## **EEE 551 Information Theory (Spring 2022)**

**Chapter 5: Data Compression** 

## **Source Coding**



- A **source code** is composed of two functions:
  - An encoding function f that maps a sequence  $X^n \in \mathcal{X}^n$  to an integer  $M = f(X^n) \in \{1, 2, 3, \dots, 2^{nR}\}$
  - $\bf 2$  A decoding function g that maps an integer  $M\in\{1,2,\dots,2^{nR}\}$  to a sequence  $\hat{X}^n=g(M)\in\mathcal{X}^n$
- There is a straightforward mapping between  $\{1, 2, ..., 2^{nR}\}$  and  $\{0, 1\}^{nR}$
- $\blacksquare$  R is the **rate** of the code number of bits per X symbol
- The probability of error is

$$P_e = \Pr(\hat{X}^n \neq X^n)$$

$$= \sum_{x^n} p(x^n) \Pr(\hat{X}^n \neq X^n | X^n = x^n)$$

$$= \sum_{x^n} p(x^n) \mathbf{1}(g(f(x^n)) \neq x^n)$$

- We say a rate R is **achievable** if, for any  $\epsilon > 0$ , there exists a length n and a code (f,q) where  $P_e < \epsilon$
- Let  $R_{\min}$  be the infimum of all achievable rates

### **Operational vs. Information Definitions**

- An operational definition gives the problem: it describes the space of possible solutions, and defines a quantity as the minimal (or maximal) value of a performance metric over all possible solutions
  - e.g.  $R_{\min}$
- An information definition gives the solution: it describes a computable mathematical function of the problem parameters

e.g. 
$$H(X)$$

Information theoretic results state that a given operational quantity is equal to a given information quantity

## **Source Coding Result**

#### **Theorem**

$$R_{\min} = H(X)$$

To prove this, we need to prove two things:

- Achievability: If R > H(X), then R is achievable
- Converse: If R is achievable, then  $R \ge H(X)$

## **Achievability proof**

- Assume R > H(X)
- Let  $\epsilon$  be small enough so that  $H(X) + \epsilon \leq R$
- $|A_{\epsilon}^{(n)}| \le 2^{n(H(X)+\epsilon)} \le 2^{nR}$
- For each  $x^n \in A_{\epsilon}^{(n)}$ , let  $\phi(x^n)$  be a unique index in  $\{1, \dots, 2^{nR}\}$
- Define the encoding and decoding functions

$$f(x^n) = \begin{cases} \phi(x^n), & x^n \in A_{\epsilon}^{(n)} \\ 1, & x^n \notin A_{\epsilon}^{(n)} \end{cases}$$
$$g(m) = \phi^{-1}(m)$$

- $\blacksquare$  If  $X^n \in A^{(n)}_\epsilon$ , then  $\hat{X}^n = X^n$ ; i.e. an error can only occur for an atypical sequence
- $P_e \leq \Pr(X^n \notin A_{\epsilon}^{(n)}) \leq \epsilon$  for sufficiently large n

### Converse proof

- Assume R is achievable
- Let (f, g) be any code with rate R
- $\blacksquare \ X^n \to M \to \hat{X}^n$  is a Markov chain, so by Fano's inequality,

$$H(X^{n}|M) \le 1 + P_e \log(|\mathcal{X}^{n}|) = 1 + nP_e \log|\mathcal{X}|$$

Consider the chain of inequalities

$$nR \ge H(M)$$

$$= I(X^n; M) + H(M|X^n)$$

$$\ge I(X^n; M)$$

$$= H(X^n) - H(X^n|M)$$

$$\ge H(X^n) - (1 + nP_e \log |\mathcal{X}|)$$

$$= nH(X) - 1 - nP_e \log |\mathcal{X}|$$

■ Divide by n:

$$R \ge H(X) - \frac{1}{n} - P_e \log |\mathcal{X}|$$

 $\blacksquare$  If R is achievable, then  $P_e$  can be made arbitrarily small, so we must have  $R \geq H(X)$ 

#### **Fixed-to-Variable Source Codes**



lacksquare A fixed-to-variable source code C is a function mapping  $\mathcal{X}^n$  to the set of finite-length bit strings

$$\{0, 1, 00, 01, 11, 10, 000, 001, 010, 011, \ldots\}$$

Given sequence  $x^n$ ,  $C(x^n)$  is the **codeword** for  $x^n$  with length  $\ell(x^n)$ 

- Unlike fixed-to-fixed source codes, with fixed-to-variable codes there are no errors —
  just longer codewords
- The expected length of a code C is given by

$$L(C) = \mathbb{E}[\ell(X^n)] = \sum_{x^n \in \mathcal{X}^n} p(x^n) \ell(x^n)$$

■ A code is **uniquely decodable** if no two sequences map to the same codeword, i.e. if  $x^n \neq x'^n$ , then  $C(x^n) \neq C(x'^n)$ 

## Single-letter source codes: Example 1

Let n=1, so the code acts on the single letter  $\boldsymbol{X}$ 

$$\mathcal{X} = \{1, 2, 3, 4\}$$
, where

$$\begin{split} p(1) &= \frac{1}{2}, \quad \text{codeword} \ C(1) = 0 \\ p(2) &= \frac{1}{4}, \quad \text{codeword} \ C(2) = 10 \\ p(3) &= \frac{1}{8}, \quad \text{codeword} \ C(3) = 110 \\ p(4) &= \frac{1}{8}, \quad \text{codeword} \ C(4) = 111 \end{split}$$

Expected length is 
$$L(C)=\frac{1}{2}\cdot 1+\frac{1}{4}\cdot 2+\frac{1}{8}\cdot 3+\frac{1}{8}\cdot 3=1.75$$
 Moreover,  $H(X)=1.75$ 

## Single-letter source codes: Example 2

$$\mathcal{X} = \{1, 2, 3\}$$
, where

$$p(1) = \frac{1}{3}, \quad \text{codeword} \ C(1) = 0$$
 
$$p(2) = \frac{1}{3}, \quad \text{codeword} \ C(2) = 10$$
 
$$p(3) = \frac{1}{3}, \quad \text{codeword} \ C(3) = 11$$

Expected length is 
$$L(C) = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 2 = \frac{5}{3} \approx 1.67$$
  $H(X) = \log 3 \approx 1.58$ 

Codes can get arbitrarily close to H(X) (but no lower) by compressing  $\ensuremath{\mathbf{sequences}}$ 

#### **Code Extensions**

■ Given a code C(x), an extension  $C^*(x^n)$  is given by

$$C^*(x^n) = C(x_1)C(x_2)\cdots C(x_n)$$

■ Can also extend codes on sequences, e.g. given  $C(x_1x_2)$ ,

$$C^*(x^n) = C(x_1x_2)C(x_3x_4)\cdots C(x_{n-1}x_n)$$

- Decodability for code extensions is a problem if the boundaries between codewords are ambiguous
- **Example:**

$$C(1) = 0$$
  
 $C(2) = 010$   
 $C(3) = 01$   
 $C(4) = 10$ 

The string 0010 can be parsed as 0,010 or 0,0,10 or 0,01,0

In this case, C is uniquely decodable but its extension is not

#### **Prefix Codes**

- A prefix code is one for which no codeword is a prefix of another codeword
- The extension of any prefix code is always uniquely decodable, because there is no ambiguity in string parsing
- Example:

$$C(1) = 0$$

$$C(2) = 10$$

$$C(3) = 110$$

C(4) = 111

0110100 can only be parsed as 0, 110, 10, 0

### **Kraft Inequality**

#### Theorem

For any prefix code, the codeword lengths  $\ell_1,\ell_2,\ldots,\ell_m$  must satisfy

$$\sum_{i=1}^{m} 2^{-\ell_i} \le 1$$

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a prefix code with these lengths

#### **Proof:**

- Any prefix code can be represented by a binary tree where the leaves are the codewords, and no codeword is an ancestor of another codeword
- Let  $\ell_{\rm max}$  be the length of the longest codeword (i.e. maximum depth of the tree)



- lacksquare Consider all tree nodes at depth  $\ell_{\mathrm{max}}$
- lacktriangle A codeword at level  $\ell_i$  has  $2^{\ell_{\max}-\ell_i}$  descendants at depth  $\ell_{\max}$
- The descendants of each codeword are disjoint, so

$$\sum_{i=1}^{m} 2^{\ell_{\max} - \ell_i} \le 2^{\ell_{\max}}$$

$$\implies \sum_{i=1}^{m} 2^{-\ell_i} \le 1$$

Conversely, given any codeword lengths  $\ell_1, \ldots, \ell_m$  satisfying the Kraft inequality, we can construct a tree (i.e. a prefix code) as follows:

- lacksquare Label the first node of depth  $\ell_1$  as codeword 1, and remove its descendants
- Label the first remaining node of depth  $\ell_2$  as codeword 2, and remove its descendants
- Continue for all lengths

### Relation to yes/no questions

Every prefix code corresponds to a strategy of asking yes/no questions to determine X (yes=1, no=0):



Thus, finding the minimum expected number of yes/no questions is equivalent to finding the prefix code with minimum expected length

# Converse bound on average codeword length

For any prefix code C, the expected length satisfies

$$L(C) \ge H(X)$$

with equality iff  $2^{-\ell_i} = p_i$  for all i

**Proof:** Let  $c = \sum_i 2^{-\ell_i}$ . By the Kraft inequality,  $c \le 1$ .

$$\begin{split} L(C) - H(X) &= \sum_{i} p_{i}\ell_{i} + \sum_{i} p_{i} \log p_{i} \\ &= -\sum_{i} p_{i} \log 2^{-\ell_{i}} + \sum_{i} p_{i} \log p_{i} \\ &= \sum_{i} p_{i} \log \frac{p_{i}}{2^{-\ell_{i}}} \\ &= \sum_{i} p_{i} \log \frac{p_{i}}{2^{-\ell_{i}}/c} - \log c \\ &= D(\mathbf{p} \| 2^{-\ell_{i}}/c) - \log c \\ &\geq - \log c \geq 0 \end{split}$$

More generally, a code  $C(x^n)$  must satisfy  $\frac{1}{n}L(C) \geq \frac{1}{n}H(X^n) = H(X)$ 

## Achievability proof for fixed-to-variable codes

For any X, there exists a prefix code C(x) where

$$H(X) \le L(C) < H(X) + 1$$

#### **Proof:**

- lacktriangle Recall that for any set of lengths  $\ell_i$  that satisfy the Kraft inequality, there exists a prefix code with these lengths
- Let  $\ell_i = \left\lceil \log \frac{1}{p_i} \right\rceil$  for all i
- Check Kraft:  $\sum_i 2^{-\ell_i} = \sum_i 2^{-\lceil \log \frac{1}{p_i} \rceil} \le \sum_i 2^{-\log \frac{1}{p_i}} = \sum_i p_i = 1$
- The code lengths satisfy

$$\log \frac{1}{p_i} \le \ell_i < \log \frac{1}{p_i} + 1$$

$$\implies H(X) \le L(C) < H(X) + 1$$

**Note:** This result implies there is a code  $C(x^n)$  such that

$$nH(X) \le L(C) < nH(X) + 1 \implies H(X) \le \frac{1}{n}L(C) < H(X) + \frac{1}{n}$$

Length per symbol is arbitrarily close to the entropy

#### **Huffman Codes**

The Huffman code has the optimal expected length over all prefix codes

Steps to construct Huffman code:

- Merge the two lowest-probability symbols into one symbol
- 2 Repeat step (1) until all symbols are merged
- Choose code based on resulting binary tree

Proof of optimality in Cover-Thomas

#### Example:

| 1    | 2    | 3   | 4                          | 5                                  |
|------|------|-----|----------------------------|------------------------------------|
| 0.25 | 0.25 | 0.2 | 0.15                       | 0.15                               |
| 2    | 2    | 2   | 3                          | 3                                  |
| 00   | 10   | 11  | 010                        | 011                                |
| 2    | 2    | 3   | 3                          | 3                                  |
| 00   | 01   | 100 | 110                        | 111                                |
|      | 2    | 2 2 | 2 2 2<br>00 10 11<br>2 2 3 | 2 2 2 3<br>00 10 11 010<br>2 2 3 3 |

Expected Huffman length: 2.3 Expected Shannon length: 2.5

Entropy: 2.286

<sup>&</sup>lt;sup>1</sup>Where  $\ell_i = \lceil \log 1/p_i \rceil$