VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY DEPARTMENTOFELECTRONICS

HOMEWORK REPORT

Chapter 1 - Amplifiers and Pulse Circuits

SUPERVISOR: Nguyễn Trung Hiếu

SUBJECT: Applied Electronics (EE3129)

GROUP: 02

List of Members

STT	MSSV	Họ Và Tên	Lớp
1		Đoàn Ngọc Sang	L02
2	2210780	Nguyễn Đại Đồng	L02
3		Trần Nguyễn Trâm Ánh	L02

Ho Chi Minh, ../../20..

Mục lục

Cau 1	U	1
a)		1
b)		5
c) .		10
Dan	h cách hình vã	
Dan	h sách hình vẽ	
1	Chọn trasistor Q_1 thỏa mãn $\beta=100$ ứng với $I_{C1}=0.5mA$ và $V_{CE1}=6V$ (chọn NPN 2N3416 với thông số bf chỉnh thấp còn 140 so với 157 ban đầu); $V_{BE1}=0.63V$	1
2	Mạch Bias cho tầng 1 và mô phỏng điểm Q tầng 1	3
3	Chọn trasistor Q_2 thỏa mãn $\beta = 100$ ứng với $I_{C2} = 2mA$ và $V_{CE2} = 6V$ (chọn NPN 2N3416 với thông số bf chỉnh thấp còn 112 so với 157 ban đầu); $V_{BE2} = 0.665V$	0
	0.665V	3
4	Mạch Bias cho tầng 2 và mô phỏng điểm Q tầng 2	4
5	mô hình tín hiệu nhỏ	5
6	Do $A_{vo}=62.043db=1258V/V$ (mô hình tương đương)	6
7	Đo $A_v = 56.022 db = 632.55 V/V$ (mô hình tương đương)	7
8	Đo $G_v=28db=25.11V/V$ (mô hình tương đương)	7
9	Đo $A_{vo}=61.7db=1216V/V$ (toàn mạch)	8
10	Đo $A_v = 55.877 db = 622.08 V/V$ (toàn mạch)	9
11	Đo $G_v=29.154db=28.69V/V$ tại tần số $4.266kHz$ (toàn mạch)	9
12	$V_{p_{sig}} = 34mV; V_{p_L} = 711mV; G_v = 21.54V/V. \dots$	11
13	$V_{p_{sig}} = 40mV; V_{p_L} = 790.68mV; G_v = 19.767V/V$	11

Câu 10

Cho mạch khuếch đại tín hiệu như hình vẽ. Mạch có $V_{CC}=9V$. BJT Q_1 và Q_2 có hệ số $\beta=100$. Các hệ số $V_A=\infty$.

a) Thiết kế để có $Q_1(0.5mA,\ 6V),\ Q_2(2mA,\ 6V)$

- Xét tầng 1 (SWEEP b
f cho đến khi thỏa điểm Q)

Hình 1: Chọn trasistor Q_1 thỏa mãn $\beta = 100$ ứng với $I_{C1} = 0.5mA$ và $V_{CE1} = 6V$ (chọn **NPN 2N3416** với thông số bf chỉnh thấp còn 140 so với 157 ban đầu); $V_{BE1} = 0.63V$

Ta có: $Q_1(I_{CQ1} = 0.5mA, V_{CEQ1} = 6V)$

Ta có:

$$R_{TH1} = R_1 / / R_2 \tag{1}$$

$$V_{TH1} = \frac{R_2}{R_1 + R_2} V_{CC} \tag{2}$$

Từ phương trình mạch:

$$V_{CC} - V_{CEQ1} = I_{CQ1}(R_C + R_E)$$

$$\Rightarrow 9 - 6 = 0.5(R_C + R_E)$$

$$\Rightarrow R_C + R_E = 6 \,\mathrm{k}\Omega \tag{3}$$

Công thức dòng collector:

$$I_{CQ1} = \frac{(V_{TH1} - V_{BE1})\beta}{R_{TH1} + (\beta + 1)R_E}$$
(4)

Chọn $R_{TH1} \ll (\beta + 1)R_E$ để dòng I_C ổn định.

Giả sử chọn:

$$R_E = 2 \,\mathrm{k}\Omega \Rightarrow R_{TH1} \ll 202 \,\mathrm{k}\Omega \Rightarrow R_{TH1} = 20.2 \,\mathrm{k}\Omega$$

Thế R_{TH1} và R_E vào (4), ta được:

$$V_{TH1} = 1.741 \,\mathrm{V}$$

Từ (3):

$$R_C = 4 \,\mathrm{k}\Omega$$

Từ (2):

$$\frac{R_2}{R_1 + R_2} = 0.1934 \quad \Rightarrow \quad 4.17R_2 = R_1$$

Lại có:

$$R_1//R_2 = 20.2 \,\mathrm{k}\Omega$$

$$\Rightarrow R_2 = 25 \,\mathrm{k}\Omega, \quad R_1 = 104.25 \,\mathrm{k}\Omega$$

Hình 2: Mạch Bias cho tầng 1 và mô phỏng điểm Q tầng 1

- Xét tầng 2 (SWEEP bf cho đến khi thỏa điểm Q)

Hình 3: Chọn trasistor Q_2 thỏa mãn $\beta=100$ ứng với $I_{C2}=2mA$ và $V_{CE2}=6V$ (chọn **NPN 2N3416** với thông số bị chỉnh thấp còn 112 so với 157 ban đầu); $V_{BE2}=0.665V$.

Ta có: $Q_2(I_{CQ2} = 2mA, V_{CEQ2} = 6V)$

Ta có:

$$R_{TH2} = R_1 / / R_2 \tag{1}$$

$$V_{TH2} = \frac{R_2}{R_1 + R_2} V_{CC} \tag{2}$$

Phương trình mạch:

$$V_{CC} - V_{CEQ2} = I_{CQ2}(R_C + R_E)$$

$$\Rightarrow 9 - 6 = 2(R_C + R_E)$$

$$\Rightarrow R_C + R_E = 1.5 \text{ k}\Omega$$
(3)

Công thức dòng collector:

$$I_{CQ2} = \frac{(V_{TH2} - V_{BE2})\beta}{R_{TH2} + (\beta + 1)R_E}$$
(4)

Chọn $R_{TH2} \ll (\beta + 1)R_E$ để dòng I_C ổn định.

Giả sử chọn:

$$R_E = 500 \,\Omega \Rightarrow R_{TH2} \ll 50.5 \,\mathrm{k}\Omega \Rightarrow R_{TH2} = 5.05 \,\mathrm{k}\Omega$$

Thế R_{TH2} và R_E vào (4), ta được:

$$V_{TH2} = 1.776 \,\mathrm{V}$$

Từ (3):

$$R_C = 1 \,\mathrm{k}\Omega$$

 $T\mathring{u}(2)$:

$$\frac{R_2}{R_1 + R_2} = 0.1973 \quad \Rightarrow \quad 4.07R_2 = R_1$$

Lại có:

$$R_1//R_2 = 5.05 \,\mathrm{k}\Omega$$

$$\Rightarrow R_2 = 6.3 \,\mathrm{k}\Omega, \quad R_1 = 25.6 \,\mathrm{k}\Omega$$

Hình 4: Mạch Bias cho tầng 2 và mô phỏng điểm Q tầng 2

b) Đặt nguồn $v_s=V_m\sin{(\omega t)}$ có nội trở $R_S=100k\Omega$ vào mạch. Ngõ ra nối với tải $R_L=1k\Omega$. Tìm $A_{vo},~A_v,~G_v,~R_{in},~R_{out}$ của mạch.

Hình 5: mô hình tín hiệu nhỏ.

- Các thông số cơ bản:

$$r_{\pi 1} = \frac{V_T}{I_{B1}} = \frac{V_T \times \beta}{I_{CQ1}} = \frac{26 \times 100}{0.5} = 5.2 \,\text{k}\Omega$$
$$r_{\pi 2} = \frac{V_T}{I_{B2}} = \frac{V_T \times \beta}{I_{CQ2}} = \frac{26 \times 100}{2} = 1.3 \,\text{k}\Omega$$
$$g_{m1} = \frac{I_{CQ1}}{V_T} = \frac{0.5}{26} = 0.02 \,\text{(S)}$$
$$g_{m2} = \frac{I_{CQ2}}{V_T} = \frac{2}{26} = 0.077 \,\text{(S)}$$

- Tại tầng 1:

$$R_{in1} = R_{TH1}//r_{\pi 1} = 20.2 \,\mathrm{k}//5.2 \,\mathrm{k} = 4 \,\mathrm{k}\Omega$$

$$R_{out1} = R_{C1} = 4 \,\mathrm{k}\Omega$$

$$A_{V1} = -g_{m1} \times R_{C1} = -0.02 \times 4 \,\mathrm{k} = -80 \,(\mathrm{V/V})$$

- Tại tầng 2:

$$R_{in2} = R_{TH2} / / r_{\pi 2} = 5.05 \,\mathrm{k} / / 1.3 \,\mathrm{k} = 1.03 \,\mathrm{k}\Omega$$

$$R_{out2} = R_{C2} = 1 \,\mathrm{k}\Omega$$

$$A_{V2} = -g_{m2} \times R_{C2} = -0.077 \times 1 \,\mathrm{k} = -77 \,(\mathrm{V/V})$$

- Tính A_{vo} , A_{v} , R_{in} , R_{out} cho toàn bộ mạch

$$R_{in} = R_{in1} = 4 \text{ k}\Omega$$

$$R_{out} = R_{out2} = 1 \text{ k}\Omega$$

$$A_{v0} = A_{V1} \times A_{V2} \times \frac{R_{in2}}{R_{out1} + R_{in2}} = (-80) \times (-77) \times \frac{1.03}{4 + 1.03} = 1261 \text{ (V/V)}$$

$$A_v = A_{v0} \times \frac{R_L}{R_{out} + R_L} = 1261 \times \frac{1}{1 + 1} = 630.7 \text{ (V/V)}$$

$$G_v = A_v \times \frac{R_{in}}{R_{in} + R_S} = 630.7 \times \frac{4}{4 + 100} = 24.2 \text{ (V/V)}$$

- Kết quả đo thực nghiệm:

Hình 6: Đo $A_{vo} = 62.043db = 1258V/V \text{ (mô hình tương đương)}.$

Hình 7: Đo $A_v=56.022db=632.55V/V$ (mô hình tương đương).

Hình 8: Đo $G_v=28db=25.11V/V$ (mô hình tương đương).

Hình 9: Đo $A_{vo}=61.7db=1216V/V$ (toàn mạch).

Hình 10: Đo $A_v=55.877db=622.08V/V$ (toàn mạch).

Hình 11: Đo $G_v=29.154db=28.69V/V$ tại tần số 4.266kHz(toàn mạch).

c) Tìm biên độ lớn nhất của V_m để để v_s là tín hiệu nhỏ ở cả hai tầng.

Xét Q2 ta có:

- DC load line: $V_{CE} = V_{CC} I_C(R_{C2} + R_{E2})$ \rightarrow $V_{CE} = 9 I_C \times 6$
- Ac load line: $v_{ce}=-i_c(R_{C2}//R_L)$ ß $v_{ce}=-i_c\times 0.5$ và đường này cũng phải cắt qua điểm I_{CQ2} , được mô tả như hình dưới đây.

$$\tan(\alpha) = \frac{1}{R_L//R_C} = \frac{1}{0.5 \,\text{k}\Omega}$$

$$\Rightarrow V_{o_{\text{max}}} = \frac{I_{CQ2}}{\tan(\alpha)} = 1 \,\text{V}$$

$$\Rightarrow V_{\rm sig(max)} = \frac{V_{o_{\rm max}}}{G_V(f=4.266\,{\rm kHz})} = \frac{1}{28.69} = 34\,{\rm mV}$$

Hình 12: $V_{p_{sig}} = 34 mV; \ V_{p_L} = 711 mV; \ G_v = 21.54 V/V.$

Hình 13: $V_{p_{sig}} = 40 mV$; $V_{p_L} = 790.68 mV$; $G_v = 19.767 V/V$.