1) Assume that M1 and M2 are in the saturation region and that V_{DC} is set to produce a DC V_{OUT} which is optimal for maximum headroom and output voltage swing. Also, assume that the drain currents of M1 and M2 are $I_D = 0.5$ mA (Total: 25 points) Device characteristics: $\mu_n C_{ox} = 4mA/V^2$, $\mu_p C_{ox} = 2mA/V^2$ (W/L)_{M1} = (10 μ m/0.5 μ m), and (W/L)_{M2} = (20 μ m/0.5 μ m), $\lambda_p = \lambda_n = 0.1 V^{-1}$ and $V_{THn} = 0.7 V$ and $V_{THp} = 0.8 V$.

- a) What is the small-signal gain $A_v = \frac{v_{OUT}}{v_{in}}$? (15 points)
- b) What is the optimal DC value of V_{OUT} to produce a maximum peak-to-peak output swing? This question is **not** asking you to compute V_{OUT} DC using the drain current equations for M1 and M2, but rather find the optimal VOUT DC given the (V_{GS} - V_{TH}) of M1 and M2. (5 points) What is the corresponding peak output swing? (5 points)

2) For the below single-transistor amplifier, both an ideal DC current source and ideal AC current are applied to the input. It is fair to assume M_1 is in the saturation region and behaves like a "square law" device. Find the DC value of V_{OUT} (5 points) – note: ignore the body affect (λ =0) to make the calculation of the DC bias easier. Next, draw the small signal circuit for this amplifier and derive an expression for the smallsignal AC transresistance (v_{out}/i_{in}) , state any assumptions made to get your answer. Lastly, compute the value of the transresistance. (20 points) Note: for the AC-SS analysis you cannot ignore the body effect – e.g. λ =0.01V⁻¹ Device characteristics: $\mu_n C_{ox} = 5mA/V^2$, $(W/L)_{M1} = (10\mu m/1\mu m)$, $\lambda = 0.01 V^{-1}$ and

 $V_t = 0.7V$.

