Aula 5

Defeitos cristalinos

DEFEITOS

- Defeitos pontuais
- Defeitos de linha (discordâncias)
- Defeitos de interface (grão e maclas)
- Defeitos volumétricos (inclusões, precipitados)

O QUE É UM DEFEITO?

- ✓ Imperfeição no arranjo periódico regular dos átomos em um cristal.
- na posição dos átomos
- no tipo de átomos

O tipo e o número de defeitos dependem do material, do meio ambiente, e das circunstâncias sob as quais o cristal é processado.

IMPERFEIÇÕES ESTRUTURAIS

 Apenas uma pequena fração dos sítios atômicos são imperfeitos

Menos de 1 em 1 milhão

 influência grande nas propriedades dos materiais e nem sempre de forma negativa

IMPERFEIÇÕES ESTRUTURAIS - IMPORTÂNCIA-

Permite desenhar e criar novos materiais com a combinação desejada de propriedades

Exemplos de efeitos da presença de imperfeições

- O processo de dopagem em semicondutores visa criar imperfeições para mudar o tipo de condutividade em determinadas regiões do material
- A deformação mecânica dos materiais promove a formação de imperfeições que geram um aumento na resistência mecânica (processo conhecido como encruamento)
- Wiskers de ferro (sem imperfeições do tipo discordâncias) apresentam resistência maior que 70GPa, enquanto o ferro comum rompe-se a aproximadamente 270MPa.

IMPERFEIÇÕES ESTRUTURAIS

 São classificados de acordo com sua geometria ou dimensões

IMPERFEIÇÕES ESTRUTURAIS

- Defeitos Pontuais

 associados c/ 1 ou 2 posições atômicas
- **Defeitos lineares** ————— uma dimensão
- Defeitos volumétricos três dimensões

1- DEFEITOS PONTUAIS

- Vacâncias ou vazios
- Átomos Intersticiais

- Schottky
- Frenkel

Ocorrem em sólidos iônicos

VACÂNCIAS OU VAZIOS

 Envolve a ausência de um átomo

 São formados durante a solidificação do cristal ou como resultado das vibrações atômicas (os átomos deslocam-se de suas posições normais)

VACÂNCIAS OU VAZIOS

 O número de vacâncias aumenta exponencialmente com a temperatura

Nv= N exp (-Qv/KT)

Nv= número de vacâncias
N= número total de sítios atômicos
Qv= energia requerida para formação de vacâncias
K= constante de Boltzman = 1,38x10²³J/at.K ou
8,62x10⁻⁵ eV/ at.K

INTERSTICIAIS

- Envolve um átomo extra no interstício (do próprio cristal)
- Produz uma distorção no reticulado, já que o átomo geralmente é maior que o espaço do interstício
- A formação de <u>um defeito</u>
 <u>intersticial implica na</u>
 <u>criação de uma vacância</u>,
 por isso este defeito <u>é</u>
 <u>menos provável</u> que uma vacância

INTERSTICIAIS

Átomo intersticial pequeno

- •Átomo intersticial grande
- Gera maior distorção na rede

FRENKEL

- Ocorre em <u>sólidos</u>
 <u>iônicos</u>
- Ocorre quando um <u>íon</u>
 sai de sua posição
 normal e vai para um
 <u>interstício</u>

SCHOTTKY

Presentes em
 compostos que tem
 que manter o balanço
 de cargas

Envolve a <u>falta de um</u>
 <u>ânion</u> e/ou um cátion

CONSIDERAÇÕES GERAIS

- Vazios e Schottky favorecem a difusão
- Estruturas de <u>empacotamento fechado</u> tem um <u>menor número intersticiais e Frenkel</u> que de vazios e Schottky

Porque é necessária energia adicional para deslocar os átomos para novas posições

IMPUREZAS NOS SÓLIDOS

 Um metal considerado puro sempre tem impurezas (átomos estranhos) presentes

 $99,9999\% = 10^{22}-10^{23}$ impurezas por cm³

 A presença de impurezas promove a formação de defeitos pontuais

LIGAS METÁLICAS

- As impurezas (chamadas elementos de liga) são adicionadas intencionalmente com a finalidade:
- aumentar a resistência mecânica
- aumentar a resistência à corrosão
- Aumentar a condutividade elétrica
- Etc.

A ADIÇÃO DE IMPUREZAS PODE FORMAR

- Soluções sólidas ---- limite de solubilidade
- Segunda fase > limite de solubilidade

A solubilidade depende :

- Temperatura
- Tipo de impureza
- Concentração da impureza

Termos usados

Elemento de liga ou Impureza

Matriz ou Hospedeiro

solvente (>quantidade)

SOLUÇÕES SÓLIDAS

- A estrutura cristalina do material que atua como matriz é mantida e não formam-se novas estruturas
- As soluções sólidas formam-se mais facilmente quando o elemento de liga (impureza) e matriz apresentam estrutura cristalina e dimensões eletrônicas semelhantes

SOLUÇÕES SÓLIDAS

Nas soluções sólidas as impurezas podem ser:

SOLUÇÕES SÓLIDAS INTERSTICIAIS

- Os átomos de impurezas ou os elementos de liga ocupam os espaços dos interstícios
- Ocorre quando a impureza apresenta raio atômico bem menor que o hospedeiro
- Como os materiais metálicos tem geralmente fator de empacotamento alto as posições intersticiais são relativamente pequenas
- Geralmente, no máximo 10% de impurezas são incorporadas nos interstícios

EXEMPLO DE SOLUÇÃO SÓLIDA INTERSTICIAL

Fe + C solubilidade máxima do C no Fe é 2,1% a 910 C (Fe CFC)

O C tem raio atômico bastante pequeno se comparado com o Fe

rC= 0,071 nm= 0,71 A rFe= 0,124 nm= 1,24 A

Solubilidade do Carbono no Ferro

 O carbono é mais solúvel no Ferro CCC ou CFC, considerando a temperatura próxima da transformação alotrópica?

TIPOS DE SOLUÇÕES SÓLIDAS SUBSTITUCIONAIS

SUBSTITUCIONAL

ORDENADA

SUBSTITUCIONAL

DESORDENADA

FATORES QUE INFLUEM NA FORMAÇÃO DE SOLUÇÕES SÓLIDAS SUBSTITUCIONAIS

REGRA DE HOME-ROTHERY

- Estrutura cristalina

 mesma
- Eletronegatividade próximas
- Valência > mesma ou maior que a do hospedeiro

EXEMPLO DE SOLUÇÃO SÓLIDA SUBSTICIONAL

Cu + Ni são solúveis em todas as proporções

	Cu	Ni
Raio atômico	0,128nm=1,28 A	0,125 nm=1,25A
Estrutura	CFC	CFC
Eletronegatividade	1,9	1,8
Valência	+1 (as vezes +2)	+2

2- DEFEITOS LINEARES: DISCORDÂNCIAS

 As discordâncias estão associadas com a cristalização e a deformação (origem: térmica, mecânica e supersaturação de defeitos pontuais)

 A presença deste defeito é a responsável pela deformação, falha e ruptura dos materiais

2- DEFEITOS LINEARES: DISCORDÂNCIAS

• Podem ser:

- Cunha
- Hélice
- Mista

VETOR DE BURGER (b)

 Dá a magnitude e a direção de distorção da rede

 Corresponde à distância de deslocamento dos átomos ao redor da discordância

DISCORDÂNCIA EM CUNHA

- Envolve um SEMI-plano extra de átomos
- O vetor de Burger é perpendicular à direção da linha da discordância
- Envolve zonas de tração e compressão

DISCORDÂNCIAS EM CUNHA

DISCORDÂNCIAS EM CUNHA

O circuito e o vetor de Burgers

92

Cristal Perfeito

O circuito se fecha.

Cristal c/ discordância em linha

O circuito não se fecha. O vetor necessário para fechar o circuito é o **vetor de Burgers**, **b**, que caracteriza a discordância. Neste caso **b** é *perpendicular* a discordância

DISCORDÂNCIA EM HÉLICE

- Produz distorção na rede
- O vetor de Burgers é paralelo à direção da linha de discordância

DISCORDÂNCIA EM HÉLICE

DISCORDÂNCIA EM HÉLICE

DISCORDÂNCIA EM HÉLICE NA SUPERFÍCIE DE UM MONOCRISTAL DE SIC. AS LINHAS ESCURAS SÃO DEGRAUS DE ESCORREGAMENT SUPERFICIAIS. (Fig. 5.3-2 in Schaffer et al.).

OBSERVAÇÃO DAS DISCORDÂNCIAS

Diretamente TEM ou HRTEM

Indiretamente SEM e
 microscopia óptica (após ataque
 químico seletivo)

DISCORDÂNCIAS NO TEM

DISCORDÂNCIAS NO HRTEM

DISCORDÂNCIAS NO HRTEM

FIGURA DE ATAQUE PRODUZIDA NA DISCORDÂNCIA VISTA NO SEM

Plano (111) do InSb

Plano (111) do GaSb

CONSIDERAÇÕES GERAIS

- A quantidade e o movimento das discordâncias podem ser controlados pelo grau de deformação (conformação mecânica) e/ou por tratamentos térmicos
- Com o aumento da temperatura há um aumento na velocidade de deslocamento das discordâncias favorecendo o aniquilamento mútuo das mesmas e formação de discordâncias únicas
- Impurezas tendem a difundir-se e concentrar-se em torno das discordâncias formando uma atmosfera de impurezas

CONSIDERAÇÕES GERAIS

- O <u>cisalhamento</u> se dá mais facilmente nos <u>planos de maior densidade atômica</u>, por isso a densidade das mesmas depende da orientação cristalográfica
- As discordâncias geram vacâncias
- As discordâncias influem nos processos de difusão
- As discordâncias contribuem para a deformação plástica

3- DEFEITOS PLANOS OU INTERFACIAIS

 Envolvem fronteiras (defeitos em duas dimensões) e normalmente separam regiões dos materiais de diferentes estruturas cristalinas ou orientações cristalográficas

3- DEFEITOS PLANOS OU INTERFACIAIS

- ✓ Superfície externa
- ✓ Contorno de grão
- ✓ Fronteiras entre fases
- ✓ Maclas ou Twins
- ✓ Defeitos de empilhamento

DEFEITOS SUPERFICIAIS

- Na superfície os átomos não estão completamente ligados
- Estado energia dos átomos na superfície é maior que no interior do cristal
- Os materiais tendem a minimizar está energia
- A energia superficial é expressa em erg/cm² ou J/m²)

3.2- CONTORNO DE GRÃO

 Corresponde à região que separa dois ou mais cristais de orientação diferente

um cristal = um grão

 No interior de cada grão todos os átomos estão arranjados segundo um único modelo e única orientação, caracterizada pela célula unitária

Monocristal e Policristal

Monocristal: Material com apenas uma orientação cristalina, ou seja, que contém apenas um grão

Policristal: Material com mais de uma orientação cristalina, ou seja, que contém vários grãos

LINGOTE DE ALUMÍNIO POLICRISTALINO

GRÃO

- A forma do grão é controlada:
 - pela presença dos grãos circunvizinhos

- O tamanho de grão é controlado

 - Composição químicaTaxa (velocidade) de cristalização ou solidificação

FORMAÇÃO DOS GRÃOS

A forma do grão é controlada:

 pela presença dos grãos circunvizinhos

O tamanho de grão é controlado

- Composição
- Taxa de cristalização ou solidificação

CONSIDERAÇÕES GERAIS SOBRE CONTORNO DE GRÃO

- Há um empacotamento ATÔMICO menos eficiente
- Há uma energia mais elevada
- Favorece a nucleação de novas fases (segregação)
- favorece a difusão
- O contorno de grão ancora o movimento das discordâncias

Discordância e Contorno de Grão

A passagem de uma discordância através do contorno de grão requer energia

O contorno de grão ancora o movimento das discordância pois constitui um obstáculo para a passagem da mesma, LOGO QUANTO MENOR O TAMANHO DE GRÃO .A RESISTÊNCIA DO MATERIAL

CONTORNO DE PEQUENO ÂNGULO

- Ocorre quando a desorientação dos cristais é pequena
- É formado pelo alinhamento de discordâncias

OBSERVAÇÃO DOS GRÃOS E CONTORNOS DE GRÃO

- Por microscopia (ótica ou eletrônica)
- utiliza ataque químico específico para cada material

O contorno geralmente é mais reativo

GRÃOS VISTOS NO MICROSCÓPIO ÓTICO

TAMANHO DE GRÃO

- O tamanho de grão influi nas propriedades dos materiais
- Para a determinação do tamanho de grão utiliza-se cartas padrões

DETERMINAÇÃO DO TAMANHO DE GRÃO (ASTM)

• Tamanho: 1-10

Aumento: 100 X

N= número médio de grãos por polegada quadradan= tamanho de grão

Existem vários softwares comerciais de simulação e determinação do tamanho de grão

CRESCIMENTO DO GRÃO com a temperatura

Em geral, por questões termodinâmicas (energia) os grãos maiores crescem em detrimento dos menores

3.3- TWINS MACLAS OU CRISTAIS GÊMEOS

- É um tipo especial de contorno de grão
- Os átomos de um lado do contorno são imagens especulares dos átomos do outro lado do contorno
- A macla ocorre num plano definido e numa direção específica, dependendo da estrutura cristalina

ORIGENS DOS TWINS MACLAS OU CRISTAIS GÊMEOS

- O seu aparecimento está geralmente associado com A PRESENÇA DE:
 - tensões térmicas e mecânicas
 - impurezas
 - Etc.

4- IMPERFEIÇÕES VOLUMÉTRICAS

 São introduzidas no processamento do material e/ou na fabricação do componente

4- IMPERFEIÇÕES VOLUMÉTRICAS

- Inclusões Impurezas estranhas
- **Precipitados** são aglomerados de partículas cuja composição difere da matriz
- **Fases** forma-se devido à presença de impurezas ou elementos de liga (ocorre quando o limite de solubilidade é ultrapassado)
- **Porosidade** origina-se devido a presença ou formação de gases ou sinterização incompleta

Inclusões

INCLUSÕES DE ÓXIDO DE COBRE (Cu2O) EM COBRE DE ALTA PUREZA (99,26%) LAMINADO A FRIO E RECOZIDO A 800° C.

Inclusões

SULFETOS DE MANGANÊS (MnS) EM AÇO RÁPIDO.

Porosidade

Embora a sinterização tenha diminuído a quantidade de poros bem como melhorado sua forma (os poros estão mais arredondados), ainda permanece uma porosidade residual.

COMPACTADO DE PÓ DE FERRO,COMPACTAÇÃO UNIAXIAL EM MATRIZ DE DUPLO EFEITO, A 550 MPa COMPACTADO DE PÓ DE FERRO APÓS SINTERIZAÇÃO A 1150oC, POR 120min EM ATMOSFERA DE HIDROGÊNIO

EXEMPLO DE PARTÍCULAS DE SEGUNDA FASE

A MICROESTRUTURA É COMPOSTA POR VEIOS DE GRAFITA SOBRE UMA MATRIZ PERLÍTICA.

CADA GRÃO DE PERLITA, POR SUA VEZ, É CONSTITUÍDO POR LAMELAS ALTERNADAS DE DUAS FASES: FERRITA (OU FERRO-A) E CEMENTITA (OU CARBONETO DE FERRO).

Microestrutura da liga Al-Si-Cu + Mg mostrando diversas fases precipitadas

Micrografia da Liga Al-3,5%Cu no Estado Bruto de Fusão

