1 Multivariate Gaussians: A review

- (a) Consider a two dimensional random variable $Z \in \mathbb{R}^2$. In order for the random variable to be jointly Gaussian, a necessary and sufficient condition is that
 - Z_1 and Z_2 are each marginally Gaussian, and
 - $Z_1|Z_2 = z$ is Gaussian, and $Z_2|Z_1 = z$ is Gaussian.

A second characterization of a jointly Gaussian RV Z is that it can be written as Z = AX, where X is a collection of i.i.d. standard normal RVs and $A \in \mathbb{R}^{2 \times 2}$ is a matrix.

Let X_1 and X_2 be i.i.d. standard normal RVs. Let U denote a random variable uniformly distributed on $\{-1,1\}$, independent of everything else. Verify if the conditions of the first characterization hold for the following random variables, and calculate the covariance matrix Σ_Z .

- $Z_1 = X_1$ and $Z_2 = X_2$.
- $Z_1 = X_1$ and $Z_2 = X_1 + X_2$. (Use the second characterization to argue joint Gaussianity.)
- $Z_1 = X_1$ and $Z_2 = -X_1$.
- $Z_1 = X_1$ and $Z_2 = UX_1$.
- (b) Use the above example to show that two Gaussian random variables can be uncorrelated, but not independent. On the other hand, show that two uncorrelated, jointly Gaussian RVs are independent.
- (c) With the setup above, let Z = VX, where $V \in \mathbb{R}^{2 \times 2}$, and $Z, X \in \mathbb{R}^2$. What is the covariance matrix Σ_Z ?
- (d) Use the above setup to show that $X_1 + X_2$ and $X_1 X_2$ are independent. Give another example pair of linear combinations that are independent.
- (e) Given a jointly Gaussian RV $Z \in \mathbb{R}^2$ with covariance matrix $\Sigma_Z = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{bmatrix}$, how would you derive the distribution of $Z_1 | Z_2 = z$?

Hint: The following identity may be useful

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -\frac{b}{c} & 1 \end{bmatrix} \begin{bmatrix} \left(a - \frac{b^2}{c}\right)^{-1} & 0 \\ 0 & \frac{1}{c} \end{bmatrix} \begin{bmatrix} 1 & -\frac{b}{c} \\ 0 & 1 \end{bmatrix}.$$

2 Probabilistic model of Weighted Least Squares

Let us now set up a probabilistic model from which weighted least squares arises as the natural solution.

(a) Let $X_1, X_2, ..., X_n \in \mathbb{R}^d$ be n random vectors and $Y_1, Y_2, ..., Y_n \in \mathbb{R}$ be one-dimensional random variables. Assume $Y_i | X_i$ are independently distributed as

$$Y_i = X_i^T w + z_i, (1)$$

where $z_i \sim N(0, \sigma_i^2)$, for some fixed but unknown parameter vector $w \in \mathbb{R}^d$. What is the conditional distribution of Y_i given X_i ?

- (b) Derive the solution to weighted least square as a maximum likelihood estimator of the above model.
- (c) Define $\tilde{Y}_i = \frac{Y_i}{\sigma_i}$ and $\tilde{X}_i = \frac{X_i}{\sigma_i}$. Suppose we still have

$$Y_i = X_i^T w + z_i, (2)$$

where $z_i \sim N(0, \sigma_i^2)$.

Write out the relationship of \tilde{X}_i and \tilde{Y}_i .

- (d) Suppose $(\tilde{X}_i, \tilde{Y}_i)$ are observed for i = 1, ..., n. What is the maximum likelihood estimator of w (as a function of the tuples $(\tilde{X}_i, \tilde{Y}_i)$)?
- (e) You are given training data $\tilde{Y}_i = \frac{Y_i}{\sigma_i}$ and $\tilde{X}_i = \frac{X_i}{\sigma_i}$. Using part (d), derive the solution to the weighted least squares problem.

CS 189, Fall 2017, DIS4 2