Notas de aula de Matemática Finita Professora Márcia – Janeiro de 2021

UFRJ - 2020/1

Princípio da Inclusão-Exclusão

Este texto contém duas provas distintas do Princípio da Inclusão-Exclusão, a primeira, por indução e a segunda, poderá ser melhor apreciada após o estudo do Teorema Binomial, no último encontro deste período de 12 semanas. É um texto complementar as aulas e ao material do livro.

Além disso, apresenta uma pequena lista de exercícios que poderão ser feitos ao longo dos estudos das configurações, alguns também estão no livro.

O Princípio da Inclusão-Exclusão

Teorema Se A_i , $1 \le i \le n$, são subconjuntos de um conjunto universo finito A_i , então

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}|$$

$$- \sum_{i,j} |A_{i} \cap A_{j}|$$

$$+ \sum_{i,j,k} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \ldots +$$

$$(-1)^{n-1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n}|$$
(1)

onde a soma $\sum_{i,j} |A_i \cap A_j|$ é tomada sobre todas os subconjuntos de dois elementos do conjunto $\{1,2,\ldots,n\}$, a soma $\sum_{i,j,k} |A_i \cap A_j \cap A_k|$ é tomada sobre todos os subconjuntos de três elementos do conjunto $\{1,2,\ldots,n\}$ e assim por diante, até todo o conjunto $\{1,2,\ldots,n\}$ ser considerado.

Prova por indução no número de subconjuntos

O teorema é claramente verdadeiro para n=1 e, vimos em aula que é verdadeiro para n=2 e, inclusive, para n=3.

Assuma, como hipótese de indução, que o teorema é verdadeiro para quaisquer $k,\ 1 \le k \le n$, subconjuntos de A.

Suponha, que temos n+1 conjuntos $A_1, A_2, \ldots, A_n, A_{n+1}$, tais que $A_i \subset A$, $1 \le i \le n+1$ e $n \ge 3$. Vamos mostrar que a fórmula (1) é verdadeira quando substituímos n por n+1.

Considere $A_1 \cup A_2 \cup \ldots \cup A_n \cup A_{n+1}$ como a união dos conjuntos $A_1 \cup A_2 \cup \ldots \cup A_n$ e A_{n+1} . Então, como a fórmula (1) é verdadeira para dois conjuntos, temos:

$$|(A_1 \cup A_2 \cup \ldots \cup A_n) \cup A_{n+1}| = |A_1 \cup A_2 \cup \ldots \cup A_n| + |A_{n+1}| - |(A_1 \cup A_2 \cup \ldots \cup A_n) \cap A_{n+1}|.$$

Usando o fato que a interseção distribui sobre a união, temos que

$$(A_1 \cup A_2 \cup \ldots \cup A_n) \cap A_{n+1} = (A_1 \cap A_{n+1}) \cup (A_2 \cap A_{n+1}) \cup \ldots \cup (A_n \cap A_{n+1}).$$

Logo,

$$|(A_1 \cup A_2 \cup \ldots \cup A_n) \cup A_{n+1}| = |A_1 \cup A_2 \cup \ldots \cup A_n| + |A_{n+1}| - |(A_1 \cap A_{n+1}) \cup (A_2 \cap A_{n+1}) \cup \ldots \cup (A_n \cap A_{n+1})|.$$
(2)

Pela hipótese de indução temos que

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}|$$

$$- \sum_{i,j} |A_{i} \cap A_{j}|$$

$$+ \sum_{i,j,k} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \ldots +$$

$$(-1)^{n-1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n}|$$
(3)

e também temos que

$$|(A_{1} \cap A_{n+1}) \cup (A_{2} \cap A_{n+1}) \cup \ldots \cup (A_{n} \cap A_{n+1})| = \sum_{i=1}^{n} |A_{i} \cap A_{n+1}| - \sum_{i,j} |(A_{i} \cap A_{n+1}) \cap (A_{j} \cap A_{n+1})| + \ldots + (-1)^{n-1} |(A_{1} \cap A_{n+1}) \cap (A_{2} \cap A_{n+1}) \cap \ldots \cap (A_{n} \cap A_{n+1})|.$$
(4)

Substituindo as equações (3) e (4) em (2) e fazendo simplificações do tipo

$$(A_i \cap A_{n+1}) \cap (A_i \cap A_{n+1}) \cap (A_k \cap A_{n+1}) = A_i \cap A_i \cap A_k \cap A_{n+1}$$

temos

$$|(A_{1} \cup A_{2} \cup \ldots \cup A_{n}) \cup A_{n+1}| = (\sum_{i=1}^{n} |A_{i}| - \sum_{i,j} |A_{i} \cap A_{j}| + \sum_{i,j,k} |A_{i} \cap A_{j} \cap A_{k}| + \ldots + (-1)^{n-1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n}|) + |A_{n+1}| - (\sum_{i=1}^{n} |A_{i} \cap A_{n+1}| - \sum_{i,j} |A_{i} \cap A_{j} \cap A_{n+1}| + \ldots + (-1)^{n-1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n} \cap A_{n+1}|)$$

e, reagrupando nos somatórios os conjuntos que são interseção de $1,2,\ldots,n,n+1$ conjuntos, temos

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n} \cup A_{n+1}| = \sum_{i=1}^{n+1} |A_{i}|$$

$$- \sum_{i,j} |A_{i} \cap A_{j}|$$

$$+ \sum_{i,j,k} |A_{i} \cap A_{j} \cap A_{k}|$$

$$+ \ldots +$$

$$(-1)^{n} |A_{1} \cap A_{2} \cap \ldots \cap A_{n} \cap A_{n+1}|$$

que é exatamente a equação (1) substituindo-se n por n+1.

A forma de apresentação mais comum do PIE é obtida utilizando a Lei de De Morgan:

$$\overline{A_1} \cap \overline{A_2} \cap \ldots \cap \overline{A_n} = \overline{A_1 \cup A_2 \ldots A_n}.$$

Assim temos:

Corolário Se A_i , $1 \le i \le n$, são subconjuntos de um conjunto universo finito A, então

$$|\overline{A_1} \cap \overline{A_2} \cap \ldots \cap \overline{A_n}| = |A| - |A_1 \cup A_2 \cup \ldots \cup A_n| = |A|$$

$$-\sum_{i=1}^n |A_i|$$

$$+\sum_{i,j} |A_i \cap A_j|$$

$$-\sum_{i,j,k} |A_i \cap A_j \cap A_k|$$

$$+\ldots +$$

$$(-1)^n |A_1 \cap A_2 \cap \ldots \cap A_n|.$$

Prova utilizando o Teorema Binomial

Esta prova segue a mesma ideia que usamos para os casos n=2 e n=3, mostrando que todo elemento de $A_1 \cup A_2 \cup \ldots \cup A_n$ é contado exatamente uma vez em

$$\sum_{i=1}^{n} |A_i| - \sum_{i,j} |A_i \cap A_j| + \sum_{i,j,k} |A_i \cap A_j \cap A_k| + \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n|. \quad (*)$$

Suponha que um elemento $x \in A_1 \cup A_2 \cup \ldots \cup A_n$ está em exatamente $m \ (m>0)$ dos conjuntos. Sem perda de generalidade, vamos supor que $x \in A_1, \ x \in A_2, \ldots, x \in A_m$, e $x \not\in A_{m+1}, \ldots, x \not\in A_n$. Então x será contado exatamente uma vez em cada um dos termos $|A_i|$ para $i=1,\ldots,m$, em outras palavras, x será contado $\binom{m}{1}$ vezes em $\sum_{i=1}^n |A_i|$.

Mais ainda, x será contado $\binom{m}{2}$ vezes em $\sum_{i,j} |A_i \cap A_j|$ pois existem $\binom{m}{2}$ pares de conjuntos A_i, A_j onde x está tanto em A_i quanto em A_j .

Da mesma forma, x é contado $\binom{m}{3}$ vezes em $\sum_{i,j,k} |A_i \cap A_j \cap A_k|$ pois existem $\binom{m}{3}$ combinações A_i, A_j, A_k onde $x \in A_i, x \in A_j$ e $x \in A_k$. Contando desta maneira, temos que x é contado $k = \binom{m}{1} - \binom{m}{2} + \ldots + (-1)^{m-1} \binom{m}{n}$ vezes em (*).

Agora, vamos mostrar que k=1. Expandindo $(1-1)^m$ pelo Teorema Binomial, temos

$$0 = (1-1)^m = {m \choose 0} - {m \choose 1} + {m \choose 2} - \dots + (-1)^m {m \choose n}$$

ou seja,

$$0 = \binom{m}{0} - k$$

Usando o fato que $\binom{m}{0} = 1$, temos que k = 1.

Exercícios

- 1. Conhecendo o diagrama de Venn para 4 conjuntos, abaixo:
 - (a) observe que ele tem exatamente 16 regioões
 - (b) prove, utilizando a ideia dada em aula, o PIE para quatro conjuntos.
 - (c) visualize a ideia da prova por indução sendo aplicada para n+1=4.

- 2. Detemine a quantidade de números naturais menores que 4212 que não são divisíveis nem por 2, nem por 3 e nem por 5.
- 3. Encontre o número de soluções em inteiros não-negativos da equação

$$x_1 + x_2 + x_3 + x_4 = 23$$
 com $x_1 \le 10$, $x_2 \le 8$, $x_3 \le 2$ e $x_4 \le 20$.

Não esqueça de descrever os conjuntos S, S_1 , S_2 , S_3 e S_4 .

Determine quais regiões no diagrama dado são vazias e, nas outras, exiba um elemento que pertence a exatamente aquela região.