Arquitectura de Sistemas e Computadores II 1ª Frequência

Departamento de Informática Universidade de Évora

31 de Outubro de 2018

Indique todos os cálculos efectuados

Perguntas rápidas

- 1. [1 valor] Se um programa demora mais tempo a executar no computador X do que no computador Y, qual o computador que apresenta melhor desempenho para esse programa?
- 2. [1 valor] O que é igual em dois processadores que implementam a mesma arquitectura, o CPI, as instruções que executam, ou a frequência do relógio?
- **3.** [1 valor] Na implementação MIPS monociclo, a execução da instrução and é mais rápida do que a da instrução sw?
- **4.** [1 valor] Qual o *speedup* máximo que se pode esperar obter ao passar de uma implementação monociclo de um processador para uma implementação *pipelined* com 8 andares?

Desempenho

 ${f 5.}$ Durante a execução do programa P são executadas 2 mil milhões de instruções, com a seguinte distribuição:

Classe	Aritméticas	Leitura da memória	Escrita na memória	Saltos
%	40	25	10	25
CPI	2	6	5	4

- (a) [1,5 valores] Qual o CPI de P?
- (b) [2 valores] Se a execução do programa demorar 7,6 s, qual é o período do relógio do processador? (Se não resolveu a alínea anterior e precisar de saber o CPI de P, use o valor 15,2.)
- **6.** [1,5 valores] Quantas vezes é necessário reduzir o tempo das instruções correspondentes a 80% do tempo total de execução de um programa para obter um speedup de 2,5?

Implementação MIPS monociclo

7. [6 valores] Pretende-se que a implementação MIPS monociclo da Figura 1 suporte a execução da instrução addipc (add immediate to PC), que é uma instrução tipo-I com dois argumentos:

		0				
addipc rt, immediate		addipc	0	rt	immediate	
	bits	6	5	5	16	

Esta instrução coloca, no registo rt, o valor obtido somando o endereço da instrução a immediate × 4, sendo immediate um valor com sinal.

- (a) Quais das unidades funcionais e dos *multiplexers* existentes serão usados na execução desta instrução? (Identifique um *multiplexer* através do sinal que o controla.)
- (b) Que unidades funcionais (incluindo multiplexers) e que sinais de controlo é necessário acrescentar?
- (c) Quais os valores que os vários sinais de controlo deverão ter e qual a operação realizada pela ALU durante a execução desta instrução? (Não é necessário apresentar o valor de ALUOp.)
- (d) Apresente na Figura 1 as alterações à implementação que considerar necessário fazer.
- 8. Seja $PC = 004C \, 1FA8_{16}$ o endereço da instrução sub \$t0, \$v1, \$t0, cuja codificação binária completa é a seguinte:

31 26			_	11	Ü	0 0	
00000	00	00011	01000	01000	00000	100010	

(a) [2,5 valores] Sejam os seguintes os valores contidos em alguns dos registos do processador, quando a execução da instrução se inicia:

Registo	1	3	4	8	10	11	16	23	24	31
Valor	88	100	3201	122	56	0	32	93000	4	444444

Indique os valores que estão presentes, no fim do ciclo em que a instrução executa, nos pontos (A), (B), (C), e (D) do circuito da Figura 2. Use a base de numeração que achar conveniente para cada um dos valores.

(Se necessitar do conteúdo de um registo não contemplado na tabela acima, considere que esse registo contém o valor obtido adicionando 1000 ao número do registo.)

(b) [2,5 valores] Sejam as seguintes as latências das várias componentes do processador:

PC	Memórias	Banco	ALU	Somadores	Shift	Extensão	Multiple xers	Controlo	Controlo
		registos			left 2	com sinal			da ALU
$10\mathrm{ps}$	$250\mathrm{ps}$	$100\mathrm{ps}$	$200\mathrm{ps}$	$180\mathrm{ps}$	$2\mathrm{ps}$	$3\mathrm{ps}$	$25\mathrm{ps}$	$35\mathrm{ps}$	$13\mathrm{ps}$

(Considere que os restantes elementos lógicos têm latência zero.)

Calcule o tempo que demora, desde o início do ciclo de relógio em que a instrução é executada, até que os valores correctos estejam disponíveis nos pontos A, B, C e D do circuito da Figura 2. Explicite todos os tempos que considerou, nos cálculos que fez, para chegar aos valores que obteve.

(Sugestão: Inclua esses valores na figura.)

Nome: ______ Número: _____

Figura 1: Diagrama de blocos da implementação MIPS monociclo para a pergunta 7

Figura 2: Diagrama de blocos da implementação MIPS monociclo para a pergunta 8