Show all your work. No essays, be concise

Name: _____ Due Date: 01/24

Let $R = R : A \to A$ be a relation from a set A to itself then,

$$R^n = \overbrace{R_o R_o \dots R_o R}^{\text{n}}$$

that is, R^n is the composition of R with itself n times.

Q 1) Give a counter example or prove the following assertions:

- a. if R is reflexive then R^n is reflexive.
- b. if R is symmetric then \mathbb{R}^n is symmetric.
- c. if R is transitive then R^n is transitive.

- ${f Q}$ 2) Suppose that R and S are reflexive relations on a set A. Prove or disprove each of these statements.
- a) $R \cup S$ is reflexive.
- b) $R \cap S$ is reflexive.
- c) $R \oplus S$ is irreflexive.
- d) R S is irreflexive.
- e) S_oR (S composed with R) is reflexive.

Q 3) Find the matrix that represents the relation R on $\{1, 2, 3, 4, 6, 12\}$, where aRb means a|b. Use elements in the order given to determine rows and columns of the matrix.

 ${f Q}$ 4) Draw the directed graph for the relation defined by the matrix:

$$M = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right)$$

Example of a digraph:

Q 5) A Lemma in the book states: Let A be a set with n elements, and let R be a relation on A. If there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n. Moreover, when $a \neq b$, if there is a path of length at least one in R from a to b, then there is such a path with length not exceeding n-1. The book proves for the case that a=b. Find the proof for the case that $a\neq b$

Q 6 Draw the directed graph that represents the relation $ARA = \{(a,a), (a,b), (b,c), (c,b), (c,d), (d,a), (d,b)\}$ where $A = \{a,b,c,d,e\}$.

 ${\bf Q}~7~{\it Find}~{\it the}~{\it matrix}~{\it of}~{\it the}~{\it relation}~{\it of}~{\it ARA}~{\it from}~{\it question}~{\it 6}~{\it above}.$

Q 8 From the directed graph of question 6 above draw the digraph of \bar{R} (the complement of R).

Q 9 Find the matrix of the relation of $A\bar{R}A$ from question 6 above.

Q 10 From the directed graph of question 6 above draw the digraph of R^{-1} (the inverse of R).

Q 11 Find the matrix of the relation of $AR^{-1}A$ from question 6 above.

Q 12 In ARA from question 6 above remove or add the least amount of elements so that ARA represents an equivalence relation.