Bag	9 0	හිමිකම්	් ඇව්රිණි / (ழழுப்	பதிப்புரிடை	மயுடையத	/All Righ	hts Reserved]	
			0.180 					1.07.700.00	

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2017

උසස් ඉණිතය I உயர் கணிதம் **I** Higher Mathematics **I**

11	C	1
11		
		100

பැය තුනයි முன்று மணித்தியாலம் Three hours

උපදෙස් :

විභාග අංකය

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පකුයෙහි f B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කාටස	පුශ්න අංකය	ලකුණු
	1	61
	2	
	3	,,
	4	
A	5	7.7
	6	
	7	-
1	8	
Ĭ	9	
	10	100000
	11	2,1
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
1	පුතිශතය	

I පතුය	3	
II පනුය		
එකතුව	-90	
අවසාන ලකුණු		

අවසාන ලකුණු

ඉලක්කමෙන්	***************************************
අකුරෙන්	.77

සංකේත අංක

උත්තර පතු පරීක්ෂක	
පරීක්ෂා කලේ: 2	
අධීක්ෂණය කළේ:	

A කොටස
සාධකවලට චෙන් කරන්න: $(x+y+z)^5-x^5-y^5-z^5$.
•••••••••••••••••••••••••••••••••••••••
•••••
•••••••••••••••••••••••••••••••••••••••
······································
$\sin^2 x + \cos^2 y = 1$ නම් xRy මගින් සියලු ධන තාත්ත්වික සංඛනා කුලකය වූ \mathbb{R}^+ මත R සම්බන්ධයක් අර්ථ දැක්වේ. R යනු \mathbb{R}^+ මත තුලානා සම්බන්ධයක් බව පෙන්වන්න, π හි තුලානා පන්තිය සොයන්න.
······································
······································
······

3.	$a eq 0$ වූ $a,b \in \mathbb{R}^+$ යැයි ද $x \in \mathbb{R}$ සඳහා $f(x) = ax + b$ යැයි ද ගනිමු. f යන්න එකට-එක හා මතට බව පෙන්වන්න $x \in \mathbb{R}$ සඳහා $g(x) = 2x + 1$ යැයි ගනිමු. $f \circ g = g \circ f$ නම් $a = b + 1$ බව පෙන්වන්න.	٠.
	······································	
	$\left \frac{1}{1} \cos^2 \alpha \sin^2 \alpha \right $	
4.	$\left 1 \cos^4 \alpha \sin^4 \alpha \right = 2 \sin^4 \alpha \cos^2 \alpha$ බව පෙන්වන්න.	
	$1 \sec^2 \alpha \tan^2 \alpha$	
	$1 \sec^2 \alpha \tan^2 \alpha$	
	$\left 1 \sec^2 \alpha \tan^2 \alpha \right $	
	$\left 1 \sec^2 \alpha \ \tan^2 \alpha \right $	
	$\left 1 \sec^2 \alpha \ \tan^2 \alpha \right $	

5.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ඉලිප්සයට (x_1, y_1) ලක්ෂායෙහි දී වූ ස්පර්ශකයේ සමීකරණය $\frac{x_1 x}{a^2} + \frac{y_1 y}{b^2} = 1$ බව පෙන්වන්න.
	$x^2+y^2=a^2$ සහායක වෘත්තයට $\left(x_1,y_2 ight)$ ලක්ෂායෙහි දී වූ ස්පර්ශකයේ සමීකරණය අපෝහනය කරන්න.
	$x_1 \neq 0$ හා $y_1 \neq 0$ බව දී ඇති විට, මෙම ස්පර්ශක දෙක ඉලිප්සයේ පුධාන අක්ෂය මත ලක්ෂායක දී හමුවන බව පෙන්වන්න.
٠	
6.	$a>0$ හා $b>0$ යැයි ද $f: \mathbb{R} \to \mathbb{R}$ යනු
	$ \left\{ \begin{array}{ccc} \frac{ x+a }{x+a} & , & x > -a & \text{sp} \\ \hline \end{array} \right. $
	$f(x) = \begin{cases} 2x+1 & , -a \le x \le b $
	$2 + \ln(x + 1 - b) , \qquad x > b \qquad \text{Sign}$
	මගින් අර්ථ දැක්වෙන ශිුතය යැයි ද ගනිමු. ${f R}$ මත f සන්තතික බව දී ඇත. a හා b හි අගයන් සොයන්න.
	More Past Papers at
	tamilguru.lk

7.	$f\colon \mathbb{R} o \mathbb{R}$ යනු $x\in \mathbb{R}$ සඳහා $f(x)=x x $ මගින් අර්ථ දැක්වෙන ශිතය යැයි ගනිමු. $x=0$ දී $f(x)$ අවකලා බව පෙන්වා සියලු $x\in \mathbb{R}$ සඳහා $f'(x)$ ලියා දක්වන්න. $x=0$ දී $f'(x)$ අවකලා නොවන බව පෙන්වන්න.
	······································
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
8.	$x=1$ විට $y=2$ අවශානාවට යටත්ව $\dfrac{\mathrm{d}y}{\mathrm{d}x}+\dfrac{2}{x}y=\sqrt{x^3+3}$ අවකල සමීකරණය විසඳන්න.
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

9.	$a\in\mathbb{R}$ යැයි ද f යනු $[0,2a]$ මත අර්ථ දැක්වෙන $x\in[0,a]$ සඳහා $f(x+a)=f(x)$ වන පරිදි වූ තාත්ත්වික-අගයැති
	සන්තතික ශිතයක් යැයි ද ගනිමු. $\int\limits_0^{2a} f(x) \mathrm{d}x = 2 \int\limits_0^a f(x) \mathrm{d}x$ බව පෙන්වන්න.
	······································
	······································
10.	ධුැවක සමීකරණ $r=2\cos\theta$ හා $r=2\sin\theta$ මගින් දෙනු ලබන වකුවල දළ සටහන් එක ම රූපයක ඇඳ මෙම වකු දෙක මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය සොයන්න.
10.	
10.	
10.	
10.	
10.	
10,	
10.	
10.	
10.	
10.	
10.	
10.	
10.	
10.	
10.	

තියලු ම හිමිකම් ඇට්රිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ල් ලංකා විහාහ දෙපාර්තමේන්තුව ල් ලංකා විහාහ දෙපාර්තමේන්තුව**ිට් විසාහා දිදුවේද්වල් මෙන් ජිත**න දෙපාර්තමේන්තුව ල් ලංකා විහාහ දෙපාර්තමේන්තුව මුහෝහකඩ් பුර්ධතාපති නිකාශාසියණේ මුහෝහකඩ් පුර්ධතාපති නිකාශාසියණේ මුහෝහිකට පුරු මුහුණේස්ත්ර මුහෝහෙසට පුර්ධතාපති නිකාශාසියණෝ Department of Examinations, Sri Lanka Department of Exa**නිමෝහිණ් Lank If ලිංකා ජිත සම්බන්ධ සම්බන්ධ වේදා** අත්තම්න්තුව ල් ලංකා විහාහ දෙපාර්තමේන්තුව ල් ලංකා විහාහ දෙපාර්තමේන්තුව ල් ලංකා විහා දෙපාර්තමේන්තුව ල්ලාක්තියණ් විසා දේශාසියණ් දුරු ල්ලාක්තියණ් වේදා මුහෝගෙසට ප්රධාන දේශාසියණ් මුහෝගෙසට ප්රධාන දුරු මුහෝගෙසට ප්රධාන දුරු නිකාශාසියණේ මුහෝගෙසට ප්රධාන දුරු නිකාශාසියණේ

අබපයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2017

උසස් ගනිතය I உயர் கணிதம் I Higher Mathematics I

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

- $11. \quad (a) \quad A,B,C$ හා D යනු S සර්වනු කුලකයක උපකුලක යැයි ගනිමු. ඔබ භාවිත කරන කුලක වීජයේ නියමයන් පැහැදිලි ව පුකාශ කරමින් පහත එක එකක් සාධනය කරන්න:
 - (i) $(A \cap B \cap C \cap D)' = (A' \cup B' \cup C' \cup D')$
 - (ii) (A-B)-C=(A-C)-(B-C); මෙහි A-B යන්න $A-B=A\cap B'$ මගින් අර්ථ දැක්වේ.
 - (b) ශිෂායන් 600ක් අතර කිුකට්, චොලිබෝල් හා පාපන්දු අතුරෙන් ඔවුන් කැමති කීුඩා නිර්ණය කිරීම සඳහා සංගණනයක් පවත්වන ලදී. සංගණනයෙන් පහත දැක්වෙන දත්ත රැස්කර ගෙන ඇත:

කිකට්වලට 206ක් කැමති ය, චොලිබෝල්වලට 141 කැමති ය, පාපන්දුවලට 184ක් කැමති ය. තව ද කිකට් හා චොලිබෝල්වලට 42ක් ද කිකට් හා පාපන්දුවලට 65ක් ද චොලිබෝල් හා පාපන්දුවලට 57ක් ද කැමති අතර 19ක් කීඩා තුනට ම කැමති ය.

සංගණනය කරන ලද කීඩා අතුරෙන්,

- (i) වැඩි තරමින් එක් ක්‍රීඩාවකට,
- (ii) හරියටම කීඩා දෙකකට,
- (iii) පාපන්දුවලට පමණක්,

කැමති ශිෂායන් ගණන සොයන්න.

කිසිම කීඩාවකට කැමති නැති ශිෂායන් ගණන ද සොයන්න.

- 12. (a) a,b හා c යන ධන තාත්ත්වික සංඛාහ තුනක් සඳහා සමාන්තර මධානහ ගුණෝත්තර මධානහ අසමානතාව $\frac{a+b+c}{3} \geq \sqrt[3]{abc}$ මගින් දෙනු ලැබේ.
 - (i) මෙහි සමානතාව වලංගු වන්නේ කුමන විට ද?
 - (ii) $a^3 + b^3 = 3ab$ වන පරිදි a හා b හි යුගල සියල්ල සොයන්න.
 - (iii) $(a^2b + b^2c + c^2a)(ab^2 + bc^2 + ca^2) \ge 9a^2b^2c^2$ බව පෙන්වන්න.
 - (iv) a > b වන විට, $a + \frac{1}{b(a-b)}$ හි අවම අගය කුමක් ද?
 - (b) $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ පරිණාමනය, xy-තලයේ ලක්ෂා x'y'-තලයට අනුරූපණය කරයි.

 $ad-bc \neq 0$ නම්, මෙම පරිණාමනය මගින් xy-කලයේ සමාන්තර රේඛා, x^ty^t -කලයේ සමාන්තර රේඛා මතට අනුරූපණය කෙරෙන බව පෙන්වන්න.

More Past Papers at

tamilguru.lk

13. ධන නිබිලමය දර්ශකයක් සඳහා **ද මුවාවර් පුමේයය** පුකාශ කර සාධනය කරන්න.

 $\omega=\cos{2\pi\over 7}+i\sin{2\pi\over 7}$ යැයි ගනිමු. $k=0,\,1,\,2,\,\dots$ සඳහා ω^k යන්න $z^7=1$ සමීකරණයෙහි මූලයක් බව පෙන්වන්න.

ඒ නයින්, $z^7 = 1$ සමීකරණයේ මූල හත ලියා දක්වන්න.

තව ද $k=0,1,2,\ldots,6$ සඳහා $\omega^k=\cos\frac{2k\pi}{7}+i\sin\frac{2k\pi}{7}$ බව පෙන්වා k=1,2,3 සඳහා $\omega^k+\omega^{7-k}=2\cos\frac{2k\pi}{7}$ බව අපෝහනය කරන්න.

 $1+\omega+\omega^2+\ldots+\omega^6=0$ බව තවදුරටත් පෙන්වා, $\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}=-\frac{1}{2}$ බව අපෝහනය කරන්න.

 C_1 හා C_2 යනු පිළිවෙළින් $y=2x^2$ හා $y=x^2+1$ මගින් දෙනු ලබන වකු යැයි ගනිමු. ඒවායේ ඡේදන ලක්ෂාවල බණ්ඩාංක දක්වමින් C_1 හා C_2 හි පුස්තාරවල දළ සටහන් එක ම රූපයක අඳින්න.

 C_1 හා C_2 වනු දෙකෙන් සපර්යන්ත වන D පෙදෙසෙහි වර්ගඑලය සොයන්න.

D පෙදෙස x-අක්ෂය වටා සෘජු කෝණ හතරකින් භුමණය කිරීමෙන් ජනනය වන ඝනයෙහි පරිමාව ද සොයන්න.

(b) වකු කුලයක් $\dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{x+3y-5}{2x+7y-9}$ අවකල සමීකරණය තෘප්ත කරයි. x=X+a හා y=Y+b ආදේශ කිරීමෙන්, දී ඇති අවකල සමීකරණය $\dfrac{\mathrm{d}Y}{\mathrm{d}X}=\dfrac{X+3Y}{2X+7Y}$ ට පරිණාමනය වන බව පෙන්වන්න; මෙහි a හා b යනු නිර්ණය කළ යුතු නියත වේ.

 $Y=\nu X$ ආදේශ කිරීමෙන් මෙම අවකල සමීකරණය විසඳා, ඉහතින් දෙන ලද වකු කුලයෙහි කාටීසීය නිරූපණය ලබා ගන්න.

15. (a) $I_n = \int \frac{x^n \mathrm{d}x}{\sqrt{a^2 + x^2}}$ නම්, $n \ge 2$ සඳහා $I_n = x^{n-1} \sqrt{(a^2 + x^2)} - (n-1)a^2 I_{n-2}$ බව පෙන්වන්න.

ජ නයින්,
$$\int_{0}^{2} \frac{x^{5} dx}{\sqrt{5+x^{2}}} = \frac{168}{5} - \frac{40\sqrt{5}}{3}$$
 බව පෙන්වන්න.

(b) $y(x)=\ln(\sec x)$ හි n වන වනුත්පත්තය $y_{_{n}}(x)$ මගින් දක්වන්නේ යැයි ගනිමු.

 $y_3 = 2y_2y_1$ හා $y_5 = 2y_4y_1 + 6y_3y_2$ බව පෙන්වන්න.

n = 1, 2, 3, 4 හා 5 සඳහා $y_{r}(0)$ හි අගයන් සොයන්න.

ඒ නයින්, x හි x^6 හා ඊට වඩා විශාල බල නොසලකා හරින්නේ නම්, y(x) සඳහා මැක්ලෝරින් ශේණි පුසාරණය ලියා දක්වන්න.

 $\ln 2 = \frac{\pi^2}{16} \left(1 + \frac{\pi^2}{96} \right)$ ආසන්න සම්බන්ධතාව අපෝහනය කරන්න.

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ බහුවලයේ සහ y = mx + c සරල රේඛාවේ ඡේදන ලක්ෂාවල x-ඛණ්ඩාංක $(a^2 m^2 - b^2) x^2 + 2a^2 mcx + a^2 (b^2 + c^2) = 0$ සමීකරණය සපුරාලන බව පෙන්වන්න; මෙහි a, b, m සහ c නිශ්ශුතා තාත්ත්වික නියත වේ.

y=mx+c රේඛාව, බහුවලයට ස්පර්ශකයක් වේ නම්, $a^2m^2=b^2+c^2$ බව අපෝහනය කරන්න.

(1,4) ලක්ෂාය ඔස්සේ යන, $\frac{x^2}{25} - \frac{y^2}{16} = 1$ බහුවලයේ ස්පර්ශක දෙකෙහි සමීකරණ සොයන්න. මෙම ස්පර්ශක දෙක බහුවලය ස්පර්ශ කරන ලක්ෂා දෙකෙහි බණ්ඩාංකත් සොයන්න.

- 17. (a) $x \in \mathbb{R}$ සඳහා $f(x) = 4\sin^2 x + 4\cos x 1$ යැයි ගනිමු.
 - (i) $a-(b\cos x+c)^2$ ආකාරයෙන් f(x) පුකාශ කරන්න; මෙහි a,b හා c යනු නිර්ණය කළ යුතු නියත වේ. ඒ නයින්, f(x) හි උපරිම අගය හා අවම අගය සොයා, ඒවා ලබා ගන්නා ලක්ෂාවල x ඛණ්ඩාංක ද සොයන්න.
 - (ii) f(x) = 0 සමීකරණය විසඳන්න.
 - (iii) $0 \le x \le \pi$ සඳහා y = f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.
 - (b) පහත වගුවෙන් දෙනු ලබන e^{x^2} හි අගයන් ඇතිව සිම්සන් නීතිය භාවිතයෙන් $\int\limits_0^1 e^{x^2} \,\mathrm{d}x$ සඳහා ආසන්න අගයක් සොයන්න.

x	. 0	0.25	0.50	0.75	1.0
e^{x^2}	1	1.064	- 1.284	1.755	2.718

 $\int_{0}^{1} \left(2x + 3e^{x^{2}}\right) dx$ සඳහා ආසන්න අගයක් අපෝහනය කරන්න.

* * *

More Past Papers at tamilguru.lk

අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

උயும் ගණිතය II உயர் கணிதம் II Higher Mathematics II

பூக ஏூகி மூன்று மணித்தியாலம் Three hours

50000	
COGCO	ď

ව්නාග අංකය

🔻 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස

සිග[°]ලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා චේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🔆 පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටකට ගෙන යාමට ඔබට අවසර ඇත.
- 🗱 සංඛාහන වගු සපයනු ලැබේ.
- * g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(11) උසස් ගණිතය II			
කොටස	පුග්න අංක ග	ලකුණු	
-	1		
	2		
	3		
	4		
A	5		
**	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
В	14		
	15		
	16		
	17		
	එකතුව		
	පුතිශතය		

I පතුය			.)
II පතුය			
එකතුව			
අවසාන ලකුණු		· · · · · · · · · · · · · · · · · · ·	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පනු පරීක්ෂක	
පරීක්ෂා කළේ : 2	
අධීක්ෂණය කළේ:	

A කොටස

Ł.	O මූලයක් අනුබද්ධයෙන් A,B හා C ලක්ෂා තුනක පිහිටුම් දෛශික පිළිවෙළින් ${f i},2{f j}$ හා $2{f k}$ වේ.
	$\overrightarrow{AB} imes \overrightarrow{AC}$ ඉදෙශික ගුණිතය සැලකීමෙන් (i) \overrightarrow{ABC} තිකෝණයෙහි වර්ගඑලය වර්ග ඒකක $\sqrt{6}$ ක් බව හා
	(ii) ABC හි තලයට ලම්බ ඒකක ඉදෙශිකයක් $\frac{2\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{6}}$ බව
	40
	ලපත්වන්න.
	······································
	······································
	විශාලත්වය $15\mathrm{N}$ වූ \mathbf{F} බලයක් $a\mathbf{i}+b\mathbf{j}$ පිහිටුම් දෛශිකය සහිත ලක්ෂායෙහි දී $2\mathbf{i}-\mathbf{j}+2\mathbf{k}$ දෛශිකයේ දිශාවට කිුයා කරයි. O මූලය වටා \mathbf{F} හි සූර්ණ දෛශිකය $10\mathbf{i}+20\mathbf{j}\mathrm{N}\mathrm{m}$ වේ නම් මීටරවලින් මනින ලද a හා b නියකවල අගයන් සොයන්න.
	······································

- 3 -

A,

3.	A කෙළවරින් සුමට ලෙස අසව් කරන ලද දිග $2a$ හා ඝනත්වය $ ho$ වූ ඒකාකාර AB දණ්ඩක්, දිග $2b$ වූ BC කොටස ඝනත්වය σ වූ සමජාතීය දුවයක ගිල්වන ලදුව රූපයේ දැක්වෙන පරිදි ආනත පිහිටීමක සමතුලිකව	දුව පෘෂ්ඨය C
	ඇත. $\frac{ ho}{\sigma}=rac{2ab-b^2}{a^2+2ab-b^2}$ බව පෙන්වන්න.	В
		•••••••••••••••••••••••••••••••••••••••
		•••••
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු ${f F}$ බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. ${f h}={f r} imes m{f v}$ මගින් අර්ථ දැක්	ම් ඉදෙශිකය r වේ. <i>P</i> මත කිුයා කරන
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක්තේ \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය
4.	O අවල මූලයක් අනුබද්ධයෙන්, ස්කන්ධය m වූ P අංශුවක, t කාලයේ දී පිහිටු් \mathbf{F} බලය O වෙතට යොමු වී තිබෙන බව දී ඇත. $\mathbf{h} = \mathbf{r} \times m\mathbf{v}$ මගින් අර්ථ දැක් \mathbf{h} නියතව පවතින බව පෙන්වන්න; මෙහි \mathbf{v} යනු පුවේගය වේ. අංශුවේ පෙත $\mathbf{r} \cdot \mathbf{h} = $ නියතයක් ආකාරයෙන් පුකාශ කළ හැකි සමීකරණ පෙන්වන්න.	ම් දෛශිකය r වේ. P මත කිුයා කරන වෙන එහි කෝණික ගමාතා දෛශිකය

5.	එක එකක අරය a වූ සමාන සුමට ගෝල දෙකක් සුමට තිරස් ගෙබිමක් මත, එකිනෙකට a දුරින් පිහිටි සමාන්තර රේබා දෙකක් μ දිගේ එක ම u වේගයෙන්, එකිනෙක දෙසට, පුතිවිරුද්ධ දිශාවලට
	චලනය වේ. ඒවා අතර පුතාහාගති සංගුණකය $\frac{1}{3}$ කි. ඒවායේ
	ගැටුමෙන් පසු, එක් එක් අංශුව එහි මුල් චලිත දිශාවට ලම්බව
	$rac{u}{\sqrt{3}}$ වේගයෙන් චලනය වන බව පෙන්වන්න.
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අචල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත.
6.	
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර
6.	ස්කන්ධය m හා දිග $2a$ වූ ඒකාකාර AB දණ්ඩක A කෙළවර අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත. දණ්ඩ සමතුලිතව එල්ලෙන විට එයට ω කෝණික වේගයක් දෙනු ලැබේ. $\omega^2 \geq \frac{3g}{2}$ වේ නම්, B කෙළවර

7.	"සාධාරණ කාසි හතරක් උඩ දැමූ විට ලැබෙන හිසවල් ගණන" X සසම්භාවී විචලාය ලෙස ගනි§ X හි අපේක්ෂාව සොයා X හි විචලතාව 1 බව පෙන්වන්න.	3-
		٠
		.
	-i	.
		•
	·	•
8.	යන්තුයකින් නිෂ්පාදිත අයිතමවලින් 10% ක් දෝෂ සහිත වේ. නිෂ්පාදනයෙන් සසම්භාවීව තෝරාගත් අයිතම 5 කින් වැඩිතම වශයෙන් අයිතම 2ක් දෝෂ සහිත වීමේ සම්භාවිතාව සොයන්න.	'
-		
		••
		••
		••
		••
		••
	· · · · · · · · · · · · · · · · · · ·	••
		• •
		••
		••

9.	X සසම්භාවී විචලාායක $f(x)$ සම්භාවිතා ඝනත්ව ශිුතය
	$f(x) = $ $\begin{cases} a(2-x) &, 1 \le x \le 2 \ \text{නම්}, \\ 0 &, අගනක් විට, \end{cases}$
	මගින් දෙනු ලැබේ. (i) $a=2$, (ii) මධානාසය, $\mu=\frac{4}{3}$ හා (iii) $P(1\leq X\leq 1.5)=0.75$ බව පෙන්වන්න.
	······································
	······································
t n	V m 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IV.	X සන්තතික සසම්භාවී විචලායක $f(x)$ සම්භාවිතා ඝනත්ව ශුිතය $f(x) = \begin{cases} \frac{1}{10} e^{-\frac{x}{10}}, & x \geq 0 \text{නම්,} \\ 0 & , \ \text{අනෙක් විට,} \end{cases}$
	į
	මගින් දේනු ලැබේ. $P(X \le x) = 1 - e^{-\frac{x}{10}}$ බව පෙන්වන්න.
	ඒ න යින්, $P\left(5 < X \le 10\right)$ මසායන්න.
	•••••••••••••••••••••••••••••••••••••••

සියලු ම හිමිකම් ඇවිරුණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved

§ ඉංකා විභාශ දෙපාර්තමේත්තුව ලී ලංකා විභාශ දෙපාර්තමේත්තුවල ලෙසා වි**පාදනා විපාදනා දෙපාර්තමේ**ත්තුව ලෙපාර්තමේත්තුව ලී ලංකා විභාශ දෙපාර්තමේත්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of Exa**জি අපිල්ධනා සිටු වැන් අපිල්ධන අතර** ප්රතිකාශ විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව

අධායයන පෞදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු க்ல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

උසස් ගණිතය உயர் கணிதம் II II Higher Mathematics

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

 ${f 11.}$ ${f F}_1,{f F}_2$ හා ${f F}_3$ බල තුනක් පහන නියම කර ඇති පරිදි පිළිවෙළින් ${f r}_1,{f r}_2$ හා ${f r}_3$ පිහිටුම් ලෛශික සහිත ලක්ෂාවල දී කියා කරයි:

B කොටස

කුියා ලක්ෂපය	බලය
$\mathbf{r}_1 = 2\mathbf{i} - 4\mathbf{j}$	$\mathbf{F}_1 = \mathbf{i} + 4\mathbf{j} - \mathbf{k}$
$\mathbf{r}_2 = -3\mathbf{j} + 5\mathbf{k}$	$\mathbf{F}_2 = -\mathbf{i} - \mathbf{j} + 2\mathbf{k}$
$\mathbf{r}_3 = 3\mathbf{i} - \mathbf{k}$	$\mathbf{F}_3 = -3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$

O මූලයෙහි දී මෙම බල පද්ධතිය ඌනනය කළ විට, ${f R}$ තනි බලයකට හා ඝූර්ණ දෛශිකය ${f G}=4{f i}-6{f j}+12{f k}$ වූ යුග්මයකට තුලා වන බව පෙන්වන්න.

ඒ නයින්, පද්ධතිය තනි සම්පුයුක්ත බලයකට ඌතනය වන බව පෙන්වන්න.

 ${f R}$ හි විශාලත්වය සොයා, සම්පුදුක්ත බලයේ කිුයා රේබාවේ දෛශික සමීකරණයක් ${f r}={f a}+\lambda {f R}$ ආකාරයෙන් ලබා ගන්න; මෙහි λ පරාමිතියක් වන අතර $oldsymbol{a}$ නිර්ණය කළ යුතු ලක්ෂායක පිහිටුම් දෛශිකය වේ.

 $oxed{12.}$ කේන්දුය O හා අරය a වූ අර්ධ වෘත්තාකාර ආස්තරයක් එහි තලය සිරස් ව හා විෂ්කම්භය දුවයේ නිදහස් පෘෂ්ඨය මත ඇතිව සමජාතීය දුවයක ගිල්වනු ලැබේ. අනුකලනය භාවිතයෙන්, ආස්තරය මත දුව තෙරපුම සොයා ආස්තරයෙහි පීඩන කේන්දුය O සිට $rac{3\pi}{16}a$ ගැඹුරකින් ඇති බව පෙන්වන්න.

කේන්දුය O හා අරය a වූ අර්ධ වෘත්තාකාර හැඩයකින් යුතු දොරක් ටැංකියක සිරස් පැත්තක් මත සාදනු ලැබේ. දොර, AB තිරස් විෂ්කම්භය දිගේ සුමට ලෙස අසව් කරනු ලැබ, දොර ABට පහළින් පිහිටයි. ඝනක්වයho වන සමජාතීය දුවයකින් ටැංකිය AB මට්ටමට පුරවනු ලැබේ. දුවය ටැංකිය තුළම රැඳෙන පරිදි දොර වසා තැබීමට එයට යෙදිය යුතු අඩුතම බලය සොයන්න.

13. ස්කන්ධය m වූ අංශුවක්, සුමට තිරස් ගෙබිමක් මත u ආරම්භක වේගයකින් තිරස් ව පුක්ෂේප කරනු ලැබේ. එහි චලිතයට පුතිරෝධය $\lambda m v^{ar{2}}$ වේ; මෙහි λ ධන නියතයක් වන අතර v යනු t කාලයේ දී අංශුවේ වේගය වේ. $\frac{\mathrm{d}v}{\mathrm{d}t}=-\lambda v^{\frac{3}{2}}$ බව පෙන්වා, **ඒ නයින්**, $v=\frac{4u}{(2+\lambda\sqrt{u}\;t)^2}$ සම්බන්ධය ලබා ගන්න. වේගය u සිට $\frac{u}{4}$ තෙක් අඩුවීම සඳහා අංශුව ගනු ලබන කාලය $\frac{2}{\lambda\sqrt{u}}$ බව තවදුරටත් පෙන්වා, එම කාල

පුාන්තරයේ දී අංශුව ගමන් කරන දුර සොයන්න.

14. එක ම අරය හා එක ම ස්කන්ධය සහිත පිළිවෙළින් කේන්දු A හා B සහිත P හා Q කුඩා සුමට ගෝල දෙකක් සුමට තිරස් ගෙබිමක් මත එකිනෙක දෙසට චලනය වේ. ගැටීමට මොහොතකට පෙර, P හි පුවේගය වූ u, \overrightarrow{AB} සමග θ සුළු කෝණයක් සාදන අතර Q හි පුවේගය වූ v, \overrightarrow{BA} දිශාවට වේ. ගෝල දෙක අතර පුතාහගති සංගුණකය e වේ. ගැටුමට මොහොතකට පසු AB කේන්දු රේඛාව දිගේ හා එයට ලම්බ P හි පුවේගයෙහි සංරචක සොයන්න.

 $u < \left(\frac{1-e}{1+e}\right)v$ බව දී ඇති විට, Q ගෝලය $(1-e)\frac{v}{2} - \frac{(1+e)}{2}u\cos\theta$ වේගයෙන් පෙර දිශාවටම චලනය වන බව පෙන්වන්න; මෙහි $v = |\mathbf{v}|$ හා $u = |\mathbf{u}|$ වේ.

තව ද $u\cos heta<< v$ නම්, Q හි ඉතිරි වන චාලක ශක්තිය එහි මුල් අගයෙන් $rac{1}{4}(1-e)^2$ භාගයක් බව පෙන්වන්න.

- 15. ස්කන්ධය M හා අරය r වූ ඒකාකාර ඝන ගෝලයක් තිරසට ආනතිය lpha වූ අවල රළු තලයක් මත නිශ්වලතාවයේ සිට මුදා හරිනු ලැබේ. ගෝලය හා තලය අතර ඝර්ෂණ සංගුණකය μ වේ.
 - (i) $\mu > \frac{2}{7} \tan \alpha$ නම්, ගෝලය තලයේ පහළට පෙරළී යන අතර එහි කේන්දුයට $a = \frac{5}{7} g \sin \alpha$ මගින් දෙනු ලබන නියත a ත්වරණයක් ඇති බව පෙන්වන්න.
 - (ii) $\mu < \frac{2}{7} an \alpha$ නම්, ගෝලය තලයේ පහළට ලිස්සා යන අතර එහි කේන්දුයේ ත්වරණය a ට වඩා වැඩි බව පෙන්වන්න.
 - (iii) $\mu = \frac{2}{7} \tan \alpha$ නම්, හා ආරම්භයේ දී ගෝලය භුමණය නොකර එහි කේන්දුයට, තලයේ පහළට උපරිම බෑවුම් රේධාවක් දිගේ u පුවේගයක් දුන්නේ නම්, එම පුවේගය නොවෙනස්ව පවතින බව පෙන්වන්න. [ස්කන්ධය M හා අරය r වූ ඒකාකාර ඝන ගෝලයක විෂ්කම්භයක් වටා අවස්ථිකි සූර්ණය $\frac{2}{5} M r^2$ බව උපකල්පනය කළ හැක.]
- **16.** (a) Xවිචික්ත සසම්භාවී වීචලාපයක් සඳහා මධාෘනාපය, $E(X) = \mu$ අර්ථ දක්වා X හි විචලතාව සඳහා $\mathrm{Var}(X) = E(X^2) \mu^2$ සූතුය ලබා ගන්න.
 - (b) X විවික්ත සසම්භාවී විචලාගක සම්භාවිතා වාාාප්තිය පහත දැක්වෙන පරිදි වේ.

x	1	2	4	5
P(X=x)	р	q	q	р

 $p=rac{1}{12}$ බව දී ඇති විට q හි අගය සොයන්න.

E(X) = 3 බව පෙන්වා Var(X) සොයන්න.

Y සසම්භාවී විචලාය $Y=X_1+X_2$ මගින් අර්ථ දැක්වේ. මෙහි X_1 හා X_2 යනු X හි ස්වායත්ත නිරීක්ෂණ දෙකකි. $P(Y=6)=rac{13}{36}$ බව පෙන්වා, Y හි සම්භාවිතා වාහප්තිය ලබා ගන්න.

E(Y) හා Var(Y) සොයන්න.

E(Y)=2E(X) බව ද ${
m Var}(Y)=2{
m Var}(X)$ බව ද **සතනාපනය** කරන්න.

 $oxed{17.}$ (a) X සන්තතික සසම්භාවී විචලාසයකf(x) සම්භාවිතා ඝනත්ව ශිුතය,

$$f(x) = \left\{ egin{array}{ll} kx(1-x) &, & 0 \leq x \leq 1 \, ext{නම්,} \ 0 &, & ext{qානක් විට,} \end{array}
ight.$$

මගින් දෙනු ලැබේ.

- (i) k=6 බව පෙන්වන්න.
- (ii) $P\left(X > \frac{1}{2}\right)$ සොයන්න.
- (iii) E(X) හා Var(X) සොයන්න.
- (b) තේ මලුවල බර, $200~{
 m g}$ මධානාංශ සහිතව පුමත ලෙස වසාප්ත වී ඇත. සියලු ම මලුවලින් හරියටම 60% ක බර $190~{
 m g}$ හා $210~{
 m g}$ අතර බව දී ඇත.
 - (i) තේ මලුවල බරෙහි සම්මත අපගමනය සොයන්න.
 - (ii) සසම්භාවීව තෝරා ගනු ලැබූ තේ මල්ලක බර $180~\mathrm{g}$ හා $200~\mathrm{g}$ අතර තිබීමේ සම්භාවිතාව සොයන්න.
 - (iii) කේ මලු හතරක් සසම්භාවීව තෝරා ගනු ලැබේ. මෙම මලුවලින් අඩුතරමින් එකකවත් බර $210~{
 m g}$ ට වැඩි වීමේ සම්භාවිතාව සොයන්න.

More Past Papers at tamilguru.lk.