

Copia No Controlada

Instituto Nacional de Tecnología Industrial

Centro de Desarrollo e Investigación en Física y Metrología

Procedimiento específico: PEA11

FILTROS POR BANDAS DE OCTAVAS Y TERCIOS DE OCTAVAS, VERIFICACIÓN DE CARACTERÍSTICAS TÉCNICAS SEGÚN NORMA IRAM 4081/77.

Revisión: Agosto 2012

Este documento se ha elaborado con recursos del Instituto Nacional de Tecnología Industrial. Sólo se permite su reproducción sin fines de lucro y haciendo referencia a la fuente.

INTI Física y Metrología

PEA11 Lista de enmiendas: Agosto 2012

ENM	IENDA	DESCARTA			INSERTAR			RECIBIDO
N°	FECHA	CAPÍTULO	PÁGINA	PÁRRAFO	CAPÍTULO	PÁGINA	PÁRRAFO	FIRMA

INTI Física y Metrología

PEA11 Índice: Agosto 2012

NOMBRE DEL CAPÍTULO	REVISIÓN
Página titular	Agosto 2012
Lista de enmiendas	Agosto 2012
Índice	Agosto 2012
Filtros por bandas de octavas y tercios de octavas, verificación de características técnicas según Norma IRAM 4081/77.	Agosto 2012
Apéndice 1	Agosto 2012
Apéndice 2	Agosto 2012
Apéndice 3	Agosto 2012

PREPARADO POR FIRMA Y SELLO Téc. FEDERICO SERRANO U.T. ACÚSTICA INTI - FÍSICA Y METROLOGÍA REVISADO POR FIRMA Y SELLO HATRICIA VARELA ORLIGAD Y ADMINISTRACION

REVISADO POR FIRMA Y SELLO Ing JORGE RIGANTI U.T ACUSTICA INTI-FISICA Y METROLOGIA

REVISADO POR FIRMA Y SELLO

RNG. LUCIA TAIBO COORDINADORA ACUSTICA

INTI - FISICA Y METROLOGIA

APROBADO POR

FIRMA Y SELLO

Ing. JUAN A. FORASTIERI DIRECTOR TECNICO INTI - FISICA Y METROLOGIA

PEA11: Agosto 2012

1. Objeto

Establecer los métodos de ensayo para la verificación de la pérdida por transmisión en función de la frecuencia de los filtros comprendidos en el título.

2. Alcance

Todos los filtros, de bandas de octavas clase 1 y 2, y de tercios de octavas clase 2 y 3, que deban ser verificados y satisfacer los requerimientos de las normas IRAM 4081/77 ítems 4.4 y 5 e IEC 60225/66, ítem 6.

3. Definiciones y abreviaturas

Se encuentran en las normas de referencia.

4. Referencias

- Norma IRAM 4081/77, filtros de banda de octava, de media octava y de tercio de octava destinados al análisis de sonidos y vibraciones.
- Norma IEC 60225/66, filtros de banda de octava, de media octava y de tercio de octava destinados al análisis de sonidos y vibraciones.

5. Responsabilidades

5.1. Del Coordinador de la Unidad Técnica Acústica

Supervisar la realización de las calibraciones. Verificar que se cumplan los procedimientos y revisar los resultados.

5.2. Del personal del laboratorio

Realizar las calibraciones aplicando el presente procedimiento. Procesar los datos correspondientes y emitir el certificado.

6. Instrucciones

- Las instrucciones de trabajo se efectúan de acuerdo con la siguiente metodología.
- Conectar el filtro a medir al medidor de nivel sonoro correspondiente en caso de que no se halle contenido en el medidor.

Conectar los equipos siguiendo el siguiente esquema:

Figura 1

- 1. Para posibilitar la conexión eléctrica, en el medidor de nivel sonoro reemplazar el micrófono por el adaptador WA0302.
- **2.** Los controles del medidor de nivel sonoro deben estar seleccionados en el rango de referencia; en ponderación lineal y lectura "Fast".
- **3.** Los controles del mutímetro Fluke 45 deben estar seleccionados para leer tensión alterna en la pantalla principal y frecuencia en la secundaria.
- **4.** Ajuste el selector de frecuencia en el generador Krohn-hite 4402B hasta leer 1000 Hz en el multímetro Fluke 45.

PEA11: Agosto 2012

- **5.** Ajuste la tensión de salida del generador Krohn-hite 4402B hasta que la indicación en el medidor de nivel sonoro sea de -10 dB de la indicación a plena escala. Anote ese valor en la planilla correspondiente en el item "FSD-10dB". Leer la tensión en mV en el multímetro Fluke 45 y anotarla en el item "Tensión"
- **6.** En el medidor de nivel sonoro, conmutar de "Ponderación Lineal" a "Filter" o encender el filtro, según corresponda. Ubique el selector de frecuencia del filtro en 1 kHz. Verificar que se mantiene la tensión de entrada y anotar la indicación del medidor de nivel sonoro en la casilla "1000".
- 7. Pasar el generador Krohn-hite 4402B a 707 Hz (0,707 fm), verificar que se mantiene la tensión de entrada. En caso contrario, ajustarla al valor inicial. Anotar la indicación del medidor de nivel sonoro en la casilla "707".
- **8.** Repetir el procedimiento para todas las casillas de la tabla.
- **9.** Calcular la atenuación restando el valor consignado en "FSD-10dB" del medido para cada caso. Observar que sea igual o mayor a la atenuación establecida para "fm" y cada múltiplo y submúltiplo de fm. Consignar el mayor y menor valor de atenuación para cada columna de fm para redactar el informe

6.3. Identificación y almacenaje

Los medidores a ensayar se identifican de acuerdo con las instrucciones del Manual de la Calidad y son guardados, desde su ingreso hasta la devolución al cliente, en el Laboratorio de Electroacústica, sala Nº 60, ver capítulo 9 del MC.

6.4. Instrumental a utilizar

- Oscilador senoidal, marca KROHN-HITE, modelo 4402, número de serie: 1212.
- Termómetro e higrómetro digital, marca DAVIS, modelo WEATHER MONITOR II, Nº de serie: MC50717A06.
- Multímetro, marca FLUKE, modelo 45, Nº de serie: 5435172.
- Barómetro marca DRUCK, modelo DTI-740, Nº de serie: 7400402

6.5. Condiciones ambientales

Temperatura ambiente: (23 ± 3) °C. Presión atmosférica: (1013 ± 10) hPa. Humedad relativa: (50 ± 20) %.

6.6. Incertidumbres de medición

Tensión: \pm 0,2 dB, ver Apéndice 1.

Frecuencia: ± 1%.

7. Registros de la calidad

Se conservan registros manuscritos de las observaciones originales, copia de los certificados emitidos, como así también copia de la orden de trabajo, salida de elementos y demás documentación relacionada, de acuerdo con el manual de la calidad, capítulo 11.

8. Apéndices y anexos

APÉNDICE N°	TITULO
1	Cálculo de incertidumbres
2	Modelo Registro Interno, Filtros por bandas de octavas.
3	Modelo Registro Interno, Filtros por bandas de tercios de octavas.

PEA11 Apéndice 1: Agosto 2012

Cálculo de Incertidumbres:

PLANILLA PARA EL CALCULO DE LA INCERTIDUMBRE DE CALIBRACION

	a	(1)	()	(2)		(3)	
Procedimiento: PEA07			técnicas según	norma IEC 60942			
Calibradores de nivel sonoro, verificación de característic					racterísticas		

Fuente de incertidumbre	Símbolo	c _i ⁽¹⁾	Valor (±)	Distribución ⁽²⁾	Factor	n _i ⁽³⁾	ui
Tensión generada por generador 4402B		1	0,05	R	1,7	10000	0,03
Resolución del MNS		1	0,05	R	1,7	10000	0,03
		1		R	1,7	10000	
		1		R	1,7	10000	
		1		R	1,7	10000	
		1		R	1,7	10000	
		1		R	1,7	10000	
		1		R	1,7	10000	
Estimate of type B uncertainty, k =1	u _c			N (1S)		20000,0	0,041

Type A Source of Uncertainty, dB re 20 μPa	
Type A uncertainty as Normal distribution (dB) Repeatibility	0,1
Estimate of type A uncertainty, k = 1	0.1

Overall uncertainty, dB re 20 μPa			
Type A, N(95%)	k	2,0	0,196
Type B, N(95%)	k	2,0	0,080
Overall uncertainty. k=2			0,212

Final uncertainty, dB re 20 μ Pa	± 0.21

- (1) Sensitivity coefficients(2) N: normal; R:rectangular(3) Degrees of freedom

PEA11 Apéndice 2: Agosto 2012

Modelo Registro Interno, Filtros por bandas de octavas

ELEMENTOS ENTREGADOS:						
1 (un) juego de filtros por bandas de octavas marca, modelo, modelo						
Número de serie						
Día de medición:, Temperatura:ºC; Presión:hPa; humedad:%						
FSD – 10 db:dB , Tensión :mV						

			r			
fm/4	fm/2	0,707 fm	fm	1,4142 fm	2 fm	4 fm
Hz	Hz	Hz	Hz	Hz	Hz	Hz
> 40	> 18	-0,5 +6	-0,5 +1	-0,5 +6	>18	> 40
7,9	15,8	22,3	31,5	44,5	63,0	126
15,8	31,5	44,5	63	89,1	126	252
31,3	62,5	88,4	125	177	250	500
62,5	125	177	250	354	500	1000
125	250	354	500	707	1000	2000
250	500	707	1000	1414	2000	4000
500	1000	1414	2000	2828	4000	8000
1000	2000	2828	4000	5657	8000	16000
2000	4000	5656	8000	11314	16000	32000
4000	8000	11312	16000	22627	32000	64000

PEA11 Apéndice 3: Agosto 2012

ELEMENTOS ENTREGADOS:										
1 (un) ju modelo				bandas	de	tercios	de	octavas	marca,	
Número de	serie		N	Vúmero d	le ser	ie				
Día de med	ición:	Ten	npera	tura:	ºC; F	resión:		.hPa; hun	nedad:%	

l .						
fm/4	0,7937 fm	0,8909 fm	fm	1,1225 fm	1,2599 fm	4 fm
Hz	Hz	Hz	Hz	Hz	Hz	Hz
> 40	> 18	-0,5 +6	-0,5 +1	-0,5 +6	>18	> 40
7,9	25,0	28,1	31,5	35,4	39,7	126,0
15,8	50,0	56,1	63	70,7	79,4	252,0
31,3	99,2	111,4	125	140,3	157,5	500
62,5	198,4	222,7	250	280,6	315,0	1000
125,0	396,9	445,5	500	561	630,0	2000
250,0	794	891	1000	1123	1260	4000
500,0	1587	1782	2000	2245	2520	8000
1000	3175	3564	4000	4490	5040	16000
2000	6350	7127	8000	8980	10079	32000
4000	12699	14254	16000	17960	20158	64000