Data-Driven Screening of Network Constraints for Unit Commitment

POWER TECH 2021

S. Pineda

J. M. Morales A. Jiménez-Cordero

OASYS group, University of Málaga (Spain)

June 28, 2021

Can we remove constraints to reduce time?

- Constraint (1b) is an active constraint
- Constraint (1c) is an inactive constraint
- Constraint (1d) is a redundant constraint
- Constraint (1e) is defined as quasi-active constraint

x

How is the Unit Commitment problem formulated?

$$\min_{p_g, u_g, q_n, \epsilon_n} \quad \sum_g c_g p_g + L \sum_n |\epsilon_n| \tag{2a}$$

s.t.
$$q_n + \epsilon_n = \sum_{g:b_g=n} p_g - d_n, \forall n$$
 (2b)

$$\sum_{n} q_n = 0 \tag{2c}$$

Known demand

$$u_{g}\underline{p}_{g} \leqslant p_{g} \leqslant u_{g}\rho_{g}\overline{p}_{g}, \forall g$$

$$-\overline{f}_{l} \leqslant \sum_{n} a_{ln}q_{n} \leqslant \overline{f}_{l}, \forall l$$
(2d)
(2e)

$$u_g \in \{0, 1\}, \forall g \tag{2f}$$

We compare 8 different methods to remove constraints (2e)

Benchmark

No network constraints are removed (Extremely high time)

Single-bus

- All network constraints are removed (Very fast)
- Close-to-optimal solutions in low-congested systems
- Highly suboptimal solutions in general

Perfect information

- Removes all constraints not binding at the optimum
- It cannot be implemented in practice

Naive

- It removes line constraints that have not been congested in the past
- Very conservative (low number of removed constraints)

Constraint generation

- It starts by solving the UC without any network constraint
- Line constraints exceeding their capacity are iteratively added

Roald method (RO)¹

• Two optimization problems for each line are solved

$$\begin{aligned} \min_{p_g,q_n,d_n} / \max_{p_g,q_n,d_n} & & \sum_n a_{l'n} q_n \\ \text{s.t.} & & \text{(2b), (2c), (2d), (2e)} \\ & & \underline{d}_n \leqslant d_n \leqslant \overline{d}_n, \forall n \end{aligned}$$

- If the objective functions reach the line limit, then its capacity constraints are kept. Otherwise, such constraints are removed.
- It only removes redundant constraints

¹Roald and Molzahn 2019.

Data-driven method (DD)

- Line congestion is inferred via statistical learning
- No need for solving additional optimization problems
- It removes not only redundant but also inactive constraints
- ullet K-nearest neighbors is used for its simplicity and interpretability

Data-driven + constraint generation (DD+CG)

• Use data to rapidly remove a large number of constraints

Then iteratively add violated line constraints

It provides the same solution as BN

It requires less iterations than CG

Have you tried it on a realistic case study?

- Power system in Texas with 2000 buses and 3206 lines
- Electricity demand at each bus is randomly sampled from uniform distributions between 0 and twice the nominal demand
- 10% of the lines become congested during the year, and the line that most often gets congested reaches its capacity limit during 4000 hours
- 300 training days and 60 test days

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0.0	0.00	0.00	100.0
Single-bus	100.0	-2.17	0.26	0.4
Perfect	99.7	-0.22	0.13	1.0
Naive	92.3	0.00	0.00	10.6
ConGen	98.8	0.00	0.00	8.9
Roald	54.3	0.00	0.00	64.7
Data-Driven	98.6	0.04	0.03	2.3
DD+CG	98.5	0.00	0.00	5.3

- Single-bus approach is fast but provides catastrophic results
- Perfect provides suboptimal results due to quasi-active constraints
- Naive removes 92% of constraints and achieves the optimal solution
- ConGen removes a lot of constraints but requires high time
- Roald only removes 54% of constraints and limits time reduction
- Data-Driven removes most constraints but involves small infeasibilities
- DD+CG recovers the original solution at lowest time () > () > ()

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0.0	0.00	0.00	100.0
Single-bus	100.0	-2.17	0.26	0.4
Perfect	99.7	-0.22	0.13	1.0
Naive	92.3	0.00	0.00	10.6
ConGen	98.8	0.00	0.00	8.9
Roald	54.3	0.00	0.00	64.7
Data-Driven	98.6	0.04	0.03	2.3
DD + CG	98.5	0.00	0.00	5.3

- Single-bus approach is fast but provides catastrophic results
- Perfect provides suboptimal results due to quasi-active constraints
- Naive removes 92% of constraints and achieves the optimal solution
- ConGen removes a lot of constraints but requires high time
- Roald only removes 54% of constraints and limits time reduction
- Data-Driven removes most constraints but involves small infeasibilities

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0.0	0.00	0.00	100.0
Single-bus	100.0	-2.17	0.26	0.4
Perfect	99.7	-0.22	0.13	1.0
Naive	92.3	0.00	0.00	10.6
ConGen	98.8	0.00	0.00	8.9
Roald	54.3	0.00	0.00	64.7
Data-Driven	98.6	0.04	0.03	2.3
DD+CG	98.5	0.00	0.00	5.3

- Single-bus approach is fast but provides catastrophic results
- Perfect provides suboptimal results due to quasi-active constraints
- Naive removes 92% of constraints and achieves the optimal solution
- ConGen removes a lot of constraints but requires high time
- Roald only removes 54% of constraints and limits time reduction
- Data-Driven removes most constraints but involves small infeasibilities
- DD+CG recovers the original solution at lowest time

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0.0	0.00	0.00	100.0
Single-bus	100.0	-2.17	0.26	0.4
Perfect	99.7	-0.22	0.13	1.0
Naive	92.3	0.00	0.00	10.6
ConGen	98.8	0.00	0.00	8.9
Roald	54.3	0.00	0.00	64.7
Data-Driven	98.6	0.04	0.03	2.3
DD+CG	98.5	0.00	0.00	5.3

- Single-bus approach is fast but provides catastrophic results
- Perfect provides suboptimal results due to quasi-active constraints
- Naive removes 92% of constraints and achieves the optimal solution
- ConGen removes a lot of constraints but requires high time
- Roald only removes 54% of constraints and limits time reduction
- Data-Driven removes most constraints but involves small infeasibilities
- DD+CG recovers the original solution at lowest time () ()

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0.0	0.00	0.00	100.0
Single-bus	100.0	-2.17	0.26	0.4
Perfect	99.7	-0.22	0.13	1.0
Naive	92.3	0.00	0.00	10.6
ConGen	98.8	0.00	0.00	8.9
Roald	54.3	0.00	0.00	64.7
Data-Driven	98.6	0.04	0.03	2.3
DD+CG	98.5	0.00	0.00	5.3

- Single-bus approach is fast but provides catastrophic results
- Perfect provides suboptimal results due to quasi-active constraints
- Naive removes 92% of constraints and achieves the optimal solution
- ConGen removes a lot of constraints but requires high time
- Roald only removes 54% of constraints and limits time reduction
- Data-Driven removes most constraints but involves small infeasibilities

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0.0	0.00	0.00	100.0
Single-bus	100.0	-2.17	0.26	0.4
Perfect	99.7	-0.22	0.13	1.0
Naive	92.3	0.00	0.00	10.6
ConGen	98.8	0.00	0.00	8.9
Roald	54.3	0.00	0.00	64.7
Data-Driven	98.6	0.04	0.03	2.3
DD + CG	98.5	0.00	0.00	5.3

- Single-bus approach is fast but provides catastrophic results
- Perfect provides suboptimal results due to quasi-active constraints
- Naive removes 92% of constraints and achieves the optimal solution
- ConGen removes a lot of constraints but requires high time
- Roald only removes 54% of constraints and limits time reduction
- Data-Driven removes most constraints but involves small infeasibilities

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0.0	0.00	0.00	100.0
Single-bus	100.0	-2.17	0.26	0.4
Perfect	99.7	-0.22	0.13	1.0
Naive	92.3	0.00	0.00	10.6
ConGen	98.8	0.00	0.00	8.9
Roald	54.3	0.00	0.00	64.7
Data-Driven	98.6	0.04	0.03	2.3
DD + CG	98.5	0.00	0.00	5.3

- Single-bus approach is fast but provides catastrophic results
- Perfect provides suboptimal results due to quasi-active constraints
- Naive removes 92% of constraints and achieves the optimal solution
- ConGen removes a lot of constraints but requires high time
- Roald only removes 54% of constraints and limits time reduction
- Data-Driven removes most constraints but involves small infeasibilities
- DD+CG recovers the original solution at lowest time () () ()

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0.0	0.00	0.00	100.0
Single-bus	100.0	-2.17	0.26	0.4
Perfect	99.7	-0.22	0.13	1.0
Naive	92.3	0.00	0.00	10.6
ConGen	98.8	0.00	0.00	8.9
Roald	54.3	0.00	0.00	64.7
Data-Driven	98.6	0.04	0.03	2.3
DD+CG	98.5	0.00	0.00	5.3

- Single-bus approach is fast but provides catastrophic results
- Perfect provides suboptimal results due to quasi-active constraints
- Naive removes 92% of constraints and achieves the optimal solution
- ConGen removes a lot of constraints but requires high time
- Roald only removes 54% of constraints and limits time reduction
- Data-Driven removes most constraints but involves small infeasibilities
- Data-Driven removes most constraints but involves small inteasibilities
 DD+CG recovers the original solution at lowest time () () () () () ()

Conclusions

Method	# Removed	Original solution	Time
Benchmark	•	•	XXX
Single-bus	•	•	X
Perfect	•	•	X
Naive	•	•	X
ConGen	•	•	XX
Roald	•	•	XX
Data-Driven	•	•	X
DD + CG	•	•	X

Thanks for the attention!

Questions?

More info: oasys.uma.es Email: spineda@uma.es