

#### FAKULTET FOR TEKNOLOGI OG REALFAG

### TENTAMEN

**Emnekode:** MA-015 / MA 017

**Emnenavn:** Matematikk for Forkurs /

Matematikk for Realfagskurset

Dato: 31. mars 2022

Varighet: 5 timer

Antall sider inkl. forside: 3

Tillatte hjelpemidler: Godkjent kalkulator,

Alle skriftlige hjelpemidler.

Merknader: Løs hver deloppgave oversiktlig. Ta med nødvendige

mellomregninger slik at du forklarer fremgangsmåte og begrunner svarene. Legg vekt på nøyaktige utregninger.

Alle deloppgaver vektes likt.

### Kontakt med faglærer under tentamen:

• MA- 015 Vuk Milanovic, tlf. 900 46 227

• MA- 017 Heidi Mæsel Oftedahl, tlf. 906 86 996



## Oppgave 1

Løs likningene ved regning:

a) 
$$\lg x^2 - \lg x - 1 = 0$$

b) 
$$e^{2x} - 3e^x = 0$$

c) 
$$5\cos v - 2 = 0 \ v \in [-180^{\circ}, 180^{\circ}]$$

## Oppgave 2

Deriver funksjonene:

a) 
$$f(x) = 2x^3 - \frac{1}{3}x^2 + 2x - \pi$$

b) 
$$g(x) = 3x^2e^{2x+3}$$

## Oppgave 3

En funksjon er gitt ved  $f(x) = 2x - \frac{1}{x}$ 

- a) Finn nullpunktene til f ved regning.
- b) Bestem eventuelle asymptoter.
- c) Bestem koordinatene til eventuelle ekstremalpunkt ved regning.

# Oppgave 4

Løs integralene ved regning:

a) 
$$\int x^3 \ln x \, dx$$

$$b) \quad \int \frac{2}{x^2 + 2x} dx$$

# Oppgave 5

- a) Finn likningen til tangenten til  $f(x) = x^2 4x + 2$  i punktet (4, f(4)).
- b) Finn arealet avgrenset av  $f(x) = (x+1)e^{x^2}$ ,  $g(x) = e^{x^2}$  og linjene x = 0 og x = 1.

c) Løs differensiallikningen: 
$$y' = \frac{2y}{x}$$



## Oppgave 6

- a) Finn avstanden BD ved regning.
- b) Bestem arealet av firkanten ABCD.



### Oppgave 7

En butikk selger vintersportsutstyr. Omsetningen (salget) i millioner kroner pr måned kan beskrives ved  $S(x) = 6 + 4\cos\left(\frac{\pi}{6}x - \frac{\pi}{3}\right)$ ,  $x \in [0,12]$ , der x er måneder etter nytt år.

- a) Regn ut hvilken måned butikken hadde størst omsetning, og hvor stor omsetningen var denne måneden.
- b) Regn ut når butikken hadde en omsetning på 6 millioner kroner.

### Oppgave 8

- a) En person ønsker å bedre formen sin med følgende treningsprogram: Første dagen skal det løpes 3000 m, andre dagen 3200 m, tredje dagen 3400 m osv. Hvor langt skal det løpes til sammen i løpet av de første 25 treningsdagene?
- b) En rekke er gitt ved:  $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + ...$

Avgjør om rekken konvergerer og bestem om mulig summen til rekken.

#### Oppgave 9

En trekant ABC er gitt ved punktene A(1,1,-1), B(0,0,2) og C(-1,3,3).

- a) Bestem koordinatene til vektorene:  $\overrightarrow{AB}$  og  $2\overrightarrow{AC} \overrightarrow{CB}$ .
- b) Finn vinkel A i  $\triangle ABC$ .
- c) Finn likningen til planet  $\alpha$  som går gjennom punktene A, B og C.
- d) Finn en parameterfremstilling for et plan  $\beta$  som er parallelt med planet  $\alpha$  og som inneholder punktet E(2,3,4).
- e) Gitt et punkt *D* på *y* aksen. Finn koordinatene til *D* når volumet til trekantpyramiden *ABCD* er 20.