

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТ	ЕТ Фундаментальные науки
КАФЕДРА	ФН2 «Прикладная математика»
	Домашняя контрольная работа
	по курсу «Уравнения математической физики»
	Вариант №13
Γ	руппа: СМ1-81
C	тудент: Новиков А.Р.
Γ	реподаватель: Деревич И.В.

(Подпись, дата)

1 Задача 1

1.1 Условие

Найти неизвестную стационарную температуру границ двух сферических слоев из разных материалов. При этом на внутренней границе (отстоящей от центра) происходит теплообмен с внешней средой заданной температуры по закону Ньютона, а на внешней температура задана.

1.2 Решение

Рисунок 1.1 — Условие задачи

Запишем основное уравнение теплопроводности:

$$\frac{\partial^2 U}{\partial t^2} = a^2 \Delta U \tag{1.1}$$

Запишем общий вид граничных условий:

$$-\lambda \frac{\partial U}{\partial \vec{n}}\Big|_{r \in S} = \alpha \left(U\Big|_{r \in S} - U_{\infty} \right) \tag{1.2}$$

Поскольку слоя сферические, запись уравнений будем вести в сферической системе координат. Также, поскольку задача стационарная, то левая часть уравнения (1.1) равна нулю:

$$a^2 \Delta U = 0 \tag{1.3}$$

На внутренней поверхности теплообмен происходит по закону Ньютона:

$$\lambda_1 \frac{\partial U}{\partial r}\Big|_{r=R_1} = \alpha (U\Big|_{r=R_1} - U_1) \tag{1.4}$$

Запишем граничное условие для внешней поверхности:

$$U\Big|_{r=R_{cr}} = U_2 \tag{1.5}$$

Запишем условие сопряжения:

$$U\Big|_{r=R_{cr}-0} = U\Big|_{r=R_{cr}+0} \tag{1.6}$$

Запишем условие равенства мощностей тепловых потоков через границу раздела двух слоев:

$$\lambda_1 \frac{\partial U}{\partial r} \Big|_{r=R_{\rm cr}-0} = \lambda_2 \frac{\partial U}{\partial r} \Big|_{r=R_{\rm cr}+0} \tag{1.7}$$

Запишем лапласиан для сферической системы координат:

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta^2} \frac{\partial^2}{\partial \varphi^2}$$
 (1.8)

Тогда распишем выражение (1.3), используя (1.8):

$$a^2 \left(\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dU}{dr} \right) \right) = 0 \tag{1.9}$$

$$\frac{d}{dr}\left(r^2\frac{dU}{dr}\right) = 0\tag{1.10}$$

Получили дифференциальное уравнение для обоих слоев. Решим его:

$$r^2 \frac{dU}{dr} = C' \quad \Longrightarrow \quad \frac{dU}{dr} = \frac{C'}{r^2} \tag{1.11}$$

$$U = -\frac{C'}{r} + C'' \tag{1.12}$$

Получим решения для двух участков:

• Первый участок $R_1 \le r \le R_{\rm cr}$:

$$U_1 = -\frac{C_1}{r} + C_2 \tag{1.13}$$

$$\frac{dU_1}{dr} = \frac{C_1}{r^2} \tag{1.14}$$

• Второй участок $R_{\rm cr} \le r \le R_2$:

$$U_2 = -\frac{C_3}{r} + C_4 \tag{1.15}$$

$$\frac{dU_2}{dr} = \frac{C_3}{r^2} \tag{1.16}$$

Запишем условие сопряжения:

$$U_1(R_{\rm cr}) = U_2(R_{\rm cr}) = U_{\rm cr}$$
 (1.17)

$$-\frac{C_1}{R_{\rm cr}} + C_2 = -\frac{C_3}{R_{\rm cr}} + C_4 \tag{1.18}$$

Запишем условие равенства мощностей тепловых потоков:

$$\lambda_1 \frac{dU_1}{dr} = \lambda_2 \frac{dU_2}{dr} \tag{1.19}$$

$$\lambda_1 \frac{C_1}{R_{\rm cr}^2} = \lambda_2 \frac{C_3}{R_{\rm cr}^2} \tag{1.20}$$

Используя (1.18), (1.20), (1.5) и (1.4) Получим систему уравнений для нахождения констант интегрирования:

$$\begin{cases}
-\frac{C_1}{R_{\text{cr}}} + C_2 = -\frac{C_3}{R_{\text{cr}}} + C_4 \\
\lambda_1 \frac{C_1}{R_{\text{cr}}^2} = \lambda_2 \frac{C_3}{R_{\text{cr}}^2} \\
-\frac{C_3}{R_2} + C_4 = U_2 \\
\lambda_1 \frac{C_1}{R_1^2} = \alpha \left(C_2 - \frac{C_1}{R_1} - U_1 \right)
\end{cases}$$
(1.21)

Из второго уравнения (1.21) выразим C_3 :

$$C_3 = \frac{C_1 \lambda_1}{\lambda_2} \tag{1.22}$$

Из третьего уравнения (1.21) выразим C_4 :

$$C_4 = \frac{R_2 U_2 \lambda_2 + C_1 \lambda_1}{R_2 \lambda_2} \tag{1.23}$$

Из первого уравнения (1.21) выразим C_2 :

$$C_2 = \frac{\lambda_2 R_2 \left(R_{\text{cr}} U_2 + C_1 \right) + C_1 \lambda_1 \left(R_{\text{cr}} - R_2 \right)}{R_2 R_{\text{cr}} \lambda_2}$$
(1.24)

Из четвертого уравнения (1.21) выразим C_1 :

$$C_{1} = \frac{\alpha \lambda_{2} R_{1}^{2} R_{2} R_{\text{cr}} (U_{2} - U_{1})}{\lambda_{2} (\lambda_{1} R_{2} R_{\text{cr}} + \alpha R_{1} R_{2} (R_{\text{cr}} - R_{1})) + \alpha \lambda_{1} R_{1}^{2} (R_{2} - R_{\text{cr}})}$$
(1.25)

Тогда коэффициент C_2 равен:

$$C_{2} = \frac{\lambda_{2} R_{2} \left(R_{\text{cr}} U_{2} \lambda_{1} + \alpha R_{1} \left(R_{\text{cr}} U_{2} - R_{1} U_{1} \right) \right) + \left(R_{2} - R_{\text{cr}} \right) R_{1}^{2} U_{1} \alpha \lambda_{1}}{\lambda_{2} R_{2} \left(R_{\text{cr}} \lambda_{1} + \alpha R_{1} \left(R_{\text{cr}} - R_{1} \right) \right) + \left(R_{2} - R_{\text{cr}} \right) R_{1}^{2} \alpha \lambda_{1}}$$

$$(1.26)$$

Подставим полученные коэффициенты в выражение (1.13) и найдем его значение при $r=R_{\rm cr}$:

$$U_{\rm cr} = U_1(R_{\rm cr}) = U_2 - \frac{\lambda_1 \left(1 - \frac{R_{\rm cr}}{R_2}\right) (U_2 - U_1)}{\lambda_1 \left(1 - \frac{R_{\rm cr}}{R_2}\right) + \lambda_2 \left(\frac{R_{\rm cr}}{R_1} - 1\right) + \frac{\lambda_1 \lambda_2}{\alpha} \frac{R_{\rm cr}}{R_1^2}}$$
(1.27)

2 Задача 2

2.1 Условие

Решить краевую задачу $U_t=aU_{xx}$ на промежутке $0\leq x\leq l$, если $U_x(0,t)=0,$ $U_x(l,t)+\beta U(l,t)=0.$ Начальные условия $U(x,0)=\varphi(x).$

2.2 Решение

Решим дифференциальное уравнение

$$\frac{\partial U}{\partial t} = a \frac{\partial^2 U}{\partial x^2} \tag{2.1}$$

Воспользуемся методом разделения переменных Фурье:

$$U(x,t) = X(x) \cdot T(t) \tag{2.2}$$

Подставим (2.2) в (2.1):

$$\frac{dT(t)}{dt}X(x) = a\frac{d^2X(x)}{dx^2}T(t)$$
(2.3)

$$\frac{dT(t)}{T(t)dt}\frac{1}{a} = \frac{1}{X(x)}\frac{dX^{2}(x)}{dx^{2}}$$
(2.4)

Правая и левая часть (2.4) не зависят друг от друга, поэтому по теореме Ляпунова их равенство достигается, когда левая и правая часть равны определенному числу:

$$\frac{dT(t)}{T(t)dt}\frac{1}{a} = \frac{1}{X(x)}\frac{dX^{2}(x)}{dx^{2}} = -\lambda^{2}$$
(2.5)

Получили два независимых дифференциальных уравнения. Решим их:

$$\frac{dT(t)}{T(t)dt}\frac{1}{a} = -\lambda^2 \tag{2.6}$$

$$\frac{dT(t)}{T(t)} = -\lambda^2 a dt \tag{2.7}$$

$$d\ln T(t) = -\lambda^2 a dt \tag{2.8}$$

$$ln T(t) = -\lambda^2 at + C'$$
(2.9)

$$T(t) = e^{-\lambda^2 at + C'} = Ce^{-\lambda^2 at}$$
(2.10)

Решим второе уравнение:

$$\frac{1}{X(x)}\frac{dX^2(x)}{dx^2} = -\lambda^2 \tag{2.11}$$

$$\frac{dX^{2}(x)}{dx^{2}} + \lambda^{2}X(x) = 0 {(2.12)}$$

$$X(x) = A\cos\lambda x + B\sin\lambda x \tag{2.13}$$

Получим решение исходного дифференциального уравнения:

$$U(x,t) = (A\cos\lambda x + B\sin\lambda x)Ce^{-\lambda^2 at}$$
(2.14)

Для нахождения констант интегрирования воспользуемся граничными и начальными условиями:

$$\frac{\partial U}{\partial x}(0,t) = 0 \tag{2.15}$$

Из (2.14) получим:

$$\frac{\partial U}{\partial x}(x,t) = (B\lambda\cos\lambda x - A\lambda\sin\lambda x)T(t)$$
 (2.16)

Подставим (2.16) в (2.15):

$$B\lambda T(t) = 0 \tag{2.17}$$

$$B = 0 ag{2.18}$$

Получим:

$$U(x,t) = AC\cos\lambda x \cdot e^{-\lambda^2 at}$$
 (2.19)

Переобозначим константу:

$$D = AC (2.20)$$

$$U(x,t) = D\cos\lambda x \cdot e^{-\lambda^2 at}$$
 (2.21)

Второе граничное условие:

$$\frac{\partial U}{\partial x}(l,t) + \beta U(l,t) = 0 \tag{2.22}$$

$$\frac{\partial U}{\partial x}(x,t) = -D\lambda \sin \lambda x \cdot T(t) \tag{2.23}$$

Подставим (2.23) в (2.22):

$$-D\lambda \sin \lambda l \cdot T(t) + \beta D \cos \lambda l T(t) = 0$$
 (2.24)

$$\lambda \sin \lambda l = \beta \cos \lambda l \tag{2.25}$$

$$tg \lambda l = \frac{\beta}{\lambda} \tag{2.26}$$

Значения λ должны удовлетворять выражению (2.26). Поскольку таких значений бесконечно много можно воспользоваться свойством, что линейная комбинация решений дифференциального уравнения также является решением этого уравнения:

$$U(x,t) = \sum_{n=0}^{\infty} D_n \cos \lambda_n x \cdot e^{-\lambda_n^2 at}$$
 (2.27)

Воспользуеся начальным условием:

$$U(x,0) = \varphi(x) \tag{2.28}$$

Для нахождения коэффициентов D_n разложим функцию $\varphi(x)$ в ряд по собственным функциям:

$$\varphi(x) = \sum_{n=0}^{\infty} \Gamma_n \cos \lambda_n x \tag{2.29}$$

$$\Gamma_n = \frac{2}{l} \int_0^l \varphi(x) \cos \lambda_n x dx \tag{2.30}$$

Подставим (2.29) и (2.27) в (2.28):

$$\sum_{n=0}^{\infty} D_n \cos \lambda_n x = \sum_{n=0}^{\infty} \Gamma_n \cos \lambda_n x \tag{2.31}$$

Воспользуемся свойством ортогональности собственных функций:

$$D_n = \Gamma_n = \frac{2}{l} \int_0^l \varphi(x) \cos \lambda_n x dx \tag{2.32}$$

Получим итоговое решение краевой задачи:

$$U(x,t) = \sum_{n=0}^{\infty} \left[\left(\frac{2}{l} \int_{0}^{l} \varphi(x) \cos \lambda_{n} x dx \right) \cos \lambda_{n} x \cdot e^{-\lambda_{n}^{2} at} \right]$$
 (2.33)