Apêndice

Tabelas

Tabela 1: Pontos de ocorrências de *Encholirium subsecundum* (Barker Mez).

Estado	Município	Longitud	e Latitude	Referência
Minas	Belo Horizonte	-	-	Fundação Zoo-Botânica de Belo Horizonte
Gerais		43.93780	19.92080	
Minas	Santana do	-	-	Fundação Zoo-Botânica de Belo Horizonte
Gerais	Riacho	43.71440	19.16890	
Minas	Conceição do	-	-	Fundação Zoo-Botânica de Belo Horizonte
Gerais	Mato Dentro	43.42500	19.03720	
Minas	Serro	-	-	Coleção da Escola Superior de Agronomia
Gerais		43.37940	18.60470	Luiz de Queiroz - USP
Minas	Serro	-	-	Herbário do Museu Nacional
Gerais		43.44500	18.47250	
Minas	Jequitaí	-	-	Coleção da Universidade Federal de Viçosa
Gerais		44.44560	17.23560	
Minas	Buenópolis	-	-	Coleção da Universidade Federal de Viçosa
Gerais		44.18000	17.87330	
Minas	Buenópolis	-	-	Coleção da Universidade Federal do
Gerais		44.23389	17.92389	Maranhão
Minas	Buenópolis	-	-	Coleção da Universidade Federal do
Gerais		44.24944	17.90917	Maranhão
Minas	Santana do	-	-	Coleção da Universidade Federal de Viçosa
Gerais	Riacho	43.71440	19.16890	
Minas	Mariana	-	-	Coleção da Universidade Federal de Viçosa
Gerais		43.41610	20.37780	
Minas	Datas	-	-	Herbário do Museu Botânico Municipal
Gerais		43.65580	18.44560	
Minas	Joaquim Felício	-	-	Coleção da Universidade Estadual de Feira
Gerais		44.17220	17.75750	de Santana
Minas	Joaquim Felício	-	-	The New York Botanical Garden
Gerais		44.29190	17.69890	
Minas	Joaquim Felício	-	-	Herbário da Universidade Estadual de
Gerais		44.17220	17.75750	Feira de Santana
Minas	Santana do	-	-	Instituto de Botânica
Gerais	Riacho	43.71440	19.16890	

Estado	Município	Longitud	e Latitude	Referência
Minas	Penha da França	-	-	Coleção da Universidade de Brasília
Gerais		43.83333	18.83333	
Minas	Montes Claros	-	-	Coleção da UNICAMP
Gerais		43.86170	16.73500	
Minas	Santo Antônio do	-	-	Herbário da UFMG
Gerais	Itambé	43.33944	18.45694	
Minas	Pedro Leopoldo	-	-	Herbário da UFMG
Gerais		44.04310	19.61810	
Minas	Itacambira	-	-	Herbário da UFMG
Gerais		43.30890	17.06470	
Minas	Dom Joaquim	-	_	Herbário do Museu do Jardim Botânico do
Gerais		43.23333	18.86667	Rio de Janeiro
Minas	Mato Verde	-	-	Herbário do Museu do Jardim Botânico do
Gerais		42.77889	15.38667	Rio de Janeiro
Minas	Santana de	-	-	Herbário do Museu do Jardim Botânico do
Gerais	Pirapama	43.75556	19.00611	Rio de Janeiro
Minas	Diamantina	-	-	Herbário do Museu do Jardim Botânico do
Gerais		43.55278	18.35500	Rio de Janeiro
Minas	Diamantina	-	-	Herbário do Museu do Jardim Botânico do
Gerais		43.62806	18.19194	Rio de Janeiro
Minas	Presidente	-	-	@mariana2014
Gerais	Kubitschek	43.55722	18.65389	
Minas	Santana do	-	19.25000	Herbário da UFMG
Gerais	Riacho	43.51667		
Bahia	Itatim	-	-	Instituto de Botânica
		39.69810	12.71190	
Minas	Jaboticatubas	-	-	The New York Botanical Garden
Gerais		43.74500	19.51360	
Minas	Jaboticatubas	-	-	Herbário do Museu Nacional
Gerais		43.58333	19.16667	

 ${\bf Tabela~2:~Pontos~de~ocorrências~de~} {\it Lonchophylla~bokermanni~(Sazima,~Vizotto~\&~Taddei)}.$

Estado	Município	Longitude	Latitude	Referência
Minas	Jaboticatubas	-43.74472	-19.51361	Coleção de Mamíferos do Museu de
gerais				Zoologia da UNICAMP
Minas	Jaboticatubas	-43.74540	-19.52210	Coleção de Quirópteros da UNESP
gerais				
Minas	Serra do Cipó	-43.60000	-19.26667	Coleção de Mamíferos do Museu de
gerais				Zoologia da UNICAMP
Minas	Itambé do Mato	-	-	@nascimento2013
gerais	Dentro	43.349444	19.410278	
Minas	Diamantina	-	-	@dias2013
gerais		43.516667	18.383333	
Minas	Diamantina	-	-	@almeida2016
gerais		43.383333	18.383333	
Bahia	Caetité	-	-	@claudio2018
		42.500000	14.266667	
Bahia	Ourolândia	-	-	@claudio2018
		41.083333	11.083333	

 ${\bf Tabela~3:~Descrição~das~variáveis~bioclimáticas~derivadas~de~valores~de~temperatura~e~pluviosidade~[@worldclim].}$

Variáveis bioclimáticas	Descrição
Bio 1	Temperatura média anual
Bio 2	Intervalo médio diurno (Média mensal (máx. temp mín temp.))
Bio 3	Isotermalidade
Bio 4	Sazonalidade de Temperatura (desvio padrão *100)
Bio 5	Temperatura máxima do mês mais quente
Bio 6	Temperatura mínima do mês mais frio
Bio 7	Intervalo da temperatura anual
Bio 8	Média da temperatura do quarto de ano mais úmido
Bio 9	Média da temperatura do quarto de ano mais seco
Bio 10	Média da temperatura do quarto de ano mais quente
Bio 11	Média da temperatura do quarto de ano mais frio
Bio 12	Precipitação anual
Bio 13	Precipitação do mês mais frio
Bio 14	Precipitação do mês mais seco
Bio 15	Sazonalidade de precipitação (Coeficiente de variação)
Bio 16	Precipitação do quadrimestre mais úmido
Bio 17	Precipitação do quadrimestre mais seco
Bio 18	Precipitação do quadrimestre mais quente
Bio 19	Precipitação do quadrimestre mais frio

Tabela 4: Valores VIF das variáveis sem problema de colinearidade (VIF < 10) da espécie E. subsecundum.

Variável	VIF
Bio 3	4.266921
Bio 4	6.135108
Bio 7	7.469114
Bio 9	2.401162
Bio 13	6.836922
Bio 14	6.308869
Bio 19	4.786559

Tabela 5: Valores VIF das variáveis sem problema de colinearidade (VIF < 10) da espécie L. bokermanni.

Variável	VIF
Bio 15	1.200694
Bio 18	1.200694

Tabela 6: Área potencial (em km^2) das espécies de acordo com o presente e os dois cenários climpaticos futuros.

Espécie	Cenário climático	Área potencial
Lonchophylla bokermanni	Presente	499674.7
	RCP $4.5 (2050)$	309803.4
	RCP $8.5 (2050)$	201510.3
$Encholirium\ subsecundum$	Presente	513506.5
	RCP $4.5 (2050)$	140215.9
	RCP $8.5 (2050)$	97012.5

Tabela 7: Contração, expansão ou não alteração relativa (em porcentagem) para a espécie de planta e morcego sob os dois cenários climáticos futuro, com relação à distribuição presente.

Espécie	Cenário	Ganho (%)	Perda (%)	Sem alteração (%)
$Lonchophylla\ bokermanni$	RCP 4.5 (2050)	0.67	37.65	61.68
	RCP $8.5 (2050)$	0.06	58.12	41.81
$Encholirium\ subsecundum$	RCP $4.5 (2050)$	0.08	72.78	27.14

Espécie	pécie Cenário		Perda (%)	Sem alteração (%)
	RCP 8.5 (2050)	0.00	81.11	18.89

Tabela 8: Distribuição com sobreposição (planta+morcego) nos 3 cenário climáticos e alteração com respeito à sobreposição do presente.

Cenário climático	Área de sobreposição $(km2)$	Sobreposição com relação à distribuição do morcego no cenário (%)	Sobreposição com relação à distribuição da planta no cenário (%)
Presente	369410.9	73.93	71.94
RCP 4.5	119088.6	38.44	84.93
(2050)			
RCP 8.5	74409.3	36.92	76.70
(2050)			

Tabela 9: Distribuição sem sobreposição (desencontro geográfico) entre planta e morcego nos três cenários climáticos.

Espécie	Cenário	Área de desencontro geográfico	Porcentagem com relação à distribuição da espécie no cenário
$Lonchophylla \ bokermanni$	Presente	130263.7	26.07
	RCP 4.5 (2050)	190714.7	61.56
	RCP 8.5 (2050)	127101.0	63.07
$Encholirium\\subsecundum$	Presente	144095.6	28.06
	RCP 4.5 (2050)	21127.3	15.07
	RCP 8.5 (2050)	22603.2	23.30

Figuras

Figure 1: Importância relativa das variáveis para o modelo cheio da espécie de planta (acima) e para o morcego (abaixo)

Figure 2: Valores médio de AUC para os 25 modelos gerados para a espécie *Encholirium subsecundum* com replicação por *subsampling* (à esquerda) e 25 por *bootstrap* (à direita)

Figure 3: Valores médio de AUC para os 25 modelos gerados para a espécie *Lonchophylla boker-manni* com replicação por *subsampling* (à esquerda) e 25 por *bootstrap* (à direita)

Figure 4: Distribuição potencial de $Encholirium\ subsecundum\ (em\ vermelho)$ para o presente.

Figure 5: Distribuição potencial de $Encholirium\ subsecundum\ (em vermelho)$ para o cenário futuro de RCP 4.5 (2050).

Figure 6: Distribuição potencial de $Encholirium\ subsecundum\ (em vermelho)$ para o cenário futuro de RCP 8.5 (2050).

Figure 7: Mapa de alteração da distribuição potencial de *Encholirium subsecundum* no cenário RCP 4.5 (2050) em relação à distribuição do presente. A área em vermelho, amarelo e azul representam a distribuição sem alteração, perdida e ganha, respectivamente.

Figure 8: Mapa de alteração da distribuição potencial de *Encholirium subsecundum* no cenário RCP 8.5 (2050) em relação à distribuição do presente. A área em vermelho e amarelo representam a distribuição sem alteração e perdida. Não houve distribuição ganha da planta no RCP 8.5.

Figure 9: Distribuição potencial de *Lonchophylla bokermanni* (em vermelho) para o presente.

Figure 10: Distribuição potencial de $Lonchophylla\ bokermanni$ (em vermelho) para o cenário futuro de RCP 4.5.

Figure 11: Distribuição potencial de $Lonchophylla\ bokermanni$ (em vermelho) para o cenário futuro de RCP 8.5.

Figure 12: Mapa de alteração da distribuição potencial de $Lonchophylla\ bokermanni$ no cenário RCP 4.5 (2050) em relação à distribuição do presente. A área em vermelho, amarelo e azul representam a distribuição sem alteração, perdida e ganha, respectivamente.

Figure 13: Mapa de alteração da distribuição potencial de *Lonchophylla bokermanni* no cenário RCP 8.5 (2050) em relação à distribuição do presente. A área em vermelho, amarelo e azul representam a distribuição sem alteração, perdida e ganha, respectivamente.

```
########### SCRIPTS DO PROJETO DE PDPD #############
# 1. Carregamento e corte das camadas ambientais do presente
# 2. Rodagem dos modelos de distribuicao para a especie
    de planta Encholirium subsecundum e selecao das camadas
# 3. Rodagem do modelo final com as camadas selecionadas
# 4. Criacao das projecoes no presente
# 5. Criacao das projecoes no cenario futuro de RCP 4.5
# 6. Criacao das projecoes no cenario futuro de RCP 8.5
# 7. Construcao dos mapas simples, binarios e não binarios
# 7. Classificação das alterações de area
##### Carregamento das bibliotecas necessarias
if (!require(tidyverse)) install.packages('tidyverse')
if (!require(sdm)) install.packages('sdm')
if (!require(dismo)) install.packages('dismo')
if (!require(dplyr)) install.packages('dplyr')
if (!require(mapview)) install.packages('mapview')
if (!require(raster)) install.packages('raster')
if (!require(rgdal)) install.packages('rgdal')
if (!require(usdm)) install.packages('usdm')
# Rodar na primeira vez para instalar as dependencias que o 'sdm' precisa.
installAll()
#---- 1. CARREGAMENTO E CORTE DAS CAMADAS
          AMBIENTAIS E DADOS DE E. SUBSECUNDUM -----#
### CARREGAR DADOS DE E. SUBSECUNUDUM
spg <- read.csv('./Dados/Ocorrencias/E_subsecundum_corrigido.csv')</pre>
# Adicionamos uma coluna com a especie (necesaria como argumento na modelagem)
spg$species <- 1</pre>
# Exploramos o data frame
```

```
head(spg)
# Transformar as coordenadas em um objeto "Spatial"
sp::coordinates(spg) <-c('x','y')</pre>
spg
#----
### CARREGAR CAMADAS DO PRESENTE
# Criar um objeto com o contorno (poligono) do Brasil
mascara <- raster::shapefile('Dados/Mascaras/mascara_brasil.shp')</pre>
# Baixar camadas presente do database online Worldclim
bio <- raster::getData('worldclim', var='bio',res=2.5, path="./Camadas_presente/")
plot(bio)
# cortar as camadas com o shape do brasil
corte <- bio
cam_rep <- bio[[1]]</pre>
# Reduzir o tamanho da camada representante para um retangulo
cam_rep <- raster::crop(cam_rep, extent(mascara))</pre>
# Reduzir o tamanho de todas as camadas ambientais do presente
bioCams <- raster::resample(corte, cam rep, method="bilinear",</pre>
                             snap='out', bylayer=TRUE, progress='text')
# Cortar as camadas ambientais e cortar a partir da mascara criada
bioCams <- raster::mask(bioCams, mascara, bylayer=TRUE)</pre>
# Verificacao
plot(bioCams)
#----
### CARREGAR CAMADAS DO FUTURO RCP45, ANO 2050
# Donwload das camadas futuras (RCP 45) do database online Worldclim
biof45 <- raster::getData('CMIP5', var='bio', res=2.5, rcp=45, model='CN',
```

```
year=50, path="./Camadas_RCP45/")
plot(biof45)
# As camadas futuras devem ter o mesmo nome que as do presente
names(biof45) <- names(bio)</pre>
# Carregar as camadas e uma camada representante (bio 1) para corte das camadas
cortef <- biof45</pre>
cam_repf <- biof45[[1]]</pre>
# Reduzir o tamanho da camada representante para um retangulo
cam_repf <- raster::crop(cam_repf, extent(mascara))</pre>
# Reduzir o tamanho de todas as camadas ambientais RCP 45
bio45 <- raster::resample(cortef, cam_repf, method="bilinear",
                           snap='out', bylayer=TRUE, progress='text')
# Cortar as camadas ambientais e cortar a partir da mascara criada do Brasil
bio45 <- raster::mask(bio45, mascara, bylayer=TRUE)
# Verificacao
plot(bio45)
#----
### CARREGAR CAMADAS DO FUTURO RCP85, ANO 2050
# Donwload das camadas futuras (RCP 45) do database online Worldclim
biof85 <- raster::getData('CMIP5', var='bio', res=2.5, rcp=85, model='CN',
                          year=50, path="./Camadas_RCP85/")
plot(biof85)
# As camadas futuras devem ter o mesmo nome que as do presente
names(biof85) <- names(bio)</pre>
# Carregar as camadas e uma camada representante (bio 1) para corte das camadas
cortef85 <- biof85
cam_repf85 <- biof85[[1]]</pre>
```

```
# Reduzir o tamanho da camada representante para um retangulo
cam repf85 <- raster::crop(cam repf85, extent(mascara))</pre>
# Reduzir o tamanho de todas as camadas ambientais RCP 85
bio85 <- raster::resample(cortef85, cam_repf85, method="bilinear",
                        snap='out', bylayer=TRUE, progress='text')
# Cortar as camadas ambientais e cortar a partir da mascara criada do Brasil
bio85 <- raster::mask(bio85, mascara, bylayer=TRUE)
# Verificacao
plot(bio85)
#---- 2. RODAGEM DO MODELO PREVIO E
               SELECAO DAS VARIAVEIS ----#
# MODELO CHEIO
# Adicionar os dados previo para fazer um modelo com todas as variaveis
dC <- sdm::sdmData(species~., spg, predictors = bioCams,</pre>
                  bg=list(method='gRandom', n=10000))
dC
# Ajustar e criar os modelos
mC <- sdm::sdm(species~., dC, methods = 'maxent', replication=c('sub', 'boot'),</pre>
              test.p=30, n=25, parallelSettings=list(ncore=5, method='parallel'))
# NOTAS: 1) Para o MaxEnt funcionar o Java do computador deve estar atualizado.
# 2) O parametro ncore e a quantidade de cores de processamento utilizados para
# a modelagem, altere conforme a capacidade do computador
mC
# Plot da importancia das variaveis
plot(getVarImp(mC), 'AUC', main="Importância relativa das biovariáveis",
    ylab='Variáveis', xlab="Importância relativa da variável") # Biovars: 6, 17, 19, 14
getVarImp(mC)
```

```
# Para abrir uma interface de exploração do modelo
sdm::gui(mC)
#----
# TESTE VIF COM AS VARIAVEIS COM MAIOR IMPORTANCIA
# Tiramos a camada 14 (alto vif e importância menor do que a correlata 17)
bioc <- raster::subset(bioCams, c(6, 17, 19))
vif(bioc)
# Essa parte ? desnecessaria pois ja fizemos de forma manual
# ex <- raster::extract(bioc,spq)</pre>
# head(ex)
# v <- usdm::vifstep(ex)
# cor(ex)
# Deixar apenas as vars sem problema de colinearidade
# bioc <- usdm::exclude(bioc, v)</pre>
# bioc
#---- 3. MODELAGEM COM AS CAMADAS SELECIONADAS
                   NA SECAO ANTERIOR ----#
# Adicionar os dados previos: ocorrencias, camadas e pontos de background
d <- sdm::sdmData(species~., spg, predictors = bioc, bg=list(method='gRandom',</pre>
                                                         n=10000)
d
# Ajustar os modelos, 50 replicacoes, 25 por Subsampling e 25 por Bootstrap
m <- sdm::sdm(species~., d, methods='maxent', replication=c('sub', 'boot'),</pre>
             test.p=30, n=25, parallelSettings=list(ncore=5, method='parallel'))
# NOTAS: Como mencionado no item 2, o parametro ncore é a quantidade de cores de
# processamento utilizados para a modelagem, altere conforme a configuracao do
# computador
```

```
m
# Plot das contribuicoes das variaveis
plot(getVarImp(m), 'AUC')
sdm::getVarImp((m))
# Para abrir uma interface de exploração do modelo
sdm::gui(m)
#----- 4. PROJECAO DO MODELO PARA O PRESENTE
# Projecao dos 50 modelos criados na seção anterior para o presente
p1 <- predict(m, bioc, filename='./Resultados_subsecundum/presente.img',
           overwrite=TRUE)
p1
# Obter um modelo consenso dentre os 50 criados para o presente por meio da
# mediana ponderada
en <- sdm::ensemble(m, bioc, filename =
                    './Resultados_subsecundum/ensemble_presente.img',
                 setting =list(method='weighted', stat='tss', opt=2),
                 overwrite=TRUE)
en
# Verificacao
plot(p1)
plot(en)
#---- 5. PROJECAO DO MODELO PARA O FUTURO (RCP45)
# Selecionar apenas as biovariaveis 6, 17, 19
bioS45 <- raster::subset(bio45, c(6, 17, 19))
plot(bioS45)
# Predicao utilizando o modelo criado na secao 3 para as camadas de RCP45
```

```
p2 <- predict(m, bioS45, filename='./Resultados_subsecundum/modelos_RCP45.img',
            overwrite=TRUE)
p2
# Obter um modelo consenso dentre os 50 criados para o futuro RCP45 por meio da
# mediana ponderada
en45 <- sdm::ensemble(m, bioS45, filename='./Resultados_subsecundum/futuro_RCP45.img',
                   setting =list(method='weighted', stat='tss', opt=2),
                   overwrite=TRUE)
en45
# Verificacao
plot(p2)
plot(en45)
#---- 6. PROJECAO DO MODELO PARA O FUTURO (RCP85)
# Selecionar apenas as biovariaveis 6, 17, 19
bioS85 <- raster::subset(bio85, c(6, 17, 19))
plot(bioS85)
# Predicao utilizando o modelo criado na secao 3 para as camadas de RCP85
p3 <- predict(m, bioS85, filename='./Resultados_subsecundum/modelos_RC85.img',
            overwrite=TRUE)
p3
# Obter um modelo consenso dentre os 50 criados para o futuro RCP85 por meio da
# mediana ponderada
en85 <- sdm::ensemble(m, bioS85, filename='./Resultados_subsecundum/futuro_RC85.img',
                   setting =list(method='weighted', stat='tss', opt=2),
                   overwrite=TRUE)
# Verificacao
plot(en85)
#---- 7. CONSTRUCAO DE MAPAS BINARIOS E
```

```
DE DENSIDADE DE PROBABILIDADE -----#
# Paleta de cores
cores <- grDevices::colorRampPalette(c(</pre>
    '#3E49BB', '#3498DB', 'yellow', 'orange', 'red', 'darkred'))
# Plot dos mapa com a nova paleta de cores
plot(en, col=cores(200))
plot(en45, col=cores(200))
plot(en85, col=cores(200))
# Visualização alteranativa dos mapaP45 por meio do mapview
mapview::mapview(stack(en,en45,en85))
#----
### Mapa de alteracao de adequabilidade (NAO BINARIO) entre o presente e o futuro
# de RCP 45
ch45 <- en45 - en
cores2<-grDevices::colorRampPalette(c('red', 'orange', 'yellow', 'gray',</pre>
                                       'green', 'blue'))
plot(ch45, col=cores2(200))
# Areas mais proximas ao azul representam areas ganhas no futuro (RCP45)
# Areas mais proximas ao vermelho representam areas ganhas perdidas (RCP45)
# Areas cinzas permanceram inalteradas no futuro
### Mapa de alteracao de adequabilidade (NAO BINARIO) entre o presente e o futuro
# de RCP 85
ch85 <- en85 - en
cores2<-grDevices::colorRampPalette(c('red', 'orange', 'yellow', 'gray',</pre>
                                      'green', 'blue'))
plot(ch85, col=cores2(200))
#-----
### OBTER MEDIDAS DE THRESHOLD PARA A CONSTRUCAO DOS mapaP45 BINARIOS
df <- as.data.frame(d)</pre>
```

```
df <- data.frame(species=df$species, coordinates(d))</pre>
xy = as.matrix(df[,c('x', 'y')])
head(xy)
# Extrair do raster da predicao do presente os valores das biovariaveis nos
# pontos de ocorrencias das especies
p<-raster::extract(en,xy)</pre>
# Avaliacao do modelo
ev <- evaluates(df$species,p)</pre>
ev@statistics
# Medidadas de threshold
ev@threshold_based
th <- ev@threshold_based$threshold[2] #Threshold pelo metodo SSS: max(espec+sens)
# Verificar valor de threshold
th
### MAPA BINARIO DO PRESENTE UTILIZANDO O VALOR DE THRESHOLD th
pa1 <- raster(en)</pre>
pa1[] <- ifelse(en[] >= th, 1,0)
plot(pa1)
### MAPA BINARIO DO FUTURO (RCP45)
pa2 <- raster(en45)</pre>
pa2[] \leftarrow ifelse(en45[] >= th, 1,0)
plot(pa2)
### MAPA BINARIO DO FUTURO (RCP85)
pa3 <- raster(en85)</pre>
pa3[] \leftarrow ifelse(en85[] >= th, 1,0)
plot(pa3)
### MAPA BINARIO DE ALTERACAO DE ADEQUABILIDADE (Futuro RCP45 - Presente)
chp45 <- pa2 - pa1
```

```
plot(chp45, col=c('red','gray','blue'))
### MAPA BINARIO DE ALTERACAO DE ADEQUABILIDADE (Futuro RCP85 - Presente)
chp85 <- pa3 - pa1
plot(chp85, col=c('red','gray', 'blue'))
#----- 7. CLASSIFICACAO DAS ALTERACOES DE AREA -----#
# Obter os tamanhos das celulas
cel_tam<-area(pa1, na.rm=TRUE, weights=FALSE)</pre>
cel_tam<-cel_tam[!is.na(cel_tam)]</pre>
#----
### AREA PRESENTE (KM^2)
mapa <- pa1$layer@data@values==1</pre>
tamanho <- sum(mapa[!is.na(mapa)])</pre>
area <- tamanho*median(cel_tam)</pre>
area
#----
### AREA FUTURA (RCP45) (KM^2)
mapaF45 <- pa2$layer@data@values==1</pre>
tamanhoF45 <- sum(mapaF45[!is.na(mapaF45)])</pre>
areaF45 <- tamanhoF45*median(cel_tam)</pre>
areaF45
#-----
### AREA FUTURA (RCP85) (KM^2)
mapaF85 <- pa3$layer@data@values==1</pre>
tamanhoF85 <- sum(mapaF85[!is.na(mapaF85)])</pre>
areaF85 <- tamanhoF85*median(cel_tam)</pre>
areaF85
#-----
### AREA ALTERADA ENTRE O PRESENTE E O FUTURO RCP45 (KM^2)
# area de perda < 0
# area de ganho > 0
```

```
mapaP45 <- chp45$layer@data@values < 0</pre>
tamanhoP45 <- sum(mapaP45[!is.na(mapaP45)])</pre>
areaP45 <- tamanhoP45*median(cel_tam)</pre>
areaP45
                # Area perdida
# Porcentagem de perda
(areaP45/area) *100
mapaG45 <- chp45$layer@data@values >0
tamanhoG45 <- sum(mapaG45[!is.na(mapaG45)])</pre>
areaG45 <- tamanhoG45*median(cel_tam)</pre>
areaG45
                # Area ganha
# Porcentagem de ganho
(areaG45/area)*100
#-----
### AREA ALTERADA ENTRE O PRESENTE E O FUTURO RCP85 (KM^2)
# area de perda < 0
# area de ganho > 0
mapaP85 <- chp85$layer@data@values < 0
tamanhoP85 <- sum(mapaP85[!is.na(mapaP85)])</pre>
areaP85 <- tamanhoP85*median(cel_tam)</pre>
areaP85
                # Area perdida
# Porcentagem de perda
(areaP85/area) *100
mapaG85 <- chp85$layer@data@values >0
tamanhoG85 <- sum(mapaG85[!is.na(mapaG85)])</pre>
areaG85 <- tamanhoG85*median(cel_tam)</pre>
areaG85
                # Area ganha
# Porcentagem de ganho
```

(areaG85/area)*100