learning statistics with jamovi

a tutorial for psychology students and other beginners

DANIELLE J NAVARRO
DAVID R FOXCROFT

Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners

(Version
$$\frac{1}{\sqrt{2}}$$
)

Danielle Navarro
University of New South Wales
d.navarro@unsw.edu.au

David Foxcroft
Oxford Brookes University
david.foxcroft@brookes.ac.uk

and

Thomas J. Faulkenberry
Tarleton State University
faulkenberry@tarleton.edu

http://www.learnstatswithjamovi.com

Overview

Learning Statistics with JASP covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students. The book discusses how to get started in JASP as well as giving an introduction to data manipulation. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, correlation, *t*-tests, regression, ANOVA and factor analysis. Bayesian statistics is covered at the end of the book.

Citation

Navarro, D.J., Foxcroft, D.R., & Faulkenberry, T.J. (2019). Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners. (Version $\frac{1}{\sqrt{2}}$).

This book is published under a Creative Commons BY-SA license (CC BY-SA) version 4.0. This means that this book can be reused, remixed, retained, revised and redistributed (including commercially) as long as appropriate credit is given to the authors. If you remix, or modify the original version of this open textbook, you must redistribute all versions of this open textbook under the same license - CC BY-SA.

https://creativecommons.org/licenses/by-sa/4.0/

The JASP-specific revisions to the original book by Navarro and Foxcroft were possible by a generous grant to Tom Faulkenberry from the Tarleton State Uni Center for Instructional Innovation.	made versity

Table of Contents

Pr	reface		ix
í	Backgr	round	1
1	Why do	we learn statistics?	3
	_	On the psychology of statistics	3
		The cautionary tale of Simpson's paradox	6
	1.3 S	Statistics in psychology	9
	1.4 S	Statistics in everyday life	11
	1.5 T	There's more to research methods than statistics	11
2	A brief	introduction to research design	13
		ntroduction to psychological measurement	13
		Scales of measurement	16
		Assessing the reliability of a measurement	22
		The "role" of variables: predictors and outcomes	23
		Experimental and non-experimental research	24
		Assessing the validity of a study	26
		Confounds, artefacts and other threats to validity	29
	2.8 S	Summary	39
П	An int	troduction to JASP	41
3	Getting	started with JASP	43
	3.1 lr	nstalling JASP	44
	3.2 A	Analyses	45
	3.3 L	Loading data in JASP	46
	3.4 T	The spreadsheet	46
	3.5 C	Changing data from one measurement scale to another	49
	3.6	Quitting JASP	50
	3.7 S	Summary	50
4	Referen	ices	51

Preface to Version 0.70

This update from version 0.65 introduces some new analyses. In the ANOVA chapters we have added sections on repeated measures ANOVA and analysis of covariance (ANCOVA). In a new chapter we have introduced Factor Analysis and related techniques. Hopefully the style of this new material is consistent with the rest of the book, though eagle-eyed readers might spot a bit more of an emphasis on conceptual and practical explanations, and a bit less algebra. I'm not sure this is a good thing, and might add the algebra in a bit later. But it reflects both my approach to understanding and teaching statistics, and also some feedback I have received from students on a course I teach. In line with this, I have also been through the rest of the book and tried to separate out some of the algebra by putting it into a box or frame. It's not that this stuff is not important or useful, but for some students they may wish to skip over it and therefore the boxing of these parts should help some readers.

With this version I am very grateful to comments and feedback received from my students and colleagues, notably Wakefield Morys-Carter, and also to numerous people all over the world who have sent in small suggestions and corrections - much appreciated, and keep them coming! One pretty neat new feature is that the example data files for the book can now be loaded into jamovi as an add-on module - thanks to Jonathon Love for helping with that.

David Foxcroft February 1st, 2019

Preface to Version 0.65

In this adaptation of the excellent 'Learning statistics with R', by Danielle Navarro, we have replaced the statistical software used for the analyses and examples with jamovi. Although R is a powerful statistical programming language, it is not the first choice for every instructor and student at the beginning of their statistical learning. Some instructors and students tend to prefer the point-and-click style of software, and that's where jamovi comes in. jamovi is software that aims to simplify two aspects of using R. It offers a point-and-click graphical user interface (GUI), and it also provides functions that combine the capabilities of many others, bringing a more SPSS- or SAS-like method of programming to R. Importantly, jamovi will always be free and open - that's one of its core values - because jamovi is made by the scientific community, for the scientific community.

With this version I am very grateful for the help of others who have read through drafts and provided excellent suggestions and corrections, particularly Dr David Emery and Kirsty Walter.

David Foxcroft July 1st, 2018

Preface to Version 0.6

The book hasn't changed much since 2015 when I released Version 0.5 – it's probably fair to say that I've changed more than it has. I moved from Adelaide to Sydney in 2016 and my teaching profile at UNSW is different to what it was at Adelaide, and I haven't really had a chance to work on it since arriving here! It's a little strange looking back at this actually. A few quick comments...

- Weirdly, the book consistently misgenders me, but I suppose I have only myself to blame for that one:-) There's now a brief footnote on page 12 that mentions this issue; in real life I've been working through a gender affirmation process for the last two years and mostly go by she/her pronouns. I am, however, just as lazy as I ever was so I haven't bothered updating the text in the book.
- For Version 0.6 I haven't changed much I've made a few minor changes when people have pointed out typos or other errors. In particular it's worth noting the issue associated with the etaSquared function in the **Isr** package (which isn't really being maintained any more) in Section 14.4. The function works fine for the simple examples in the book, but there are definitely bugs in there that I haven't found time to check! So please take care with that one.
- The biggest change really is the licensing! I've released it under a Creative Commons licence (CC BY-SA 4.0, specifically), and placed all the source files to the associated GitHub repository, if anyone wants to adapt it.

Maybe someone would like to write a version that makes use of the **tidyverse**... I hear that's become rather important to R these days :-)

Best, Danielle Navarro

Preface to Version 0.5

Another year, another update. This time around, the update has focused almost entirely on the theory sections of the book. Chapters 9, 10 and 11 have been rewritten, hopefully for the better. Along the same lines, Chapter 17 is entirely new, and focuses on Bayesian statistics. I think the changes have improved the book a great deal. I've always felt uncomfortable about the fact that all the inferential statistics in the book are presented from an orthodox perspective, even though I almost always present Bayesian data analyses in my own work. Now that I've managed to squeeze Bayesian methods into the book somewhere, I'm starting to feel better about the book as a whole. I wanted to get a few other things done in this update, but as usual I'm running into teaching deadlines, so the update has to go out the way it is!

Dan Navarro

Preface to Version 0.4

A year has gone by since I wrote the last preface. The book has changed in a few important ways: Chapters 3 and 4 do a better job of documenting some of the time saving features of Rstudio, Chapters 12 and 13 now make use of new functions in the lsr package for running chi-square tests and t tests, and the discussion of correlations has been adapted to refer to the new functions in the lsr package. The soft copy of 0.4 now has better internal referencing (i.e., actual hyperlinks between sections), though that was introduced in 0.3.1. There's a few tweaks here and there, and many typo corrections (thank you to everyone who pointed out typos!), but overall 0.4 isn't massively different from 0.3.

I wish I'd had more time over the last 12 months to add more content. The absence of any discussion of repeated measures ANOVA and mixed models more generally really does annoy me. My excuse for this lack of progress is that my second child was born at the start of 2013, and so I spent most of last year just trying to keep my head above water. As a consequence, unpaid side projects like this book got sidelined in favour of things that actually pay my salary! Things are a little calmer now, so with any luck version 0.5 will be a bigger step forward.

One thing that has surprised me is the number of downloads the book gets. I finally got some basic tracking information from the website a couple of months ago, and (after excluding obvious robots) the book has been averaging about 90 downloads per day. That's encouraging: there's at least a few people who find the book useful!

Dan Navarro February 4, 2014

Preface to Version 0.3

There's a part of me that really doesn't want to publish this book. It's not finished.

And when I say that, I mean it. The referencing is spotty at best, the chapter summaries are just lists of section titles, there's no index, there are no exercises for the reader, the organisation is suboptimal, and the coverage of topics is just not comprehensive enough for my liking. Additionally, there are sections with content that I'm not happy with, figures that really need to be redrawn, and I've had almost no time to hunt down inconsistencies, typos, or errors. In other words, *this book is not finished*. If I didn't have a looming teaching deadline and a baby due in a few weeks, I really wouldn't be making this available at all.

What this means is that if you are an academic looking for teaching materials, a Ph.D. student looking to learn R, or just a member of the general public interested in statistics, I would advise

you to be cautious. What you're looking at is a first draft, and it may not serve your purposes. If we were living in the days when publishing was expensive and the internet wasn't around, I would never consider releasing a book in this form. The thought of someone shelling out \$80 for this (which is what a commercial publisher told me it would retail for when they offered to distribute it) makes me feel more than a little uncomfortable. However, it's the 21st century, so I can post the pdf on my website for free, and I can distribute hard copies via a print-on-demand service for less than half what a textbook publisher would charge. And so my guilt is assuaged, and I'm willing to share! With that in mind, you can obtain free soft copies and cheap hard copies online, from the following webpages:

Soft copy: http://www.compcogscisydney.com/learning-statistics-with-r.html Hard copy: www.lulu.com/content/13570633

Even so, the warning still stands: what you are looking at is Version 0.3 of a work in progress. If and when it hits Version 1.0, I would be willing to stand behind the work and say, yes, this is a textbook that I would encourage other people to use. At that point, I'll probably start shamelessly flogging the thing on the internet and generally acting like a tool. But until that day comes, I'd like it to be made clear that I'm really ambivalent about the work as it stands.

All of the above being said, there is one group of people that I can enthusiastically endorse this book to: the psychology students taking our undergraduate research methods classes (DRIP and DRIP:A) in 2013. For you, this book is ideal, because it was written to accompany your stats lectures. If a problem arises due to a shortcoming of these notes, I can and will adapt content on the fly to fix that problem. Effectively, you've got a textbook written specifically for your classes, distributed for free (electronic copy) or at near-cost prices (hard copy). Better yet, the notes have been tested: Version 0.1 of these notes was used in the 2011 class, Version 0.2 was used in the 2012 class, and now you're looking at the new and improved Version 0.3. I'[for a historical summary]m not saying these notes are titanium plated awesomeness on a stick – though if *you* wanted to say so on the student evaluation forms, then you're totally welcome to – because they're not. But I am saying that they've been tried out in previous years and they seem to work okay. Besides, there's a group of us around to troubleshoot if any problems come up, and you can guarantee that at least *one* of your lecturers has read the whole thing cover to cover!

Okay, with all that out of the way, I should say something about what the book aims to be. At its core, it is an introductory statistics textbook pitched primarily at psychology students. As such, it covers the standard topics that you'd expect of such a book: study design, descriptive statistics, the theory of hypothesis testing, t-tests, χ^2 tests, ANOVA and regression. However, there are also several chapters devoted to the R statistical package, including a chapter on data manipulation and another one on scripts and programming. Moreover, when you look at the content presented in the book, you'll notice a lot of topics that are traditionally swept under the carpet when teaching statistics to psychology students. The Bayesian/frequentist divide is openly disussed in the probability chapter, and the disagreement between Neyman and Fisher about hypothesis testing makes an appearance. The difference between probability and density is discussed. A detailed treatment of Type I, II and III sums of squares for unbalanced factorial ANOVA is provided. And if you have a look in the Epilogue, it should be clear that my intention is to add a lot more advanced content.

My reasons for pursuing this approach are pretty simple: the students can handle it, and they

even seem to enjoy it. Over the last few years I've been pleasantly surprised at just how little difficulty I've had in getting undergraduate psych students to learn R. It's certainly not easy for them, and I've found I need to be a little charitable in setting marking standards, but they do eventually get there. Similarly, they don't seem to have a lot of problems tolerating ambiguity and complexity in presentation of statistical ideas, as long as they are assured that the assessment standards will be set in a fashion that is appropriate for them. So if the students can handle it, why not teach it? The potential gains are pretty enticing. If they learn R, the students get access to CRAN, which is perhaps the largest and most comprehensive library of statistical tools in existence. And if they learn about probability theory in detail, it's easier for them to switch from orthodox null hypothesis testing to Bayesian methods if they want to. Better yet, they learn data analysis skills that they can take to an employer without being dependent on expensive and proprietary software.

Sadly, this book isn't the silver bullet that makes all this possible. It's a work in progress, and maybe when it is finished it will be a useful tool. One among many, I would think. There are a number of other books that try to provide a basic introduction to statistics using R, and I'm not arrogant enough to believe that mine is better. Still, I rather like the book, and maybe other people will find it useful, incomplete though it is.

Dan Navarro January 13, 2013 Part I.

Background

1. Why do we learn statistics?

"Thou shalt not answer questionnaires
Or quizzes upon World Affairs,
Nor with compliance
Take any test. Thou shalt not sit
With statisticians nor commit
A social science"

- W.H. Auden¹

1.1 _

On the psychology of statistics

To the surprise of many students, statistics is a fairly significant part of a psychological education. To the surprise of no-one, statistics is very rarely the *favourite* part of one's psychological education. After all, if you really loved the idea of doing statistics, you'd probably be enrolled in a statistics class right now, not a psychology class. So, not surprisingly, there's a pretty large proportion of the student base that isn't happy about the fact that psychology has so much statistics in it. In view of this, I thought that the right place to start might be to answer some of the more common questions that people have about stats.

A big part of this issue at hand relates to the very idea of statistics. What is it? What's it there for? And why are scientists so bloody obsessed with it? These are all good questions, when you think about it. So let's start with the last one. As a group, scientists seem to be bizarrely fixated on running statistical tests on everything. In fact, we use statistics so often that we sometimes forget to explain to people why we do. It's a kind of article of faith among scientists — and especially social scientists — that your findings can't be trusted until you've done some stats. Undergraduate students might be forgiven for thinking that we're all completely mad, because no-one takes the time to answer one very simple question:

¹The quote comes from Auden's 1946 poem *Under Which Lyre: A Reactionary Tract for the Times*, delivered as part of a commencement address at Harvard University. The history of the poem is kind of interesting: http://harvardmagazine.com/2007/11/a-poets-warning.html

It's a naive question in some ways, but most good questions are. There's a lot of good answers to it,² but for my money, the best answer is a really simple one: we don't trust ourselves enough. We worry that we're human, and susceptible to all of the biases, temptations and frailties that humans suffer from. Much of statistics is basically a safeguard. Using "common sense" to evaluate evidence means trusting gut instincts, relying on verbal arguments and on using the raw power of human reason to come up with the right answer. Most scientists don't think this approach is likely to work.

In fact, come to think of it, this sounds a lot like a psychological question to me, and since I do work in a psychology department, it seems like a good idea to dig a little deeper here. Is it really plausible to think that this "common sense" approach is very trustworthy? Verbal arguments have to be constructed in language, and all languages have biases – some things are harder to say than others, and not necessarily because they're false (e.g., quantum electrodynamics is a good theory, but hard to explain in words). The instincts of our "gut" aren't designed to solve scientific problems, they're designed to handle day to day inferences – and given that biological evolution is slower than cultural change, we should say that they're designed to solve the day to day problems for a different world than the one we live in. Most fundamentally, reasoning sensibly requires people to engage in "induction", making wise guesses and going beyond the immediate evidence of the senses to make generalisations about the world. If you think that you can do that without being influenced by various distractors, well, I have a bridge in London I'd like to sell you. Heck, as the next section shows, we can't even solve "deductive" problems (ones where no guessing is required) without being influenced by our pre-existing biases.

1.1.1 The curse of belief bias

People are mostly pretty smart. We're certainly smarter than the other species that we share the planet with (though many people might disagree). Our minds are quite amazing things, and we seem to be capable of the most incredible feats of thought and reason. That doesn't make us perfect though. And among the many things that psychologists have shown over the years is that we really do find it hard to be neutral, to evaluate evidence impartially and without being swayed by pre-existing biases. A good example of this is the **belief bias effect** in logical reasoning: if you ask people to decide whether a particular argument is logically valid (i.e., conclusion would be true if the premises were true), we tend to be influenced by the believability of the conclusion, even when we shouldn't. For instance, here's a valid argument where the conclusion is believable:

All cigarettes are expensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And here's a valid argument where the conclusion is not believable:

All addictive things are expensive (Premise 1)

²Including the suggestion that common sense is in short supply among scientists.

Some cigarettes are inexpensive (Premise 2) Therefore, some cigarettes are not addictive (Conclusion)

The logical *structure* of argument #2 is identical to the structure of argument #1, and they're both valid. However, in the second argument, there are good reasons to think that premise 1 is incorrect, and as a result it's probably the case that the conclusion is also incorrect. But that's entirely irrelevant to the topic at hand; an argument is deductively valid if the conclusion is a logical consequence of the premises. That is, a valid argument doesn't have to involve true statements.

On the other hand, here's an invalid argument that has a believable conclusion:

All addictive things are expensive (Premise 1)
Some cigarettes are inexpensive (Premise 2)
Therefore, some addictive things are not cigarettes (Conclusion)

And finally, an invalid argument with an unbelievable conclusion:

All cigarettes are expensive (Premise 1)
Some addictive things are inexpensive (Premise 2)
Therefore, some cigarettes are not addictive (Conclusion)

Now, suppose that people really are perfectly able to set aside their pre-existing biases about what is true and what isn't, and purely evaluate an argument on its logical merits. We'd expect 100% of people to say that the valid arguments are valid, and 0% of people to say that the invalid arguments are valid. So if you ran an experiment looking at this, you'd expect to see data like this:

	conclusion feels true	conclusion feels false
argument is valid	100% say "valid"	100% say "valid"
argument is invalid	0% say "valid"	0% say "valid"

If the psychological data looked like this (or even a good approximation to this), we might feel safe in just trusting our gut instincts. That is, it'd be perfectly okay just to let scientists evaluate data based on their common sense, and not bother with all this murky statistics stuff. However, you guys have taken psych classes, and by now you probably know where this is going.

In a classic study, Evans, Barston, and Pollard (1983) ran an experiment looking at exactly this. What they found is that when pre-existing biases (i.e., beliefs) were in agreement with the structure of the data, everything went the way you'd hope:

	conclusion feels true	conclusion feels false
argument is valid	92% say "valid"	
argument is invalid		8% say "valid"

Not perfect, but that's pretty good. But look what happens when our intuitive feelings about the truth of the conclusion run against the logical structure of the argument:

	conclusion feels true	conclusion feels false
argument is valid	92% say "valid"	46% say "valid"
argument is invalid	92% say "valid"	8% say "valid"

Oh dear, that's not as good. Apparently, when people are presented with a strong argument that contradicts our pre-existing beliefs, we find it pretty hard to even perceive it to be a strong argument (people only did so 46% of the time). Even worse, when people are presented with a weak argument that agrees with our pre-existing biases, almost no-one can see that the argument is weak (people got that one wrong 92% of the time!).³

If you think about it, it's not as if these data are horribly damning. Overall, people did do better than chance at compensating for their prior biases, since about 60% of people's judgements were correct (you'd expect 50% by chance). Even so, if you were a professional "evaluator of evidence", and someone came along and offered you a magic tool that improves your chances of making the right decision from 60% to (say) 95%, you'd probably jump at it, right? Of course you would. Thankfully, we actually do have a tool that can do this. But it's not magic, it's statistics. So that's reason #1 why scientists love statistics. It's just *too easy* for us to "believe what we want to believe". So instead, if we want to "believe in the data", we're going to need a bit of help to keep our personal biases under control. That's what statistics does, it helps keep us honest.

1.2

The cautionary tale of Simpson's paradox

The following is a true story (I think!). In 1973, the University of California, Berkeley had some worries about the admissions of students into their postgraduate courses. Specifically, the thing that caused the problem was that the gender breakdown of their admissions, which looked like this:

	Number of applicants	Percent admitted
Males	8442	44%
Females	4321	35%

Given this, they were worried about being sued!⁴ Given that there were nearly 13,000 applicants, a difference of 9% in admission rates between males and females is just way too big to be a coincidence. Pretty compelling data, right? And if I were to say to you that these data *actually* reflect a weak bias in favour of women (sort of!), you'd probably think that I was either crazy or sexist.

Oddly, it's actually sort of true. When people started looking more carefully at the admissions data they told a rather different story (Bickel, Hammel, and O'Connell 1975). Specifically, when

 $^{^3}$ In my more cynical moments I feel like this fact alone explains 95% of what I read on the internet.

⁴Earlier versions of these notes incorrectly suggested that they actually were sued. But that's not true. There's a nice commentary on this here: https://www.refsmmat.com/posts/2016-05-08-simpsons-paradox-berkeley.html. A big thank you to Wilfried Van Hirtum for pointing this out to me.

they looked at it on a department by department basis, it turned out that most of the departments actually had a slightly *higher* success rate for female applicants than for male applicants. The table below shows the admission figures for the six largest departments (with the names of the departments removed for privacy reasons):

	Males		Females	
Department	Applicants	Percent admitted	Applicants	Percent admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	272	6%	341	7%

Remarkably, most departments had a *higher* rate of admissions for females than for males! Yet the overall rate of admission across the university for females was *lower* than for males. How can this be? How can both of these statements be true at the same time?

Here's what's going on. Firstly, notice that the departments are not equal to one another in terms of their admission percentages: some departments (e.g., A, B) tended to admit a high percentage of the qualified applicants, whereas others (e.g., F) tended to reject most of the candidates, even if they were high quality. So, among the six departments shown above, notice that department A is the most generous, followed by B, C, D, E and F in that order. Next, notice that males and females tended to apply to different departments. If we rank the departments in terms of the total number of male applicants, we get A>B>D>C>F>E (the "easy" departments are in bold). On the whole, males tended to apply to the departments that had high admission rates. Now compare this to how the female applicants distributed themselves. Ranking the departments in terms of the total number of female applicants produces a quite different ordering C>E>D>F>A>B. In other words, what these data seem to be suggesting is that the female applicants tended to apply to "harder" departments. And in fact, if we look at Figure 1.1 we see that this trend is systematic, and quite striking. This effect is known as Simpson's paradox. It's not common, but it does happen in real life, and most people are very surprised by it when they first encounter it, and many people refuse to even believe that it's real. It is very real. And while there are lots of very subtle statistical lessons buried in there, I want to use it to make a much more important point: doing research is hard, and there are lots of subtle, counter-intuitive traps lying in wait for the unwary. That's reason #2 why scientists love statistics, and why we teach research methods. Because science is hard, and the truth is sometimes cunningly hidden in the nooks and crannies of complicated data.

Before leaving this topic entirely, I want to point out something else really critical that is often overlooked in a research methods class. Statistics only solves *part* of the problem. Remember that we started all this with the concern that Berkeley's admissions processes might be unfairly biased against female applicants. When we looked at the "aggregated" data, it did seem like the university was discriminating against women, but when we "disaggregate" and looked at the individual behaviour of all the departments, it turned out that the actual departments were, if anything, slightly biased in favour of women. The gender bias in total admissions was caused by the fact that women tended to self-select for harder departments. From a legal perspective, that

Figure 1.1: The Berkeley 1973 college admissions data. This figure plots the admission rate for the 85 departments that had at least one female applicant, as a function of the percentage of applicants that were female. The plot is a redrawing of Figure 1 from Bickel, Hammel, and O'Connell (1975). Circles plot departments with more than 40 applicants; the area of the circle is proportional to the total number of applicants. The crosses plot departments with fewer than 40 applicants.

would probably put the university in the clear. Postgraduate admissions are determined at the level of the individual department, and there are good reasons to do that. At the level of individual departments the decisions are more or less unbiased (the weak bias in favour of females at that level is small, and not consistent across departments). Since the university can't dictate which departments people choose to apply to, and the decision making takes place at the level of the department it can hardly be held accountable for any biases that those choices produce.

That was the basis for my somewhat glib remarks earlier, but that's not exactly the whole story, is it? After all, if we're interested in this from a more sociological and psychological perspective, we might want to ask *why* there are such strong gender differences in applications. Why do males tend to apply to engineering more often than females, and why is this reversed for the English department? And why is it the case that the departments that tend to have a female-application bias tend to have lower overall admission rates than those departments that have a male-application bias?

Might this not still reflect a gender bias, even though every single department is itself unbiased? It might. Suppose, hypothetically, that males preferred to apply to "hard sciences" and females prefer "humanities". And suppose further that the reason for why the humanities departments have low admission rates is because the government doesn't want to fund the humanities (Ph.D. places, for instance, are often tied to government funded research projects). Does that constitute a gender bias? Or just an unenlightened view of the value of the humanities? What if someone at a high level in the government cut the humanities funds because they felt that the humanities are "useless chick stuff". That seems pretty *blatantly* gender biased. None of this falls within the purview of statistics, but it matters to the research project. If you're interested in the overall structural effects of subtle gender biases, then you probably want to look at *both* the aggregated and disaggregated data. If you're interested in the decision making process at Berkeley itself then you're probably only interested in the disaggregated data.

In short there are a lot of critical questions that you can't answer with statistics, but the answers to those questions will have a huge impact on how you analyse and interpret data. And this is the reason why you should always think of statistics as a *tool* to help you learn about your data. No more and no less. It's a powerful tool to that end, but there's no substitute for careful thought.

1.3 _

Statistics in psychology

I hope that the discussion above helped explain why science in general is so focused on statistics. But I'm guessing that you have a lot more questions about what role statistics plays in psychology, and specifically why psychology classes always devote so many lectures to stats. So here's my attempt to answer a few of them...

Why does psychology have so much statistics?

To be perfectly honest, there's a few different reasons, some of which are better than others. The most important reason is that psychology is a statistical science. What I mean by that is that the "things" that we study are *people*. Real, complicated, gloriously messy, infuriatingly perverse people. The "things" of physics include objects like electrons, and while there are all sorts of complexities that arise in physics, electrons don't have minds of their own. They don't have opinions, they don't differ from each other in weird and arbitrary ways, they don't get bored in the middle of an experiment, and they don't get angry at the experimenter and then deliberately try to sabotage the data set (not that I've ever done that!). At a fundamental level psychology is harder than physics.⁵

Basically, we teach statistics to you as psychologists because you need to be better at stats than physicists. There's actually a saying used sometimes in physics, to the effect that "if your experiment needs statistics, you should have done a better experiment". They have the luxury of being able to say that because their objects of study are pathetically simple in comparison to the vast mess that confronts social scientists. And it's not just psychology. Most social

⁵Which might explain why physics is just a teensy bit further advanced as a science than we are.

sciences are desperately reliant on statistics. Not because we're bad experimenters, but because we've picked a harder problem to solve. We teach you stats because you really, really need it.

• Can't someone else do the statistics?

To some extent, but not completely. It's true that you don't need to become a fully trained statistician just to do psychology, but you do need to reach a certain level of statistical competence. In my view, there's three reasons that every psychological researcher ought to be able to do basic statistics:

- Firstly, there's the fundamental reason: statistics is deeply intertwined with research design. If you want to be good at designing psychological studies, you need to at the very least understand the basics of stats.
- Secondly, if you want to be good at the psychological side of the research, then you need to be able to understand the psychological literature, right? But almost every paper in the psychological literature reports the results of statistical analyses. So if you really want to understand the psychology, you need to be able to understand what other people did with their data. And that means understanding a certain amount of statistics.
- Thirdly, there's a big practical problem with being dependent on other people to do all your statistics: statistical analysis is *expensive*. If you ever get bored and want to look up how much the Australian government charges for university fees, you'll notice something interesting: statistics is designated as a "national priority" category, and so the fees are much, much lower than for any other area of study. This is because there's a massive shortage of statisticians out there. So, from your perspective as a psychological researcher, the laws of supply and demand aren't exactly on your side here! As a result, in almost any real life situation where you want to do psychological research, the cruel facts will be that you don't have enough money to afford a statistician. So the economics of the situation mean that you have to be pretty self-sufficient.

Note that a lot of these reasons generalise beyond researchers. If you want to be a practicing psychologist and stay on top of the field, it helps to be able to read the scientific literature, which relies pretty heavily on statistics.

• I don't care about jobs, research, or clinical work. Do I need statistics?

Okay, now you're just messing with me. Still, I think it should matter to you too. Statistics should matter to you in the same way that statistics should matter to *everyone*. We live in the 21st century, and data are *everywhere*. Frankly, given the world in which we live these days, a basic knowledge of statistics is pretty damn close to a survival tool! Which is the topic of the next section.

Statistics in everyday life

"We are drowning in information, but we are starved for knowledge" — Various authors, original probably John Naisbitt

When I started writing up my lecture notes I took the 20 most recent news articles posted to the ABC news website. Of those 20 articles, it turned out that 8 of them involved a discussion of something that I would call a statistical topic and 6 of those made a mistake. The most common error, if you're curious, was failing to report baseline data (e.g., the article mentions that 5% of people in situation X have some characteristic Y, but doesn't say how common the characteristic is for everyone else!). The point I'm trying to make here isn't that journalists are bad at statistics (though they almost always are), it's that a basic knowledge of statistics is very helpful for trying to figure out when someone else is either making a mistake or even lying to you. In fact, one of the biggest things that a knowledge of statistics does to you is cause you to get angry at the newspaper or the internet on a far more frequent basis. You can find a good example of this in Section ??. In later versions of this book I'll try to include more anecdotes along those lines.

1.5

There's more to research methods than statistics

So far, most of what I've talked about is statistics, and so you'd be forgiven for thinking that statistics is all I care about in life. To be fair, you wouldn't be far wrong, but research methodology is a broader concept than statistics. So most research methods courses will cover a lot of topics that relate much more to the pragmatics of research design, and in particular the issues that you encounter when trying to do research with humans. However, about 99% of student fears relate to the statistics part of the course, so I've focused on the stats in this discussion, and hopefully I've convinced you that statistics matters, and more importantly, that it's not to be feared. That being said, it's pretty typical for introductory research methods classes to be very stats-heavy. This is not (usually) because the lecturers are evil people. Quite the contrary, in fact. Introductory classes focus a lot on the statistics because you almost always find yourself needing statistics before you need the other research methods training. Why? Because almost all of your assignments in other classes will rely on statistical training, to a much greater extent than they rely on other methodological tools. It's not common for undergraduate assignments to require you to design your own study from the ground up (in which case you would need to know a lot about research design), but it is common for assignments to ask you to analyse and interpret data that were collected in a study that someone else designed (in which case you need statistics). In that sense, from the perspective of allowing you to do well in all your other classes, the statistics is more urgent.

But note that "urgent" is different from "important" - they both matter. I really do want to

stress that research design is just as important as data analysis, and this book does spend a fair amount of time on it. However, while statistics has a kind of universality, and provides a set of core tools that are useful for most types of psychological research, the research methods side isn't quite so universal. There are some general principles that everyone should think about, but a lot of research design is very idiosyncratic, and is specific to the area of research that you want to engage in. To the extent that it's the details that matter, those details don't usually show up in an introductory stats and research methods class.

2. A brief introduction to research design

To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of.

— Sir Ronald Fisher¹

In this chapter, we're going to start thinking about the basic ideas that go into designing a study, collecting data, checking whether your data collection works, and so on. It won't give you enough information to allow you to design studies of your own, but it will give you a lot of the basic tools that you need to assess the studies done by other people. However, since the focus of this book is much more on data analysis than on data collection, I'm only giving a very brief overview. Note that this chapter is "special" in two ways. Firstly, it's much more psychology-specific than the later chapters. Secondly, it focuses much more heavily on the scientific problem of research methodology, and much less on the statistical problem of data analysis. Nevertheless, the two problems are related to one another, so it's traditional for stats textbooks to discuss the problem in a little detail. This chapter relies heavily on Campbell and Stanley (1963) for the discussion of study design, and Stevens (1946) for the discussion of scales of measurement.

2.1

Introduction to psychological measurement

The first thing to understand is data collection can be thought of as a kind of **measurement**. That is, what we're trying to do here is measure something about human behaviour or the human mind. What do I mean by "measurement"?

2.1.1 Some thoughts about psychological measurement

Measurement itself is a subtle concept, but basically it comes down to finding some way of assigning numbers, or labels, or some other kind of well-defined descriptions, to "stuff". So, any of the following would count as a psychological measurement:

¹Presidential Address to the First Indian Statistical Congress, 1938. Source: http://en.wikiquote.org/wiki/Ronald Fisher

- My age is 33 years.
- | do not like anchovies.
- My **chromosomal gender** is *male*.
- My self-identified gender is male.²

In the short list above, the **bolded part** is "the thing to be measured", and the *italicised part* is "the measurement itself". In fact, we can expand on this a little bit, by thinking about the set of possible measurements that could have arisen in each case:

- My **age** (in years) could have been 0, 1, 2, 3 ..., etc. The upper bound on what my age could possibly be is a bit fuzzy, but in practice you'd be safe in saying that the largest possible age is 150, since no human has ever lived that long.
- When asked if I **like anchovies**, I might have said that *I do*, or *I do not*, or *I have no opinion*, or *I sometimes do*.
- My **chromosomal gender** is almost certainly going to be *male* (XY) or *female* (XX), but there are a few other possibilities. I could also have *Klinfelter's syndrome* (XXY), which is more similar to male than to female. And I imagine there are other possibilities too.
- My **self-identified gender** is also very likely to be *male* or *female*, but it doesn't have to agree with my chromosomal gender. I may also choose to identify with *neither*, or to explicitly call myself *transgender*.

As you can see, for some things (like age) it seems fairly obvious what the set of possible measurements should be, whereas for other things it gets a bit tricky. But I want to point out that even in the case of someone's age it's much more subtle than this. For instance, in the example above I assumed that it was okay to measure age in years. But if you're a developmental psychologist, that's way too crude, and so you often measure age in *years and months* (if a child is 2 years and 11 months this is usually written as "2;11"). If you're interested in newborns you might want to measure age in *days since birth*, maybe even *hours since birth*. In other words, the way in which you specify the allowable measurement values is important.

Looking at this a bit more closely, you might also realise that the concept of "age" isn't actually all that precise. In general, when we say "age" we implicitly mean "the length of time since birth".

²Well... now this is awkward, isn't it? This section is one of the oldest parts of the book, and it's outdated in a rather embarrassing way. I wrote this in 2010, at which point all of those facts *were* true. Revisiting this in 2018, well I'm not 33 any more, but that's not surprising I suppose. I can't imagine my chromosomes have changed, so I'm going to guess my karyotype was then and is now XY. The self-identified gender, on the other hand...ah. I suppose the fact that the title page now refers to me as Danielle rather than Daniel might possibly be a giveaway, but I don't typically identify as "male" on a gender questionnaire these days, and I prefer "she/her" pronouns as a default (it's a long story)! I did think a little about how I was going to handle this in the book, actually. The book has a somewhat distinct authorial voice to it, and I feel like it would be a rather different work if I went back and wrote everything as Danielle and updated all the pronouns in the work. Besides, it would be a lot of work, so I've left my name as "Dan" throughout the book, and in any case "Dan" is a perfectly good nickname for "Danielle", don't you think? In any case, it's not a big deal. I only wanted to mention it to make life a little easier for readers who aren't sure how to refer to me. I still don't like anchovies though:-)

But that's not always the right way to do it. Suppose you're interested in how newborn babies control their eye movements. If you're interested in kids that young, you might also start to worry that "birth" is not the only meaningful point in time to care about. If Baby Alice is born 3 weeks premature and Baby Bianca is born 1 week late, would it really make sense to say that they are the "same age" if we encountered them "2 hours after birth"? In one sense, yes. By social convention we use birth as our reference point for talking about age in everyday life, since it defines the amount of time the person has been operating as an independent entity in the world. But from a scientific perspective that's not the only thing we care about. When we think about the biology of human beings, it's often useful to think of ourselves as organisms that have been growing and maturing since conception, and from that perspective Alice and Bianca aren't the same age at all. So you might want to define the concept of "age" in two different ways: the length of time since conception and the length of time since birth. When dealing with adults it won't make much difference, but when dealing with newborns it might.

Moving beyond these issues, there's the question of methodology. What specific "measurement method" are you going to use to find out someone's age? As before, there are lots of different possibilities:

- You could just ask people "how old are you?" The method of self-report is fast, cheap and easy. But it only works with people old enough to understand the question, and some people lie about their age.
- You could ask an authority (e.g., a parent) "how old is your child?" This method is fast, and when dealing with kids it's not all that hard since the parent is almost always around. It doesn't work as well if you want to know "age since conception", since a lot of parents can't say for sure when conception took place. For that, you might need a different authority (e.g., an obstetrician).
- You could look up official records, for example birth or death certificates. This is a time consuming and frustrating endeavour, but it has its uses (e.g., if the person is now dead).

2.1.2 **Operationalisation: defining your measurement**

All of the ideas discussed in the previous section relate to the concept of **operationalisation**. To be a bit more precise about the idea, operationalisation is the process by which we take a meaningful but somewhat vague concept and turn it into a precise measurement. The process of operationalisation can involve several different things:

- Being precise about what you are trying to measure. For instance, does "age" mean "time since birth" or "time since conception" in the context of your research?
- Determining what method you will use to measure it. Will you use self-report to measure age, ask a parent, or look up an official record? If you're using self-report, how will you phrase the question?

• Defining the set of allowable values that the measurement can take. Note that these values don't always have to be numerical, though they often are. When measuring age the values are numerical, but we still need to think carefully about what numbers are allowed. Do we want age in years, years and months, days, or hours? For other types of measurements (e.g., gender) the values aren't numerical. But, just as before, we need to think about what values are allowed. If we're asking people to self-report their gender, what options to we allow them to choose between? Is it enough to allow only "male" or "female"? Do you need an "other" option? Or should we not give people specific options and instead let them answer in their own words? And if you open up the set of possible values to include all verbal response, how will you interpret their answers?

Operationalisation is a tricky business, and there's no "one, true way" to do it. The way in which you choose to operationalise the informal concept of "age" or "gender" into a formal measurement depends on what you need to use the measurement for. Often you'll find that the community of scientists who work in your area have some fairly well-established ideas for how to go about it. In other words, operationalisation needs to be thought through on a case by case basis. Nevertheless, while there a lot of issues that are specific to each individual research project, there are some aspects to it that are pretty general.

Before moving on I want to take a moment to clear up our terminology, and in the process introduce one more term. Here are four different things that are closely related to each other:

- A theoretical construct. This is the thing that you're trying to take a measurement of, like "age", "gender" or an "opinion". A theoretical construct can't be directly observed, and often they're actually a bit vague.
- A measure. The measure refers to the method or the tool that you use to make your observations. A question in a survey, a behavioural observation or a brain scan could all count as a measure.
- An operationalisation. The term "operationalisation" refers to the logical connection between the measure and the theoretical construct, or to the process by which we try to derive a measure from a theoretical construct.
- A variable. Finally, a new term. A variable is what we end up with when we apply our measure to something in the world. That is, variables are the actual "data" that we end up with in our data sets.

In practice, even scientists tend to blur the distinction between these things, but it's very helpful to try to understand the differences.

2.2 ____

Scales of measurement

As the previous section indicates, the outcome of a psychological measurement is called a variable. But not all variables are of the same qualitative type and so it's useful to understand what types

there are. A very useful concept for distinguishing between different types of variables is what's known as scales of measurement.

2.2.1 Nominal scale

A nominal scale variable (also referred to as a categorical variable) is one in which there is no particular relationship between the different possibilities. For these kinds of variables it doesn't make any sense to say that one of them is "bigger" or "better" than any other one, and it absolutely doesn't make any sense to average them. The classic example for this is "eye colour". Eyes can be blue, green or brown, amongst other possibilities, but none of them is any "bigger" than any other one. As a result, it would feel really weird to talk about an "average eye colour". Similarly, gender is nominal too: male isn't better or worse than female. Neither does it make sense to try to talk about an "average gender". In short, nominal scale variables are those for which the only thing you can say about the different possibilities is that they are different. That's it.

Let's take a slightly closer look at this. Suppose I was doing research on how people commute to and from work. One variable I would have to measure would be what kind of transportation people use to get to work. This "transport type" variable could have quite a few possible values, including: "train", "bus", "car", "bicycle". For now, let's suppose that these four are the only possibilities. Then imagine that I ask 100 people how they got to work today, with this result:

Transportation	Number of people
(1) Train	12
(2) Bus	30
(3) Car	48
(4) Bicycle	10

So, what's the average transportation type? Obviously, the answer here is that there isn't one. It's a silly question to ask. You can say that travel by car is the most popular method, and travel by train is the least popular method, but that's about all. Similarly, notice that the order in which I list the options isn't very interesting. I could have chosen to display the data like this...

Transportation	Number of people
(3) Car	48
(1) Train	12
(4) Bicycle	10
(2) Bus	30

...and nothing really changes.

222 Ordinal scale

Ordinal scale variables have a bit more structure than nominal scale variables, but not by a lot. An ordinal scale variable is one in which there is a natural, meaningful way to order the different possibilities, but you can't do anything else. The usual example given of an ordinal variable is

"finishing position in a race". You can say that the person who finished first was faster than the person who finished second, but you don't know how much faster. As a consequence we know that 1 st > 2 nd, and we know that 2 nd > 3 rd, but the difference between 1 st and 2 nd might be much larger than the difference between 2 nd and 3 rd.

Here's a more psychologically interesting example. Suppose I'm interested in people's attitudes to climate change. I then go and ask some people to pick the statement (from four listed statements) that most closely matches their beliefs:

- (1) Temperatures are rising because of human activity
- (2) Temperatures are rising but we don't know why
- (3) Temperatures are rising but not because of humans
- (4) Temperatures are not rising

Notice that these four statements actually do have a natural ordering, in terms of "the extent to which they agree with the current science". Statement 1 is a close match, statement 2 is a reasonable match, statement 3 isn't a very good match, and statement 4 is in strong opposition to current science. So, in terms of the thing I'm interested in (the extent to which people endorse the science), I can order the items as 1 > 2 > 3 > 4. Since this ordering exists, it would be very weird to list the options like this. . .

- (3) Temperatures are rising but not because of humans
- (1) Temperatures are rising because of human activity
- (4) Temperatures are not rising
- (2) Temperatures are rising but we don't know why

... because it seems to violate the natural "structure" to the question.

So, let's suppose I asked 100 people these questions, and got the following answers:

Response	Number
(1) Temperatures are rising because of human activity	51
(2) Temperatures are rising but we don't know why	20
(3) Temperatures are rising but not because of humans	10
(4) Temperatures are not rising	19

When analysing these data it seems quite reasonable to try to group (1), (2) and (3) together, and say that 81 out of 100 people were willing to at least partially endorse the science. And it's also quite reasonable to group (2), (3) and (4) together and say that 49 out of 100 people registered at least some disagreement with the dominant scientific view. However, it would be entirely bizarre to try to group (1), (2) and (4) together and say that 90 out of 100 people said... what? There's nothing sensible that allows you to group those responses together at all.

That said, notice that while we *can* use the natural ordering of these items to construct sensible groupings, what we *can't* do is average them. For instance, in my simple example here, the "average" response to the question is 1.97. If you can tell me what that means I'd love to know, because it seems like gibberish to me!

2.2.3 Interval scale

In contrast to nominal and ordinal scale variables, **interval scale** and ratio scale variables are variables for which the numerical value is genuinely meaningful. In the case of interval scale variables the *differences* between the numbers are interpretable, but the variable doesn't have a "natural" zero value. A good example of an interval scale variable is measuring temperature in degrees celsius. For instance, if it was 15° yesterday and 18° today, then the 3° difference between the two is genuinely meaningful. Moreover, that 3° difference is *exactly the same* as the 3° difference between 7° and 10°. In short, addition and subtraction are meaningful for interval scale variables.³

However, notice that the 0° does not mean "no temperature at all". It actually means "the temperature at which water freezes", which is pretty arbitrary. As a consequence it becomes pointless to try to multiply and divide temperatures. It is wrong to say that 20° is *twice as hot* as 10° , just as it is weird and meaningless to try to claim that 20° is negative two times as hot as -10° .

Again, lets look at a more psychological example. Suppose I'm interested in looking at how the attitudes of first-year university students have changed over time. Obviously, I'm going to want to record the year in which each student started. This is an interval scale variable. A student who started in 2003 did arrive 5 years before a student who started in 2008. However, it would be completely daft for me to divide 2008 by 2003 and say that the second student started "1.0024 times later" than the first one. That doesn't make any sense at all.

2.2.4 Ratio scale

The fourth and final type of variable to consider is a **ratio scale** variable, in which zero really means zero, and it's okay to multiply and divide. A good psychological example of a ratio scale variable is response time (RT). In a lot of tasks it's very common to record the amount of time somebody takes to solve a problem or answer a question, because it's an indicator of how difficult the task is. Suppose that Alan takes 2.3 seconds to respond to a question, whereas Ben takes 3.1 seconds. As with an interval scale variable, addition and subtraction are both meaningful here. Ben really did take 3.1 - 2.3 = 0.8 seconds longer than Alan did. However, notice that multiplication and division also make sense here too: Ben took 3.1/2.3 = 1.35 times as long as Alan did to answer the question. And the reason why you can do this is that for a ratio scale variable such as RT "zero seconds" really does mean "no time at all".

2.2.5 Continuous versus discrete variables

There's a second kind of distinction that you need to be aware of, regarding what types of variables you can run into. This is the distinction between continuous variables and discrete variables. The difference between these is as follows:

 $^{^3}$ Actually, I've been informed by readers with greater physics knowledge than I that temperature isn't strictly an interval scale, in the sense that the amount of energy required to heat something up by 3° depends on it's current temperature. So in the sense that physicists care about, temperature isn't actually an interval scale. But it still makes a cute example so I'm going to ignore this little inconvenient truth.

Table 2.1: The relationship between the scales of measurement and the discrete/continuity distinction. Cells with a tick mark correspond to things that are possible.

	continuous	discrete
nominal		\checkmark
ordinal		\checkmark
interval	\checkmark	\checkmark
ratio	\checkmark	\checkmark

- A **continuous variable** is one in which, for any two values that you can think of, it's always logically possible to have another value in between.
- A **discrete variable** is, in effect, a variable that isn't continuous. For a discrete variable it's sometimes the case that there's nothing in the middle.

These definitions probably seem a bit abstract, but they're pretty simple once you see some examples. For instance, response time is continuous. If Alan takes 3.1 seconds and Ben takes 2.3 seconds to respond to a question, then Cameron's response time will lie in between if he took 3.0 seconds. And of course it would also be possible for David to take 3.031 seconds to respond, meaning that his RT would lie in between Cameron's and Alan's. And while in practice it might be impossible to measure RT that precisely, it's certainly possible in principle. Because we can always find a new value for RT in between any two other ones we regard RT as a continuous measure.

Discrete variables occur when this rule is violated. For example, nominal scale variables are always discrete. There isn't a type of transportation that falls "in between" trains and bicycles, not in the strict mathematical way that 2.3 falls in between 2 and 3. So transportation type is discrete. Similarly, ordinal scale variables are always discrete. Although "2nd place" does fall between "1st place" and "3rd place", there's nothing that can logically fall in between "1st place" and "2nd place". Interval scale and ratio scale variables can go either way. As we saw above, response time (a ratio scale variable) is continuous. Temperature in degrees celsius (an interval scale variable) is also continuous. However, the year you went to school (an interval scale variable) is discrete. There's no year in between 2002 and 2003. The number of questions you get right on a true-or-false test (a ratio scale variable) is also discrete. Since a true-or-false question doesn't allow you to be "partially correct", there's nothing in between 5/10 and 6/10. Table 2.1 summarises the relationship between the scales of measurement and the discrete/continuity distinction. Cells with a tick mark correspond to things that are possible. I'm trying to hammer this point home, because (a) some textbooks get this wrong, and (b) people very often say things like "discrete variable" when they mean "nominal scale variable". It's very unfortunate.

2.2.6 **Some complexities**

Okay, I know you're going to be shocked to hear this, but the real world is much messier than this little classification scheme suggests. Very few variables in real life actually fall into these nice

neat categories, so you need to be kind of careful not to treat the scales of measurement as if they were hard and fast rules. It doesn't work like that. They're guidelines, intended to help you think about the situations in which you should treat different variables differently. Nothing more.

So let's take a classic example, maybe *the* classic example, of a psychological measurement tool: the **Likert scale**. The humble Likert scale is the bread and butter tool of all survey design. You yourself have filled out hundreds, maybe thousands, of them and odds are you've even used one yourself. Suppose we have a survey question that looks like this:

Which of the following best describes your opinion of the statement that "all pirates are freaking awesome"?

and then the options presented to the participant are these:

- (1) Strongly disagree
- (2) Disagree
- (3) Neither agree nor disagree
- (4) Agree
- (5) Strongly agree

This set of items is an example of a 5-point Likert scale, in which people are asked to choose among one of several (in this case 5) clearly ordered possibilities, generally with a verbal descriptor given in each case. However, it's not necessary that all items are explicitly described. This is a perfectly good example of a 5-point Likert scale too:

- (1) Strongly disagree
- (2)
- (3)
- (4)
- (5) Strongly agree

Likert scales are very handy, if somewhat limited, tools. The question is what kind of variable are they? They're obviously discrete, since you can't give a response of 2.5. They're obviously not nominal scale, since the items are ordered; and they're not ratio scale either, since there's no natural zero.

But are they ordinal scale or interval scale? One argument says that we can't really prove that the difference between "strongly agree" and "agree" is of the same size as the difference between "agree" and "neither agree nor disagree". In fact, in everyday life it's pretty obvious that they're not the same at all. So this suggests that we ought to treat Likert scales as ordinal variables. On the other hand, in practice most participants do seem to take the whole "on a scale from 1 to 5" part fairly seriously, and they tend to act as if the differences between the five response options were fairly similar to one another. As a consequence, a lot of researchers treat Likert scale data as interval scale. It's not interval scale, but in practice it's close enough that we usually think of it as being quasi-interval scale.

⁴Ah, psychology ... never an easy answer to anything!

Assessing the reliability of a measurement

At this point we've thought a little bit about how to operationalise a theoretical construct and thereby create a psychological measure. And we've seen that by applying psychological measures we end up with variables, which can come in many different types. At this point, we should start discussing the obvious question: is the measurement any good? We'll do this in terms of two related ideas: *reliability* and *validity*. Put simply, the *reliability* of a measure tells you how *precisely* you are measuring something, whereas the validity of a measure tells you how *accurate* the measure is. In this section I'll talk about reliability; we'll talk about validity in section 2.6.

Reliability is actually a very simple concept. It refers to the repeatability or consistency of your measurement. The measurement of my weight by means of a "bathroom scale" is very reliable. If I step on and off the scales over and over again, it'll keep giving me the same answer. Measuring my intelligence by means of "asking my mum" is very unreliable. Some days she tells me I'm a bit thick, and other days she tells me I'm a complete idiot. Notice that this concept of reliability is different to the question of whether the measurements are correct (the correctness of a measurement relates to it's validity). If I'm holding a sack of potatos when I step on and off the bathroom scales the measurement will still be reliable: it will always give me the same answer. However, this highly reliable answer doesn't match up to my true weight at all, therefore it's wrong. In technical terms, this is a reliable but invalid measurement. Similarly, whilst my mum's estimate of my intelligence is a bit unreliable, she might be right. Maybe I'm just not too bright, and so while her estimate of my intelligence fluctuates pretty wildly from day to day, it's basically right. That would be an unreliable but valid measure. Of course, if my mum's estimates are too unreliable it's going to be very hard to figure out which one of her many claims about my intelligence is actually the right one. To some extent, then, a very unreliable measure tends to end up being invalid for practical purposes; so much so that many people would say that reliability is necessary (but not sufficient) to ensure validity.

Okay, now that we're clear on the distinction between reliability and validity, let's have a think about the different ways in which we might measure reliability:

- **Test-retest reliability**. This relates to consistency over time. If we repeat the measurement at a later date do we get a the same answer?
- Inter-rater reliability. This relates to consistency across people. If someone else repeats the measurement (e.g., someone else rates my intelligence) will they produce the same answer?
- Parallel forms reliability. This relates to consistency across theoretically-equivalent measurements. If I use a different set of bathroom scales to measure my weight does it give the same answer?
- Internal consistency reliability. If a measurement is constructed from lots of different parts that perform similar functions (e.g., a personality questionnaire result is added up across several questions) do the individual parts tend to give similar answers. We'll look at this particular form of reliability later in the book, in Section ??.

Not all measurements need to possess all forms of reliability. For instance, educational assessment can be thought of as a form of measurement. One of the subjects that I teach, *Computational Cognitive Science*, has an assessment structure that has a research component and an exam component (plus other things). The exam component is *intended* to measure something different from the research component, so the assessment as a whole has low internal consistency. However, within the exam there are several questions that are intended to (approximately) measure the same things, and those tend to produce similar outcomes. So the exam on its own has a fairly high internal consistency. Which is as it should be. You should only demand reliability in those situations where you want to be measuring the same thing!

2.4 _

The "role" of variables: predictors and outcomes

I've got one last piece of terminology that I need to explain to you before moving away from variables. Normally, when we do some research we end up with lots of different variables. Then, when we analyse our data, we usually try to explain some of the variables in terms of some of the other variables. It's important to keep the two roles "thing doing the explaining" and "thing being explained" distinct. So let's be clear about this now. First, we might as well get used to the idea of using mathematical symbols to describe variables, since it's going to happen over and over again. Let's denote the "to be explained" variable Y, and denote the variables "doing the explaining" as X_1 , X_2 , etc.

When we are doing an analysis we have different names for X and Y, since they play different roles in the analysis. The classical names for these roles are **independent variable** (IV) and **dependent variable** (DV). The IV is the variable that you use to do the explaining (i.e., X) and the DV is the variable being explained (i.e., Y). The logic behind these names goes like this: if there really is a relationship between X and Y then we can say that Y depends on X, and if we have designed our study "properly" then X isn't dependent on anything else. However, I personally find those names horrible. They're hard to remember and they're highly misleading because (a) the IV is never actually "independent of everything else", and (b) if there's no relationship then the DV doesn't actually depend on the IV. And in fact, because I'm not the only person who thinks that IV and DV are just awful names, there are a number of alternatives that I find more appealing. The terms that I'll use in this book are **predictors** and **outcomes**. The idea here is that what you're trying to do is use X (the predictors) to make guesses about Y (the outcomes). This is summarised in Table 2.2.

⁵Annoyingly though, there's a lot of different names used out there. I won't list all of them – there would be no point in doing that – other than to note that "response variable" is sometimes used where I've used "outcome". Sigh. This sort of terminological confusion is very common, I'm afraid.

Table 2.2: The terminology used to distinguish between different roles that a variable can play when analysing a data set. Note that this book will tend to avoid the classical terminology in favour of the newer names.

"to be explained" dependent variable (DV) outcome "to do the explaining" independent variable (IV) predictor		role of the variable	classical name	modern name
"to do the explaining" independent variable (IV) predictor	-	'to be explained"	dependent variable (DV)	outcome
	4	'to do the explaining"	independent variable (IV)	predictor

2.5 __

Experimental and non-experimental research

One of the big distinctions that you should be aware of is the distinction between "experimental research" and "non-experimental research". When we make this distinction, what we're really talking about is the degree of control that the researcher exercises over the people and events in the study.

2.5.1 Experimental research

The key feature of **experimental research** is that the researcher controls all aspects of the study, especially what participants experience during the study. In particular, the researcher manipulates or varies the predictor variables (IVs) but allows the outcome variable (DV) to vary naturally. The idea here is to deliberately vary the predictors (IVs) to see if they have any causal effects on the outcomes. Moreover, in order to ensure that there's no possibility that something other than the predictor variables is causing the outcomes, everything else is kept constant or is in some other way "balanced", to ensure that they have no effect on the results. In practice, it's almost impossible to *think* of everything else that might have an influence on the outcome of an experiment, much less keep it constant. The standard solution to this is **randomisation**. That is, we randomly assign people to different groups, and then give each group a different treatment (i.e., assign them different values of the predictor variables). We'll talk more about randomisation later, but for now it's enough to say that what randomisation does is minimise (but not eliminate) the possibility that there are any systematic difference between groups.

Let's consider a very simple, completely unrealistic and grossly unethical example. Suppose you wanted to find out if smoking causes lung cancer. One way to do this would be to find people who smoke and people who don't smoke and look to see if smokers have a higher rate of lung cancer. This is *not* a proper experiment, since the researcher doesn't have a lot of control over who is and isn't a smoker. And this really matters. For instance, it might be that people who choose to smoke cigarettes also tend to have poor diets, or maybe they tend to work in asbestos mines, or whatever. The point here is that the groups (smokers and non-smokers) actually differ on lots of things, not *just* smoking. So it might be that the higher incidence of lung cancer among smokers is caused by something else, and not by smoking per se. In technical terms these other things (e.g. diet) are

called "confounders", and we'll talk about those in just a moment.

In the meantime, let's consider what a proper experiment might look like. Recall that our concern was that smokers and non-smokers might differ in lots of ways. The solution, as long as you have no ethics, is to *control* who smokes and who doesn't. Specifically, if we randomly divide young non-smokers into two groups and force half of them to become smokers, then it's very unlikely that the groups will differ in any respect other than the fact that half of them smoke. That way, if our smoking group gets cancer at a higher rate than the non-smoking group, we can feel pretty confident that (a) smoking does cause cancer and (b) we're murderers.

2.5.2 Non-experimental research

Non-experimental research is a broad term that covers "any study in which the researcher doesn't have as much control as they do in an experiment". Obviously, control is something that scientists like to have, but as the previous example illustrates there are lots of situations in which you can't or shouldn't try to obtain that control. Since it's grossly unethical (and almost certainly criminal) to force people to smoke in order to find out if they get cancer, this is a good example of a situation in which you really shouldn't try to obtain experimental control. But there are other reasons too. Even leaving aside the ethical issues, our "smoking experiment" does have a few other issues. For instance, when I suggested that we "force" half of the people to become smokers, I was talking about starting with a sample of non-smokers, and then forcing them to become smokers. While this sounds like the kind of solid, evil experimental design that a mad scientist would love, it might not be a very sound way of investigating the effect in the real world. For instance, suppose that smoking only causes lung cancer when people have poor diets, and suppose also that people who normally smoke do tend to have poor diets. However, since the "smokers" in our experiment aren't "natural" smokers (i.e., we forced non-smokers to become smokers, but they didn't take on all of the other normal, real life characteristics that smokers might tend to possess) they probably have better diets. As such, in this silly example they wouldn't get lung cancer and our experiment will fail, because it violates the structure of the "natural" world (the technical name for this is an "artefactual" result).

One distinction worth making between two types of non-experimental research is the difference between **quasi-experimental research** and **case studies**. The example I discussed earlier, in which we wanted to examine incidence of lung cancer among smokers and non-smokers without trying to control who smokes and who doesn't, is a quasi-experimental design. That is, it's the same as an experiment but we don't control the predictors (IVs). We can still use statistics to analyse the results, but we have to be a lot more careful and circumspect.

The alternative approach, case studies, aims to provide a very detailed description of one or a few instances. In general, you can't use statistics to analyse the results of case studies and it's usually very hard to draw any general conclusions about "people in general" from a few isolated examples. However, case studies are very useful in some situations. Firstly, there are situations where you don't have any alternative. Neuropsychology has this issue a lot. Sometimes, you just can't find a lot of people with brain damage in a specific brain area, so the only thing you can do is describe those cases that you do have in as much detail and with as much care as you can. However, there's also some genuine advantages to case studies. Because you don't have as many

people to study you have the ability to invest lots of time and effort trying to understand the specific factors at play in each case. This is a very valuable thing to do. As a consequence, case studies can complement the more statistically-oriented approaches that you see in experimental and quasi-experimental designs. We won't talk much about case studies in this book, but they are nevertheless very valuable tools!

2.6 _

Assessing the validity of a study

More than any other thing, a scientist wants their research to be "valid". The conceptual idea behind **validity** is very simple. Can you trust the results of your study? If not, the study is invalid. However, whilst it's easy to state, in practice it's much harder to check validity than it is to check reliability. And in all honesty, there's no precise, clearly agreed upon notion of what validity actually is. In fact, there are lots of different kinds of validity, each of which raises it's own issues. And not all forms of validity are relevant to all studies. I'm going to talk about five different types of validity:

- Internal validity
- External validity
- Construct validity
- Face validity
- Ecological validity

First, a quick guide as to what matters here. (1) Internal and external validity are the most important, since they tie directly to the fundamental question of whether your study really works. (2) Construct validity asks whether you're measuring what you think you are. (3) Face validity isn't terribly important except insofar as you care about "appearances". (4) Ecological validity is a special case of face validity that corresponds to a kind of appearance that you might care about a lot.

2.6.1 Internal validity

Internal validity refers to the extent to which you are able draw the correct conclusions about the causal relationships between variables. It's called "internal" because it refers to the relationships between things "inside" the study. Let's illustrate the concept with a simple example. Suppose you're interested in finding out whether a university education makes you write better. To do so, you get a group of first year students, ask them to write a 1000 word essay, and count the number of spelling and grammatical errors they make. Then you find some third-year students, who obviously have had more of a university education than the first-years, and repeat the exercise. And let's suppose it turns out that the third-year students produce fewer errors. And so you conclude that a university education improves writing skills. Right? Except that the big problem with this experiment is that the third-year students are older and they've had more experience with writing

things. So it's hard to know for sure what the causal relationship is. Do older people write better? Or people who have had more writing experience? Or people who have had more education? Which of the above is the true *cause* of the superior performance of the third-years? Age? Experience? Education? You can't tell. This is an example of a failure of internal validity, because your study doesn't properly tease apart the *causal* relationships between the different variables.

2.6.2 External validity

External validity relates to the **generalisability** or **applicability** of your findings. That is, to what extent do you expect to see the same pattern of results in "real life" as you saw in your study. To put it a bit more precisely, any study that you do in psychology will involve a fairly specific set of questions or tasks, will occur in a specific environment, and will involve participants that are drawn from a particular subgroup (disappointingly often it is college students!). So, if it turns out that the results don't actually generalise or apply to people and situations beyond the ones that you studied, then what you've got is a lack of external validity.

The classic example of this issue is the fact that a very large proportion of studies in psychology will use undergraduate psychology students as the participants. Obviously, however, the researchers don't care *only* about psychology students. They care about people in general. Given that, a study that uses only psychology students as participants always carries a risk of lacking external validity. That is, if there's something "special" about psychology students that makes them different to the general population in some *relevant* respect, then we may start worrying about a lack of external validity.

That said, it is absolutely critical to realise that a study that uses only psychology students does not necessarily have a problem with external validity. I'll talk about this again later, but it's such a common mistake that I'm going to mention it here. The external validity of a study is threatened by the choice of population if (a) the population from which you sample your participants is very narrow (e.g., psychology students), and (b) the narrow population that you sampled from is systematically different from the general population in some respect that is relevant to the psychological phenomenon that you intend to study. The italicised part is the bit that lots of people forget. It is true that psychology undergraduates differ from the general population in lots of ways, and so a study that uses only psychology students may have problems with external validity. However, if those differences aren't very relevant to the phenomenon that you're studying, then there's nothing to worry about. To make this a bit more concrete here are two extreme examples:

- You want to measure "attitudes of the general public towards psychotherapy", but all of your participants are psychology students. This study would almost certainly have a problem with external validity.
- You want to measure the effectiveness of a visual illusion, and your participants are all psychology students. This study is unlikely to have a problem with external validity

Having just spent the last couple of paragraphs focusing on the choice of participants, since that's a big issue that everyone tends to worry most about, it's worth remembering that external validity is a broader concept. The following are also examples of things that might pose a threat to external validity, depending on what kind of study you're doing:

- People might answer a "psychology questionnaire" in a manner that doesn't reflect what they would do in real life.
- Your lab experiment on (say) "human learning" has a different structure to the learning problems people face in real life.

2.6.3 Construct validity

Construct validity is basically a question of whether you're measuring what you want to be measuring. A measurement has good construct validity if it is actually measuring the correct theoretical construct, and bad construct validity if it doesn't. To give a very simple (if ridiculous) example, suppose I'm trying to investigate the rates with which university students cheat on their exams. And the way I attempt to measure it is by asking the cheating students to stand up in the lecture theatre so that I can count them. When I do this with a class of 300 students 0 people claim to be cheaters. So I therefore conclude that the proportion of cheaters in my class is 0%. Clearly this is a bit ridiculous. But the point here is not that this is a very deep methodological example, but rather to explain what construct validity is. The problem with my measure is that while I'm trying to measure "the proportion of people who cheat" what I'm actually measuring is "the proportion of people stupid enough to own up to cheating, or bloody minded enough to pretend that they do". Obviously, these aren't the same thing! So my study has gone wrong, because my measurement has very poor construct validity.

2.6.4 Face validity

Face validity simply refers to whether or not a measure "looks like" it's doing what it's supposed to, nothing more. If I design a test of intelligence, and people look at it and they say "no, that test doesn't measure intelligence", then the measure lacks face validity. It's as simple as that. Obviously, face validity isn't very important from a pure scientific perspective. After all, what we care about is whether or not the measure *actually* does what it's supposed to do, not whether it *looks like* it does what it's supposed to do. As a consequence, we generally don't care very much about face validity. That said, the concept of face validity serves three useful pragmatic purposes:

- Sometimes, an experienced scientist will have a "hunch" that a particular measure won't work. While these sorts of hunches have no strict evidentiary value, it's often worth paying attention to them. Because often times people have knowledge that they can't quite verbalise, so there might be something to worry about even if you can't quite say why. In other words, when someone you trust criticises the face validity of your study, it's worth taking the time to think more carefully about your design to see if you can think of reasons why it might go awry. Mind you, if you don't find any reason for concern, then you should probably not worry. After all, face validity really doesn't matter very much.
- Often (very often), completely uninformed people will also have a "hunch" that your research is crap. And they'll criticise it on the internet or something. On close inspection you may notice that these criticisms are actually focused entirely on how the study "looks", but not on

- anything deeper. The concept of face validity is useful for gently explaining to people that they need to substantiate their arguments further.
- Expanding on the last point, if the beliefs of untrained people are critical (e.g., this is often the case for applied research where you actually want to convince policy makers of something or other) then you have to care about face validity. Simply because, whether you like it or not, a lot of people will use face validity as a proxy for real validity. If you want the government to change a law on scientific psychological grounds, then it won't matter how good your studies "really" are. If they lack face validity you'll find that politicians ignore you. Of course, it's somewhat unfair that policy often depends more on appearance than fact, but that's how things go.

2.6.5 **Ecological validity**

Ecological validity is a different notion of validity, which is similar to external validity, but less important. The idea is that, in order to be ecologically valid, the entire set up of the study should closely approximate the real world scenario that is being investigated. In a sense, ecological validity is a kind of face validity. It relates mostly to whether the study "looks" right, but with a bit more rigour to it. To be ecologically valid the study has to look right in a fairly specific way. The idea behind it is the intuition that a study that is ecologically valid is more likely to be externally valid. It's no guarantee, of course. But the nice thing about ecological validity is that it's much easier to check whether a study is ecologically valid than it is to check whether a study is externally valid. A simple example would be eyewitness identification studies. Most of these studies tend to be done in a university setting, often with a fairly simple array of faces to look at, rather than a line up. The length of time between seeing the "criminal" and being asked to identify the suspect in the "line up" is usually shorter. The "crime" isn't real so there's no chance of the witness being scared, and there are no police officers present so there's not as much chance of feeling pressured. These things all mean that the study *definitely* lacks ecological validity. They might (but might not) mean that it also lacks external validity.

2.7

Confounds, artefacts and other threats to validity

If we look at the issue of validity in the most general fashion the two biggest worries that we have are *confounders* and *artefacts*. These two terms are defined in the following way:

• Confounder: A confounder is an additional, often unmeasured variable that turns out to be related to both the predictors and the outcome. The existence of confounders threatens the

⁶The reason why I say that it's unmeasured is that if you *have* measured it, then you can use some fancy statistical tricks to deal with the confounder. Because of the existence of these statistical solutions to the problem of confounders, we often refer to a confounder that we have measured and dealt with as a *covariate*. Dealing with covariates is a more advanced topic, but I thought I'd mention it in passing since it's kind of comforting to at least know that this stuff exists.

internal validity of the study because you can't tell whether the predictor causes the outcome, or if the confounding variable causes it.

• Artefact: A result is said to be "artefactual" if it only holds in the special situation that you happened to test in your study. The possibility that your result is an artefact describes a threat to your external validity, because it raises the possibility that you can't generalise or apply your results to the actual population that you care about.

As a general rule confounders are a bigger concern for non-experimental studies, precisely because they're not proper experiments. By definition, you're leaving lots of things uncontrolled, so there's a lot of scope for confounders being present in your study. Experimental research tends to be much less vulnerable to confounders. The more control you have over what happens during the study, the more you can prevent confounders from affecting the results. With random allocation, for example, confounders are distributed randomly, and evenly, between different groups.

However, there are always swings and roundabouts and when we start thinking about artefacts rather than confounders the shoe is very firmly on the other foot. For the most part, artefactual results tend to be a concern for experimental studies than for non-experimental studies. To see this, it helps to realise that the reason that a lot of studies are non-experimental is precisely because what the researcher is trying to do is examine human behaviour in a more naturalistic context. By working in a more real-world context you lose experimental control (making yourself vulnerable to confounders), but because you tend to be studying human psychology "in the wild" you reduce the chances of getting an artefactual result. Or, to put it another way, when you take psychology out of the wild and bring it into the lab (which we usually have to do to gain our experimental control), you always run the risk of accidentally studying something different to what you wanted to study.

Be warned though. The above is a rough guide only. It's absolutely possible to have confounders in an experiment, and to get artefactual results with non-experimental studies. This can happen for all sorts of reasons, not least of which is experimenter or researcher error. In practice, it's really hard to think everything through ahead of time and even very good researchers make mistakes.

Although there's a sense in which almost any threat to validity can be characterised as a confounder or an artefact, they're pretty vague concepts. So let's have a look at some of the most common examples.

2.7.1 History effects

History effects refer to the possibility that specific events may occur during the study that might influence the outcome measure. For instance, something might happen in between a pretest and a post-test. Or in-between testing participant 23 and participant 24. Alternatively, it might be that you're looking at a paper from an older study that was perfectly valid for its time, but the world has changed enough since then that the conclusions are no longer trustworthy. Examples of things that would count as history effects are:

 You're interested in how people think about risk and uncertainty. You started your data collection in December 2010. But finding participants and collecting data takes time, so you're still finding new people in February 2011. Unfortunately for you (and even more unfortunately for others), the Queensland floods occurred in January 2011 causing billions of dollars of damage and killing many people. Not surprisingly, the people tested in February 2011 express quite different beliefs about handling risk than the people tested in December 2010. Which (if any) of these reflects the "true" beliefs of participants? I think the answer is probably both. The Queensland floods genuinely changed the beliefs of the Australian public, though possibly only temporarily. The key thing here is that the "history" of the people tested in February is quite different to people tested in December.

You're testing the psychological effects of a new anti-anxiety drug. So what you do is
measure anxiety before administering the drug (e.g., by self-report, and taking physiological
measures). Then you administer the drug, and afterwards you take the same measures. In
the middle however, because your lab is in Los Angeles, there's an earthquake which increases
the anxiety of the participants.

2.7.2 **Maturation effects**

As with history effects, **maturational effects** are fundamentally about change over time. However, maturation effects aren't in response to specific events. Rather, they relate to how people change on their own over time. We get older, we get tired, we get bored, etc. Some examples of maturation effects are:

- When doing developmental psychology research you need to be aware that children grow up quite rapidly. So, suppose that you want to find out whether some educational trick helps with vocabulary size among 3 year olds. One thing that you need to be aware of is that the vocabulary size of children that age is growing at an incredible rate (multiple words per day) all on its own. If you design your study without taking this maturational effect into account, then you won't be able to tell if your educational trick works.
- When running a very long experiment in the lab (say, something that goes for 3 hours) it's very likely that people will begin to get bored and tired, and that this maturational effect will cause performance to decline regardless of anything else going on in the experiment

2.7.3 Repeated testing effects

An important type of history effect is the effect of **repeated testing**. Suppose I want to take two measurements of some psychological construct (e.g., anxiety). One thing I might be worried about is if the first measurement has an effect on the second measurement. In other words, this is a history effect in which the "event" that influences the second measurement is the first measurement itself! This is not at all uncommon. Examples of this include:

• Learning and practice: e.g., "intelligence" at time 2 might appear to go up relative to time 1 because participants learned the general rules of how to solve "intelligence-test-style" questions during the first testing session.

- Familiarity with the testing situation: e.g., if people are nervous at time 1, this might make performance go down. But after sitting through the first testing situation they might calm down a lot precisely because they've seen what the testing looks like.
- Auxiliary changes caused by testing: e.g., if a questionnaire assessing mood is boring then mood rating at measurement time 2 is more likely to be "bored" precisely because of the boring measurement made at time 1.

2.7.4 **Selection bias**

Selection bias is a pretty broad term. Suppose that you're running an experiment with two groups of participants where each group gets a different "treatment", and you want to see if the different treatments lead to different outcomes. However, suppose that, despite your best efforts, you've ended up with a gender imbalance across groups (say, group A has 80% females and group B has 50% females). It might sound like this could never happen but, trust me, it can. This is an example of a selection bias, in which the people "selected into" the two groups have different characteristics. If any of those characteristics turns out to be relevant (say, your treatment works better on females than males) then you're in a lot of trouble.

2.7.5 **Differential attrition**

When thinking about the effects of attrition, it is sometimes helpful to distinguish between two different types. The first is **homogeneous attrition**, in which the attrition effect is the same for all groups, treatments or conditions. In the example I gave above, the attrition would be homogeneous if (and only if) the easily bored participants are dropping out of all of the conditions in my experiment at about the same rate. In general, the main effect of homogeneous attrition is likely to be that it makes your sample unrepresentative. As such, the biggest worry that you'll have is that the generalisability of the results decreases. In other words, you lose external validity.

The second type of attrition is **heterogeneous attrition**, in which the attrition effect is different for different groups. More often called **differential attrition**, this is a kind of selection bias that is caused by the study itself. Suppose that, for the first time ever in the history of psychology, I manage to find the perfectly balanced and representative sample of people. I start running "Dani's incredibly long and tedious experiment" on my perfect sample but then, because my study is incredibly long and tedious, lots of people start dropping out. I can't stop this. Participants absolutely have the right to stop doing any experiment, any time, for whatever reason they feel like, and as researchers we are morally (and professionally) obliged to remind people that they do have this right. So, suppose that "Dani's incredibly long and tedious experiment" has a very high drop out rate. What do you suppose the odds are that this drop out is random? Answer: zero. Almost certainly the people who remain are more conscientious, more tolerant of boredom, etc., than those that leave. To the extent that (say) conscientiousness is relevant to the psychological phenomenon that I care about, this attrition can decrease the validity of my results.

Here's another example. Suppose I design my experiment with two conditions. In the "treatment" condition, the experimenter insults the participant and then gives them a questionnaire

designed to measure obedience. In the "control" condition, the experimenter engages in a bit of pointless chitchat and then gives them the questionnaire. Leaving aside the questionable scientific merits and dubious ethics of such a study, let's have a think about what might go wrong here. As a general rule, when someone insults me to my face I tend to get much less co-operative. So, there's a pretty good chance that a lot more people are going to drop out of the treatment condition than the control condition. And this drop out isn't going to be random. The people most likely to drop out would probably be the people who don't care all that much about the importance of obediently sitting through the experiment. Since the most bloody minded and disobedient people all left the treatment group but not the control group, we've introduced a confound: the people who actually took the questionnaire in the treatment group were *already* more likely to be dutiful and obedient than the people in the control group. In short, in this study insulting people doesn't make them more obedient. It makes the more disobedient people leave the experiment! The internal validity of this experiment is completely shot.

2.7.6 Non-response bias

Non-response bias is closely related to selection bias and to differential attrition. The simplest version of the problem goes like this. You mail out a survey to 1000 people but only 300 of them reply. The 300 people who replied are almost certainly not a random subsample. People who respond to surveys are systematically different to people who don't. This introduces a problem when trying to generalise from those 300 people who replied to the population at large, since you now have a very non-random sample. The issue of non-response bias is more general than this, though. Among the (say) 300 people that did respond to the survey, you might find that not everyone answers every question. If (say) 80 people chose not to answer one of your questions, does this introduce problems? As always, the answer is maybe. If the question that wasn't answered was on the last page of the questionnaire, and those 80 surveys were returned with the last page missing, there's a good chance that the missing data isn't a big deal; probably the pages just fell off. However, if the question that 80 people didn't answer was the most confrontational or invasive personal question in the questionnaire, then almost certainly you've got a problem. In essence, what you're dealing with here is what's called the problem of missing data. If the data that is missing was "lost" randomly, then it's not a big problem. If it's missing systematically, then it can be a big problem.

2.7.7 **Regression to the mean**

Regression to the mean refers to any situation where you select data based on an extreme value on some measure. Because the variable has natural variation it almost certainly means that when you take a subsequent measurement the later measurement will be less extreme than the first one, purely by chance.

Here's an example. Suppose I'm interested in whether a psychology education has an adverse effect on very smart kids. To do this, I find the 20 psychology I students with the best high school grades and look at how well they're doing at university. It turns out that they're doing a lot better than average, but they're not topping the class at university even though they did top their classes at high school. What's going on? The natural first thought is that this must mean that the psychology classes must be having an adverse effect on those students. However, while that might

very well be the explanation, it's more likely that what you're seeing is an example of "regression to the mean". To see how it works, let's take a moment to think about what is required to get the best mark in a class, regardless of whether that class be at high school or at university. When you've got a big class there are going to be *lots* of very smart people enrolled. To get the best mark you have to be very smart, work very hard, and be a bit lucky. The exam has to ask just the right questions for your idiosyncratic skills, and you have to avoid making any dumb mistakes (we all do that sometimes) when answering them. And that's the thing, whilst intelligence and hard work are transferable from one class to the next, luck isn't. The people who got lucky in high school won't be the same as the people who get lucky at university. That's the very definition of "luck". The consequence of this is that when you select people at the very extreme values of one measurement (the top 20 students), you're selecting for hard work, skill and luck. But because the luck doesn't transfer to the second measurement (only the skill and work), these people will all be expected to drop a little bit when you measure them a second time (at university). So their scores fall back a little bit, back towards everyone else. This is regression to the mean.

Regression to the mean is surprisingly common. For instance, if two very tall people have kids their children will tend to be taller than average but not as tall as the parents. The reverse happens with very short parents. Two very short parents will tend to have short children, but nevertheless those kids will tend to be taller than the parents. It can also be extremely subtle. For instance, there have been studies done that suggested that people learn better from negative feedback than from positive feedback. However, the way that people tried to show this was to give people positive reinforcement whenever they did good, and negative reinforcement when they did bad. And what you see is that after the positive reinforcement people tended to do worse, but after the negative reinforcement they tended to do better. But notice that there's a selection bias here! When people do very well, you're selecting for "high" values, and so you should *expect*, because of regression to the mean, that performance on the next trial should be worse regardless of whether reinforcement is given. Similarly, after a bad trial, people will tend to improve all on their own. The apparent superiority of negative feedback is an artefact caused by regression to the mean (see Kahneman and Tversky 1973, for discussion).

2.7.8 Experimenter bias

Experimenter bias can come in multiple forms. The basic idea is that the experimenter, despite the best of intentions, can accidentally end up influencing the results of the experiment by subtly communicating the "right answer" or the "desired behaviour" to the participants. Typically, this occurs because the experimenter has special knowledge that the participant does not, for example the right answer to the questions being asked or knowledge of the expected pattern of performance for the condition that the participant is in. The classic example of this happening is the case study of "Clever Hans", which dates back to 1907 (Pfungst 1911; Hothersall 2004). Clever Hans was a horse that apparently was able to read and count and perform other human like feats of intelligence. After Clever Hans became famous, psychologists started examining his behaviour more closely. It turned out that, not surprisingly, Hans didn't know how to do maths. Rather, Hans was responding to the human observers around him, because the humans did know how to count and the horse had learned to change its behaviour when people changed theirs.

The general solution to the problem of experimenter bias is to engage in double blind studies,

where neither the experimenter nor the participant knows which condition the participant is in or knows what the desired behaviour is. This provides a very good solution to the problem, but it's important to recognise that it's not quite ideal, and hard to pull off perfectly. For instance, the obvious way that I could try to construct a double blind study is to have one of my Ph.D. students (one who doesn't know anything about the experiment) run the study. That feels like it should be enough. The only person (me) who knows all the details (e.g., correct answers to the questions, assignments of participants to conditions) has no interaction with the participants, and the person who does all the talking to people (the Ph.D. student) doesn't know anything. Except for the reality that the last part is very unlikely to be true. In order for the Ph.D. student to run the study effectively they need to have been briefed by me, the researcher. And, as it happens, the Ph.D. student also knows me and knows a bit about my general beliefs about people and psychology (e.g., I tend to think humans are much smarter than psychologists give them credit for). As a result of all this, it's almost impossible for the experimenter to avoid knowing a little bit about what expectations I have. And even a little bit of knowledge can have an effect. Suppose the experimenter accidentally conveys the fact that the participants are expected to do well in this task. Well, there's a thing called the "Pygmalion effect", where if you expect great things of people they'll tend to rise to the occasion. But if you expect them to fail then they'll do that too. In other words, the expectations become a self-fulfilling prophesy.

2.7.9 **Demand effects and reactivity**

When talking about experimenter bias, the worry is that the experimenter's knowledge or desires for the experiment are communicated to the participants, and that these can change people's behaviour (Rosenthal 1966). However, even if you manage to stop this from happening, it's almost impossible to stop people from knowing that they're part of a psychological study. And the mere fact of knowing that someone is watching or studying you can have a pretty big effect on behaviour. This is generally referred to as **reactivity** or **demand effects**. The basic idea is captured by the Hawthorne effect: people alter their performance because of the attention that the study focuses on them. The effect takes its name from a study that took place in the "Hawthorne Works" factory outside of Chicago (see Adair 1984). This study, from the 1920s, looked at the effects of factory lighting on worker productivity. But, importantly, change in worker behaviour occurred because the workers *knew* they were being studied, rather than any effect of factory lighting.

To get a bit more specific about some of the ways in which the mere fact of being in a study can change how people behave, it helps to think like a social psychologist and look at some of the *roles* that people might *adopt* during an experiment but might *not adopt* if the corresponding events were occurring in the real world:

- The *good participant* tries to be too helpful to the researcher. He or she seeks to figure out the experimenter's hypotheses and confirm them.
- The *negative participant* does the exact opposite of the good participant. He or she seeks to break or destroy the study or the hypothesis in some way.
- The *faithful participant* is unnaturally obedient. He or she seeks to follow instructions perfectly, regardless of what might have happened in a more realistic setting.
- The apprehensive participant gets nervous about being tested or studied, so much so that

his or her behaviour becomes highly unnatural, or overly socially desirable.

2.7.10 Placebo effects

The placebo effect is a specific type of demand effect that we worry a lot about. It refers to the situation where the mere fact of being treated causes an improvement in outcomes. The classic example comes from clinical trials. If you give people a completely chemically inert drug and tell them that it's a cure for a disease, they will tend to get better faster than people who aren't treated at all. In other words, it is people's belief that they are being treated that causes the improved outcomes, not the drug.

However, the current consensus in medicine is that true placebo effects are quite rare and most of what was previously considered placebo effect is in fact some combination of natural healing (some people just get better on their own), regression to the mean and other quirks of study design. Of interest to psychology is that the strongest evidence for at least some placebo effect is in self-reported outcomes, most notably in treatment of pain (Hróbjartsson and Gøtzsche 2010).

2.7.11 Situation, measurement and sub-population effects

In some respects, these terms are a catch-all term for "all other threats to external validity". They refer to the fact that the choice of sub-population from which you draw your participants, the location, timing and manner in which you run your study (including who collects the data) and the tools that you use to make your measurements might all be influencing the results. Specifically, the worry is that these things might be influencing the results in such a way that the results won't generalise to a wider array of people, places and measures.

2.7.12 Fraud, deception and self-deception

It is difficult to get a man to understand something, when his salary depends on his not understanding it.

- Upton Sinclair

There's one final thing I feel I should mention. While reading what the textbooks often have to say about assessing the validity of a study I couldn't help but notice that they seem to make the assumption that the researcher is honest. I find this hilarious. While the vast majority of scientists are honest, in my experience at least, some are not. Not only that, as I mentioned earlier, scientists are not immune to belief bias. It's easy for a researcher to end up deceiving themselves into believing the wrong thing, and this can lead them to conduct subtly flawed research and then hide those flaws when they write it up. So you need to consider not only the (probably unlikely) possibility of outright fraud, but also the (probably quite common) possibility that the research is

⁷Some people might argue that if you're not honest then you're not a real scientist. Which does have some truth to it I guess, but that's disingenuous (look up the "No true Scotsman" fallacy). The fact is that there are lots of people who are employed ostensibly as scientists, and whose work has all of the trappings of science, but who are outright fraudulent. Pretending that they don't exist by saying that they're not scientists is just muddled thinking.

unintentionally "slanted". I opened a few standard textbooks and didn't find much of a discussion of this problem, so here's my own attempt to list a few ways in which these issues can arise:

- Data fabrication. Sometimes, people just make up the data. This is occasionally done with "good" intentions. For instance, the researcher believes that the fabricated data do reflect the truth, and may actually reflect "slightly cleaned up" versions of actual data. On other occasions, the fraud is deliberate and malicious. Some high-profile examples where data fabrication has been alleged or shown include Cyril Burt (a psychologist who is thought to have fabricated some of his data), Andrew Wakefield (who has been accused of fabricating his data connecting the MMR vaccine to autism) and Hwang Woo-suk (who falsified a lot of his data on stem cell research).
- Hoaxes. Hoaxes share a lot of similarities with data fabrication, but they differ in the intended purpose. A hoax is often a joke, and many of them are intended to be (eventually) discovered. Often, the point of a hoax is to discredit someone or some field. There's quite a few well known scientific hoaxes that have occurred over the years (e.g., Piltdown man) and some were deliberate attempts to discredit particular fields of research (e.g., the Sokal affair).
- Data misrepresentation. While fraud gets most of the headlines, it's much more common in my experience to see data being misrepresented. When I say this I'm not referring to newspapers getting it wrong (which they do, almost always). I'm referring to the fact that often the data don't actually say what the researchers think they say. My guess is that, almost always, this isn't the result of deliberate dishonesty but instead is due to a lack of sophistication in the data analyses. For instance, think back to the example of Simpson's paradox that I discussed in the beginning of this book. It's very common to see people present "aggregated" data of some kind and sometimes, when you dig deeper and find the raw data yourself you find that the aggregated data tell a different story to the disaggregated data. Alternatively, you might find that some aspect of the data is being hidden, because it tells an inconvenient story (e.g., the researcher might choose not to refer to a particular variable). There's a lot of variants on this, many of which are very hard to detect.
- Study "misdesign". Okay, this one is subtle. Basically, the issue here is that a researcher designs a study that has built-in flaws and those flaws are never reported in the paper. The data that are reported are completely real and are correctly analysed, but they are produced by a study that is actually quite wrongly put together. The researcher really wants to find a particular effect and so the study is set up in such a way as to make it "easy" to (artefactually) observe that effect. One sneaky way to do this, in case you're feeling like dabbling in a bit of fraud yourself, is to design an experiment in which it's obvious to the participants what they're "supposed" to be doing, and then let reactivity work its magic for you. If you want you can add all the trappings of double blind experimentation but it won't make a difference since the study materials themselves are subtly telling people what you want them to do. When you write up the results the fraud won't be obvious to the reader. What's obvious to the participant when they're in the experimental context isn't always obvious to the person reading the paper. Of course, the way I've described this makes it sound like it's always fraud. Probably there are cases where this is done deliberately, but in my experience the bigger concern has been with unintentional misdesign. The researcher believes and so the

study just happens to end up with a built in flaw, and that flaw then magically erases itself when the study is written up for publication.

- Data mining & post hoc hypothesising. Another way in which the authors of a study can more or less misrepresent the data is by engaging in what's referred to as "data mining" (see Gelman and Loken 2014, for a broader discussion of this as part of the "garden of forking paths" in statistical analysis). As we'll discuss later, if you keep trying to analyse your data in lots of different ways, you'll eventually find something that "looks" like a real effect but isn't. This is referred to as "data mining". It used to be quite rare because data analysis used to take weeks, but now that everyone has very powerful statistical software on their computers it's becoming very common. Data mining per se isn't "wrong", but the more that you do it the bigger the risk you're taking. The thing that is wrong, and I suspect is very common, is unacknowledged data mining. That is, the researcher runs every possible analysis known to humanity, finds the one that works, and then pretends that this was the only analysis that they ever conducted. Worse yet, they often "invent" a hypothesis after looking at the data to cover up the data mining. To be clear. It's not wrong to change your beliefs after looking at the data, and to reanalyse your data using your new "post hoc" hypotheses. What is wrong (and I suspect common) is failing to acknowledge that you've done. If you acknowledge that you did it then other researchers are able to take your behaviour into account. If you don't, then they can't. And that makes your behaviour deceptive. Bad!
- Publication bias & self-censoring. Finally, a pervasive bias is "non-reporting" of negative results. This is almost impossible to prevent. Journals don't publish every article that is submitted to them. They prefer to publish articles that find "something". So, if 20 people run an experiment looking at whether reading Finnegans Wake causes insanity in humans, and 19 of them find that it doesn't, which one do you think is going to get published? Obviously, it's the one study that did find that Finnegans Wake causes insanity.⁸ This is an example of a publication bias. Since no-one ever published the 19 studies that didn't find an effect, a naive reader would never know that they existed. Worse yet, most researchers "internalise" this bias and end up self-censoring their research. Knowing that negative results aren't going to be accepted for publication, they never even try to report them. As a friend of mine says "for every experiment that you get published, you also have 10 failures". And she's right. The catch is, while some (maybe most) of those studies are failures for boring reasons (e.g. you stuffed something up) others might be genuine "null" results that you ought to acknowledge when you write up the "good" experiment. And telling which is which is often hard to do. A good place to start is a paper by loannidis (2005) with the depressing title "Why most published research findings are false". I'd also suggest taking a look at work by Kühberger, Fritz, and Scherndl (2014) presenting statistical evidence that this actually happens in psychology.

There's probably a lot more issues like this to think about, but that'll do to start with. What I really want to point out is the blindingly obvious truth that real world science is conducted by actual humans, and only the most gullible of people automatically assumes that everyone else is honest and impartial. Actual scientists aren't usually *that* naive, but for some reason the world likes to pretend that we are, and the textbooks we usually write seem to reinforce that stereotype.

⁸Clearly, the real effect is that only insane people would even try to read *Finnegans Wake*.

Summary

This chapter isn't really meant to provide a comprehensive discussion of psychological research methods. It would require another volume just as long as this one to do justice to the topic. However, in real life statistics and study design are so tightly intertwined that it's very handy to discuss some of the key topics. In this chapter, I've briefly discussed the following topics:

- Introduction to psychological measurement (Section 2.1). What does it mean to operationalise a theoretical construct? What does it mean to have variables and take measurements?
- Scales of measurement and types of variables (Section 2.2). Remember that there are two different distinctions here. There's the difference between discrete and continuous data, and there's the difference between the four different scale types (nominal, ordinal, interval and ratio).
- Reliability of a measurement (Section 2.3). If I measure the "same" thing twice, should I expect to see the same result? Only if my measure is reliable. But what does it mean to talk about doing the "same" thing? Well, that's why we have different types of reliability. Make sure you remember what they are.
- Terminology: predictors and outcomes (Section 2.4). What roles do variables play in an analysis? Can you remember the difference between predictors and outcomes? Dependent and independent variables? Etc.
- Experimental and non-experimental research designs (Section 2.5). What makes an experiment an experiment? Is it a nice white lab coat, or does it have something to do with researcher control over variables?
- Validity and its threats (Section 2.6). Does your study measure what you want it to? How might things go wrong? And is it my imagination, or was that a very long list of possible ways in which things can go wrong?

All this should make clear to you that study design is a critical part of research methodology. I built this chapter from the classic little book by Campbell et al. (1963), but there are of course a large number of textbooks out there on research design. Spend a few minutes with your favourite search engine and you'll find dozens.

Part II.

An introduction to JASP

3. Getting started with JASP

Robots are nice to work with.

-Roger Zelazny¹

In this chapter we'll discuss how to get started in JASP. We'll briefly talk about how to download and install JASP, but most of the chapter will be focused on getting you started with finding your way around the JASP user interface. Our goal in this chapter is *not* to learn any statistical concepts: instead, we're just trying to learn the basics of how JASP works and get comfortable interacting with the system. To do this we'll spend some time looking at datasets and variables. In doing so, you'll get a bit of a feel for what it's like to work in JASP.

However, before going into any of the specifics, it's worth talking a little about why you might want to use JASP at all. Given that you're reading this you've probably got your own reasons. However, if those reasons are "because that's what my stats class uses", it might be worth explaining a little why your professor has chosen to use JASP for the class. Of course, who really knows why *other* people choose JASP, so really, I will be talking about why I use it.

- It's sort of obvious but worth saying anyway: doing statistics on a computer is faster, easier and more powerful than doing statistics by hand. Computers excel at mindless repetitive tasks, and a lot of statistical calculations are both mindless and repetitive. For most people the only reason to ever do statistical calculations with pencil and paper is for learning purposes (even professionals do this when learning new concepts). In my class I do occasionally suggest doing some calculations that way, but the only real value to it is pedagogical. It does help you to get a "feel" for statistics to do some calculations yourself, so it's worth doing it once. But only once!
- Doing statistics in a conventional spreadsheet (e.g., Microsoft Excel) is generally a bad idea in the long run. Although many people likely feel more familiar with them, spreadsheets are very limited in terms of what analyses they allow you do. If you get into the habit of trying to do your real life data analysis using spreadsheets then you've dug yourself into a very deep hole
- Avoiding proprietary software is a very good idea. There are a lot of commercial packages out there that you can buy, some of which I like and some of which I don't. They're

¹Source: Dismal Light (1968).

usually very glossy in their appearance and generally very powerful (much more powerful than spreadsheets). However, they're also very expensive. Usually, the company sells "student versions" (crippled versions of the real thing) very cheaply, and then they they sell full powered "educational versions" at a price that makes me wince. They will also sell commercial licences with a staggeringly high price tag. The business model here is to suck you in during your student days and then leave you dependent on their tools when you go out into the real world. It's hard to blame them for trying, but personally I'm not in favor of shelling out thousands of dollars if I can avoid it. And you can avoid it. If you make use of packages like JASP that are open source and free you never get trapped having to pay exorbitant licensing fees.

Those are the main reasons I use JASP. It's not without its flaws, though. It's relatively new² so there is not a huge set of textbooks and other resources to support it, and it has a few annoying quirks that we're all pretty much stuck with, but on the whole I think the strengths outweigh the weakness; more so than any other option I've encountered so far.

3.1 _

Installing JASP

Okay, enough with the sales pitch. Let's get started. Just as with any piece of software, JASP needs to be installed on a computer. Fortunately, JASP is freely distributed online and you can download it from the JASP homepage, which is:

https://jasp-stats.org/

At the top of the page, you'll click on the heading "Download". Then, you'll see separate links for Windows users, Mac users, and Linux users. If you follow the relevant link you'll see that the online instructions are pretty self-explanatory. As of this writing, the current version of JASP is 0.9.2.0, but they usually issue updates every few months, so you'll probably have a newer version.³

3.1.1 Starting up JASP

One way or another, regardless of what operating system you're using, it's time to open JASP and get started. When first starting JASP you will be presented with a user interface which looks something like Figure 3.1.

If you have experience with other statistical software packages, you might be a bit dismayed to see that there is no place to begin typing your data. This is a deliberate decision on the part of the JASP developers; their philosophy is that users should be allowed to use the editor they are most

²As of writing this in May 2019.

³Although JASP is updated frequently it doesn't usually make much of a difference for the sort of work we'll do in this book. In fact, during the writing of the book I upgraded several times and it didn't make much difference at all to what is in this book.

Figure 3.1: JASP looks like this when you start it.

comfortable with ⁴. Thus, the preferred method for getting data into JASP is to load a CSV file (.csv), which is a text-based data format that can be created by (and opened in) any spreadsheet program. More details about this will be given shortly.

3.2 _

Analyses

Analyses can be selected from several buttons along the top. Selecting an analysis will present an 'options panel' for that particular analysis, allowing you to assign different variables to different parts of the analysis, and select different options. At the same time, the results for the analysis will appear in the right 'Results panel' and will update in real-time as you make changes to the options.

When you have the analysis set up correctly you can dismiss the analysis options by clicking the 'OK' button in the top right of the optional panel. If you wish to return to these options, you can click on the results that were produced. In this way, you can return to any analysis that you (or say, a colleague) created earlier.

⁴See https://jasp-stats.org/2018/05/15/data-editing-in-jasp/ for a discussion of this very issue.

If you decide you no longer need a particular analysis, you can remove it with the results context menu. Clicking on the header of a specific results header (or clicking on the ▼ symbol) will bring up a menu and by selecting 'Remove Analysis', the analysis can be removed. But more on this later. First, let's get some data into JASP.

3.3 _

Loading data in JASP

There are several different types of files that are likely to be relevant to us when doing data analysis. There are two in particular that are especially important from the perspective of this book:

- .jasp files are those with a .jasp file extension. This is the standard kind of file that JASP uses to store data, and variables and analyses.
- Comma separated value (CSV) files are those with a .csv file extension. These are just regular old text files and they can be opened with many different software programs. It's quite typical for people to store data in csv files, precisely because they're so simple.

3.3.1 Importing data from CSV files

One quite commonly used data format is the humble "comma separated value" file, also called a CSV file, and usually bearing the file extension .csv. CSV files are just plain old-fashioned text files and what they store is basically just a table of data. This is illustrated in Figure 3.2, which shows a file called booksales.csv that I've created. As you can see, each row represents the book sales data for one month. The first row doesn't contain actual data though, it has the names of the variables.

Once you have a CSV file (either that you created or someone has given you), you open the file in JASP by clicking the File tab at the top left hand corner, select 'Open', and then choosing from the options presented. Most commonly, you will select 'Computer' and then 'Browse', which will then open a file browser specific to your operating system. If you're on a Mac, it'll look like the usual Finder window that you use to choose a file; on Windows it looks like an Explorer window. An example of what it looks like on a Mac is shown in Figure 3.3. I'm assuming that you're familiar with your own computer, so you should have no problem finding the csv file that you want to import! Find the one you want, then click on the "Open" button.

3.4 ____

The spreadsheet

Once loaded into JASP, data is represented in a spreadsheet with each column representing a 'variable' and each row representing a 'case' or 'participant'.

Figure 3.2: The booksales.csv data file. On the left I've opened the file using a spreadsheet program, which shows that the file is basically a table. On the right the same file is open in a standard text editor (the TextEdit program on a Mac), which shows how the file is formatted. The entries in the table are separated by commas.

.....

Figure 3.3: A dialog box on a Mac asking you to select the CSV file JASP should try to import. Mac users will recognise this immediately – it's the usual way in which a Mac asks you to find a file. Windows users won't see this, but instead will see the usual explorer window that Windows always gives you when it wants you to select a file.

.....

3.4.1 Variables

The most commonly used variables in JASP are 'Data Variables', which contain data loaded from a CSV file. Data variables can be one of three measurement levels, which are designated by the symbol in the header of the variable's column.

Nominal variables are for categorical variables which are text labels, for example a column called Gender with the values Male and Female would be nominal. So would a person's name. Nominal variable values can also have a numeric value. These variables are used most often when importing data which codes values with numbers rather than text. For example, a column in a dataset may contain the values 1 for males, and 2 for females. It is possible to add nice 'human-readable' labels to these values with the variable editor (more on this later).

Ordinal variables are like Nominal variables, except the values have a specific order. An example is a Likert scale with 3 being 'strongly agree' and -3 being 'strongly disagree'.

Scale variables are variables which exist on a continuous scale. Examples might be height or weight. This is also referred to as 'Interval' or 'Ratio scale'.

Note that when opening a data file JASP will try and guess the variable type from the data in each column. In both cases this automatic approach may not be correct, and it may be necessary to manually specify the variable type with the variable editor.

3.4.2 **Computed variables**

Computed Variables are those which take their value by performing a computation on other variables. Computed Variables can be used for a range of purposes, including log transforms, z-scores, sum-scores, negative scoring and means.

Computed variables can be added to the data set with the '+' button in the header row of the data spreadsheet. This will produce a dialog box where you can specify the formula using either R code or a drag-and-drop interface. At this point, I simply want you to know that the capability exists, but describing how to do it is a little beyond our scope right now. More later!

3.4.3 **Copy and Paste**

As a final note, we will mention that JASP produces nice American Psychological Association (APA) formatted tables and attractive plots. It is often useful to be able to copy and paste these, perhaps into a Word document, or into an email to a colleague. To copy results, click on the header of the object of interest and from the menu select exactly what you want to copy. Selecting "copy" copies the content to the clipboard and this can be pasted into other programs in the usual way. You can practice this later on when we do some analyses. Also, if you use the LATEXdocument preparation system, you can select "Copy special" and "LaTeX code"; doing so will place the LATEXsyntax into your clipboard.

3.5 _

Changing data from one measurement scale to another

Sometimes you want to change the variable level. This can happen for all sorts of reasons. Sometimes when you import data from files, it can come to you in the wrong format. Numbers sometimes get imported as nominal, text values. Dates may get imported as text. ParticipantID values can sometimes be read as continuous: nominal values can sometimes be read as ordinal or even continuous. There's a good chance that sometimes you'll want to convert a variable from one measurement level into another one. Or, to use the correct term, you want to **coerce** the variable from one class into another.

In 3.4 we saw how to specify different variable levels, and if you want to change a variable's measurement level then you can do this in the JASP data view for that variable. Just click the check box for the measurement level you want - continuous, ordinal, or nominal.

Quitting JASP

There's one last thing I should cover in this chapter: how to quit JASP. It's not hard, just close the program the same way you would any other program. However, what you might want to do before you quit is save your work! There are two parts to this: saving any changes to the data set, and saving the analyses that you ran.

It is good practice to save any changes to the data set as a *new* data set. That way you can always go back to the original data. To save any changes in JASP, select 'Export Data' from the 'File' tab, click 'Browse' and navigate to the directory location in which you want to save the file, and create a new file name for the changed data set.

Alternatively, you can save *both* the changed data and any analyses you have undertaken by saving as a .jasp file. To do this, from the 'File' tab select 'Save as', click 'Browse' to navigate to the directory location in which you want to save the file, and type in a file name for this .jasp file. Remember to save the file in a location where you can find it again later. I usually create a new folder for specific data sets and analyses.

3.7 ___

Summary

Every book that tries to teach a new statistical software program to novices has to cover roughly the same topics, and in roughly the same order. Ours is no exception, and so in the grand tradition of doing it just the same way everyone else did it, this chapter covered the following topics:

- Section 3.1. We downloaded and installed JASP, and started it up.
- Section 3.2. We very briefly oriented to the part of JASP where analyses are done and results appear, but then deferred this until later in the book.
- Section 3.3. We saw how to load data files (formatted as .csv files) in JASP.
- Section 3.4. We spent more time looking at the spreadsheet part of JASP, and considered different variable types, and briefly mentioned how to compute new variables.
- Section 3.5. And saw that sometimes we need to coerce data from one type to another.
- Section 3.6. Finally, we looked at good practice in terms of saving your data set and analyses when you have finished and are about to guit JASP.

We still haven't arrived at anything that resembles data analysis. Maybe the next Chapter will get us a bit closer!

4. References

- Adair, G. (1984). "The Hawthorne effect: A reconsideration of the methodological artifact". In: *Journal of Applied Psychology* 69, pp. 334–345 (page 35).
- Agresti, A. (1996). *An Introduction to Categorical Data Analysis*. Hoboken, New Jersey: Wiley. (2002). *Categorical Data Analysis*. 2nd. Hoboken, New Jersey: Wiley.
- Akaike, H. (1974). "A new look at the statistical model identification". In: *IEEE Transactions on Automatic Control* 19, pp. 716–723.
- Anscombe, F. J. (1973). "Graphs in statistical analysis". In: American Statistician 27, pp. 17–21.
- Bickel, P. J., E. A. Hammel, and J. W. O'Connell (1975). "Sex bias in graduate admissions: Data from Berkeley". In: *Science* 187, pp. 398–404 (pages 6, 8).
- Box, G. E. P. (1953). "Non-normality and tests on variances". In: Biometrika 40, pp. 318-335.
- Box, George E. P. (1976). "Science and Statistics". In: *Journal of the American Statistical Association* 71, pp. 791–799.
- Box, J. F. (1987). "Guinness, Gosset, Fisher, and Small Samples". In: *Statistical Science* 2, pp. 45–52.
- Brown, M. B. and A. B. Forsythe (1974). "Robust tests for equality of variances". In: *Journal of the American Statistical Association* 69, pp. 364–367.
- Campbell, D. T. and J. C. Stanley (1963). Experimental and Quasi-Experimental Designs for Research. Boston, MA: Houghton Mifflin (pages 13, 39).
- Chronbach, L. J. (1951). "Coefficient alpha and the internal structure of tests". In: *Psychometrika* 16(3), pp. 297–334.
- Cochran, W. G. (1954). "The χ^2 test of goodness of fit". In: *The Annals of Mathematical Statistics* 23, pp. 315–345.
- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd. Lawrence Erlbaum.
- Cramer, H. (1946). Mathematical Methods of Statistics. Princeton: Princeton University Press.
- Dunn, O.J. (1961). "Multiple comparisons among means". In: *Journal of the American Statistical Association* 56, pp. 52–64.
- Ellis, P. D. (2010). The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge, UK: Cambridge University Press.
- Ellman, Michael (2002). "Soviet repression statistics: some comments". In: *Europe-Asia Studies* 54.7, pp. 1151–1172.
- Evans, J. St. B. T., J. L. Barston, and P. Pollard (1983). "On the conflict between logic and belief in syllogistic reasoning". In: *Memory and Cognition* 11, pp. 295–306 (page 5).

- Evans, M., N. Hastings, and B. Peacock (2011). *Statistical Distributions (3rd ed)*. New York, NY: Wiley.
- Everitt, Brian S. (1996). *Making Sense of Statistics in Psychology. A Second-Level Course*. Oxford University Press.
- Fabrigar, L. R. et al. (1999). "Evaluating the use of exploratory factor analysis in psychological research". In: *Psychological Methods* 4, pp. 272–299.
- Fisher, R. A. (1922a). "On the interpretation of χ^2 from contingency tables, and the calculation of p". In: *Journal of the Royal Statistical Society* 84, pp. 87–94.
- (1922b). "On the mathematical foundation of theoretical statistics". In: *Philosophical Transactions of the Royal Society A* 222, pp. 309–368.
- (1925). Statistical Methods for Research Workers. Edinburgh, UK: Oliver & Boyd.
- Fox, J. and S. Weisberg (2011). *An R Companion to Applied Regression*. 2nd. Los Angeles: Sage. Gelman, A. and H. Stern (2006). "The difference between "significant" and "not significant" is not itself statistically significant". In: *The American Statistician* 60, pp. 328–331.
- Gelman, Andrew and Eric Loken (2014). "The statistical crisis in science". In: *American Scientist* 102.6, pp. 460+. ISSN: 0003-0996. DOI: 10.1511/2014.111.460. URL: http://mfkp.org/INRMM/article/13469628 (page 38).
- Geschwind, N. (1972). "Language and the brain". In: Scientific American 226(4), pp. 76-83.
- Hays, W. L. (1994). Statistics. 5th. Fort Worth, TX: Harcourt Brace.
- Hedges, L. V. (1981). "Distribution theory for Glass's estimator of effect size and related estimators". In: *Journal of Educational Statistics* 6, pp. 107–128.
- Hedges, L. V. and I. Olkin (1985). *Statistical Methods for Meta-Analysis*. New York: Academic Press.
- Hewitt, A. K., D. R. Foxcroft, and J. MacDonald (2004). "Multitrait-multimethod confirmatory factor analysis of the Attributional Style Questionnaire". In: *Personality and Individual Differences* 37(7), pp. 1483–1491.
- Hogg, R. V., J. V. McKean, and A. T. Craig (2005). *Introduction to Mathematical Statistics*. 6th. Upper Saddle River, NJ: Pearson.
- Holm, S. (1979). "A simple sequentially rejective multiple test procedure". In: *Scandinavian Journal of Statistics* 6, pp. 65–70.
- Hothersall, D. (2004). History of Psychology. McGraw-Hill (page 34).
- Hróbjartsson, A and PC Gøtzsche (2010). "Placebo interventions for all clinical conditions". In: Cochrane Database of Systematic Reviews 1. URL: https://doi.org//10.1002/14651858. CD003974.pub3 (page 36).
- Hsu, J. C. (1996). *Multiple Comparisons: Theory and Methods*. London, UK: Chapman and Hall. Ioannidis, John P. A. (2005). "Why Most Published Research Findings Are False". In: *PLoS Med* 2.8, pp. 697–701 (page 38).
- Jeffreys, Harold (1961). The Theory of Probability. 3rd. Oxford.
- Johnson, Valen E (2013). "Revised standards for statistical evidence". In: *Proceedings of the National Academy of Sciences* 48, pp. 19313–19317.
- Kahneman, D. and A. Tversky (1973). "On the psychology of prediction". In: *Psychological Review* 80, pp. 237–251 (page 34).
- Kass, Robert E. and Adrian E. Raftery (1995). "Bayes factors". In: *Journal of the American Statistical Association* 90, pp. 773–795.
- Keynes, John Maynard (1923). A Tract on Monetary Reform. London: Macmillan and Company.

- Kruschke, J. K. (2011). *Doing Bayesian Data Analysis: A Tutorial with R and BUGS*. Burlington, MA: Academic Press.
- Kruskal, W. H. and W. A. Wallis (1952). "Use of ranks in one-criterion variance analysis". In: *Journal of the American Statistical Association* 47, pp. 583–621.
- Kühberger, A, A Fritz, and T. Scherndl (2014). "Publication bias in psychology: A diagnosis based on the correlation between effect size and sample size". In: *Public Library of Science One* 9, pp. 1–8 (page 38).
- Larntz, K. (1978). "Small-sample comparisons of exact levels for chi-squared goodness-of-fit statistics". In: *Journal of the American Statistical Association* 73, pp. 253–263.
- Lee, Michael D and Eric-Jan Wagenmakers (2014). *Bayesian cognitive modeling: A practical course*. Cambridge University Press.
- Lehmann, Erich L. (2011). Fisher, Neyman, and the Creation of Classical Statistics. Springer.
- Levene, H (1960). "Robust tests for equality of variances". In: *Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling*. Ed. by I. Olkin et al. Palo Alto, CA: Stanford University Press, pp. 278–292.
- McGrath, R. E. and G. J. Meyer (2006). "When effect sizes disagree: The case of r and d". In: *Psychological Methods* 11, pp. 386–401.
- McNemar, Q. (1947). "Note on the sampling error of the difference between correlated proportions or percentages". In: *Psychometrika* 12, pp. 153–157.
- Meehl, P. H. (1967). "Theory testing in psychology and physics: A methodological paradox". In: *Philosophy of Science* 34, pp. 103–115.
- Pearson, K. (1900). "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". In: *Philosophical Magazine* 50, pp. 157–175.
- Peterson, C. and M. Seligman (1984). "Causal Explanations as a Risk Factor for Depression: Theory and Evidence". In: *Psychological Review* 91, pp. 347–74.
- Pfungst, O. (1911). Clever Hans (The horse of Mr. von Osten): A contribution to experimental animal and human psychology. Trans. by C. L. Rahn. New York: Henry Holt (page 34).
- Rosenthal, R (1966). Experimenter effects in behavioral research. New York: Appleton (page 35).
- Sahai, H. and M. I. Ageel (2000). *The Analysis of Variance: Fixed, Random and Mixed Models*. Boston: Birkhauser.
- Shaffer, J. P. (1995). "Multiple hypothesis testing". In: *Annual Review of Psychology* 46, pp. 561–584.
- Shapiro, S. S. and M. B. Wilk (1965). "An analysis of variance test for normality (complete samples)". In: *Biometrika* 52, pp. 591–611.
- Sokal, R. R. and F. J. Rohlf (1994). *Biometry: the principles and practice of statistics in biological research*. 3rd. New York: Freeman.
- Stevens, S. S. (1946). "On the theory of scales of measurement". In: *Science* 103, pp. 677–680 (page 13).
- Stigler, S. M. (1986). The History of Statistics. Cambridge, MA: Harvard University Press.
- Student, A. (1908). "The probable error of a mean". In: Biometrika 6, pp. 1–2.
- Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". In: *Biometrika* 34, pp. 28–35.
- (1951). "On the comparison of several mean values: An alternative approach". In: *Biometrika* 38, pp. 330–336.

Wilkinson, Leland et al. (2006). The grammar of graphics. Springer.

Yates, F. (1934). "Contingency tables involving small numbers and the χ^2 test". In: Supplement to the Journal of the Royal Statistical Society 1, pp. 217–235.

learning statistics with jamovi covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students. The book discusses how to get started in jamovi as well as giving an introduction to data manipulation. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, correlation, *t*-tests, regression, ANOVA and factor analysis. Bayesian statistics are covered at the end of the book.

This book is published under a Creative Commons BY-SA license (CC BY-SA) version 4.0.

This means that this book can be reused, remixed, retained, revised and redistributed (including commercially) as long as appropriate credit is given to the authors. If you remix, or modify the original version of this open textbook, you must redistribute all versions of this open textbook under the same license - CC BY-SA.

https://creativecommons.org/licenses/by-sa/4.0/

