Ejercicios sobre reglas de derivación

En los ejercicios 1 a 20 utilice las reglas de derivación para calcular la derivada

$$\mathbf{1.} \qquad y = \frac{x}{\sqrt{x^2 - 1}}$$

3.
$$y = x^2 \sqrt{9 - x^2}$$

5.
$$y = \left(3x^2 + \frac{1}{x^2}\right)\left(\frac{1}{x} + 3\right)$$

7.
$$f(x) = (x^4 - x)^{-3}(5 - x^2)^{-1}$$

$$9. f(x) = \frac{(3x-2)^5}{\sqrt{x^2-9}}$$

11.
$$g(x) = \left(\frac{3x^2 + 4}{x^7 + 1}\right)^{10}$$

13.
$$y = \sqrt{x + \sqrt{x + \sqrt{x^3}}}$$

15.
$$f(x) = \frac{\sqrt{x^2 - 1}}{\sqrt[3]{x^2 + 1}}$$

17.
$$f(t) = [t^2 + (1+t)^4]^{-5}$$

19.
$$f(x) = x^3 \sqrt{1 - \frac{x}{x^2 + 1}}$$

2.
$$y = \frac{\sqrt{x^2 + 1}}{x}$$

4.
$$y = \frac{3x-2}{\sqrt{2x+1}}$$

6.
$$y = \frac{\sqrt{x^2 - 9}}{(2x + 3)^5}$$

8.
$$y = \sqrt[3]{\frac{9-x^2}{x^3+8}}$$

$$10. \quad f(x) = \frac{(2x-3)^5}{\sqrt{x^3+8}}$$

12.
$$f(x) = \frac{x^2(x-2)^5}{\sqrt{x^2+9}}$$

14.
$$f(x) = \frac{\sqrt{x^3 - 4}}{(x - 1)^5}$$

16.
$$g(x) = \left(\frac{x}{x^2 + 1}\right)^{5/3}$$

18.
$$f(x) = (1 - 3x^4)^5(4 - x^2)^{-1/3}$$

20.
$$f(x) = \left[x - \left(1 + \sqrt{1 - x^2} \right)^{-3} \right]^5$$

En los ejercicios 21 a 25 utilice las reglas de derivación para calcular la derivada de orden superior que se indica

21.
$$f(x) = (3x - 4)^5$$
, calcule $f''(x)$

23.
$$f(x) = \sqrt{3 - 2x}$$
, calcule $f'''(x)$

25.
$$f(x) = \frac{1}{\sqrt{3x+4}}$$
, calcule $f''(0)$

22.
$$f(x) = \frac{x}{1 + x^2}$$
, calcule $f''(x)$

24.
$$f(x) = \frac{x+1}{1-x}$$
, calcule $f'''(x)$

26.
$$f(t) = (2 - t^3)^5$$
, calcule $f'''(1)$

27. Sabiendo que:

$$r(x) = f(g(h(x)))$$
, donde $h(1) = 2$, $g(2) = 3$, $h'(1) = 4$, $g'(2) = 5$ y $f'(3) = 6$

Encuentre: r'(1)

28. Si
$$3f(x) + x^3 [f(x)]^2 = 11$$
 y $f(2) = 1$, encuentre: $f'(2)$

29. Dada la siguiente tabla de valores

x	f(x)	h(x)	g(x)	<i>f</i> ′(<i>x</i>)	h'(x)	g'(x)
1	2	4	1	3	2	-1

Se definen las siguientes funciones

$$u(x) = f(x) \cdot g(x) \cdot h(x) \quad \& \quad v(x) = \frac{h(g(x))}{f(x)}$$

Utilizando los datos de la tabla calcule:

a.
$$u'(1)$$

b.
$$v'(1)$$

30. Suponga que f y g son funciones derivables, tales que f(g(x)) = x y $f'(x) = 4 + [f(x)]^2$ Demuestre que $g'(x) = \frac{1}{4 + x^2}$

31. Si f y g son funciones derivables, donde f(1) = 2, f'(1) = -3, g(1) = 6, g'(1) = 2.

s'(4)

Calcule
$$h'(1)$$
 si $h(x) = \frac{1 + 2f(x)}{x - g(x)}$

32. Sean r(x) = f(g(x) y s(x) = g(f(x), con f y g tal como se muestran en la figura. Calcule)

a.
$$r'(1)$$

33. Sean f y g las funciones cuyas gráficas aparecen en la figura.

a. Si
$$h(x) = f(x) g(x)$$
, determine $h'(1)$

b. Si
$$v(x) = f(x) / g(x)$$
, determine $v'(4)$

c. Si
$$w(x) = g(x) / f(x)$$
, determine $w'(2)$

d. Si
$$u(x) = g(f(x))$$
, determine $u'(5)$

34. La figura muestra la gráfica de dos funciones f y g. Se definen las funciones

$$u(x) = f(g(x))$$
 $y v(x) = g(f(x))$

Calcule:

- **a.** u'(1)
- **b.** v'(1)

- **35.** La figura muestra la gráfica de dos funciones f y g. Utilícela para encontrar lo que se le pide
 - **a.** Halle u'(4), si u(x) = f(x)g(x)
- **b.** Halle v'(2), si $v(x) = \frac{f(x)}{g(x)}$

36. La figura muestra la representación gráfica de dos funciones f yg.

Sean
$$P(x) = f(x)g(x)$$
, $Q(x) = \frac{f(x)}{g(x)}$ $R(x) = f(g(x))$.

Determine:

- **a.** P'(2)
- **b.** Q'(2) **c.** R'(2)
- 37. Si f y g son funciones derivables, se define la función F(x) = f(g(x)). Determine el valor de f''(2) sabiendo que g(1) = 2, g'(1) = 3, g''(1) = -1, f'(2) = 4 y F''(1) = 23
- **38.** Si $f(x) = \frac{5x}{1+x^2}$, encuentre los puntos de f(x) donde la recta tangente es paralela a la recta 9x + 50y - 200 = 0
- **39.** Encontrar la ecuación de la recta tangente a la curva $y = (x-2)^2 + 2$, que sea perpendicular a la recta x + 2y - 12 = 0
- **40**. Encuentre la ecuación de la recta que es perpendicular a la curva $f(x) = \sqrt{x} + 1$ y paralela a la recta x + y = 0.
- **41.** Encuentre la ecuación de la recta tangente a la gráfica de la curva $f(x) = \frac{16x}{x^2 + 16}$, si la recta pasa por el punto $\left(-2, -\frac{8}{5}\right)$.
- 42. Encuentre las ecuaciones de las dos rectas que pasan por el punto (2, -3) y que además son tangentes a la parábola con ecuación $y = x^2 + x$
- **43.** Determine las ecuaciones de las rectas normales a la curva $y = x^2$ y que pasan por el punto (0,1).
- **44.** Dada la parábola $y = x^2$ y el punto P = (8,2) que no está en la parábola. Encuentre las ecuaciones de las rectas tangentes a la parábola que pasan por el punto P.
- **45.** Determine la ecuación de cada una de las rectas que pasan por el punto (4,13) y son tangentes a la curva $y = 2x^2 - 1$

- **46.** Encuentre la ecuación de la recta que es tangente a la curva y perpendicular a la recta cuya ecuación es 2x + y 3 = 0. Dibuje la gráfica de la parábola y la recta tangente.
- **47.** Determine la parábola con ecuación $y = ax^2 + bx$, cuya tangente en el punto (-1, 1) tiene por ecuación y = -3x 2
- **48.** Determinar las coordenadas de los puntos en que las rectas tangentes a la curva $y = \frac{x}{x+1}$, sabiendo que dichas rectas pasan por el punto (1, 2).
- **49.** Determine la ecuación de la parábola $y = ax^2 + bx + c$ que pase por el punto (1,5) y cuyas rectas tangentes en x = -2 y x = 2 tengan pendientes 6 y -2 respectivamente.
- **50.** Se está inflando un globo esférico. Encuentre la razón de cambio del área superficial con respecto al radio, cuando éste tiene una medida de 1 pie.
- **51.** Se lanza una piedra a un charco, generándose ondas circulares concéntricas. Determine la tasa de variación del área de la superficie afectada con respecto al radio cuando su radio es de 4 cm.
- **52.** Un péndulo de 10 cm de longitud ha oscilado de modo que θ es la medida en radianes del ángulo formado por el péndulo y una recta vertical. Si $h(\theta)$ es la altura vertical del extremo del péndulo por arriba de su posición más baja. Determine la razón instantánea de cambio de $h(\theta)$ con respecto a θ , cuando $\theta = \frac{\pi}{6}$.
- **53.** Determine una ecuación de la recta tangente a la curva $y = 3x^2 4$ y que sea paralela a la recta 3x + y = 4. Utilice la definición para calcular la derivada.