1 Co převody jednotek znamenají a proč je používáme?

1.1 Proč potřebujeme znát a umět převody jednotek?

- a) Při výpočtech potřebujeme měnit násobky jednotek, v nichž veličinu vyjadřujeme.
- b) Lépe se počítá s celými čísly, než s desetinnými čísly.

1.2 Násobky a díly jednotek

- a) Jelikož mnoho veličin má v reálném světě příliš malé nebo naopak velké hodnoty v základních jednotkách, proto se zavedly pro zjednodušení zápisu názvy a násobky odstupňované po .1000 (.10³) a .0,001 (.10⁻³)
- b) Násobky a dílky jednotek se tvoří z hlavních jednotek nebo vedlejších jednotek. Násobíme nebo dělíme vhodnou mocninou deseti. Název násobku nebo dílku jednotek se skládá z předpony a názvu jednotky

Poznámka: Název násobku nebo dílku jednotky tvoříme <u>pouze</u> jednou předponou jednotky. Pokud převádíme jednotky z menší na větší, dáme do exponentu -, protože dělíme odpovídající mocninou. Pokud převádíme jednotky z větších na menší, dáme do exponentu +, protože násobíme odpovídající mocninou.

Předpona	Značka	Násobek	Ukázka	Předpona	Značka	Násobek	Ukázka	
mili	m	10 ⁻³	25 mW (25.10 ⁻³ W)	kilo	k	10 ³	25 kW (25.10 ³ W)	
mikro	μ	10 ⁻⁶	25 μW (25.10 ⁶ W)	mega	M	10^{6}	25 MW (25.10 ⁶ W)	
nano	n	10 ⁻⁹	25 nW (25.10 ⁹ W)	giga	G	10 ⁹	25 GW (25.10 ⁹ W)	
piko	p	10 ⁻¹²	25 pW (25.10 ⁻¹² W)	tera	Т	10^{12}	25 MW (25.10 ¹² W)	

•10 ¹²	•10 ⁹	•10 ⁶	•10 ³	•10 ⁰	•10-3	•10-6	•10-9	•10 ⁻¹²
tera	giga	mega	kilo	Základní jednotka	mili	mikro	nano	piko

1.3 Potřebné znalosti z matematiky

1.3.1 Co vůbec znamená •10^x?

Posunutí desetinné čárky. Posunutí prováníme na základě hodnoty (o kolik míst posuneme a jakým směrem [vlevo/vpravo]) exponentu .10x. Desetinnou čárku posuneme, podle hodnoty v exponentu. Také záleží, jaké znaménko je u exponentu. Jako mocninu můžeme použít pouze číslo z množiny Z (celá čísla).

Příklad:

$$4 \cdot 10^{-4} = 0,0004$$
 $5 \cdot 10^5 = 500000$

1.3.2 Počítání s mocninami

Při násobení mocnin se stejným základem, exponenty sčítáme:

$$\underline{a}^2 \cdot \underline{a}^3 = \underline{a} \cdot \underline{a} \cdot \underline{a} \cdot \underline{a} \cdot \underline{a} = \underline{a}^5$$

Mocniny se stejným základem vynásobíme tak, že základ umocníme součtem exponentů.

$$a^n \cdot a^m = a^{n+m}$$

Příklad:

$$a^{3} \cdot a^{6} = a^{3+6} = a^{9}$$
 $a^{5} \cdot a^{-2} = a^{5-2} = a^{3}$ $a^{4} \cdot a^{16} = a^{4+16} = a^{20}$ $a^{-9} \cdot a^{3} = a^{-9+3} = a^{-6}$

1.3.3 Převod v soustavě SI

Díky mocninám deseti je převádění v soustavě SI jednoduché. Ke speciálnímu převodu potřebujeme:

- a) Pamatovat si význam předpon (napsat správný násobek)
- b) Umět násobit mocninami deseti (správně posunout desetinnou čárku)

Před předponou bychom si měli uvědomit, zda se číselná hodnota zvětší nebo zmenší!

Postup: Jednotkou ze které převádíme, nakreslíme násobku jednotky, na kterou chceme převést a vynásobíme původní hodnotou mocninou deseti.

Příklad: Převeďte na základní jednotku

$$120 \, \underline{\mu} A \rightarrow A$$

Číselná hodnota se zmenší, protože převádíme na větší jednotku => exponent u mocniny bude záporný

$$120\mu A = 120 \cdot 10^{-6} = 0,00012A$$

$$0.015 \text{ GJ} \rightarrow \text{J}$$

Číselná hodnota se zvětší, protože převádíme na menší jednotku => exponent u mocniny bude kladný

$$0,015 \, \mathrm{GJ} =$$

$$0.015 \cdot 10^9 =$$

E-learningový kurz Převody jednotek

2 Převody jednotek

Potřebujeme převést $1\Omega \rightarrow k\Omega$

$$1 \cdot 10^{-3} = 1 \cdot 10^{-3} k\Omega$$
 $1 \cdot 10^{-3} = 1 \cdot 10^{-3}$ $1 \cdot 10^{-3} = 0.001 k\Omega$

Potřebujeme převést 1 ohm na kilo ohm. Posuneme desetinnou čárku o tři místa doleva, tím dostaneme výsledek $0,001k\Omega$.

Potřebujeme převést $1\Omega \rightarrow G\Omega$

$$1 \cdot 10^{-9} = 1 \cdot 10^{-9} G\Omega$$
 $1 \cdot 10^{-9} = 1 \cdot 10^{-9}$ $1 \cdot 10^{-9} = 0,00\ 000\ 0001G\Omega$

Potřebujeme převést 1 ohm na giga ohm. Posuneme desetinnou čárku o devět místa doleva, tím dostaneme výsledek $0,00~000~0001G\Omega$.

Potřebujeme převést $1G\Omega \rightarrow \Omega$

$$1 \cdot 10^9 \cdot 10^0 = 1 \cdot 10^9 \Omega$$
 $1 \cdot 10^{9+0} = 1 \cdot 10^9$ $1 \cdot 10^9 = 1 \cdot 000 \cdot 000 \cdot 000 \Omega$

Potřebujeme převést 1 giga ohm na ohm. Posuneme desetinnou čárku o devět místa doprava, tím dostaneme výsledek 1 000 000 000 Ω .

Potřebujeme převést $1n\Omega \rightarrow k\Omega$

Potřebujeme převést 1 nano ohm na kilo ohm. Nano ohm je $.10^{-9}$ a kilo ohm je $.10^3$, ale převádíme z nano na kilo, tak se k mocnině přidá - (mínus), tím pádem máme $.10^{-9-3} = .10^{-12}$. Poté jen posuneme desetinnou čárku o dvanáct míst doprava a tím získáme výsledek 0,00 000 000 000 0001 k Ω

Potřebujeme převést $1k\Omega \rightarrow n\Omega$

$$1 \cdot 10^{3} \cdot 10^{9} = 1 \cdot 10^{12} nΩ$$

$$1 \cdot 10^{3+9} = 1 \cdot 10^{12}$$

$$1 \cdot 10^{12} = 1 000 000 000 000 nΩ$$

Potřebujeme převést 1 kilo ohm na nano ohm. Kilo ohm je $.10^3$ a nano ohm je $.10^{-9}$, ale převádíme z kila na nano, tak se k mocnině přidá + (plus), tím pádem máme $.10^{3+9} = .10^{12}$. Poté jen posuneme desetinnou čárku o dvanáct míst doleva a tím získáme výsledek $1\,000\,000\,000\,000\,000\,\Omega$

Potřebujeme převést $1m\Omega \rightarrow M\Omega$

$$1 \cdot 10^{-3} \cdot 10^{6} = 1 \cdot 10^{-9} M\Omega$$
 $1 \cdot 10^{-3-6} = 1 \cdot 10^{-9}$ $1 \cdot 10^{-9} = 0,000\ 000\ 0001 M\Omega$

Potřebujeme převést 1 mili ohm na mega ohm. Mili ohm je $.10^{-3}$ a mega ohm je $.10^{6}$, ale převádíme z mili na mega, tak se k mocnině přidá – (mínus), tím pádem máme $.10^{-3-6} = .10^{-9}$. Poté jen posuneme desetinnou čárku o dvanáct míst doprava a tím získáme výsledek 0,000 $000\ 000\ 1M\Omega$

Potřebujeme převést $1M\Omega \rightarrow m\Omega$

$$1 \cdot 10^6 \cdot 10^{-3} = 1 \cdot 10^9 \text{m}\Omega$$
 $1 \cdot 10^{6+3} = 1 \cdot 10^9$ $1 \cdot 10^9 = 1 \cdot 000 \cdot 000 \cdot 000 \text{m}\Omega$

Potřebujeme převést 1 mega ohm na mili ohm. Mega ohm je $.10^6$ a mili ohm je $.10^{-3}$, ale převádíme z mega na mili, tak se k mocnině přidá + (plus), tím pádem máme $.10^{3+6} = .10^9$. Poté jen posuneme desetinnou čárku o dvanáct míst doleva, tím získáme výsledek 1 000 000 $.000 \, m\Omega$

E-learningový kurz Převody jednotek

Potřebujeme převést $1\mu\Omega \rightarrow G\Omega$

$$1 \cdot 10^{-6} \cdot 10^9 = 1 \cdot 10^{-15} G\Omega$$

$$1 \bullet 10^{-6-9} = 1 \bullet 10^{-15}$$

$$1 \cdot 10^{-15} = 0.000\ 000\ 000\ 000\ 001G\Omega$$

Potřebujeme převést $1\mu\Omega \rightarrow \Omega$

$$1 \cdot 10^{-6}$$
. $10^0 = 1 \cdot 10^{-6} \Omega$

$$1 \cdot 10^{-6+0} = 1 \cdot 10^{-6}$$

$$1 \cdot 10^{-6} = 0.000 \ 0001\Omega$$

Potřebujeme převést $1\Omega \rightarrow \mu\Omega$

$$1 \cdot 10^{-6} = 1 \cdot 10^{6} \mu \Omega$$

$$1 \cdot 10^{0+6} = 1 \cdot 10^6$$

$$1 \cdot 10^6 = 1\ 000\ 000\mu\Omega$$

Potřebujeme převést $1G\Omega \rightarrow \mu\Omega$

$$1 \cdot 10^9 \cdot 10^{-6} = 1 \cdot 10^{15} \mu \Omega$$

$$1 \cdot 10^{9+6} = 1 \cdot 10^{15}$$

$$1 \cdot 10^{15} = 1\,000\,000\,000\,000\,000\,000$$

Potřebujeme převést 78mV → V

$$78 \cdot 10^{-3} \cdot 10^{0} = 0.078 \text{ V}$$

$$78 \cdot 10^{-3+0} = 78 \cdot 10^{-3}$$

$$78 \cdot 10^{-3} = 0.078 \mathbf{V}$$

Potřebujeme převést $7A \rightarrow \mu A$

$$7 \cdot 10^{0} \cdot 10^{-6} = 7000 \cdot 10^{3} \mu A$$

$$7 \cdot 10^{0+6} = 7 \cdot 10^6$$

$$7 \cdot 10^6 = 7 \ 000 \ 000 \mu A$$

Potřebujeme převést $23\mu F \rightarrow F$

$$23 \cdot 10^{-6} \cdot 10^{0} = 23.10^{-6} \text{ F}$$

$$23.10^{-6+0} = 23 \cdot 10^{-6}$$

23•
$$10^{-6}$$
= **0.000 023F**

Potřebujeme převést $8,23\text{mA} \rightarrow \mu\text{A}$

$$8,23 \cdot 10^{-3} \cdot 10^{6} = 8230 \mu A$$

$$8,23 \cdot 10^{-3+6} = 8,23 \cdot 10^3$$

$$8,23 \cdot 10^3 = 8230 \mu A$$

3 Grafické znázornění převodu jednotek

Převeďte $625000\Omega \rightarrow M\Omega$

 $625000 \cdot 10^{0} \cdot 10^{-3} \cdot 10^{-3} = 625 \cdot 10^{-6}$

$$\bullet 10^{-6} \bullet 10^{-3} \bullet 10^{0}$$

•10⁻⁶

$$000.625.000\Omega$$

 $= 0.625 M\Omega$

Převeďte $452k\Omega \rightarrow m\Omega$

 $452 \cdot 10^3 \cdot 10^0 \cdot 10^3 = 452 \cdot 10^6 \,\mathrm{m}\Omega$

$$452.000.000\Omega$$

 $=452.10^6 \, \text{m}\Omega$

Převeďte $865M\Omega \rightarrow n\Omega$

 $865 \cdot 10^6 \cdot 10^0 \cdot 10^9 = 865 \cdot 10^{15} \text{ n}\Omega$

865. 000. 000. 000. 000Ω
•
$$10^{-3}$$
 • 10^{0} • 10^{3} • 10^{6} • 10^{9}

$$= 865.10^{15} \, n\Omega$$

4 Mimo matematické pomůcky

4.1 Desetinná čárka

O kolik desetinných míst máte posunut desetinnou čárku? Desetinnou posouváme na základě mocniny ve výraze •10^x . Také záleží, jaké znaménko se u exponentu vyskytuje. Pokud u exponentu je – (mínus), tak desetinnou čárku posuneme doprava nebo pokud je u exponentu + (plus), tak desetinnou čárku posuneme doleva.

4.2 Zjednodušení převodu jednotek

Zápis extremně velkého či extrémně malého čísla lze úspěšně zkrátit s využitím čísel o základu 10 s exponentem. Toto je možné v několika krocích.

- a) Uvědomíme si, na které části číselné osy se nachází převáděný výraz. "desetinná čárka" na ose je 100 tedy 1. **Potažmo základní jednotka!!!**
- b) Pokud je směr převodu z větší na menší je cílový exponent záporný, pokud je směr převodu z menší na větší bude cílový exponent kladný.

+				,	-				
000	000	000	000	,	000	000	000	000	
Т	G	М	k	,	m	μ	n	p	
10 ¹²	109	10 ⁶	10 ³	,	10-3	10 ⁻⁶	10-9	10 ¹²	

c) Převáděný výraz rozdělíme na číslo a jednotku, poté výraz vynásobíme cílovou příponou

241 **km**
$$\rightarrow$$
 mm 2,41•10²•10³•10³

Exponenty použitého základu se při násobení sčítají tedy 2+3+3=8.

21 **km** =
$$2,1 \cdot 10^8$$
 mm

84 **mm** =
$$8,4 \cdot 10^{1} \cdot 10^{-3}$$
 m = $8,4 \cdot 10^{-2}$ m = $84 \cdot 10^{-3}$ m