CS2100 COMPUTER ORGANIZATION: ALU DESIGN

Hamid Sarbazi-Azad

Visiting Professor

Arithmetic Circuits

- 1. Binary Arithmetic Circuits
 - Addition/Subtraction
 - Multiplication
 - Division
- 2. Decimal Arithmetic Circuits
 - Addition/Subtraction
 - Multiplication
 - Division
- 3. Floating-point Arithmetic Circuits
 - Addition/Subtraction
 - Multiplication
 - Division
- 4. Special Purpose Arithmetic Circuits

Binary Addition/Subtraction

A Full-Adder (FA) adds three bits a, b and c (also named c_{in} to indicate input-carry for multibit addition) and generates 2 bits s (result bit) and c (also named c_{out}).

a	b	\mathbf{c}_{in}	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

A Full-Subtractor (FS) reduces b and d (also named d_{in} to indicate borrow in for multibit subtraction) from a and generates 2 bits s (result bit) and d_{out} (borrow out).

a	b	d_{in}	d _{out}	S
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Carry Ripple Adder (Parallel Adder)

An n-bit carry-ripple adder (CRA) can be easily implemented with n cascaded FAs. We add $A = a_{n-1}a_{n-2}...a_1a_0$ and $B = b_{n-1}b_{n-2}...b_1b_0$ and generate $S = s_{n-1}s_{n-2}...s_1s_0$.

Borrow Ripple Subtractor (Parallel Subtractor)

An n-bit borrow-ripple subtractor (BRS) can be implemented with n cascaded FSs. We subtract $B = b_{n-1}b_{n-2}...b_1b_0$ from $A = a_{n-1}a_{n-2}...a_1a_0$ to generate $S = s_{n-1}s_{n-2}...s_1s_0$.

Parallel Adder/Subtractor

An n-bit parallel adder/subtractor can be implemented with n cascaded FAs and n XOR gates.

We have $B = b_{n-1}b_{n-2}...b_1b_0$ and $\underline{A} = a_{n-1}a_{n-2}...a_1a_0$ and generate $S = s_{n-1}s_{n-2}...s_1s_0 = A+B$, if $Sub/\overline{Add} = 0$, and S = A-B if $Sub/\overline{Add} = 1$, in 2's complement number system.

Serial Binary Adder

Adding two binary numbers can be done in a serial manner using the below circuit.

A
$$(a_{n-1}a_{n-2}...a_1a_0)$$
 + B $(b_{n-1}b_{n-2}...b_1b_0)$ = S $(s_{n-1}s_{n-2}...s_1s_0)$

$$t_{n-bit Serial Adder} = n T > n (2d + t_{FF})$$

 C_{i+1}

Faster Adders: Carry Look Ahead Adder

The main obstacle with speeding up addition is the carry bit rippled at different stages.

→ If carry is generated faster, the addition can be realized faster!

Lets look inside the logic of a full-adder and follow the carry

generation logic in an n-bit adder.

Let:

$$p_i = a_i \oplus b_i \quad g_i = a_i b_i$$

$$\Rightarrow \quad s_i = p_i \oplus c_i \quad c_{i+1} = g_i + p_i c_i$$

We can now write:

$$\begin{array}{l} c_1 = g_0 + p_0 c_0 \\ c_2 = g_1 + p_1 c_1 = g_1 + p_1 (g_0 + p_0 c_0) = g_1 + p_1 g_0 + p_1 p_0 c_0 \\ c_3 = g_2 + p_2 c_2 = g_2 + p_2 (g_1 + p_1 g_0 + p_1 p_0 c_0) = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0 \\ \cdots \\ \rightarrow c_i = \sum_{j=0,1,\ldots,i-1} \left(g_{i-1} \prod_{k=j,j+1,\ldots,i-1} p_k \right) \text{ where } g_0 = c_0. \end{array}$$

Faster Adders: Carry Look Ahead Adder

Now, we can add two n-bit numbers using CLA idea as:

Limited fan-in and fan-out in any available integration technology force us to keep n small \odot

We can cascade m-bit CLAAs to build an n-bit adder ©

Faster Adders: Carry Look Ahead Adder

An n-bit binary adder using m-bit CLAAs can be easily implemented with $k = \lceil n/m \rceil$ cascaded CLAAs.

$$t_{\text{m-bit CLA-based n-bit Adder}} = 2d + 2dk + 2d = 4d + 2d \Gamma n/m \gamma$$

Faster Adders: Carry-Select Adder

An n-bit carry-select adder (CSLA) using m-bit adders can be easily implemented with $(2k-1) \times m$ -bit adders and $(k-1) \times 2$ -input multiplexers $(k = \lceil n/m \rceil)$.

$$t_{\text{m-bit based n-bit Adder}} = 2d(k-1) + t_{A(m)}$$

Multi-Operand Addition

Suppose we have more than two inputs to add. The simplest way to add n numbers is to add them in order as:

Multi-Operand Addition

A faster design can use a binary tree based structure as:

 $\mathbf{A}_{\mathbf{n}}$

Multi-Operand Addition

Addition can be realized in a serial manner as:

n bit CSA

Multi-Operand Addition

Faster multi-operand addition can be done using carry save adders (CSA).

Any CSA reduces 3 inputs to 2. It is also called a 3-to-2 Compressor.

Multi-Operand Addition

Using CSAs we can add n input numbers as:

Recall the pen and paper technique we use to multiply n-bit number A and m-bit number B to generate (m+n)-bit number $P = A \times B$.

$$A = a_{n-1} \cdots a_1 a_0$$

$$B = b_{m-1} \cdots b_1 b_0$$

$$M_{0} = a_{n-1}b_{0} \cdots a_{1}b_{0} \ a_{0}b_{0}$$

$$M_{1} = a_{n-1}b_{1} \cdots a_{1}b_{1} \ a_{0}b_{1}$$

$$M_{m-1} = a_{n-1}b_{m-1} \cdots a_{1}b_{m-1} \ a_{0}b_{m-1}$$

$$p_{m+n-1}$$
 p_{m+n-2}

 $p_1 p_1 p_1$

a₂ b₁ a₃ b₀ a₁ b₁a₂ b₀ a₀ b₁a₁b₀ an bo We can use a combinational circuit (called Multiplier Array) to create and add the partial products and add them HA HA HA using carry-save addition technique a₃ b₁ a₂ b₂ a₁b₂ anb₂ to generate the final product. Here we show it for 4x4 bit multiply. FΑ FΑ Latency_{4x4 bit multiplier} = d + 2d + 2d + 2d + 6d = 13da₃b₂ a₂b₃ a₁b₃ a₀ b₃ → Latency_{nxn bit multiplier} = d + 2d(n-1) + 2d(n-1) =FΑ FA FΑ 4nd - 3da₃b₃ Cost_{nxn bit multiplier} = n^2 ANDs + n HAs + FA FΑ HA $((n-1)^2-1)$ FAs

Multiplication can be done in a serial manner.

Consider n-bit numbers $A(a_{n-1}a_{n-2}...a_0)$ and $B(b_{n-1}b_{n-2}...b_0)$.

We can write:

$$A \times B = (A \times 2^{n-1} \times b_{n-1}) + (A \times 2^{n-2} \times b_{n-2}) + \dots + (A \times 2^{1} \times b_{1}) + (A \times b_{0})$$

$$= [A ((n-1)] \times b_{n-1} + [A ((n-2)] \times b_{n-2} + \dots + [A (1] \times b_{1} + [A (0] \times b_{0})]$$

$$= \sum_{i=0..n-1} [A (i] \times b_{i})$$

For shifting A for n-1 bits to the left, we need a 2n-bit register to keep the partial products.

Alternatively, we can shift the accumulator, that accumulates the partial products, to the right.

a tricky circuit to save hardware

Add and Shift multiplier uses the following circuit (data path):

In the beginning: A and B keep the n-bit multiplicand and multiplier. At the end: Register pairs X:B contain the 2n-bit multiply result.

Add & Shift multiplication algorithm is shown. **Example 1**: Follow Add & Shift method step by step to multiply 4-bit numbers 9 and 11. (A=1001)

D_{FF}	X	B b _o	Counter	Operation
0	0000	1011	4	Add
0	1001	1011	4	Shift
0	0100	1101	3	Add
0	1101	1101	3	Shift
0	0110	1110	2	Shift
0	0011	0111	1	Add
0	1100	0111	1	Shift
0	Q 110	001	0	End.
		†		
	99	$\theta = 9 x$	11	

Add & Shift multiplication algorithm is shown. **Example 2**: Follow Add & Shift method step by step to multiply 4-bit numbers 12 and 6. (A=1100)

D_{FF}	X	B b _o	Counter	Operation	
0	0000	0110	4	Shift	
0	0000	0011	3	Add	
0	1100	0011	3	Shift	
0	0110	0001	2	Add	
1	0010	0001	2	Shift	
0	1001	0000	1	Shift	
0	0 100	1000	0	End.	
		,			
	72	2 = 12	x 6		

Multiplication based on Booth's scheme.

Assume in the n-bit multiplier we have a k-bit pattern of 1s:

```
xx...x011...10xx...x

† †

j i

bit positions (k = j - i)
```

For the k-bit string 11..11, we must add A x $(2^i+2^{i+1}+...+2^{j-1})$ to the accumulator. Obviously: $2^i+2^{i+1}+...+2^{j-1}=2^j-2^i$

So, instead of adding A to the accumulator at positions i, i+1, ..., j-1, we can subtract A from accumulator for the first 1 at position i and add A to the accumulator for the 0 at position j.

Booth's based multiplier uses the following circuit (data path):

In the beginning: A and B keep the n-bit multiplicand and multiplier. At the end: Register pairs X:B contain the 2n-bit multiply result.

Booth's based multiplication algorithm is shown.

Example 1: Follow Booth's based multiplication algorithm step by step to multiply 4-bit numbers 7 and 6. (A=0111)

X	В	b_0	Counter	Operation
0000	011	0	4	Shift
0000	001	1	3	Subtract
1001	001	1	3	Shift
1100	100	1	2	Shift
1110	010	0	1	Add
0101	010	0	1	Shift
0010	101	0	0	End.
42 =	+ = 7 x	6		

Booth's based multiplication algorithm is shown.

Example 2: Follow Booth's based multiplication algorithm step by step to multiply 4-bit numbers 5 and 11. (A=0101)

X	В	b ₀	Counter	Operation
0000	101	1	4	Subtract
1011	101	1	4	Shift
1101	110	1	3	Shift
1110	111	0	2	Add
0011	111	O	2	Shift
0001	111	1	1	Subtract
1100	111	1	1	Shift
1110	011	1	0	$z=1\rightarrow$ correction
0011	011	D	0	End.
		•		

 $55 = 5 \times 11$

Signed multiplication can be done in two way:

- Indirect
- Direct

In indirect scheme: we first make the two input numbers positive and keep the sign bit of product. Then, we use one of the algorithms for unsigned multiplication to multiply the two positive numbers. At the end, the sign bit of product is applied to the result to make the final signed result.

- → We need some circuits:
- to extract the absolute value of any signed input number
- to negate a positive number

Circuit to extract the absolute value, in different representation systems:

Sign-Magnitude

1's Complement

2's Complement

Circuit to negate a positive value for different representation systems:

Sign-Magnitude

Positive value

magnitude

n-1

Sign_{FF}

S

1's Complement

S

2's Complement

Booth's Algorithm: A Direct Signed Multiplication Method

The datapath used here is exactly what we used for unsigned multiplication.

 $-35 = 7 \times (-5)$

Signed Binary Multiplication

The acting chary for the Booth's signed multiplication scheme is shown.

Example 1: Follow Booth's signed multiplication algorithm step by step to multiply 4-bit numbers 7 and -5. (A=0111)

X	В	b _o	Counter	Operation
0000	101	1	4	Subtract
1001	101	1	4	Shift
1100	110	1	3	Shift
1110	011	C	2	Add
0101	011	C	2	Shift
0010	101	1	1	Subtract
1011	101	1	1	Shift
1101	110		0	End.

- 00100011

The acting chary for the Booth's signed multiplication scheme is shown.

Example 2: Follow Booth's signed multiplication algorithm step by step to multiply 4-bit numbers -7 and 6. (A=1001)

X	B b _o	Counter	Operation
0000	0110	4	Shift
0000	0011	3	Subtract
0111	0011	3	Shift
0011	1001	2	Shift
0001	1100	1	Add
1010	1100	1	Shift
1101	0110	0	End.
	- 001010	10 -42 =	= -7 x 6

The acting chart for the Booth's signed multiplication scheme is shown.

Example 3: Follow Booth's signed multiplication algorithm step by step to multiply 4-bit numbers -7 and -5. (A=1001)

X	B 👧	Counter	Operation
0000	1011	4	Subtract
0111	1011	4	Shift
0011	1101	3	Shift
0001	1110	2	Add
1010	1110	2	Shift
1101	0111	1	Subtract
0100	0110	1	Shift
0010	0011	0	End.

 $35 = -7 \times (-5)$

Unsigned Binary Division

Recall the pen & paper technique to divide two numbers.

Example: Divide 736 (Dividend) by 22 (Divisor).

Unsigned Binary Division

The pen & paper technique uses comparison for subtract possibility of divisor from dividend.

Division methods include:

- Comparison method
- Restoring method
- Non-restoring method

Unsigned Binary Division

Comparison method uses the following circuit (datapath):

In the beginning: Register pairs A and Q keep the 2n-bit dividend and register B keeps the n-bit divisor.

At the end: Register Q contains the n-bit quotient and register A contains the n-bit remainder.

Comparison method algorithm is shown in the chart.

Example 1: Follow comparison method algorithm step by step to divide 37 by 5 (4-bit number). (B=0101)

Α	Q	lo	Counter	Operation
0010	010	1	4	A <b <math="">\rightarrow No Overflow
0010	010	1	4	Shift
0100	101	O	3	Shift
1001	010	O	2	Subtract & set q_0
0100	010	1	2	Shift
1000	101	O	1	Subtract & set q_0
0011	101	1	1	Shift
0111	011	O	0	Subtract & set q_0
0010	011		0	End.
27	7		7 = 37 /	5
z = 37	— /X	5		

Comparison method algorithm.

Example 2: Follow comparison method algorithm step by step to divide 44 by 8 (4-bit number). (B=1000)

A Q	Counter	Operation
0010 110	0 4	A <b <math="">\rightarrow No Overflow
0010 110	0 4	Shift
0101 100	<mark>0</mark> 3	Shift
1011 000	0 2	Subtract & set q_0
0011 000	1 2	Shift
0110 001	0 1	Shift
1100 010	0 0	Subtract & set q_0
0100010	0	End.
k = 44 - 8x	5 5 = 44/	8

Restoring method division algorithm uses the subtractor for comparison. It has the following circuit (data path).

The chart of Restoring method division algorithm.

Example 2: Follow restoring method algorithm to divide 76 by 7 (4-bit number). (B=0111)

A	Q 👡	Counter	Operation
0100	1100	4	Subtract
1101	1100	4	No Overflow→ Restore
0100	1100	4	Shift
1001	1000	3	Subtract
0010	1000	3	q ₀ ← 1
0010	1001	3	Shift
0101	0010	2	Subtract
1110	0010	2	Restore
0101	0010	2	Shift
1010	0100	1	Subtract
0011	0100	1	$q_0 \leftarrow 1$ 6 = 76 - 10x7
0011	0101	1	Shift
0110	1010	0	Subtract
1111	1010	0	Restore 10 = 76 / 7
(0110)	1010	0	End.

Non-restoring method division algorithm uses the subtractor for comparison but do not restore the result if negative. It has the following circuit (data path).

The chart of non-restoring method is shown.

Example 1: Follow non-restoring method division to divide 59 by 5 (4-bit number). (B=0101)

```
Q Counter Operation
c<sub>FF</sub> A
- 0011 1011
                         Subtract
  1110 1011
                         No-overflow \rightarrow Restore; C_{FF} \leftarrow 1;
  0011
         1011
                         Shift
1 0111 0110
                         Subtract (C_{FF}=1)
   0010 0110
                         q_0 \leftarrow C_{FF};
                         Shift
1 0010 0111
  0100 1110
                         Subtract (C_{FF}=0)
                       q_0 \leftarrow C_{FF};
  1111 1110
  1111
         1110
                         Shift
                         Add (C_{FF}=1)
  1111
         1100
                         q_0 \leftarrow C_{FF};
   0100
         1100
   0100
                         Shift 4 = 59 - 11x5
          1101
                         Subtract (C_{FF}=1)
   1001
          1010
                         q_0 \leftarrow C_{FF}; 11 = 59 / 5
   0100
                         End.
```

```
Start
   A:Q← Dividend:
   B← Divisor;
   Counter ← n;
     A \leftarrow (A) - (B);
                           Overflow
                              Stop
     A \leftarrow (A)+(B);
        C_{FF} \leftarrow 1
    Shift left (A:Q);
    Counter --;
                     A \leftarrow (A) - (B);
A \leftarrow (A)+(B);
         q_0 \leftarrow C_{FF}
                               End
```

The chart of non-restoring method is shown.

Example 2: Follow non-restoring method division to divide 45 by 6 (4-bit number). (B=0110)

```
Counter Operation
c<sub>FF</sub> A
- 0010 1101
                         Subtract
  1100 1101
                         No-overflow \rightarrow Restore; C_{FF} \leftarrow 1;
  0010 1101
                         Shift
1 0101 1010
                         Subtract (C_{FF}=0)
   1111 1010
                       q_0 \leftarrow C_{FF};
  1111 1010
                         Shift
                       Add (C_{FF}=1)
          0100
  1111
                       q_0 \leftarrow C_{FF};
  0101
          0100
  0101
          0101
                         Shift
                         Subtract (C_{FF}=1)
  1010 1010
                        q_0 \leftarrow C_{FF};
   0100 1010
                         Shift 3 = 45 - 7x6
  0100
          1011
                         Subtract (C_{FF}=1)
   1001
          0110
                         q_0 \leftarrow C_{FF}; 7 = 45/6
   0011
```

```
Start
   A:Q← Dividend:
   B← Divisor;
   Counter ← n;
     A \leftarrow (A) - (B);
                           Overflow
                              Stop
     A \leftarrow (A)+(B);
        C_{FF} \leftarrow 1
    Shift left (A:Q);
    Counter --;
                     A \leftarrow (A) - (B);
A \leftarrow (A)+(B);
         q_0 \leftarrow C_{FF}
                               End
```

Decimal arithmetic can be done in two way:

- Indirect
- Direct

In Indirect scheme, we first convert the input decimal numbers to binary. Then, we use one of the algorithms for binary arithmetic we studied. At the end, the binary output is converted to decimal.

- → We need some circuits:
- Decimal to binary convertor
- Binary to decimal convertor

Decimal to binary convertor:

The pen & paper technique uses successive divisions by 2 keeping the remainders.

Example: Convert the BCD number 74 to its binary equivalent.

Remainder 74/2 = 37 37/2 = 18 18/2 = 9 9/2 = 4 4/2 = 2 2/2 = 1 1/2 = 0

→ Writing the remainder values down to up, the binary equivalent will be: 1001010

Decimal to binary convertor:

Consider the following data path. At start, input BCD number is in A register and at the end the output binary is in B register.

Operation chart of decimal-to-binary convertor is shown.

Example 1: Follow BCD-to-BIN conversion to convert 371

to binary.

	Α		В	Counter	Operation	B ←
0011	0111	0001	000000000	10	Shift	A← Cou
0001	1011	1000	1000000000	9	Correct a_1 a_0	
0001	1000	0101	1000000000	9	Shift	
0000	1100	0010	1100000000	8	Correct a ₁	Shif
0000	1001	0010	1100000000	8	Shift	Cou
0000	0100	1001	0110000000	7	Correct a ₀	
0000	0100	0110	0110000000	7	Shift	
0000	0010	0011	0011000000	6	Shift	
0000	0001	0001	1001100000	5	Shift	
0000	0000	1000	1100110000	4	Correct a ₀	l a _i
0000	0000	0101	1100110000	4	Shift	
0000	0000	0010	1110011000	3	Shift	
0000	0000	0001	0111001100	2	Shift	
0000	0000	0000	1011100110	1	Shift	
0000	0000	0000	0101110011	> 0	End.	

 BCD input; unter ← m; ift right (A:B); unter --; for i=0..n-2 $a_{i,3}$ $a_i \leftarrow (a_i) - 3$; End

Start

371 = 3+16+32+64+256

Start

Decimal Arithmetic

Operation chart of decimal-to-binary convertor is shown.

Example 2: Follow BCD-to-BIN conversion to convert 555

to binary.

Λ	Б	0		
A	B	Counter	Operation	B ← 0;
0101 0101 0101	000000000	10	Shift	A← BCD input; Counter ← m;
0010 1010 1010	1000000000	9	Correct a_1 a_0	
0010 0111 0111	1000000000	9	Shift	—
0001 0011 1011	1100000000	8	Correct a₁	Shift right (A:B);
0001 0011 1000	1100000000	8	Shift	Counter;
0000 1001 1100	0110000000	7	Correct a_1 a_0	for i=0n-2
0000 0110 1001	0110000000	7	Shift	a _{i,3}
0000 0011 0100	1011000000	6	Shift	11
0000 0001 1010	0101100000	5	Correct a ₀	1 (0) 2
0000 0001 0111	0101100000	5	Shift	$a_i \leftarrow (a_i) - 3;$
0000 0000 1011	1010110000	4	Correct a ₀	
0000 0000 1000	1010110000	4	Shift	Z 1
0000 0000 0100	0101011000	3	Shift	
0000 0000 0010	0010101100	2	Shift	
0000 0000 0001	0001010110	1	Shift	
0000 0000 0000	1000101011	> 0	End.	[End]
		555 = 3	+8+32+512	

Binary to decimal convertor:

The pen & paper technique uses multiplication of each bit of the input binary number to its position weight and adding it to the accumulator in decimal format.

Example: Convert the binary number 0011001100 to its BCD equivalent.

```
0011001100 = 1x2^{2} + 1x2^{3} + 1x2^{6} + 1x2^{7}
= 4 + 8 + 64 + 128
= 204_{(10)}
= 0010 0000 0100 <sub>(BCD)</sub>
```

Binary to decimal convertor:

Consider the following data path. At start, input binary number is in B register and at the end the output BCD number is in A register.

Operation chart of binary-to-decimal convertor is shown.

Example 1: Follow BIN-to-BCD conversion to convert 0111011100 to binary.

476 = 4+8+16+64+128+256

A	В	Counter	Operation
0000 0000 00	000 0111011100	10	Shift
0000 0000 00	000 1110111000	9	Shift
0000 0000 00	001 1101110000	8	Shift
0000 0000 00	011 1011100000	7	Shift
0000 0000 01	111 0111000000	6	Correct a ₀
0000 0000 1	010 0111000000	6	Shift
0000 0001 03	100 1110000000	5	Shift
0000 0010 1	001 1100000000	4	Correct a ₀
0000 0010 13	100 1100000000	4	Shift
0000 0101 1	001 1000000000	3	Correct a_1 a_0
0000 1000 13	100 1000000000	3	Shift
0001 0001 1	001 0000000000	2	Correct a ₀
0001 0001 13	100 0000000000	2	Shift
0010 0011 1	000 0000000000	1	Correct a ₀
0010 0011 1	011 0000000000	1	Shift
0100 0111 0:	110 0000000000	0	End.

Operation chart of binary-to-decimal convertor is shown.

Example 2: Follow BIN-to-BCD conversion to convert 0011111100 to binary.

	Α		В	Counter	Operation
0000	0000	0000	0011111100	10	Shift
0000	0000	0000	0111111000	9	Shift
0000	0000	0000	1111110000	8	Shift
0000	0000	0001	1111100000	7	Shift
0000	0000	0011	1111000000	6	Shift
0000	0000	0111	1110000000	5	Correct a ₀
0000	0000	1010	1110000000	5	Shift
0000	0001	0101	1100000000	4	Correct a ₀
0000	0001	1000	1100000000	4	Shift
0000	0011	0001	1000000000	3	Shift
0000	0110	0011	000000000	2	Correct a ₁
0000	1001	0011	000000000	2	Shift
0001	0010	0110	000000000	1	Correct a ₀
0001	0010	1001	000000000	1	Shift
0010	0101	0010	>00000000000	0	End.

252 = 4+8+16+32+64+128

Direct Method: Addition

One-digit decimal adder

All possible results of adding two decimal (BCD) digits with carry

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a + b + c _{in}			c _{out} s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0000		\rightarrow	0 0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0001		\rightarrow	0 0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0010		\rightarrow	0 0010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			\rightarrow	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1001		\rightarrow	0 1001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1010	+6	\rightarrow	1 0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1011	+6	\rightarrow	1 0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1100	+6	\rightarrow	1 0010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1101	+6	\rightarrow	1 0011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1110	+6	\rightarrow	1 0100
1 0001	0 1111	+6	\rightarrow	1 0101
1 0010 +6 → 1 1000	1 0000	+6	\rightarrow	1 0110
	1 0001	+6	\rightarrow	1 0111
1 0011 +6 → 1 1001	1 0010	+6	\rightarrow	1 1000
	1 0011	+6	\rightarrow	1 1001

Direct Method: n-digit Decimal Parallel Adder

An n-digit decimal carry-ripple adder (DCRA) can be easily implemented with n cascaded DAs.

 $t_{n-digit\ DCRA} = 10nd + 6d$

Direct Method: n-digit Decimal Parallel Subtractor An n-digit decimal subtractor can be built by n-digit DCRA.

$$t_{n\text{-digit decimal subtractor}} = t_{9\text{'s complement}} + 10\text{nd} + 6\text{d}$$

If decimal code is self-complement then, $t_{9's complement} = d$

Direct Method: Combinational Multiplier

Example: Design a 3x3 digit multiplier.

Direct Method: Sequential Multiplier

To implement Shift & Add method, we need to build and nx1 digit decimal multiplier.

A one-digit decimal multiplier, M, can be built as a 2-layer combinational circuit with latency 2d.

Now, using M and DA cells we can design an nx1 digit decimal multiplier.

 $t_M = 2d$

$$\rightarrow$$
 T_{nx1 digit multiplier} = 2d + 10nd + 6d = 10nd + 8d

Direct Method: Sequential Multiplier

Add & Shift multiplier uses the following circuit (data path):

In the beginning: A and B keep the n-digit multiplicand and multiplier.

At the end: Register pairs X:B contain the 2n-digit multiply result.

Direct Method: Sequential Multiplier

Add & Shift decimal multiplication algorithm is shown.

Example 1: Follow Add & Shift method step by step to multiply 3-digit numbers 123 and 117. (A=123)

Start

A← Multiplicand;

 $X_n:X\leftarrow 0$;

X_n	X	В	b_0	Counter	Operation
0000	00000000000	00010001	0111	3	Add 7x123 to X
0000	1000 <mark>0110</mark> 0001	00010001	0111	3	Shift 1 digit
0000	0000 <mark>1000</mark> 0110	00010001	0001	2	Add 1x123 to X
0000	0010 <mark>000</mark> 01001	00010001	0001	2	Shift 1 digit
0000	0000 <mark>010</mark> 0000	10010001	0001	1	Add 1x123 to X
0000	0001 <mark>01</mark> 000011	10010001	0001	1	Shift 1 digit
0000	0000 <mark>0001</mark> 0100	00111001	0001	0	End.

 $14391 = 123 \times 117$

Direct Method: Sequential Divider

A sequential decimal divider uses the following circuit (data path):

In the beginning: A and Q keep the 2n-digit dividend and B keeps the n-digit divisor.

At the end: Register Q contain the n-digit quotient and A contains the n-digit remainder.

End

Start

A:Q ← Dividend:

overflow

 $X \leftarrow (X) - (B) \times (A \text{ div } B)$

Shift left (A:Q);

 $q_0 \leftarrow (A) \text{ div } (B);$

Counter -- ;

B← Divisor; Counter ← n;

Decimal Arithmetic

Direct Method: Sequential Divider

The division algorithm is shown.

Example 2: Follow the division algorithm step by step to divide decimal 785 by decimal 11.

Α	$Q q_0$	Counter	Operation End Z
00000111	1000 <mark>0101</mark>	2	No overflow
01111000	0101 <mark>0000</mark>	2	Shift 1 digit
01111000	0101 <mark>0000</mark>	1	$X \leftarrow 78 - 7x11; q_0 \leftarrow 7;$
00000001	0101 <mark>0111</mark>	1	Shift 1 digit
00010101	0111 <mark>0000</mark>	0	$X \leftarrow 15 - 1x11; q_0 \leftarrow 1;$
00000100	01110001	0	End.
		· A	

remainder=4 quotient= 71

Consider the following hardware used to describe different arithmetic operations on floating-point numbers.

Each floating-point number has 2 parts:

- Mantissa (sign-magnitude representation) and
- Exponent (excess-2^{e-1} biased exponent).

Floating-Point Addition/Subtraction: AR \leftarrow (AR) \pm (BR)

Floating-Point Multiplication: $AR \leftarrow (QR) \times (BR)$

Floating-Point Division: $QR \leftarrow (AR) / (BR)$

When a very complex function is computed for few inputs, we can use ROMs instead of complex arithmetic circuits.

Example: Compute function $F(A,B) = A^B - \sin(A) / [\exp(B) - \operatorname{sqrt}(A)]$ for $A(s:e_5e_4e_3e_2e_1e_0:m_8m_7m_6m_5m_4m_3m_2m_1m_0)$ being a 16-bit floating-point number and $B(b_7b_6b_5b_4.b_3b_2b_1b_0)$ being an 8-bit fixed-point number.

Output is also a 16-bit floating-point number.

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 1: Design a circuit to calculate decimal output $S = 100 \times B + A/10 + 70$ given 2-digit BCD numbers A and B.

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 2: Given 3-bit binary numbers A, B and C, design a circuit to compute binary output S = 16 (2A + B%4 + 14) + C/2 + 4 using a 4-bit binary adder.

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 3: Design a circuit to calculate decimal output $S = 5 \times A$

given 1-digit BCD number A.

Α							
				,			
0			()	()	
	S ₁	ľ			S_0	•	
$S = 5 \times A$							

Α	S			
0000	0000	0000		
0001	0000	0101		
0010	0001	0000		
0011	0001	0101		
0100	0010	0000		
0101	0010	0101		
0110	0011	0000		
0111	0011	0101		
1000	0100	0000		
1001	0100	0101		

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 4: Design a circuit to calculate decimal output $S = 50 \times A + B\%4 + 24$ given 1-digit BCD numbers A and B.

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 5: Design a circuit to calculate 4-digit decimal output $S = 505 \times A + 2 \times (B\%2) + 200$ given 1-digit BCD numbers A and B.

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 6: Design a circuit to calculate decimal output $S = 50 \times A + A/10 - 100 \times [(A\%10)/2] + 220$ given a 2-digit BCD number A.

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 6: Design a circuit to calculate decimal output $S = 50 \times A + A/10 - 100 \times [(A\%10)/2] + 220$ given a 2-digit BCD number A.

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 7: Design a circuit to calculate decimal output 5 x A given a 3-digit BCD number A.

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 8: Using an 8-bit binary adder and given 4-bit pure binary numbers A, B, C, and D, design a circuit to generate S:

If
$$(A+B)>14$$
 then $S = C+D+1$ else $S = C+D$;

When inputs are of special formats/sizes or fixed, we might design more efficient and simpler circuits.

Example 9: Using a 9-bit binary adder and given 4-bit 2's complement numbers A, B, and C, design a circuit to generate S:

$$S = A - B - C - 1$$

END OF SLIDES

QUESTIONS?