北京航空航天大学国际学院

线性代数

§ 3.4 向量空间

- 3.4.1 向量空间的概念
- 3.4.2 基、维数与坐标
- 3.4.3 基变换与坐标变换

3.4.1 向量空间的概念

定义3. 4. 1 设V是数域P上的 n维向量的非空集合, 如果 $\forall \alpha, \beta \in V, k \in P$ 满足

$$\alpha + \beta \in V$$
, $k\alpha \in V$

则称集合V为数域P上的向量空间.(Vector space)

当P为实数域R时,称V为实向量空间,当P为复数域C时,称V为复向量空间。

例3. 4. 1 实数域R上n维向量的全体 R^n 是一个向量空间,

$$R^{n} = \{ \alpha = (a_{1}, a_{2}, \dots, a_{n}) | a_{i} \in R, \quad i = 1, 2, \dots, n \}$$

例3.4.2 证明

(1)集合

$$V_1 = \{ \alpha = (0, a_2, \dots, a_n) | a_i \in \mathbb{R}, \quad i = 2, 3, \dots, n \}$$
是一个向量空间;

(2) 集合

$$V_2 = \{ \alpha = (1, a_2, \dots, a_n) \mid a_i \in R, \quad i = 2, 3, \dots, n \}$$

不是一个向量空间.

证 (1) 显然集合 V_1 非空, 对任意 $\alpha = (0, a_2, ..., a_n)$, $\beta = (0, b_2, ..., b_n) \in V_1$ 及任意实数k, 有

$$\alpha + \beta = (0, a_2 + b_2, \dots, a_n + b_n) \in V_1$$
$$k\alpha = (0, ka_2, \dots, ka_n) \in V_1$$

所以 V_1 是一个向量空间.

(2) 因为对于集合 V_2 中的任意两个向量 $\alpha = (1, a_2, ..., a_n), \beta = (1, b_2, ..., b_n),$ $\alpha + \beta = (2, a_2 + b_2, ..., a_n + b_n) \notin V_2,$ 所以 V_2 不是一个向量空间.

定义3. 4. 2 设 V_1 , V_2 是数域P上的两个向量空间, 如果 $V_1 \subseteq V_2$, 则称 V_1 是 V_2 的子空间 (subspace).

说明: (1) 在n维向量空间V中, 零空间和空间V也是它的子空间, 称为它的平凡子空间(trivial subspaces), 除此之外, V的其他子空间称为它的非平凡子空间.

(2) 设 $\alpha_1, \alpha_2, ..., \alpha_m$ 为一组n维向量,它的线性组合

 $V = \left\{ \alpha = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m \mid k_i \in R, 1 \le i \le m \right\}$

是向量空间, 称为由向量 α_1 , α_2 , ..., α_m 生成的向量空间. 记为 $L(\alpha_1, \alpha_2, ..., \alpha_m)$.

例3. 4. 3 如果向量组 $\alpha_1, \alpha_2, ..., \alpha_s$ 与向量组 $\beta_1, \beta_2, ..., \beta_r$ 等价,则

$$L(\alpha_1, \alpha_2, ..., \alpha_s) = L(\beta_1, \beta_2, ..., \beta_r).$$

证 $\forall \alpha \in L(\alpha_1, \alpha_2, ..., \alpha_s)$, 则 α 可由 α_1, α_2 ,

 \dots, α_s 线性表出,又可由 $\beta_1, \beta_2, \dots, \beta_r$ 线性表出,

所以 α 可由 β_1 , β_2 , ..., β_r 线性表出,

$$\mathbb{P}\alpha \in L(\beta_1, \beta_2, \ldots, \beta_r).$$

因此 $L(\alpha_1, \alpha_2, ..., \alpha_s) \subset L(\beta_1, \beta_2, ..., \beta_r)$

同理可证 $L(\beta_1, \beta_2, ..., \beta_r) \subset L(\alpha_1, \alpha_2, ..., \alpha_s)$.

故
$$L(\alpha_1, \alpha_2, ..., \alpha_s) = L(\beta_1, \beta_2, ..., \beta_r).$$

- 3.4.2 基、维数与坐标
- 定义3. 4. 3 设V是数域P上的向量空间,向量 $\alpha_1, \alpha_2, ..., \alpha_m \in V$,如果
 - (1) α_1 , α_2 , ..., α_m 线性无关;
 - (2) V 中任一向量都能由 $\alpha_1, \alpha_2, ..., \alpha_m$ 表示,

则称 α_1 , α_2 , ..., α_m 为空间V 的一组基(或基底)(base), m 称为向量空间V 的维数 (dimension), 记为 $\dim V = m$, 并称V是数域 P上的 m维向量空间.

零空间的维数规定为零.

注意:

- 1. 向量空间的维数和该空间中向量的维数是两个不同的概念.
- 2. 若把向量空间V看作一个向量组, 那么它的基就是V的一个极大线性无关组, $\dim V$ 就是V的 秩.
- 3. 若向量空间V的维数是m, 那么V中任意 m个线性无关的向量都是V的一组基; 对于向量空间V的任一子空间 V_1 , $\dim V_1 \leq \dim V$.
- 4. 对于向量空间 R^n ,基本单位向量 ε_1 , ε_2 ,…, ε_n 就是它的一组基,有 $\dim R^n = n$,则称 R^n 为n维 实向量空间.

定义3. 4. 3 设 α_1 , α_2 , ..., α_m 为向量空间V的一组基, $\forall \alpha \in V$ 有

$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_m \alpha_m$$

则称有序数组 $x_1, x_2, ..., x_m$ 为向量 α 在基 α_1 , $\alpha_2, ..., \alpha_m$ 下的坐标.(Coordinate) 记为(x_1 , $x_2, ..., x_m$).

注意: α 在基底 $\alpha_1, \alpha_2, ..., \alpha_m$ 下的坐标是唯一的.

例3. 4. 4 设 α_1 =(1, 0, 2), α_2 =(1, 0, 1), α_3 =(-1, 2, 0), 证明 α_1 , α_2 , α_3 是向量空间 R^3 的一组基,并求向量 α =(2, -3, 5)在这组基下的坐标.

证明 以向量 $\alpha_1, \alpha_2, \alpha_3$ 为列向量做矩阵

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$

因为 $|A|=2\neq 0$,所以 α_1 , α_2 , α_3 线性无关,因此它们是 R^3 的一组基.

设
$$\alpha = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3$$

把 α_1 , α_2 , α_3 代入, 比较等式两端向量的对应分量, 可得线性方程组

$$\begin{cases} x_1 + x_2 - x_3 = 2 \\ 2x_3 = -3 \\ 2x_1 + x_2 = 5 \end{cases}$$

解之,得

$$x_1 = \frac{9}{2}, \quad x_2 = -4, \quad x_3 = -\frac{3}{2}$$

于是向量在 α 基 α_1 , α_2 , α_3 下的坐标为

$$\left(\frac{9}{2},-4,-\frac{3}{2}\right)$$
.

练习: R³的下列子集是否构成子空间? 若是, 求出基底和维数.

$$(1)V_1 = \{x = (a_1, a_2, 0), a_i \in R, i = 1, 2\}$$

$$(2)V_2 = \{x = (a, 2a, 3a), a \in R\}$$

$$(3)V_3 = \{x = (a_1, a_2, a_3), a_1 + a_2 + a_3 = 0,$$

$$a_i \in R, i = 1, 2, 3\}$$

3.4.3 基变换与坐标变换

此部分讨论向量空间 V中不同的两组基之间的关系与向量 α 在不同的基下的坐标之间的关系.

设 α_1 , α_2 , ..., α_m 与 β_1 , β_2 , ..., β_m 是向量空间V的两组基, 由基的定义, 它们可以互相线性表出. 用 α_1 , α_2 , ..., α_m 表示 β_1 , β_2 , ..., β_m , 则有

 π

$$\begin{cases} \beta_{1} = p_{11}\alpha_{1} + p_{12}\alpha_{2} + \dots + p_{1m}\alpha_{m}, \\ \beta_{2} = p_{21}\alpha_{1} + p_{22}\alpha_{2} + \dots + p_{2m}\alpha_{m}, \\ \vdots \\ \beta_{m} = p_{m1}\alpha_{1} + p_{m2}\alpha_{2} + \dots + p_{mm}\alpha_{m}. \end{cases}$$

记

$$P = \begin{pmatrix} p_{11} & p_{21} & \cdots & p_{m1} \\ p_{12} & p_{22} & \cdots & p_{m2} \\ \vdots & \vdots & & \vdots \\ p_{1m} & p_{2m} & \cdots & p_{mm} \end{pmatrix}$$

由矩阵的乘法

$$(\beta_1, \beta_2, \ldots, \beta_m) = (\alpha_1, \alpha_2, \ldots, \alpha_m)P$$

称P为由基 $(\alpha_1, \alpha_2, ..., \alpha_m)$ 到 $(\beta_1, \beta_2, ..., \beta_m)$ 的过渡矩阵(transition matrix), 上式称为由 基 $(\alpha_1, \alpha_2, ..., \alpha_m)$ 到基 $(\beta_1, \beta_2, ..., \beta_m)$ 基底变换公式(Base conversion formula).

注: 过渡矩阵P是可逆的.

定理3. 4. 1 设 $\alpha_1, \alpha_2, ..., \alpha_m$ 与 $\beta_1, \beta_2, ..., \beta_m$ 是向量空间V的两组基,由 $\alpha_1, \alpha_2, ..., \alpha_m$ 到 $\beta_1, \beta_2, ..., \beta_m$ 的过渡矩阵为P, 如果V中任 意元素 α 在这两组基下的坐标分别为($x_1, x_2, ..., x_m$) T 与 $(y_1, y_2, ..., y_m)^T$, 则

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = P \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} \qquad \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

称为坐标变换公式(Coordinate transformation formula).

证由题设

$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_m \alpha_m = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

$$\alpha = y_1 \beta_1 + y_2 \beta_2 + \dots + y_m \beta_m = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$(\beta_1, \beta_2, \dots, \beta_m) \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$\pm (\beta_1, \beta_2, ..., \beta_m) = (\alpha_1, \alpha_2, ..., \alpha_m)P$$

$$\alpha = (\alpha_1 \ \alpha_2 \cdots \alpha_n) P \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y \end{pmatrix}$$

由向量 α 在基 $\alpha_1,\alpha_2,\ldots,\alpha_m$ 下坐标的唯一性,得

例3. 4. 4 已知R³中的二组基

$$\alpha_1 = (1,2,1), \alpha_2 = (2,3,3), \alpha_3 = (3,7,1);$$

 $\beta_1 = (3,1,4), \beta_2 = (5,2,1), \beta_3 = (1,1,-6);$

- (1) 求由基 α_1 , α_2 , α_3 到 β_1 , β_2 , β_3 的过渡矩阵 及坐标变换公式:
- (2) 求向量 $\beta = 2\beta_1 \beta_2 \beta_3$ 在基 α_1 , α_2 , α_3 下的坐标;
- (3) 求向量 $\alpha = \alpha_1 2\alpha_2 + 4\alpha_3$ 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标.

\mathbf{m} (1) 取 R^3 中的基

$$\varepsilon_1 = (1, 0, 0)^T, \quad \varepsilon_2 = (0, 1, 0)^T, \quad \varepsilon_3 = (0, 0, 1)^T$$

则

$$(\alpha_1, \alpha_2, \alpha_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 7 \\ 1 & 3 & 1 \end{pmatrix}$$

$$(\beta_1, \beta_2, \beta_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 3 & 5 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & -6 \end{pmatrix}$$

于是

$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 7 \\ 1 & 3 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 5 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & -6 \end{pmatrix}$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -18 & 7 & 5 \\ 5 & -2 & -1 \\ 3 & -1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 5 & 1 \\ 1 & 2 & 1 \\ 4 & 1 & -6 \end{pmatrix}$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{pmatrix}$$

所以, 由基 α_1 , α_2 , α_3 到 β_1 , β_2 , β_3 的过渡矩阵为

$$P = \begin{pmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{pmatrix}$$

由基 β_1 , β_2 , β_3 到 α_1 , α_2 , α_3 的过渡矩阵为

$$P^{-1} = \begin{pmatrix} 13 & 19 & \frac{181}{4} \\ -9 & -13 & -\frac{63}{2} \\ 7 & 10 & \frac{99}{4} \end{pmatrix}$$

由此可得坐标变换公式

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

或

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 13 & 19 & \frac{181}{4} \\ -9 & -13 & -\frac{63}{2} \\ 7 & 10 & \frac{99}{4} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

 π

(2) 于是向量 $\beta = 2\beta_1 - \beta_2 - \beta_3$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ -11 \\ -12 \end{pmatrix} = \begin{pmatrix} 58 \\ -11 \\ -12 \end{pmatrix}$$

(3) 向量 $\alpha = \alpha_1 - 2\alpha_2 + 4\alpha_3$ 在基 β_1 , β_2 , β_3 下的坐标为 (181)

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 13 & 19 & \frac{181}{4} \\ -9 & -13 & -\frac{63}{2} \\ 7 & 10 & \frac{99}{4} \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} = \begin{pmatrix} 156 \\ -109 \\ 86 \end{pmatrix}$$

作业 P100 习题3.4 第2, 3题.