Projektpräsentation

Die hard- und softwaretechnische Implementierung eines CO₂-Sensors zur Messung der Raumluftqualität

Julius Caesar, Péter Egermann, Paul Görtler, Johannes Leyrer 12.05.2022

BSZ für Elektrotechnik Dresden - IT20/2

Gliederung

Einleitung zum Vortrag PETER

Einleitung zum Projekt PETER

CO2-Grenzwerte nach DGUV PETER

Auswirkungen von zum hohem CO2-Gehalt PETER

Hardwaretechnische Umsetzung JULIUS

Softwaretechnische Umsetzung

Fazit

Einleitung zum Vortrag PETER

Einleitung zum Projekt PETER

CO2-Grenzwerte nach DGUV

PETER

Auswirkungen von zum hohem

CO2-Gehalt PETER

Hardwaretechnische Umsetzung

JULIUS

Softwaretechnische Umsetzung

Grundlagen

- Linux-Distribution inklusive mitgelieferter Standardsoftware
- Docker
- Python
- FastAPI
- React
- Chart.Js
- SQLite

Abbildung 1: Verwendete Softwarekomponenten

Zusammenspiel der Softwarekomponenten

- Backend
- Frontend
- Datenbank
- Lese-Software
- \rightarrow Docker

Abbildung 2: Zusammenspiel der Softwarekomponenten

Aufbau und Einrichtung der Softwarekomponenten

- Backend: Python mit FastAPI
- Frontend: React und ChartsJs
- Lese-Software: Python-Script
- Datenbank: SQLite

docker-compose -f docker-compose.yml up -d

Fazit

Fazit

Ergebnisse:

- bestätigte Relevanz der Raumluftqualität
- bestätigte Verbindung zwischen hohen CO₂-Konzentrationen und verminderter Konzentrationsfähigkeit/Produktivität
- schaffen einer kostengünstigen Möglichkeit zur selbstständigen Kontrolle der Raumluftqualität

Fragen?

Danke für die Aufmerksamkeit!