This listing of claims will replace all prior versions, and listings of claims in the

application:

Claim 1 (Currently Amended): A process Process for producing a moulding

mouldings from a plastic plastics, comprising: the steps of

coating a moulding on one or more sides with a lacquer system,

wherein the lacquer systemcomprises comprised of:

a binder or a binder mixture; a)

optionally, a solvent or solvent mixture; b)

optionally, a lacquer systems additive; additives and c)

a thickener[[,]] selected from the group consisting of 0 to 20% by d)

weight of polymeric thickeners at from 0 to 20% content and 0 to 40 % by weight of

oligomeric thickeners at from 0 to 40% content, based on dry film components a), c),

d) and e);

from 5 to 500 parts by weight, based on component a), of an e)

electrically conductive metal oxide[[,]] in the form of a powder, a dispersion and/or a

sol, with having a median primary particle size of from 1 to 80 nm and a percentage

degree of aggregation of from 0.01 to 99%, wherein said degree of aggregation is

based on aggregates which comprise at least two primary particles;

f) from 5 to 500 parts by weight, based on component a), of coated inert

nanoparticles; and

curing said lacquer system.

Claim 2 (Currently Amended): The process according to Claim 1, wherein

4

Reply to Office Action of: September 10, 2008

the lacquer components a) to c) has have a viscosity of from 5 to 500 mPa.s measured in a Brookfield LVT viscometer.

Claim 3 (Currently Amended): The process according to Claim 1, wherein the lacquer system components a) to c) has have a viscosity of from 150 to 5000 mPa.s.

Claim 4 (Previously Presented): The process according to Claim 1, wherein said inert nanoparticles are SiO₂ nanoparticles.

Claim 5 (Currently Amended): The process according to Claim 1, wherein the electrically conductive particles are selected from the group consisting-essentially of indium tin oxide, antimony tin oxide, doped indium tin oxide and mixtures thereof.

Claim 6 (Currently Amended): A plastics moulding, made by a obtained by the process of Claim 1, wherein the plastics moulding is comprised of comprises PMMA, PC, PET, PET-G, PE, PVC, ABS or PP.

Claim 7 (Currently Amended): A method of using the plastics moulding according to Claim 6 as glazing, for encasing structure structures, for equipping cleanroomsclean room equipment, for machine cover covers, for incubators, for displays, for visual display screens and visual-display screen covers, for back-projection screens, for medical apparatus, and for electrical devices. an incubator, a display, a visual display screen, a visual-display-screen cover, a back-projection screen, a medical apparatus, or an electrical device, comprising:

the plastics moulding of Claim 6.

Reply to Office Action of: September 10, 2008

Claim 8 (New): The process according to Claim 1, wherein component b) is present.

Claim 9 (New): The process according to Claim 1, wherein component c) is present.

Claim 10 (New): The process according to Claim 1, wherein component d) is present.

Claim 11 (New): The process according to Claim 1, wherein component d) is present and comprises a copolymer of (meth)acrylates.

Claim 12 (New): The process according to Claim 1, wherein component d) is present and comprises oligomeric epoxyacrylates, urethane acrylates, silicone acrylates, polyester acrylates, epoxy acrylates, polyethylene glycol diacrylates or mixtures thereof.

Claim 13 (New): The process according to Claim 1, wherein component e) is in an undispersed condition.

Claim 14 (New): The process according to Claim 1, wherein component e) comprises (i) an aggregate of primary particles, (ii) an agglomerate of primary particles and aggregates, or (iii) combinations of (i) and (ii).

Claim 15 (New): The process according to Claim 1, wherein component e) comprises an aggregate of primary particles, wherein a particle size of the aggregate is up to 500 nm.

Claim 16 (New): The process according to Claim 1, wherein component e) comprises an aggregate of primary particles, wherein a particle size of the aggregate is up to 200 nm.

Claim 17 (New): The process according to Claim 1, wherein component e) comprises

an agglomerate of primary particles and aggregates, wherein a particle size of the

agglomerate is up to 2000 nm.

Claim 18 (New): The process according to Claim 1, wherein component e) comprises

an agglomerate of primary particles and aggregates, wherein a particle size of the

agglomerate is up to 1000 nm.

Claim 19 (New): The process according to Claim 1, wherein component e) comprises

an aggregate which comprises secondary particles durably combined by way of sinter

bridges, wherein said aggregate cannot be separated by a dispersion process.

Claim 20 (New): The process according to Claim 1, wherein component e) comprises

primary particles having a median primary particle size from 5 to 50 nm.

Claim 21 (New): The process according to Claim 1, wherein component e) comprises

an agglomerate which comprises secondary particles held together by Van der Waals forces

and separable by dispersion processes.

Claim 22 (New): The process according to Claim 1, wherein component e) comprises

an indium tin oxide powder which has from 10 to 80% by volume content of aggregated

particles whose particle size is from 50 to 200 nm.

7

Claim 23 (New): The process according to Claim 1, wherein component e) comprises indium tin oxide powder obtained by converting an metal chloride compound into a metal oxide in a high-temperature flame.

Claim 24 (New): The process according to Claim 1, wherein component e) comprises from 25 to 90% of particles agglomerated in a chain-like series.

Claim 25 (New): The process according to Claim 24, wherein the chain-like aggregates have branching or take the form of three-dimensional structures of series of particles.

Claim 26 (New): The process according to Claim 1, wherein component e) comprises indium tin oxide having a median primary particle size from 1 to 200 nm, a BET surface area according to DIN 66131 from 0.1 to 300 m²/g, a cubic structure of indium oxide, mesopores according to DIN 66134 from 0.03 ml to 0.30 ml/g, macropores according to DIN 66133 from 1.5 to 5.0 ml/g and a bulk density according to DIN ISO 787/11 from 50 to 2000 g/l.

Claim 27 (New): The process according to Claim 1, wherein said lacquer composition comprises from 0.1 to 50% by weight of inert nanoparticles and from 20 to 70% by weight of ITO, based in each case on a dry film.

Claim 28 (New): The process according to Claim 1, wherein said inert nanoparticles are SiO₂ nanoparticles.

Reply to Office Action of: September 10, 2008

Claim 29 (New): The process according to Claim 1, wherein said inert nanoparticles are organosols or silica sols.

Claim 30 (New): The process according to Claim 1, wherein said inert nanoparticles are SiO₂, Al₂O₃ or combinations thereof.

Claim 31 (New): The process according to Claim 1, wherein said inert nanoparticles are zirconium oxide, titanium dioxide, iron oxide or mixtures thereof.

Claim 32 (New): The process according to Claim 1, wherein said inert nanoparticles are fine-particle destructured fumed silicas.

Claim 33 (New): The process according to Claim 1, comprising functional nanoparticles.

Claim 34 (New): The process according to Claim 1, wherein the plastic is transparent.

Claim 35 (New): The process according to Claim 1, wherein a transparency of the moulding having a laquer coating without inert nanoparticles is substantially the same as the transparency of the moulding having a laquer coating with inert nanoparticles.

Claim 36 (New): The process according to Claim 1, wherein a conductivity in said coating which is achieved when using said nanoparticles and not more than 33% by weight of

Reply to Office Action of: September 10, 2008

ITO is identical to a conductivity achieved when using no nanoparticles and 50% by weight of ITO.

Claim 37 (New): The process according to Claim 1, wherein component d) is present and comprises a copolymer of (meth)acrylates and a vinyl monomer in copolymerized form.

Claim 38 (New): The process according to Claim 1, wherein component d) is present and comprises a copolymer comprising methyl methacrylate and butyl acrylate.

Claim 39 (New): The process according to Claim 1, wherein component d) is present and comprises a polymer comprising about 75% by weight of methyl methacrylate and about 25% by weight of butyl acrylate.

Claim 40 (New): The process according to Claim 1, wherein component e) comprises indium tin oxide obtained by

mixing a solution of an indium salt with a solution of a tin salt, optionally adding a solution of a salt of at least one doping component, to obtain a solution mixture,

atomizing said solution mixture, to obtain an atomized solution mixture,

pyrolyzing the atomized solution mixture, thereby obtaining exhaust gases and isolating said indium tin oxide from the exhaust gases,

wherein said indium salt is a chloride, nitrate, acetate, or alcoholate.