Sec. 2.3 Basic Solutions

Ex. (geometry of LP) Solve this LP.

min
$$z = -50x_1 - 80x_2$$
 --- objective function (cost)

s.t.
$$x_1 + 2x_2 \le 32$$
, $3x_1 + 4x_2 \le 84$, $x_2 \le 12$, $x_i \ge 0$, $i=1,2$. --- constraints

Sol. Idea: geometry of LP.

"Constant Lost (mes"

 $^{\circ}1)$. K is whate.

- 2) polygon, worners (vertices)
- 3) # of pts in K = 00
- 4). \$(vertles) < 00
- 57 min over K is equivalent to min over its vertices.
- 6.). vedezo LA. (system of linear egus.)
- 7). higher dim cf. \$25. (later)

Assume (w.o.l.o.g.): std LP with $b \ge 0$, rank(A) = m (full row rank), m < n.

std LP: min z = c^Tx , s.t. Ax = b, $x \ge 0$

Def. x is a sol if Ax=b

--- feasible sol of Ax = b, $x \neq 0$.

BT

BY B

--- (basic) sol. (b.s.) if Ax = b, A = [B D], $x = (x_B, x_D)$. $\Rightarrow [B D][x_D] = b$, $Bx_B + Dx_D = b$

busing $\frac{1}{2}$ degenerate b.s. --- b.s. with at least basic var = 0.

--- basic fentible sol. (b.f.s.) --- b.s. + fessible

Readl: χ^* is an opt sol. if $\begin{cases} 1 - \chi^* \text{ is fearible.} \\ 2 - 2(\chi^*) \text{ is mini.} --- \\ 2 - 2(\chi^*) \text{ is mini.} --- \end{cases}$

Note: $\#(b.S.) \leq \binom{n}{m} = \frac{n!}{(n-m)! m!} < \infty$

井(b.f.s) <

now add 3 slack variables x₃, x₄, x₅

(LP) min $z = -50x_1 - 80x_2$

Std LP: min $z = -50x_1 - 80x_2 + \frac{0x_3 + 0x_4 + 0x_5}{0x_3 + 0x_4 + 0x_5}$

s.t.

s.t. $x_1 + 2x_2 \le 32$, $3x_1 + 4x_2 \le 84$, $x_2 \le 12$, $x_i \ge 0$, i=1,2.

 $x_1 + 2x_2 + 1x_3 + 0x_4 + 0x_5 = 32$

(equivalent) Std LP (dim-5)		Original LP	Cost z
		(dim=2)	
nonbasic	basic solution x	vertex (*if	$\mathbf{c}^{T}\mathbf{x}$
variables		feasible)	
1,2	(0,0,32,84,12)	*O(0, 0)	0
1,3	(0,16,0,20,-4)	B(0, 16)	
3,4	(20,6,0,0,6)	*F(20, 6)	-1480(best)
4,5	(12,12,-4,0,0)	E(12, 12)	
2,5	n/a	n/a	
1,4	(0,21,-10,0,-9)	C(0, 21)	
1,5	(0,12,8,36,0)	*A(0,12)	-960
2,3	(32,0,0,-12,12)	H(32, 0)	
2,4	(28,0,4,0,12)	*G(28, 0)	-1400
3,5	(8,12,0,12,0)	*D(8, 12)	-1360

Ex. Given
$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 2 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \end{bmatrix}$$
, $b = (1,4,0)$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$. Find the b.s.

$$h.s. = \chi = (\frac{1}{2}, \frac{2}{1}, 0)$$

nondegenerate, femalle.

Ex. Given
$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 2 & 1 & -2 & -1 \\ -1 & 0 & 1 & 0 \end{bmatrix} b = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -1 & 0 & 1 \end{bmatrix}$. Find the b.s.

$$x = (0, 1, 1, 0)$$

degenerate, b.f.s.