

planetmath.org

Math for the people, by the people.

Prüfer domain

Canonical name PruferDomain

Date of creation 2013-03-22 13:47:34 Last modified on 2013-03-22 13:47:34 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 8

Author mathcam (2727)

Entry type Definition Classification msc 16U10

Related topic ValuationDomain Related topic DedekindDomain

Related topic PruferRing

 $Related\ topic \qquad Invertible Ideals In Semi Local Rings$

A commutative integral domain R is a *Prüfer domain* if every finitely generated nonzero ideal I of R is invertible.

Let R_I denote the localization of R at $R \setminus I$. Then the following statements are equivalent:

- i) R is a Prüfer domain.
- ii) For every prime ideal P in R, R_P is a valuation domain.
- iii) For every maximal ideal M in R, R_M is a valuation domain.

A Prüfer domain is a Dedekind domain if and only if it is Noetherian. If R is a Prüfer domain with quotient field K, then any domain S such that $R \subset S \subset K$ is Prüfer.

References

[1] Thomas W. Hungerford. Algebra. Springer-Verlag, 1974. New York, NY.