CS57300 PURDUE UNIVERSITY FEBRUARY 12, 2019

DATA MINING

ANNOUNCEMENT

- Assignment 1
 - Grades and solutions are out
- Assignment 2
 - You can decide whether to apply Laplacian correction or not
 - Due Wednesday (Feb 13), 11:59pm

NEAREST NEIGHBOR

NEAREST NEIGHBOR

- Discriminative classification, non-parametric, instance-based method
- Assumes that all points are represented in p-dimensional space
- Learning
 - > Stores (i.e., memorizes) all the training data
- Prediction
 - Look for "nearby" training examples
 - Classification is made based on class labels of neighbors

NEAREST NEIGHBOR: MODEL SPACE

- \blacktriangleright How many neighbors to consider (i.e., choice of K)?
 - ... Usually a small value is used, e.g. K<10
- What distance measure d() to use?
 - ... Euclidean L₂ distance is often used
- \blacktriangleright What function g() to combine the neighbors' labels into a prediction?
 - ... Majority vote is often used

NEAREST NEIGHBOR: SEARCH

Scoring function: Misclassification rate

K=1, training error = 0!

K=7

K = 15

Is this a good choice of K?

NEAREST NEIGHBOR: CHOOSE K THROUGH CROSS VALIDATION

Divide the training dataset into *k* folds and conduct *k*-fold cross validation using different values of *K* for the KNN model (*k* and *K* here are different

things!)

Choose K=5!

NEAREST NEIGHBOR: SUMMARY

- Strengths:
 - Simple model, easy to implement
 - Very efficient learning: Only need to memorize all training data points
- Weaknesses:
 - Inefficient inference: need to compute distance to all training data points and select the nearest *k* ones.
 - Curse of dimensionality:
 - As number of features increase, you need an exponential increase in the size of the data to ensure that you have nearby examples for any given data point

LOGISTIC REGRESSION

LOGISTIC REGRESSION

- Probabilistic classification
 - Output is the posterior (positive) class probability $P(y=1|\mathbf{x})$
 - Output is in the range [0, 1]
- Can we map the posterior class probability to another range that is easier to process?

DIFFERENT WAYS OF EXPRESSING PROBABILITY

• Suppose $p=P(y=1|\mathbf{x}), q=1-p=P(y=0|\mathbf{x})$

		min		max
standard probability	p	0	0.5	1
odds	p / q	0	1	+ ∞
log odds (logit)	log(p/q)	$-\infty$	0	(+∞)

$$log(p/q) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0$$

LOGISTIC REGRESSION KNOWLEDGE REPRESENTATION

$$p = P(y = 1 | \mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + w_0)}}$$

Logistic function:

logistic(x) :=
$$\frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

HOW ABOUT CATEGORICAL VARIABLES?

- Ordinal variable
 - Categorical variables for which the possible values are ordered
 - GPA: A, B, C, D, E, F
 - ▶ Map sorted ordinal variable values to an increasing sequence of numbers, e.g., A=1, B=2, C=3, D=4, E=5, F=6
- Nominal variable
 - Categorical variable for which the possible values have no natural order
 - Eye color: blue, green, brown
 - One-hot encoding: Use N-1 binary variables to represent the N possible values of a nominal variable, e.g., blue = [1, 0], green = [0, 1], brown=[0, 0]

LOGISTIC REGRESSION: LEARNING

- Model space: parametric model with the parameters being all possible [\mathbf{w} , w_0]
- Scoring function: Log likelihood function

$$L(\mathbf{w}) = \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i)$$

- Search
 - ightharpoonup Take derivative respect to \mathbf{w} , w_0
 - Concave function but can not get a closed form solution for the optimal parameters
 - Need new optimization methods!
 - More on this later

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES

- Discriminative classification
 - Output is the class label
 - Directly model the decision boundary
- Linear SVM
 - Parametric form: $y = sign\left[\sum_{i=1}^{m} w_i x_i + b\right]$
 - Decision boundaries are hyperplanes in the p-D space
 - \blacktriangleright Model space: different parameter values for ${m w}$ and ${m b}$

WHAT ABOUT BOUNDARY 1?

WHAT ABOUT BOUNDARY 4?

WHAT DOES BOUNDARY 1, 2, 4 HAVE IN COMMON?

MOST ROBUST BOUNDARY

NORMALIZATION

HOW LARGE IS THE MARGIN?

SVM LEARNING SCORING FUNCTION

- Maximize margin, i.e., max 2/||w||
- Subject to constraints!
 - Margin is defined by the closet positive/negative examples to the boundary
 - Constraint 1: $\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b \ge 1, \forall y_i = +1$
 - Constraint 2: $\mathbf{w}^\mathsf{T} \mathbf{x}_i + b \le -1, \forall y_i = -1$
 - Combine constraints 1 and 2: $y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1, \forall i \in \{1, 2, ..., N\}$
- > Search: solve this constrained optimization problem...

