

BAKALÁŘSKÁ PRÁCE

Viktor Němeček

Název práce

Katedra softwaru a výuky informatiky

Vedoucí bakalářské práce: PhD. Mgr. Filip Děchtěrenko

Studijní program: Informatika

Studijní obor: Obecná informatika

<u> </u>	alářskou práci vypracoval(a) samostatně a výhradně nů, literatury a dalších odborných zdrojů.
zákona č. $121/2000$ Sb., auto	oji práci vztahují práva a povinnosti vyplývající ze rského zákona v platném znění, zejména skutečnost, ávo na uzavření licenční smlouvy o užití této práce odst. 1 autorského zákona.
V dne	Podpis autora

Poděkování.

Název práce: Název práce

Autor: Viktor Němeček

Katedra: Katedra softwaru a výuky informatiky

Vedoucí bakalářské práce: PhD. Mgr. Filip Děchtěrenko, katedra

Abstrakt: Abstrakt.

Klíčová slova: klíčová slova

Title: Name of thesis

Author: Viktor Němeček

Department: Department of Software and Computer Science Education

Supervisor: PhD. Mgr. Filip Děchtěrenko, department

Abstract: Abstract.

Keywords: key words

Obsah

Ú۶	vod	2
1	Základní pojmy 1.1 Šum 1.2 Gabor patch 1.2.1 Definice 1.2.2 Použití 1.3 Ideální bayesovský pozorovatel	3 3 3 4 4
2	Hodnocení fixací	5
3	Měření 3.1 Metodika 3.2 Výsledky	6 6
4	Implementace	7
Zá	ivěr	8
\mathbf{A}	Přílohy A.1 První příloha	9

$\mathbf{\acute{U}vod}$

Následuje několik ukázkových kapitol, které doporučují, jak by se měla bakalářská práce sázet. Primárně popisují použití TEXové šablony, ale obecné rady poslouží dobře i uživatelům jiných systémů.

1. Základní pojmy

1.1 Šum

Zeptat se Fídy, je to fakt formálně pink noise?

1.2 Gabor patch

Gabor filter (v českých textech někdy označovaný jako Gaborova vlnka) je lineární filtr používaný ve zpracování obrazu, chceme-li detekovat signál mající danou frekvenci a směr, který se vyskytuje kolem daného bodu.

1.2.1 Definice

Hodnotu filtru v daném bodě spočítáme jako součin dvou funkcí. První z nich je vždy sinus či cosinus (někdy uváděné v podobě komplexní exponenciály, pokud potřebujeme i reálnou, i imaginární složku). Jeho parametry určují, jaké vlastnosti má mít signál, který chceme detekovat. Druhé funkci říkáme obálka, a určuje, na jakém okolí daného bodu signál zkoumáme.

Funkce tedy vypadá jako

$$g(x,y) = \sin\left(2\pi \frac{x'}{\lambda} + \phi\right) * \text{obálka}(x',y'),$$

kde vektor $(x',y')^T$ je vektor $(x,y)^T$ otočený o úhel, který svírá osa x se směrem, podél nějž chceme měřit signál (tento úhel budeme značit Θ), a posunutý do bodu, v němž chceme měřit signál, λ je frekvence signálu, který hledáme, a ϕ je fázový posun.

Jako obálka se používá dvojrozměrná Gaussova funkce, raised cosine, nebo prostá lineární funkce vzdálenosti.

Gaussovu funkci vyjádříme jako

obálka
$$(x,y) = \exp\left(\frac{x'^2 + y'^2}{2\rho}\right),$$

kde ρ je směrodatná odchylka Gaussovy křivky. Její výhodou je, že chování Gabor filtru, jehož obálku tvoří Gaussova funkce, je nejlépe popsané. Raised cosine vyjádříme jako

obálka
$$(x,y) = \begin{cases} \frac{\cos(\pi\sqrt{x'^2 + y'^2}/r) + 1}{2} & \text{pro } \sqrt{x'^2 + y'^2} \le r, \\ 0 & \text{jinak}, \end{cases}$$

kde r je poloměr oblasti, v níž chceme signál detekovat. Výhodou raised cosine oproti Gaussově funkci je, že ve vzdálenosti alespoň r od středu filtru jeho hodnota nabývá nuly. Při výpočtech tedy stačí počítat s malou oblastí kolem středu (kdežto při použití Gaussovy funkce je nutné počítat s celým obrazem). Výhodou oproti lineární funkci vzdálenosti je, že raised cosine se pro většinu aplikací chová dostatečně podobně, jako Gaussova funkce.

1.2.2 Použití

Chceme-li detekovat signál ve vizuálním šumu, spočítáme hodnotu

$$s = \sum g(x,y) * n[x,y],$$

kde n je šum a sumu bereme přes všechny body (x,y), v nichž jsme naměřili hodnoty šumu. Je-li hodnota s blízko nuly, signál v daném místě není přítomen, nebo je přítomen s jinými parametry. Vysoké hodnoty značí, že signál pravděpodobně přítomen je, hluboce záporné značí, že signál je přítomen, ovšem s fází posunutou π .

Gabor filter ale můžeme používat i k samotné tvorbě signálu. Chceme-li vytvořit v nějakém bodě signál, můžeme spočítat Gabor filter, jako bychom chtěli detekovat signál s právě takovými parametry, jaké má mít tvořený signál, a potom ho sečíst se šumem. Takto vytvořenému signálu budeme říkat Gabor patch.

Obrázek 1.1: Ukázky několika Gabor patchů. Všechny gabor patche jsou 100 pixelů široké i vysoké. Levý patch má $\Theta=1/4\pi$, ostatní mají $\Theta=-1/4\pi$, levý má jako obálku Gaussovu funkci, prostřední dva raised cosine, pravý lineární funkci vzdálenosti, první, druhý a čtvrtý mají frekvenci (v cyklech na pixel) 0.1, třetí 0.02.

1.3 Ideální bayesovský pozorovatel

2. Hodnocení fixací

- 3. Měření
- 3.1 Metodika
- 3.2 Výsledky

4. Implementace

Tady bych dal nejspíše nějaký high-level přehled a potom pár slov o každém zdrojovém souboru.

Závěr

A. Přílohy

A.1 První příloha