EE160 Homework 1

Deadline: 2022-10-2, 23:59:59, Submit your homework on Blackboard

1. Fig. 1 below shows a classical RLC circuit consisting of a resistor with given resistance $R = 3\Omega$, two inductors with given inductance $L_1 = 5H$ and $L_2 = 4H$, and a capacitor with given capacitance C = 2F.

Figure 1: RLC system

- (a) Show that the system output y(t) satisfies a differential equation with respect to the input u(t). (10')
- (b) Write the transfer function $\frac{Y(s)}{U(s)}$, with initial conditions $y(0)=0,\ \dot{y}(0)=0,\ \ddot{y}(0)=0.$ (10')
- 2. Find the inverse Laplace transform x(t) of the following functions (10')
 - (a) $X(s) = \frac{e^{-s}}{s-1}$
 - (b) $X(s) = \frac{1}{s(s+2)^3(s+3)}$
 - (c) $X(s) = \frac{s+1}{s(s^2+2s+2)}$
- 3. A feedback control system has the structure shown in Fig. 2, determine the closed-loop transfer function $\frac{Y(s)}{R(s)}$ by block diagram simplification. (10')

Figure 2: Block diagram

4. Derive the transfer function $\frac{C(s)}{R(s)}$ of the signal flow graph in Fig. 3. (10°)

Figure 3: Signal flow graph

5. Consider the following system block diagram

- (a) Convert the block diagram to the signal flow graph. (10')
- (b) Determine the corresponding transfer function for $\frac{Y(s)}{R(s)}$ and $\frac{Y(s)}{T_d(s)}$. (10')
- (c) To eliminate the impact of $T_d(s)$ on Y(s), what should $G_0(s)$ be? (10')
- 6. Consider the following block diagram

- (a) When r(t) = t, n(t) = 1(t), $G_c(s) = 1$, calculate the steady-state error of the system. (10')
- (b) When r(t) = 1(t), n(t) = 0, plot the step response up to the end time 30s of the closed-loop system with $G_c(s) = \frac{1}{s+20}$ and $\frac{10}{s+20}$, respectively. Give the corresponding closed-loop system transfer function under each controller.

(Note: You can use MATLAB, Python, etc. Hint: use *tf* function to create the open-loop system, then use *feedback* function to generate the closed-loop system, and use *step* function to get the step response). (10')