Suan Manuel Rodríguez Gómez 1ºDGIIM PRÁCTICA 6

6.1. Contador Síncrono de módulo 10

Son iguales
$$\Rightarrow$$
 $Z_i = Q_i$

Table de excitación del contador:

Dtilizaremos biestables tipo "D"

\sim		Q, () _o	(236) Q	Q_o^{\dagger}	~	D ₃	PI	Do
00000000	000	0 0 1	010	(0 0	0	10		10	00	7
0	0	1	10	(•	1		0	00	1
0	111	0	10	C		0	ð 1		000	0110	0
1	ò	0	0			11	0		0	11	Ò 1
1	0	1	0	1		0	0		1	0 0	0
1	0	1	1	_	-	_	_				~
1	1	0	0	_	-	_	_				_
1	1	0	1	-	_	_	_		_		
1	1	1	0	_	_	_	_		_	_	_
1	1	1	1							-	

Minimización:

0,0,0	00	01	11	10
00	(1)		-	
01			<u> </u>	1
11			E	J
10			-	-

$$\left\{ \widetilde{D}_{3} = \widetilde{Q}_{3}\widetilde{Q}_{0} + \widetilde{Q}_{3}\widetilde{Q}_{2}\widetilde{Q}_{1}\widetilde{Q}_{0} \right\}$$

	~
LO = 00+00+	(1) (7)
$\left\langle Q_2 = Q_2 Q_0 + Q_2 Q_1 + Q_2 Q_1 \right\rangle$	(3(2)
	ك

0,0,	00	01	11	10
Q ₁ Q ₀			A	A
0 0		T	Ø	1
01			1	
11		1	1	
10			4	

$$\left(\overline{D_{4}} = \overline{Q}_{o} \right)$$

Cronograma:

Suan Manuel Rodríquez Gómez 1º DGIIM TOC Grupo A1

6.2. Generador de secuencia síncrono

Número de salidas del sistema = 2 Número de biestables del sistema = 3 4

) No son iquales \Rightarrow $2_i \neq Q_i$

Tabla de excitación del generador:

> Utilizamos biestables tipo "D"

Minimización:

Q _o	00	01	11	10		
0			1			
1		1		-		
~~~						

Q _o Q ₁	00	01	11	10
0		(1		
1			-	

$$\left\{ \widetilde{D}_{1} = \widetilde{Q}_{1} \widetilde{Q}_{0} + \widetilde{Q}_{1} \widetilde{Q}_{0} \right\}$$

0,0,0,	00	01	11	10		
0	(1	1	1			
1			_	-		
$\left(\widehat{D_o} = \widehat{\overline{Q}_z}\widehat{\overline{Q}_o}\right)$						



Cuántos estados diferentes se presentan en este sistema secuencial?

En este sistema secuencial se presentan 5 estados diferentes

### Cronograma:

10

## DESARROLLO DE LA PRÁCTICA 6. TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES. IMPLEMENTACIÓN Y FUNCIONAMIENTO DE CONTADORES Y GENERADORES DE SECUENCIAS.

#### 6.1.- Contador Síncrono de módulo 10:

Diseñe un contador síncrono descendente módulo 10 que genere la cuenta (en binario) 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 9, 8, ....

- a) Número de salidas del sistema (m). Como  $Z_{max} = 9)_{10} = 1001)_2$  se requiere un número m=4 de salidas  $Z_3 Z_2 Z_1 Z_0$ .
- b) Número de biestables del sistema (p). Como es de módulo 10, para implementar 10 estados se requieren p = 4 biestables con salidas  $Q_3\,Q_2\,Q_1\,Q_0$ , procedentes de 4 biestables  $D_3\,D_2\,D_1\,D_0$  ó  $T_3\,T_2\,T_1\,T_0$
- c) Como el número de salidas (m) es igual que el número de biestables (p), m = p = 4, se puede simplificar mucho el diseño, pues, eligiendo adecuadamente los códigos de los estados, se puede hacer que  $Z_i = Q_i$

La tabla de excitación del contador, sería pues:

Q ₃ Q ₂ Q ₁ Q ₀	$Q_3^+Q_2^+Q_1^+Q_0^+$	D ₃ D ₂ D ₁ D ₀	T ₃ T ₂ T ₁ T ₀
0 0 0 0 0 0 0 1 0 0 1 0	1 0 0 1 0 0 0 0 0 0 0 1	1:0 0 1 0 0 0 0 0 0 0 1	1001
0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0	0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0	0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0	0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1
1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1	0 1 1 1 1 0 0 0 	0 1 1 1 1 1 0 0 0	1 1 1 1 1 0 0 0 1
1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1			

$$D_i = Q_i^+$$

$$T_i = 0$$
 si  $Q_i = Q_i^+$ ;  $T_i = 1$  si  $Q_i \neq Q_i^+$ 

Y quedaría expresar  $D_3$   $D_2$   $D_1$   $D_0$  ó  $T_3$   $T_2$   $T_1$   $T_0$  como funciones de  $Q_3$   $Q_2$   $Q_1$   $Q_0$ , minimizadas convenientemente.

#### 6.2.- Generador de secuencia sincrono:

Diseñe un generador de secuencia o secuenciador síncrono que produzca, de forma cíclica (en binario) la siguiente secuencia de salidas: 0, 1, 3, 0, 2, 0, 1, 3, 0, 2 ......

- a) Número de salidas del sistema (m). Como  $Z_{max} = 3)_{10} = 11)_2$  se requiere un número m = 2 de salidas  $Z_1 Z_0$ .
- b) Número de biestables del sistema (p). Como es de módulo 5, para implementar 5 estados se requieren p = 3 biestables con salidas  $Q_2$   $Q_1$   $Q_0$ , procedentes de 3 biestables  $D_2$   $D_1$   $D_0$  ó  $T_2$   $T_1$   $T_0$
- c) Como el número de salidas (m = 2) NO es igual que el número de biestables (p = 3), a priori, ya no se puede hacer un diseño en el que  $Z_i = Q_i$

La tabla de excitación del generador, sería (suponiendo una codificación correlativa para los estados):

Q ₂ Q ₁ Q ₀	Q ₂ ⁺ Q ₁ ⁺ Q ₀ ⁺	D ₂ D ₁ D ₀	T ₂ T ₁ T ₀	Z ₁ Z ₀
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0	0 0 1 0 1 0 0 1 1 1 0 0 0 0 0	0 0 1 0 1 0 0 1 1 1 0 0 0 0 0	0 0 1 0 1 1 0 0 1 1 1 1 1 0 0	0 0 0 1 1 1 0 0
1 0 1 1 1 0 1 1 1				

$$D_i = Q_i^{\dagger}$$

$$T_i = 0$$
 si  $Q_i = Q_i^+$ ;  $T_i = 1$  si  $Q_i \neq Q_i^+$ 

Y quedaría expresar  $D_2$   $D_1$   $D_0$  ó  $T_2$   $T_1$   $T_0$  y  $Z_1$   $Z_0$  como funciones de  $Q_2$   $Q_1$   $Q_0$ , minimizadas convenientemente.

El diseño sería como el de un contador ascendente de módulo 5 (al que se le han añadido las salidas  $Z_1 Z_0$ ). La codificación de los 5 estados del Generador de Secuencias puede ser la que uno quiera ya que hay muchas combinaciones posibles de asignar los códigos de los 5 estados entre las 8 posibilidades de combinaciones de  $Q_2 Q_1 Q_0$ .

Por ejemplo, una asignación que permitiría hacer  $Z_1 Z_0 = Q_1 Q_0$  podría ser:

$Q_2 Q_1 Q_0$	$Q_2^+ Q_1^+ Q_0^+$	D ₂ D ₁ D ₀	T ₂ T ₁ T ₀	$Z_1Z_0$
0 0 0 0 0 1 0 1 0 0 1 1	0 0 1 0 1 1 0 0 0 1 0 0	0 0 1 0 1 1 0 0 0 1 0 0	0 0 1 0 1 0 0 1 0 1 1 1	00 01 11 00
1 0 0 1 0 1 1 1 0 1 1 1	0 1 0  	0 1 0	1 1 0	1 0  

Aunque, seguramente, las funciones  $D_2$   $D_1$   $D_0$  ó  $T_2$   $T_1$   $T_0$  serían más complicadas que en el caso anterior.