### Отчет по лабораторной работе №7

Дисциплина: Архитектура компьютеров

Воронов Александр Валерьевич

### Содержание

| 1  | Цель работы                            | 5  |  |
|----|----------------------------------------|----|--|
| 2  | Задание                                | 6  |  |
| 3  | Теоретическое введение                 | 7  |  |
| 4  | Выполнение лабораторной работы         | 8  |  |
|    | 4.1 Реализация переходов в NASM        | 8  |  |
|    | 4.2 Изучение структуры файла листинга  | 13 |  |
|    | 4.3 Задания для самостоятельной работы | 15 |  |
| 5  | Выводы                                 | 18 |  |
| Сг | Список литературы                      |    |  |

# Список иллюстраций

| 4.1  | Создание каталога и файла для программы   | 8  |
|------|-------------------------------------------|----|
| 4.2  | Сохранение программы                      | 9  |
| 4.3  | Запуск программы                          | 9  |
| 4.4  | Изменение программы                       | 10 |
| 4.5  | Запуск изменеенной программы              | 10 |
| 4.6  | Изменение программы                       | 11 |
| 4.7  | Проверка изменений                        | 11 |
| 4.8  | Сохранение новой программы                | 12 |
| 4.9  | Проверка программы из листинга            | 12 |
| 4.10 | Проверка файла листинга                   | 13 |
| 4.11 | Удаление операнда из программы            | 14 |
| 4.12 | Д Просмотр ошибки в файле листинга        | 14 |
| 4.13 | В Первая программа самостоятельной работы | 15 |
| 4.14 | Проверка работы первой программы          | 16 |
| 4.15 | Вторая программа самостоятельной работы   | 16 |
| 4.16 | Проверка работы второй программы          | 17 |

## Список таблиц

## 1 Цель работы

Изучение команд условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Знакомство с назначением и структурой файла листинга.

#### 2 Задание

- 1. Реализация переходов в NASM
- 2. Изучение структуры файлов листинга
- 3. Самостоятельное написание программ по материалам лабораторной работы

#### 3 Теоретическое введение

Для реализации ветвлений в ассемблере используются так называемые команды передачи управления или команды перехода. Можно выделить 2 типа переходов: • условный переход – выполнение или не выполнение перехода в определенную точку программы в зависимости от проверки условия. • безусловный переход – выполнение передачи управления в определенную точку программы без каких-либо условий.

### 4 Выполнение лабораторной работы

#### 4.1 Реализация переходов в NASM

Создаю каталог для программ лабораторной работы №7 (рис. -fig. 4.1).



Рис. 4.1: Создание каталога и файла для программы

Копирую код из листинга в файл будущей программы. (рис. -fig. 4.2).

Рис. 4.2: Сохранение программы

При запуске программы я убедился в том, что неусловный переход действительно изменяет порядок выполнения инструкций (рис. -fig. 4.3).

Рис. 4.3: Запуск программы

Изменяю программу таким образом, чтобы поменялся порядок выполнения

функций (рис. -fig. 4.4).

Рис. 4.4: Изменение программы

Запускаю программу и проверяю, что примененные изменения верны (рис. -fig. 4.5).



Рис. 4.5: Запуск изменеенной программы

Теперь изменяю текст программы так, чтобы все три сообщения вывелись в обратном порядке (рис. -fig. 4.6).

Рис. 4.6: Изменение программы

Работа выполнена корректно, программа в нужном мне порядке выводит сообщения (рис. -fig. 4.7).



Рис. 4.7: Проверка изменений

Создаю новый рабочий файл и вставляю в него код из следующего листинга (рис. -fig. 4.8).



Рис. 4.8: Сохранение новой программы

Программа выводит значение переменной с максимальным значением, проверяю работу программы с разными входными данными (рис. -fig. 4.9).



Рис. 4.9: Проверка программы из листинга

#### 4.2 Изучение структуры файла листинга

Создаю файл листинга с помощью флага -l команды nasm и открываю его с помощью текстового редактора mousepad (рис. -fig. 4.10).

Рис. 4.10: Проверка файла листинга

Объясняю три строчки из файла листинга: 23 00000106 E891FFFFFF call atoi - Вызов подпрограммы перевода символа в число; 23 - номер строки, 00000106 - адрес, E891FFFFFF - машинный код; 41 0000014В 7F0С jg fin - переход на label 'fin', если 'max(A,C)>В'; 41 - номер строки, 0000014В - ад- рес, 7F0С - машинный код; 50 0000016D E869FFFFFF call quit - Выход из программы; 50 - номер строки; 0000016D - адрес; E869FFFFFF - машинный код.

Удаляю один операнд из случайной инструкции, чтобы проверить поведение файла листинга в дальнейшем (рис. -fig. 4.11).

```
\oplus
                       mc [avvoronov@fedora]:~/work/arch-pc/lab07
                                                                           Q ≡
GNU nano 7.2 /home/avvoronov/work/arch-pc/lab07/lab7-2.asm
                                                                              Modified
mov [max],ecx ; 'max = C
           --- Преобразование 'max(A,C)' из символа в число
call atoi ; Вызов подпрограммы перевода символа в число
mov [max],eax ; запись преобразованного числа в `max
; ------ Сравниваем 'max(A,C)' и 'B' (как числа)
mov ecx,[B]; иначе 'ecx = B'
mov [max],ecx
         ---- Вывод результата
mov eax, msg2
call sprint ; Вывод сообщения 'Наибольшее число: '
call iprintLF ; Вывод 'max(A,B,C)'
call quit ; Выход
              ^O Write Out ^W Where Is ^K Cut
^R Read File ^\ Replace ^U Paste
                                                          ^T Execute
^J Justify
```

Рис. 4.11: Удаление операнда из программы

В новом файле листинга показывает ошибку, которая возникла при попытке трансляции файла. Никакие выходные файлы при этом помимо файла листинга не создаются. (рис. -fig. 4.12).

```
avvoronov@fedora:~/work/arch-pc/lab07 — mcedit lab7-2.lst Q =
   7-2.lst [----] 0 L:[205+ 1 206/226] *(12915/14545b) 0032 0x020[*][X]
30 00000124 8B0D[39000000] mov ecx.[C] : MHDV0.locx
                                                  mov ecx,[С] ; иначе 'ecx = С'
mov [max],ecx ; 'max = С'
   35 00000135 E862FFFFFF
   36 0000013A A3[00000000]
                                                  mov [max],eax ; запись преобразованного ; ----- Сравниваем 'max(A,C)' и 'В
                                                  cmp есх ; Сравниваем 'max(A,C)' и 'B'
error: invalid combination of opcode an
                                                  jg fin ; если 'max(A,C)>B', то переход н
mov есх,[В] ; иначе 'есх = В'
   40 00000145 7F0C
   40 00000145 7F0C
41 00000147 8B0D[0A000000]
42 0000014D 890D[00000000]
   45 00000153 B8[13000000]
46 00000158 E8B2FEFFFF
                                                   call sprint ; Вывод сообщения 'Наибольше
                                                   mov eax,[max]
call iprintLF ; Вывод 'max(A,B,C)'
   47 0000015D A1[00000000]
   48 00000162 E81FFFFFF
1Help 2Save 3Mark 4Replac 5Copy 6Move 7Search 8Delete 9PullDn10Quit
```

Рис. 4.12: Просмотр ошибки в файле листинга

#### 4.3 Задания для самостоятельной работы

Возвращаю операнд к функции в программе и изменяю ее так, чтобы она выводила переменную с наименьшим значением (рис. -fig. 4.13).



Рис. 4.13: Первая программа самостоятельной работы

Проверяю корректность написания первой программы (рис. -fig. 4.14).

Рис. 4.14: Проверка работы первой программы

Пишу программу, которая будет вычислять значение заданной функции согласно моему варианту для введенных с клавиатурых переменных а и х (рис. -fig. 4.15).



Рис. 4.15: Вторая программа самостоятельной работы

Транслирую и компоную файл, запускаю и проверяю работу программмы для различных значений а и х (рис. -fig. 4.16).



Рис. 4.16: Проверка работы второй программы

#### 5 Выводы

При выполнении лабораторной работы я изучил команды условных и безусловных переходов, а также приобрел навыки написания программ с использованием перходов, познакомился с назначением и структурой файлов листинга.

### Список литературы

- 1. Курс на ТУИС
- 2. Программирование на языке ассемблера NASM Столяров А. В.