Assignment Project Exam Help

Add WeChat edu\_assist\_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

Add WeChat edu\_assist\_pro

Assignment Project Exam Help

Loca https://eduassistpro.githubjere

## Assignment Project Exam Help

- Locality everywhere.
- Add WeChat edu\_assist\_pro
   Locality in Computing
- Local Coloring
- Coloring Assignment Project Exam Help
- Lower Bounds https://eduassistpro.github.io/ Add WeChat edu\_assist\_pro

Assignment Project Exam Help

Add WeChat edu\_assist\_pro

Assignment Project Exam Help

Loca https://eduassistpro.githubjere

Add WeChat edu\_assist\_pro

## Assignment Project Exam Help

- Locality is everywhere:
  - \_ Physics Add WeChat edu\_assist\_pro
  - Biology
  - Social Sciences
     Assignment Project Exam Help
  - Mathematic
- They have different tps://eduassistpro.github.io/

### Assignment Project Exam Help

- An object is only directly influen iate surrounded WeChat edu\_assist\_pro
- A theory using the principle of locality is said to be a "local theory".

Assignment Project Exam Help

- Relativity is a local t
  - It limits the https://eduassistpro.github.io/ el to the speed of light c Add WeChat edu\_assist\_pro
- Quantum mechanics is not a local theory.
  - A measurement made on one of a pair of separated but entangled particles causes a simultaneous effect, the collapse of the wave function, in the remote particle (i.e. an effect exceeding the speed of light).

## Assignment Project Exam Help

• Phenotypes might be influenc

- tions and effects.
- \_ ShapeAdd WeChat edu\_assist\_pro
- Size
- Color Assignment Project Exam Help
- Nature
- Other envirantes://eduassistpro.github.io/
- In turn, this affected twenty the edu\_assist\_pro
- Quantum Biology is a newly developing field for the study of non-local biological phenomena.
  - Bird navigation

## Assignment Project Exam Help

- Local Characteristics
  - Language
     WeChat edu\_assist\_pro
  - Behaviour
  - Culture Assignment Project Exam Help
  - Food
- Global Phenomettps://eduassistpro.github.io/
  - Cascades Add WeChat edu\_assist\_pro
  - Rumors
- How do certain events cascade?

### Assignment Project Exam Help

- It has a proximity interpretati
- Add WeChat edu\_assist\_pro
   Related somehow to distance
- Concerns phenomena that are geometrically close to each other.
- Locality is Assignment Project bexamo Healpsame thing as location!

https://eduassistpro.github.io/

Assignment Project Exam Help

Add WeChat edu\_assist\_pro

Assignment Project Exam Help

 $Locali {\it https://eduassistpro.github.io/ing} \\ {\it Add WeChat edu\_assist\_pro}$ 

### Assignment Project Exam Help

- Usually it means:
  - the execution of a process deassist\_pro rocesses.
  - there is no dependency between events that occur far away.
- It has a special role in corputing and communication.
  - What can be co on on how far infohttps://eduassistpro.github.io/
- Can you elect a A elde We Chat edu\_assist\_pro
  - making use only of local information?

Assignment Project Exam Help Decision made at node u

odes far away from u.

Add WeChat edu\_assist\_pro



• How do we quantify "far away" from u?

### Assignment Project Exam Help

• Given that locality is influence away"? Add WeChat edu\_assist\_pro

w far is far

• May depend on the topology

Assignment Project Exam Help

https://eduassistpro.github.io/

- How do you parametrize locality?
- Best to study specific problems!

## Assignment Project Exam Help

- Global vs Local Algorithms
  - On a Line Add WeChat edu\_assist\_pro
- On a Tree

Assignment Project Exam Help

https://eduassistpro.github.io/

## Local Algorithms in DC Assignment Project Exam Help

- An algorithm is local if messages i propagated by Wielchatted Urigssist\_pro
- odes do not
- How can you ensure correctness of the algorithm?
- Which problems can you solve this way?
- Assignment Project Exam Help

  How far is too far?
- Local approachhttps://eduassistpro.github.io/tion!
- Lets go back to Applorite Chat edu\_assist\_pro

### Assignment Project Exam Help

- A vertex coloring is an assignme ices of a graph so And Wye Chatded but assist pro ned different colors.
- How do you color a set of points on a line?

  Assignment Project Exam Help
- If nodes have idettps://eduassistpro.githubelowith even identities blue, and with odd identities re Add WeChat edu\_assist\_pro
  - Is the algorithm correct?
  - Is this a local algorithm?
  - Is there a local colouring algorithm?

#### Global vs Local Coloring Assignment Project Exam Help

• Before a node decides on its colou about its Add Workshatedu\_assist\_pro

- formation
- There are two ways to do this depending on how far this information collection can spread
   1. Globally

  Assignment Project Exam Help
  - 2. Locally https://eduassistpro.github.io/
    - Add WeChat edu\_assist\_pro

### Assignment Project Exam Help

• Globally?



- You are not constrained by # of hops.
- Locally? Assignment Project Exam Help

https://eduassistpro.github.io/

- Constrained by # of hops.
- In a distributed setting, that consistent throughout the graph despite the fact that propagation is limited!

#### Coloring with Restricted Number of Hops Assignment Project Exam Help

• Consider nodes "independen

oloring.

- If the number of hops a message can propagate is restricted you may not be able to complete the coloring!

  Assignment Project Exam Help
- If a given set of nodes s you ensure consisted the set of nodes set
  - Nodes will start with their avertident is sist\_pro
- More than that, you may have to use more than the minimum required number of colors so as to achieve a correct coloring!
- Regardless of the number of colors you use
  - can you achieve a proper coloring, and
  - at the same time restrict the number of hops?

# Quantifying Locality: Network Assignment Project Exam Help

- Consider a class  $\mathcal{N}$  of net
- A typical network G = ( edu\_assist\_pro\_raph with n vertices.
  - Line,
  - Ring, Assignment Project Exam Help
  - Tree,
  - etc. https://eduassistpro.github.io/
- The concept should be plated alasist pro (networks).

## Quantifying Locality: Distance Assignment Project Exam Help

- Locality should depend on dist
- Let  $n \to h(n)$  be an integer val
- - -h(n) is the number of hops allowed in a network of size n.
- Examples: Assignment Project Exam Help

$$-n \rightarrow h(n) = 1,$$

$$-n \rightarrow h(n) = \frac{1}{\text{https://eduassistpro.github.io/}}$$

$$-n \rightarrow h(n) = Add$$
, WeChat edu\_assist\_pro

$$-n \to h(n) = \sqrt{n},$$

$$-n \rightarrow h(n) = n,$$

$$-n \to h(n) = \log^* n$$
, etc

# Quantifying Locality: Problems Assignment Project Exam Help

- Consider a problem  $\mathcal{P}$  (e and a class  $\mathcal{A}$  of synchronal distribution assist pro $\mathcal{P}$  for  $\mathcal{N}$ .
  - The class  $\mathcal{A}$  of distributed algorithms is h-local if during the execution of an algorithm  $A \in \mathcal{A}$  on a network  $G \in \mathcal{N}$  (on n vertices) ssignamental and the pill never propagate m nator.

https://eduassistpro.github.io/

## Which Problems in DC are Local? Assignment Project Exam Help

- Not all problems are going to be al, for a given function h.
- Which ones are h-local, fo  $n \to h(n) = c$ , where c a constant?
  - Leader Election Assignment Project Exam Help
  - Spanning Tr
  - Maximum Ihttps://eduassistpro.github.io/
  - Coloring
     Add WeChat edu\_assist\_pro
  - Minimum Dominating Set
- For which topologies?

Assignment Project Exam Help

Add WeChat edu\_assist\_pro

Assignment Project Exam Help

https://eduassistpro.githubio/
Add WeChat edu\_assist\_pro

## Coloring a Line Graph: Assumptions Assignment Project Exam Help

- Assume you are on a line of
  - Add WeChat edu\_assist\_pro
- To start, assume that each node v has a distinct identity  $id_v$  (for example, either their location or the network interface card would do).
  - Identity selehttps://eduassistpro.github.io/
     problem...besides we also know sev
     problem!
     Add WeChat edu\_assist\_pro

#### Local Coloring Algorithm Assignment Project Exam Help

- Our main goal is to show
- Theorem 1 WeChat edu\_assist\_pro hich can 3-color any line in  $O(\log^* n)$  time, where
  - log\* n is the iterated lograithm of n Assignment Project Exam Help
  - in the algorith
- This result is importable eduassist programmes wireless) where messages should not prassist pro
- **NB:** Note the important parameters taken into account:
  - Final number of colors in the graph.
  - Termination time of the coloring algorithm.

## Assumptions for Coloring Assignment Project Exam Help

• Let  $v \to c_v$  be an arbitrary co

- ices.
- Observe that edu\_assist\_pro
- For example,
  - the identity assignment below is a colouring using n colors,
    - 1 2 3 https://eduassistpro.github.io/1 12 13
  - and so is any permutation of the identistist\_pro

## Assumptions for Coloring Assignment Project Exam Help

- Represent each  $c_v$  as a sequ
  - Let | Add We Chat edu assist pro
  - $-c_v(i)$  the *i*-th bit of  $c_v$ .
- Example Assignment Project Exam Help

$$-c_u = 594 = 512$$

$$9 \quad 6 + 2^4 + 2^1.$$

- $_{-\ {
  m In}\ {
  m binary}\ c_u}$ https://eduassistpro.github.io/
- $c_u(i)$  is the inhold two representation assist pro- 0 from left to right:  $c_u(0) = 1, c_u(2) = 0.$
- The concatenation
  - of two sequences s, s' of bits is the sequence ss'.
  - **Example:** if s = 1010 and s' = 110 then ss' = 1010110

Idea for an Algorithm on a Line Assignment Project Exam Help

Assume an ordering of the verti

uld do).

Add WeChat edu\_assist\_pro pre(v)suc(v)

- Starting Rule:
  - Start watssignment Project Exam Help
    - \* for example https://eduassistpro.github.io/
  - Color "leftmost vertex" with the bit 0
- Any other starting coloring would do.

<sup>&</sup>lt;sup>a</sup>This is a starting condition and we will need to justify it: will do this later!

# Assignment Project Exam Help

- Since nodes  $u \to v$  are nei u preceding v), their current and we Chadie the assiste pro
- Produce a new "legal" coloring for a vertex v from the current one, say  $c_v$ , as follows:
  - Find the first index 1 Project Exam Help such that v's color differs from the color differs.//eduassistpro.github.io/
  - Set new color to "i concaten i)":  $c_v \rightarrow ic_v(i)$ ; Add WeChat edu\_assist\_pro
- Recoloring rule guarantees that neighdifferent colors.
- **NB:** Bit representation of each new color is of length logarithmic of the length of the previous color!

Coloring Algorithm for Vertex v Assignment Project Exam Help

• Assume an ordering of the verti

uld do).

Add WeChat edu\_assist\_pro\_\_\_

prev(v)

v

suc(v)

• Coloring Algorithm: Assignment Project Exam Help

- 1.  $c_v \leftarrow id_v$ ;
- 2. Repeat: https://eduassistpro.github.io/
  - (a)  $\ell \leftarrow |c_v|$ ; Add WeChat edu\_assist\_pro (b) if v is "leftmost vertex" then set
  - (b) If v is "leftmost vertex" then set else set  $I \leftarrow \min\{i : c_v(i) \neq c_{pre(v)}(i)\};$
  - (c) Set  $c_v \leftarrow Ic_v(I)$ ; /\* concatenation \*/
  - (d) Inform the successor suc(v) of v of this choice;
- 3. Until  $|c_v| = \ell$ ; /\*Until length does not change \*/

#### <del>-https://eduassistpro.github.io/</del>

### Assignment Project Exam Help

- Given two nodes  $u \to v$ .
- Add WeChat edu\_assist\_pro
   Lets show how the color of node anges from the old color  $c_v$  to a new color  $c_v$ .
  - A similar change occurs to the color of u but this is Assignment Project Exam Help influenced from the predecessor of u.
- Let their currenttps://eduassistpro.githublio/
- Convert to binated WeChat edu\_assist\_pro  $c_u = 512 + 64 + 16 + 2 = 2^9 + 2^6 + 2^4 + 2^1$  $c_v = 512 + 64 + 32 + 16 + 4 + 2 + 1 = 2^9 + 2^6 + 2^5 + 2^4 + 2^2 + 2^1 + 2^0$
- $c_u = 1001010010$  and  $c_v = 1001110111$

#### <del>-https://eduassistpro.github.io/</del>

### Assignment Project Exam Help

• Consider the two nodes with col

Add WeChat edu\_assist\_pro  

$$c_u = 1001010$$
  $v = 1001110111$ 

• What is the smallest i such that  $c_u(i) \neq c_v(i)$ ?

• Line up the bits

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChatedu\_assist\_pro 1001110111

• So i = 4 (counting starts from 0); in binary 4 is 100 and the new colour of v in binary representation is

$$ic_v(i) = 1001 = 9$$

# Execution of Coloring Algorithm Assignment Project Exam Help

• A node receives input from its pre

Add WeChat edu\_assist\_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

• ...and provides input to its successor.
Add WeChat edu\_assist\_pro

### Assignment Project Exam Help (1/2)

• Consider three consecutive n es u, v, w at some iteration Addhe Wig Crhatne Cith assiste v (v), v = pre(w).



### Assignment Project Exam Help

• Let I, J be the in

p 2(b), respectively.

$$-I:=\min\{i:$$
 https://eduassistpro.github.i $g$ / $eq c_w(j)\}$ 

- v, w receive the dewed has edu\_assist\_pro

$$c_v \leftarrow Ic_v(I)$$

and

$$c_w \leftarrow Jc_w(J)$$

Assignment Project Exam Help (2/2)

- We need to show that Ic
- There are two cases to consider:
- - 1. If  $I \neq J$  then rule 2(b) ensures that the new labels  $Ic_v(I)$ ,  $Ic_w(J)$  as defined in 2(c) differ in a bit Assignment Project Exam Help - because I, J do
  - 2. If I = J the https://eduassistpro.github.io/s as defined in 2(c) differ in the last bit Add We Chat edu\_assist\_pro Recall that  $c_u(I) \neq c_v(I)$  an

    - Since I = J we have that  $c_u(I) \neq c_v(I)$  and  $c_v(I) \neq c_w(I)$
    - The new labels for v, w will be  $Ic_v(I)$  and  $Ic_w(I)$  and by choice of I we have that  $c_v(I) \neq c_w(I)$ .

## Assignment Project Exam Help

- At the start,  $K_0 = K =$  x number of bits of a node in Addrigne Chatesting assist\_pro
- Let  $K_r$  denote the number of bits in the color representation after the rth iteration.

Assignment Project Exam Help

- Observe that
  - Therefore the the ttps://eduassistpro.github.io/  $\log n$  bits, the third of roughly  $\log \log \log$  etc. Add We Chat edu\_assist\_pro
- As a matter of fact the "sizes of the colours" shrink very rapidly!
  - The size of the colour (measured in bits) in the new step is the logarithm of the size of the colour in the previous step!

# Assignment Project Exam $\operatorname{Help}^*$

- $\log^* n$  is not really a logarithm
  - it is rather the number of itera number n until it stops having an effect!

ction on a

- Log-Star (in base 2) of nine Project Exam Help
  - Is the number o l
     starting from ttps://eduassistpro.github.io/
- Can be defined in draw aschafted lassist\_pro

Assignment Project Exam Help

- Iterated Definition of
  - $-\log^{(1)} A dd_{\log n}$ , and edu\_assist\_pro
  - $-\log^{(x+1)} n = \log(\log^x n), \text{ for } x \ge 1.$

Then  $\log^* n = \text{first integer} x \text{ such that } \log^{(x)} n \le 2$ . a Assignment Project Exam Help

• Recursive defi

https://eduassistpro.github.io/

$$\begin{array}{c} \log \text{ as if } \leq 2 \\ \log \text{ do we Chat edu\_assist\_pro} \end{array}$$

 $a \log^{(x)} n$  should not be confused with  $\log^x n$ : the logarithm to the power x.

## Assignment Project Exam Help

• Log-star is a very slowly growin

Add WeChat edu\_assist\_pro
Consider the number n

$$\log(2^{2^5}) = 2^5$$

Assignment 2 Project Exam Help

https://eduassistpro.github.io/  $\log(2.32) < 2.$ Add WeChat edu assist pro

Hence,  $\log^*(2^{2^5}) = 4$ .

• Log-star of all the atoms in the observable universe (estimated to be  $10^{80}$ ) is 5.

# The Starting Nodes: Something Wrong? Assignment Project Exam Help

• Recall the leftmost node was giv

- Add WeChat edu\_assist\_pro
   It is not clear from the descriptio hy the identities of the nodes "located" at the beginning of the line are reduced to constant size.
  - Assignment Project Exam Help
     By beginning we mean the first O(log\* n) nodes.
- Observe that that that the theorem of the control of the contro are indeed reduced to constant size.

  Add WeChat edu\_assist\_pro
- Can remedy this by adding an additional step at the end of the algorithm:
  - The first  $O(\log^* n)$  nodes run a recoloring algorithm to reduce their colors to constant size.
- Note that this step takes additional time  $O(\log^* n)$ .

## Assignment Project Exam Help

- If  $K_i$  = number of bits in the colo i iterations then
  - Kr+1 Add We Chat edu\_assist\_pro
  - $-K_{r+1} < K_r$  as long as  $K_r \ge 4$ .
- In the final iteration r we have that K a  $\overline{\overline{m}}$  K relp $\leq 3$ .
- Therefore in the fin
  - at most three ch https://eduassistpro.github.io/ r-1)-st coloring, and dd WeChat edu\_assist\_pro
  - two choices for the value of the bit,
    which gives a total of six colors.
- It turns out,
  - we can improve on # of colors from six to three, but
  - cannot improve on the  $\log^* n$ .

# Assignment Project Exam Help

• How do we reduce the number of c

ree?

Add WeChat edu\_assist\_pro
 Suppose that the algorithm we

e has colored a line with the six colors 0, 1, 2, 3, 4, 5 as follows

OAssignment Project Exam Help 2 4 5

• How do you colntibs!//eduassistpro.github.io/

## Assignment Project Exam Help

• Start with the sequence

Add WeChat edu\_assist\_pro 0 5 4 2 5 3 0 3 1 5 4 2 3 0 1 4 3 2 4 0 1 0 2 4 5

• Eliminate 5: by choosing a color from 0, 1, 2

Assignment Project Exam Help 0 1 4 2 0 3 0 3 1 0 4 2 3 0 1 4 3 2 4 0 1 0 2 4 0

• Eliminate 4: by cho https://eduassistpro.github.io/

0 1 0 2 0 3 0 3 1 0 1 2 3 0 1 0 3 2 1 0 1 0 2 1 0

• Eliminate 3: by choosing a color from 0, 1, 2

 $0\ 1\ 0\ 2\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 2\ 1\ 0\ 1\ 0\ 1\ 2\ 1\ 0$ 

## Assignment Project Exam Help

- Theorem 2 There is an alg
  of size nAid by Wre Cihat edu\_assist\_pro
- 3-color any ring

• Same algorithm.

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

Add WeChat edu\_assist\_pro

Assignment Project Exam Help

https://eduassistpro.githubjo/ Add WeChat edu\_assist\_pro

# Assignment Project Exam Help

- The line colouring algorithm al
- Add WeChat edu\_assist\_pro
   The basic assumption is that yo
- The basic assumption is that  $\overline{yo}$  e of the tree designated as the root!
- Further, other nodes must have at perent (in the predecessor)!
- The main theore

https://eduassistpro.github.io/

## Assignment Project Exam Help

• Theorem 3 There is an alg
in log\* nAdde.WeChat edu\_assist\_pro

6-color any tree

Assignment Project Exam Help

https://eduassistpro.github.io/

6-Coloring Algorithm for Trees: Vertex v Assignment Project Exam Help

- Algorithm: 6-Color
  - $1. c_v \leftarrow Add WeChat edu_assist_pro$
  - 2. Repeat:

    - (a)  $\ell \leftarrow |c_v|$ ; (b) if v is the root then set Exam Help else set Ihttps://eduassistpro.github.io/
    - (c) Set  $c_v \leftarrow v$
    - (d) Inform all Alddrive Chat edu\_assist\_pro
  - 3. Until  $|c_v| = \ell$ ;
- Why is the algorithm correct?

### 3-Coloring Theorem for Trees Assignment Project Exam Help

- Theorem 4 There is an alg 3-color any tree in  $O(\log Ad) dt i We Chat edu_assist_pro$
- The reason is that the coloring on the descendants of a given node is independent when done on disjoint paths.

  Assignment Project Exam Help

https://eduassistpro.github.io/

## Shift-Down Algorithm Assignment Project Exam Help

- The color reduction method is c n".
- Algorithm Shift-Down du\_assist\_pro
  - 1. Concurrently at all vertices:
  - Recolor each non-root vertex by the color of its parent.
     Assignment Project Exam Help
     Recolor root by a new color, different from its current one.

https://eduassistpro.github.io/

- Why is "shift-down" correct?
- Colors (of the original coloring) are shifted down.

#### Analysis of Shift-Down Algorithm Assignment Project Exam Help

• Lemma 1 (Analysis of Algo wn)

Algorith Addi We Chatred Lassist pro lity; also siblings

are monochromatic.

## Assignment Project Exam Help

https://eduassistpro.github.io/

- Two vertices v = parent(w), w are recolored by  $c_{parent(v)}$  and  $c_v$ , which are different since c was a legal colouring.
- If v = root, then the new colors are x and  $c_v$ , where x is some color different from  $c_v$ .
- Also, all children of some vertex v get the same new color  $c_v$ .

### Final Color Reduction Assignment Project Exam Help

- Now assume the six colors empl
   Add WeChat edu\_assist\_pro
- The final three reduction steps involve cancelling colors

  Assignment Project Exam Help

  3,4,5

one at a time. https://eduassistpro.github.io/

- In the end, there del Wetchatedulessist pro
  - This is done by Algorithm Six2Three

Six2Three Algorithm Assignment Project Exam Help

- Algorithm Six2Three
  - $1. \text{ for } x = 3,4,3 \text{ eChatedu_assist_*pro}$
  - 2. Perform subroutine **Shift-Down** on the current colouring;
  - 3. if  $c_v = x$  then
  - 4. v chooses signment, Project 2 Exams Help any of the neighbors.
  - 5. endif https://eduassistpro.github.io/
  - 6. endfor Add WeChat edu\_assist\_pro

## Example of Six2Three Assignment Project Exam Help

• Recolouring method

Add WeChat edu\_assist\_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

• Example discarding chat edu\_assist\_pro

## Analysis of Six2Three Assignment Project Exam Help

- Theorem 5 (Analysis of Alg hree)

  Algorithm dat = 0 lors in time  $O(\log^* n)$ .
- Each vertex colored x will find an available color from the set  $\{1,2,3\}$ , Assignment Project Exam Help
  - since by the https://eduassistpro.github.io/ e colors are occupied, o
- Now note that recoloring the x edu\_assist\_pro\_simultaneously creates no problem since they are all mutually nonadjacent.

# Assignment Project Exam Help

• Fast tree-coloring with only 2 c more expected with a to a dy\_assist\_pro

xponentially

S

- In a tree degenerated to a line, nodes far away need to figure out whether they are an even or odd number of hops away frassignment Projectt Exam Helpring.
- To do that one h https://eduassistpro.github.io/

Assignment Project Exam Help

Add WeChat edu\_assist\_pro

Assignment Project Exam Help

https://eduassistpro.githubio/
Add WeChat edu\_assist\_pro

## Assignment Project Exam Help $\log^* n$ ?

- The only thing better than unning time is O(1) running Mdd WeChat edu\_assist\_pro
  - A 2-coloring is possible with O(1) running time in a distributed system with GPS!
- It turns out that we can prove a lower bound of  $\Omega(\log^* n)$  on the time required to solors.
  - This implies a tight bound of Chat edu assist pro for 3-coloring the line (ring).

## Assignment Project Exam Help

- Theorem 6 Every deter  $a \operatorname{directe} = \operatorname{diag} = \operatorname{dia$
- The proof uses a theorem of Frank P. Ramsey.
  Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

(22 February 1903 19 January 1930).

• We will not prove Theorem 6 here.

#### Generalizations and Additional Results Assignment Project Exam Help

- Linial (1992) proves that
  - in rooted d-regular treedu\_assist\_promany synchronous distributed algorithm running in time  $\leq \frac{2}{3}r$  cannot color  $T_{d,r}$  by fewer than  $\frac{1}{2}\sqrt{d}$  colors.
  - an arbitrary graph G of order n and max degree  $\Delta$ , can be colored with  $\frac{5}{100}$  https://eduassistpro.github.io/
     for G labeled, in time  $O(\log n)$  olor G
  - for G labeled, in time  $O(\log G)$  olor G with  $O(\Delta^2)$  Adds We Chatiled We assist progrithm.
- There exists a deterministic distributed algorithm for coloring arbitrary graphs with max degree  $\Delta$ ;
  - can be colored with  $\Delta + 1$  colors in  $O(\Delta \log^* n)$  time.

Assignment Project Exam Help

1. For any graph G = (V, E)

atic numbers

 $\operatorname{Add}_{\chi_{centralized}} \operatorname{WeChat}_{\operatorname{edu\_assist\_pro}} \operatorname{edu\_assist\_pro}_{\chi_{local}(G)}$ 

for centralized, distributed, and local computation.

- (a) How designifier? Project Exam Help
- (b) Is there a natural or
- 2. Define the concept of //eduassistpro.github.io/ l for any algorithmic computation and maked cassist\_pro
- 3. Let  $n \to h(n)$  be an integer valued function, where h(n) is the number of hops allowed in a network of size n to complete the computation. Formulate the various types of computation discussed above in terms of the function h(n).
- 4.  $(\star\star)$  Consider Exercise 3. If h(n) = n then the number of <sup>a</sup>Do not submit!

colors is 2. If h(n) = 1, then the number of colors is 3. For Assignment Project Exam Help which threshold value of h(n) does the number of colors jumps from 2 ta3d WeChat edu\_assist\_pro

- 5. Compute  $\log^*(10^{1000})$ .
- 6. Compute  $\log^*(2^{2^{2^{16}}})$ . Assignment Project Exam Help
- 7. Explain in more detai
  the local coloringthes://eduassistpro.githubrie/reductions)
  reduces to a six coloring.
  Add WeChat edu\_assist\_pro
- 8. Show in detail that on the line graph three colors suffice.
- 9. Prove that a log\* coloring algorithm is possible on a ring. How many colors does it require?
- 10. Prove in detail the correctness of the log\* tree coloring algorithm.

## Assignment Project Exam Help

- L. Barenboim, and M. Elkin. Dis coloring: Fundamentals WacChenttedu\_assist\_prothesis Lectures on Distributed Computing Theory 4.1 (2013): 1-171.
- N. Linial. Locality in distributed graph algorithms. SIAM Journal on Signment Project Exam Help
- D. Peleg, Distributes://eduassistpro.github.io/ve Approach, SIAM, 2000. Add WeChat edu\_assist\_pro