Redes e Comunicações

Intranetworking

Internetworking Terms (1)

- **#**Communications Network
 - □ Facility that provides data transfer service
- **X** An internet
 - □Collection of communications networks interconnected by bridges and/or routers
- **#**The Internet note upper case I
- **#** Intranet
 - Corporate internet operating within the organization
 - □ Uses Internet (TCP/IP and http)technology to deliver documents and resources

Internetworking Terms (2)

#End System (ES)

- Device attached to one of the networks of an internet
- **X** Intermediate System (IS)
 - □ Device used to connect two networks
 - □ Permits communication between end systems attached to different networks

Internetworking Terms (3)

#Bridge

- ☑IS used to connect two LANs using similar LAN protocols
- Address filter passing on packets to the required network only

#Router

- Connects two (possibly dissimilar) networks
- Uses internet protocol present in each router and end system

Internetworking Protocols

Requirements of Internetworking

- **#Link between networks**
- ****Routing and delivery of data between processes** on different networks
- ******Accounting services and status info
- **X** Independent of network architectures

Network Architecture Features

- *****Addressing
- **#**Packet size
- **X**Access mechanism
- **X**Timeouts
- #Error recovery
- **X**Status reporting
- **#**Routing
- **#**User access control
- **#**Connection based or connectionless

Architectural Approaches

- **#**Connection oriented
- **#**Connectionless

Connection Oriented

- ******Assume that each network is connection oriented
- **XIS** connect two or more networks

 - ☐ Individual network virtual circuits joined by IS
- ******May require enhancement of local network services
 - №802, FDDI are datagram services

Connection Oriented IS Functions

- **#**Relaying
- **#**Routing
- **#**e.g. X.75 used to interconnect X.25 packet switched networks
- **Connection oriented not often used**☐ (IP dominant)

Connectionless Operation

- ******Corresponds to datagram mechanism in packet switched network
- **#**Each NPDU treated separately
- ******Network layer protocol common to all DTEs and routers
 - Known generically as the internet protocol
- **# Internet Protocol**
 - One such internet protocol developed for ARPANET
 □RFC 791 (Get it and study it)
- ****Lower layer protocol needed to access particular network**

Connectionless Internetworking

#Advantages

- **△**Robust
- No unnecessary overhead

#Unreliable

- Not guaranteed order of delivery
 - **⊠**Packets can take different routes
- Reliability is responsibility of next layer up (e.g. TCP)

IP Operation

TCP-H = TCP header MACi-T = MAC trailer
IP-H = IP header XP-H = X.25 packet header
LLCi-H = LLC header XL-H = X.25 link header
MACi-H = MAC header XL-T = X.25 link trailer

Design Issues

- **#**Routing
- **X** Datagram lifetime
- #Fragmentation and re-assembly
- # Error control
- #Flow control

Routing

- **#**End systems and routers maintain routing tables

 - - **⊠**May contain alternative routes
 - Dynamic
 - **▼Flexible response to congestion and errors**

#Source routing

- Source specifies route as sequential list of routers to be followed
- Security
- Priority
- ****Route recording**

Datagram Lifetime

- **X** Datagrams could loop indefinitely
 - Consumes resources
 - Transport protocol may need upper bound on datagram life
- **#** Datagram marked with lifetime
 - □ Time To Live field in IP
 - Once lifetime expires, datagram discarded (not forwarded)
 - - Decrement time to live on passing through a each router
- **#** (Aside: compare with Logan's Run)

Fragmentation and Re-assembly

- **#** Different packet sizes
- ***When to re-assemble**
 - △At destination
 - Results in packets getting smaller as data traverses internet
 - - **⊠**Need large buffers at routers
 - **⊠**Buffers may fill with fragments
 - ☑All fragments must go through same router
 - Inhibits dynamic routing

IP Fragmentation (1)

- **#IP** re-assembles at destination only
- **#**Uses fields in header
 - □ Data Unit Identifier (ID)
 - - Source and destination address
 - Protocol layer generating data (e.g. TCP)
 - Identification supplied by that layer
 - □ Data length
 - **⊠**Length of user data in octets

IP Fragmentation (2)

- Offset
 - **⊠**Position of fragment of user data in original datagram
 - In multiples of 64 bits (8 octets)
- - Indicates that this is not the last fragment

Fragmentation Example

Original datagram Data length = 404 octets Segment offset = 0 More = 0

Dealing with Failure

- **#**Re-assembly may fail if some fragments get lost
- Need to detect failure
- **#**Re-assembly time out
 - △Assigned to first fragment to arrive
 - If timeout expires before all fragments arrive, discard partial data
- **#**Use packet lifetime (time to live in IP)
 - ☐ If time to live runs out, kill partial data

Error Control

- ***Not guaranteed delivery**
- Router should attempt to inform source if packet discarded
 - □e.g. for time to live expiring
- **#**Source may modify transmission strategy
- ****** May inform high layer protocol
- **#** Datagram identification needed

Flow Control

- **#**Allows routers and/or stations to limit rate of incoming data
- **#**Limited in connectionless systems
- **#**Send flow control packets
 - Requesting reduced flow
- ₩e.g. ICMP

Internet Protocol (IP)

- **X** Part of TCP/IP
 ✓ Used by the Internet
- ★Specifies interface with higher layer
 △e.g. TCP
- **#**Specifies protocol format and mechanisms

IP Services

#Primitives

- Functions to be performed
- - **⊠**e.g. subroutine call
- Send
 - **⊠**Request transmission of data unit
- Deliver
 - ■Notify user of arrival of data unit

#Parameters

□ Used to pass data and control info

Parameters (1)

- **Source** address
- **#** Destination address
- **#Protocol**
- **X**Type of Service
 - □Specify treatment of data unit during transmission through networks
- **X** Identification
 - Source, destination address and user protocol
 - Uniquely identifies PDU
 - Needed for re-assembly and error reporting
 - Send only

Parameters (2)

```
# Don't fragment indicator

    If not, may not be possible to deliver

  XTime to live
  # Data length
#Option data
#User data
```

Type of Service

- **#**Precedence
- **#** Reliability
- **#** Delay
- **#**Throughput

Options

- **#**Security
- *****Source routing
- ****Route recording**
- **#**Stream identification
- **X**Timestamping

IP Protocol

Header Fields (1)

```
XVersion
  Currently 4
  # Internet header length

☐ In 32 bit words

  XType of service
XTotal length

    ○Of datagram, in octets
```

Header Fields (2)

X Identification

- Used with addresses and user protocol to identify datagram uniquely

#Flags

- □ Don't fragment
- **#**Fragmentation offset
- #Time to live
- **#Protocol**

Header Fields (3)

#Header checksum

- △16 bit ones complement sum of all 16 bit words in header
- **#**Source address
- **#** Destination address
- **#**Options
- **#**Padding

Data Field

- **#**Carries user data from next layer up
- #Integer multiple of 8 bits long (octet)
- ******Max length of datagram (header plus data) 65,535 octets

IP Addresses - Class A

- **32** bit global internet address
- ****** Network part and host part
- **#**Class A

 - △All 0 reserved

 - △All allocated

IP Addresses - Class B

- Start 10
- **Range** 128.x.x.x to 191.x.x.x
- **Second Octet also included in network address**
- $\mathbf{2}^{14} = 16,384$ class B addresses
- **X** All allocated

IP Addresses - Class C

- **Start** 110
- **Range** 192.x.x.x to 223.x.x.x
- ******Second and third octet also part of network address
- $\#2^{21} = 2,097,152$ addresses
- *****Nearly all allocated
 - See IPv6

Subnets and Subnet Masks

- **#**Allow arbitrary complexity of internetworked LANs within organization
- #Insulate overall internet from growth of network numbers and routing complexity
- **#**Site looks to rest of internet like single network
- **#**Each LAN assigned subnet number
- ****Host portion of address partitioned into subnet number and host number**
- **#**Local routers route within subnetted network
- ****Subnet mask indicates which bits are subnet number and which are host number**

Routing Using Subnets

IP Address: 192.228.17.97

Host number: 1

ICMP

- **X** Internet Control Message Protocol
- **#RFC** 792 (get it and study it)
- **Transfer of (control) messages from routers and hosts to hosts
- #Feedback about problems
- **#**Encapsulated in IP datagram
 - △Not reliable

ICMP Message Formats

(a) Destination Unreachable; Time Exceeded; Source Quench

1	0	8	16 3	31
ſ	Type	Code	Checksum	
Γ	Pointer		Unused	
	IP Header + 64 bits of original datagram			

(b) Parameter Problem

0	8	16	31
Type	Code	Checksum	
Gateway Internet Address			
IP Header + 64 bits of original datagram			

(c) Redirect

0		8	16	31
	Type	Code	Checksum	
	Identifier		Sequence Number	
Г	Optional data			

(d) Echo, Echo Reply

0		8	16	31
	Type	Code	Checksum	
	Identifier		Sequence Number	
	Originate Timestamp			

(e) Timestamp

0	8		16	31
Ту	pe	Code	Checksum	
	Identifi	er	Sequence Number	
	Originate Timestamp			
	Receive Timestamp			
	Transmit Timestamp			

(f) Timestamp Reply

0		8	16	31
	Type	Code	Checksum	
	Identifier		Sequence Number	

(g) Address Mask Request

0	8	16	31
Type	Code	Checksum	
Identifier		Sequence Number	
Address Mask			

(h) Address Mask Reply

IP v6 - Version Number

- **#** IP v 1-3 defined and replaced
- **XIP** v4 current version
- **#IP v5 streams protocol**
- #IP v6 replacement for IP v4
 - During development it was called IPng

Why Change IP?

******Address space exhaustion

- Network addresses used even if not connected to Internet
- ☐ Growth of networks and the Internet

- ******Requirements for new types of service

IPv6 RFCs

- **31** 1752 Recommendations for the IP Next Generation Protocol
- **#**2460 Overall specification
- **#**2373 addressing structure
- **#**others (find them)

- **#**Expanded address space
 - △128 bit
- **X** Improved option mechanism
 - Separate optional headers between IPv6 header and transport layer header
 - - **区**Easier to extend options
- ******Address autoconfiguration
 - □ Dynamic assignment of addresses

IPv6 Enhancements (2)

- **#** Increased addressing flexibility
 - △Anycast delivered to one of a set of nodes
- **#**Support for resource allocation
 - □ Replaces type of service
 - Labeling of packets to particular traffic flow
 - △Allows special handling

Structure

Extension Headers

- **#**Hop-by-Hop Options
 - □ Require processing at each router
- **#**Routing
 - □Similar to v4 source routing
- **#**Fragment
- *****Authentication
- **#**Encapsulating security payload
- **#** Destination options

IP v6 Header

IP v6 Header Fields (1)

```
X Version
   <u>∽</u>6
XTraffic Class

    □ Classes or priorities of packet

   △See RFC 2460
#Flow Label
   Used by hosts requesting special handling
#Payload length
```

Includes all extension headers plus user data

IP v6 Header Fields (2)

- ***Next Header**
 - □ Identifies type of header
 - **⊠**Extension or next layer up
- **X**Source Address
- **#** Destination address

IPv6 Addresses

- #128 bits long
- ******Assigned to interface
- **X**Single interface may have multiple unicast addresses
- **#**Three types of address

Types of address

- **#Unicast**
- **#**Anycast

 - □ Delivered to any one interface
- **#**Multicast

 - □ Delivered to all interfaces identified

Hop-by-Hop Options

- ***Next header**
- **#**Header extension length
- **#**Options
 - - \boxtimes Over $2^{16} = 65,535$ octets

Fragmentation Header

- #Fragmentation only allowed at source
- ****** No fragmentation at intermediate routers
- ****Node must perform path discovery to find smallest MTU of intermediate networks**
- **#**Source fragments to match MTU
- **#**Otherwise limit to 1280 octets

Fragmentation Header Fields

- ***Next Header**
- **#**Reserved
- **#**Fragmentation offset
- **#**Reserved
- **₩** More flag
- **X** Identification

Routing Header

- **X**List of one or more intermediate nodes to be visited
- ***Next Header**
- #Header extension length
- **#**Routing type
- **#**Segments left

Destination Options

X Same format as Hop-by-Hop options header

Multicasting

******Addresses that refer to group of hosts on one or more networks

#Uses

- Database
- Distributed computing
- □ Real time workgroups

Requirements for Multicasting (1)

- Router may have to forward more than one copy of packet
- ******Convention needed to identify multicast addresses
 - □ IPv4 Class D start 1110
 - □ IPv6 8 bit prefix, all 1, 4 bit flags field, 4 bit scope field, 112 bit group identifier
- **Nodes must translate between IP multicast addresses and list of networks containing group members
- ****Router must translate between IP multicast address and network multicast address**

Requirements for Multicasting (2)

- ******Mechanism required for hosts to join and leave multicast group
- ****** Routers must exchange info

 - Sufficient info to work out shortest path to each network
 - Routing algorithm to work out shortest path
 - □ Routers must determine routing paths based on source and destination addresses

IGMP

- **X** Internet Group Management Protocol
- **#**RFC 1112
- ****Host and router exchange of multicast group** info
- **#**Use broadcast LAN to transfer info among multiple hosts and routers

IGMP Format

IGMP Fields

```
XVersion
 <u></u>

1
XType

△1 - query sent by router
 #Checksum
#Group address
```

IGMP Operation

- **X**To join a group, hosts sends report message
 - □ Group address of group to join

 - △All hosts in group receive message
 - Routers listen to all multicast addresses to hear all reports
- ******Routers periodically issue request message

 - ☐ Host that want to stay in groups must read all-hosts messages and respond with report for each group it is in

Group Membership in IPv6

- #Function of IGMP included in ICMP v6
- ****New group membership termination message to allow host to leave group**