SIM202

Simulation Gravitationnelle: Implémentation en C++ de l'algorithme de Barnes Hut

Anthony Kalaydjian & Mathieu Occhipinti & Juliette Treyer

2023

Sommaire

- 1 Motivation de l'algorithme
- 2 Implémentation en C++
 - o Classes du programme
 - Création de l'arbre
 - Calcul des forces
- 3 Résolution
 - o Algorithme de Plummer
 - Résolution dynamique
 - Traitement

Motivation de l'algorithme

Implémentation en C++

Résolution

Motivation de l'algorithme Implémentation en C++

Résolution

Source : Quadtree - Wikipedia 4

Particule

Des données membres :

- Une masse
- Un vecteur position
- Un vecteur vitesse
- Un vecteur de la vitesse estimée en kdt +1/2
- Un vecteur force qui correspond à la force que subie la particule
- Un vecteur de vecteur de positions correspondant aux positions successives de notre particule au fil des itérations

Classes

Particule

Des fonctions membres :

- Une fonction pour afficher les principales caractéristiques de la particule
- Des constructeurs
- Un destructeur
- Une surcharge de l'opérateur ==
- Deux fonctions set_position et set_speed

Classes

Boîte

Des données membres :

- Un entier représentant le niveau de notre boîte
- Un vecteur représentant le centre de notre boîte
- Un vecteur représentant le centre de masse de notre boîte
- La masse de la boîte c'est-à-dire la masse de la particule présente dans la boîte ou la somme des masses des particule présentes dans les sous boîtes
- Un pointeur pointant sur la particule dans la boîte, null sinon
- Un pointeur sur une liste chaînée de boîte qui sont les sous boîtes de notre boîte, null s'il y en a pas
- Un pointeur sur une liste chaînée de boîte qui sont les boîtes sœurs de notre boîte, null s'il y en a pas

Classes

Boîte

Des fonctions membres :

- Une fonction renvoyant les centres des sous boîtes de notre boîte principal
- Un constructeur
- Un destructeur
- Une fonction qui permet d'afficher les principales caractéristiques de notre boîte
- Une fonction qui nous permet de calculer la force que la boîte exerce sur une particule donnée qui sera détaillée dans la suite
- Une fonction qui permet d'ajouter une particule dans une boîte qui sera détaillée dans la suite

Résolution

Création de l'arbre

Création de l'arbre

Résolution

Création de l'arbre

Résolution

Algorithme d'ajout d'une particule dans l'arbre

```
Data: particule P
Result: Ajoute une particule dans l'arbre
if la boîte ne peut pas contenir P then
   return;
   if boîte contient des sous boîtes then
       itérer sur les sous-boîtes;
       return;
   end
   if boîte contient une particule Q then
       Découper la boîte en sous boîtes;
       Retirer Q de la boîte;
       Ajouter Q dans la sous-boîte appropriée;
       Ajouter P dans la sous-boîte appropriée;
   end
end
```


Résolution

Création de l'arbre

Algorithme de calcul de la résultante des forces

```
Data: particule P
Result: Met à jour le vecteur force de la particule
if boîte vide then
    return;
    if boîte contient une particule then
       calcul usuel de la force d'interaction gravitationnelle;
       return;
    end
    if boîte contient des sous boîtes then
       R = \frac{||P_{particle} - P_{mass\_center}||}{box\ size};
       if R < \Theta then
           calcul de la force exercée par le centre de masse
       else
          itérer sur les sous-boîtes
       end
end
```

Résolution

Résolution

Résolution

Résolution

Résolution

Résolution

Résolution

Résolution

Résolution

Construction d'un système autogravitant sphérique

Cas étudié: M=1, R=1, G=1, m=1/N

$$\rho(r) = \frac{3}{4\pi} M R^{-3} \left(1 + \frac{r}{R} \right)^{-5/2}$$

Tirage aléatoire de X1,..., X7 selon des lois uniformes entre 0 et 1

Algorithm 2 plummer-initialisation

- 1: Création de la dernière particule selon le modèle de Plummer
- 2: **for** i=0,...,N-1: **do**
- 3: Construction du rayon r à partir de X1
- Construction de la position de la particule à partir de X2 et X3
- 5: Construction de la vitesse d'échappement à partir de X4 et X5
- 6: Construction de la vitesse de la particule à partir de X6 et X7
- Enregistrement des valeurs de position et vitesses
- 8: end for
- 9: Création boîte mère
- 10: Ajout des particules à la boîte mère
- 11: Calcul des forces appliquées et de la vitesse de chaque particule
- 12: Return un pointeur sur la première particule

Résolution dynamique

Schéma saute-mouton

Pas de temps Δt constant

$$t_k = k\Delta t \text{ et } t_{k+\frac{1}{2}} = \left(k + \frac{1}{2}\right)\Delta t$$

 X_i^k : position de la particule i à l'instant t_k $V_i^{k+\frac{1}{2}}$: vitesse de la particule i à l'instant $t_{k+\frac{1}{2}}$

A chaque itération:

$$V_i^{k+\frac{1}{2}} = V_i^{k-\frac{1}{2}} + \frac{\Delta t}{m_i} F_i^k$$
$$X_i^{k+1} = X_i^k + \Delta t V_i^{k+\frac{1}{2}}$$

Algorithm 1 dynamic-iteration

- 1: Destruction de l'arbre précédent et création d'un nouvel arbre
- 2: for chaque particule do
- Calcul des forces grâce à box::force
- 4: Itération saute-mouton: calcul de nouvelle vitesse et position
- Sauvegarde de la nouvelle position dans successive-positions
- 6: end for

Résolution dynamique

Fonction principale

Algorithm 3 main

- 1: Initialisation: Appel de Plummer-initialisation
- 2: for int i=0 , ... , N_{ITER} -1 do
- 3: Appel de dynamic-iteration
- 4: end for
- 5: Appel de Export-to-csv

Résolution dynamique

Exportation des données

Coordonnées des N particules à l'instant initial

Traitement

Résolution

Traitement MATLAB

- Import des données sous forme de matrice
- Récupération du nombre de particule ainsi que du nombre d'itération de notre simulation
- Boucle for sur les itérations de notre algorithme et sur nos particules
- Plot en 3D de chaque particule à un temps k sur un même graphique
- Réalisation d'un film en mettant à la suite chaque frame

Résultats

Résolution

Résultats pour N=2, NITER=1000, Δt =0.001 s

Résultats

Résolution

Résultats pour N=100, NITER=1000, Δt =0.1 s

Merci pour votre attention!