Short Block-length Codes for Ultra-Reliable Low Latency Communications

Harshit Soni (ID: 202211027) Hridyansh Sharma (ID: 202211029) Shreyas Makwana (ID: 202211046) Daksh Mehta (ID: 202211049)

10th April, 2025

Introduction & Motivation

- URLLC: Critical feature of 5G and beyond
- Requirements:
 - Ultra-high reliability (up to $1 10^{-9}$)
 - Ultra-low latency (down to 0.1ms)
- Challenging conflict between reliability and latency
- Short packets reduce latency but sacrifice coding gain
- Strong codes increase reliability but add processing delay
- Key challenge: Optimize the reliability-latency tradeoff
- Applications beyond 5G promise (e.g., tele-surgery) demand even stricter requirements

URLLC Requirements

Application Requirements:

- Factory Automation, Tele-surgery:
 - Strictest reliability requirement $(1-10^{-9})$
 - End-to-end latency below 1ms
- Smart Grids, Tactile Internet, ITS:
 - More relaxed reliability $(1-10^{-3} \text{ to } 1-10^{-6})$
 - Latency between 1-100ms
- 5G URLLC Target:
 - Reliability of $1 10^{-5}$
 - User plane latency of 1ms
- Beyond 5G Needs:
 - Power electronics industrial control: 0.1ms latency with $1-10^{-9}$ reliability
 - Requires special standards and approaches

Channel Coding: Key Metrics & Benchmarks

Key Metrics:

- Latency Components:
 - Transmission time (target: hundreds of microseconds)
 - Propagation delay (distance-dependent)
 - Processing delay (encoding/decoding, channel estimation)
 - Retransmission time (must be minimized)
- Reliability: Success probability within latency constraints
- Flexibility: Bit-level granularity of code rate and size

Performance Benchmark:

Normal Approximation (NA):

$$R = C - \sqrt{\frac{V}{N}}Q^{-1}(\epsilon) + \frac{1}{2N}\log_2(N)$$

- Incorporates finite block length effects
- Tighter than Shannon's limit for short blocks
- Gap increases as block length decreases

Candidate Short Block-length Codes

BCH Codes

- Powerful cyclic codes
- Guaranteed error correction capability
- Optimal order statistics decoding (OSD)
- Large minimum distance
- Limited flexibility

Convolutional Codes

- Tail-biting CC (TB-CC)
- High performance with large memory
- Complex decoding for large memory

Turbo Codes

- Good for medium/large blocks
- Iterative MAP decoding
- Good HARQ support

LDPC Codes

- Near-capacity for large blocks
- Protograph-based for short blocks
- Low complexity belief propagation

Polar Codes

- Channel polarization
- SCL/CA-SCL decoding
- Good for short control channels
- Chosen for 5G eMBB control

Performance Comparison I: Reliability

Setting: Codeword length N=128, Rate R=1/2, BI-AWGN channel, MLD

Key Observations:

- Extended BCH codes:
 - Closest approach to Normal Approximation benchmark
 - \bullet Only 0.1dB gap at BLER= 10^{-7}
- TB-CC with m=14:
 - 0.1dB gap to NA at BLER= 10^{-5}
 - Gap increases to 0.3dB at BLER= 10^{-7}
- LDPC codes over large Galois field (F₂₅₆):
 - Similar performance to TB-CC with m=14
- Performance ordering: eBCH ¿ TB-CC ¿ LDPC (F₂₅₆) ¿ Polar+CRC ¿ LDPC (binary) ¿ Turbo

Performance Comparison II: Rate vs. SNR

Setting: Codeword length N=128, BLER=10⁻⁴, BI-AWGN channel

Key Observations:

- BCH codes with OSD (order 5):
 - Perform very close to normal approximation
 - Outperform other codes at all SNRs
 - Complex decoding, especially at lower rates
- Polar codes with CA-SCL:
 - List size L=32 significantly outperforms L=4
 - Increased list size comes with higher complexity
- eMBB LDPC codes:
 - Low complexity iterative BP decoding
 - Slightly better than CA-Polar with L=4
- Gap to capacity increases at higher rates for all codes

Complexity vs. Performance Tradeoff

Setting: Block length N=128, rate R=1/2, BLER= 10^{-4}

Algorithmic Complexity Comparison:

- TB-CC with m=14:
 - Excellent performance (0.3dB gap to NA)
 - Prohibitive complexity ($\sim 10^7$ operations/bit)
- eBCH with OSD-5:
 - Best performance (0.1dB gap to NA)
 - High complexity ($\sim 10^5$ operations/bit)
- Polar with SCL (L=32):
 - Good performance (0.5dB gap to NA)
 - Moderate complexity ($\sim 10^3$ operations/bit)
- LDPC with BP:
 - Reasonable performance (0.8dB gap to NA)
 - Low complexity ($\sim 10^3$ operations/bit)

Conclusion: Polar codes offer the best performance-complexity tradeoff

Research Directions & Recommendations

1. Low Complexity ML-like Decoders

- Enhanced OSD with bounded complexity
- Segmented and sufficient conditioned OSD
- Fundamental balance between performance and complexity

2. Self-Adaptive Coding Schemes

- Eliminate channel estimation overhead (5-8ms in LTE)
- Rate adaptation without CQI feedback

3. Space-Frequency Channel Coding

- Spatial diversity instead of multiplexing
- Reduced OFDM symbols per resource block
- Optimizing diversity for ultra-reliability

Conclusions

- BCH codes with OSD: highest reliability
- Polar codes: good balance with SCL
- TB-CC: excellent with large memory