Bayesian Inference: Google Stock Data

Connor Kennedy, Rebecca Netson,

Michaela LaCasse, Alexis Doyle

Fall 2021

Introduction

- Google Stock Data from 'tidyquant' package in R
 - O Closing Price from 2011 to 2021
 - Closing price is calculated by dividing the total product by the total number of shares traded during the 30 minutes
 - Closing price is the last price at which a security traded during the regular trading day
 - O Securitys closing price is the standard benchmark used by investors to track it's performance over time
- Exploratory Analysis:
- Increasing trend from 2011 2021
- Possible cyclical trend
- No clear seasonality

Exploratory Analysis of Google Stock Data

- Differencing the log of closing price data to remove the trend at lag 1
- ACF and PACF are shown
 - ACF (Autocorrelation Function): correlation between points separated by various time lags
 - PACF (Partial Autocorrelation): partial correlation between the series and lags of itself
 - For AR(1) the ACF exponentially decreases to o as the lag h increases
- Augmented Dicky-Fuller Test to assess stationarity, results shown for linear model with no drift and linear trend with respect to time,
 - o ADF = 57, p-value = 0.01 (Stationary)

Autoregressive Model AR(1)

Assumptions:

- 1. Residuals approximate white noise
- 2. An AR(1) autoregressive process is one in which the current value is based on the immediately preceding value
- 3. Stationarity can be assessed by checking the autocorrelation function and whether the process depends on lag 1
 - a. A stationary time series is one whose properties do not depend on the time at which the series is observed

General Form

$$y_{t} = \phi y_{t-1} + \epsilon_{t}$$

 $\epsilon_{t} \stackrel{iid}{\sim} N(0, \sigma^{2}), \ t = 2, \dots, T$
 $[y_{t}|y_{t-1}, \phi, \sigma^{2}] \stackrel{iid}{\sim} N(\phi y_{t-1}, \sigma^{2}), \ t = 2, \dots, T$

Where ϵ_t is white noise, ϕ is a real-value constant and $|\phi| < 1$ following causality criteria. The general form for y_t can be re-written as a linear combination of white noise, i.e:

$$y_t = \sum_{j=0}^{\infty} \psi^j \epsilon_{t-j},$$

where $\psi_j = \phi^j$ and $\psi_1 = \phi$.

Bayesian Approach

The unknown parameters of y_t are ϕ and σ^2 . The conditional probability is the likelihood of an outcome occurring, based on a previous outcome occurring, denoted as $L(\phi, \sigma)$. Since we are considering a stationary AR(1) model, we have the following:

$$E(y_1) = \frac{0}{1 - \phi} = 0$$
 $Var(y_1) = \frac{\sigma^2}{1 - \phi^2}$

Assuming that $y_t|y_{t-1}$ follows a normal distribution, we thus have:

$$[y_1|\phi,\sigma^2] \sim N(0, \frac{\sigma^2}{1-\phi^2})$$
$$f(y_1|\sigma^2) = \frac{1}{\sqrt{2\pi \frac{\sigma^2}{1-\phi^2}}} e^{-\frac{y_1^2}{2\sigma^2/1-\phi^2}}$$

Likelihood and Priors

The likelihood may be written as:

$$L(\phi, \sigma) = f(y_1 | \phi, \sigma^2) \prod_{t=2}^{T} f(y_t | y_{t-1}, \phi, \sigma^2)$$

$$L(\phi, \sigma^2) = \frac{1}{\sqrt{2\pi \frac{\sigma^2}{1 - \phi^2}}} e^{-\frac{y_1^2}{2\sigma^2/1 - \phi^2}} \prod_{t=2}^{T} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_t - \phi y_{t-1})^2}{2\sigma^2}}$$

Analogous to Bayesian inference for unknown variance in linear regression, the Gamma prior for $\frac{1}{\sigma^2}$ is a prior to the AR(1) likelihood with parameters α, β , given as:

$$\left[\frac{1}{\sigma^2}\right] \sim Gamma(\alpha, \beta)$$

The prior for ϕ is uniform:

$$[\phi] \sim Uniform(-1,1)$$

Simulation Study

- We conducted a simulation study to assess the performance of our Bayesian estimation method
- We simulated 1,000 Monte Carlo samples for each of twelve possible combinations of φ and σ

Table 1: Parameter values used to simulate data

ϕ	σ
-0.92	1
-0.55	5
0.12	10
0.78	

$$y_t = \phi y_{t-1} + \epsilon_t$$
, where $\epsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$ for $t = 2, \dots, 200$ $[y_1 | \phi, \sigma^2] \sim N(0, \frac{\sigma^2}{1 - \phi^2})$

Simulated time series when $\phi = -0.92$ and $\sigma = 1$

- We fit a Bayesian structural model to each of the simulated samples
- The model uses a Monte Carlo Markov Chain (MCMC) algorithm to estimate φ and σ
 - Model fit is based on 500 MCMC draws from the posterior distributions
 - \circ We take the mean of the estimates for ϕ and σ to obtain point estimates for each Monte Carlo sample

• We take the mean of the point estimates across the 1,000 samples and assess performance

Parameter estimates obtained under different settings

Parameter	setting:	$\phi = -0.92$	$\phi = -0.55$	$\phi = 0.12$	$\phi = 0.78$
$\sigma = 1$	Mean $\hat{\phi}$	-0.9228	-0.5712	0.5051	0.8472
	$\mathrm{Bias}(\hat{\phi})$	-0.0028	-0.0212	0.3851	0.0672
	$\mathrm{MSE}(\hat{\phi})$	0.0007	0.0028	0.1488	0.0059
$\sigma = 5$	Mean $\hat{\phi}$	-0.9566	-0.5667	0.3399	0.8181
	$\mathrm{Bias}(\hat{\phi})$	-0.0366	-0.0167	0.2199	0.0391
	$\mathrm{MSE}(\hat{\phi})$	0.0014	0.0020	0.0986	0.0025
$\sigma = 10$	Mean $\hat{\phi}$	-0.9108	-0.6546	0.2449	0.8384
	$\mathrm{Bias}(\hat{\phi})$	-0.0092	-0.1046	0.1249	0.0584
	$\mathrm{MSE}(\hat{\phi})$	0.0027	0.0130	0.0494	0.0034
$\sigma = 1$	Mean $\hat{\sigma}$	0.9319	1.0172	0.2775	0.9462
	$\mathrm{Bias}(\hat{\sigma})$	-0.0681	0.0172	-0.7225	-0.0538
	$\mathrm{MSE}(\hat{\sigma})$	0.0081	0.0010	0.5254	0.0044
$\sigma = 5$	Mean $\hat{\sigma}$	4.8603	4.3433	2.9021	4.8668
	$\operatorname{Bias}(\hat{\sigma})$	-0.1397	-0.6567	-2.0979	-0.1332
	$\mathrm{MSE}(\hat{\sigma})$	0.0543	0.6457	4.9122	0.0410
$\sigma = 10$	Mean $\hat{\sigma}$	9.3603	7.8678	5.1550	8.3486
	$\mathrm{Bias}(\hat{\sigma})$	-0.6397	-2.1322	-4.8450	-1.6514
	$\mathrm{MSE}(\hat{\sigma})$	1.1362	5.8419	23.4740	2.8736

- Bias and MSE for estimates of φ and are small, except when $\varphi = 0.12$
- When φ is close to zero, yt is largely determined by εt
 - Fitting procedure finds structure in the noise
 - \circ Bias and MSE decrease as σ increases
- Bias and MSE of estimates for σ increase as the true value of σ increases
- Bias and MSE of estimates for σ are the largest when $\phi = 0.12$

- Simulation results suggest that BSTS modeling approach yields accurate estimates for φ when the true value is not close to zero
- Estimates for σ are less accurate when the true value of σ is large
- Interpretations are based on simulations where the data were generated from an AR(1) process
- What if the underlying data are not generated from an AR(1) process...

$$y_t = \alpha t^2 + \phi y_{t-1} + \epsilon_t$$
, where $\epsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$ for $t = 2, ..., T$ and $0 < \alpha < 1$

Fitting to Google Stock Data

- We will compare frequentist and bayesian time series models
- Frequentist
 - o Arima(1,1,0)
 - Differenced first-order auto regressive model
- Bayesian
 - Structural model with 'bsts'
 - Auto regressive local level term
- 'GOOGL' daily closing price from January 1, 2011 to June 30, 2021
 - o Train model on 2011-2020
 - (10 years)
 - Validate with 2021
 - (6 months)

Frequentist Time Series

- This method was done as a comparison to the Bayesian method to see which is better based on overall MAPE value.
- Steps that were followed:
 - Split data into training and validation
 - Plot raw data for training to see if stationary
 - If not stationary, transform training data (using just log, just differencing, or by doing a log transformation and then differencing the data)
 - Look at ACF/PACF to decide what model the data would use
 - Fit that model using arima() function in R
 - Extract the fitted values of the model using predict() function in R
 - Reverse the log transformation for the predicted values to get an accurate MAPE value
 - Finally, find the MAPE value using 'mean(abs(actual-fitted)/actual)'

Process to Transform Data

- Raw data for training data set looked like the plot in the introduction
- We wanted to look at the data using the log transformation first since we wanted to make the variance constant across time.
- The plot still showed an upward trend, so we took the difference of it too to make it stationary.
- Transforming the data isn't always necessary

ACF/PACF of Training Data

- Look at ACF and PACF to determine possible models for the data
- ACF shows lags that slowly go down until they reach 0
- PACF has a cutoff after the first lag
- These show characteristics of an AR(1) model, so that is the model we will move forward with

Overview of Rest of the Process

- Difference transformation was used solely to determine possible models and was, then, taken out to fit since the arima() function can do that for us
- The model was fit using arima(1,1,0) as said before.
 - First 1 representing AR(1) model
 - Second 1 representing the first-order difference of the data
- Fitted values were extracted for fitting purposes using predict() function
- Undid log transformation on fitted values using exp() to get accurate MAPE value.
- MAPE value was 1.8%

Bayesian Time Series

- State Specification
 - Auto regressive local level term
- Fit model with 1000 MCMC iterations
 - Burn first 32 for better starting value
- Use MCMC to find mean of parameters
 - \circ $\phi = 0.99$
 - \circ $\sigma = 0.02$
- Predict values using validation set
 - o MAPE = 1.2%

Simulation using JAGS (Just Another Gibbs Sampler)

Sources

Scott, S. L. (2021, July 02). Bsts: Bayesian Structural Time Series (Version 0.9.7) [Program documentation]. Retrieved from https://cran.r-project.org/web/packages/bsts/index.html

Alphabet Inc. (GOOG) Stock Historical Prices & Data. (2021, December 17). Retrieved from https://finance.yahoo.com/quote/GOOG/history?p=GOOG

Dancho, M., & Vaughan, D. (2021, March 05). Tidyquant: Tidy Quantitative Financial Analysis (Version 1.0.3) [Program documentation]. Retrieved from https://cran.r-project.org/web/packages/tidyquant/index.html