modelado eficiencia Python datos so análisis visualización visualización

GEORIA VISUALIZACIÓN VISUALIZA

Diego Rosyur CASTRO MANRIQUE Amelia Silvia Matilde Anahí ROMO SANTAGOSTINO

MOTIVACIÓN

Hace un año, hicimos un curso de Teledetección básico de la Conae y usamos el programa SNAP de la ESA para procesar imágenes satelitales y obtener resultados.

Nos preguntamos: ¿Podremos hacerlo usando Python, poniendo en práctica lo que aprendimos en este curso? ¿Cómo?

Nos propusimos realizar los tres ejercicios que fueron el trabajo final de aquel curso y comparar lo obtenido con el resultado obtenido entonces.

¡Allá vamos!

¿Qué es la Teledetección?

Es una disciplina que utiliza las imágenes que obtienen los satélites de distintos países para poder observar y estudiar fenómenos en la superficie del planeta o en la atmósfera, que resultaría muy difícil registrar de otras maneras.

DOS parámetros importantes:

- resolución espacial: determina el detalle de la imagen
- resolución temporal: determina la frecuencia de adquisición de imágenes.

Tenemos tres casos para analizar:

- Deforestación en el NOA
- Detección de glaciares en Cuyo
- Incendios en la Patagonia

¿Nos acompañan?

Usamos imágenes de satélites Landsat 5 y 8, heliosincrónicos que orbitan a una altura cercana a los 900 km sobre la superficie, con resolución espacial de 30 m x 30 m y resolución temporal de 16 días.

Las descargamos gratuitamente desde el sitio de USGS: https://earthexplorer.usgs.gov/ Más info aquí: http://www.gisandbeers.com/lo-deberias-saber-imagenes-landsat/

- Decidimos tomar dos enfoques para desarrollar el código:
- Usar Google Colab para correr el código sin usar los recursos de las computadoras locales
 - * Ventaja: Se puede correr el código desde una PC con modestos recursos de hardware
 - * Desventaja: Se necesita conexión de internet estable y permanente
- Usar un IDE o el intérprete de Python para desarrollar y correr el código en la máquina local (ideal para fanáticos del control que no quieren que Google curiosee en sus scripts ;))
 - * Ventaja: tener las imágenes y los códigos en su propia máquina, sólo hay necesidad de conectarse a internet para descargarlas
 - Desventaja: requiere usar una PC con recursos de medianos a más

DEFORESTACIÓN EN EL NOA

OBJETIVO:

analizar la variación de la superficie cubierta por vegetación en los alrededores de la ciudad de Joaquín V. González, Salta, Argentina, ocurrida entre 1986 y 2017.

PROCEDIMIENTO:

- Descargar imágenes de enero 1986 (LANDSAT 5) y de diciembre 2017 (LANDSAT 8) y recortar la zona entre 24.867°N, 64.539°W, 25.290°S, 63.829°E
- Calcular el NDVI para cada imagen, apilar y clasificar el apilado de NDVI utilizando el método de k-means con 3 clases espectrales
- Reclasificar y graficar la escena según:
 - * zonas con alto NDVI que no cambiaron (color RGB: 45, 207, 96)
 - zonas con bajo NDVI que no cambiaron (color RGB: 255, 255, 191)
 - * zonas con disminución de NDVI (color RGB: 252, 141, 89)

DETECCIÓN DE GLACIARES EN CUYO

OBJETIVO:

de tectar zonas cubiertas por nieve y hielo, en el Cerro de la Majadita, San JUAN, RA PROCEDIMIENTO:

- Descargar imágenes de enero de 2018 y julio de 2018 (Landsat 8) y recortar la zona entre las coordenadas: 30.052°N, 70.112°W, 30.610°S, 69.026°E
- Calcular el Índice de Nieve (SI = red/swir1) para cada escena de verano / invierno
- Buscar un valor UMBRAL para la presencia de nieve y construir un mapa de presencia de nieve: (si_invierno > UMBRAL_invierno) * 2 + (si_verano > UMBRAL_verano) * 1
- Graficar mapa de nieve con la siguiente clasificación:
 - * Zonas sin nieve (color RGB: 239, 243, 255)
 - * Zonas con nieve sólo en verano (color RGB: 189, 215, 231)
 - * Zonas con nieve sólo en invierno (color RGB: 107, 174, 214)
 - * Zonas con nieve todo el año (color RGB: 33, 113, 181)
- Alternativa: clasificar con el método de k-means en 4 clases espectrales

INCENDIOS EN LA PATAGONIA

OBJETIVO:

detectar las zonas afectadas por los incendios en Lago Cholila, Chubut, Argentina ocurridos durante los meses de febrero, marzo y abril de 2015

PROCEDIMIENTO:

- > Descargar las imágenes con Path: 232; Row: 89 de los días 21 de enero y 11 de abril de 2015 correspondientes al satélite Landsat 8 (Landsat Collection 1 Level 2 On-Demand)
- > Recortar las imágenes a la zona comprendida entre las coordenadas: 42.054°N, 72.323°W, 42.578°S, 71.347°E
- Calcular índice de área quemada NBR (NBR = (nir swir2)/(nir + swir2)) para cada escena y nombrarlas como nbr_pre y nbr_post

- >Calcular la variación de NBR como \(\Delta NBR pre \text{NBR post} \)
- Construir y graficar un mapa según la siguiente clasificación:
 - * Recrecimiento alto: menos de -0.25 (color RGB: 26, 152, 80)
 - * Recrecimiento bajo: de -0,25 a -0.1 (color RGB: 145, 207, 96)
 - * No incendiado: de -0.1 a 0.1 (color RGB: 217, 239, 139)
- * Incendio de baja severidad: de 0.1 a 0.27 (color RGB: 255, 255, 191)
- * Incendio de severidad moderada baja: de 0.27 a 0.44 (color RGB: 254, 224, 139)
- * Incendio de severidad moderada alta: de 0.44 a 0.66 (color RGB: 252, 1<mark>41,</mark> 89)
 - *Incendio de severidad alta: más de 0.66 (color RGB: 215, 48, 39)

RESULTADO PARA DEFORESTACIÓN EN EL NOA

Deforestación en NOA

RESULTADO PARA DETECCIÓN DE GLACIARES EN

Detección de Glaciares en Cuyo Nieve todo el año Nieve sólo en invierno Nieve sólo en verano Zona sin nieve

RESULTADO PARA INCENDIOS EN LA PATAGONIA

PREGUNTAS?

¡GRACIAS POR ESCUCHAR!

AGRADECIMIENTOS:

- * Mariela Rajngewerc * CoNAE
- * un montón de sitios en Internet como Stack Overflow, donde hay gente que responde consultas y ayuda con los problemas que los que preguntamos no sabemos resolver...