STA 235H - Binary Outcomes

Fall 2021

McCombs School of Business, UT Austin

Binary Outcomes

• We have been using binary outcomes in regressions, but haven't fully discussed the issues they might bring.

What can we do about them?

How to handle binary outcomes?

Linear Probability Model

Logistic Regression

How to interpret an LPM?

• $\hat{\beta}$'s interpreted as change in probability

$$egin{aligned} E[Y|X_1,\ldots,X_P] &= Pr(Y=0|X_1,\ldots,X_p)\cdot 0 + Pr(Y=1|X_1,\ldots,X_p)\cdot 1 \ &= Pr(Y=1|X_1,\ldots,X_p) \end{aligned}$$

How to interpret an LPM?

• $\hat{\beta}$'s interpreted as change in probability

$$egin{aligned} E[Y|X_1,\dots,X_P] &= Pr(Y=0|X_1,\dots,X_p) \cdot 0 + Pr(Y=1|X_1,\dots,X_p) \cdot 1 \ &= Pr(Y=1|X_1,\dots,X_p) \end{aligned}$$

• Example:

$$Pass = eta_0 + eta_1 \cdot Study + arepsilon$$

• $\hat{\beta}_1$ is the estimated change in probability of passing STA 235H if I study one more hour.

Let's look at an example

• Home Mortgage Disclosure Act Data (HMDA) from the AER package

```
deny pirat hirat
                           lvrat chist mhist phist unemp selfemp insurance condomin
##
## 1
       no 0.221 0.221 0.8000000
                                                      3.9
                                                 no
                                                                no
                                                                          no
                                                                                    no
## 2
       no 0.265 0.265 0.9218750
                                                      3.2
                                                 no
                                                                no
                                                                          no
                                                                                    no
## 3
       no 0.372 0.248 0.9203980
                                                      3.2
                                                 no
                                                                no
                                                                          no
                                                                                    no
## 4
       no 0.320 0.250 0.8604651
                                                      4.3
                                                 no
                                                                no
                                                                                    no
                                                                          no
## 5
       no 0.360 0.350 0.6000000
                                                      3.2
                                                 no
                                                                no
                                                                          no
                                                                                    no
## 6
       no 0.240 0.170 0.5105263
                                                 no
                                                                no
                                                                          no
                                                                                    no
     afam single hschool
## 1
       no
              no
                      yes
## 2
       no
                     yes
             ves
## 3
       no
                     ves
              no
## 4
       no
                     ves
              no
## 5
       no
                      yes
              no
## 6
                      yes
       no
              no
```

Probability of someone getting a mortgage loan denied?

• Getting mortgage denied (1) based on race, conditional on payments to income ratio (pirat)

```
hmda <- hmda %>% mutate(deny = as.numeric(deny) - 1)
summary(lm(deny ~ pirat + factor(afam), data = hmda))
##
## Call:
## lm(formula = deny ~ pirat + factor(afam), data = hmda)
##
## Residuals:
       Min
                 10 Median
                                  30
                                         Max
## -0.62526 -0.11772 -0.09293 -0.05488 1.06815
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.09051
                             0.02079 -4.354 1.39e-05 ***
          0.55919 0.05987 9.340 < 2e-16 ***
## pirat
## factor(afam)yes 0.17743
                           0.01837
                                     9.659 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3123 on 2377 degrees of freedom
## Multiple R-squared: 0.076, Adjusted R-squared: 0.07523
## F-statistic: 97.76 on 2 and 2377 DF, p-value: < 2.2e-16
```

How does this LPM look?

Issues with an LPM?

- Main problems:
 - Non-normality of the error term
 - Heteroskedasticity (i.e. variance of the error term is not constant)
 - Predictions can be outside [0,1]
 - LPM imposes linearity assumption

Issues with an LPM?

• Main problems:

- \circ Non-normality of the error term \rightarrow Hypothesis testing
- Heteroskedasticity → Validity of SE
- Predictions can be outside [0,1] → Issues for prediction
- \circ LPM imposes linearity assumption \to Too strict?

Are there solutions?

- Don't use small samples: With the CLT, nonnormality shouldn't matter much.
- Saturate your model: In a fully saturated model (i.e. include dummies and interactions), CEF is linear.
- Use robust standard errors: Package estimatr in R is great!
- Not appropriate for prediction

Run again with robust standard errors

```
library(estimatr)

model1 <- lm(deny ~ pirat + factor(afam), data = hmda)
model2 <- lm_robust(deny ~ pirat + factor(afam), data = hmda)</pre>
```

	Model 1	Model 2
(Intercept)	-0.091***	-0.091***
	(0.021)	(0.031)
pirat	0.559***	0.559***
	(0.060)	(0.095)
factor(afam)yes	0.177***	0.177***
	(0.018)	(0.025)
R2	0.076	0.076
R2 Adj.	0.075	0.075
se_type		HC2
* p < 0.1, ** p < 0.05, *** p < 0.01		

Logistic Regression

- Typically used in the context of binary outcomes (*Probit is another popular one*)
- Nonlinear function to model the conditional probability function of a binary outcome.

$$Pr(Y=1|X_1,\ldots,X_p)=F(eta_0+eta_1X_1+\ldots+eta_pX_p)$$

Where in a logistic regression: $F(x) = \frac{1}{1 + exp(-x)}$

• In the LPM, F(x) = x

How does this look in a plot?

How to interpret the coefficients?

```
summary(glm(deny ~ pirat + factor(afam), family = binomial(link = "logit"),
              data = hmda))
##
## Call:
## glm(formula = deny ~ pirat + factor(afam), family = binomial(link = "logit"),
##
      data = hmda)
##
## Deviance Residuals:
      Min
                10 Median
                                 30
                                         Max
## -2.3709 -0.4732 -0.4219 -0.3556 2.8038
##
## Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.1256
                              0.2684 -15.370 < 2e-16 ***
            5.3704
                              0.7283 7.374 1.66e-13 ***
## pirat
## factor(afam)yes 1.2728
                              0.1462
                                     8.706 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1744.2 on 2379 degrees of freedom
## Residual deviance: 1591.4 on 2377 degrees of freedom
## AIC: 1597.4
##
## Number of Fisher Scoring iterations: 5
```

- No easy way!
 - \circ An odd is the probability of success over probability of failure: $\frac{p}{1-p}$
 - \circ An odds ratio is the odds for scenario 1 over the odds for scenario 2: $\frac{p_1}{1-p_1} \cdot \frac{1-p_2}{p_2}$

- No easy way!
 - \circ An odd is the probability of success over probability of failure: $\frac{p}{1-p}$
 - \circ An odds ratio is the odds for scenario 1 over the odds for scenario 2: $\frac{p_1}{1-p_1} \cdot \frac{1-p_2}{p_2}$
 - Coefficients in the output are log odds ratio:

$$\log(rac{p}{1-p}) = eta_0 + eta_1 X_1 + \ldots + eta_p X_p$$

• $(\exp(\beta_1) - 1) \cdot 100\%$ is the expected increase in the odds of Y = 1 for a one unit increase of X_1 .

• Let's go back to our example:

```
glm(deny ~ pirat + factor(afam), family = binomial(link = "logit"),
          data = hmda)
##
## Call: glm(formula = deny ~ pirat + factor(afam), family = binomial(link = "logit"),
       data = hmda)
## Coefficients:
       (Intercept)
                     pirat factor(afam)yes
                             5.370
           -4.126
                                              1.273
## Degrees of Freedom: 2379 Total (i.e. Null); 2377 Residual
## Null Deviance:
                        1744
## Residual Deviance: 1591
                              AIC: 1597
```

• $(\exp(1.27) - 1) \cdot 100\% = 257\%$ more likely to be denied a mortgage if you are African American vs not African American, holding payments to income ratio constant.

- Let's look at probabilities
- E.g. Choose coefficient of interest, and fix the other variables to their mean or mode:

```
## 1 2
## 0.08714775 0.25422824
```

• Let's look at probabilities

0.1670805

• E.g. Choose coefficient of interest, and fix the other variables to their mean or mode:

ullet Remember that for the LPM model, $\hat{eta}_{afam}=0.177$

Main takeaway points

- LPM and Logistic Regression can both be useful depending on the context.
 - LPM for explanation (causal inference) and Logistic Regression for prediction.
- Be careful with the interpretation!

References

- Hanck, C. et al. (2020). "Econometrics with R". Regression with a Binary Dependent Variable
- James, G. et al. (2017). "Introduction to Statistical Learning with Applications in R". Chapter 4.3
- Grace-Martin, K. (2018). "Why logistic regression for binary responses?"
- Bellemare, M. (2013) "A Rant on Estimation with Binary Dependent Variables (Technical)"