ITCS 531: LA1 homework solutions

Rob Egrot

Show
$$-1v = -v$$
.

▶ By proposition 1.7(3) we have 0v = 0.

So (1-1)v = 0, and so v + (-1)v = 0 by definition 1.5(8) and (6).

So (-1)v = -v by proposition 1.7(2).

Given $v \in V$, prove that -(-v) = v.

We know v + (-v) = 0, so -(-v) = v, as additive inverses are unique, by proposition 1.7(2).

Given $a \in \mathbb{F}$ and $v \in V$ prove that av = 0 if and only if either a = 0 or v = 0.

- ▶ If a = 0 then av = 0 by proposition 1.7(3).
- Now, let v = 0, and suppose $a \neq 0$. Let w be any vector.
- Then $a0 + w = a0 + aa^{-1}w = a(0 + a^{-1}w) = a(a^{-1}w) = 1w = w.$
- So a0 = 0, as the zero of a vector space is unique (by proposition 1.7(1)).
- ▶ Conversely, suppose av = 0 and that $a \neq 0$.
- ► Then $a^{-1}av = a^{-1}0 = 0$, and so v = 0, as $aa^{-1} = 1$.

Let U and W be subspaces of V. Prove that if $U \cup W$ is a subspace of V, then either $U \subseteq W$ or $W \subseteq U$.

- ▶ Suppose $U \cup W$ is a subspace of V, and suppose U is not a subspace of W.
- ▶ Choose $u \in U \setminus W$, and let $w \in W$.
- ▶ Then $u + w \in U \cup W$, as $U \cup W$ is a subspace, and so is closed under +.
- ▶ So either $u + w \in U$ or $u + w \in W$.
- If $u + w \in W$, then u + w w = u is also in W, but this contradicts the choice of u.
- ▶ So $u + w \in U$, and so $u + w u = w \in U$.
- ▶ This is true for all $w \in W$, so W is a subspace of U.

Let V be vector space over \mathbb{F} , and let $v_1, \ldots, v_n \in V$ such that (v_1, \ldots, v_n) is linearly independent. Let $w \in V$. Prove that (v_1, \ldots, v_n, w) is linearly independent if and only if $w \notin \operatorname{span}(v_1, \ldots, v_n)$.

- "If $w \in \operatorname{span}(v_1, \ldots, v_n)$ then (v_1, \ldots, v_n, w) is not linearly independent".
 - If $w \in \operatorname{span}(v_1, \ldots, v_n)$, then $w = a_1v_1 + \ldots + a_nv_n$ for some a_1, \ldots, a_n .
 - So $0 = (-1)w + a_1v_1 + \ldots + a_nv_n$.
 - ▶ So $(v_1, ..., v_n, w)$ is not linearly independent.
- "If (v_1, \ldots, v_n, w) is not linearly independent then $w \in \operatorname{span}(v_1, \ldots, v_n)$ ".
 - If (v_1, \ldots, v_n, w) is not linearly independent then we have $a_0w + a_1v_1 + \ldots + a_nv_n = 0$ for some a_0, \ldots, a_n not all zero.
 - $ightharpoonup a_0$ cannot be zero, as (v_1, \ldots, v_n) is linearly independent.
 - So $w = \frac{-a_1}{a_0}v_1 + \ldots + \frac{-a_n}{a_0}v_n$, and is therefore in $\operatorname{span}(v_1, \ldots, v_n)$.