Oction of
$$McG$$
 on simple geodesics (Σ, \cdot) topo surface $x = base$ pt (X, \cdot) hyp surface $\pi(\hat{X}, \hat{x}) \rightarrow (X, x)$ cover

(we stroughtening

MORSE LEMMA

2 TR-> HIZ Lipschitz

Proper

3 TR-> HIZ Lipschitz

Proper

4 J geodesic

4 bdd distance from 2

- 11 simple closed
- 21 simple bicuspidal

Prop o # [T] & H, (T, Z) = Z primitive

then I' simple geodesic representing [X]

proof lift to homology cover viewed as 12, 12

Prop a closed simple CTT*

31 2* bicuspidal disjoint from 2

proof ontalong & -> () = annulus with marked pt

Ex. Let JTT'S be the alliptic involution we know Jx H,(TxZ)S is -1z show that i, J maps each a simple closed to itself

z) decline that a passes
through 2 of the 3 fixed plo
of J
31 what about 2"?

Shimuza's Lemma and cusp regions

Lemma Let
$$T < SL(z, IR)$$
 discrete

 $(ab) \in T$ $\Rightarrow V (ab) \in \Gamma$, $c = 0$
 $v |c| \ge 1$

Def X hyp swface non compact cusp region < X isometric to $\{z \in H^2, |mz > h\}/\langle z + \rangle z + 1\rangle$ Exo area = perimeter = h horocyclic foliation = portition of cusp region into horocycles $f_z = \{z \in H^2, |mz = t > h\}/\langle z + \rangle z + 1\rangle$

Lemma Let $H^2/\Gamma = T^*$ 1) \exists a conspregion H of area z11) \forall simple closed $\Rightarrow \forall \cap H = \not = f$ 11) \forall simple bicospical $\Rightarrow \forall^{\times}$ meets horocyclic foliation $\Rightarrow \forall^{\times}$ meets horocyclic foliation

The set of all simple bicospidal geodesics

Let $\frac{1}{F_t n} = \frac{1}{V} \frac{1}{V} = \frac{1}{V} \frac{1}{V} = \frac{1}{V} \frac{1}{V} \frac{1}{V} = \frac{1}{V} \frac{1}$

Fact 11 x 1solated >> f xx , xexx

21 K' consists of countably many intervals each of which contains exactly one isolated pt