Display and Color Part 2

John Keyser

Goal For This Week and Next

- Understand display and perception
 - What the human visual system can perceive
 - In terms of color, patterns, etc.
 - Based on the structure of the eye and the processing within the brain
 - What is possible to display/see/understand
 - Can influence how we design visualizations
 - Today we will discuss lightness, contrast, and color
- Much of the material drawn from Ware chapters 2-6.

What is Color?

Light spectrum

Frequency * Wavelength = Constant (so frequency and wavelength are interchangeable)

https://medium.com/@jasonlauritzen/blue-light-and-health-plus-how-to-make-your-own-blue-blocking-glasses-1a3d2694ad60

What is Color?

- Not just related to the wavelength of light.
 - Light is not just one wavelength, it's a combination of many
 - We see colors that don't correspond to a wavelength of light, e.g. Maroon
- Color is a perceptual effect
 - How we perceive a spectrum of wavelengths
 - Retina, ganglion cells, brain

Overall Response of Eye

- Eye responds to different wavelengths differently
 - Much stronger
 response in middle
 of visual spectrum
 around
 green/yellow

Receptor Cells

- Rods are saturated (fully stimulated) in bright environments
 - Don't contribute significantly to color
- Cones come in 3 types
 - S, M, L (short, medium, long wavelengths)
 - Also sometimes called Blue, Green, Red, even though both M, L are basically in green
 - Each type responds differently to different frequencies/wavelengths of light
 - Some women have 4th type but little evidence that brain makes use of this in significant ways

Response

Tristimulus Theory

- Anything (any light spectrum) that stimulates the cones the same way appears as the same color
- This means that color (as humans perceive it) is three-dimensional
- We can thus generate a range of colors by combining three different primary colors
 - We don't have to match the spectrum, just the response of the cones!

Implications

- Cones only respond to limited range of wavelengths
 - This defines the "visible" spectrum
- Missing a cone type leads to color blindness
 - 10% of men, 1% of women
 - Effectively reduces to 2 dimensions
 - Many people may not even know!
- Any particular primary color will be at one point in this 3D color space
- There is a standardized system for describing color precisely (CIE XYZ)
 - But, other systems are also possible, and sometimes better for particular applications

Gamut

 Depending on primaries, the gamut (range of displayable colors) will vary.

So, an RGB
 value is not
 the same on
 different monitors

 sRGB is a standard based on RGB for monitors

Color Spaces

- There are multiple 3D color spaces that have different characteristics and usefulness in different environments
 - XYZ: CIE standard
 - RGB: correspond to monitor primaries
 - HSV: Hue, Saturation, Value
 - HLS: Hue, Lightness, Saturation
 - LUV: CIE standard perceptually more uniform
 - LAB: CIE standard perceptually more uniform

Color Spaces

Color Spaces

CIELAB

CIELUV

Perceptually Uniform Spaces

- Idea: measuring numerical difference between two color values (in 3D space) corresponds to perceptual difference
- Perceptual spaces have some limitations since other perceptual factors play a larger role in how colors are seen.
 - Larger patches of color make differences seem larger
 - Yellow-blue direction tends to highlight differences

Opponent Process Theory

- Idea is that there are 6 primary colors, arranged in 3 opposing pairs:
 - Black/White
 - Red/Green
 - Blue/Yellow
- Cone responses easily support this. Neurophysiology as well
- Naming: People don't use combinations of opposing pairs in describing colors
- Language: Across 100 languages, every one has black/white; next is red; next is yellow or green, then is the other; sixth is blue; next is brown
- People are better at identifying these primary colors consistently (especially yellow) vs. other colors, where there is more variation
- CIE LAB system closely resembles this model (3 axes are the 3 pairs)

Color - Luminance

- Luminance (L in the CIE LUV/LAB systems) is common to use in one channel
 - Other two channels make up chromaticity
 - Perception is best along luminance channel
 - Need luminance difference to judge distance
 - Need for judging motion well
 - Key to perceiving shape and form
- Always want luminance difference for text or small symbols on background (not just chromaticity)

Low-Level Vision

- At lowest level, ganglion cells combine the signals from multiple receptors
- Travels on optic nerve through lateral geniculate nucleus, toward visual cortex area 1 (which then sends to subsequent areas of visual cortex)
- This early processing tends to identify receptive fields: stimulated within circle, inhibited just outside

Retinal Receptive Fields

Receptive Fields

- Receptive fields lead to perceptual effects
 - Low-level processing, not something you "think" about
 - Can cause certain features to appear stronger or to be perceived when not there
 - These effects can be modeled by seeing how a response of overlapping receptive fields would behave

Mach Banding

- When there is a sharp change in luminance, the perceived edge effect is stronger
- Makes uniform regions appear to have gradient
- Makes edges sharper

Simultaneous Brightness Contrast

- Contrast with background will make some intensities appear lighter/darker
- Makes gray scale very poor for encoding numerical data on a map

https://www.frontiersin.org/articles/10.3389/fnhum.2014.00566/full http://www.color-theory-phenomena.nl/11.03.htm

Perceived vs. Actual Luminance

- Luminance: actual physical value
- Brightness: perceived amount of light
- Brightness = Luminanceⁿ
 - n varies by size of patch of light
 - Point light: n = 0.5
 - Circular patch 5 deg. visual angle: n = 0.333
- Gamma in displays helps counter this
 - For intensity of input S, actually draw luminance of S^{γ} . γ can be chosen (2.0 counteracts n=0.5)

Perceived Grayscale Differences

- Weber's Law: Given a luminance L and a superimposed patch L+ δ , the value of δ that makes this just visible is determined by δ/L
 - That is, the relative intensity, not absolute, matters.
 - Humans perceive with δ = 0.005 (about). i.e. can perceive a 0.5% change in grayscale
- Can use this to determine the number of intensity levels needed to have "smooth" grayscale

Color Perception

- The effects of luminance variation extend to color
 - Since luminance is one dimension of color
 - Many effects are similar, though not as strong, for chromaticity
- Surrounding colors affect the appearance of a color
 - Highlighting of edge effects
 - Highlighting of contrast in chromaticity, not just luminance
- Cone types adapt/saturate differently from each other
 - Can change what is needed for something to seem "white"
- Relative color is more noticeable than absolute color
- Perception of saturation does not align well with actual saturation
 - Red/blue/green appears more saturated than cyan/magenta/yellow
 - Saturation is poor for encoding numerical data, and shouldn't be used for more than about 4 levels of ordinal data is advisable
- Brown is seen as distinct from dark yellow.

Chromatic Effect of Simultaneous Contrast

Continuing From Here

- Many other effects can be seen related to human perception
- We will next turn to how color choices should be made in visualizations
- Subsequently, we will discuss perception of finer details: texture and glyphs