Introduction to Statistical Graphics Procedures

Selvaratnam Sridharma
U.S. Census Bureau

Overview

Statistical graphic procedures

SGPLOT

SGPANEL

SGSCATTER

SGRENDER and

Graph Template Language (GTL) Templates

SGPLOT

Procedure to create single cell graphs

creates one plot, or more plots overlaid on a single set of axes

scatter plots, line plots, histograms, bar charts, regression plots

SGPANEL

A panel of graph cells for values of one or more classification variables

Variety of plot types like SGPLOT Procedure

SGSCATTER

Paneled graph of scatter plots for different combination of variables

Overlay fit plots and ellipses on scatter plots

SGRENDER

Uses GTL templates

create customized layouts and graphs

SGPLOT

PROC SGPLOT DATA = Sashelp.Class;

SCATTER X = Height Y = Weight;

PROC SGPLOT DATA = Sashelp.Class;

TITLE 'Scatter Plot and Linear Regression';

SCATTER X = Height Y = Weight;

REG X = Height Y= Weight / DATALABEL = Name;

Box Plot

PROC SGPLOT DATA = Sashelp.Cars;

HBOX Weight / **CATEGORY** = Origin;

PROC SGPLOT DATA = Sashelp.Cars; REFLINE 3500 / AXIS = X LABEL = '3500'; HBOX Weight / CATEGORY = Origin;

SERIES PLOT

PROC SGPLOT DATA = Sashelp.Electric (
 WHERE = (Customer= "Residential"));
SERIES X = Year Y = Coal;

INSET STATEMENT

```
PROC SGPLOT DATA = Sashelp.Electric (

WHERE = (Customer= "Residential"));

SERIES X = Year Y = Coal;

INSET 'Source xxxxx' / POSITION = BOTTOMRIGHT BORDER;
```



```
PROC SGPLOT DATA = Sashelp.Electric(
  WHERE = (Customer= "Residential"));
  XAXIS TYPE = DISCRETE;
  SERIES X = Year Y = Naturalgas;
```


PROC SGPLOT DATA = Sashelp.Electric (WHERE = (Customer= "Residential"));

XAXIS TYPE = DISCRETE;

SERIES X = Year Y = Coal / MARKERS;

SERIES X = Year Y = Naturalgas / MARKERS Y2AXIS;

PROC SGPLOT DATA = Sashelp.Electric (WHERE= (Customer = "Residential"));

XAXIS TYPE = DISCRETE;

SERIES X = Year Y = Coal/ MARKERS;

SERIES X = Year Y = Naturalgas / MARKERS Y2AXIS;

KEYLEGEND / LOCATION = INSIDE POSITION = TOPLEFT;

Loess Fit Plot

```
PROC SGPLOT DATA = Sashelp.Class ;
  TITLE 'Loess Fit';
  LOESS Y = Weight X = Height;
```


Penalized B-Spline

```
PROC SGPLOT DATA = Sashelp.Class;

TITLE 'Loess Fit';

PBSPLINE Y = Weight X = Height;
```


Grouped Regression Plot

PROC SGPLOT DATA = Sashelp.Class;

TITLE 'Separate Fit by Sex';

REG Y = Weight X = Height / GROUP = Sex DEGREE = 3;

Regression Plot with Confidence and Prediction Limits

```
PROC SGPLOT DATA = Sashelp.Class;

TITLE 'Regression Plot with Limits';

REG Y = Weight X = Height / DEGREE = 4 CLI CLM;
```


HISTOGRAM AND DENSITY CURVES

PROC SGPLOT DATA = Sashelp.Class;

HISTOGRAM Height;

PROC SGPLOT DATA = Sashelp.Class; HISTOGRAM Height / SHOWBINS;

PROC SGPLOT DATA = Sashelp.Class;

HISTOGRAM Height;

HISTOGRAM Height / SCALE = COUNT Y2AXIS;

RUN;


```
PROC SGPLOT DATA = Sashelp.Class NOAUTOLEGEND;
HISTOGRAM Height;
HISTOGRAM Height / SCALE= COUNT Y2AXIS;
RUN;
```


PROC SGPLOT DATA = Sashelp.Class;

HISTOGRAM Height;

DENSITY Height;

DENSITY Height / TYPE = KERNEL;

PROC SGPLOT DATA = Sashelp.Class;

HISTOGRAM Height / FILLATTRS = (COLOR = LIGHTGREEN);

DENSITY Height / TYPE = KERNEL LINEATTRS = (COLOR = BLUE PATTERN = SOLID THICKNESS = 5);

BAR CHART

PROC SGPLOT DATA = Sashelp.Prdsale;

VBAR Country / RESPONSE= Predict;

PROC SGPLOT DATA = Sashelp.Prdsale; VBAR Country/ RESPONSE= Predict DATALABEL;

PROC SGPLOT DATA = Sashelp.Prdsale;

VBAR Country / **RESPONSE** = **Predict**;

VLINE Country / RESPONSE = Actual;

PROC SGPLOT DATA = Sashelp.Prdsale;

VBAR Country / **RESPONSE** = Predict **STAT** = **MEAN LIMITS** = **BOTH LIMITSTAT** = **STDDEV**

NUMSTD =1;

LIMITS = UPPERHALF

Overlaying

PROC SGPLOT DATA = Sashelp.Prdsale;

VBAR Country / **RESPONSE** = **Predict**;

VBAR Country / **RESPONSE** = Actual;

PROC SGPLOT DATA = Sashelp.Prdsale;

VBAR Country / RESPONSE = Predict;

VBAR Country / RESPONSE = Actual

BARWIDTH = 0.5 TRANSPARENCY = 0.2;

SGPANEL

PROC SGPANEL DATA = Sashelp.Heart NOAUTOLEGEND;

TITLE "Cholesterol Distribution in Heart Study";

PANELBY Sex;

HISTOGRAM Cholesterol;

DENSITY Cholesterol;

PROC SGPANEL DATA = Sashelp.Cars;

TITLE "Cars by Type";

PANELBY Type / ROWS = 2 COLUMNS = 3;

SCATTER X = Mpg_City Y = Mpg_Highway;

PROC SGPANEL DATA = Sashelp.Prdsale;

TITLE "Yearly Sales by Product";

PANELBY Year / NOVARNAME LAYOUT = COLUMNLATTICE NOBORDER;

VBAR Product / RESPONSE = Actual;

SGSCATTER

SCATTER PLOT MATRIX

PROC SGSCATTER DATA = Sashelp.lris;

TITLE "Scatter plot Matrix for Iris Data";

MATRIX Sepallength Petallength Sepalwidth Petalwidth;

PROC SGSCATTER DATA = Sashelp.Iris;

TITLE "Scatterplot Matrix for Iris Data";

MATRIX Sepallength Petallength Sepalwidth Petalwidth

/ GROUP= Species DIAGONAL= (HISTOGRAM

NORMAL);

RUN;

Comparative Panel Using PLOT Statement

```
PROC SGSCATTER DATA = Sashelp.Iris ( WHERE = (Species =
   "Virginica"));
  TITLE "Multi-Celled plot for Species Virginica";
  PLOT (Sepallength Sepalwidth) * (Petallength Petalwidth);
RUN;
```


Comparative Panel Using Compare Statement

SGRENDER

```
PROC TEMPLATE;
  DEFINE STATGRAPH Scatter;
   BEGINGRAPH;
      ENTRYTITLE "Weight vs Height ";
      LAYOUT OVERLAY;
         SCATTERPLOT Y = Weight X = Height /
                                  DATALABEL = Name;
      ENDLAYOUT;
   ENDGRAPH;
  END;
RUN;
PROC SGRENDER DATA = Sashelp.Class TEMPLATE = Scatter;
RUN;
```



```
PROC TEMPLATE;
  DEFINE STATGRAPH Scatter;
  BEGINGRAPH;
ENTRYTITLE "Scatter Plot of the Class Data Set with Fit Functions";
      LAYOUT OVERLAY;
         SCATTERPLOT Y = Weight X = Height;
         REGRESSIONPLOT Y = Weight X = Height / DEGREE = 3;
      ENDLAYOUT;
  ENDGRAPH;
  END:
RUN;
PROC SGRENDER DATA = Sashelp.Class TEMPLATE = Scatter;
RUN;
```


Fringe Plot

```
PROC TEMPLATE;
  DEFINE STATGRAPH hist_fringe;
   BEGINGRAPH;
   ENTRYTITLE " Distribution of Weight ";
      LAYOUT OVERLAY;
         HISTOGRAM Weight;
         FRINGEPLOT WEIGHT;
      ENDLAYOUT:
   ENDGRAPH;
   END;
RUN;
PROC SGRENDER DATA = Sashelp.Class TEMPLATE =
                                        hist_fringe;
RUN;
```


Fringe Plots Not available in PROC SGPLOT


```
PROC TEMPLATE:
   DEFINE STATGRAPH Panel;
     BEGINGRAPH:
         ENTRYTITLE "Paneled Display";
          LAYOUT LATTICE / ROWS= 2 COLUMNS= 2 ROWGUTTER = 10 COLUMNGUTTER =10;
              LAYOUT OVERLAY;
                   SCATTERPLOT Y = Weight X = Height;
                   REGRESSIONPLOT Y = Weight X = Height;
              ENDLAYOUT:
              LAYOUT OVERLAY / XAXISOPTS = (LABEL= 'Weight');
                   HISTOGRAM Weight;
              ENDLAYOUT:
              LAYOUT OVERLAY / YAXISOPTS = (LABEL= 'Height');
                   BOXPLOT Y = Height:
              ENDLAYOUT:
              LAYOUT OVERLAY:
                   SCATTERPLOT Y = weight X = height/ GROUP = sex NAME = "Scat";
                   DISCRETELEGEND "Scat" / TITLE = 'Sex';
              ENDLAYOUT:
          ENDLAYOUT:
    ENDGRAPH:
   END:
RUN;
PROC SGRENDER DATA = Sashelp.Class TEMPLATE = Panel;
RUN:
```


DYNAMICS AND MACRO VARIABLES

```
PROC TEMPLATE:
   DEFINE STATGRAPH dynamic;
    BEGINGRAPH;
        MVAR scale;
            NMVAR bins;
            DYNAMIC var;
            LAYOUT OVERLAY;
                HISTOGRAM var / SCALE = scale
                                                    NBINS = bins;
                DENISITYPLOT var;
            ENDLAYOUT;
    ENDGRAPH:
   END;
RUN;
LET bins = 6;
%LET scale = count;
PROC SGRENDER DATA = sashelp.class TEMPLATE = dynamic;
   DYNAMIC var = 'Height';
RUN;
```


%LET bins = 4;

%LET scale = percent;

PROC SGRENDER DATA = sashelp.class TEMPLATE = dynamic; DYNAMIC var = 'Weight';

RUN;

Graph on Condition

```
PROC TEMPLATE:
    DEFINE STATGRAPH conditional;
    DYNAMIC var curve;
     BEGINGRAPH:
         ENTRYTITLE 'Distribution of 'var;
         LAYOUT OVERLAY:
             HISTOGRAM VAR:
             IF ( UPCASE (curve) = 'NONE' )
                 HISTOGRAM var:
             ENDIF:
             IF ( UPCASE (curve) = 'ALL' )
                 DENSITYPLOT VAR / KERNEL() NAME= 'n' LEGENDLABEL = 'Normal';
             ENDIF:
             IF (upcase(curve) = 'ALL')
                DENSITYPLOT VAR / NORMAL() NAME = 'p' LEGENDLABEL = 'Kernel'
                LINEATTRS = ( PATTERN = DASH );
              ENDIF:
              DISCRETELEGEND 'n' 'k' 'p';
         ENDLAYOUT:
     ENDGRAPH:
   END:
RUN:
```


PROC SGRENDER DATA = Sashelp.Class TEMPLATE = conditional;

DYNAMIC var = 'HEIGHT' curve ='None';

run;

PROC SGRENDER DATA = Sashelp.Class TEMPLATE = conditional;

DYNAMIC var = 'Weight' curve ='All';

run;

ODS DESTINATIONS FOR GRAPHS

ODS PDF FILE = 'Scatter.pdf';

PROC SGPLOT DATA = Sashelp.Class; SCATTER X = Height Y = Weight; RUN;

ODS PDF CLOSE;

ODS STYLES

Some of them are

Listing

Default

Statistical

Analysis

Journal

Journal2

Science


```
ODS PDF FILE = 'style.pdf' STYLE = SCIENCE;
PROC SGPLOT DATA = Sashelp.Class;
  TITLE 'Science Style Output for PDF';
  SCATTER X = Height Y = Weight;
  REG X = Height Y = weight / CLI;
RUN;
ODS PDF CLOSE;
```


SPECIFYING SIZE AND IMAGE FORMAT

```
ODS GRAPHICS / RESET IMAGEFMT = JPEG
HEIGHT= 2in WIDTH= 2in;
```

```
ODS RTF FILE = 'a.rtf';
```

```
PROC SGPLOT DATA = SASHELP.CLASS;
   SCATTER X = HEIGHT Y = WEIGHT;
   REG X = HEIGHT Y = WEIGHT/ CLI;
RUN;
ODS RTF CLOSE;
```


Some Annotation Functions for SG Procedures for SAS 9.3

Annotate Function	Description
Text	Draw a text on the graph
Image	Draw an image on the graph
Line	Draw a line on the graph
Arrow	Draw a line with an arrowhead on the graph
Rectangle	Draw a square or rectangle on the graph
Oval	Draw a circle or oval on the graph
Polygon	Draw a closed polygon on the graph

Conclusions

- SGPLOT, SGSCATTER, SGPANEL can be used quickly to graph most of the statistical graphics with high quality.
- Using GTL language and SGRENDER procedure can create customized graphics or layouts
- Many other graphs can be created using SG procedures.

References

- 1. SAS Institute Inc. (2008). "SAS/GRAPH 9.2: Statistical Graphics Procedures Guide."
- 2. Susan J. Slaughter, Lora D. Delwiche (2010), "Using PROC SGPLOT for Quick High Quality Graphs," Proceedings of the 2010 -SAS Global Forum, April 2010
- 3. Heath, Dan. 2008. "Effective Graphics Made Simple using SAS/GRAPH 'SG' Procedures.",

 Proceedings of the 2008 SAS Global Forum, April, 2008
- 4. Kuhfeld, W. F. (2010), Statistical Graphics in SAS— An Introduction to the Graph Template Language and the Statistical Graphics Procedures, SAS Institute Inc.
- 5. Sridharma, Selvaratnam (2010), "Introduction to Statistical Graphics Procedures" Nesug 2010 Proceedings

Contact Information

Speaker: Selvaratnam Sridharma

Company: Economic Planning and

Coordination Division

U.S. Bureau of the Census

Washington, DC 20233-6100

Phone: 301-763-6774

Email: selvaratnam.sridharma@census.gov

