21 Problems: Orthonormal Bases

1. Let
$$D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
.

- (a) Write D in terms of the vectors e_1 and e_2 , and their transposes.
- (b) Suppose $P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible. Show that D is similar to

$$M = \frac{1}{ad - bc} \begin{pmatrix} \lambda_1 ad - \lambda_2 bc & -(\lambda_1 - \lambda_2) ab \\ (\lambda_1 - \lambda_2) cd & -\lambda_1 bc + \lambda_2 ad \end{pmatrix}.$$

(c) Suppose the vectors $\begin{pmatrix} a & b \end{pmatrix}$ and $\begin{pmatrix} c & d \end{pmatrix}$ are orthogonal. What can you say about M in this case? (Hint: think about what M^T is equal to.)

2. Suppose $S = \{v_1, \dots, v_n\}$ is an *orthogonal* (not orthonormal) basis for \mathbb{R}^n . Then we can write any vector v as $v = \sum_i c^i v_i$ for some constants c^i . Find a formula for the constants c^i in terms of v and the vectors in S.

Hint

- 3. Let u, v be independent vectors in \mathbb{R}^3 , and $P = \text{span}\{u, v\}$ be the plane spanned by u and v.
 - (a) Is the vector $v^{\perp} = v \frac{u \cdot v}{u \cdot u} u$ in the plane P?
 - (b) What is the angle between v^{\perp} and u?
 - (c) Given your solution to the above, how can you find a third vector perpendicular to both u and v^{\perp} ?
 - (d) Construct an orthonormal basis for \mathbb{R}^3 from u and v.
 - (e) Test your abstract formulae starting with

$$u = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$$
 and $v = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$.