Digital Signal Processing for Music

Part 8: Fourier Transform, Part 2

Andrew Beck

Short Time Fourier Transform (STFT)

Compute Fourier transform only over a segment

- >> Signal Properties: Choose quasi-periodic segment
- >>> Perception: Ear analyzes short segments of signal
- >>> Hardware: Fourier Transform is inefficient and memory consuming for very long input segments

Multiply a window with the signal

Animation of Process

Alternate Representation of STFT

Windowing Effects in the Frequency Domain

Multiplication in time domain is convolution in the frequency domain

$$x_{
m W}(t) = x(t) \cdot w(t)
ightarrow X_{
m W}({
m j}\omega) = X({
m j}\omega) * W({
m j}\omega)$$

This causes spectral leakage

Rectangular

Triangle

Cosine

Hamming

Von Hann

Blackman-Harris

Properties of Spectral Leakage

- >> Main Lobe Width: How much does the main lobe "smear" a peak?
- >> Side Lobe Height: How domainant is the (highest) side lobe?
- >>> Side Lobe Attenuation/Fall-off: How much do distant side lobes influence results?
- >> Process and Scalloping Loss (DFT): How accurate is the amplitude (best and worst case)

Rectangular Window

$$w_{
m R}(t) = egin{cases} 1, & -rac{1}{2} \leq t \leq rac{1}{2} \ 0, & ext{otherwise} \end{cases}$$

Triangle Window

$$w_{\mathrm{T}}(t) = egin{cases} 1+(2t), & -rac{1}{2} \leq t < 0 \ 2t, & 0 \leq t \leq rac{1}{2} \ 0, & ext{otherwise} \end{cases}$$

Cosine Window

$$w_{
m C}(t) = w_{
m R}(t) \cdot \cos(\pi t)$$

Von-Hann Window

$$w_{\mathrm{H}}(t) = w_{\mathrm{R}}(t) \cdot rac{1}{2}(1+\cos(2\pi t))$$

Hamming Window

$$w_{
m Hm}(t) = w_{
m R}(t) \cdot (rac{25}{46} + rac{21}{46} {
m cos}(2\pi t))$$

Blackman-Harris Window

$$w_{ ext{BH}}(t) = w_{ ext{R}}(t) \cdot \sum_{m=0}^{3} b_m \cos{(2\pi m t)}$$

with $b_0=0.35875$, $b_1=0.48829$, $b_2=0.14128$, $b_3=0.01168$

Sampled Time Signals

$$egin{aligned} \mathfrak{F}[x(i)] &= \mathfrak{F}[x(t) \cdot \delta_{\mathrm{T}}(t)] \ &= \mathfrak{F}[x(t)] * \mathfrak{F}[\delta_{\mathrm{T}}(t)] \ &= X(\mathrm{j}\omega) * \Delta_{\mathrm{T}}(\mathrm{j}\omega) \end{aligned}$$

Transformed signal is

- >> still continuous
- >> periodic

Spectral Aliasing in Sampled Signals

Discrete Fourier Transform (DFT)

Digital domain requires working with discrete frequency values

$$X(k) = \sum_{i=0}^{\mathcal{K}-1} x(i) \mathrm{e}^{-\mathrm{j}kirac{2\pi}{\mathcal{K}}}$$

- 2 Interpretations:
- >> Sampled continuous Fourier transform
- >> Continuous Fourier transform of periodically extended time domain segment

DFT Frequency Resolution

Depends on:

- \Rightarrow Block length K
- >> Sample rate ω_T (spectrum is periodic with ω_T)

$$\Delta \omega = rac{\omega_T}{\mathcal{K}}$$

- >> Increasing DFT length increases frequency resolution, decreasing time resolution
- >> Zero-padding can increase resolution without decreasing time resolution

DFT vs FFT

FFT is an algorithm to efficiently calculate the DFT Result is **identical**

- \rightarrow DFT: \mathcal{K}^2 complex multiplications
- \Rightarrow FFT: $\frac{\mathcal{K}}{2}\log_2(\mathcal{K})$ complex multiplications

K	DFT Calcs	FFT Calcs	Efficiency
256	2^16	1024	64:1
512	2^18	2034	114:1
1024	2^20	5120	205 : 1
2048	2^22	11264	372 : 1
4096	2^24	24576	683 : 1

Summary

- 1. Fourier Series can describe any periodic function (discrete "spectrum")
- 2. Continuous FT transforms any continuous function (continuous spectrum)
- 3. STFT transforms a segment of the signal (convolution with window spectrum)
- 4. FT of sampled signals (periodic)
- 5. DFT (sampled FT of periodic continuation)
- >> Where spectrum is periodic, time signal is discrete
- >> Where spectrum is discrete, time signal is periodic