Integer arithmetic and floating point

Computer Systems Lecture, Sep 09 2019

Michael Kirkedal Thomsen

Based on slides by:

Randal E. Bryant and David R. O'Hallaron

Today: Integer arithmetic and floating point

- Recap
 - Representing information as bits
 - Bit-level manipulations
 - Integers
- Integer arithmetic
- **■** Floating Points

Everything is bits!

- Why bits? Why no decimals?
- What can we do with bits?
- How do we make integral values? Unsigned/ signed?
- **Do-it-yourself recap** 5 minutes discussions!

Expression	Symbol	Venn diagram	Boolean algebra		Value	25
			- U	Α	В	Output
				0	0	0
AND	│ 	(🛑)	$A \cdot B$	0	1	0
				1	0	0
				1	1	1
				Α	В	Output
OR	$-\mathcal{T}$		A + B	0	0	0
OK			A+B	0	0	1
				1	1	1
				A	В	Output
	, <u> </u>			0	0	0
XOR	<i>─ / // // / / / / / /</i>		$A \oplus B$	0	1	1
			1102	1	0	1
				1	1	0
	_	Ā	A		Output	
NOT	→>		\overline{A}	0		1
			••	1		0
				Α	В	Output
		- □		0	0	1
NAND	<i>)</i> >_		$\overline{A \cdot B}$	0	1	1
				1	0	1
				1	1	0
				Α	В	Output
NOD	\mathcal{T}		4	0	0	1
NOR			$\overline{A+B}$	0	1 0	0
				1	1	0
				Α	В	Output
XNOR	D			0	0	1
			$\overline{A \oplus B}$	0	1	0
				1	0	0
				1	1	1
	_			IN		Output
BUF	 >-		A	0		0
				1		1

Venn Diagram for logic gates is a schematic representation of A and B overlapping each Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edi other inside a rectangle area, the diagram shows the relation of the boolean operators.

Everything is bits

Why bits? Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

■ ... But there exist many models that are not

• E.g. Ternary (3-state) logic, analog computers, quantum computers

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimaly 0 0 0000

0	0	0000
1 2 3	1	0001
2	1 2 3	0010
3	3	0011
4 5 6 7 8 9	<u>4</u> 5	0100
5	5	0101
6	6	0110
7	7 8 9	0111
8	8	1000
9	9	1001
A	10	1010
A B C	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
int32_t	4	4	4
int64_t	8	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

■ A&B = 1 when both A=1 and B=1

■ A B =	1	when	either	A=1	or	B=1

Not

Exclusive-Or (Xor)

■ ~A = 1 when A=0

■ A^B = 1 when either A=1 or B=1, but not both

Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Argument x	01100010		
<< 3	00010000		
Log. >> 2	00011000		
Arith. >> 2	00011000		

Argument x	10100010		
<< 3	00010000		
Log. >> 2	00101000		
Arith. >> 2	11101000		

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary		
x	15213	3B 6D	00111011 01101101		
У	-15213	C4 93	11000100 10010011		

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Conversion Visualized

2's Comp. → Unsigned **UMax Ordering Inversion** UMax - 1Negative → Big Positive TMax + 1Unsigned **TMax TMax** Range 2's Complement Range

Today: Integer arithmetic and floating point

- Recap
- Integer arithmetic
 - Addition, negation, multiplication, shifting
 - Summary
- **■** Floating Points

Example: Decimal addition

Example: Binary addition

Unsigned Addition

Operands: w bits

u •••

True Sum: w+1 bits

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

u + v

• • •

Standard Addition Function

- Ignores carry output
- **Implements Modular Arithmetic**

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Visualizing (Mathematical) Integer Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
- At most once

Two's Complement Addition

Operands: w bits

. . . u

True Sum: w+1 bits

• • • u + v

Discard Carry: w bits

 $TAdd_{w}(u, v)$ • • •

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Play the game

https://topps.diku.dk/compsys/integer-arithmetic.html

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits
- **Implements Modular Arithmetic**

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

k

Examples

$$u << 5$$
 - $u << 3$ == $u * 24$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $[\mathbf{u} / \mathbf{2}^k]$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Today: Integer arithmetic and floating point

- Recap
- Integer arithmetic
 - Addition, negation, multiplication, shifting
 - Summary
- Floating Points

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- Data type **size** t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Today: Integer arithmetic and floating point

- Recap
- Integer arithmetic
- Floating Points
 - Background: Fractional binary numbers
 - IEEE floating point standard: Definition
 - Example and properties
 - Rounding, addition, multiplication
 - Floating point in C
 - Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- **■** Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number: $\sum b_k \times 2^k$

Fractional Binary Numbers: Examples

Value
Representation

5 3/4
2 7/8
101.11₂
10.111₂
1.0111₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...₂ are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

```
Value Representation
```

```
• 1/3 0.01010101[01]...<sub>2</sub>
```

- 1/5 0.00110011[0011]...₂
- **1/10** 0.000110011[0011]...₂

■ Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Integer arithmetic and floating point

- Recap
- Integer arithmetic
- Floating Points
 - Background: Fractional binary numbers
 - IEEE floating point standard: Definition
 - Example and properties
 - Rounding, addition, multiplication
 - Floating point in C
 - Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB S is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

|--|

Precision options

■ Single precision: 32 bits

■ Double precision: 64 bits

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: $\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x₂
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

 $v = (-1)^{s} M 2^{E}$ E = Exp - Bias

- Value: float F = 15213.0; ■ 15213₁₀ = 11101101101101₂ = 1.1101101101101₂ x 2¹³
- Significand

$$M = 1.1101101101_2$$

frac = $1101101101101_000000000_2$

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

Denormalized Values

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- **■** Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

Special Values

- **■** Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Integer arithmetic and floating point

- Recap
- Integer arithmetic
- Floating Points
 - Background: Fractional binary numbers
 - IEEE floating point standard: Definition
 - Example and properties
 - Rounding, addition, multiplication
 - Floating point in C
 - Summary

Play the game

https://topps.diku.dk/compsys/floating-point.html

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only) | v = (−1)^s M 2^E

v = (-1)^s M 2^E n: E = Exp - Bias d: E = 1 - Bias

	s exp frac E Value	
	0 0000 000 -6 0	closest to zero
Denormalized	0 0000 001 -6 1/8*1/64 = 1/512	
numbers	$0\ 0000\ 010\ -6\ 2/8*1/64 = 2/512$	
	$0\ 0000\ 110\ -6\ 6/8*1/64\ =\ 6/512$	largest denorm
	$0\ 0000\ 111\ -6\ 7/8*1/64\ =\ 7/512$	smallest norm
	$0\ 0001\ 000\ -6\ 8/8*1/64\ =\ 8/512$	
	$0\ 0001\ 001\ -6\ 9/8*1/64 = 9/512$	
	$0 \ 0110 \ 110 \ -1 \ 14/8*1/2 = 14/16$	closest to 1 below
Normalized	$0 \ 0110 \ 111 \ -1 \ 15/8*1/2 = 15/16$	Closest to 1 below
numbers	$0 \ 0111 \ 000 \ 0 \ 8/8*1 = 1$	
1101115010	$0 \ 0111 \ 001 \ 0 \ 9/8*1 = 9/8$	closest to 1 above
	$0 \ 0111 \ 010 \ 0 \ 10/8*1 = 10/8$	
	0 1110 110 7 14/8*128 = 224	
	0 1110 111 7 15/8*128 = 240	largest norm
	0 1111 000 n/a inf	

Distribution of Values

■ 6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

■ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Special Properties of the IEEE Encoding

- **■** FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

For more details: https://www.gnu.org/software/libc/manual/ https://www.gnu.org/software/libc/manual/

Today: Integer arithmetic and floating point

- Recap
- Integer arithmetic
- Floating Points
 - Background: Fractional binary numbers
 - IEEE floating point standard: Definition
 - Example and properties
 - Rounding, addition, multiplication
 - Floating point in C
 - Summary

Floating Point Operations: Basic Idea

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

- \blacksquare (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

- \blacksquare (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Get binary points lined up

Fixing

- If $M \ge 2$, shift M right, increment E
- ■if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition?

Yes

But may generate infinity or NaN

Commutative?

Yes

Associative?

No

Overflow and inexactness of rounding

•
$$(3.14+1e10)-1e10 = 0$$
, $3.14+(1e10-1e10) = 3.14$

0 is additive identity?

Yes

Every element has additive inverse?

Almost

Yes, except for infinities & NaNs

Monotonicity

Almost

- $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication?

Yes

But may generate infinity or NaN

Multiplication Commutative?

Yes

• Multiplication is Associative?

No

Possibility of overflow, inexactness of rounding

■ Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20

1 is multiplicative identity?

Yes

• Multiplication distributes over addition?

No

Possibility of overflow, inexactness of rounding

■ 1e20*(1e20-1e20) = 0.0, 1e20*1e20 - 1e20*1e20 = NaN

Monotonicity

Almost

Bryant and O'Halla an Zohou& S Ctems Q Programmer's Cerze bye, Gird Edition

Today: Integer arithmetic and floating point

- Recap
- Integer arithmetic
- Floating Points
 - Background: Fractional binary numbers
 - IEEE floating point standard: Definition
 - Example and properties
 - Rounding, addition, multiplication
 - Floating point in C
 - Summary

Floating Point in C

C Guarantees Two Levels

- •float single precision
- •double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will round according to rounding mode

Floating Point Puzzles

■ For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

Today: Integer arithmetic and floating point

- Recap
- Integer arithmetic
- Floating Points
 - Background: Fractional binary numbers
 - IEEE floating point standard: Definition
 - Example and properties
 - Rounding, addition, multiplication
 - Floating point in C
 - Summary

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

S	ехр	frac
1	4-bits	3-bits

Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

S	exp	frac
1	4-bits	3-bits

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

- Round = 1, Sticky = 1 → > 0.5
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Interesting Numbers

{single,double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single $\approx 1.4 \times 10^{-45}$			
■ Double $\approx 4.9 \times 10^{-324}$			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
■ Single $\approx 1.18 \times 10^{-38}$			
■ Double $\approx 2.2 \times 10^{-308}$			
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$
 Just larger than largest denormalized 			
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
■ Single $\approx 3.4 \times 10^{38}$			

■ Double $\approx 1.8 \times 10^{308}$