Measurements of CKM angle γ in LHCb

Martin Tat, on behalf of the LHCb collaboration

University of Oxford

Beauty 2023, Clermont-Ferrand

3rd-7th July 2023

Introduction to γ and CP violation

- ullet CPV in SM is described by the Unitary Triangle, with angles lpha, eta, γ
- The angle $\gamma = \arg\Bigl(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\Bigr)$ is very important:
 - Negligible theoretical uncertainties: Ideal SM benchmark
 - Accessible at tree level: Indirectly probe New Physics that enter loops
 - 3 Compare with a global CKM fit: Is the Unitary Triangle a triangle?

(a) Tree level: $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$

(b) Loop level: $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005)

Sensitivity through interference

Measure γ through interference effects in $B^{\pm} \rightarrow DK^{\pm}$

- ullet Superposition of D^0 and $ar{D^0}$
 - ullet Consider $D^0/ar{D^0}$ decays to the same final state, such as $D o K^+K^-$
- $b o u \bar c s$ and $b o c \bar u s$ interference o Sensitivity to γ $\mathcal{A}(B^-) = \mathcal{A}_B \left(\mathcal{A}_{D^0} + r_B e^{i(\delta_B \gamma)} \mathcal{A}_{\bar{D^0}} \right)$ $\mathcal{A}(B^+) = \mathcal{A}_B \left(\mathcal{A}_{\bar{D^0}} + r_B e^{i(\delta_B + \gamma)} \mathcal{A}_{D^0} \right)$

Multi-body D decays

This talk: Focus on multi-body *D* decays, where interference effects vary across phase space

- ullet Hadronic parameters r_D and δ_D are functions of phase space
- Compare yields of B^+ and B^- and determine the asymmetry in local phase space regions

Multi-body D decays

- Measurements of the amplitude-averaged δ_D , c_i and s_i , have been measured directly at:
 - CLEO Phys. Rev. D82 (2010) 112006
 - BESIII Phys. Rev. D101 (2020) 112002
- ullet The value of γ obtained will be model independent
- $\gamma = \left(68.7^{+5.2}_{-5.1}\right)^{\circ}$ with $B^{\pm} \to [K^0_S h^+ h^-]_D h^{\pm}$ JHEP **02** (2021) 0169

This method may be generalised to neutral B decays:

LHCb-PAPER-2023-009 New preliminary results!

$$B^0 o (K_S^0 h^+ h^-)_D (K^+ \pi^-)_{K^*}$$

- Two separate selections of K_S^0 :
 - LL (long tracks): K_S^0 decays in the VELO
 - ullet DD (downstream tracks): K_S^0 decays downstream of the VELO
- $B^0 \to DK^{*0}$ candidates with $D \to K_S^0 \pi^+ \pi^-$ ($D \to K_S^0 K^+ K^-$):
 - \bullet LL: $102\pm17~(12\pm6)$
 - DD: $288 \pm 25 (32 \pm 8)$

- Non-zero bin asymmetries are observed:
 - Large asymmetries are seen between B^0 ($\bar{B^0}$) bin pairs
 - No CPV is observed in B_s^0 decays

- Non-zero bin asymmetries are observed:
 - Large asymmetries are seen between B^0 ($\bar{B^0}$) bin pairs
 - No CPV is observed in B_s^0 decays
- Asymmetries differ in size and magnitude across bins of phase space

• Measured *CP*-violating observables:

$$x_{\pm} \equiv r_{B^0} \cos(\delta_{B^0} \pm \gamma)$$
 and $y_{\pm} \equiv r_{B^0} \sin(\delta_{B^0} \pm \gamma)$

- ullet Measured value of γ is consistent with world average:
 - $\gamma = (49 \pm 20)^{\circ}$
 - $\delta_{B^0} = (236 \pm 19)^{\circ}$
 - $r_{B^0} = 0.27 \pm 0.07$

 $B^- \to D^* K^-$ decays are also a powerful probe of CPV:

LHCb-PAPER-2023-012

New preliminary results!

$$B^- o [D\gamma]_{D^*} K^ \mathcal{A}(B^-) \propto \mathcal{A}(D^0) + r_B e^{i(\delta_B - \gamma)} \mathcal{A}(\bar{D^0}) \quad \mathcal{A}(B^-) \propto \mathcal{A}(D^0) - r_B e^{i(\delta_B - \gamma)} \mathcal{A}(\bar{D^0})$$

The relative signal swap results in opposite CP asymmetries between $D^* \to D\pi^0$ and $D^* \to D\gamma$

- Good agreement between individual bin asymmetries and the combined CP fit
- Bin asymmetries between $D^* \to D\pi^0$ and $D^* \to D\gamma$ are generally opposite in magnitude

These results provide strong constraints on γ :

- $\gamma = (69 \pm 14)^{\circ}$
- $\delta_B^{D^*K} = (311 \pm 15)^\circ$
- $r_R^{D^*K} = 0.15 \pm 0.03$

Phase-space binned $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

Can also consider more complicated multi-body decays: $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

- Phase space is 5-dimensional...
- ...use an amplitude model to determine an efficient binning scheme!

Bins i < 0 on top, i > 0 below

LHCb-PAPER-2022-037, arXiv:2301.10328 (accepted by EPJC)

Phase-space binned $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

Fully charged final state ⇒ Highly suitable for LHCb

- $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]h^{\pm}$ signal yield:
 - $B^{\pm} \to DK^{\pm}$: 3026 ± 38
 - $B^{\pm} \to D\pi^{\pm}$: 44349 ± 218

Phase-space binned $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_DK^{\pm}$

- Clear bin asymmetries are seen, and the non-trivial distribution is driven by the change in strong phases across phase space
- \bullet While the interpretation of γ require charm inputs, the observed bin asymmetries are model independent

Phase-space integrated $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

Additionally, one can measure the phase-space integrated asymmetries and measure additional *CP*-violating observables

More B^- candidates because $D^0 \to K^+ K^- \pi^+ \pi^-$ is predominantly $\it CP\text{-}{\rm even}$

Interpretation of γ

From the phase-space binned asymmetries, we obtain:

•
$$\gamma = (116^{+12}_{-14})^{\circ}$$

•
$$\delta_D^{DK} = (81^{+12}_{-14})^{\circ}$$

•
$$r_B^{DK} = 0.110^{+0.020}_{-0.020}$$

These results are model dependent, and will be updated once BESIII strong-phase inputs are available

Summary and conclusion

- \bullet LHCb has produced several measurements of γ using different ${\cal B}$ and ${\cal D}^{(*)}$ decay combinations
- ② Phase-space binned analyses using the golden mode $D \to K_S^0 \pi^+ \pi^-$ provide the most powerful constraints for our γ combination
- I have presented two new model-independent measurements:
 - $B^0 o DK^{*0}$ with $K^{*0} o K^+\pi^-$
 - ullet $B^\pm o D^* h^\pm$ with $D^* o D \pi^0$ and $D \gamma$
- **3** Additionally, a binned measurement with the channel $B^\pm \to [K^+K^-\pi^+\pi^-]K^\pm$ has been performed for the first time
 - Model-dependent result has some tension with current world average
 - Need external inputs for charm strong-phases from BESIII!

Summary and conclusion

Thanks for your attention!