Nonlinear Feedback Shift Registers With Maximal Period

Oleksandr Kazymyrov

Selmer Center, Department of Informatics, University of Bergen, Norway Oleksandr.Kazymyrov@uib.no

Spring 2013

Outline

Introduction

 $\textbf{2} \ \, \text{Investigation of} \, \, g \circ f$

lacksquare Generation of M-Sequences

Basic Definitions

Let S be the set of functions in $\mathbb{F}[x_1,\ldots,x_n]/< x_1^2+x_1,\ldots,x_n^2+x_n>$.

Let L be the subset of all linear polynomials in S.

A given $f(x_0,\ldots,x_n)=F(x_0,\ldots,x_{n-1})+x_n$ in S generates an infinite binary sequence $a=(a(0)a(1)\cdots)$ satisfying

$$f(a(k), a(k+1), \dots, a(k+n)) = 0$$
, for $k = 0, 1, 2 \dots$

and initial condition on $a(0), \ldots, a(n-1)$

The period of a is denoted by p(a).

The set of all sequences generated by f is denoted by $\Omega(f)$.

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001) \qquad (p(a_2) = 3)$$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0x_1x_2$
	011

 ${\color{red} \textbf{Figure}: An example of NFSR}$

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001) \qquad (p(a_2) = 3)$$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0 x_1 x_2$
0	011
	11

Figure : An example of NFSR

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001) \qquad (p(a_2) = 3)$$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0x_1x_2$
0	011
	111

Figure : An example of NFSR

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001)$$
 $(p(a_2) = 3)$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0x_1x_2$
0	011
1	111
	11

Figure : An example of NFSR

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000\ 000\dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001)$$
 $(p(a_2) = 3)$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0 x_1 x_2$
0	011
1	111
	110

Figure : An example of NFSR

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001) \qquad (p(a_2) = 3)$$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0x_1x_2$
0	011
1	111
1	110
	10

Figure : An example of NFSR

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001) \qquad (p(a_2) = 3)$$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0 x_1 x_2$
0	011
1	111
1	110
	101

Figure : An example of NFSR

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001)$$
 $(p(a_2) = 3)$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0 x_1 x_2$
0	011
1	111
1	110
1	101
	01

 ${\color{red}\textbf{Figure}}: \ \mathsf{An} \ \mathsf{example} \ \mathsf{of} \ \mathsf{NFSR}$

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001) \qquad (p(a_2) = 3)$$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0 x_1 x_2$
0	011
1	111
1	110
1	101
	011

Figure : An example of NFSR

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001) \qquad (p(a_2) = 3)$$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0 x_1 x_2$
0	011
1	111
1	110
1	101
0	011

Figure : An example of NFSR

$$g = x_0 + x_1 x_2 + x_3$$

$$a_1 = 000 \ 000 \dots = (0)$$
 $(p(a_1) = 1)$

$$a_2 = 001 \ 001 \dots = (001) \qquad (p(a_2) = 3)$$

$$a_3 = 0111 \ 0111 \dots = (0011) \quad (p(a_3) = 4)$$

g	$x_0 x_1 x_2$
0	011
1	111
1	110
1	101
0	011

Figure : An example of NFSR

$$g = x_0 + x_1 x_2 + x_3$$

 $a_1 = 000 \ 000 \dots = (0)$

$$a_2 = 001 \ 001 \dots = (001)$$
 $(p(a_2) = 3)$
 $a_3 = 0111 \ 0111 \dots = (0011)$ $(p(a_3) = 4)$

g	$x_0 x_1 x_2$
0	011
1	111
1	110
1	101
0	011

Figure : An example of NFSR

g	$x_0 x_1 x_2$
0	001
0	010
1	100
0	001

$$\Omega(g) = \{a_1, a_2, a_3\}$$

 $(p(a_1) = 1)$

Basic Definitions

The sequence is called M-sequence if the period equals 2^n .

f generates a periodic sequence iff f is nonsingular

$$f(x_0,\ldots,x_n) = x_0 + F(x_1,\ldots,x_{n-1}) + x_n.$$

If F is linear then f is also linear of the form

$$f(x_0,\ldots,x_n)=x_0+c_1x_1+\ldots+c_{n-1}x_{n-1}+x_n.$$

Outline

Introduction

 $\textbf{2} \ \, \text{Investigation of} \, \, g \circ f$

Nonlinear Product And Representation

Suppose $g(x_0,\ldots,x_m)$ and $f(x_0,\ldots,x_n)$ are polynomials in S. Then the composition $g\circ f$ is presented as

$$g \circ f = g(f(x_0, \dots, x_n), f(x_1, \dots, x_{n+1}), \dots, f(x_m, \dots, x_{n+m})).$$

- Note that $g \circ f \neq f \circ g$ in general.
- The composition $g \circ f$ corresponds to cascade connection of the shift register of g to that of f.

Operations With Composition

Three operations: addition (+), multiplication (\cdot) and composition (\circ) .

$$(x_i) + (x_j) = (x_i + x_j)$$

 $(x_i) \cdot (x_j) = (x_i)(x_j) = (x_i x_j)$
 $(x_i) \circ (x_j) = (x_{j+i})$

Two special cases

$$(x_i) \circ (x_i) = (x_{2i})$$
$$(x_i)(x_i) = (x_i)$$

Distributive properties

$$(x_i) \circ (x_j + x_k) = x_{j+i} + x_{i+k}$$
$$(x_i)(x_j + x_k) = x_i x_j + x_i x_k$$
$$(x_i + x_j) \circ (x_k + x_p) = x_{i+k} + x_{i+p} + x_{k+j} + x_{p+j}$$

Operations With Composition

Nontrivial cases

$$(x_i) \circ (x_j x_k) = x_{i+j} x_{i+k}$$
$$(x_j x_k) \circ (x_i) = x_{i+j} x_{i+k}$$
$$(x_i + x_j) \circ (x_k x_p) = x_{i+k} x_{i+p} + x_{j+k} x_{j+p}$$

$$(x_k x_p) \circ (x_i + x_j) = (x_{k+i} + x_{k+j})(x_{i+p} + x_{j+p}) =$$

= $x_{k+i} x_{i+p} + x_{k+i} x_{j+p} + x_{k+j} x_{i+p} + x_{k+j} x_{j+p}$

$$g = x_0 + x_1 x_2 + x_3$$
$$f = x_0 + x_1$$

$$g \circ f = (x_0 + x_1 x_2 + x_3) \circ (x_0 + x_1) =$$

$$= x_0 + x_1 + (x_1 + x_2)(x_2 + x_3) + x_3 + x_4 =$$

$$= x_0 + x_1 + x_2 + x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_4$$

$$f \circ g = (x_0 + x_1) \circ (x_0 + x_1 x_2 + x_3) =$$

= $x_0 + x_1 x_2 + x_3 + x_1 + x_2 x_3 + x_4$

Shift Operator

Shift operator $\delta^i:S\mapsto S$ is defined by

$$\delta^i f(x_0, \dots, x_n) = f(x_i, \dots, x_{n+i})$$

For $\alpha_i, f \in S$ the polynomial $\sum \alpha_i(\delta^i f)$ is denoted by $P(\delta)f$, where $P(\delta) = \sum \alpha_i \delta^i$.

Order of f

By the order of f, denoted by ord(f), means the highest subscript i for which x_i occurs in f. For f=0 or f=1 the ord(f) equals -1.

Lemma 1. Division Algorithm

Let $g(x_0,\ldots,x_m)\in S$ and $f(x_0,\ldots,x_n)=F(x_0,\ldots,x_{n-1})+x_n\in S$; then there exists unique $P(\delta)=\sum\limits_{i=0}^{m-n}\alpha_i\delta^i$ with $\alpha_i\in S$, $ord(\alpha_i)< n+i$ and unique $r\in S$ with r=0 or ord(r)< n such that $g=P(\delta)f+r$.

Note: if m < n then $P(\delta) = 0$.

Let $g(x_0,\ldots,x_m)\in S$ and $f(x_0,\ldots,x_n)=F(x_0,\ldots,x_{n-1})+x_n$ be arbitrary functions in S, then

$$g = \sum_{i=0}^{m-n} \alpha_i(\delta^i f) + r.$$

If r = 0 then $g = P(\delta)f$ and defined by f||g.

- If f||g and g||h then f||h.
- If f||g then $n = ord(f) \le ord(g) = m$.
- If $g = h \circ f$ then f||g. The converse is always true for $f, g \in L$.

Theorem 1

Let $f=F(x_0,\ldots,x_{n-1})+x_n\in S$ and $g=G(x_0,\ldots,x_{m-1})+x_m\in S$; then f||g if and only if $\Omega(f)\subset\Omega(g)$.

Let L_f be linear polynomial in S of smallest order such that $f \mid\mid L_f$.

Theorem 2

Let f be a nonsingular linear polynomial and $g = x_0 + G(x_1, \ldots, x_{m-1}) + x_m \in S$; then $L_{g \circ f} = L_g \circ L_f$.

Theorem 3

Let $f = F(x_0, ..., x_{n-1}) + x_n \in S$; then there exist a positive integer t such that $f||x_0 + x_t|$.

Corollary 1

Let
$$f=x_0+F(x_1,\ldots,x_{n-1})+x_n\in S$$
; then $p(f)=LCM\{p(a)|a\in\Omega(f)\}.$

Corollary 2

Let $f = x_0 + F(x_1, \dots, x_{n-1}) + x_n \in S$; then f generates M-sequence if and only if $p(f) = 2^n$.

Extra Notations

If a is $\Omega(f)$, then its i-fold translate

$$\rho^{i}(a) = (a(i)a(i+1)\cdots),$$

is also in $\Omega(f)$ for $0 \le i \le p(a) - 1$.

Let P be the set of all periodic sequences. For $f \in S$

$$\theta(f): P \mapsto P$$

$$\theta(f)(a) = b$$

$$b(k) = f(a(k), a(k+1), \dots, a(k+n))$$

for k = 0, 1, 2, ...

Theorem 4

Suppose $f=x_0+F(x+1,\ldots,x_{n-1})+x_n$ and $g=x_0+G(x_1,\ldots,x_{m-1})+x_m$ are in S, and suppose $\Omega(g)$ consists of E cycles. Let a_j $(j=1,\ldots,E)$ be sequences, one from each cycle in $\Omega(g)$, and let C_j be defined by

$$C_j = \bigcup \{ \theta(f)^{-1}(\rho^i(a_j)) | i = 0, 1, \dots, p(a_j) - 1 \}$$

then

- $\Omega(g \circ f) = \bigcup \{C_j | 1 \le j \le E\}$
- $|C_j| = 2^n p(a_j)$
- C_j is closed under ρ , i.e. $\rho(C_j) = C_j$
- if $b \in C_i$, then $p(a_i)|p(b)$

```
egin{array}{c} h \\ \hline a_1 \\ \hline a_2 \\ \hline \vdots \\ a_E \end{array}
```

Figure : The Function $\theta(f)$

$$\begin{array}{cccc} \frac{h}{a_1} & \stackrel{\theta(f)}{\mapsto} & b_1 \\ \\ a_2 & \stackrel{\theta(f)}{\mapsto} & b_2 \\ \\ \vdots & \vdots & \vdots \\ \\ a_E & \stackrel{\theta(f)}{\mapsto} & b_E \end{array}$$

Figure : The Function $\theta(f)$

$$\begin{array}{cccc} h & h' \\ \hline a_1 & \stackrel{\theta(f)}{\mapsto} & b_1 \\ \\ a_2 & \stackrel{\theta(f)}{\mapsto} & b_2 \\ \\ \vdots & \vdots & \vdots \\ \\ a_E & \stackrel{\theta(f)}{\mapsto} & b_E \end{array}$$

Figure : The Function $\theta(f)$

Figure : The Function $\theta(f)$

Figure : Description of Theorem 4

Figure : The Function $\theta(f)$

Figure: Description of Theorem 4

Figure : The Function $\theta(f)$

$$\frac{h}{a_1} \xrightarrow{\theta(f)} b_1 \qquad \frac{g}{\rho^i(a_1) \overset{\theta(f)^{-1}}{\mapsto} C_1 = \{b_1^1, \dots, b_{2^n p(a_1)}^1\}}$$

$$a_2 \xrightarrow{\theta(f)} b_2 \qquad \rho^i(a_2) \overset{\theta(f)^{-1}}{\mapsto} C_2 = \{b_1^2, \dots, b_{2^n p(a_2)}^2\}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_E \xrightarrow{\theta(f)} b_E \qquad \rho^i(a_E) \overset{\theta(f)^{-1}}{\mapsto} C_E = \{b_1^E, \dots, b_{2^n p(a_E)}^E\}$$

Figure: Description of Theorem 4

$$\frac{h}{a_1} \xrightarrow{\theta(f)} b_1 \qquad g \circ f$$

$$\frac{g}{a_1} \xrightarrow{\theta(f)} b_1 \qquad \rho^i(a_1) \xrightarrow{\theta(f)^{-1}} C_1 = \{b_1^1, \dots, b_{2^n p(a_1)}^1\}$$

$$a_2 \xrightarrow{\theta(f)} b_2 \qquad \rho^i(a_2) \xrightarrow{\theta(f)^{-1}} C_2 = \{b_1^2, \dots, b_{2^n p(a_2)}^2\}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_E \xrightarrow{\theta(f)} b_E \qquad \rho^i(a_E) \xrightarrow{\theta(f)^{-1}} C_E = \{b_1^E, \dots, b_{2^n p(a_E)}^E\}$$

Figure : The Function $\theta(f)$

Figure: Description of Theorem 4

$$g(x_0, x_1, x_2, x_3) = x_0 + x_1 x_2 + x_3$$

$$f(x_0, x_1) = x_0 + x_1$$

$$h(x_0, \dots, x_4) = g \circ f = x_0 + x_1 + x_2 + x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_4$$

 $\Omega(g)$ consist of the following cycles

(0)
$$p(a_1) = 1$$

(001) $p(a_2) = 3$

$$(0111) p(a_3) = 4$$

 $\Omega(h)$ consist of the cycles

(0)(1)	C_1
(000111)	C_2
(00101101)	C_3

Theorem 5

Let f be an irreducible linear polynomial and

$$g = x_0 + G(x_1, \dots, x_{m-1}) + x_m \in S, \ a \in \Omega(g).$$

- If $p(f) \nmid p(a)$, then $\theta(f)^{-1}(a)$ contains one sequence of period p(a) and $2^n 1$ sequences of period equal to LCM{p(a),p(f)}.
- If $p(f) \mid p(a)$, then for $x \in \theta(f)^{-1}(a)$

$$p(x) = \begin{cases} p(a), & \text{if } f \mid\mid l(x) \\ 2p(a), & \text{otherwise} \end{cases}$$

where
$$l(x) = a(p(a) - 1)x_0 + a(p(a) - 2)x_1 + \dots + a(0)x_{p(a)-1}$$
.

Outline

Introduction

2 Investigation of $g \circ f$

 \odot Generation of M-Sequences

Example 1. Lempel (1970)

The polynomial $t_1 \dots t_n$ where $t_i = x_i$ if $b_i = 1$ and $t_i = x_i + 1$ if $b_i = 0$ is defined by $X(n; b_1, \dots, b_n)$.

Theorem 6

Let $g=x_0+G(x_1,\ldots,x_{n-1})+x_n$ in S with $n\geq 2$, which generates M-sequence (of period 2^n), and let $f=x_0+x_1$. Then both

$$h_1 = (g \circ f) + X(n; 1, 0, 1, 0, ...), h_2 = (g \circ f) + X(n; 0, 1, 0, 1, ...),$$

generate M-sequences of period 2^{n+1} .

Corollary

Since $g(x_0,x_1,x_2)=1+(x_0+x_1)\circ(x_0+x_1)$ generates M-sequence of period 2^2 , then the following polynomial generates M-sequence of period 2^n $(n\geq 2)$

$$h(x_0, \dots, x_n) = 1 + (x_0 + x_1)^2 + k(2) \circ (x_0 + x_1)^{n-3} + \dots + k(n-2) \circ (x_0 + x_1) + k(n-1),$$

where $k(j)=X(j;1,0,1,0,\ldots)$ or $X(j;0,1,0,1,\ldots)$ $(j=2,\ldots,n-1)$ and

$$(x_0 + x_1)^n = \underbrace{(x_0 + x_1) \circ (x_0 + x_1) \circ \cdots \circ (x_0 + x_1)}_{n \text{ times}}.$$

Example 1. Calculations

Let
$$n=4, k(2)=X(2;1,0), k(3)=X(3;0,1,0);$$
 then
$$f=1+(x_0+x_1)^4+k(2)\circ(x_0+x_1)^1+k(3)=\\ =1+(x_0+x_4)+(x_1x_2+x_1x_3+x_2+x_2x_3+x_1+x_2)+\\ +(x_1x_2x_3+x_1x_2+x_3x_2+x_2)=\\ =1+x_0+x_1+x_2+x_4+x_1x_3+x_1x_2x_3$$

f generates M-sequence (0000110101111001).

Example 2. Mykkeltveit and et al. (1979)

Theorem 7

Let $h=x_0+c_1x_1+\cdots+c_{n-1}x_{n-1}+x_n$ be a primitive polynomial and $g=h+X(n-1;0,0,\ldots)$; then

$$[g \circ (x_0 + x_1)] + X(n; a_1, \dots, a_n),$$

where $(a_1,\ldots,a_n)\in\mathbb{F}_2^n$ $(0,0,\ldots,0),(1,1,\ldots,1)$ generates M-sequences of period 2^{n+1} .

Example 2. Calculations

Let
$$h=x_0+x_1+x_3$$
 and $(a_1,a_2,a_3)=(1,1,0)$; then
$$g=h+(x_1+1)(x_2+1)=x_0+x_1+x_3+x_1x_2+x_1+x_2+1=\\ =1+x_0+x_2+x_1x_2+x_3$$

$$g\circ (x_0+x_1)=1+x_0+x_1+x_2+x_3+(x_1+x_2)(x_2+x_3)+x_3+x_4=\\ =1+x_0+x_1+x_2+(x_1x_2+x_1x_3+x_2+x_2x_3)+x_4=\\ =1+x_0+x_1+x_1x_2+x_1x_3+x_2x_3+x_4$$

$$f=[g\circ (x_0+x_1)]+x_1x_2x_3+x_1x_2=\\ =1+x_0+x_1+x_1x_3+x_2x_3+x_1x_2x_3+x_4$$

M-sequence is (0000110010111101).

References

D.H. Green, K.R. Dimond, "Nonlinear product-feedback shift registers," Electrical Engineers, Proceedings of the Institution of , vol.117, no.4, pp.681-686, April 1970.

D.H. Green, R.G. Kelsch, "Some polynomial compositions of nonlinear feedback shift registers and their sequence-domain consequences," Electrical Engineers, Proceedings of the Institution of , vol.117, no.9, pp.1750-1756, September 1970.

Johannes Mykkeltveit, Man-Keung Siu, Po Tong, On the cycle structure of some nonlinear shift register sequences, Information and Control, Volume 43, Issue 2, November 1979, Pages 202-215.