Long Text Sequences

Tasks In NLP:

Writing Books

Chatbots

- Context Windows:
 - User 1: What's for dinner?
 - Chatbot: Who's cooking, you or me?
 - User 1: Hey now chatbot.
 - Chatbot: I hope it's not hay, that's
 - what horses eat.

Transformer Complexity Transformer Issues

• Attention on sequence of length L takes L² time and memory

Attention Complexity

- Attention: softmax(QK^T)V
- Q, K, V are all [L, d_model]
- QKT is [L, L]
- Save compute by using area of interest for large L
- Memory with N Layers
 - Activations need to be stored for backprop
 - Big models are getting bigger
 - Compute vs memory tradeoff

LSH Attention

FPT UNIVERSITY

- What does Attention do?
 - Select Nearest Neighbors (K,Q) and return corresponding V

Nearest Neighbors

Course:

Natural Language Processing with Classification and Vector Spaces

Lessons:

- KNN
- Hash Tables and Hash Functions
- Locality Sensitive Hashing
- Multiple Planes

Nearest Neighbors

- Compute the nearest neighbor to q among vectors {k₁, ..., k_n}
 - Attention computes d(q, k_i) for i from 1 to n which can be slow
- Faster approximate uses locality sensitive hashing (LSH)
- Locality sensitive: if q is close to k_i: hash(q) == hash(k_i)
- Achieve by randomly cutting space hash(x) = sign(xR)
- R: [d, _bins]
- n_hash

LSH Attention

Standard Attention:

$$A(Q, K, V) = \operatorname{softmax}(QK^T)V$$

- LSH Attention:
 - Hash Q and K
 - Standard attention within same-hash bins
- Repeat a few times to increase
- probability of key in the same bin

LSH Attention

Sequence of Queries = Keys LSH bucketing

Sort by LSH bucket

Chunk sorted sequence to parallelize

Attend within same bucket of own chunk and previous chunk

image © (Reformer: The Efficient Transformer)

Motivation for Reversible Layers: Memory!

Memory Efficiency

Memory Efficiency

Memory Efficiency

Reversible Residual Layers

Residual Blocks in Transformer

Standard Transformer:

$$y_a = x + Attention(x)$$

$$y_b = y_a + FeedFwd(y_a)$$

Reversible:

$$y_1 = x_1 + Attention(x_2)$$

 $y_2 = x_2 + \text{FeedFwd}(y_1)$

Recompute x_1, x_2 from y_1, y_2 :

$$x_1 = y_1 - Attention(x_2)$$

$$x_2 = y_2$$
 - FeedFwd(y_1)

Reversible Transformer: BLEU Scores

Reformer

The Reversible Transformer

Reformer

EDT Education

FPT UNIVERSITY

- LSH Attention
- Reversible Layers

Reformer

image © (Reforme r: The Efficient Transfor mer)

Chatbot

- Reformer
- MulitiWOZ dataset
- Trax