Lab 3: Cell Characterization using Spectre

Connor Murphy

TA Sina

ECEN454-504

2/25/2022

Introduction:

In this lab session you will be required to characterize the standard cells that you have used in the design of the pipelined adder so far. Although cell characterization includes a wide number of parameters such as propagation delay, power, area, timing constraints in the case of sequential elements, input capacitance and global parameters like PVT(Process, Voltage, Temperature), corner selection, etc. In this lab you will be dealing only with the propagation delay and input capacitance of a standard cell by performing circuit simulations at the transistor level.

Results:

Inverter:

1.

2.

3.

Falling Delay Rising Delay Error: (Difference of Capacitance values delays/falling delay) 3.534% 100p -481p -498p -131p -144p 9.92% 20p 25 -153p -166p 8.49% 30 -175p 7.42% -188p

35	-197p	-210p	6.59%
40	-219p	-232p	5.93%
45	-240p	-255p	6.25%
50	-262p	-276p	5.34%
55	-284p	-297p	4.57%
60	-306p	-321p	4.90%
65	-329p	-325p	4.86%
70	-351p	-368p	4.84%
75	-373p	-389p	4.28%
80	-393p	-410p	4.32%

4.

Sink capacitance:

Frequency(MHz)	Ifrequency(uA)	Capacitance(fF)
100	1.58	2.515
200	3.16	2.515
250	3.95	2.515
300	4.73	2.509
400	6.31	2.511
500	7.89	2.511
600	9.47	2.512
700	11.0	2.501
800	12.6	2.507

900	14.2	2.511
Sink Capacitance: 2.511fF		

Capacitance values(fF)	Rising Delay	Falling Delay	Error: (Difference of delays/falling delay)
1	-38.6p	-54.9p	42.23%
5	-74.8p	-87.2p	16.58%
10	-109p	-116p	6.42%
20	-170p	-172p	1.18%
25	-200p	-200p	0.00%
30	-232p	-227p	2.20%
40	-293p	-284p	3.17%
50	-353p	-341p	3.52%
60	-416p	-395p	5.32%
70	-476p	-451p	5.54%
75	-506p	-478p	5.86%
80	-535p	-505p	6.14%
85	-567p	-535p	5.98%
90	-598p	-562p	6.41%
100	-658p	-617p	6.65%

XOR:

Capacitance	Rising Delay	Falling Delay	Error: (Difference of
values(fF)			delays/falling delay)
1	-41.3p	-51.3p	24.21%
5	-70.4p	-81.7p	16.05%
10	-103p	-117p	13.59%
20	-166p	-182p	9.64%
25	-197p	-214p	8.63%
30	-228p	-247p	8.33%
40	-290p	-311p	7.24%
50	-351p	-374p	6.55%
60	-412p	-441p	7.40%
70	-473p	-503p	6.34%
75	-504p	-537p	6.55%
80	-535p	-569p	6.36%
85	-566p	-599p	5.83%
90	-596p	-633p	6.21%
100	-656p	-696p	6.10%

