Tầng mạng

Nguyễn Đức Toàn Bộ môn TT&MMT Viện CNTT&TT – ĐH Bách Khoa HN

- 4. 1 Tổng quan
- 4.2 Bên trong Router
- 4.3 IP: Internet Protocol
 - Định dạng Datagram
 - Địa chỉ IPv4
 - ICMP
 - IPv6

- 4.4 Thuật toán dẫn đường
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.5 Dẫn đường trong Internet
 - RIP
 - OSPF
 - BGP
- 4.6 Dẫn đường broadcast và multicast

Tổng quan về kiến trúc của Router

Hai chức năng chính của router

- Chạy các giao thức/thuật toán chọn đường (RIP, OSPF, BGP)
- Chuyển tiếp các datagram từ đường truyền vào sang đường truyền ra

Chức năng của cổng vào

Tầng liên kết dữ liệu:

ví dụ: Ethernet chi tiết trong chương 5 Dựa vào của datagram, tìm kiếm cổng ra sử

 Mục đích: xử lý cổng vào với tốc độ của đường truyền

dụng bảng chuyển tiếp trong bộ nhớ cổng vào

 Xếp hàng: Nếu các datagram đến nhah hơn tốc độ chuyển tiếp vào trong switch fabric

Ba kiểu switch fabric

Chuyển mạch qua bộ nhớ

Router thế hệ đầu tiên:

- Các máy tính truyền thống chuyển mạch dưới sự điều khiển trực tiếp của CPU
- Các gói tin được sao chép vào trong bộ nhớ của hệ thống
- Tốc độ bị hạn chế bởi bandwidth của bộ nhớ (2 lần truy nhập bus đối với mỗi datagram)

Chuyển mạch qua bus

- Datagram từ bộ nhớ cổng vào chuyển sang bộ nhớ cổng ra thông qua bus dùng chung
- Cạnh tranh bus: tốc độ chuyển mạch bị giới hạn bởi bandwidth của của bus
- Bus 1 Gbps, Cisco 1900: tốc độ đủ cho các router doanh nghiệp (khác router cho vùng, mạng backbone)

Chuyển mạch qua mạng kết nối

- Giải quyết hạn chế vấn đề bandwidth của bus
- Mạng Banyan, mạng các kết nối ban đầu được phát triển để kết nối các processor trong multiprocessor
- Thiết kế tiên tiến: phân mảnh các datagram thành các cell có độ dài cố định, chuyển mạch các cell qua fabric.
- Cisco 12000: chuyển mạch Gbps qua mạng kết nối

Cổng ra

- Đệm khi datagram đến fabric nhanh hơn tốc độ truyền
- Nguyên tắc lập lịch chọn các datagram đang xếp hàng để truyền

Xếp hàng tại cổng ra

- Đệm khi tốc độ đến qua switch vượt quá tốc độ đường ra
- Xếp hàng (trễ) và mất gói bởi vì vùng đệm của cổng ra bị tràn!

Xếp hàng ở cổng vào

- Fabric chậm hơn cổng vào -> xếp hàng có thể xảy ra ở hàng đợi cổng vào
- Head-of-the-Line (HOL) blocking: các datagram xếp hàng tại trước hàng đợi ngăn không cho datagram khác chuyển tiếp
- Độ trễ và mất gói khi xếp hàng bởi vì tràn vùng đệm vào!

- 4. 1 Tổng quan
- 4.2 Bên trong Router
- 4.3 IP: Internet Protocol
 - Định dạng Datagram
 - Địa chỉ IPv4
 - ICMP
 - IPv6

- 4.4 Thuật toán dẫn đường
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.5 Dẫn đường trong Internet
 - RIP
 - OSPF
 - BGP
- 4.6 Dẫn đường broadcast và multicast

Tầng mạng của Internet

Chức năng tầng mạng của host, router:

- 4.1 Tổng quan
- 4.2 Bên trong Router
- 4.3 IP: Internet Protocol
 - Định dạng Datagram
 - Địa chỉ IPv4
 - ICMP
 - IPv6

- 4.4 Thuật toán dẫn đường
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.5 Dẫn đường trong Internet
 - RIP
 - OSPF
 - BGP
- 4.6 Dẫn đường broadcast và multicast

Hierarchical Routing

Các nghiên cứu dẫn đường trong điều kiện lý tưởng

- Moi router như nhau
- Mạng ốn định

... không đúng trong thực tế

Co dãn: với 200 triệu đích Quyền tự trị

- Không thể chứa tất cả các đích trong bảng dẫn đường!
- Sự trao đổi bảng dẫn đường làm tràn ngập liên kết!
- internet = mạng của các mạng
- Mỗi quản trị mạng có thể muốn điều khiển dẫn đường trong mạng của họ

Hierarchical Routing

- Kết tập các router thành các cùng, "autonomous systems" (AS)
- Các router trong cùng AS chạy cùng giao thức dẫn đường
 - Giao thức dẫn đường "intra-AS"
 - Các router trong các AS khác nhau có thể chạy các giao thức dẫn đường intra-AS khác nhau

Gateway router

 Liên kết trực tiếp tới router trong AS khác

Kết nối giữa các AS

các điểm vào cho các đích

phía ngoài

Bảng

chuyển tiếp

Nhiệm vụ của Inter-AS

- Giả sử router trong AS1 nhận datagram có đích ngoài AS1
 - Router nên chuyển tiếp gói tin tới các gateway router.
 Câu hỏi: chọn gateway router nào?

AS1 cần:

- 1. Học đích nào thì gửi qua AS2, đích nào thì gửi qua AS3
- 2. Lan truyền thông tin trên tới mọi router trong AS1

Công việc dẫn đường inter-AS!

Ví dụ: Thiết lập bảng chuyển tiếp trong router 1d

- Giả sử AS1 học từ giao thức inter-AS biết rằng subnet x có thể tới được từ AS3 (gateway 1c) nhưng không tới được từ AS2.
- Giao thức Inter-AS lan truyền thông tin có thể tới tới các router bên trong
- Router 1d xác định từ thông tin dẫn đường intra-AS rằng giao diện / là trên đường đi có chi phí thấp nhất tới 1c
- Thêm vào trong bảng chuyển tiếp điểm vào (x,I).

Ví dụ: Chọn giữa các AS

- Giả sử AS1 học từ giao thức inter-AS biết rằng subnet x có thể tới được tự AS3 và từ AS2.
- Để cấu hình bảng chuyển tiếp, router 1d phải xác định gateway nó nên chuyển tiếp gói tin gửi đến đích x.
- Đó là công việc của giao thức dẫn đường inter-AS!
- Gửi gói tin tới router chi phí thấp nhất

- 4.1 Tổng quan
- 4.2 Bên trong Router
- 4.3 IP: Internet Protocol
 - Định dạng Datagram
 - Địa chỉ IPv4
 - ICMP
 - IPv6

- 4.4 Thuật toán dẫn đường
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.5 Dẫn đường trong Internet
 - RIP
 - OSPF
 - BGP
- 4.6 Dẫn đường broadcast và multicast

Dẫn đường Intra-AS

- Còn gọi là Interior Gateway Protocols (IGP)
- Các giao thức dẫn đường Intra-AS phổ biến:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (sở hữu của Cisco)

- 4.1 Tổng quan
- 4.2 Bên trong Router
- 4.3 IP: Internet Protocol
 - Định dạng Datagram
 - Địa chỉ IPv4
 - ICMP
 - IPv6

- 4.4 Thuật toán dẫn đường
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.5 Dẫn đường trong Internet
 - RIP
 - OSPF
 - BGP
- 4.6 Dẫn đường broadcast và multicast

RIP (Routing Information Protocol)

- Thuật toán Distance vector
- Trong BSD-UNIX Distribution, 1982
- Độ đo khoảng cách: số hop (tối đa = 15 hop)

Thông báo của RIP

- Distance vector: trao đổi giữa các hàng xom mỗi 30s qua Response Message (còn gọi là advertisement thông báo)
- Mỗi thông báo: danh sách tới 25 mạng đích trong AS

RIP: Ví dụ

Bảng dẫn đường trong D

RIP: Ví dụ

Bảng dẫn đường trong D

RIP: Lỗi liên kết và khôi phục

Nếu không nghe thấy bản tin thông báo sau 180 giây -> hàng xóm/liên kết đã không hoạt động

- Đường qua hàng xóm mất hiệu lực
- Không gửi thông báo đến các hàng xóm đó
- Các hàng xóm gửi thông báo mới (nếu bảng thay thay đổi)
- Thông tin lỗi liên kết nhanh chóng lan truyền toàn mạng
- poison reverse sử dụng để ngăn chặn vòng lặp ping-pong (khoảng cách không giới hạn = 16 hops)

RIP: Xử lý bảng

- Bảng dẫn đường của RIP quản lý bởi tiến trình mới ứng dụng gọi là route-d (daemon)
- Các thông báo được gửi trong các gói tin UDP, lặp lại định kỳ

- 4.1 Tổng quan
- 4.2 Bên trong Router
- 4.3 IP: Internet Protocol
 - Định dạng Datagram
 - Địa chỉ IPv4
 - ICMP
 - IPv6

- 4.4 Thuật toán dẫn đường
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.5 Dẫn đường trong Internet
 - RIP
 - OSPF
 - BGP
- 4.6 Dẫn đường broadcast và multicast

OSPF (Open Shortest Path First)

- "open": không thương mại
- Sử dụng thuật toán Link State
 - Phổ biến gói tin LS
 - Bản đồ Topology tại mỗi nút
 - Tính toán đường đi sử dụng thuật toán Dijkstra
- Các thông báo OSPF mang một điểm vào cho mỗi router hàng xóm
- Thông báo phổ biến trong toàn AS (bằng cách làm tràn)
 - Mang bản tin OSPF trực tiếp qua IP (không phải qua TCP, UDP)

Các đặc điểm tiến bộ của OSPF (không có trong RIP)

- An toàn bảo mật: Tất cả các bản tin OSPF được xác thực (ngăn chặn việc cố tình xâm nhập)
- Cho phép nhiều đường đi cùng chi phí (trong RIP chỉ 1 đường đi)
- Đối với mỗi liên kết, chi phí khác nhau cho TOS khác nhau (ví dụ: chi phí liên kết vệ tinh thiết lập thấp cho dịch vụ best effort, cao cho các dịch vụ thời gian thực)
- Hỗ trợ cả unicast và multicast:
 - Multicast OSPF (MOSPF) sử dụng cùng dữ liệu topology như OSPF
- OSPF phân cấp trong các miền lớn.

OSPF phân cấp

OSPF phân cấp

- Phân cấp 2 mức: vùng cục bộ, backbone
 - Thông báo Link-state chỉ trong vùng
 - Mỗi nút có topology vùng chi tiết; chỉ biết hướng (đường đi ngắn nhất) tới các mạng trong các vùng khác
- Area border router: tóm tắt các khoảng cách tới các mạng trong vùng của nó, thông báo cho các Area Border router khác
- Backbone router: chạy dẫn đường OSPF giới hạn trong backbone
- Boundary router: kết nối tới các AS khác

- 4.1 Tổng quan
- 4.2 Bên trong Router
- 4.3 IP: Internet Protocol
 - Định dạng Datagram
 - Địa chỉ IPv4
 - ICMP
 - IPv6

- 4.4 Thuật toán dẫn đường
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.5 Dẫn đường trong Internet
 - RIP
 - OSPF
 - BGP
- 4.6 Dẫn đường broadcast và multicast

Dẫn đường Internet inter-AS: BGP

- BGP (Border Gateway Protocol): chuẩn phố biến (nhưng không chính thức)
- BGP cung mỗi mỗi AS cách thức để:
 - 1. Có thông tin tới subnet từ các AS hàng xóm.
 - 2. Lan truyền thông tin tới các subnet tới mọi router trong AS
 - 3. Xác định các đường đi tốt tới các subnet dựa trên thông tin tới các subnet
- Cho phép một subnet quảng cáo thông tin về sự tồn tại của nó tới phần còn lại của Internet: "I am here"

Cơ bản về BGP

- Các cặp router (BGP peer) trao đổi thông tin dẫn đường qua các kết nối TCP bán cố định: Phiên BGP
- Chú ý: Các phiên BGP không tương ứng với liên kết vật lý
- Khi AS2 quảng cáo prefix tới AS1, AS2 hy vọng nó sẽ chuyển tiếp bất kỳ datagram dự định tới prefix
 - AS2 có thể kết tập các prefix trong các thông báo của nó

Phân phối thông tin tới đích

- Với phiên eBGP giữa 3a và 1c, AS3 gửi thông tin tới đích prefix tới AS1
- Sau đó, 1c có thể sử dụng iBGP để phân phối thông tin tới đích prefix mới tới mọi router trong AS1
- Sau đó, 1b có thể quảng báo lại thông tin mới tới AS2 qua phiên eBGP 1b-tới-2a
- Khi router học về prefix mới, nó tạo một điểm vào cho prefix trong bảng chuyển tiếp của nó

Path attribute và BGP route

- Khi quảng cáo một prefix, quảng cáo bao gồm các BGP attribute.
 - prefix + attributes = "route"
- Hai attribute quan trong:
 - AS-PATH: chứa các AS qua đó quảng cáo cho prefix chuyển qua: AS 67 AS 17
 - NEXT-HOP: chỉ định internal-AS router cụ thể tới next-hop AS. (Có thể có nhiều liên kết từ AS hiện tại tới next-hop-AS)
- Khi gateway router nhận quảng cáo đường đi, sử dụng import policy để chấp nhận hoặc từ chối

Chọn đường của BGP

- Router có thể học về nhiều hơn 1 đường đi từ một số prefix. Router phải chọn đường đi.
- Quy tắc loại trừ:
 - 1. Local preference value attribute: quyết định của chính sách
 - 2. AS-PATH ngắn nhất
 - 3. NEXT-HOP router gần nhất: hot potato routing
 - 4. Các tiêu chuẩn khác

Bản tin BGP

- Các bản tin BGP trao đổi sử dụng TCP.
- Bản tin BGP:
 - OPEN: mở kết nối TCP tới peer và xác thực bên gửi
 - UPDATE: quảng cáo đường đi mới (hoặc thu hồi đường đi cũ)
 - KEEPALIVE giữ kết nối khi không có UPDATE, tương tự ACK tới yêu cầu OPEN
 - NOTIFICATION: thông báo về các lỗi trong bản tin trước, cũng sử dụng để đóng kết nối

Chính sách dẫn đường của BGP

- □ A,B,C là mạng của nhà cung cấp
- X,W,Y là khách hàng (của mạng nhà cung cấp)
- X là dual-homed: nối tới 2 mạng
 - X không muốn dẫn từ B qua X tới C
 - o.. vì vậy, X sẽ không quảng cáo tới B đường đi tới C

Chính sách dẫn đường của BGP (2)

- A quảng cáo tới B đường đi AW
- B quảng cáo tới X đường đi BAW
- B quảng cáo tới C đường đi BAW?
 - Không! B không nhận được "thu nhập" cho việc dẫn đường
 CBAW vì W và C không là khách hàng của B
 - B muốn ép C dẫn đường tới w qua A
 - B muốn dẫn đường chỉ tới/từ các khách hàng của nó!

Tại sao dẫn đường Intra-AS và Inter-AS khác nhau?

Chính sách:

- Inter-AS: Người quản trị muốn điều khiển việc dẫn đường lưu lượng của nó, ai dẫn đường qua mạng của nó
- Intra-AS: một người quản trị vì thế không cần policy decision

Sự co giãn:

 Dẫn đường phân cấp tiết kiệm kích thước bảng, giảm lưu lượng cập nhật

Hiệu năng:

- Intra-AS: có thể tập chung vào hiệu năng
- Inter-AS: policy có thể ảnh hưởng lớn tới hiệu năng

Chương 4: Tầng mạng

- 4.1 Tổng quan
- 4.2 Bên trong Router
- 4.3 IP: Internet Protocol
 - Định dạng Datagram
 - Địa chỉ IPv4
 - ICMP
 - IPv6

- 4.4 Thuật toán dẫn đường
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.5 Dẫn đường trong Internet
 - RIP
 - OSPF
 - BGP
- 4.6 Dẫn đường broadcast và multicast

Source-duplication và in-network duplication. (a) source duplication, (b) in-network duplication

Reverse path forwarding

Broadcast doc theo spanning tree

Xây dựng kiểu Center-based của một spanning tree

Dẫn đường Multicast: Bài toán

- <u>Mục đích:</u> Tìm một tree (hoặc các tree) kết nối các router có local mcast group members
 - tree: Không phải mọi đường giữa các router được sử dụng
 - source-based: Cây khác nhau từ mỗi bên gửi tới bên nhận
 - shared-tree: Cây giống nhau sử dụng bởi tất cả các group member

Shared tree

Source-based tree

Các cách tiếp cận để xây dựng mcast tree

Cách tiếp cận:

- source-based tree: một cây cho mỗi nguồn
 - Cây đường đi ngắn nhất
 - Reverse path forwarding
- group-shared tree: Group sử dụng một cây
 - minimal spanning (Steiner)
 - center-based tree

...Chúng ta xem xét các cách tiếp cận một cách cơ bản, sau đó xem xét các giao thức sử dụng các cách tiếp cận đó

Cây đường đi ngắn nhất

- mcast forwarding tree: cây đường đi ngắn nhất dẫn đường từ nguồn tới mọi đích
 - Thuật toán Dijkstra

Reverse Path Forwarding

- Dựa vào kiến thức của router về đường đi ngắn nhất unicast từ nó tới bên gửi
- □ Mỗi router có hành vi chuyển tiếp đơn giản:

if (mcast datagram nhận trên liên kết đến trên đường ngắn nhất trở lại trung tâm)
 then làm tràn datagram trên mọi liên kết đi else bỏ qua datagram

Reverse Path Forwarding: Ví dụ

- Kết quả là một source-specific reverse SPT
 - có thể là sự lựa chọn tồi với các liên kết không đối xứng

Reverse Path Forwarding: Tia

- forwarding tree chứa các cây con mà subtree con đó không có mcast group member
 - Không cần chuyển tiếp các datagram xuống subtree
 - "Tia" các bản tin gửi lên bởi router mà không có downstream group members

Shared-Tree: Steiner Tree

- Steiner Tree: minimum cost tree kết nối tất cả các router nối với group member
- Bài toán là NP-complete
- Tồn tại các kỹ thuật heuristic
- Không sử dụng trong thực tế:
 - Độ phức tạp tính toán
 - Cần thông tin về toàn bộ mạng
 - Chạy lại khi một router gia nhập hay rời khỏi

Center-based tree

- Tất cả dùng chung một cây
- Một router được xác định là "trung tâm" của cây
- Gia nhập:
 - edge router gửi unicast join-msg tới center router
 - join-msg được xử lý bởi intermediate routers và chuyển tiếp tới center
 - join-msg hoặc tới nhánh của cây có trung tâm này, hoặc đến trung tâm
 - Đường đi mà join-msg tham gia trở thành một nhánh mới của cây cho router này

Center-based tree: ví dụ

Giả sử R6 được chọn làm trung tâm:

Internet Multicasting Routing: DVMRP

- DVMRP: Giao thức dẫn đường multicast kiểu distance vector, RFC1075
- Làm tràn và tia: reverse path forwarding, source-based tree
 - RPF tree dựa trên chính bảng dẫn đường của nó DVMRP được xây dựng bởi sự giao tiếp của các DVMRP router
 - Không giả sử về unicast ở dưới
 - Datagram ban đầu tới mcast group được làm tràn mọi nơi qua RPF
 - Router không muốn trong group: gửi upstream prune msgs

DVMRP (tiếp)

- <u>Trạng thái mềm:</u> DVMRP router định kỳ (1 phút) "quên" branches bị tỉa:
 - mcast data đưa lại xuông các nhánh không được tỉa
 - downstream router: tia lại hoặc tiếp tục nhận dữ liệu
- router có thể nhanh chónh ghép lại vào cây
 - Theo IGMP gia nhập tại lá
- odds và ends
 - Thường cài đặt trong các router thương mại
 - Dẫn đường Mbone sử dụng DVMRP

Tunneling

Q: Làm thế nào để kết nối tới các "đảo" của các multicast router trong "biển" các unicast router?

- mcast datagram được đóng gói trong datagram "thông thường" (không đánh địa chỉ multicast)
- IP datagram thông thường gửi qua "tunnel" qua IP unicast router bình thường tới mcast router nhận
- mcast router nhận sẽ bỏ đóng gói để nhận mcast datagram

PIM: Protocol Independent Multicast

- Không phụ thuộc vào bất kỳ thuật toán dẫn đường unicast cụ thể nào phía dưới (làm việc với tất cả)
- Hai kịch bản phân phối multicast khác nhau:

Đông đúc:

- dày đặc, tồn tại gần nhau.
- Bandwidth lón

Thưa thớt:

- group member tồn tại
 Số mạng với group member nhỏ
 - group member phân tán rộng
 - bandwidth không lớn

So sánh kiểu đông đúc và thưa thớt

Đông đúc:

- Thành viên nhóm tới khi router chính thức tỉa
- Xây dựng data-driven dựa trên mcast tree (ví dụ: RPF)
- bandwidth và non-grouprouter xử lý thoải mái

Thưa thớt:

- Không là thành viên tới khi router chính thức gia nhập
- Xây dựng receiver- driven của mcast tree (ví dụ: centerbased)
- bandwidth và non-grouprouter xử lý dè dặt

PIM- Chế độ đông đúc

flood-and-prune RPF, tương tự DVMRP nhưng

- Giao thức unicast phía dưới cung cấp thông tin RPF cho datagram tới
- Downstream flood ít phức tạp hơn (kém hiệu quả hơn) DVMRP giảm sự tin cậy vào thuật toán dẫn đường phía dưới
- Có cơ chế giao thức cho router phát hiện nó là router nút lá

PIM – Chế độ thưa thớt

- Cách tiếp cận center-based
- Router gửi join msg tới điểm hẹn (RP)
 - Các intermediate router cập nhật trạng thái và chuyển tiếp join
- Sau khi gia nhập qua RP, router có thể chuyển tới source-specific tree
 - Tăng hiệu năng: giảm tập chung, đường đi ngắn hơn

PIM – Chế độ thưa thớt

Bên gửi (s):

- Dữ liệu unicast tới RP, nó phân phối xuống RP-rooted tree
- RP có thể mở rộng mcast tree upstream tới nguồn
- RP có thể gửi stop msg nếu không có người nhận nối vào
 - "không ai đang nghe!"

Tầng mạng: Tổng kết

Các vấn đề đã xem xét:

- Các dịch vụ của tầng mạng
- Nguyên tắc dẫn đường: link state và distance vector
- Dẫn đường phân cấp
- IP
- Các giao thức dẫn đường trong Internet: RIP, OSPF, BGP
- Bên trong router?
- IPv6