ECE 2521: Analysis of Stochastic Processes

Lecture 7

Department of Electrical and Computer Engineering University of Pittsburgh

October, 27th 2021

Azime Can-Cimino

One Function of Two Random Variables

Let W = g(X, Y) be a function of RVs X and Y

- Discrete Random Variables
 - If X and Y are discrete RVs, then W will also be a discrete random variable characterized by a PMF $p_W(w)$
 - The PMF $p_W(w)$ can be obtained by adding the values of $p_{X,Y}(x,y)$ corresponding to x and y pairs for which g(x,y) = w: $p_W(w) = \sum_{\{(x,y)|g(x,y)=w\}} p_{X,Y}(x,y)$
- Continuous Random Variables
 - If X and Y are continuous RVs and g(X, Y) is a continuous function, then W = g(X, Y) is also a continuous RV
 - To find the PDF $f_W(w)$ of W first find CDF $F_W(w)$ and then take its derivative:

$$F_W(w) = \text{Prob}(W \le w) = \iint\limits_{g(x,y) \le w} f_{X,Y}(x,y) dxdy$$

Example

- Let X and Y be any continuous random variables
- (1) Determine the PDF of Z = X + Y
- (2) What if X and Y are independent?
- (3) Consider the case when X and Y are independent and uniformly distributed random variables:

$$f_X(x) = u(x) - u(x-1)$$

$$f_Y(y) = 0.5u(y) - 0.5u(y-2)$$

Calculate and plot the PDF of Z = X + Y.

Two Functions of Two Random Variables

• Let g(X, Y) and h(X, Y) be continuous and differentiable functions such that:

$$g(X,Y) = Z$$
 and $h(X,Y) = W$. (1)

• For a given (z, w), (1) may have many solutions. Let $(x_1, y_1), \ldots, (x_n, y_n)$ represent these multiple solutions, such that $g(x_i, y_i) = z$ and $h(x_i, y_i) = w$ for $i = 1, \ldots, n$. Then:

$$f_{ZW}(z, w) = \sum_{i=1}^{n} \frac{1}{|J(x_i, y_i)|} f_{XY}(x_i, y_i)$$

where $x_i = g_I(z, w)$ and $y_i = h_I(z, w)$, and $|J(x_i, y_i)|$ is the determinant of the Jacobian of the transform given in (1) such that:

$$|J(x_i, y_i)| = \begin{vmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\ \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} \end{vmatrix}$$

Example

- Let Z = aX + bY and W = cX + dY are two functions of random variables X and Y.
- The joint pdf of X and Y is given by $f_{XY}(x, y)$.
- Find the joint pdf of Z and W, $f_{ZW}(z, w)$

Bivariate Gaussian Random Variables

- Let X and Y be two Gaussian random variables with correlation coefficient $\rho_{XY}=\rho$, where $-1\leq\rho\leq1$
- Their joint probability density function (PDF) is completely characterized by the mean μ_X and standard deviation σ_X of random variable X, mean σ_Y and standard deviation σ_Y of random variable Y, and their correlation coefficient ρ :

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left[\frac{\frac{(x-\mu_X)^2}{\sigma_X^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}}{-2(1-\rho^2)}\right]$$

• If X and Y uncorrelated $\rho = 0$, their joint PDF becomes:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y} \exp\left[-\frac{(x-\mu_X)^2}{2\sigma_X^2} - \frac{(y-\mu_Y)^2}{2\sigma_Y^2}\right] = f_X(x)f_Y(y)$$

• The above implies that uncorrelated Gaussian random variables are also independent.

Conditional Gaussian PDF

• If X and Y are bivariate Gaussian random variables, the conditional PDF of X given Y = y is:

$$f_{X|Y=y}(x) = \frac{1}{\sigma_X \sqrt{2\pi(1-\rho^2)}} \exp\left[\frac{\left(x - \mu_X - \rho \frac{\sigma_X}{\sigma_Y}(y - \mu_Y)\right)^2}{2\sigma_X^2(1-\rho^2)}\right]$$

• The conditional mean of random variable X given Y = y is:

$$E[X|Y = y] = \mu_X + \rho \frac{\sigma_X}{\sigma_Y} (y - \mu_Y)$$

• The corresponding conditional variance of X is:

$$Var(X|Y = y) = \sigma_X^2(1 - \rho^2).$$

Exercise 1

Rectangular to Polar coordinate transformation

- $X, Y \sim \mathcal{N}\left[0,1\right]$ are independent jointly Gaussian random variables
- $R = \sqrt{X^2 + Y^2}$ such that $r = g(x, y) = \sqrt{x^2 + y^2}$
- $\Phi = tan^{-1}\left(\frac{Y}{X}\right)$ such that $\phi = h(x,y) = tan^{-1}\left(\frac{y}{X}\right)$
- Find PDFs of R and Φ.

Exercise 2

- Let Z = max(X, Y) and W = min(X, Y).
- Determine the PDFs $f_Z(z)$ and $f_W(w)$:

$$z = max(x,y) = \begin{cases} x & \text{if } x > y \\ y & \text{if } x \le y \end{cases}$$

$$w = min(x,y) = \begin{cases} y & \text{if } x > y \\ x & \text{if } x \le y \end{cases}$$

Probability Models of Multiple Random Variables

- In Chapter 6 we introduce the probability measures for multiple random variables
- A vector random variable X is a function that assigns a vector of real numbers to each outcome ξ in S, the sample space of the random experiment:

$$X = [X_1 \ldots X_n]^T : S \to \mathbb{R}^n$$

 The probability models of n random variables are the generalization of the probability models of two random variables.

Probability Models of Multiple Random Variables

- A **random vector** is a column vector $X = \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^T$, where each X_i is a random variable: when n = 1 a random vector reduces to a random variable
- A sample value of a random vector is a column vector $\mathbf{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T$, where each x_i is a sample value of the random variable X_i
- Random vector probability functions:
 - (a) The CDF of a random vector X is

$$F_X(x) = F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)$$

(b) The PMF of a discrete random vector X is

$$p_X(x) = p_{X_1,\ldots,X_n}(x_1,\ldots,x_n)$$

(c) The PDF of a continuous random vector X is

$$f_{\mathsf{X}}(\mathsf{x}) = f_{\mathsf{X}_1,\ldots,\mathsf{X}_n}(\mathsf{x}_1,\ldots,\mathsf{x}_n)$$

Multivariate Joint CDF

• The joint CDF of random variables X_1, \ldots, X_n is

$$F_{\mathsf{X}}(x_1,\ldots,x_n)=P(X_1\leq x_1,\ldots,X_n\leq x_n)$$

 The joint CDF is defined for discrete, continuous, and mixed type random variables

Properties

- (1) $0 < F_X(x) < 1$.
- (2) $F_X(x_1,...,x_n)$ is nondecreasing on all x_i for i=1,...,n.
- (3) $\lim_{x_1 \to -\infty, \dots, x_n \to -\infty} F_X(x_1, \dots, x_n) = 0.$
- (4) $\lim_{x_1\to\infty,\ldots,x_n\to\infty} F_X(x_1,\ldots,x_n)=1.$
- (5) Joint CDF for X_1, \ldots, X_{n-1} is given by $F_{X_1,\ldots,X_n}(x_1,\ldots,x_{n-1},\infty)$.

Multivariate Joint PMF

• The joint PMF of discrete random variables X_1, \ldots, X_n :

$$p_X(x) = p_{X_1,...,X_n}(x_1,...,x_n) = \text{Prob}[X_1 = x_1,...,X_n = x_n]$$

- Satisfies the axioms of probability:
 - (a) Non-negativity: $p_{X_1,...,X_n}(x_1,...,x_n) \ge 0$
 - (b) Normalization: $\sum_{x_1} \dots \sum_{x_n} p_{X_1,\dots,X_n}(x_1,\dots,x_n) = 1$
- Probability of an event A is given by:

$$P[A] = \sum_{(x_1, \dots, x_n) \in A} p_{X_1, \dots, X_n}(x_1, \dots, x_n) \qquad X_1, \dots, X_n \text{ discrete}$$

Multivariate Joint PMF

• Marginal PMFs:

$$p_{X_1,...,X_{n-1}}(x_1,...,x_{n-1}) = \sum_{x_n} p_{X_1,...,X_n}(x_1,...,x_n)$$

$$p_{X_1}(x_1) = \sum_{x_2} ... \sum_{x_n} p_{X_1,...,X_n}(x_1,...,x_n)$$

Conditional PMFs:

$$p_{X_n}(x_n|x_1, \ldots, x_{n-1}) = \frac{p_{X_1, \ldots, X_n}(x_1, \ldots, x_n)}{p_{X_1, \ldots, X_{n-1}}(x_1, \ldots, x_{n-1})}$$

Recursively, we can obtain:

$$p_{X_1,...,X_n}(x_1,...,x_n) = p_{X_n}(x_n|x_1,...,x_{n-1})$$

$$p_{X_{n-1}}(x_{n-1}|x_1,...,x_{n-2})\cdots p_{X_2}(x_2|x_1)p_{X_1}(x_1)$$

Multivariate Joint PDF

• The joint PDF of continuous random variables X_1, \ldots, X_n is denoted by $f_X(x) = f_{X_1, \dots, X_n}(x_1, \dots, x_n)$, where:

$$Prob [a_1 \leq X_1 \leq b_1, \dots, a_n \leq X_n \leq b_n] =$$

$$\int_{a_n}^{b_n} \ldots \int_{a_1}^{b_1} f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) dx_1 \ldots dx_n$$

- Satisfies the axioms of probability:

 - (a) Non-negativity: $f_{X_1,...,X_n}(x_1,...,x_n) \ge 0$ (b) Normalization: $\int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f_{X_1,...,X_n}(x_1,...,x_n) dx_1 ... dx_n = 1$
- Probability of an event A is given by:

$$P[A] = \int_{(x_1, \dots, x_n) \in A} \int_{(x_1, \dots, x_n) \in A} f_{X_1, \dots, X_n}(x_1, \dots, x_n) dx_1 \dots dx_n \quad X_1, \dots, X_n \text{ continuous}$$

Multivariate Joint PDF

Marginal PDFs:

$$f_{X_1,...,X_{n-1}}(x_1,...,x_{n-1}) = \int_{-\infty}^{\infty} f_{X_1,...,X_n}(x_1,...,x_n) dx_n$$

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{X_1,\dots,X_n}(x_1,\dots,x_n) \ dx_2 \dots dx_n$$

Conditional PDFs

$$f_{X_n}(x_n|x_1, \ldots, x_{n-1}) = \frac{f_{X_1, \ldots, X_n}(x_1, \ldots, x_n)}{f_{X_1, \ldots, X_{n-1}}(x_1, \ldots, x_{n-1})}$$

Multivariate Joint PDF

• Then recursively, we can obtain:

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_n}(x_n|x_1,...,x_{n-1})$$

$$f_{X_{n-1}}(x_{n-1}|x_1,...,x_{n-2})\cdots$$

$$f_{X_2}(x_2|x_1)f_{X_1}(x_1)$$

Note:

$$F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\int_{-\infty}^{x_n}\ldots\int_{-\infty}^{x_1}f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)dx_1\ldots dx_n$$

Therefore:

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\frac{\partial^n}{\partial x_1\ldots\partial x_n}F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)$$

Example

• Random variables X_1, \ldots, X_n have joint PDF:

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = \begin{cases} 1 & 0 \le x_i \le 1, i = 1,\ldots,n \\ 0 & \text{otherwise} \end{cases}$$

- Let A denote the event that $\max_i X_i \leq \frac{1}{2}$
- Find *P* [*A*].

Example

• Random variables X_1, \ldots, X_n have joint PDF:

$$f_{X_1,...,X_n}(x_1,...,x_n) = \begin{cases} 1 & 0 \le x_i \le 1, i = 1,...,n \\ 0 & \text{otherwise} \end{cases}$$

- Let A denote the event that $\max_i X_i \leq \frac{1}{2}$
- Find P [A].

Solution The maximum of n numbers is less than $\frac{1}{2}$ if and only if each of the n numbers is less than $\frac{1}{2}$; therefore

$$P[A] = P\left[\max_{i} X_{i} \leq \frac{1}{2}\right] = P\left[X_{1} \leq \frac{1}{2}, \dots, X_{n} \leq \frac{1}{2}\right]$$
$$= \int_{0}^{\frac{1}{2}} \dots \int_{0}^{\frac{1}{2}} 1 dx_{1} \dots dx_{n} = \frac{1}{2^{n}}$$

Independence

Functions of Random Vectors
Expected Values of Random Vectors
Joint Moment Generating Functions of Random Vectors
Multivariate Gaussian Random Variables

Independence

• X_1, \ldots, X_n are **independent** if for all x_1, \ldots, x_n :

$$p_{X_1,...,X_n}(x_1,...,x_n) = p_{X_1}(x_1)p_{X_2}(x_2)...p_{X_n}(x_n)$$

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)...f_{X_n}(x_n)$$

• $X_1, ..., X_n$ are Independent Identically Distributed (i.i.d) if for all $x_1, ..., x_n$:

$$p_{X_1,...,X_n}(x_1,...,x_n) = p_X(x_1)p_X(x_2)...p_X(x_n)$$

 $f_{X_1,...,X_n}(x_1,...,x_n) = f_X(x_1)f_X(x_2)...f_X(x_n)$

Independence

Functions of Random Vectors
Expected Values of Random Vectors
Joint Moment Generating Functions of Random Vectors
Multivariate Gaussian Random Variables

Example

• The random variables X_1, X_2 and X_3 have the joint Gaussian PDF:

$$f_{X_1,X_2,X_3}(x_1,x_2,x_3) = \frac{e^{-(x_1^2 + x_2^2 - \sqrt{2}x_1x_2 + \frac{1}{2}x_3^2)}}{2\pi\sqrt{\pi}}$$

• Find the marginal PDFs $f_{X_1,X_3}(x_1,x_3)$, $f_{X_1}(x_1)$ and $f_{X_3}(x_3)$.

Functions of Random Vectors Expected Values of Random Vectors Joint Moment Generating Functions of Random Vectors Multivariate Gaussian Random Variables

Example - Solution

• The marginal PDF for the pair X_1 and X_3 is found by integrating the joint PDF over X_2 :

$$f_{X_1,X_3}(x_1,x_3) = \frac{e^{-x_3^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{-(x_2^2 - \sqrt{2}x_1x_2 + \frac{x_1^2}{2} + \frac{x_1^2}{2})}}{\pi\sqrt{2}} dx_2 = \frac{e^{-x_3^2/2}}{\sqrt{2\pi}} \frac{e^{-x_1^2/2}}{\sqrt{2\pi}}$$

Independence

• Marginal PDF for X_1 is found by integrating $f_{X_1,X_3}(x_1,x_3)$ over X_3 :

$$f_{X_1}(x_1) = \frac{e^{-x_1^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{-x_3^2/2}}{\sqrt{2\pi}} dx_3 = \frac{e^{-x_1^2/2}}{\sqrt{2\pi}}$$

• Marginal PDF for X_3 is found by integrating $f_{X_1,X_3}(x_1,x_3)$ over X_1 :

$$f_{X_3}(x_3) = \frac{e^{-x_3^2/2}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{-x_1^2/2}}{\sqrt{2\pi}} dx_1 = \frac{e^{-x_3^2/2}}{\sqrt{2\pi}}$$

Note: $f_{X_1,X_3}(x_1,x_3)=f_{X_1}(x_1)f_{X_3}(x_3)$, therefore X_1 and X_3 are independent

Multivariate Gaussian Random Variables

Functions of Random Vectors

• Let $X = \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^T$ and Y = g(X); that is $g : \mathbb{R}^n \to \mathbb{R}$ with $X \in \mathbb{R}^n$ and $Y \in \mathbb{R}$. Then:

$$F_Y(y) = Prob(g(X) \le y) = Prob(X \in R_Y)$$

where $R_Y = \{x : g(x) \leq y\}$.

Transformations of Random Vectors

- Consider the random vector: $X = \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^T$ Let $Y = g(X) = [g_1(X) \cdots g_n(X)]^T$ such that $g : \mathbb{R}^n \to \mathbb{R}^n$ with $X \in \mathbb{R}^n$ and $Y \in \mathbb{R}^n$
- If $X = [X_1 \dots X_n]^T = g^{-1}(Y) = [g_1^{-1}(Y) \dots g_n^{-1}(Y)]^T$, we can compute $f_Y(y)$ as:

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{|J(x_1,\ldots,x_n)|}$$

where $|J(x_1,\ldots,x_n)|$ is the determinant of the Jacobian:

$$J(x_1,\ldots,x_n) = \begin{bmatrix} \frac{\partial g_1(x)}{\partial x_1} & \cdots & \frac{\partial g_1(x)}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial g_n(x)}{\partial x_1} & \cdots & \frac{\partial g_n(x)}{\partial x_n} \end{bmatrix}$$

Special Case (Linear Transformation)

• Let $X = \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^T$ and Y = g(X) = AX + b where A is an invertible $n \times n$ matrix and b is an $n \times 1$ vector

Independence

• Then $X = A^{-1}(Y - b)$ and:

$$f_{\mathsf{Y}}(\mathsf{y}) = \frac{f_{\mathsf{X}}(\boldsymbol{A}^{-1}(\mathsf{Y}-\mathsf{b}))}{|\boldsymbol{A}|}$$

Expected Values of Random Vectors

• Let $X = \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^T$ and $Y = g(X) = g(X_1, \dots, X_n)$, then the expected value of Y is:

$$\begin{split} E[Y] = \begin{cases} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(X) f_X(x_1, \ldots, x_n) \mathrm{d}x_1 \cdots \mathrm{d}x_n & X \text{ is jointly continuous} \\ \sum_{x_1} \cdots \sum_{x_n} g(X) p_X(x_1, \ldots, x_n) \mathrm{d}x_1 \cdots \mathrm{d}x_n & X \text{ is jointly discrete} \end{cases} \end{split}$$

Mean Vector

• Let $X = \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^T$, then the expected value of X - also the mean vector μ_X - is defined as:

$$\mu_{\mathsf{X}} = E[\mathsf{X}] = \begin{bmatrix} E[\mathsf{X}_1] \\ \vdots \\ E[\mathsf{X}_n] \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix}$$

• In general if $Y = g(X) = [g_1(X) \cdots g_n(X)]^T$, then the expected value of Yis computed as:

$$E[g(X)] = \begin{bmatrix} E[g_1(X)] \\ \vdots \\ E[g_n(X)] \end{bmatrix}$$

Covariance Matrix and Correlation Matrix

• The correlation matrix $\mathbf{R}_{X} = E[XX^{T}]$:

$$\mathbf{R}_{X} = \begin{bmatrix} E[X_{1}^{2}] & \cdots & E[X_{1}X_{n}] \\ \vdots & & \vdots \\ E[X_{n}X_{1}] & \cdots & E[X_{n}^{2}] \end{bmatrix}$$

• The covariance matrix $K_X = E[(X - \mu_X)(X - \mu_X)^T]$:

$$\mathbf{K}_{X} = \begin{bmatrix} E[(X_{1} - \mu_{1})^{2} & E[(X_{1} - \mu_{1})(X_{2} - \mu_{2}) & \cdots & E[(X_{1} - \mu_{1})(X_{n} - \mu_{n})] \\ E[(X_{2} - \mu_{2})(X_{1} - \mu_{1}) & E[(X_{2} - \mu_{2})^{2} & \cdots & E[(X_{2} - \mu_{2})(X_{n} - \mu_{n})] \\ \vdots & \vdots & & \vdots \\ E[(X_{n} - \mu_{n})(X_{1} - \mu_{1})] & E[(X_{n} - \mu_{n})(X_{2} - \mu_{2})] & \cdots & E[(X_{n} - \mu_{n})^{2}] \end{bmatrix}$$

$$= \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_n)] \\ \vdots & \vdots & & \vdots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \cdots & \operatorname{Var}(X_n) \end{bmatrix}$$

Note:
$$\mathbf{K}_{X} = \mathbf{R}_{X} - \mu_{X} \mu_{X}^{T}$$
.

Theorem

• For a linear transformation of a vector of random variables of the form Y = AX + b, the means of X and Y are related by:

$$\mu_{\mathsf{Y}} = \mathbf{A}\mu_{\mathsf{X}} + \mathsf{b}$$

Also, the covariance matrices of X and Y are related by:

$$K_{Y} = AK_{X}A^{T}$$
.

Remarks

- Both R_X and K_X are symmetric nonnegative definite $n \times n$ matrices.
- Recall from linear algebra that, if u_i for $i=1,\ldots,n$ are eigenvectors with the corresponding eigenvalues λ_i with $\lambda_i \geq 0$ such that $\mathbf{K}_X u_i = \lambda_i u_i$ and u_i 's are orthogonal, then:

$$K_{X} = U \wedge U^{T}$$

where $\boldsymbol{U} = [\mathbf{u}_1 \cdots \mathbf{u}_n]$ is an orthogonal matrix with i^{th} eigenvector as the i^{th} column ($\boldsymbol{U}\boldsymbol{U}^T = \boldsymbol{I}$), and Λ is a diagonal matrix with i^{th} diagonal element as the i^{th} eigenvalue λ_i .

• Given Y = \boldsymbol{A} X, we can choose \boldsymbol{A} such that Y has uncorrelated components: $\boldsymbol{A} = (\boldsymbol{U}\sqrt{\Lambda})^{-1}$ yields $\boldsymbol{K}_{Y} = \boldsymbol{I}$.

Joint Moment Generating Functions of Random Vectors

• Let $X = \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^T$, then the joint moment generating function of X is defined as:

$$\Phi_{X}(s) = \Phi_{X_{1},...,X_{n}}(s_{1},...,s_{n}) = E[e^{s^{T}X}] = E[e^{s_{1}X_{1}+...+s_{n}X_{n}}]$$

where $s = [s_{1}...s_{n}]^{T}$.

• The joint PDF can be obtained using the MGF of X:

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\frac{1}{(2\pi)^n}\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}\Phi_X(s)e^{s_1X_1+,\ldots,s_nX_n}ds_1\cdots ds_n$$

- Recall that for $s = j\omega = [j\omega_1 \dots j\omega_n]$ we can compute the joint characteristic function of X
- If X_1, \ldots, X_n are all independent, then:

$$\Phi_{\mathsf{X}}(\mathsf{s}) = \Phi_{\mathsf{X}_1}(\mathsf{s}_1) \cdots \Phi_{\mathsf{X}_n}(\mathsf{s}_n) = \prod_{i=1}^n \Phi_{\mathsf{X}_i}(\mathsf{s}_i)$$

Multivariate Gaussian Random Variables

• If a random vector $X = \begin{bmatrix} X_1 & \dots & X_n \end{bmatrix}^T \in \mathbb{R}^n$ is said to follow a multivariate Gaussian distribution with mean μ_X and covariance K_X (where K_X is invertible), then

$$f_{\mathsf{X}}(\mathsf{X}) = \left(2\pi\right)^{-\frac{n}{2}} \left(\det \mathbf{K}_{\mathsf{X}}\right)^{-\frac{1}{2}} \exp \left[-\frac{\left(\mathsf{X} - \mu_{\mathsf{X}}\right)^{\mathsf{T}} \mathbf{K}_{\mathsf{X}}^{-1} \left(\mathsf{X} - \mu_{\mathsf{X}}\right)}{2}\right]$$

Properties

- (1) Uncorrelated Gaussian random variables are independent. That is, if X and Y are jointly Gaussian and $E[(X \mu_X)(Y \mu_Y)] = 0$, then X and Y are independent.
- (2) If $X \in \mathbb{R}^n$ follows a multivariate Gaussian distribution, then Y = AX + b with A as an $n \times n$ matrix and b as an $n \times 1$ vector also follows a multivariate Gaussian distribution. That is $Y \sim \mathcal{N}(AX + b, A^T K_X A)$
- (3) All the marginal distributions are also Gaussian. That is, X_i for $i=1,\ldots,n$ also follows a Gaussian distribution. That is $X_i \sim \mathcal{N}(\mu_i, \text{Var}(X_i))$.

Properties

(4) If we denote $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$ such that $\mu_{\mathbf{X}} = \begin{bmatrix} \mu_{\mathbf{X}_1} \\ \mu_{\mathbf{X}_2} \end{bmatrix}$ and $\boldsymbol{K}_{\mathbf{X}} = \begin{bmatrix} \boldsymbol{K}_{\mathbf{X}_1} & \boldsymbol{K}_{\mathbf{X}_1,\mathbf{X}_2} \\ \boldsymbol{K}_{\mathbf{X}_2,\mathbf{X}_1} & \boldsymbol{K}_{\mathbf{X}_2} \end{bmatrix}$, then the conditional random variable $\mathbf{X}_1 | \mathbf{X}_2$ also follows a Gaussian distribution such that $\mathbf{X}_1 | \mathbf{X}_2 \sim \mathcal{N} \left(\mu_{\mathbf{X}_1} + \boldsymbol{K}_{\mathbf{X}_1,\mathbf{X}_2} \boldsymbol{K}_{\mathbf{X}_2}^{-1} (\mathbf{x}_2 - \mu_{\mathbf{X}_2}), \boldsymbol{K}_{\mathbf{X}_1} - \boldsymbol{K}_{\mathbf{X}_1,\mathbf{X}_2} \boldsymbol{K}_{\mathbf{X}_2}^{-1} \boldsymbol{K}_{\mathbf{X}_2,\mathbf{X}_1} \right).$

(5) The joint MGF of X: $\Phi_X = \exp\left(s^T \mu_X + \frac{1}{2} s^T K_X s\right)$.

Estimation versus Detection

 Main difference between estimation and detection problems involves how we measure success:

Detection We might ask how often our guess is correct

Estimation Common to measure an error between the true value and the estimated value.

- In detection problems, we are interesting in estimating a quantity that is discrete in nature:
- Example 1 Radar systems: we are trying to decide whether or not a target is present based on observing radar returns
- Example 2 Digital communication systems: we are trying to determine whether bits take on values of 0 or 1 based on samples of some receive signal

Maximum A-Posteriori (MAP) Estimator

- Assume X and Y are correlated to some degree
- Find the most probable input X given the observation Y = y

Discrete Find the value of x that maximizes the a posteriori probability P[X = x | Y = y]:

$$\hat{X}_{MAP} = \max_{X} P[X = X | Y = y]$$

Cont.
$$\hat{X}_{MAP} = \max_{x} f_{X|Y}(x|y)$$

Maximum Likelihood (ML) Estimator

Discrete The a posteriori probability is given by:

$$P[X = x | Y = y] = \frac{P[Y = y | X = x]P[X = x]}{P[Y = y]}$$

- P[Y = y] does not affect the optimization (ignore)
- The a priori probability P[X = x] may not be known, and we can model it as a uniform distribution (constant)
- Select the estimator \hat{X}_{ML} that maximizes P[Y = y | X = x] as the maximum likelihood (ML) estimator of the observed value Y = v:

$$\hat{X}_{ML} = \max_{x} P[Y = y | X = x]$$

Cont. Similarly:

$$\hat{X}_{ML} = \max_{X} f_{Y|X}(Y|X)$$

Example

 Find the MAP and ML estimators of X in terms of the observations Y when X and Y are jointly Gaussian random variables with the following conditional PDFs:

$$f_{X|Y} = \frac{e^{-\frac{1}{2(1-\rho^2)\sigma_X^2}\left(x-\rho\frac{\sigma_X}{\sigma_Y}(y-\mu_Y)-\mu_X\right)^2}}{\sqrt{2\pi\sigma_X^2(1-\rho^2)}}$$

$$\mathit{f}_{Y|X} = \frac{\mathrm{e}^{-\frac{1}{2(1-\rho^2)\sigma_Y^2}\left(y - \rho\frac{\sigma_Y}{\sigma_X}(x - \mu_X) - \mu_Y\right)^2}}{\sqrt{2\pi\sigma_Y^2(1-\rho^2)}}$$

Estimation of Random Variables

- Estimating the parameters of one or more random variables (e.g. probabilities, means, variances, or covariances)
- Estimating the value of an inaccessible random variable *X* in terms of the observation of an accessible random variable *Y*:
 - <u>Prediction Problems</u>: predict future based on current and past observations
 - Interpolation Problems: given samples of a signal, we wish to interpolate to some in-between point in time
 - Filtering Problems: filter the noise out of a sequence of observations to provide the best estimate of the desired signal

Mean-Square Estimation (MSE)

- Assume X and Y are correlated to some degree
- If *Y* is observed, then estimate *X* so as to minimize the mean-square error:

$$e = E[(X - g(Y))^2]$$

Constant MSE

- (a) Estimate the random variable X by a constant $\hat{X} = g(Y) = a$ so that the mean-square error is minimized.
- (b) What is the mean-square error for this estimator?

Linear MSE

• Estimate X by a linear function g(Y) = aY + b so that the mean-square error is minimized:

$$\min_{a,b} E[(X - aY - b)^2]$$

Step 1 We can apply the result from the previous example if we view the problem as estimating the random variable (X - aY) with a constant b, such that:

$$b^* = E[X - aY] = E[X] - aE[Y]$$

Step 2 The minimization problem simplifies to one parameter a:

$$\min_{a} E[(X - E[X] - a(Y - E[Y]))^{2}]$$

such that
$$a^* = \frac{\mathsf{Cov}(X,Y)}{\mathsf{Var}(Y)}$$

Linear MSE

• The linear estimate g(Y) = aY + b of X is obtained:

$$\hat{X} = E[X] + Cov(X, Y) \frac{Y - E[Y]}{Var(Y)}$$

Note The linear mean-square estimator depends on second order moments: mean, variance and covariance.

• The minimum error of the linear MSE:

$$\epsilon_{MIN} = \operatorname{Var}(X) (1 - \rho^2).$$