Advanced Microeconomics III Spence's Signaling Model

Francisco Poggi

Introduction

- Akerlof: markets with privately informed participants are often inefficient.
- Agents whose information is favorable may have an incentive to find means to convey this information.

Signaling: information can be conveyed, but only indirectly.

Introduction

- Examples:
 - A warranty may signal good quality of a used car.
 - education may signal workers' ability.

- Questions:
 - How can signaling occur in equilibrium?
 - Is signaling always welfare-improving?

Spence's model

- A single worker and many (at least 2) firms.
- Worker can be of two types: $\theta \in \{\theta_L, \theta_H\}$ with $\theta_H > \theta_L$.
- Only the worker knows θ .
- If employed by a firm, worker produces output θ .
- Firm's payoff:
 - θw if employs the worker at wage w.
 - zero otherwise.

Spence's model

- ullet Worker moves first: chooses an observable education level $e\in [0,\infty)$
- Firms observe e (again: not θ).
- Cost of education $c(e|\theta)$.
- Worker payoff when education e and employed at wage w:

$$u(w, e|\theta) = w - c(e|\theta)$$

• Notice that education in this model is unproductive.

Spence's model

- Extra assumptions:
 - Cost of no education is zero.

$$c(0|\theta) = 0$$
 for all θ

Cost of education increasing and convex in education.

$$c'(e|\theta) > 0$$
 and $c''(e|\theta) > 0$

High type worker has a smaller education cost.
 Moreover: High type has a smaller marginal cost of education.

$$c'(e|\theta_H) < c'(e|\theta_L)$$
 $\forall e > 0$ (Single-crossing)

Indifference Curves

3

PBE Analysis

- Solution concept: (Pure-strategy) Perfect Bayesian Equilibrium.
- Described by:
 - A choice of education level for each worker type e_L , e_H .
 - $\mu(e)$ firms' posterior beliefs that worker is of type H.
 - Wage offers of the firms w(e).
- Satisfying:
 - Optimality of education choices given wage offers.
 - Beliefs $\mu(e)$ consistent with Bayes' Rule where possible.
 - Wage offers constitute a Nash equilibrium at each subgame.
 - **Symmetry**: All firms hold the <u>same</u> beliefs after observing *e*.
 - (Not implied by weak PBE.)
 - Firms believe other firms conform to equilibrium wage offer w(e) both on and off path.

PBE Analysis

Competition among firms leads to the following wage offers (why?):

$$w(e) = E_{\mu(e)}[\theta] = \mu(e) \cdot \theta_H + (1 - \mu(e)) \cdot \theta_L$$

- Two types of pure-strategy equilibria:
 - **Separating equilibria**: each type chooses a different education level $(e_H \neq e_L)$.
 - **Pooling equilibria**: types choose the same education level $(e_H = e_L)$.

Separating Equilibria

- $e_H \neq e_L$.
- Bayes' rule where possible: $\mu(e_L) = 0$ and $\mu(e_H) = 1$.
- By competition:

$$w(e_L) = \theta_L \qquad w(e_H) = \theta_H$$

Lemma

In any separating equilibrium, $e_L = 0$.

- PBE implies that $w(e) \in [\theta_L, \theta_H]$.
- So, if $e_L > 0$, the deviation to e = 0 is profitable for type θ_L .

Separating Equilibria

Separating Equilibria: Incentive Compatibility

Lemma

In a separating equilibrium, type H chooses $e_H > 0$ such that

$$\theta_H - c(e_H|\theta_H) \ge \theta_L \ge \theta_H - c(e_H|\theta_L)$$
 (IC)

- First inequality: type H prefers his education e_H rather than zero.
- Second inequality: type L prefers zero rather than e_H .

Separating Equilibrium: IC

Separating Equilibrium: IC

Separating Equilibrium: IC

Separating Equilibria

 Previous lemmata describe necessary conditions for separating equilibrium.

- These are also *sufficient*: remains to specify out-of-equilibrium beliefs.
 - Suppose any deviation is considered to be by a low type.
 - Then wage would be θ_L for any worker with an education level different than e_H .
 - Any deviation would be unprofitable.

Equilibrium Multiplicity

- We have **multiple** separating equilibria.
 - These equilibria can be ranked in Pareto sense.
 - Best separating equilibrium: the one with lowest education e_H .

$$c(e_H|\theta_L) = \theta_H - \theta_L$$

Pooling Equilibria

• Pooling equilibrium: $e_L = e_H = e^*$.

- Bayes' rule where possible: $\mu(e^*) = \Pr(\theta = \theta_H)$
- Competition implies that $w(e^*) = E[\theta]$.

- Out-of-equilibrium beliefs: $\mu(e) = 0$ for $e \neq e^*$.
 - Then $w(e) = \theta_L$ for $e \neq e^*$.

Pooling Equilibria

Multiple Pooling Equilibria

• **Again**: Best pooling equilibrium is the one with the lowest level of education ($e^* = 0$).

• What about the worst one?

$$E[\theta] - c(\bar{e}|\theta_L) = \theta_L$$

$$c(\bar{e}|\theta_L) = E[\theta] - \theta_L$$

Worst Pooling Equilibria

Comparing Pooling and Separating Equilibra

- The best pooling equilibrium may or may not Pareto dominate the best separating equilibrium.
 - High types not always benefit from the availability of a signaling device. Only if their fraction is small enough.

- The best separating equilibrium never Pareto dominates the best pooling equilibrium.
 - The low type is always worse-off.

Reasonable Beliefs (Equilibrium Refinements)

- There are multiple separating and multiple pooling equilibria.
- Which equilibrium is more likely to emerge?
 - One approach: Pareto dominance. Not a game-theoretical argument.
- Forward induction arguments can be used to refine the equilibrium.
- PBE allows for any beliefs off the equilibrium path.
- Refinements put conditions on these off equilibrium beliefs.
- Most refinements in this game uniquely select the least costly separating equilibrium.

Intuitive Criterion

- Cho and Kreps (1987) 'Intuitive criterion':
 - Key question: Who might benefit from the deviation?

Definition

A deviation e' is dominated in equilibrium for type θ if, for any sequentially rational response by the receivers $w' = E_{\mu'}[\theta]$ for some beliefs μ' , the resulting payoff $u(e', w', \theta)$ is less than the equilibrium payoff $u(e(\theta), w(e(\theta)), \theta)$.

Definition

A PBE passes the Intuitive Criterion Test (ICT) if no type θ would be better off deviating to an action $e' \neq e(\theta)$ should the receivers' beliefs following e' assign zero probability to types θ' for whom the deviation is dominated in equilibrium.

Intuitive Criterion: Separating Equilibrium

- Let \underline{e}_H be the minimal education for the high type that can be sustained in a separating equilibrium.
- Start from a separating equilibrium with $e_H > \underline{e}_H$. We will show that this equilibrium does not satisfy the ICT.
 - Consider a deviation to $e' \in (\underline{e}_H, e_H)$ (This is off the equilibrium path).
 - A type θ_L can guarantee a payoff of θ_L by following equilibrium strategies. The deviation can bring type θ_L at most:

$$\theta_H - c(e'|\theta_L) < \theta_L$$

- Thus, a type θ_L would never deviating to e'. Formally e' is dominated in equilibrium for type θ_L .
- The PBE does not pass the ICT: If $\mu(e')=1$, type θ_H would benefit from deviating to e'.

Intuitive Criterion: Separating Equilibrium

Intuitive Criterion: Pooling Equilibrium

- Let start instead from a pooling equilibrium at e^* .
- Claim: there exists e' such that

$$E[\theta] - c(e^*|\theta_H) < \theta_H - c(e'|\theta_L) < E[\theta] - c(e^*|\theta_L)$$

- Deviating to e' is dominated in equilibrium for type θ_L .
- So, the pooling PBE does not pass the ICT. If $\mu(e')=1$, type θ_H would benefit from deviating to e'.

Intuitive Criterion: Pooling Equilibrium

Intuitive Criterion

- Only the best separating PBE passes the ICT.
- Notice that sometimes *forced pooling* generates a Pareto improvement.
 - In particular, when the share of high types is sufficiently large.
- Another Pareto improvement can arise with cross-subsidization.

Model with Continuum of Types

- Consider a model with a continuous of types.
 - Support in $[\underline{\theta}, \overline{\theta}]$.
 - Density function *f* strictly positive everywhere in the support.

- Question: Is there a separating equilibrium? Is it unique?
 - Parametric assumption: $c(e|\theta) = \alpha \cdot e^2/\theta$.

Empirical Evidence

- Education is sometimes used as a signal of ability.
- Bedard, Kelly. Human Capital Versus Signaling Models.
 - Effect of constraining access to university in high school graduation levels.
 - Finding: In regions with a university, high school drop-out rates are higher.
 - This would be difficult to explain in model of human capital.
 - Signaling theory provides an explanation:
 - No university is close, more high-ability kids will stop education after high-school.
 - This gives low-ability kids incentives to pool with the high-ability kids.
 - Policy implications:
 - Improving access to university might increase drop-out rates and depress wages for some kids.

Other Models of Signaling

 Evidence and voluntary disclosure of verifiable information. Grossman (1981) Milgrom (1981) Dye (1985)

 Costless signaling (cheap talk): might work if preferences between sender and receiver are partially aligned. (Crawford Sobel (1982))

Classical Evidence Models

Seminal model developed by Grossman (1981) and Milgrom (1981)

- Similar to the previous model.
 - One worker, more than 2 firms.
 - Worker has private type θ with cdf F.
 - Firms compete offering wages.

- Instead of choosing a level of education, worker can take a (free) test that perfectly reveals his type.
 - Formally, worker can send a message in $\{\emptyset, \theta\}$.
 - Market observes the message before making wage offers.

Unraveling

- Again, our solution concept is PBE.
- let w(m) be the wage that firms offer to an agent that sends message m.
- Let Θ_{\circ} be the subset of types that chooses the empty message in equilibrium.
- For simplicity, assume that indifferent types take the test.
- Suppose that $w(\emptyset) > \underline{\theta}$.
- It must be that $\Theta_{\circ} = [\underline{\theta}, w(\emptyset))$
- $w(\emptyset) = E[\theta|\Theta_\circ] < w(\emptyset)$. Abs!
- So $w(\emptyset) = \underline{\theta}$ and Θ_{\circ} is empty.

Partial Unraveling

• Dye (1985) and Jung and Kwon (1988): Worker has evidence with some probability λ , and no evidence otherwise (independent of type).

Partial unraveling:

- Let w be the wage for a worker in the absence of evidence.
- Any type with $\theta < w$ will not present evidence.
- Equilibrium w is the unique solution to:

$$w = E[\theta|m = \emptyset] = E[\theta| \text{ no evidence or } \theta < w].$$

= $q(w) \cdot E[\theta] + (1 - q(w)) \cdot E[\theta|\theta < w]$

where q(w) = Pr(no evidence | no evidence or $\theta < w)$.

Partial Unraveling

• Example: $\theta \sim U[0, b]$.

$$q(w) = \frac{p}{p + (1-p)F(w)} = \frac{p \cdot b}{p \cdot b + (1-p) \cdot w}$$

So,

$$E[\theta|m=\emptyset] = \frac{p \cdot b}{p \cdot b + (1-p) \cdot w} \cdot \frac{b}{2} + \frac{(1-p)w}{p \cdot b + (1-p) \cdot w} \cdot \frac{w}{2}$$

• Solving $E[\theta|m=\emptyset]=w$ we get

$$w = \frac{\sqrt{p} \cdot b}{1 + \sqrt{p}}$$

Classical setup by Crawford and Sobel:

- Two agents, sender and receiver $i \in \{S, R\}$.
- Nature picks θ from prior $F(\cdot)$.
- Sender observes private information $\theta \in [0, 1]$.
- Sender sends a message $m \in M$ to receiver.
- Receiver takes action $a \in A$.

- Preferences $U^i(\theta, a)$.
- $a^{i}(\theta)$: preferred action of i when state is i. Solves max $U^{i}(\theta, a)$.
- Preferences are partially aligned: $a^i(\theta)$ increases in θ .
- But not perfectly: $a^{S}(\theta) > a^{R}(\theta)$.

Example: quadratic preferences.

$$U^{R}(a,\theta) = -(a-\theta)^{2}$$
 $U^{S}(a,\theta) = -(a-\theta-b)^{2}$

• We assume these preference from now on.

• Key assumption: No commitment.

• Equilibrium:

• Message for each type: $\mu:[0,1]\to M$. For each θ ,

$$\mu(\theta) \in \arg\max_{m \in M} U^{S}(\alpha(m), \theta).$$

• Action for each message: $\alpha: M \to \mathcal{A}$. For each $m \in M$,

$$\alpha(m) \in \max_{a \in \mathcal{A}} \int_0^1 U^R(a, \theta) \beta(\theta|m) \ d\theta$$

• Interpretation of message: $\beta(\theta|m)$. Consistent with μ and Bayes' Rule.

Proposition

An uninformative equilibrium always exists.

- This is the babbling equilibrium:
 - Strategy of sender is state independent.
 - Posterior equals prior.
 - Receiver takes optimal action given prior independently of the message.

• Notice that this is true even for the case in which incentives are perfectly aligned (b = 0).

- Any informative equilibria?
 - With deterministic messages, the receiver's best response is:

$$\alpha(m) = E[\theta | \mu(\theta) = m]$$

- Suppose that on the path all messages of the sender are interpreted to be in one of two categories: *I* and *h*.
- Suppose that $\alpha(I) < \alpha(h)$. By single-crossing we have cutoff equilibria.
- There is at most one agent that is indifferent given two actions.

Generalizing properties of the equilibrium:

• The equilibrium message strategy is *partitional*: In any PBE there exist k cutoff types $\theta_1, \theta_2, ... \theta_k$ such that for each k,

$$\mu(\theta) = \mu(\theta') \qquad \forall \theta, \theta' \in (\theta_k, \theta_{k+1})$$

- Suppose *N* is the maximum number of partitions that can be sustained in equilibrium. It is possible to show that:
 - There exist a PBE with n partitions for all n < N.
 - The ex-ante expected payoff of both sender and receiver increases in the number of partitions.