

Лекция 2 Основни концепции, описващи софтуерната разработка

DAAD Project "Joint Course on Software Engineering"

Humboldt University Berlin, University of Novi Sad, University of Plovdiv, University of Skopje, University of Belgrade, University of Niš, University of Kragujevac

Parts of this topic use material from the textbook
H. Balzert, "Software-Technik", Vol. 1, 2nd ed., Spektrum Akademischer Verlag, 2010

4. Основни концепции описващи софтуерната разработка

- → а) Описание на резултатите от фазите на разработка на софтуер документи при разработката на софтуер
- →b) Дефиниции на основните концепции за описание на разработката на софтуер и тяхната класификация
- →c) Основните концепции и фазите на разработка на софтуер
- →d) Класификация на основните концепции според техните нотации
- →е) Основните концепции и техните области на приложение
- →f) Основните концепции и тяхното приложение в методите за анализ

Техники за описание на софтуерните документи Проблем: Как да се опишат? Изисквания на спецификация проект код клиента

проектант

програмист

анализатор

клиент

Описание на софтуерните документи чрез ...

Основните концепции на ... софтуерната разработка Balzert vol. 1, 2nd edition 2001

Alternative Notations Often used Rarely used said						Box diagram 1973	Decision	Activity		Collabo-
						flowchart 1966	tables 1957	diagram 1997		ration diagram
tree C	lse case piagram 987	Data flow diagram 1966	Data- Dictio- nary 1979	Entity Relation- ship Model 1976	Class diagram 1980/ 1990	Pseudo code	Rules	State automato n 1954	Petri Net 1962	Sequ- ence diagram 1987
	Business Process	Infor- mation Flow	Data Structures	Entity types and relations	Class structures	Control structures	If-Then structures	Finite State Automator	structures	Interaction structures
Functional View		Data-Oriented View		Object- Oriented View	Algorith- mic View	Rule- Based View	State-Oriented View		Scenario- Based View	

Основни концепции: основен подход

Основни концепции на ... софтуерната разработка Balzert vol. 1, 1st edition 1996

Softwareentwicklung bleibt Methodenmix

Softwareentwicklung als Wissenschaft und Softwareentwicklung als praktische Tätigkeit in Unternehmen haben etwas gemeinsam: die Heterogenität. Die technisch beeinflußten Meinungen über die richtige Sofwaremethode sind gespalten – selbst im engeren Bereich der objektorientierten Methoden gibt es mehr als 50 Ansätze –, und der Reifegrad der Softwareentwicklung in Firmen reicht von "kein Prozeß" bis zu "perfekt durchorganisiert". Dabei wäre es sicher besser, irgendeine der existierenden Entwicklungsmethoden zu verwenden als überhaupt keine. Eine stabile Größe von Anbeginn der problembewußten Softwareentwicklung ist die zugehörige Diskussion: Softwareentwicklung – Kunst oder Ingenieurwissenschaft?

Der hier zugrunde liegende Gegensatz ist Geist (Improvisation und knifflige Algorithmen) und Disziplin (Prozesse). Für den Bau großer Systeme ist die Notwendigkeit von Disziplin unumstritten.

Aber die Softwaretechnik hat sich auch schaft profiliert und in den letzten Jah schritte gebracht: verteilte Objekte, I werksysteme wie Java. Die Softwaretec zu einem der innovativsten Industriezw Schlüsseltechnologie für Innovation sell ist damit ein zu balancierendes Tripel g waretechnologie, Innovation.

Den Administrator sprechen vor allem formatiker die Softwaretechnologie und novation. Manager und Politiker müsse sammenbringen.

Sicher ist auch die Einführung neuer P mühsam, aber das Problembewußtsein ist ger und deshalb heute wichtiger sind die aktiven und konstruktiven Faktoren der neu-

en Softwaretechnik und der S vation, aber hier liegt möglic gend benötigter Antrieb für a und Industrie. Traditionell Deutschland wohl geregelte F Der Schwerpunkt zukünftiger derung in Deutschland sollte a er Softwaretechnologie liege neuen Technik kommen sow xible Entwicklungsprozesse w Dienstleistungen als auch nel

Softwareentwicklung bleibt Methodenmix

Softwareentwicklung als Wissenschaft und Softwareentwicklung als praktische Tätigkeit in Unternehmen haben etwas gemeinsam: die Heterogenität. Die technisch beeinflußten Meinungen über die richtige Sofwaremethode sind gespalten – selbst im

Софтуерната разработка е смесица от методи

Софтуерната разработка като наука и като практическа дейност има нещо общо : хетерогенност.

Kunst oder Ingenieurwissenschaft?

Разнообразие от подходи в основните концепции:

 → различни изгледи на софтуерния продукт трябва да бъдат възможни (различни аспекти на софтуерния продукт)

Ent-

sta-

ent-

g -

Основни концепции: принципи

- независими от фазите
 - → използваеми в различни фази
- независими от приложението
- типа на приложението определя само избора на подходяща основна концепция
- Независими от метода на развой
- → Основните концепции могат да се комбинират за общи методи (например: структурен анализ, ООА с UML ...)

DAAD project "Joint Course on Software Engineering" ©

Класификация на основните концепции според техните нотации

Основните концепции и приложни области

ОСНОВНИТЕ	концепции и п	риложни области			
приложни области	сложност	основни концепции			
——→ 	на данни	▶ Речници от данни▶ ER (Entity Relationship)▶ (крайни автомати)			
	на функции	 class диаграми use case диаграми диаграми на потока от данни функционални дървета 			
технически- научен реално време	на алгоритми	 псевдо код диаграми на потока на програмата box диаграми таблици на решенията правила 			
	на системната среда	 Диаграми на потока от данни 			
	…на зависещо от време поведение	 Мрежи на Петри Крайни автомати activity диаграми sequence диаграми collaboration диаграми 			
взаимодейс твие човек- компютър	на потребителски интерфейс	 графична спецификация (Мрежи на Петри) (крайни автомати) Контролни структури правила 			
плегенда: (,) от петраничено ftw	are Engineering" ©				

Основните концепции на ... софтуерната разработка:

допълнения

Balzert vol. 1, 2nd edition 2001

Specifica-	Hoare logic 1969	Z	Structure Chart	Gram- mars	- EBNF		Diagr ent	t	State Chart 1987	SDL
(• пълни?						класификация на 3 нива Гъвкава схема				нива
		олнител гации?	іни фор	МИ		1973 Program flowchart 1966	Decision tables 1957	Activity diagram		Collabo- ration diagram
Function tree	Use Case Diagram 1987	Data flow diagram 1966	Data- Dictio- nary 1979	Entity Relation- ship Model 1976	Class diagram 1980/ 1990	Pseudo code	Rules	State automato n 1954	Petri Net 1962	Sequ- ence diagram 1987
Functional hierarchy	Business Process	Infor- mation Flow	Data Structures	Entity types and relations	Class structures	Control structures	If-Then structures	Finite State Automator	structures	Interaction structures
Functional	View		Data-Orier	nted View	Object- Oriented View	Algorith- mic View	Rule- Based View	State-Ori	ented View	Scenario- Based View

Основни концепции: класификация на допълненията

Основни концепции: детайлна класификация на допълненията

Комбинация от основни концепции в обектноориентирания анализ

легенда: А --- В: А се съдържа в В

А ---> В: А напълно се съдържа в В

Комбинация от основни концепции в структурния анализ

легенда: А --> В: А се съдържа в В

А ---> В: А напълно се съдържа в В

Комбинация от основни концепции в структурния анализ и real-time анализ

