Assessing and Explaining Local Government Efficiency in Natural Resource-Rich Countries

The case of Chilean Municipalities

Javier Beltran

Queensland University of Technology

Motivation

Evidence on the **Trade-off** between **efficiency and equity** is not conclusive...

On the one hand ...

Pursuing **equality can reduce efficiency** (see Okun 1975; Browning & Johnson 1984; Andersen & Maibom 2016)

On the other hand ...

Equality could also be an important ingredient in promoting and sustaining growth (see Berg & Ostry 2011; kumhof, Rancière & Winant 2015)

But this **trade-off** is commonly used as an argument against reforms that could help reduce inequalities

Research so far

Local Government Efficiency (LGE) studies have been focus on:

Measuring LGE

- Single service vs overall efficiency
- Parametric (SFA) vs nonparametric (DEA) techniques
- Input oriented vs output oriented
- Selection of inputs and outputs

Explaining differences in LGE

- Discretionary factors (inputs and outputs)
- Non-discretionary (contextual) factors: Socioeconomic, demographic, geographic, political, institutional, etc.

Research Question

What role does income inequality play in explaining differences in municipal efficiency?

Research Hypotheses

Income inequality has a negative effect on municipal efficiency

How could income inequality influence LGE?

Contextual factors, in general, could...

- influence competition among municipalities
- affect the degree of monitoring over local authorities
- affect the degree of incentives to perform efficiently (Paradox of Plenty)

In the case of income inequality:

- It is used to capture the degree of **heterogeneity in the demand for public services** that county population exerts over local authorities
- Small **richest groups** can exert a higher **influence over local authorities** resulting in low quality and quantity of services for most of the county population.
- It could be associated with a **lower monitoring and demand for an efficient performance** when is associated with a low average income.

Data

Inputs - Outputs used to measure LGE

- National System of Municipal Information, SINIM (2006-2017)
- Sample of 324 municipalities in 12 years (3888 observations)

County-Level Data on Contextual Factors

- National Socioeconomic Characterization Survey, CASEN (2006 2009 -2011 - 2013 - 2015 - 2017)
- SINIM
- "Servicio de Impuestos Internos", SII
- National Institute of statistics, INE
- in total 1944 observations (324 municipalities in 6 years)

Methodology

Methodology: Two Stage Approach

First Stage: DEA analysis

- Input oriented assuming variable returns to scale
- Five inputs and four outputs.
- Result: A vector of **efficiency scores (ES)** for each municipality

Second Stage: Regression Analysis

- **Dependent variable**: DEA efficiency scores
- **Independent variables**: Measure of Income inequality + remaining contextual factors including county (zone) specific and time fixed effects
- Estimation method: Censored regression + Instrumental Variable (IV)
- ullet Proposed Instrument: $pss_firms = rac{ ext{Number of firms in primary sector}}{ ext{Total number of firms}}$

First Stage: DEA Results

Inputs and outputs used in DEA: Summary Statistics

Statistic	Mean	St. Dev.	Min	Max
X1:Operational Expenditure	108.19	106.66	0.00	1,542.19
X2:Personnel Expenditure	47.94	40.67	7.66	629.25
X3:Education Expenditure	202.08	131.86	0.00	3,267.76
X4:Health Expenditure	68.36	46.41	0.00	415.80
X5:Municipal Facilities	0.001	0.001	0.00	0.02
Y1:Own Permanent Revenues	71.81	112.91	4	1,618
Y2:Enrollment Public Schools	0.61	0.26	0.03	2.08
Y3:Medical Consultations	1.83	1.16	0.00	27.88
Y4:Community Organizations	0.01	0.01	0.00	0.16

How do we capture geographical differences in LGE?

Returns to scale by zone

RTS	Centre_North	Centre_South	North	South
CRS	33.33	17.1	25.00	13.77
DRS	21.97	42.6	47.15	41.67
IRS	44.70	40.3	27.85	44.56

Evolution Efficiency Scores by Zone (Full Period)

Efficiency Scores by Zone and Region

Unit	$n_counties$	mean	median	sd	\min	max
North	41	0.83	0.86	0.19	0.26	1
XV	3	0.88	1.00	0.22	0.27	1
I	6	0.73	0.80	0.28	0.26	1
II	8	0.98	1.00	0.07	0.70	1
III	9	0.79	0.79	0.14	0.53	1
IV	15	0.80	0.81	0.16	0.49	1
Centre_North	121	0.88	0.94	0.14	0.32	1
V	36	0.82	0.84	0.15	0.39	1
XIII	52	0.95	1.00	0.09	0.47	1
VI	33	0.81	0.82	0.15	0.32	1
Centre_South	116	0.82	0.83	0.15	0.34	1
VII	30	0.81	0.82	0.15	0.40	1
VIII	54	0.84	0.88	0.15	0.34	1
IX	32	0.77	0.77	0.16	0.40	1
South	46	0.77	0.77	0.18	0.31	1
XIV	12	0.74	0.74	0.13	0.46	1
X	25	0.74	0.75	0.19	0.31	1
XI	6	0.89	0.98	0.15	0.44	1
XII	3	0.85	0.91	0.17	0.52	1
Country	324	0.83	0.86	0.16	0.26	1

- **Mean efficiency** score is **0.83**.
- So, municipalities could, on average, reduce the use of inputs in 17% to get the same level of outputs

Second Stage

The model

To test our hypothesis, the empirical model is defined as:

$$heta_{it} = eta_1 gini_{it} + Z_{it}eta + \delta_t + lpha_i + \epsilon_{it}$$

Where:

- θ_{it} is the vector of efficiency scores from the DEA analysis,
- $gini_{it}$ is the Gini coefficient of each county,
- *Z* is a vector of controls.
- δ_t are year-specific effects,
- α_i are municipality-specific constants,
- ϵ_{it} is a vector of error terms and

Model Comparisons - Cross-sectional Censored Regressions

	Dependent variable: Efficiency Score (VRS)						
	2006	2009	2011	2013	2015	2017	
gini	-0.228	-0.447^{**}	-0.393^*	-0.242	-0.189	-0.371^*	
$\log(\text{income})$	0.119^{*}	0.249^{***}	0.208^{***}	0.164^{**}	0.221^{***}	0.257^{***}	
agroland	-0.002^{***}	-0.003^{***}	-0.003^{***}	-0.001	-0.002^{***}	-0.001	
log(density)	0.019^{**}	0.032^{***}	0.021^{***}	0.034^{***}	0.017^{**}	0.005	
own	-0.002^*	-0.002	-0.003**	-0.004***	0.002^{*}	-0.002	
education	-0.018	-0.038^*	-0.046^{**}	-0.026	-0.009	-0.020	
IDD	-0.005^{**}	-0.006^{***}	-0.004^*	-0.001	-0.004^{*}	-0.006***	
professional	0.001	-0.0001	-0.0002	0.003^{**}	0.002	0.0003	
mcf	0.002^{*}	0.002^{**}	0.002^{**}	0.0003	0.0004	0.0004	
LEFT mayor	-0.016	0.012	0.008	0.003	0.020	-0.022	
RIGHT mayor	0.007	-0.002	0.032	0.013	0.038	0.002	
reg_cap	-0.039	-0.061	-0.043	-0.106^*	0.0004	-0.012	
Centre South	0.068**	0.126^{***}	0.050	0.028	0.054^{*}	0.040	
North	-0.019	0.099^{**}	0.056	0.135^{***}	0.006	0.034	
South	-0.051	0.044	0.015	-0.025	-0.019	-0.065^*	
Observations	324	324	324	324	324	324	
Log Likelihood	-14.778	12.330	-15.924	-24.773	-1.200	6.937	
Akaike Inf. Crit.	63.555	9.339	65.848	83.546	36.400	20.127	

Note:

*p<0.1; **p<0.05; ***p<0.01

_	Pa	nel Data Regress		variable - Efficie	ency Score (VRS)		
		$instrumental\\variable$					
	Pooled	regres. RE	Pooled	RE	OLS IV	Tobit IV	
	(1)	(2)	(3)	(4)	(5)	(6)	
gini	-0.033	-0.049	-0.282***	-0.189***	-1.434***	-1.196^*	
	(0.082)	(0.068)	(0.081)	(0.073)	(0.432)	(0.538)	
log(income)			0.184***	0.106***	0.258***	0.292***	
			(0.026)	(0.025)	(0.054)	(0.069)	
agroland			-0.002***	-0.002***	-0.002***	-0.002***	
			(0.0003)	(0.0004)	(0.0003)	(0.0003)	
log(density)			0.022***	0.020***	0.012***	0.021***	
			(0.003)	(0.005)	(0.003)	(0.003)	
own			-0.002***	-0.001**	-0.001***	-0.001***	
			(0.001)	(0.001)	(0.0004)	(0.0005)	
education			-0.022***	-0.005	-0.034***	-0.033**	
cadeation			(0.008)	(0.008)	(0.008)	(0.010)	
IDD			-0.004***	-0.005***	-0.002**	-0.003**	
IDD			(0.001)	(0.001)	(0.001)	(0.001)	
professional			0.001*	-0.00004	0.0004	0.0008	
orolessional			(0.0005)	(0.0005)	(0.0004)	(0.0005)	
mcf			0.001***	0.002***	0.001***	0.001**	
inci			(0.0003)	(0.002)	(0.0003)	(0.0004)	
I FET marray			-0.001	0.006	-0.007	-0.005	
LEFT mayor			-0.001 (0.011)	(0.010)	-0.007 (0.009)	-0.005 (0.011)	
DIGHT			0.017	0.005	0.000	0.010	
RIGHT mayor			0.017 (0.012)	0.005 (0.011)	0.003 (0.010)	0.013 (0.012)	
			` '	` '	. ,	` ′	
reg_cap			-0.047^{**} (0.023)	-0.069** (0.034)	0.024 (0.022)	-0.021 (0.028)	
			` ,	` '	, ,	` ′	
Centre South	-0.089^{***} (0.012)	-0.086^{***} (0.019)	0.058^{***} (0.014)	0.022 (0.022)	0.123*** (0.028)	0.113** (0.035)	
	(0.012)	(0.013)	(0.014)	(0.022)	(0.020)	(0.050)	
North	-0.054***	-0.045	0.050***	0.059*	0.030*	0.061**	
	(0.016)	(0.033)	(0.019)	(0.032)	(0.016)	(0.020)	
South	-0.142***	-0.124***	-0.019	-0.033	0.036	0.021	
	(0.016)	(0.044)	(0.016)	(0.026)	(0.023)	(0.029)	
Year Dummies?	Yes	Yes	Yes	Yes	Yes	Yes	
Note:					*p<0.1; **p<0		

Panel data regressions

	Dependent variable: Efficiency Score (VRS)							
		cens $regres$		$instrumental \ variable$				
	Pooled	${ m RE}$	Pooled	RE	OLS IV	Tobit IV		
	(1)	(2)	(3)	(4)	(5)	(6)		
gini	$\frac{-0.033}{(0.082)}$	$\frac{-0.049}{(0.068)}$	$\frac{-0.282^{***}}{(0.081)}$	$\frac{-0.189^{***}}{(0.073)}$	$\frac{-1.434^{***}}{(0.432)}$	$\frac{-1.196^*}{(0.538)}$		
$\log(\text{income})$			0.184*** (0.026)	0.106*** (0.025)	0.258*** (0.054)	0.292*** (0.069)		
agroland			-0.002^{***} (0.0003)	-0.002^{***} (0.0004)	-0.002^{***} (0.0003)	-0.002^{***} (0.0003)		
$\log(\text{density})$			0.022*** (0.003)	0.020*** (0.005)	0.012*** (0.003)	0.021*** (0.003)		
own			-0.002^{***} (0.001)	-0.001^{**} (0.001)	-0.001^{***} (0.0004)	-0.001^{***} (0.0005)		
education			-0.022*** (0.008)	-0.005 (0.008)	$\frac{-0.034^{***}}{(0.008)}$	-0.033** (0.010)		
IDD			-0.004^{***} (0.001)	$\frac{-0.005^{***}}{(0.001)}$	$\frac{-0.002^{**}}{(0.001)}$	-0.003** (0.001)		
professional			$0.001^* \ (0.0005)$	-0.00004 (0.0005)	0.0004 (0.0004)	0.0008 (0.0005)		
mcf			0.001*** (0.0003)	0.002*** (0.0004)	0.001*** (0.0003)	0.001** (0.0004)		

Main results and future research

DEA

- The "municipal production function" shows variable returns to scale.
- The **average level of inefficiency is 17%**, with higher levels in the South area of the country.

Regression analysis

- Empirical evidence of a negative relationship between inequality and efficiency.
- A reduction of income inequality could have positive effects on economic efficiency, at least at the level of local governments.

Future research

- Spatial dependence-heterogeneity in LGE.
- Is the negative coefficient for *education* explained by the reduction in **electoral participation**?
- What about the issue of reverse causality?

Thanks for Listening! Questions?