Minist 手写数字分类报告

ID: 21210980110 姓名: 刘家材

一. 模型与训练

1. 神经网络模型

在model.py中实现了一个二层神经网络: class NN_Classfier

激活函数: Relu

损失函数: 交叉熵. 见 NN_Classfier. loss_fn()

前向计算: 见 NN_Classfier. forward()

梯度计算: 见 NN_Classfier. backward()

梯度更新: 见 NN_Classfier. step()

保存模型: 见 NN_Classfier. save_model()

加载模型: 见 NN_Classfier. load_model()

2. 神经网络训练

train.py 中 函数Train() 负责以SGD为优化器训练, 原型为:

```
def Train(Network : NN_Classfier,train_epoch : int, batch_size :int, lr_rate :
float, Lambda : float):
```

其中:

Network 是构建的2层神经网络NN_Classfier的实例. class NN_Classfier 定义在 model.py

train_epoch 是一共要训练的epoch个数

batch_size 是SGD 训练时, 随机抽取的minibatch 的大小

Ir_rate 是模型参数学习率

Lambda 是正则化强度

训练过程中会保存最新训练的模型和最佳的模型,

二. 参数查找

find_parameter.py 中对比了以下7组参数的train 和 test performance. 我们统一使用50个epoch训练, batch_size 设置为500

parameters
(hidden_size = 300, lr_rate = 1e-2, lambda = 0)
(hidden_size = 300, lr_rate = 1e-2, lambda = 1e-4)
(hidden_size = 300, lr_rate = 1e-1, lambda = 0)
(hidden_size = 300, lr_rate = 1e-1, lambda = 1e-4)
(hidden_size = 600, lr_rate = 1e-2, lambda = 0)
(hidden_size = 600, lr_rate = 1e-2, lambda = 1e-4)
(hidden_size = 600, lr_rate = 1e-1, lambda = 0)

下图显示了各组参数在train 和 test 上的performance

accuracy vs loss

在这8组参数中,最后选定 (300,0.1,0) 为最佳模型 下面为(300,0.1,0) W_0 与 W_1 的可视化

三. 测试

根据参数查找选择的模型,在训练集上有0.9272167准确率,在测试集上有 0.9251准确率 最佳参数模型文件在 models/Model_300_0.1000_0.0000_latest.m

四. 代码文件

已提交至: https://github.com/skydownacai/NeuralNetworkAndDeepLearning-HW1.git