Práctico 5 (opcional)

Modularización (Funciones y procedimientos)

Ejercicio 1

Crear una función que reciba un número como parámetro el cual representa el lado de un cuadrado y muestre en pantalla el perímetro y la superficie del mismo.

Ejercicio 2

Crear una función llamada **escribir_tabla_ multiplicar**, que reciba como parámetro un número entero, y escriba la tabla de multiplicar de ese número (por ejemplo, para el 3 deberá mostrar desde 3x0=0 hasta 3x10=30).

Ejercicio 3

Escriba una función denominada cuadrante(x,y), dónde x e y son valores enteros recibidos como parámetros los cuales representan un punto, y que retorne un valor entre 1, 2, 3 o 4 de acuerdo al cuadrante que se encuentre el punto (x,y), ingresado como parámetro, en los ejes cartesianos.

Ejemplo:

cuadrante (2,4) se encuentra en el primer cuadrante

cuadrante (-3,-1) se encuentra en el tercer cuadrante

Lic. Carina Povarchik

Prof. Lucas Candia

Algoritmos y Práctico 5 (opcional)

Ejercicio 4

Escriba una función que calcule la enésima potencia de un número, recibiendo como parámetro un número real base y otro entero llamado exponente. La definición de la función es:

 $y = x^n$ donde **x** representa la base y **n** representa el exponente.

Nota: tener en cuenta que n puede ser un número negativo.

Ejemplo: $2^3 = 8$ $2^{-3} = 0,125$

Ejercicio 5

Crear una función que reciba una cadena de caracteres y una letra como parámetros, y devuelva la cantidad de veces que dicha letra aparece en la cadena.

Por ejemplo, si la cadena es "Barcelona" y la letra es 'a', debería devolver 2 (aparece 2 veces).

Ejercicio 6

Con la función creada en el ejercicio anterior, elabore un programa en donde se ingresa un carácter y 10 palabras; y muestre la cantidad total de veces que apareció el carácter en las 10 palabras.

Ejercicio 7

Crear una función lógica (función que retorna un valor lógico) que determine si un número entero es par o impar.

Ejercicio 8

Crear una función que reciba un carácter y un número como parámetros e imprima en pantalla un triángulo formado por ese carácter que tenga como ancho inicial el número recibido como parámetro. Por ejemplo, si el carácter es * y el ancho es 4, debería escribir:

Ejercicio 9

Crear una función **es_ primo**, que reciba un número entero como parámetro y devuelva verdadero si es un número primo o falso en caso contrario.

Ejercicio 10

Crear una función que dados dos valores distintos, ingresados por parámetro, devuelva el mayor de ellos.

Ejercicio 11

YERSIDAD Algoritmos y
NOLOGICA Estructuras de Datos
NAL Práctico 5 (opcional)

Lic. Carina Povarchik

Prof. Lucas Candia

Desarrollar una función que dados cinco números, recibidos por parámetro, devuelva el promedio de ellos. Se puede generalizar para n parámetros devolviendo el promedio de los mismos.

Ejercicio 12

Dado un número entero formado sólo por los dígitos 0 (cero) y 1 (uno), diseñe una función que compruebe si el número tiene o no la misma cantidad de ceros quede unos.

Ejercicio 13

Desarrollar una función que retorne la posición de un carácter (la primera vez que aparezca) dentro de la cadena de N caracteres de longitud, donde se reciben como parámetro la cadena y el carácter respectivamente.

Ejercicio 14

Diseñar un algoritmo que permita aplicar un descuento del 10% al monto total de una compra si la forma de pago empleada es mediante débito, 13% si la compra la realiza mediante pago contado-efectivo o aumente en un 4% (es un solo pago), si se realiza en pago con tarjeta. El usuario deberá ingresar el monto de la compra realizada y la forma de pago utilizada. Si es débito o efectivo, deberá aplicar el descuento, sino realizar el recargo correspondiente.

Ejercicio 15

Realizar modificaciones para del ejercicio anterior para que permita variantes en las tarjetas de crédito ingresadas. Visa, Master, American Express con recargos en 5%, 7% ó 9% respectivamente sobre el valor de la compra.

Ejercicio 16

Diseñar un algoritmo que ayude al personal de ventas a realizar el cálculo de los intereses sobre un producto, cuando un cliente intenta pagar en cuotas con alguna tarjeta que acepte el comercio.

Las tarjetas aceptadas son 3 y con estas se pueden abonar en 3, 6 y 12 cuotas. Se aclaran los recargos para cada una de las opciones.

Para la primer tarjeta 3 pagos con 4% mensual, 6 pagos 4,5% mensual y 12 pagos 5% mensual.

Para la segunda tarjeta 3 pagos con 3% mensual, 6 pagos 4% mensual y 12 pagos 5% mensual.

Para la tercer tarjeta 3 pagos con 3,8% mensual, 6 pagos 5% mensual y 12 pagos 5,3% mensual.

Para el caso seleccionado, deberá mostrar la tasa de financiación mensual, la tasa anual (tasa mensual x 12) y el valor del producto aplicado los intereses correspondientes.

Lic. Jorge Pérez Herrera

Ing. Matías Varela

Ejercicio 17

Universidad Tecnológica Nacional Facultad Regional San Rafael Ingeniería en Sistemas

Algoritmos y Práctico 5 (opcional)

Lic. Carina Povarchik Prof. Lucas Candia

Integrar en lo posible la solución del ejercicio 15 y 16 respectivamente.