A Level Maths - S2 Sam Robbins 13SE

<u>Distribution Overview</u>

	Uniform(Continuous)	Binomial(Discrete)	Poisson(Discrete)	Normal(Continuous)	CRVs(Continuous)
Conditions	All outcomes have the same probability	 There are a fixed number of trials There are two outcomes Each trial is independent The probability of success is constant 	 Events occur at random Events are independent Constant rate of occurrence No simultaneous events 	Probabilities symmetrical about the mean	None
Notation	$\mathcal{U}(a,b)$	B(n,p)	$P_o(\lambda)$	$\mathcal{N}(\mu,\sigma^2)$	$f(x) = \begin{cases} f(x), & \text{for } a \le x \le b \\ 0, & \text{otherwise} \end{cases}$
Parameters	a= Start value b= End value	n= Number of trials p= Probability of success	λ = Mean number of occurrences in the time period	μ = Mean σ = Standard Deviation	a= Start value b= End value
PDF or PMF	$f(x) = \begin{cases} \frac{1}{b-a}, & \text{for } a \le x \le b \\ 0, & \text{otherwise} \end{cases}$	$f(r) = \begin{cases} \binom{n}{r} p^r (1-p)^{n-r}, & \text{for } 0 \le r \le n \\ 0, & \text{otherwise} \end{cases}$	$f(r) = \begin{cases} \frac{e^{-\lambda} \lambda^k}{k!}, & \text{for } 0 \le r \le n \\ 0, & \text{otherwise} \end{cases}$	Don't need to know	Given in question or: $\frac{dy}{dx}F(x)$
CDF	$f(x) = \begin{cases} 0, & \text{for } x < a \\ \frac{x-a}{b-a}, & \text{for } a \le x < b \\ 1, & \text{for } x \ge b \end{cases}$	Use tables	Use tables	$z = \frac{x - \mu}{\sigma}$ Then use tables	$F(x) = \int_{a}^{x} f(x)dx$
Mean	$\frac{1}{2}(a+b)$	np	λ	μ	$\int_{a}^{b} x f(x) dx$
Variance	$\tfrac{1}{12}(b-a)^2$	np(1-p)	λ	σ^2	$\int_{a}^{b} x^{2} f(x) dx - \mu^{2}$
Median	$\frac{1}{2}(a+b)$	Don't need to know	Don't need to know	μ	Where F(x)=0.5
Mode	Any Value	Don't need to know	Don't need to know	μ	Where $f'(x) = 0$
≈ Binomial	No	N/A	Check using inverse	$P = 1 - \frac{\sigma^2}{\mu}$ $n = \frac{\mu}{P}$	No
≈ Poisson	No	Where $\mathbf{p} < 0.1$ and $\mathbf{n} > 50$ $X \sim B(n, p) \approx Y \sim P_o(np)$	N/A	Where $\mu \approx \sigma^2$ and $\mu > 10$ $\mathcal{N}(n, p) \approx X \sim P_o(n \ or \ p)$	No
≈ Normal	No	Where $n > 10$ and $P < 0.5$ $X \sim B(n, p) \approx \mathcal{N} \big(np, np(1-p) \big)$ Don't forget continuity correction	Where $\lambda > 10$ $X \sim P_o(\lambda) \approx \mathcal{N}(\lambda, \lambda)$ Don't forget continuity correction	N/A	No