Package 'scPOEM'

August 28, 2025

```
Type Package
Title Single-Cell Meta-Path Based Omic Embedding
Version 0.1.2
Author Yuntong Hou [aut, cre] (ORCID: <a href="https://orcid.org/0009-0005-0587-4692">https://orcid.org/0009-0005-0587-4692</a>),
      Yan Zhong [aut, ctb] (ORCID: <a href="https://orcid.org/0000-0003-2412-043X">https://orcid.org/0000-0003-2412-043X</a>),
      Yongjian Yang [ctb] (ORCID: <a href="https://orcid.org/0000-0002-4135-5014">https://orcid.org/0000-0002-4135-5014</a>),
      Xinyue Zheng [ctb],
      James Cai [ctb] (ORCID: <a href="https://orcid.org/0000-0002-8081-6725">https://orcid.org/0000-0002-8081-6725</a>),
      Yeran Chen [ctb],
      Youshi Chang [ctb]
Description Provide a workflow to jointly embed chromatin accessibility peaks and ex-
      pressed genes into a shared low-dimensional space using paired single-cell ATAC-seq (scATAC-
      seq) and single-cell RNA-seq (scRNA-seq) data. It integrates regulatory relation-
      ships among peak-peak interactions (via 'Cicero'), peak-gene interactions (via Lasso, random for-
      est, and XGBoost), and gene-gene interactions (via principal component regression). With the in-
      put of paired scATAC-seq and scRNA-seq data matrices, it assigns a low-dimensional fea-
      ture vector to each gene and peak. Additionally, it supports the reconstruction of gene-gene net-
      work with low-dimensional projections (via epsilon-NN) and then the comparison of the net-
      works of two conditions through manifold alignment implemented in 'scTenifoldNet'.
License GPL (>= 2)
```

Encoding UTF-8

Imports methods, utils, stats, foreach (>= 1.5.2), doParallel (>= 1.0.17), tictoc (>= 1.2.1), Matrix (>= 1.6-3), glmnet (>= 4.1-8), xgboost (>= 1.7.10), reticulate, stringr, magrittr, scTenifoldNet, VGAM (>= 1.1-13), Biobase (>= 2.66.0), BiocGenerics (>= 0.52.0), monocle (>= 2.34.0), cicero (>= 1.24.0)

Depends R (>= 4.1.0)

RoxygenNote 7.3.2

NeedsCompilation no

Maintainer Yuntong Hou <houyt223@gmail.com>

Repository CRAN

Date/Publication 2025-08-28 09:00:02 UTC

2 align_embedding

Contents

align_embedding		Gene Network Reconstruction and Alignment																						
Index																								17
	scPOEM							•		•			•			•	•		•	•	•	 •	•	13
	PPN																							
	pg_embedding																	 						10
	PGN_XGBoost																	 						9
	PGN_RF																							
	PGN_Lasso																	 						7
	GGN																	 						6
	example_data_singl																							
	example_data_comp	oare																 						4
	eNN																	 						4
	align_embedding .																	 						2

Description

Reconstruct gene networks via epsilon-NN and compare conditions using manifold alignment implemented in scTenifoldNet.

Usage

```
align_embedding(
  gene_data1,
  gene_node1,
  E1,
  gene_data2,
  gene_node2,
  E2,
  dirpath = tempdir(),
  save_file = TRUE,
  d = 100
)
```

Arguments

gene_data1	The information for genes in state1, must have a col names "gene_name".
gene_node1	Gene ids that are associated with other peaks or genes in state1.
E1	Embedding representations of peaks and genes in state1.
gene_data2	The information for genes in state2, must have a col names "gene_name".
gene_node2	Gene ids that are associated with other peaks or genes in state2.
E2	Embedding representations of peaks and genes in state2.

align_embedding 3

dirpath The folder path to read or write file save_file Logical, whether to save the output to a file.

d The dimension of latent space.

Value

A list containing the following elements:

E_g2 Low-dimensional embedding representations of genes under the two conditions. common_genes Genes shared between both conditions and used in the analysis. diffRegulation A list of differential regulatory information for each gene.

```
library(scPOEM)
library(monocle)
dirpath <- "./example_data"</pre>
# Download compare mode example data
data(example_data_compare)
data_S1 <- example_data_compare$S1
data_S2 <- example_data_compare$S2</pre>
gg_net1 <- GGN(data_S1$Y, file.path(dirpath, "compare/S1"), save_file=FALSE)</pre>
pp_net1 <- PPN(data_S1$X, data_S1$peak_data, data_S1$cell_data,</pre>
                data_S1$genome, file.path(dirpath, "compare/S1"), save_file=FALSE)
net_Lasso1 <- PGN_Lasso(data_S1$X, data_S1$Y,</pre>
                         data_S1$gene_data, data_S1$neibor_peak,
                         file.path(dirpath, "compare/S1"), save_file=FALSE)
net_RF1 <- PGN_RF(data_S1$X, data_S1$Y, data_S1$gene_data,</pre>
                  data_S1$neibor_peak, file.path(dirpath, "compare/S1"), save_file=FALSE)
net_XGB1 <- PGN_XGBoost(data_S1$X, data_S1$Y,</pre>
                         data_S1$gene_data, data_S1$neibor_peak,
                         file.path(dirpath, "compare/S1"), save_file=FALSE)
pg_net_list1 <- list(net_Lasso1, net_RF1, net_XGB1)</pre>
E_result_S1 <- pg_embedding(gg_net1, pp_net1, pg_net_list1,</pre>
                file.path(dirpath, "compare/S1"), save_file=FALSE)
gg_net2 <- GGN(data_S2$Y, file.path(dirpath, "compare/S2"), save_file=FALSE)
pp_net2 <- PPN(data_S2$X, data_S2$peak_data,
                data_S2$cell_data, data_S2$genome,
                file.path(dirpath, "compare/S2"), save_file=FALSE)
net_Lasso2 <- PGN_Lasso(data_S2$X, data_S2$Y,</pre>
                         data_S2$gene_data, data_S2$neibor_peak,
                         file.path(dirpath, "compare/S2"), save_file=FALSE)
net_RF2 <- PGN_RF(data_S2$X, data_S2$Y, data_S2$gene_data,</pre>
                  data_S2$neibor_peak, file.path(dirpath, "compare/S2"), save_file=FALSE)
net_XGB2 <- PGN_XGBoost(data_S2$X, data_S2$Y,</pre>
                         data_S2$gene_data, data_S2$neibor_peak,
                         file.path(dirpath, "compare/S2"), save_file=FALSE)
pg_net_list2 <- list(net_Lasso2, net_RF2, net_XGB2)</pre>
E_result_S2 <- pg_embedding(gg_net2, pp_net2, pg_net_list2,</pre>
```

eNN

Network Reconstruction via epsilon-NN

Description

Reconstruction of gene-gene network via low-dimentional projections (via epsilon-NN).

Usage

eNN(E_g)

Arguments

E_g

Embedding representations of genes.

Value

The epsilon-NN network.

Description

A list containing example single-cell multi-omics data used in "compare" mode of the scP0EM package.

Usage

```
data(example_data_compare)
```

example_data_single 5

Format

A named list of length 2. Each element is itself a named list with the following components:

```
X The scATAC-seq data, sparse matrix.
```

Y The scRNA-seq data, sparse matrix.

peak_data A data.frame containing peak information.

gene_data A data.frame containing gene information (must contain column "gene_name").

cell_data A data.frame containing cell metadata.

neibor_peak The peak IDs within a certain range of each gene, must have cols c("gene_name", "start_use", "end_use"). The id numbers in "start_use" and "end_use" are start from 0.

genome The genome length for the species.

Examples

```
data(example_data_compare)
```

example_data_single

Example Input Data for Single Mode Analysis

Description

A list containing example single-cell multi-omics data used in "single" mode of the scP0EM package.

Usage

```
data(example_data_single)
```

Format

A named list with 7 elements:

X The scATAC-seq data, sparse matrix.

Y The scRNA-seq data, sparse matrix.

peak_data A data.frame containing peak information.

gene_data A data.frame containing gene information (must contain column "gene_name").

cell_data A data.frame containing cell metadata.

neibor_peak The peak IDs within a certain range of each gene, must have cols c("gene_name", "start_use", "end_use"). The id numbers in "start_use" and "end_use" are start from 0. genome The genome length for the species.

```
data(example_data_single)
```

6 GGN

GGN

Construct Gene-Gene Network

Description

Construct the gene-gene network via principle component regression.

Usage

```
GGN(
  Υ,
  dirpath = tempdir(),
  count_device = 1,
  nComp = 5,
  rebuild_GGN = TRUE,
  save_file = TRUE,
 python_env = "scPOEM_env"
)
```

Arguments

Υ The scRNA-seq data, sparse matrix. dirpath The folder path to read or write file. The number of cpus used to train the Lasso model. count_device The number of PCs used for regression nComp rebuild_GGN Logical. Whether to rebuild the gene-gene network (GGN) from scratch. If

FALSE, the function will attempt to read from GGN. mtx under dirpath/test in

single mode or dirpath/state_name/test in compare mode.

save_file Logical, whether to save the output to a file.

python_env Name or path of the Python environment to be used.

Value

The GGN network.

```
library(scPOEM)
dirpath <- "./example_data"</pre>
# Download single mode example data
data(example_data_single)
# Construct GGN net.
gg_net <- GGN(example_data_single$Y,</pre>
               file.path(dirpath, "single"),
               save_file=FALSE)
```

PGN_Lasso 7

PGN_Lasso

Peak-Gene Network via Lasso

Description

Construct the peak-gene network via Lasso.

Usage

```
PGN_Lasso(
   X,
   Y,
   gene_data,
   neibor_peak,
   dirpath = tempdir(),
   count_device = 1,
   rebuild_PGN_Lasso = TRUE,
   save_file = TRUE
)
```

Arguments

Χ The scATAC-seq data, sparse matrix. The scRNA-seq data, sparse matrix. gene_data The information for genes, must have a col names "gene_name". neibor_peak The peak IDs within a certain range of each gene, must have cols c("gene_name", "start_use", "end_use"). The id numbers in "start_use" and "end_use" are start from 0. dirpath The folder path to read or write file. count_device The number of cpus used to train the Lasso model. rebuild_PGN_Lasso Logical. Whether to rebuild the peak-gene network via Lasso from scratch. If FALSE, the function will attempt to read from PGN_Lasso.mtx under dirpath/test in single mode or dirpath/state_name/test in compare mode.

Logical, whether to save the output to a file.

Value

save_file

The PGN_Lasso network.

```
library(scPOEM)
dirpath <- "./example_data"
# Download single mode example data
data(example_data_single)</pre>
```

8 PGN_RF

PGN_RF

Peak-Gene Network via Random Forest

Description

Construct the peak-gene network via random forest.

Usage

```
PGN_RF(
   X,
   Y,
   gene_data,
   neibor_peak,
   dirpath = tempdir(),
   count_device = 1,
   rebuild_PGN_RF = TRUE,
   save_file = TRUE,
   seed = NULL,
   python_env = "scPOEM_env"
)
```

Arguments

X The scATAC-seq data, sparse matrix.

Y The scRNA-seq data, sparse matrix.

gene_data The information for genes, must have a col names "gene_name".

neibor_peak The peak IDs within a certain range of each gene, must have cols c("gene_name", "start_use", "end_use"). The id numbers in "start_use" and "end_use" are start from 0.

dirpath The folder path to read or write file.

count_device The number of cpus used to train the Lasso model.

rebuild_PGN_RF Logical. Whether to rebuild the peak-gene network via random forest from scratch. If FALSE, the function will attempt to read from PGN_RF.mtx under dirpath/test in single mode or dirpath/state_name/test in compare

mode.

PGN_XGBoost 9

save_file Logical, whether to save the output to a file.

seed An integer specifying the random seed to ensure reproducible results.

python_env Name or path of the Python environment to be used.

Value

The PGN_RF network.

Examples

PGN_XGBoost

Peak-Gene Network via XGBoost

Description

Construct the peak-gene network via XGBoost.

Usage

```
PGN_XGBoost(
   X,
   Y,
   gene_data,
   neibor_peak,
   dirpath = tempdir(),
   count_device = 1,
   rebuild_PGN_XGB = TRUE,
   save_file = TRUE
)
```

10 pg_embedding

Arguments

X The scATAC-seq data, sparse matrix.Y The scRNA-seq data, sparse matrix.

gene_data The information for genes, must have a col names "gene_name".

neibor_peak The peak IDs within a certain range of each gene, must have cols c("gene_name",

"start_use", "end_use"). The id numbers in "start_use" and "end_use" are start

from 0.

dirpath The folder path to read or write file.

count_device The number of cpus used to train the Lasso model.

rebuild_PGN_XGB

Logical. Whether to rebuild the peak-gene network via XGBoost from scratch.

If FALSE, the function will attempt to read from PGN_XGB.mtx under

dirpath/test in single mode or dirpath/state_name/test in compare mode.

save_file Logical, whether to save the output to a file.

Value

The PGN_XGBoost network.

Examples

pg_embedding

Co-embeddings of Peaks and Genes.

Description

Learn the low-dimensional representations for peaks and genes with a meta-path based method.

pg_embedding 11

Usage

```
pg_embedding(
  gg_net,
  pp_net,
  pg_net_list,
  dirpath = tempdir(),
  relearn_pg_embedding = TRUE,
  save_file = TRUE,
  d = 100,
  numwalks = 5,
  walklength = 3,
  epochs = 100,
  neg\_sample = 5,
  batch_size = 32,
  weighted = TRUE,
  exclude_pos = FALSE,
  seed = NULL,
  python_env = "scPOEM_env"
)
```

Arguments

gg_net The gene-gene network.

pp_net The peak-peak network.

pg_net_list A list of peak-gene networks, constructed via different methods.

dirpath The folder path to read or write file.

relearn_pg_embedding

Logical. Whether to relearn the low-dimensional representations for peaks and genes from scratch. If FALSE, the function will attempt to read from

node_embeddings.mtx, node_used_peak.csv, node_used_gene.csv

under dirpath/embedding in single mode or

dirpath/state_name/embedding in compare mode.

save_file Logical, whether to save the output to a file.

d Dimension of the latent space. Default is 100.

numwalks Number of random walks per node. Default is 5.

walklength Length of walk depth. Default is 3.

epochs Number of training epochs. Default is 100.

neg_sample Number of negative samples per positive sample. Default is 5.

batch_size Batch size for training. Default is 32.

weighted Whether the sampling network is weighted. Default is TRUE.

exclude_pos Whether to exclude positive samples from negative sampling. Default is FALSE.

seed An integer specifying the random seed to ensure reproducible results.

python_env Name or path of the Python environment to be used.

12 PPN

Value

A list containing the following:

E Low-dimensional representations of peaks and genes peak_node Peak ids that are associated with other peaks or genes. gene_node Gene ids that are associated with other peaks or genes.

Examples

```
library(scPOEM)
library(monocle)
dirpath <- "./example_data"</pre>
# Download single mode example data
data(example_data_single)
gg_net <- GGN(example_data_single$Y,</pre>
               file.path(dirpath, "single"),
               save_file=FALSE)
pp_net <- PPN(example_data_single$X, example_data_single$peak_data,</pre>
               example_data_single$cell_data, example_data_single$genome,
               file.path(dirpath, "single"), save_file=FALSE)
net_Lasso <- PGN_Lasso(example_data_single$X, example_data_single$Y,</pre>
                        example_data_single$gene_data, example_data_single$neibor_peak,
                        file.path(dirpath, "single"), save_file=FALSE)
net_RF <- PGN_RF(example_data_single$X, example_data_single$Y,</pre>
                  example_data_single$gene_data, example_data_single$neibor_peak,
                  file.path(dirpath, "single"), save_file=FALSE)
net_XGB <- PGN_XGBoost(example_data_single$X, example_data_single$Y,</pre>
                        example_data_single$gene_data, example_data_single$neibor_peak,
                        file.path(dirpath, "single"), save_file=FALSE)
E_result <- pg_embedding(gg_net, pp_net, list(net_Lasso, net_RF, net_XGB),</pre>
                          file.path(dirpath, "single"), save_file=FALSE)
```

PPN

Construct Peak-Peak Network

Description

Construct peak-peak network.

Usage

```
PPN(
X,
peak_data,
cell_data,
genome,
```

```
dirpath = tempdir(),
  rebuild_PPN = TRUE,
  save_file = TRUE,
  seed = NULL
)
```

Arguments

X The scATAC-seq data, sparse matrix.

peak_data The information for peaks, must have a col names "peak_name".

cell_data The information for cells, must have a col names "cell_name".

genome The genome length for the species.

dirpath The folder path to read or write file.

rebuild_PPN Logical. Whether to rebuild the peak-peak network (PPN) from scratch. If

FALSE, the function will attempt to read from PPN.mtx under dirpath/test in

single mode or dirpath/state_name/test in compare mode.

save_file Logical, whether to save the output to a file.

seed An integer specifying the random seed to ensure reproducible results.

Value

The PPN network.

Description

This function takes paired single-cell ATAC-seq (scATAC-seq) and RNA-seq (scRNA-seq) data to embed peaks and genes into a shared low-dimensional space. It integrates regulatory relationships from peak-peak interactions (via Cicero), peak-gene interactions (via Lasso, random forest, and XGBoost), and gene-gene interactions (via principal component regression). Additionally, it supports gene-gene network reconstruction using epsilon-NN projections and compares networks across conditions through manifold alignment (scTenifoldNet).

Usage

```
scPOEM(
 mode = c("single", "compare"),
  input_data,
  dirpath = tempdir(),
  count_device = 1,
  nComp = 5.
  seed = NULL,
  numwalks = 5,
 walklength = 3,
  epochs = 100,
  neg\_sample = 5,
  batch_size = 32,
 weighted = TRUE,
  exclude_pos = FALSE,
  d = 100,
  rebuild_GGN = TRUE,
  rebuild_PPN = TRUE,
  rebuild_PGN_Lasso = TRUE,
  rebuild_PGN_RF = TRUE,
  rebuild_PGN_XGB = TRUE,
  relearn_pg_embedding = TRUE,
  save_file = TRUE,
 pg_method = c("Lasso", "RF", "XGBoost"),
 python_env = "scPOEM_env"
)
```

Arguments

mode

The mode indicating whether to analyze data from a single condition or to compare two conditions.

input_data

A list of input data.

If mode = "single", input_data must be a list containing the following **seven objects**:

- X: The scATAC-seq data, sparse matrix.
- Y: The scRNA-seq data, sparse matrix.
- peak_data: A data.frame containing peak information.
- gene_data: A data.frame containing gene information (must contain a column "gene_name").

- cell_data: A data.frame containing cell metadata.
- neibor_peak: The peak IDs within a certain range of each gene, must have cols c("gene_name", "start_use", "end_use"). The id numbers in "start_use" and "end use" are start from 0.
- genome: The genome length for the species.

If mode = "compare", input_data must be a **named list of two elements**, with names corresponding to two state names (e.g., "S1" and "S2"). Each element must itself be a list containing the same seven components as described above for mode = "single".

dirpath The folder path to read or write file.

count_device The number of cpus used to train models.

nComp The number of PCs used for regression in constructing GGN.

seed An integer specifying the random seed to ensure reproducible results.

numwalks Number of random walks per node. Default is 5.

walklength Length of walk depth. Default is 3.

epochs Number of training epochs. Default is 100.

neg_sample Number of negative samples per positive sample. Default is 5.

batch_size Batch size for training. Default is 32.

weighted Whether the sampling network is weighted. Default is TRUE.

exclude_pos Whether to exclude positive samples from negative sampling. Default is FALSE.

d The dimension of latent space. Default is 100.

rebuild_GGN Logical. Whether to rebuild the gene-gene network from scratch. If FALSE,

the function will attempt to read from GGN.mtx under dirpath/test in single

mode or dirpath/state_name/test in compare mode.

rebuild_PPN Logical. Whether to rebuild the peak-peak network from scratch. If FALSE,

the function will attempt to read from PPN.mtx under dirpath/test in single

mode or dirpath/state_name/test in compare mode.

rebuild_PGN_Lasso

Logical. Whether to rebuild the peak-gene network via Lasso from scratch. If FALSE, the function will attempt to read from PGN_Lasso.mtx under

dirpath/test in single mode or dirpath/state_name/test in compare mode.

rebuild_PGN_RF Logical. Whether to rebuild the peak-gene network via random forest from

scratch. If FALSE, the function will attempt to read from PGN_RF.mtx under dirpath/test in single mode or dirpath/state_name/test in compare

mode.

rebuild_PGN_XGB

Logical. Whether to rebuild the peak-gene network via XGBoost from scratch. If FALSE, the function will attempt to read from PGN_XGB.mtx under

dirpath/test in single mode or dirpath/state_name/test in compare mode.

relearn_pg_embedding

Logical. Whether to relearn the low-dimensional representations for peaks and genes from scratch. If FALSE, the function will attempt to read from node_embeddings.mtx, node_used_peak.csv, node_used_gene.csv

under dirpath/embedding in single mode or

dirpath/state_name/embedding in compare mode.

save_file Logical, whether to save the output to a file.

pg_method The vector of methods used to construct peak-gene net. Default is c("Lasso", "RF", "XGBoost").

python_env Name or path of the Python environment to be used.

Value

The scPOEM result.

Single Mode Returns a list containing the following elements:

E Low-dimensional representations of peaks and genes.

peak_node Peak IDs that are associated with other peaks or genes.

gene_node Gene IDs that are associated with other peaks or genes.

Compare Mode Returns a list containing the following elements:

state1 name The single-mode result for the first condition. state2 name The single-mode result for the second condition. compare A summary list containing:

E_g2 Low-dimensional embedding representations of genes under the two conditions. common_genes Genes shared between both conditions and used in the analysis. diffRegulation A list of differential regulatory information for each gene.

```
library(scPOEM)
library(monocle)
dirpath <- "./example_data"</pre>
# An example for analysing a single dataset.
# Download and read data.
data(example_data_single)
single_result <- scPOEM(mode = "single",</pre>
                         input_data=example_data_single,
                         dirpath=file.path(dirpath, "single"),
                         save_file=FALSE)
# An example for analysing and comparing datasets from two conditions.
# Download compare mode example data
data(example_data_compare)
compare_result <- scPOEM(mode = "compare",</pre>
                          input_data=example_data_compare,
                          dirpath=file.path(dirpath, "compare"),
                          save_file=FALSE)
```

Index

```
* datasets
    example_data_compare, 4
    example_data_single, 5

align_embedding, 2

eNN, 4
example_data_compare, 4
example_data_single, 5

GGN, 6

pg_embedding, 10
PGN_Lasso, 7
PGN_RF, 8
PGN_XGBoost, 9
PPN, 12

scPOEM, 13
```