

Longitudinal coherence in an FEL with a reduced level of shot noise

Vitaliy Goryashko, Uppsala University presented at FEL 2013, New York, August 25-30, 2013

Spontaneous Undulator Radiation: SASE and SACSE FEL

$$\left(\nabla^2 - \frac{\partial^2}{\partial t^2}\right) \vec{E} = \frac{4\pi}{c} \left(\frac{\partial \vec{j}}{\partial t}\right)$$

$$\vec{j} = e^{\sum_{b}^{Q_b} \vec{v}_i \, \delta(\vec{r} - \vec{r}_i)}$$

 the gradient of a current drives emission bunch tail can produce strong CSE and 'seed' the bunch if $\Delta\lambda \sim \lambda$

 $P_{spon}(k) = Q_b P_{und}(k) + Q_b (Q_b - 1) |\overline{F}(\omega)|^2 P_{und}(k)$ incoherent coherent

Coherent and Incoherent Spontaneous Emission

$$P_{\text{spontaneous}}(k) = P_{\text{incoh}}(k)g(S, \langle \Gamma \rangle) + P_{\text{coh}}(k)$$

 $g(S,\langle\Gamma\rangle)$ is the noise reduction factor

$$P_{\text{coh}}(k) = Q_b^2 |F(k)|^2 P_{\text{und}}(k)$$
 $P_{\text{incoh}}(k) = Q_b P_{\text{und}}(k)$

$$P_{\text{incoh}}(k) = Q_b P_{\text{und}}(k)$$

$$P_{\rm coh}(k) \gg P_{\rm incoh}(k)$$

consider a bunch of special shape

$$|F(k)|^2 = |F_{\text{rec}}(k)|^2 |F_{\text{fron}}(k)|^2$$

$$|F_{\rm rec}(k)|^2 = \left(\frac{\sin[kL_b/2]}{kL_b/2}\right)^2$$

$$|F_{\text{fron}}(k)|^2 = \left(\frac{\pi^2 \cos[k\Delta\lambda/2]}{\pi^2 - k^2\Delta\lambda^2}\right)^2$$

$$\frac{4\pi^2 Q_b}{(kL_b)^2 (k\Delta\lambda)^4} \gg g(S, \langle \Gamma \rangle))$$

By decreasing the front duration of a bunch and shot noise one can achieve the dominance of coherent spontaneous emission over incoherent emission.

Towards Strong Coherent Spontaneous Emission at Start-up

Can we prepare bunches with a sharp tail and a reduced level of shot noise?

$$\frac{4\pi^2 Q_b}{(kL_b)^2 (k\Delta\lambda)^4} \gg g(S, \langle \Gamma \rangle)$$

Let us try!

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS **16.** 030702 (2013)

Self-amplified coherent spontaneous emission in a free electron laser with "quiet" bunches

V. A. Goryashko* and V. Ziemann Uppsala University, Sweden

Formation of 'Quiet' Electron Bunches with High Current Gradient

- . The schematic illustration of a possible formation of the quiet bunch with a high current gradient at the bunch tail.
- the concepts of Longitudinal Space Charge Amplifier and Laser Heater are combined it order to produce partly microbunched bunch
- the main core of a bunch is heated by a laser heater and stable w.r.t. the microbunching instability
- > the bunch tail is left unheated and is subject to the microbunching instability
- > an energy chirp is applied in order to produce wavelength compression
- > the microbunched tail is a source of CSE and 'seeds' the main bunch core
- > the shot noise suppression is used in order to make the bunch core 'quiet'

Controlled Microbunching

Shot Noise Suppression

0.4

0.5

Wavelength λ (µm)

0.6

at 0.5 µs wavelength the maximum shot noise suppression for realistic bunch parameters is four orders of magnitude for both schemes

10⁻⁶

0.3

0.7

Non-Averaged Code for Simulation of SACSE FEL

Vector-potential A is expanded into a complete set of transverse modes (waveguide modes, Hermite-Gaussian modes, optical-waveguide modes). The mode amplitude satisfies a 1D Klein-Gordon equation

$$\Big(\frac{\partial^2}{\partial z^2} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - k_\perp^2\Big)\vec{A}_\perp = -\frac{4\pi}{c}\vec{I}_\perp, \qquad \textit{I}_\perp \text{ is the effective current density}$$

$$A_{\perp}(z,t) = \frac{1}{c} \int_{-T_e}^{t} dt' \int_{0}^{z} dz' G(z-z',t-t') I_{\perp}(z',t'),$$

G(z-z',t-t') is the Green function

In 1D approximation and free space the electric field reads

$$E_{\perp}(z,t) = -\frac{\tilde{\varrho}}{c^2} \sum_{q}^{Q_e} \int_{0}^{z} dz' \, \frac{v_{\perp|q}(z')}{v_{z|q}(z')} \, \delta \left[\left(ct - ct'_q(z') \right) - (z - z') \right] U[t - t_q(z')] U[t_q(z') + T_e].$$

Quasi- recurrence relation has place

$$E_{\perp}(z_{k} + \Delta z, ct_{j}) = E_{\perp}(z_{k}, ct_{j} - \Delta z) + \int_{z_{k}}^{z_{k}} f[z_{k}, z', ct_{j}, ct_{q}(z')]dz'$$

Features of the Non-Averaged FEL Code

- an algorithm based on the Green function approach is unconditionally stable;
- EM field is calculated only in the space-time domain of interest;
- one needs to keep in memory bunch parameters and EM fields values only for one undulator position;
- numerical implementation of boundary conditions is straightforward;
- algorithm allows for successive calculation of the field along an undulator.

Time consumption:

- several thousands particles
- undulator length ~ 30 gain length
- bunch length ~ 10 cooperation length
- 1D approximation
- discretization step $\sim \lambda_u/10$

One run in Matlab takes around 100 sec. The code is fast enough to get statistically valid results within reasonable time.

Self-Amplified Coherent Spontaneous Emission

Bunch and FEL parameters

Parameter	Symbol	Value
Electron energy	$\gamma_r m_e c^2$	$250 \mathrm{MeV}$
Bunch peak current	I_0	350 A
Transverse rms size	σ_b	$55~\mu\mathrm{m}$
Energy spread	$\sigma_{\gamma} m_e c^2$	$64 \mathrm{\ keV}$
Normalized emittance	$arepsilon_n$	$0.36~\mathrm{mm}\cdot\mathrm{mrad}$
Bunch duration	T_b	$190 \mathrm{fsec}$
Undulator period	λ_u	$4 \mathrm{~cm}$
Undulator parameter	${\mathcal K}$	3.2
FEL wavelength	λ_r	$0.511~\mu\mathrm{m}$
FEL parameter	ho	0.0053
Cooperation length	L_c	$4.29~\mu\mathrm{m}$
Gain length	ℓ_g	$33.57~\mathrm{cm}$
Normalized bunch length	$ au_b$	13.3

Noise in Electron Beams: Shot Noise Parameter*

In what follows the momentum noise and quantum noise are assumed to be small and I focus only on the position noise. We will limit ourselves to the case $k\lambda_D$ <<1 so that the position noise can be reduced**.

$$\Gamma(k,z) = \frac{1}{Q_b} \sum_{q,p}^{Q_b} \exp\{ik[s_q(z) - s_p(z)]\}, \quad s_q(z) \text{ is the electron position in a bunch}$$

$$\Gamma(k,z) = Q_b |b(k,z)|^2, \quad b(k,z) = \frac{1}{Q_b} \sum_{q}^{Q_b} \exp[iks_q(z)];$$

$$\Gamma(k,z) = Q_b |b(k,z)|^2, \quad b(k,z) = \frac{1}{Q_b} \sum_{q}^{Q_b} \exp[iks_q(z)]$$

$$\langle \Gamma(k,z) \rangle =$$
 { 1, microbunched bunch }
 $\langle \Gamma(k,z) \rangle =$ { 1, normal level of shot noise }
 $\langle 1,$ "quiet" bunch (noise suppression)

* D. Ratner, Z. Huang, and G. Stupakov, PRSTAB 14, 060710 (2011).

** K.-J. Kim, "Irreducible Quantum and Classical Noise in High-Gain FEL Amplifier," 4th Microbunching Workshop (2012).

Self-Amplified Spontaneous Coherent Emission: Statistics

rms width of the probability density distribution determines FEL coherence

$$g_2(0) = 1 + \sigma^2(|F|^2)$$

2, chaotic radiation from a thermal source.

Spectrum and Time-Bandwidth Product

List of Relevant Publications

SACSE FEL:

- A. Doria et al., IEEE J. Quantum Electron. 29, 1428 (1993).
- D. A. Jaroszynski et al., Phys. Rev. Lett. 71, 3798 (1993).
- S. Krinsky, Phys. Rev. E 59, 1171 (1999).
- B.W. J. McNeil, G. R. M. Robb, D. A. Jaroszynski, Opt. Commun. 165, (1999).

Longitudinal space-charge amplifier:

- E.A. Schneidmiller and M.V. Yurkov, PRSTAB 13, 110701 (2010).
- A. Marinelli et al., Phys. Rev. Lett. 110, 264802 (2013).

Shot noise suppression:

- A. Gover and E. Dyunin, Phys. Rev. Lett. 102, 154801 (2009).
- V. N. Litvinenko, FEL 09, Liverpool, UK
- D. Ratner, Z. Huang, and G. Stupakov, PRSTAB 14, 060710 (2011).
- D. Ratner and G. Stupakov, Phys. Rev. Lett. 109, 034801 (2012).
- A. Gover, A. Nause, E. Dyunin, M. Fedurin, Nat. Phys., 8, 877 (2012).

Summary

- the shot noise suppression in electron bunches is an efficient way of increasing the longitudinal coherence of FELs;
- the output pulses can be made completely coherent and Fourier transform limited;
- shot noise has to be suppressed by three orders of magnitude in order to decrease the relative dispersion of radiation power by one order of magnitude;
- we propose a novel scheme of formation of 'quiet' bunches with a sharp tail to drive coherent spontaneous emission in FELs;
- the proposed scheme of bunch formation may extend SACSE FELs to the VUV region;
- details can be found in paper "V.A. Goryashko, V. Ziemann Phys. Rev. ST Accel. Beams 16, 030702 (2013)".