Data Mining

Regression Analysis

<u>Outline</u>

Regression vs Classification

- Linear regression another discriminative learning method
 - As optimization → Gradient descent

Regression examples

Stock market

Weather prediction

Predict the temperature at any given location

Prediction of menu price

(a) METADATA:				
ambience				
dive-y	-0.015			
intimate	-0.013			
trendy	-0.012			
casual	-0.005			
romantic	-0.004			
classy	-7e-6			
touristy	0.058			
upscale	0.099			

(b) MENUDESC:				
cooking				
panfried	-0.094			
chargrilled	-0.029			
cooked	-0.012			
boiled	-0.006			
fried	-0.005			
steamed	0.011			
charbroiled	0.015			
grilled	0.022			
simmered	0.025			
roasted	0.034			
sauteed	0.034			
broiled	0.053			
seared	0.066			
braised	0.068			
stirfried	0.071			
flamebroiled	0.106			

(c) MENUDESC:				
	descriptors			
1	old time favorite	-0.112]	
	fashioned	-0.034		
	line caught	-0.028		
	all natural	-0.028		
	traditional	-0.009		
	natural	3e-4		
	classic	0.002		
	free range	0.004		
1	real	0.004		
	fresh	0.006		
	homemade	(d) MENU	DESC:	
			chicken"	
		slices _	-0.102	
	organic	bits _	-0.032	
		cubes _	-0.030	
		pieces _	-0.024	
		strips _	-0.001	
		chunks _	0.015	
		morsels _	0.025	
		pcs _	0.040	
		cuts	0.042	

A decision tree: classification

A regression tree

Learning as optimization

- Two types of learners:
 - 1. Generative: make assumptions about how to generate data (given the class)
 - e.g., naïve Bayes
 - 2. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression

Today: another discriminative learner, but for regression tasks

Regression

Least Mear Squares

Regression for LMS as optimization

Linear regression

- Given an input x we would like to compute an output y
- For example:
 - Predict height from age
 - Predict Google's price from Yahoo's price
 - Predict distance from wall from sensors

Linear regression

- Given an input x we would like to compute an output y
- In linear regression we assume that y and x are related with the following equation:

where w is a parameter and ε represents measurement or other noise

Linear regression

- Our goal is to estimate w from a training data of <x_i,y_i> pairs
- Optimization goal: minimize squared error (least squares):

$$\arg\min_{w} \sum_{i} (y_i - wx_i)^2$$

- Why least squares?
- minimizes squared distance between measurements and predicted line

Solving linear regression

To optimize:

We just take the derivative w.r.t. to w

prediction

$$\frac{\partial}{\partial w} \sum_{i} (y_i - wx_i)^2 = 2\sum_{i} -x_i (y_i - wx_i)$$

Solving linear regression

- To optimize closed form:
- We just take the derivative w.r.t. to w and set to 0:

$$\frac{\partial}{\partial w} \sum_{i} (y_{i} - wx_{i})^{2} = 2 \sum_{i} -x_{i} (y_{i} - wx_{i}) \Rightarrow$$

$$2 \sum_{i} x_{i} (y_{i} - wx_{i}) = 0 \Rightarrow 2 \sum_{i} x_{i} y_{i} - 2 \sum_{i} wx_{i} x_{i} = 0$$

$$\sum_{i} x_{i} y_{i} = \sum_{i} wx_{i}^{2} \Rightarrow$$

$$\sum_{i} x_{i} y_{i} = \sum_{i} x_{i} y_{i}$$

$$w = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}}$$

$$covar(X, Y)/var(X)$$
if mean(X)=mean(Y)=0

Regression example

Generated: w=2

Recovered: w=2.03

Noise: std=1

Regression example

Generated: w=2

• Recovered: w=2.05

Noise: std=2

Regression example

• Generated: w=2

Recovered: w=2.08

Noise: std=4

Bias term

- So far we assumed that the line passes through the origin
- What if the line does not?
- No problem, simply change the model to $y = w_0 + w_1x + \varepsilon$

Can use least squares to determine w₀, w₁

X

$$w_{1} = \frac{\sum_{i} x_{i}(y_{i} - w_{0})}{\sum_{i} x_{i}^{2}} \qquad w_{0} = \frac{\sum_{i} y_{i} - w_{1}x_{i}}{n}$$

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

$$y = w_0 + w_1x_1 + \dots + w_kx_k + \varepsilon$$
Google's stock price

Yahoo's stock price

Multivariate regression

- What if we have several inputs?
 - Stock prices for Yahoo, Microsoft and Ebay for the Google prediction task
- This becomes a multivariate regression problem
- Again, its easy to model:

$$y = w_0 + w_1 x_1 + ... + w_k x_k + \varepsilon$$

Other functions of x

Not all functions can be approximated by a line/hyperplane...

$$y=10+3x_1^2-2x_2^2+\varepsilon$$

In some cases we would like to use polynomial or other terms based on the input data, are these still linear regression problems?

Yes. As long as the *coefficients* are linear the equation is still a linear regression problem!

Non-Linear basis function

- So far we only used the observed values x₁,x₂,...
- However, linear regression can be applied in the same way to functions of these values
 - Eg: to add a term w x_1x_2 add a new variable $z=x_1x_2$ so each example becomes: x_1, x_2, z
- As long as these functions can be directly computed from the observed values the parameters are still linear in the data and the problem remains a multi-variate linear regression problem

$$y = w_0 + w_1 x_1^2 + \ldots + w_k x_k^2 + \varepsilon$$

Non-linear basis functions

- What type of functions can we use?
- A few common examples:
 - Polynomial: $\phi_i(x) = x^j$ for $j=0 \dots n$
 - Gaussian:

$$\phi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$$

- Sigmoid:

$$\phi_j(x) = \frac{1}{1 + \exp(-s_j x)}$$

- Logs:

$$\phi_i(x) = \log(x+1)$$

Any function of the input values can be used. The solution for the parameters of the regression remains the same.

General linear regression problem

 Using our new notations for the basis function linear regression can be written as

$$y = \sum_{j=0}^{n} w_j \phi_j(x)$$

- Where $\phi_j(\mathbf{x})$ can be either x_j for multivariate regression or one of the non-linear basis functions we defined
- ... and $\phi_0(\mathbf{x})=1$ for the intercept term

Data Mining

Learning/Optimizing Multivariate Least Squares

Gradient Descent Approach

Gradient Descent for Linear Regression

Goal: minimize the following loss function:

predict with:
$$\hat{y}^i = \sum_{j=1}^n w_j \phi_j(\mathbf{x}^i)$$

$$J_{\mathbf{X},\mathbf{y}}(\mathbf{w}) = \sum_{i} \left(y^{i} - \hat{y}^{i} \right)^{2} = \sum_{i} \left(y^{i} - \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i}) \right)^{2}$$
sum over *n* examples

sum over *k+1* basis vectors

Gradient descent

Gradient Descent for Linear Regression

Goal: minimize the following loss function:

predict with:
$$\hat{y}^i = \sum_{j=1}^n w_j \phi_j(\mathbf{x}^i)$$

$$J_{\mathbf{X},\mathbf{y}}(\mathbf{w}) = \sum_{i} (y^{i} - \hat{y}^{i})^{2} = \sum_{i} (y^{i} - \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i}))^{2}$$

$$\frac{\partial}{\partial w_{j}} J(\mathbf{w}) = \frac{\partial}{\partial w_{j}} \sum_{i} (y^{i} - \hat{y}^{i})^{2}$$

$$= 2 \sum_{i} (y^{i} - \hat{y}^{i}) \frac{\partial}{\partial w_{j}} \hat{y}^{i}$$

$$= 2 \sum_{i} (y^{i} - \hat{y}^{i}) \frac{\partial}{\partial w_{j}} \sum_{j} w_{j} \phi_{j}(\mathbf{x}^{i})$$

$$= 2 \sum_{i} (y^{i} - \hat{y}^{i}) \phi_{j}(\mathbf{x}^{i})$$

Gradient Descent for Linear Regression

Learning algorithm:

- Initialize weights w=0
- For t=1,... until convergence:
 - Predict for each example \mathbf{x}^i using \mathbf{w} : $\hat{y}^i = \sum w_j \phi_j(\mathbf{x}^i)$
 - Compute gradient of loss: $\frac{\partial}{\partial w_i} J(\mathbf{w}) = 2 \sum_i (y^i \hat{y}^i) \phi_j(\mathbf{x}^i)$
 - This is a vector g
 - Update: $\mathbf{w} = \mathbf{w} \lambda \mathbf{g}$
 - •λ is the learning rate.

Linear regression is a *convex* optimization problem

so again gradient descent will reach a global optimum

proof: differentiate again to get the second derivative