Notes on Various Symbolic and Formal Systems

Adam InTae Gerard Rev. [4.0.1]

Table of Contents:

Introduction	3
Łukasiewicz's Simple Sentential Logic	5
Zero-Order Modal Logic	7
Simple Supervaluation Theory	10

I. Introduction

[Logic qua Field of Inquiry]:

- [1] Logic is the formal science of truth. (Frege)
- [2] Logic is the formal science of logical consequence.

[Formal Logics]:

- [1] A logic is a language, a semantics to interpret that language and a proof system.
- [2] A formal *language* is an *alphabet* and a *grammar*.
- [3] An alphabet is comprises a set of logical symbols and a set of non-logical symbols.
- [4] A grammar is a set of syntactic formation rules.
- [5] A *semantics* provides an interpretation of and the truth-conditions for expressions of the language.
- [6] A *proof system* is a set of axioms and/or inference rules for making deductions within the language.

[Characteristic Features]:

- [1] If a logic L is classical then:
 - [A] L is truth-functional: Two-Valued.
 - [B] The following axiom-schemata hold for every well-formed expression p, q in L:
 - [i] Tertium non datur. $p \lor \neg p$
 - [ii] Non-Contradiction: $\neg(p \land \neg p)$
 - [iii] Double Negation: $\neg\neg p \leftrightarrow p$
 - [iv] Contraposition: $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
 - [v] Reductio Ad Absurdum: $((\neg p \rightarrow (q \land \neg q)) \rightarrow p)$
 - [vi] Monotonicity: $(p \rightarrow q) \rightarrow ((p \land r) \rightarrow q)$

[Conventions]:

- [1] We shall assume the standard conventions for parenthetical dropping, precedence, quotation and uniform substitution.
- [2] 'Logical operator' shall be used interchangeably with 'logical connective'.
- [3] 'Scheme' shall be used interchangeably with 'schema'.
- [4] 'Proof system' shall be used interchangeably with 'calculus'.
- [5] 'Grammar' shall be used interchangeably with 'syntax'.
- [6] 'Model Theory' shall be used interchangeably with 'semantics'.
- [7] A variety of symbols will be deployed to denote meta-variables.
- [8] Arity is the number of arguments that a function or predicate can take.

[Definitions - Axioms]:

[1] A *theorem* is a statement proved from the application of our inference rules and *axiom schemata* alone, that is to say without any additional *premises* (assumptions).

- [2] An axiom is a wff that is regarded as self-evident without proof.
- [3] An *axiom schema* represents infinitely many axioms. An *axiom* is obtained by uniformly substituting any wff into the variables of the schema.
- [4] A *theory* is a set of wff.

[Definitions - Proof Systems]:

- [1] An axiom system S is *sound just in case each* sentence s that is provable in system S is true.
 - [A] An inference rule ' \vdash ' is sound only if $P \vdash Q$ implies $P \models Q$.
 - [B] If axiom system S has only tautologies as axioms and has *modus ponens* as its only rule of inference then, axiom system S is *sound*.
- [2] An axiom system S is *complete just in case* each sentence s that is true is provable in system S.
 - [A] An inference rule ' \vdash ' is complete only if $P \vDash Q$ implies $P \vdash Q$.
 - [B] By proving that a *complete* system M can be proven in S, one can show that S is also *complete*.

II. Łukasiewicz's Simple Sentential Logic

[Characteristics]:

- [1] Zero-order.
- [2] Classical.
- [3] Complete.
- [4] Consistent.
- [5] Sentential.

[Logic L₁]:

[1] $L_1 = \{A, Z, I, \Omega\}$

[Language L₁]:

- [1] A is a set of propositional variables.
 - [B] $A = \{A_0, A_1, ..., B_0, B_1, ..., ..., Z_0, Z_1, ...\}$
- [2] [A] Ω is the set of primitive logical connectives for L₁.
 - [B] $\Omega = \Omega_0 \cup \Omega_1 \cup \Omega_2$
 - [C] [i] Ω_0 is the set of logical connectives of *arity* 0.
 - [ii] $\Omega_0 = \{\bot, \top\}$
 - [D] [i] Ω_1 is the set of logical connectives of *arity* 1.
 - [ii] $\Omega_1 = \{\neg\}$
 - [E] [i] Ω_2 is the set of logical connectives of *arity* 2.
 - [ii] $\Omega_2 = \{ \rightarrow \}$
- [3] The set $A \cup \Omega$ comprises the *alphabet* of L₁.
- [4] The well-formed formulae (wff) of L₁ are recursively defined as follows:
 - [A] Any δ , where δ is a sentential variable of L₁, is a formula.
 - [B] If δ is a formula then, $\neg \delta$ is a formula.
 - [C] If δ and φ are formulas then, $\delta \rightarrow \varphi$ is a formula.
 - [D] \top and \bot are formulas.
 - [E] There are no other wff.
- [5] [4] comprises the grammar of L_1 .
- [6] Let $wff(L_1)$ denote the set of all wff in L_1 .

[L₁ Logical Equivalences]:

- [1] The following logical equivalences hold for L₁:
 - [A] $A \rightarrow \bot \equiv \neg A$
 - [B] $T \to A \equiv A$
 - [C] $A \rightarrow B \equiv \neg (A \land \neg B)$
 - [D] $A \wedge B \equiv \neg(\neg A \vee \neg B) \equiv \neg(A \rightarrow \neg B)$
 - [E] $A \lor B \equiv \neg A \to B$

$$[F] \qquad A \leftrightarrow B \equiv \neg((A \rightarrow B) \rightarrow \neg(B \rightarrow A)) \equiv (A \rightarrow B) \land (B \rightarrow A)$$

[L₁ Proof System]:

- [1] [A] Z is the set of inference rules valid in L_1 .
 - [B] $Z = \{(\delta, \delta \rightarrow \phi \vdash \phi)\}$
- [2] [A] I is the set of axiom schemata for L_1 .
 - [B] $I = AS1 \cup AS2 \cup AS3$
 - [i] $AS1 = \{A \rightarrow (B \rightarrow A)\}$
 - [ii] $AS2 = \{(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))\}$
 - [iii] $AS3 = \{ (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \}$

[L₁ Model Theory]:

- [1] A triple $\langle V, \Phi, \Phi^* \rangle$ is an L^T structure just in case:
 - [A] [i] V is a theory.
 - [ii] $V = A(V) \cup B(V)$ such that:
 - [a] $A(V) \subseteq A$ and $A(V) \neq \emptyset$; and
 - [b] $A(V) \subseteq B(V)$; and
 - [c] $B(V) \subseteq wff(\mathbf{L}^{\mathrm{T}}).$
 - [B] [i] We call Φ a propositional interpretation function.
 - [ii] $\Phi: A(V) \to \{\top, \bot\}$ such that:
 - [a] $\Phi(p) = T \text{ else } \Phi(p) = \bot.$
 - [C] [i] We call Φ^* a sentential interpretation function.
 - [ii] $\Phi^* : B(V) \to \{\top, \bot\}$ such that:
 - [a] For all $p \in A(V)$, $\Phi^*(p) = \Phi(p)$
 - [b] $\Phi^*(p) = \top$ just in case $\Phi^*(p) \neq \bot$
 - [c] $\Phi^*(\bot) = \bot$
 - [d] $\Phi^*(\top) = \top$
 - [e] $\Phi^*(\neg p) = \top$ just in case $\Phi^*(p) = \bot$
 - [f] $\Phi^*(p \to q) = \top$ just in case $\Phi^*(p) = \bot$ or $\Phi^*(q) = \top$
 - [g] $\Phi^*(p \& q) = \top$ just in case $\Phi^*(p) = \top = \Phi^*(q)$
 - [h] $\Phi^*(p \lor q) = \top$ just in case $\Phi^*(p) = \top$ or $\Phi^*(q) = \top$
 - [i] $\Phi^*(p \leftrightarrow q) = \top$ just in case $\Phi^*(p) = \Phi^*(q)$
 - [iii] If $\Phi^*(p) = \top$, then $\Phi^* \models p$.
 - [iv] For all $p \in V$, if $\Phi^* \models p$, then Φ^* is a model of V.

III. Zero-Order Modal Logic

[Characteristics]:

- [1] Zero-order.
- [2] Classical.
- [3] Complete.
- [4] Consistent.
- [5] Propositional.
- [6] Modal.

[Logic L₂]:

[1] $L_2 = \{A, Z, I, \Omega\}$

[Language L₂]:

- [1] [A] A is a finite set of propositional variables.
 - [B] $A = \{A_0^0, A_1^0, ..., B_0^{\bar{0}}, B_1^0, ..., ..., Z_0^0, Z_1^0, ...\}$
- [2] [A] Ω is the set of primitive logical connectives for L₁.
 - [B] $\Omega = \Omega_0 \cup \Omega_1 \cup \Omega_2$
 - [C] [i] Ω_0 is the set of logical connectives of arity 0.
 - [ii] $\Omega_0 = \{\top, \bot\}$
 - [D] [i] Ω_1 is the set of logical connectives of *arity* 1.
 - [ii] $\Omega_1 = \{\neg, \Box\}$
 - [E] [i] Ω_2 is the set of logical connectives of arity 2.
 - [ii] $\Omega_2 = \{ \rightarrow \}$
- [3] The set $A \cup \Omega$ comprises the *alphabet* of L₂.
- [4] The well-formed formulae (wff) of L₂ are recursively defined as follows:
 - [A] Any δ , where δ is a sentential variable of L₂, is a formula.
 - [B] If δ is a formula then, $\neg \delta$ is a formula.
 - [C] If δ and φ are formulas then, $\delta \rightarrow \varphi$ is a formula.
 - [D] \top and \bot are formulas.
 - [E] If δ is a formula then, $\Box \delta$ is a formula.
 - [F] There are no other wff.
- [5] [4] comprises the grammar of L_2 .
- [6] Let $wff(L_2)$ denote the set of all wff in L_2 .

[L₂ Logical Equivalences]:

- [1] The following logical equivalences hold for L₂:
 - [A] $A \rightarrow \bot \equiv \neg A$
 - [B] $\top \to A \equiv A$
 - [C] $A \rightarrow B \equiv \neg (A \land \neg B)$

- [D] $A \wedge B \equiv \neg(\neg A \vee \neg B) \equiv \neg(A \rightarrow \neg B)$
- [E] $A \lor B \equiv \neg A \to B$
- $[F] \qquad A \leftrightarrow B \equiv \neg((A \to B) \to \neg(B \to A)) \equiv (A \to B) \land (B \to A)$
- [G] $\Diamond A \equiv \neg \Box \neg A$

[L₂ Proof System]:

- [1] [A] Z is the set of inference rules valid in L_2 .
 - [B] $Z = \mathbf{MP} \cup \mathbf{NR}$
 - [i] $\mathbf{MP} = \{(\delta, \delta \rightarrow \phi \mid \phi)\}$
 - [ii] $\mathbf{N}\mathbf{R} = \{\delta \mid \Box \delta\}$
- [2] [A] I is the set of axiom schemata for L_2 .
 - [B] $I = AS1 \cup AS2 \cup AS3 \cup \mathbf{K}$
 - [i] $AS1 = \{A \rightarrow (B \rightarrow A)\}$
 - [ii] $AS2 = \{(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))\}$
 - [iii] $AS3 = \{ (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \}$
 - [iv] $\mathbf{K} = \{ \Box (\mathbf{A} \to \mathbf{B}) \to (\Box \mathbf{A} \to \Box \mathbf{B}) \}$
- [3] Proof system Z is called modal axiom *System K*.
- [4] The following axiom schemata are regularly added to *System K*:
 - [A] $\mathbf{D} = \{(\Box A) \to (\Diamond A)\}$
 - [B] $\mathbf{T} = \{ (\Box A) \to A \}$
 - [C] $\mathbf{B} = \{A \rightarrow (\Box \Diamond A)\}\$
 - $[D] \qquad \mathbf{S4} = \{(\Box A) \to (\Box \Box A)\}$
 - [E] S5 = $\{(\lozenge A) \rightarrow (\square \lozenge A)\}$
- [5] The following modal axiom systems are obtained by adding the corresponding axiom rules to *System K*:
 - [A] System $T =_{df}$ System $K + \mathbf{T}$
 - [B] System $S4 =_{df} System T + S4$
 - [C] System $S5 =_{df} System S4 + B$ (alternatively: T + S5)
 - [D] System $D =_{df}$ System $K + \mathbf{D}$

[L₂ Model Theory]:

- [1] A set $\langle W, R, V \rangle$ is a Kripke Model for L₂ just in case:
 - [A] [i] $W \neq \emptyset$
 - [ii] $R \subseteq W \times W$
 - [iii] $V: A \times W \rightarrow \{\bot, \top\}.$
 - [B] [i] Each $w \in W$ is called a possible world.
 - [ii] For each $p \in A$: $p \in wff(L_2)$.
- [2] Truth of a modal formula p at a possible world w in a relational structure

 $M = \langle W, R, V \rangle$ is denoted ' $M, w \models p'$ and is inductively defined as follows:

- [A] $M, w \models p \text{ just in case } V(p, w) = \top$
- [B] $M, w \models \top$ and $M, w \not\models \bot$
- [C] $M,w \models \neg p \text{ just in case } M,w \not\models p$

- [D] $M,w \vDash p \& q \text{ just in case } M,w \vDash p \& M,w \vDash q$
- [E] $M,w \models \Box p \text{ just in case } (\forall v \in W)(wRv \rightarrow M,v \models p)$
- [F] $M,w \models \Diamond p \text{ just in case } (\exists \ v \in W)(w R v \& M,v \models p)$

IV. Simple Supervaluation Theory

[Characteristics]:

- [1] Fragment of First-Order Logic.
- [2] No quantification.
- [3] Complete.
- [4] Consistent.

[Logic L₃]:

[1] $L_3 = \{A, Z, I, \Omega\}$

[Language L₃]:

- [1] A is the set of non-logical symbols.
 - [B] $A = A_1 \cup A_2$
 - [C] A_1 is the set of *individual constants* such that $A_1 = \{a, b, c, ...\}$.
 - [D] A_2 is a singleton set of a particular vague unary predicate such that $A_2 = \{P\}$.
- [2] A is the set of logical operators (logical connectives) for L_3 .
 - [B] $\Omega = \Omega_0 \cup \Omega_1 \cup \Omega_2$
 - [C] [i] Ω_0 is the set of logical connectives of *arity* 0.
 - [ii] $\Omega_0 = \{\bot, \top\}$
 - [D] [i] Ω_1 is the set of logical connectives of *arity* 1.
 - [ii] $\Omega_1 = \{\neg, D\}$
 - [E] [i] Ω_2 is the set of logical connectives of arity 2.
 - [ii] $\Omega_2 = \{ \rightarrow \}$
- [3] The set $A \cup \Omega$ comprises the *alphabet* of L_3 .
- The well-formed formulae (wff) of L_3 are recursively defined as follows:
 - [A] For any individual constant a: P(a) is a formula of L_3 .
 - [B] If ϕ is a wff of L_3 then, so is $\neg \phi$.
 - [C] If ϕ and ϕ are wff of L_3 then, $\phi \to \phi$ is formula.
 - [D] \top and \bot are formulas.
 - [E] If ϕ is a formula of L_3 then, so is $D\phi$.
 - [F] Nothing else is a formula in L_3 .
- [5] [4] comprises the grammar of L_3 .
- [6] Let $wff(L_3)$ denote the set of all wff in L_3 .

[L₃ Logical Equivalences]:

- [1] The following logical equivalences hold for L₂:
 - [A] $A \rightarrow \bot \equiv \neg A$
 - [B] $\top \to A \equiv A$

- [C] $A \rightarrow B \equiv \neg (A \land \neg B)$
- [D] $A \wedge B \equiv \neg(\neg A \vee \neg B) \equiv \neg(A \rightarrow \neg B)$
- [E] $A \lor B \equiv \neg A \to B$
- $[F] \qquad A \leftrightarrow B \equiv \neg((A \to B) \to \neg(B \to A)) \equiv (A \to B) \land (B \to A)$

[L₃ Proof System]:

- [1] [A] Z is the set of inference rules valid in L_3 .
 - [B] $Z = \{(\delta, \delta \rightarrow \varphi \vdash \varphi)\}$
- [2] [A] I is the set of axiom schemata for L_3 .
 - [B] $I = AS1 \cup AS2 \cup AS3$
 - [i] $AS1 = \{A \rightarrow (B \rightarrow A)\}$
 - [ii] $AS2 = \{(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))\}$
 - [iii] $AS3 = \{ (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \}$

[L₃ Model Theory]:

- [1] A 4-tuple $\langle D, P, \mathbb{T}_+, \mathbb{T}_- \rangle$ is a partial model for L_3 just in case:
 - [A] [i] Dis a non-empty domain of objects.
 - [ii] We write |M| to denote the domain of partial model M.
 - [B] P is an vague unary predicate.
 - [C] [i] \mathbb{T}_+ is an extension function mapping Pinto a subset of D.
 - [ii] \mathbb{I}_{-} is an *anti-extension* function mapping *P* into a subset of *D*.
 - [iii] ${}^{\mathbb{F}}P^{\mathbb{T}}_{+} \cap {}^{\mathbb{F}}P^{\mathbb{T}}_{-} = \emptyset.$
- [2] Partial model M_2 extends partial model M_1 if:
 - [A] $|M_1| = |M_2|$.
 - [B] $P \in A_2^{M1}$ and $P \in A_2^{M2}$.
 - $[C] \qquad {^{\mathsf{F}}P^{\mathsf{T}}}_{+}{^{M1}} \subseteq {^{\mathsf{F}}P^{\mathsf{T}}}_{+}{^{M2}}.$
 - [D] ${}^{\mathbb{F}}P^{\mathbb{I}}_{-}{}^{M1} \subset {}^{\mathbb{F}}P^{\mathbb{I}}_{-}{}^{M2}.$
- Given an assignment function g, a partial model M then supports a notion of truth in a model (\models) and falsity in a model (\models) with base clauses:
 - [A] $M, g \models P(x) \text{ just in case } g(x) \in {}^{\mathbb{P}}\mathbb{P}_{+}.$
 - [B] M, g = P(x) just in case $g(x) \in \mathbb{P}_{-}$.
 - [C] $M, g = \neg \sigma$ just in case $M, g = \sigma$.
 - [D] $M, g = \neg \sigma$ just in case $M, g \models \sigma$.
 - [E] $M, g \models (\sigma \lor \rho)$ just in case $M, g \models \sigma$ or $M, g \models \rho$.
 - [F] $M, g \models (\sigma \land \rho)$ just in case $M, g \models \sigma$ and $M, g \models \rho$.
 - [G] $M, g \models D\varphi$ just in case for each partial model R, given an assignment h, extending from M: R, $h \models \varphi$.
- [4] A partial model M is complete if $\mathbb{P}_+ \cup \mathbb{P}_- = |M|$.
- [5] [A] A specification space is an arbitrary collection of partial models.
 - [B] A *rooted* specification space is a specification space with one model identified as the *root* partial model.

- [C] A complete specification space S satisfies the following condition: for every partial model M in S there is some complete partial model R in S that extends M.
- [6] [A] [i] A wff $\phi \in wff(L_3)$ is supertrue in a complete specification space S if ϕ is true at each complete extension of a root partial model.
 - [ii] A wff *p* is *supertrue just in case p* is evaluated as true at the root partial model.
 - [iii] A wff *p* is *supertrue just in case p* is evaluated as true at each complete partial model.
 - [iv] A wff p is supertrue just in case for every specification point M, $M \models p$.
 - [B] A sentence $\phi \in wff(L_3)$ is *superfalse* in a complete specification space S if ϕ is false at each complete extension of a root partial model.

[Validity]:

- [1] [A] We shall write ' $A \models_L B$ ' for *local validity* (A is a set of premises and B a conclusion).
 - [B] $'A \models_L B'$ reads left-to-right 'A locally entails B' and right-to-left 'B is a local consequence of A'.
 - [C] [i] $A \models_L B$ just in case at every specification point, if A is true so is B. [ii] $A \models_L B$ just in case necessarily, if A is true so is B. [iii] $A \models_L B$ just in case for every specification point $M: M \models A \rightarrow M \models B$.
- [2] [A] We shall write $A \models_G B'$ for *global validity* (A is a set of premises and B a conclusion).
 - [B] $'A \models_G B'$ reads left-to-right 'A globally entails B' and right-to-left 'B is a global consequence of A.'
 - [C] [i] $A =_G B$ just in case the supertruth of A guarantees the supertruth of B.
 - [ii] $A \models_G B$ just in case A's supertruth necessitates B's supertruth.
 - [iii] $A \models_G B$ just in case for every specification point $M, M \models A$ then for every specification point $N, N \models B$.
 - [D] This is also referred to as *supervalidity*.
- [3] $(A \models_{\mathbf{L}} B) \Rightarrow (A \models_{\mathbf{G}} B)$

[Failure of Deduction Theorem]:

- [1] The Deduction Theorem: $(A \cup p \models_G q) \Rightarrow (A \models_G p \rightarrow q)$.
- [2] The Deduction Theorem fails if 'p $\models_G Dp$ ' succeeds and ' $\varnothing \models_G p \to Dp$ ' fails.
- [3] Dp is true *just in case p* is evaluated as true at each specification point.
- Thus, whenever p is supertrue so is Dp. So ' $p \models_G Dp$ ' always succeeds.
- [5] Imagine a specification space where p is indeterminate. It follows that Dp is evaluated as false at each specification point.
- [6] Thus, there is a specification point where p is evaluated as true, but Dp is evaluated as false.
- [7] Hence, there is a specification point where ' $p \rightarrow Dp$ ' is false.

¹ The unsubscripted turnstile $'M \models A'$ reads 'M satisfies A' or equivalently 'A is true under M' or still, 'A is evaluated or interpreted as true in M.

² Substitute 'Ø' for 'A' and 'Dp' for 'q'.

- Hence, ' $p \to Dp$ ' is not supertrue. Hence, ' $\varnothing \models_G p \to Dp$ ' fails.
- [8] [9]