

2º scolar: 2023-24	
scalar: 2023_24	
3CU1a1 . 2U23-27	
Evaluación: 1 ^a	
ealización: 16/10/2023	

1. Identificara qué tipo de red pertenece cada dirección IP:

- a) 10.250.1.1 --> Tipo A
- b) 117.80.16.45 --> Tipo A
- c) 33.0.0.0 --> Tipo A
- d) 220.200.23.1 --> Tipo C
- f)177.100.18.4 --> Tipo B
- g) 249.240.80.78 -->Tipo E

2. Rodear con un círculo azul la parte de red de cada dirección IP y con un círculo rojo la parte del host (considerar la máscara por defecto):

a) <mark>150.10.</mark> 15.0	Tipo B /16
b) <mark>10.</mark> 250.1.1	Tipo A /8
c) <mark>192.14.2.</mark> 0	Tipo C /24
d) <mark>55.</mark> 250.5.5	Tipo A /8
e) <mark>223.250.200.</mark> 122	Tipo C /24
f) 95.0.21.90	Tipo A /8

3. Escribir la máscara de subred por defecto correspondiente a cada una de estas direcciones IP:

a) 177.100.18.4>	177.100.255.255
c) 88.45.65.35>	88.255.255.255
e) 223.23.223.109>	223.23.223.255
b) 1.1.10.50>	1.255.255.255
d) 192.12.35.105>	192.12.35.255
f) 10.10.250.1>	10.10.255.255

4. Dadas las siguientes direcciones IP de hosts determinar lo siguiente:

a.63.2.17.3 /19

Se tomaron11 bits prestados para subredes.
La máscara de subred es (binario)
11111111.[11111111.111]00000.0000000
En decimal:255.255.224.0 Nomenclatura habitual (/número): /19
El número máximo es de _2 ^11_ subredes de(2^13)-2 hosts
El host pertenece a la subred63.2.0.0
El rango de hosts de esa subred está comprendido entre: el host cuya IP es:
63.2.0.1 y el host cuya IP es _63.2.31.254_
La dirección de broadcast de esa subred es la dirección IP: 63.255.255.255

b 200 16 12 213 /30

D.200.10.12.213730
Se tomaron _6_ bits prestados para subredes.
La máscara de subred es (binario)
11111111.111111111111111.[111111]00
En decimal: _255.255.255.240_ Nomenclatura habitual (/número): /30
El número máximo es de _2^6_ subredes de _(2^2)-2_ hosts
El host pertenece a la subred _200.16.12.212
El rango de hosts de esa subred está comprendido entre: el host cuya IP es:
200. 16.12.213 y el host cuya IP es200.16.12.214_
La dirección de broadcast de esa subred es la dirección IP: 200.16.12.255

5. Desde una empresa con una dirección IP pública asignada a una de sus equipos 190.32.3.92, nos pide dividir la red en 8 redes, rellena la siguiente tabla y explica el proceso. ¿Cuántos equipos se pueden direccionar en cada red?

Como estamos hablando de redes y no de hosts, $2^n = 8$; n=3. Como es una mascara de 24 (11111111.11111111.00000011. [010]11100) se cogen 3 bits hacia la derecha y se hacen todas las combinaciones posibles (8, que, como son los numeros en octal es mas facil de verlo y asi se repasa un poquito).

Al dividir esta red en 8, las subredes pueden albergar, como maximo, 30 equipos (29 si hay router porque se necesita un gateway)

Dirección de red	Máscara	Primera dirección válida	Última dirección Válida	Dirección de Broadcast
190.32.3.0	24	190.32.3.1	190.32.3.30	190.32.3.31
190.32.3.32	24	190.32.3.33	190.32.3.2	190.32.3.63
190.32.3.64	24	190.32.3.65	190.32.3.94	190.32.3.95
190.32.3.96	24	190.32.3.97	190.32.3.126	190.32.3.127
190.32.3.128	24	190.32.3.129	190.32.3.158	190.32.3.159
190.32.3.160	24	190.32.3.161	190.32.3.190	190.32.3.191

190.32.3.192	24	190.32.3.193	190.32.3.222	190.32.3.223
190.32.3.224	24	190.32.3.225	190.32.3.254	190.32.3.255

6.Desde una empresa con una dirección Ip pública asignada a una de sus equipos 200.32.3.92, nos pide dividir la red en redes que puedan albergar 60 equipos, rellena la siguiente tabla con las datos de cada red y explica el proceso.¿Cuántos equipos se pueden direccionar en cada red?

Para obtener redes de 60 equipos tenemos que coger la dirección de red y coger tantos bits de la derecha hasta la mascara como queramos para que (2^n)-2 sea igual (o mayor) a 60. (el numero de hosts) Por tanto:

6 bits hay que coger $(2^6)-2 = 62$

Tipo C/24

11001000.00010000.00000100/.[01]000000 Esta combinación nos permite dividir la red en 4 subredes distintas que albergan, como maximo, 62 host (quitando la dirección de red y de broadcast)

Dirección de red	Máscara	Primera dirección válida	Última dirección Válida	Dirección de Broadcast
200.32.3.0	/26	200.32.3.1	200.32.3.62	200.32.3.63
200.32.3.64	/26	200.32.3.65	200.32.3.126	200.32.3.127
200.32.3.128	/26	200.32.3.129	200.32.3.190	200.32.3.191
200.32.3.192	/26	200.32.3.193	200.32.3.254	200.32.3.255