Ν	btc_df = pd.read_csv('btc_bars4.csv', index_col=0) btc_df.index = pd.to_datetime(btc_df.index, unit='ms') 1. SMA Non-weighted average of the last n periods Formula: • movav = Sum(data, period) / period
I	 movav = Sum(data, period) / period See also: http://en.wikipedia.org/wiki/Moving_average#Simple_moving_average Aliases: SMA, SimpleMovingAverage Inputs: close Outputs: sma
:	Params: • period (default: 30) Period for the moving average calculation sma = btalib.sma(btc_df.close) 2. RSI Defined by J. Welles Wilder, Jr. in 1978 in his book "New Concepts in Technical Trading Systems".
li	It measures momentum by calculating the ration of higher closes and lower closes after having been smoothed by an average, normalizing the result between 0 and 100 Formula: • up = upday(data) # max(close - close(-1), 0.0) • down = downday(data) # abs(min(close - close(-1), 0.0)) • maup = movingaverage(up, period) • madown = movingaverage(down, period) • rs = maup / madown
S	 rsi = 100 - 100 / (1 + rs) The moving average used is the one originally defined by Wilder, the SmoothedMovingAverage See: http://en.wikipedia.org/wiki/Relative_strength_index Aliases: RSI, RelativeStrengthIndex
C	Outputs: rsi Params: • period (default: 14) Period to consider • lookback (default: 1) Lookback for up/down days • _ma (default: smma) Smoothing moving average rsi = btalib.rsi(btc_df, period=14)
F	3. Stoch RSI Presented by Chande and Kroll the 1990 book: "The New Technical Trader". The RSI is fed into a atochastic-like calculation to increase its sensitivity. The recommendation is to keep the period for looking for highest highes and lowest lows the same as the for the RSI, but it can be played with for experimentation. Scaling to 100 is also suggested as a possiblity (the range is 0.0 => 1.0) Formula:
S	 rsi = RSI(data, period) maxrsi = Highest(rsi, period) minrsi = Lowest(rsi, period) stochrsi = (rsi - minrsi) / (maxrsi - minrsi) See https://school.stockcharts.com/doku.php?id=technical_indicators:stochrsi
(Aliases: StochRsi, STOCHRSI Inputs: close Outputs: stochrsi Params: • period (default: 14) Period to consider • _philo (default: None) Period for highest/lowest (None => period) • scale (default: 1 0) Scale the result by this factor.
	 _scale (default: 1.0) Scale the result by this factor TA-LIB (with compatibility flag "_talib=True"): ta-lib uses internally the fast stochastic to calculate the stochrsi, with these side-effects The scale changes from 0.0-1.0 to 0.0-100.0 A 2nd output is returned (stochrsi as defined by its authors has only 1 output) The highest/lowest period is no longer symmetric with the rsi period
:	 Compatibility does this Change the scale to 0.0-100.0 Change the highest/lowest period 5 Add a 2nd output named 'd' (as the 2nd output of the stochastic) Run a simple moving average on it of period 3 stochrsi = btalib.stochrsi(btc_df, period=14)
I	 4. CCI Introduced by Donald Lambert in 1980 to measure variations of the "typical price" (see below) from its mean to identify extremes and reversals Formula: tp = typical_price = (high + low + close) / 3 tpmean = MovingAverage(tp, period) deviation = tp - tpmean meandev = MeanDeviation(tp)
I	 cci = deviation / (meandeviation * factor) See: https://en.wikipedia.org/wiki/Commodity_channel_index Aliases: CCI, CommodityChannelIndex Inputs: high, low, close Outputs: cci
٦	Params: period (default: 20) Period to consider factor (default: 0.015) Channel width factor ma (default: sma) Moving Average to sue dev (default: mad) Deviation to use (Def: Mean Abs Dev) TA-LIB (with compatibility flag "_talib=True"): Change period to 14
5	cci = btalib.cci(btc_df, period = 20, factor = 0.015) 5. Parabol SAR Defined by J. Welles Wilder, Jr. in 1978 in his book "New Concepts in Technical Trading Systems" for the RSI SAR stands for Stop and Reverse and the indicator was meant as a signal for entry (and reverse)
r S	How to select the 1st signal is left unspecified in the book. Because the inputs are "high" and "low", a 1-bar MinusDM is calculated, which accounts for both downmove and upm high/low. This is also done by ta-lib See: https://en.wikipedia.org/wiki/Parabolic_SAR http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:parabolic_sar Aliases: SAR, psar, ParabolicStopAndReverse Inputs: high, low
(Outputs: sar Params: • af (default: 0.02) Acceleration Factor • afmax (default: 0.2) Maximum Acceleration Factor sar = btalib.sar(btc_df)
I I	6. MACD Moving Average Convergence Divergence. Defined by Gerald Appel in the 70s. It measures the distance of a fast and a slow moving average to try to identify the trend. A second lagging moving average over the convergence-divergence should provide a "signal" upon being crossed by the macd Formula: • macd = ma(data, pfast) - ma(data, pslow)
Å	 macd = ma(data, pfast) - ma(data, pslow) signal = ma(macd, psignal) histogram = macd - signal See: http://en.wikipedia.org/wiki/MACD Aliases: MACD, MovingAverageConvergenceDivergence, MACDEXT, MACDFIX Inputs: close
	Outputs: macd, signal, histogram Params: pfast (default: 12) Fast moving average period pslow (default: 26) Slow moving average period psignal (default: 9) Signal smoothing period ma (default: ema) Moving average to use masig (default: None) Signal moving average (if None, same as others)
	TA-LIB (with compatibility flag "_talib=True"): Start fast ema calc delivery at the offset of the slow ema macd = btalib.macd(btc_df, pfast=20, pslow=50, psignal=13)
	# join the rsi and macd calculations as columns in original df btc_df = btc_df.join([sma.df ,rsi.df,stochrsi.df, cci.df, sar.df, macd.df]) btc_df = btc_df.reset_index() btc_df date open high low close sma rsi stochrsi cci sar macd signal histogram
	1 2021-12-03 14:00:00 56863.20 56926.68 25172.90 56239.13 NaN NaN NaN 15000.000000 NaN NaN NaN 2 2021-12-03 15:00:00 56193.15 56346.63 34727.40 55980.14 NaN NaN NaN NaN 15838.533600 NaN NaN NaN 3 2021-12-03 16:00:00 55965.90 55965.91 22643.66 54979.99 NaN NaN NaN 16660.296528 NaN NaN NaN 4 2021-12-03 17:00:00 54990.24 55080.18 43000.80 54981.54 NaN NaN NaN NaN 17465.624197 NaN NaN NaN 4 2021-12-03 17:00:00 47358.95 47502.57 36691.24 47208.52 47700.062333 39.938752 0.567213 -89.118954 15000.000000 -789.509302 -846.366085 56.856783 4 2021-12-29 22:00:00 47208.52 47562.18 4666.49 47602.814000 32.38891 0.167834 -41.000094
6	635 2021-12-30 00:00:00 46464.66 46796.96 45392.32 46692.67 47566.003000 36.474728 0.383971 -45.044464 143336.538442 -828.690764 -833.010622 4.319857 636 2021-12-30 01:00:00 46692.38 46729.02 46395.66 46530.53 47527.464667 34.848906 0.297966 -40.080339 141203.632473 -846.948297 -835.001718 -11.946578 637 rows × 13 columns btc_df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 637 entries, 0 to 636 Data columns (total 13 columns):</class>
	# Column Non-Null Count Dtype 0 date 637 non-null datetime64[ns] 1 open 637 non-null float64 2 high 637 non-null float64 3 low 637 non-null float64 4 close 637 non-null float64 5 sma 608 non-null float64 6 rsi 623 non-null float64 7 stochrsi 610 non-null float64 8 cci 618 non-null float64 9 sar 636 non-null float64 10 macd 588 non-null float64 11 signal 576 non-null float64 12 histogram 576 non-null float64 dtypes: datetime64[ns](1), float64(12) memory usage: 64.8 KB feature = ["rsi", "stochrsi", "cci", "sar", "macd", "signal", "histogram", "sma"] # feature = ["rsi", "stochrsi", "cci", "sar"] # feature = ["rsi", "stochrsi", "cci", "sar"] # feature = ["rsi", "stochrsi", "cci", "sar"]
: _	data_X = btc_df[feature].iloc[61:] # 61 là nơi mà Nan của các chỉ báo. #Sē cải tiến cho trường hợp tổng quát sau. rsi stochrsi cci sar macd signal histogram sma 61 45.859844 0.692379 -30.548453 73330.423090 -722.103398 -886.466372 164.362974 49056.105000 62 48.000160 0.804625 -3.574990 72263.814629 -694.252968 -859.007314 164.754346 49066.899667 63 47.508775 0.778855 -6.830500 71218.538336 -669.523592 -831.938211 162.414619 49059.427000 64 43.632925 0.301310 20.617102 70194.167569 -662.232142 -807.694487 145.462345 49043.269000
	65 37.725476 0.000000 -45.248749 69190.284218 -683.195850 -789.908967 106.713117 49016.738333
	Chia dữ liệu thành Train, Test
	<pre>#X_test, X_train data_X_train = data_X.iloc[:len_data_train , :] data_X_test = data_X.iloc[len_data_train : , :] (576, 8) data_X_train.head() rsi stochrsi cci sar macd signal histogram sma 0 45.859844 0.692379 -30.548453 73330.423090 -722.103398 -886.466372 164.362974 49056.105000</pre>
:	1 48.000160 0.804625 -3.574990 72263.814629 -694.252968 -859.007314 164.754346 49066.899667 2 47.508775 0.778855 -6.830500 71218.538336 -669.523592 -831.938211 162.414619 49059.427000 3 43.632925 0.301310 20.617102 70194.167569 -662.232142 -807.694487 145.462345 49043.269000 4 37.725476 0.000000 -45.248749 69190.284218 -683.195850 -789.908967 106.713117 49016.738333 (518, 8)
	<pre>data_X_test.shape (58, 8) Y data_Y = btc_df["close"].iloc[61:] data_Y</pre>
	61
: [: [: [<pre>#data_Y data_Y_train = data_Y.iloc[1 : len_data_train +1] # cần dự đoán cho giá của phiên sau nên + 1 data_Y_test = data_Y.iloc[len_data_train + 1 :] data_Y_train.shape (518,) data_Y_test.shape</pre>
	(57,) Date time data_DateTime = btc_df["date"].iloc[61:] # 61 là nơi mà không còn giá trị null của các chỉ báo. #Sẽ cải tiến cho trường hợp tổng quát sau. data_DateTime
	61
: [# len_data len_data_train = int(len(data_X)*0.90) # lấy 90% dữ liệu để train data_DateTime_train = data_DateTime.iloc[:len_data_train] data_DateTime_test = data_DateTime.iloc[len_data_train :] data_DateTime_train.shape
:	<pre>data_DateTime_test.shape (58,) Reset Index data_X_train = data_X_train.reset_index(drop = True)</pre>
: [<pre>data_X_test = data_X_test.reset_index(drop = True) data_Y_train = data_Y_train.reset_index(drop = True) data_Y_test = data_Y_test.reset_index(drop = True) data_DateTime_train = data_DateTime_train.reset_index(drop = True) data_DateTime_test = data_DateTime_test.reset_index(drop = True) data_X_train.head() rsi stochrsi</pre>
	1 48.000160 0.804625 -3.574990 72263.814629 -694.252968 -859.007314 164.754346 49066.899667 2 47.508775 0.778855 -6.830500 71218.538336 -669.523592 -831.938211 162.414619 49059.427000 3 43.632925 0.301310 20.617102 70194.167569 -662.232142 -807.694487 145.462345 49043.269000 4 37.725476 0.000000 -45.248749 69190.284218 -683.195850 -789.908967 106.713117 49016.738333
	const rsi stochrsi cci smacd histogram smac 1 1.0 49.69803 0.532135 -57.302486 92075.546634 247.610710 388.437524 -140.826813 51637.037667 2 1.0 51.491370 0.629016 -46.750355 89507.211436 254.339315 369.280637 -114.941322 51706.855000 3 1.0 50.664822 0.659850 -45.711288 87092.976350 249.998674 352.240356 -102.241683 51771.174667 3 1.0 48.254841 0.524861 -52.570221 84823.595369 218.597617 333.148536 -114.550919 51778.435000 4 1.0 48.351955 0.530301 -54.765764 82690.377247 191.464682 312.90798 -121.443304 51823.043000
:	data_Y_train.shape (518,) Train mô hình OLS import statsmodels.api as sm data_X_train = data_X_train
	<pre>data_X_train = data_X_train data_X_train = sm.add_constant(data_X_train) data_Y_train = data_Y_train model0 = sm.OLS(data_Y_train, data_X_train).fit() model0.params print(model0.summary()) # chua vét can được các biến OLS Regression Results ====================================</pre>
	Stochrsi
	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The smallest eigenvalue is 1.32e-24. This might indicate that there are strong multicollinearity problems or that the design matrix is singular. Sklearn lr = linear_model.LinearRegression() lr.fit(data_X_train, data_Y_train)
	LinearRegression() BTC_predict = lr.predict(data_X_test) print(len(BTC_predict)) 58 BTC_predict array([51332.11332885, 51548.64941792, 51605.11726395, 51456.46135131,
	\$1332.11332858, \$1348.0447192, \$1605.11720595, \$1456.4613131, \$1490.19393633, \$1362.18741396, \$51389.17157845, \$1260.02039761, \$1080.83982781, \$50653.8165589, \$50388.42396023, \$50330.16830906, \$49898.55052084, \$49803.47979585, \$49655.2201836, \$49527.79556347, \$49515.04629357, \$49244.25391916, \$49123.38461171, \$49170.34027728, \$49105.68482033, \$49102.31416389, \$49061.2087068, \$48962.66431717, \$48741.00450541, \$48377.53201609, \$48134.71028814, \$47931.5423266, \$47905.52455913, \$47682.5455913, \$47682.5455913, \$47682.5455931,
	fig, ax = plt.subplots(figsize = (12, 8)) ax.plot(BTC_predict, label = "BTC Predict"); ax.plot(data_Y_test, label = "BTC real"); ax.set(xlabel = "DateTime", ylabel = "Price", title = "BTC char price") # chua thêm lại Note: Time update BTC char price S2000 - BTC Predict BTC real
	5000 - 5000 - <u><u><u>a</u></u> 49000 -</u>
	47000 - 47000 - 10 20 30 40 50 Note: Time update