MAT426: Advanced Calculus

Miraj Samarakkody

Tougaloo College

04/01/2025

2.41 Theorem

Theorem

If a set E in \mathbb{R}^k has one of the following three properties, then it has the other two:

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point in E.

Proof:

2.42 Theorem

Theorem - Weierstrass

Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Perfect Sets

2.43 Theorem

Let P be a non-empty perfect set in \mathbb{R}^k . Then P is uncountable.

Corollary

Corollary

Every interval [a, b] is uncountable. In particluar, the set of all real numbers is uncountable.

Cantor set is a perfect set in \mathbb{R}^1 which contain no segment.

Cantor set is a perfect set in \mathbb{R}^1 which contain no segment.

Let E_0 be the interval [0,1].

Cantor set is a perfect set in \mathbb{R}^1 which contain no segment.

Let E_0 be the interval [0,1].

Remove the segment $\left(\frac{1}{3}, \frac{2}{3}\right)$, and let E_1 be the union of the intervals

$$\left[0,\frac{1}{3}\right],\left[\frac{2}{3}\right]$$

Cantor set is a perfect set in \mathbb{R}^1 which contain no segment.

Let E_0 be the interval [0,1].

Remove the segment $\left(\frac{1}{3}, \frac{2}{3}\right)$, and let E_1 be the union of the intervals $\begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 \\ \frac{1}{3} \end{bmatrix}$

$$\left[0,\frac{1}{3}\right],\left[\frac{2}{3}\right]$$

Remove the middle thirds of these intervals, and let E_2 be the union of the intervals

$$\left[0,\frac{1}{9}\right], \left[\frac{2}{9},\frac{3}{9}\right], \left[\frac{6}{9},\frac{7}{9}\right], \left[\frac{8}{9},1\right]$$

Continuing in this way, we obtain a sequence of compact sets E_n , such that

- 1. $E_1 \supset E_2 \supset E_3 \supset \dots$
- 2. E_n is the union of 2^n intervals, each of length 3^{-n} .

The set

$$P = \bigcap_{n=1}^{\infty} E_n$$

is called the Cantor set.

Connected Sets

2.45 Definition

Two subsets A and B of a metric space X are said to be separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty.

2.45 Definition

Two subsets A and B of a metric space X are said to be separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty.

A set $E \subset X$ is said to be connected if E is not a union of two non-empty separated sets.

2.45 Definition

Two subsets A and B of a metric space X are said to be separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty.

A set $E \subset X$ is said to be connected if E is not a union of two non-empty separated sets.

Separated sets are disjoint, but disjoint sets need not to be separated.

2.45 Definition

Two subsets A and B of a metric space X are said to be separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty.

A set $E \subset X$ is said to be connected if E is not a union of two non-empty separated sets.

Separated sets are disjoint, but disjoint sets need not to be separated.

Example

The segment [0,1] and the segment (1,2).

2.47 Theorem

A subset E of the real line \mathbb{R}^1 is connected if and only if it has the following property:

If
$$x \in E, y \in E$$
, and $x < z < y$, then $z \in E$.