Subsequência

Prova Fase 1 - OBI2023

Você foi contratado pela Agência Extra-Espacial Brasileira, que procura indícios de vida extraterrestre.

Um dos telescópios da Agência, para o espectro ultravioleta, gera uma sequência de valores inteiros positivos que devem ser analisados continuamente. Dadas duas sequências S_A e S_B , sua primeira missão é determinar se S_B é uma subsequência de S_A .

Uma subsequência de uma dada sequência S é um conjunto de elementos de S que não são necessariamente adjacentes mas que mantêm a mesma ordem em que aparecem em S. Por exemplo, [2], [1, 4], [1, 2, 4] e [1, 2, 3, 4] são subsequências de [1, 2, 3, 4], mas [4, 3], [3, 4, 1] e [1, 3, 5] não são.

Entrada

A primeira linha contém dois inteiros A e B, o número de elementos das sequências. A segunda linha contém A inteiros X_i , os números da sequência S_A . A seguir a entrada contém B inteiros Y_i , os números da sequência S_B .

Saída

Seu programa deve produzir uma única linha, contendo um único caractere, que deve ser a letra maiúscula 'S' se S_B é uma subsequência da S_A ou a letra maiúscula 'N' caso contrário.

Restrições

- $1 \le A \le 10^5$
- $1 \le B \le A$
- $-10^9 \le X_i \le 10^9 \text{ para } 1 \le i \le A$
- $-10^9 \le Y_i \le 10^9$ para $1 \le i \le B$

Informações sobre a pontuação

- A tarefa vale 100 pontos.
- Para um conjunto de casos de testes valendo 11 pontos, A = B = 2.
- Para um conjunto de casos de testes valendo outros 33 pontos, os números aparecem no máximo uma vez em cada sequência, $A \le 100$, $1 \le X_i \le 100$ e $1 \le Y_i \le 100$.
- Para um conjunto de casos de testes valendo outros 56 pontos, nenhuma restrição adicional.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
5 3	S
1 2 3 4 5	
2 3 5	

Exemplo de entrada 2	Exemplo de saída 2
5 4	N
8 17 8 21 23	
8 8 21 22	