Abstract

Overview:

In the past, particle physics has relied upon improvements in processing speed of single computing cores in order to improve data acquisition rates. This feature will be critical to the proposed "High Luminosity Large Hadron Collider" (HLLHC). Unfortunately, since the mid-2000's, this improvement in single-core processing speed has hit a limit, and improvements in processing time must now come from concurrent processing. However, the current reconstruction techniques are not enabled for concurrent processing. In order to continue improving the processing capabilities of particle physics experiments in the HLLHC era, it will be necessary to explore cutting-edge techniques in parallel processing.

There are several general classes of problems in particle physics event reconstruction that could be modified in order to achieve concurrent processing. One such opportunity that has not yet been explored is in "jet clustering," a nearest-neighbor type of algorithm used to cluster hadronically-fragmented jets into a single object.

Intellectual Merit:

This proposal focuses on parallelizing the existing jet clustering algorithms in use at the LHC experiments. The proposed improvements will be to use this as a test case for deployment of cutting-edge parallelization techniques such as lightweight concurrency extraction, speculative computing, and smarter distribution. Some recent experience shows that this nearest-neighbor type of algorithm used by the jet clustering is amenable to such improvements.

Broader Impacts:

The benefits of this proposal are twofold: firstly, there will be an immediate improvement of the jet clustering algorithms themselves that will lead to higher data acquisition rates at the LHC. Secondly, the computing techniques developed could be used in other applications, inside of particle physics and elsewhere. Since nearest-neighbor algorithms are ubiquitous in scientific computing, it is expected that techniques developed to parallelize this particular problem will be applicable to a wide variety of others in academia and industry.

In addition, these core developments can train students in the newest computing techniques, giving them cutting-edge experience that is highly relevant in academia and private industry.

Clustering Jets at the Exascale

Steven Ko, Salvatore Rappoccio, Lukasz Ziarek November 21, 2013

1 Introduction

The research proposed here will focus on deploying advanced techniques in parallelization to improve algorithms involved in particle physics research at the Large Hadron Collider (LHC) and beyond. As a specific case, this research focuses on one particular algorithm, jet clustering, for immediate improvements, although the principles developed could be deployed in other areas of particle physics reconstruction.

With the discovery of the Higgs boson by the Large Hadron Collider (LHC) experiments ATLAS and CMS [1, 2], the standard model (SM) of particle physics is now complete. This model unifies the electromagnetic force (carried by the photon) with the weak force, responsible for radioactive decay (carried by the W and Z bosons). At long last, physicists now understand that via interactions with the Higgs field, the W and Z bosons acquire a mass, but the photon does not. This is referred to as "electroweak symmetry breaking".

A new phase of particle physics has therefore begun. The questions have shifted from the cause of electroweak symmetry breaking, to the study of the Higgs boson and its interactions in detail. To understand the larger picture of the fundamental forces in nature, the past excellence of the LHC experiments must therefore continue unabated in the face of new technical challenges.

One of the major technical challenges that lies ahead is the continuation of the scaling of computational power year by year, known colloquially as "Moore's Law". To set the scale, at the CMS experiment with the LHC collision flux ("luminosity") reaching $7 \times 10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$, the processing time to reconstruct each collision event by CMS was approximately 20 seconds per event. However, as the luminosity is

increased, the computational time currently scales quadratically. As the upgraded LHC is expected to deliver $> 12 \times 10^{33}\,\mathrm{cm^{-2}s^{-1}}$ in the upcoming run, the processing time per event is expected to reach several minutes per event. Furthermore, in future runs of the LHC in the next 15 years, the luminosity is expected to reach as high as $> 1 \times 10^{34}\,\mathrm{cm^{-2}s^{-1}}$, which would correspond (naively) to several hours of computational time per event! Clearly, it is necessary for the computing power to scale in order to compensate for this dramatic increase in CPU time with increasing luminosity.

Unfortunately, the expected end of the historic scaling of single-core processing capability [3] can adversely affect the long-term processing capability for particle physics experiments. Without improvements in single-core computational speed, the only avenues left are algorithmic improvements, and parallellization. Algorithm development is being undertaken at the LHC experiments to reduce the computational time of the software for data acquisition and reconstruction, using both single-core and multi-core approaches. However, long-term improvements will require fundamental improvements in processing capabilities using parallelization.

The currently proposed exploratory research will deploy new and innovative computer science techniques to particle physics. One algorithm that is particularly amenable to improvement using these techniques is the clustering of final-state particles produced in collisions into groups called "jets". Jets are produced via quantum chromodynamic (QCD) interactions of quarks and gluons that hadronize. These "jet clustering" algorithms group the particles This algorithm can become very computationally expensive as the number of particles that are produced in a collision grows, scaling as $N^2 \log N$. This will serve as a real-world test case for the deployment of these algorithms.

2 Prior Work

2.1 Results from Prior Support

Results from prior NSF support: None.

2.2 Overview of Activities

The investigators of this proposal have a widely-varied and applicable skill set to accomplish the goals of extending LHC computing to the exascale.

Particle Physics Computing

Salvatore Rappoccio (tenure-track Assistant Professor) joined the Faculty at the Univers at Buffalo, SUNY (UB) in 2012. He has 15 years of experience programming in a high-energy physics environment, as well as other numerical software design for the private sector.

From 2008-2010, he was the co-leader of the Analysis Tools group of the CMS Software Project. He was responsible for deployment of jet reconstruction algorithms as well as other tools for data analysis of LHC collision data during the startup phase of the LHC. His primary responsibilities included managing deployment of highly-performing software (including visualization) tools in a team consisting of ~ 15 people. He has been instrumental in improving the single-core computational speed for jet clustering at CMS since 2008.

His research interest include utilizing jet clustering algorithms in new and innovative ways to search for signals of physics beyond the standard model of particle physics. His pioneering efforts resulted in the first measurements and searches for new phenomena with advanced jet clustering algorithms at CMS, outlined in Refs. [4, 5, 6]. These techniques have become hugely popular in the LHC experiments and in the theoretical community. Prof. Rappoccio is a leader in the jet reconstruction community, contributing to and editing seminal reports on the subject in Refs. [7, 8, 9].

Currently, Rappoccio is mentoring two students (one graduate student and one undergraduate student) in achieving parallelization of the jet clustering algorithms.

In addition to this academic work, he has also been involved in numerical software design for MIT's Lincoln Laboratories (the details of which are classified).

Speculative Computation

Lukasz Ziarek has 9 years of experience in language, compiler, and runtime design targeted at improving multicore performance. He has worked on 5 compilers and 3 Java VMs. He is an expert at speculative and transactional computation focusing on the extraction of parallelism and lightweight concurrency.

Lightweight Concurrency for Latency Masking

Steven Ko has 10 years of experience in distributed systems. His recent focus has been large-scale data processing in the cloud using MapReduce and other technologies built on top of it. He also has 5 years of experience in large-scale storage and data management in data centers.

3 Proposed Program of Research

The energetic deposits of particles in detectors need to be clustered to obtain the complete response. This is because the process inherently involves a shower of particles called a "jet". This "jet clustering" is a well-established technique employed at many different particle physics experiments worldwide, and is implemented in a common software framework called fastjet [10]. The mathematical problem is analogous to the "K-nearest neighbors algorithm" [11] (kNN). The single-core optimization of jet clustering is outlined in Ref. [12]. In a single core, the computational time scales as $O(N^2)$ or $O(N \ln N)$, where N is the number of inputs to the algorithm, which scales linearly with luminosity. Since the luminosity of future colliders is expected to drastically increase over existing machines, it will be critical to develop parallelization strategies to maintain scalability of the jet clustering algorithms that exist to future machines.

The postdoctoral fellow requested in this proposal is envisioned to have a computer science background. There will be two graduate students, one with a physics background (but with strong computational skills), and one with a computer science background. This team, under the guidance of Rappoccio, Ziarek and Ko, will perform the implementation and study of these algorithms in the real-world fastjet software environment, testing the improvements at the extensive cluster at the **Center for Computational Research** here at UB.

We now discuss specific strategies that can be developed to optimize performance in this algorithm.

3.1 Technical Challenges

To achieve the necessary improvements in performance required for scalability of jet clustering, we propose to examine parallelization opportunities across the entire software stack, including three specific areas: (1) the use of lightweight concurrency extraction to mask highlatency computations or I/O actions, (2) extraction of parallelization from the computation itself in the form of optimistic speculation and specialized transform, and (3) new methods for distributing the computation to maximize parallelization on each node.

Lightweight Concurrency for Latency Masking

Many mathematical kernels contain opportunities for extracting "micro parallelism," usually on the order of tens of instructions, from their computational components. Unfortunately, it is very difficult to parallelize this computation profitably as the overhead of thread creation, scheduling, synchronization, and migration outweigh the gains in parallelism. Instead of extracting explicit parallelism from such computations, we propose to explore methods of lightweight asynchrony to allow for computation to proceed while waiting on high latency I/O operations to complete or the results of other computations. Since the creation of threads and associated schedule and synchronization costs are typically prohibitive, we will explore new threading models that allow for logically-distinct computations to execute within a given construct. The PIs previous research has indicated that such schemes can profitably boost overall performance in the context of ML code [13, 14].

Speculative Computation

In addition to exploring explicit parallelization of the numeric kernels in jet clustering, we propose to explore extraction of parallelism via speculative computation. At its core, speculative computation breaks apart sequential or parallel tasks into smaller tasks to be run in parallel. Once the speculation has completed, the runtime system validates the computation. If the computation is incorrect (*i.e.* a "datarace" is detected, the computation cannot be serialized, *etc.*), the incorrect computation is re-executed in a non-speculative manner. If the rate of mis-speculation is low, such techniques can be leveraged to extract additional parallelism. The PIs have extensive experience with transactional memory [15], lightweight rollback methods [16], leveraging memoization to reduce re-computation costs [17, 18], and deterministic speculation [19]. We propose to explore a specialized speculation framework leveraging different speculation strategies, including speculation extracted by the programmer via programming

language primitives, library level speculation, and compiler extracted speculation.

Smart Distribution

In order to increase parallelism, we will explore the use of the MapReduce execution framework [20, 21]. MapReduce is a runtime system recently developed for large-scale parallel data processing. It enables programmers to easily deploy their applications on a cluster of machines. Programmers only need to write two functions, Map and Reduce, and submit these two functions as a job to the system. Then the MapReduce framework takes care of all the aspects of the execution of the job. For example, the framework packages and distributes the two functions over the cluster so that the whole cluster can be utilized to execute the job; it also takes care of fault-tolerance by monitoring the cluster during the execution of the job and redistributes the job if some machine fails.

Due to this simplicity and power, it is quickly gaining popularity in industry for large-scale data processing. Many applications in scientific computing have not yet explored the use of MapReduce in depth, however previous research has explored implementing similar kNN-style algorithms with MapReduce [22, 23]. We intend to explore this question in the context of jet clustering for the LHC.

4 Broader impacts

The broader impacts of this reasearch are manifold. The jet-clustering algorithm is very similar to the "kNN" algorithm, which is widely applicable throughout research and industry. The improvements that are developed here at the cutting edge of scientific inquiry will be easily adaptable to other real-life applications.

need more here... other CS applications???.

5 Outreach and Education

While it is critical to pursue a rigorous research program, a large part of the responsibility of scientists is to educate the next generation effectively. There is already extensive work being done to educate high school-level students and teachers via the *QuarkNet* program at UB,

however there is very little in the way of educating the general public. In addition to participating in the existing *QuarkNet* activities, the plan outlined in this proposal will extend the coverage of the outreach program at UB to engage the broader public in discussions of major results in particle physics, as well as to enliven particle physics for young students. This will be implemented based on similar events as the "HiggsFest" [24] that Prof. Rappoccio organized at UB.

5.1 Higgsfest and other public events

The "Higgsfest" that was organized here at UB in 2012 is highlighted in Ref. [24]. The aim of the event was to invite the general public for "plain English" summaries and hands-on demonstrations that were geared for a multitude of age and knowledge levels. This was attended by over 100 people, including children, high-school students, physics and non-physics undergraduates, and interested members of the community.

Some of the hands-on demonstrations included building models of Feynman diagrams from craft material (for young children), a fully-functional four-layer coincidental muon scintillator detector, a cloud chamber made out of tupperware, felt, and dry ice, and the actual Higgs events from the CMS collaboration in an interactive event display. The event was covered by the "UB Reporter" here at UB [25].

Two more such events are proposed, the first to coincide with the LHC turn-on sometime in 2015, and the second to coincide with the newest results from the LHC after data-taking commences. These are events that should generate high media coverage, and will be a good opportunity to capitalize on public interest in this field. Having regular events to discuss the LHC results is a very long-term goal, and the opportunity to develop them with the CAREER proposal will be very useful. In the event of a major new discovery at the LHC during Run 2, the public interest will be very high, so having the experience of what works and what does not work in such events is extremely valuable to maximize the public impact.

In addition, this removes the stigma associated with science and technology fields at an early age. When young children can attend an event with their parents and take something away from it, this shows them that science is an integral part of life, and nothing to be particularly nervous about pursuing. It may even convince younger people to pursue a scientific career.

One of the major points learned during the last "Higgsfest" is that it is often difficult to have economically-disadvantaged students attend the lectures because of a lack of transportation possibilities. This is something to rectify for future projects along these lines. Therefore, in addition to holding the event directly at the UB North Campus (which is difficult for inner-city Buffalo schools to reach), a duplicated event is also proposed closer to the inner city that is easier to attend, or possibly to visit these schools directly. Some possible locations are the UB South Campus, or at "Babeville" [26], where the UB Physics Department routinely organizes the "Science and Art Cabaret" [27]. Both locations provide the infrastructure needed for the event, and access for disadvantaged schools and students in the inner city of Buffalo.

5.2 Undergraduate research

Having been an undergraduate researcher, Prof. Rappoccio knows the importance of making a positive impression on undergraduates who are interested in pursuing an academic career. He is currently advising one undergraduate students in his group, Jonathan Goodrum. Mr. Goodrum is participating in the "Collegiate Science and Technology Entry Program" (CSTEP) here at UB. This program focuses on disadvantaged or minority students who would otherwise have a difficult time pursuing STEM-related fields. Prof. Rappoccio is a strong believer in the principles and practice of this program, and intends to continue this work in the future.

6 Prior Work in Education and Outreach

As Prof. Rappoccio wholeheartedly believes in the importance of outreach and educational activity, he has extensively participated in outreach activities throughout his career. Some examples are

• Facilitator, CMS Data Analysis School, Fermilab, Batavia IL (Jan 2013, Jan 2011): facilitated the education of new CMS members through tutorials and hands-on exercises of real-life measurements.

- "Higgsfest" public lecture, Buffalo NY (Dec 6 2012): as described above, the "Higgsfest" was a celebration of the discovery of the SM-like Higgs boson at the LHC focused on outreach to the community.
- Science Cabaret public lecture, Buffalo NY (Oct 17 2012): lecture about the statistics behind the discovery of the Higgs boson aimed at conveying the information to a group of members of the artistic and public communities in Buffalo.
- Fermilab UEC Trip to Washington, D.C. (Spring 2009, Spring 2011): advocacy trip to visit members of Congress to spread information related to particle physics.
- Angels and Demons public lecture, Bethlehem Public Library, Delmar NY (May 15 2009): related to the release of the film "Angels and Demons," a large-scale public lecture series was organized by the Fermilab outreach department, and Prof. Rappoccio gave the lecture at a library outside of Albany, NY.
- Chicago Section of the Society for Applied Spectroscopy, Elmhurst, IL (Jan 13 2009): lecture of the methodologies and results of collider physics to an engineering society in the Chicago Area.
- Lecture, Bethlehem Central High School, Delmar NY (Dec 4 2008): lecture to high-school students from the high school I graduated from about particle physics and the LHC.
- Duckon Science Fiction Convention, Naperville IL (Jun 14 2008): lecture about the "real" science of the LHC compared to science fiction.
- Starter Kit for LHC Newcomers and Physics Analysis Toolkit Tutorials, Fermilab, Batavia IL, also CERN, Geneva CH (throughout 2008-2009): as part of his duties for the LHC support team at Fermilab, Prof. Rappoccio developed an education program for students, postdoctoral fellows, and faculty that were new to the CMS experiment with hands-on examples, simple walk-through tutorials, and in-person support. This eventually developed into full-fledged activities at CERN for the tutorials, as well as was the precursor for the hugely successful "CMS Data Analysis School," as much of the material was initially developed there.

- Prof. Rappoccio currently oversees the research and education of **Joshua Kaisen** and **Maral Alyari** as graduate students in his group. Mr. Kaisen is working on upgrading the particle-flow algorithm to work in the upgraded CMS detector. **Ms. Alyari** will be working on data-quality monitoring of the particle-flow and jet-reconstruction algorithms.
- Previously, at JHU, Prof. Rappoccio also oversaw the graduate studies of Guofan Hu, Marc Osherson, Kevin Nash, and Yongjie Xin who are working on searches for BSM physics using boosted jet algorithms. Dr. Hu graduated recently and moved to a position in finance, while Mr. Osherson, Mr. Nash, and Mr. Xin are continuing their studies, still partially under his supervision.
- Prior to the monitoring of the activities of Brendan Smith and Jonathan Goodrum, at JHU Prof. Rappoccio monitored the activities of two undergraduate students, David Bjergaard and Prateek Bajaj. Mr. Bjergaard is now at Duke University pursuing a Ph.D. in particle physics.

6.1 Summary

In summary, the problem of expanding LHC computing to the exascale is a difficult, but tractable one. This proposal investigates the possibility of applying cutting-edge parallelization techniques such as lightweight concurrency extraction, speculative computation, and smarter distribution, to the real-world application of LHC data processing. The overall goal is to reduce the computational time for k-nearest-neighbor-like numerical kernels used for jet clustering. The investigators of this proposal have extensive experience in the various aspects of the problem, and the synergistic application of this experience is expected to attain considerable improvements in this area, which are absolutely critical to the success of the future LHC physics program.

References

- [1] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. *Phys. Lett.* B, 2012.
- [2] Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. *Phys. Lett. B*, 2012.
- [3] Samuel H. Fuller and Lynette I. Millett. The Future of Computing Performance: Game Over or Next Level? The National Academies Press, 2011. Committee on Sustaining Growth in Computing Performance; National Research Council.
- [4] Serguei Chatrchyan et al. Search for anomalous t t-bar production in the highly-boosted all-hadronic final state. *JHEP*, 1209:029, 2012.
- [5] Serguei Chatrchyan et al. Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV. *Phys.Lett.*, B723:280–301, 2013.
- [6] Serguei Chatrchyan et al. Studies of jet mass in dijet and W/Z+jet events. *JHEP*, 1305:090, 2013.
- [7] A. Abdesselam, E. Bergeaas Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth, et al. Boosted objects: A Probe of beyond the Standard Model physics. *Eur. Phys. J. C*, 71:1661, 2011.
- [8] A. Altheimer, S. Arora, L. Asquith, G. Brooijmans, J. Butterworth, et al. Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks. *J. Phys. G*, 39:063001, 2012.
- [9] A. Altheimer, A. Arce, L. Asquith, J. Backus Mayes, E. Bergeaas Kuutmann, et al. Boosted objects and jet substructure at the LHC. 2013.
- [10] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet User Manual. *Eur. Phys. J.*, C72:1896, 2012.
- [11] T. Cover and P. Hart. Nearest neighbor pattern classification. *Information Theory, IEEE Transactions on*, 13(1):21–27, 1967.
- [12] Matteo Cacciari and Gavin P. Salam. Dispelling the N^3 myth for the k_t jet-finder. *Phys.Lett.*, B641:57–61, 2006.

- [13] Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan. Composable asynchronous events. In ACM SIGPLAN Notices, volume 46, pages 628–639. ACM, 2011.
- [14] KC Sivaramakrishnan, Lukasz Ziarek, Raghavendra Prasad, and Suresh Jagannathan. Lightweight asynchrony using parasitic threads. In *Proceedings of the 5th ACM SIGPLAN workshop on Declarative aspects of multicore programming*, pages 63–72. ACM, 2010.
- [15] Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Vijay Menon, Tatiana Shpeisman, and Suresh Jagannathan. A uniform transactional execution environment for java. ECOOP 2008-Object-Oriented Programming, pages 129–154, 2008.
- [16] Lukasz Ziarek and Suresh Jagannathan. Lightweight checkpointing for concurrent ml. *Journal of Functional Programming*, 20(02):137–173, 2010.
- [17] Lukasz Ziarek and Suresh Jagannathan. Memoizing multithreaded transactions. Workshop on Declarative Aspects of Multicore Programming, 2008.
- [18] Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan. Partial memoization of concurrency and communication. *ACM Sigplan Notices*, 44(9):161–172, 2009.
- [19] Lukasz Ziarek, Siddharth Tiwary, and Suresh Jagannathan. Isolating determinism in multi-threaded programs. *Runtime Verification*, pages 63–77, 2012.
- [20] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In *Proceedings of the 6th USENIX Symposium on Operating Systems Design and Implementation (OSDI)*, 2004.
- [21] Hadoop MapReduce. http://hadoop.apache.org/mapreduce.
- [22] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient processing of k nearest neighbor joins using mapreduce. *Proc. VLDB Endow.*, 5(10):1016–1027, June 2012.
- [23] Chi Zhang, Feifei Li, and Jeffrey Jestes. Efficient parallel knn joins for large data in mapreduce. In *Proceedings of the 15th International Conference on Extending Database Technology*, EDBT '12, pages 38–49, New York, NY, USA, 2012. ACM.

- [24] SUNY at Buffalo Physics Department. Higgsfest. http://www.physics.buffalo.edu/HiggsFest.
- [25] Charlotte Hsu. Higgsfest celebrates physics discovery. http://www.buffalo.edu/ubreporter/archive/2012_11_29/higgs_fest.html.
- [26] Righteous Babe Records. The ninth ward at babeville. http://www.babevillebuffalo.com.
- [27] Babeville and SUNY at Buffalo. Science and art cabaret. http://www.hallwalls.org/science-art.php.

BUDGET JUSTIFICATION

Institution: The State University of New York at Buffalo (UB)

PI: Salvatore Rappoccio

Co-I: Lukasz Ziarek, Steven Ko

Personnel

The requested funds of \$915,569 USD (for 3 years starting in 2014) would cover two (2) months of summer salary for Profs. Rappoccio, Ziarek and Ko per year for three (3) years (\$172,062), the full salary for one (1) postdoctoral fellow for three (3) years (\$154,224), and salary plus tuition for two (2) graduate students, totaling \$91,812 in salary and \$33,432 in tuition.

If awarded, efforts for Profs. Rappoccio, Ziarek and Ko will be reduced to be in compliance with NSF 2 month policy.

Fringe

Fringe benefit rates are based on the applicable federally negotiated rates published at

http://www.research.buffalo.edu/sps/about/rates.cfm.

Travel

This research will require regular travel to conferences and CERN. Hence, the proposal requests \$12,486 in travel funds for the three years of activity.

Facilities and Administration Indirect Costs

Indirect cost rates are based on the applicable federally negotiated rates published at

http://www.research.buffalo.edu/sps/about/rates.cfm

Facilities, Equipment and Other Resources

Center For Computational Research

UB has a large computational research center, CCR, which is a Linux-based cluster on the Open Science Grid, and also has a large GPU cluster for possible parallel processing developments.

Office

The faculty, postdoctoral fellows and graduate students all have office space at UB.

Postdoctoral Fellow Mentoring

One postdoctoral fellow will be funded on this project. There are extensive postdoctoral fellowship mentoring activities at UB, as well as via the CMS Experiment at CERN. These include guidance in career paths, work/life balance discussions, and technical skill development such as writing grant proposals, etc. Specific elements are highlighted below.

• University at Buffalo (UB)

- The UB Office of Postdoctoral Scholars offers diverse services for postdoctoral fellows, including the "Postdoc Survival Skills Workshops", targeted seminars and symposia for postdoctoral fellows, social functions, and logistical assistance.
- The UB Physics Department offers several services to our postdoctoral fellows, including a biweekly Journal Club for particle physics and cosmology, weekly seminars and colloquia, and weekly social functions inside the department.

• CERN

- The opportunities for a postdoctoral fellow at CERN are extensive. There are also a plethora of workshops, seminars, conferences, etc, at CERN. There are also smaller weekly avenues for networking possibilities, as well as seminars for postdoctoral fellows to gain visibility for their work.
- It is also worth pointing out that, because of the world-class nature of CERN, it often attracts very high-level members of the particle physics community on a regular basis. Such opportunities for visibility among the top-tier scientists in the world (including Nobel and Milner Prize winners, etc) are hard to understate.

In all, the postdoctoral fellow that will be supported by this proposal will have ample opportunities for professional advancement and development, as well as a myriad of opportunities for a community of peers in both professional and social settings.

Data Management Plan

The algorithms that are developed with this research plan will be integrated into the main fastjet software framework for distribution among collaborators (both experimental and theoretical) worldwide ¹.

¹http://fastjet.fr