

Summarizing
Categorical Data
Summarizing

Lecture 2

Exploratory Data Analysis I

Readings: IntroStat Chapters 2-3; OpenIntro Chapter 2

STAT 8010 Statistical Methods I May 17, 2023

> Whitney Huang Clemson University

Agenda

Exploratory Data Analysis I

Summarizing Categorical Data

> ummarizing umerical Data

Summarizing Categorical Data

Last Lecture

Summarizing Categorical Data

- Stating the problem, identifying the variable(s) of interest, and gathering data
 - Types of variables and datasets
 - Observational vs. Experimental Studies
 - Methods of sampling
- Summarizing the data
- Analyzing the data
- Reporting and interpreting the results

Today's Lecture

Summarizing

- Stating the problem, identifying the variable(s) of interest, and gathering data
 - Types of variables and datasets
 - Observational vs. Experimental Studies
 - Sampling Techniques
- Summarizing the data
- Analyzing the data
- Reporting and interpreting the results

Summarizing Categorical Data

Summarizing Numerical Data

Summarizing Categorical Variables

Example: Sport Injuries

The paper "Profile of sport/leisure injuries treated at emergency rooms of urban hospitals." by Pelletier et al. 1991 examined the nature and number of sport/leisure injuries treated in hospital emergency rooms in a large metropolitan city. They classified non-contact sports injuries by sport, resulting in the following data set:

Exploratory Data					
Analysis I					

Summarizing
Numerical Data

Question: How to summarize this data set?

Frequency Table

Summarizing

- A frequency table for categorical data is a table that displays the possible categories along with the associated frequencies or relative frequencies
- The frequency for a particular category is the number of times the category appears in the data set
- The relative frequency for a particular category is the fraction or proportion of the time that the category appears in the data set.

Frequencies and Relative Frequencies

Analysis I									
(ור		F	λ	43	3	Q	1	J
-	쉬 N	7	¥	÷	R	ا <u>ر</u> s		+	Ÿ

Exploratory Data

> table(sport) sport			
Baseball/softball	Basketball	Bicycling	Jogging/running
11	19	11	11
Others	Soccer	Touch Football	Volleyball
47	24	38	17
> table(sport) / dim(sport	sport)[1]		
Baseball/softball	Basketball	Bicycling	Jogging/running
0.06179775	0.10674157	0.06179775	0.06179775
Others	Soccer	Touch Football	Volleyball
0.26404494	0.13483146	0.21348315	0.09550562

Frequencies and Relative Frequencies


```
table(sport)
sport
Baseball/softball
                          Baskethall
                                              Bicycling
                                                           Jogging/running
                11
                                   19
           Others
                                         Touch Football
                                                                 Volleyball
                               Soccer
                47
                                   24
                                                      38
  table(sport) / dim(sport)[1]
sport
Baseball/softball
                          Basketball
                                              Bicycling
                                                           Jogging/running
       0.06179775
                          0.10674157
                                             0.06179775
                                                                 0.06179775
           Others
                               Soccer
                                         Touch Football
                                                                 Volleybal1
       0.26404494
                          0.13483146
                                             0.21348315
                                                                 0.09550562
```

How could we visualize these information?

⇒ Making a bar chart and/or a pie chart

Bar Charts cont'd

Exploratory Data Analysis I

Summarizing Categorical Data

Pie Charts

Exploratory Data Analysis I

Summarizing Categorical Data

Pie Charts cont'd

Summarizing Categorical Data

Summarizing Categorical Data

Summarizing Numerical Data

Discussion: Which one you prefer to visualize categorical variables. Why?

A Good Bar Chart

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing

A (Potential) Misleading Bar Chart

Exploratory Data Analysis I

Summarizing

ummarizing

Same Data, Different Y-Axis

Example: O'Hare Airport Flight Data

	carrier	origin
1	UA	EWR
2	AA	LGA
3	AA	LGA
4	AA	LGA
5	UA	LGA
6	UA	EWR

In this example, we have two categorical variables, carrier and origin, respectively. How to summarize/visualize this dataset?

Exploratory Data Analysis I

Summarizing Categorical Data

ORD Flight Data Cont'd

Exploratory Data

Summarizing Categorical Data

Summarizing Numerical Data

Summarizing Numerical Variables

Example: Murder arrests (per 100,000) in US States in 1973

Exploratory Data Analysis I

Summarizing Categorical Data

Data: 13.2, 10.0, 8.1, 8.8, 9.0, 7.9, 3.3, 5.9, 15.4, 17.4, 5.3, 2.6, 10.4, 7.2, 2.2, 6.0, 9.7, 15.4, 2.1, 11.3, 4.4, 12.1, 2.7, 16.1, 9.0, 6.0, 4.3, 12.2, 2.1, 7.4, 11.4, 11.1, 13.0, 0.8, 7.3, 6.6, 4.9, 6.3, 3.4, 14.4, 3.8,

13.2, 12.7, 3.2, 2.2, 8.5, 4.0, 5.7, 2.6, 6.8.

Question: How to graphically summarize this data set?

The decimal point is at the I

18

| 1122667

2348 0349

1 379 00368

7 | 2349

158

007

04

11 | 134

12 | 127 022

16

Summarizing Categorical Data

Summarizing Numerical Data

Histogram of US Murder Rate in 1973

Histogram of US Murder Rate in 1973

Summarizing Categorical Data

Summarizing Numerical Data

Murder Rate (per 100,000)

Shape of Distributions

Source: Skewness - Wikipedia

In the rest of the class, we will talk about how to summarize a numerical variable in terms of its center and spread

Summarizing Categorical Data

Measures of Center

Summarizing
Categorical Data

- A measure of center attempts to report a "typical" value for the variable
- When a measure of center is calculated with sample data it is a statistic
- When a measure of center is calculated with popular (e.g., census data) it is a parameter
- Measures: Mean, Median, Mode

• The population mean, denoted by μ_X , is the sum of all the population values $(\{X_i, \dots, X_N\})$ divided by the size of the population (N). That is,

$$\mu_X = \frac{\sum_{i=1}^N X_i}{N}$$

• The sample mean, denoted by X is the sum of all the sample values $(\{X_1, \dots, X_n\})$ divided by the sample size (n). That is,

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Median

Summarizing Categorical Data

Summarizing Numerical Data

The median is the value separating the higher half from the lower half of a data sample

How to compute the median: Order the n observations in a data set from smallest to largest, then

$$\mbox{Median} = \left\{ \begin{array}{ll} \mbox{the single middle value,} & \mbox{n odd} \\ \mbox{the average of the middle two values,} & \mbox{n even} \end{array} \right.$$

Summarizing Categorical Data

Summarizing Numerical Data

The mode is the value of the observation that appears most frequently

How to compute the mode(s): Order the observations in a data set from smallest to largest, then find the number that is repeated more often than any other

 Plot this "data set" and describe the shape of the distribution

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value
 - 0 $n = 9 \Rightarrow$ the median is the 5th number, which is 14

Example cont'd

Exploratory Data Analysis I

Summarizing
Categorical Data

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Summarizing
Categorical Data

Summarizing Numerical Data

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - ② We have 3 13 and 2 14 \Rightarrow 13 is the mode

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value
 - 0 $n = 9 \Rightarrow$ the median is the 5th number, which is (still) 14

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - ② We have 3 13 and 2 14 \Rightarrow 13 is (still) the mode

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - ② We have 3 13 and 2 14 \Rightarrow 13 is (still) the mode

Summarizing Categorical Data

Summarizing Numerical Data

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - 4 We have 3 13 and 2 14 \Rightarrow 13 is (still) the mode

What is the take-home message?

In this lecture, we learned

- Summarizing Categorical Data
- Summarizing the Central Tendency of Numerical Data

In next lecture we will learn

- How to summarize the spread of numerical data
- How to construct a boxplot
- How to visualize numerical + categorical variables and numerical + numerical variables