Intelligence Artificielle Développementale

1^{er} Avril 2014
Olivier.georgeon@liris.cnrs.fr
http://www.oliviergeorgeon.com

Plan

- Vers de la recherche en robotique.
 - Demos
- Conclusion du cours.

- Travaux pratiques
 - Développez votre agent auto-programmant (suite).

Recherche en robotique

Expérimentation

Conclusion sur l'IA développementale

Positionnement dans le cadre de l'IA

Non symbolique

Symbolique

Newell & Simon (1972) goals drive problem solving; (1976) Physical Symbol Systems.

IA symbolique

"L'environnement" passe des symboles à l'agent en input. Nous codons une sémantique des symboles dans l'agent. Nous implémentons un « moteur de raisonnement ». (ne pas confondre symbolique et discret)

Positionnement dans le cadre de l'IA

« Perception and action arise together, dialectically forming each other » (Clancey, 1992)

Cognition située (Clancey 1992)			Apprentissage par l'expérience
Apprentissage « désincarnée »			Apprentissage par enregistrement (Georgeon, 2014)
En confondant naivement "input" et "perception" (Crowley, 2014)		Apprentissage par renforcement. Réseaux de neurones.	A
Non-symbolic		Machine learning.	
Symbolic	Newell & Simon (1972) goals drive problem solving; (1976) Physical Symbol Systems.		

Apprentissage « désincarné »

L'environnement passe des "observations" en input de l'agent. La relation monde -> observation est "statistiquement" une surjection.

Nous implémentons des algorithmes qui supposent qu'un état du monde donné induit une observation donnée (bien que partielle et bruitée).

Positionnement dans le cadre de l'IA

Cécité au changement

Ron Rensink demonstrating change blindness (from http://nivea.psycho.univ-paris5.fr

http://nivea.psycho.univ-paris5.fr/

Apprentissage par l'expérience

L'environnement passe le résultat d'une expérience initiée par l'agent. C'est contre-intuitif!

Nous implémentons des algorithmes qui apprennent à "maitriser les contingences sensorimotrices" (O'Regan & Noë, 2001) viergeorgeon.com

Accepter cette contre-intuitivité

 Nous avons l'impression que le soleil tourne autour de la terre.

Impression est trompeuse !(Copernic, 1519)

- Nous avons l'impression de recevoir des données sur l'état du monde.
 - Impression trompeuse! (Philosophie de la connaissance depuis les lumières, au moins).
 - Comment transcrire cette contre-intuitivité dans les algorithmes?

Enjeux: cognition sémantique

Raisonnement et langage

Systèmes à bases de règles, Ontologies, lA traditionnelle.

Cognition sémantique

Ancrage de la connaissance dans l'expérience, Construction de sens.

Auto-programmation.

Adaptation stimumuls-response

Apprentissage par renforcement, Réseaux de neurones, machine learning classique.

Conclusion

- Raisonner en termes d'interactions
 - Plutôt que de séparer perception et action.
- Raisonner en termes de comportements générés
 - Plutôt qu'en termes de données apprises.
- Garder son esprit critique
 - Inventer de nouvelles approches.

Inventer de nouvelles approches

« Hard problem of AI »

Problème formalisé

Etc.

Travaux dirigés

3eme partie (suite).

Salles TP6 et TP7 Groupes de 2

Environnement 3 modifié

- Se comporte comme Environnement 0 jusqu'au cycle 5, puis comme environnement 1 jusqu'au cycle 10, puis comme environnement 0.
- Implémentation
 - If (step <= 5 or step > 10)
 - If (experiment = e1) then result = r1
 - If (experiment = e2) then result = r2
 - Else
 - If (experiment = e1) then result = r2
 - If (experiment = e2) then result = r1
 - Step++

Agent 3 dans Environnement 3

Environnement 0

0. e1r1,-1,0 1. e1r1,-1,0 learn (e1r1e1r1),-2,1 activated (e1r1e1r1),-2,1 propose e1,-1 2. e2r2,1,0 learn (e1r1e2r2),0,1 3. e2r2,1,0 learn (e2r2e2r2),2,1 activated (e2r2e2r2),2,1 propose e2,1 4. e2r2,1,0 activated (e2r2e2r2),2,2 propose e2,2

Environnement 1

```
5. e2r1,-1,0
learn (e2r2e2r1),0,1
6. e2r1,-1,0
learn (e2r1e2r1),-2,1
activated (e2r1e2r1),-2,1
propose e2,-1
7. e1r2,1,0
learn (e2r1e1r2),0,1
8. e1r2,1,0
learn (e1r2e1r2),2,1
activated (e1r2e1r2),2,1
propose e1,1
9. e1r2,1,0
activated (e1r2e1r2),2,2
propose e1,2
```

Environnement 0

```
10. e1r1,-1,0
learn (e1r2e1r1),0,1
activated (e1r1e2r2),0,1
activated (e1r1e1r1),-2,1
propose e2,1
propose e1,-1
11. e2r2,1,0
activated (e2r2e2r1),0,1
activated (e2r2e2r2),2,2
propose e2,1
12. e2r2,1,0
activated (e2r2e2r1),0,1
activated (e2r2e2r2),2,3
propose e2,2
13. e2r2,1,0
```

Principe de l'Agent 3

Environnement 4

- Retourne résultat r2 uniquement si l'agent alterne les expériences.
- Agent motivé pour obtenir r2: (i12 > 0, i22 > 0)

```
    e1 -> r2, e1 -> r1, ... e1 -> r1, e2-> r2, ... e2->r1, ...
    e2 -> r1, e1->r2, e2 -> r2, e1 -> r2, e2 -> r2, ...
```

```
    If (experience<sub>t-1</sub>== experience<sub>t</sub>)
        result = r1;
        else
        result = r2;
```

Environnement 4

- Retourne résultat r2 uniquement après deux fois la même expérience.
- e1 -> r1, e1 -> r2, e1 -> r1, e1-> r1, ... e1->r1, e2 -> r1, e2->r2, e2 -> r1, ..., e2 -> r1, e1 -> r1, e1 -> r2, e2 -> r1, e2 -> r2, e1 -> r1, e1 -> r2, ...

```
    If (experience<sub>t-2</sub>!=experience<sub>t</sub> && experience<sub>t-1</sub>==experience<sub>t</sub>)
        result = r2;
        else
        result = r1;
```

Rapport

Agent 1

- Explications du code
- Traces dans les environnements 0 et 1 avec différentes motivations.
- Explications du comportement

Agent 2

- Explications du code
- Traces dans les environnements 0 à 2 avec différentes motivations.
- Explications du comportement

• Agent 3

- Explications du code
- Traces dans les environnements 0 et 4 avec différentes motivations.
- Explications des comportement

Conclusion

 Quelle serait la prochaine étape pour faire l'agent 4 capable de s'adapter aux environnements 1 à 4?