AILI SHAO

We first consider the Dirichlet problem where $X = H_0^1(\Omega)$ and $\Omega = \Omega_1 \cup \Omega_2$. If $Y_1 = H_0^1(\Omega_1)$ and $Y_2 = H_0^1(\Omega_2)$, then $Y_1 + Y_2$ is a dense subspace of X.

Proof. We want to prove that $\overline{Y_1+Y_2}=X$. It suffices to show that for each $u\in C_c^\infty(\Omega)$, $u=u_1+u_2$ where $u_1\in C_c^\infty(\Omega_1)$, $u_2\in C_c^\infty(\Omega_2)$ since $C_c^\infty(\Omega_i)$ is dense in $H_0^1(\Omega_i)$ for each i=1,2. Suppose for $u\in C_c^\infty(\Omega)$, $\operatorname{supp}(u)=K$ where K is a compact subset of Ω . There exists $\varepsilon>0$ such that $K\subset (\Omega_1)_\varepsilon\cup (\Omega_2)_\varepsilon$ with $(\Omega_i)_\varepsilon=\{x\in\Omega_i,\operatorname{dist}(x,\Omega_i^c)>\varepsilon\}$. Let φ_i be the mollification of $\mathbbm{1}_{(\Omega_i)_\varepsilon\cap K}$ for i=1,2, then $\varphi_i\cdot u\in C_c^\infty(\Omega_i)$, and

$$||u - (\varphi_1 u + \varphi_2 u)||_{H_0^1} = || \nabla u - \nabla (\varphi_1 u + \varphi_2 u)||_{L^2}$$

$$\leq || \nabla u (1 - (\varphi_1 + \varphi_2))|| + ||u \nabla (\varphi_1 + \varphi_2)||_{L^2}$$

$$\leq C(||1 - (\varphi_1 + \varphi_2))||_{L^2} + || \nabla (\varphi_1 + \varphi_2)||_{L^2})$$

for some positive constant C. The right hand side of the inequality tends to 0 as $\varepsilon \to 0$, so the result follows.

Now we prove the above statement for the Neumann problem with $H_0^1(\Omega)$ replaced by $H^1(\Omega)$, and $Y_i = \overline{Z_i}$ where

$$Z_i := \{ u \in C^{\infty}(\Omega) \colon u = 0 \text{ in the neighbourhood of } \Omega \setminus \Omega_1 \}.$$

In this case, $Y = Y_1 + Y_2$ is a proper dense subspace of X.

Proof. (1) We first show that $Y = Y_1 + Y_2$ is a proper subspace of X. Assume for contradiction that $X = Y_1 + Y_2$, then for each $u \in X$, we have $u = u_1 + u_2$ where $u_1 \in Y_1$, $u_2 \in Y_2$. Now we consider the trace defined as

$$\operatorname{Tr}: H^1 \to H^{\frac{1}{2}}(\partial\Omega).$$

Since $u \equiv 1 \in H^1(\Omega)$ and u is continuous on $\overline{\Omega}$, then

$$1 = \text{Tr}u = \text{Tr}(u_1 + u_2) = \text{Tr}u_1 + \text{Tr}u_2.$$

We also have $\operatorname{Tr} u_1 = 0$ on $\partial \Omega_1$, and $\operatorname{Tr} u_2 = 0$ on $\partial \Omega_2$, so $\operatorname{Tr} u_2 = 1$ on γ_1 and $\operatorname{Tr} u_1 = 1$ on γ_2 . This implies that $\operatorname{Tr} u_1 = \mathbb{1}_{\gamma_1}$ on $\gamma_1 \cup \gamma_2$, but $\mathbb{1}_{\gamma_1} \notin H^{\frac{1}{2}} \gamma_1 \cup \gamma_2$), thus yields a contradiction.

(2) Now we proceed to the density argument. Note that for each $u \in Y = Y_1 + Y_2$, for $\varepsilon > 0$, there exists $\varphi_i \in Z_i$ such that

$$||u - \varphi_1 - \varphi_2||_{H^1} < \varepsilon.$$

Define $Z: \{\varphi \in C^{\infty}(\Omega) : \varphi = 0 \text{ near the problematic points}\}$, then $Z = Z_1 + Z_2$. It suffices to show that for each $u \in C^{\infty}(\Omega)$, for all $\varepsilon > 0$, there exists $\varphi \in Z$ such that $\|u - \varphi\|_{H^1} < \varepsilon$. We now simplify

2 AILI SHAO

our proof by considering the two dimensional domain. Assume that z is the probematic point, and consider the function $\varphi_{\varepsilon} \colon \Omega \to \mathbb{C}$ defined as

$$\varphi_{\varepsilon}(x,y) = \begin{cases} \left(\frac{|(x,y)-z|}{\varepsilon}\right)^{\varepsilon}, \text{ for } r = |(x,y)-z| \in (0,\varepsilon), \\ 1, \text{ otherwise.} \end{cases}$$

For each
$$u \in C^{\infty}(\Omega)$$
, $u_{\varepsilon} := u \cdot \varphi_{\varepsilon} \in Z$, then $\|u - u_{\varepsilon}\|_{L^{2}} \to 0$ as $\varepsilon \to 0$,

and

$$\| \nabla u - \nabla u_{\varepsilon} \|_{L^{2}} = \| \nabla u (1 - \varphi_{\varepsilon}) - u \nabla \varphi_{\varepsilon} \|_{L^{2}}$$

$$\leq C(\|1 - \varphi_{\varepsilon}\|_{L^{2}} + \| \nabla \varphi_{\varepsilon} \|_{L^{2}})$$

for some positive constant C. As both $||1 - \varphi_{\varepsilon}||_{L^2}$ and $|| \nabla \varphi_{\varepsilon}||_{L^2}$ tend to 0 as $\varepsilon \to 0$, $||u - u_{\varepsilon}||_{H^1} = ||u - u_{\varepsilon}||_{L^2} + || \nabla u - \nabla u_{\varepsilon}||_{L^2} \to 0$ as $\varepsilon \to 0$.