Bottom-up Parsing

• Classification:

 Each class marked by parser P corresponds to the set of grammars which can be analyzed by P

Bottom-up Parsing (ii)

Architecture similar to LL(1) parsing

- Possible actions (besides accept):
 - **1. Shift** current terminal from the front of the input to the top of the stack
 - **2.** Reduce a string α at the top of the stack to a nonterminal **A**, given the production $\mathbf{A} \to \alpha$

Bottom-up Parsing (iii)

 \bullet For technical reasons, G extended with new $\stackrel{axiom:\ S'}{\text{production:}\ S' \to S}$

Stack

1.
$$S \to S$$

$$S \to (S) S \mid \varepsilon$$

$$string = ()$$

\$	()\$	shift
\$()\$	$S \rightarrow \varepsilon$
\$ (S)\$	shift
\$ (S)	\$	$S \rightarrow \varepsilon$
\$ (S)S	\$	$S \rightarrow (S)S$
\$ S	\$	$S' \rightarrow S$
\$ S'	\$	accept

Input

Action

	$E' \rightarrow E$
2.	$E \rightarrow E + \mathbf{n} \mid \mathbf{n}$
~ .	

string = n + n

Stack	Input	Action
\$	n+n\$	shift
\$ n	+n \$	$E \rightarrow \mathbf{n}$
\$E	+n\$	shift
\$E+	n\$	shift
\$E+n	\$	$E \rightarrow E + \mathbf{n}$
\$E	\$	$E' \rightarrow E$
\$ E'	\$	accept

Bottom-up Parsing (iv)

	Stack	Input	Action		
1	\$	()\$	shift		
2	\$()\$	$S \rightarrow \varepsilon$		
3	\$ (S)\$	shift		
4	\$ (S)	\$	$S \rightarrow \varepsilon$		
5	\$(S) <mark>S</mark>	\$	$S \rightarrow (S) S$		
6	\$ <mark>S</mark>	\$	$S' \rightarrow S$		
7	\$ S'	\$	accept		
	(A)				

	Stack	Input	Action
1	\$	n+n\$	shift
2	\$ n	+n \$	$E \rightarrow \mathbf{n}$
3	<mark>\$E</mark>	+n \$	shift
4	\$E+	n\$	shift
5	\$E+n	\$	$E \rightarrow E + n$
6	<mark>\$</mark> E	\$	$E' \rightarrow E$
7	\$E'	\$	accept
		(B)	

Notes:

- 1. To choose the action, need to "look" below the top of the stack (internal prospection, unlike LL(1)) <u>Example</u>: (A) steps 5, 6: same top, but different reductions!
- 2. Arbitrary prospection within the stack: not a problem because stack built by the parser!
- 3. Action: depends not only on the stack but also on the current terminal <u>Example</u>: (B) steps 3, 6: same stack content, but different actions!
- 4. [Reductions] = Tracing in reverse order of a right canonical derivation $\langle (A): S' \Rightarrow S \Rightarrow (S)S \Rightarrow (S) \Rightarrow (S$
- 5. Stack+input = right sentential form \rightarrow list of symbols on the stack \equiv **viable prefix** of right sent. form

Bottom-up Parsing (v)

 Parser technique: shift of symbols from input to stack until possible a reduction corresponding to the previous sentential form

• Hence: α on top of the stack = $\langle \frac{\text{necessary}}{\text{insufficient}} \rangle$ condition for reduction $A \to \alpha$

Example: (A): $S \to \varepsilon \implies \alpha = \varepsilon$ is always on top of the stack!

Only reducible when stack+input = previous sentential form!

Step 3: (S) $S \rightarrow \epsilon \implies (SS)$ not a sentential form!

Bottom-up Parsing (vi)

$$E \rightarrow E + T \mid T$$
$$T \rightarrow T * \mathbf{n} \mid \mathbf{n}$$

$$n + n * n$$

$$E \Rightarrow E + T \Rightarrow E + T * n \Rightarrow E + n * n \Rightarrow T + n * n \Rightarrow n + n * n$$

- Shift \cong advance in input
- Reduction ≅ inverse derivation

Stack	Input	Action
\$	n+n*n\$	shift
\$ n	+n*n \$	$T \rightarrow \mathbf{n}$
\$ T	+n*n \$	$E \rightarrow T$
\$E	+n*n \$	shift
\$E+	n*n \$	shift
\$E+n	*n \$	$T \rightarrow \mathbf{n}$
\$E+T	*n \$	shift
\$E+T*	n \$	shift
\$E+T* n	\$	$T \rightarrow T * \mathbf{n}$
\$E+T	\$	$E \rightarrow E + T$
\$E	\$	accept

LR(0) Parsing

LR(0) item of G ≡ Production of G with a specified position in the RHS

<u>Intuitively</u>: "contextualized" production

$$E \rightarrow E$$
. + n

Generically: $A \rightarrow \alpha$, $\alpha = \beta \gamma$: $A \rightarrow \beta . \gamma$

$$S' \to S$$

$$S \to (S)S \mid \varepsilon$$

$$S \to (S)S$$

$$E' \rightarrow E$$

$$E \rightarrow E + \mathbf{n} \mid \mathbf{n}$$

$$E \rightarrow E + \mathbf{n}$$

$$E \rightarrow \mathbf{n}$$

 $E' \rightarrow E$

Intuitively: Item = representation of the recognition state of the RHS of a production

LR(0) Parsing (ii)

- LR(0) items organized in **NFA of items** = (Σ, S, T, s_0)
 - $\Sigma = \{ \text{ grammar symbols } \}$
 - □ LR(0) items = states of an NFA maintaining the state of recognition of a shift/reduce parser
 - □ Transitions = ?

terminal: shift of X on the stack
Possibilities: X virtual shift of X o

 $\label{eq:continuity} \text{ virtual shift of X on the stack, but following a reduction } X \to \eta:$ nonterminal: $\qquad \qquad \text{must be preceded by a recognition }$ $\textbf{. } \eta \text{ = initial state of such recognition }$

 $\implies \forall \text{ alternative } X \to \eta: \qquad A \to \beta X \delta \qquad \epsilon \qquad X \to \eta \qquad \text{(additional)}$

- □ Initial state? In theory: $S \rightarrow .\alpha$, but since $\exists \neq$ alternatives $\Longrightarrow S' \rightarrow .S$
- $_{\tt u} \not \equiv$ final states: aim of the automaton $< \frac{{\tt to maintain the state of bottom-up parsing not recognition of strings!}$

Examples of LR(0) Parsing

1.
$$S' \to S$$

$$S \to (S) S \mid \varepsilon$$

2.
$$E' \to E$$

$$E \to E + \mathbf{n} \mid \mathbf{n}$$

Transformation NFA → **DFA**

1.

Transformation NFA \rightarrow DFA (ii)

2.

sufficient to identify the state

Within state: distinction < kernel items = { states reached by non-empty transitions (or initial state) } closure items = { states reached by ε-closure }

LR(0) Parsing Algorithm

Note: Need to maintain within the stack the information on the state too ⇒

```
state (pairs)
```

```
Example:
                                   $0
                                                       n+n$
                                    $0n2
                                                         +n$
                     stack := $0; lookahead := first input symbol;
                     repeat
                                                                              /* s is a state */
                         s := Top(stack);
                         if A \rightarrow \beta.X\delta \in s and Terminal(X) then
                            Shift lookahead on the stack;
   shift item \blacktriangleleft if A' \rightarrow \beta'. X'\delta' \in s and Terminal(X') and X' = Top(stack) then
                               Push(s'), where s \stackrel{X'}{\rightarrow} s' is a transition in the DFA
                            else Error()
                         end-if:
reduce item \blacktriangleleft \cdots  if A \rightarrow \eta . \in S then
                            Reduce A \rightarrow \eta;
                            if A \rightarrow \eta = S' \rightarrow S then
                               if lookahead = $ then Accept else Error()
                            else
                                                                                      /* \eta is on top of the stack by construction */
                               Remove n with its states from the stack;
                                                                                       /* B \rightarrow \theta . A \delta \in s' */
                               s' := Top(stack);
                               Push(A); Push(s"), where s' \stackrel{A}{\rightarrow} s" is a transition in the DFA
                         end-if
                     until acceptance or error.
```

LR(0) Grammars

<u>Def</u>: G is LR(0) if the actions of the algorithm are unambiguous, that is, ∀ state of the DFA:

$$\not\exists \text{ conflict} \langle \begin{array}{ll} \text{shift/reduce:} & \text{s} \not\supseteq \{ A \to \alpha., \ B \to \delta.a\gamma \} \\ \text{reduce/reduce:} & \text{s} \not\supseteq \{ A \to \alpha., \ B \to \beta. \} \\ \end{array}$$

$$S' \rightarrow S$$

 $S \rightarrow (S) S \mid \varepsilon$

$$E' \rightarrow E$$
 $E \rightarrow E + \mathbf{n} \mid \mathbf{n}$

LR(0) Grammars (ii)

$$A' \rightarrow A$$

 $A \rightarrow (A) \mid \mathbf{a}$

((a))

	Stack	Input	Action
1	\$ 0	((a)) \$	shift
2	\$ 0 (3	(a)) \$	shift
3	\$ 0 (3 (3	a)) \$	shift
4	\$ 0 (3 (3 a2))\$	$A o \mathbf{a}$
5	\$ 0 (3 (3 A4))\$	shift
6	\$ 0 (3 (3 A4)5)\$	$A \rightarrow (A)$
7	\$ 0 (3 A4)\$	shift
8	\$ 0 (3 A4)5	\$	$A \rightarrow (A)$
9	\$ 0 A1	\$	accept

LR(0) Parsing Table

LR(0) algorithm: table-driven (automaton extended with actions \rightarrow parsing table)

State	Action	Production	Input		Goto	
			(а)	A
0	shift		3	2		1
1	reduce	$A' \rightarrow A$				
2	reduce	$A \rightarrow \mathbf{a}$				
3	shift		3	2		4
4	shift				5	
5	reduce	$A \rightarrow (A)$				

SLR(1) Parsing

- Sufficiently powerful for almost all constructs of PLs in use
- <u>Idea</u>: Exploitation of the next input symbol to decide which action to perform:

```
In 2 ways \langle before the shift before the reduction: FOLLOW(A): to decide whether to reduce A \to \alpha
```

```
stack := $0; lookahead := first input symbol;
repeat
                                                     /* s is a state */
   s := Top(stack);
   if A \to \beta. X \delta \in S and Terminal(X) and X = lookahead then
      Shift lookahead on the stack:
      Push(s'), where s \stackrel{X}{\rightarrow} s' is a transition in the DFA
   else if A \to \eta \cdot \in S and lookahead \in FOLLOW(A) then
      Reduce A \rightarrow n;
      if A \rightarrow \eta = S' \rightarrow S then
                                                           /* lookahead = \$, since FOLLOW(A) = \{ \$ \} */
        Accept
      else
         Remove \eta with its states from the stack; /* \eta is on top of the stack by construction */
                                                           /* B \rightarrow \theta . A \delta \in s' */
         s' := Top(stack);
         Push(A); Push(s''), where s' \xrightarrow{A} s'' is a transition in the DFA
   else Error()
until acceptance or error.
```

SLR(1) Grammars

<u>Def</u>: G is SLR(1) if \forall s of the DFA (unambiguous actions):

- 1. $\forall A \rightarrow \alpha . a\beta \in s$, Terminal(a) ($\nexists B \rightarrow \gamma . \in s (a \in FOLLOW(B))$);
- 2. $\forall A \rightarrow \alpha \in S, \forall B \rightarrow \beta \in S (FOLLOW(A) \cap FOLLOW(B) = \emptyset).$

$$S' \rightarrow S$$

 $S \rightarrow (S) S \mid \varepsilon$

$$FOLLOW(S') = \{ \$ \}$$

 $FOLLOW(S) = \{ \$, \} \}$
 $\{ \notin \{ \$, \} \}$

$$E' \to E$$

$$E \to E + \mathbf{n} \mid \mathbf{n}$$

$$FOLLOW(E') = \{ \$ \}$$

$$FOLLOW(E) = \{ +, \$ \}$$

$$\downarrow \downarrow$$

$$+ \notin \{ \$ \}$$

SLR(1) Grammars (ii)

polimorphic

State	Input			Goto
	()	\$	S
0	s2	$S \rightarrow \varepsilon$	$S \rightarrow \varepsilon$	1
1			accept	
2	s2	$S \rightarrow \varepsilon$	$S \rightarrow \varepsilon$	3
3		s4		
4	s2	$S \rightarrow \varepsilon$	$S \rightarrow \varepsilon$	5
5		$S \rightarrow (S)S$	$S \rightarrow (S)S$	

Stack	Input	Action
\$ 0	()()\$	shift
\$ 0 (2)()\$	$S \rightarrow \varepsilon$
\$ 0 (2 S3)()\$	shift
\$ 0 (2 S3)4	()\$	shift
\$ 0 (2 S3)4 (2)\$	$S \rightarrow \varepsilon$
\$ 0 (2 S3)4 (2 S3)\$	shift
\$ 0 (2 S3)4 (2 S3)4	\$	$S \rightarrow \varepsilon$
\$ 0 (2 S3)4 (2 S3)4 S5	\$	$S \rightarrow (S)S$
\$ 0 (2 S3)4 S5	\$	$S \rightarrow (S)S$
\$ 0 S1	\$	accept

()()

SLR(1) Grammars (iii)

$$E' \to E$$

$$E \to E + \mathbf{n} \mid \mathbf{n}$$

$$FOLLOW(E') = \{ \$ \}$$

 $FOLLOW(E) = \{ +, \$ \}$

n + n + n

State	Input			Goto
	n	+	\$	E
0	s2			1
1		s3	accept	
2		$E \rightarrow \mathbf{n}$	$E \rightarrow \mathbf{n}$	
3	s4			
4		$E \rightarrow E + \mathbf{n}$	$E \rightarrow E + \mathbf{n}$	

Stack	Input	Action
\$ 0	n+n+n\$	shift
\$ 0 n2	+n+n \$	$E \rightarrow \mathbf{n}$
\$0 E1	+n+n \$	shift
\$ 0 E1 +3	n+n\$	shift
\$ 0 E1 +3 n4	+n \$	$E \rightarrow E + \mathbf{n}$
\$ 0 E1	+n \$	shift
\$ 0 E1 +3	n \$	shift
\$ 0 E1 +3 n4	\$	$E \rightarrow E + \mathbf{n}$
\$ 0 E1	\$	accept

Disambiguating Rules for Parsing Conflicts

 $\bullet \ \, \textbf{Conflict} \langle \, \, \overset{\text{shift/reduce}}{\text{reduce/reduce}} \ \, \stackrel{\rightarrow}{\rightarrow} \ \, \overset{\text{Chosen the } \underline{\text{shift}}}{\text{Error in the design of G?}}$

• Example: shift/reduce conflict

```
stat 
ightarrow if\text{-}stat \mid other if\text{-}stat 
ightarrow if expr then stat \mid if expr then stat else stat expr 
ightarrow true \mid false
```

 \longrightarrow G ambiguous \rightarrow must \exists conflict somewhere!

abstraction (removal of *expr* and **then**)

$$S' \rightarrow S$$

 $S \rightarrow I \mid$ other
 $I \rightarrow$ if $S \mid$ if $S \in S$

$$FOLLOW(S') = \{ \$ \}$$

$$FOLLOW(S) = FOLLOW(I) = \{ \$, else \}$$

Disambiguating Rules for Parsing Conflicts (ii)

• State $5 < \frac{\text{Reduction on input} \in \{\$, \text{else}\}}{\text{Shift on input} = \text{else}}$ \implies Shift/reduce conflict on else! \implies chosen the shift

Disambiguating Rules for Parsing Conflicts (iii)

State	Input				Goto	
	if	else	other	\$	S	I
0	s4		s3		1	2
1				accept		
2		$S \rightarrow I$		$S \rightarrow I$		
3		$S \rightarrow$ other		$S \rightarrow$ other		
4	s4		s3		5	2
5		s6		$I \rightarrow \text{ if } S$		
6	s4		s3		7	2
7		$I \rightarrow \text{ if } S \text{ else } S$		$I \rightarrow \text{ if } S \text{ else } S$		

Disambiguating Rules for Parsing Conflicts (iv)

 $S' \rightarrow S$ $S \rightarrow I \mid$ other $I \rightarrow$ if $S \mid$ if $S \in S$

if if other else other

Stack	Input	Action
\$ 0	if if other else other \$	shift
\$ 0 if 4	if other else other \$	shift
\$0 if 4 if 4	other else other \$	shift
\$ 0 if 4 if 4 other 3	else other \$	$S \rightarrow$ other
\$ 0 if 4 if 4 <i>S</i> 5	else other \$	shift
\$ 0 if 4 if 4 <i>S</i> 5 else 6	other \$	shift
\$ 0 if 4 if 4 <i>S</i> 5 else 6 other 3	\$	$S \rightarrow$ other
\$ 0 if 4 if 4 <i>S</i> 5 else 6 S 7	\$	$I \rightarrow if \ S \ else \ S$
\$ 0 if 4 <i>I</i> 2	\$	$S \rightarrow I$
\$ 0 if 4 <i>S</i> 5	\$	$I \rightarrow \mathbf{if} S$
\$ 0 <i>I</i> 2	\$	$S \rightarrow I$
\$0 <i>S</i> 1	\$	accept

State	Input				Goto	
	if	else	other	\$	S	I
0	s4		s3		1	2
1				accept		
2		$S \rightarrow I$		$S \rightarrow I$		
3		$S \rightarrow$ other		$S \rightarrow$ other		
4	s4		s3		5	2
5		s6		$I \rightarrow \text{ if } S$		
6	s4		s3		7	2
7		$I \rightarrow \text{ if } S \text{ else } S$		$I \rightarrow \text{ if } S \text{ else } S$		

Limits of SLR(1) Parsing

Note: Actually, the reduce/reduce conflict is a false problem, caused by the myopia (low discrimination power) of SLR(1), since, within context of state 1, V cannot be followed by \$, but only by :=

need for contextual prospection!

Limits of SLR(1) Parsing (ii)

$$S' \rightarrow S$$

 $S \rightarrow \text{id} \mid V := E$
 $V \rightarrow \text{id}$
 $E \rightarrow V \mid \text{num}$

$$FOLLOW(S') = \{ \$ \}$$

 $FOLLOW(S) = \{ \$ \}$
 $FOLLOW(E) = \{ \$ \}$
 $FOLLOW(V) = \{ \$, := \}$

<u>Note</u>: Reduce item $A \rightarrow \eta$ in a state: <u>not</u> followed by <u>all</u> symbols in FOLLOW(A)

LR(1) Parsing

- In general, LR(1) too complex \rightarrow LALR(1) : maintains $\langle {}^{most\ power\ of\ LR(1)}_{efficiency\ of\ SLR(1)}$
- Pb of SLR(1): Applies lookahead symbols <u>after</u> constructing the DFA → context-free!
- ullet LR(1): Incorporates lookahead symbols within construction of DFA \to context-sensitive prospection!
- <u>Def</u>: LR(1) item of G = pair (LR(0) item, Lookahead symbol) = [A $\rightarrow \alpha$. β , a]
- <u>Def</u>: LR(1) transition:

1.
$$[A \rightarrow \alpha . X\gamma, a] \xrightarrow{X} [A \rightarrow \alpha X . \gamma, a]$$
 (X = grammar symbol)
2. $[A \rightarrow \alpha . B\gamma, a] \xrightarrow{\varepsilon} [B \rightarrow . \beta, b] \forall \langle \text{production } B \rightarrow \beta \text{symbol } b \in FIRST(\gamma a)$

Notes:

- 1. Better prospection of LR(1) wrt SLR(1) owing to: $FIRST(\gamma a) \subseteq FOLLOW(B)$
- 2. Initial state of NFA of LR(1) items = $[S' \rightarrow .S, \$]$

3.
$$\gamma = \varepsilon \implies [A \rightarrow \alpha . B, a] \xrightarrow{\varepsilon} [B \rightarrow . \beta, a]$$
 $[S' \rightarrow . S, \$] \xrightarrow{\varepsilon} [S \rightarrow ..., \$]$

LR(1) Parsing (ii)

Attention focused on closure items \rightarrow lookahead $\in FIRST(\gamma a)$

LR(1) Parsing (iii)

 Note: 10 states instead of 6 in LR(0) DFA → in general: even a difference of an order of magnitude! (hypertrophy of LR(1) DFA)

• Correspondence:

LR(0) state	LR(1) states
0	0
1	1
2	3, 6
3	2, 5
4	4, 8
5	7, 9

LR(1) Parsing Algorithm

```
stack := $0; lookahead := first input symbol;
repeat
  s := Top(stack):
   if [A \rightarrow \beta.X\delta, a] \in s and Terminal(X) and X = lookahead then
      Shift lookahead on the stack;
      Push(s'), where s \stackrel{X}{\rightarrow} s' is a transition in DFA
   else if [A \rightarrow \eta], a = s and lookahead = a then
      Reduce A \rightarrow \eta;
      if A \rightarrow n = S' \rightarrow S then
        Accept
      else
         Remove \eta with its states from the stack; /* \eta is on top of the stack by construction */
         s' := Top(stack);
        Push(A); Push(s"), where s' \rightarrow s" is a transition in DFA
   else Error()
until acceptance o error.
```

<u>Def</u>: G is LR(1) if \forall s of DFA (no conflicts):

- 1. $\forall [A \rightarrow \alpha.X\beta, a] \in s$, Terminal(X) ($[B \rightarrow \gamma., X] \notin s$);
- 2. \neg ([A \rightarrow α ., a] \in s, [B \rightarrow β ., a] \in s).

LR(1) Parsing Table

Invariance of morphology of parsing table → reduction in correspondence of the symbols indicated in LR(1) items

$$A' \rightarrow A$$

 $A \rightarrow (A) \mid a$

$$FOLLOW(A') = \{ \$ \}$$
$$FOLLOW(A) = \{ \$, \} \}$$

State	Input			Goto	
	(а)	\$	A
0	s2	s3			1
1				accept	
2	s5	s6			4
3				$A \rightarrow \mathbf{a}$	
4			s7		
5	s5	s6			8
6			$A o \mathbf{a}$		
7				$A \rightarrow (A)$	
8			s9		
9			$A \rightarrow (A)$		

LR(1) Grammar

 $S' \rightarrow S$ $S \rightarrow \text{id} \mid V := E$: not SLR(1) but LR(1)!

 $E \rightarrow V \mid \text{num}$

LR(1) Grammar (ii)

$FOLLOW(S') = \{ \$ \}$	
$FOLLOW(S) = \{ \$ \}$	
$FOLLOW(E) = \{ \$ \}$	
$FOLLOW(V) = \{ \$, = \}$	

id	:=	num
ıu	•	HUILI

State	Input			Goto			
	id	:=	num	\$	S	V	E
0	s2				1	3	
1				accept			
2		$V \rightarrow id$		$S \rightarrow id$			
3		s4					
4	s8		s7			6	5
5				$S \rightarrow V := E$			
6				$E \rightarrow V$			
7				$E \rightarrow num$			
8				$V \rightarrow id$			

Stack	Input	Action
\$ 0	id := num \$	shift
\$ 0 id 2	:= num \$	$V \rightarrow id$
\$ 0 V 3	:= num \$	shift
\$ 0 V 3 := 4	num \$	shift
\$0 V 3 := 4 num 7	\$	$E \rightarrow num$
\$0 V 3 := 4 E 5	\$	$S \rightarrow V := E$
\$ 0 S 1	\$	accept

LALR(1) Parsing

Note: Often, hypertrophy of DFA of LR(1) items caused by different states that share the set of LR(0) items, but differ in the lookahead symbol

Factorization of the <u>core</u> part (LR(0)) of the state \rightarrow aggregation of lookahead symbols

DFA(LALR(1)) = DFA(LR(0)) with the exception of the (new) lookahead part

Possible to specify DFA of **LALR(1) items** \equiv [A $\rightarrow \alpha$. β , { a₁, a₂, ..., a_n }]

LALR(1) Parsing (ii)

LALR(1) Parsing Algorithm

```
stack := $0; lookahead := first input symbol;
repeat
  s := Top(stack);
   if [A \rightarrow \beta.X\delta, \Lambda] \in s and Terminal(X) and X = lookahead then
      Shift lookahead on the stack:
      Push(s'), where s \stackrel{X}{\rightarrow} s' is a transition in DFA
   else if [A \rightarrow \eta], \Lambda \in S and lookahead \Lambda then
      Reduce A \rightarrow n;
      if A \rightarrow n = S' \rightarrow S then
        Accept
      else
         Remove \eta with its states from the stack; /* \eta is on top of the stack by construction */
         s' := Top(stack);
         Push(A); Push(s"), where s' \rightarrow s" is a transition in DFA
   else Error()
until acceptance or error.
```

<u>Def</u>: G is LALR(1) if \forall s of DFA:

- 1. $\forall [A \rightarrow \alpha.X\beta, \Lambda] \in S$, Terminal(X) $(\neg([B \rightarrow \gamma., \Lambda'] \in S, X \in \Lambda'))$;
- 2. $\neg ([A \rightarrow \alpha, \Lambda] \in S, [B \rightarrow \beta, \Lambda'] \in S, \Lambda \cap \Lambda' \neq \emptyset).$

Notes and Properties

- 1. May ∃ conflicts in LALR(1) which ∄ in LR(1) (<u>rare</u> in practice)
- 2. G is LR(1) → LALR(1) parsing table (which could include conflicts) cannot have shift/reduce conflicts

$$S \rightarrow \text{id} \mid V := E$$
 $V \rightarrow \text{id}$
 $E \rightarrow V \mid \text{num}$
not SLR(1) but LALR(1) \rightarrow DFA(LR(1)) = DFA(LALR(1)) (not factorizable)

3. If G is LALR(1) ⇒ G also LR(1): difference wrt LR(1) parsing = possible some spurious reductions before error declaration

4. Possible direct construction of LALR(1) DFA starting from LR(0) DFA