

Role of time scales in coupled epidemic-opinion dynamics on multiplex networks

Robert Jankowski 1, 2, 3, *, Anna Chmiel 1

February 9, 2022

¹Faculty of Physics, Warsaw University of Technology

²Departament de Física de la Matèria Condensada, Universitat de Barcelona

³Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona

^{*} robert.jankowski@ub.edu

Motivations and main objectives

 Consequences of COVID-19, e.g., polarization of beliefs, anti-science movements

Q2: How to properly align two distinct processes, epidemic spreading and opinion dynamics?

1

Model overview

- Top (opinion) layer q-voter model
- Bottom (epidemic) layer SIQRD model
- Network topology Holme-Kim Network¹ (preferential attachment with triad formation)

¹Holme, P., & Kim, B. J. (2002). Growing scale-free networks with tunable clustering. Physical review E, 65(2), 026107.

Opinion layer – q-voter model

Each agent has a binary opinion: $S_{\mathfrak{i}}=+1(o_+)$ or $S_{\mathfrak{i}}=-1(o_-).$

- 1. Choose a random node i.
- 2. With probability p it acts independently
- 3. Otherwise (conformism) it selects randomly q neighbours and adapts to the group only if that group is unanimous.
- 4. Repeat step 1.

Figure 1: Choice of the q-lobby (here q = 4)².

² Jędrzejewski, A., Sznajd-Weron, K., & Szwabiński, J. (2016). Mapping the q-voter model: From a single chain to complex networks. Physica A: Statistical Mechanics and its Applications, 446, 110-119.

Epidemic layer - SIQRD model

Agents with positive opinion are willing to respect the restrictions and have

- the infection probability decreased $\beta_+=\beta/2$,
- the time in infection state reduced $t_i(o_+) = t_i/2$ ($t_i \sim \mathcal{N}(10,5)$).

Λ

Impact of the opinion on

epidemic spreading

Impact of independence probability

 $I_{m\alpha x}$ – the peak of infection

 \blacksquare the strength of the interplay opinion-epidemic deteriorates with a larger infection probability β

Impact of the initial positive opinions

$o_{\mbox{\scriptsize init}}$ is a fraction of agents with initial positive opinion

Figure 2: (a) $\beta=0.01,$ (b) $\beta=0.1,$ (c) $\beta=0.5$

Best strategies:

- be conformist (individualist) in society with positive (negative) opinion,
- for more contagious diseases the outcome is less pronounced.

Role of time scales

Interplay between p and the infection peak.

One epidemic update per v_{step} opinion updates.

Figure 3: (a) $\beta=0.02,$ (b) $\beta=0.1,$ (c) $\beta=0.5$

• We observe a saturation of the peak of infection $I_{m\alpha x}$ for greater value of the relative rate ν_{step} regardless of infection probability β .

Interplay between q-voter parameters and the infection peak.

Conclusions

Impact of the opinion on epidemic spreading

- Opinion has the strongest impact on the less infectious diseases.
- The government should take steps to convince the negative part of society.

Role of time scales

- Assuming the same time scales may lead to misleading conclusions.
- Selecting relative rate between two processes v_{step} would require the empirical dataset.

Thank you for your attention ⁽²⁾

For more information:

or click here