Formelsammlung Nachrichtentechnik

Stand Sommersemester 2022

Institut für Mikrowellentechnik und Photonik Technische Universität Darmstadt

Hinweis:

Die mit # gekennzeichneten Formeln sind *nicht* Bestandteil der Formelsammlung in der Klausur und sollten daher auch ohne Formelsammlung beherrscht werden.

0 Allgemeine Beziehungen

0.1 Winkelbeziehungen

$$\begin{aligned} \cos^2(x) &= \frac{1}{2} [1 + \cos(2x)] \\ \cos^3(x) &= \frac{1}{4} [3\cos(x) + \cos(3x)] \\ \sin^2(x) &= \frac{1}{2} [1 - \cos(2x)] \\ \sin^3(x) &= \frac{1}{4} [3\sin(x) - \sin(3x)] \\ \cos(x)\cos(y) &= \frac{1}{2} [\cos(x - y) + \cos(x + y)] \\ \sin(x)\sin(y) &= \frac{1}{2} [\cos(x - y) - \cos(x + y)] \\ \sin(x)\cos(y) &= \frac{1}{2} [\sin(x - y) + \sin(x + y)] \end{aligned}$$

0.2 Konstanten

Boltzmannkonstante	$k = 1.38 \cdot 10^{-23} \frac{J}{K}$
Planck'sches Wirkungsq.	$h = 6,626 \cdot 10^{-34} \text{J s}$
Elektr. Feldkonstante	$\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\mathrm{As}}{\mathrm{Vm}}$
Magnet. Feldkonstante	$\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{Vs}}{\text{Am}}$ $c_0 \approx 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$
Lichtgeschwindigkeit	$c_0 \approx 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$
Freiraumimpedanz	$\eta_0 = 120\pi\Omega \approx 377\Omega$

0.3 Logarithmen

Exponent	$\log(A^B) = B \cdot \log A$
Multiplikation	$\log(A \cdot B) = \log A + \log B$
Division	$\log\left(\frac{A}{B}\right) = \log A - \log B$
Umrechnung	$\log_N(A) = \frac{\log(A)}{\log(N)}$

0.4 SI-Einheitenpräfixe

$$\begin{array}{lll} p \to 10^{-12} & n \to 10^{-9} & \mu \to 10^{-6} \\ \mu \to 10^{-3} & k \to 10^{3} & M \to 10^{6} \\ G \to 10^{9} & T \to 10^{12} \end{array}$$

1 Pegel

Spannungsspegel [Np]	$L_U = \ln\left(\frac{U_2}{U_1}\right)$
Spannungsspegel [dB]	$L_U = 20 \log \left(\frac{U_2}{U_1}\right) \#$
Leistungspegel [dB]	$L_P = 10\log\left(\frac{P_2}{P_1}\right) \#$
Umrechnung (dB \leftrightarrow Np)	$1 \text{ Np} \approx 8.686 \text{ dB}$

2 Antennen

Fernfeldabstand	$r_{\rm ff} = \frac{2D^2}{\lambda}$
Nahfeldabstand	$r_{\rm nf} \approx \lambda$
Richtcharacteristik	$c(\theta, \Phi) = \frac{E(\theta, \Phi)}{E_{\text{max}}}$
Gewinn (Gain)	$G(\theta, \Phi) = \varepsilon_{\text{rad}} \cdot D(\theta, \Phi)$
Effizienz	$\varepsilon_{\rm rad} = \frac{P_{\rm rad}}{P_{\rm in}}$
Empfangsleistung	$P_R = \frac{G_S \cdot A_{e,E}}{4\pi \cdot d^2} P_T$
Effektive Apertur	$A_e = \frac{P_R}{S_i} = \frac{\lambda^2}{4\pi} \cdot G_0$
Freiraumdämpfung	$a_{\rm fs} = 20 \log \left(4 \pi \frac{d}{3}\right) \#$

3 Signalverzerrungen

Klirrfaktor
$$k = \sqrt{\left[\sum_{n=2}^{\infty} \hat{g}_{n}^{2}\right] \cdot \left[\sum_{n=1}^{\infty} \hat{g}_{n}^{2}\right]^{2}}$$
Teilklirrfaktor $k_{n} = \frac{\hat{g}_{n}}{\hat{g}_{1}}$
IP3 (Eingang) $L_{\text{IP3,in}} = L_{\text{in,IM3}} + \frac{\text{IML}_{3}}{2}$
IP3 (Ausgang) $L_{\text{IP3,out}} = g_{p} + L_{IP3,in}$

4 Rauschen

Signal-Rauschabstand	$SNR = 10 \cdot \log\left(\frac{P_S}{P_N}\right) \#$
Mittelwertfrei	$\overline{U_N(t)}=0$
Leistung	$\overline{U_N^2(t)} > 0$
Unkorreliert	$\overline{U_{N1}(t)\cdot U_{N2}(t)}=0$

4.1 Rauschleistung

Äqui. Rauschbandbreite	$B_n = \frac{1}{H_0^2} \int H(f) ^2 \cdot df \#$
Rauschleistung	$P_n = \int H(f) ^2 \cdot N(f) \cdot df$
Rauschleistungsdichte	$N(f) \approx k \cdot T \ (f \le 600 \text{GHz}) \#$
Rauschleistung	$P_n = k \cdot T \cdot B_n \#$
Widerstand (Spannung)	$U_n = \sqrt{4kTB_nR}$
Widerstand (Strom)	$I_n = \sqrt{4kTB_nG}$

4.2 Rauschende Zweitore

Äqui. Rauschtemperatur	$T_1' = T_1 + \frac{T_{ni}}{g_P}$
Äqui. Rauschtemperatur Rauschzahl	$F = \frac{g_P P_{N1} + P_{Ni}}{g_P P_{N1}}$
Rauschtemperatur	$T = (F - 1) \cdot T_0 \#$
	$T = (\alpha - 1) \cdot T_{\text{phy}} \#$

4.3 Kaskadierung rauschender Zweitore

$$\begin{array}{ll} \text{Rauschtemperatur} & T_{\Sigma} = T_{\text{n}1} + \sum\limits_{n=2}^{N} \frac{T_{\text{ni}}}{\prod_{k=1}^{n-1} g_{p_k}} \\ \text{Rauschzahl} & F_{\Sigma} = F_1 + \sum\limits_{n=2}^{N} \frac{F_{n}-1}{\prod_{k=1}^{n-1} g_{p_k}} \end{array}$$

5 Informationstheorie

Informationsgehalt $I(x_i) = -\log_2(p(x_i))$ Entropie $H = \overline{I} = \sum_{n=1}^{N} p(x_i)I(x_i)$ Maximale Entropie $H_0 = \max H = \log_2 n$ Redundanz $R(X) = H_0 - H(X)$ Kanalkapazität $C = B_C \cdot \log_2\left(1 + \frac{P_s}{P_n}\right)$

6 Anpassung

Leistungsanpassung $\underline{Z}_L = \underline{Z}_G^*$ #Widerstandsanpassung $\underline{Z}_L = \underline{Z}_G$ #Reflektionsfaktor $\underline{\Gamma} = r \cdot e^{j\Phi} = \frac{\underline{Z}_L - \underline{Z}_G}{\underline{Z}_L + \underline{Z}_G}$ Welligkeitsfaktor (VSWR) $s = \frac{1 + |\underline{\Gamma}|}{1 - |\Gamma|} = \frac{1 + r}{1 - r}$

7 Verfahren zur störungsarmen Signalübertragung

Analoge Entzerrung $H_e(f) = \frac{A}{H_{\hat{\lambda}}(f)} e^{-j2\pi f \tau}$ Digitale Entzerrung $H_e(z) = \frac{A}{H_c(z)} z^{-\tau/T}$

8 Digitale Modulation im Basisband

8.1 Abtastung

Nyquist-Kriterium $f_p \ge f_{\text{Ny}} = 2f_{\text{max}} \#$

8.2 Quantisierung

 $\begin{array}{ll} \text{Auflösung} & \Delta s = \frac{x_{\max} - x_{\min}}{N} = \frac{y_{\max} - y_{\min}}{N-1} \\ \text{Bitzustände} & n = \log_2(N) \ \# \\ \text{Quantisierungsfehler} & e(t) = x(t) - s_q(t) \\ \text{Dynamik} & D = 20 \log\left(\frac{x_{\max} - x_{\min}}{\Delta s}\right) \\ \text{Q.Rauschleistung} & P_Q = \frac{\Delta s^2}{12R} \\ \text{Sig.-Q.-Rauschabstand} & \text{SNR}_q \approx 1.8 + 6n \text{ (in dB) } \# \\ \text{Bitrate} & R_b = (k \cdot n + s) \cdot f_p \ \# \end{array}$

8.3 Nichtlineare Quantisierung

A-Law $y = \operatorname{sgn}(x) \frac{A|x|}{1 + \ln A}$ $0 \le |x| \le A^{-1} A = 87, 6$ μ -Law $y = \operatorname{sgn}(x) \frac{\ln(1 + \mu|x|)}{\ln(1 + \mu)}$ $0 \le |x| \le 1$ $\mu = 255$

9 Mischung

9.1 Gleichlagen-Mischung

Vorraussetzung $f_s > f_{LO}$ #
Signalfrequenz $f_s = f_{LO} + f_{IF}$ #
Spiegelfrequenz $f_I = f_{LO} - f_{IF}$ #

9.2 Kehrlagen-Mischung

Vorraussetzung $f_s < f_{LO}$ # Signalfrequenz $f_s = f_{LO} - f_{IF}$ # Spiegelfrequenz $f_I = f_{LO} + f_{IF}$ #

10 Analoge Modulation

AM $u_{AM} = [\hat{u}_c + u_s(t)]\cos(\omega_c t)$ $u_{AM} = \hat{u}_c [1 + m \cdot \cos(\omega_s t)]\cos(\omega_c t)$ $m = \hat{u}_s/\hat{u}_c$ (Modulationsgrad) FM $u_{FM} = \hat{u}_c \cos\left(\omega_c t + \int_0^t \alpha_\omega u_s(t) dt\right)$

FM $u_{\text{FM}} = \hat{u}_c \cos \left(\omega_c t + \int_0^t \alpha_\omega u_s(t) dt \right)$ $u_{\text{FM}} = \hat{u}_c \cos \left(\omega_c t + \int_0^t \alpha_\omega \hat{u}_s \cos(\omega_s t) dt \right)$ $\alpha_\omega = \frac{\Delta\omega}{1\text{V}} \text{ (Frequenzhub)}$

PM $u_{\rm PM} = \hat{u}_c \cos\left(\omega_c t + \alpha_{\phi} u_s(t)\right)$ $u_{\rm PM} = \hat{u}_c \cos\left(\omega_c t + \alpha_{\phi} \hat{u}_s \cos(\omega_s t)\right)$ $\alpha_{\phi} = \frac{\Delta \phi}{1 V}$ (Phasenhub)

11 Digitale Modulation eines harmonischen Trägers

Zustandsbits $m = \log_2(M)$ #
Bitrate $[\frac{1}{s}]$ $R_b = \frac{1}{T_b}$ #
Symboldauer $T_s = m \cdot T_b$ Symbolrate [baud] $R_s = \frac{1}{T_s} = \frac{1}{mT_b} = \frac{R_b}{m}$ Einseitige BB-Bandbreite $B_{\min,m} = \frac{1}{2T_s}$ Zweiseitige HF-Bandbreite $B_{HF} = 2B_{m,\min}$

11.1 Realiserbare Impulsformfilter mit flacher Flanke (raise cosine Filter)

$$|H_{RC}(f)| = \begin{cases} 1 & \text{für } 0 \le |f| \le (1-r)f_{Ny} \\ \cos^2\left[\frac{\pi}{4r}\left(\frac{f}{f_{Ny}} - (1-r)\right)\right] & \text{sonst} \\ 0 & \text{für } |f| \ge (1+r)f_{Ny} \end{cases}$$

 $\begin{array}{ll} \text{Bandbreite rc-Filter} & B_{\text{rc}} = \frac{1+r}{2 \cdot T_s} \\ \text{Rauschbandbreite rc-Filter} & B_n = f_{Ny} = \frac{1}{2 \cdot T_s} = \frac{R_b}{2 \cdot m} \\ \text{HF-Bandbreite (zweiseitig)} & B_{\text{HF}} = 2 \cdot B_{\text{rc}} \\ \text{Spektrale Effizienz} & \varepsilon_b = \frac{R_b}{B_{rc}} = \frac{1}{T_b} \cdot \frac{2T_s}{1+r} \end{array}$