Also, do the assigned HW problems. This is just in addition to HW.

ALWAYS JUSTIFY YOUR ANSWER!

Computations

- 1. Let $G = S_6$. Let $\alpha = (12)(46)$.
 - (a) Find a conjugate of α .
 - (b) How many elements are there in the conjugacy class of α ?
- 2. Let $G = \mathbb{Z}_6$. Let x = 2.
 - (a) Find a conjugate of x.
 - (b) How many elements are there in the conjugacy class of x?
- 3. Let $G = \mathbb{Z}_6^{\times}$. Let x = 5.
 - (a) Find a conjugate of x.
 - (b) How many elements are there in the conjugacy class of x?
- 4. Let $G = \mathbb{D}_6 = \langle s, r \mid |s| = 2, |r| = 6, srs = r^5 \rangle$.
 - (a) Find a conjugate of s.
 - (b) How many elements are there in the conjugacy class of s?
- 5. Let $G = \mathbb{D}_6 = \langle s, r \mid |s| = 2, |r| = 6, srs = r^5 \rangle$.
 - (a) Find a conjugate of r.
 - (b) How many elements are there in the conjugacy class of r?
- 6. Let $G = \mathbb{D}_6 = \langle s, r \mid |s| = 2, |r| = 6, srs = r^5 \rangle$.
 - (a) Find a conjugate of r.
 - (b) How many elements are there in the conjugacy class of r?
- 7. Let $G = M_2(\mathbb{R})$ be the group of 2×2 matrices with entries in \mathbb{R} . Find the conjugate of matrix $X = \begin{bmatrix} 1 & -2 \\ 3 & 6 \end{bmatrix}$ by $A = \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$.
- 8. Let $G = Gl_2(\mathbb{R})$ be the group of 2×2 (multiplicatively) invertible matrices with entries in \mathbb{R} . Find the conjugate of matrix $X = \begin{bmatrix} 1 & -2 \\ 3 & 6 \end{bmatrix}$ by $A = \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$.

- 9. Let $G = S_4$.
 - (a) Find the subgroup $H = \langle (1342) \rangle$.
 - (b) Find the conjugate of H by $\beta = (14)$.
- 10. Let $G = S_4$.
 - (a) Find the subgroup A_4 of even permutations.
 - (b) Find the conjugate of A_4 by $\beta = (14)$ in G.
- 11. Consider the group \mathbb{Z}_{15} .
 - (a) Find the subgroup $H = \langle 3 \rangle$
 - (b) Find the conjugate of H by 4.
- 12. Consider the group \mathbb{Z}_{15}^{\times} .
 - (a) Find the subgroup $H = \langle 2 \rangle$
 - (b) Find the conjugate of H by 4.
- 13. Consider the group $G = \mathbb{D}_6 = \langle s, r \mid |s| = 2, |r| = 6, srs = r^5 \rangle$.
 - (a) Find the subgroup $H = \langle s \rangle$
 - (b) Find the conjugate of H by the identity e
 - (c) Find the conjugate of H by s
 - (d) Find the conjugate of H by r
 - (e) Find the conjugate of H by r^2
 - (f) Find the conjugate of H by r^3
 - (g) Find the conjugate of H by r^4
 - (h) Find the conjugate of H by r^5
 - (i) Find the conjugate of H by sr
 - (j) Find the conjugate of H by sr^2
 - (k) Find the conjugate of H by sr^3
 - (l) Find the conjugate of H by sr^4
 - (m) Find the conjugate of H by sr^5
 - (n) Find the conjugacy class of H

Practice Quiz 5

Theoretic Questions

- 14. Write the definition of Action of group on a set.
- 15. Write the definition of Orbit of a point.
- 16. Write the definition of Stabilizer.
- 17. Write the definition of Conjugacy class of an element.
- 18. Write the definition of Conjugacy class of a subgroup.
- 19. Write the definition of gHg^{-1} .

Proofs

- 20. Let H < G be a subgroup of G. Let $g \in G$. Prove that gHg^{-1} is a subgroup of G.
- 21. Let H < G be a subgroup of G. Let $h \in H$. Prove that $hHh^{-1} = H$.
- 22. Let H be a subgroup of an abelian group G. Prove that H is normal subgroup of G.
- 23. Prove that the center of a group is normal subgroup, i.e. Z(G) is normal subgroup in G.
- 24. Let H be a subgroup of a group G. Assume that H is contained in Z(G), the center of G. Prove that H is a normal subgroup of G.
- 25. Let G be a group with |G| = 25 acting on a set X. What are the possible sizes of orbits?
- 26. Let G be a group with |G| = 25 acting on a set X with |X| = 91. Prove that there must be a fixed point.
- 27. Let G be a group with |G| = 15 acting on a set X with |X| = 9. Prove that there must be at least 3 orbits.
- 28. Suppose x is conjugate to y and y is conjugate to z. Prove that x is conjugate to z.
- 29. Prove that a factor group of a cyclic group is cyclic.
- 30. Prove that any subgroup of an Abelian group is normal subgroup.

True -False - Sometimes

31. True -False - Sometimes

T F S - Let H be a subgroup of G. Then H is normal subgroup.

- T F S Let $G = (\mathbb{Z}_n, +_n)$, let H be a subgroup of G. Then H is normal subgroup.
- T F S Let H be a subgroup of G. Then $|H| = |gHg^{-1}|$ for all $g \in G$.
- T F S Let H be a subgroup of G. Then $H = gHg^{-1}$ for all $g \in G$.
- T F S Let H be a subgroup of an abelian group G. Then $H = gHg^{-1}$ for all $g \in G$.
- T F S Let G be a group of order |G| = 5 acting on a set X with |X| = 10. Then there is a fixed point.
- T F S Let G be a group of order |G| = 5. Let H < G. Then |H| = 1 or |H| = 5.
- T F S Let G be a group of order |G| = 10. Let C(x) be a conjugacy class. Then |C(x)| = 2.
- T F S Let G be a cyclic group of order |G| = 15. Let C(x) be a conjugacy class. Then |C(x)| = 2.
- T F S Let G be a group of order |G| = 15. Let C(x) be a conjugacy class. Then |C(x)| = 2.
- T F S Let G be a cyclic group of order |G| = 15. Let C(x) be a conjugacy class. Then |C(x)| = 1.
- T F S Let G be a group of order |G| = 150. Let C(x) be a conjugacy class. Then |C(x)| = 1.
- T F S Let G be a group. Let $g \in G$. Then $\langle g \rangle$ is normal subgroup.
- T F S Let $G = D_5$. Let $g \in G$. Then $\langle g \rangle$ is normal subgroup.
- T F S Let $G = S_5$. Let $g \in G$. Then $\langle g \rangle$ is normal subgroup.
- T F S Let $G = \mathbb{Z}_5$. Let $g \in G$. Then $\langle g \rangle$ is normal subgroup.

Examples

- 32. Give an example of a group and an element x such that it's conjugacy class C(x) has exactly one element. Prove your statement.
- 33. Give an example of a group and an element x such that it's conjugacy class C(x) has more then one element. Prove your statement.
- 34. Give an example of a group G and a subgroup H which is not isomorphic to all of its conjugates.
- 35. Give an example of a group G and a subgroup H which is isomorphic to all of its conjugates.
- 36. Describe all conjugacy classes in D_5 .
- 37. Describe all conjugacy classes in D_6 .