

第1章 数据库基础知识

主要内容:

- 1.1 数据库系统概述
- 1.2 数据模型
- 1.3 数据库系统结构
- 1.4 数据库系统组成

第1章 数据库基础知识

1.1 数据库系统概述

- 1.1.1 数据库的4个基本概念
- 1.1.2 数据管理技术的产生和发展
- 1.1.3 数据库系统的特点

1.1 数据库系统概述

1.1.1 数据库系统的4个基本概念

1. 数据(Data)

- ●数据库中存储的基本对象,以某种形式存储
- ●数据的种类
- ●数据类型、数据的语义
- 仓库中的物品与数据库中的数据

1.1 数据库系统概述

2. 数据库(Database)

- 定义:长期存储在计算机中、有组织、可共享的大量数据的集合
- 理解: 永久存储、数据模型、并发控制等
- 仓库管理中的库房

1.1 数据库系统概述

3. 数据库管理系统(DBMS)

- 用户与操作系统之间的一组数据管理软件
- 对用户的数据访问进行统一的管理和控制
- 仓库管理中的仓库管理员
- DBMS的主要功能:

数据定义、数据操纵、数据库的管理和控制等功能

1.1 数据库系统概述

4. 数据库系统(DBS)

- ●数据库系统可以理解为引入数据库技术后的计算机系统
- ●组成:数据库、数据库管理系统、应用程序、用户
- 仓库管理中的库房、仓库管理员、**服务部门**(生产、销售、采

第1章 数据库基础知识

1.1.2 数据管理技术的产生及其发展

- ◆数据处理是将数据转换成信息,包括:数据的收集、<mark>管理</mark>、加工利 用、信息输出
- ◆ 数据管理是数据处理的中心问题,包括对数据的分类、组织、编码 、存储、检索和维护。
- ◆数据库技术是应数据管理任务的需要而产生。
- ◆ 数据管理技术随着计算机技术的发展而发展。

1.1.2 数据管理技术的产生及其发展

■ 数据管理技术发展的三个阶段

- ◆人工管理阶段(40年代中--50年代中)
- ◆文件系统阶段(50年代末--60年代中)
- ◆数据库系统阶段(60年代末--现在)
- > 从数据的存储、数据结构、数据共享、数据独立性、管理与控制等方面

第1章 数据库基础知识

1.1.3 数据库系统的特点

与文件系统相比:

- ◆ 数据库系统实现了数据的整体结构化
- ◆ 数据库系统的数据共享性高、冗余度低且易扩充
- ◆ 数据库系统的数据独立性高
- ◆ 数据库系统的数据由DBMS统一管理和控制(安全性、完整性、并发控制 、故障恢复等)

第1章 数据库基础知识

1.2 数据模型

- 1.2.1 数据模型概述
- 1.2.2 两类数据模型
- 1.2.3 常用的数据模型
- 1.2.4 概念模型
- 1.2.5 数据模型的组成要素

1.2 数据模型

1.2.1 数据模型概述

- ◆模型: 对现实世界中复杂对象的抽象。例如,在军事上用沙盘描述 战场实况。
- ◆ **数据模型**:对现实世界中相关实体数据特征的抽象。描述数据的结 构和性质、数据之间的联系以及施加在数据或数据联系上的一些限 制。

- ◆ 数据模型就是现实世界的模拟,应满足三方面要求:
 - ●能比较真实地模拟现实世界;
 - ●容易为人所理解;
 - ●便于在计算机上实现。

1.2 数据模型

- 概念模型: 是按用户的观点来对数据和信息建模, 即:信息世界的建模。
- 逻辑模型:数据库的逻辑结构。
- 物理模型: 描述数据在磁盘或磁带上的存储方式和 存取方法。

1.2 数据模型

■ 抽象过程 (两级抽象)

- 1. 将现实世界中的客观对象抽象为概念模型。(如: E-R模型)
- 2. 将概念模型转换为某一DBMS支持的(结构)数据模型(如:关系模型)。
 - 注意: 从概念模型到逻辑模型的转换是由数据库设计人员完成的, 从逻辑 模型到物理模型的转换是由DBMS完成的。

1.2 数据模型

1.2.3 常用的数据模型

- ◆概念模型(实体联系模型-ER模型)
- ◆层次模型
- ◆网状模型
- ◆关系模型
- ◆面向对象的模型等

1.2 数据模型

1.2.4 概念模型

概念模型是对信息世界的抽象表示。

作用:

- ✓ 概念模型用于信息世界的建模;
- ✓ 是现实世界到机器世界的一个中间层次;
- ✔ 是数据库设计的有力工具;
- ✓ 数据库设计人员和用户之间进行交流的语言。

对概念模型的基本要求:

- ✔ 较强的语义表达能力
- ✔ 能够方便、直接地表达应用中的各种语义知识
- ✔ 简单、清晰、易于用户理解

信息世界中的基本概念:

✔ 实体、属性、码、域、实体型、实体集、联系(类型)

1.2 数据模型

(1) 实体(Entity)

客观存在并可相互区别的事物称为实体。 可以是具体的人、事、物或抽象的概念。

(2) 属性 (Attribute)

实体所具有的某一特性称为属性。

一个实体可以由若干个属性来刻画。

(3) 码(Kev)

唯一标识实体的属性集称为码。

1.2 数据模型

(4) 域(Domain)

属性的取值范围称为该属性的域。

(5) 实体型(Entity Type)

用实体名及其属性名集合来抽象和刻画同类实体称为实体型。

(6) 实体集(Entity Set)

同一类型实体的集合称为实体集。

(7) 联系(Relationship)

Hefei University of Technology

- ✔ 现实世界中事物内部以及事物之间的联系在信息世界中反映为 实体内部的联系和实体之间的联系。
- ✓ 实体内部的联系通常是指组成实体的各属性之间的联系 ✓ 实体之间的联系通常是指不同实体集之间的联系。

1.2 数据模型

实体-联系方法 (E-R 方法)

- ◆ 用E-R图来描述现实世界的概念模型,亦称E-R模型。
- ◆ E-R图的表示:
 - ✓实体型: 用矩形表示,矩形框内写明实体名。

实体型名称 学生

✓属性: 用椭圆形表示,并用无向边将其与相应的实体连接起来。

1.2 数据模型

✓ 联系: 用菱形表示,菱形框内写明联系名,并用无向边分别与有关 实体连接起来,同时在无向边旁标上联系的类型(1:1、1:n或m:n)

■ 用E-R图表示某个工厂物资管理的概念模型

实体:

- ✔ 仓库: 仓库号、面积、电话号码
- ✔ 零件: 零件号、名称、规格、单价、描述
- ✔ 供应商: 供应商号、姓名、地址、电话号码、帐号
- ✔ 项目: 项目号、预算、开工日期
- ✔ 职工: 职工号、姓名、年龄、职称

1.2 数据模型

实体之间的联系如下:

- ✓ 一个仓库可以存放多种零件,一种零件可以存放在多个仓库中。仓库和 零件具有多对多的联系。用库存量表示某种零件在某个仓库中的数量。
- ✓ 一个仓库有多个职工当仓库保管员,一个职工只能在一个仓库工作,仓 库和职工之间是一对多的联系。
- ✔ 职工之间具有领导-被领导关系。即仓库主任领导若干保管员。
- ✓ 供应商、项目和零件三者之间具有多对多的联系。

1.2.5 数据模型的组成要素

数据结构、数据操作、数据的完整性约束

(1) 数据结构

数据库结构是对象类型的集合。(这些对象是数据库的组成成分)。

- ◆ 两类对象:
 - ✓ 与数据类型、内容、性质有关的对象
 - ✓ 与数据之间联系有关的对象
- ◆ 数据结构是对系统静态特性的描述。

1.2 数据模型

(2) 数据操作

对数据库中各种对象(型)的实例(值)允许执行的操作及有关的操作规则。 (对系统动态特性的描述!)

- ➤ 数据操作的类型 ✓ 查询
 - ✓ 更新(包括插入、删除、修改)
- ▶ 数据模型对操作的定义
 - ✔ 操作的确切含义
 - ✔ 操作符号
 - ✔操作规则(如优先级)

1.2 数据模型

(3) 数据的完整性约束

- ✓ 一组完整性规则的集合。
- 完整性规则: 给定的数据模型中数据及其联系所具有的制约和储存 報酬
- 用以限定符合数据模型的数据库状态以及状态的变化,以保证数据的正确、有效、相容。

1.2 数据模型

1.2.6 关系模型

- ✓ 关系数据库系统采用关系模型作为数据的组织方式
- ✓ 1970年美国IBM公司的研究员E.F.Codd首次提出了数据库系统的关系模型
- ✓ 计算机厂商新推出的数据库管理系统几乎都支持关系模型

1.2 数据模型

□ 关系模型的数据结构

在**用户观点**下,关系模型中数据的逻辑结构是一张二维表,它由行和列组成。

- 关系 (Relation)
 - 一个关系对应通常说的一张表。
- 元组 (Tuple)
 - 表中的一行即为一个元组。
- 属性 (Attribute)

表中的一列即为一个属性,给每一个属性起一个名称即属性名。

1.2 数据模型

- 主码 (Key)
- 表中的某个属性组,它可以唯一确定一个元组。
- 域 (Domain)
 属性的取值范围。
- 分量
- 元组中的一个属性值。
- 关系模式

对关系的描述:关系名(属性1,属性2,...,属性n)如:学生(学号,姓名,年龄,性别,系,年级)

1.2 数据模型

✓ 关系模式实例:

学生(学号,姓名,性别,出生日期,专业号,班级)

专业(专业号,名称,所属系)

课程(课程号,课程名,学分)

选修(学号,课程号,成绩)

1.2 数据模型

✓ 关系必须是规范化的,满足一定的规范条件

基本的规范条件:关系的每一个分量必须是一个不可分的数据项。 (即:不允许表中还有表!)

职工号	姓名	职称	工资			扣除		实发
駅上写	姓名	期代例	基本	津贴	职务	房租	水电	头及
86051	陈平	讲师	1305	1200	50	160	112	2283
:			:					A COUNTY OF THE

1.2 数据模型

口关系模型的数据操作

- 操作种类: 查询、插入、删除、修改;
- 数据操作是集合操作,操作对象和操作结果都是关系,即元组的 集合;
- ◆ 存取路径对用户隐蔽,用户只要指出"做什么",不必详细说明 "怎么做"。

1.2 数据模型

口关系的完整性约束条件

- ✓ 实体完整性
- ✔ 参照完整性
- ✔ 用户定义的完整性

□ 关系模型的存储结构

- 实体及实体间的联系都用表来表示
- 表以文件形式存储
 - · 有的DBMS一个表对应一个操作系统文件
 - · 有的DBMS自己设计文件结构

第1章 数据库基础知识

1.3 数据库系统的结构

□数据库系统的外部结构-体系结构

- ✓数据库系统的体系结构分为:
- 单用户结构、主从式结构、分布式结构、客户/服务器
- 浏览器/应用服务器/数据库服务器多层结构等

■数据库系统的内部结构-模式结构 。 。 ○

✓从数据库管理系统角度看,数据库系统通常采用三级模式结构,是数据库系统的内部结构。

Hefei University of Technology 计算机与信息学院

Hefei University of Technology 计算机与信息学院

1.3 数据库系统的结构

■ 数据库的二级映像功能与数据独立性

- ◆ 三级模式是数据的三个抽象级别
- ◆ 二级映象在DBMS内部实现这三个抽象层次的联系和转换:
 - ✓ 外模式/模式映像
 - ✔ 模式/内模式映像
- ◆ 数据独立性(应用程序对数据库数据结构的依赖程度)
 - ✔ 数据的逻辑独立性
 - ✔ 数据的物理独立性

第1章 数据库基础知识

1.4 数据库系统的组成

- 1.4.1 硬件平台及数据库
- 1.4.2 软件
- 1.4.3 人员

第1章 数据库基础知识

■ 本章思考题:

数据库系统的内部数据组织为何采用三级模式结构?

■ 本章作业:

P34: 习题6、习题9、习题17

