

3:1 ActiveEye™ HDMI™ Switch with I2C Control & ARC Transmitter

Features

- → HDMI 1.4 compliant with fast video switch among each ports
- → I²C control 3:1 HDMI active switch Mux with DC coupled or AC coupled Dual mode DisplayPort signals
 - Output will maintain its DC coupled, currentsteering
 - TMDS compliance input can be AC coupled video or DC coupled
- → 2.5Gbps data rate for TMDS clock up to 250MHz
- → Support up to 36-bits per pixel Deep ColorTM modes
- → Programmable equalizer, emphasis and amplitude settings to achieve optimized HDMI signal integrity
- → Integrated selectable DDC active/ passive switch to connect DDC path
- → Idle clock detection function for output squelch
- → Programmable TMDS termination control
 - TMDS input pull-up 50 Ohm termination, pull-down
 >120K Ohm resistor when switch is deselected
 - Double terminated TMDS output
- → Integrated ESD protection on I/O pins to connector
 - □ 8KV contact per IEC61000-4-2, level 3
- → Packaging
 - 64 pin LQFP (FB), Pb-free and Green

Description

PI3HDMI336 is an I^2C configurable active switch using Pericom's new ActiveEyeTM technology to achieve optimized signal integrity for cable or on board transmission.

Through I²C interface, system designer can easily program and adjust equalization, emphasis and output swing settings.

With integrated DDC channel Mux, Hot Plug Detection De-Mux, cable plug-unplug detection and HDMI 1.4 ARC transmitter, PI3HDMI336 saves GPIO control pins, provides optimized trace routing, and reduces BOM cost.

Programmable TMDS input termination settings helps designers to avoid the compatibility issue caused by non standard HDMI source.

Programmable output termination setting supports double termination option between PI3HDMI336 and the HDMI receiver chip. This feature minimizes the reflection caused by improper impedance matching and reduces the signal jitter.

PI3HDMI336 is HDMI 1.4 compatible with backward compatibility to the DVI 1.0 standard and can be used for the DP++ application devices.

Block Diagram

Block Diagram

Pin Description

Pin #	Pin Name	Ю	Descriptions
5, 19, 29, 44, 57	V_{DD}	Power	3.3V power supply. When $V_{\rm DD}$ is off, the TMDS channels and ARC will be powered down.
13	S _{VDD}	Power	3.3V standby power supply. SV_{DD} is for side band signals (HPD, DDC channel and the I ² C control register unit).
8, 24, 41, 54	GND	Ground	Ground connection
32	HPD_SINK	I	Sink side hot plug detector input; internal pull-down at 120K Ω .
62	HPD_A	О	Port A HPD output
49	HPD_B	О	Port B HPD output
36	HPD_C	О	Port C HPD output
2	CK+A		
1	CK-A	Ţ	D (A TIMBS: A D) 50 1 D 1 2001 O
4	D1+A	I	Port A TMDS inputs. Rt=50ohm; Rpd=200k Ω .
3	D1-A		
7	D2+A		

Pin Description Cont..

Pin#	Pin Name	IO	Descriptions			
6	D2-A					
10	D3+A	I	Port A TMDS inputs. Rt=50ohm; Rpd=200k Ω .			
9	D3-A					
53	CK+B					
52	СК-В					
56	D1+B					
55	D1-B		D (D TMDC :			
59	D2+B	I	Port B TMDS inputs. Rt=50ohm; Rpd=200k Ω .			
58	D2-B					
61	D3+B					
60	D3-B					
40	CK+C					
39	CK-C		Deat CTMDS invests Da 50 day, Dad 20010			
43	D1+C					
42	D1-C					
46	D2+C	I	Port C TMDS inputs. Rt=50ohm; Rpd=200kΩ.			
45	D2-C					
48	D3+C					
47	D3-C					
27	CK+					
28	CK-					
25	D+1					
26	D-1	О О	TMDS outputs Pout-500			
22	D+2		TMDS outputs. Rout= 50Ω .			
23	D-2					
20	D+3					
21	D-3					
64	SCL_A	IO	Port A DDC Clock			
51	SCL_B	IO	Port B DDC Clock			
38	SCL_C	IO	Port C DDC Clock			
63	SDA_A	IO	Port A DDC Data			
50	SDA_B	IO	Port B DDC Data			
37	SDA_C	IO	Port C DDC Data			

Pin Description Cont..

Pin#	Name	IO Type	Descriptions
30	SCL_SINK	IO	Sink side DDC Clock
31	SDA_SINK	IO	Sink side DDC Data
15	SCL_CTL	IO	I ² C Clock, compatible with I ² C-bus specification, up to 400kb/s.
14	SDA_CTL	IO	I ² C Data, compatible with I ² C-bus specification, up to 400kb/s.
12	INT_OUT	О	Interrupt pin. Logic status output pin of INT Flag. Open drain output, set INT_OUT to high by external pull to SV_{DD} resistor.
11	/OE	I	Output Enable control. Active low. /OE only disables the high speed TMDS channel but not the side band signals and I^2C circuitry supplied by SV_{DD} . Internal pull-down at 100k ohm.
16	I ² C_ADR	I	I^2 C Address LSB; internal pull-down at 100K Ω.
35, 34, 33	5V_PORTA, 5V_PORTB, 5V_PORTC	I	Connector 5V port. Internal pull down resistor at 100k when $V_{\rm DD}$ power on.
18	SPDIF_IN	I	Single mode ARC signal input. See page 11 in detail.
17	ARC_OUT	О	Single mode ARC signal output.

I²C Address Byte

	b7(MSB)	b6	b5	b4	b3	b2	b1	b0 (R/W)
Address- Byte	1	0	1	0	1	0	I2C_ADR	1/0 *

I²C Control Register

Byte 0

Bit	Descriptions	Type	Power Up Condition	Logic Settings
7	HDMI input port selection	R/W	0	b[7:6] = 00 Port A
				b[7:6] = 01 Port B
6	HDMI input port coloction	D /347	0	b[7:6] = 10 Port C
0	6 HDMI input port selection	R/W		b[7:6] = 11 no port active
				See Port Selection truth table
				0 = Output Disable
5	TMDS Output Enable	R/W	1	Disabled TMDS channel and enter standby mode. Side band signals and I ² C circuitry are still alive.
				1 = Output Enable
				See Output Enable control table

Bit	Descriptions	Type	Power Up Condition	Logic Settings
4	HPD Input Selection	R/W	0	0 = HPD_SINK 1 = I ² C Register Setting from B0b[0:3] Under I2C register control mode, HPD[A:C] can be individually control by B0b[0:2] for HPD output.
3	HPD Output Stage selection	R/W	0	0 = Open Drain 1 = Output Buffer
2	HPD Port C Logic Setting	R/W	0	I. Byte0 b[4] = 1 When B0b[3] = 0 (open drain mode) B0b[2]=0, set HPD [C] to Low B0b[2]=1, set HPD [C] to High by external pull high resistor When B0b[3] = 1 (output buffer mode) B0b[2]=0, set HPD [C] to High B0b[2]=1, set HPD [C] to Low
	HPD Port B Logic Setting	R/W	0	I. Byte0 b[4] = 1 When B0b[3] = 0 (open drain mode) B0b[1]=0, set HPD [B] to Low B0b[1]=1, set HPD [B] to High by external pull high resistor When B0b[3] = 1 (output buffer mode) B0b[1]=0, set HPD [B] to High B0b[1]=1, set HPD [B] to Low
0	HPD Port A Logic Setting	R/W	0	I. Byte0 b[4] = 1 When B0b[3] = 0 (open drain mode) B0b[0]=0, set HPD [A] to Low B0b[0]=1, set HPD [A] to High by external pull high resistor When B0b[3] = 1 (output buffer mode) B0b[0]=0, set HPD [A] to High B0b[0]=1, set HPD [A] to Low

Byte 1

Bit	Descriptions	Туре	Power Up Condi- tion	Logic Settings
7	Port A RT, Rpd on/off con-	R/W	1	0 = RT disconnected, Rpd connected
/	trol	R/ VV	1	1 = RT connected, Rpd disconnected
6	Dort P. DT. Dnd on/off control	R/W	1	0 = RT disconnected, Rpd connected
	Port B RT, Rpd on/off control	IX/ VV	1	1 = RT connected, Rpd disconnected
5	Port C RT, Rpd on/off control	R/W	1	0 = RT disconnected, Rpd connected
	Fort C K1, Kpd on/on control	IX/ VV	1	1 = RT connected, Rpd disconnected
				0 = Disconnected
4	5V_PortC connect	R	0	1 = Connected
1	3 V_1 of to connect	IX.	Ů	INT Flag B1b[1] is set by 5V_PortC edge signal when 5V_PortC changes from 1 to 0, or from 0 to 1.
				0 = Disconnected
3	3 5V_PortB connect	R	0	1 = Connected
				INT Flag B1b[1] is set by 5V_PortB edge signal when 5V_PortB changes from 1 to 0, or from 0 to 1.
				0 = Disconnected
2.	EV Dout A comment	R	0	1 = Connected
2	5V_PortA connect			INT Flag B1b[1] is set by 5V_PortA edge signal when
				5V_PortA changes from 1 to 0, or from 0 to 1
				0 = INT Flag Clear
				1 = INT Flag Set
1	INT Flag	R	0	INT Flag will be set from logic Low to High, when any 5V_Port has detected plug or unplug transition action.
				INT Flag is cleared to low after I^2C bus reads the register byte 1. See INT Flag flowchart.
0	DDC channel selection	R/W	0	0 = Passive switch 1 = Active switch buffer For power saving operation, passive switch can be selected to further reduce the active power consumption.

Byte 2

Bit	Descriptions	Type	Power Up Condition	Logic Settings
7	TMDS AC swing for CML output setting	R/W	0	b[7:6] = 00 500mV *Note 1
6	TMDS AC swing for CML output setting	R/W	0	b[/:6] = 00 300mV
5	TMDS output pull-up resistor Rout control	R/W	0	0 = Disconnect Rout pull-up to V_{DD} , open drain output 1 = Connect Rout pull-up to V_{DD} (3.3V), double termination output
4	Output squelch control	R/W	1	0 = Output squelch disable 1 = Output squelch enable *Note 2, 3
3	TMDS output pre-emphasis setting	R/W	0	See OCx truth table
2	TMDS output pre-emphasis setting	R/W	0	See OCx truth table
1	TMDS input equalization setting	R/W	1	See EQx truth table
0	TMDS input equalization setting	R/W	0	See EQx truth table

Note:

Equalizer (EQx) Truth Table

TMDS data channel only. TMDS clock channels is 3db fixed

B2b[1]	B2b[0]	EQ value on TMDS data channels		
0	0	3dB		
0	1	6dB		
1	0	12dB (default)		
1	1	16dB		

^{1.} B2[7:6]: internal use only

^{2.} Output squelch control is used to control TMDS D+/-[0:3], which are set to 'high impedance /or pull-up to $V^{\rm DD}$ by internal 50 Ω resistor' when Output squelch is enable if there is no TMDS input signal. When squelch is disable, TMDS D+/-[0:3] will be unknown if there is no TMDS input signal.

^{3.} squelch control is using CLK channel signal detection. When TMDS input clock frequency is low or swing is small, it will show no input signal.

OCx truth table (Swing setting B2b[7:6]=00, 500mv as default)

TMDS output pre-emphasis setting			Settin	g Value	Note
B2b[5]	B2b[3]	B2b[2]	Single-end Vswing (mV)	Pre-emphasis (dB)	Default Setting
0	0	0	500	0	Open drain
0	0	1	500	1.5	Open drain
0	1	0	500	2.5	Open drain
0	1	1	500	3.5	Open drain
1	0	0	500	0	Double termination
1	0	1	500	1.5	Double termination
1	1	0	500	2.5	Double termination
1	1	1	500	3.5	Double termination

Port selection truth table

B0b[7]	B0b[6]	TMDS port	DDC port
0	0	CK+/-A, D1+/-A,D2+/-A,D3+/-A	SCL_A/SDA_A
0	1	CK+/-B, D1+/-B,D2+/-B,D3+/-B	SCL_B/SDA_B
1	0	CK+/-C, D1+/-C,D2+/-C,D3+/-C	SCL_C/SDA_C
1	1	No port active	No port active

Data Channel TMDS input termination resistor RT, Rpd Control

Pull-down resistor Rpd active conditions:

- 1. The Data Channel RT is disconnected controlled by Byte 1 bit[7:5]
- 2. Output enable control /OE is disable(/OE=High), pull down all channels
- 3. No normal operation voltage input (but standby voltage SV_{DD} is still On), pull down all channels

Output Enable Control

/OE	I2C B0b[5]	Operation
Low	High	Output Enable
X	Low	Output Disable
High	X	Output Disable

Note: Output disable condition: TMDS channel shut down, output high impedance.

INT-Flag flowchart

I²C Bus transactions

Data transfers follow the format shown in Fig.1. After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction bit (R/W) - a 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer.

Figure 1: A complete data transfer

Data is transmitted to the PI3HDMI336 registers using the Write mode as shown in Figure 2. Data is read from the PI3HDMI336 registers using the Read mode as shown in Figure 3

Figure 2: Write to Control Register

Figure 3: Read from Control Register

Audio Return channel

There are two ARC input modes. They're 'Common mode input' and 'single mode input' but HDMI336 supports 'single mode input' only.

Figure 1: ARC single mode input and output

Figure 2: ARC single mode signal output waveform

DDC Channel Application Diagram

I2C block uses "low $V_{_{\rm IL}}$ <= 0.4V and 0.7V <= 0.85V" to define the signal direction, exit from system lock

12-0237 11 www.pericom.com 07/28/2012

HPD[A:C] Output Diagram

Note:

- 1. HPD output block support by $\mathrm{SV}_{\scriptscriptstyle \mathrm{DD}}$ power.
- 2. During normal or standby mode, the HPD block is active. HPD signal output is programmed by the control register.
- 3. Open drain buffer is recommended with a 1Kohm pull-up resistor to 5V. If HPD output buffer is selected, external buffer transistor is required to avoid 5V to 3.3V leakage.

HPD[A:C] truth table:

B0b[4]=0, HPD_Sink input; B0b[3]=0, HPDx open drain output

Port selection	HPD input select B0b[4]=0	HPD output select B0b[3]=0	HPDA	НРДВ	НРОС
Port A	HPD_Sink	Open drain	HPD_Sink	L	L
Port B	HPD_Sink	Open drain	L	HPD_sink	L
Port C	HPD_Sink	Open drain	L	L	HPD_sink
No port active	HPD_Sink	Open drain	L	L	L

B0b[4]=0, HPD_Sink input; B0b[3]=1, HPDx inverter output

	HPD input select	HPD output select			
Port selection	B0b[4]=0	B0b[3]=1	HPDA	HPDB	HPDC
Port A	HPD_Sink	Buffer	/HPD_Sink	Н	Н
Port B	HPD_Sink	Buffer	Н	/HPD_sink	Н
Port C	HPD_Sink	Buffer	Н	Н	/HPD_sink
No port active	HPD_Sink	Open drain	Н	Н	Н

B0b[4]=1, I²C register input; B0b[3]=0, HPDx open drain output

	HPD input select	HPD output select			
Port selection	B0b[4]=1	B0b[3]=0	HPDA	HPDB	HPDC
B0b[3]=0	HPDA	HPDB	HPDC		
Port [A:C]	B0b[2:0]	Open drain	B0b[0]	B0b[1]	B0b[2]
No port active	B0b[2:0]	Open drain	B0b[0]	B0b[1]	B0b[2]

B0b[4]=1, I2C register input; B0b[3]=1, HPDx inverter output

Port selection	HPD input select B0b[4]=1	HPD output select B0b[3]=1	HPDA	HPDB	НРОС
Port [A:C]	B0b[2:0]	Buffer	/B0b[0]	/B0b[1]	/B0b[2]
No port active	B0b[2:0]	Buffer	/B0b[0]	/B0b[1]	/B0b[2]

Absolute Maximum Ratings

Supply Voltage to Ground Potential	5.5V
All Inputs and Outputs	0.5V to V _{DD} +0.5V
Ambient Operating Temperature	-20 to +85°C
Storage Temperature	65 to +150°C
Junction Temperature	150°C
Soldering Temperature	260°C

Note: Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Unit	
Ambient Operating Temperature	-20		+85	°C	
Power Supply Voltage (measured in respect to GND)	+3.0		+3.6	V	

DC Specification

 $V_{_{
m DD}} = 3.3 {
m V} \pm 10\%$,

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operating Voltage		3.0	3.3	3.6	V
ī	V Completion	Output Enable (open drain 500mv signal-end 0dB pre-emphasis)		80	92	mA
I_{DD}	V _{DD} Supply Current	Output Enable (double termination, 500mv signal-end 0dB pre-emphasis)		170	210	mA
I_{DDQ}	V _{DD} Quiescent Supply Current	TMDS Output Disable, ARC_OUT=0		3		mA
Istb	Standby mode	V _{DD} =0V, S _{VDD} =3.6V, DDC passive switch, HPD_x=0		1		mA
V _{IH} _5V_A, V _{IH} _5V_B, V _{IH} _5V_C	Input High Voltage of 5V ports		0.7*SV _{DD}			V
V _{IL} _5V_A, V _{IL} _5V_B, V _{IL} _5V_C	Input Low Voltage of 5V ports				0.3*SV _{DD}	V

DC Specification Cont..

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{OL_HPD}	Buffer Output Low Voltage	$I_{OL} = 4 \text{ mA}$			0.4	V
	Open Drain Output Low Voltage	$I_{OL} = 4 \text{ mA}$	0		0.4	V
V _{OH_HPD}	Buffer Output High Voltage	$I_{OH} = 1 \text{ mA}$	SV _{DD} -1.1			V
т	Off leakage current	V _{DD} =0, SV _{DD} =0, V _{IN} =3.6V			10	
OFF_HPD	Oli leakage current	$V_{DD}=0$, $SV_{DD}=0$, $V_{IN}=5.5V$			20	uA
T	Open drain Output	S _{VDD} =3.6, V _{IN} =3.6V			25	uA
I _{OZ_HPD}	leakage current	S _{VDD} =3.6, V _{IN} =5.5V			35	
HPD_sink						
I_{IH}	High level digital input current	$V_{\mathrm{IH}} = V_{\mathrm{DD}}$	-10		40	μΑ
I_{IL}	Low level digital input current	$V_{IL} = GND$	-10		10	μΑ
V_{IH}	High level digital input voltage	CV. 22	2.0			V
V _{IL}	Low level digital input voltage	$SV_{DD}=3.3v$	0		0.8	V
Control pin	n (/OE)					
I_{IH}	High level digital input current	$V_{\mathrm{IH}} = V_{\mathrm{DD}}$	-10		40	μΑ
I_{IL}	Low level digital input current	$V_{IL} = GND$	-10		10	μΑ
V _{IH}	High level digital input voltage		2.0			V
V_{IL}	Low level digital input voltage		0		0.8	V
INT_OUT						
V _{OL_INT_OUT}	Output open drain Low Voltage	$I_{OL} = 4 \text{ mA}$			0.4	V
V _{OH_INT_OUT}	High impedance, depended on external pull high resistor and power supplier	External pull-up Rup to V_{DD} from $1.5k\Omega$ to $5k\Omega$	V _{DD} -1			V
	Official	V _{DD} =0, SV _{DD} =0, V _{IN} =3.6V			10	A
I _{OFF_INT_OUT}	Off leakage current	V _{DD} =0, SV _{DD} =0, V _{IN} =5.5V			20	uA

DDC Channel	Block					
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IH_DDC(source)}	Source Side DDC Buffer Input High Voltage		0.7*SV _{DD}			V
V _{IL_DDC} (source)	Source Side DDC Buffer Input Low Voltage				0.3*SV _{DD}	V
$V_{OL_DDC(source)}$	Source Side DDC Buffer Output Low Voltage,	External pull-up Rup to V_{DD} from 1.5k Ω to 5k Ω			0.4	V
$V_{OL_DDC(sink)}$	Sink Side DDC Buffer Output Low Voltage,	External pull-up Rup to V_{DD} from 1.5k $\!\Omega$ to 5k $\!\Omega$	0.7		0.85	V
V _{IH_DDC} (sink)	Sink Side DDC Buffer Input High Voltage,		2.0			V
$V_{IL_DDC(sink)}$	Sink Side DDC Buffer Input Low Voltage,				0.4	V
I_{LK}	Input leakage current	DDC switch is off	-10		10	uA
C_{IO}	Input/Output capacitance when passive switch on	VI peak-peak = 1V, 100 KHz		10.5		pF
R _{ON}	Passive Switch resistance	$IO = 3mA, V_O = 0.4V$		30	50	Ω
Vpass	Switch Output voltage	V _I =3.3V, II=100uA SV _{DD} =3.3V	1.5	2.0	2.8	V
CI(source)	Source side DDC capacitance When active switch on or passive switch off.	V _I peak-peak = 1V, 100 KHz		4.0		pF
CI(sink)	Sink side DDC capacitance when active switch on or passive switch off.	V _I peak-peak = 1V, 100 KHz		6.0		pF
V _{OH_DDC} (source/sink)	DDC Switch Output High Voltage	$V_{\rm IN} {=} 3.3 V.$ External pull-up Rup to $V_{\rm DD}$ from $1.5 k\Omega$ to $5 k\Omega$	V _{DD} - 1			V

AC Characteristics (over recommended operating conditions unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Typ.(1)	Max.	Units
TMDS Diff	ferential Pins		·	<u>'</u>		\
t _{pd}	Propagation delay				2000	
$t_{\rm r}$	Differential output signal rise time (20% - 80%)	$V_{DD} = 3.3V$, Rout = 50Ω		150		
t_{f}	Differential output signal fall time (20% - 80%)			150		ps
$t_{sk(p)}$	Pulse skew			10	50	
t _{sk(D)}	Intra-pair differential skew			23	50	
t _{sk} (o)	Inter-pair differential skew ⁽²⁾				100	
t _{jit} (pp)	Peak-to-peak output jitter CLK residual jitter	Data Input = 1.65 Gbps HDMI		15	30	ps
t _{jit} (pp)	Peak-to-peak output jitter DATA Residual Jitter	data pattern CLK Input = 165 MHz clock		18	50	ps
t _{sx}	Select to switch output				10	ns
t _{en}	Enable time				600	ns
t _{dis}	Disable time				10	ns
DDC I/O P	ins (SCL, SCL_SINK, SDA, SDA	_SINK)			1	
	Propagation delay from SCLn	$C_L = 10$ pF, in passive switch		1.5	2.5	
t_{pd}	to SCL_SINK or SDAn to SDA_ SINK or SDA_SINK to SDAni in passive or active SW.	$C_L = 10$ pF, in active switch, SVDD=3.3v, Rup=2k		7.5		ns
DDC I/O	Pins (HPD_SINK, HPD inverter	output) *Note 1		,	•	
t _{pd} (HPD)	Propagation delay (from HPD_ SINK to the active port of HPD)	$C_L = 10 pF$		2	6.0	
t _{sx} (HPD)	Switch time (from port select to the latest)			3	6.5	ns

Note:

^{1.} $t_{\rm plh}$ time of HPD open drain output, depends on external pull high resistor and load capacitor.

TMDS dif	TMDS differential pins							
Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units		
V _{OH}	Single-ended high level output voltage		V _{DD} +10		V _{DD} -10	mV		
V _{OL}	Single-ended low level output voltage		V _{DD} -600		V _{DD} -400	mV		
Vswing	Single-ended output swing voltage		400		600	mV		
V _{OD(O)}	Overshoot of output differential voltage	V_{DD} = 3.3V, Rout=50 Ω			180 ¹	mV		
V _{OD(U)}	Undershoot of output differential voltage				200 ²	mV		
V _{OC(SS)}	Change in steady-state common- mode output voltage between logic states				5	mV		
	Short Circuit output current		-12		12	mA		
I _{OS}	Short Circuit output current at double termination mode		-24		24	mA		
VI(open)	Single-ended input voltage under high impedance input or open input	$I_I = 10uA$	V _{DD} -10		V _{DD} +10	mV		
R _T	Input termination resistance	$V_{\rm IN} = 2.9 \rm V$	45	50	55	Ohm		
I_{OZ}	Leakage current with Hi-Z I/O	$V_{DD} = 3.6V$, $SV_{DD} = 3.6V$			10	μΑ		

Note:

- 1. Overshoot of output differential voltage $V_{OD}(O) = (VSWING(MAX) * 2) * 15\%$,
- 2. Undershoot of output differential voltage $\rm V_{OD}(O)$ = (VSWING(MIN) * 2) * 25%

SPDIF & ARC Pins, See ARC single mode waveform									
Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units			
I _{IH} _SPDIF	High level input current	V _{DD} =3.6V, V _{IH} =3.6V		500		uA			
I _{IL} _SPDIF	Low level input current	V_{DD} =3.6V, V_{IL} = GND		350		uA			
Vel	Single mode input/output Vel DC voltage level		0		5.0	V			
Vel swing SPDIF	Single mode input swing		0.2		0.6	V			
Vel swing ARC_ OUT	Single mode ARC output swing		0.4	0.5	0.6	V			
Ro	Output resistance of ARC output stage			55		Ohm			
t _r	ARC output rise time (10% to 90%)	< 0.4UI (f _{clock} = 6.144MHz) **			25	ns			
tf	ARC output fall time (10% to 90%)	< 0.4UI (f _{clock} = 6.144MHz) **			25	ns			
ТЈрр	ARC signal peak to peak jitter	$< 0.05UI (f_{clock} = 6.144MHz)$			3	ns			

Packaging Mechanical: 64-Pin LQFP (FB)

11-0064

Related Products

Part Number	Product Description		
PI3HDMI1201	DisplayPort 1.2 Re-driver with built-in AUX listener		
PI3VDP1430	Dual Mode DisplayPort to HDMI Level Shifter and Re-driver		
PI3HDMI511	3.4G HDMI1.4 Re-driver for Source-side application, supporting Dual Mode DisplayPort		
PI3HDMI611	3.4G HDMI1.4 Re-driver for Sink-side application, supporting Dual Mode DisplayPort		
PI3VDP3212	2-Lane DisplayPort1.2 Compliant Switch		
PI3VDP12412	4-Lane DisplayPort1.2 Compliant Switch		
PI3HDMI412AD	1:2 Active 3.4Gbps HDMI1.4 compliant Splitter/Re-driver		
PI3HDMI521	2:1 3.4Gbps HDMI1.4 Switch/Re-driver with built-in ARC and Fast Switching support for Sink Application		
PI3HDMI621	2:1 3.4Gbps HDMI1.4 Switch/Re-driver with built-in ARC and Fast Switching support for Sink Application		
PI3HDMI336	3:1 Active 3.4Gbps HDMI Switch/Re-driver with I ² C control and ARC Transmitter		

Reference Information

Document	Description
VESA	VESA DisplayPort Standard Version 1 Revision 2, Video Electronics Standards Association, January 5, 2010
	VESA DisplayPort Dual-Mode Standard Version 1, Video Electronics Standards Association, February 10, 2012
	VESA DisplayPort Interoperability Guideline Version 1.1a, Video Electronics Standards Association, February 5, 2009
HDMI	High-Definition Multimedia Interface Specification Version 1.4, HDMI Licensing, LLC, June 5, 2009

Ordering Information

Ordering Code	Package Code	Package Type
PI3HDMI336FBE	FB	Pb-free & Green, 64-pin LQFP

 $^{{\}bf 1. \ Thermal \ characteristics \ can \ be \ found \ on \ the \ company \ web \ site \ at \ www.pericom.com/packaging/}$

Revision History

Date	Changes
7/28/2012	Block diagram, Reference Schematic

Appendix: Eye Diagram at 1920x1080p

Input: Quantum Data + HDMI Cable
DUT Setting: Selected Port = Port C; HPD = Open Drain; TMDS = Open Drain/CML, RT connected, 500mV, 0dB Pre-emphasis

Appendix: Reference Schematic

Appendix: Evaluation Board Image

