数理逻辑基础 作业 4

练习 9. 1. 证明以下各对公式是等值的.

$$2^{\circ} \ (\neg p \wedge \neg q) \rightarrow \neg r \not \exists \exists \ r \rightarrow (q \vee p)$$

$$3^{\circ} (\neg p \lor q) \to r \not\exists l (p \land \neg q) \lor r$$

解: 2° 由 De. Morgan 律有 $\neg p \land \neg q$ 与 $\neg (p \lor q)$ 等值, 而有析取交换律 $\models (p \lor q) \leftrightarrow (q \lor p)$, 所以 $\neg p \land \neg q$ 与 $q \lor p$ 等值, 进而

$$\vDash ((\neg p \land \neg q) \to \neg r) \leftrightarrow (\neg (q \lor p) \to \neg r) \tag{9.1}$$

而由两个换位律可得 $\vdash (\neg p \rightarrow \neg q) \leftrightarrow (q \rightarrow p)$, 从而 $\vdash (\neg p \rightarrow \neg q) \leftrightarrow (q \rightarrow p)$, 由代换定理就有

$$\vDash (\neg (q \lor p) \to \neg r) \leftrightarrow (r \to (q \lor p)) \tag{9.2}$$

由式 (9.1) 和式 (9.2), 利用等值的可递性可知 $(\neg p \land \neg q) \rightarrow \neg r$ 和 $r \rightarrow (q \lor p)$ 等值. \square

 3° 由双重否定律和第二双重否定律有 $\models q \leftrightarrow \neg \neg q$,因此 $\neg p \lor q$ 与 $\neg p \lor \neg \neg q$ 等值. 由 De. Morgan 律 有 $\neg p \lor \neg \neg q$ 与 $\neg (p \land \neg q)$ 等值, 由等值的可递性可知 $\neg p \lor q$ 与 $\neg (p \land \neg q)$ 等值, 因此

$$\vDash ((\neg p \lor q) \to r) \leftrightarrow \neg (p \land \neg q) \to r \tag{9.3}$$

而 $p \lor q = \neg p \to q$, 即式 (9.3) 等价为

$$\vDash ((\neg p \lor q) \to r) \leftrightarrow (p \land \neg q) \lor r \tag{9.4}$$

所以题中两公式等值. □

练习 9. 2. 证明 $\neg(x_1 \lor \neg x_2) \to (x_2 \to x_3)$ 与下列公式都等值.

$$1^{\circ} \neg (x_2 \rightarrow x_1) \rightarrow (\neg x_2 \lor x_3)$$

$$2^{\circ} (\neg x_1 \wedge x_2) \rightarrow \neg (x_2 \wedge \neg x_3)$$

解: 1° 有析取交換律 $\vDash (x_1 \lor \neg x_2) \leftrightarrow (\neg x_2 \lor x_1)$,而 $p \lor q = \neg p \to q$,因此 $x_1 \lor \neg x_2$ 与 $\neg \neg x_2 \to x_1$ 等值. 而 由双重否定律和第二双重否定律有 $\vDash \neg \neg x_2 \leftrightarrow x_2$,所以有

$$\vDash (x_1 \lor \neg x_2) \leftrightarrow (x_2 \to x_1) \tag{9.1}$$

同样由 $\vdash \neg \neg x_2 \leftrightarrow x_2$, 有 $\neg \neg x_2 \rightarrow x_3$ 与 $x_2 \rightarrow x_3$ 等值, 即

$$\vDash (x_2 \to x_3) \leftrightarrow (\neg x_2 \lor x_3) \tag{9.2}$$

由式 (9.1) 和式 (9.2), 利用子公式等值可替换性, 得到 $\neg(x_1 \lor \neg x_2) \to (x_2 \to x_3)$ 与 $\neg(x_2 \to x_1) \to (\neg x_2 \lor x_3)$ 等值. \square

 2° $x_1 \vee \neg x_2$ 的对偶为 $\neg x_1 \wedge \neg \neg x_2$, 由对偶律 $\neg x_1 \wedge \neg \neg x_2$ 与 $\neg (x_1 \vee \neg x_2)$ 等值. 而 $\vdash \neg \neg x_2 \leftrightarrow x_2$, 所以

$$\vDash (\lor x_1 \land x_2) \leftrightarrow \neg (x_1 \lor \neg x_2) \tag{9.3}$$

 $x_2 \wedge \neg x_3$ 的对偶为 $\neg x_2 \vee \neg \neg x_3$,由对偶律 $\neg x_2 \vee \neg \neg x_3$ 与 $\neg (x_2 \wedge \neg x_3)$ 等值. 而 $\vdash \neg \neg x_3 \leftrightarrow x_3$,所以 $\neg x_2 \vee x_3$ 与 $\neg (x_2 \wedge \neg x_3)$ 等值. 由式 (9.2) 利用等值的可递性有

$$\vDash \neg (x_2 \land \neg x_3) \leftrightarrow (x_2 \to x_3) \tag{9.4}$$

由式 (9.1) 和式 (9.2), 利用子公式等值可替换性, 得到 $\neg(x_1 \lor \neg x_2) \to (x_2 \to x_3)$ 与 $(\neg x_1 \land x_2) \to \neg(x_2 \land \neg x_3)$ 等值. \square

数理逻辑基础 作业 4 傅申 PB20000051

练习 10. 1. 求以下公式的等值主析取范式.

 $3^{\circ} (x_1 \wedge x_2) \vee (\neg x_2 \leftrightarrow x_3)$

$$4^{\circ} \neg ((x_1 \rightarrow \neg x_2) \rightarrow x_3)$$

解: 3° $(x_1 \wedge x_2) \vee (\neg x_2 \leftrightarrow x_3)$ 的成真指派是

$$(1,1,1),(1,1,0),(1,0,1),(0,1,0),(0,0,1)$$
 (10.1)

那么 $(x_1 \land x_2) \lor (\neg x_2 \leftrightarrow x_3)$ 的等值主析取范式是

$$(x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge \neg x_3) \vee (x_1 \wedge \neg x_2 \wedge x_3) \vee (\neg x_1 \wedge x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge \neg x_2 \wedge x_3)$$
(10.2)

 $4^{\circ} \neg ((x_1 \rightarrow \neg x_2) \rightarrow x_3)$ 的成真指派是

$$(1,0,0), (0,1,0), (0,0,0)$$
 (10.3)

那么 $\neg((x_1 \rightarrow \neg x_2) \rightarrow x_3)$ 的等值主析取范式是

$$(x_1 \wedge \neg x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3)$$

$$(10.4)$$

练习 10. 2. 求以下公式的等值主合取范式.

 $1^{\circ} (x_1 \wedge x_2 \wedge x_3) \vee (\neg x_1 \wedge \neg x_2 \wedge x_3)$

$$2^{\circ} ((x_1 \to x_2) \to x_3) \to x_4$$

解: 1° 记 $p = (x_1 \land x_2 \land x_3) \lor (\neg x_1 \land \neg x_2 \land x_3)$, 这是一个主析取范式, 它的成真指派是

$$(1,1,1),(0,0,1)$$
 (10.1)

 $\neg p$ 的成真指派是

$$(1,1,0), (1,0,1), (1,0,0), (0,1,1), (0,1,0), (0,0,0)$$
 (10.2)

¬p 的等值主析取范式是

 $(x_1 \wedge x_2 \wedge \neg x_3) \vee (x_1 \wedge \neg x_2 \wedge x_3) \vee (x_1 \wedge \neg x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge x_2 \wedge x_3) \vee (\neg x_1 \wedge x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge \neg x_3 \wedge \neg x_3 \wedge \neg x_3) \vee (\neg x_1 \wedge \neg x_3 \wedge \neg x_3 \wedge \neg x_3 \wedge \neg x_3 \wedge \neg x_3) \vee (\neg x_1 \wedge \neg x_3 \wedge \neg$ 由此得 p 的等值主合取范式是

$$(\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \tag{10.4}$$

2° 记 $q = ((x_1 \to x_2) \to x_3) \to x_4, q$ 的成真指派是

$$(1,1,1,1),(1,1,0,1),(1,1,0,0),(1,0,1,1),(1,0,0,1),(0,1,1,1),$$

$$(0,1,0,1),(0,1,0,0),(0,0,1,1),(0,0,0,1),(0,0,0,0)$$

$$(10.5)$$

(0,1,0,1), (0,1,0,0), (0,0,1,1), (0,0,0,1), (0,0,0,0)

¬q 的成真指派是

$$(1, 1, 1, 0), (1, 0, 1, 0), (1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 1, 0)$$
 (10.6)

¬q 的等值主析取范式是

$$(x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4) \vee (x_1 \wedge \neg x_2 \wedge x_3 \wedge \neg x_4) \vee (x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge x_2 \wedge x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge \neg x_4) \vee (\neg x_1 \wedge \neg$$

由此得 q 的等值主合取范式是

$$(\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (x_1 \lor x_2 \lor \neg x_3 \lor x_4)$$
(10.8)