A Book of Abstract Algebra (2nd Edition)

Chapter 29, Problem 1EB

Bookmark

Show all steps: (

Problem

Let *F* be a field of characteristic \neq 2. Let $a \neq b$ be in *F*.

Prove that any field F containing $\sqrt{a} + \sqrt{b}$ also contains \sqrt{a} and \sqrt{b} . [HINT: Compute $(\sqrt{a} + \sqrt{b})^2$ and show that $\sqrt{ab} \in F$. Then compute $\sqrt{ab}(\sqrt{a} + \sqrt{b})$, which is also in F] Conclude that $F(\sqrt{a} + \sqrt{b}) = F(\sqrt{a} \cdot \sqrt{b})$.

Step-by-step solution

Step 1 of 3

Consider a field F of characteristic $\neq 2$. Objective is to prove that any field F containing $\sqrt{a} + \sqrt{b}$ also contains \sqrt{a} and \sqrt{b} , where $a \neq b \in F$. And then draw a conclusion that $F(\sqrt{a} + \sqrt{b}) = F(\sqrt{a}, \sqrt{b})$.

Suppose field F contains $\sqrt{a} + \sqrt{b}$. To show the required result, first show that $\sqrt{ab} \in F$. For this consider the following square:

$$\left(\sqrt{a} + \sqrt{b}\right)^2 = a + b + 2\sqrt{ab} \in F$$

Solve for \sqrt{ab} and get,

$$\sqrt{ab} = \frac{\left(\sqrt{a} + \sqrt{b}\right)^2 - \left(a + b\right)}{2}$$

That is, $\sqrt{ab} \in F$ because $a, b \in F$.

Comment

Since $\sqrt{a} + \sqrt{b}$, $\sqrt{ab} \in F$, therefore their product

$$\sqrt{ab}\left(\sqrt{a} + \sqrt{b}\right) = a\sqrt{b} + b\sqrt{a} \in F$$

Since $a \neq b$, then

$$\frac{b(\sqrt{a} + \sqrt{b}) - \sqrt{ab}(\sqrt{a} + \sqrt{b})}{b - a} = \frac{b\sqrt{a} + b\sqrt{b} - a\sqrt{b} - b\sqrt{a}}{b - a}$$
$$= \frac{\sqrt{b}(b - a)}{b - a}$$
$$= \sqrt{b} \in F.$$

Similarly,

$$\frac{a(\sqrt{a}+\sqrt{b})-\sqrt{ab}(\sqrt{a}+\sqrt{b})}{a-b} = \frac{a\sqrt{a}+a\sqrt{b}-a\sqrt{b}-b\sqrt{a}}{a-b}$$
$$= \frac{\sqrt{a}(a-b)}{a-b}$$
$$= \sqrt{a} \in F.$$

Comment

Step 3 of 3

Note that, $\sqrt{a}, \sqrt{b} \in F\left(\sqrt{a}, \sqrt{b}\right)$. Therefore, $\sqrt{a} + \sqrt{b} \in F\left(\sqrt{a}, \sqrt{b}\right)$. It follows that $F\left(\sqrt{a} + \sqrt{b}\right) \subseteq F\left(\sqrt{a}, \sqrt{b}\right)$.

Also, $\sqrt{a}, \sqrt{b} \in F(\sqrt{a} + \sqrt{b})$. Therefore,

$$F(\sqrt{a}, \sqrt{b}) \subseteq F(\sqrt{a} + \sqrt{b})$$

Thus,

$$F(\sqrt{a} + \sqrt{b}) = F(\sqrt{a}, \sqrt{b})$$

Comment

About Chegg Chegg For Good College Marketing Corporate Development **Investor Relations** Jobs Join Our Affiliate Program

Media Center

Site Map

COMPANY

LEGAL & POLICIES Advertising Choices Cookie Notice **General Policies** Intellectual **Property Rights** Terms of Use Global Privacy Policy Honor Code Honor Shield

CHEGG PRODUCTS AND SERVICES Cheap Textbooks Chegg Coupon Chegg Play Chegg Study Help College Textbooks **eTextbooks** Flashcards Learn Chegg Math Solver

Mobile Apps Sell Textbooks Solutions Manual Study 101 Textbook Rental **Used Textbooks** Digital Access Codes Chegg Money

CHEGG NETWORK CUSTOMER SERVICE EasyBib Customer Service Internships.com Give Us Feedback Thinkful Help with eTextbooks Help to use EasyBib Manage Chegg Study Subscription **Return Your Books** Textbook Return

Policy