Definitions:

Group, Subgroup, Cyclic group, Abelian group, Homomorphism, Monomorphism, Isomorphism, Epimorphism, Automorphism, Kernel, Index, Permutation group (S_n) , Left coset and right coset of H in G, Index of H in G,

Theorems:

- 1. Prove that $(Z_n, +_n)$ is a cyclic group.
- 2. Let G be a group and $a \in G$. Then O(a) is the order of the cyclic group generated by a.
- 3. Let (G, *) be a group and $S \subseteq G$. Then (S, *) is a subgroup of (G, *) if and only if $a*b^{-1} \in S$ for all a,b in S.
- 4. Let $f: G \to G'$ be a group homomorphism from (G, *) to (G', o). Let e and e' be the identity elements of G and G' then (i) f(a) = e' (ii) $f(a^{-1}) = (f(a))^{-1}$ for all a in G. (iii) $f(a*b^{-1}) = f(a)$ o $(f(b))^{-1}$ for all a, b in G. (iv) f(H) is a subgroup of G whenever H is a subgroup of G.
- 5. A group homomorphism f is a monomorphism if and only if $kerf = \{e\}$.
- 6. (i) Any infinite cyclic group is isomorphic to (Z, +). (ii) Any cyclic group of order n is isomorphic to $(Z_n, +_n)$.
- 7. **Cayley's Theorem:** A finite group (G,*) of order n is isomorphic to a group of permutations of G.
- 8. Let H be a subgroup of G. Then (i) $a \in H$ if and only if aH = H. (ii) aH = bH iff $a^{-1} *b \in H$ (iii) $a \in bH$ iff aH = bH.
- 9. **Lagrange's Theorem of finite groups:**Statement:- Let G be a finite group and H be any subgroup of G. Then the order of H divides the order of G.
- 10. Every group of prime order is cyclic.
- 11. Let H be a subgroup of G. Then the following statements are equivalent.
 - (i)aH = Ha \forall a∈G; (ii) a-1Ha = H \forall a ∈ G; (iii) a-1Ha ⊆ H \forall a∈ G.