

# How to Succeed as an Airbnb Host ——Evidence from Machine Learning and Text Analysis Approaches

Yutian Lai

Master of Computational Social Science Program, University of Chicago

E-mail: ylai@uchicago.edu Date: June 3<sup>rd</sup>, 2020

Cleanliness,

Conclusion

communication, location

and verification of super

factors for the rating score

Three localities display

debate (Cheng & Jin, 2019))

**London:** property

New York: host

Tokyo: location

significant differences in

Successful hosts should

Limitations

cultural regions, adding to the

convergence/divergence of

experiences (Brochado et al.,

References

• Cheng, M., & Jin, X. (2019). What

The need to analyze more

different, or even cross-

literature regarding the

Airbnb guests' traveling

2017).

strategically arouse

resonance in guests

terms of factors framing the

results("amenities, host and location"

host are the main influencing

### Research Question

### Q1: What factors are the driving forces behind Airbnb review ratings?

Review scores are metric for the satisfactionlevel of the guests.

Q2: Are there any geospatial differences?

- Hosts can condition their property/self attributes
- Airbnb can incentivize their hosts to change

### Data Collection and Pre-processing

http://insideairbnb.com/get-the-data.html (April 2020)

#### 1. Drop/Create/Modify attributes

Numerical: 'beds', 'bedrooms', 'guests included', 'bathrooms', 'review scores communication', etc.

Categorical: 'host\_has\_profile\_pic', 'TV' 'host\_identity\_verified', 'property\_type', etc.

Text: 'house description', 'self about'



#### 2. Heatmaps---No feature removed

#### 3. Data normalization + Text: uni-/bi-gram

| City     | Sample | Feature<br>Number |  |
|----------|--------|-------------------|--|
| London   | 14676  | 10051             |  |
| New York | 8427   | 10052             |  |
| Tokyo    | 5288   | 10049             |  |

#### 4. Pipeline Construction

- Pipeline1: (numerical, categorical, text(bag of words))
- Pipeline2: (numerical, categorical, text(TF-IDF))

### Machine Learning Approach and the Results

# <u>London</u> **Training R2** Test R2 Ridge1 29.1

| <b>D</b> : 1         |             |         |       |      |  |
|----------------------|-------------|---------|-------|------|--|
| Model<br>Name        | Training R2 | Test R2 | MSE   | MAE  |  |
| New-York             |             |         |       |      |  |
| Gradient<br>Boosting | 0.84        | 0.69    | 23.1  | 2.93 |  |
| Random<br>Forest     | 0.9         | 0.68    | 24.02 | 2.94 |  |
| Lasso2               | 0.67        | 0.65    | 25.86 | 3.24 |  |
| Lasso1               | 0.68        | 0.66    | 25.33 | 3.2  |  |
| Ridge2               | 0.81        | 0.66    | 25.55 | 3.3  |  |

| New-York             |             |         |       |      |  |  |  |
|----------------------|-------------|---------|-------|------|--|--|--|
| Model<br>Name        | Training R2 | Test R2 | MSE   | MAE  |  |  |  |
| Ridge1               | 0.74        | 0.68    | 12.56 | 2.39 |  |  |  |
| Ridge2               | 0.69        | 0.67    | 12.73 | 2.37 |  |  |  |
| Lasso1               | 0.66        | 0.65    | 13.4  | 2.43 |  |  |  |
| Lasso2               | 0.65        | 0.64    | 14.02 | 2.47 |  |  |  |
| Random<br>Forest     | 0.87        | 0.62    | 14.78 | 2.38 |  |  |  |
| Gradient<br>Boosting | 0.86        | 0.65    | 13.49 | 2.31 |  |  |  |

| Tokyo                |             |         |       |      |  |
|----------------------|-------------|---------|-------|------|--|
| Model<br>Name        | Training R2 | Test R2 | MSE   | MAE  |  |
| Ridge1               | 0.74        | 0.71    | 14.05 | 2.63 |  |
| Ridge2               | 0.7         | 0.71    | 14.24 | 2.68 |  |
| Lasso1               | 0.67        | 0.7     | 14.72 | 2.72 |  |
| Lasso2               | 0.67        | 0.7     | 14.85 | 2.73 |  |
| Random<br>Forest     | 0.87        | 0.68    | 15.52 | 2.54 |  |
| Gradient<br>Boosting | 0.86        | 0.7     | 14.51 | 2.59 |  |
|                      |             |         |       |      |  |

## Top five features

Review scores for cleanliness(+) Review scores for communication(+) Review scores for location(+) Number of reviews(+) Verification as super host(+)

#### **Top five features** Review scores for cleanliness(+) Review scores for communication(+) Review scores for location(+) Verification as super host(+) Flat(unigram)(-)

#### **Top five features** Review scores for cleanliness(+)

Review scores for communication(+) Review scores for location(+) Verification as super host(+) Meter(unigram)(-)

#### **London-specific features** Property/neighborhood attributes

bathrooms, beds, bedrooms, guest capacity, beautiful kitchen

### **New York-specific features Host attributes**

Time as host, host acceptance rate (almost in every model)

## **Tokyo-specific features**

Location

Asakusa/Ueno(-), Narita(-), Shibuya (+),Ginza(+)

### Text Analysis(Bigram analysis) Approach and the Results



Models:

pipelines)

pipelines)

pipeline)

pipeline)

**Optimization:** 

Ridge regression (both

Lasso regression (both

Random forest (the first

Gradient boosting(the first

Hyperparameter tuning:

**Performance metric:** 

r2 (Main metric)

randomized search method

5-fold cross-validation with

10 iterations on the training

Mean squared error (MSE)

Mean absolute error (MAE)

### **House Description**

London

- Amenities: double bed Location: central London Neighborhood: min walk
  - Transportation: tube

**New York** 

Amenities: living room,

newly renovated (high)

Neighborhood: min walk

Location: New York

station







High Rating(=100)

### London Self-background:

**Host Description** 

- management company Welcome message: would happy
- Resonance (high):love travel

York, time square

(high): feel free

travel

Welcome message

Resonance (high):love

Tokyo

**New York** 

Surroundings (low):New





Low Rating(<=85)

do Airbnb users care about? An analysis of online review comments. International Journal of Hospitality Management, 76, 58-70. Brochado, A., Troilo, M., &

Aditya, S. (2017). Airbnb customer experience: evidence of convergence across three countries. Annals of Tourism Research, 63, 210-212.



I sincerely thank Dr. Evans and all classmates in MACS 30250-Perspectives on Computational Research in Economics for your helpful comments and suggestions.



- Amenities: double bed Location: Ikebukuro station (low), Shinjuku station (high)
- Neighborhood: min walk







