安徽大学 2016—2017 学年第二学期

《高等数学 A (二)、B (二)》考试试卷 (A 卷) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	 11	Ξ	四	五	总分
得 分					
阅卷人					

一、填空题(每小题2分,共10分)

得分

1. 过直线
$$l_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$$
 且平行于直线
$$\begin{cases} x = 2t-2 \\ y = t+1 \end{cases}$$
 的平面方程是

2. 若二元函数
$$f(x,y) = \begin{cases} \frac{\sin(x^2y)}{xy}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$
 则 $\frac{\partial f}{\partial x}\Big|_{(0,1)} =$ ______.

3.
$$\int_0^1 dy \int_y^1 \frac{\tan x}{x} dx = \underline{\qquad}.$$

4. 平面上曲线积分
$$\int_{(0,0)}^{(1,1)} (x^2 + y) dx + (x - 2\sin^2 y) dy = ______.$$

5. 若
$$x^2 = \sum_{n=0}^{\infty} a_n \cos nx$$
 ($-\pi \le x \le \pi$),则 $a_2 =$ _____.

二、选择题(每小题2分,共10分)

得分

6. 二元极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{3x-y}{x+y}$

()

)

- (A) 不存在
- (B) 等于0
- (C) 等于 $\frac{1}{2}$ (D) 存在,但不等于0也不等于 $\frac{1}{2}$

7. 设函数 z = f(x, y) 的全微分为 dz = xdx + ydy, 则在 (0,0) 处函数

- (A) 取得极大值
- (B) 取得极小值
- (C) 不取极值
- (D) 无法确定

8. 设 $\Omega = \{(x, y, z) \mid x^2 + y^2 \le z, 1 \le z \le 2\}$, $f \times \Omega$ 上连续,则 $\iint_{\Omega} f(z) dv = (x, y, z) \mid x^2 + y^2 \le z, 1 \le z \le 2\}$

- (A) $\pi \int_{1}^{2} z^{2} f(z) dz$
- (B) $2\pi \int_{1}^{2} f(z)dz$ (D) $\pi \int_{1}^{2} zf(z)dz$
- (C) $2\pi \int_{1}^{2} zf(z)dz$

9. 设 Σ : $x^2 + y^2 + z^2 = a^2$ ($z \ge 0$), Σ , 为 Σ 在第一卦限的部分,则有)

- (A) $\iint_{\Sigma} xdS = 4 \iint_{\Sigma_{1}} xdS$ (B) $\iint_{\Sigma} ydS = 4 \iint_{\Sigma_{1}} ydS$ (C) $\iint_{\Sigma} zdS = 4 \iint_{\Sigma_{1}} zdS$ (D) $\iint_{\Sigma} xyzdS = 4 \iint_{\Sigma_{1}} xyzdS$

10. 若幂级数 $\sum_{n=1}^{\infty} a_n (x+2)^n$ 在 x=0 处收敛,在 x=-4 处发散,则幂级数 $\sum_{n=1}^{\infty} a_n (x-3)^n$ 在x=5处

(A) 发散

(B) 绝对收敛

(C) 条件收敛

(D) 不能确定

纵

节

颲

袎

11. 设 $f(x, y, z) = e^x yz^2$, 其中 z = z(x, y) 是由方程 x + y + z + xyz = 0 确定的隐函数,求 $f'_x(0,1,-1)$.

12. 在曲面 $z = x^2 + y^2$ 上求一点,使得该点的切平面平行于平面 2x + 4y - z = 0,并求函数 $F(x, y, z) = x^2 + y^2 - z$ 在该点处沿着方向 $\vec{n} = \{2, 4, -1\}$ 的方向导数.

13. 求 $\iint_{D} |y-x^{2}| dxdy$, 其中D由 $|x| \le 1$, $0 \le y \le 2$ 所围成.

14. 计算
$$I = \iiint_V z dx dy dz$$
, 其中 V 为 $z = \sqrt{x^2 + y^2}$ 与 $z = \sqrt{2 - x^2 - y^2}$ 所围立体.

15. 计算
$$\int_L \sqrt{x^2 + y^2} ds$$
,其中 $L: x^2 + y^2 = ax$ ($a > 0$).

16. 计算曲面积分
$$\iint_S (x^3+1) dy dz + (y^3+1) dz dx + (z^3+1) dx dy$$
, 其中 S 为上半球面 $z = \sqrt{1-x^2-y^2}$ 的上侧.

纵

17. 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$ 的收敛域及数项级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1}$ 的和.

四、应用题(每小题6分,共12分)

得 分

18. 设空间曲面块 Σ 是球面 $x^2 + y^2 + z^2 = 4$ 被平面 z = 1 截出的顶部,其面密度分布 为 $\rho(x, y, z) = \frac{1}{z}$,求该曲面块的质量.

19. 求质点 M(x,y) 受作用力 $\vec{F} = (y+3x)\vec{i} + (2y-x)\vec{j}$ 沿路径 L 顺时针方向运动一周所做的功. 其中 L 为椭圆 $4x^2 + y^2 = 4$.

五、证明题(每小题5分,共5分)

得 分

20. 证明: 级数
$$\sum_{n=2}^{\infty} (-1)^n \frac{\sqrt{n} + (-1)^n}{n-1}$$
 发散.