NHZ3087-15

Consolidação de Conceitos e Métodos de Fenômenos Térmicos Primeiro quadrimestre de 2019

Problemas para trabalhar em sala de aula

Semana 6: Trabalho em processos termodinâmicos; 1^a Lei da Termodinâmica; Aplicações.

Alunos		
	_	Nota
	-	
	-	

- 1. Três moles de gás argônio, originalmente a uma pressão de 1,50 × 10⁴ Pa e a um volume de 0,0280 m³, são aquecidos e expandidos sob pressão constante até um volume de 0,0435 m³, depois aquecidos a volume constante até que a pressão atinja 3,50 × 10⁴ Pa. Em seguida, o gás é resfriado e comprimido à pressão constante até que o volume volte a ser 0,0280 m³. Finalmente, o sistema é resfriado a volume constante até que a pressão volte ao valor original de 1,50 × 10⁴ Pa. (a) Desenhe o diagrama PV do ciclo. (b) Calcule o trabalho total realizado sobre o gás durante o ciclo. (c) Calcule o calor total trocado com o ambiente no ciclo.
- 2. A figura ao lado mostra o diagrama PV de um processo no qual a temperatura do gás ideal permanece constante em 85 °C (a) Calcule a quantidade de moles do gás. (b) Qual o volume do gás no ponto a? (c) Qual o trabalho realizado pelo gás ou sobre ele de a para b? (d) Qual a varição da energia interna do gás no processo?
- 3. Um fluido homogêneo pode passar de um estado inicial i a um estado final f no plano (P,V) através de dois caminhos diferentes, representados por iaf e ibf no diagrama (P,V) na figura ao lado. A diferença de energia interna entre os estados inicial e final é $U_f U_i = 50,0$ J. O trabalho realizado pelo sistema na passagem de i para b é de 100 J. O trabalho realizado pelo sistema quando descreve o ciclo (iafbi) é de 200 J.

A partir desses dados, determine: (a) a quantidade de calor Q_{ibf} associada ao caminho ibf; (b) o trabalho W_{iaf} e (c) a quantidade de calor Q_{iaf} associados ao caminho iaf (d) Se o sistema regressa do estado final ao estado inicial seguindo a diagonal fci do retângulo, o trabalho W_{fci} e a quantidade de calor Q_{fci} associados a esse caminho.

4. O diagrama P-V da figura ao lado, onde a pressão é medida em bar e o volume em l, está associado a um ciclo descrito por um fluido homogêneo. Sejam W, Q e ΔU , respectivamente, o trabalho, a quantidade de calor e a variação de energia interna do sistema associados com cada etapa do ciclo e com ciclo completo. Determine os valores de W, Q e ΔU desconhecidos da tabela abaixo.

Etapa	W(J)	Q (J)	$\Delta U(J)$
ab		800	
bc			
ca			-100
Ciclo (abca)			

