PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIAS DE COMPPUTACIÓN MATEMÁTICAS DISCRETAS- IIC1253

Guía 1 – Lógica proposicional

Problema 1 Define si las siguientes proposiciones son verdaderas o falsas (o que no se puede definir): :

- a) $(18.09.25 \text{ lloverá}) \rightarrow ((19.09.25 \text{ nevará}) \rightarrow (18.09.25 \text{ lloverá}))$
- b) $\bigwedge_{i=1}^{990} \bigvee_{j=i}^{i+9} (j \text{ es primo}).$
- c) ((Hipótesis de Riemann) \rightarrow (P = NP)) \land ((P=NP) \rightarrow (Hipótesis de Riemann))
- d) ((Hipótesis de Riemann) \rightarrow (P = NP)) \lor ((P=NP) \rightarrow (Hipótesis de Riemann))

Problema 2 ¿Son las siguientes fórmulas equivalentes?

a)
$$\phi = (A \wedge B) \vee C$$
, $\psi = A \wedge (B \vee C)$

b)
$$\phi = (A \to B) \to C$$
, $\psi = A \to (B \to C)$

c)
$$\phi = A \to (B \to C)$$
, $\psi = B \to (A \to C)$

d)
$$\phi = A \to B$$
, $\psi = (\neg A) \to (\neg B)$

e)
$$\phi = (x \lor a) \land (x \lor \neg a) \land (\neg x \lor y), \qquad \psi = x \land y.$$

Problema 3 ¿Verdadero o falso? La siguiente DNF siempre toma valor 1, independiente del valor de verdad de sus variables:

a)
$$(x \wedge a) \vee (x \wedge \neg a) \vee (\neg x \wedge \neg y)$$

b)
$$(x \wedge y) \vee (\neg x \wedge \neg y) \vee (y \wedge z) \vee (\neg y \wedge \neg z) \vee (z \wedge x) \vee (\neg z \wedge \neg x)$$

Problema 4 Define la función booleana de 3 variables

$$f(x, y, z) = \begin{cases} 1 & x + y + z \text{ es impar,} \\ 0 & x + y + z \text{ es par.} \end{cases}$$

- a) Construye una DNF para f.
- b) Demuestre que no existe una DNF para f con menor que 4 cláusulas.

Problema 5 Muestre que no existe una fórmula proposicional que usa solo \land, \lor y es equivalente a $A \to B$.

Problema 6 Construye la tabla de verdad y una CNF para la función:

$$f(x_1, x_2, x_3) = \begin{cases} 1 & x_1 \ge x_2 \ge x_3, \\ 0 & \text{si no.} \end{cases}$$

Problema 7 Demuestre que cualquier función Booleana de n variables tiene una DNF con no más que 2^{n-1} cláusulas o una CNF con no más que 2^{n-1} cláusulas.

Problema 8 Demuestre que:

- a) $\{1, \oplus, \wedge\}, \{\neg(x \vee y)\}, \{\oplus, \rightarrow\}$ son funcionalmente completos;
- b) $\{\wedge, \wedge, \oplus\}$, $\{\neg(x \to y)\}$ no son funcionalmente completos.

Problema 9 ¿Para que n la CNF

$$\left(\bigwedge_{i=1}^{n-1} (x_i \vee x_{i+1}) \wedge (\neg x_i \vee \neg x_{i+1})\right) \wedge (x_n \vee x_1) \wedge (\neg x_n \vee \neg x_1)$$

es satisfacible?