Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1.5 UNION-FIND

- dynamic connectivity
 - quiek find
 - quick union
 - improvements
 - applications

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

- Connect two objects.
- Is there a path connecting the two objects?

A larger connectivity example

A larger connectivity example

Q. Is there a path connecting p and q?

A larger connectivity example

Q. Is there a path connecting p and q?

A. Yes.

Modeling the objects

Applications involve manipulating objects of all types.

- Pixels in a digital photo.
- Computers in a network.
- Friends in a social network.
- Transistors in a computer chip.
- Elements in a mathematical set.
- Variable names in a Fortran program.
- Metallic sites in a composite system.

Modeling the objects

Applications involve manipulating objects of all types.

- Pixels in a digital photo.
- Computers in a network.
- Friends in a social network.
- Transistors in a computer chip.
- Elements in a mathematical set.
- Variable names in a Fortran program.
- Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

- Use integers as array index.
- Suppress details not relevant to union-find.

can use symbol table to translate from site names to integers: stay tuned (Chapter 3)

Modeling the connections

We assume "is connected to" is an equivalence relation:

- Reflexive: *p* is connected to *p*.
- Symmetric: if *p* is connected to *q*, then *q* is connected to *p*.
- Transitive: if p is connected to q and q is connected to r,
 then p is connected to r.

Modeling the connections

We assume "is connected to" is an equivalence relation:

- Reflexive: *p* is connected to *p*.
- Symmetric: if *p* is connected to *q*, then *q* is connected to *p*.
- Transitive: if p is connected to q and q is connected to r,
 then p is connected to r.

Connected component. Maximal set of objects that are mutually connected.

Implementing the operations

Find. In which component is object *p* ?

Connected. Are objects p and q in the same component?

Implementing the operations

Find. In which component is object *p* ?

Connected. Are objects p and q in the same component?

Union. Replace components containing objects p and q with their union.

Implementing the operations

Find. In which component is object *p* ?

Connected. Are objects p and q in the same component?

Union. Replace components containing objects p and q with their union.

Union-find data type (API)

Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations M can be huge.
- Union and find operations may be intermixed.

public class UF		
	UF(int N)	initialize union-find data structure with N singleton objects (0 to $N-1$)
void	union(int p, int q)	add connection between p and q
int	find(int p)	component identifier for p (0 to $N-1$)
boolean	connected(int p, int q)	are p and q in the same component?

Union-find data type (API)

Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations M can be huge.
- Union and find operations may be intermixed.

```
public class UF

UF(int N)

initialize union-find data structure with N singleton objects (0 to N-1)

void union(int p, int q)

add connection between p and q

int find(int p)

component identifier for p (0 to N-1)

boolean connected(int p, int q)

are p and q in the same component?
```

```
public boolean connected(int p, int q)
{ return find(p) == find(q); }
```

1-line implementation of connected()

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1.5 UNION-FIND

- dynamic connectivity
- quick find
 - quick union
 - improvements
 - applications

Data structure.

- Integer array id[] of length N.
- Interpretation: id[p] is the id of the component containing p.

Data structure.

Integer array id[] of length N.

Interpretation: id[p] is the id of the component containing p.

										9
id[]	0	1	1	8	8	0	0	1	8	8

0, 5 and 6 are connected

1, 2, and 7 are connected

3, 4, 8, and 9 are connected

Data structure.

- Integer array id[] of length N.
- Interpretation: id[p] is the id of the component containing p.

Find. What is the id of p?

Connected. Do p and q have the same id?

id[6] = 0; id[1] = 1

6 and 1 are not connected

Data structure.

- Integer array id[] of length N.
- Interpretation: id[p] is the id of the component containing p.

						5				
id[]	0	1	1	8	8	0	0	1	8	8

Find. What is the id of p?

Connected. Do p and q have the same id?

$$id[6] = 0; id[1] = 1$$

6 and 1 are not connected

Union. To merge components containing p and q, change all entries whose id equals id[p] to id[q].

after union of 6 and 1

Quick-find demo

 $\left(1\right)$

2

(3)

4

5

6

(7)

8

9

id[] 0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 3 4 5 6 7 8 9

Quick-find demo

union(4, 3)

 $\left(\mathbf{1}\right)$

 $\left(2\right)$

(3)

4

(5)

 6

 $\left(7\right)$

8

9

Quick-find demo

union(4, 3)

 $\left(\mathsf{1} \right)$

2

(3)——(

5

 $\left(\mathsf{6}\right)$

(7)

8

9

union(4, 3)

 $\left(\mathsf{1} \right)$

(2)

(3)

5

 $\left(\mathsf{6}\right)$

 $\overbrace{7}$

8

9

 $\left(1\right)$

2

5

 $\left(\mathsf{6} \right)$

(7)

8

9

id[] 0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 3 3 5 6 7 8 9

union(3, 8)

 $\left(\mathbf{1}\right)$

(2)

(3) (4)

5

 $\left(6\right)$

(7)

8

9

union(3, 8)

union(3, 8)

union(3, 8)

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 2 8 8 5 6 7 8 9

union(6, 5)

union(6, 5)

union(6, 5)

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 2 8 8 5 5 7 8 9

union(9, 4)

union(9, 4)

union(9, 4)

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 2 8 8 5 5 7 8 8

union(2, 1)

union(2, 1)

union(2, 1)

	0	1	2	3	4	5	6	7	8	9
id[]	0	1	1	8	8	5	5	7	8	8

connected(8, 9)

connected(8, 9)

	0	1	2	3	4	5	6	7	8	9
id[]	0	1	1	8	8	5	5	7	8	8

connected(5, 0)

connected(5, 0)

	0	1	2	3	4	5	6	7	8	9
id[]	0	1	1	8	8	5	5	7	8	8

	0	1	2	3	4	5	6	7	8	9
id[]	0	1	1	8	8	0	0	7	8	8

union(7, 2)

union(7, 2)

union(7, 2)

	0	1	2	3	4	5	6	7	8	9
id[]	0	1	1	8	8	0	0	1	8	8

union(6, 1)

union(6, 1)

union(6, 1)

union(6, 1)

union(6, 1)

Quick-find demo

	0	1	2	3	4	5	6	7	8	9
id[]	1	1	1	8	8	1	1	1	8	8

Quick-find demo

connected(1, 0)

connected(1, 0)

Quick-find demo

	0	1	2	3	4	5	6	7	8	9
id[]	1	1	1	8	8	1	1	1	8	8

Quick-find demo

connected(6, 7)

connected(6, 7)

Quick-find demo

	0	1	2	3	4	5	6	7	8	9
id[]	1	1	1	8	8	1	1	1	8	8

Quick-find demo

	0	1	2	3	4	5	6	7	8	9
id[]	1	1	1	8	8	1	1	1	8	8

public class QuickFindUF {
 private int[] id;

```
public class QuickFindUF {
  private int[] id;

public QuickFindUF(int N) {
  id = new int[N];
  for (int i = 0; i < N; i++)
  id[i] = i;
  }

set id of each object to itself
  (N array accesses)</pre>
```

```
public class QuickFindUF {
  private int[] id;
  public QuickFindUF(int N) {
    id = new int[N];
    for (int i = 0; i < N; i++)
                                                                                    set id of each object to itself
    id[i] = i;
                                                                                    (N array accesses)
  public boolean find(int p)
                                                                                    return the id of p
                                                                                    (1 array access)
  { return id[p]; }
  public void union(int p, int q)
    int pid = id[p];
    int qid = id[q];
                                                                                    change all entries with id[p] to id[q]
                                                                                    (at most 2N + 2 array accesses)
    for (int i = 0; i < id.length; i++)
      if (id[i] == pid) id[i] = qid;
```

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find	connected
quick-find	N	N	1	1

order of growth of number of array accesses

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find	connected
quick-find	N	N	1	1

order of growth of number of array accesses

quadratic

Union is too expensive. It takes N^2 array accesses to process a sequence of N union operations on N objects.

Quadratic algorithms do not scale

Rough standard (for now).

- 10⁹ operations per second.
- 10⁹ words of main memory.
- Touch all words in approximately 1 second.

a truism (roughly)

since 1950!

Quadratic algorithms do not scale

Rough standard (for now).

- 10⁹ operations per second.
- 10⁹ words of main memory.
- Touch all words in approximately 1 second.

a truism (roughly)
since 1950!

- 10⁹ union commands on 10⁹ objects.
- Quick-find takes more than 10¹⁸ operations.
- 30+ years of computer time!

Quadratic algorithms do not scale

Rough standard (for now).

- 10⁹ operations per second.
- 109 words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10⁹ union commands on 10⁹ objects.
- Quick-find takes more than 10¹⁸ operations.
- 30+ years of computer time!

Quadratic algorithms don't scale with technology.

- New computer may be 10x as fast.
- But, has 10x as much memory ⇒
 want to solve a problem that is 10x as big.
- With quadratic algorithm, takes 10x as long!

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- improvements
 - applications

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.

					4					
id[]	0	1	9	4	9	6	6	7	8	9

parent of 3 is 4

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

parent of 3 is 4

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

parent of 3 is 4

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

parent of 3 is 4

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

parent of 3 is 4 root of 3 is 9

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

						5				
id[]	0	1	9	4	9	6	6	7	8	9

Find. What is the root of p?

Connected. Do p and q have the same root?

root of 3 is 9

root of 5 is 6

3 and 5 are not connected

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

						5				
id[]	0	1	9	4	9	6	6	7	8	9

Find. What is the root of p?

Connected. Do p and q have the same root?

root of 3 is 9

root of 5 is 6

3 and 5 are not connected

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

						5				
id[]	0	1	9	4	9	6	6	7	8	9

Find. What is the root of p?

Connected. Do p and q have the same root?

Union. To merge components containing p and q, set the id of p's root to the id of q's root.

root of 3 is 9

root of 5 is 6

3 and 5 are not connected

Quick-union demo

union(4, 3)

 $\left(3\right) \quad \left(4\right) \quad \left(5\right) \quad \left(6\right)$

9 id[] 0 1 2 3 4 5 6 7 8 9

union(4, 3)

union(3, 8)

union(3, 8)

0

 $\left(1\right)$

2

5

6

 $\left(7\right)$

9

4

id[] 0 1 2 8 3 5 6 7 8 9

id[]

9

3 5

union(6, 5)

9

id[]

3 5 6 7 8 9

union(6, 5)

id[]

2 8

3 5

9

5 7 8

union(9, 4)

0

 $\left(1\right)$

 $\left(2\right)$

7

9

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 2 8 3 5 5 7 8 9

union(9, 4)

id[]

3 5 5 7 8 8

9

id[]

2 8

9

3 5 5 7 8

union(2, 1)

id[]

3 5 5 7 8 8

9

union(2, 1)

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 1 8 3 5 5 7 8 8

Quick-union demo

connected(8, 9)

0

 $\overline{7}$

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 1 8 3 5 5 7 8 8

Quick-union demo

connected(5, 4)

union(5, 0)

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 1 8 3 5 5 7 8 8

union(5, 0)

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 1 8 3 0 5 7 8 8

union(7, 2)

union(7, 2)

id[]

9

5 1 8

3 0

union(6, 1)

									8	
id[]	0	1	1	8	3	0	5	1	8	8

union(6, 1)

connected(1, 0)

connected(6, 7)

union(7, 3)

union(7, 3)


```
public class QuickUnionUF {
 private int[] id;
 public QuickUnionUF(int N) {
    id = new int[N];
                                                                                  set id of each object to itself
   for (int i = 0; i < N; i++) id[i] = i;
                                                                                  (N array accesses)
```

```
public class QuickUnionUF {
 private int[] id;
 public QuickUnionUF(int N) {
    id = new int[N];
                                                                                   set id of each object to itself
   for (int i = 0; i < N; i++) id[i] = i;
                                                                                   (N array accesses)
 public int find(int i) {
```

```
public class QuickUnionUF {
 private int[] id;
 public QuickUnionUF(int N) {
    id = new int[N];
                                                                                      set id of each object to itself
   for (int i = 0; i < N; i++) id[i] = i;
                                                                                      (N array accesses)
 public int find(int i) {
    while (i != id[i]) i = id[i];
                                                                                      chase parent pointers until reach root
    return i;
                                                                                      (depth of i array accesses)
 public void union(int p, int q) {
    int i = find(p);
    int j = find(q);
    id[i] = j;
```

```
public class QuickUnionUF {
  private int[] id;
 public QuickUnionUF(int N) {
    id = new int[N];
                                                                                      set id of each object to itself
   for (int i = 0; i < N; i++) id[i] = i;
                                                                                      (N array accesses)
 public int find(int i) {
    while (i != id[i]) i = id[i];
                                                                                      chase parent pointers until reach root
    return i;
                                                                                      (depth of i array accesses)
  public void union(int p, int q) {
    int i = find(p);
    int j = find(q);
                                                                                      change root of p to point to root of q
    id[i] = j;
                                                                                      (depth of p and q array accesses)
```

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find	connected	
quick-find	N	N	1	1	
quick-union	N	N †	N	N	← worst case

† includes cost of finding roots

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find	connected	
quick-find	N	N	1	1	
quick-union	N	N †	N	N	← worst case

† includes cost of finding roots

Quick-find defect.

- Union too expensive (N array accesses).
- Trees are flat, but too expensive to keep them flat.

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find	connected	
quick-find	N	N	1	1	
quick-union	N	N †	N	N	← worst case

† includes cost of finding roots

Quick-find defect.

- Union too expensive (N array accesses).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find/connected too expensive (could be N array accesses).

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1.5 UNION-FIND

- dynamic connectivity
- quiek find
- quick union
- improvements
 - applications

Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking root of smaller tree to root of larger tree.

Weighted quick-union demo

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 2 3 4 5 6 7 8 9

union(4, 3)

(3)

id[] 0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 3 4 5 6 7 8 9

union(4, 3)

id[] 0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 4 4 5 6 7 8 9

union(3, 8)

0

id[]

union(6, 5)

union(6, 5)

0

id[]

union(9, 4)

id[] 0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 4 4 6 6 7 4 4

0

id[]

union(2, 1)

union(2, 1)

union(5, 0)

id[] 6 2 2 4 4 6 6 7 4 4 6 1 6 7 8 9

id[]

6

2 2 4 4

union(7, 2)

id[]

6

0

2 2 4 4 6 6 7 4 4

	0	1	2	3	4	5	6	7	8	9
id[]	6	2	2	4	4	6	6	2	4	4

union(6, 1)

	0	1	2	3	4	5	6	7	8	9
id[]	6	2	2	4	4	6	6	2	4	4

union(6, 1)

	0	1	2	3	4	5	6	7	8	9
id[]	6	2	6	4	4	6	6	2	4	4

union(7, 3)

	0	1	2	3	4	5	6	7	8	9
id[]	6	2	6	4	4	6	6	2	4	4

union(7, 3)

id[] 6 2 6 4 6 6 6 2 4 4

id[] 6 2 6 4 6 6 6 2 4 4

Quick-union and weighted quick-union example

quick-union

average distance to root: 5.11

Quick-union and weighted quick-union example

quick-union

average distance to root: 5.11

weighted

average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find/connected. Identical to quick-union.

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find/connected. Identical to quick-union.

Union. Modify quick-union to:

- Link root of smaller tree to root of larger tree.
- Update the sz[] array.

```
int \ i = find(p); \\ int \ j = find(q); \\ if \ (i == j) \ return; \\ if \ (sz[i] < sz[j]) \ \{ \ id[i] = j; \ sz[j] += sz[i]; \ \} \\ else \qquad \{ \ id[j] = i; \ sz[i] += sz[j]; \ \}
```

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

$$N = 11$$

depth(x) = 3 \le lg N

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

lg = base-2 logarithm

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

Increases by 1 when tree T_1 containing x is merged into another tree T_2 .

• The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

Ig = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

Ig = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Pf. What causes the depth of object *x* to increase?

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

algorithm	initialize	union	find	connected
quick-find	N	N	1	1
quick-union	N	N †	N	N
weighted QU	N	lg N †	lg N	lg N

† includes cost of finding roots

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

algorithm	initialize	union	find	connected
quick-find	N	N	1	1
quick-union	N	N †	N	N
weighted QU	N	lg N [†]	lg N	lg N

† includes cost of finding roots

Q. Stop at guaranteed acceptable performance?

Running time.

- Find: takes time proportional to depth of *p*.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

algorithm	initialize	union	find	connected
quick-find	N	N	1	1
quick-union	N	N †	N	N
weighted QU	N	lg N †	lg N	lg N

† includes cost of finding roots

- Q. Stop at guaranteed acceptable performance?
- A. No, easy to improve further.

Quick union with path compression. Just after computing the root of p, set the id[] of each examined node to point to that root.

Bottom line. Now, find() has the side effect of compressing the tree.

Path compression: Java implementation

Two-pass implementation: add second loop to find() to set the id[] of each examined node to the root.

Path compression: Java implementation

Two-pass implementation: add second loop to find() to set the id[] of each examined node to the root.

Simpler one-pass variant (path halving): Make every other node in path point to its grandparent.

```
public int find(int i) {
  while (i != id[i]) {
    id[i] = id[id[i]];
    i = id[i];
  }
  return i;
}
```

Path compression: Java implementation

Two-pass implementation: add second loop to find() to set the id[] of each examined node to the root.

Simpler one-pass variant (path halving): Make every other node in path point to its grandparent.

```
public int find(int i) {
    while (i != id[i]) {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.

N	lg* N
1	0
2	1
4	2
16	3
65536	4
2 65536	5

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an empty data structure, any sequence of M union–find ops on N objects makes $\leq c (N + M \lg^* N)$ array accesses.

N	lg* N
1	0
2	1
4	2
16	3
65536	4
2 65536	5

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an empty data structure, any sequence of M union–find ops on N objects makes $\leq c (N + M \lg^* N)$ array accesses.

- Analysis can be improved to $N + M \alpha(M, N)$.
- Simple algorithm with fascinating mathematics.

N	lg* N
1	0
2	1
4	2
16	3
65536	4
2 65536	5

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an empty data structure, any sequence of M union–find ops on N objects makes $\leq c (N + M \lg^* N)$ array accesses.

- Analysis can be improved to $N + M \alpha(M, N)$.
- Simple algorithm with fascinating mathematics.

Linear-time	algorithm	for M	union-find	ons on	Nohiects?
	aigontinin				

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

N	lg* N
1	0
2	1
4	2
16	3
65536	4
2 65536	5

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an empty data structure, any sequence of M union–find ops on N objects makes $\leq c (N + M \lg^* N)$ array accesses.

- Analysis can be improved to $N + M \alpha(M, N)$.
- Simple algorithm with fascinating mathematics.

N	lg* N
1	0
2	1
4	2
16	3
65536	4
2 65536	5

iterated lg function

Linear-time algorithm for *M* union-find ops on *N* objects?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. [Fredman-Saks] No linear-time algorithm exists.

Summary

Key point. Weighted quick union (and/or path compression) makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time
quick-find	MN
quick-union	MN
weighted QU	N + M log N
QU + path compression	N + M log N
weighted QU + path compression	N + M lg* N

order of growth for M union-find operations on a set of N objects

Summary

Key point. Weighted quick union (and/or path compression) makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time
quick-find	MN
quick-union	MN
weighted QU	N + M log N
QU + path compression	N + M log N
weighted QU + path compression	N + M lg* N

order of growth for M union-find operations on a set of N objects

Ex. [109 unions and finds with 109 objects]

- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

Union-find applications

- Percolation.
- Games (Go, Hex).
- ✓ Dynamic connectivity.
 - Least common ancestor.
 - Equivalence of finite state automata.
 - Hoshen-Kopelman algorithm in physics.
 - Hinley-Milner polymorphic type inference.
 - Kruskal's minimum spanning tree algorithm.
 - Compiling equivalence statements in Fortran.
 - Morphological attribute openings and closings.
 - Matlab's bwlabel() function in image processing.

