

## **PYTHON SEMINAR 2020**

JENS HAHN

THEORETICAL BIOPHYSICS

# TODAY



- Recap data analysis I
  - II Data analysis II
  - | Pandas
- | Assignment

## I. RECAP CLASSES



- Numeric data set
- numpy arrays
- Masking of numpy arrays
- Mean, median, SD
- Interpolation/extrapolation

## I. LINEAR REGRESSION





## I.ASSIGNMENT - TURN IT INTO A CLASS



- Write a class DataAnalysis
- Write methods for every task

- Import data
- Calculate mean & median
- Calculate SD
- Normalisation
- Interpolation
- Linear regression





Large data sets (oil of the 21th century)

- Various data types (numbers, abbreviations, descriptions, dates...)
- Large amount of data (too much for Excel!)
- No clear questions before gathering data

- I. Curate
- 2. Analyse
- 3. Visualise





Data set: parking violation data of L.A.

Ticket: Number, issuing time, fine

Violation: Description and location

Plate: State plate and expiry date

Car: Make, style, colour

Agency: Code and route



### II. DATA ANALYSIS

Data set: parking violation data of L.A.

- I. Too big for Excel
- 2. What can we learn from the data? And how?

| 4 | Α             | В              | С         | D     | Е                   | F       | G                 | Н          | J        | K          | L                  | M         | N      | О                | Р                     | Q       | R            | S           |
|---|---------------|----------------|-----------|-------|---------------------|---------|-------------------|------------|----------|------------|--------------------|-----------|--------|------------------|-----------------------|---------|--------------|-------------|
| 1 | Ticket numl 🕶 | Issue Date     | ▼ Issue t | Meter | Marked <sup>•</sup> | ▼ RP St | ▼ Plate Expir ▼ \ | VIN 🔻 Make | Body Sty | le 🔻 Color | <b>▼</b> Location  | ▼ Route ▼ | Agency | ▼ Violation code | Violation Description | Fine an | Latitude 💌 I | Longitude 💌 |
| 2 | 1103341116    | 21.12.2015 00: | 00 125    | 1     |                     | CA      | 200304            | HOND       | PA       | GY         | 13147 WELBY WAY    | 01521     |        | 1 4000A1         | NO EVIDENCE OF REG    | 50      | 99999        | 99999       |
| 3 | 1103700150    | 21.12.2015 00: | 00 1435   | 5     |                     | CA      | 201512            | GMC        | VN       | WH         | 525 S MAIN ST      | 1C51      |        | 1 4000A1         | NO EVIDENCE OF REG    | 50      | 99999        | 99999       |
| 4 | 1104803000    | 21.12.2015 00: | 00 205    | 5     |                     | CA      | 201503            | NISS       | PA       | BK         | 200 WORLD WAY      | 2R2       |        | 2 8939           | WHITE CURB            | 58      | 64399979     | 18026864    |
| 5 | 1104820732    | 26.12.2015 00: | 00 151    | 5     |                     | CA      |                   | ACUR       | PA       | WH         | 100 WORLD WAY      | 2F11      |        | 2 000            | 17104h                |         | 64400411     | 18026862    |
| 6 | 1105461453    | 15.09.2015 00: | 00 11     | 5     |                     | CA      | 200316            | CHEV       | PA       | BK         | GEORGIA ST/OLYMPIC | 1FB70     |        | 1 8069A          | NO STOPPING/STANDING  | 93      | 99999        | 99999       |
| 7 | 1106226590    | 15.09.2015 00: | 00 19     | 9     |                     | CA      | 201507            | CHEV       | VN       | GY         | SAN PEDRO S/O BOYD | 1A35W     |        | 1 4000A1         | NO EVIDENCE OF REG    | 50      | 99999        | 99999       |
| 8 | 1106500452    | 17.12.2015 00: | 00 1710   | 0     |                     | CA      | 201605            | MAZD       | PA       | BL         | SUNSET/ALVARADO    | 00217     |        | 1 8070           | PARK IN GRID LOCK ZN  | 163     | 99999        | 99999       |
|   |               |                |           |       |                     |         |                   |            |          |            |                    |           |        |                  |                       |         |              |             |









Fedex And UPS trucks recived enough tickets to account for 10 full-





Data set: parking violation data of L.A.

- How many out-of-state cars are parked wrong?
- Street with the most parking violations?
- Which car type and car colour is highest in parking violations?
- On which daytime the most cars are violating parking rules?

### II. DATA ANALYSIS



#### Kriminalitätsstatistik Rust

ausgewählte Deliktgruppen











Python packages for data analysis (learned from R)

import pandas as pd

Read data (csv, Excel, ...)

df = pd.read\_csv(`./parking\_data\_small.csv')









Have a look on the data

Data types: df.dtypes

Dimensions: df.shape

Top [Bottom] 5 rows: df.head() [df.tail()]

Basic statistics: df.describe()



#### Address data

Transpose data frame: df.T

Indices
df.index

Columns
df.columns

Slicing: df.loc[index\_name, column\_name]

df.iloc[1, 4]



#### More advanced

Pick data:

df[df[column\_name] == value]

df[df[column\_name].isin([v1, v2])]

df.groupby(column\_name).mean()

df[column\_name].value\_counts()

Group data

Count values





Pivot tables

df.pivot(values=,columns=,index=)

|   | Α        | В        | С        | D    | Е |
|---|----------|----------|----------|------|---|
| 0 | 0.250124 | 0.457986 | 0.146158 | meep | 1 |
| 1 | 0.333871 | 0.954610 | 0.911692 | meep | 2 |
| 2 | 0.432136 | 0.537708 | 0.001518 | map  | 1 |

 A
 B

 D
 B

 map
 0.432136
 0.537708

 meep
 0.291998
 0.706298

 E
 1
 2
 1
 2

 D
 NaN
 0.537708
 NaN

 map
 0.432136
 NaN
 0.537708
 NaN

 meep
 0.250124
 0.333871
 0.457986
 0.95461





#### Data analysis of data

- Define questions (statistically correct)
- Think about how to find the answer in the data
- Extract the information from the data





#### Data analysis

Data analysis in Python

http://www.data-analysis-in-python.org/

Coursera – data analysis

https://www.coursera.org/learn/data-analysis-with-python

#### Python pandas

Pandas tutorial

https://www.python-kurs.eu/pandas.php

Pandas documentation

https://pandas.pydata.org/pandas-docs/stable/