Examen DEPI 2019-2020

Nr.1

Exerciții (17p)

- 1. Fie o variabilă aleatoare continuă A având distribuția normală $\mathcal{N}(\mu=-2,\sigma^2=4)$.
 - a. (1p) Reprezentați grafic distribuția (calculați și specificați pe grafic valoarea medie și înălțimea funcției)
 - b. (1p) Calculați probabilitatea ca A să fie pozitiv
 - c. (1p) Calculați valoarea medie pătratică $\overline{A^2}$
 - d. (1p) Fie alta variabilă aleatoare B definită ca B = A x. Cât ar trebui să fie x pentru ca probabilitatea P(B < 0) să fie egală cu $\frac{1}{2}$?
- 2. Un semnal constant poate avea două valori posibile, $s_0(t) = 0$ (ipoteza H_0) sau $s_1(t) = 5$ (ipoteza H_1). Semnalul este afectat de zgomot gaussian cu distribuția $\mathcal{N}(\mu = 0, \sigma^2 = 4)$. La recepție se ia un singur eșantion, la momentul $t_0 = 1$, și se obține valoarea $r_0 = 1.5$. Cele două ipoteze au probabilitățile $P(H_0) = \frac{1}{4}$ și $P(H_1) = \frac{3}{4}$
 - a. (1p) Reprezentați grafic cele două distribuții condiționate, $w(r|H_0)$ și $w(r|H_1)$
 - b. (1p) Determinați regiunile de decizie, conform criteriului probabilității minime de eroare
 - c. (2p) Calculați probabilitatea alarmei false, pentru criteriul plauzibilității maxime
 - d. (1p) Care este decizia luată folosind criteriul riscului minim, dacă valorile costurilor sunt $C_{00} = 0$, $C_{01} = 10$, $C_{10} = 5$, $C_{11} = 0$?
- 3. Fie detecția unui semnal care poate fi de forma $s_1(t) = \cos(\frac{\pi}{2}t)$ (ipoteza H_1) sau $s_0(t) = 1$ (ipoteza H_0). Semnalul este afectat de zgomot Gaussian cu distribuția $\mathcal{N}(0, \sigma^2 = 3)$. La recepție se iau 3 eșantioane la momentele de timp $t_0 = 0$, $t_1 = 1$ și $t_2 = 2$, și se obțin valorile $r_0 = 0.3$, $r_1 = -0.2$ și $r_3 = 0.5$.
 - a. (2p) Care este decizia luată, conform criteriului Plauzibilității Maxime?
 - b. (2p) Dacă ar trebui să renunțăm la unul dintre momentele de eșantionare, la care ar fi cel mai indicat să renunțăm, la t_0 , t_1 sau t_2 ? Justificați.
- 4. (4p) Se recepționează un semnal de forma $r(t) = \underbrace{1 2 \cdot A \cdot t}_{s_{\Theta}(t)} + zgomot$, unde A este un parametru necunoscut. Zgomotul are distribuție Gaussiană $\mathcal{N}(0, \sigma^2 = 9)$. La recepție se iau trei eșantioane, la momentele $t_0 = 0, t_1 = 2, t_2 = 4$, valorile fiind $r_1 = 1.1, r_2 = 5.3$, $r_3 = 10$. Estimați parametrul A folosind estimarea de plauzibilitate maximă.

Teorie (18p)

- 1. (2p) Ce valoare are funcția de repartiție în punctele ∞ și $-\infty$?. Justificați
- 2. (2p) Ce înseamnă un proces aleator staționar în sens strict și în sens larg?
- 3. (2p) Indicați pe grafic care sunt **regiunile de decizie** în cazul criteriului **plauzibilității maxime**, pentru funcțiile de plauzibilitate de mai jos. Explicați în cuvinte ce ați indicat.

- 4. (2p) Dacă zgomotul care afectează un semnal **se dublează**, cum se modifică **raportul Semnal-Zgomot** SNR (justificați în cuvinte):
 - a. SNR crește
 - b. SNR scade
 - c. SNR rămâne constant
- 5. (4p) Fie cazul detecției unui semnal constant cu valoare 0 sau A, afectat de zgomot Gaussian, folosind un eșantion. Pornind de la expresia criteriului plauzibilității maxime

$$\frac{w(r|H_1)}{w(r|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

demonstrați că pragul T cu care se compară eșantionul are valoarea $T=\frac{A}{2}$

- 6. (2p) Explicați cum operează algoritmul k-NN (k- Nearest Neighbors) pentru a determina clasa căruia aparține un vector x.
- 7. (2p) Care este diferența între estimarea de plauzibilitate maximă și estimarea Bayesiană?
- 8. (2p) Distribuția **a posteriori** a unui parametru necunoscut Θ este funcția triunghiulară de mai jos.
 - a. Care este valoarea estimatorului MAP? Explicați.
 - b. Care este valoarea estimatorului EPMM? Explicați.

Notă: 30p pentru nota 10. 3p din oficiu. Timp disponibil: 2h