GUJCET-PCE-2023

Test Booklet No.

0900809

Test Booklet Set No.

09

This booklet contains 32 pages.

DO NOT open this Test Booklet until you are asked to do so.

Important Instructions:

- 1) The Physics and Chemistry test consists of 80 questions. Each question carries 1 mark. For each correct response, the candidate will get 1 mark. For each incorrect response 1/2 mark will be deducted. The maximum marks are 80.
- 2) This Test is of 2 hours duration.
- 3) Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answers by darkening the circle '*.
- 4) Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room / Hall. The candidates are allowed to take away this Test Booklet with them.
- The Set No. for this Booklet is 09. Make sure that the Set No. printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7) The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
- 8) Do not write your Seat No. anywhere else, except in the specified space in the Test Booklet / Answer Sheet.
- 9) Use of White fluid for correction is not permissible on the Answer Sheet.
- 10) Each candidate must show on demand his / her Admission Card to the Invigilator.
- 11) No candidate, without special permission of the Superintendent or Invigilator, should leave his / her seat.
- 12) Use of Simple (Manual) Calculator is permissible.
- 13) The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak 01). Cases where a candidate has not signed the Attendance Sheet (Patrak 01) will be deemed not to have handed over the Answer Sheet and will be dealt with as an unfair means case.
- 14) The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 15) No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16) The candidates will write the Correct Test Booklet Set No. as given in the Test Booklet / Answer Sheet in the Attendance Sheet. (Patrak 01)

PHYSICS

- 1) Two slits are made 10 millimeter apart and the screen is placed 1.5 metre away.

 What is the fringe separation when a wavelength of 7000 Å is used?
 - (A) 105 μm

(B) 1.05 μm

(C) 10.5 µm

- (D) 0.105 μm
- 2) What is the de Broglie wavelength associated with an electron accelerated through a potential difference of 64 volts?
 - (A) 1.43 Å

(B) 1.23 Å

(C) 1.53 Å

- (D) 1.33 Å
- 3) An electron, an α-particle and a proton have the same kinetic energy. Which of these have longest de Broglie wavelength?
 - (A) α-particle
 - (B) proton
 - (C) electron
 - (D) both α-particle and proton

For More GUJCET Papers & Material Visit www.VisionPapers.in!!!

(Space for Rough Work)

$$\lambda = \frac{1.227}{\sqrt{64}}$$
= 1.23
= 0.158 × 10⁻⁹ m
= 1.53 × 10⁻¹⁰.

The number of photons emitted per second by a bulb of 66 W power emitting

waves of wavelength 600 nm is _____. (h = 6.6×10^{-34} J.s)

4)

8)	In proton-proton cycle in	Sun the energ	y released when an electron & its antipar	ticle
0)	combines is	•		

(A)
$$1.021 \times 10^{-13} \text{ J}$$

(B)
$$0.672 \times 10^{-13} \text{ J}$$

(C)
$$1.126 \times 10^{-13} \text{ J}$$

(D)
$$1.632 \times 10^{-13} \text{ J}$$

- The ratio of halflife and average life for a radioactive sample is_ 9)
 - (A) 2.303

(C) ln(2)

- __ gate. The given logic circuit behaves as ____ 10)

NAND

NOR **(B)**

and the state of the state of the state of the state of

(C) NOT

- In p-n junction solar cell, the ratio of thickness of p-Si wafer and n-Si layer is 11) approximately _____. - ભાગાંગ ઇ 🚉 🖰
 - (A) 300

(B) 1000

(C) 30

(D) 0.3 against 1 as a

For More GUJCET Papers & Material Visit www.VisionPapers.in!!!

UDC73(09)

(P.T.O.)

The minimum band gap (E_g) of semiconductors used for fabrication of visible LED is eV.

(A) 1.8

(B) 1.4

(C) 2.3

(D) 3.0

Consider a uniform electric field $\vec{E} = 3 \times 10^3 \,\hat{k} \,\text{N/C}$. The electric flux of this field through a square of 20 cm on a side whose plane is parallel to yz plane is Nm^2/C .

(A) 90

(B) 120

(C) 60

(D) Zero

14) Figure shows the electric field lines of four point charges A, B, C and D.

Which charge has the maximum magnitude?

- (A) C charge
- (B) B charge
- (C) A charge
- (D) D charge

(Space for Rough Work)

- A polythene piece rubbed with wool is found to have a negative charge of 3.52×10^{-7} C. What is the number of electrons transferred?
 - (A) 1.1×10^{12}
 - (B) 2.2×10^{12} (C) 4.4×10^{12}

 - (D) 5.5×10^{12}
- The potential at the point B in the given figure is_ 16)

- A charge Q is placed at the centre of circle of radius 10 cm. Find the work done in moving a charge q between any two points lying on the arc of this circle.
 - (A) KQqJ

- (B) 0.1 KQq J
- (C) 0.5 KQq J

- The dielectric strength of air is _
 - (A) $3 \times 10^9 \text{ V/cm}$

(B) $3 \times 10^9 \text{ V/mm}$

(C) $3 \times 10^9 \text{ V/} \mu\text{m}$

(D) $3 \times 10^9 \text{ V/m}$

For More GUJCET Papers & Material Visit www.VisionPapers.in!!!

(Space for Rough Work)

- 19) Unit of mobility in terms of fundamental units is ______.
 - (A) $kg^{-1}s^{-2}A$
 - (B) kgs^2A

- 20) A metal rod of length 10 cm and a rectangular cross-section of 1 cm × -cm is connected to a battery across opposite faces. The resistance will be
 - (A) Maximum when the battery is connected across 10 cm × 1 cm
 - Maximum when battery is connected across $1 \text{ cm} \times \frac{1}{2} \text{ cm}$ faces
 - Maximum when the battery is connected across $10 \text{ cm} \times \frac{1}{2} \text{ cm}$
 - Same irrespective of three faces
- Figure shows 2.0 V potentiometer used for the determination of internal resistance of 1.5 V cell. The balance point of cell in open circuit is 77.4 cm. When a resistor of 9.6 Ω is used in the external circuit of the cell, the balanced point shifts to 64.5 cm length of the potentiometer wire. The internal resistance of the cell is Ω .

(A) 1.92

(C) 1.62

(D) 0.96

18 . C. Jak

(Space for Rough Work)

$$\frac{Vd}{E} = \frac{m}{S^2} \cdot \frac{C}{N} = \frac{m}{S^0} \cdot \frac{S^2}{Kgm} \cdot A \neq \frac{S^2}{N} \cdot \frac{A}{N} = \frac{M}{S^0} \cdot \frac{S^2}{Kgm} \cdot \frac{A}{N} = \frac{M}{S^0} \cdot \frac{S^2}{Kgm} \cdot \frac{A}{N} = \frac{M}{N} \cdot \frac{S^2}{N} \cdot \frac{A}{N} = \frac{M}{N} \cdot \frac{S}{N} \cdot \frac{M}{N} \cdot \frac{S}{N} = \frac{M}{N} \cdot \frac{S}{N} \cdot \frac{M}{N} \cdot \frac{S}{N} = \frac{M}{N} \cdot \frac{S}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} = \frac{M}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} = \frac{M}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} = \frac{M}{N} \cdot \frac{M} \cdot \frac{M}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} \cdot \frac{M}{N} \cdot$$

- 22) An electron is projected with uniform velocity along the axis of current carrying long solenoid. Which of the following is true?
 - (A) The electron path will be circular about the axis
 - (B) The electron will be accelerated along the axis
 - (C) The electron will experience a force at 45° to the axis and hence execute a helical path
 - (D) The electron will continue to move with uniform velocity along the axis of the solenoid
 - An electron is moving at a speed of 3.2×10^7 m/s in a magnetic field of 12×10^{-4} T perpendicular to the direction of motion of electron. The radius of the path of the electron is _____ cm. (e = 1.6×10^{-19} C and $m_e = 9 \times 10^{-31}$ kg)
 - (A) 30

(B) 13

(C) 15

- (D) 26
- 24) A solenoid of length 0.5 m has a radius of 1 cm and is made up of 250 turns. It carries a current of 5 A. What is the magnitude of the magnetic field inside the solenoid?
 - (A) $3.14 \times 10^{-3} \text{ T}$

(B) $6.28 \times 10^{-3} \,\mathrm{T}$

(C) $62.8 \times 10^{-3} \,\mathrm{T}$

(D) Zero

For More GUJCET Papers & Material Visit www.VisionPapers.in!!!

(Space for Rough Work)

$$B = 4 \text{ Mon I}$$

$$= 4 \text{ Mon I}$$

$$= 4 \text{ Mixin}^{7} \times 250 \times 5$$

$$= 4 \times 3.14 \times 16^{7} \times 250 \times 50$$

$$= 4 \times 3.14 \times 16^{7} \times 250 \times 50$$

$$= 3140 \times 10$$

$$= 3140 \times 10^{3}$$

$$= 314 \times 10^{3}$$

$$= [9]$$

$$\lambda = \frac{278}{26\pi 1}$$

$$\lambda = \frac{15 \times 10^{-2}}{98}$$

$$\frac{15 \times 10^{-2}}{98}$$

$$\frac{31}{1.0110} \times \frac{3.2 \times 10^{-4}}{12 \times 10^{-4}}$$
(P.T.O.)

25)	The the re	galvanome ange of gal	ter has a resistativanometer by	nce of 18 Ω.	Calculate	the value	of shunt to	increase
	(A)	4 Ω						
	(C)	3 Ω	it a	(B)	2 Ω	1 * 1 · .	•	
26)		Partio dito	aving pole strength. T	igth $q_{_{m}}$ and r he new pole ely.	nagnetic n strength	noment n	is divided and the n	into two nagnetic
	(A)	$q_m, \frac{m}{2}$		(B)	$\frac{q_m}{2}$, m		· · · · · · · · · · · · · · · · · · ·	
,	(C)	$\frac{q_m}{2}, \frac{m}{2}$		(D)	q_m, m			
27)	sole	enoid are in	a core of a mate sulated from the er metre, the m	e core and c	arry a curi	rent of 2	A. If the nu	imber of
	(A)			(B)	1.0			-^•
20\		For Mo	re GUJCET Pa	apers & Ma	terial Vis	9		
28)			nal formula of s	58			11 91	
	(A)	MILIT-2		(B <u>)</u>	M ¹ L ² T	-2A-2	· · · · · · · · ·	19 Ā-12
	(C)	M ⁻¹ L ⁻¹ 7	×+ ×	(D)	M ^l L ^{-l} T	-1 _A -2		
				or Rough	•			
B= 1	الم المرام المرام المرام	1000 x2 1000 x2 107 x 400	- 1000 x 2 E x t	Ldt	m= 9m=	gm.l	Wax b	
	72/0	(O)	B:A	٠	R=	ILARC	र र	
JUC	/3(0	9)		[10]	かい 万元	BT.	8 = 18	- 15 51 4

29) As shown in the figure a bar magnet is moving towards a stationary coil with constant speed v. The direction of induced current in the coil observed by the observer on R.H.S. is ______.

- (A) Anticlockwise
- (B) Clockwise
- (C) Current changes its direction randomly
- (D) Induced current will not be produced
- A circular coil of area 2 cm^2 is placed in a magnetic field of 3T perpendicularly. The coil has 10 turns and 5 Ω resistance. Now the coil is removed from magnetic field in 0.2 s. The value of induced charge flowing through the coil is _____.
 - (A) 1.1 mC

(B) 1.9 mC

(C) 1.2 mC

(D) Zero

- A pure inductor of 25.48 mH and a pure resistor of 8Ω are connected in series
 with an A.C. source of frequency 50 Hz. The phase difference between current (I) and voltage (V) in this circuit is
 - (A) 45°

(B) 30°

(C) 60°

- (D) 90°
- The charge of the capacitor in L-C oscillatory circuit, when the energy associated with inductor and capacitor are equal, is _____. [Q₀ is the initial charge on the capacitor].
 - (A) $\frac{Q_0}{2}$

(B) Q₀

(C) $\frac{Q_0}{\sqrt{3}}$

- (D) $\frac{Q_0}{\sqrt{2}}$
- The output of a stepdown transformer is measured to be 24V when connected to a 12 watt light bulb. The value of peak current (L_m) is _____ A.
 - (A) 1.41

(B) 0.71

(C) 2

(D) 2.83

For More GUJCET Papers & Material Visit www.VisionPapers.in!!!

(Space for Rough Work) $tori \left(\frac{X_L}{R}\right) = \frac{\omega L}{P} = \left(\frac{2\pi r \times 25.46 \times 10^3}{8}\right)$ $P = \frac{1}{2} r^{3} + \frac{1}{2} \frac{1}{2}$

34)	If \vec{E} and \vec{B} represent electric and magnetic field vectors of electromagnetic wave, the direction of propagation of electromagnetic wave is along				
	(A)	B	(B)	Ē	
	(C)	₿×Ĕ	(D)	Ē×Ē	
35)	Freq	uency range of visible light is			
	(A)	400 THz to 700 THz	(B)	400 GHz to 700 GHz	
•	(C)	400 MHz to 700 MHz	(D)	400 kHz to 700 kHz	
36)	The	refractive index of air with respe	ct to v	acuum is	
	(A)	1.0029	(B)	1	
	(C)	1.00029	(D)	1.029	
37)	A le	ns of power – 4.0 Diopter. It mea	ıns		
	(A)	. Concave lens of focal length -2	25.0 cı	m.	
	(B)	Concave lens of focal length -	0.25 c	m	
	(C)	Convex lens of focal length +0.	.25 cn	n e	
	(D)	Convex lens of focal length +2:	5.0 cn	n	
		(Space for Ro	ugh	Work)	
	$n = \frac{C}{V}$.				

- The earth takes 24 h to rotate once about its axis. How much time does the Sun takes to shift by 1 minute viewed from the earth.
 - (A) 4 minutes
 - (B) 40 s
 - (C) 4s
 - (D) 40 minutes
- 39) For what distance a ray optics a good approximation when the aperture is 6 mm wide and the wavelength is 6000 Å?
 - (A) 50 m

(B) 60 m

(C) 40 m

- (D) 10 m
- Monochromatic light of wavelength 480 nm is incident from air to glass surface.

 Refractive index of glass is 1.5. The ratio of the frequency of the incident and refracted light is _____.
 - (A) 2:1

(B) 1:2

(C) 4:1

(D) 1:1

For More GUJCET Papers & Material Visit www.VisionPapers.in!!!

UDC73(09)

[14]

CHEMISTRY

41) Which one is the common name of the compound $CH_2 = CH - CHO$?

(A) Mesityl Oxide

- (B) Prop-2-Enal
- (C) Acrolein
- (D) Propanal-1-ene

42) What is the correct order of acidity of compound (I), (II) and (III)?

- I) 4-Nitrobenzoic acid
- II) 4-Methoxy Benzoic acid
- III) Benzoic acid
- (A) I > III > II

(B) I>II>III

(C) I < II < III

(D) I<III<II

43) Which of the following compound does not give cannizzaro reaction?

(C) HCHO

(D) CH, CHO

(Space for Rough Work)

Which compound will give Hoffmann bromamide degradation reaction?

(B)
$$Ar-NH_2$$

(C)
$$Ar-NO_2$$

Benzene diazonium chloride reacts with phenol in basic medium to give product. 45) How many σ (sigma) and π (pi) bonds are present in that product?

(A)
$$16 - \sigma$$
 and $7 - \pi$

(B)
$$16 - \sigma$$
 and $6 - \pi$

(C)
$$26 - \sigma$$
 and $7 - \pi$

(C)
$$26 - \sigma$$
 and $7 - \pi$ (D) $26 - \sigma$ and $6 - \pi$

46) Methylamine reacts with HNO, to form?

(A)
$$CH_3 - O - N = O$$

(B)
$$CH_3 - OH$$

(C)
$$CH_3 - O - CH_3$$

Which statement is not correct for Glucose? 47)

- When heated with HI it gives n-Hexane (A)
- It is aldohexose **(B)**
- It react with Hydroxyl amine
- (D) It contain furanose structure

(Space for Rough Work)

48)	Wh						
	(A)	Uracil	25	(B)	Adenine		
	(C)	Guanine	· · · · · · · · · · · · · · · · · · ·	(D)	Cytosine		
49)	Wha	at are two monor	ners of Glyptal po	lyme	r?		
	(A)	Ethylene Glyco	ol and Isophthalic	acid			
	(B)	Ethane - 1, 2-D	iol and Phthalic a	cid			
	(C)	Ethylene Glyco	l and Terephthalic	cacid			
	(D)	Formaldehyde a	and Ethylene Glyc	col	•		
			in the second	(1, 11	in the state of th		
50)	Whi	ch polymer is us	d in making non-	stick	surface coated Utensils?		
	(A)	PHBV			Nylon 6,6		
	(C)	Teflon	· · · · · · · · · · · · · · · · · · ·	(D)	Buna - N		
51)	Whic	h artificial swee	tening agent is lin	nited i	n for cold food and soft drinks?		
	(A)	Sucralose	: ::	(B) , A	Mitame		
	(C)	Saccharin			spartame		

(Space for Rough Work)

52)	Poly	ethylene-glycol is used in the preparation of which	types of detergent?
	(A)	Anionic detergent	e lav
	(B)	Non Ionic detergent	
	(C)	Cationic detergent	
	(D)	Soap	
53)	The	correct order of the packing efficiency in different	types of unit cell is
		fcc > bcc > simple cubic	
	(B)	fcc < bcc < simple cubic	
	(C)	fcc < bcc > simple cubic	
	(D)	fcc = bcc > simple cubic	
			$\hat{\mathcal{G}}^{*}$ - i i i i
54)		ich of the following defect obtained by heating of a	
		Impurity defect is the big Land distribution of the big beauty and the beauty and	Copport of ARE A Airitain of Also to Joh
	(C)	Stoichiometric defect (1)	2 17 1 1/2
	(D)	Metal excess defect	* (*2 15.1 · D)
			•
	-	(Space for Rough Work)	
			· ·

Which of the following aqueous solution has highest boiling point?

(A) 0.1 M KNO,

- (B) 0.1 M urea
- (C) 0.1 M K [Fe(CN),]
- (D) $0.1 \,\mathrm{M} \,\mathrm{NH_4 NO_3}$

We have three aqueous solutions of CH3COONa labelled as A, B and C with 56) concentration 0.1 M; 0.01 M and 0.001 M respectively. The value of Van't Hoff factor (i) for these solutions will be in order ___

(A) $i_A > i_B > i_C$

(C) $i_A = i_B = i_C$

(B) $i_A < i_B < i_C$ (D) $i_A < i_B > i_C$

What is the osmotic pressure (π) of 0.02 M solution of NaCl?

0.01 RT (A)

(B) 0.02 RT

0.04 RT

(D) 0.002 RT

Resistance of a conductivity cell filled with 0.1 M KCl solution is 100 Ω and conductivity of solution is 1.29 s/m. Then what will be the value of conductivity cell constant.

. The opinion distribution is not a few and the second

(A) 1.29 cm⁻¹

(B) 1.29 m⁻¹

(C) 1.24 cm⁻¹

(D) 0.248 m^{-1}

(Space for Rough Work)

For More GUJCET Papers & Material Visit www.VisionPapers.in!!!

UDC73(09)

59) Which of the following is correct Nearst equation for the given electrochemical cell?

$$Mg_{(s)} |Mg_{(aq)}^{2+}(0.1M)|Cl_{(aq)}^{-}(0.1M)|Cl_{2(g)}(1bar)|Pl_{(s)}$$

(A)
$$E_{cell} = E_{cell}^{o} - \frac{0.059}{2} \log \frac{\left[Cl^{-}\right]^{2}}{\left[Mg^{2+}\right]}$$

(B)
$$E_{cell} = E_{cell}^{o} - \frac{0.059}{2} \log \frac{\left[Mg^{2+}\right]}{\left[Cl^{-}\right]^{2}}$$

(C)
$$E_{cell} = E_{cell}^{o} - \frac{0.059}{2} log \frac{1}{[Mg^{2+}][Cl^{-}]^{2}}$$

(D)
$$E_{cell} = E_{cell}^{o} - \frac{0.059}{2} \log \left[Mg^{2+} \right] \left[Cl^{-} \right]^{2}$$

(Space for Rough Work)

- Which of the following chemical reaction occur at anode during electrolysis of 60) higher concentrated H,SO, solution?
 - (A) $2SO_{4(aq)}^{2-} \rightarrow S_2O_{8(aq)}^{2-} + 2e^-$
 - (B) $2H_2O_{(1)} \rightarrow O_{2(g)} + 4H_{(aq)}^+ + 4e^-$

 - (D) $S_2O_{8(aq)}^{2-} + 2e^- \rightarrow 2SO_{4(aq)}^{2-}$
- For which of the following graph of first order reaction the value of slope will be $\frac{K}{2.303}$?
 - (A) $\log^{[R]_0}(R) \rightarrow t(Time)$ (B) $\log^{[R]_0}(R) \rightarrow t(Time)$

 - (C) $\ln^{[R]_0}(R) \rightarrow t(Time)$
 - (D) $\ln^{[R]}(R) \rightarrow t(Time)$

(Space for Rough Work)

For More GUJCET Papers & Material Visit www.VisionPapers.in!!!

1.

62)	Whic	h will be the unit of rate constant for	there	eaction having Rate = $K[\Lambda]^{\frac{1}{2}}.[B]^{\frac{3}{2}}$?
	(A)	Second ⁻¹		Mol/lit.Scc ⁻¹
	(C)			(Mol/lit)2.Sec-1
63)	A re	action is first order in terms of A a	nd sec	cond order in terms of B. What will be increased two times?
	(A)	4-Times	(B)	2-Times
	(C)	8-Times	(D)	16-Times [R]= K [A-] [213]
. i .i .!	- turi	the state of the s	** 1.	16-Times $[R]=K[A-J[2B]^2$
64)	Wh	o It arises because of Van der Waa	ncorr	ect for physisorption?
4	(A)	o It arises because of Van der Waa	al's Fo	orce distriction in the second
	(B)			
	(C)	It is not specific in nature	de sir.	ino gai noted of the following on
	(D)	High temperature is favourable	for a	dsorption. It increases with increase in
	_	(D) Mn (Q)		$G_{i}(A) = G_{i}(A)$
		1 Canonlatin	g pov	ver in the coagulation of As ₂ S ₃ Sol?
65		nich is correct order of the shind of	Visiad	one gain nolloi edido doid (163)
	(A	$PO_4^{3-} > SO_4^{2-} > CI_{(1)}^{-}$	(B)	one gait colloi edilo doid 7 (6). Al ³⁺ >Ba ²⁺ >Na O ₁ e H I m. O ₂ H (Λ)
	(C	Al $^{3+}$ < Ba $^{2+}$ < Na $^{+}$	(D)	$PO_{4}^{3-} < SO_{4}^{27} < CI_{7} (C)$
		(Space for Ro	ugh	Work)
	٠.			
		1		
		2		

66)	Mention percentage of Ag (Silver) in German silver alloy.			
	(A)	20-30%	(B) 10%	
	(C)	0.0%	(D) 40-50%	
67)	Whi	ch of the following ore is not	t in oxide form?	
ø	(A)	Malachite	(B) Haematite	
	(C)	Magnetite	(D) Zincite	•
27			3(11 152 (1))	
68)	gas o	can be obtained?	h of the following compound very pure dinitro	ogei
	(A)	† f	(B) Ammonium Chloride	
	(C)	Sodium Azide	(D) Barium Nitrate	
69)	Whi	ch of the following oxide show	w acidic property?	
	(A)	MnO ₂	(B) MnO	
	(C)		(D): Mn ₂ O ₃	12
		ું કુક કાં. આ કુમ કુમ મુખ્ય	n'i drazoffin Cana achais spilant -	
70)	Whi	ch of the following are peroxo	,	
0	(A)	H2SO and H2S2O7	(B) H ₂ SO ₅ and H ₂ S ₂ O ₈	
	(C)	H ₂ S ₂ O ₇ and H ₂ S ₂ O ₈	(D) H ₂ S ₂ O ₆ and H ₂ S ₂ O ₇	
		10		

(Space for Rough Work)

71) When alkaline KMnO₄ is treated with KI, lodide ion is oxidised to _____.

(A)_ IO

(B) I₂

o (C) IO₃

(D) 10₄

72) In the electronic configuration of which of the following element-electron is arranged in 5d orbital?

(A) 64Gd

(B) 63 Eu

(C) ₆₅Tb

(D) 66Dy

73) What kind of isomerism exists between [Cr(H₂O)₆]Cl₃ and [Cr(H₂O)₅Cl]Cl₂·H₂O?

(A) Ionisation

--- (B)-Solvate----

reliable to the sold of

(C) Coordination

(D) - Linkage

74) How t_{2g}⁴e_g⁰ configuration is possible for d⁴ ion during crystal Field splitting in Octahedral complex?

(A) $\Delta_o = P$

 $(B) \quad \Delta_{o} \leq P$

(C) $\Delta_o < I$

(D) $\Delta_o > P$

(Space for Rough Work)

- 75) Which of the following species is not expected to be a ligand?
 - (A) NH₄

- (B) NO
- (C) H₂N-CH₂-CH₂-NH₂
- (D) CO
- 76) The following results are as under for the reaction S + Nu → Product by which reaction mechanism this reaction occurs?

Experiment	[S] '	[Nu]	Rate (Concentration Time
1	0.1	0.1	2.2 × 10 ⁻³
2	0.2	0.1	4.4 × 10 ⁻³
3	i.0	0.2	4.4 × 10 ⁻³

- (A) Electrophilic addition
- (B) S_N1

(C) S_N2

(D) Electrophilic substitution

The state of

- 77) Which one is a reaction to prepare CCl₂F₂ (Freon-12) from CCl₄?
 - (A) Wurtz Reaction

- (B) Finkelstein
- (C) Elimination Reaction
- (D) Swartz Reaction

(Space for Rough Work)

- 78) How much gram of ethanol is required to obtain 280 ml dihydrogen at S.T.P. by reaction of C_2H_5OH with Na-Metal? (Mol. wt. of ethanol = 46 g/mol).
 - (A) 2.3

(B) 4.6

(C) 1.15

- (D) 0.575
- 79) Which product is obtained between reaction of CH₃ONa and (CH₃)₃ CBr?
 - (A) Only Ether
 - (B) Only Alkene
 - (C) Both alkene and ether
 - (D) Alcohol
- 80) Which of the following alcohol undergo dehydration reaction with Cu (Copper) metal at 573 K temperature?
 - (A) Secondary and Tertiary
 - (B) Primary & Secondary
 - (C) Primary and Tertiary
 - (D) Only Tertiary

(Space for Rough Work)