Section 1.3 – Quadratic Graphics

Quadratic Function

A function f is a *quadratic function* if $f(x) = ax^2 + bx + c$

Formula

Vertex of a Parabola

The **vertex** of the graph of f(x) is

$$V_x$$
 or $x_v = -\frac{b}{2a}$
 V_y or $y_v = f\left(-\frac{b}{2a}\right)$
 $Vertex$ Point $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$

Axis of Symmetry:

$$x = V_{\chi} = -\frac{b}{2a}$$

Minimum or Maximum Point

If $a > 0 \Rightarrow f(x)$ has a **minimum** point If $a < 0 \Rightarrow f(x)$ has a *maximum* point @ vertex point $\left(V_{\chi},\ V_{\gamma}\right)$

Example

$$f(x) = x^2 - 4x - 2$$

$$x = -\frac{b}{2a} = -\frac{-4}{2(1)} = 2$$

$$y = f\left(-\frac{b}{2a}\right) = f(2)$$

$$= (2)^{2} - 4(2) - 2$$

$$= -6$$
Vertex point: $(2, -6)$

Axis of Symmetry: x = 2

Minimum point @ (2, -6)

Range

If
$$a > 0 \Rightarrow [V_y, \infty)$$

If $a < 0 \Rightarrow (-\infty, V_y]$

Domain: $(-\infty, \infty)$

Example

For the graph of the function $f(x) = -x^2 - 2x + 8$

a. Find the vertex point

$$x = -\frac{-2}{2(-1)} = -1$$
$$y = f(-1) = -(-1)^{2} - 2(-1) + 8 = 9$$

Vertex point (-1, 9)

- **b.** Find the line of symmetry: x = -1
- c. State whether there is a maximum or minimum value and find that value

Minimum point, value (-1, 9)

d. Find the x-intercept

$$x = -4, 2$$

e. Find the y-intercept

$$y = 8$$

f. Find the range and the domain of the function.

Range:
$$(-\infty, 9]$$
 Domain: $(-\infty, \infty)$

g. Graph the function and label, show part a thru d on the plot below

h. On what intervals is the function increasing? Decreasing?

Increasing: $(-\infty, -1)$ *Decreasing*: $(-1, \infty)$

Example

Find the axis and vertex of the parabola having equation $f(x) = 2x^2 + 4x + 5$

Solution

$$x = -\frac{b}{2a}$$
$$= -\frac{4}{2(2)}$$
$$= -1$$

Axis of the parabola: x = -1

$$y = f(-1)$$
= 2(-1)² + 4(-1) + 5
= 3

Vertex point: (-1, 3)

Exercises Section 1.3 – Quadratic Functions

(1-21) For the Given functions

- *a)* Find the vertex point
- b) Find the line of symmetry
- c) State whether there is a maximum or minimum value and find that value
- d) Find the zeros of f(x)
- e) Find the y-intercept
- f) Find the range and the domain of the function.
- g) Graph the function and label, show part a thru d
- h) On what intervals is the function increasing? decreasing?

1.
$$f(x) = x^2 + 6x + 3$$

8.
$$f(x) = x^2 + 6x - 1$$

15.
$$f(x) = -x^2 - 3x + 4$$

$$2. f(x) = x^2 + 6x + 5$$

9.
$$f(x) = x^2 + 6x + 3$$

16.
$$f(x) = -2x^2 + 3x - 1$$

$$3. \qquad f(x) = -x^2 - 6x - 5$$

10.
$$f(x) = x^2 - 10x + 3$$

17.
$$f(x) = -2x^2 - 3x - 1$$

4.
$$f(x) = x^2 - 4x + 2$$

11.
$$f(x) = x^2 - 3x + 4$$

18.
$$f(x) = -x^2 - 4x + 5$$

$$f(x) = -2x^2 + 16x - 26$$

12.
$$f(x) = x^2 - 3x - 4$$

19.
$$f(x) = -x^2 + 4x + 2$$

6.
$$f(x) = x^2 + 4x + 1$$

13.
$$f(x) = x^2 - 4x - 5$$

20.
$$f(x) = -3x^2 + 3x + 7$$

7.
$$f(x) = x^2 - 8x + 5$$

14.
$$f(x) = 2x^2 - 3x + 1$$

21.
$$f(x) = -x^2 + 2x - 2$$