DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE CODE: DJ22ITL502 DATE: 29/10/24

COURSE NAME: Artificial Intelligence Laboratory CLASS: TY-IT

Name: Anish Sharma

EXPERIMENT NO.07

CO/LO: Apply various AI approaches to knowledge intensive problem solving, reasoning, planning and uncertainty.

AIM / OBJECTIVE: Implement learning: Perceptron Learning / Backpropagation Algorithm

DESCRIPTION OF EXPERIMENT:

The **Perceptron** is a type of artificial neuron that performs binary classification. It maps its input x (a real-valued vector) to an output y (a binary value) using a linear transformation.

Mathematical Representation:

The perceptron works by applying a weight w to the input vector x and computing the sum z using a bias b as:

$$z = \mathbf{w} \cdot \mathbf{x} + b$$

The activation function applies a threshold to the computed value z:

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

$$y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

Learning Rule: If the prediction y does not match the actual label y^, the weights are updated using:

$$\mathbf{w} = \mathbf{w} + \eta(\hat{y} - y)\mathbf{x}$$

$$b = b + \eta(\hat{y} - y)$$

Where:

- η is the learning rate,
- y[^] is the actual label,

y is the predicted label.

2. Backpropagation Algorithm:

Backpropagation is a supervised learning algorithm used for training multi-layered neural networks. The algorithm consists of two passes:

- 1. **Forward Pass**: Propagate the input through the network and compute the output.
- 2. Backward Pass: Compute the error and propagate it backward to adjust the weights.

Backpropagation

Key Concepts:

NAAC Accredited with "A" Grade (CGPA: 3.18)

Activation Function: A differentiable function, often sigmoid, used in the neurons. For a neuron output o:

$$o = \frac{1}{1 + e^{-z}}$$

Error Calculation: The difference between the actual and predicted output. For the output layer:

$$\delta_{\text{output}} = (y - \hat{y}) \cdot \text{sigmoid_derivative}(o)$$

Weight Update: The weights are updated using the gradient of the error with respect to the weights. For the hidden layer weights:

$$\mathbf{w} = \mathbf{w} + \eta \cdot \delta \cdot \mathbf{x}$$

This process is repeated for a number of epochs to minimize the error and improve the model's accuracy.

Procedure:

Perceptron Learning Algorithm Implementation:

- 1. Initialize the weights and bias to small random values or zero.
- 2. Input the dataset XXX with corresponding labels yyy for binary classification.
- 3. For each training sample:
 - Calculate the dot product of the input and weights, then apply the activation function.
 - Update the weights if the prediction is incorrect using the Perceptron learning
- 4. Repeat this process for a fixed number of epochs until the model converges (i.e., makes accurate predictions for all data points).

Backpropagation Algorithm Implementation:

- 1. Initialize the weights of the input-hidden and hidden-output layers randomly.
- 2. Input the dataset XXX with corresponding labels yyy.
- 3. Forward Pass:
 - o Compute the activations of the hidden layer using the sigmoid function.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

o Compute the output layer's activation.

4. Backward Pass:

- o Calculate the error between the predicted and actual output.
- o Update the hidden-output and input-hidden layer weights using the gradient of the error.
- 5. Train the model for a number of epochs until the error is minimized.
- 6. Test the model using new input data and compare the predicted outputs with actual labels.

EXPLANATION / SOLUTIONS (DESIGN):

Code:

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

```
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
def sigmoid_derivative(x):
    return x * (1 - x)
input size = 3
hidden_size = 4
output size = 1
learning_rate =
epochs = 10000
np.random.seed(42)
                               weights input hidden
np.random.rand(input_size, hidden_size) weights_hidden_output =
np.random.rand(hidden_size, output_size)
X = np.array([[0, 0, 0],
              [0, 1, 0],
              [1, 0, 0],
              [1, 1, 0],
              [0, 0, 1],
              [1, 0, 1],
              [0, 1, 1],
              [1, 1, 1],
              [1, 0, 0],
              [0, 1, 0]])
y = np.array([[0], [1], [0], [1], [0], [1], [1], [1], [0], [1]])
for epoch in range(epochs):
    hidden_layer_input = np.dot(X, weights_input_hidden)
    hidden_layer_output = sigmoid(hidden_layer_input)
```

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

```
output layer input = np.dot(hidden layer output, weights hidden output)
    predicted_output = sigmoid(output_layer_input)
 error = y - predicted output
    d_predicted_output = error * sigmoid_derivative(predicted_output)
    weights_hidden_output += hidden_layer_output.T.dot(d_predicted_output) *
learning_rate
 error_hidden_layer = d_predicted_output.dot(weights_hidden_output.T)
    d hidden layer output = error hidden layer *
sigmoid_derivative(hidden_layer_output) weights_input_hidden +=
    X.T.dot(d_hidden_layer_output) * learning_rate
hidden layer input
                                 np.dot(X,
                                                 weights input hidden)
hidden_layer_output = sigmoid(hidden_layer_input) output_layer_input =
np.dot(hidden_layer_output, weights_hidden_output) predicted_output =
sigmoid(output_layer_input)
print("Predicted Output after
training:") print(predicted_output)
plt.figure(figsize=(10,
                          5))
                                plt.plot(range(len(y)), y, 'ro-',
label='Actual Output', markersize=8)
plt.plot(range(len(predicted_output)), predicted_output, 'bo-',
label='Predicted Output', markersize=8) plt.title('Actual vs Predicted
Outputs') plt.xlabel('Sample Index') plt.ylabel('Output Value')
plt.xticks(range(len(y))) plt.legend() plt.grid() plt.show()
```

Output:

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

NAAC Accredited with "A" Grade (CGPA: 3.18)

☆ ◆ → **↓** Q 至 🖺

CONCLUSION: Implementing the Perceptron Learning Algorithm or Backpropagation allows a neural network to learn from its errors, iteratively adjusting weights to minimize the difference between predicted and actual outputs, ultimately improving accuracy in classification tasks.

REFERENCES:

[1] Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 2nd Edition, Pearson Education, 2010