Biomath 202 2019 Exam

SIMON LEE

Introduction 1

a. The SIR model equations represent the rates of change of three population groups:

• - Susceptible (S): $\frac{dS}{dt} = -\beta IS$

• - Infected (I): $\frac{dI}{dt} = \beta IS - \gamma I$

• - Recovered (R): $\frac{dR}{dt} = \gamma I$

The total population N = S + I + R. Adding the equations:

$$\frac{dN}{dt} = \frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = -\beta IS + \beta IS - \gamma I + \gamma I = 0$$

So total population is conserved.

The fixed points are found by setting all derivatives to zero. This gives: 1) S = N, I = R = 0 (disease-free equilibrium) 2) $S^* = \frac{\gamma}{\beta}$, $I^* = \mu(\beta N - \gamma)/(\beta \gamma)$, $R^* = (\beta - \mu)N/\beta$, where $\mu = \frac{\gamma}{\beta N}$ (endemic equilibrium) $S^* = \frac{\gamma}{\beta}$ is the herd immunity threshold, below which the disease will spread.

b. To incorporate vaccination at rate v and GBS deaths at rate δ :

$$\frac{dS}{dt} = -\beta IS - vS$$

$$\frac{dI}{dt} = \beta IS - \gamma I - \delta I$$

$$\frac{dR}{dt} = \gamma I + vS$$

$$\frac{dD}{dt} = \delta I$$

(new compartment for GBS deaths)

Now $\frac{dN}{dt} = -\delta I$, so total population is not conserved due to GBS deaths.

As $t \to \infty$, the system will approach an equilibrium with I = 0 and $S = \frac{\gamma + \delta}{\beta + \nu}$.

c. Let p be the frequency of the GBS allele, q = 1 - p the normal allele frequency. Assuming HWE, the mean fitness is:

$$\bar{w} = p^2(1-s) + 2pq + q^2$$

, where s = 0.1 is the selection coefficient.

The variance of p is V(p)=2pq, maximized at p=0.5. From the equation in part b, $\frac{I^*}{N}=\frac{\delta}{\delta+\gamma}\Rightarrow p=\frac{\delta}{\delta+\gamma}$, and V(p)=2p(1-p). The strength of selection against p is:

$$\frac{\partial \ln(\bar{w})}{\partial p} \approx -2qs = -2(1-p)s$$

By Wright's equation, the change in p per generation is:

$$\Delta p = -V(p)\frac{\partial \ln(\bar{w})}{\partial p} = -2pq \cdot -2qs = 4pq^2s$$

Since $q \approx 1$ for a rare allele, $\Delta p \approx 4ps$, driven more by the selection coefficient s = 0.1 than the variance term 2pq << 1. The GBS allele frequency will decrease slowly each generation.

d. If the world population is 7 billion and everyone gets vaccinated, then the number of vaccinations needed is simply 7 billion. The number of generations until the GBS mutation is eliminated depends on the selection pressure against it.

e. To make stochastic predictions, we can use the Wright-Fisher model. The variance in allele frequency p is $V(p) = p(1-p)/(2N_e)$, where N_e is the effective population size. The selection term from part c is

$$\frac{\partial \ln(\bar{w})}{\partial p} \approx -2(1-p)s$$

Putting these together, the expected change in p per generation is:

$$\mathbb{E}[\Delta p] = -V(p)\frac{\partial \ln(\bar{w})}{\partial p} = -\frac{p(1-p)}{2N_e} \cdot -2(1-p)s = \frac{p(1-p)^2s}{N_e}$$

At equilibrium, $\mathbb{E}[\Delta p] = 0$, which occurs when p = 0 (mutation eliminated) or p = 1 (mutation fixed), assuming $s \neq 0$ and N_e is finite.

The time to elimination depends on the initial p and the population size N_e . In a very large population, drift is weak and selection dominates, so elimination would be faster than in a small population where drift is strong relative to selection.

Other factors that could help the GBS allele persist include:

- - Balancing selection (heterozygote advantage)
- - Linked selection (hitchhiking with a beneficial allele)
- - Population structure/migration
- - Mutation-selection balance

f. If a genetic screen identified carriers, the SIR equations would be:

$$\begin{aligned} \frac{dS}{dt} &= -\beta IS - vS \\ \frac{dI}{dt} &= \beta IS - \gamma I \\ \frac{dR}{dt} &= vS + \gamma I \\ \frac{dG}{dt} &= -vG \end{aligned}$$

(screened group)

The total population is N = S + I + R + G, conserved since:

$$\frac{dN}{dt} = \frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} + \frac{dG}{dt} = 0$$

As
$$t \to \infty$$
, $S \to 0$, $I \to 0$, $R \to N - G$, $G \to Ge^{-vt}$

The fraction getting GBS depends on the initial G and vaccination rate v. It decreases exponentially, but is never driven to zero if $v < \infty$.

So in summary, while screening and vaccination could greatly reduce GBS incidence, eliminating the allele completely from the population is challenging, especially with a large starting frequency. Let me know if you have any other questions!