Feed Forward Neural Networks: Hidden Layer Analysis

Stuart Eiffert, stuarteiffert@gmail.com

Abstract

Blah Blah Blah

1 Introduction

The choice of parameters regarding hidden layers in feedforward neural network can have significant impact on the classification and training performance, leading to the question in architecture selection of how many hidden units to use. Standard approaches suggest choice of neurons in a single layer to be 'somehwre between the input layer size and output layer size [1], however other suggest these rules are 'total nonsense' [2].

This report performs a comparison of results of an FNN with varying numbers of hidden layers, and varying numbers of neurons in each hidden layers for a number of datasets.

2 Method

Using a feed-forward neural network with a single hidden layer, 30 experimental runs have been performed uwing stochastic method on a number of datasets to determine the mean and std dev of performance for training and test datasets.

The number of hidden layers was increased and this procedure was repeated for 2, 3,4 and 5 hidden layers, all of the same number of neurons.

For a selection of the used datasets, further testing was carried out wherein the number of neurons in each hidden layer was varied also.

The data sets used for our experiments are taken from the UCI machine learning repository [3]:

- Iris
- Breast Cancer Wisconsin (diagnostic)
- Cervical Cancer (risk faactors)
- Fertility
- Image Segmentation

as well as.

- XOR Gate
- 4 bit parity

3 Results

3.1 Hidden Layer Number Comparison

3.2 Hidden Layer Neurons Comparison

Note that results have been computed for all architectures for the Breast Cancer and Fertility datasets only due to computation time.

Breast Cancer Dataset

Fertility Dataset

4 Conclusion

From our results, it is not apparent that an increase in number of hidden layers always relates to increase in performance, for either the training or testing datsets.

Regrding the iris, fertility and breast cancer datasets only, an increase in hidden layers does correlate to what appears to be a significant increase in performance accuracy. An increase in the number of neurons per layer also appears to correlate to a significant increase in performance accuracy.

Greater repetition and an increase in experimental runs would be required to confirm these observations.

The performance of a given system architecture can also be seen to differ between datasets, leading to the conclusion that choice of hidden layer and neuron number is dependent on the distribution of input data and required output format.

In summary, there appears to be a small level of benefit to using a greater number of hidden layers, as opposed to a shallower, yet wider network. One hidden layer with a large number of neurons "suffices for the 'universal approximation' property" [2][5]. It should also be noted that additional hidden layers increases the training time significantly. As such, it is recommended to use a one or two hidden layers and only increase the number of layers if performance cannot be satisfactorily achieved by increasing the number of neurons per layer.

5 References

- [1] A. Blum, Neural Networks in C++, Wiley, 1992.
- [2] D. Svozil, V. Kvasnicka and J. Posp´ıchal, Introduction to multi-layer feed-forward neural networks, Chemom. Intell. Lab. Syst., 1997, 39, 43.
- [3] Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
- [4] Backpropagation with one and two neural nets
- [5] K.Hornik, Approximation capabilities of multi-layer neural networks, Neural Networks 4 (2) (1991) 251-257.

6 Appendices

OUTPUT DATA

	Evporiment			Training		Testing		Time	
Problem	Experiment al Runs	No Hid	H layers size	mean	std dev	mean	std dev	mean	std dev
Iris	30	1	6		_		_		1.4191655839
Iris	30	2	6,6						2.7893972152
Iris	30	3	6,6,6						2.8874896605
Iris	30	4	6,6,6,6						5.3064713809
Iris	30	5	6,6,6,6,6						5.7378049708
4 Bit Parity	30	1	6						1.2538881268
4 Bit Parity	30	2	6,6	78.125					0.4817007971
4 Bit Parity	30	3	6,6,6		33.147921839				0.2871531131
4 Bit Parity	30	4	6,6,6,6		29.742091619				0.6269601808
4 Bit Parity	30	5		11.25	22.5	50			0.5717422375
XOR	30	1	6	100	0	100	0	0.0043167353	
XOR	30	2	6,6	100	0	100	0	0.0043167353	
XOR	30	3	6,6,6	100	0	100	0	0.0050983906	
XOR	30	4	6,6,6,6	100	0	100	0	0.0058403095	
XOR	30	5	6,6,6,6,6	100	0	100	0	0.0079867681	
Breastcancer	5	1	2						7.4526215296
Breastcancer	5	1	4						10.60887956
Breastcancer	5	1	6						15.226529212
Breastcancer	5	1	8	95.306553911					3 7.7630060395
Breastcancer	5	1	10						44.750535063
Breastcancer	5	2	2,2						3 11.613964115
Breastcancer	5	2	4,4						35.098623323
Breastcancer	5	2	6,6		6.7582580915				45.453290912
Breastcancer	5	2	8,8						66.991609759
Breastcancer	5	2	0,0		0.7813291236				68.916026778
Breastcancer	5	3	2,2,2						19.501490827
Breastcancer	5	3	4,4,4						31.495460064
Breastcancer	5	3	6,6,6						46.363140361
Breastcancer	5	3	8,8,8						82.859628101
Breastcancer	5	3	0,0,0		5.1710688276				78.515013493
Fertility	5	1	2		3.3619631103				0.1363234087
Fertility	5	1	4		3.2570138169				0.0397814486
Fertility	5	1	6						3 0.0692086546
Fertility	5	1	8						3 0.0934385724
Fertility	5	1	10		3.446012188				0.063808494
Fertility	5	2	2,2		1.4577379737				5 0.1131336477
Fertility	5	2	4,4						0.0324536671
Fertility	5	2	6,6		1.8390804598				0.0897440965
Fertility	5	2	8,8	91.139240506		76.19047619			0.0947533404
Fertility	5	2	10,10	88.311688312		86.956521739			2 0.0246012339
Fertility	5	3	2,2,2	93.975903614		58.823529412			0.034406463
Fertility	5	3	4,4,4	89.189189189		84.615384615			0.1088714179
Fertility	5	3	6,6,6	89.473684211		83.333333333			5 0.047673394
Fertility	5	3	8,8,8	88.095238095					2 0.2042625672
Fertility	5	2	10,10,10		1.9277108434				0.1720947393
. Crunty	9	_	10,10,10	33.70010230	1.0211100704	5 T. T. T. 1 0-1 000			. 5.1120571050