CVPDL-HW1 (R12944047 邱彥慈)

Architecture : DINO

- O A DERT-like model composed of backbone + transformer encoders & decoders
 - From previous models
 - Backbone architecture
 - Multiscale features from ResNet, Swin transformer,...
 - Deformable attention
 - Positional query:
 - 4D anchor box dynamically update through each decoder layer
 - Innovation
 - Mixed Query Selection
 - Select top-K encoder features in the last layer to initialize the positional queries, while the content queries are kept learnable as before.
 - Look forward twice
 - In look forward once, the predicted box $b_i^{(pred)} = f(b_{i-1}, \Delta b_i)$, while in look forward twice, Δb_i is used to update the box twice, i.e., b_i' and $b_{i+1}^{(pred)}$.
 - □ CDN
 - Contrastive Denoising box with both positive and negative samples.

Implementation

O Parameter Setting:

- Start from pretrained weights
 - DINO-4scale provides 3 kinds of pretrained wights, which have been trained on COCO for 12, 24, 36 epochs respectively.
 I take the 36-epochs one, which is actually checkpoint0029.pth
- Parameters settings are same as the default, except for

learning_rate	random_seed	batch_size	epochs
1e-5	0	1	15

I've trained 24 epochs on ResNet-DINO and found there's a performance gap at about epoch 12, thus I prefer training to be more than 12 epochs, and it turns out that Swin-DINO takes around 10 epochs to converge.

Performance

Performance of Swin-DINO on validation set

AP		AP ₅₀	AP ₇₅
0.586		0.859	0.614
Average Precision Average Precision Average Precision Average Recall	(AP) @[IoU=0.50 (AP) @[IoU=0.75 (AP) @[IoU=0.50 (AP) @[IoU=0.50 (AP) @[IoU=0.50 (AR) @[IoU=0.50 (AR) @[IoU=0.50 (AR) @[IoU=0.50 (AR) @[IoU=0.50 (AR) @[IoU=0.50 (AR) @[IoU=0.50	area= all maxDets=100] = 0 area= all maxDets=100] = 0 :0.95 area= small maxDets=100] = 0 :0.95 area=medium maxDets=100] = 0 :0.95 area= large maxDets=100] = 0	.859 .614 .226 .466 .723 .269 .595 .715 .468

O Performance on validation set

Visualization

O On Testing Set

■ Link: https://github.com/irisowo/CVPDL-HW1/tree/main/DINO/figs/imgs

Preview

