

Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Лабораторна робота №6

Аналіз даних з використанням мови Python

Тема: Попередня обробка даних в Pandas

Варіант: 1

Виконав	Перевірив:
студент групи ІП-11:	Тимофєєва Ю. С
Панченко С. В.	

3MICT

1 Мета лабораторної роботи	6
2 Завдання	7
3 Виконання	8
3.1 Зчитування файлу та зміна назви стовпців	8
3.2 Знаходження проблем з даними та виконання попередньої обробки дан	ΊИΧ
для усунення цих проблем	9
4 Висновок	16

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Ознайомитись з операціями попередньої обробки даних Pandas.

2 ЗАВДАННЯ

Створити програму,яка виконує наступні завдання, використовуючи файл відповідно до варіанту:

- 1. Читає файл та змінює назви стовпців.
- 2. Знаходить проблеми з даними та виконує попередню обробку даних для усунення цих проблем.

Оформити звіт. Звіт повинен містити:

- -титульний лист;
- —код програми;
- —результати виконання коду.

Продемонструвати роботу програми та відповісти на питання стосовно теоретичних відомостей та роботи програми.

Bapiaнт 1: Version 1.xlsx

3 ВИКОНАННЯ

3.1 Зчитування файлу та зміна назви стовпців

Для початку імпортуємо модуль pandas та застосуємо функцію pandas.read_excel для зчитування .xlsx-файлів. Видалимо колонку "Unnamed: 0", оскільки індекси за замовчуванням створюються.

Рисунок 3.1 - Зчитування .xlsx-файлу в датафрейм

Змінимо назви стовпців.

Рисунок 3.2 - Зміна назв стовпців

3.2 Знаходження проблем з даними та виконання попередньої обробки даних для усунення цих проблем

Перевіримо типи даних в стовпцях.

```
pading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

Рисунок 3.3 - Типи даних

Приведемо всі типи в датафреймі в тип object.

```
In [328... df = df.astype('object')
```

Рисунок 3.4 - Приведення до типу object

Перевіримо, чи ϵ пропущенні значення у кожному стовпці. для цього застосуємо метод іsna, який повертає для кожного стовпця вектор булевих значень, що позначають, чи елемент пустий. Далі застосуємо метод апу, для того щоб дізнатися, чи ϵ хоча б одне пропущене значення.

```
In [329... df.isna().any()

Out[329]: Date False Mean temperature True Humidity True Wind speed True Mean pressure dtype: bool
```

Рисунок 3.5 - Інформація про присутність пустих значень у стовпцях

Розберемося з колонкою дат. При роботі я побачив цікаву деталь, що застосувавши pandas.date_range я отримував 1462 рядки, а в колонці дат рядків 1472.

```
In [330... r = pd.date_range('2013', '2017')
print(f'{df["Date"].size} vs {len(r)}')
1472 vs 1462
```

Рисунок 3.6 - Підозра на наявність дублікатів в датах

Приберемо дублікати та перевіремо ще раз.

```
In [331... df.drop_duplicates(subset=['Date'], inplace=True)
print(f'{df["Date"].size} vs {len(r)}')
df['Date'] = r

1462 vs 1462
```

Рисунок 3.7 - Прибирання дублікатів

У стовпцях з числами можуть бути символи, що не відповідають загальному виду числа. Приберемо їх на пусті клітинки за допомогою регулярних виразів.

Пояснимо регулярний вираз. Його основу складає дана частина: "[+-]?([0-9]*[.])?[0-9]+". Вона перевіряє рядок на те, що це або int, або float. Далі треба застосувати інверсію умови, тобто: (.(?!(умова))).

У кінці приведемо усі стовпчики до типу float64.

Рисунок 3.8 - Заміна невідповідних клітинок у стовпчиках на -1, приведення типів до float64

Заповнимо пусті значення на середнє значення для кожного стовпчика відповідно. Застосуємо метод fillna.

Рисунок 3.9 - Заміна пустих значень на середнє для кожного стовпчика

Округлимо до сотих значення. Застосуємо метод round.

Рисунок 3.10 - Округлення чисел у датафреймі

Зробимо колонку дат індексом за допомогою методу set_index.

335	<pre>df.set_index('Date', inplace=True) df</pre>							
335]:		Mean temperature	Humidity	Wind speed	Mean pressure			
	Date							
	2013-01-01	10.00	84.50	0.00	1015.67			
	2013-01-02	7.40	92.00	2.98	1017.80			
	2013-01-03	7.17	87.00	4.63	1018.67			
	2013-01-04	8.67	71.33	1.23	1017.17			
	2013-01-05	6.00	86.83	3.70	1016.50			
	2016-12-28	17.22	68.04	3.55	1015.57			
	2016-12-29	15.24	87.86	6.00	1016.90			
	2016-12-30	14.10	89.67	6.27	1017.90			
	2016-12-31	15.05	87.00	7.32	1016.10			
	2017-01-01	10.00	100.00	0.00	1016.00			
	1462 rows	× 4 columns						

Рисунок 3.11 - Приведення колонки дат до індексу

Перевіримо, чи ϵ аномальні дані за допомогою графіків. Побачимо, що вони ϵ і треба їх прибрати.

Рисунок 3.12 - Графіки стовпчиків

Виведемо для кожної колонки максимальне та мінімальне значення.

[n [337	pd.concat([df.max(), df.min()			
Out[337]:		0	1	
	Mean temperature	100.75	-218.43	
	Humidity	100.00	-31.57	
	Wind speed	42.22	0.00	
	Mean pressure	7679.33	-3.04	

Рисунок 3.13 - Мінімальні та максимальні значення

За допомогою функції zscore обрахуємо значенння відносно середнього та

стандартного відхилення для кожної колонки. Оскільки напрямок значення не має, тов візьмемо модуль та потім порівняємо з певним віхиленням.

```
In [338...
from scipy import stats
df = df[(np.abs(stats.zscore(df)) < 3).all(axis=1)]
df = df[(np.abs(stats.zscore(df.iloc[:, 3])) < 1)]</pre>
```

Рисунок 3.14 - Видалення аномалій

Побудуємо для наочності графіки. Як бачимо кількість аномалій зменшилася.

Рисунок 3.15 - Графіки стовпчиків

Експортуємо датафрейм до .xlsx-файлу за допомогою методу to_excel.

In [340	<pre>name = 'result.xlsx' df.to_excel(name) x1 = pd.ExcelFile(name) x1.parse('Sheet1')</pre>					
Out[340]:		Date	Mean temperature	Humidity	Wind speed	Mean pressure
	0	2013-01-01	10.00	84.50	0.00	1015.67
	1	2013-01-02	7.40	92.00	2.98	1017.80
	2	2013-01-03	7.17	87.00	4.63	1018.67
	3	2013-01-04	8.67	71.33	1.23	1017.17
	4	2013-01-05	6.00	86.83	3.70	1016.50
	1430	2016-12-28	17.22	68.04	3.55	1015.57
	1431	2016-12-29	15.24	87.86	6.00	1016.90
	1432	2016-12-30	14.10	89.67	6.27	1017.90
	1433	2016-12-31	15.05	87.00	7.32	1016.10
	1434	2017-01-01	10.00	100.00	0.00	1016.00
	1435 r	ows × 5 col	umns			

Рисунок 3.16 - Збереження датафрейму до .xlsx-файлу

4 ВИСНОВОК

Під час виконання даної лабораторної роботи я ознайомитись з операціями попередньої обробки даних Pandas.

У завданнях було прибрано непотрібний індексний стовпчик, переназвано стовпчики, прибрано дублікати зі стовпчика дат, прибрано неправильні клітинки за допомогою регулярних виразів, заповнено пусті значення середніми, приведено числові стовпчики до float64.