(12) UK Patent Application (19) GB (11) 2 099 255 A

- (21) Application No 8114941
- (22) Date of filing 15 May 1981
- (43) Application published 1 Dec 1982
- (51) INT CL³
 G01S 5/16
 H04N 7/18
- (52) Domestic classification H4D 771 775 782
- (56) Documents cited
 GB 1583371
 GB 1348908
 GB 1231998
 GB 1220071
 GB 1181061
 GB A 2065408
- (58) Field of search H4D H4F
- (71) Applicants
 United Kingdom Atomic
 Energy Authority,
 11 Charles II Street,
 London SW1Y 4QP.
- (72) Inventors
 Michael Harold Brown,
 Jack Gordon Harrison.

(74) Agents
United Kingdom Atomic
Energy Authority,
John Edward Alderman,
Patents Branch,
11 Charles II Street.

London SW1Y 4QP.

- (54) A system and a method f r detecting the position of an object
- (57) The position of an object 12 e.g. a manipulator, in an enclosure 10 is detected by two video cameras 14, 16 from which signals representative of images in the cameras 14, 16 are supplied to a mini-comuter (30). The minicomputer (30) scans the signals to detect the position of the object 12 in the signals, and relates this position to the spatial coordinates of the object 12 in the enclosure 10. Means are provided for controlling the movement of the object 12 within the enclosure, which may be a hostile environment e.g. radio-active.

099 255

/3,

3,

i) E

Fig.3.

55

60

SPECIFICATION

digitiser 26 or 28.

A system and a method for detecting the position of an object

5 This invention relates to a system and to a method for detecting the position of an object, and in particular to detection by non-contact means of a movable object. When an object such as a crane or a manipulator is sited in a hostile environment, an operator is usually separated from the object by a physical barrier, for example, a biological shield of a radioactive enclosure. Direct viewing of the object by the operator in such circumstances is necessarily restricted, and in some 10 instances reliance has to be placed on a closed circuit television viewing system. However, with such a 10 system which provides a two-dimensional image of the scene being screened, the lack of stereoscopic vision hinders accurate positioning of the object. The invention therefore in a first aspect provides a system for detecting the position of a movable object in an environment, the system comprising at least two camera means for viewing the environment, means for 15 transmitting from each said camera means signals representative of an image in each said camera means, 15 and control means, said control means including means for receiving said signals and for scanning the signals to identify the position of the object in said signals and means for deducing the spatial coordinates of said position with respect to said environment. The control means may include means for controlling the movement of the object in the environment, and 20 each said camera means may be angularly displaceable, preferably under the control of the control means, 20 about mutually perpendicular axes. Advantageously, indicium means in the form of targets or patterns uniquely coded are attachable to said object, and each said camera means may include zoom lens means controllable from the control means for improving the resolution of the indicium means. Advantageously, the movements of the object may be controlled by the control means, for example to 25 move the object to a selected position or to avoid intrusion of the object into prohibited portions of the environment. The coordinates may be in a horizontal plane and/or in a vertical plane, and conveniently the coordinates may be displayed on read-out means connectable to the control means. The camera means may be disposed at the same side of the environment or at adjacent sides thereof, for 30 example to provide orthogonal viewing of the environment, and the transmitting means may include digitiser means for digitising the representative signals from the camera means. The invention also includes a method of detecting the position of a movable object in an environment, the method comprising, viewing the environment with two spaced apart camera means, transmitting from the 35 camera means signals representative of images in each said camera means, scanning said signals to identify the position of the object in said signals, and deducing the spatial coordinates of the object from said The method desirably includes panning and tilting the camera means, and preferably includes, controlling the movement of the object so as to move the object to a selected position in the environment, said 40 movement being controlled in a manner to avoid the object moving through prohibited portions in the 40 environment. The invention will now be further described by way of example only with reference to the accompanying drawings, in which:-Figure 1 shows a perspective diagrammatic representation of an enclosure; Figure 2 shows schematically a system for detecting the position of an object in the enclosure of Figure 1; 45 Figure 2a shows a modification of the system of Figure 2; Figure 3 shows diagrammatically part of the system of Figure 2; and Figure 4 shows diagrammatically a modification of part of the system of Figure 2a. In the above Figures, like parts have like numerals. Referring now to Figure 1, an enclosure 10 is shown in which an object 12 is disposed. Two video camera 50 assemblies 14, 16 respectively are located at mutually perpendicular vertical sides 18, 19 of the enclosure 10, and two indicia 21, 23 are attached to the object 12 such that the indicium 21 can be viewed by the camera assembly 14 and the indicium 23 viewed by the camera assembly 16. The object 12 is movable in mutually perpendicular horizontal 'x,y' directions parallel to the sides 19, 18 respectively and in a vertical 'z' direction.

In operation, each camera assembly 14, 16 transmits to the respective digitiser 26, 28 a video signal representative of the optical image projected in the camera assembly 14, 16, and a digital representation of the video signal is transmitted by the respective digitisers 26, 28 to the mini-computer 30. The mini-computer 65

television picture screen 36 can be connected between the respective camera assembly 14, 16 and the

Referring now to Figure 2, a schematic arrangement of a system 25 is shown which includes the camera

respectively, and a control means in the form of a mini-computer 30 where digitised video signals from the digitisers 26, 28 are received. The mini-computer 30 is connected to an X,Y,Z coordinate read-out unit 32, and to an object drive unit 34 for moving the object 12 to a selected position having coordinates x₁, y₁, z₁ within 60 the enclosure 10. When a visual display is required of the image projected in each camera assembly 14, 16, a

assemblies 14, 16, digitisers 26, 28 for receiving video signals from the camera assemblies 14, 16

5

10

15

20

25

30

35

60

30 is programmed to scan the digitised signals received from the digitisers 26, 28 and identify the indicia 21, 23, from which, knowing the focal lengths of the camera assemblies 14, 16, the x,y,z coordinates of the object 12 can be computed and displayed on the read-out unit 32. When the focal lengths of the camera assemblies 14, 16 are variable, appropriate control thereof from the mini-computer 30 and feedback from the camera assmblies 14, 16 to the mini-computer 30 may be provided. If desired, control signals can be supplied from the mini-computer 30 to the object drive unit 34 to control the x,y,z movements of the object 12 and move the object 12 to a selected x,y,z position.

The relationship of the object 12 to the camera assemblies 14, 16 is shown diagrammatically in Figure 3 to which reference is made. In Figure 3, each camera assembly 14, 16 (shown only by lines representing the lens and focal planes thereof) is the same distance 'L' from a point 'O' at the intersection of the principal axes of the camera assemblies 14, 16. Light rays 40, 42 (shown as broken lines) between the object 12 and the camera assemblies 14, 16 respectively impinge on the respective focal planes at distances Δx or Δy from the principal axes of the camera assemblies 14, 16, these distances Δx, Δy being deduced by the mini-computer 30 from the digitised video signals it receives from the digitisers 26, 28.

For camera assembly 14 the equation of the light ray 40 is represented by:

$$x = \frac{-\Delta x}{f} (y+L),$$

20 and for camera assembly 16 the equation of the light ray 42 is represented by:

$$y = \Delta y (x-L),$$

 25 from which the coordinates (x,y) of the object 12 are:

$$x = \frac{L (\Delta x, \Delta y - \Delta xf)}{\Delta x \Delta y + f^2}$$

30

15

$$y = \frac{-L (\Delta x \Delta y + \Delta y f)}{\Delta x \Delta y + f^2}$$

The value of the 'z' coordinate of the object 12 may be deduced by the mini-computer 30 in a similar manner to that aforedescribed when the x,y coordinates of the object 12 are known, from the corresponding distance Δz of either of the light rays 40, 42 on the focal plane of the respective camera assembly 14, 16, and the distance of the camera assembly 14, 16 from the object 12.

The indicium 21 is conveniently provided by a unique coded target or pattern, for example stripes, that can be identified by the mini-computer 30.

When the fields of view of the camera assemblies 14, 16 of Figures 1 to 3 are relatively limited, the camera assemblies 14, 16 may be pivotally mounted so as to pan and tilt about respective vertical and horizontal axes, appropriate corrections being made in the computation of the position of the object 12 by the mini-computer 30, with signals related to the horizontal and vertical angular positions of the camera assemblies 14, 16 being supplied from the camera assemblies 14, 16 to the mini-computer 30 as shown schematically in Figure 2a to which reference is made. In Figure 2a, a system 25a is shown which in most

schematically in Figure 2a to which reference is made. In Figure 2a, a system 25a is shown which in most respects is identical to the system 25 of Figure 2, but the horizontal and vertical angular positions of camera assemblies 14, 16 of Figure 2a are controlled from a mini-computer 30, and in order to increase the accuracy of resolution of the indicia 21, 23 (not shown) a zoom lens is incorporated in each camera assembly 14, 16.

Each zoom lens is controlled by the mini-computer 30 so as to increase the magnification of the zoom lens once the indicium 21 or 23 has ben located by the camera assembly 14, 16 whilst maintaining the indicium 21

once the indicium 21 or 23 has ben located by the camera assembly 14, 16 whilst maintaining the indicium 21 or 23 within the field of view of the camera assembly 14, 16 by appropriate adjustment of the angular positions of the camera assembly 14, 16.

It is not necessary for the camera assemblies 14, 16 to be disposed at perpendicular sides of an enclosure, and may for example be disposed at the same side of an enclosure as shown diagrammatically in Figure 4,

55 with the angular positions of the camera assemblies 14, 16 being adjustable as in the arrangement described 55 in Figure 2a.

In Figure 4, as in Figure 3, each camera assembly 14, 16 is shown only by lines representing the lens and the focal planes thereof, and principal axes 70, 72 of the camera assemblies 14, 16 respectively, having coordinates x₁y₁ and x₃,y₃ at the respective lens of the camera assemblies 14, 16, intersect at a point '0' at angles θ and Ø respectively with a 'y' axis through '0'. Light rays 74, 76 betw en an object 12 and the respective camera assemblies 14, 16 impinge on the focal planes of the camera assemblies 14, 16 at coordinates x₂,y₂ and x₄,y₄ respectively.

5

10

15

20

25

30

40

50

55

10

20

The equation of the light ray 74 is found by the solution of simultaneous equations:

$$mx_1 + C = y_1$$

$$mx_2 + C = y_2$$

5 from which

and

 $m = \underbrace{\frac{y_1 - y_2}{x_2 - x_2}}_{f_1 \sin \theta + d_1 \cos \theta} = \underbrace{\frac{f_1 \cos \theta - d_1 \sin \theta}{f_1 \sin \theta + d_1 \cos \theta}}_{f_2 \sin \theta + d_3 \cos \theta}$

and
$$c = \frac{x_1y_2 - x_2y_1}{x_1 - x_2} = \frac{-Pd_1}{f_1 \sin\theta + d_1 \cos\theta}$$

Thus the general equation of light ray 74 is:

$$y = \frac{1}{f_1 \sin\theta + d_1 \cos\theta} ((f_1 \cos\theta - d_1 \sin\theta)x - Pd_1)$$
 (1)

In a similar manner the general equation of the light ray 76 may be derived as:

$$y = -1 \qquad (f_2 \cos \phi - d_2 \sin \phi)x + Pd_2)$$

$$f_2 \sin \phi + d_2 \cos \phi$$
(2)

At the intersection of the light rays 74, 76 at the object 12 the solution of the equations (1) and (2) above by the mini-computer 30 provides the 'x,y' coordinates of the object 12, and once these 'x,y' coordinates are known, the 'z' coordinate of the object 12 can be calculated from the vertical angle of the camera assembly 14 or 16 and the calculated distance from the object 12 to the camera assembly 14, 16.

As the focal planes of the camera assemblies 14, 16 in the arrangement Figure 4 would not be parallel to the respective indicium 21 or 23 when used on the object 12, the unique coding of the indicium 21 or 23 might not be preserved on the focal planes. However, knowing θ and d_1 at camera assembly 14, and ϕ and d_2 at camera assembly 16, appropriate compensation can be made by the mini-computer 30 to allow for the angular disposition of these focal planes.

When a charge-coupled television camera tube is included in the camera assembly 14, 16, the use of a digitiser 26, 28 between the camera assembly 14, 16 and the mini-computer 30 may be dispensed with.

In order to avoid the object 12 striking obstructions in the enclosure 10 of Figure 1, the mini-computer 30 of Figures 2 and 2a may be programmed with the coordinates of regions of the enclosure 10 to which movement of the object 12 is prohibited, the object 12 being moved under the control of the mini-computer to avoid these areas.

It will be appreciated that the mini-computer 30 of Figures 2 and 2a may be replaced with a dedicated micro-computer, or with some other alternative control means.

CLAIMS

45
1. A system for detecting the position of a movable object in an environment, the system comprising, at

A system for detecting the position of a movable object in an environment, the system comprising, at least two camera means for viewing the environment, means for transmitting from each said camera means signals representative of an image in each said camera means, and control means, said control means including means for receiving said signals and for scanning the signals to identify the position of the object in said signals and means for deducing the spatial coordinates of said position with respect to said environment.

2. A system as claimed in Claim 1, wherein the control means includes means for controlling the movement of the object in the environment in relation to said representative signals.

3. A system as claimed in Claim 2, wherein each said camera means is angularly displaceable about 55 mutually perpendicular axes.

4. A system as claimed in Claim 3, wherein the angular displacement of each said camera means is controllable by the control means.

A system as claimed in Claim 4, wherein each said camera means includes zoom lens means controllable from the control means.

6. A system as claimed in any one of the preceding Claims, wherein the transmitting means includes
 60 digitiser means for digitising the representative signals from the camera means.

7. A system as claimed in any one of the preceding Claims, wherein the coordinates extend in horizontal and vertical planes.

8. A system as claimed in any one of the preceding Claims, including read-out means connectable to the control means for displaying the coordinates.

65

A system as claimed in any one of the preceding Claims, including indicium means attachable to the object, the indicium means comprising a uniquely coded target or pattern. 10. A system as claimed in any one of the preceding Claims, wherein the camera means are disposed in mutually perpendicular relationship. 11. A system as claimed in any one of Claims 1 to 9, wherein the camera means are disposed at the same side of the environment. 12. A method of detecting the position of a movable object in an environment, the method comprising, viewing the environment with two spaced apart camera means, transmitting from the camera means signals representative of images in each said camera means, scanning said signals to identify the position of the 10 object in said signals, and deducing the spatial coordinates of the object from said location. 10 13. A method as claimed in Claim 12, including panning and/or tilting each said camera means. 14. A method as claimed in Claim 12 or Claim 13, including controlling the movement of the object in relation to said representative signals so as to move the object to a selected position in the environment, said movement being controlled in a manner to avoid the object moving through prohibited portions of the 15 environment. 15 15. A system for detecting the position of a movable object in an environment, substantially as hereinbefore described with reference to Figures 1, 2, and 3 of the accompanying drawings. 16. A system as claimed in Claim 15, and modified substantially as hereinbefore described with reference to Figure 2a of the accompanying drawings. 17. A system as claimed in Claim 16, and modified substantially as hereinbefore described with reference 20 to Figure 4 of the accompanying drawings. 18. A method of detecting the position of a movable object in an environment, substantially as hereinbefore described with reference to Figures 1, 2, and 3 of the accompanying drawings. 19. A method as claimed in Claim 18, and modified substantially as hereinbefore described with 25 reference to Figure 2a of the accompanying drawings. 25

Printed for Her Majesty's Stationery Office, by Croydon Printing Company Limited, Croydon, Surrey, 1982.
Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

20. A method as claimed in Claim 19, and modified substantially as hereinbefore described with

reference to Figure 4 of the accompanying drawings.