1η Σειρά Ασκήσεων στην Τεχνητή Νοημοσύνη

7° Εξάμηνο, Ακαδημαϊκή Περίοδος 2021 – 2022

Ονοματεπώνυμο	Αριθμός Μητρώου	
Στεφανάκης Γεώργιος	el18436	

Άσκηση 1η

1.

Hill Climbing

Μέτωπο Αναζήτησης	Κλειστό Σύνολο	Τρέχουσα Κατάσταση	Παιδιά
$(s,9)^s$	{}	S	b: 5, c: 2, d: 4
$(c,2)^{sc}$	{s}	С	<i>h</i> : 5

Ο αλγόριθμος τερματίζει ανεπιτυχώς καθώς η τιμή της ευριστικής συνάρτησης του τρέχοντα κόμβου c είναι μικρότερη από εκείνη του επόμενου κόμβου, h. Συνεπώς, ο αλγόριθμος δεν μπορεί να βρει μονοπάτι από την αρχική κατάσταση στην κατάσταση στόχο.

Best First

Μέτωπο Αναζήτησης	Κλειστό Σύνολο	Τρέχουσα Κατάσταση	Παιδιά
$(s,9)^s$	{}	S	<i>b</i> : 5, <i>c</i> : 2, <i>d</i> : 4
$(c,2)^{sc}$, $(d,4)^{sd}$, $(b,5)^{sb}$	{s}	С	h: 5
$(d,4)^{sd},(b,5)^{sb},(h,5)^{sch}$	{s, c}	d	i: 2, h: 5
$(i,2)^{sdi}, (b,5)^{sb}, (h,5)^{sdh}$	{ <i>s</i> , <i>c</i> , <i>d</i> }	i	<i>j</i> :6
$(b,5)^{sb}, (h,5)^{sdh}, (j,6)^{sdij}$	$\{s,c,d,i\}$	b	e: 5, k: 2
$(k,2)^{sbk}, (h,5)^{sdh}, (e,5)^{sbe}, (j,6)^{sdij}$	$\{s,c,d,i,b\}$	k	g: 0, h: 5
$(g,0)^{sbkg}, (h,5)^{sdh}, (e,5)^{sbe}, (j,6)^{sdij}, (h,5)^{sbkh}$	$\{s,c,d,i,b,k\}$	g	_

Το μονοπάτι που βρίσκει ο αλγόριθμος είναι το $s \to b \to k \to g$ με συνολικό κόστος 2+1+9=12.

A*

Μέτωπο Αναζήτησης	Κλειστό Σύνολο	Τρέχουσα Κατάσταση	Παιδιά
$(s,0;9)^s$	{}	S	<i>b</i> : 2; 7, <i>c</i> : 1; 3, <i>d</i> : 2; 6
$(c,1;3)^{sc}, (d,2;6)^{sd}, (b,2;7)^{sb}$	{s}	С	h: 7; 12
$(d,2;6)^{sd}$, $(b,2;7)^{sb}$, $(h,7;12)^{sch}$	{ <i>s</i> , <i>c</i> }	d	h: 4; 9, i: 12; 14
$(b,2;7)^{sb}$, $(h,4;9)^{sdh}$, $(i,12;14)^{sdi}$	$\{s,c,d\}$	b	e: 5; 10, k: 3; 5
$(k,3;5)^{sbk}$, $(h,4;9)^{sdh}$, $(e,5;10)^{sbe}$, $(i,12;14)^{sdi}$	$\{s,c,d,b\}$	k	g: 12; 12, h: 4; 9
$(h,4;9)^{sdh},(h,4;9)^{sbkh},(e,5;10)^{sbe},(g,12;12)^{sbkg},(i,12;14)^{sdi}$	$\{s,c,d,b,k\}$	h	<i>j</i> : 11; 17, <i>i</i> : 7; 9
$(h, 4; 9)^{sbkh}, (i, 7; 9)^{sdhi}, (e, 5; 10)^{sbe}, (g, 12; 12)^{sbkg}, (j, 11; 17)^{sbkhj}$	$\{s,c,d,b,k,h\}$	h	<i>j</i> : 11; 17, <i>i</i> : 7; 9
$(i,7;9)^{sdhi}, (e,5;10)^{sbe}, (g,12;12)^{sbkg}, (j,11;17)^{sbkhj}$	$\{s,c,d,b,k,h\}$	i	j: 14; 20
$(e,5;10)^{sbe}, (g,12;12)^{sbkg}, (j,11;17)^{sbkhj}$	$\{s,c,d,b,k,h,i\}$	e	g: 11; 11
$(g, 11; 11)^{sbeg}, (j, 11; 17)^{sbkhj}$	$\{s,c,d,b,k,h,i,e\}$	g	_

Το μονοπάτι που βρίσκει ο αλγόριθμος είναι το $s \to b \to e \to g$ με συνολικό κόστος 2+3+6=11.

2. Όλα τα μονοπάτια που οδηγούν στον στόχο είναι τα εξής:

$$s \rightarrow b \rightarrow e \rightarrow g (11)$$

$$s \rightarrow b \rightarrow k \rightarrow g (12)$$

$$s \rightarrow b \rightarrow k \rightarrow h \rightarrow j \rightarrow g (14)$$

$$s \rightarrow d \rightarrow h \rightarrow j \rightarrow g (14)$$

$$s \rightarrow b \rightarrow k \rightarrow h \rightarrow i \rightarrow j \rightarrow g (17)$$

$$s \rightarrow d \rightarrow h \rightarrow i \rightarrow j \rightarrow g (17)$$

$$s \rightarrow c \rightarrow h \rightarrow j \rightarrow g (17)$$

$$s \rightarrow c \rightarrow h \rightarrow i \rightarrow j \rightarrow g (20)$$

$$s \rightarrow d \rightarrow i \rightarrow j \rightarrow g (21)$$

Η βέλτιστη λύση είναι εκείνη που βρίσκει ο αλγόριθμος A^* με κόστος 11. Ο αλγόριθμος Hill Climbing δεν βρίσκει καμία λύση ενώ ο Best First βρίσκει τη λύση με κόστος 12, η οποία δεν είναι η βέλτιστη. Παρά ταύτα, δεν μπορούμε να γνωρίζουμε εκ των προτέρων εάν ο A^* θα βρει τη βέλτιστη λύση καθώς δεν ισχύει το κριτήριο ότι για κάθε κατάσταση, η τιμή της ευριστικής είναι μικρότερη ή ίση από την πραγματική απόστασή μέχρι τον στόχο. Ένα αντιπαράδειγμα είναι ο κόμβος j για τον οποίο η τιμή της ευριστικής, 6, είναι μεγαλύτερη από την πραγματική απόσταση, 3.

Άσκηση 2η

1.

2.

Αφού εφαρμόσουμε AB Pruning στους κόμβους που φαίνονται διαγραμμένοι παραπάνω, διατρέχουμε το δέντρο ως εξής:

$$1\rightarrow2\rightarrow5\rightarrow11\rightarrow23\rightarrow24\rightarrow12\rightarrow25\rightarrow6\rightarrow13\rightarrow28\rightarrow29\rightarrow14\rightarrow30\rightarrow3\rightarrow7\rightarrow16\rightarrow33\rightarrow4\rightarrow9\rightarrow18\rightarrow38\rightarrow39\rightarrow19\rightarrow41\rightarrow42\rightarrow10\rightarrow20\rightarrow43\rightarrow44$$