, with 70% for training and 30% for testing. This step is done after data preprocessing but before transformation and standardization to prevent data leakage.

```
[]: from sklearn.model_selection import train_test_split
train_df, test_df = train_test_split(df, test_size=0.3, random_state=10)
```

4.2 Fixing skewness with Log Transformation

The target variable(SalePrice) is right skewed as shown before. Since normal distribution is crucial for linear regression, a log transformation is performed on skewed data to approximate a normal distribution. From distribution plot and QQ plot, the transformed data is approximately normally distributed.

```
[]: train_df['SalePrice'] = np.log(train_df['SalePrice'])
   test_df['SalePrice'] = np.log(test_df['SalePrice'])

sns.displot(train_df["SalePrice"], kde=True)
plt.title("Distribution Plot")
plt.show()
```



```
[]: stats.probplot(train_df["SalePrice"], dist="norm", plot=plt)
   plt.title("Probablity Plot")
   plt.show()
```


4.3 Standardization and transformation

$$x_i' = \frac{x_i - \mu}{\sigma}$$

```
[]: from sklearn.preprocessing import PowerTransformer

y_train= train_df['SalePrice']

y_test= test_df['SalePrice']

X_train = train_df.drop('SalePrice', axis=1)

X_test = test_df.drop('SalePrice', axis=1)

# Standardize the features to have mean=0 and variance=1

# StandardScaler can help mitigate overflow issues by scaling the data scaler = StandardScaler()
```

```
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

```
[]: mean_before = X_train.mean()
    std_before = X_train.std()

mean_after = X_train_scaled.mean()
    std_after = X_train_scaled.std()

summary_df = pd.DataFrame(
        {'Feature': X_train.columns,
            'Mean Before': mean_before.values,
            'Std Before': std_before.values,
            'Mean After standardalization and transformation': mean_after,
            'Std After standardalization and transformation': std_after}
)

summary_df
```

[]:		Feature	Mean Before	Std Before	\
	LotArea	LotArea	10681.630137	11305.457364	
	OverallQual	OverallQual	6.141879	1.372897	
	OverallCond	OverallCond	5.562622	1.087500	
	BsmtFinSF1	BsmtFinSF1	447.314090	468.198594	
	BsmtFinSF2	BsmtFinSF2	40.860078	150.289590	
	BsmtUnfSF	${\tt BsmtUnfSF}$	575.344423	442.929842	
	TotalBsmtSF	${\tt TotalBsmtSF}$	1063.518591	443.412565	
	1stFlrSF	1stFlrSF	1167.607632	393.824408	
	2ndFlrSF	2ndFlrSF	347.983366	436.440810	
	LowQualFinSF	${\tt LowQualFinSF}$	7.010763	53.596059	
	GrLivArea	${\tt GrLivArea}$	1522.601761	533.663862	
	BsmtFullBath	BsmtFullBath	0.422701	0.517465	
	BsmtHalfBath	BsmtHalfBath	0.053816	0.230062	
	FullBath	FullBath	1.573386	0.549237	
	HalfBath	HalfBath	0.388454	0.505391	
	BedroomAbvGr	${\tt BedroomAbvGr}$	2.873777	0.816527	

KitchenAbvGr	KitchenAbvGr	1.044031	0.205265
TotRmsAbvGrd	TotRmsAbvGrd	6.526419	1.598477
Fireplaces	Fireplaces	0.615460	0.644327
GarageCars	GarageCars	1.775930	0.748284
GarageArea	GarageArea	478.349315	215.881679
WoodDeckSF	WoodDeckSF		
		95.712329	125.395412
OpenPorchSF	OpenPorchSF	47.555773	66.206621
EnclosedPorch	EnclosedPorch	21.959883	61.819216
3SsnPorch	3SsnPorch	3.849315	32.068988
ScreenPorch	ScreenPorch	13.813112	51.399277
PoolArea	PoolArea	2.799413	40.430832
MiscVal	MiscVal	54.387476	585.607282
${ t LotFrontage_missing}$	LotFrontage_missing	0.173190	0.378597
${ t MasVnrArea_missing}$	$ exttt{MasVnrArea_missing}$	0.004892	0.069808
${\tt GarageYrBlt_missing}$	${ t GarageYrBlt_missing}$	0.053816	0.225765
${\tt encoded_LandContour}$	${\tt encoded_LandContour}$	1.045988	0.439079
encoded_BldgType	${ t encoded_BldgType}$	3.679061	0.851761
encoded_HouseStyle	${\tt encoded_HouseStyle}$	4.800391	1.385980
encoded_RoofStyle	encoded_RoofStyle	1.587084	1.198166
encoded_ExterQual	encoded_ExterQual	1.409980	0.574702
encoded_ExterCond	encoded_ExterCond	2.868885	0.393919
encoded_BsmtQual	encoded_BsmtQual	1.568493	0.686162
encoded_BsmtCond	encoded_BsmtCond	2.007828	0.269103
encoded_BsmtExposure	encoded_BsmtExposure	0.651663	1.026577
encoded_BsmtFinType1	encoded_BsmtFinType1	3.386497	1.624474
encoded_BsmtFinType2	encoded_BsmtFinType2	3.760274	0.850343
encoded_HeatingQC	encoded_HeatingQC	3.164384	0.951510
encoded_KitchenQual	encoded_KitchenQual	1.524462	0.670410
encoded_GarageFinish	encoded_GarageFinish	0.789628	0.813554
encoded_GarageQual	encoded_GarageQual	1.980431	0.241625
encoded_GarageCond	encoded_GarageCond	3.899217	0.542620
31133434_44145333114	omoodod_dara50001d	0.000211	0.012020

LotArea	7.332686e-18
OverallQual	4.323569e-17
OverallCond	-2.169932e-16
BsmtFinSF1	3.454510e-17
BsmtFinSF2	-3.653307e-16
BsmtUnfSF	1.151503e-17
TotalBsmtSF	2.707662e-17
1stFlrSF	-7.020368e-18
2ndFlrSF	2.752745e-16
LowQualFinSF	8.127875e-16
GrLivArea	1.596896e-17
BsmtFullBath	-2.628904e-17
BsmtHalfBath	1.565854e-15
FullBath	-7.093695e-17

			0.054500 40
HalfBath			-3.354568e-16
BedroomAbvGr			-1.295441e-16
KitchenAbvGr			1.645781e-17
${ t TotRmsAbvGrd}$			-1.412221e-17
Fireplaces			8.147429e-17
GarageCars			-7.843259e-17
GarageArea			4.562560e-18
WoodDeckSF			4.169311e-16
OpenPorchSF			6.452764e-17
EnclosedPorch			8.505916e-17
3SsnPorch			2.850731e-15
ScreenPorch			1.735946e-16
PoolArea			9.742153e-16
MiscVal			1.040101e-15
LotFrontage_missing			-2.400776e-17
${ t MasVnrArea_missing}$			-2.096361e-15
${\tt GarageYrBlt_missing}$			1.124454e-15
${\tt encoded_LandContour}$			-1.198534e-16
encoded_BldgType			3.574006e-17
encoded_HouseStyle			-8.820950e-17
encoded_RoofStyle			-1.435577e-16
encoded_ExterQual			-1.218855e-16
encoded_ExterCond			-5.040543e-17
encoded_BsmtQual			-8.397284e-17
encoded_BsmtCond			1.119117e-16
encoded_BsmtExposure			3.091678e-16
			-1.306304e-17
encoded_BsmtFinType1			
encoded_BsmtFinType2			-7.089893e-16
encoded_HeatingQC			-9.364112e-17
encoded_KitchenQual			-9.342386e-18
encoded_GarageFinish			-2.096605e-16
${ t encoded_GarageQual}$			-3.087740e-16
${\tt encoded_GarageCond}$			2.363298e-16
	Std After	standardalization and	transformation
LotArea			1.00049
OverallQual			1.00049
OverallCond			1.00049
BsmtFinSF1			1.00049
BsmtFinSF2			1.00049
BsmtUnfSF			1.00049
TotalBsmtSF			1.00049
1stFlrSF			1.00049
2ndFlrSF			1.00049
LowQualFinSF			1.00049
GrLivArea			1.00049
BsmtFullBath			1.00049

```
BsmtHalfBath
                                                                  1.00049
    FullBath
                                                                  1.00049
    HalfBath
                                                                  1.00049
    BedroomAbvGr
                                                                  1.00049
    KitchenAbvGr
                                                                  1.00049
    TotRmsAbvGrd
                                                                  1.00049
    Fireplaces
                                                                  1.00049
    GarageCars
                                                                  1.00049
    GarageArea
                                                                  1.00049
    WoodDeckSF
                                                                  1.00049
    OpenPorchSF
                                                                  1.00049
    EnclosedPorch
                                                                  1.00049
    3SsnPorch
                                                                  1.00049
    ScreenPorch
                                                                  1.00049
    PoolArea
                                                                  1.00049
    MiscVal
                                                                  1.00049
    LotFrontage_missing
                                                                  1.00049
    MasVnrArea_missing
                                                                  1.00049
    GarageYrBlt_missing
                                                                  1.00049
    encoded_LandContour
                                                                  1.00049
    encoded_BldgType
                                                                  1.00049
    encoded HouseStyle
                                                                  1.00049
    encoded_RoofStyle
                                                                  1.00049
    encoded ExterQual
                                                                  1.00049
    encoded ExterCond
                                                                  1.00049
    encoded BsmtQual
                                                                  1.00049
    encoded_BsmtCond
                                                                  1.00049
    encoded_BsmtExposure
                                                                  1.00049
    encoded_BsmtFinType1
                                                                  1.00049
    encoded_BsmtFinType2
                                                                  1.00049
    encoded_HeatingQC
                                                                  1.00049
    encoded_KitchenQual
                                                                  1.00049
    encoded_GarageFinish
                                                                  1.00049
    encoded_GarageQual
                                                                  1.00049
    encoded_GarageCond
                                                                  1.00049
[]: # Box plot comparing original, standardized, and transformed distributions
    plt.figure(figsize=(16, 24))
    sns.boxplot(data=pd.DataFrame(X_train_scaled, columns=X_train.columns), orient=__
      plt.title('Distribution Comparison before Standardization and Yeo-Johnson,
      ⇔Transformation')
    plt.xticks()
```

plt.show()

