Projective Geometry

Tejaswi

Advisor: Dr. Steven Spallone

 $Summer\ 2025$

Contents

1	Some Algebra			
	1.1	Groups, Rings and Fields	1	
	1.2	Field Extensions	3	
2	Conics			
	2.1	Dandelin Spheres	4	
	2.2	Group Laws on Conics		
	2.3	Generating Solutions for Diophantine Equations	0	
	2.4	Conics in Fields of Charecteristic 2	.0	
3	Affine Geometry			
	3.1	Affine Space	. 1	
	3.2	Fundamental Theorem of Affine Geometry		
	3.3	Affine Congruence of Conics		
4	Projective Geometry			
	4.1	The Projective Space	2	
	4.2	Fundamental Theorem of Projective Geometry	2	
	4.3			
	4.4	Group Laws on Elliptic Curves		

Some Algebra

1.1 Groups, Rings and Fields

•Groups

Definition. A group is an ordered pair (G, *) where G is a set and * is a binary operation on G satisfying the following axioms:

- (i) $(a * b) * c = a * (b * c) \forall a, b \in G$,
- (ii) $\exists e \in G$, called identity of G, such that $\forall a \in G$ we have a * e = e * a = a,
- (iii) for each $a \in G$, $\exists a^{-1} \in G$, called inverse of a, such that $a * a^{-1} = a^{-1} * a = e$,

The group is called abelian is $a * b = b * a \forall a, b \in G$. [DF04]

Ex. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are groups under + with e = 0, and $a^{-1} = -a$ for all a, and $\mathbb{Q} - \{0\}$, $\mathbb{R} - \{0\}$, and $\mathbb{C} - \{0\}$ are groups under \times with e = 1 and $a^{-1} = \frac{1}{a}$ for all a.

Remark. If G is a group under the opertaion *, then

- 1. the identity of G is unique,
- 2. for each $a \in G$, a^{-1} is uniquely determined,
- 3. $(a^{-1})^{-1} = a$ for all $a \in G$,
- 4. $(a*b)^{-1} = b^{-1}*a^{-1}$,
- 5. for any $a_1, a_2, \ldots, a_n \in G$, the value of $a_1 * a_2 * \ldots * a_n$ is independent of how the expression is bracketed,

6. if a * u = a * v, then u = v, and if u * b = v * b, then u = v.

Definition. Let (G, *) and (H, \diamond) be groups. A map $\phi : G \to H$ such that $\phi(x*y) = \phi(x) \diamond \phi(y)$ for all $x, y \in G$ is called a homomorphism. The map is called an isomorphism and G and H are said to be isomorphic, written $G \cong H$, if ϕ is a bijective homomorphism. [DF04]

Ex. For any group $G, G \cong G$. The identity map provides an obviuos isomorphism. - The exponentiation map $exp : \mathbb{R} \to \mathbb{R}^+$ defined by $exp(x) = e^x$, is an isomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}^+, \times) .

•Fields

Definition. A *field* is a set F together with two binary operations + and \times such that (F, +) is an abelian group and $(F - \{0\}, \times)$ is also an an abelian group, and the following distribution law holds: $a \times (b+c) = (a \times b) + (a \times c)$ for all $a, b, c \in F$. [DF04]

Ex. With usual addition and multiplication, \mathbb{Q} and \mathbb{R} are fields.

- $\mathbb{Z}/p\mathbb{Z}$, where p is a prime, with modular addition and multiplication, is a finite field.

Remark. For any field F if $|F| < \infty$, then $|F| = p^m$ for some prime p and some interger m.

Definition. The *charfecteristic* of a field F, denoted by ch(F), is defined to be the smallest positive integer p such that $p \cdot 1_F = 0$ if such p exists, and defined to be zero otherwise. [DF04]

Remark. The charecteristic of a field F, ch(F), is either 0 or a prime p.

•Rings

Definition. A ring R is a set together with two binary operations + and \times satisfying the following axioms

- (i) (R, +) is an abelian group,
- (ii) \times is associative: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in R$,
- (iii) the distributive laws hold in R: for all $a, b, c \in R$, $(a+b) \times c = (a \times c) + (b \times c)$ and $a \times (b+c) = (a \times b) + (a \times c)$

The ring R is commutative if R is commutative. R is said to have an identity if there is an element $1 \in R$ with $1 \times a = a \times 1$ for all $a \in R$. [DF04]

Ex. All fields are obviously rings.

- The simplest rings are *trivial rings*, obtained by taking R to be any abelian group and defining multiplication \times on R by $a \times b = 0$ for all $(a, b) \in R$. *trivial rings* are also commutative, as obviuos from the definition.
- The ring of integers \mathbb{Z} under usual addition and multiplication is a commutative ring with identity 1.

1.2 Field Extensions

Definition. If K is a field containing the subfield F, then K is said to be an extension of F, denoted K/F. The field F is sometimes called the base field of the extension. [DF04]

Definition. The prime subfield of a field F is the subfield of F generated by its multiplicative identity 1_F . It is isomorphic to either $\mathbb{Q}(\text{if } ch(F) = 0)$, or to $\mathbb{F}_p(\text{if } ch(F) = p)$.

Remark. Every field F is an extension of its prime subfield.

Definition. The *degree* of a field extension K/F, denoted [K:F], is the dimension of K as a vector space over F.

An important class of field extensions are those obtained by trying to solve equations over a field F. Famously, Gauss extended \mathbb{R} in an attempt to solve the equation $x^2 + 1 = 0$. The new field generated by adjoining the roots of the equation i and -i to \mathbb{R} is \mathbb{C} . Given any field F and a polynomial $p(x) \in F[x]$, one can similarly extend it to form a field K, containing solution to the equation p(x) = 0.

Conics

Definition. A conic section, a conic, or a quadratic curve is a curve obtained from a cone's surface intersecting a plane.

2.1 Dandelin Spheres

Germinal Pierre Dendelin, a 19th century French-Belgian Professor, discovered this beautiful proof to demonstrate that any plane that cuts through a right circular cone produces a quadratic curve.

Theorem. When a plane intersects a right circular cone, the curve produced will either be an ellipse, a parabola or a hyperbola.

Proof. Place a sphere tangent to the intersecting plane π and the cone such that it touches the plane at F, and the cone in a circle C with centre O that lies on a horizontal plane ϵ .

Take an aribtrary point P on the curve Q, and extend the line VP from the vertex V of the cone to meet C at point L. Let D be the point on the intersection on the planes π and ϵ such that PD is perpendicular to the line of intersection. (If the planes do not intersect, Q will be a circle)

Drop a perpendicular PM on OL such that $\triangle PML$ and $\triangle PMD$ are both right angled. Denote $\angle PLM$ as α , and $\angle PDM$ as β .

 $^{^{1}}$ Assuming such sphere exists.

From the triangles $\triangle PML$ and $\triangle PMD$

$$\sin \alpha = \frac{PM}{PD}$$
and
$$\sin \beta = \frac{PM}{PL}$$
i.e.
$$\frac{PL}{PD} = \frac{\sin \alpha}{\sin \beta}$$

Figure 2.1: When $0 < \alpha < \beta < \frac{\pi}{2}$. Figure from [BEG12]

Since PL and PF are both tangents from P to the sphere, PF = PL. Therfore,

$$\frac{PF}{PD} = \frac{\sin \alpha}{\sin \beta}$$

i.e. $PF = e \cdot PD$, where $e = \sin \alpha / \sin \beta$

It follows from the focus - directrix definition that Q will be an ellipse if $\alpha < \beta$, a parabola if $\alpha = \beta$, or a hyperbola if $\alpha > \beta$.

Remark. Proof adapted from [BEG12] with modifications to generalize it for all conics.

2.2 Group Laws on Conics

Consider a conic section $C: \{f(x) = 0, f(x) \in \mathbb{F}[x]\}$, where deg(f(x)) = 2, and $ch(\mathbb{F}) \neq 2$, and a point $O \in C$ For any $P, Q \in C$, define a binary operation $\oplus: C \times C \to C$ by $P \oplus Q = R$, where R is such that $l_{PQ} \| l_{OR}$.

Theorem. Set of points of C forms a group G(C) under the binary operation \oplus , with O as the identity element.

Proof. Closure: The line through O parallel to l_{PQ} necessarily meets C again, (counting algebraic multiplicities) since for any quadratic equation with real coeffecients, if one of the roots is real, the other one must be real too.

Existence of Identity Element: The point O serves as the identity element.

Existence of Inverse: Constructively, when Q is such that the line parellel to l_{PQ} that passes through O is tangent to the conic, i.e when R = O, we get $P \oplus Q = O$. So, Q serves as the inverse of P.

Associativity: To prove associativity, we'll find algebraic formula for $P \oplus Q$ for standard conics, i.e for the circle $x^2 + y^2 = 1$, for the parabloa $y = x^2$, and for the hyperbola xy = 1. In the next chapter, we'll prove that any ellipse, hyperbola or parabola is affine congruent to its standard form. This result will generalize the result to all conics. The following formulae will be valid for any fields with non-two charecteristic.

Let the point P be (p_1, p_2) , Q be (q_1, q_2) , O be (o_1, o_2) , and R be (r_1, r_2) , and let the slope of the line l_{PQ} be $\lambda = q_2 - p_2/q_1 - p_1$, assuming $P \neq Q$, since associativity would be trivial then. Let ℓ be the line through O with slope λ . The coordinates of R will satisfy $\lambda = \frac{r_2 - o_2}{r_1 - o_2} = \frac{q_2 - p_2}{q_1 - p_1}$, $\Rightarrow r_2 = o_2 + \mu(q_2 - p_2)$ and $r_1 = o_1 + \mu(q_1 - p_1)$ for some $\mu \in \mathbb{F}$.

(i) Circle

Without loss of generality, let O=(1,0). Since R also lies on C, $r_1^2+r_2^2=1$. i.e.

$$(1 + \mu(q_1 - p_1))^2 + (0 + \mu(q_2 - p_2))^2 = 1$$

$$\Rightarrow \quad \mu(\mu(q_1 - p_1)^2 + \mu(q_2 - p_2)^2 + 2(q_1 - p_1)) = 0$$

$$\Rightarrow \quad \mu = 0 \text{ or } \mu = -\frac{2(q_1 - p_1)}{(q_1 - p_1)^2 + (q_2 - p_2)^2}$$

We assume that $(q_1 - p_1)^2 + (q_2 - p_2)^2 \neq 0$. Because if it was so,

$$q_1^2 + p_1^2 - 2q_1p_1 + q_2^2 + p_2^2 - 2p_2q_2 = 0$$

$$\Rightarrow 1 - p_1q_1 - p_2q_2 = 0$$

$$\Rightarrow p_1^2q_1^2 = 1 + p_2^2q_2^2 - 2p_2q_2$$

$$\Rightarrow p_1^2q_1^2 = 1 + (1 - p_1^2)(1 - q_1^2) - 2p_2q_2$$

$$\Rightarrow 0 = 2 - p_1^2 - q_1^2 - 2p_2q_2$$

$$\Rightarrow (p_2 - q_2)^2 = 0$$

$$\Rightarrow p_2 = q_2 \text{ and similarly, } p_1 = q_1$$

Which is when P = Q, which we have assummed not to be true.

Figure 2.2: $R = P \oplus Q$ when C is a circle.

The $\mu = 0$ solution corresponds to O. Considering the other solution,

$$r_{1} = 1 - \frac{2(q_{1} - p_{1})^{2}}{(q_{1} - p_{1})^{2} + (q_{2} - p_{2})^{2}}$$

$$= \frac{(q_{2} - p_{2})^{2} - (q_{1} - p_{1})^{2}}{(q_{1} - p_{1})^{2} + (q_{2} - p_{2})^{2}}$$

$$= \frac{q_{2}^{2} + p_{2}^{2} - 2p_{2}q_{2} - q_{1}^{2} - p_{1}^{2} + 2p_{1}q_{1}}{2(1 - p_{1}q_{1} - p_{2}q_{2})}$$

$$= \frac{1 - p_{1}^{2} - q_{1}^{2} + p_{1}q_{1} - p_{2}q_{2}}{1 - p_{1}q_{1} - p_{2}q_{2}}$$

$$= \frac{(p_{1}q_{1} - p_{2}q_{2})(1 - p_{1}q_{1} - p_{2}q_{2})}{1 - p_{1}q_{1} - p_{2}q_{2}}$$

$$= p_{1}q_{1} - p_{2}q_{2}$$

$$= p_{1}q_{1} - p_{2}q_{2}$$

$$= \frac{(p_{1}q_{2} + p_{2}q_{1} - p_{1}p_{2} - q_{1}q_{2}}{1 - p_{1}q_{1} - p_{2}q_{2}}$$

$$= \frac{(p_{1}q_{2} + p_{2}q_{1})(1 - p_{1}q_{1} - p_{2}q_{2})}{1 - p_{1}q_{1} - p_{2}q_{2}}$$

$$= p_{1}q_{2} + p_{2}q_{1}$$

$$\implies R = P \oplus Q = (r_1, r_2) = (p_1q_1 - p_2q_2, p_1q_2 + p_2q_1)$$

Using this formula, it can be proved that $(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$.

(ii) Parabola

Without loss of generality, let O = (0,0). The points of the standard parablea can be parameterized as (t,t^2) . Let $P = (p,p^2)$, $Q = (q,q^2)$, and $R = (r,r^2)$. Substituting these in λ ,

$$\lambda = \frac{r^2}{r} = \frac{q^2 - p^2}{q - p}$$

$$\implies r = p + q$$

$$\implies P \oplus Q = (p + q, (p + q)^2)$$

Since the parameters just get added, it can be easily proved that $P\oplus (Q\oplus R)=(P\oplus Q)\oplus R$

Figure 2.3: $R = P \oplus Q$ when C is a parabola.

(iii) Hyperbola

Without loss of generality, let O=(1,1). The points of the standard hyperbola can be parameterized as $(t,\frac{1}{t})$. Let $P=(p,\frac{w}{p}),\ Q=(q,\frac{1}{q})$, and $R=(r,\frac{1}{r})$. Substituting these in λ ,

$$\lambda = \frac{\frac{1}{r} - 1}{r - 1} = \frac{\frac{1}{q} - \frac{1}{p}}{p - q}$$

$$\implies r = pq$$

$$\implies P \oplus Q = (pq, \frac{1}{pq})$$

Figure 2.4: $R = P \oplus Q$ when C is a hyperbola.

Since parameters just get multiplied, it can be easily proved that $P \oplus (Q \oplus R) = (P \oplus Q) \oplus R$

Remark. Proof adapted from [Shi09] with a formula based field independent proof for associativity.

2.3 Generating Solutions for Diophantine Equations

Consider the conic $C = (x, y) \in \mathbb{Q}|x^2 + y^2 = 1$, and $P = (1, 0) \in C$. Let l_m be the line with slope $m \in Q$, passing through P and another point $Q = (x, y) \in C$. The coordinates of Q can be found by substituting y = m(x - 1).

$$x^{2} + m^{2}(x-1)^{2} - 1 = (1+m^{2})x^{2} - 2m^{2}x - (1-m^{2}) = 0$$

using the quadratic formula,

$$x = \frac{m^2 \pm 1}{1 + m^2}$$

using the non-trivial solution, we get $x = \frac{m^2 - 1}{m^2 + 1}$ and $y = \frac{-2m}{m^2 + 1}$. substiting these values in the equation for the conic,

$$\left(\frac{m^2 - 1}{m^2 + 1}\right)^2 + \left(\frac{-2m}{m^2 + 1}\right)^2 = 1$$
$$\Longrightarrow (m^2 - 1)^2 + (2m)^2 = (m^2 + 1)^2$$

This equation will produce integer solutions for $x^2 + y^2 = 1$, though not all of them. Similarly rational or integer solutions for any equations of the form $ax^2 + by^2 = c$, where $a, b, c \in Q$.

2.4 Conics in Fields of Charecteristic 2

Affine Geometry

3.1 Affine Space

Definition. A set ε is endowed with the structure of an affine space by a vector space E and a mapping Θ that associates a vector of E with any ordered pair of points in ε ,

$$\begin{array}{ccc}
\varepsilon \times \varepsilon & \longrightarrow & E \\
(A,B) & \longmapsto & \overrightarrow{AB}
\end{array}$$

such that:

- for any point A of ε , the partial map $\Theta_A: B \mapsto \overrightarrow{AB}$ is a bijection from ε to E
- for any points A, B, and C in ε , we have $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$.

The vector space E is the direction of ε , or its underlying vector space. The elements of ε are called points, and the dimension of the vector space E is called the dimension of ε . [Aud02]

3.2 Fundamental Theorem of Affine Geometry

3.3 Affine Congruence of Conics

Projective Geometry

4.1 The Projective Space

4.2 Fundamental Theorem of Projective Geometry

4.3 Some Theorems

Theorem (Desargues's Theorem).

Remark. Proof adapted from [BEG12], with some modifications.

Theorem (Pascal's Theorem).

Proof.

Proof.

Remark. Proof adapted from [vY93].

4.4 Group Laws on Elliptic Curves

Definition. An elliptic curve is a non-empty, non-singular, degree 3 projective curve. [Spa]

Bibliography

- [Aud02] Michéle Audin. Geometry. Universitext. Springer-Verlag, 2002.
- [BEG12] David A. Brannan, Matthew F. Esplen, and Jeremy J. Gray. *Geometry*. Cambridge University Press, second edition, 2012.
- [DF04] David S. Dummit and Richard M. Foote. *Abstract Algebra*. John Wiley and Sons, third edition, 2004.
- [Shi09] Shailesh Shirali. Groups associated with conics. *The Mathematical Gazette*, March 2009.
- [Spa] Steven Spallone. Introduction to curves.
- [vY93] Jan van Yzeren. A simple proof of pascal's hexagon theorem. The American Mathematical Monthly, 100(10), December 1993.