2015年7月高数 A2卷

课程名称: 高等数学 A(2): 课程编码: GE03026 试卷编号: A: 考试时间: 120 分钟

题 号	1~7	8~10	11~12	13~14	15~16	17~18	总分
应得分	21	21	14	14	14	16	100
实得分							
评卷人							

- 一、填空题(每题3分,共21分)
- 1. 己知 $\|\vec{a}\| = 2$, $\|\vec{b}\| = 1$, $\|\vec{c}\| = \sqrt{2}$,且 $\vec{a} \perp \vec{b}$, $\vec{a} \perp \vec{c}$, \vec{b} 与 \vec{c} 的夹角为 $\frac{\pi}{4}$,则 $\|\vec{a} + 2\vec{b} 3\vec{c}\| = _____$.
- 2. 直线 $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{2}$ 与平面 2x + y + z 6 = 0 的夹角等于______
- 3. 过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16, \\ x^2 + z^2 y^2 = 0 \end{cases}$ 且母线平行于x轴的柱面方程为______
- 4. 函数 f(x,y) 在点 P(1,2) 沿 $\overline{i} + \overline{j}$ 方向的方向导数是 $2\sqrt{2}$,沿 $-2\overline{j}$ 方向的方向导数是 -3,则函数 f(x,y) 沿 $-\overline{i} 2\overline{j}$ 方向的方向导数为______.
- 5. 曲面 $\cos \pi x x^2 y + e^{xx} + yz = 4$ 在点 P(0,1,2) 处的切平面方程为_____
- 6. 一个球从 h 米高度落下,每次下落后弹起的高度为 h h 若开始下落的高度为 6 米,则直至落在地面静止不动时,该球上下经过的总距离为 米.
- 将函数 f(x) = x (-π < x < π) 展开成傅里叶级数时, 其系数 b_n = _____.
 (n = 1,2,3,···).
 二、计算题(每题 7 分, 共 70 分)
- 8. 计算 $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 \cos(x^2 + y^2)}{(x^2 + y^2)(e^{|x| |y|} 1)}.$
- 9. 已知 $z = f(x^2y, \ln(xy)), f$ 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

10. 计算
$$I = \int_0^2 dx \int_0^{\sqrt{2x-x^2}} \frac{x+y}{x^2+y^2} dy$$
.

- 11. 一个密度为 1 的物体所占有的闭区域Ω由曲面 $z=x^2+y^2$ 和平面 z=0, |x|=1, |y|=1 所围成,求该物体关于z 轴的转动惯量.
- 12. 设Σ为球面 $x^2 + y^2 + z^2 = a^2(a > 0)$,若 $\iint_{\Sigma} (3x + 4z)^2 ds = 300\pi$,求a的值.
- 13. 计算曲线积分 $I = \int_{\Gamma} \sqrt{2y^2 + z^2} \, ds$, Γ 为球菌 $x^2 + y^2 + z^2 = 1$ 与平面 x = y 相交的 圆周.

- 14. 设 $f(\pi) = 1$, 试求f(x), 使得曲线积分 $I = \int_{\mathfrak{A}} [\sin x f(x)] \frac{y}{x} dx + f(x) dy$ 与路径 无关,并求当A,B 两点坐标分别为(1,0)与 (π,π) 时曲线积分的值.
- 15. 计算 $I = \iint_{\Sigma} (x^3 + az^2) dy dz + (y^2 + ax^2) dz dx + (z^3 + ay^2) dx dy$,其中 Σ 为上半 球面 $z = \sqrt{a^2 - x^2 - y^2}$ 的下側.
 - 16. 求级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$ 的和函数.

17. 将函数 $f(x) = \ln(1+x^2+x^4)$ 展开成 x 的幂级数.

(作业里的)

三、应用题(9分)