Bayeseva teorija v kazenskem pravu

10. november 2022

Statistične dokaze v kazenskih postopkih se uporablja za vsaj tri namene:

- s statističnimi podatki je mogoče odgovoriti na vprašnja o identifikaciji, npr. ali je obtoženec vir sledi kaznivega dejanja ali je imles stik s krejm kaznivega dejanja;
- statistične podatke je mogoče uporabiti tudi za oceno, ali so določeni dogodki ali več dogodkov posledica nesreče ali namernega ravnanja;
- statistične podatke je mogoče uporabiti za posredno oceno skupnih količin, kadar ni na voljo neposrednega merila teh količin.

V tem poglavju bo opisano kako nam lahko Bayeseva teorija pomaga pri ocenjevanju dokazne vrednosti statističnih dokazov v teh treh vrstah primerov.

1 Matematična verjetnost

Definicija 1: Predpostavimo, da je \mathbb{P} funkcija iz množice dogodkov Ω v realna števila; potej je \mathbb{P} verjetnostna funkcija, če izpolnjuje spodnje aksiome Kolmogorova:

- $0 < \mathbb{P}(A) < 1$ za vsak dogodek A iz množice dogodkov Ω ;
- $\mathbb{P}(\top) = 1$, pri čemer je \top katerakoli logična tavtologija;
- $\mathbb{P}(A \vee B) = \mathbb{P}(A) + \mathbb{P}(B)$, pri čemer sta A in B dogodka iz množice dogodkov in sta med seboj neodvisna.

Definicija 2: Sedaj lahko definiramo pogojno verjetnost dogodkov A in B iz množice dogodkov Ω , kot:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \land B)}{\mathbb{P}(B)}.$$

Dokažemo lahko tudi nekatere trditve:

Trditev 1: $\mathbb{P}(A|B) = [\mathbb{P}(A) + \mathbb{P}(B)] - \mathbb{P}(A \wedge B)$, če sta A in B neodvisna.

Trditev 2: Če je $A \subseteq B$, potem je $\mathbb{P}(A) \leq \mathbb{P}(B)$.

Trditev 3: $\mathbb{P}(A) = 1 - \mathbb{P}(\neg A)$.

Trditev 4: $\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|\neg B)\mathbb{P}(\neg B).$

2 Bayesova teorija

Recimo, da imamo hipotezo H in zanjo imamo nekaj dokazov E, sedaj pa želimo izvedeti verjetnost hipoteze H glede na dokaze E. Bayesova teorija nam daje formulo:

$$\mathbb{P}(H|E) = \frac{\mathbb{P}(E|H)\mathbb{P}(H)}{\mathbb{P}(E)} = \frac{\mathbb{P}(E|H)\mathbb{P}(H)}{\mathbb{P}(E|H)\mathbb{P}(H) + \mathbb{P}(E|\neg H)\mathbb{P}(\neg H)}.$$

Bayesova teorija omogoča izračun verjetnosti hipoteze H glede na dogodke E iz treh drugih predpostavk:

- (i) verjetnost hipitetze H ne glede na dogodke E;
- (ii) verjetnost dokazov E, ki je enaka $\mathbb{P}(E|H)\mathbb{P}(H) + \mathbb{P}(E|\neg H)\mathbb{P}(\neg H)$;
- (iii) verjetnost $\mathbb{P}(E|H)$, tj. verjetnost dogodkov E glede na hipotezo H.

Obstaja še ena formulacija Bayesovega pravila, ki olajša izračune, še posebaj pri analizi dokazov z DNK:

$$\frac{\mathbb{P}(H|E)}{\mathbb{P}(\neg H|E)} = \frac{\mathbb{P}(E|H)}{\mathbb{P}(E|\neg H)} * \frac{\mathbb{P}(H)}{\mathbb{P}(\neg H)}.$$

Z drugimi besedami:

pogojna verjetnost = razmerje verjetnosti * predhodna verjetnost.

Pogojna verjetnost $\mathbb{P}(H|E)$ je običajno podata z $\frac{PO}{1+PO},$ kjer je PO pogojne verjetnosti.