Programming Assignment #1

Submitted by:

Kapil Gautam - KXG180032

Vishwashri Sairam Venkadathiriappasamy - VXV180043

Problem: Implement a fixed-depth decision tree algorithm, that is, the input to the ID3 algorithm will include the training data and maximum depth of the tree to be learned.

Data Sets: The data sets are obtained from the UCI Repository and are collectively the MONK's Problem. The training and test files for the three problems are named monks-X.train and monks-X.test. There are six attributes/features (columns 2-7 in the raw files), and the class labels (column 1). There are 2 classes.

a. Learning Curves: For depth = 1.....10, learn decision trees and compute the average training and test errors on each of the three MONK's problems. Make three plots, one for each of the MONK's problem sets, plotting training and testing error curves together for each problem, with tree depth on the x-axis and error on the y-axis.

Computing testing and training error for

monks-1 dataset

Depth	Train Error	Test Error
1	26.61%	25.00%.
2	26.61%	25.00%.
3	8.87%	16.67%.
4	8.87%	16.67%.
5	8.06%	16.67%.
6	4.84%	11.11%.
7	3.23%	9.26%.
8	2.42%	9.26%.
9	1.61%	8.33%.
10	0.00%	7.41%.

Training vs Testing Error for monks-1 dataset

Computing testing and training error for **monks-2 dataset**

Depth	Train Error	Test Error
1	37.87%	32.87%.
2	36.09%	37.50%.
3	33.14%	33.80%.
4	30.18%	35.19%.
5	20.71%	30.32%.
6	9.47%	21.76%.
7	1.78%	15.28%.
8	0.00%	13.43%.
9	0.00%	13.43%.
10	0.00%	13.43%.

Training vs Testing Error for monks-2 dataset

Computing testing and training error for **monks-3 dataset**

		1
Depth	Train Error	Test Error
1	22.13%	19.44%.
2	6.56%	2.78%.
3	5.74%	5.56%.
4	4.10%	4.63%.
5	4.10%	10.19%.
6	1.64%	10.19%.
7	1.64%	10.19%.
8	0.82%	10.42%.
9	0.00%	10.19%.
10	0.00%	10.19%.

Training vs Testing Error for monks-3 dataset

b. Weak Learners: For monks-1, report the learned decision tree and the confusion matrix on the test set for depth = 1 and depth = 2. A confusion matrix is a table that is used to describe the performance of a classifier on a data set.

Actual Value | Positive | True | Positive | Positive | Positive | Positive | True | Positive | Negative | Positive | Negative | Positive | Negative | Neg

Figure 1: Confusion matrix for a binary classification problem.

Depth = 1

```
TREE
+-- [SPLIT: x4 = 1]
| +-- [LABEL = 1]
+-- [SPLIT: x4 = 1]
| +-- [LABEL = 0]
```

Train Error = 26.61%. Test Error = 25.00%.

Confusion Matrix:

Classifier Prediction

		Positive	Negativ
Actual	Positive	108	108
Value	Negative	0	216

Depth = 2

Train Error = 26.61%. Test Error = 25.00%.

Confusion Matrix:

Classifier Prediction

		Positive	Negative
Actual	Positive	108	108
Value	Negative	0	216

c. scikit-learn: For monks-1, use scikit-learns's default decision tree algorithm to learn a decision tree. Visualize the learned decision tree using graphviz. Report the visualized decision tree and the confusion matrix on the test set. Do not change the default parameters.

(In binary classification in sklearn, the count of true negatives is C[0][0], false negatives is C[1][0], true positives is C[1][1] and false positives is C[0][1].)

d. Other Data Sets: Repeat steps 2 and 3 with your "own" data set and report the confusion matrices.

1.) Mushroom dataset

Depth = 1

TREE +-- [SPLIT: x17 = 4] | +-- [LABEL = 1] +-- [SPLIT: x17 = 4] | +-- [LABEL = 0]

Train Error = 11.80%. Test Error = 12.65%.

Confusion Matrix:

Classifier Prediction

Positive Negative Actual | Positive 793 51 Value | Negative 206 981

Depth: 2

Train Error = 9.49%. Test Error = 10.14%.

Confusion Matrix:

Classifier Prediction

Positive Negative Actual | Positive 844 0 Value | Negative 206 981

Using sklearn default parameters TreeClassifier on mushroom dataset:

2.) Tic Tac Toe dataset

Depth: 1

TREE

+-- [SPLIT: x4 = 1] | +-- [LABEL = 0] +-- [SPLIT: x4 = 1] | +-- [LABEL = 1]

Train Error = 29.94%. Test Error = 30.42%.

Confusion Matrix:

Classifier Prediction

Positive Negative
Actual | Positive 120 37
Value | Negative 36 47

Depth: 2

TREE

Train Error = 29.94%. Test Error = 30.42%.

Confusion Matrix:

Classifier Prediction

Positive Negative Actual | Positive 120 37 Value | Negative 36 47

Using sklearn default parameter TreeClassifier on tic-tac-toe dataset:

(This is the full size sklearn tree with default parameter, but it is difficult to comprehend it here.)

Just for visualization purposes, modifying default parameter, max_depth of sklearn.TreeClassifier to 3

