Nagyenergiás nehézion-ütközések numerikus hidrodinamikai modellezése

Bagoly Attila ELTE TTK Fizika BSc, 3. évfolyam

> Témavezető: Csanád Máté

ELTE TTK Atomfizikai tanszék

Országos Tudományos Diákköri Konferencia 2015.04.16.

■ Nehézion ütközések: nagy energiasűrűség → kvark szabadsági fokok

Ősrobbanás: univerzum kvarkok és gluonok "őslevese"

■ Nehézion ütközések: nagy energiasűrűség → kvark szabadsági fokok

Kísérleti tapasztalat (2005): tökéletes folyadék

Ösrobbanás: univerzum kvarkok és

gluonok "őslevese"

- Nehézion ütközések: nagy energiasűrűség → kvark szabadsági fokok
 - Ösrobbanás: univerzum kvarkok és gluonok "őslevese"
 - Kísérleti tapasztalat (2005): tökéletes folyadék
- Statisztikus fizika

- Nehézion ütközések: nagy energiasűrűség
 → kvark szabadsági fokok
- Ösrobbanás: univerzum kvarkok és gluonok "őslevese"
- Kísérleti tapasztalat (2005): tökéletes folyadék
- Statisztikus fizika
- Kezdeti eloszlás: aszimmetriák
- Aszimmetriák: kifagynak a részecskék eloszlásában

Motiváció

Kvark-gluon plazma folyadékszerű viselkedésének következtében:

- hogyan hatnak különböző effektusok az aszimmetriák időfejlődésére
- analitikusan nem kezelhető effektusok

Motiváció

Kvark-gluon plazma folyadékszerű viselkedésének következtében:

- hogyan hatnak különböző effektusok az aszimmetriák időfejlődésére
- analitikusan nem kezelhető effektusok
- Numerikus hidrodinamika: realisztikus modell QGP-re, de minden effektus hatása keveredik

Motiváció

Kvark-gluon plazma folyadékszerű viselkedésének következtében:

- hogyan hatnak különböző effektusok az aszimmetriák időfejlődésére
- analitikusan nem kezelhető effektusok
- Numerikus hidrodinamika: realisztikus modell QGP-re, de minden effektus hatása keveredik
- Kezdőfeltétel: legyen közel létező analitikus megoldásokhoz, de realisztikusabb modellt adjon

Tartalom

- Hidrodinamika egyenletei
- Numerikus módszer
- 3 Kód tesztelése

Tartalom

- Hidrodinamika egyenletei
- Numerikus módszer
- 3 Kód tesztelése
- 4 Nemrelativisztikus eredmények
- 5 Relativisztikus eredmények
- 6 Kifagyás

Hidrodinamika egyenletei

- Nemrelativisztikus hidrodinamika:
 - lacksquare Anyagmegmaradás: $rac{\partial
 ho}{\partial t} + oldsymbol{
 abla}
 ho oldsymbol{ ext{v}} = 0$
 - Impulzusmegmaradás:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla \rho + \mu \Delta \mathbf{v} + \left(\zeta + \frac{\mu}{3}\right)\nabla(\nabla \mathbf{v}) + \mathbf{f}$$

- lacktriangledown Energiamegmaradás: $rac{\partial arepsilon}{\partial t} + oldsymbol{
 abla} arepsilon oldsymbol{ ext{v}} = p oldsymbol{
 abla} oldsymbol{ ext{v}} + oldsymbol{
 abla} (\sigma oldsymbol{ ext{v}})$
- $m{\rho}$ anyagsűrűség, $m{v}$ sebességmező, $m{\varepsilon}$ energiasűrűség, $m{p}$ nyomáseloszlás

Hidrodinamika egyenletei

- Nemrelativisztikus hidrodinamika:
 - lacksquare Anyagmegmaradás: $rac{\partial
 ho}{\partial t} + oldsymbol{
 abla}
 ho oldsymbol{ ext{v}} = 0$
 - Impulzusmegmaradás:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla \rho + \mu \Delta \mathbf{v} + \left(\zeta + \frac{\mu}{3}\right)\nabla(\nabla \mathbf{v}) + \mathbf{f}$$

- lacktriangledown Energiamegmaradás: $rac{\partial arepsilon}{\partial t} + oldsymbol{
 abla} arepsilon oldsymbol{ ext{v}} = p oldsymbol{
 abla} oldsymbol{ ext{v}} + oldsymbol{
 abla} (\sigma oldsymbol{ ext{v}})$
- ${\color{red} \blacksquare} \ \rho$ anyagsűrűség, ${\color{red} {\bf v}}$ sebességmező, ε energiasűrűség, p nyomáseloszlás
- Állapotegyenlet: $\varepsilon = \kappa(T)p$ $(\kappa = 1/c_s^2, \kappa = 3/2 \text{ id. gáz})$

Hidrodinamika egyenletei

- Nemrelativisztikus hidrodinamika:
 - lacksquare Anyagmegmaradás: $rac{\partial
 ho}{\partial t} + oldsymbol{
 abla}
 ho oldsymbol{ ext{v}} = 0$
 - Impulzusmegmaradás:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v}\right) = -\nabla \rho + \mu \Delta \mathbf{v} + \left(\zeta + \frac{\mu}{3}\right)\nabla(\nabla \mathbf{v}) + \mathbf{f}$$

- lacktriangledown Energiamegmaradás: $rac{\partial arepsilon}{\partial t} + oldsymbol{
 abla} arepsilon oldsymbol{ ext{v}} = -p oldsymbol{
 abla} oldsymbol{ ext{v}} + oldsymbol{
 abla} (\sigma oldsymbol{ ext{v}})$
- $m{\rho}$ anyagsűrűség, $m{v}$ sebességmező, $m{\varepsilon}$ energiasűrűség, $m{p}$ nyomáseloszlás
- Állapotegyenlet: $\varepsilon = \kappa(T)p$ $(\kappa = 1/c_s^2, \kappa = 3/2 \text{ id. gáz})$
- Relativisztikus hidrodinamika:

$$T^{\mu\nu} = (\varepsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu}, \quad \partial_{\mu} T^{\mu\nu} = 0$$

- lacktriangle energia-impulzus tenzor, u^μ négyes-sebesség, $g^{\mu\nu}$ metrikus tenzor
- lacksquare Advekciós forma: $\partial_t Q_i + \partial_x F_i(Q) + \partial_y G_i(Q) + \partial_z K_i(Q) = 0$

lacktriangle Midrapiditás: eloszlások maximum, "plató" ightarrow 2+1 dimenzió

- lacktriangle Midrapiditás: eloszlások maximum, "plató" ightarrow 2+1 dimenzió
- $lue{}$ Numerikus megoldás: diszkretizáció \leftarrow véges térfogat módszer

- lacktriangle Midrapiditás: eloszlások maximum, "plató" ightarrow 2+1 dimenzió
- lacktriangle Numerikus megoldás: diszkretizáció \leftarrow véges térfogat módszer
- Probléma: fluxusok a rácspontok között

- lacktriangle Midrapiditás: eloszlások maximum, "plató" ightarrow 2+1 dimenzió
- lacksquare Numerikus megoldás: diszkretizáció \leftarrow véges térfogat módszer
- Probléma: fluxusok a rácspontok között
- Instabilitás: $Q_i + Ae^{-i\mathbf{k}\Delta\mathbf{x}} \rightarrow \mathsf{CFL}$ feltétel (pl. $C = u\Delta t/\Delta x < 1$)

- lacktriangle Midrapiditás: eloszlások maximum, "plató" ightarrow 2+1 dimenzió
- lacktriangle Numerikus megoldás: diszkretizáció \leftarrow véges térfogat módszer
- Probléma: fluxusok a rácspontok között
- Instabilitás: $Q_i + Ae^{-i\mathbf{k}\Delta\mathbf{x}} \rightarrow \mathsf{CFL}$ feltétel (pl. $C = u\Delta t/\Delta x < 1$)
- 2 térdimenziót bonyolult → operátor szétválasztás

- lacktriangle Midrapiditás: eloszlások maximum, "plató" ightarrow 2+1 dimenzió
- Numerikus megoldás: diszkretizáció ← véges térfogat módszer
- Probléma: fluxusok a rácspontok között
- Instabilitás: $Q_i + Ae^{-i\mathbf{k}\Delta\mathbf{x}} \rightarrow \mathsf{CFL}$ feltétel (pl. $C = u\Delta t/\Delta x < 1$)
- $lue{}$ 2 térdimenziót bonyolult ightarrow operátor szétválasztás
- Viszkozitás: ideális fluxus + viszkózus fluxus

lacksquare -edik előrejelzett fiktív értékek: $Q_i^{(\ell)}$, $F_i^{(\ell)} \equiv F(Q_i^{(\ell)})$

- ℓ -edik előrejelzett fiktív értékek: $Q_i^{(\ell)}$, $F_i^{(\ell)} \equiv F(Q_i^{(\ell)})$
- Kezdetben: $Q_i^{(0)} \equiv Q_i^n$, $Q_{i+1}^{(0)} \equiv Q_{i+1}^n$

- lacksquare -edik előrejelzett fiktív értékek: $Q_i^{(\ell)}$, $F_i^{(\ell)} \equiv F(Q_i^{(\ell)})$
- Kezdetben: $Q_i^{(0)} \equiv Q_i^n$, $Q_{i+1}^{(0)} \equiv Q_{i+1}^n$
- Köztes érték és fluxus:

$$Q_{i+\frac{1}{2}}^{(\ell)} = \frac{1}{2} \left[Q_i^{(\ell)} + Q_{i+1}^{(\ell)} \right] - \frac{1}{2} \frac{\Delta t}{\Delta x} \left[F_{i+1}^{(\ell)} - F_i^{(\ell)} \right], \quad F_M^{(\ell)} \equiv F(Q_{i+\frac{1}{2}}^{(\ell)})$$

Korrigált cellaközi fluxus:

$$F_{i+\frac{1}{2}}^{(\ell)} = \frac{1}{4} \left[F_{i+1}^{(\ell)} + 2F_{M}^{(\ell)} + F_{i}^{(\ell)} - \frac{\Delta x}{\Delta t} \left(Q_{i+1}^{(\ell)} - Q_{i}^{(\ell)} \right) \right]$$

Bagoly Attila (ELTE)

- lacksquare ℓ -edik előrejelzett fiktív értékek: $Q_i^{(\ell)}$, $F_i^{(\ell)} \equiv F(Q_i^{(\ell)})$
- Kezdetben: $Q_i^{(0)} \equiv Q_i^n$, $Q_{i+1}^{(0)} \equiv Q_{i+1}^n$
- Köztes érték és fluxus:

$$Q_{i+\frac{1}{2}}^{(\ell)} = \frac{1}{2} \left[Q_i^{(\ell)} + Q_{i+1}^{(\ell)} \right] - \frac{1}{2} \frac{\Delta t}{\Delta x} \left[F_{i+1}^{(\ell)} - F_i^{(\ell)} \right], \quad F_M^{(\ell)} \equiv F(Q_{i+\frac{1}{2}}^{(\ell)})$$

Korrigált cellaközi fluxus:

$$F_{i+\frac{1}{2}}^{(\ell)} = \frac{1}{4} \left[F_{i+1}^{(\ell)} + 2F_{M}^{(\ell)} + F_{i}^{(\ell)} - \frac{\Delta x}{\Delta t} \left(Q_{i+1}^{(\ell)} - Q_{i}^{(\ell)} \right) \right]$$

Következő előrejelzés a korrigált fluxusok meghatározásához:

$$Q_{i}^{(\ell+1)} = Q_{i}^{(\ell)} - \frac{\Delta t}{\Delta x} \left[F_{i+\frac{1}{2}}^{(\ell)} - F_{i}^{(\ell)} \right]$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

7 / 20

- ℓ -edik előrejelzett fiktív értékek: $Q_i^{(\ell)}$, $F_i^{(\ell)} \equiv F(Q_i^{(\ell)})$
- Kezdetben: $Q_i^{(0)} \equiv Q_i^n$, $Q_{i+1}^{(0)} \equiv Q_{i+1}^n$
- Köztes érték és fluxus:

$$Q_{i+\frac{1}{2}}^{(\ell)} = \frac{1}{2} \left[Q_i^{(\ell)} + Q_{i+1}^{(\ell)} \right] - \frac{1}{2} \frac{\Delta t}{\Delta x} \left[F_{i+1}^{(\ell)} - F_i^{(\ell)} \right], \quad F_M^{(\ell)} \equiv F(Q_{i+\frac{1}{2}}^{(\ell)})$$

Korrigált cellaközi fluxus:

$$F_{i+\frac{1}{2}}^{(\ell)} = \frac{1}{4} \left[F_{i+1}^{(\ell)} + 2F_{M}^{(\ell)} + F_{i}^{(\ell)} - \frac{\Delta x}{\Delta t} \left(Q_{i+1}^{(\ell)} - Q_{i}^{(\ell)} \right) \right]$$

Következő előrejelzés a korrigált fluxusok meghatározásához:

$$Q_{i}^{(\ell+1)} = Q_{i}^{(\ell)} - \frac{\Delta t}{\Delta x} \left[F_{i+\frac{1}{2}}^{(\ell)} - F_{i}^{(\ell)} \right]$$

- $k \text{ lépés} \to F_{i+\frac{1}{2}} = F_{i+\frac{1}{2}}^{(k)}$
- A módszer publikálva: É. F. Toro et al, 2006, J. Comp. Phys

Kód tesztelése

- Relativisztikus esetben: Iu. A. Karpenko által írt programmal
- Nemrelativisztikus esetben: egzakt megoldással (Csörgő et al, PhysRevC67):

$$s = \frac{x^2}{X^2(t)} + \frac{y^2}{Y^2(t)}$$

$$\rho = \rho_0 \frac{V_0}{V} e^{-s}, \quad p = p_0 \left(\frac{V_0}{V}\right)^{1 + \frac{1}{\kappa}} e^{-s}$$

$$\mathbf{v}(t, \mathbf{r}) = \left(\frac{\dot{X}}{X}x, \frac{\dot{Y}}{Y}y\right)$$

$$\ddot{X}X = \ddot{Y}Y = \frac{T_i}{m} \left(\frac{V_0}{V}\right)^{\frac{1}{\kappa}}, \quad V = X(t)Y(t)$$

Kód tesztelése

- Teszt: egzakt megoldással (Csörgő et al, PhysRevC67)
- Relatív hiba a numerikus és analitikus megoldás közt:

$$\int |\rho_{\text{analitikus}}(t,\underline{x}) - \rho_{\text{numerikus}}(t,\underline{x})|d^2x / \int \rho_{\text{analitikus}}(t,\underline{x})d^2x$$

Bagoly Attila (ELTE)

Numerikus hidrodinami

2015.04.16.

Kezdőfeltétel

Skálaváltozó:

$$s = \frac{r^2}{R^2} \Big(1 + \epsilon_2 \cos(2\phi) + \epsilon_3 \cos(3\phi) + \epsilon_4 \cos(4\phi) \Big)$$

 $\epsilon_2 = 0.8, \ \epsilon_3 = 0, \ \epsilon_4 = 0 \quad \ \epsilon_2 = 0.8, \ \epsilon_3 = 0.5, \ \epsilon_4 = 0 \quad \ \epsilon_2 = 0.8, \ \epsilon_3 = 0.5, \ \epsilon_4 = 0.4$

- lacksquare Számsűrűség és nyomás $lpha \exp\left(-s
 ight)$
- Sebesség: Hubble-sebességmező vagy 0

4□ > 4□ > 4 = > 4 = > = 90

Kezdőfeltétel

Skálaváltozó:

$$s = \frac{r^2}{R^2} \Big(1 + \epsilon_2 \cos(2\phi) + \epsilon_3 \cos(3\phi) + \epsilon_4 \cos(4\phi) \Big)$$

 $\epsilon_2 = 0.8, \ \epsilon_3 = 0, \ \epsilon_4 = 0$ $\epsilon_2 = 0.8, \ \epsilon_3 = 0.5, \ \epsilon_4 = 0$ $\epsilon_2 = 0.8, \ \epsilon_3 = 0.5, \ \epsilon_4 = 0.4$

- Számsűrűség és nyomás $\propto \exp(-s)$
- Sebesség: Hubble-sebességmező vagy 0
- Nyomásgradiens vizsgálata: $p \propto \exp\left(-c_{\rm p} \cdot {\rm s}\right)$
- Konstans nyomással analitikus megoldás: Csanád és Szabó, Phys.Rev. C90 (2014) 054911

Aszimmetriák jellemzése

- Skálaváltozó: $s=\frac{r^2}{R^2}\big(1+\epsilon_2\cos(2\phi)+\epsilon_3\cos(3\phi)+\epsilon_4\cos(4\phi)\big)$
- lacktriangle Aszimmetriát jellemző paraméter: $arepsilon_n = \langle \cos(n\phi)
 angle_{
 ho/\mathbf{v}/p}$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Aszimmetriák jellemzése

- Skálaváltozó: $s=\frac{r^2}{R^2}\big(1+\epsilon_2\cos(2\phi)+\epsilon_3\cos(3\phi)+\epsilon_4\cos(4\phi)\big)$
- Aszimmetriát jellemző paraméter: $\varepsilon_n = \langle \cos(n\phi) \rangle_{\rho/\mathbf{v}/p}$
- ullet ϵ_n (most bevezetett) $eq \epsilon_m$ (kezdőfeltétel skálaváltozójában)

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 2 9 9 9 0 0

Aszimmetriák jellemzése

- Skálaváltozó: $s=\frac{r^2}{R^2}\big(1+\epsilon_2\cos(2\phi)+\epsilon_3\cos(3\phi)+\epsilon_4\cos(4\phi)\big)$
- lacksquare Aszimmetriát jellemző paraméter: $arepsilon_n = \langle \cos(n\phi)
 angle_{
 ho/\mathbf{v}/
 ho}$
- ullet ϵ_n (most bevezetett) $eq \epsilon_m$ (kezdőfeltétel skálaváltozójában)
- Kezdetben a ε_n és ε_m közti kapcsolatot becsülhetjük Taylor-sorfejtéssel:
 - Megjelenik: $\varepsilon_1 = 0 + \epsilon_3(\epsilon_2 + \epsilon_4) + \mathcal{O}(\epsilon^4)$
 - lacksquare befolyásolja: $arepsilon_2 = -\epsilon_2 + \epsilon_2 \epsilon_4 + \epsilon_2 \sum_n \epsilon_n^2 + \mathcal{O}(\epsilon^4)$
 - $\epsilon_3 = -\epsilon_3 + \epsilon_3 \sum_n \epsilon_n^2 + \mathcal{O}(\epsilon^4)$
 - ϵ_2 is létrehoz: $\epsilon_4 = -\epsilon_4 + \frac{1}{2}\epsilon_2^2 \epsilon_4 \sum_n \epsilon_n^2 + \mathcal{O}(\epsilon^4)$

Viszkozitás hatása

- Energiasűrűségben és anyagsűrűségben: lassít
 - Viszkozitás: lassítja az áramlást

• Ábra: ε_1 piros, ε_2 zöld, ε_3 kék, ε_4 magenta

Bagoly Attila (ELTE)

Viszkozitás hatása

- Energiasűrűségben és anyagsűrűségben: lassít
 - Viszkozitás: lassítja az áramlást
- Sebességeloszlásban: gyorsít
 - Nagyobb, kisebb aszimmetriájú részek más erőt éreznek: különbségek gyorsan eltűnnek
- Ábra: ε_1 piros, ε_2 zöld, ε_3 kék, ε_4 magenta

Bagoly Attila (ELTE)

Viszkozitás hatása: energiasűrűség időfejlődése

Viszkozitás hatása: sebességeloszlás időfejlődése

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト 9 Q G

Hangsebesség hatása

- Minden eloszlásban: aszimmetriák eltűnése lassul
 - lacktriangle Nyomáshullámok sebessége csökken ightarrow kiegyenlítődés tovább tart
- Hangsebességek: $c_s^2 = 1 \text{ vagy } 0,4 \text{ vagy } 0,33 \text{ vagy } 0,25$

2015.04.16.

Nyomásgradiens hatása

- Minden eloszlásban: aszimmetriák gyorsabban eltűnnek
 - Nagyobb gradiens: gyorsabb áramlás
- Anyagsűrűség $\propto \exp(-s)$
- Nyomás $\propto \exp(-c_e \cdot s)$

Hangsebesség hatása

- Minden eloszlásban: aszimmetriák eltűnése lassul
 - lacktriangle Nyomáshullámok sebessége csökken ightarrow kiegyenlítődés tovább tart

Hangsebesség hatása

- Minden eloszlásban: aszimmetriák eltűnése lassul
 - lacktriangle Nyomáshullámok sebessége csökken ightarrow kiegyenlítődés tovább tart
- Kifagyás máskor történik!

Nyomásgradiens hatása

- Minden eloszlásban: aszimmetriák gyorsabban eltűnnek
 - Nagyobb gradiens: gyorsabb áramlás
- Számsűrűség $\propto \exp(-s)$
- Nyomás $\propto \exp(-c_p \cdot s)$

Kifagyás

■ Maxwell-Jüttner típusú forrásfüggvény:

$$S(x,p)d^4x = \mathcal{N}n(x) \exp\left(-\frac{p_\mu u^\mu}{T(x)}\right) H(\tau) p_\mu d^3 \frac{u_\mu d^3 x}{u^0} d\tau$$

Kifagyás

Maxwell-Jüttner típusú forrásfüggvény:

$$S(x,p)d^4x = \mathcal{N}n(x) \exp\left(-\frac{p_\mu u^\mu}{T(x)}\right) H(\tau) p_\mu d^3 \frac{u_\mu d^3 x}{u^0} d\tau$$

Mérhető mennyiségek:

$$v_n(p_t) = \langle \cos(n\varphi) \rangle_N = \frac{1}{N(p_t)} \int_0^{2\pi} N(p_t, \varphi) \cos(n\varphi) d\varphi$$

- Impulzustérbeli aszimmetriák:
 erősen függés a hangsebességtől
- Hangsebességre érzékeny: kifagyás ideje

- Motiváció: egyszerű effektusok, hogyan befolyásolják az aszimmetriák időfejlődését
- Analitikus tárgyalásra kevés az esély, ezért numerikus módszert alkalmaztunk

- Motiváció: egyszerű effektusok, hogyan befolyásolják az aszimmetriák időfejlődését
- Analitikus tárgyalásra kevés az esély, ezért numerikus módszert alkalmaztunk
- Kezdőfeltétel hasonló a már létező analitikus megoldásokhoz, de realisztikusabb

- Motiváció: egyszerű effektusok, hogyan befolyásolják az aszimmetriák időfejlődését
- Analitikus tárgyalásra kevés az esély, ezért numerikus módszert alkalmaztunk
- Kezdőfeltétel hasonló a már létező analitikus megoldásokhoz, de realisztikusabb
- A viszkozitás lassabbá teszi az anyag- és energiasűrűségben számolt aszimmetriák időfejlődését, sebességeloszlásban gyorsabbá

- Motiváció: egyszerű effektusok, hogyan befolyásolják az aszimmetriák időfejlődését
- Analitikus tárgyalásra kevés az esély, ezért numerikus módszert alkalmaztunk
- Kezdőfeltétel hasonló a már létező analitikus megoldásokhoz, de realisztikusabb
- A viszkozitás lassabbá teszi az anyag- és energiasűrűségben számolt aszimmetriák időfejlődését, sebességeloszlásban gyorsabbá
- Hangsebesség csökkentése lassítja az aszimmetriák időfejlődését, kifagyás később következik be

Köszönöm a figyelmet!

Relativisztikus és nemrelativisztikus hidrodinamika összehasonlítása

- Relativisztikus eset: lassabban tűnik el az asszimmetria
- Nemrelativisztikus eset: sebességmezőben nagyobb aszimmetria alakul ki

Bagoly Attila (ELTE) Numerikus hidrodinamika 2015.04.16.

20 / 20

Relativisztikus és nemrelativisztikus hidrodinamika összehasonlítása

Relativisztikus kód tesztelése: Számsűrűség

$$\kappa = 2$$
 és $\kappa = 4$

Bagoly Attila (ELTE)

Relativisztikus kód tesztelése: Nyomás

$$\kappa = 2$$
 és $\kappa = 4$

Bagoly Attila (ELTE)

Relativisztikus kód tesztelése: Sebességmező

$$\kappa = 2$$
 és $\kappa = 4$

Bagoly Attila (ELTE)

Bíráló kérdései és válaszok

- Azt írja, hogy a RHIC az LHC utáni legnagyobb energiájú részecskegyorsító. Milyen értelemben nagyobb a RHIC gyorsító 100 GeV/n energiája az LHC előgyorsítójaként is használt SPS 450 GeV/n energiájánál?
 - Az ütközés során nukleononkénti tömegközépponti energia nagyobb (SPS fix céltárgyat használ).
- Valóban rendelkezik-e a standard modell $U(1) \times SU(2)$ mértékszimmetriával? Nem rendelkezik, ezen szimmetriát sérti a Higgs-mechanizmus.
- A kvarkanyag elektromos töltése sokszorosa az atommagénak. Miért egyezik mégis a kiszabaduló fotonok észlelt mennyisége periférikus és centrális ütközések esetén?
 - A fotonok száma nem ugyanannyi, hanem az R_{AA} konstans (nukleáris módosulási faktor). Ami azt jelenti, hogy minden centralistánál annyi foton keletkezik amennyit n+n ütközésekből várunk.

Bíráló kérdései és válaszok

- Miért feltételezheti az 1.3 részben az ütköző atommagok gömbszimmetriáját a nagy sebességeknél fellépő Lorentz-kontrakció ellenére?
 Ez egy közelítés, az egyszerű szemléltetés kedvéért. Az ütköző magok elnyúlt ellipszoidok, a végállapotban kifagyáskor longitudinális irányba elnyúlt eloszlás lesz, valamilyen köztes időpillanatban lehet gömbszimmetria.
- Mit jelöl $\sqrt{-g}$ a (2.2.2) egyenletben hidrodinamikai esetben? Jacobi determinánst jelöli, függetlenül, az anyagi Lagrange-sűrűségfüggvénytől.
- Miért használhat nemrelativisztikus hidrodinamikát mélyen relativisztikus ütközések leírására? Milyen információt nyújt a relativisztikus tárgyaláshoz képest? Ez egy közelítés, eredményeit összevetve a relativisztikus eredményekkel láthatjuk, hogy fizikai folyamatok alakítják az asszimmetriák időfejlődését, és nem a relativisztikus hidrodinamika "különlegessége". Viszkozitás esetén is elvégezhető az összehasonlítás, ami fontos, hiszen relativisztikusan még nem tudjuk pontosan, hogy lehet a súrlódást kezelni.

Operátorok felbontása

$$egin{aligned} \partial_t u &= Au + Bu \ &u(t+\Delta t) = e^{\Delta t(A+B)} u(t) \ &u_{\mathrm{Lie}}(t+\Delta t) = e^{\Delta tA} e^{\Delta tB} u(t) \ &u_{\mathrm{Strang}}(t+\Delta t) = e^{rac{1}{2}\Delta tA} e^{\Delta tB} e^{rac{1}{2}\Delta tA} e^{\Delta tB} u(t) \end{aligned}$$

Viszkózus hidrodinamika

$$\partial_t Q + \partial_x F_{id}(Q) + \partial_y G_{id}(Q) + \partial_x F_{visc}(Q, \partial Q) + \partial_y G_{visc}(Q, \partial Q) = 0$$

- Ideális Iépés: $\partial_t Q + \partial_x F_{id}(Q) + \partial_y G_{id}(Q) = 0 \rightarrow Q^{id}$, $\partial Q^{id} \rightarrow F_{visc}$, G_{visc}
- Viszkózus lépés: $\partial_t Q + \partial_x F_{\mathrm{visc}}(Q^{\mathrm{id}}, \partial Q^{\mathrm{id}}) + \partial_y G_{\mathrm{visc}}(Q^{\mathrm{id}}, \partial Q^{\mathrm{id}}) = 0$ $\rightarrow Q$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Viszkozitás hatása: ε_n anyag- és energiasűrűségben

Hangsebesség hatása: ε_n anyag- és energiasűrűségben

Nyomásgradiens hatása: ε_n anyag- és energiasűrűségben

Hangsebesség hatása: ε_n számsűrűségben és nyomáseloszlásban

Nyomásgradiens hatása: ε_n számsűrűségben és nyomáseloszlásban

Kitekintés

- Viszkozitás hatásának vizsgálata relativisztikus esetben
- Relativisztikus és nemrelativisztikus viszkozitás összehasonlítása

