

UNIVERSIDADE CESUMAR - UNICESUMAR

NÚCLEO DE EDUCAÇÃO A DISTÂNCIA

PLANO DE ENSINO		CURRÍCULO 2019	SÉRIE/ ANO 2º/2025		
CURSO	ENGENHARIA DE SOFTWARE				
DISCIPLINA	LÓGICA PARA COMPUTAÇÃO				
CARGA HORÁRIA			TURMAS		
100		5,6,7 e 8			
COORDENADOR			TITULAÇÃO		
FLAVIA LUMI MATUZAWA		DOUTORA			

EMENTA

Lógica Matemática. Teoria dos Conjuntos. Relações, funções e suas propriedades. Aplicações das teorias em problemas computacionais.

COMPETÊNCIAS

Identificar novas oportunidades de negócios para desenvolver soluções inovadores com o intuito de resolver problemas que tenham solução algorítmica com o uso de ambientes de programação.

Conceber, aplicar e validar princípios, padrões e boas práticas no desenvolvimento de software, através da compreensão e aplicação de processos, técnicas e procedimentos de construção, evolução e avaliação de software.

Qualificar e quantificar o trabalho com base em experiências e experimentos. Junto a isso, identificar e analisar problemas, avaliar necessidades de clientes, especificar requisitos de software, projetar, desenvolver, implementar, verificar e documentar soluções de software, baseadas no conhecimento apropriado de teorias, modelos e técnicas.

HABILIDADES A SEREM DESENVOLVIDAS

Desenvolver capacidade de raciocínio lógico para interpretação de problemas.

Conhecer recursos matemáticos como Tabela-verdade, Teoria dos Conjuntos e tópicos de lógica matemática em geral para solução de problemas.

Propor aplicações matemáticas voltadas para problemas computacionais.

Utilizar linguagem de programação lógica PROLOG para desenvolvimento de soluções computacionais.

CONTEÚDO PROGRAMÁTICO

UNIDADE I - LÓGICA MATEMÁTICA

- · Lógica Proposicional
- · Proposições e Valores Lógicos
- Conectivos Lógicos
- · Tabela-Verdade
- · Tautologias e Contradições
- Equivalências Lógicas
- · Implicações Lógicas
- Método Dedutivo
- Quantificadores e Predicados
- · Negação de Sentenças Quantificadas

UNIDADE II - TEORIA DOS CONJUNTOS

- . Conceitos Primitivos
- . Descrição de Conjuntos
- . Igualdade de Conjuntos
- . Tipos de Conjuntos
- . Subconjuntos
- . Conjunto das Partes
- . Diagramas de Venn-Euler
- . Produto Cartesiano
- . Relação Entre Lógica e Álgebra dos Conjuntos
- . Princípio da Inclusão e Exclusão

UNIDADE III - RELAÇÕES

- . Relação Binária
- . Tipos de Relações Binárias
- Propriedades das Relações
- . Representação das Relações
- . Relação de Ordem
- . Diagrama de Hasse
- . Diagrama PERT
- . Relações Duais
- Composição de Relações

UNIDADE IV - FUNÇÕES

- . Funções
- . Domínio, Contradomínio e Imagem de uma Função
- . Igualdade de Funções
- . Gráfico de Funções
- . Função Piso e Função Teto

- . Propriedades de Funções
- . Função Composta
- . Funções Inversas
- . Técnicas para Obtenção da Inversa de uma Função

UNIDADE V - APLICAÇÕES À COMPUTAÇÃO

- . Álgebra dos Conjuntos nas Linguagens de Programação
- . PROLOG
- . Caminho Crítico no Diagrama PERT
- . Autômatos Finitos
- . Relações e Banco de Dados

METODOLOGIA DA DISCIPLINA

Durante o ciclo de aprendizagem da disciplina, o acadêmico terá a possibilidade de desenvolver as competências pessoais e profissionais por meio de estratégias pedagógicas diferenciadas subsidiadas pela imersão nos conteúdos, relacionando a realidade circundante da área de conhecimento, as competências previstas no perfil do egresso, as demandas da sociedade, carreira, projetos de vida e trabalho. Na disciplina apresentam-se:

- Situações problemas objetivando refletir sobre temáticas atuais gerando significado, experimentação e ação, contribuindo para a construção cidadã e profissional do estudante;
- Conteúdo teórico virtual construídos a partir dos pilares institucionais que apresentam o conteúdo programático;
- Atividades de autoestudo teórico e prático;
- Recursos didático-pedagógicos diversos mediatizados pelas tecnologias;
- Canais diversificados para interação, retirada de dúvidas e troca de informações.

AVALIAÇÃO DA DISCIPLINA

O sistema avaliativo da disciplina é composto por diferentes atividades que integralizam a média final do aluno.

- 1. **Prova Presencial:** É obrigatória, sem consulta e deve ser realizada no polo de apoio presencial. O período de realização dessa prova ocorre conforme calendário acadêmico.
- 2. **Atividades de Estudo:** Para cada disciplina são previstas atividades de estudo, realizadas conforme calendário acadêmico e compostas por questões objetivas.
- 3. **Atividades de Conhecimentos Gerais**: Referem-se ao conteúdo abordado na palestra da Semana de Conhecimentos Gerais e são disponibilizadas no dia da aula do curso.
- 4. MAPA Material de Avaliação Prática de Aprendizagem: É uma atividade avaliativa, composta por

diferentes instrumentos, que possibilita ao acadêmico colocar em prática os conhecimentos adquiridos na disciplina.

A média final para aprovação é igual ou superior a 6,0.

BIBLIOGRAFIA BÁSICA DA DISCIPLINA NO CURSO

GODOY, E. G. O. Lógica para Computação. Maringá: UniCesumar, 2016.

GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação: um Tratamento Moderno de Matemática Discreta. 7. ed. Rio de Janeiro: LTC, 2016.

MENEZES, P. B. Matemática discreta para computação e informática. 4. ed. Porto Alegre: Bookman, 2013.

SCHEINERMAN, E. R. Matemática discreta uma introdução. 3. ed. São Paulo: Cengage Learning, 2016. STEIN, C.; DRYSDALE, R. L.; BOGART, K. Matemática discreta para ciência da computação. São Paulo: Pearson, 2013.

BIBLIOGRAFIA COMPLEMENTAR DA DISCIPLINA NO CURSO

LIPSCHUTZ, S. Matemática Discreta. 3. ed. Porto alegre: Bookman, 2013.

DAGHLIAN, J. **Lógica e álgebra de boole**. 4. ed. São Paulo: Atlas, 2012.

BARBOSA, M. A. Introdução à lógica matemática para acadêmicos. Curitiba: InterSaberes, 2017.

MENEZES, P. B.; TOSCANI, L. V.; LÓPEZ, J. G. **Aprendendo Matemática Discreta com Exercícios. Série Livros Didáticos.** v. 19. Porto Alegre: Bookman, 2011.

ROSEN, K. H. Matemática discreta e suas aplicações. 6. ed. Porto Alegre: ArtMed, 2010.

PERIÓDICOS QUE PODEM SER CONSULTADOS PARA A DISCIPLINA NO CURSO

https://seer.ufrgs.br/index.php/rita

https://www.sbc.org.br/publicacoes-mainmenu/computacao-brasil

Flavia Lumi Matuzawa Coordenação de Curso NEAD-Unicesumar

