

sandipan_dey > Ţ <u>Help</u>

★ Course / 3 Finger Exercises (FE) / 3.7 Finger Exercises 4 (FE4)

You are taking "5.2 Exam 2" as a timed exam. Show more

End My Exam

05:47:41

Previous	Z ~		Z ~		
3.7.2 Fings			na the a	radient	
3.7.2 Finger Exercise: Using the gradient to approximate function changes					
☐ Bookmark this page					

Finger Exercises 4 due Sep 7, 2023 05:00 IST Completed

MO2.12

As described previously, the gradient of a function can be used to estimate the change of the function for small changes in its inputs (independent variables). Consider a function $f\left(x_0,x_1\right)$ of two independent variables $\left(x_0,x_1\right)$. Let the gradient of the function at $\left(x_0^{\mathrm{base}},x_1^{\mathrm{base}}\right)=\left(9,3\right)$ be:

$$abla f = \left(rac{\partial f}{\partial x_0}, rac{\partial f}{\partial x_1}
ight) = (-2, 1)$$

Then, we can estimate the change in f around the point (9,3) with Δf which we may view as a function of Δx_0 , Δx_1 defined as:

$$\Delta f(\Delta x_0, \Delta x_1) \equiv \nabla f \cdot \Delta x \tag{3.3}$$

$$\Delta \underline{x} \equiv (\Delta x_0, \Delta x_1) = (x_0 - 9, x_1 - 3)$$
 (3.3)

To start, let's consider a plot of $\Delta f(\Delta x_0, \Delta x_1)$. One of the following four plots (Plot A, B, C, or D) is a contour plot of $\Delta f(\Delta x_0, \Delta x_1)$ for this problem. The values of each contour are shown by the labels (as you can see, the contours range from -2.4 to 2.4).

Problem: Find the correct plot

1/1 point (graded) Which plot shows the correct contours of Δf ?

O Plot A		

l () Plot B

Discussions

Posting in discuss

All posts sorted by recent activity

 $igcup (\Delta x_0, \Delta x_1) = (-1,\,0.5)$

Previous 1

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

 $\square \ (\Delta x_0,\Delta x_1)=(-0.5,\,1)$

 $\square \ (\Delta x_0,\Delta x_1)=(0.5,\,-1)$

Submit

