W4.A4

2020年3月31日 星期二 下午2:19

California

California

California

California

California

California

Virginia

Virginia

Washington

Washington Washington

Washington

Washington

West Virginia

West Virginia

West Virginia

West Virginia West Virginia

West Virginia

West Virginia

West Virginia

West Virginia

Wisconsin

Wisconsin

Wisconsin

Wisconsin

Wisconsin

return ans return ans

Out[6]: '2009q2'

return "ANSWER" get_recession_bottom()

In [10]: def convert_housing_data_to_quarters():

a = list(range(3,51))

for year in range(2000, 2016):

print(df2)

year = 2016

print(ans) return ans

Out[10]:

ans = pd.DataFrame(df2)

convert housing data to guarters()

in the shape of ["State", "RegionName"].

df = pd.read_csv('City_Zhvi_AllHomes.csv')

df2 = df.set_index(['State', 'RegionName'])
df2 = pd.DataFrame(df[['State', 'RegionName']])

df2 = df2.set_index(['State', 'RegionName'])

2000a1

df2 = df2.set_index(['State', 'RegionName'])

df2['State'] = [states[state] for state in df2['State']]

 $not\ arbitrary\ three\ month\ periods.$

 $^{\prime\prime} Converts$ the housing data to quarters and returns it as mean values in a dataframe. This dataframe should be a dataframe with columns for 2000q1 through 2016q3, and should have a multi-index

Note: Quarters are defined in the assignment description, they are

The resulting dataframe should have 67 columns, and $10,730 \ \mathrm{rows}$.

 $df2[str(year) \ + \ 'q1'] \ = \ df[[str(year) \ + \ '-01', \ str(year) \ + \ '-02', \ str(year) \ + \ '-03']]. mean$ df2[str(year) + 'q2'] = df[[str(year) + '-04', str(year) + '-05', str(year) + '-06']].meandf2[str(year) + 'q3'] = df[[str(year) + '-07', str(year) + '-08', str(year) + '-09']].mean $df2[str(year) \ + \ 'q4'] = df[[str(year) \ + \ '-10', \ str(year) \ + \ '-11', \ str(year) \ + \ '-12']].mean$

 $df2[str(year) \ + \ 'q1'] = df[[str(year) \ + \ '-01', \ str(year) \ + \ '-02', \ str(year) \ + \ '-03']].mean(axing axing axing$ df2[str(year) + 'q2'] = df[[str(year) + '-04', str(year) + '-05', str(year) + '-06']].mean(axi

2000043

2000a4

2001a1

200

2020/3/31 下午2:19

第5页(共8页)

2001 a2

df2[str(year) + 'q3'] = df[[str(year) + '-07', str(year) + '-08']].mean(axis = 1)

convert_housing_data_to_quarters().loc["Texas"].loc["Austin"].loc["2010q3"]

https://github.com/Qian-Han/coursera-Applied-Data-Science-...tion-to-Data-Science-in-Python/week4/week4_Assignment.jpynb

2000a2

df = df.drop(df.columns[[0] + list(range(3,51))], axis=1)

Claremont

Cotati

Davis

Irvine

Wise

Chesapeake Bellingham

Ellensburg

Pullman

Athens

Buckhannon

Fairmont

Huntington

Montgomery

Morgantown

West Liberty

Appleton

Green Bay

La Crosse

Madison

https://github.com/Qian-Han/coursera-Applied-Data-Science-...tion-to-Data-Science-in-Python/week4/week4_Assignment.jpynb

Shepherdstown

Isla Vista

University Park, Los Angeles

University District, Seattle

24

25

26

27

28

29

487

488

489

490

492

493

494

495

496

497

498

499

500

501

502

503

505

506

507

2020/3/31 下午2:19

第3页(共8页)

Name		New York	Upper Brookville	1.230967e+06	1.230967e+06	1.237700e+06	1.261567e+06	1.295167e+06	1.340033e+06	1.40
Michigan Williamston 1.561667e-05 1.813000e-05 1.843000e-05 1.862300e-06 1.77		Hawaii	Volcano	9.870000e+04	1.053667e+05	1.146667e+05	1.247667e+05	1.181333e+05	1.194000e+05	1.23
Arkansas Decatur 6.360000e-04 6.440000e-04 6.566667e-04 6.73333e-04 6.720000e-04 6.56 67 Tennessee Briceville 4.000000e-04 4.173333e-04 4.26667e-04 4.480000e-04 4.480000e-04 4.46 Indiana Edgewood 9.170000e-04 9.173030e-04 9.89333s-04 4.0000e-04 9.893333e-04 1.000667e-05 1.00 Tennessee Palmyra NaN NaN NaN NaN NaN NaN NaN NaN NaN N		South Carolina	Wedgefield	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Tennessee Briceville		Michigan	Williamston	1.591667e+05	1.613000e+05	1.643000e+05	1.662000e+05	1.664333e+05	1.686333e+05	1.71
Indiana		Arkansas	Decatur	6.360000e+04	6.440000e+04	6.566667e+04	6.673333e+04	6.720000e+04	6.770000e+04	6.65
Tennessee Palmyra NaN NaN NaN NaN NaN NaN NaN NaN NaN N		Tennessee	Briceville	4.000000e+04	4.173333e+04	4.366667e+04	4.490000e+04	4.480000e+04	4.530000e+04	4.46
Maryland Saint Inigoes 1.480667e+05 1.476000e+05 1.572333e+05 1.64233e+05 1.64233e+05 1.62000e+05 1.62		Indiana	Edgewood	9.170000e+04	9.186667e+04	9.293333e+04	9.490000e+04	9.893333e+04	1.000667e+05	1.00
Indiana Marysville NaN		Tennessee	Palmyra	NaN	NaN	NaN	NaN	NaN	NaN	NaN
California Forest Falls 1.135333e+05 1.144000e+05 1.141667e+05 1.111333a+05 1.13433a+05 1.130000e+05 1.15 Missouri Bois D Arc 1.078000e+05 1.059667e+05 1.071000e+05 1.081000e+05 1.107000e+05 1.136667e+05 1.12 Virginia Henrico 1.285667e+05 1.307667e+05 1.322667e+05 1.32233e+05 1.35233a+05 1.36733a+05 1.38 New Jersey Baach 1.739667e+05 1.831000e+05 1.889667e+05 1.3323667e+05 1.35233a+05 1.944000e+05 2.102667e+05 2.33 Tennessee Gruetii 3.540000e+04 3.546667e+04 3.666667e+04 3.730000e+04 3.77333a+04 3.790000e+04 3.35 Tennessee Wisconsin Town of Wrightstown 1.017667e+05 1.054000e+05 1.113667e+05 1.148667e+05 1.259667e+09 1.299000e+05 1.25 New York Urbana 7.920000e+04 8.166667e+04 9.170000e+04 9.836667e+04 9.486667e+04 9.85333a+04 1.05 Wisconsin New 1.145667e+05 1.192667e+05 1.260667e+05 1.319667e+05 1.438000e+05 1.469667e+05 1.45 California Angels 1.510000e+05 1.559000e+05 1.551000e+05 1.574667e+05 1.76833a+05 1.837667e+05 1.45 Wisconsin Holland 1.510333a+05 1.505000e+05 1.53100e+05 1.58333a+05 1.618667e+05 1.65733a+05 1.65 10730 rows x 67 columns In [50]: def run_ttest(): ""First creates new data showing the decline or growth of housing prices between the recession stall and the recession battley from values to the non-inulversity towns values return whether the alternative hypothesis (that the two groups are the same) is true or not as well as the p-value of the confidence. Return the tuple (different, p, better) where different-True if the t-test is True at a p-0.01 (we reject the null hypothesis), or different-False if otherwise (we cannot reject the null hypothesis), "The variable p should have been approximated to the recession battley (better should be recession battley) and th		Maryland	Saint Inigoes	1.480667e+05	1.476000e+05	1.572333e+05	1.633667e+05	1.642333e+05	1.682000e+05	1.66
Missouri Bois D Arc 1.078000e+05 1.08667e+05 1.071000e+05 1.107000e+05 1.136667e+05 1.12		Indiana	Marysville	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Virginia Henrico 1.285667e+05 1.307667e+05 1.322667e+05 1.322667e+05 1.352333e+05 1.67333e+05 1.867333e+05 1.867333e+05 1.867333e+05 1.867333e+05 1.867333e+05 1.86733ae+05 1.8687e+05 1.868		California	Forest Falls	1.135333e+05	1.144000e+05	1.141667e+05	1.111333e+05	1.134333e+05	1.130000e+05	1.13
New Jersey Diamond Beach 1.739667e+05 1.831000e+05 1.889667e+05 1.931333e+05 1.944000e+05 2.102667e+05 2.30		Missouri	Bois D Arc	1.078000e+05	1.069667e+05	1.071000e+05	1.081000e+05	1.107000e+05	1.136667e+05	1.12
New Jersey Beach 1.739667e+05 1.831000e+05 1.89667e+05 1.931333e+05 1.944000e+05 2.102667e+06 2.30		Virginia	Henrico	1.285667e+05	1.307667e+05	1.322667e+05	1.332667e+05	1.352333e+05	1.367333e+05	1.38
Town of Wisconsin		New Jersey		1.739667e+05	1.831000e+05	1.889667e+05	1.931333e+05	1.944000e+05	2.102667e+05	2.30
Wisconsin Wrightstown 1.017667e+05 1.054000e+05 1.13667e+05 1.259667e+05 1.299000e+05 1.25		Tennessee		3.540000e+04	3.546667e+04	3.666667e+04	3.730000e+04	3.773333e+04	3.790000e+04	3.93
Wisconsin		Wisconsin		1.017667e+05	1.054000e+05	1.113667e+05	1.148667e+05	1.259667e+05	1.299000e+05	1.29
California Angels 1.510000e+05 1.59000e+05 1.581000e+05 1.674667e+05 1.48000e+05 1.581000e+05 1.581000e+05 1.674667e+05 1.68333e+05 1.837667e+05 1.90		New York	Urbana	7.920000e+04	8.166667e+04	9.170000e+04	9.836667e+04	9.486667e+04	9.853333e+04	1.02
Denmark California Angels 1.510000e+05 1.559000e+05 1.581000e+05 1.674667e+05 1.768333e+05 1.837667e+05 1.96 Wisconsin Holland 1.510333e+05 1.505000e+05 1.532333e+05 1.558333e+05 1.618667e+05 1.657333e+05 1.68 10730 rows x 67 columns In [50]: def run_ttest(): "''First creates new data showing the decline or growth of housing prices between the recession start and the recession houton then runs a ttest comparing the university town values to the non-university towns values, return whether the alternative hypothesis (that the two groups are the same) is true or not as well as the p-value of the confidence. Return the tuple (different, p, better) where different=True if the t-test is True at a p<0.01 (we reject the null hypothesis), or different=False if otherwise (we cannot reject the null hypothesis). The variable p should be equal to the exact p value returned from scipy.stats.ttest_ind(). The value for better should be either "university town" or "non-university town" depending on which has a lower mean price ratio (which is equivilent to a reduced market loss)."' unitowns = get_list_of_university_towns() bottom = get_recession bottom() start = get_recession_bottom() start = hdata.columns[hdata.columns.get_loc(start) - 1] hdata = hdata[[bottom, bstart, 'ratio']] hdata = hdata[[bottom, bstart, 'ratio']] hdata = hdata.reset_index()		Wisconsin		1.145667e+05	1.192667e+05	1.260667e+05	1.319667e+05	1.438000e+05	1.469667e+05	1.48
Wisconsin Holland 1.510333e+05 1.505000e+05 1.532333e+05 1.558333e+05 1.618667e+05 1.657333e+05 1.68 10730 rows x 67 columns In [50]: def run_ttest(): "'First creates new data showing the decline or growth of housing prices between the recession start and the recession housing. Then runs a ttest comparing the university town values to the non-university towns values, return whether the alternative hypothesis (that the two groups are the same) is true or not as well as the p-value of the confidence. Return the tuple (different, p, better) where different=True if the t-test is True at a pc0.01 (we reject the null hypothesis), or different=False if otherwise (we cannot reject the null hypothesis). The variable p should be equal to the exact p value returned from scipy.stats.ttest_ind(). The value for better should be either "university town" or "non-university town" depending on which has a lower mean price ratio (which is equivilent to a reduced market loss)." unitowns = get_list of university_towns() bottom = get_recession_bottom() start = get_recession_bottom() start = get_recession_bottom() start = delata.columns(data.columns.get_loc(start) - 1] hdata['ratio'] = hdata[bstart] - hdata[bottom] hdata = hdata[[bottom, bstart, 'ratio']] hdata = hdata.reset_index() https://github.com/Qian-Han/coursera-Applied-Data-Sciencetion-to-Data-Science-in-Python/week4/week4_Assignment.ipynb 2020/3/31 Tff		0-17		1.510000	d FF0000	4 501000	1.07.100=	170000	1.007057	1.66
<pre>In [50]: def run_ttest(): '''First creates new data showing the decline or growth of housing prices between the recession star and the recession Dation. Then runs a ttest comparing the University town values to the non-university towns values, return whether the alternative hypothesis (that the two groups are the same) is true or not as well as the p-value of the confidence. Return the tuple (different, p, better) where different=True if the t-test is True at a p<0.01 (we reject the null hypothesis), or different=Ralse if otherwise (we cannot reject the null hypothesis), or aifferent=Ralse if otherwise (we cannot reject the null hypothesis), or aifferent=Ralse if otherwise (we cannot reject the null hypothesis). The value for better should be either "university town" or "non-university town" depending on which has a lower mean price ratio (which is equivilent to a reduced market loss).''' unitowns = get_list_of_university_towns() bottom = get_recession_bottom() start = get_recession_bottom() start = get_recession_start() hdata = convert_housing_data_to_quarters() bstart = hdata.columns[hdata.columns.get_loc(start) - 1] hdata['ratio'] = hdata[bstart] - hdata[bottom] hdata = hdata.reset_index() https://github.com/Qian-Han/coursera-Applied-Data-Sciencetion-to-Data-Science-in-Python/week4/week4_Assignment.ipynb 2020/3/31 下年</pre>										
In [50]: def run_ttest(): '''First creates new data showing the decline or growth of housing prices between the recession start and the recession hottom. Then runs a ttest comparing the university town values to the non-university towns values, return whether the alternative hypothesis (that the two groups are the same) is true or not as well as the p-value of the confidence. Return the tuple (different, p, better) where different=True if the t-test is True at a p<0.01 (we reject the null hypothesis), or different=False if otherwise (we cannot reject the null hypothesis). The variable p should be equal to the exact p value returned from scipy.stats.ttest ind(). The value for better should be either "university town" "mon-university town" depending on which has a lower mean price ratio (which is equivilent to a reduced market loss).'' unitowns = get_list_of_university_towns() bottom = get_recession_bottom() start = get_recession_start() hdata = convert_housing_data_to_quarters() bstart = hdata.columns[hdata.columns.get_loc(start) - 1] hdata['ratio'] = hdata[bstart] - hdata[bottom] hdata = hdata[[bottom, bstart, 'ratio']] hdata = hdata.reset_index() https://github.com/Qian-Han/coursera-Applied-Data-Sciencetion-to-Data-Science-in-Python/week4/week4_Assignment.ipynb		Wisconsin	Holland	1.510333e+05	1.505000e+05	1.532333e+05	1.558333e+05	1.618667e+05	1.657333e+05	1.68
		<pre>bottom = start = g hdata = c bstart = hdata['ra hdata = h</pre>	<pre>get_recessio. et_recessio. onvert_housi. hdata.column. tio'] = hda data[[bottom</pre>	n_bottom() _start() ng_data_to_q s[hdata.colu ta[bstart] - , bstart, 'r	uarters() mns.get_loc(
	nttps://github.c	om/Qian-Han/cou	ırsera-Applied-I	Data-Science	.tion-to-Data-S	cience-in-Pyth	non/week4/weel	k4_Assignment.		
<pre>unitowns_hdata = pd.merge(hdata,unitowns,how='inner',on=['State','RegionName']) unitowns_hdata['uni'] = True hdata2 = pd.merge(hdata, unitowns_hdata, how='outer', on=['State','RegionName',bottom, bstart, 'ratio']) hdata2['uni'] = hdata2['uni'].fillna(False) ut = hdata2[hdata2['uni'] == True] nut = hdata2[hdata2['uni'] == False] t,p = ttest_ind(ut['ratio'].dropna(), nut['ratio'].dropna()) different = True if p<0.01 else False better = "university town" if ut['ratio'].mean() < nut['ratio'].mean() else "non-university town"</pre>	nttps://github.c	unitowns_ unitowns_ hdata2 = 'ratio']) hdata2['u ut = hdat nut = hda t,p = tte different better =	hdata = pd.m hdata['uni'] pd.merge(hda ni'] = hdata a2[hdata2['u ta2[hdata2['st_ind(ut['r = True if p	erge(hdata,u = True ta, unitowns 2['uni'].fil ni'] == True uni'] == Fal atio'].dropn	nitowns, how= _hdata, how= lna(False)] se] a(), nut['ra	'inner', on= 'outer', on= tio'].dropna	['State','Ree =['State','Re	gionName']) egionName',b	第 ottom, bstar	7页(共8
<pre>unitowns_hdata['uni'] = True hdata2 = pd.merge(hdata, unitowns_hdata, how='outer', on=['State','RegionName',bottom, bstart, 'ratio']) hdata2['uni'] = hdata2['uni'].fillna(False) ut = hdata2[hdata2['uni'] == True] nut = hdata2[hdata2['uni'] == False] t,p = ttest_ind(ut['ratio'].dropna(), nut['ratio'].dropna()) different = True if p<0.01 else False better = "university town" if ut['ratio'].mean() < nut['ratio'].mean() else "non-university to</pre>	nttps://github.c	<pre>unitowns_ unitowns_ hdata2 = 'ratio']) hdata2['u ut = hdat nut = hdat t,p = tte different better = wn" return(di</pre>	hdata = pd.m hdata['uni'] pd.merge(hda ni'] = hdata a2[hdata2['u ta2[hdata2['st_ind(ut['r = True if p "university	erge(hdata,u = True ta, unitowns 2['uni'].fil ni'] == True uni'] == Fal atio'].dropn <0.01 else F town" if ut[nitowns, how= _hdata, how= lna(False)] se] a(), nut['ra	'inner', on= 'outer', on= tio'].dropna	['State','Ree =['State','Re	gionName']) egionName',b	第 ottom, bstar	7页(共8

Out[50]: (True, 0.002099659657952052, 'university town')

2020/3/31 下午2:19

第8页(共8页)

https://github.com/Qian-Han/coursera-Applied-Data-Science-...tion-to-Data-Science-in-Python/week4/week4_Assignment.ipynb