La bonne représentation est celle qui permet d'associer facilement une étiquette à un point du domaine.

Définition d'une tâche

- Ensemble du domaine
- Ensemble d'étiquettes
- Base d'apprentissage
- Sortie de l'apprentissage
- Mesure de succès

Algorithme d'apprentissage

Exemple IRIS

• Entrée : une description de l'iris

• Sortie : l'espèce de l'iris

Ronald Fisher
"The use of multiple
measurements in
taxonomic problems"
(1936)

Représentation de l'iris

Perception

Mesure

- Longueur du sépale (cm)
- Largeur du sépale (cm)
- 3. Longueur du pétale (cm)
- 4. Largeur du pétale (cm)

Classes

- A. Iris Setosa
- B. Iris Versicolour
- C. Iris Virginica

Apprentissage profond

Représentation

Représentation

Une représentation peut être un ensemble d'attributs. On utilise un vecteur binaire pour indiquer la présence ou l'absence des attributs.

Algorithme d'apprentissage

Représentation

La présence ou l'absence des attributs peuvent être déterminées séquentiellement.

Une question numérique

```
Une question [0, 1, 1, 0, 1, 0]
```

Un modèle [1, 2, 2, 0, 3, 1]

La réponse $0 \times 1 + 1 \times 2 + 1 \times 2 + 0 \times 0 + 1 \times 3 + 0 \times 1 = 7$

Une question numérique

```
Une question [0, 1, 1, 0, 1, 0]
```

Un modèle [9, 0, 0, 9, 0, 9]

La réponse $0 \times 9 + 1 \times 0 + 1 \times 0 + 0 \times 9 + 1 \times 0 + 0 \times 0 = 0$

Une question numérique

Une question [0, 1, 1, 0, 1, 0]

Un modèle [1, -2, -2, 0, -3, 9]

La réponse $0 \times 1 + 1 \times (-2) + 1 \times (-2) + 0 \times 0 + 1 \times (-3) + 0 \times 0 = -7$

Une question oui/non numérique

- Réponse à 7: probabilité à 1
- Réponse à 0: probabilité à 0.5
- Réponse à -7: probabilité à 0

$$\operatorname{sigmoid}(x) = \frac{1}{1 + \exp(-x)}$$

Modèle de questions

- Deux propriétés :
 - Questions parallèles
 - Questions séquentielles

Feed-forward neuron network

Modèle de questions

Feed-forward neuron network

- Les cercles sont des données
- Les flèches sont des questions

La convolution

- Demande la même question à plusieurs endroits de l'image.
- Recherche d'un motif dans l'image.

Question sur des images : convolution

Réseaux à convolution (CNN) sur Youtube, par Alexei Nordell Markovits, École en apprentissage profond IVADO/Mila, 2018.

https://youtu.be/Of1W5av9k14

Deep learning: exemple

Apprentissage profond

Niveau de représentation

Qu'est-ce que l'apprentissage automatique ?

Apprendre à poser les bonnes questions à partir des données.

Algorithme d'apprentissage

Maximiser la probabilité

Algorithme d'apprentissage

Phase « forward »

Phase évaluation

Phase « backward »

Phase « update »

À retenir

- L'apprentissage automatique est une science en devenir.
- On commence toujours par la définition de la tâche.
- L'apprentissage profond concerne des modèles complexes qui apprennent efficacement des associations avec des représentations hiérarchiques.
- Le sur-apprentissage est le problème majeur.