第13次作业: 7.23, 7.24

7. 23 假设六个整数1,2,3,4,5,6 被随机地选择, 重复60 次独立实验中出现1,2,3,4,5,6 的次数分别为13,19,11,8,5,4。问在5%的显著性水平下是否可以认为下列假设成立:

$$H_0: p(\xi = 1) = p(\xi = 2) = \dots = p(\xi = 6) = \frac{1}{6}$$
?

解: 用 χ^2 - 拟合优度检验, 如果 H_0 成立, 则

$$\chi^2 = \sum_{i=1}^6 \frac{(n_i - np_i)^2}{np_i} \sim \chi^2(5), n \to \infty.$$

列表计算 χ^2 的观察值:

组数i	频数n _i	np_i	$n_i - np_i$	$(n_i - np_i)^2 / np_i$
1	13	10	3	0.9
2	19	10	9	8.1
3	11	10	1	0.1
4	8	10	-2	0.4
5	5	10	-5	2.5
6	4	10	-6	3.6

$$\chi^2 = 15.6$$
, $\chi^2_{0.95}(5) = 11.0$.

由于 $\chi^2 > \chi^2_{0.95}(5)$, 所以拒绝 H_0 , 即等概率的假设不成立。

7.24 对某型号电缆进行耐压试验,记录43 根电缆的最低击穿电压,数据列表如下:

该电缆的最低击穿电压是否服从正态分布?

解: 要检验的假设为:

$$H_0: \xi \sim N(\hat{\mu}, \hat{\sigma}^2).$$

其中 $\hat{\mu}$, $\hat{\sigma}^2$ 为 μ 和 σ^2 的极大似然估计,其观察值为

$$\hat{\mu} = \bar{\xi} = 4.3744$$
 $\hat{\sigma}^2 = s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_1 - \bar{x})^2 = 0.0484$

 $H_0: \xi \sim N(4.3744, 0.0484).$

列表计算:

区间	n_i	$(u_{i-1},u_i]$	p_i	np_i
$(-\infty, 3.8]$	1	$(-\infty, -2.6109]$	0.0045	0.1941
(3.8, 3.9]	1	(-2.6109, -2.1564]	0.0110	0.4735
(3.9, 4.0]	1	(-2.1564, -1.7018]	0.0289	1.2413
(4.0, 4.1]	2	(-1.7018, -1.2473]	0.0618	2.6554
(4.1, 4.2]	7	[-1.2473, -0.7927]	0.1078	4.6362
(4.2, 4.3]	8	[-0.7927, -0.3382]	0.1536	6.6067
(4.3, 4.4]	8	(-0.3382, 0.1164]	0.1787	7.6843
(4.4, 4.5]	4	(0.1164, 0.5709]	0.1697	7.2950
(4.5, 4.6]	6	(0.5709, 1.0255]	0.1315	5.6526
(4.6, 4.7]	4	(1.0255, 1.48]	0.0831	3.5749
$(4.7, +\infty)$	1	(1.48, +∞)	0.0694	2.9858

合并相关区间后得

区间	n_i	$(u_{i-1},u_i]$	p_i	np_i	$(np_i - n_i)^2 / np_i$
$(-\infty, 4.2]$	12	(-1.2473, -0.7927]	0.2140	9.2006	0.8517
(4.2, 4.3]	8	(-0.7927, -0.3382]	0.1536	6.6067	0.2938
(4.3, 4.4]	8	(-0.3382, 0.1164]	0.1787	7.6843	0.0130
(4.4, 4.5]	4	(0.1164, 0.5709]	0.1697	7.2950	1.4883
(4.5, 4.6]	6	(0.5709, 1.0255]	0.1315	5.6526	0.0213
$(4.6, +\infty)$	5	(1.0255, +∞)	0.1526	6.5607	0.3713
					3.0394

如果 H_0 成立,则

$$\chi^2 = \sum_{i=1}^6 \frac{(n_i - np_i)^2}{np_i} \sim \chi^2(6 - 2 - 1), n \to \infty.$$

由于

$$\chi^2 = 3.0394 < \chi^2_{0.95}(3) = 7.815,$$

故接受H₀,即不能否定正态分布的假设。