R Exposure 1

RStudio and Basic R

Charles Lanfear

Sep 12, 2020

Updated: Sep 12, 2020

Overview

- 1. R and RStudio Orientation
- 2. Packages
- 3. Creating and Using Objects
- 4. Dataframes and Indexing
- 5. Basic Analyses
- 6. Resources for Further Learning

R and RStudio

A quick orientation

UW Tacoma-

Why R?

R is a programming language built for statistical computing.

If one already knows Excel or Stata, why use R?

- R is *free*, so you don't need a terminal server or license.
- R has a very large community for support and packages.
- R can handle virtually any data format.
- R makes replication easy.
- R is a *language* so it can do *everything*.¹
- R is similar to other programming languages.

[1] Including generate these slides (using RMarkdown)!

W Tacoma — 4/65

R Studio

R Studio is a "front-end" or integrated development environment (IDE) for R that can make your life *easier*.

RStudio can:

- Organize your code, output, and plots.
- Auto-complete code and highlight syntax.
- Help view data and objects.
- Enable easy integration of R code into documents.

Getting Started

Open up RStudio now and choose File > New File > R Script.

Then, let's get oriented with the interface:

- *Top Left*: Code **editor** pane, data viewer (browse with tabs)
- *Bottom Left*: **Console** for running code (> prompt)
- *Top Right*: List of objects in **environment**, code **history** tab.
- *Bottom Right*: Tabs for browsing files, viewing plots, managing packages, and viewing help files.

You can change the layout in *Preferences > Pane Layout*

Editing and Running Code

There are several ways to run R code in RStudio:

- Highlight lines in the **editor** window and click Run at the top or hit Ctrl+Enter or $\mathcal{H}+Enter$ to run them all.
- With your **caret** on a line you want to run, hit Ctrl+Enter or \mathbb{H}+Enter. Note your caret moves to the next line, so you can run code sequentially with repeated presses.
- Type individual lines in the **console** and press Enter.

The console will show the lines you ran followed by any printed output.

Incomplete Code

If you mess up (e.g. leave off a parenthesis), R might show a + sign prompting you to finish the command:

```
> (11-2
+
```

Finish the command or hit Esc to get out of this.

R as a Calculator

In the console, type 123 + 456 + 789 and hit Enter.

```
123 + 456 + 789
```

[1] 1368

The [1] in the output indicates the numeric **index** of the first element on that line.

Now in your blank R document in the **editor**, try typing the line sqrt(400) and either clicking Run or hitting Ctrl+Enter or $\mathcal{H}+Enter$.

sqrt(400)

[1] 20

Functions and Help

sqrt() is an example of a function in R.

If we didn't have a good guess as to what sqrt() will do, we can type ?sqrt in the console and look at the **Help** panel on the right.

?sqrt

Arguments are the *inputs* to a function. In this case, the only argument to sqrt() is x which can be a number or a vector of numbers.

Help files provide documentation on how to use functions and what functions produce.

Creating Objects

R stores *everything* as an **object**, including data, functions, models, and output.

Creating an object can be done using the **assignment operator**: <-

```
new.object <- 144</pre>
```

Operators like < are functions that look like symbols but typically sit between their arguments (e.g. numbers or objects) instead of having them inside () like in $sqrt(x)^1$.

We do math with operators, e.g., x + y + is the addition operator!

[1] We can actually call operators like other functions by stuffing them between backticks: +(x,y)

Calling Objects

You can display or "call" an object simply by using its name.

new.object

```
## [1] 144
```

Object names can contain and in them, but cannot *begin* with numbers. Try to be consistent in naming objects. RStudio auto-complete means *long* names are better than vague ones!

Good names¹ save confusion later.

[1] "There are only two hard things in Computer Science: cache invalidation and naming things." - Phil Karlton

W Tacoma — 12 / 65

Using Objects

An object's **name** represents the information stored in that **object**, so you can treat the object's name as if it were the values stored inside.

```
new.object + 10

## [1] 154

new.object + new.object

## [1] 288

sqrt(new.object)

## [1] 12
```

Creating Vectors

A **vector** is a series of **elements**, such as numbers.

You can create a vector and store it as an object in the same way. To do this, use the function c() which stands for "combine" or "concatenate".

```
new.object <- c(4, 9, 16, 25, 36)
new.object
```

```
## [1] 4 9 16 25 36
```

If you name an object the same name as an existing object, it will overwrite it.

You can provide a vector as an argument for many functions.

```
sqrt(new.object)
```

```
## [1] 2 3 4 5 6
```

Character Vectors

We often work with data that are categorical. To create a vector of text elements—**strings** in programming terms—we must place the text in quotes:

```
string.vector <- c("Atlantic", "Pacific", "Arctic")
string.vector</pre>
```

```
## [1] "Atlantic" "Pacific" "Arctic"
```

Categorical data can also be stored as a **factor**, which has an underlying numeric representation. Models will convert factors to dummies.¹

```
factor.vector <- factor(string.vector)
factor.vector</pre>
```

```
## [1] Atlantic Pacific Arctic
## Levels: Arctic Atlantic Pacific
```

[1] Factors have **levels** which you can use to set a reference category in models using relevel().

JW Tacoma — TS / 65

Saving and Loading Objects

You can save an R object on your computer as a file to open later:

```
save(new.object, file="new_object.RData")
```

You can open saved files in R as well:

```
load("new_object.RData")
```

But where are these files being saved and loaded from?

Working Directories

R saves files and looks for files to open in your current **working directory**¹. You can ask R what this is:

```
getwd()
```

```
## [1] "C:/Users/cclan/OneDrive/GitHub/r exposure workshop/lectures/r1"
```

Similarly, we can set a working directory like so:

```
setwd("C:/Users/cclan/Documents")
```

[1] For a simple R function to open an Explorer / Finder window at your working directory, see this StackOverflow response.

Tacoma — 17/65

More Complex Objects

The same principles shown with vectors can be used with more complex objects like **matrices**, **arrays**, **lists**, and **dataframes** (lists which look like matrices but can hold multiple data types at once).

Most data sets you will work with will be read into R and stored as a **dataframe**, so the remainder of this workshop will mainly focus on using these objects.

W Tacoma-

Delimited Text Files

The easiest way to work with external data—that isn't in R format—is for it to be stored in a *delimited* text file, e.g. comma-separated values (.csv) or tabseparated values (.tsv).

R has a variety of built-in functions for importing data stored in text files, like read.table() and read.csv().1

```
new_df <- read.csv("some_spreadsheet.csv", stringsAsFactors = FALSE)</pre>
```

[1] Use "write" versions (e.g. write.csv()) to create these files from R objects.

W Tacoma — 20 / 65

Data from Other Software

Working with **Stata**, **SPSS**, or **SAS** users? You can use a **package** to bring in their saved data files:

- foreign
 - Part of base R
 - Functions: read.spss(), read.dta(), read.xport()
 - Less complex but sometimes loses some metadata
- haven
 - Part of the tidyverse family
 - Functions: read_spss(), read_dta(), read_sas()
 - Keeps metadata like variable labels

For less common formats, Google it. I've yet to encounter a data format without an R package to handle it (or at least a clever hack).

If you encounter an ambiguous file extension (e.g. .dat), try opening it with a good text editor first (e.g. Atom, Sublime); there's a good chance it is actually raw text with a delimiter or fixed format that R can handle!

W Tacoma — 21/65

Installing Packages

Packages contain functions (and sometimes data) created by the community. The real power of R is found in add-on packages!

This workshop focuses on using packages from the tidyverse.

The tidyverse is a collection of R packages which share a design philosophy, syntax, and data structures.

The tidyverse includes the most used packages in the R world: dplyr and ggplot2

You can install the *entire* tidyverse with the following:

```
install.packages("tidyverse")
```

We will also use the gapminder and nycflights13 datasets:

```
install.packages("gapminder")
install.packages("nycflights13")
```

Loading Packages

To load a package, use library():

```
library(gapminder)
```

Once a package is loaded, you can call on functions or data inside it.

```
data(gapminder) # Places data in your global environment
head(gapminder) # Displays first six elements of an object
```

```
## # A tibble: 6 x 6
    country continent
                           year lifeExp
##
                                            pop gdpPercap
    <fct>
                          <int>
                                          <int>
                                                    <dbl>
                <fct>
                                 <dbl>
##
## 1 Afghanistan Asia
                                  28.8
                                        8425333
                                                     779.
                           1952
## 2 Afghanistan Asia
                                  30.3
                                                     821.
                           1957
                                        9240934
## 3 Afghanistan Asia
                                  32.0 10267083
                                                     853.
                           1962
## 4 Afghanistan Asia
                           1967
                                  34.0 11537966
                                                     836.
## 5 Afghanistan Asia
                           1972
                                                     740.
                                  36.1 13079460
## 6 Afghanistan Asia
                                                     786.
                           1977
                                  38.4 14880372
```

Indexing and Subsetting

Base R

·UW Tacoma •

Indices and Dimensions

In base R, there are two main ways to access elements of objects: square brackets ([] or [[]]) and \$. How you access an object depends on its dimensions.

Dataframes have 2 dimensions: **rows** and **columns**. Square brackets allow us to numerically **subset** in the format of object[row, column]. Leaving the row or column place empty selects *all* elements of that dimension.

gapminder[1,] # First row

```
## # A tibble: 1 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl> <int> <dbl> 779.
```

gapminder[1:3, 3:4] # First three rows, third and fourth column

```
## # A tibble: 3 x 2
## year lifeExp
## <int> <dbl>
## 1 1952 28.8
## 2 1957 30.3
## 3 1962 32.0
```

The **colon operator** (:) generates a vector using the sequence of integers from its first argument to its second. 1:3 is equivalent to c(1,2,3).

Dataframes and Names

Columns in dataframes can also be accessed using their names with the \$ extract operator. This will return the column as a vector:

gapminder\$gdpPercap[1:10]

```
## [1] 779.4453 820.8530 853.1007 836.1971 739.9811 786.1134 978.0114 ## [8] 852.3959 649.3414 635.3414
```

Note here I *also* used brackets to select just the first 10 elements of that column.

You can mix subsetting formats! In this case I provided only a single value (no column index) because **vectors** have *only one dimension* (length).

If you try to subset something and get a warning about "incorrect number of dimensions", check your subsetting!

Indexing by Expression

We can also index using expressions—logical tests.

gapminder[gapminder\$year==1952,]

```
# A tibble: 142 x 6
##
     country
                 continent
                            <fct>
                           <int>
                                   <dbl>
##
                 <fct>
                                           <int>
                                                     <dbl>
   1 Afghanistan Asia
##
                            1952
                                    28.8
                                         8425333
                                                      779.
   2 Albania
##
                 Europe
                            1952
                                    55.2
                                         1282697
                                                     1601.
   3 Algeria
##
                 Africa
                            1952
                                    43.1
                                         9279525
                                                     2449.
   4 Angola
##
                 Africa
                            1952
                                    30.0
                                         4232095
                                                     3521.
   5 Argentina
                 Americas
                            1952
                                    62.5 17876956
                                                     5911.
##
   6 Australia
                 Oceania
##
                            1952
                                    69.1
                                         8691212
                                                    10040.
   7 Austria
                 Europe
                            1952
                                    66.8
                                         6927772
                                                     6137.
##
##
   8 Bahrain
                 Asia
                            1952
                                    50.9
                                          120447
                                                     9867.
##
   9 Bangladesh
                 Asia
                            1952
                                    37.5 46886859
                                                      684.
  10 Belgium
                 Europe
                            1952
                                    68
                                         8730405
                                                     8343.
## # ... with 132 more rows
```

How Expressions Work

What does gapminder\$year==1952 actually do?

```
head(gapminder$year==1952, 50) # display first 50 elements
```

```
## [1] TRUE FALSE FALSE
```

It returns a vector of TRUE or FALSE values.

When used with the subset operator ([]), elements for which a TRUE is given are returned while those corresponding to FALSE are dropped.

Logical Operators

We used == for testing "equals": gapminder\$year==1952.

There are many other <u>logical operators</u>:

- !=: not equal to
- >, >=, <, <=: less than, less than or equal to, etc.
- %in%: used with checking equal to one of several values

Or we can combine multiple logical conditions:

- &: both conditions need to hold (AND)
- | : at least one condition needs to hold (OR)
- !: inverts a logical condition (TRUE becomes FALSE, FALSE becomes TRUE)

Logical operators are one of the foundations of programming. You should experiment with these to become familiar with how they work!

Sidenote: Missing Values

Missing values are coded as NA entries without quotes:

```
vector_w_missing <- c(1, 2, NA, 4, 5, 6, NA)
```

Even one NA "poisons the well": You'll get NA out of your calculations unless you remove them manually or use the extra argument na.rm = TRUE in some functions:

```
mean(vector_w_missing)
```

[1] NA

```
mean(vector_w_missing, na.rm=TRUE)
```

[1] 3.6

Finding Missing Values

WARNING: You can't test for missing values by seeing if they "equal" (==) NA:

```
vector_w_missing == NA
```

[1] NA NA NA NA NA NA NA

But you can use the is.na() function:

```
is.na(vector_w_missing)
```

[1] FALSE FALSE TRUE FALSE FALSE TRUE

We can use subsetting to get the equivalent of na.rm=TRUE:

```
mean(vector_w_missing[!is.na(vector_w_missing)])
```

```
## [1] 3.6
```

! reverses a logical condition. Read the above as "subset not NA"

Subsetting Data with dplyr

dplyr

dplyr is a Tidyverse package for working with data frames.

It provides an intuitive, powerful, and consistent alternative to base R for subsetting data.

It also provides functions for summarizing and joining data which are more straightforward than base R.

While I recommend all users be familiar with base R methods I've just covered, dplyr is the dominant platform for data manipulation in R, so we will focus on it for the remainder of this unit.

But First, Pipes: %>%

dplyr uses the <u>magrittr</u> forward pipe operator, usually called simply a **pipe**. We write pipes like %>% (Ctrl+Shift+M or % +Shift+M).

Pipes take the object on the *left* and apply the function on the *right*: x % % f(y) = f(x, y). Read out loud: "and then..."

```
library(dplyr)
gapminder %>% filter(country == "Canada") %>% head(2)
```

```
## # A tibble: 2 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Canada Americas 1952 68.8 14785584 11367.
## 2 Canada Americas 1957 70.0 17010154 12490.
```

Pipes save us typing, make code readable, and allow chaining like above, so we use them *all the time* when manipulating data frames.

Using Pipes

Pipes are clearest to read when you have each function on a separate line.

```
take_this_data %>%
  do_first_thing(with = this_value) %>%
  do_next_thing(using = that_value) %>% ...
```

Stuff to the left of the pipe is passed to the *first argument* of the function on the right. Other arguments go on the right in the function.

If you ever find yourself piping a function where data are not the first argument, use . in the data argument instead.

```
gapminder %>% lm(pop ~ year, data = .)
```

Pipe Assignment

When creating a new object from the output of piped functions, you place the assignment operator *at the beginning*.

```
lm_pop_year <- gapminder %>%
 lm(pop ~ year, data = .)
```

No matter how long the chain of functions is, assignment is always done *at the top*.

filter() Data Frames

I used **filter()** earlier. We subset *rows* of data using logical conditions with filter()!

```
gapminder %>% filter(country == "Oman") %>% head(8)
```

```
## # A tibble: 8 x 6
##
    country continent year lifeExp
                                    pop gdpPercap
                                    <int>
##
    <fct>
            <fct>
                      <int>
                              <dbl>
                                                <dbl>
            Asia
                       1952
                               37.6
                                    507833
                                                1828.
## 1 Oman
            Asia
                       1957 40.1
                                    561977
                                                2243.
  2 Oman
            Asia
                       1962
                               43.2
                                    628164
                                                2925.
## 3 Oman
            Asia
                       1967
                               47.0
                                    714775
                                                4721.
## 4 Oman
## 5 Oman
            Asia
                               52.1
                                     829050
                                               10618.
                       1972
            Asia
                       1977
                               57.4 1004533
                                               11848.
## 6 Oman
            Asia
                               62.7 1301048
## 7 Oman
                       1982
                                               12955.
            Asia
                               67.7 1593882
                                               18115.
## 8 Oman
                       1987
```

What is this doing?

Multiple Conditions Example

Let's say we want observations from Oman after 1980 and through 2000.

```
gapminder %>%
  filter(country == "Oman" &
     year > 1980 &
     year <= 2000 )</pre>
```

```
## # A tibble: 4 x 6
##
    country continent year lifeExp pop gdpPercap
    <fct>
                     <int>
                            <dbl> <int>
                                             <dbl>
##
           <fct>
## 1 Oman
           Asia
                      1982
                             62.7 1301048
                                            12955.
           Asia
                      1987 67.7 1593882
                                            18115.
## 2 Oman
                      1992 71.2 1915208
           Asia
                                            18617.
## 3 Oman
## 4 Oman
           Asia
                      1997 72.5 2283635
                                            19702.
```

%in% Operator

Common use case: Filter rows to things in some set.

We can use %in% like == but for matching *any element* in the vector on its right¹.

```
## # A tibble: 2 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Slovenia Europe 2002 76.7 2011497 20660.
## 2 Slovenia Europe 2007 77.9 2009245 25768.
```

[1] The c() function is how we make **vectors** in R, which are an important data type.

Sorting: arrange()

Along with filtering the data to see certain rows, we might want to sort it:

```
yugoslavia %>% arrange(year, desc(pop))
```

```
## # A tibble: 60 x 6
                             continent year lifeExp
##
                                                         pop gdpPercap
     country
     <fct>
                                       <int>
                                               <dbl>
                                                      <int>
                                                                 <dbl>
##
                             <fct>
##
   1 Serbia
                             Europe
                                        1952
                                                58.0 6860147
                                                                 3581.
                                               61.2 3882229
   2 Croatia
                             Europe
                                       1952
                                                                 3119.
##
##
   3 Bosnia and Herzegovina Europe
                                        1952
                                                53.8 2791000
                                                                  974.
   4 Slovenia
##
                             Europe
                                        1952
                                               65.6 1489518
                                                                 4215.
   5 Montenegro
                             Europe
                                        1952
                                                59.2 413834
                                                                 2648.
##
##
   6 Serbia
                             Europe
                                        1957
                                                61.7 7271135
                                                                 4981.
##
   7 Croatia
                             Europe
                                        1957
                                               64.8 3991242
                                                                 4338.
   8 Bosnia and Herzegovina Europe
                                        1957
                                                58.4 3076000
                                                                 1354.
##
   9 Slovenia
##
                             Europe
                                        1957
                                                67.8 1533070
                                                                 5862.
## 10 Montenegro
                             Europe
                                        1957
                                                61.4 442829
                                                                 3682.
## # ... with 50 more rows
```

The data are sorted by ascending year and descending pop.

UW Tacoma — 40 / 65

Keeping Columns: select()

Not only can we subset rows, but we can include specific columns (and put them in the order listed) using **select()**.

```
yugoslavia %>% select(country, year, pop) %>% head(4)
```

```
## # A tibble: 4 x 3
##
     country
                             year
                                      pop
##
     <fct>
                            <int>
                                    <int>
## 1 Bosnia and Herzegovina
                            1952 2791000
## 2 Bosnia and Herzegovina
                            1957 3076000
## 3 Bosnia and Herzegovina
                            1962 3349000
## 4 Bosnia and Herzegovina
                            1967 3585000
```

Dropping Columns: select()

We can instead drop only specific columns with select() using - signs:

```
yugoslavia %>% select(-continent, -pop, -lifeExp) %>% head(4)
```

```
## # A tibble: 4 x 3
##
     country
                              year gdpPercap
     <fct>
                                        <dbl>
##
                             <int>
## 1 Bosnia and Herzegovina
                              1952
                                        974.
## 2 Bosnia and Herzegovina
                              1957
                                        1354.
## 3 Bosnia and Herzegovina
                              1962
                                        1710.
## 4 Bosnia and Herzegovina
                                        2172.
                              1967
```

Helper Functions for select()

select() has a variety of helper functions like starts_with(),
ends_with(), and matches(), or can be given a range of contiguous
columns startvar:endvar. See ?select for details.

These are very useful if you have a "wide" data frame with column names following a pattern or ordering.

```
A tibble: 6 \times 292
married10 married11 married12 married13 married14 married15 married16 married17 married18 married19 married20
    <db1>
              <db1>
                         <fdb>>
                                   <db1>
                                              < db1>
                                                                  <db1>
                                                                                       <db1>
                                                                                                  < db1>
                                                                                                            <db1>
                 NA
                 NA
                            NA
                                      NA
                 NA
                                      NA
       NA
       NA
                 NA
                            NA
                                      NA
                 NA
       NA
... with 281 more variables: married21 <dbl>, married22 <dbl>, married23 <dbl>, married24 <dbl>,
  married25 <dbl>, married26 <dbl>, in_school10 <dbl>, in_school11 <dbl>, in_school12 <dbl>, in_school13 <dbl>,
  in_school14 <dbl>, in_school15 <dbl>, in_school16 <dbl>, in_school17 <dbl>, in_school18 <dbl>,
  in school19 <dbl>. in school20 <dbl>. in school21 <dbl>. in school22 <dbl>. in school23 <dbl>.
```

```
DYS %>% select(starts_with("married"))
DYS %>% select(ends_with("18"))
```

select(where())

An especially useful helper for select is where() which can be used for selecting columns based on functions that check column types.

```
## # A tibble: 3 x 4
##
     year lifeExp pop gdpPercap
    <int>
           <dbl> <int>
                            <fdb>
##
     1952 28.8 8425333
                             779.
## 1
     1957 30.3 9240934
                             821.
## 2
## 3 1962 32.0 10267083
                             853.
gapminder %>% select(where(is.factor)) %>% head(3)
```

gapminder %>% select(where(is.numeric)) %>% head(3)

```
## # A tibble: 3 x 2
## country continent
## <fct> <fct>
## 1 Afghanistan Asia
## 2 Afghanistan Asia
## 3 Afghanistan Asia
int (integer) and dbl (double) are both
types of numeric data.
```

UW Tacoma — 44 / 65

Renaming Columns with select()

We can rename columns using select(), but that drops everything that isn't mentioned:

```
yugoslavia %>%
  select(Life_Expectancy = lifeExp) %>%
  head(4)
```

Safer: Rename Columns with rename()

rename() renames variables using the same syntax as select() without dropping unmentioned variables.

```
yugoslavia %>%
   select(country, year, lifeExp) %>%
   rename(Life_Expectancy = lifeExp) %>%
   head(4)
```

```
## # A tibble: 4 x 3
                             year Life_Expectancy
##
     country
     <fct>
##
                             <int>
                                             <dbl>
## 1 Bosnia and Herzegovina
                             1952
                                              53.8
## 2 Bosnia and Herzegovina
                             1957
                                              58.4
## 3 Bosnia and Herzegovina
                             1962
                                              61.9
## 4 Bosnia and Herzegovina
                              1967
                                              64.8
```


UW Tacoma.

mutate()

In dplyr, you can add new columns to a data frame using mutate().

```
## # A tibble: 5 x 5
##
    year pop lifeExp pop million life exp past 40
    <int> <int> <dbl>
                           <dbl>
##
                                         < [db>
## 1 1952 6860147 58.0 6.86
                                          18.0
## 2 1957 7271135
                  61.7 7.27
                                          21.7
## 3 1962 7616060 64.5 7.62
                                          24.5
## 4 1967 7971222
                 66.9
                       7.97
                                          26.9
## 5 1972 8313288
                  68.7
                       8.31
                                          28.7
```

Note you can create multiple variables in a single mutate() call by separating the expressions with commas.

UW Tacoma — 48 / 65

ifelse()

A common function used in mutate() (and in general in R programming) is **ifelse()**. It returns a vector of values depending on a logical test.

```
ifelse(test = x==y, yes = first_value , no = second_value)
```

Output from ifelse() if x==y is...

- TRUE: first_value the value for yes =
- FALSE: second_value the value for no =
- NA: NA because you can't test for NA with an equality!

For example:

```
example <- c(1, 0, NA, -2)
ifelse(example > 0, "Positive", "Not Positive")
```

[1] "Positive" "Not Positive" NA "Not Positive"

ifelse() Example

Read this as "For each row, if country equals 'Bosnia and Herzegovina', make short_country equal to 'B and H', otherwise make it equal to that row's value of country."

This is a simple way to change some values but not others!

UW Tacoma — 50 / 65

case_when()

case_when() performs multiple ifelse() operations at the same time.
case_when() allows you to create a new variable with values based on
multiple logical statements. This is useful for making categorical variables or
variables from combinations of other variables.

```
gapminder %>%
  mutate(gdpPercap_ordinal =
    case_when(
      gdpPercap < 700 ~ "low",
      gdpPercap >= 700 & gdpPercap < 800 ~ "moderate",
      TRUE ~ "high" )) %>% # Value when all other statements are FALSE
  slice(6:9) # get rows 6 through 9
```

```
## # A tibble: 4 x 7
##
    country continent
                      year lifeExp pop gdpPercap gdpPercap ordin~
    <fct>
                            <dbl> <int>
                                           <dbl> <chr>
##
            <fct>
                     <int>
## 1 Afghanis~ Asia
                      1977 38.4 1.49e7
                                            786. moderate
## 2 Afghanis~ Asia
                      1982 39.9 1.29e7
                                            978. high
## 3 Afghanis~ Asia
                      1987 40.8 1.39e7
                                            852. high
## 4 Afghanis~ Asia
                      1992
                            41.7 1.63e7
                                            649. low
```

W Tacoma — 51/65

Analyses

Basic Graphics and Models

coma 🗕

Histograms

We can use the hist() function to generate a histogram of a vector:

Observed Life Expectancies of Countries

xlab = is used to set the label of the xaxis of a plot.

main = is used to set the title of a plot.

Use ?hist to see additional options available for customizing a histogram.

Scatter Plots

Life Expectancy and log GDP per Capita

Note that lifeExp ~ gdpPercap is a **formula** of the type y ~ x. The first element (lifeExp) gets plotted on the y-axis and the second (gdpPercap) goes on the x-axis.

The abline() calls place horizontal (h =) or vertical (v =) lines at the means of the variables used in the plot.

Formulae

Most modeling functions in R use a common formula format—the same seen with the previous plot:

```
new_formula <- y ~ x1 + x2 + x3
new_formula
## y ~ x1 + x2 + x3</pre>
```

class(new_formula)

```
## [1] "formula"
```

The dependent variable goes on the left side of \sim and independent variables go on the right.

See here for more on formulae.

<environment: 0x0000010be7ba9048>

Simple Tables

table() creates basic cross-tabulations of vectors.

table(mtcars\$cyl, mtcars\$am)

```
## 0 1
## 4 3 8
## 6 4 3
## 8 12 2
```

Chi-Square

chisq.test(table(mtcars\$cyl, mtcars\$am))

X-squared = 8.7407, df = 2, p-value = 0.01265

We can give the output from table() to chisq.test() to perform a Chi-Square test of assocation.

```
## Warning in chisq.test(table(mtcars$cyl, mtcars$am)): Chi-squared
## approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table(mtcars$cyl, mtcars$am)
```

Note the warning here. You can use rescaled (rescale.p=TRUE) or simulated p-values (simulate.p.value=TRUE) if desired.

T Tests

T tests for mean comparisons are simple to do.

```
gapminder$post_1980 <- ifelse(gapminder$year > 1980, 1, 2)
t.test(lifeExp ~ post 1980, data=gapminder)
##
      Welch Two Sample t-test
##
##
## data: lifeExp by post_1980
## t = 17.174, df = 1694.7, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
     8.791953 11.059068
##
## sample estimates:
## mean in group 1 mean in group 2
##
          64.43719
                          54.51168
```

Linear Models

2.863e-01

1.936e+01

continentEurope continentOceania

##

##

##

We can run an ordinary least squares linear regression using lm():

vear continentAmericas

lm(lifeExp~pop + gdpPercap + year + continent, data=gapminder)

```
##
## Call:
## lm(formula = lifeExp ~ pop + gdpPercap + year + continent, data = gapminde
##
## Coefficients:
## (Intercept) pop gdpPercap
## -5.185e+02 1.791e-09 2.985e-04
```

continentAsia

9.375e+00

Note we get a lot less output here than you may have expected! This is because we're only viewing a tiny bit of the information produced by lm(). We need to expore the object lm() creates!

2.056e+01

1.429e+01

Model Summaries

The summary() function provides Stata-like regression output:

```
\label{local_problem} $$\lim_{\to} - \lim( ifeExp\sim pop + gdpPercap + year + continent, data=gapminder) $$ summary(lm_out)
```

```
##
## Call:
## lm(formula = lifeExp ~ pop + gdpPercap + year + continent, data = gapminder)
## Residuals:
       Min
                1Q Median
                                 30
                                         Max
## -28.4051 -4.0550 0.2317 4.5073 20.0217
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   -5.185e+02 1.989e+01 -26.062 <2e-16 ***
                                        1.096
## pop
                   1.791e-09 1.634e-09
                                                0.273
## gdpPercap
                  2.985e-04 2.002e-05 14.908 <2e-16 ***
## year
                    2.863e-01 1.006e-02 28.469 <2e-16 ***
## continentAmericas 1.429e+01 4.946e-01 28.898 <2e-16 ***
## continentAsia
                   9.375e+00 4.719e-01 19.869 <2e-16 ***
## continentEurope 1.936e+01 5.182e-01 37.361 <2e-16 ***
## continentOceania 2.056e+01 1.469e+00 13.995 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.883 on 1696 degrees of freedom
## Multiple R-squared: 0.7172, Adjusted R-squared: 0.716
## F-statistic: 614.5 on 7 and 1696 DF, p-value: < 2.2e-16
```

Model Objects

lm() produces a lot more information than what is shown by summary()
however. We can see the structure of lm() output using str():

```
str(lm_out)
```

```
## List of 13
## $ coefficients : Named num [1:8] -5.18e+02 1.79e-09 2.98e-04 2.86e-01 1.43e+01 ...
   ..- attr(*, "names")= chr [1:8] "(Intercept)" "pop" "gdpPercap" "year" ...
## $ residuals : Named num [1:1704] -21.1 -21.1 -20.8 -20.2 -19.6 ...
   ..- attr(*, "names")= chr [1:1704] "1" "2" "3" "4" ...
## $ effects : Named num [1:1704] -2455.1 34.6 312.1 162.6 100.6 ...
## ..- attr(*, "names")= chr [1:1704] "(Intercept)" "pop" "gdpPercap" "year" ...
                 : int 8
## $ rank
## $ fitted.values: Named num [1:1704] 49.9 51.4 52.8 54.3 55.7 ...
   ..- attr(*, "names")= chr [1:1704] "1" "2" "3" "4" ...
   $ assign : int [1:8] 0 1 2 3 4 4 4 4
## $ gr
                 :List of 5
   ..$ gr : num [1:1704, 1:8] -41.2795 0.0242 0.0242 0.0242 0.0242 ...
   ....- attr(*, "dimnames")=List of 2
   ....- attr(*, "assign")= int [1:8] 0 1 2 3 4 4 4 4
   ....- attr(*, "contrasts")=List of 1
   ..$ graux: num [1:8] 1.02 1 1.02 1.01 1.01 ...
    ..$ pivot: int [1:8] 1 2 3 4 5 6 7 8
    ..$ tol : num 1e-07
   ..$ rank : int 8
   ..- attr(*, "class")= chr "qr"
   [list output truncated]
## - attr(*, "class")= chr "lm"
```

lm() actually has an enormous quantity of output! This is a type of object called a list.

Model Objects

We can access parts of lm() output using \$ like with dataframe names:

lm_out\$coefficients

```
(Intercept)
                                                gdpPercap
##
                                    pop
       -5.184555e+02
                          1.790640e-09
                                             2.984892e-04
##
##
                vear continentAmericas
                                            continentAsia
        2.862583e-01
                          1,429204e+01
                                             9.375486e+00
##
##
     continentEurope continentOceania
##
        1.936120e+01
                          2.055921e+01
```

We can also do this with summary(), which provides additional statistics:

summary(lm_out)\$coefficients

```
Estimate
                                    Std. Error
                                                  t value
                                                               Pr(>|t|)
##
## (Intercept)
                    -5.184555e+02 1.989299e+01 -26.062215 3.248472e-126
## pop
                     1.790640e-09 1.634107e-09
                                                 1.095791 2.733256e-01
## gdpPercap
                                                          2.522143e-47
                     2.984892e-04 2.002178e-05 14.908225
## year
                     2.862583e-01 1.005523e-02
                                                28.468586 4.800797e-146
## continentAmericas 1.429204e+01 4.945645e-01 28.898241 1.183161e-149
## continentAsia
                     9.375486e+00 4.718629e-01 19.869087 3.798275e-79
## continentEurope
                     1.936120e+01 5.182170e-01 37.361177 2.025551e-223
## continentOceania
                     2.055921e+01 1.469070e+00 13.994707 3.390781e-42
```

ANOVA

ANOVAs can be fit and summarized just like lm()

```
summary(aov(lifeExp ~ continent, data=gapminder))
```

More Complex Models

R supports many more complex models, for example:

- glm() has syntax similar to lm() but adds a family = argument to specify model families and link functions like logistic regression
 - o ex: glm(x~y, family=binomial(link="logit"))
- The lme4 package adds hierarchical (multilevel) GLM models.
- lavaan fits structural equation models with intuitive syntax.
- plm and tseries fit time series models.

Most of these other packages support mode summaries with summary() and all create output objects which can be accessed using \$.

Because R is the dominant environment for statisticians, the universe of modeling tools in R is *enormous*. If you need to do it, it is probably in a package somewhere.

W Tacoma — 64 / 65

·UW Tacoma •