SCE-0185

Teoria da Computação e Linguagens Formais

Ciências de Computação - ICMC-USP - Turma 2-B: Prof. João Luís - Prova 1 - 19/09/2008

RESOLUÇÃO

1 Questão A

Considere uma gramática $G_1 = (\Sigma, V, S, P)$, onde $\Sigma = \{a, b\}, V = \{S\}, P = \{S \to abS, S \to ab\}$. Responda:

- 1. É possível construir um autômato mínimo que processa $L(G_1)$? Caso positivo, escreva este autômato. Caso negativo, explique o porquê.
- 2. Qual é o APN (autômato de pilha) de um estado equivalente a esta gramática? Este autômato é determinístico? Por que?

Resolução:

1. (1,0 ponto) Sim, pois $L(G_1) = \{(ab)^n, n \ge 1\}$ é do tipo 3.

2. (1,5 pontos) APN equivalente a G_1 :

FNG:
$$S \to aBS$$
; $S \to aB$; $B \to b$

APN de 1 estado NÃO-DETERMINÍSTICO:

$$\prec a, S, BS \succ ; \prec a, S, B \succ ; \prec b, B, \lambda \succ$$

OU

FNG:
$$S \to aA$$
; $A \to bB$; $B \to aA \mid \lambda$

APN de 1 estado NÃO-DETERMINÍSTICO:

$$\prec a, S, A \succ ; \prec b, A, B \succ ; \prec a, B, A \succ ; \prec \lambda, B, \lambda \succ$$

2 Questão B

Seja o seguinte teorema: "Uma linguagem L é APN aceitável pelo estado final se e somente se ela for APN aceitável pela pilha vazia." Suponha que a linguagem L_2 é aceita pelo estado final por um autômato de pilha M_2 . Ache o autômato de pilha M_2' que aceita L_2 pela pilha vazia.

Resolução:

(2,5 pontos) Para gerar o autômato de pilha M_2' , **incluir** no conjunto de instruções de M_2 , as seguintes instruções:

$$\prec q_a, \lambda, Z, q_\lambda, Z \succ$$
, para todo $Z \in \Gamma$, todo $q_a \in F$ e $q_\lambda \notin Q$.

$$\prec q_{\lambda}, \lambda, Z, q_{\lambda}, \lambda \succ$$
, para todo $Z \in \Gamma,$ e $q_{\lambda} \notin Q.$

3 Questão C

Seja a linguagem $L_3 = \{w | w \in \{a, b\}^* \text{ e } w \text{ começa com } a \text{ e termina com } b\}$. Escreva:

- 1. o autômato mínimo M_3 que processa L_3 , se possível. Se não for possível explique o porquê.
- 2. a expressão regular E_3 equivalente à L_3 , se possível. Se não for possível explique o porquê.
- 3. a gramática G_3 que gera L_3 .
- 4. o autômato de pilha de um estado P_3 que processa a linguagem L_3 , se possível. Se não for possível explique o porquê.

Resolução:

1. $(0.5 \text{ ponto}) M_3$:

- 2. $(0.5 \text{ ponto}) E_3 = aa^*bb^*(b^*aa^*bb^*)^* = a(a+b)^*b$
- 3. $(0.5 \text{ ponto}) G_3$:

$$S \to aA$$

$$A \rightarrow aA|bB$$

$$B \to b B |aA| \lambda$$

4. $(1,0 \text{ ponto}) \text{ APN } P_3$:

4 Questão D

Seja o seguinte alfabeto terminal $\Sigma = \{a, b\}$. Considere a seguinte linguagem: $L_4 = \{w = w_1 a w_2 b \in w_1, w_2 \in \Sigma^*\}$. Escreva:

- 1. uma gramática livre de contexto G_4 para gerar a linguagem L_4 .
- 2. o autômato mínimo M_4 que processa L_4 , se possível. Se não for possível explique o porquê.
- 3. a expressão regular E_4 equivalente à L_4 , se possível. Se não for possível explique o porquê.
- 4. o autômato de pilha de um estado P_4 que processa a linguagem L_4 , se possível. Se não for possível explique o porquê.

Resolução:

1. $(0.5 \text{ ponto}) G_4$:

$$S \to bS|aA$$

$$A \rightarrow aA|bB$$

$$B \to bB|aA|\lambda$$

2. $(1,0 \text{ ponto}) \text{ AFD } M_4$:

- 3. $(0.5 \text{ ponto}) E_4 = b^* a a^* b b^* (b^* a a^* b b^*)^* = (a+b)^* a (a+b)^* b$
- 4. $(0.5 \text{ ponto}) P_4$:

$$\prec b, S, S \succ$$

$$\prec a, S, A \succ$$

$$\prec a, A, A \succ$$

$$\prec b, A, B \succ$$

$$\prec b, B, B \succ$$

$$\prec a, B, A \succ$$

$$\prec \lambda, B, \lambda \succ$$