# Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

#### ЗВІТ

Про виконання лабораторної роботи №1 з дисципліни: «Твердотіла електроніка»

## Дослідження випрямляючих напівпровідникових діодів

| Виконав:<br>Студент 3-го курсу | (підпис) | Кузьмінський О.Р. |
|--------------------------------|----------|-------------------|
| Перевірив:                     | (підпис) | Королевич Л.М.    |

#### 1. Мета роботи

Теоретичне вивчення і практичне дослідження випрямляючих діодів; визначення фізичних та основних технічних параметрів германійових та кремнійових діодів із їх вольт-амперних характеристик.

#### 2.Завдання

- Вивчити структуру параметрів (паспортних даних) досліджуваного підкласу діодів. Ознайомитися із вимірювальним стендом та використовуваними приладами.
- Зібрати схему для дослідження вольт-амперної характеристики випрямляючих діодів.
- Виміряти вольт-амперні характеристики германійового та кремнійового діодів при кімнатній температурі. Результати вимірювань записати в таблиці.
- Провести температурні дослідження ВАХ германійового та кремнійового діодів при температурі  $+70^{\circ}C$  (для прямої та зворотньої полярності напруги).
- Побудувати графіки вольт-амперних характеристик діодів.
- Графічно визначити дифузійний потенціал  $\varphi_0$ , опір бази  $r_b$  та струм виродження  $I_{\text{вир}}$  для кожного з діодів. Оцінити тепловий струм германійового діода.
- Побудувати графіки залежностей статичного та динамічного опорів діодів від прикладеної напруги (або вирахувати статичний та диференційний опори посередині прямої та зворотньої гілок ВАХ кожного діоду і співставити їх між собою).
- Провести аналіз результатів досліджень, і зробити висновки з виконаної роботи.

#### 3. Дослідна установка та схема вимірювання



Рис.1. Схема для вимірювання ВАХ діода. При знятті зворотньої гілки ВАХ змінюється полярність джерела живлення та номінал резистора R (величина резистора для прямої гілки  $R_1 = 5$  кОм; для зворотньої  $R_2 = 100$  кОм).



Рис.2. Схема під'єднання приладів до спеціального макету. На вольтметрі В7-21 кнопка зі стрілкою зверху виконує функцію перемикача " $S_1$ ": нажатий стан відповідає позиції «2» перемикача " $S_1$ ". Додатковий перемикач " $S_2$ "служить для зміни полярності напруги та номіналу резистора R.

#### 4.Вхідні дані та їх обробка

Напруга на діоді— $U_D$  та струм через діод— $I_D$  вираховуються за формулами:

$$U_D = U - U_R \tag{1}$$

$$I_D = \frac{U_R}{R} \tag{2}$$

Похибки струму та напруги на діоді розраховуються за такими формулами:

$$\Delta U_D = \sqrt{\Delta U^2 + \Delta U_R^2} \tag{3}$$

$$\Delta I_D = \frac{1}{R^2} \sqrt{(R\Delta U_R)^2 + (U_R \Delta R)^2} \tag{4}$$

| $U_{sum}$ , мВ | $U_R$ , мВ | $\Delta U_R = \Delta U_{sum}$ , mB | $U_D$ , мВ | $I_D$ , мА | $\Delta U_D$ , мВ | $\Delta I_D$ , мА |
|----------------|------------|------------------------------------|------------|------------|-------------------|-------------------|
| 277            | 220        | 0.5                                | 57         | 0.0440     | 0.7071            | 0.0022            |
| 306            | 246        | 0.5                                | 60         | 0.0492     | 0.7071            | 0.0025            |
| 375            | 309        | 0.5                                | 66         | 0.0618     | 0.7071            | 0.0031            |
| 465            | 390        | 0.5                                | 75         | 0.0780     | 0.7071            | 0.0039            |
| 480            | 403        | 0.5                                | 77         | 0.0806     | 0.7071            | 0.0040            |
| 515            | 437        | 0.5                                | 78         | 0.0874     | 0.7071            | 0.0044            |
| 574            | 494        | 0.5                                | 80         | 0.0988     | 0.7071            | 0.0044            |
| 1              |            |                                    |            |            |                   |                   |
| 638            | 555        | 0.5                                | 83         | 0.1110     | 0.7071            | 0.0056            |
| 710            | 623        | 0.5                                | 87         | 0.1246     | 0.7071            | 0.0062            |
| 738            | 650        | 0.5                                | 88         | 0.1300     | 0.7071            | 0.0065            |
| 760            | 670        | 0.5                                | 90         | 0.1340     | 0.7071            | 0.0067            |
| 806            | 714        | 0.5                                | 92         | 0.1428     | 0.7071            | 0.0071            |
| 811            | 719        | 0.5                                | 92         | 0.1438     | 0.7071            | 0.0072            |
| 830            | 736        | 0.5                                | 94         | 0.1472     | 0.7071            | 0.0074            |
| 870            | 774        | 0.5                                | 96         | 0.1548     | 0.7071            | 0.0077            |
| 908            | 811        | 0.5                                | 97         | 0.1622     | 0.7071            | 0.0081            |
| 970            | 874        | 0.5                                | 96         | 0.1748     | 0.7071            | 0.0087            |
| 1019           | 918        | 0.5                                | 101        | 0.1836     | 0.7071            | 0.0092            |
| 1042           | 942        | 0.5                                | 100        | 0.1884     | 0.7071            | 0.0094            |
| 1210           | 1103       | 0.5                                | 107        | 0.2206     | 0.7071            | 0.0110            |
| 1370           | 1262       | 0.5                                | 108        | 0.2524     | 0.7071            | 0.0126            |
| 1527           | 1412       | 0.5                                | 115        | 0.2824     | 0.7071            | 0.0141            |
| 1723           | 1604       | 0.5                                | 119        | 0.3208     | 0.7071            | 0.0160            |
| 2043           | 1914       | 0.5                                | 129        | 0.3828     | 0.7071            | 0.0191            |
| 2264           | 2136       | 0.5                                | 128        | 0.4272     | 0.7071            | 0.0214            |
| 2483           | 2348       | 0.5                                | 135        | 0.4696     | 0.7071            | 0.0235            |
| 2583           | 2441       | 0.5                                | 142        | 0.4882     | 0.7071            | 0.0244            |
| 2824           | 2681       | 0.5                                | 143        | 0.5362     | 0.7071            | 0.0268            |
| 4426           | 4263       | 0.5                                | 163        | 0.8526     | 0.7071            | 0.0426            |
| 4878           | 4711       | 0.5                                |            | 0.9422     | 0.7071            | 0.0420            |
| 1              |            | 0.5                                | 167        |            |                   |                   |
| 5201           | 5034       |                                    | 167        | 1.0068     | 0.7071            | 0.0503            |
| 6575           | 6393       | 0.5                                | 182        | 1.2786     | 0.7071            | 0.0639            |
| 7125           | 6937       | 0.5                                | 188        | 1.3874     | 0.7071            | 0.0694            |
| 8530           | 8341       | 0.5                                | 189        | 1.6682     | 0.7071            | 0.0834            |
| 9386           | 9181       | 0.5                                | 205        | 1.8362     | 0.7071            | 0.0918            |
| 10260          | 10060      | 5                                  | 200        | 2.0120     | 7.0711            | 0.1006            |
| 13080          | 12610      | 5                                  | 470        | 2.5220     | 7.0711            | 0.1261            |
| 15650          | 15450      | 5                                  | 200        | 3.0900     | 7.0711            | 0.1545            |
| 18430          | 18030      | 5                                  | 400        | 3.6060     | 7.0711            | 0.1803            |
| 18810          | 18510      | 5                                  | 300        | 3.7020     | 7.0711            | 0.1851            |
| 20340          | 20120      | 5                                  | 220        | 4.0240     | 7.0711            | 0.2012            |
| 23250          | 22980      | 5                                  | 270        | 4.5960     | 7.0711            | 0.2298            |
| 25530          | 25270      | 5                                  | 260        | 5.0540     | 7.0711            | 0.2527            |
| 28580          | 28280      | 5                                  | 300        | 5.6560     | 7.0711            | 0.2828            |
| 30200          | 29900      | 5                                  | 300        | 5.9800     | 7.0711            | 0.2990            |
| 31950          | 31660      | 5                                  | 290        | 6.3320     | 7.0711            | 0.3166            |
| 33440          | 33120      | 5                                  | 320        | 6.6240     | 7.0711            | 0.3312            |
| 34670          | 34350      | 5                                  | 320        | 6.8700     | 7.0711            | 0.3435            |
| 35950          | 35690      | 5                                  | 260        | 7.1380     | 7.0711            | 0.3569            |
| 37820          | 37550      | 5                                  | 270        | 7.5100     | 7.0711            | 0.3755            |
| 38670          | 38350      | 5                                  | 320        | 7.6700     | 7.0711            | 0.3835            |
| 40910          | 40320      | 5                                  | 590        | 8.0640     | 7.0711            | 0.4032            |
| 41830          | 41550      | 5                                  | 280        | 8.3100     | 7.0711            | 0.4155            |
| 46370          | 46050      | 5                                  | 320        | 9.2100     | 7.0711            | 0.4605            |
| 49430          | 49010      | 5                                  | 420        | 9.8020     | 7.0711            | 0.4901            |
| 50630          | 50330      | 5                                  | 300        | 10.0660    | 7.0711            | 0.5033            |
| 55550          | 55550      |                                    | 300        | 10.0000    | 1.0111            | 0.0000            |

Табл.1. Вихідні параметри діода  $D_1$ ,<br/>пряме включення, $R_1=5$ кОм,  $T_1=20$ °С.

| II v.B                      | 11- v.D                    | AII- v.D          | AII u.D                   | 11- v.D    | Ι                   | $\Delta U_D$ , мВ | Δ1- ν.Δ                  |
|-----------------------------|----------------------------|-------------------|---------------------------|------------|---------------------|-------------------|--------------------------|
| <i>U<sub>sum</sub></i> , мВ | <i>U</i> <sub>R</sub> , мВ | $\Delta U_R$ , MB | $\Delta U_{sum}$ , MB 0.5 | $U_D$ , мВ | I <sub>D</sub> , MA |                   | $\Delta I_D$ , мА 0.0014 |
| 576                         | 139                        | 0.5               |                           | 437        | 0.0278              | 0.7071            | 0.0014                   |
| 629                         | 103                        | 0.5               | 0.5                       | 526        | 0.0206              | 0.7071            |                          |
| 646                         | 196                        | 0.5               | 0.5                       | 450        | 0.0392              | 0.7071            | 0.0020                   |
| 729                         | 267                        | 0.5               | 0.5                       | 462        | 0.0534              | 0.7071            | 0.0027                   |
| 807                         | 339                        | 0.5               | 0.5                       | 468        | 0.0678              | 0.7071            | 0.0034                   |
| 932                         | 445                        | 0.5               | 0.5                       | 487        | 0.089               | 0.7071            | 0.0045                   |
| 992                         | 507                        | 0.5               | 0.5                       | 485        | 0.1014              | 0.7071            | 0.0051                   |
| 1054                        | 565                        | 0.5               | 0.5                       | 489        | 0.113               | 0.7071            | 0.0057                   |
| 1116                        | 622                        | 0.5               | 0.5                       | 494        | 0.1244              | 0.7071            | 0.0062                   |
| 1224                        | 724                        | 0.5               | 0.5                       | 500        | 0.1448              | 0.7071            | 0.0072                   |
| 1337                        | 831                        | 0.5               | 0.5                       | 506        | 0.1662              | 0.7071            | 0.0083                   |
| 1682                        | 1155                       | 0.5               | 0.5                       | 527        | 0.231               | 0.7071            | 0.0116                   |
| 1868                        | 1342                       | 0.5               | 0.5                       | 526        | 0.2684              | 0.7071            | 0.0134                   |
| 2045                        | 1513                       | 0.5               | 0.5                       | 532        | 0.3026              | 0.7071            | 0.0151                   |
| 2240                        | 1704                       | 0.5               | 0.5                       | 536        | 0.3408              | 0.7071            | 0.0170                   |
| 2553                        | 2010                       | 0.5               | 0.5                       | 543        | 0.402               | 0.7071            | 0.0201                   |
| 2880                        | 2325                       | 0.5               | 0.5                       | 555        | 0.465               | 0.7071            | 0.0233                   |
| 3137                        | 2581                       | 0.5               | 0.5                       | 556        | 0.5162              | 0.7071            | 0.0258                   |
| 3852                        | 3291                       | 0.5               | 0.5                       | 561        | 0.6582              | 0.7071            | 0.0329                   |
| 4587                        | 4017                       | 0.5               | 0.5                       | 570        | 0.8034              | 0.7071            | 0.0402                   |
| 4977                        | 4383                       | 0.5               | 0.5                       | 594        | 0.8766              | 0.7071            | 0.0438                   |
| 4891                        | 4313                       | 0.5               | 0.5                       | 578        | 0.8626              | 0.7071            | 0.0431                   |
| 5305                        | 4712                       | 0.5               | 0.5                       | 593        | 0.9424              | 0.7071            | 0.0471                   |
| 6383                        | 5831                       | 0.5               | 0.5                       | 552        | 1.1662              | 0.7071            | 0.0583                   |
| 6880                        | 6215                       | 0.5               | 0.5                       | 665        | 1.243               | 0.7071            | 0.0622                   |
| 8018                        | 7397                       | 0.5               | 0.5                       | 621        | 1.4794              | 0.7071            | 0.0740                   |
| 8711                        | 8087                       | 0.5               | 0.5                       | 624        | 1.6174              | 0.7071            | 0.0809                   |
| 9327                        | 8721                       | 0.5               | 0.5                       | 606        | 1.7442              | 0.7071            | 0.0872                   |
| 10100                       | 9460                       | 5                 | 5                         | 640        | 1.892               | 7.0711            | 0.0946                   |
| 12420                       | 11720                      | 5                 | 5                         | 700        | 2.344               | 7.0711            | 0.1172                   |
| 14190                       | 13540                      | 5                 | 5                         | 650        | 2.708               | 7.0711            | 0.1354                   |
| 15740                       | 15030                      | 5                 | 5                         | 710        | 3.006               | 7.0711            | 0.1503                   |
| 16870                       | 16180                      | 5                 | 5                         | 690        | 3.236               | 7.0711            | 0.1618                   |
| 17660                       | 16940                      | 5                 | 5                         | 720        | 3.388               | 7.0711            | 0.1694                   |
| 19230                       | 18510                      | 5                 | 5                         | 720        | 3.702               | 7.0711            | 0.1851                   |
| 20470                       | 19810                      | 5                 | 5                         | 660        | 3.962               | 7.0711            | 0.1981                   |
| 23080                       | 22410                      | 5                 | 5                         | 670        | 4.482               | 7.0711            | 0.2241                   |
| 25430                       | 24750                      | 5                 | 5                         | 680        | 4.95                | 7.0711            | 0.2475                   |
| 27130                       | 26460                      | 5                 | 5                         | 670        | 5.292               | 7.0711            | 0.2646                   |
| 28220                       | 27530                      | 5                 | 5                         | 690        | 5.506               | 7.0711            | 0.2753                   |
| 29630                       | 28940                      | 5                 | 5                         | 690        | 5.788               | 7.0711            | 0.2894                   |
| 31210                       | 30520                      | 5                 | 5                         | 690        | 6.104               | 7.0711            | 0.3052                   |
| 32550                       | 31850                      | 5                 | 5                         | 700        | 6.37                | 7.0711            | 0.3185                   |
| 35130                       | 34440                      | 5                 | 5                         | 690        | 6.888               | 7.0711            | 0.3444                   |
| 38560                       | 37860                      | 5                 | 5                         | 700        | 7.572               | 7.0711            | 0.3786                   |
| 40030                       | 39340                      | 5                 | 5                         | 690        | 7.868               | 7.0711            | 0.3934                   |
| 42030                       | 41350                      | 5                 | 5                         | 680        | 8.27                | 7.0711            | 0.4135                   |
| 45480                       | 44720                      | 5                 | 5                         | 760        | 8.944               | 7.0711            | 0.4472                   |
| 48470                       | 47740                      | 5                 | 5                         | 730        | 9.548               | 7.0711            | 0.4774                   |
| 50240                       | 49500                      | 5                 | 5                         | 740        | 9.9                 | 7.0711            | 0.4950                   |

Табл.2. Вихідні параметри діода  $D_2$ ,<br/>пряме включення, $R_1=5$ кОм,  $T_1=20$ °C.

| $U_{sum}$ , B | $U_R$ , B | $\Delta U_R$ , B | $\Delta U_{sum}$ , B | $U_D$ , B | $I_D$ , мкА | $\Delta U_D$ , B | $\Delta I_D$ , мкА |
|---------------|-----------|------------------|----------------------|-----------|-------------|------------------|--------------------|
| 1.79          | 1.1       | 0.005            | 0.005                | 0.69      | 11.0        | 0.0071           | 0.5523             |
| 2.14          | 1.13      | 0.005            | 0.005                | 1.01      | 11.3        | 0.0071           | 0.5672             |
| 2.75          | 1.19      | 0.005            | 0.005                | 1.56      | 11.9        | 0.0071           | 0.5971             |
| 3.26          | 2.24      | 0.005            | 0.005                | 1.02      | 22.4        | 0.0071           | 1.1211             |
| 3.83          | 1.24      | 0.005            | 0.005                | 2.59      | 12.4        | 0.0071           | 0.6220             |
| 5.57          | 1.32      | 0.005            | 0.005                | 4.25      | 13.2        | 0.0071           | 0.6619             |
| 6.38          | 1.35      | 0.005            | 0.005                | 5.03      | 13.5        | 0.0071           | 0.6768             |
| 7.36          | 1.39      | 0.005            | 0.005                | 5.97      | 13.9        | 0.0071           | 0.6968             |
| 9.40          | 1.17      | 0.005            | 0.005                | 8.23      | 11.7        | 0.0071           | 0.5871             |
| 14.77         | 1.69      | 0.005            | 0.005                | 13.08     | 16.9        | 0.0071           | 0.8465             |
| 18.96         | 1.42      | 0.005            | 0.005                | 17.54     | 14.2        | 0.0071           | 0.7118             |
| 24.67         | 2.74      | 0.005            | 0.005                | 21.93     | 27.4        | 0.0071           | 1.3709             |
| 23.86         | 2.5       | 0.005            | 0.005                | 21.36     | 25.0        | 0.0071           | 1.2510             |
| 24.13         | 2.58      | 0.005            | 0.005                | 21.55     | 25.8        | 0.0071           | 1.2910             |
| 28.25         | 4.09      | 0.005            | 0.005                | 24.16     | 40.9        | 0.0071           | 2.0456             |
| 28.97         | 4.42      | 0.005            | 0.005                | 24.55     | 44.2        | 0.0071           | 2.2106             |
| 31.12         | 5.33      | 0.005            | 0.005                | 25.79     | 53.3        | 0.0071           | 2.6655             |
| 32.32         | 5.97      | 0.005            | 0.005                | 26.35     | 59.7        | 0.0071           | 2.9854             |
| 32.93         | 6.29      | 0.005            | 0.005                | 26.64     | 62.9        | 0.0071           | 3.1454             |
| 34.63         | 7.22      | 0.005            | 0.005                | 27.41     | 72.2        | 0.0071           | 3.6103             |
| 35.76         | 7.81      | 0.005            | 0.005                | 27.95     | 78.1        | 0.0071           | 3.9053             |
| 37.49         | 8.75      | 0.005            | 0.005                | 28.74     | 87.5        | 0.0071           | 4.3753             |
| 37.90         | 9.01      | 0.005            | 0.005                | 28.89     | 90.1        | 0.0071           | 4.5053             |
| 39.94         | 10.11     | 0.005            | 0.005                | 29.83     | 101.1       | 0.0071           | 5.0552             |
| 42.66         | 11.57     | 0.005            | 0.005                | 31.09     | 115.7       | 0.0071           | 5.7852             |
| 44.44         | 12.53     | 0.005            | 0.005                | 31.91     | 125.3       | 0.0071           | 6.2652             |
| 46.34         | 13.61     | 0.005            | 0.005                | 32.73     | 136.1       | 0.0071           | 6.8052             |
| 47.11         | 14.07     | 0.005            | 0.005                | 33.04     | 140.7       | 0.0071           | 7.0352             |
| 49.02         | 15.17     | 0.005            | 0.005                | 33.85     | 151.7       | 0.0071           | 7.5852             |
| 51.78         | 16.72     | 0.005            | 0.005                | 35.06     | 167.2       | 0.0071           | 8.3601             |
| 53.23         | 17.58     | 0.005            | 0.005                | 35.65     | 175.8       | 0.0071           | 8.7901             |
| 54.69         | 18.42     | 0.005            | 0.005                | 36.27     | 184.2       | 0.0071           | 9.2101             |
| 55.83         | 19.05     | 0.005            | 0.005                | 36.78     | 190.5       | 0.0071           | 9.5251             |
| 58.55         | 20.57     | 0.005            | 0.005                | 37.98     | 205.7       | 0.0071           | 10.2851            |
| 62.81         | 22.99     | 0.005            | 0.005                | 39.82     | 229.9       | 0.0071           | 11.4951            |
| 65.87         | 24.35     | 0.005            | 0.005                | 41.52     | 243.5       | 0.0071           | 12.1751            |
| 72.41         | 28.39     | 0.005            | 0.005                | 44.02     | 283.9       | 0.0071           | 14.1951            |
| 81.44         | 34.58     | 0.005            | 0.005                | 46.86     | 345.8       | 0.0071           | 17.2901            |
| 90.18         | 39.31     | 0.005            | 0.005                | 50.87     | 393.1       | 0.0071           | 19.6551            |
| 93.38         | 41.15     | 0.005            | 0.005                | 52.23     | 411.5       | 0.0071           | 20.5751            |
| 99.36         | 44.32     | 0.005            | 0.005                | 55.04     | 443.2       | 0.0071           | 22.1601            |

Табл.3. Вихідні параметри діода  $D_1$ , зворотнє включення,  $R_1=100$ к $\mathrm{Com}$ ,  $T_1=20$ ° $\mathrm{C.}$ 

| $U_{sum}$ , MB | $U_R$ , мВ | $\Delta U_R$ , мВ | $\Delta U_{sum}$ , мВ | $U_D$ , мВ | $I_D$ , нА | $\Delta U_D$ , мВ | $\Delta I_D$ , нА |
|----------------|------------|-------------------|-----------------------|------------|------------|-------------------|-------------------|
| 34             | 0.12       | 0.005             | 0.5                   | 33.88      | 1.2        | 0.5               | 0.0781            |
| 54             | 0.07       | 0.005             | 0.5                   | 53.93      | 0.7        | 0.5               | 0.0610            |
| 85             | 0.03       | 0.005             | 0.5                   | 84.97      | 0.3        | 0.5               | 0.0522            |
| 110            | 0.04       | 0.005             | 0.5                   | 109.96     | 0.4        | 0.5               | 0.0539            |
| 208            | 0.13       | 0.005             | 0.5                   | 207.87     | 1.3        | 0.5               | 0.0820            |
| 247            | 0.16       | 0.005             | 0.5                   | 246.84     | 1.6        | 0.5               | 0.0943            |
| 347            | 0.22       | 0.005             | 0.5                   | 346.78     | 2.2        | 0.5               | 0.1208            |
| 527            | 0.31       | 0.005             | 0.5                   | 526.69     | 3.1        | 0.5               | 0.1629            |
| 662            | 0.37       | 0.005             | 0.5                   | 661.63     | 3.7        | 0.5               | 0.1916            |
| 709            | 0.39       | 0.005             | 0.5                   | 708.61     | 3.9        | 0.5               | 0.2013            |
| 1041           | 0.55       | 0.005             | 0.5                   | 1040.45    | 5.5        | 0.5               | 0.2795            |
| 1524           | 0.75       | 0.005             | 0.5                   | 1523.25    | 7.5        | 0.5               | 0.3783            |
| 2109           | 1.03       | 0.005             | 0.5                   | 2107.97    | 10.3       | 0.5               | 0.5174            |
| 2883           | 1.32       | 0.005             | 0.5                   | 2881.68    | 13.2       | 0.5               | 0.6619            |
| 3237           | 1.46       | 0.005             | 0.5                   | 3235.54    | 14.6       | 0.5               | 0.7317            |
| 4515           | 2.03       | 0.005             | 0.5                   | 4512.97    | 20.3       | 0.5               | 1.0162            |
| 4837           | 2.18       | 0.005             | 0.5                   | 4834.82    | 21.8       | 0.5               | 1.0911            |
| 5644           | 2.53       | 0.005             | 0.5                   | 5641.47    | 25.3       | 0.5               | 1.2660            |
| 6024           | 2.67       | 0.005             | 0.5                   | 6021.33    | 26.7       | 0.5               | 1.3359            |
| 7455           | 3.25       | 0.005             | 0.5                   | 7451.75    | 32.5       | 0.5               | 1.6258            |
| 8175           | 3.66       | 0.005             | 0.5                   | 8171.34    | 36.6       | 0.5               | 1.8307            |
| 9162           | 3.97       | 0.005             | 0.5                   | 9158.03    | 39.7       | 0.5               | 1.9856            |
| 10060          | 4.45       | 0.005             | 5                     | 10055.55   | 44.5       | 5.0               | 2.2256            |
| 11090          | 4.9        | 0.005             | 5                     | 11085.1    | 49         | 5.0               | 2.4505            |
| 11850          | 5.27       | 0.005             | 5                     | 11844.73   | 52.7       | 5.0               | 2.6355            |

Табл.4. Вихідні параметри діода  $D_2$ , зворотнє включення,  $R_1=100$ к Ом,  $T_1=20$ ° С.

### 5.Графіки









Розрахуємо опір бази  $r_b$ .

$$r_b pprox rac{U_{
m np} - arphi_0}{I_{
m np}}$$

 $U_{\rm np}$  та  $I_{\rm np}$  можна знайти провівши до гілок ВАХ діодів прямого зміщення похилу лінію та зафіксувати, з якої напруги ВАХ стає практично прямою і зливається з проведеною похилою.

Дифузійний потенціал  $\varphi_0$  теж можна знайти з графіку: похила лінія, що перетинатиме вісь х і буде вказувати на значення цього потенціалу.

$$U_{
m пр1}=280~{
m MB};~I_{
m пр1}=8.5~{
m MA};~arphi_{01}=225~{
m MB};$$
  $U_{
m пр2}=690~{
m MB};~I_{
m пр2}=5.8~{
m MA};~arphi_{02}=625~{
m MB};$   $r_{b1}pprox rac{(280-225)\times 10^{-3}}{8.5\times 10^{-3}}=6.47~{
m OM}$   $r_{b2}pprox rac{(690-625)\times 10^{-3}}{5.8\times 10^{-3}}=11.2~{
m OM}$ 

Розрахуем струм виродження:

$$I_{\text{вир1}} = \frac{\varphi_T}{r_{b1}} = \frac{0.026}{6.47} = 0.004 \text{ A}$$

$$I_{\text{вир2}} = \frac{\varphi_T}{r_{b2}} = \frac{0.026}{11.2} = 0.002 \text{ A}$$

#### 6.Висновки з виконаної роботи

Аналізуючи графіки ВАХ діодів, можна сказати напевно, що другий діод є кремнієвим, оскільки прямий спад напруги на ньому більший ніж 0.6 В, що добре узгоджується з теорією.



Щодо першого діода, можна сказати, що це германієвий, оскільки прямий спад напруги в ньому приблизно дорівнює 0.3 В. Слід зазначити, що падіння напруги на діоді- погана характеристика, оскільки вона не здійснює корисної роботи і розсіюється у вигляді тепла на діоді, тому очевидно, що чим менша ця величина, тим краща. З цього можна зробити висновок, що германієві діоди кращі за кремнієві через малий спад напруги, хоча по всім іншим параметрам таким як: довговічність, дешевизна, доступність, простота виготовлення- германієві діоди програють кремнієвим.