Note: all functions take an additional optional argument that is used for question 2. This additional argument must be left empty when testing question 1.

Hooke-Jeeves:

Iteration points:

Each column is an iteration point, row 1 containing x_1 and row 2 containing x_2 .

-1	2.6597	2.6597	2.2564	2.0654	2.0654	1.7628	1.7676	1.7676	1.7622	1.7623	1.7623
-4	-4	-2.1185	-2.3258	-2.3258	-1.8017	-1.6405	-1.6405	-1.6321	-1.6290	-1.6290	-1.6290

Objective functions:

Each column is an iteration point.

488	344.5883	15.9791	-3.9047	-6.0348	-18.9607	-22.1212	-22.1221	-22.1243	-22.1252	-22.1252	-22.1252

Steepest descent:

Iteration points:

Each column is an iteration point, row 1 containing x_1 and row 2 containing x_2 .

-1	-1.3029	1.2942	1.3873	1.6412	1.6675	1.7333	1.7397	1.7555	1.7570	1.7606	1.7610
-4	-1.2244	-0.8331	-1.4512	-1.4130	-1.5868	-1.5769	-1.6191	-1.6167	-1.6266	-1.6261	-1.6284

Gradients:

Each column is an iteration point, row 1 is in the direction of x_1 and row 2 is in the direction of x_2 .

55	-2.0846	-2.2163	-16.1260	-1.1565	-5.4549	-0.3252	-1.3864	-0.0784	-0.3291	-0.0183	-0.0770
-504	-0.3141	14.7129	-2.4277	7.6506	-0.8233	2.1446	-0.2097	0.5208	-0.0495	0.1225	-0.0115

Objective functions:

Each column is an iteration point.

488	2.0602	-13.2015	-18.9107	-21.1655	-21.8768	-22.0637	-22.1105	-22.1217	-22.1244	-22.1250	-22.1251

Newton's Method:

Iteration points:

Each column is an iteration point, row 1 containing x_1 and row 2 containing x_2 .

-1	0.6402	1.6933	1.7726
-4	-0.5030	-1.6892	-1.6430

Gradients:

Each column is an iteration point, row 1 is in the direction of x_1 and row 2 is in the direction of x_2 .

	55	-9.2982	-7.3209	0.3014
-	504	4.3612	-6.4995	-0.5174

Objective functions:

Each column is an iteration point.

488 -5.2753 -21.6738	-22.1200
----------------------	----------

Pure Newton's Method:

Pure Newton's method finishes with final objective value = 2.2243. It does not reach the global minima (f = -22.1200), instead finding some other local minima. This is because it does not travel far enough in the first step.

Script to run question 3 is named Q3.m $\,$

Unknown pattern Q:

Best match - pattern 3:

Best match for all 3 patterns:

```
Pattern 1:

x = [-0.19455, -0.78707, -29.1891, 499.3757]

f = 125005.6479

Pattern 2:

x = [-0.16053, -0.43646, 75.2213, 367.1051]

f = 569742.881

Pattern 3:

x = [0.72766, 0.64803, 235.4454, -128.4313]

f = 7440.8567
```

a) Sufficient conditions:

$$\nabla f(x^*) = 0 \tag{1}$$

$$d^T H(x^*)d > 0 (2)$$

Consider (1):

$$f(x^*) = \sum_{k=1}^{n} (p_k \times (y_k - x^*)^2)$$
$$\nabla f(x^*) = \sum_{k=1}^{n} (p_k \times (y_k - x^*)(-2)) = 0$$

$$\sum_{k=1}^{n} (p_k \times (y_k - x^*)) = 0$$

$$\sum_{k=1}^{n} (p_k \times y_k - p_k \times x^*)) = 0$$

$$\sum_{k=1}^{n} p_k \times y_k = \sum_{k=1}^{n} p_k \times x^*$$

$$x^* = \sum_{k=1}^{n} (p_k \times y_k) / \sum_{k=1}^{n} p_k$$

$$x^* = \sum_{k=1}^{n} (p_k \times y_k)$$

Consider (2):

$$H(x^*) = \sum_{k=1}^{n} (2 \times p_k)$$
$$d^T H(x^*) d > 0$$
$$\sum_{k=1}^{n} (2 \times p_k \times d^2) > 0$$
$$\sum_{k=1}^{n} (p_k) > 0$$

(1) states x^* is optimal at $x^* = \sum_{k=1}^n (p_k \times y_k)$. (2) is satisfied by the definition of p_k . When $p_k = \frac{1}{n}$, x^* is the mean value of y_k .

b)

$$\min \mathbf{E}[|Y - x|]$$

$$= \min \sum_{k=1}^{n} (p_k \times |y_k - x|)$$

$$= \min \sum_{k=1}^{n} (\frac{1}{n} \times |y_k - x|)$$

$$= \min \sum_{k=1}^{n} (\frac{1}{n} \times \max(y_k - x, -(y_k - x)))$$

Let $f(x) = \sum_{k=1}^{n} g_k(x)$ such that $g_k(x) = \frac{1}{n} \times \max(y_k - x, -(y_k - x))$.

Then, defining d^+, d^- as positive and negative direction respectively:

$$g'_k(x; d^+) = -\frac{1}{n}$$
 if $x < y_k$
$$\frac{1}{n}$$
 if $x > y_k$ if $x > y_k$

$$g'_k(x; d^-) = \frac{1}{n}$$
 if $x < y_k$
$$-\frac{1}{n}$$
 if $x > y_k$ if $x > y_k$ if $x > y_k$

From page 52 of lecture notes we have:

$$f'(x) = \sum_{k=1}^{n} g'_k(x)$$

Note that there are 2 possible values for $g'_k(x)$ depending on the value of y_k relative to x_k . We denote $N_{(>)}$ as the number of $y_k > x$ and $N_{(<)}, N_{(=)}$ similarly. Then:

$$f'(x;d^+) = -\frac{1}{n} \times N_{(<)} + \frac{1}{n} \times N_{(>)} + \frac{1}{n} \times N_{(=)}$$
$$f'(x;d^-) = \frac{1}{n} \times N_{(<)} + -\frac{1}{n} \times N_{(>)} + \frac{1}{n} \times N_{(=)}$$

Point x^* is at a global minima if $f'(x^*;d) \ge 0 \,\forall d$ as per page 52 of the lecture notes. We then have two conditions to meet:

$$N_{(>)} + N_{(=)} \ge N_{(<)}$$

 $N_{(<)} + N_{(=)} \ge N_{(>)}$

Re-ordering y_k such that $y_1 \leq y_2 \leq \cdots \leq y_n$, x^* is optimal between $[y_a, y_b]$ inclusive, where $a = \lfloor \frac{n}{2} \rfloor, b = \lceil \frac{n}{2} \rceil$. This is when x^* has half the y_k values above it, and half below it.