

STATISTICS FOR DATA SCIENCE Power Test & Simple Linear Regression

Dr. KarthiyayiniDepartment of Science and Humanities

Unit 5: Power Test & Simple Linear Regression

Session: 6 (Continued Session)

Sub Topic: Least Squares Line

Dr. Karthiyayini

Department of Science & Humanities

Some Observations:

PES UNIVERSITY ONLINE

- The Estimates are not the same as true values
- The Residuals are not the same as the Errors.
- Don't extrapolate outside the range of the data.
- Don't use the Least Squares line when the data aren't linear.

The Estimates are not the same as true values

Weight (lb) (x)	True Length (in.) (y)	Length (in.)
0.0	5.02	5.06
0.2	5.04	5.01
0.4	5.06	5.12
0.6	5.08	5.13
0.8	5.10	5.14
1.0	5.12	5.16
1.2	5.14	5.25
1.4	5.16	5.19
1.6	5.18	5.24
1.8	5.20	5.46
2.0	5.22	5.40

The Residuals are not the same as Errors

Length (in.)	Length (in.)
5.02	5.06
5.04	5.01
5.06	5.12
5.08	5.13
5.10	5.14
5.12	5.16
5.14	5.25
5.16	5.19
5.18	5.24
5.20	5.46
5.22	5.40
	(y) 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18 5.20

Don't Extrapolate outside the range of the data!!

❖The details pertaining to the no. of hours spent by students in preparing for an entrance exam and the marks scored (on a scale of (0 − 100) is provided in the following table.

Using these values,

i. Estimate the marks scored by a student who has spent 2.35 hours.

ii. Predict the marks that a student can score if he/she invests 20 hours.

SL No.	No. of hours spent	Marks Scored	
1	6	82	
2	10	88	
3	2	56	
4	4	64	
5	6	77	
6	7	92	
7	0	23	
8	1	41	
9	8	80	
10	5 59		
11	3 47		

Don't Extrapolate outside the range of the data!!

Weight (lb) (x)	Length (in.)	Weight (lb) (x)	Length (in.)
0.0	5.06	2.0	5.40
0.2	5.01	2.2	5.57
0.4	5.12	2.4	5.47
0.6	5.13	2.6	5.53
0.8	5.14	2.8	5.61
1.0	5.16	3.0	5.59
1.2	5.25	3.2	5.61
1.4	5.19	3.4	5.75
1.6	5.24	3.6	5.68
1.8	5.46	3.8	5.80

deast Square line:
$$y = 0.2046x + 4.997$$

For weight, $x = 100 \text{ lb}$,
 $dength$, $y = (0.2046)(100) + 4.997$
 $= 25.46 \text{ in}$.

Don't use the Least Squares Line when the data aren't linear

Note: In some cases the Least – Squares line can be used for *non linear data*, but only after *variable transformation* is applied.

Source: stickmanphysics.com

Measuring goodness of fit

- A goodness of fit statistic is a quantity that measures how well a model explains a given set of data.
- A linear model fits well if there is a strong relationship between the variables involved.
- The strength of a linear relationship can be measured by considering,

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

- The above relation is also referred to as a goodness-of-fit statistic.
- ❖ The draw back of this statistic relation is that it cannot be used to compare the goodness-of-fit of two models which have different data set. (That is, data sets having different units)
- \star Hence we use the relation, $r^2 = \frac{\sum_{i=1}^n (y_i \bar{y})^2 \sum_{i=1}^n (y_i \widehat{y_i})^2}{\sum_{i=1}^n (y_i \bar{y})^2}$ which is obtained by using the correlation coefficient.
- This is also referred to as the co-efficient of determination.

Visualisation of r^2

y-ŷ: dutance of (xi, yi) pom the least squares line. y-y: distance of (xi, yi) from $\sum_{i=1}^{n} (y_i - \overline{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y})^2; \text{ goodness of fit}$ statistic

Source: courses.lumenlearning.com

Some special terminologies!

$$r^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 - \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$
: Regression sum of squares

- Therefore, Total sum of squares = Regression sum of squares + Error sum of squares
- And, $r^2 = \frac{\text{Regression sum of squares}}{\text{Total sum of squares}}$
- r^2 is also referred to as the proportion of the variance in y explained by Regression.

More about r^2

- ❖ Is a quantity that indicates how well a statistical model fits a data set. In other words, it is a statistical measure of how close the observed data are to the fitted regression line.
- \clubsuit It explains how much variation in the dependent variable y is characterized by a variation in the independent variable x.
- It is used to forecast or predict the possible outcomes.
- Its value lies between 0 and 1.
- \clubsuit The higher the value of r^2 , the better the prediction.

THANK YOU

Dr. Karthiyayini

Department of Science & Humanities

Karthiyayini.roy@pes.edu

+91 80 6618 6651