Design of an Adaptive Hearing Aid

Daniel Edwards - 1055301 23/10/2018

School of Electrical & Information Engineering, University of the Witwatersrand, Private Bag 3, 2050, Johannesburg, South Africa

Abstract

This is my abstract

Contents

1	Introduction	3
2	Background	3
3	Design Research3.1 Existing Solutions3.2 Literature Review	3 3
4	Design Objectives	5
5	Design Requirements	5
6	Design Assumptions and Constrains6.1 Assumptions6.2 Constraints	5 5
7	Design Methodology	6
8	System Overview	6
9	Adaptive Filter Design 9.1 Audiogram	6 7 7 8 9 9 9 10 10
10	Dynamic Compression Design	11
11	Success Criterion	11
12	Critical Evaluation of Results 12.1 Socioeconomic Impacts of Design	11 11
13	Future Recommendations	11
14	Conclusion	11
\mathbf{A}	Impact Appendix - Non-Technical thing	14
В	Insertion Gain Parameters	14

C	Number of Filters Investigation	1 4
D	Bark-Scale	1 4
\mathbf{E}	Uniform Filter Bank Specifications and Results	1 4
\mathbf{F}	Critical-Like Filter Bank Specifications and Results	16
\mathbf{G}	Symmetric Filter Bank Specifications and Results	16
Н	Octave Filter Bank Specifications and Results	19
Ι	ANSI S1.11 Filter Bank Specifications and Results	19

1 Introduction

define what adaptive means

2 Background

Hearing loss is a common problem in society. In 2016, the University of the Witwatersrand released a statement saying that in South Africa, approximately 20% of the population suffers from a form of hearing loss [1]. As a result of hearing loss, an individual can suffer from loneliness, isolation, dependence, depression and frustration. These are signs of poor quality of [2]. The amount of people with an impaired quality of life provides motivation for the necessity of devices to improve an individuals hearing namely; a hearing aid.

3 Design Research

****Talk about conductive hearing loss

Many factors contribute to hearing loss. A common type is conductive hearing loss [3]. This is a result of age, excessive noise or various diseases [4]. This is a permanent form of hearing loss which can be treated with hearing assisting devices [4]. This section presents an analysis of existing solutions to this problem (Section ?? and a literature review (Section 3.2).

3.1 Existing Solutions

Two main hearing assisting devices exist for sensorineural hearing impairments namely; hearing aids and cochlear implants [5]. Cochlear implants are typically used in cases of extreme sensorineural hearing loss. These devices work well in quiet environments [6]. However, cochlear implant users battle to perceive speech in noisy environments [6] and thus, the individuals quality of life is not improved. Therefore, this design will make use of hearing aid technology.

There are two main types of hearing aids, analogue and digital. Analogue hearing aids amplify all sounds, which includes the important sound and noise which is not ideal [7]. Ricketts [8] states that the largest problem for the hearing impaired is listening in noisy situations. Digital hearing aids however, contain a signal processing element which gives them additional functionality such as filtering noise and isolating sounds in specific directions [8].

put something in about Ricketts and avoiding noise - isolation, say something about adaptive

3.2 Literature Review

Sebastian et al. [9] defines a hearing aid, as an electro-acoustic device with the purpose of making speech intelligible. This purpose, together with the patients quality of life, must be at the center of each design decision.

Audiograms, performed by audiologiests, are used to detect hearing impairments on a patient [10]. An audiogram illustrates the hearing threshold of a person at different pitches and frequencies [9]. These graphs illustrate the frequencies at which the patient battles to hear. Frequency response matching is a technique utilised by hearing aids to correct the audiogram of the patient. Kakol et al. mention that in many cases, patients experience hearing difficulties at different frequency ranges [11]. Therefore, by correcting the audiogram at the required frequencies, the patients hearing can be improved. This correction can be implemented with a series of filters which apply gain to various frequency bands [11]. This method is also mentioned by Sebastian et al. and is referred to as selective amplification [9].

Sebastian et al. provide an frequency response matching (FRM) investigation between uniform and non-uniform filter banks [9]. The frequency bands in uniform filter banks are equally spaced whereas non-uniform filter banks are arbitrary. Non-uniform filter banks are the preferred choice as they allow for an audiogram to be correct at the precise frequency bands that are affected by hearing loss [9]. According to Sebastian et al., the frequency bands at the critical hearing frequencies should be narrow for the best compensation [9]. Therefore, this design will consider narrow frequency band, non-uniform filter banks for audiogram correction.

Chang et al. give further insight into the types of filter banks by providing four different types namely; uniform, critical-like, symmetric and 1/3 octave [12]. The 1/3 octave filter bank proved to have the best audiogram matching. However, it had a 78ms delay at 24kHz compare to a 27ms delay when parallel IIR filters were used. Shearman [13] states a better understanding of how people perceive sound can be achieved by using octave analysis as breaking signals in octaves allows for the quality of the signal to be measured. This design aims to optimise the sound quality to improve the patients quality of life and thus, octave analysis must be considered.

Dhawan *et al.* simulate filtering in a hearing aid while using a wavelet filter to reduce noise. Additive white Gaussian noise (AWGN) was used to simulate the auditory noise [14]. Noise reduction is a critical component of this design and thus, the effect of these noise reduction techniques will be investigated within this system.

Ricketts [8] provides hearing aid performance metrics to raise the hearing capability of a hearing impaired individual to that of a normal hearing person. Normal hearing people, require an SNR^1 of at least +6dB, as suggested by [15]. Hearing impaired individuals however, require an SNR greater than +6dB to achieve sufficient hearing [16]. This increase SNR requirement is because impaired hearing caused by poor hearing thresholds, results in noise related problems [8]. For children, a SNR of $+15dB \rightarrow +30dB$ is required for educational purposes. Ricketts also stated that by tuning the hearing aid to listen in the direction of the source can improve the SNR by about $3dB \rightarrow 6dB$.

¹Signal to noise ratio.

Chen et al. [17] suggest that using multiple microphones results in better extraction, separation of frequencies and localization of the source whilst reducing noise, interference, echo and reverberation. This provides motivation for utilising a multiple microphone array in this design. Resource [18] provides a comparison between two microphone array designs namely; broadside and endfire. This paper shows that the broadside configuration attenuates the signal less at low frequencies and has a larger bandwidth compared to the endfire configuration. The endfire configuration however, had better directivity when placed in the desired sound direction [18]. In addition, McCowan [19] states that voice is a broadband signal. Therefore, in terms of array configuration, a trade-off must be made between bandwidth and directivity performance.

Munir [20] states that in telephony systems, a frequency range of 300Hz to 3.4kHz is used because this is the frequency range of voice. The human ear however, can detect a frequency range of 20Hz to 20kHz. Audiograms however, typically test upto a maximum frequency of 8kHz [21]. Since this system aims to correct audiograms, this frequency range must be considered.

McCowan [19] provides a comprehensive explanation of the wave propagation and various algorithms to determine directivity. This paper evaluates the performance of these algorithms within this context to determine the optimum solution.

ANSI S1.11 is a standardised set of performance requirements for designing octave and fractional octave filters for both analog and digital domains [22]. These requirements were developed by the Acoustical Society of America specifically for audio applications [22].

Put something in about the number of bands that increases the matching error Put the stuff about the audiogram gain factor thingy mention stuff about why digital is better than analog talk about group delay

4 Design Objectives

What the design intends to solve.

5 Design Requirements

6 Design Assumptions and Constrains

6.1 Assumptions

This paper presents a theoretical design and hence, assumptions can be made. This design is not limited by cost, power or space requirements. This design is considered for adult hearing only. The directionality component considers a 2D wave in a plane instead of a 3D wave.

Finally, it is assumed that the speaker is deep inside the ear and hence separated from the microphone significantly enough such that feedback cancellation is not required.

6.2 Constraints

This system is constrained to a bandwidth of 20Hz to 8kHz to correspond to the audiogram frequency range.

constrains: 8kHz, response time

7 Design Methodology

The design of this system consists of two main subsystems. The first is the audiogram correction using an adaptive filter bank. The second, is applying directionality techniques to the signal to allow for the user to listen in specific directions. These subsystems will be amalgamated into a single system. This paper focuses on the adaptive hearing subsystem.

In this system, the adaptive filtering component is optimised for the audiogram matching error and response time.

Mention the compression aspect compare a bunch of different designs find the best one choose DSP and stuff from there digital filters ideal filter bank

8 System Overview

9 Adaptive Filter Design

State the factors that contribute to the optimisation

The adaptive filter is a filter bank which consists of an array of bandpass filters. Each of the bandpass filters operate with a particular frequency range and gain. This design subsection aims to utilise this frequency bank rectify a patients audiogram. This audiogram is presented in Section 9.1.

Approach: Research proved that there are multiple filter bank types used to rectifying a patients audiogram, typically categorised as uniform and non-uniform. To determine the optimum design, each of these systems will be considered. Sections 9.4.1, 9.4.2, 9.4.3 and 9.4.4 present the design of the uniform, critical-like, symmetric and octave filter banks. These designs will also be compared to the ANSIXXX specification presented in Section 9.5.

FIR vs IIR

9.1 Audiogram

The audiogram considered in this design corresponds to a patient with conductive hearing loss. Audiologists typically measure a patients hearing at 125Hz, 250Hz, 500Hz, 1kHz, 2kHz, 4kHz and 8kHz REF. MATLAB's pchip function was used to interpolate these values to provide hearing threshold values for the full 125Hz to 8kHz range. Reference [23] provides audiograms for normal hearing and conductive hearing loss. Figure 1 illustrates these audiograms.

Figure 1: Audiogram for Normal Hearing and Conductive Hearing Loss

The filter bank aims match the conductive hearing loss patients audiogram to the normal hearing audiogram.

9.2 Insertion Gain

The filter bank corrects the audiogram by applying gain to particular frequencies bands. Each sub-band gain is defined as insertion gain. In this design, the insertion gain is calculated using the NAL-R formulas given in equation 1.

$$H_{3FA} = (H_{500} + H_{1k} + H_{2k})/3$$

$$X = 0.15 \times H_{3FA}$$

$$IG_i = X + (0.31 \times H_i) + k_i$$
(1)

Where X is XXXXXX, IG_i is the insertion gain, H_i is the audiogram value at the i^{th} sampled frequency and k_i is a constant at the i^{th} sampled frequency given by Table 1 in Appendix B. Similarly to the audiogram, the insertion gain values were interpolated using MATLAB's pchip function. The insertion gains for the full frequency range is illustrated in Figure 2.

Figure 2: Interpolated Insertion Gain for Full Frequency Range

Figure 3: Matching Error Across Fre-Figure 4: Mean Matching Error per Filter quency Spectrum per Filter Bank

Bank

9.3 Number of Filters

As stated above, the filter bank consists of multiple bandpass filters, each operating over a specific sub-band. Therefore, the number of filters used must be investigated; particularly for the uniform, critical-like, symmetric and octave filter banks designs. A uniform filter bank was used to investigate the effect that increasing the number of filters has on matching error and computational complexity. Appendix C provides the details of the filter banks used in this investigation. Figure 3 and 4 illustrate the matching error for each band across the frequency range and the mean error for each number of frequency bands respectively. Figure 4 illustrates that increasing the number of bands, decreases the mean matching error. This is because increasing the number of filters emphasises the frequency sub-bands that need to be adjusted. Therefore, the design should aim to maximise the number of filters.

9.4 Uniform, Critical-like, Symmetric and Octave Filter Bank Design

This section aims to optimise the structure of the filter bank's frequency bands. Therefore, a comparison between a uniform (Section 9.4.1), critical-like (Section 9.4.2), symmetric (Section 9.4.3) and octave (Section 9.4.4) filter banks will be made. The best performing filter bank will then be compared to the ANSI S1.11 (Section 9.5). To draw a fair comparison, all of the filters will be design with the parameters given in Table 2 in Appendix C. Each filter bank will consist of 8 bandpass filters. Initially, the transition band per sub-band is set to 10% of the sub-band's bandwidth. However, through simulation, it was found that adjusting the transition bandwidth significantly affected the performance. Therefore, each sub-band's transition bandwidth is iteratively adjusted to achieve the optimal performance. This allows for the best performing filter banks to be compared. Therefore, concrete performance decisions can be made. The same insertion gain method as in Section 9.2 will be used.

9.4.1 Uniform Filter Bank Design

A uniform filter bank consist of an array of evenly spaced, filters with equal bandwidths [12]. Uniform filter banks are simple and easy to implement. However, for a sufficient resolution, uniform filter banks requires more bands than non-uniform filter banks for a good fit. The additional filters implies that more computations are required and thus, the filter bank's group delay is potentially increased [24]. This design optimised Section 9.3's 8 sub-band design by utilising the filter characteristics in Table 12 of Appendix E. This design acheived and average and maximum matching error of 1.36dB and 11.25dB respectively. The matching error across the full frequency spectrum can be seen in Figure 5 of Appendix E.

9.4.2 Critical-like Filter Bank Design

This filter is forms part of the non-uniform filter bank category. This filter design attempts to account for the psychoacoustic characteristics using the critical bands of the Bark Scale [25]. Table 11 in Appendix D provides the Bark scale's critical frequency band information. This investigation is limited to using 8 filters and a maximum frequency of 8kHz. Therefore, the sub-bands are set as shown in Table 13 of Appendix F. This design achieved an average and maximum matching error of 0.87dB and 8.15dB respectively. The matching error for the full frequency spectrum is illustrated in Figure 6 of Appendix F.

9.4.3 Symmetric Filter Bank Design

Symmetric filter banks provde an improvement on the uniform filter bank. The non-uniform sub-bands are symmetric about the center frequency of the frequency spectrum, in this case 4kHz. Symmetric filter banks have the ability of enhancing the matching error of low and high, or mid frequencies [9]. Figure 1 illustrates that the threshold of a conductive hearing loss patient is worse at the low and high frequencies. Therefore, the frequency bands will be chosen such that these frequencies are emphasised. Table 14 in Appendix G illustrates

the bands used in this investigation. Simulation illustrated that the symmetric filter bank achieved an average error of 1.34dB with a maximum matching error of 9.4dB. The matching error for the full frequency spectrum is illustrated in Figure 7 in Appendix G.

9.4.4 Octave Filter Bank Design

As stated above, separating a frequency spectrum into octaves allows for the quality of sound to be measure and by derivative, improved [13]. It is therefore natural for a filter bank to be designed using this principle. Each filter bank sub-band will have a center frequency relative to the reference sub-band center frequency $f_c[0] = 1000Hz$ [26]. The center frequency of each sub-band is calculated using equation 2. The corresponding upper (f_{cu}) and lower (f_{cl}) passband frequencies are calculated using equation 3 [26].

$$f_c[k-1] = f[k]/2 (2)$$

$$f_{cu}[k] = \frac{f_c[k]}{2^{1/2}}$$

$$f_{cl}[k] = 2^{1/2} \times f_c[k]$$
(3)

The center frequencies for this filter bank are chosen to be 63Hz, 125Hz, 250Hz, 500Hz, 1kHz, 2kHz, 4kHz and 8kHz which results in the filter specifications given in Table 15 of Appendix H. Simulations demonstrated that this filter bank achieved an average and maximum matching error of 0.72dB and 10.44dB respectively. Figure 8 in Appendix H illustrates the matching error across the full frequency spectrum.

9.5 ANSI S1.11 Design

Liturature extensive utilised the 1/3-octave ANSI S1.11 as opposed to the octave ANSI S1.11 design. The 1/3-octave design contains more sub-bands than the octave design. Therefore, according to the results found in Section 9.3, a 1/3-octave ANSI S1.11 filter bank will be design. This standard utilises 29 sub-bands. However, with the 8kHz maximum frequency constraint on this design, only 25 sub-bands are required. The class 2 attenuation specification is chosen as it allows a 1dB ripple which allows for an accurate comparison with the aforementioned filter banks. The stop band attenuation is set to 60dB. This is considered to be sufficient for hearing loss applications [27]. ANSI S1.11 compliant filter banks are typically implemented using IIR filters. However, for an accurate comparison, this investigation implements the ANSI S1.11 standard using FIR filters. The frequency specifications are calculated as shown in Appendix I with the resulting specifications summarised in Table 16 of Appendix I.

mention stuff about ANSI multirate filter

9.6 Filter Design Selection

From the several investigated filter bank designs, the optimal design must be chosen. This decision is based on two metrics; namely matching error performance and computational complexity.

- 10 Dynamic Compression Design
- 11 Success Criterion
- 12 Critical Evaluation of Results
- 12.1 Socioeconomic Impacts of Design
- 13 Future Recommendations
- 14 Conclusion

References

- [1] U. of the Witwatersrand, International ear care day act now, here's how! 2016.
- [2] A. Ciorba, C. Bianchini, S. Pelucchi, and A. Pastore, "The impact of hearing loss on the quality of life of elderly adults," *Clinical Interventions in Aging*, vol. 7, pp. 159–163, Jun. 2012. DOI: 10.2147/CIA.S26059. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393360/.
- [3] E. Earinfo.com, *Hearing aid resource for consumers*, 2018. [Online]. Available: http://www.earinfo.com/faq/hearing-loss.
- [4] Hear-it.org, Sensorineural hearing loss (snhl) causes and treatments, 2018. [Online]. Available: https://www.hear-it.org/Sensorineural-hearing-loss.
- [5] A. H. Centers, Cochlear implant vs. a hearing aid what's the difference? Feb. 2018. [Online]. Available: https://www.atlantichearingcenters.com/blog/2018/feb02-cochlear-implants-vs-hearing-aids.
- [6] J. Carroll, S. Tiaden, and F.-G. Zeng, "Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing," *The Journal of the Acoustic Society of America*, vol. 130, no. 4, pp. 2054–2062, Oct. 2011. DOI: 10.1121/1.3631563. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206909/.
- [7] C. Woodford, *How do hearing aids work?* Apr. 2018. [Online]. Available: https://www.explainthatstuff.com/hearingaids.html.
- [8] T. A. Ricketts, "Directional hearing aids," *Trends In Amplification*, vol. 5, no. 4, pp. 139–176, 2001.
- [9] A. Sebastian and J. T. G., Digital Filter Bank for Hearing Aid Application Using FRM Technique.
- [10] Audiometry test, hearing test, Apr. 2018. [Online]. Available: https://www.mayfieldclinic.com/PE-Hearing.HTM.

- [11] K. Kakol and B. Kostek, "2016 signal processing: Algorithms, architectures, arrangements, and applications (spa)," in. IEEE, pp. 219–224.
- [12] K.-C. Chang, M.-H. Chuang, and C.-H. Lin, "10-ms 18-band quasi-ansi s1.11 1/3-octave filter bank for digital hearing aids," *IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS*, vol. 60, no. 3, pp. 638-649, Aug. 2012. DOI: 10.1109/TCSI.2012. 2209731. [Online]. Available: https://ieeexplore.ieee.org/document/6268303.
- [13] S. Shearman, Analyze signals octave by octave, Apr. 2001. [Online]. Available: https://www.edn.com/electronics-news/4382916/Analyze-signals-octave-by-octave.
- [14] R. Dhawan and P. Mahalakshmi, "International conference on electrical, electronics, and optimization techniques (iceeot) 2016," in *Digital Filtering In Hearing Aid System For The Hearing Impaired*. IEEE, pp. 1494–1497.
- [15] B. C. J. Moore, An Introduction to the Psychology of Hearing, 6th ed. Emerald Group Publishing Limited, 2012.
- [16] T. Tillman and R. Carhart, "Interaction of competing speech signals with hearing losses," *Archives of Otolaryngology*, vol. 91, no. 3, pp. 273–279, Mar. 1970.
- [17] J. Chen and J. Benesty, Design and implementation of small microphone arrays, 2014.
- [18] InvenSense, Microphone array beamforming, 2013.
- [19] I. McCowan, "Robust speech recognition using microphone arrays," PhD thesis, Queensland University of Technology, 2001.
- [20] B. Munir, Voice fundamentals human speech frequency, Mar. 2012. [Online]. Available: http://www.uoverip.com/voice-fundamentals-human-speech-frequency/.
- [21] The audiogram. [Online]. Available: https://www.asha.org/public/hearing/audiogram/.
- [22] T. E. D. O. of the Federal Register and A. Accredited Standards Institute Committee S1, American National Standard Specification for Octave-Band and Fractional-Octave-Band Analog and Digital Filters. Acoustical Society of America (ASA).
- [23] A. Mahmoud, *Reading an audiogram*, Jun. 2015. [Online]. Available: https://www.slideshare.net/amirmah/reading-an-audiogram.
- [24] R. Brennan and T. Schneider, "Iscas '98. proceedings of the 1998 ieee international symposium on circuits and systems," *ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems*, vol. 6, pp. 569–572, Aug. 2002. DOI: 10.1109/ISCAS.1998.705338. [Online]. Available: https://ieeexplore.ieee.org/document/705338.
- [25] K.-S. Chong and B.-H. Gwee, "A 16-channel low-power nonuniform spaced filter bank core for digital hearing aids," *IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS*, vol. 53, no. 09, pp. 853–857, Sep. 2009. DOI: 10. 1109/TCSII.2006.881821.

- [26] R. J. Cassidy and J. O. Smith III, *Third-octave filter banks*, Jun. 2008. [Online]. Available: https://ccrma.stanford.edu/realsimple/aud_fb/Third_Octave_Filter_Banks.html.
- [27] C.-Y. Yang and C.-W. Liu, "A systematic ansi s1.11 filter bank specification relaxation and its efficient multirate architecture for hearing-aid systems," *IEEE/ACM TRANS-ACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING*, vol. 24, no. 8, pp. 1380–1392, Aug. 2016. DOI: 10.1109/TASLP.2016.2556422. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7457341.
- [28] J. O. Smith III, *The bark frequency scale*, Feb. 2018. [Online]. Available: https://ccrma.stanford.edu/~jos/sasp/Bark_Frequency_Scale.html.

Appendix

A Impact Appendix - Non-Technical thing

B Insertion Gain Parameters

The values of k_i is determined by Table 1.

Table 1: k_i Parameter at Specific Frequency Values

Frequency (Hz)	250	500	1000	2000	3000	4000	6000
$k_i(dB)$	-17	-8	1	-1	-2	-2	-2

C Number of Filters Investigation

In this investigation, a filter bank was constructed. Each filter was designed using Simulink's digital bandpass filter. The design settings used are given in Table 2.

Table 2: Filter Design Settings

Impulse Response	FIR
Order Mode	Minimum
Filter Type	Single-rate
Input Sample Rate	20kHz
Passband ripple	1dB
Transition Bandwidth	200Hz
Design Method	Equiripple
Structure	Direct-form FIR

The order of an FIR filter corresponds to the window length. Therefore, it is set to a minimum to keep the results consistent. Tables 3 to 10 provide the filter range and gains used in this investigation. f_{s1} , f_{p1} , f_{p2} and f_{s2} correspond to the lower stopband frequency, the lower pass band frequency, the upper passband frequency and the upper stopband frequency respectively. A_{s1} and A_{s2} correspond to the lower and upper stopband attenuations.

D Bark-Scale

Table 11 provides the critical frequency bands of the Bark-scale [28].

E Uniform Filter Bank Specifications and Results

Table 12 provides the specifications for each sub-band in the uniform filter bank.

Table 3: Filter Parameters - 1 Band

Parameter	Filter 1
$f_{s1}(Hz)$	20
$f_{p1}(Hz)$	250
$f_{p2}(Hz)$	8000
$f_{s2}(Hz)$	8200
$A_{s1}(dB)$	G1dB + 3
$A_{s2}(dB)$	G1dB + 3

Table 4: Filter Parameters - 2 Bands

Parameter	Filter 1	Filter 2
$f_{s1}(Hz)$	20	3800
$f_{p1}(Hz)$	250	4000
$f_{p2}(Hz)$	4000	8000
$f_{s2}(Hz)$	4200	8200
$A_{s1}(dB)$	G1dB + 3	G1dB + G2dB + 3
$A_{s2}(dB)$	G1dB + G2dB + 3	G2dB + 3

Table 5: Filter Parameters - 3 Bands

Parameter	Filter 1	Filter 2	Filter 3
$f_{s1}(Hz)$	20	2800	5550
$f_{p1}(Hz)$	250	3000	5750
$f_{p2}(Hz)$	3000	5750	8000
$f_{s2}(Hz)$	3200	5950	8200
$A_{s1}(dB)$	G1dB + 3	G1dB + G2dB + 3	G2dB + G3dB + 3
$A_{s2}(dB)$	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + 3

Table 6: Filter Parameters - 4 Bands

Parameter	Filter 1	Filter 2	Filter 3	Filter 4
$f_{s1}(Hz)$	20	1800	3800	5800
$f_{p1}(Hz)$	250	2000	4000	6000
$f_{p2}(Hz)$	2000	4000	6000	8000
$f_{s2}(Hz)$	2200	4200	6200	8200
$A_{s1}(dB)$	G1dB + 3	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3
$A_{s2}(dB)$	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3	G4dB + 3

Table 7: Filter Parameters - 5 Bands

Parameter	Filter 1	Filter 2	Filter 3	Filter 4	Filter 5
$f_{s1}(Hz)$	20	1700	3350	5000	6650
$f_{p1}(Hz)$	250	1900	3550	5200	6850
$f_{p2}(Hz)$	1900	3550	5200	6850	8000
$f_{s2}(Hz)$	1100	3750	5400	7050	8200
$A_{s1}(dB)$	G1dB + 3	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3	G4dB + G5dB + 3
$A_{s2}(dB)$	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3	G4dB + G5dB + 3	G5dB + 3

Table 8: Filter Parameters - 6 Bands

Parameter	Filter 1	Filter 2	Filter 3	Filter 4	Filter 5	Filter 6
$f_{s1}(Hz)$	20	1300	2800	4300	5800	7300
$f_{p1}(Hz)$	250	1500	3000	4500	6000	7500
$f_{p2}(Hz)$	1500	3000	4500	6000	7500	8000
$f_{s2}(Hz)$	1700	3200	4700	6200	7700	8200
$A_{s1}(dB)$	G1dB + 3	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3	G4dB + G5dB + 3	G5dB + G6dB + 3
$A_{s2}(dB)$	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3	G4dB + G5dB + 3	G5dB + G6dB + 3	G6dB + 3

Table 9: Filter Parameters - 7 Bands

Parameter	Filter 1	Filter 2	Filter 3	Filter 4	Filter 5	Filter 6	Filter 7
$f_{s1}(Hz)$	20	1200	2350	3500	4650	5800	6950
$f_{p1}(Hz)$	250	1400	2550	3700	4850	6000	7150
$f_{p2}(Hz)$	1400	2550	3700	4850	6000	7150	8000
$f_{s2}(Hz)$	1600	2750	3900	5050	6200	7350	8200
$A_{s1}(dB)$	G1dB + 3	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3	G4dB + G5dB + 3	G5dB + G6dB + 3	G6dB + G7dB + 3
$A_{s2}(dB)$	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3	G4dB + G5dB + 3	G5dB + G6dB + 3	G6dB + G7dB + 3	G7dB + 3

Figure 5 illustrates the matching error of the uniform filter bank across the full frequency spectrum.

F Critical-Like Filter Bank Specifications and Results

Within the Bark range, bands 22,23 and 24 fall outside of the 8kHz constraint and are therefore, ignored. The remaining 21 bands are divided into 8 sub-bands by grouping together 2 or 3 sub-bands. According to the audiogram used in this design, the greatest hearing loss occurs within the 1kHz to 3kHz range. Therefore, a greater resolution is required within this frequency range. The frequency bands used in this investigation are therefore given in Table 13.

Figure 6 provides the matching error of the critical-like filter bank across the full frequency spectrum.

G Symmetric Filter Bank Specifications and Results

Table 14 summarises the frequency bands used to investigate the performance of the symmetric filter bank design. Because the human hearing frequency spectrum begins at 20Hz, the first sub-band is not symmetric to the last sub-band. However, there is only a 4% difference which is negligible. The transition bandwidth for the first sub-band however, will be 20Hz. Since only the transition bandwidth of the first sub-band is affected, this affect is also ignored.

Figure 7 illustrates the matching error for the full frequency spectrum of the symmetric filter bank.

Table 10: Filter Parameters - 8 Banks

Parameter	Filter 1	Filter 2	Filter 3	Filter 4	Filter 5	Filter 6	Filter 7	Filter 8
$f_{s1}(Hz)$	20	800	1800	2800	3800	4800	5800	6800
$f_{p1}(Hz)$	250	1000	2000	3000	4000	5000	6000	7000
$f_{p2}(Hz)$	1000	2000	3000	4000	5000	6000	7000	8000
$f_{s2}(Hz)$	1200	2200	3200	4200	5200	6200	7200	8200
$A_{s1}(dB)$	G1dB + 3	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3	G4dB + G5dB + 3	G5dB + G6dB + 3	G6dB + G7dB + 3	G7dB + G8dB + 3
$A_{s2}(dB)$	G1dB + G2dB + 3	G2dB + G3dB + 3	G3dB + G4dB + 3	G4dB + G5dB + 3	G5dB + G6dB + 3	G6dB + G7dB + 3	G7dB + G8dB + 3	G8dB + 3

Table 11: Bark-scale Critical Frequency Bands

Number	Center Frequency (Hz)	Cut-Off Frequency (Hz)	Bandwidth (Hz)
		20	
1	60	100	80
2	150	200	100
3	250	300	100
4	350	400	100
5	450	510	110
6	570	630	120
7	700	770	140
8	840	920	150
9	1000	1080	160
10	1170	1270	190
11	1370	1480	210
12	1600	1720	240
13	1850	2000	280
14	2150	2320	320
15	2500	2700	380
16	2900	3150	450
17	3400	3700	550
18	4000	4400	700
19	4800	5300	900
20	5800	6400	1100
21	7000	7700	1300
22	8500	9500	1800
23	10500	12000	2500
24	13500	15500	3500

Table 12: Uniform Filter Bank Frequency Bands

	Filter 1	Filter 2	Filter 3	Filter 4	Filter 5	Filter 6	Filter 7	Filter 8
$f_{s1}(Hz)$	120	900	1900	2900	3900	4900	5900	6900
$f_{p1}(Hz)$	200	1000	2000	3000	4000	5000	6000	7000
$f_{p2}(Hz)$	1000	2000	3000	4000	5000	6000	7000	8000
$f_{s2}(Hz)$	1080	2100	3100	4100	5100	6100	7100	8100
Gain(dB)	17,16	23,07	21,62	21,1	21	21	21	21

Table 13: Frequency Range per Sub-band for Critical-Like Filter Bank

Band	Number	Center Frequency (Hz)	Cut-Off Frequency (Hz)	Bandwidth (Hz)
			20	
	1	60	100	80
1	2	150	200	100
1	3	250	300	100
	4	350	400	100
2	5	450	510	110
	6	570	630	120
	7	700	770	140
3	8	840	920	150
J	9	1000	1080	160
	10	1170	1270	190
4	11	1370	1480	210
	12	1600	1720	240
5	13	1850	2000	280
	14	2150	2320	320
6	15	2500	2700	380
	16	2900	3150	450
7	17	3400	3700	550
7	18	4000	4400	700
	19	4800	5300	900
0	20	5800	6400	1100
8	21	7000	7700	1300

Table 14: Symmetric Filter Bank Frequency Bands

Band Number	Lower Passband Frequency (Hz)	Upper Passband Frequency (Hz)	Bandwidth (Hz)
1	20	500	480
2	500	1000	500
3	1000	2000	1000
4	2000	4000	2000
5	4000	6000	2000
6	6000	7000	1000
7	7000	7500	500
8	7500	8000	500

Figure 5: Matching Error for Symmetric Filter Bank

H Octave Filter Bank Specifications and Results

Table 15 illustrates the frequency bands used in the octave filter bank design. Within the audio range, there exists bands at 16Hz, 31.25Hz and 16kHz. However, the 16Hz and 31.25Hz sub-bands are ignored as this design is restricted to using 8 bands and, 16kHz violates the Nyquist sampling criteria.

Band	Center Frequency (Hz)	Lower Passband Frequency (Hz)	Upper Passband Frequency (Hz)
1	63	45	89
2	125	88	177
3	250	177	354
4	500	354	707
5	1000	707	1414
6	2000	1414	2828
7	4000	2828	5657
8	8000	5657	11314

Table 15: Octave Filter Bank Frequency Bands

Figure 8 illustrates the matching error of the octave filter bank across the full frequency spectrum.

I ANSI S1.11 Filter Bank Specifications and Results

Table 16 provides the filter specifications for the ANSI S1.11 filter bank. The lower (f_l) and upper (f_u) edge band frequencies are calculated as per equation 4.

$$f_l = (G^{-\frac{1}{2b}}) \times f_m$$

$$f_u = (G^{\frac{1}{2b}}) \times f_m$$
(4)

Figure 6: Matching Error for Critical-Like Filter Bank

Where $G=10^{3/10}$ is the octave ratio, b is the bandwidth designator and f_m is the center frequency of the band. Since class 2 is chosen, the attenuation can range from -0.5dB to +0.5dB. An iterative approach is taken to calculating the lower and upper stop band frequencies to achieve the most accurate frequency response.

Figure 7: Matching Error for Symmetric Filter Bank

Figure 8: Matching Error for Symmetric Filter Bank

Table 16: ANSI S1.11 Filter Bank Frequency Bands

Band Number	Lower Passband Frequency (Hz)	Midband Frequency (Hz)	Upper Passband Frequency (Hz)
14	22	25	28
15	28	31,5	35
16	36	40	45
17	45	50	56
18	56	63	71
19	71	80	90
20	89	100	112
21	111	125	140
22	143	160	180
23	178	200	224
24	223	250	281
25	281	315	353
26	357	400	449
27	446	500	561
28	561	630	707
29	713	800	898
30	891	1000	1122
31	1114	1250	1403
32	1426	1600	1795
33	1783	2000	2244
34	2228	2500	2805
35	2807	3150	3534
36	3565	4000	4488
37	4456	5000	5610
38	5615	6300	7069
39	7130	8000	8976