

Spec No.: DS-70-99-0019 Effective Date: 05/23/2014

Revision: G

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

DESCRIPTION

1.1 Features

- 6 Pin DIP photocoupler, Triac driver output
- High input-output isolation voltage

Viso = 5,000Vrms

- High repetitive peak off-state voltage V_{DRM}: Min. 400 V.
- High critical rate of rise of off-state voltage dV/dt: Min.1000V / μs
- Dual-in-line package:
 - MOC3020, MOC3021, MOC3022, MOC3023
- Wide lead spacing package:
 - MOC3020M, MOC3021M, MOC3022M, MOC3023M
- Surface mounting package: MOC3020S, MOC3021S, MOC3022S, MOC3023S
- Tape and reel packaging:
 - MOC3020S-TA, MOC3021S-TA, MOC3022S-TA, MOC3023S-TA MOC3020S-TA1, MOC3021S-TA1, MOC3022S-TA1, MOC3023S-TA1
- Safety approval
 - * UL approved (No. E113898)
 - * TUV approved (No. R9653630)
 - * CSA approved (No. CA91533-1)
 - * VDE approved (No. 40015248)
 - * CQC approved (No.CQC11001061921-2)
- RoHS Compliance
 - All materials be used in device are followed EU RoHS directive (No.2002/95/EC).
- ESD pass HBM 8000V/MM2000V
- MSL class1

1.2 Applications

- Motor Controls.
- Solid state relays
- For triggering high power thyristor and triac
- Household use equipment

2. PACKAGE DIMENSIONS

2.1 MOC3020, MOC3021, MOC3022, MOC3023:

2.2 MOC3020M, MOC3021M, MOC3022M, MOC3023M:

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (Y: Thailand, W: China-CZ, X: China-TJ).
- 4. Model No.MOC3020, MOC3021, MOC3022, MOC3023

2.3 MOC3020S, MOC3021S, MOC3022S, MOC3023S:

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (Y: Thailand, W: China-CZ, X: China-TJ).
- 4. Model No.MOC3020, MOC3021, MOC3022, MOC3023

3. TAPING DIMENSIONS

3.1 MOC3020S-TA, MOC3021S-TA, MOC3022S-TA, MOC3023S-TA:

3.2 MOC3020S-TA1, MOC3021S-TA1, MOC3022S-TA1, MOC3023S-TA1:

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
Distance of compartment	P ₂	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	12±0.1 (0.472)

RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25°C

	Parameter	Symbol	Rating	Unit	
	Forward Current	I _F	50	mA	
Input	Reverse Voltage	V_R	6	V	
	Power Dissipation	P_D	70	mW	
	Off-State Output Terminal Voltage	V_{DRM}	400	V	
Output	Peak Repetitive Surge Current		4	^	
	(PW=100µs, 120pps)	I _{TSM}	1	А	
	Collector Power Dissipation	Pc	300	mW	
Total Power Di	ssipation	P _{tot}	330	mW	
*1 Isolation Vo	ltage	V _{iso}	5,000	V _{rms}	
Ambient O	perating Temperature Range	T _A	-40 ~ + 100	°C	
Storage Temperature Range		T_{stg}	-55 ~ +150	°C	
*2 Soldering Temperature		TL	260	°C	

*1. AC For 1 Minute, R.H. = 40 ~ 60%

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- *2. For 10 Seconds

4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25°C

	PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
IN IDLIT	Forward Voltage		VF	_	1.15	1.5	V	IF=20mA
INPUT	Reverse Current		IR	_	_	10	μА	VR=6V
	*1 Peak Blocking Current, Either Direction		I _{DRM}	_	10	100	nA	V _{DRM} = 400V
OUTPUT	Peak On-State Voltage, Either Direction		V_{TM}	_	1.7	3	V	I _{TM} =100 mA Peak
	*2 Critical rate of Rise of Off-State Voltage		dv/dt	1000	_	_	V/μs	
COUPLED	*3 Led Trigger Current, Current Required to Latch Output, Either Direction	MOC3020	l _{FT}	_	15	30	mA	Main Terminal Voltage = 3V
		MOC3021		_	8	15		
		MOC3022		_	_	10		
		MOC3023		_	_	5		
	Holding Current, Either Direction		l _Η	_	250	_	μΑ	

^{*1} Test voltage must be applied within dv/dt rating.

^{*2} This is static dv/dt. Commutating dv/dt is a function of the load-driving thyristor(s) only.

^{*3} All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT} . Therefore, recommended operating I_F lies between max I_{FT} , 30 mA for MOC3020, 15 mA for MOC3021, 10 mA for MOC3022, 5 mA for MOC3023, and absolute max I_F (50mA)

5. CHARACTERISTICS CURVES

Fig.1 Forward Current vs.

Fig.3 Minimum Trigger Current vs. Ambient Temperature

Fig.5 On-state Voltage vs. Ambient Temperature

Fig.2 On-state Current vs. Ambient Temperature

Fig.4 Forward Current vs. Forward Voltage

Fig.6 Holding Current vs.

Ambient Temperature

Fig.7 Repetitive Peak Off-state Current vs. Temperature

Fig.8 On-state Current vs. On-state Voltage

Basic Operation Circuit
Medium/High Power Triac Drive Circuit

6. TEMPERATURE PROFILE OF SOLDERING

6.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions	
Preheat		
- Temperature Min (T _{Smin})	150°C	
- Temperature Max (T _{Smax})	200°C	
- Time (min to max) (ts)	90±30 sec	
Soldering zone		
- Temperature (T _L)	217°C	
- Time (t _L)	60 sec	
Peak Temperature (T _P)	260°C	
Ramp-up rate	3°C / sec max.	
Ramp-down rate	3~6°C / sec	

6.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

6.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

7. RRECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Unit: mm

8. NAMING RULE

9. Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.

Part No : MOC3020 THRU MOC3023 SERIES BNC-OD-C131/A4