## EXERCISE 8B: HEAT AND WORK IN AN IDEAL GAS

Objectives:

- Calculate the form of adiabats relating p and V in an ideal gas at constant entropy
- Understand the basic operating principle of a heat engine
- Calculate the **Carnot limit** on the efficieny of a heat engine

References: Kittel & Kroemer, Ch. 6

Useful result from Ex. 8A:

- Free energy of an ideal gas:  $F = F_0 + F_{\text{int}}$ , where  $F_{\text{int}} = -N\tau \ln Z_{\text{int}}$  and  $F_0$  is the free energy of the monatomic ideal gas.
- 1. Which of the following properties of the ideal gas are modified by the internal degrees of freedom, and how? Explain.
  - a. The equation of state  $p(N, \tau, V)$
  - b. The entropy  $\sigma(N, \tau, V)$
  - c. The heat capacity  $C_V = \tau(\partial \sigma/\partial \tau)_V$  at constant volume.
  - d. The heat capacity  $C_p = \tau (\partial \sigma / \partial \tau)_p$  at constant pressure.
  - e. The isothermal compressibility  $\kappa_{\tau} = -V^{-1}(\partial V/\partial p)_{\tau}$
  - f. The adiabatic compressibility  $\kappa_{\sigma} = -V^{-1}(\partial V/\partial p)_{\sigma}$

(cont'd)

- 2. Adiabatic expansion or compression of an ideal gas. Show that for any ideal gas, the adiabats are of the form  $pV^{\gamma} = \text{constant}$ , where  $\gamma = C_p/C_V$  is the **heat capacity ratio**.
  - a. Write down the fundamental thermodynamic relation and simplify it for the case of constant entropy and constant particle number.
  - b. Explain why the following relations hold for any ideal gas at fixed N:

$$Nd\tau = pdV + Vdp. (1)$$

$$dE = C_V d\tau \tag{2}$$

c. Use the above results to derive a relation of the form

$$Vdp = -\gamma pdV. (3)$$

What is the value of  $\gamma$  in terms of  $C_V$ ?

d. Show that in an adiabatic expansion or compression of an ideal gas,  $pV^{\gamma}$  is constant.

e. The relation  $pV^{\gamma} = \text{constant defines a family of curves called adiabats}$ . Sketch adiabats (showing p as a function of V) for a monatomic ideal gas at two different entropies  $\sigma_1 < \sigma_2$ .

f. Add to your sketch two **isotherms**, i.e., curves of p vs V at two different constant temperatures  $\tau_1 < \tau_2$ . What is their functional form?



FIG. 1. Carnot cycle composed of adiabatic and isothermal quasi-static processes.

- g. Consider a cycle of alternating isothermal and adiabatic processes that traces out the loop in the  $\sigma$ - $\tau$  plane shown in Fig. 2.
  - i. In your plot in e., label the curves in the p-V plane corresponding to the trajectories A, B, C, and D, and shade in a region representing the amount of work done by the gas in one such cycle.
  - ii. Is the net work done by the gas positive or negative?
  - iii. How much heat is absorbed by the gas in the same cycle?

h. Show that the exponent  $\gamma$  is equal to the **heat capacity ratio**:  $\gamma = C_p/C_V$ . You will need the fundamental thermodynamic relation and the result of part c.

i. Explain in words how your sketch would change for a gas of molecules with internal degrees of freedom.

- 3. Carnot efficiency. How efficiently can we generate work from heat? Figure 2(a) illustrates a generic process wherein a system  $\mathcal{A}$  absorbs heat  $q_2$  from a reservoir at temperature  $\tau_2$  and outputs work w, dumping heat into a reservoir at temperature  $\tau_1 < \tau_2$ . Assume that the process is cyclic, so that it can be repeated indefinitely.
  - a. Express the **second law of thermodynamics** in terms of the quantities labelled in Fig. 2(a).

b. Express the **first law of thermodynamics** in terms of the quantities labelled in Fig. 2(a).



FIG. 2. (a) Schematic diagram of a heat engine. (b) Carnot cycle composed of adiabatic and isothermal quasi-static processes.

c. The **efficiency** of the heat engine is defined as the ratio  $\eta \equiv w/q_2$  of work output by the system to heat input from the high-temperature reservoir. Calculate a fundamental limit on the efficiency of a heat engine operating between the two reservoirs at temperatures  $\tau_2 > \tau_1$ .