Detector Simulation Using GEANT4

Email: zhaor25@mail2.sysu.edu.cn

School of Physics

Outline

- **1** Brief Introduction
- 2 physcis and scoring
- 3 simulation output
- 4 summary

Priliminary Geometry Design

- **1** scintillator cubes $10 \times 10 \times 10$
- 2 flat film as neutron detector: 4layers
- 3 six light guide arrays
- 4 six PMT [SiPM] arrays

图: scintillator cube

图: scintillator cube+light guide+PMT

Details about the Geometry Set-up

The structure of one dimention detector:

■: Geometry structure:PMT-lightguide-scintillator-air boundary between [scintillators;scintillator and lightguide;lightguide and PMT cathode]

00000000000

Details about the Geometry Set-up

Not finished yet.

图: 3 dimention detector layout

Details about the Geometry Set-up

: neutron detection scintillator layers in the y direction.

Easy to change the full detector size according to experimental requirements.

THERMAL NEUTRON DETECTOR

- the neutron detector EJ-426.
- flat white thin sheet, 6LiF: (ZnS:Ag)

detection princeple:

$$^{6}\text{Li} + ^{1}\text{n} \rightarrow ^{3}\text{H} + ^{4}\text{He} + 4.78\text{MeV}$$
 (1)

The resulting triton and alpha particle are detected by ZnS:Ag phosphor with the broad blue fluorescent spectrum.

DETECTION PROPERTIES				
Screen Type		EJ-426-0	EJ-426HD2	
⁶ LiF:ZnS Mass Ratio		1:3	1:2	
⁶ Li Density (atoms/cm ³)		8.81 × 10 ²¹	1.39 × 10 ²²	
Theoretical N™ Efficiency	0.32 mm thick	0.23	0.34	
	0.50 mm thick	0.34	0.48	

parameter adjustment

choose the formula: EJ-426-0 or EJ-426HD2?

2 switch the thickness: 0.32mm or 0.5mm?

3 sheet size: 60mm × 60mm?

4 do we need backing material?

BACKING				
MATERIAL TYPE	DESCRIPTION	SUFFIX		
Aluminum Foil	50 μm thick foil	(none)		
	0.25 mm thick sheet	-PE		
Clear Polyester Sheet	Laminated between two 0.25 mm thick sheets	-PE2		
Aluminized Mylar	0.12 mm thick sheet	-AM		
Pure Aluminum	0.5mm thick plate	-PA		
High Reflective Aluminum	0.4mm thick plate	-A		

next to be done

- detector construction.
 - add remain geometry [lightguides and PMTs].
 - attach correct material to each logical volume.
 - other components
- adjustment of physis list
 - about scitillator material and their optical properties
 - optical performance of lightguides
 - response of PMT [SiPM]
 - optical boundaries
- add different primary paticle sources
 - alter the particle type, position, momentum, energy etc.
 - use gps to control theparticle source
- sensitive detector and scoring
- more useractions for output and analyze.

finished

- finish the geometry.
- finish the material
- add GPS
- add sensitive detector (SD)
- priliminary analyze codes

next to be done

- more details about the optical photons(optical properties and optical boundaries)
- update the analyzing class

material of detector components

gamma scintillator:EJ-200
Base: Polyvinyl toluene formula: [CH2CH(C6H4CH3)]n

Density: 1.023 g/cm³ Refraction Index: 1.58

Light Output: No change from -60 $^{\circ}$ C to 20 $^{\circ}$ C

thermal neutron scintillator:EJ-426HD2

⁶LiF: ZnS MassRatio1: 3

 6 Li Density(atoms/cm 3): 1.39×10 22

⁶Li enriched to minimum of 95 atom percent.

details about detector components

- material of lightguide: H-K9L
- material of gaps between scintillators: air
- PMTs around the scintillators as sensitive detectors
- 4 currently PMTs work as ideal detectors with 100% PDE

density of EJ-426

```
formula: (^6LiF)(ZnS:Ag) density of ^6Li: 1.39*10^{22} atoms/cm^3 atomic mass of ^6Li: 6.0151amu atomic mass of ^7Li: 7.0160amu atomic mass of Fluorine: 18.9984amu ^6LiF:ZnS Mass Ratio: 1:2 density:(6.0151*.95+7.0160*0.05+18.9984)*3*0.139/6.022=1.7355/cm<math>^3
```

sensitive detector

- optical photon with single wavelength(energy)
- 2 PMT record the time and count of photon hits.
- 3 do I need to attach SD to scintillators inside?

optical simulation part

response curve v.s photon energy(wavelength)

- scintillator emission spectrum
- reflectivity of materials
- refractive index
- attenuation length
- PMT detection effictioncy

wave length range: 350nm, 650nm active the rise time. the scintillation process. absorption and re-emission of photons; Boundary Process

play around- the 2D case

- almost finish simple detector geometry.
- other parts of simulation program still in progress.

