CS/ENGRD 2110 Object-Oriented Programming and Data Structures

Spring 2012 Thorsten Joachims

Lecture 20: Other Algorithms on Graphs

Minimum Spanning Trees

Example Problem:

- Nodes = neighborhoods
- Edges = possible cable routes
- Goal: Find lowest cost network that connects all neighborhoods
- Analogously:
 - Router network
 - Clustering
 - Component in many approximation algorithms

Undirected Trees

 An undirected graph is a tree if there is exactly one (simple) path between any pair of vertices

Facts About Trees

 Properties of (undirected) trees

$$-|E| = |V| - 1$$

- Connected
- no cycles

 In fact, any two of these properties imply the third, and imply that the graph is a tree

Spanning Trees

- A spanning tree of a connected undirected graph (V,E) is a subgraph (V,E') that is a tree
 - Same set of vertices V
 - E' ⊆ E
 - (V,E') is a tree

- A subtractive method
 - Start with the wholegraph it is connected
 - Find a cycle (how?), pick
 an edge on the cycle and
 throw it out
 - → the graph is still connected (why?)
 - Repeat until no more cycles

- A subtractive method
 - Start with the wholegraph it is connected
 - Find a cycle (how?), pick
 an edge on the cycle and
 throw it out
 - → the graph is still connected (why?)
 - Repeat until no more cycles

- A subtractive method
 - Start with the wholegraph it is connected
 - Find a cycle (how?), pick
 an edge on the cycle and
 throw it out
 - → the graph is still connected (why?)
 - Repeat until no more cycles

- An additive method
 - Start with no edges –
 there are no cycles
 - Find connected components (how?).
 - If more than one connected component, insert an edge between them
 - →still no cycles (why?)
 - Repeat until only one component

- An additive method
 - Start with no edges –
 there are no cycles
 - Find connected components (how?).
 - If more than one connected component, insert an edge between them
 - →still no cycles (why?)
 - Repeat until only one component

- An additive method
 - Start with no edges –
 there are no cycles
 - Find connected components (how?).
 - If more than one connected component, insert an edge between them
 - →still no cycles (why?)
 - Repeat until only one component

- An additive method
 - Start with no edges –
 there are no cycles
 - Find connected components (how?).
 - If more than one connected component, insert an edge between them
 - →still no cycles (why?)
 - Repeat until only one component

- An additive method
 - Start with no edges –
 there are no cycles
 - Find connected components (how?).
 - If more than one connected component, insert an edge between them
 - →still no cycles (why?)
 - Repeat until only one component

- An additive method
 - Start with no edges –
 there are no cycles
 - Find connected components (how?).
 - If more than one connected component, insert an edge between them
 - →still no cycles (why?)
 - Repeat until only one component

Minimum Spanning Trees

 Suppose edges are weighted, and we want a spanning tree of minimum cost (sum of edge weights)

 Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

 Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

 Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

 Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

 Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

 Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

 Algorithm B: Find a min weight edge – if it forms a cycle with edges already taken, throw it out, otherwise keep it

 Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

 Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

 Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

 Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

 Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

 Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

 Algorithm C: Start with any vertex, add min weight edge extending that connected component that does not form a cycle

 All 3 greedy algorithms give the same minimum spanning tree (assuming distinct edge weights)

Prim's Algorithm

```
prim(s) {
   D[t] = infty for all vertices t
   D[s] = 0; //s is start vertex
   while (some vertices are unmarked) {
      v = unmarked vertex with smallest D;
      mark v;
      for (each w adj to v) {
         D[w] = min(D[w], c(v,w));
      }
   }
}
```

Min "distance" to connected component

- O(n²) for adj matrix
 - While-loop is executed n times
 - For-loop takes O(n) time

- O(m + n log n) for adj list
 - Use a PQ
 - Regular PQ produces time O(n + m log m)
 - Can improve to O(m + n log n) using a fancier heap
 - Still O(n²) if graph is not sparse

- These are examples of Greedy Algorithms
- The Greedy Strategy is an algorithm design technique
 - Like Divide & Conquer
- Greedy algorithms are used to solve optimization problems
 - The goal is to find the best solution
- Works when the problem has the greedy-choice property
 - A global optimum can be reached by making locally optimum choices

- Example "Change Making":
 - Given an amount of money, find the smallest number of coins to make that amount
- Solution: Greedy Algorithm
 - Give as many large coins as you can
 - This greedy strategy produces the optimum number of coins for the US coin system
- Different money system ⇒ greedy strategy may fail

Similar Code Structures

```
    BFS (unweighted)
```

```
-best: next in queue
```

```
-update: D[w] = D[v]+1
```

BFS (weighted) → Dijkstra

```
-best: next in PQ
```

```
-update: D[w] = min\{ D[w], D[v]+c(v,w) \}
```

Prim

```
–best: next in PQ
```

```
-update: D[w] = min\{ D[w], c(v,w) \}
```

Other Graph Problems

Network Flow

- How many "units" can flow from s to t?
 - Flow in water network
 - Traffic flow

→ Ford-Fulkerson Algorithm

Minimum Cut

- Cut graph so that Source and Sink are separated, and the sum of the edges that are cut is minimized.
 - Traffic bottlenecks
 - Clustering in social networks

→ Duality with Maximum Flow

Traveling Salesperson

- Find a path of minimum distance that visits every city.
 - Planning and logistics
 - Microchip design

- NP-Hard \rightarrow there is probably no O(n^k) algorithms