Cost-Aware Bayesian Optimization with Adaptive Stopping via Gittins Indices

Qian Xie 谢倩 (Cornell ORIE)

INFORMS Annual Meeting 2025 Job Market Showcase

About Me - Background

• Education:

Tsinghua (Yao Class) → NYU → Cornell

Dissertation working title: Gittins Indices for Bayesian Optimization

• Publication:

Top ML conferences: NeurIPS, ICML, ...

Top journals: OR (major revision), Automatica, IEEE TCNS, ...

• Selected award:

INFORMS Data Mining Best Paper Competition Finalist

About Me – Research Interests

Theoretical Foundation

- Decision theory (incl. Gittins index theory)
- Dynamic programming & MDPs
- Stochastic control
- Bayesian inference

Methodology

- Bayesian optimization
- Active learning
- Reinforcement learning (incl. bandits)
- LLM-as-agent

LLM development

- Efficient LLM evaluation (ongoing)
- LLM reasoning (future)

Transportation

 Mixed-autonomy traffic control (ongoing)

Adaptive experimentation

- Online A/B testing (future)
- Dynamic pricing (future)

Scientific discovery

- Drug cocktail discovery (ongoing)
- Fusion reactor design (future)

About Me – PhD Research Projects

- Data-efficient Black-box Optimization (Recent)
 - Bayesian optimization via Gittins indices [NeurIPS'24 & INFORMS DM Finalist, ICLR'26 (under review), ICML'26 (in prep)]
 - LLM-driven neural architecture search for RL training [NeurIPS'25 LAW workshop]

About Me – PhD Research Projects

- Data-efficient Black-box Optimization (Recent)
 - Bayesian optimization via Gittins indices [NeurIPS'24 & INFORMS DM Finalist, ICLR'26 (under review), ICML'26 (in prep)]
 - LLM-driven neural architecture search for RL [NeurIPS'25 LAW workshop]
- Interactive Online Decision-making (Earlier)
 - Online recommendation (bandits) [ICML'23 & OR (major revision)]
 - Online resource allocation (MDP & stochastic game) [Automatica (2024)]

About Me – PhD Research Projects

Data-efficient Black-box Optimization (Recent)

- Bayesian optimization via Gittins indices
 - [NeurIPS'24 & INFORMS DM Finalist, ICLR'26 (under review), ICML'26 (in prep)]
- LLM-driven neural architecture search for RL [NeurIPS'25 LAW workshop]
- Interactive Online Decision-making (Earlier)
 - Online recommendation (bandits) [ICML'23 & OR (major revision)]
 - Online resource allocation (MDP & stochastic game) [Automatica (2024)]

ML model training:

Training hyperparameters ------

Adaptive experimentation:

Decision/design variables ———

Revenue

Input $x \longrightarrow$

Performance metric f(x)

Training time

Compute credits

ML model training:

Accuracy

Operational cost User experience

Adaptive experimentation:

Decision/design variables ———

Training

Input $x \longrightarrow$

expensive-to-evaluate

 \rightarrow Performance metric f(x)

ML model training:

Training time

Compute credits

→ Accuracy

Revenue

Operational cost

User experience

Adaptive experimentation:

Decision/design variables ———

10

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E}\max_{t=1,2,...,T} f(x_t)$

High-level goal: Choose $x_1, ..., x_T$ to maximize the expected best observed value $\mathbb{E}\max_{t=1,2,...,T} f(x_t)$

Fewer #evaluations

Bayesian Optimization

Bayesian Optimization

Bayesian Optimization

15

Existing Design Principles

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling

16

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- •Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- •Gittins Index

- Improvement-based
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling
- •Gittins Index

- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Under-explored Practical Considerations

Observable multi-stage feedback

Under-explored Practical Considerations

Observable multi-stage feedback

New design principle:
Gittins index

Smart stopping time

Observable multi-stage feedback

New design principle: Gittins index

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

New design principle: Gittins index

Optimal in related sequential decision problems

Varying evaluation costs

Features in Pandora's box

Smart stopping time

Features in Pandora's box

Observable multi-stage feedback

Features in Markovian bandits

New design principle: Gittins index

Optimal in related sequential decision problems

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds (UCB/LCB)
- Thompson sampling (TS)
- •Gittins Index (PBGI)

Why another principle?

- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Gittins Index vs Baselines on AutoML Benchmark

10/20/25 Qian Xie (Cornell ORIE)

- Improvement-based (e.g., LogEIPC)
- Entropy-based
- Confidence bounds
- Thompson sampling
- •Gittins Index

Why another principle?

- 1. Naturally handles practical considerations
- 2. Performs competitively on benchmarks
- 3. Comes with theoretical guarantees

Theoretical Guarantee and Empirical Validation

Theorem (No worse than stopping-immediately)

 $\mathbb{E}[R(\text{ours}; PBGI)] \le R[\text{stopping immediately}]$

Implication:

- Matches the best achievable performance in the worst case (evaluations are all very costly).
- Avoids over-spending a property many cost-unaware stopping rules lack.

Studied problem

Varying evaluation costs

Adaptive stopping time

Impact

Competitive empirical performance & interests from practitioners

"Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index." NeurIPS'24.

Key idea

Link to Pandora's Box problem & Gittins index theory

Ongoing work

Sharper theoretical guarantees & blackbox optimization w/ multi-stage feedback

"Cost-aware Stopping for Bayesian Optimization." Under review.

Recap: Bayesian Optimization

31

Ongoing: LLM-Driven Black-Box Optimization

Decision rule

(e.g., Softmax sampling)

Probabilistic model (large language model)

Ongoing: LLM-Driven RL Training Optimization

(RL training & evaluation)

Decision rule (e.g., Softmax sampling)

Probabilistic model (large language model)