Teravolt-per-meter plasma wakefields from low-charge, femtosecond electron beams

J. B. Rosenzweig*, G. Andonian*, P. Bucksbaum[†], M. Ferrario¹, S. Full*,

A. Fukusawa*, E. Hemsing*, M. Hogan[†], P. Krejcik[†], P. Muggli², G. Marcus*,

A. Marinelli*, P. Musumeci*, B. O'Shea*, C. Pellegrini*, D. Schiller*, and G. Travish*

*Department of Physics and Astronomy,

University of California Los Angeles,

Los Angeles, California 90095, USA

†Stanford Linear Accelerator Center, Menlo Park, CA

¹ Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati,

via Enrico Fermi 40, Frascati (RM) Italy and

² University of Southern California, Dept. of Engineering Physics, Los Angeles, CA

(Dated: November 15, 2018)

Abstract

Recent initiatives in ultra-short, GeV electron beam generation have focused on achieving sub-fs pulses for driving X-ray free-electron lasers (FELs) in single-spike mode. This scheme employs very low charge beams, which may allow existing FEL injectors to produce few-100 as pulses, with high brightness. Towards this end, recent experiments at SLAC have produced \sim 2 fs rms, low transverse emittance, 20 pC electron pulses. Here we examine use of such pulses to excite plasma wakefields exceeding 1 TV/m. We present a focusing scheme capable of producing <200 nm beam sizes, where the surface Coulomb fields are also \sim TV/m. These conditions access a new regime for high field atomic physics, allowing frontier experiments, including sub-fs plasma formation for wake excitation.