Contents

1 Matrices, Vectors, and Vector Calculus

 $\mathbf{2}$

Chapter 1

Matrices, Vectors, and Vector Calculus

We know the usual definition of sequences in \mathbb{R} . A sequence of vectors converges similarly, except that the norm used in the definition of convergence is now a vector norm, not simply absolute value. A sequence of vectors $\{\vec{a}_i\}$ in \mathbb{R}^n converges to $\vec{a} \in \mathbb{R}^n$ if for any $\epsilon > 0$ there exists a $n \in \mathbb{N}$ such that

$$n > N \implies \|\vec{a}_i - \vec{a}\| < \epsilon$$

This definition can be related to the convergence of the vector components.

Prop 1.1. Let $\{\vec{a}_i\}$ be a sequence of vectors (coordinate vectors) in \mathbb{R}^n . Then $\{\vec{a}_i\}$ converges to $\vec{a} \in \mathbb{R}^n$ if and only if each component $(\vec{a}_i)_i$ converges to $(\vec{a})_i$.

Proof. Assume that we have the components converging. That is, for $\epsilon > 0$ we have some $N \in \mathbb{N}$ such that

$$n > N \implies \left| \left(\vec{a}_i \right)_i - \left(\vec{a} \right)_i \right| < \epsilon / \sqrt{n}$$

We choose N to hold for every component i. This can be arranged by taking N to the the maximum of the N guaranteed for each individual component. Thus, we have, for n > N,

$$\|\vec{a}_i - \vec{a}\|^2 = \sum_{j=1}^n \left| (\vec{a}_i)_j - (\vec{a})_j \right|^2$$

$$< \sum_{j=1}^n \epsilon^2 / n$$

$$= \epsilon$$

so that $\{\vec{a}_i\}$ converges to \vec{a} .

Conversely, assume that $\{\vec{a}_i\}$ converges to \vec{a} . Let $\epsilon > 0$ be arbitrary and let N be the guaranteed natural number in the definition of vector sequence convergence.

The key is to note that for any $j=1,2,\ldots,n$ we have

The key is to note that for any
$$j-1,2,\ldots,n$$
 we have
$$\left|\left(\vec{a}_i\right)_j-\left(\vec{a}\right)_j\right|^2\leq \sum_{k=1}^n\left|\left(\vec{a}_i\right)_k-\left(\vec{a}\right)_k\right|^2<\epsilon^2$$
 whenever $n>N$. Thus, we have in particular
$$n>N\implies \left|\left(\vec{a}_i\right)_j-\left(\vec{a}\right)_j\right|<\epsilon$$
 and so the component sequences converge as expected.

$$n > N \implies \left| (\vec{a}_i)_i - (\vec{a})_i \right| < \epsilon$$

Problem 1.2. hi

Let's look at some interesting consequences.