TD II: SÉRIES DE FOURIER

EXERCICE 1 — UN PREMIER EXEMPLE. On considère la fonction 2π -périodique paire $f: \mathbb{R} \to \mathbb{R}$, dont la restriction à $[-\pi, \pi[$ est définie par

$$\forall t \in [-\pi, \pi[, f(t) = t^2].$$

- **1.** Dessiner le graphe de f, d'abord sur $[-\pi, \pi[$ puis sur tout \mathbb{R} . La fonction f est-elle continue? C^1 par morceaux?
- **2.** Calculer les coefficients de Fourier de f.
- 3. En déduire la convergence et la somme des séries

$$\sum_{n\geqslant 1} \frac{1}{n^2}, \quad \sum_{n\geqslant 1} \frac{(-1)^{n+1}}{n^2}, \quad \sum_{n\geqslant 1} \frac{1}{n^4}.$$

EXERCICE 2 — UN SECOND EXEMPLE. On considère la fonction 2π -périodique paire $f:\mathbb{R}\to\mathbb{R}$, dont la restriction à $[0,\pi]$ est définie par

$$\forall t \in [0,\pi], \quad f(t) = \pi - t.$$

- **1.** Dessiner le graphe de f, d'abord sur $[-\pi, \pi]$ puis sur tout \mathbb{R} . La fonction f est-elle continue? C^1 par morceaux?
- **2.** Calculer les coefficients réels $(a_n(f))_{n\in\mathbb{N}}$ et $(b_n(f))_{n\in\mathbb{N}^*}$ de Fourier de f.
- 3. Préciser $\lim_{n \to +\infty} a_n(f)$ et $\lim_{n \to +\infty} b_n(f)$. Donner également les coefficients de Fourier complexes de f.
- **4.** Déduire du théorème de Dirichlet la convergence et la somme des séries $\sum_{p\geqslant 0}\frac{1}{(2p+1)^2}$.
- **5.** En déduire la convergence et la somme de la série $\sum_{n\geqslant 1}\frac{1}{n^2}$ ainsi que la convergence et la somme de la série $\sum_{n\geqslant 1}\frac{(-1)^{n+1}}{n^2}$.
- **6.** Que donne l'égalité de Parseval appliquée à la fonction f ? En déduire la convergence et la somme de la série $\sum_{p\geqslant 0}\frac{1}{(2p+1)^4}$.
- 7. En déduire la convergence et la somme de la série $\sum_{n\geq 1} \frac{1}{n^4}$
- **8.** Reprendre l'exercice avec la fonction 2π -périodique impaire $g:\mathbb{R}\to\mathbb{R}$, dont la restriction à $[0,\pi]$ est définie par

$$\forall t \in]0, \pi], \quad g(t) = \pi - t \quad \text{et} g(0) = 0.$$

Et en déduire la convergence et la somme de $\sum_{n\geq 1} \frac{\sin(n)}{n}$.

EXERCICE 3 — UN EXEMPLE 2-**PÉRIODIQUE.** On considère les fonctions 2-périodiques $f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}$, dont les restrictions à [-1, 1] sont définies par

$$\forall t \in]-1,1], \quad f_1(t)=t, \quad f_2(t)=t^3, \quad f_3(t)=t-t^3.$$

- **1.** Dessiner le graphe de f_1 , f_2 , f_3 , d'abord sur]-1,1] puis sur tout \mathbb{R} . Ces fonctions sont-elles continues? C^1 par morceaux?
- **2.** Les fonctions f_1 , f_2 , f_3 sont-elles paires? Impaires? Quelles implications cela a-t-il concernant les coefficients de Fourier de ces fonctions?
- **3.** Calculer les coefficients de Fourier de f_1 puis ceux de f_2 . En déduire ceux de f_3 .
- **4.** Montrer que pour tout $t \in \mathbb{R}$, on a

$$f_3(t) = \frac{12}{\pi^3} \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} \sin{(\pi n t)}}{n^3}$$

avec convergence des séries en jeu.

- **5.** Que donne l'égalité de la question précédente en $t=\frac{1}{2}$? En déduire la convergence et la valeur de la somme de la série $\sum_{p\geqslant 0}\frac{(-1)^p}{(2p+1)^3}.$
- 6. Appliquer l'égalité de Parseval et en déduire que

$$\sum_{n=1}^{+\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$$

avec convergence de la série en jeu.

► EXERCICE 4 — UNE RELATION UTILE.

1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique continue et de classe C^1 par morceaux. Montrer que pour tout $n \in \mathbb{Z}$, on a $c_n(f') = inc_n(f)$.

Indication: On pourra intégrer par parties.

2. Déduire de l'Exercice 1 et de la question précédente les coefficients de Fourier de la fonction 2π -périodique impaire $h: \mathbb{R} \to \mathbb{R}$ définie par

$$\forall t \in]0, \pi[, h(t) = -1 \text{ et } h(0) = h(\pi) = 0.$$

Écrire la série de Fourier associée. Que peut-on dire de la convergence de la série de Fourier de h? En déduire la convergence et la somme de la série $\sum_{k\geqslant 0} \frac{(-1)^k}{2k+1}$.

- 3. Utiliser la question précédente pour obtenir la convergence et la somme de la série $\sum_{n\geq 1}\frac{1}{n^2}$.
- ► EXERCICE 5 UNE APPLICATION. On considère l'équation différentielle suivante

$$y''(t) + e^{it}y(t) = 0$$
 (E).

1. Montrer que toute fonction f solution de (E) de classe C^2 est 2π -périodique si, et seulement si, $f(0) = f(2\pi)$ et $f'(0) = f'(2\pi)$.

Indication : On pourra utiliser le fait qu'il existe une unique solution à (E) vérifiant y(0) = y'(0) = 0.

- 2. Soit f une solution de (E) 2π -périodique et de classe C^2 . Écrire les séries de Fourier associées à f et à f'' et justifer que f et f'' sont sommes de leur série de Fourier.
- **3.** En déduire que pour tout $n \in \mathbb{Z}$, on a $c_n(f) = \frac{1}{n^2}c_{n-1}(f)$. Indication : On admettra que (sous de bonnes hypothèses qui sont satisfaites ici) les coefficients de Fourier complexes d'une fonction définie par

$$\forall t \in \mathbb{R}, \quad \varphi(t) = \sum_{n=-\infty}^{+\infty} c_n e^{int} \quad \text{avec} \quad (c_n)_{n \in \mathbb{Z}} \in \mathbb{C}^{\mathbb{Z}}$$

sont donnés par $c_n(f) = c_n$ pour tout entier relatif n.

- **4.**] Calculer $c_{-1}(f)$ et en déduire que pour tout n < 0, $c_n(f) = 0$.
- **5.** Montrer que pour $n \ge 0$, $c_n(f) = \frac{1}{(n!)^2} c_0(f)$ et en déduire que

$$\forall t \in \mathbb{R}, \quad f(t) = c_0(f) \sum_{n=0}^{+\infty} \frac{e^{int}}{(n!)^2}.$$

6. Réciproquement, montrer que la série $\sum_{n\geqslant 0}\frac{e^{int}}{(n!)^2}$ converge pour tout $t\in\mathbb{R}$ et montrer que pour tout $c\in\mathbb{R}$, la fonction définie par

$$t \longmapsto c \sum_{n=0}^{+\infty} \frac{e^{int}}{(n!)^2}$$

est une solution 2π -périodique de (E).

Indication : On admettra qu'une telle fonction est de classe C^2 et que l'on a le droit de dériver terme à terme.

7. Déterminer toutes les solutions 2π -périodiques de (E).