NACA

RESEARCH MEMORANDUM

AN INVESTIGATION AT HIGH SUBSONIC SPEEDS OF THE PRESSURE

DISTRIBUTIONS ON A 45° SWEPTBACK VERTICAL TAIL IN

SIDESLIP WITH AND WITHOUT A 45° SWEPTBACK

HORIZONTAL TAIL LOCATED ON THE

FUSELAGE CENTER LINE

By Harleth G. Wiley and William C. Moseley, Jr.

Langley Aeronautical Laboratory Langley Field, Va.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON
November 2, 1954

	concelled for changed to Machas Field
By 70th 1	Mason Trees tab Amorasament #105
Ву	25 Aug 56
ELACE C	a de versagen es
5A	DATE

NACA RM L54H23

N

TO THE WILLIAM

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

AN INVESTIGATION AT HIGH SUBSONIC SPEEDS OF THE PRESSURE
DISTRIBUTIONS ON A 45° SWEPTBACK VERTICAL TAIL IN
SIDESLIP WITH AND WITHOUT A 45° SWEPTBACK
HORIZONTAL TAIL LOCATED ON THE

FUSELAGE CENTER LINE

By Harleth G. Wiley and William C. Moseley, Jr.

SUMMARY

An investigation was made in the Langley high-speed 7- by 10-foot tunnel at high subsonic speeds and several angles of attack of the chordwise pressure distribution at six spanwise stations on a 45° sweptback, untapered vertical tail in sideslip. The vertical tail was mounted on a fuselage and tests were made with and without a 45° sweptback untapered horizontal tail mounted on the fuselage center line. The horizontal and vertical tails had NACA 65A010 airfoils normal to the leading edge and had aspect ratios of 4.0 and 2.0, respectively.

Results indicated that the presence of the horizontal tail slightly increased the value of section normal-force coefficients on the vertical tail except at angles of sideslip above about 120 but did not materially alter the nature of the load distribution.

INTRODUCTION

The National Advisory Committee for Aeronautics has undertaken a research program to determine the aerodynamic loadings on vertical tails as they are affected by various design parameters and maneuver attitudes. Calculated subsonic loadings and resulting stability derivatives of unswept and 45° sweptback tail surfaces in steady roll and sideslip at low speeds are presented in reference 1 for surfaces of various aspect ratios and horizontal-tail heights. The effects of vertical location of the horizontal tail on the aerodynamic characteristics in sideslip of an unswept, untapered tail assembly were determined experimentally and

CONT LUMINITAL

theoretically at low speeds and at high subsonic speeds and presented in references 2 and 3, respectively.

The present experimental investigation was made in the Langley high-speed 7- by 10-foot tunnel to determine the aerodynamic loadings in side-slip at several angles of attack at high subsonic speeds on an untapered 45° sweptback vertical tail mounted on a fuselage with and without an untapered 45° sweptback horizontal tail. The horizontal tail was mounted on the fuselage center line at 0 percent vertical tail span. The vertical and horizontal tails had NACA 65AOlO airfoils normal to the leading edges and had aspect ratios of 2.0 and 4.0, respectively. Chordwise pressure distributions were obtained on the vertical tail at stations of 20.0, 30.0, 45.0, 70.0, 85.0, and 93.1 percent vertical tail span.

Tests were made at 0°, 4° , and 12° angle of attack, through an angle-of-sideslip range of -2° to about 23°, and over a Mach number range of 0.60 to 0.95. Reynolds number for the tests, based on the mean aerodynamic chord of the vertical tail, varied with Mach number from about 1.9×10^6 to 2.4×10^6 .

COEFFICIENTS AND SYMBOLS

The results presented in this paper are referred to the standard body axes as shown in figure 1 and the coefficients and symbols used are defined as follows:

- c_m section moment coefficient of vertical tail referred to 0.25c, <u>Section moment</u> qc²
- c_N normal-force coefficient of vertical tail, $\sum (c_{n_1}b_1'c_1 + \ldots + c_{n_6}b_6'c_6)\frac{1}{S}$
- CB root-bending-moment coefficient of vertical tail about intersection of vertical tail and fuselage,

$$\sum (c_{n_1b_1}'l_1c_1 + ... + c_{n_6b_6}'l_6c_6) \frac{1}{bS}$$

P pressure coefficient, $\frac{p_l - p_0}{q}$

- p₁ local static pressure, lb/sq ft
- po free-stream static pressure, lb/sq ft
- q free-stream dynamic pressure, $\frac{\rho V^2}{2}$, lb/sq ft
- ρ mass density of air, slugs/cu ft
- V free-stream velocity, ft/sec
- M Mach number
- R Reynolds number
- α angle of attack, deg
- β angle of sideslip, deg
- Δβ incremental change of angle of sideslip due to vertical-tail load, deg
- S exposed area of vertical tail, sq ft
- c local chord of vertical tail, ft
- ē mean aerodynamic chord of vertical tail, ft
- by span of vertical tail (measured from center line of fuselage to tip of vertical tail), ft
- b exposed span of vertical tail (measured from intersection of fuselage and vertical tail to tip of vertical tail), ft
- b' exposed local span segment, ft
- distance from intersection of fuselage and vertical tail to centroid of exposed local span segment, ft
- z vertical distance measured along Z-axis, in.

Subscripts:

- 1,2, . . . span station indicated
- h horizontal
- v vertical

The state of the s

MODEL AND APPARATUS

A drawing of the swept-tail model used in the investigation is presented in figure 2 with a photograph of the model assembly shown in figure 3.

The untapered, 45° sweptback horizontal and vertical surfaces had NACA 65A010 airfoils normal to the leading edge and had aspect ratios of 4.0 and 2.0, respectively. The tail surfaces were constructed of a steel core overlaid with a glass fiber and transparent plastic finish to obtain the airfoil contour.

Pressure tubes were installed in the plastic surface covering of the vertical tail along constant percentage chord lines at locations shown in table I. Data were first obtained at the outermost span station $(0.93lb_V)$, the tubes were then sealed and orifices were drilled at the next inboard station $(0.850b_V)$, and so on. Data were thus obtained for all spanwise stations at progressively inboard locations on the vertical tail.

The tail surfaces were mounted on a cylindrical body fabricated of sheet aluminum with an ogival-shaped nosepiece (figs. 2 and 3).

Tests were made with the models mounted on the sting support of the Langley high-speed 7- by 10-foot tunnel with the vertical tail mounted in a horizontal plane (fig. 3).

The chordwise pressure distributions on the vertical tail were obtained by directly photographing the pressures as projected by a calibrated, pneumatic-optical system. The system comprised a series of pressure-indicating units made up of a mirror attached to a diaphragmtype pressure cell. One side of the pressure cell responded to local orifice static pressure py with the other side referenced to free-stream static pressure po such that the pressure-cell diaphragm deflected in proportion to the pressure differential p2 - po. By means of the mirror, a "pin point" of light was projected on a calibrated camera screen such that the height of the projected light was proportional to $p_l - p_0$. Each pressure orifice on the left and right surfaces of the airfoil was connected to a separate indicator unit with the horizontal spacing of the indicator lights on the screen proportional to the chordwise spacing of the orifices on the airfoil (table I). Direct photographs were thus obtained of simultaneous pressures which existed on both surfaces of the vertical tail.

The section characteristics, normal force and moment, were obtained with an electrical pressure integrator which employed calibrated differential pressure cells to measure electrically the difference in pressure between orifices located at common chordwise positions on each side of

the vertical tail. The output from each pressure cell was "weighted" by resistors to account for that linear portion of the airfoil chord over which the subject pressure was considered effective. The total "weighted" output of all cells was fed to a servo-operated, self-balancing Wheatstone bridge circuit which directly indicated the summation of all pressures over the airfoil chord. Section normal force was thus obtained for each span station in terms of the product of c_n times q for unit chord and span.

Section moment was similarly obtained as qc_m , by taking into account the distance from the moment reference (0.25c for these tests) to the centroid of the effective areas of each orifice for the determination of the proper moment "weighting" factors (table I). A more detailed description of the principles involved in the design of the integrator is presented in reference 4.

TESTS AND CORRECTIONS

The tests were made in the Langley high-speed 7- by 10-foot tunnel through a Mach number range of 0.60 to 0.95. Reynolds number for the tests, based on the mean aerodynamic chord of the vertical tail, varied from about 1.9×10^6 to 2.4×10^6 (fig. 4). Tests were made over an angle-of-sideslip range of -2° to 23° at angles of attack of 0°, 4° , and 12° .

Blockage corrections, computed by the method of reference 5, were derived as an incremental correction to Mach number.

No corrections were made to the data to account for the aeroelastic distortion of the vertical tail under load. In order to determine the general magnitude and nature of the distortion on the vertical tail during tests, however, static tests were made using a span loading representative of the high loads obtained at high sideslip angles. In addition, the theoretical deflections of the tail were computed according to the method of reference 6. (The span loading used for the static tests and the theoretical computations simulated the loading on the vertical tail in the presence of the horizontal tail as obtained from wind-tunnel tests at 0° angle of attack, 16° angle of sideslip, and a Mach number of 0.95 (fig. 5(a)). The static loadings were arbitrarily considered applied at 27 percent vertical tail chord.) The experimental and theoretical deflections are presented in figure 5 in terms of the change of angle of sideslip due to load $\Delta\beta$ over the vertical-tail span. As shown in figure 5(b), the maximum value of Δβ obtained from static tests was about 0.90 and reasonable approximations of the change in angle of sideslip over the tail due to load can be calculated by the methods of reference 6.

CAPTILIDE NAME OF THE PARTY OF

Deflection of the sting-support system under load was small and was neglected.

ACCURACY OF DATA

The accuracy of the original data, section normal-force coefficient c_n, section moment coefficient c_m, and pressure coefficient P, are direct functions of the mechanical accuracies of the pressure-integrating and pressure-diagram machines. The data are believed accurate within the following limits:

c_n	•	•	•	٠	•	•	•	•	•		•	•	•			•		•	•	•	•	•			±0.005
$c_{\underline{m}}$	•		•	•			•				•					•									±0.001
Ρ										_									_			_	_	_	±0.03

REDUCTION OF DATA

Integrated chordwise loadings were obtained by the pressureintegrating machine on the assumption that a square-wave loading with parabolic fairings at the leading and trailing edges closely approximated the actual chordwise loading (ref. 4). Electrical resistor "weighting factors" used in the machine for the chordwise integrations are presented in table I.

Since section normal force and moment were obtained directly from the pressure-integrating machine in terms of qc_n and qc_m for unit chord, the coefficients c_n and c_m were simply obtained by dividing machine results by the dynamic pressure q.

In order to obtain normal-force coefficient CN and root-bending-moment coefficient CB, a mathematical integration of the variation of section normal-force coefficient over the exposed vertical-tail span was performed. The assumption was made that a square-wave loading over the span reasonably approximated the actual span loading. The value of cn at each span station was considered effective over that segment of the tail span which extended half way to the adjacent span stations or to the tail tip or root as appropriate. Actual numerical values of the span segments b' assigned for each span station are presented in figure 6. A summation of the product of cn and the appropriate span segment b' for each of the span stations results in the normal-force coefficient

$$C_N = \sum (c_{n_1}b_1'c_1 + \dots + c_{n_6}b_6'c_6)\frac{1}{5}$$

OCKI TIDLIKITATI

Similarly, root-bending-moment coefficient C_B was obtained by assigning a moment arm ℓ which extended from the moment reference (junction of the vertical tail and the fuselage) to the centroid of the exposed span segment for each span station (fig. 6). Thus

$$c_B = \sum (c_{n_1}b_1'l_1c_1 + ... + c_{n_6}b_6'l_6c_6) \frac{1}{bS}$$

RESULTS AND DISCUSSION

In order to present the results of this investigation in the most usable form, complete tables of all section coefficients obtained and pressure diagrams at representative span stations and test conditions are presented for the vertical tail with and without the horizontal tail. See tables II to VII. In addition, the results are summarized in terms of span loading, section moment coefficient, and normal-force and rootbending-moment coefficients with short discussions of these parameters as pertinent.

Presented in figure 7 are the spanwise variations of cn over the vertical tail with and without the horizontal tail for various angles of sideslip and Mach number at angles of attack of 0°, 4°, and 12°. The variation of section moment coefficient c_m with section normal-force coefficient c_n at six spanwise stations for the vertical tail at 0° angle of attack is presented in figure 8. The variations of normal-force coefficient c_n , and root-bending-moment coefficient c_n with β for the vertical tail with and without horizontal tail at various Mach numbers and angles of attack are presented in figures 9 and 10, respectively. Presented in figures 11 to 28 are typical chordwise pressure distributions obtained at six spanwise stations on the vertical tail with and without the horizontal tail at $\beta = 4^\circ$, 8° , and 12° , at $\alpha = 0^\circ$ and 12° , and at M = 0.60, 0.85, and 0.95.

Examination of the spanwise variations of c_n over the vertical tail with and without the horizontal tail for various angles of sideslip and Mach number at angles of attack of 0°, 4°, and 12° (fig. 7) reveals that presence of the horizontal tail slightly increased the absolute values of c_n on the vertical tail at angles of sideslip less than 12° (an increase attributed to the end-plate effect of the horizontal tail as discussed in reference 3). Presence of the horizontal tail did not materially alter the nature of the loading on the vertical tail at any angle of attack or sideslip. At angles of sideslip up to 8° and angles of attack up to 4°, the spanwise loading over the vertical tail with and without the horizontal tail was generally rectangular. Above $\beta = 8°$, at angles of attack of 0° and 4°, and above $\beta = 4°$ at an angle of attack of 12°, there was

a relative decrease in loading near the fuselage juncture, a decrease possibly caused by flow separation over the fuselage at high angles.

The end-plate effect of the horizontal tail is again apparent in the slight increase of CN and CB for the vertical tail with horizontal tail at angles of sideslip less than $\beta = 12^{\circ}$, (figs. 9 and 10, respectively).

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 6, 1954.

REFERENCES

- 1. Queijo, Manuel J., and Riley, Donald R.: Calculated Subsonic Span Loads and Resulting Stability Derivatives of Unswept and 45° Swept-back Tail Surfaces in Sideslip and in Steady Roll. NACA TN 3245, 1954.
- 2. Riley, Donald R.: Effect of Horizontal-Tail Span and Vertical Location on the Aerodynamic Characteristics of an Unswept Tail Assembly in Sideslip. NACA Rep. 1171, 1954. (Supersedes NACA TN 2907.)
- 3. Wiley, Harleth G., and Riley, Donald R.: An Experimental and Theoretical Investigation at High Subsonic Speeds of the Effects of Horizontal-Tail Height on the Aerodynamic Characteristics in Sideslip of an Unswept, Untapered Tail Assembly. NACA RM L53J19, 1953.
- 4. Helfer, Arleigh P.: Electrical Pressure Integrator. NACA TN 2607, 1952.
- 5. Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed-Throat Wind Tunnels, With Consideration of the Effect of Compressibility. NACA Rep. 995, 1950. (Supersedes NACA RM A7B28.)
- 6. Zender, George W., and Brooks, William A., Jr.: An Approximate Method of Calculating the Deformations of Wings Having Swept, M or W, Λ , and Swept-Tip Plan Forms. NACA TN 2978, 1953.

CAMPANA

TABLE I

CHORDWISE PRESSURE-TUBE LOCATIONS AND

CHORDWISE-INTEGRATOR-WEIGHTING FACTORS FOR VERTICAL TAIL

Tube	Chordwise location,	Chordwise integrator weightings for				
	percent	c _n	cm			
1 and 16 2 and 17 3 and 18 4 and 19 5 and 20 6 and 21 7 and 22 8 and 23 9 and 24 10 and 25 11 and 26 12 and 27 13 and 28 14 and 29 15 and 30 31	1 3 5 10 15 20 25 30 40 50 60 70 80 90 95 0	0.2251 .1750 .3500 .5000 .5000 .5000 .7500 1.0000 1.0000 1.0000 1.0000 1.0000	0.0961 .0716 .1225 .1364 .0909 .0455 0 0852 2727 4545 6364 8182 -1.0000 7550 8473			

CONTINUE

 $\begin{tabular}{lllll} \textbf{TABLE II} \\ \textbf{SECTION CHARACTERISTICS, STATION 0.931b}_V \\ \end{tabular}$

(a) $\alpha = 0^{\circ}$.

м	β,	Without horizontal teil	With horizontal tail
	deg	c_n c_m	c _n c _m
.60 .60 .60 .60 .60 .60	2 0 2 4 6 8 12 16 20 23	.0609 .0110060 .0040681003139701119580122268 .0042662 .0213235 .0283594 .0334250 .046	• 0583 • 009 • 0155 • 001 • 0833 • 006 • 1571 • 013 • 2142 • 012 • 2368 • 002 • 2856 • 019 • 3284 • 024 • 4093 • 038 • 4486 • 045
.80 .80 .80 .80 .80 .80 .80	2 0 2 4 6 8 12 16 20 23	•0595 •013 •0137 •006 •0836 -003 •1544 -011 •2187 -013 •2613 •009 •2918 •019 •2958 •020 •3738 •029 •4558 •040	•0578 •010 - •0177 •001 - •0915•008 - •1645•017 - •2519•012 - •2728 •009 - •2920 •019 - •3057 •035 - •4052•000 - •4782 •046
8555555 88855555555555 888888888888888	- 2 0 2 4 6 8 12 16 20 23	•0675 •011 •0082 •003 •0795 -•007 •1499 -•017 •2286 -•014 •2654 •007 •2953 •016 •2916 •018 •3830 •027 •4737 •042	•0576 •010 - •0179 •001 - •0934009 - •1697018 - •2781012 - •2841 •017 - •2945 •016 - •3147 •021 - •4284 •038 - •5151 •054
.90 .90 .90 .90 .90 .90	- 2 0 2 4 6 8 12 16 20	•0691 •013 • •0014 •003 • •0818 ••008 • •1515 ••019 • •2467 ••029 • •3687 •002 • •2805 •014 • •3003 •017 • •4131 •027	•0612 •013 • 0190 •002 • 0964009 • 1794021 • 3025025 • 4052 •016 - 2990 •012 • 3292 •018 • 4643 •035
•95 •95 •95 •95 •95 •95 •95	2 0 2 4 6 8 12 16	*0742 *013 - *0047 *002 - *0863009 - *1598025 - *2561035 - *4166 *003 - *2708 *019 - *3270 *011	•0735 •015 •0114 •002 •0969 •011 •1757 -029 •2853 -034 •4730 •013 •2893 •015 •3815 •017

TABLE II - Continued

SECTION CHARACTERISTICS, STATION 0.931 $b_{\rm v}$

(b) $\alpha = 4^{\circ}$.

	β,	Without horizontal tail	With horizontal tail
М	deg	0 0	0 0
460	- 2	c _n c _m	c _n c _m
•60	ō	•0024 •002	•0489 •011 - •0179 •002
•60	2	- •0489 -•007	- •0704 -•007
•60	4	- •1134 -•016	- •1336 -•015
•60 •60	6 8	- •1695 -•012 - •2590 •020	- •1968 -•005
•60	12	- •3628 •047	- •2660 •020 - •3328 •040
.60	16	- •3425 •040	- •3375 •035
•60	20	- •3628 •037	- •3769 •037
•60	23	- •4058 •041	- +4222 +042
.80 .80	- 2	•0539 •012 - •0056 •003	•0498 •012
.80	2	0595008	- •0161 •002 - •0723 -•008
.80	4	- •1230 -•018	- •1365 -•018
.80	6	- •1850 -•018	- •2176 -•011
•80	8	- •2782 •026	- •3131 •034
.80 .80	12 16	- •3273 •038 - •3201 •033	- •3404 •029 - •3075 •029
.80	20	- •3522 •031	- •3830 •031
•80	23	- •4318 •037	- •4616 •039
.85	- 2	•0517 •012	•0539 •012
•85 •85	0	- •0030 •003 - •0622 -•009	~ •0142 •002
•85	4	- •0622 -•009 - •1229 -•018	- •0741 -•009 - •1399 -•019
.85	6	- •2060 -•022	2341016
•85	8	- •3131 •025	- •3411 •040
•85 •85	12 16	- •3176 •031 - •3251 •029	- •3209
•85	20	- •3551 •028	- •3232 •030 - •3957 •030
.85	23	- •4472 •036	- •4675 •030
• 90	- 2	•0564 •014	•0528 •014
•90	0	- •0014 •003	- •0169 •002
•90	2 4	- •0578 -•009 - •1304 -•021	- •0711 -•009 - •1414 -•020
•90	6	2325018	- •2413 -•036
.90	8	- •3530 •043	- •3581 -•005
•90	12	- •3164 •028 - •3418 •025	•3046 •026
•90 •90	16 20	- •3418 •025 - •3657 •025	- •3398 •025 - •4052 •027
•95	- 2	•0582 •014	•0501 •015
.95	0	0013 .002	- •0087 •002
•95	2	- •0629 -•009	- •0661 -•010
•95 •95	4 6	- •1297 -•022 - •2006 -•034	- •1448 -•032 - •2523 -•044
• 95	8	- •3384 -•004	- •2523 -•044 - •3764 -•017
.95	12	- •3096 •026	- •3484 •025
• 95	16	- •3678 •019	- •3891 •025

(c) $\alpha = 12^{\circ}$.

		Without ho		With horizontal
M	β,	tai	.1	tail
	deg	e_n	$c_{\underline{m}}$	$\mathbf{c_n}$
•60 •60 •60 •60 •60	0	•0561 •0215 •0478 •0967 •1755 •3271 •4943 •4035	.00 .01 00 01 00 .03 .08	•0586 •009 - •0012 •002 - •0598 -•006 - •1196 -•014 - •2200 -•006 - •3540 •040 - •4700 •071 - •4305 •065
.80 .80 .80 .80 .80	- 2 0 2 4 6 8 12 15	• 0555 • 0024 • 0538 • • 1085 • • 2049 • • 3536 • • 4444 • • 3568	*00 *00 -000 -01 -000 *03 *07 *04	•0596 •011 - •0032 •003 - •0620 -•006 - •1264 -•016 - •2383 -•005 - •3679 •033 - •4291 •058 - •4154 •044
•855 •855 •855 •855 •855 •855 •855	- 2 0 2 4 6 8 12 15	•0554 - •0022 - •0592 - •1146 - •2104 - •3579 - •4119 - •3969	•00 •00 •00 •01 •03 •05 •05	•0578 •011 •0045 •002 •0615 •006 •1343 •018 •2363 •020 •3503 •017 •4065 •051 •4005 •041
.90 .90 .90 .90 .90 .90	- 2 0 2 4 6 8 12 15	•0521 •0014 •0585 •1127 •2099 •3593 •4057 •3811	•01 •00 -•00 -•01 -•01 •03 •05 •04	•0585 •011 - •0035 •002 - •0635 - •008 - •1213 - •021 - •1897 - •038 - •3132 - •002 - •4112 •048 - •3865 •040
•95 •95 •95 •95 •95 •95	- 2 0 2 4 6 8 12 15	•0595 •0027 •0615 •1196 •2211 •3501 •3574 •3848	•01 •00 •00 •01 •01 •02 •04 •03	•0555 •0007 •002 •0649 •1285 •2155 •3125 •037

(a) $\alpha = 0^{\circ}$.

		Without hori	izontal		With hori	
M	β, deg	tair			5411	-
	ueg	$c_{\mathbf{n}}$	c _m		$c_{\mathbf{n}}$	$\mathbf{c}_{\mathbf{m}}$
•60	- 2	.0858	.010		.0901	•007
•60	0	- •0086	•006		•0012	•001
•60	2	- •0983	•002		•0913	007
•60 •60	4 6	- •1894 - •2423	•000 -•004		•1827 •2560	015 016
•60	8	- 43765	•034		3966	•030
460	12	4350	.055		.4159	.042
.60	16	- •4480	•054	-		.040
•60	20	- 4786	+057		4904	• 046
•60	23	- •5150	•065	-	•5373	•052
.80	- 2	.0880	.011		•0947	•009
.80	0	0058	•004		•0016	•001
.80 .80	2 4	- •0956 - •1906	009		•0995 •1869	009 019
•80	6	2691	014		2735	024
.80	8	- •3836	•009		.4401	.039
.80	12	- •4172	.044		•4336	•034
.80	16	- •3982	•036		•3924	•029
•80 •80	20 23	- •4751 - •5632	•045 •058		•5016 •5906	●046 ■060
• 00	23		•025	_	• 5900	•000
•85	- 2	•0878	•007 •002		•1011	•009
•85 •85	0	- •0064 - •1036	006	_	•0038 •0981	•002 -•009
•85	4	- 1945	015	_		021
.85	6	2826	021	_		035
•85	8	- •4005	•025		•4307	•030
•85	12	- •4161 - •4139	•033 •031	_		•032 •029
•85 •85	16 20	- •4139 - •5099	•042	_		•047
.85	23	- •5999	•058	-		•064
•90	- 2	•0914	»O10		•1029	•011
90	ō	- •0074	.002		.0000	•002
•90	2	- •1044	010		.0943	010
•90	4	- •1944	022		1965	025
•90 •90	6 8	- •2904 - •4180	035 034		• 3050 • 4668	044 025
•90	12	- •3981	•027	_		033
90	16	- 4319	.025	-		.029
•90	20	- •5269	•041	-	•5448	• 046
•95	- 2	•0883	•012		•1050	.014
•95	0	0041	•000		.0061	•000
• 95	2	- •0988	010		•1050	014
• 95	4	- •1928 - •3073	027 046	-		033 049
• 95 • 95	8	- 4646	021	-	• •3110 • •5009	019
95	12	4267	.037		- 4874	.022
•95	16	- •4557	•026		4915	•041

TABLE III - Continued

SECTION CHARACTERISTICS, STATION 0.8500v

(b) a = 4°.

		Without ho:	rizontal		With hor	izontal
	β,	tai	L		tai	1
М	deg					
		c_n	$c_{\mathbf{m}}$		cn	c _m
•60	- 2	•0681	.008		•0720	.007
•60	0	• 0060	•002	•	0024	.000
•60	2	- •0765	006	•	- •0756	008
•60	4	- •1625	015		- •1741	016
•60	6	2330	012		- •2473	008
•60 •60	8 12	- •4147 - •5390	•026 •071		- •4431	•040
•60	16	- •5115	•065		- •5127 - •4779	●062 ●058
•60	20	- •5103	•059		- •5127	•055
•60	23	- •5402	.062		- •5463	.057
.80	- 2	.0789	•009		***	000
.80	- 6	•0056	•002		•0825 - •0105	•009 •000
-80	2	0845	008		- •0963	009
.80	4	- 1699	019		- •1845	019
.80	6	2512	026		- •2629	019
.80	8	- 4597	.047		- 4798	.047
.80	12	5031	• 059		4668	.045
.80	16	- 4774	•052		- +4717	•045
•80	20	4910 5442	•051		- •5065	•046
•80	23	- •5442	•053	•	- •5882	•057
•85	- 2	•0803	•009		•0899	•010
•85 •85	0 2	▲ 0038 - ♦ 0848	•001 - •009		- •0105	•001
•85	4	- 1621	-•009 -•019		- •1036 - •2032	011 024
•85	6	- 42522	~•030		- •2032 - •3125	027 027
.85	8	- 4451	•028		- •5246	•034
.85	12	4639	.048		- 4728	049
e 85	16	- •4856	.046		5214	.045
•85	20	- •4901	•046	•	5570	.048
●85	23	- •5689	.053	•	- •6525	•063
•90	- 2	•0798	•009		.0898	.011
•90	0	- •0014	•001	•	- •0106	•001
•90	2	- •0897 - •1667	011	•	- •1079	012
•90 •90	4 6	- •1667 - •2606	021 028	•	- •2030 - •3011	028
90	8	- 4782	•040		- •3011 - •4558	047 041
90	12	- 4428	•046		- 44716	•047
•90	16	- 4767	.040		- •5064	•039
•90	20	- •5036	•043		5667	.048
•95	- 2	•0744	.011		•0822	.013
•95	0	•0000	•000		0027	.000
• 95	2	- •0865	011		0956	014
•95	4	- •1750	026		- •1872	034
•95 •95	6 8	- •2540 - •4008	041 020		- •3037	047
•95	12	- 4538	•046		- •4176 - •5381	-•039 •040
•95	16	- •4840	•036		- •5206	•048
		- 10-10		•	. 5200	-070

TABLE III - Concluded

SECTION CHARACTERISTICS, STATION 0.850bv

(c) $\alpha = 12^{\circ}$.

		Without ho		With hori	
м	β,	tai	1	tail	L
	deg	e_n	$\mathbf{c_m}$	c_n	$c_{\underline{m}}$
•60	- 2	.0801	•006	•0889	•006
•60	0	•0072	•000	•0072	•000
•60	2	- •0658	005	- +0781	006
•60	4	- •1363	011	- •1586	014
•60	6	- •2380	012	- •2715	005
•60 •60	8 12	- •3815 - •6290	•017 •087	- •4434	•026
•60	15	- •6015	•095	- •6296 - •5972	•090
	15	- •6015	1099	- •5972	•088
.80	- 2	•0814	•008	•0891	•008
•80	0	•0072	•001	- •0032	•000
•80	2	- •0693	~•006	0818	007
•80 •80	4 6	- •1434 - •2642	-•014 -•011	- +1692	016
480	8	- 4060	•021	- •2704	013
•80	12	- •5751	•081	- •4396 - •5562	•013 •073
.80	15	.0000	003	- •5416	•060
				**********	•000
.85	- 2	•0796	• 008	•0876	≜008
.85	0	.0113	•001	•0121	•002
.85	2	- •0721	006	0657	006
•85	4	- •1412	014	- +1661	017
.85	6	- •2584	011	- •2748	027
•85	, 8	- •4063	•021	- •4076	004
•85	12	- •5198 - •5475	•075	- •5284	•068
•85	15	- •5475	•070	- •5231	•061
•90	- 2	•0812	•009	•0859	•009
•90	0	•0078	•000	•0071	*001
•90	2	- •0713	007	- •0795	008
•90 •90	4 6	- •1469 - •2606	015 012	1633	022
•90	8	- •4104	•017	- 42386	035
•90	12	- •4937	•073	- ●3955 - ●5745	-•018 •064
90	15	- 5191	•131	- •5255	•063
• , ,		*****	****	- • 5255	•005
• 95	- 2	•0804	•010	•0943	4009
95	ō	•0087	•001	•0101	000
.95	0	.0087	•001	- •0707	011
• 95	2	- •0737	008	- +1765	013
• 95	4	- •1528	018	2951	017
• 95	6	- •2614	021	3961	020
•95	8	- •4029	• 006	6387	.066
• 95	12	- •4585	•066		
•95	15	5161	.127		

 $\begin{tabular}{ll} \begin{tabular}{ll} TABLE \ IV \\ \end{tabular} SECTION CHARACTERISTICS, STATION 0.7000_V \\ \end{tabular}$

(a) $\alpha = 0^{\circ}$.

м	β,	Without hor tail			With hors	
	deg	cn	$c_{\underline{m}}$		$\mathbf{c_n}$	$c_{\underline{m}}$
.60 .60 .60 .60 .60 .60 .60	- 2 0 2 4 6 8 12 16 20 23	•1100 •0155 •0957 •1985 •2918 •3743 •7307 •7223 •7223 •7187	.004 .002 003 008 006 .014 .104 .099 .093		•1057 •0000 • •1057 • •2173 • •3074 • •4239 • •7120 • •6892 • •6472 • •7552	.003 000 004 010 005 .020 .096 .087 .073
.80 .80 .80 .80 .80 .80 .80	- 2 0 2 4 6 8 12 16 20 23	•1152 •0121 •0999 •2102 •3125 •4253 •6839 •6460 •6549 •7564	.004 .001 004 011 013 .018 .094 .077 .071		•1084 • •0097 • •1286 • •2387 • •3333 • •4992 • •6400 • •6133 • •6828 • •7735	.003 001 006 013 006 .025 .075 .064 .074
	2 0 2 4 6 8 12 16 20 23	•1163 •0135 ••1065 ••2205 ••3360 ••4981 ••6618 ••66773 ••7861	.004 .000 005 014 018 .020 .088 .073 .073	•	•1018 • •0121 • •1251 • •2405 • •3498 • •6099 • •6453 • •6189 • •7003	.002 002 007 014 027 .034 .072 .135 .076
.90 .90 .90 .90 .90 .90 .90	- 2 0 2 4 6 8 12 16 20	•1101 •0078 • 1129 • 2308 • 3494 • 4687 • •6515 • •6628 • •7002	.003 .001 006 017 032 036 .079 .072		•1042 ••0121 ••1354 ••2580 ••3729 ••4969 ••6784 ••6501 •7351	.002 001 008 019 034 036 .067 .132
• 95 • 95 • 95 • 95 • 95 • 95 • 95	- 2 0 2 4 6 8 12 16	•1166 •0067 • •1166 • •2278 • •3523 • •4823 • •7724 • •6672	.004 .000 007 018 032 031 .071		•1009 • •0013 • •1426 • •2657 • •3955 • •5273 • •7257 • •7170	.004 001 010 021 025 018 .064

TABLE IV - Continued

SECTION CHARACTERISTICS, STATION 0.700 $^{\rm t}_{\rm V}$

(b) $\alpha = 4^{\circ}$.

		Without hor		With hori	
М	β,	tail		tail	•
М	deg	en	c _m	c_n	c _m
•60	- 2	•1005	. 004	•0972	•002
•60	0	•0084	•000	- •0012	000
•60	2	- •0849	003	- •0996	004
•60	4	- •1842	-•008 -•002	= ±2028 = ±2892	009
•60 •60	6 8	- •2822 - •4162	•025	- •2892	-•003
•60	12	7797	111	7859	.112
•60	16	7905	.116	7799	.222
.60	20	7618	•109	- 47619	.216
•60	23	- •7893	•116	- •7895	•221
.80	- 2	•1015	•004	•0946	•005
.80	0	.0097	.001	- •0032	•001
•80	2	- •0910	004	- •1059	005
.80	4	- •1876	009 008	- •2126	011 003
.80 .80	6 8	- •2899 - •4807	•037	- •3233 - •5076	•020
•80	12	7231	110	- 6926	•097
.80	16	7569	.107	7088	.083
.80	20	- •7505	•101	- •7129	•083
•80	23	- •7875	•101	- •7872	•100
•85	- 2	•1014	•004	41054	•002
•85 •85	0	•0068 - •0924	000 005	- •0015 - •1032	~•000 ~•005
•85	4	- 1975	011	- •2124	012
.85	6	3108	008	- •3291	017
. 85	8	- •4903	•017	- +5046	003
.85	12	- •6990	•106	- •7380	•093
•85 •85	16 20	- •7321 - •7418	•100 •092	- •6846 - •7162	●077 ●084
•85	23	7869	.100	7968	•103
•90	- 2	•1039	•004	*1049	•004
•90	. 5	0092	•000	- •0050	000
•90	2	0933	005	1141	006
•90	4	- •2006	012	- •2239	016
• 90	6	- •3059	018 .019	- •3437	030
•90 •90	8 12	- •5242 - •7016	•098	- •4762 - •7781	009 .096
90	16	- •7037	• 096	- •6647	•077
90	20	- •7404	•090	- •7172	•084
• 95	- 2	•1153	•004	•1015	•003
• 95	0	•0074	•000	- •0040	001
• 95	2	- •0945	005	- •1237	007
•95	. 4	- •2192 - •3150	015 027	- •2346 - •3584	013 008
•95 •95	6 8	- 4605	009	- •4727	008
•95	12	7789	•104	- \$8189	•100
95	16	- •7595	.100	7839	•106

TABLE IV - Concluded

SECTION CHARACTERISTICS, STATION 0.700bv

(c) $\alpha = 12^{\circ}$.

м	β,	Without ho		With hori	
DI.	deg	c_n	c _m	en	c _m
.60 .60 .60 .60 .60	- 2 0 2 4 6 8 12 15	•0849 •0060 • •0849 • •1710 • ¢2679 • •4030 • •6721 • •7905	.003 .001 002 005 001 .008 .054	 •1124 •0096 • •0897 • •1937 • •3038 • •4760 • •7618 • •8730	•002 •001 •003 •007 •016 •074 •125
.80 .80 .80 .80 .80 .80	- 2 0 2 4 6 8 12 15	.0967 .0089 0806 1764 2884 4301 6501 7588	•003 •001 •002 •005 •000 •012 •067 •116	•1104 - •0008 - •1023 - •2070 - •3375 - •4873 - •7048 - •7524	-003 000 003 008 005 005 087
•85 •85 •85 •85 •85 •85 •85	- 2 0 2 4 6 8 12 15	•1014 •0143 •0924 •1751 •2855 •4395 •6732 •7265	.003 .001 003 005 002 .011 .066	•1111 •0023 • •1051 • •2072 • •3349 • •4760 • •7246 • •7501	.002 000 003 009 018 015 .080
•90 •90 •90 •90 •90 •90	- 2 0 2 4 6 8 12 15	•0792 •0035 •0869 •1795 •3032 •4431 •6792 •7181	•003 •001 •002 •005 •008 •008 •078 •106	•1137 •0028 - •1066 - •2204 - •3348 - •4746 - •7734 - •7783	•007 •000 ••006 ••016 ••020 ••016 •069 •105
• 95 • 95 • 95 • 95 • 95 • 95 • 95	2 0 2 4 6 8 12 15	•0946 •0121 •0872 •1992 •3126 •4508 •6828 •6526	.004 .001 001 006 010 .000 .060	•1153 •0007 • 1019 • 2306 • 3606 • 4974 • •7903	001 001 004 .002 .008 .020

 $\begin{tabular}{ll} \textbf{TABLE V} \\ \textbf{SECTION CHARACTERISTICS, STATION 0.450b}_{\textbf{V}} \end{tabular}$

(a) $\alpha = 0^{\circ}$.

м	β,	Without ho		With hor tail	
	deg	$e_{\mathbf{n}}$	$c_{\underline{m}}$	c _n	$c_{\mathbf{m}}$
.60 .60 .60 .60 .60 .60 .60	- 2 0 2 4 6 8 12 16 20 23	•1147 •0012 •1064 • •2235 • •3454 • •5139 • •8330 •1•1676 •1•2023 •1•2596	•003 •002 ••001 ••004 ••002 •029 •131 •182 •194	•1096 • •0048 • •1179 • •2454 • •3788 • •5622 • •8969 •1•2054 •1•0482 •1•0303	.005 .003 .001 002 001 .003 .043 .157 .147
.80 .80 .80 .80 .80 .80 .80	2 0 2 4 6 8 12 16 20 23	•1183 •0000 • •1151 • •2391 • •3727 • •5337 • •9306 -1•0819 -1•0280 -1•0465	•002 •001 •001 •005 •010 •059 •161 •152 •164	•1067 - •0088 - •1340 - •2648 - •4036 - •5656 -1•0270 - •9884 - •9387 - •9788	•004 •003 •001 •0007 •0007 •000 •137 •134 •150
.85555555555 .8888888888888888888888888	- 2 0 2 4 6 8 12 16 20 23	•1208 •0075 •1148 •2462 •3790 •5517 •9270 -1•0516 -1•0095 -1•0328	.002 .001 001 004 008 002 .058 .157 .152	•1084 - •0090 - •1383 - •2766 - •4216 - •5906 -1•0205 - •9509 - •9270 - •9868	.003 .003 .000 003 004 .003 .095 .132 .134
90 90 90 90 90 90 90	- 2 0 2 4 6 8 12 16 20	•1285 •0106 ••1130 ••2450 ••3848 ••5366 ••9165 •1•0640 •1•0273	.002 .001 000 003 011 003 .064 006	•1076 - •0105 - •1449 - •2918 - •4451 - •6224 -1•0162 - •9473 - •9529	.003 .003 .001 001 000 .020 .110 .137
95 95 95 95 95 95 95	- 2 0 2 4 6 8 12 16	•1340 •0114 •1172 • 2579 • 3992 • 5473 • 9432 •1•1488	.001 .001 000 001 002 .003 .102	•1148 - •0133 - •1575 - •2936 - •4403 - •5831 -1•0074 -1•0321	.003 .004 .007 .012 .016 .023 .126

TABLE V - Continued

SECTION CHARACTERISTICS, STATION 0.450 $b_{ m v}$

(b) $\alpha = 4^{\circ}$.

## deg		Without horizontal			With horizontal tail	
100	M	β, deg				_
10					$\mathbf{c_n}$	
100						
60						
100 8						
10		_				
10					• • • • •	
100 100	•					
*80 - 2	.60	20			-1.2410	.183
*80	•60	23	-1.3218	• 200	-1.2993	•201
880 2						
80						
*80				_		
80 12	.80				- •3723	010

**** **** ****************************					•	
*** *** *** *** *** *** *** *** *** **	.80	20		007		
*** *** *** *** *** *** *** *** *** **	•80	23	-1.1483	007	-1.0898	007

***		_				
*** 8			2153	003		
*** 12						
*** 16						
*** 23						
.90 - 2						
.90 0 .0120 .001 0112 .002 .90 2 0987 .000 1347 .000 .90 4 2243 004 2604 000 .90 6 3527 005 4120 .005 .90 8 4994 001 5685 .016 .90 12 8288 .037 9215 .075 .90 16 -1.1349 .140 -1.0211 .136 .90 20 -1.0792 007 -1.0309 006 .95 0 .0134 .001 0306 .001 .95 2 1071 .000 1405 .009 .95 4 2309 003 2744 .014 .95 6 3527 003 24030 .020 .95 8 5086 .011 5495 .033 .95 12 8398 .061 8992 .101	•85	23	-1.0931	-•007	-1.0770	007
.90 2 0987 .000 1347 .000 .90 4 2243 004 2604 000 .90 6 3527 005 4120 .005 .90 8 4994 001 5685 .016 .90 12 8288 .037 9215 .075 .90 16 -1.1349 .140 -1.0211 .136 .90 20 -1.0792 007 -1.0309 006 .95 - .0134 .001 0306 .001 .95 2 1071 .000 1405 .009 .95 4 2309 003 2744 .014 .95 6 3527 003 2744 .014 .95 8 55086 .011 5495 .033 .95 12 8398 .061 8992 .101						
•90 4 - •2243 -•004 - •2604 -•000 •90 6 - •3527 -•005 - •4120 •005 •90 8 - •4994 -•001 - •5685 •016 •90 12 - •8288 •037 - •9215 •075 •90 16 -1•1349 •140 -1•0211 •136 •90 20 -1•0792 -•007 -1•0309 -•006 •95 2 •1171 •002 •1066 -•004 •95 0 •0134 •001 - •0306 •001 •95 2 -•1071 •000 - •1405 •009 •95 4 - 2309 -•003 - •2744 •014 •95 6 - 3527 -•003 - •24030 •020 •95 8 - \$5086 •011 - 5495 •033 •95 12 - *8398 •061 - *8992 •101						
.90 8 4994 001 5685 .016 .90 12 8288 .037 9215 .075 .90 16 -1.1349 .140 -1.0211 .136 .90 20 -1.0792 007 -1.0309 006 .95 - .1171 .002 .1066 004 .95 0 .0134 .001 0306 .001 .95 2 1071 .000 1405 .009 .95 4 2309 003 2744 .014 .95 6 3527 003 2744 .014 .95 8 5086 .011 5495 .033 .95 12 8398 .061 8992 .101	-					
.90 12 8288 .037 9215 .075 .90 16 -1.1349 .140 -1.0211 .136 .90 20 -1.0792 007 -1.0309 006 .95 - .1171 .002 .1066 004 .95 0 .0134 .001 0306 .001 .95 2 1071 .000 1405 .009 .95 4 2309 003 2744 .014 .95 6 3527 003 24030 .020 .95 8 5086 .011 5495 .033 .95 12 8398 .061 8992 .101						
•90 16 -1•1349 •140 -1•0211 •136 •90 20 -1•0792 -•007 -1•0309 -•006 •95 -2 •1171 •002 •1066 -•004 •95 0 •0134 •001 - •0306 •001 •95 2 - •1071 •000 - •1405 •009 •95 4 - •2309 - •003 - •2744 •014 •95 6 - •3527 - •003 - •24030 •020 •95 8 - •5086 •011 - •5495 •033 •95 12 - •8398 •061 - •8992 •101						
.90 20 -1.0792 007 -1.0309 006 .95 -2 .1171 .002 .1066 004 .95 0 .0134 .001 0306 .001 .95 2 1071 .000 1405 .009 .95 4 2309 003 2744 .014 .95 6 3527 003 2744 .014 .95 8 5086 .011 5495 .033 .95 12 8398 .061 8992 .101						
.95 0 .0134 .001 0306 .001 .95 2 1071 .000 1405 .009 .95 4 2309 003 2744 .014 .95 6 3527 003 2744 .014 .95 8 5086 .011 5495 .033 .95 12 8398 .061 84992 .101						
.95 2 1071 .000 1405 .009 .95 4 2309 003 2744 .014 .95 6 3527 003 4030 .020 .95 8 5086 .011 5495 .033 .95 12 8398 .061 8992 .101		_				
.95 4 2309 003 2744 .014 .95 6 3527 003 4030 .020 .95 8 5086 .011 5495 .033 .95 12 8398 .061 8992 .101						
.95 6 3527 003 4030 .020 .95 8 5086 .011 5495 .033 .95 12 8398 .061 8992 .101						
•95 12 - •8398 •061 - •8992 •101			- •3527			

TABLE V - Concluded

SECTION CHARACTERISTICS, STATION 0.450bv

(c) $\alpha = 12^{\circ}$.

м	β,	Without horizontal tail			With horizon tail	
м	deg	$\mathbf{e}_{\mathbf{n}}$	$c_{\mathbf{m}}$		c_n	c_{m}
.60 .60 .60 .60 .60	- 2 0 2 4 6 8 12 15	•1075 •0119 • •0872 • •1911 • •2986 • •4240 • •5843 • •9172	.001 .001 001 005 011 001		•1214 •0107 • •1095 • •2261 • •3522 • •4867 • •7806 •1•0150	•001 •001 •001 -•003 -•007 -•006 •027
.80 .80 .80 .80 .80 .80	- 2 0 2 4 6 8 12 15	•1086 •0145 •0885 • •2010 • •3193 • •4326 • •6795 • •9047	000 .001 .001 001 006 011 .004		•1282 •0056 • •1186 • •2525 • •3751 • •5033 • •7502 • •9626	.001 .002 001 006 006 002
.85 .85 .85 .85 .85 .85	- 2 0 2 4 6 8 12 15	•1106 •0075 • •1031 • •2167 • •3339 • •4535 • •7165 • •9107	000 .000 .001 001 006 011 .004	·	•1292 •0082 • •1218 • •2585 • •3780 • •5035 • •7590 • •9503	.002 .002 .002 .000 002 .015
.90 .90 .90 .90 .90 .90	- 2 0 2 4 6 8 12 15	•1110 •0028 • •1103 • •2276 • •3323 • •4651 • •7215 • •9182	001 000 -001 004 009 010 047		•1279 •0077 • 1159 • •2438 • •3766 • •4890 • •7356 • •9063	006 .001 .006 .010 .014 .020 .038
•95 •95 •95 •95 •95 •95	- 2 0 2 4 6 8 12	•1139 •0127 • •1099 • •2251 • •3397 • •4716 • •7327 • •9172	001 .000 .001 001 003 002 .023		•1080 •0147 • •0940 • •2174 • •3200 • •4460 • •6794	008 006 .003 .015 .026 .038

 $\begin{tabular}{ll} \textbf{TABLE VI} \\ \textbf{SECTION CHARACTERISTICS, STATION 0.300b}_V \end{tabular}$

(a) $\alpha = 0^{\circ}$.

м β,		Without horizontal tail		With horizontal tail		
11	deg	$\mathbf{e_n}$	c _m		cn	c _m
.60 .60 .60 .60 .60 .60 .60	2 0 2 4 6 8 12 16 20 23	•1000 • •0119 • •1261 • •2463 • •3713 • •4795 • •8103 -1•1530 -1•4386 -1•4576	.000 -000 -000 -001 .002 -012 -017 .014 .137 .216	:	.0939 0297 1498 2793 3994 5302 88416 -1.2529 -1.2600 -1.1768	000 .001 .000 000 .009 .018 002 .048 .202 .195
.80 .80 .80 .80 .80 .80 .80	2 0 2 4 6 8 12 16 20 23	•0994 •0160 •1330 •2589 •3339 •5138 •8175 -1•1910 -1•1974 -1•1758	000 .000 .001 .000 .003 .012 006 .098 007		.0985 0288 1561 2907 4244 5877 8584 -1.2323 -1.0737 -1.1050	001 .001 .002 .002 .009 .019 .012 .151 007
	2 0 2 4 6 8 12 16 20 23	1024 0149 1390 2631 3968 5381 8071 -1.1972 -1.1621 -1.1457	001 -000 -001 -001 -004 -013 -007 -115 007		•1028 • 0276 • 1535 • 2973 • 4478 • 6095 • 9068 -1.2048 -1.0938 -1.1132	-:001 :003 :005 :012 :025 :033 :149 -:007
.90 .90 .90 .90 .90 .90 .90	2 0 2 4 6 8 12 16 20	.1027014113922778438856548655 -1.1814	002 .000 .003 .004 .007 .016 .036 .123		•1072 • 0315 • 1633 • 3084 • 4682 • 6161 • 9063 •1•1810 •1•1334	004 .001 .006 .013 .027 .042 .057 .146
• 95 • 95 • 95 • 95 • 95 • 95 • 95	- 2 0 2 4 6 8 12 16	•1081 - •0133 - •1468 - •2882 - •4177 - •5604 - •8673 -1•0742	005 000 .006 .010 .018 .028 .070		.0978 0293 1610 3041 4465 5969 8956 -1:1312	004 .004 .013 .023 .034 .048 .075

TABLE VI - Continued

SECTION CHARACTERISTICS, STATION 0.300 $b_{ m v}$

(b) $\alpha = 4^{\circ}$.

	Without horizontal tail		With horizontal tail		
M	β, deg	cn	- c _m	cn	c _m
.60 .60 .60 .60 .60 .60	- 2 0 2 4 6 8 12 16 20 23	.0903 0119 1188 2256 3384 4536 7327 -1.0605 -1.3847 -1.5236	.001 .001 000 001 000 .003 014 .011 .087	0952 - 0214 - 1249 - 2439 - 3569 - 4853 - 7827 -1.0944 -1.4833	.001 .001 000 002 .002 .006 003 .022 .121
.80 .80 .80 .80 .80 .80 .80	- 2 0 2 4 6 8 12 16 20 23	*0920 - *0136 - *1239 - *2415 - *3638 - *4838 - *7685 -1*1195 -1*3122 -1*2546	.001 .001 .000 001 .004 .004 .060 .161	.0825 0208 1394 2555 3813 5270 8290 -1.1630 -1.2647	.002 .001 .000 .005 .014 .024 .024
5555555555 888888888888888888888888888	2 0 2 4 6 8 12 16 20 23	.0917 0164 1290 2393 3661 4839 7627 -1.0684 -1.2668	.000 .001 .001 .000 .003 .008 .012 .067 005	.0956 0202 1381 2606 4032 5555 8362 -1.0863 -1.2356	.001 .002 .003 .004 .011 .024 .046 .096 008
90 90 90 90 90 90 90	- 2 0 2 4 6 8 12 16 20	*0870 - *0168 - *1276 - *2441 - *3724 - *5092 - *7869 -1*0275 -1*2498	.001 .001 .002 .002 .005 .011 .028 .064	• 0927 • 0281 • 1440 • 2760 • 4144 • 5618 • 8182 • 1•0113 • 1•2325	001 .005 .009 .016 .028 .045 .066 .082
•95 •95 •95 •95 •95 •95	- 2 0 2 4 6 8 12 16	.0985 0087 1284 2482 3853 5203 8025 -1.0420	001 .001 .004 .005 .012 .023 .049	.0826 0207 1400 2599 3899 5319 7698	000 .005 .011 .016 .029 .048 .067

SECTION CHARACTERISTICS, STATION 0.300bv

(c) $\alpha = 12^{\circ}$.

		Without hor tail			With hors	
	deg	$\mathbf{c_n}$	$e_{\mathbf{m}}$		$e_{\mathbf{n}}$	c _m
.60 .60 .60 .60 .60 .60	- 2 0 2 4 6 8 12 15	•0938 •0214 •1330 •2469 •3443 •4630 •7182 •9141	002 000 	·	•1095 •0119 •1309 •2618 •3713 •4974 •7615 •9519	001 001 000 000 002
.80 .80 .80 .80 .80 .80	- 2 0 2 4 6 8 12 15	•0960 •0200 •1367 •2631 •3702 •4878 •7373 •9156	003 000 .003 .005 .012 .021 .035		•1082 • •0168 • •1483 • •2926 • •4169 • •5436 • •7737 • •9325	002 .001 .003 .007 .017 .033 .061
.85 .85 .85 .85 .85 .85	2 0 2 4 6 8 12 15	•0954 • •0201 • •1378 • •2682 • •3800 • •5029 • •7481 • •9150	005 000 .003 .006 .014 .026 .044		•1248 • •0112 • •1532 • •3026 • •4243 • •5454 • •7546 • •9189	011 001 .009 .019 .035 .057 .081
.90 .90 .90 .90 .90 .90	2 0 2 4 6 8 12 15	•1030 • •0210 • •1409 • •2769 • •3967 • •5271 • •7605 • •9329	006 000 .004 .008 .018 .035 .057		•1019 • •0155 • •1391 • •2761 • •3948 • •5199 • •7082 • •8571	016 003 .010 .027 .047 .070 .091
•95 •95 •95 •95 •95	- 2 0 2 4 6 8 12	•1017 • •0219 • •1476 • •2899 • •4176 • •4907 • •7627	007 .000 .007 .012 .026 .050		.0673 0300 1340 2466 3533 4499 6465	003 .002 .009 .017 .030 .049

 $\begin{tabular}{ll} \textbf{TABLE VII} \\ \textbf{SECTION CHARACTERISTICS, STATION 0.200b}_{V} \end{tabular}$

(a) $\alpha = 0^{\circ}$.

м β,	Without horizontal tail	With horizontal tail	
m deg	$c_{\mathbf{n}}$ $c_{\mathbf{m}}$	$\mathbf{c_n}$ $\mathbf{c_m}$	
60 - 2 60 0 60 2 60 4 60 6 60 8 60 12 60 16 60 20 60 23	•0915 -•004 -•0249 •000 -•1330 •003 -•2530 •007 -•3599 •011 -•5072 •013 -•6439 •008 -•7520 •010 -1•0513 •026 -1•3210 •065	•0771005 0202000 1157004 2170009 3221014 4330016 6519019 9180037 -1-0414146 -1-0173165	
.80 - 2 .80 0 .80 2 .80 4 .80 6 .80 8 .80 12 .80 16 .80 20 .80 23	.0904005 0184 .000 1377 .005 2609 .011 3938 .016 5235 .020 7764 .030 -1.0526 .077 -1.2295 .170 -1.2311008	.08930050298 .0031529 .0112881 .0204305 .0285697 .0348450 .050 -1.1419 .109 -1.1685008 -1.1958008	
.85 - 2 .85 2 .85 4 .85 6 .85 8 .85 12 .85 16 .85 20 .85 23	.0948006 0269 .000 1426 .006 2717 .014 4015 .021 5418 .027 7986 .041 -1.0755 .091 -1.2225007 -1.2277008	.09450060330 .0051628 .0143023 .0264486 .0385926 .0488776 .073 -1.1281 .121 -1.1671008 -1.1919008	
.90 - 2 .90 0 .90 2 .90 4 .90 6 .90 8 .90 12 .90 16 .90 20	•1018 -•009 -•0197 •000 -•1439 •008 -•2737 •018 -•4225 •029 -•5474 •039 -•8134 •064 -1•0527 •096 -1•2324 -•007	•0960 -•008 -•0388 •008 -•1729 •023 -•3196 •044 -•4551 •056 -•6005 •071 -•8792 •100 -1•0767 •125 -1•1607 -•007	
.95 - 2 .95 0 .95 2 .95 6 .95 6 .95 8 .95 12 .95 16	•1014 -•011 - •0200 •000 - •1474 •012 - •2855 •026 - •4315 •039 - •5356 •034 - •8050 •063 -1•0111 •078	• 0823 -• 003 • 0415 • 014 • 1694 • 030 • 2979 • 042 • 4425 • 057 • 5797 • 071 • 8495 • 104 -1 • 0309 • 121	

TABLE VII - Continued

SECTION CHARACTERISTICS, STATION 0.200 $b_{\mathbf{v}}$

(b) $\alpha = 4^{\circ}$.

ν β,	Without hos		With horizontal tail	
M deg	cn	c _m	c _n c _m	
.60 - 2 .60 0 .60 2 .60 4 .60 6 .60 8 .60 12 .60 12 .60 20	• 0822 - • 0191 - • 1191 - • 2287 - • 3418 - • 4645 - • 7361 - • 9910 -1• 2781 -1• 4222	003 000 .002 .004 .008 .013 .019 .028 .045 .104	• 0871 - 005 - 0310 - 002 - 1456 - 011 - 2673 - 020 - 3985 - 032 - 5250 - 038 - 7934 - 045 - 10702 - 057 - 1 3231 - 078	2 2 3 5 7 5
.80 - 2 .80 0 .80 2 .80 4 .80 6 .80 8 .80 12 .80 16 .80 20	•0810 • •0217 • •1244 • •2375 • •3578 • •4966 • •7662 -1•0237 -1•2717 -1•3350	004 .000 .004 .007 .012 .019 .038 .068 .115	•0699 -•004 - •0305 •004 - •1527 •012 - •2684 •013 - •4026 •026 - •5320 •036 - •8061 •076 -1•0415 •106 -1•2376 •146 -1•2577 -•006	4 2 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
.85 - 2 .85 0 .85 4 .85 6 .85 8 .85 12 .85 16 .85 20 .85 23	•0792 •0187 •1278 •2415 •3678 •4934 •7775 -1•0175 -1•2679 -1•3045	004 .000 .005 .009 .015 .023 .048 .072 .148	•0810 -•00 - •0360 •006 - •1582 •01 - •2872 •02 - •4094 •038 - •5519 •056 - •8203 •096 -1•0408 •122 -1•2230 •144 -1•2567 -•008	5 5 5 5 5 1
.90 - 2 .90 0 .90 2 .90 4 .90 6 .90 8 .90 12 .90 16 .90 20	•0844 •0218 •1322 •2503 •3761 •5083 •7979 -1•0242 -1•2618	005 .000 .005 .013 .021 .031 .066 .091	•0731 -•000 - •0556 •012 - •1765 •020 - •2982 •040 - •4269 •053 - •5605 •073 - •8263 •100 - •9789 •110 -1•1997 -•000	2 8 0 3 1 9
.95 - 2 .95 0 .95 2 .95 4 .95 6 .95 8 .95 12	•0834 •0240 •1347 •2581 •3855 •5169 •7943 -1•0271	007 .000 .009 .018 .029 .043 .083	•0589 -•00 - •0542 •01 - •1653 •02 - •2777 •05 - •4029 •05 - •5220 •06 - •7676 •10 - •9864 •13	588284

TABLE VII - Concluded

SECTION CHARACTERISTICS, STATION 0.200bv

(c) $\alpha = 12^{\circ}$.

		Without ho	rizontal	. With horizontal
	β,	tail		tail
M	deg			
		cn	$\mathbf{c_{m}}$	$\mathbf{c_n}$ $\mathbf{c_m}$
•60	- 2	•0393	009	•0429 -•018
•60	0	- •0143	-•000	- •0214 -•002
•60	2	- •0607	•010	- •0774 •016
•60	4	- •1226	•018	- •1477 •030
•60	6	- •2381	•024	2668 .036
•60	8	- •3321	•032	- •3812 •049
•60	12	- •6094	•042	- •6920 •076
•60	15	- •8118	•047	- •8957 •080
.80	- 2	•0417	012	•0482 - •028
.80	0	- •0160	•000	- •0265 -•002
•80	2	- •0658	•014	- •0979 •026
•80	4	- •1195	•024	- •1686 •052
•80	6	- •2246	•032	- •2818 •064
.80	8	- •3312	•040	- •3934 •085
•80	12	6168	•074	- •6591 •135
•80	15	- •8325	.080	8454 .161
•85	- 2	•0448	014	•0539 -•036
•85	0	- •0127	000	- •0247 -•002
•85	2	- •0665	•014	- •1033 •036
•85	4	1211	•028	- •1752 •073
•85	6	- •2317	•035	- •2890 •094
.85	8	- •3393	•046	- •3750 •101
•85	12	- •6121	•085	- •6093 •147
85	15	- •8273	•101	- •7845 -•006
•90	- 2	.0495	m.016	
•90	- 6	•0485 • •0113	-•016 -•001	•0239 -•024
•90	2	- •0703		- •0401 •009
90	4	- 1231	•016 •032	- •0866 •035
90	6	- •2321		- •1387 •067
•90	8	- •3481	•040	→ •2380 •085
•90	12		•055	- •3176 •098
•90	15	- •6174 - •8094	•103	- •5436 •147
• 90	15	- 10094	•126	- •7112 -•007
.95	- 2	●0467	017	201
•95	ō	- •0160	000	•0247 -•021
95	2	- •0787	•019	- •0221 •002
•95	4	- •1314	•040	- •0662 •028
95	6	- •2395	•052	- •1016 •055
.95	8	- •3603	•073	1818 .065
•95	12	5991	•118	- •2673 •080

Figure 1.- System of axes used. Positive forces, moments, angles, and velocities are indicated by arrows.

Figure 2.- Physical characteristics of model. (Dimensions in feet unless otherwise noted.)

(a) Fuselage and vertical tail.

Figure 3.- Photograph of model mounted on sting support in Langley high-speed 7- by 10-foot tunnel.

(b) Fuselage and vertical tail plus horizontal tail.

Figure 3.- Concluded.

2.6 x10⁶

1.8

1.6

(a) Simulated loading on vertical tail in presence of horizontal tail at $\alpha=0^{\circ},~\beta=16^{\circ},~M=0.95,~and~q=746~lb/sq~ft.$

(b) Spanwise change in angle of sideslip of vertical tail $\Delta\beta$ due to simulated experimental loading condition.

Figure 5.- Spanwise change of angle of sideslip $\Delta\beta$ of vertical tail in presence of horizontal tail for simulated experimental loading condition.

Figure 6.- Details of effective span segments b' and moment arms ℓ for spanwise integrations to obtain C_N and C_B .

Flagged symbols are for fuselage plus vertical tail

(a)
$$\alpha = 0^{\circ}$$
.

Figure 7.- Variation of section normal-force coefficient with spanwise location for various angles of sideslip and Mach numbers. (Symbols without flags are for fuselage plus vertical and horizontal tails.)

Flagged symbols are for fuselage plus vertical tail

(b)
$$\alpha = 4^{\circ}$$
.

Figure 7.- Continued.

Flagged symbols are for fuselage plus vertical tail

(c) $\alpha = 12^{\circ}$.

Figure 7.- Concluded.

Figure 8.- Variation of section moment coefficient with section normal-force coefficient at $\alpha=0^{\circ}$. (Symbols without flags are for fuse-lage plus vertical and horizontal tails.)

CONTRACTOR

(a) $\alpha = 0^{\circ}$.

Figure 9.- Variation of normal-force coefficient with angle of sideslip for various Mach numbers and angles of attack. (Symbols without flags are for fuselage plus vertical and horizontal tails.)

(b) $\alpha = 4^{\circ}$.

Figure 9.- Continued.

(c) $\alpha = 12^{\circ}$.

Figure 9. - Concluded.

Figure 10.- Variation of root-bending-moment coefficient with angle of sideslip for various Mach numbers and angles of attack. (Symbols without flags are for fuselage plus vertical and horizontal tails.)

(b) $\alpha = 4^{\circ}$.

Figure 10. - Continued.

(c) $\alpha = 12^{\circ}$.

Figure 10.- Concluded.

(a)
$$\alpha = 0^{\circ}$$
.

100

50

X/c , percent

100

50

X/C, percent

Figure 11.- Pressure distribution on vertical tail. Station 0.931b $_{\rm V}$; M = 0.60.

o Left surface △ Right surface

(b) $\alpha = 12^{\circ}$.

Figure 11.- Concluded.

o Left surface △ Right surface

(a) $\alpha = 0^{\circ}$.

Figure 12.- Pressure distribution on vertical tail. Station $0.850b_{V}$; M = 0.60.

○ Left surface
△ Right surface

(b) $\alpha = 12^{\circ}$.

Figure 12. - Concluded.

(a) $\alpha = 0^{\circ}$.

Figure 13.- Pressure distribution on vertical tail. Station $0.700b_{v}$; M = 0.60.

(b) $\alpha = 12^{\circ}$.

Figure 13.- Concluded.

(a) $\alpha = 0^{\circ}$.

Figure 14.- Pressure distribution on vertical tail. Station $0.450b_{v}$; M = 0.60.

○ Left surface △ Right surface

(b) $\alpha = 12^{\circ}$.

Figure 14.- Concluded.

○ Left surface
△ Right surface

(a)
$$\alpha = 0^{\circ}$$
.

Figure 15.- Pressure distribution on vertical tail. Station $0.300b_{v}$; M = 0.60.

○ Left surface
△ Right surface

(b) $\alpha = 12^{\circ}$.

Figure 15.- Concluded.

o Left surface △ Right surface

(a) $\alpha = 0^{\circ}$.

Figure 16.- Pressure distribution on vertical tail. Station $0.200b_v$; M = 0.60.

○ Left surface △ Right surface

(b) $\alpha = 12^{\circ}$.

Figure 16. - Concluded.

Figure 17.- Pressure distribution on vertical tail. Station 0.931b $_{\mathbf{v}}$; M = 0.85.

(b) $\alpha = 12^{\circ}$.

Figure 17.- Concluded.

Figure 18.- Pressure distribution on vertical tail. Station 0.850b_v; M = 0.85.

(b) $\alpha = 12^{\circ}$.

Figure 18. - Concluded.

Figure 19.- Pressure distribution on vertical tail. Station $0.700b_v$; M = 0.85.

Figure 19. - Concluded.

Figure 20.- Pressure distribution on vertical tail. Station $0.450b_V$; M = 0.85.

Figure 20.- Concluded.

Figure 21.- Pressure distribution on vertical tail. Station 0.300b $_{\rm v}$; M = 0.85.

(b) $\alpha = 12^{\circ}$.

Figure 21. - Concluded.

Figure 22.- Pressure distribution on vertical tail. Station $0.200b_V$; M = 0.85.

(b) $\alpha = 12^{\circ}$.

Figure 22. - Concluded.

Figure 23.- Pressure distribution on vertical tail. Station 0.931b_v; M = 0.95.

(b) $\alpha = 12^{\circ}$.

Figure 23. - Concluded.

Figure 24.- Pressure distribution on vertical tail. Station $0.850b_{V}$; M = 0.95.

(b) $\alpha = 12^{\circ}$.

Figure 24. - Concluded.

Figure 25.- Pressure distribution on vertical tail. Station $0.700b_{v}$; M = 0.95.

(b) $\alpha = 12^{\circ}$.

Figure 25.- Concluded.

Figure 26.- Pressure distribution on vertical tail. Station $0.450b_{v}$; M = 0.95.

(b) $\alpha = 12^{\circ}$.

Figure 26.- Concluded.

Figure 27.- Pressure distribution on vertical tail. Station $0.300b_v$; M = 0.95.

(a) $\alpha = 0^{\circ}$.

CONTIDENTE

(b) $\alpha = 12^{\circ}$.

Figure 27. - Concluded.

Figure 28.- Pressure distribution on vertical tail. Station $0.200b_{V}$; M = 0.95.

(b) $\alpha = 12^{\circ}$.

Figure 28. - Concluded.