Tungsten IEA Meeting, ICFRM-17 Aachen Monday, October 12, 2015 Konf 4

Activities of W-material Development, Evaluation and Irradiation in Japan

A. Hasegawa Tohoku Univ.

Activity for Fusion Reactor Materials in Tohoku University

- Tungsten material development for plasma-facing components
- Irradiation effect on fusion reactor materials (i.e. RAFM and W)
- Analysis of the structural response of fusion reactor components by computer simulation
- Development of the residual life prediction and mechanical property investigation technology for fusion and fission reactor component materials

Dynamitron accelerator

Tungsten Material developme

M. Fukuda, to be published

TOHOKU

The W alloys which shows higher recrystallization temperature and tensile strength than pure W had been developed. The W-alloy development is supported by NIFS.

Powder metallurgical processed materials

M. Fukuda et al, Fus. Sci, Technol., 68 (2015)

Irradiation Effect

The effects of neutron and ion irradiation on the microstructure and mechanical property in W materials

Examined materials

Pure W
K-doped W
W-3%Re
K-doped W-3%Re
La-doped W-3%Re

W-ion irradiation at 500 °C and 800°C.

Dpa: 0.2,1 and 5dpa

T. Hwang, Po 3-31

1000 ■90°C (HFIR) ◆ 400-600°C (HFIR) 800 ▲ 650-850°C (HFIR) rradiation hardening, AHV ◆ 400-600°C (Joyo) ▲ 650-850°C (Joyo) 600 ◆ 600°C (JMTR) ▲ 800°C (JMTR) 400 200 Solid symbols: SX Open symbols: HR Half solid symbols: AC Dose, dpa M. Fukuda, Po 1-65

Neutron irradiation experiment in HFIR will be performed at 500, 800, and 1200 °C to ~1.5 dpa

PHENIX Project

Neutron irradiation to various tungsten materials was performed in HFIR rabbit capsules without thermal neutron shielding.

Examined materials

Pure W

K-doped W

W-3%Re

K-doped W-3%Re

La-doped W-3%Re

The neutron irradiation in HFIR with thermal neutron shield to simulate the fusion reactor irradiation condition will be started in this FY.

Specimen types:

Small tensile specimen (SS-J)

Capsule Design Layout

Development of Fatigue Test Technology

S. Nogami, Parallel session 6B, Thursday, 8:30~

High Temp. LCF Test Technology using Small Specimen for Reliable Fatigue Life Database of W and CMC

Number of cycles to failure

KMC simulation of Re and Os interstitials in W (T. Suzudo, Poster 4-64 on Thursday)

Highlights

Low rotation barriers of W-Re/Os mixed dumbbells cause 3D motion and large diffusivity, which probably promoting precipitation.

KMC results

T. Suzudo, M. Yamaguchi, A. Hasegawa, Modeling Simulation Mater. Sci. Eng. 22 (2014) 075006; J. Nucl. Mater. (2015) accepted.

W R&D activities in IAE, Kyoto University

- 1. Damage analysis of high-heat loaded W-MB (Okunishi)
- 2. Effects of recrystallization on the DBTT of pure W (Kobayashi)
- 3. Ion-irradiation effects on pure W (Zhang)

Laser heat load tests on underwater explosive welding of W coated on F82H (Kyoto U. & Kumamoto U.)

Laser irradiation (4cycle up to 550°C at F82H) reduced the thermal conductivity slightly but crack was NOT observed.

Microstructure and D retention of W exposed to Mixture Plasma

M. Miyamoto et al., Nucl. Fusion 49(2009)065035, JNM 415(2011)S657, JNM 438(2013)S216

- > He seeding to D plasma causes suppression of blister formation and significant reduction in D retention.
- \triangleright The co-deposits with high ratio of D/Be (\sim 0.03) is obtained at the Be deposition condition.
- > D retention is suppressed again at Be erosion condition, regardless of He seeding.

