ASEN 5044, Fall 2018

Statistical Estimation for Dynamical Systems

Lecture 2: Rapid Linear Algebra Refresher

Prof. Nisar Ahmed (<u>Nisar.Ahmed@Colorado.edu</u>)
Thurs 8/30/2018

Today

- Start reviewing important mathematical tools and concepts
- Quick refresher of linear algebra
 - highlights of n-dimensional matrix-vector concepts

START READING: Chapters 1.1 and 1.2 in Simon book

Vectors and vector operations in n-dimensions

• Vectors: V = 0 ordered 1.st of elements: $v = \begin{bmatrix} v_1 \\ v_n \end{bmatrix}$, v_j is jth $v_j = \begin{bmatrix} v_1 \\ v_n \end{bmatrix}$, $v_j = \begin{bmatrix} v_1 \\ v_n \end{bmatrix}$

Inner (dot) product

is Scalar
$$X = a^Tb$$
 for $a, b \in \mathbb{R}^n (\mathbb{R}^{n \times 1})$

Notation: $\langle a, b \rangle = X = \sum_{j=1}^n a_i b_i = a_i b_j + \dots + a_n b_n$

• Outer product

Solve Describing relative directions in n-dim space

if $b \in \mathbb{R}^n$ & $C \in \mathbb{R}^m$ ($m \neq n$ possibly), then $A = b \in \mathbb{R}^m = \begin{bmatrix} b_1 \in \mathbb{R} & b_1 \in \mathbb{R} & b_2 \in \mathbb{R} \\ b_2 \in \mathbb{R} & b_2 \in \mathbb{R} \end{bmatrix} = \text{outer product}$

Matrices

```
atrix: A= \[ \a_{11} \a_{12} \\ \a_{21} \\ \a_{22} \\ \a_{2m} \\ \a_{2m} \\ \a_{mi} \\ \
                              · Also: AT = (BC)T = CTBT
• Trace: for square n \times n matrix A:

trace(A) = tr(A) = \sum_{i=1}^{n} a_{ii} (Sum of Diag. entries)
                                                                 · Note: is A \in \mathbb{R}^{n \times m} & B \in \mathbb{R}^{n \times m}, then tr(AB) = tr(BA) = tr(CAB)
 • Symmetric matrix: y A is nxn, then A is sym of A = AT
```

Linear dependence/independence, rank

• Set of vectors {v₁,v₂,...,v_n} is said to be **linearly dependent** if

$$\exists \text{ scalars } \alpha_j \neq 0, \ j=1,...,n, \text{ s.t. } v_i = \sum_{j\neq i} \alpha_j v_j \text{ for at least } 1 \ i=1,...,n$$

(i.e. at least one vector in the set equals a non-trivial linear combination of other vectors in the set)

Vectors {v₁,v₂,...,v_n} are linearly independent if they are not linearly dependent

Square nxn matrix A has rank = n (full rank) if its column (row) vectors are all linearly independent

Independent
$$A = \left[V_{1}, V_{2}, \dots, V_{n} \right] = \left[\int_{r_{2}}^{r_{1}} \int_{r_{1} \in \mathbb{R}^{n \times n}} V_{1} \in \mathbb{R}^{n \times n} \right] \qquad \text{for non-square } A \in \mathbb{R}^{n \times n}$$

$$for non-square } A \in \mathbb{R}^{n \times n}$$

(i.e. square A is just a stacked set of nx1 column vectors or 1xn row vectors; if rank(A)=n, then vectors LI)

Determinants of Square Matrices

• 2x2 case: if
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $det(A) = |A| = ad - bc$ Then $det(A) = ad - bc$ Then de

• General case: define the **cofactor**: $c_{ij} = (-1)^{i+j} |M_{ij}|$ (determinant of minor) where the minor is: $M_{ij} = A$ with row i and column j removed

$$\rightarrow$$
 so $det(A) = |A| = \sum_{i=1}^{n} a_{ij}c_{ij}, \ \forall j = 1, ..., n$ (cofactor expansion)

3x3 example:

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 3 & 4 \\ 0 & 5 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 3 & 4 \\ 0 & 5 & 6 \end{bmatrix} \quad |A| = 0 \cdot |3 + 4 - (1)| \cdot |3 + 4 - (2)| \cdot |3 + 4 - (3)| \cdot |3 + 4 - (4)| \cdot |3 + (4)| \cdot |3 + 4 - (4)| \cdot |3 + ($$

Singular/Non-Singular Square Matrices

- A is singular if |A| = 0
- A is **non-singular** if $|A| \neq 0$ (i.e. if all rows/cols of A are linearly indep)
- Also, if |A| = 0, then $\exists x \neq 0$ such that Ax = 0

But if $|A| \neq 0$, then Ax = 0 if and only if x = 0 (only trivial solution)

Vocabulary:

- Singular = non-invertible = rank deficient (i.e. rank(A) < n)
- Non-singular = invertible = full-rank
- \rightarrow If A is non-singular, then $|A| \neq 0$ and $\exists A^{-1} \in \mathbb{R}^{n \times n}$ s.t. $AA^{-1} = A^{-1}A = I$

where the inverse of A is
$$A^{-1} = \frac{adj(A)}{det(A)} = \frac{C_A^T}{det(A)}$$
 (C_A^T is matrix of cofactors)

Solutions to "Nice" Linear Systems of Equations

• If $A \in \mathbb{R}^{n \times n}$ and $|A| \neq 0$, and $b \in \mathbb{R}^n$, then we can solve

$$Ax = b \text{ for } x \in \mathbb{R}^n$$

$$\rightarrow \boxed{x = A^{-1}b}$$

Recall: this tells us that x is the unique solution in R^n , because:

• A represents a "1 to 1" and "onto" linear transformation from Rⁿ to Rⁿ

>>Range space of A is Rⁿ

$$\operatorname{Range}(A) = \{ y \in \mathbb{R}^n | \exists x \in \mathbb{R}^n \text{ s.t. } Ax = y \}$$

>>Null space of A is trivial (i.e. Null(A) only contains x=0)

$$Null(A) = \{ x \in \mathbb{R}^n | Ax = 0 \}$$

Solutions to "Not Nice" Linear Systems of Eqs.?

 Consider an "overdetermined" system of equations:
Consider an <u>overdetermined</u> system of equations: $y = M \times \text{, where } y \in \mathbb{R}^m \text{, } \times \in \mathbb{R}^n \text{, } M \in \mathbb{R}^m \times n$
Soil mon is cank (M) = n full col. could fren easy to Show
(-MTM E IR= LSquare) also has rank (6)-1
The Gram mentrix G- The Gram mentrix G- G- G- G- Excists = (MTM) The Gram mentrix G- G- G- Excists = (MTM)
-> how to solve for x? First multiply y = Mx by MT on LHS & RHS:
-> MTy = MTM x -> since MTM=6: MTy = 6x
-> but since G-1 exists when M has rank(n) -> G-1 MTy = (G-1/G) x
-> G'NTy= x -> [x= (NTM) NTy = MLY
where Mt = (MTM) T is left pseudo inverse

Eigenvalues and Eigenvectors of Square Matrices

• Given $A \in \mathbb{R}^{n \times n}$, \exists scalars λ_i (eigenvalues) (possibly complex numbers)

such that \exists associated eigenvectors $v_i \in \mathbb{R}^n$ (possibly complex, if λ_i complex)

where $Av_i = \lambda_i v_i$, where $v_i \neq 0$ (by Jef.)

 $\rightarrow \overrightarrow{\operatorname{caft}}$ solve for these via $(A - \lambda_i I)v_i = 0$

- \rightarrow for non-trivial v_i , want matrix $(A \lambda_i I) = Q(\lambda_i)$ to be singular,
 - i.e. want $Q(\lambda_i)v_i=0$ for $v_i\neq 0$

$$\rightarrow det(Q(\lambda_i)) = det(A - \lambda_i I) = 0$$

- \rightarrow gives the **characteristic polynomial** for A (polynomial in λ of order n)
- \rightarrow roots of the characteristic polynomial = eigenvalues of A
- $\rightarrow n$ (complex conjugate) eigenvalues always exist

Handy Dandy Facts About E'vals/E'vecs

• FACT 1: For real-valued <u>symmetric</u> square matrices

i.e. if $A = A^T$,

then n eigenvalues are all real

AND n eigenvectors exist which are all linearly independent and orthogonal

• FACT 2: For any square matrix A

So if A & IR
$$M$$
 as singular, $det(A) = |A| = \prod_{i=1}^{N} \lambda_i$ (determinant is product of e'vals)
$$tr(A) = \sum_{i=1}^{N} \lambda_i \text{ (trace is the sum of e'vals)}$$
 [corresp e'secs are basis for Mull(A)]

Positive Definite Matrices

• **Definition:** Matrix $P \in \mathbb{R}^{n \times n}$ is positive definite (posdef) if:

 $x^T P x > 0$ for all $x \neq 0 \in \mathbb{R}^n$

3 (7 70)

Note: if P is posdef, then all e'vals of P are positive, i.e. $\lambda_i(P) > 0, i = 1, \dots, n$

 \rightarrow We often need to verify that a matrix is posdef in computation,

but we don't necessarily want to compute all the e'vals of P to do so (expensive)!

Sylvester's method! Check posdefiners of P by exam. n.y if the

principal minors of P are all positivel -> if so, P is posdef ie & PEIRaxa, w/ P= [Pin], Then chech:

Pri 30, | Pri Prz | 30, | Princpl minor), | Princpl minor)

Onto Dynamical State Space Systems

Want to study how vector quantities change over time, especially when the vector elements are related to each other

- o Vehicle state: position, velocity, attitude, attitude rate,...
- Physiological state: blood pressure, heart rate, O₂ level...
- Economic state: GNP, GDP, national debt,...
- Such time-varying variables can define the **state x** of a system over time
- Continuous time (CT) systems: continuous state x(t) depends on continuous t time variable
- Discrete time (DT) systems: continuous state x(k) depends on integer k time variable
- Often, the state x itself cannot actually be observed but only some sensed variable y related to x

The Big Picture

- Goal: analysis, control and estimation of dynamical systems
 - Need to understand behavior over time (so we can influence/change it)
 - Work with mathematical models first...
 - ...then go test/implement on real thing
- Interested in (physical) dynamical systems that obey differential equations
 - Ex.: scalar ordinary differential equation (ODE):

$$\frac{dx(t)}{dt} = \frac{x(t)}{dt} =$$