# Próbny Egzamin Maturalny Z Matematyki

Zestaw przygotowany przez serwis

WWW.ZADANIA.INFO

POZIOM PODSTAWOWY

4 MAJA 2019

CZAS PRACY: 170 MINUT

# Zadania zamknięte

### ZADANIE 1 (1 PKT)

Wyrażenie  $\frac{x-y}{\sqrt{x}-\sqrt{y}}$  jest równe A)  $\sqrt{x+y}$  B)  $\sqrt{x}+\sqrt{y}$ 

A) 
$$\sqrt{x+y}$$

B) 
$$\sqrt{x} + \sqrt{y}$$

C) 
$$\sqrt{x-y}$$

D) 
$$\sqrt{x} - \sqrt{y}$$

#### ROZWIAZANIE

# Sposób I

Mnożymy licznik i mianownik przez  $\sqrt{x} + \sqrt{y}$ .

$$\frac{x-y}{\sqrt{x}-\sqrt{y}} = \frac{(x-y)(\sqrt{x}+\sqrt{y})}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})} = \frac{(x-y)(\sqrt{x}+\sqrt{y})}{x-y} = \sqrt{x}+\sqrt{y}.$$

# Sposób II

Rozkładamy licznik ułamka korzystając ze wzoru na różnicę kwadratów.

$$\frac{(\sqrt{x})^2 - (\sqrt{y})^2}{\sqrt{x} - \sqrt{y}} = \frac{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}{\sqrt{x} - \sqrt{y}} = \sqrt{x} + \sqrt{y}.$$

# Odpowiedź: B

### ZADANIE 2 (1 PKT)

Liczba  $\log_3\left[\log_{64}(\log_{\sqrt{3}}9)\right]$  jest równa A)  $\frac{1}{2}$  B)  $-\frac{1}{2}$ 

A) 
$$\frac{1}{2}$$

B) 
$$-\frac{1}{2}$$

Liczymy

$$\begin{split} \log_{3}\left[\log_{64}(\log_{\sqrt{3}}9)\right] &= \log_{3}\left[\log_{64}\left(\log_{\sqrt{3}}\left(\sqrt{3}\right)^{4}\right)\right] = \\ &= \log_{3}\left[\log_{64}4\right] = \log_{3}\left[\log_{64}64^{\frac{1}{3}}\right] = \log_{3}\frac{1}{3} = \log_{3}3^{-1} = -1. \end{split}$$

Odpowiedź: **D** 

### ZADANIE 3 (1 PKT)

Liczbami spełniającymi równanie |3 + x| = 8 są

A) 11 i 5

B) 3 i 8

C) 
$$-11 i 5$$

D) -3 i 8

Rozwiązanie

# Sposób I

Sprawdzamy, które z podanych liczb spełniają dane równanie. Gdy to zrobimy okaże się, że te liczby to: -11 i 5.

# Sposób II

Przekształcamy dane równanie

$$|3 + x| = 8$$
  
 $3 + x = -8$  lub  $3 + x = 8$   
 $x = -11$  lub  $x = 5$ .

Odpowiedź: C



Podobają Ci się nasze rozwiązania? Pokaż je koleżankom i kolegom ze szkoły!

(G)

0

# ZADANIE 4 (1 PKT)

Badając pewien roztwór stwierdzono, że zawiera on 0,06 g chloru, co stanowi 0,04% masy roztworu. Jaka była masa roztworu?

A) 1,5 kg

B) 15 g

C) 150 g

D) 1,5 g

#### ROZWIĄZANIE

Jeżeli x jest masą roztworu, to mamy równanie

$$0.04\%x = 0.06$$

$$0,0004x = 0,06 \quad \Rightarrow \quad x = \frac{0,06}{0,0004} = \frac{6}{0,04} = 6 \cdot \frac{100}{4} = 150.$$

# Odpowiedź: C

### ZADANIE 5 (1 PKT)

Nierówność 2x - 5mx + 4 < 8 jest spełniona przez każdą liczbę rzeczywistą jeżeli

A) 
$$m=0$$

B) 
$$m = \frac{1}{2}$$

C) 
$$m = \frac{5}{2}$$

D) 
$$m = \frac{2}{5}$$

### Rozwiązanie

Zapiszmy nierówność w postaci

$$(2-5m)x < 4.$$

Wykresem lewej strony jest prosta i jeżeli ma ona w całości znajdować się poniżej prostej y = 4, to musi to być pozioma prosta, czyli musimy mieć  $m = \frac{2}{5}$ .

# Odpowiedź: D

#### ZADANIE 6 (1 PKT)

Rozwiązaniem równania  $\frac{2x-1}{3x+1} = \frac{5-2x}{2-3x}$  jest A)  $x = \frac{7}{6}$  B)  $x = -\frac{7}{6}$  C)  $x = \frac{1}{2}$ 

A) 
$$x = \frac{7}{6}$$

B) 
$$x = -\frac{7}{6}$$

C) 
$$x = \frac{1}{2}$$

D) 
$$x = -\frac{1}{2}$$

#### ROZWIĄZANIE

Oczywiście mianowniki muszą być niezerowe, czyli  $x \neq -\frac{1}{3}$  i  $x \neq \frac{2}{3}$ . Przekształcamy równanie

$$\frac{2x-1}{3x+1} = \frac{5-2x}{2-3x} / (3x+1)(2-3x)$$

$$(2x-1)(2-3x) = (5-2x)(3x+1)$$

$$4x-6x^2-2+3x = 15x+5-6x^2-2x$$

$$-7 = 6x / : 6$$

$$x = -\frac{7}{6}.$$

# Odpowiedź: B

# ZADANIE 7 (1 PKT)

Kwotę 1000 zł wpłacamy do banku na 3 lata. Kapitalizacja odsetek jest dokonywana w tym banku co kwartał, a roczna stopa procentowa wynosi 8%. Po trzech latach otrzymamy kwotę A)  $1000 \cdot (1,08)^{12}$ B)  $1000 \cdot (1,2)^3$ C)  $1000 \cdot (1,02)^{12}$ D)  $1000 \cdot (1.02)^3$ 

### ROZWIĄZANIE

Oprocentowanie roczne wynosi 8%, czyli kwartalne wynosi

$$\frac{8\%}{4} = 2\%.$$

Korzystamy ze wzoru na procent składany.

$$K_{12} = 1000 \cdot (1+0.02)^{12} = 1000 \cdot (1.02)^{12}.$$

# Odpowiedź: C

ZADANIE 8 (1 PKT) Liczba  $\frac{\sqrt[3]{54} - \sqrt[3]{16}}{\sqrt[6]{4}}$  jest równa

A) 2

B) 1

C)  $\sqrt[6]{54} - \sqrt[6]{16}$ 

D)  $\sqrt[3]{19}$ 

### Rozwiązanie

Liczymy

$$\frac{\sqrt[3]{54} - \sqrt[3]{16}}{\sqrt[6]{4}} = \frac{\sqrt[3]{54} - \sqrt[3]{16}}{\sqrt[3]{\sqrt{2^2}}} = \frac{\sqrt[3]{54} - \sqrt[3]{16}}{\sqrt[3]{2}} = \frac{\sqrt[3]{54}}{\sqrt[3]{2}} - \frac{\sqrt[3]{16}}{\sqrt[3]{2}} =$$
$$= \sqrt[3]{\frac{54}{2}} - \sqrt[3]{\frac{16}{2}} = \sqrt[3]{27} - \sqrt[3]{8} = 3 - 2 = 1.$$

# Odpowiedź: **B**

# ZADANIE 9 (1 PKT)

Na rysunku przedstawiony jest wykres funkcji f.



Maksymalnym zbiorem, w którym funkcja f przyjmuje tylko wartości ujemne, jest

A) (-2,2)

B) (-2,5)

C)  $(-2,2) \cup (4,5)$ 

D) (-4,0)

#### ROZWIAZANIE

Wykres funkcji znajduje się poniżej osi Ox na zbiorze:  $(-2,2) \cup (4,5)$ .

Odpowiedź: **C** 

# ZADANIE 10 (1 PKT)

Zbiorem wartości funkcji y = (x+2)(x-4) jest przedział

A) 
$$\langle -9, +\infty \rangle$$

B) 
$$\langle 4, +\infty \rangle$$
 C)  $\langle -2, 4 \rangle$ 

C) 
$$\langle -2,4 \rangle$$

D) 
$$\langle -2, +\infty \rangle$$

# Rozwiązanie

Wykresem podanej funkcji jest parabola o ramionach skierowanych w górę i miejscach zerowych -2 i 4. Wierzchołek tej paraboli znajduje się dokładnie w środku między pierwiastkami, czyli pierwsza współrzędna wierzchołka jest równa  $\frac{-2+4}{2}=1$ . Druga współrzędna wierzchołka jest równa

$$f(1) = (1+2)(1-4) = 3 \cdot (-3) = -9.$$

Zbiorem wartości tej funkcji jest więc przedział  $\langle -9, +\infty \rangle$ .



# Odpowiedź: **A**

#### ZADANIE 11 (1 PKT)

Poniżej zamieszczono fragment tabeli wartości funkcji liniowej

$$\begin{array}{c|cccc} x & 1 & 2 & 4 \\ f(x) & 4 & 1 \end{array}$$

W pustym miejscu w tabeli powinna znajdować się liczba:

A) 
$$-5$$

$$C) -2$$

Jeżeli f(x) = ax + b to wiemy, że

$$\begin{cases} 4 = a + b \\ 1 = 2a + b. \end{cases}$$

Odejmując od drugiego równania pierwsze mamy a=-3. Stąd b=4-a=7 i f(x)=-3x+7. Zatem

$$f(4) = -12 + 7 = -5.$$

# Odpowiedź: A

# ZADANIE 12 (1 PKT)

Wykres funkcji kwadratowej  $f(x)=x^2-6x+10$  powstaje z wykresu funkcji  $g(x)=x^2+1$  przez przesunięcie o 3 jednostki

A) w prawo

B) w lewo

C) w górę

D) w dół

### Rozwiązanie

Zapiszmy podaną funkcję w postaci kanonicznej

$$x^2 - 6x + 10 = (x - 3)^2 + 1.$$

Widać, że wykres ten powstaje z wykresu  $y = x^2 + 1$  przez przesunięcie o 3 jednostki w prawo (bo wierzchołek jest w punkcie (3,1)).



# Odpowiedź: A

# ZADANIE 13 (1 PKT)

Ciągiem geometrycznym jest ciąg określony wzorem

A) 
$$a_n = n^4 - 1$$

B) 
$$a_n = (-1)^n$$

C) 
$$a_n = \frac{1}{n}$$

D) 
$$a_n = 1 - 3n$$

### Rozwiązanie

Ciąg geometryczny to ciąg postaci  $a_n = a_1 q^{n-1}$ . Z podanych odpowiedzi tylko ciąg  $a_n =$  $-(-1)^{n-1}$  ma te postać (z  $a_1 = -1$  i q = -1).

Odpowiedź: **B** 

# ZADANIE 14 (1 PKT)

Ciąg  $(\log 36, \log 6, k)$  jest arytmetyczny. Wobec tego

A) 
$$k=0$$

B) 
$$k = 1$$

C) 
$$k = 6$$

D) 
$$k = 10$$

### Rozwiązanie

# Sposób I

Różnica danego ciągu jest równa

$$r = \log 6 - \log 36 = \log \frac{6}{36} = \log \frac{1}{6},$$

więc

$$k = \log 6 + r = \log 6 + \log \frac{1}{6} = \log \left(6 \cdot \frac{1}{6}\right) = \log 1 = 0.$$

# Sposób II

Jeżeli ciąg (a, b, c) jest arytmetyczny to

$$2b = a + c$$
.

W naszej sytuacji otrzymujemy

$$2\log 6 = \log 36 + k$$
$$\log 36 = \log 36 + k \implies k = 0.$$

# Odpowiedź: A

# ZADANIE 15 (1 PKT)

Kąt  $\alpha$  jest kątem ostrym oraz tg  $\alpha = \frac{1}{4}$ . Zatem

A) 
$$\cos \alpha = \frac{4}{\sqrt{17}}$$

B) 
$$\sin \alpha = \frac{4}{\sqrt{17}}$$

C) 
$$\sin \alpha = \frac{1}{17}$$

B) 
$$\sin \alpha = \frac{4}{\sqrt{17}}$$
 C)  $\sin \alpha = \frac{1}{17}$  D)  $\cos \alpha = \frac{1}{\sqrt{17}}$ 

# Sposób I

Z podanego tangensa wyliczymy sinus i cosinus.

$$\frac{\sin \alpha}{\cos \alpha} = \operatorname{tg} \alpha = \frac{1}{4} / ()^{2}$$

$$\frac{\sin^{2} \alpha}{\cos^{2} \alpha} = \frac{1}{16}$$

$$\frac{\sin^{2} \alpha}{1 - \sin^{2} \alpha} = \frac{1}{16}$$

$$16 \sin^{2} \alpha = 1 - \sin^{2} \alpha$$

$$17 \sin^{2} \alpha = 1$$

$$\sin^{2} \alpha = \frac{1}{17} \implies \sin \alpha = \frac{1}{\sqrt{17}}$$

$$\cos \alpha = \sqrt{1 - \sin^{2} \alpha} = \sqrt{1 - \frac{1}{17}} = \frac{4}{\sqrt{17}}.$$

# Sposób II

Narysujmy trójkąt prostokątny, w którym tg  $\alpha = \frac{1}{4}$ .



Łatwo teraz obliczyć sinus i cosinus. Najpierw obliczmy z twierdzenia Pitagorasa długość przeciwprostokątnej.

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{1 + 16} = \sqrt{17}.$$

Zatem

$$\sin \alpha = \frac{AB}{AC} = \frac{1}{\sqrt{17}}$$
$$\cos \alpha = \frac{BC}{AC} = \frac{4}{\sqrt{17}}.$$

Odpowiedź: A

#### ZADANIE 16 (1 PKT)

Punkty *A*, *B*, *C*, *D*, *E*, *F*, *G*, *H*, *I*, *J* dzielą okrąg o środku *S* na dziesięć równych łuków. Oblicz miarę kąta *SHE* zaznaczonego na rysunku.



A)  $54^{\circ}$ 

B) 72°

C)  $36^{\circ}$ 

D)  $45^{\circ}$ 

#### Rozwiązanie

Dorysujmy odcinek SE.



Zauważmy, że trójkąt HSE jest równoramienny i kąt HSE jest kątem środkowym opartym na łuku HE o długości równej  $\frac{3}{10}$  długości okręgu. Zatem

$$\angle HSE = \frac{3}{10} \cdot 360^{\circ} = 108^{\circ}$$

oraz

$$\angle SHE = \frac{180^{\circ} - \angle HSE}{2} = \frac{180^{\circ} - 108^{\circ}}{2} = 36^{\circ}.$$

# Odpowiedź: C

### ZADANIE 17 (1 PKT)

Dany jest trójkąt o wierzchołkach A=(4,-3), B=(4,1), C=(-6,-2). Długość środkowej poprowadzonej z wierzchołka C jest równa

A) 
$$\sqrt{101}$$

B) 
$$\sqrt{102}$$

D) 
$$\sqrt{10}$$

### Rozwiązanie

Zaczynamy od rysunku



Liczymy współrzędne środka odcinka AB

$$S = \left(\frac{4+4}{2}, \frac{-3+1}{2}\right) = (4, -1).$$

Obliczamy długość odcinka CS

$$|CS| = \sqrt{(4+6)^2 + (-1+2)^2} = \sqrt{101}.$$

# Odpowiedź: A

# Zadanie 18 (1 pkt)

Krótsza przekątna sześciokąta foremnego ma długość 8. Wówczas pole koła wpisanego w ten sześciokąt jest równe

A)  $4\pi$ 

B)  $8\pi$ 

C)  $16\pi$ 

D)  $64\pi$ 

### ROZWIAZANIE

Robimy szkicowy rysunek



Z rysunku widać, że długość krótszej przekątnej sześciokąta jest równa średnicy koła wpisanego w ten sześciokąt. Zatem pole tego koła jest równe

$$\pi \cdot 4^2 = 16\pi$$
.

Odpowiedź: C

### ZADANIE 19 (1 PKT)

Stosunek długości trzech krawędzi prostopadłościanu o objętości 240 jest równy 2:3:5. Pole powierzchni tego prostopadłościanu jest równe:

A) 124

B) 248

C) 496

D) 62

### Rozwiązanie

Powiedzmy, że krawędzie prostopadłościanu mają długości: 2a, 3a, 5a.



Z podanej objętości mamy

$$240 = 2a \cdot 3a \cdot 5a = 30a^3$$
 /: 30  
8 =  $a^3$   $\Rightarrow$   $a = 2$ .

Pole powierzchni prostopadłościanu jest więc równe

$$2(3a \cdot 2a + 3a \cdot 5a + 2a \cdot 5a) = 62a^2 = 248.$$

Odpowiedź: B

### ZADANIE 20 (1 PKT)

Z prostokąta ABCD o polu 30 wycięto trójkąt AOD (tak jak na rysunku). Pole zacieniowanej figury jest równe



A) 7,5

B) 15

C) 20

D) 25

### Rozwiązanie

Niech OE będzie wysokością wyciętego trójkąta opuszczoną z wierzchołka O.



Pole wyciętego trójkąta jest więc równe

$$P_{AOD} = \frac{1}{2} \cdot AD \cdot OE = \frac{1}{2} AD \cdot AB = \frac{1}{2} P_{ABCD} = 15.$$

Zatem zacieniowana część ma pole równe

$$30 - 15 = 15$$
.

### Odpowiedź: **B**

### ZADANIE 21 (1 PKT)

Objętość stożka o wysokości  $\sqrt{3}$  i kącie rozwarcia  $60^\circ$  jest równa

A)  $3\sqrt{3}\pi$ 

B)  $\sqrt{3}\pi$ 

C)  $\frac{\sqrt{3}}{6}\pi$ 

D)  $\frac{\sqrt{3}}{3}\pi$ 

#### Rozwiązanie

Szkicujemy obrazek.



Z obrazka widać, że mamy do czynienia ze stożkiem, którego przekrój osiowy jest trójkątem równobocznym o wysokości  $\sqrt{3}$ 

# Sposób I

Korzystając ze wzoru na wysokość w trójkącie równobocznym mamy

$$\frac{a\sqrt{3}}{2} = \sqrt{3} \quad \Rightarrow \quad a = 2.$$

Zatem objętość stożka jest równa

$$V = \frac{1}{3}\pi \left(\frac{a}{2}\right)^2 \cdot h = \frac{\sqrt{3}}{3}\pi.$$

# Sposób II

Obliczamy promień podstawy stożka

$$\frac{r}{h} = \text{tg } 30^{\circ}$$

$$\frac{r}{\sqrt{3}} = \frac{\sqrt{3}}{3} \quad \Rightarrow \quad r = 1.$$

Zatem objętość stożka jest równa

$$V = \frac{1}{3}\pi r^2 \cdot h = \frac{\sqrt{3}}{3}\pi.$$

Odpowiedź: **D** 

# ZADANIE 22 (1 PKT)

Mediana uporządkowanego niemalejąco zestawu liczb: 1, 2, 3, x, 5, 8 nie zmienia się po dopisaniu liczby 10. Wtedy

A) 
$$x = 2$$

B) 
$$x = 3$$

C) 
$$x = 4$$

D) 
$$x = 5$$

#### Rozwiązanie

Po dopisaniu liczby 10 medianę liczmy z 7 liczb, czyli jest ona równa x. Mamy zatem równanie

$$\frac{x+3}{2} = x$$

$$x + 3 = 2x$$

$$3 = x$$
.

Odpowiedź: **B** 

# ZADANIE 23 (1 PKT)

Liczba wszystkich krawędzi graniastosłupa jest o 12 większa od liczby wszystkich jego ścian bocznych. Stąd wynika, że podstawą tego graniastosłupa jest

A) czworokąt

B) pięciokąt

C) sześciokąt

D) dziesięciokąt

#### Rozwiązanie

Jeżeli w podstawie graniastosłupa jest n–kąt to graniastosłup ma 3n krawędzi i n ścian bocznych.



Mamy więc równanie

$$3n = n + 12$$

$$2n = 12$$

$$n = 6$$
.

Odpowiedź: **C** 

# ZADANIE 24 (1 PKT)

Każdy bok trójkąta prostokątnego o bokach 3, 4, 5 kolorujemy jednym z 6 kolorów tak, aby żadne dwa boki nie były pokolorowane tym samym kolorem. Ile jest takich pokolorowań? A) 15 B) 120 C) 216 D) 20

#### ROZWIĄZANIE

Pierwszy bok trójkąta możemy pokolorować na 6 sposobów, drugi na 5 (bo ma mieć inny kolor niż pierwszy), a trzeci na 4 sposoby. W sumie jest więc

$$6 \cdot 5 \cdot 4 = 120$$

sposobów.

Odpowiedź: **B** 

# ZADANIE 25 (1 PKT)

Ze zbioru dzielników naturalnych liczby 8 losujemy dwa razy po jednej liczbie (otrzymane liczby mogą się powtarzać). Prawdopodobieństwo, że iloczyn wybranych liczb jest dzielnikiem liczby 4 jest równe

A)  $\frac{1}{4}$ 

B)  $\frac{5}{16}$ 

C)  $\frac{3}{8}$ 

D)  $\frac{1}{8}$ 

Dzielniki liczby 8 to: 1,2,4,8. Jeżeli za zdarzenia elementarne przyjmiemy pary wylosowanych liczb, to

$$\Omega = 4 \cdot 4 = 16$$
.

Łatwo wypisać zdarzenia sprzyjające:

$$(1,1), (1,2), (2,1), (2,2), (1,4), (4,1).$$

Prawdopodobieństwo jest więc równe

$$\frac{6}{16} = \frac{3}{8}$$
.

# Odpowiedź: C

#### Zadania otwarte

### ZADANIE 26 (2 PKT)

Rozwiąż nierówność  $42t - 49t^2 \geqslant 9$ .

### Rozwiązanie

Przenosimy wszystkie składniki na prawą stronę.

$$0 \ge 49t^2 - 42t + 9$$

$$\Delta = 42^2 - 4 \cdot 9 \cdot 49 = 1764 - 1764 = 0$$

$$x_{1,2} = -\frac{b}{2a} = \frac{42}{2 \cdot 49} = \frac{3}{7}.$$

Ponieważ współczynnik przy  $t^2$  jest dodatni, wykres tego trójmianu jest parabolą o ramionach skierowanych w górę.



Otrzymujemy stąd rozwiązanie nierówności  $t = \frac{3}{7}$ .

Odpowiedź:  $t = \frac{3}{7}$ 

### ZADANIE 27 (2 PKT)

Wyznacz najmniejszą i największą wartość funkcji  $f(x) = -x^2 + 2x + 6$  w przedziale  $\langle -1, 2 \rangle$ .

#### Rozwiązanie

Widać, że wykres funkcji f jest parabolą zwróconą ramionami w dół czyli, największą wartość przyjmuje w wierzchołku.



Najpierw sprawdzamy czy pierwsza współrzędna wierzchołka należy do przedziału  $\langle -1,2\rangle$ 

$$x_w = \frac{-b}{2a} = \frac{-2}{-2} = 1.$$

Zatem wierzchołek należy do interesującego nas przedziału, więc największą wartością w tym przedziale jest

$$f_{max} = f(1) = -1 + 2 + 6 = 7.$$

Wartość najmniejszą otrzymamy w jednym z końców przedziału. W którym? – liczymy i sprawdzamy.

$$f(-1) = -1 - 2 + 6 = 3$$
  
 $f(2) = -4 + 4 + 6 = 6$ .

Odpowiedź: 
$$f_{max} = f(1) = 7$$
,  $f_{min} = f(-1) = 3$ 

### ZADANIE 28 (2 PKT)

Udowodnij, że jeżeli liczby a, b, c są kolejnymi wyrazami ciągu geometrycznego, to

$$(a-b+c)(a+b+c) = a^2 + b^2 + c^2.$$

#### ROZWIAZANIE

# Sposób I

Przekształcamy lewą stronę równości, którą mamy udowodnić (korzystamy ze wzoru na różnicę kwadratów).

$$L = (a - b + c)(a + b + c) = ((a + c) - b)((a + c) + b) = (a + c)^{2} - b^{2} =$$

$$= a^{2} + 2ac + c^{2} - b^{2}.$$

Wiemy ponadto, liczby a,b,c są kolejnymi wyrazami ciągu geometrycznego, więc  $b^2=ac$ . Mamy zatem

 $L = a^2 + 2ac + c^2 - b^2 = a^2 + 2b^2 + c^2 - b^2 = P.$ 

# Sposób II

Skoro liczby a,b,c są kolejnymi wyrazami ciągu geometrycznego, to b=aq i  $c=aq^2$  dla pewnego q. Równość, którą mamy udowodnić przyjmuje więc postać.

$$(a - aq + aq^2)(a + aq + aq^2) = a^2 + a^2q^2 + a^2q^4 \quad / : a^2$$
$$(1 - q + q^2)(1 + q + q^2) = 1 + q^2 + q^4.$$

Aby udowodnić tę równość przekształcamy lewą stronę (korzystamy ze wzoru na różnicę kwadratów).

$$L = (1 - q + q^2)(1 + q + q^2) = ((1 + q^2) - q)((1 + q^2) + q) =$$

$$= (1 + q^2)^2 - q^2 = 1 + 2q^2 + q^4 - q^2 = 1 + q^2 + q^4 = P.$$

#### ZADANIE 29 (2 PKT)

Trójkąty ABC i CDE są równoramienne i prostokątne. Punkty A, C i E leżą na jednej prostej, a punkty K, L i M są środkami odcinków AC, CE i BD (zobacz rysunek). Wykaż, że |MK| = |ML|.



Dorysujmy odcinki MK i ML.



Sposób I

Zauważmy, że odcinki AB i CD są do siebie równoległe. Odcinek KM łączy środki ramion w trapezie ACDB, więc jest równoległy do podstaw AB i CD. Zatem  $\angle MKL = \angle BAC = 45^{\circ}$ .

Podobnie, patrząc na odcinki BC i DE, uzasadniamy, że odcinek ML jest równoległy do BC i DE. Zatem  $\angle MLK = \angle DEC = \beta = 45^{\circ}$ . To oznacza, że trójkąt KLM jest równoramiennym trójkątem prostokątnym. W szczególności MK = ML.

# Sposób II

Tak jak poprzednio zauważamy, że odcinki *MK* i *ML* łączą środki ramion w trapezach *ACDB* i *CEDB*. Ponieważ odcinek łączący środki ramion trapezu ma długość równą średniej arytmetycznej długości podstaw, mamy

$$MK = \frac{AB + CD}{2} = \frac{CB + ED}{2} = ML.$$

#### ZADANIE 30 (2 PKT)

Kąt *α* jest ostry i  $\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} = \frac{1}{3}$ . Oblicz tg *α*.

#### ROZWIĄZANIE

# Sposób I

Ponieważ mamy obliczyć tangens, podzielmy licznik i mianownik danego ułamka przez  $\cos \alpha$ .

$$\frac{1}{3} = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} = \frac{\frac{\sin \alpha}{\cos \alpha} - \frac{\cos \alpha}{\cos \alpha}}{\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\cos \alpha}} = \frac{\lg \alpha - 1}{\lg \alpha + 1}.$$

$$tg \alpha + 1 = 3 tg \alpha - 3$$

$$4 = 2 tg \alpha \implies tg \alpha = 2.$$

# Sposób II

Przekształcamy daną równość tak, aby otrzymać tg  $\alpha$ .

$$\frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} = \frac{1}{3}$$

$$3\sin \alpha - 3\cos \alpha = \sin \alpha + \cos \alpha$$

$$2\sin \alpha = 4\cos \alpha / : 2\cos \alpha$$

$$\frac{\sin \alpha}{\cos \alpha} = 2$$

$$tg \alpha = 2.$$

Odpowiedź:  $tg \alpha = 2$ 

#### ZADANIE 31 (2 PKT)

W 8 pudełkach umieszczamy 5 ponumerowanych kulek tak, aby w żadnym pudełku nie było więcej niż jednej kulki. Na ile sposobów możemy to zrobić?

#### Rozwiązanie

Każdej kulce musimy przyporządkować unikalny numer pudełka. Można to zrobić na

$$8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 = 6720$$

sposobów (pierwsza trafia do dowolnego z pudełek, druga nie może znaleźć się w tym co pierwsza, trzecia musi być w innym niż dwie pierwsze itd.).

Odpowiedź: 6720

# ZADANIE 32 (4 PKT)

Objętość ostrosłupa prawidłowego trójkątnego *ABCS* (tak jak na rysunku) jest równa 243, a promień okręgu wpisanego w podstawę *ABC* tego ostrosłupa jest równy 3. Oblicz tangens kąta między wysokością tego ostrosłupa, a jego krawędzią boczną.



Dorysujmy wysokość ściany bocznej.



Promień r okręgu wpisanego w podstawę to  $\frac{1}{3}$  wysokości trójkąta w podstawie, więc jeżeli przez a oznaczymy długość krawędzi podstawy to mamy równanie

$$r = \frac{1}{3} \cdot \frac{a\sqrt{3}}{2} = 3$$
  
 $\frac{a\sqrt{3}}{6} = 3 \implies a = \frac{18}{\sqrt{3}} = \frac{18\sqrt{3}}{3} = 6\sqrt{3}.$ 

Możemy teraz wykorzystać informację o objętości ostrosłupa do obliczenia długości jego wysokości

$$243 = \frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot H = \frac{1}{3} \cdot \frac{108 \sqrt{3}}{4} \cdot H = 9\sqrt{3}H$$
$$H = \frac{243}{9\sqrt{3}} = \frac{27}{\sqrt{3}} = 9\sqrt{3}.$$

Pozostało teraz obliczyć żądany tangens.

$$\operatorname{tg} \alpha = \frac{AE}{SE} = \frac{2r}{H} = \frac{6}{9\sqrt{3}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}.$$

Odpowiedź:  $\frac{2\sqrt{3}}{9}$ 

#### ZADANIE 33 (4 PKT)

Liczby (4, x, y) są kolejnymi wyrazami ciągu arytmetycznego. Jeśli liczbę x zwiększymy o 1, a liczbę y zwiększymy o 3, to otrzymane liczby będą kolejnymi wyrazami ciągu geometrycznego. Wyznacz x i y.

# Sposób I

Wiemy, że liczby (4, x, y) są kolejnymi wyrazami ciągu arytmetycznego, więc x = 4 + r i y = 4 + 2r dla pewnego r. Wiemy ponadto, że ciąg (4, x + 1, y + 3) jest ciągiem geometrycznym, wiec

$$(x+1)^{2} = 4(y+3)$$

$$(4+r+1)^{2} = 4(4+2r+3)$$

$$(5+r)^{2} = 4(2r+7)$$

$$r^{2} + 10r + 25 = 8r + 28$$

$$r^{2} + 2r - 3 = 0$$

$$\Delta = 4 + 12 = 16 = 4^{2}$$

$$r = \frac{-2-4}{2} = -3 \quad \forall \quad r = \frac{-2+4}{2} = 1.$$

Otrzymujemy stąd dwa ciągi: (4, 1, -2) i (4, 5, 6).

# Sposób II

Wiemy, że ciąg (4, x, y) jest arytmetyczny, więc

$$2x = 4 + y \quad \Rightarrow \quad y = 2x - 4.$$

Wiemy ponadto, że ciąg (4, x + 1, y + 3) jest geometryczny, więc

$$(x+1)^{2} = 4(y+3)$$

$$(x+1)^{2} = 4(2x-4+3)$$

$$x^{2} + 2x + 1 = 8x - 4$$

$$x^{2} - 6x + 5 = 0$$

$$\Delta = 36 - 20 = 4^{2}$$

$$x = \frac{6-4}{2} = 1 \quad \forall \quad x = \frac{6+4}{2} = 5.$$

Mamy wtedy odpowiednio y = 2x - 4 = -2 i y = 2x - 4 = 6.

Odpowiedź: 
$$(x,y) = (1,-2)$$
 **lub**  $(x,y) = (5,6)$ 

### ZADANIE 34 (5 PKT)

Punkty A = (-1, -5), B = (5, 1), C = (1, 3), D = (-2, 0) są kolejnymi wierzchołkami trapezu ABCD. Oblicz pole tego trapezu.

#### ROZWIAZANIE

Rozpoczynamy oczywiście od szkicowego rysunku.



Aby obliczyć pole trapezu musimy znać długości jego podstaw oraz długość wysokości. Długości podstaw łatwo obliczyć.

$$AB = \sqrt{(5+1)^2 + (1+5)^2} = \sqrt{36+36} = 6\sqrt{2}$$

$$CD = \sqrt{(-2-1)^2 + (0-3)^2} = \sqrt{9+9} = 3\sqrt{2}.$$

Napiszmy teraz równanie prostej AB. Szukamy prostej w postaci y = ax + b. Podstawiamy współrzędne punktów A i B.

$$\begin{cases} -5 = -a + b \\ 1 = 5a + b. \end{cases}$$

Odejmujemy od drugiego równania pierwsze i mamy 6a = 6, czyli a = 1. Stąd b = -5 + a = -4 i prosta AB ma równanie: y = x - 4.

Dalszą część rozwiązania poprowadzimy na dwa sposoby.

# Sposób I

Wysokość trapezu możemy łatwo obliczyć ze wzoru na odległość punktu  $P=(x_0,y_0)$  od prostej Ax+By+C=0:

$$\frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$
.

W naszej sytuacji mamy P=D=(-2,0), a prosta to: x-y-4=0. Mamy zatem

$$h = \frac{|-2-4|}{\sqrt{1+1}} = \frac{6}{\sqrt{2}}.$$

Pole trapezu jest więc równe

$$P = \frac{AB + CD}{2} \cdot h = \frac{6\sqrt{2} + 3\sqrt{2}}{2} \cdot \frac{6}{\sqrt{2}} = 27.$$

# Sposób II

Jeżeli ktoś nie chce korzystać ze wzoru na odległość punktu od prostej, to wysokość trapezu możemy wyznaczyć bardziej wprost, wyznaczając równanie wysokości DE opuszczonej z wierzchołka D na bok AB.

Prosta DE jest prostopadła do prostej AB, więc ma równanie postaci y=-x+b. Współczynnik b wyznaczamy podstawiając współrzędne punktu D.

$$0 = 2 + b \implies b = -2$$
.

Szukamy teraz punku wspólnego prostych AB i DE.

$$\begin{cases} y = x - 4 \\ y = -x - 2. \end{cases}$$

Odejmujac od pierwszego równania drugie (żeby skrócić y), mamy 0=2x-2, czyli x=1 i y=x-4=-3. Zatem E=(1,-3) i

$$h = DE = \sqrt{(1+2)^2 + (-3-0)^2} = \sqrt{9+9} = 3\sqrt{2}.$$

Pole trapezu jest równe

$$P = \frac{AB + CD}{2} \cdot h = \frac{6\sqrt{2} + 3\sqrt{2}}{2} \cdot 3\sqrt{2} = 27.$$

Odpowiedź: 27