Monday, January 28, 2019

- Word of the Day
 - Modularity: Splitting a problem into a series of self-contained modules
 - Benefits:
 - Modules are reusable
 - Easy to understand and maintain modules
 - World Wide Web (WWW)
 - Internet: Networks to connect devices
 - Web: Protocols for sharing info through websites
 - Webpages: A document that contains or references data
 - Uniform Resource Location (URL)
 - Hypertext Markup Language (HTML)

Wednesday, January 30, 2019

- FSB: Front Side Bus
- Word of the Day
 - Hierarchy: An organizational structure where items are ranked by importance
 - Memory Hierarchy
 - Cache (Volatile)
 - RAM (Volatile)
 - Hard Drive
 - Tape

Monday, February 4, 2019

- Computer Systems
 - Hardware: Physical parts
 - o Software
- History of Computing
 - Abacus (16th Century BC)
 - Blaise Pascal
 - 17th century mathematician who made a gear-driven addition and subtraction calculator for whole numbers
 - Joseph Jacquard
 - 18th century French inventor of Jacquard's Loom which could read punch cards
 - Charles Babbage
 - 19th century English mathematician who created, but never built, an analytical engine
 - Ada Augusta
 - 19th century English mathematician/author, credited as the first programmer
 - o Dr. Herman Hollerith
 - 19th century US census worker who created the electro-mechanical tabulator
 - Harvard Mk. 1

- Built by IBM, 765K components, 3M connections, 500 miles of wires and 3500 relays
- ENIAC (Electronic Numerical Integrator and Calculator)
- UNIVAC (Universal Automatic Computer 1)
- Computer Generations
 - First (1951-1959)
 - Vacuum Tubes
 - Card Readers
 - Magnetic Drum
 - Second (1959-1965)
 - Transistor
 - Magnetic Disk
 - Magnetic Cases
 - Third (1965-1971)
 - Integrated Circuits (IC)
 - Memory Transistors
 - Terminals
 - Fourth (1971-Now)
 - Large-Scale ICs

Wednesday, February 6, 2019

- Software
 - First Generation (1951-1959)
 - Machine Language
 - Binary files
 - Assembly Language and Translators
 - Code written with mnemonics which were translated into machine language
 - Programmer Changes
 - Programmers divided into systems programming and application programming
 - Second Generation (1959-1965)
 - Transistor, magnetic cores, magnetic discks
 - o Third Generation (1965-1971)
 - System software, utility programs, language translator, assembler, and compiler
 - Operating System
 - Fourth Generation (1971-1989)
 - Structured programming, Pascal, C++
 - New application softwares, spreadsheet, word processing, databases
 - Fifth Generation (1990-Present)
 - Microsoft
 - Object-Oriented Design, Java
 - WWW, HTML, PHP, Javascript

- Alan Turing (1912-1954)
 - British mathematician who invented the idea of a turning machine, turing compatibility, the turing test, and turing award
- Word of the Day
 - Abstract: A model which removes complex details

Monday, February 11, 2019

- Number Systems
 - Natural Numbers: The number 0 and any number obtained by repeatedly adding
 1 to it (all positive ints); {0, 1, 2, ...}
 - o Integer Number: A natural number or its negative; {..., -2, -1, 0, 1, 2, ...}
 - o Rational Number: An integer or the quotient of two integers
 - Irrational Number: All the real numbers which are not rational numbers
 - o Prime Number: A natural number >1 with no factors other than 1 and itself
 - o Base: A number which dictates the foundation of a number system
 - Positional Notation
 - \blacksquare Ex. 642 = 6 * 10^2 + 4 * 10^1 + 2 * 10^0
- Word of the Day
 - Generalization: The formulation of general concepts from specific instances by abstracting common properties

Wednesday, February 13, 2019

- Positional Notation
 - \circ Ex. $5F_{16} = 5 * 16^1 + F * 16^0 = 95$
 - \circ Ex. 1178_{10->6} = 1178/6 =196r**2**, 196/6=32r**4**, 32/6=5r**2**, %=0r**5** so 1178₁₀=5242₆
- Word of the Day
 - Convention: Agreed upon way of doing things, decided by a community
 - Syntax Error: A violation of syntax (grammatical rules) of a natural or programming language
 - "You is going to the game tonight."
 - Semantics Error: A violation of the rules of the meaning of a natural or programming language
 - "My TV is driving my car to UNR."

Monday, February 18, 2019

Presidents Day (No Class)

Wednesday, February 20, 2019

- Binary to Octal
 - Ex. 0011010111101₂ -> 001 101 011 101 -> 1535₈
- Binary Addition
 - o Ex. 1011+1110=11001
- Data Representation
 - Data is stored in binary as bits (b)
 - Analog vs Digital
 - Computers cannot store analog data, so it must be digitized
- Data Compression

- Reduction in the amount of space needed to store a piece of data or the bandwidth to transmit it
- Compression Ratio: The size of the compressed data over the size of the original data
- Can be lossless, data can be retrieved without loss of information, or lossy, some information may be lost

Monday, February 25, 2019

- Representing Numbers
 - Negative Numbers
 - One method is reserving the left-most bit as a sign bit
 - Complement
 - Ex. Complement of 99₁₀=-1₁₀ assuming the number system range is (-100, 100)
 - 10's Complement: Complement(i) = 10^k-i

• Ex. 15 - 11 = 4 === 15 +
$$(10^2$$
-11) = 15 + 89 = 104 % 100 = 4

• 2's Complement: Complement(i) = 2^k-i

- o Real Numbers: Numbers with a decimal
 - **Ex.** 1.1_{10} ->₂ = 0.1 * 2 = **0**.2 * 2 = **0**.4 * 2 = **0**.8 * 2 = **1**.6 -> 0.6 * 2 = **1**.2 -> **0**.2 ... = 1.0001100011.....₂
 - Floating Point
 - Sign * mantissa * 10^{exponent} for base 10
 - Represented in binary as 32b:
 - [sign(1b)][exponent(8b)][mantissa(23b)]
- Representing Text
 - ASCII (American Standard Code for Information Interchange)

Wednesday, February 27, 2019

- Text Compression
 - Run Length Encoding
 - Ex. bbbbbbbbjjjkllqqqqqq+++++ -> *b8jjjkll*q6*+5 (Compression ratio = 15/25, 15=compressed size (length in chars), 25=original size)
 - Ex. *x4*p4l*k7 -> xxxxpppplkkkkkkk
 - Huffman Encoding
 - Using a variable-length binary string to represent a character so that frequently used characters have a short code
 - An example of prefix coding, no character's bit string is the prefix of any other character's bit string
 - To decode, look for a match from left to right, bit by bit

Wednesday, March 6, 2019

- Lossless Text Compression
 - Keyword encoding

- o Run-length encoding
- Huffman encoding
- Representing Audio Information
 - Analog audio signal can be digitized by sampling (measuring the voltage) and then quantizing (converting the voltage measurement to bits) it
 - 40,000 samples per second is standard
 - Analog data is a continuous representation while digital is discrete
- Representing Images and Graphics
 - Color is expressed as an RGB value

Wednesday, March 13, 2019

- Digitizing Photos
 - o Pixels
 - o Resolution
 - Raster Graphics
 - Vector Graphics

0