Metode Simplex

Metode Simplex

- Metode simplek untuk linier programming dikembangkan pertama kali oleh George Dantzing pada tahun 1947
- Metode simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan yang berhubungan dengan pengalokasian sumber daya secara optimal.
- Metoode simpleks digunakan untuk mencari nilai optimal dari program linier yang melibatkan banyak constraint (pembatas) dan banyak variabel (lebih dari dua variabel)
- Metode simpleks dalam bekerja menggunakan proses iterasi, dimulai dari titik ekstrem *feasible* awal ke titik ekstrem *feasible* lain yang terhubung, dan iterasi akan berhenti jika penyelesaian optimal telah diperoleh
- Metode simpleks biasa digunakan untuk menyelesaikan masalah program linier yang kendalakendala strukturalnya semua menggunakan tanda "≤"

Langkah-langkah Metode Simplex

- Mengubah fungsi tujuan dan fungsi kendala
- Menyusun persamaan persamaan di dalam tabel
- Memilih kolom kunci baris Z dengan bilangan negatif angka yang terbesar
- Mencari nilai indeks (Nilai indeks = NK : nilai kolom kunci
- Memilih baris kunci (Nilai Indeks terkecil)
- Menentukan angka kunci perpotongan kolom kunci dan baris kunci
- Menentukan NBBK (Nilai Baris Baru Kunci) NBBK = baris kunci : angka kunci
- Mengubah nilai nilai selain baris kunci sehingga nilai nilai kolom kunci (selalu baris kunci) = 0, baris lama = baris baru (koefisien angka kolom kunci x NBBK).
- Melanjutkan perbaikan/pengulangan/iterasi

Contoh

Minimumkan
$$Z = -x_1 - 2x_2 + x_3 - x_4 - 4x_5 + 2x_6$$

Kendala

$$x_1 + x_2 + x_3 + x_5 + x_6 \le 6$$

$$2x_1 - x_2 - 2x_3 + x_4 \le 4$$

$$x_3 + x_4 + 2x_5 + x_6 \le 4$$

$$x_i \ge 0$$
, untuk $i = 1, 2, 3..., 6$

Jawab

1. a) Mengubah pertidaksamaan kendala menjadi persamaan dengan menambahkan variable longgar

$$x_1 + x_2 + x_3 + x_5 + x_6 + x_7 = 6$$

$$2x_1 - x_2 - 2x_3 + x_4 + x_8 = 4$$

$$x_3 + x_4 + 2x_5 + x_6 + x_9 = 4$$

$$x_i \ge 0$$
, untuk $i = 1, 2, 3..., 9$

dimana x_7 , x_8 , x_9 disebut variabel longgar.

b) Fungsi tujuan ditambah dengan variabel longgar dengan koefisien nol

$$Z = -x_1 - 2x_2 + x_3 - x_4 - 4x_5 + 2x_6 - 0x_7 - 0x_8 - 0x_9$$

ditulis kembali menjadi

$$Z + x_1 + 2x_2 - x_3 + x_4 + 4x_5 - 2x_6 - 0x_7 - 0x_8 - 0x_9 = 0$$

2. Membuat tabel simplex

kolom kunci

	Basis	Z	\boldsymbol{x}_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	RHS	Rasio
ВО	Z	1	1	2	-1	1	4	-2	0	0	0	0	
B1	x_7	0	1	1	1	0	1	1	1	0	0	6	6/1
B2	x_8	0	2	-1	-2	1	0	0	0	1	0	4	
В3	x_9	0	0	0	1	1	2	1	0	0	1	4	4/2

baris kunci

3. Menentukan pivot element (PE)

Untuk masalah minimumkan

- a) PE sekolom Z terbesar
- b) PE sebaris dengan $\frac{b_i}{a_{ij}(N)}$ (rasio) terkecil
- c) PE = 2

	Basis	Z	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	x_8	x_9	RHS	Rasio
В0	Z	1	1	2	-1	1	4	-2	0	0	0	0	
B1	x_7	0	1	1	1	0	1	1	1	0	0	6	6/1
B2	x_8	0	2	-1	-2	1	0	0	0	1	0	4	
В3	x_9	0	0	0	1	1	2	1	0	0	1	4	4/2

3. Membuat tabel simplek berikutnya

- a) Membuat PE = 1
- b) Nilai sekolom dengan PE = 0

•
$$B3' = \frac{1}{2}B3$$

•
$$B0' = B0 - 4B3'$$

•
$$B1' = B1 - B3'$$

•
$$B2' = B2$$

	Basis	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	RHS
ВО	Z	1	1	2	-1	1	4	-2	0	0	0	0
B1	x_7	0	1	1	1	0	1	1	1	0	0	6
B2	x_8	0	2	-1	-2	1	0	0	0	1	0	4
В3	x_9	0	0	0	1	1	2	1	0	0	1	4

$$\bullet \quad B3' = \frac{1}{2}B3$$

•
$$B0' = B0 - 4B3'$$

•
$$B1' = B1 - B3'$$

•
$$B2' = B2$$

	Basis	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	RHS
B0'	Z	1	1	2	-3	-1	0	-4	0	0	-2	-8
B1'	x_7	0	1	1	1/2	-1/2	0	1/2	1	0	-1/2	4
B2'	x_8	0	2	-1	-2	1	0	0	0	1	0	4
B3'	x_9	0	0	0	1/2	1/2	1	1/2	0	0	1/2	2

- Rasio
- B1' = 4/1
- B2' = -4

	Basis	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	RHS
B0'	Z	1	1	2	-3	-1	0	-4	0	0	-2	-8
B1'	x_7	0	1	1	1/2	-1/2	0	1/2	1	0	-1/2	4
B2'	x_8	0	2	-1	-2	1	0	0	0	1	0	4
B3'	x_9	0	0	0	1/2	1/2	1	1/2	0	0	1/2	2

•
$$B2 = -B2'$$

•
$$B0 = B0' - 2B2'$$

•
$$B1 = B1' - B2'$$

•
$$B3 = B3'$$

	_	_				_			_	_		
	Basis	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	RHS
В0	Z	1	-3	0	-7	3	0	-4	0	-2	-2	-16
B1	x_7	0	-1	0	3/2	-3/2	0	1/2	1	-1	-1/2	0
B2	x_8	0	-2	1	2	-1	0	0	0	-1	0	-4
В3	x_9	0	0	0	1/2	1/2	1	1/2	0	0	1/2	2