

Europäis h s Patentamt

European Patent Office

Office uropéen des brevets

(11) EP 1 160 418 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

05.12.2001 Bulletin 2001/49

(51) Int Cl.7: F01D 5/18, F01D 5/22

(21) Application number: 01300860.2

(22) Date of filing: 31.01.2001

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 01.06.2000 US 585840

(71) Applicant: GENERAL ELECTRIC COMPANY Schenectady, NY 12345 (US)

(72) Inventors:

- Storey, James Michael
 Clifton Park, New York 12065 (US)
- Tesh, Stephen William
 Simpsonville, South Carolina 29681 (US)
- (74) Representative: Goode, lan Roy et al GE LONDON PATENT OPERATION, Essex House, 12/13 Essex Street London WC2R 3AA (GB)

(54) Steam exit flow design for aft cavities of an airfoil

(57) Turbine stator vane segments have inner (14) and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates (74). St am flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities (54) of the vane having inserts (62) for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impinge-

ment cooling of the vane surfaces. A skirt or flange structure (104) is provided for shielding the steam cooling impingement holes (102) adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss (98) and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

30

[0001] The present invention relates generally to gas turbines, for example, for electrical power g neration, and more particularly to cooling circuits for the first nozzle stage of a turbine.

1

[0002] The traditional approach for cooling turbine blades and nozzles is to extract high pressure cooling air from a source, for example, from the intermediate and last stages of the turbine compressor. A series of internal flow passages are typically used to achieve the desired mass flow objectives for cooling the turbine blades. In contrast, external piping is used to supply air to the nozzles, with air film cooling typically being used and the air exiting into the hot gas stream of the turbine. In advanced gas turbine designs, it has been recognized that the temperature of the hot gas flowing past the turbin components could be higher than the melting temperature of the metal. It is therefore necessary to establish a cooling scheme to more assuredly protect the hot gas path components during operation. Steam has been demonstrated to be a preferred cooling media for cooling gas turbine nozzles (stator vanes), particularly for combined-cycle plants. See, for example, U.S. Patent No. 5,253,976. However, because steam has a higher h at capacity than the combustion gas, it is inefficient to allow the coolant steam to mix with the hot gas . stream. Consequently, it is desirable to maintain cooling steam inside the hot gas path components in a closed circuit. Certain areas of the components of the hot gas path, however, cannot practically be cooled with steam in a closed circuit. For example, the relatively thin structure of the trailing edges of the nozzle vanes effectively pr cludes steam cooling of those edges. Therefore, air cooling may be provided in the trailing edges of nozzle vanes. For a complete description of the steam cooled nozzles with air cooling along the trailing edge, reference is made to U.S. Patent No. 5,634,766.

[0003] The present invention provides a cooling system for cooling the hot gas components of a nozzle stage of a gas turbine, in which closed circuit steam or air cooling and/or open circuit air cooling systems may be employed. In the closed circuit system, a plurality of nozzle vane segments are provided, each of which comprises one or more nozzle vanes extending between inner and outer walls. The vanes have a plurality of cavities in communication with compartments in the outer and inner walls for flowing cooling media in a closed circuit for cooling the outer and inner walls and the vanes per se. This closed circuit cooling system is substantially structurally similar to the steam cooling system described and illustrated in the prior referenced U.S. Patent No. 5,634,766, with certain exceptions as noted below. Thus, cooling media is provided to a plenum in th outer wall of the segment for distribution ther in and passage through impingement openings in a plate for impingement cooling of the outer wall surface of the sign ment. The sp nt impingement cooling media flows into

leading edge and aft cavities xtending radially through the vane. Return int mediate cooling cavities extend radially and lie between the leading edge and aft cavities. A separat trailing edge cavity may also be provided. The cooling media that flows through the leading edge and aft cavities flows into a plenum in the inner wall and through impingement openings in an impingement plate for impingement cooling of the inner wall of the segment. The spent impingement cooling media then flows through the intermediate return cavities for further cooling of the vane.

2

[0004] Impingement cooling is also provided in the leading and aft cavities of the first stage nozzle vane. as well as in the intermediate, return cavities of the vane. Inserts in the leading and aft cavities comprise sleeves having a collar at their inlet ends for connection with integrally cast flanges in the outer wall of the cavities and extend through the cavities spaced from the walls thereof. These inserts have impingement holes in opposition to the walls of the cavity whereby steam flowing into the inserts flows outwardly through the impingement holes for impingement cooling of the vane walls. Return or exit channels are provided along the inserts for channeling the spent impingement cooling steam. Similarly, inserts in the return intermediate cavities have impingement openings for flowing impingement cooling medium against the side walls of the vane. These inserts also have return or exit channels for collecting the spent impingement cooling steam and conducting it to the steam outlet.

[0005] As post impingement steam flow exits the aft cavities, it has conventionally experienced an expansion into the plenum-type cavity of the inner wall that is defined by the surface of the inner wall impingement plate. The impingement plate is curved to be disposed generally in parallel to the fillet region of the aerofoil. Thus, the impingement holes of the impingement plate in this region of the aerofoil fillet are oriented such that their center lines are perpendicular to the surface of the fillet. However, this also places many of these holes generally perpendicular to the flow exiting from the aft cavities. Accordingly, the problem exists that the cooling media, such as steam flow, exiting the aft cavities can adversely affect the performance of the steam cooling impingement holes in this region by creating an unstable, low static pressure steam supply to those holes.

[0006] The present invention was developed in particular for the purposes of steam cooling robustness in the area of the aerofoil fillet of the stage one nozzle.

[0007] The invention is thus embodied in structures that allow for the steam flow to exit the aft cavities in a manner which substantially isolates the same from the impingement holes in the vicinity of the exit of these cavities. This prev nts the inner wall and aerofoil fill t impingement holes from receiving an unpredictable steam supply from the aft cavities.

[0008] The invention relates in particular to the configuration of the cavity insert and the flash rib configu-

15

25

35

45

50

55

ration at the radially inner end of the first stage nozzle. More specifically, according to a first aspect of the invention, the invention is embodied in an extending flange or skirt to channel exit flow from the respective insert to isolate the same from impingement openings in the vicinity of the cavity exit ends. In a first embodiment, a flash rib boss is defined peripherally of at least one of the aft cavities and a flange or skirt extends radially inwardly from the boss. The skirt, which extends from the impingement boss, channels the flow exiting the corresponding aft vane cavity into the plenum radially inwardly of the impingement plate while shielding the impingement holes in the vicinity of that vane cavity from an adverse influence from the exiting steam flow. [0009] In a second, alternate embodiment of the invention, the fin of the cavity insert for at least one of the aft cavities is extended in a radial direction, longitudinally of the insert so as to define a flange to channel the exit flow generally to an area beyond the fillet region and th reby substantially preclude an adverse effect on the impingement cooling in the vicinity of the cavity. Thus, in this embodiment, the fins of the cavity insert are extended to act as flow directing skirts which shield the impingement holes adjacent the cavity and the nozzle inner side wall.

[0010] A second aspect of the invention relates to the configuration of the interface between the cavity insert and the flash rib boss at the radially inner end of the first stage nozzle. More specifically, according to a second aspect of the invention, a gap between a flash rib or impingement boss, provided at the juncture of the impingement plate and the flash rib, and the cavity insert is controlled to minimize flow therebetween, so that flow out of the cavities is substantially limited to the flow out of the return or exit channel(s), where it will have a lesser impact on the impingement cooling of the aerofoil fillet region. In a presently preferred embodiment of the invention, the insert body defines a controlled gap with the flash rib boss irrespective of the location of the flange or skirt-like extension structure. The gap is most preferably controlled to about 0.02 inches.

[0011] These, as well as other objects and advantages of this invention, will be more completely understood and appreciated by careful study of the following more detailed description of the presently preferred exemplary embodiments of the invention taken in conjunction with the accompanying drawings, in which:

FIGURE 1 is a schematic cross-sectional view of a first stage nozzle vane in which a cooling media exit flow skirt structure embodying the invention may be provided;

FIGURE 2 is a schematic cross-sectional vi w of the first stag nozzle vane, adjacent the radially outer nd thereof;

FIGURE 3 is a schematic cross-sectional view sim-

ilar to FIGURE 2 showing the configuration of the cavity inserts mid span of the vane;

FIGURE 4 is a schematic cross-s ctional view similar to FIGURES 2 and 3 showing exemplary insert configurations adjacent the radially inner end of the vane;

FIGURE 5 is a schematic perspective view of a first stage nozzle vane segment taken from the radially inner end of the vane segment;

FIGURE 6 is a schematic cross-sectional view taken along line A-A of FIGURE 5 illustrating a first exemplary embodiment of the invention;

FIGURE 7 is a schematic cross-sectional view taken along line B-B of FIGURE 5 showing the first exemplary embodiment;

FIGURE 8 is a schematic cross-sectional view taken along line C-C of FIGURE 5 showing the first embodiment of the invention;

FIGURE 9 is a schematic cross-sectional view taken line A-A of FIGURE 5 illustrating a second exemplary embodiment of the invention;

FIGURE 10 is a schematic cross-sectional view taken along line B-B of FIGURE 5 showing the second embodiment of the invention; and

FIGURE 11 is a schematic cross-sectional view taken along line C-C of FIGRE 5 showing the second embodiment of the invention.

[0012] As discussed previously, the present invention relates in particular to cooling circuits for the first stage nozzles of a turbine, reference being made to the previously identified patents for disclosures of various other aspects of the turbine, its construction and methods of operation. Referring now to FIGURE 1, there is schematically illustrated in cross-section a vane 10 comprising one of the plurality of circumferentially arranged segments of the first stage nozzle. It will be appreciated that the segments are connected one to the other to form an annular array of segments defining the hot gas path through the first stage nozzle of the turbine. Each segment includes radially spaced outer and inner walls 12 and 14, respectively, with one or more of the nozzle vanes 10 extending between the outer and inner walls. The segments are supported about the inner shell of the turbine (not shown) with adjoining segments being s al done to the other. It will therefore be appreciated that the out r and inn r walls and th vanes extending therebetwe in air wholly supported by the inner shell of the turbine and are removable with the inner shell halves of th turbin upon r moval of the outer shell as set forth

in U.S. Patent No. 5,685,693. For purposes of this description, the vane 10 will be described as forming the sole vane of a s gm nt.

[0013] As shown in the schematic illustration of FIG-URE 1, the vane has a leading edge 18, a trailing edge 20, and a cooling steam inlet 22 to the outer wall 12. A return steam outlet 24 also lies in communication with the nozzle segment. The outer wall 12 includes outer side railings 26, a leading railing 28, and a trailing railing 30 defining a plenum 32 with the outer cover plate 34 and an impingement plate 36 disposed in the outer wall 12. (The terms outwardly and inwardly or outer and inner refer to a generally radial direction). Disposed between the impingement plate 36 and the inner surface 38 of outer wall 12 are a plurality of structural ribs 40 extending between the side walls 26, forward wall 28 and trailing wall 30. The impingement plate 36 overlies the structural ribs 40 throughout the full extent of the plenum 32. Consequently, steam entering through inlet port 22 into plenum 32 passes through the openings in the impingem nt plate 36 for impingement cooling of the inner surface 38 of the outer wall 12.

[0014] In this exemplary embodiment, the first stage nozzle vane 10 has a plurality of cavities, for example, a leading edge cavity 42, two aft cavities 52, 54, four int mediate return cavities 44, 46, 48 and 50, and also a trailing edge cavity 56.

[0015] As illustrated in FIGURE 1, the post-impingem nt cooling steam flows into a plenum 73 defined by the inner wall 14 and a lower cover plate 76. Structural ribs 75 are integrally cast with the inner wall 14. Radially inwardly of the structural ribs 75 is an impingement plate 74. As a consequence, it will be appreciated that the spent impingement cooling steam flowing from cavities 42, 52, and 54 flows into the plenum 73 for flow through th impingement openings of impingement plate 74 for impingement cooling of the inner wall 14. The spent cooling steam flows by direction of the ribs 75 towards the openings (not shown in detail) for return flow through the cavities 44, 46, 48, and 50, respectively, to the steam outlet 24. Insert sleeves 64, 66, 68, and 70 are disposed in the cavities 44, 46, 48, and 50 in spaced relation from the side walls 88, 90 and partition walls 72, 78, 80, 82, 84, defining the respective cavities. The impingement openings lie on opposite sides of the sleeves for flowing the cooling media, e.g., steam, from within the insert sleev s through the impingement openings for impingement cooling of the side walls 88, 90 of the vane, as generally discussed above. The spent cooling steam then flows from the gaps between the insert sleeves and the walls of the intermediate cavities to outlet 24 for return to the coolant, e.g., steam, supply.

[0016] The air cooling circuit of the trailing edge cavity 56 of the combined st am and air cooling circuit of the vane illustrated in FIGURE 1 generally corresponds to that of the '766 patent and, ther fore, a detailed discussion h rein is omitted.

[0017] R ferring to the nozzle van structur shown

in FIGURES 2-4, in the illustrated, exemplary embodiment, seven caviti s are provid d for cooling st am flow. The first, leading edge cavity 42 and the aft, sixth and seventh cavities 52, 54 are down-flow cavities in this embodiment. The second through fifth cavities 44, 46, 48, 50, on the other hand, are up-flow, steam return intermediate cavities. As mentioned above, each of the steam flow cavities in this embodiment is provided with a respective cavity insert. Thus, the leading edge cavity 42 and aft cavities 52, 54 each have an insert sleeve. 58, 60, and 62, respectively, while each of the intermediate cavities 44, 46, 48 and 50 have similar insert sleeves 64, 66, 68, and 70, respectively, all such insert sleeves being in the general form of hollow sleeves, having perforations as described in greater detail herein below. The insert sleeves are preferably shaped to correspond to the shape of the particular cavity in which the insert sleeve is to be provided and sides of the sleeves are provided with a plurality of impingement cooling openings, along portions of the insert sleeve which lie in opposition to the walls of the cavity to be impingement cooled. For example, as shown in FIGURE 2, in the leading edge cavity 42, the forward edge of the insert sleeve 58 would be arcuate and the side walls would generally correspond in shape to the side walls of the cavity 42, with such walls of the insert sleeve having impingement openings along the length thereof. The back side of the sleeve or insert sleeve 58, disposed in opposition to the partition wall 72 separating cavity 42 from cavity 44, however, would not have impingement openings. Similarly, in the aft cavities 52, 54, the side walls of the insert sleeves 60 and 62 have impingement openings along the length thereof, whereas the forward and aft walls of insert sleeves 60 and 62, facing cavity defining partition walls 84 and 86, for example, are of a solid non-perforated material.

[0018] It will be appreciated that the insert sleeves received in cavities 42, 44, 46, 48, 50, 52, and 54 are spaced from the walls of the cavities to enable cooling media, e.g., steam, to flow through the impingement openings to impact against the interior wall surfaces of the cavities, hence cooling the wall surfaces. In the illustrated embodiment, the inserts are spaced from the walls of the cavities, by cavity ribs, schematically shown at 42a, 44a, 46a, 50a, 52a, and 54a. To minimize degradation of the cooing impingement flow downstream, the cavity ribs further direct the steam to the return or exit channel(s) 58a, 60 b, 60a, 62b, 64b, 64a, 66b, 66a, 68b, 68a, 70b, 70a, defined in the illustrated embodiment between the imperforate walls of the inserts and the respective cavity walls 72, 84, 86, 78, 80, 82.

[0019] To accommodate the ever increasing volume of post-impingement flow, the inserts have a transitioning or profile changing configuration. Thus, for example, with reference to the leading edge cavity, the cavity insert is substantially D-shaped at the radial outer and of the vane, where the cooling media first enters this cavity (FIG. 2). The cooling media flows through impingement

holes (not shown in this view) to impinge upon th vane outer walls to impingement cool the same. The cavity ribs 42a defined at spaced locations along the I ngth of the cavity 42 encourage this spent cooling steam to flow in a chord-wise direction to be collected at the aft dump channel 58a of the leading edge cavity insert, as shown in FIGURES 3 and 4. As illustrated, progressing radially inwardly along the vane, the aft dump channel 58a of this insert 58 increases in dimension as the spent cooling medium flow volume increases relative to the remaining cooling flow that has yet to flow out through the impingement holes in the insert. Thus, along the length of the vane, the insert 58 of the leading edge cavity 42 changes profile from a generally D-shape to a generally C-shape. The aft down-flow cavities 52, 54 similarly define a gradually transitioning configuration in the direction of flow as shown by comparison of FIGURES 2, 3 and 4. In this example, the insert 60 in aft cavity 52 transitions from a generally rectangular profile to an Hshaped profile, and the insert 62 in aft cavity 54 transitions from a generally triangular or narrow edged rectangular profile to a generally V-shaped profile.

[0020] Similarly, the up-flow cavities define a maximum insert dimension at the radially inner end of the vane (FIG. 4) and define progressively changing cross-sectional configurations. Thus, at the radially inner end of the vane, these inserts 64, 66, 68, 70 are generally r ctangular. However, as the aft and forward dump channels 64a, 64b; 66a, 66b; 68a, 68b; 70a, 70b gradually increase in size along the flow direction of the cooling media, the cavities assume what might be characterized as an H or I beam shape. In these cavities as w II, cavity ribs 44a, 46a, 48a, 50a are defined at spaced locations along the length of the respective cavity to space the inserts from the vane wall and to encourage spend cooling medium to flow in a chord-wise direction to the forward and aft dump channels.

[0021] As noted above, the present invention was developed in particular for the purposes of steam cooling robustness in the area of the aerofoil fillet of the stage one nozzle vanes. Thus, the invention relates in particular to the configuration of the cavity insert and the flash rib configuration at the radially inner end of the vanes of the first stage nozzle. FIGURE 5 is a perspective view of the radially inner end of the nozzle vane segment, with details of the intermediate, return cavities and ins rts omitted for clarity. As described more particularly below, the invention is embodied in an extension defined at the radially inner end of the sixth and seventh cavities, in particular, to channel exit flow from the respective inserts, to shield the steam cooling impingement holes adjacent the inner wall aerofoil fillet region 92 of the nozzle from the steam flow exiting these aft nozzle cavities 52,

[0022] A first embodim nt of a fin or skirt extension embodying the invention is shown in the cross-sectional vi ws of FIGURES 6, 7 and 8. As shown, the radially inward end of the sixth cavity ins rt 60 and the seventh

cavity insert 62 ach includ sar spective fin 94, 96 for directing flow into th pl num 73 at the radially inner nd of the vane 10. A flash rib boss 98 is defined at least part peripherally of the opening at the radially inner end of the vane, at the interface of the impingement plate 74 and the flash rib 100. To shield the impingement holes 102 in the aerofoil fillet region 92 from the exit flow, in the first embodiment of the invention a flange or skirt 104 extends radially from the flash rib boss 98.

[0023] The configuration of the flash rib/impingement boss and skirt structure for the sixth and seventh cavities can best be seen in FIGURES 7 and 8, respectively, which also show the relationship of the boss/skirt 98, 104 to the impingement plate 74.

[0024] With reference to FIGURE 7, the impingement boss and skirt are attached to the nozzle flash rib 100 and the skirt 104 extends radially inwardly of the vane to channel exit flow from the respective insert 60, 62 to isolate the same from the impingement openings 102 in the vicinity of the cavity exit ends. As an embodiment of the second aspect of the invention, the flash rib boss 98 defines a prescribed gap G with the adjacent fins 94, 96 of the insert. Gap G is preferably on the order of about. 02 inches. This controlled gap minimizes the flow of post-impingement steam from the cavity 52, between the cavity fin 94 and the flash rib 100, so that the exit flow is substantially limited to flow via the exit channels 60b, 60a. Nevertheless, the minimal flow through the gap G will be shielded from the impingement holes 102 in the fillet region 92 by the skirt 104 of the flash rib boss 98. Indeed, the skirt that extends from the flash rib boss channels such gap flow with the flow exiting the vane cavity, shown by arrow A, into the plenum generally radially inwardly of the impingement plate 74 while shielding the impingement holes 102 in the vicinity of the vane cavity from an adverse influence of the steam flow.

[0025] FIGURE 8 similarly illustrates the provision of a flash rib boss and skirt for channeling flow through the seventh cavity to substantially shield the impingement holes 102 in the vicinity of that cavity from an adverse influence from that exiting flow shown as arrow B. In this embodiment too, the insert 62 of the seventh cavity includes a fin 96 that terminates in a conventional manner in the vicinity of the flash rib 100. The flash rib boss 98 is further provided in this embodiment to define a narrow, controlled gap G to the fin 96 of the insert. A gap of .02 inches is provided in the presently preferred embodiment. The flow channeling skirt 104 extending radially inwardly from the flash rib boss 98 again shields the impingement holes 102 in the impingement plate 74 adjacent the nozzle inner side wall from an adverse affect due to the flow exiting from the insert exit channel 62b and/or flow between the fin 96 and the flash rib boss 98. [0026] In accordance with a second, alternate embodiment of the invention shown in FIGURES 9-11, the fins 194, 196 of the cavity inserts for the sixth and seventh cavities are extended in a radial direction, longitudinally of the insert, to define flanges for channeling exit flow

35

25

30

beyond the fillet region 92 and th r by minimiz the exit flow's adverse effect on the impingement holes 102 in the vicinity of the cavity. Thus, in this embodiment, the fins of the cavity insert ar extended to act as flow directing flang s or skirts 194, 196 which shield the impingement holes adjacent the cavity and the nozzle inner wall 14. In this embodiment as well, a flash rib boss 198 is provided at the flash rib 100 so as to control the gap between the insert fins, referred to as flanges or skirts in this embodiment, to about 0.02 inches in the presently preferred embodiment. This controlled gap minimizes the flow of post-impingement steam from the cavities 52, 54, between the insert flange 194, 196 and the flash rib boss 98, so that the exit flow is substantially limited to flow via the exit channels 60b, 60a, 62b, where the insert flanges 194, 196 can direct it into the plenum, beyond the fillet region 92.

[0027] For completeness, various aspects of the inversion are set out in the following numbered clauses:-

1. A turbine vane segment for forming part of a stage of a turbine, comprising:

inner and outer walls spaced from one another; a turbine vane extending between said inner and outer walls and having leading and trailing edges, said vane including a plurality of discrete cavities between the leading and trailing edges and extending lengthwise of said vane for flowing a cooling medium in a substantially closed circuit through said vane;

an impingement plate mounted to said inner wall in spaced relation to an inner surface thereof, said impingement plate having openings enabling passage of the cooling medium for impingement cooling of said inner wall;

an inner cover plate mounted to said inner wall and spaced from said inner surface with said impingement plate therebetween, thereby to define a plenum of said inner wall between said impingement plate and said cover plate and an impingement gap between said impingement plate and said inner surface,

at least one of said cavities of said vane being in communication with said plenum of said inner wall via an opening in said vane, to enable passage of the cooling medium from said at least one cavity into said plenum, and

an extension structure for channeling cooling media flow exiting said at least one cavity into said plenum and for substantially shielding at least a portion of said impingement plate adjacent a periphery of said opening from said exiting flow.

 A turbine van segment as in clause 1, wher in a flash rib boss is defin d at a junction of at least one of said van and said inner wall with said impingement plate at a radially inner nd of said at least one cavity.

- 3. A turbin van segment as in clause 2, wherein said flash rib boss includ s a radially inwardly extending skirt defining said extension structure for channeling cooling media flow exiting said at least one cavity into said plenum and for substantially shielding at least a portion of said impingement plate disposed adjacent a periphery of said opening from said exiting flow.
- 4. A turbine vane segment as in clause 1, wherein an insert sleeve is disposed within said at least one cavity and spaced from the inner wall of said vane to define a gap therebetween, said insert having an inlet for flowing the cooling medium into said insert sleeve, said insert sleeve having a plurality of openings therethrough for flowing the cooling medium through said sleeve into said gap for impingement against an inner wall surface of said vane.
- 5. A turbine vane segment according to clause 4, further including a plurality of cavity ribs projecting inwardly of said interior wall surface at spaced locations along the length of said vane, said insert sleeve engaging said ribs to define gaps between said insert sleeve and said interior wall surface of said vane at spaced locations along said vane.
- 6. A turbine vane segment according to clause 4, wherein said insert sleeve and said inner wall surface of said vane define a channel therebetween along a side wall of said vane in communication with said gaps for receiving the cooling medium flowing into said gaps.
- 7. A turbine vane segment according to clause 6, further including a plurality of cavity ribs projecting inwardly of 'said interior wall surface at spaced locations along the length of said vane, said insert sleeve engaging said ribs to define gaps between said insert sleeve and said interior wall surface of said vane at spaced locations along said vane and wherein said ribs terminate short of fully encompassing said at least one cavity whereby terminal ends of said ribs define ends of said gaps opening into said channel.
- 8. A turbine vane segment as in clause 4, wherein said insert sleeve further comprises at least one exit flow directing fin at a radially inner end thereof.
- 9. A turbine vane segment as in clause 8, wherein said at least one exit flow dir cting fin extends radially substantially b yond a junction of at I ast one of said vane and said inner wall with said impingement plate at a radially inner end of said at least one

55

15

20

30

35

40

45

50

cavity, whereby said at least one exit fin defines at least one flange that channels cooling media flow exiting said at least one cavity into said plenum and substantially shi lds at least a portion of said impingement plate adjacent a periphery of said opening from said exiting flow.

- 10. A turbine vane segment as in clause 8, further comprising a flash rib boss defined at a junction of at least one of said vane and said inner wall with said impingement plate at a radially inner end of said at least one cavity, and disposed in facing relation to said at least one fin of said insert sleeve.
- 11. A turbine vane segment as in clause 10, wherein said flash rib boss defines a predetermined gap with said at least one fin of said insert sleeve.
- 12. A turbine vane segment as in clause 11, wherein said gap is about 0.02 inches.
- 13. A turbine vane segment as in clause 10, wherein said flash rib boss includes a radially inwardly extending skirt defining said extension structure for channeling cooling media flow exiting said at least one cavity into said plenum and for substantially shielding at least a portion of said impingement plate adjacent a periphery of said opening from said exiting flow.
- 14. A turbine vane segment as in clause 10, wherein said at least one exit flow directing fin extends radially substantially beyond an interface of said insert sleeve and said flash rib boss, whereby said at least one exit fin defines at least one flange to channel cooling media flow exiting said at least one cavity into said plenum and substantially shield at least a portion of said impingement plate adjacent a periphery of said opening from said exiting flow.

15. A stator vane segment, comprising:

inner and outer walls spaced from one another; a vane extending between said inner and outer walls and having leading and trailing edges, said vane including a plurality of discrete cavities between the leading and trailing edges and extending lengthwise of said vane for flowing a cooling medium therethrough;

- said outer wall defining at least one cooling media plenum;
- said inner wall defining at least one cooling media plenum;
- a cooling medium inlet enabling passage of the cooling medium into said pl num of said out r wall;
- said vane having a first opening communicating said plenum of said outer wall with at least one

of said cavities to enable passage of the cooling medium between said one plenum and said one cavity, said vane having a second op ning communicating said one cavity with said cooling media plenum of said inner wall, and said vane having a third opening communicating said cooling media plenum of said inner wall with at least another of said cavities to enable passage of the cooling medium in a substantially closed circuit between said cooling media plenum of said one cavity, said cooling media plenum of said inner wall, and said another cavity; and

an insert sleeve within each of said one cavity and said another cavity and spaced from interior wall surfaces thereof, each said insert sleeve having an inlet for flowing the cooling medium into said insert sleeve, each said insert sleeve having a plurality of openings therethrough for flowing the cooling medium through said sleeve openings into said space between said sleeve and said interior wall surfaces for impingement against said interior wall surface of said vane;

wherein said inner wall has an impingement plate mounted thereto in spaced relation to an inner surface thereof and a cover spaced from said inner surface with said impingement plate therebetween, thereby to define said plenum of said inner wall between said impingement plate and said cover and an impingement gap between said impingement plate and said inner surface, said second opening of said vane being in communication with said plenum of said inner wall to enable passage of the cooling medium, said impingement plate having openings enabling passage of the cooling medium for impingement cooling of said inner wall, and further comprising an extension structure for channeling cooling media flow exiting said one cavity into said plenum and for substantially shielding a portion of said impingement plate at a periphery of said second opening from said exiting flow.

- 16. A stator vane segment as in clause 15, wherein an impingement boss is defined at a junction of at least one of said vane and said inner wall with said impingement plate at a radially inner end of said at least one cavity.
- 17. A stator vane segment as in clause 16, wherein said flash rib boss includes a radially inwardly ext nding skirt defining said xtension structure for channeling cooling media flow xiting said at least on cavity into said plenum and for substantially shielding at least a portion of said impingem nt plate disposed adjacent a periphery of said opening

25

30

35

40

45

50

55

from said exiting flow.

18. A stator vane segment according to clause 15, furth r including a plurality of cavity ribs projecting inwardly of said interior wall surface at spaced locations along the length of said vane, said insert sleeve engaging said ribs to define gaps between said insert sleeve and said interior wall surface of said vane at spaced locations along said vane, said insert sleeve and said inner wall surface of said vane defining a channel therebetween along a side wall of said vane in communication with said gaps for receiving the cooling medium flowing into said gaps.

- 19. A stator vane segment as in clause 16, wherein said insert sleeve further comprises at least one exit flow directing fin at a radially inner end thereof.
- 20. A stator vane segment as in clause 19, wherein said at least one exit flow directing fin extends radially substantially beyond said flash rib boss, whereby said at least one extended fin defines said extension structure that channels cooling media flow exiting said at least one cavity into said plenum and substantially shields at least a portion of said impingement plate adjacent a periphery of said opening from said exiting flow.
- 21. A stator vane segment as in clause 19, wherein said flash rib boss defines a predetermined gap with said at least one fin of said insert sleeve.
- 22. A stator vane segment as in clause 21, wherein said gap is about 0.02 inches.
- 23. A stator vane segment as in clause 19, wherein said flash rib boss includes a radially inwardly extending skirt defining said extension structure for channeling cooling media flow exiting said at least one cavity into said plenum and for substantially shielding at least a portion of said impingement plate adjacent a periphery of said opening from said exiting flow.

Claims

 A turbine vane segment for forming part of a stage of a turbine, comprising:

inner and outer walls spaced from one another; a turbine vane extending between said inner and outer walls and having I ading and trailing edges, said vane including a plurality of discrete cavities betw n the leading and trailing dges and extending lengthwise of said vane for flowing a cooling medium in a substantially

closed circuit through said vane; an impingement plate mounted to said inner wall in spaced r lation to an inn r surface thereof, said impingement plate having op nings enabling passage of the cooling medium for impingement cooling of said inner wall; an inner cover plate mounted to said inner wall and spaced from said inner surface with said impingement plate therebetween, thereby to define a plenum of said inner wall between said impingement plate and said cover plate and an impingement gap between said impingement plate and said inner surface, at least one of said cavities of said vane being in communication with said plenum of said inner wall via an opening in said vane, to enable passage of the cooling medium from said at least one cavity into said plenum, and

least one cavity into said plenum, and an extension structure for channeling cooling media flow exiting said at least one cavity into said plenum and for substantially shielding at least a portion of said impingement plate adjacent a periphery of said opening from said exiting flow.

- A turbine vane segment as in claim 1, wherein a
 flash rib boss is defined at a junction of at least one
 of said vane and said inner wall with said impingement plate at a radially inner end of said at least one
 cavity.
- 3. A turbine vane segment as in claim 2, wherein said flash rib boss includes a radially inwardly extending skirt defining said extension structure for channeling cooling media flow exiting said at least one cavity into said plenum and for substantially shielding at least a portion of said impingement plate disposed adjacent a periphery of said opening from said exiting flow.
- 4. A turbine vane segment as in claim 1, wherein an insert sleeve is disposed within said at least one cavity and spaced from the inner wall of said vane to define a gap therebetween, said insert having an inlet for flowing the cooling medium into said insert sleeve, said insert sleeve having a plurality of openings therethrough for flowing the cooling medium through said sleeve into said gap for impingement against an inner wall surface of said vane.
- 5. A turbine vane segment according to claim 4, further including a plurality of cavity ribs projecting inwardly of said interior wall surface at spaced locations along the length of said vane, said insert sleeve engaging said ribs to define gaps b tween said insert sleeve and said interior wall surfac of said vane at spaced locations along said vane.

15

20

25

30

35

40

50

- 6. A turbine vane segment according to claim 4, wherein said insert sleeve and said inner wall surface of said vane define a channel therebetween along a side wall of said vane in communication with said gaps for receiving the cooling medium flowing into said gaps.
- A turbine vane segment as in claim 4, wherein said insert sleeve further comprises at least one exit flow directing fin at a radially inner end thereof.
- 8. A stator vane segment, comprising:

inner and outer walls spaced from one another; a vane extending between said inner and outer walls and having leading and trailing edges, said vane including a plurality of discrete cavities between the leading and trailing edges and extending lengthwise of said vane for flowing a cooling medium therethrough;

said outer wall defining at least one cooling media plenum;

said inner wall defining at least one cooling media plenum;

a cooling medium inlet enabling passage of the cooling medium into said plenum of said outer wall;

said vane having a first opening communicating said plenum of said outer wall with at least one of said cavities to enable passage of the cooling medium between said one plenum and said one cavity, said vane having a second opening communicating said one cavity with said cooling media plenum of said inner wall, and said vane having a third opening communicating said cooling media plenum of said inner wall with at least another of said cavities to enable passage of the cooling medium in a substantially closed circuit between said cooling media plenum of said outer wall, said one cavity, said cooling media plenum of said inner wall, and said another cavity; and

an insert sleeve within each of said one cavity and said another cavity and spaced from interior wall surfaces thereof, each said insert sleeve having an inlet for flowing the cooling medium into said insert sleeve, each said insert sleeve having a plurality of openings therethrough for flowing the cooling medium through said sleeve openings into said space between said sleeve and said interior wall surfaces for impingement against said interior wall surface of said vane;

wherein said inner wall has an impingement plate mounted thereto in spaced relation to an inner surface th reof and a cover spaced from said inner surfac with said impingement plate thereb tween, thereby to define said plenum of said inner wall b tween said impingement plate and said cover and an impingem nt gap b tween said impingement plate and said inner surface, said second opening of said vane being in communication with said plenum of said inner wall to enable passage of the cooling medium, said impingement plate having openings enabling passage of the cooling medium for impingement cooling of said inner wall, and further comprising an extension structure for channeling cooling media flow exiting said one cavity into said plenum and for substantially shielding a portion of said impingement plate at a periphery of said second opening from said exiting flow.

- A stator vane segment as in claim 8, wherein an impingement boss is defined at a junction of at least one of said vane and said inner wall with said impingement plate at a radially inner end of said at least one cavity.
- 10. A stator vane segment according to claim 8, further including a plurality of cavity ribs projecting inwardly of said interior wall surface at spaced locations along the length of said vane, said insert sleeve engaging said ribs to define gaps between said insert sleeve and said interior wall surface of said vane at spaced locations along said vane, said insert sleeve and said inner wall surface of said vane defining a channel therebetween along a side wall of said vane in communication with said gaps for receiving the cooling medium flowing into said gaps.

9

FIG. 1

Europäisches Patentamt

European Patent Office

Office européen d s brev ts

(11) EP 1 160 418 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 24.09.2003 Bulletin 2003/39
- (43) Date of publication A2: 05.12.2001 Bulletin 2001/49
- (21) Application number: 01300860.2
- (22) Date of filing: 31.01.2001

(51) Int CI.7: **F01D 5/18**, F01D 5/22, F01D 9/04

- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 01.06.2000 US 585840
- (71) Applicant: GENERAL ELECTRIC COMPANY Schenectady, NY 12345 (US)

- (72) Inventors:
 - Storey, James Michael
 Clifton Park, New York 12065 (US)
 - Tesh, Stephen William Simpsonville, South Carolina 29681 (US)
- (74) Representative: Goode, Ian Roy et al GE London Patent Operation, Essex House, 12/13 Essex Street London WC2R 3AA (GB)
- (54) Steam exit flow design for aft cavities of an airfoil
- (57) Turbine stator vane segments have inner (14) and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates (74). Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities (54) of the vane having inserts (62) for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impinge-

ment cooling of the vane surfaces. A skirt or flange structure (104) is provided for shielding the steam cooling impingement holes (102) adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss (98) and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

EUROPEAN SEARCH REPORT

Application Number EP 01 30 0860

		ERED TO BE RELEVANT	Polomen	OLASSIEIOA TOU OF THE	
Category	of relevant passa	ndication, where appropriate, ges	Relevant to claim	CLASSIFICATION OF THE APPLICATION (INLCL7)	
X	US 5 145 315 A (DIS AL) 8 September 199 * figures *	SHMAN CHRISTOPHER D ET 02 (1992-09-08)	1-6,8-10	F01D5/18 F01D5/22 F01D9/04	
x	US 5 320 483 A (CUM 14 June 1994 (1994- * figure 1 *	HA FRANCISCO J ET AL) -06-14)	1,8		
X	US 5 634 766 A (CUM 3 June 1997 (1997-6 * figure 13 *	HA FRANCISCO J ET AL) 06-03)	1,8		
				TECHNICAL FIELDS SEARCHED (Int.Cl.7) F01D	
		-			
	The present search report has	peen drawn up for all claims			
	Place of search	Date of completion of the search	-	Examiner	
	MUNICH	1 August 2003	Ras	po, F	
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		E : earlier patent d after the filing d D : document cited L : doournent cited	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the fiting date D: document cited in the application L: document ofted for other reasons &: member of the same patent family, corresponding document		

EPO FORM 1503 03.82 (P04C01)

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 01 30 0860

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

01-08-2003

	ent document n search report		Publication date		Patent family member(s)	Publication date
US 514	5315	A	08-09-1992	CA DE DE EP JP JP	2079181 A1 69206556 D1 69206556 T2 0534207 A1 2070494 C 5195705 A 7076522 B	28-03-1993 18-01-1996 25-04-1996 31-03-1993 10-07-1996 03-08-1993 16-08-1995
US 532	0483	A	14-06-1994	CA EP JP	2103416 A1 0605153 A1 6257405 A	01-07-1994 06-07-1994 13-09-1994
US 563	4766	A	03-06-1997	US US CA EP JP	5591002 A 5743708 A 2155376 A1 0698723 A2 8177406 A	07-01-1997 28-04-1998 24-02-1996 28-02-1996 09-07-1996

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82