

(1) Publication number: 0 506 477 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 92302750.2

22) Date of filing: 27.03.92

(f) Int. CI.⁵: **C07K 15/06**, C12N 15/19, C07K 3/28, C12N 5/10, A61K 37/36, // C07H21/00

30 Priority: 28.03.91 US 676436

(43) Date of publication of application : 30.09.92 Bulletin 92/40

Ø Designated Contracting States:
CH DE FR GB IT LI NL

(7) Applicant: MERCK & CO. INC. 126, East Lincoln Avenue P.O. Box 2000 Rahway New Jersey 07065-0900 (US) (2) Inventor: Bayne, Marvin L.
131 Tudor Oval
Westfield, NJ 07090 (US)
Inventor: Thomas, Kenneth A., Jr.
245 Washington Avenue
Chatham Burough, NJ 07928 (US)

(4) Representative: Thompson, John Dr. et al Merck & Co., Inc. European Patent Department Terlings Park Eastwick Road Harlow, Essex CM20 2QR (GB)

(54) Vascular endothelial cell growth factor C subunit.

(57) Vascular endothelial cell growth factor C subunit DNA is prepared by polymerase chain reaction techniques. The DNA encodes a protein
that may exist as either a heterodimer or
homodimer. The protein is a mammalian vascular endothelial cell mitogen and as such is
useful for the promotion of vascular development and repair. This unique growth factor is
also useful in the promotion of tissue repair.

:D 0 506 477 A4

P. P. Y

PAZ38	056 TGT 055 GGC TGC TGC MT GAT 0 81 MGC-CTS-ALA-GU'-CTS-CTS-ASH-ASP-O	1 4 [4]	GIC ACT ATG CAG ATT ATG CAG ATC AND COSS ATC	FIG.1B	6 CA MA NT TC TC TG MA MC NCA GAC TCS CAT TGA MG CAS AGG CAG CAG TA MAC GAA 140 150 170 170 170 170 170 170 17	COT ACT TEC ANA TOT GAC ANG COS TEA 181
,	AC CAG COS ACT TOC COST COS ATT GAG TR-CALP-ANG-SDR-TTR-CYS-AKE-PRO-ILE-CALP		TITE CAG GAG TAC CCC GAT GAG TAT GAG TAT TATE TATE AAG CCC TCC TGF GTG CCC CTA ATS GIS TO TGF GAG TCC TGF GTG CCC CTA ATS GIS TO TGF GAG TCC TGF GAG T	100	10 GA TEC AS COA MAG AN GAT AGA ACA COS AGA COA AGA ACA AGA ACA AGA ACA AGA AGA COS AGA COS AGA COS AGA AGA COS AGA COS AGA COS AGA AGA COS AGA AGA AGA AGA AGA AGA AGA AGA AGA AG	24 GF 12

BRIEF DESCRIPTION OF THE DRAWING

5

20

45

55

Figure 1. Full length amino acid residue protein translation product and its cDNA coding sequence for VEGF AA subunit A plus polypeptide cleavage products used to determine the amino acid sequence.

Figure 2. Full length amino acid residue protein translation product and its cDNA coding sequence for VEGF AB subunit A plus polypeptide cleavage products used to determine the amino acid sequence.

Figure 3. Full length amino acid residue protein translation product and its cDNA coding sequence for VEGF AB subunit B plus polypeptide cleavage products used to determine the amino acid sequence.

Figure 4. Full cDNA coding sequence and full length amino acid residue protein translation product for VEGF A 146 amino acid residue subunit SEQ ID NOS:23 & 33.

Figure 5. Full cDNA coding sequence and full length amino acid residue protein translation product for VEGF A 190 amino acid residue subunit SEQ ID NOS:30 & 31.

Figure 6. Full cDNA coding sequence and full length amino acid residue protein translation product for VEGF A 214 amino acid residue subunit SEQ ID NOS:34 & 35.

Figure 7. Full cDNA coding sequence and full length amino acid residue protein translation product for VEGF B 138 amino acid residue subunit SEQ ID NOS:36 & 37.

Figure 8. Full cDNA coding sequence and full length amino acid residue protein translation product for VEGF B 158 amino acid residue subunit SEQ ID NOS:38 & 39.

Figure 9. Full cDNA coding sequence and full length amino acid residue protein translation product for VEGF C 154 amino acid residue subunit SEQ ID NOS:40 & 41.

BACKGROUND OF THE INVENTION

A new class of cell-derived dimeric mitogens with apparently restricted specificity for vascular endothelial cells has recently been identified and generally designated vascular endothelial growth factors (VEGFs). The mitogen has been purified from: conditioned growth media of rat glioma cells, [Conn et al., Proc. Natl. Acad. Sci. USA 87: 1323-1327 (1990)]; conditioned growth media of bovine pituitary folliculo stellate cells [Ferrara and Henzel, Biochem. Biophys. Res. Comm. 161: 851-858 (1989) and Gospodarowicz et al., Proc. Natl. Acad. Sci. USA 86: 7311-7315 (1989)]. An endothelial cell growth factor isolated form mouse neuroblastoma cell line NB41 with an unreduced molecular mass of 43-51 kDa and a reduced mass of 23-29 kDa has been described by Levy et al., Growth Factors 2: 9-19 (1989). Connolly et al. (J. Biol. Chem. 264: 20017-20024 [1989]; J. Clin. Invest. 84: 1470-1478 [1989]) describe a human vascular permeability factor that stimulates vascular endothelial cells to divide in vitro and promotes the growth of new blood vessels when administered into healing rabbit bone grafts or rat corneas. An endothelial cell growth factor has been purified from the conditioned medium of the AtT-20 pituitary cell line by Plouet et al., EMBO Jownal 8: 3801-3806 (1989). The growth factor was characterized as a heterodimer composed of subunits with molecular mass of 23 kDa. Leung et al. (Science 246: 1306-1309 [1989]), Keck et al. (Science 246: 1309-1312 [1989]) and Conn et al. (Proc. Natl. Acad. Sci USA 87: 2628-2632 [1990]) have described cDNAs which encode VEGF A which is homologous to the A and B chains of platelet-derived growth factor. Vascular endothelial growth factor I (VEGF I, VEGF AA) is a homodimer with an apparent molecular mass of 46 kDa, with each subunit having an apparent molecular mass of 23 kDa. VEGF I has distinct structural similarities to platelet-derived growth factor (PDGF), a mitogen for connective tissue cells but not vascular endothelial cells from large vessels.

OBJECTS OF THE INVENTION

It is, accordingly, an object of the present invention to provide novel vascular endothelial growth factor C subunit DNA free of other mammalian DNA. Another object is to provide recombinant genes capable of expressing VEGF C subunit monomer or dimer. Another object is to provide vectors containing the DNA sequences for VEGF A or B plus C subunits. A further object is to provide a host cell transformed with a vector containing the DNA sequence for VEGF A or B plus C or VEGF C alone. It is also an object to provide a recombinant process for making VEGF C subunit. Another object is to provide a novel vascular endothelial cell growth factor which contains the C subunit. This may include heterodimers AC and BC and homodimer CC.

SUMMARY OF THE INVENTION

Vascular endothellal cell growth factor C subunit DNA is prepared by polymerase chain reaction techniques. The DNA encodes a protein that may exist as either a heterodimer or homodimer. The protein is a mammalian vascular endothelial cell mitogen and as such is useful for the promotion of vascular development and

repair. This unique growth factor is also useful in the promotion of tissue repair.

DETAILED DESCRIPTION

5

The present invention relates to a unique vascular endothelial cell growth factor (designated VEGF), isolated and purified from glioma cell conditioned medium, which exhibits mitogenic stimulation of vascular endothelial cells. Glioma is defined herein as any neoplasm derived from one of the various types of cells that form the interstitial tissue of the central nervous system including brain, spinal cord, posterior pituitary gland and retina. Consequently, the scope of the present invention is intended to include the unique growth factor isolated and purified from any mammalian tissue or other cells including cell lines. Cell lines include, but are not limited to, glioma-derived cell lines such as C6, hs 683 and GS-9L; glioblastomas such as A-172 and T98G; neuroblastomas such as IMR-32 and SK-N-MC; neurogliomas such as H4; tetromas such as XB-2; astrocytomas such as U-87 MG and U-373 MG; embryonal carcinomas and non-transformed glial or astrocyte cell lines, and the human medulloblastoma line TE 671, with GS-9L and TE 671 being preferred. VEGF AB is present and can be isolated from rat tissue including ovary, heart and kidney. Anterior pituitary tumor cell lines such as GH3 and Hs 199 may also be used. It is intended that VEGF of this invention can be obtained from any mammal species capable of producing VEGF, this includes, but is not limited to, rat and human.

Vascular endothelial cell growth factor may exist in various microheterogeneous forms which are isolated from one or more of the various cells or tissues described above. Microheterogeneous forms as used herein refer to a single gene product, that is a peptide produced from a single gene unit of DNA, which is structurally modified at the mRNA level or following translation. Peptide and protein are used interchangeably herein. The microheterogeneous forms will all have similar mitogenic activities. Biological activity and biologically active are used interchangeably and are herein defined as the ability of VEGF to stimulate DNA synthesis in target cells including vascular endothelial cells as described below which results in cell proliferation. The modifications may take place either in vivo. or during the isolation and purification process. In vivo modification results from, but is not limited to, proteolysis, glycosylation, phosphorylation, deamidation or acetylation at the N-terminus. Proteolysis may include exoproteolysis wherein one or more terminal amino acids are sequentially, enzymatically cleaved to produce microheterogeneous forms which have fewer amino acids than the original gene product. Proteolysis may also include endoproteolytic modification that results from the action of endoproteases which cleave the peptide at specific locations within the amino acid sequence. Similar modifications can occur during the purification process which also results in production of microheterogeneous forms. The most common modification occurring during purification is proteolysis which is generally held to a minimum by the use of protease inhibitors. Under most conditions one or more microheterogeneous forms are present following purification of native VEGFs. Native VEGFs refers to VEGF isolated and purified from cells that produce VEGFs, Vascular endothelial cell growth factor may also exist in various alternatively spliced forms which is defined herein as the production of related mRNAs by differential processing of exons and introns. Exons are defined as those parts of the DNA sequence of a eukaryotic gene that code for the final protein product. It is also intended that the present invention includes VEGF subunits A,B and C which are defined as comprising the full length translation products of all alternatively spliced mRNAs made from the gene encoding the subunits and their corresponding mature amino acid sequences generated by proteolytic removal of the amino terminal secretory leader amino acid sequences. It is further intended that the invention only include those microheterogeneous and alternatively spliced VEGF subunits which when in the dimeric form exhibit biological activity such as vascular endothelial cell stimulation as discussed below.

Glloma cells such as the rat cell line GS-9L are grown to confluence in tissue culture flasks, about 175 cm², in a cell culture medium such as Dulbecco's Modified Eagle's Medium (DMEM) supplemented with about 10% newborn calf serum (NCS). When the cells reach confluence the culture medium is removed, the cell layers are washed with Ca⁺⁺, Mg⁺⁺-free phosphate buffered saline (PBS) and are removed from the flasks by treatment with a solution of trypsin, about 0.1%, and EDTA, about 0.04%. The cells, about 1 x 108, are pelleted by centrifugation, resuspended in about 1500 ml of DMEM containing about 5% NCS and plated into a ten level cell factory (NUNC), 6,000 cm² surface area. The cells are incubated for about 48 to about 96 hours, with 72 hours preferred, at about 37° C In an atmosphere of about 5% CO2. Following incubation the medium Is removed and the cell factories are washed about 3 times with PBS. About 1500 ml of fresh culture media is added containing about a 1:2 mixture of Ham's-F12/DMEM containing about 15 mM Hepes, pH about 7.4, about 5 μ g/ml insulin, about 10 μ g/ml transferrin and with or without about 1.0 mg/ml bovine serum albumin. This medium is replaced with fresh medium after about 24 hr and collected every 48 hr thereafter. The collected conditioned medium is filtered through Whatmen #1 paper to remove cell debris and stored at about -20° C.

The GS-9L conditioned medium is thawed and brought to pH 6.0 with 1 M HCl. The initial purification step consists of cation exchange chromatography using a variety of cation exchangers on a variety of matrices such

as CM Sephadex C-50, Pharmacia Mono S, Zetachrom SP and Polyaspartic Acid WCX (Nest Group) with CM Sephadex C-50 (Pharmacia) being preferred. The VEGF-containing culture medium is mixed with CM Sephadex C-50 at about 2 gm per about 20 L of the conditioned medium and stirred at low speed for about 24 hr at 4° C. The resin is allowed to settle and the excess liquid is removed. The resin slurry is packed into a column and the remaining culture medium is removed. Unbound protein is washed from the column with 0.05 M sodium phosphate, about pH 6.0, containing 0.15 M NaCl. The VEGF AB is eluted with about 0.05 M sodium phosphate, about pH 6.0, containing about 0.6 M NaCl.

The active fractions collected from the CM Sephadex C-50 column are further fractionated by lectin affinity chromatography for additional purification of VEGF AB. The lectins which may bind VEGF AB include, but are not limited to, lectins which specifically bind mannose residues such as concanavalin A and lens culinaris agglutinin, lectins which bind N-acetylglucosamine such as wheat germ agglutinin, lectins that bind galactose or galactosamine and lectins which bind slalic aclds, with concanavalin A (Con A) being preferred. A 0.9 cm diameter column containing about 5 ml packed volume of Con A agarose (Vector Laboratories) is washed and equilibrated with about 0.05 M sodium acetate, about pH 6.0, containing about 1 mM CaCl₂, about 1 mM MnCl₂ and about 0.6 M NaCl. The unbound protein is washed from the column with equilibration buffer. The VEGF AB is eluted with about 0.1 M NaCl buffer containing about 0.32 M α -methyl mannoside and about 0.28 M α -methyl glucoslde.

The VEGF AB active eluate from the Con-A column is applied to a Polyaspartic Acid WCX cation exchange high performance liquid chromatography (HPLC) column, 4.6 mm x 250 mm, pre-equilibrated in about 0.05 M sodium phosphate buffer, pH 6.0. The column is eluted with a linear gradient of about 0 to 0.75 M NaCl in the phosphate buffer over about 60 minutes. The flow rate is maintained at about 0.75 ml/min collecting 0.75 ml fractions. Vascular endothelial cell growth factor AB activity is present in fractions eluting between approximately 21.7 and 28.5 ml.

The active fractions eluted from the polyaspartic WCX column that contain VEGF AB are pooled, adjusted to about pH 7.0 and loaded onto a 1 x 10 cm column of Pharmacia Chelating Sepharose 6B charged with an excess of copper chloride and equilibrated in about 0.05 M sodium phosphate, about pH 7.0, containing about 2 M NaCl and about 0.5 mM imidazole (A buffer). VEGF AB is eluted from the column with a gradient from 0-20% B over 10 minutes, 20-35% B over 45 minutes and 35-100% B over 5 minutes at a flow rate of 0.3 ml/min, where B buffer is 0.05 M sodium phosphate, pH 7.0, containing about 2 M NaCl and 100 mM imidazole. The active fractions containing VEGF AB activity eluted between about 12.6 and 22.8 ml of the gradient effluent volume.

The pooled fractions containing VEGF AB activity eluted from the metal chelate column are loaded onto a 4.6 mm x 5 cm Vydac

 C_4 reverse phase HPLC column (5 μ m particle size) previously equilibrated in solvent A [0.1% trifluoroacetic acid (TFA)]. The column is eluted with a linear gradient of about 0 to 30% solvent B over 15 minutes, 30% B for an additional 15 minutes, then 30-45% B over 22.5 minutes and finally 45-100% B over 5.5 minutes. Solvent B consists of solvent A containing 67% acetonitrile (v/v). The bow rate is maintained at about 0.75 ml/min and fractions are collected every minute. The homogeneous VEGF AB elutes from the C_4 column under these conditions at between about 32 and about 38 ml of the gradient effluent volume.

Purity of the protein is determined by sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE) in 12.5% crosslinked gels using the technique of Laemmli, Nature 227:680-684 (1970). The silver stained gels show VEGF AB to consist of one band under non-reducing conditions with an approximate apparent molecular mass of about 58,000 daltons. When a sample containing the microheterogeneous forms of VEGF AB is separated under reducing conditions it migrates as two about 23 kilodalton (kDa) subunits. The purification process results in VEGF AB that is essentially free of other mammallan cell products, such as proteins. Recombinantly derived VEGF AB will also be free of mammalian cell products.

Biological activity is determined by mitogenic assay using mammalian vascular endothelial cells. Human umbilical vein endothelial (HUVE) cells are plated on gelatin-coated dishes at a density of about 5000 cells per well in about 500 μ l of Medium 199 (M199) containing about 20% heat-inactivated fetal calf serum (FCS). Samples to be assayed are added at the time of plating. The tissue culture plates are incubated at about 37° C for about 12 hours and about 2 microcuries of tritiated thymidine (NEN, 20 Ci/mmol) is added per ml of assay medium (1.0 μ Ci/well). The plates are incubated for a further 60 hr, the assay medium is removed and the plates are washed with Hanks balanced salt solution containing about 20 mM Hepes, about pH 7.5, and about 0.5 mg/ml bovine serum albumin. The cells are lysed and the labelled DNA solubilized with about 200 μ l of a solution containing about 2 gm of sodium carbonate and about 400 mg sodium hydroxide in about 100 ml water. The incorporated radioactivity was determined by liquid scintillation counting. The concentration of VEGF which elicited a half-maximal mitogenic response in HUVE cells was approximately 2 \pm 1 ng/ml. The glycosaminoglycan heparin, which is required in these assays at a level of 10-100 μ g/ml to promote a response to a positive control, acidic fibroblast growth factor, does not enhance mitogenic stimulation of these cells by VEGF AB.

A purified about 1-2 μ g sample of VEGF AB is reduced in about 0.1 M Tris, about pH 9.5, with about 0.1% EDTA, about 6 M guanidinlum chloride and about 20 mM dithiothreltol for about 2 hr at about 50°C. The reduced protein is carboxymethylated for about 1 hour in a solution containing about 9.2 μ M of unlabelled and 2.8 μ M of ¹⁴C-lodoacetic acld in about 0.7 M Tris, about pH 7.8, and about 0.1% EDTA and about 6 M guanidinlum chloride. The protein is carboxymethylated for about 1 hr at room temperature. The protein is isolated after reduction and carboxymethylation by reverse phase HPLC chromatography on a Vydac C₄ column, about 4.6 mm x 5 cm. The protein subunits are loaded onto a column pre-equilibrated with about 0.1% TFA and eluted by a 45 ml linear gradient from about 0.1% TFA to 0.1% TFA/67% acetonitrile at a bow rate of about 0.75 ml/min. The reduced and carboxymethylated protein eluted as two peaks at approximately 23 and 25 ml with the proportion being approximately equal as determined by monitoring absorbance at 210 nm.

Samples of the reduced and carboxymethylated monomers are applied to polybrene-coated glass fiber filters and their N-terminal sequences are determined by Edman degradation in an ABI gas phase microsequencer in conjunction with an ABI 120A on line phenylthiohydantoin analyzer following the manufacturers instructions. The protein showing the peak of absorbance eluting at approximately 25 ml (A subunit or monomer) yielded an amino terminal sequence of: SEQ ID NO:1

Ala Pro Thr Thr Glu Gly Glu Gln Lys Ala His Glu Val Val which is identical to the A chain monomers of VEGF AA, Conn et al., Proc. Natl. Acad. Sci. USA 87: 2628-2632 (1990). The peak of absorbance eluting at approximately 23 ml (B subunit or monomer) yielded an N-terminal sequence of: SEQ ID NO:2

Ala Leu Ser Ala Gly Asn Xaa Ser Thr Ser Thr Glu Met Glu Val Val Pro Phe Asn Glu Val

20

45

plus a nearly equal amount of a truncated form of the same sequence missing the first three amino acid residues. The missing Xxx residue corresponds to an Asn residue in the cloned cDNA, see below. Since this missing Asn occurs in a classical Asn Xxx Ser/Thr N-glycosylation sequence it is presumed to be glycosylated. The A subunit and the total of both B subunits are recovered in nearly equal amounts supporting the interpretation that the two peptides combine to form an AB heterodimer in VEGF AB.

A sample of the A monomer was treated with either the protease trypsin which cleaves polypeptides on the C-terminal side of lysine and arginine residues or Lys C which cleaves polypeptides on the C-terminal side of lysine by procedures well known in the art. The peptides are isolated by reversed phase - HPLC(RP-HPLC). The amino acid sequences of the isolated peptides are determined using the Edman degradation in the ABI gas phase sequenator in conjunction with the ABI 120 A on line phenyithiohydantoin analyzer following manufacturer's instructions. The amino acid sequences are shown in Figure 1.

Reduced and carboxymethylated A monomer is dried and solubilized in about 0.7 M Tris, about pH 7.8, about 6 M guanidinium chloride containing about 0.1% EDTA. V8 protease is added in 0. 1 M ammonium bicarbonate buffer, about pH 8.0, and the mixture is incubated for about 48 hr at about 37°C. The protease cleaves predominantly on the carboxyl terminal side of glutamic acid residues. The resulting polypeptides were resolved by C_{18} RP-HPLC as above.

The reduced and carboxymethylated A subunit protein solution is adjusted to a pH of about 6.8 with 6 N HCl and dithiotreitol is added to a final concentration of 2 M for reduction of any methionine sulfoxide to methionine residues. After about 20 hr of reduction at about 39°C the protein is repurified by C₄ HPLC. The product is dried and cleaved on the carboxyl terminal side of methionine residues by 200 µl of 40 mM cyanogen bromide in about 70 % (v/v) formic acid under an argon atmosphere at about 20°C for about 24 hr in the dark. The cleavage products are resolved by C₁₈ RP-HPLC. The amino acid sequence is shown in Figure 1, see Conn et al., Proc. Natl. Acad. Sci USA 87:2628-2632 (1990).

The full length 190 amino acid residue protein translation product of the VEGF AB, A monomer or subunit, which is now known to be identical with the VEGF AA, A monomer, and its cDNA coding sequence are shown in Figures 2 and 6. The mature amino terminus begins at residue 27, immediately following a typical hydrophobic secretory leader sequence. A single potential N-glycosylation site exists at Asn₁₀₀. Most (143 amino acid residues) of the 164 residues of the reduced and carboxymethylated mature subunit including the amino terminus and HPLC reversed phase-purified products of tryptic (T), Lys-C (L), Staphylococcus aureus V8 protease (V8) and cyanogen bromide (CB) cleavages, were determined by direct microsequencing (Applied Biosystems 470A) using a total of 5 µg of protein. All residues identified by amino acid sequencing are denoted by arrows pointing to the right either directly beneath the mature processed sequence following the bracket at residue 27 for the amino terminal determination of the whole subunit or, for residues identified from the polypeptide cleavage products, above the double-headed arrows spanning the length of the particular polypeptide. One listed pair of polypeptides, V18A and V18B, was sequenced as a mixture and, therefore, are only confirmatory of the cDNA-deduced amino acid sequence, see Figures 1 and 5.

Samples of the reduced and carboxymethylated pure VEGF AB, A and B monomers, were each digested

with the Lys-C endoproteinase, which cleaves polypeptides on the C-terminal side of lysine residues. The peptides were isolated by reverse phase HPLC and their amino acid sequences were determined as described above. The locations of the peptides in the final VEGF AB, A and B sequences are shown in Figure 2 and Figure 3, respectively.

The full length coding region of the A subunit or monomer is determined from three sets of overlapping cDNA clones. Degenerate oligonucleotide primers based on the amino acid sequences Phe-Met-Asp-Val-Tyr-Gin from polypeptide L42 (residues 42-47) and Cys-Lys-Asn-Thr-Asp from polypeptide T38 (residues 164-168) (see Figure 1) were used to PCR amplify the central region of the cDNA for VEGF A chain following the procedure of Saiki et al., Science 230: 1350- 1354 (1985). A single band migrating at 420 bp was gel purified, digested with Sall, ligated into pGEM3Zf(+) and sequenced. The nucleotide sequence obtained (p4238) was used to design antisense and sense PCR primers to amplify the 5' and 3' ends of the cDNA according to the protocol described by Frohman et al. Proc. Natl. Acad. Sci. USA 85:8998-9002 (1988). These 5' and 3' clones are denoted p5-15 and pW3, respectively. Regions of complete DNA sequences, excluding the primers, determined for each set of clones are indicated by double-headed arrows above the nucleotide sequence. In addition to the cDNA coding the 164 amino acid secreted form identified by protein sequencing, two alternatively spliced cDNAs encoding a 146 amino acid and a 214 amino acid forms are cloned and sequenced, Figures 4, 5 and 6.

The full length coding region of the B subunit or monomer is determined from four sets of overlapping cDNA clones. Degenerate oligonucleotide primers based on the amino acid sequences from polypeptide L50 are used to PCR amplify the central region of the cDNA for VEGF AB, B monomer, following the procedure of Saiki et al., Science 230: 1350-1354 (1985). A single band migrating at 108 bp was gel purified, digested with Sall, ligated into pGEM3Zf(+) and sequenced. The nucleotide sequence obtained (pYG) was used to design antisense and sense PCR primers to amplify the 5' and 3' ends of the cDNA according to the protocol described by Frohman et al. Proc. Natl. Acad. Sci. USA 85:8998-9002 (1988). These 5' and 3' clones are denoted p5V2 and p3V2, respectively. Additional 5' end sequences are determined from clone 202 isolated from a cDNA library prepared from GS-9L poly A+ RNA. Regions of complete DNA sequences, excluding the primers, determined for each set of clones are indicated by double-headed arrows above the nucleotide sequence. The entire base sequence for the 158 amino acid microheterogeneous B subunit and the 138 amino acid microheterogeneous B subunit are shown in Figures 7 and 8.

The full length coding region of the C subunit or monomer is determined from three sets of overlapping cDNA clones. Degenerate oligonucleotide primers based on the amino acid sequence Phe Ser Pro Ser Cys Val and Glu Met Thr Phe Ser Gly from rat VEGF B subunit are used to PCR amplify the central region of the cDNA of VEGF C chain following the procedure of Saiki et al., Science 230: 1350-1354 (1985). A band migrating at 180 bp is gel purified, reamplified and digested with Sall, ligated into pGEM3Zf(+) and sequenced. The nucleotide sequence obtained (pFSEM') is used to design antisense and sense PCR primers to amplify the 5' and 3' ends of the cDNA according to the protocol described by Frohman et al., Proc. Natl. Acad. Sci. USA 85: 8998-9002 (1988). The 5' and 3' clones are denoted p5:16 and p3:19, respectively. The entire base sequence and amino acid sequence for the C subunit are shown in Figure 9.

30

It is intended that vascular endothelial cell growth factor of the present invention exist as a heterodimer consisting of an A microheterogeneous and/or alternatively spliced subunit or a B microheterogeneous and/or alternatively spliced subunit. It is further intended that VEGF homodimer of the present invention exist as two C subunits. The native forms of the A, B, C subunits may be processed form alternatively spliced full length translation products. The heterodimers or heterodimeric species can be depicted as: A+B, A+C or B+C with the A, B or C subunits existing in any of the alternatively spliced or microheterogeneous forms. The homodimers or homodimeric species can be formed by combinations of any of the alternatively spliced or microheterogeneous forms. It is also intended that the invention include all of the individual subunit forms of the A subunit, the B subunit and the C subunit of VEGF.

It is further intended that the nucleotide sequence for vascular endothelial cell growth factor be interpreted to include all codons that code for the appropriate amino acids in the sequence for each of the vascular endothelial growth factor subunits, as indicated by the degeneracy of the genetic code. It is further intended that the nucleotide sequence and the amino acid sequence for VEGF subunits include truncated genes or proteins that result in proteins which exhibits biological activity similar to vascular endothelial cell growth factor. The scope of the invention is intended to include all naturally occurring mutations and allelic varients and any randomly generated artifical mutants which may change the sequences but do not alter biological activity as determined by the ability to stimulate the division of vascular endothelial cells.

The above described heterodimers, homodimers and subunits of vascular endothelial cell growth factor are characterized by being the products of chemical synthetic procedures or of procaryotic or eucaryotic host

expression of the DNA sequences as described herein. A monomer is defined as a subunit that is not incorporated in an oligomeric unit. Expression of the recombinant VEGF genes (recombinant DNA) is accomplished by a number of different host cells which contain at least one of a number of expression vectors. Expression vectors are defined herein as DNA sequences that are required for the transcription of cloned copies of recombinant DNA sequences or genes and the translation of their mRNAs in an appropriate host. Such vectors can be used to express genes in a variety of hosts such as bacteria, bluegreen algae, yeast cells, insect cells, plant cells and animal cells, with mammalian cells being preferred. The genes may also be expressed using any of a number of virus expression systems. Specifically designated vectors allow the shuttling of DNA between bacterla-yeast, bacteria-plant or bacteria-animal cells. An appropriately constructed expression vector should contain: an origin of replication for autonomous replication in host cells, selective markers, a limited number of useful restriction enzyme sites, a high copy number, strong promoters and efficient translational stop signals. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and to initiate RNA synthesis. A strong promoter is one which causes mRNAs to be initiated at high frequency. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses and cosmids. The expression of mammalian genes in cultured mammalian cells is well known in the art. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Book 3, Cold Springs Harbor Laboratory Press (1989) and Cwrent Protocols In Molecular Biology, Ausubel et. al. Eds, Greene Publishing Associates and Wiley-Interscience, 1987 and supplements, disclose various mammalian expression vectors and vector systems along with methods for the introduction of recombinant vectors into mammalian cells. The cDNA for the monomemo forms of the A, B and C subunits can be expressed in a system such as that described by Linemeyer et al., European Patent Application, Publication No. 259,953. The cDNA is incorporated into a commercially available plasmid such as pKK 223-3 (Pharmacia) as modified as by Linemeyer et al. and expressed in E. coli. Other expression systems and host cells are well known in the art.

The high Cys content and glycoslyation sites of the A, B and C subunits along with the structure of the homoand heterodimers suggest that expression of biologically active proteins can be carried out in animal cells. Expression may be carried out in Chinese hamster ovary (CHO) cells with the cloned VEGF DNA cotransfected
with the gene encoding dihydrofolate reductase (dhfr) into dhfr- CHO cells, see Sambrook et al. Transformants
expressing dhfr are selected on media lacking nucleosides and are exposed to increasing concentrations of
methotrexate. The dhfr and VEGF genes are thus coamplified leading to a stable cell line capable of expressing
high levels of VEGF. The plasmid is designed to encode either an A subunit, a B subunit or a C subunit or a
combination of any two of these subunits. The two cDNAs are operably attached so that the protein produced
will be dimeric and will have VEGF biological activity. Operably attached refers to an appropriate sequential
arrangement of nucleotide segments, cDNA segments or genes such that the desired protein will be produced
by cells containing an expression vector containing the operably attached genes, cDNA segments or nucleotides. Plasmids containing a single subunit species may be used to cotransfect a suitable cell line.

The expressed proteins (homodimers or heterodimers) are isolated and pwified by standard protein purification processes. It is to be understood that the expression vectors capable of expressing heterodimeric forms of VEGF will contain two DNA sequences which will encode either an A subunit and/or a DNA sequence which will encode a B subunit and/or a DNA sequence which will encode a C subunit. Expression vectors capable of expressing homodimeric forms of VEGF will contain either one or two DNA sequences which encode either two A, two B or two C subunits.

The ability of the various species of VEGF to stimulate the division of vascular endothelial cells makes this protein in all microheterogeneous forms and alternative splicing forms useful as a pharmaceutical agent. The protein as used herein is intended to include all microheterogeneous forms as previously described. The protein can be used to treat wounds of mammals including humans by the administration of the novel protein to patients in need of such treatment.

The novel method for the stimulation of vascular endothelial cells comprises treating a sample of the desired vascular endothelial cells in a nutrient medium with mammalian VEGF, preferably human or rat, at a concentration of about 1-10 ng/ml. If the vascular endothelial cell growth is conducted in vitro. the process requires the presence of a nutrient mediuin such as DMEM or a modification thereof and a low concentration of calf or bovine serum such as about 0 to 2% by volume. Preservatives such as antibiotics may also be included; these are well known in the art.

The novel growth factors of this invention are useful for the coverage of artificial blood vessels with vascular endothelial cells. Vascular endothelial cells from the patient would be obtained by removal of a small sequent of peripheral blood vessel or capillary-containing tissue and the desired cells would be grown in culture in the presence of VEGF and any other supplemental components that might be required for growth. After growth of adequate numbers of endothelial cells in culture to cover a synthetic polymeric blood vessel the cells would be plated on the inside surface of the vessel, such as fixed umbilical vein, which is then implanted in the patient.

Alternatively, tubular supports are coated <u>in vitro</u> with VEGF prior to implantation into a patient. Following implantation endothelial cells migrate into and grow on the artificial surface. Prior coating of the artificial vessel either covalently or noncovalently, with proteins such as fibrin, collagen, fibronectin or laminin would be performed to enhance attachment of the cells to the artificial surface. The cell-lined artificial vessel would then be surgically implanted into the patient and, being lined with the patients own cells, would be immunologically compatible. The non-thrombogenic endothelial cell lining should decrease the incidence of clot formation on the surface of the artificial vessel and thereby decrease the tendency of vessel blockage or embolism elsewhere.

The novel proteins are also used for the production of artificial vessels. Vascular endothelial cells and smooth muscle cells from the patient would be obtained and grown separately in culture. The endothelial cells would be grown in the presence of VEGF as outlined above. The smooth muscle would be grown in culture by procedures well known in the art. A tubular mesh matrix of a biocompatible polymer (either a synthetic polymer, with or without a coating of proteins, or a non-immunogenic biopolymeric material such as surgical suture thread) would be used to support the culture growth of the smooth muscle cells on the exterior side and vascular endothelial cells on the interior surface. Once the endothelial cells form a confluent monolayer on the inside surface and multiple layers of smooth muscle cells cover the outside, the vessel is implanted into the patient.

The novel peptides can also be used for the induction of tissue repair or growth. The pure VEGF would be used to induce and promote growth of tissue by inducing vascular growth and /or repair. The peptide can be used either topically for tissue repair or intravascularly for vascular repair. For applications involving neovascularization and healing of surface wounds the formulation would be applied directly at a rate of about 10 ng to about 1 mg/cm²/day. For vascular repair VEGF is given intraveneously at a rate of about 1 ng to about 100 µg/kg/day of body weight. For internal vascular growth, the formulation would be released directly into the region to be neovascularized either from implanted slow release polymeric material or from slow release pumps or repeated injections. The release rate in either case is about 10 ng to about 100 µg/day/cm³.

For non-topical application the VEGF is administrated in combination with pharamaceutically acceptable carri ers or diluents such as, phosphate buffer, saline, phosphate buffered saline, Ringer's solution, and the like, in a pharamaceutical composition, according to standard pharamaceutical practice. For topical application, various pharmaceutical formulations are useful for the administration of the active compound of this invention. Such formulations include, but are not limited to, the following: ointments such as hydrophillic petrolatum or polyethylene glycol ointment; pastes which may contain poms such as xanthan gum; solutions such as alcoholic or aqueous solutions; gels such as aluminum hydroxide or sodium alginate gels; albumins such as human or animal albumins; collagens such as human or animal collagens; celluloses such as alkyl celluloses, hydroxyalkyl celluloses, for example methylcellulose, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl methylcellulose, and hydroxypropyl cellulose; polyoxamers such as Pluronic® Polyols exemplified by Pluronic® F-127; tetronics such as tetronic 1508; and alginates such as sodium alginate.

The following examples illustrate the present invention without, however, limiting the same thereto.

EXAMPLE 1

10

15

30

35

Preparation of Medium Conditioned By GS-9L Cells

GS-9L cells were grown to confluence in 175 cm² tissue culture flasks in Dulbecco's Modified Eagle's Medium/10% newborn calf serum (DMEM/NCS). At confluence the medium was decanted from the flasks, the flasks were washed with calcium and magnesium free phosphate buffered sallne (PBS) and the cells were removed by treatment with a 1X solution of trypsin/EDTA (Gibco). The cells (1 x 108) were pelleted by centrifugation, resuspended in 1500 ml of DMEM/5% NCS and plated into a ten level (6000 cm² surface area) cell factory (NUNC). After 72 hours incubation at 37° C ln a 5% CO₂ atmosphere the medium was decanted and the cell factories were washed 3 times with PBS. The cells were refed with 1500 ml of a 1:2 mixture of Ham's F-12/DMEM containing 25 mM Hepes, pH 7.4, 5 μ g/ml insulin, 10 μ g/ml transferrin and 1.0 mg/ml bovine serum albumin. This medium was changed with fresh F-12/DMEM after 24 hours and collected every 48 hours after that. The conditioned medium was filtered through a Whatman #1 paper to remove cell debris and stored frozen at -20°C.

EXAMPLE 2

55

Carboxymethyl-Sephadex Chromatography of VEGF AA and VEGF AB

GS-9L conditioned medium, from Example 1, was thawed and brought to pH 6.0 with 1 M HCl. Two grams

of CM Sephadex C-50 cation exchange (Pharmacia) resin preequilibrated in PBS adjusted to pH 6.0 with 1 N HCl were added to 20 liters of conditioned medium. The mixture was stirred at low speed for 24 hours at 4° C. The resin was then allowed to settle and the medium was siphoned off. The remaining resin slurry was packed into a 3.0 cm dlameter column and any remaining medium was allowed to drain off. Unbound protein was washed off the column with 0.05 M sodium phosphate, pH 6.0, containing 0.15 M NaCl. Vascular endothelial growth factor activity was eluted from the column with a subsequent wash of 0.05 M sodium phosphate, pH 6.0, containing 0.6 M NaCl.

EXAMPLE 3

10

Concanavalin A (Con A) Lectin Affinity Chromatography of VEGF AA and VEGF AB

A 0.9 cm diameter column containing about 5 ml of packed Con A agarose (Vector Laboratories) was equilibrated with 0.05 M sodium acetate, pH 6.0, containing 1 mM Ca⁺⁺, 1 mM Mn⁺⁺ and 0.6 M NaCl. The active eluate from the CM Sephadex C-50 column, Example 2, was applied to the Con A agarose and unbound protein was washed from the column with equilibration buffer. The column was then rinsed with three column volumes of 0.05 M sodium acetate, pH 6.0, containing 1 mM Ca⁺⁺, 1 mM Mn⁺⁺ and 0.1 M NaCl. Bound protein was subsequently eluted from the column by application of this buffer supplemented with 0.32 M α -methyl mannoside and 0.28 M α -methyl glucoside.

20

25

EXAMPLE 4

Polyaspartic Acid WCX HPLC Cation Exchange Chromatography of VEGF AA and VEGF AB

The active eluate from the Con A column, Example 3, was applied to a 25 cm x 4.6 mm poly(aspartic acid) WCX cation exchange HPLC column (Nest Group) pre-equilibrated in 0.05 M sodium phosphate buffer, pH 6.0. The column was eluted with a linear gradient of 0 to 0.75 M NaCl in this buffer over 60 minutes at a flow rate of 0.75 ml/min collecting 0.75 ml fractions. VEGF AB activity present in fractions eluting between approximately 21.7 and 28.5 ml were pooled.

30

35

EXAMPLE 5

Metal Chelate Chromatography

The active fractions eluted from the poly(aspartic acid) WCX column, Example 4, that contain VEGF AB were pooled, adjusted to pH 7.0 and loaded onto a 1 x 10 cm column of Pharmacia Chelating Sepharose 6B charged with an excess of copper chloride and equilibrated in 0.05 M sodium phosphate, pH 7.0, containing 2 M NaCl and 0.5 mM imidazole (A buffer). VEGF AB was eluted from the column with a gradient from 0-20% B over 10 minutes, 20-35% B over 45 minutes and 35-100% B over 5 minutes at a flow rate of 0.3 ml/min, where B buffer was 0.05 M sodium phosphate, pH 7.0, containing 2 M NaCl and 100 mM imidazole. The active fractions containing VEGF AB activity eluting between 12.6 and 22.8 ml of the gradient effluent volume were pooled.

EXAMPLE 6

Reverse Phase Chromatography

The fractions containing VEGF AB activity pooled from the metal chelate column, Example 5 were loaded onto a 4.6 mm x 5 cm Vydac C_4 reverse phase HPLC column (5 μ m particle size) equilibrated in solvent A (0.1% trifluoroacetic acid (TFA)). The column was eluted with a gradient of 0-30% solvent B over 15 minutes, 30% B for an additional 15 minutes, then 30-45% B over 22.5 minutes and finally 45-100% B over 5.5 minutes where solvent B = A containing 67% acetonitrile. The flow rate was maintained at 0.75 ml/min. The active VEGF AB fractions eluting between approximately 32.2 and 37.5 ml of the gradient effluent volume were pooled.

EXAMPLE 7

55

Mitogenic Assays

Human umbillcal vein endothelial cells (HUVE) were plated on gelatin-coated 48 well tissue culture dishes

at a density of 5000 cells/well in 500 μ l of Medium 199 containing 20% heat inactivated fetal calf serum (FCS). Samples to be assayed were added at the time of plating. The tissue culture plates are incubated at 37° C for 12 hours and 2 microcuries of tritiated thymidine (NEN, 20 Ci/mmol) was added per ml of assay medium (1.0 μ Ci/vell). The plates were incubated for a further 60 hr, the assay medium was removed and the plates were washed with Hanks balanced salt solution containing 20 mM Hepes, pH 7.5, and 0.5 mg/ml bovine serum albumin. The cells were lysed and the labelled DNA solubilized with 200 μ l of a solution containing 2 gm of sodium carbonate and 400 mg sodium hydroxide in 100 ml water. The incorporated radioactivity was determined by liquid scintillation counting.

The concentration of VEGF AB which elicited a half-maximal mitogenic response in HUVE cells was approximately 2 ± 1 ng/mi. The glycosaminoglycan heparin, which is required in these assays at a level of 10-100 μ g/ml to promote a response to a positive control, acidic fibroblast growth factor, does not enhance mitogenic stimulation of these cells by VEGF AB.

EXAMPLE 8

15

20

25

30

Purity And Protein Structural Characterization of VEGF AB

Purity of the protein under non-reducing conditions was determined by SDS-PAGE in 12.5% crosslinked gels according to the method of Laemmli, Nature 227: 680-685 (1970). The silver-stained gel contained a single band with an apparent mass of approximately 58 kDa. VEGF AB migrated in SDS-PAGE under reducing conditions in 15% crosslinked gels as a broad silver-stained band with apparent molecular mass of approximately 23 kDa.

VEGF AB was stored a 4°C in the aqueous trifluoroacetic acid (TFA)/acetonitrile mixture used to elute the homogeneous protein in reversed phase C₄ HPLC chromatography at the final stage of the purification protocol previously described. Aliquots of the purified protein (1-2 μg) were vacuum evaporated to dryness in acid-washed 10 x 75 mm glass tubes and reduced for 2 hours at 50°C in 100 μi of 0. 1 M Tris buffer, pH 9.5, and 6 M guanidinium chloride containing 0.1% EDTA and 20 mM dithiothreltol (Calbiochem, Ultrol grade) under an argon atmosphere. The reduced protein was subsequently carboxymethylated for 1 hour at 20°C by the addition of 100 μl of 0.7 M Tris, pH 7.8, containing 0.1 % EDTA, 6 M guanidinium chloride, 9.2 μM unlabeled iodoacetic acid and 50 μCi of iodo[2-14 C]acetic acid (17.9 mCi/mmole, Amersham). After completion of the carboxymethylation, the mixture was loaded directly onto a 4.6 mm x 5.0 cm Vydac C₄ column which had been preequilibrated in 0.1% TFA. The reduced and carboxymethylated protein was repurified by elution with a 45 minute linear gradient of 0 to 67% (v/v) acetonitrile in 0.1% TFA at a flow rate of 0.75 mi/min and stored in this elution solution at 4°C. The reduced and carboxymethylated protein eluted as two peaks at approximately 23 and 25 ml that were of approximately equal area as determined by monitoring absorbance at 210 nm.

Samples of the two protein subunits isolated after reduction and carboxymethylation were each applied to polybrene-coated glass fiber filters and their N-terminal sequences were determined by Edman degradation in an ABI gas phase microsequencer in conjunction with an ABI 120A on line phenylthiohydantoin analyzer following manufacturers instructions. The peak of absorbance eluting at approximately 25 ml (A subunit) yielded an amino terminal sequence Ala Pro Thr Thr Glu Gly Glu Gln Lys Ala His Glu Val Val SEQ ID NO: 1 identical to VEGF AA. The peak of absorbance eluting at approximately 23 ml (B subunit) yielded the N-terminal sequence Ala Leu Ser Ala Gly Asn Xaa Ser Thr Glu Met Giu Val Val Pro Phe Asn Glu Val SEQ ID NO: 2 plus a nearly equal amount of a truncated form of the same sequence missing the first three residues. The missing X residue corresponds to an Asn in the cloned sequence. Since this missing Asn occurs in a classical Asn-X-Ser/Thr N-glycosylation sequence it is presumed to be glycosylated. The A and sum of the B chain peptides were recovered in nearly equal amounts supporting the interpretation that the two peptides combine to form an AB heterodimer in VEGF II.

Reduced and carboxymethylated A and B subunits (650 ng each) were each dried by vacuum evaporation in acid-washed 10×75 mm glass tubes. Lys C protease (50 ng, Boehringer Mannheim), an enzyme that cleaves on the carboxyl terminal side of lysine residues, was added to each tube in $100 \, \mu$ l of 25 mM Tris, pH 8.5, 0.1 % EDTA. The substrate protein subunits were separately digested at 37°C for 8 hours and the resulting polypeptides resolved by reversed phase HPLC chromatography on a 4.6 mm x 25 cm Vydac C_{18} column equilibrated in 0.1% TFA. Polypeptides were fractionated by elution with a 2 hour linear gradient of 0-67% acetonitrile in 0.1% TFA at a flow rate of 0.75 ml/min at 20°C. Individual peaks were manually collected and stored in this elution solution at 4°C.

The amino acid sequences of the isolated peptides were then determined using Edman degradation in an ABI gas phase sequenator in conjunction with the ABI 120 A on line phenylthiohydantoin analyzer (Applied Biosystems Int.). The peptide sequences are shown in the following Figures 2 and 3. The amino acid sequence

of Lys C fragment L20 (Fig. 5) demonstrates that the form of VEGF AB mature A subunit in the heterodimer is the 164 amino acid form. The amino acid sequence of Lys C fragment L26 (Fig. 3) demonstrates that the form of VEGF AB mature B subunit in the heterodimer is the 135 amino acid form derived from the 158 full length amino acid form.

EXAMPLE 9

Cloning and Sequencing of the VEGF A Monomer

PCR Amplification, Cloning and Sequencing of P4238

Two degenerate oligonu lectides were synthesized in order to amplify the cDNA encoding the peptide sequences of VEGF A subunit between LysC fragment L 42 and tryptic fragment T38. These oligonucleotides were:

15

5

L42.2 5 TTTGTCGACTT[TC]ATGGA[TC]GT[N]TA[TC]CA 3 SEQ ID NO:3

20

25

30

T383B

5' CAGAGAATTCGTCGACA[AG]TC[N]GT[AG]TT[TC]TT [AG]CA 3' SEQ ID NO:4

where N=ACGT

Poly A* RNA was isolated from GS-9L cells using the Fast Track RNA isolation kit from Invitrogen and the protocol provided. First strand cDNA synthesis was performed as follows;

1 μg of GS-9L RNA was annealled to 1 μg of adapter primer TA17,

5' GACTCGAGTCGACTTTTTTTTTTTTTT 3' SEQ ID NO:5, by incubating in a volume of 10 μl at 70°C for 5 min. followed by cooling to room temperature. To this reaction was added:

- 3.0 µl water
- 2.5 μl 10X buffer (500 mM Tris-HCl pH 8.3, 750 mM KCl, 100 mM MgCl₂, 5 mM spermidine)
- 2.5 ய 100 mM DTT
- 2.5 µl 10 mM each dATP, dGTP, dCTP, dTTP
- 35 0.6 μl 15 units RNasin
 - 2.5 µl 40 mM Na pyrophosphate
 - 1.5 μl 15 units reverse transcriptase

and the reaction was incubated at 42°C for 1 hour, then diluted to 1 ml in 10 mM Tris-HCl I mM EDTA, pH 7.5.

40

PCR Reactions:

Primary reaction (100 µl)

- 10 μl 10X buffer from Perkin Elmer Cetus GeneAmp kit
- s 16 μl 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
 - 2 μl first strand GS9L cDNA
 - . 2 µl 50 pMoles L42.2
 - 2 µl 50 pMoles Т383' В
 - 0.5 μl 2.5 units Amplitaq DNA polymerase
- 50 67.5 μl water

Reaction conditions, 40 cycles of 94°C, 1'; 50°C, 2'30"; 72°C, 2'.

Prep scale secondary reaction:

- 55 100 µl 10X buffer
 - 160 µl 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
 - 10 µl primary PCR reaction
 - 20 µl 500 pMoles L42.2

20 µl 500 pMoles Т383'В

5 μl 25 units Amplitaq DNA polymerase

685 µl water

5

20

55

Reaction conditions 94°C, 1'; 55°C, 2'; 72°C, 2'; 30 cycles.

The PCR product was concentrated by Centricon 30 spin columns, purified on a 1% agarose gel, and digested with restriction endonuclease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+). The ligation mix was used to transform <u>E. coli</u> XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

10 PCR Amplification, Cloning and Sequencing of pW-3

Based on the sequence obtained from the p4238 clones, two specific PCR primers were synthesized; oligo 307 5' TTTGTCGACTCAGAGCGGAGAAAGC 3' SEQ ID NO:6 and oligo 289 5' TTTGTCGACGAAAAT-CACTGTGAGC 3' SEQ ID NO:7. These primers were used in combination with oligoA 17

5'GACTCGAGTCGACATCG 3' SEQ ID NO:8 to amplify the cDNA encoding the COOH terminus of VEGF A subunit using the 3' RACE technique described by Frohman et al., PNAS 85: 8998-9002 (1988).

PCR reactions:

Primary reaction 100 µl

10 µl 10X buffer from Perkin Elmer Cetus GeneAmp kit

18 μl 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP

0.35 μl first strand GS-9L cDNA

2 μl 50 pMoles oligo 289

5 0.5 μl 2.5 units Amplitaq DNA polymerase

67.15µl water

Reaction conditions 94°C, 1'; 58°C, 2'; 72°C, 2'; 10 cycles then add 50 pMoles A17, then 1 cycle of 94°C, 1'; 58°C, 2'; 72°C, 40' followed by 40 cycles 94°C, 1'; 58°C, 2'; 72°C, 2'.

30 Prep Scale secondary reaction:

60 ய 10X buffer

108 µl 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP

24 μl primary PCR reaction

5 12 µl 300 pMoles oligo 307

12 µl 300 pMoles oligo A17

3 μl 15 units Amplitaq DNA polymerase

381ய water

Reaction conditions 94°C, 1'; 58°C, 2'; 72°C, 2'; 30 cycles.

The PCR product was pwified on a 1% agarose gel and digested with restriction endonuclease Sa1I. The Sa1I fragment was then ligated into Sa1I cut pGEM3Zf(+). The ligation mix was used to transform <u>E. coll</u> XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of p5-15

Based on the sequence of p4238 clones, two specific PCR primers were synthesized; oligo 113 5'TTTGTCGACACACAGGACGGCTTGAAG 3' SEQ ID NO:9 and oligo 74 5' TTTGTCGACATACTCCTGGAAGATGTCC 3' SEQ ID NO"10.

These primers were used in combination with oligo A17 5' GACTCGAGTCGACATCG 3' SEQ ID NO:8 to amplify the cDNA encoding the amino terminus of VEGF A subunit using the 5' RACE technique described by Frohman et al., supra. Oligo 151 was synthesized in order to specifically prime VEGF A subunit cDNA from GS-9L RNA. Oligo 151 is 5'

CTTCATCATTGCAGCAGC 3' SEQ ID NO:11.

RNA was isolated from GS-9L cells using the Fast Track RNA isolation kit from Invitrogen using the protocol provided. First strand cDNA synthesis was performed as follows;

One μg of GS9L RNA was annealled to 1 μg of oligo 151 by incubating in a volume of 6 μ l at 70°C for 5′ followed by cooling to room temperature. To this reaction was added:

- 1.5 Д 10X buffer (500mM Tris-HCl, pH 8.3, 750 mM KCl, 100 mM MgCl₂, 5 mM spermldine) 2.5 µ 10 mM DTT 10 mM each dATP, dGTP, dCTP, dTTP 2.5 д 0.6 ш 25 units RNasin 2.5 д 40 mM Na pyrophosphate
- 9.5 ய 20 units diluted reverse transcriptase

The reaction was incubated at 42°C for 1 hour. Excess oligo151 was removed by Centricon 100 spin columns and the 5' end of the cDNA was tailed by the addition of dATP and terminal transferase. The tailed cDNA was diluted to a final volume of 150 µl In 10 mM Tris-HCl, 1 mM EDTA, pH 7.5.

PCR Reactions:

Primary reaction (50 µl)

```
5 ш
             10X buffer from Perkin Elmer Cetus GeneAmp Kit
8 ш
             1.25 mM each stock of dATP,dCTP,dGTP, and dTTP
5 ш
             first strand GS-9L cDNA prime with oligo 151 and tailed
1 μ
             25 pMoles oligo 113
             25 pMoles oligo A17
1 ш
1 μ
             10 pMoles oligo TA17
0.25 ய
             1.25 units Amplitq DNA polymersase
28.75 <sub>Ll</sub>
```

Reaction conditions; 1 cycle 94°C 1'; 50°C 2'; 72°C 40' then 40 cycles of 94°C 1'; 50°C 1'30"; 72°C 2'

Prep scale secondary reaction:

25

40

45

50

55

10

15

```
60 ய
         10X buffer
96 யி
         1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
6 ш
         primary PCR reaction
         300 pMoles oligo74
12 ш
12 ш
         300 pMoles oligo A17
3 ш
         15 units Amplitaq DNA polymerase
```

411 µl

Reaction conditions 94°C, 1'; 55°C, 2'; 72°C, 2' 30 cycles.

The PCR product was concentrated by Centricon 100 spin columns, and digested with restriction endonuclease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+). The ligation mix was used to transform E. coli XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method. The base sequence is shown in Fig. 5.

Cloning and sequencing of alternative forms of VEGF A cDNA

Based on the sequence obtained from the p5-15 and pW-3 clones, two specific PCR primers were synthesized; oligo 5' C 5' TTTGTCGACAACCATGAACTTTCTGC 3' SEQ ID NO:12 and oligo 181 5' TTTGTCGACGGTGAGAGGTCTAGTTC 3' SEQ ID NO:13. These primers were used together to amplify multiple cDNAs encoding alternative forms of the VEGF A subunit.

Preparative PCR Reaction:

50 j	μΙ	10X buffer
80	ш	1.25mM each stock of dATP, dCTP, dGTP, and dTTP
10	μ	first strand GS-9L cDNA
10	μΙ	300pMoles oligo 5'C
10	μί	300pMoles oligo 181
2.5	μl	15 units Amplitaq DNA polymerase
337	'.5 μl	water

Reaction conditions 94°C, 1'; 58°C, 2'; 72°C, 3'; 40 cycles.

The PCR product was extracted with phenol/chloroform, concentrated by Centricon 30 spin columns, precipitated by ethanol, and digested with restriction endonuclease Sal I, and ligated into Sali cut pGEM3Zf(+). The ligation mix was used to transform E.coli XL-1 blue. Plasmid DNA was isolated from white transformants

and sequenced by the dideoxy chain termination method. Three sets of clones were identified. Clone#12 encoded the 190 amino acid form of VEGF A subunit identical to that shown in Fig. 1. The 164 amino acid secreted form of VEGF A subunit is that amino acid sequence running continuously from Ala²⁷ to Arg¹⁹⁰. Clone#14 has a 135 base pair deletion between the second base of the Asn¹⁴⁰ codon and the third base of the Arg¹⁸⁴ codon. This clone thus encodes a 146 aa form of the VEGF A subunit with the conversion of Asn¹⁴⁰ to Lys¹⁴⁰. The 120 amino acid secreted form of VEGF A subunit runs from Ala²⁷ to Asn¹⁴⁰, which becomes Lys¹⁴⁰ and does not begin until Cys¹⁸⁵, this form also finishes at Arg¹⁹⁰, Figure 4. Clone #16 has a 72 base pair insertion between the second and third base of the Asn¹⁴⁰ codon. This clone thus encodes the 214 amino acid form of the VEGF A subunit with the conversion of Asn¹⁴⁰ to Lys¹⁴⁰, Figure 6.

10

20

EXAMPLE 10

Cloning and Sequencing of the VEGF B Subunit

15 PCR Amplification, Cloning and Sequencing of pYG

Two degenerate oligonucleotides were synthesized in order to amplify the cDNA encoding the peptide sequences of VEGF B on Lys C fragment L50. These oligonucleotides were:

YI 5' TTTGTCGACATA[TC]AT[TCA]GC[N]GA[TC]GA[AG]C 3' SEQ ID NO:14

GC 5' TTTGTCGACTC[AG]TC[AG]TT[AG]CA[AG]CA[N]CC 3' SEQ ID NO:15 where N=ACGT

RNA was isolated from GS-9L cells using the Fast Track RNA isolation kit from invitrogen and the protocol provided. First strand cDNA synthesis was performed as follows;

1 μg of GS-9L poly A+RNA was annealled to 1 μg of adapter primer TA17,

- 3.0 µl water
- 2.5 µl 10X buffer (500 mM Tris-Hd, pH 8.3, 750 mM KCl, 100 mM MgCl₂, 5mM spermidine)
- 2.5 µl 100 mM DTT
- 2.5 µl 10 mM each dATP, dGTP, dCTP, dTTP
- 0.6 ய 15 units RNasin
 - 2.5 µі 40 mM Na pyrophosphate
 - 1.5 μl 15 units reverse transcriptase

and the reaction was incubated at 42° C for 1 hour, then diluted to 1 ml in 10 mM Tris-HCl, I mM EDTA, pH 7.5.

35

PCR Reactions:

Primary reaction (50µl)

- 5 μl 10X buffer from Perkin Elmer Cetus GeneAmp kit
- 40 8 μl 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
 - 1 μl first strand GS-9L cDNA
 - 1 μl 50 pMoles oligo YI
 - 1 μl 50 pMoles oligo GC
 - 0.25 μl 1.25 units Amplitaq DNA polymerase
- 45 33.75 µl water

Reaction conditions, 40 cycles of 94°C, 1'; 50°C, 2'; 72°C, 2'.

Prep scale reaction:

- 50 60 ய 10X buffer
 - 96 µl 1.25mM each stock of dATP, dCTP, dGTP, and dTTP
 - 12 µl first strand 659L cDNA
 - 12 μl 500pMoles oligo YI
 - 12 μl 500pMoles oligo GC
- 55 3 μl 15 units Amplitaq DNA polymerase
 - 405 μl water

Reaction conditions 94°C, 1'; 50°C, 2'; 72°C, 2' 40 cycles.

The PCR product was concentrated by Centricon 30 spin columns and digested with restriction endonuc-

lease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+). The ligation mix was used to transform E. coli XL-1 blue. Plasmid DNA was Isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of p3V2

Based on the sequence obtained from the pYG clones, a specific PCR primer was synthesized; oligo HP 5' TTTGTCGACACCCTAATGAAGTGTC 3' SEQ ID NO:16.

This primer was used in combination with oligo A17 5'

GACTCGAGTCGACATCG 3' SEQ ID NO:8 to amplify the cDNA encoding the COOH terminus of the VEGF B subunit using the 3' RACE technique described by Frohman et al., PNAS 85: 8998-9002 (1988).

Preparative PCR reaction:

15	60 ய	10X buffer from Perkin Elmer Cetus Gene Amp Kit
	12 ш	first strand 659L cDNA
	96 µl	1.25 mM each of dATP, dCTP, dGTP, dTTP
	12 ш	300 pMoles oligo A17
	12 ш	300 pMoles oligo HP
20	3 μΙ	15units Amplitaq DNA polymerase

405 д

Reaction conditions 1 cycle of 94°C, 1'; 58°C, 2'; 72°C, 2'; followed by 40 cycles 94°C, 1', 58°C, 2' and 72°C, 2'.

The PCR product was concentrated by Centricon 30 spln columns, precipitated with ethanol and digested with restriction endonuclease Sa1I. The Sa1I fragment was then Ilgated into Sa1I cut pGEM3Zf(+). The ligation mix was used to transform E. coli. XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of p5V2

30

40

Based on the sequence of pYG clones, two specific PcR primers were synthesized; oligoVL' 5' TTTGTCGACAACAGCGACTCAGAAGG 3' SEQ ID NO: 17 and oligoVS' 5' TTTGTCGACACTGAATATAT-GAGACAC 3' SEQ ID NO:18. These primers were used in combination with oligo A17

5' GACTCGAGTCGACATCG 3' SEQ ID NO:8 to amplify the cDNA encoding the amino terminus of the VEGF B subunit using the 5' RACE technique described by Frohman et al., supra. Oligo 151 was synthesized in order to prime cDNA from GS-9L RNA Oligo 151 is 5' CTTCATCATTGCAGCAGC 3' SEQ ID NO:11.

Poly A+RNA was Isolated from GS9L cells using the Fast Track RNA isolation kit from Invitrogen using the protocol provided. First strand cDNA synthesis was performed as follows:

One µg of GS9L RNA was annealled to 1 µg of oligo 151 by

Incubating in a volume of 6 µl at 70°C for 5' followed by cooling

to room temperature. To this reaction was added:

- 1.5 µl 10X buffer (500 mM Tris-HCl, pH 8.3, 750 mM KCl, 100 mM MgCl₂, 5mM spermidine)
- 2.5 山 10 mM DTT
- 2.5 ய 10 mM each dATP, dGTP, dCTP, dTTP
- 0.6 ய 25 units RNasin
 - 2.5 ய 40 mM Na pyrophosphate
 - 9.5 ய 20 units diluted reverse transcriptase

The reaction was incubated at 42°c for 1 hour.

Excess oligo 151 was removed by Centricon 100 spin columns and the 5' end of the cDNA was tailed by the addition of dATP and terminal transferase. The tailed cDNA was diluted to a final volume of 150 μ l in 10 mM Tris-HCl, 1 mM EDTA,pH 7.5

PCR Reactions:

Primary reaction (50 µl) 55

5 µl	10X buffer from Perkin Elmer Cetus GeneAmp Kit
8 µЈ	1.25 mM each stock of dATP,dCTP,dGTP, and dTTP
5 ய	first strand GS9L cDNA primed with oligo151 and tailed

1 μΙ	25 pMoles oligo VL'
1 µl	25 pMoles oligo A17
1 µl	10 pMoles oligo TA17
0.25 µl	1.25 units Amplitq DNA polymersase

5 28.75 เป water

Reaction conditions; 1 cycle 94°C,1'; 58°C, 2'; 72°C, 40' then 40 cycles of 94°C, 1'; 58°C, 2'; 72°C, 2'.

Prep scale secondary reaction

```
100 山 10X buffer
160 山 1.25 mM each stock of dATP, dCTP, dGTP, and dTTP
10 山 primary PCR reaction
20 山 500 pMoles oligo VS'
20 山 300 pMoles oligo A17
15 5 山 25 units Amplitaq DNA polymerase
685 山 water
```

Reaction conditions 94°C, 1'; 58°C, 2'; 72°C, 2' 30 cycles.

The PCR product was extracted with phenol/chloroform, concentrated by Centricon 30 spin columns, precipitated by ethanol, and digested with restriction endonuclease Sall. The Sall fragment was purified on 4% Nu-Sieve Agarose gel then ligated into Sall cut pGEM3Zf(+). The ligation mix was used to transform <u>E. coli</u> XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of pCV2 and pCV2.1

25

50

Based on the sequences of the p3V2 and p5CV2 clones, two specific PCR primers were synthesized; oligo 5'CV2.1

5' TTTGTCGAC[N][N]GCAGGTCCTAGCTG 3' SEQ ID NO;19 and oligo 3'CV2 5'

TTTGTCGAC[N][N]CTAATAAATAGAGGG 3' SEQ ID NO:20.

30 These primers were used together to amplify the cDNA encoding the VEGF B subunit.

Preparative PCR Reaction:

```
40 山 10X buffer
35 64 山 1.25 mM each dATP, dTTP, dGTP, dCTP 8 山 first strand GS-9L cDNA 8 山 200 pMoles 5'CV2.1 8 山 200 pMoles 3'CV2 2 山 10units Amplitaq DNA polymerase
40 270 山 water
```

Reaction conditions: 94°C, 1', 58°C, 2', 72°C, 2'; 40 cycles.

The PCR product was extracted with phenol/chloroform, concentrated by Centricon 30 spin columns, precipitated by ethanol, and digested with restriction endonuclease Sal 1, and ligated into Sal I cut pGEM3Zf(+). The ligation mix was used to transform <u>E</u>. <u>coli</u> XL-1 blue. Plasmid DNA was isolated form white transformants and sequenced by the dideoxy chain termination method. Two sets of clones were identified, one encoded a 158 amino acid sequence and the other encoded a 138 amino acid sequence, see Figures 7 and 8.

cDNA Cloning of VEGF B Subunit

The DNA and protein sequences for the amino terminus of the signal peptide of VEGF B was determined from a cDNA clone isolated from a cDNA library constructed from GS-9L polyA+ RNA.

First Strand Synthesis

Anneal 15.6µl (5ug) GS-9L polyA+ RNA and 2.5µl (2.5ug) oligo dT-Xbal primer by heating to 70° C 5' slow cool to room temperature. Add the following:

```
55 5.5μl 10X buffer (500 mM Tris-HCl, pH 8.3 (42° C), 750 mM KCl, 100 mM MgCl₂, 5mM spermidine
5.5μl 100mM DTT
5.5μl 10 mM each dATP, dTTP, dCTP, dGTP
```

1.4µl (55units) RNasin

5.5µl 40mM NaPPi

13.5ய (55units) reverse transcriptase

Incubate at 42° C 60'.

5 Second Strand Synthesis:

Assemble reaction mix

- 50 μl first strand reaction
- 25 μl 10X buffer (500 mM Tris-HCl, pH7.2, 850 mM KCL, 30 mM MgCl₂ 1mg/ml BSA, 100 mM (NH₄)₂S0₄
- 7.5 µl 100 mM DTT
 - 25 ய 1mM NAD
 - 6.5 µl (65units) E. coli DNA Polymerasel
 - 2.5 µl (2.5units) E. coli DNA Ligase
 - 2.5 µl (2 units) E. coli RNase H
- 5 135 μl water

20

25

30

40

50

Incubate at 14° C for 2h and then incubate 70° C for 10'. Add 1ul (10 units) T4 DNA Polymerase, incubate at 37° C for 10', add 25 μ l 0.2M EDTA an extract with phenol/chloroform, then precipitate by the addition of 0.5 volume of 7.5 M ammonium acetate and 3 volumes of ethanol, collect precipitate and resuspend in 20 μ l of 10 mM Tris-HCl, pH 7.5, 1mM EDTA.

cDNA Library Construction

The above cDNA was ligated into EcoR1/ Xbal digested LambdaGEM-4 (Promega Biochemicals) after the addition of EcoR1 linkers and digestion with EcoR1 and Xbal. A cDNA library was amplified from \sim 50, 000 independent clones.

Isolation of Rat VEGF B cDNA Clone

The above cDNA library was screened by placque hybridization using pCV2 as a probe. Hybridization conditions were as follows:

5XSSC (1XSSC is 0.15M sodium chloride, 0.015M sodium citrate,

50% Formamide

5X Denhardt's Solution (1% Ficoll, 1% polyvinylpyrrolidone, 1% bovine serum albumin)

0.15 mg/ml salmon sperm DNA hybridize overnight at 42° C.

Filters were washed 3 times in 2XSSC, 0.1% SDS at room temerature for 5', then 1 time in 1XSSC, 0.1% SDS at 50C for 30'. Positive clones were identified by autoradiography.

The DNA from phage #202 was digested with restriction endonuclease Spel and the 1.1kb band ligated into Xbal digested pGEM3Zf(+). The ligation mix was used to transform <u>E.coli</u> XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method. The cDNA sequence and predicted amino acid sequence of the signal peptide are shown in Figures 7 and 8.

The entire nucleotide and amino acid sequence of the 138 amino acid form is shown in Fig. 7. The secreted protein starts at Ala²⁴ and continues to Arg¹³⁸. The entire nucleotide and amino acid sequence of the 158 amino acid form is shown in Figures 8. The secreted protein starts at Ala²⁴ and continues to Leu¹⁵⁸.

EXAMPLE 11

Cloning and sequencing VEGF C Subunit

45 PCR Amplification, Cloning and Sequencing of pFSEM'

Two degenerate oligonucleotides were synthesized based on the sequence of rat VEGF B monomer in order to amplify VEGF cDNAs from the human medulloblastoma line TE-671, ATCC HTB (McAllister et al., Int. J. Cancer 20:206-212 [1977]). These oligonucleotides were:

FS 5'TTTGTCGACA TTC AGT CC(N) TC(N) TG(TC) GT 3' SEQ ID NO:21

EM' 5' TTTGTCGACA CTG AGA GAA (N)GT CAT (CT)TC 3'

SEQ ID NO:22

where N= AGCT

Poly A+ RNA was isolated from TE-671 cells using the Fast Track RNA isolation kit from invitrogen and the protocol provided. First strand cDNA synthesis was performed as follows using the cDNA Cycle kit from Invitrogen;

1μl 1μg of TE-671 polyA+ RNA

19µl water

	5µl	100mM MeMgOH
	6.25µl	0.7M B-mercaptoethanoi
	2.5µl	random primer
	2.5ய	RNase Inhibitor
5	لبر10	5X RT buffer
	2.5µl	25mM dNTPs
	1.25ul	reverse transcriptase 12.5unit

The reaction was incubated for 60' at 42°C, then 3' at 95°C, placed on ice, then an additional 1.25ul reverse transcriptase was added and the reaction incubated an additional 60' at 42°C.

The above procedure was performed in duplicate and the cDNAs pooled to a final volume of 100ul.

PCR Reactions:

10

Primary reaction (100µl)

- 15 10 μl 10X buffer from Perkin Elmer Cetus GeneAmp kit
 16 μl 1.25mM each of dATP. dCTP, dGTP, TTP
 10 μl first strand TE-671 cDNA
 2 μl 50 pmoles FS primer
 - 2 μl 50 pmoles FS primer 2 μl 50 pmoles EM' primer
- o 0.5 μl 2.5 units Amplitaq DNA polymerase
 - 59.5 µl water

Reaction conditions: 40 cycles of 90°C, 1'; 2' ramp to 45°C; 2' at 45°C; 2' at 72°C.

Gel Purification

20 µl of the primary PCR reaction was purified on a 4% NuSieve agarose gel. The 180 base pair band was excised from the gel. heated to 65°C for 5' and used directly as template for the secondary PCR reaction.

Secondary PCR reaction 200µl

- 20 µl 10X buffer from Perkin Elmer Cetus GeneAmp kit
- 32 μl 1.25mM each of dATP. dCTP, dGTP, TTP
- 5 μl melted gel slice
- o 4 μl 100 pmoles FS primer
 - 4 μl 100 pmoles EM' primer
 - 1 μl 5 units Amplitaq DNA polymerase
 - 134 μl water

Reaction conditions: 35 cycles of 94°C, 1'; 50°C, 2'; 72°C, 2'

The PCR product was purified on a Qiagen tip 5 column, then digested with restriction endonuclease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+), and the ligation mix used to transform <u>E. coli</u> XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

40 PCR Amplification, Cloning and Sequencing of p3'.19

Based on the sequence obtained from the pFSEM' clone, a specific PCR primer was synthesized; oligo LH 5' TTTGTCGACA CTG CAC TGT GTG CCG GTG 3' SEQ ID NO:23. This primer was used in combination with ollgo A17,5' GACTCGAGTCGACATCG 3' SEQ ID NO:24, to amplify the cDNA encoding the COOH terminus of the VEGF C subunit using the 3' RACE technique described by Frohman et al., PNAS 85:8998-9002 (1988).

Poly A+ RNA was isolated from TE-671 cells using the Fast Track RNA isolation kit from Invitrogen and the protocol provided. First strand cDNA synthesis was performed as follows using the cDNA Cycle kit from Invitrogen and the TA17 adapter primer.

TA17 5' GACTCGAGTCGACATCGATTTTTTTTTTTTTTT 3' SEQ ID NO:5

- 0.8 μl 1μg of TE-671 polyA+ RNA
- 20.7 μl water
- 5 μl 100 mM MeMgOH
- 6.25 μl 0.7 M B-mercaptoethanol
- 5 1.0 μi 0.88 μg primer TA17
 - 2.5 µl RNase Inhibitor
 - 10 μl 5X RT buffer
 - 2.5 μl 25mM dNTPs

1.25 µl reverse transcriptase 12.5 units

The reaction was incubated for 60' at 42°C, then 3' at 95°C, placed on ice, then an additional 1.25ul reverse transcriptase was added and the reaction incubated an additional 60' at 42°C.

5 3' RACE PCR

15

```
20 μl 10 X buffer from Perkin Elmer Cetus GeneAmp kit 32 μl 1.25mM each of dATP. dCTP, dGTP, TTP 20 μl first strand TE-671 cDNA primed with TA17 50 pmoles LH primer 2 μl 50 pmoles A17 primer 1.0 μl 5 units Amplitaq DNA polymerase water
```

Reaction conditions: 40 cycles of 94C, 1'; 2' at 58°C; 3' at 72°C.

The PCR product was purified on a Qiagen tip 5 column, then digested with restriction endonuclease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+), and the ligation mix used to transform <u>E. coli</u> XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method.

PCR Amplification, Cloning and Sequencing of p5'.16

Based on the sequence obtained from the pFSEM' clone, two specific PCR primers were synthesized; oligo VE' 5' TTTGTCGACA AC ATT GGC CGT CTC CAC C 3' SEQ ID NO:24, and oligo TG' 5' TTTGTCGACA ATC GCC GCA GCA GCC GGT 3' SEQ ID NO:25. These primers were used in combination with

oligo A17, 5' GACTCGAGTCGACATCG 3' SEQ ID NO:8, and oligo TA17

5'GACTCGAGTCGACATCGATTTTTTTTTTTTTTT3' SEQID NO:5 to amplify the cDNA encoding the amino terminus of the VEGF C subunit using the 5' RACE technique described by Frohman et al., PNAS 85: 8998-9002 (1988).

Poly A+ RNA was isolated from TE-671 cells using the Fast Track RNA isolation kit from Invitrogen and the protocol provided. First strand cDNA synthesis was performed as follows using the cDNA Cycle kit from Invitrogen and the VE' primer:

```
1.0 ய
                  1 μg of TE-671 polyA+ RNA
     20.25 ul
                  water
     5 μ
                  100 mM MeMgOH
35
     6.25 ய
                  0.7 M B-mercaptoethanol
     1.0 ய
                  1.0 µg primer VE'
     2.5 ய
                  RNase Inhibitor
                  5X RT buffer
     10 ш
                  25 mM dNTPs
     2.5 பி
                  AMV reverse transcriptase (Promega) 10units
     0.5 ய
```

The reaction was incubated for 60'at 42°C, then 3' at 95°C, placed on ice, then an additional 1.25ul reverse transcriptase was added and the reaction incubated an additional 60' at 42°C. Excess oligo VE' was removed by a Centricon 100 spin column and the 5' end of the cDNA was tailed by the addition of dATP and terminal transferase. The tailed cDNA was diluted to a final volume of 200 ul in 10mM Tris-HCl, 1mM EDTA, pH 7.5.

5' RACE PCR 5 X 100ul

45

50

55

10 µl	10X buffer from Perkin Elmer Cetus GeneAmp kit
16 µl	1.25mM each of dATP. dCTP, dGTP, TTP
10 µl	first strand TE-671 cDNA primed with VE'
2 µl	50 pmoles TG' primer
2 µl	50 pmoles A17 primer
2 µl	20 pmoles TA17 primer
0.5 µl	2.5 units AMplitaq DNA polymerase
57.5 µl	water

Reaction conditions: 40 cycles of 94°C, 1'; 2' ramp to 58°C; 2' at 58°C; 2' at 72°C.

The PCR product was purified on a Qiagen tip 5 column, then digested with restriction endonuclease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+), and the ligation mix used to transform <u>E. coli</u>

XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method. The combined sequences form plasmids pFSEM', p3'19 and p5'16 are shown in Figure 9.

PCR Amplificaotion, Cloning and Sequencing of phVC16 and phVC2

Based on the sequences of the p5'. 16 and p3'. 19 clones, two specific PCR primers were synthesized; oligo 5' GCVB 5' TTTGTCGAC TGG CTC TGG ACG TCT GAG 3' SEQ ID NO:26 and oligo 3'VC 5'TTTGTCGAC ACT GAA GAG TGT GAC GG 3' SEQ ID NO:27. These primers were used together to amplify the cDNA encoding the complete VEGF C subunit.

Poly A+ RNA was isolated from TE-671 cells using the Fast Track RNA isolation kit from Invitrogen and the protocol provided. First strand cDNA synthesis was performed as follows using the cDNA Cycle kit from Invitrogen:

0.8μl 1μg of TE-671 polyA+ RNA

19.2_ய water

5

10

30

40

45

50

5µl 100 mM MeMgOH

6.25µl 0.7 M B-mercaptoethanol

2.5µl oligo dT primer

2.5_µl RNase Inhibitor

10μl 5X RT buffer

2.5µl 25 mM dNTPs

1.25µl reverse transcriptase 12.5units

The reaction was incubated for 60' at 42C, then 3' at 95C, placed on ice, then an additional 1.25ul reverse transcriptase was added and the reaction incubated an additional 60' at 42C.

PCR Reaction 200 ul

عدد 20 البر25 20 البر25 10X buffer from Perkin Elmer Cetus GeneAmp kit

32µl 1.25mM each of dATP. dCTP, dGTP, TTP

20µl first strand TE-671 cDNA primed with oligo dT

4μl 50 pmoles 5' GCVB primer

4μl 50 pmoles 3'VC primer

1ய 5 units Amplitag DNA polymerase

119µl water

Reaction conditions: 40 cycles of 94°C, 1';; 2' at 50°C; 2'at 72°C.

The PCR product was purified on a Qiagen tip 5 column, then digested with restriction endonuclease Sall. The Sall fragment was then ligated into Sall cut pGEM3Zf(+), and the ligation mix used to transform <u>E. coli</u> XL-1 blue. Plasmid DNA was isolated from white transformants and sequenced by the dideoxy chain termination method. In the sequences of clones phVC16 and phVC2 base 463 (Fig. 9) was changed from a T to a C eliminating the translational stop codon following amino acid 154; this results in the addition of 16 amino acids following amino acid Lys 154. The nucleotide sequence and the deduced amino acid sequence of this addition is:

CAG AGA CCC ACA GAC TGC CAC CTG TGC GGC GAT GCT GTT Gln Arg Pro Thr Asp Cys His Leu Cys Gly Asp Ala Val 155 160 165

CCC CGG AGG TAA Pro Arg Arg

170 SEQ ID NO:29

In addition clone phVC16 contains a 3 base pair deletion (Figure 9, nucleotide residues 73-75) resulting in the deletion of Gln 25.

5	SEQUENCE	LISTING		
10	(2)	(i) SEQUI (A) (B) (C)	ON FOR SEQ ID NO:1: ENCE CHARACTERISTICS: LENGTH: 14 amino acid TYPE: amino acid STRANDEDNESS: Not interpolation	aide.
15				
20				
25				
30				
35				
40				
45				
50				

		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1
	Ala	Pro Thr Thr Glu Gly Glu Gln Lys Ala His Glu Val
5	Val	5 10
10	(2)	INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids
		(B) TYPE: amino acid(C) STRANDEDNESS: Not Applicable(D) TOPOLOGY: linear
15	Ala	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: Leu Ser Ala Gly Asn Xaa Ser Thr Glu Met Glu Val 5 10
	Val	Pro Phe Asn Glu Val
20	(2)	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 26 base pairs(B) TYPE: nucleic acid
25		(C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: TTTGTCGACT TYATGGAYGT NTAYCA 26
30	(2)	INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
35		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: CAGAGAATTC GTCGACARTC NGTRTTYTTR CA 32
40	(2)	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
45		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: GACTCGAGTC GACATCGATT TTTTTTTT TTTTT 35
	(2)	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs
50		(B) TYPE: nucleic acid(C) STRANDEDNESS: single

5		(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: TTTGTCGACA ACACAGGACG GCTTGAAG 28
10	(2)	INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid
10		(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: TTTGTCGACG AAAATCACTG TGAGC 25
15	(2)	INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
20		(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: GACTCGAGTC GACATCG 17
25	(2)	INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
30		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: TTTGTCGACA ACACAGGACG GCTTGAAG 28
35	(2)	INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
40		(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: TTTGTCGACA TACTCCTGGA AGATGTCC 28
	(2)	INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs
45		 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: CTTCATCATT GCAGCAGC 18
50		

•		
	(2)	INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 26 hase pairs
5		(A) LENGTH: 26 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single
		(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
10		TTTGTCGACA ACCATGAACT TTCTGC 26
10	(2)	TUDODUMTON DOD ODO TO NO 10
	(2)	INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 26 base pairs(B) TYPE: nucleic acid
15		(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
		TTTGTCGACG GTGAGAGGTC TAGTTC 26
20	(2)	INFORMATION FOR SEQ ID NO:14:
20	(2)	(i) SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 26 base pairs
		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
25		(D) TOPOLOGY: linear
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
		TTTGTCGACA TAYATHGCNG AYGARC 26
	(2)	INFORMATION FOR SEQ ID NO:15:
30	, - ,	(i) SEQUENCE CHARACTERISTICS:
30		(A) LENGTH: 26 base pairs
		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
35		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: TTTGTCGACT CRTCRTTRCA RCANCC 26
		TITOTOGACT CRICKITRON ROMACC 20
	(2)	INFORMATION FOR SEQ ID NO:16:
		(i) SEQUENCE CHARACTERISTICS:
40		(A) LENGTH: 27 base pairs
		(B) TYPE: nucleic acid (C) STRANDEDNESS: single
		(C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
		TTTGTCGACA CACCCTAATG AAGTGTC 27
45		
	(2)	INFORMATION FOR SEQ ID NO:17:
		(i) SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 26 base pairs
50		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single

55 ·

		(b) TOPOLOGI: IIIledi
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
		TTTGTCGACA ACAGCGACTC AGAAGG 26
5		
3	(2)	INFORMATION FOR SEQ ID NO:18:
		(i) SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 27 base pairs
		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single(D) TOPOLOGY: linear
10		(D) TOPOLOGY: linear
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
		TTTGTCGACA CTGAATATAT GAGACAC 27
	(2)	INFORMATION FOR SEQ ID NO:19:
15		(i) SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 25 base pairs
		(B) TYPE: nucleic acid
		(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear
		(D) TOPOLOGY: linear
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
20		TTTGTCGACN NGCAGGTCCT AGCTG 25
		IIIGICGACN NGCAGGICCI AGCIG 25
	(2)	INFORMATION FOR SEQ ID NO:20:
	(2)	(i) SEQUENCE CHARACTERISTICS:
25		
		(A) LENGTH: 26 base pairs(B) TYPE: nucleic acid
		(B) TYPE: Nucleic acid
		(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
30		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
		TTTGTCGACN NCTAATAAAT AGAGGG 26
	(2)	THEODMAINS BOD ODG TO NO.01.
	(2)	INFORMATION FOR SEQ ID NO:21:
		(i) SEQUENCE CHARACTERISTICS:
35		(A) LENGTH: 27 base pairs
		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
40		TTTGTCGACA TTCAGTCCNT CNTGYGT 27
+0		
	(2)	
		(i) SEQUENCE CHARACTERISTICS:
		(A) LENGTH: 28 base pairs
		(B) TYPE: nucleic acid
45		(C) STRANDEDNESS: single
		(D) TOPOLOGY: linear
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
		TTTGTCGACA CTGAGAGAAN GTCATYTC 28
50		

5	(2)	INFORMATION FOR SEQ ID NO:23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23: TTTGTCGACA CTGCACTGTG TGCCGGTG 28
10	(2)	INFORMATION FOR SEQ ID NO:24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
15		(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: TTTGTCGACA ACATTGGCCG TCTCCACC 28
20	(2)	INFORMATION FOR SEQ ID NO:25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
25	40.	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: TTTGTCGACA ATCGCCGCAG CAGCCGGT 28
30	(2)	INFORMATION FOR SEQ ID NO:26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
35		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: TTTGTCGACT GGCTCTGGAC GTCTGAG
40	(2)	INFORMATION FOR SEQ ID NO:27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
45	(2)	<pre>(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: TTTGTCGACA CTGAAGAGTG TGACGG 26 INFORMATION FOR SEQ ID NO:28: (i) SEQUENCE CHARACTERISTICS:</pre>
50		(A) LENGTH: 51 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

				(xi)		•	TOPC ENCE					SEQ] ID	NO:	28:	
5	GCT			GA C	ccc	ACA	GAC	TG	C CA	C C	TG :	rgc	GGC	GAT	•	
10	51	cc	C C	GG A	AGG	TAA										
	(2)	IN	FORI	MATI (i)	SE (<i>I</i>	EQUE: A) 3)	SEQ NCE LENG TYPE	CHA: STH:	RACT 16 amir	reri no a	cid				•	
15				(xi)	(I))	STRA TOPC ENCE	LOG	Y:	lir	near			NO:	29:	
20	Ala			rg E	Pro	Thr	Asp 5	_	s Hi	ls L	eu (Cys	Gly 10	Asp	•	
25		Pr	o A	rg <i>l</i> 15	Arg		•									
-	(2)	IN	FOR	MAT] (1)	SI ()	EQUE A)	SEQ NCE LENG TYPE	CHA STH:	RACT	reri 77 i	oase	pa:	irs			
30	AACC			(xi	(1	C) D)	STRA TOPO	ANDE	DNE:	SS: lir	si near	ngle		NO	: 30 :	<u>.</u>
35	ATG	AAC					TGG Trp									49
40							AAG Lys									94
							CAT His									139
45							CGT Arg									184
50							GAG Glu									229

5	Cys	Val	CCC	Leu	Met 80	CGG Arg	TGT Cys	GCG Ala	GGC Gly	TGC Cys 85	TGC Cys	AAT Asn	GAT Asp	GAA Glu	GCC Ala 90	274
	CTG Leu	GAG Glu	TGC Cys	GTG Val	CCC Pro 95	ACG Thr	TCG Ser	GAG Glu	AGC Ser	AAC Asn 100	GTC Val	ACT Thr	ATG Met	CAG Gln	ATC Ile 105	319
10	ATG Met	CGG Arg	ATC Ile	AAA Lys	CCT Pro 110	CAC His	CAA Gln	AGC Ser	CAG Gln	CAC His 115	ATA Ile	GGA Gly	GAG Glu	ATG Met	AGC Ser 120	364
15	TTC Phe	CTG Leu	CAG Gln	CAT His	AGC Ser 125	AGA Arg	TGT Cys	GAA Glu	TGC Cys	AGA Arg 130	CCA Pro	AAG Lys	AAA Lys	GAT Asp	AGA Arg 135	409
	ACA Thr	AAG Lys	CCA Pro	GAA Glu	AAT Asn 140	CAC His	TGT Cys	GAG Glu	CCT Pro	TGT Cys 145	TCA Ser	GAG Glu	CGG Arg	AGA Arg	AAG Lys 150	454
20	CAT His	TTG Leu	TTT Phe	GTC Val	CAA Gln 155	GAT Asp	CCG Pro	CAG Gln	ACG Thr	TGT Cys 160	AAA Lys	TGT Cys	TCC Ser	TGC Cys	AAA Lys 165	499
25	AAC Asn	ACA Thr	GAC Asp	TCG Ser	CGT Arg 170	TGC Cys	AAG Lys	GCG Ala	AGG Arg	CAG Gln 175	CTT Leu	GAG Glu	TTA Leu	AAC Asn	GAA Glu 180	544
30	CGT Arg	ACT Thr	TGC Cys	AGA Arg	TGT Cys 185	GAC Asp	AAG Lys	CCA Pro	AGG Arg	CGG Arg 190	TGA					577
	(2)	I	NFOR	MAT (i)	SI ()	EQUE A)	NCE LEN	CHA GTH:	RAC'	TERI 90 a	STI amin	o a	cids	:		
35				(xi)) I)	C) O)	STR. TOP	ANDE OLOC	DNE Y:	lir	si near	ngle	e Q ID	NO	: 31:	
40	Met	Asn	Phe	Leu	Leu 5	Ser	Trp	Val	His	Trp 10	Thr	Leu	Ala	Leu	Leu 15	
	Leu	Tyr	Leu	His	His 20	Ala	Lys	Trp	Ser	Gln 25	Ala	Ala	Pro	Thr	Thr 30	
45	Glu	Gly	Glu	Gln	Lys 35	Ala	His	Glu	Val	Val 40	Lys	Phe	Met	Asp	Val 45	
			Arg		50					55					60	
50	Phe	Gln	Glu	Tyr	Pro	qeA	Glu	Ile	Glu	Tyr	Ile	Phe	Lys	Pro	Ser	

. 55

					65					70					75	
5	Cys	Val	Pro	Leu	Met 80	Arg	Суз	Ala	Gly	Cys 85	Суз	Asn	Asp	Glu	Ala 90	
	Leu	Glu	Суз	Val	Pro 95	Thr	Ser	Glu	Ser	Asn 100	Val	Thr	Met	Gln	Ile 105	
10	Met	Arg	Ile	Lуз	Pro 110	His	Gln	Ser	Gln	His 115	Ile	Gly	Glu	Met	Ser 120	
	Phe	Leu	Gln	His	Ser 125	Arg	Суз	Glu	Суз	Arg 130	Pro	Lys	Lys	Asp	Arg 135	
15	Thr	Lys	Pro	Glu	Asn 140	His	Cys	Glu	Pro	Cys 145	Ser	Glu	Arg	Arg	Lys 150	
	His	Leu	Phe	Val	Gln 155	Asp	Pro	Gln	Thr	Cys 160	Lys	Cys	Ser	Суз	Lys 165	
20	Asn	Thr	Asp	Ser	Arg 170	Cys	Lys	Ala	Arg	Gln 175	Leu	Glu	Leu	Asn	Glu 180	
	Arg	Thr	Суз	Arg	Cys 185	Asp	Lys	Pro	Arg	Arg 190						
25	(2)	II	NFOF	TAM: (i)	Si (FOR EQUE A) B)	NCE	CH? GTH	ARAC : 4	TER		pa	irs			
30				(xi	(C) D) SEQU	TOP	OLO		11:	near) NO	:32:	
	ACC	A														4
35				CTG Leu												49
	CTG	TAC	CTC	CAC											ACA	94
40				His	His 20	Ala	Lys	Trp	Ser	Gln 25		Ala	Pro	THE	30	
40	Leu GAA	Tyr	Leu	His	20 AAA Lys	GCC Ala	CAT	GAA	GTG	25 GTG	AAG Lys	TTC	ATG	GAC	30 GTC	139
45	GAA Glu TAC	GGG Gly CAG	GAG Glu	His CAG Gln	AAA Lys 35	GCC Ala TGC Cys	CAT His	GAA Glu CCG	GTG Val	GTG Val 40	AAG Lys ACC Thr	TTC Phe	ATG Met	GAC Asp	30 GTC Val 45 ATC	

					65					70					75	
5	TGT (GTG Val	CCC Pro	CTA Leu	ATG Met 80	CGG Arg	TGT Cys	GCG Ala	GGC Gly	TGC Cys 85	TGC Cys	AAT Asn	GAT Asp	GAA Glu	GCC Ala 90	274
10	CTG Leu	GAG Glu	TGC Cys	GTG Val	CCC Pro 95	ACG Thr	TCG Ser	GAG Glu	AGC Ser	AAC Asn 100	GTC Val	ACT Thr	ATG Met	CAG Gln	ATC Ile 105	319
	ATG Met	CGG Arg	ATC Ile	AAA Lys	CCT Pro 110	CAC His	CAA Gln	AGC Ser	CAG Gln	CAC His 115	ATA Ile	GGA Gly	GAG Glu	ATG Met	AGC Ser 120	364
15	TTC Phe	CTG Leu	CAG Gln	CAT His	AGC Ser 125	AGA Arg	TGT Cys	GAA Glu	TGC Cys	AGA Arg 130	CCA Pro	AAG Lys	AAA Lys	GAT Asp	AGA Arg 135	409
20					AAA Lys 140							TGA				445
	(2)	11	NFOP	MAT (i)			NCE		ARAC	TER	: ISTI amir		cid:	3		
25					•	B)	TYP			o a						
				(vi	(C) D) SEOI	TOP	OLO	GY:		near			o NO	:33	•
30	Met	Asn	Phe	(xi Leu	(D) SEQI	TOP	OLO E DI	GY: ESCR	li IPT	near ION:	SE	Q II			
30				Leu	.) Leu	D) SEQU Ser	TOP JENC Trp	OLO E DI Val	GY: ESCP His	li IPT Trp 10	near ION: Thr	SE Leu	Q II Ala	Leu	Leu 15	
30 35	Leu	Tyr	Leu	Leu	Leu 5	D) SEQU Ser Ala	TOP JENC Trp Lys	OLOG E DI Val	GY: ESCR His Ser	li IPT Trp 10 Gln 25	near ION: Thr Ala	SE Leu Ala	Q II Ala Pro	Leu	Leu 15 Thr 30	
35	Leu Glu	Tyr Gly	Leu Glu	Leu His Gln	Leu 5 His 20	D) SEQU Ser Ala Ala	TOP JENC Trp Lys	OLO E DI Val Trp Glu	GY: ESCF His Ser Val	li IPT Trp 10 Gln 25 Val	near ION: Thr Ala Lys	SE Leu Ala	Q II Ala Pro Met	Leu Thr Asp	Leu 15 Thr 30 Val 45	
	Leu Glu Tyr	Tyr Gly Gln	Leu Glu Arg	Leu His Gln Ser	Leu 5 His 20 Lys 35	D) SEQU Ser Ala Ala Cys	TOP JENC Trp Lys His	OLOG E DH Val Trp Glu	GY: ESCR His Ser Val	li XIPT Trp 10 Gln 25 Val 40	Thr Ala Lys	SE Leu Ala Phe	Q II Ala Pro Met	Leu Thr Asp	Leu 15 Thr 30 Val 45	
35	Leu Glu Tyr Phe	Tyr Gly Gln	Leu Glu Arg	Leu His Gln Ser	Leu 5 His 20 Lys 35 Tyr 50 Pro	D) SEQU Ser Ala Ala Cys Asp	TOP JENC Trp Lys His	OLOGE DI Val Trp Glu Pro	GY: ESCR His Ser Val	Trp 10 Gln 25 Val 40 55	Thr Ala Lys Thr	SE Leu Ala Phe Leu	Q II Ala Pro Met	Leu Thr Asp Asp	Leu 15 Thr 30 Val 45 Ile 60 Ser 75	
35	Leu Glu Tyr Phe Cys	Tyr Gly Gln Gln Val	Leu Glu Arg Glu	Leu His Gln Ser Tyr	Leu 5 His 20 Lys 35 Tyr 50 Pro 65	D) SEQU Ser Ala Ala Cys Asp	TOP JENC Trp Lys His Arg	OLOO E DF Val Trp Glu Pro Ile	GY: ESCF His Ser Val	li IPT Trp 10 Gln 25 Val 40 55 Tyr 70 Cys	Thr Ala Lys Thr	SE Leu Ala Phe Leu Phe Asr	Q III Ala Pro Met Val	Leu Thr Asp Asp Glu	Leu 15 Thr 30 Val 45 11e 60 Ser 75	

	Pne	Leu	GIn :		125	Arg	Cys	GIU		130	PIO .	uys .	Lys A		135	
5	Thr	Lys	Pro		Lys 140	Суз	Asp	Lys		Arg 145	Arg					
10	(2)	IN.	FOR	MATI (i)		QUE (A) (B) (C)	NCE LENC TYPI STRI	CHA STH: S: ANDE OLOG) S	RACT 6 nuc DNE:	TERI 49 b leic SS: lin ENCE	ear E DE	pai id ngle	:	on:	SEQ	
15	AACC	•											•			4
20	ATG	AAC Asn	TTT Phe	CTG Leu	CTC Leu 5	TCT Ser	TGG Trp	GTG Val	CAC His	TGG Trp 10	ACC Thr	CTG Leu	GCT Ala	TTA Leu	CTG Leu 15	49
	CTG Leu	TAC Tyr	CTC Leu	CAC His	CAT His 20	GCC Ala	AAG Lys	TGG Trp	TCC Ser	CAG Gln 25	GCT Ala	GCA Ala	CCC Pro	ACG Thr	ACA Thr 30	94
25	GAA Glu	GGG Gly	GAG Glu	CAG Gln	AAA Lys 35	GCC Ala	CAT His	GAA Glu	GTG Val	GTG Val 40	AAG Lys	TTC Phe	ATG Met	GAC Asp	GTC Val 45	139
30	TAC Tyr	CAG Gln	CGC Arg	AGC Ser	TAT Tyr 50	TGC Cys	CGT Arg	CCG Pro	ATT Ile	GAG Glu 55	ACC Thr	CTG Leu	GTG Val	GAC Asp	ATC Ile 60	184
35	Phe	CAG Gln	Glu	Tyr	Pro 65	Asp	Glu	Ile	Glu	Tyr 70	Ile	Phe	Lys	Pro	Ser 75	
	Cys	GTG Val	Pro	Leu	Met 80	Arg	Суз	Ala	Gly	Суз 85	Cys	Asn	Asp	Glu	Ala 90	
40	Leu	GAG Glu	Суз	Val	Pro 95	Thr	Ser	Glu	Ser	Asn 100	Val	Thr	Met	Gln	11e 105	
45	Met	CGG Arg	Ile	Lys	Pro 110	His	Gln	Ser	Gln	His 115	Ile	Gly	Glu	Met	Ser 120	
_	TTC Phe	CTG Leu	CAG Gln	CAT His	AGC Ser 125	Arg	TGT Cys	GAA Glu	TGC Cys	AGA Arg 130	Pro	AAG Lys	AAA Lys	GAT Asp	AGA Arg 135	409
50	ACA	AAG	CCA	GAA	AAA	AAA	TCA	GTI	CGA	GGA	AAG	GGA	AAG	GGT	CAA	454

	Thr	Lys	Pro	Glu	Lys 140	Lys	Ser	Val	Arg	Gly 145	Lys	Gly	Lys	Gly	Gln 150	
5			AAG Lys													499
10	TGT Cys	GAG Glu	CCT Pro	TGT Cys	TCA Ser 170	GAG Glu	CGG Arg	AGA Arg	AAG Lys	CAT His 175	TTG Leu	TTT Phe	GTC Val	CAA Gln	GAT Asp 180	544
	CCG Pro	CAG Gln	ACG Thr	TGT Cys	AAA Lys 185	TGT Cys	TCC Ser	TGC Cys	AAA Lys	AAC Asn 190	ACA Thr	GAC Asp	TCG Ser	CGT Arg	TGC Cys 195	589
15	AAG Lys	GCG Ala	AGG Arg	CAG Gln	CTT Leu 200	GAG Glu	TTA Leu	AAC Asn	GAA Glu	CGT Arg 205	ACT Thr	TGC Cys	AGA Arg	TGT Cys	GAC Asp 210	634
20			AGG Arg		TGA											649
25	(2)	II	NFOR	MAT (i)	SI ()	EQUE A)	LEN TYP	CHA GTH: E: 8	RAC	TER 1 14 a	amin	o a		3		
				(xi	(I	D)	TOP	OLO	SY:	lin	near			NO	: 35 :	
30	Met	Asn	Phe	Leu	Leu 5	Ser	Trp	Val	His	Trp 10	Thr	Leu	Ala	Leu	Leu 15	
	Leu	Tyr	Leu	His	His 20	Ala	Lys	Trp	Ser	Gln 25	Ala	Ala	Pro	Thr	Thr 30	
35	Glu	Gly	Glu	Gln	Lys 35	Ala	His	Glu	Val	Val 40	Lys	Phe	Met	Asp	Val 45	
	Tyr	Gln	Arg	Ser	Tyr 50	Суз	Arg	Pro	Ile	G1 u 55	Thr	Leu	Val	Asp	Ile 60	
40	Phe	Gln	Glu	Tyr	Pro 65	Asp	Glu	Ile	Glu	Tyr 70	Ile	Phe	Lys	Pro	Ser 75	
	Суз	Val	Pro	Leu	Met 80	Arg	Суз	Ala	Gly	Суз 85	Суз	Asn	Asp	Glu	Ala 90	
45	Leu	Glu	Cys	Val	Pro 95	Thr	Ser	Glu	Ser	Asn 100	Val	Thr	Met	Gln	Ile 105	
50	Met	Arg	Ile	Lys	Pro 110	His	Gln	Ser	Gln	His 115	Ile	Gly	Glu	Met	Ser 120	

	Phe	Leu	Gln	His	Ser 125	Arg	Cys	Glu	Суз	Arg 130	Pro	Lys	Lys	Asp	Arg 135	
5	Thr	Lys	Pro	Glu	Lys 140	Lys	Ser	Val	Arg	Gly 145	Lys	Gly	Lys	Gly	Gln 150	
	Lys	Arg	Lys	Arg	Lys 155	Lys	Ser	Arg	Phe	Lys 160	Ser	Trp	Ser	Val	His 165	
10	Суз	Glu	Pro	Суз	Ser 170	Glu	Arg	Arg	Lys	His 175	Leu	Phe	Val	Gln	Asp 180	
	Pro	Gln	Thr	Суз	Lys 185	Cys	Ser	Суз	Lys	Asn 190	Thr	Asp	Ser	Arg	Cys 195	
15	Lys	Ala	Arg	Gln	Leu 200	Glu	Leu	Asn	Glu	Arg 205	Thr	Суз	Arg	Суз	Asp 210	
	Lys	Pro	Arg	Arg												
20	(2)	I	NFOR	MAT: (i)	SI () ()	EQUE A) B) C)	NCE LEN TYP STR	CHA GTH: E: ANDE	RAC 4 nuc EDNE	TERI 17 l leic SS:	ase ac si	pa: id ngl				
25				(xi	•	D) SEQU		OLOG E DE			near		OI C	NO	:36:	
30				ATG Met												45
				GTG Val												90
35				ATG Met											CGC Arg 45	135
40				CGG Arg											GAA Glu 60	180
				GAA Glu											CTT Leu 75	225
45				TGT Cys		Gly					Glu				TGT Cys 90	270
50																

	GTG Val	GCG Ala	CTA Leu	AAG Lys	ACA Thr 95	GCC Ala	AAC Asn	ATC Ile	ACT Thr	ATG Met 100	CAG Gln	ATC Ile	TTA Leu	AAG Lys	ATT Ile 105	315
			AAT Asn													360
10	CAG Gln	GAT Asp	GTA Val	CTC Leu	TGC Cys 125	GAA Glu	TGC Cys	AGG Arg	CCT Pro	ATT Ile 130	CTG Leu	GAG Glu	ACG Thr	ACA Thr	AAG Lys 135	405
	GCA Ala		AGG Arg	TAA												417
15	(2)	11	NFOR	MAT:	SI () (1	EQUE A) B)	NCE LEN TYP	CHA GTH: E: a	RAC' 1 min	TERI 38 a o a o	min	o a	cids	;		
20				(xi	(1	C) O) SEQU	TOP	ANDE OLOG E DE	SY:	lir	near		e O ID	NO	: 37 :	
25	Met	Leu	Ala	Met	Lys 5	Leu	Phe	Thr	Суз	Phe 10	Leu	Gln	Val	Leu	Ala 15	
	Gly	Leu	Ala	Val	His 20	Ser	Gln	Gly	Ala	Leu 25	Ser	Ala	Gly	Asn	Asn 30	
30	Ser	Thr	Glu	Met	Glu 35	Val	Val	Pro	Phe	Asn 40	Glu	Val	Trp	Gly	Arg 45	
	Ser	Tyr	Cys	Arg	Pro 50		Glu	Lys	Leu	Val 55	Tyr	Ile	Ala ,	Asp	Glu 60	
35	His	Pro	Asn	Glu	Val 65	Ser	His	Ile	Phe	Ser 70	Pro	Ser	Суз	Val	Leu 75	
	Leu	Ser	Arg	Суз	Ser 80	Gly	Cys	Cys	Gly	Asp 85	Glu	Gly	Leu	His	Cys 90	
40	Val	Ala	Leu	Lys	Thr 95	Ala	Asn	Ile	Thr	Met 100	Gln	Ile	Leu	Lys	11e 105	
	Pro	Pro	Asn	Arg	Asp 110	Pro	His	Ser	Tyr	Val 115	Glu	Met	Thr	Phe	Ser 120	
45	Gln	Asp	Val	Leu	Cys 125	Glu	Суз	Arg	Pro	Ile 130	Leu	Glu	Thr	Thr	Lys 135	
	Ala	Glu	Arg													
50	(2)	Iì	NFOR	MAT (i)			SEÇ NCE				STI	cs:				

5				(xi	() () ()	c)))	TYPI STRI TOP	ANDE OLOG	nuc DNE Y:	lir	ac si ear	id ngle	e	NO:	: 38 :	
				ATG Met												45
10				GTG Val												90
15				ATG Met											CGC Arg 45	135
20				CGG Arg		Met									GAA Glu 60	180
				GAA Glu											CTT Leu 75	225
25				TGT Cys											TGT Cys 90	270
30				AAG Lys											ATT Ile 105	315
				CGG Arg											TCT Ser 120	360
35	CAG Gln	GAT Asp	GTA Val	CTC Leu	TGC Cys 125	GAA Glu	TGC Cys	AGG Arg	CCT Pro	ATT Ile 130	CTG Leu	GAG Glu	ACG Thr	ACA Thr	AAG Lys 135	405
40				AGG Arg		Thr									ACC Thr 150	450
45				GAG Glu					TGA							477
	(2)	I	NFO	RMAT						:39:		cs:				
50					(A)	LEN	GTH	: 1	158	ami	no a	cid	5		

5				(xi)	()	C)))	TYPI STRA TOPO ENCE	ANDE OLOG	DNE:	SS: lir	si ear	ngle SE(NO:	: 39 :	
	Met	Leu	Ala	Met	Lys 5	Leu	Phe	Thr	Суз	Phe 10	Leu	Gln	Val	Leu	Ala 15	
10	Gly	Leu	Ala	Val	His 20	Ser	Gln	Gly	Ala	Leu 25	Ser	Ala	Gly	Asn	Asn 30	
	Ser	Thr	Glu	Met	Glu 35	Val	Val	Pro	Phe	Asn 40	Glu	Val	Trp	Gly	Arg 45	
15	Ser	Tyr	Суз	Arg	Pro 50	Met	Glu	Lys	Leu	Val 55	Tyr	Ile	Ala	Asp	Glu 60	
	His	Pro	Asn	Glu	Val 65	Ser	His	Ile	Phe	Ser 70	Pro	Ser	Cys	Val	Leu 75	
20	Leu	Ser	Arg	Cys	Ser 80	Gly	Суз	Суз	Gly	Asp 85	Glu	Gly	Leu	His	Cys 90	
25	Val	Ala	Leu	Lys	Thr 95	Ala	Asn	Ile	Thr	Met 100	Gln	Ile	Leu	Lys	Ile 105	
	Pro	Pro	Asn	Arg	Asp 110	Pro	His	Ser	Tyr	Val 115	Glu	Met	Thr	Phe	Ser 120	
30	Gln	Asp	Val	Leu	Cys 125	Glu	Суз	Arg	Pro	Ile 130	Leu	Glu	Thr	Thr	Lys 135	
	Ala	Glu	Arg	Arg	Lys 140	Thr	Lys	Gly	Lys	Arg 145	Lys	Gln	Ser	Lys	Thr 150	
35	Pro	Gln	Thr	Glu	Glu 155	Pro	His	Leu								
	(2)	II	NFOR	MAT: (i)	SI		NCE	-	ARAC	TER:			120			
40				(xi	() ()	B) C) D)	TYP STR TOP	E: ANDI OLO	nuc EDNE GY:	lei SS: li	c ac si near	id .ngl	е	о ио	:40:	
45					AGG	CTG	TTC	CCT	TGC	TTC	CTG	CÄG	CTC	CTG	GCC 4	15

	GGG Gly	CTG Leu	GCG Ala	CTG Leu	Pro	GCT Ala	GTG Val	CCC Pro	CCC Pro	Gln	CAG Gln	TGG Trp	GCC Ala	TTG Leu	TCT Ser	90
_					20					25					30	
5	GCT Ala	GGG	AAC Asn	GGC Gly	TCG Ser 35	TCA Ser	GAG Glu	GTG Val	GAA Glu	GTG Val 40	GTA Val	CCC Pro	TTC Phe	CAG Gln	GAA Glu 45	135
10	GTG Val	TGG Trp	GGC Gly	CGC Arg	AGC Ser 50	TAC Tyr	TGC Cys	CGG Arg	GCG Ala	CTG Leu 55	GAG Glu	AGG Arg	CTG Leu	GTG Val	GAC Asp 60	180
15	GTC Val	GTG Val	TCC Ser	GAG Glu	TAC Tyr 65	CCC Pro	AGC Ser	GAG Glu	GTG Val	GAG Glu 70	CAC His	ATG Met	TTC Phe	AGC Ser	CCA Pro 75	225
	TCC Ser	TGT Cys	GTC Val	TCC Ser	CTG Leu 80	CTG Leu	CGC Arg	TGC Cys	ACC Thr	GGC Gly 85	TGC Cys	TGC Cys	GGC Gly	GAT Asp	GAG Glu 90	270
20	AAT Asn	CTG Leu	CAC His	TGT Cys	GTG Val 95	CCG Pro	GTG Val	GAG Glu	ACG Thr	GCC Ala 100	AAT Asn	GTC Val	ACC Thr	ATG Met	CAG Gln 105	315
25	CTC Leu	CTA Leu	AAG Lys	ATC Ile	CGT Arg 110	TCT Ser	GGG Gly	GAC Asp	CGG Arg	CCC Pro 115	TCC Ser	TAC Tyr	GTG Val	GAG Glu	CTG Leu 120	360
20	ACG Thr	TTC Phe	TCT Ser	CAG Gln	CAC His 125	GTT Val	CGC Arg	TGC Cys	GAA Glu	TGC Cys 130	CGG Arg	CCT Pro	CTG Leu	CGG Arg	GAG Glu 135	405
30	AAG Lys	ATG Met	AAG Lys	CCG Pro	GAA Glu 140	AGG Arg	AGG Arg	AGA Arg	CCC Pro	AAG Lys 145	GGC Gly	AGG Arg	GGG Gly	AAG Lys	AGG Arg 150	450
35		AGA Arg			TAG											465
40	(2)	II	NFOR	TAM (i)	SI (1 (1	EQUE A) B) C)	NCE LENG TYP: STR	CHA STH: E: a ANDE	RAC 1 min DNE	TERI 54 a o ac SS:	min cid si	o a		:		
45	Met	Pro	Val	(xi Met) 5	SEQU	ENC	E DE	SCR	lir IPTI Phe	ON:	SEÇ				
50		Leu			5					10					15	

	Ala Gly Asn Gly Ser Ser Glu Val Glu Val Val Pro Phe Gln Glu 35 40 45	
5	Val Trp Gly Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu Val Asp 50 55 60	
	Val Val Ser Glu Tyr Pro Ser Glu Val Glu His Met Phe Ser Pro 65 70 75	
10	Ser Cys Val Ser Leu Leu Arg Cys Thr Gly Cys Cys Gly Asp Glu 80 85 90	
	Asn Leu His Cys Val Pro Val Glu Thr Ala Asn Val Thr Met Gln 95 100 105	
15	Leu Leu Lys Ile Arg Ser Gly Asp Arg Pro Ser Tyr Val Glu Leu 110 115 120	
00	Thr Phe Ser Gln His Val Arg Cys Glu Cys Arg Pro Leu Arg Glu 125 130 135	
20	Lys Met Lys Pro Glu Arg Arg Arg Pro Lys Gly Arg Gly Lys Arg 140 145 150	
25	Arg Arg Glu Lys	

25

Claims

- 1. A purified and isolated DNA sequence encoding the C subunit of vascular endothelial cell growth factor.
 - 2. A purified and isolated vascular endothelial cell growth factor C subunit DNA sequence comprising:

```
ATG COG GTC ATG AGG CTG TTC CCT TGC TTC CTG CAG CTC CTG
35
       GOC GGG CTG GCG CCT GCT GTG COC COC CAG CAG TGG GCC
       TTG TCT GCT GGG AAC GGC TCG TCA GAG GTG GAA GTG GTA CCC
       TTC CAG GAA GTG TGG GGC CGC AGC TAC TGC CGG GCG CTG GAG
       AGG CTG GTG GAC GTC GTG TOO GAG TAC OOC AGC GAG GTG GAG
       CAC ATG TTC AGC CCA TOC TGT GTC TCC CTG CTG CGC TGC ACC
       GGC TGC TGC GGC GAT GAG AAT CTG CAC TGT GTG CCG GTG GAG
       ACG GCC AAT GTC ACC ATG CAG CTC CTA AAG ATC CGT TCT GGG
45
       GAC CGG CCC TCC TAC GTG GAG CTG ACG TTC TCT CAG CAC GTT
       CGC TGC GAA TGC CGG CCT CTG CGG GAG AAG ATG AAG CCG GAA
       AGG AGG AGA COC AAG GGC AGG GGG AAG AGG AGG AGA GAG AAG
50
       TAG.
             SEQ ID NO:40
```

- Vascular endothelial cell growth growth factor AC DNA comprising an A subunit DNA sequence and a C subunit DNA sequence.
- Vascular endothellal cell growth growth factor BC DNA comprising a B subunit DNA sequence and a C subunit DNA sequence.

5. A purified and Isolated vascular endothelial cell growth factor C subunit DNA sequence comprising:

ATG COG GTC ATG AGG CTG TTC CCT TGC TTC CTG CAG CTC CTG

- 5 GOO GGG CTG GOO CTG CCT GCT GTG COO COO CAG CAG TGG GCC TTG TCT GCT GGG AAC GGC TCG TCA GAG GTG GAA GTG GTA CCC TTC CAG GAA GTG TGG GGC CGC AGC TAC TGC CGG GCG CTG GAG AGG CTG GTG GAC GTC GTG TOC GAG TAC COC AGC GAG GTG GAG 10 CAC ATG TTC AGC CCA TOC TGT GTC TOC CTG CTG CGC TGC ACC GGC TGC TGC GGC GAT GAG AAT CTG CAC TGT GTG CCG GTG GAG ACG GCC AAT GTC ACC ATG CAG CTC CTA AAG ATC CGT TCT GGG 15 GAC CGG CCC TCC TAC GIG GAG CTG ACG TTC TCT CAG CAC GIT OGC TGC GAA TGC CGG CCT CTG CGG GAG AAG ATG AAG CCG GAA AGG AGG AGA COC AAG GGC AGG GGG AAG AGG AGG AGA GAG AAG CAG AGA CCC ACA GAC TGC CAC CTG TGC GGC GAT GCT GTT CCC 20 CGG AGG TAA. SEQ ID NOS:29 & 40
- 6. Vascular endothelial cell growth factor AC DNA comprising an A subunit DNA sequence selected form the group consisting of: a DNA sequence encoding an 189 amino acid form, a DNA sequence encoding an 165 amino acid form and a DNA sequence encoding a 121 amino acid form, with said A subunit DNA operably attached to a C subunit DNA sequence.
- 7. Vascular endothelial cell growth factor BC DNA comprising a B subunit DNA sequence selected form the group consisting of a DNA sequence encoding a 135 amino acid form; and a DNA sequence encoding a 115 amino acid form, with said B subunit DNA sequence operably attached to a C subunit DNA sequence.
 - 8. Homodimeric vascular endothelial growth factor DNA comprising C subunit DNA sequences.
- 9. A vector containing the DNA sequence of any one of claims 3 to 8.
 - A host cell transformed by the vector of claim 9 containing the DNA sequence encoding vascular endothelial cell growth factor.
- 11. A process for the preparation of vascular endothelial cell growth factor comprising culturing the transformed host cell of claim 10 under conditions suitable for the expression of vascular endothelial cell growth factor and recovering vascular endothelial cell growth factor.
 - 12. Vascular endothelial growth factor made by the process of claim 11.
- 45 13. Vascular endothelial cell growth factor AC comprising an A subunit amino acid sequence and a C subunit amino acid sequence.
 - 14. Vascular endothelial cell growth factor BC comprising a B subunit amino acid sequence and a C subunit amino acid sequence.
- 15. Vascular endothelial cell growth factor CC comprising a C subunit amino acid sequence and a C subunit amino acid sequence.
 - 16. A purified and isolated vascular endothelial cell growth factor C subunit amino acid sequence comprising:

Met Pro Val Met Arg Leu Phe Pro Cys Phe Leu Gln Leu Leu Ala Gly Leu Ala Leu Pro Ala Val Pro Pro Gln Gln Trp Ala Leu Ser Ala Gly Asn Gly Ser Ser Glu Val Glu Val Val Pro Phe Gln Glu Val Trp Gly Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu Val Asp Val Val Ser Glu Tyr Pro Ser Glu Val Glu His Met Phe Ser Pro Ser Cys Val Ser Leu Leu Arg Cys Thr Gly Cys Cys Gly Asp Glu Asn Leu His Cys Val Pro Val Glu Thr Ala Asn Val Thr Met Gln Leu Leu Lys Ile Arg Ser Gly Asp Arg Pro Ser Tyr Val Glu Leu Thr Phe Ser Gln His Val Arg Cys Glu Cys Arg Pro Leu Arg Glu Lys Met Lys Pro Glu Arg Arg Arg Pro Lys Gly Arg Gly Lys Arg Arg Arg Glu Lys. SEQ ID NO: 41

20 17. A purified and isolated vascular endothelial cell growth factor C subunit amino acid sequence comprising:

Met Pro Val Met Arg Leu Phe Pro Cys Phe Leu Gln Leu Leu Ala Gly Leu Ala Leu Pro Ala Val Pro Pro Gln Gln Trp Ala 25 Leu Ser Ala Gly Asn Gly Ser Ser Glu Val Glu Val Val Pro Phe Gln Glu Val Trp Gly Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu Val Asp Val Val Ser Glu Tyr Pro Ser Glu Val Glu His Met Phe Ser Pro Ser Cys Val Ser Leu Leu Arg Cys Thr 30 Gly Cys Cys Gly Asp Glu Asn Leu His Cys Val Pro Val Glu Thr Ala Asn Val Thr Met Gln Leu Leu Lys Ile Arg Ser Gly Asp Arg Pro Ser Tyr Val Glu Leu Thr Phe Ser Gln His Val Arg Cys Glu Cys Arg Pro Leu Arg Glu Lys Met Lys Pro Glu Arg Arg Pro Lys Gly Arg Gly Lys Arg Arg Arg Glu Lys Gln Arg Pro Thr Asp Cys His Leu Cys Gly Asp Ala Val Pro Arg Arg. SEQ ID NOS: 29 & 40 40

- 18. A tissue repairing pharmaceutical composition comprising a pharmaceutical carrier and an effective tissue repairing amount of the purified vascular endothelial growth factor of any one of claims 13 to 15.
- 19. The use of the vascular endothelial cell growth factor of any one of claims 13 to 15 for the manufacture of a medicament for promoting tissue repair.
- 20. The use of the vascular endothelial cell growth factor of any one of claims 13 to 15 for the manufacture of a medicament for stimulating vascular endothelial cell growth.

TTC CAG GAG TAC CCC GAT GAG ATA GAG TAT ATC TTC AAG CCG TCC TGT GTG CCC CTA ATG 80 80 PHE-GLN-GLU-TYR-PRD-ASP-GLU-TYR-ILE-PHE-LYS-PRD-SER-CYS-VAL-PRD-LEU-MET-LA6	CGG TGT GCG GGC TGC TGC AAT GAT GAA GCC CTG GAG TGC GTG CCC ACG TCG GAG AGC AAC 81 ARG-CYS-ALA-GLV-CYS-CYS-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASN-ASP-GLU-ALA-LEU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASP-GLU-ALA-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASP-GLU-ALA-CHU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASP-GLU-ALA-CHU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASP-GLU-ALA-CHU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASP-GLU-ALA-CHU-GLU-CYS-VAL-PRD-THR-SER-GLU-SER-ASN-ASP-GLU-CYS-CYS-CYS-CYS-CYS-CYS-CYS-CYS-CYS-CYS	GTC ACT ATG CAG ATC ATG CGG ATC AAA CCT CAC CAA AGC CAG CAC ATA GGA GAG ATG AGC 101 VAL-THR-MET-GLN-ILE-MET-ARG-ILE-LYS-PRO-HIS-GLN-SER-GLN-HIS-ILE-GLY-GLU-MET-SER-
---	---	---

ACCA	ATG Met	AAC Asn	TTT Phe	CIG	CIC Leu 5	TCT Ser	TGG Trp	GTG Val	CAC	TGG Trp 10	Thr	CIG Leu	GCT Ala	TTA Leu	CTG Leu 15	49
	CTG Leu	TAC Tyr	CTC Leu	CAC His	CAT His 20	GCC Ala	AAG Lys	TGG Trp	TCC Ser	CAG Gln 25	GCT Ala	GCA Ala	ccc Pro	ACG Thr	ACA Thr 30	94
	GAA Glu	GGG Gly	GAG Glu	CAG Gln	AAA Lys 35	GCC Ala	CAT His	GAA Glu	GIG Val	GIG Val 40	AAG Lys	TTC Phe	ATG Met	GAC Asp	GTC Val 45	139
	TAC Tyr	CAG Gln	CGC Arg	AGC Ser	TAT Tyr 50	TGC Cys	CGT Arg	CCG Pro	ATT Ile	GAG Glu 55	ACC Thr	CIG Leu	GTG Val	GAC Asp	ATC Ile 60	184
	TTC Phe	CAG Gln	GAG Glu	TAC Tyr	CCC Pro 65	GAT Asp	GAG Glu	ATA Ile	GAG Glu	TAT Tyr 70	ATC Ile	TTC Phe	AAG Lys	ccc Pro	TOC Ser 75	229
	TGT Cys	GIG Val	CCC Pro	CTA Leu	ATG Met 80	CGG Arg	TGT Cys	GCG Ala	GCC Gly	TGC Cys 85	TGC Cys	AAT Asn	GAT Asp	GAA Glu	GCC Ala 90	274
	CTG Leu	GAG Glu	TGC Cys	GTG Val	CCC Pro 95	ACG Thr	TCG Ser	GAG Glu	AGC Ser	AAC Asn 100	GTC Val	ACT Thr	ATG Met	CAG Gln	ATC Ile 105	
	ATG Met	CCG Arg	ATC Ile	гуs	CT Pro 110	CAC His	CAA Gln	AGC Ser	CAG Gln	CAC His 115	ATA Ile	GGA Gly	GAG Glu	Met	AGC Ser 120	364
	TTC Phe	CIG Leu	CAG Gln	His	AGC Ser 125	AGA Arg	TGT Cys	GAA Glu	TGC Cys	AGA Arg 130	CCA Pro	aag Lys	aaa Lys	Asp	AGA Arg 135	409
	ACA Thr	AAG Lys	CCA Pro	Glu	AAA Lys 140	TGT Cys	GAC Asp	AAG Lys	CCA Pro	AGG Arg 145	CGG Arg	TGA				44 5

FIG. 4

AACC			TTT Phe													49
	CTG Leu	TAC Tyr	CTC Leu	CAC His	CAT His 20	GCC Ala	AAG Lys	TGG Trp	TCC Ser	CAG Gln 25	GCT Ala	GCA Ala	cc Pro	ACG Thr	ACA Thr 30	94
			GAG Glu												GTC Val 45	139
			CGC Arg												ATC Ile 60	184
			GAG Glu												TCC Ser 75	229
			CCC Pro												GCC Ala 90	274
			TGC Cys											Gln	ATC Ile 105	319
			ATC Ile												AGC Ser 120	364
			CAG Gln											Asp	AGA Arg 135	409
			CCA Pro	Glu										Arg	AAG Lys 150	454
	CAT His	TTG Leu	TTT Phe	GTC Val	CAA Gln 155	GAT Asp	CCG Pro	CAG Gln	ACG Thr	TGT Cys 160	AAA Lys	TGT Cys	TCC Ser	TGC Cys	AAA Lys 165	499
	AAC Asn	ACA Thr	GAC Asp	TCG Ser	CGT Arg 170	TGC Cys	AAG Lys	GCG Ala	AGG Arg	CAG Gln 175	CTT Leu	GAG Glu	TTA Leu	Asn	GAA Glu 180	544
			TGC Cys								TGA		FI(3 5		577

AACC	ATG Met	AAC Asn	TTT Phe	CTG Leu	CTC Leu 5	TCT Ser	TGG Trp	GTG Val	CAC His	TGG Trp 10	ACC Thr	CIG Leu	GCT Ala	TTA Leu	CTG Leu 15	49
													ccc Pro		ACA Thr 30	94
	GAA Glu	GG Gly	GAG Glu	CAG Gln	AAA Lys 35	GCC Ala	CAT His	GAA Glu	GIG Val	GIG Val 40	AAG Lys	TTC Phe	ATG Met	GAC Asp	GTC Val 45	139
	TAC Tyr	CAG Gln	CGC Arg	AGC Ser	TAT Tyr 50	TGC Cys	OGT Arg	CCG Pro	ATT Ile	GAG Glu 55	ACC Thr	CIG Leu	GTG Val	GAC Asp	ATC Ile 60	184
	TTC Phe	CAG Gln	GAG Glu	TAC Tyr	CCC Pro 65	GAT Asp	GAG Glu	ATA Ile	GAG Glu	TAT Tyr 70	ATC Ile	TTC Phe	AAG Lys	CCG Pro	TCC Ser 75	229
													GAT Asp		GCC Ala 90	274
													ATG Met		ATC Ile 105	319
				Lys									GAG Glu		AGC Ser 120	364
				His									AAA Lys		AGA Arg 135	409
	ACA Thr	aag Lys	CCA Pro	Glu	AAA Lys 140	AAA Lys	TCA Ser	GIT Val	CGA Arg	GGA Gly 145	AAG Lys	GGA Gly	AAG Lys	GGT Gly	CAA Gln 150	454
	AAA Lys	CGA Arg	AAG Lys	Arg	AAG Lys 155	AAA Lys	TCC Ser	CCG Arg	TTT Phe	AAA Lys 160	TCC Ser	TGG Trp	AGC Ser	Val	CAC His	499

FIG. 6A

TGT	GAG	CCT	TGT	TCA	GAG	α	AGA	AAG	CAT	TTG	TTT	GIC	CAA	GAT	544
Cys	Glu	Pro	-	Ser 170	Glu	Arg	Arg	Lys	His 175	Leu	Phe	Val		Asp 180	
∞ G	CAG	ACG	TGT	AAA	TGT	TCC	TGC	AAA	AAC	ACA	GAC	TCG	CCT	TGC	589
Pro	Gln	Thr	Cys	Lys	Cys	Ser	Cys	Lys	Asn	Thr	Asp	Ser	Arg	Cys	
			_	185	_		_	_	190		-		-	195	
AAG	œ	AGG	CAG	CTT	GAG	TTA	AAC	GAA	ŒĨ	ACT	TGC	AGA	TGT	GAC	634
Lys	Ala	Arg	Gln	Leu	Glu	Leu	Asn	Glu	Arg	Thr	Cys	Arg	Cys	Asp	
				200					205					210	
AAG	CCA	AGG	CGG	TGA											649
Lys	Pro	Arg	Arg												

FIG.6B

		AAG Lys 5						45
		CAC His 20						90
		GAA Glu 35						135
		CCA Pro 50						180
		GTG Val 65						225
		AGT Ser 80						270
		ACA Thr 95					Lys	315
	Arg	GAT Asp 110					Phe	360
	Leu	TGC Cys 125					Thr	405
GAA Glu	TAA							417

FIG.7

ATG	CIG	∞	ATG	AAG	CTG	TTC	ACT	TGC	TTC	TIG	CAG	GTC	CTA	CCT	45
Met	Leu	Ala	Met	Lys 5	Leu	Phe	Thr	Cys	Phe 10	Leu	Gln	Val	Leu	Ala 15	
GGG	TIG	GCT	GIG	CAC	TCC	CAG	GGG	œ	CTG	TCT	CT	GGG	AAC	AAC	90
				His 20											
TCA	ACA	GAA	ATG	GAA	GTG	GIG	α	TTC	AAT	GAA	GTG	TGG	GGC	œ	135
Ser	Thr	Glu	Met	Glu 35	Val	Val	Pro	Phe	Asn 40	Glu	Val	Trp	Gly	Arg 45	
AGC	TAC	TCC	œ	CCA	ATG	GAG	AAG	CTG	GTG	TAC	ATT	GCA	GAT	GAA	180
				Pro 50											
CAC	α	AAT	GAA	GTG	TCT	CAT	ATA	TTC	AGT	∞	TCA	TGT	GIC	CIT	225
His	Pro	Asn	Glu	Val 65	Ser	His	Ile	Phe	Ser 70	Pro	Ser	Cys	Val	Leu 75	
CTG	AGT	α	TGT	AGT	GGC	TGC	TGT	GGT	GAC	GAG	GGT	CIG	CAC	TGT	270
Leu	Ser	Arg	Cys	Ser 80	Gly	Cys	Cys	Gly	Asp 85	Glu	Gly	Leu	His	Cys 90	
GTG	CCC	CTA	AAG	ACA	GCC	AAC	ATC	ACT	ATG	CAG	ATC	TTA	AAG	ATT	315
Val	Ala	Leu	Lys	Thr 95	Ala	Asn	Ile	Thr	Met 100	Gln	Ile	Leu		Ile 105	
				GAT											360
Pro	Pro	Asn		A sp 110	Pro	His	Ser	Tyr	Val 115	Glu	Met	Thr		Ser 120	
				TGC											405
Gln	Asp	Val	Leu	Cys 125	Glu	Cys	Arg	Pro	Ile 130	Leu	Glu	Thr		Lys 135	
GCA	GAA	AGG	AGG	AAA	ACC	AAG	GGG	AAG	AGG	AAG	CAA	AGC	AAA	ACC	450
Ala	Glu	Arg	Arg	Lys 140	Thr	Lys	Gly	Lys	Arg 145	Lys	Gln	Ser	Lys	Thr 150	
~ ъ	CVC	ער⊃ע	CNC	GAA	~~	C7-C	رسر	ערעוו							477
			Glu	Glu 155				104							477

FIG. 8

							CTG Leu		45
					CAG		TTG Leu	TCT	90
							CAG Gln		135
							GTG Val		180
							AGC Ser		225
							GAT Asp		270
							ATG Met		315
							GAG Glu		360
							CGG Arg		405
							AAG Lys		450
AGA Arg		TAG							465

EUROPEAN SEARCH REPORT

Application Number

EP 92 30 2750

Category	Citation of document with it of relevant pa	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
A Y	EP-A-0 399 816 (MERCK) * the whole document *		1-17 18-20	CQ7K15/U6 C12N15/19
A	WO-A-9 102 058 (CALIFOR * the whole document *	- NIA BIOTECHNOLOGY)	1-20	C07K3/28 C12N5/10 A61K37/36 //C07H21/00
^	WO-A-9 013 649 (GENENTE * the whole document *	CH)	1-20	// ug/iii 1/ ug
A	EP-A-0 370 989 (MONSANT * the whole document *	0)	1-20	
P,A	EP-A-0 476 983 (MERCK) * the whole document *	-	1-20	
P,X	PROCEEDINGS OF THE NATI OF USA. vol. 88, October 1991, pages 9267 - 9271; D. MAGLIONE ET AL.: 'Is		1-17	
P,Y	placenta cDNA coding fo the vascular permeabili * the whole document *	r a protein related to	18-20	TECHNICAL FIELDS SEARCHED (Int. Cl.5)
	. 			C12N A61K
	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	08 JULY 1992	MOL	INA GALAN E.
X : par Y : par doo A : tec	CATEGORY OF CITED DOCUME ricularly relevant if taken alone ricularly relevant if combined with an ument of the same category hnological background a-written disclosure ermediate document	E : earlier patent after the filin other D : document cite L : document cite	ciple underlying the document, but put g date ed in the application of for other reasons	dished on, or