CHAPTER 7

Cosets and Lagrange's Theorem

Properties of Cosets

DEFINITION (Coset of H in G).

Let G be a group and $H \subseteq G$. For all $a \in G$, the set $\{ah|h \in H\}$ is denoted by aH. Analogously, $Ha = \{ha|h \in H\}$ and $aHa^{-1} = \{aha^{-1}|h \in H\}$. When $H \leq G$, aH is called the <u>left coset of H in G containing a</u>, and Ha is called the <u>right coset of H in G containing a</u>. In this case the element a is called the <u>coset representative of aH or Ha</u>. |aH| and |Ha| are used to denote the number of elements in aH and Ha, respectively.

EXAMPLE. Consider the left cosets of

$$H = \{(1), (1\ 2)(34), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \le A_4$$

from the table below:

Table 5.1 The Alternating Group A_4 of Even Permutations of $\{1, 2, 3, 4\}$

(In this table, the permutations of A_4 are designated as $\alpha_1, \alpha_2, \ldots, \alpha_{12}$ and an entry k inside the table represents α_k . For example, $\alpha_3 \alpha_8 = \alpha_6$.)

. Sanoinsus	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9	α_{10}	α_{11}	α_{12}
$(1) = \alpha_1$	1	2	3	4	5	6	7	8	9	10	11	12
$(12)(34) = \alpha_2$	2	1	4	3	6	5	8	7	10	9	12	11
$(13)(24) = \alpha_3$	3	4	1	2	7	8	5	6	11	12	9	10
$(14)(23) = \alpha_4$	4	3	2	1	8	7	6	5	12	11	10	9
$(123) = \alpha_5$	5	8	6	7	9	12	10	11	1	4	2	3
$(243) = \alpha_6$	6	7	5	8	10	11	9	12	2	3	1	4
$(142) = \alpha_7$	7	6	8	5	11	10	12	9	3	2	4	1
$(134) = \alpha_8$	8	5	7	6	12	9	11	10	4	1	3	2
$(132) = \alpha_9$	9	11	12	10	1	3	4	2	5	7	8	6
$(143) = \alpha_{10}$	10	12	11	9	2	4	3	1	6	8	7	5
$(234) = \alpha_{11}$	11	9	10	12	3	1	2	4	7	5	6	8
$(124) = \alpha_{12}$	12	10	9	11	4	2	1	3	8	6	5	7

$$H = 1H = \alpha_1 H = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} = \alpha_2 H = \alpha_3 H = \alpha_4 H$$

 $\alpha_5 H = \{\alpha_5, \alpha_6, \alpha_7, \alpha_8\} = \alpha_6 H = \alpha_7 H = \alpha_8 H.$
 $\alpha_9 H = \{\alpha_9, \alpha_{10}, \alpha_{11}, \alpha_{12}\} = \alpha_{10} H, \alpha_{11} H, \alpha_{12} H.$
Also, for $k = 1, 2, ..., 12, \alpha_k H = H\alpha_k.$

When the group operation is addition, we use a + H and H + a instead of aH and Ha.

EXAMPLE. Let G be the group of vectors in the plane with addition. Let H be a subgroup which is a line through the origin, i.e.,

$$H = \{ t\mathbf{x} | \mathbf{t} \in \mathbb{R} \text{ and } ||\mathbf{x}|| = \mathbf{1} \}.$$

Then the left coset $\mathbf{v} + \mathbf{H} = \{\mathbf{v} + \mathbf{x} | \mathbf{x} \in \mathbf{H}\}$ and the right coset $H + \mathbf{v} = \{\mathbf{x} + \mathbf{v} | \mathbf{x} \in \mathbf{H}\}$ are the same line, and is parallel to H.

LEMMA (Properties of Cosets). Let $H \leq G$, and let $a, b \in G$. Then (1) $a \in aH$.

PROOF.
$$a = ae \in aH$$
.

(2) $aH = H \iff a \in H$. PROOF.

 (\Longrightarrow) Suppose aH=H. Then $a=ae\in aH=H$.

 (\Leftarrow) Now assume $a \in H$. Since H is closed, $aH \subseteq H$. Next assume $h \in H$ also, so $a^{-1}h \in H$ since $H \leq G$. Then

$$h = eh = (aa^{-1})h = a(a^{-1}h) \in aH,$$

so $H \subseteq aH$. By mutual inclusion, aH = H.

(3)
$$(ab)H = a(bH)$$
 and $H(ab) = (Ha)b$.

Proof.

Follows from the associative property of group multiplication.

(4)
$$aH = bH \iff a \in bH$$
.

PROOF.

$$(\Longrightarrow) aH = bH \Longrightarrow a = ae \in aH = bH.$$

$$(\Longleftrightarrow)a \in bH \Longrightarrow a = bh \text{ where } h \in H \Longrightarrow aH = (bh)H = b(hH) = bH$$

(5)
$$aH = bH$$
 or $aH \cap bH = \emptyset$.

PROOF.

Suppose $aH \cap bH \neq \emptyset$. Then $\exists x \in aH \cap bH \Longrightarrow \exists h_1, h_2 \in H \Longrightarrow x = ah_1$ and $x = bh_2$. Thus

$$a = xh_1^{-1} = bh_2h_1^{-1}$$
 and $aH = bh_2h_1^{-1}H = b(h_2h_1^{-1}H) = bH$ by (2).

(6)
$$aH = bH \iff a^{-1}b \in H$$

PROOF.

$$aH = bH \iff H = a^{-1}bH \stackrel{(2)}{\iff} a^{-1}b \in H.$$

$$(7) |aH| = |bH|.$$

Proof.

[Find a map $\alpha: aH \to bH$ that is 1–1 and onto]

Consider $\alpha: aH \to bH$ defined by $\alpha(ah) = bh$. This is clearly onto bH. Suppose $\alpha(ah_1) = \alpha(ah_2)$. Then $bh_1 = bh_2 \Longrightarrow h_1 = h_2$ by left cancellation $\Longrightarrow ah_1 = ah_2$, so α is 1–1. Since α provides a 1-0-1 correspondence between aH and bH, |aH| = |bH|.

$$(8) aH = Ha \iff H = aHa^{-1}.$$

Proof.

$$aH = Ha \iff (aH)a^{-1} = (Ha)a^{-1} = H(aa^{-1}) = H \iff aHa^{-1} = H.$$

 $(9) aH \le G \iff a \in H.$

PROOF.

$$(\Longrightarrow)$$
 If $aH \leq G$, $e \in ah \Longrightarrow aH \cap eH \neq \emptyset \stackrel{(5)}{\Longrightarrow} aH = eH = H \stackrel{(2)}{\Longrightarrow} a \in H$.
 (\Longleftrightarrow) If $a \in H$, $aH = H$ by (2), so $aH \leq G$ since $H \leq G$.

Note. Analogous results hold for right cosets.

NOTE. From (1), (5), and (7), the left (right) cosets of H partition G into equivalence classes under the relation

$$a \sim b \iff aH = bH \text{ (or } Ha = Hb).$$

Lagrange's Theorem and Consequences

Theorem (7.1 — Lagrange's Theorem: |H| Divides |G|). If G is a finite group and $H \leq G$, then |H|||G|. Moreover, the number of distinct left (right) cosets of H in G is $\frac{|G|}{|H|}$.

PROOF.

Let a_1H, a_2H, \ldots, a_rH denote the distinct left cosets of H in G. Then, for all $a \in G$, $aH = a_iH$ for some $i = 1, 2, \ldots, r$. By (1) of the Lemma, $a \in aH$. Thus

$$G = a_1 H \cup a_2 H \cup \cdots \cup a_r H.$$

By (5) of the Lemma, this union is disjoint, so

$$|G| = |a_1H| + |a_2H| + \dots + |a_rH| = r|H|$$

since
$$|a_i H| = |aH|$$
 for $i = 1, 2, ... r$.

DEFINITION. The <u>index</u> of a subgroup H in G is the number of distinct left cosets of H in G, and is denoted by |G:H|.

COROLLARY $(1-|G:H|=\frac{|G|}{|H|}.).$ If G is a finite group and $H\leq G,$ then $|G:H|=\frac{|G|}{|H|}.$

PROOF. Immediate consequence of Lagrange's Theorem.

COROLLARY (2— |a| Divides |G|). In a finite group, the order of each element divides the order of the group.

PROOF. For
$$a \in G$$
, $|a| = |\langle a \rangle|$, so $|a| ||G|$.

COROLLARY (3 — Groups of Prime Order are Cyclic). A group of prime order is cyclic.

PROOF.

Suppose G has prime order. Let
$$a \in G$$
, $a \neq e$. The $|\langle a \rangle| ||G|$ and $|\langle a \rangle| \neq 1$, so $|\langle a \rangle| = |G| \Longrightarrow \langle a \rangle = G$.

COROLLARY $(4 - a^{|G|} = e)$. Let G be a finite group and $a \in G$. Then $a^{|G|} = e$.

PROOF.

By Corollary 2,
$$|G|=|a|k$$
 for some $k\in\mathbb{N}$. Then
$$a^{|G|}=a^{|a|k}=(a^{|a|})^k=e^k=e.$$

COROLLARY (5 — Fermat's Little Theorem.). For all $a \in \mathbb{Z}$ and every prime p,

$$a^p \mod p = a \mod p$$
.

Proof.

By the division algorithm, a = pm + r where $0 \le r < p$. Thus $a \mod p = r$, so we need only show $r^p \mod p = r$. if r = 0, the result is clear, so

$$r \in U(p) = \{1, 2, \dots, p-1\}.$$

Then, by Corollary 4, $r^{p-1} \mod p = 1 \Longrightarrow r^p \mod p = r$.

EXAMPLE.

Table 5.1 The Alternating Group A_4 of Even Permutations of $\{1, 2, 3, 4\}$

(In this table, the permutations of A_4 are designated as $\alpha_1, \alpha_2, \ldots, \alpha_{12}$ and an entry k inside the table represents α_k . For example, $\alpha_3 \alpha_8 = \alpha_6$.)

anoimus.	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9	α_{10}	α_{11}	α_{12}
$(1) = \alpha_1$	1	2	3	4	5	6	7	8	9	10	11	12
$(12)(34) = \alpha_2$	2	1	4	3	6	5	8	7	10	9	12	11
$(13)(24) = \alpha_3$	3	4	1	2	7	8	5	6	11	12	9	10
$(14)(23) = \alpha_4$	4	3	2	1	8	7	6	5	12	11	10	9
$(123) = \alpha_5$	5	8	6	7	9	12	10	11	1	4	2	3
$(243) = \alpha_6$	6	7	5	8	10	11	9	12	2	3	1	4
$(142) = \alpha_7$	7	6	8	5	11	10	12	9	3	2	4	1
$(134) = \alpha_8$	8	5	7	6	12	9	11	10	4	1	3	2
$(132) = \alpha_9$	9	11	12	10	1	3	4	2	5	7	8	6
$(143) = \alpha_{10}$	10	12	11	9	2	4	3	1	6	8	7	5
$(234) = \alpha_{11}$	11	9	10	12	3	1	2	4	7	5	6	8
$(124) = \alpha_{12}$	12	10	9	11	4	2	1	3	8	6	5	7

In A_4 , there are 8 elements of order 3 (α_5 – α_{12}). Suppose $H \leq A_4$ with |H| = 6. Let $a \in A_4$ with |a| = 3. Since $|A_4 : H| = 2$, at most two of H, aH, and a^2H are distinct. If $a \in H$, $H = aH = a^2H$, a contradiction.

If $a \notin H$, then $A_4 = H \cup aH \Longrightarrow a^2 \in H$ or $a^2 \in aH$.

Now $a^2 \in H \Longrightarrow (a^2)^2 = a^4 = a \in H$, again a contradiction.

If $a^2 \in aH$, $a^2 = ah$ for some $h \in H \Longrightarrow a \in H$. Thus all 8 elemts of order 3 are in H, a group of order 6, a contradiction.

NOTE. This example means the converse of Lagrange's Theorem is not true.

Theorem (7.2 — $|HK| = \frac{|H||K|}{|H \cap K|}$). For two finite subgroups H and K of a group G, define the set $HK = \{hk \mid h \in H, k \in K\}$. Then $|HK| = \frac{|H||K|}{|H \cap K|}$.

Proof.

Although the set HK has |H||K| products, all not need be distinct. That is, we may have hk = h'k' where $h \neq h'$ and $k \neq k'$. To determine |HK|, we need to determine the extent to which this happens. For every $t \in H \cap K$, $hk = (ht)(t^{-1}k)$, so each group element in HK is represented by at least $|H \cap K|$ products in HK. But $hk = h'k' \Longrightarrow t = h^{-1}h' = kk'^{-1} \in H \cap K$, so h' = ht and $k' = t^{-1}k$. Thus each element in HK is represented by exactly $|H \cap K|$ products, and so $|HK| = \frac{|H||K|}{|H \cap K|}$.

PROBLEM (Page 158 # 41). Let G be a group of order 100 that has a subgroup H of order 25. Prove that every element of order 5 in G is in H.

SOLUTION.

Let
$$a \in G$$
 and $|a| = 5$. Then by Theorem 7.2 the set $\langle a \rangle H$ has exactly $\frac{5 \cdot |H|}{|\langle a \rangle \cap H|}$ elements and $|\langle a \rangle \cap H|$ divides $|\langle a \rangle| = 5 \Longrightarrow |\langle a \rangle \cap H| = 5 \Longrightarrow \langle a \rangle \cap H = \langle a \rangle \Longrightarrow a \in H$.

THEOREM (7.3 — Classification of Groups of Order 2p.). Let G be a group of order 2p where p is a prime greater than 2. Then $G \approx \mathbb{Z}_{2p}$ or $G \approx D_p$.

PROOF.

Assume G has no element of order 2p. [To show $G \approx D_p$.]

[Show G has an element of order p.] By Lagrange's Theorem, every nonidentity element must have order 2 or p. So assume every nonidentity element has order 2. Then, for all $a, b \in G$,

$$(ab) = (ab)^{-1} = b^{-1}a^{-1} = ba,$$

so G is Abelian. Thus, for $a, b \in G$, $a \neq e, b \neq e, \{e, a, b, ab\}$ is closed and so is a subgroup of G of order 4, contradicting Lagrange's Theorem. Thus G has an element of order p. Call it a.

[To show any element not in $\langle a \rangle$ has order 2.] Suppose $b \in G, b \notin \langle a \rangle$. By Lagrange's theorem and our assumption that G does not have an element of order of 2p, |b| = 2 or |b| = p. Because $|\langle a \rangle \cap \langle b \rangle|$ divides $|\langle a \rangle| = p$ and $|\langle a \rangle| = |\langle a \rangle| + |\langle |\langle a \rangle|$

Now $ab \notin \langle a \rangle \Longrightarrow |ab| = 2$ by the same argument as above. Then

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba^{-1}.$$

This relation completely determines the multiplication table for G. [For example,

$$a^{3}ba^{4} = a^{2}(ab)a^{4} = a^{2}(ba^{-1})a^{4} = a(ab)a^{3} =$$

$$a(ba^{-1})a^{3} = (ab)a^{2} = (ba^{-1})a^{2} = ba.$$

Thus all noncyclic groups of order 2p must be isomorphic to each other, and D_p is one such group.

Example. $S_3 \approx D_3$.

PROOF.
$$|S_3| = 6 = 2 \cdot 3$$
 and S_3 is not cyclic.

An Application of Cosets to Permutation Groups

DEFINITION (Stabilizer of a Point). Let G be a group of permutations of a set S. For each $i \in S$, let $\mathrm{stab}_G(i) = \{\phi \in G | \phi(i) = i\}$. We call $\mathrm{stab}_G(i)$ the stabilizer of i in G.

COROLLARY. $\operatorname{stab}_{G}(i)$ is a subgroup of G.

PROOF.

[Page 120 # 35] Let
$$\alpha, \beta \in \operatorname{stab}_G(i)$$
. Then $\alpha(i) = i$ and $\beta(i) = i$, so $(\alpha\beta)(i) = \alpha(\beta(i)) = \alpha(i) = i$,

so $\alpha\beta \in \operatorname{stab}_G(i)$. Also,

$$\alpha^{-1}(a(i)) = \alpha^{-1}(i) \Longrightarrow i = \alpha^{-1}(i),$$

so $\alpha^{-1} \in \operatorname{stab}_G(i)$.

Thus $\operatorname{stab}_G(i) \leq G$ by the two-step test.

DEFINITION (Orbit of a Point). Let G be a group of permutations of a set S. For each $i \in S$, let $\operatorname{orb}_G(s) = \{\phi(s) | \phi \in G\}$. The set $\operatorname{orb}_G(s)$ is a subset of S called the <u>orbit of s under G</u>. We use $|\operatorname{orb}_G(s)|$ to denote the number of elements in $\operatorname{orb}_G(s)$.

PROBLEM (Page 158 # 45).

Let

$$G = \{(1), (1\ 2)(3\ 4), (1\ 2\ 3\ 4)(5\ 6), (1\ 3)(2\ 4), (1\ 4\ 3\ 2)(5\ 6), (5\ 6)(1\ 3), (1\ 4)(2\ 3), (2\ 4)(5\ 6)\}$$

SOLUTION.

$$\operatorname{stab}_{G}(1) = \{(1), (2 \ 4)(5 \ 6)\}.$$

$$\operatorname{stab}_{G}(3) = \{(1), (2 \ 4)(5 \ 6)\}.$$

$$\operatorname{stab}_{G}(5) = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}.$$

$$orb_G(1) = \{1, 2, 3, 4\}.$$

$$orb_G(3) = \{1, 2, 3, 4\}.$$

$$orb_G(5) = \{5, 6\}.$$

Theorem (7.4 — Orbit-Stabilizer Theorem). Let G be a group of permutations of a set S. Then, for any $i \in S$, $|G| = |\operatorname{orb}_G(i)| \cdot |\operatorname{stab}_G(i)|$.

Proof.

By Lagange's Theorem, $\frac{|G|}{|\operatorname{stab}_G(i)|}$ is the number of distinct left cosets of $\operatorname{stab}_G(i)$ in G. [To show a 1–1 correspondence between these cosets and the elements of $\operatorname{orb}_G(i)$.]

Define

$$T: \{\phi \operatorname{stab}_G(i) | \phi \in G\} \to \operatorname{orb}_G(i) \text{ by } T(\phi \operatorname{stab}_G(i)) = \phi(i).$$

[To show T is well-defined, i.e., that $\alpha \operatorname{stab}_G(i) = \beta \operatorname{stab}_G(i) \Longrightarrow \alpha(i) = \beta(i)$ or that the result of the mapping depends on the coset and not on a particular representation of it.] Now,

$$\alpha \operatorname{stab}_{G}(i) = \beta \operatorname{stab}_{G}(i) \iff \operatorname{stab}_{G}(i) = \alpha^{-1}\beta \operatorname{stab}_{G}(i) \iff \alpha^{-1}\beta \in \operatorname{stab}_{G}(i) \iff \alpha^{-1}\beta(i) = i \iff \beta(i) = \alpha(i)$$

so T is well-defined and, from the reverse implications, T is 1-1.

[To show T is onto.] Let $j \in \operatorname{orb}_G(i)$. Then $\alpha(i) = j$ for some $\alpha \in G$, and $T(\alpha \operatorname{stab}_G(i)) = \alpha(i) = j$, so T is onto.

Thus
$$T$$
 is a 1–1 correspondence.

The Rotation Group of a Cube

Let G be the rotation group of a cube. Label the faces 1–6. Since each rotation must carry each face to exactly one other face, G is a group of permutations on $\{1, 2, 3, 4, 5, 6\}$. There is a central horizontal or vertical permutation that carries face 1 to any other face, so $|\operatorname{orb}_G(1)| = 6$. Also, there are 4 rotations $(0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ})$ about the line \bot to the face and passing through its center), so $|\operatorname{stab}_G(1)| = 4$. By Theorem 7.4,

$$|G| = |\operatorname{orb}_G(1)| \cdot |\operatorname{stab}_G(1)| = 6 \cdot 4 = 24.$$

THEOREM (The rotation Group of the Cube). The group of rotations of a cube is isomorphic to S_4 .

Proof.

Since $|G| = |S_4|$, we need only show that G is isomorphic to a subgroup of S_4 . Now a cube has 4 diagonals and any rotation induces a permutation of these diagonals. But we cannot just assume that different rotations correspond to different rotations.

$$\alpha = (1 \ 2 \ 3 \ 4)$$
 $\beta = (1 \ 4 \ 3 \ 2)$

We need to show all 24 permutations of the diagonals come from rotations. Numbering the diagonals as above, we see two perpendicular axes where 90° rotations give the permutations $\alpha = (1\ 2\ 3\ 4)$ and $\beta = (1\ 4\ 3\ 2)$. These induce an 8 element subgroup $\{\varepsilon, \alpha, \alpha^2, \alpha^3, \beta^2, \beta^2\alpha, \beta^2\alpha^2, \beta^2\alpha^3\}$ and the 3 element subgroup $\{\varepsilon, \alpha\beta, (\alpha\beta)^2\}$. Thus the rotations induce all 24 permutations since 24 = lcm(8, 3).

PROBLEM (Page 158 # 46). Prove that a group G of order 12 must have an element of order 2.

PROOF.

Let $a \in G$, $a \neq e$. By Lagrange's theorem, |a| = 12, 6, 4, 3, or 2.

If
$$|a| = 12$$
, $|a^6| = 2$. If $|a| = 6$, $|a^3| = 2$. If $|a| = 4$, $|a^2| = 2$.

Suppose all non-identity elements of G have order 3. But such elements come in pairs, e.g., if |a| = 3, $|a^2| = 3$. But there are 11 non-identity elements, a contradiction. Thus G has an element of order 2.

PROBLEM (Page 158 # 47). Show that in a group G of odd order, the equation $x^2 = a$ has a unique solution.

PROOF.

Suppose y is a solution also, i.e.,
$$y^2 = a \Longrightarrow x^2 = y^2$$
. Let $|G| = 2k + 1$. Then $x = xe = xx^{2k+1} = x^{2k+2} = (x^2)^{k+1} = (y^2)^{k+1} = y^{2k+2} = yy^{2k+1} = ye = y$.