REGRESSION ALGORTHIM-ASSIGNMENT

Problem Statement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters.

The Client has provided the dataset of the same.

As a data scientist, you must develop a model which will predict the insurance charges.

1.) Identify your problem statement:

Stage 1: Machine Learning(Dataset in csv file)

Stage 2: Supervised Learning (Requirement is clear that clients want's to predict the insurance charges and while checking input and output, they clearly provide the information).

Stage 3: Regression (because output of this dataset is numerical form).

2.) Tell basic info about the dataset (Total number of rows, columns):

Total number of rows: 1338 rows.

Total number of columns: 6 columns.

It has 5 input as (age, sex, bmi, children, smoker) and 1 output(charges).

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data):

- Yes we have to do pre-processing for this dataset because we have two categorical column (sex and smoker)
- In sex column we have the (male and female) in this we have to change as '0' and '1'.
- In smoker column we have the (yes or no) for this also we have to change as '0' and '1'.

As it is nominal data we have to split as per data.

Here is the example of dataset.

S.no	Age	Sex_male	Sex_Female	BMI	Children	Smoker_Yes	Smoker_No	Charges
1	19	0	1	27.9	0	1	0	16884.92
2	18	1	0	33.7	1	0	1	1725.552
3	28	1	0	33	3	0	1	4449.462
4	33	1	0	22.705	0	0	1	21984.47
5	32	1	0	28.88	0	0	1	3866.855

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

S.No	Model	R ² Score (Best Model Score)
1	Multiple Linear Regression	0.7894790
2	Support Vector Machine(SVM)	0.82636835
3	Decision Tree	0.717000508
4	Random Forest	<mark>0.874147851</mark>

For give dataset Random Forest algorithm is good model.

5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

MULTIPLE LINERAR REGRESSION :

Model: Multiple Linear Regression

R² score: 0.7894790

• SUPPORT VECTOR MACHINE(SVM):

S.No	REGULARIZATION PARAMETER	LINEAR R ² Score	RBF(DEFAULT) R ² Score	SIGMOID R ² Score	POLY R ² Score
1	C=1.0(Default)	-0.08095	-0.089074	-0.088269	-0.088302
2	C=10	0.4624684	-0.032273	0.0393071	0.03871622
3	C=100	0.6288792	0.3200317	0.52761035	0.61795696
4	C=500	0.76310580	0.664298464	0.444606103	0.82636835

Model: Support Vector Machine.

Kernal: Poly

Regularization Parameter: C=500

R² Score: 0.82636835

DECISION TREE:

S.No	CRITERION	SPLITTER	R ² SCORE
1	squared_error (default)	Best(default)	0.68862487
2	friedman_mse	Best(default)	0.67937938
3	Poisson	Best(default)	0.717000508
4	absolute_error	Best(default)	0.6981776
5	squared_error (default)	Random	0.6941143
6	Friedman_mse	Random	0.70757116
7	Poisson	Random	0.71563569
8	absolute_error	Random	0.69888384

Model: Decision Tree.

Criterion: poisson

Splitter: Best(default)

R² Score: 0.717000508

• RANDOM FOREST:

S.No	N_ESTIMATOR	CRITERION	MAX_FEATURE	RANDOM_ SATATE	R ² SCORE
1		squared_error (default)	1.0(default)	None (default)	0.85405105
2		absolute_error	1.0(default)	None (default)	0.855780392
3		friedman_mse	1.0(default)	None (default)	0.848051093
4		Poisson	1.0(default)	None (default)	0.854245404
5		squared_error (default)	sqrt	None (default)	0.87390831
6		absolute_error	Sqrt	None (default)	0.87005244
7		friedman_mse	Sqrt	None (default)	0.86723481
8		Poisson	Sqrt	None (default)	0.86935213
9	50	squared_error (default)	log2	None (default)	0.874147851
10		absolute_error	log2	None (default)	0.867238039
11		friedman_mse	log2	None (default)	0.869152362
12		Poisson	log2	None (default)	0.864473188
13		squared_error (default)	None	None (default)	0.855725680
14		absolute_error	None	None (default)	0.85571374
15		friedman_mse	None	None (default)	0.84951382
16		Poisson	None	None (default)	0.855362569
17		squared_error (default)	1.0(default)	0	0.849832931
18		absolute_error	1.0(default)	0	0.8526655

19		friedman_mse	1.0(default)	0	0.85007161
20		Poisson	1.0(default)	0	0.84910759
21		squared_error (default)	Sqrt	0	0.86958367
22		absolute_error	Sqrt	0	0.870814425
23		friedman_mse	Sqrt	0	0.87024175
24		Poisson	Sqrt	0	0.86323913
25		squared_error	log2	0	0.86958367
	50	(default)			
26		absolute_error	log2	0	0.870814425
27		friedman_mse	log2	0	0.870241751
28		Poisson	log2	0	0.86323913
29		squared_error	None	0	0.84983293
		(default)			
30		absolute_error	None	0	0.85266559
31		friedman_mse	None	0	0.850071613
32		Poisson	None	0	0.8491075

Model: Random Forest.

N_ESTIMATOR: 50

CRITERION: squared_error (default)

MAX_FEATURE: log2

RANDOM_SATATE: None(default)

R² Score: 0.874147851

6.) Mention your final model, justify why u have chosen the same.

- As per our research Random forest algorithm is my final model.
- My justification is comparatively, this model has given good R² score.

Finally we found the good model for this dataset is *Random forest* and R² Score is 87%.