Лекции по математическому анализу для 1 курса ФН2, 3

Власова Елена Александровна 2024-2025 год.

Содержание

1	Введение	
	1.1	Элементы теории множеств
	1.2	Кванторные операции
	1.3	Метод математической индукции
2	Множество действительных чисел	
	2.1	Аксиоматика действительных чисел
	2.2	Геометрическая интерпретация \mathbb{R}
	2.3	Числовые промежутки
	2.4	Бесконечные числовые промежутки
	2.5	Окрестности точки
	2.6	Принцип вложенных отрезков (Коши-Кантора)
	2.7	Ограниченные и неограниченные числовые множества
	2.8	Точные грани числового множества
	2.9	Принцип Архимеда
3	Функции или отображения	
	3.1	Понятие функции
	3.2	Ограниченные и неограниченные числовые множества 4
	3.3	Обратные функции
	3.4	Чётные и нечётные функции
	3.5	Периодические функции
	3.6	Сложная функция (композиция)
	3.7	Основные элементарные функции
4	Числовые последовательности и их пределы	
	4.1	Ограниченные и неограниченные числовые последователь-
		ности
	4.2	Предел числовой последовательности
	4.3	Бесконечные пределы
	4.4	Свойства сходящихся последовательностей
	4.5	Монотонные числовые последовательности
	4.6	Число е
	4.7	Гиперболические функции
	4.8	Предельные точки числового множества
	4.9	Предельные точки числовых последовательностей

Элементарные функции и их пределы

- 1 Введение
- 1.1 Элементы теории множеств
- 1.2 Кванторные операции
- 1.3 Метод математической индукции
- 2 Множество действительных чисел
- 2.1 Аксиоматика действительных чисел

Определение 1. Множество \mathbb{R} называется множеством действительных чисел, если элементы этого множества удовлетворяют следующему комплексу условий:

- 1. На множестве \mathbb{R} определена операция сложения "+", то есть задано отображение, которое каждой упорядоченной паре $(x,y) \in \mathbb{R}^2$ ставит в соответствие элемент из \mathbb{R} , называемый суммой x+yи удовлетворяющий следующим аксиомам:
 - (a) $\exists 0 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R} : x + 0 = 0 + x = x$
 - (b) $\forall x \exists$ противоположный элемент "-x", такой, что x+(-x)=(-x)+x=0
 - (с) Ассоциативность
 - (d) Коммутативность
- 2. На $\mathbb R$ определена операция умножения "·", то есть $\forall (x,y) \in \mathbb R^2$ ставится в соответствие элемент $(x \cdot y) \in \mathbb R$.
 - (a) \exists нейтральный элемент $1 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R}: 1 \cdot x = x \cdot 1 = x$.

- 2.2 Геометрическая интерпретация $\mathbb R$
- 2.3 Числовые промежутки
- 2.4 Бесконечные числовые промежутки
- 2.5 Окрестности точки
- 2.6 Принцип вложенных отрезков (Коши-Кантора)
- 2.7 Ограниченные и неограниченные числовые множества
- 2.8 Точные грани числового множества
- 2.9 Принцип Архимеда
- 3 Функции или отображения
- 3.1 Понятие функции
- 3.2 Ограниченные и неограниченные числовые множества
- 3.3 Обратные функции
- 3.4 Чётные и нечётные функции
- 3.5 Периодические функции
- 3.6 Сложная функция (композиция)
- 3.7 Основные элементарные функции
- 4 Числовые последовательности и их пределы

Определение 2. $f: \mathbb{N} \to \mathbb{R}$ - числовая последовательность, т.е. $\{x_n\}_{n=1}^{\infty}$, $x_n \in \mathbb{R}$.

4.1 Ограниченные и неограниченные числовые последовательности

Определение 3. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1) ограниченной сверху, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M$;
- 2) ограниченной снизу, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \geq M;$
- 3) ограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| \leq M;$
- 4) неограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| > M;$

4.2 Предел числовой последовательности

Определение 4. Число $a \in \mathbb{R}$ называется пределом числовой последовательности, если $\forall \varepsilon > 0$ существует такой номер n, зависящий от ε , что \forall натурального числа N > n верно неравенство $|x_n - a| < \varepsilon$.

$$\lim_{n \to \infty} x_n = a$$

- 4.3 Бесконечные пределы
- 4.4 Свойства сходящихся последовательностей
- 4.5 Монотонные числовые последовательности
- **4.6** Число *е*
- 4.7 Гиперболические функции
- 4.8 Предельные точки числового множества
- 4.9 Предельные точки числовых последовательностей