

GPIO 제어 SW 설계

학습목표

- STM32F429의 GPIO 구조와 관련 레지스터를 설명할 수 있다.
- STM32F429의 GPIO 제어 소프트웨어를 설계하고 테스트할 수 있다.

학습내용

- STM32F429의 GPIO 구조
- STM32F429의 GPIO 제어 SW 설계

- STM32F429의 GPIO 소개
 - O GPIO란?

GPIO

General Purpose Input/Output의 약자로, 다용도 입출력 포트 또는 핀

- ── 특정한 목적이 미리 정의되어 있지 않고 일반적인 용도로 사용
- ···· CPU 입장에서 출력 장치, 입력 장치를 연결하여 제어할 때 사용하는 포트

- O GPIO란?
 - ₩ 출력 핀
 - CPU에서 외부로 신호가 출력되는 경우
 - LED, 7-Segment, LCD, DC-모터 등
 - ₩ 입력 핀
 - CPU로 외부에서 신호가 입력되는 경우
 - 스위치, 각종 센서신호 등

GPIO를 사용한 외부 장치 연결

- 🧿 STM32F429의 GPIO 소개
 - O STM32F429ZI의 GPIO 핀들

→ STM32F429ZI 는 총 144개의 핀을 가지고 있음

- STM32F429의 GPIO 소개
 - O STM32F429ZI의 GPIO 핀들

푸트

PA는 하나의 포트로 0~15번까지 총 16개의 핀으로 구성

→ 이와 같은 방식으로 PA포트부터 PH포트까지 있음

- O Nucleo-F429 보드에 장착된 LED
 - ™ Nucleo-F429보드를 사용하여 STM32F429ZI CPU의 GPIO를 제어할 예정
 - → 가장 간단한 GPIO 사용 예는 Nucleo-F429보드에 실장되어 있는 LED를 제어하는 것
 - ··· LD2와 LD3
 - Nucleo-F429보드에서 GPIO를 통해 제어 가능한 LED
 - ™ Nucleo-F429보드의 회로도를 통해 LD2와 LD3에 연결된 GPIO 핀의 번호를 찾을 수 있음

GPIO핀 출력으 로 설정 신호 출력 레벨 선택

LED 제어

→ high나 low 선택

- O Nucleo-F429 보드의 LED
 - O Nucleo-F429 보드의 LED 회로도 보기

- O Nucleo-F429 보드의 LED
 - O Nucleo-F429 보드의 LED 회로도 보기

- O Nucleo-F429 보드의 LED
 - O Nucleo-F429 보드의 LED 회로도 보기

- STM32F429의 GPIO 레지스터
 - O GPIO 관련 레지스터

GPIO 레지스터

LD2와 연결된 PB7번 핀이나 LD3와 연결된 PB14번핀을 제어하려면 STM32F429의 내부에 있는 GPIO 레지스터를 제어해야 함

O GPIO 관련 레지스터

GPIO 레지스터

- **⑤** STM32F429의 GPIO 레지스터
 - O GPIO 레지스터 주소 찾기

Memory map

GPIO관련 레지스터의 어드레스로 레지스터에 접근하기 위해 알아야 함

··· CPU에 연결된 메모리 뿐만 아니라 내부에 존재하는 레지스터들의 주소를 나타내는 테이블

STM32F429의 GPIO 레지스터

O GPIO 레지스터 주소 찾기

(//(//////	///////////////////////////////////////		AHB1	
0x4002	2800 - 0x4002 2BFF	GPIOK	ANDI	Section 8.4.11: GPIO register map on page 287
0x4002	2400 - 0x4002 27FF	GPIOJ		Section 6.4.11. GP10 register map on page 207
0x4002	2000 - 0x4002 23FF	GPIOI		
0x4002	1C00 - 0x4002 1FFF	GPIOH		
0x4002	1800 - 0x4002 1BFF	GPIOG		
0x4002	1400 - 0x4002 17FF	GPIOF		
0x4002	1000 - 0x4002 13FF	GPIOE		Section 8.4.11: GPIO register map on page 287
0x4002	0C00 - 0x4002 0FFF	GPIOD		
0x4002	0800 - 0x4002 0BFF	GPIOC		
0x4002	0400 - 0x4002 07FF	GPIOB		
0x4002	0000 - 0x4002 03FF	GPIOA		
0×4001	6900 0v4001 6BEE	LCD TET	//////	Section 16.7.26: LTDC register map on page 512
	STN	//32F4299	2 m	nemory map

GPIOB

→ PB7번, PB14번핀의레지스터를 찾기 위해알아야하는 레지스터 주소

GPIOB의 레지스터 주소

→ 0x40020400 - 0x400207FF

→ GPIOB 레지스터의 시작 주소는 0x40020400

- STM32F429의 GPIO 레지스터
 - O GPIO 레지스터 사용법
- 0

각 포트마다 존재하는 10개의 GPIO 레지스터를 제어하려면 각 레지스터의 주소와 각 비트들의 의미를 알아야 함

GPIOx_MODER

GPIO port mode register

··· 분석을 위해 GPIOx_MODER 레지스터의 예를 들음

🧿 STM32F429의 GPIO 레지스터

O GPIO 레지스터 사용법

X

- → GPIOx_MODER의 x자리에 A부터 I와 J, K까지 들어갈 수 있음을 나타냄
- → PB7번핀은 GPIOB 포트에 해당하므로 GPIOB MODER 레지스터를 사용하여 제어 가능

Address offset

- ⋯ 0x00 은 시작주소로 부터 떨어진 주소값
- → GPIOB MODER 레지스터의 주소는 0x40020400

O GPIO 레지스터 사용법

Reset values

- → CPU가 reset이 된 상태

31~0

- ₩ 비트 순서
- ₩ 0번 비트부터 31번 비트까지 존재함

STM32F429의 GPIO 레지스터

O GPIO 레지스터 사용법

MODER0[1:0]

→ PB0번의 설정을 담당

₩ 00 값 : 입력 상태

₩ 01 값 : 출력 상태

→ 10 값: Alternate function 상태

--- 11 값 : Analog 모드 상태

- STM32F429의 GPIO 레지스터
 - O GPIO 레지스터 사용법

Alternate function 상태

→ GPIO가 아닌 다른 특정한 모드로 사용한다는 의미

Analog 모드

→ 그 핀을 Analog 입력이나 출력으로 사용한다는 의미

O GPIO 레지스터 사용법

- → PB7번 핀을 출력 모드로 설정하려면15번 비트를 0으로, 14번 비트를 1로 설정
- ··· PB14번 핀을 출력 모드로 설정하려면 29번 비트를 0으로, 28번 비트를 1로 설정

- 📀 STM32F429의 GPIO 레지스터
 - O GPIO 레지스터 사용법

GPIOx_OTYPER 레지스터

GPIOx_MODER로 output으로 설정한 후 output의 종류를 설정하는 레지스터

- → 해당 핀을 push-pull로 하려면 0으로 open-drain으로 하려면 1로 설정
- → GPIOB_OTYPER 레지스터의 주소
 - : 0x40020404

- 📀 STM32F429의 GPIO 레지스터
 - O GPIO 레지스터 사용법

GPIOx_OSPEEDR 레지스터

GPIO를 output으로 설정했을 때 출력신호(PWM)를 내보내는 속도를 설정하는 레지스터

- → 일반적으로 리셋 값인 low speed로 설정하여 사용
- → GPIOB_OSPEEDR 레지스터의 주소

: 0x40020408

O GPIO 레지스터 사용법

GPIOx_PUPDR 레지스터

칩 내부에 pull up, pull down 저항이 있어 외부에 pull up, pull down 저항을 달 필요가 없음

8.4.4			por Al/J	•	-up/p	uII-a	own r	egiste	er (Gi	PIOX_	PUPL	JK)			
		Address offset: 0x0C													
		Reset values:													
		0x6400 0000 for port A													
		0x0000 0100 for port B													
		• 0	0000x	0000	for oth	er port	s								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDE	R15[1:0]	PUPDE	R14[1:0]	PUPDE	R13[1:0]	PUPDR12[1:0]		PUPDE	11[1:0]	PUPDE	R10[1:0]	PUPDR9[1:0]		PUPDR8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPD	R7[1:0]	PUPDR6[1:0]		PUPDR5[1:0]		PUPDR4[1:0]		PUPDR3[1:0]		PUPDR2[1:0]		PUPDR1[1:0]		PUPDR0[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- Input 설정일 때
 - 기본 레벨을 high : pull up으로 설정
 - 기본 레벨을 low : pull down으로 설정
- → GPIOB_OSPEEDR 레지스터의 주소
 - : 0x4002040C

O GPIO 레지스터 사용법

GPIOx_IDR 레지스터

Input 설정일 때 핀에 실리는 레벨을 알려주는 레지스터

- → Read만 가능하여 각 비트들이 r로 표시
- ··· 각 포트는 16개의 핀이므로 0~15비트까지만 존재
- → GPIOB_IDR 레지스터의 주소: 0x40020410

- 🔯 STM32F429의 GPIO 레지스터
 - O GPIO 레지스터 사용법

GPIOx_ODR 레지스터

Output 설정일 때 핀에 실리는 레벨을 결정하는 레지스터

- ₩ 각 포트는 16개의 핀이므로 0~15비트까지만 존재

O GPIO 레지스터 사용법

GPIOx_BSRR 레지스터

Output 설정일 때 핀에 실리는 레벨을 결정하는 레지스터로, ODR 레지스터와 기능은 동일하나 제어 방식이 약간 다름

	,	Addres	s offse	t: 0x18	3										
		Reset \	/alue: (0x0000	0000										
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	W	w	W	w	w	w	w	w	w	w	W	W	w
	Bit		these 0: No 1: Re Note:	e bits re action esets the If both	re write turns th on the e corres BSx and	e value corresp spondin d BRx a	0x000 onding g ODR are set,	0. ODRx x bit	bit	,	half-wo	rd or b	yte mod	le. A re	ad to
	Dit	3 13.0	Thes	e bits a e bits re	re write turns th on the	only ar e value corresp	nd can 0x000	0. ODRx		n word,	half-wo	ord or by	yte mod	de. A re	ad to

- → Set은 해당 핀의 레벨을 1로 만들고 Reset은 0으로 만든다는 의미
- → GPIOx_BSRR 레지스터로 0, 1 제어 가능→ GPIOx_ODR 레지스터도 0, 1 제어 가능
- → GPIOB_BSRR 레지스터의 주소∶ 0x40020418

- 🔯 STM32F429의 GPIO 레지스터
 - O GPIO 레지스터 사용법

GPIOx_AFRL, GPIOx_AFRH 레지스터

GPIO 기능 이외에 여러가지 alternate function을 가지고 있으며 이를 결정하는 레지스터

	,	Address offset: 0x20															
	Reset value: 0x0000 0000																
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	AFRL	7[3:0]			AFRL6[3:0]				AFRL5[3:0]				AFRL4[3:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	AFRL	3[3:0]			AFRL2[3:0]				AFRL1[3:0]				AFRL0[3:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		
			AF	ese bits RLy sel	ection:	itten by	softwa		Ü		te func	tion I/O	S				
			-	00: AF0				1000; AF8 1001: AF9									
0001: AF1 0010: AF2								1010: AF9 1010: AF10									
				11: AF3				1010: AF 10									
			010	00: AF4				1	100: AF	F12							
	0101: AF5								101: AF	F13							
		0110: AF6							110: AF	-14							
			0111: AF7														

- ₩ 각 핀마다 16개 중 하나의 기능을선택할 수 있게 4비트가 할당
- → 각 핀마다 4비트를 할당해야하므로 16개의 핀 설정을 위해 GPIOx_AFRL , GPIOx_AFRH의 두 개의 레지스터가 필요
- → GPIOB_AFRL 레지스터의 주소∶ 0x40020420

STM32F429의 GPIO 제어 SW 설계하기

- 🧿 GPIO 제어 초기화 SW 생성
 - 교수님 실습 영상
 - 1 CubeMX를 사용하여 보드 선택
 - 2 사용하려는 GPIO 선택하여 입출력 설정
 - 3 코드 생성
 - 4 프로젝트를 열어 컴파일

STM32F429의 GPIO 제어 SW 설계하기

- GPIO 제어 SW 코딩 및 테스트
 - 교수님 실습 영상
 - Main.c의 main 함수에 GPIO 제어 코드 작성
 - 2 컴파일 후 펌웨어를 보드에 다운로드
 - B LED 제어를 통해 GPIO 제어 SW 검증

요점노트

1. STM32F429의 GPIO 구조

- STM32F429의 GPIO 구조
 - GPIO는 General Purpose Input/Output의 약자로 다용도 입출력 포트 또는 핀
 - CPU 입장에서 LED와 같은 출력 장치, 버튼과 같은 입력 장치를 연결하여 제어할 때 사용하는 포트
 - Nucleo-F429 보드의 회로도를 통하여 제어하려는 핀 번호를 파악할 수 있음
 - GPIO 관련 레지스터는 총 10개의 32비트 레지스터들로 구성됨

요점노트

2. STM32F429의 GPIO 제어 SW 설계하기

- STM32F429의 GPIO 제어 SW 설계하기
 - CubeMX를 사용하여 사용하려는 GPIO 선택하여 입출력을 설정할 수 있음
 - STM에서 제공하는 표준 라이브러리 함수를 통해 GPIO를 쉽게 제어할 수 있음
 - GPIO 제어 SW는 main 함수에 작성