CS 228 : Logic in Computer Science

S. Krishna

Recap: Idea for SAT checking

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

- Each path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges
- G_{ω} has some special kinds of vertices
 - ► There is a unique vertex called the start vertex (blue vertex)
 - There are some vertices called good vertices (magenta vertex)
- ▶ Read off words on paths from the start vertex to any final vertex and call this set of words $L(G_{\varphi})$
- ▶ Ensure that G_{φ} is constructed such that $L(\varphi) = L(G_{\varphi})$.

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

A language $L \subseteq \Sigma^*$ is called FO-definable iff there exists an FO formula φ such that $L = L(\varphi)$.

What we plan to show: L is FO-definable $\Rightarrow L$ is regular. Note that the converse is not true.

Deterministic Finite Automata

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(q_2, b) = q_3$
 - $\hat{\delta}: Q \times \Sigma^* \to Q$ extension of δ to strings
 - $\hat{\delta}(q,\epsilon) = q$
 - $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

DFA: Transition Function on Words

- $\hat{\delta}(q, wa) = s = \delta(\hat{\delta}(q, w), a) = \delta(r, a)$
- $\hat{\delta}(q, wb) = t = \delta(\hat{\delta}(q, w), b) = \delta(r, b)$

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string $w \in \Sigma^*$ is either accepted or rejected by a DFA A
- $L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$
- $ightharpoonup \Sigma^* = L(A) \cup \overline{L(A)}$

Closer Look: DFA

- ▶ Blue state : ϵ , ab, ba, bb, aa, . . .
- ▶ Green state : a, b, aaa, aba, baa, bbb, bba, bab, . . .
- ightharpoonup All words in Σ^* reach a unique state from the initial state
- Words reaching a final state are accepted; all others are rejected

IIT Bombay CS 228 : Logic for CS S. Krishna

Closer Look: DFA

- ▶ state 1 : b*
- state 2: b*a, b*aa*, b*aa*(ba)*
- state 3 : b* ab, b* aa* b, b* aa* (ba)* b
- state 4 : b* abbΣ*, b* aa* bbΣ*, b* aa*(ba)* bbΣ*
- ightharpoonup All words in Σ^* reach a unique state from the initial state
- Words reaching a final state are accepted; all others are rejected

Closer Look: DFA

- Each state is a bucket holding infinitely many words
- Thus we have good and bad buckets
- ▶ The buckets partition Σ^*
- Good buckets determine the language accepted by the DFA
- Words that land in bad buckets are not accepted by the DFA

Language Acceptance: Proof

▶ $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$

Language Acceptance : Proof

- ▶ $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$
- ▶ Show that for any $w \in \Sigma^*$,
 - $\hat{\delta}(q_{00}, w) = q_{ij}$ with $i, j \in \{0, 1\}$, parity of i same as $|w|_a$ and parity of j same as $|w|_b$

Language Acceptance : Proof

- ► Prove by induction on |w|
- ▶ Base case : For $|w| = \epsilon$, $\hat{\delta}(q_{00}, \epsilon) = q_{00}$
- ▶ Assume the claim for $x \in \Sigma^*$, and show it for $xc, c \in \{a, b\}$.

Language Acceptance : Proof

- ► Case Analysis : If $|x|_a$ odd and $|x|_b$ even, then i = 1, j = 0
 - $\delta(q_{10}, a) = q_{00}, \delta(q_{10}, b) = q_{11}$
 - ▶ $|xa|_a$ is even and $|xa|_b$ is even
 - ▶ $|xb|_a$ is odd and $|xb|_b$ is odd
- Other Cases : Similar
- $\hat{\delta}(q_{00}, x) = q_{10}$ iff $|x|_a$ odd and $|x|_b$ even

Closure Properties : DFA

Closure under Complementation

- ▶ If *L* is regular, so is \overline{L}
 - ▶ Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)
 - For every $w \in L$, $\hat{\delta}(q_0, w) = f$ for some $f \in F$
 - ► For every $w \notin L$, $\hat{\delta}(q_0, w) = q$ for some $q \notin F$
 - ▶ Construct $\overline{A} = (Q, q_0, \Sigma, \delta, Q F)$
 - $w \in L(\overline{A})$ iff $\hat{\delta}(q_0, w) \in Q F$ iff $w \notin L(A)$
 - $L(\overline{A}) = \overline{L(A)}$

aaab

aaab

► aaab

► aaab

▶ aaab

aabba

aabba

▶ aabba

▶ aabba

▶ aabba

aabba

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q, s), a) = (\delta_1(q, a), \delta_2(s, a))$
 - $F = F_1 \times F_2$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A)$$
 iff $\hat{\delta}((q_0, s_0), x) \in F$ iff $(\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2$ iff $\hat{\delta_1}(q_0, x) \in F_1$ and $\hat{\delta_2}(s_0, x) \in F_2$ iff $x \in L(A_1)$ and $x \in L(A_2)$

Closure under Union

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A)$$
 iff $x \in L(A_1)$ or $x \in L(A_2)$