ATIVIDADE

ATIVIDADE

Disciplina: Sistemas Elétricos de Potência I

Aula: 7

Título: Sistemas de transmissão em corrente contínua (HVDC)

QUESTÃO 01

Uma máquina síncrona trifásica, de 250 MVA, 24 kV, 60 Hz está operando a tensão nominal, frequência nominal e potência aparente nominal com um fator de potência 0,8 indutivo. A resistência de armadura (estator) é desprezível. A tensão gerada interna é $E_f = 20 \ \mathrm{kV}$:

- a) Desenhe o circuito equivalente por fase;
- b) Determine o ângulo de potência δ com $\delta = \cos^{-1}\left(\frac{V_t\cos(\phi)}{E_f}\right) \phi$, sendo ϕ a fase de \overline{I}_a :
- c) O valor da reatância síncrona X_S .

Modele as linhas de transmissão como indutores, e denote S_{ij} a potência complexa fluindo entre as barras i e j, com $S_{ji} = -S_{ij}^*$. Compute S_{13} , S_{31} , S_{23} e S_{G3} da figura abaixo, utilizando a regra da conservação de potência. (KCL)

QUESTÃO 02

*o termo lagging é equivalente ao fator de potência indutivo.

ATIVIDADE

A figura é um sistema de potência com três cargas operando a 480 V. Carga 1 é um motor de indução consumindo 100 kW a FP = 0,78 indutivo. Carga 2 é um motor de indução consumindo 200 kW a FP = 0,8 indutivo e a carga 3 é um motor síncrono com consumo de potência ativa de 150 kW.

- a) Se o motor síncrono é ajustado a FP = 0,85 indutivo, qual é a corrente de linha?
- b) Se o motor síncrono é ajustado a FP = 0,85 capacitivo, qual é a corrente de linha?
- c) Assumindo que as perdas na linha são $P_{LL}=3I_L^2R_L$, como essas perdas são caracterizadas em cada um dos dois casos anteriores?

QUESTÃO 03

Um gerador síncrono (SG) com reatância síncrona $X_S=0,32$ pu é conectado a uma barra infinita (*grid* de potência) através de uma linha de transmissão com reatância $X_L=0,2$ pu. A tensão na barra é $V_t=1 \ge 0$ pu e o SG provê potência real P=1 pu a um fator de potência FP=0,95 indutivo.

a) Desenhe o circuito equivalente por fase;

Determina

- b) A corrente I_a que sai do SG para a barra infinita;
- c) A tensão interna E_f do SG.

Bons Estudos!

Prof. Lucas Claudino