RECITATION 2 ANALYSIS OF ALGORITHMS II

2017 SPRING Gönül Uludağ

Graph Search

Given an arbitrary graph G = (V, E) and a starting node $s \in V$, Breadth-First Search (**BFS**) and Depth-First Search (**DFS**), find shortest paths from s to each reachable node v.

- BFS algorithm explores outward in all directions uniformly.
- DFS algorithm explores out in one direction, backing up when necessary.
 - BFS always finds the shortest path from the source node to each other node, while DFS might not.

Question 1: Directed Breadth First Search

Undiscovered
Discovered
Top of queue
Finished

Queue: s

Undiscovered
Discovered
Top of queue
Finished

Queue: s 2

Undiscovered

Discovered

Top of queue

Finished

Queue: s 2 3

Undiscovered

Discovered

Top of queue

Finished

Queue: 2 3 5

Undiscovered
Discovered
Top of queue
Finished

Queue: 2 3 5

Undiscovered
Discovered
Top of queue
Finished

Queue: 2 3 5 4

Undiscovered
Discovered
Top of queue
Finished

Undiscovered
Discovered
Top of queue
Finished

Queue: 3 5 4

Undiscovered
Discovered
Top of queue
Finished

Queue: 3 5 4

Undiscovered
Discovered
Top of queue
Finished

Queue: 3 5 4 6

Undiscovered
Discovered
Top of queue
Finished

Queue: 5 4 6

Undiscovered
Discovered
Top of queue
Finished

Queue: 5 4 6

Undiscovered
Discovered
Top of queue
Finished

Undiscovered
Discovered
Top of queue
Finished

Undiscovered
Discovered
Top of queue
Finished

Queue: 4 6 8

Undiscovered
Discovered
Top of queue
Finished

Undiscovered
Discovered
Top of queue
Finished

Queue: 6 8 7

Undiscovered
Discovered
Top of queue
Finished

Queue: 6 8 7 9

Undiscovered
Discovered
Top of queue
Finished

Queue: 8 7 9

Undiscovered
Discovered
Top of queue
Finished

Level Graph

Question 2: Directed Depth First Search

Adjacency Lists

A: F G

B: A I

C: A D

D: C F

E: C D G

F: E

G:

H: B

I: H

Function call stack:

Function call stack:

dfs(F)
F-E

A-F A-G

Function call stack:

Function call stack:

Function call stack:

Nodes reachable from A: A, C, D, E, F, G

Question 3: Topological Ordering Algorithm

Q) The algorithm described in Section 3.6 for computing a topological ordering of a Directed Acyclic Graph (DAG).

DAG repeatedly finds a node with no incoming edges and deletes it. At the end, this will produce a topological ordering, provided that the input graph really is a DAG.

But suppose that we are given an arbitrary graph that may or may not be a DAG.

- Extend the topological ordering algorithm so that, given an input directed graph G, it outputs one of the two things:
 - a) a topological ordering, thus establishing that G is a DAG;
 - b) a cycle in G, thus establishing that G is not a DAG.

The running time of your algorithm should be O(m+n) for a directed graph with $\bf n$ nodes and $\bf m$ edges

Topological Ordering Algorithm

Topological order: ???

- A DAG is a directed graph that contains no directed cycles.
- A topological order of a directed graph G is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.
- then j appears after i

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 .

Computing Topological Ordering

In every DAG G, there is at least one node with no incoming edges

```
procedure topologicalSort(DAGG)
let result be an empty list.
while G is not empty
let v be a node in G with indegree 0
add v to result
remove v from G
return result
```

Computing Topological Ordering

Look for nodes with no incoming edges

Topological order:

Topological order: v_1

Topological order: v_1, v_2

Topological order: v_1, v_2, v_3

Topological order: v_1 , v_2 , v_3 , v_4

Topological order: v_1 , v_2 , v_3 , v_4 , v_5

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 .

Find Cycle: Topological Ordering

- If in each iteration, we find a node with no incoming edges then we will keep the algorithm
- If in some iteration, every node has at least one incoming edge, then this means G must contain a cycle

We need to modify the above graph to include this condition:

- We backtrack the edges,
 - i.e. we follow the first edge back until we reach a node that
 was visited before taking the first edge on the adjacency list
 of incoming edges assures O(n),
- We don't make a search since every node has an incoming edge, we will revisit a node v the nodes between two consecutive visits will be the nodes in the cycle C

Find Cycle: Topological Ordering

In the third iteration, all the nodes have at least one incoming edge

- Choose a node
- Choose the first edge on the adjacency list of incoming edges so that this can run in constant time per node
- Repeat until you find a cycle

Question 4

Q) A problem on graph is to assign integers to the vertices of G such that if there is a directed edge from vertex i to vertex j, then i < j.

One solution to the problem is search for a vertex with no incoming edge, assign this vertex the lowest number, and delete it from the graph, along with all outgoing edges. Repeat this process on the resulting graph, assign the next lowest number, and so on.

- a) Write the data structures and algorithm necessary to solve this problem.
- b) What is the complexity of your algorithm in terms of the number of vertices n and/or the number of edge m?
- c) Draw an example graph and show the relationship between your data structures and the graph.

Solution: Topological Ordering

a) Write the data structures and algorithm necessary to solve this problem.

A two dimensional integer array is necessary to represent the topology of graph and another single dimensional array can be used to keep values assigned to vertices:

Topology: Array[1...n+1, 1...n+1] of integer {0/1}; // n; #of vertices Values: Array[1...n+1] of integer

a)

return Numbers

```
Topology: Array[1...n, 1...n] of integer \{0/1\};
Values: Array[1...n] of integer
  Function AssignNumbers (graph: Topology): Numbers: Values;
  TempGraph: Topology {TempGraph is used not to lose the original graph structure - optional}
  k: integer
  TempGraph <- Graph
. k <- 1
  While k < (n+1) begin
    find a column having no '1's (say column j)
    if no such column then return error // what is that means?
    else
      Number[j] <- k
      k++
      assign '0' to all entries in row j (say row i)
  end
```

b) What is the complexity of your algorithm in terms of the number of vertices \mathbf{n} and/or the number of edge \mathbf{m} ?

 $\Theta(n3)$; outer while loop is repeated n times. In the loop in order to locate a column having no '1' entries one should check whole two dimensional array (worst case)

c) Draw an example graph and show the relationship between your data structures and the graph.

Assume Numbers; 3, 5, 6

	[1]	[2]	[3]
[1]	0	1	1
[2]	0	0	0
[3]	0	1	0

Question 5: Undirected Breadth First Search

front

Breadth First Search

enqueue source node front

Breadth First Search

dequeue next vertex front

Breadth First Search

visit neighbors of A

front

visit neighbors of A

front

B discovered front B

visit neighbors of A front B

I discovered B I

finished with A front B I

dequeue next vertex front B I

visit neighbors of B front I FIFO Queue

visit neighbors of B front I F

FIFO Queue

A already discovered front I F

FIFO Queue

finished with B front I F

dequeue next vertex front I F

visit neighbors of I front F

visit neighbors of I front F

FIFO Queue

A already discovered front F

FIFO Queue

visit neighbors of I front F

E discovered F E

visit neighbors of I $\qquad \qquad \qquad \mathbb{F} \ \ \mathbb{E}$

F already discovered ${\mathbb F}$ ${\mathbb E}$

dequeue next vertex front F E

G discovered E G

FIFO Queue

dequeue next vertex front E G

FIFO Queue

FIFO Queue

dequeue next vertex front

visit neighbors of G

front

C discovered front

visit neighbors of G front C

H discovered C H

G finished C H

dequeue next vertex front C H

D discovered H D

C finished H D

get next vertex front H D

visit neighbors of H front D

FIFO Queue

dequeue next vertex front D

FIFO Queue

visit neighbors of D

front

D finished

front

dequeue next vertex

front

STOP front

Question 6: Undirected Depth First Search

F newly discovered

Undiscovered

Marked

Active

Finished

visit(A)
(A, F) (A, C) (A, B) (A, G)

Undiscovered

Marked

Active

Finished

visit(F) (F, A) (F, E) (F, D) (A, F) (A, C) (A, B) (A, G)

Undiscovered

D already

marked

Marked

Active

Finished

Stack

visit(A)
(A, F) (A, C) (A, B) (A, G)

Undiscovered

A already

marked

Marked

Active

Finished

Stack

visit(A) (A, F) (A, C) (A, B) (A, G)138

Undiscovered

Marked

Active

Finished

Stack

Undiscovered Marked

G already

finished

Active

Finished

visit(A) (A, F) (A, C) (A, B) (A, G)

Undiscovered

Marked

Active

Finished

Finished A

visit(A)

(A, F) (A, C) (A, B) (A, G)

Stack

Stack 143

Stack

Stack