Contrastes sobre proporciones Tema 9

- 1. Una proporción
- 2. Dos proporciones
 - 2.1 Dos proporciones independientes
 - 2.2 Dos proporciones relacionadas (Prueba de McNemar)
- Más de dos proporciones relacionadas (Prueba de Cochran)

1. Contraste sobre una proporción

Objetivo: Realizar inferencias acerca de una única proporción poblacional.

- 1. Hipótesis
- a) Bilateral: H_0 : $\pi = \pi_0$; H_1 : $\pi \neq \pi_0$
- b) U. derecho: H_0 : $\pi \le \pi_0$; H_1 : $\pi > \pi_0$
- c) U. izquierdo: H_0 : $\pi \geq \pi_0$; H_1 : $\pi < \pi_0$
- 2. SupuestosMuestra aleatoriaπ constante en cada extracción
- 3. Estadístico de contraste
- 3.1. Muestra pequeña ($n \le 25$):

$$X = \sum_{i=1}^{n} X_i$$
 (número de éxitos)

 $X \sim \text{Binomial} (n, \pi_0)$

3.2 Muestra grande (*n*> 25)

$$Z = \frac{X - n\pi_0}{\sqrt{n\pi_0(1 - \pi_0)}} = \frac{P - \pi_0}{\sqrt{\pi_0(1 - \pi_0)/n}}$$

Z se distribuye según la normal (0, 1)

4. Zona crítica

- a) Bilateral: $Z \le z_{\alpha/2}$ y $Z \ge z_{1-\alpha/2}$
- b) Unilateral derecho: $Z \ge z_{1-\alpha}$
- c) Unilateral izquierdo: $Z \le z_{\alpha}$

5. Decisión:

5.1 Muestra pequeña Rechazar H_0 si p (**nivel crítico**) es menor o igual que α (unilateral) o $\alpha/2$ (bilateral)

5.2 Muestra grande:

Rechazar H₀ si el estadístico Z cae en la zona crítica

Ejemplo: Se está realizando una investigación sobre tabaquismo juvenil. Se ha tomado una muestra de 15 alumnos de instituto y se ha encontrado que 5 de ellos fuman habitualmente. Contrastar la hipótesis de que el porcentaje de jóvenes fumadores es del 40% utilizando α =0,01.

1. Hipótesis

 H_0 : $\pi = 0.4$

 $H_1: \pi \neq 0,4$

2. Supuestos Muestra aleatoria π = 0,4 constante en cada extracción

3. Estadístico de contraste

Dado que la muestra es pequeña:

n° de éxitos : X = 5 $X \sim \text{Binomial } (n=15, \pi_0=0,4)$

4. Zona crítica

$$X \le 1$$
 $P(X \le 1) = 0,005$
 $X \ge 12$ $P(X \ge 12) = 1 - 0,998 = 0,002$

nivel crítico:

$$p = (2)P(X \le 5) = (2)0,403 = 0,806$$

5. Decisión:

X cae en la zona de aceptación.

$$p = 0.806 > 0.01 = \alpha$$

Mantener H₀

Utilizando la aproximación normal (no es necesario):

$$Z = \frac{X - n\pi_0}{\sqrt{n\pi_0(1 - \pi_0)}} = \frac{5 - (15)0,4}{\sqrt{(15)0,4(1 - 0,4)}} = \frac{5 - 6}{\sqrt{3,6}} = -0,53$$

$$_{0,005}Z = -2,575;$$
 $_{0,995}Z = 2,575$

Cálculo del nivel crítico

Unilateral izquierdo									
H ₀ : $\pi \ge 0,4$	p = D(V < 5) = 0.402								
H ₁ : π < 0,4	$p = P(X \le 5) = 0.403$								
Unilateral derecho									
L . ~ < 0 1	$p = P(X \ge 5) = 1-P(X \le 4)$								
H ₀ : $\pi \le 0,4$ H ₁ : $\pi > 0,4$	= 1- 0,217								
	= 0,783								
	Bilateral								
H ₀ : π = 0,4	$(2)p = P(X \le 5) = (2)0,403 = 0,806$								
H ₁ : $\pi \neq 0,4$	(2 por el menor de ambos)								

2.1. Dos proporciones independientes

Objetivo: Contrastar si son iguales dos proporciones procedentes de dos poblaciones diferentes.

1. Hipótesis

Bilateral: H_0 : $\pi_1 = \pi_2$; H_1 : $\pi_1 \neq \pi_2$

U. derecho: H_0 : $\pi_1 \le \pi_2$; H_1 : $\pi_1 > \pi_2$

U. izquierdo: H_0 : $\pi_1 \geq \pi_2$; H_1 : $\pi_1 < \pi_2$

2. Supuestos

Muestra aleatoria

 π_1 y π_2 constantes en cada extracción

3. Estadístico de contraste

Muestra 1: n_1 , P_1

Muestra 2: n_2 , P_2

$$P = \frac{n_1 P_1 + n_2 P_2}{n_1 + n_2}$$

$$Z = \frac{P_1 - P_2}{\sqrt{P(1 - P)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Z se distribuye normal (0, 1)

4. Zona crítica

Bilateral:

$$Z \le \alpha/2Z$$

 $Z \ge 1-\alpha/2Z$

Unilateral derecho:

$$Z \geq 1-\alpha Z$$

Unilateral izquierdo:

$$Z \leq \alpha z$$

5. Decisión

Rechazar H_0 si el estadístico de contraste cae en la zona crítica (o si $p \le \alpha$)

Ejemplo: Continuando con la investigación sobre tabaquismo, desea contrastarse si fuman más las chicas que los chicos. Se toma una muestra de 20 chicas y se encuentra que fuman 12. En una muestra de 18 chicos fuman 8. Realizar el contraste con α =0,01.

1. Hipótesis

 $H_0: \pi_1 \leq \pi_2$

 $H_1: \pi_1 > \pi_2$

2. Supuestos Muestra aleatoria π_1 y π_2 constantes en cada extracción

3. Estadístico de contraste

$$n_1 = 20$$
; $P_1 = 12/20 = 0.60$

$$n_2 = 18$$
; $P_2 = 8/18 = 0.44$

$$P = \frac{n_1 P_1 + n_2 P_2}{n_1 + n_2} = \frac{12 + 8}{20 + 18} = 0,53$$

$$Z = \frac{P_1 - P_2}{\sqrt{P(1 - P)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$= \frac{0.6 - 0.44}{\sqrt{0.53(1 - 0.53)\left(\frac{1}{20} + \frac{1}{18}\right)}} = 0.99$$

- 4. Zona crítica: $Z \ge 0.99$ z = 2,33
- 5. Decisión: Mantener H₀. No puede concluirse que las chicas fuman más.

2.2. <u>Dos proporciones relacionadas</u> (<u>Prueba de McNemar</u>)

Objetivo: Contrastar si son iguales dos proporciones poblacionales cuando se utiliza un diseño de medidas repetidas (antes-después).

3. Estadístico de contraste

		Des		
		1	2	
Antes	1	n_{11}	n_{12}	n ₁₊
	2	<i>n</i> ₂₁	n_{22}	<i>n</i> ₂₊
		n_{+1}	n_{+2}	m

Calcular $n = n_{12} + n_{21}$

3.1 Muestra pequeña ($n \le 25$)

$$T = n_{12}$$

 $T \sim \text{Binomial} (n, \pi=0,5)$

3.2 Muestra grande (n > 25)

$$X^{2} = \frac{(n_{12} - n_{21})^{2}}{n_{12} + n_{21}}$$

 $X^2 \sim \chi^2$ con 1 grado de libertad

- 4. Regla de decisión
- 4.1 Estadístico *T* : Utilizar el nivel crítico
- 4.2 Estadístico X^2 :
 - a) Bilateral : $X^2 \ge 1-\alpha X_1^2$
 - b) U. Derecho: $X^2 \ge 1-2\alpha X_1^2$
 - c) U. Izquierdo : $X^2 \ge 1-2\alpha X_1^2$

Ejemplo: Se ha tomado un grupo de 40 jóvenes y se ha encontrado que fumaban 25. Se les proporciona información sobre los perjuicios del tabaco y se convence a 5 fumadores para que dejen el tabaco. Después de recibir la información son 19 los jóvenes que no fuman ¿Puede concluirse con α =0,01 que la información es eficaz?

Los datos pueden organizarse:

		Des		
		Si	No	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Si		5	25
Antes	No			
			19	40

1. Hipótesis

U. derecho: H_0 : $\pi_1 \le \pi_2$; H_1 : $\pi_1 > \pi_2$

2. Supuestos Muestra aleatoria de m pares π_1 y π_2 constantes en cada extracción

3. Estadístico de contraste

Completar la tabla:

		Des		
		Si	No	
Antes	Si	20	5	25
	No	1	14	15
		21	19	40

Calcular
$$n = n_{12} + n_{21} = 6$$

$$T = 5$$
; $T \sim \text{Binomial } (6, \pi = 0.5)$

4. Regla de decisión

$$P(T \ge 5) = 1 - P(T \le 4)$$

= 1 - 0,891
= 0,109 > α = 0,01

5. Decisión

Mantener H₀

Utilizando X^2 (no es necesario):

3. Estadístico de contraste

$$X^{2} = \frac{(n_{12} - n_{21})^{2}}{n_{12} + n_{21}} = \frac{(5-1)^{2}}{5+1} = 2,67$$

 $\chi^2 \sim \chi^2$ con 1 grado de libertad

4. Regla de decisión ($2\alpha = 0.02$)

Zona crítica:
$$\chi^2 \ge 1-2\alpha \chi^2 = 0.98 \chi^2 = 5.41$$

5. Decisión

Mantener H₀

3. <u>Más de dos proporciones relacionadas</u> (Prueba de Cochran)

Objetivo: Contrastar si son iguales más de dos proporciones poblacionales cuando se utiliza un diseño de medidas repetidas.

1. Hipótesis

$$H_0: \pi_{+1} = \pi_{+2} = \dots = \pi_{+J}$$

 $H_1: \pi_{+j} \neq \pi_{+j'}$

2. SupuestosMuestra aleatoriaπ_{+i} constante en cada extracción

3. Estadístico de contraste

$$Q = \frac{J(J-1)\sum_{j=1}^{J} T_{+j}^{2} - (J-1)T^{2}}{JT - \sum_{i=1}^{n} T_{i+}^{2}}$$

J: Número de proporciones (grupos)

T: Total de la muestra

 T_{+i} : Total de cada tratamiento *j*

 T_{i+} : Total de cada sujeto i

 $Q \sim \chi^2$ con J-1 grados de libertad

- 4. Zona crítica: $Q \ge 1-\alpha \chi_{J-1}^2$
- 5. Decisión. Rechazar H₀ si Q cae en la zona crítica

Ejemplo: 10 sujetos deciden participar en un tratamiento antitabaco. Para realizar un seguimiento de su efectividad, una vez finalizado el tratamiento se toman datos al cabo de uno, dos y tres meses. La siguiente tabla indica qué sujetos han vuelto a fumar. ¿Puede concluirse que la proporción de fumadores se mantiene estable con α =0,05?

Un mes	1	0	0	1	0	1	0	0	0	0
Dos meses	1	1	0	0	0	1	0	1	0	0
Tres meses	1	1	0	0	1	0	0	1	1	0

1. Hipótesis

$$H_0$$
: $\pi_{+1} = \pi_{+2} = \pi_{+3}$

$$H_1: \pi_{+j} \neq \pi_{j'}$$

2. Supuestos Muestra aleatoria π_{+} constante en cada extracción

2. Estadístico de contraste

Un	1	0	0	1	0	1	0	0	0	0	3	
mes	I	U	U	I	U	I	U	U	U	U	3	
Dos	1	1	0	0	0	1	0	1	0	0	1	
meses	<u>I</u>		U	U	U	I	U		U	U	4	T_{+j}
Tres	1	1	0	0	1	0	0	1	1	\cap	5	٠,
meses	ı		U	U		O	U			U	J	
	3	2	0	1	1	2	0	2	1	0	12	
		•	•		•	T_{i+}	•	•	•	•		T

$$Q = \frac{J(J-1)\sum_{j=1}^{J} T_{+j}^{2} - (J-1)T^{2}}{JT - \sum_{i=1}^{n} T_{i+}^{2}}$$

$$= \frac{3(2)(3^{2} + 4^{2} + 5^{2}) - 2(12^{2})}{3(12) - (3^{2} + 2^{2} + \dots + 0^{2})} = 1$$

 $Q \sim \chi^2_{J-1=2}$

3. Zona crítica:

$$Q \ge 1-\alpha \chi_{J-1}^2 = 0.95 \chi_2^2 = 5.99$$

4. Decisión.

Mantener H₀. La proporción de fumadores no cambia durante los tres meses.

Formulario del tema 9

Contraste sobre una proporción

 $X \sim \text{Binomial (n, } \pi_0)$

$$Z = \frac{X - n\pi_0}{\sqrt{n\pi_0(1 - \pi_0)}} = \frac{P - \pi_0}{\sqrt{\pi_0(1 - \pi_0)/n}}$$

 $Z \sim \text{normal}(0, 1)$

Dos proporciones independientes

$$P = \frac{n_1 P_1 + n_2 P_2}{n_1 + n_2}$$

$$Z = \frac{P_1 - P_2}{\sqrt{P(1 - P)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

 $Z \sim \text{normal}(0, 1)$

Dos proporciones relacionadas (McNemar)

$$T = n_{12}$$

 $T \sim \text{Binomial} (n, \pi=0.5)$

$$X^{2} = \frac{(n_{12} - n_{21})^{2}}{n_{12} + n_{21}}$$

$$X^2 \sim \chi_1^2$$

Más de dos proporciones relacionadas (Cochran)

$$Q = \frac{J(J-1)\sum_{j=1}^{J} T_{+j}^{2} - (J-1)T^{2}}{JT - \sum_{i=1}^{n} T_{i+}^{2}}$$

$$\mathbf{Q} \sim \chi_{J-1}^2$$

Ejercicios recomendados del libro:

- 11.1
- 11.2
- 11.3
- 11.14