# CENTERED CHOICE

Evan Piermont & Michael Richter

6 Mar, 2018

Marge is taking Bart and Lisa to see a film. There are three films playing:

avengers, batman, and captain america

#### The children's preferences:

| Bart | Lisa |
|------|------|
| a    | b    |
| b    | С    |
| С    | a    |

Marge Chooses batman.

The children's preferences:

| Bart | Lisa |
|------|------|
| a    | b    |
| b    | e    |
| e    | a    |

▶ When they arrive, **c**aptain america is sold out.

The children's preferences:

| Bart | Lisa |
|------|------|
| a    | b    |
| b    | e    |
| e    | a    |

> Now Marge is indifferent between a and b.

#### Attraction Effect

- Alternatives are multi-dimensional.
- Two alternatives, a and b, are superior in different dimensions.
  - Indifference (or close to)
- Add an element c—dominated by b but not a.
  - Choices tend to shift to choose b.
- > Violates rational choice theory (WARP, IIA, etc).
- Well documented empirically: Tversky and Kahneman, 1981; Huber et al., 1982; Rabin 1998, etc.

### What drives the attraction effect?

- Context matters: reference dependence
  - Elements are evaluated not in absolute terms but relative to a reference point
  - \* Reference point is determined by the choice set.
- Comparisons are "non-linear": loss aversion
  - Losses are more costly than gains are beneficial.
  - Otherwise everything washes out.

#### Centered Choice

We want the simplest model of reference dependence accommodating loss aversion.

- ightharpoonup Alternatives are vectors in  $\mathbb{R}^k$ .
- For a set  $A \subset \mathbb{R}^k$ , the reference point,  $\mathbb{E}(A)$ , is the average point.
- The DM entertains a loss function:  $l: \mathbb{R}^k \to \mathbb{R}$ .
- Choice minimizes relative loss

$$C(A) = \operatorname*{arg\,min}_{a \in A} l(\mathbb{E}(A) - a)$$

# Example

- Points in  $\mathbb{R}^2$  with  $l((x_1, x_2)) = \frac{1}{2}e^{x_1} + e^{x_2}$ .
- Consider the four objects: a = (1, 2), b = (2, 1), c = (1.8, .9)
- $A = \{a, b\}, A' = \{a, b, c\}.$

















# Comprimise Effect

- \* Add an element c—so as to make b close to the center of  $\{a, b, c\}$ .
  - Choices tend to shift to choose b.
- Also well documented empirically.
- Can also be explained by centered choice.
  - **❖** Take the previous example with c' = (3, 0). ❖











# Cumulative Reference Dependence

What if  $l((x_1, x_2)) = \alpha e^{x_1} + e^{x_2}$  for small  $\alpha$ ?

- > The addition of c does not change preference.
  - ♣ Loss in dimension 2 is much more costly than dimension 1.
- > Adding an additional decoy near b might reverse choices.
- > Conversely, a decoy near a will "balance" reference effects.

# Comp > Attr.

CC with a convex loss function also predicts that the compromise effect should be more powerful than the attraction effect.

- Introducing a decoy trades gain in one dimension for loss in another.
- Convexity: effect increases as reference point gets close to
- > This is found empirically, Huber et al., 1982

# Talk Today

- 1. Axiomatic treatment of general CCR.
- 2. Identification of l.
- 3. Online experiment testing cumulative reference dependence.

#### **Preliminaries**

- Alternatives are points in  $\mathbb{R}^k$ ,  $k \geq 2$ .
- \*  $\mathcal{M} = \{A, B, C...\}$  are choice problems, all non-empty finite subsets of  $\mathbb{R}^k$ .
- **⇒** A choice rule, C, is a function  $M \to M$  such that  $C(A) \subseteq A$  for all  $A \in M$ .
- \*  $\mathbb{E}(A) \in \mathbb{R}^k$  is the center of A;  $\mathbb{E}(A)^i = \sum_{a \in A} \frac{a^i}{\# [A]}$ .

#### The CC model.

Sat that C has a centered choice representation (CCR) if

$$C(A) = \operatorname*{arg\,min}_{a \in A} l(\mathbb{E}(A) - a)$$

with *l* strictly monotone and continuous.

- Call a CC loss averse if l is strictly quasi-convex.
- \* Call a CC addative if  $l = \sum_{i \leq k} l^i(\mathbb{E}(A)^i a^i)$  for continuous, monotone  $l^i : \mathbb{R} \to \mathbb{R}$ .

### **Preliminaries**

#### Define the sets:

- **>** CONTAIN(a)  $\subset \mathcal{M}$ —all choice problems that contain a.
- **>** CENTER $(a) \subset \mathcal{M}-$ all choice problems centered with  $\mathbb{E}(A)=a$ .
- $\ \, \mathit{UC}(a) = \{b \mid \exists A \in \mathsf{CONTAIN}(a) \cap \mathsf{CENTER}(\mathbf{0}), b \in \mathcal{C}(A)\}.$
- \*  $LC(a) = \{b \mid a \in UC(b)\}.$

# Monotonicity (M)

Let  $a, b \in A$ . If a > b then  $b \notin C(A)$ 

- \* a > b if  $a_i \ge b_i$  for all i and at least one of the inequalities is strict.
- Implies that consumption is good (or, conversely that loss is bad).

### Translation Invariance (TI)

$$\mathcal{C}(A+x)=\mathcal{C}(A)+x$$
 for any  $x\in\mathbb{R}^k$  (where  $+$  is the Minkowski sum).

- Preferences only reflect relative comparisons.
- As we move the entire problem, the relative gains and losses remain fixed.

### Continuity (C)

For all  $a \in \mathbb{R}^k$ , UC(x) and LC(x) are closed.

- ▶ Recall, UC(a) only pertains to choice problems centered at 0.
- > We impose continuity only on such problems.
- > TI takes of the rest.

### Barycentric WARP (B-WARP)

Fix some  $A, B \in \mathcal{M}$  with  $\mathbb{E}(A) = \mathbb{E}(B)$  then if  $a, b \in A \cap B$ ,  $a \in \mathcal{C}(A)$  and  $b \in \mathcal{C}(b)$ , then  $a \in \mathcal{C}(B)$ .

- When the center of the menu is fixed, reference effects are constant.
- Behavior is "rational."

# Theorem

A choice rule  ${\cal C}$  satisfies M, TI, C, and B-WARP if and only if it admits and CCR.

#### Theorem

A choice rule  ${\cal C}$  satisfies M, TI, C, and B-WARP if and only if it admits and CCR.

Uniqueness? Not even up to monotone transforms.









- ▶ Find a CCR for CENTER(0), then appeal to TI.
- **>** Define  $\succ$  over  $\mathbb{R}^n$  as  $a \succ b$  if
  - 1.  $a \in UC(b)$ , or
  - $2. \ a \ge b$
- $\Rightarrow$  is reflexive and monotone by (2).
- Need to show transitivity.

- ▶ Say  $a \in UC(b)$ . We need  $a + x \in UC(b)$  for  $x \in \mathbb{R}^+$ .
- **>** There exists  $A \supset \{a, b\}$ ,  $\mathbb{E}(A) = \mathbf{0}$ ,  $a \in C(a)$ .
- Perturb this to find a menu where a + x is chosen.





- Now, say  $a \in UC(b)$  and  $b \in UC(c)$ .
  - **▶** There exists  $A \supset \{a, b\}$ ,  $\mathbb{E}(A) = \mathbf{0}$ ,  $a \in C(A)$ .
  - **>** There exists  $B \supset \{b, c\}$ ,  $\mathbb{E}(B) = \mathbf{0}$ ,  $b \in C(B)$ .
- Consider  $A \cup B$  (but perturb everything to deal with overlap).
- $\triangleright$  B-WARP implies a is chosen.

- ⇒ is reflexive, transitive, continuous, and monotone.
- $\blacktriangleright$  It admits a partial utility representation  $U: \mathbb{R}^n \to R$ .
- Set L(x) = -U(-x).
- ▶ UC(a) is upward closed
  - If a is ever chosen,  $UC(a) = \{b \mid b \geq a\}$ .
  - $^{\bullet}$  L rationalizes C.

#### Strict Convexity (SCV)

For all a, UC(a) is strictly convex.

▶ If b, b' are both better than a (with reference  $\mathbf{0}$  then  $\alpha b + (1 - \alpha)b'$  is strictly better.

#### Theorem

A choice rule C satisfies M, TI, C, B-WARP and SCV if and only if it admits and loss averse CCR. Moreover L is ordinally unique.

- **>** Convexity implies the convexity of  $\geq$  implies the quasi-convexity of L.
- ▶ Uniqueness: we can now compare every a and b; either  $a \in UC(b)$  or  $b \in UC(a)$ ;  $\succcurlyeq$  is complete.
  - \* Add elements that will never be chosen but move  $\mathbb{E}(A)$ .













## Experiment (Super Preliminary)

- Ran a short experiment via Amazon Mechanical Turk.
- Purpose: understand the attraction effect in the presence of multiple decoy options
- 120 subjects; average payment \$3.08; average duration 126 seconds.

### Design

- > Within Subject design.
- Each subject evaluated 5 decision problems made up of lotteries.
  - A lottery is a magnitude of payment and a probability of winning.
  - Two specifications, with different lotteries (60 subjects each).
- One decision problem was randomly selected for payment.

# Lotteries

|     | S1            | S2            |
|-----|---------------|---------------|
| h   | (\$7.85, .41) | (\$7.85, .41) |
| l   | (\$3.63, .78) | (\$3.33, .78) |
| ld  | (\$3.00, .75) | (\$2.70, .75) |
| hd1 | (\$7.50, .35) | (\$7.50, .35) |
| hd2 | (\$7.75, .34) | (\$7.75, .34) |

## Decision problems

- 1. Control: CRTL =  $\{h, l\}$
- 2. Low weak decoy: L-WD =  $\{h, l, ld\}$
- 3. High weak decoy: H-WD =  $\{h, l, hd1\}$
- 4. High strong decoy: H-SD =  $\{h, l, hd1, hd2\}$
- 5. Balanced: BAL =  $\{h, l, ld, hd\}$ .

# Decision problems: S1



# Decision problems: S2











#### Conclusions

- Centered Choice can explain the attraction and compromise effect.
- > It has an perspicuous axiomatization.
- People may or may not behave according to CC.