Exercises for Chapter 4

- 1. From a series of 100 observations, we calculate r_1 = -0.5, r_2 = 0.3, r_3 = -0.2, r_4 = 0.1, $|r_k|$ < 0.09 for k > 4. On the basis of this information alone, what ARIMA model would we tentatively specify for the series?
- 2. Consider an AR(1) series of length 200 with $r_1 = 0.5$. Perform a statistical test at $\alpha = 0.05$ that H_0 : $\rho_1 = 0.9$ versus H_1 : $\rho_1 \neq 0.9$.
- 3. For a series Z_t with length 100, we have computed $r_1 = 0.7, r_2 = 0.45, r_3 = 0.3, <math>\bar{Z} = 2$ and $S^2 = 5$, where \bar{Z} and S^2 are the sample mean and variance of the data set respectively. Consider an AR(2) process with a constant term θ_0 ,

$$Z_t = \theta_0 + \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + a_t$$
, where $a_t \sim WN(0, \sigma_a^2)$.

Find the estimates of ϕ_1 , ϕ_2 , θ_0 , and σ_a^2 by the method of moment.

4. Find the method of moment estimates of ϕ and θ for the stationary and invertible ARMA(1, 1) process

$$Z_t = \phi Z_{t-1} + a_t - \theta a_{t-1}$$
, where $a_t \sim WN(0, \sigma_a^2)$.

based on the first two sample autocorrelations $r_1 = 0.2$ and $r_2 = -0.1$.

5. Suppose we have a AR(1) model $Z_t = \theta_0 + \phi Z_{t-1} + a_t$ with $a_t \sim WN(0, \sigma_a^2)$. We regress the series $\{Z_t\}$ against the lag-1 counterpart $\{Z_{t-1}\}$, and have the following computer output:

Coefficients:

Residual standard error: 2.862 on 78 degrees of freedom

Multiple R-Squared: 0.3090

Find the estimates of μ , ϕ , θ_0 , and σ_a^2 based on conditional least square method.

- 6. Consider an MA(1) process, $Z_t = a_t \theta a_{t-1}$. Based on a series of length 4, we observed $Z_1 = 0$, $Z_2 = 0$, $Z_3 = 2$ and $Z_4 = 1$.
 - a) Find the conditional least-square estimate of θ .
 - b) Find an estimate of σ_a^2
- 7. For a MA(1) model

$$Y_t = \alpha Z_t + \beta Z_{t-1}$$
, for $Z_t \stackrel{i.i.d.}{\sim} N(0,1)$.

Use the method of moment to estimate parameters α and β .

8. For a ARMA(1,1) model

$$Y_t = \phi Y_{t-1} + Z_t + \theta Z_{t-1}, \text{ for } Z_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2),$$

write down $\sum_{t=1}^{3} Z_{t}^{2}$ in terms of ϕ and θ and $\{Y_{1}, Y_{2}, Y_{3}\}$.

9. Given $\sum_{t=2}^n Y_{t-1}Y_t=328$ and $\sum_{t=1}^{n-1} Y_t^2=413$ and $Y_1=-0.2,\ Y_n=2$ with n=200, for a AR(1) model

$$Y_t = \phi Y_{t-1} + Z_t$$
, for $Z_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$,

- a) Estimate the parameters ϕ and σ^2 .
- b) Find a 95% confidence interval for ϕ .
- 10. Given the sample autocorrelation functions $\gamma_0 = 1, \gamma_1 = 0.416, \gamma_2 = .37$, use Yule-Walker equation to estimate the parameters in the AR(2) model

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + Z_t$$
, for $Z_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$.

11. For a MA(1) model

$$Y_t = Z_t + \theta Z_{t-1}$$
, for $Z_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$.

write down the likelihood function for the observations $\{Y_1, Y_2, Y_3\}$.

12. For a MA(2) model

$$Y_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2}, \text{ for } Z_t \overset{i.i.d.}{\sim} N(0, 1)$$

find the lag-2 PACF for Y_t .

13. Figure 1 and Figure 2 display the ACF and PACF of the process $\{X_t\}$, respectively. What model would you suggest for $\{X_t\}$?

Figure 1: ACF plot1.pdf

Series Xt

Figure 2: PACF plot2.pdf

Series Xt

- 14. A number of models are fitted to the data set with n=400 and the following results are obtained:
 - a) ARMA(1,2) log-likelihood=-634
 - b) ARMA(2,3) log-likelihood=-636
 - c) ARMA(4,3) log-likelihood=-641
 - d) ARMA(1,1) log-likelihood=-630

Which model should you choose in terms of AICC?