

William H. Starbuck

starbuck@uoregon.edu

Three challenges coming from readers' expectations

Bayesian analyses violate three expectations:

- 1. Readers expect statistical significance tests.
- 2. Readers expect null hypotheses.
- 3. Readers expect very simple findings significant or not?

Unusual methods may seem wrong

Readers expect analyses to be traditional and familiar

- But Bayesian analyses are untraditional and unfamiliar.
- Reviewers will wonder why you are deviating from tradition.

So, make your analyses very easy to understand

- Use graphs! Graph your prior and posterior distributions, perhaps on the same graph.
- Use concrete examples that relate to everyday events.
- Do not ask readers to interpret algebraic formulas.

Readers expect null hypotheses.

- But Bayesian analyses use prior distributions instead of null hypotheses.
- You can explain how priors are better than null hypotheses.

Explain that a prior distribution is not a null hypothesis

- Null hypotheses pay no attention to previous research or to knowledge about the phenomena.
- Priors are starting points for data analysis that can take advantage of previous research.

3 ways a prior distribution is better than a null hypothesis

- Priors allow choices about assumptions.
 - For example, significance tests usually assume that data distributions are Normal.
 - Perhaps give reasons why conventional assumptions may be incorrect in your study.

3 ways a prior distribution is better than a null hypothesis (continued)

- Modern Bayesian software allows prior distributions of many kinds.
- Explain how your prior distribution makes your inferences more accurate by taking account of previous studies or good theory.

3 ways a prior distribution is better than a null hypothesis (continued)

- Larger samples weaken the effects of prior assumptions.
- Perhaps show the different effects of two priors, hence a range of interpretations.

Readers expect simple yes-or-no conclusions about statistical significance.

 Bayesian analyses produce posterior distributions, which describe ranges of alternative conclusions.

"This is the part I always hate."

So, explain why a posterior distribution is more useful than just saying significant or not

 Inferences always have some uncertainty because data are samples rather than complete populations. Posterior distributions show this sampling uncertainty.

Explain why a posterior distribution is more useful (continued)

 Posterior distributions also show the likelihoods of different possible inferences, which is more complete information than estimates of average effect sizes.