Teoria degli automi e calcolabilità a.a. 2023/24 Prova scritta 9 febbraio 2024

Esercizio 1 Minimizzare il seguente DFA, descrivendo in modo molto preciso i passaggi effettuati:

Soluzione

- Inizialmente abbiamo le classi $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ dei non finali e $\{10\}$ dei finali.
- Leggendo a possiamo discriminare $\{1, 2, 3, 4, 7, 8, 9\}$ (che vanno in stati non finali) da $\{5, 6\}$ (che vanno nello stato finale). Abbiamo quindi le classi $\{1, 2, 3, 4, 7, 8, 9\}$, $\{5, 6\}$, e $\{10\}$.
- Leggendo a possiamo discriminare $\{1, 3, 7, 9\}$ (che vanno in $\{1, 2, 3, 4, 7, 8, 9\}$) da $\{2, 4, 8\}$ (che vanno in $\{5, 6\}$). Abbiamo quindi le classi $\{1, 3, 7, 9\}$, $\{2, 4, 8\}$, $\{5, 6\}$, e $\{10\}$.
- Leggendo b possiamo discriminare $\{1,3,7\}$ (che vanno in $\{1,3,7,9\}$) da $\{9\}$ (che va nello stato finale). Abbiamo quindi le classi $\{1,3,7\}$, $\{9\}$, $\{2,4,8\}$, $\{5,6\}$, e $\{10\}$.
- Infine, leggendo b, possiamo discriminare $\{1\}$ (che va in $\{1,3,7\}$) da $\{3,7\}$ (che vanno in $\{9\}$). Abbiamo quindi le classi $\{1\}$, $\{3,7\}$, $\{9\}$, $\{2,4,8\}$, $\{5,6\}$, e $\{10\}$. Non si può discriminare ulteriormente.

Esercizio 2 - Linguaggi context-free Per ognuno dei seguenti linguaggi sull'alfabeto $\{a, b, c\}$:

$$\{a^k b^n c^m \mid k < n \text{ oppure } k < m\}$$
$$\{a^k b^n c^m \mid k < n \text{ e } k < m\}$$

dire se è context-free, motivando la risposta (in caso di risposta positiva si dia una grammatica che lo generi, in caso di risposta negativa lo si provi utilizzando il pumping lemma).

Soluzione

1. Il primo linguaggio è context-free. Si tratta dell'unione di due linguaggi:

$$\{a^kb^kb^hc^m \mid k \ge 0, h \ge 1, m \ge 0\} \cup \{a^kb^nc^kc^h \mid k \ge 0, h \ge 1, n \ge 0\}$$

Una grammatica che lo genera è quindi la seguente, dove X genera $\{a^kb^k\mid k\geq 0\}$ e Y genera $\{a^kb^nc^k\mid k\geq 0, n\geq 0\}$:

$$S ::= XbBC \mid YcC$$

$$X ::= \epsilon \mid aXb$$

$$B ::= \epsilon \mid bB$$

$$C ::= \epsilon \mid cC$$

$$Y ::= B \mid aYc$$

2. Il secondo linguaggio non è context-free. Possiamo dimostrarlo utilizzando il pumping lemma. Infatti, preso n arbitrario, consideriamo la stringa $a^nb^{n+1}c^{n+1}$ che appartiene al linguaggio. Consideriamo una decomposizione di questa stringa come uvwxy. Se v e/o x contengono una a, dato che la lunghezza di vwx deve essere $\leq n$, non possono contenere c. Quindi in uv^2wx^2y il numero delle a è maggiore o uguale di quello delle c. Altrimenti, vx è formata di sole b e c, quindi in uv^0wx^0y il numero di b o di c è minore o uguale a quello delle a.

Esercizio 3 Si consideri la seguente macchina di Turing usata come riconoscitore (q_3 è l'unico stato finale).

	a	b	B
q_0	q_0, a, R	q_1, b, R	
q_1	q_1, a, R	q_2, b, R	
q_2	q_2, a, R	q_2, b, R	q_3, B, N
q_3			

- 1. Si descriva la computazione che ha come configurazione iniziale $\langle \epsilon, q_0, baba \rangle$.
- 2. Si descriva il linguaggio accettato dalla macchina.
- 3. È possibile dare una macchina (con lo stesso alfabeto) che riconosca lo stesso linguaggio con meno stati?

Soluzione

- 1. $\langle \epsilon, q_0, baba \rangle \rightarrow \langle b, q_1, aba \rangle \rightarrow \langle ba, q_1, ba \rangle \rightarrow \langle bab, q_2, a \rangle \rightarrow \langle baba, q_2, \epsilon \rangle \rightarrow \langle baba, q_3, \epsilon \rangle$
- 2. Il linguaggio accettato dalla macchina è l'insieme delle stringhe che contengono almeno due b.
- 3. Sì, si può eliminare q_3 e rendere finale q_2 (non serve che la macchina legga tutto l'input).

Notazione Data $f: \mathbb{N} \to \mathbb{N}$, sia $img(f) = \{f(x) \mid x \in \mathbb{N}\}.$

Esercizio 4 Sia $X = \{x \mid \{1,2,3\} \subseteq img(\phi_x)\}$, ossia l'insieme dei programmi che (per qualche input) restituiscono in output 1, (per qualche input) restituiscono in output 2, e (per qualche input) restituiscono in output 3. Si dica se le seguenti affermazioni sono vere o false, motivando la risposta.

- 1. L'insieme X è ricorsivo.
- 2. L'insieme X è ricorsivamente enumerabile.
- 3. L'insieme $\{x \mid img(\phi_x) \subseteq \{1,2,3\}\}\$ è ricorsivamente enumerabile.

Soluzione

- 1. No, per il teorema di Rice, in quanto si tratta di un insieme estensionale e non banale.
- 2. Sì, infatti possiamo eseguire il programma \mathcal{M}_x su tutti gli input con la tecnica a zig-zag, e se esistono tre input per i quali \mathcal{M}_x restituisce, rispettivamente, 1, 2 e 3, questi saranno trovati.
- 3. No, per il teorema di Post. Infatti questo insieme non è ricorsivo analogamente al primo, e il suo complementare, ossia $\{x \mid \exists y \in img(\phi_x), y \notin \{1,2,3\}\}$, è ricorsivamente enumerabile. Infatti possiamo eseguire il programma \mathcal{M}_x su tutti gli input con la tecnica a zig-zag, e se esiste un input sul quale restituisce un risultato diverso da 1, 2, 3, questo sarà trovato.

Esercizio 5 Si dia una riduzione da $\overline{\mathcal{K}} = \{x \mid \phi_x(x) \uparrow\}$ (l'insieme dei programmi che non terminano su se stessi) in $\mathcal{A} = \{x \mid img(\phi_x) \neq \mathbb{N}\}$ (l'insieme dei programmi che non restituiscono mai in output qualche numero naturale). Cosa possiamo concludere dall'esistenza di tale riduzione?

Soluzione L'input del problema $\overline{\mathcal{K}}$ è (la descrizione di) un algoritmo x, e dobbiamo trasformarlo in un nuovo algoritmo g(x) in modo tale che $\phi_x(x) \uparrow$ se e solo se $\phi_{g(x)}$ non ha come immagine tutti i naturali. Questo si può ottenere costruendo l'algoritmo g(x) nel modo seguente:

```
input y \mathcal{M}_x(x) return y
```

Allora g è una funzione di riduzione da $\overline{\mathcal{K}}$ in \mathcal{A} , in quanto è calcolabile, totale, e si ha:

```
se x \in \overline{\mathcal{K}}, \mathcal{M}_x(x) non termina, quindi img(g(x)) = \emptyset, quindi g(x) \in \mathcal{A} se x \notin \overline{\mathcal{K}}, \mathcal{M}_x(x) termina, quindi img_{g(x)} = \mathbb{N}, quindi g(x) \notin \mathcal{A}.
```

Dal fatto che $\overline{\mathcal{K}}$ sia riducibile a \mathcal{F} possiamo concludere che \mathcal{A} non è ricorsivamente enumerabile.

Guida alla correzione Esercizio 1: ≤ 3 algoritmo sbagliato, 5 errori vari

Esercizio 2.1: 4 per la sola risposta sì

Esercizio 2.2: 4 per la sola risposta no; 6-7 a chi ha scelto una stringa giusta

Esercizio 4.3: 0 a chi non ha capito che non era il complementare del precedente

Esercizio 5: quasi tutti non hanno capito il testo, ho dato ≥ 5 a chi ha scritto almeno cose sensate