High precision comet trajectory estimates: the Mars flyby of C/2013 A1 (Siding Spring)

D. Farnocchia^a, S. R. Chesley^a, M. Micheli^{b,c,d}, A. Delamere^e, R. S. Heyd^f, D. J. Tholen^g, J. D. Giorgini^a, W. M. Owen^a, L. K. Tamppari^a

^aJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

^bESA NEO Coordination Centre, 00044 Frascati (RM), Italy

^cSpaceDyS s.r.l., 56023 Cascina (PI), Italy

^dINAF-IAPS, 00133 Roma (RM), Italy

^eDelamere Support Services, Boulder, CO 80304, USA

^fPlanetary Image Research Laboratory, Lunar and Planetary Laboratory, University of

Arizona, Tucson, AZ 85721, USA

^gInstitute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA

Abstract

The Mars flyby of C/2013 A1 (Siding Spring) represented a unique opportunity for imaging a long-period comet and resolving its nucleus and rotation period. Because of the small encounter distance and the high relative velocity, the goal of successfully observing C/2013 A1 from the Mars orbiting spacecrafts posed strict accuracy requirements on the comet's ephemerides. These requirements were hard to meet, as comets are known for being highly unpredictable: astrometric observations can be significantly biased and non-gravitational perturbations affect comet trajectories. Therefore, even prior to the encounter, we remeasured a couple of hundred astrometric images obtained with ground-based and Earth-orbiting telescopes. We also observed

Email address: Davide.Farnocchia@jpl.nasa.gov (D. Farnocchia)