

Facultat de Matemàtiques i Informàtica

The Riemann–Hilbert Correspondence for Flat Connections on Principal Bundles

Mathematics Bachelor's Thesis

Marçal Herraiz Bayó

Supervisor: Dr. Ignasi Mundet Riera

June 27, 2025

Definition

A Lie group is a smooth manifold G endowed with a group structure such that the multiplication and inversion maps are smooth.

Definition

A Lie group is a smooth manifold G endowed with a group structure such that the multiplication and inversion maps are smooth.

Notation

• Left-multiplication: given $g \in G$,

$$l_g \colon G \xrightarrow{\cong} G, \qquad h \longmapsto gh.$$

Definition

A Lie group is a smooth manifold G endowed with a group structure such that the multiplication and inversion maps are smooth.

Notation

• Left-multiplication: given $g \in G$,

$$l_g \colon G \xrightarrow{\cong} G, \qquad h \longmapsto gh.$$

• The differential of l_q at $h \in G$ is

$$d_h l_g \colon T_h G \xrightarrow{\cong} T_{gh} G.$$

Definition

A Lie group is a smooth manifold G endowed with a group structure such that the multiplication and inversion maps are smooth.

Notation

• Left-multiplication: given $g \in G$,

$$l_g \colon G \xrightarrow{\cong} G, \qquad h \longmapsto gh.$$

• The differential of l_q at $h \in G$ is

$$d_h l_g \colon T_h G \stackrel{\cong}{\longrightarrow} T_{gh} G.$$

• The Lie algebra of G viewed as T_eG will be written as \mathfrak{g} .

Definition

A Lie group is a smooth manifold G endowed with a group structure such that the multiplication and inversion maps are smooth.

Notation

• Left-multiplication: given $g \in G$,

$$l_g \colon G \xrightarrow{\cong} G, \qquad h \longmapsto gh.$$

• The differential of l_q at $h \in G$ is

$$d_h l_g \colon T_h G \stackrel{\cong}{\longrightarrow} T_{gh} G.$$

- The Lie algebra of G viewed as T_eG will be written as \mathfrak{g} .
- The adjoint representation:

$$Ad: G \longrightarrow Aut(\mathfrak{g}), \qquad Ad_g := Ad(g).$$

Fiber Bundles

Fiber Bundles

Definition (smooth fiber bundle)

- $\pi \colon E \to M$ smooth and surjective.
- Locally trivial: every $x \in M$ has a neighborhood $U \subseteq M$ and a map

$$\Phi_U \colon \pi^{-1}(U) \xrightarrow{\cong} U \times F, \quad \text{with} \quad \begin{array}{c} \pi^{-1}(U) \xrightarrow{\Phi_U} U \times F \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow \end{array}$$

What if each fiber is a **Lie group**?

What if each fiber is a **Lie group**?

Definition (Principal G-bundle)

- Fiber bundle $\pi \colon P \to M$, fiber G.
- **Right action** of *G* on *P*:
 - (i) Smooth and free.
 - (ii) Fiber-preserving: $\pi(p \cdot g) = \pi(p)$.
 - (iii) Local trivializations

$$\Phi: \pi^{-1}(U) \longrightarrow U \times G$$

are G-equivariant.

Verticality:

$$\mathcal{V}_p := \ker d_p \pi \subset T_p P.$$

In fact, $\mathcal{V}_p\cong \mathfrak{g}$.

Verticality:

$$\mathcal{V}_p := \ker d_p \pi \subset T_p P.$$

In fact, $\mathcal{V}_p \cong \mathfrak{g}$.

Decompose T_pP as

$$T_pP = \mathcal{V}_p \oplus \mathcal{H}_p.$$

 \mathcal{H}_p : horizontal tangent subspace at p.

Verticality:

$$\mathcal{V}_p := \ker d_p \pi \subset T_p P.$$

In fact, $\mathcal{V}_p\cong\mathfrak{g}$.

Decompose T_pP as

$$T_pP = \mathcal{V}_p \oplus \mathcal{H}_p.$$

 \mathcal{H}_p : horizontal tangent subspace at p.

NOT UNIQUE!

Can we uniquely define horizontality?

Connections on Principal Bundles

Connections on Principal Bundles

Definition (Connection)

- Principal *G*-bundle $\pi: P \to M$.
- \mathfrak{g} -valued 1-form $\omega \in \Omega^1(P,\mathfrak{g})$:
 - (i) $\omega(\underline{A}) = A$, for all $A \in \mathfrak{g}$.
 - (ii) $R_q^*\omega = \operatorname{Ad}_{g^{-1}} \circ \omega$.

Connections on Principal Bundles

Definition (Connection)

- Principal *G*-bundle $\pi: P \to M$.
- g-valued 1-form $\omega \in \Omega^1(P, \mathfrak{g})$:
 - (i) $\omega(A) = A$, for all $A \in \mathfrak{g}$.
 - (ii) $R_g^* \omega = \operatorname{Ad}_{g^{-1}} \circ \omega$.

We can recover horizontal spaces:

Theorem

 $\mathcal{H} := \ker \omega$ defines a right-invariant horizontal distribution on P.

Can we **compare** fibers?

Parallel transport $P_{\gamma(1)}$ $P_{\gamma(0)}$ $\mathcal{V}_p\cong\mathfrak{g}$ $\operatorname{PT}_{\gamma}^{\omega}(p)$ \mathcal{H}_p p $\tilde{\gamma}_p$ $\gamma(1)$

M

 $\gamma(0)$

What if γ is a loop?

What if γ is a loop?

Holonomy

If γ is a closed curve:

- $\mathrm{PT}^{\omega}_{\gamma}$ is an automorphism.
- $\exists ! \operatorname{hol}_{p}^{\omega}(\gamma) \in G$ with

$$PT_{\gamma}^{\omega}(p) = p \cdot \operatorname{hol}_{p}^{\omega}(\gamma).$$

Holonomy

If γ is a closed curve:

- PT^{ω}_{γ} is an automorphism.
- $\exists ! \operatorname{hol}_{p}^{\omega}(\gamma) \in G$ with

$$\mathrm{PT}_{\gamma}^{\omega}(p) = p \cdot \mathrm{hol}_{p}^{\omega}(\gamma).$$

Moreover,

$$\operatorname{hol}_{p\cdot g}^{\omega}(\gamma) = g^{-1}\operatorname{hol}_{p}^{\omega}(\gamma)g$$

Does holonomy only depend on the **homotpy class** of the loop?

Does holonomy only depend on the **homotpy class** of the loop?

Definition (Curvature)

- Connection ω on $\pi \colon P \to M$.
- g-valued 2-form in *P*:

$$\Omega(X, Y) = \mathbf{d}\omega(h(X), h(Y)).$$

• ω is **flat** if $\Omega \equiv 0$.

Definition (Curvature)

- Connection ω on $\pi \colon P \to M$.
- g-valued 2-form in P:

$$\Omega(X, Y) = \mathbf{d}\omega(h(X), h(Y)).$$

• ω is **flat** if $\Omega \equiv 0$.

Theorem

 ω is flat \iff its horizontal distribution is completely integrable.

Definition (Curvature)

- Connection ω on $\pi \colon P \to M$.
- g-valued 2-form in *P*:

$$\Omega(X, Y) = \mathbf{d}\omega(h(X), h(Y)).$$

• ω is **flat** if $\Omega \equiv 0$.

Theorem

 ω is flat \iff its horizontal distribution is completely integrable.

Theorem

In flat bundles, homotopic loops give rise to the same holonomy.

Definition (Curvature)

- Connection ω on $\pi \colon P \to M$.
- g-valued 2-form in *P*:

$$\Omega(X, Y) = \mathbf{d}\omega(h(X), h(Y)).$$

• ω is **flat** if $\Omega \equiv 0$.

Theorem

 ω is flat \iff its horizontal distribution is completely integrable.

Theorem

In flat bundles, homotopic loops give rise to the same holonomy.

Holonomy representation for flat connections: for $p \in P_{x_0}$,

$$\rho_p^{\omega} \colon \pi_1(M, x_0) \longrightarrow G, \quad \rho_p^{\omega}([\gamma]) := \operatorname{hol}_p^{\omega}(\gamma).$$

This gives a map

$$\mathcal{F}(P) \longrightarrow \frac{\operatorname{Hom}(\pi_1(M, x_0), G)}{G}, \quad \omega \longmapsto [\rho_p^{\omega}], \text{ for some } p \in P_{x_0}.$$

This gives a map

$$\mathcal{F}(P) \longrightarrow \frac{\operatorname{Hom}(\pi_1(M, x_0), G)}{G}, \quad \omega \longmapsto [\rho_p^{\omega}], \text{ for some } p \in P_{x_0}.$$

Definition

Two principal G-bundles (P,ω) and (P',ω') over M are **isomorphic** if there is a principal G-bundle isomorphism $F\colon P\to P'$ such that $F^*\omega'=\omega$.

This gives a map

$$\mathcal{F}(P) \longrightarrow \frac{\operatorname{Hom}(\pi_1(M, x_0), G)}{G}, \quad \omega \longmapsto [\rho_p^{\omega}], \text{ for some } p \in P_{x_0}.$$

Definition

Two principal G-bundles (P,ω) and (P',ω') over M are **isomorphic** if there is a principal G-bundle isomorphism $F\colon P\to P'$ such that $F^*\omega'=\omega$.

Theorem (Riemann-Hilbert correspondence)

Let G be a Lie group, M a connected smooth manifold, and $x_0 \in M$. Then:

$$\frac{\left\{ \textit{flat principal G-bundles over M} \right\}}{\textit{isomorphism}} \longleftrightarrow \frac{\operatorname{Hom} \left(\pi_1(M, x_0), \, G \right)}{G}$$

Sketch of the proof.

Sketch of the proof.

$$[(P,\omega)] \longmapsto [\rho_p^{\omega}], \quad \text{for some } p \in P_{x_0}.$$

Sketch of the proof.

$$[(P,\omega)] \longmapsto [\rho_p^{\omega}], \quad \text{for some } p \in P_{x_0}.$$

Step 1: Well-defined. Horizontality is preserved.

Sketch of the proof.

$$\left[(P,\omega)\right]\longmapsto [\rho_p^\omega],\quad \text{for some } p\in P_{x_0}.$$

Step 1: Well-defined. Horizontality is preserved.

Step 2: Surjective on conjugation classes. Let $\rho \in \text{Hom}(\pi_1(M, x_0), G)$.

Sketch of the proof.

$$\left[(P,\omega)\right]\longmapsto [\rho_p^\omega],\quad \text{for some } p\in P_{x_0}.$$

- Step 1: Well-defined. Horizontality is preserved.
- Step 2: Surjective on conjugation classes. Let $\rho \in \text{Hom}(\pi_1(M, x_0), G)$.
 - Universal cover \widetilde{M} and trivial bundle $\widetilde{P} := \widetilde{M} \times G \to \widetilde{M}$.

Sketch of the proof.

$$[(P,\omega)] \longmapsto [\rho_p^{\omega}], \quad \text{for some } p \in P_{x_0}.$$

Step 1: Well-defined. Horizontality is preserved.

Step 2: Surjective on conjugation classes. Let $\rho \in \text{Hom}(\pi_1(M, x_0), G)$.

- Universal cover \widetilde{M} and trivial bundle $\widetilde{P} := \widetilde{M} \times G \to \widetilde{M}$.
- Action of $\Gamma := \pi_1(M, x_0)$ on \widetilde{P} :

$$([\gamma], g) \cdot [\ell] = ([\gamma * \ell], g\rho(\ell)^{-1})$$

Sketch of the proof.

$$[(P,\omega)] \longmapsto [\rho_p^{\omega}], \quad \text{for some } p \in P_{x_0}.$$

Step 1: Well-defined. Horizontality is preserved.

Step 2: Surjective on conjugation classes. Let $\rho \in \text{Hom}(\pi_1(M, x_0), G)$.

- Universal cover \widetilde{M} and trivial bundle $\widetilde{P} := \widetilde{M} \times G \to \widetilde{M}$.
- Action of $\Gamma := \pi_1(M, x_0)$ on \widetilde{P} :

$$([\gamma],g)\cdot [\ell] = \left([\gamma*\ell],g\rho(\ell)^{-1}\right)$$

• Connection on \widetilde{P} by $\widetilde{\omega}:=\pi_G^*\theta$, where $\pi_G\colon \widetilde{P}\to G$. $\widetilde{\omega}$ is flat.

Sketch of the proof.

$$\left[(P,\omega)\right]\longmapsto [\rho_p^\omega],\quad \text{for some } p\in P_{x_0}.$$

Step 1: Well-defined. Horizontality is preserved.

Step 2: Surjective on conjugation classes. Let $\rho \in \text{Hom}(\pi_1(M, x_0), G)$.

- Universal cover \widetilde{M} and trivial bundle $\widetilde{P} := \widetilde{M} \times G \to \widetilde{M}$.
- Action of $\Gamma := \pi_1(M, x_0)$ on \widetilde{P} :

$$([\gamma],g)\cdot [\ell] = \left([\gamma*\ell],g\rho(\ell)^{-1}\right)$$

• Connection on \widetilde{P} by $\widetilde{\omega}:=\pi_G^*\theta$, where $\pi_G\colon \widetilde{P}\to G$. $\widetilde{\omega}$ is flat.

$$\begin{split} \widetilde{P} &= \widetilde{M} \times G \stackrel{\widetilde{\pi}}{\longrightarrow} \widetilde{M} \\ \widetilde{\Pi} \Big\downarrow & \qquad \qquad \Big\downarrow \Pi \\ P_{\rho} &= \widetilde{P} / \Gamma \stackrel{}{\longrightarrow} M \cong \widetilde{M} / \Gamma. \end{split}$$

Step 3: Injective on isomorphism classes.

Step 3: Injective on isomorphism classes.

• Goal: flat bundle isomorphism $F \colon (P, \omega) \to (P', \omega')$.

Step 3: Injective on isomorphism classes.

- Goal: flat bundle isomorphism $F: (P, \omega) \to (P', \omega')$.
- $\bullet \ \ \text{We can assume} \ \rho_p^\omega = \rho_{p'}^{\omega'} \ \text{for some} \ p \in P, p' \in P'.$

Step 3: Injective on isomorphism classes.

- Goal: flat bundle isomorphism $F: (P, \omega) \to (P', \omega')$.
- We can assume $\rho_p^{\omega} = \rho_{p'}^{\omega'}$ for some $p \in P, p' \in P'$.
- Define F for points q connected to p by ω -horizontal paths.

$$F(q) = F(PT^{\omega}_{\gamma}(p)) := PT^{\omega'}_{\gamma}(p')$$

Step 3: Injective on isomorphism classes.

- Goal: flat bundle isomorphism $F: (P, \omega) \to (P', \omega')$.
- We can assume $\rho_p^{\omega} = \rho_{p'}^{\omega'}$ for some $p \in P, p' \in P'$.
- Define F for points q connected to p by ω -horizontal paths.

$$F(q) = F(PT^{\omega}_{\gamma}(p)) := PT^{\omega'}_{\gamma}(p')$$

• Extend it via *G*-equivariance:

$$F(q \cdot g) := F(q) \cdot g.$$

"Mathematics is the art of giving the same name to different things."

– Henri Poincaré

Acknowledgements

Acknowledgements

- Dr. Ignasi Mundet.
- All professors and faculty members in Mathematics and Physics.
- Family and friends.
- Ministry of Education for the "Beca de col·laboració" 2024-2025.

- [1] Michael Francis Atiyah and Raoul Bott. "The Yang-Mills equations over Riemann surfaces". In: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 308.1505 (1983), pp. 523–615. eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1983.0017.
- [2] William M. Goldman and John J. Millson. "The deformation theory of representations of fundamental groups of compact Kähler manifolds". en. In: *Publications Mathématiques de l'IHÉS* 67 (1988), pp. 43–96.
- [3] Mark J.D. Hamilton. Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics. Universitext. Cham: Springer, 2017.
- [4] Allen Hatcher. *Algebraic Topology*. Cambridge: Cambridge University Press, 2002.

- [5] Victoria Hoskins. On Algebraic Aspects of the Moduli Space of Flat Connections. https://www.math.ru.nl/~vhoskins/talk_connections.pdf. Seminar notes. 2025.
- [6] Lisa C. Jeffrey. "Flat Connections on Oriented 2-Manifolds". In: Bulletin of the London Mathematical Society 37.1 (2005), pp. 1–14. eprint: https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/S002460930400373X.
- [7] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry, Volume 1. Wiley Classics Library. New York: Interscience Publishers, 1963.
- [8] François Labourie. Lectures on Representations of Surface Groups. https://flab.perso.math.cnrs.fr/preprints/surfaces. pdf. Accessed: 29-03-2025. 2017.
- [9] John M. Lee. *Introduction to Smooth Manifolds*. 2nd. Vol. 218. Graduate Texts in Mathematics. Springer, 2013.

- [10] William S. Massey. *Algebraic Topology: An Introduction*. Vol. 56. Graduate Texts in Mathematics. Springer, 1991.
- [11] Shigeyuki Morita. *Geometry of Characteristic Classes*. Vol. 199. Translations of Mathematical Monographs. Providence, RI: American Mathematical Society, 2001.
- [12] Gregory L. Naber. *Topology, Geometry and Gauge Fields: Foundations*. 2nd. Vol. 141. Applied Mathematical Sciences. New York: Springer, 2011.
- [13] Joseph J. Rotman. *An Introduction to Algebraic Topology*. Vol. 119. Graduate Texts in Mathematics. New York: Springer, 1988.
- [14] Michael Spivak. A Comprehensive Introduction to Differential Geometry. Volume 1. Boston, MA: Publish or Perish, 1970.
- [15] Michael Spivak. A Comprehensive Introduction to Differential Geometry. Volume 2. Boston, MA: Publish or Perish, 1975.
- [16] Norman Steenrod. *The Topology of Fibre Bundles*. Vol. 14. Princeton Mathematical Series. Princeton, NJ: Princeton University Press, 1951.

- [17] Loring W. Tu. An Introduction to Manifolds. 2nd. Universitext. New York: Springer, 2010.
- [18] Loring W. Tu. *Differential Geometry: Connections, Curvature, and Characteristic Classes.* Vol. 275. Graduate Texts in Mathematics. Cham, Switzerland: Springer, 2017.

Backup Slides

Flat \mathbb{S}^1 -bundles over oriented 2-manifolds

ullet M a closed, connected, 2-dimensional smooth manifold of genus g.

Flat S¹-bundles over oriented 2-manifolds

- ullet M a closed, connected, 2-dimensional smooth manifold of genus g.
- By the classification of closed, connected surfaces:
 - ightharpoonup If g=0, $M\cong \mathbb{S}^2$.
 - ▶ If $g \geqslant 1$, $M \cong \mathbb{T}^2 \# \cdots \# \mathbb{T}^2$ (connected sum of g tori).

Flat S¹-bundles over oriented 2-manifolds

- *M* a **closed**, **connected**, 2-dimensional smooth manifold of **genus** *g*.
- By the classification of closed, connected surfaces:
 - ightharpoonup If g=0, $M\cong \mathbb{S}^2$.
 - ▶ If $g \geqslant 1$, $M \cong \mathbb{T}^2 \# \cdots \# \mathbb{T}^2$ (connected sum of g tori). Then

$$\Gamma := \pi_1(M, x_0) = \left\langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] = 1 \right\rangle,$$

- *M* a **closed**, **connected**, 2-dimensional smooth manifold of **genus** *g*.
- By the classification of closed, connected surfaces:
 - If g = 0, $M \cong \mathbb{S}^2$.
 - ▶ If $g \geqslant 1$, $M \cong \mathbb{T}^2 \# \cdots \# \mathbb{T}^2$ (connected sum of g tori). Then

$$\Gamma := \pi_1(M, x_0) = \left\langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] = 1 \right\rangle,$$

• S¹ is a compact and abelian 1-dimensional Lie group:

$$\frac{\operatorname{Hom}(\Gamma, \mathbb{S}^1)}{\mathbb{S}^1} = \operatorname{Hom}(\Gamma, \mathbb{S}^1)$$

- ullet M a closed, connected, 2-dimensional smooth manifold of genus g.
- By the classification of closed, connected surfaces:
 - If g = 0, $M \cong \mathbb{S}^2$.
 - ▶ If $g \geqslant 1$, $M \cong \mathbb{T}^2 \# \cdots \# \mathbb{T}^2$ (connected sum of g tori). Then

$$\Gamma := \pi_1(M, x_0) = \left\langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] = 1 \right\rangle,$$

• \mathbb{S}^1 is a compact and abelian 1-dimensional Lie group:

$$\frac{\operatorname{Hom}(\Gamma, \mathbb{S}^1)}{\mathbb{S}^1} = \operatorname{Hom}(\Gamma, \mathbb{S}^1)$$

• By the Riemann-Hilbert correspondence,

$$\frac{\left\{\operatorname{flat}\mathbb{S}^{1}\operatorname{-bundles over}M\right\}}{\operatorname{isomorphism}}\longleftrightarrow(\mathbb{S}^{1})^{2g}$$

- ullet M a closed, connected, 2-dimensional smooth manifold of genus g.
- By the classification of closed, connected surfaces:
 - If g=0, $M\cong \mathbb{S}^2$.
 - ▶ If $g \geqslant 1$, $M \cong \mathbb{T}^2 \# \cdots \# \mathbb{T}^2$ (connected sum of g tori). Then

$$\Gamma := \pi_1(M, x_0) = \left\langle a_1, b_1, \dots, a_g, b_g \mid \prod_{i=1}^g [a_i, b_i] = 1 \right\rangle,$$

• \mathbb{S}^1 is a compact and abelian 1-dimensional Lie group:

$$\frac{\operatorname{Hom}(\Gamma,\mathbb{S}^1)}{\mathbb{S}^1}=\operatorname{Hom}(\Gamma,\mathbb{S}^1)$$

• By the Riemann-Hilbert correspondence,

$$\frac{\left\{\operatorname{flat}\mathbb{S}^{1}\operatorname{-bundles over}M\right\}}{\operatorname{isomorphism}}\longleftrightarrow(\mathbb{S}^{1})^{2g}$$

Example: Orientable 2-manifolds of genus 0

Only one flat \mathbb{S}^1 -bundle up to isomorphism (the trivial bundle).

Parallel Transport

Parallel Transport

Proposition (Horizontal lift)

Given a p. s. curve $\gamma:I\to M$ and $p\in P_{\gamma(0)}$, there exists a unique p. s. curve:

$$\widetilde{\gamma}_p:I\longrightarrow P$$

such that:

(i)
$$\pi \circ \widetilde{\gamma}_p = \gamma$$
 (lift of γ)

(ii) $\widetilde{\gamma}_p'(t) \in \mathcal{H}_{\widetilde{\gamma}_p(t)}$ for all t (horizontal)

(iii)
$$\widetilde{\gamma}_p(0) = p$$
 (starts at p)

Parallel Transport

Proposition (Horizontal lift)

Given a p. s. curve $\gamma:I\to M$ and $p\in P_{\gamma(0)}$, there exists a unique p. s. curve:

$$\widetilde{\gamma}_p:I\longrightarrow P$$

such that:

(i)
$$\pi \circ \widetilde{\gamma}_p = \gamma$$
 (lift of γ)

(ii)
$$\widetilde{\gamma}_p'(t) \in \mathcal{H}_{\widetilde{\gamma}_p(t)}$$
 for all t (horizontal)

(iii)
$$\widetilde{\gamma}_p(0) = p$$
 (starts at p)

Definition (Parallel transport)

Defined as:

$$\mathrm{PT}_{\gamma}^{\omega} \colon P_{\gamma(0)} \to P_{\gamma(1)}, \qquad \mathrm{PT}_{\gamma}^{\omega}(p) := \widetilde{\gamma}_p(1).$$

Sketch of the proof.

We define a map sending $[(P,\omega)]$ to $[\rho_p^\omega]$, for some $p\in P_{x_0}$.

Sketch of the proof.

We define a map sending $[(P,\omega)]$ to $[\rho_p^{\omega}]$, for some $p \in P_{x_0}$.

Step 1: Well-defined. Straightforward.

Sketch of the proof.

We define a map sending $[(P,\omega)]$ to $[\rho_p^{\omega}]$, for some $p \in P_{x_0}$.

Step 1: Well-defined. Straightforward.

Step 2: Surjective on conjugation classes.

Sketch of the proof.

We define a map sending $[(P,\omega)]$ to $[\rho_p^{\omega}]$, for some $p \in P_{x_0}$.

Step 1: Well-defined. Straightforward.

Step 2: Surjective on conjugation classes.

- Work upstairs on the universal cover \widetilde{M} :
 - $\Gamma := \pi_1(M, x_0)$ acts freely and properly discontinuously on \widetilde{M} .
 - Consider the trivial principal bundle $\widetilde{P} = \widetilde{M} \times G$.

Sketch of the proof.

We define a map sending $[(P,\omega)]$ to $[\rho_p^{\omega}]$, for some $p \in P_{x_0}$.

Step 1: Well-defined. Straightforward.

Step 2: Surjective on conjugation classes.

- Work upstairs on the universal cover \widetilde{M} :
 - $\Gamma := \pi_1(M, x_0)$ acts freely and properly discontinuously on \widetilde{M} .
 - Consider the trivial principal bundle $\widetilde{P} = M \times G$.
- Introduce an action of Γ on \widetilde{P} :
 - ► Define an action:

$$([\gamma], g) \cdot [\ell] = ([\gamma * \ell], g\rho(\ell)^{-1}).$$

► Well-defined, smooth, free, and properly discontinuous.

Sketch of the proof.

We define a map sending $[(P,\omega)]$ to $[\rho_p^{\omega}]$, for some $p \in P_{x_0}$.

Step 1: Well-defined. Straightforward.

Step 2: Surjective on conjugation classes.

- Work upstairs on the universal cover \widetilde{M} :
 - $\Gamma := \pi_1(M, x_0)$ acts freely and properly discontinuously on \widetilde{M} .
 - Consider the trivial principal bundle $\widetilde{P} = \widetilde{M} \times G$.
- Introduce an action of Γ on \widetilde{P} :
 - ▶ Define an action:

$$([\gamma], g) \cdot [\ell] = ([\gamma * \ell], g\rho(\ell)^{-1}).$$

- ► Well-defined, smooth, free, and properly discontinuous.
- Form the quotient:
 - ▶ Define $P_{\rho} := \widetilde{P}/\Gamma$.
 - ▶ Then π : $P_{\rho} \to M/\Gamma \cong M$ is a principal G-bundle over M.

• Define a flat connection upstairs: Endow \widetilde{P} with the trivial flat connection $\widetilde{\omega}$.

- Define a flat connection upstairs: Endow \widetilde{P} with the trivial flat connection $\widetilde{\omega}$.
- Descend the connection to P_{ρ} : The Γ -action preserves $\widetilde{\omega}$, so it descends to a well-defined flat connection ω_{ρ} on P_{ρ} .

- Define a flat connection upstairs: Endow \widetilde{P} with the trivial flat connection $\widetilde{\omega}$.
- Descend the connection to P_{ρ} : The Γ -action preserves $\widetilde{\omega}$, so it descends to a well-defined flat connection ω_{ρ} on P_{ρ} .
- Verify that the holonomy with respect to ω_{ρ} is given by ρ .

- Define a flat connection upstairs: Endow \widetilde{P} with the trivial flat connection $\widetilde{\omega}$.
- Descend the connection to P_{ρ} : The Γ -action preserves $\widetilde{\omega}$, so it descends to a well-defined flat connection ω_{ρ} on P_{ρ} .
- Verify that the holonomy with respect to ω_{ρ} is given by ρ .

- Define a flat connection upstairs: Endow \widetilde{P} with the trivial flat connection $\widetilde{\omega}$.
- Descend the connection to P_{ρ} : The Γ -action preserves $\widetilde{\omega}$, so it descends to a well-defined flat connection ω_{ρ} on P_{ρ} .
- Verify that the holonomy with respect to ω_{ρ} is given by ρ .

Step 3: Injective on isomorphism classes. Suppose (P, ω) and (P', ω') are two flat bundles with conjugate holonomy representations.

• Goal: construct an isomorphism $F \colon P \to P'$ of flat principal G-bundles.

- Define a flat connection upstairs: Endow \widetilde{P} with the trivial flat connection $\widetilde{\omega}$.
- Descend the connection to P_{ρ} : The Γ -action preserves $\widetilde{\omega}$, so it descends to a well-defined flat connection ω_{ρ} on P_{ρ} .
- Verify that the holonomy with respect to ω_{ρ} is given by ρ .

- Goal: construct an isomorphism $F \colon P \to P'$ of flat principal G-bundles.
- We can assume $\rho_p^\omega = \rho_{p'}^{\omega'}$ for some $p \in P$, $p' \in P'$.

- Define a flat connection upstairs: Endow \widetilde{P} with the trivial flat connection $\widetilde{\omega}$.
- Descend the connection to P_{ρ} : The Γ -action preserves $\widetilde{\omega}$, so it descends to a well-defined flat connection ω_{ρ} on P_{ρ} .
- Verify that the holonomy with respect to ω_{ρ} is given by ρ .

- Goal: construct an isomorphism $F \colon P \to P'$ of flat principal G-bundles.
- We can assume $\rho_p^{\omega}=\rho_{p'}^{\omega'}$ for some $p\in P$, $p'\in P'$.
- Define F fiber-wise:
 - ▶ M connected \Longrightarrow for each point $x \in M$ there exists $q \in P_x$ such that $q = \operatorname{PT}_{\gamma}^{\omega}(p)$ for some $\gamma \colon I \to M$.

- Define a flat connection upstairs: Endow \widetilde{P} with the trivial flat connection $\widetilde{\omega}$.
- Descend the connection to P_{ρ} : The Γ -action preserves $\widetilde{\omega}$, so it descends to a well-defined flat connection ω_{ρ} on P_{ρ} .
- Verify that the holonomy with respect to ω_{ρ} is given by ρ .

- Goal: construct an isomorphism $F \colon P \to P'$ of flat principal G-bundles.
- We can assume $\rho_p^{\omega}=\rho_{p'}^{\omega'}$ for some $p\in P$, $p'\in P'$.
- Define F fiber-wise:
 - ▶ M connected \Longrightarrow for each point $x \in M$ there exists $q \in P_x$ such that $q = \operatorname{PT}_{\gamma}^{\omega}(p)$ for some $\gamma \colon I \to M$.
 - ▶ For such q, define $F(q) := \mathrm{PT}_{\gamma}^{\omega'}(p)$.

- Define a flat connection upstairs: Endow \widetilde{P} with the trivial flat connection $\widetilde{\omega}$.
- Descend the connection to P_{ρ} : The Γ -action preserves $\widetilde{\omega}$, so it descends to a well-defined flat connection ω_{ρ} on P_{ρ} .
- Verify that the holonomy with respect to ω_{ρ} is given by ρ .

- Goal: construct an isomorphism $F \colon P \to P'$ of flat principal G-bundles.
- $\bullet \ \ \text{We can assume} \ \rho_p^\omega = \rho_{p'}^{\omega'} \ \text{for some} \ p \in P \text{,} \ p' \in P'.$
- Define F fiber-wise:
 - ▶ M connected \Longrightarrow for each point $x \in M$ there exists $q \in P_x$ such that $q = \operatorname{PT}_{\gamma}^{\omega}(p)$ for some $\gamma \colon I \to M$.
 - ▶ For such q, define $F(q) := \mathrm{PT}_{\gamma}^{\omega'}(p)$.
 - ▶ Extend F to the fibers with G-equivariance: $F(q \cdot g) = F(q) \cdot g$.