6.864: Lecture 5 (September 22nd, 2005) The EM Algorithm

Overview

- The EM algorithm in general form
- The EM algorithm for hidden markov models (brute force)
- The EM algorithm for hidden markov models (dynamic programming)

An Experiment/Some Intuition

• I have three coins in my pocket,

Coin 0 has probability λ of heads; Coin 1 has probability p_1 of heads; Coin 2 has probability p_2 of heads

• For each trial I do the following:

First I toss Coin 0
If Coin 0 turns up **heads**, I toss **coin 1** three times
If Coin 0 turns up **tails**, I toss **coin 2** three times

I don't tell you whether Coin 0 came up heads or tails, or whether Coin 1 or 2 was tossed three times, but I do tell you how many heads/tails are seen at each trial

• you see the following sequence:

$$\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$$

What would you estimate as the values for λ , p_1 and p_2 ?

Maximum Likelihood Estimation

- We have data points $x_1, x_2, \dots x_n$ drawn from some (finite or countable) set \mathcal{X}
- We have a parameter vector Θ
- We have a parameter space Ω
- We have a distribution $P(x\mid\Theta)$ for any $\Theta\in\Omega$, such that $\sum_{x\in\mathcal{X}}P(x\mid\Theta)=1 \text{ and } P(x\mid\Theta)\geq0 \text{ for all } x$
- We assume that our data points $x_1, x_2, \dots x_n$ are drawn at random (independently, identically distributed) from a distribution $P(x \mid \Theta^*)$ for some $\Theta^* \in \Omega$

Log-Likelihood

- We have data points $x_1, x_2, \dots x_n$ drawn from some (finite or countable) set \mathcal{X}
- We have a parameter vector Θ , and a parameter space Ω
- We have a distribution $P(x \mid \Theta)$ for any $\Theta \in \Omega$
- The likelihood is

$$Likelihood(\Theta) = P(x_1, x_2, \dots x_n \mid \Theta) = \prod_{i=1}^n P(x_i \mid \Theta)$$

• The log-likelihood is

$$L(\Theta) = \log Likelihood(\Theta) = \sum_{i=1}^{n} \log P(x_i \mid \Theta)$$

A First Example: Coin Tossing

• $\mathcal{X} = \{H, T\}$. Our data points $x_1, x_2, \dots x_n$ are a sequence of heads and tails, e.g.

HHTTHHHTHH

- Parameter vector Θ is a single parameter, i.e., the probability of coin coming up heads
- Parameter space $\Omega = [0, 1]$
- Distribution $P(x \mid \Theta)$ is defined as

$$P(x \mid \Theta) = \begin{cases} \Theta & \text{If } x = H \\ 1 - \Theta & \text{If } x = T \end{cases}$$

Maximum Likelihood Estimation

• Given a sample $x_1, x_2, \dots x_n$, choose

$$\Theta_{ML} = \operatorname{argmax}_{\Theta \in \Omega} L(\Theta) = \operatorname{argmax}_{\Theta \in \Omega} \sum_{i} \log P(x_i \mid \Theta)$$

• For example, take the coin example:

say $x_1 \dots x_n$ has Count(H) heads, and (n - Count(H)) tails

 \Rightarrow

$$L(\Theta) = \log \left(\Theta^{Count(H)} \times (1 - \Theta)^{n - Count(H)} \right)$$
$$= Count(H) \log \Theta + (n - Count(H)) \log(1 - \Theta)$$

We now have

$$\Theta_{ML} = \frac{Count(H)}{n}$$

A Second Example: Probabilistic Context-Free Grammars

- \mathcal{X} is the set of all parse trees generated by the underlying context-free grammar. Our sample is n trees $T_1 \dots T_n$ such that each $T_i \in \mathcal{X}$.
- ullet R is the set of rules in the context free grammar N is the set of non-terminals in the grammar
- Θ_r for $r \in R$ is the parameter for rule r
- Let $R(\alpha) \subset R$ be the rules of the form $\alpha \to \beta$ for some β
- The parameter space Ω is the set of $\Theta \in [0,1]^{|R|}$ such that

for all
$$\alpha \in N \sum_{r \in R(\alpha)} \Theta_r = 1$$

• We have

$$P(T \mid \Theta) = \prod_{r \in R} \Theta_r^{Count(T,r)}$$

where Count(T, r) is the number of times rule r is seen in the tree T

$$\Rightarrow \log P(T \mid \Theta) = \sum_{r \in R} Count(T, r) \log \Theta_r$$

Maximum Likelihood Estimation for PCFGs

• We have

$$\log P(T \mid \Theta) = \sum_{r \in R} Count(T, r) \log \Theta_r$$

where Count(T, r) is the number of times rule r is seen in the tree T

• And,

$$L(\Theta) = \sum_{i} \log P(T_i \mid \Theta) = \sum_{i} \sum_{r \in R} Count(T_i, r) \log \Theta_r$$

• Solving $\Theta_{ML} = \operatorname{argmax}_{\Theta \in \Omega} L(\Theta)$ gives

$$\Theta_r = \frac{\sum_i Count(T_i, r)}{\sum_i \sum_{s \in R(\alpha)} Count(T_i, s)}$$

where r is of the form $\alpha \to \beta$ for some β

Multinomial Distributions

- \mathcal{X} is a finite set, e.g., $\mathcal{X} = \{ dog, cat, the, saw \}$
- Our sample $x_1, x_2, \dots x_n$ is drawn from \mathcal{X} e.g., $x_1, x_2, x_3 = \text{dog}$, the, saw
- The parameter Θ is a vector in \mathbb{R}^m where $m = |\mathcal{X}|$ e.g., $\Theta_1 = P(dog)$, $\Theta_2 = P(cat)$, $\Theta_3 = P(the)$, $\Theta_4 = P(saw)$
- The parameter space is

$$\Omega = \{\Theta : \sum_{i=1}^{m} \Theta_i = 1 \text{ and } \forall i, \Theta_i \ge 0\}$$

• If our sample is $x_1, x_2, x_3 = dog$, the, saw, then

$$L(\Theta) = \log P(x_1, x_2, x_3 = \text{dog}, \text{the}, \text{saw}) = \log \Theta_1 + \log \Theta_3 + \log \Theta_4$$

Models with Hidden Variables

- Now say we have two sets \mathcal{X} and \mathcal{Y} , and a joint distribution $P(x,y\mid\Theta)$
- If we had **fully observed data**, (x_i, y_i) pairs, then

$$L(\Theta) = \sum_{i} \log P(x_i, y_i \mid \Theta)$$

• If we have **partially observed data**, x_i examples, then

$$L(\Theta) = \sum_{i} \log P(x_i \mid \Theta)$$
$$= \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \Theta)$$

• The **EM** (**Expectation Maximization**) **algorithm** is a method for finding

$$\Theta_{ML} = \operatorname{argmax}_{\Theta} \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \Theta)$$

• e.g., in the three coins example:

$$\mathcal{Y} = \{\text{H,T}\}$$
 $\mathcal{X} = \{\text{HHH,TTT,HTT,THH,HHT,TTH,HTH,THT}\}$ $\Theta = \{\lambda,p_1,p_2\}$

and

$$P(x, y \mid \Theta) = P(y \mid \Theta)P(x \mid y, \Theta)$$

where

$$P(y \mid \Theta) = \begin{cases} \lambda & \text{If } y = \mathbf{H} \\ 1 - \lambda & \text{If } y = \mathbf{T} \end{cases}$$

and

$$P(x \mid y, \Theta) = \begin{cases} p_1^h (1 - p_1)^t & \text{If } y = H \\ p_2^h (1 - p_2)^t & \text{If } y = T \end{cases}$$

where h = number of heads in x, t = number of tails in x

$$P(x = \text{THT}, y = \text{H} \mid \Theta) = \lambda p_1 (1 - p_1)^2$$

$$P(x = \text{THT}, y = \text{H} \mid \Theta) = \lambda p_1 (1 - p_1)^2$$

$$P(x = \text{THT}, y = \text{T} \mid \Theta) = (1 - \lambda)p_2(1 - p_2)^2$$

$$P(x = \text{THT}, y = \text{H} \mid \Theta) = \lambda p_1 (1 - p_1)^2$$

$$P(x = \text{THT}, y = \text{T} \mid \Theta) = (1 - \lambda) p_2 (1 - p_2)^2$$

$$P(x = \text{THT} \mid \Theta) = P(x = \text{THT}, y = \text{H} \mid \Theta) + P(x = \text{THT}, y = \text{T} \mid \Theta) = \lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2$$

$$P(x = \text{THT}, y = \text{H} \mid \Theta) = \lambda p_1 (1 - p_1)^2$$

$$P(x = \text{THT}, y = \text{T} \mid \Theta) = (1 - \lambda) p_2 (1 - p_2)^2$$

$$P(x = \text{THT} \mid \Theta) = P(x = \text{THT}, y = \text{H} \mid \Theta) + P(x = \text{THT}, y = \text{T} \mid \Theta) = \lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2$$

$$P(y = \text{H} \mid x = \text{THT}, \Theta) = \frac{P(x = \text{THT}, y = \text{H} \mid \Theta)}{P(x = \text{THT} \mid \Theta)} = \frac{\lambda p_1 (1 - p_1)^2}{\lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2}$$

• Fully observed data might look like:

$$(\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H)$$

• In this case maximum likelihood estimates are:

$$\lambda = \frac{3}{5}$$

$$p_1 = \frac{9}{9}$$

$$p_2 = \frac{0}{6}$$

• Partially observed data might look like:

$$\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$$

• How do we find the maximum likelihood parameters?

• Partially observed data might look like:

$$\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$$

• If current parameters are λ, p_1, p_2

$$P(y = H \mid x = \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)}$$
$$= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda)p_2^3}$$

$$P(y = H \mid x = \langle TTT \rangle) = \frac{P(\langle TTT \rangle, H)}{P(\langle TTT \rangle, H) + P(\langle TTT \rangle, T)}$$
$$= \frac{\lambda(1 - p_1)^3}{\lambda(1 - p_1)^3 + (1 - \lambda)(1 - p_2)^3}$$

• If current parameters are λ, p_1, p_2

$$P(y = H \mid x = \langle HHH \rangle) = \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda)p_2^3}$$

$$P(y = H \mid x = \langle TTT \rangle) = \frac{\lambda (1 - p_1)^3}{\lambda (1 - p_1)^3 + (1 - \lambda)(1 - p_2)^3}$$

• If $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$:

$$P(y = H \mid x = \langle HHH \rangle) = 0.0508$$

$$P(y = H \mid x = \langle TTT \rangle) = 0.6967$$

• After filling in hidden variables for each example, partially observed data might look like:

$$\begin{array}{lll} (\langle {\rm HHH} \rangle, H) & P(y = {\rm H} \mid {\rm HHH}) = 0.0508 \\ (\langle {\rm HHH} \rangle, T) & P(y = {\rm T} \mid {\rm HHH}) = 0.9492 \\ (\langle {\rm TTT} \rangle, H) & P(y = {\rm H} \mid {\rm TTT}) = 0.6967 \\ (\langle {\rm TTT} \rangle, T) & P(y = {\rm T} \mid {\rm TTT}) = 0.3033 \\ (\langle {\rm HHH} \rangle, H) & P(y = {\rm H} \mid {\rm HHH}) = 0.0508 \\ (\langle {\rm HHH} \rangle, T) & P(y = {\rm T} \mid {\rm HHH}) = 0.9492 \\ (\langle {\rm TTT} \rangle, H) & P(y = {\rm H} \mid {\rm TTT}) = 0.3033 \\ (\langle {\rm HHH} \rangle, T) & P(y = {\rm T} \mid {\rm TTT}) = 0.3033 \\ (\langle {\rm HHH} \rangle, H) & P(y = {\rm H} \mid {\rm HHH}) = 0.0508 \\ (\langle {\rm HHH} \rangle, T) & P(y = {\rm T} \mid {\rm HHH}) = 0.9492 \\ \end{array}$$

• New Estimates:

$$(\langle \mathsf{H}\mathsf{H}\mathsf{H}\rangle, H)$$
 $P(y=\mathsf{H}\mid \mathsf{H}\mathsf{H}\mathsf{H})=0.0508$ $(\langle \mathsf{H}\mathsf{H}\mathsf{H}\rangle, T)$ $P(y=\mathsf{T}\mid \mathsf{H}\mathsf{H}\mathsf{H})=0.9492$ $(\langle \mathsf{T}\mathsf{T}\mathsf{T}\rangle, H)$ $P(y=\mathsf{H}\mid \mathsf{T}\mathsf{T}\mathsf{T})=0.6967$ $(\langle \mathsf{T}\mathsf{T}\mathsf{T}\rangle, T)$ $P(y=\mathsf{T}\mid \mathsf{T}\mathsf{T}\mathsf{T})=0.3033$

$$\lambda = \frac{3 \times 0.0508 + 2 \times 0.6967}{5} = 0.3092$$

$$p_1 = \frac{3 \times 3 \times 0.0508 + 0 \times 2 \times 0.6967}{3 \times 3 \times 0.0508 + 3 \times 2 \times 0.6967} = 0.0987$$

$$p_2 = \frac{3 \times 3 \times 0.9492 + 0 \times 2 \times 0.3033}{3 \times 3 \times 0.9492 + 3 \times 2 \times 0.3033} = 0.8244$$

The Three Coins Example: Summary

- Begin with parameters $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$
- Fill in hidden variables, using

$$P(y = H \mid x = \langle HHH \rangle) = 0.0508$$

$$P(y = H \mid x = \langle TTT \rangle) = 0.6967$$

• Re-estimate parameters to be $\lambda=0.3092, p_1=0.0987, p_2=0.8244$

Iteration	λ	p_1	p_2	\tilde{p}_1	\widetilde{p}_2	\widetilde{p}_3	$ ilde{p}_4$
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967
1	0.3738	0.0680	0.7578	0.0004	0.9714	0.0004	0.9714
2	0.4859	0.0004	0.9722	0.0000	1.0000	0.0000	1.0000
3	0.5000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000

The coin example for $\mathbf{y} = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTTT \rangle\}$. The solution that EM reaches is intuitively correct: the coin-tosser has two coins, one which always shows up heads, the other which always shows tails, and is picking between them with equal probability ($\lambda = 0.5$). The posterior probabilities \tilde{p}_i show that we are certain that coin 1 (tail-biased) generated y_2 and y_4 , whereas coin 2 generated y_1 and y_3 .

Iteration	λ	p_1	p_2	\tilde{p}_1	$ ilde{p}_2$	\tilde{p}_3	\widetilde{p}_4	$ ilde{p}_5$
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967	0.0508
1	0.3092	0.0987	0.8244	0.0008	0.9837	0.0008	0.9837	0.0008
2	0.3940	0.0012	0.9893	0.0000	1.0000	0.0000	1.0000	0.0000
3	0.4000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

The coin example for $\{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle\}$. λ is now 0.4, indicating that the coin-tosser has probability 0.4 of selecting the tail-biased coin.

Iteration	λ	p_1	p_2	\tilde{p}_1	\widetilde{p}_2	$ ilde{p}_3$	$ ilde{p}_4$
0	0.3000	0.3000	0.6000	0.1579	0.6967	0.0508	0.6967
1	0.4005	0.0974	0.6300	0.0375	0.9065	0.0025	0.9065
2	0.4632	0.0148	0.7635	0.0014	0.9842	0.0000	0.9842
3	0.4924	0.0005	0.8205	0.0000	0.9941	0.0000	0.9941
4	0.4970	0.0000	0.8284	0.0000	0.9949	0.0000	0.9949

The coin example for $y = \{\langle HHT \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$. EM selects a tails-only coin, and a coin which is heavily heads-biased $(p_2 = 0.8284)$. It's certain that y_1 and y_3 were generated by coin 2, as they contain heads. y_2 and y_4 could have been generated by either coin, but coin 1 is far more likely.

Iteration	λ	p_1	p_2	\tilde{p}_1	\widetilde{p}_2	$ ilde{p}_3$	\widetilde{p}_4
0	0.3000	0.7000	0.7000	0.3000	0.3000	0.3000	0.3000
1	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
2	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
3	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
4	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
5	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
6	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000

The coin example for $\mathbf{y} = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$, with p_1 and p_2 initialised to the same value. EM is stuck at a saddle point

Iteration	λ	p_1	p_2	\tilde{p}_1	\widetilde{p}_2	$ ilde{p}_3$	\widetilde{p}_4
0	0.3000	0.7001	0.7000	0.3001	0.2998	0.3001	0.2998
1	0.2999	0.5003	0.4999	0.3004	0.2995	0.3004	0.2995
2	0.2999	0.5008	0.4997	0.3013	0.2986	0.3013	0.2986
3	0.2999	0.5023	0.4990	0.3040	0.2959	0.3040	0.2959
4	0.3000	0.5068	0.4971	0.3122	0.2879	0.3122	0.2879
5	0.3000	0.5202	0.4913	0.3373	0.2645	0.3373	0.2645
6	0.3009	0.5605	0.4740	0.4157	0.2007	0.4157	0.2007
7	0.3082	0.6744	0.4223	0.6447	0.0739	0.6447	0.0739
8	0.3593	0.8972	0.2773	0.9500	0.0016	0.9500	0.0016
9	0.4758	0.9983	0.0477	0.9999	0.0000	0.9999	0.0000
10	0.4999	1.0000	0.0001	1.0000	0.0000	1.0000	0.0000
11	0.5000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

The coin example for $\mathbf{y} = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$. If we initialise p_1 and p_2 to be a small amount away from the saddle point $p_1 = p_2$, the algorithm diverges from the saddle point and eventually reaches the global maximum.

Iteration	λ	p_1	p_2	$ ilde{p}_1$	$ ilde{p}_2$	$ ilde{p}_3$	$ ilde{p}_4$
0	0.3000	0.6999	0.7000	0.2999	0.3002	0.2999	0.3002
1	0.3001	0.4998	0.5001	0.2996	0.3005	0.2996	0.3005
2	0.3001	0.4993	0.5003	0.2987	0.3014	0.2987	0.3014
3	0.3001	0.4978	0.5010	0.2960	0.3041	0.2960	0.3041
4	0.3001	0.4933	0.5029	0.2880	0.3123	0.2880	0.3123
5	0.3002	0.4798	0.5087	0.2646	0.3374	0.2646	0.3374
6	0.3010	0.4396	0.5260	0.2008	0.4158	0.2008	0.4158
7	0.3083	0.3257	0.5777	0.0739	0.6448	0.0739	0.6448
8	0.3594	0.1029	0.7228	0.0016	0.9500	0.0016	0.9500
9	0.4758	0.0017	0.9523	0.0000	0.9999	0.0000	0.9999
10	0.4999	0.0000	0.9999	0.0000	1.0000	0.0000	1.0000
11	0.5000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000

The coin example for $\mathbf{y} = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$. If we initialise p_1 and p_2 to be a small amount away from the saddle point $p_1 = p_2$, the algorithm diverges from the saddle point and eventually reaches the global maximum.

The EM Algorithm

- \bullet Θ^t is the parameter vector at t'th iteration
- Choose Θ^0 (at random, or using various heuristics)
- Iterative procedure is defined as

$$\Theta^t = \operatorname{argmax}_{\Theta} Q(\Theta, \Theta^{t-1})$$

where

$$Q(\Theta, \Theta^{t-1}) = \sum_{i} \sum_{y \in \mathcal{Y}} P(y \mid x_i, \Theta^{t-1}) \log P(x_i, y \mid \Theta)$$

The EM Algorithm

• Iterative procedure is defined as $\Theta^t = \operatorname{argmax}_{\Theta} Q(\Theta, \Theta^{t-1})$, where

$$Q(\Theta, \Theta^{t-1}) = \sum_{i} \sum_{y \in \mathcal{Y}} P(y \mid x_i, \Theta^{t-1}) \log P(x_i, y \mid \Theta)$$

- Key points:
 - Intuition: fill in hidden variables y according to $P(y \mid x_i, \Theta)$
 - EM is guaranteed to converge to a local maximum, or saddle-point, of the likelihood function
 - In general, if

$$\operatorname{argmax}_{\Theta} \sum_{i} \log P(x_i, y_i \mid \Theta)$$

has a simple (analytic) solution, then

$$\operatorname{argmax}_{\Theta} \sum_{i} \sum_{y} P(y \mid x_i, \Theta) \log P(x_i, y \mid \Theta)$$

also has a simple (analytic) solution.

Overview

- The EM algorithm in general form
- The EM algorithm for hidden markov models (brute force)
- The EM algorithm for hidden markov models (dynamic programming)

The Structure of Hidden Markov Models

- Have N states, states $1 \dots N$
- ullet Without loss of generality, take N to be the final or stop state
- Have an alphabet K. For example $K = \{a, b\}$
- Parameter π_i for $i = 1 \dots N$ is probability of starting in state i
- Parameter $a_{i,j}$ for i=1...(N-1), and j=1...N is probability of state j following state i
- Parameter $b_i(o)$ for $i=1\dots(N-1)$, and $o\in K$ is probability of state i emitting symbol o

An Example

• Take N=3 states. States are $\{1,2,3\}$. Final state is state 3.

• Alphabet $K = \{the, dog\}$.

• Distribution over initial state is $\pi_1 = 1.0, \pi_2 = 0, \pi_3 = 0.$

• Parameters $a_{i,j}$ are

	j=1	j=2	j=3
i=1	0.5	0.5	0
i=2	0	0.5	0.5

• Parameters $b_i(o)$ are

	o=the	o=dog
i=1	0.9	0.1
i=2	0.1	0.9

A Generative Process

- Pick the start state s_1 to be state i for i = 1...N with probability π_i .
- Set t=1
- Repeat while current state s_t is not the stop state (N):
 - Emit a symbol $o_t \in K$ with probability $b_{s_t}(o_t)$
 - Pick the next state s_{t+1} as state j with probability $a_{s_t,j}$.
 - -t = t + 1

Probabilities Over Sequences

- An **output sequence** is a sequence of observations $o_1 \dots o_T$ where each $o_i \in K$ e.g. the dog the dog dog the
- A state sequence is a sequence of states $s_1 \dots s_T$ where each $s_i \in \{1 \dots N\}$ e.g. 1 2 1 2 2 1
- HMM defines a probability for each state/output sequence pair

e.g. the/1 dog/2 the/1 dog/2 the/2 dog/1 has probability

$$\pi_1 \ b_1(\text{the}) \ a_{1,2} \ b_2(\text{dog}) \ a_{2,1} \ b_1(\text{the}) \ a_{1,2} \ b_2(\text{dog}) \ a_{2,2} \ b_2(\text{the}) \ a_{2,1} \ b_1(\text{dog}) a_{1,3}$$

Formally:

$$P(s_1 \dots s_T, o_1 \dots o_T) = \pi_{s_1} \times \left(\prod_{i=2}^T P(s_i \mid s_{i-1}) \right) \times \left(\prod_{i=1}^T P(o_i \mid s_i) \right) \times P(N \mid s_T)$$

A Hidden Variable Problem

- We have an HMM with N = 3, $K = \{e, f, g, h\}$
- We see the following **output sequences** in training data
 - e g
 - e h
 - f h
 - f g

• How would you choose the parameter values for π_i , $a_{i,j}$, and $b_i(o)$?

Another Hidden Variable Problem

- We have an HMM with N = 3, $K = \{e, f, g, h\}$
- We see the following **output sequences** in training data

```
e g he hf h gf g ge h
```

• How would you choose the parameter values for π_i , $a_{i,j}$, and $b_i(o)$?

A Reminder: Models with Hidden Variables

- Now say we have two sets \mathcal{X} and \mathcal{Y} , and a joint distribution $P(x, y \mid \Theta)$
- If we had **fully observed data**, (x_i, y_i) pairs, then

$$L(\Theta) = \sum_{i} \log P(x_i, y_i \mid \Theta)$$

• If we have partially observed data, x_i examples, then

$$L(\Theta) = \sum_{i} \log P(x_i \mid \Theta)$$
$$= \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \Theta)$$

Hidden Markov Models as a Hidden Variable Problem

- We have two sets \mathcal{X} and \mathcal{Y} , and a joint distribution $P(x, y \mid \Theta)$
- In Hidden Markov Models: each $x \in \mathcal{X}$ is an output sequence $o_1 \dots o_T$ each $y \in \mathcal{Y}$ is a state sequence $s_1 \dots s_T$

Maximum Likelihood Estimates

• We have an HMM with $N=3, K=\{e,f,g,h\}$ We see the following **paired sequences** in training data

• Maximum likelihood estimates:

The Likelihood Function for HMMs: Fully Observed Data

• Say
$$(x, y) = \{o_1 \dots o_T, s_1 \dots s_T\}$$
, and $f(i, j, x, y) = \text{Number of times state } j \text{ follows state } i \text{ in } (x, y)$ $f(i, x, y) = \text{Number of times state } i \text{ is the initial state in } (x, y) \text{ (1 or 0)}$ $f(i, o, x, y) = \text{Number of times state } i \text{ is paired with observation } o$

• Then

$$P(x,y) = \prod_{i \in \{1...N-1\}} \pi_i^{f(i,x,y)} \prod_{\substack{i \in \{1...N-1\}, \\ j \in \{1...N\}}} a_{i,j}^{f(i,j,x,y)} \prod_{\substack{i \in \{1...N-1\}, \\ o \in K}} b_i(o)^{f(i,o,x,y)}$$

The Likelihood Function for HMMs: Fully Observed Data

• If we have training examples (x_l, y_l) for $l = 1 \dots m$,

$$L(\Theta) = \sum_{l=1}^{m} \log P(x_l, y_l)$$

$$= \sum_{l=1}^{m} \left(\sum_{i \in \{1...N-1\}} f(i, x_l, y_l) \log \pi_i + \sum_{\substack{i \in \{1...N-1\}, \\ j \in \{1...N\}}} f(i, j, x_l, y_l) \log a_{i,j} + \sum_{\substack{i \in \{1...N-1\}, \\ o \in K}} f(i, o, x_l, y_l) \log b_i(o) \right)$$

• Maximizing this function gives maximum-likelihood estimates:

$$\pi_i = \frac{\sum_l f(i, x_l, y_l)}{\sum_l \sum_k f(k, x_l, y_l)}$$

$$a_{i,j} = \frac{\sum_{l} f(i,j,x_l,y_l)}{\sum_{l} \sum_{k} f(i,k,x_l,y_l)}$$

$$b_{i}(o) = \frac{\sum_{l} f(i, o, x_{l}, y_{l})}{\sum_{l} \sum_{o' \in K} f(i, o', x_{l}, y_{l})}$$

The Likelihood Function for HMMs: Partially Observed Data

• If we have training examples (x_l) for $l = 1 \dots m$,

$$L(\Theta) = \sum_{l=1}^{m} \log \sum_{y} P(x_l, y)$$

$$Q(\Theta, \Theta^{t-1}) = \sum_{l=1}^{m} \sum_{y} P(y \mid x_{l}, \Theta^{t-1}) \log P(x_{l}, y \mid \Theta)$$

$$Q(\Theta, \Theta^{t-1}) = \sum_{l=1}^{m} \sum_{y} P(y \mid x_l, \Theta^{t-1}) \left(\sum_{i \in \{1...N-1\}} f(i, x_l, y) \log \pi_i + \frac{1}{2} \sum_{i \in \{1...N-1\}} f(i, x_l, y) \log \pi_i \right)$$

$$\sum_{\substack{i \in \{1...N-1\}, \\ j \in \{1...N\}}} f(i,j,x_l,y) \log a_{i,j} + \sum_{\substack{i \in \{1...N-1\}, \\ o \in K}} f(i,o,x_l,y) \log b_i(o)$$

$$= \sum_{l=1}^{m} \left(\sum_{i \in \{1...N-1\}} \frac{g(i, x_l) \log \pi_i + \sum_{\substack{i \in \{1...N-1\}, \\ j \in \{1...N\}}} \frac{g(i, j, x_l) \log a_{i,j} + \sum_{\substack{i \in \{1...N-1\}, \\ o \in K}} \frac{g(i, o, x_l) \log b_i(o)}{g(i, j, x_l) \log a_{i,j} + \sum_{\substack{i \in \{1...N-1\}, \\ o \in K}} \frac{g(i, o, x_l) \log b_i(o)}{g(i, j, x_l) \log a_{i,j} + \sum_{\substack{i \in \{1...N-1\}, \\ o \in K}} \frac{g(i, o, x_l) \log b_i(o)}{g(i, j, x_l) \log a_{i,j} + \sum_{\substack{i \in \{1...N-1\}, \\ o \in K}} \frac{g(i, o, x_l) \log a_{i,j}}{g(i, o, x_l) \log a_{i,j}} \right)$$

where each g is an **expected count**:

$$g(i, x_l) = \sum_{y} P(y \mid x_l, \Theta^{t-1}) f(i, x_l, y)$$

$$g(i, j, x_l) = \sum_{y} P(y \mid x_l, \Theta^{t-1}) f(i, j, x_l, y)$$

$$g(i, o, x_l) = \sum_{y} P(y \mid x_l, \Theta^{t-1}) f(i, o, x_l, y)$$

• Maximizing this function gives EM updates:

$$\pi_i = \frac{\sum_{l} g(i, x_l)}{\sum_{l} \sum_{k} g(k, x_l)} \quad a_{i,j} = \frac{\sum_{l} g(i, j, x_l)}{\sum_{l} \sum_{k} g(i, k, x_l)} \quad b_i(o) = \frac{\sum_{l} g(i, o, x_l)}{\sum_{l} \sum_{o' \in K} g(i, o', x_l)}$$

• Compare this to maximum likelihood estimates in fully observed case:

$$\pi_i = \frac{\sum_l f(i, x_l, y_l)}{\sum_l \sum_k f(k, x_l, y_l)} \quad a_{i,j} = \frac{\sum_l f(i, j, x_l, y_l)}{\sum_l \sum_k f(i, k, x_l, y_l)} \quad b_i(o) = \frac{\sum_l f(i, o, x_l, y_l)}{\sum_l \sum_{o' \in K} f(i, o', x_l, y_l)}$$

A Hidden Variable Problem

- We have an HMM with N = 3, $K = \{e, f, g, h\}$
- We see the following **output sequences** in training data
 - e g
 - e h
 - f h
 - f g

• How would you choose the parameter values for π_i , $a_{i,j}$, and $b_i(o)$?

• Four possible state sequences for the first example:

```
e/1 g/1
e/1 g/2
e/2 g/1
e/2 g/2
```

• Four possible state sequences for the first example:

• Each state sequence has a different probability:

e/1 g/1
$$\pi_1 a_{1,1} a_{1,3} b_1(e) b_1(g)$$

e/1 g/2 $\pi_1 a_{1,2} a_{2,3} b_1(e) b_2(g)$
e/2 g/1 $\pi_2 a_{2,1} a_{1,3} b_2(e) b_1(g)$
e/2 g/2 $\pi_2 a_{2,2} a_{2,3} b_2(e) b_2(g)$

A Hidden Variable Problem

• Say we have initial parameter values:

$$\pi_1 = 0.35, \quad \pi_2 = 0.3, \quad \pi_3 = 0.35$$

		j=1			$b_i(o)$	o=e	o=f	o=g	o=h
j	i=1	0.2	0.3	0.5	i=1	0.2	0.25	0.3	0.25
j	i=2	0.3	0.2	0.5	i=2	0.1	0.2	0.3	0.4

• Each state sequence has a different probability:

e/1 g/1
$$\pi_1 a_{1,1} a_{1,3} b_1(e) b_1(g) = 0.0021$$

e/1 g/2 $\pi_1 a_{1,2} a_{2,3} b_1(e) b_2(g) = 0.00315$
e/2 g/1 $\pi_2 a_{2,1} a_{1,3} b_2(e) b_1(g) = 0.00135$
e/2 g/2 $\pi_2 a_{2,2} a_{2,3} b_2(e) b_2(g) = 0.0009$

A Hidden Variable Problem

• Each state sequence has a different probability:

e/1 g/1
$$\pi_1 a_{1,1} a_{1,3} b_1(e) b_1(g) = 0.0021$$

e/1 g/2 $\pi_1 a_{1,2} a_{2,3} b_1(e) b_2(g) = 0.00315$
e/2 g/1 $\pi_2 a_{2,1} a_{1,3} b_2(e) b_1(g) = 0.00135$
e/2 g/2 $\pi_2 a_{2,2} a_{2,3} b_2(e) b_2(g) = 0.0009$

• Each state sequence has a different **conditional** probability, e.g.:

$$P(1 \ 1 \mid e \ g, \Theta) = \frac{0.0021}{0.0021 + 0.00315 + 0.00135 + 0.0009} = 0.28$$

$$\begin{array}{lll} \text{e/1} & \text{g/1} & P(1\ 1\ | \ \text{e}\ \text{g}, \Theta) = 0.28 \\ \text{e/1} & \text{g/2} & P(1\ 2\ | \ \text{e}\ \text{g}, \Theta) = 0.42 \\ \text{e/2} & \text{g/1} & P(2\ 1\ | \ \text{e}\ \text{g}, \Theta) = 0.18 \\ \text{e/2} & \text{g/2} & P(2\ 2\ | \ \text{e}\ \text{g}, \Theta) = 0.12 \end{array}$$

fill in hidden values for (e g), (e h), (f h), (f g)

e/1	g/1	$P(1 \ 1 \mid e g, \Theta) = 0.28$
e/1	g/2	$P(1 \ 2 \mid e g, \Theta) = 0.42$
e/2	g/1	$P(2 \ 1 \mid e g, \Theta) = 0.18$
e/2	g/2	$P(2 \ 2 \mid e g, \Theta) = 0.12$
e/1	h/1	$P(1 \ 1 \mid e h, \Theta) = 0.211$
e/1	h/2	$P(1 \ 2 \mid e h, \Theta) = 0.508$
e/2	h/1	$P(2 \ 1 \mid e h, \Theta) = 0.136$
e/2	h/2	$P(2 \ 2 \mid e h, \Theta) = 0.145$
f/1	h/1	$P(1 \ 1 \mid f h, \Theta) = 0.181$
f/1	h/2	$P(1 \ 2 \mid f h, \Theta) = 0.434$
f/2	h/1	$P(2 \ 1 \mid f h, \Theta) = 0.186$
f/2	h/2	$P(2 \ 2 \mid f h, \Theta) = 0.198$

Calculate the expected counts:

$$\sum_{l} g(1, x_{l}) = 0.28 + 0.42 + 0.211 + 0.508 + 0.181 + 0.434 + 0.237 + 0.356 = 2.628$$

$$\sum_{l} g(2, x_{l}) = 1.372$$

$$\sum_{l} g(3, x_{l}) = 0.0$$

$$\sum_{l} g(1, 1, x_{l}) = 0.28 + 0.211 + 0.181 + 0.237 = 0.910$$

$$\sum_{l} g(1, 2, x_{l}) = 1.72$$

$$\sum_{l} g(2, 1, x_{l}) = 0.746$$

$$\sum_{l} g(2, 2, x_{l}) = 0.626$$

$$\sum_{l} g(1, 3, x_{l}) = 1.656$$

$$\sum_{l} g(2, 3, x_{l}) = 2.344$$

Calculate the expected counts:

$$\sum_{l} g(1, e, x_{l}) = 0.28 + 0.42 + 0.211 + 0.508 = 1.4$$

$$\sum_{l} g(1, f, x_{l}) = 1.209$$

$$\sum_{l} g(1, g, x_{l}) = 0.941$$

$$\sum_{l} g(1, h, x_{l}) = 0.827$$

$$\sum_{l} g(2, e, x_{l}) = 0.6$$

$$\sum_{l} g(2, f, x_{l}) = 0.385$$

$$\sum_{l} g(2, g, x_{l}) = 1.465$$

$$\sum_{l} g(2, h, x_{l}) = 1.173$$

Calculate the new estimates:

$$\pi_1 = \frac{\sum_l g(1, x_l)}{\sum_l g(1, x_l) + \sum_l g(2, x_l) + \sum_l g(3, x_l)} = \frac{2.628}{2.628 + 1.372 + 0} = 0.657$$

$$\pi_2 = 0.343 \quad \pi_3 = 0$$

$$a_{1,1} = \frac{\sum_{l} g(1,1,x_{l})}{\sum_{l} g(1,1,x_{l}) + \sum_{l} g(1,2,x_{l}) + \sum_{l} g(1,3,x_{l})} = \frac{0.91}{0.91 + 1.72 + 1.656} = 0.212$$

	$a_{i,j}$	j=1	j=2	j=3	$b_i(o)$
-	i=1	0.212	0.401	0.387	i=1
	i=2	0.201	0.169	0.631	i=2

	o=e			
i=1	0.320	0.276	0.215	0.189
i=2	0.166	0.106	0.404	0.324

Iterate this 3 times:

$$\pi_1 = 0.9986, \quad \pi_2 = 0.00138 \quad \pi_3 = 0$$

$a_{i,j}$	j=1	j=2	j=3
i=1	0.0054	0.9896	0.00543
i=2	0.0	0.0013627	0.9986

$b_i(o)$	o=e	o=f	o=g	o=h
i=1	0.497	0.497	0.00258	0.00272
i=2	0.001	0.000189	0.4996	0.4992

Overview

- The EM algorithm in general form
- The EM algorithm for hidden markov models (brute force)
- The EM algorithm for hidden markov models (dynamic programming)

The Forward-Backward or Baum-Welch Algorithm

• Aim is to (efficiently!) calculate the expected counts:

$$g(i, x_l) = \sum_{y} P(y \mid x_l, \Theta^{t-1}) f(i, x_l, y)$$

$$g(i, j, x_l) = \sum_{y} P(y \mid x_l, \Theta^{t-1}) f(i, j, x_l, y)$$

$$g(i, o, x_l) = \sum_{y} P(y \mid x_l, \Theta^{t-1}) f(i, o, x_l, y)$$

The Forward-Backward or Baum-Welch Algorithm

• Suppose we could calculate the following quantities, given an input sequence $o_1 \dots o_T$:

$$\alpha_i(t) = P(o_1 \dots o_{t-1}, s_t = i \mid \Theta)$$
 forward probabilities

$$\beta_i(t) = P(o_t \dots o_T \mid s_t = i, \Theta)$$
 backward probabilities

• The probability of being in state i at time t, is

$$p_t(i) = P(s_t = i \mid o_1 \dots o_T, \Theta)$$

$$= \frac{P(s_t = i, o_1 \dots o_T \mid \Theta)}{P(o_1 \dots o_T \mid \Theta)}$$

$$= \frac{\alpha_t(i)\beta_t(i)}{P(o_1 \dots o_T \mid \Theta)}$$

also,

$$P(o_1 \dots o_T \mid \Theta) = \sum_i \alpha_t(i)\beta_t(i)$$
 for any t

Expected Initial Counts

• As before,

 $g(i, o_1 \dots o_T) =$ expected number of times state i is state 1

• We can calculate this as

$$g(i, o_1 \dots o_T) = p_1(i)$$

Expected Emission Counts

• As before,

 $g(i, o, o_1 \dots o_T) =$ expected number of times state i emits the symbol o

• We can calculate this as

$$g(i, o, o_1 \dots o_T) = \sum_{t:o_t=o} p_t(i)$$

The Forward-Backward or Baum-Welch Algorithm

• Suppose we could calculate the following quantities, given an input sequence $o_1 \dots o_T$:

$$\alpha_i(t) = P(o_1 \dots o_{t-1}, s_t = i \mid \Theta)$$
 forward probabilities

$$\beta_i(t) = P(o_t \dots o_T \mid s_t = i, \Theta)$$
 backward probabilities

• The probability of being in state i at time t, and in state j at time t+1, is

$$p_{t}(i,j) = P(s_{t} = i, s_{t+1} = j \mid o_{1} \dots o_{T}, \Theta)$$

$$= \frac{P(s_{t} = i, s_{t+1} = j, o_{1} \dots o_{T} \mid \Theta)}{P(o_{1} \dots o_{T} \mid \Theta)}$$

$$= \frac{\alpha_{t}(i)a_{i,j}b_{i}(o_{t})\beta_{t+1}(j)}{P(o_{1} \dots o_{T} \mid \Theta)}$$

also,

$$P(o_1 \dots o_T \mid \Theta) = \sum_i \alpha_t(i)\beta_t(i)$$
 for any t

Expected Transition Counts

• As before,

 $g(i, j, o_1 \dots o_T) =$ expected number of times state j follows state i

• We can calculate this as

$$g(i, j, o_1 \dots o_T) = \sum_t p_t(i, j)$$

Recursive Definitions for Forward Probabilities

• Given an input sequence $o_1 \dots o_T$:

$$\alpha_i(t) = P(o_1 \dots o_{t-1}, s_t = i \mid \Theta)$$
 forward probabilities

• Base case:

$$\alpha_i(1) = \pi_i$$
 for all i

• Recursive case:

$$\alpha_j(t+1) = \sum_i \alpha_i(t) a_{i,j} b_i(o_t)$$
 for all $j = 1 \dots N$ and $t = 2 \dots T$

Recursive Definitions for Backward Probabilities

• Given an input sequence $o_1 \dots o_T$:

$$\beta_i(t) = P(o_t \dots o_T \mid s_t = i, \Theta)$$
 backward probabilities

• Base case:

$$\beta_i(T+1) = 1$$
 for $i = N$

$$\beta_i(T+1) = 0$$
 for $i \neq N$

• Recursive case:

$$\beta_i(t) = \sum_j a_{i,j} b_i(o_t) \beta_j(t+1)$$
 for all $j = 1 \dots N$ and $t = 1 \dots T$

Overview

- The EM algorithm in general form (more about the 3 coin example)
- The EM algorithm for hidden markov models (brute force)
- The EM algorithm for hidden markov models (dynamic programming)
- Briefly: The EM algorithm for PCFGs

EM for Probabilistic Context-Free Grammars

- A PCFG defines a distribution $P(S,T\mid\Theta)$ over tree/sentence pairs (S,T)
- If we had tree/sentence pairs (fully observed data) then

$$L(\Theta) = \sum_{i} \log P(S_i, T_i \mid \Theta)$$

• Say we have sentences only, $S_1 \dots S_n$ \Rightarrow trees are hidden variables

$$L(\Theta) = \sum_{i} \log \sum_{T} P(S_i, T \mid \Theta)$$

EM for Probabilistic Context-Free Grammars

• Say we have sentences only, $S_1 \dots S_n$ \Rightarrow trees are hidden variables

$$L(\Theta) = \sum_{i} \log \sum_{T} P(S_i, T \mid \Theta)$$

• EM algorithm is then $\Theta^t = \operatorname{argmax}_{\Theta} Q(\Theta, \Theta^{t-1})$, where

$$Q(\Theta, \Theta^{t-1}) = \sum_{i} \sum_{T} P(T \mid S_i, \Theta^{t-1}) \log P(S_i, T \mid \Theta)$$

• Remember:

$$\log P(S_i, T \mid \Theta) = \sum_{r \in R} Count(S_i, T, r) \log \Theta_r$$

where Count(S, T, r) is the number of times rule r is seen in the sentence/tree pair (S, T)

$$\Rightarrow Q(\Theta, \Theta^{t-1}) = \sum_{i} \sum_{T} P(T \mid S_i, \Theta^{t-1}) \log P(S_i, T \mid \Theta)$$

$$= \sum_{i} \sum_{T} P(T \mid S_i, \Theta^{t-1}) \sum_{r \in R} Count(S_i, T, r) \log \Theta_r$$

$$= \sum_{i} \sum_{r \in R} Count(S_i, r) \log \Theta_r$$

where $Count(S_i, r) = \sum_T P(T \mid S_i, \Theta^{t-1}) Count(S_i, T, r)$ the expected counts

• Solving $\Theta_{ML} = \operatorname{argmax}_{\Theta \in \Omega} L(\Theta)$ gives

$$\Theta_{\alpha \to \beta} = \frac{\sum_{i} Count(S_i, \alpha \to \beta)}{\sum_{i} \sum_{s \in R(\alpha)} Count(S_i, s)}$$

• There are efficient algorithms for calculating

$$Count(S_i, r) = \sum_{T} P(T \mid S_i, \Theta^{t-1}) Count(S_i, T, r)$$

for a PCFG. See (Baker 1979), called "The Inside Outside Algorithm". See also Manning and Schuetze section 11.3.4.