Balun

Bericht hf1

Windisch, 5. Februar 2019

Hochschule Hochschule für Technik - FHNW

Studiengang Elektro- und Informationstechnik

Autor Adrian Annaheim und Alexander Stutz

Betreuer Peter Niklaus

Version 1.0

Zusammenfassung

Das Abstract ist eine Art Zusammenfassung des ganzen Dokuments. Es gibt einen Einblick in die Aufgabenstellung, wie diese umgesetzt wurde und welches Ergebnis erreicht wurde. Aus diesem Grund wird das Abstract immer ganz am Schluss der Arbeit verfasst. Es besteht aus einem zusammengehörenden Absatz und umfasst ungefähr 10 bis 20 Zeilen. Formeln, Referenzen oder andere Unterbrechungen haben im Text nichts zu suchen. Direkt unter dem Abstract folgt eine Liste von drei bis vier Stichworten/Keywords. Diese werden in alphabetischer Reihenfolge aufgelistet und beschreiben das Themengebiet der Arbeit.

Keywords: Anleitung, LaTeX, Thesis, Vorlage

Inhaltsverzeichnis

1	Pro	blemstellung	1	
2	Grundlagen			
	2.1	Spannungsbalun	3	
	2.2	Strombalun	3	
		2.2.1 Guanella-Balun	4	
3	Din	nensionierung des Baluns	5	
	3.1	Ersatzschaltung	5	
	3.2	Die Kernfrage	7	
	3.3	Windungszahl	8	
	3.4	Draht oder Litze?	9	
4	4 Validierung			
5	Erk	enntnisse	11	
6	Sch	${f lusswort}$	12	

1 Problemstellung

In der HF-Technik kommt es sehr oft zur Situation, in welcher zwei Komponenten miteinander verbunden werden. Dieses auf den ersten Blick simple Vorhaben, kann einige Probleme bereiten. Haben die Komponenten unterschiedliche Impedanzen, spricht man von Fehlanpassung und es treten unerwünschte Reflexionen in der Leitung auf. Diese führen zu Verlusten und Verzerrungen des Signals. In diesem Bericht wird nun folgende Ausgangslage genauer betrachtet:

Abbildung 1.1: Ausgangslage Quelle an Antenne

Eine 50Ω -Quelle wird an eine 200Ω -Dipol-Antenne angeschlossen. Schliesst man die Antenne direkt an die Quelle wie in Abbildung 1.1, kommt es zur Fehlanpassung und den erwähnten Effekten. Die Impedanzanpassung ist jedoch nicht die einzige Herausforderung dieser Konstellation.

Weil nur die wenigsten Dipol-Antennen symmetrisch sind, fliessen Gleichtakt-Ausgleichsströme auf dem Aussenmantel der Leitung. Dadurch strahlt die Leitung ab und empfängt Störungen. Um diesen Sachverhalt genauer zu verstehen, betrachten wir zuerst eine ideale Dipol-Antenne.

Abbildung 1.2: Ströme und Felder bei einer idealen Dipol-Antenne

Sind beide Dipoläste exakt symmetrisch, sind die Impedanzen der einzelnen Äste gleich. Damit gilt für die Ströme $I_1=-I_2$. Sind die Ströme im Kabel Betragsgleich und entgegengesetzt, heben sich die Felder auf und die Leitung strahlt nicht ab.

2 Grundlagen

Sowohl das Problem der störenden Mantelwellen als auch die Fehlanpassung der Antenne an das Koaxialkabel lässt sich mittels eines sogenannten Baluns lösen. Ein solcher kann auf verschiedene Wege realisiert werden. Grundsätzlich unterscheidet man dabei zwischen Strom- und Spannungsbalun. Natürlich gibt es auch Hybride aus beiden Typen.

2.1 Spannungsbalun

Ein Spannungsbalun transformiert eine unsymmetrische in eine symmetrische Spannung. Dies kann zum Beispiel durch einen Transformator, so wie in Abbildung 2.1 gezeigt, erreicht werden. Falls die Antenne ideal symmetrisch ist, kann damit das nicht symmetrische Koaxialkabel an die Antenne angepasst werden. Ideal symmetrisch bedeutet, dass die beiden Dipole eine identische kapazitive und induktive Kopplung zur Erde haben. Durch das Windungszahlverhältnis kann eine beliebige Impedanzanpassung realisiert werden. Da die gesamte Energie, welche den Balun passiert, als Magnetfeld durch den Kern fliesst, muss dieser eine hohe Güte haben.

Abbildung 2.1: Einfaches Beispiel für einen Spannungsbalun

2.2 Strombalun

Ein Strombalun zwingt der Leitung einen symmetrischen Strom auf. Dabei werden die störenden Mantelwellen idealerweise unterdrückt. Ein einfaches Beispiel für einen Strombalun ist in Abbildung 2.2 ersichtlich. Da sich bei dieser Schaltung die beiden Magnetfelder für das gewünschte Gegentaktsignal aufheben, fliesst nur die Energie des störenden Signals als Magnetfeld durch den Kern. Dieser darf deshalb eine niedrigere Güte haben. Das kann sogar gewünscht sein, da dadurch das störenden Gleichtaktsignal in Wärme umgewandelt wird und eine tiefe Güte ausserdem einen breitbandigen Betrieb ermöglicht. Aufgrund der Eigenschaft dass der Strombalun Mantelwellen zumindest dämpft, kann er auch bei nicht idealen Dipolantennen verwendet werden. Eine Impedanzanpassung ist bei der klassischen Schaltung in der Abbildung 2.2 nicht möglich.

Abbildung 2.2: Einfaches Beispiel für einen Strombalun

4 2 GRUNDLAGEN

2.2.1 Guanella-Balun

Der Guanella-Balun ist ein Spezialfall des Strombaluns, bei welchem durch Zusammenschalten von mehreren klassischen Stufen eine Impedanzanpassung für bestimmte Verhältnisse erreicht werden kann. In Abbildung 2.3 ist ein Beispiel mit zwei Stufen ersichtlich. Unter der Annahme, dass die beiden Strombalune ideal funktionieren, fliessen die mit orangen Pfeilen eingezeichnete Ströme. Auf der linken Seite addieren sich je zwei Strompfade zusammen, wodurch der Strom, welcher von links in den Balun fliesst, doppelt so gross ist, wie der Strom auf der auf rechten Seite. Da die Schaltung idealerweise keine Verlustbehafteten Komponenten enthält muss die Eingangsleistung gleich gross wie die Ausgangsleistung sein. Daraus folgt, dass die Spannung auf der rechten Seite doppelt so gross wie links sein muss. Das Impedanzverhältniss berechnet sich wie folgt:

$$\frac{Z_2}{Z_1} = \frac{U_2/I_2}{U_1/I_1} = \frac{2 \cdot U_1/I_2}{U_1/(2 \cdot I_2)} = 4:1$$
 (2.1)

Durch Hinzufügen von weiteren Stufen lassen sich folgende Verhältnisse realisieren:

$$\frac{Z_{out}}{Z_{in}} = n^2 : 1 \qquad n \in \mathbb{N}$$
 (2.2)

Abbildung 2.3: Ein Guanella-Balun mit zwei Stufen.

3 Dimensionierung des Baluns

Wie im Abschnitt ?? ersichtlich ist, hat ein Strombalun einige Vorteile gegenüber dem Spannungsbalun. Da vor allem die Anforderungen an den Kern kleiner sind und damit die Dimensionierung vereinfacht wird, haben wir uns für einen Strombalun entschieden. Da beim klassischen Strombalun keine Impedanzanpassung geschieht, diese jedoch für unsere Anwendung gewünscht wird, verwenden wir einen Guanella-Balun. Der Guanella-Balun ist ein Spezialfall, bei dem mehrere klassiche Strombaluns zusammengschaltet werden, so dass das Impedanzverhältnis von Ein-zu Ausgang der folgenden Formel entspricht: Dabei entspricht n der Anzahl klassicher Balunstufen.

$$\frac{Z_{out}}{Z_{in}} = n^2 \qquad n \in \mathbb{N}$$
 (3.1)

Um unsere 200Ω -Dipol-Antenne an das 50Ω -Koaxialkabel anzupassen benötigen wir dementsprechend einen Guanella-Balun mit zwei Stufen. Daraus resultiert ein Impedanzverhältnis von 1:4.

3.1 Ersatzschaltung

Bei nachfolgender Betrachtung beschränken wir uns auf den klassischen Strombalun. Damit werden die Berechnungen (wie z.B. die Resonanzfrequenz) stark vereinfacht und können später auf den Guanella-Balun übertragen werden. In Abbildungn 3.1 ist das Ersatzschaltbild einer realen Spule ersichtlich. Dies besteht aus einer idealen induktivität L, aus zwei Widerständen, welche die Magnetisierungs- (R_{fe}) und Kupferverluste (R_{cu}) modelieren und einer parallelen Kapazität C_p für die Kapazität zwischen den einzelnen Windungen.

Abbildung 3.1: Ersatzschaltung einer realen Spule

Die Abbildung 3.2 zeigt den einfachen Strombalun. Die Induktivitäten können seriell betrachtet werden, was die nachfolgenden Berechnungen vereinfacht. Bei der Dimensionierung des Baluns, wird der Lastwiderstand R_L vernachlässigt und nur die Impedanz des Baluns $(2 \cdot L')$ in Serie) untersucht. Ist diese Impedanz viel grösser als der Lastwiderstand ($\gg 200 \,\Omega$), so sperrt der Balun, was für Gleichtaktströme gewünscht wird. Ist die Impedanz kleiner als der Lastwiderstand ($\ll 200 \,\Omega$), so wird das Signal durchgelassen. Dies wird im Gegentaktmodus angestrebt.

Abbildung 3.2: Einfacher Strombalun

Um das Verhalten eines Baluns zu beschreiben, macht es Sinn, zwischen Gleich- und Gegentaktmodi zu unterscheiden. Wir versuchen nun unseren Balun so zu dimensionieren, damit er bei
der gewählten Arbeitsfrequenz von 20 MHz im Gleichtaktmodus sperrt, und im Gegentatkmodus leitet. Können wir dies gewährleisten, haben wir keine störenden Mantelwellen auf dem
Koaxialkabel.

Gegentaktbetrieb

In Abbildung 3.3 ist ein vereinfachtes Ersatzschaltbild für den Gegentaktbetrieb ersichtlich. Dies hat Gültigkeit unter der Annahme, dass sich die Felder der beiden Spulen komplett aufheben. In diesem Fall kann man die Spulen als Kurzschluss und die Magnetisierungsverluste als Unterbruch betrachten. Weil der Kupferwiderstand viel kleiner als der Lastwiderstand ist und somit gilt: $R_{Cu} \ll R_L$, passieren Gegentaktströme praktisch ungehindert den Balun.

Abbildung 3.3: Situation im Gegentaktbetrieb

Gleichtaktbetrieb

In Abbildung 3.4 ist ein vereinfachtes Ersatzschaltbild für den Gleichtatkbetrieb dargestellt. In diesem Fall kann der Kupferwiderstand vernachlässigt werden. Die beiden Parallelschwingkreise, welche in Serie geschaltet sind, können zu einem einzelnen Parallelschwingkreis zusammengefasst werden. Da unser Ziel darin besteht, eine möglichst hohe Impedanz zu erreichen, wird dieser der Balun so dimensioniert, dass die Resonanzfrequenz im Arbeitspunkt zu liegen kommt. Aus den Grundformeln des Parallelschwingkreises, lassen sich folgende Formeln für den Balun ableiten.

$$\omega_0 = \frac{1}{\sqrt{L \cdot C_p}} \tag{3.2}$$

$$Q = 2 \cdot R_{FE} \cdot \sqrt{\frac{C_p}{4 \cdot L}} \tag{3.3}$$

Abbildung 3.4: Situation im Gleichtaktbetrieb

3.2 Die Kernfrage 7

3.2 Die Kernfrage

Damit sich die Felder im Gegentaktmodus aufheben, muss ein Kern mit hoher Permeabilität verwendet werden. Dadurch wird ein höherer Kopplungsfaktor zwischen den Spulen ermöglicht und gleichzeitig kann eine höhere Induktivität bei gleicher Windungszahl erreicht werden. In der Formel 3.3 ist ersichtlich, dass die Güte des Schwingkreises umgekehrt proportional zu den Magnetisierungsverlusten R_{FE} bei der Resonanzfrequenz ist. Verwendet man einen Kern mit hohen Magnetisierungsverlusten, wird der Balun breitbandiger, sperrt jedoch unerwünschte Mantelwellen weniger. Verwendet man einen Kern mit wenigen Verlusten, ist das Gegenteil der Fall. Für unsere Anwendung ist kein breitbandiger Balun gefordert, aber um das Wickeln der Spulen zu vereinfachen, verwenden wir einen eher breitbandigen Kern. Dies gibt uns einen Spielraum bei der Realisierung. Deshalb verwenden wir anstelle eines Eisenkerns einen Ferritkern. (Ersterer ermöglicht eine hohe Güte, bei geringer Bandbreite.)

Wir haben mit folgenden Kriterien nach einem Ferrit gesucht:

Form: ToroidMaterial: Ferrit

• Permeabilität: möglichst hoch bei 20MHz und wenn möglich konstant

Weil der Werkstoff 4C65 gemäss Abbildung 3.5 bei 20MHz die höchste Permeabilität aufweist und diese auch ziemlich konstant ist, fiel die Wahl auf diesen Werkstoff.

Abbildung 3.5: Permeabilität in Abhängigkeit der Frequenz verschiedener Werkstoffe

3.3 Windungszahl

Da der Kern nun bestimmt ist, gilt es die Windungszahl zu bestimmen. Mit der Anzahl Windungen soll die Resonanzfrequenz auf unsere Arbeitsfrequenz abgestimmt werden. Wie bereits erwähnt, ist die Resonanzfrequenz folgendermassen definiert:

$$\omega_0 = \frac{1}{\sqrt{L \cdot C_p}} \tag{3.4}$$

Die Induktivität einer Toroidspule kann mit folgender Formel berechnet werden. Dabei ist N die Windungszahl, b die Höhe des Toroids, r_2 der Aussendurchmesser und r_1 der Innendurchmesser des Toroids.

$$L_{Toroid} = N^2 \cdot \frac{\mu_0 \cdot \mu_r \cdot b}{2 \cdot \pi} \cdot \ln\left(\frac{r_2}{r_1}\right) \tag{3.5}$$

Abbildung 3.6: Geometrie Toroid

Für die Eigenkapazität C_p der Spule gibt es keine Eindeutige Formel. Wir haben deshalb versucht, diese mit starken Vereinfachungen zu berechnen. Dabei haben wir die runden Oberfläche zweier verdrillter Drähte als Plattenkondensatoren approximiert. Mit dem Korrekturfaktor K1 wird der Drahtdurchmesser auf die Plattenoberfläche abgebildet. Weil zwei Drähte nicht ideal aneinanderliegen, ist der Plattenabstand grösser als $2 \cdot d_I$. Um dem gerecht zu werden, wurde der Korrekturfaktor K2 eingeführt. Die dabei entstandene Formel ist nachfolgen ersichtlich. Dabei ist b wieder die Höhe des Toroids, N die Windungszahl, r_{cu} der Drahtradius und d_I die Isolationsdicke.

Abbildung 3.7: Vereinfachte Kapazität zweier benachbarter Windungen

3.4 Draht oder Litze?

Substituiert man 3.6 und 3.5 in Formel 3.4 und löst nach der Windungszahl N auf, erhält man schliesslich folgende Formel:

$$N = \sqrt[3]{\frac{2 \cdot d_I \cdot K_2}{\omega_0^2 \cdot \mu_0 \cdot \mu_r \cdot \varepsilon_0 \cdot \varepsilon_r \cdot b^2 \cdot \ln\left(\frac{r_2}{r_1}\right) \cdot K_1 \cdot r_{cu}}}$$
(3.7)

Variable	Wert	Typ
ω_0	$2\pi \cdot 20MHz$	Aufgabenstellung
μ_0	$4\pi \cdot 10^{-7} N/A^2$	Konstante
ε_0	$8.854 \cdot 10^{-12} As/Vm$	Konstante
d_I	$50\mu\mathrm{m}$	Datenblatt
μ_r	150	Datenblatt
$arepsilon_r$	2.2	Datenblatt
b	5.3 mm	Datenblatt
r_{cu}	$250\mu\mathrm{m}$	Datenblatt
r_1	13.1 mm	Datenblatt
r_2	$23.7\mathrm{mm}$	Datenblatt
K_1	1.5	Geschätzt
K_2	3	Geschätzt

Eingesetzt in Formel 3.7 resultiert eine Windungszahl N von: 9.39 Windungen.

3.4 Draht oder Litze?

Grundsätzlich wäre für beste Resultate Litze zu verwenden, um den Skin-Effekt zu minimieren. Dafür müsste spezielle HF-Litze verwendet werden. Bei dieser müssten die Leiter zueinander isoliert sein und im Mittel über den Querschnitt gleich verteilt sein. Da auch mit dem Skin-Effekt der Kupferwiderstand im Gleichtaktmodus vernachlässigt werden kann und im Gegentaktmodus bei hohen Frequenzen C_p dominiert, können wir hier Draht verwenden.

10 4 VALIDIERUNG

4 Validierung

5 Erkenntnisse

12 6 SCHLUSSWORT

6 Schlusswort