6.2.2. Taylorovi redovi

Podsytimo se Jaylara te f(x) (matom 1) $f(x) = T_N(x) + R_N(x)$ $/ L_T Taylorov polinom n-tog shapraja <math>T_N(x) = \sum_{n=0}^{N} \frac{f^n(x_0)}{n!} (x-x_0)^n$ $-fije ce imat Taylorov red ato R_TO R_N(x) = \frac{f^{(MT)}(c)}{(N+1)!} (x-x_0)^{N+1}$ (neupadmerno lumerom lum N_TOO) (c je it otdine x_)

DEF Red oblika $\sum_{n=0}^{\infty} \frac{f^n(x_0)}{n!} (x-x_0)^n$ zoverno Jaylorov red Rumbayè f(x) o lo tocke x_0 .

NUZAN | DOVOLVAN UNJET:

red se zove

Taylor red je jednak f(x) akko $\lim_{n\to\infty} R_n(x) = 0$ red se sove that lawrinov. Primyer: $f(x) = e^x - sve$ were deriv. on jednake = bestonačno diferencijalního $f''(x) = e^x$, $x_0 = 0$, $f^{(n)}(0) = 1$

$$f(x) - f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$$

 $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{5}}{3!} + \dots = \frac{\infty}{2} \times \frac{n}{n!}$ $\lim_{n \to \infty} R_{N}(x) = \lim_{n \to \infty} \frac{e^{c}}{(n+1)!} \times^{n+1} = e^{c} \lim_{n \to \infty} \frac{x^{n+1}}{(n+1)!} = 0$

n-700 (n+1)!

jen fationaziele brize razili od polinoma

pa i da piše (milijun), n! raste brize

a)
$$\frac{Z}{N} = \frac{1}{N} = \frac$$

Ladatal Provaci n. h. derivaciju i uvnhih x.=0

$$f(x) = \sin x \longrightarrow 0 = 7 \sin x = 0 + x + 0 - \frac{1}{3!} x^3 + 0 + \frac{1}{5!} x^5 + \dots$$

$$f'(x) = \cos x \longrightarrow 1$$

$$f''(x) = -\sin x \longrightarrow 0$$

$$f'''(x) = -\cos x \longrightarrow 1$$

$$f'''(x) = -\cos x \longrightarrow 1$$

$$f'''(x) = \sin x \longrightarrow 0$$

$$f'''(x) = \cos x \longrightarrow 0$$

$$f^{IV}(x) = \sin x$$

$$\lim_{n \to \infty} R_n(x) = \frac{\sin(n+1)}{(n+1)!}$$

$$\lim_{n \to \infty} R_n(x) = \frac{\sin(n+1)!}{(n+1)!}$$

$$\lim_{n \to \infty} \frac{\sin(n+1)!}{(n+1)!} = 0$$

-> or of red najbrze konversira od such funkcija

2a data 2a D2:
a)
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$$
 b) $\sin x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$

2)
$$CoSX = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!}$$

6) $SOX = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$

b)
$$chx = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$
, Svi oni konvergiraju $\forall x \in \mathbb{R}$, $R = \infty$

* to rema lijepe settvorene formule

Zadatal: f(x)=lex - ne postoji Mclavinovor razvoj oko o jer su doriv od en x = \frac{1}{x}, -\frac{1}{x} 20to rozvijamo lu (1+x) i sod možumo obo o f(x)= en(14x) >koeficijenti ou alterniroguće tust! £'(x) = 1+x -> £'(0) = 1 $f_{(u)}(x) = \frac{(-1)(u-1)}{(4+x)^{u}}$ $f''(x) = \frac{1}{(1+x)^2} \rightarrow f''(0) = -1$ $\mathcal{L}^{(1)}(x) = \underbrace{2}_{(1+x)^2} \longrightarrow \mathcal{L}^{(1)}(0) = 2$ f''(x) = (1+x)-4 -> (1/(0) = -6 -> f(0) = (-1) (n-1)! $\ell^{\nu}(x) = \frac{(24)}{(1+x)^{-5}} \rightarrow \ell^{\nu}(0) = 24$ $en(1+x) = 0 + 1x - \frac{1x^2}{2!} + \frac{2}{3!} + \frac{2}{3!} \times \frac{3}{3!} + \dots + \frac{(-1)^{n+1}(n-1)!}{n!} \times \frac{n}{n} + \dots$ with male - jedom od malo zerpisa koji u suli nemaju feeti! jir se pokrate $lu(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} + \dots = \left| \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^n}{n} \right|$ Podruže konvergencije: $\frac{(-1)^{n+2}}{(1+c)^{n+1}} \times \frac{(-1)^n \times^{n+1}}{(1+c)^{n+1}} = 0$ $\frac{(-1)^n \times^{n+1}}{(n+1)^n} = 0$ $\frac{(-1)^n \times^{n+1}}{(n+1)^n} = 0$ \times mora $(\frac{1}{2})^n \rightarrow 0$; appoint $(\frac{1}{2})^n \rightarrow 0$; appoint $(\frac{1}{2})^n \rightarrow 0$; appoint $(\frac{1}{2})^n \rightarrow 0$; => (R=1) (xe <-1,1) Rubori X=_1. = div -> to je harmonýsti red v opistyl harmonýsti

Severa S = ln l $2n \times 1$ $2n \times$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\binom{\alpha}{n}} x^n$$
 Binomni red

Docernie se jèdhalo: f'(x) = w((+x)2-1

f'(x) = \(\alpha - 1)(1+x)\alpha - \(\alpha\)

 $f^{(1)}(x) = d(d-1)(d-2)(1+x)^{\alpha-3}$

&n (x) = 0 (d-1) ... (d-n+1)(1+x) -n

 $\sqrt{1+x} = (1+x)^{1/2} = \sum_{n=0}^{\infty} \left(\frac{\frac{1}{2}}{n}\right) x^n$

 $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots$

 $\hat{f}(0) = \alpha (\alpha - 1) \cdots (\alpha - n + 1) =$ formula $z_i h_i h_i h_i h_i$ boekiquit. $\begin{pmatrix} \alpha \\ n \end{pmatrix}$

 $\begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix} = \frac{\frac{1}{2} \cdot (-\frac{1}{2})}{2!} = \frac{-1}{8} \qquad \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \frac{\frac{1}{2} \cdot (-\frac{1}{2})(-\frac{8}{2})}{3!} = \frac{1}{16}$

norma 2a mortan 2 troba sonno: $\binom{\alpha}{n} = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$

 $\begin{pmatrix} -1 \\ n \end{pmatrix} = \frac{-1(-2)(-3)...(-n)}{n!} = (-1)^n = 1-x+x^2-x^3+x^4+x^5+$

ato wearing: $\frac{1}{1-x} = \sum_{n=1}^{\infty} (-1)^n (-x)^n = \sum_{n=1}^{\infty} x^n = 1+x+x^2+x^3+\cdots$

 $\alpha = -1$ $(1+x)^{-1} = \frac{1}{1+x} = \sum_{n=1}^{\infty} {\binom{n}{n}} x^n = \sum_{n=1}^{\infty} {\binom{-1}{n}}^n x^n$

* (n) - kombinacje bez
ponavý aya

Primyer) Rossy obs
$$\times_0=0$$
 u sadruma smytimo Esrichiti

područje bonv. pomoću poznadih

redova

a) $e^{-2\times} = \sum \frac{(-2\times)^n}{n!} = \sum \frac{(-2)^n}{n!} \times^n$, $\forall_{\times} \in \mathbb{R}$

$$\sin\left(\frac{\pi}{2}x^{2}\right) = \sum_{n=1}^{\infty} (-1)^{n} \left(\frac{\pi}{2}\right)^{2n+1} \frac{1}{(n+1)!}$$

b)
$$\sin(\frac{\pi}{2}x^2) = \sum_{n=0}^{\infty} (-1)^n (\frac{\pi}{2})^{2n+1} \frac{(x^2)^{2n+1}}{(2n+1)!}$$

d) $lu(3+x) = ln(3(1+\frac{x}{3}))$

COS(3x)=COS(3(x-17+17))

 $= -\cos\left[3(x-\pi)\right]$

 $a = -\sum_{n=0}^{\infty} (-1)^n \frac{3^{2n} (x-\pi)^{2n}}{(2n)!}$

b)
$$\sin(\frac{\pi}{2}x^{2}) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$$

c) $\frac{1}{2-x^{3}} = \frac{1}{2} \cdot \frac{1}{1-\frac{x^{3}}{2}} = \sum_{n=0}^{\infty} \frac{x^{3n}}{2^{n+1}}$

2adatal WIR-236) = e \(\sum_{n=0}^{\infty} \frac{3^n (x-2)^n}{n!} \)

$$\frac{7}{n!} \times \frac{7}{n!} \times \frac{7}{2}$$

$$\frac{17}{2}$$

$$\frac{17}{2}$$

$$\frac{17}{2}$$

$$\frac{17}{2}$$

$$\frac{17}{2}$$

= lu 3 + lu $\left(1 + \left|\frac{x}{3}\right|\right) = lu 3 + \sum_{n=1}^{\infty} (-1)^{n/2} \frac{x^n}{3^n n^n}$

$$\frac{(2)^{2n+1}}{(n+1)!}$$

$$\frac{(2)^{2n+1}}{(n+1)!}$$

 $= e^{3(x-2)+6} = e^{6} \cdot e^{3(x-2)}$

 $= \cos \left[3(x-\pi) + 3\pi \right] = \cos \left(3(x-\pi) \right] \cdot \cos (3\pi) - \sin \left[3(x-\pi) \right] \cdot \sin (3\pi)$

$$\frac{1}{(x-2)(x+4)} = \frac{1}{x^2 + 2x + 8}$$

$$= \frac{1}{(x-2)(x+4)} = \frac{A = \frac{1}{6}}{x-2} + \frac{B}{x+4}$$

$$a) \frac{\frac{1}{6}}{x-2} = \frac{-1}{12} \cdot \frac{1}{1-\frac{x}{2}} = \frac{-1}{2} \sum_{n=0}^{\infty}$$

a)
$$\frac{\frac{1}{6}}{x-2} = \frac{-1}{12} \cdot \frac{1}{1-\frac{x}{2}} = \frac{-1}{2} \sum_{n=0}^{\infty} \frac{x^n}{2^n}$$

$$\frac{1}{2} = \frac{1}{12} \cdot \frac{1 - \frac{x}{2}}{1 - \frac{x}{2}} = \frac{1}{4} \sum_{n=0}^{\infty} \frac{1}{1 + \frac{x}{4}} = \frac{1}{4} \sum_{n=0}^{\infty} \frac{1}{1 + \frac{x}$$

$$\frac{-1}{\sqrt{\frac{6}{x+24}}} = \frac{-1}{24} \cdot \frac{1}{1+\frac{x}{4}} = \frac{-1}{4} \sum_{n=1}^{\infty} (-1) \frac{x^n}{4^n}$$

$$\frac{-1}{\sqrt{\frac{x}{4}}} = \frac{-1}{24} \sum_{n=1}^{\infty} (-1) \frac{x^n}{4^n}$$

$$\frac{1}{x+4} = \frac{1}{(x+1)+3} = \frac{1}{3} \frac{1}{1+\frac{x+1}{3}} = \frac{1}{3} \sum_{i=1}^{n} \frac{(x+1)^{n}}{3^{n}}$$

$$\frac{1}{x-2} = \frac{1}{x+1-3} = \frac{1}{3} \frac{1}{-1-\frac{x+1}{3}}$$