3그룹 연구목표 소개

배경민

2024년 1월 30일

POSTECH 컴퓨터공학과

그룹3 연구목표: 소프트웨어재난 재발방지

그룹3 연구내용 개요

시스템 및 재난특성정보

제로베이스 모델합성

• 플랫폼 모델생성 • 재난중심 모델생성 • 모델정제

재난오류 데이터베이스

- 오류 일반화 • 오류 데이터베이스화
- 오류스펙 생성

순위기반 오류식별

시스템 레벨 재난 요구사항

• 컨트랙트 재사용

- 모듈 컨트랙트 추론모듈 재난원인 추론
 - 자동스펙 생성

모듈별 재난 요구사항

- 패턴기반 요약

• 패턴기반 오류탐색

• 오류 패턴 학습

유사 오류 방지 테스트/패치

연구실 별 연구주제 및 인터페이스

- 모델합성 ⇔ 모델검증
- 합성 알고리즘 ⇔ 모델합성, 모델검증
- 오류 데이터베이스 ⇔ 모델검증, 모델합성

POSTECH 모델검증 연구 소개

배경민

2024년 1월 30일

POSTECH 컴퓨터공학과

모델검증 (Model Checking)

- 시스템의 오류를 자동으로 찾는 기술
 - 소프트웨어/하드웨어 디자인, 프로토콜 디자인, 소스 코드, ···
 - 다양한 모델검증 도구 존재
- 특징
 - 시스템의 모든 가능한 상태를 확인하여 "오류 없음" 증명 가능
 - 자동적으로 복잡한 성질을 검증 가능

접근방법: 논리 기반 모델검증

- 모델검증 기법 적용의 장애물
 - Algorithmic challenge: 상태 폭발 문제 (state space explosion)
 - Modeling challenge: 다양한 소프트웨어 시스템의 정형명세
- 논리 기반 모델검증

Model		Logic System		Verification
시스템 명세		수학적 모델		
M	\Longrightarrow	\mathcal{R}_{M}		모델검증
성질 명세		논리식	\Longrightarrow	알고리즘
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	\Longrightarrow	$arphi_{spec}$		

논리 기반 모델검증 도구 예제

- Boolean logic
 - CBMC, NuSMV, …
- Satisfiability modulo theories (SMT)
 - nuXmv, MCMT, …
- Rewriting logic
 - Maude, KEVM, RV-Predict, CafeOBJ, …
- Temporal logic of actions
 - TLA+
-

POSTECH 모델검증 연구

- Algorithmic challenge
 - 논리 시스템의 알고리즘 및 최적화 기법 연구: Rewriting logic 및 SMT
 - STAAR: 패턴 기반 모델검증 알고리즘
- Modeling challenge
 - 대상 성질/오류 및 시스템에 최적화된 모델링 및 정형명세 기술 연구
 - STAAR: 모델검증 인터페이스 개발 및 모델검증 응용

패턴을 활용한 모델검증

- 목적: 모델검증 시 패턴에 기반한 상태공간 탐색
 - 오류 패턴 등을 활용하여 (알려진) 오류를 효율적으로 탐색
 - 오류와 관계가 적은 상태공간을 효과적으로 요약
- 필요 기술
 - 패턴의 정의 및 패턴 기반 실행 방법
 - 패턴 공간의 탐색 및 요약
- 연구 방법
 - Rewriting logic: 높은 표현력을 가진 명세 언어로 다양한 모델링 언어의 의미 정의 가능
 - Rewriting logic으로 명세된 시스템의 패턴 기반 모델검증 연구

Rewriting Logic Specification

State

term t (algebraic data type)

Transition

rewrite rule $t \longrightarrow t'$ if ψ (patterns t and t', and condition ψ)

- Example
 - By rule $f(N) \longrightarrow f(N+1)$ if N < 10, term f(5) is rewritten to f(5+1)

Example: Lamport's Bakery Algorithm

- Each process receives a ticket number to enter the critical section.
- Process with the smallest ticket number enters the critical section.

Example: Lamport's Bakery Algorithm

Each state with N processes:

$$n ; m ; [i_1, d_1] \dots [i_N, d_N]$$

- n: the current number in the bakery's number dispenser
- m: the number currently served
- $[i_l, d_l]$: process with id d_l in status $d_l \in \{idle, wait(ticket), crit(ticket)\}$
- Rewrite rules (in the Maude syntax)

```
rl [wake]: N ; M ; [K, idle] PS => N + 1 ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; M + 1 ; [K, idle] PS .
```

Variables: N, M, K for numbers, and PS for process sets

Example: Lamport's Bakery Algorithm

Rewrite sequences with one process

Symbolic Representation Using Logical Terms

Symbolic state

```
t\parallel \phi a pattern t with variables constrained by a formula \phi expresses a set of (potentially infinitely many) concrete states
```

- Example
 - N; M; PS \parallel N \geq M
 - $\bullet \ 0 \ ; \ 0 \ ; \ [0, \mathit{idle}], \quad \ 1 \ ; \ 1 \ ; \ [0, \mathit{idle}] \ [1, \mathit{idle}], \quad \ \ 3 \ ; \ 2 \ ; \ [0, \mathit{idle}] \ [2, \mathit{wait}(0)], \quad \cdots$

Computing Symbolic State Space

- Symbolic transition →
 - $t \parallel \phi \leadsto t' \parallel \phi'$ if an instance of $t \parallel \phi$ can be rewritten to t' by some rewrite rule
 - a.k.a. constrained narrowing
- Example: constrained narrowing sequences with one process

Research Topics

- 우선순위 기반 패턴 탐색
 - Heuristic search for rewriting and (constrained) narrowing
 - Learning heuristics from previous model checking attempts
- 패턴 기반 상태 공간 축소
 - State-space reduction using patterns
 - Learning patterns from previous mode checking attempts
- 패턴 기반 정형명세
 - Formal specification using constrained patterns
 - Programming languages, system APIs, …

POSTECH 모델검증 연구

 모델검증 탐색전략 학습(포스터) ■ Maude-SE 도구 개발 및 벤치마크(포스터) 	(손병호) (류근열,장혁순)
 모델검증 인터페이스: 프로그래밍 언어의 의미구조 정형명세 PLC 언어의 모델검증(포스터) PROMELA 언어 및 AADL 언어의 모델검증 	(이재서) (손병호/이재훈)
 모델검증 응용: 모델검증 사례연구 및 도구 개발 TEE API의 정형명세 및 모델검증(포스터) TLS의 정형명세 및 모델 기반 테스팅(포스터) 	(류근열,채승현) (이재훈)
■ 사이버물리시스템 및 심층신경망 모델검증	

■ 모델건증 악고리증 (패턴을 활용하) 모델건증 악고리증 연구

■ Signal Temporal Logic 모델검증 연구(포스터)
 ■ 심층신경망 모델 검증 연구(포스터/포스터)

(이지아,류근열)

(연주은/채승현)

Thank you!