Лекция 6: задача прогнозирования, проклятие размерности, переобучение

Демонстрационный пример: что такое прогнозирование?

- Показаны зависимости продаж от каналов рекламы: ТВ, радио и газет— синяя прямая линейной регрессии отдельно для каждого параметра.
- Можно ли спрогнозировать продажи на основе этого всего в совокупности?
- Возможно мы можем сделать лучший прогноз, используя модель

Sales ≈ f(TV, Radio, Newspaper)

M

Демонстрационный пример: обозначения

- Здесь Sales это отклик или целевая переменная, которую мы хотим спрогнозировать. Обычно обозначаем отклик как Y.
- TV это признак или вход; обозначим его как X_1 . Признак Radio как X_2 , и так далее.
- Тогда весь входной вектор можно обозначить как

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

- lacksquare Можно описать всю модель как $Y=f(X)+\epsilon$
- где ϵ отражает ошибки измерения и другие отклонения.

Задача «обучения с учителем»

- Множество «размеченных» примеров (прецедентов):
 - □ обучающая выборка или тренировочный набор:

$$Z = \{(x_i, y_i)\}_{i=1}^n \in X \times Y$$

- □ X: «сигнал», «объект», «ситуация»
- □ Y: «отклик», «прогнозируемая величина»
- Неформальная постановка задачи:

$$f_7: X \to Y$$

■ Два этапа: обучение и прогнозирование

Обучение

no

no

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes

6

3

Assistant Prof

Associate Prof

Dave

Anne

Метод машинного обучения

IF rank = 'professor' OR years > 6 THEN tenured = 'yes'

Оценка и прогнозирование

Типы задач прогнозирования

- Определяются типом допустимых значений «отклика» у_і и той оценкой качества, которая используется для выбора модели
- Бинарная классификация (разделение):
 - □ y_i бинарная, f бинарная функция
- Регрессия:
 - □ у_i вещественное число, f вещественная функция
- Классификация:
 - □ у_і дискретная величина (метка класса), на Y нет порядка, f дискретная функция
- Много-темная (multi-label) классификация:
 - у_і множество неупорядоченных дискретных величин (меток классов), f
 бинарная вектор-функция (і-й разряд «да»/«нет» для і-го класса)
- Порядковый (ординальный) прогноз:
 - □ y_i множество упорядоченных дискретных величин (меток классов), f вещественная вектор-функция (i-й разряд ранг для i-го класса)

Применение методов прогнозирования в задачах ИАД

Прогнози	рование	рад	ип	оснози	рования
1 100111001	PODGINO	PQ			

- Автоматическая классификация и прогнозирование (обучились и применяем модель для решения прикладной задачи)
- □ Выявление и описание основных зависимостей, т.е. как значения характеристик примера влияют на отклик (важны нтерпретируемость и визуализируемость модели)
- Предобработка данных:
 - «Условная» дискретизация (разбиение значений свойств примеров на интервалы с учетом отклика)
 - □ Обработка пропущенных значений (импутация)
- Поиск исключений и артефактов:
 - □ Что не соответствует прогнозу, то аномалия
 - □ Поиск и построение моделей «редких» (или малых) классов
- Области применения:
 - □ Везде, где необходим прогноз или классификация

Что означает, что f(X) дает «хороший» прогноз?

- Имея функцию f можно найти Y для новой точки X = x.
- lacktriangle Мы можем оценить, какая компонента X_j важна в объяснении Y
- В зависимости от сложности функции *f*, мы можем понять как каждый компонент вектора *X* влияет на *Y*.

- Существует ли идеальная f(X)? Какое «хорошее» значение f(X) для выбранного X (например, X = 4)? Может быть много значений Y для X.
 Хорошее значение таково, что f(4) = E(Y|X = 4)
- E(Y|X=4) ожидаемое значение (среднее) из Y для заданного.
- f(x) = E(Y|X = x) называется функцией регрессии.

M

Функция регрессии f(x)

■ Аналогично определяется для вектора X, например:

$$f(x) = f(x_1, x_2, x_3) = E(Y|X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

 Является оптимальным предиктором У относительно среднеквадратичной ошибки прогнозирования: f(x) = E(Y|X = x) это функция которая минимизирует (для нормальной ошибки!)

$$E[(Y - g(X))^2 | X = x]$$

по всем функциям g во всех точках X = x.

- $\epsilon = Y f(x)$ это *несокращаемая* ошибка, обычно существует распределение возможных значений.
- Для любой оценки $\hat{f}(x)$ функции f(x), мы имеем:

$$E[(Y - \hat{f}(X))^{2}|X = x] = \underbrace{[f(x) - \hat{f}(x)]^{2}}_{Reducible} + \underbrace{\operatorname{Var}(\epsilon)}_{Irreducible}$$

v

Другие функции потерь

- Функция потерь $L = Y \times Y \rightarrow R$ характеризует отличие правильного ответа от спрогнозированного
- Примеры:
 - □ Классификация и регрессия:

$$L(y, y') = [y \neq y'], L(y, y') = |y - y'|,$$

$$L(y, y') = (y - y')^{2}, L(y, y') = [|y - y'| > \delta]$$

□ Много-темная классификация:

$$HL = |y\nabla y'|, a\nabla b = (a \cup b) \setminus (a \cap b), \ a \subseteq Y, b \subseteq Y$$

□ Ранжирование:

$$RL = \frac{|\{(l,s) \in y \times \overline{y} : y_l \le y_s\}|}{|y||\overline{y}|}$$

- Оценка качества прогноза:
 - □ Усреднение потерь по множеству примеров

м

Как оценить *f?*

- Обычно мы имеем немного точек с одинаковым X.
- Таким образом мы не можем вычислить E(Y|X=x)!
- Определим

$$\hat{f}(x) = \text{Ave}(Y|X \in \mathcal{N}(x))$$

где N(x) – некоторая окрестность точки x.

- Усреднение по ближайшим соседям может быть достаточно хорошо для малых *p* (число признаков) и больших *N* (число наблюдений).
- Методы ближайших соседей могут плохо работать при больших р.

Метод К ближайших соседей

- Общая схема работы:
 - □ Каждый пример точка в пространстве, все примеры хранятся
 - □ Вводится метрика расстояния с учетом нормирования координат
 - □ Ищется К (от 1 до ...) ближайших соседей
 - Прогноз вычисляется как функция от откликов найденных соседей по одному из алгоритмов: $y^* = F_{y_i}(y_i)$
- Метод KNN:
 - □ Для задачи регрессии отклик считается как среднее по откликам всех соседей:
 - Для классификации выбирается самый частый класс:

$$y^* = \frac{1}{K} \sum_{x_i \in N(x^*)} y_i$$

$$y^* = \underset{c \in C, x_i \in N(x^*)}{\operatorname{arg}} \max \left[\left| y_i = c \right| \right]$$

1

Метод «взвешенных» К ближайших соседей

Метод KWNN:

- □ На базе KNN, но помимо распределения «отклика» учитываются и расстояния до соседей в окрестности
- □ Учет происходит за счет «взвешенного» голосования для классификации:

$$y^* = \underset{c \in C, x_i \in N(x^*)}{\operatorname{arg}} \left[\frac{w_i | y_i = c|}{\sum_{x_j \in N(x^*)} w_i} \right]$$

□ И «взвешенного» среднего для регрессии

$$y^* = \frac{\sum_{x_i \in N(x^*)} w_i y_i}{\sum_{x_i \in N(x^*)} w_i}$$

 весовой коэффициент обратно пропорционален квадрату расстояния или пропорционален корреляции с откликом

Метод К ближайших соседей с адаптивным расстоянием

Метод DANN:

□ На базе KNN, но используется локальный дискриминантный анализ для адаптации метрики расстояния с учетом структуры распределения соседей в окрестности:

Параметры алгоритма:

$$d^{(l)}(x^*, x_i) = (x^* - x_i)^T \sum_{i=1}^{(l)} (x^* - x_i)^T$$

□ K_M – число соседей для оценки метрики́ (нужно побольше)

- □ К число соседей для прогноза (лучше поменьше)
- □ ε «смягчающий» параметр

.

Метод К ближайших соседей с адаптивным расстоянием

Процедура:

- Инициализация метрики единичной матрицей ∑ = I
- 2. Поиск К ближайших соседей вокруг х* в метрике ∑.
- 3. Расчет W взвешенной суммы внутриклассовых ковариационных матриц:

$$W = \sum_{c \in C} \sum_{x_k \in N(x^*), y_k = c} \pi_k (x_k - \overline{x}_c) (x_k - \overline{x}_c)^T$$

4. ... и В - взвешенной суммы межклассовых ковариационных матриц:

$$B = \sum_{K} \pi_{k} (x_{k} - \overline{x})(x_{k} - \overline{x})^{T}$$

Новая метрика:

$$\sum^{(l+1)} = W^{-1/2} [W^{-1/2} B W^{-1/2} + \varepsilon I] W^{-1/2}$$

- 6. Повторить шаги 2-5 заданное число раз
- 7. Применить стандартный KNN

Выбор параметра К

- Важность К:
- k = 1: Результат = квадрат
- *k* = 7: Снова квадрат

■ Выбор *k*:

- \square Если k мал, то чувствительность к шуму, и негладкие границы классов
- □ Если k велико, то окрестность может сильно «задеть» соседний класс, зато гладкие границы При классификации надо использовать нечетный k, чтобы не было «ничьей»
- □ Выбирается кросс-валиадцией или на валидационном наборе
- □ Стандартная эвристика k=sqrt(n)

м

Свойства методов KNN

Основные свойства:
«Ленивый классификатор» - не надо ничего обучать
 Качество классификации зависит, в основном, от структуры данных от параметров в меньшей степени
□ Обязательно нужна хорошая метрика и нормированные атрибуты
Достоинства:
□ Простой и легко реализуемый
□ Один из самых точных
□ Легко адаптируется под сложные типы «откликов», включая ранжирование, многотемность и т.д.
 Можно интегрировать экспертные знания, задавая веса у примеров или параметры у метрики
Недостатки:
«черный ящик» - результат не интерпретируемый совсем
 Достаточно вычислительно трудоемкий, проблема использования индексов для сложных структур X
□ «Проклятие размерности»

Пример (Python)

from sklearn.neighbors import KNeighborsRegressor
from sklearn.datasets import load_diabetes

```
N = 200
data = load_diabetes()
X, X_test = data.data[:N], data.data[N:]
y, y_test = data.target[:N], data.target[N:]
```

```
# weights="uniform" is default
# weights="distance" is for KWNN
# weights as user function: distances -> weight (implement DANN)
KNN = KNeighborsRegressor(n_neighbors=5, weights="distance")
KNN.fit(X, y)
pass
```

```
plt.scatter(range(len(y_test)), y_test, color="blue")
plt.plot(KNN.predict(X_test), color="green")
plt.xlim([100, 150])
```


Пример (Python)

```
KNN = KNeighborsRegressor(n_neighbors=3, weights="distance")
KNN.fit(X, y)
y_pred=KNN.predict(X_test)
rs=pd.DataFrame([y_pred, y_test]).T
rs.sort_values(1,inplace=True)
plt.scatter(range(len(rs[0])), [rs[0]], color="blue")
plt.plot(range(len(rs[1])),rs[1], color="green")
```

```
350 -

300 -

250 -

200 -

150 -

100 -

50 -

0 50 100 150 200 250
```

```
KNN = KNeighborsRegressor(n_neighbors=30, weights="distance")
KNN.fit(X, y)
y_pred=KNN.predict(X_test)
rs=pd.DataFrame([y_pred, y_test]).T
rs.sort_values(1,inplace=True)
plt.scatter(range(len(rs[0])), [rs[0]], color="blue")
plt.plot(range(len(rs[1])),rs[1], color="green")
```


Проклятие размерности

- Ближайшие соседи как правило расположены далеко при больших размерностях.
 - Нам нужно получить значительную часть из N значений y_i , чтобы снизить дисперсию например, 10%.
 - 10% соседей для случая больших размерностей не может быть локализована, так что мы уже можем сделать оценку E(Y|X=x) на основе локального усреднения.

Модельный пример, демонстрирующий проклятие размерности

- r=K/N
- \blacksquare $E_p(r)=r^{1/p}$
- \blacksquare E₁₀(0.01)=0.63
- $E_{10}(0.1)=0.8$

٠

Параметрические модели

Линейная модель представляет собой важный пример параметрической модели:

$$f_L(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

■ Линейная модель определяется р + 1 параметрами

$$\beta_0, \beta_1, \ldots, \beta_p$$
.

- Мы оцениваем параметры на основе подгонки модели на обучающем наборе данных.
- Хотя такие модели почти никогда не показывают очень хорошую точность, но служат хорошей и интерпретируемой аппроксимацией неизвестной истинной функции f(X).

Линейная регрессия

• Задача регрессии:

$$y(x_1,...,x_p) = E(Y | X_1 = x_1,...,X_p = x_p)$$

Уравнение линейной регрессии:

$$f(X) = b_0 + \sum_{j=1}^{p} X_j b_j + \varepsilon$$

- \square $\epsilon = N(0,6^2)$ шум
- □ Y отклик
- \square X=(X₁,..., X_p) регрессоры (предикторы)
- □ b параметры модели
- Линеаризируемые регрессии:
 - □ Степенная ,Экспоненциальная
 - □ Гиперболическая, и другие
- Цель регрессионного анализа:
 - Определение наличия связи между переменными и характера этой связи (подбор уравнения)
 - Предсказание значения зависимой переменной с помощью независимой(-ых)
 - Определение вклада отдельных независимых переменных в вариацию зависимой

$$y = ax_1^{b_1} x_2^{b_2} ... x_p^{b_p} \mathcal{E},$$

$$y = e^{a+b_1x_1+b_2x_2+...+b_px_p+\varepsilon},$$

$$y = (a + b_1 x_1 + b_2 x_2 + ...b_p x_p + \varepsilon)^{-1}$$

Простая линейная регрессия

Предположения:

- Независимость наблюдений
- Выбранное уравнение регрессии (например, линейное) соответсвует истинной зависимости в данных
- Нормальность ошибки (с константной дисперсией по всем наблюдениям)

Базовая модель (Нулевая гипотеза)

- Нулевая гипотеза:
 - □ Регрессионная модель приближает наблюдаемые данные не лучше базовой модели константы (β₁=0)
- Альтернативная гипотеза:
 - Регрессионная модель лучше приближает наблюдаемые данные чем базовая модель константа (β₁≠0)

Проверка предположений модели с помощью графиков остатков

Графики: как остатки зависят от прогноза, от отклика, от предикторов

Графики остатков

r

Множественная линейная регрессия

■ Пример линейной модели с двумя переменными

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$
, где

Y – отклик, X_1 и X_2 предикторы, ε - ошибка, $β_0$, $β_1$, и $β_2$ -параметры

(неизвестные)

Нет зависимости

Есть зависимость

Множественная линейная регрессия

■ В общем случае ищем зависимость как линейную комбинацию *k* предикторов X₁ - X_k:

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k + \varepsilon$$

$$Y=\beta_0+\beta_1X_1+\beta_2X_2+\epsilon$$
 Линейная модель с линейными эффектами

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_4 X_2^2 + \varepsilon$$

Линейная модель с нелинейными эффектами

м

Метод наименьших квадратов и проблема мультиколлинеарности

Оценка ошибки = сумма регрессионных остатков (квадратичная функция потерь):

$$RSS(B) = \sum_{i=1}^{N} (y_i - f(\overline{x}_i))^2 = \sum_{i=1}^{N} (y_i - b_0 - \sum_{i=1}^{p} x_{ij} b_j)^2$$

В матричной форме:

$$RSS(B) = (\overline{y} - XB)^T (\overline{y} - XB)$$

- Единственное оптимальное решение (если матрица данных не сингулярная)
- Недостатки: $B = (X^T X)^{-1} X^T \overline{y}$
 - □ Сингулярная матрица данных из-за коррелированных факторов
 - □ Большое число регрессоров плохая точность и интерпретируемость
- Основные подходы:
 - □ Поиск и удаление зависимых и незначимых факторов
 - □ Использование «смещенных» регуляризированных моделей
 - переход к новым независимым факторам, например, с помощью метода главных компонент

Иллюстрация мультиколлинеарности

- Портятся статистики с оценкой значимости переменных
- Увеличивается вариативность оценки параметров и как следствие ошибка
- Есть тенденция к неограниченному росту коэф.

Пример (Python)

```
from sklearn.linear_model import LinearRegression
```

```
X_2d = X[:, :2]
X_2d_test = X_test[:, :2]
```

```
regr = LinearRegression()
regr.fit(X_2d, y)
pass
```



```
ax = plt.subplot(projection='3d')
ax.scatter(X_2d_test[:, 0], X_2d_test[:, 1], y_test, color="green")
ax.plot_trisurf(X_2d_test[:, 0], X_2d_test[:, 1], regr.predict(X_2d_test), alpha=0.5)
```

Проблемы входных переменных и для KNN и для МНК

Зависимость

Не релевантность отклику

Выхода два: либо преобразование либо исключение

м

Простые методы сокращения размерности

Дано: входные переменные {x1,...,xn} и выходная (числовая или бинарная) у **Задача**: оставить только значимые и независимые хі

Работает в два этапа:

- 1. Уделяет все х_і, где R²(х_і)<Т1 (*удаление незначимых*)
- 2. Forward stepwise регрессия $f(x_{i1},...x_{ik})$ пока $R^2(f(x_{i1},...x_{ik}))-R^2(f(x_{i1},...x_{ik-1}))>T2$ (удаление зависимых)

Преобразования переменных:

- Дискретизация непрерывных
- Группировка категориальных

Пример (Python)

from sklearn.feature_selection import SequentialFeatureSelector, VarianceThreshold

```
KNN = KNeighborsRegressor(n neighbors=5)
VT = VarianceThreshold(threshold=0.002)
X = VT.fit transform(X)
X.shape, X .shape
((200, 10), (200, 9))
# KNN.score(X, y) returns R2 - performed until tol is satisfied
# direction: forward/backward - add or remove features
# for newer scikit-learn versions:
selector = SequentialFeatureSelector(KNN, n features to select="auto", tol=0.5, direction="backward")
# for older scikit-learn versions:
selector = SequentialFeatureSelector(KNN, n features to select=3, direction="backward")
selector.fit(X , y)
X = selector.transform(X )
```

Недостаток – не сохраняет значимости на каждой итерации Возможное решение – наследуемся от модели (KNN) и добавляем в fit или score вывод своих логов

w

Простые методы сокращения размерности

- Unsupervised рассматривали в теме по самооганизации
- Supervised его простая модификация:
 - □ X₁ множество переменных, включенных в модель (изначально пустое),
 - □ X₂ множество переменных, НЕ включенных в модель (изначально все переменные)
 - □ Y отклик
 - □ На каждом делается перенос одной переменной x из X_2 в X_1 , такое чтобы:

$$\min \operatorname{Trace} \left(\mathbf{Y}^{\top} \left(\mathbf{I} - \mathbf{X}_1 \left(\mathbf{X}_1^{\top} \mathbf{X}_1 \right)^{-1} \mathbf{X}_1^{\top} \right) \mathbf{Y} \right)$$

 □ До тех пор, пока не отберется заданное число переменных, либо пока не будет описана заданная пропорция вариации по инф.
 критерию

Проблема недообучения и переобучения

Модельный пример.

- Красные точки наблюдения, синяя поверхность истинная зависимость $income = f(education, seniority) + \epsilon$
- Желтая поверхность линейная модель

$$\hat{f}_L(ext{education}, ext{seniority}) = \hat{eta}_0 + \hat{eta}_1 imes ext{education} + \hat{eta}_2 imes ext{seniority}$$

Плохая точность приближения

Проблема недообучения и переобучения

Модельный пример.

- Более сложные модели (сплайны или полиномиальные регрессии или нейронные сети или еще что-то)
- Справа модель не допускает ошибок на обучающем наборе.
- Это хорошо? Нет!

Переобучение

- Основная проблема методов машинного обучения!!!
- По сути:
 - □ Высокая точность на тренировочном наборе и плохая на тестовом
- Причины:
 - □ Сложность модели: например, для параметрических моделей много степеней свободы (параметров модели) или слишком сложное уравнение
 - □ Шум и выбросы в тренировочной выборке
 - □ Малый объем или неравномерность тренировочной выборки
- Обобщающая способность:
 - □ способность метода машинного обучения правильно прогнозировать «отклик» для объектов и ситуаций, которых не было в тренировочном наборе
 - метод называется состоятельным, если он с большой вероятностью делает маленькую ошибку на данных, которых не было в обучающей выборке
 - □ Как оценить?

Сложность модели

Сложность модели

Сложность модели

Экспериментальная оценка качества модели

- Предположим, что мы строим модель $\hat{f}(x)$ на обучающем наборе данных $\operatorname{Tr} = \{x_i, y_i\}_1^N$ и хотим, чтобы она была наилучшей.
 - □ Мы можем вычислить среднеквадратичную ошибку прогнозирования для *Tr*:

$$MSE_{Tr} = Ave_{i \in Tr}[y_i - \hat{f}(x_i)]^2$$

- Оценка может быть смещена в сторону более сложных моделей.
 - □ Вместо этого мы можем, если возможно вычислить оценку, используя тестовый набор данных $\mathsf{Te} = \{x_i, y_i\}_1^M$:

$$MSE_{Te} = Ave_{i \in Te}[y_i - \hat{f}(x_i)]^2$$

Оценка качества модели (сложная зависимость, много шума)

- Кривая, обозначенная черным цветом, истинные значения.
- Красная кривая на правом рисунке MSE_{Te} , серая кривая MSE_{Tr}.
- Оранжевая, голубая и зеленая кривые соответствуют подгонке моделей различной сложности.
- Простые модели недообучены, сложные модели переобучены

Оценка качества модели (простая зависимость, много шума)

- Простые модели дают высокую обощающую способность
- Сложные модели переобучены

Оценка качества модели (сложная зависимость, мало шума)

- Простые модели недообучены
- Сложные обладают хорошей обобщающей способностью

Некоторые интуитивно понятные компромиссы

- Точность прогноза vs интерпретируемость.
 - Линейные модели легко интерпретируемы, тогда как более гибкие модели как правило нет.
- Хорошее качество подгонки vs переобучение или недообучение.
 - Как определить, в какой момент подгонка наиболее точная?
- Простота vs черный ящик.
 - Мы часто предпочитаем более простую модель с участием меньшего количества переменных по сравнению с прогнозированием черным ящиком с участием их всех.

1

Компромис отклонения и смещения

Пусть мы строим модель $\hat{f}(x)$ на некотором обучающем наборе $\mathit{Tr},$ и пусть (x_0,y_0) - некоторый тестовый образец. Если истинная модель $Y=f(X)+\epsilon$ (f(x)=E(Y|X=x)), то

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon).$$

Заметим, что

Bias
$$(\hat{f}(x_0))$$
] = $E[\hat{f}(x_0)] - f(x_0)$.

Как правило, когда *сложность* $\hat{f}(x)$ увеличивается, дисперсия возрастает, а смещение уменьшается. Таким образом, выбор сложности, основанный на средних ошибках на тестах, представляет собой *компромисс отклонения смещения*.

М

MSE декомпозиция (примеры)

$$D = f(x) + \varepsilon$$

D – наблюдения, f(.) – истинная зависимость, ϵ – шум $N(0,\sigma)$

•K-NN:

$$\hat{D}(x) = \frac{1}{k} \sum_{i \in N_k(x)} D_i, Var(D) = \sigma^2, Var(\hat{D}(x)) = \frac{1}{k^2} \sum_{i \in N_k(x)} Var(D_i) = \frac{\sigma^2}{k},$$

$$\left[E(\hat{D}(x)) - f(x)\right]^2 = \left[\frac{1}{k} \sum_{i \in N_k(x)} E(D_i) - f(x)\right]^2,$$

$$MSE = \sigma^2 + \frac{\sigma^2}{k} + \left[\frac{1}{k} \sum_{i \in N_k(x)} f(x_i) - f(x) \right]^2$$

•Линейная регрессия:

$$\hat{D}(x) = x^T (X^T X)^{-1} X^T \overline{D}, Var(D) = \sigma^2, Var(\hat{D}(x)) = \frac{p}{N} \sigma^2,$$

$$MSE = \sigma^2 + \frac{p}{N} \sigma^2 + \frac{1}{N} \sum \left[E[\hat{D}(x)] - f(x) \right]^2$$

Компромис отклонения смещения для трех примеров

٧

Качество на обучающем и тестовом наборе

Low

Prediction Error

High

Валидация, кросс-валидация и бутстреппинг

- Эти методы позволяют:
 - оценить ошибки прогнозирования тестового набора
 - □ стандартное отклонение и смещения оценок параметров модели
 - □ выбрать лучшую модель
- Различия между ошибкой тестирования и ошибкой обучения:
 - □ Ошибка тестирования это усредненная ошибка, которая возникает в результате применения метода статистического обучения для прогнозирования отклика на новом наблюдении, которое не было задействовано в процессе обучения.
 - Ошибка обучения вычисляется после применения метода статистического обучения к наблюдениям, используемым в обучении.

10

Применение валидационного набора

 Разделим случайным образом имеющийся набор образцов на две части: обучающую и валидационную выборки.

- Построим модель на обучающем наборе и используем ее для прогнозирования откликов наблюдений в валидационном наборе.
- Полученная ошибка на валидационном множестве дает оценку тестовой ошибки. Ошибка, как правило, оценивается с использованием MSE в случае количественного отклика и ошибки неправильной классификации в случае категориального отклика.

7

Использование валидационного набора данных

Основные методы генерации валидационного набора как и в sampling:

- Случайная выборка
- Стратифицированная выборка (сохраняем распределение выбранных переменых)
- Кластерная выборка (сохраняем пропорции кластеров)

Оценка моделей

Training Data

Validation Data

Оценка качества моделей на валидационном наборе

Сложность Валидационная модели оценка

Выбор модели

Training Data

Самая простая модель среди самых лчших на валидационном наборе

Сложность Валидационая модели

оценка

Пример (Python)

```
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
```

```
plt.hist(iris.target, color="red")
plt.hist(y_train, color="green")
plt.hist(y_test, color="blue")
pass
```

Для кластерной выборки передаем в качестве stratify метки кластеров

Пример

- Хотим сравнить регрессионные модели с разными степенями полиномима
- Разделим случайным образом 392 наблюдения на две группы: обучающий набор, содержащий 196 объектов и валидационный набор, содержащий оставшиеся 196 объектов.

Слева показано одиночное разбиение, справа - множественное

Недостатки подхода применения валидационного набора

- Если плохое разбиение:
 - □ Валидационная оценка ошибки тестирования может сильно варьироваться в зависимости от того, какие именно наблюдения включены в обучающий наборе, а какие в валидационный.
- Не вся информация используется при обучении:
 - □ При валидационный подходе только подмножество наблюдений (те, которые включены в обучающий набора, а не в валидационный) используются для построения модели.
- Чрезмерный оптимизм:
 - □ Ошибка на валидационном наборе может иметь тенденцию переоценивать ошибку тестирования

Кросс-валидация

- *Широко используемый подход* для оценки ошибки тестирования.
- Оценки могут быть использованы для:
 - □ выбора оптимальной модели,
 - □ оценки тестовой ошибки результирующей выбранной модели.
- Идея разделить данные на К частей равного размера. Мы удаляем часть k, строим модель на оставшихся частях, а затем получаем прогнозы для удаленной k-ой части.

Validation Train Train Train Train

■ Это делается в свою очередь для каждой части *k* = 1, 2, ..., *K*, а затем результаты объединяются.

Кросс-валидация для оценки ошибки

■ Обозначим K частей как $C_1, C_2, ..., C_K$, где C_k - это индексы наблюдений в части k. Есть n_k наблюдения в части k: если N кратно K, то $n_k = n/K$.

Вычислим

$$CV_{(K)} = \sum_{k=1}^{n} \frac{n_k}{n} MSE_k$$

где $\mathrm{MSE}_k = \sum_{i \in C_k} (y_i - \hat{y}_i)^2/n_k$ и \hat{y}_i - подгонка для наблюдения \emph{I} , полученная на данных с удаленной частью \emph{k} .

■ При K = n имеем n папок или кросс-валидацию с попеременным исключением одной из частей (leave-one out cross-validation, LOOCV).

Кросс-валидация для оценки метапараметров и выбора модели

- Зачастую кросс-валидацию используют не для оценки ошибки, а для выбора метапараметров
 - Запускают кросс-валидацию для разных значений метапараметров
 - □ Рассчитывают кросс-валидационные ошибки для каждого варианта
 - □ Выбирают лучшее значение метапараметра по кроссвалидационной ошибке
 - Перестраивают модель на всей выборке с этим значением метапараметра

Кросс-валидация для оценки метапараметров модели

Кросс-валидация и валидация для автотьюнинга метапараметров

Пример (Python)

```
from sklearn.model selection import GridSearchCV
from sklearn.pipeline import Pipeline
iris = load iris()
VT = VarianceThreshold() # Preprocessing
KNN = KNeighborsRegressor() # Regressor
# Combined model - encapsulates all stages
model = Pipeline([("VT", VT), ("KNN", KNN)])
# Parameters to cycle through
# Pipeline parameters are passed as <STAGE> <PARAMETER NAME>
parameters = {"KNN n neighbors": range(2, 11),
              "VT threshold": [0, 0.5]}
# 5-fold cross-validation
GSCV = GridSearchCV(model, parameters, cv=5)
GSCV.fit(iris.data, iris.target)
pass
```

Пример (Python)

```
GSCV.best_params_
{'KNN__n_neighbors': 6, 'VT__threshold': 0}

pred = GSCV.predict(iris.data) # GSCV is equal to the best estimator

plt.scatter(*pd.DataFrame(GSCV.cv_results_["params"]).T.values, c=GSCV.cv_results_["mean_test_score"])
plt.yticks(parameters["VT__threshold"])
plt.gcf().set_size_inches(5, 2)
pass
```


Пример – Grid Search (Python)

```
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.datasets import fetch_california_housing
X, y = fetch_california_housing(return_X y=True)
N = 5000
X, y = X[:N], y[:N]
X.shape, y.shape
((5000, 8), (5000,))
scaler = StandardScaler()
VT = VarianceThreshold() # Preprocessing
KNN = KNeighborsRegressor() # Regressor
# Combined model - encapsulates all stages
model = Pipeline([("scaler", scaler), ("VT", VT), ("KNN", KNN)])
```

Пример – Grid Search (Python)

```
# Parameters to cycle through
# Pipeline parameters are passed as <STAGE> <PARAMETER NAME>
parameters = {"KNN__n_neighbors": range(2, 20),
              "VT threshold": [0, 1]}
# 5-fold cross-validation
GSCV = GridSearchCV(model, parameters, cv=5)
GSCV.fit(X, y)
pass
GSCV.best params
{'KNN__n_neighbors': 4, 'VT__threshold': 0}
pred = GSCV.predict(X) # GSCV is equal to the best estimator
```

Пример – Grid Search (Python)

```
plt.scatter(*pd.DataFrame(GSCV.cv_results_["params"]).T.values, c=GSCV.cv_results_["mean_test_score"])
plt.gcf().set_size_inches(8, 2)
```


.

Пример – Случайный поиск (Python)

```
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint, uniform
```

Пример – Случайный поиск (Python)

```
RSCV.best_params_
{'KNN_n_neighbors': 4, 'VT_threshold': 0.5513147690828912}

pred = RSCV.predict(X) # RSCV is equal to the best estimator
```

plt.scatter(*pd.DataFrame(RSCV.cv_results_["params"]).T.values, c=RSCV.cv_results_["mean_test_score"])
plt.gcf().set_size_inches(8, 2)

M

Пример – Отбор (Python)

```
from sklearn.experimental import enable_halving_search_cv # Required import
from sklearn.model_selection import HalvingGridSearchCV, HalvingRandomSearchCV
```

```
model = Pipeline([("scaler", scaler),
                  ("VT", VarianceThreshold()),
                  ("KNN", KNeighborsRegressor())])
distributions = {"KNN_n_neighbors": randint(2, 20),
                 "VT threshold": uniform(0, 1)}
HRSV = HalvingRandomSearchCV(model, distributions, cv=5,
                             factor=2, # Candidate selection cut-off
                             # Resource increasing during selection:
                             resource="n samples",
                             min_resources=100)
HRSV.fit(X, y)
pass
```

Пример – Отбор (Python)

Размер отвечает за число семплов

Бутсреппинг

- *Бутстреппинг* представляет собой мощный статистический инструмент, который может быть использован для количественной оценки неопределенности, связанной с данным методом статистического обучения.
- Например, он может позволить произвести оценку стандартной ошибки коэффициента или доверительного интервала для этого коэффициента.
- Использование термина бутстреппинг происходит от фразы, чтобы to pull oneself up by one's bootstraps, - цитата из книги «Удивительные приключения барона Мюнхгаузена»

Барон упал на дно глубокого озера. Когда казалось, что все было потеряно, он решил вытащить себя своими собственными силами.

Бутстреппинг

- Подход бутсреппинга позволяет имитировать процесс получения новых случайных наборов данных, так что мы можем оценить дисперсию нашей оценки, не создавая дополнительных образцов.
- Вместо того, чтобы постоянно получать независимые наборы данных, мы получаем различные наборы путем многократной выборки наблюдений из исходного набора *с замещением* (или *с возвращением*).
- Каждый из этих "наборов данных" создается путем выборки с замещением и имеет такой же размер как наш исходный набор данных. В результате некоторые наблюдения могут появляться более одного раза в наборе данных бутстреппинга, а некоторые нет вообще.

Случайная выборка с возвратом

м

Демонстрационный пример с тремя наблюдениями

- Графическая иллюстрация бутсреппингового подхода на маленькой выборке, содержащей из N = 3 наблюдений.
- Каждый бутсреппинговый набор данных содержит *п* наблюдений, отобранных с заменой из исходного набора.
- Каждый такой набор данных начальной используется для получения оценки α

м

Бутстрепинг

- Обозначая первый набор данных бутстреппинга как Z^{*1} , мы используем Z^{*1} , чтобы выполнить новую оценку для α , которую обозначим $\hat{\alpha}^{*1}$
- Эта процедура повторяется B раз для некоторого большого значения B (например, 100 или 1000), чтобы получить B различных наборов данных бутстреппинга $Z^{*1}, Z^{*2}, \ldots, Z^{*B}$, и B соответствующих оценок α : $\hat{\alpha}^{*1}, \hat{\alpha}^{*2}, \ldots, \hat{\alpha}^{*B}$.
- Оценим стандартную ошибку этих оценок бутстреппинга , используя формулу:

$$SE_B(\hat{\alpha}) = \sqrt{\frac{1}{B-1} \sum_{r=1}^{B} \left(\hat{\alpha}^{*r} - \bar{\hat{\alpha}}^* \right)^2}.$$

 Она служит в качестве оценки стандартной ошибки , полученной на исходном наборе данных.

Общая схема бутсрепинга

- В более сложных ситуациях, определение подходящего способа для получения выборок бутстрепинга может потребовать значительных усилий.
- Например, если данные представляют собой временные ряды,
 мы не можем просто выбирать наблюдения с замещением

м

Другие применения бутстрепинга

- В основном используется для получения оценки стандартных ошибок.
- Также обеспечивает приближенные доверительные интервалы для параметра генеральной совокупности.
- Вышеуказанный интервал называется доверительный интервал бутстреппинга. Это самый простой способ (среди многих подходов) для получения доверительного интервала бутстрепинга.
- Используется в багинг ансамблях моделей (BAG = Bootstrap Aggregation)

Как бутстрепинг оценивает ошибку прогнозирования

- При кросс-валидации каждая из *К* папок валидации отличается от других *К 1* папок, используемых для обучения: *перекрытия нет*. Это очень важно для получения результатов.
- Для оценки ошибки прогнозирования с помощью бутстреппинга мы могли бы подумать об использовании каждого набора данных бутстреппинга в нашей обучающей выборке и исходного набора данных как валидационного набора (или наоборот).
 - Но каждая выборка бутстрепинга имеет значительное перекрытие с исходными данными. Около двух третей исходных точек данных появляются в каждой выборке бутстрепинга.
 - Это приведет бутстрепинг к существенному недооцениванию истинной ошибки прогнозирования
- Удаление перекрытия (out of bag)- можно частично решить эту проблему, используя для оценки только те наблюдения, которые не появились (случайно) в текущей выборке бутстрепинга.

Пример (Python)

from sklearn.utils import resample

X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X

	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24

Пример (Python)

```
ITER = 100
SAMPLES = 100
frame = []
for i in range(ITER):
    sample = resample(X, replace=True, n_samples=SAMPLES, stratify=None)
    stat = sample["HouseAge"].mean()
    frame.append(stat)
frame = np.array(frame).flatten()
frame = pd.Series(frame).sort_values()
```

Доверительные интервалы 90% для среднего возраста жилища:

```
frame.quantile(0.05), frame.quantile(0.95)
(26.248, 30.6515)
```

Бутстреп-регрессия (Python)

from sklearn.ensemble import BaggingRegressor

```
features = X[["MedInc", "HouseAge"]]
```

```
estimator.fit(features, y)
pass
```

```
coefs = np.array([x.coef_ for x in estimator.estimators_])
```


Бутстреп-регрессия (Python)

```
pred = np.array([x.predict(features.values) for x in estimator.estimators_]).T
pred.shape

(20640, 100)

plt.plot(np.percentile(pred, q=5, axis=1)[:25], c="blue")
plt.plot(np.percentile(pred, q=95, axis=1)[:25], c="red")
plt.scatter(range(25), estimator.predict(features)[:25], c="green")
```

pass

