

MATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA CR-

4619

(NASA-CR-144619) TERMINAL AREA ENERGY MANAGEMENT REGIME INVESTIGATIONS UTILIZING AE C. 130-SCALE MODEL (47-0) OF THE SPACE SHUTTLE VEHICLE ORBITER CONFIGURATION 140A/B/C/R IN THE AMES RESEARCH CENTER 11 X G3/02 49183

N76-29162 HC\$21.25

Unclas

SPACE SHUTTLE

The second of th

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER

HOUSTON, TEXAS

DATA MANagement services

DMS-DR-2254 NASA CR-144,619 VOLUME 1 OF 13

TERMINAL AREA ENERGY MANAGEMENT
REGIME INVESTIGATIONS UTILIZING AN 0.030-SCALE
MODEL (47-0) OF THE SPACE SHUTTLE VEHICLE
ORBITER CONFIGURATION 140A/B/C/R IN THE
AMES RESEARCH CENTER 11 X 11 FOOT
TRANSONIC WIND TUNNEL (0A148)

by

P. J. Hawthorne Rockwell International Space Division

Prepared under NASA Contract Number NAS9-13247

by

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

ARC 11-073

NASA Series Number:

0A148

Model Number:

47-0

Test Dates:

Occupancy Hours:

May 5 through May 17, 1975

FACILITY COORDINATOR:

AERODYNAMICS ANALYSIS ENGINEERS:

Stuart L. Treon Mail Stop 227-5

Ames Research Center

Moffett Field, Calif. 94035

Phone: (415) 922-5850

S. Kraus

J. H. Reichert

Rockwell International

Space Division

12214 Lakewood Blvd.

Mail Code AC07

Downey, Calif. 90241

Phone: (213) 922-4831

PROJECT ENGINEERS:

P. J. Hawthorne

J. Marroquin

M. D. Milam

Rockwell International

Space Division

12214 Lakewood Blvd.

Mail Code AD38

Downey, Calif. 90241

R. E. Ellington

J. J. Brownson

Ames Research Center

Mail Stop 227-5

Moffett Field, Calif. 94035

Phone: (415) 965-5262

Phone: (213) 922-3785

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison--D. A. Sarver

Operations -- W. B. Meinders

Reviewed by:

D. E. Poucher

Approved:

L. Glyng, Manager

Data Operations

Concurrence:

N. D. Kemp, Marrager

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

TERMINAL AREA ENERGY MANAGEMENT

REGIME INVESTIGATIONS UTILIZING AN 0.030-SCALE

MODEL (47-0) OF THE SPACE SHUTTLE VEHICLE

ORBITER CONFIGURATION 140A/B/C/R IN THE

AMES RESEARCH CENTER 11 x 11 FOOT

TRANSONIC WIND TUNNEL (0A148)

by

P. J. Hawthorne, Rockwell International Space Division

ABSTRACT

This report documents data obtained in wind tunnel test OA148. The objectives of the test series were to:

- 1) obtain pressure distributions, forces and moments over the vehicle 5 Orbiter in the terminal area energy management (TAEM) and approach phases of flight.
- 2) obtain elevon and rudder hinge moments in the TAEI and approach phases of flight.
- 3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions.
- 4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes.

Testing was conducted over a Mach number range from 0.6 to 1.4 with Reynolds number variations from 4.57 x 10^6 to 2.74 x 10^6 per foot. Model angle-of-attack was varied from -4 to 16 degrees and angles of side slip ranged from -8 to 8 degrees.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	2
INDEX OF DATA FIGURES	3
NOMENCLATURE	5
REMARKS	9
CONFIGURATIONS INVESTIGATED	10
TEST FACILITY DESCRIPTION	12
DATA REDUCTION	13
REFERENCES	26
TABLES	
I. TEST CONDITIONS	27
II. DATA SET RUN NUMBER COLLATION SUMMARY	28
III. MODEL DIMENSIONAL DATA	34
IV. FUSELAGE PRESSURE TAP LOCATIONS	44
V. LEFT WING PRESSURE TAP LOCATIONS	46
VI. ORBITER VERTICAL TAIL AND SPEED BRAKE PRESSURE TAP LOCATIONS	48
VII. BODY FLAP PRESSURE TAP LOCATIONS	49
FIGURES	43
MODEL	50
DATA	63
APPENDIX	03
TABULATED SOURCE DATA	63
"	71

INDEX OF MODEL FIGURES

Figures	Title	Page
1.	Axis systems and sign conventions.	_
	a. Orbit r Axis Systems	50
	b. Definition of Angular Measurements	51
	c. Elevon Hinge Moment Sign Convention	52
2.	Model sketches.	
	a. Configuration - 140A/B/C/R	53
	b. Base Pressure Taps and Areas	54
	c. Fuselage, Vertical Tail, and Wing Pressure Tap Locations	55
3.	Model installation photographs.	
	a. Three-Quarter Front View of Model 47-0 in the ARC 11 x 11 Foot UPWT	60
	b. Three-Quarter Rear View of Model 47-0 in the ARC 11 x 11 Foot UPWT	61

,	,	۰
ĭ	′	i
Č	ž	
:		2
:	_	
LCICEL	•	
•	4	
4		
ć	Ė	١
į	1	
•	-	ì
:	>	
i		
(
•		

	INDEA OF DAIM FIGURES	AIA LIBONES	DI ATTEN	
FI 3URE	TITLE	CONDITIONS C	COEFFICIENTS SCHEDULE	PAGES
VOLUME				•
4	VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA	ALPHA,MACH,BDFLAP, SPOBRK,ELVN-L,ELVN-R, RUDDER	V	1-252
S	VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA	BETA,MACH,BDFLAP,SPDBRK, ELVN-L,ELVN-R,RUDDER	6	253-507
9	VARIATION OF HINGE MOMENT CHARACTFR- ISTICS WITH ALPHA	BETA,MACH,BDFLAP,SPDBRK, ELVN-L,ELVN-R,RUDDER	υ •	508-762
VOLUME	2			
7	ORBITER FUSELAGE BODY FLAP DEFLECTION 0 DEGREES	ALPHA, MACH PHI, BETA	a	763-864
œ	ORBITER FUSELAGE BODY FLAP DEFLECTION 16.3 DEGREES	ALPHA, MACH PHI, BETA	a	865-966
6	LEFT WING BOTTOM SURFACE ELEVON DEFLECTION O DEGREES	ALPHA, MACH 2Y/BW, BETA	m	1601-1051
10	LEFT WING BOTTOM SURFACE ELEVON DEFLECTION 10 DEGREES	ALPHA, MACH 2Y/BW, BETA	ш	1052-1136
=	LEFT WING TOP SURFACE ELEVON DEFLECTION O DEGREES	ALPHA, MACH 2Y/BW, BETA	ш	1137-1221
15	LEFT WING TOP SURFACE ELEVON DEFLECTION 10 DEGREES	ALPHA, MACH 2Y/BN, BETA	ш	1222-1306
13	VERTICAL TAIL SPEEDBRAKE DEFLECTION O DEGREES	ALPHA, MACH Z/BV, BETA	L	1307-1374

	PAGES	1375-1442
	PLOTTED COEFFICIENTS SCHEDULE	LL.
ES (Concluded)	CONDITIONS VARYING	ALPHA, MACH Z/BV, BETA
INDEX OF DATA FIGURES (Concluded)	TITLE	TAIL SPEEDBRAKE DEFLECTION ES
1		VERTICAL TAIL 35 DEGREES
	FIGURE NUMBER	14

PLOTTED COEFFICIENTS SCHEDULE:

- A) CY, CYN and CBL versus BETA
- B) CN, CA and CLM versus ALPHA
- C) CHEO, CHEI, CHETOT and CHBF versus ALPHA
- D) CP versus X/LB
- CP versus X/CW

E

CP versus X/CV

NOMENCLATURE

Symbol Symbol	Plot Symbol	Definition
A _b	AB	total Orbiter base area, ft ²
Ai	Ai	area over which P _i acts, ft ²
A _{sb}	ASB	speed brake base area, ft ²
b	BREF, BW	Orbiter wing span, in
b _V	BV	vertical tail reference span, in
c_{A_u}	CAU	Orbiter uncorrected axial force coefficient
CA	CA	Orbiter axial force coefficient with sting cavity adjusted to average base pressure
CAF	CAF	Orbiter forebody axial force coefficient.
CAsc	CASC	Orbiter sting cavity axial force coefficient.
$c_{D_{\overline{U}}}$	CDU	Orbiter uncorrected drag coefficient
c _{hbf}	CHBF	body flap hinge moment coefficient, about hinge line $X_0 = 1532.0$
^C hei	CHEI	inner elevon hinge moment coefficient, about hinge line $X_0 = 1387.0$
C _{heo}	CHEO	outer elevon hinge moment coefficient, about hinge line $X_0 = 1387.0$
с _{Не} тот	CHETOT	total right elevon hinge moment coefficient
$c_{L_{U}}$	CLU	Orbiter uncorrected lift co officient
C ₂	CBL	Orbiter rolling moment coefficient, body axis system

NOMENCLATURE (Continued)

Symbol .	Plot Symbol	Definition
c _m	CLM	Orbiter pitching moment coefficient with sting cavity adjusted to average base pressure, referenced to Orbiter MRC.
c_{m_u}	CLMU	Orbiter uncorrected pitching moment coefficient
c^{m}	CLMF	Orbiter forebody pitching moment coefficient referenced to orbiter MRC.
c _{msc}	CLMSC	Orbiter sting cavity pitching moment coefficient, referenced to Orbiter MRC
c_{N_u}	CNU	Orbiter uncorrected normal force coefficient
C _N	CN	Orbiter normal force coefficient with sting cavity adjusted to average base pressure
$c_{N_{\overline{F}}}$	CNF	Orbiter forebody normal force coefficient
CNsc	CNSC	Orbiter sting cavity normal force coefficient
c _n	CYN	Orbiter yawing moment coefficient, body axis system
C _{pi}	CPi	surface tap pressure coefficient, port i, $(P_i - P_{\infty})/q$
Сү	CY	Orbiter side force coefficient
c[x][x]	c[x][Y]	base area force and moment coefficients. The first subscript (post fix) designates the type of coefficient, the second the pressure tap and it's associated area. The symbolic vectors [X] and [Y] are defined below.
[X]=	:	vectors [n] and [r] are derined below.
A N Y m n	A N Y I.M YN BL	axial force normal force side force pitching moment yawing moment rolling moment

NOMENCLATURE (Continued)

Symbol	Plot Symbol	Definition
[Y]	a	
1,2,3 4,5,6 sc bf	1,2,3 4,5,6 SC BF	areas associated with pressure taps 1 through 6 see figure 2b sting cavity area upper body flap area
1 _b	LB	Orbiter reference body length, IML nose to $X_0 = 1528.3$, in.
² REF	LREF	longitudinal reference length, Orbiter mean aerodynamic chord, in
	LU/DU	uncorrected lift to drag ratio, CLU/CDU
M	MACH	freestream Mach number
Φ	PHI	angular cylindrical coordinate position around Orbiter body - deg.
P _i	Pi	pressure at surface tap i, PSF
P _∞	P	freestream static pressure, PSF
Pt	PT	freestream total pressure, PSF
q	Q	freestream dynamic pressure, PSF
	RN/L	unit Reynolds number, million per foot
S	SREF	wing reference area, ft ²
Tt	TTR	freestream total temperature, °R
X _{cp}	XCP/L	center of pressure location referred to $1_{\mbox{\scriptsize b}}$
X _o /L _o	X/LB	longitudinal location of body surface, fraction of body length

NOMENCLATURE (Concluded)

Symbol	Plot Symbol	Definition
X/C	X/CW	chordwise location on wing surface, fraction of local chord
X/C _V	X/CV	chordwise location on vertical tail, fraction of local chord
n _V	Z/BV	spanwise location on vertical tail, fraction of vertical tail span
η	2Y/BW	spanwise location on wing, fraction of semi span
X _{mrp}	XMRP	longitudinal location of moment reference point
XT	хт	longitudinal moment transfer distance from Orbiter balance center to Orbiter MRC, in
Ymrp	YMRP	lateral location of moment reference point
Z _T	ZT	vertical moment transfer distance from Orbiter balance center to Orbiter MRC, in
α	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
^δ bf	BDFLAP	body flap deflection, degrees
δ _{eL}	ELVN-L, L-ELVN	left elevon deflection, degrees
^δ eR	ELVN-R, R-ELVN	right elevon deflection, degrees
⁶ r	RUDDER	rudder deflection, degrees
δsb	SPDBRK	speed brake deflection, degrees
Z _{mrp}	ZMRP	vertical location of moment reference point
	\$\$	mask character used to indicate all possible values for this test 01 through 85

REMARKS

During the course of the test it was necessary to replumb the scanivalves. The resultant time loss necessitated deleting the priority 4 runs which incorporated the use of the metric vertical tail.

Data obtained from pressure taps 184, 296 and 347 are suspect due to slow leaks noticed while leak checking individual model pressure taps.

Body flap hinge moment data for datasets RE8001 through RE8005 have a -15% drift while datasets RE8006 and RE8007 have a +10% drift down water recording system errors. System checks during the remaining of the test indicate a system error of less than 4% for body flap hinge moment data.

Rolling moment data has an approximate -.003 bias in the coefficient. The reason for this was not determined, but possible sources are fabrication tolerances and/or differential stiffness of the left and right elevon panels.

Distortion of the instrumented elevon shaft appears to have occurred around run 310 due to model assembly difficulties and the maximum loads encountered at these test conditions. A comparison of measured elevon deflection before and after the test with the nominal setting is presented below:

Elevon Panel	Nomina 1	Pre-Test	Post-Test
Inboard right	$\begin{cases} -10 \\ -4 \\ 0 \\ 4 \\ 10 \end{cases}$	-9° 36' -3° 34' +0° 10' +4° 26' +10°32'	-8° 55' -2° 55' +1° 02' +4° 28' +10°39'
Outbcard right	$\begin{cases} -10 \\ -4 \\ 0 \\ 4 \\ 10 \end{cases}$	-9° 36' -3° 34' +0° 10' +4° 26' +10°32'	-8° 15' -2° 20' +1° 05' +3° 59' +10°18'

^{*} Inboard only was measured but was the same as outboard panel(see Ref 2)

CONFIGURATION INVESTIGATED

0. 1

The Rockwell International model 47-0 Space Shuttle Orbiter Vehicle was utilized in this test series. The model was originially constructed to -140A/B lines, but was modified prior to this test with the addition of the -140C OMS pods, six inch bevelled interpanel elevon gaps and uncovered RCS forward thrustor parts. To denote these additions, the additional designations "C" (for -140C OMS pods) and "R" (for RCS thrustors) were added, and the slashes deleted for convenience on Table II(designated "-140 ABCR").

In data sets RE8069 to 085 the RCS thrustor ports in the nose were filled reverting the configuration to -140A/B/C modified with body B_{26} .

The following nomenclature denotes the model components:

Component	<u>Description</u>
B ₂₆	140A/B fuselage (VL70-000140A, VL70000140B)
B ₇₀	140A/B fuselage (VL70-000140A, VL70-000145, VL70-000140B, VL70-000143A, VL70-000139) with RCS thrustor parts (VL70-08501, VL70-08502, VL70-08296)
c ₉	140A/B basic canopy (VL70-000140A, VL70-000143A)
E ₄₄	140A/B elevons (VL70-000200, VL70-006089, VL70-006092) with six inch bevelled interpanel gaps, no flipper door
F ₉	140A/B body flap (VL70-000140B, VL70-000200)
M ₁₆	OMS-RCS pods for 1400 Orbiter
N ₂₈	OMS basic nozzles
R ₅	basic Orbiter rudder (VL70-000146A, VL70-000095)
v ₈	basic Orbiter vertical tail (VL70-000140A, VL70-000146A)
W116	basic 140A/B wing (VL70-000140B, VL70-000200)

CONFIGURATIONS INVESTIGATED (Concluded)

Designated configurations are:

-140ABCR = B_{70} C_9 E_{44} F_9 M_{16} N_{28} R_5 V_8 W_{116}

-140 ABC = $B_{26} C_9 E_{44} F_9 M_{16} N_{28} R_5 V_8 W_{116}$

TEST FACILITY DESCRIPTION

The Ames Research Center Unitary Plan 11- by 11-Foot Transonic Wind Tunnel is a closed-circuit, air-medium, variable-density facility capable of attaining Mach numbers from 0.6 to 1.4 at Reynolds numbers from 1.7 x $10^6/\mathrm{ft}$ to 9.4 x $10^6/\mathrm{ft}$. The test section is 22 feet long, and models are installed on internal strain-gauge balances mounted to sting-type support systems.

Shadowgraph and Schlieren photographic equipment is available, ard pressure transducer instrumentation is provided.

Tunnel operating temperature is 580°R. Extended high Reynolds number runs are restricted by power availability.

DATA REDUCTION

Standard NASA/Ames data reduction equations were c.ed to reduce forces, moments, and pressures to coefficient form. Orbiter main balance force and moment coefficients were computed using the following equations:

Symbol .	Orbiter main balance measurement
NF AF PM YM SF RM	Normal Force Axial Force Pitching Moment Yawing Moment Side Force Rolling Moment
$C_{A_U} = AF / (q S)$	$C_{L_u} = C_{N_u} \cos \alpha - C_{A_u} \sin \alpha$
$c_{N_u} = NF / (q S)$	$C_{D_u} = C_{N_u} \sin \alpha + C_{A_u} \cos \alpha$
$C_{\gamma} = SF / (q S)$	
$C_{m_u} = \frac{PM}{qS_c} + \frac{C_A \cdot Z_T}{c}$	$\frac{c_N \cdot x_T}{c}$
$C_{\ell} = \frac{R M}{qS_b} + \frac{C_{\gamma} \cdot Z_{T}}{b}$	Moment Transfer Distances $X_T = 0.572 \text{ in.}$
$C_n = \frac{\gamma_M}{qS_b} - \frac{C\gamma \cdot \chi_T}{b}$	$Y_{T} = 0$ $Z_{T} = 0.450 \text{ in.}$

The Moment Reference Center about which the data was reduced is located at

Balance coefficients were grouped into datasets RE80\$\$.

Hinge moments and hinge moment coefficients were computed using the following equations:

Elevon hinge moments (inboard and outboard).

$$HM_{e_{I}} = (HM1-HM2) (M1/D1) + HM1$$

$$HM_{eo} = (HM3-HM4) (M3/D3) + HM3$$

where

HMi = measured moment on strain gage i

D1 = distance between gages 1 and 2, .49335 in.

D3 = distance between gages 3 and 4, .45800 in.

M1 = moment transfer distance for inboard elevon, .93825 in.

M3 = moment transfer distance for outboard elevon, .92250 in.

Elevon hinge moment coefficients

Inboard,
$$C_{H_{e_I}} = H_{M_{e_I}} / (q S_e c_e)$$

Outboard,
$$C_{H_{eo}} = H_{M_{e_o}} / (q S_e c_e)$$

Total,
$$C_{H_{e_{TOT}}} = C_{H_{e_I}} + C_{H_{e_O}}$$

 S_e = elevon reference area, 0.189 ft.²

 c_e = elevon reference MAC, 2.721 in.

Body flap hinge moment coefficient

$$C_{H_{bf}} = HM_{bf} / (q S_{bf} c_{bf})$$

 HM_{bf} = measured body flap hinge moment

S_{bf} = body flap reference area, 0.12834 ft.²

cbf = body flap reference MAC, 2.541 in.

Hinge moment coefficients are part of datasets RE8X\$\$.

Pressure coefficients for all model orifice pressure measurements were computed using this equation:

$$C_{P_i} = (P_i - P_{\infty})/q$$

where P_i = pressure at model orifice i

 P_{∞} = tunnel static pressure

q = tunnel dynamic pressure

Other data reduction constants include:

 $S = wing reference area, 2.4210 ft.^2$

c = wing reference chord, 14.2443 in.

b = wing reference span, 28.1004 in.

After the data had been reduced to coefficient form by NASA/AMES, DMS interpolated it to nominal α 's and β 's. Then 2 types of base and sting cavity area coefficients were calculated. When they are applied 3 types of balance coefficient data exists. These can be distinguished by the last subscript (symbolic name) or postfix (mnemonic name). The key is given below

- U ~ uncorrected coefficients.
 - coefficients with sting cavity pressure corrected to base pressure (without a suffix).
- F ~ forebody coefficients with the base area pressure corrected to freestream pressure.

Only the correction coefficient associated with base pressure tapes 1 through 4 were applied to the longitudinal orbiter coefficients.

Figure 2b illustrates the base area associated with each pressure tap. Alphabetic characters bf and sc designate body flap and sting cavity areas, respectively. Base area coefficient names have a numeric character which designates the pressure tap number. Base coefficients for vertical tail areas 5 and 6 were calculated but not applied to the total orbiter coefficients. Base area coefficient values are tabulated in the appendix. A detailed derivation of these coefficients follows. It is concluded by a matrix of base area geometric properties.

The orbiter sting cavity force and moment coefficients were computed as:

$$C_{A_{SC}} = \frac{(C_{p2} - C_{p1})}{S} A_{1}$$

$$C_{N_{SC}} = \frac{(C_{p2} - C_{p1})}{S} A_{1} \tan 12.55^{\circ}$$

$$C_{m_{SC}} = C_{A_{SC}} \frac{Z_{t}}{C} - C_{N_{SC}} \frac{X_{SC}}{C}$$

The orbiter force and moment coefficients corrected for the difference between balance cavity pressure and orbiter base pressure:

$$C_A = C_{A_u} - C_{A_{SC}}$$
 $C_N = C_{N_u} - C_{N_{SC}}$
 $C_m = C_{m_u} - C_{m_{SC}}$

These orbiter coefficients are part of datasets KE80\$\$.

Orbiter base force and moment coefficients were calculated as follows:

Upper base area

$$C_{N2u} = -(C_{p2} A_{2u} \tan 16^{\circ})/S$$

$$C_{A2u} = -(C_{p2} A_{2u})/S$$

$$C_{m2u} = \frac{C_{A2u} Z_{2u}}{c} - \frac{C_{N2u} X_{2u}}{c}$$

Lower base area

$$C_{N2_{\ell}} = -(C_{p2} A_{2_{\ell}} \tan 10^{\circ})/S$$

$$C_{A2_{\ell}} = -(C_{p2} A_{2_{\ell}})/S$$

$$C_{m2_{\ell}} = C_{A2_{\ell}} \frac{Z_{2\ell}}{c} - C_{N2_{\ell}} \frac{X_{2\ell}}{c}$$

Total base area, A2

$$c_{N2} = c_{N2u} + c_{N2g}$$

$$C_{A2} = C_{A2_u} + C_{A2_\ell}$$

$$C_{m2} = C_{m2_u} + C_{m2_g}$$

OMS pod base area, A3

(This assumes the surface is perpendicular to the orbiter X-axis)

$$C_{A3} = -(C_{p3} \Lambda_3)/S$$

$$C_{m3} = C_{A3} \frac{Z_3}{C}$$

OMS pod base area, A₄

(This assumes the surface is perpendicular to the orbiter X-axis)

$$C_{A4} = -(C_{p4} A_4)/S$$

$$C_{m4} = C_{A4} \frac{Z_4}{C}$$

Coefficients for the above areas are grouped into datasets EE8D\$\$.

Upper surface of body flap

$$C_{Abf} = \frac{-C_{pbf} Abf}{S} \sin (\delta_{bf} + 6.88^{\circ})$$

$$C_{Nbf} = \frac{-C_{pbf} Abf}{S} \cos (\delta_{bf} + 6.88^{\circ})$$

$$C_{mbf} = \frac{C_{Abf} Z_{bf}}{C} - \frac{C_{Nbf} X_{bf}}{C}$$

where:

$$C_{pbf} = \frac{C_{p200} + C_{p201} + C_{p204} + C_{p205}}{4}$$

The orbiter force and moment coefficients adjusted to free stream pressure (forebody coefficients).

$$C_{A_{F}} = C_{A_{U}} - \left(\frac{-C_{p1} A_{1}}{S} + \sum_{i=2}^{4} C_{A_{i}} + C_{A_{b}f}\right)$$

$$C_{N_{F}} = C_{N_{U}} - \left(C_{N_{2}} + C_{N_{b}f}\right)$$

$$C_{m!} = C_{mU} - \left(\sum_{i=2}^{4} C_{m_{i}} + C_{m_{b}f}\right)$$

These orbiter coefficients are part of datasets KE80\$\$.

Vertical tail "undercarriage" area, A_5

Top Segment:

$$C_{N5t} = (C_{p5} A_{5t} \tan 63.75^{\circ})/S$$

$$C_{A5t} = -(C_{p5} A_{5t})/S$$

$$C_{m5t} = C_{A5t} \frac{Z_{5t}}{C} - C_{N5t} \frac{X_{5t}}{C}$$

Middle Segment:

$$C_{N5m} = (C_{p5} A_{5m} \tan 26.1426^{\circ})/S$$

$$C_{A5m} = - (C_{p5} A_{5m})/S$$

$$C_{m5m} = C_{A5m} \frac{Z_{5m}}{c} - C_{N5m} \frac{X_{5m}}{c}$$

Bottom Segment:

$$C_{N5b} = (C_{p5} A_{5b} tan 21.94^{\circ})/S$$

$$C_{A5b} = - (C_{p5} A_{5b})/S$$

$$c_{m5b} = c_{A5b} \frac{z_{5b}}{c} - c_{N5b} \frac{x_{5b}}{c}$$

Total area, A₅:

$$C_{M5} = C_{m5t} + C_{m5m} + C_{m5b}$$

Vertical Tail base area, A6:

Segment above rudder

$$C_{N6u} = (C_{p6} A_{6u} tan 63.75^{\circ})/S$$

$$C_{A6u} = (C_{p6} A_{6u})/S$$

$$C_{m6u} = C_{A6u} \frac{Z_{6u}}{C} - C_{N6u} \frac{X_{6u}}{C}$$

Rudder/Speed brake base:

$$C_{A6_{\ell}} = C_{P6} A_{6_{\ell}} [sin (\theta-55.1667^{\circ}) cos 55.1667^{\circ} + cos (\theta-55.1667^{\circ}) sin 55.1667^{\circ} cos (8r)]/S$$

$$C_{N6_{\ell}} = C_{p6} A_{6_{\ell}} Lsin (\theta-55.1667^{\circ}) sin 55.1667^{\circ} - cos (\theta-55.1667^{\circ}) cos 55.1667^{\circ} cos (8r)]/S$$

$$C_{Y6_{\ell}} = C_{p6} A_{6_{\ell}} cos (\theta-55.1667^{\circ}) sin 8r/S$$

$$C_{m6_{\ell}} = [C_{A6_{\ell}} (Z_{6_{\ell}}) - C_{N6} (X_{6_{\ell}})]/C$$

$$C_{\ell} = [C_{Y6_{\ell}} (Z_{6_{\ell}})]/b$$

$$C_{n6_{\ell}} = [C_{Y6_{\ell}} (X_{6_{\ell}})]/b$$

$$C_{n6_{\ell}} = -[C_{Y6} (X_{6_{\ell}})]/b$$

$$A_{6_{\ell}} = A_{6_{\ell}}/sin 0$$

Total area, A₆:

$$C_{A6} = C_{A6u} + C_{A6k}$$

$$C_{N6} = C_{N6u} + C_{N5k}$$

$$C_{Y6} = C_{Y6k}$$

$$C_{m6} = C_{m6u} + C_{m6k}$$

$$C_{k6} = C_{k6k}$$

$$C_{n6} = C_{n6k}$$

Vertical tail area coefficient data are grouped into datasets GE8D\$\$.

BASE GEOMETRIC PROPERTIES MATRIX

			Distance between Centroid and MRC	entroid and MRC
Description	Sub- script	Area A - ft.²	vertical Z ~ in.	longitudinal X ~ in.
Sting cavity	SC	0.076699	0.45	12.199
Body flap upper surface	bf	0.128	- 2.64	13.659
Orbiter balance cavity	-	0.076699	0.45	12.199
Orbiter base orifice 2 lower	22	0.133889	- 1.32	12.617
Orbiter base orifice 2 upper	2n	0.0818055	2.07	12.384
Lower OMS pod	ო	0.030472	2.68	AN
Upper OMS pod	4	0.074166	3.63	NA.
Vertical tail "undercarriage" bottom	2 p	0.003565	4.612	12.395
Vertical tail "undercarriage" middle	2	0.002610	5.336	14.079
Vertical tail "undercarriage" top	5 t	0.000341	5.97	15.185
Vertical tail above rudder	n9	0.000798	12.656	18.482
Base area of speed brake	99	Varies with sp	Varies with speed brake deflection	

NOTES: Sting cavity and Orbiter balance cavity are synonymous.

NA - not applicable.

<u>6sb</u>	Λ6 _ℓ ft'
0 25 35 55 85	0.0066036 0.0456000 0.0621000 0.0950800 0.1551400
x ₆₁ =	15.045 + 1.442277 [1-cos (&sb/2)]
Z ₆₂ =	9.755 + 0.501827 [1-cos (&sb/2)]

Standard DMS loads cycle test procedures were used to process the OA148 pressure data. First numerous pressure distribution plots were released. Analysis of these produced bad pressure data list. This list is reproduced below:

OA148 Bad Pressure Data

Component	Dataset <u>No.</u>	Tap <u>No.</u>	B	ā
Fuselage (B)	1 1 1 1 1 1 1	143 148 150 152 186 187 189 191	4 4 4 4 4 4 4	-4 -4 -4 -4 -4 -4
Lower Wing (L)	1 + 7 1 + 85 1 1 1 1 1	231 290 316 317 337 338 358 378 379 398	ALL 4 4 4 4 4 4	ALL -4 -4 -4 -4 -4 -4
Upper Wing (U)	1 + 7 1	247 357	ALL 4	ALL -4
Body Flap (F)	24	205	-4	12
Speed Brake (K)	1 + 85	822	ALL	ALL
Vertical Tail (V)	8 ALL 79 79	443 1444 1453 1454	ALL ALL -4 -4	ALL ALL -4 -4

Note: Wind tunnel pressure data tabulated in the appendix have the original bad data values.

These points were eliminated from further processing. The remaining data were interpolated to nominal alpha and beta values. Processing was completed with the release of a magnetic tape containing the final interpolated pressure coefficients.

This report contains plots and tabular listings for both force and pressure data. Plotted force data illustrates lateral-directional, longitudinal and hinge moment characteristics of the configuration tested. Plotted pressure data illustrates the effect of several control deflections and attitude changes on local pressure distributions. The multiple volume appendix contains a tabulated listing of the basic force and pressure data. Listing of the interpolated base area coefficients is also included. The plotted and tabulated data are arranged in the following manner:

VOLUME NO.	CONTENTS
1	Force data plots showing lateral-directional
	longitudinal and hinge moment characteristics.
2	Plots illustrating the effect of control surface
	deflections on fuselage, wing and vertical tail
	pressure distributions.

DATA REDUCTION (Concluded)

VOLUME		
NO.		CONTENTS
3	Tabulated	Force Data
	Dataset	Data type
	RE80\$\$	source balance coefficients
	RE8X\$\$	source hinge moment coefficients
	RE8Y\$\$	source base pressure coefficients
	а	interpolated balance coefficients adjusted for cavity pressure and forebody coefficients
	EE8D\$\$ i	nterpolated base and cavity area coefficients
	GE8D\$\$ i	nterpolated vertical tail base

Tabulated Pressure Data

	Component	Fourth Character*	<u>Page</u>
4, 5	orbiter fuselage	В	1
6,7,8	lower wing	L	1271
9,10,11	upper wing	U	3147
12 12	upper body flap lower body flap	F G	5405 5774
13 13	speed brake vertical tail	K V	6143 6547

^{*} The fourth character in each dataset identifier (i.e., XE8BXX, B for Fuselage) represents the individual component.

REFERENCES

- 1. SD75-SH-0106, "Pretest Information for OA148 of the 0.03-Scale 47-0 Pressure Loads Space Shuttle Model in the 11 x 11 Foot Leg of the NASA/ARC Unitary Plan Wind Tunnel," April 18, 1975.
- 2. MG-75-07-11, Rockwell International Corporation Internal Letter: "Model design Dimensional Varification Task 36: Elevon Deflection Angle Check of the 0.03-Scale SSV Model 47-0 (140A/B Configuration)". SAS/WT0/75-283, July 29, 1975.

TEST : OA148			DATE : May 1975
	TEST CON	NDITIONS	
	REYNOLDS NUMBER	DYNAMIC PRESSURE	STAGNATION TEMPERATURE
MACH NUMBER	(per foot)	(pounds/sq. inch)	(degrees Fahrenheit)
0.60	4.57 x 10 ⁶	4.166	120
0.90	3.41 x 10 ⁶	4.166	120
1.10	3.05 x 10 ⁶	4.166	120
1.25	2.86×10^6	4.166	120
1.40	2.74×10^6	4.166	120
		: 	
BALANCE UTILIZED:	ARC Task MK XX	A	
	CAPACITY:	ACCURACY:	COEFFICIENT TOLERANCE:
NF	<u>3000 lbf/gage</u>		
SF	1500 1bf/gage		
AF	. 600 1bf		
PM	27.000 in-1bf	4	
RM	4000 in-1bf		
YM	10,500 in-1bf		
	•		
COMMENTS: Maximu applic	um n <mark>ormal and side f</mark> o cation	orce dependent upoi	n point of
	÷ ·		
	27		1

ARC 11-07B

TABLE 11.

								TE	ST R	אנ	NU M	век									2£ 76	-	4 (2) A 20 V		NASA-MSFC-MAF
AST TEST	MACH NUMBERS		1.4	1.25	1:1	6.9	3		3	6.9		14	1.25		6.0	9					63	بمعليين	IDVAR (1) IOVA		ASAN
DATE:	-	3	65						İ			76									6.1	4	11		
		1-21	+-	みだ	47	52	57		49	٥٦		757	18	78	16	96					55	4			
ARY		α	†	4	45	15	Slo		63	69		47	88	88	8	_						4			
SET RUN NUMBER COLLATION SUMMARY	8	19	\$	4	45/	50	28		77	67		73	79	48	88	な					67	4			
ATION		Q	33	39	4	49	54		61	68		72	78			53					43	1			
100 X		1	140	38	43	4	53		9	65		آ	7	8%	87	92					1	4444	S		
MBER		18		+					0			0					-				7.6	111	COEFFICIENTS	16	
N N		\$1-3	3 8	↓		_			0		_	2230	ı		-			-	-			* * * *		ر ا	0
SET R	-	۷ ۷	55/163					-	55 22.5	-		85/2						_			ě		21.00	-	1
PATA			0	1					0			0									25		1	T 1	
		7	<u> </u>	9	T	0	U 4		V V	_		3		1	0	+	_	-	-	-	ł		6	.ተ ፈ	П
4 148		CONFIGURATION	0 244 04	/					-140 ARCP.			-144 ABCP									13 19			35.	
TEST: OA		DATA SET	2-8001	250	5003	8	Soo		900			800		3 6		6.0	ó							6 FO 20	

1.

ĺ

· •

TABLE II - Continued.

T	Τ	Τ							ŤΕ	ST R	ואט	NUM	おとい	· · · · · · · · · · · · · · · · · · ·	····								T	3, 3,	}	2		MAF
12																					_	_			4	4R (Z)		MACA-NSEC-MAF
الإ	UMBERS																							13	4	IDVAR	İ	1
2057	MACH NUMBERS			₹	125	1.1	0.9	0.6		サー	1521	ני	6:0	9			7	127	بر	0.0	3				1	DVAR (1)		
																								5	4	ō		
DATE:		I	9	707						128							154								1			
	Ì		짓	5	Los	215	111	2		トな	133	138	143	1 3)		153	154	164	4	1			53	4			
RY			0	201	901	1:1	2	121		727	132	137	547				7251	158	163	0	9	517			4			
SUMM	1	5	4	99	So	0)/	15:	13.0		521	130		4	_	रु		151	_			و	いる		49	4			
NOIL			0	48	104		-			421	621		-	?	3		So				_	7		43	4 4			
DIIN NIIMBER COLI ATION SUMMARY			4	47	1031	180		+	十	123	┺	1	6		7		67		+			67		•			1	
AFP (See	0						0							0	1						37	-	CIENTS		
2 2			Sel	0						0							0									COEFFICIENT		
•			300		_	_	_	_	-	1		_	+	-	+		0	+-	L	+	_	_		31	-			
TA CET	<		SS	35,	-	-	+	-	+	0	-	\downarrow	+	+	+		0	+-	+	+	\dashv					1		
á	3		8 8	•	F	P		7 0	╁	P	+-	F	10	,	J		2	+-	1	1	A	U		×	-]		
	٦		8	_			14		_	K	_	_		4	4		Q	1	1	4	4	₹						
			Ž O	٥							7						9	¥						٤	•	1		
Q V)		NOTE A ROUND TO NOTE A ROUND T	79.0						0	0							40CK								}		
			DIMNO	1	_ 1						0							94								1		
					7	1	_	1			1	1			7			1	5.	S	J	Ļ	-	1	,	4	8 PC	SCHEDULES
١.	·į		DATA SET DENT'FIER		2000	5 \	200	9	10		0,0	610	30	120	777			3	929	520	470	120				1	t 0	SCHE
7567			10 EN		3											i I	İ	Ĺ	_					L		1		

~;, ·, ·

TABLE II. - Continued.

TEST: CA											330000000000000000000000000000000000000	;							
	0 148		_	DATA		RUI	5 N Z	MBER	700 ≥	LATIC	SET RUN NUMBER COLLATION SUMMARY	IMARY		ă	DATE:	7057	1-	1.519	
DATA SET	CONFIGURATION	Ц		ı							४				-	W.	MACH NUMBERS	ERS	İ
DENTIFIER		8	2	Sr.	556	200	32.	See	4	0	4	8		7	آة		_	\vdash	
K∈8028	140 ABER	M	A	3	35	16.3	10	0	SLI	211	CI	311 L	Pr1 8	L	89	Ξ	17.1		
520		4	A						181	182	587	3184	4	₩-		=	721	-	
030		Ų.	A						186	18	88)	-		0		=		-	
031		Q	A						(6)		-			15	-	0.9	6	-	
750		A	J						196		<u> </u>	L	1 *		_	0.6	٩		Π
												<u> </u>		-					
०३३ ।	140 ABCR	8	P	0,1	35	16.3	0	10	102	202	. 203	200	Soz t	_	302	1.4	*	-	
V, O		4	Δ						402		692	270	172	-	_	,22.1	1/2	-	Γ
035		٥	A						212	213	_	215	_		_	=	_	-	
036		4	0						L12	812		-			-	6.0		-	мні
C5 0		4	J						222	23	-	222	1226	-0		0,6	و	ļ	
													_	_	_		-	-	
C38 (40 ABCIZ	8	A	40	85	16.3	ō	ò	127	377	223	230	183	1232	7	4,	-	-	T
030		4	A						233	27	235	752			-	52:1	10	-	
040		V	Δ						238	2354	240	7	242	1	_	=			1
Ź		Ø	A					, ,	243		245		747	_		6.		_	T-
280		4	บ						248	240	23	122	252	2	<u> </u>	9,0	-		T -
														_	-			-	
4	13 19		25		31			37		43	69		55		į,		ý		7.5 PE
	absersabses.	1	4	4	7	1	1	4	4	1	4	3	111	1	111	1 1 1 1	1	111	
8 80						Õ	COEFFICIENTS	ENTS							·-	DVAR (I)	(EVA)	AR (2)	A 02
-		l							1			1							1

IASA-MSFC-MAF

TABLE II. - Continued.

A	04/			١					č					DATE	1504 ::		ナドイ	
ABCC A O SS ZIS 10 10 ZSB ZSC ZISC ZISC O A B 12 16 O	0	7		-	A SE			MBEN	ਰ ਹ ਹ	LAIIC	N V	MAK						
ABCZ A D O SS 215 646 -4 O A B NZ 16 O O O O O O O O O O O O O O O O O O											४				N	IACH NUA	NBERS	
ABCZ A D O SS 225 4 287 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	CONFIGURATION	X	8	82		199	Set	Sea	8	0	4	8	\vdash					\vdash
40 ABCC	40 ABCZ	٧	-	0	5	22.5	ó	0)	233			7		1	7	9.0		
40 ABCR		Á	IJ						852				ļ			2,0		
40 ABCC											_		_					
40 ABC R. BS 16.3 4 4 273 274 275 276 277 778 1.4 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6	140 ABCR	*		0	\$5	22,5	4	4	263		·		1.0	_		9.9		
40 ABCR, B D -10 85 16.3 4 4 273 274 215 276 271 278 144 A D A D A D A C A C A C A C A C		۷							877				127	-27	3	2.6		
40 ABCR, B D -10 BS 163 4 273 774 275 271 278 144 125 180 181 282 283 125 125 175 175 175 175 175 175 175 175 175 17										_								
40 \(\text{A} \text{D} \) A \(\text{D} \) A \(\text{D} \) A \(\text{C} \) A			P	21	Ø	163	4	4	273	_		_	1			す		5 T
40 48 C.C.	i		_						642		187		1			257		RUN
40 \(\alpha \) 269 \(29\) 295 \(29\) 29		4	P						284			_	_	-		-		N U N
40 \(\alpha \) 26 \(\text{Lor} \) 26 \(\text{Lor} \) 26 \(\text{Lor} \) 26 \(\text{Lor} \) 26 \(\text{Lor} \) 26 \(\text{Lor} \) 30 \(\tex		7							289	290	162		293		9	9.0		BLI
40 % 8 C		4	U						294	52				60	7	1		
40 28 C.C. B. D. 10 SS 16.3 - 4 + 29 500 301 302 303 304 1.4 1.4 29 500 301 308 300 125 1.25 1.5 1.1 1.5 1.1 1.5 1																		
A D	40 ABER			0,1	SS	M	A	1	299	_		300	2303		12	4		
A D 315 316 317 318 319 1.1									305	-	_			9		22		
A C		1	_						310				I	4	\			
13 19 25 32 32 32 32 32 32 36 66 67 67 68 67 68 67 68 68 68 68 68 68 68 68 68 68 68 68 68		A	Δ						315			3/8			0	5.0		
13 19 25 31 37 43 49 55 E1 E7 COEFFICIENTS 10VAR (2)		٧	_						320		322	32		- L	9	9.0		
13 19 25 31 37 43 49 55 61 67																	-	_
COEFFICIENTS IDVAR (1) IDVAR (2)	13	19		52		31		37		43	٩	6	S) S)		£1	6.		Ţ,
COEFFICIENTS 10VAR (2)	*****	4	3	4	1	4	4	1	1	4	1	4	4	1	444	4	1	4
						ŏ	DEFFIC	SENTS							IDVAF	Ξ		í) Z
									1									1

NASA-MSFC-MAF

NASA-MSFC-M

\$\limins_{\text{constraint}}^{\text{Constraint}} \text{Constraint}^{\text{Constraint}} \text{Constraint}^{\t	TEST: <	04 148	_	٥	Y X	143	Į Q		BED	5	Į Į į	3	70 4 1		DATE	١	Post	1537	1	
- CONFIGURATION			,	,					אר א מרא	רטרו	51.4		2	į		Ш				
- 1400A3C	SET	NONTARBURNA										X					MACH	NUMBERS		
- 1,40,0 R 2,C R 10	FIER		7		M		585				0	4	8		\Box					L
A D S C	-	140 ABCP	Р	P		5	6	4		325	728	125	328		33	9	1.4			
A C 340, 342, 343, 344, 345 0.	200			A					.,/	331	332	333	_		_		1.25			
A C	259		1	P					4,	336	337			3.4	 		=		_	
A C	ંકુ			C					(W)	40	342			TX.	12					_
AO ABC B D +S SS 163-4-4 3S1 3S2 3S3 SS4 3SS SSC 1.4	je.			C					ועו		42	848	44	3352			1			,
40ABCR B 0 +5 55 (163-4-4 35) 352 353 354 355 356 (1.4) A D										1					_	_				7
A D 857 358 354 360 361 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1 1.1 1.25 1.1 1.1 1.25 1.1		_			10	<u> </u>	63	4	D	_	352	253	354	M	$\overline{}$	<u> </u>				EST
A C 36.2 36.4 36.5 35.6 1.1	() (62)			0					*		355	359			_	_	1.25			RUN
40ABCR AD 0 65° 225-4 -4 377 378 384 386 387 0.6 AC B SS 225-10-10 387 388 389 389 0.6 13 19 25 31 37 43 345 346 0.6 13 19 25 31 37 43 345 349 0.6 14 C B SS 225-10-10 387 389 389 0.6 15 19 25 31 37 43 455 349 0.6 16 10 11 11 11 11 11 11 11 11 11 11 11 11	4			0					8		363	24	365	3.66						NU
A C	565			6					8	7	_	369			_					MHLI
13 19 25 31 37 31 37 36 38 0 38 1 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	900			J					3	7	त	374	375		_		1 .			,
13 19 25 31 37 378 379 380 381 0.9 0.5 1.4 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6																	_			
13 19 25 383 384 385 386 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6		MOABCR				_		-	_			379		37						,
13 19 25 31 37 43 34 34 35 61 67 67 67 67 67 67 67 67 67 67 67 67 67	9			ان					3		83	384	8	38						
13 19 25 31 37 49 345 340 61 66 67 57 61 62 61 64 61 61 61 61 61 61 61 61 61 61 61 61 61				-																
13 19 25 31 37 43 49 55 61 67 67 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 67 61 61 61 61 61 61 61 61 61 61 61 61 61	3						5	0	0			389	390	391						
13 19 25 31 37 43 49 55 61 67	٥			ال					4)	2		39.4	395	31			9			
13 19 55 43 49 55 61 67 -																				
COEFFICIENTS IDVAR (1) IDVAR (1)	,			25		3					6	49		55		61		67	Ĩ	£ 76
COEFFICIENTS IDVAR (2)	4		1	4	=	4	4	4	1	1	4	4	•	4	1	4	4	1000		R
1EDULES							00 00	FFICIE	NTS		I					Ō		IDVAR	(2)	מסא
	EDULE	S:								1 4										

 $(a,a) = \frac{1}{b} (a + b) (a + b)$

TABLE II. - Continued.

TABLE II. - Concluded.

		T		1	7		7		7	TE	5 T A	UN .	MUM	3 E (:	1	7			T	1	T	4	35 36	Zu
	1661	1000	SEE SEE	+	+	+	+		+				\dashv	+	\dashv		+			+	1	-	67	10VAR (2)
	. 1		MACH NUMBERS	1	7.	1.25		50	0		4.	\si	=	6.9	3		4	152.1	=	6.0	90	_		-1 00 1
	7505		1		-			Ĭ				_				•					Ť	1	63	DVAR (1)
	DATE:	ľ		Î	402						370						454					1		1 8
	و			721	401	407	412	L L	422		427	533	438	443	848		453	454	454	469	474		80 80	न् अ
	ıRY			80	400	406	4 : 1	416	421		726	432	14	442	4		452	458		000	473			1 3
•	DATA SET BUN NUMBER COLLATION SUMMARY		γ	7 +	399	405	4104	5.10	420		425	431	436	441	446 447 448		451	457	AC1 AC2 463	466 467 468	472		49	1
יחוור ו תחבתי	TION			0	398		400	414	419		7217	430	435	440		_	450	45C	451	3	12		43	4
5 ¹	100			7	547	403	408	43	4.8		228	429	434	439	449 AAS		449	455	460	465	410			1 1
	ABER			Sed	-10		7	4	Y		0	7		Y			0)+	_					37	A STAN
HOLL	Z			ودر	01-		_		_		01+						01-							200
	FT/RI			8000	5 16.3		_				(.)1.		<u> </u>				1	_	_				3.	4 6
	TA S			e 558	5 55				-		0		_	-			0							1 1
	č	3		3 8	\vdash	A	A	A	J	-	F	P	P	A	U		山	111	加	止	0		25	7 8
	L	,		¥	3	4	4	4	_		8	4	∢	4	<		B	4	4	4	4			10
	6			CONFIGURATION	ARC	1					ABC.						ABC						13 19	- 4-1 0 = 4-1
	48	, 1		7 00	41-						- 40						140							} ,
	TEST: OA		798 65 7	IDENTIFIER	D-8071	+-,	510	374	20		20	6	5		0.00		103	262	202	480	280		,	4.00.00

TABLE III MODEL DIMENSIONAL DATA

MODEL COMPONENT : BODY - BOX		
GENERAL DESCRIPTION :Configura	ion 140A/B orbiter	ใบรลโลฮก
No.TE: B26 is identical to B24 exce	ept underside of fuse	lage has been
refaired to accept W116.		
MODEL SCALE: 0.030 MC	DDEL DRAWING: SS-ACC	1147. Release 12
DRAWING NUMBER:VI.70=000143B, VI.70=000140A, -	-000200, -000205, -00 -000140B	06089, -000145
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length (OMI: Fwd Sta. $X_0 = 2$) Length (IML: Fwd Sta $X_0 = 2$)		38.799 <u>38.709</u>
Max Width (@ $X_0 = 1528.3$), 1	in. <u>264.0</u>	7.920
Max Depth (@ $X_0 = 1464$), In.	250.0	7.500
Fineness Ratio	0.264	0.264
Area - Ft ²		
Max. Cross-Sectional	340.88	0.3068
Planform		
Wetted		
Bas e		

TABLE III (Continued)

MODEL COMPONENT : BODY - BTO		
GENERAL DESCRIPTION:Configurat forward fuselage RCS thruster ports,	ion 140A/B orbit	er fuselage with
B ₂₆ .	7/11	Identical Co
MODEL SCALE: 0.030		
DRAWING NUMBER: <u>VL70-000140A</u> -0001 VL70-000205, -00608	<u>40B000143B.</u> -	<u>-000145, -00020</u> 0, 3502, -008296
DIMENSIONS :	FULL SCALE	MUDEL SCALE
Length (OML: Fwd Sta X_0 =235), Length (IML: Fwd Sta X_0 =238),	In. 1293.3 In. 1290.3	38.799 38.709
Max Width (@ X ₀ = 1528.3), In.		_7.920
Max Depth (@ $X_0 = 1464$), In.	250.0	_7.500
Fineness Ratio	0.264	0.264
Area - Ft ²		
Max. Cross-Sectional	34C.88	0.3068
Planform		
Wetted		
Base		

MUDEL COMPONENT :CANOPY C9		
GENERAL DESCRIPTION : Configuration		
В26.		THE PARTY OF THE P
MODEL SCALE: 0.030 MODEL DWG:	22 22 22	
	55-A00147, Re	lease 12
DRAWING NUMBER: VI.70-000143A		
P.M. Mariana		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length $(X_0=434.643 \text{ to } 578)$, In.	143.357	4.301
Max Width (@ $X_0 = 513.127$), In.	152.412	4.572
Max Depth (@ $X_0 = 485.0$), In.	25.00	0.750
Fineness Ratio		
Area		
Max. Cross-Sectional		
Planform		
Wetted		
Base		
Daza		

MODEL COMPONENT ELEVON - EL		
GENERAL DESCRIPTION 6.0 In. F.S.	gaps machined int	o Egg cleven.
Flipper doors centerbody pieces, and		
(Data are for one of two sides.)		
MODEL SCALE: 0.030		
DRAWING NUMBER		
DIMENSIONS	FULL SCALE	MODEL SCALE
Area – Ft ²	210.0	0.189
Span (equivalent) , In.	349.2	10.476
Inb'd equivalent chord, In.	118.0	3.54
Outb'd equivalent chord, In.	_55.19	1.656
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.2096	0.2096
At Outh'd equiv. chord	0.4004	0.4004
Sweep Back Angles, degrees		
Leading Edge	0.00	0.00
Trailing Edge	- 10.056	- 10.056
Hingeline	0.0	0.0
(Product of Area & d Area Moment (blazzabbackadpadbuc) , F	t 1587.25	0.01,29
Mean Aerodynamic Chord, In.	90.7	2.721

MODEL COMPONENT : BODY FLAP - F	9	
GENERAL DESCRIPTION :Configura	tion 140A/B	
MODEL SCALE: 0.030		
DRAWING NUMBER: VL70-000140B, -	000200	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (Chord), In.	84.7	2.541
Max Width , In.	262.308	7.869
Max Depth , In.	23.00	0.690
Fineness Ratio		
Area - Ft ²		
Max. Cross-Sectional		
Planform	142.60	0.128
Wetted		
Base	41.90	0.0377

MODEL COMPONENT : OMS POD - M16		
GENERAL DESCRIPTION : Configuration	140C orbiter OMS	pod - short pod
External contour is to referenced draw	vings with 1/2" a	dded to simulate
TPS.		
MODEL SCALE: 0.015		
DRAWING NUMBER : _VL70-00840100841	10	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (OMS Fwd Sta X _O =1310.5)	,In. 258.50	7.755
Max Width (@ $X_0 = 1511$), In.	136.8	4.104
Max Depth (@ $X_0 = 1511$), In.	74.70	2.241
Fineness Ratio	2.484	2.484
Area - Ft ²	,	
Max. Cross-Sectional	58.865	0.053
Planform	·	
Wetted		
Base		

MODEL COME	OMS PONENT: NOW NOW ZLES	TABLE III (CORE.Q)		
GENERAL DE	SCRIFFION: Con	figuration LLOA/B or	rbite: OMS no	zles.
-				
MODEL SCAL	E: 0.030			
DRAWING NU	MBER: <u>VL70-0001</u>	40A (Location), SS-A	00106, Releas	e 9 (Contour)
DIMENSIONS	:		FULL SCALE	MODEJ: SCALE
MACH N	10.			
Gi	- In. mbal Point to Exit roat to Exit Plane	Pl.ane		
Ex Th	er - In. it roat			
	let			
Area - Ex	rt ² it			
Th	roat			
Gimbal L eft	Point (Station) - Nozzle	In.		
	Ϋ́O .		1518.0 - 88.0	<u>45.54</u> - 2.64
	20		492.	14.76
Right	Nozzles XO		1518.0	1.5.51.
	Υο 20		88.0	2.64 14.76
	osition - Deg.			
Left ·	Nozzle Pitch Yaw		15°49' 12°17'	15°49' 12°17'
Right	Nozzle Pitch		15°49'	15°49'
	Yaw		12°17'	12°17'

1

まれたのなるので、これが記事を

MODEL COMPONENT RUDDER - R	·	-
GENERAL DESCRIPTION Configuration 1	140C orbiter rud	der (identical to
configuration 140A/B rudder).		
MODEL SCALE: 0.030		
DRAWING NUMBER	25	
	,	
DIMENSIONS	FULL SCALE	MODEL SCALE
Area - Ft ²	100.15	0.090
Span (equivalent), In.	201,00	6.030
Inb'd equivalent chord, In.	91.585	2.748
Outb'd equivalent chord, In.	50,833	1.525
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees		
Leading Edge	34.83	34.83
Trailing Edge	26.25	26.25
Hingeline (Product of area & C)	34.83	34.83
Area Moment (Microschoopeding), Ft	3 610.92	0.0165
Mean Aerodynamic Chord, In.	73.2	2.196

MODEL COMPONENT: VERTICAL - Vg		
GENERAL DESCRIPTION: Configuration 140C orbi	iter vertical to	il.
(Identical to configuration 140A/B vertical to	il.)	
MODEL SCALE: 0.030		
DRAWING NUMBER: VL70-000140C, -000146B		
dimensions:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo) - Ft ² Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Back Angles, Degrees. Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP	413.253 315.72 1.675 0.507 0.404 45.000 26.25 41.13	0.372 9.472 1.675 0.507 0.404 45.000 26.25 41.13
MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	199.81 1463.35 635.52 0.0	5,994 43,901 19,066 0,0
Airfoil Section Leading Wedge Angle - Deg. Trailing Wedge Angle - Deg. Leading Edge Radius	10.0 14.92 2.0	10.0 14.92 0.060
Void Area	13.17	0.0019
Blanketed Area	0.0	0.0

MODEL COMPONENT: WING-W	•	
GENERAL DESCRIPTION: Configuration 4		
NOTE: Identical to Way, except airfoil thickness.	Dihedral angle	is along
trailing edge of wing.		
MODEL SCALE: 0.030		
TEST NO.	DWG. NO. VL7	0-000140A -003200
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA Area (Theo.) Ft2 Planform Span (Theo in. Aspect Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Sweep Back Angles, degrees Leauing Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.0.0. Tip. (Theo) B.P. MAC Fus. Sta. of .25 MAC W.P. of .25 MAC EXPOSED DATA Area (Theo) Ft2 Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC B.L. of .25 MAC	2690.00 936.68 2.265 1.177 0.200 3.500 0.500 -10.056 35.209 -689.24 137.85 474.81 1136.83 290.58 182.13 1751.50 720.68 2.059 0.245 -562.09 137.85 392.83 1185.98 295.30 251.77	2.421 28.10 2.265 1.177 0.200 3.500 0.500 45.000 -10.056 35.209 20.677 4.136 14.244 34.105 8.717 -5.464 1.576 21.620 2.059 0.245 16.863 4.136 11.785 35.579 8.829 7.555
Airfoil Section (Rockwell Mod NASA) XXXX-64 Root b =	0.113	0.113
Tip <u>b</u> =	0.120	0.120
Data for (1) of (2) Sides Leading Edge Cuff Planform Area Ft2 Leading Edge Intersects Fus M. L. @ Sta Leading Edge Intersects Wing @ Sta	113.18 500.0 1025.0	0.102 15.0 30.720

TABLE IV.

FUSELAGE PRESSURE TAP LOCATIONS -

	300		7	15	7	63	80	33	55	vò	2	8	90	3	3	26	40	3
	\$ 12	`	3	8	8	80	ŏ	`	9	1	`.	00	Ø	8	00	2	20	7 ///
	180		9	6	3/	\$	22		63		82	%	B	#	123		B	143
Degrees	174			i				23										
8	69/								3	1								
Q	SRIL SEL 081 PLI 691 591										18	95	104	113	77		134	
¥	162									Ħ								
3	1%																	
LOCATION	12									13								
200	20			18	8	42	54		17		83	94	103	112	121		133	142
	140										82							
781	135																	
RADIAL	10 120 135 40			17	29	17	53		66		18	93	102	///	07/		132	191
*	0//																	
	3																	
B			9	29	28	\$	52		65		80	36	101	011	6//		161 061	07/66/
	8			15	27	39	15	ì	3		29	16	150	011/601	811		8	8:
	33			¥	97	38	20		63		82							
	36			5,	25	37	49		62		22	8	66	108	111	33	621	8
	2			12	23	à	\$		19		92							
	0	1	8				47		3		\mathcal{R}	89	88	101	116	125	871	137
*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	800	.023	300	670	.112	158	166	1771	52 702.	152.	18.	.378/07	432	574	.652	622
TER-	hook	205	7.35	795	388	9.75	11.40	13.20	13.50	1395	15.00	16.80	R75	2175	24.46	29.40	22.40	7.40 .729 137
ORBITER- IN.	Full Mod	235	245	265	295	325	330	28	150		580	560 1/6.80	625	725	880	88	88	1885

TABLE IV. - Concluded.

FUSGLAGE PRESSURE TAP LOCATIONS

	~	ωT		7	-	7	_	7	_	7	_	Т	_	٦
	8,3	8	?		9		20	3	27		4		4 50	
	2	3	0		(N	0	\	C	N	0		4	
	7	8				1							_]
		B		1										
	-	B												
		90	į	8	,	Ž	L						_	_
Si		12			_		L		L		_		_	_
EGR	L	8	L		_		L	_	L		Ļ		_	
Q	L	3		E	L	_		124		Ø.	ئا	3	_	
4	L	3	L	_	L	_	L	_	Ļ		Ļ.		L	_
30	L	133	-	_	-		Ļ		╀		Ļ	_	-	
7	-	55	╀	<u>~</u>	Ļ	E)	-	2	╀	3	┞	Ð	┞	
VO	-	15/	1	B	H	163	╀	173	4	83	┞	Z	H	_
2	Ļ	3	-	2	-	N	<u> </u>	7	1	2	+	ā	-	-
RADIAL LOCATION ~ DEGREES	-	200	+	120/12/	+	16/162	+	11/11/11/	1	18/ 182	+	125//6/	60	8
Q	: }	<u>''</u>	+	<u>~</u>	+		+	_	+		T	_	170	200
	ŀ	<u>-}</u>	1	8	+	S	₹†	3	र	130 120 180	1	8	t	
Ю	ᆔ	<u>2</u> _8		147 149 149	†	150 100 100	\$	1/0/10/10/1	1	100	1	100/00/00/	1	
	t	<u>~</u>	1	Z		140	9	1/0	8	-8/	5	8		
	1	Y	1		T		l				١			
	Ī	1	?	141.	?	Į	70	1	4	Ę	3	197		
		8	1						-		Ì			
		(S	711	3	ì	26	111	8	7	2	9	2	_
1	Ž	1/2/	5	220	?	000	25.	1	813	100	1	8	!	8
	8		1000	72 27		9	2,7		4.27	3	7	111	*	40
<	CRBITER-IM.	16/ 0 20 10 20 20 100 100 100 100 100 100 1	777	- 16	1245 31.30 .117 43		130 330 086 006		1375 4.25 819/66	1	420 427 721 1R	400 111 000	3	W. 20 40 000

SW2	6			34			19			8			116		
88 88		٥	0		/3	12		14	13		14	14		14	13
			- · · · · · · · · · · · · · · · · · · ·				.955	552	268	1.00		295 296		•	
				.965	229	24/	-919	250	267	.953	282	295	950	310	323
				æ6.	228	320 241	839 .879 -919	253	26 266 267	305	182	294	900	309	322 323
\s				.865	227	239		252		183	280	293	.950	308	128
TAP LOCATIONS				<i>B</i> 20	226	2.38	.798	251	244	565 .760 .808 .657	279	290 291 292 293 294	026.400.550.725.026.035.	202	315 316 37 318 319 320 321
1007				.700	225	237	769.	250	263	.760	278	762	325	306 306 406	3/9
TAP	.793	2/6	j							.565	277	330	550	305	318
	127	215	1	187	224	236	.390	229	282	402	276	588	400	324	11/2
//SS3	547 .633 727	2/4	١	:362	223	233	.246	345	18	274	275	388 289	320	30.5	3/6
186	_	2/3	1	627.	22	13.34	.086.163	247	260	.777	274			302	315
WING PRESSURE	429	2/2	1	35 0.	22.1	233	.086	246	52	.020 .040 .083 . 177	273	183 384 285 286 387	051.080		P/E
LEFT	11.	1/2	١	8	220	232	000.000	592	83	040	272	285	8	300 301	311 312 313
(E)	.041.113	2.0	١	.020	2/9	187	000.	244	257	020	112	280	050.020.010		312
	. 04/	209	1	0/0.	218	238	do.	203 240	256 257	00	270	203	010-	362	11/6
	S	308	١	C	2/7		0	242		0	269		S	297 298 299	
	X/c	100	BOT	1/2	00	EST	1/2	001	BOT	×	B	BOT	×	8	BOT
2					04/662				·		.427 200				L .▼
22		.235/10			83			344 170			427			534.250	

TABLE V. - Concluded.

S. S. S. S. S. S. S. S. S. S. S. S. S. S	/23		•	§	8			82		8			8%					
38		3	t		6	Ø		0	6		01	9		a	1		2	
	rj.		347	\$										_				
37.5	62 .	395	3%	8														
LOCATIONS	B	33	345	8						Q,		388						
707	k,	333	The	18			8	357	3%	8	376	382						
720	Ŕ			22.	Æ	343	839	358	365	32		384						
	ġ				186	375	.73	335	384	æ2. æ9.	34	383	2982	32	è			
SUR	20.			de	330	10%	30 05	320	363	40	375	38	8	38	8			
PRESSURE	8			8	329	3%	Š	353	362	280	372	38/	325 . 233 . GD		399			
WING ,	8			Ś	328	339	Ė	38	361	87	321	38	5%E'	390 391 392	82			
X	051 80.020.010.			051 80.020 010.	327	338	CG: 080:	isi	360	050:020	370	379	152	38	39.7			
LEFT	520.			020	32%	33	020	38	359	020	368 369	378	.020		396			
7	0/0			0/0	325	336	90	3	328	0/0		377	.020	65E 85F.	385	.723	43	
	0			0	324		0	318		0	367		0	Œ		\$14.	TOP 402	
	1/2	00	501	1/2	9	807	\$	15	$\hat{\mathcal{B}}$	ži Ži	90	807	*	200	8DT	K	100	BT.
>9		641 300 150		_	32			365		45			3			4633		
2		<u>Z</u>]		673			980			188			226-			9	

TABLE VI.

ORBITER WELTICAL TAIL & SPEED BRAKE PRESSURE TAF LOCATIONS

7	VERTICEL (LHOMY)				•	4/2/2	٠.						
HI HI	Z. MODEL	12	0	250	180	Ų	16	1	13		L	970	
1	1/2		I		\I		3	ķ	6	Sen 08 5/1. 500 25 1/15 190 ms	8	K	N. N.
1		103	8	431	43.2	633	BB	43%	436	431 432 433 434 435 436 437		q	q
10	18.0	316.	439	439 439 410 411 M2 NIS 1181	ar	401	100	11/3	1.6		1)
2	10 35	160		T		E	7	3	*	3	46	٧	//
1	1	ECO.						·	10.24	14.25	177	E	20
8	8	.600 W1 418 de do de 150 de	12	218	100	Ş	157	1/53	1/53	100	, ,	C	
N	21.6	.720					į	1	} .		3	N	67
'n		2	1	1	1	7			1453	145d ME	NE	W	32
ÿ	56.25	100 950 457 458 459 460 HO	180	457	SA SA	188	8	8	962	463	3 4.4	O	i
\mathcal{Z}	23.76	375 ALC ALL MY 110 MA 42	14.0	1111	1/2	100	1	1		2		. 1	,
1	1	12	9	000	2	0	8,	é	1/0	972 473	23	0	Ç
				۱					•	-			

	_	_	_	_			_					
			W	3	h	9		51	2	40	52	20
			100		4	75	,	5	4	1	4	. 4
			65.00		888	00	9	BK		000	XX	1
			.65		ğ	a	5	BILL	9	7	834	620 000 000
	X/SB	3	ģ		B	ova	3	813 BM	0/0	000	52	020
	X		:23		802 803	An ano an on		8/2	6/1	1	822	673
			9	6	8	80%		8/	8111		821	110
			85/2	9//		.254	Ī	.407	.567		106	.A56
	CAKE (MS.MS)	2 40	SCALE	0.0/		6.6	•	19.8	20.7	,	41.0	22.5
1	SHEED DRONKE	7 6.11	Scale	600		630		000	630	720	74.0	750

TABLE VII.

BOOVELAD PAISSURE TAP LOCATIONS

ORBIT	El-X.		0-1	PAGREES	}	
	MODEL Scale	12.	0	10	16. 1493	₹No
	46.65		200	201		TAPS
15552	44.65		202	203		2
1590 1	47.70	:046		7	_2_	1
		1.046		205	2	6
***************************************		7.040	206	207	2	R

Notes:

Positive directions of force coefficients, moment coefficients, and angles are indicated by arrows

axes have been displaced from the center For clarity, origins of wind and stability of gravity 2.

Figure 1. - Axis systems and sign conventions a. Orbiter Axis Systems

50

RIP Condition

BODY FLAP DEFLECTIONS

b. Definition of Angular Measurements

Figure 1. - Continued.

c. Elevon Hinge Moment Sign ConventionFigure 1. - Concluded.

Figure 2. - Model sketches.

AREA NO.	PROJECTED BRIAL VALUE
> 1	0 076699 612
A2	0 2156 95 12
A3	0.034072 (16
Δ4	0 074167(12

b. Base Pressure Taps and AreasFigure 2. - Continued.

一個一個一個一個一個人

FUS STA 1375

FUS, STA, 1300

FUS STA 1245

FUS, STA, 1130

c. Fuselage, Vertical Tail, and Wing Pressure Tap Locations Figure 2. - Continued.

(

The second secon

57

PATSSURE ORIFICE LOCATION OF LEFT WING PANEL

c. Fuselage, Vertical Tail, and Wing Pressure Tap Locations Figure 2. - Continued.

[]

Fuselage, Vertical Tail, and Wing Pressure Tap Locations

ن

Figure 2. - Concluded.

59

a. Three Quarter Front View of model 47-0 in the ARC 11 x 11 UPWT

Figure 3. - Model installation photographs.

b. Three fuarter Rear View of Model 47-0 in the ARC 11 x 11 UPWT

Figure 3. - Concluded.

61 (Reverse of this page is limak.)

DATA FIGURES

Volume 1 Plotted force data

Volume 2 Plotted pressure data

Tabulations of plotted data are available on request from Data Management Services

ı

1.

1.

AVMING WOWENT COEFFICIENT, CYN

(SIXV AGOS)

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

The second of th

(SIXY ADD8)

ROLLING MOMENT COEFFICIENT, CBL

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

(SIXY ADD8)

CAM

YAWING MOMENT COEFFICIENT.

5 J

.....

. . :

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

:

Control of the Contro

.04E

.06<u>f</u>

.02£

SIDE FORCE COEFFICIENT.

-.04

-.02

-.06

-.10

-80.-

ALPHA -4.000 4.000 8.000 12.000

EO□◊4△

.14年

.12

10

980.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

(BODA VXIZ)

CAN

YAMING MOMENT COEFFICIENT.

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKEBD043

VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA F16. 4

AGE

2690.0000 20.FT 474.8000 IN. 895.6800 IN. 89 SCALE SCALE DA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KE8DO5) -4 -3 -2 -1 0 i 2 3 SIDESLIP ANGLE, BETA, DEGREES 80.08 90.08 90.08 .000 SPUBRY 16.300 ELVN-L .000 MACH RUDDER BOFLAP ELVN-R ALPHA 4.000 4.000 8.000 12.000 35 -.30 305 .25 .15 -.05 -.10 .20 .05 -.15 -.20 -.25 -.35 Ò **№**0□044

SIDE FORCE COEFFICIENT.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS VITH BETA

~ 00

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE SEEF BREF WHEN WHEN SCALE OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKEBDOS) -4 -3 -2 -1 0 i 2 3 SIDESLIP ANGLE, BETA, DEGREES 8 8 8 8 8 8 PARAMETRIC VALUES .030 SPUBRY 16.300 ELVN-L -5 9 RUDDER BOFLAP ELVN-R ALPHA -4.000 4.000 9.000 12.000 -0301 -.035 -.025 ·010条 -.020 -.030 .025 .015[-.005 -.010 .005 -.015 .020

ROLLING MOMENT COEFFICIENT, CBL

y 1 .

822222 E 998

€0□◊4△

(BODA VXIZ)

YAWING MOMENT COEFFICIENT, CYN (BODY AXIS)

7

PAGE

-=:

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

İ

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

17.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

The second of th

The representations of the least the second of the second

ROLLING MOMENT COEFFICIENT, CBL

CAN

YAWING MOMENT COEFFICIENT,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

ROLLING MOMENT COEFFICIENT. CBL

(SIXY A008)

827777 F 656

<u>.</u>

SIDE FORCE COEFFICIENT, CY

A CONTRACTOR OF THE PROPERTY O

Sirii E SPR SOUTH CA148 -140 //EXC/R CAVITY ADJUSTED TO BASE P. I (KEBDIG) SIDESLIP ANGLE, BETA. DEGREES 85.000 .000 1.100 PARAMETRIC VALUES .000 SPOBRK 22.500 ELVN-L .000 MACH RUDDER BOFLAP ELVN-R ALPHA -4.000 .000 4.000 8.000 12.000 .006F -004長 -003手 -005<u>+</u> -.004 .002{ ₹100. -.003 Ö -.001 -.002 <u>-.005</u> -900.--.007-**№**0□◊4△

(SIXY ADD8)

NA.

YAWING MOMENT COEFFICIENT,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

7

电放射性线 法的人共享 化氯化二溴 化二羟基乙基 化丁烷磺胺磺胺酚 化二氯烷烷 计处理检查 法建筑的人法令 经证证 计

e err Bereze

CA148 -140 AZBZCZR CAVITY ADJUSTED TO BASE P. ICKEBD113

ALPHA -4.000 4.000 8.000 12.000

Ř 0□◊47

1.4

-08-

-06-

.04E

Carried the state of the state

.02

·10世

SIDE FORCE COEFFICIENT.

-.02

-.04

-.06

-.08€

-.12‡

OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKEBD11)

and the second of the second

PAGE

ROLLING MOMENT COEFFICIENT, CBL

The service of a substantial manifold of the substantial of the service of the se

VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA -4 -3 -2 -1 0 1 2 3 SIDESLIP ANGLE, BETA, DEGREES F16. 4

The rest of the second

AAMING MOMENT COEFFICIENT, CYN

(SIXY ADDB)

.

?

(SIXY ADD8)

CBF

ROLLING MOMENT COEFFICIENT.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

REPRODUCIBILITY OF THE ORIGINAL PAGE IS PAGE

1.

YAMING MOMENT COEFFICIENT, CYN

(SIXV ADD8)

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

SIDE EDRCE COEFFICIENT, CY

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITE

ROLLING MOMENT COEFFICIENT.

(SIXV A008)

כפר

*..

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES

ENERGIFCE STRONG

i.

SIDE FORCE COEFFICIENT.

e eer Gizizi FIG. 4 VARIATION OF LATERAL DIRECTIONAL AFRODYNAMIC CHARACTERISTICS WITH BETA SCALE STATE CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KEBDIS) -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES 33.000 PARAMETRIC VALUES
.000 SPOBRK
.000 ELVN-L RUDDER BOFLAP ELVN-R ALP4A -4.000 .000 4.000 8.000 12.000 -014E -012年 品10-₹20C. ₹800° .ooe -.012‡ -.004£ -.008<u>-</u> -.014島 -.036 -.010 -.002 **№**0□◊44 (SIXY AUDB) YAWING MOMENT COEFFICIENT, CYN

(BIXY ADDB)

CBF

OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KEBDIS)

ROLLING MOMENT COEFFICIENT,

是是是一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们是是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个

the Harman and a fire

తో

Go Go

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

YAMING MOMENT COEFFICIENT,

(SIXV ADDE)

The second secon

SZZZZZ F BSS

ر مر انواه

the control of the co

The state of the s

. . . .

ROLLING MOMENT COEFFICIENT, CBL (BODY AXIS)

; ;

¥.

SIDE FORCE COEFFICIENT,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

SZZZZZ F. SSS REFERENCE INFORMATION 2690 0000 474 8000 938 6800 1076 6800 375 0000 SAEF LAREF XMRP YMRP ZMRP SCALE OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D17) -4 -3 -2 -1 0 1 2 3 SIDESLIP ANGLE, BETA, DEGREES 8. 98. 98. 98. PARAMETRIC VALUES
.000 SPOBRK
.000 ELVN-L 'n ဖှ RUDDER BOFLAP ELVN-R 8 4.000 4.000 12.000 -010年 .035E -030- .025 .020年 -015年 \$500° -.025[-.005 -.010 -.015 -.030--.020 6 -.035 **₹**0□◊4△ YAWING MOMENT COEFFICIENT. (SIXY ADD8) CAM

VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA FIG. 4

S

Market Berger 1997 and the second of the sec

822222 F 858 FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA REFERENCE INF 2859.0000 474.8000 935.6800 1076.6800 375.0000 E SAEF STARP STARP SCALE CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D17) -4 -3 -2 -1 0 1 2 3 SIDESLIP ANGLE, BETA, DEGREES 86.98. 98.98. 98.98. PARAMETRIC VALUES
.000 SPOBRK
.000 ELVN-L ار ا RUDDER BOFLAP ELVN-R -.010£ -.015 -.030 4.000 4.000 4.000 12.000 -010年 -.025 -030F -.005 -.020 -.035 ,020[.005<u>f</u> 9 .025 210. **E**O□◊44

(SIXV ADD8)

CBF

ROLLING MOMENT COEFFICIENT.

. 0.0

We control to the second of th

(BODA VXIZ)

YAWING MOMENT COEFFICIENT, CYN

822222 E 898

1:

, -

4

- No

°ઇ.

SATURE THE PROPERTY OF THE PRO

(BIXY ADDB)

CBF

ROLLING MOMENT COEFFICIENT.

1

.

82222 F 868

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 57 PAGE

The figure and the first and t

The second of th

SIDE FORCE COEFFICIENT.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

AEFERENCE INFORM 2690 0000 474 8000 1076 6800 1076 6800 375 0000 275 0000 E SREF LREF STARP STARP SCALE DA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D203 SIDESLIP ANGLE, BETA, DEGREES 9.9.<u>.</u> PARAMETRIC VALUES .000 SPOBRK -11.700 ELVN-L .000 MACH RUDDER BOFL AP EL VN-R 900 -4.000 -4.000 4.000 8.000 12.000 -002 .005 .003<u>+</u> ₹000*-.004£ .001 -.001 -.005<u>+</u> -.002 -.004 -.006- -.007-**№**0□◊4△

YAMING MOMENT COEFFICIENT.

(BODA VXIZ)

CAM

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

PAGE

SIDE FORCE COEFFICIENT. CY

-- --

YAMING MOMENT COEFFICIENT,

(SIXY ADD8)

. . .

•

ه,٥

° ở4

SIDE FORCE COEFFICIENT,

刘婧傅说话说话,这是"这是我们是我们的,我们是我们的,我们是我们的,我们就是我们的,我们就是我们的,我们们的,我们们的人,我们们的人,我们们的人,我们们也是我们的人,我们们的人,我们们的人,我们们们

PAGE

the state of the s

REFERENCE INFORMATION
2590.0000 SQ.FT.
474.8000 IN.
936.6800 IN. XQ
1076.6800 IN. XQ
375.0000 IN. XQ
.0300 FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA SREF LREF XHRP XHRP SCALE DA148 -140 A/B/C/R CAVITY ANJUSTED TO BASE P. 1(KE8D22) SIDESLIP ANGLE, BETA, DEGREES 888 PARAMETRIC VALUES .000 SPOBMK -11.700 ELVN-L .000 MACH ņ 9 RUDDER BOFLAP ELVN-R φ ALPAN -4.000 4.000 8.000 12.000 -030£ .025 .020- -015 子10. -c05 6 -.0:0--.005 -.015 -.020 **-.030**₽ -.025 -.035 **€**0□◊44

ROLLING MOMENT COEFFICIENT, CBL

(SIXY AGOS)

The state of the s

Ξ.

A. P. Marian Marian Tanahan Marian

REPRODUCELLITY OF THE ORIGINAL PAGE IS POOR

1 +

PAGE

PAGE

というととなる でんちゅう

L.

3

23

ڪُرِ رام ر PASE

REFERENCE INFORMATION
7 25690,0000 1N. 474,8000 1N. 835,6800 1N. 8100 1N. 810 1075,6800 1N. 810 1075,0000 1N. 810 1075,0 FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA SCALE SCALE SCALE OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D25) -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES 885 PARAYETRIC VALUES
.000 SPOBRK
.000 ELVN-L RUDDER BOFLAP ELVN-R ALPHA -4.000 .000 4.000 12.000 .014 ₹800° -.014島 .012 -010- .00e .004 -.002 -.010 .002 -.004 -.008 0 -.006 -.012 **№**0□◊47

ROLLING MOMENT COEFFICIENT.

(BOOK VXIS)

CBF

Szzzz F. Sbs

人名英格兰 医多种性 经有效的 医多种 医多种 医多种 医多种 医多种 医多种 医多种 医多种

,

2690.0000 2690.0000 474.8000 1076.6800 175.0000 SREF LREF BREF XMRP XMRP XMRP SCALE CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D26) -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES 888 PARAMETRIC VALUES
.000 SPOBRK
.000 ELVN-L ņ RUDDER BOFLAP EL VN-R ALPHA -4.000 .000 4.000 8.000 到210. .010. -008 -00e- .004[.002 -.002 -.004 -.006 -.008 -.010 ò -.012 -.014 **№**0□044

(BC' A VXIZ)

YAMING MOMENT COEFFICIENT, CYN

The state of the s

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

ROLLING MOMENT COEFFICIENT,

(SIXV ADD8)

CBF

1

- 8

e.

3 ... 34 .

. 87 . 60

٠ .

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

こうできる 一次できてきますようとうころうないかないと

.

,

PAGE

REFERENCE INFORMATION 2590.0000 IN. 2590.0000 IN. 25.6800 IN. 275.0000 SART SART SART SART SARRY SCALE GA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. 1 (KE8D27) -4 -3 -2 -1 0 i 2 3 SIDESLIP ANGLE, BETA, DEGREES 888 PARAMETRIC VALUES
.000 SPDB9K
.000 ELVN-L Į. 9-RUDDER BOFLAP ELVN-R φ. ALPHA -4.000 .000 4.000 8.000 .030E .025 .020 .015 -010--.005<u>+</u> -.025₽ .005 -.020 -.010--.015 -.030 -.035 ğo□◊47

(SIXY ADD8)

CBF

ROLLING MOMENT COEFFICIENT.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

PAGE

İ....

.

1

82222 F 858

The state of the s

• . . •

AVAING HOWENT COEFFICIENT, CYN

(SIXV ADDB)

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

1

S. See See

1 ...

SIDE FORCE COEFFICIENT,

PAGE

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

PAGE

REFERENCE INFORMATION 50.FT. 474.8000 IN. 20 SCALE SCALE OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. 1 (KE8D30) SIDESLIP ANGLE, BETA, DEGREES 35.98 10.980 1.180 PARAMETRIC VALUES -10.000 SPOBRK 16.300 ELVN-L .000 MACH RUDDER BOFLAP ELVN-R 101 A.000 4.000 8.000 12.000 -08<u>F</u> .06E .04E -.02長 -.04€ .02 Ö -.06 -.08 -.10 -.12 -.14 -.16 **№**0□◊4△

美声

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

The state of the s

100 in 100 in

-3) 6" -2

--,-,

SIDE FORCE COEFFICIENT, CY

YAWING MOMENT COEFFICIENT, CYN (BODY AXIS)

ဌ

The last of the last of the

ROLLING MOMENT COEFFICIENT. CBL (BODY AXIS)

-

7

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

PAGE

SIDE FORCE COEFFICIENT,

YAWING MOMENT COEFFICIENT.

(SIXV ADD8)

CAN

1

SCALE SCALE UA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKEBD31) -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES 35.000 10.000 .900 PARAMETRIC VALUES -10.000 SPOBRK 16.300 ELVN-L .000 MACH RUDOER BOFLAP ELVN-R ALPHA -4.000 -300 -4.000 8.000 12.000 -020年 .018 .016[.014 .012 -010--008[]900: .004 -002 -.002 -.004 -.006 Ö **g**O□◊4△

(SIXY ADDB)

CBF

ROLLING MOMENT COEFFICIENT.

4.

ن ۱۸64

. 00

REFERENCE INFO 2690-0000 474-8800 1076-6800 375-0000 6 375-0000

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

93

PAGE

The second secon

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

1.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

į

.

ROLLING MOMENT COEFFICIENT, CBL

(SIXV A-108)

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

1.

SIDE FORCE COEFFICIENT,

PAGE

Ö

1,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

The second secon

SIDE FORCE COEFFICIENT, CY

REFERENCE INFORMATION
2690.0000 S0.FT
474.8000 IN.
936.6800 IN.
1076.6800 IN. X
-0000 IN. X SREF LREF KHRP YHRP SCALE OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D34) SIDESLIP ANGLE, BETA, DEGREES 35.980 1.250 PARAMETRIC VALUES 10.000 SPDBRK 16.300 ELVN-L 10.000 MACH RUDDER BOFLAP ELVN-R ALPHA -4.000 4.000 8.000 12.000 -.007 ₹800*-¥2.0.--600--.010. -.012 -.011 -.014 -.015 -.016 -.018 -.019 -.020 -.017 **₹**0□◊4△

(BODA VXIZ)

CAM

YAWING MOMENT COEFFICIENT,

.

a. .

SNYNN NNNNN T

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAHIC CHARACTERISTICS WITH BETA 101 PAGE

SZZZZZZ F. BSB 75.0000 IN. 25.5-1 10.000 IN. 25.5-1 10.000 IN. 25.5-25.00000 IN. 25.5-25.0000 IN. 25.5-25.0000 IN. 25.5-25.0000 IN. 25.5-25. FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA SAEF LREF BREF XMRP THRP SCALE OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D34) -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES 35.00 ...230 PARAMETRIC VALUES 10.000 SPDB9K 16.300 ELVN-L 10.000 MACH RUDDER BOFLAP ELVN-R .008E ALPHA -4.000 4.000 8.000 12.000 ₹900° .004£ .002{ **-.004** -.002 -.008<u>+</u> ₹900°--.010- -.012€ -.014 -.018 -.016 -.020 **№**0□◊44 (SIXV ADD8) ROLLING MOMENT COEFFICIENT.

CBF

SIDE FORCE COEFFICIENT,

5

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

Ĉ

AVMING WOWENT COEFFICIENT, CYN

(SIXY ADD8)

=

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

L

104

PAGE

CBF

105

::

からままない ちまるない

SIDE FORCE COEFFICIENT, CY

REFERENCE INV 2690,0000 474,8000 1076,6800 375,0000 375,0000 SREF LREF XHRP XHRP XHRP SCALE OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D36) SIDESLIP ANGLE, BETA, DEGREES 86.00 000.00 000.00 PARAMETRIC VALUES
10.000 SPOBRK
16.300 ELVN-L
10.000 MACH RUDGER BOFLAP ELVN-R ALPHA -4.000 .000 4.000 8.000 -.010£ -.012{ -.014 -.008 -.018∮ -.016 -.020 -.022 -.024 -.026 -.028 .030 -.032 -.034 -.036 **№**0□◊44

YAWING MOMENT COEFFICIENT,

(SIXV ADD8)

CAM

Szzzzz F. 358

[...

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

822777 F 858

2690.0000 474.8000 936.5800 1076.6800 375.0700

RUDDER BOFLAP ELVN-R

-4.000 -4.000 4.000 12.000

€0□◊4△

.004£

49 ···

.002£

(SIXY ADDB) CBF ROLLING MOMENT COEFFICIENT,

-.008[

-.010

-.014

-.012

-.016{

-.018

-.020

-.022{

₹900°-

-.004

-.002

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

REFERENCE 118 2890.0000 474.6000 935.5800 1076.6800 375.0000 SAEF SAEF STARP SCALE GA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D373 -4 -3 -2 -1 0 1 2 3 SIDESLIP ANGLE, BETA, DEGREES 86.000 000.000 000.000 PASAYETRIC VALUES 10.000 SPDBRK 16.303 FLWN-L 10.000 MACH ហ RUDDER BOFLAP ELVN-R 8-ALPHA -4.000 .000 4.000 12.000 .40E 35 .20 .05 -.05 -.10 -.15 ò -.20 -.25 **№**0□◊4△

SIDE FORCE COEFFICIENT,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

OA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKEBD37)

YAWING MOMENT COEFFICIENT, CYN

(SIXY A008)

CBF

ROLLING MOMENT COEFFICIENT.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

....

SIDE FORCE COEFFICIENT, CY

.....

7

The second second

大きなり とうこうなきない

SIDE FORCE COEFFICIENT,

<u> -.003</u>€

(BIXY ADD8)

-.004₽

-.005

YAMING MOMENT COEFFICIENT, CYN

-900:-

1800*-

-.007

1600.-

-.010-

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

117

ł

SIDE FORCE COEFFICIENT, CY

8xxxxx F. 858 REFERENCE INFORMATION VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 2690.0000 474.8000 936.6800 1976.6600 375.0000 SREF LREF BREF XMRP YHRP ZMRP SCALE CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D40) -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES 95.000 10.000 1.100 PARAMETRIC VALUES 10.000 SPOBRK 16.300 ELVN-L 10.000 MACH RUDDER BOFLAP ELVN-R 4.000 4.000 12.000 .020更 .018[-016€ -014年 .012£ .0104 ±800· ·006年 .004卡 -002春 FIG. 4 -.008<u>E</u> -.002 -.004€ ₹900`-0 **₹**0□◊4△ (SIXV ADD8) CBF ROLLING MOMENT COEFFICIENT,

SIDE FORCE COEFFICIENT,

The second of th

(BIXV ADDB) ROLLING MOMENT COEFFICIENT, CBL

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 124

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

GA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D423

.

· ·

ROLLING MOMENT COEFFICIENT, CBL

(SIXV ADDB)

VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE F16. 4

SIDE FORCE COEFFICIENT, CY

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

ROLLING MOMENT COEFFICIENT.

(81XY A008)

CBF

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

SIDE FORCE COEFFICIENT, CY

(SIXY ADD8)

AVAING MOMENT COEFFICIENT, CYN

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 131 PAGE

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KE8D44)

`

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

- 1 h

AGF 134

135

All and the second seco

SIDE FORCE COEFFICIENT.

(SIXY ADD8)

ROLLING MOMENT COEFFICIENT, CBL

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

PAGE

and the weight of the end of the second of the

y Little on the first to the transfer to

AVMING MOMENT COEFFICIENT, CYN

(SIXY ADD8)

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PASE

FIG. 4 JARIATION OF LATERAL DIRECTIONAL AERONYNAMIC LHARACTERISTICS WITH BETA 26.5.6900 936.6800 936.6800 936.6800 935.6900 935.6900 935.6900 SAEF RIPE VIND VIND SCALE SCALE DA148 -140 AZBZCZR CAVITY ADJUSTED TO BASE P. (KE8D47) DEGREES SIDESLIP ANGLE, BE. 85.000 4.000 1.400 PARANETRIC VALLES -10.003 SPORK 16.303 ELVN-L 4.000 MACH PUDDER BOFLAP ELVN-R -004 010 A. 920 4. 920 8. 920 12. 920 12. 920 ₩800· 到900. -.012 -.004 -.008 -.C10[-.014 -.016 .002 -.002 -.006 Ö **№**0□◊4421

(BOOK VXIS)

ROLLING MOMENT COEFFICIENT, CBL

SIDE FORCE COEFFICIENT, CY

(SIXV ADD8)

YAWING MOMENT COEFFICIENT.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

ROLLING MOMENT COEFFICIENT, CBL

(SIXY ADDB)

(BODA VXIZ)

CAN

AVMING WOHENL COEFFICIENT,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

(BODA VXIZ)

CBF

SXXXXX F SPR FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 2690.0000 474.0000 936.6800 1076.6800 375.00.0 SCALE SCALE DA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KE8D50) 85.000 4.000 900 PARAMETRIC VALUES
-10.GC3 SPOBRK
16.300 ELVN-L
4.003 HACH RUDDER BOFLAP ELVN-R -.004<u>5</u> 4.000 4.000 8.000 12.000 .024百 -010年 .022丰 -020年 .018長 .012 800. **.**006 .004 .002 ò -.002 .016[-0. **№**0□◊4△

(SIXV ADD8)

YAWING MOMENT COEFFICIENT, CYN

PAGE

823233 5 888 REFERENCE INCOMMATION

7 2690,0000 SQ.FT

474,6000 IN.

935,68000 IN. XI

9 375,0000 IN. XI

10 375,0000 IN. XI

10 375,0000 IN. XI

10 375,0000 IN. XI

10 375,0000 IN. XI

10 375,0000 IN. XI

10 375,0000 IN. XI

10 375,0000 IN. XI

10 375,0000 IN. XI

10 375,0000 IN. XI

10 375,0000 IN. XI VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 150 PAGE SREF LREF BREF XMRP YMRP ZMRP SCALE CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D50) -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES 85.000.4 000.9 000.000.000.000 PARAMETRIC VALUES
-10.000 SPDBPM
16.300 ELVN-L
4.000 MACH RUDDER BOFLAP ELVN-R ALPHA -4.000 4.000 8.000 12.000 **通010** -.018<u>E</u> F16. 4 #800° -00e - .002春 -.004분 1900∙-- .008[-.014 -910 -.004 -.010 .002 -.0:2 Ö (BIXY ADDB) CBF ROLLING MOMENT COEFFICIENT.

SIDE FORCE COEFFICIENT.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

the second of th

SIDE FORCE COEFFICIENT, CY

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

_]

110 60.

The second secon

REFERENCE INFORMATION
7 2590,0000 50,FT,
474,8000 IN,
1076,6800 IN,
20 375,0000 IN, 20
10,50000 IN, 20
10,50000 IN, 20
10,50000 IN, 20
10,50000 IN, 20 SAEF LAEF XMRP XMRP XMRP SCALE DA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KE8D53) 33.000 -4.000 1.250 PARAMETRIC VALUES -10.000 SPOBRK 16.300 ELVN-L 4.000 MACH RUDDER BOFLAP ELVN-R ALPHA -4.000 4.000 8.000 12.000 -015年 .014 .013£ ·010÷ 子600. -008 -011年 -704年 .012 **是520.** .007 .006£ 005 .002 **№**0□◊4△ (SIXV ADD8) YAWING MOMENT COEFFICIENT, CYN

The transfer of the second of

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE SIDESLIP ANGLE, BETA, DEGREES

1.

ì

SIDE FORCE COEFFICIENT,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 160

(BODA VXIZ)

VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES FIG. 4

SIDE FORCE COEFFICIENT,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

SZZZZZ E RPR VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 165 AFERENCE 1NF 2890.0000 474.8000 1076.6800 175.0000 375.0000 PAGE SCALE SCALE CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. 1:KE8D553 -2 1 0 1 SIDESLIP ANGLE, BETA, DEGREES 55.000 -4.000 .900 PARAMETRIC VALUES
-10.000 SPOBRK
16.300 ELVN-L
4.000 MACH RUDDER BOFLAP ELVN-R F16. 4 4.000 4.000 6.000 12.000 -.016] -.030 -.024 -.026 -.028 -.008[-.012 -.018 -.032 -.006 -.010--.014 -.020 -.022 **§**O□◊4△ ROLLING MOMENT COEFFICIENT. (SIXV ADDB) CBF

::

10) P 9

- 1i.

167

PASE

The state of the s

(BOOK VXIS)

REFERENCE INFORMATION
7 2590.0000 SQ.FT.
74.8000 IN.
7 936.6800 IN.
70 1076.6800 IN. 70
775.0000 IN. 70
775.0000 IN. 70
775.0000 IN. 70 FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA SREF LREF BREF XHRP XHRP SCALE GA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KEBD57) -2 1 0 1 SIDESLIP ANGLE, BETA, DEGREES 55.000 4.000 1.400 PARAMETRIC VALUES 10.000 SPOBRK 16.300 ELVN-L -4.000 MACH က RUDDER BOFLAP ELVN-R 4.000 4.000 12.000 15.000 -020年 表200. .018£ .016[.012{ .010- .026 .024 .022ŧ .014 **3800** 900 .004

ROLLING MOMENT COEFFICIENT, CBL

(BODA VXIZ)

171

SIDE FORCE COEFFICIENT, CY

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

1:

I

Szzzzz F. 868 REFERENCE INFORM 2699.0000 474.8000 935.6800 1076.6800 375.0000 E .0300 SREF LREF XYRRP XYRRP ZYRRP SCALE CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D58) -2 -1 0 1 SIDESLIP ANGLE, BETA, DEGREES 55.000 4.000 1.250 PAPAMETRIC VALUES 10.000 SPISSE 16.300 ELVN-L -4.000 MACH RUDDER BOFLAP ELVN-R -.022長 -.020 -.018

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

-.004長

CAN

-.006[

-.008

-.010

-.002春

Ö

(BODA VXIZ)

REFERENCE INFO 2590.0000 474.8000 936.6800 1076.6800 375.0000 E. .0300

SREF L'REF WHRP WHRP SCALE SCALE

.006 E

.004

.002

ALPHA -4.000 .000 4.000 12.000

№0□◊4△

DA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D59)

:

REPRODUCIBILITY OF THE

176

PAGE

-.022監

-.020

-.016[

-.012

YAWING MOMENT COEFFICIENT.

-.014

-.018

2690.0000 474.8000 936.8800 1076.6800 375.0000 SREF LREF BREF ZYRP SCALE CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KE8D59) SIDESLIP ANGLE, BETA, DEGREES 55.000 4.000 1.100 PARAMETRIC VALUES 10.000 SPOBRK 16.300 ELVN-L -4.000 MACH <u>۾</u> RUDOER BOFLAP ELVN-R 子900. -008 -AL 000 4.000 4.000 8.000 12.000 .014 .032臣 .018[.016[.012{ -010- ₹080° .022 .020 .028 .026 .024 **№**0□◊4△ ROLLING MOMENT COEFFICIENT, CBL

(SIXY ADD8)

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 39**V**c

1;

AVMING MOMENT COEFFICIENT, CYN

(BIXV ADDB)

179

ROLLING MOMENT COEFFICIENT, CBL

(BIXV ADDB)

1

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 180 PAGE

SIDE FORCE COEFFICIENT.

The second secon

and the second s

182

(BODA VXIZ)

CBF

ROLLING MOMENT COEFFICIENT,

SCALE SCALE

CA148 -140 A/6/C/R CAVITY ADJUSTED TO BASE P. I (KE8D61)

J. 3.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

SIDE FORCE COEFFICIENT, CY

(BIXV ADDB)

CAM

YAWING MOMENT COEFFICIENT.

0A148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D623

SIDE FORCE COEFFICIENT.

0A148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. 1(KE8D63)

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

SZZZZZ G65 FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 2630.0000 474.9000 938.6800 1076.6800 375.0000 375.0000 PAGE STARP STARP SCALE 0A148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D63) SIDESLIP ANGLE, BETA, DEGREES 55.000 -4.000 1.250 PARAMETRIC VALUES 5.000 SPOBRK 16.300 ELVN-L -4.000 MACH RUDDER BOFLAP ELVN-R -.010<u>ह</u> ALPIA -4.000 4.000 8.000 12.000 .018世 -016F -.004 -.006- -.008 ₹800° .006- .004 -.002 -010- .002 .014 -012 Ö **№**0□**◊**4△ ROLLING MOMENT COEFFICIENT. (SIXV ADDB) CBF

PAGE

ĺ

SIDE FORCE COEFFICIENT, CY

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AFRODYNAMIC CHARACTERISTICS WITH BETA 191

The second and the second of t

193

and the state of the state of

ROLLING NOMENT COEFFICIENT, CBL

(SIXV AGOS)

1

ٳ؞

...

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 195

A STATE OF THE STA

YAWING MOMENT COEFFICIENT, CYN (SIXY ADD8)

REFERENCE INFORMATION
76690.0000 SQ.FT.
774.8000 IN.
836.6800 IN.
836.6800 IN.
8000 IN.
8000 IN. 700
10.300 ø SREF KARP YARP SCALE 0A148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KE8D66) -4 -3 -2 -1 0 1 2 3 SIDESLIP ANGLE, BETA, DEGREES 53.000 -4.000 .600 PARAMETRIC VALUES 5.000 SPOBRK 16.300 ELVN-L -4.000 MACH Ŋ φ RUCDER BOFL AP EL VN-R ထု ရှ ALPHA -4.000 4.000 12.000 -.005€ -.030<u>+</u> .035<u>F</u> -.015 .025 .020± .015 .010. 0 -.010 -.025 .030 .005 -.020-**E**O□◊4△ ROLLING MOMENT COEFFICIENT, CBL (SIXY ADDB)

VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE F16. 4

ு ஒ ஆ தன்கின்...

THE PROPERTY OF THE PARTY OF TH

SIDE FORCE COEFFICIENT,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

199

...

REFERENCE INFORMATION \$0.FT. 2559.0000 \$0.FT. 474.8000 IN. 535.6800 IN. 20 1075.6800 IN. 20 375.0000 IN. 20 10. 20 FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA SREF LREF BREF XHRP YHRP SCALE CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KE8D68) -4 -3 -2 -1 0 1 2 3 SIDESLIP ANGLE, BETA, DEGREES 55.90 25.900 600.600 PARAMETRIC VALUES .000 SPOBRK 22.500 ELVN-L -4.000 MACH RUDDER BOFLAP ELVN-R .35E ALPHA -4.000 4.000 8.000 12.00 -.10長 30£ .20£ -.05 -.15 -.25 -.30 .25<u>£</u> .15 -.20 9: .05 Ö **E**O□◊44 SIDE FORCE COEFFICIENT.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

The second secon

The second secon

一人

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

1 (KE8D69)

CAVITY ADJUSTED TO BASE P.

0A148 -140 A/B/C

ALPHA -4.000 -.000 4.000 12.000

№0□◊4△

.12

.10E

90

80.

.04

14

SIDE FORCE COEFFICIENT.

.02

6

-.02

- 106

-.08[

- .06

-.04

(SIXY ADD8) CAM YAWING MOMENT COEFFICIENT,

and a property of the state of

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

207

PAGE

A CAMPAGE CONTRACTOR OF THE CO

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACIERISTICS WITH BETA

SEEEE'S SCALE SCALE I (KE8070) -4 -3 -2 -1 0 1 2 3 SIDESLIP ANGLE, BETA, DEGREES ď. CA148 -140 A.'B/C CAVITY ADJUSTED TO BASE .600 .600 .600 PARAMETRIC VALUES .000 SPOBRK 22.500 ELVN-L -10.000 MACH 9 RUDDER BOFLAP ELVN-R æ .030F 4.000 4.000 8.000 12.000 表10. <u> 3500.</u> -025年 -010年 .020[-.005 -.010<u>-</u> -.015‡ 6 -.030 -.035 -.020--.025 **№**0□◊44 ROLLING MOMENT COEFFICIENT, CBL (BIXY ADDB)

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

•

AVMING WOWENT COEFFICIENT CYN (BODY AXIS)

A

Mary and a second

VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA F16. 4

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

SIDE FORCE COEFFICIENT, C

!

The same of the sa

AVMING WOWENT COEFFICIENT CYN (BODY AXIS)

REPRODUCES AND OF THE ORIGINAL PAGE IS POOR

1.

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

Sertification of the series of

ر_د ا

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

220

PAGE

PAGE

The state of the s

SIDE FORCE COEFFICIENT, C

PEPENCE INCOMMATION

1502.0000

50.71.

14.5000

10.25.6500

10.25.6500

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10.2000

10 I CKEBDID -4 -3 -2 -1 0 1 2 3 SIDESLIP ANGLE, BETA, DEGREES CAVITY ADJUSTED TO BASE P. \$5.000 -10.000 .600 PARAMETRIC VALUES
-5.003 SPOBRM
16.504 ELVN-L
-10.000 MACH CA148 -140 A/B/C 5 RUDOER BOFLAP ELVN-R 8 4.000 4.000 8.000 12.000 .040E -025 .005 1 .035£ <u> 30€0.</u> <u> - .030</u> .020 -015E .010<u>.</u> -.005 -.015 -.620 -.010 -.025 **€**0□\$44 (800A VX12) AVMING HOWENT COEFFICIENT, CYN

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA PAGE

10 00 m

SIDE FORCE COEFFICIENT, CY

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

4.000 4.000 12.000 16.000 ₹900° -010등 .026 .024€ .022 .020[.018€ .016<u>+</u> .014 .012 1800• .004 ROLLING MOMENT COEFFICIENT, CBL

(BOOK VXIZ)

I (KE8D77)

DA148 -140 A/B/C CAVITY ADJUSTED TO BASE P.

SIDE FORCE COEFFICIENT,

KEFERENCE INFORMATION

2090.0000 S0.FT.

474.8000 IN.

936.6800 IN.

9 1076.6800 IN.

9 375.0000 IN. 20 FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 230 PAGE SREF LREF BREF XHRP ZHRP SCALE 1 (KE8077) SIDESLIP ANGLE, BETA, DEGREES GA148 -140 A/B/C CAVITY ADJUSTED TO BASE P. 0.000 PARAMETRIC VALUES
-10.000 SPOBRK
-11.700 ELVN-L
-10.000 HACH 7 RUDDER BOFLAP ELVN-R .002記 ALPHA -4.000 4.000 8.000 12.000 .030E -018年 -016 **最10.** .008<u>f</u> 1900 .004 .024春 .014년 -012- -026€ .028 .022{ .020 AVMING MOMENT COEFFICIENT, CYN

(BODA VXIZ)

ROLLING MOMENT COEFFICIENT, CBL (BODY AXIS)

SIDE FORCE COEFFICIENT,

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA SIDESLIP ANGLE, BETA DEGREES

-.18

-.16[

YAWING MOMENT COEFFICIENT, CYN

(SIXV ADDB)

0A148 -140 A75.0

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 233

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

١. .

SIDE FORCE COEFFICIENT.

- Table 1

† 1

1 (KE8079)

CANIAC -140 A/B/C CAVITY ADJUSTED TO BASE P.

, 10% 1% ...

236

AVMING MOMENT COEFFICIENT, CYN

(SIXY ADD8)

VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA

239

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 242 SIDESLIP ANGLE, BETA, DEGREES

-.016£...

-.015

8xxxxx F 858 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 765 ENENCE 1NF 265C 0000 474-8000 935-6820 1076-6800 375-0000 0000 STATE I (KE8082) -2 1 C 1 SIDESLIP ANGLE, BETA, DEGREES CANTIY ADJUSTED TO BASE P. .000 -10.000 1.250 PARAMETRIC VALUES 10.000 SPOBRK -11.700 ELVN-L 10.000 MACH RUDDER BOFLAP ELVN-R - .020点 4.000 4.000 4.000 12.000 子900---.007春 -.011長 -.019 FIG. 4 -.016 -.008[<u>-.009</u> -.012 -.014£ -.010 -.018 -.013 510.--.017 **₹**0□◊44 (BODA VXIZ) AVAING WOWENT COEFFICIENT, CYN

SZZZZZ F. 668 PEFEACNCE INCOMMATION
2000-0000 S0.FT
4.4.8000 IN.
93.6.5000 IN.
0000 IN. 20
375.0000 IN. 2 FIG. 4 VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA SAEF LREF XHRP XHRP ZHRP SCALE I (KE8082) -2 -1 0 1 SIDESLIP ANGLE, BETA, GEGREES ۵. CAVITY ADJUSTED TO BASE غر -10.000 1.250 PARAMETRIC VALUES 10.000 SPDBRK -11.700 ELVN-L 10.000 MACH UA148 -140 A/B/C RUDDER BOFLAP ELVN-R ALPHA -4.000 4.000 8.000 12.000 -.028∳ -.070€ ₹900°--.016 - .024훈 -.026} -.012 -.030--.010. -.004 - 008 -.014 -.018 -.022 **№**0□◊4△ (BQDA VXIZ) ROLLING MOMENT COEFFICIENT, CBL

REPRODUCIBILITY OF THE ORIGINAL IN POST

VARIATION OF LATERAL DIRECTIONAL AERODYNAMIC CHARACTERISTICS WITH BETA 248 F16. 4

1

. 1

I (KE8D83)

CAVITY ADJUSTED TO BASE P.

CA148 -140 A/B/C

RUDDER BDFLAP ELVN-R

4.000 4.000 8.000 12.000

kO□◊47

₹800.-

-.010

-.012

-.014£

-.016

-.018£

ROLLING MOMENT COEFFICIENT, CBL (SIXV ADD8)

-.022-

-.024

-.028

-.030

-.032

-.034

-.026

-.020

1810.-

-.016年

-.014

-.022春

-.020

<u>∓.20.-</u>

YAMING MOMENT COEFFICIENT, CYN

-.026€

-.030€

-.028

-.332€

-.034

REFERENCE INFORMATION

I (KE8084)

CA148 -113 A/B/C CAVITY ADJUSTED TO BASE P.

ALPHA -4.000 .000 4.000 8.000 12.000

№ O□◊47

3900.-

-.03ਵੇ

-.010

-.012

(SIXY ADD8)

FIG. 4 VARIATION OF LATERAL DIRECTIONAL AFRODYNAMIC CHARACTERISTICS WITH BETA

NORMAL FORCE COETFICIENT, CN

FIG. S VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

THE COLOR OF THE C

254

AXIAL FORCE COEFFICIENT, CA

8. 99. 98. 98. 98. 98.

PARAMETRIC VALUES .000 SPOBRK 16.300 ELVN-L .000 MACH

RUDDER BOFLAP ELVN-R

BETA -4.000 4.000

EO□◊

ф.

9

NORMAL FORCE COEFFICIENT,

12 FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA 0 တ O 1 2 3 4 5 6 7 ANGLE OF ATTACK. ALPHA. DEGREES

REFERENCE INFORMATION

2690 06.00 474 8000 936 6800 1076 6800 375 0000

SREF KARP XMRP XMRP SCALE

AXIAL FORCE COEFFICIENT.

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

257

PITCHING MOMENT COEFFICIENT,

PAGE

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

AXIAL FORCE COEFFICIENT,

12

260

PAGE

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOF

PITCHING MOMENT COEFFICIENT, CLM

261

PAGE

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

FIG. 5

The second secon

NOWWYF EORCE COEFFICIENT, CM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

PAGE

7

.0

ï

-7

4-

.0955.

-960.

ل .

REPERENCE INFO.NATION
7 2590.0000 IN.
7 474.8000 IN.
7 935.6800 IN.
8 1076.6800 IN. X
9 375.0000 IN. Z
10.0000 IN. Z

CA148 -140 A/S/C/R CAVITY ADJUSTED TO BASE P. ICKE8D043

RUDDER BOFLAP ELVN-R

9ETA -4.000 4.000

Š O□◊

109E

.108

AXIAL FORCE COEFFICIENT, CA

.102

101-

100年

3660.

1860.

.097

105年

106

.107

.104年

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

PASE

,

P. P.

A

NORMAL FORCE COEFFICIENT, CM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

. . .

268

269

PAGE

AXIAL FORCE CO FFICIENT, CA

PITCHING MOMENT COEFFICIENT, CLM

1

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

270

PAGE

رً.

YXIAL FORCE COEFFICIENT.

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

REPRODUCIBILITY OF THE OUTGING PARTY OF THE

. ,

272

NORMAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

274

PAGE

A CHARLES TO THE STATE OF THE S

-V

The same of the sa

AXIAL FORCE COEFFICIENT, CA

PAGE

.|.

NORMAL FORCE COEFFICIENT, CN

AXIAL FURCE COEFFICIENT, CA

281

ل

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AFRODYNAMIC CHARACTERISTICS WITH ALPHA

E 282

AXIAL FORCE COEFFICIENT, CA

(ا

284

PAGE

REFERENCE INFORMATION 50.FT. 474.8000 IN. 20 10 11 SCALE SCALE SCALE SCALE CA148 -140 AZBZCZR CAVITY ADJUSTED TO BASE P. ICKEBD113 O 1 2 3 4 5 6 7 ANGLE OF ATTACK. ALPHA. DEGREES 8. 90. 90. 90. 90. 90. PARAMETRIC VALUES .000 SPOBRK 22.500 ELVN-L .000 MACH 7 RUDDER BOFLAP ELVN-R 86.TA -4.000 -000.4.000 .065年 .010. -005 -030년 .025[.020. .015<u>f</u> .055<u></u> -050-.045 .035 -090· .040F **§**O□◆

PITCHING MOMENT COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

o 4,0 0

NORMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

286

PAGE

こうしょう とうない こうない かいしゅい

1.

288

PAGE

PITCHING MOMENT COEFFICIENT, CLM

ļ

AXIAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

DA148 -140 AZEZZZR CAVITY ADJUSTED TO BASE P. I (KE6D14)

NORMAL FORCE COEFFICIENT,

Į,

292

PAGE

PAGE

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

12

.1

822222 298

140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D15)

0A148

-4.000 -000 4.000

§O□◊

8

NORMAL FORCE COEFFICIENT.

-.2

£.-

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

Ĺ

PITCHING MOMENT COEFFICIENT, CLM

NORMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

AXIAL FORCE COEFFICIENT.

299

PAGE

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

`...*!*

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PAGE

AXIAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

REPRODUCIBILITY OF THE ORICINAL PAGE IS POOR

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

303

PAGE

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE O 4 8 12 ANGLE OF ATTACK, ALPHA, DEGREES

, [

NOTE VINCOUS OF STRUCTURE CANAS -140 AZBZZZA CAVITY ADJUSTED TO BASE P. I(KESDIS) 886 PARAMETRIC VALUES .000 SPOBRK -11.700 ELVN-L .000 MACH RUDDER BOFLAP ELVN-R 一190. FETA -4.000 -000 4.000 .03<u>.</u> .03£ -04 .02 0. Ö § O□◊

306 FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE O 4 8 12 ANGLE OF ATTACK, ALPHA, DEGREES

- .08 ju

-.07奉

-.02

-.014

PITCHING MOMENT COEFFICIENT, CLM

-.03

-.04

-.05<u>F</u>

-.08

l.,

K

NORMAL FORCE COEFFICIENT, CM

GA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKEBD193

VXIVE EGRCE CORFFICIENT, CA

PITCHING MOMENT COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

12 2380,0000 474,8000 936,6800 1076,6900 375,0000 0 SREF BREF XMRP YMRP SCALE တ CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKESD203 2 3 4 5 6 7 ATTACK, ALPHA, DEGREES § § § 5 ANGLE OF PARAMETRIC VALUES
.000 SPUBRK
-11.700 ELVN-L
.000 MACH 7 -2 RUDDER BOFLAP ELVN-R BETA -4.000 4.000 4.000 щ. Н Ŗ, 9 **₹**0□◊ NORMAL FORCE COEFFICIENT.

N.

∂ o^E

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

AXIAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

AXIAL FORCE COEFFICIENT.

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

REPRODUCIBILITY OF THE ORIGINAL FACE IS FOOK

A 10

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

PAGE

NORMAL FORCE COEFFICIENT,

PAGE

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

AXIAL FORCE COEFFICIENT, CA

, J.

PITCHING MOMENT ... TEFICIENT, CLM

321

PAGE

MORMAL FORCE COUFFICIENT, CN

The state of the s

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

322

PAGE

Ι.

.142手

.144

. 140년

AXIAL FORCE COEFFICIENT, CA

.138長

.136長

.134

132

:

CALLO -140 A/G/C/R CAVITY ABBUSTED TO BASE P. I (KESD243

RUDDER BOFLAP ELVN-R

4.000 4.000

¥ U∏≎

.154£

.152春

.150春

.148長

.146

g gen generali

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

323

PAGE

2

.128長

130年

BILCHING MOMENT CORFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

NORMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

VXIVE EGRCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PAGE

MORRAYI LOBOR COREETCIENT. CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

AXIAL FORCE COEFFICIENT,

way with N. Martin Hall From

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D263

FIGUING WOMENT CHEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

NORMAL FORCE COEFFICIENT, CN

AKTAL FURCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

2550,0000 SO-1134 2550,0000 SO-114, 2750,6500 IN. R 1075,6500 IN. R 275,0000 IN. R CA148 -140 A/B.C.R CAVITY ADJUSTED TO BASE P. ICKEBD273 888 PARAMETRIC VALUES
. GOD SPOBRK
. GOD ELVN-L RUDDER BOFLAP ELVN-R .028£ -026長 -018F -012年 .024 .022春 .a20€ -016± -010-1800•

ree in ser

№0□◊4△

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES

<u>---</u>

-002長

.004

事900.

PITCHING MOMENT COEFFICIENT, CLM

N

,0

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS FITH ALPHA

MORRIANT LOBOLE COEFFICIENT. CN

BITCHING MAWENT COMMETCIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

I (KE8029) BASE CA148 -140 A/B/C/R CAVITY ADJUSTED TO

¥ O□♦

VXIVE EGREE COEFFICIENT.

PITCHING MOMENT CUEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PAGE

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

@4148 -140 A/8/C/R CAVITY ADJUSTED TO BASE P. ICKE8D303

AXIAL FORCE CUEFFICIENT, CA

3

PAGE

PITCHING MOMENT COEFFICIENT, CLM

VXIVE LONCE COEHLICIERL' CV

5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE F16.

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

NORMYE LOBUE COLER FOLENI.º CM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

FLUGHERO HOWERL COST MICHERLY COM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

(A)

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KESD33)

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PAGE

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

VXIVE LUBCE CRENEICHERIN

#10 10 10)

եվ (5) «Հ Ու

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

ម ម

CONTRACTOR OF THE PROPERTY OF

AXIAL FORCE COEFFICIENT,

VARIATION OF LONGITUDINAL AERODYMAMIC CHARACTERISTICS WITH ALPHA ្តិ ស

99

PAGE

Ŋ

354

PAGE

NORMAL FORCE COEFFICIENT,

TARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA FIG. 5

AXIAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

356 PAGE

PITCHING MOMENT COEFFICIENT, CLM

500

FIS. 5 MARIATION OF LONGITUDINAL AERODYWAMIC CHARACTERISTICS XITH ALPHA

NORMAL FORCE COEFFICIENT, CN

358

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA นา (1) (1)

PITCHING MOMENT COEFFICIENT, CLM

380

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

(0 (0)

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

Fig. 5

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

17) 16) 17)

(1) (D) et, (A)

PITCHING MUMENT COEFFICIENT, CLM

FIG. 5 VASIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALFWA

NORMAL FORCE COEFFICIENT.

e est

§ O□◆

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

364

REPRODUCIBILITY OF THE ORICE AL TREE BY

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

P. 1(KE8038) CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE

NORMAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

367

PAGE

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS VITH ALPHÁ F16. 5

PAGE

PITCHING MOMENT COEFFICIENT, CLM

,...<u>.</u>...]

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

一年 一年 一年 一日

0A148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KE8D40)

PITCHING MOMENT COEFFICIENT,

372

PAGE

FIG. 5

NORMAL FORCE COEFFICIENT, CM

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS VITH ALPHA

REPRODUCIBILITY OF THE ORDERAL PAGE IS POOR.

37.4

PASE

PASE

NORMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PITCHING MÖMENT COEFFICIENT, CLM

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE F16. 5

AXIAL FORCE COEFFICIENT,

380

PAGE

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PAGE 381

NORMAL FORCE COEFFICIENT, CN

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA ഗ . 10.

AXIAL FORCE COEFFICIENT, CA

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA FIG. 5

(ო დ (ო

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONSITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

(a)

REFERENCE INCOMATION
F 2690.0000 S0.FT
474.8000 IN.
F 935.6800 IN.
F 1076.6800 IN. XI
0.0000 IN. XI
P 375.0000 IN. XI
LE .0300 10 SREF LREF BREF XPTRP ZPTRP SCALE (U) DA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D45) O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES 55.000 4.000 PARAMETRIC VALUES
.000 SPOBRK
22.5C0 ELVN-L
4.000 MACH RUDDER BOFLAP ELVN-R <u>е</u>щи 4.000 φ. mm ф. 1 Ö Ž O□◊

NORMAL FORCE COEFFICIENT, CN

VARIATION OF LONGITUDINAL "ERODYNAMIC CHARACTERISTICS WITH ALPHA FIG. 53

N

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

Ř O□◊

· .

PITCHING MOMENT CUEFFICIENT, CLM

NURMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

REPRODUCEBLITY OF THE ORIGINAL FAGE IS POOR

01 (1)

AXIAL FORCE COEFFICIENT, CA

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA FIG. 5

(i)

P. ICKE80483 BASE 9 CA148 -140 A/B/C/R CAVITY ADJUSTED

(.) (1) (2)

NORMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

្លា ញ (១

₹ O□¢

VXIVE EGRCE COEFFICIENT, CA

362 FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

ტ ტ ტ

NORMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

16E 334

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D48)

VXIVE FORCE COEFFICIENT, CA

§ O□♦

PITCHING MOMENT COEFFICIENT, CLM

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8049) 65.000 4.000 1.100

RUDDER BOFLAP ELVN-R

967A -4.000 .000 4.000

§ O□¢

NORMAL FORCE CHEFFICIENT, CN

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA ្ត ភ្ន

The state of the s

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

353

AXIAL FORCE COEFFICIENT, CA

2690,0000 474,6000 936,6800 1076,6800 375,0000

SREF LIREF KANAP VARAP SCALE

CA148 -140 -/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D49)

RUDDER BOFLAP ELVN-R

.000 -4.000 .000

[₹]0□◊

.16配

.14 ...

-08 -08 190°

·04年

.02£

PITCHING MOMENT COEFFICIENT, CLM

- .06

-.08€

-.02€

-.04年

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA 10 O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES

NORMAL FORCE COEFFICIENT, CN

ganga F REFERENCE INFORMATION <u>ات</u>ا. 269-650 474-650 673-650 1976-660 1976-660 1976-660 1976-660 1976-660 (T) CA148 -140 JBZCZR AVITY ADJUSTED TO BASE P. I(KE8D50) တ O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES 85.000 4.000 .900 PAPAYETPIC . N.UES -10.000 SPOBRK 16.300 ELVN-L 4.000 MACH ٣ RUDDER BOFLAP ELVN-R .1275星 1210 .1270皇 1265長 .1260皇 .1245長 .1255春 -1250春 .1240長 1230年 1235年 .1225年 .1215年 -1220長 § O□¢

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PITCHING MOMENT COEFFICIENT, CLM

FIG. S VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

出版を

NORMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AEPODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

REPRODUCEDLITY OF THE ORICLAS PAST IS POOR

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

NORMAL FORCE CUEFFICIENT, CN

١

800

(J) (J) (J)

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I (KE8D53)

AXIAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

a.

PAGE

,

CA148 -140 A/3/C/R CAVITY ADJUSTED TO BASE P. ICKE8D53)

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

FIG. 5

(1) (1) (1) (1)

NORMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA VAPIATION OF <u>.</u>

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA O GA148 -140 A/B/C/R CAVITY ADJUSTED IG BASE P. 11KE8D55) O) $\boldsymbol{\varpi}$ ANGLE OF ATTACK. ALPHA. DEGREES 55.000 -4.000 PARAMETRIC VALLES
-10.000 SPOBPY
16.300 ELV.4.000 MACH RUDDER BOFLAP ELVN-R #ETA -4.033 4.033 ւր Մադես ro mpu mim mim in 1. 4.

NORMAL FORCE COEFFICIENT, CN

Ř O□¢

AXIAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

in Tr

のまの日

PITCHING MOMENT COEFFICIENT, CLM

NORMAL FORCE COEFFICIENT, CN

VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA FIG. 5

(I)

ÛA148 -140 AZEZÜR CAVITY ADJUSTED TÖ BASE P. ICKEBDS6)

VXIVE EGRCE COEFFICIENT, CA

PITCHING MOMENT COEFFICIENT, CLM

420

PAGE

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

K

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D57)

NORMAL FORCE COEFFICIENT,

421

PAGE

AXIAL FORCE COEFFICIENT, CA

∴ ► 4 ►

PAGE

PITCHING MOMENT COEFFICIENT, CLM

45°6

424

PAGE

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

NOWHAL FORCE COEFFICIENT, CN

() []

() ()

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PAGE 426

١,

\

ĺ.,

1

item .

NORMAL FORCE COEFFICIENT,

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D553

The second secon

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISLICS WITH ALPHA

SE 428

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

ころうないましまた こうちゅうかっこうし

4.31

AXIAL FORCE COEFFICIENT, CA

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC UNARACTERISTICS WITH ALPHA

PAGE

*

REFERENCE IN DRHATION 25.5T 474.8000 IN. 25.5T 474.8000 IN. 235.58000 IN. 25.500000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.500000 IN. 25.500000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.500000 IN. 25.500000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.50000 IN. 25.5 12 .0 SCALE -ത 0A148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D61) ANGLE OF ATTACK, ALPHA, DEGREES 55.000 4.000 .600 PA ... HETRIC VALUES 10.000 SPDBRK 16.300 EL VN-L -4.000 MACH RUDDER BOFLAP ELVN-R 86.14 -3.000 -4.000 -4.000 -4.000 -8.000 96. £. ρį **№**0□◊4△

NORMAL FORCE COEFFICIENT.

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

REFERENCE INFORMATION SQ.FT. F 2590.0000 SQ.FT. F 474.8000 IN. E 536.6800 IN. XC 5.000 SREF LREF KHRP YHRP SCALE 0A148 -140 A/B/C/R CAVITY ADJUSTED TO BASE F. ICKE8D613 55.000 4.000 .600 PARAMETRIC VALUES 10.000 SPOBRK 16.300 ELVN-L -4.000 MACH RUDDER BOFLAP ELVN-R -8.000 -4.000 -4.000 4.000 8.000 3560. }060• .065<u>+</u> .040年 .070€ 1090• .045 .085 .080-.075 .055 .050 **№**0□◊44

AXIAL FORCE COEFFICIENT, CA

434 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES F16.5

တ

Φ

-030長

.035<u>f</u>

PITCHING MOMENT COEFFICIENT.

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

435

PAGE

NORMAL FORCE COEFFICIENT, CN

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

REFERENCE INFORMATION
2590.0000 IN. 474.8000 IN. XI
936.6800 IN. XI
1076.6800 IN. XI
375.0000 IN. XI 50. SREF LREF WHRP YHRP SCALE UA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D62) ANGLE OF ATTACK, ALPHA, DEGREES 35.00 - 1.000 - 1.000 PARAMETRIC VALUES 5.000 SPUBRK 16.300 ELVN-L -4.000 MACH RUDDER BOFLAP ELVN-R .205 T BETA -4.000 4.000 .140年 .145年 .150長 .200春 .165長 .160£ .195長 190 185 180 .175 .170程 .155 § O□◆

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

So FT. REFERENCE INFORMATION
25590.0000 IN.
474.8000 IN.
935.6800 IN.
1076.6800 IN. X
0000 IN. X
0375.0000 IN. Z
E. 0300 50. SCALE SCALE .9 CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D62) O 4 8 12 ANGLE OF ATTACK, ALPHA, DEGREES 55.000 -4.000 1.400 PARAMETRIC VALUES 5.000 SPDBRK 16.300 ELVN-L -4.000 MACH RUDDER BOF1 VP EL: R 4. -4.000 -000 -4.000 풉. -08- .12 -06<u>+</u> -04中 -02年 -.06€ -.08[-.10年 -.12春 -.02長 -.04€ ¥ O□ ♦ PITCHING NOMENT COEFFICIENT, CLM

, ...

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

438

*

3, 1

DA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKEBD63)

ا ا المراقع المراقع المراقع المراقع المراقع المراقع المراقع المراقع المراقع المراقع المراقع المراقع المراقع ال

ļ

AXIAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

The second secon

PAGE

1.

NORMAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

44.2

REFERENCE INFOTATION

7690.0000 52.FT.

774.8000 IN.

936.6800 IN.

9 1076.6800 IN. XO

9 375.0000 IN. ZO

10.0000 IN. ZO 12 0 SREF LREF BREF XHRP YHRP 2:'RP SCALE ത CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. I(KE8D64) O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES 55.000 -4.000 1.100 PARAMETRIC VALUES 5.000 SPDBPY 16.300 ELVN-L -4.000 MACH ₩ RUDDER BOFLAP ELVN-R .177丰 96.TA -4.000 .000 4.000 .173 .172ŧ .179程 .178長 .175 .174 .176 185春 .183長 .182長 180 184 181 Ž O□◊

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

443

PAGE

1

.

The second secon

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

1:

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

10

4.5

VXIVE EDBCE COEFFICIENT, CA

1

PITCHING MOMENT COEFFICIENT, CLM

447

REFERENCE INFORMATION
7 2690.0000 IN.
7 375.0000 IN. XI
9 375.0000 IN. XI
1076.0000 IN. XI
1075.0000 IN. XI
1075.0000 IN. XI 12 9 SREF LREF BREF XMRP YMRP ZMRP SCALE 0A148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. ICKE8D663 ANGLE OF ATTACK, ALPHA, DEGREES 55.000 1.000 .600 PARAMETRIC VALUES 5.000 SPOBRK 16.300 ELVN-L -4.000 MACH RUDDER BEFLAP ELVN-R . وسائد 9617 -9.000 -1.000 -000 4.000 8.000 Ġ ķ ÷. **E**O□◊4△

NORMAL FORCE COEFFICIENT, CN

The second secon

1

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PAGE

CONTRACTOR OF THE PROPERTY OF

AXIAL FORCE COEFFICIENT, CA

PAGE

, ed.

PITCHING MOMENT COEFFICIENT, CLM

7.

.

. .

大學

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

- 3 - 3 - 2 - 3

451

CA148 -140 A/B/C/R CAVITY ADJUSTED TO BASE P. 1(KE8D67)

AXIAL FORCE COEFFICIENT.

1.

452

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

.

454

PAGE

; ;

400 m

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

REPRODUCIBILITY OF THE DRICHAL PAGE IS POOR

. 9

'n.

. 3

NORMAL FURCE COEFFICIENT,

867A -4.000 4.000

§ O□♦

I (KE8069)

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

457

45B

PAGE

A

PITCHING MOMENT COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA 39¥a

. መ ወ

NORMAL FORCE COEFFICIENT, CN

FIG. S VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

Call of the state of the state of the state of

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AFRODYNAMIC CHARACTERISTICS WITH ALPHA

462

•

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

464

The second secon

1 (KE8D72) CA148 -140 A/B/C CAVITY ADJUSTED TO BASE P.

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

466

NORMAL FORCE COEFFICIENT, CN

AXIAL FORCE COEFFICIENT,

467 FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

0A148 -140 A/B/C CAVITY ADJUSTED TO BASE P.

A. C. Making Symmetria

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

468

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL RERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

4)

PITCHING MOMENT COEFFICIENT, CLM

FIG. S VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

NORMAL FORCE COEFFICIENT.

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTENISTICS WITH ALPHA PAGE

ſ

AXIAL FORCE COEFFICIENT.

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PITCHING MOMENT COEFFICIENT, CLM

FIG. S VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

(の)を行っていた。 (機関係の 単位の場合を開発を基準) の場合を含む、 では、 できない。 (できない) できない できない できない これできない ないしゅう できない できない はいかい (の) はい (の) はいかい (の) はい (の) はいかい (の) はいかい (の) はい (の) はいかい (の) はい (

NORMAL FORCE COEFFICIENT. CA

NORMAL FORCE COEFFICIENT,

CM

All the state of t

4

PITCHING MOMENT COEFFICIENT, CLM

多年,我们就是我们的时间,我们就是我们的时候,我们就是我们的时间,我们就会会说,我们的时间,我们的时间,我们的时间,我们的时间,我们的时间,是我们会会说着我们的

REFERENCE INFORMATION
7 2690.0000 IN. 474.8000 IN. 474.8000 IN. 476.6800 IN. 476.6800 IN. 476.6800 IN. 2175.00000 IN. 2175.0000 12 0 SREF LREF SMRP ZMRP SCALE SCALE တ 1 (KE8077) O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES CA148 -140 A/B/C CAVITY ADJUSTED TO BASE P. 10.000 FARAMETRIC VALUES
-10.000 SPOBRK
-11.700 ELVN-L
-10.000 MACH 7 RUDDER BOFLAP ELVN-R BETA -4.000 -000 4.000 æ. 9 ķ 4, .2. Ċ. Ö ¥ 0□<

NORMAL FORCE COEFFICIENT, CN

5

2 7

. . .

AXIAL FORCE COEFFICIENT, CA

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

SZZZZZ F. SSSZZZZ REFERENCE INFORMATION
2690.0000 SQ.FT
474.8000 IN.
936.6800 IN. XI
1076.6800 IN. XI
375.0000 IN. XI 0 SREF KARP YARP SCALE တ I (KE8D77) O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES CAVITY ADJUSTED TO BASE P. .000 10.000 1.250 PARAMETRIC VALUES
-10.000 SPOBRK
-11.700 ELVN-L
-10.000 MACH 0A148 -140 A/B/C RUDDER BOFLAP ELVN-R 9£14 -4.000 -.000 4.000 -08[.12 .04£ -. 10f .02£ -.06[-.08 -06 -.02 -.04 ¥ O□◊

PITCHING MOMENT COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

2 2690 .0000 474 .8000 936 .6800 1076 .6800 375 .0000 9 SZEF LREF BREF XMRP YMRP ZMRP SCALE ത I (KE8078) O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES CAVITY ADJUSTED TO BASE P. PARAMETRIC VALUES
-10.000 SPOBRK
-11.700 ELVN-L
-10.000 MACH CA148 -140 A/B/C RUDDER BOFLAP ELVN-R .000 -4.000 .000 -4.000 ₩. ¥ O□◊

NORMAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

1,

SEE SEE REFERENCE INFORMATION
7 2590.0000 IN.
7 174.8000 IN.
8 1076.6800 IN. 8
9 175.0000 IN. 8
1. 1076.0000 IN. 8
1. 1076.0000 IN. 8 12 0 SCALE တ I (KE8078) œ O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES CAVITY ADJUSTED TO BASE P. .000 10.000 1.100 PARAMETRIC VALUES -10.000 SPOBRK -11.700 ELVN-L GA148 -140 0/8/C 7 RUDDER BOFLAP ELVN-R .144E -4.030 .000. 166年 .172E 170年 .168£ .162[160年 158 .150長 .148 .164 .146 .156 154 .152 ¥O□¢

AXIAL FORCE COEFFICIENT.

١

FIG. S VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

485

PITCHING MOMENT COEFFICIENT, CLM

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

NORMAL FORCE COEFFICIENT, CN

AXIAL FORCE COEFFICIENT,

こうこう こうこう こうしょう こうしょう かんしょう しょうしょう かんしゅうしゅん ないないしゅうしょ

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

REPRODUCIBILITY OF THE OPICELLY THE IS POOR

488

The second secon

PITCHING MOMENT COEFFICIENT, CLM

1,

AXIAL FORCE COEFFICIENT, CA

AERODYNAMIC CHARACTERISTICS WITH ALPHA FIG. 5 VARIATION OF LONGITUDINAL

491

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE

L

NORMAL FORCE COEFFICIENT,

AXIAL FORCE COEFFICIENT,

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

U

494

PITCHING MOMENT COEFFICIENT.

... 495

ĺ

1.

NORMAL FORCE COEFFICIENT.

3.3

ر م

90

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

PITCHING MOMENT COEFFICIENT, CLN

, , , , , , , ,

498

PASE

NORMAL FORCE COEFFICIENT.

1 (KE8E83)

CA148 -140 A/B/C CAVITY ADJUSTED TO BASE P.

RUDDER BOFLAP ELVN-R

ŽO□◊

æ

499

.....

PAGE

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

AXIAL FORCE COEFFICIENT,

NORMAL FORCE COEFFICIENT, CN

(N)

REFERENCE INFORMATION
F 2690.0000 SO.FT.
674.6000 IN.
F 936.6600 IN.
F 936.6600 IN. XI
P 1076.6800 IN. XI
P 375.0000 IN. XI
LE .C300 0 SREF LREF BREF XMRP XMRP ZMRP SCALE I (KE8E84) ANGLE OF ATTACK, ALPHA, DEGREES CAVITY ADJUSTED TO BASE P. PARAMETRIC VALUES 10.000 SPDBRK -11.7C0 ELVN-L 10.000 MACH OA148 -140 A/B/C RUGDER BOFLAP ELVN-R 102 4.000 4.000 101 100 -960 -660 860 .097 § O□◊ AXIAL FORCE COEFFICIENT.

PITCHING MOMENT COEFFICIENT, CLM

DA148 -140 A/B/C CAVITY ADJUSTED TO BASE P. I (KE8D85)

NORMAL FORCE COEFFICIENT,

505

VXIVE EDBCE COEFFICIENT.

, --

FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA

506

1

and the second s

REFERENCE INFORMATION
7. 2590.0000 SQ.FT.
7.4.8000 IN.
936.5800 IN.
1076.5800 IN. XO
375.0300 IN. ZO
... 507 12 FIG. 5 VARIATION OF LONGITUDINAL AERODYNAMIC CHARACTERISTICS WITH ALPHA PAGE 0 SAEF LREF YARP ZARP SCALE တ Φ uquumuquumuquumuquuluuquud 0 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES .000.01-.600.000. PARAMETRIC VALUES 10.000 SPDBRK -11.703 ELVN-L 10.000 MACH 7 OA148 -140 A/9/C 7. က RUDDER BOFLAP ELVN-R Ŋ .046 mg -033 .034長 .043론 .042長 .040年 .035 .038£ .036- 9£1A .000 .041長 .039 .037 .045 .044 SYMBOL O

PITCHING MOMENT COEFFICIENT, CLM

The second of th

4

I (KE8D85)

CAV. TY ADJUSTED TO BASE P.

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

508 PAGE

CHEI

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

CHEQ

1

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

512

PAGE

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

m st. PAGE

ASSOCIATE INCOMMISSION SSD. FILL SESSOCIATION SSD. FILL SESSOCIATION STD. STD. SESSOCIATION STD. STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION STD. SESSOCIATION SESSOCIATION STD. SESSOCIATION SE

SCALE SCALE

I (XE8D03)

CA148 -140 A/B/C/R ANES HINGE MOMENTS. COEFF.

33.000 .000 1.100

PARAMETRIC VALUES .000 SPOBRY 16.300 ELVN-L .000 MACH

> RUDOER ROFLAP ELVN-R

.000 4.000

§ O□♦

(i)

PASE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

U

CHEO

CHEI

•

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

ŝ PAGE

SO FT. REFERENCE INFORMATION 2690.0000 474.8000 936.6800 1076.6800 375.0000 0 SREF LREF BREF XMRP YNRP ZMRP SCALE ത 1 CXE8D04) 2 3 4 5 6 7 ATTACK, ALPHA, DEGREES CA148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. 55.000 .000 .900 O 1 ANGLE OF PARAMETRIC VALUES
.000 SPCBRX
16.300 ELVN-L
.000 MACH 7 RUDDER BOFLAP FLVN-R -.160 9£14 -4.000 .000 4.000 -.162<u></u> -.164€ -.172 -.174 -.178 -.182 -.168 -.176 -.166--.170 -.180 -.184 -.186 **§**O□◊

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

. υ., υ., υ.

521

PAGE

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

CHEQ

CHEI

BODY FLAP HINGE MOMENT CUEFFICIENT, ABOUT X=1532 , CHBF

525

PAGE

THE REPORT OF A CONTRACT PROPERTY OF THE PROPE

A CONTROL OF THE PROPERTY OF T

CHEQ

FIG. 6 VARIATION OF HINGE MOMENT CHARACIERISTICS WITH ALPHA

CHEI

REFERENCE INFORMATION 2690.0000 474.0000 936.6800 1076.6800 375.0000 0 SREF LREF BREF XMRP YMRP ZMRP SCALE ത I (XE8007) ATTACK, ALPHA, DEGREES CA148 -140 A/B/C/R AMES HINGE MOMENTS, COEFF. 55.000 .000 .900 ANGLE OF PARAMETRIC VALUES
.000 SPCBRX
22.500 ELVN-L
.000 MACH 7 7 RUDDER BOFLAP ELVN-R 9ETA -4.030 .000 . 유 -08- ·10만 ·07基 -03E .06 .05<u>f</u> -04E .02 -01 -.02 -.01--.03 Ö Ř O□◊

TOTAL ELEVON HINGE MOMENT COLFFICIENT, ABOUT X=1387, CHETGT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

•,

.

:

PAGE

(C)

1.

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

1

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

532

CHEI

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

REFERENCE INFORMATION 2690,0000 474,6000 938,6800 1076,6800 375,0000 0300 2 SCALE SCALE **o** I (XE8D09) O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES CA148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. 95.000 .000 1.250 PARAMETRIC VALUES
.000 SPOBRK
22.500 EL/N-L
.000 MACH က RUDDER BOFLAP ELVN-R 4.000 .000 .000 .000 -.06[-.08€ .10 -08 -.02 -90 -02 16 -04 -.04

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

0 0

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHE!

CHEQ

The second of the first terms of

京田中の中でかれたいたから 一大いといる

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

4)

PAGE 537

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

CHEO

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. S VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

Grinik F 828 REFERENCE INFCRNATION 20,577 474,8000 IN. 935,5800 IN. 1076,6800 IN. 715,0000 IN. 715,0000 IN. 715,0000 IN. 715,0000 IN. 715,0000 IN. 715,0000 IN. 715,0000 IN. 715,0000 IN. 715,0000 IN. 715,0000 IN. 715,0000 IN. 715,0000 2 SAREF LAREF XORRP YITAP SCALE SCALE I (XE8D11) 0 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES OA148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. 85.000 000.000 000.000 PARAMETRIC VALUES
.000 SPOBRK
22.500 ELVN-L
.000 MACH ī n RUDDER BOFLAP ELVN-R BETA -4.300 4.000 유. 留: 80. .07 .06<u>f</u> .05 .04E -03 -02 -.01 -10. 6 § O□♦

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

4.....

SXXXXX F SSS 12 .0 SREF LREF BREF XHRP YHRP SCALE I (XE8D11) · ත $\boldsymbol{\omega}$ ANGLE OF ATTACK, ALPHA, DEGREES DA148 -140 A/B/C/R AMES HINGE MOMENTS, COEFF. 8. 69. 98. 98. PARAMETRIC VALUES
.000 SPOBRK
22.500 ELVN-L
.000 MACH 7 -2 <u>ب</u> RUDDEP BOF1, AP EL VN-R -.228€ -4.000 -000 -000 -000 -.224F -.226卡 -.234春 -.230€ -.252集 -.236 -.238€ -.246[-.232 -.244€ -.248£ -.242 -.240--.250 **E**O□◊ **b** BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

我們不管你一名 子教教 的现在分词 医中子病 医遗

The state of the s

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

540

0.47 7.47

PASE

.,

しまない とうには

1

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

CHEO

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

11

TOTAL ELEVON HINGE MCMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

THE STATE OF THE S

549

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

YBOOL X=1381' CHELOL

TOTAL ELEVON HINGE MOMENT COEFFICIENT.

۱,

OA148 -140 A/B/C/R AMES HINGE MANENTE CAREE I (VEONIE) I (XE8D15) HINGE MOMENTS. COEFF. 0A148 -140 A/8/C/R AMES

٠.

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

552

PAGE

2

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

...

いっというないできるとなっているというできてきないというからないとうないとうないというないとはなっているとはないというないというないというないというないというないというないというというないというない

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

*

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

. T.,

というないとうないところとは、ないことのとうと

TOTAL ELEVUM HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

561

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

に関すればでは、1.1の特別は推断の発達の通路に行動が行うな理論を持ち込むでは推揮したはでき、ほかに対すれていたは、自然ないです。これがからないにの音解析を発されてはなか。ここの

 ζ_{p}

562

A CONTRACT OF THE PROPERTY OF THE PARTY OF T

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA FIG. 6

563

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

564 PAGE

AFERENCE 1NF 2890,0000 474,8000 936,6800 1076,6800 375,0000

SCALE SCALE

1 (XE8020)

MA149 -140 A/B/C/R AMES HINGE MOMENTS, COEFF.

885

PARAMETRIC VALUES .000 SPUBRK -11.700 ELVN-L .000 MACH

RUDDER BOFLAP ELVN-R

¥ O□◆

...<u>190</u>.

·0440

CHEQ

CHEI

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

THE REPORT OF THE PARTY OF THE

PAGE 566

Sinin Ser Ser

885 885

PARAMETRIC VALUES
.000 SPDBRK
-11.700 ELWA-L
.000 MACH

RUDDEA BDFLAP ELVN-R

9ETA -4.000 .000 4.000

Ř O□◊

_1850.

₹950°

.054

.052

.050

.048

.046

BODY FLAP HINGE MOMENT COEFFICIENT, AUJUT X=1532 . CHBF

.044€

.042

.040

PAGE

567

12

7

-7

.036£

.038

.034長

.032

CHEO

. .

£0□◊

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

568

PAGE

CHE I

وي المارية الم

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

569

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

AGE 576

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6

CHEO

CHE I

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

572

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 . CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

SXXXXX SAN REFERENCE INF 2690,0000 474,8000 936,5800 1076,5800 375,0000 E 0300 SREF LREF SMRP XMRP XMRP XMRP SCALE UA148 -14U A/B/L/R AMES HINGE MUMENIS. COEFF. I(XE8D23) 99.4. 99.64 PARAMETRIC VALUES
.000 SPDBRK
.000 ELVN-L RUDDER BUFLAP ELVN-R 8ETA -4.000 .000 4.000 -.02€ -.03手 ₹90.--.07₽ - .08 360°--.10€ -.05 -.12 -.13 -.04 ŽO□◊

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA ANGLE OF ATTACK, ALPHA, DEGREES

4-

-.14

575 PAGE

20,

1.1

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

1 (XE8024) HINGE MOMENTS. COEFF. MA148 -140 AZBZEZP AMES

Later the second of the second

· · · · · · · · ·

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

579 PAGE

PAGE

CHEG

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

822222 F 998 REFERENCE INFORMATION
7 2690.0000 80.FT
74.8000 IN.
936.6800 IN.
1076.6800 IN.
775.0000 IN. 71 12 0 SREF LREF KHRP VHRP ZHRP SCALE ത I (XE8D25) O 1 2 3 4 5 6 7 ANGLE OF ATTACK. ALPHA. DEGREES DA148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. 885 885 PARAVETRIC VALUES
.COD SPDBRK
.OOO ELVN-L RUDDER BOFLAP ELVN-R (0 (0 -4.000 -300 4.000 .10th - 14- 98 .02 -04 - .08 .06<u>F</u> -.04 <u>-.06</u> -.02 -.10 Ž O□¢

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

, ,

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEO

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

1:

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

STATE TO STA

I CYERDZE!

SCHAPATA:

EINITE

53NY 0/3/6

177.1 07.40

888

SPERIC VALUES
COD SPERIC
COD ELVN-L
COD MACH

RUCCER BOFLAP ELVN-P

4.000 000 000 000 000

₹ OП♦

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

595

PAGE

ത

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEQ

CHEI

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

REFERENCE INFORMATION

7.5590.0000 SD.FT

474.8000 IN.

935.6800 IN.

1076.6800 IN.

375.000 IN. 21 12 0 SREF LREF BREF XHRP ZHRP SCALE თ 0A148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. ICXE8D273 O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES 8 8 8 PARAMETRIC VALUES
.000 SPOBRK
.000 ELVN-L 7 .7 <u>ښ</u> RUDDER BOFLAP ELVN-R -8.000 -4.000 -4.000 -4.000 8.000 -.026長 -.028 **∄**ທຸ <u>-.030</u>€ -.032€ -.038₽ - .040톤 -.036€ - . 342년 -.034 -.046<u>=</u> -.044 -.048 -.052 -.050-**№** O□◊47

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 . CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

588

PAGE

REFERENCE INFORMATION
7 2590.0000 1N. 474.8C:00 1N. 895.6S:00 1N. 8. 1076.6800 1N. 8. 1075.0C:00 1N. 8. 375.0C:00 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. 8. C:000 1N. 8. C:0 590 PAGE 20 SREF LREF BREF XMRP YMRP ZMRP SCALE 16 I (XE8028) FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA ANGLE OF ATTACK. ALPHA. DEGREES UA148 -14U A/B/C/K AMES HINGE MOMENTS. COEFF. 35.000 10.000 1.400 PARAMETRIC VALUES -10.000 SPDBRK 16.300 ELVN-L .000 MACH æ RUDDER BOFL AP EL VN-R 33 951A -4.000 .000 4.000 -.20丰 .25<u>£</u> .20£ 35. -.10f -.15 Ö -.05 -.25 - 30 -.35 Ġ **№**0□◊

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

Ü

The second secon

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

The same of the sa

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA FIG. 6

12

0

O

α

3 4 ALPHA

4-

÷.

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

REFETENCE INFORMATION F 474.8000 IN. F 936.6500 IN. F 1076.6500 IN. 20 P 375.700 IN. 20 LE 10.000 7 0 SREF LREF BREF XMRF XMRF ZMRP SCALE o DA148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. 1 (XE8D29) Φ ATTACK, ALPHA, DEGREES ANGLE OF 35.00C 10.000 1.250 PARAMETRIC VALUES -10.000 SPOBRK 16.300 ELVN-L 7 -2 ന RUDDER BOFLAP ELVN-R 4--.14Em 'n #174 - 000 - 000 - 000 - 000 -.18長 - 151 -.40£ -.28 -.30 -.20 -.22 -.26 -.35 - 38 -.32 -.34 Ş O□¢ BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CH8F

١.

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

594

PAGE

1 (xE8D3U) UA148 -14U A/B/L/K AMES HINGE MUMENIS. CUEFF.

CHEO

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

ij

mo.

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

59B

おいずの

M 0100

国のをは

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

ငိုလွင်

BOCY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

PAGE

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

ALPHA

φ

PAGE

9

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

CA148 -140 AVBYCYR AMES HINGE MOMENTS. COEFF. PARAMETRIC VALUES 10.000 SPOBRK 16.300 ELVN-L 10.000 MACH RUDDER BOFLAP ELVN-R -.20 -.14配 - 34 - .40克 -.32 - 18 4.000 4.000 4.000 1.16F -.22手 -.26€ -.36[-.38 -.24 -.28 - 30 Ř O□◆ BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

REFERENCE INFORMATION 76 474.80.00 1N. 6 936.66.00 1N. 775.66.00 1N. 775.00.00 1N. 20 8 375.00.00 1N. 20 10.00.00 1N. 20

SREF LREF BREF XMRP VMRP ZMRP SCALE

35.000

;,,

. .

1 (XE8D33)

50 9 FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA ANGLE OF ATTACK, ALPHA, DEGREES

-.42

909 PAGE

-

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

Ĺ,

608

PAGE

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

.

Q Œ1

-.23

-.27

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

2 4.00.13

-.26E

-.25

I (XE6335)

HINGE MOMENTS. COEFF.

CA148 -140 A/B/C/R ARES

35.000 .000 1.100

PARAMETRIC VALUES 10.000 SPDBRM 16.300 ELVN-L 10.000 MACH

RUDDER BOFLAP ELVN-R

4 .000. 4 .000. 4

§ C□¢

-21年

-.22

-.24

, "1

-.23₹

1998 192222

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA ATTACK, ALPHA, DEGREES O 1 2

_

-2

-33

- 34

-.32

8. 6

-.3:-

612

PAGE

7

 $\boldsymbol{\omega}$

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6

: 14

 $\Pi \longrightarrow \iota$

TOTAL ELEVON HINGE MOMENT COEFFICIENT, AROUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARASTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

GA148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. 1(XE8D37)

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

CHEO

HINGE MOMENT CHARACTERISTICS WITH ALPHA

REFERENCE INFORMATION
50.FT.
474.F300 IN.
975.F300 IN.
1076.F300 IN.
20 375.C300 IN.
20 375.C300 IN.
20 375.C300 IN. S SREF LREF BREF XMAP ZMAP SCALE 9 1 (XE8D38) ANGLE OF ATTACK. ALPHA. DEGREES A/B/C// AMES HINGE MOMENTS, COEFF. 85.000 10.000 1.400 PARAFETRIC VALUES 10.000 SPOBRK 16.300 ELVN-L 10.000 MACH G41- 84140 φ RUDDER BDFLAP ELVN-R .15 Fin -4.000 -4.000 4.000 -.55 (C) С. пфи milim Turilim 00. 1 €3 mlm -.25 - 3Cm .33 -.45 m -. 45 - 50 § O□♦

TOTAL ELEVON HINGE MOMENT COEFFICIENT. ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF

P:3E

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

۱.,

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 . CHBF

CHEO

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

(1) (1) (1)

YITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTI

With the state of O Œ) ICKERDAC: 6 7 JEGREES CA148 -140 AVB/CUR AMES HINGE MOMENTS. CORPE. C 1 2 3 4 5 ANGLE OF ATTACK, ALP:14 85.000 10.000 1.100 PARAMETRIC VALUES 15 000 SPOBRK 16.300 ELVN-L 10.000 MACH PLOCEP BOFLAP ELVN-R 88 TA -4-000 -000 -4-000 - 06m - 08 - 08 - 1 idio CO · 24 - 23 φ 1 - 23 -.20 Ž O□¢

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

PAGE

111......

The state of the s

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA 3 4 ALPHA

-.10<u>F</u>

628

PAGE

1:

12

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE 630

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

CHEQ

les.

*

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 . CHBF

O Im

-.02

- .04년

-.02€

Ç O□♦

- .04₩

CHEQ

子90.-

子80.-

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

634

PAGE

-.06<u>F</u>

- 08-

- 10f

PAGE

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

PAGE 638

K

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEO

CHEI

(1) (2) (3) (4) (4)

LLLLBA.0 4 WINDER O 4 BB 12 2 2 17 O 0 5 4 1. O) Ų١ I (XE8045) σ JA148 -140 A/B/C/A AMES HINGE MONENTS. COEFF. æ ALPHA PADAMETRIC WALUES
.000 SPDSPK
22.500 ELWN-L
4.000 MCH 800008 8071.408 81.449 -4.000 -2.000 -4.000 ակա : 中20·ри (8) 10.1 ‱ ♣OП♦

CHEQ

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA FIG. 6

CHEI

Ö ó

-.02星

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHFTOT

- .04년

-.05

390`−

-.07

180.-

-.03₺

-.011

REFERE...E INFORMATION
7 2690.0000 SD.FT
474.8000 IN.
935.6800 IN. X
1076.6800 IN. X
0000 IN. X
0000 IN. X
1075.0000 IN. X SREF KMRP XMRP XMRP ZMRP SCALE CA118 -110 A/D/C/R AMEC HINGE MOMENTS. COEFF. **55.000 4.**000 PARAMETRIC VALUES
.000 SPDBRK
22.500 ELVN-L
4.000 MACH RUDDER BOFLAP ELVN-R

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA F16. 6

641

PAGE

9

ത

1 (XE8D45)

9ETA -4.000 .000 4.000

Ş O□◊

·04

·03年

.02<u>F</u>

·0.

PAGE

The second secon

S. Om

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHE I

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

1

PAGE

《1997年》 1996年 1996年 1997年 1997年 1998年 199

CHEI

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

PAGE

こうかん 上にていている かんしん かんしんしん こうしゅうしゅう

CHEQ

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHE I

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

*

*** ****

PAGE 653

REFERENCE INFORMATION
2690.0000 IN.
474.8000 IN.
936.6800 IN.
1076.6800 IN. X 12 0. SAEF LAEF BREF XMRP YMRP ZMRP SCALE I (XE8048) ഗ FIG. S VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES CA148 -140 A/B/C/R AMES HINGE MCMENTS. COEFF. **85.C**C0 **4.**000 1.250 PARAMETATO VALUES -10.000 SPOBRM 16.300 ELVN-L 4.000 MACH RUDDER BDFLAP ELVN-R 4 -.12<u>F</u> 8617 -4.000 .000 . mjn - 16F - 18 min -.20[-.22₽ - 24 - 30F -.28£ -.26 - . 34手 -.32 -.36<u></u> -.38 § O□◊

.

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

.021

т. Обт

-.08F

- .04年

CHEO

-.024

and had a company of the second of the

RUDDER BDFLAP ELVN-R

§ O□◆

.02

-.04

-.02

<u> - .08</u>₽

-.06₽

PAGE

I (XE8049) HINGE MUMENIS. CUEFF. CA148 -140 AZBZCZR AMES

The second secon

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 8 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

*P (() PAGE

K

.000 4.000 4.000

Š O□♦

9

ပ်

.02

-.01

CHEG

- .045m

-.03E

-.02

.03£

.02<u>‡</u>

-04年

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

-.02£...

-.01

8

655

PAGE

.01

1 (XE8050)

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

556

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEO

The state of the s

CHE 1

REFERENCE INFORMATION 7.620.0000 SO.FT. 474.8000 IN. 936.6800 IN. 1076.6800 IN. 3 375.0000 IN. 20 SREF LREF BREF XMRP YMRP ZMRP SCALE 0A148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. 1(XE8D51) 85.000 4.000 .600 PARAMETRIC VALUES -10.000 SPOBRK 16.300 ELVN-L 4.000 MACH RUDDER BOFL AP EL VN-R TVO -.130長 - 140年 -.142‡ -.134長 -9.000 -4.000 4.000 9.000 -.132丰 -.138[-.120臣 -.144 -.1461 -.1365 -.126€ -.128 -.122 -.124 BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE 560

12

2

ð

ANGLE OF ATTACK. ALPHA. DEGREES

__

-5

4

-. 148 Emlim

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

662

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

PAGE 663

これははは、できて、神経神の氏は異性になる。

CHEQ

CHEI

PASE

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

2A148 -140 A/3/C/R AMES HINGE MOMENTS. COEFF. I (XE8D54)

TOIVE ELEVEN HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

տ ա փ

田田では

Berthalt Branch and Control

REFERENCE INFORMATION
2 2690,0000 SQ.FT
474,8000 IN.
936,6800 IN.
1076,6800 IN.
375,0000 IN. XI ~ 0 SREF LREF BREF YMRP YMRP ZMRP SCALE တ 0A148 -140 A/B/C/P AMES HINGE MOMENTS. COEFF. ICXE8D54) FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA ANGLE OF ATTACK. ALPHA. DEGREES 55.000 -4.000 1.100 PARAMETRIC VALUES -10.000 SPOBRK 16.300 ELVN-L 4.000 MACH -က RUDDER BOFLAP ELVN-R -.33# -.5 -.20 9ETA -4.000 4.000 -.23春 -.21長 -.24**£** -.28春 -.29E -.26 <u>-,30€</u> -.25 -.32€ -.22--.27 -.3!-Ž O□♦

ر ار :

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

-.04 <u>Fil</u>

-.03€

-05世

.04节

03

.024

-.01 ₩

CHEO

-.02春

9£17 -4.000 4.000

Ř O□◊

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

3 4 ALPHA

m

-4

-.01

PAGE

10

. ຫ

670

CHEI

Ö

Ċ

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

REFERENCE INFORMATION
F 2590,0000 SD.FT,
936,6800 IN.
F 1076,6800 IN.
7 375,0000 IN. 20
10.000 IN. 20
10.0000 IN. 20
10.0000 IN. 20
10.0000 IN. 20
10.0000 IN. 20 12 0 SREF LREF SHRP YMRP ZMRP SCALE တ I (XE8055) Φ O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES HINGE MÜMENIS. LÜEFF. 55.000 -4.000 UA148 -140 A/B/C/K AMES FARAMETRIC VALUES
-10.000 SPOBRK
16.300 ELVN-L
4.000 MACH RUDDER BDFLAP ELVN-R 9kTA -4.000 .000 4.000 四70 -04th -.02€ -.03[390° ±05€ .03£ . 10. -.01 .02£ -.05 Ö -.04 - .06 -.07 Ř O□◊

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHE

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

The model of the model of the second

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

677

PAGE

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

(J)

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

1.

Š O□♦

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

684

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEQ

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

101AL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

\$\int\{\text{G}} \\ \text{G}

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

gådin/

687

S

3 4 ALPHA

80.

.06m

CHEI

.07E

₩10.

02

CHEO

İ

I (XE8061)

OA148 -140 A/B/C/P AMES HINGE MOMENTS, COEFF.

55.000 4.000 .600

PARAMETRIC VALUES 10.000 SPDBRK 16.300 ELVN-L -4.000 MACH

RUDDER BOFLAP ELVN-R

8.000 8

№ O□◊4△

950

40.

g

3 4 ALPHA

0

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

TOTAL ELEYON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

REFERENCE INFORMATION 2690.0000 474.8000 938.6800 1076.6800 375.0000 0 SREF LREF BREF XMRP YMRP ZMRP SCALE တ I (XE8D61) œ ANGLE OF ATTACK. ALPHA. DEGREES OA148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. **55.000 4.000** .600 PARAMETRIC VALUES 10.000 SPDBRK 16.300 ELVN-L -4.000 MACH --1 -2 က RUDDER BOFLAP ELVN-R 8-000 -4-000 -4-000 -4-000 -6-000 -4-000 -6--.118 -.114 -.116Ē -.120 -.122 -.126[-.130<u>₽</u> -.124 -.128 -.134 -.136<u>-</u> -.132 -.138 -.140-**№**0□◊4△ BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

=

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

REPRODUCERLITY OF THE ORIGINAL PAGE IS POOR

690

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIFIION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

THO

CHEO

The second secon

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA F.[G. 6

HOTO HOTO

CHEG

CHE I

OB 2

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

1

869 PAGE

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

og°

669

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

.075 bulu -5

.080

700

PAGE

10

တ

8xxxxx F. 855 REFERENCE INFORMATION 12 2690 0000 474 6000 936 6600 1076 6600 375 0000 0300 0 SREF LREF BREF XHRP YHRP SCALE တ 1 (XE8D65) O 1 2 3 4 5 6 7 ANGLE OF ATTACK. ALPHA. DEGREES DA148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. 55.000 -4.000 PARAMETRIC VALUES 5.000 SPOBRK 16.300 ELVN-L -4.000 MACH 7 RUDDER BDFL AP EL VN-R 0 165 4.000 4.000 4.000 .145手 .115年 .110年 3691. .150年 .125年 .120年 155 .140 .135 .105 100 .130 **№** O□◆

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

.

1 .. .

HINGE MOMENTS. COEFF.

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEI

CHEO

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

The same of the sa

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

1.

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

OA148 -140 A/B/C/R AMES HINGE MOMENTS. COEFF. I(XE8D67)

BUYC

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETUT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

CHEQ

; ,

The second of th

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

712

PAGE

0

g

œ

3 4 ALPHA

0

--

CHEI

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

4

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

REFERENCE INFORMATION SO.FT. 7690.000 SO.FT. 174.8: 30 IN. 936.6899 IN. 80 IN. 12 0. SAEF LAEF BAEF XMRP YMRP ZMRP SCALE တ AMES HINGE MOMENTS. COEFF. 1(XE8D69) O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES 55.000 -10.000 .900 PARAMETRIC VALUES .000 SPOBRK 22.500 ELVN-L -10.000 MACH 0A148 -140 A/B/C 1 -2 ر RUDDER BOFLAP ELVN-R - 190阜 4.000 4.000 4.000 -.195長 -.200[-.210<u>F</u> -.220 E -.245<u>£</u> -.215 -.225<u>+</u> -.230€ -.235<u>+</u> -.250[-.205--.255 -.240-ŽO□◊ BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

ŧ

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEQ

12/16

CHEI

; ò

y (

716

PAGE

į

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

CHEQ

No. 1 1.34

3

4

CHE I

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

REFERENCE IN DRIANT DW 2690 DRIGGE IN. 474.8000 IN. 936.6800 IN. P 1076.6800 IN. M 0.0000 IN. M 0.0000 IN. M 720 PAGE SPEF LREF BREF XMRP YMRP ZMF9 ; 1 (XE8071) FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA ANGLE OF ATTACK. ALPHA. DEGREES AMES HINGE MOMENTS. COEFF. 55.000 -10.000 1.400 PARAMETRIC VALUES
-5.000 SPDBRK
16.300 ELVN-L
-10.000 MACH -**3*** 04148 -140 A/B/C RUDDER BOFLAP ELVN-R -.30E -.22 -.28 -.12<u>F</u> -.14 - 16 -.18長 -.20[-.24 -.34 - 36 - 38 -.32 -.26 ŘO□◊

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VIRIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PEFFECT INFORMATION 26.FT. 474.EDD0 1N. E 936.E8CD 1N. 10.76.E8CD 1N. 2D N 0 Spering Sperin Ø١ ; (XE8F72) ATTACK. ALPHA. DEGREES AMES HINGE MOMENTS. COEFF. 55.000 -10.000 1.250 ANSLE OF PARAMETRIC VALUES
-5.000 SPDB9K
16.300 ELVN-L
-10.000 MACH GA148 -140 A/B/C ---PUDDER BOFLAP ELVN-R .60F **-4**0₽ -4.000 -000 -2.000 15 一.10点 .55<u>F</u> 35. (4) (1) -20th -106 -.05 45 30F. 52 .05 \mathbf{C} Ş O□◊

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. S VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

CHEI

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

さいこ 見なば 関連問題を

..

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA F16. 6

726

PAGE

The same and the same and the same

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

一門はなりましま

TOTAL ELEVON HINGE MOMENT COEFFICIENT. ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

: ...

PAGE 728

1.

PAGE

[]

FIG. 6 VARIATION OF HINGE MOMENI CHARACTERISTICS WITH ALPHA

REFERENCE INFORMATION
F 2690.0000 SQ.FT.
474.8000 IN.
F 936.6800 IN. x0
P 176.6800 IN. x0
P 375.0000 IN. 20 12 2690.0000 474.8000 936.6800 1376.6800 375.0000 0 SAEF LAEF BREF XMAP YMAP ZMAP SCALE 1 (XE8075) ത O 1 2 3 4 5 6 7 ANGLE OF ATTACK. ALPHA. DEGREES AMES HINGE MOMENTS. COEFF. 55.000 -10.000 .600 PARAMETRIC VALUES -5.000 SPDBRK 16.300 CLVN-L -10.000 MACH CA110 -110 A/B/C : -2 <u>ب</u> RUDDER BOFLAP ELVN-R -.100<u>₽</u> 量501.-8-600 -4.000 -4.000 -4.000 -4.000 -8.000 -.135長 -.140<u>=</u> <u> - 133</u> - 145부 -.110 -.115 -.:20<u>E</u> -.125₽ - .165長 -.150 - 155 -.160 **№**0□◊4**7** BODY FLAP HIGGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

PAGE

CO

φ

-.040手

F:

SAEF LREF BREF XMMP VMMP ZMMP SCALE

I(XE8D76)

AMES HINGE MOMENIS. COEFF.

DA148 -140 A/B/C

RUDDER BOFLAP ELVN-R

4.030 4.030

Ž O□¢

-.315<u>F</u> .325 型010· ₹500°--020年 到510. -.010₽ -.025 -.030<u>-</u> 13CO. -.020 8007 FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532

...h..

PEFERENCE INFCRMATION 20.FT. F 474.5000 IN. ED 1075.EBD0 9 C SCALE SCALE SCALE SCALE SCALE ຫ I (XE8077) œ COEFF. (0 HINGE MOMENTS. 3 4 ALPHA .030 10.000 1.250 AMES PARAMETRIC VALUES -10.030 S70B9K -11.700 ELVN-L -10.030 MACH \Box 3 **→** JA148 -140 A/B/C 7 رن رن RUDDER BOFLAP ELVN-R 7, M -4.000 -000 4.000 .ф. З 150 th 200 C 30 30 Ó ξ Q Q Q CHEO CHE I

;;**-**

The second of th

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA 3 4 ALPHA FIG. 6

O

-2

ŋ

7

udud y

8

736 P - 1

7

Ö

ത

 $\boldsymbol{\omega}$

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

AMES HINGL MUMENIS. COEFF. 1(XE8077) UA148 -14U A/B/U

738

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

ŘO□◊

E STATE OF THE STA

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

740

REFERENCE INFORMATION
7 2690.0000 1N.
7 474.8000 1N.
936.6800 1N.
1076.6800 1N. XI 0 SREF LREF BREF XHRP YHRP SCALE 1 (XE8078) O 1 2 3 4 5 6 7 ANGLE OF ATTACK. ALPHA. DEGREES AMES HINGE MUMENIS. CUEFF. 10.000 PARAMETRIC VALUES
-10.000 SPOBRK
-11.700 ELVN-1. UA148 -140 A/B/C RUDDER BOFLAP ELVN-R .054 86.7A -4.000 .000 4.000 .038₽ 到050. -028 .046年 .034₽ .032 .048[.044卡 .036€ .052長 .050 .042 .04C § 6 0□◊

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

....

•

:

1.

CHE I

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

ή·...

REFERENCE INFORMATION 12 2693.0000 474.8000 936.6800 1076.6600 375.0000 2 SREF LREF KHRP VHRP ZHRP SCALE ٥ŋ I (XE8D79) Ø O 1 2 3 4 5 6 7 ANGLE OF ATTACK, ALPHA, DEGREES HINGE MOMENTS. COEFF. .00.00 .00.00 .000.00 AMES PARAMETRIC VALUES -10.000 SPOBRK -11.700 ELVN-L -10.000 MACH CA148 -140 A/B/C 7 7 ٣-RUDDER BOFLAP ELVN-R -.010 .090· -4.000 -9.000 -4.000 .045분 .025 <u>-055</u>€ 一050. -010· .015年 .040E .035 空0至0 -005<u>+</u> -.005 6 Ž O□♦ BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA FIG. 6

1

744

The second second

CHEI

CHEQ

TOTAL ELEVON HINGE MONENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

746

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

30 0

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

REFERENCE INFORMATION
F 2690.0000 SD.FT.
F 474.8000 IN.
F 936.6800 IN.
P 1076.6800 IN. XD
P 375.0000 IN. ZD
E 375.0000 IN. ZD SREF LREF RREF XMRP TN:3P ZMRP SCALE 1 (XE8E81) O 4 8 12 ANGLE OF ATTACK. ALPHA. DEGREES AMES HINGE MOMENTS. COEFF. PARAMETRIC VALUES 10.000 SPOBRM -11.700 ELVN-L 10.000 MACH CA148 -140 A/B/C RUGDER BOFLAP ELVN-R .15智 # 198 9.000 9.000 9.000 9. -.20€ -05F -.05 - .10長 -.25₽ -.35 - .40₹ - 15<u>m</u> - 30<u>E</u> -.45 \$ 0□◊

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

2651 0000 80. FT. 2650 80. FT. ا ا ا 9 I (XE8E81) FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS AITH ALPHA ANGLE OF ATTACK. ALPHA. DEGREES DA148 -140 A/B/C AMES HINGE MOMENTS. COEFF. -10.000 -1.400 PARAMETRIC VALUES 10.000 SPOBRK -11.700 ELVN-L 10.000 MACH 4 RUDDER BDFLAP ELVN-R -.035Ё - 030 .035配 0.5 О Сі Сі #£1.4 .000 4.000 4.000 <u> 1030</u> -025年 -.ਹ20₹ -,025<u></u> -.015 -.003 -.01C Ò Ž OП♦

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CHBF

OA148 -140 A/B/C AMES HINGE MOMENTS. COEFF. I(XE8E82)

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

752

PASE

BODY FLAP HINGE MOMENT COEFFICIENT, ABOUT X=1532 , CH8F

PAGE

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

756

the first of the second of the

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

FIG. 6 VARIATION OF HINGE MOMENT CHARACTERISTICS WITH ALPHA

PAGE

13HD

PAGE

TOTAL ELEVON HINGE MOMENT COEFFICIENT, ABOUT X=1387, CHETOT

7

- ...

762