וֹנְחַלְתֶם אוֹתָה אִיש כְאַחִיו" (יחזקאל מז 14)

חלוקת חדרים ושכר-דירה Fair Rent Division

אראל סגל-הלוי

חלוקת שכר דירה

נתונים:

- R דירה עם n חדרים ודמי-שכירות נתונים •
- שרוצים לשכור יחד את הדירה. \bullet
- האתגר: להחליט מי יגור איפה, וכמה ישלם, כך שלא תהיה קנאה. הפלט הדרוש הוא:
- .X_i לכל שחקן i מתאימים חדר אחד -
 - .p(j) מתאימים מחיר = לכל חדר j לכל חדר =: **-תמחור**
- ללא קנאה: אף שותף לא מעדיף את החבילה (חדר+מחיר) של שותף אחר.

קיום חלוקת-חדרים ללא קנאה

הנחה: קיים "מחיר גבוה מדי".

הגדרה: מחיר גבוה מדי הוא מחיר כלשהו T, כך שאם המחיר של חדר כלשהו ≥ T, והמחיר של חדר כלשהו ≥ T, והמחיר של חדר אחר כלשהו ≥ 0, אז אף שחקן לא בוחר בחדר עם מחיר ≥ T.

הערה: אם השחקנים קוואזיליניאריים, אז קיים מחיר גבוה מדי – למשל הערך הגבוה ביותר ששחקן כלשהו מייחס לחדר כלשהו.

משפט: אם קיים מחיר גבוה מדי, אז יש השמה +תימחור ללא קנאה. ===>

קיום חלוקת-חדרים ללא קנאה

משפט: אם קיים מחיר גבוה מדי, אז יש השמה +תימחור ללא קנאה.

הוכחה: נבנה את סימפלקס התימחורים. כל נקודה בסימפלקס, עם קואורדינטות (x₁,...,x_n), מתאימה לתימחור עם:

$$p_j = T - (Tn-R) * x_j$$

כאשר T הוא מחיר גבוה מדי.

הערה: בכל נקודה, סכום כל המחירים הוא בדיוק R.

סימפלקס התימחורים

:n=3, R=3000, T=4000 דוגמה עם

$$p_j = T - (Tn-R)*x_j$$

$$F_1 = (-5000, 4000, 4000)$$

$$(-2000, 1000, 4000)$$

$$(100, 900, 2000)$$

$$F_2 = (4000, -5000, 4000) F_3 = (4000, 4000, -5000)$$

$$(4000, -900, -100)$$

סימפלקס התימחורים

כמו בחלוקת עוגה ללא קנאה:

נחלק את סימפלקס התימחורים לסימפלקסונים; ניתן כל קודקוד לשחקן; נשאל אותו איזה חדר הוא מעדיף בתימחור המתאים לקודקוד.

סימפלקס התימחורים

המספור המתקבל מקיים את התנאי של ספרנר! לכן קיים סימפלקסון מגוון.

לכן קיים תימחור שבו (בקירוב) כל שותף רוצה חדר אחר --> תימחור ללא קנאה. מימוש:

חלוקת-חדרים ללא קנאה: חישוב

הנחה: כל הדיירים הם קוואזיליניאריים.

הקלט: מטריצה $n \ge n \ge n$ המתארת את ערכי החדרים לכל אחד מהדיירים:

1	2	3	רדר →
v11	v12	v13	דייר 1
v21	v22	v23	דייר 2
v31	v32	v33	דייר 3

.p תימחור X, תימחור p.

:i, j אין קנאה: לכל שני שחקנים

$$V_i(X_i) - p(X_i) \ge V_i(X_j) - p(X_j)$$

קנאה וסכום-ערכים משפט 1: *בכל* השמה ללא קנאה, *סכום הערכים* של הדיירים בחדרים שהם גרים בהם הוא מקסימלי.

הוכחה (Sung and Vlach, 2004): תהי X,P השמת-חדרים ללא קנאה. תהיY השמה אחרת כלשהי. לפי הגדרת קנאה :i לדיירים קוואזיליניאריים, לכל

$$V_i(X_i) - P(X_i) \ge V_i(Y_i) - P(Y_i)$$

i נסכום על כל הדיירים, i בין i

$$\sum (V_i(X_i) - P(X_i)) \ge \sum (V_i(Y_i) - P(Y_i))$$

$$\sum V_i(X_i) - \sum P(X_i) \ge \sum V_i(Y_i) - \sum P(Y_i)$$

בשני הצדדים, סכום המחירים שווה למחיר הדירה:

$$\sum V_i(X_i) \ge \sum V_i(Y_i)$$

קנאה וסכום-ערכים

משפט 2: כל תימחור ללא קנאה יישאר ללא-קנאה לכל השמה ממקסמת-סכום-ערכים.

הוכחה (Sung and Vlach, 2004): תהי X,P השמת-חדרים ללא קנאה. לפי המשפט הקודם, X ממקסמת סכום ערכים. תהי Y השמה אחרת הממקסמת סכום ערכים:

$$\sum V_i(X_i) = \sum V_i(Y_i)$$
$$\sum [V_i(X_i) - P(X_i)] = \sum [V_i(Y_i) - P(Y_i)]$$

:i נתון ש-X ללא קנאה. לכן לפי הגדרת קנאה, לכל

$$V_i(X_i) - P(X_i) \ge V_i(Y_i) - P(Y_i)$$

: iלכן חייב להתקיים שיוויון בכל איבר --- לכל

$$V_{i}(X_{i}) - P(X_{i}) = V_{i}(Y_{i}) - P(Y_{i})$$

חלוקת-חדרים ללא קנאה: חישוב

מסקנה: האלגוריתם הבא מוצא חלוקת חדרים ללא קנאה:

א. מצא חלוקה כלשהי X הממקסמתסכום-ערכים;

ב. מצא תמחור p שאיתו החלוקה X ללא קנאה.

א. מיקסום סכום הערכים

מציאת השמה הממקסמת את סכום הערכים = מציאת שידוך עם משקל מקסימום בגרף דו-צדדי.

דוגמה:

סלון	חדר	מרתף	
35	40	25	דייר א
35	60	40	דייר ב
25	40	20	דייר ג

שידוך עם משקל מקסימום

: גרף דו-צדדי עם משקלים על הקשתות •

שידוך עם משקל מקסימום

• **הפלט**: שידוך מושלם שמשקלו גדול ביותר:

- **אלגוריתמים**: למשל "האלגוריתם ההונגרי".
 - .networkx יש מימוש בפייתון בספריה

ב. קביעת המחירים

- מצאנו השמה ממקסמת-ערכים. צריך לקבוע מחירים כך שההשמה תהיה ללא קנאה, וסכום המחירים יהיה שווה לשכר-הדירה. איך?
 - בעיית תיכנות ליניארי linear programming.

```
For all i, j:
```

```
w[d[i], i] - p[i] \ge w[d[i], j] - p[j]
```

- אפשר לפתור בעזרת cvxpy –