Continuum => K-band => Total Power

(v1: 23/06/2017)

\$: commands to insert in a shell

> : commands to insert in the operatorInput panel

Before observing

- 1) On nuraghe-mng:
 - Check that all of the 32 containers are active on ACS,
 - the active surface is green on AS,
 - the jlog is opened in order to track possible error messages,
 - the interface of the Meteo client is opened to check the wind velocity in real time (< 40 km/h to guarantee a good pointing of the antenna in K-band).
- 2) On nuraghe-obs1:
 - Check the presence of the 8 panels:
 - operatorInput
 - AntennaBoss
 - GenericBackend
 - Mount
 - Observatory
 - Receivers
 - Scheduler
 - MinorServo
 - Upload your shedule and check it:

\$ cd /archive/schedules/[projectID]

\$ scheduleChecker schedulename.scd

Start the observations

In the operatorInput panel:

- 1) Insert your project number
 - > project=[projectID]
- 2) Initial setup
 - > antennaReset
 - > setupKKG
- 3) Select the active surface shape (Shaped configuration for K-band observations)

- > asSetup=S
- 4) Insert the Local Oscillator value (in MHz)
 - > setLO=[freq]
- 5) Select the Total Power backend
 - > chooseBackend=BACKENDS/TotalPower
- 6) For each section [sect], insert the bandwidth ([bw]=300, 730, 1250 or 2000 MHz) and the sample rate (in MHz):
 - > setSection=[sect],*, [bw],*,*,[sampleRate],*

Reminder: in K-band, 7 feeds so 14 sections with [sect]=0,1,2,3,4,5,6,7,8,9,10,11,12,13.

- 7) If you want to use the multi-feed derotator to prevent field rotation during long acquisition, select the derotator configuration :
 - > derotatorSetConfiguration=[config] with [config]=BSC, CUSTOM or FIXED
 - BSC is for Best Coverage Space (automatic rotation of the dewar in order to best cover the scanned area)
 - CUSTOM: the user has to choose the angle of the dewar axis with the y-axis of the scanning frame that will be kept during the whole duration of the acquisition:
 - > derotatorSetPosition=[ang]d with [ang] the dewar angle in degrees
 - FIXED: the dewar keeps a fixed postion w.r.t the horizon, no rotation is applied. To specify a static angle:
 - > derotatorSetPosition=[ang]d with [ang] the dewar angle in degrees

To read back the position of the dewar:

- > derotatorGetPosition
- 8) Put the antenna at 45° of elevation and attenuate the signal for the 14 sections in order to obtain values between 750 and 1100 counts (linear range of the backend):
 - > goTo=*,45d
 - > getTpi
 - > setAttenuation=[sect],[att] with [att] between 0 and 15 dB
 - > getTpi

9) Check the tsys (typical values)

> tsys

10) Begin the schedule by indicating the start scan [N] or subscan [N_n] in the SCD file :

> startSchedule=[projectID]/[schedulename].scd,[N]

During the observations

1) On nuraghe-obs2, check that the data are written in your project section:

\$ cd /archive/data/[projectID]/

2) Quick-look of the data:

\$ idl IDL> .r fitslook IDL> fitslook

At the end of the observations

1) Stop the schedule

> stopSchedule or > haltSchedule

2) Park the minor servo, active surface and antenna

```
> goTo=180d,89d
```

- > servoPark
- > asPark
- > antennaPark

Download the data