Introduction, Définitions, Machines de Turing

Alphabets, Langages

- Alphabet Σ : ensemble fini.
- Σ^n : les mots de longueur n.
- $w = a_1 a_2 \dots a_n \in \Sigma^n$, |w| = n: longueur du mot w.
- \bullet : mot vide. $|\epsilon| = 0$.
- $\Sigma^* = \bigcup_{i \in \mathbb{N}} \Sigma^i$: les mots sur l'alphabet Σ .
- Concaténation de $w,w'\in \Sigma^*$ notée ww'. |ww'|=|w|+|w'|.
- Langage P, Problème (de décision) P: partie de Σ^* : $L \subset \Sigma^*$, $P \subset \Sigma^*$.

Machines de Turing

• Une machine de Turing à k-rubans est un 8-uplet

$$M=(Q,\Sigma,\Gamma,B,\delta,q_0,q_a,q_r)$$
 où

- 1. Q est l'ensemble fini des états
- 2. Σ est l'alphabet
- 3. Γ est l'alphabet de travail: en général Σ et des caractères de contrôle supplémentaires.
- 4. *B* est le caractère blanc.
- 5. $q_0 \in Q$ est l'état initial
- 6. $q_a \in Q$ est l'état d'acceptation
- 7. $q_r \in Q$ est l'état de rejet (ou arrêt).
- 8. δ fonction de transition: fonction de $Q \times \Gamma^k$ dans $Q \times \Gamma^{k-1} \times Mvt^k$, $Mvt = \{\leftarrow, \mid, \rightarrow\}$.

Conventions

- Dans la définition précédente, on suppose que le premier ruban, appelé ruban d'entrée est uniquement accessible en lecture (= il n'est pas accessible en écriture).
- Les rubans 2 à k sont appelés rubans de travail.

Configurations

 Une configuration est donnée par la description du ruban, les positions des têtes de lecture/écriture, et l'état interne. Elle sera notée

 $C=(q,u_1\#v_1,\ldots,u_k\#v_k)\;u_1,\ldots,u_n,v_1,\ldots,v_n\in\Gamma^*$, $q\in Q$: u_i et v_i désigne le contenu respectivement à gauche et à droite de la tête de lecture du ruban i, la tête de lecture du ruban i étant sur la première lettre de v_i .

- La configuration est dite **acceptante** si $q=q_a$, rejetante si $q=q_r$.
- Pour $w \in \Sigma^*$, la configuration initiale correspondante à w est $C[w] = (q_0, \#w, \#, \dots, \#)$.

Calculs

• On note: $C \vdash C'$ si la configuration C' est le successeur direct de la configuration C par le programme (donné par δ) de la machine de Turing

Calculs

- Calcul de M sur un mot $w \in \Sigma^*$: suite de configurations $(C_i)_{i \in N}$ telle que $C_0 = C[w]$ et pour tout $i, C_i \vdash C_{i+1}$.
- Le mot w est dit **accepté** si le calcul sur ce mot est tel qu'il existe un entier t avec C_t acceptante.
- ullet On dit dans ce cas que w est accepté **en temps** t.
- Si m désigne le nombre de cases des rubans 2 à k (= autre que le ruban d'entrée) utilisés jusqu'au temps t, on dit dans ce cas que w est accepté en espace (mémoire) m.

Langage reconnu par une MT

- Un langage $L \subset \Sigma^*$ est accepté par M si pour tout $w \in \Sigma^*$,
 - $w \in L$ si et seulement si w est accepté.

Bornes sur l'espace et le temps

Soit $f: \mathbb{N} \to \mathbb{N}$ une fonction.

- Un langage $L \subset \Sigma^*$ est accepté par M en temps f si pour tout $w \in \Sigma^*$, si on pose n = |w|,
 - $w \in L$ si et seulement si w est accepté.
 - lorsque $w \in L$, w est accepté en un temps $t \leq f(n)$
- Un langage $L \subset \Sigma^*$ est accepté par M en espace f, si M possède $k \geq 2$ rubans, le premier en lecture seulement, et si pour tout $w \in \Sigma^*$, si on pose n = |w|,
 - $w \in L$ si et seulement si w est accepté.
 - lorque $w \in L$, w est accepté en espace $m \leq f(n)$.

Fonction calculée par une MT

- Les machines de Turing peuvent aussi être vus comme calculant des fonctions: on leur ajoute un ruban de sortie, accessible uniquement en écriture (une telle machine de Turing est aussi appelé transducteur).
- On dit qu'une fonction $g: \Sigma^* \to \Sigma^*$ est calculée par une machine de Turing M si M possède k+1 rubans, le premier seulement en lecture, le k+1ème ruban étant accessible uniquement en écriture, telle que pour tout $w \in \Sigma^*$,
 - 1. w est accepté par M en un certain temps t
 - 2. la configuration C_t vaut $(q_a, \#w, \#, \dots, \#, \#g(w))$.

- On dit que g est calculée en temps f, où $f: \mathbb{N} \to \mathbb{N}$ est une fonction, si g est calculée par M et on a de plus $t \leq f(n)$ pour tout w.
- On dit que g est calculée en espace f, où $f: \mathbb{N} \to \mathbb{N}$ est une fonction, si g est calculée par M et on a de plus que pour tout $w \in \Sigma^*$, le nombre de cases m utilisées par les configurations C_1, \ldots, C_t sur les rubans 2 à k (= on ne compte pas le ruban d'entrée et de sortie) satisfait toujours $m \leq f(n)$.

Machines de Turing Non-Determinist

Une machine de Turing à k-rubans NON-DETERMINISTE est un 8-uplet

$$M=(Q,\Sigma,\Gamma,B,\delta,q_0,q_a,q_r)$$
 où

- 1. $Q, \Sigma, \Gamma, B, q_0, q_a, q_r$ sont comme avant
- 2. δ fonction de transition: fonction de $Q \times \Gamma^k$ dans $\mathcal{P}(Q \times \Gamma^{k-1} \times Mvt^k)$ avec $Mvt = \{\leftarrow, \mid, \rightarrow\}$ $(\mathcal{P}(Q \times \Gamma^{k-1} \times Mvt)$ désigne l'ensemble des parties de $Q \times \Gamma^k \times Mvt^k$).

Configurations

- On note: $C \vdash C'$ si la configuration C' est UN successeur direct de la configuration C par le programme (donné par δ) de la machine de Turing non déterministe.
- Calcul de M sur mot $w \in \Sigma^*$: UNE suite de configurations $(C_i)_{i \in N}$ telle que $C_0 = C[w]$ et pour tout $i, C_i \vdash C_{i+1}$.

- Le mot w est dit **accepté** si il existe UN calcul $(C_i)_{i \in N}$ sur le mot w, avec un entier t, tel que C_t est acceptante.
- On dit dans ce cas que w est accepté **en temps** t par le calcul $(C_i)_{i \in N}$.
- Le mot est dit accepté en **espace** m par le calcul $(C_i)_{i \in N}$ si le calcul $(C_i)_{i \in N}$ à utilisé au plus m cases mémoires sur les rubans $2, \ldots, k$.

Langage reconnu par une MT

- Les notions de langage reconnu sont inchangés. Ainsi:
- Un langage $L \subset \Sigma^*$ est accepté par M si pour tout $w \in \Sigma^*$,
 - $w \in L$ si et seulement si w est accepté.

Bornes sur l'espace et le temps

Soit $f: \mathbb{N} \to \mathbb{N}$ une fonction.

- Un langage $L \subset \Sigma^*$ est accepté par M en temps f si pour tout $w \in \Sigma^*$, si on pose n = |w|,
 - $w \in L$ si et seulement si w est accepté.
 - lorsque $w \in L$, il y a au moins UN calcul $(C_i)_{i \in N}$ sur w qui accepte w en un temps $t \leq f(n)$.
- Un langage $L \subset \Sigma^*$ est accepté par M en espace f, si M possède $k \geq 2$ rubans, le premier en lecture seulement, et si pour tout $w \in \Sigma^*$, si on pose n = |w|,
 - $w \in L$ si et seulement si w est accepté.
 - lorsque $w \in L$, il y a au moins UN calcul $(C_i)_{i \in N}$ sur w qui accepte w en un espace $m \leq f(n)$.

Thèse Church

- Notion informelle d'algorithme
- Thèse de Church: Tout algorithme peut se traduire en un programme de machine de Turing.

Thèse de l'invariance

- Notion informelle d'algorithme
- Thèse de l'invariance: La simumation de tout algorithme par un programme de machine de Turing introduit au plus un ralentissement quadratique, et un facteur constant sur l'espace.

