EI338: Computer Systems and Engineering

(Computer Architecture & Operating Systems)

Chentao Wu 吴晨涛
Associate Professor
Dept. of Computer Science and Engineering
Shanghai Jiao Tong University

SEIEE Building 3-513 wuct@cs.sjtu.edu.cn

Download Lectures

- ftp://public.sjtu.edu.cn
- User: wuct
- Password: wuct123456

Summary

Questions & Answers

- Face to face Q & A
- Time: 1:30pm to 4:30pm on Dec. 28th (Thursday)
- Place: Room 513, SEIEE-3 Building

About The Final Exam (1)

- East Central Building (东中院) 3-401
- On Jan. 3rd (Wednesday)
- Time: 13:10-15:10
- Close Book
 - Computer Architecture 40%
 - Operating System 60%

About The Final Exam (2)

- Question Types
 - Blank Filling (20%)
 - Definitions 给定义、写名词
 - ■Pseudo Codes in Projects ⇒上的&project中的代码,比如进程同步
 - Questions (~30%)
 - Calculations (~50%)

OS-Chapter 1: Introduction

- Operating Systems Definitions
- Operating-System Structure
- Operating-System Operations
- Computer-System Architecture
- Computer-System Organization
- Interrupt, DMA, Cache
- Storage Hierarchy
- Process Management
- Memory Management
- Storage Management
- Multiprocessor Systems/Multi-core Systems
- Distributed Systems

OS-Chapter 2: Operating-System Structures

- Operating System Services
- User Operating System Interface (CLI, GUI)
- System Calls
- Types of System Calls
- System Programs
- Operating System Design and Implementation Microkerne Modules
- Operating System Structure
 - Microkernel system structure
- System Boot

OS-Chapter 3: Processes

- Process Concept
- Process State
- Process Control Block (PCB)
- Process Scheduling
 - Context switch
- Operations on Processes (Creation and Termination) abort() exit()
- Interprocess Communication
 - Communication Models
 - Communication in Client-Server Systems

OS-Chapter 4: Threads

- Multithreading Concepts
- Multithreading Models
 - Many-to-One
 - One-to-One
 - Many-to-Many
- Thread Libraries
 - Pthread
- Threading Issues

OS-Chapter 5: CPU Scheduling

- Scheduling Concepts
- Scheduling Criteria Turnaround time Response time Waiting time
- Scheduling Algorithms
 - FCFS
 - SJF
 - Priority Scheduling
 - Round-Robin (RR)
 - Multi-core Scheduling

OS-Chapter 6: Process Synchronization

IMPORTANT

- Background
- The Critical-Section Problem
- Peterson's Solution
- Synchronization Hardware
- Locks, Semaphores
- Classic Problems of Synchronization
 - Bounded Buffer
 - Readers-Writers
 - Dining Philosophers
- Monitors
- Atomic Transactions

OS-Chapter 7: Deadlocks

- The Deadlock Problem
- Deadlock Characterization
- Methods for Handling Deadlocks
 - Resource-Allocation Graph
 - Banker's Algorithm
- Deadlock Prevention
- Deadlock Avoidance
- Deadlock Detection
- Recovery from Deadlock

OS-Chapter 8: Memory Management

IMPORTANT

- Background
- Swapping
- Contiguous Memory Allocation
- Paging
- Structure of the Page Table
 - Segmentation
 - Example: The Intel Pentium

OS-Chapter 9: Virtual Memory

Background

IMPORTANT

- Demand Paging
- Copy-on-Write
- Page Replacement Algorithm
 - FIFO
 - Optimal
 - LRU
- Allocation of Frames
- Thrashing
- Memory-Mapped Files
- Allocating Kernel Memory
- Other Considerations

OS-Chapter 10: File-System Interface

- File Concept
- Access Methods
- Directory Structure
- File-System Mounting
- File Sharing

OS-Chapter 11: File System Implementation

- File-System Structure
- File-System Implementation
- Directory Implementation
- Allocation Methods
- Free-Space Management

OS-Chapter 12: Mass-Storage Systems

- Overview of Mass Storage Structure
- Disk Structure
- Disk Attachment
- Disk Scheduling
 - Disk Management
 - Swap-Space Management
 - RAID Structure

CA-Chapter 1: Fundamentals of Quantitative Design and Analysis

- Introduction
- Quantitative Principles of Computer Design
- Classes of Computers
- Computer Architecture
- Trends in Technology
- Trends in Cost
- Dependability
 - MTTF, MTTR
- Performance
 - Amdhal's law

CA-Chapter 2 & Appendix B: Memory Hierarchy Design

- Memory Hierarchies
- Six Basic Cache Optimizations

- Ten Advanced Cache Optimizations
- Calculate Memory Access Time based on Miss Rate.

memory access time

CA-Appendix A & C: Instruction Set Principles and Pipelining

- Instruction Set Architecture
- Classifying ISAs
- Encoding the Instruction Set
- 5 stage pipelining
- Structural and Data Hazards
- Forwarding
- Branch Schemes

CA-Chapter 3: Instruction-Level Parallelism and Its Exploitation

- ILP
- Loop unrolling
 - Static Branch Prediction
 - Dynamic Branch Prediction

Merry Christmas! Happy Chinese New Year! Wish all students have good grades!

End of Summary

