w2_assessment

August 9, 2020

In this notebook, we'll ask you to find numerical summaries for a certain set of data. You will use the values of what you find in this assignment to answer questions in the quiz that follows (we've noted where specific values will be requested in the quiz, so that you can record them.)

We'll also ask you to create some of the plots you have seen in previous lectures.

```
In [2]: import numpy as np
         import pandas as pd
         import seaborn as sns
         import scipy.stats as stats
         %matplotlib inline
         import matplotlib.pyplot as plt
         pd.set_option('display.max_columns', 100)
        path = "nhanes_2015_2016.csv"
In [3]: # First, you must import the data from the path given above
         df = pd.read_csv(path)
         df
         # using pandas, read in the csv data found at the url defined by 'path'
                SEQN
                                                                       RIDAGEYR
Out [3]:
                       ALQ101
                                ALQ110
                                          ALQ130
                                                  SMQ020
                                                            RIAGENDR
                                                                                  RIDRETH1
         0
               83732
                           1.0
                                    NaN
                                             1.0
                                                        1
                                                                              62
                                                                                          3
                                                                    1
                                                                              53
         1
               83733
                           1.0
                                    NaN
                                             6.0
                                                        1
                                                                    1
                                                                                          3
         2
                           1.0
                                    NaN
                                                        1
                                                                    1
                                                                              78
                                                                                          3
               83734
                                             NaN
         3
                                                        2
                                                                    2
                                                                                          3
               83735
                           2.0
                                    1.0
                                             1.0
                                                                              56
                                                        2
                                                                    2
         4
               83736
                           2.0
                                    1.0
                                             1.0
                                                                              42
                                                                                          4
                                                        2
                                                                    2
         5
               83737
                           2.0
                                    2.0
                                             NaN
                                                                              72
                                                                                          1
         6
               83741
                           1.0
                                    NaN
                                             8.0
                                                                    1
                                                                              22
                                                                                          4
                                                        1
         7
               83742
                                                        2
                                                                    2
                                                                              32
                           1.0
                                    NaN
                                             1.0
                                                                                          1
         8
               83743
                           NaN
                                    NaN
                                                        2
                                                                                          5
                                             NaN
                                                                    1
                                                                              18
         9
                                                        2
                                                                                          4
               83744
                           1.0
                                    NaN
                                             NaN
                                                                    1
                                                                              56
                                                                                          3
         10
               83747
                           1.0
                                    NaN
                                             1.0
                                                        1
                                                                    1
                                                                              46
               83750
                           1.0
                                             3.0
                                                                    1
                                                                              45
                                                                                          5
         11
                                    NaN
                                                        1
                                                                    2
                                                                                          2
         12
               83752
                           1.0
                                    NaN
                                             2.0
                                                        1
                                                                              30
                                                        2
                                                                    2
                                                                                          2
         13
               83754
                           2.0
                                    1.0
                                             1.0
                                                                              67
         14
               83755
                           1.0
                                    NaN
                                             3.0
                                                        2
                                                                    1
                                                                              67
                                                                                          4
         15
               83757
                           1.0
                                    NaN
                                             1.0
                                                        2
                                                                    2
                                                                              57
                                                                                          2
                           2.0
                                             NaN
                                                        2
                                                                    2
                                                                                          1
         16
               83759
                                    2.0
                                                                              19
```

17	83761	1.0	Na	aN	1.0	2	2	24	5	
18	83762	NaN		aN	NaN	1	2	27	4	
19	83767	2.0		. 0	NaN	2	2	54	5	
20	83769	1.0		aN	2.0	2	1	49	5	
21	83773	2.0		. 0	NaN	2	2	80	3	
22	83775	2.0		. 0	NaN	1	2	69	2	
23	83776	NaN		aN	NaN	2	2	58	1	
24	83777	2.0		. 0	NaN	2	1	56	5	
25	83781	1.0		aN	3.0	2	2	27	4	
26	83784	1.0		aN	4.0	1	1	22	2	
27						1	2	60	2	
	83785	2.0		. 0	1.0	2	1	51	4	
28	83786	NaN		aN	NaN		2			
29	83787	2.0		. 0	NaN	2		68	1	
 5705	93645	2.0		. 0	 NaN	1	1	80		
5706	93652	1.0		aN	NaN	1	1	72	2	
5707	93653	1.0		aN	3.0	2	2	25	3	
5708	93654	2.0		. 0	NaN	2	2	29	5	
5709	93655	1.0		aN	NaN	1	1	38	3	
5710	93656	2.0		. 0	NaN	2	2	75	1	
5711	93659	1.0		aN	1.0	1	1	62	1	
5711	93661			an aN	2.0	2	2	27	2	
5713	93663	1.0		an aN	4.0	2	1	43	1	
5714				. 0		2	1	43 39	1	
	93664	2.0			2.0	2	2		3	
5715	93665	NaN		aN . N	NaN			34		
5716	93668	1.0		aN . N	NaN	1	2	73	1	
5717	93670	1.0		aN	3.0	1	1	32	3	
5718	93671	1.0		aN	3.0	2	1	45	4	
5719	93672	2.0		. 0	NaN	1	2	63	2	
5720	93675	1.0		aN	1.0	2	1	38	5	
5721	93676	1.0		aN	2.0	2	2	35	4	
5722	93677	1.0		aN	1.0	2	2	34	3	
5723	93679	2.0		. 0	NaN	1	2	72	4	
5724	93682	NaN		aN	NaN	2	2	41	5	
5725	93684	2.0		. 0	NaN	2	1	34	4	
5726	93685	1.0		aN	2.0	1	1	53	1	
5727	93689	2.0		. 0	NaN	2	2	69	1	
5728	93690	1.0		aN	3.0	2	1	32	2	
5729	93691	2.0		. 0	NaN	2	1	25	5	
5730	93695	2.0		. 0	NaN	1	2	76	3	
5731	93696	2.0		. 0	NaN	2	1	26	3	
5732	93697	1.0		aN	1.0	1	2	80	3	
5733	93700	NaN		aN	NaN	1	1	35	3	
5734	93702	1.0	Na	aN	2.0	2	2	24	3	
	DMDCITZN	DMDE	DUC2	DMDM	ARTL	DMDHHSIZ	WTINT2Y	R SDMVPSU	SDMVSTRA	\
0	1.0		5.0		1.0	2	134671.3	7 1	125	
1	2.0	3.0		3.0	1	24328.5	6 1	125		

2	1.0	3.0	1.0	2	12400.	01 1	131
3	1.0	5.0	6.0	1	102718.	00 1	131
4	1.0	4.0	3.0	5	17627.		
5	2.0	2.0	4.0	5	11252.		
6	1.0	4.0	5.0	3	37043.		
7	2.0	4.0	1.0	4	22744.		
8	1.0	T.∪ NaN	NaN	3	18526.		
9			3.0		20395.		
	1.0	3.0		1			
10	1.0	5.0	6.0	2	34513.		
11	1.0	2.0	5.0	5	96194.		
12	1.0	4.0	6.0	2	36978.		
13	1.0	5.0	1.0	7	10495.		
14	1.0	5.0	2.0	1	14080.		
15	1.0	1.0	4.0	5	11709.		
16	1.0	NaN	NaN	3	18928.	63 2	121
17	2.0	5.0	5.0	1	15420.	80 1	119
18	1.0	4.0	5.0	2	38387.	34 1	132
19	1.0	4.0	3.0	6	21914.	04 2	122
20	1.0	2.0	1.0	4	26837.	74 1	132
21	1.0	3.0	2.0	1	37582.	05 1	131
22	1.0	1.0	4.0	1	7250.	10 2	119
23	1.0	5.0	1.0	3	21433.		
24	1.0	2.0	1.0	5	13892.		
25	1.0	5.0	5.0	2	34068.		
26	1.0	4.0	5.0	4	38148.		
27	1.0	5.0	3.0	4	10495.		
28	1.0	4.0	5.0	2	25558.		
29	1.0	1.0	3.0	1	8842.		
570		5.0	3.0		19322.		 121
570		2.0	1.0	2	10706.		
570		5.0	6.0	2	110170.		
570		5.0	1.0	2	23951.		126
570		2.0	3.0	4	39265.		
571		3.0	2.0	1	11085.		
571		1.0	1.0	7	8083.		
571		4.0	6.0	4	24442.		
571		1.0	1.0	6	24831.		
571		3.0	1.0	5	25064.		
571		5.0	1.0	4	115406.		
571	1.0	1.0	2.0	1	12211.	03 1	128
571	.7 2.0	5.0	1.0	4	120187.	36 2	123
571	.8 1.0	5.0	1.0	3	21351.	55 1	124
571	.9 1.0	1.0	1.0	3	8605.	87 2	119
572	2.0	5.0	4.0	1	26328.	59 2	122
572	21 1.0	5.0	3.0	2	32944.	36 2	132
572	22 1.0	5.0	5.0	3	136319.	80 1	122
572	23 1.0	2.0	2.0	3	21037.	26 2	132

5724	1.0	5.	0	1.0	5	23924.2	0	2	121	
5725	1.0	5.		1.0		29880.6		2	131	
5726	2.0	2.		1.0		22441.8		1	126	
5727	1.0	1.		1.0	1	9611.1		2	127	
5728	1.0	2.		1.0		43971.6		2	127	
5729	2.0	5.		5.0	7	13525.3		2	133	
5730	1.0	3.		2.0		58614.0		2	130	
5731	1.0	5.		1.0		.22920.6		1	121	
5732	1.0	4.		2.0		49050.0		2	132	
5733	2.0	1.		1.0		42314.2		1	126	
5734				5.0		.07361.9		2	119	
5734	1.0	5.	U	5.0	3 1	.07361.9	1	2	119	
	INDFMPIR	BPXSY1	BPXDI1	BPXSY2	BPXDI2	BMXWT	BMXHT	BMXBMI	BMXLEG	\
0	4.39	128.0	70.0	124.0	64.0	94.8	184.5	27.8	43.3	
1	1.32	146.0	88.0	140.0	88.0	90.4	171.4	30.8	38.0	
2	1.51	138.0	46.0	132.0	44.0	83.4	170.1	28.8	35.6	
3	5.00	132.0	72.0	134.0	68.0	109.8	160.9	42.4	38.5	
4	1.23	100.0	70.0	114.0	54.0	55.2	164.9	20.3	37.4	
5	2.82	116.0	58.0	122.0	58.0	64.4	150.0	28.6	34.4	
6	2.08	110.0	70.0	112.0	74.0	76.6	165.4	28.0	38.8	
7	1.03	120.0	70.0	114.0	70.0	64.5	151.3	28.2	34.1	
8	5.00	NaN	NaN	NaN	NaN	72.4	166.1	26.2	NaN	
9	1.19	178.0	116.0	180.0	114.0	108.3	179.4	33.6	46.0	
10	0.75	144.0	94.0	150.0	90.0	86.2	176.7	27.6	41.0	
11	1.36	116.0	70.0	108.0	72.0	76.2	177.8	24.1	43.9	
12	5.00	104.0	50.0	104.0	50.0	71.2	163.6	26.6	37.3	
13	0.89	124.0	76.0	116.0	64.0	117.8	164.1	43.7	34.8	
14	2.04	132.0	84.0	136.0	82.0	97.4	183.8	28.8	42.5	
15	0.77	134.0	68.0	146.0	62.0	80.5	150.8	35.4	31.6	
16	1.74	102.0	68.0	102.0	66.0	100.8	175.4	32.8	40.7	
17	0.00	110.0	62.0	108.0	60.0	61.8	156.4	25.3	37.0	
18	2.12	138.0	76.0	144.0	84.0	107.9	168.5	38.0	40.1	
19	2.99	136.0	82.0	126.0	82.0	59.0	149.9	26.3	32.7	
20	2.97		70.0	106.0	68.0		170.7	25.0	42.8	
21	3.57	148.0	56.0	146.0	68.0	67.7		30.2	33.4	
22	0.55	140.0	56.0	132.0	48.0	77.7	160.2	30.3	32.7	
23	3.72	116.0	62.0	110.0	62.0	56.6	157.5	22.8	34.5	
24	1.35	136.0	86.0	132.0	84.0	69.0	166.1	25.0	40.7	
25	NaN	108.0	66.0	110.0	66.0	87.8	160.7	34.0	41.4	
26	NaN	122.0	78.0	124.0	84.0	73.7	170.7	25.3	41.2	
27	5.00	142.0	74.0	136.0	74.0	75.6	145.2	35.9	31.0	
28	NaN		80.0	140.0	80.0	102.1	182.2			
29		132.0			58.0			30.8	41.8	
	1.49	122.0	58.0	124.0		77.4	152.0	33.5	33.4	
 5705	1.57	 174.0	0.0	 168.0	0.0	 NaN	 165.9	NaN	37.0	
5706	0.83	124.0	36.0	132.0	30.0	88.9	165.9	32.3	36.7	
5707	2.97	130.0	84.0	132.0	84.0	76.9	169.3	26.8	41.8	
5707	2.97 NaN	102.0	82.0	100.0	72.0	54.5	152.6	23.4	36.3	
0100	IVaIV	102.0	02.0	100.0	12.0	J 1 .0	102.0	20. 4	50.5	

5709	1.15	132.0	60.0	126.0	60.0	75.9	177.8	24.0	40.5
5710	3.40	NaN	NaN	134.0	44.0	92.7	156.4	37.9	31.5
5711	3.27	144.0	94.0	140.0	88.0	67.9	164.6	25.1	33.7
5712	0.74	114.0	62.0	106.0	64.0	101.8	157.6	41.0	36.5
5713	1.07	116.0	82.0	114.0	74.0	75.7	177.1	24.1	43.0
5714	4.93	162.0	94.0	166.0	94.0	74.9	169.6	26.0	40.5
5715	4.12	124.0	76.0	126.0	84.0	69.0	169.6	24.0	38.9
5716	0.35	NaN	NaN	NaN	NaN	119.6	149.0	53.9	NaN
5717	NaN	112.0	70.0	112.0	72.0	81.4	170.1	28.1	41.7
5718	5.00	128.0	60.0	120.0	58.0	89.0	174.3	29.3	42.4
5719	0.20	NaN	NaN	NaN	NaN	81.9	147.6	37.6	35.0
5720	5.00	110.0	58.0	118.0	62.0	77.6	179.0	24.2	42.3
5721	2.68	118.0	78.0	114.0	76.0	92.2	161.7	35.3	41.5
5722	1.76	114.0	72.0	110.0	78.0	62.2	167.4	22.2	39.8
5723	2.98	142.0	64.0	136.0	78.0	57.8	157.0	23.4	32.0
5724	5.00	132.0	78.0	122.0	84.0	58.2	166.9	20.9	37.1
5725	2.81	110.0	72.0	112.0	72.0	101.2	180.9	30.9	43.7
5726	0.49	132.0	54.0	128.0	56.0	78.7	156.9	32.0	31.5
5727	0.97	164.0	62.0	166.0	64.0	64.8	151.9	28.1	32.2
5728	5.00	112.0	60.0	118.0	58.0	89.5	164.9	32.9	40.0
5729	1.59	112.0	80.0	112.0	76.0	39.2	136.5	21.0	33.6
5730	1.43	112.0	48.0	112.0	46.0	59.1	165.8	21.5	38.2
5731	2.99	118.0	68.0	116.0	76.0	112.1	182.2	33.8	43.4
5732	2.97	154.0	56.0	146.0	58.0	71.7	152.2	31.0	31.3
5733	0.00	104.0	62.0	106.0	66.0	78.2	173.3	26.0	40.3
5734	3.54	118.0	66.0	114.0	68.0	58.3	165.0	21.4	38.2

	BMXARML	BMXARMC	BMXWAIST	HIQ210
0	43.6	35.9	101.1	2.0
1	40.0	33.2	107.9	NaN
2	37.0	31.0	116.5	2.0
3	37.7	38.3	110.1	2.0
4	36.0	27.2	80.4	2.0
5	33.5	31.4	92.9	NaN
6	38.0	34.0	86.6	NaN
7	33.1	31.5	93.3	2.0
8	NaN	NaN	NaN	2.0
9	44.1	38.5	116.0	2.0
10	38.0	33.6	104.3	2.0
11	37.8	33.0	90.1	NaN
12	35.7	31.0	90.7	2.0
13	38.6	42.7	123.0	2.0
14	40.6	34.2	106.3	2.0
15	32.7	33.7	113.5	2.0
16	38.6	35.9	104.6	1.0
17	35.5	29.6	79.5	NaN
18	39.0	41.6	114.8	1.0
19	33.3	30.4	88.9	2.0

00	40.0	04 5	00.0	0 0
20	40.0	31.5	96.6	2.0
21	36.2	30.3	108.4	2.0
22	37.6	30.7	106.8	2.0
23	31.0	28.0	83.0	2.0
24	37.1	31.0	93.5	2.0
25	33.7	32.1	103.6	2.0
26	36.0	29.7	86.2	2.0
27	33.1	36.0	108.0	2.0
28	38.9	37.8	107.7	2.0
29	34.6	34.9	103.1	2.0
 5705	38.0	30.0	 95.0	2.0
5706 5707	38.8	34.2	114.2	2.0
5707	35.9	29.8	79.0	1.0
5708	32.7	26.6	80.2	9.0
5709	39.8	30.2	92.0	2.0
5710	35.5	33.6	122.0	2.0
5711	37.0	31.5	90.7	2.0
5712	34.5	37.1	127.0	1.0
5713	39.7	31.3	94.6	1.0
5714	39.3	31.5	92.5	2.0
5715	37.5	27.6	91.5	2.0
5716	35.5	44.7	NaN	1.0
5717	38.2	33.9	93.6	1.0
5718	40.6	39.5	97.0	2.0
5719	33.0	38.2	122.5	2.0
5720	41.5	31.7	94.2	2.0
5721	37.5	38.9	110.9	2.0
5722	37.7	28.5	83.3	2.0
5723	35.5	26.8	90.4	2.0
5724	35.3	26.9	80.8	2.0
5725	43.0	41.3	99.0	2.0
5726	38.0	33.7	107.5	2.0
5727	32.6	28.7	101.1	2.0
5728	38.0	39.0	101.0	2.0
5729	29.7	23.8	75.4	2.0
5730	37.0	29.5	95.0	2.0
5731	41.8	42.3	110.2	2.0
5732	37.5	28.8	NaN	2.0
5733	37.5	30.6	98.9	2.0
5734	33.5	26.2	72.5	2.0

[5735 rows x 28 columns]

If you can't remember a function, open a previous notebook or video as a reference # or use your favorite search engine to look for a solution

Out[3]:	SEQN A	LQ101 AL	Q110 A	LQ130	SMQ	020	RIA	GENDR	RIDAGE	YR	RIDRI	ETH1	\	
0	83732	1.0	NaN	1.0		1		1		62		3		
1	83733	1.0	NaN	6.0		1		1		53		3		
2	83734	1.0	NaN	NaN		1		1		78		3		
3	83735	2.0	1.0	1.0		2		2		56		3		
4	83736	2.0	1.0	1.0		2		2		42		4		
	DMDCITZN	DMDEDUC:	2 DMDM	ARTL	DMDH	HSIZ	N	TINT2Y	R SDMV	PSU	SDMV	/STRA	\	
0	1.0	5.0	0	1.0		2	13	34671.3	7	1		125		
1	2.0	3.0	0	3.0		1	2	24328.50	6	1		125		
2	1.0	3.0	0	1.0		2	1	2400.0	1	1		131		
3	1.0	5.0	0	6.0		1	10	2718.00	0	1		131		
4	1.0	4.0	0	3.0		5 17627.67		2			126			
	INDFMPIR	BPXSY1	BPXDI1	BPX	SY2	BPXD:	I2	BMXWT	BMXHT	BMX	BMI	BMXLE	EG	\
0	4.39	128.0	70.0	12	4.0	64	.0	94.8	184.5	2	27.8	43.	3	
1	1.32	146.0	88.0	14	0.0	88	.0	90.4	171.4	3	80.8	38.	0	
2	1.51	138.0	46.0	13	2.0	44	.0	83.4	170.1	2	8.8	35.	6	
3	5.00	132.0	72.0	13	4.0	68	.0	109.8	160.9	4	2.4	38.	5	
4	1.23	100.0	70.0	11	4.0	54	.0	55.2	164.9	2	20.3	37.	4	
	BMXARML	BMXARMC	BMXWAI	ST H	IQ210									
0	43.6	35.9	101	.1	2.0									
1	40.0	33.2	107	.9	NaN									
2	37.0	31.0	116	.5	2.0									
3	37.7	38.3	110	.1	2.0									
4	36.0	27.2	80	.4	2.0									

How many rows can you see when you don't put an argument into the previous method? How many rows can you see if you use an int as an argument? Can you use a float as an argument?

0.1 Numerical Summaries

0.1.1 Find the mean (note this for the quiz that follows)

Out [5]: 124.78301716350497

In the method you used above, how are the rows of missing data treated? Are the excluded entirely? Are they counted as zeros? Something else? If you used a library function, try looking up the documentation using the code:

```
help(function_you_used)
For example:
```

help(np.sum)

.dropna() To make sure we know that we aren't treating missing data in ways we don't want, lets go ahead and drop all the nans from our Series 'bp'

```
In [6]: bp = bp.dropna()
```

0.1.2 Find the:

- Median
- Max
- Min
- Standard deviation
- Variance

You can implement any of these from base python (that is, without any of the imported packages), but there are simple and intuitively named functions in the numpy library for all of these. You could also use the fact that 'bp' is not just a list, but is a pandas. Series. You can find pandas. Series attributes and methods here

A large part of programming is being able to find the functions you need and to understand the documentation formatting so that you can implement the code yourself, so we highly encourage you to search the internet whenever you are unsure!

0.1.3 Example:

Find the difference of an element in 'bp' compared with the previous element in 'bp'.

note that this returns an 'numpy.ndarray', which has no index associated with it, an

the nan we get by the Series method

```
Out[8]: array([ 16., -8., 2., ..., 30., -40.,
In [9]: # We could also implement this ourselves with some looping
        diff_by_me = [] # create an empty list
        for i in range(len(bp.values)-1): # iterate through the index values of bp
            diff = bp.values[i+1] - bp.values[i] # find the difference between an element and
            diff_by_me.append(diff) # append to out list
        np.array(diff_by_me) # format as an np.array
Out[9]: array([ 16., -8.,
                             2., ..., 30., -40.,
                                                    8.])
0.1.4 Your turn (note these values for the quiz that follows)
In [10]: bp_median = np.median(bp)
         bp_median
Out[10]: 122.0
In [11]: bp_max = np.max(bp)
         bp_max
Out[11]: 238.0
In [12]: bp_min = np.min(bp)
         bp_min
Out[12]: 84.0
In [13]: bp_std = np.std(bp)
         bp_std
Out[13]: 18.525338021233786
In [14]: bp_var = np.var(bp)
         bp_var
Out[14]: 343.1881488009701
0.1.5 How to find the interquartile range (note this value for the quiz that follows)
This time we need to use the scipy.stats library that we imported above under the name 'stats'
In [15]: bp_iqr = stats.iqr(bp)
         bp_iqr
Out[15]: 22.0
```

0.2 Visualizing the data

Next we'll use what you have learned from the Tables, Histograms, Boxplots in Python video

```
bp_descriptive_stats = bp.describe()
         bp_descriptive_stats
Out[16]: count
                  5535.000000
                   124.783017
         mean
                    18.527012
         std
         min
                    84.000000
         25%
                   112.000000
         50%
                   122.000000
         75%
                   134.000000
                   238.000000
         max
         Name: BPXSY2, dtype: float64
In [21]: # Make a histogram of our 'bp' data using the seaborn library we imported as 'sns'
         sns.distplot(bp,kde=False).set(title='Histogram of BPXSY2', xlabel='x axis', ylabel=';
Out[21]: [Text(0,0.5,'no of people'),
          Text(0.5,0,'x axis'),
```

In [16]: # use the Series.describe() method to see some descriptive statistics of our Series '

Is your histogram labeled and does it have a title? If not, try appending

Text(0.5,1,'Histogram of BPXSY2')]

```
.set(title='your_title', xlabel='your_x_label', ylabel='your_y_label')
  or just
.set(title='your_title')
  to your graphing function
```

Out[24]: [Text(0.5,0,'Blood pressure'), Text(0.5,1,'Histogram of BPXSY2')]


```
/opt/conda/lib/python3.6/site-packages/seaborn/axisgrid.py in pairplot(data, hue, hue_2068 raise TypeError(
2069 "'data' must be pandas DataFrame object, not: {typefound}".format(
-> 2070 typefound=type(data)))
2071
2072 if plot_kws is None:
```

TypeError: 'data' must be pandas DataFrame object, not: <class 'pandas.core.series.Ser