Algorithm Counterfeit Banknotes

Data Analyst Course - Project 6 Michael Orange

Mission

Create an algorithm for detecting counterfeit banknotes

Algorithm based on banknotes characteristics:

- Length (in mm)
- Height measured in the left side (in mm)
- Height measured in the right side (in mm)
- Margin between superior side and the print (in mm)
- Margin between inferior side and the print (in mm)
- Diagonal (in mm)

Data Exploration

Principal Component Analysis

Modelisation

API

1

2

3

Data Exploration

A dataset to train our model

CSV file available to train our model with Genuine banknotes and Counterfeit (non Genuine) banknotes.

	diagonal	height_left	height_right	margin_low	margin_up	length
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
mean	171.976100	103.951500	103.775900	4.143500	3.055500	113.207200
std	0.307981	0.296251	0.292406	0.314509	0.197726	0.380476
min	171.040000	103.230000	103.140000	3.540000	2.270000	111.760000
25%	171.790000	103.740000	103.557500	3.900000	2.937500	112.995000
50%	172.005000	103.915000	103.760000	4.080000	3.070000	113.210000
75%	172.162500	104.145000	103.972500	4.382500	3.192500	113.505000
max	172.750000	104.860000	104.950000	5.040000	3.530000	113.980000

No significant outliers

Significance of margin_low and length

No numerical variables entirely correlated

'height_right' and **'height_left'** have a significant correlation (0.73).

>> However no variables are redundant due to a very level of correlation.

Some variables are correlated linearly

Gaussian-like distribution

Only 2 variables do not pass the Shapiro test at a significance level of 5%

However the normal distributions are still confirmed by the Henri lines for these 2 variables

Principal Component Analysis

Preparation for PCA

Mean centering - subtracting variable measured mean from each data value so that its empirical mean (average) is zero

Variance standardization to 1 - after the mean centering, dividing 'centered' data by standard deviation.

3 components are selected

(capturing approx. 80% of the variance)

Correlation Circles

Projection on F1 and F2

K-means Clustering

Modelisation

Logistic Regression

Methodology

Train, Test split: 80% to train the model, 20% to test the model

- Statsmodel: Logit regression on scaled values
- Sklearn: LogisticRegression on scaled values

Statsmodel: Logit regression on projected values

Sklearn: LogisticRegression on projected values

Cross-validation Kfold (cv = 5)

Selecting best model with scaled values or sklearn

Selection

Logit on Scaled values

Results: Logit Model: Logit Pseudo R-squared: 0.954 Dependent Variable: is_genuine AIC: 12.5605 Date: 2020-07-08 12:11 BIC: 18.3858 No. Observations: 136 Log-Likelihood: -4,2802 Df Model: LL-Null: -92.139 Df Residuals: 134 LLR p-value: 4.1727e-40 Converged: 1.0000 Scale: 1.0000 No. Iterations: 14,0000 Coef. Std.Err. z P>|z| [0.025 0.975] margin low -9.0096 3.6243 -2.4859 0.0129 -16.1131 -1.9061 7.5277 3.0038 2.5061 0.0122 1.6404 13.4151

Prob = logistic(x) = 1 / (1 + $e^{(-x)}$) with x = -9.0096 * margin low + 7.5277 * length

Accuracy of the model: 97.8% Selected

Logit on ACP (F1, F2, F3)

```
Results: Logit
Model:
            Logit
                       Pseudo R-squared: 0.848
Dependent Variable: is_genuine AIC:
                                         32.0556
Date:
            2020-07-08 12:26 BIC:
                                      37.8809
No. Observations: 136
                           Log-Likelihood: -14.028
Df Model:
                      LL-Null:
                                  -92.139
Df Residuals:
             134
                         LLR p-value: 7.5678e-36
Converged:
              1.0000
                          Scale:
                                     1.0000
No. Iterations: 10.0000
   Coef. Std.Err. z P>|z|
                               [0.025 0.975]
   -3.1539
             0.6725
```

Prob = logistic(x) = 1 /
$$(1 + e^{(-x)})$$

with x = -3.1539 * F1 + 2.2678 * F2

Accuracy of the model: 97.1% Rej

Sklearn Logistic Regression

- Features: **length** and **margin low**
- Cross-validation (kfold with 5 splits):
 [0.96428571 0.92592593 1. 1. 1. Accuracy of the model: **97.8** %

With a AUC of 1, the model is excellent

API

API - Google Cloud Platform

Python API hosted with Google App Engine

https://counterfeit-banknotes.ew.r.appspot.com

- Upload SKLearn LogisticRegression and StandardScaler trained models
- Request CSV file with 'margin_low' and 'length' attributes (in mm)
- Scale values of the CSV file (mean centering and variance standardization)
- Perform a SKLearn LogisticRegression on scaled values.
- Return a table with prediction and probability of the prediction.

THANK YOU!

Do you have any questions?

Code available on https://github.com/Michael-Orange/algorithm_banknotes

CREDITS: This presentation template was inspired from **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Pixabay**