Basic Algorithms on Graphs

VLSI CAD

COMPILED BY OLEG VENGER

Graphs

- An abstract way of representing connectivity
- •Graph G=(V,E) consists of finite set of nodes (also called vertices) $V=\{v_1,\dots v_n\}$ and finite set of edges $E=\{e_1,\dots,e_m\}$ such that $E\subseteq VxV$
- Edges can be directed on undirected
- Nodes and edges can have associated auxiliary information
- Graphs are usually represented by adjacency matrix or adjacency list
- Want to support operations such as:
 - Retrieving all edges incident to a particular node
 - Testing if two given nodes are directly connected

Tree

- An undirected connected acyclic graph
- For n nodes has n-1 edges
- There is exactly one path between every pair of nodes
- Adding any edge results in a cycle
- Removing any edge disconnects graph
- •Graph that is a union of trees is called "forest"

DAG

- Directed Acyclic Graph
- No directed cycles
- •May contain "parallel" paths

Adjacency matrix

- •For graph with V nodes: $V \times V$ matrix A where:
 - $a_{ij} = 1$ if there is an edge from i to j.
 - $a_{ij} = 0$ otherwise
- ${}^{\bullet}O(V^2)$ memory. Inefficient for large and sparse graphs
- $\mathbf{O}(1)$ for testing if 2 nodes are connected
- $\bullet O(V)$ to find all adjacent nodes

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	1	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	1
6	0	0	0	1	1	0

Incidence matrix

- ■*V x E* matrix A where:
 - $a_{ij} = 1$ if vertex i connected to edge j.
 - $a_{ij} = 0$ otherwise
- $\bullet O(VxE)$ space complexity
- $\bullet O(E)$ for testing if 2 nodes are connected
- $\bullet O(VxE)$ to find all adjacent nodes

	1	2	3	4	5	6	7	8	9
1	1	1	1	0	0	0	0	0	0
2	0	1	0	1	0	0	0	0	1
3	1	0	0	0	1	0	0	0	1
4	0	0	0	0	1	1	1	0	0
5	0	0	1	1	0	1	0	1	0
6	0	0	0	0	0	0	1	1	0

Adjacency list

- Each node has a list of its adjacent nodes
 - Easy to iterate over edges incident to a particular node
 - Uses O(V + E) memory

Adjacency list: implementation using array

- •Two arrays: E of size m and V of size n
 - E contains edges
 - V contains the starting pointers of the edge lists
- Initialize V[i] = -1 for all i
- •Inserting a new edge $u \rightarrow v$ with ID k:
 - E[k]. to = v
 - E[k]. nextID = V[u]
 - V[u] = k
- •Iterating over all edges starting at u:
 - for(ID = V[u]; ID! = -1; ID = E[ID]. nextID)
- Once built, it is hard to modify edges, but adding more edges is easy

E:

ID	То	Next Edge ID
1	3	-
2	2	1
3	5	2
4	5	-
5	4	-
6	5	-
7	6	6
8	6	-
9	3	4

Depth-First Search

- One of two the most basic graph algorithms that visits nodes of a graph in certain order
 - Used as a subroutine in many other algorithms
- ${}^{\bullet}DFS(v)$: visits all nodes reachable from v in depth-first order
 - Mark v as visited
 - For each edge $v \rightarrow u$:
 - If u is not visited, then call DFS(u)
- Use non-recursive version if recursion depth is too big: replace recursive calls with a stack

Breadth-First Search

- $\blacksquare BFS(v)$: visit all the nodes reachable from v in breadth-first order:
 - Mark v as visited and push it to queue Q
 - While *Q* is not empty:
 - Take the front element of Q and call it w
 - For each edge $w \rightarrow u$
 - If u is not visited, mark it as visited and push it to Q

Topological sort: DFS based

- **Input:** a Directed Acyclic Graph (DAG) G = (V, E)
- **Output:** an ordering of nodes such that for each edge $u \rightarrow v$, u comes before v
 - There can be many answers
- Applications:
 - CAD: timing analysis, technology mapping, ...
 - Non-CAD: Build systems, task scheduling, ...

•Algorithm:

- Do DFS with start/end timestamps on nodes
- Order by decreasing value of end timestamps
- •Time complexity: O(V + E)

Topological sort example

Ordering: j, g, d, e, i, c, a, f, b, h

Topological sort: Kahn's algorithm

- Precompute the number of incoming edges deg(v) for each node v
- Put all nodes v with deg(v) = 0 into a queue Q
- **While** *Q* is not empty:
 - Take v from Q
 - For each edge $v \rightarrow u$:
 - Decrement deg(u)
 - If deg(u) = 0, push u to Q
- •Time complexity: $\Theta(V+E)$

Strongly connected components

- •Given a directed graph G = (V, E)
- \blacksquare A graph is strongly connected if all nodes are reachable from every single node in V
- Strongly connected components of G are maximal strongly connected subgraphs of G

Kosaraju's algorithm

- Do DFS(G) and find finish time for each vertex u
- Build G^T (reverse direction on all edges)
- •For node v with label n, n-1, ..., 1:
 - Find all reachable nodes from v and group them as SCC

- Two graph traversals are performed
- •Timing complexity: $\Theta(V+E)$

Example

Tarjan's algorithm for SCC

- •Mark the id of each node as unvisited
- Start DFS. Upon visiting a node assign it as id and a low-link value*. Mark current nodes as visited and add them to a seen stack
- On DFS callback, if the previous node is on the stack then min the current node's low-link value with the last node's low-link value
- •After visiting all neighbors, if the current node started a connected component then pop nodes off stack until current node is reached

^{*}The low-link value of a node is the smallest node id reachable from that node when doing DFS, including itself

Nodes: Unvisited Visiting neighbors Visited all neighbors Visited Edges: → Unvisited Stack

0

0

0

0

Minimum Spanning Tree (MST) problem

- •Given an undirected weighted graph G = (V, E):
 - Find a subset of E with the minimum total weight that connects all the nodes into a tree

- Solved using greedy approach:
 - Construct the solution by adding one "safe" edge to partial solution at each step

How to find safe edge

Let:

- A is set of edges which is a subset of some MST
- $(S, V \setminus S)$ is a cut such that no edge from A crosses the cut
- (u, v) is the minimal weight edge from the cut-crossing edge set

Then:

• (u, v) is safe edge for A.

Kruskal's algorithm

- •Main idea: the edge with the smallest weight has to be in the MST
- •Another main idea: after an edge is chosen, the two nodes at the ends can be merged and considered as single node (supernode)

```
For each \ v \in V:
\circ \ MAKE\_SET(v)
Sort E
For \ (u,v) \in E \ (in weight increasing order):
\circ \ If \ FIND\_SET(u) := FIND\_SET(v):
\circ \ A = A \cup (u,v)
\circ \ UNION(u,v)
return \ A
```


Prim's Algorithm

- •Maintain a set S that starts out with a single node S
- For a node v:
 - maintain k(v) min weight of edge e = (u, v) connecting v and S or ∞ if no such edges
 - Maintain $\pi(v)$ pointer to node u or parent in MST
- •Find the smallest weighted edge e = (u, v) that connects $u \in S$ and $v \notin S$
- Add v to S
- For $w \in Adj(v)$:
 - If $w \notin S$ and weight(v, w) < k(w):
 - $\pi(w) = v$
 - k(w) = weight(v, w)
- Repeat until S = V

Kruskal vs. Prim

- Kruskal's algorithm:
 - Takes $O(E \log E)$ time
 - Easy to code
 - Generally faster on sparse graphs
- Prim's algorithm:
 - Time complexity depends on the implementation
 - Can be $O(V^2 + E)$, $O(E \log(V))$, or $O(E + V \log(V))$
 - Generally faster than Kruskal's on dense graphs

Shortest path

- **Input**: a weighted graph G = (V, E)
 - The edges can be directed or not
 - Note: use BFS for unweighted graphs
- **Output**: the path between two given nodes u and v that minimizes the total weight
 - Variation: compute shortest paths from u to all other nodes
 - Variation: compute all-pair shortest paths

Dijkstra's algorithm

- •Given a weighted graph G = (V, E) with non-negative weights, and source s:
- Output a vector d where d_i is the shortest path from s to node i
- •Time complexity depends on the implementation
- Can be $O(V^2 + E)$, $O(E \log(V))$, or $O(E + V \log(V))$
- Idea: find the closest node to s, then the second closest one, then the third, etc.

Dijkstra's algorithm

- •Maintain a set of nodes S, the shortest distances to which are decided
- •Maintain a vector d, the shortest distance estimate from s
- Initially: $S = \{s\}$, and $d_v = cost(s, v)$
- Repeat until S = V:
 - Find $v \notin S$ with the smallest d_v and add it to S
 - For each edge $v \to u$ with cost $c: d_u = \min(d_u, d_v + c)$

Dijkstra's algorithm example

S	a	b	С	d	е	f	g	h	i
а	0(a)	∞							

S	a	b	С	d	е	f	g	h	i
а	0(a)	4(a)	∞	∞	∞	∞	∞	8(a)	∞

S	a	b	С	d	е	f	g	h	i
а	0(a)	4(a)	∞	∞	∞	∞	∞	8(a)	∞
b	0(a)	4(a)	12(b)	∞	∞	∞	∞	8(a)	∞

S	а	b	С	d	е	f	g	h	i
a	0(a)	4(a)	∞	∞	∞	∞	∞	8(a)	∞
b	0(a)	4(a)	12(b)	∞	∞	∞	∞	8(a)	∞
h	0(a)	4(a)	12 (b)	∞	∞	∞	9(h)	8(a)	15(h)

S	a	b	С	d	е	f	g	h	i
а	0(a)	4(a)	∞	∞	∞	∞	∞	8(a)	∞
b	0(a)	4(a)	12(b)	∞	∞	∞	∞	8(a)	∞
h	0(a)	4(a)	12 (b)	∞	∞	∞	9(h)	8(a)	15(h)
g	0(a)	4(a)	12(b)	∞	∞	11(g)	9(h)	8(a)	15(h)

S	a	b	С	d	е	f	g	h	i
а	0(a)	4(a)	∞	∞	∞	∞	∞	8(a)	∞
b	0(a)	4(a)	12(b)	∞	∞	∞	∞	8(a)	∞
h	0(a)	4(a)	12 (b)	∞	∞	∞	9(h)	8(a)	15(h)
g	0(a)	4(a)	12(b)	∞	∞	11(g)	9(h)	8(a)	15(h)
f	0(a)	4(a)	12(b)	25(f)	21(f)	11(g)	9(h)	8(a)	15(h)

S	а	b	С	d	е	f	g	h	i
а	0(a)	4(a)	∞	∞	∞	∞	∞	8(a)	∞
b	0(a)	4(a)	12(b)	∞	∞	∞	∞	8(a)	∞
h	0(a)	4(a)	12 (b)	∞	∞	∞	9(h)	8(a)	15(h)
g	0(a)	4(a)	12(b)	∞	∞	11(g)	9(h)	8(a)	15(h)
f	0(a)	4(a)	12(b)	25(f)	21(f)	11(g)	9(h)	8(a)	15(h)
С	0(a)	4(a)	12(b)	19(c)	21(f)	11(g)	9(h)	8(a)	14(c)

S	a	b	С	d	е	f	g	h	i
а	0(a)	4(a)	∞	∞	∞	∞	∞	8(a)	∞
b	0(a)	4(a)	12(b)	∞	∞	∞	∞	8(a)	∞
h	0(a)	4(a)	12 (b)	∞	∞	∞	9(h)	8(a)	15(h)
g	0(a)	4(a)	12(b)	∞	∞	11(g)	9(h)	8(a)	15(h)
f	0(a)	4(a)	12(b)	25(f)	21(f)	11(g)	9(h)	8(a)	15(h)
С	0(a)	4(a)	12(b)	19(c)	21(f)	11(g)	9(h)	8(a)	14(c)
i	0(a)	4(a)	12(b)	19(c)	21(f)	11(g)	9(h)	8(a)	14(c)

S	а	b	C	d	е	f	g	h	i
а	0(a)	4(a)	∞	∞	∞	∞	∞	8(a)	∞
b	0(a)	4(a)	12(b)	∞	∞	∞	∞	8(a)	∞
h	0(a)	4(a)	12 (b)	∞	∞	∞	9(h)	8(a)	15(h)
g	0(a)	4(a)	12(b)	∞	∞	11(g)	9(h)	8(a)	15(h)
f	0(a)	4(a)	12(b)	25(f)	21(f)	11(g)	9(h)	8(a)	15(h)
С	0(a)	4(a)	12(b)	19(c)	21(f)	11(g)	9(h)	8(a)	14(c)
i	0(a)	4(a)	12(b)	19(c)	21(f)	11(g)	9(h)	8(a)	14(c)
d	0(a)	4(a)	12(b)	19(c)	21(f)	11(g)	9(h)	8(a)	14(c)

S	a	b	С	d	е	f	g	h	i
а	0(a)	4(a)	∞	∞	∞	∞	∞	8(a)	∞
b	0(a)	4(a)	12(b)	∞	∞	∞	∞	8(a)	∞
h	0(a)	4(a)	12 (b)	∞	∞	∞	9(h)	8(a)	15(h)
g	0(a)	4(a)	12(b)	∞	∞	11(g)	9(h)	8(a)	15(h)
f	0(a)	4(a)	12(b)	25(f)	21(f)	11(g)	9(h)	8(a)	15(h)
С	0(a)	4(a)	12(b)	19(c)	21(f)	11(g)	9(h)	8(a)	14(c)
i	0(a)	4(a)	12(b)	19(c)	21(f)	11(g)	9(h)	8(a)	14(c)
d	0(a)	4(a)	12(b)	19(c)	21(f)	11(g)	9(h)	8(a)	14(c)

Bellman-Ford algorithm

- •Given a directed weighted graph G = (V, E) and source s:
- Output a vector d where d_i is the shortest path from s to node i
- Can detect a negative-weight cycle
- •Time complexity: $\Theta(nm)$
- Easy to code

Bellman-Ford algorithm

Initialize $d_s=0$ and $d_v=\infty$ for all $v\neq s$ For i=1 to n-1:

For each edge $u\to v$ with cost c: $d_v=\min(d_v,d_u+c)$ For each edge $u\to v$ with cost c:

If $d_v>d_u+c$: then the graph contains a negative-weight cycle

Edge order:

(i,h)

(h,b)

(g,i)

(g,h)

(f,g):

(f,d):

(e,f)

(d,e)

(d,c)

(c,i):

(c,f):

(b,c):

(a,h): $d_h = 8$ (a,b): $d_b = 4$

a	b	С	d	е	f	g	h	i
0	∞							
0	4	∞	∞	∞	∞	∞	8	∞

Edge order:

(i,h)

(h,b)

(g,i)

(g,h)

(f,g):

(f,d):

(e,f)

(d,e)

(d,c)

(c,i):

(c,f):

(b,c): $d_c = 12$

(a,h):

(a,b):

а	b	C	d	е	f	g	h	i
0	∞							
0	4	∞	∞	∞	∞	∞	8	∞
0	4	12	∞	∞	∞	∞	8	∞

Edge order:

(i,h)

(h,b)

(g,i)

(g,h)

(f,g):

(f,d):

(e,f)

(d,e)

(d,c)

(c,i): $d_i = 14$

(c,f): $d_f = 16$

(b,c):

(a,h):

(a,b):

a	b	C	d	е	f	g	h	i
0	∞							
0	4	∞	∞	∞	∞	∞	8	∞
0	4	12	∞	∞	∞	∞	8	∞
0	4	12	∞	∞	16	∞	8	14

Edge order:

(i,h):

(h,b)

(g,i)

(g,h)

(f,g): $d_g = 18$

(f,d): $d_d = 30$

(e,f)

(d,e): $d_e = 39$

(d,c)

(c,i):

(c,f):

(b,c):

(a,h):

(a,b):

a	b	С	d	е	f	g	h	i
0	∞							
0	4	∞	∞	∞	∞	∞	8	∞
0	4	12	∞	∞	∞	∞	8	∞
0	4	12	∞	∞	16	∞	8	14
0	4	12	30	39	16	18	8	14

Edge order:

(i,h):

(h,b)

(g,i)

(g,h)

(f,g):

(f,d):

(e,f)

(d,e):

(d,c)

(c,i):

(c,f):

(b,c):

(a,h):

(a,b):

а	b	С	d	е	f	g	h	i
0	∞							
0	4	∞	∞	∞	∞	∞	8	∞
0	4	12	∞	∞	∞	∞	8	∞
0	4	12	∞	∞	16	∞	8	14
0	4	12	30	39	16	18	8	14
0	4	12	30	39	16	18	8	14

No change. Can stop.

Why it works

- •A shortest path can have at most n-1 edges
- ullet At the k^{th} iteration, all shortest paths using k or less edges are computed
- •After n-1 iterations, all distances must be final; for every edge $u \to v$ with cost c, $d_v \le d_u + c$ holds
 - Unless there is a negative-weight cycle
 - This is how the negative-weight cycle detection works

References

- Jaehyun Park, Basic Graph Algorithms, CS97SI, Stanford University, 2015
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, 2001