Índice

Proyecto final

High quality photometric reconstruction using a depth camera

Daniel Méndez, Camila Sanhueza

Profesor Adín Ramírez

Visión por computador, Universidad Diego Portales

Julio 9, 2015

- Marco teórico
 - Fotometría estéreo
 - Teoría documento de guía
- Diseño del código
- 3 Implementación del código
 - Herramientas utilizadas
 - Reutilización de código
- Experimentos
 - Set up prueba
 - Resultados
- Problemas
- 6 Conclusiones

Fotometría estéreo calibrada

Para realizar la fotometría estero se calcular mediante:

$$I=nL,$$
 (1)

donde I representa la intensidad de la imagen, n las superficies normales de la imagen y L las fuentes de iluminacion

Superficie Lambertiana

Las superficies Lambertianas los objetos a analizar tienen que ser mate.

Fotometría estéreo no calibrada

La fotometría no calibrada, se diferencia de la calibrada en:

 No se conoce la información de la iluminación no la intensidad de esta utilizada. Para calcular esto se utiliza la descomposición de valores singulares.

Fusión de la estimación de la normal y la profundidad

• Optimización del mapa de profundidades:

$$\hat{Z} = E(\bar{Z}) = E_d(\bar{Z}) + \lambda_n E_n(\bar{Z}) + \lambda_s E_s(\bar{Z})$$
 (2)

Penalización de la profundidad

$$E_d(\bar{Z}) = \sum_{p} w_p ||\mu_p||^2 (Z_p - \bar{Z}_p)^2$$
 (3)

Fusión de la estimación normal y la profundidad

Penalización de la normal

$$E_n(\bar{Z}) = \sum_{p} (N_p T_{x,p})^2 + (N_p T_{y,p})^2$$
 (4)

Smoothness penalty

$$E_s(\bar{Z}) = \nabla^2(\bar{Z}) \tag{5}$$

Decisiones tomadas respecto a las dificultades presentadas

Las decisiones fueron:

- Realizar una fotometría estero no calibrada.
- Cambiar la iluminación infrarrojo, de una ampolleta infrarroja a una ampolleta halógena con filtro dicroico.
- La cantidad de iluminaciones necesarias para la utilización del código.
- Encontrar objetos con superficies Lambertianas.

Herramientas utilizadas

Las herramientas utilizadas fueron:

- Openframeworks (ofxKinect)
- OpenCv
- Kinect
- Ampolleta halógena con filtro dicroico

Reutilización de código

Para poder realizar una fotometría estéreo no calibrada se utilizo, un código base, el creador es Kai Wolf.

Índice Marco teórico Diseño del código Implementación del código **Experimentos** Problemas Conclusiones

Set up prueba

Set de imágenes necesarias para la reconstrucción

Mascara de la imagen

Mapa de normales

Mapa de profundidades estimado

Reconstrucción 3D

Set de imágenes necesarias para la reconstrucción

Índice Marco teórico Diseño del código Implementación del código Experimentos O0000 Problemas Conclusiones

Mascara de la imagen

Índice Marco teórico Diseño del código Implementación del código **Experimentos** Problemas Conclusiones

Mapa de normales

Mapa de profundidades estimado

Reconstrucción 3D

Set de imágenes necesarias para la reconstrucción

Mascara de la imagen

Índice Marco teórico Diseño del código Implementación del código **Experimentos** Problemas Conclusiones

Mapa de normales

Mapa de profundidades estimado

Reconstrucción 3D

Problemas al momento de el desarrollo

Índice

Los principales problemas que se presentaron en el transcurso del proyecto final, fueron:

- La dificultad de poder hacer funcionar la Kinect.
- La dificultad de comprender el procedimiento realizado por el texto guía (Haque, High Quality Photometric Reconstruction using a Depth Camera).
- No saber como implementar ideas al momento de codificar.

 Índice
 Marco teórico
 Diseño del código
 Implementación del código
 Experimentos
 Problemas
 Conclusiones

Conclusiones

