PROGRAMME DE COLLES

SUP MPSI 2

Semaine 20

Du 11 au 15 mars 2024.

ARCHITECTURE DE LA MATIERE :

Structure Mat 1 CLASSIFICATION PERIODIQUE DES ELEMENTS

EN TD UNIQUEMENT.

Structure Mat 2 STRUCTURE ELECTRONIQUE DES MOLECULES

EN TD UNIQUEMENT.

Structure Mat 3 FORCES INTERMOLECULAIRES; SOLVANTS

EN TD UNIQUEMENT.

MECANIQUE 2:

Mécanique 5

LE MOMENT CINETIQUE

EN COURS ET TD.

Notions et contenus	Capacités exigibles	
2.5. Moment cinétique		
Moment cinétique d'un point matériel par rapport à un point et par rapport à un axe orienté.	Relier la direction et le sens du vecteur moment cinétique aux caractéristiques du mouvement.	
Moment cinétique d'un système discret de points par rapport à un axe orienté.	Utiliser le caractère algébrique du moment cinétique scalaire.	
Moment d'une force par rapport à un point ou un axe orienté.	Calculer le moment d'une force par rapport à un axe orienté en utilisant le bras de levier.	
Théorème du moment cinétique en un point fixe dans un référentiel galiléen. Conservation du moment cinétique.	Identifier les cas de conservation du moment cinétique.	

Mécanique 6 MOUVEMENT DANS UN CHAMP DE FORCES CENTRALES -CAS NEWTONIEN

EN COURS et TD pour les forces centrales. EN COURS UNIQUEMENT pour les champs newtoniens.

Notions et contenus	Capacités exigibles		
2.6. Mouvements dans un champ de force cen	2.6. Mouvements dans un champ de force centrale conservatif		
Point matériel soumis à un champ de force	Établir la conservation du moment cinétique à partir		
centrale.	du théorème du moment cinétique.		
	Établir les conséquences de la conservation du		
	moment cinétique : mouvement plan, loi des aires.		
Point matériel soumis à un champ de force centrale conservatif			
Conservation de l'énergie mécanique. Énergie potentielle effective. État lié et état de	Exprimer l'énergie mécanique d'un système conservatif ponctuel à partir de l'équation du		
diffusion.	mouvement. Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective. Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective. Relier le caractère borné du mouvement radial à la valeur de l'énergie mécanique.		
	<u>Capacité numérique</u> : à l'aide d'un langage de programmation, obtenir des trajectoires d'un point matériel soumis à un champ de force centrale conservatif.		
Cas particulier du champ newtonien Lois de Kepler.	Énoncer les lois de Kepler pour les planètes et les transposer au cas des satellites terrestres.		
Cas particulier du mouvement circulaire : satellite, planète.	Établir que le mouvement est uniforme et déterminer sa période.		
	Établir la troisième loi de Kepler dans le cas particulier de la trajectoire circulaire. Exploiter sans démonstration sa généralisation au cas d'une trajectoire elliptique.		
Energie mécanique dans le cas du mouvement circulaire et dans le cas du mouvement elliptique.	Exprimer l'énergie mécanique pour le mouvement circulaire. Exprimer l'énergie mécanique pour le mouvement elliptique en fonction du demi-grand axe.		
Satellites terrestres Satellites géostationnaire, de localisation et de navigation, météorologique.	Différencier les orbites des satellites terrestres en fonction de leurs missions. Déterminer l'altitude d'un satellite géostationnaire et justifier sa localisation dans le plan équatorial.		

MOUVEMENT D'UN SOLIDE

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles
2.7. Mouvement d'un solide	
Description du mouvement d'un solide dans deux cas particuliers	
Définition d'un solide.	Différencier un solide d'un système déformable.
Translation.	Reconnaître et décrire une translation rectiligne ainsi qu'une translation circulaire.
Rotation autour d'un axe fixe.	Décrire la trajectoire d'un point quelconque du solide et exprimer sa vitesse en fonction de sa distance à l'axe et de la vitesse angulaire.
Théorème scalaire du moment cinétique appliqué au solide mobile autour d'un axe fixe	
Moment cinétique d'un solide en rotation autour d'un axe : moment d'inertie.	Exploiter, pour un solide, la relation entre le moment cinétique scalaire, la vitesse angulaire de rotation et le moment d'inertie fourni. Relier qualitativement le moment d'inertie à la répartition des masses.
Couple.	Définir un couple.
Liaison pivot.	Définir une liaison pivot et justifier le moment qu'elle peut produire.
Théorème scalaire du moment cinétique appliqué au solide en rotation autour d'un axe fixe dans un référentiel galiléen.	Exploiter le théorème scalaire du moment cinétique appliqué au solide en rotation autour d'un axe fixe dans un référentiel galiléen.
Pendule pesant.	Établir l'équation du mouvement. Établir une intégrale première du mouvement.
	Réaliser l'étude énergétique d'un pendule pesant et mettre en évidence une diminution de l'énergie mécanique.
	Capacité numérique : à l'aide d'un langage de programmation, mettre en évidence le non isochronisme des oscillations.
Approche énergétique du mouvement d'un	
solide en rotation autour d'un axe fixe orienté, dans un référentiel galiléen	
Énergie cinétique d'un solide en rotation autour d'un axe fixe.	Utiliser l'expression de l'énergie cinétique, l'expression du moment d'inertie étant fournie.
Théorème de l'énergie cinétique pour un solide en rotation autour d'un axe fixe.	Établir, dans ce cas, l'équivalence entre le théorème scalaire du moment cinétique et celui de l'énergie cinétique.

Questions de cours à choisir parmi les suivantes :

- ✓ Q1 : Savoir définir moment cinétique d'un point matériel par rapport à un point et un axe. Savoir définir moment d'une force par rapport à un point et un axe. Comprendre la notion de bras de levier (§ I & II).
- ✓ Q2 : Savoir énoncer et démontrer le théorème du moment cinétique par rapport à un point et par rapport à un axe (§ III).
- ✓ Q3 : Savoir appliquer le théorème du moment cinétique/axe au pendule simple pour retrouver l'équation différentielle du mouvement. Calcul des moments en utilisant la notion de bras de levier. (§ IV).
- ✓ Q4 : Savoir appliquer le théorème du moment cinétique/au point O au pendule simple pour retrouver l'équation différentielle du mouvement. (§ IV).
- ✓ Q5 : Conservation du moment cinétique pour un champ de forces centrales et conséquences : planéité du mouvement & loi des aires (§ 1.2a).
- ✓ Q6 : Conservation de l'énergie mécanique pour un champ de forces centrales et savoir retrouver l'énergie potentielle effective. Savoir faire la discussion graphique à partir de l'énergie potentielle effective (§ I.2.b).
- ✓ Q7 : Savoir énoncer les 3 lois de Kepler et savoir traiter le cas particulier des satellites en orbites circulaires : Mvt uniforme, période ; 3ème loi de Kepler ; Energie mécanique et satellite géostationnaire) (§ II. 5 a & b).
- ✓ Q8 : Cas particulier des trajectoires elliptiques : Connaître qq propriétés des orbites elliptiques (Périgée ; Apogée ; Relation entre r_P et r_A et le grand axe). Savoir établir la relation r_A $v_A = r_P$ v_P au périgée et à l'apogée. Enfin savoir retrouver l'expression de l'énergie mécanique pour une trajectoire elliptique (§ II. 5. d).
- ✓ Q9: Connaitre la relation entre moment cinétique scalaire et moment d'inertie d'un solide; Savoir relier le moment d'inertie à la répartition des masses; Retrouver ensuite le théorème du moment cinétique scalaire pour un solide en rotation autour d'un axe fixe; savoir définir un couple et une liaison pivot et liaison pivot parfaite. (§ III. 1; 2; 3 & 4.).
- ✓ Q10 : Savoir refaire l'exemple du <u>pendule pesant</u> avec établissement de l'équation différentielle du mouvement grâce au théorème du moment cinétique scalaire pour un solide en rotation. J_{Δ} est une donnée (§ IV. 1).
- ✓ Q11 : Connaître l'expression de l'énergie cinétique pour un solide en rotation ; Savoir exprimer les théorèmes énergétiques pour les solides en rotation. Savoir retrouver l'expression de la puissance des forces extérieures pour un solide en rotation à partir du TPC. (§ V. 1. b ; V. 3 & V. 4. b).
- ✓ Q12 : Savoir refaire l'exemple du pendule pesant grâce à une approche énergétique : Energie cinétique ; Energie potentielle ; Conditions d'équilibre et stabilités. Retrouver l'équation différentielle du mvt à partir de l'intégrale première du mvt (§ V.5).

Exercice d'application de Q12 : Approche énergétique du pendule pesant :

Un pendule pesant est constitué d'une tige homogène attachée en un point O et pouvant osciller librement. La tige est de longueur l et de masse m, donc en pivot parfait autour de Δ =Ox. Sa position est repérée par l'angle θ par rapport à la verticale. Le moment d'inertie de la tige par rapport à l'axe Ox est : $J_{\Delta} = \frac{1}{3} m l^2$.

- 1) Exprimer l'énergie cinétique de la tige à un instant quelconque.
- 2) De même avec l'énergie potentielle de pesanteur.
- 3) En déduire les positions d'équilibre et étudier leur stabilité.
- 4) Trouver une intégrale première du mouvement. En déduire l'équation du mouvement de la tige.

