

Direct targets of PKA:

Phosphorylase kinase Glycogen synthase Pyruvate Kinase PFK2 / F2,6BP Hormone-sensitive lipase

Fatty Acid Oxidation

Structure of FA's

$$H_3^{\Omega}$$
 (CH₂)_n H_2^{Ω} H_2^{Ω} OH

Table 24-1 Some naturally occurring fatty acids in animals

Number of carbons	Number of double bonds	Common name	Systematic name	Formula CH ₃ (CH ₂) ₁₀ COO ⁻		
12	0	Laurate	n-Dodecanoate			
14	0	Myristate	n-Tetradecanoate	CH ₃ (CH ₂) ₁₂ COO ⁻		
16	0	Palmitate	n-Hexadecanoate	CH ₃ (CH ₂) ₁₄ COO ⁻		
18	0	Stearate	n-Octadecanoate	CH ₃ (CH ₂) ₁₆ COO ⁻		
20	0	Arachidate	<i>n</i> -Eicosanoate	CH ₃ (CH ₂) ₁₈ COO ⁻		
22	ure 24-1 0	Behenate	<i>n</i> -Docosanoate	CH ₃ (CH ₂) ₂₀ COO ⁻		
24	bute of a barroun	Lignocerate	n-Tetracosanoate	CH ₃ (CH ₂) ₂₂ COO ⁻		
16	of cyroppism and a l	Palmitoleate	cis - Δ^9 -Hexadecenoate	CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COO		
18	reus. (Courtesy of Dr. treerses 1	Oleate	cis - Δ^9 -Octadecenoate	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COO		
18	2	Linoleate	cis, cis - Δ^9 , Δ^{12} -Octadecadienoate	$CH_3(CH_2)_4(CH = CHCH_2)_2(CH_2)_6COO^{-1}$		
18	3	Linolenate	all- cis - Δ^9 , Δ^{12} , Δ^{15} -Octadecatrienoate	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COO ⁻		
20	4	Arachidonate	all- cis - Δ^5 , Δ^8 , Δ^{11} , Δ^{14} -Eicosatetraenoate	$CH_3(CH_2)_4(CH=CHCH_2)_4(CH_2)_2COO^2$		

Table 6.1 Pattern of fatty acids in fats and oils (approximate percentage of total fatty acids)

tibnos latrone simu matis di le food delays the emptyring of the frence strate delays of salicty aft	C ₄₋₁₂ saturated	C _{14:0}	C _{16:0}		C _{16:1} + C _{18:1}	C _{18: 2}	Other PUFA	Other FAs
Butter, cream and milk	13	11	26	11	30	2	16	2
Beef	mdidni s <u>df</u> or b	3	29	16	48	2	1	
Bacon and pork	of a boronne (e	2	26	14	50	7	1	CHRIST-RIGHT PROPERTY
Chicken	State halo all book	1	26	7	45	18	2	HEREO LAB
Fish oil	1	5	15	3	27	7	43 ^a	ti avisnetti (%
Coconut oil	58	18	10	3	8	2	imited, ba t gu n	bsor pt on is
Palm oil	lazz Po - A, R	1	40	4	45	9	Skiesai aa ee Sawaa	ambo n lerooi
Cocoa butter	The second second		26	35	36	3	Patrialino VII nel confine	de deb ello es
Rapeseed oil			3	1	24	15	10 b	40 ^c
Olive oil		cos_on	12	2	73	11	1	rights and the second
Groundnut oil	daninginia tot	SIGNAL	12	3	53	30	1 000	resent al troifs
Sesame oil	e arone o 5 16 azar	v – o	9	5	40	43	da ao le ios vee	71-797 -1 690
Cottonseed oil		1	24	2	20	50	1	t constant to the second
Corn (maize) oil		-	12	2	31	53	2	er in de entre en en en en en en
Soya bean oil			10	4	24	53	7 b	The second second
Sunflower seed oil	ale all the co ality	_	6	6	33	58		entra tra
Safflower seed oil	NAME OF TAXABLE PARTY.	- Land	7	2	13	74	i v dat al zo zdaja	Markon a, como
Margarine	3	5	23	9	33	12	1	5
Margarine, polyunsaturated	2	1	12	8	22	52	1	

^a Long-chain polyunsaturated fatty acids (C_{20} and C_{22}).
^b $C_{18:3}$ (linolenic); ${}^cC_{22:1}$ (erucic).

Note. The composition of all these fats and oils varies depending on methods of animal husbandry and crop production. In margarines the proportion of fats and oils for the blend are adjusted to world market prices.

cC_{22:1} (erucic).

- Synthesis & Storage of FA's occurs in the cytosol
- Oxidation of FA's is carried out in the mitochondria Activation of FFA's for oxidation (cytosolic)

β-oxidation of fatty acids

Compare with reactions of TCA cycle.

Stoichiometry for the Oxidation of Palmitate (16:0)

• For each cycle of β -oxidation, the following are produced:

1 FADH₂ 1.5 ATP

1 NADH 2.5 ATP

1 Acetyl-CoA 10 ATP

For Palmitate:

7 FADH₂ 10.5 ATP

7 NADH 17.5 ATP

8 Acetyl-CoA 80 ATP

Activation of Palmitate requires energy equivalent to 2 ATP, therefore:

-2 ATP

106 ATP per molecule of Palmitate

Ethanol Metabolism

Occurs only in Liver

Metabolic consequences of EtOH overload

- 1. Lactate accumulates
- 2. Acetate Accumulates leading to excess acetyl-CoA
- 3. Acetyl CoA → Fatty Acids (FA's).
- 4. Acetyl CoA → Ketone Bodies (acids).
- 5. Gluconeogenesis reduced attenuated source of blood glucose.

Microsomal EtOH oxidizing system:

- Utilizes the P450 cytochrome system
- requires O₂ to generate CH₃CHO & CH₃COOH
- Therefore generates O₂ free radicals → tissue damage

Three phases of liver damage:

- 1. Fatty liver
- 2. Alcoholic hepatits cell death, inflamation
- 3. Cirrhosis fibrous scar tissue further impairs liver function

