Page No.

TOPIC:	Phase and group velocity of EM waves
AIM:	To understand the nature of EM waves travelling in a medium with the help of phase & group velocities.
THEORY &	Any real signal consists of travelling-waves of many
FORMULAE:	different frequencies which travel together as a
FUKRIOENE	aroun at a speed that will always be less than
	different frequencies, which travel together as a group, at a speed that will always be less than or equal to the speed of light in vacuum.
	To gain some inright into what may happen when a
	real signal travels through a dispersive medium,
	we consider adding 2 waves of equal amplitude.
	The constitute of action
	When 2 travelling waves with unit amplitude
	$f_1(z,t) = \cos(\kappa_1 z - \omega_1 t)$ and $f_2(z,t) =$
	cos (K2Z - W2t) are added, we get:-
	$f_1(z,t) + f_2(z,t) = \cos(\kappa_1 z - \omega_1 t) + \cos(\kappa_2 z - \omega_2 t)$
	$= 2 \cos \left(\frac{\Delta R}{2} z - \frac{\Delta W}{2} t \right) \cdot \cos \left(\overline{k} \cdot \overline{Z} - \overline{w} t \right)$
	where, $\Delta k = \frac{K_1 - K_2}{2}$ $\Delta \omega = \frac{\omega_1 - \omega_2}{2}$,
	$\overline{K} = \frac{K_1 + K_2}{\alpha}$ and $\overline{\omega} = \omega_1 + \omega_2$
	2
	Teacher's Signature

S.No	Δω	Δk	tales	Wave pattern of the resultant waves	V _g
1.	1.19	0.246	3.74	V ₂ = 4.84	4.84
2.	1.69	0.198	5.7	$v_7 = 8.54$	8.54
3.	0.58	0.3	3.58	V _g = 1.93	1.93
4.	1.5	0.295	4.28	V _g = 5.08	5.08
5.	0.42	0.181	4.8	v _g = 2.32	2.32
6.	1.35	0.206	5.92	v _g = 6.55	6.55
7.	0.74	0.222	3.48	$v_{g} = 3.33$ $v_{g} = 3.73$ $v_{g} = 3.73$	3.33
8.	0.93	0.249	2.58	2 5 10 15 20 25 30	3.73
9.	1.54	0.265	3.28	v _g = 5.81	5.81

	Date
Expt. No10	Page No
	The result is a fast oscillating wave that travels with a phase velocity, $Vp = \omega$ and the amplitude of this wave is being modulated in space and time by $2.\cos\left(\Delta K \times \Delta \omega\right)$. This modulated wave travels at the group velocity, $given by: Vg = \frac{\Delta \omega}{2} \times \Delta \omega$.
	1. Are the wave patterns for various values of Δω and ΔΚ same? If not, why? ⇒ No, the wave patterns for various values of Δω and Δκ are not the same as amplitude of the wave is modulated and follows the equation: 2.cos (Δκ - Δω +)
	As time goes on, the wave moves towards right, changing the pattern. The individual peak travels with the group speed. By varying Ax and Dw, wave pattern changes as distribution between consecutive particle changes. Teacher's Signature

2. Draw a typical dispersion relation curve [ω -k curve] for $V_p = V_g$ and $V_p \neq V_g$ case.

 \Rightarrow

D 1 Vp + Vg

Vp < Vg

	Date
Expt. No.	Page No
	3. When do we see Vp and Vg being the same?
	When there is no dispersion medium, the phase velouly and group velouily is the same. If the derivative term in Rayleigh formula is
	Phase velocities of the components of the envelope cause the wave packets to spread out.
	4. Comment on the phase velocity (Vp) of the waves
	for increased values of DW and DK.
	⇒ Phase velouity depends on refractive indexe of
	medium, î.e.
	$V_p = \underline{c}$, $V_p = \underline{\omega}$,
7.0	Vg = Vp + K DVp
18	So, on increasing the values of DW and DK,
Ray	The sonly the amplitude changes; there is no change
191	the in phase velocity (Vp)
- Ot	24, 3
	$\omega_1 = 1$; $K_1 = 3^{-1}$ $\omega = \omega_1 + \omega_2$
	$W_{12}=1$ K_{12} Y_{13}
	Teacher's Signature