

Le poids vif : une mesure importante

- Meilleure gestion du cheptel
 - Suivi de l'état de santé et de croissance
 - Ajustement de la nutrition
 - Optimisation la stratégie de commercialisation

Le poids vif : plusieurs méthodes d'obtention

3 méthodes:

	Avantages	Inconvénients
A l'œil	Rapide Peu couteux	Peu précis
A l'aide de balances	Très précise	Chronophage Risque d'accidents Stress animal
Méthodes automatiques	Peu couteux Minimise le stress animal Mesures fréquentes	Installation

Un jeu de données en 2 parties

Un tableau de données :

Des images :

4 images par vaches sous 4 angles différents

Prédictions sur des features simples : Obtention des données:

Package: Imager Segmenter l'image en différents objets

Analyse des caractéristiques du segment le plus grand

Prédictions sur des features simples : Obtention des données

exemple sur Vache BLF 2340 image 0

Image sans prétraitement

Image après centrage et transformation en teinte de gris

Prédictions sur des features simples : Obtention des données

exemple sur Vache BLF 2340 image 0

Après binarisation objet que l'on obtient

opposé de l'image précédente (1image)

Prédictions sur des features simples : Obtention des données

exemple sur Vache BLF 2340 image 0

Segmentation et mise en évidence des segments

Prédictions sur des features simples: Obtention des données

exemple sur Vache BLF 2340 image 0

Obtention des features du segment le plus grand

56.03002

Prédictions sur des features simples : Traitement des données

Résultats des modèles sélectionnés

Prédictions sur des features complexes : Obtention des données

Package: Tensorflow

Utilisation d'un modèle de deep learning déjà entrainé: VGG16

Prédictions sur des features complexes : Obtention des données

- Décomposition RVB de l'image, c'est l'entrée de la première couche de convolution.
- Pour chaque image en entrée, un motif 3 x 3 est défini avec des poids différents, il passe sur tous les pixels.
- On obtient 3 pixels en faisant un produit scalaire entre le motif et les valeurs des pixels → on somme les 3 pixels : on obtient 1 seul pixel!
- Un ensemble de motifs s'appelle un **filtre**. Un filtre donne une seule image.

Prédictions sur des features complexes : Obtention des données

1 filtre donne une image

On a autant de motifs différents par filtres que d'images en entrée

« Max pooling »: réduction des dimensions de l'image : on prend un motif 2 x 2 et on garde la valeur maximum.

Le « flattening » nous sert à obtenir les « features » grâce à une couche de 4096 neurones

Phillipe Caudal, « Apport de la photogrammétrie et de l'intelligence artificielle à la détection des zones amiantées sur les fronts rocheux »

Prédictions sur des features complexes : 1 image

Représentation des Données

PCA avec 4 couleurs pour la variable qualitative

ACP pour une meilleure compréhension des données

Réalisé seulement sur image 0

Prédictions sur des features complexes : 1 image

Analyse des modèles avec 1 image

Prédictions sur des features complexes : 4 images

Méthode

Prédictions sur des features complexes : 1 image avec rotation

Prédictions sur des features complexes : Perceptrons multi-couches

Construction de 4 perceptrons multicouches : 2 classifications & 2 estimations

2 sets différents : 1 image ou 4 images

2 couches cachées : nombre de neurones et fonctions d'activation varient

Couche de sortie : « softmax », probabilité d'appartenance

Fonction de perte : MSE & Entroprie croisée catégorielle

Critère: Erreur moyenne absolue & Accuracy

$$ECC = \sum_{i=1}^{N} y_i \log p_i$$

Architecture des réseaux de neurones

Schéma du perceptron multicouches pour la classification

Schéma du perceptron multicouches pour l'estimation du poids

Prédictions sur des features complexes : Perceptrons multi-couches

Erreur moyenne absolue par MLP Modèles sur features de VGG16 (img0 et les 4 images) Erreur moyenne absolue MLP Estim 4 img Estim_img0 MLP

Prédictions sur des features complexes : Comparaison des temps de calcul

