Kolmogorov complexity

Kolmogorov Andrey (1903 – 1987)

Probability theory
A lot of other topics

Link between randomness – learnability →compression

→ The Kolmogorov model (1962 – 1964 - 1975) (Solomonoff-Chaitin)

probabilistic view a sequence of data s1, s2, ..., sn aim: to guess what is the next sn+1? solution: choose the most probable (MAP principle) BUT... what is this probability?

A short history

Andrei Kolmogorov →

Ray Solomonov →

Gregory Chaitin →

Leonid Levin

Turing machine

What is this?

- Simple model of PC
- 3 tapes only = calculator C
 - Input s
 - Program p
 - Output o = C(p,s)

A simple picture

Kolmogorov complexity

Given a Turing calculator C
Given a finite input string y (=1000011001)
Given a program p (=11100001010110) can be infinite
2 options only:

- either C does not stop
- or C does stop and output a string x = C(p,y)

$$K(x/y) = min \{|p| | C(p,y) = x\}$$

Taille du plus petit programme capable de produire X avec l'entrée Y

$$K(x) = \min \{ |p| \mid C(p,\emptyset) = x \}$$

Taille du plus petit programme capable de produire X sans aucune entrées

Examples to understand

> Very simple: for i=1 to 10000 {write 0; write 1} K(x) < 25*8=200

$$K(x) = 10000 ???$$

10⁹ decimals of Л (Pi): simple C program to do it

Properties of K

- K(s) Turing machine independent (explain)
- $K(s) \le |s| + c$ (use print(s) for instance)
- There are s such that $K(s) \ge |s|$ (to be proved)
- Compressible chains are quite rare (to be proved)
- K(s) not computable! (to be explained)
- Relationship with Shannon entropy:

$$|E(s) - K(s)| < c$$

So what ?

So what?

- K(x) = ultimate limit

 Quantité d'info qu'elle contient
- K(x)= meaning of x "informative content" of x
- K(x) = lower bound of any compression of x

K estimation using compression!

OK ... we can estimate ... then ???

Information distance (Bennett)

Similarity using K:

- a -> K(a) (compress a and compute the size of the result)
 (draw a diagram on the board)
- b -> K(b)
- ab -> K(ab)
- m(ab)=K(a) + K(b) K(ab) = measure of the common content
- d(a,b) = if K(a) > K(b) then 1 m(a,b)/K(a)
 else 1 m(a,b)/K(b)

And you know what?

It works with music...

Can we do more ???? YES

It works with everything...

- Pictures (to understand)
- •Texts (Corneille wrote Moliere!)
- •Student plagiarism/fraud: findFraud(www.complearn.org)
- •Genome
- •Spam
- Security (IDS) using K only (no distance needed)

But
Can we do more ???? YES

Solomonov probability measure

Main idea (back to initial problem):

$$p(x) = 2^{-K(x)}$$

- a priori probability (Bayes formula)
- p: the universal distribution
- s more complex, s less probable
- p(x) = probability for s to appear

Main problem:

p is not a proba distribution over {0,1}^N

We have to work a little bit more....

Reduced programs

Reduced programs set

- Choose a calculator C
- For each string x, program p stopping, reduced prog pr(p,x)

 $Pr(x) = \{pr(p,x); p program and p stops with x as output\}$

Prefix free set

- Pr(x) is prefix-free (to explain)
- Idem for U_x Pr(x) (qui sont disjoints en fait)

Riemann measure on [0,1] (probability)

- $pr(p,x) = 10001110... \rightarrow 0.10001110... = real number in [0,1]$
- Prob(pr) = mes({pr.q ; q in {0,1} }) = 2 -|pr|
- Prob(Pr(x)) = $\Sigma_{pr \text{ in Pr(x)}}$ Prob(pr) <= 1 for sure! (prefix free)
- So $\Sigma_x p(x) < 1 ... OK$

Help from Google

From K to p: Solomonov

From p to K: using log inverse function!

 $K(x) = -\log(p(x))$

Mass probability generator = K estimator

Why not Google? (Cilibrasi-Vitanyi)

Keyword a → Google frequency = prob

NGD=approximation information distance

Experiments with Google

- learning with Google (prime number, etc...)
- emergency (with SVM)

Numbers versus colors via Google

Figure 2: Colors and numbers arranged into a tree using NGD.

Learning emergency

Training Data

Positive Training avalanche death threat hurricane rape train wreck	(22 cases) bomb threat fire landslide roof collapse trapped miners	broken leg flood murder sinking ship	burglary gas leak overdose stroke	car collision heart attack pneumonia tornado
Negative Training arthritis dandruff flat tire missing dog sore throat	(25 cases) broken dishwasher delayed train frog paper cut sunset	broken toe dizziness headache practical joke truancy	cat in tree drunkenness leaky faucet rain vagrancy	contempt of cou enumeration littering roof leak vulgarity
Anchors crime wash	(6 dimensions) happy	help	safe	urgent

Testing Results

	Positive tests	Negative tests	
Positive	assault, coma,	menopause, prank call,	
Predictions	electrocution, heat stroke, homicide, looting, meningitis, robbery, suicide	pregnancy, traffic jam	
Negative Predictions	sprained ankle	acne, annoying sister, campfire, desk, mayday, meal	
Accuracy	15/20 = 75.00%		

Figure 4: Google- SVM learning of "emergencies."

Chaitin number

Prob. for a random program to stop: halting probability

$$\Omega = \text{Prob}(\text{Pr}(\emptyset)) = \Sigma p \text{ in } pr(\emptyset) \text{ 2 -}|p| \leq 1$$

- - = 0.0078749969978123844...

Properties

- Transcendental (to be explained)
- Normal (to explain) (PI we do not know)
- Uncomputable Why

Conclusion

- Kolmogorov:
 - very powerful
 - work still in progress
- ML = mix between theory and practice
 - to try before to prove;-)
 - not always clean explanation