数理统计 冯伟 数学科学学院 wfeng_323@buaa.edu.cn

Γ分布族

若连续型 r.v X具有概率密度

$$f(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

则称X服从参数为 α , β 的 Γ 分布,记作 $X \sim \Gamma(\alpha,\beta)$ 其中α,β均为正常数,分别称为形状参数和尺度 工参数。 $\Gamma(\alpha) = \int_{0}^{+\infty} t^{\alpha-1} e^{-t} dt$ 是含参变量的广义积分。

当 $\alpha = n/2$, $\beta = 1/2$ 时, Γ 分布则是统计学中十分重要的 $\chi^2(n)$ 分布,其概率密度为

$$f(y) = \begin{cases} \frac{1}{2^{\frac{n}{2}}} y^{\frac{n}{2}-1} e^{-\frac{y}{2}}, & y > 0\\ \frac{2^{\frac{n}{2}}}{2} \Gamma(\frac{n}{2}) & y \le 0 \end{cases}$$

性质1 设 $X\sim\Gamma$ (α , β),则 $E(X)=\alpha/\beta$,D(X)= α/β^2 . 性质2 设 X_i ~ $\Gamma(\alpha_i, \beta)$, i=1,2,...,n,且 X_i 相互独立,则 $X_1+X_2+...+X_n\sim\Gamma(\alpha_1+$ $\alpha_2 + \ldots + \alpha_n, \beta$

$$X = (X_1, X_2, \dots, X_p)^T$$

多元正态分布族

定义 如果
$$p$$
维随机向量 (随机变量)
 $X = (X_1, X_2, \dots, X_p)^T$
(联合)概率密度函数为
 $f(x_1, x_2, \dots, x_p) = \frac{1}{(2\pi)^2 |V|^2} \exp\left\{-\frac{1}{2}(X - \mu)^T V^{-1}(X - \mu)\right\}$
则称随机向量 $X \to p$ 维正态随机向量,其中 μ

$$V > 0$$
.

多元正态分布的性质:

几种常用的统计量的分布

- ●正态总体样本的线性函数的分布
- → X²-分布
- ●t一分布
- ●F一分布

正态总体样本线性函数的分布

定理1 设总体 $X \sim N(\mu, \sigma^2)$, $(X_1, X_2, ..., X_n)$ 是总体的容量为n的样本,令

$$U=a_1x_1+a_2x_2+...+a_nx_n,$$

其中a₁,a₂,...,a_n是已知常数,则U也是正态随机变量,其均值、方差分别为

$$E(U) = \mu \sum_{i=1}^{n} a_i$$

$$D(U) = \sigma^2 \sum_{i=1}^{n} a_i^2$$

工 定理2 设总体 $X \sim N(\mu, \sigma^2)$, $(X_1, X_2, ..., X_n)$ 是总 工体的容量为n的样本, $A=(a_{ij})$ 是 $p\times n$ 阶矩阵。记 $T Y=(Y_1,Y_2,...,Y_p)'=A(X_1,X_2,...,X_n)', 则$ Γ $Y_1, Y_2, ..., Y_p$ 也是正态随机变量,其均值、方 差、协方差分别为 $E(Y_i) = \mu$ $Cov(Y_i, Y_i)$

$$E(Y_i) = \mu \sum_{i=1}^n a_{ij} \quad D(Y_i) = \sigma^2 \sum_{i=1}^n a_{ij}^2$$

$$Cov(Y_i, Y_j) = \sigma^2 \sum_{k=1}^n a_{ik} a_{jk}$$
■正交变换下的不变性

当 $\mu = 0$,且A是 $-n \times n$ 阶正交矩阵时,

 $TY_1, Y_2, ..., Y_p$ 也相互独立,且服从于 $N(0, \sigma^2)$

\mathcal{X}^2 分布

定义 设随机变量 $X_1, X_2, ..., X_n$ 相互独立且服 从N(0,1)分布,则称随机变量

$$\mathcal{X} = X_1^2 + X_2^2 + \dots + X_n^2$$

服从自由度为n的 \mathcal{X}^2 分布,记为 $\mathcal{X}^2 \sim \mathcal{X}^2(n)$

$$\chi^2 \sim \chi^2(n)$$

定理1 设随机变量 $\mathcal{X}^2 \sim \mathcal{X}^2(n)$,则 \mathcal{X}^2 的密度函数为

$$f(y) = \begin{cases} \frac{1}{2^{n/2}} \int_{0}^{\frac{n}{2}-1} e^{-\frac{y}{2}}, & y > 0\\ 2^{n/2} \Gamma(\frac{n}{2}) & y \le 0 \end{cases}$$

定理1的证明梗概:

-)首先写出随机向量 $(X_1,X_2,...,X_n)$ 的概率密度 函数;
- ▶ 其次利用随机向量的函数的分布的知识来直接 求 2²的分布函数(此时可利用积分变换显式 求到分布函数,再求导得到密度函数,或直接 用夹逼定理求到密度函数);
- 最后再利用Γ函数的性质和密度函数的性质确 定积分常数。

$$f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x_i^2)$$

 $=\left(\frac{1}{2\pi}\right)^{2} \exp(-\frac{1}{2}\sum_{i=1}^{n}x_{i}^{2})$

$$F(y) = P(\chi^{2} \le y)$$

$$= \frac{1}{(2\pi)^{n/2}} \int \dots \int_{\sum_{i=1}^{n} X_{i}^{2} \le y} \exp(-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}) dx_{1} dx_{2} \cdots dx_{n}$$

$$\begin{cases} x_1 = \rho \cos \theta_1 \cos \theta_2 \cdots \cos \theta_{n-1} \\ x_2 = \rho \cos \theta_1 \cos \theta_2 \cdots \sin \theta_{n-1} \\ \vdots \\ x_n = \rho \sin \theta_1 \end{cases}$$

$$P\{y < X_1^2 + X_2^2 + \dots + X_n^2 \le y + h\}$$

$$= \frac{1}{(2\pi)^{n/2}} \int \dots \int \exp(-\frac{1}{2} \sum_{i=1}^{n} x_i^2) dx_1 dx_2 \cdots dx_n$$

设G的体积为
$$\nabla V$$
,则
$$\frac{1}{(2\pi)^{n/2}} e^{-\frac{y+h}{2}} \nabla V \le P \left\{ y < X_1^2 + X_2^2 + \dots + X_n^2 \le y + h \right\}$$

$$\frac{1}{1} \leq \frac{1}{(2\pi)^{n/2}} e^{-\frac{y}{2}} \nabla V$$

 X_2 相互独立,则 $X_1+X_2\sim \mathcal{X}(n_1+n_2)$ 定理4 (Cochran) 设随机变量 $X_1,X_2,...,X_n$ 相互 独立且服从N(0,1)分布,又设 $Q_1+Q_2+...+Q_k=\sum\limits_{i=1}^n X_i^2$ 其中 Q_j 是秩为 n_j 的($X_1,X_2,...,X_n$)的非负定二 次型。则 Q_j 相互独立,且分别服从于自由 度为 n_j 的 \mathcal{X} 分布的充要条件是 $n_1+n_2+...+n_k=n$

定理2 设 $X \sim \mathcal{X}(n)$,则E(X)=n,D(X)=2n定理3 设 $X_1 \sim \mathcal{X}(n_1)$, $X_2 \sim \mathcal{X}(n_2)$, 且 X_1 与 X_2 相互独立,则 $X_1+X_2 \sim \mathcal{X}(n_1+n_2)$

定理5(抽样分布基本定理)设($X_1, X_2, ..., X_n$)

是来自总体 $N(\mu,\sigma^2)$ 的一个样本,则

(1) \overline{X} 与 S^2 相互独立;

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

注: 1. x 与 S²的独立性仅当总体分布为正态时才成立。当总体分布的三阶中心矩为零时,可以推出两者是不相关的。

2. x 服从精确的正态分布也只有在总体为正态分布时才成立。

- 特征函数
 ・ 定义 称随机变量 e^{itX} 的数学期望 $\phi(t)=Ee^{itX}$ 为 X的特征函数。
 ・ 随机变量的特征函数 $\phi(t)$ 是实变量t的复值函数,总是存在的,且与随机变量——对应。
 ・ 当X为连续型时, $\phi(t)=\int_{-\infty}^{\infty}e^{itx}f(x)dx$ ・ 当X为离散型时, $\phi(t)=\sum_{k=-\infty}^{\infty}e^{itx}p_k$, $p_k=P\{X=x_k\}$.

特征函数基本性质

- (1) $\phi(0) = 1, \phi(-t) = \phi(t), |\phi(t)| \le \phi(0) = 1;$
- (2) 特征函数在 $(-\infty, \infty)$ 上一致连续;
- (3) 若Y = aX + b, a, b是常数,则Y的特征函数, $\phi_{v}(t) = e^{ibt}\phi_{x}(at)$, 其中 $\phi_{x}(t)$ 是X的特征函数;
- (4) 两个相互独立的随机变量之和的特征函数
- 等于各个特征函数之积;
- (5) 两个分布函数相等当且仅当它们所对应的特征函数相等;

(6) 在F(x)的连续点a,b上,有

$$F(b) - F(a) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-iat} - e^{-ibt}}{it} \phi(t) dt;$$
(7) 函数 $\phi(t)$ 为特征函数的充要条件是:

- $\phi(t)$ 非负定,连续且 $\phi(0) = 1$;

11111

(8) 设随机变量X的n阶矩存在,则X的特征

 \mathbf{T} 函数 $\phi(t)$ 的k阶导数 $\phi^{(k)}(t)$ 存在,且

$$E(X^{k}) = i^{(-k)}\phi^{(k)}(0), (k \le n)$$

几个常见随机变量的特征函数

- \mathbf{T} (1) 设X服从两点分布,则其特征函数为 $\phi(t) = q + pe^{it}$;
- \mathbf{T} (2) 设X服从二项分布 $\mathbf{B}(n,p)$,则其特征函数为 $\phi(t) = (q + pe^{it})^n;$

(3) 设
$$X \sim U[-a,a]$$
, 则其特征函数为 $\phi(t) = \frac{\sin at}{at}$;

T(4)设X服从参数为 λ 的指数分布,则其特征函数为

$$\phi(t) = (1 - \frac{it}{\lambda})^{-1};$$

 $\phi(t) = (1 - \frac{it}{\lambda})^{-1};$ (5) 设 $X \sim N(\mu, \sigma^2)$, 则其特征函数为 $\phi(t) = e^{i\mu t - \frac{1}{2}\sigma^2 t^2};$

X²分布中几个定理的证明

• 定理2的证明:

$$E(X) = E(\sum_{i=1}^{n} X_i^2) = \sum_{i=1}^{n} E(X_i^2)$$

$$= \sum_{i=1}^{n} (D(X_i) + (E(X_i))^2) = n$$

$$D(X) = D(\sum_{i=1}^{n} X_i^2) = \sum_{i=1}^{n} D(X_i^2)$$

$$= \sum_{i=1}^{n} (E(X_i^4) - (E(X_i^2))^2) = 2n$$

这里用了 $E(X_i^4)=3$ 这个结果,大家自己验证。

引理 设 $X \sim \mathcal{X}(n)$,则X的特征函数为 $\phi(t)=(1-2it)^{-n/2}$.

• 定理3的证明:

由引理知, X_1 的特征函数为 $\phi_1(t)=(1-2it)^{\frac{n_1}{2}}$,

 X_2 的特征函数为 $\phi_2(t)=(1-2it)^{\frac{n_2}{2}}$.

由特征函数的性质,

 $X_1 + X_2$ 的特征函数为 $\phi(t) = \phi_1(t)\phi_2(t) = (1-2it)^{-(n_1+n_2)/2}$,

由一一对应性,知 $X_1 + X_2$ 服从自由度为 $n_1 + n_2$ 的 χ^2 分布。

• 定理2的又一证明: 根据引理及特征函数性质8 得 $E(X)=n, E(X^2)=n^2+2n,$ 所以D(X)=2n

t 一分布 • 定义 设 $X \sim N(0,1), Y \sim \mathcal{X}^2(n)$,且X和Y相互 独立,则称随机变量 $T = \frac{X}{\sqrt{Y/n}}$ 所服从的 分布是自由度为n的t分布,记为 $T \sim t(n)$. • 定理1 设 $T \sim t(n)$,则T的概率密度为 $f(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{t^2}{n})^{\frac{n+1}{2}}$

$$f(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{t^2}{n})^{-\frac{n+1}{2}}$$

定理2 设 $(X_1, X_2, ..., X_n)$ 是来自总体 $N(\mu, \sigma^2)$ 的一个样本,则有 $\frac{(\overline{X} - \mu)\sqrt{n}}{S} \sim t(n-1)$ 。

定理3 设 $(X_1, X_2, ..., X_m)$ 和 $(Y_1, Y_2, ..., Y_n)$ 是 分别来自总体 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$ 的样本,且假定它们相互独立,则有

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{(m-1)S_1^2 + (n-1)S_2^2}} \cdot \sqrt{\frac{mn(m+n-2)}{m+n}}$$

$$\sim t(m+n-2)$$

F一分布

定义 设随机变量X和Y是自由度分别为 n_1 和 n_2 的相互独立的X分布随机变量,则称随机变量

$$F = \frac{X/n_1}{Y/n_2}$$

所服从的分布为自由度是 (n_1,n_2) 的F分布,记为 $F\sim F(n_1,n_2)$. 其中 n_1 称为第一自由度, n_2 称为第二自由度。

定理1 设F~F(
$$n_1,n_2$$
),则F的概率密度为
$$f(y) = \begin{cases} \frac{\Gamma(\frac{n_1+n_2}{2})}{\Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2})} {\binom{n_1}{n_2}} {\binom{n_1}{n_2}} {\binom{n_1}{n_2}} y^{\frac{n_1-1}{2}} {\binom{1+\frac{n_1}{n_2}}{y}}^{\frac{n_1+n_2}{2}}, & y>0\\ 0, & y\leq 0 \end{cases}$$

定理2 若 $X/\sigma^2 \sim \mathcal{X}^2(n_1)$, $Y/\sigma^2 \sim \mathcal{X}^2(n_2)$, 且 相互独立,则 $F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2).$ 定理3 若 $X \sim F(n_1, n_2)$,则 $1/X \sim F(n_2, n_1)$. 定理4 若 $X \sim t(n)$, 则 $X^2 \sim F(1,n)$. 定理5 设 $(X_1, X_2, ..., X_m)$ 和 $(Y_1, Y_2, ..., Y_n)$ 是 分别来自总体 $N(\mu_1,\sigma_1^2)$ 和 $N(\mu_2,\sigma_2^2)$ 的样 本,且假定它们相互独立,则有 $F = \frac{S_1^2 \cdot \sigma_2^2}{S_2^2 \cdot \sigma_1^2} \sim F(n_1 - 1, n_2 - 1).$

定理6 设 $X_n \sim F(m,n)$,则当 $n \to \infty$ 时, $X_n \xrightarrow{L} \frac{1}{m} \chi_m^2$. 定理7 设随机变量 $X_1, X_2, ..., X_n$ 相互独立且服从 $N(0, \sigma^2)$,又设 $Q_1 + Q_2 + ... + Q_k = \sum_{i=1}^{n} X_i^2$ 其中 Q_i 是秩为 n_i 的 $(X_1, X_2, ..., X_n)$ 的非负定二 若 $n_1+n_2+...+n_k=n$,则 Q_i 相互独立,且 $F_{ij} = \frac{Q_i / n_i}{Q_i / n_j} \sim F(n_i, n_j).$

分位点(分位数)

定义1 设随机变量X的分布函数为F(x), $0<\alpha<1$,若 x_{α} 使

$$P\{X \leq x_{\alpha}\} = F(x_{\alpha}) = \alpha,$$

则称 x_{α} 为此概率分布的(下侧) α 分位点(或分位数)。

分位点(分位数)

- * 当 $X\sim N(0,1)$,将其分位点记为 u_{α} ,或 z_{α} .
- * 当 $X \sim \mathcal{X}(n)$,将其分位点记为 $\mathcal{X}_{\alpha}^{2}(n)$.
- * 当 $X \sim t(n)$,将其分位点记为 $t_{\alpha}(n)$.
- \Rightarrow 当 $X \sim F(m,n)$,将其分位点记为 $F_{\alpha}(m,n)$.

上面几类分位点的性质

- 1. $-z_{\alpha} = z_{1-\alpha}$, $-t_{\alpha}(n) = t_{1-\alpha}(n)$
- 2. $F_{\alpha}(m,n)=1/F_{1-\alpha}(n,m)$

非正态总体大样本的渐近分布

当样本容量n趋于无穷时,若统计量的分布 趋于一定的分布,则称后者为该统计量的极限 分布。它提供了统计推断的一种近似解法。原谓大样本指样本容量n>30,最好大于50或100. 分布。它提供了统计推断的一种近似解法。所

定理1 设总体X的分布函数为F(x),

$$E(X) = \mu_F, D(X) = \sigma_F^2, 0 < \sigma_F^2 < +\infty,$$

 $X_1, X_2, ..., X_n$ 为来自总体X的样本,则样本的

 $E(X) = \mu_F, D(X) = \sigma_F^2, 0$ $X_1, X_2, ..., X_n$ 为来自总体X的样况 均值的渐近分布为 $N(\mu_F, \frac{\sigma_F^2}{n})$.

定理2 设总体X的分布函数为F(x),

$$E(X) = \mu_F, D(X) = \sigma_F^2, 0 < \sigma_F^2 < +\infty,$$

 $X_1, X_2, ..., X_n$ 为来自总体X的样本,则

$$\sqrt{n} \frac{X_n - \mu_F}{S} \xrightarrow{L} N(0,1) \quad (n \to \infty)$$

定理3 设 $(X_{l},X_{2},...,X_{m})$ 与 $(Y_{l},Y_{2},...,Y_{n})$ 是来自总体 X与Y的两独立样本, $EX=\mu_{l},DX=\sigma_{l}^{2}$, $EY=\mu_{2},DY=\sigma_{2}^{2}$,则当n趋于无穷,m趋于无穷时有 $T=\frac{(\overline{X}-\overline{Y})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{S_{1}^{2}}{m}+\frac{S_{2}^{2}}{n}}} \xrightarrow{L} N(0,1)$

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}} \xrightarrow{L} N(0,1)$$

作业1. 设 $X\sim\Gamma(\alpha,\beta)$, 求D(X).

2. 证明抽样分布基本定理

