Empirical Asset Pricing Problem Set 5

Yu Zhou, HKUST

Apply GMM to the CX of stock returns

- In this problem set, we are going to learn how to apply GMM to the cross-section of stock returns (in particular, 25 portfolios).
- Data from Kenneth French's website:
 - value-weighted monthly returns on the 25 portfolios sorted based on size and the book-to-market ratio;
 - factor returns.

Q1: Size effect and value effect

	Small	ME2	ME ₃	ME ₄	Large
Growth	0.59	0.65	0.73	0.75	0.67
	1.64	2.74	3.34	4.04	4.23
BM ₂	0.7	0.93	0.91	0.77	0.63
	2.41	4.18	4.72	4.25	4.03
BM ₃	0.98	0.97	0.9	0.85	0.7
	3.67	4.49	4.68	4.46	4.21
BM ₄	1.13	1.02	1.10	0.93	0.64
	4.59	4.63	4.91	4.58	3.26
Value	1.31	1.21	1.07	1.01	0.91
	4.77	4.67	4.24	3.91	3.6

Table: The value effect exist. However, for the low book-to-market portfolios (i.e., Growth and BM2), the size effect does not exist.

Q2: Time-series regression

• For each portfolio *i*, run OLS regressions

$$R_{it}^e = \alpha_i + \beta_i RMRF_t + \varepsilon_{it}$$

	Small	ME2	ME ₃	ME ₄	Large
Growth	-0.5	-0.21	-0.11	0.01	0.03
	-2.32	-1.76	-1.19	0.22	0.59
BM ₂	-0.24	0.11	0.15	0.04	-0.01
	-1.5	1.08	2.19	0.71	-0.14
BM ₃	0.06	0.16	0.15	0.1	0.05
	0.4	1.79	2.09	1.48	0.78
BM ₄	0.28	0.21	0.22	0.15	-0.1
	2.25	2.13	2.74	1.84	-1.18
Value	0.39	0.28	0.14	0.06	0.03
	2.69	2.19	1.24	0.47	0.24

Table: The estimated α_i and associated OLS t-statistics. The CAPM does not explain the value effect. α is larger for higher book-to-market stocks.

Q2: Time-series regression (cont'd)

	Small	ME2	ME ₃	ME ₄	Large
Growth	1.62	1.27	1.25	1.09	0.96
	11.67	24.69	36.23	49.63	66.62
BM ₂	1.40	1.23	1.13	1.08	0.95
	14.9	24.49	55.23	51.2	74.87
BM ₃	1.37	1.2	1.12	1.11	0.97
	19.77	26.09	35.96	31.21	32.87
BM4	1.27	1.21	1.17	1.16	1.10
	17.77	23.81	25.75	25.74	26.97
Value	1.37	1.38	1.38	1.41	1.31
	16.1	22.01	25.27	21.27	18.13

Table: The estimated β_i and associated OLS t-statistics. The CAPM explain the size effect within BM3, BM4, and Value portfolio.

Q2: Time-series regression (cont'd)

- GRS test statistic: 83.49 with *p*-value 0.
- Use GMM to conduct tests:
 - moment conditions:

$$E[(1 \text{ RMRF})' \otimes \varepsilon] = 0$$

- # moments = # params = 50 (exactly identified) $\Rightarrow A = I_{50}$.
- ∂ moment conditions/ $\partial b'$:

$$\underbrace{D}_{50 \times 50} = - \begin{bmatrix} 1 & E(RMRF) \\ E(RMRF) & E(RMRF^2) \end{bmatrix} \otimes I_{25}$$

- F test statistic: $\hat{\alpha}' cov(\hat{\alpha})^{-1} \hat{\alpha} \sim \chi^2_{25}$
- F test statistic: 83.49 with *p*-value 0. It is extremely similar to the GRS test statistic.
- These tests reject the CAPM.

Q2: Time-series regression (cont'd)

 For each book-to-market quintile, pick the portfolio with smallest stocks and largest stocks, to investigate whether the difference in betas are statistically significant or not.

	Growth	BM2	BM ₃	BM4	Value
$\gamma'\beta$	-0.66	-0.46	-0.4	-0.16	-0.07
t-stat	-13.35	-11.88	-12.56	-5.73	-1.94

Table: For every B/M quintile, small stocks have larger market betas than large stocks. These difference is significant except for the value stocks.

Q3: Cross-sectional regression

 Run a cross-sectional regression of average excess returns on the CAPM betas which have been estimated in time-series regressions.

$$E_T[R_{it}^e] = \lambda \beta_i + \alpha_i$$

• The OLS estimates for λ is $\hat{\lambda} = 0.72$, and the associated t-statistic is 20.56. This t-statistic is high. One reason is that the estimation errors on β_i have been ignored.

• Run the Fama-MacBeth regressions for every month to obtain the monthly λ_t .

$$R_{it}^e = \lambda_t \beta_i + \alpha_{it}$$

- the average factor risk premium is $\hat{\lambda}_{FMB} = \frac{1}{T} \sum \hat{\lambda}_t = 0.72$, and the associated *t*-statistic is 4.21 which is much lower than the OLS *t*-statistic. This may because FMB take considerations of the correlation among the error terms.
- To see if α is too large to not, we use $\hat{\alpha}' cov(\hat{\alpha})^{-1} \hat{\alpha} \sim \chi^2_{N-1}$.
 - the F statistic is 83.71 with p value of 0.
 - CAPM is rejected.

Run the Fama-MacBeth regressions with intercepts.

-
$$\hat{\lambda}_0 = 0.39$$
, $t(\hat{\lambda}_0) = 1.22$;
- $\hat{\lambda}_1 = 0.40$, $t(\hat{\lambda}_1) = 1.14$.

• λ_0 is the excess return of zero-beta asset and λ_1 is the premium of market risk factor. If CAPM is the true asset pricing model, the λ_0 should be 0.

GMM

- We have 75 moment conditions and 51 parameters to be estimated. The GMM is overidentified.
- $\hat{\lambda} = 0.72$.
- D matrix:

$$D = - \left[\begin{array}{ccc} I_N & E(RMRF)I_N & 0 \\ E(RMRF)I_N & E(RMRF^2)I_N & 0 \\ 0 & \lambda I_N & \beta \end{array} \right]$$

• A matrix:

$$A = \left[\begin{array}{cc} I_{2N} & 0 \\ 0 & \beta' \end{array} \right]$$

 The *t*-statistic is 4.43 which is not equal but quite similar to the FMB *t*-statistic.

• Pricing errors under the cross-sectional regressions:

	Small	ME2	ME ₃	ME ₄	Large
Growth	-0.57	-0.26	-0.16	-0.03	-0.01
	-1.57	-1.09	-0.72	-0.17	-0.08
BM2	-0.3	0.05	0.1	-0.01	-0.05
	-1.04	0.24	0.53	-0.03	-0.29
BM ₃	0	0.11	0.1	0.05	0.01
	-0.01	0.5	0.52	0.27	0.05
BM4	0.23	0.16	0.18	0.1	-0.15
	0.92	0.7	0.85	0.5	-0.77
Value	0.33	0.22	0.09	0	-0.02
	1.2	0.85	0.34	-0.01	-0.08

Table: Like the time-series regressions, the CAPM still does not fully explain the value effect under the cross-sectional regressions. α is larger for higher book-to-market stocks.

• Overidentification test statistic 78.96 with *p*-value of 0. So CAMP is rejected.

- As we have seen, the differences of *t*-statistic and χ^2 -statistic between GMM and FMB are small.
- These differences reflect the fact that GMM has taken the estimation errors of $\hat{\beta}$ into consideration; while FMB treats the $\hat{\beta}$ estimated in the first-stage TS regressions as the true beta.
- In this example, the differences are small because portfolios' betas are estimated with less errors.

	CX	FMB	GMM	TS
Â	0.72	0.72	0.72	0.67
$t(\hat{\lambda})$	20.56	4.21	4.43	4.23

Table: The point estimate of the market price of risk is smaller for TS regressions which is the average excess return of the market portfolio. The associated *t*-statistics are similar for FMB, GMM and TS but not for CX which implies that the cross-sectional correlation in monthly returns across assets matters a lot.

Q4: Allow for serial correlation in returns

- Serial correlation in returns is reasonable when the assets have some "stale" pricing.
- Allowing for serial correlation in monthly returns in the form of 12-month lags with Newey-West weights.
- $\hat{\lambda} = 0.72$, $t_{NW}(\hat{\lambda}) = 4.18$ which is slightly lower than t-statistic in no serial correlation case.