MATH403: Abstract Algebra

James Zhang*

August 27, 2024

These are my notes for UMD's MATH403: Abstract Algebra. These notes are taken live in class ("live-TEX"-ed). This course is taught by Professor Qendrim Gashi. The textbook for the class is *Contemporary Abstract Algebra* by Joseph A. Gallian. 10th Edition.

Contents

1	Preliminaries	2
2	Groups	3

^{*}Email: jzhang72@terpmail.umd.edu

§1 Preliminaries

Definition 1.1 (Well-Ordering Principle). If $\emptyset \neq S \subseteq \mathbb{N} \implies S$ has a smallest element,

Theorem 1.2 (Division Algorithm)

Suppose $a, b \in \mathbb{Z}$, s.t. $a < b \implies \exists ! \ q, r \in \mathbb{Z}, 0 \le r < b \text{ such that } a = bq + r.$

Proof.

Define a set $\{a - bk \mid k \in \mathbb{Z}, a - bk \ge 0\} \ne \emptyset$. By the Well-Ordering Principle, it has a smallest element which we will denote by r, and $r = a - bq \ \forall \ q \in \mathbb{Z}$. Assume $r \ge b$. Therefore,

$$0 < r - b = a * bq - b = a - b(q + 1) \in S$$

which is a contradiction since r is the smallest element. If there exists q!, r! of the same type of q, r then

$$bq + r = bq! + r! \implies b(q - q!) = r! - r$$

We can assume that r! > r, so $b \mid r! - r$, therefore r! = r! and q! = q!.

Lemma 1.3 (Bezout's Lemma)

Let $a, b \in \mathbb{Z} \setminus \{0\}$ then $\exists s, t \in \mathbb{Z}$ such that GCD(a, b) = as + bt and GCD(a, b) is the least (positive) integer expressed in such a linear combination.

Proof.

Define the set $S = \{am + bn \mid m, n \in \mathbb{Z}, am + bn > 0\} \neq \emptyset$. By the Well-Ordering Principle, let $d = \min S$, which by definition of the set, must have a form d = as + bt for some $s, t \in \mathbb{Z}$. Now we have to prove that d is a divisior of a, b and that it is the greatest divisior.

Claim 1: d is a divisor of a, b. By the Division Algorithm, a = qd + r for some $q, r \in \mathbb{Z}, 0 \le r < d$. If r > 0, then

$$r = a - qd = a - q(as + bt) = a(1 - qs) + b(-qt) \in S$$

which is a contradiction because $r \in S$ but r < d and d is the smallest element in the set, so r cannot be in the set.

Claim 2: Any common divisor of a and b divides d. Assume d is such a divisor. Therefore, we write a = d'h, b = d'k. Therefore,

$$d = as + bt = s(d'h) + t(d'k) = d'(hs + kt)$$

and so we get that $d' \leq d$ and so d = GCD(a, b).

Corollary 1.4

If a, b are relatively prime $\iff \exists s, t \in \mathbb{Z} \text{ s.t. } as + bt = 1$

Note 1.5. Define the GCD operator GCD(a,b) = (a,b) for two integers $a,b \in \mathbb{Z}$.

Example 1.6

Let $n \in \mathbb{N}$ and consider $(n^2 + n + 1, n + 1)$. Note that

$$(n^2 + n + 1) + (n + 1)(-n) = 1 \stackrel{\text{Corollary}}{\Longrightarrow} (n^2 + n + 1, n + 1) = 1$$

Theorem 1.7 (Fundamental Theorem of Mathematics)

Given $a \in \mathbb{N}$, $\exists ! p_i$ prime, $i \in 1, ..., b$ and $t_i \in \mathbb{Z}$ such that

$$a = \prod_{i=1}^{b} p_i^{t_i}$$

§2 Groups