Arbres de Décision

INTUITION

Principe : réfléchir dimension par dimension, probablement le plus proche d'une décision humaine.

Les arbres s'utilisent dans des problèmes de régression et de classification.

Ils acceptent les données de types différents : qualitatives/quantitatives, discrètes/continues.

Ils sont très facilement interprétables.

RAPPEL: VARIABLES DISCRÈTES

On dit qu'une variable est **discrète** lorsqu'elle prend un nombre dénombrable de valeurs. (Dénombrable = fini.) Par exemple : nombre de pièces d'un appartement (1,2,3,4,5...), nom de l'auteur d'un livre (Victor Hugo, Stendhal, Balzac...), match à domicile (oui/non), etc.

RAPPEL: VARIABLES CONTINUES

On dit qu'une variable est **continue** lorsqu'elle prend un nombre non dénombrable de valeurs (i.e. qu'on ne peut pas compter, même si on a un temps infini). Par exemple : prix d'un appartement (tous les prix possibles entre 0 et l'infini).

Remarque 1: on peut **discrétiser** une variable continue. Exemple du prix d'un appartement : classe 1 (entre 0 et 500), classe 2 (entre 500 et 700), classe 3 (entre 700 et 800), etc.

PHASE D'APPRENTISSAGE : VARIABLES DISCRÈTES

Match	Balance	Mauvaises conditions	Match précédent	Match gagné
à domicile?	positive?	climatiques?	gagné?	
V	V	F	F	V
F	\mathbf{F}	V	V	V
V	\mathbf{V}	V	F	V
V	\mathbf{V}	F	V	V
F	\mathbf{v}	V	V	F
F	\mathbf{F}	V	F	F
V	\mathbf{F}	F	V	F
V	\mathbf{F}	V	F	F

Source : Cours de François Denis

UN EXEMPLE D'ARBRE

Training Data

Home Owner			Defaulted Borrower
No	Married	80K	?

COUPURE BINAIRE OU N-AIRE

(i) Binary split

(ii) Multi-way split

COUPURE POUR ATTRIBUTS CONTINUS

- Peut être traité de plusieurs manières.
 - Discrétiser pour former un attribut catégorique ordinal. Les intervalles peuvent être égaux, ou déterminés en fonction des fréquences.
 - Statique discrétiser une seule fois au tout début.
 - Dynamique répétition à chaque nœud.

PHASE DE TEST : VARIABLES CONTINUES

PHASE DE TEST : VARIABLES CONTINUES

PHASE DE TEST : VARIABLES CONTINUES

VOCABULAIRE

Noeud: endroit de coupure

Racine: noeud initial, aucune coupure n'a été faite.

Feuille : extrémité de l'arbre (noeud qui n'est pas divisé).

Profondeur : nombre de niveaux de l'arbre

Taille minimale des feuilles : nombre minimal de points de

l'ensemble d'apprentissage toléré dans une feuille.

Critère de séparation : critère selon lequel on choisit la variable/la coupure.

ALGORITHME

Algorithme : Arbre de decision.

Avec Ensemble d'apprentissage (x1, y1), (x2, y2)..., (xn, yn).

- 1: **Initialisation**: Arbre = Arbre vide; N = racine.
- 2: while N existe do
- 3: if noeud N est terminal then
- 4: N est une feuille. Donner une classe à N.
- 5: else
- 6: Créer des noeuds fils (selon la meilleure coupure)
- 7: end if
- 8: N = noeud non encore exploré s'il existe.
- 9: end while

TESTER SI UN NOEUD EST TERMINAL

Deux critères :

Profondeur de l'arbre : si l'on a atteint la profondeur maximale, on arrête.

Proportion des classes dans le noeud : si le quotient classe majoritaire / total des points du noeud est supérieure à une valeur, on arrête.

TESTER SI UN NOEUD EST TERMINAL

Deux critères :

Profondeur de l'arbre : si l'on a atteint la profondeur maximale, on arrête.

Proportion des classes dans le noeud : si le quotient classe majoritaire / total des points du noeud est supérieur à une valeur, on

arrête.

COMMENT DETERMINER LA MEILLEURE COUPURE

Avant coupure : 10 exemples de classe C0 et 10 exemples de classe C1.

Customer Id	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Quelle condition de test est la meilleure ?

COMMENT DETERMINER LA MEILLEURE COUPURE

- L'approche gloutonne:
 - Les nœuds avec une distribution de classe plus pure sont préférés
- Besoin d'une mesure d'impureté :

C0: 5

C1: 5

C0: 9

C1: 1

Degré élevé d'impureté

Faible degré d'impureté

CHOIX DE LA VARIABLE DE COUPURE

Objectif: Choisir la variable qui maximise le gain en **pureté** ou en information.

On n'a le droit que de segmenter que sur **une variable à la fois** (un axe).

Cas discret : la segmentation se fait sur toutes les valeurs possibles de la variable.

Cas continu : la segmentation est forcément simple : de la forme

"variable > valeur, variable <= valeur".

Trois critères couramment utilisés :

l'indice de Gini

l'entropie de Shannon

l'erreur de classification

L'approche est gloutonne : on teste chaque variable et chaque coupure possible et on choisit la meilleure.

MESURES D'IMPURETE (POUR **UN NOEUD)**

Gini Index
$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Entropie

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

Erreur de classification

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

TROUVER LA MEILLEURE COUPURE

- 1. Calculer la mesure d'impureté (P) avant de réaliser une coupure
- 2. Calculer la mesure d'impureté (M) après avoir réalisé la coupure, c'est à dire :
 - Calcul de la mesure d'impureté pour chaque nœud enfant; M est
 l'impureté pondérée des enfants
- 3. Choisir la condition de test d'attribut qui produit le gain le plus élevé

Gain = P - M

TROUVER LA MEILLEURE COUPURE

IMPURETE PAR L'INDEX DE GINI

Pour un nœud t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

avec : $p(j \mid t)$ la fréquence relative de la classe j pour le nœud t.

- La valeur maximale est atteinte lorsque les exemples sont répartis uniformément entre toutes les classes (= 1 - 1/nc; nc = nombre de classes); ce qui implique une information la moins intéressantes.
- La valeur minimale est atteinte lorsque tous les exemples du nœud appartiennent à la même catégorie (=0).

Measure of Impurity: GINI

Pour un nœud t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

avec : $p(j \mid t)$ la fréquence relative de la classe j pour le nœud t.

– Pour un problème à deux classes (p, 1-p):

• GINI =
$$1 - p^2 - (1 - p)^2 = 2p (1-p)$$

C1	0	
C2	6	
Gini=0.000		

C1	1	
C2	5	
Gini=0.278		

C1	2	
C2	4	
Gini=0.444		

	C1	3
	C2	3
Gini=0.500		

CALCUL DE L'INDEX DE GINI POUR UN NOEUD

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$

C1	2	
C2	4	

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

CALCUL DE L'INDEX DE GINI POUR PLUSIEURS NOEUDS

 \Box Quand un nœud p est divisé en k partitions (enfants)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

avec: n_i = nombre d'exemples pour l'enfant i,

n = nombre d'exemples pour le parent p.

- Choisir l'attribut qui minimise l'indice de Gini pondéré des enfants.
- ☐ L'indice de Gini est utilisé dans les algorithmes d'arbre de décision tels que : CART. SLIO. SPRINT

ATTRIBUTS BINAIRES · CAI CUI DE L'INDEX DE **GINI PONDERE**

- Coupures pour 2 partitions
- L'effet de pondération des partitions :

Des partitions plus grandes et plus pures sont

o paroo con		
,	Parent	
C1	7	
C2	5	
Gini = 0.486		

= 1 - = 0.2	- (5/6) ² -	- (1/6)2
Gini(
_ 1	(2/6/2	(1/G\2

Cini(NI1)

Gini(N2)	
$= 1 - (2/6)^2 - (4/6)^2$	
-0.444	

	N1	N2
C1	5	2
C2	1	4
Gini=0.361		

Gini pondéré pour N1 et N2 = 6/12 * 0.278 +6/12 * 0.444 = 0.361

Gain = 0.486 - 0.361 = 0.125

ATTRIBUTS CATEGORIQUES: CALCUL DU GINI

- I Pour chaque valeur distincte, compter pour chaque classe.
- I Utiliser la matrice de comptage pour prendre des décisions.

Coupures multiples

	CarType		
	Family	Sports	Luxury
C1	1	8	1
C2	3	0	7
Gini	0.163		

Coupures binaires (trouver la meilleure partition des valeurs)

	CarType	
	{Sports, Luxury} {Family}	
C1	9	1
C2	7	3
Gini	0.468	

	CarType	
	{Sports} {Family Luxury	
C1	8	2
C2	0	10
Gini	0.167	

Lequel de ces choix est le meilleur?

- Utiliser des décisions binaires basées sur une seule valeur
- Plusieurs choix pour la valeur de coupure
 - Nombre de valeurs de coupure possibles
 Nombre de valeurs distinctes
- Chaque valeur de coupure est associée à une matrice de comptage.
 - Nombre de classes dans chacune des partitions, A
 v et A > v
- Méthode simple pour choisir le meilleur v :
 - Pour chaque v, parcourir les données pour calculer la matrice de comptage et son indice de Gini.

	Home	Marital	Annual	
ID	Owner	Status	Income	Defaulted
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

- Pour chaque attribut :
 - Ordonner l'attribut selon ses valeurs
 - Parcourir linéairement ces valeurs, en mettant à jour à chaque fois la matrice de comptage et en calculant l'indice de Gini
 - Choisir la valeur qui a l'indice de Gini le plus faible

Pour chaque attribut:

- Ordonner l'attribut selon ses valeurs
- Parcourir linéairement ces valeurs, en mettant à jour à chaque fois la matrice de comptage et en calculant l'indice de Gini
- Choisir la valeur qui a l'indice de Gini le plus faible

Pour chaque attribut:

- Ordonner l'attribut selon ses valeurs
- Parcourir linéairement ces valeurs, en mettant à jour à chaque fois la matrice de comptage et en calculant l'indice de Gini
- Choisir la valeur qui a l'indice de Gini le plus faible

Pour chaque attribut :

- Ordonner l'attribut selon ses valeurs
- Parcourir linéairement ces valeurs, en mettant à jour à chaque fois la matrice de comptage et en calculant l'indice de Gini
- Choisir la valeur qui a l'indice de Gini le plus faible

Pour chaque attribut :

- Ordonner l'attribut selon ses valeurs
- Parcourir linéairement ces valeurs, en mettant à jour à chaque fois la matrice de comptage et en calculant l'indice de Gini
- Choisir la valeur qui a l'indice de Gini le plus faible

IMPURETE PAR L'ENTROPIE

Entropie pour un nœud t :

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

avec : p(j/t) la fréquence relative de la classe j pour le nœud t.

- La valeur maximale est atteinte lorsque les exemples sont répartis uniformément entre toutes les classes (=log(nc); nc = nombre de classes); ce qui implique une information la moins intéressante.
- La valeur minimale est atteinte lorsque tous les exemples du nœud appartiennent à la même catégorie (=0).

Le calcul de l'impureté par l'entropie ressemble à celui de l'indice de GINI.

CALCUL DE L'ENTROPIE (UN SEUL NOEUD)

$$Entropy(t) = -\sum_{j} p(j | t) \log_{2} p(j | t)$$

C1	0	P(C1) = 0/6 = 0 $P(C2) = 6/6 = 1$
C2	6	Entropie = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

C1	1	P(C1) = 1/6	P(C2) = 5/6
C2	5	Entropie = $-(1)$	$1/6$) $\log_2(1/6) - (5/6) \log_2(1/6) = 0.65$

C1	2	P(C1) = 2/6	P(C2) = 4/6
C2	4	Entropie = $-(2$	$2/6$) $\log_2(2/6) - (4/6) \log_2(4/6) = 0.92$

CALCUL DU GAIN APRES UNE COUPURE

l Gain :

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

le nœud parent p est divisé en k partitions (enfants);

avec: n_i = nombre d'exemples pour l'enfant I; n = nombre d'exemples pour le parent p.

- Choisir la coupure qui réduit le plus le GAIN (maximisation du GAIN).
- Utilisé par les algorithmes ID3 et C4.5.

QUOTIENT DE GAIN

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

le nœud parent p est divisé en k partitions (enfants);

avec: n_i = nombre d'exemples pour l'enfant I; n = nombre d'exemples pour le parent p.

 Adapte le Gain en fonction de l'entropie du partitionnement (SplitINFO).

Pénalise les régions avec peu d'exemples.

- Utilisé dans C4.5.

L'ERREUR DE CLASSIFICATION

I Erreur de classification au nœud t:

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- La valeur maximale est atteinte lorsque les exemples sont répartis uniformément entre toutes les classes (= 1-1/nc); ce qui implique une information la moins intéressante.
- La valeur minimale est atteinte lorsque tous les exemples du nœud appartiennent à la même catégorie (=0).

ERREUR DE CLASSIFICATION (POUR UN NOEUD)

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0	P(C1) = 0/6 = 0	P(C2) = 6/6 = 6
C2	6	Erreur = 1 – max	(0, 1) = 1 - 1 = 0

C1	1	P(C1) = 1/6	P(C2) = 5/6
C2	5	Erreur = 1 – m	$\max (1/6, 5/6) = 1 - 5/6 = 1/6$

C1	2	P(C1) = 2/6	P(C2) = 4/6
C2	4	Erreur = 1 – m	ax (2/6, 4/6) = 1 - 4/6 = 1/3

COMPARAISON DES MESURES D'IMPURETE

Pour un problème à 2 classes :

ERREUR DE CLASSIFICATION ET

	Parent
C1	7
C2	3
Gini	= 0.42

Gini(N1)
=
$$1 - (3/3)^2 - (0/3)^2$$

= 0

$= 1 - (3/3)^2 - (0/3)^2$	-
= 0	ł
Gini(N2)	ŀ

$$= 1 - (4/7)^2 - (3/7)^2$$
$$= 0.489$$

	N1	N2		
C1	3	4		
C2	0	3		
Gini=0.342				

Gini(Children) = 3/10 * 0+ 7/10 * 0.489 = 0.342

Le Gini est amélioré, mais l'erreur reste la $m\hat{e}me (= 3/10)$

ERREUR DE CLASSIFICATION ET GINI

	Parent	
C1	7	
C2	3	
Gini = 0.42		

	N1	N2	
C1	3	4	
C2	0	3	
Gini=0.342			

	N1	N2		
C1	3	4		
C2	1	2		
Gini=0.416				

L'erreur dans les trois cas = 0.3!

CONCLUSION

Avantages:

Très interprétables!

Faciles à implémenter

Inconvénients:

Forte élasticité aux exemples : si l'on change un exemple, l'arbre peut changer complètement. On risque donc de faire du sur-apprentissage.

Peuvent nécessiter beaucoup de calculs à cause de l'approche gloutonne.