Homomorphic Secret Sharing: Optimizations and Applications

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù

KIT

November 2, 2017

Secret input xDec(y) = f(x)

Secret input x $y_0 \oplus y_1 = f(x)$

From HSS

Secret input x $y_0 \oplus y_1 = f(x)$

From FHE E(x)

Secret input x Dec(y) = f(x)

Secret input x $v_0 \oplus v_1 = f(x)$

From HSS

Secret input
$$x$$
 $y_0 \oplus y_1 = f(x)$

Homomorphic Secret Sharing

Security. x remains hidden given x_i

Correctness. $\text{Eval}_f(x_0) \oplus \text{Eval}_f(x_1) = f(x)$

Efficiency. Running time $poly(\lambda, |f|)$

Shamir: linear functions

[DHRW16]: all circuits, from MK-FHE

Homomorphic Secret Sharing

Security. x remains hidden given x_i

δ-Correctness. Eval_f(x₀) \oplus Eval_f(x₁) = f(x) Except with probability δ Efficiency. Running time poly(λ , |f|, 1/δ)

[BGI16]:

- lackbox DDH \Longrightarrow $\delta ext{-HSS}$ for low-depth circuits
- lacktriangledown $\delta-{
 m HSS} \implies {
 m sublinear} \ 2{
 m PC}$

Our Results

Optimizations

- ► Improved key generation
- ► Smaller computation (×30)
- ► Smaller share size (×2)
- Leakage management techniques
- Extensions

Applications

- Secure MPC with minimal interaction
- Secure database access
- Correlated randomness generation
- **▶** Implementation
- ... and more

Our Results

Optimizations

- ▶ Improved key generation
- ► Smaller computation (×30)
- ► Smaller share size (×2)
- Leakage management techniques
- Extensions

Applications

- Secure MPC with minimal interaction
- Secure database access
- Correlated randomness generation
- **▶** Implementation
- ... and more

RMS Programs:

WT :

RMS Programs:

Powerful model:

LOGSPACE, NC¹, branching programs, formulas...

RMS Programs:

Powerful model:

LOGSPACE, NC¹, branching programs, formulas...

Share Types: Fix (\mathbb{G}, g) .

Level 1.
$$(g^x, g^x)$$
 ("encryption")
Level 2. $\langle x \rangle = (x_0, x_1), x_0 + x_1 = x$.
Level 3. $\{x\} = (g_0, g_1), g_0 = g_1 \cdot g^x$

Operations on shares:

Sum.
$$\langle x \rangle + \langle y \rangle = \langle x + y \rangle$$

Product. Pair $(g^x, \langle y \rangle) \mapsto \{xy\}$
Conversion. $\{xy\} \mapsto \langle xy \rangle$
= distributed dlog w/ failure δ

Conversion Procedure

 (\mathbb{G},g) , parties have $(h_0,h_1=g^xh_0)$, $x\in\{0,1\}$

Conversion Procedure

$$(\mathbb{G},g)$$
, parties have $(h_0,h_1=g^xh_0)$, $x\in\{0,1\}$

Convert
$$(h) \mapsto \text{smallest } i \text{ s.t. } PRF(g^i h) = 0$$

Failure probability = ratio of distinguished points $\approx 1/(\text{running time of Convert})$

[BGI17]: Group \mathbb{G} with generator g

gh g^2h g^3h g^4h

[BGI17]: Group \mathbb{G} with generator g

```
stream: msb(h) msb(gh) msb(g^2h) msb(g^3h) msb(g^4h) \cdots look for 0^d in stream
```

[BGI17]: Group \mathbb{G} with generator g

```
stream: msb(h) msb(gh) msb(g^2h) msb(g^3h) msb(g^4h) \cdots look for 0^d in stream
```

Conversion-friendly group:

- $ightharpoonup \mathbb{G} \subset \mathbb{F}_p$
- $p = 2^a b$, b small
- ▶ g = 2

Less than a machine word instruction per step!

[BGI17]: Group \mathbb{G} with generator g

stream:
$$msb(h)$$
 $msb(gh)$ $msb(g^2h)$ $msb(g^3h)$ $msb(g^4h)$ \cdots look for 0^d in stream

Conversion-friendly group:

- $ightharpoons \mathbb{G} \subset \mathbb{F}_p$
- $p = 2^a b$, b small
- ▶ g = 2

Less than a machine word instruction per step!

[BGI17]: Group \mathbb{G} with generator g

stream:
$$msb(h)$$
 $msb(gh)$ $msb(g^2h)$ $msb(g^3h)$ $msb(g^4h)$ \cdots look for 0^d in stream

Conversion-friendly group:

- $ightharpoons \mathbb{G} \subset \mathbb{F}_p$
- $ightharpoonup p = 2^a b$, b small
- ▶ g = 2

Less than a machine word instruction per step!

1 separating distinguished points

[BGI17]: Group \mathbb{G} with generator g

stream:
$$msb(h)$$
 $msb(gh)$ $msb(g^2h)$ $msb(g^3h)$ $msb(g^4h)$ \cdots look for 0^d in stream

Conversion-friendly group:

- $ightharpoons \mathbb{G} \subset \mathbb{F}_p$
- $p = 2^a b$, b small
- ▶ g = 2

Less than a machine word instruction per step!

(1) separating distinguished points

② looking for 10^d in stream (×2)

[BGI17]: Group \mathbb{G} with generator g

stream:
$$msb(h)$$
 $msb(gh)$ $msb(g^2h)$ $msb(g^3h)$ $msb(g^4h)$ \cdots look for 0^d in stream

Conversion-friendly group:

- $ightharpoons \mathbb{G} \subset \mathbb{F}_p$
- $p = 2^a b$, b small
- ▶ g = 2

Less than a machine word instruction per step!

- 1) separating distinguished points
- (3) randomizing conversions

(2) looking for 10^d in stream (×2)

[BGI17]: Group \mathbb{G} with generator g

stream:
$$msb(h)$$
 $msb(gh)$ $msb(g^2h)$ $msb(g^3h)$ $msb(g^4h)$ \cdots look for 0^d in stream

Conversion-friendly group:

- $ightharpoons \mathbb{G} \subset \mathbb{F}_p$
- $p = 2^a b$, b small
- g = 2

Less than a machine word instruction per step!

- 1 separating distinguished points
- (3) randomizing conversions

- 2 looking for 10^d in stream (×2)
- (4) average-case analysis $(\times 8)$

Implementation: https://www.di.ens.fr/~orru/hss/

Optimization: Smaller Share Size

Level 1 share of x =several ElGamal ciphertexts

Idea 1: randomness reuse \rightarrow use $pk = (g, h_0, \dots, h_k)$

Factor 2 compression, but requires many secret keys

Idea 2: use a single key c, a public matrix $V=(\mathbf{v}_1|\mathbf{v}_2|\dots|\mathbf{v}_k)$, and assume $\{V,g,g^{c\bullet\mathbf{v}_1},\dots g^{c\bullet\mathbf{v}_k}, \text{ random } c\} \approx \{V,g,g^{d_1},\dots g^{d_k}, \text{ random } d_1,\dots,d_k\}$ (Holds generically)

Further Results

Leakage Management: Failures depends on inputs and secret key.

generate leakage-absorbing pads at key setup, use formulas for masked evaluation, e.g. $(EG(x), \langle \! \langle b \rangle \! \rangle_c, \langle \! \langle x \oplus b \rangle \! \rangle_c) \mapsto \langle \! \langle xy \oplus b \rangle \! \rangle_c \rightarrow \text{reduces leakage rate from } \delta \text{ to } O(\delta^2)$

Extentions: optimization for branching programs, threshold functions, degree-2 functions, extention to large outputs

Further Applications: MPC (e.g. voting), generating correlated randomness

Further Results

Leakage Management: Failures depends on inputs and secret key.

generate leakage-absorbing pads at key setup, use formulas for masked evaluation, e.g. $(EG(x), \langle \! \langle b \rangle \! \rangle_c, \langle \! \langle x \oplus b \rangle \! \rangle_c) \mapsto \langle \! \langle xy \oplus b \rangle \! \rangle_c \rightarrow \text{reduces leakage rate from } \delta \text{ to } O(\delta^2)$

Extentions: optimization for branching programs, threshold functions, degree-2 functions, extention to large outputs

Further Applications: MPC (e.g. voting), generating correlated randomness

Thank you for your attention

Questions?