Quantitative Methods 2

Tutorial 4
Nhan La

Last week

- 1. Descriptive statistics
- 2. Normality test
- Visual assessment
- Descriptive measures: relative comparisons
 - Mean vs. median
 - Skewness
 - \widehat{SK} vs. 0
 - $|\widehat{SK}|$ vs. $2s_{\widehat{SK}}$
 - Kurtosis
 - \widehat{K} vs. 3
 - $|\widehat{K}-3|$ vs. $2s_{\widehat{K}}$
- Hypothesis test: Jacque-Bera

Last week

- 3. Test of population's central location
- Parametric: *t* test
- Non-parametric
 - Sign test
 - Wilcoxon signed ranks test
 - Sample size: n = number of non-zero deviations
- Find confidence interval of the population mean

Last week

- Some tests need d.f: t, χ^2 , F
 - Probability distribution, and thus the estimation, of the test statistics depend on the sample size or the number of groups, or both

- E.g.,
$$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$$

• Some don't: **Z**, Fisher's exact test

Hypothesis testing

- Choose the appropriate test based on:
 - Levels of measurement
 - Types of variable
 - Distribution of the underlying population
 - Sample size
 - Relevant population parameter (e.g., σ^2) known/unknown

- 1. Paired-sample test
 - Parametric: Z test or t test
 - Nonparametric: sign test or Wilcoxon signed rank test
- 2. Independent samples test
 - Parametric: Z test or t test
 - Nonparametric: Wilcoxon rank sum test

One population

Two populations - Numerical

Two populations - Ordinal and Nominal

Wilcoxon signed rank test: Rank of each observation given by its deviation from the population median.

Values	7	3	4	6	10	5	6	4	3	8
Deviation	1	-3	-2	0	4	-1	0	-2	-3	2
Abs. dev.	1	3	2	0	4	1	0	2	3	2
Ranks	1.5	6.5	4		8	1.5		4	6.5	4
Calculate the sums of negative and positive deviation groups										

Wilcoxon rank sum test: Rank of each observation given by its position in the pooled sample

Parameter	Population	Test	EViews default reported p-values
Normality		Jacque-Bera test	One-sided
	One population	Mean: Z- or t-test	Two-sided
Central location		Median: Sign test or	Two-sided
		Wilcoxon signed rank test	
		(using normal approx. Z-	
		test)	
	Two populations – Paired samples	Mean: Z- or t-test	Two-sided
		Median: Sign test or	Two-sided
		Wilcoxon signed rank test	
		(using normal approx. Z-	
		test)	
	Two populations – Independent samples	Mean: Z- or t-test	Two-sided
		Median: Wilcoxon rank-	Two-sided
		sum test (using normal	
		approx. Z-test)	
	Three or more populations – Independent samples	Mean: F-test	One-sided
		Median: Kruskal-	One-sided
	- maepenaent samples	Wallis test	

Why always 0?

Depend on the question being asked.

Two sided test:

$$H_0: \mu_0 = \mu_1 \text{ or } H_0: \mu_0 - \mu_1 = 0;$$

$$H_A: \mu_0 \neq \mu_1 \text{ or } H_A: \mu_0 - \mu_1 \neq 0$$

Parameter	Population	Test	EViews default
			reported p-values
	One population	test	One-sided, smaller
			value (see Week 4
Variance			lecture slides)
			Note: it's more
			straightforward to rely
			on the comparison
			between and
	Two populations	F-test	Two-sided (see Week
			4 lecture slides,
			especially for one-
			sided test hypotheses
			and statistic
			formation)
	One population	Z-test	Two-sided
Proportion	Two populations	t-test (to produce	Two-sided
		approximated results)	

Parameter	Population	Test	EViews default reported p-values
Correlation and regression	Pearson correlation coefficient	t-test	Two-sided
	Coefficient (slopes or intercept)	t-test	Two-sided
	Model significance/utility	F-test	One-sided
	Linear restriction of coefficient	One conjecture (<, > or =): t-test or F-test Note: the conjecture can involve more than one parameter	t-test: Two-sided F-test: One-sided
		More than one conjecture: F-test	One-sided
	Heteroskedasticity White test	F-test	One-sided