

CAP660: Network Administration Unit-4: IP Addressing and Subnetting

Dr. Manmohan Sharma
School of Computer Applications
Lovely Professional University

What is an IP Address

- An IP address is an address used to uniquely identify a device on an IP network.
- An IP address is a unique global address for a network interface
- An IPv4 address:
 - is a **32 bit long** identifier
 - Address Space of IPv4 is 2³² or 4,294,967,296.
 - encodes a **network number**
 - o and a host number

PROFESSIONAL UNIVERSITY Transforming Education Transforming 9ndia

Dotted Decimal Notation

- IPv4 addresses are written in a so-called dotted decimal notation
- Each byte is identified by a decimal number in the range [0 to 255]:

• Example:

Network prefix and Host number

• The network prefix identifies a network and the host number identifies a specific host (actually, interface on the network).

network prefix

host number

- How do we know how long the network prefix is?
 - The network prefix <u>used</u> to be implicitly defined (class-based addressing, A,B,C,D...)
 - The network prefix now is flexible and is indicated by a prefix/netmask (classless).

Example: argon.cs.virginia.edu

- IP address is 128.143.137.144
 - Is that enough info to route datagram??? -> No, need netmask or prefix at every IP device (host and router)
- Using Prefix notation IP address is: **128.143.137.144/<u>16</u>**
 - Network prefix is 16 bits long
- Network mask is: 255.255.0.0 or hex format: ffff0000
 - --> Network id (IP address AND Netmask) is: 128.143.0.0
 - --> Host number (IP address AND inverse of Netmask) is: 137.144

128.143

137.144

Classful IP Adressing

- When Internet addresses were standardized (early 1980s), the Internet address space was divided up into classes:
 - Class A: Network prefix is 8 bits long
 - Class B: Network prefix is 16 bits long
 - Class C: Network prefix is 24 bits long
 - Class D: Used for Multicasting
 - Class E: Reserved for Scientific Research and Future.
- Each IP address contained a key which identifies the class:
 - Class A: IP address starts with "0"
 - Class B: IP address starts with "10"
 - Class C: IP address starts with "110"
 - Class D: IP address starts with "1110"
 - Class E: IP address starts with "1111"

CLASS	LEADING BITS	NET ID BITS	HOST ID BITS	NO. OF NETWORKS	ADDRESSES PER NETWORK	START ADDRESS	END ADDRESS
CLASS A	0	8	24	2 ⁷ (128)	2 ²⁴ (16,777,216)	0.0.0.0	127.255.255.255
CLASS B	10	16	16	2 ¹⁴ (16,384)	2 ¹⁶ (65,536)	128.0.0.0	191.255.255.255
CLASS C	110	24	8	2 ²¹ (2,097,152)	2 8 (256)	192.0.0.0	223.255.255.255
CLASS D	1110	NOT DEFINED	NOT DEFINED	NOT DEFINED	NOT DEFINED	224.0.0.0	239.255.255.255
CLASS E	1111	NOT DEFINED	NOT DEFINED	NOT DEFINED	NOT DEFINED	240.0.0.0	255.255.255.255

Special Cases

- 0.0.0.0: default route, used only during Startup
- 127.xx.yy.zz: loopback, test TCP/IP for IPC on local machine
- **host all 0**: this host
- host all 1: limited broadcast (local net)

Problems with Classful IPv4 Addresses

• The original classful address scheme had a number of problems

Problem-1: Too few network addresses for large networks

Class A and Class B addresses are gone

Problem-2: Two-layer hierarchy is not appropriate for large networks with Class A and Class B addresses

For the Problem 1 and 2

Solution-1: Subnetting

Problem-3: Inflexible

Assume a company requires 2,000 addresses

- Class A and B addresses are overkill
- Class C address is insufficient (requires 8 Class C addresses)

Problem 4: Exploding Routing Tables:

Routing on the backbone Internet needs to have an entry for each network address. In 1993, the size of the routing tables started to outgrow the capacity of routers.

For the Problem 3 and 4

Solution-2: Classless Interdomain Routing (CIDR)

Problem-5: The Internet is going to outgrow the 32-bit addresses

Solution-3: IP Version 6

Subnetting

- Sub netting is the process of taking a single Network address and creating further smaller Network IDs from it, called Subnets (Sub Networks).
- In the process of sub netting, bits can be borrowed from the host portion of an IP Address, the borrowed bits are added to the Subnet Mask of that IP address.
- The main goal behind sub netting a given network address is to create our required number of smaller network IDs and to achieve our desired number of hosts per subnet ID.

Subnetting a Class C IP Address

- The basic Subnetting process starts from below mentioned questions:
 - How many subnets are required?
 - How many hosts per subnet are required?
 - Compute the effective subnets?
 - Compute the valid host IP Addresses?
- The anatomy of a typical Class C address is:
 - N.N.N.H with subnet mask 255.255.255.0 or /24
 - Default number of Network bits=24
 - Default number of Host bits = 8

Example: An organisation want to setup an IT infrastructure to support 45 system in the office. Network 192.168.10.0/24 is available for allocation, but the IP address assigning authority want to assign a subnet to this organisation that will cater its need. Find out how many subnets can be created to support required number of hosts, calculate the ranges of all the subnets.

Solution:

Step-1: Identify the required number of host bits to support 45 nodes

Но	st Bits (n)	0	1	2	3	4	5	6	7
Но	osts (2^n)	1	2	4	8	16	32	64	128

Find which host number can accommodate the required number of hosts. As per the table it is 64, so the required number of host bits

$$H = 6$$

Step-2: Now find the number of Host bits borrowed by the network id from host id or converted number of network bits

$$N = Default Host bits - H$$

= $8 - 6 = 2$

Step3: Now find the total number of network bits in network id of the required subnet

$$TN = Default Network Bits + N$$

= $24 + 2 = 26$ (i.e. /26)

Step-4: Now find the subnet mask of the required subnets

11111111.111111111.11111111.11000000

255 . 255 . 255 . 192

So the calculated subnet mask is 255.255.255.192 / 26

Step-5: Total number of subnets = $2^N = 2^2 = 4$

Step-6: Total number of

Host/Subnet = $2^{H} = 2^{6} = 64$

Step-7: Find the range of Subnets

Subnet Block	Network Id	Start IP	End IP	Broadcast Id
Ι	192.168.10.0	192.168.10.1	192.168.10.62	192.168.10.63
II	192.168.10.64	192.168.10.65	192.168.10.126	192.168.10.127
III	192.168.10.128	192.168.10.129	192.168.10.190	192.168.10.191
IV	192.168.10.192	192.168.10.193	192.168.10.254	192.168.10.255

Note:

- 1. Network id of the 1st subnet block is 192.168.10.0
- 2. To calculate the network id of the next block, we need to calculate the difference between default subnet mask and calculated subnet mask.

Default SM: 255.255.255.0

Calculated SM: 255.255.255.192

- 3. Check for the variation in values starting from last octate. There is a variation in last octate.
- 4. Find the difference 256-192 = 64
- 5. Add the result in the octate where variation was found.

#