<u>Unit 5 Reinforcement Learning (2</u>

Course > weeks)

> Homework 6 > 3. Q-Learning

3. Q-Learning

Recall the Q-learning update rule:

$$Q_{i+1}\left(s,a
ight) = Q_{i}\left(s,a
ight) + lpha\left[R\left(s,a,s'
ight) + \gamma max_{a'}Q_{i}\left(s',a'
ight) - Q_{i}\left(s,a
ight)
ight]$$

let $\alpha=1$ and $\gamma=1$ in this problem. In the figure below, at each box, we can go up, down, left and right unless the path is blocked and we initialize the Q value for all the actions in all states as 0. The Q value for the 4 directions are labeled in each box below. Moving into the upper right 2 boxes will result in a reward of +1 and -1, and each move will also cost 0.04, or in another word, a reward of -0.04.

Q-table

1st Iteration

3/3 points (graded)

After 1st iteration, enter the Q value at the position represented by x, y and z below:

$$y = \begin{vmatrix} -1.04 \end{vmatrix}$$
 Answer: -1.04

$$z = \begin{vmatrix} -1.04 \end{vmatrix}$$
 Answer: -1.04

Solution:

• Answers are displayed within the problem

2nd Iteration

3/3 points (graded)

After 2nd iteration, enter the Q value at the position represented by a, b and c below:

$$a = \begin{bmatrix} -0.08 + 1 \end{bmatrix}$$
 Answer: 0.92

$$b = \begin{vmatrix} -0.08 + 1 \end{vmatrix}$$
 Answer: 0.92

$$c = \boxed{ -0.08 }$$
 \checkmark Answer: -0.08

Solution:

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

2nd Iteration

1/1 point (graded)

● UP ✔	
O LEFT	
O RIGHT	
Solution:	
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
Epsilon-greedy method 1	
0/1 point (graded) In the $arepsilon$ -greedy method, a larger value of $arepsilon$ would generat	te experiences that are more consistent with the current Q-value estimates.
● True 🗙	
○ False ✔	
Solution:	
	probability $arepsilon$ and choose an action based on our current estimates with ould generate experiences which are more consistent with our current Q-value
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
Epsilon-greedy method 2	
1/1 point (graded) n the $arepsilon$ -greedy method, a value of $arepsilon=0.999$ is likely to l	lead to the desired learning outcome in a highly complex environment.
O True	
● False ✔	
Solution:	
We would pick a random action virtually every time, and i	n a highly complex environment, i <mark>t's highly unlikely that we would properly</mark>
Submit You have used 1 of 1 attempt	在这里,我的理解是,如果环境本身就很复杂,那么本来就很难得到想要的(比如训练机器人)。我们需要足够随机,让他能探索,又得非常好的利用好学到的东西,慢慢往上走。
Answers are displayed within the problem	

Discussion

Show Discussion