Rules for Exponentials

$a^0=1$, $a eq 0$	$10^0 = 1$
$a^1 = a$	$10^1 = 10$
$a^{-n} = \frac{1}{a^n} \ a \neq 0$	$5^{-3} = \frac{1}{5^3} = \frac{1}{125}$
$(a^m)^n$	$(3^2)^4 = 3^8$

Rules	Information	Examples
$\begin{bmatrix} a^n a^m & = & a^{n+m} \\ a \neq 0 & & \end{bmatrix}$	$\underbrace{(a \times a \times \ldots \times a)}_{n} \underbrace{(a \times a \times \ldots a)}_{m+n}$ $\underbrace{(a \times a \times \ldots \times a)}_{m+n} = a^{m+n}$	$2^32^2 = 2^5$
$\frac{a^n}{a^m}=a^{n-m}$	$\underbrace{\frac{\overbrace{(a \times a \times \ldots \times a)}^{n}}{\underbrace{(a \times a \times \ldots \times a)}_{m}}} = \underbrace{(a \times a \times \ldots \times a)}_{n-m} = a^{m-n}$	$\begin{vmatrix} \frac{2^3}{2^2} = 2^2 = 4 \\ \frac{2^2}{2^3} = 2^{-1} \\ = \frac{1}{2^{-1}} = \frac{1}{2}. \end{vmatrix}$
$(ab)^n = a^n b^n$	$\underbrace{(ab)(ab)\dots(ab)}_{n} = \underbrace{a \times a \dots \times a}_{n} \underbrace{b \times b \dots \times b}_{n}$ $= a^{n}b^{n}$	$(2\times3)^5 = 2^5\times3^5$
$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$		$(2\times3)^5 = 2^5\times3^5$