Lekcija 3: *Adaptivno upravljanje*s referentnim modelom (MRAC)

Prof.dr.sc. Jasmin Velagić Elektrotehnički fakultet Sarajevo

Kolegij: Adaptivno i robusno upravljanje

2012/2013

Uvod

- MRAC (Model Reference Adaptive Control) –koristi se za rješavanje problema u kojem su specificirane performanse dane u obliku referentnog modela.
- Referentni model iskazuje kako izlaz procesa treba idealno da se odaziva na upravljački signal.
- Adaptivni regulator posjeduje dvije petlje:
 - 1) Unutarnja petlja sadrži regulator i proces.
 - 2) Vanjska petlja podešava parametre regulatora tako da pogreška, razlika izlaza procesa y i izlaza modela y_m , bude malog iznosa.
- Originalno uveden za potrebe upravljanja avionom, gdje referentni model opisuje željeni odziv letjelice na kretanja palice (joystick).
- Originalno izveden za determinističke vremenski kontinuirane sisteme.

Uvod

MRAC arhitektura

Unutarnja petlja

Uvod

- MRAC se može iskoristiti i za upravljanje vremenski diskretnih i sistema sa stohastičkim poremećajima.
- 4/74
- Mehanizam podešavanja (namještanja) parametara u MRAC-u može se postići na dva načina:
 - Upotrebom gradijentne metode.
 - > Primjenom teorije stabilnosti.

- Neka e označava pogrešku između željenog y_m i stvarnog y odziva sistema.
- Jedan od načina podešavanja parametara minimiziranje kriterijske funkcije (*J* je funkcional):

$$J(\theta) = \frac{1}{2}e^2$$

Da bi se ovo postiglo potrebno je mijenjati parametre u smjeru negativnog gradijenta od J:

$$\frac{\partial \theta}{\partial t} = -\gamma \frac{\partial J}{\partial \theta} = -\gamma e \frac{\partial e}{\partial \theta} \tag{1}$$

- Prethodni izraz predstavlja MIT pravilo.
- Pretpostavlja se da se parametri mijenjaju mnogo sporije od promjenjivih sistema tako da se J promatra kao funkcija, tada se $\partial e/\partial t$ može evaluirati pod pretpostavkom da je θ konstantno.

- Postoji mnogo alternativa za kriterijsku funkciju J.
- Prvi MRAS koristio je sljedeću funkciju:

$$J(\theta) = |e|$$

Korištenjem gradijentne metode dobiva se:

$$\frac{\partial \theta}{\partial t} = -\gamma \frac{\partial e}{\partial \theta} \operatorname{sign}(e)$$

Postoje mnoge druge mogućnosti, kao naprimjer:

$$\frac{\partial \theta}{\partial t} = -\gamma \operatorname{sign}\left(\frac{\partial e}{\partial \theta}\right) \operatorname{sign}(e)$$

- Ovaj algoritam je poznat pod imenom sign-sign algoritam (koristi se dosta u telekomunikacijama).
- Jednadžba (1) može se koristiti za podešavanje većeg broja parametara – tada imamo vektor Θ.

Primjer 1. Promatrajmo sistem prvog reda:

$$\frac{dy}{dt} = -ay + bu$$

gdje je u upravljačka varijabla i y je mjereni izlaz.

 Pretpostavimo da želimo dobiti zatvoreni sistem (referentni model) dan sa:

$$\frac{dy_m}{dt} = -a_m y_m + b_m u_c$$

Neka se koristi regulator:

$$u(t) = \theta_1 u_c(t) - \theta_2 y(t)$$

 Parametri regulatora mogu biti izabrani u skladu sa zahtjevom perfektnog slijeđenja:

$$\theta_1 = \theta_1^0 = \frac{b_m}{b}$$

$$\theta_2 = \theta_2^0 = \frac{a_m - a}{b}$$
(2)

Da bi se primijenilo MIT pravilo definira se pogreška:

$$e = y - y_m$$

gdje je y izlaz zatvorenog sistema.

Kombiniranjem prethodnih izraza dobiva se:

$$y = \frac{b\theta_1}{s + a + b\theta_2}$$
 $s = d/dt$ – diferencijalni operator

■ **Derivacije osjetljivosti** dobivaju se pomoću parcijalnih derivacija s obzirom na parametre regulatora θ_1 i θ_2 :

$$\frac{\partial e}{\partial \theta_1} = \frac{b}{s + a + b\theta_2} u_c$$

$$\frac{\partial e}{\partial \theta_2} = -\frac{b^2 \theta_1}{(s + a + b\theta_2)^2} u_c = -\frac{b}{s + a + b\theta_2} y$$
(3)

- Izrazi (3) ne mogu se direktno primijeniti jer su parametri a i b nepoznati – potrebna je aproksimacija.
- Jedna od mogućih aproksimacija zasniva se na observaciji da je:

$$s + a + b\theta_2^0 = s + a_m$$

- U ovom slučaju parametri osiguravaju perfektno praćenje.
- Zbog toga ćemo koristiti aproksimaciju:

$$s + a + b\theta_2 \approx s + a_m$$

koja je opravdana kada su parametri blizu svojim korektnim vrijednostima.

Sa ovom aproksimacijom imamo:

$$\frac{\partial \theta_1}{\partial t} = -\gamma \left(\frac{a_m}{s + a_m} u_c \right) e$$

$$\frac{\partial \theta_2}{\partial t} = \gamma \left(\frac{a_m}{s + a_m} y \right) e$$

$$(4)$$

• U jednadžbama (4) kombinirani su parametri b i a_m sa adaptacijskim pojačanjem γ' , budući da se oni pojavljuju kao produkt $\gamma'b/a_m$ ($\gamma=\gamma'b/a_m$).

- Predznak parametra b mora biti poznat da bi se imao ispravan predznak od γ.
- Adaptivni regulator je dinamički sistem sa pet varijabli stanja: izlaz modela, parametri i derivacije osjetljivosti.
- Blok dijagram regulatora u adaptivnom sistemu s referentnim modelom prikazan je na sljedećem slajdu.
- Ponašanje prikazanog sistema testirat će se simulacijom.

Promatra se sistem sa vrijednostima parametara:

$$a = 1$$
, $b = 0.5$ i $a_m = b_m = 2$, $\gamma = 1$.

• Odzivi izlaza referentnog modela y_m i izlaza procesa y, te ulaza u proces u (na ulazni signal pulsnog oblika amplitude 1), prikazani su na slikama.

- Estimirani parametri θ_1 i θ_2 za različite vrijednosti adaptacijskog pojačanja γ .
- Najveća promjena parametara kada se upravljački signal mijenja i tada ovi parametri konvergiraju veoma sporo ka ispravnim vrijednostima $\theta_1^0 = 4$ i $\theta_2^0 = 2$.

15/74

- Vrijednosti estimiranih parametara u t = 100 [s] iznose $\theta_1 = 3.2$ i $\theta_2 = 1.2$.
- Estimirani parametri brže konvergiraju ka svojim tačnim vrijednostima s porastom adaptacijskog pojačanja γ.
- Upravljanje je prilično dobro čak i za t=10 [s], što je posljedica činjenice da su estimirani parametri θ_1 i θ_2 povezani međusobno na specifičan način, iako se značajno razlikuju od njihovih tačnih vrijednosti.
- Povezanost parametara regulatora θ_1 i θ_2 kada je sistem simuliran u trajanju od t = 500 [s] prikazana je na sljedećoj slici.
- Estimirani parametri brzo pristupaju isprekidanoj liniji $\theta_1=3.2$ i $\theta_2=\theta_1-a/b$.

 Ova linija predstavlja vrijednosti parametara koji osiguravaju da zatvoreni sistem ima korektno pojačanje u stacionarnom stanju.

Sumarno o MIT pravilu:

18/74

- 1. Zahtijeva se izračunavanje funkcija osjetljivosti.
- 2. Radi dobro za male vrijednosti pojačanja i za stabilne početne uvjete.
- 3. Konvergencija ovisi o amplitudi ulaznog signala i vrijednosti adaptacijskog pojačanja.
- Poboljšanje: Izbjeći utjecaj ulaznog signala na promjenu parametara.

- Kriterij stabilnosti Lyapunova
- Lyapunov je ispitivao nelinearnu diferencijalnu jednadžbu:

$$\frac{dx}{dt} = f(x), \qquad f(0) = 0 \tag{5}$$

- Da bi se garantirala postojanost i jednoznačnost rješenja jednadžbe uvode se pretpostavke na funkciju f(x).
- Dovoljna pretpostavka je da je f(x) lokalna Lipschitzova funkcija, to jest

$$||f(x) - f(y)|| \le L||x - y||, L > 0$$

u okolici ishodišta.

- Definicija 1. Stabilnost po Lyapunovu:
- Rješenje x(t) = 0 diferencijalne jednadžbe (5) je stabilno ako za zadani $\varepsilon > 0$ postoji $\delta(\varepsilon) > 0$ takav da sva rješenja sa inicijalnim uvjetima:

20/74

$$||x(0)|| < \delta$$

imaju svojstvo:

$$||x(t)|| \le \varepsilon \text{ za } 0 \le t < \infty$$

- Rješenje je nestabilno ako nije stabilno.
- Rješenje je asimptotski stabilno ako je stabilno i ako se može naći δ takav da sva rješenja sa $\|x(0)\| < \delta$ imaju svojstvo da $\|x(0)\| \to 0$ kada $t \to \infty$.

 Lyapunov je uveo metodu za ispitivanje stabilnosti zasnovanu na pronalaženju funkcije sa specijalnim svojstvima.

- Definicija 2. Pozitivno definitne i semidefinitne funkcije
- Kontinuirana derivabilna funkcija $V: \mathbb{R}^n \to \mathbb{R}$ je pozitivno definitna u regionu $U \subset \mathbb{R}^n$, koji sadrži ishodište, ako je:

1.
$$V(0) = 0$$

2.
$$V(x) > 0, x \in U \mid x \neq 0$$

Funkcija je pozitivno semidefinitna ako se uvjet 2. zamijeni sa:

$$V(x) \ge 0$$

 Ilustracija metode Lyapunova za ispitivanje stabilnosti.

- Teorem 1. Kriterij stabilnosti po Lyapunovu za vremenski invarijantne sisteme
- u za
- Ako postoji funkcija $V: \mathbb{R}^n \to \mathbb{R}$ koja je pozitivno definitna tako da su njene derivacije duž rješenja jednadžbe (5):

$$\frac{dV}{dt} = \frac{\partial V^{T}}{\partial x} \frac{dx}{dt} = \frac{\partial V^{T}}{\partial x} f(x) = -W(x)$$

negativno semidefintne, tada je rješenje x(t)=0 jednadžbe (5) stabilno.

- Ako je dV/dt negativno definitno, tada je rješenje također asimptotski stabilno.
- Funkcija V zasniva se Lypunovljevoj funkciji za sistem (5).

Osim toga, ako je:

$$\frac{dV}{dt} < 0 \text{ i } V(x) \to \infty \text{ kada } ||x|| \to \infty$$

tada je rješenje globalno asimptotski stabilno.

- U nastavku se pokazuje kako se teorija stabilnosti po kriteriju Lyapunova može koristiti za konstrukciju algoritma za podešavanje parametara u adaptivnim sistemima.
- Osnovna ideja sastoji se u tome da se pronađe funkcija Lyapunova i mehanizam adaptacije koji će osigurati da pogreška slijeđenja $e = y y_m$ teži ka 0.

 Primjer 2. MRAS prvog reda zasnovan na teoriji stabilnosti. Promatrajmo sistem iz primjera 1. Željeni (referentni) odziv je dan sa:

$$\frac{dy_m}{dt} = -a_m y_m + b_m u_c$$

gdje je $a_m > 0$ i referentni signal ograničen.

Proces je opisan sa:

$$\frac{dy}{dt} = -ay + bu$$

Regulator je:

$$u = \theta_1 u_c - \theta_2 y$$

Pogreška:

$$e = y - y_m$$

- Budući da želimo pogrešku učiniti malom, prirodno je derivirati diferencijalnu jednadžbu za pogrešku.
- U tom slučaju imamo:

$$\frac{de}{dt} = -a_m e - (b\theta_2 + a - a_m)y + (b\theta_1 - b_m)u_c$$

- Pogreška teži nuli kada su parametri jednaki parametrima izraza (2).
- Potrebno je kreirati mehanizam adaptacije parametara koji će parametre θ_1 i θ_2 približiti njihovim željenim vrijednostima.

- Za navedenu svrhu pretpostavimo da je $\gamma>0$ i uvedimo sljedeću kvadratnu funkciju:

$$V(e, \theta_1, \theta_2) = \frac{1}{2} \left(e^2 + \frac{1}{b\gamma} (b\theta_2 + a - a_m)^2 + \frac{1}{b\gamma} (b\theta_1 - b_m)^2 \right)$$

- Funkcija poprimu nultu vrijednost kada je e=0 i kada su parametri regulatora jednaki njihovim korektnim vrijednostima.
- Da bi se funkcija okarakterizirala kao funkcija
 Lyapunova, derivacija dV/dt mora biti negativna.

Derivacija navedene funkcije je:

$$\begin{split} \frac{dV}{dt} &= e\frac{de}{dt} + \frac{1}{\gamma}(b\theta_2 + a - a_m)\frac{d\theta_2}{dt} + \frac{1}{\gamma}(b\theta_1 - b_m)\frac{d\theta_1}{dt}^{28/74} \\ &= -a_m e^2 + \frac{1}{\gamma}(b\theta_2 + a - a_m)\left(\frac{d\theta_2}{dt} - \gamma ye\right) \\ &+ \frac{1}{\gamma}(b\theta_1 - b_m)\left(\frac{d\theta_1}{dt} + \gamma u_c e\right) \end{split}$$

Ako se parametri osvježavaju na sljedeći način:

$$\frac{d\theta_1}{dt} = -\gamma u_c e, \qquad \frac{d\theta_2}{dt} = \gamma y e \tag{6}$$

29/74

$$\frac{dV}{dt} = -a_m e^2$$

- Derivacija V s obzirom na vrijeme t je negativno semidefinitna, ali nije negativno definitna.
- Ovo implicira da je $V(t) \le V(0)$ i da e_1 , θ_1 i θ_2 moraju biti ograničeni.
- Također $y = e + y_m$ mora biti ograničeno.
- Korištenjem Teorema 2. (pogledati slajd br. 38.) dobiva se:

$$\frac{d^2V}{dt^2} = -2a_m e \frac{de}{dt} = -2a_m e (-a_m e - (b\theta_2 + a - a_m)y + (b\theta_1 - b_m)u_c)$$

- Budući da su u_c , e i y_m ograničeni, slijedi da je \ddot{V} ograničena (dV/dt je uniformno neprekinuta).
- Iz Teorema 1. slijedi da će e težiti ka nuli.

 Međutim, nije potrebno da parametri teže ka svojim korektnim vrijednostima, bitno je samo da su oni ograničeni.

- Za konvergenciju parametara potrebno je nametnuti uvjete na pobuđenost sistema.
- Pravilo adaptacije (6) je slično MIT pravilu (4), ali su derivacije osjetljivosti zamijenjene drugim signalima.
- Razlika sistema (prethodni slajd) sa pravilom adaptacije zasnovanim na Lyapunovljevoj teoriji stabilnosti i sistema sa MIT pravilom je u tome da u slučaju Lyapunova nema filtriranja signala u_c i y.
- U oba slučaja zakon podešavanja parametara je:

$$\frac{d\mathbf{\Theta}}{dt} = \gamma \boldsymbol{\varphi} \boldsymbol{e}$$

■ U prethodnom izrazu Ø je vektor parametara i

$$\boldsymbol{\varphi} = \begin{bmatrix} -u_c & y \end{bmatrix}^T$$

za Lyapunovljevo pravilo i

$$\boldsymbol{\varphi} = \frac{a_m}{s + a_m} [-u_c \quad y]^T$$

za MIT pravilo.

- Pravilo podešavanja dobiveno Lyapunovljevom teorijom je jednostavnije, budući da ne zahtijeva filtriranje signala.
- Na sljedećoj slici prikazani su rezultati simulacija za sistem G(s)=0.5/(s+1) i referentni model $G_m=2/(s+2)$.

 Na prvoj slici su odzivi procesa i modela, a na drugoj upravljačkog signala na ulazni signal pulsnog oblika amplitude 1.

- Dobiveni rezultati su slični rezultatima dobivenim sa MIT pravilom.
- Kod Lyapunovljevog pravila prilično velike vrijednosti adaptacijskog pojačanja
 \(\gamma\) mogu se koristiti.

Vremenski promjenjivi sistemi - Lyapunov

 Promatraju se vremenski promjenjive diferencijalne jednadžbe tipa:

$$\frac{dx}{dt} = f(x,t) \tag{7}$$

- Ishodište je ravnotežna tačka za jednadžbu (7) ako je $f(0, t) = 0, \forall t \ge 0.$
- Pretpostavlja se da je f funkcija čija rješenja postoje za sve $\forall t \geq t_0$. Da bi se ovo garantiralo, pretpostavlja se da je f po dijelovima kontinuirana po t-u i lokalno Lipschitzova po x-u u okolini x(t) = 0.
- U nastavku će se ispitivati stabilnost rješenja x(t) = 0.

Vremenski promjenjivi sistemi - Lyapunov

 U vremenski promjenjivom sistemu rješenje će ovisiti o t jednako kao i o početnom vremenu t₀.

- Ovo implicira da će granica δ u definiciji 1. ovisiti o ε i t_0 .
- Definicija stabilnosti se može redefinirati da posjeduje svojstva uniformne stabilnosti s obzirom na inicijalno vrijeme.
- Definicija 3. Uniformna Lyapunovljeva stabilnost. Rješenje x(t) = 0 jednadžbe (7) je uniformno stabilno ako za $\varepsilon > 0$ postoji $\delta(\varepsilon) > 0$, neovisno o t_0 , takvo da je:

$$||x(t_0)|| < \delta \Longrightarrow ||x(t)|| < \varepsilon \quad \forall t \ge t_0 \ge 0$$

■ Rješenje je uniformno asimptotski stabilno ako je uniformno stabilno i ako postoji c>0, neovisno o t_0 , takvo da $x(t) \to 0$ kako $t \to \infty$, uniformno po t_0 , za sve $||x(t_0)|| < c$.

- Za definiranje teorema stabilnosti potrebno je prvo uvesti klasu K funkcija.
- **Definicija 4**. **Klasa** *K* **funkcija**. Za kontinuiranu funkciju $\alpha:[0,\alpha)\to[0,\infty)$ kaže se da pripada klasi K funkcija ako je ona striktno rastuća i $\alpha(0)=0$. Za ovu funkciju se kaže da pripada klasi K_∞ ako je $\alpha=\infty$ i $\alpha(r)\to\infty$ kako $r\to\infty$.

 Za vremenski promjenjive sisteme vrijedi sljedeći teorem stabilnosti.

- Teorem 2. Lyapunovljev teorem stabilnosti: vremenski promjenjivi sistem.
- Neka je x = 0 ravnotežna tačka za jednadžbu (7) i $D = \{x \in \Re^2 \mid ||x|| < r\}$. Neka je V kontinuirano derivabilna funkcija takva da je:

$$\alpha_1(||x||) \le V(x,t) \le \alpha_2(||x||)$$

$$\frac{dV}{dt} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(x, t) \le -\alpha_3(||x||)$$

za $\forall t \geq 0$, $\forall t \in D$, gdje su α_1 , α_2 i α_3 funkcije klase K, tada je x=0 uniformno asimptotski stabilno rješenje.

- Kada se koristi Lyapunovljeva teorija na adaptivno upravljanje, često se nalazi da je dV/dt samo negativno semidefinitna funkcija.
- Ovo implicira da se dodatni uvjeti moraju nametnuti na sistem.
- Sljedeća lema daje koristan rezultat Barbalatova lema.

Lema 1. Barbalatova lema. Ako je g realna funkcija realne varijable t, definirana i uniformno kontinuirana za $t \ge 0$, i ako granica integrala:

$$\int_{0}^{t} g(s)ds$$

kada $t \to \infty$ postoji i predstavlja konačan broj, tada:

$$\lim_{t\to\infty}g(t)=0$$

- Vremenska derivacija Lyapunovljeve funkcije V ovisi o upravljačkom signalu i ostalim signalima u sistemu.
- Ako su ovi signali ograničeni tada se Lema 1. može koristiti na dV/dt za dokaz stabilnosti.

- Teorem 3. Ograničenost i konvergencija skupa
- Neka je $D = \{x \in \Re^2 \mid ||x|| < r\}$ i pretpostavimo da je f(x, t) lokalno Lipschitzova funkcija na $D \times [0, \infty)$. Neka je V kontinuirano diferencijabilna funkcija takva da je:

$$\alpha_1(||x||) \le V(x,t) \le \alpha_2(||x||)$$

İ

$$\frac{dV}{dt} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(x, t) \le -W(x) \le 0$$

 $\forall t \geq 0, \ \forall t \in D$, gdje su α_1 i α_2 klase K funkcija definiranih na [0, r] i neka je W(x) kontinuirana na D.

 Nadalje se pretpostavlja da je dV/dt uniformno kontinuirana po t.

- 42/74
- Tada sva rješenja jednadžbe (7) sa $||x(t_0)|| < \alpha_2^{-1}(\alpha_2(r))$ su ograničena i zadovoljavaju:

$$W(x(t)) \to 0 \text{ kada } t \to \infty$$

- Osim toga, ako sve pretpostavke vrijede globalno i α_1 pripada klasi K_{∞} , tada je prethodni izraz istinit za sve $x(t_0) \in \Re^n$.
- U ovom teoremu je pretpostavljeno da je dV/dt uniformno kontinuirana, to jest kontinuiranost je neovisna o t.
- Dovoljan uvjet za ovo je da je V ograničen.

 Korištenjem Lyapunovljeve teorije odrediti stabilni MRAS za općenit linearan sistem.

- Ciljevi:
 - 1. Pronaći strukturu regulatora.
 - 2. Izvesti jednadžbu pogreške.
 - 3. Naći Lyapunovljevu funkciju i koristiti je za dobivanje zakona podešavanja parametara tako da pogreška teži ka nuli.
- Promatra se linearan sistema u prostoru stanja:

$$\frac{dx}{dt} = Ax + Bu \tag{8}$$

 Pretpostavimo da se želi pronaći zakon upravljanja takav da je odziv na upravljačke signale dan kao:

$$\frac{d\mathbf{x}_m}{dt} = \mathbf{A}_m \mathbf{x}_m + \mathbf{B}_m \mathbf{u}_c$$

(9)

 Opći linearni upravljački zakon za sistem opisan jednadžbom (8) je:

$$u = Mu_c - Lx$$

 Na temelju navedenih jednadžbi, zatvoreni sistem upravljanja postaje:

$$\frac{d\mathbf{x}}{dt} = (\mathbf{A} - \mathbf{B}\mathbf{L})\mathbf{x} + \mathbf{B}\mathbf{M}\mathbf{u}_c = \mathbf{A}_c(\mathbf{\Theta})\mathbf{x} + \mathbf{B}_c(\mathbf{\Theta})\mathbf{u}_c$$
(10)

- Zakon upravljanja može se parametrirati na razne načine.
- 45/74

- Svi elementi matrica L i M mogu biti slobodno odabrani.
- Također, mogu postojati ograničenja između parametara.
- Opći slučaj se može uspostaviti pretpostavljajući da je zatvoreni sistem opisan jednadžbom (9), gdje matrice A_c i B_c ovise o vektoru parametara Θ .

Uvjeti kompatibilnosti

- Nije uvijek mogući pronaći ⊕ za koji je sistem (10) ekvivalentan sistemu (9).
- 46/74
- Dovoljan uvjet je da postoji vrijednost parametra \(\mathcal{O}^0 \)
 takva da je:

$$A_c(\boldsymbol{\Theta}^0) = A_m$$

 $B_c(\boldsymbol{\Theta}^0) = B_m$

- Ovaj uvjet za perfektno slijeđenje modela je strog.
- Kada su svi parametri u zakonu upravljanja slobodno odabrani imamo:

$$A - A_m = BL$$
$$B_m = BM$$

• Ako su ovi uvjeti zadovoljeni i stupci matrica \boldsymbol{B} i \boldsymbol{B}_m linearno neovisni, tada su matrice \boldsymbol{L} i \boldsymbol{M} dane sa:

$$\boldsymbol{L} = (\boldsymbol{B}^T \boldsymbol{B})^{-1} \boldsymbol{B}^T (\boldsymbol{A} - \boldsymbol{A}_m) = (\boldsymbol{B}_m^T \boldsymbol{B})^{-1} \boldsymbol{B}_m^T (\boldsymbol{A} - \boldsymbol{A}_m)$$
$$\boldsymbol{M} = (\boldsymbol{B}^T \boldsymbol{B})^{-1} \boldsymbol{B}^T \boldsymbol{B}_m = (\boldsymbol{B}_m^T \boldsymbol{B})^{-1} \boldsymbol{B}_m^T \boldsymbol{B}_m$$

Jednadžba pogreške

- Pogreška slijeđenja: $e = x x_m$
- Derivacija pogreške:

$$\frac{de}{dt} = \frac{dx}{dt} - \frac{dx_m}{dt} = Ax + Bu - A_m x_m - B_m u_c$$

$$\frac{de}{dt} = A_m e + (A - A_m - BL)x + (BM - B_m)u_c$$

$$= A_m e + (A_c(\Theta) - A_c(\Theta_0))x + (B_c(\Theta) - B_c(\Theta_0))u_c$$

$$= A_m e + \Psi(\Theta - \Theta^0)$$

- Da bi se dobila ova jednakost, pretpostavljeno je da su zadovoljeni uvjeti perfektnog slijeđenja, pri čemu se za ovo zahtijeva postojanje Θ.
- Za izvođenje zakona kojim se podešavaju parametri, uvodi se Lyapunovljeva funkcija:

$$V(\boldsymbol{e},\boldsymbol{\Theta}) = \frac{1}{2} \left(\gamma \boldsymbol{e}^T \boldsymbol{P} \boldsymbol{e} + (\boldsymbol{\Theta} - \boldsymbol{\Theta}^0)^T (\boldsymbol{\Theta} - \boldsymbol{\Theta}^0) \right)$$
(11)

■ Da bi se ispitalo da li V može biti funkcija Lyapunova, računa se njena derivacija po vremenu:

$$\frac{dV}{dt} = -\frac{\gamma}{2} e^{T} Q e + \gamma (\Theta - \Theta^{0}) \Psi^{T} P e + (\Theta - \Theta^{0})^{T} \frac{d\Theta}{dt}$$
$$= -\frac{\gamma}{2} e^{T} Q e + (\Theta - \Theta^{0})^{T} \left(\frac{d\Theta}{dt} + \gamma \Psi^{T} P e \right)$$

gdje je Q pozitivno definitna matrica takva da je:

$$A_m^T P + P A_m = -Q$$

- Prethodni izraz proizlazi iz sljedećeg teorema.
- Teorem 4. Lyapunovljeve funkcije za linearne sisteme. Pretpostavimo da je linearni sistem

(12)

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x}$$

asimptotski stabilan. Tada za svaku simetričnu pozitivno definitnu matricu Q postoji jedinstvena pozitivno definitna matrica P takva da je:

$$\boldsymbol{A}^T\boldsymbol{P}+\boldsymbol{P}\boldsymbol{A}=-\boldsymbol{Q}$$

Osim toga, funkcija $V(x) = x^T P x$ je Lyapunovljeva funkcija za jednadžbu (12).

Ako je izabran zakon podešavanja parametara:

$$\frac{d\mathbf{\Theta}}{dt} = -\gamma \mathbf{\Psi}^T \mathbf{P} \mathbf{e}$$

dobiva se:

$$\frac{dV}{dt} = -\frac{\gamma}{2} e^T Q e$$

- Vremenska derivacija Lyapunovljeve funkcije je negativno semidefinitna.
- Korištenjem Barbalatove leme dokazuje se da pogreška teži ka nuli. Pretpostavljeno je da su sva stanja x mjerljiva.

- Kompenzacija promjene parametara sistema ili nelinearnosti mogu se ostvariti pomoću: regulatora s promjenjivim pojačanjem (GS), samopodesivim regulatorom (STR) ili adaptivnim upravljanjem s referentnim modelom (MRAC).
- Parametarska adaptacija s referentnim modelom sadrži integralne članove, odnosno zahtijeva više iteracija za podešavanje optimalnih parametara regulatora i novo podešenje za promjenjene parametre procesa
- Prednost signalne adaptacije je da nema integralnih članova i zbog toga djeluje trenutno (u prvoj iteraciji) na svaku promjenu u ponašanju sistema.

• Algoritam signalne adaptacije generira dodatni upravljački signal u_A koji minimizira razliku između izlaza referentnog modela y_m i podesivog sistema y.

- Signal adaptacije djeluje na ulaz sistema tako da mehanizam adaptacije formira vanjsku upravljačku petlju, dok podesivi sistem s osnovnim regulatorom formira unutarnju upravljačku petlju.
- Druga mogućnost je da signal adaptacije djeluje iza osnovnog regulatora, tako da mehanizam adaptacije formira unutarnju upravljačku petlju, a osnovni regulator djeluje u vanjskoj petlji.

 Adaptivni sistem s referentnim modelom i algoritmom signalne adaptacije u vanjskoj petlji.

Linearni vremenski nepromjenjivi SISO sistem u prostoru stanja:

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + \mathbf{b}u(t) \tag{13}$$

gdje su:

- $\triangleright A$ matrica sistema $(n \times n)$,
- $\triangleright b$ ulazni vektor sistema ($n \times 1$),
- $\triangleright x$ vektor varijabli stanja sistema ($n \times 1$),
- $\triangleright u$ upravljački signal sistema (1 × 1).

Referentni model:

(14)

$$\dot{\boldsymbol{x}}_m(t) = \boldsymbol{A}_m \boldsymbol{x}_m(t) + \boldsymbol{b}_m \boldsymbol{u}_x(t)$$

gdje su:

- $\triangleright A_m$ matrica referentnog modela $(n \times n)$,
- $\triangleright \boldsymbol{b}_m$ ulazni referentnog modela ($n \times 1$),
- $\succ x_m$ vektor varijabli stanja referentnog modela ($n \times 1$),
- $\succ u_x$ referentni signal u_r ili u_R (1 × 1), ovisno o strukturi adaptacije.

Vektor pogreške slijeđenja:

$$\boldsymbol{e}(t) = \boldsymbol{x}_m(t) - \boldsymbol{x}(t)$$

Iz opisa sistema i referentnog modela slijedi izraz za derivaciju pogreške:

$$\dot{\boldsymbol{e}}(t) = \dot{\boldsymbol{x}}_m(t) - \dot{\boldsymbol{x}}(t) = \boldsymbol{A}_m \boldsymbol{e}(t) + \boldsymbol{\sigma}(t) + \boldsymbol{b}\boldsymbol{u}_A(t)$$

pri čemu je vektor σ određen varijacijama parametara sistema (procesa) od referentnog modela.

 Stabilnost adaptivnog regulatora može se ispitati pomoću kriterija stabilnosti Lyapunova.

 Prikladna Lyapunovljeva pozitivno definitna funkcije je kvadratnog oblika:

$$V = \frac{1}{2} \boldsymbol{e}^T \boldsymbol{P} \boldsymbol{e}$$

gdje je *P* pozitivno definitna matrica dana sa:

$$\boldsymbol{A}^T\boldsymbol{P} + \boldsymbol{P}\boldsymbol{A} = -\boldsymbol{Q}$$

Q je proizvoljno definitna matrica.

Derivacija funkcije Lyapunova je:

$$\dot{V} = \dot{\boldsymbol{e}}^T \boldsymbol{P} \boldsymbol{e} + \boldsymbol{e}^T \boldsymbol{P} \dot{\boldsymbol{e}}$$

Kombiniranjem prethodnih izraza dobiva se:

$$\dot{V} = \dot{\boldsymbol{e}}^T \boldsymbol{Q} \boldsymbol{e} + 2\boldsymbol{e}^T \boldsymbol{P} \boldsymbol{\sigma} - 2\boldsymbol{e}^T \boldsymbol{P} \boldsymbol{b} u_A$$

(15)

gdje je u_A signal adaptacije.

 Derivacija funkcije Lyapunova (15) bit će negativno definitna za sljedeći oblik signala adaptacije:

$$u_{A} = h \cdot sign(v(t))$$

$$v(t) = \boldsymbol{d}^{T} \boldsymbol{e}(t), \quad \boldsymbol{d}^{T} = \boldsymbol{b}^{T} \boldsymbol{P}$$
(16)

gdje su: ν - poopćena pogreška,

h – koeficijent adaptacije,

 d^T – težinski vektor koeficijenata pogreške.

- Algoritam adaptacije s funkcijom predznaka (16) generira trajne oscilacije u signalu adaptacije u_A , što nije pogodno u sistemima automatskog upravljanja.
- 61/74

 Umjesto funkcije predznaka uvodi se funkcija zasičenja (sat):

$$u_{A}(t) = \operatorname{sat}(v(t), h) = \begin{cases} h, \ \operatorname{za} \ v(t) > v_{s} \\ K_{v}v(t), \ \operatorname{za} \ |v(t)| \leq v_{s} \\ -h, \ \operatorname{za} \ v(t) < -v_{s} \end{cases}$$
(17)

gdje su: h – iznos zasičenja algoritma,

 K_{ν} – koeficijent pojačanja poopćene pogreške,

 $\nu_{\rm s}$ – područje linearnosti funkcije zasičenja.

• Koeficijenti matrice P, a time i d^T mogu se odrediti iz jednadžbe:

$$\boldsymbol{A}^T\boldsymbol{P} + \boldsymbol{P}\boldsymbol{A} = -\boldsymbol{Q}$$

uz dane koeficijente matrice Q (obično se uzima Q = I, I je jedinična matrica).

- Međutim, tako određeni težinski koeficijenti ne daju najbolju adaptaciju, tj. najmanju vrijednost pogreške u prijelaznoj pojavi pa stoga ti težinski koeficijenti nisu optimalni.
- Zbog toga se oni određuju optimiranjem uz pomoć programskih paketa (Matlab Optimization Toolbox).

- Primjer 3. Beskontaktni elektronički komutirani motor (BLDC) s permanentnim magnetima na rotoru.
- Blokovska shema kaskadnog sistema regulacije brzine vrtnje BLDC pogona.

63/74

 Adaptivni regulator izveden je u strukturi prema slici sa slajda br. 54., odnosno u vanjskoj petlji.

- Kao varijable stanja odabrane su mjerena brzina vrtnje, te njena prva i druga derivacija.
- Derivacije se računaju aproksimativno prema izrazima:

$$G_{1}(z) = \frac{\dot{\Omega}_{mr}(z)}{\Omega_{mr}(z)} = \frac{z - 1}{T_{d}z}$$

$$G_{2}(z) = \frac{\ddot{\Omega}_{mr}(z)}{\Omega_{mr}(z)} = \frac{z^{2} - 2z + 1}{T_{d}z^{2}}$$

gdje je $T_d = 50 \ \mu s$ vrijeme diskretizacije algoritma.

Referentni model je odabran da dobro opisuje ponašanje pogona s nominalnim parametrima:

$$G_m(s) = \frac{\Omega_{mmr}(z)}{U_r(z)} = \frac{1}{(1 + T_f s)(1 + 2\zeta T_n s + T_n^2 s^2)}$$

gdje je Ω_{mmr} izlaz referentnog modela, a parametri $\zeta = 0.318$ i $T_n = 1.197$ ms su dobiveni optimiranjem.

 Težinski koeficijenti pogreške određeni su optimiranjem prema ISE integralnom kriteriju:

$$I = \int e^2(t)dt$$

U prethodnom izrazu je:

$$e(t) = \omega_{mmr}(t) - \omega_{mr}(t)$$

- Optimiranje je provedeno uz djelovanje referentne veličine $u_r(t)=0.1\ S(t)$, iznos zasićenja $h=0.1\ i$ koeficijent pojačanja $K_v=1$.
- Rezultat optimiranja je:

$$\boldsymbol{d}^T = [18.018 \ 4.429 \cdot 10^{-3} \ 1.438 \cdot 10^{-6}]$$

■ PI regulator unutarnje petlje po struji armature projektiran je po tehničkom optimumu (kompenzacija najveće vremenske konstante u petlji), za nadvišenje signala povratne veze struje armature $\sigma_{\rm mi} = 5\%$ te njegovi parametri iznose:

$$K_{pi} = 1.267$$
, $T_{ii} = 1.743$ ms

PI regulator brzine vrtnje u vanjskoj petlji projektiran je prema krivuljama pokazatelja kvalitete upravljanja, čime se postiže brža i bolja kompenzacija poremećajne veličine u odnosu na projektiranje regulatora primjenom tehničkog optimuma. Tako dobiveni parametri iznose:

$$K_{c\omega} = 44.9$$
, $T_{i\omega} = 11.76$ ms

- Za postizanje nadvišenja signala povratne veze brzine vrtnje od $\sigma_{m\omega} = 10\%$, u granu referentne vrijednosti dodaje se filter prvog reda s jediničnim pojačanjem i vremenskom konstantom $T_f = 1.96$ ms.
- Odzivi referentnog modela te mjerene brzine vrtnje i struje armature elektromotornog pogona bez i sa adaptacijom dani su na sljedeće dvije slike.

• Odzivi za moment inercije $J = 0.5 J_n$.

• Odzivi za moment inercije $J = 2 J_n$.

- Iz odziva je očigledna superiornost adaptivnog regulatora s referentnim modelom i signalnom adaptacijom naspram PI regulacije pri promjeni momenta inercije pogona.
- Maksimalno odstupanje odziva mjerene brzine vrtnje od referentnog modela ne prelazi 3% s algoritmom signalne adaptacije, dok je isto odstupanje s PI regulatorom oko 30% za obje promjene momenta inercije.
- Propadi brzine vrtnje pri djelovanju poremećajne veličine su za red veličine smanjeni korištenjem adaptivnog regulatora, uz neznatno povećanje maksimalne vrijednosti struje armature.

MRAS zasnovan na teoriji hiperstabilnosti

Sistem sa zatvorenom povratnom vezom kod koga se u direktnoj grani nalazi linearni stacionarni sistem, a u povratnoj nelinerani nestacionarni sistem koji zadovoljava nejednadžbu Popova je globalno asimptotski stabilan ako je:

$$\operatorname{Re}(G(j\omega)) > 0$$

$$\int_{0}^{t} v^{T}(\tau)\mu(\tau)d\tau \ge -\delta, \quad \forall t > 0$$

Kriterij hiperstabilnosti Popova

gdje su: δ - pozitivna konstanta, μ - izlazna varijabla nelinearnog dijela sistema, ν - izlazna varijabla linearnog dijela sistema.

MRAS zasnovan na teoriji hiperstabilnosti

Struktura sistema

Opis sistema:

$$\dot{\boldsymbol{e}} = \boldsymbol{A}_{M}\boldsymbol{e} + \boldsymbol{\mu}_{1}$$

$$\boldsymbol{v} = \boldsymbol{d}^{T}\boldsymbol{e}$$

MRAS zasnovan na teoriji hiperstabilnosti

Linearni dio sistema:

$$v(s) = G^{T}(s)\mu_{1}(s) = d^{T}(sI - A_{M})^{-1}\mu_{1}(s)$$

Nelinearni dio sistema:

$$\mu = -\mu_1 = (k_p^T(t, v) - (A_M - A))x + (bk_d(t, v) - b_m)u_r(s)$$

- Linearni dio sistema obuhvaća vektor težina koeficijenata pogreške (postavljanje nula funkcije prijenosa linearnog dijelasistema) i potpuni vektor stanja.
- Nelinearni dio obuhvaća algoritam adaptacije.