CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12 Mathematics 2U

Term2 Assessment Task 2014

Time allowed: 55 minutes			
Name:	_ Class:	Teacher	
White / Lobejko / Fardouly / Lego / Wilson			

Instructions:

- All questions should be attempted.
- Show ALL necessary working on your own paper.
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.
- Start each question on a new page and only write on one side of each sheet of paper.

	Q1	Q2	Q3	Q4	Q5	TOTAL
Н3	/10	/9				/19
Н5				/8	/8	/16_
Н8			/8			/8
TOTAL	/10	/9	/8	/8	/8	/43

QUESTION 1 (10 MARKS) **MARKS** a) Solve $\log(x-2) + \log(x-5) = \log(x+3)$ 3 b) If $log_a 3 = 0.12$ and $log_a 4 = 0.21$ find $log_a 36$. 2 c) Simplify $log_3\sqrt{3} + log_3\frac{1}{9}$. 2 d) Differentiate and simplify: $y = \ln(4 - x^2)$ 1 (ii) $f(x) = \ln(\frac{2x+1}{x-3})$ 2 QUESTION 2 (9 MARKS) a) Find $\int \frac{2x+1}{2x^2+2x-5} dx$ 2 $\int 5e^{1-x}dx$ 1 (iii) $\int_1^2 e^{3x} - ex \ dx$.2 b) (i) If $y = \frac{e^x}{x}$, find $\frac{dy}{dx}$. 1 3 (ii) Hence, show that the equation of the normal to the curve $y = \frac{e^x}{x}$ at x = -1 is $ex - 2y - \frac{2}{e} + e = 0$. QUESTION 3 (8 MARKS) 3 a) Calculate the volume formed by rotating the area bounded by the curve $y = \frac{1}{\sqrt{2x}}$, x = e, $x = 3e^2$ and the x axis about the x axis. Give your answer correct to 3 significant figures. 1 Sketch $y = \ln(x - 1)$. b) (i) 1 (ii) For $y = \ln(x - 1)$ make x the subject Hence, or otherwise find the exact area between $y = \ln(x - 1)$, the x axis 3 (iii) and x = 2 and x = 4. QUESTION 4 (8 MARKS) a) Express 280° in radians in exact form. 1 b) State the exact value of $\cos \frac{7\pi}{6}$. 1

2

c) Solve 1 + tanx = 0 for $0 \le x \le 2\pi$.

d)

NOT TO SCALE

In the diagram, O is the centre of the two circles. OA=AB=3cm.

The angle BOC subtended at the centre is $\frac{\pi}{3}$.

Giving answers in exact form:

(i) Find the length of the arc BC.
 (ii) Calculate the area of the sector AOD.
 (iii) Calculate the area of the triangle BOC.
 (iv) Find the shaded area, correct to 2 decimal places.

QUESTION 5 (8 MARKS)

a) Simplify
$$\frac{\sin(\pi-\theta)}{\tan(2\pi-\theta)}$$
.

b) (i) State the period and amplitude of
$$y=-4sin\frac{x}{2}$$
. 1

(ii) Sketch $y=-4sin\frac{x}{2}$ for $-2\pi \le x \le 2\pi$ 2

(iii) From your graph how many solutions exist for $-4sin\frac{x}{2}=-1$. 1

(iv) Calculate the values of x which satisfy the equation 2

 $-4sin\frac{x}{2}=-1$ for $-2\pi \le x \le 2\pi$. Give your answer(s) in radians correct to 2 decimal places.

$$(x-2)(x-5) = x+3$$

$$x^2 - 7x + 10 = x+3$$

$$x^{2}-8x+7=0$$

 $(x-7)(x-1)=0$

b)
$$\log_a 36 = \log_a (9 \times 4)$$

$$= \log_a 9 + \log_a 4 \quad 0$$

$$= 2\log_a 3 + \log_a 4$$

$$= 0.45 \quad 0$$

c)
$$log_3^{3/2} + log_3^{3/2}$$
 (1)
= $\frac{1}{2}log_3^{3/2} - 2log_3^{3/2}$
= $-1\frac{1}{2}$ (1)

$$d_1(i) \frac{dy}{dn} = \frac{-2x}{4-x^2} \quad 0$$

(i)
$$f(x) = \frac{1}{2x+1} - \frac{1}{x-3}$$

$$f'(x) = \frac{2}{2x+1} - \frac{1}{x-3}$$

$$= \frac{2(x-3) - (2x+1)}{(2x+1)(x-3)}$$

$$= \frac{-7}{2x+1}$$

2.
$$\frac{1}{2} \int \frac{4n+2}{2x^2+2x-5} dn$$
 (1)
$$= \frac{1}{2} \log (2x^2+2x-5) + C($$

(ii)
$$\frac{1}{3}e^{3x} - \frac{e^{2x}}{2} \int_{1}^{2} 0$$

= $\left(\frac{1}{3}e^{6} - 2e\right) - \left(\frac{1}{3}e^{2} - \frac{e^{2}}{2}\right)$
= $\frac{1}{3}e^{6} - \frac{1}{3}e^{3} - \frac{3e}{3}$ (i

by i)
$$\frac{dy}{dx} = \frac{xe^{x} - e^{x}}{x^{2}}$$

$$= \frac{e^{x}(x-1)}{x^{2}}$$

(ii) When
$$n = -1$$

$$\frac{dy}{dx} = -\frac{2}{e}$$

$$y + \frac{1}{e} = \frac{e}{x}(x+1)$$

$$ex - 2y + e^{-\frac{2}{e}} = 0$$

$$3nq$$
 $V = T \int_{e}^{3e^{2}} \frac{1}{2\pi} d\pi$ 0

$$= \frac{T}{2} \left[log x \right]_{e}^{3e^{2}}$$

$$= \frac{T}{2} \left(log 3e^{2} - log e \right)$$

$$= \frac{T}{2} \left(log 3 + 2log e - log e \right)$$

$$= \frac{T}{2} \left(log 3 + 1 \right)$$

= 3.30 un 4 3

A =
$$4 \ln 3 - \int_{0}^{\ln 3} e^{y} + 1 dy$$
 0
= $4 \ln 3 - \int_{0}^{\ln 3} e^{y} + y \int_{0}^{\ln 3} 0$
= $4 \ln 3 - \int_{0}^{\ln 3} (e^{\ln 3} + \ln 3) - (1)$
= $4 \ln 3 - 3 - \ln 3 + 1$
= $3 \ln 3 - 2 + \ln 3$

$$b_1 - \frac{\sqrt{3}}{2}$$

(ii)
$$A = \frac{1}{2} \times 3^2 \times \frac{\pi}{3}$$

 $= \frac{3\pi}{3} cm^2$

$$\frac{2}{2} = 0.2527, T - 0.2527$$

$$= 0.2527, 2.8889$$

$$X = 0.51, 5.78$$