Homework #4

Due: 22.01.2025

Pen and pencil problems (submit the pictures with coloured axis). Hardcopy must be submitted in the class.

Pen & Pencil Tasks (100 points)

- 1.1. For the 6R robot in Figure 1 compute the DH table and the transformation matrix. Draw coordinate frames in different colours. (25 points)
- 1.2. A reverse engineering problem. Consider the following DH table and sketch the corresponding robot. Pay attention that d4 is constant, while Θ 4 is variable => rotational joint / distance d4. Draw coordinate frames in different colours. (15 points)

Joint i	θ_{i}	ai-1	α i-1	di
1	Θ1-90°	0	90°	0
2	Θ_2	50	0_{o}	0
3	Θ3+90°	0	90°	0
4	Θ4	0	-90°	60
5	Θ5-90°	0	90°	0
6	Θ6+90°	0	90°	0

- 1.3. Compute the DH table and the transformation matrix for the robot in Figure 2. Draw coordinate frames in different colours. (30 points)
- 1.4. Compute the DH table and the transformation matrix for the robot in Figure 3. Draw coordinate frames in different colours. (30 points)

Comments to Figure 3: let's start from the bottom of the picture upward. The circle in the botom is the robot base. Then comes a revolute (rotational) joint. On the uppper side of the rectangular there is a second revolute (rotational) joint, so that a straight segment (stick) can rotate around a rectangular (but not for all 360 degrees). The last joint is a prismatic (translational) joint, it is on distance 0 from the previous rotational joint. End effector is assumed on the left end of the straight segment (green flat EE).

1.5. Add a list (for the pair case): details of work performed by each student (-100 points if missing!)

Figure 1.

Figure 3.