

Relatório de Assessoria em Automação & Desenvolvimento de Software

Documento desenvolvido por ANGELO MATHEUS

Sumário

I.	Descrição da solicitação do serviço técnico		
	Destaques do Relatório		
	Despesas de Início de Aplicação do Projeto/Serviço		
II.	Descrição do serviço	3	
	Configuração e instalação do programador horário (Timer)		
	Entrada do sistema de autolavagem		
	Revisão e Ativação do Quadro Elétrico		
	Instalação da Chave Magnética		
	Refatoração do Código Final		
	Inicio do Algoritmo		
	Void Setup		
	Destaques do Código		
	Função CicloAgua()		
	Algoritmo Final (Void Loop)		
III.	Valor do Serviço10)	
	Análise de entrega de serviço e considerações		
IV.	Apêndice1	1	
	Código Final (Software)		
	Documento de Licença de Uso de Software		
	Links do Projeto		

Descrição da solicitação do serviço técnico

O cliente (*WashAir - Autolavagem em condicionadores de ar*) solicita os seguintes serviços técnico: configuração e personalização de código (*Software*) para acionamento do sistema de autolavagem para condicionadores de ar do tipo Splitão, trifásico de 60.000 *BTUS*, configuração do dispositivo programador horário(*Timer*) para execução semanal do sistema de autolavagem, revisão do quadro elétrico e configuração final do microcontrolador *ATMEGA328p*, categorizando em serviço de *desenvolvimento de software* e assessoria em *automação industrial*.

Destaques do Relatório

- Instalação chave-magnética a unidade condensadora;
- Diagrama elétrico final do sistema de autolavagem;
- Refatoração do código para o cliente final;
- Configuração do programador horário;
- Revisão e ligação do quadro elétrico.

Despesas de Início de Aplicação do Projeto/Serviço

Dia(s)	Período(s)	Custo(s)				
Dia 1 – Levantamento de Requisitos	Sábado 07/07/18	R\$ 50,00				
Dia 2 – Aplicação de Soluções	Domingo 08/07/18	R\$ 50,00				
Dia 3 – Aplicação de Soluções	Segunda 09/07/18	R\$ 30,00				
Dia 4 – Validação & Código.	Terça 10/07/18	R\$ 20,00				
	Total de despesas iniciais:	R\$ 150,00				
VALOR UTILIZADO PARA DISPESAS INDIRETAS DO PROJETO/SERVIÇO						

Descrição do serviço

Executado a revisão e ligação do quadro elétrico responsável pelos comandos de automação para acionamento das válvulas solenoides do sistema de autolavagem, realizando além disso, o serviço de configuração do dispositivo programador horário para o acionamento semanal do sistema de autolavagem e por fim realizado a refatoração do código do microcontrolador atuante no sistema, afim de melhorar o desempenho final do software & hardware para aplicação final no cliente.

Configuração e instalação do programador horário (Timer)

É utilizado para acionar a carga elétrica no sistema de autolavagem, o programador horário (*Timer*) da marca *MASTERTIMER*, executado a configuração de acionamento semanal (segunda a sexta) do sistema, no horário de *17:20 até 17:55*, totalizando um acionamento de 35min.

Entrada do sistema de autolavagem

- **Azul** Aciona semanalmente (*segunda a sexta*);
- **Verde** Inicio de acionamento de carga (17:20);
- Laranja Aciona carga em normalmente fechado (*ON*).

- **Azul** Aciona semanalmente (*segunda a sexta*);
- **Verde** Final de acionamento de carga (17:55);
- Laranja Aciona carga em normalmente aberto (OFF).

Revisão e Ativação do Quadro Elétrico

O funcionamento correto do quadro elétrico é extremamente importante para o funcionamento pleno do sistema de autolavagem, pois o quadro elétrico tem a função de receber a carga elétrica da concessionária local e distribui-la entre os componentes e válvulas do sistema de autolavagem, por tanto foi realizado todos os testes necessários para validação do pleno funcionamento dos componentes do quadro elétrico e comandos.

Realizado teste e mapeamento das válvulas solenoides e da bomba de pressão de água com sucesso, realizado todo o mapeamento de acionamento de cargas.

Instalação da Chave Magnética

A chave magnética foi instalada no sistema devido a necessidade de interromper de forma rápida a energia elétrica do equipamento, afim de desligá-lo para realizar o acionamento do sistema de autolavagem, foi utilizado no sistema uma chave magnética do tipo guarda motor de *20a* para controle da alimentação do equipamento.

- **Azul** Carga trifásica na contatora;
- Verde Carga trifásica no guarda motor;
- Laranja Liga/Desliga carga através do quadro elétrico.

Refatoração do Código Final

Quando a estrutura interna do software começa a perder um pouco da sua organização (devido ao tamanho do código) é necessário realizar um procedimento de software chamado de *Refactoring*, que consiste em estruturar o código de maneira prática e legível, afim de otimizar a execução final do algoritmo desenvolvido para o sistema de autolavagem.

Inicio do Algoritmo

• Configuração e mapeamento das variáveis do código;

```
Cliente Final: Estrela Panelas de Alumínio.
 Cliente Solicitante: WashAir Autolavagem.
              //válvulas solenoides de 1 a 8
int v1 = 22;
int v2 = 23;
int v3 = 24;
int v4 = 25;
int v5 = 26;
int v6 = 27;
int v7 = 28;
int v8 = 29;
int v9 = 30;
int v10 = 31;
int b1 = 33; // in4
int b2 = 34; //in3
int cm = 37; // corta energia motor
int led_verde = 36; // LED funcionamento do sistema.
boolean statusOk = true; // false para teste no código e true para código final
```

Void Setup

No microcontrolador a função *setup()* é chamada no momento em que o programa começa. É usada para inicializar variáveis, definir os modos de entrada ou saída dos pinos, indicar bibliotecas, etc. Essa função é executada somente uma vez, quando o microcontrolador é iniciado ou quando é resetado.

```
void setup() {
pinMode(led_verde, OUTPUT);
pinMode(v1, OUTPUT);
pinMode(v2, OUTPUT);
pinMode(v3, OUTPUT);
pinMode(v4, OUTPUT);
pinMode(v5, OUTPUT);
pinMode(v6, OUTPUT);
pinMode(v7, OUTPUT);
pinMode(v8, OUTPUT);
  pinMode(b1, OUTPUT);
  pinMode(b2, OUTPUT);
  pinMode(cm, OUTPUT);
digitalWrite(v1, HIGH);
digitalWrite(v2, HIGH);
digitalWrite(v3, HIGH);
digitalWrite(v4, HIGH);
digitalWrite(v5, HIGH);
digitalWrite(v6, HIGH);
digitalWrite(v7, HIGH);
digitalWrite(v8, HIGH);
digitalWrite(v9, HIGH);
  digitalWrite(b1, HIGH);
  digitalWrite(b2, HIGH);
  digitalWrite(cm, HIGH);
    Serial.begin(9600);
```

Destaques do Código

- Configuração inicial em baixo nível;
- Definição do comportamento das saídas digitais;
- Personalização do código para o cliente final;
- Melhor leitura e interpretação do código.

Função CicloAgua()

```
void cicloAgua() {
 digitalWrite(b1, LOW);
 digitalWrite(b2, LOW);
 digitalWrite(v1,LOW);
Serial.println("v1 ligada");
Serial.println("bomba1 ligada");
Serial.println("bomba2 ligada");
   delay(29500);
digitalWrite(v2, LOW);
   delay(500);
digitalWrite(v1, HIGH);
Serial.println("v1 desligada");
Serial.println("v2 ligada");
 delay(29500);
     digitalWrite(v3,LOW);
     digitalWrite(v4, HIGH);
     delay(500);
   digitalWrite(v2,HIGH);
   Serial.println("v2 desligada");
   Serial.println("v3 ligada");
   delay(59500); //DOIS MIN V3
   digitalWrite(v4,LOW);
   delay(500);
   digitalWrite(v3,HIGH);
   Serial.println("v3 desligada");
   Serial.println("v4 ligada");
       delay(29500);
   digitalWrite(v5,LOW);
 delay(500);
 digitalWrite(v4,HIGH);
 Serial.println("v4 desligada");
 Serial.println("v5 ligada");
 delay(29500);
 digitalWrite(v6, LOW);
 delay(500);
 digitalWrite(v5, HIGH);
 Serial.println("v5 desligada");
 Serial.println("v6 ligada");
 delay(29500);
 digitalWrite(v7, LOW);
 delay(500);
 digitalWrite(v6, HIGH);
 Serial.println("v6 desligada");
 Serial.println("v7 ligada!");
 delay(29500);
 digitalWrite(v8, LOW);
 delay(500);
```

```
digitalWrite(v7, HIGH);
 Serial.println("v7 desligada");
Serial.println("v8 ligada!");
delay(29500);
digitalWrite(v9, LOW);
delay(500);
digitalWrite(v8, HIGH);
Serial.println("v8 desligada");
Serial.println("v9 ligada!");
delay(29500);
digitalWrite(v10, LOW);
delay(500);
digitalWrite(v9, HIGH);
Serial.println("v9 desligada");
Serial.println("v10 ligada!");
delay(29500);
digitalWrite(v11, LOW);
delay(500);
digitalWrite(v10, HIGH);
Serial.println("v10 desligada");
 Serial.println("v11 ligada!");
delay(29500);
digitalWrite(v11,HIGH);
digitalWrite(b1,HIGH);
digitalWrite(b2,HIGH);
Serial.println("v11 desligada!");
Serial.println("b1 desligada!");
Serial.println("b2 desligada!");
```

Foi desenvolvida a função *cicloagua()* afim de melhorar o desempenho do algoritmo final, para uma execução perfeita do código e aplicação final da solução.

Algoritmo Final (Void Loop)

A função *loop ()* será executada para sempre, ou até que seja realizado upload de um novo código ao microcontrolador, reiniciando o processo. Ela também pode ser reiniciada resetando o microcontrolador (através do botão de reset por exemplo). Após toda refatoração de código, obtivemos o seguinte algoritmo final:

```
void loop() {
   if(status0k == true) {
      digitalWrite(cm, LOW);
      digitalWrite(led_verde, HIGH);
      Serial.println("COMEÇO DA LAVAGEM");
      Serial.println("Comeco ciclo 1 Agua FILTRO");
        cicloAgua(); // 15min
     Serial.println("Comeco ciclo 2 Agua FILTRO");
        cicloAgua(); // 15min
      Serial.println("Comeco ciclo Final Agua FILTRO");
        cicloAgua(); // 5min
        digitalWrite(cm, HIGH);
      Serial.println("FIM DOS CICLOS");
        statusOk = false;
    if(status0k == false){
      //Realiza teste da sinaleira verde.
     digitalWrite(led_verde, LOW);
      delay(1500);
      digitalWrite(led_verde, HIGH);
      delay(500);
     digitalWrite(led_verde, LOW);
     delay(500);
    Serial.println("FIM DA LAVAGEM");
```

Valor do Serviço

Análise de entrega de serviço e considerações

Serviço de desenvolvimento de software e assessoria em automação realizado com sucesso, uma vez que o comprometimento do serviço foi realizar teste e ligação do quadro de energia e automação do sistema de autolavagem, assim como foi executado a configuração do microcontrolador para realizar o controle de acionamento das cargas e válvulas que constituem o sistema de autolavagem, realizado o desenvolvimento do algoritmo para o sistema de autolavagem em condicionadores de ar tipo split piso/teto(*SPLITÃO*), além disso foi executado a instalação da chave magnética para executar a interrupção do funcionamento do equipamento (*condicionador de ar*) e enfim foi realizado a configuração do programador horário (*timer*) para a execução semanal do funcionamento do sistema de autolavagem.

PreçoO cálculo do preço total da prestação de serviços, pode ser definido através dos seguintes itens:

Dia(s)	Período(s) Trabalhados	Hora/Serviço	QTD Horas	Cálculo Total
Dia 1 – Levantamento de Requisitos & Implementação da solução	Sábado 07/07/18 Horário (10:30 – 17:30)	R\$35,80	6H	R\$ 214,80
Dia 2 – Aplicação de Soluções	Domingo 08/07/18 Horário (09:00 – 17:30)	R\$35,80	7H	R\$ 250,60
Dia 3 – Aplicação de Soluções	Segunda 09/07/18 Horário (18:40 – 20:10)	R\$35,80	2Н	R\$ 77,60
Dia 4 - Validação & Código Final	Terça 10/07/18 Horário (09:30 – 20:30)	R\$35,80	9H	R\$ 252,00
			Valor total:	R\$ 795,00

AGUARDANDO POSIÇÃO DO CLIENTE

RESPONSABLIDADE TÉCNICA:

ANGELO MATHEUS SAMPAIO DA SILVA

Desenvolvedor de Software & Tecnólogo em Telecomunicações.

Apêndice

Código Final (Software)

```
Cliente Final: Estrela Panelas de Alumínio
int v1 = 22;
int v2 = 23;
int v3 = 24;
int v4 = 25;
int v5 = 26;
int v6 = 27;
int v7 = 28;
int v8 = 29;
int v9 = 30;
int v10 = 31;
int v11 = 32;
int b1 = 33; // in4
int b2 = 34; //in3
int cm = 37;
int led_verde = 36;
boolean statusOk = true; // false para teste no código e true para código
final
  void setup() {
  pinMode(led_verde, OUTPUT);
  pinMode(v1, OUTPUT);
  pinMode(v2, OUTPUT);
  pinMode(v3, OUTPUT);
  pinMode(v4, OUTPUT);
  pinMode(v5, OUTPUT);
  pinMode(v6, OUTPUT);
  pinMode(v7, OUTPUT);
  pinMode(v8, OUTPUT);
  pinMode(v9, OUTPUT);
  pinMode(v10, OUTPUT);
  pinMode(v11, OUTPUT);
    pinMode(b1, OUTPUT);
    pinMode(b2, OUTPUT);
    pinMode(cm, OUTPUT);
  digitalWrite(v1, HIGH);
 digitalWrite(v2, HIGH);
```

```
digitalWrite(v3, HIGH);
digitalWrite(v4, HIGH);
digitalWrite(v5, HIGH);
digitalWrite(v6, HIGH);
digitalWrite(v7, HIGH);
digitalWrite(v8, HIGH);
digitalWrite(v9, HIGH);
digitalWrite(v10, HIGH);
digitalWrite(v11, HIGH);
  digitalWrite(b1, HIGH);
  digitalWrite(b2, HIGH);
  digitalWrite(cm, HIGH);
    Serial.begin(9600);
void cicloAgua() {
   digitalWrite(b1, LOW);
  digitalWrite(b2, LOW);
   digitalWrite(v1,LOW);
Serial.println("v1 ligada");
Serial.println("bomba1 ligada");
Serial.println("bomba2 ligada");
    delay(29500);
  digitalWrite(v2, LOW);
    delay(500);
  digitalWrite(v1, HIGH);
Serial.println("v1 desligada");
Serial.println("v2 ligada");
   delay(29500);
       digitalWrite(v3,LOW);
       digitalWrite(v4, HIGH);
       delay(500);
     digitalWrite(v2,HIGH);
     Serial.println("v2 desligada");
     Serial.println("v3 ligada");
     delay(59500); //DOIS MIN V3
     digitalWrite(v4,LOW);
     delay(500);
     digitalWrite(v3,HIGH);
    Serial.println("v3 desligada");
     Serial.println("v4 ligada");
        delay(29500);
     digitalWrite(v5,LOW);
   delay(500);
   digitalWrite(v4,HIGH);
   Serial.println("v4 desligada");
   Serial.println("v5 ligada");
   delay(29500);
   digitalWrite(v6, LOW);
```

```
delay(500);
   digitalWrite(v5, HIGH);
   Serial.println("v5 desligada");
   Serial.println("v6 ligada");
   delay(29500);
  digitalWrite(v7, LOW);
   delay(500);
  digitalWrite(v6, HIGH);
   Serial.println("v6 desligada");
   Serial.println("v7 ligada!");
   delay(29500);
   digitalWrite(v8, LOW);
  delay(500);
  digitalWrite(v7, HIGH);
   Serial.println("v7 desligada");
  Serial.println("v8 ligada!");
  delay(29500);
   digitalWrite(v9, LOW);
  delay(500);
  digitalWrite(v8, HIGH);
   Serial.println("v8 desligada");
  Serial.println("v9 ligada!");
  delay(29500);
   digitalWrite(v10, LOW);
   delay(500);
   digitalWrite(v9, HIGH);
   Serial.println("v9 desligada");
   Serial.println("v10 ligada!");
   delay(29500);
   digitalWrite(v11, LOW);
  delay(500);
  digitalWrite(v10, HIGH);
   Serial.println("v10 desligada");
   Serial.println("v11 ligada!");
   delay(29500);
   digitalWrite(v11,HIGH);
   digitalWrite(b1,HIGH);
  digitalWrite(b2,HIGH);
  Serial.println("v11 desligada!");
  Serial.println("b1 desligada!");
  Serial.println("b2 desligada!");
void loop() {
   if(status0k == true) {
   digitalWrite(cm, LOW);
   digitalWrite(led_verde, HIGH);
   Serial.println("COMEÇO DA LAVAGEM");
   Serial.println("Comeco ciclo 1 Agua FILTRO");
   cicloAgua(); // 15min
   Serial.println("Comeco ciclo 2 Agua FILTRO");
```

```
cicloAgua(); // 15min
    Serial.println("Comeco ciclo Final Agua FILTRO");
    cicloAgua(); // 15min
    digitalWrite(cm, HIGH);
    Serial.println("FIM DOS CICLOS");
    statusOk = false;
    }

    if(statusOk == false){
        //teste led
        digitalWrite(led_verde, LOW);
        delay(1500);
        digitalWrite(led_verde, HIGH);
        delay(500);
        digitalWrite(led_verde, LOW);
        delay(500);
        Serial.println("FIM DA LAVAGEM");
    }
}
```

Documento de Licença de Uso de Software

A startup AMS Tecnologia da Informação & Assessoria, disponibiliza o código de fonte para eventuais compilações em linguagem C, para estudo e outras aplicações, afim de contribuir para o desenvolvimento e melhoria da tecnologia e ciência, pois defendemos a ideia do conhecimento sendo alcançado a todos de maneira igualitária e com total qualidade. O código tem como objetivo controlar os níveis lógicos digitais do microcontrolador, fazendo o uso de recursos de engenharia de softwares, como laços de repetições e funções.

Através deste texto a startup AMS Tecnologia da Informação & Assessoria em parceria com a RNP (Rede Nacional de Ensino e Pesquisa) disponibiliza, ao público em geral, o acesso ao código fonte*.

*O código fonte está sob licença Creative Commons by-nc-nd. Para obter mais informações, acesse o endereço:

http://creativecommons.org/licenses/by-nc-nd/3.0/br/.

Avisos:

Você não tem de cumprir com os termos da licença relativamente a elementos do material que estejam no domínio público ou cuja utilização seja permitida por uma exceção ou limitação que seja aplicável.

Não são dadas quaisquer garantias. A licença pode não lhe dar todas as autorizações necessárias para o uso pretendido. Por exemplo, outros direitos, tais como direitos de imagem, de privacidade ou direitos morais, podem limitar o uso do material. Para mais informações sobre o uso, envie um email para: amsds.contato@gmail.com

Links do Projeto

AMS Tecnologia (Código Fonte & Relatório de Entrega de Serviço)

https://amstecnologia.negocio.site/

GitHub (Código Fonte & Relatório de Entrega de Serviço)

https://github.com/angelomatheus/washair_autolavagem

Arduino (Informações sobre o microcontrolador)

https://www.arduino.cc/en/Main/Products