20104169 - SUMESH R

Importing Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2009.csv")
df
```

Mounted at /content/drive

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PM10	PM25	PXY	SO_2	тсн
0	2009- 10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	18.260000	NaN	NaN	5.55	NaN
1	2009- 10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	10.580000	NaN	NaN	8.84	NaN
2	2009- 10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	25.190001	NaN	NaN	6.98	NaN
3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.530001	6.82	1.30	8.88	1.38
4	2009- 10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	23.760000	NaN	NaN	7.82	1.41
215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.830000	7.15	0.74	6.25	1.25
215684	2009- 06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	9.920000	NaN	NaN	4.90	NaN
215685	2009- 06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	12.460000	6.77	NaN	8.40	1.34
215686	2009- 06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	13.030000	NaN	NaN	7.84	1.42
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.360000	11.61	0.83	6.93	1.34

215688 rows × 17 columns

Data Cleaning and Data Preprocessing

215667 0.29 28079006215683 0.22 28079024215687 0.32 28079099

```
In [3]:
df=df.dropna()
In [4]:
df.columns
Out[4]:
Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
      dtype='object')
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 24717 entries, 3 to 215687
Data columns (total 17 columns):
   Column
             Non-Null Count Dtype
              _____
    date
              24717 non-null object
              24717 non-null float64
24717 non-null float64
 1
   BEN
 2
    CO
 3
   EBE
              24717 non-null float64
 4 MXY
              24717 non-null float64
 5 NMHC
              24717 non-null float64
 6 NO 2
              24717 non-null float64
 7 NOx
              24717 non-null float64
 8 OXY
              24717 non-null float64
 9 0 3
              24717 non-null float64
 10 PM10
             24717 non-null float64
              24717 non-null float64
 11 PM25
              24717 non-null float64
 12 PXY
 13 SO 2
              24717 non-null float64
 14 TCH
              24717 non-null float64
              24717 non-null float64
 15 TOL
16 station 24717 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 3.4+ MB
In [6]:
data=df[['CO' ,'station']]
data
Out[6]:
       CO
            station
    3 0.33 28079006
   20 0.32 28079024
   24 0.24 28079099
   28 0.21 28079006
    45 0.30 28079024
215659 0.27 28079024
215663 0.35 28079099
```

Line chart

```
In [7]:
```

```
data.plot.line(subplots=True)
Out[7]:
array([<Axes: >, <Axes: >], dtype=object)
                                                                CO
   4
   2
      +2.8079e7
 100
  80
  60
                                                            station
  40
  20 -
                   50000
        0
                               100000
                                            150000
                                                          200000
```

Line chart

```
In [8]:
```

```
data.plot.line()
Out[8]:
<Axes: >

1e7

2.5 -
2.0 -
1.5 -
0.5 -
CO
station
```


Bar chart

```
In [9]:
```

b=data[0:50]

In [10]:

b.plot.bar()

Out[10]:

<Axes: >

Histogram

```
In [11]:
```

```
data.plot.hist()
```

Out[11]:

<Axes: ylabel='Frequency'>

Area chart

```
In [12]:
```

```
data.plot.area()
Out[12]:
<Axes: >

le7

2.5

1.0

0.5

CO

station
O.0
```

150000

200000

Box chart

50000

```
data.plot.box()
```

```
Out[13]:
```

In [13]:

<Axes: >

100000

Pie chart

In [14]:

```
b.plot.pie(y='station')
```

Out[14]:

<Axes: ylabel='station'>

Scatter chart

```
In [15]:
```

```
data.plot.scatter(x='CO', y='station')
```

Out[15]:

<Axes: xlabel='CO', ylabel='station'>

In [16]:

```
Z=/T/ HOH HUTT
    עונוע
                             LIUALUI
 2
    CO
             24717 non-null
                             float64
 3
    EBE
             24717 non-null float64
    MXY
             24717 non-null float64
 5
    NMHC
             24717 non-null float64
 6
   NO 2
             24717 non-null float64
 7
             24717 non-null float64
   NOx
 8
   OXY
             24717 non-null float64
 9
    0 3
             24717 non-null float64
10 PM10
             24717 non-null float64
11 PM25
             24717 non-null
             24717 non-null float64
12 PXY
             24717 non-null
13 SO 2
                            float64
14 TCH
             24717 non-null float64
             24717 non-null float64
15 TOL
16 station 24717 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 3.4+ MB
```

In [17]:

df.describe()

Out[17]:

	BEN	CO	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	
count	24717.000000	24717.000000	24717.000000	24717.000000	24717.000000	24717.000000	24717.000000	24717.000000	247
mean	1.010583	0.448056	1.262430	2.244469	0.219582	55.563929	92.907188	1.356536	
std	1.007345	0.291706	1.074768	2.242214	0.141661	38.911677	91.985352	1.078515	
min	0.170000	0.060000	0.250000	0.240000	0.000000	0.600000	2.250000	0.150000	
25%	0.460000	0.270000	0.720000	0.990000	0.140000	26.510000	33.009998	0.870000	
50%	0.670000	0.370000	1.000000	1.490000	0.190000	47.930000	67.010002	1.000000	
75%	1.180000	0.570000	1.430000	2.820000	0.260000	76.269997	124.699997	1.550000	
max	22.379999	5.570000	47.669998	56.500000	2.580000	477.399994	1438.000000	45.349998	1

In [18]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

```
In [19]:
```

```
sns.pairplot(df1[0:50])
```

Out[19]:

<seaborn.axisgrid.PairGrid at 0x7ca9ff22b4c0>

In [20]:

Out[20]:

<Axes: xlabel='station', ylabel='Density'>


```
In [21]:
```

```
sns.heatmap(df1.corr())
```

Out[21]:

<Axes: >

TO TRAIN THE MODEL AND MODEL BULDING

```
In [22]:
```

In [23]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [24]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

```
▼ LinearRegression
LinearRegression()
```

```
coeff=pd.DataFrame(lr.coef_, x.columns, columns=['Co-efficient'])
coeff
Out[26]:
       Co-efficient
  BEN
       -35.248500
   CO
       -29.921359
  EBE
         6.257394
  MXY
        -1.547774
NMHC
        -16.548767
 NO_2
        -0.181738
         0.205752
  NOx
  OXY
        14.358166
  0_3
         -0.004864
 PM10
        -0.046038
  PXY
        4.050908
 SO_2
        -0.319152
  TCH 115.664965
  TOL
        -1.301777
In [27]:
prediction =lr.predict(x_test)
```

In [25]:

Out[25]:

In [26]:

lr.intercept_

28078904.97239285

plt.scatter(y_test,prediction)

Out[27]:

<matplotlib.collections.PathCollection at 0x7ca9e66aa350>

40 20 60 80 +2.8079e7

```
ACCURACY
In [28]:
lr.score(x_test,y_test)
Out[28]:
0.2889123628906135
In [29]:
lr.score(x_train,y_train)
Out[29]:
0.28554354189040687
Ridge and Lasso
In [30]:
from sklearn.linear model import Ridge,Lasso
In [31]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[31]:
```

Accuracy(Ridge)

Ridge Ridge(alpha=10)

Lasso Taggo (alpha=10)

```
In [32]:
rr.score(x_test,y_test)
Out[32]:
0.2879116805035996
In [33]:
rr.score(x train,y train)
Out[33]:
0.28525424301646574
In [34]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[34]:
```

```
In [35]:
la.score(x train, y train)
Out[35]:
0.038150133782036466
Accuracy(Lasso)
In [36]:
la.score(x_test,y_test)
Out[36]:
0.035039526198036186
In [37]:
from sklearn.linear model import ElasticNet
en=ElasticNet()
en.fit(x train, y train)
Out[37]:
▼ ElasticNet
ElasticNet()
In [38]:
en.coef
Out[38]:
array([-7.04254528, -0.66218786, 0.29331947, 2.0809855, 0.
       -0.23706237, 0.13048947, 1.31448982, -0.16022722, 0.08861188,
       2.14157142, -0.80119548, 1.44566157, -2.00729612])
In [39]:
en.intercept
Out[39]:
28079064.76802195
In [40]:
prediction=en.predict(x test)
In [41]:
en.score(x_test,y_test)
Out[41]:
0.10297648164787698
Evaluation Metrics
In [42]:
```

паээс (атыпа-то) |

from sklearn import metrics

print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean squared error(y test,prediction))

```
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
35.80465613731044
1464.057773404086
38.2630078980219
Logistic Regression
In [43]:
from sklearn.linear model import LogisticRegression
In [44]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
target vector=df[ 'station']
In [45]:
feature_matrix.shape
Out [45]:
(24717, 14)
In [46]:
target vector.shape
Out[46]:
(24717,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit transform(feature matrix)
In [49]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs, target vector)
Out[49]:
        LogisticRegression
LogisticRegression(max iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079099]
In [52]:
logr.classes
Out[52]:
```

```
array([28079006, 28079024, 28079099])
In [53]:
logr.score(fs, target vector)
Out[53]:
0.8951733624630821
In [54]:
logr.predict proba(observation)[0][0]
Out[54]:
5.44720687651328e-13
In [55]:
logr.predict_proba(observation)
Out[55]:
array([[5.44720688e-13, 8.28693051e-44, 1.00000000e+00]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x train, y train)
Out [57]:
▼ RandomForestClassifier
RandomForestClassifier()
In [58]:
parameters={ 'max depth':[1,2,3,4,5],
            'min samples leaf':[5,10,15,20,25],
            'n estimators': [10,20,30,40,50]
In [59]:
from sklearn.model selection import GridSearchCV
grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
        RandomForestClassifier
In [60]:
grid search.best_score_
Out[60]:
0.8943989768966534
```

0.00100001

In [61]:

rfc_best=grid_search.best_estimator_

In [62]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5], feature_names=x.columns, class_names=['a','b','c','d'], filled=True)
```

Out[62]:

```
[Text(0.5, 0.9166666666666666, 'EBE <= 1.005 | ngini = 0.666 | nsamples = 10952 | nvalue = [534]
6, 5897, 6058]\nclass = c'),
 Text(0.25, 0.75, TOL \le 1.155 \text{ ngini} = 0.581 \text{ nsamples} = 6015 \text{ nvalue} = [1555, 5370, 2609]
\nclass = b'),
 Text(0.125, 0.583333333333334, 'OXY \leq 0.845\ngini = 0.277\nsamples = 2306\nvalue = [74]
  3072, 519] \nclass = b'),
  Text(0.0625, 0.41666666666666667, 'TCH <= 1.305 \ngini = 0.554 \nsamples = 390 \nvalue = [61]
, 195, 348]\c c'),
 Text(0.03125, 0.25, '0 3 <= 63.33\ngini = 0.302\nsamples = 98\nvalue = [26, 126, 2]\ncla
ss = b'),
 ss = a'),
 ass = b'),
 Text(0.09375, 0.25, 'SO 2 <= 6.465 \cdot 10^{-2} = 0.379 \cdot 10^{-2} =
class = c'),
  ss = b'),
 class = c'),
 Text(0.1875, 0.4166666666666666667, 'TCH <= 1.325 \ngini = 0.113 \nsamples = 1916 \nvalue = [1]
3, 2877, 171] \nclass = b'),
 Text(0.15625, 0.25, 'SO 2 <= 6.685 \cdot 10^{-1} = 0.024 \cdot 10^{-1} = 1130 \cdot 
nclass = b'),
  class = b'),
 class = b'),
  Text(0.21875, 0.25, 'NMHC \leq 0.185\ngini = 0.225\nsamples = 786\nvalue = [12, 1106, 150]
\nclass = b'),
  nclass = b'),
  class = b'),
  Text(0.375, 0.5833333333333334, 'OXY \leq 1.005\ngini = 0.656\nsamples = 3709\nvalue = [14]
81, 2298, 2090] \nclass = b'),
 414, 2216, 1108]\nclass = b'),
 Text(0.28125, 0.25, 'OXY \le 0.755 \text{ ngini} = 0.501 \text{ nsamples} = 900 \text{ nvalue} = [947, 187, 296]
nclass = a'),
 nclass = a'),
 \nclass = c'),
 Text(0.34375, 0.25, 'BEN \le 0.465 / gini = 0.544 / nsamples = 2107 / nvalue = [467, 2029, 812]
] \nclass = b'),
  \nclass = c'),
  87] \nclass = b'),
 82, 982] \ln s = c'),
 Text(0.40625, 0.25, 'NO 2 <= 25.735\ngini = 0.541\nsamples = 47\nvalue = [24, 45, 7]\ncl
ass = b'),
  ss = b'),
```

```
ss = a'),
  Text(0.46875, 0.25, 'OXY \leq 1.165\ngini = 0.143\nsamples = 655\nvalue = [43, 37, 975]\nc
lass = c'),
   nclass = c'),
   lass = c'),
   Text(0.75, 0.75, 'BEN \le 1.055 / gini = 0.56 / samples = 4937 / value = [3791, 527, 3449] / number | 1.055 / gini = 0.56 / samples = 4937 / number | 1.055 / gini = 0.56 / number | 1.055 / gini = 0.56 / number | 1.055 / number 
class = a'),
   Text(0.625, 0.5833333333333333, 'PXY \le 1.335 \mid 0.364 \mid samples = 2062 \mid value = [51]
4, 204, 2528]\nclass = c'),
   2, 125, 1435] \nclass = c'),
   Text(0.53125, 0.25, 'NMHC <= 0.105 / ngini = 0.548 / nsamples = 244 / nvalue = [234, 41, 123] / nvalue = [234, 41, 123] / nvalue = [234, 41, 123]
nclass = a'),
   class = a'),
   nclass = c'),
   Text(0.59375, 0.25, 'BEN <= 0.845\ngini = 0.325\nsamples = 1063\nvalue = [228, 84, 1312]
\nclass = c'),
   \nclass = c'),
   \nclass = c'),
   Text(0.6875, 0.4166666666666667, 'TCH <= 1.335 \ngini = 0.197 \nsamples = 755 \nvalue = [52]
, 79, 1093]\nclass = c'),
   Text (0.65625, 0.25, 'EBE \le 1.405 \text{ ngini} = 0.606 \text{ nsamples} = 24 \text{ nvalue} = [13, 17, 5] \text{ nclas}
s = b'),
   ss = b'),
   ss = a'),
   Text(0.71875, 0.25, 'CO \le 0.675 = 0.159 = 731 = [39, 62, 1088] = (0.71875, 0.25, 'CO \le 0.675 = 0.159 = 0.159 = 731 = [39, 62, 1088] = (0.71875, 0.25, 'CO \le 0.675 = 0.159 = 0.159 = 0.159 = 731 = [39, 62, 1088] = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71875, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 1088) = (0.71855, 0.25, 0.25, 1088) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25) = (0.71855, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,
lass = c'),
   nclass = c'),
   ass = b'),
   Text(0.875, 0.583333333333333, 'NMHC <= 0.195 | ngini = 0.428 | nsamples = 2875 | nvalue = [3]
277, 323, 921]\nclass = a'),
   Text(0.8125, 0.4166666666666667, 'TOL <= 4.485 \ngini = 0.166 \nsamples = 1265 \nvalue = [1]
833, 110, 69]\nclass = a'),
   Text(0.78125, 0.25, 'OXY <= 0.43 \cdot 10^{-10} = 0.607 \cdot 10^{-10} = 0.6
s = a'),
   = b'),
   lass = a'),
   Text(0.84375, 0.25, 'MXY \leq 1.45\ngini = 0.119\nsamples = 1181\nvalue = [1764, 77, 41]\n
class = a'),
   ss = c'),
   \noindent \noi
   444, 213, 852]\nclass = a'),
   Text(0.90625, 0.25, 'EBE \le 1.14 = 0.251 = 113 = [5, 21, 156] = [5, 21, 156]
ss = c'),
   s = b'),
   class = c'),
   Text(0.96875, 0.25, 'SO 2 <= 9.805 \cdot 10^{-1} = 0.521 \cdot 10^{-1} =
6] \nclass = a'),
   class = b'),
   15]\nclass = a')]
```


Conclusion

Accuracy

In [63]:

```
print("Linear Regression:",lr.score(x_test,y_test))
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.2889123628906135
Ridge Regression: 0.2879116805035996
Lasso Regression 0.035039526198036186
ElasticNet Regression: 0.10297648164787698
Logistic Regression: 0.8951733624630821
Random Forest: 0.8943989768966534

Logistic Regression is suitable for this dataset