

Faculté de Chimie 1ère Année Licence ST

Année universitaire 2015-2016

Examen final du module de Chimie I (durée 1h30) (Vague 1)

Exercice 1:2 pts (Radioactivité)

L'isotope radioactif du Cobalt $^{60}_{27}$ Co se désintègre en émettant un rayonnement β . A l'instant initial, son activité est de 7,805 10^{-6} Ci. Au bout de deux années, elle est de 6 10^{-6} Ci.

- 1°) Ecrire la réaction de désintégration nucléaire, en précisant la constitution du noyau formé
- 2°) Déterminer la constante radioactive λ du Cobalt.
- 3°) Calculer la masse de Cobalt, non désintégrée, au bout de deux ans d'activité.

Données: 1 année = 365 jours Masse du Coball $^{60}_{27}$ Co = 59,934 Nombre d'Avogadro = 6,023.10²³ 1 Ci (Curie) = 3,7.10¹⁰ d.p.s

Exercice 2:5 pts (Théorie de Bohr et principe de Heisenberg)

Une radiation, de longueur d'onde $\lambda = 5.7 \ 10^{-9}$ m, provoque l'ionisation d'un ion hydrogénoïde initialement à l'état fondamental.

- 1°) Calculer l'énergie d'ionisation de cet ion (en Joules puis en électron-Volt)
- 2°) Déduire la valeur de son numéro atomique Z ainsi que la charge portée par cet ion.
- 3°) Calculer la valeur du rayon de l'orbite électronique de cet ion pris dans son premier état excité.
- 4°) Calculer la vitesse de l'électron sur cette même orbite.
- 5°) Calculer l'incertitude sur la valeur du rayon (position) sachant que l'incertitude relative sur la vitesse ($\Delta v/v$) est de 0.1%; commenter le résultat.

Données:

Rayon de la première orbite de Bohr, $a_0 = 0.53 \, \text{Å}$ Vitesse de la lumière dans le vide, $c = 3.10^8 \, \text{m/s}$ Constante de Planck, $h = 6.62 \, 10^{-34} \, \text{J.s}$ Energie électronique à l'état fondamental de $H: E_1^H = -13.6 \, \text{eV}$. Masse de l'électron, $m = 9.1 \cdot 10^{-31} \, \text{Kg}$

Exercice 3:9 pts (Structure électronique, géométrie et moment dipolaire)

Considérons les éléments chimiques suivants : 80 ; 15P ; 16S ; 17Cl et 24Cr

- 1°) Donner pour chacun de ces éléments : la configuration électronique à l'état fondamental puis en déduire la période, le groupe et le sous groupe.
- 2°) En utilisant la théorie classique (Lewis et Gillespie dite VSEPR) et la théorie de l'hybridation, donner dans un tableau:
 - a) la structure de Lewis des 5 espèces chimiques ci-dessous et dont l'atome central est souligné.
 - b) la représentation de l'arrangement spatial des paires électroniques de la couche de valence (figure de répulsion) autour de l'atome central, la représentation de la géométrie des 5 espèces et l'état d'hybridation de l'atome central. ClO_2^-

Espèces:

 OCl_2 ; $COCl_2$;

NSCl

COS

- 3°) Le moment dipolaire de la liaison Cl-S dans la molécule SCl₂ vaut 1,24 10⁻³⁰ C.m. Sachant que la valeur de l'angle C1 - S - C1 est de 110° et que la longueur de la liaison C1 - S a pour valeur 1,35 Å
- a) représenter les moments dipolaires des liaisons Cl S ainsi que celui de la molécule
- b) calculer, en C.m et en Debye, la valeur du moment dipolaire de la molécule SCl₂
- c) déterminer le pourcentage du caractère ionique partiel de la liaison Cl-S.

Données: $1D (Debye) = 3,33 \cdot 10^{-30} C.m$: 7N

Exercice 4:4 pts (Théorie des Orbitales Moléculaires)

Considérons le système chimique diatomique CIO

- 1°) Sachant que la différence d'énergie \(\Delta Es-p\) est grande, représenter le diagramme énergétique de ClO puis donner sa configuration électronique.
- 2°) Déterminer, à partir du diagramme énergétique :
 - a) l'ordre de liaison.
 - b) la nature de chaque liaison ainsi que le nombre de doublets non liants.
 - c) la formule développée de ClO.
 - d) la propriété magnétique de ClO
- 3°) Comparer, en justifiant, les énergies de dissociation et les distances interatomiques des espèces chimiques suivantes: ClO-, ClO et ClO+

Exercice 1 (2 points)

1) $^{60}_{27}Co \rightarrow ^{0}_{-1}e + ^{60}_{28}X (0.5 \text{ pt})$ Le noyau de l'élément formé $^{60}_{28}X$ contient 28 protons et 32 neutrons (0.5 pt)

2)
$$N_t = N_0 \exp(-\lambda t) \rightarrow A_t = A_0 \exp(-\lambda t) \rightarrow \lambda t = \ln\left(\frac{A_0}{A_t}\right) \rightarrow \lambda = \frac{1}{t} \ln\left(\frac{A_0}{A_t}\right) = 4.17 \cdot 10^{-9} \, s^{-1} \, (0.5 \, \text{pt})$$

3)
$$\frac{A_t}{\lambda} = N_t = 5.3237 \cdot 10^{13} \text{ noyaux } \rightarrow m = \frac{M.N_t}{R} = 5.2975 \cdot 10^{-9} \text{ g (0.5 pt)}$$

Exercice 2 (5 points)

1) Energie d'ionisation $E_i = \frac{hc}{\lambda} = 3,4842 \ 10^{-17} J \ (0.5 \ pt) = 217,763 \ eV \ (0.5 \ pt)$

2)
$$E_i = E_1 - E_\infty = -E_H \frac{Z^2}{n^2} = 13.6 Z^2 (eV) = 217.763 eV \rightarrow Z = 4 (0.5 pt) et n = 3 + (0.25 pt)$$

3) ler état excité
$$\rightarrow$$
 n = 2 (0.5 pt), on a : $r = a_0 \frac{n^2}{z}$ (0.5 pt) = 0.53 $\frac{2^2}{4}$ = 0.53 Å (0.25 pt)

4) Postulat de Bohr: $mvr = nh/2\pi (0.5 pt) \rightarrow v = 4370 \text{ km/s} (0.5 pt)$

5)
$$\Delta p. \Delta x \geq \frac{h}{2\pi} (0.25 \text{ pt}) \rightarrow \text{m.} \Delta v. \Delta x \geq \frac{h}{2\pi} \rightarrow \Delta x \geq \frac{h}{2\pi m \Delta v} \rightarrow \Delta x \geq 265 \text{ Å}$$
 (0.25 pt)

ou alors $\Delta p. \Delta x \geq h \rightarrow \Delta x \geq 1664.6 \text{ Å}$

Conclusion: La vitesse est connue avec une bonne precision alors que la position ne l'est pas; ce qui est en accord avec le principe d'incertitude de Heisenberg. (0.5 pt)

Exercice 3 (9 points) 1) (0.5 x 5) pts

Elément	structure électronique	Période	Groupe ct sous groupe	
8O	[2 He]2s ² 2p ⁴	2	VIA	
15P	[10Ne]3s ² 3p ³	3	V_A	
16	[10Ne]3s ² 3p ⁴	3	$\overline{\mathrm{VI}_{\mathrm{A}}}$	
17 C]	$[_{10}Ne]3s^2 3p^5$	3	VIIA	
₂₄ Cr	[18 Ar]4s ¹ 3d ⁵	4	VI_B	

2) a) et b)

Espèce	Lewis	Arrangement spatial	Hybridation	Géométrie de la
Chimique	$(0.25 \times 5) \text{ pts}$	des paires de valence	de	molécule
		autour de l'atome	l'atome	(0.25 x 5) pts
		central	central	
		$(0.25 \times 5) \text{ pts}$	(0.25×5) pts	• (3)
$\mathbf{\underline{O}} ext{Cl}_2$	1 <u>ci</u> — <u>ō</u> — <u>ci</u> 1	CI	sp ³	Cl Cl Coudée ou en forme
		tétraédrique	and the second	de V
O <u>C</u> Cl ₂	10 (CI)	CI CI Triangulaire ou	sp ²	CI CI
		Trigonale		Trigonale
S <u>N</u> CI	IS CIL	S CI Friangulaire ou Trigonale	sp ²	S CI Coudée ou en forme de V
o <u>c</u> s	\$=c=0 \$=c-0 \$=c-0	S —— C —— O	sp	S —— C —— O droite ou haltère
[OCl2]		tétraédrique	sp ³	Coudée ou en forme de V

10 - Export AX2 Ez

ou

3)

(0.5 pt)

Cos (55°) =
$$\frac{\mu_r}{2\mu_0}$$
 $\rightarrow |\mu_T| = 2 |\mu_{SCl}| |\cos(55°) = 1,422 \cdot 10^{-30} \ C.m$ (0.5 pt)
Comme $\mu_{exp} = \delta.d \rightarrow \delta = 0,09185 \cdot 10^{-19} C$
et % ionique = $\frac{|\mu_{exp}|}{|\mu_{theo}|} \times 100$ avec $|\mu_{exp}| = \mu_{SCl}|$ (0.25 pt)
alors % ionique = $\frac{\delta.d}{e \ d} \times 100 \rightarrow$ % ionique = 5,74 % (0.25 pt)

Exercice 4 (4 points)

0,5 pt

C10:
$$(\sigma_s)^2 (\sigma_s^*)^2 (\sigma_z)^2 (\pi_x^2; \pi_y^2) (\pi_x^{*1}; \pi_y^{*2})$$
 (0.25 pt)

a) OL =
$$\frac{\sum e^{i} - \sum e^{*}}{2}$$
 = $\frac{8-5}{2}$ = 1.5 (0.5 pt)

a) OL =
$$\frac{2e^{\sigma} - 2e^{\sigma}}{2}$$
 = $\frac{3}{2}$ = 1.5 (0.5 pt)
b) OL_{\sigma} = $\frac{\sum e_{\sigma}^{1} - \sum e_{\sigma}^{*}}{2}$ = $\frac{4-2}{2}$ = 1 liaison de type σ

$$OL(\pi_x) = \frac{\sum e_{\pi x}^l + \sum e_{\pi x}}{2} = \frac{2-1}{2} = 0.5$$
 liaison de type π_x

(0.25 pt)

$$OL(\pi_v) = \frac{\sum e_{ny}^l - \sum e_{ny}^l}{2} = \frac{2-2}{2} = 0$$
 liaison de type

(0.25 pt)

OL(
$$\pi_y$$
) = $\frac{\sum e_{ny}^l - \sum e_{ny}^l}{2} = \frac{2-2}{2} = 0$ liaison de type π_y
DNL = $\frac{\sum e_i externes - \sum e_i de \ liaison}{2} = \frac{13-3}{2} = 5$

nombre de DNL = 5 (0.25 pt)

Au total $(1\sigma + 0.5\pi) + 5$ DNL

rai $(0.5 \pi) + 5 DNL$ Formule développée : 1 Cl(0.5 pt)

d) Présence d'un électron célibataire: le système chimique est paramagnétique (0.5 pt)

3) Plus l'ordre de liaison est important plus la liaison est forte et courte (0.25 pt)

1420 400 2200	ordre de liaison
composé	orare ae naison
ClO-	1
ClO	1,5
ClO ⁺	2

 $E_{dissociation}$ $ClO^{+} > E_{dissociation}$ $ClO^{-} > E_{dissociation}$ ClO^{-} (0.25 pt)

d(ClO) < d (ClO') (0.25 pt) Distance interatomique: d(ClO⁺) <

Faculté de Chimie 1ère Année Licence ST

Année universitaire 2015-2016

Examen final du module de Chimie I (durée 1h30) (Vague 2)

Exercice Nº1: 1.5pts (Radioactivité)

Une source radioactive, contenant du Césium 137 $\binom{137}{55}$ Cs), présente initialement une activité de 3,24 10^{12} Bq. Sachant que le Césium 137 émet, lors de sa désintégration, un rayonnement β et que sa période radioactive est de 30,2 années :

- 1º/ Ecrire la réaction correspondant à sa désintégration.
- 2º/ Calculer la masse de l'isotope ¹³⁷Cs contenue dans la source à l'instant initial.
- 3º/ Déterminer le nombre de noyaux formés, après désintégration du Césium, au bout de 3 périodes.

Données: Masse de
$$^{137}_{55}$$
Cs = 136,9 ; $N = 6,023 \ 10^{23}$; $1Bq$ (Becquerel) = 1dps 1 année = 365 jours

Exercice Nº2: 4.5 pts (Théorie de Bohr)

La transition électronique à partir de l'état fondamental vers le troisième état excité d'un ion hydrogénoïde ${}_{Z}X^{n+}$ a mis en jeu une énergie égale à 5,1 10^{-17} Joules.

- 1°/ Déterminer le numéro atomique Z puis en déduire la notation symbolique $({}_{Z}X^{n+})$ de cet ion hydrogénoïde.
- 2°/ Calculer le rayon de l'orbite, correspondant au 3^{ème} état excité, ainsi que la vitesse de l'électron gravitant sur cette orbite.
- 3°/ Quelle serait, selon l'hypothèse de De Broglie, l'onde associée à cet électron?
- 4º/ Calculer la fréquence du rayonnement qui provoquerait l'ionisation de cet ion hydrogénoïde pris dans son troisième état excité.

Données:
$$h = 6.62 \ 10^{-34} \ J.s$$
; $m_{\ell} = 9.1 \ 10^{-31} \ Kg$; $a_{\theta} = r_{1}^{H} = 0.53 \ Å$; $E_{1}^{H} = -13.6 \ eV$
 $1 \ eV = 1.6 \ 10^{-19} \ J$

Exercice N°3: 4.75 pts (Structure électronique et propriétés)

Soient les éléments chimiques suivants: 80 9F 16S 30Zn 34Se

1º/ Ecrire dans un tableau : la structure électronique à l'état fondamental de ces atomes, en y précisant leur position dans le tableau périodique (période, groupe et sous groupe).

2º/ Y a-t-il parmi eux des éléments de transition et des halogènes ? Justifier

4º/ Attribuer, en justifiant, à chacun de ces éléments sa valeur d'électronégativité prise parmi les valeurs ci-dessous :

Electronégativités: 2,58 3,98 1,65 2,55 3,44

5°/Quel ion formera préférentiellement chacun des éléments chimiques suivants :

₉F ₃₀Zn et ₃₄Se. Justifier.

Exercice N°4: 9.25 pts (liaison chimique)

Soient les molécules et ion dont les formules brutes sont les suivantes :

 H_2 Se O_4 Se O_3^{2-} Se O_3 et Se O_4

1°/ En utilisant la théorie classique (Lewis et Gillespie dite VSEPR) et la théorie de l'hybridation, donner dans un tableau:

- a) la structure de Lewis des 5 espèces ci-dessus et dont l'atome central est souligné.
- b) la représentation de l'arrangement spatial des paires électroniques de la couche de valence (figure de répulsion) autour de l'atome central, la représentation de la géométrie des 5 espèces et l'état d'hybridation de l'atome central (SeF₄ n'est pas concernée).
- 2°/ En utilisant la théorie des orbitales moléculaires (OM) :
 - a) Représenter le diagramme énergétique des OM de la molécule SO, sachant que ΔE_{ns-np} est importante puis écrire sa configuration électronique.
 - b) Préciser le nombre et la nature des liaisons. En déduire la formule développée de SO, en y figurant clairement les doublets non liants, puis la comparer à celle déduite de la théorie de Lewis et conclure.
 - c) Ecrire la structure électronique des ions moléculaires SO²⁻ et SO²⁺
 - d) Comparer la stabilité des espèces suivantes : SO, SO²⁻ et SO²⁺

Exercice Nº1 (1,5pts)

$$1^{\circ}/_{55}^{137}Cs \longrightarrow _{56}^{137}X + _{-1}^{0}e \quad 0.25$$

$$2^{\circ}/A_0 = \lambda N_0 \implies A_0 = \lambda \frac{m_0}{M}N \implies m_0 = \frac{A_0 \times T \times M}{N \ln 2} \implies m_0 = 1,016g$$

$$3^{\circ}/t = 3T$$
 $N_X = N_0 - N(t)$ $\Rightarrow N_X = N_0 - N_0 \exp(-\lambda t)$ $\Rightarrow N_X = \frac{m_0}{M} N[1 - \exp(-3Ln2)]$ 0.5

Nombre de noyaux de $^{137}_{56}$ X formés au bout de 3T : $N_X = 38,46 \cdot 10^{20}$

Ou bien: $N_X = N_0 - \frac{N_0}{2^3}$ \Rightarrow $N_X = 38,46 \cdot 10^{20}$ (avec $N_0 = 43,96 \cdot 10^{20}$)

Exercice N°2 (4,5 pts)

1°/ Transition électronique : $n_i = 1$ $n_f = 4$ (3ème état excité) 0,25

$$\Delta E_{1-4} = E_{1}^{H} Z^{2} \left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \right) \implies Z^{2} = \frac{\Delta E_{1-4}}{E_{1}^{H} \left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \right)} \qquad \boxed{0,5} \qquad Z = 5 \implies \quad \mathbf{n}^{+} = \mathbf{Z} - 1 \implies \mathbf{n}^{+} = +4 \qquad \boxed{2 \times 0,25}$$

D'où : Notation symbolique de l'hydrogénoïde : $_5X^{4+} = _5B^{4+}$ 0,25

$$2^{\circ}/* r_4^{\mathsf{X}} = r_1^{\mathsf{H}} \frac{n^2}{z} = a_0 \frac{n^2}{z}$$
 0,5 \Longrightarrow Rayon de la 4^{ème} orbite de l'ion (5 X^{4+}): $r_4^{\mathsf{X}} = 1,69 \, \text{Å}$ 0,25

*Quantification du moment cinétique : $m_e v_4 r_4 = n \frac{h}{2\pi} \Longrightarrow v_4 = \frac{n h}{2\pi m_e r_4}$ [0,5] $\Longrightarrow v_4 = 2,7$ 10⁶ m/s [0,25]

3°/ Onde Broglienne:
$$\lambda = \frac{h}{mv}$$
 0,5 $\Rightarrow \lambda = 2,6 \cdot 10^{-10} \Rightarrow \lambda = 2,6 \text{ Å}$ 0,25

4°/ Energie d'ionisation à partir de $n_i = 4$ (3ème état excité) : $E_i = \Delta E_4$ $_{\infty} = E_{\infty} - E_4$ \Longrightarrow

$$E_{i} = E_{1}^{H} Z^{2} \left(\frac{1}{\infty} - \frac{1}{4^{2}}\right) = hv$$
 $\Rightarrow v = \frac{Z^{2} E_{1}^{H} \left(\frac{1}{\infty} - \frac{1}{16}\right)}{h}$ $\Rightarrow v = 5,13 \ 10^{15} \ Hz$ $\boxed{0,25}$

Exercice N°3_(4,75 pts)

Eléments chimiques	Structure électronique	Période	Groupe	Sous-groupe
QQ	$[_{2}\text{He}] 2s^{2}2p^{4}$	2	VI	Α
₉ F	$[_{2}\text{He}] 2s^{2}2p^{5}$	2	VII	Α
16S	$[_{10}\text{Ne}] 3s^2 3p^4$	3	VI	A
₂₀ Zn	$[_{18}Ar] 4s^2 3d^{10}$	4	II	В
34Se	$[_{18}Ar] 4s^2 3d^{10}4p^4$	4	VI	A

3°/*Pas d'éléments présentant une sous-couche « d » insaturée ⇒ Pas d'éléments de transition 0,25

* ₉F est un halogène car il appartient au groupe VII_A **0,25**

4°/1^{er} classement selon n (multiplicité de couches): n
$$\rightarrow r \rightarrow r \rightarrow \chi$$
 0,25

$$r(_8O,_9F) < r(_{16}S) < r(_{30}Zn,_{34}Se) \implies \chi(_{30}Zn,_{34}Se) < \chi(_{16}S) < \chi(_8O,_9F)$$

$$2^{emc}$$
 classement : n= cste ; Zeff \Rightarrow $F_{attr} \Rightarrow r \Rightarrow \chi \uparrow$ 0.25

D'où:
$$\chi_{30}Zn < \chi_{34}Se) < \chi_{16}S) < \chi_{8}O < 9F$$

1,65 2,55 2,58 3,44 3,98

5°/
$$_9F \rightarrow _9F \equiv [_{10}Ne]$$
 (ion stable car structure stable d'un gaz rare)

 $_{30}Zn \rightarrow _{30}Zn^{2+} \equiv [_{18}Ar] 3d^{10}$ (ion stable car structure externe en d¹⁰)

 $_{34}Se \rightarrow _{34}Se^{2-} \equiv [_{36}Kr]$ (ion stable car structure stable d'un gaz rare)

0,25

0,25

Exercice N°4 (9,25 pts)

Espèce chimique	Configuration de Lewis	AX _m E _n	m + n	Figure de répulsion	Géométrie	Etat d'hybri- dation de Se
H ₂ SeO ₄	0,25	AX4	4	Se '''' 0	Se Se O	sp ³
	O Sc — O — H Ou					
*	O			Tétraédrique	Pyramidale	
<u>Se</u> O ₃ ²⁻	$\begin{bmatrix} \overline{0} - \overline{Se} = 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0,25 \end{bmatrix}$	AX ₃ E	4	Se _{IIIO}	Se	sp ³
	Ou			0,25	0,25	0,25

	$\begin{bmatrix} \overline{O} & \overline{SC} & \overline{O} \\ \overline{O} & \overline{SC} & \overline{O} \end{bmatrix}^{2}$					
SeS ₂	\$ = \$\overline{s} \\ \sigma = \overline{s} \\ \sigma = \overline{s} \\ \overline{s} = \overl	AX₂E	3	Trigonale 0,25	Angulaire ou coudée	sp ²
	0,25			`s	0,25	0,25
SeO3	0,25 ○ Se O O O O O O O O O O O O O O O O O O	AX ₃	3	Trigonale O Se O 0,25	Trigonale O Se O 0,25	sp ²
SeF4	0,25 F	AX ₄ E	5	Bipyramide à base triangulaire F Se F	En forme de Bascule Ou tétraèdre déformé F Se F 0,25	sp3d non comptabilisé

2°/ Diagramme énergétique des OM de SO : ΔE_{s-p} importante \Longrightarrow pas d'intéraction σ_s^* - σ_z^l

b) *Nombre de liaisons :
$$OL = \frac{\sum e^l - \sum e^*}{2} = \frac{8-4}{2} = 2 \text{ liaisons}$$
 0,25

*Nature des liaisons :

$$OL_{\sigma} = \frac{\sum e_{\sigma}^{l} - \sum e_{\sigma}^{\star}}{2} = \frac{4-2}{2} = 1 \text{ liaison de type } \sigma$$

$$OL(\pi_x) = \frac{\sum e_{\pi x}^l - \sum e_{\pi x}^*}{2} = \frac{4-1}{2} = 0.5 \text{ liaison de type } \pi_x$$

$$OL(\pi_y) = \frac{\sum e_{\pi y}^l - \sum e_{\pi y}^*}{2} = \frac{4-1}{2} = 0.5$$
 liaison de type π_y

 $OL(\pi_y) = \frac{\sum e_{\pi y}^l - \sum e_{\pi y}^*}{2} = \frac{4-1}{2} = 0,5 \text{ liaison de type } \pi_y$ $DNL = \frac{\sum e.externes - \sum \acute{e} \ de \ liaison}{2} = \frac{12-4}{2} = 4 \text{ doublets non liants (DNL) qu'on peut \acute{e}galement} \qquad \boxed{0,25}$ retrouver sur le diagramme des OM

*Formule développée :

$$\sqrt{s} \frac{\sigma}{\pi_y}$$

Le schéma de Lewis ne prévoit pas le paramagnétisme de la molécule SO 0,5

c) Structures électroniques :

SO²⁻:
$$(\sigma_s^l)^2 (\sigma_s^*)^2 (\sigma_z^l)^2 (\pi_x^l \pi_y^l)^4 (\pi_x^* \pi_y^*)^4$$
SO²⁺: $(\sigma_s^l)^2 (\sigma_s^*)^2 (\sigma_z^l)^2 (\pi_x^l \pi_y^l)^4$
0,25

d) OL_(SO2+) =
$$\frac{\sum e^l - \sum e^*}{2} = \frac{8-2}{2} = 3$$
 liaisons 0.25

OL
$$_{(SO2-)} = \frac{\sum e^l - \sum e^*}{2} = \frac{8-6}{2} = 1$$
 liaison

Lorsque l'ordre de liaison augmente (nombre de liaisons augmente) ⇒ la distance internucléaire diminue 👄 l'énergie de dissociation augmente 🖈 la stabilité de la molécule 0,25 augmente.

Stabilité de SO²⁺> Stabilité de SO > Stabilité de SO²⁻ D'où: 0,25