SA-MIRI Course Schedule (29/10 Tentative)

day	Wednesday		day	Friday
29/10	10. Introduction to Parallel Training of Neural Networks	Presentation Pc Presentation Pd Presentation Pe	31/10	Midterm period (no class)
05/11	(Midterm period) PRESENTATIONS—I Midterm period (no class)		07/11	Pg
12/11	11. Practical Guide to Efficient Training with PyTorch 12. Parallelizing Model Training with Distributed Data Parallel	Presentation Pf	14/11	Ph
19/11	Ph	Presentation Pg	21/11	Pi
26/11	Honoris Causa Dr. Oriol Vinyals (no class)		28/11	Pi
03/12	13. Introduction to Large Language Models14. End-to-End Large Language Models Workflow	Presentation Ph	05/12	Pj
10/12	15. Exploring Optimization and Scaling of LLMs	Presentation Pi	12/12	Pk*
17/12	Pk* 16. Looking Forward: Supercomputing and AI Futures	Presentation Pj	19/12	P1 * "attendance not required (for students returning home)"

SA-MIRI Course Schedule (Tentative)

Practical Session	acronim	Book Chapter included
	CETTRIC	
Pa	GETTING STARTED	task 2.1 – Log into MareNostrum 5 task 2.2 – Change your password
	DIIIII DD	task 2.3 – (Optional) Enable passwordless ssh authentication
		task 2.4 – Transfer files using scp
		task 2.5 – (Optional) Mount the MN5 filesystem on your laptop
		task 3.1 - Compare icx and gcc compiler optimizations
		task 3.2 - Reflecting on slurm job prioritization
		task 3.3 – Submit your first slurm job
Pb	CONTAINERS	task 3.4 – Install docker in your platform
		task 3.5 – Download docker image
		task 3.6 – Run docker image task 3.7 – Stop a docker container
		task 3.8 – Run docker with port mapping
		task 3.9 – Start the jupyter notebook server
		task 3.10 – Create and run a test notebook
Pc	MPI	task 4.1 – Compile and run your first mpi program
		task 4.2 – Observe node distribution using hostnames
		task 4.3 – Point-to-point communication
		task 4.4 – Write and run the sequential program that estimate π
		task 4.5 – Write and run the parallel mpi code to estimate the value of π
		task 4.6 – Analysis using Gustafson's law to estimate the value of π
Pd	CHIDA	task 4.7 – Experimenting with scatter and gather
Pd	CUDA	task 5.1 – Your first hello world in cuda task 5.2 – Dimensionality of a thread block and grid
		task 5.3 – Investigating parallel execution with multiple threads
		task 5.4 – Element-wise vector addition using cuda
		task 5.5 – Parallel matrix multiplication with cuda
		task 5.6 – Running cuda jobs with slurm
		task 5.7 – Profiling matrix multiplication on the gpu
		task 5.8 – Compute-bound vs memory-bound
Pe	CUDA-aware MPI	task 6.1 - Reflecting on cuda's execution model
		task 6.2 – Precision trade-offs: true or false?
		task 6.3 – Submit and validate the first performance run
		task 6.4 – Understand the metrics collection task 6.5 – Explore the effect of optimized compilation flags
		task 6.6 – Evaluate the impact of the cub library
		task 6.7 – Benchmarking the impact of gpu count and problem size
Pf	DL COLABS	task 7.1 – Set up your google colab environment
		task 7.2 – Execute the provided notebook step-by-step
		task 7.3 – Improve the accuracy of your model
		task 8.1 – Improving a basic cnn model
		task 8.2 – Exporting the python script
		task 8.3 – Running your first natural network on a login node
		task 8.4 – Submitting your first gpu dl training with slurm
		task 9.1 - Comparative implementation in pytorch and tensorflow

Practical Session	acronim	Book Chapter included
Pg	SCALING TF	task 10.1 – Task setup and file structure task 10.2 – Code review and understanding task 10.3 – Training on cpu (baseline performance)
		task 10.4 – Gpu execution time and cpu vs gpu comparison task 10.6 – Analyze the impact of gpu parallelism
		task 10.7 – Parallelization of resnet152
		task 10.8 – Comparing parallel training performance across model sizes task 10.9 – Resnet101v2 scalability analysis
		task 10.10 – Interpreting results with Amdahl's and Gustafson's laws task 10.11 – Applying Amdahl's and Gustafson's laws to Resnet101v2
Ph	OPTIMIZE PT	task 11.1 – Find the maximum viable batch size task 11.2 – Investigating dataloader bottleneck with a lightweight model task 11.3 – Optimizing dataloaders with appropriate num_workers
		task 11.4 – Confirming dataloader efficiency with vit task 11.5 – Enable mixed precision with vit + micro-224 task 11.6 – Reproducing the effect of torch.compile() task 11.7 – Report your conclusions
Pi	SCALING PT	task 11.8 – Minor code tweaks for a final throughput boost task 12.1 – Reproducing distributed training results on mn5
11	SCALING II	task 12.1 – Reproducing distributed training results on mins task 12.2 – Analyze and compare scaling efficiency
		task 12.3 – Investigate diminishing returns in training time
		task 12.4 – Find the sweet spot for your use case
Pj	END-TO-END	task 14.1 – Obtain your hugging face access token
	HF	task 14.2 – Download and run the hello world in google colab
		task 14.3 – Download the model and dataset locally using huggingface-cli
		task 14.4 – Transfer the model and dataset to MareNostrum 5
		task 14.5 – Run the inference and fine-tuning script on mn5
TO I	OPT A GGLY	task 14.6 – Compare execution in colab vs mn5
Pk	OPT & SCAL LLM	task 15.1 – Baseline experiment using facebook/opt-1.3b
	LLWI	task 15.2 – Finding the out-of-memory limit
		task 15.3 – Mixed precision training
		task 15.4 – Model precision task 15.5 – Increasing batch size with model precision
		task 15.6 – Enabling flash attention
		task 15.7 – Increasing batch size with flash attention
		task 15.8 – Using the liger kernel
		task 15.9 – Augmenting batch size due to liger kernels
		task 15.10 – Scaling on multiple gpus
		task 15.11 – Final reflections
Pl	FUTURE	task 16.1 – Mapping the pendulum shifts of the triad
		task 16.2 – Exploring the new giants of compute
		task 16.3 – Powering the future of ai
		task 16.4 – Charting the role of quantum in future supercomputing
		task 16.5 – From data farms to ai preserves
		task 16.6 – Embodiment as a source of learning

10. Introduction to Parallel Training of Neural Networks

Supercomputing for Artificial Intelligence

Foundations, Architectures, and Scaling Deep Learning Workloads

Jordi TORRES.AI

Content

10.1 Landscape of Parallel Deep Learning Frameworks

The Challenge of Communication Across GPUs High-Level Frameworks for Distributed Deep Learning

10.2 Comparing CPU and GPU Performance: A Practical Case

Training Data: CIFAR10

Model architectures: ResNet

Baseline Code: Sequential Training on CPU and GPU

10.3 Accelerate Training with Parallelism in TensorFlow

Types of Parallelism

Parallel Training with Tol

Parallel Training with TensorFlow

Exploring Parallelization with MirroredStrategy

10.4 Impact of Model Size on Parallel Training

Case Study: ResNet152

Parallelization of the ResNet152V2 Neural Network

Comparing ResNet50 vs ResNet152V2

Part IV: The Scalability Layer

Part IV: The Scalability Layer

Content:

- This part focuses on the practical challenges and strategies for scaling neural network training efficiently across the powerful infrastructure of a modern supercomputer.
- It represents a key transition point in the course:
 After learning single-GPU training fundamentals, students now confront the realities of scaling workloads across multiple GPUs—and eventually, multiple nodes.
- From local optimization → to distributed scalability.

Why Parallel Training?

- Modern models are too large/slow for a single GPU.
- On this course we focus:
 - frameworks that make distributed training practical on data parallelism across multiple GPUs

User Abstraction Layer PyTorch, TensorFlow

Software Layer NCCL, CUDA-aware MPI

Hardware Layer
NVLINK, PCIe, Infiniband (RDMA) GPUDirect

Key idea: Scaling = compute + communication.

Comparing CPU and GPU Performance: A Practical Training Case

Goal of This Section

What we'll do

- Train ResNet50V2 on CIFAR-10 with TensorFlow.
- Measure CPU vs GPU time per epoch.
- Set a baseline for later multi-GPU runs on MN5.

Why TensorFlow here?

 Pedagogical warm-up; concepts are framework-agnostic (we'll use PyTorch later).

CIFAR-10 Dataset

- 60,000 color images $(32 \times 32 \text{ pixels}), 10$ classes.
- Each class contains 6,000 images.
- Training set: 50,000 images (5 batches × 10,000).
- Test set: 10,000 images (1,000 per class)

Source: A. Krizhevsky, V. Nair, and G. Hinton (2009), Learning Multiple Layers of Features from Tiny Images.

Dataset Details and Preprocessing

Directory structure

```
cifar-10-batches-py
   batches.meta
    — data_batch_1
     data batch 2
     — data batch 3
     — data batch 4
     data_batch_5
   └─ test batch
```

Resizing for heavier workload

- All images resized from 32 × 32 → 128 × 128.
- This increases computational cost to highlight CPU vs GPU performance differences.
- May slightly reduce accuracy (acceptable here).

Data loading

- Custom function load data() (in cifar-utils/cifar.py) Handles loading, resizing, and formatting into TensorFlow datasets.

Model Architecture: ResNet

Why ResNet?

Residual Networks are robust for image recognition tasks.

Model used

```
tf.keras.applications.ResNet50V2(
   include_top=True,
   weights="imagenet",
   input_tensor=None,
   input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
```

Parameter highlights

- include_top=True: include classification head
- weights=None: random initialization (no pretraining) Since the goal is performance comparison, not accuracy, pretrained weights are disabled
- input_shape=(128,128,3)
- classes=10: CIFAR-10 categories
- classifier activation='softmax'

File Setup on MareNostrum 5

Directory to copy from GitHub (*)

```
/Chapter10
- ResNet50 seq.py
- ResNet50 seq.CPU.slurm
 — ResNet50 seq.GPU.slurm
 - ResNet50.py
— ResNet50.slurm
— cifar-utils/
    L cifar.py
```

```
(*)
cd <dir>
git clone https://github.com/jorditorresBCN/HPC4AIbook.git
cd HPC4AIbook
ls
```

File Setup on MareNostrum 5

Dataset location

- CIFAR-10 is pre-loaded in a shared MN5 path do not copy it.
- gpfs/projects/nct 345/cifar-utils/cifar-10-batches-py

Modify cifar.py

```
def load cifar(batch size, path='/gpfs/projects/nct 345/cifar-utils/cifar-10-batches-py'):
    train images = np.empty((50000, 3, 32, 32), dtype='uint8')
    train labels = np.empty((50000,), dtype='uint8')
    for i in range (1, 6):
    fpath = os.path.join(path, 'data batch ' + str(i))
    (train images[(i - 1) * 10000: i * 10000, :, :, :],
    train labels [(i - 1) * 10000: i * 10000]) = load batch (fpath)
    fpath = os.path.join(path, 'test batch')
    test images, test labels = load batch(fpath)
```

Baseline Code: Sequential Training

Script: ResNet50_seq.py

Core structure

```
train ds, test ds = load cifar(batch size)
model = tf.keras.applications.resnet v2.ResNet50V2(
            include top=True, weights=None,
            input shape=(128,128,3), classes=10)
opt = tf.keras.optimizers.SGD(0.01)
model.compile(loss='sparse categorical crossentropy',
              optimizer=opt, metrics=['accuracy'])
model.fit(train ds, epochs=epochs, verbose=2)
```

- Key points
 - Sequential execution (no data parallelism).
 - · Large batch size (2048) for stable throughput measurement.
 - Focus on execution time, not accuracy.

Task 10.1

Task 10.1: Task Setup and File Structure

 Objective: Ensure all necessary files are correctly placed and accessible on MN5.

- Checklist
 - Verify \$HOME/Chapter10 folder structure.
 - Confirm Singularity image path and container availability.
 - → gpfs/projects/nct_345/MN5-NGC-TensorFlow-23.03.sif
 - Check that load_cifar() runs without errors.

Task 10.2

Task 10.2: Code Review and Understanding

- Goal: Familiarize yourself with the logic of ResNet50 seq.py.
- Focus points
 - How the dataset is loaded.
 - Model creation and configuration.
 - Compilation and optimizer setup.
 - Execution flow of model.fit().
- Tip:
 - · Ask your instructor for clarification if any part of the workflow is unclear.

Training on CPU (Baseline)

■ SLURM script: ResNet50 seq.CPU.slurm

```
#!/bin/bash
#SBATCH --chdir .
#SBATCH --job-name=ResNet50 seq CPU
#SBATCH --output=%x.%j.out
#SBATCH --error=%x.%j.err
#SBATCH --nodes 1
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-task 20
#SBATCH --time 01:15:00
#SBATCH --account <account>
#SBATCH -- qos acc_debug
module purge
module load singularity
SINGULARITY CONTAINER=/gpfs/<path>/MN5-NGC-TensorFlow-23.03.sif
singularity exec $SINGULARITY CONTAINER python ResNet50 seq.py --epochs 1 --batch size 256
```

Container: MN5-NGC-TensorFlow-23.03.sif (from Section 3.4).

Task 10.3

Task 10.3: CPU Baseline Measurement

- Your mission
 - Review and adjust your SLURM script if necessary.
 - · Execute the job and examine .out logs.
 - Record the epoch time (focus on 2nd epoch).
- Expected result ≈ 215–220 seconds per epoch.

Running on a Single GPU

SLURM script: ResNet50_seq.GPU.slurm

```
#SBATCH --gres=gpu:1
singularity exec --nv $SINGULARITY_CONTAINER python ResNet50_seq.py --epochs 1 --batch_size 256
```

The --nv flag enables GPU access within the container.

Task 10.4

Task 10.4: GPU Execution Time and Comparison

- Goal
 - · Measure execution time on GPU.
 - Compare results with CPU baseline.
 - · Discuss observed differences.
- Expected outcome
 - ~10 × speedup from CPU to GPU.
 - Lower latency per step (121 ms → 73 ms).
 - · Focus on the second epoch (after warm-up).

Analysis and Discussion

- Training on GPU is an order of magnitude faster than on CPU.
 - GPUs exploit massive parallelism (thousands of CUDA cores).

Notes

- CIFAR-10 provides a simple yet effective benchmark.
- ResNet50V2 offers a realistic workload for GPU benchmarking.
- Accuracy remains low (few epochs, no pretraining).
- Warm-up in epoch 1 introduces extra overhead → ignore it in comparisons.
- This sequential setup establishes the baseline for multi-GPU training in the next tasks.

Accelerate Training with Parallelism in TensorFlow

Why Parallel Training (HPC context)

- Deep learning training is compute- and memoryintensive.
- Multi-GPU data parallelism lets us train bigger models/datasets and finish sooner.
- Key idea: split the work across GPUs while keeping model replicas in sync.

Two Families of Parallelism

MODEL PARALLELISM

GPU 1 Layer 4 Layer 5 Layer 6 Layer 2 Layer Layer 3 GPU 0 GPU 2 GPU 3

DATA PARALLELISM

Two Families of Parallelism

Model parallelism:

- split the *model* across devices (layers/ops on different GPUs).

Data parallelism:

replicate the model; each GPU trains on different data shards;
 synchronize gradients each step.

We focus on data parallelism

→ simplest, most common on a single node.

Beyond Model & Data Parallelism (for context)

- Gradient Accumulation → large effective batches via micro-batches.
- Optimizer State Sharding (ZeRO) → shard params/gradients/optimizer states.
- Tensor / Pipeline / Sequence Parallelism → used by LLM stacks (DeepSpeed, Megatron-LM).

MirroredStrategy in One Picture

- Creates one replica per GPU on a single host.
 - Performs synchronous all-reduce of gradients each step.
 - Keeps mirrored variables consistent on all devices.

MirroredStrategy API

```
mirrored_strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"])
```

```
with mirrored strategy.scope():
     model = tf.keras.applications.resnet_v2.ResNet50V2(
             include top=True, weights=None,
             input_shape=(128, 128, 3), classes=10)
     opt = tf.keras.optimizers.SGD(learning_rate)
     model.compile(loss='sparse categorical crossentropy',
                   optimizer=opt, metrics=['accuracy'])
```

```
dataset = load data(batch size)
model.fit(dataset, epochs=5, verbose=2)
```


MirroredStrategy

What Actually Happens Each Step

- Replicate model vars (kept in sync).
- Each GPU: forward + backward on its local mini-batch.
- All-Reduce gradients → update shared variables → broadcast.

Takeaway:

compute is local; sync cost grows with number of GPUs.

Batch Size & Learning Rate Rules

- Aim for the largest batch that fits (avoid OOM).
- With MirroredStrategy, the script's batch_size is global:
 - 1 GPU → 2048
 - 2 GPUs → 4096 (per-GPU = 2048)
 - 4 GPUs → 8192 (per-GPU = 2048)
- Learning Rate scaling rule (linear):

```
learning_rate = learning_rate_base * number_of_gpus
opt = tf.keras.optimizers.SGD(learning_rate)
```

- Memory tips:
 - H100 64 GB fits the values above; reduce on smaller GPUs.

Measuring Performance

- Use epoch time (seconds) from fit() as a simple timing proxy.
 - Ignore epoch 1 (initialization & warm-up).
- Throughput metrics:
 - Global: images/s across all GPUs.
 - Per-GPU: global / #GPUs (efficiency signal).

Experiment Template (MN5)

Script:

```
ResNet50.py (args: --epochs E --batch_size B --n_gpus G)
```

SLURM batch (single job, 3 runs for clarity):

```
singularity exec --nv $SIF python ResNet50.py --epochs 5 --batch_size 2048 --n_gpus 1 singularity exec --nv $SIF python ResNet50.py --epochs 5 --batch_size 4096 --n_gpus 2 singularity exec --nv $SIF python ResNet50.py --epochs 5 --batch_size 8192 --n_gpus 4
```

Important notes:

- In production, submit separate jobs per config to avoid idle GPUs.
- We care about performance, not accuracy, in this warm-up.

Results: Epoch Time (ResNet50, CIFAR-10)

```
Model ResNet50 1 GPUs
Batch size: 2048
Num replicas: 1
Epoch 1/2
25/25 - 29s - loss: 2.2484 - accuracy: 0.1629 - 29s/epoch - 1s/step
Epoch 2/2
25/25 - 14s - loss: 2.1255 - accuracy: 0.2195 - 14s/epoch - 544ms/step
Model ResNet50 2 GPUs
Batch size: 4096
Num replicas: 2
Epoch 1/2
13/13 - 31s - loss: 2.2603 - accuracy: 0.1494 - 31s/epoch - 2s/step
Epoch 2/2
13/13 - 8s - loss: 2.1533 - accuracy: 0.2064 - 8s/epoch - 623ms/step
Model ResNet50 4 GPUs
Batch size: 8192
Num replicas: 4
Epoch 1/2
7/7 - 47s - loss: 2.2741 - accuracy: 0.1514 - 47s/epoch - 7s/step
Epoch 2/2
7/7 - 5s - loss: 2.1481 - accuracy: 0.2160 - 5s/epoch - 768ms/step
```


Results: Epoch Time

(ResNet50, CIFAR-10)

→ sub-linear improvement (good but not perfect scaling).

Global Throughput

- Compute with 50,000 training images.
- More GPUs → higher images/s, but not linear.

Speedup

Efficiency

- Task 10.5

Task 10.6 Analyze the Impact of GPU Parallelism

- Goal: reproduce the 1/2/4-GPU runs; report epoch-2 time, global throughput, speedup, and efficiency.
- Deliverables
 - Plot epoch time vs GPUs.
 - Plot global throughput vs GPUs.
 - Plot speedup + ideal line; plot efficiency.
- Short analysis:
 - How does throughput evolve with GPUs?
 - Is speedup close to linear? If not, explain using the overheads above.

Pro tip: keep batch per GPU constant; double-check LR scaling.

Impact of Model Size on Parallel Training

Why Model Size Matters

Deeper models

 \Rightarrow more params & FLOPs \Rightarrow higher compute & memory needs.

Larger compute per GPU can hide communication

→ often better efficiency.

Case study:

- Compare ResNet50V2 vs ResNet152V2 on CIFAR-10.
- Runs on 1, 2, 4 GPUs (single node, MirroredStrategy).
- Focus: performance & scaling

ResNet152V2 Setup (MN5)

H100 SXM5 64 GB recommended per-GPU batches:

- **1 GPU:** 1024

- **2 GPUs:** 2048

- **4 GPUs:** 4096

- Smaller-memory GPUs (A100 40 GB / RTX 4090 24 GB):
 reduce by ×2-×4.
- Same script & SLURM template; only model and batch/LR change.

ResNet152V2: Raw Results

```
Model ResNet152 1 GPUs
Batch size: 1024
Num replicas: 1
Epoch 1/2
49/49 - 63s - loss: 2.2454 - accuracy: 0.1583 - 63s/epoch - 1s/step
Epoch 2/2
49/49 - 33s - loss: 2.1264 - accuracy: 0.2140 - 33s/epoch - 668ms/step
 Model ResNet152 2 GPUs
Batch size: 2048
Num replicas: 2
Epoch 1/2
25/25 - 76s - loss: 2.2705 - accuracy: 0.1471 - 76s/epoch - 3s/step
Epoch 2/2
25/25 - 18s - loss: 2.1383 - accuracy: 0.2072 - 18s/epoch - 718ms/step
 Model ResNet152 4 GPUs
Batch size: 4096
Num replicas: 4
Epoch 1/2
13/13 - 126s - loss: 2.3283 - accuracy: 0.1462 - 126s/epoch - 10s/step
Epoch 2/2
13/13 - 10s - loss: 2.2006 - accuracy: 0.1844 - 10s/epoch - 773ms/step
```


ResNet152V2: Results

ResNet152V2: Throughput

→ Global throughput (images/s) grows with #GPUs, not perfectly linear.

Speedup

Efficiency

Interpreting ResNet152V2 Scaling

- Gradient all-reduce latency grows with replicas.
- Input pipeline pressure as step time shrinks.
- Fixed costs (I/O & init) more visible at small epoch times.
 - → better efficiency than ResNet50 at 4 GPUs.

Epoch Time: ResNet50V2 vs ResNet152V2

Throughput: ResNet50V2 vs ResNet152V2

Speedup: ResNet50V2 vs ResNet152V2

Efficiency: ResNet50V2 vs ResNet152V2

Takeaways (Model Size & Scaling)

Larger models scale better

– (more math per sync → higher efficiency).

Absolute speed

ResNet50V2 faster & higher throughput.

Relative gains

ResNet152V2 benefits more from extra GPUs.

Memory footprint

 ~60M params (R152) vs ~25M (R50) → consider BF16/mixed precision + activation checkpointing to increase per-GPU batch.

Task 10.7: Parallelize ResNet152V2

- Do:
 - New Python + SLURM to run 1/2/4 GPUs.
 - Keep per-GPU batch constant; scale global batch + LR with GPUs.
 - · Report: epoch-2 time, global throughput, speedup, efficiency.
 - Analysis: explain scaling vs ResNet50V2.
- Deliverables: Data + 4 plots (time, throughput, speedup vs ideal, efficiency) + commentary.

Task 10.8: Compare Model Sizes

- Produce combined plots for ResNet50V2 vs ResNet152V2:
 - Epoch time, Throughput, Speedup (+ideal), Efficiency.
- Answer:
 - Why is R152 slower per epoch?
 - Why lower throughput even with more GPUs?
 - How do speedup/efficiency differ?
 - Any added sync overhead from deeper nets?

Task 10.9: Add ResNet101V2

- Repeat for ResNet101V2 (1/2/4 GPUs).
- Plot all three models side by side (same four charts).
- Discuss:
 - Does ResNet101 scale like ResNet50 or ResNet152?
 - · Where do you see diminishing returns or overheads?

Pg: Introduction to Parallel Training

Tasks included:

task 10.1 to task 10.9

Deliverable & Evaluation:

 Upload a single PDF (per group) to the racó@FIB intranet, containing as many slides as you need per task to clearly express what is requested in each one.

In class (evaluation day):

 One group (chosen at random) will give a clear, concise, and straight-to-the-point presentation.

However, do not worry about timing — it does not need to follow a strict "elevator pitch" style as in previous labs.

The goal here is pedagogical, allowing time to discuss results and reflect on what has been learned.

Lab presentation

- Remember: Good practical experience for students! and ... a way to stimulate homework accomplishment
- 1 group will be randomly chosen
 - We'll sum 4 numbers from randomly chosen students and use the '%' function with the total number of students to find the winner in the list.

```
>>> nums_to_add = ...+...+...
>>> winner= nums to add % num students +1
>>> print (winner)
```

