IEEE International Conference On Multimedia and Expo (ICME) 2018

RAM: A Region-Aware Deep Model for Vehicle Re-Identification

Xiaobin Liu¹, Shiliang Zhang¹, Qingming Huang², Wen Gao¹ ¹School of Electronic Engineering and Computer Science, Peking University, Beijing, 100871, China ²School of Computer and Control Engineering, University of Chinese Academy of Sciences, China xbliu.vmc, slzhang.jdl, wgao }@pku.edu.cn, qmhuang@ucas.ac.cn

Abstract

- Vehicles of the same model and color commonly share similar global appearance.
- Some local regions may be more distinctive for vehicle Re-ID compared with global appearance.
- We propose a Region-Aware deep Model (RAM) to jointly learn global and regional features. This embeds detailed visual cues in local regions.
- Color and model cues are additionally used to jointly train the deep model. This fuses more cues for training and results in more discriminative global and regional features.
- Experiments on two large-scale vehicle Re-ID datasets, i.e., VeRi and VehicleID, show RAM achieves promising performance.

Different vehicles with similar global appearance. The local differences are highlighted with red circles.

RAM structure Attribute branch Attributes classifier Conv branch Shared convolutional layers classifier BN branch Region branch classifier (1024)

- Conv branch extracts **global** features as previous works do.
- BN branch embeds a BN layer before pooling layer to extract complementary global features.
- Region branch extracts regional features from three overlapped parts of feature maps.
- Attribute branch extracts attribute features learned by attributes classifiers.

Model training

We train the model in a step-by-step manner.

Step-1 first trains the baseline model only having the Conv branch.

Step-2 adds the BN branch to the baseline model. Model trained in this step is denoted as BN.

Step-3 further adds the Region branch to model BN. Model trained in this step is denoted as BN+R.

Step-4 adds Attribute branch to model BN+R. This final model is denoted as RAM.

Experiments

Performance comparison of features learned by different models on VeRi.

	<u> </u>		
Models	mAP	Top-1	Top-5
Baseline	0.550	0.848	0.931
BN	0.581	0.871	0.940
BN+R	0.609	0.887	0.941
RAM	0.615	0.886	0.940

Models		Top-1		Top-5		
	Small	Medium	Large	Small	Medium	Large
Baseline	0.694	0.673	0.632	0.892	0.820	0.795
BN	0.722	0.705	0.666	0.904	0.853	0.832

Performance comparison of features learned by

0.747 0.720 BN+R0.674 0.908 0.863 0.842 0.723 0.915 0.752 0.677 0.845

different models on VehicleID.

3. Comparison with recent works on *VeRi*.

Models	mAP	Top-1	Top-5
FACT[14]	0.199	0.597	0.753
FPSS[4]	0.278	0.614	0.788
SCPL[5]	0.583	0.835	0.900
OIF[6]	0.480	0.659	0.877
OIF+SF[6]	0.514	0.683	0.897
RAM	0.615	0.886	0.940

Query

4. Comparison with recent works on *VehicleID*.

Models	Top-1			Top-5		
	Small	Medium	Large	Small	Medium	Large
VGGT[3]	0.404	0.354	0.319	0.617	0.546	0.503
VGGCCL[3]	0.436	0.370	0.329	0.642	0.571	0.533
MD+CCL[3]	0.490	0.428	0.382	0.735	0.668	0.616
OIF	_	_	0.670	_	-	0.829
RAM	0.752	0.723	0.677	0.915	0.870	0.845

Examples of returned images on *VehicleID* by *RAM* (in the first line) and *baseline* (in the second line):

Query

Query