

Zinc benefits to CF lung therapy

1B

- Rescue of Cl^- and fluid secretion
- Attenuation of Na^+ hyperabsorption
- Potentiation of ATP-, Na^+ - and Ca^{2+} -dependent ciliary beat?

Zinc as an anti-inflammatory for CF and other airway diseases such as asthma and common cold

2A

- Zinc in a solution-based formulation enters the cell as free ionic zinc and inhibits NFκB activation

Zinc as an anti-microbial for CF and other airway and GI diseases caused by bacterial pathogens

2B

- Zinc in a solution-based formulation competitively inhibits the metal scavenging system of a bacterium.

Zinc benefits to PKD therapy and therapy of other renal hypertensive disorders

3B

- Direct inhibition of Na^+ hyperabsorption
- Stimulation of P2XR Ca^{2+} entry channels “alternative” to cilium-derived Ca^{2+} entry

Normal Insulin Secretion in a Pancreatic Islet β Cell

4A

- (1) Plasma glucose rises after a meal >
- (2) glucose enters the cell via GLUT transporters >
- (3) this causes the cytosolic [ATP] to rise >
- (4) this inhibits the K(ATP) complex ion channel that is normally basally active to maintain a hyperpolarized membrane potential >
- (5) closure of this channel depolarizes the β cell membrane >
- (6) this causes voltage-dependent calcium channels to open >
- (7) cytosolic calcium rises >
- (8) the elevation in cell calcium triggers exocytosis of insulin granules.

"Controlled" Diabetic β Cell

4B

In the controlled diabetic scenario, by-passing the glucose- and voltage-dependent mechanism (Steps 1-5) by activating an "alternative" calcium entry pathway (CaEC), like the P2XR channels, could be an important therapeutic modality in type II diabetes and could re-stimulate insulin secretion. By this approach, we only require re-capitulation of Steps 6-8 for the diabetic β cell or any endocrine cell where there is failure to secrete ligand.

5A

5B

Black = 100 ATP, 20 Zn, pH 7.9

Red = 100 ATP, 2 Zn, pH 7.9

Blue = 100 ATP, 20 Zn, pH 7.3

Green = 100 ATP, 20 Zn, pH 6.8

Black = 20 Zn, pH 7.9 plus Extracellular Ca²⁺Red = 20 Zn, pH 7.9, 0 Extracellular Ca²⁺,
then, add back 3 mM Ca²⁺

5C**5D****5E****5F**

7A

anti-P2X4

Rabbit IgG control

7B

Normal Human Bronchiolus

CF Human Bronchiolus

Normal Human Airway Surface Epithelium

CF Human Airway Surface Epithelium

Transepithelial Nasal Potential Difference Values of Control, Δ 508 CF and Bitransgenic CF Mice

	Control Cftr(+/+)	n	CF Cftr(Δ F508/ Δ F508)	n	Bitransgenic CF Cftr(-/-)	n
Starting point	-18.7 ± 6.5	19	-26.3 ± 7.2*	11	-26.1 ± 3.8*	14
Low [Cl] _e (Na ⁺ ; pH:7.3)	-5.5 ± 1.5	8	+3.7 ± 1.6*	3	+4.8 ± 2.5*	7
ATP + ZnCl ₂ (NMDG; pH:7.9)	-4.7 ± 1.8	6	-4.0 ± 2.0	3	-3.8 ± 2.0	12
Low [Cl] _e (Na ⁺ ; pH:7.9)	-4.8 ± 2.0	6	+5.4 ± 2.8*	7	+6.7 ± 4.0*	3
ATP + ZnCl ₂ (NMDG; pH:7.9)	-6.0 ± 1.4	2	-9.4 ± 1.6**	8	-9.7 ± 3.1**&	3
Low [Cl] _e (NMDG; pH:7.9)	-4.8 ± 3.3	5			+5.8 ± 1.9*	4
ATP + ZnCl ₂ (NMDG; pH:7.9)	-5.7 ± 1.2	3			-10.2 ± 1.3**&	6
ATP alone (NMDG; pH:7.9)					-2.3 ± 1.0\$	4
Low [Cl] _e (NMDG; no added Ca ²⁺ ; pH:7.9)	-7.3 ± 0.6	3			+6.0 ± 0.8*	4
ATP + ZnCl ₂ (NMDG; no added Ca ²⁺ ; pH:7.9)	-1.3 ± 0.6\$	3			-2.0 ± 1.2\$	4

Non-mucoid *P.a.*Mucoid *P.a.*

11A

Mucoid *P.a.*

11B

E. coli.

13A

13B

14A

14B

15A

IB3-1 CF Airway Lysates
(Positive Controls)

INS-1 Lysates
MW 1 2

MW
(kDa)

15B

Modified Saline** (pH 7.3)Modified Saline (pH 7.3) + 15 mM Glucose

Time	Absorbance	[Insulin]	Time	Absorbance	[Insulin]
15"	0.682 ± 0.03	~3.0 ng/ml	15"	1.070 ± 0.05	~5.0 ng/ml
15'	0.765 ± 0.04	3.25	15'	0.957 ± 0.07	4.5
30'	0.794 ± 0.06	3.5	30'	1.204 ± 0.10	5.5
60'	1.794 ± 0.09	9.0	60'	2.065 ± 0.05	11.0
120'	1.137 ± 0.05	5.0	120'	1.105 ± 0.18	5.0

*Generous gift of Dr. Chris Newgard at Duke.

**Modified saline is 0 Na (substituted fully by NMDG), 0 Mg, and 3 mM Ca.

Standard Curve

Absorbance	[Insulin]
0.248	0.0
0.226	0.2 ng/ml
0.280	0.5 ng/ml
0.377	1.0 ng/ml
0.559	2.0 ng/ml
1.10	5.0 ng/ml
1.91	10.0 ng/ml
~3.0	~20 ng.ml

16B

Modified Na- and Mg-free Ringer (± Glucose)

17A

WO 2004/064742

17B

Modified Na- and Mg-free Ringer
(No Glucose, pH 8.0)

P2X Receptor Calcium Entry Channels

19A

TRPC Calcium Entry Channels

19B

19C

19D

<u>Designation</u>	<u>Mode of Stimulation</u>	<u>Epithelial Polarity</u>
Store-operated Ca ²⁺ channels (SOCs) or I _{CRAC}	ER store depletion	Unclear
TRP channels	ER store depletion (partial) Alkaline extracellular pH (partial)	Apical & Basolateral
P2X receptor Ca ²⁺ entry channels	Extracellular zinc and ATP	Apical & Basolateral
ECaC or CAT (<i>Related to TRPs</i>)	ER store depletion	Apical
Ca ²⁺ -permeable non-selective cation channel (NSCC)	Stretch-activated	Apical

20A

Step 1: IB3-1 CF cell line seeded and grown to confluence in a 384-well plate.

Step 2: Attached IB3-1 CF cells loaded with Fura-2/AM in culture medium for 2 hours.

Step 3: IB3-1 cells washed with PBS modified for HTS (0 Na⁺, 0 Mg²⁺, 3 mM Ca²⁺) 3X.

Step 4: IB3-1 cells exposed to an individual compound in each well versus positive and negative controls.

Step 5: Fura-2 fluorescence read in IB3-1 cells at 340 and 380 nm wavelengths before and 1, 3, 5, and 15 minutes after compound addition.

20C

Step 1A: INS-1 β cell line seeded
in a 384-well plate.

Step 1B: INS-1 cells rested in 5 mM
glucose 2 days prior to assay.

Step 2: Attached INS-1 β cells
loaded with Fura-2/AM in low
glucose culture medium for 2 hours.

20D

Step 3: INS-1 cells washed
with PBS modified for HTS
(0 Na⁺, 0 Mg²⁺, 3 mM Ca²⁺) 3X.

Step 4: INS-1 cells exposed
to an individual compound in
each well versus positive and
negative controls in the absence
and presence of 15 mM glucose
and/or 30 mM KCl in the 4 quadrants.

Step 5: Fura-2 fluorescence
read in INS-1 cells at 340
and 380 nm wavelengths before
and 1, 3, 5, and 15 minutes.

