TABLE I. Hammett and Modified Swain-Lupton Constants^{a,d}

	substituent	$\sigma_{ m m}$	$\sigma_{\mathbf{p}}$	F ^b	R °	ref(s)
1.	BF_2	0.32	0.48	0.26	0.22	109
2.	Br [*]	0.39	0.23	0.45	-0.22	183
3.	$GeBr_3$	0.66	0.73	0.61	0.12	139
4.	SiBr ₃	0.48	0.57	0.44	0.13	139
5.	Cl	0.37	0.23	0.42	-0.19	183
6.	HgCl	0.33	0.35	0.33	0.02	74
7.	SO ₂ Cl	1.20	1.11	1.16	(-0.05)	134
8.	SCI	0.44	0.48	0.42	0.06	74
9.		1.10	1.11	1.03	0.08	110
10.	$P(O)Cl_2$	0.78	0.90	0.70	0.20	74
11.	PCl ₂	0.54	0.61	0.50	0.11	164
12.	P(S)Cl ₂	0.70	0.80	0.63	0.17	74
13.	$GeCl_3$	0.71	0.79	0.65	0.14	139
14.	SiCl ₃	0.48	0.56	0.44	0.12	139
15.	F	0.34	0.06	0.45	-0.39	183
16.	HgF	0.34	0.33	0.35	-0.02	74
17.	SOF	0.74	0.83	0.67	0.16	74
18.	SO₂F	0.80	0.91	0.72	0.19	142
19.	IF_2	0.85	0.83	0.82	0.01	110
20.	PŌF₂	0.81	0.89	0.74	0.15	164
21.	PF_2	0.49	0.59	0.44	0.15	109
22.	GeF_3	0.85	0.97	0.76	0.21	139
23.	SF ₃	0.70	0.80	0.63	0.17	110
24.	SiF ₃	0.54	0.69	0.47	0.22	164
25.	IF ₄	1.07	1.15	0.47	0.22	110
26.	PF ₄					
	SF ₅	0.63 0.61	0.80	0.54	0.26	110
27.			0.68	0.56	0.12	179
28.	I	0.35	0.18	0.42	-0.24	183
29.	IO	0.58	0.62	0.55	0.07	63
30.	IO_2	0.68	0.78	0.61	0.17	170
31.	NO	0.62	0.91	0.49	0.42	107
32.	NO_2	0.71	0.78	0.65	0.13	183
33.	ONO ₂	0.55	0.70	0.48	0.22	74
34 .	N ≔ Ñ⁺	1.76	1.91	1.58	0.33	182
35.	$N = N^+(BF_4)^-$	1.65	1.79	1.48	0.31	88
36.	NNO ₂ -	0.00	-0.43	0.20	-0.63	112
37.	N_3	0.37	0.08	0.48	-0.40	130
38.	Õ ³	-0.47	(-0.81)	-0.26	(-0.55)	181
39.	SO_2^-	-0.02	-0.05	0.03	-0.08	135
40.	SO ₃ -	0.30	0.35	0.29	0.06	81
41.	S-	-0.36	-1.21			
				0.03	-1.24	74, 97
42 .	AsO ₃ H ⁻	0.00	-0.02	0.04	-0.06	74, 87
43.	H	0.00	0.00	0.03	0.00	-
44.	NHNO ₂	0.91	0.57	0.99	-0.42	112
45.	OH	0.12	-0.37	0.33	-0.70	183
46.	S(O)OH	-0.04	-0.07	0.01	-0.08	74
4 7.	PO₃H⁻	0.20	0.26	0.19	0.07	183
48.	OPŎ₃H-	0.29	0.00	0.41	-0.41	74
49.	SH	0.25	0.15	0.30	-0.15	183
50.	$B(OH)_2$	-0.01	0.12	-0.03	0.15	170
51.	NH_2	-0.16	-0.66	0.08	-0.74	183
52.	NHOH	-0.04	-0.34	0.11	-0.45	87
53.	SO ₂ NH ₂	0.53	0.60	0.49	0.11	170
54.	PO(OH) ₂	0.36	0.42	0.34	0.08	74
55.	PH ₂	0.06	0.05	0.09	-0.04	74
56.	B(OH) ₃ -	-0.48	-0.44	-0. 4 2	-0.04 -0.02	90
57.	GeH ₃	0.00	0.01	0.03	-0.02	74, 280
58. 50	NH ₃ [†]	0.86	0.60	0.92	-0.32	181
59.	NHNH ₂	-0.02	-0.55	0.22	-0.77	87
60.	SiH ₃	0.05	0.10	0.06	0.04	110
61.	CBr ₃	0.28	0.29	0.28	0.01	165
62.	CCIF ₂	0.42	0.46	0.40	0.06	74
63.	5-chloro-1-tetrazolyl	0.60	0.61	0.58	0.03	165
64.	COCI	0.51	0.61	0.46	0.15	164
65.	$N=CCl_2$	0.21	0.13	0.26	-0.13	165
66.	CCl ₃	0.40	0.46	0.38	0.09	170
67.	OCCl ₃	0.43	0.35	0.46	-0.11	74
68.	COF	0.55	0.70	0.48	0.22	110
69.	OCF ₂ O	0.36	0.36	0.36	0.00	153
70.	CF ₃	0.43	0.54	0.38	0.16	183
70. 71.	HgCF ₃	0.29	0.32	0.39	0.03	74
72.	HgSCF ₃	0.39	0.32	0.29	0.03	74 74
72. 73.	$I = NSO_2CF_3$					
73. 74.		1.30	1.35	1.20	0.15	63
	$N=NCF_3$ OCF_3	0.56	0.68	0.50	0.18	74
75.		0.38 0.63	0.35 0.69	0.39	-0.04	145
E0		0.63	n ku	0.58	0.11	163
76. 77.	SOCF ₃ SeOCF ₃	0.81	0.83	0.76	0.07	74

TABLE I (Continued)

	substituent	$\sigma_{ m m}$	$\sigma_{ m p}$	F ^b	R c	ref(s)
78.	SO ₂ CF ₃	0.83	0.96	0.74	0.22	70
79 .	SeO ₂ CF ₃	1.08	1.21	0.97	0.24	74
80.	OSO ₂ CF ₃	0.56	0.53	0.56	-0.03	118
81.	SCF ₃	0.40	0.50	0.36	0.14	178
82.	SeCF ₃	0.44	0.45	0.43	0.02	167
83.	HgCN	0.28	0.34	0.27	0.08	74
84.	CN	0.56	0.66	0.51	0.15	183
85.	NC	0.48	0.49	0.47	0.02	74
86.	CN(BBr ₃)	0.61	0.48	0.64	-0.16	164
87.	CN(BCl ₃)	0.95	0.86	(0.93)	(-0.05)	164
88.	$CN(BF_3)$	0.72	0.66	(0.71)	(-0.05)	164
89.	N=C=O	0.27	0.19	0.31	-0.12	165
90.	OCN	0.67	0.54	0.69	-0.15	74
91.	SO₂CN	1.10	1.26	0.97	0.29	74
92.	N=C=S	0.48	0.38	0.51	-0.13	156
93.	SCN	0.51	0.52	0.49	0.03	85, 183
94.	SeCN	0.61	0.66	0.57	0.09	173, 87
95.	N=NCN	0.71	1.03	0.56	0.47	72
96.	N(O)=NCN	0.78	0.89	0.70	0.19	281
	$C(NO_2)_3$	0.70	0.00	0.70	0.19	
97.		0.72	0.82	0.65	0.17	74, 190
98.	5-azido-1-tetrazolyl	0.54	0.54	0.53	0.01	165
99.	CO_2^-	-0.10	0.00	-0.10	0.10	183
100.	$CHBr_2$	0.31	0.32	0.31	0.01	74
101.	CHCl_2	0.31	0.32	0.31	0.01	74
102.	OCHČl ₂	0.38	0.26	0.43	-0.17	74
103.	CHF ₂	0.29	0.32	0.29	0.03	110
104.	OCHF ₂	0.31	0.18	0.37	-0.19	146
105.	SOCHF ₂	0.54	0.58	0.51	0.07	140
106.	SO ₂ CHF ₂	0.75	0.86	0.67	0.19	146
107	SCHF ₂	0.33	0.37	0.32	0.05	170
107	SCHF ₂	0.33				
108.	S(O)(=NH)CF ₃	0.72	0.84	0.64	0.20	62
109.	NHSO ₂ CF ₃	0.44	0.39	0.45	-0.06	74
110.	CHI ₂	0.26	0.26	0.27	-0.01	74
111.	NHCN	0.21	0.06	0.28	-0.22	158
112.	1-(1H)-tetrazolyl	0.52	0.50	0.52	-0.02	165
113.	5-(1H)-tetrazolyl	0.64	0.56	0.65	-0.09	166
114.	5-hydroxy-1-tetrazolyl	0.39	0.33	0.41	-0.08	165
115.	5-mercapto-1-tetrazolyl	0.45	0.45	0.44	-0.01	165
	N=N					
116.	s ⁷⁻⁷	0.30	0.19	0.35	-0.16	158
	— HN — N					
117.	СНО	0.35	0.42	0.33	0.09	87, 174
118.	СООН	0.37	0.45	0.34	0.11	183
119.	CH₂Br	0.12	0.14	0.14	0.00	170
	CH CI					
120.	CH ₂ Cl	0.11	0.12	0.13	-0.01	170
121.	OCH ₂ Cl	0.25	0.08	0.33	-0.25	74
122.	CH ₂ F	0.12	0.11	0.15	-0.04	110
123.	OCH ₂ F	0.20	0.02	0.29	-0.27	74
124.	SCH ₂ F	0.23	0.20	0.25	-0.05	74
125.	CH_2I	0.10	0.11	0.12	-0.01	170
126.	NHCHO	0.19	0.00	0.28	-0.28	156
127.	CONH ₂	0.28	0.36	0.26	0.10	87, 187
128.	CSNH ₂	0.25	0.30	0.24	0.06	283
129.	CH=NOH-t	0.22	0.10	0.28	-0.18	129
130.	3,4-N=CHNH-	-0.15	-0.15	-0.10	-0.05	116
130. 131.	N(O)=NCONH ₂	0.59	0.63	0.56	0.07	281
132.	OCH₂O-	-0.16	-0.16	-0.11	-0.05	188
133.	Me	-0.07	-0.17	0.01	-0.18	183
134.	CH_2SO_2R	0.15	0.17	0.16	0.01	170
135.	$SiMeCl_2$	0.31	0.39	0.29	0.10	74
136.	SiMeF ₂	0.29	0.23	0.32	-0.09	74
137.	HgMe	0.43	0.10	(0.55)	(-0.45)	164
138.	NHCH ₂ SO ₃	-0.10	-0.57	0.12	-0.69	89
139.	NHCONH ₂	-0.03	-0.24	0.09	-0.33	156
140.	N(Me)NO ₂	0.49	0.61	0.43	0.18	112
141.	NHCSNH ₂	0.22	0.16	0.26	-0.10	158
141. 142.	OMe	0.12	-0.27	0.29	-0.56	183
	OMe CH₂OH					
143.		0.00	0.00	0.03	-0.03	133
144.	SOMe	0.52	0.49	0.52	-0,03	183
145.	S(OMe)	0.21	0.17	0.24	-0.07	74
146.	OS(=O)CH ₃	0.44	0.45	0.43	0.02	74
147.	S(O)OMe	0.50	0.54	0.47	0.07	74
		0.00	0.70	A EO	0.10	100
148. 149.	SO₂Me SSO₂Me	0.60 0.43	$0.72 \\ 0.54$	0.53 0.38	0.19 0.16	183 74

TABLE I (Continued)

	substituent	$\sigma_{ m m}$	$\sigma_{ m p}$	F^b	R c	ref(s)
150.	OSO ₂ Me	0.39	0.36	0.40	-0.04	156
151.	SMe	0.15	0.00	0.23	-0.23	183
152.	SSMe	0.22	0.13	0.27	-0.14	74
153.	SeMe	0.10	0.00	0.16	-0.16	183
						164
154.	NHMe	-0.21	-0.70	0.03	-0.73	
155.	CH_2NH_2	-0.03	-0.11	0.04	-0.15	74
156.	NHSO ₂ Me	0.20	0.03	0.28	-0.25	156
157.	CH₂NH₃ ⁺	0.59	0.53	0.59	-0.06	88
158.	$N(COF)_2$	0.58	0.57	0.57	0.00	109
159.	HgOCOCF ₃	0.50	0.52	0.48	0.04	74
		0.63	0.80	0.54	0.26	110
160.	COCF ₃					
161.	$SCOCF_3$	0.48	0.46	0.48	-0.02	74
162.	OCOCF ₃	0.56	0.46	0.58	-0.12	74
163.	$N(CF_3)C = O(F)$	0.50	0.50	0.49	0.01	109
164.	CF_2OCF_2	0.81	0.81	0.77	0.04	153
165.	CF ₂ CF ₃	0.47	0.52	0.44	0.08	172
166.	OCF ₂ CF ₃	0.48	0.28	0.55	-0.27	74
			1.08	0.81	0.27	76
167.	SO ₂ CF ₂ CF ₃	0.92				
168.	SCF ₂ CF ₃	0.44	0.48	0.42	0.06	76
169.	$N(C\tilde{F}_3)_2$	0.40	0.53	(0.35)	0.18	145
170.	$S(CF_3) = NSO_2CF_3$	1.18	1.28	1.07	0.21	62
171.	$SO(CF_3) = NSO_2CF_3$	1.23	1.40	1.09	0.31	62
172.	$N(SO_2CF_3)_2$	0.61	0.83	0.50	0.33	103
		0.60	0.69	0.55	0.14	109
173.	$P(CF_3)_2$					
174.	$P(CN)_2$	0.82	0.90	0.75	0.15	74
175.	C=CH	0.21	0.23	0.22	0.01	171
176.	OCF ₂ CHFCl	0.35	0.28	0.38	-0.10	146
177.	NHCOCF ₃	0.30	0.12	0.38	-0.26	156
178.	CH=NSO ₂ CF ₃	0.76	1.00	0.63	0.37	63
179.		0.34	0.25	0.38	-0.13	178
	OCF ₂ CHF ₂					
180.	SCF_2CHF_2	0.38	0.47	0.35	0.12	178
181.	1	0.63	0.64	0.60	0.04	165
	-> ss'	2.22	0.10	0.00	0.11	54
182.	SC=CH	0.26	0.19	0.30	-0.11	74
183.	SCH=CHCl	0.31	0.24	0.34	-0.10	105
184.	SeCH=CHCl	0.28	0.26	0.30	-0.04	105
185.	CH_2CF_3	0.12	0.09	0.15	-0.06	10 9
186.	CH ₂ SOCF ₃	0.25	0.24	0.27	-0.03	162
187.	CH ₂ SO ₂ CF ₃	0.29	0.31	0.29	0.02	162
188.		0.12	0.15	0.13	0.02	162
	CH ₂ SCF ₃					
189.	CH ₂ CN	0.16	0.18	0.17	0.01	170
190.	$CH = CHNO_2 - t$	0.32	0.26	0.35	(-0.09)	184
191.	$CH_2CO_2^-$	0.07	-0.16	0.19	-0.35	88
192.	CH ₂ SCN	0.12	0.14	0.14	0.00	74
193.	CH=CH ₂	0.06	-0.04	0.13	-0.17	85
194.	NHCOCH₂Cl	0.17	-0.03	0.27	-0.30	156
						74
195.	N(Me)SO ₂ CF ₃	0.46	0.44	0.46	-0.02	
196.	HgOCOCH ₃	0.39	0.40	0.39	0.01	74
197.	$C(Me)(NO_2)_2$	0.54	0.61	0.50	0.11	74
198.	oxiranyl	0.05	0.03	0.09	-0.06	74
199.	$OCH = CH_2$	0.21	-0.09	0.34	-0.43	96
200.	COMe	0.38	0.50	0.33	0.17	183
201.	SCOMe	0.39	0.44	0.37	0.07	183
				0.42	-0.11	183
202.	OCOMe	0.39	0.31			
203.	COOMe	0.37	0.45	0.34	0.11	175
204.	2-thiacyclopropyl	0.04	0.01	0.08	-0.07	74
205.	$SCH=CH_2$	0.26	0.20	0.29	-0.09	99, 105
206.	$SeCH = CH_2$	0.26	0.21	0.29	-0.08	105
207.	1-aziridinyl	-0.07	-0.22	0.03	-0.25	74
208.	2-aziridinyl	-0.06	-0.10	-0.01	-0.09	74
209.	N-methyl-3-oxaziridinyl	0.09	0.12	0.10	0.02	74
210.	NHCOOMe	-0.02	-0.17	0.10	-0.24	68
210. 211.					-0.24 -0.31	183
711	NHCOMe	0.21	0.00	0.31		
	CONHMe	0.35	0.36	0.35	-0.01	154
212.	CII NONG	0.37	0.30	0.40	0.10	93
212. 213.	CH=NOMe		0.07	0.08	-0.01	74
212.	CH=NOMe CH ₂ CONH ₂	0.06				
212. 213. 214.	CH ₂ CONH ₂		0.12	0.30	-0.18	154
212. 213. 214. 215.	CH ₂ CONH ₂ NHCSMe	0.24	0.12 0.34	0.30 0.29	-0.18 0.05	154 154
212. 213. 214. 215. 216.	CH ₂ CONH ₂ NHCSMe CSNHMe	0.24 0.30	0.34	0.29	0.05	154
212. 213. 214. 215. 216. 217.	CH ₂ CONH ₂ NHCSMe CSNHMe CH—NNHCSNH ₂	0.24 0.30 0.45	0.34 0.40	0.29 0.46	0.05 -0.06	154 93
212. 213. 214. 215. 216. 217. 218.	CH ₂ CONH ₂ NHCSMe CSNHMe CH—NNHCSNH ₂ OCH ₂ CH ₂ O	0.24 0.30 0.45 -0.12	0.34 0.40 -0.12	0.29 0.46 -0.08	0.05 -0.06 -0.04	154 93 74
212. 213. 214. 215. 216. 217. 218. 219.	CH_2CONH_2 $NHCSMe$ $CSNHMe$ $CH=NNHCSNH_2$ $OCH_2CH_2O^ Et$	0.24 0.30 0.45 -0.12 -0.07	0.34 0.40 -0.12 -0.15	0.29 0.46 -0.08 0.00	0.05 -0.06 -0.04 -0.15	154 93 74 183
212. 213. 214. 215. 216. 217. 218.	CH ₂ CONH ₂ NHCSMe CSNHMe CH—NNHCSNH ₂ OCH ₂ CH ₂ O	0.24 0.30 0.45 -0.12	0.34 0.40 -0.12	0.29 0.46 -0.08	0.05 -0.06 -0.04	154 93 74

TABLE I (Continued)

	substituent	σ <u>m</u>	$\sigma_{ m p}$	F^b	R°	ref(s)
222.	CH(OH)Me	0.08	-0.07	0.16	-0.23	74
223.	CH₂OMe	0.08	0.01	0.13	-0.12	85
224.	SO ₂ Et	0.66	0.77	0.59	0.18	74
225.	\mathbf{SEt}	0.18	0.03	0.26	-0.23	174, 183
226.	P(Cl)NMe ₂	0.38	0.56	0.31	0.25	164
227.	$CH_2SC(NH_2)_2^+$	0.13	0.15	0.14	0.01	128
228.	SiClMe ₂	0.16	0.21	0.16	0.05	74
229.	SiFMe ₂	0.12	0.17	0.12	0.04	74
230.	NHEt	-0.24	-0.61	-0.04	-0.57	87, 187
231.	N(Me) ₂	-0.16	-0.83	0.15	-0.98	185, 183
232.	N(Me)SO₂Me	0.21	0.24	0.21	0.03	81, 74
232. 233.		0.51	0.65		0.03	74
	SO ₂ NMe ₂			0.44		
234.	$N(SO_2Me)_2$	0.47	0.49	0.45	0.04	74 74
235.		0.12	0.09	0.15	-0.06	74 72
236.	N=NNMe ₂	-0.05	-0.03	-0.02	-0.01	
237.	$N(Me)N^+=(Me)N^-$	1.17	1.17	1.10	0.07	116
238.	P(O)Me ₂	0.43	0.50	0.40	0.10	74
239.	PO(OMe) ₂	0.42	0.53	0.37	0.16	152
240.	PMe_2	0.03	0.06	0.05	0.01	69
241.	S ⁺ Me ₂	1.00	0.90	0.98	-0.08	183
242.	$S^+(Me)_2$ tosyl	1.06	0.96	1.04	-0.08	88
243.	CH ₂ CH ₂ NH ₃ +	0.23	0.17	0.27	-0.10	74
244.	SiH(Me) ₂	0.01	0.04	0.03	0.01	74
245.	1-(1,7(BH) ₁₀ -C ₂ H)	0.25	0.33	0.23	0.10	147
246.	$2-(1.7(BH)_{10}-C_2H)$	0.14	0.15	0.16	-0.01	117
247.	$4-(1,7(BH)_{10}-C_2H)$	-0.02	0.02	0.00	0.02	80
248.	$1-(1,2(BH)_{10}-C_2H)$	0.49	0.43	0.50	-0.07	147
249.	$3-(1,2(BH)_{10}-C_2H)$	0.20	0.19	0.22	-0.03	147
250.	$C = CCF_3$	0.41	0.51	0.37	0.14	163
251.	$CF = CFCF_3 - t$	0.39		0.36		109
201.			0.46		0.10	
252.	$N=C(CF_3)_2$	0.29	0.23	0.32	-0.09	109
253.	CF ₂ CF ₂ CF ₃	0.44	0.48	0.42	0.06	85
254 .	$CF(CF_3)_2$	0.37	0.53	(0.31)	0.22	172
255.	SO ₂ CF ₂ CF ₂ CF ₃	0.92	1.09	0.81	0.28	76
256.	$SO_2CF(CF_3)_2$	0.92	1.10	0.80	0.30	76
257.	SCF ₂ CF ₂ CF ₃	0.45	0.48	0.43	0.05	76
258.	$SCF(CF_3)_2$	0.48	0.51	0.46	0.03	76
259.	$TeCF_2CF_2CF_3$	0.46	0.48	0.45	0.03	76
260.	$C(OH)(CF_3)_2$	0.29	0.30	0.29	0.01	172
261.	CH(SCF ₃) ₂	0.44	0.44	0.43	0.01	74
262.	CH(CN) ₂	0.53	0.52	0.52	0.00	74
263.	CH=CHCF ₃ -c	0.16	0.17	0.18	0.01	165
264.	CH=CHCF ₃ -t	0.24	0.27	0.24	0.03	165
265.	CH=CHSO ₂ CF ₃	0.31	0.55	0.22	0.33	74
266.	CH=CHCN	0.24	0.17	0.28	-0.11	155
267.	C=CMe	0.21	0.03	0.29	-0.26	85
268.						
	N(Me)COCF ₃	0.41	0.39	0.41	-0.02	74
269.	CH=CHCHO	0.24	0.13	0.29	-0.16	155
270.	cyclopropyl	-0.07	-0.21	0.02	-0.23	177
271.	$C(Me) = CH_2$	0.09	0.05	0.13	-0.08	85
272.	CH—CHMe-t	0.02	-0.09	0.09	-0.18	85
273.	CH ₂ CH—CH ₂	-0.11	-0.14	-0.06	-0.08	74
274.	$C(Et)(NO_2)_2$	0.56	0.64	0.51	0.13	74
275.	$OCH_2CH=CH_2$	0.09	-0.25	0.25	-0.50	105
276.	COEt	0.38	0.48	0.34	0.14	74
277.	COOEt	0.37	0.45	0.34	0.11	183
278.	CH ₂ OCOMe	0.04	0.05	0.07	-0.02	74
279.	CH₂CH₂COOH	-0.03	-0.07	0.02	-0.09	188
280.	SCH ₂ CH=CH ₂	0.19	0.12	0.23	-0.11	105
281.	SeCH,CH=CH,	0.21	0.12	0.26	-0.14	105
282.	CH ₂ CH ₂ CH ₂ -	-0.26	-0.26	-0.20	-0.06	87
283.	N(Me)COMe	0.31	0.26	0.34	-0.08	74
284.	CH₂NHCOMe	0.05	-0.05	0.12	-0.17	85
285.	NHCOOEt	0.11				
			-0.15	0.23	-0.38	157, 156
286.	C(NO ₂)Me ₂	0.18	0.20	0.19	0.01	74, 190
287.	OCH ₂ CH ₂ CH ₂ O-	0.00	0.00	0.03	-0.03	74
288.	isopropyl	-0.04	-0.15	0.04	-0.19	85, 183
289.	CH ₂ CH ₂ CH ₃	-0.06	-0.13	0.01	-0.14	85, 87
290.	N ⁺ (Me)=CHN(Me)-	1.11	1.11	1.05	0.06	116
29 1.	NHCONHEt	0.04	-0.26	0.19	-0.45	154
292 .	NHCSNHEt	0.30	0.07	0.40	-0.33	154
29 3.	OCHMe ₂	0.10	(-0.45)	0.34	(-0.79)	183
294.	OCH ₂ CH ₂ CH ₃	0.10	-0.25	0.26	-0.51	183
295.	CH ₂ CH(OH)Me	-0.12	-0.17	-0.06	-0.11	74, 102
20U.						
	C(OOH)Me _•	0.06	-(),14	0.17	-0.31	92
296. 297.	C(OOH)Me ₂ SCHMe ₂	0.06 0.23	-0.14 0.07	0.17 0.30	-0.31 -0.23	92 74

TABLE I (Continued)

	substituent	σ _m	$\sigma_{\rm p}$	F ^b	R°	ref(s)
299.	GeMe₃	0.00	0.00	0.03	-0.03	74
300.	N ⁺ (Me) ₃	0.88	0.82	0.86	-0.04	183
301.	$CH_2NH^+(Me)_2$	0.40	0.43	0.39	0.04	74
302.	Si(Me) ₂ OMe	0.04	-0.02	0.09	-0.11	74
303.	OSiMe ₃	0.13	-0.27	0.31	-0.58	74
304.	SiMe(OMe) ₂	0.04	0.10	0.05	0.05	74
	Silvie(Olvie) ₂					74
305.	Si(OMe) ₃	0.09	0.13	0.10	0.03	74
306.	P+Me ₃	0.74	0.73	0.71	0.02	123, 122
307.	SiMe ₃	-0.04	-0.07	0.01	-0.08	183
308.	$SnMe_3$	0.00	0.00	0.03	-0.03	74, 183
309.	1-(1,2-(BH) ₁₀ -C ₂ Me)	0.50	0.65	0.43	0.22	111
310.	CH_2 -1- $(1,7$ - $(BH)_{10}$ - $C_2H)$	0.00	0.01	0.03	-0.02	67
311.	CH_2 -1-(1,2-(BH) ₁₀ - C_2 H)	0.12	0.12	0.14	-0.02	67
312.	$1-(1,2-(BH)_{10}-C_3H_3H_gCH_3)$	0.86	0.85	0.82	0.03	111
313.	2-(hydroxymethyl)carboran-1-yl	0.38	0.49	0.34	0.15	111
314.	I(OCOCF ₃) ₂	1.28	1.34	1.18	0.16	110
315.	cyclo-C ₄ F ₇	0.48	0.53	0.45	0.08	109
31 6 .	$COCF_2CF_2CF_3$	0.63	0.79	0.55	0.24	110
317.	$C(CF_3)_3$	0.55	0.55	0.53	0.02	76
318.	$(CF_2)_3CF_3$	0.47	0.52	0.44	0.08	172
319.	$SO_2C(CF_3)_3$	0.96	1.13	0.84	0.29	76
320.	5020(CF)					70
	SC(CF ₃) ₃	0.51	0.58	0.47	0.11	76
321.	$C(SCF_3)_3$	0.51	0.53	0.49	0.04	74
322.	$SeC(CF_3)_3$	0.49	0.54	0.46	0.08	76
323.	$C(CN)_3$	0.97	0.96	0.92	0.04	165
324.	cyclo-1-(OH)C ₄ F ₆	0.36	0.37	0.36	0.01	109
	CH-C(CN)					
325.	$CH = C(CN)_2$	0.66	0.84	0.57	0.27	93
326.	2-(5-bromofuryl)	0.15	0.00	0.23	-0.23	94, 95
327.	0	0.33	0.27	0.36	-0.09	108
021.	Ŭ	0.00	0.27	0.30	-0.09	100
	—~ <u>,</u>					
328.	3-chloro-1-pyrroline-2,5-dione	0.47	0.46	0.47	-0.01	108
329.	3-pyridazinyl	0.28	0.48	0.21	0.27	61
330.						
	3,4-CH—CHCH—CH-	0.04	0.04	0.07	-0.03	183
331.	$C(Me)(CN)_2$	0.60	0.57	0.59	-0.02	74
332.	4-pyrimidinyl	0.30	0. 6 3	0.18	0.45	277
333.	2-pyrimidinyl	0.23	0.53	0.13	0.40	277
334.	5-pyrimidinyl	0.28	0.39	0.25	0.14	277
335.	2-furyl	0.06				
			0.02	0.10	-0.08	114
336.	2-thienyl	0.09	0.05	0.13	-0.08	159
337.	3-thienyl	0.03	-0.02	0.08	-0.10	159
338.	2-selenienyl	0.06	0.04	0.10	-0.06	84
339.	2-tellurienyl	0.06	0.03	0.10	-0.07	84
340.	1-pyrryl	0.47				
			0.37	0.50	-0.13	93
341.	1-pyrroline-2,5-dione	0.34	0.31	0.36	-0.05	108
342.	CH=CHCOMe	0.21	-0.01	0.31	-0.32	155
343.	I(OCOMe) ₂	0.85	0.88	0.80	0.08	110
344.	$N(COMe)_2$	0.35	0.33	0.36	-0.03	74
345.	cyclobutyl					
		-0.05	-0.14	0.02	-0.16	85
346.	COCHMe ₂	0.38	0.47	0.35	0.12	74, 119
347.	$(CH_2)_4$	-0.48	-0.48	-0.40	-0.08	87
348.	NHČOCH(Me) ₂	0.11	-0.10	0.21	-0.31	156
349.	C(Me) ₃	-0.10	-0.20	-0.02	-0.18	183
350.	CH(Me)Et	-0.08	-0.12			
				-0.02	-0.10	74, 87
351.	CH ₂ CH(Me) ₂	-0.07	-0.12	-0.01	-0.11	176, 87
352.	$(CH_2)_3CH_3$	-0.08	-0.16	-0.01	-0.15	174, 87
353.	$O(CH_2)_3CH_3$	0.10	-0.32	0.29	-0.61	183
	CH ₂ C(OH)Me ₂	-0.16	-0.17	-0.11	-0.06	74, 102
354.	C(OMe) ₃	-0.10 -0.03	-0.04			,
354. 355	OTOTAE13	-0.03 0.22		0.01	-0.05	7 4
355.			0.00	0.32	-0.32	77
355. 356.	$AsEt_2$			4 .	0.10	77
355. 356. 357.	AsEt ₂ As(O)Et ₂	0.57	0.44	0.60	-0.16	
355. 356.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$		0.44 0.44			
355. 356. 357.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$	$0.57 \\ 0.52$	0.44	0.54	-0.10	77
355. 356. 357. 358. 359.	AsEt ₂ As(O)Et ₂ As(S)Et ₂ NH(CH ₂) ₃ CH ₃	0.57 0.52 -0.34	0.44 0.51	0.54 -0.21	-0.10 -0.30	77 87, 85
355. 356. 357. 358. 359. 360.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$	0.57 0.52 -0.34 -0.23	0.44 -0.51 -0.72	0.54 -0.21 0.01	-0.10 -0.30 -0.73	77 87, 85 113, 82
355. 356. 357. 358. 359. 360. 361.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$ $PO(Et)_2$	0.57 0.52 -0.34 -0.23 0.37	0.44 -0.51 -0.72 0.47	0.54 -0.21 0.01 0.33	-0.10 -0.30 -0.73 0.14	77 87, 85 113, 82 79
355. 356. 357. 358. 359. 360. 361. 362.	AsEt ₂ As(O)Et ₂ As(S)Et ₂ ANH(CH ₂) ₃ CH ₃ N(Et) ₂ PO(Et) ₂ N=NPO(OEt) ₂	0.57 0.52 -0.34 -0.23	0.44 -0.51 -0.72	0.54 -0.21 0.01 0.33 (-0.05)	-0.10 -0.30 -0.73	77 87, 85 113, 82
355. 356. 357. 358. 359. 360. 361.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$ $PO(Et)_2$	0.57 0.52 -0.34 -0.23 0.37	0.44 -0.51 -0.72 0.47 0.74	0.54 -0.21 0.01 0.33 (-0.05)	-0.10 -0.30 -0.73 0.14 (0.79)	77 87, 85 113, 82 79 72
355. 356. 357. 358. 359. 360. 361. 362.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$ $PO(Et)_2$ $N=NPO(OEt)_2$ $PO(OEt)_2$ $P(Et)_2$	0.57 0.52 -0.34 -0.23 0.37 (0.16) 0.55	0.44 -0.51 -0.72 0.47 0.74 0.60	0.54 -0.21 0.01 0.33 (-0.05) 0.52	-0.10 -0.30 -0.73 0.14 (0.79) 0.08	77 87, 85 113, 82 79 72 143
355. 356. 357. 358. 359. 360. 361. 362. 363. 364.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$ $PO(Et)_2$ $N=NPO(OEt)_2$ $PO(OEt)_2$ $P(Et)_2$	0.57 0.52 -0.34 -0.23 0.37 (0.16) 0.55 0.10	0.44 -0.51 -0.72 0.47 0.74 0.60 0.13	0.54 -0.21 0.01 0.33 (-0.05) 0.52 0.11	-0.10 -0.30 -0.73 0.14 (0.79) 0.08 0.02	77 87, 85 113, 82 79 72 143 124
355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$ $PO(Et)_2$ $N=NPO(OEt)_2$ $P(Et)_2$ $P(S)Et_2$	0.57 0.52 -0.34 -0.23 0.37 (0.16) 0.55 0.10 0.39	0.44 -0.51 -0.72 0.47 0.74 0.60 0.13 0.46	0.54 -0.21 0.01 0.33 (-0.05) 0.52 0.11 0.36	-0.10 -0.30 -0.73 0.14 (0.79) 0.08 0.02 0.10	77 87, 85 113, 82 79 72 143 124 79
355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$ $PO(Et)_2$ $N=NPO(OEt)_2$ $P(OEt)_2$ $P(Et)_2$ $P(S)Et_2$ $CH_2N(Me)_3^+$	0.57 0.52 -0.34 -0.23 0.37 (0.16) 0.55 0.10 0.39 0.40	0.44 -0.51 -0.72 0.47 0.60 0.13 0.46 0.44	0.54 -0.21 0.01 0.33 (-0.05) 0.52 0.11 0.36 0.38	-0.10 -0.30 -0.73 0.14 (0.79) 0.08 0.02 0.10 0.06	77 87, 85 113, 82 79 72 143 124 79
355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366. 367.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$ $PO(Et)_2$ $PO(OEt)_2$ $P(Et)_2$ $P(S)Et_2$ $CH_2N(Me)_3^+$ $CH_2CH_2NH(Me)_2^+$	0.57 0.52 -0.34 -0.23 0.37 (0.16) 0.55 0.10 0.39 0.40 0.24	0.44 -0.51 -0.72 0.47 0.74 0.60 0.13 0.46 0.44 0.14	0.54 -0.21 0.01 0.33 (-0.05) 0.52 0.11 0.36 0.38 0.29	-0.10 -0.30 -0.73 0.14 (0.79) 0.08 0.02 0.10 0.06 -0.15	77 87, 85 113, 82 79 72 143 124 79 74
355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366. 367. 368.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$ $PO(Et)_2$ $N=NPO(OEt)_2$ $PO(OEt)_2$ $P(Et)_2$ $P(S)Et_2$ $P(S)Et_2$ $CH_2N(Me)_3^+$ $CH_2CH_2NH(Me)_2^+$ $CH_2OSi(CH_3)_3$	0.57 0.52 -0.34 -0.23 0.37 (0.16) 0.55 0.10 0.39 0.40	0.44 -0.51 -0.72 0.47 0.60 0.13 0.46 0.44	0.54 -0.21 0.01 0.33 (-0.05) 0.52 0.11 0.36 0.38	-0.10 -0.30 -0.73 0.14 (0.79) 0.08 0.02 0.10 0.06	77 87, 85 113, 82 79 72 143 124 79
355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366. 367.	$AsEt_2$ $As(O)Et_2$ $As(S)Et_2$ $NH(CH_2)_3CH_3$ $N(Et)_2$ $PO(Et)_2$ $PO(OEt)_2$ $P(Et)_2$ $P(S)Et_2$ $CH_2N(Me)_3^+$ $CH_2CH_2NH(Me)_2^+$	0.57 0.52 -0.34 -0.23 0.37 (0.16) 0.55 0.10 0.39 0.40 0.24	0.44 -0.51 -0.72 0.47 0.74 0.60 0.13 0.46 0.44 0.14	0.54 -0.21 0.01 0.33 (-0.05) 0.52 0.11 0.36 0.38 0.29	-0.10 -0.30 -0.73 0.14 (0.79) 0.08 0.02 0.10 0.06 -0.15	77 87, 85 113, 82 79 72 143 124 79 74

TABLE I (Continued)

	substituent	$\sigma_{\mathbf{m}}$	$\sigma_{ m p}$	F ^b	R°	ref(s)
371.	$P(N(Me)_2)_2$	0.18	0.25	0.17	0.08	164
372.	2-(methylcarbonyl)carboran-1-yl	0.40	0.63	0.31	0.32	111
373.	2-[(carbonyloxy)methyl]carboran-1-yl	0.70	0.74	0.66	0.08	111
374.	$CH_2-1-(1,2-(BH)_{10}-C_2Me)$	0.10	0.11	0.12	-0.01	67
375.	$C(CN) = C(CN)_2$	0.77	0.98	0.65	0.33	74, 165
376.	2-(5-cyanofuryl)	0.25	0.10	0.32	-0.22	94, 95
377.	2-(5-formylfuryl)	0.22	-0.05	0.34	-0.39	94, 95
378.	2-pyridyl	0.33	0.17	0.40	-0.23	93
379.	3-pyridyl	0.23	0.25	0.24	0.01	71
380.	4-pyridyl	0.27	0.44	0.21	0.23	71
381.	2-(4,6-dimethyl-s-triazinyl)	0.25	0.39	0.21	0.18	121
382.	1-cyclopentenyl	-0.06	-0.05	-0.03	-0.02	127
383.	CH—CHCOOEt	0.19	0.03	0.27	-0.24	155
38 4 .		-0.05	-0.14	0.02	-0.16	85
	cyclopentyl					
385.	COC(Me) ₃	0.27	0.32	$0.26 \\ 0.13$	0.06 -0.18	74, 119
386.	NHCO ₂ (CH ₂) ₃ CH ₃	0.06	-0.05			126
387.	$C(Et)(Me)_2$	-0.06	-0.18	0.03	-0.21	85
388.	$CH_2C(Me)_3$	-0.05	-0.17	0.03	-0.14	85
389.	$(CH_2)_4CH_3$	-0.08	-0.15	-0.01	-0.14	174
390.	$O(CH_2)_4CH_3$	0.10	(-0.34)	0.29	(-0.63)	183
391.	$CH_2PO(OEt)_2$	0.12	0.06	0.17	-0.11	85
392.	$CH_2CH_2N(Me)_3^+$	0.16	0.13	0.19	-0.06	74, 189
393.	$CH_2CH_2Si(Me)_3$	-0.16	-0.17	-0.11	-0.06	74, 132
394.	$Si(Me)_2OSi(Me)_3$	0.00	-0.01	0.04	-0.05	160
395.	C_6Cl_5	0.25	0.24	0.27	-0.03	151
396.	C_6F_5	0.26	0.27	0.27	0.00	151
397.	$P(O)(C_3F_7)_2$	0.95	1.10	0.84	0.26	64
398.	$OP(O)(C_3F_7)_2$	0.66	0.56	0.67	-0.11	64
399.	$NHP(O)(C_3F_7)_2$	0.28	0.18	0.33	-0.15	64
400.	CH ₂ Co(CN) ₅ ³⁻	-0.53	-0.68	-0.39	-0.29	150
401.	CH ₂ Mn(CO) ₅	-0.14	-0.44	0.02	-0.46	150
	CH 946 (NO)					170
402.	C ₆ H ₂ -2,4,6-(NO ₂) ₃	0.26	0.30	0.26	0.04	170
403.	C ₆ H ₄ -3-Br	0.09	0.08	0.12	-0.04	161
404.	C ₆ H ₄ -4-Br	0.15	0.12	0.18	-0.06	85
405.	C_6H_4 -3-Cl	0.15	0.10	0.19	-0.09	85
406.	C_6H_4 -4- Cl	0.15	0.12	0.18	-0.06	85
407.	C_6H_4 -3-F	0.15	0.10	0.19	-0.09	85
408.	C_6H_4-4-F	0.12	0.06	0.17	-0.11	85
409.	OC_6H_4 -4-F	-0.08	-0.10	-0.03	-0.07	106
410.	C_6H_4-3-I	0.13	0.06	0.18	-0.12	85
411.	C_6H_4 -4-I	0.14	0.10	0.18	-0.08	85
412.	$C_6^{"}H_4^{"}-3-NO_2$	0.21	0.20	0.23	-0.03	85
413.	$C_6H_4-4-NO_2$	0.25	0.26	0.26	0.00	85
414.	$S\ddot{C}_6\dot{H}_4$ -4- $N\ddot{O}_2$	0.32	0.24	0.36	-0.12	85
415.	SOC ₆ H ₄ -4-NO ₂	0.58	0.60	0.55	0.05	85
416.	2-benzotriazolyl	0.49	0.51	0.47	0.04	74
417.	C_6H_5	0.06	-0.01	0.12	-0.13	183
418.	$N(O) = NSO_2C_6H_5$	0.69	0.79	0.62	0.17	281
419.	$N = NC_6H_5$	0.32	0.39	0.30	0.09	175
420.	VC H					
	OC ₆ H ₅	0.25	-0.03	0.37	-0.40	183, 87
421.	SOC ₆ H ₅	0.50	0.44	0.51	-0.07	85
422.	2-(5-acetylfuryl)	0.24	0.08	0.31	-0.23	94, 95
423.	2-(6-methylpyronyl)	0.38	0.43	0.36	0.07	115
424.	$SO_2C_6H_5$	0.62	0.68	0.58	0.10	85
425.	$OSO_2C_6H_5$	0.36	0.33	0.37	-0.04	156
426.	SC_6H_5	0.23	0.07	0.30	-0.23	85
427.	NHC ₆ H ₅	-0.02	-0.56	0.22	-0.78	173, 85
428.	$HNSO_2C_6H_5$	0.16	0.01	0.24	-0.23	156
429.	$SO_2NHC_6H_5$	0.56	0.65	0.51	0.14	74
430.	2-(5-ethylfuryl)	0.09	-0.13	0.20	-0.33	94, 95
431.	1-(2,5-dimethylpyrryl)	0.49	0.38	0.52	-0.14	93
432.	1-cyclohexenyl	-0.10	-0.08	-0.07	-0.01	127
433.	cyclohexyl	-0.05	-0.15	0.03	-0.18	85
434.	$N(C_3H_7)_2$	-0.26	-0.93	0.06	-0.19	113
435.	$(CH_2)_4NMe_2$	-0.20 -0.08	-0.16	-0.01	-0.15	74
436.		0.37				
	PO(isopropyl) ₂		0.41	0.36	0.05	79
437.	P(isopropyl) ₂	0.02	0.06	0.04	0.02	69
438.	$P(O)(OPr)_2$	0.38	0.50	0.33	0.17	152
439.	Ge(Et) ₃	0.00	0.00	0.03	-0.03	74, 183
440.	$(CH_2)_3N(Me)_3^+$	0.06	-0.01	0.12	-0.13	74
441.	$Si(OEt)_3$	0.02	0.08	0.03	0.05	74
442.	$P(Et)_3^+$	0.99	0.98	0.94	0.04	78
443.	$Sn(Et)_3$	0.00	0.00	0.03	-0.03	74, 183
444.	$P(=NSO_2CF_3)(C_3F_7)_2$	1.24	1.37	1.11	0.26	63
445.	$Si(NMe_2)_3$	-0.04	-0.04	0.00	-0.04	74
			0.33	0.30	0.04	138
446.	2-benzoxazolyl	0.30	0.00	0.50	0.03	190

TABLE I (Continued)

	substituent	$\sigma_{\rm m}$	$\sigma_{\rm p}$	F b	R°	ref(s)
448.	COC ₆ H ₅	0.34	0.43	0.31	0.12	180
449.	OCOC₀H₅	0.21	0.13	0.26	-0.13	156
45 0.	$COOC_6H_5$	0.37	0.44	0.34	0.10	128
451.	$N=CHC_6H_5$	-0.08	-0.55	0.14	-0.69	156
452.	$CH=NC_6H_5$	0.35	0.42	0.33	0.09	136, 137
453.	NHCOC ₆ H ₅	0.02	-0.19	0.13	-0.32	156
454.	CONHC ₆ H ₅	0.23	0.41	0.17	0.24	74, 175
455.	C ₆ H ₄ -4-Me	0.06	-0.03	0.12	-0.15	85
456.	CH ₂ C ₆ H ₅	-0.08	-0.09	-0.04	-0.05	170
4 57.	$N=NC_6H_3-5-Me-2-OH$	0.27	0.31	0.26	0.05	156
458.	C ₆ H ₄ -4-OMe	0.05	-0.08	0.13	-0.21	85
459.	$CH(OH)C_6H_5$	0.00	-0.03	0.05	-0.08	74, 175
460.	$CH_2OC_6H_5$	0.06	0.07	0.08	-0.01	128, 282
4 61.	$CH_2SO_2C_6H_5$	0.15	0.16	0.17	-0.01	128, 282
462 .	$C(\mathbf{Et})_3$	-0.07	-0.20	0.02	-0.22	85
463.	$(CH_2)_6CH_3$	-0.07	-0.16	0.00	-0.16	85
464.	SiMe(OSi(Me) ₃) ₂	-0.02	-0.01	0.01	-0.02	160
465.	CF ₂ CF ₂ C ₆ H ₄ -4-F	0.34	0.39	0.32	0.07	109
466.	$C = CC_6H_5$	0.14	0.16	0.15	0.01	170
467.	CH-NCOC ₆ H ₅	0.39	0.51	0.34	0.17	74
468.	CH=CHC ₆ H ₅	0.03	-0.07			
	CH E-(CO) (CH)			0.10	-0.17	186
469.	$CH_2Fe(CO)_2(\pi-C_5H_5)$	-0.26	-0.49	-0.11	-0.38	150
470.	CH—NNHCOC ₆ H ₅	0.39	0.51	0.34	0.17	93
471.	N=CHC ₆ H ₄ -4-OMe	-0.07	-0.54	0.15	-0.69	156
472.	NHCOC ₆ H ₄ -4-OMe	0.09	-0.06	0.17	-0.23	156
473.	$SCH=NSO_2C_6H_4-4-Me$	0.65	0.70	0.61	0.09	74
474.	C ₆ H₄-4-Et	0.07	-0.02	0.13	-0.15	85
475.	CH₂CH₂C ₆ H₅	-0.07	-0.12	-0.01	-0.11	74
476.	$N=C(Me)NHC_6H_5$	0.29	0.08	0.38	-0.30	133
477.	Si(C ₆ H ₅)(Me) ₂	0.04	0.07	0.06	0.01	74
478.	$S(Me) = NSO_2C_6H_4-4-Me$	0.65	0.70	0.61	0.09	205
479.						200
	2,4,6-trimethylpyridinium	0.62	0.58	0.61	-0.03	73 70
480.	PO(CMe ₃) ₂	0.31	0.41	0.28	0.13	79
481.	$PO(C_4H_9)_2$	0.35	0.49	0.30	0.19	152
482.	$PO(OC_4H_9)_2$	0.41	0.57	0.35	0.22	85
483.	$P(CMe_3)_2$	0.01	0.15	-0.01	0.16	69
484.	$C_6H_5Cr(CO)_3$	0.29	0.14	0.36	-0.22	104
485.	2-benzo-4-thiopyronyl	0.34	0.35	0.34	0.01	115
486.	2-(benzothiopyronyl)	0.48	0.45	0.48	-0.03	115
487.	2-(benzo-1,4-pyronyl)	0.41	0.40	0.41	-0.01	115
488.	CH=CHCOC ₆ H ₄ -4-NO ₂	0.15	0.05	0.21	-0.16	155
489.	$CH_2Mo(CO)_3(C_5H_5)$	-0.21	-0.45	-0.07	-0.38	150
490.	CH=CHCOC ₆ H ₅	0.18	0.05	0.25	-0.20	155
491.	C ₆ H ₄ -4-CHMe ₂	0.08	0.01	0.13	-0.12	85
492.	Si(OSiMe ₃) ₃	-0.09	-0.01	-0.08	0.07	160
493.	ferrocenyl	-0.15	-0.18	-0.09	-0.09	141
494.	ferricenium+	0.29	0.29	0.30	-0.01	100
495.	ferrocenonium ⁺	0.05	0.29	-0.01	0.30	101
496.	C_6H_4 -4- CMe_3	0.07	0.01	0.12	-0.11	85
497.	1-adamantyl	-0.12	-0.13	-0.07	-0.06	149
498.	1-dibenzarsenyl	0.19	0.13	0.23	-0.10	65
499.	1-dibenzoarsoxyl	0.17	0.09	0.22	-0.13	65
500.	1-dibenzoarsazinyl	0.14	0.09	0.18	-0.13	66
500. 501.		0.03	0.09			
	$As(C_6H_5)_2$			0.04	0.05	125
502.	$AsO(C_6H_5)_2$	0.54	0.64	0.49	0.15	81
503.	$P(C_6H_5)_2(BCl_3)$	0.67	0.72	0.62	0.10	164
504.	$N(C_6H_5)_2$	0.00	-0.22	0.12	-0.34	168, 169
505.	$PO(C_6H_5)_2$	0.38	0.53	0.32	0.21	144
506.	$P(C_6H_5)_2$	0.11	0.19	0.10	0.09	144
507.	$PS(C_6H_5)_2$	0.29	0.47	0.23	0.24	144
508.	$P(N(C_3H_7)_2)C_6H_4-3-F$	0.20	0.24	0.20	0.04	122, 123
509.	0	0.37	0.38	0.37		
					0.01	61
510.		0.38	0.38	0.38	0.00	61
511.	N_C ₆ H ₆	0.17	0.21	0.17	0.04	138

TABLE I (Continued)

	substituent	$\sigma_{ m m}$	$\sigma_{ m p}$	F^b	R^c	ref(s)
512.	CH(C ₆ H ₅) ₂	-0.03	-0.05	0.01	-0.06	74, 102
513.	. g As . ∽	0.12	0.07	0.16	-0.09	66
	CH3					
514.	$PO(C_6H_5)C_6H_4-4-Me$	0.13	0.30	0.09	0.21	91
515.	$CH_2PO(C_6H_5)_2$	0.14	0.01	0.21	-0.20	85
516.	$PS(C_6H_5)C_6H_4-4-Me$	0.09	0.30	0.03	0.27	91
517.	$P^+(Me)(C_6H_5)_2$	1.13	1.18	1.04	0.14	91
518.	$Si(Me)(C_6H_5)_2$	0.10	0.13	0.11	0.02	74
519.	$COOCH(\mathring{C}_6 \mathring{H}_5)_2$	0.36	0.56	0.28	0.28	175
520.	$PO(C_6H_4-4-Me)_2$	0.17	0.30	0.14	0.16	91
521.	$PS(C_6H_4-4-Me)_2$	0.20	0.23	0.20	0.03	91
522.	$P^+(Me)(C_6H_5)(C_6H_4-4-Me)$	1.09	1.11	1.02	0.09	91
523.	$P^+(Me)(C_6H_4-4-Me)_2$	1.13	1.18	1.04	1.14	91
524.	$Ge(C_6H_5)_3$	0.05	0.08	0.07	0.01	98
525.	2-methyl-4,6-diphenylpyridinium	0.65	0.70	0.61	0.09	61
526.	$N=P(C_6H_5)_3$	-0.33	-0.77	-0.10	-0.67	83
527.	$Si(C_6H_5)_3$	-0.03	0.10	-0.04	0.14	132
528.	$\operatorname{Sn}(C_6H_5)_3$	(0.53)	(0.27)	(0.62)	(-0.35)	164
529.	$C(C_6H_5)_3$	-0.01	0.02	0.01	0.01	131
530.	2,4,6-triphenylpyridinium	0.34	0.33	0.35	-0.02	73

^a Values in parentheses are suspected of being inaccurate. ^b Calculated from eq 8. ^c Calculated from eq 2. ^d Substituents are arranged by molecular formula, C_xH_y ; other elements in alphabetical order.