Université de Biskra - FSESNV

DÉPARTEMENT DE MATHÉMATIQUES

Module: Analyse de Données-Master 1 -2021/2022

TD N°1: RÉGRESSION LINÉAIRE SIMPLE

Exercice 1. Soit le modèle de régression simple sans canstante (passe par l'origine) :

$$y_j = ax_j + \varepsilon_j, \quad j = 1, ..., n \text{ et } \varepsilon \sim N(0, \sigma^2).$$

- 1) En utilisant la méthode des moindres carrés, donner l'expresion de l'estimateur \hat{a} de a.
- 2) Montrer que \hat{a} est un estimateur sans biais de a. Calculer la variance de \hat{a} .

Exercice 2. Considérons les deux modèles de régression suivants:

$$z_j = \alpha v_j + \beta + \zeta_j$$
 et $y_j = ax_j + b + \varepsilon_j$, $\zeta \sim N\left(0, \sigma_1^2\right)$ et $\varepsilon \sim N\left(0, \sigma_2^2\right)$ $j = 1, ..., n$

où $z_j = y_j - \overline{y}$ et $v_j = x_j - \overline{x}$. Montrer que $\widehat{\beta} = 0$ et que $\widehat{\alpha} = \widehat{a}$.

Exercice 3. La distribution suivante montre une relation linéaire simple :

$$Y = aX + b + \varepsilon$$
, $j = 1, ..., 10$ et $\varepsilon \sim N(0, \sigma^2)$.

entre l'évolution du taux de croissance économique Y(en %) et le prix de pétrole X(en \$) pendant 10 ans :

x(\$)										
y(%)	1.9	4.4	5.6	4.1	3.2	-3	-2	0	-2.9	1.1

- 1) Donner la représentation graphique des données.
- 2) Completez le tableau et estimez les paramètres du modèle.
- 3) Calculer la valeur de $\hat{\sigma}_{\varepsilon}^2 = s^2$.
- 4) Calculer les quantités : $\hat{\sigma}_1^2$ et $\hat{\sigma}_0^2$ (i.e., estimateurs des variances de a et b resp.).
- 5) Testez la signification des paramètres du modèle au niveau 95%.
- 6) Déterminer l'intervalle de confiance à 90% des paramètres a et b.
- 7) Testez la validité du modèle.
- 8) Quelle quantité mesure la bonne explication de la variable à expliquer par la variable explicative? Que vaut-elle ici ? Est-ce une valeur satisfaisante ?
- 9) Donnez le taux de croissance lorsque le prix du pétrole est 130\$?
- 10) Considérant le cas du prix du pétrole 100\$, estimer la valeur moyenne correspondante du taux de croissance. Et donner une limite supérieure au seuil $\alpha = 10\%$.
- 11) Supposons que pour un prix du pétrole 100\$, le taux de croissance est 5%. Cette valeur peut-elle être considérée, à 90% d'accord avec l'équation d'estimation trouvée ?

Exercice 4. Considérons la série y_t des indices trimestriels de la production industrielle de 2006 à 2012. On modélise l'indice trimestriel y_t de la production industrielle par :

$$y_t = at + b + \varepsilon_t, \qquad t = 1, ..., 28$$

correspondant à chacun des trimestres entre 2006 et 2012, avec $\varepsilon \sim N(0,1)$. On donne

$$\sum_{t=1}^{28} y_t = 3647, \qquad \sum_{t=1}^{28} y_t^2 = 478765, \qquad \sum_{t=1}^{28} t y_t = 53500.$$

- 1) Donner une estimation de l'équation de la tendance (droite de régression).
- $\mathbf{2}$) Calculez le coefficient de détermination D de la régression.
- 3) Quelles sont les valeurs prédites de l'indice pour les années 2016 et 2017.

Exercice 5. La loi de Boyle relie la pression P d'un gaz au volume V selon l'équation :

$$PV^{\alpha} = \beta$$
, α et β sont deux constantes.

1) Donner une estimation des paramètres α et β du modèle à l'aide des données :

2) Calculer une prévision du pression pour un volume V = 0.5.

Exercice 6. On considère le modèle linéaire : $y_j = ax_j + b + \varepsilon_j$, j = 1,...,n, avec $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma_{\varepsilon}^2$ et $E(\varepsilon_i \varepsilon_j) = 0$ $(i \neq j)$. Notons y_p la valeur prédite de y quand $x = x_p$. Montrer que l'erreur de prévision $\hat{\varepsilon}_p = y_p - \hat{y}_p$ verifiée la propriété suivante :

$$Var\left(\hat{\varepsilon}_{p}\right) = \sigma_{\varepsilon}^{2} \left(1 + \frac{1}{n} + \frac{(x_{p} - \overline{x})^{2}}{\sum (x_{j} - \overline{x})^{2}}\right).$$