Universal Optimality of Dijkstra Algorithm

Using Fibonacci-Like Priority Queue with Working Sets

Soham Chatterjee

July 23, 2025

Oral Qualifier, STCS

Introduction

- Dijkstra algorithm is a foundation algorithm solving Single Source Shortest Path problem (SSSP) both for directed and undirected graphs.
- Using Fibonacci Heaps we have the worst-case time complexity $O(m + n \log n)$.

Introduction

- Dijkstra algorithm is a foundation algorithm solving Single Source Shortest Path problem (SSSP) both for directed and undirected graphs.
- Using Fibonacci Heaps we have the worst-case time complexity $O(m + n \log n)$.
- Recently Duan, Mao, Shu and Yin in [Dua+23] solved SSSP for undirected graphs with expected time $O(m\sqrt{\log n \log \log n})$

Introduction

- Dijkstra algorithm is a foundation algorithm solving Single Source Shortest Path problem (SSSP) both for directed and undirected graphs.
- Using Fibonacci Heaps we have the worst-case time complexity $O(m + n \log n)$.
- Recently Duan, Mao, Shu and Yin in [Dua+23] solved SSSP for undirected graphs with expected time $O(m\sqrt{\log n \log \log n})$
- This year Stefansson, Biggar and Johansson gave a fixed-parameter linear algorithm with running time $O(m+n\log w)$ for the single-source shortest path problem (SSSP) on directed graphs where fixed parameter over nesting width (w).

- ullet Let ${\mathcal A}$ is the set of all correct algorithms.
- $\mathcal{G}_{n,m}$ is the set of all graphs with n vertices and m edges.
- \mathcal{W}_G is the set of all possible weights for a graph $G \in \mathcal{G}_{n,m}$.

- Let A is the set of all correct algorithms.
- $\mathcal{G}_{n,m}$ is the set of all graphs with n vertices and m edges.
- \mathcal{W}_G is the set of all possible weights for a graph $G \in \mathcal{G}_{n,m}$.

A correct algorithm A^* is existentially optimal if

$$\forall n, m: \sup_{\substack{G \in \mathcal{G}_{n,m} \\ w \in \mathcal{W}_G}} A^*(G, w) \leq \alpha(n, m) \inf_{A \in \mathcal{A}} \sup_{\substack{G \in \mathcal{G}_{n,m} \\ w \in \mathcal{W}_G}} A(G, w)$$

This corresponds to being optimal wrt worst-case complexity.

- Let A is the set of all correct algorithms.
- $\mathcal{G}_{n,m}$ is the set of all graphs with n vertices and m edges.
- \mathcal{W}_G is the set of all possible weights for a graph $G \in \mathcal{G}_{n,m}$.

A correct algorithm A^* is existentially optimal if

$$\forall n, m: \sup_{\substack{G \in \mathcal{G}_{n,m} \\ w \in \mathcal{W}_G}} A^*(G, w) \leq \alpha(n, m) \inf_{\substack{A \in \mathcal{A} \\ w \in \mathcal{W}_G}} \sup_{\substack{G \in \mathcal{G}_{n,m} \\ w \in \mathcal{W}_G}} A(G, w)$$

This corresponds to being optimal wrt worst-case complexity.

But this is not good. It is just saying A^* may take as much time as it takes in a star-graph or more complicated one.

We want a notion of optimality which says your algorithm is optimal compared to any other algorithm if you fix the graph.

We want a notion of optimality which says your algorithm is optimal compared to any other algorithm if you fix the graph.

A correct algorithm A^* is universally optimal if

$$\forall \ n, m, \ \forall \ G \in \mathcal{G}_{n,m} : \sup_{w \in \mathcal{W}_G} A^*(G, w) \leq \alpha(n, m) \inf_{A \in \mathcal{A}} \sup_{w \in \mathcal{W}_G} A(G, w)$$

We want a notion of optimality which says your algorithm is optimal compared to any other algorithm if you fix the graph.

A correct algorithm A^* is universally optimal if

$$\forall \ n, m, \ \forall \ G \in \mathcal{G}_{n,m} : \sup_{w \in \mathcal{W}_G} A^*(G, w) \leq \alpha(n, m) \inf_{A \in \mathcal{A}} \sup_{w \in \mathcal{W}_G} A(G, w)$$

In this work we focus solely on α being a constant i.e. $\alpha(n,m)=O(1)$.

Algorithm 1: Dijkstra(G, s, w)

```
F \longleftarrow \emptyset, Insert(F, s), dist(s) \longleftarrow 0

while F \neq \emptyset do

u \longleftarrow \text{ExtractMin}(F)

for e = (u, v) \in E do

\text{Insert}(F, v)

\text{DecreaseKey}(F, v, \min\{dist(v), dist(u) + w(u, v)\})
```

Algorithm 2: DIJKSTRA(G, s, w)

```
F \longleftarrow \emptyset, INSERT(F, s), dist(s) \longleftarrow 0

while F \neq \emptyset do

u \longleftarrow \text{EXTRACTMIN}(F)

for e = (u, v) \in E do

\text{INSERT}(F, v)

\text{DECREASEKEY}(F, v, \min\{dist(v), dist(u) + w(u, v)\})}
```

Dijkstra solves three problems:

• Computes Shortest Distances

Algorithm 3: DIJKSTRA(G, s, w)

```
F \longleftarrow \emptyset, INSERT(F, s), dist(s) \longleftarrow 0

while F \neq \emptyset do

u \longleftarrow \text{EXTRACTMIN}(F)

for e = (u, v) \in E do

\text{INSERT}(F, v)

\text{DECREASEKEY}(F, v, \min\{dist(v), dist(u) + w(u, v)\})
```

Dijkstra solves three problems:

- Computes Shortest Distances
- Build Shortest Path Tree

Algorithm 4: DIJKSTRA(G, s, w)

```
F \longleftarrow \emptyset, INSERT(F, s), dist(s) \longleftarrow 0

while F \neq \emptyset do

u \longleftarrow \text{EXTRACTMIN}(F)

for e = (u, v) \in E do

\text{INSERT}(F, v)

\text{DECREASEKEY}(F, v, \min\{dist(v), dist(u) + w(u, v)\})
```

Dijkstra solves three problems:

- Computes Shortest Distances
- Build Shortest Path Tree
- Sorts vertices by Shortest Distance (DO)

Exploration Tree and DO

Consider a run of Dijkstra. Whenever a vertex is extracted add the unexplored neighbors of that vertex as children of that vertex. The tree built this way is called the exploration tree.

Exploration Tree and DO

Consider a run of Dijkstra. Whenever a vertex is extracted add the unexplored neighbors of that vertex as children of that vertex. The tree built this way is called the exploration tree.

 Let T be the exploration tree. Let ≺ be the final distance ordering of the vertices.

Exploration Tree and DO

Consider a run of Dijkstra. Whenever a vertex is extracted add the unexplored neighbors of that vertex as children of that vertex. The tree built this way is called the exploration tree.

 Let T be the exploration tree. Let ≺ be the final distance ordering of the vertices.

• Then for every edge $(u, v) \in T$, $u \prec v$.

• Let T be any tree in G. An order of T is a total order of V(T) such that for every edge $(u, v) \in E(T)$ we have $u \prec v$ in the order.

- Let T be any tree in G. An order of T is a total order of V(T) such that for every edge $(u, v) \in E(T)$ we have $u \prec v$ in the order.
- *L* is an order of *G* if there exists a spanning tree of *G* such that *L* is an order of *T*.

- Let T be any tree in G. An order of T is a total order of V(T) such that for every edge $(u, v) \in E(T)$ we have $u \prec v$ in the order.
- *L* is an order of *G* if there exists a spanning tree of *G* such that *L* is an order of *T*.
- Order(G) is the number of all possible orders of G.

- Let T be any tree in G. An order of T is a total order of V(T) such that for every edge $(u, v) \in E(T)$ we have $u \prec v$ in the order.
- *L* is an order of *G* if there exists a spanning tree of *G* such that *L* is an order of *T*.
- Order(G) is the number of all possible orders of G.

Theorem

For any graph G, L is an order of G iff there exists non-negative weights w such that

- 1. For every two nodes $u \neq v$, $d_w(s, u) \neq d_w(s, v)$.
- 2. $u \prec_L v$ if and only if $d_w(s, u) < d_w(s, v)$.

Comparison-Addition Model

Notice the Dijkstra algorithm only adds two values or compares two values. So we will work on a model where all operations possible is addition, compare and storage.

Comparison-Addition Model

Notice the Dijkstra algorithm only adds two values or compares two values. So we will work on a model where all operations possible is addition, compare and storage.

For a given graph:

- $OPT_Q(G)$ is the number of comparison queries of an optimal algorithm for this graph.
- OPT(G) be the number of total steps taken by an optimal correct algorithm for the graph.

Comparison-Addition Model

Notice the Dijkstra algorithm only adds two values or compares two values. So we will work on a model where all operations possible is addition, compare and storage.

For a given graph:

- $OPT_Q(G)$ is the number of comparison queries of an optimal algorithm for this graph.
- OPT(G) be the number of total steps taken by an optimal correct algorithm for the graph.
- Since $OPT(G) = \Omega(m)$, $OPT_Q(G) + n + m = O(OPT(G))$.

Dijkstra Induced Interval Set

Let an interval of time for any vertex $v \in V(G)$ is the set $[l_v, r_v]$ where l_v is the time when v was first discovered and added to the heap and r_v is the time when v was extracted from the heap.

Dijkstra Induced Interval Set

Let an interval of time for any vertex $v \in V(G)$ is the set $[l_v, r_v]$ where l_v is the time when v was first discovered and added to the heap and r_v is the time when v was extracted from the heap.

A run of Dijkstra induces intervals for each vertex $v \in V$ with the operations INSERT and EXTRACTMIN.

Dijkstra Induced Interval Set

Let an interval of time for any vertex $v \in V(G)$ is the set $[I_v, r_v]$ where I_v is the time when v was first discovered and added to the heap and r_v is the time when v was extracted from the heap.

A run of Dijkstra induces intervals for each vertex $v \in V$ with the operations INSERT and EXTRACTMIN.

An interval set \mathcal{I} is collection of intervals for each vertex. It is called Dijkstra Induced when all the intervals for each vertex in \mathcal{I} is induced by a run of Dijkstra on some (G, w).

Let $\ensuremath{\mathcal{I}}$ any interval set.

Let ${\mathcal I}$ any interval set.

• For any vertex $v \in V(G)$ at any time $t \in I(v)$ the working set $W_{v,t}$ is the set of vertices inserted after x and still present at time t. So

$$W_{v,t} = \{ [I_u, r_u] \in \mathcal{I} \colon I_v \le I_u \le t \le r_u \}$$

Let \mathcal{I} any interval set.

• For any vertex $v \in V(G)$ at any time $t \in I(v)$ the working set $W_{v,t}$ is the set of vertices inserted after x and still present at time t. So

$$W_{v,t} = \{[I_u, r_u] \in \mathcal{I} \colon I_v \le I_u \le t \le r_u\}$$

• Working set of v, $W_v = W_{v,t^*}$ such that $t^* = \arg\max_t |W_{v,t}|$.

Let ${\mathcal I}$ any interval set.

• For any vertex $v \in V(G)$ at any time $t \in I(v)$ the working set $W_{v,t}$ is the set of vertices inserted after x and still present at time t. So

$$W_{v,t} = \{ [I_u, r_u] \in \mathcal{I} \colon I_v \le I_u \le t \le r_u \}$$

- Working set of v, $W_v = W_{v,t^*}$ such that $t^* = \arg\max_t |W_{v,t}|$.
- The cost of a vertex $v \in V(G)$ is $Cost(x) = \log |W_v|$. And so $Cost(\mathcal{I}) = \sum_{v \in V(G)} \log |W_v|$.

Fibonacci-Like Priority Queue with Working Set Property

A Fibonacci-like priority queue is a priority queue made using a Fibonacci Heap. Fibonacci-Like Priority Queue with Working Set Property is a data structure if it satisfies the amortized time complexity for any sequence of operations as follows:

Fibonacci-Like Priority Queue with Working Set Property

A Fibonacci-like priority queue is a priority queue made using a Fibonacci Heap. Fibonacci-Like Priority Queue with Working Set Property is a data structure if it satisfies the amortized time complexity for any sequence of operations as follows:

Insert	O(1)
DecreaseKey	O(1)
ExtractMin	$O(1 + \log W_x)$

Fibonacci-Like Priority Queue with Working Set Property

A Fibonacci-like priority queue is a priority queue made using a Fibonacci Heap. Fibonacci-Like Priority Queue with Working Set Property is a data structure if it satisfies the amortized time complexity for any sequence of operations as follows:

Insert	O(1)
DecreaseKey	O(1)
EXTRACTMIN	$O(1 + \log W_x)$

Fact

There is a Fibonacci-Like Priority Queue with Working Set Property for Dijkstra. We will use this data structure in every argument from now on by default.

Time Complexity of Dijkstra

In Dijkstra Algorithm it runs n times $\operatorname{EXTRACTMIN}$ calls for each vertex and m times $\operatorname{DECREASEKEY}$ calls.

Time Complexity of Dijkstra

In Dijkstra Algorithm it runs n times EXTRACTMIN calls for each vertex and m times DECREASEKEY calls.

• Hence total time taken by all DecreaseKey calls is O(m).

Time Complexity of Dijkstra

In Dijkstra Algorithm it runs n times EXTRACTMIN calls for each vertex and m times DECREASEKEY calls.

- Hence total time taken by all DecreaseKey calls is O(m).
- \bullet Total time taken by all $\operatorname{ExtractMin}$ calls is

$$\sum_{v \in V(G)} O(1 + \log|W_v|) = O\left(n + \sum_{v \in V(G)} \log|W_v|\right)$$
$$= O(n + Cost(\mathcal{I}))$$

• Total time taken by Dijkstra is $O(m + n + Cost(\mathcal{I}))$

Time Complexity of Dijkstra

In Dijkstra Algorithm it runs n times EXTRACTMIN calls for each vertex and m times DECREASEKEY calls.

- Hence total time taken by all DecreaseKey calls is O(m).
- \bullet Total time taken by all $\operatorname{ExtractMin}$ calls is

$$\sum_{v \in V(G)} O(1 + \log|W_v|) = O\left(n + \sum_{v \in V(G)} \log|W_v|\right)$$
$$= O(n + Cost(\mathcal{I}))$$

• Total time taken by Dijkstra is $O(m + n + Cost(\mathcal{I}))$

We'll show
$$OPT_Q(G) = \Omega(Cost(\mathcal{I}))$$
.

$\overline{\mathit{OPT}_Q(G)} = \overline{\Omega}(\mathsf{log}(\mathsf{Order}(G)))$

Theorem

$OPT_Q(G) = \Omega(\log(\mathsf{Order}(G)))$

Theorem

- Let A is any correct algorithm and $L \in \text{Order}(G)$.
- Given L we have a weight assignment w_L such that L is unique order obtained from w_L upon running Dijkstra. For each L fix w_L . Let \mathcal{W} be the collection of all such w_L .

$OPT_Q(G) = \Omega(\log(\operatorname{Order}(G)))$

Theorem

- Let A is any correct algorithm and $L \in \text{Order}(G)$.
- Given L we have a weight assignment w_L such that L is unique order obtained from w_L upon running Dijkstra. For each L fix w_L . Let \mathcal{W} be the collection of all such w_L .
- Let $C_L \in \{-1,0,1\}^*$ be the sequence of answers of comparisons made by A on (G,w_L) . Then $C: \mathcal{W} \to \{-1,0,1\}^*$, $C(w_L) = C_L$ is a ternary prefix free code.

$OPT_Q(G) = \Omega(\log(\operatorname{Order}(G)))$

Theorem

- Let A is any correct algorithm and $L \in \text{Order}(G)$.
- Given L we have a weight assignment w_L such that L is unique order obtained from w_L upon running Dijkstra. For each L fix w_L . Let \mathcal{W} be the collection of all such w_L .
- Let $C_L \in \{-1,0,1\}^*$ be the sequence of answers of comparisons made by A on (G,w_L) . Then $C: \mathcal{W} \to \{-1,0,1\}^*$, $C(w_L) = C_L$ is a ternary prefix free code.
- By Shannon's source coding theorem for symbol codes any such code has expected length $\Omega(\log(|\mathcal{W}|)) = \Omega(\log(\operatorname{Order}(G)))$

Let T be any tree. A *Barrier*, $B \subseteq V(T)$ is a set of nodes where for any two vertices $u, v \in B$, u is not ancestor of v in T.

Let T be any tree. A *Barrier*, $B \subseteq V(T)$ is a set of nodes where for any two vertices $u, v \in B$, u is not ancestor of v in T.

For two disjoint barriers, $B_1 \prec B_2$ if no node of B_2 is predecessor of a node in B_1 .

Let T be any tree. A Barrier, $B \subseteq V(T)$ is a set of nodes where for any two vertices $u, v \in B$, u is not ancestor of v in T.

For two disjoint barriers, $B_1 \prec B_2$ if no node of B_2 is predecessor of a node in B_1 .

 (B_1, \ldots, B_k) is a barrier sequence if whenever i < j, $B_i \prec B_j$.

Let T be any tree. A Barrier, $B \subseteq V(T)$ is a set of nodes where for any two vertices $u, v \in B$, u is not ancestor of v in T.

For two disjoint barriers, $B_1 \prec B_2$ if no node of B_2 is predecessor of a node in B_1 .

$$(B_1, \ldots, B_k)$$
 is a barrier sequence if whenever $i < j$, $B_i \prec B_j$.

Theorem

A sequence (B_1, \ldots, B_k) of pairwise disjoint vertex sets is barrier sequence if and only if for all $1 \le i \le j \le k$, $v \in B_j$ is not ancestor of any $u \in B_i$ in T.

Theorem

Let T be any spanning tree and (B_1, \ldots, B_k) be a barrier sequence of

$$T.$$
 Then $\log(\operatorname{Order}(G)) = \Omega\left(\sum\limits_{i=1}^{k}|B_i|\log|B_i|\right)$

Theorem

Let T be any spanning tree and (B_1, \ldots, B_k) be a barrier sequence of T. Then $\log(\operatorname{Order}(G)) = \Omega\left(\sum_{i=1}^k |B_i| \log |B_i|\right)$

• We have $Order(G)) \ge Order(T)$. We'll show $Order(T) \ge |B_1|!|B_2|!\cdots |B_k|!$.

Theorem

Let T be any spanning tree and (B_1, \ldots, B_k) be a barrier sequence of T. Then $\log(\operatorname{Order}(G)) = \Omega\left(\sum_{i=1}^k |B_i| \log |B_i|\right)$

- We have $Order(G)) \ge Order(T)$. We'll show $Order(T) \ge |B_1|!|B_2|!\cdots |B_k|!$.
- Delete vertices of B_k to get T'. By induction for the barrier sequence (B_1, \ldots, B_{k-1}) for T', $Order(T') \ge |B_1|!|B_2|!\cdots|B_{k-1}|!$.

• We can order vertices of B_k in any order we want. There are $|B_k|!$ many orders.

- We can order vertices of B_k in any order we want. There are $|B_k|!$ many orders.
- For each order of B_k and any order of Order(T') we can just concatenate them to get an order of T.

- We can order vertices of B_k in any order we want. There are $|B_k|!$ many orders.
- For each order of B_k and any order of Order(T') we can just concatenate them to get an order of T.

So finally we got the result:

Result

If T is a spanning tree of G and (B_1, \ldots, B_k) is a barrier sequence for T then

$$OPT_Q(G) = \Omega\left(\sum_{i=1}^k |B_i| \log |B_i|\right)$$

Consider running Dijkstra algorithm until some time. Let ${\cal S}$ is the set of nodes that are in the priority queue.

Consider running Dijkstra algorithm until some time. Let S is the set of nodes that are in the priority queue.

• Notice that S are the leaves of the partial exploration tree built so far which is a subgraph of final exploration tree.

Consider running Dijkstra algorithm until some time. Let S is the set of nodes that are in the priority queue.

- Notice that *S* are the leaves of the partial exploration tree built so far which is a subgraph of final exploration tree.
- \bullet Therefore, S is an incomparable set of the final exploration tree.
- S forms a barrier.

Consider running Dijkstra algorithm until some time. Let S is the set of nodes that are in the priority queue.

- Notice that *S* are the leaves of the partial exploration tree built so far which is a subgraph of final exploration tree.
- \bullet Therefore, S is an incomparable set of the final exploration tree.
- S forms a barrier.

Result

At any time of the algorithm the set of elements in the priority queue forms a barrier

Definition (Intersecting Coloring)

An intersecting coloring of \mathcal{I} with k colors is a function $\mathcal{C}: \mathcal{I} \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in \mathcal{I}, \mathcal{C}(I)=i} I \neq \emptyset$.

Definition (Intersecting Coloring)

An intersecting coloring of \mathcal{I} with k colors is a function $C: \mathcal{I} \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in \mathcal{I}, C(I)=i} I \neq \emptyset$.

Definition (Intersecting Coloring)

An intersecting coloring of \mathcal{I} with k colors is a function $C: \mathcal{I} \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in \mathcal{I}, C(I)=i} I \neq \emptyset$.

•
$$B_c = \{ v \in V(G) \mid C(I(v)) = c \}$$

Definition (Intersecting Coloring)

An intersecting coloring of \mathcal{I} with k colors is a function $C: \mathcal{I} \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in \mathcal{I}, C(I)=i} I \neq \emptyset$.

- $B_c = \{ v \in V(G) \mid C(I(v)) = c \}$
- $t_c = \min\{t \mid \forall \ v \in B_c, t \in I(v)\}$

Definition (Intersecting Coloring)

An intersecting coloring of \mathcal{I} with k colors is a function $C: \mathcal{I} \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in \mathcal{I}, C(I)=i} I \neq \emptyset$.

- $B_c = \{ v \in V(G) \mid C(I(v)) = c \}$
- $t_c = \min\{t \mid \forall \ v \in B_c, t \in I(v)\}$
- Order $\{B_c\}$ by increasing order of $\{t_c\}$. WLOG $t_1 < \cdots < t_k$.

Definition (Intersecting Coloring)

An intersecting coloring of \mathcal{I} with k colors is a function $C: \mathcal{I} \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in \mathcal{I}, C(I)=i} I \neq \emptyset$.

- $B_c = \{ v \in V(G) \mid C(I(v)) = c \}$
- $t_c = \min\{t \mid \forall \ v \in B_c, t \in I(v)\}$
- Order $\{B_c\}$ by increasing order of $\{t_c\}$. WLOG $t_1 < \cdots < t_k$.
- (B_1, \ldots, B_k) is a barrier sequence.

Intersecting Coloring Gives Lower Bounds

Let C be an intersecting coloring of \mathcal{I} with k colors. Let (B_1, \ldots, B_k) is the barrier sequence induced by C. Then let the energy of C is defined to be

$$E(C) = 2\sum_{i=1}^{k} |B_i| \log |B_i|$$

Intersecting Coloring Gives Lower Bounds

Let C be an intersecting coloring of \mathcal{I} with k colors. Let (B_1, \ldots, B_k) is the barrier sequence induced by C. Then let the energy of C is defined to be

$$E(C) = 2\sum_{i=1}^{k} |B_i| \log |B_i|$$

Result

If $\mathcal I$ is the interval set induced by Dijkstra and $\mathcal C$ be any arbitrary intersecting coloring of $\mathcal I$ then

$$OPT_Q(G) = \Omega(E(C))$$

Goal: Find an intersecting coloring of \mathcal{I} , C such that $E(C) \geq Cost(\mathcal{I})$

• Then time complexity of all EXTRACTMIN operations is $O(n + Cost(\mathcal{I})) = O(n + E(C))$.

- Then time complexity of all EXTRACTMIN operations is $O(n + Cost(\mathcal{I})) = O(n + E(C))$.
- We have $OPT_Q(G) = \Omega(E(C))$.

- Then time complexity of all EXTRACTMIN operations is $O(n + Cost(\mathcal{I})) = O(n + E(C))$.
- We have $OPT_Q(G) = \Omega(E(C))$.
- So overall Cost of EXTRACTMIN in Dijkstra is upper bounded by $O(n + OPT_Q(G))$.

- Then time complexity of all EXTRACTMIN operations is $O(n + Cost(\mathcal{I})) = O(n + E(C))$.
- We have $OPT_Q(G) = \Omega(E(C))$.
- So overall Cost of EXTRACTMIN in Dijkstra is upper bounded by O(n + OPT_Q(G)).
- Dijkstra achieves universal optimality for time complexity.

Goal: Find an intersecting coloring of \mathcal{I} , C such that $E(C) \geq Cost(\mathcal{I})$

- Then time complexity of all EXTRACTMIN operations is $O(n + Cost(\mathcal{I})) = O(n + E(C))$.
- We have $OPT_Q(G) = \Omega(E(C))$.
- So overall Cost of EXTRACTMIN in Dijkstra is upper bounded by $O(n + OPT_Q(G))$.
- Dijkstra achieves universal optimality for time complexity.

We will find such a good intersecting coloring recursively.

We will construct C by induction on $|\mathcal{I}|$.

We will construct C by induction on $|\mathcal{I}|$.

Find the interval $x\in\mathcal{I}$ with the largest W_x . Use induction on $\mathcal{I}'=\mathcal{I}\setminus W_x$

We will construct C by induction on $|\mathcal{I}|$.

Find the interval $x\in\mathcal{I}$ with the largest W_x . Use induction on $\mathcal{I}'=\mathcal{I}\setminus W_x$

Let C' is the coloring for \mathcal{I}' such that $E(C') \geq Cost(\mathcal{I}')$. Add a new color for all the elements in W_x to get new coloring C.

We will construct C by induction on $|\mathcal{I}|$.

Find the interval $x\in\mathcal{I}$ with the largest W_x . Use induction on $\mathcal{I}'=\mathcal{I}\setminus W_x$

Let C' is the coloring for \mathcal{I}' such that $E(C') \geq Cost(\mathcal{I}')$. Add a new color for all the elements in W_x to get new coloring C.

$$E(C) = E(C') + 2|W_x|\log|W_x|$$
 by definition.

We will construct C by induction on $|\mathcal{I}|$.

Find the interval $x\in\mathcal{I}$ with the largest W_x . Use induction on $\mathcal{I}'=\mathcal{I}\setminus W_x$

Let C' is the coloring for \mathcal{I}' such that $E(C') \geq Cost(\mathcal{I}')$. Add a new color for all the elements in W_x to get new coloring C.

$$E(C) = E(C') + 2|W_x| \log |W_x|$$
 by definition.

Fact

For working set W_x with the largest size

$$Cost(\mathcal{I}) \leq Cost(\mathcal{I} \setminus W_x) + 2|W_x|\log|W_x|$$

We will construct C by induction on $|\mathcal{I}|$.

Find the interval $x\in\mathcal{I}$ with the largest W_x . Use induction on $\mathcal{I}'=\mathcal{I}\setminus W_x$

Let C' is the coloring for \mathcal{I}' such that $E(C') \geq Cost(\mathcal{I}')$. Add a new color for all the elements in W_x to get new coloring C.

$$E(C) = E(C') + 2|W_x| \log |W_x|$$
 by definition.

Fact

For working set W_x with the largest size

$$Cost(\mathcal{I}) \leq Cost(\mathcal{I} \setminus W_x) + 2|W_x|\log|W_x|$$

$$Cost(\mathcal{I}) \leq Cost(\mathcal{I}') + 2|W_x|\log|W_x|$$
. Hence, $E(C) \geq Cost(\mathcal{I})$.

Thank You

Deleting Intervals from \mathcal{I}

Theorem

Let $\mathcal I$ an interval set and $x \in \mathcal I$. $k = \max_t |\{I \in \mathcal I \mid t \in I\}|$. Then

$$Cost(\mathcal{I}) \leq Cost(\mathcal{I} \setminus \{x\}) + \log |W_x| + \log k$$

- Let $I_1, \ldots, I_l \in \mathcal{I}$ are the only intervals which had nonempty intersection with x. So l < k 1.
- Let t_i is starting point of I_i . WLOG assume $t_i > \cdots > t_1$.
- Let W_i, W'_i are working sets of I_i before and after removing x.

Deleting Intervals from \mathcal{I}

- Let t is starting point of x. Then $W_{i,t}$ contains x, I_1, \ldots, I_i . So $|W_i| \ge i + 1$.
- $|W_i| \in \{|W_i'|, |W_i'| + 1\}$ for all $i \in [I]$.

$$\begin{aligned} & Cost(\mathcal{I}) - Cost(\mathcal{I} \setminus \{x\}) - \log|W_x| \\ &= \sum_{i=1}^{l} \log|W_i| - \log|W_i'| \\ &\leq \sum_{i=1}^{l} \log(i+1) - \log i = \log(l+1) \leq \log k \end{aligned}$$

Fact

For any working set $|W_x| = k$ we have

$$Cost(\mathcal{I}) \leq Cost(\mathcal{I} \setminus W_x) + 2|W_x|\log|W_x|$$