

SPM@TESTES

Teste de Matemática

2021

11.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos.

(cinco páginas)

VERSÃO 1

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Não é permitido o uso de máquina de calcular.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

 Na Figura 1 está representada, num referencial o.n. x0y, a circunferência trigonométrica.

Sabe-se que:

- o ponto *D* tem coordenadas (1, 0);
- o ponto *A* pertence à circunferência;
- o ponto B pertence à circunferência e é tal que o segmento de reta [AB] é paralelo ao eixo Oy;

Figura 1

- o ponto C tem coordenadas (-2,0);
- α é a amplitude, em radianos, do ângulo DOB, com $\alpha \in \left]\frac{\pi}{2}$, $\pi\right[$.

O perímetro do triângulo [ABC] é dado, em função de α , por:

(A)
$$2 \sin \alpha + 2 \sqrt{5 + 4 \cos \alpha}$$

(B)
$$-2 \operatorname{sen} \alpha + 2 \sqrt{5 + 4 \cos \alpha}$$

(C)
$$2 \sin \alpha + 2\sqrt{5 - 4 \cos \alpha}$$

(D)
$$-2 \operatorname{sen} \alpha + 2\sqrt{5 - 4 \cos \alpha}$$

- **2.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 1 2\cos\left(\frac{x}{2}\right)$
 - **2.1.** Seja $\alpha \in \left] -\frac{\pi}{2}$, $0 \right[\text{ tal que } f(2\alpha + \pi) = 1 \sqrt{2}$. Determine o valor de $f(4\alpha)$.
 - **2.2.** Na Figura 2 está representada parte do gráfico da função f bem como o triângulo [ABC].

Sabe-se que:

- A e B são pontos de interseção do gráfico de f com o eixo das abcissas;
- a ordenada do ponto $\mathcal C$ é igual ao máximo de f.

Determine o valor da área do triângulo [ABC].

3. Na Figura 3 está representada, num referencial o.n. xOy, uma reta r que interseta os eixos coordenados Oy e Ox nos pontos A e B, respetivamente.

A reta r é paralela à reta definida pela equação vetorial

4. Considere, num referencial o.n. Oxyz, os planos:

$$\alpha: 2x - 2y + z - 1 = 0$$
 e $\beta: x + 4ky - (k^2 + 2)z = 0$, com $k \in \mathbb{R} \setminus \{0\}$

- **4.1.** Para um certo valor de k, os planos α e β são perpendiculares. Determine esse valor de k.
- **4.2.** Considere a reta r que passa pelo ponto (1, 1, 1) e tem a direção do vetor \vec{r} (-1, -1, 0). Qual das seguintes afirmações é verdadeira?
 - (A) A reta r é perpendicular ao plano α .
 - **(B)** A reta r é concorrente com o plano α , mas não é perpendicular ao plano α .
 - (C) A reta r é estritamente paralela ao plano α .
 - **(D)** A reta r está contida no plano α .
- **4.3.** Determine uma equação da superfície esférica de centro C(3, -1, 2) que é tangente ao plano α .
- **5.** De dois vetores \vec{u} e \vec{v} , sabe-se que:

•
$$\|\vec{u}\| = 3$$

•
$$\|\vec{v}\| = 5$$

$$\bullet \quad \|\vec{u} + \vec{v}\| = 6$$

Qual é o valor de $\vec{u} \cdot \vec{v}$?

(A)
$$\sqrt{2}$$

(B)
$$\frac{\sqrt{2}}{2}$$

- **6.** Acerca de uma sucessão (u_n) , sabe-se que:
 - $u_{n+1}-u_n=-\frac{2}{(n+2)(2n+3)}$, para todo $n\in\mathbb{N}$ $\lim u_n=\lim\ v_n \quad e \quad v_n=\frac{1-4n}{2n+3}$

Qual das seguintes afirmações é verdadeira?

- (A) (u_n) não é monótona nem limitada.
- **(B)** (u_n) é monótona crescente e é limitada.
- (C) (u_n) é monótona decrescente e $u_1 > -2$.
- **(D)** (u_n) é monótona decrescente e não é minorada.
- **7.** A sucessão (a_n) é uma progressão aritmética tal que $a_{10} = -25$ e $a_4 = -7$. Determine a soma dos primeiros 20 termos da sucessão.
- **8.** Dado um certo valor natural de p, a sucessão (w_n) , de termos não nulos, verifica:

$$\bullet \quad \frac{w_{n+1}}{w_n} = \frac{(-1)^p}{2}$$

•
$$w_2 = -16$$

Qual das seguintes afirmações é verdadeira?

- (A) Se p=1 a sucessão (w_n) é uma progressão geométrica decrescente.
- **(B)** Se p=2 a sucessão (w_n) é uma progressão geométrica de termos negativos e -16 é um dos minorantes do conjunto dos termos da sucessão.
- (C) Se p=3 a sucessão (w_n) é uma progressão geométrica de razão $-\frac{1}{2}$ e $w_n=(-2)^{6-n}$.
- **(D)** Se p=2 a sucessão (w_n) é uma progressão geométrica de razão $\frac{1}{2}$ e $w_n=-2^{6-n}$.
- **9.** Fixado um número real k, a expressão seguinte define, no respetivo domínio, uma função racional f.

$$f(x) = \frac{kx+1}{2x+3}$$

- Sabe-se que o gráfico da função f admite duas assíntotas que se intersetam num ponto. Designe esse ponto por P. Determine para que valor negativo de k, a distância de P à origem O é igual a $\frac{5}{2}$
- Considere k=1 nas próximas questões. 9.2.
 - **9.2.1.** Resolva a inequação $f(x) \leq \frac{3}{5}$

Apresente o conjunto solução na forma de intervalo ou de reunião de intervalos.

9.2.2. Determine o valor de $\lim_{x \to -1^+} \left(f(x) \times \frac{4x+6}{x^3-3x-2} \right)$

10. No referencial cartesiano da Figura 4 estão representados parte do gráfico de uma função g e a reta t tangente ao gráfico de g no ponto A(1,1). Sabe-se ainda que a reta t interseta o eixo Ox no ponto B de abcissa $-\frac{1}{2}$.

(B)
$$-\frac{1}{2}$$

(C)
$$\frac{1}{2}$$

Figura 4

FIM

QUESTÃO	1.	2.1	2.2	3	4.1	4.2	4.3	5.	6.	7.	8.	9.1	9.2.1	9.2.2	10.	TOTAL
COTAÇÃO	8	18	20	16	12	8	20	8	8	18	8	16	16	16	8	200

SPM@TESTES

Teste de Matemática

2021

11.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos.

(cinco páginas)

VERSÃO 2

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Não é permitido o uso de máquina de calcular.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

 Na Figura 1 está representada, num referencial o.n. xOy, a circunferência trigonométrica.

Sabe-se que:

- o ponto *D* tem coordenadas (1, 0);
- o ponto *A* pertence à circunferência;
- o ponto B pertence à circunferência e é tal que o segmento de reta [AB] é paralelo ao eixo Oy;

y
ightharpoonup

- o ponto C tem coordenadas (-2,0);
- α é a amplitude, em radianos, do ângulo DOB, com $\alpha \in \left]\frac{\pi}{2}$, $\pi\right[$.

O perímetro do triângulo [ABC] é dado, em função de α , por:

(A)
$$2 \sin \alpha + 2 \sqrt{5 - 4 \cos \alpha}$$

(B)
$$-2 \sin \alpha + 2 \sqrt{5 - 4 \cos \alpha}$$

(C)
$$2 \operatorname{sen} \alpha + 2 \sqrt{5 + 4 \cos \alpha}$$

(D)
$$-2 \operatorname{sen} \alpha + 2 \sqrt{5 + 4 \cos \alpha}$$

- **2.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 1 2\cos\left(\frac{x}{2}\right)$
 - **2.1.** Seja $\alpha \in \left] -\frac{\pi}{2}, 0\right[$ tal que $f(2\alpha + \pi) = 1 \sqrt{2}$. Determine o valor de $f(4\alpha)$.
 - **2.2.** Na Figura 2 está representada parte do gráfico da função f bem como o triângulo [ABC].

Sabe-se que:

- A e B são pontos de interseção do gráfico de f com o eixo das abcissas;
- a ordenada do ponto $\mathcal C$ é igual ao máximo de f.

Determine o valor da área do triângulo [ABC].

3. Na Figura 3 está representada, num referencial o.n. xOy, uma reta r que interseta os eixos coordenados Oy e Ox nos pontos A e B, respetivamente.

A reta r é paralela à reta definida pela equação vetorial

4. Considere, num referencial o.n. Oxyz, os planos:

$$\alpha: 2x - 2y + z - 1 = 0$$
 e $\beta: x + 4ky - (k^2 + 2)z = 0$, com $k \in \mathbb{R} \setminus \{0\}$

- **4.1.** Para um certo valor de k, os planos α e β são perpendiculares. Determine esse valor de k.
- **4.2.** Considere a reta r que passa pelo ponto (1,1,1) e tem a direção do vetor \vec{r} (-1,-1,0). Qual das seguintes afirmações é verdadeira?
 - (A) A reta r é estritamente paralela ao plano α .
 - **(B)** A reta r está contida no plano α .
 - (C) A reta r é perpendicular ao plano α .
 - **(D)** A reta r é concorrente com o plano α , mas não é perpendicular ao plano α .
- **4.3.** Determine uma equação da superfície esférica de centro $\mathcal{C}(3,-1,2)$ que é tangente ao plano α .
- **5.** De dois vetores \vec{u} e \vec{v} , sabe-se que:
 - $\|\vec{u}\| = 3$
 - $\|\vec{v}\| = 5$
 - $\|\vec{u} + \vec{v}\| = 6$

Qual é o valor de $\vec{u} \cdot \vec{v}$?

(B)
$$\sqrt{2}$$

(C)
$$\frac{\sqrt{2}}{2}$$

- **6.** Acerca de uma sucessão (u_n) , sabe-se que:
 - $ullet u_{n+1} u_n = -rac{2}{(n+2)(2n+3)}$, para todo $n \in \mathbb{N}$
 - $\lim u_n = \lim v_n$ $e v_n = \frac{1-4n}{2n+3}$

Qual das seguintes afirmações é verdadeira?

- (A) (u_n) não é monótona nem limitada.
- **(B)** (u_n) é monótona decrescente e $u_1 > -2$.
- (C) (u_n) é monótona decrescente e não é minorada.
- **(D)** (u_n) é monótona crescente e é limitada.
- **7.** A sucessão (a_n) é uma progressão aritmética tal que $a_{10} = -25$ e $a_4 = -7$. Determine a soma dos primeiros 20 termos da sucessão.
- **8.** Dado um certo valor natural de p, a sucessão (w_n) , de termos não nulos, verifica:

$$\bullet \quad \frac{w_{n+1}}{w_n} = \frac{(-1)^p}{2}$$

• $w_2 = -16$

Qual das seguintes afirmações é verdadeira?

- (A) Se p=1 a sucessão (w_n) é uma progressão geométrica decrescente.
- **(B)** Se p=2 a sucessão (w_n) é uma progressão geométrica de razão $\frac{1}{2}$ e $w_n=-2^{6-n}$.
- (C) Se p=2 a sucessão (w_n) é uma progressão geométrica de termos negativos e -16 é um dos minorantes do conjunto dos termos da sucessão.
- **(D)** Se p=3 a sucessão (w_n) é uma progressão geométrica de razão $-\frac{1}{2}$ e $w_n=(-2)^{6-n}$.
- **9.** Fixado um número real k, a expressão seguinte define, no respetivo domínio, uma função racional f.

$$f(x) = \frac{kx+1}{2x+3}$$

- **9.1.** Sabe-se que o gráfico da função f admite duas assíntotas que se intersetam num ponto. Designe esse ponto por P. Determine para que valor negativo de k, a distância de P à origem O é igual a $\frac{5}{2}$
- **9.2.** Considere k = 1 nas próximas questões.
 - **9.2.1.** Resolva a inequação $f(x) \le \frac{3}{5}$

Apresente o conjunto solução na forma de intervalo ou de reunião de intervalos.

9.2.2. Determine o valor de $\lim_{x \to -1^+} \left(f(x) \times \frac{4x+6}{x^3-3x-2} \right)$

10. No referencial cartesiano da Figura 4 estão representados parte do gráfico de uma função g e a reta t tangente ao gráfico de g no ponto A(1,1). Sabe-se ainda que a reta t interseta o eixo Ox no ponto B de abcissa $-\frac{1}{2}$.

Qual o valor de $\lim_{x\to 1} \frac{g(x)-1}{2-2x}$?

(B)
$$\frac{2}{3}$$

(C)
$$-\frac{1}{2}$$

Figura 4

FIM

COTAÇÕES

QUESTÃO	1.	2.1	2.2	3	4.1	4.2	4.3	5.	6.	7.	8.	9.1	9.2.1	9.2.2	10.	TOTAL
COTAÇÃO	8	18	20	16	12	8	20	8	8	18	8	16	16	16	8	200