

3.1 Fundamentos Básicos

FORMAS INDETERMINADAS

OPERAÇÕES COM OS SÍMBOLOS $\pm \infty$

$\infty + \infty = \infty$	$\infty \times \infty = \infty$	$(-\infty) \times \infty = -\infty$
$k \times \infty = \infty$, se $k > 0$	$k \times \infty = -\infty$, se $k < 0$	$(-\infty) \times (-\infty) = \infty$
	$\infty^p = \infty$, se $p > 0$	$\infty^p = 0$, se $p < 0$
$\frac{k}{0} = \pm \infty e \frac{k}{\pm \infty} = 0$	$-\infty - \infty = -\infty$	$\infty \times (-\infty) = -\infty$

FUNÇÕES RACIONAIS

Ao calcular o limte no infinito (quando $x \to \pm \infty$) de uma função racional (quociente de dois polinômios), recomendamos colocar em evidência no numerador e no denominador o termo de maior grau:

$$\lim_{x \to \pm \infty} \frac{A_0 + A_1 x + A_2 x^2 + A_3 x^3 + \dots + A_n x^n}{B_0 + B_1 x + B_2 x^2 + B_3 x^3 + \dots + B_k x^k} = \lim_{x \to \pm \infty} \frac{x^n \left[\frac{A_0}{x^n} + \frac{A_1}{x^{n-1}} + \frac{A_2}{x^{n-2}} + \dots + \frac{A_{n-1}}{x} + A_n \right]}{x^k \left[\frac{B_0}{x^k} + \frac{B_1}{x^{k-1}} + \frac{B_2}{x^{k-2}} + \dots + \frac{B_{k-1}}{x} + B_k \right]}.$$

Cada termo que contém uma potência de x no denominador tem limite zero e, sendo assim, o valor do limite se reduz a:

$$\lim_{x \to \pm \infty} \frac{A_n x^n}{B_k x^k}.$$

O valor final depende dos coeficientes A_n e B_k e, naturalmente, de n e k que são os graus dos polinômios.

a) Se os polinômios têm mesmo grau, isto é, n = k, então o valor do limite é:

$$\lim_{x \to \pm \infty} \frac{A_n x^n}{B_n x^n} = \frac{A_n}{B_n}.$$

b) Se o grau do numerador (n) é maior do que o grau do denominador (k), então:

$$\lim_{x \to \pm \infty} \frac{A_n x^n}{B_k x^k} = \lim_{x \to \pm \infty} \frac{A_n}{B_n} x^{n-k} = \pm \infty.$$
 (depende do sinal de A_n/B_k ; note que $n - k > 0$)

c) Se o grau do numerador (n) é menor do que o grau do denominador (k), então:

$$\lim_{x \to \pm \infty} \frac{A_n x^n}{B_k x^k} = \lim_{x \to \pm \infty} (A_n / B_k) \frac{1}{x^{k-n}} = 0. \quad \text{(note que } k - n > 0\text{)}$$

PROPRIEDADES ALGÉBRICAS

Suponhamos que $\lim_{x\to a}f\left(x\right)=L$ e que $\lim_{x\to a}g\left(x\right)=M$. Então: 1. $\lim_{x\to a}k=k, \qquad k$ constante.

- 2. $\lim_{x \to a} [f(x) \pm g(x)] = L \pm M$.
- 3. $\lim_{x \to a} [kf(x)] = kL$, k constante.
- 4. $\lim_{x \to a} \left[f(x) \times g(x) \right] = L \times M.$
- 5. $\lim_{x \to a} [f(x)/g(x)] = L/M$, $(M \neq 0 \text{ e } g(x) \neq 0, \forall x \neq a)$.

OUTRAS PROPRIEDADES

- 1. Se $\lim_{x \to a} f(x) = L$, então $\lim_{x \to a} |f(x)| = |L|$.
- 2. Se $\lim_{x\to a} g(x) = 0$ e f(x) é uma função limitada¹, então $\lim_{x\to a} [f(x)\times g(x)] = 0$.
- 3. Confronto: se $f\left(x\right)\leq g\left(x\right)\leq h\left(x\right),\ \forall x,$ e se $\lim_{x\to a}f\left(x\right)=\lim_{x\to a}h\left(x\right)=L,$ então $\lim_{x\to a}g\left(x\right)=L.$

ESCREVENDO PARA APRENDER

- 1. Em cada caso abaixo calcule o limite de f(x), quando $x \to a$.

(a)
$$f(x) = 2x + 5$$
; $a = -7$.
(b) $f(x) = \frac{3}{\sqrt{3x+1}+1}$; $a = 0$.

(c)
$$f(x) = \frac{x^2 + 3x - 10}{x + 5}$$
; $a = -5$.

(d)
$$f(x) = \frac{-2x-4}{x^3+2x^2}$$
; $a = -2$.

(e)
$$f(x) = \frac{x-1}{\sqrt{x+3}-2}$$
; $a = 1$.

(f)
$$f(x) = \frac{\sqrt{x^2 + 8} - 3}{x + 1}$$
; $a = -1$.

(g)
$$f(x) = \frac{x^4 - 1}{x^3 - 1}$$
; $a = 1$.

(h)
$$f(x) = \frac{3 - \sqrt{x}}{9 - x}$$
; $a = 9$.

(i)
$$f(x) = \frac{x^2 + x}{x}$$
; $a = 0$.

¹Uma função f(x) é limitada quando existir uma constante C, tal que $|f(x)| \leq C$, $\forall x$.

(j)
$$f(x) = \frac{x^2 + 8x - 20}{x^2 - x - 2}$$
; $a = 2$.

(k)
$$f(x) = \frac{\sqrt[3]{x} - \sqrt[3]{2}}{x - 2}$$
; $a = 2$.

(1)
$$f(x) = \frac{x^4 - 2x + 1}{x^3 + 2x^2 + 1}$$
; $a = 1$.

(m)
$$f(x) = \frac{1 - \sqrt{1 + x}}{\sqrt{x - 1} - x}$$
; $a = 3$.

(n)
$$f(x) = \frac{(3-x^3)^4 - 16}{x^3 - 1}$$
; $a = 1$ (considere $u = 3 - x^3$)

(o)
$$f(x) = \sqrt{\frac{\sqrt{x^2 + 3} - 2}{x^2 - 1}}; \quad a = 1$$

(p)
$$f(x) = \frac{\sqrt[3]{x+2}-1}{x+1}$$
; $a = -1$ (considere $u = \sqrt[3]{x+2}$)

- 2. Se f é uma função definida em \mathbb{R} e $\lim_{x\to 0} \frac{f(x)}{x} = 1$, mostre que:
 - (a) $\lim_{x \to 0} \frac{f(3x)}{x} = 3$. (b) $\lim_{x \to 0} \frac{f(x^2)}{x} = 0$.
- 3. Sabendo que $\lim_{x \to -2} \frac{f(x)}{x^2} = 1$, calcule $\lim_{x \to -2} f(x)$ e $\lim_{x \to -2} \frac{f(x)}{x}$.
- 4. Sabendo-se que $\lim_{x\to 2} \frac{f(x)-5}{x-2} = 3$, calcule $\lim_{x\to 2} f(x)$.
- 5. Se φ é uma função tal que $1 \frac{x^2}{4} \le \varphi(x) \le 1 + \frac{x^2}{2}$, $\forall x \ne 0$, calcule $\lim_{x \to 0} \varphi(x)$.
- 6. Sabendo que $\lim_{x\to a} f(x) = 0$ e que g(x) é uma função limitada, use a propriedade do Confronto e mostre que $\lim_{x\to a} [f(x)\cdot g(x)] = 0$.
- 7. Considere a função g definida por $g\left(x\right)=\left\{\begin{array}{l} 1,\text{ se }x\leq0\\ -1,\text{ se }x>0\end{array}\right.$ Investigue a existência dos limites: $\lim_{x\to0}g\left(x\right)\in\lim_{x\to0}x^2g\left(x\right).$
- 8. Em cada caso abaixo, calcule os limites laterais de f no ponto a.

(a)
$$f(x) = \frac{x+3}{x+2}$$
, $a = -2$

(b)
$$f(x) = \frac{x}{(x-2)^2}$$
, $a = 2$

(c)
$$f(x) = \frac{2-x}{(1-x)^3}$$
, $a = 1$

(d)
$$f(x) = \frac{x^2 - 4}{|x - 2|}, \quad a = 2$$

(e)
$$f(x) = \frac{\sqrt{x^2 + 4x + 5} - \sqrt{5}}{x}$$
, $a = 0$ (f) $f(x) = \frac{(x+3)|x+2|}{x+2}$, $a = -2$

(f)
$$f(x) = \frac{(x+3)|x+2|}{x+2}$$
, $a = -2$

(g)
$$f(x) = \frac{\sqrt{2x}(x-1)}{|x-1|}, \quad a = 1$$

(h)
$$f(x) = \frac{x+3}{|x^2-9|}, \quad a = -3$$

(i)
$$f(x) = \frac{x^2 - 1}{|x - 1|}, \quad a = 1$$

(j)
$$f(x) = \frac{x+2}{|x^2-4|}, \quad a = -2$$

- 9. Calcule $\lim_{x\to 2^+} \sqrt{x-2}$ e verifique se existe o limite $\lim_{x\to 2^-} \sqrt{x-2}$
- 10. Calcule os limites laterais indicados.

(a)
$$\lim_{x \to 0^+} \frac{1}{x}$$

(b)
$$\lim_{x\to 0^-} \frac{1}{x}$$

(c)
$$\lim_{x\to 0^+} \frac{1}{x^2}$$

(d)
$$\lim_{x \to 0^-} \frac{1}{x^2}$$

(a)
$$\lim_{x \to 0^{+}} \frac{1}{x}$$
 (b) $\lim_{x \to 0^{-}} \frac{1}{x}$ (c) $\lim_{x \to 0^{+}} \frac{1}{x^{2}}$ (d) $\lim_{x \to 0^{-}} \frac{1}{x^{2}}$ (e) $\lim_{x \to 3^{+}} \frac{5}{x - 3}$ (f) $\lim_{x \to 3^{-}} \frac{5}{x - 3}$ (g) $\lim_{x \to 0^{+}} \frac{2x + 1}{x}$ (h) $\lim_{x \to 0^{-}} \frac{x - 3}{x^{2}}$

(f)
$$\lim_{x \to 3^{-}} \frac{5}{x-3}$$

(g)
$$\lim_{x\to 0^+} \frac{2x+1}{x}$$

(h)
$$\lim_{x \to 0^-} \frac{x-3}{x^2}$$

(i)
$$\lim_{x \to 0^+} \frac{3}{x^2 - x}$$

(j)
$$\lim_{x\to 0^-} \frac{3}{x^2-x^2}$$

(i)
$$\lim_{x\to 0^+} \frac{3}{x^2 - x}$$
 (j) $\lim_{x\to 0^-} \frac{3}{x^2 - x}$ (k) $\lim_{x\to 3^+} \frac{x^2 - 3x}{x^2 - 6x + 9}$ (l) $\lim_{x\to -1^-} \frac{|x-1|}{x-1}$

(1)
$$\lim_{x \to -1^-} \frac{|x-1|}{x-1}$$

(m)
$$\lim_{x \to 0^+} \frac{2x+1}{x^2+x}$$
 (n) $\lim_{x \to -1^+} \frac{3x^2-4}{1-x^2}$ (o) $\lim_{x \to 0^+} \frac{x}{|x|}$ (p) $\lim_{x \to -1^+} \frac{x^2+3}{x^2-1}$

(o)
$$\lim_{x \to 0^+} \frac{x}{|x|}$$

(p)
$$\lim_{x \to -1^+} \frac{x^2 + 3}{x^2 - 1}$$

11. Calcule os seguintes limites no infinito:

(a)
$$\lim_{x \to -2} (x^4 + 3x + 2)$$

b)
$$\lim_{x \to \infty} (x^4 - 3x + 2)$$

(a)
$$\lim_{x \to +\infty} (x^4 + 3x + 2)$$
 b) $\lim_{x \to -\infty} (x^4 - 3x + 2)$ (c) $\lim_{x \to +\infty} (3x^3 + 2x + 1)$

(d)
$$\lim_{x \to -\infty} (3x^3 + 2x + 1)$$

(e)
$$\lim_{x \to +\infty} (5 - 4x + x^2 - x^5)$$

(d)
$$\lim_{x \to -\infty} (3x^3 + 2x + 1)$$
 (e) $\lim_{x \to +\infty} (5 - 4x + x^2 - x^5)$ (f) $\lim_{x \to -\infty} (5 - 4x + x^2 - x^5)$

(g)
$$\lim_{x \to +\infty} \frac{5x^3 - 6x + 1}{6x^3 + 2}$$
 (h) $\lim_{x \to -\infty} \frac{5x^3 - 6x + 1}{6x^3 + 2}$ (i) $\lim_{x \to +\infty} \frac{\sqrt{x} + 1}{x + 3}$

(h)
$$\lim_{x \to -\infty} \frac{5x^3 - 6x + 1}{6x^3 + 2}$$

(i)
$$\lim_{x \to +\infty} \frac{\sqrt{x} + 1}{x + 3}$$

(j)
$$\lim_{x \to +\infty} \left(x - \sqrt{x+3} \right)$$

(j)
$$\lim_{x \to +\infty} \left(x - \sqrt{x+3} \right)$$
 (k) $\lim_{x \to +\infty} \left(x - \sqrt{x^2+3} \right)$ (l) $\lim_{x \to +\infty} \left(x - \sqrt{x^3+3} \right)$

(1)
$$\lim_{x \to +\infty} \left(x - \sqrt{x^3 + 3} \right)$$

(m)
$$\lim_{x \to +\infty} \left(2x - \sqrt{x^3 + 3}\right)$$
 (n) $\lim_{x \to -\infty} \frac{5 - x}{3 + 2x}$ (0) $\lim_{x \to -\infty} \frac{2 - \sqrt{|x|}}{\sqrt{1 - x}}$

$$(n) \lim_{x \to -\infty} \frac{5 - x}{3 + 2x}$$

(0)
$$\lim_{x \to -\infty} \frac{2 - \sqrt{|x|}}{\sqrt{1 - x}}$$

3.2 Limite×Continuidade

Uma função y = f(x) é contínua no ponto x_0 de seu domínio quando tiver limite no ponto x_0 e, além disso, $\lim_{x\to x_0} f(x) = f(x_0)$. Quando f(x) não for contínua no ponto x_0 , diremos que f é descontínua em x_0 e isto ocorrerá quando ao menos uma das condições abaixo se verificar:

• ou f não estiver definida no ponto x_0 :

- ou o limite de f(x) no ponto x_0 não existir;
- ou f tiver limite em x_0 , mas, o valor do limite não coincidir com $f(x_0)$.

ESCREVENDO PARA APRENDER

- 1. Verdadeiro (V) ou Falso (F)?
 - (a) $\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) \Longrightarrow f$ é contínua em x = a.
 - (b) Se $\lim_{x\to a}|f\left(x\right)|$ existe, então $\lim_{x\to a}f\left(x\right)$ também existe.
 - (c) Se $\lim_{x\to a} |f(x)| = 0$, então $\lim_{x\to a} f(x) = 0$.
- 2. Calcule $\lim_{x\to 1} f(x)$, onde a função $f: \mathbb{R} \to \mathbb{R}$ é definida por $f(x) = \begin{cases} \frac{x^2 1}{x 1}, \text{ se } x \neq 1 \\ 3, \text{ se } x = 1 \end{cases}$.

Esta função é contínua em x = 1?

- 3. Seja f uma função real contínua, definida em torno do ponto a=1, tal que $f(x)=\frac{x^2-3x+2}{x-1}$, para $x \neq 1$. Quanto vale f(1)? Por quê?
- 4. Em cada caso, determine o valor de k, de modo que a função f(x) seja contínua no ponto a indicado.

(a)
$$a = 2$$
; $f(x) = \begin{cases} \frac{x^3 - 8}{x - 2}, & \text{se } x \neq 2 \\ k, & \text{se } x = 2 \end{cases}$ (b) $a = 3$; $f(x) = \begin{cases} \frac{\sqrt{x} - \sqrt{3}}{x - 3}, & \text{se } x > 0 \text{ e } \neq 3. \\ k, & \text{se } x = 3 \end{cases}$

- 5. Seja f a função definida por: f(-1) = 2 e $f(x) = \frac{x^2 + x}{x + 1}$, para $x \neq -1$. A função f é contínua no ponto x = -1? Por quê? E no ponto x = 0?
- 6. Dê exemplo de uma função f, definida em \mathbb{R} , descontínua no ponto x=2, mas que satisfaça $\lim_{x\to 2^+}f\left(x\right)=\lim_{x\to 2^-}f\left(x\right).$
- 7. Seja f uma função tal que $|f(x)| \leq x^2, \forall x \in \mathbb{R}$. Mostre que f é continua em x = 0.
- 8. Esboce o gráfico e encontre os pontos de descontinuidade da função f, definida por:

$$f(x) = \begin{cases} \frac{2x^2 + 3}{5}, \text{ se } x \le 1\\ 6 - 5x, \text{ se } 1 < x < 3\\ x - 3, \text{ se } x \ge 3 \end{cases}$$

26

9. Em cada caso, esboce o gráfico da função e diga se ela é contínua no ponto a indicado.

(a)
$$a = 0$$
; $f(x) = \begin{cases} 2 - x, \text{ se } x > 1 \\ x^2, \text{ se } x \le 1 \end{cases}$ (b) $a = 0$; $f(x) = \begin{cases} \frac{x - 2}{|x - 2|}, \text{ se } x \ne 2 \\ 1, \text{ se } x = 2 \end{cases}$ (c) $a = -1$; $f(x) = \frac{x^2 - 2x - 3}{x + 1}$ (d) $a = 1$; $f(x) = \begin{cases} 0, \text{ se } x < 0 \\ [x], \text{ se } x \ge 0 \end{cases}$.

(c)
$$a = -1$$
; $f(x) = \frac{x^2 - 2x - 3}{x + 1}$ (d) $a = 1$; $f(x) = \begin{cases} 0, \text{ se } x < 0 \\ [x], \text{ se } x \ge 0 \end{cases}$.

- **NOTA** No Exercício 9(d), [x] representa o maior inteiro menor ou igual a x e a função correspondente $x \longmapsto [x]$ é denominada $função\ escada$.
- 10. Seja f a função cujo gráfico encontra-se esboçado abaixo.
 - (a) Calcule $\lim_{x\to 0} f(x)$.
 - (b) Calcule $\lim_{x\to 3} f(x)$.
 - (c) Calcule f(0).
 - (d) Calcule f(3).
 - (e) f é contínua no ponto x=0?
 - (f) f é contínua no ponto x = 3?

- 11. Existe um número real α capaz de fazer com que $\lim_{x\to -2} \frac{3x^2 + \alpha x + \alpha + 3}{x^2 + x 2}$ exista?
- 12. Uma companhia ferroviária cobra R\$10 por km, para transportar um vagão até uma distância de 200km, cobrando ainda R\$8 por cada km que exceda a 200. Além disso, essa mesma companhia cobra uma taxa de serviço de R\$1.000 por vagão, independentemente da distância a percorrer. Determine a função que representa o custo para transportar um vagão a uma distância de $x \ km$ e esboce seu gráfico. Essa função é contínua em x = 200?
- 13. Uma fábrica é capaz de produzir 15.000 unidades de um certo produto, em um turno de 8 horas de trabalho. Para cada turno de trabalho, sabe-se que existe um custo fixo de R\$2.000,00, relativo ao consumo de energia elétrica. Supondo-se que, por unidade produzida, o custo variável, dado o gasto com matéria prima e salários, é de R\$2,00, determine a função que representa o custo total para a fabricação de x unidades e esboce seu gráfico. A função encontrada é contínua para $0 \le x \le 45.000$?
- 14. Um estacionamento cobra R\$3 pela primeira hora, ou parte dela, e R\$2 por hora sucessiva, ou parte dela, até o máximo de R\$10. Esboce o gráfico do custo do estacionamento como uma função do tempo decorrido e analise as descontinuidades dessa função.
- 15. Prove que a equação $x^5 + x + 1 = 0$ tem ao menos uma raiz no intervalo [-1, 0].

- 16. Prove que a equação $x^3 4x + 2 = 0$ admite três raízes reais e distintas.
- 17. Considere a função f definida por: $f(x) = \begin{cases} x^2 + 2, \text{ se } -2 \le x < 0 \\ -x^2 2, \text{ se } 0 \le x \le 2 \end{cases}$. Mostre que não existe um número α no intervalo [-2,2] tal que $f(\alpha)=0$. Isto contradiz o corolário do Teorema do valor Intermediário?
- 18. Quais das seguintes afirmações sobre a função y = f(x) ilustrada abaixo são verdadeiras e quais são falsas?
 - (a) $\lim_{x\to 0} f(x)$ existe.
 - (b) $\lim_{x \to 0} f(x) = 0$.
 - (c) $\lim_{x \to 0} f(x) = 1$.
 - (d) $\lim_{x \to 1} f(x) = 1$.
 - (e) $\lim_{x \to 1} f(x) = 0$.
 - (f) $\lim_{x\to a} f(x)$ existe no ponto $a \in (-1,1)$.

- 19. Explique por que os limites abaixo não existem.
- (b) $\lim_{x \to 1} \frac{x}{x-1}$ (c) $\lim_{x \to -2} \frac{x+3}{(x-1)(x+2)}$ (d) $\lim_{x \to \infty} \frac{x^2+3}{x}$

RESPOSTAS & SUGESTÕES

EXERCÍCIOS COMPLEMENTARES 3.1

- 1. (a) -9 (b) 3/2 (c) -7 (d) -1/2 (e) 4 (f) -1/3 (g) 4/3 (h) 1/6 (i) 1 (j) 4 (k) $1/3\sqrt[3]{4}$
 - (1) 0 (m) $1/(3-\sqrt{2})$ (n) -32 (o) 1/2 (p) 1/3.
- 2. Nos dois casos, usaremos uma mudança de variável.
 - (a) Com u = 3x, tem-se $\lim_{x \to 0} \frac{f(3x)}{x} = 3 \lim_{u \to 0} \frac{f(u)}{u}$.
 - (b) Faça $u = x^2$ e encontre $\lim_{x \to 0} \frac{f(x^2)}{x} = \pm \lim_{u \to 0} \frac{\sqrt{u}f(u)}{u}$.
- 3. 4 e -2.
- 4. 5.

- 5. 1.
- 6. Use a relação $0 \le |f(x) \cdot g(x)| \le M |f(x)|$ e a propriedade do Confronto.
- 7. A função $g\left(x\right)$ não tem limite em x=0 e $\lim_{x\to 0}\left[x^{2}g\left(x\right)\right]=0.$
- 8. Veja a tabela.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
$\lim_{x \to a^{-}} f\left(x\right)$	$-\infty$	$+\infty$	$+\infty$	-4	$2\sqrt{5}/5$	-1	$-\sqrt{2}$	-1/6	-2	-1/4
$\lim_{x \to a^+} f(x)$	$+\infty$	$+\infty$	$-\infty$	4	$2\sqrt{5}/5$	1	$\sqrt{2}$	1/6	2	1/4

- 9. Quando $x \to 2^+$ o limite existe e vale 0. Quando $x \to 2^-$ o limite não existe, porque a função não está definida à esquerda de x = 2.
- 10. Veja a tabela.

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)
∞	$-\infty$	∞	∞	∞	$-\infty$	∞	$-\infty$	$-\infty$	∞	∞	-1	∞	$-\infty$	1	$-\infty$

11. Veja a tabela.

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)
∞	∞	∞	$-\infty$	$-\infty$	∞	5/6	5/6	0	∞	5/6	$-\infty$	$-\infty$	-1/2	-1

EXERCÍCIOS COMPLEMENTARES 3.2

- 1. (a) F (b) F (c) V
- 2. $\lim_{x\to 1} f(x) = 2$ e f(1) = 3. Logo, f é descontínua em a = 1.
- 3. Como f é contínua em a = 1, devemos ter f(1) = -1.
- 4. (a) k = 12 (b) $k = \sqrt{3}/6$.
- 5. f é descontínua em x=-1, porque $f\left(-1\right)=2$ e $\lim_{x\to-1}f\left(x\right)=-1$. A função é contínua em x=0.
- 6. Considere, por exemplo, a função f definida assim: f(x) = x, para $x \neq 2$ e f(2) = 0.
- 7. x = 3 é a única descontinuidade de f.
- 8. Use a Propriedade do Confronto.
- 9. (a) sim (b) sim (c) não (d) não.
- 10. (a) 3 (b) não existe (c) 3 (d) 4 (e) sim (f) não.

- 11. Se $\alpha = 15$, o limite será -1.
- 12. Se $x \le 200$, o custo C(x) é determinado em reais por C(x) = 1.000 + 10x. O custo para uma distância de 200 km é, portanto, C(200) = R\$3.000. Se a distância excede 200 km, isto é, se x > 200, então o custo total será dado por C(x) = 3.000 + 8(x 200). Resumindo, temos: C(x) = 1000 + 10x, se $0 < x \le 200$, e C(x) = 1400 + 8x, para x > 200. Essa função é contínua em x = 200.
- 13. Se $0 \le x \le 15000$, um único turno de trabalho será suficente e, assim, C(x) = 2000 + 2x. Se $15000 < x \le 45000$, então a fábrica deverá operar em 3 turnos e, nesse caso, C(x) = 6000 + 10x. Nesse intervalo a função custo é descontínua.
- 14. As descontinuidades ocorrem nos instantes t = 1, t = 2, t = 3 e t = 4
- 15. Basta observar que f(-1) < 0 e que f(1) > 0. A conclusão segue do Teorema do Valor Intermediário.
- 16. Use o Teorema do Valor Intermediário para a função f(x), nos intervalos [-3,0], [0,1] e [1,2].
- 17. Não. Como a função não é contínua em [-2, 2], o fato não contradiz o resultado citado.
- 18. V, V, F, F, F, V.
- 19. Em cada caso, note que os limites laterais, quando existem, são diferentes.