

Автоматическое дифференцирование. Вычислительный граф

МЕТОДЫ ВЫПУКЛОЙ ОПТИМИЗАЦИИ

НЕДЕЛЯ З

Даня Меркулов Пётр Остроухов

Автоматическое дифференцирование.

Семинар

Оптимизация для всех! ЦУ

Напоминание с лекции

Автоматическое дифференцирование

Прямой режим

Рисунок 1. Иллюстрация прямого режима для вычисления производной функции v_i по отношению к w_k .

• Использует прямой chain rule

Прямой режим

Рисунок 1. Иллюстрация прямого режима для вычисления производной функции v_i по отношению к w_k .

- Использует прямой chain rule
- Имеет сложность $d imes \mathcal{O}(T)$ операций

Обратный режим

Рисунок 2. Иллюстрация обратного режима для вычисления производной функции L по отношению к узлу v_i .

• Использует обратный chain rule

Обратный режим

Рисунок 2. Иллюстрация обратного режима для вычисления производной функции L по отношению к узлу v_i .

- Использует обратный chain rule
- Хранит информацию из прямого прохода

Обратный режим

Рисунок 2. Иллюстрация обратного режима для вычисления производной функции L по отношению к узлу v_i .

- Использует обратный chain rule
- Хранит информацию из прямого прохода
- Имеет сложность $\mathcal{O}(T)$ операций

Задачи по автоматическому дифференцированию

Простой пример

i Example

$$f(x_1,x_2)=x_1*x_2+\sin x_1$$

Давайте вычислим производные $\dfrac{\partial f}{\partial x_i}$ используя прямой и обратный режимы.

Простой пример

i Example

$$f(x_1, x_2) = x_1 * x_2 + \sin x_1$$

Давайте вычислим производные $\dfrac{\partial f}{\partial x_i}$ используя прямой и обратный режимы.

Рисунок 3. Иллюстрация вычислительного графа функции $f(x_1,x_2)$.

Автоматическое дифференцирование с JAX

Пример 1

$$f(X) = tr(AX^{-1}B)$$

$$\nabla f = -X^{-T}A^TB^TX^{-T}$$

Автоматическое дифференцирование с JAX

Пример 1

$$f(X) = tr(AX^{-1}B)$$

$$\nabla f = -X^{-T}A^TB^TX^{-T}$$

Пример 2

$$g(x) = 1/3 \cdot ||x||_2^3$$

$$\nabla^2 g = ||x||_2^{-1} x x^T + ||x||_2 I_n$$

Автоматическое дифференцирование с JAX

Пример 1

$$f(X) = tr(AX^{-1}B)$$

$$\nabla f = -X^{-T}A^TB^TX^{-T}$$

Пример 2

$$g(x) = 1/3 \cdot ||x||_2^3$$

$$\nabla^2 g = ||x||_2^{-1} x x^T + ||x||_2 I_n$$

Давайте вычислим градиенты и гессианы f и g в python \clubsuit

Задача 1

i Question

Какой из режимов AD вы бы выбрали (прямой/обратный) для следующего вычислительного графа арифметических операций?

Рисунок 4. Какой режим вы бы выбрали для вычисления градиентов?

Задача 2

Предположим, у нас есть обратимая матрица A и вектор b, вектор x является решением системы линейных уравнений Ax=b, то есть можно записать аналитическое решение $x=A^{-1}b$.

f 1 Question ${
m Haйдитe\ производныe\ } rac{\partial L}{\partial A}, rac{\partial L}{\partial b}.$

Рисунок 5. x может быть найден как решение линейной системы

Рисунок 6. x может быть найден как решение линейной системы

Предположим, у нас есть обратимая матрица A и вектор b, вектор x является решением системы линейных уравнений Ax=b, то есть можно записать аналитическое решение $x=A^{-1}b$, в этом примере показано, что вычисление всех производных $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, то есть обратный проход, стоит приблизительно столько же, сколько и прямой проход.

Рисунок 6. x может быть найден как решение линейной системы

Предположим, у нас есть обратимая матрица A и вектор b, вектор x является решением системы линейных уравнений Ax=b, то есть можно записать аналитическое решение $x=A^{-1}b$, в этом примере показано, что вычисление всех производных $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, то есть обратный проход, стоит приблизительно столько же, сколько и прямой проход. Известно, что дифференциал функции не зависит от параметризации:

$$dL = \left\langle \frac{\partial L}{\partial x}, dx \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

Рисунок 6. x может быть найден как решение линейной системы

Предположим, у нас есть обратимая матрица A и вектор b, вектор x является решением системы линейных уравнений Ax=b, то есть можно записать аналитическое решение $x=A^{-1}b$, в этом примере показано, что вычисление всех производных $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, то есть обратный проход, стоит приблизительно столько же, сколько и прямой проход. Известно, что дифференциал функции не зависит от параметризации:

$$dL = \left\langle \frac{\partial L}{\partial x}, dx \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

Для линейной системы мы имеем:

$$Ax = b$$

$$dAx + Adx = db \rightarrow dx = A^{-1}(db - dAx)$$

Прямая подстановка дает нам:

$$\left\langle \frac{\partial L}{\partial x}, A^{-1}(db-dAx) \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

Рисунок 7. x может быть найден как решение линейной системы

Прямая подстановка дает нам:

$$\begin{split} \left\langle \frac{\partial L}{\partial x}, A^{-1}(db - dAx) \right\rangle &= \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle \\ \left\langle -A^{-T} \frac{\partial L}{\partial x} x^T, dA \right\rangle + \left\langle A^{-T} \frac{\partial L}{\partial x}, db \right\rangle &= \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle \end{split}$$

Рисунок 7. x может быть найден как решение линейной системы

Прямая подстановка дает нам:

$$\left\langle \frac{\partial L}{\partial x}, A^{-1}(db - dAx) \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

$$\left\langle -A^{-T} \frac{\partial L}{\partial x} x^{T}, dA \right\rangle + \left\langle A^{-T} \frac{\partial L}{\partial x}, db \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

Следовательно:

$$\frac{\partial L}{\partial A} = -A^{-T} \frac{\partial L}{\partial x} x^T \quad \frac{\partial L}{\partial b} = A^{-T} \frac{\partial L}{\partial x}$$

Рисунок 7. x может быть найден как решение линейной системы

Рисунок 7. x может быть найден как решение линейной системы

Прямая подстановка дает нам:

$$\begin{split} \left\langle \frac{\partial L}{\partial x}, A^{-1}(db - dAx) \right\rangle &= \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle \\ \left\langle -A^{-T} \frac{\partial L}{\partial x} x^T, dA \right\rangle + \left\langle A^{-T} \frac{\partial L}{\partial x}, db \right\rangle &= \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle \end{split}$$

Следовательно:

$$\frac{\partial L}{\partial A} = -A^{-T} \frac{\partial L}{\partial x} x^{T} \quad \frac{\partial L}{\partial b} = A^{-T} \frac{\partial L}{\partial x}$$

Интересно, что наиболее вычислительно интенсивная часть здесь - это обратная матрица, которая является такой же, как и для прямого прохода. Иногда возможно хранить результат сам по себе, что делает обратный проход еще дешевле.

Задача З

Предположим, у нас есть прямоугольная матрица $W \in \mathbb{R}^{m \times n}$, которая имеет сингулярное разложение:

$$\begin{split} W &= U \Sigma V^T, \quad U^T U = I, \quad V^T V = I, \\ \Sigma &= \mathrm{diag}(\sigma_1, \dots, \sigma_{\min(m,n)}) \end{split}$$

Регуляризатор $R(W)=\operatorname{tr}(\Sigma)$ в любой функции потерь стимулирует низкоранговые решения.

 ${f 1}$ Question ${\cal H}$ Найдите производную ${\partial R \over \partial W}.$

Рисунок 8. Вычислительный граф для сингулярного регуляризатора

Предположим, у нас есть прямоугольная матрица $W \in \mathbb{R}^{m \times n}$, которая имеет сингулярное разложение:

$$W = U \Sigma V^T, \quad U^T U = I, \quad V^T V = I, \quad \Sigma = \mathrm{diag}(\sigma_1, \dots, \sigma_{\min(m,n)})$$

1. Аналогично предыдущему примеру:

$$\begin{split} W &= U\Sigma V^T \\ dW &= dU\Sigma V^T + Ud\Sigma V^T + U\Sigma dV^T \\ U^T dW V &= U^T dU\Sigma V^T V + U^T Ud\Sigma V^T V + U^T U\Sigma dV^T V \\ U^T dW V &= U^T dU\Sigma + d\Sigma + \Sigma dV^T V \end{split}$$

2. Обратите внимание, что $U^TU=I \to dU^TU+U^TdU=0$. Но также $dU^TU=(U^TdU)^T$, что фактически означает, что матрица U^TdU является антисимметричной:

$$(U^TdU)^T + U^TdU = 0 \quad \to \quad \mathrm{diag}(U^TdU) = (0,\dots,0)$$

Та же логика может быть применена к матрице V и

$$\operatorname{diag}(dV^TV) = (0,\dots,0)$$

2. Обратите внимание, что $U^TU=I \to dU^TU+U^TdU=0$. Но также $dU^TU=(U^TdU)^T$, что фактически означает, что матрица U^TdU является антисимметричной:

$$(U^TdU)^T + U^TdU = 0 \quad \rightarrow \quad \mathrm{diag}(U^TdU) = (0,\dots,0)$$

Та же логика может быть применена к матрице V и

$$\operatorname{diag}(dV^TV) = (0,\dots,0)$$

3. В то же время, матрица $d\Sigma$ является диагональной, что означает (смотрите 1.) что

$$\operatorname{diag}(U^TdWV)=d\Sigma$$

Здесь на обеих сторонах мы имеем диагональные матрицы.

4. Теперь мы можем разложить дифференциал функции потерь как функцию Σ - такие проблемы возникают в ML задачах, где мы должны ограничить ранг матрицы:

$$\begin{split} dL &= \left\langle \frac{\partial L}{\partial \Sigma}, d\Sigma \right\rangle \\ &= \left\langle \frac{\partial L}{\partial \Sigma}, \mathrm{diag}(U^T dWV) \right\rangle \\ &= \mathrm{tr}\left(\frac{\partial L}{\partial \Sigma}^T \mathrm{diag}(U^T dWV)\right) \end{split}$$

5. Как только мы имеем диагональные матрицы внутри произведения, след диагональной части матрицы будет равен следу всей матрицы:

$$\begin{split} dL &= \operatorname{tr} \left(\frac{\partial L}{\partial \Sigma}^T \operatorname{diag}(U^T dWV) \right) \\ &= \operatorname{tr} \left(\frac{\partial L}{\partial \Sigma}^T U^T dWV \right) \\ &= \left\langle \frac{\partial L}{\partial \Sigma}, U^T dWV \right\rangle \\ &= \left\langle U \frac{\partial L}{\partial \Sigma} V^T, dW \right\rangle \end{split}$$

6. Наконец, используя другую параметризацию дифференциала

$$\left\langle U \frac{\partial L}{\partial \Sigma} V^T, dW \right\rangle = \left\langle \frac{\partial L}{\partial W}, dW \right\rangle$$

$$\frac{\partial L}{\partial W} = U \frac{\partial L}{\partial \Sigma} V^T,$$

Этот результат позволяет нам связать градиенты $\dfrac{\partial L}{\partial W}$ и $\dfrac{\partial L}{\partial \Sigma}.$

Вычислительный эксперимент с ЈАХ

Давайте убедимся численно, что мы правильно вычислили производные в задачах 2-3 🦆

Контрольные точки градиентов

Архитектура прямого распространения

Рисунок 9. Вычислительный граф для получения градиентов для простого прямого распространения нейронной сети с n слоями. Активации отмечены f. Градиент функции потерь по отношению κ активациям и параметрам отмечен b.

Архитектура прямого распространения

Рисунок 9. Вычислительный граф для получения градиентов для простого прямого распространения нейронной сети с n слоями. Активации отмечены f. Градиент функции потерь по отношению к активациям и параметрам отмечен b.

Важное уведомление

Результаты, полученные для узлов f, необходимы для вычисления узлов b.

Обычное обратное распространение

Рисунок 10. Вычислительный граф для получения градиентов для простого прямого распространения нейронной сети с n слоями. Фиолетовый цвет указывает узлы, которые хранятся в памяти.

Рисунок 10. Вычислительный граф для получения градиентов для простого прямого распространения нейронной сети с n слоями. Фиолетовый цвет указывает узлы, которые хранятся в памяти.

• Все активации f хранятся в памяти после прямого прохода.

Рисунок 10. Вычислительный граф для получения градиентов для простого прямого распространения нейронной сети с n слоями. Фиолетовый цвет указывает узлы, которые хранятся в памяти.

• Все активации f хранятся в памяти после прямого прохода.

- Все активации f хранятся в памяти после прямого прохода.
 - Оптимально с точки зрения вычислений: оно вычисляет каждый узел только один раз.

- Все активации f хранятся в памяти после прямого прохода.
 - Оптимально с точки зрения вычислений: оно вычисляет каждый узел только один раз.

- Все активации f хранятся в памяти после прямого прохода.
 - Оптимально с точки зрения вычислений: оно вычисляет каждый узел только один раз.
 - Высокое использование памяти. Использование памяти растет линейно с количеством слоев в нейронной сети.

Рисунок 11. Вычислительный граф для получения градиентов для простого прямого распространения нейронной сети с n слоями. Фиолетовый цвет указывает узлы, которые хранятся в памяти.

• Каждая активация f пересчитывается при необходимости.

Рисунок 11. Вычислительный граф для получения градиентов для простого прямого распространения нейронной сети с n слоями. Фиолетовый цвет указывает узлы, которые хранятся в памяти.

• Каждая активация f пересчитывается при необходимости.

- Каждая активация f пересчитывается при необходимости.
 - Оптимально с точки зрения памяти: нет необходимости хранить все активации в памяти.

- Каждая активация f пересчитывается при необходимости.
 - Оптимально с точки зрения памяти: нет необходимости хранить все активации в памяти.

- Каждая активация f пересчитывается при необходимости.
 - Оптимально с точки зрения памяти: нет необходимости хранить все активации в памяти.
 - Вычислительно неэффективно. Количество оценок узлов масштабируется как n^2 , в то время как в обычном обратном распространении оно масштабируется как n: каждый из n узлов пересчитывается порядка n раз.

Рисунок 12. Вычислительный граф для получения градиентов для простого прямого распространения нейронной сети с n слоями. Фиолетовый цвет указывает узлы, которые хранятся в памяти.

• Компромисс между обычным и ограниченным по памяти подходами. Стратегия состоит в том, чтобы отметить подмножество активаций нейронной сети как контрольные точки, которые будут храниться в памяти.

Рисунок 12. Вычислительный граф для получения градиентов для простого прямого распространения нейронной сети с n слоями. Фиолетовый цвет указывает узлы, которые хранятся в памяти.

• Компромисс между обычным и ограниченным по памяти подходами. Стратегия состоит в том, чтобы отметить подмножество активаций нейронной сети как контрольные точки, которые будут храниться в памяти.

- Компромисс между обычным и ограниченным по памяти подходами. Стратегия состоит в том, чтобы отметить подмножество активаций нейронной сети как контрольные точки, которые будут храниться в памяти.
 - Быстрее пересчитывание активаций f. Мы только пересчитываем узлы между узлом b и последней контрольной точкой, предшествующей ему, при вычислении этого узла b во время обратного распространения.

- Компромисс между обычным и ограниченным по памяти подходами. Стратегия состоит в том, чтобы отметить подмножество активаций нейронной сети как контрольные точки, которые будут храниться в памяти.
 - Быстрее пересчитывание активаций f. Мы только пересчитываем узлы между узлом b и последней контрольной точкой, предшествующей ему, при вычислении этого узла b во время обратного распространения.

- Компромисс между обычным и ограниченным по памяти подходами. Стратегия состоит в том, чтобы отметить подмножество активаций нейронной сети как контрольные точки, которые будут храниться в памяти.
 - Быстрее пересчитывание активаций f. Мы только пересчитываем узлы между узлом b и последней контрольной точкой, предшествующей ему, при вычислении этого узла b во время обратного распространения.
 - Использование памяти зависит от количества контрольных точек. Более эффективно, чем обычный подход.

Анимация вышеуказанных подходов 🗘

Пример использования контрольных точек градиентов 🖓

Оценка следа Гессиана

Этот пример иллюстрирует оценку следа Гессиана нейронной сети с использованием метода Hutchinson, который является алгоритмом для получения такой оценки из матрично-векторных произведений:

Пусть $X \in \mathbb{R}^{d imes d}$ и $v \in \mathbb{R}^d$ случайный вектор такой, что $\mathbb{E}[vv^T] = I.$ Тогда,

$$\mathrm{Tr}(X) = \mathbb{E}[v^T X v] \approx \frac{1}{V} \sum_{i=1}^V v_i^T X v_i.$$

Пример использования оценки следа Гессиана Hutchinson 🗘

Рисунок 13. Несколько запусков оценки следа Гессиана Hutchinson, инициализированных при разных случайных начальных значениях.

¹A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990