

Calcolo Differenziale

Eugenio Montefusco

17. Ricerca di zeri

Un problema "concreto"

$$y = f(x) = x^3 - 10x^2 + 5$$

Numeri reali e numeri "reali"

IR	Q
π	3.141593
$\sqrt{2}$	1.41421
ln(2)	0.69315
е	2.7182818
sin(1)	0.84147

Sia f una funzione tale che $f(a_0)f(b_0) < 0$

Sia f una funzione tale che $f(a_0)f(b_0) < 0$

il punto medio di
$$I_0 = [a_0, b_0] \grave{e} P = \frac{1}{2}(a_0 + b_0)$$

Sia f una funzione tale che $f(a_0)f(b_0) < 0$

il punto medio di
$$I_0 = [a_0, b_0]
eq P = \frac{1}{2}(a_0 + b_0)$$

scegliamo una delle due metà risultanti per proseguire la ricerca

Sia f una funzione tale che $f(a_0)f(b_0) < 0$

il punto medio di
$$I_0 = [a_0, b_0] \ \text{è} \ P = \frac{1}{2}(a_0 + b_0)$$

scegliamo una delle due metà risultanti per proseguire la ricerca

•
$$I_1 = [a_1, b_1] = [a_0, P]$$
 se $f(a_0)f(P) < 0$

Sia f una funzione tale che $f(a_0)f(b_0) < 0$

il punto medio di
$$I_0 = [a_0, b_0]
eq P = \frac{1}{2}(a_0 + b_0)$$

scegliamo una delle due metà risultanti per proseguire la ricerca

•
$$I_1 = [a_1, b_1] = [a_0, P]$$
 se $f(a_0)f(P) < 0$

•
$$I_1 = [a_1, b_1] = [P, b_0] \text{ se } f(P)f(b_0) < 0$$

Sia f una funzione tale che $f(a_0)f(b_0) < 0$

il punto medio di
$$I_0 = [a_0, b_0] \ \hat{e} \ P = \frac{1}{2}(a_0 + b_0)$$

scegliamo una delle due metà risultanti per proseguire la ricerca

•
$$I_1 = [a_1, b_1] = [a_0, P]$$
 se $f(a_0)f(P) < 0$

•
$$I_1 = [a_1, b_1] = [P, b_0] \text{ se } f(P)f(b_0) < 0$$

Ora si ripeta il ragionamento su I₁...

Una stima del metodo

$$(b_n - a_n) = \frac{b_{n-1} - a_{n-1}}{2} = \dots = \frac{b_o - a_0}{2} = \frac{L}{2^n}$$

se vogliamo che

$$(b_n - a_n) < \varepsilon$$

dobbiamo iterare il procedimento

$$n = \left[\frac{\ln(L/\varepsilon)}{\ln(2)}\right] + 1$$

Cerchiamo una soluzione dell'equazione $f(x) = x^3 - 10x^2 + 5 = 0$

X	f(x)	Interval
0.6	1.616	•••
0.8	-0.888	(0.6, 0.8)
0.7	0.443	(0.7, 0.8)
0.75	-0. 203	(0.7, 0.75)
0.725	0.125	(0.725, 0.75)
0.7375	-0.038	(0.725, 0.7375)
0.73125	0.044	(0.7375, 0.73125)
0.73438	0.003	(0.7375, 0.73438)
0.73594	-0.017	(0.73438, 0.73594)
0.73516	-0.007	(0.73438, 0.73516)
0.73477	-0.002	(0.73438, 0.73477)

Per il teorema di Lagrange sappiamo che

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) \simeq f'(x_1)$$

II metodo di Newton

Per il teorema di Lagrange sappiamo che

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) \simeq f'(x_1)$$

se f' è continua e x_2 abbastanza vicino a x_1 , da cui

$$f(x_2) = f(x_1) + f'(x_1)(x_2 - x_1)$$

Il metodo di Newton

Per il teorema di Lagrange sappiamo che

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) \simeq f'(x_1)$$

se f' è continua e x_2 abbastanza vicino a x_1 , da cui

$$f(x_2) = f(x_1) + f'(x_1)(x_2 - x_1)$$

noi cerchiamo una soluzione dell'equazione cioè

$$0 = f(x_1) + f'(x_1)(x_2 - x_1)$$

Il metodo di Newton

Per il teorema di Lagrange sappiamo che

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) \simeq f'(x_1)$$

se f' è continua e x_2 abbastanza vicino a x_1 , da cui

$$f(x_2) = f(x_1) + f'(x_1)(x_2 - x_1)$$

noi cerchiamo una soluzione dell'equazione cioè

$$0 = f(x_1) + f'(x_1)(x_2 - x_1)$$

che possiamo riscrivere così

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

I ragionamenti precedenti possono essere usati per costruire il seguente algoritmo iterativo

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

II metodo di Newton

I ragionamenti precedenti possono essere usati per costruire il seguente algoritmo iterativo

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Osservazione.

Il metodo funziona bene "lontano" dai punti in cui la derivata si annulla!

I ragionamenti precedenti possono essere usati per costruire il seguente algoritmo iterativo

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Osservazione.

Il metodo funziona bene "lontano" dai punti in cui la derivata si annulla! La convergenza è molto più veloce di quella del metodo di bisezione.

Cerchiamo una soluzione dell'equazione $f(x) = x^3 - 10x^2 + 5 = 0$,

Cerchiamo una soluzione dell'equazione $f(x) = x^3 - 10x^2 + 5 = 0$, si noti che $f'(x) = 3x^2 - 20x$ da cui

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - 10x_k^2 + 5}{3x_k^2 - 20x_k}$$

=

Cerchiamo una soluzione dell'equazione $f(x) = x^3 - 10x^2 + 5 = 0$, si noti che $f'(x) = 3x^2 - 20x$ da cui

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - 10x_k^2 + 5}{3x_k^2 - 20x_k}$$
$$= \frac{2x_k^3 - 10x_k^2 - 5}{3x_k^2 - 20x_k}$$

Cerchiamo una soluzione dell'equazione $f(x) = x^3 - 10x^2 + 5 = 0$, l'algoritmo è

$$x_{k+1} = \frac{2x_k^3 - 10x_k^2 - 5}{3x_k^2 - 20x_k}$$

Cerchiamo una soluzione dell'equazione $f(x) = x^3 - 10x^2 + 5 = 0$, l'algoritmo è

$$x_{k+1} = \frac{2x_k^3 - 10x_k^2 - 5}{3x_k^2 - 20x_k}$$

e sappiamo che 0.7 è una buona stima della soluzione, per cui

$$x_0 = 0.7$$

 $x_1 = 0.73536$
 $x_2 = 0.73460$

Un altro esempio

Se cerchiamo una soluzione dell'equazione $f(x) = x^2 - 2 = 0$, l'algoritmo diventa

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - 2}{2x_k}$$

Un altro esempio

Se cerchiamo una soluzione dell'equazione $f(x) = x^2 - 2 = 0$, l'algoritmo diventa

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - 2}{2x_k}$$
$$= \frac{1}{2} \left(x_k + \frac{2}{x_k} \right)$$

Un altro esempio

Se cerchiamo una soluzione dell'equazione $f(x) = x^2 - 2 = 0$, l'algoritmo diventa

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - 2}{2x_k}$$
$$= \frac{1}{2} \left(x_k + \frac{2}{x_k} \right)$$

che è l'algoritmo di Erone!

$$x_0 = 1.5$$

 $x_1 = 1.41667$
 $x_2 = 1.4142157$