11 15 18	CHAPTER 7: NETWORK FLOWS
O	Maximize from of material through network FLOW NETWORK:
>	Directed graph G, two distinguished vertices -> S a t (move things from Source to sink) source
	Assumption: No edges enter s and no edges leave to snon-negative integer
1	c(e) is capacity of edge e
-	10 0 sflow
	10 20 to non-negat
0	Det: 8-t flow is a function of assigning a number to every edge such that: flow on e does not exceed capacity of e fle) < Cle)
0	except for s, t flow is conserved. H V except s,t: \(\frac{1}{2} \), \(f(e) = \frac{1}{2} \), \(f(e) \) e into \(\frac{1}{2} \) e into \(\frac{1}{2} \) of \(\frac{1}{2} \)

· Def: Value of flow f: V(f) = S f(e)e out of
S flow leaving 5=20 Net flow through (cut) = +10-10+20 What is HD & what - 10 P defined such that s on one side and t > +10 from A to B -> - 10 from B to A on the other side. lemma: v(f)= & f(e) = net flowthrough
e out of any s-t cut Value of flow of 1 A contains s and B contains t For any S-t cut (A,B) $\leq f(e) - \leq f(e) = \leq f(e)$ eout e from BtoA A to B

-> MAX-FLOW PROBLEM: Find S-t flow of maximum value decreases increased flow flow Value = 20 value=30 Not optimal! Need to Optimal! figure increased decreased Do not only look for Make it more difficult! increasing flows on -> How do you know what is the optimal value [Can't just look at capacities of edges out of s! · Def: Capacity of s-t cut (A,B) is the sum of the capacities of edges from A to B: cap(A,B) = S, cle)Lemma: Let f be any s-t flow and (A,B) be an s-t cut, then v(f) < cap(A,B)

> Min-cut problem: find s-t cut of minimum capacity Suppose we find an s-t flow and s-t cut

(A,B) such that V(f) = cap(A,B) then v(f) is the max flow value and A-Bis min-cut (got from previous lemma).