Implisit funksjonskerem.

$$x \in \mathbb{R}^{m} \quad y \in \mathbb{R} \quad f(x,y)$$
 $f(x_{0},y_{0}) = 0 \quad \text{og} \quad \frac{\partial f}{\partial y}(x_{0},y_{0}) \neq 0$.

Du fins funksjon $g: \mathbb{R}^{m} \to \mathbb{R} \quad (g \text{ definent for } x \text{ ner } x_{0})$.

 $s.a. \quad f(x,g(x)) = 0$
 $\frac{\partial g(x)}{\partial x_{1}} = -\frac{\partial f}{\partial x_{1}}(x_{1},g(x))$
 $\frac{\partial g}{\partial y}(x_{1},g(x)) = e^{x+y} + y - 1 \quad x \in \mathbb{R}, y \in \mathbb{R}$.

 $\frac{\partial g}{\partial y}(x_{1},y_{0}) = e^{x+y} + 1 \quad \frac{\partial f}{\partial y}(x_{1},y_{0}) = 1 + 1 = 2 \neq 0$.

Da fins $g: x: a. \quad g \text{ definent for } x \text{ ner } 0$.

 $\frac{\partial f}{\partial y}(x_{1},y_{0}) = 0 \quad \text{other } e^{x+y}(x_{1}) = 0$.

 $\frac{\partial f}{\partial y}(x_{1}) = -\frac{\partial f}{\partial y}(x_{1}) = -\frac{1}{2}$

Se particles $f(x_{1},y_{2}) = x^{2} + y^{2}(x_{1} - x_{1}) = 0$.

 $\frac{\partial f}{\partial x}(x_{1},x_{1}) = -\frac{\partial f}{\partial x}(x_{1},x_{1}) = -\frac{1}{2} = \frac{1}{2}$

Vet af difference $f(x_{1},x_{1}) = -\frac{1}{2} = \frac{1}{2}$
 $\frac{\partial f}{\partial x}(x_{1},x_{1}) = -\frac{1}{2} = \frac{1}{2}$

1

Max/min til funkyoner av fless variable.

Én landod:

Flere dimensioner.

U S R

f: U > R heales begreenset doson det fins M Los D.a. |f(x)| < M for all x ∈ U.

 $\mathcal U$ kalles begrevset derson |x| < M for alle $x \in \mathcal U$.

 $c \in \mathcal{U}$ c below max him $f(x) \leq f(c)$ for all $x \in \mathcal{U}$ c knows him him $f(x) \geq f(c)$ for all $x \in \mathcal{U}$.

Teorem:

We begrevent, label $U \subseteq \mathbb{R}^m$ $f: U \to \mathbb{R}$, f kontinuerly.

Due her f max by min i U.

(Dut fins $c \in U$ in a. $f(c) = \max_{x \in U} f(x)$,).

Bouis $M = \sup_{x \in U} f(x)$. ($\sup_{x \in V} = \text{"miske orre grouse"}$)

M ban wore ∞ .

Da kan in fine $x_h \in U$ is a. $\lim_{h \to \infty} f(x_h) = M$. $x_h \in U_j$ bullet x^h begreveset $f(x_h)_{h>0}$ har bowergent delfolge: $x_h \to c \in U$ $M = \lim_{k \to \infty} f(x_{hk}) = f(\lim_{k \to \infty} x_{hk}) = f(c)$; side f kont. $f(c) < \infty$.

Lokalt max. C kalles likely min his $f(c) \leq f(x)$ for all $x \in B_r(c)$ for r > 0.

3

Hooken from Max/Nim?

Lete other punkter cler
$$f(x) = 0$$
.

Hooken?

Anda at c or lokalt max. $x \in \mathbb{R}^{10}$ $x = (x_1, x_2, ..., x_{10})$
 $c = (c_1, c_2, ..., c_{11}, t, c_{11}, ..., c_{10}) = g(t)$.

g(t) has lokalt max for $t = c_i$
 $g'(c_i) = 0$ $g'(t) = \frac{3f}{3x_i}(c_1, ..., t, ..., c_{10})$
 $0 = \frac{3f}{3x_i}(c_1, ..., c_{10})$

Dette girler for all $i = 1, ..., n$
 $f'(c) = |7f(c)| = 0$.

 c max/ $|n_i| \Rightarrow |\nabla f(c)| = 0$.

 $f(x,y) = 3xy - 3x - 9y$ $u = \mathbb{R}^2$
 $|\nabla f(x,y)| = (3y - 3) = {0 \choose 0} \qquad y = 1$.

Soldpunkt.

 $f(3+u,1+z) = 3(3+u)(1+z) - 3(3+u) - 9(1+z) = 3(3+u+3z+1z-3-u-3-3z)$
 $= 3(-3+uz) = 3hz - 3$ $9 = f(3,1)$.

 $(12 \ge 0, f(3+u,1+z) > f(3,1)$ $uz \ge 0$ $f(3+u,1+z) < f(3,1)$.

 $f: \mathbb{R}^n \to \mathbb{R}$, f'(x) better $i \mathbb{R}^n : \mathbb{R}^n \to \mathbb{R}^n$, f''(x) $n \times n$ matrice: $\mathbb{R}^n \to n \times n$ matrice: $\mathbb{R}^n \to n \times n$ matrice: $\mathbb{R}^n \to n \times n$ matrice: $\mathbb{R}^n \to \mathbb{R}$ 2 gamper both muchlig derivation: $f(a+y) = f(a) + \nabla f(a) \cdot y + \frac{1}{2} \left\{ f''(a+cy) \cdot y \right\} \cdot y \cdot C \in [0,1]$ fall.

Hosse-matricen.

HOSE = matrice mel $\frac{\partial^2 f}{\partial x_i \partial x_j}$ i i-te ral j te bolome. Hf(a) = f''(x) = $\frac{\partial^2 f}{\partial x_i \partial x_j}$ = $\frac{\partial^2 f}{\partial x_j \partial x_i}$ so er f(x) by more tisk.

$$f(x,y,z) = x^{2} + yz + e^{y} \qquad f(x,y,z) = 17f(x,y,z) = \begin{pmatrix} 2x \\ z + e^{y} \end{pmatrix}, f''(x,y,z) = Hf(x,y,z) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & e^{y} & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$g(t) = f(a + ty)$$

$$g'(t) = \frac{d}{dt} f(a + ty) = \frac{d}{dt} f(a + ty, a_2 + ty, \dots, a_n + ty, \dots)$$

$$= \frac{d}{dx} (a + ty) g + \frac{d}{dx} (a + ty) g + \dots + \frac{d}{dx} (a + ty) g = \nabla f(a + ty) \cdot y$$

$$g''(t) = \frac{d}{dt} \left(\sum_{j=1}^{n} \frac{\partial f}{\partial x_j} (a + ty) y_j \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (a + ty) y_j y_i = \sum_{i=1}^{n} \sum_{j=1}^{n} y_i \frac{\partial^2 f}{\partial x_i \partial x_j} (a + ty) y_j = y^{\top} \text{ If } (a + ty) y$$

$$g(t) = g(0) + g'(0) + \frac{1}{2} g''(c).$$

$$g(t) = \frac{d}{dt} \int_{a}^{n} f(a + ty) y_j y_i = \sum_{i=1}^{n} \sum_{j=1}^{n} y_i \frac{\partial^2 f}{\partial x_i \partial x_j} (a + ty) y_j = y^{\top} \text{ If } (a + ty) y_j$$

$$g(t) = g(0) + g'(0) + \frac{1}{2} g''(c).$$

March 30, 2017 Uten navn.notebook

$$\frac{\mathrm{Hf}(a+cy)}{\mathrm{Hf}(a+cy)} = \frac{\mathrm{Hf}(a)}{\mathrm{Hf}(a+cy)} + \frac{\mathrm{Hf}(a)}{\mathrm{Hf}(a+cy)} \quad \text{in } \quad \text{fill even the merly } \quad \text{so will} \quad \text{Hf}(a+cy) - \text{Hf}(a) \rightarrow 0 \quad \text{nor } \quad \text{lyl} \rightarrow 0.$$

Kan skine Tuylor's formal:

$$f(\alpha+y) = f(\alpha) + \nabla f(\alpha) \cdot y + \frac{1}{2} [Hf(\alpha)y] \cdot y + \frac{1}{2} A(y)y \cdot y$$

$$\varepsilon(y).$$

$$f(a+y) = f(a) + \frac{1}{2}(ff(a)y) \cdot y + \mathcal{E}(y)$$
 (ifen her o

Kan shine Taylor's formal:

$$\begin{cases}
f(\alpha+y) = f(\alpha) + \nabla f(\alpha) \cdot y + \frac{1}{2} | Hf(\alpha) y | \cdot y + \frac{1}{2} | A(y) y \cdot y \\
\xi(y)
\end{cases}$$
Fund:

Spinell i at starjanart punht. $\nabla f(\alpha) = 0$.

$$\begin{cases}
\xi(y) \\
1y|^2
\end{cases}$$

$$\begin{cases}
\xi(y) \\
\xi(y)
\end{cases}$$

$$\begin{cases}
\xi(y) \\
\xi(y)$$

Histo Hf = $\int_{-\infty}^{\infty} dr$ symmetriste matrise

Alle egenverdiene fil Hf er neelle, det fins en benin av egenvektører.

Egenverdien $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ ortonormale egenvektører. $(Hf(a)y) \cdot y = c_1 \cdot c_1 \cdot c_2 \cdot c_2 + \ldots + c_n \cdot c_n$ $= \sum_{i=1}^n c_i \cdot \lambda_i \cdot c_i \cdot \sum_{j=1}^n c_j \cdot c_j \cdot c_j$ $= \sum_{i=1}^n \lambda_i \cdot c_i^2 \quad \text{side} \quad \ell_i \cdot \ell_j = \begin{cases} 1 & i=j \\ 0 & \text{ellers} \end{cases}$ $= c_1 \cdot \lambda_1 \cdot c_1 \cdot c_2 \cdot c_3 \cdot c_4 \cdot c_5 \cdot c_5 \cdot c_6 \cdot c_$

 $+(y+a) = f(a) + \frac{1}{2} \sum_{i=1}^{n} \lambda_i \dot{C}_i^2 + \xi(y)$