Nombres et intervalles

Les nombres apparaissent très tôt dans l'histoire de l'humanité. Pour mémoire, le calcul a été inventé avant l'écriture (il y a 20 000 ans mais certains disent 35 000 et d'autres plus). Il s'agissait de compter avec des cailloux (calculus en latin) afin d'évaluer des quantités entières.

1. Ensembles de nombres

1.1 Ensemble des entiers naturels \mathbb{N}

Richard Dedekind 1831/1916

Définition 1.1

- L'ensemble des entiers naturels se note $\mathbb{N} = \{0; 1; 2; 3; 4; \ldots\}$: cet ensemble a été noté \mathbb{N} en 1888 par Richard Dedekind (pour « nummer » qui signifie numéro en allemand).
- C'est l'ensemble des nombres positifs qui permettent de **compter** une collection d'objets.
 - On note \mathbb{N}^* ou $\mathbb{N} \{0\}$ l'ensemble des entiers naturels non nuls.

Exemples et contre-exemples :

1.2 Ensemble des entiers relatifs \mathbb{Z}

Définition 2.1

- L'ensemble des nombres entiers relatifs est $\mathbb{Z} = \{\ldots; -2; -1; 0; 1; 2; 3; \ldots\} : \mathbb{Z}$ qui est la première lettre du mot « zahl » qui signifie nombre en allemand.
- Il est composé des nombres entiers naturels et de _____
- En particulier, l'ensemble \mathbb{N} est **contenu** (ou inclus) dans \mathbb{Z} , ce que l'on note « $\mathbb{N} \subset \mathbb{Z}$ ».

Exemples et contre-exemples :

1.3 Ensemble des nombres décimaux \mathbb{D}

Définition 3.1

Les nombres décimaux sont les nombres qui s'écrivent comme quotient d'un entier par 1, 10, 100, 1000 et plus généralement par 10^k où k est un entier naturel.

Ce sont les nombres dont l'écriture décimale n'a qu'un nombre limité de chiffres après la virgule.

Exemples et contre-exemples :

1.4 Les nombres rationnels et leur ensemble \mathbb{Q}

Giuseppe Peano 1858/1932

Définition 4.1

Les nombres rationnels sont les nombres qui s'écrivent comme le quotient de deux entiers. Cet ensemble se note $\mathbb Q$ comme « quotiente » en italien, notation apparue en 1895 grâce à **Giuseppe Peano**. On note :

$$\mathbb{Q} = \left\{ \frac{a}{b} \text{ où } a \in \mathbb{Z}, \ b \in \mathbb{Z}^* \right\}$$

Remarques:

- 1. La fraction $\frac{a}{b}$ avec $b \neq 0$ est dite **irréductible** lorsque le numérateur et le dénominateur n'ont pas de diviseurs communs (autres que 1 ou -1).
- 2. La partie décimale d'un nombre rationnel est **infinie et périodique** (se répète) à partir d'un certain rang.
- 3. La division par 0 est **impossible** : l'écriture $\frac{a}{0}$ n'a donc aucun sens.

Exemples et contre-exemples :

1.5 L'ensemble des réels $\mathbb R$

Georg Cantor 1845/1918

Définition 5.1

Dès l'antiquité, on avait découvert l'insuffisance des nombres rationnels. Par exemple, il n'existe pas de rationnel x tel que $x^2 = 2$ on dit que $\sqrt{2}$ est un irrationnel. Ainsi, l'ensemble de tous les nombres rationnels et irrationnels est l'ensemble des **nombres réels** noté \mathbb{R} : notation due à **Georg Cantor**.

Remarque : chaque nombre réel correspond à un unique point de la droite graduée. Réciproquement, à chaque point de la droite graduée correspond un unique réel, appelé **abscisse** de ce point.

1.6 Inclusions d'ensembles

On retiendra le résultat qui suit : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$

Cela suggère donc qu'un entier naturel est un entier relatif qui est lui-même un nombre décimal qui est donc aussi un rationnel et finalement aussi un nombre réel.

2. Intervalles de \mathbb{R} .

2.1 Intervalle et inégalité associée

1 L'ensemble des réels x tels que $a \le x \le b$ est l'intervalle [a;b]:

 ${\bf 2}$ L'ensemble des réels x tels que $a\leqslant x < b$ est l'intervalle $[a\,;\,b[\,:\,$

 $oldsymbol{3}$ L'ensemble des réels x tels que a < x < b est l'intervalle a : b : b : b

4 L'ensemble des réels x tels que $a < x \le b$ est l'intervalle]a;b]:

6 L'ensemble des réels x tels que $x \leqslant a$ est l'intervalle $]-\infty\,;\,a]$:

6 L'ensemble des réels x tels que x < a est l'intervalle $]-\infty$; a[:

1 L'ensemble des réels x tels que x > a est l'intervalle a; $+\infty$:

3 L'ensemble des réels x tels que $x \ge a$ est l'intervalle $[a; +\infty[$:

2.2 Intersection, réunion d'intervalles et inclusion

2.2.1 Intersection

Définition 6.1

Soient I et J deux intervalles de \mathbb{R} . Les réels qui sont à la fois dans l'intervalle I et dans l'intervalle J sont dans l'intervalles I et J:

Si
$$x \in I$$
 et $x \in J$, alors $x \in I \cap J$ (\cap se lit inter)

PAPPLICATION 1.1. Soit I = [2; 5] et J = [4; 9]. Déterminer $I \cap J$.

2.2.2 Réunion

- Définition 7.1 -

Les réels qui sont dans l'intervalle I ou dans l'intervalle J sont dans la réunion des intervalles I et J:

Si
$$x \in I$$
 ou $x \in J$, alors $x \in I \cup J$ (\cup se lit union)

PAPPLICATION 2.1. Soit I = [2; 5] et J = [4; 9]. Déterminer $I \cup J$.

2.2.3 Inclusion

Définition 8.1

Un ensemble A est **inclus** dans un ensemble B lorsque tous les éléments de A appartiennent à B.

On note:

 $A{\subset}B$

Exemple. Tous les pays de la zone euro sont dans l'Union européenne. L'ensemble des pays de la zone euro est **inclus** dans l'ensemble des pays de l'Union européenne.

3. Puissances

3.1 Définition d'une puissance

Définition 9.1

Soit n un entier naturel et a un nombre réel.

• Si
$$n > 0$$
: $a^n = \underbrace{a \times a \times a \times ... \times a}_{nfacteurs}$.

• Pour
$$a \neq 0$$
, $a^{-n} = \frac{1}{a^n} = \underbrace{\frac{1}{a \times a \times a \times \dots \times a}}_{nfacteurs}$.

• Par convention, pour $a \neq 0$, on pose $a^0 = 1$.

Exemples.

1.
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$
.

2. La décomposition en produit de facteurs premiers de 48 peut s'écrire $48=2^4\times 3.$

3.2 Calcul avec les puissances

Propriété Soient a et b sont des nombres réels non nuls; m et n sont des entiers relatifs quelconques (positifs ou négatifs).

$$(1) \ a^m \times a^n =$$

$$(4) (a \times b)^n =$$

$$(2) \ \frac{a^m}{a^n} =$$

$$(5) \left(\frac{1}{a}\right)^n =$$

$$(3) (a^m)^n =$$

(6)
$$\left(\frac{a}{b}\right)^n =$$