Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра вычислительных методов и программирования

МЕТОДИЧЕСКИЕ УКАЗАНИЯ и контрольные задания по курсу «Теория вероятностей и математическая статистика» для студентов всех специальностей БГУИР

УДК 519.21+519.25(075.8) ББК 22.171+22.172 я 73

M 54

Составители: А.В.Аксенчик, А.И. Волковец, А.А. Корбут, И.Н. Коренская

Методические указания и контрольные задания по курсу "Теория М 54 вероятностей и математическая статистика" для студентов всех специальностей БГУИР заочной формы обучения / Сост. А.В. Аксенчик, А.И. Волковец, А.А. Корбут, И.Н. Коренская. - Мн.: БГУИР, 2002.- 61 с.: ил.

Методические указания содержат краткие теоретические сведения, примеры решения типовых задач, а также условия 240 задач, рекомендуемых для решения при проведении контрольных работ, приеме зачетов и экзаменов, на практических занятиях и при самостоятельной работе студентов по курсу "Теория вероятностей и математическая статистика".

УДК 519.21+519.25(075.8) ББК 22.171+22.172 я 73

[©] Составление А.В.Аксенчик и др., 2002

[©] БГУИР, 2002

СОДЕРЖАНИЕ

<u> 1.ТЕОРИЯ ВЕРОЯТНОСТЕИ</u>	<u>4.</u>
1.1. СЛУЧАЙНЫЕ СОБЫТИЯ. ВЕРОЯТНОСТЬ СОБЫТИЯ	4
1.2. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ	7
1.3. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ. ФОРМУЛА БАЙЕСА	9
1.4. ПОВТОРЕНИЕ НЕЗАВИСИМЫХ ОПЫТОВ	.12
1.5. СЛУЧАЙНАЯ ВЕЛИЧИНА. ЗАКОН РАСПРЕДЕЛЕНИЯ	
1.6. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНОЙ ВЕЛИЧИНЫ	18
1.7. ТИПОВЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ	20
1.7.1. Показательное (экспоненциальное) распределение	.20
1.7.2. Равномерное распределение	.21
1.7.3. Нормальный закон распределения	.21
1.8. ЗАКОН РАСПРЕДЕЛЕНИЯ ФУНКЦИИ СЛУЧАЙНО	ЭЙ
ВЕЛИЧИНЫ	22
1.9. ДВУХМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ	23
1.10. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ДВУХМЕРНЫХ	
ВЕЛИЧИН	
1.11. КОНТРОЛЬНЫЕ ЗАДАЧИ	
2.МАТЕМАТИЧЕСКАЯ СТАТИСТИКА	
2.1. ОЦЕНКА ЗАКОНА РАСПРЕДЕЛЕНИЯ	
2.1.1. Эмпирическая функция распределения	
2.1.2. Гистограмма распределения случайной величины	
2.2. ТОЧЕЧНЫЕ ОЦЕНКИ ПАРАМЕТРОВ И ЧИСЛОВЬ	
ХАРАКТЕРИСТИК	
2.2.1. Точечные оценки числовых характеристик	
2.2.2. Методы получения оценок параметров распределения	.49
2.3. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ	
2.3.1. Критерий согласия χ^2	
2.3.2. Критерий согласия Колмогорова	.53
2.4. ОЦЕНКА КОЭФФИЦИЕНТОВ ЛИНЕЙНОЙ РЕГРЕССИИ	
2.5. КОНТРОЛЬНЫЕ ЗАДАЧИ	
ПРИЛОЖЕНИЕ	
ПИТЕРАТУРА	60

1.ТЕОРИЯ ВЕРОЯТНОСТЕЙ

1.1. СЛУЧАЙНЫЕ СОБЫТИЯ. ВЕРОЯТНОСТЬ СОБЫТИЯ

Событием называется любой факт, который в результате опыта может произойти или не произойти.

Достоверным называется событие Ω , которое происходит в каждом опыте.

Невозможным называется событие \varnothing , которое в результате опыта произойти не может.

Несовместными называются события, которые в одном опыте не могут произойти одновременно.

 $\pmb{Cymmoй}$ (объединением) двух событий A и B (обозначается A+B, $A\cup B$) называется такое событие, которое заключается в том, что происходит хотя бы одно из событий, т.е. A или B, или оба одновременно.

Произведением (пересечением) двух событий A и B (обозначается $A \cdot B$, $A \cap B$) называется такое событие, которое заключается в том, что оба события A и B происходят вместе.

Противоположным к событию A называется такое событие \overline{A} , которое заключается в том, что событие A не происходит.

События A_k (k=1, 2, ..., n) образуют **полную группу**, если они попарно несовместны и в сумме образуют достоверное событие.

При преобразовании выражений можно пользоваться следующими тождествами:

$$A + \overline{A} = \Omega; \qquad A \cdot \overline{A} = \varnothing; \qquad A + \Omega = \Omega; \qquad A \cdot \Omega = A; \qquad A \cdot \varnothing = \varnothing; \\ A + \varnothing = A; \qquad \overline{A + B} = \overline{A} \cdot \overline{B}; \qquad \overline{A \cdot B} = \overline{A} + \overline{B}; \qquad A + \overline{A} \cdot B = A + B.$$

Классическое определение вероятности: вероятность события определяется по формуле

$$P(A) = \frac{m}{n} \quad , \tag{1.1}$$

где n - число элементарных равновозможных исходов данного опыта;

m - число равновозможных исходов, приводящих к появлению события.

Геометрическое определение вероятности. Пусть в некоторую

область случайным образом бросается точка T, причем все точки области Ω равноправны в отношении попадания точки T. Тогда за вероятность попадания точки T в область A принимается отношение

$$P(A) = \frac{S(A)}{S(\Omega)} , \qquad (1.2)$$

где S(A) и $S(\Omega)$ — геометрические меры (длина, площадь, объем и т.д.) областей A и Ω соответственно.

Основные комбинаторные формулы

Пусть имеется множество $X = \{x_1, x_2, ..., x_n\}$, состоящее из n различных элементов. (n, r)-выборкой называется множество, состоящее из r элементов, взятых из множества X.

 ${\it Упорядоченной}$ называется выборка, для которой важен порядок следования элементов. Если каждый элемент множества ${\it X}$ может извлекаться несколько раз, то выборка называется выборкой с повторениями.

Число упорядоченных (n, r)-выборок (**перестановок**) с повторениями P(n,r) и без повторений P(n,r) равно

$$\hat{P}(n,r) = n^r \,, \tag{1.3}$$

$$P(n,r) = \frac{n!}{(n-r)!} . \tag{1.4}$$

Число неупорядоченных (n, r)-выборок (${\it covemahu}\check{\it u}$) с повторениями ${\it C}_n^{\it r}$ и без повторений ${\it C}_n^{\it r}$ равно

$$\hat{C}_n^r = \frac{(n+r-1)!}{r!(n-1)!} , \qquad (1.5)$$

$$C_n^r = \frac{n!}{r!(n-r)!} \ . \tag{1.6}$$

Число различных разбиений множества из n элементов на k непересекающихся подмножеств, причем в 1-м подмножестве r_1 элементов, во 2-м r_2 элементов и т.д., а $n=r_1+r_2+...+r_k$ равно

$$P_n(r_1, r_2, ..., r_k) = \frac{n!}{r_1! \, r_2! ... r_k!} . \tag{1.7}$$

Пример 1.1. В партии транзисторов n стандартных и m бракованных. При контроле оказалось, что первые k транзисторов стандартны. Найти вероятность p того, что следующий транзистор будет стандартным.

Решение. Всего осталось для проверки n+m-k транзисторов, из которых стандартных n-k. По формуле классического определения вероятности

$$p = \frac{n-k}{n+m-k}.$$

Пример 1.2. Среди кандидатов в студенческий совет факультета три первокурсника, пять второкурсников и семь студентов третьего курса. Из этого состава наугад выбирают пять человек. Найти вероятность того, что все первокурсники попадут в совет.

Решение. Число способов выбрать пять человек из 3+5+7=15 равно числу сочетаний из 15 по 5 (неупорядоченная выборка без повторений):

$$C_{15}^5 = \frac{15!}{5! \cdot 10!} = 3003.$$

Выбрать трех первокурсников из трех можно одним способом. Оставшихся двух членов совета можно выбрать C_{12}^2 способами:

$$C_{12}^2 = \frac{12!}{2! \cdot 10!} = 66.$$

Искомая вероятность p=66/3003=2/91.

Пример 1.3. Банковский сейф имеет кодовый замок, состоящий из шести дисков с восьмью буквами на каждом. Сейф открывается при наборе единственной комбинации букв. Злоумышленник пытается открыть сейф, причем на проверку одной кодовой комбинации у него уходит 10 секунд. Какова вероятность того, что злоумышленник успеет открыть сейф, если в его распоряжении 1 час?

Решение. Обозначим искомую вероятность через P(A). По формуле (1.1) она будет равна m/n . Здесь n - общее число исходов, равное числу кодовых комбинаций замка. Оно определяется по формуле (1.3) и равно 8^6 . m - число благоприятствующих исходов, в данном случае равное числу комбинаций, которые успеет испробовать злоумышленник за 1 час, т.е. 360. Таким образом, искомая вероятность будет равна $P(A) = \frac{360}{8^6} \approx 1,4 \cdot 10^{-3} \, .$

1.2. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

Если A и B - несовместные события, то

$$P(A \cup B) = P(A) + P(B). \tag{1.8}$$

Если имеется счетное множество несовместных событий A_1, \dots, A_n , то

$$P(A_1 + A_2 + ... + A_n) = \sum_{i=1}^{n} P(A_i).$$
 (1.9)

Вероятность суммы двух совместных событий равна сумме вероятностей каждого из событий минус вероятность их совместного появления:

$$P(A \cup B) = P(A) + P(B) - P(A \cdot B), \tag{1.10}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cdot B) - P(B \cdot C) - P(A \cdot C) + P(A \cdot B \cdot C). \tag{1.11}$$

Событие A называется **независимым** от события B, если возможность наступления события A не зависит от того, произошло событие B или нет.

В противном случае события являются зависимыми. *Условной* вероятностью события B при наличии A называется величина

$$P(B/A) = P(A \cdot B)/P(A)$$
 (1.12)

(при этом полагается, что P(A) не равно 0).

Для **независимых** событий P(B/A)=P(B).

Вероятность **произведения** (пересечения, совмещения) двух событий равна вероятности одного из них, умноженной на условную вероятность второго при наличии первого.

$$P(A \cdot B) = P(A) \cdot P(B/A) = P(B) \cdot P(A/B). \tag{1.13}$$

Для независимых событий

$$P(A \cdot B) = P(A) \cdot P(B). \tag{1.14}$$

Вероятности Р(А) и Р(А) связаны соотношением

$$P(A) = 1 - P(\overline{A}). \tag{1.15}$$

Вероятность суммы п событий удобнее вычислять по формуле

$$P(A_1 + A_2 + ... + A_n) = 1 - P(\overline{A}_1 \cdot \overline{A}_2 \cdot ... \cdot \overline{A}_n).$$
 (1.16)

Вероятность произведения n событий $A_i (i=1,\ 2,\ ...,\ n)$ равна

$$P(A_{1} \cdot A_{2} \cdot ... \cdot A_{n}) = P(A_{1}) \cdot P(A_{2} \mid A_{1}) \cdot P(A_{3} \mid A_{1} \cdot A_{2}) \cdot ... \times \times P(A_{n} \mid A_{1} \cdot A_{2} \cdot ... \cdot A_{n-1}),$$
(1.17)

где $P(A_k \setminus A_1 \cdot \ldots \cdot A_{k-1}))$ - вероятность появления события A_k , при условии, что события $A_1, A_2, \ldots, A_{k-1}$ в данном опыте произошли.

В случае независимых событий данная формула упрощается:

$$P(A_1 \cdot A_2 \cdot \dots \cdot A_n) = P(A_1) \cdot P(A_2) \cdot \dots \cdot P(A_n). \tag{1.18}$$

Пример 1.4. Сообщение передается одновременно по n каналам связи, причем для надежности по каждому каналу оно повторяется k раз. При одной передаче сообщение (независимо от других) искажается с вероятностью p. Каждый канал связи (независимо от других) «забивается» помехами с вероятностью q; «забитый» канал не может передавать сообщения. Найти вероятность того, что адресат получит сообщение без искажений.

Решение. Обозначим события:

 $A = \{$ хотя бы один раз сообщение передано без искажений $\}$;

 $B_i = \{ {
m по} \ i$ -му каналу сообщение хотя бы один раз было передано без искажений $\}.$

Для выполнения события B_i і-й канал, во-первых, не должен быть забит помехами и, во-вторых, хотя бы одно сообщение по нему не должно быть искажено.

Вероятность того, что канал не «забит» помехами, равна 1-q.

Вероятность того, что хотя бы одно сообщение передано без помех, равна $1-p^k$ (p - вероятность того, что все сообщения переданы с искажениями).

Тогда
$$P(B) = (1 - q) \cdot (1 - p^k)$$
.

Вероятность события A, состоящего в том, что хотя бы на одном канале произойдет событие, равна

$$P(A) = P\left(\bigcup_{i=1}^{n} B_{i}\right) = 1 - P(\overline{A}) = 1 - P\left(\prod_{i=1}^{n} \overline{B}_{i}\right) = 1 - \prod_{i=1}^{n} (1 - P(B_{i})) = 1 - [1 - (1 - q)(1 - p^{k})]^{n}.$$

Пример 1.5. Какова вероятность угадать в спортлото "5 из 36" не менее трех номеров?

Решение. Событие A - угадать не менее трех номеров в спортлото, разбивается на сумму трех несовместных событий:

А₃ - угадать ровно три номера;

 A_4 - угадать ровно четыре номера;

 A_5 - угадать ровно пять номеров.

При этом $P(A)=P(A_3)+P(A_4)+P(A_5)$, так как события несовместны.

Найдем вероятность $P(A_3)$. Для этого воспользуемся формулой (1.1). Здесь общее число комбинаций n по формуле (1.6) будет равно числу возможных заполнений карточек:

$$n = C_{36}^5 = \frac{36!}{5!(36-5)!} = 376992.$$

Число благоприятствующих комбинаций m в этом случае определяется следующим образом. Выбрать три номера из пяти выигравших можно $C_5^3 = 10$ способами. Однако каждый выбор трех правильных номеров сочетается с выбором двух неправильных номеров.

Число таких выборок равно $C_{31}^2 = 465$. Таким образом, число благоприятствующих событий равно произведению найденных чисел:

$$m = C_5^3 \cdot C_{31}^2 = 10 \cdot 465 = 4650$$
.

Тогда
$$P(A_3) = \frac{m}{n} = \frac{4650}{376992} \approx 0,123 \cdot 10^{-1}$$
.

Аналогично вычисляются $P(A_4) = 0,478 \cdot 10^{-3}$, $P(A_5) = 0,265 \cdot 10^{-5}$. Таким образом, искомая вероятность будет равна

$$P(A) = 0.123 \cdot 10^{-1} + 0.478 \cdot 10^{-3} + 0.265 \cdot 10^{-5} = 0.128 \cdot 10^{-1}$$
.

1.3. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ. ФОРМУЛА БАЙЕСА

Допустим, что проводится некоторый опыт, об условиях которого можно сделать п исключающих друг друга предположений (*гипотез*): $\{H_1, H_2, \square, H_n\}$, $H_i \cap H_j = \emptyset$ при $i \neq j$.

Событие A может появляться совместно с одной из гипотез H_i . Событие A можно представить как сумму n несовместных событий:

$$A = (A \cap H_1) \cup (A \cap H_2) \cup \dots \cup (A \cap H_n).$$

По правилу сложения вероятностей $P(A) = \sum_{i=1}^{n} P(H_i I A)$.

По правилу умножения вероятностей $P(H_i \cap A) = P(H_i)P(A/H_i)$. Тогда полная вероятность события A равна

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A/H_i).$$
 (1.19)

Следствием правила умножения и формулы полной вероятности является формула Байеса.

Вероятность наступления события A совместно с гипотезой H_k определяется с использованием теоремы умножения вероятностей:

$$P(A \cap H_k) = P(H_k) \cdot P(A/H_k) = P(A) \cdot P(H_k/A)$$
.

Таким образом, можно записать:

$$P(H_k/A)=P(H_k)\cdot P(A/H_k)/P(A)$$
.

С использованием формулы полной вероятности

$$P(H_k)/A) = \frac{P(H_k) \cdot P(A/H_k)}{\sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)}.$$
 (1.20)

Пример 1.6. В продажу поступили телевизоры трех заводов. Продукция первого завода содержит 10% телевизоров с дефектом, второго — 5% и третьего — 3%. Какова вероятность купить неисправный телевизор, если в магазин поступило 25% телевизоров с первого завода, 55% — со второго и 20% — с третьего?

Решение. С рассматриваемым событием A={приобретенный телевизор оказался с дефектом } связано три гипотезы: H_1 ={телевизор выпущен первым заводом}, H_2 ={выпущен вторым заводом}, H_3 ={выпущен третьим заводом}. Вероятности этих событий определяются из условия задачи: $P(H_1)$ =0,25; $P(H_2)$ =0,55; $P(H_3)$ =0,2. Условные вероятности события А также определяются из условия задачи: $P(A/H_1)$ =0,1; $P(A/H_2)$ =0,05; $P(A/H_3)$ =0,03. Отсюда по формуле полной вероятности следует:

$$P(A) = 0.25 \cdot 0.1 + 0.55 \cdot 0.05 + 0.2 \cdot 0.03 = 0.0585.$$

Пример 1.7. На вход радиоприемного устройства с вероятностью 0,9 поступает смесь полезного сигнала с помехой, а с вероятностью 0,1 только помеха. Если поступает полезный сигнал с помехой, то приемник с

вероятностью 0,8 регистрирует наличие сигнала, если поступает только помеха, то регистрируется наличие сигнала с вероятностью 0,3. Известно, что приемник показал наличие сигнала. Какова вероятность того, что сигнал действительно пришел?

Решение. С рассматриваемым событием A={приемник зарегистрировал наличие сигнала} связано две гипотезы: H_1 ={пришел сигнал и помеха}, H_2 ={пришла только помеха}. Вероятности этих гипотез $P(H_1)$ =0,9, $P(H_2)$ =0,1. Условные вероятности события A по отношению к гипотезам H_1 и H_2 находим из условия задачи: $P(A/H_1)$ =0,8, $P(A/H_2)$ =0,3.

Требуется определить условную вероятность гипотезы H_1 по отношению к событию A, для чего воспользуемся формулой Байеса:

$$P(H_1/A) = \frac{P(H_1) \cdot P(A/H_1)}{P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2)} = \frac{0.9 \cdot 0.8}{0.9 \cdot 0.8 + 0.1 \cdot 0.3} = 0.96.$$

Пример 1.8. Для решения вопроса идти в кино или на лекцию студент подбрасывает монету. Если студент пойдет на лекцию, он разберется в теме с вероятностью 0,9, а если в кино - с вероятностью 0,3. Какова вероятность того, что студент разберется в теме?

Решение. Применим формулу полной вероятности (1.19). Пусть A - событие, состоящее в том, что студент разобрался в теме, событие (гипотеза) H_1 - студент идет в кино, H_2 - студент идет на лекцию. Известны из условия задачи следующие вероятности:

$$P(H_1)=P(H_2)=0.5$$
; $P(A/H_1)=0.3$; $P(A/H_2)=0.9$.

Искомая вероятность события А будет равна

$$P(A) = P(H_1) P(A/H_1) + P(H_2) P(A/H_2) = 0.5 0.3 + 0.5 0.9 = 0.6.$$

Пример 1.9. Пусть одна монета из 10000000 имеет герб с обеих сторон, остальные монеты обычные. Наугад выбранная монета бросается десять раз, причем во всех бросаниях она падает гербом кверху. Какова вероятность того, что была выбрана монета с двумя гербами?

Решение. Применим формулу Байеса (3.2). Пусть событие A - монета десять раз подряд падает гербом кверху. Гипотезы: H_1 - выбрана нормальная монета; H_2 - выбрана монета с двумя гербами. По условию задачи необходимо определить условную вероятность $P(H_2/A)$. Неизвестные в формуле (1.20) вероятности равны

$$P(H_1)=0,99999999;$$
 $P(H_2)=10^{-7};$ $P(A/H_1)=0,5^{10};$ $P(A/H_2)=1.$

Следовательно,

$$P(H_2/A) = \frac{P(H_2) \cdot P(A/H_2)}{P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2)} = \frac{10^{-7} \cdot 1}{10^{-7} \cdot 1 + 0.9999999 \cdot 0.5^{10}} \approx 1,02 \cdot 10^{-4}.$$

1.4. ПОВТОРЕНИЕ НЕЗАВИСИМЫХ ОПЫТОВ

Пусть производится n независимых опытов. В результате каждого опыта событие A появляется с вероятностью р и не появляется с вероятностью 1-р . Вероятность P(n,k) того, что в последовательности из n опытов интересующее нас событие A произойдет ровно k раз (формула Бернулли), равна

$$P(n,k) = C_n^k \cdot p^k \cdot (1-p)^{n-k} = \frac{n!}{k! \cdot (n-k)!} p^k \cdot (1-p)^{n-k}.$$
 (1.21)

Пусть производится серия из n независимых испытаний, в результате каждого из которых может появиться одно из событий $A_1,\ A_2,\ \dots\ ,\ A_r$ с вероятностями p_1,p_2,\dots,p_r соответственно.

Вероятность того, что в серии из n испытаний событие A_1 наступит ровно k_1 раз, событие A_2 — k_2 раз, ... , событие A_r — k_r раз (k_1 + ... + k_r = n) равна

$$P(n, k_1, ..., k_r) = \frac{n!}{k_1! ... k_r!} \cdot p_1^{k_1} \cdot p_2^{k_2} \cdot ... \cdot p_r^{k_r}.$$
 (1.22)

Локальная теорема Лапласа

Вероятность того, что в n независимых испытаниях (n — достаточно большое число), в каждом из которых вероятность появления события равна p, событие наступит ровно k раз, приближенно равна

$$P(n,k) \approx \frac{\varphi(x)}{\sqrt{npq}},$$
 (1.23)

где

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \qquad x = \frac{k - np}{\sqrt{npq}}, \quad q = 1 - p.$$

Интегральная теорема Лапласа

Вероятность того, что в n независимых испытаниях, в каждом из которых некоторое событие появляется с вероятностью p , событие наступит не менее k_1 и не более k_2 раз, приближенно равна

$$P(n, k_1 \le k \le k_2) = (\Phi(x_2) - \Phi(x_1))/2, \tag{1.24}$$

где

$$\Phi(x) = \frac{2}{\sqrt{2\pi}} \int_0^x \exp\left(-\frac{x^2}{2}\right) dx - функция Лапласа,$$

$$x_1 = \frac{(k_1 - np)}{\sqrt{npq}}, \quad x_2 = \frac{(k_2 - np)}{\sqrt{npq}}.$$

Пример 1.10. По каналу связи передается n=6 сообщений, каждое из которых независимо от других, с вероятностью p=0,2 оказывается искаженным. Найти вероятности следующих событий:

 $A = \{$ ровно два сообщения из шести искажены $\}$,

 $B = \{$ не менее двух сообщений из шести искажены $\}$,

 $C = \{$ все сообщения будут переданы без искажений $\}$,

 $D = \{$ все сообщения будут искажены $\}$.

Решение. По формуле Бернулли (1.21)

$$P(A) = C_6^2 \cdot p^2 \cdot (1-p)^4 = \frac{6!}{4! \cdot 2!} 0.2^2 \cdot 0.8^4 = 0.197,$$

$$P(B) = P(6,2) + P(6,3) + P(6,4) + P(6,5) + P(6,6) = 1 - P(6,0) - P(6,1) = 1 - C_6^0 p^0 (1-p)^6 - C_6^1 p^1 (1-p)^5 = 1 - 0.8^6 - 6 \cdot 0.2^1 \cdot 0.8^5 = 0.345,$$

$$P(C) = (1-p)^6 = 0.262, \qquad P(D) = p^6 = 0.2^6 = 0.000064.$$

Пример 1.11. Вероятность появления события A за время испытаний равна 0,8. Определить вероятность того, что в 100 испытаниях событие A появится: а) 80 раз; б) не менее 75 и не более 90 раз; в) не менее 75 раз.

Решение

1) Воспользуемся локальной теоремой Муавра-Лапласа:

$$P(100,80) = \frac{\varphi(x)}{\sqrt{100 \cdot 0.8 \cdot 0.2}}, \quad x = \frac{80 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = 0.$$

 $\varphi(0) = 0.3989$, тогда P(100.80) = 0.0997.

2) Согласно интегральной теореме Муавра-Лапласа

$$P(100,75 < k < 90) = \left(\Phi\left(\frac{90 - 80}{4}\right) - \Phi\left(\frac{75 - 80}{4}\right)\right)/2 = (\Phi(2,5) - \Phi(-1,25))/2 = (\Phi(2,5) + \Phi(1,25))/2.$$

Значение функции Лапласа определяем по таблице Лапласа: Ф(2,5)=0,9876;

$$\Phi(1,25) = 0.7888$$
. $P(100, 75 < k < 90) = 0.8882$.

1.5. СЛУЧАЙНАЯ ВЕЛИЧИНА. ЗАКОН РАСПРЕДЕЛЕНИЯ

Под случайной величиной (СВ) понимается величина, которая в результате опыта со случайным исходом принимает то или иное значение, причем, заранее, до опыта, неизвестно, какое именно. Обозначения случайной величины: X, Y; значения случайной величины: x, y.

Случайные величины могут быть *дискретными* или *непрерывными*, а область возможных исходов может быть представлена конечным множеством, счетным или бесконечным.

Закон распределения случайной величины — любое правило, устанавливающее соответствие между значениями случайной величины и вероятностями ее наступления.

Рядом распределения дискретной СВ X называется таблица, в верхней строке которой перечислены все возможные значения СВ $x_1, x_2, ..., x_n$ ($x_{i-1} < x_i$), а в нижней — вероятности их появления $p_1, p_2, ..., p_n$, где p_i = $P\{X=x_i\}$.

x_1	x_2	•••	x_n
p_1	p_2	•••	p_n

Так как события $\{X=x_1\}$, ..., $\{X=x_n\}$... несовместны и образуют полную группу, то справедливо контрольное соотношение

$$p_1 + p_2 + \dots + p_n = 1. (1.25)$$

Функцией распределения случайной величины X называется вероятность того, что она примет значение меньшее, чем аргумент функции x: $F(x)=P\{X \le x\}$.

Свойства функции распределения:

- 1. $F(-\infty) = 0$.
- 2. $F(+\infty) = 1$.
- 3. $F(x_1) \le F(x_2)$, при $x_1 < x_2$.

4.
$$P(a \le X \le b) = F(b) - F(a)$$
. (1.26)

Функция распределения дискретной случайной величины

Исходной информацией для построения функции распределения дискретной случайной величины X является ряд распределения этой CB.

x_i	x_1	x_2	x_3		x_n	$>_{x_n}$
p_i	p_1	p_2	p_3	•••	p_n	0
$F(x_i)$	0	p_1	$p_1 + p_2$		$p_1+\ldots+p_{n-1}$	1

$$F(x_i)=P\{X < x_i\}=P\{(X=x_1)\cup (X=x_2)\cup ...\cup (X=x_{i-1})\}=p_1+...+p_{i-1}.$$

Функция распределения любой дискретной СВ есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений.

Непрерывная случайная величина (НСВ). Плотность вероятности

Вероятность попадания непрерывной случайной величины X на участок от x до $x+\Delta x$ равна приращению функции распределения на этом участке:

$$P\{x \le X < x + \Delta x\} = F(x + \Delta x) - F(x).$$

Плотность вероятности на этом участке определяется отношением

$$f(x) = \lim_{\Delta x \to 0} \frac{P\{x \le X < x + \Delta x\}}{\Delta x} = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \frac{dF(x)}{dx}.$$
 (1.27)

Плотностью распределения (или плотностью вероятности) непрерывной случайной величины X в точке x называется производная ее функции распределения в этой точке, обозначаемая f(x). График плотности распределения называется кривой распределения.

Пусть имеется точка x и прилегающий к ней отрезок dx. Вероятность попадания случайной величины X на этот интервал равна f(x)dx. Эта величина называется элементом вероятности.

Вероятность попадания случайной величины X на произвольный участок [a,b[равна сумме элементарных вероятностей на этом участке:

$$P\{a \le X < b\} = \int_{a}^{b} f(x)dx.$$
 (1.28)

Это соотношение позволяет выразить функцию распределения F(x) случайной величины X через ее плотность:

$$F(x) = P\{X < x\} = P\{-\infty < X < x\} = \int_{-\infty}^{x} f(x)dx.$$
 (1.29)

В геометрической интерпретации F(x) равна площади, ограниченной сверху кривой плотности распределения f(x) и лежащей левее точки x.

Основные свойства плотности распределения:

1. Плотность распределения неотрицательна: $f(x) \ge 0$.

2. Условие **нормировки**:
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
. (1.30)

Пример 1.12. По одной и той же стартовой позиции противника производится пуск из пяти ракет, причем вероятность попадания в цель при каждом пуске одной ракеты равна 0,8. Построить ряд распределения числа попаданий.

Решение. Случайная величина X (число попаданий в цель) может принимать следующие значения: 0, 1, 2, 3, 4, 5. Найдем вероятность принятия величиной X этих значений, используя формулу Бернулли:

$$P\{X = 0\} = (1 - p)^{5} = 0.2^{5} = 0.00032,$$

$$P\{X = 1\} = C_{5}^{1} p (1 - p)^{4} = 5 \cdot 0.8 \cdot 0.2^{4} = 0.0064,$$

$$P\{X = 2\} = C_{5}^{2} p^{2} (1 - p)^{3} = 10 \cdot 0.8^{2} \cdot 0.2^{3} = 0.0512,$$

$$P\{X = 3\} = C_{5}^{3} p^{3} (1 - p)^{2} = 10 \cdot 0.8^{3} \cdot 0.2^{2} = 0.2048,$$

$$P\{X = 4\} = C_{5}^{4} p^{4} (1 - p) = 5 \cdot 0.8^{4} \cdot 0.2 = 0.4096,$$

$$P\{X = 5\} = p^{5} = 0.8^{5} = 0.32768.$$

Ряд распределения имеет вид:

x_i	0	1	2	3	4	5
p_i	0,00032	0,0064	0,0512	0,2048	0,4096	0,32768

Пример 1.13. Случайная величина X распределена по закону, определяемому плотностью вероятности вида

$$f(x) = \begin{cases} c \cos x, & -\pi/2 \le x \le \pi/2, \\ 0, & |x| > \pi/2. \end{cases}$$

Найти константу c, функцию распределения F(x) и вычислить $P\{|x| < \pi/4\}$.

Решение. Константу с вычислим исходя из условия нормировки:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\pi/2}^{\pi/2} c\cos x dx = c\sin x \Big|_{-\pi/2}^{\pi/2} = c + c = 2c = 1 ,$$

откуда c = 0,5.

Так как плотность вероятности задана различными формулами на разных интервалах, то и функцию распределения будем искать для каждого интервала в отдельности.

Для
$$x < -\pi/2$$
 $F(x) = \int_{-\infty}^{x} f(y) dy = \int_{-\infty}^{x} 0 dy = 0$,
для $-\pi/2 \le x \le \pi/2$ $F(x) = \int_{-\infty}^{-\pi/2} 0 dy + \int_{-\pi/2}^{x} \frac{\cos y}{2} dy = \frac{\sin y}{2} \Big|_{-\pi/2}^{x} = \frac{1 + \sin x}{2}$,
для $x > \pi/2$ $F(x) = \int_{-\infty}^{-\pi/2} 0 dy + \int_{-\pi/2}^{\pi/2} \frac{\cos y}{2} dy + \int_{\pi/2}^{x} 0 dy = 1$.

Окончательно имеем

$$F(x) = \begin{cases} 0, & x < -\pi/2, \\ (1+\sin x)/2, & |x| \le \pi/2, \\ 1, & x > \pi/2. \end{cases}$$

Вероятность
$$P\{|x| < \pi/4\} = F\left(\frac{\pi}{4}\right) - F\left(-\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{4} + \frac{1}{2}\right) - \left(-\frac{\sqrt{2}}{4} + \frac{1}{2}\right) = \frac{\sqrt{2}}{2}$$
.

1.6. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Одна из основных характеристик СВ - математическое ожидание:

$$m_X = M[X] = \begin{cases} \sum_{i} x_i \cdot P\{X = x_i\} & \text{оля} & \mathcal{L}CB, \\ \infty & \\ \int_{-\infty}^{\infty} x \cdot f(x) dx & \text{оля} & HCB. \end{cases}$$
 (1.31)

Математическое ожидание характеризует среднее значение CB и обладает следующими свойствами:

- 1. M[c] = c.
- 2. $M[c \cdot X] = c \cdot M[X]$.
- 3. M[X+c] = M[X]+c.
- 4. $M[X_1+X_2] = M[X_1]+M[X_2]$.

Модой случайной величины называется ее наиболее вероятное значение, т.е. то значение, для которого вероятность p_i (для дискретной CB) или f(x) (для непрерывных CB) достигает максимума. Обозначения: Mx, Mo.

Медианой случайной величины X называется такое ее значение, для которого выполняется условие $P\{X \le Me\} = P\{X \ge Me\}$. Медиана, как правило, существует только для непрерывных случайных величин.

Квантилью χ_p случайной величины X является такое ее значение, для которого выполняется условие $P\{X\!\!<\!\!\chi_p\}=F(\chi_p)=p.$

Начальный момент *s*-го порядка CB X есть математическое ожидание s-й степени этой случайной величины: $\alpha_s = M[X^s]$.

Центрированной случайной величиной называется отклонение СВ от математического ожилания:

$$\overset{\circ}{X} = X - m_X, \quad M[\overset{\circ}{X}] = M[X - m_X] = 0.$$

Моменты центрированной случайной величины - *центральные моменты*. **Центральный момент** порядка s CB X есть математическое ожидание s-й степени центрированной случайной величины:

$$\mu_{S} = M[X^{\circ}] = M[(X - m_{X})^{S}].$$

Для любой случайной величины центральный момент первого порядка равен 0.

Дисперсия случайной величины есть математическое ожидание квадрата соответствующей центрированной случайной величины.

Расчетные формулы:

$$D[X] = \begin{cases} \sum_{i} (x_{i} - m_{X})^{2} \cdot P\{X = x_{i}\} = \sum_{i} x_{i}^{2} \cdot P\{X = x_{i}\} - (m_{X})^{2} & \text{ для } \mathcal{D}CB, \\ \int_{-\infty}^{\infty} (x - m_{X})^{2} f(x) dx = \int_{-\infty}^{\infty} x^{2} f(x) dx - (m_{X})^{2} & \text{ для } HCB. \end{cases}$$

$$(1.32)$$

Вычислить дисперсию можно и через второй начальный момент:

$$D[X] = M[X^2] - m_X^2.$$

Дисперсия случайной величины характеризует степень рассеивания (разброса) значений случайной величины относительно ее математического ожидания и обладает следующими свойствами:

- 1. D[c] = 0.
- 2. D[X+c] = D[X].
- 3. $D[c \cdot X] = c^2 \cdot D[X]$. $\sigma[c \cdot X] = c \cdot \sigma[X]$.

Средним квадратическим отклонением (СКО) СВ X называется характеристика

$$\sigma_X = \sigma[X] = \sqrt{D[X]}. \tag{1.33}$$

СКО измеряется в тех же физических единицах, что и СВ, и характеризует ширину диапазона значений СВ.

Правило 3 о. Практически все значения СВ находятся в интервале

$$[m - 3\sigma; m + 3\sigma;].$$
 (1.34)

Пример 1.14. Из партии численностью 25 изделий, среди которых имеется шесть нестандартных, случайным образом выбраны три изделия. Найти математическое ожидание и среднее квадратическое отклонение нестандартных изделий, содержащихся в выборке.

Решение. По условию задачи СВ X принимает следующие значения: x_1 =0; x_2 =1; x_3 =2; x_4 =3. Вероятность того, что в этой выборке окажется ровно i (i = 0, 1, 2, 3) нестандартных изделий, вычисляется по формуле

$$p_i = P\{X = x_i\} = \frac{C_6^i \cdot C_{19}^{3-i}}{C_{25}^i},$$

откуда

$$p_1=0,41$$
; $p_2=0,43$; $p_3=0,11$; $p_4=0,05$.

Дисперсию определим по формулам

$$D[X] = M[X^2] - (M[X])^2$$

$$\begin{split} \mathbf{M}[X] &= 0 \cdot 0,41 + 1 \cdot 0,43 + 2 \cdot 0,11 + 3 \cdot 0,05 = 0,8 \;, \\ \mathbf{M}[X^2] &= 0 \cdot 0,41 + 1 \cdot 0,43 + 2^2 \cdot 0,11 + 3^2 \cdot 0,05 = 1,32 \;, \\ \mathbf{D}[X] &= 1,32 - (0,8)^2 = 0,68 . \end{split}$$
 Тогда $\sigma[X] = \sqrt{D[X]} = 0,82 \;.$

Пример 1.15. Непрерывная СВ распределена по закону Лапласа:

$$f(x) = b \cdot e^{-|x|}.$$

Найти коэффициент b, математическое ожидание M[X], дисперсию D[X], среднее квадратическое отклонение $\sigma[X]$.

Решение. Для нахождения коэффициента в воспользуемся свойством

нормировки плотности распределения $\int\limits_{-\infty}^{\infty}f(x)dx=2b\int\limits_{0}^{\infty}e^{-x}dx=2b=1,$ откуда

$$b=1/2$$
. Так как функция $xe^{-|x|}$ - нечетная, то $M[X]=0.5 \cdot \int\limits_{-\infty}^{\infty} xe^{-|x|} dx = 0$,

дисперсия D[X] и СКО $\sigma[X]$ соответственно равны:

$$D[X] = 0.5 \cdot \int_{-\infty}^{\infty} x^2 e^{-|x|} dx = 2 \cdot 0.5 \cdot \int_{0}^{\infty} x^2 e^{-|x|} dx = 2,$$
$$\sigma[X] = \sqrt{D[X]} = \sqrt{2}.$$

1.7. ТИПОВЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

1.7.1. Показательное (экспоненциальное) распределение

Случайная величина T имеет *показательное* распределение, если ее плотность вероятности:

$$f(t) = \begin{cases} \lambda e^{-\lambda t}, & t \ge 0, \\ 0, & t < 0, \end{cases}$$
 (1.35)

функция распределения:

$$F(t) = \begin{cases} 1 - e^{-\lambda t}, & t \ge 0, \\ 0, & t < 0, \end{cases}$$
 (1.36)

числовые характеристики:

$$M[T] = 1/\lambda, D[T] = 1/\lambda^2.$$
 (1.37)

1.7.2. Равномерное распределение

СВ X имеет равномерное распределение на участке [a, b], если ее плотность вероятности:

$$f(x) = \begin{cases} 1/(b-a), & a \le x \le b, \\ 0, & x < a, \ x > b, \end{cases}$$
 (1.38)

функция распределения:

$$F(x) = \begin{cases} 0, & x < a, \\ (x-a)/(b-a), & a \le x \le b, \\ 1, & x > b, \end{cases}$$
 (1.39)

числовые характеристики:

$$M[X] = \frac{a+b}{2}, \qquad D[X] = \frac{(b-a)^2}{12}.$$
 (1.40)

1.7.3. Нормальный закон распределения

СВ X имеет нормальное распределение при следующих условиях: плотность вероятности:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-m)^2}{2\sigma^2}\right\},\qquad(1.41)$$

функция распределения:

$$F(x) = 0.5 + 0.5\Phi\left(\frac{x - m}{\sigma}\right), \qquad (1.42)$$

где
$$\Phi(x)$$
 — функция Лапласа: $\Phi(x) = \frac{2}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$.

Значения функции Лапласа приведены в приложении. При использовании таблицы значений функции Лапласа следует учитывать :

$$\Phi(-x) = -\Phi(x), \quad \Phi(0) = 0, \quad \Phi(\infty) = 1.$$

Числовые характеристики:

$$M[X] = m, \quad D[X] = \sigma^2. \tag{1.43}$$

1.8. ЗАКОН РАСПРЕДЕЛЕНИЯ ФУНКЦИИ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Рассмотрим функцию одного случайного аргумента $Y = \varphi(X)$. Если X - непрерывная случайная величина, то плотность вероятности g(y) величины Y определяется по формуле

$$g(y) = \sum_{j=1}^{k} f(\psi_{j}(y)) \cdot |\psi'_{j}(y)|, \qquad (1.44)$$

где $f(\cdot)$ - плотность вероятности величины X;

 $\psi_i(y)$ - обратные функции функции $\phi(x)$;

k - число обратных функций для данного y.

Весь диапазон значений Y необходимо разбить на интервалы, в которых число k обратных функций постоянно, и определить вид g(y) по формуле (1.44) для каждого интервала.

Если X - дискретная случайная величина, принимающая значения x_i , то величина Y будет принимать дискретные значения $y_i = \varphi(x_i)$ с вероятностями $p(y_i) = p(x_i)$.

Пример 1.16. Определить плотность вероятности величины $Y = X^2$, если X - случайная величина, равномерно распределенная на интервале [-1, 2] .

Решение. Так как X равномерно распределена в интервале [-1, 2], то ее плотность вероятности равна (см. $\pi\pi$.1.7.2):

$$f(x) = \begin{cases} 1/3, & a \le x \le b, \\ 0, & x < a, x > b. \end{cases}$$

Построим график величины $Y = X^2$ для х в интервале [-1, 2] и в зависимости от числа k обратных функций выделим следующие интервалы для Y (рис. 1.1):

$$(-\infty, 0) k = 0,$$

$$(0, 1) k = 2,$$

$$(1, 4) k = 1,$$

$$(4, +\infty) k = 0.$$

Так как на интервалах (- ∞ , 0) и (4, + ∞) обратная функция не существует, то g(y)=0.

В интервале (0,1) две обратных функции:

$$\psi_1(y) = +\sqrt{y} \ \text{M} \ \psi_2(y) = -\sqrt{y} \ .$$

По формуле (10.1) получим

$$g(y) = f_x(\psi_1(y)) \cdot |\psi_1'(y)| + f_x(\psi_2(y)) \cdot |\psi_2'(y)| =$$

$$= f_x(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} + f_x(-\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} = \frac{1}{3\sqrt{y}}.$$

Рис. 1.1

В интервале (1,4) одна обратная функция $\psi_1(y) = +\sqrt{y}$, следовательно,

$$g(y) = f_x(\psi_1(y)) \cdot |\psi'_1(y)| = f_x(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} = \frac{1}{6\sqrt{y}}.$$

Таким образом, плотность вероятности величины У равна

$$g(y) = \begin{cases} 0, & y < 0, \\ \frac{1}{3\sqrt{y}}, & 0 \le y < 1, \\ \frac{1}{6\sqrt{y}}, & 1 \le y < 4, \\ 0, & y \ge 4. \end{cases}$$

1.9. ДВУХМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Функцией распределения двухмерной случайной величины (X, Y) называется вероятность совместного выполнения двух событий $\{X < x\}$ и $\{Y < y\}$:

$$F(x, y) = P({X < x} | Y < y).$$
 (1.45)

Свойства двухмерной функции распределения:

1. $0 \le F(x, y) \le 1$.

2.
$$F(x, +\infty) = F_1(x)$$
; $F(+\infty, y) = F_2(y)$; $F(+\infty, +\infty) = 1$.

3.
$$F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0$$
.

4.
$$F(x_1, y) \le F(x_2, y)$$
, если $x_2 > x_1$;

$$F(x, y_1) \le F(x, y_2)$$
, если $y_2 > y_1$.

Функция распределения может задаваться для непрерывных и дискретных случайных величин.

Для непрерывных случайных величин существует плотность распределения, или дифференциальный закон распределения:

$$f(x,y) = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{P(\{x \le X < X + \Delta x\} \mathbf{I} \ \{y \le Y < y + \Delta y\})}{\Delta x \Delta y} = \frac{\partial^2 F(x,y)}{\partial x \partial y}.$$
 (1.46)

Свойства двухмерной плотности:

1. $f(x, y) \ge 0$.

2.
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) dx dy$$
. (1.47)

3.
$$P\{(X,Y) \in D\} = \iint_{(D)} f(x,y) dx dy$$
. (1.48)

4. Условие нормировки:
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1.$$
 (1.49)

5.
$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
; $f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx$. (1.50)

Для дискретных случайных величин (X, Y) закон распределения задается матрицей вероятностей, содержащей вероятности p_{ij} появления всех возможных пар значений (x_i, y_i) :

$$p_{ij} = P(X = x_i \cap Y = y_j),$$
 (1.51)

удовлетворяющих условию

$$\sum_{i=1}^{N} \sum_{j=1}^{M} p_{ij} = 1. {(1.52)}$$

Одномерные ряды вероятностей составляющих $X,\ Y$ определяются по формулам

$$p_{i^*} = P(X = x_i) = \sum_{j=1}^{M} p_{ij}, \quad i = 1, ..., N;$$
 (1.53)

$$p_{*_j} = P(Y = y_i) = \sum_{i=1}^{N} p_{ij}, \quad j = 1, ..., M.$$
 (1.54)

Условным законом распределения называется распределение одной случайной величины, найденное при условии, что другая случайная величина приняла определенное значение.

Yсловные плотности для непрерывных составляющих X и Y определяются по формулам

$$f(x/y) = f(x, y)/f_2(y), \quad f_2(y) \neq 0;$$
 (1.55)

$$f(y/x) = f(x, y)/f_1(x), \quad f_1(x) \neq 0.$$
 (1.56)

Yсловные ряды вероятностей для дискретных составляющих X и Y определяются по формулам

$$p_{i/i} = P(X = x_i/Y = y_i) = p_{ii}/P(Y = y_i), \quad i = 1, ..., N;$$
 (1.57)

$$p_{j/i} = P(Y = y_j / X = x_i) = p_{ij} / P(X = x_i), \quad j = 1, ..., M.$$
 (1.58)

Теорема умножения законов распределений:

для непрерывных величин -

$$f(x, y) = f_1(x) \cdot f(y/x) = f_2(y) \cdot f(x/y)$$
, (1.59)

для дискретных величин -

$$p_{ij} = p_{i*} \cdot p_{j/i} = p_{*j} \cdot p_{i/j}. \tag{1.60}$$

Условия независимости случайных величин:

для непрерывных –
$$f(x, y) = f_1(x)f_2(y)$$
, (1.61)

Пример 1.17. Двухмерная случайная величина (X, Y) распределена по закону, приведенному в таблице:

y_j	x_i		
	$x_1 = 0$	$x_2 = 1$	
$y_1 = -1$	0,1	0,2	
$y_2 = 0$	0,2	0,3	
$y_3 = 1$	0	0,2	

Определить одномерные ряды вероятностей величин X и Y, условный ряд вероятностей величины X при условии, что Y=0. Исследовать зависимость случайных величин X и Y.

Решение. Определим ряды вероятностей X и Y по формулам (1.53) и (1.54), т.е. выполним суммирование по столбцам и по строкам:

x_i	0	1
p_{i^*}	0,3	0,7

\mathcal{Y}_{j}	-1	0	1
p_{*_j}	0,3	0,5	0,2

Условный ряд X при Y = 0 получаем по формуле (1.57):

x_i	0	1
$p_{i/Y=0}$	0,4	0,6

Величины Х и У зависимы, так как

$$P(X=0, Y=0) \neq P(X=0)P(Y=0),$$

 $0.2 \neq 0.3 \cdot 0.5.$

1.10. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ДВУХМЕРНЫХ ВЕЛИЧИН

Рассмотрим основные числовые характеристики двухмерной случайной величины (X, Y).

 $\it Haчanьный момент$ порядка $\it k+s$ равен математическому ожиданию произведения $\it X^k$ и $\it Y^s$:

$$\alpha_{k,s}(x,y) = \mathbf{M} \left[X^k Y^s \right]. \tag{1.63}$$

Центральный момент порядка k+s равен математическому ожиданию произведения центрированных величин X^k и Y^k :

$$\mu_{k,s}(x,y) = M[X^{O_k}Y^{O_s}],$$
 (1.64)

где
$$X = X - m_x$$
; $Y = Y - m_y$.

Расчетные формулы:

$$\alpha_{k,s}(x,y) = \begin{cases} \sum_{i=1}^{n} \sum_{j=1}^{m} x_i^k y_j^s p_{i,j} & \text{оля } \mathcal{A}CB, \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^k y^s f(x,y) dx dy & \text{оля } HCB; \end{cases}$$
(1.65)

$$\mu_{k,s}(x,y) = \begin{cases} \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i - m_x)^k (y_j - m_y)^s p_{i,j} & \text{оля} \quad \mathcal{Д}CB, \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - m_x)^k (y - m_y)^s f(x,y) dx dy & \text{оля} \quad HCB, \end{cases}$$
(1.66)

где p_{ij} - элементы матрицы вероятностей дискретной величины (X, Y); f(x, y) - совместная плотность вероятности непрерывной величины (X, Y).

Рассмотрим наиболее часто используемые начальные и центральные моменты:

$$\begin{split} &\alpha_{0,0}(x,y)=\mu_{0,0}(x,y)=1; &\alpha_{1,0}(x,y)=m_x; &\alpha_{0,1}(x,y)=m_y; \\ &\mu_{1,0}(x,y)=\mu_{0,1}(x,y)=0; &\alpha_{2,0}(x,y)=\alpha_2(x); &\alpha_{0,2}(x,y)=\alpha_2(y); \\ &\mu_{2,0}(x,y)=D_x; &\mu_{0,2}(x,y)=D_y; &\mu_{1,1}(x,y)=K_{xy}. \end{split}$$

Корреляционный момент K_{xy} характеризует степень линейной зависимости величин X и Y и рассеивание относительно точки (m_x, m_y) .

Вычислить K_{xy} можно и через начальные моменты:

$$K_{xy} = \alpha_{1,1}(x, y) - m_x \cdot m_y.$$
 (1.67)

Коэффициент корреляции r_{xy} характеризует степень линейной зависимости величин:

$$r_{xy} = \frac{k_{xy}}{\sqrt{D_x D_y}} = \frac{k_{xy}}{\sigma_x \sigma_y}$$
 (1.68)

Для любых случайных величин $|r_{xy}| \le 1$.

Если величины X и Y независимы, то $r_{xy} = 0$.

Пример 1.18. Определить коэффициент корреляции величин X и Y (см. пример 1.17).

Решение. Определим математические ожидания величин X и Y по формуле (1.65):

$$m_x = \alpha_{1,0}(x, y) = \sum_{i=1}^{2} \sum_{j=1}^{3} x_i p_{ij} = 0.0, 1 + 0.0, 2 + 0.0 + 1.0, 2 + 1.0, 3 + 1.0, 2 = 0, 7,$$

$$m_y = \alpha_{0,1}(x, y) = \sum_{i=1}^{2} \sum_{j=1}^{3} y_j p_{ij} = -1.0, 1 - 1.0, 2 + 0.0, 2 + 0.0, 3 + 1.0 + 1.0, 2 = -0, 1.$$

Найдем значение K_{xy} по формуле (1.67):

$$K_{xy} = \sum_{i=1}^{2} \sum_{j=1}^{3} x_i y_j p_{ij} - m_x m_y = 0 \cdot (-1) \cdot 0, 1 + 0 \cdot 0 \cdot 0, 2 + 0 \cdot 1 \cdot 0 + 0 \cdot 0 \cdot 0, 2 + 0 \cdot 1 \cdot 0 + 0 \cdot 0, 2 +$$

$$+1 \cdot (-1) \cdot 0.2 + 1 \cdot 0 \cdot 0.3 + 1 \cdot 1 \cdot 0.2 - 0.7 \cdot (-0.1) = 0.07.$$

Определим дисперсии величин X и Y по формуле (1.66):

$$D_{x} = \mu_{2,0}(x,y) = \sum_{i=1}^{2} \sum_{j=1}^{3} (x_{i} - m_{x})^{2} p_{ij} = (-0,7)^{2} \cdot 0,1 + (-0,7)^{2} \cdot 0,2 + (-0,7)^{2} \cdot 0 + (-0,7)^{2} \cdot 0,2 + (-0,7)^{2} \cdot 0 + (-0,7)^{2} \cdot 0,2 + (-0,7)^{2} \cdot 0,3 + (-0,7)^{2} \cdot 0,2 + (-0,7)^{2} \cdot 0,$$

Значение коэффициента корреляции r_{xy} вычислим по формуле (1.68):

$$r_{xy} = \frac{K_{xy}}{\sqrt{D_x D_y}} = \frac{0.07}{\sqrt{0.21 \cdot 0.49}} \approx 0.22.$$

Пример 1.19 Двухмерная случайная величина равномерно распределена в области D, ограниченной прямыми $X=0,\ Y=0$ и X+Y=4. Определить коэффициент корреляции величин X и Y.

Решение. Запишем в аналитической форме совместную плотность вероятности:

$$f(x,y) = \begin{cases} c, & 0 \le x \le 4, \ 0 \le y \le 4 - x, \\ 0, & \text{иначе.} \end{cases}$$

Определим c, используя условие нормировки (1.49):

$$\int_{0}^{44-x} \int_{0}^{44-x} c dx dy = c \int_{0}^{4} (4-x) dx = c \cdot 8 = 1 \Rightarrow c = \frac{1}{8}.$$

Найдем математическое ожидание и дисперсию величины X по формулам (1.65) и (1.66) соответственно:

$$m_{x} = \alpha_{1,0}(x,y) = \int_{0}^{4} \int_{0}^{4-x} x \frac{1}{8} dx dy = \frac{1}{8} \int_{0}^{4} x dx \int_{0}^{4-x} dy = \frac{1}{8} \int_{0}^{4} x(4-x) dx = \frac{4}{3},$$

$$D_{x} = \mu_{2,0}(x,y) = \int_{0}^{4} \int_{0}^{4-x} (x - m_{x})^{2} \frac{1}{8} dx dy = \frac{1}{8} \int_{0}^{4} (x - \frac{4}{3})^{2} (4 - x) dx = \frac{8}{9}.$$

Так как область D симметрична относительно осей координат, то величины X и Y будут иметь одинаковые числовые характеристики:

$$m_x = m_v = 4/3$$
, $D_x = D_v = 8/9$.

Определим корреляционный момент K_{xy} по формуле (1.67):

$$K_{xy} = \int_{0}^{4} \int_{0}^{4-x} xy \frac{1}{8} dx dy - m_x \cdot m_y = \frac{1}{8} \int_{0}^{4} x dx \int_{0}^{4-x} y dy - \left(\frac{4}{3}\right)^2 = \frac{1}{16} \int_{0}^{4} x(4-x)^2 dx - \left(\frac{4}{3}\right)^2 = -\frac{4}{9}.$$

Коэффициент корреляции величин X и Y будет равен (1.68):

$$r_{xy} = \frac{K_{xy}}{\sqrt{D_x D_y}} = -\frac{1}{2}.$$

1.11. КОНТРОЛЬНЫЕ ЗАДАЧИ

В задачах 1.1-1.5 подбрасываются две игральные кости.

- 1.1. Определить вероятность того, что сумма выпавших чисел равна восьми.
- 1.2. Определить вероятность того, что сумма выпавших чисел делится без остатка на шесть.
- 1.3. Определить вероятность того, что сумма выпавших чисел превышает 10.
 - 1.4. Определить вероятность того, что выпадут одинаковые числа.
 - 1.5. Определить вероятность того, что выпадут разные, но четные числа.
- 1.6. В урне четыре белых и пять черных шаров. Из урны наугад вынимают два шара. Найти вероятность того, что один из этих шаров белый, а другой черный.
- 1.7. В урне четыре белых и пять черных шаров. Из урны наугад вынимают два шара. Найти вероятность того, что оба шара будут одинакового цвета.
- 1.8. На десяти карточках написаны буквы A, A, A, M, M, T, T, E, И, К. После перестановки вынимают наугад одну карточку за другой и раскладывают их в том порядке, в каком они были вынуты. Найти вероятность того, что на карточках будет написано слово "математика".
- 1.9. Телефонный номер состоит из шести цифр, каждая из которых равновозможно принимает значения от 0 до 9. Найти вероятность того, что все цифры одинаковы.
- 1.10. Условие задачи 1.9. Вычислить вероятность того, что все цифры четные.
- 1.11. Условие задачи 1.9. Вычислить вероятность того, что номер не содержит цифры пять.
- 1.12. Условие задачи 1.9. Вычислить вероятность того, что все цифры различные и расположены в порядке возрастания (соседние цифры отличаются на 1).

В задачах 1.13-1.19 наудачу взяты два положительных числа x и y, причем $x \le 5, y \le 2$. Найти вероятность того, что $y+ax-b \le 0$ и $y-cx \le 0$.

- 1.13. a=1, b=5, c=1.
- 1.14. a=1, b=5, c=0,5.
- 1.15. a=1, b=5, c=0,25.
- 1.16. a=1, b=5, c=2.
- 1.17. a=2, b=10, c=2.
- 1.18. a=2, b=10, c=1.
- 1.19. a=2, b=10, c=0,5.

В задачах 1.20-1.23 из колоды в 36 карт (6, 7, 8, 9, 10, В, Д, К, Т) наугад извлекаются три карты.

- 1.20. Определить вероятность того, что будут вытащены карты одной масти.
 - 1.21. Определить вероятность того, что будут вытащены три туза.
- 1.22. Определить вероятность того, что будут вытащены карты разных мастей.
 - 1.23. Определить вероятность того, что среди извлеченных карт не будет 9.
- 1.24. На плоскости проведены параллельные прямые, находящиеся друг от друга на расстоянии 8 см. Определить вероятность того, что наугад брошенный на эту плоскость круг радиусом 3 см не будет пересечен ни одной линией.
- 1.25. В урне пять белых и восемь черных шаров. Из урны вынимают наугад один шар и откладывают в сторону. Этот шар оказался белым. После этого из урны берут еще один шар. Найти вероятность того, что этот шар тоже будет белым.

В задачах 1.26-1.30 номер автомобиля содержит четыре цифры, каждая из которых равновозможно принимает значения от 0 до 9 (возможен номер 0000).

- 1.26. Определить вероятность того, что вторая цифра номера равна четырем.
- 1.27. Определить вероятность того, что номер содержит хотя бы одну цифру 0.
- 1.28. Определить вероятность того, что первые три цифры номера равны пяти.
 - 1.29. Определить вероятность того, что номер делится на 20.
 - 1.30. Определить вероятность того, что номер не содержит цифры 2.

В задачах 2.1-2.30 приведены схемы соединения элементов, образующих цепь с одним входом и одним выходом. Предполагается, что отказы элементов являются независимыми в совокупности событиями. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Вероятности отказа элементов 1, 2, 3, 4, 5 соответственно равны p1=0,1; p2=0,2; p3=0,3; p4=0,4; p5=0,5. Найти вероятность того, что сигнал пройдет со входа на выход.

- 3.1. На трех автоматических станках изготавливаются одинаковые детали. Известно, что 30% продукции производится первым станком, 25% вторым и 45% третьим. Вероятность изготовления детали, отвечающей стандарту, на первом станке равна 0,99, на втором 0,988 и на третьем 0,98. Изготовленные в течение дня на трех станках нерассортированные детали находятся на складе. Определить вероятность того, что взятая наугад деталь не соответствует стандарту.
- 3.2. Вероятности попадания при каждом выстреле для трех стрелков равны соответственно 0,2; 0,4; 0,6. При одновременном выстреле всех трех стрелков оказалось одно попадание. Определить вероятность того, что попал первый стрелок.
- 3.3. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго 0,5, для третьего 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.
- 3.4. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,075, а на втором 0,09. Производительность второго автомата вдвое больше, чем первого. Найти вероятность того, что наугад взятая с конвейера деталь нестандартна.
- 3.5. На распределительной базе находятся электрические лампочки, изготовленные на двух заводах. Среди них 60% изготовлено на первом заводе и 40% на втором. Известно, что из каждых 100 лампочек, изготовленных на первом заводе, 90 соответствуют стандарту, а из 100 лампочек, изготовленных на втором заводе, соответствуют стандарту 80. Определить вероятность того, что взятая наугад лампочка с базы будет соответствовать стандарту.
- 3.6. Три стрелка производят по одному выстрелу по одной и той же мишени. Вероятность попадания для первого стрелка равна 0,6, для второго 0,5, для третьего 0,4. В результате произведенных выстрелов в мишени оказалось две пробоины. Найти вероятность того, что в мишень попали второй и третий стрелки.
- 3.7. Один из трех стрелков вызывается на линию огня и производит выстрел. Цель поражена. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго 0,5, для третьего 0,8. Найти вероятность того, что выстрел произведен вторым стрелком.
- 3.8. На наблюдательный пункт станции установлены четыре радиолокатора различных конструкций. Вероятность обнаружения цели с помощью первого локатора равна 0,86, второго 0,90, третьего 0,92, четвертого 0,95.

Наблюдатель наугад включает один из локаторов. Какова вероятность обнаружения цели?

- 3.9. Среди шести винтовок пристреленными оказываются только две. Вероятность попадания из пристреленной винтовки равна 0,9, а из непристреленной 0,2. Выстрелом из одной наугад взятой винтовки цель поражена. Определить вероятность того, что взята пристреленная винтовка.
- 3.10. Приборы одного наименования изготавливаются на трех заводах. Первый завод поставляет 45% всех изделий, поступающих на производство, второй 30% и третий 25%. Вероятность безотказной работы прибора, изготовленного на первом заводе, равна 0,8, на втором 0,85 и на третьем 0,9. Определить вероятность того, что прибор, поступивший на производство, исправен.
- 3.11. Группа студентов состоит из пяти отличников, десяти хорошо успевающих и семи занимающихся слабо. Отличники на предстоящем экзамене могут получить только отличные оценки. Хорошо успевающие студенты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. Для сдачи экзамена вызывается наугад один студент. Найти вероятность того, что студент получит хорошую или отличную оценку.
- 3.12. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором 10 белых и 10 черных шаров, в третьем 20 черных шаров. Из выбранного наугад ящика вынули белый шар. Вычислить вероятность того, что шар вынут из первого ящика.
- 3.13. В первой урне пять белых и 10 черных шаров, во второй три белых и семь черных шаров. Из второй урны в первую переложили один шар, а затем из первой урны вынули наугад один шар. Определить вероятность того, что вынутый шар белый.
- 3.14. В тире имеется три ружья, вероятности попадания из которых соответственно равны 0,5; 0,7; 0,9. Определить вероятность попадания при одном выстреле, если ружье выбрано наугад.
- 3.15. Прибор состоит из трех блоков. Исправность каждого блока необходима для функционирования устройства. Отказы блоков независимы. Вероятности безотказной работы блоков соответственно равны 0,6; 0,7; 0,8. Определить вероятность того, что откажет два блока.
- 3.16. Условие задачи 3.15. Определить вероятность того, что откажет один блок.

- 3.17. Условие задачи 3.15. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказал один блок.
- 3.18. Условие задачи 3.15. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказали два блока.
- 3.19. Условие задачи 3.15. В результате испытаний прибор вышел из строя. Определить вероятность того, что отказали три блока.
- 3.20. Условие задачи 3.15. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали второй и третий блоки.
- 3.21. Условие задачи 3.15. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали первый и второй блоки.
- 3.22. Условие задачи 3.15. В результате испытаний два блока вышли из строя. Определить вероятность того, что отказали первый и третий блоки.
- 3.23. Условие задачи 3.15. В результате испытаний один блок вышел из строя. Определить вероятность того, что отказал третий блок.
- 3.24. Условие задачи 3.15. В результате испытаний один блок вышел из строя. Определить вероятность того, что отказал первый блок.
- 3.25. Условие задачи 3.15. В результате испытаний один блок вышел из строя. Определить вероятность того, что отказал второй блок.
- 3.26. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором 10 белых и 10 черных шаров, в третьем 20 черных шаров. Из выбранного наугад ящика вынули шар. Вычислить вероятность того, что шар белый.
- 3.27. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором 10 белых и 10 черных шаров, в третьем 20 черных шаров. Из каждого ящика вынули шар. Затем из этих трех шаров наугад взяли один шар. Вычислить вероятность того, что шар белый.
- 3.28. Приборы одного наименования изготавливаются на трех заводах. Первый завод поставляет 45% всех изделий, поступающих на производство, второй 30% и третий 25%. Вероятность безотказной работы прибора, изготовленного на первом заводе, равна 0,8, на втором 0,85 и на третьем 0,9. Прибор, поступивший на производство, оказался исправным. Определить вероятность того, что он изготовлен на втором заводе.
- 3.29. Три стрелка производят по одному выстрелу по одной и той же мишени. Вероятность попадания для первого стрелка равна 0,6, для второго 0,5, для третьего 0,4. В результате произведенных выстрелов в мишени оказалось две пробоины. Найти вероятность того, что в мишень попал второй стрелок.

- 3.30. Три стрелка производят по одному выстрелу по одной и той же мишени. Вероятность попадания для первого стрелка равна 0,6, для второго 0,5 и для третьего 0,4. В результате произведенных выстрелов в мишени оказалась одна пробоина. Найти вероятность того, что в мишень попал первый стрелок.
- 4.1. Вероятность изготовления стандартного изделия равна 0,95. Какова вероятность того, что среди десяти изделий не более одного нестандартного?
- 4.2. Вероятность попадания в мишень при одном выстреле равна 0,6. По мишени производится четыре независимых выстрела. Найти вероятность того, что будет хотя бы одно попадание в мишень.
- 4.3. Техническая система состоит из пяти узлов. Вероятность нарушения режима работы в течение времени t для каждого узла равна 0,2. Система выходит из строя, если нарушения режима работы произойдут не менее чем в трех узлах. Найти вероятность выхода из строя этой системы за время t, если нарушение режима работы для каждого узла не зависит от состояния работы в других узлах.
- 4.4. Игральную кость подбрасывают 12 раз. Чему равно наивероятнейшее число выпадений 6?
- 4.5. Вероятность изготовления изделия отличного качества равна 0,9. Изготовлено 50 изделий. Чему равны наивероятнейшее число изделий отличного качества и вероятность такого числа изделий отличного качества?
- 4.6. По данным технического контроля в среднем 2% изготавливаемых на заводе автоматических станков нуждается в дополнительной регулировке. Чему равна вероятность того, что из шести изготовленных станков четыре нуждаются в дополнительной регулировке?
- 4.7. Рабочий обслуживает десять однотипных станков. Вероятность того, что станок потребует внимания рабочего в течение часа, равна 0,05. Найти вероятность того, что в течение часа этих требований будет от трех до пяти.
- 4.8. В мастерской имеется десять моторов. При существующем режиме работы вероятность того, что мотор в данный момент работает с полной нагрузкой, равна 0,8. Найти вероятность того, что в данный момент не менее восьми моторов работает с полной нагрузкой.
- 4.9. Вероятность появления события A в каждом из 15 независимых опытов равна 0,3. Определить вероятность появления события A по крайней мере два раза.

- 4.10. Вероятность появления события A в каждом из 15 независимых опытов равна 0,3. Определить вероятность появления события A семь или восемь раз.
- 4.11. Монету подбрасывают восемь раз. Чему равно наивероятнейшее число выпадений герба?
- 4.12. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,3. Произведено 12 бросков. Найти вероятность того, что будет 10 попаданий.
- 4.13. Определить вероятность того, что в семье, имеющей пять детей, будет три девочки и два мальчика. Вероятности рождения мальчика и девочки предполагаются одинаковыми.
- 4.14. Монету подбрасывают восемь раз. Какова вероятность того, что шесть раз она упадет гербом вверх?
- 4.15. В результате многолетних наблюдений установлено, что вероятность выпадения дождя 1 октября в данном городе равна 1/7. Определить наивероятнейшее число дождливых дней 1 октября в данном городе за 40 лет.
- 4.16. Имеется 20 ящиков однородных деталей. Вероятность того, что в одном взятом наудачу ящике детали окажутся стандартными, равна 0,75. Найти наивероятнейшее число ящиков, в которых все детали стандартные.
- 4.17. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что в мишени будет одно или два попадания.
- 4.18. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что в мишени будет три попадания.
- 4.19. Монету подбрасывают восемь раз. Какова вероятность того, что она ни разу не упадет гербом вверх?
- 4.20. При установившемся технологическом процессе 80% всей произведенной продукции оказывается продукцией высшего сорта. Найти наивероятнейшее число изделий высшего сорта в партии из 250 изделий.
- 4.21. Монету подбрасывают восемь раз. Какова вероятность того, что она четыре раза упадет гербом вверх?
- 4.22. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,9. Произведено 12 бросков. Найти вероятность того, что будет 11 или 12 попаданий.
- 4.23. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что будет хотя бы одно попадание в мишень.

- 4.24. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что будет хотя бы пять попаданий в мишень.
- 4.25. Монету подбрасывают восемь раз. Какова вероятность того, что она ни разу не упадет гербом вверх?
- 4.26. Монету подбрасывают 100 раз. Какова вероятность того, что она ни разу не упадет гербом вверх?
- 4.27. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,95. Произведено десять бросков. Найти вероятность того, что будет девять попаданий.
- 4.28. Вероятность того, что данный баскетболист забросит мяч в корзину, равна 0,9. Произведено 12 бросков. Найти вероятность того, что будет не менее 11 попаданий.
- 4.29. Рабочий обслуживает десять однотипных станков. Вероятность того, что станок потребует внимания рабочего в течение часа, равна 0,05. Найти вероятность того, что в течение часа будет хотя бы одно требование.
- 4.30. Вероятность попадания в мишень при одном выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность того, что будет шесть попаданий в мишень.

В задачах 5.1-5.30 дискретная случайная величина X может принимать одно из пяти фиксированных значений x1, x2, x3, x4, x5 с вероятностями p1, p2, p3, p4, p5 соответственно (конкретные значения приведены в табл. 1.1). Вычислить математическое ожидание и дисперсию величины X. Рассчитать и построить график функции распределения.

Таблица 1.1

Вариант	x 1	x2	х3	x4	x5	p1	p2	р3	p4	р5
5.1	1	2	3	4	5	0,2	0,2	0,2	0,2	0,2
5.2	1	2	3	4	5	0,1	0,2	0,3	0,2	0,2
5.3	1	2	3	4	5	0,4	0,1	0,1	0,3	0,1
5.4	1	2	3	4	5	0,3	0,3	0,1	0,1	0,2
5.5	-2	-1	1	3	7	0,2	0,2	0,2	0,2	0,2
5.6	-2	-1	1	3	7	0,1	0,3	0,2	0,2	0,2
5.7	-5	-2	0	1	2	0,5	0,1	0,1	0,2	0,1
5.8	-5	-2	0	1	2	0,1	0,2	0,1	0,3	0,3
5.9	0	1	2	3	4	0,2	0,2	0,2	0,2	0,2
5.10	0	1	2	3	4	0,3	0,2	0,1	0,2	0,2
5.11	0	1	2	3	4	0,1	0,2	0,3	0,4	0
5.12	-1	0	1	2	3	0,6	0,1	0,1	0,1	0,1
5.13	-1	0	1	2	3	0,3	0,2	0,1	0,1	0,3
5.14	3	4	5	6	7	0,1	0,2	0,3	0,4	0
5.15	3	4	5	6	7	0,5	0,1	0,1	0,1	0,2
5.16	-5	-4	-3	5	6	0,1	0,3	0,2	0,2	0,2
5.17	-2	0	2	4	9	0,3	0,2	0,1	0,1	0,3
5.18	-2	0	2	4	9	0,3	0,1	0,1	0,2	0,3
5.19	-2	0	2	4	9	0,15	0,15	0,2	0,4	0,1
5.20	5	6	7	8	9	0,1	0,1	0,1	0,1	0,6
5.21	1	4	7	8	9	0,3	0,15	0,25	0,15	0,15
5.22	1	4	7	8	9	0,2	0,2	0,2	0,2	0,2
5.23	-10	-4	0	4	10	0,2	0,2	0,2	0,2	0,2
5.24	-10	-4	0	4	10	0,3	0,1	0,2	0,1	0,3
5.25	2	4	6	8	10	0,1	0,2	0,3	0,35	0,05
5.26	2	4	6	8	10	0,7	0,1	0,1	0,05	0,05
5.27	2	4	6	8	10	0,2	0,3	0,05	0,25	0,2
5.28	1	4	5	7	8	0,6	0,1	0,1	0,05	0,15
5.29	1	4	5	7	8	0,3	0,3	0,1	0,15	0,15
5.30	5	6	7	9	12	0,05	0,15	0,2	0,4	0,2

В задачах 6.1-6.30 (параметры заданий приведены в табл. 1.2) случайная В задачах о.1-о.30 (параметры эждээ величина X задана плотностью вероятности $f(x) = \begin{cases} 0, & x < a, & x > b, \\ \varphi(x,c), & a \le x \le b. \end{cases}$

$$f(x) = \begin{cases} 0, & x < a, & x > b, \\ \varphi(x,c), & a \le x \le b. \end{cases}$$

Определить константу C, математическое ожидание, дисперсию, функцию распределения величины X, а также вероятность ее попадания в интервал $[\alpha,\beta]$.

Таблица 1.2

Вариант	φ(x,c)	a	b	α	β
6.1	$c \cdot x$	1	2	0,5	1,5
6.2	cx^{11}	0	1	0,5	1
6.3	cx^2	-1	1	0	0,5
6.4	cx^3	0	2	1	2
6.5	cx^4	0	1	-2	2
6.6	С	-2	2	-1	1
6.7	csin(x)	0	π	0	$\pi/2$
6.8	$c\sin(2x)$	0	$\pi/2$	$\pi/4$	π
6.9	$c\sin(3x)$	0	$\pi/3$	-1	1
6.10	$c \cdot \cos(x)$	$-\pi/2$	$\pi/2$	0	1
6.11	$c \cdot \cos(2x)$	0	$\pi/4$	0,5	1
6.12	c e ^{-x}	0	4	1	2
6.13	$c e^{-2x}$	0	∞	1	3
6.14	$4 e^{-cx}$	0	~	0	1
6.15	c x	-2	2	1,5	2
6.16	$c e^{x}$	0	1	0	0,5
6.17	$c x^5$	0	1	0,5	0,7
6.18	$c x^6$	0	2	1	2
6.19	c x'	0	1	0	0,5
6.20	$c x^{8}$	-1	1	0	2
6.21	$c x^9$	0	1	0	0,25
6.22	$c x^{10}$	-1	1	-0,5	0,5
6.23	c/x	1	4	2	3
6.24	c/x^2	1	2	1	1,5
6.25	c/x^3	1	2	1	1,5
6.26	c/x^4	1	3	1	2
6.27	c/x^5	1	2	1	1,5
6.28	c/x^6	1	2	0	1,5
6.29	c/x^7	1	2	1	2
6.30	c/x^8	1	2	1	3

В задачах 7.1-7.30 (условия приведены в табл. 1.3) случайная величина X распределена равномерно на интервале [a,b]. Построить график случайной величины $Y=\phi(X)$ и определить плотность вероятности g(y).

Таблица 1.3

Вариант	$\varphi(x)$	a	b	аблица 1.3 y_0
7.1		-1	4	2
7.2	x-2	0	10	1
7.3	x +1	-3	2	3
7.4	x+1 + 2	-2	0	2,5
7.5	x^2	-4	1	10
7.6	x^3	-1	2	5
7.7	$\begin{vmatrix} x^3 \\ x^4 \end{vmatrix}$	-1	2	0,5
7.8	x^4	-2	1	0,5
7.9	<i>x</i> ⁵	-2	2	4
7.10	$ x^5 $	-2	1	0,5
7.11	2x	-4	6	10
7.12	2 x	-3	7	3
7.13	1/ <i>x</i>	1	5	0,3
7.14	1/(x+5)	-4	6	0,2
7.15	$\sin(x)$	0	$0,75\pi$	0,5
7.16	$\sin(2x)$	0	$\pi/2$	0,4
7.17	$\sin(3x)$	$\pi/6$	$\pi/3$	0,5
7.18	$ \sin(x) $	- π/4	$\pi/2$	0,3
7.19	e^x	0	1	1
7.20	$e^{ x }$	-1	2	2
7.21	$1/x^{2}$	1	2	0,75
7.22	$x^{1/3}$	-1	8	1
7.23	$ x ^{1/3}$	-8	1	0
7.24	$\cos(x)$	- π/2	$\pi/3$	0
7.25	$\cos(2x)$	- π/6	$\pi/2$	0,5
7.26	$ \cos(x) $	0	1,5π	0,5
7.27	\sqrt{x}	0	4	1
7.28	$\sqrt{ x }$	-1	4	0,5
7.29	ln(x)	1	2	0,2
7.30	$ x ^{1/4}$	-1	16	0,5

В задачах 8.1-8.30 (конкретные параметры приведены в табл. 1.4) двухмерный случайный вектор (X, Y) равномерно распределен внутри выделенной жирными прямыми линиями на рис. 1.2 области B. Двухмерная плотность вероятности f(x,y) одинакова для любой точки этой области B:

$$f(x,y) = \begin{cases} c, & (x,y) \in B, \\ 0, & \text{иначе.} \end{cases}$$

Вычислить коэффициент корреляции между величинами Х и Ү.

Рис. 1.2

Таблица 1.4

Вариант	x 1	x 2	x 3	x 4	x 5	x 6	y1	y2
8.1	0	0	1	1	1	1	1	2
8.2	0	2	2	2	2	2	1	2
8.3	0	0	1	0	1	2	1	2
8.4	0	2	4	4	4	4	1	2
8.5	0	0	3	2	3	4	1	2
8.6	0	2	5	6	5	4	1	2
8.7	2	0	5	4	5	6	1	2
8.8	0	0	2	2	4	4	1	2
8.9	0	0	1	2	1	0	1	2
8.10	0	0	4	4	2	2	1	2
8.11	0	2	3	2	3	4	1	2
8.12	0	2	5	4	5	6	1	2
8.13	0	2	4	2	4	6	1	2
8.14	0	4	5	4	5	6	1	2
8.15	0	2	2	4	2	0	1	2
8.16	0	0	5	4	5	6	1	2
8.17	0	0	4	4	4	4	1	2
8.18	0	4	4	4	4	4	1	2
8.19	0	0	2	0	2	4	1	2
8.20	0	2	6	6	6	6	1	2
8.21	0	0	4	2	4	6	1	2
8.22	0	0	4	4	4	6	1	2
8.23	0	0	2	4	2	0	1	2
8.24	0	0	6	6	4	4	1	2
8.25	0	4	6	4	6	8	1	2
8.26	0	4	7	6	7	8	1	2
8.27	0	2	6	4	6	8	1	2
8.28	0	2	4	4	6	6	1	2
8.29	0	2	4	4	5	6	1	2
8.30	0	2	5	4	6	7	1	2

2.МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

2.1. ОЦЕНКА ЗАКОНА РАСПРЕДЕЛЕНИЯ

Генеральной совокупностью называется множество объектов, из которых производится выборка. Каждый из объектов задает фиксированное значение случайной величины.

Bыборка - множество $\{x_1, x_2, ..., x_n\}$ случайно отобранных объектов (значений) из генеральной совокупности.

Объемом выборки называется число (n) входящих в нее объектов.

Вариационным рядом называется выборка $\{\hat{x}_1, \hat{x}_2, ..., \hat{x}_n\}$, полученная в результате расположения значений исходной выборки в порядке возрастания. Значения X_i называются вариантами.

2.1.1. Эмпирическая функция распределения

Эмпирическая функция распределения определяется формулой

$$F^*(x) = m_{< x} / n, (2.1)$$

где x - аргумент (неслучайная величина, $-\infty < x < +\infty$);

n - объем выборки;

 $m_{< x}$ - количество значений в выборке или вариационном ряду, строго меньших x.

При $n \to \infty$ эмпирическая функция распределения $F^*(x)$ по вероятности сходится к теоретической функции распределения F(x).

Основные свойства функции $F^*(x)$:

- 1. $0 \le F^*(x) \le 1$.
- $2. F^*(x)$ неубывающая ступенчатая функция.
- 3. $F^*(x) = 0$, $x \le \hat{x}_1$.
- 4. $F^*(x) = 1, x > \hat{x}_n$.

Эмпирическая функция распределения является наилучшей оценкой закона распределения (несмещенной, состоятельной, эффективной). Недостаток функции $F^*(x)$ заключается в ее невысокой наглядности: визуально сложно подобрать типовой закон распределения.

Порядок построения графика функции $F^*(x)$ следующий:

- 1. Построить вариационный ряд.
- 2. На числовой оси x выделить полуинтервалы $(A_i, B_i]$, на которых функция $F^*(x)$ не изменяет своего значения. Границы полуинтервалов определяются соседними отличающимися значениями вариационного ряда.

- 3. На каждом полуинтервале по формуле (2.1) вычисляется значение функции $F^*(x)$.
 - 4. Построить график.

2.1.2. Гистограмма распределения случайной величины

Гистограммой называется оценка плотности распределения вероятности. На практике наиболее часто используются два метода построения гистограммы: равноинтервальный и равновероятностный. Порядок построения гистограммы следующий.

- 1. Построить вариационный ряд, т.е. расположить выборочные значения в порядке возрастания: $\hat{x}_1 \leq \hat{x}_2 \leq ... \leq \hat{x}_n$.
- 2. Всю область возможных значений $[\hat{x}_1, \hat{x}_n]$ разбить на M непересекающихся и примыкающих друг к другу интервалов.

Из статистических соображений параметр M рекомендуется выбирать с помощью следующих соотношений:

$$M \approx \operatorname{int}\left(\sqrt{n}\right), \qquad n \le 100,$$
 (2.2)

$$M \approx \operatorname{int}((2-4) \cdot \lg(n)), \qquad n > 100, \tag{2.3}$$

где int(x) - целая часть числа x . Желательно, чтобы n без остатка делилось на M. Введем обозначения параметров:

 A_i , B_i - соответственно левая и правая границы i-го интервала ($A_{i+1} = B_i$); $h_i = B_i$ - A_i - длина i-го интервала;

 v_i - количество чисел в выборке, попадающих в i-й интервал.

При использовании *равноинтервального* метода построения гистограммы параметры A_i , B_i , h_i вычисляются следующим образом:

$$h_i = \hat{h} = (\hat{x}_n - \hat{x}_1)/M;$$
 $A_i = \hat{x}_1 + (i-1) \cdot h;$ $\hat{B}_i = A_{i+1};$ $i = 1, 2, ..., M. (2.4)$

Если при подсчете значений какое-то число в выборке точно совпадает с границей между интервалами, то необходимо в счетчик обоих интервалов прибавить по 0.5.

В случае применения *равновероятностного* метода границы A_i , B_i выбираются таким образом, чтобы в каждый интервал попадало одинаковое количество выборочных значений:

$$v_i = v = n / M. \tag{2.5}$$

В этом случае

$$A_1 = \hat{x}_1;$$
 $B_1 = (\hat{x}_{\nu} + \hat{x}_{\nu+1})/2;$ $A_2 = B_1;$ $A_i = (\hat{x}_{(i-1)\nu} + \hat{x}_{(i-1)\nu+1})/2;$ $i = 2, 3, ..., M.(2.6)$

3. Вычисляется средняя плотность вероятности для каждого интервала по формуле

$$f_i^* = v_i / (n \cdot h_i). \tag{2.7}$$

- 4. На графике провести две оси: x и $f_i^*(x)$.
- 5. На оси х отмечаются границы всех интервалов.
- 6. На каждом интервале строится прямоугольник с основанием h_i и высотой f_i^* . Полученная при этом ступенчатая линия называется гистограммой, график которой приблизительно выглядит так, как показано на рис. 2.1.

Рис.2.1

Замечания.

- 1. Суммарная площадь всех прямоугольников равна единице.
- 2. В равновероятностной гистограмме площади всех прямоугольников одинаковы. По виду гистограммы можно судить о законе распределения случайной величины.
- 3. Перед построением гистограммы вычисленные значения A_i , B_i , h_i , v_i , f_i^* рекомендуется занести в табл. 2.1.

Достоинства использования гистограммы: простота применения, наглядность.

2.2. ТОЧЕЧНЫЕ ОЦЕНКИ ПАРАМЕТРОВ И ЧИСЛОВЫХ ХАРАКТЕРИСТИК

Почти все распределения случайной величины зависят от одного или нескольких параметров. Например, плотность вероятности экспоненциального закона

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0 \end{cases}$$

зависит от параметра λ .

C тараметра \hat{Q} параметра \hat{Q} распределения называется приближенное значение параметра, вычисленное по результатам эксперимента (по выборке).

Статистические оценки делятся на точечные и интервальные. *Точечной* называется оценка, определяемая одним числом. Желательно, чтобы оценка была несмещенной, состоятельной и эффективной.

- 1. Оценка \hat{Q} называется *несмещенной*, если $M[\hat{Q}] = Q$. Несмещенность минимальное требование к оценкам.
- 2. Оценка \hat{Q} называется состоятельной, если при увеличении числа n она сходится по вероятности к значению параметра Q:

$$\lim_{n\to\infty} (P(|\hat{Q}-Q|<\varepsilon)) = 1,$$

где ε - любое положительное число.

Несмещенная оценка является состоятельной, если $\lim_{n\to\infty} D\Big[\hat{\mathcal{Q}}\,\Big] = 0 \ .$

3. Несмещенная оценка \hat{Q} является эффективной, если ее дисперсия минимальна по отношению к дисперсии любой другой оценки.

2.2.1. Точечные оценки числовых характеристик

1. Несмещенная состоятельная оценка *математического ожидания*, называемая выборочным средним, вычисляется по формуле

$$\overline{x} = \sum_{i=1}^{n} x_i / n. \tag{2.8}$$

2. Несмещенная состоятельная оценка дисперсии равна

$$S_0^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \overline{x})^2.$$
 (2.9)

3. Смещенная состоятельная оценка дисперсии

$$S^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$
 (2.10)

4. Несмещенная состоятельная оценка дисперсии

$$S_1^2 = \frac{1}{n} \cdot \sum_{i=1}^n (x_i - m_x)^2. \tag{2.11}$$

5. Состоятельная оценка среднеквадратического отклонения

$$S_0 = \sqrt{S_0^2} \,. \tag{2.12}$$

6. Несмещенная состоятельная оценка корреляционного момента

$$\hat{K}_{XY} = \frac{1}{n-1} \cdot \sum_{k=1}^{n} (x_k - \overline{x}) \cdot (y_k - \overline{y}), \tag{2.13}$$

где x_k, y_k - значения, которые приняли случайные величины X, Y в k-м опыте; $\overline{x}, \overline{y}$ - средние значения случайных величин X и Y соответственно.

7. Состоятельная оценка коэффициента корреляции

$$\hat{r}_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}}.$$
(2.14)

8. Выборочный начальный момент k-го порядка определяется по формуле

$$\hat{\alpha}_k = \frac{1}{n} \cdot \sum_{i=1}^n (x_i)^k. \tag{2.15}$$

9. Выборочный центральный момент k-го порядка равен

$$\hat{\mu}_k = \frac{1}{n} \cdot \sum_{i=1}^n (x_i - \bar{x})^k. \tag{2.16}$$

10. В случае *неравноточных* измерений несмещенная состоятельная оценка математического ожидания равна

$$\widetilde{x} = \sum_{i=1}^{n} \left(x_i / D[\xi_i] \right) / \sum_{i=1}^{n} \left(1 / D[\xi_i] \right), \tag{2.17}$$

где $D[\xi_i]$ - дисперсия случайной величины в i-м опыте.

11. Несмещенная состоятельная и эффективная оценка вероятности в схеме независимых опытов Бернулли:

$$p^* = w = m/n, (2.18)$$

где m - число успешных опытов.

2.2.2. Методы получения оценок параметров распределения

Для вычисления приближенных значений параметров чаще всего применяются методы моментов и максимального правдоподобия.

Суть метода моментов заключается в следующем. Пусть имеется выборка $\{x_1, ..., x_n\}$ независимых значений случайной величины с известным законом распределения $f(x, Q_1, ..., Q_m)$ и m неизвестными параметрами $Q_1, ..., Q_m$. Последовательность вычислений следующая:

1. Вычислить значения m начальных и/или центральных теоретических моментов

$$\alpha_k = M \left[X^k \right], \qquad \mu_k = M \left[\left(X - m_x \right)^k \right].$$
 (2.19)

- 2. Определить m соответствующих выборочных начальных $\hat{\mu}_{k}$ и/или центральных $\hat{\mu}_{k}$ моментов по формулам (2.15, 2.16).
- 3. Составить и решить систему из m уравнений, в каждом из которых приравниваются теоретические и выборочные моменты. Каждое уравнение имеет вид $\alpha_k = \hat{\alpha}_k$ или $\mu_k = \hat{\mu}_k$.

Замечание. Часть уравнений может содержать начальные моменты, а оставшаяся часть - центральные.

Согласно методу максимального правдоподобия оценки \hat{Q}_1 , ..., \hat{Q}_m получаются из условия максимума по параметрам Q_1 , ..., Q_m положительной функции правдоподобия $L(x_1, ..., x_n, Q_1, ..., Q_m)$.

Если случайная величина X непрерывна, а значения x_i независимы, то

$$L(x_1,...,x_n,Q_1,...,Q_m) = \prod_{i=1}^n f(x_i,Q_1,...,Q_m).$$
 (2.20)

Если случайная величина X дискретна и принимает независимые значения x_i с вероятностями

$$P(X = x_i) = p_i(x_i, Q_1, ..., Q_m), (2.21)$$

то функция правдоподобия равна

$$L(x_1,...,x_n,Q_1,...,Q_m) = \prod_{i=1}^n p_i(x_i,Q_1,...,Q_m).$$
 (2.22)

Система уравнений согласно этому методу может записываться в двух видах:

$$\frac{\partial L(x_1, ..., x_n, Q_1, ..., Q_m)}{\partial Q_i} = 0, \qquad i = 1, 2, ..., m \qquad (2.23)$$

или

$$\frac{\partial \ln(L(x_1, ..., x_n, Q_1, ..., Q_m))}{\partial Q_i} = 0, \qquad i = 1, 2, ..., m.$$
 (2.24)

Пример 2.1. Пусть x_i - независимые значения случайной величины X, распределенной по экспоненциальному закону, т.е.

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Необходимо получить оценку параметра λ методом максимального правдоподобия.

Решение. Функция правдоподобия имеет вид

$$L(x_1, ..., x_n, \lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n \cdot e^{-\lambda \cdot \sum_{i=1}^n x_i}.$$

Тогда
$$\ln(L(x_1, ..., x_n, \lambda)) = n \cdot \ln(\lambda) - \lambda \cdot \sum_{i=1}^n x_i$$
.

Далее записываем уравнение

$$\frac{\partial \ln(L)}{\partial \lambda} = n/\lambda - \sum_{i=1}^{n} x_i = 0.$$

Отсюда получаем выражение для оценки параметра λ :

$$\hat{\lambda} = n / \sum_{i=1}^{n} x_i = 1 / \overline{x} .$$

Пример 2.2. Случайная величина X распределена по равномерному закону, т.е.

$$f(x) = \begin{cases} 1/(b-a), & a \le x < b, \\ 0, & x < a \lor x \ge b. \end{cases}$$

Необходимо определить оценки параметров a и b.

Решение. По исходной выборке определяем выборочные моменты $\hat{\alpha}_1$ и по формулам (2.15) и (2.16) соответственно. Составляем систему их двух уравнений: $\alpha_1 = \hat{\alpha}_1$, $\mu_2 = \hat{\mu}_2$.

Здесь

$$\alpha_{1} = M[X] = \int_{a}^{b} \frac{x}{(b-a)} dx = (a+b)/2,$$

$$\mu_{2} = M[(X-m_{x})^{2}] = (b-a)^{2}/12,$$

$$\hat{\alpha}_{1} = \sum_{i=1}^{n} x_{i}/n, \qquad \hat{\mu}_{2} = \sum_{i=1}^{n} (x_{i} - \hat{\alpha}_{1})^{2}/n.$$

Подставив данные выражения в систему и решив ее, получим $\hat{a} = \hat{\alpha}_1 - \sqrt{3}\hat{\mu}_2$, $\hat{b} = \hat{\alpha}_1 + \sqrt{3}\hat{\mu}_2$.

2.3. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

Критерием называется случайная величина

$$K = \varphi(x_1, K, x_n),$$

которая позволяет принять или отклонить нулевую гипотезу H_0 .

При проверке гипотез можно допустить ошибки двух родов.

Oшибка первого рода состоит в том, что будет отклонена гипотеза H_0 , если она верна ("пропуск цели"). Вероятность совершить ошибку первого рода обозначается α и называется уровнем значимости. Наиболее часто на практике принимают, что $\alpha=0.05$ или $\alpha=0.01$.

Oшибка второго рода заключается в том, что гипотеза H_0 принимается, если она неверна ("ложное срабатывание"). Вероятность ошибки этого рода обозначается β .

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе распределения.

2.3.1. Критерий согласия χ^2

Это один из наиболее часто применяемых критериев. Алгоритм проверки гипотезы следующий.

- 1. Построить гистограмму равновероятностным способом.
- 2. По виду гистограммы выдвинуть гипотезу

$$H_0: f(x) = f_0(x),$$

 $H_1: f(x) \neq f_0(x),$

где $f_0(x)$ - плотность вероятности гипотетического закона распределения:

равномерного, экспоненциального или нормального.

Замечание. Гипотезу об экспоненциальном законе распределения можно выдвигать в том случае, если все числа в выборке положительные.

3. Вычислить значение критерия по формуле

$$\chi^{2} = n \sum_{i=1}^{M} \frac{\left(p_{i} - p_{i}^{*}\right)^{2}}{p_{i}} = \sum_{i=1}^{M} \frac{\left(v_{i} - np_{i}\right)^{2}}{np_{i}} , \qquad (2.25)$$

где $p_i^* = \frac{V_i}{n}$ - частота попадания в i-й интервал;

 p_i - теоретическая вероятность попадания случайной величины в i- й интервал при условии, что гипотеза H_0 верна.

Формулы для расчета p_i в случае экспоненциального, равномерного и нормального законов соответственно равны.

Экспоненциальный закон

$$p_i = e^{\frac{-A_i}{\overline{x}}} - e^{\frac{-B_i}{\overline{x}}}.$$
 (2.26)

При этом $A_1 = 0$, $B_m = +\infty$.

Равномерный закон

$$p_i = (B_i - A_i)/(\hat{x}_n - \hat{x}_1). \tag{2.27}$$

Нормальный закон

$$p_i = 0.5 \left(\Phi \left(\frac{B_i - \overline{x}}{S_0} \right) - \Phi \left(\frac{A_i - \overline{x}}{S_0} \right) \right). \tag{2.28}$$

При этом $A_1 = -\infty$, $B_M = +\infty$.

 $\it 3амечания.$ После вычисления всех вероятностей $\it p_i$ проверить, выполняется ли контрольное соотношение

$$\left| 1 - \sum_{i=1}^{M} p_i \right| \le 0.01. \tag{2.29}$$

4. Из таблицы "Хи-квадрат" приложения выбирается значение $\chi^2_{\alpha,k}$, где α - заданный уровень значимости ($\alpha=0.05$ или $\alpha=0.01$), а k - число степеней свободы, определяемое по формуле

$$k = M - 1 - s$$
.

- Здесь s число параметров, от которых зависит выбранный гипотезой H_0 закон распределения. Значения s для равномерного закона равно 2, для экспоненциального 1, для нормального 2.
- 5. Если $\chi^2 > \chi^2_{\alpha,k}$, то гипотеза H_0 отклоняется. В противном случае нет оснований ее отклонить.

2.3.2. Критерий согласия Колмогорова

Последовательность действий при проверке гипотезы следующая.

- 1. Построить вариационный ряд.
- 2. Построить график эмпирической функции распределения $F^*(x)$.
- 3. Выдвинуть гипотезу:

$$H_0: F(x) = F_0(x),$$

 $H_1: F(x) \neq F_0(x),$

где $F_0(x)$ - теоретическая функция распределения типового закона: равномерного, экспоненциального или нормального.

Ниже приведены формулы для расчета $F_0(\mathbf{x})$.

Равномерный закон

$$F_0(x) = \begin{cases} 0, & x < \hat{x}_1, \\ (x - \hat{x}_1)/(\hat{x}_n - \hat{x}_1), & \hat{x}_1 \le x \le \hat{x}_n, \\ 1, & x > \hat{x}_n. \end{cases}$$
 (2.30)

Экспоненциальный закон

$$F_0(x) = \begin{cases} 1 - e^{-x/\overline{x}}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$
 (2.31)

Нормальный закон

$$F_0(x) = 0.5 + 0.5 \cdot \Phi\left(\frac{x - \overline{x}}{S_0}\right)$$
 (2.32)

- 4. Рассчитать по формулам (2.30-2.32) 10-20 значений и построить график функции $F_0(x)$ в одной системе координат с функцией $F^*(x)$.
- 5. По графику определить максимальное по модулю отклонение между функциями $F^*(x)$ и $F_0(x)$.
 - 6. Вычислить значение критерия

$$\lambda = \sqrt{n} \cdot \max \left| F^*(x) - F_0(x) \right|. \tag{2.33}$$

- 7. Принимают тот или иной уровень значимости (чаще всего 0,05 или 0,01). Тогда доверительная вероятность $\gamma = 1 \alpha$.
- 8. Из таблицы вероятностей Колмогорова (см. приложение) выбрать критическое значение λ_{v} .
- 9. Если $\lambda > \lambda_{\gamma}$, то нулевая гипотеза H_0 отклоняется, в противном случае принимается, хотя она может быть неверна.

Достоинства критерия Колмогорова по сравнению с критерием χ^2 : возможность применения при очень маленьких объемах выборки (n < 20), более высокая "чувствительность", а следовательно, меньшая трудоемкость вычислений.

Недостаток: критерий можно использовать в том случае, если параметры Q_1 , ..., Q_k распределения заранее известны, а эмпирическая функция распределения $F^*(x)$ должна быть построена по несгруппированным выборочным данным.

2.4. ОЦЕНКА КОЭФФИЦИЕНТОВ ЛИНЕЙНОЙ РЕГРЕССИИ

 $Perpeccue \check{u}$ случайной величины Y на X называется условное математическое ожидание случайной величины Y при том, что X = x:

$$m_{\nu}(x) = M[Y/X = x].$$
 (2.34)

Регрессия Y на X устанавливает зависимость среднего значения величины Y от величины X. Если X и Y независимы, то

$$m_y(x) = m_y = \text{const.}$$

Простейшим видом регрессии является линейная:

$$m_{\mathcal{Y}}(x) = a_0 + a_1 x.$$

Определение оценок коэффициентов a_0 , a_1 осуществляется с помощью метода наименьших квадратов.

Пусть имеется выборка $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$, содержащая n пар значений случайных величин X и Y. Тогда оценки параметров \hat{a}_0 и \hat{a}_1 вычисляются по следующим формулам:

$$\hat{a}_1 = \frac{\hat{K}_{XY}}{S_0^2(x)},\tag{2.35}$$

$$\hat{a}_0 = \overline{y} - \hat{a}_1 \cdot x \,. \tag{2.36}$$

где \bar{x} , \bar{y} - оценки математического ожидания величин X и Y;

 $S_0^2(x)$ - оценка дисперсии величины X;

 $\hat{K}_{\scriptscriptstyle XY}$ — оценки корреляционного момента величин X и Y.

Для визуальной проверки правильности вычисления величин \hat{a}_0 , \hat{a}_1 необходимо построить диаграмму рассеивания и график уравнения регрессии $\overline{y}(x) = \hat{a}_0 + \hat{a}_1 \cdot x$ (рис. 2.2).

Рис 2.2

Если оценки параметров a_0 рассчитаны без грубых ошибок, TO сумма отклонений квадратов точек (x_i, y_i) от всех $\overline{y}(x) = \hat{a}_0 + \hat{a}_1 \cdot x$ прямой должна быть минимально возможной.

2.5. КОНТРОЛЬНЫЕ ЗАДАЧИ

- 1. По выборке одномерной случайной величины:
- получить вариационный ряд;
- построить на масштабно-координатной бумаге формата A4 график эмпирической функции распределения $F^*(x)$;
 - построить гистограмму равноинтервальным способом;
 - построить гистограмму равновероятностным способом;
 - вычислить оценки математического ожидания и дисперсии;
- выдвинуть гипотезу о законе распределения случайной величины и проверить ее при помощи критерия согласия χ^2 и критерия Колмогорова ($\alpha = 0.05$).
 - 2. По выборке двухмерной случайной величины:
 - вычислить оценку коэффициента корреляции;
 - вычислить параметры линии регрессии a_0 и a_1 ;
 - построить диаграмму рассеивания и линию регрессии.

ПРИЛОЖЕНИЕ

1. Таблица функции Лапласа
$$\Phi(z) = \frac{2}{\sqrt{2\pi}} \int\limits_0^z e^{-\frac{t^2}{2}} dt = \gamma$$

						-	Z
Z	$\Phi(z)$	Z	$\Phi(z)$	\boldsymbol{z}	$\Phi(z)$	\boldsymbol{z}	$\Phi(z)$
0,00	0,0000	0,66	0,4907	1,32	0,8132	1,98	0,9523
0,02	0,0160	0,68	0,5035	1,34	0,8198	2,00	0,9545
0,04	0,0319	0,70	0,5161	1,36	0,8262	2,05	0,9596
0,06	0,0478	0,72	0,5285	1,38	0,8324	2,10	0,9643
0,08	0,0638	0,74	0,5407	1,40	0,8385	2,15	0,9684
0,10	0,0797	0,76	0,5527	1,42	0,8444	2,20	0,9722
0,12	0,0955	0,78	0,5646	1,44	0,8501	2,25	0,9756
0,14	0,1113	0,80	0,5763	1,46	0,8557	2,30	0,9786
0,16	0,1271	0,82	0,5878	1,48	0,8611	2,35	0,9812
0,18	0,1428	0,84	0,5991	1,50	0,8664	2,40	0,9836
0,20	0,1585	0,86	0,6102	1,52	0,8715	2,45	0,9857
0,22	0,1741	0,88	0,6211	1,54	0,8764	2,50	0,9876
0,24	0,1897	0,90	0,6319	1,56	0,8812	2,55	0,9892
0,26	0,2051	0,92	0,6424	1,58	0,8859	2,60	0,9907
0,28	0,2205	0,94	0,6528	1,60	0,8904	2,66	0,9920
0,30	0,2358	0,96	0,6629	1,62	0,8948	2,70	0,9931
0,32	0,2510	0,98	0,6729	1,64	0,8990	2,75	0,9940
0,34	0,2661	1,00	0,6827	1,66	0,9031	2,80	0,9949
0,36	0,2812	1,02	0,6923	1,68	0,9070	2,85	0,9956
0,38	0,2961	1,04	0,7017	1,70	0,9109	2,90	0,9963
0,40	0,3108	1,06	0,7109	1,72	0,9146	2,95	0,9968
0,42	0,3255	1,08	0,7199	1,74	0,9181	3,00	0,9973
0,44	0,3401	1,10	0,7287	1,76	0,9216	3,10	0,9981
0,46	0,3545	1,12	0,7373	1,78	0,9249	3,20	0,9986
0,48	0,3688	1,14	0,7457	1,80	0,9281	3,30	0,9990
0,50	0,3859	1,16	0,7540	1,82	0,9312	3,40	0,9993
0,52	0,3969	1,18	0,7620	1,84	0,9342	3,50	0,9995
0,54	0,4108	1,20	0,7699	1,86	0,9371	3,60	0,9997
0,56	0,4245	1,22	0,7775	1,88	0,9399	3,70	0,9998
0,58	0,4381	1,24	0,7850	1,90	0,9426	3,80	0,9999
0,60	0,4515	1,26	0,7923	1,92	0,9451	3,90	0,9999
0,62	0,4647	1,28	0,7995	1,94	0,9476	4,00	0,9999
0,64	0,4778	1,30	0,8064	1,96	0,9500		

2. Таблица функции Стьюдента
$$\gamma = \int\limits_{-t\gamma,k}^{t\gamma,k} f_t(x) dx$$

	γ						
k	0,90	0,95	0,98	0,99			
1	6,31	12,71	31,8	63,7			
2	2,92	4,30	6,96	9,92			
3	2,35	3,18	4,54	5,84			
4	2,13	2,77	3,75	4,60			
5	2,02	2,57	3,36	4,03			
6	1,943	2,45	3,14	4,71			
7	1,895	2,36	3,00	3,50			
8	1,860	2,31	2,90	3,36			
9	1,833	2,26	2,82	3,25			
10	1,812	2,23	2,76	3,17			
12	1,782	2,18	2,68	3,06			
14	1,761	2,14	2,62	2,98			
16	1,746	2,12	2,58	2,92			
18	1,734	2,10	2,55	2,88			
20	1,725	2,09	2,53	2,84			
22	1,717	2,07	2,51	2,82			
24	1,711	2,06	2,49	2,80			
30	1,697	2,04	2,46	2,75			
40	1,684	2,02	2,42	2,70			

3. Таблица функции "Хи-квадрат"

$$P(\chi^2 > \chi_{\alpha,k}^2) = \alpha$$

						ω, π			
		α							
k	0,01	0,02	0,05	0,95	0,98	0,99			
1	6,64	5,41	3,84	0,004	0,001	0,000			
2	9,21	7,82	5,99	0,103	0,040	0,020			
3	11,34	9,84	7,82	0,352	0,185	0,115			
4	13,28	11,67	9,49	0,711	0,429	0,297			
5	15,09	13,39	11,07	1,145	0,752	0,554			
6	16,81	15,03	12,59	1,635	1,134	0,872			
7	18,48	16,62	14,07	2,17	1,564	1,239			
8	20,10	18,17	15,51	2,73	2,03	1,646			
9	21,07	19,68	16,92	3,32	2,53	2,09			
10	23,20	21,2	18,31	3,94	3,06	2,56			
12	26,2	24,1	21,0	5,23	4,18	3,57			
14	29,1	26,9	23,7	6,57	5,37	4,66			
16	32,0	29,6	26,3	7,96	6,61	5,81			
18	34,8	32,3	28,9	9,39	7,91	7,02			
20	37,6	35,0	31,4	10,85	9,24	8,26			
22	40,3	37,7	33,9	12,34	10,60	9,54			
24	43,0	40,3	36,4	13,85	11,99	10,86			
26	45,6	42,9	38,9	15,38	13,41	12,20			
28	48,3	45,4	41,3	16,93	14,85	13,56			
30	50,9	48,0	43,8	18,49	16,31	14,95			

4. Таблица функции Колмогорова

$$P(0 \le \lambda < \lambda_{\gamma}) = \gamma$$

					λγ
λ_{γ}	γ	λ_{γ}	γ	λ_{γ}	γ
0,50	0,0361	1,02	0,7500	1,54	0,9826
0,54	0,0675	1,06	0,7889	1,58	0,9864
0,58	0,1104	1,10	0,8223	1,62	0,9895
0,62	0,1632	1,14	0,8514	1,66	0,9918
0,66	0,2236	1,18	0,8765	1,70	0,9938
0,70	0,2888	1,22	0,8981	1,74	0,9953
0,74	0,3560	1,26	0,9164	1,78	0,9965
0,78	0,4230	1,30	0,9319	1,82	0,9973
0,82	0,4880	1,34	0,9449	1,86	0,9980
0,86	0,5497	1,38	0,9557	1,90	0,9985
0,90	0,6073	1,42	0,9646	1,94	0,9989
0,94	0,6601	1,46	0,9718	1,98	0,9992
0,98	0,7079	1,50	0,9778		

ЛИТЕРАТУРА

- 1. Вентцель Е.С., Овчаров Л.А. Теория вероятностей и ее инженерные приложения. М.: Наука, 1988. 416 с.
- 2. Вентцель Е.С. Теория вероятностей и математическая статистика: Учебник. 5-е изд., стереотип. М.: Высш. шк., 1999. 576 с.
- 3. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983.-416 с.
- 4. Герасимович А.И. Математическая статистика. Мн.: Выш. шк., 1983. 279 с.
- 5. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высш. шк., 1977. 479 с.
- 6. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: Учеб. пособие. 5-е изд. М.: Высш. шк., 1999. 276 с.
- 7. Гурский Е.И. Сборник задач по теории вероятностей и математической статистике. Мн.: Выш. шк., 1984. 223 с.
- 8. Жевняк Р.М., Карпук А.А., Унукович В.Т. Теория вероятностей и математическая статистика: Учеб. пособие для студентов. инж.-экон. спец. Мн.: Харвест, 2000.-384 с.
- 9. Сборник задач по математике для втузов. Ч. 3. Теория вероятностей и математическая статистика/ Под ред. А.В. Ефимова. М.: Наука, 1990. 428 с.
- 10. Сборник задач по теории вероятностей, математической статистике и теории случайных функций/ Под ред. А.А. Свешникова. М.: Наука, 1965. 656 с.
- 11. Сборник индивидуальных заданий по теории вероятностей и математической статистике/ Под ред. А.П.Рябушко. Мн.: Выш. шк., 1992. 191 с.
- 12. Справочник по теории вероятностей и математической статистике/ В.С.Королюк и др. М.: Наука, 1985. 640 с.
- 13. Харин Ю.С., Степанова М.Д. Практикум по ЭВМ по математической статистике. Мн.: Университетское, 1987. 304 с.
- 14. Аксенчик А.В., Волковец А.И. и др. Методические указания к практическим занятиям по курсу "Теория вероятностей и математическая статистика" для студентов радиотехнических специальностей. Ч.1. Мн.: МРТИ, 1994. 49 с.
- 15.Аксенчик А.В., Волковец А.И. и др. Методические указания к практическим занятиям по курсу "Теория вероятностей и математическая статистика" для студентов радиотехнических специальностей. Ч.2. Мн.: МРТИ, 1995.-47 с.
- 16. Аксенчик А.В., Волковец А.И. и др. Методические указания и контрольные задания по курсу " Теория вероятностей и математическая статистика" для студентов всех специальностей БГУИР заочной формы обучения. Мн.: БГУИР, 1999. 61 с.

Учебное издание

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

и контрольные задания по курсу «Теория вероятностей и математическая статистика» для студентов всех специальностей БГУИР заочной формы обучения

Составители: Аксенчик Анатолий Владимирович,

Волковец Александр Иванович,

Корбут Антон Антонович, Коренская Ирина Николаевна

Редактор Т.А. Лейко Корректор Е.Н. Батурчик

Подписано в печати	D		Формат 60х84 1/16.
Бумага	Печать	Гарнитура «Times»	Усл.печ.л.
Учизд. л. 3,0	Тираж 30	00 экз.	Заказ

Издатель и полиграфическое исполнение:

Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники»

Лицензия ЛП №156 от 05.02.2001 Лицензия ЛВ №509 от 03.08.2001 220013, Минск, П. Бровки, 6