Раздел II. Электричество и магнетизм. Глава 10. Силовое действие магнитного поля.

1. <u>Сила Лоренца</u> – сила, с которой магнитное поле действует на движущиеся заряды.

$$\overline{F}_B = q[\overline{v} \times \overline{B}]$$

Так как $\overline{F}_{\scriptscriptstyle B} \perp \overline{v}$, то она не производит работы — не меняет кинетической энергии — не меняет величины скорости, а меняет только направление скорости. Ускорение частицы будет чисто нормальным.

а) $\overline{v} \perp \overline{B} = const$. Частица равномерно движется по окружности с нормальным ускорением

б) $\overline{v} \perp \overline{B} = const$. Частица движется по спирали

2. <u>Сила Ампера</u> – сила, с которой магнитное поле действует на элемент тока.

 $d\overline{F} = n S dl \quad q[\overline{v} \times \overline{B}] =$ $= q n v S[d\overline{l} \times \overline{B}] = I[d\overline{l} \times \overline{B}]$ n S dl - число движущихся зарядов

т.к.
$$d\bar{l} \parallel \bar{v}$$
 , то $dl \cdot \bar{v} = v \cdot d\bar{l}$

Закон Ампера $\overline{d\overline{F}} = I[d\overline{l} \times \overline{B}]$ Опыт Ампера

$$B_{1} = \frac{\mu_{0} I_{1}}{2\pi b}$$

$$dF = I_{2} dl \cdot B_{1} = \frac{\mu_{0} I_{1} I_{2}}{2\pi b} dl$$

$$\frac{dF}{dl} = \frac{\mu_{0} I_{1} I_{2}}{2\pi b}$$

3. Контур с током в однородном магнитном поле

 $(\overline{B} = const)$

а) Сила действующая на контур с током в однородном

поле равна 0, так как

$$\overline{F} = \oint_{\Gamma} I[d\overline{l} \times \overline{B}] = I[(\oint_{\Gamma} d\overline{l}) \times \overline{B}] = 0$$

$$\overline{F} = 0$$

б) Момент силы

$$\overline{\overline{M}} = \oint_{\Gamma} [\overline{r} \times d\overline{F}] = \oint_{\Gamma} [\overline{r} \times I[d\overline{l} \times \overline{B}]] = [\overline{P}_{m} \times \overline{B}]$$

$$\overline{\overline{M}} = [\overline{P}_{m} \times \overline{B}]$$

 Γ де $\overline{P}_{\scriptscriptstyle m} = I\,S\,\overline{n}\,$ — магнитный момент контура с током,

 \overline{n} единичный вектор \perp плоскости контура и направленный по буравчику.

Если $\overline{P}_m \parallel \overline{B}$, то $\overline{M} = 0 \implies$ существует два положения равновесия:

$$\uparrow$$
 \uparrow - устойчивое равновесие \overline{P}_m \overline{B}

↑ ↓ - неустойчивое равновесие

4. Работа, совершаемая силами Ампера, при перемещении контура с током в магнитном поле (контур любой, поле стационарное)

$$dA = I d\Phi$$

$$\Phi = \int_{S} \overline{B} \cdot d\overline{S}$$

 $\Phi = \int\limits_{S} \overline{B} \cdot d\overline{S}$ – поток магнитной индукции, пронизывающий контур.

Пример

Вопросы:

- 1. Что такое сила Лоренца?
- 2. Параметры траектории при движении заряда в однородном магнитном поле.
- 3. Что такое сила Ампера?
- 4. Сила, действующая на контур с током в однородном магнитном поле.
- 5. Момент силы, действующей на контур с током в однородном магнитном поле.
- 6. Работа, совершаемая силами магнитного поля, при перемещении контура с током в стационарном магнитном поле.