工程數學期末報告

第六組:羅弘育、吳正淳、張鄭心美、林柏村、林睿楚、陳品翔 2022/6/8

摘要

本次的報告主題爲傅立葉積分(Fourier integral),我們首先由傅立葉級數(Fourier series)推導傅立葉積分於實數域與複數域的數學式,接著會介紹何謂離散傅立葉轉換(Discrete Fourier transform, DFT),一個概念上基於複數域上的傅立葉積分,並在電腦科學領域具有極大貢獻的數學方法。最後會以複數平面上的本輪(Epicycle)爲發想,將離散傅立葉轉換應用於圖像的壓縮技術上。

目錄

1	從級數到積分	2
	1.1 傅立葉級數	2
	1.2 實數域上的傅立葉積分	
	1.3 複數域上的傅立葉積分	3
2	傅立葉轉換與複數平面上的圓	4
_	2.1 離散傅立葉轉換	4
	2.2 IDFT 與本輪	
3	圖片的重現	6
	週月的里光 3.1 如何重現一張圖片	6
	3.2 圖片與函數	
	3.3 邊緣偵測	6
	3.4 DFT的實作	8
	3.5 IDFT 的實作	10
4	圖片的壓縮	12
	週月 17 	12
	4.2 研究結果	12

1 從級數到積分

1.1 傅立葉級數

根據課本 11.1 的內容,因爲正弦 (sine) 與餘弦 (cosine) 函數之間具有正交性 (orthogonality),任何一個具有週期性的函數 f(x) 均能以傅立葉級數的形式表示:

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$
 (1.1)

其中

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(v) \, dv \tag{1.2}$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(v) \cos\left(\frac{n\pi x}{L}\right) dv \tag{1.3}$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(v) \sin\left(\frac{n\pi x}{L}\right) dv \tag{1.4}$$

且 2L 即爲 f(x) 的週期。而爲了之後推導上的便利性,我們設

$$w_n = \frac{n\pi}{L} \quad \not\exists \quad \Delta w = \frac{\pi}{L}$$

故式(1.1)可被改寫爲

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(w_n x) + b_n \sin(w_n x) \right]$$
 (1.5)

而將係數 $a_0 \cdot a_n \cdot b_n$ 代回式(1.5)並整理的結果爲

$$f(x) = \frac{1}{2L} \int_{-L}^{L} f(v) dv + \frac{1}{\pi} \sum_{n=1}^{\infty} \left[\cos(w_n x) \int_{-L}^{L} f(v) \cos(w_n v) dv + \sin(w_n x) \int_{-L}^{L} f(v) \sin(w_n v) dv \right] \Delta w$$
(1.6)

1.2 實數域上的傅立葉積分

但是傅立葉級數有一個致命性的缺點:因為絕大部分的函數都是非週期性的,它們似乎都不適用於這個數學方法。要解決這個問題,我們必須以另一個角度探討函數的週期性。首先觀察以下的函數圖形:

因爲圖中存在多個具有相同間距的脈衝波,我們理所當然地會認爲該函數具有週期性,但是當我們增加週期 2L 的值,相鄰的兩個脈衝波間距也會增大:

而當2L的值繼續增大,我們就無法在相同的x值區間內觀察到其它的波峰:

雖然畫面上只留下了一個脈衝波,我們仍然不能否認該函數具有週期性的事實,因爲其餘的波峰只是超出了畫面。同樣地,當我們定義一個函數不具有週期性時,純粹只是因爲它們具有無限大的週期,而無法在有限的範圍下被觀察到。

當週期 2L 趨近於無限大,也就是 L 趨近於無限大時,式 (1.6) 中的

$$\frac{1}{2L} \quad \cancel{B} \quad \Delta w = \frac{\pi}{L}$$

都同樣會趨近於 0。因此式 (1.6) 中的第一項可以直接消去:

$$f(x) = \frac{1}{\pi} \sum_{n=1}^{\infty} \left[\cos(w_n x) \int_{-L}^{L} f(v) \cos(w_n v) \, dv + \sin(w_n x) \int_{-L}^{L} f(v) \sin(w_n v) \, dv \right] \Delta w \tag{1.7}$$

但是剩餘的級數項並不能直接消去,因爲它是一個無限級數。不過根據黎曼積分的定義,這裡的

$$\sum_{n=1}^{\infty} \left[\cos(w_n x) \int_{-L}^{L} f(v) \cos(w_n v) dv + \sin(w_n x) \int_{-L}^{L} f(v) \sin(w_n v) dv \right] \Delta w$$

卽能改寫爲積分式

$$\int_0^\infty \left[\cos(wx) \int_{-L}^L f(v) \cos(wv) \, dv + \sin(wx) \int_{-L}^L f(v) \sin(wv) \, dv \right] dw$$

因此式(1.7)又能被改寫爲

$$f(x) = \frac{1}{\pi} \int_0^\infty \left[\cos(wx) \int_{-L}^L f(v) \cos(wv) \, dv + \sin(wx) \int_{-L}^L f(v) \sin(wv) \, dv \right] dw \tag{1.8}$$

將其稍作整理,我們便能得到傅立葉積分的標準形式:

$$f(x) = \int_0^\infty [A(w)\cos(wx) + B(w)\sin(wx)] dw$$
 (1.9)

其中

$$A(w) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos(wv) dv$$
 (1.10)

$$B(w) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin(wv) dv$$
(1.11)

1.3 複數域上的傅立葉積分

我們接著再對式 (1.9) 進行分析。代回係數後我們會得到式 (1.12):

$$f(x) = \frac{1}{\pi} \int_0^\infty \left[\cos(wx) \int_{-\infty}^\infty f(v) \cos(wv) \, dv + \sin(wx) \int_{-\infty}^\infty f(v) \sin(wv) \, dv \right] \, dw \tag{1.12}$$

接著合併積分項:

$$f(x) = \frac{1}{\pi} \int_0^\infty \int_{-\infty}^\infty f(v) \left[\cos(wx) \cos(wv) + \sin(wx) \sin(wv) \right] dv dw$$
 (1.13)

而根據三角函數的和差角公式,

$$\cos(wx)\cos(wv) + \sin(wx)\sin(wv)$$

卽爲

$$\cos(wx - wv)$$

的展開,故式(1.13)可以表示為

$$f(x) = \frac{1}{\pi} \int_0^\infty \int_{-\infty}^\infty f(v) \cos(wx - wv) \, dv \, dw \tag{1.14}$$

又因為 f(v) 對變數 w 而言為一常數,且 $\cos(wx - wv)$ 為偶函數,上式又可以改寫為

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(v) \cos(wx - wv) dv dw$$
 (1.15)

最後因爲正弦函數爲奇函數,因此將它加入(1.15)中的積分式後,並不會對整體的結果造成影響:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(v) \left[\cos(wx - wv) + i\sin(wx - wv)\right] dv dw$$
 (1.16)

因此根據歐拉公式 (Euler's formula)

$$e^{ix} = \cos x + i\sin x\tag{1.17}$$

我們可以得出複數域上的傅立葉積分

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(v) \exp\left[iw(x-v)\right] dv dw$$
 (1.18)

並定義

$$\hat{f}(w) = \mathfrak{F}[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp(-iwx) dx \tag{1.19}$$

與

$$f(x) = \mathfrak{F}^{-1}\left[\hat{f}(x)\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w) \exp\left(iwx\right) dw \tag{1.20}$$

其中�與�⁻¹ 分別代表傅立葉轉換 (Fourier transform, FT) 與逆傅立葉轉換 (Inverse Fourier transform, IFT)。

2 傅立葉轉換與複數平面上的圓

2.1 離散傅立葉轉換

複數域上的傅立葉轉換對於資訊相關的領域有極大的幫助,例如檔案壓縮與訊號處理等。不過在應用之前,我們還有最後一個數學上的問題:雖然我們爲了使理論適用於非週期函數,而把傅立葉級數推廣爲 傅立葉積分,但是因爲由機器執行的計算均爲離散的,我們還是需要把積分置換回級數的形式作計算。

在資訊領域中,我們通常會將傅立葉轉換另外定義爲

$$C(w) = \int_{-\infty}^{\infty} f(v) \exp(-iwv) dv$$
 (2.1)

而要將積分式置換爲級數式相當容易,我們只需要對原本的積分式取樣卽可。舉例來說,若取 N 個式 (2.1) 中的 $f(v)\exp{(-iwv)}$ 連加,我們卽能得到 C(w) 的離散形式:

$$C_a(w_k) = \sum_{n=0}^{N-1} f(v_n) \exp(-iw_k v_n) \Delta v$$
 (2.2)

其中 a 代表了近似 (Approximation)。

在1.1的推導過程中,我們假設了

$$w_n = \frac{n\pi}{L}$$
 \mathfrak{P} $\Delta w = \frac{\pi}{L}$

兩個變數,而這兩個變數之間具有

$$w_n = n \, \Delta w$$

的關係。同樣地,我們可以假設

$$w_k = k \, \Delta w \quad \text{ in } \quad v_n = n \, \Delta v$$

我們再定義

$$\Delta w = \frac{2\pi}{N\Delta v} \quad \text{\not \mathbb{R}} \quad X_k = \frac{C_a(w_k)}{\Delta v} \quad \text{\not \mathbb{R}} \quad x_k = f(v_n)$$

因此式(2.2)可以寫爲

$$X_k = \sum_{n=0}^{N-1} x_n \exp\left(-\frac{2\pi i}{N}kn\right) \tag{2.3}$$

我們亦可以由(1.17)的歐拉公式將上式表示爲

$$X_k = \sum_{n=0}^{N-1} x_n \left[\cos(2\pi k n/N) - i \sin(2\pi k n/N) \right]$$
 (2.4)

而式 (2.3) 與式 (2.4) 便是離散傅立葉轉換 (Discrete Fourier transform, DFT) 的公式。

仿照式 (1.20) 與式 (2.3) ,我們便能將 X_k 轉換回 x_n :

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \exp\left(\frac{2\pi i}{N} k n\right)$$
 (2.5)

卽

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \left[\cos(2\pi k n/N) + i \sin(2\pi k n/N) \right]$$
 (2.6)

以上兩式則稱爲逆離散傅立葉轉換 (Inverse discrete Fourier transform, IDFT)。

2.2 IDFT 與本輪

因爲複數平面以x軸作爲實數軸,而以y軸作爲虛數軸,故任一複數

$$t\exp(i\theta) = t\left[\cos\theta + i\sin\theta\right]$$

即表示了位於複數平面上的點 $[t,\theta]$ 。因此我們可以透過繪製一系列的圓,將代表函數的 x_n 計算出,而這些圓被稱爲本輪 (Epicycle):本輪的英文源自古希臘文 EIIIKYK Λ O Σ ,其義爲運動於另一個圓圈之上的圓圈。它原先被早期的天文學家用作描述星體運動的模型,後來被數學家與電腦科學家作爲複數域上傅立葉轉換的應用,尤其是 IDFT。

要繪製出這些圓,我們必須分別找出這些圓的其中三個、最具有代表性的物理量:

- (1) 半徑 r、
- (2) 頻率 f、
- (3) 相位角φ。

由後兩項物理量,我們便可以建構出下一個圓所在的圓心位置。根據式(2.6),這三項物理量分別為

$$r = \sqrt{\Re^2 + \Im^2}$$
$$f = k$$

與

$$\phi = \arctan(\Im/\Re)$$

其中 \Re 與 \Im 分別代表了 X_k/N 的實部與虛部。

半徑r與相位角 ϕ 的定義都相對直觀,因爲它們都直接表現在複數平面上,但頻率f就較爲複雜:在一般的正弦函數

$$f(t) = \sin(\omega t)$$

中, ω 代表了這個函數的頻率,因此對於變數為 n 的式 (2.6) 而言,可以作為頻率的便是 $2\pi k/N$ 。我們又 捨棄對於級數的疊代來說為一常數的 $2\pi/N$,故 f=k。

3 圖片的重現

3.1 如何重現一張圖片

先前提到,複數域上的傅立葉轉換常用於資料壓縮,而本次報告便是以影像壓縮作為應用上的實例。

要將影像壓縮並重現,我們需要進行以下的四個步驟:

(1) 將圖片轉爲函數:將每個像素所提供的資訊轉爲一個或多個函數;

(2) DFT:將函數取樣並得出各個係數 X_k ;

(3) IDFT:將係數逆轉換回代表函數的 x_n ;

(4) 輸出圖片:將函數轉換回圖片。

3.2 圖片與函數

要將圖片轉換爲函數,我們需要先回答一個最基本的問題:何謂函數?根據維基百科,一個由集合 X 連結到集合 Y 的函數會將 X 內的所有元素都各連結到恰好一個 Y 內的元素。這裡的「恰好一個」很重要:這代表了我們不能光靠照片內 x 與 y 的關係決定一個函數,因爲很顯然地,一張照片的同一行或是同一列都會存在不只一個像素。以下圖爲例:

此圖代表了含有九個像素的圖片,且只有藍色的像素屬於這張照片想要表達的資訊,白色像素則是單純代表一片空白。因此能代表上圖的有效x值爲0、0、1、1、2,而有效的y則爲0、0、0、1、2。故我們會傾向將x、y分別定義爲兩個不同的函數,並在最後轉換回圖片時作進一步的整合。

自變數的定義有多種方式,而利用索引值是一種相對較佳的方法:越靠近圖片左上角的像素索引值越小,而越靠近圖片右下角者則反之。而因爲同一個像素點會對應到一組x imes y值,故同一個索引值所對應的x imes y值必定會對應到同一個像素點。以上圖爲例,我們便會定義

$$x(0) = 0$$
, $x(1) = 1$, $x(2) = 2$, $x(3) = 1$, $x(4) = 0$

與

$$y(0) = 0$$
, $y(1) = 0$, $y(2) = 0$, $y(3) = 1$, $y(4) = 2$

到這裡我們已經知道:一張圖片其實就是由表示 $x \cdot y$ 值的數組 [x(i), y(i)] 表示。但是現在又有兩個新的問題產生:第一個是該如何決定哪些像素能夠代表該圖片,第二個則是該如何排序這些索引值。第二個問題其實不難,我們只需要依照點與點之間的距離排序即可:距離愈近的兩個點,其索引值也應該愈相近。而第一個問題的答案會由下一小節得到解答。

3.3 邊緣偵測

我們首先思考一個問題:一張圖片的哪樣特徵最能彰顯圖片的形狀?這個問題不難,只要知道圖片中各個物件的輪廓,我們就能淸楚辨識這張圖片所要表達的內容,而真正困難的部分是該如何獲取這些輪廓。幸運的是,現在是2022年,而很多前輩早在1980年代便想出了許多邊緣偵測的演算法,也有人已經基於這些演算法,撰寫一系列的函式庫了,因此我們只需要知道它們運作的原理,並加以善用卽可。

首先我們需要釐清何謂邊緣。觀察以下的圖形:

我們很輕易地就能辨認出上圖爲一條粗黑線,或是一個黑色的長方形,但爲何我們沒有將其視爲一個圓 形或是其它形狀?這是因爲我們看到了兩組具有強烈顏色梯度變化的平行邊緣。換句話說,我們看到了 下圖中所標示的紅線處,有極爲強烈的顏色差異,促使我們的大腦辨認出其形狀:

而利用 Canny, 一個由 John F. Canny 於 1986年發表的演算法,電腦也能學習到這件事:

- (1) 將圖片透過高斯模糊降噪;
- (2) 計算圖片中的強度梯度;
- (3) 以兩個自訂的門檻值決定邊緣。

本次報告以Python版本的OpenCV實作,並以臺大校徽爲實驗對象。OpenCV包含了臉部、動作的偵測,動態捕捉等技術支援,並具有豐富的機器學習程式庫,而Canny亦是其中之一:

```
import cv2
img = cv2.imread('NTU.png')
img = cv2.resize(img, (0, 0), fx=0.5, fy=0.5)
cv2.imshow('Original Image', img)
img_blurred = cv2.GaussianBlur(img, (5, 5), 5)
cv2.imshow('Blurred Image', img_blurred)
img\_stdized = img / 255
noise = np.random.normal(0, 0.2, img_stdized.shape)
img_noised = img_stdized + noise
cv2.imshow('Noise Added', img_noised)
img_noised_and_blurred = cv2.GaussianBlur(img_noised, (5, 5), 5)
cv2.imshow('Noised and Blurred Image', img_noised_and_blurred)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.Canny(img, 70, 210)
cv2.imshow('After Edge Detection', img)
cv2.waitKey(0)
```

圖像處理後的結果如下所示:

圖1 原圖

圖2 加入噪點後的圖1

圖3 高斯模糊後的圖2

圖4 Canny 後的圖 1

接著將邊緣偵測後的圖片輸出爲 csv 檔。因爲邊緣爲白色,我們只需要紀錄灰階值高於 250 的像素:

程式執行後,我們便會得到一個僅包含邊緣座標值的csv檔:

	Α	В	(
47249	275	599	
47250	276	599	
47251	277	599	
47252	278	599	
47253	279	599	
47254	280	599	
47255	281	599	
47256	282	599	
47257	317	599	
47258	318	599	
47259	319	599	
47260	321	599	
47261	322	599	
47262	323	599	
47263	324	599	
47264	325	599	
4 >	tes		

3.4 DFT 的實作

有了所有的邊緣座標值,我們便能將其 $x \times y$ 值分別作為兩個函數進行DFT:首先以Java 讀取先前於Python 程式匯出的 csv 檔:

```
String pathOfCSVFile = "customizedPath/edge coordinates.csv";
Image image = new Image(new Scanner(new File(pathOfCSVFile)).useDelimiter(","));
```

物件 Image 的建構子 (Constructor) 如下:

```
private ArrayList<Point> points = new ArrayList<>();
   public Image(Scanner s) {
      while (s.hasNextLine()) {
         String[] temp = s.nextLine().split(",");
         points.add(new Point(Double.parseDouble(temp[0]), Double.parseDouble(temp[1])));
      }
    points = Point.sortPointsByDistance(points);
}
```

而 Point 的定義如下:

```
public record Point(double x, double y) {
    public static ArrayList<Point> sortPointsByDistance(ArrayList<Point> points) {
      var res = new ArrayList<Point>();
      Point cur = points.remove(0);
      res.add(cur);
```

```
while (!points.isEmpty()) {
    double minDistance = Double.MAX_VALUE;
    int trgIdx = 0;

    for (int i = 0; i < points.size(); ++i) {
        double curDistance = findDistance(cur, points.get(i));

        if (curDistance < minDistance) {
            minDistance = curDistance;
            trgIdx = i;
        }
        cur = points.remove(trgIdx);
        res.add(cur);
    }
    return res;
}

public static double findDistance(Point p1, Point p2) {
        return Math.sqrt(Math.pow(p1.x() - p2.x(), 2) + Math.pow(p1.y() - p2.y(), 2));
}
</pre>
```

使用者接著可以選擇欲採用的點數量:若要選擇全部,

```
Double[] imageXCoords = image.getAllX();
Double[] imageYCoords = image.getAllY();
```

而若只要選擇部分的點做 DFT,則需要改用

```
Double[] imageXCoords = image.getSamplesX(proportion);
Double[] imageYCoords = image.getSamplesY(proportion);
```

其中proportion爲一介於0到1的數,而程式會任意選擇

proportion × 點的總數

個點作爲 imageXCoords 與 imageYCoords 的來源。

接下來便是DFT的實作。

```
public final class DiscreteFourierTransform {
    public static ArrayList<Coefficient> transform(Double[] func) {
        var coeff = new ArrayList<Coefficient>();
        int N = func.length;
        double re, im, ampl, freq, phase;
        for (int k = 0; k < N; ++k) {
            re = 0;
            im = 0;
            for (int n = 0; n < N; ++n) {
                double angle = 2 * Math.PI * k * n / N;
                re += func[n] * Math.cos(angle);
                im -= func[n] * Math.sin(angle);
            re /= N;
            im /= N;
            ampl = Math.sqrt(re * re + im * im);
            freq = k;
            phase = Math.atan2(im, re);
            coeff.add(new Coefficient(ampl, freq, phase));
        return coeff;
    }
}
```

這裡爲了防止溢位 (Overflow) 發生,我們提早於 X_k 的計算中對結果除以 N ,並一併計算 IDFT 所需要的半徑 ampl 、頻率 freq 以及相位角 phase 。

3.5 IDFT 的實作

有了各個係數 X_k 的值,我們接著便能透過IDFT 回推函數中的各個 x_n 值。在前一節的最後一段程式碼,我們已經將畫圓所需要的參數儲存至一個ArrayList內,故現在只需要將這些圓依照疊代的順序畫出,並將任何一個本輪的圓心設爲前一個圓的運動質點。

而對一實數函數而言,其分別經過DFT與IDFT的轉換結果仍然爲一實數函數,故最後一個本輪的運動質點也必然會恆落於實數軸上。又因爲x與y值在複數平面上爲兩線性獨立(Linearly independent)之變數,我們可以將代表y座標的所有本輪相位角均增加 $\pi/2$,這會使得代表y座標的實數軸被旋轉 90° 。如此一來,只要我們將代表y座標的首個本輪圓心設定爲代表x座標的末個本輪運動質點,圖片的任一像素點便能回到實數域上的xy平面並重現。

上述概念在本次實作中包裝於一繼承了JPanel類別的子類別EpicyclesDrawing。JPanel類別通常會與JFrame類別搭配使用,前者如同畫布,使用者可以在其上繪製圖形、添加標籤或按鈕等,而後者則相當於一個畫框,負責存放並展示前者的執行結果:

```
@Override
public void paintComponent(Graphics g) {
    super.paintComponent(g);
    var g2 = (Graphics2D) g;
    double x = frameWidth / 2.0, y = frameHeight / 2.0;
    double x_prev, y_prev, ampl, freq, phase;
    for (int i = 1; i < coeffsX.size(); ++i) {</pre>
       x_prev = x;
        y_prev = y;
        ampl = coeffsX.get(i).ampl();
        freq = coeffsX.get(i).freq();
       phase = coeffsX.get(i).phase();
        x += ampl * Math.cos(freq * time + phase);
        y += ampl * Math.sin(freq * time + phase);
        if (circlesVisible) {
            g2.draw0val((int) (x_prev - ampl), (int) (y_prev - ampl),
                        (int) (2 * ampl),
                                            (int) (2 * ampl));
            g2.drawLine((int) x_prev, (int) y_prev,
                        (int) x.
                                     (int) y);
        }
    for (int i = 1; i < coeffsY.size(); ++i) {</pre>
        x_prev = x;
        y_prev = y;
        ampl = coeffsY.get(i).ampl();
       freq = coeffsY.get(i).freq();
        phase = coeffsY.get(i).phase();
        x += ampl * Math.cos(freq * time + phase + Math.PI / 2);
        y += ampl * Math.sin(freq * time + phase + Math.PI / 2);
        if (circlesVisible) {
            g2.drawOval((int) (x_prev - ampl), (int) (y_prev - ampl),
                        (int) (2 * ampl),
                                               (int) (2 * ampl));
            g2.drawLine((int) x_prev, (int) y_prev,
                                      (int) y);
                        (int) x,
        }
   }
}
```

很顯然地,上述的程式碼只會計算出一個像素點的座標,而要將整張圖片重現,我們必須更改變數 time 的值。此處的 time 相當於我們在 3.2 所提到的索引值,座標值愈相近的兩個像素點,被畫出來的時間差會愈小。而 time 的遞嬗則由 EpicyclesDrawing 中、建構子內的 timer 實現:

```
dt = 2 * Math.PI / imageXCoords.length;
int delay = 3000 / imageXCoords.length;
Timer timer = new Timer(delay, e -> {
```

```
time += dt;
if (time >= 2 * Math.PI) {
    time = 0;
}
repaint();
});
timer.start();
```

此處的 repaint() 函數會再次呼叫先前提到的 paintComponent() 函數。

我們會將所有計算出的像素點座標儲存至一個名爲pointsInGraph的LinkedList,而爲了避免重複紀錄,我們可以在paintComponent()中加入以下程式碼:

```
if (pointsInGraph.size() > coeffsX.size() * appearSize) {
    pointsInGraph.remove();
}
pointsInGraph.add(new Point(x, y));
```

其中appearSize 爲一介於0到1的變數,其使得螢幕上至多只會出現

appearSize × 使用的點總數

個像素點。

又因爲IDFT的圖片重現會是一筆畫地完成,故畫面中會存在多餘的線條。要只留下具有意義的線段,我們可以於paintComponent()再添加以下程式碼:

其中dist決定了最大的有效像素間距。

程式的執行結果如下:

圖中的黑色圓圈即爲各個由 DFT 與 IDFT 構築而成的本輪,其中一部份的圓圈負責 x 軸分量的繪製,而另一部份則負責 y 軸分量的繪製。另外,畫面上方的兩個按鈕 Hide/Display Epicycles 與 Hide/Display Lines 分別決定了上述程式碼當中的布林變數 circles Visible、lines Visible之值。若暫時將這兩個變數都設定爲 false,程式就不必處理圖像顯示的部分,其執行的速度也便會提高。

4 圖片的壓縮

4.1 研究目標

所謂圖片壓縮,就是以更小的容量儲存同一張圖片。本次實驗以臺大校徽作爲研究對象,探討取樣數的 多寡對壓縮後的圖片品質之影響。

而因為每張圖片的總邊緣像素都不盡相同,本次報告以像素使用率作爲研究指標:

像素使用率
$$r = \frac{\text{DFT} 中使用之像素}{$$
總邊緣像素 (4.1)

4.2 研究結果

當r=1時,程式的輸出圖像如圖6所示:可以看到此時的結果與圖(d)如出一轍,即DFT與IDFT成功

圖5 Canny後的臺大校徽

圖6 r=1 時的輸出

了重現了原圖的所有資訊。

接著我們逐次下降 r 值:

圖7 r = 0.7 時的輸出

圖8 r = 0.4 時的輸出

圖9 r = 0.1 時的輸出

可以看到當r=0.7時,無論是文字抑或是紋路均與r=1時相差無幾;而當r=0.4時,圖片的重現效果也仍然意外地出色:即使僅使用了不到一半的像素點,整體的圖樣仍相當淸晰,且所有的文字仍能被淸楚辨認;最後於r=0.1的情況下,樣本數的嚴重不足使得圖片失真的情況過於嚴重,已經無法藉由提高 dist 之值修補圖片。

因此我們可以證實在一定的壓縮程度下,圖片可以省去超過一半的容量且不失真。