Algebra 3 - Rings & Modules Concise Notes

MATH60035

Arnav Singh

Content from prior years assumed to be known.

Mathematics Imperial College London United Kingdom November 23, 2022

Contents

1	Rin	ıgs
	1.1	Basic Definitions and Examples
	1.2	Constructions of rings
	1.3	Homomorphisms, ideals and quotients
2	Inte	egral Domains
	2.1	Integral domains, maximal and prime ideals
	2.2	Factorisation in Integral domains
	2.3	
3	Pol	ynomial Rings
	3.1	Factorisation in polynomial rings and Gauss' Lemma
	3.2	Algebraic Integers
	3.3	Noetherian rings and Hilbert's basis theorem
1	Mo	$_{ m odules}$
	4.1	Basic definitions and examples
		Constructions of modules

1 Rings

1.1 Basic Definitions and Examples

Definition 1.1. A monoid (M,\cdot) a set M and binary op $\cdot: M \times M \to M$, with $1_M \in M$ s.t

- $m \cdot 1_M = m = 1_M \cdot m \forall m \in M$
- Operation \cdot is associative, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Definition 1.4. A ring a set $(R, + : R \times R \to R, \cdot : R \times R \to R)$ with elements $0_R, 1_R \in R$ s.t

- (R,+) an abelian group with identity 0_R
- (R, \cdot) a monoid with identity 1_R
- Distributivity: a(b+c) = ab + ac, (b+c)a = ba + ca

Note: write additive inverse as -r

Definition 1.6. Say R a ring commutative if $a \cdot b = b \cdot a, \forall a, b \in R$

Definition 1.7. For $S \subset R$, R a ring. Say S a subring of R if

- $0_R, 1_R \in S$
- +, · make S into a ring with identities $0_R, 1_R$

We write $S \leq R$

Proposition 1.12. R a ring, $1_R = 0_R \iff R = \{0\}$ the trivial ring

Definition 1.13. $u \in R$ a unit, if $\exists v \in R$ s.t $u \cdot v = v \cdot u = 1_R$

$$R^{\times} \subseteq R$$
, the set of units in R

Definition 1.14. A division ring a non-trivial ring, s.t every $u \neq 0_R \in R$ a unit.

$$R^{\times} = R \setminus \{0\}$$

A **Field** a commutative division ring

Proposition 1.17. Subset $R^{\times} \subset R$ a group under multiplication.

1.2 Constructions of rings

Example 1.18. $R, S \ rings \implies R \times S \ the \ product \ ring \ a \ ring \ via$

$$(r,s) + (r',s') = (r+r',s+s')$$
 $(r,s) \cdot (r',s') = (r \cdot r',s \cdot s')$

Example 1.21. R a ring, the polynomial ring R[X] a ring

$$R[X] = \{ f = a_0 + a_1 X + \dots a_n X^n \mid a_i \in R \}$$

So for $f = \sum_{i=1}^{n} a_i X^i$, $g = \sum_{i=1}^{k} b_i X^i$, we have ring ops

$$f + g := \sum_{r=0}^{\max\{n,m\}} (a_i + b_i) X^i$$

$$f \cdot g := \sum_{i=0}^{n+k} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) X^i$$

Note: call maximal n s.t $a_n \neq 0_R$ the deg(f)

For f of degree $n \geq 0$, if $a_n = 1$ say f is monic.

Notation: Write R[X,Y] for (R[X])[Y] polynomial ring in 2 variables, and in general $R[X_1,\ldots,X_n]=(\ldots((R[X_1])[X_2]\ldots)[X_n])$

Example 1.23. Laurent polynomials on R the set $R[X, X^{-1}]$

$$R[X, X^{-1}] = \left\{ f = \sum_{i \in \mathbb{Z}} a_i X^i \mid \text{ only finitely many } a_i \neq 0 \right\}$$

Operations defined similarly to R[X]

We have here the set of monomilas $\{X^i : i \in \mathbb{Z}\}\$ form a group under multiplication.

Example 1.24. G a group, R a ring. Define the Group Ring R[G]:

$$R[G] := \left\{ \sum_{g \in G} a_g g \mid a_g \in R, |\{g \in G : a_g \neq 0\}| < \infty \right\}$$

With addition and multiplication as follows

$$\left(\sum_{g \in G} a_g g\right) + \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} (a_g +_R b_g) g$$

$$\left(\sum_{g \in G} a_g g\right) \cdot \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} \left(\sum_{h \in G} a_h \cdot_R b_{h^{-1}g}\right) g$$

We have that $R[X, X^{-1}] \cong R[C_{\infty}], C_{\infty} = (\mathbb{Z}, +)$

If R commutative ring, then R[G] commutative \iff G abelian.

Example 1.25.

$$M_n(R) = set of n \times n matrices, R a ring$$

A ring over the usual addition and multiplication

Example 1.26. Abelian group A

$$End(A) = \{f : A \rightarrow A \mid f \text{ a group homomorphism}\}\$$

A ring with ops

$$(f +_{End(A)} g)(x) := f(x) +_A g(x) \quad (f \cdot_{End(A)} g)(x) := (f \circ g)(x)$$

Group of units of End(A) is the automorphism group of A denoted Aut(A)

1.3 Homomorphisms, ideals and quotients

Definition 1.27. R, S rings. $\varphi : R \to S$ a ring homomorphism if

1.
$$\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

2.
$$\varphi(0_R) = 0_S$$

3.
$$\varphi(r_1 \cdot r_2) = \varphi(r_1) + \varphi(r_2)$$

4.
$$\varphi(1_R) = 1_S$$

Definition 1.28. An isomorphism, A bijective homomorphism φ

Definition 1.29. Kernel of homomorphism $\varphi: R \to S$

$$ker(\varphi) = \{r \in R : \varphi(r) = 0_S\}$$

Definition 1.30. Image of homomorphism $\varphi: R \to S$

$$im(\varphi) = \{ s \in S : s = \varphi(r), \text{ for some } r \in R \}$$

Lemma 1.31. Homomorphism $\varphi: R \to S$ injective $\iff ker \varphi = \{0_R\}$

Definition 1.32. A ideal $I \subset R$ an abelian subgroup s.t

$$\forall i \in I, r \in R \begin{cases} ri \in I, & \textit{left ideal} \\ ir \in I, & \textit{right ideal} \end{cases}$$

This the strong closure property.

A two-sided or bi-ideal both a left and right ideal.

Lemma 1.33. $\varphi: R \to S$ a homomorphism, then $ker(\varphi) \subset R$ a two-sided ideal

Definition 1.35. Proper ideal, an ideal $I \neq R$

For every proper ideal I, we have $1 \notin I \implies$ not a subring.

Even more generally, proper ideals do not contain any unit.

if
$$I \neq R \implies I \subset R \backslash R^{\times}$$

Definition 1.38. For element $a \in R$, write the ideal generated by a as,

$$(a) = Ra = \{r \cdot a \mid r \in R\} \subset R$$

The ideal generated by $a_1, \ldots a_n$

$$(a_1, \ldots, a_n) = \{r_1 a_1 + \ldots r_k a_k \mid r_i \in R\}$$

Definition 1.39. $A \subset R$ define ideal generated by A as

$$(A) = R \cdot A = \{sum_{a \in A} r_a \cdot a \mid r_a \in R, \text{ only finitely many non-zero}\}\$$

Definition 1.40. Say ideal I principal if I = (a) for some $a \in R$

Definition 1.42. Let $I \subset R$ a two-sided ideal

Quotient ring $R/I = \{r + I \mid r \in R\}$ a ring with $0_R + I, 1_R + I$

$$(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I, \quad (r_1 + I) \cdot (r_2 + I) = r_1 r_2 + I$$

Proposition 1.43. Quotient ring a ring, and function

$$\varphi \colon R \to R/I, r \mapsto r+I$$

a ring homomorphism.

Proposition 1.47. (Euclidean algorithm for polynomials)

Let F a field, and $f, g \in F[X] \implies \exists r, q \in F[X] \ s.t$

$$f = gq + r$$

with $deg \, r < deg \, g$

Theorem 1.49. (First isomorphism theorem)

Let $\varphi: R \to S$ a ring homomorphism, $ker(\varphi) \subseteq R$ a 2-sided ideal and

$$\frac{R}{\ker(\varphi)}\cong im(\varphi)\leq S$$

Theorem 1.50. (Second isomorphism theorem)

 $R \leq S$ be subrings, $J \subseteq S$ a 2-sided ideal. Then

(i)
$$R + J = \{r + j : r \in R, j \in J\} \le S$$
 a subring

(ii) $J \subseteq R + J$ and $J \cap R \subseteq R$ are both 2-sided ideal

(iii)
$$\frac{R+J}{J} = \{r+J: r \in R\} \leq \frac{S}{J} \leq \frac{S}{J}$$
 a subring, and $\frac{R}{R \cap J} \cong \frac{R+J}{J}$

Theorem 1.51. (Third isomorphism theorem)

Let R a ring, $I, J \subseteq R$ 2-sided ideals s.t $I \subseteq J$ Then $J/i \subseteq R/I$ a 2-sided ideal and

$$\left(\frac{R}{I}\right)/\left(\frac{J}{I}\right)\cong\frac{R}{J}$$

2 Integral Domains

2.1 Integral domains, maximal and prime ideals

Definition 2.1. R a commutative ring. Element $x \in R$ a zero divisor if $x \neq 0, \exists y \neq 0$ s.t $x \cdot y = 0 \in R$

Definition 2.2. Integral domain (ID) a non-trivial commutative ring without zero divisors

a ring where if
$$ab = 0 \implies a = 0$$
 or $b = 0$

Lemma 2.6. R a finite ring, and integral domain \implies R a field.

Lemma 2.7. R an integral domain. Then R[X] an integral domain

Lemma 2.9. A non-trivial commutative ring R a field \iff its only ideals are $\{0\}$ and R

Definition 2.10. An ideal I of ring R maximal if $I \neq R$ and for any ideal J s.t $I \leq J \leq R$ either J = I or J = R

Lemma 2.11. R a commutative ring. $I \subseteq R$ maximal $\iff R/I$ is a field

Definition 2.13. *Ideal* $I \subseteq R$ *is prime if* $I \neq R$ *and if* $a, b \in R$ *s.t* $a \cdot b \in I \implies a \in I$ *or* $b \in I$

Lemma 2.16. R a commutative ring. $I \subseteq R$ ideal, prime $\iff R/I$ is an integral domain

Corollary 2.17. R commutative ring. Then every maximal ideal is a prime ideal.

Definition 2.18. R a ring. $\iota : \mathbb{Z} \to R$ the unique such map. The characteristic of R the unique non-negative n s.t $ker(\iota) = n\mathbb{Z}$

Lemma 2.20. R an integral domain. char(R) = 0 or p a prime number.

2.2 Factorisation in Integral domains

Definition 2.21. R a ring. Say for $a, b \in R$ a divides $b, a \mid b$ if $\exists c \in R$ s.t b = ac. Equivalently $(b) \subseteq (a)$

Definition 2.22. R a ring, say $a, b \in R$ associates if a = bc for some $c \in R^{\times}$ a unit. Equivalently (a) = (b) or $a \mid b$ and $b \mid a$

Definition 2.23. R a ring. $a \in R$ irreducible if $a \neq 0$, and $a \notin R^{\times}$ and if $a = xy \implies x \in R^{\times}$ or $y \in R^{\times}$

Definition 2.24. R a ring. $a \in R$ prime if $a \neq 0$ and $a \notin R^{\times}$ and if $a|xy \implies a|x$ or a|y

Lemma 2.26. A principal ideal (r) prime ideal in $R \iff r = 0$ or r prime

Lemma 2.27. If $r \in R$ prime, the r irreducible

Definition 2.29. (Euclidean domain)

An integral domain R a Euclidean Domain (ED) if \exists Euclidean function $\phi: R \setminus \{0\} \to \mathbb{Z}_{>0}$ s.t

1.
$$\phi(a \cdot b) > \phi(b), \forall a, b \neq 0$$

2. If
$$a, b \in R, b \neq 0 \implies \exists q, r \in R \ s.t$$

$$a = b \cdot q + r$$

With either r = 0 or $\phi(r) < \phi(b)$

Definition 2.34. (Principal ideal domain)

A ring R, an integral domain, is a principal ideal domain (PID) if every ideal is a principal ideal.

$$\forall I \subseteq R \ an \ ideal \implies \exists a \ s.t \ I = (a)$$

Proposition 2.36. Let R a Euclidean domain. Then R a principal ideal domain

Definition 2.41. (Unique factorisation domain)

An integral domain a unique factorisation domain (UFD) if

(Existence) Every non-unit written as product of irreducibles

(Uniqueness) If $p_1 \dots p_n = q_1 \dots q_m$ with p_i, q_j irreducibles, then n = m and they can be reordered s.t p_i is an assosciate of q_i

Theorem 2.42. $(PID \implies UFD)$

If R a principal ideal domain, then R a unique factorisation domain.

Lemma 2.43. R a PID, then a principal ideal (r) maximal \iff r irreducible or, if R a field, r=0

Proposition 2.44. R a PID, if $r \in R$ irreducible then r prime.

Corollary 2.45. R a PID, Then every non-zero prime ideal is maximal

Definition 2.46. (ACC - Ascending Chain Condition)

A commutative ring satisfies the ACC, if

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \dots$$
 ,a chain of ideals

Then $\exists N \in \mathbb{N} \text{ s.t } I_n = I_n + 1 \text{ for some } n \geq N$

Definition 2.47. (Noetherian Ring)

A commutative ring satisfying the ACC is Noetherian.

Proposition 2.48. $R \ a \ PID \implies R \ Noetherian$

Definition 2.50. (Greatest Common Divisor, gcd)

R a ring, d a (gcd) of a_1, a_2, \ldots, a_n if $d|a_i, \forall i$ and if any other d' satisfies $d'|a_i, \forall i$ then d'|d

Lemma 2.51. R a $UFD \implies (gcd)$ exists and is unique up to associates. i.e if d, d' are gcds of $a_1, a_2, \dots a_n$ then d, d' are associates.

The above lemmas and theorems yield the following chain of implications

above lemmas and theorems yield the following chain of implications
$$\underbrace{(\mathbb{Z})}_{\text{isomorphic to }\mathbb{Z}} \Rightarrow \text{ED} \Rightarrow \text{PID} \Rightarrow \text{UFD} \Rightarrow \text{ID} \Rightarrow \text{Commutative Ring} \Rightarrow \text{Ring}$$

$$(\mathbb{Z}) \underset{\mathbb{Q}, \mathbb{Z}[i]}{\not=} \mathrm{ED} \underset{\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]}{\not=} \mathrm{PID} \underset{\mathbb{Z}[X]}{\not=} \mathrm{UFD} \underset{\mathbb{Z}[\sqrt{-5}]}{\not=} \mathrm{ID} \underset{\mathbb{Z}/6\mathbb{Z}}{\not=} \mathrm{Commutative \ Ring} \underset{M_2(\mathbb{Z})}{\not=} \mathrm{Ring}$$

Localisation

Definition 2.54. R an ID, $S \subseteq (R, \cdot)$ a multiplicative submonoid. $0 \notin S$. Localisation is set of equivalence classes

$$S^{-1}R = \{(r,s) \mid r \in R, s \in S, (r,s) \sim (r',s') \text{ if } rs' = r's)\}$$

Pair (r,s) denoted $\frac{r}{s}$ - this is a ring with ops.

$$(r,s)\cdot(r',s'):=(rr',ss'),\quad (r,s)+(r',s')=(rs'+r's,ss')$$

Definition 2.55. $R = \mathbb{Z}, S = R \setminus \{0\}$, Then the rational numbers \mathbb{Q} defined as $S^{-1}R$

Proposition 2.57. R an ID, S a multiplicative submonoid s.t $0 \notin S$ Then the map $\iota: R \to S^{-1}R$ is injective

Definition 2.59. R a commutative ring, $S \subseteq R$ a submonoid.

Localisation

$$S^{-1}R = \{(r,s) \mid r \in R, s \in S, (r,s) \sim (r',s') \text{ if } \exists t \in S, t(rs'-r's) = 0\}$$

Note we have t in this definition when we move away from R being an integral domain.

Definition 2.64. If R an integral domain $S = R \setminus \{0\}$, we have $S^{-1}R$ field. Define the field of fractions of R, $Frac(R) := S^{-1}R$

Proposition 2.67. (Universal property of localisation)

If A a commutative ring, and $\varphi: R \to A$ a ring homomorphism, s.t $\varphi(S) \subset A^{\times}$ then, φ factors through the homomorphism $\iota: R \to S^{-1}R$ i.e $\exists ! \widetilde{\varphi}: S^{-1}R \to A$ s.t $\varphi = \iota \circ \widetilde{\varphi}$

Definition 2.68. R a commutative ring, $S \subseteq R$ a multiplicative submonoid. Localisation, $S^{-1}R$ the unique ring R' s.t $\exists \iota R \to R'$ s.t

- 1. $\iota(S) \subseteq (R')^{\times}$
- 2. For all commutative rings A and maps $\varphi: R \to A$ with $\varphi(S) \subseteq A^{\times}$, $\exists ! \ \widetilde{\varphi}: R' \to A \ s.t \ \varphi = \widetilde{\varphi} \circ \iota$

Corollary 2.70. R an ID, F a field, $\varphi: R \to F$ an injective ring homomorphism. Then φ factors through the map from R to $Frac(R): \varphi = \iota \circ \widetilde{\varphi}$ for $\iota: R \to Frac(R)$ with $\widetilde{\varphi}$ injective

Corollary 2.71. F a field, charm(F) = 0. F has subfield isomorphic to \mathbb{Q} If char(F) = p contains subfield isomorphic to \mathbb{F}_p

Lemma 2.72. F a field, $F \leq R$ a subring $\implies R$ a vector space over F

Corollary 2.73. Every field a vector space over \mathbb{F}_p or \mathbb{Q}

Example 2.74. R a commutative ring. $I \subset R$ a prime ideal, $S = R \setminus I$ also a multiplicative submonoid. Denote $S^{-1}R$ as R_I

Proposition 2.77. R a commutative ring, $I \subseteq R$ a prime ideal. Then R_I has a unique maximal ideal given by $\overline{I} = \{(r,s) : r \in I, s \in R \setminus I\}$

Definition 2.78. A local ring a ring which has a unique maximal ideal

Definition 2.80. Set $S^{-1}I := \{\frac{i}{s} \mid s \in S, i \in I\}$ an ideal in $S^{-1}R$ call this the image of I under the localisation

Proposition 2.81. Every ideal $I \subseteq S^{-1}R$ of form $S^{-1}J$ for some $J \subseteq R$ an ideal.

3 Polynomial Rings

3.1 Factorisation in polynomial rings and Gauss' Lemma

Definition 3.1. R a UFD, $f = a_0 + a_1X + \dots + a_nX^n \in R[X]$. The content is

$$c(f) = gcd(a_0, \dots, a_n) \in R$$

Equivalent define content as the ideal $(\gcd(a_0,\ldots,a_n))$

Definition 3.2. A polynomial is primitive if $c(f) \in R^{\times}$, the a_i are coprime Or as an ideal we have c(f) = R[X]

Lemma 3.3. R a UFD, if $f \in R[X]$ then $f = c(f) \cdot f_1$ for some $f_1 \in R[X]$ primitive

Lemma 3.4. Let R A UFD. If $f, g \in R[X]$ primitive then fg primitive.

Corollary 3.5. Let R a UFD. $f, g \in R[X]$ we have c(fg) is an associate of c(f)c(g)

Lemma 3.6. (Gauss' Lemma)

Let R a UFD and $f \in R[X]$ a primitive polynomial. Then f irreducible in $R[X] \iff f$ irreducible F[X] where F = Frac(R)

Theorem 3.8. (Polynomial rings over UFDs)

If R a UFD, then R[X]a UFD.

Further if R a UFD then $R[X_1, ..., X_n]$ a UFD

Proposition 3.10. (Eisenstein's Criterion)

R a UFD, We let

$$f = a_0 + a_1 X + \ldots + a_n X^n \in R[X]$$

be primitive with $a_n \neq 0$. Let $p \in R$ irreducible s.t

- 1. $p \nmid a_n$
- 2. $p \mid a_i \ \forall 0 \leq i \leq n$
- 3. $p^2 \nmid a_0$

Then f irreducible in R[X] and hence in Frac(R)[X]

3.2 Algebraic Integers

Definition 3.13. $\alpha \in \mathbb{C}$ an algebraic integer if

$$\exists monic \ f \in \mathbb{Z}[X] \ s.t \ f(\alpha) = 0$$

Definition 3.14. α algebraic integer, write $\mathbb{Z}[\alpha] \leq \mathbb{C}$ for smallest subring containing α Construct $\mathbb{Z}[\alpha]$ by taking it as image of $\phi : \mathbb{Z}[X] \to \mathbb{C}$ given by $g \mapsto g(\alpha)$ with ϕ inducing an isomorphism

$$\mathbb{Z}[X]/I \cong \mathbb{Z}[\alpha], \quad I = \ker \phi$$

Proposition 3.15. $\alpha \in \mathbb{C}$ an algebraic integer and let $\phi : \mathbb{Z}[X] \to \mathbb{C}$ the ring homomorphism given by $f \mapsto f(\alpha)$ Then ideal

$$I = ker(\phi)$$

is principal with $I = (f_{\alpha})$ for some irreducible monic f_{α}

Definition 3.16. Let $\alpha \in \mathbb{C}$ an algebraic integer. Then minimal polynomial a polynomial f_{α} is the irreducible monice s.t $I = ker(\phi) = (f_{\alpha})$

Lemma 3.18. Let $\alpha \in \mathbb{Q}$ be an algebraic integer. Then $\alpha \in \mathbb{Z}$

3.3 Noetherian rings and Hilbert's basis theorem

Definition 3.20. A commutative ring Noetherian if it satisfies the ACC (see Def. 2.46)

Definition 3.24. Ideal I finitely generated if can be written as $I = (r_1, \ldots, r_n)$ for some $r_1, \ldots, r_n \in R$

Proposition 3.25. A commutative ring is Noetherian \iff every ideal is finitely generated. Note: PID trivially satisfy this.

Proposition 3.26. R Noetherian, and $I \subseteq R$ an ideal $\implies R/I$ Noetherian.

Theorem 3.27. (Hilbert's basis theorem)

R a Noetherian ring, $\implies R[X]$ also Noetherian.

4 Modules

4.1 Basic definitions and examples

 $\textbf{Definition 4.1.} \ \ R \ \ a \ ring. \ \ A \ \ left \ R-module \ (\underbrace{M}_{set}, \underbrace{+:M\times M\to M}_{addition}, \underbrace{\cdot:R\times M\to M}_{mult}) \ \ with \ 0_M\in M \ \ s.t$

• (M, +) an abelian group with identity 0_M

And we have \cdot satisfying the following

(i)
$$(r_1 + r_2) \cdot m = (r_1 \cdot m) + (r_2 \cdot m)$$

(ii)
$$r \cdot (m_1 + m_2) = (r \cdot m_1) + (r \cdot m_2)$$

(iii)
$$r_1 \cdot (r_2 \cdot m) = (r_1 \cdot r_2) \cdot m$$

(iv)
$$1_R \cdot m = m$$

Right-module is the same but we have now $(\cdot: M \times R \to M)$ with (iii) now as $(m \cdot r_1) \cdot r_2 = m \cdot (r_1 \cdot r_2)$

Definition 4.4. *R* a ring.

R-module an abelian group M, equipped with ring homomorphism

$$\varphi: R \longrightarrow \underbrace{End(M)}_{\{f: M \to M \mid f \ a \ group \ hom.\}}$$

Such that

$$\cdot : R \times M \longrightarrow M$$

$$(r,m) \longmapsto \varphi(r)(m)$$

4.2 Constructions of modules

Definition 4.11. Let M_1, M_2, \ldots, M_k be R-modules. Direct sum is also an R-module

$$M_1 \oplus M_2 \oplus \ldots \oplus M_k$$

Which is the set $M_1 \times ... \times M_k$ with addition given by

$$(m_1,\ldots,m_k)+(m'_1,\ldots,m'_k)=(m_1+m'_1,\ldots,m_k+m'_k)$$

And R-action given by

$$r \cdot (m_1, \dots, m_k) = (rm_1, \dots, rm_k)$$

Definition 4.12. Let M an R-module. A subset $N \subseteq M$ an R-submodule if it is a subgroup of $(M, +, 0_M)$ and if $n \in N, r \in R \implies rn \in N$. Write $N \le M$

Definition 4.15. Let $N \leq M$ be an R-submodule. The quotient module M/N the set of N-cosets in $(M, +, 0_M \text{ with } R$ -action given by

$$r \cdot (m+N) = (r \cdot m) + N$$

Definition 4.17. Function $f: M \to N$ between R-modules an R-module homomorphism if it is a homomorphism of abelian groups and satisfies

$$f(r \cdot m) = r \cdot f(m), \quad \forall r \in R, m \in M$$

An isomorphism, is a bijective homomorphism.

Say 2 R-modules are isomorphic if there exists isomorphism between them.

Definition 4.19. If R_1 , R_2 rings, M_1 an R_1 -module and M_2 an R_2 -module, then $(M_1 \times M_2)$ is a $(R_1 \times R_2)$ -module with action

$$(r_1, r_2) \cdot (m_1, m_2) := (r_1 m_2, r_2 m_2)$$

Definition 4.20. R a commutative ring, $S \subseteq R$ a multiplicative submonoid, M an R-module. **Localisation** of M by S,

$$S^{-1}M = \{(m,s) \mid m \in M, s \in S, (m,s) \sim (m',s') \text{ if } \exists t \in S \text{ s.t } t(ms'-m's) = 0\}$$

This an $S^{-1}R$ -module, with natural structure of abelian group, and $S^{-1}R$ action given by

$$(r,t)\cdot (m,s):=(rm,ts)\ (r,t)\in S^{-1}R, (m,s)\in S^{-1}M$$

Given ideal $I \subseteq R$ localisation $S^{-1}I \subset S^{-1}R$ as an ideal is isomorphism as an $S^{-1}R$ -module to the localisation of I as a module.