

计算机组成原理

第三章 运算方法与运算器

3.4 补码一位乘法

第三章

补码一位乘法的基本方法

设[X]
$$_{ih} = X_0 X_1 X_2 X_3 ... X_n$$
 [Y] $_{ih} = Y_0 Y_1 Y_2 Y_3 ... Y_n$ 可证明: (证明 U 数 M)
$$[X \cdot Y]_{ih} = [X]_{ih} \cdot (0.Y_1 Y_2 Y_3 ... Y_n) - Y_0 \cdot [X]_{ih}$$
 进一步展开合并后可得:
$$[x \cdot y]_{ih} = [x]_{ih} \cdot \sum_{i=0}^{n} (y_{i+1} - y_i) 2^{-i} \quad (符号位参加运算)$$

原码一种建筑地域

$$[x \cdot y]_{i} = [x]_{i} \cdot \Sigma(y_{i+1} - y_{i})2^{-i}$$
 (符号位参加运算)

- (1)如果 $y_{n+1}=y_n$,部分积加0,部分积算术右移1位;
- (2)如果 $y_{n+1}y_n$ =10,部分积加[x]_补,部分积算术右移1位;
- (3)如果 $y_{n+1}y_n=01$,部分积加 $[-x]_{i}$,部分积算术右移1位.

重复进行n+1步,但最后一步不移位。

包括一位符号位,所得乘积为2n + 1位,其中n为数据位位数.

第三章 3.4 补码一位乘法

1 〈 补码一位乘法的基本方法

设
$$[X]_{\stackrel{}{\uparrow}} = X_0 X_1 X_2 X_3 ... X_n \quad [Y]_{\stackrel{}{\uparrow}} = Y_0 Y_1 Y_2 Y_3 ... Y_n$$

$$[x \bullet y]_{\stackrel{}{\uparrow}} = [x]_{\stackrel{}{\uparrow}} \bullet \Sigma (y_{i+1} - y_i) 2^{-i} \quad ($$
 符号位参加运算)

几个特殊问题的处理

?<u>部分积和乘数寄存器</u>均右移 ① 用物易存器保存部分积移蛛的心

 $y_{n+1} = 0$

在乘数寄存器Y后增加的一位

yntl 不应改变了的觉

为使众法

投机处进行

2 补码一位乘法的举例

例1 已知X= +1101 Y=+1011 用补码—位乘法求 X×Y 解: $[X]_{\downarrow h} = 01101$ $[Y]_{\downarrow h} = 01011$ $[-X]_{\downarrow h} = 10011$ <u>→</u>110011_ 111001 <u>101011</u> 结果右移一位, Y_{n+1} = Y_n 部分积 +0 000000 111001 111100 110101 结果右移一位, Y_{n+1} > Y_n 部分积 +[X]** \rightarrow 001101 + 001001

第三章

3.4 补码一位乘法

2 补码一位乘法的举例

N=412	部分积	乘数	说明
进分八十	→ 000100	111010	将结果右移一位, Y _{n+1} < Y _n 部分积 +[-X] _补
即 5 次运算	+ 110011		
EN > I	110111		
	→ 111011	111101	将结果右移一位, Y _{n+1} > Y _n 部分积 + [X] _补
	+ <u>001101</u>	在数	等态器中全部用到2后,偏东
	001000	3K Ur	板据字块推算固定的运算步数
			**放达到,能利3·算
∴ [X · Y] _* =010001111			<i>y</i> w • •
V V 010001111			
東值·迁敬料码=图码			