

Instituto Politécnico Nacional Unidad Profesional Interdisciplinaria de Ingeniería campus Zacatecas

Área de ubicación para el desarrollo del trabajo Ingeniería en Sistemas Computacionales

Línea de investigación Desarrollo de sistemas.

Título del proyecto de Trabajo TerminalSoftware para generación de código CNC para corte de plasma en metales.

Presenta:

Pedro Alejandro Nunez Perez

Director:

M. en C. Eleazar Pacheco Reyes

Asesores:

M. en C. Erika Paloma Sánchez Femat

Zacatecas, Zacatecas a 12 de junio de 2024

Índices

Índice de contenido

Resu	ımen	1
Defin	nición del problema	1
Со	ontexto y antecedentes generales del problema	1
Sit	tuación problemática o problema de investigación	2
Estac	do del arte	2
Desc	cripción del proyecto	4
Obje	etivo general del proyecto	4
Obje	etivos particulares del proyecto	4
Justif	ificación.	5
Marc	co teórico	6
Marc	co Metodológico	7
Análi	lisis y Discusión de los Resultados	10
An	nálisis de la selección de la metodología (TT-I)	10
Ge	estión del proyecto	15
1.	Plan del proyecto	15
2.	Manejo de desviaciones en la ejecución del plan	18
3.	Plan de los riesgos del proyecto.	18
De	esarrollo del proyecto.	23
1.	Resumen del análisis del sistema.	23
2.	Diseño del sistema.	25
a.	Arquitectura del sistema.	25
b.	Matriz de trazabilidad	26
C.	Manejo de archivos.	28
An	nálisis de resultados	43
Conc	clusiones y Recomendaciones	44

Fuentes de consulta	45
Firmas	46
Autorización	46
A. Especificación de requerimientos de software (SRS)	47
A.1.1 Propósito.	47
A.1.2 Alcance.El título del proyecto de software	48
A.1.3 Definiciones, acrónimos y abreviaturas	48
A.1.4 Referencias.	49
A.1.5 Vista general	49
A.Descripción General.	49
A.Perspectiva del producto.	49
A.Funcionalidad del producto	51
A.Restricciones generales.	51
A.Presunciones y dependencias.	52
A.Especificación de requerimientos.	52
A.Requerimientos Funcionales.	54
A.Requerimientos de desempeño.	56
A.Requerimientos de la base de datos lógica	57
A.Restricciones de diseño.	57
a. Cumplimiento de estándares	57
A.Atributos	57
a. Confiabilidad	57
b. Disponibilidad	57
B. Plan de riesgos	5
C. Plan de pruebas	5
C.1. Pruebas unitarias	5
C.2. Pruebas de integración	7
C.3. Pruehas de sistema	8

D	. Minutas	10
	D.1. Minuta de levantamiento de requerimientos	10
	D.2. Revisión del documento SRS	12
	D.3. Validación de documento SRS	14
	D.4. Revisión del plan de trabajo	16
	D.5. Validación del plan de trabajo	18
	D.6. Revisión del plan de riesgo	20
	D.7. Validación del plan de riesgos	22
	D.8. Revisión del documento de diseño	24
	D.9. Validación del documento de diseño	26
	D.10. Revisión del plan de pruebas	28
	D.11. Revisión de la matriz de trazabilidad	30
	D.11. Retroalimentación de reporte final	32

Índice de Tablas

Tabla 1 Metodos de aprendizaje	3
Tabla 2 Riesgos	18
Tabla 3 Requerimientos funcionales	24
Tabla 4 Requerimientos no funcionales	25
Tabla 5 Matriz de trazabilidad	26
Tabla 6 CU001	31
Tabla 7 CU002	31
Tabla 8 CU003	32
Tabla 9 CU004	33
Tabla 10 CU005	33
Tabla 11 CU006	34
Tabla 12 Plan de riesgos	
Tabla 13 Prueba unitaria 1	5
Tabla 14 Prueba unitaria 2	5
Tabla 15 Prueba unitaria 3	6
Tabla 16 Prueba unitaria 4	6
Tabla 17 Prueba de integracion 1	7
Tabla 18 Prueba de integracion 2	
Tabla 19 Prueba de integracion 3	8
Tabla 20 Prueba de sistema	8
Índice de Figuras	_
Figura 1 SCRUM	
Figura 2 Backlog p.1	
Figura 3 Backlog p.2	
Figura 4 Sprints TT1	
Figura 5 Sprint 1	
Figura 6 Sprint 2	
Figura 7 Sprint 3	
Figura 8 Sprint 4	
Figura 9 Sprint 5	
Figura 10 Sprint 6	
Figura 11 Sprint 7	
Figura 12 Interfaz grafica	
Figura 13 Todas las tareas	
Figura 14 Arquitectura de sistema	
Figura 15 Diagrama de clases	
Figura 16 Diagrama de componentes	
Figura 17 Diagrama de caso de uso	
Figura 18 ACT001	

Figura 19 ACT002	36
Figura 20 ACT003	
Figura 21 ACT004	
Figura 22 ACT005	
Figura 23 ACT006	
Figura 24 Prototipo 1	
Figura 25 Prototipo 2	
Figura 26 Prototipo 3	
Figura 27 Protipo 4	
Figura 28 Prototipo 5	
Figura 29 Sprints TT 2	

Resumen.

El objetivo del proyecto es simplificar la generación de código G, teniendo como propósito la creación de un sistema el cual con el análisis de archivos DWF y mediante una inteligencia artificial genere el código G, teniendo en cuenta diferentes aspectos como la variabilidad de las figuras y la complejidad de la trayectoria del corte; todo esto con la finalidad de poder simplificar este proceso en la generación de piezas. La dificultad que se tiene es que actualmente la generación de este tipo de código es un proceso complejo que requiere un conocimiento amplio de la geometría de las piezas y los parámetros de corte.

Palabras clave: Inteligencia artificial, Código G, Análisis de imágenes, Automatización, Simplificación del proceso.

Definición del problema.

En [2] se dice que el código G es un lenguaje de programación poco amigable, por lo que en los últimos años las personas han preferido aprender lenguajes de un nivel mayor; sin embargo, esto no quiere decir que este lenguaje esté quedando obsoleto, todo lo contrario, sigue siendo un lenguaje muy utilizado en específico por la industria manufacturera, por lo que la generación de un sistema el cual pueda automatizar este proceso sería crucial debido a la importancia que tiene este código en la industria actualmente; además, como se menciona en [2], es necesario descubrir la automatización en CNC, ya que la mayoría del área de manufactura utiliza las máquinas CNC para la generación de piezas requeridas. Y esto podría ayudar a simplificar este proceso que puede llegar a consumir muchos recursos dentro de la industria manufacturera.

Contexto y antecedentes generales del problema.

Actualmente, no existe ningún proyecto documentado para la automatización de este proceso; sin embargo, hay proyectos con los cuales se puede simplificar un poco el proceso. Uno de ellos es el proyecto mencionado en [1] que consiste en una librería para Python que transforma el código generado en este lenguaje de programación y lo traduce a código G.

Además, también se habla a grandes rasgos de la necesidad de simplificar este proceso, ya que, aunque este lenguaje tiene una amplia utilidad en la industria, entre los desarrolladores está surgiendo la tendencia de aprender los lenguajes de alto nivel por la dificultad que representa la generación de código G.

Situación problemática o problema de investigación.

Aunque el proyecto anterior se muestra como una manera sencilla de programar el código G, sigue sin satisfacer la necesidad de tener un sistema que lo automatice. La presente propuesta busca simplificar aún más este proceso mediante el desarrollo de un sistema que mediante el análisis de imágenes y/o de archivos DWF (Design Web Format); esto debido a que estos dos formatos son los que más comúnmente se relacionan con los programas CAD (diseño asistido por computadora) y con uso de una inteligencia artificial, logre generar el código G para la figura deseada y que además logre identificar una secuencia de corte para que la pieza que se desea cortar no sufra movimientos ni errores, esto con el propósito de poder simplificar y automatizar este proceso y de esta forma ahorrar tiempos en la industria en la que es necesitada esta tecnología, en [3] se menciona que es necesario descubrir la automatización de este proceso para la industria, ya que la generación de este código tiene una complejidad muy alta, lo que está provocando que este lenguaje tenga una complejidad de aprendizaje muy alta.

Estado del arte.

Si bien es cierto que la utilización de inteligencia artificial ha sido utilizada para muchas de las necesidades humanas, aún no se ha puesto a prueba en la generación de código G. Aunque ya se han ideado formas en las que el desarrollo de este lenguaje sea más sencillo aún no se ha logrado automatizar, algo que verdaderamente puede ayudar a que el desarrollo en este lenguaje de bajo nivel sea más comprensible para personas que no estén inmersas en esa área, sin embargo esto no significa que se haya automatizado este proceso, para de esta forma poder disminuir el tiempo que es necesario para poder terminar el diseño de una pieza requerida para la industria, por lo que se propone como solución este proyecto para la automatización de este proceso. Los grandes avances que se han tenido durante los

últimos años permiten que este tipo de proyectos puedan llevarse a cabo con diferentes técnicas o métodos de aprendizajes para las maquinas como lo son:

Tabla 1 Métodos de aprendizaje

	Aprendizaje	Aprendizaje no	
Característica.	supervisado.	supervisado.	Aprendizaje por refuerzo.
Tipo de datos.	Datos etiquetados.	Datos no etiquetados.	Datos no etiquetados.
	Aprender una función		Aprender a tomar decisiones
	que mapee de	Descubrir patrones en los	que maximicen una
Objetivo.	entradas a salidas.	datos.	recompensa.
		Agrupamiento, reducción de	
	Clasificación,	dimensionalidad, detección	Aprendizaje automático de
Ejemplos.	regresión.	de anomalías.	juegos, control automático.
			Se requieren datos no
			etiquetados, pero también se
	Se requieren datos	Se requieren datos no	requiere una función de
	etiquetados, lo que	etiquetados, lo que puede	recompensa que evalúe la
Requerimientos	puede ser costoso y	ser más fácil de obtener	calidad de las decisiones
de datos.	laborioso de obtener.	que los datos etiquetados.	tomadas por el modelo.
	Es eficiente para	Es eficiente para tareas de	Es eficiente para tareas que
	tareas de clasificación	descubrimiento de	requieren aprendizaje en
Ventajas.	y regresión.	patrones.	tiempo real.
	Puede ser difícil		
	obtener datos	Puede ser difícil interpretar	Puede ser lento para
Desventajas.	etiquetados.	los patrones descubiertos.	aprender tareas complejas.

Tomando en cuenta las necesidades que tiene este proyecto, se estará utilizando el aprendizaje por refuerzo, como lo menciona Morales, et al. [4] El objetivo es aprender cómo mapear situaciones a acciones, y sin la necesidad de explicar cómo hacerlo, esto es de gran utilidad ya que no se tendría que especificar en cada momento qué es lo que se tendría que estar haciendo.

Descripción del proyecto.

Este proyecto se enfoca en el diseño e implementación de un sistema, el cual, a partir del análisis de imágenes y/o archivos DWF (las cuales tendrán que ser ingresadas por el usuario), el sistema generará un archivo de texto plano con el código g, que será producido por una inteligencia artificial. Este archivo de texto plano que genere el sistema tendrá que ser un archivo TXT (archivo de texto plano) debido a las necesidades que tiene la máquina de corte por plasma que nos proporcionará el cliente. El sistema contará con una interfaz de usuario donde se podrán cargar los archivos del tipo antes mencionados, en donde podrá modificar ciertos aspectos del corte como la velocidad del corte y la altura de la antorcha de corte. Durante el proceso del análisis basado en recompensas, el sistema tendrá que identificar la parte del material que quedará inutilizada para comenzar el corte en esa zona, debido a que al iniciar el corte la máquina deja un error que es indeseable para los resultados esperados.

Objetivo general del proyecto.

Obtener código G a partir del análisis de imágenes y/o archivos DWF mediante un proceso de inteligencia artificial.

Objetivos particulares del proyecto.

- Obtener parámetros de corte de una interfaz de usuario.
- Establecer un método de carga de imágenes y/o archivos DWF.
- Detectar los bordes de figuras mediante un proceso de análisis de imágenes y archivos
 DWF.
- Establecer un método basado en aprendizaje por refuerzo que sea capaz de generar código G preciso y funcional para cortar las piezas a partir de las características geométricas reconocidas.
- Establecer un método de salida para extraer el código G generado.

Justificación.

La industria de manufactura, especialmente aquella que utiliza máquinas CNC (Control Numérico Computarizado), se enfrenta a desafíos significativos en la generación de código G, un lenguaje de programación esencial para el control preciso de herramientas de corte, fresado y otros procesos. Este proyecto surge como respuesta a la necesidad de simplificar y agilizar este proceso mediante la aplicación de inteligencia artificial, específicamente a través de un enfoque basado en aprendizaje por refuerzo. Esto debido a la complejidad que generar código G genera, ya que es conocido por ser poco amigable y requerir un conocimiento profundo de la geometría de las piezas; a esto se le agrega que en años recientes ha crecido el mercado de las maquina CNC como se menciona en [7].

Con este proyecto no solo se busca automatizar la generación de código G, sino también tener un impacto en la educación debido a que los precios que llegar a alcanzar los softwares CAM (Manufactura Asistida por Computadora) son demasiado altos según [8], este sistema podría ser una alternativa para que las instituciones educativas que no tengan un gran poder adquisitivo puedan generar este código, ya que este software será de gran ayuda para los profesores de esta área, ya que tan solo actualmente al menos ingresan 80 alumnos a nuestra unidad académica en la carrera de ingeniería mecatrónica, en la cual desde los primeros semestres se les imparten materia relacionadas al tema.

Marco teórico.

En este apartado se abordan los conceptos básicos necesarios de conocer para una mejor comprensión del proyecto, ya que son los que sustentan el presente trabajo.

Inteligencia Artificial

Como producto esperado del presente trabajo, se espera un modelo de IA (Inteligencia Artificial) esto se define como "la capacidad de las máquinas para usar algoritmos, aprender de los datos y utilizar lo aprendido en la toma de decisiones tal y como lo haría un ser humano. [10]"; el cual a partir del procesamiento de archivos DWF se obtenga código G eficiente y funcional extraíble en un archivo TXT para su utilización en máquinas de corte por plasma.

Aprendizaje por refuerzo

El modelo de IA será entrenado por un método de aprendizaje por refuerzo el cual es uno de los enfoques más usados dentro del aprendizaje, lo que lo diferencia de los demás métodos de aprendizaje es que "el agente obtiene experiencia útil acerca de los estados, acciones, transiciones y recompensas de manera activa para poder actuar de manera óptima [6]" y que la evaluación del modelo ocurre de forma concurrente con el aprendizaje.

Automatización

La automatización de procesos de fabricación ha avanzado ampliamente, ya que actualmente la mayoría de las empresas donde se requiere la fabricación de un producto llevaron un proceso de automatización, esto para llevar su producto hacia una estandarización de los procesos ya que pagar a un especialista en una acción en específico es caro, en este caso, la generación de código G implica un gran conocimiento de este lenguaje, y de la geometría de las piezas [4]; esta automatización generaría la estandarización de generación de código G, además de mejorar la eficiencia y reducir costos [3]

Interfaz de usuario

Una implementación de una interfaz de usuario o interfaz gráfica. En este proyecto es de suma importancia debido a que será la forma en la que el usuario se podrá comunicar con el modelo de IA, esto mediante la carga de archivos y parámetros de corte, también de forma

útil el usuario podrá decidir, mediante la visualización de una simulación de lo generado por el modelo, si este código es útil. Esto con la finalidad de generar una experiencia más amigable para el usuario.

Marco Metodológico.

Las metodologías ágiles son aquellas las cuales, según Kumar et. al. [1] están basadas en desarrollo incremental e iterativo. Estas tienen cuatro principales características, las cuales son: planeación adaptativa, iterativa, desarrollo evolutivo y rápida adaptabilidad al cambio, lo que lo hace más adecuado para proyectos pequeños.

El desarrollo agile divide las tareas en pequeños incrementos con muy poca planeación llamados iteraciones.

Como se menciona en [5], scrum es un framework ágil de desarrollo de software iterativo e incremental para el manejo de desarrollo de productos, esto siendo de gran ventaja para el desarrollo de este proyecto debido a que este nos permite hacer modificaciones de una forma sencilla en caso de que se requiera agregar o eliminar algún proceso. Este framework de desarrollo tiene diferentes partes en las cuales lo podemos dividir, las cuales son: épicas, tareas y backlog.

Además, también existen diferentes ceremonias o eventos, los cuales son: sprint planning, sprint review, sprint, sprint retrospective y daily scrum meeting. Cuenta asimismo con los roles de product owner, scrum master y equipo de desarrollo.

- Sprint planning: Los sprint planning son las reuniones en las que se planean las iteraciones.
 - o Tienen un promedio de ocho horas para un mes de sprint.
 - Es llevada a cabo por el Scrum master.
- Sprint Review: Es una reunión con un tiempo de 2 a 4 horas de duración por cada sprint.
 - Se realiza al finalizar el sprint y es donde el equipo presenta las tareas que se planearon durante el sprint planning.
 - Es llevada a cabo por el Scrum master.

- Sprint retrospective: Se discute qué fue bien durante el sprint y qué fue mal.
 - o Asiste el product owner así como también el equipo de desarrollo.
 - Es dirigida por el Scrum master.
- Daily scrum meeting: Es una reunión diaria de 15 a 20 minutos en donde se reúne el equipo de trabajo y el Scrum manager y se menciona qué se hizo el día anterior de trabajo y las tareas a realizar durante ese día.
- Sprint: Es el periodo de tiempo en el que se realizarán las iteraciones planeadas durante el sprint planning.

Esta metodología fue elegida debido a la adaptabilidad al cambio que tiene. Además de aún no tener muy bien segmentadas las tareas por hacer, nos permite comenzar con el desarrollo y, en caso de que exista un requerimiento que no se tenía en cuenta desde el inicio del proyecto, se puede agregar en alguna iteración.

Figura 1 SCRUM

La forma en la que adaptaremos las características antes mencionadas será de la siguiente manera; estarán fungiendo como equipo Pedro Alejandro Nunez Perez como scrum master la M. en C. Erika Paloma Sánchez Femat y como product owner el M. en C. Eleazar Pacheco Reyes, que es el intermediario con el cliente que es el Dr. Miguel Fernando Delgado Pamanes.

El backlog de nuestro proyecto (debido a que aún no se tienen requerimientos muy detallados por parte del cliente) se presenta como un backlog de una manera muy general, teniendo en cuenta que los objetivos particulares serán tomados como las épicas de nuestro backlog; estas épicas tendrán que ser divididas en tareas más pequeñas, luciendo de la siguiente forma:

Figura 2 Backlog p.1

Figura 3 Backlog p.2

Para las daily's al proyecto, tener solo un desarrollador es suficiente; no es tan necesaria la realización de estas reuniones.

Como apoyo para poder conllevar de una manera más entendible esta metodología, se utilizará el software de notion, el cual facilita herramientas para su entendimiento.

Durante la implementación de esta primera etapa del proyecto se llevaron a cabo un total de 7 sprints los cuales fueron en el lapso del 4 de marzo al 7 de junio del presente año (como se muestra en Figura 4), cada sprint tuvo una reunión de planning para observar lo que se estaría realizando en el sprint.

∱ Sprint 1	∱ Sprint 1 4 de marzo de 2024 → 15 de marzo de 2024
∱ Sprint 2	∱ Sprint 2 18 de marzo de 2024 → 29 de marzo de 2024
∱ Sprint 3	$\dot{\pi}$ Sprint 3 1 de abril de 2024 \rightarrow 12 de abril de 2024
∱ Sprint 4	$\dot{\pi}$ Sprint 4 15 de abril de 2024 \rightarrow 26 de abril de 2024
∱ Sprint 5	∱ Sprint 5 29 de abril de 2024 → 10 de mayo de 2024
∱ Sprint 6	∱ Sprint 6 13 de mayo de 2024 → 24 de mayo de 2024
∱ Sprint 7	∱ Sprint 7 27 de mayo de 2024 → 7 de junio de 2024

Figura 4 Sprints TT1

A lo largo de los sprints se comenzaron un total de 9 tareas, abarcando 3 epicas, de la cuales 6 tareas ya fueron terminadas, quedando 3 en progreso, observando el backlog que resulta de el trabajo del semestre observamos que quedan un total de 10 tareas por empezar y un total de 13 tareas por culminar.

Análisis y Discusión de los Resultados.

Análisis de la selección de la metodología (TT-I).

En relación con TT 1, se encontraron muchas ventajas resultantes tras la implementación de la metodología SCRUM, siendo principalmente la variabilidad de manejarla y el enfoque diferente que se le puede dar a cada sprint, lo cual ha permitido que en esta primera etapa de TT nos enfocáramos en los objetivos que teníamos más claros; sin dejar de lado los que aún no se han definido totalmente, sin embargo, ha permitido informarnos sobre estos mismos. Hasta el momento, la implementación de la metodología SCRUM ha demostrado ser beneficiosa para el proyecto, ya que se ha abordado el problema de manera integral, asegurando un enfoque riguroso en la realización de los sprints.

TT 1 se logró concluir según lo planeado, abarcando un total de 7 sprints que fueron llevados en tiempo y forma por el equipo de desarrollo.

El sprint "Sprint 1" que se muestra en la Figura 5 muestra las primeras tareas que se realizaron donde destaca la realización de los bocetos iniciales para la interfaz de usuario.

Figura 5 Sprint 1

Para el "Sprint 2" que se muestra en la Figura 6 mantenemos la tarea de capacitación, la cual permanecerá constante en muchos sprint's debido a la importancia del modelo en el proyecto.

Figura 6 Sprint 2

Este sprint nos arrojó como resultado los prototipos de alta fidelidad que se pueden observar en la ¡Error! No se encuentra el origen de la referencia.. Los cuales fueron de la conformidad del cliente, lo que conllevo a que en el siguiente sprint "Sprint 3" se comenzara con la codificación de esta interfaz de usuario, como se puede observar en la Figura 7.

Figura 7 Sprint 3

Estas mismas tareas se vuelven constantes en próximos sprints, todos los sprints restantes se muestran en las Figura 8, Figura 9, Figura 10, Figura 11.

Figura 8 Sprint 4

Figura 9 Sprint 5

Figura 10 Sprint 6

Figura 11 Sprint 7

Hasta el momento, la tarea que corresponde a la programación de la interfaz gráfica aún no se ha terminado, pero se ha dado un gran avance. En la Figura 12 se puede apreciar el estado actual de la interfaz.

Figura 12 Interfaz grafica

Para la codificación de la interfaz gráfica se está utilizando el framework Flutter, el cual funciona para desarrollar aplicaciones multiplataformas entre las cuales están aplicaciones de escritorio tanto en MacOS y Windows, Este es un framework basado en Python, lo cual ayudará en un futuro debido a que Python cuenta con muchas librerías de inteligencia artificial que podrán ser usadas en TT 2 para la creación del modelo de IA.

Para la capacitación de Modelar IA se ha estado estudiando cursos para NLP's (Procesamiento de Lenguaje Natural), además de también un curso de aprendizaje supervisado para comprender los conceptos básicos que pueden ser necesarios en un momento dado. Estos cursos están siendo tomados en la web de DataCamp.

Gestión del proyecto.

1. Plan del proyecto.

En la Figura 13 se da una vista general del avance del proyecto, donde podemos observar que se han completado 6 de estas tareas y 3 en proceso, quedando pendientes de comenzar 10 tareas.

Aa Nombre de la tarea	्रें: Status	₾ Tiempo	♥ Estimaciones
Documentacion	• Done	5	3
☐ Configurar el entorno de	• Done	10	3
Ajustes basados en la retro	• Done	8	1
Revisión y retroalimentació	• Done	2	5
Desarrollo de prototipos	• Done	20	8
Creación de bocetos inic:	• Done	5	1
Documentación	• In Progr	2	3
Codificación de los prote	• In Progr	32	8
Capacitación	• In Progr	40	8
Documentación	• Not Star	2	3
Documentacion	• Not Star	2	3
🖺 Desarrollo de la lógica p	• Not Star	4	5
🖺 Implementación de la func	• Not Star	3	2
Implementación de la funcio	• Not Star	4	2
Pruebas de usabilidad	• Not Star	3	3
☐ Implementar	• Not Star		8
Probar	• Not Star		8
Entrenar	• Not Star		8
Preparación de los datos	• Not Star	8	3

Figura 13 Todas las tareas

Hasta el momento se ha cumplido lo que se esperaba al desarrollar el proyecto. Para poder ver el plan de proyecto más detallado, se puede consultar el apartado "Marco metodológico".

El seguimiento de las actividades según el plan de proyecto comenzó el 4 de marzo del año en curso, iniciando con el "Sprint 1", pero, cabe resaltar que se iniciaron actividades con

anterioridad realizando documentación necesaria para TT 1 que ya no fue agregada al plan de proyecto; además, debido a que la metodología nos permite estar en constante comunicación con el cliente, se agilizaron los procesos de aprobación de documentos, a continuación se muestra una lista de las actividades, incluyendo una descripción de lo que se realizó y/o la referencia a su evidencia correspondiente en este documento.

- Marco metodológico: Como evidencia de su elaboración, así como de la selección, estudio y comprensión de la metodología elegida puede consultar la sección "Marco metodológico"
 - o Revisar Plan de trabajo: ver apéndice D.4. Revisión del plan de trabajo
 - o Validar Plan de trabajo: ver apéndice D.5. Validación del plan de trabajo
- SRS: Ver el documento completo en el apéndice A. Especificación de requerimientos de software (SRS)
 - o Revisar SRS: Ver apéndice D.2. Revisión del documento SRS
 - o Validar SRS: Ver apéndice D.3. Validación de documento SRS
- Plan de riesgos: Ver apéndice B. Plan de riesgos
 - o Revisar Plan de riesgos: Ver apéndice D.6. Revisión del plan de riesgo
 - o Validar Plan de riesgos: Ver apéndice D.7. Validación del plan de riesgos
- Documento de diseño: Dentro de la elaboración de este documento se llevaron a cabo
 - Revisar Documento de diseño: Ver apéndice D.8. Revisión del documento de diseño
 - Validar Documento de diseño: Ver apéndice D.9. Validación del documento de diseño
 - Arquitectura del sistema: Se muestra más adelante en "Desarrollo del proyecto" > "Diseño del sistema" (¡Error! No se encuentra el origen de la referencia.)

- Manejo de archivos: Se muestra más adelante en "Desarrollo del proyecto" >
 "Diseño del sistema" (Disponible en la sección manejo de archivos)
- Diagrama de clases: Se muestra más adelante en "Desarrollo del proyecto" >
 "Diseño del sistema" > "Diagramas UML" (¡Error! No se encuentra el origen de la referencia.)
- Diagrama de Componentes: Se muestra más adelante en "Desarrollo del proyecto" > "Diseño del sistema" > "Diagramas UML" (¡Error! No se encuentra el origen de la referencia.)
- Diagrama de caso de uso: Se muestra más adelante en "Desarrollo del proyecto" > "Diseño del sistema" > "Diagramas UML" (¡Error! No se encuentra el origen de la referencia.)
- O Diagramas de actividad: Se muestra más adelante en "Desarrollo del proyecto" > "Diseño del sistema" > "Diagramas UML" (¡Error! No se encuentra el origen de la referencia., ¡Error! No se encuentra el origen de la referencia., ¡Error! No se encuentra el origen de la referencia., ¡Error! No se encuentra el origen de la referencia., ¡Error! No se encuentra el origen de la referencia., ¡Error! No se encuentra el origen de la referencia.)
- Diseño de prototipos: Se muestra más adelante en "Desarrollo del proyecto"
 "Diseño del sistema" > "Diseño de prototipos" (¡Error! No se encuentra el origen de la referencia., ¡Error! No se encuentra el origen de la referencia., ¡Error! No se encuentra el origen de la referencia., ¡Error! No se encuentra el origen de la referencia.)
- Plan de pruebas: Ver el documento completo en el apéndice C. Plan de pruebas
 - o Revisar Plan de pruebas: Ver apéndice D.10. Revisión del plan de pruebas
- Matriz de trazabilidad: Se puede encontrar más adelante en "Desarrollo del proyecto"
 "Diseño del sistema" (Tabla 5)

- Revisar Matriz de trazabilidad: Ver apéndice D.11. Revisión de la matriz de trazabilidad
- Programación de la interfaz de usuario: Se menciona anteriormente en "Análisis y discusión de resultados" > "Análisis de la selección de la metodología" (Figura 12)
- Capacitación en modelo de IA: Se menciono anteriormente en "Análisis y discusión de resultados" > "Análisis de la selección de la metodología"

2. Manejo de desviaciones en la ejecución del plan.

Como se mencionó anteriormente en el documento, no existieron cambios o imprevistos que hayan afectado al desarrollo de esta primera etapa del proyecto.

3. Plan de los riesgos del proyecto.

En la realización del proyecto, en lo que se refiere a TT1, no se han detonado ninguno de los riesgos posibles. Los riesgos planteados se muestran a continuación en la Tabla 2 mientras que en el apéndice B. Plan de riesgos se muestra el documento completo.

Tabla 2 Riesgos

ld riesgo	Descripción	Fase afectada	Causa del riesgo	Probabilidad	Impacto	Nivel del riesgo	Estrategia de prevenció n	Estrategia de Mitigación
R-001	Fallo en la	Implementaci	Fallo mecánico	Improbable.	Mayor.	Bajo.	Que el	Tener un plan
	máquina de	ón.	o eléctrico de				cliente	de contingencia
	corte por láser.		la máquina de				realice un	para utilizar una
			corte				mantenimi	máquina de
			proporcionada				ento	corte de
			por el cliente				preventivo	respaldo o
							en la	subcontratar
							máquina	servicios de
							de corte.	corte externos
								en caso de fallo.
R-002	Cambios de	Todas las	Cambios	Probable.	Moderado.	Medio.	Establece	Realizar
	alcance no	fases.	repentinos en				r un	evaluaciones
	planificados		los requisitos				proceso	periódicas del
			del proyecto				formal de	impacto de los
			por parte del				gestión de	cambios de
			cliente.				cambios y	alcance y ajustar
							obtener la	los recursos y

							کنده جاجیت ک	
							aprobació	plazos según sea
							n del	necesario.
							cliente	
							antes de	
							implemen	
							tar	
							cambios	
							de	
							alcance.	
R-003	Ausencia del	Todas las	Enfermedad,	Improbable.	Moderado.	Bajo.	Establece	Mantener una
	director del	fases.	emergencias				r metas	comunicación
	proyecto o de la		personales o				desde una	abierta y
	asesora del		conflictos de				etapa	actualizada con
	proyecto.		programación.				temprana	el equipo de
	. ,						del .	proyecto para
							proyecto	minimizar el
							para que	impacto de las
							sea más	ausencias
							sencillo	ausericius
							terminar	
							el	
R-004	Problemas de	Todas las	Malentendido	Posible.	Moderado.	Medio.	proyecto. Establece	Utilizar
K-004				Posible.	iviouerado.	iviedio.		
	comunicación	fases.	s o falta de				r canales	herramientas de
	entre el equipo		claridad en la				de	gestión de
	de desarrollo y		comunicación				comunica	proyectos
	el cliente.						ción	colaborativas
							claros y	para
							regulares	documentar y
							con el	hacer un
							cliente,	seguimiento de
							incluyend	los requisitos y
							0	solicitudes del
							reuniones	cliente
							periódica	
							s y	
							actualizac	
							iones por	
							correo	
							electrónic	
							0	
R-005	Disponibilidad	Desarrollo del	Falta de acceso	Improbable.	Catastrófico	Medio.	Realizar	Implementar
	de datos	modelo de IA.	a fuentes de	•			una	técnicas de
	insuficiente	-	datos				exhaustiv	limpieza de
	para el		relevantes o				а	datos, aumentar
	entrenamiento		baja calidad de				investigac	la diversidad de
	entrenamento		baja candad de				ilivestigat	ia diversidad de

ón para alterna identificar caso de	de y buscar
ón para alterna identificar caso de	y buscar
identificar caso de	
	tivas en
	escasez
fuentes de dato	s.
de datos	
adecuada	
s y	
establece	
acuerdos	
de de	
colaborac	
ión si es	
necesario	
R-006 Complejidad Desarrollo del Desafíos Probable. Mayor. Alto. Asignar Estable	cer hitos
	progreso
	realizar
modelo de IA. algoritmos investigac prueba	
adecuados y la ión y exhaust	
gestión de la experime contar	-
complejidad cxperime contain	
del modelo.	
differentes intelige	
	l si es
técnicos necesai	
antes de	10.
la invelore en	
implemen	
tación.	
R-007 Cambio de Todo el Nuevas Improbable. Moderado. Bajo. Mantener Evaluar	
	sament
	pacto de
	cambios,
proyecto. comprensión constante ajustar	los
del problema a con el planes	У
resolver. cliente presupt	
para según	sea
entender necesar	-
sus comuni	car de
necesidad manera	
es y proacti	/a
expectati cualqui	er
vas. cambio	al
Documen Documen	

	1	I		I	1	ı	I	I	
								tar	equipo y al
								clarament	cliente.
								e los	
								requisitos	
								iniciales y	
								establece	
								r	
								procedimi	
								entos	
								para 	
								gestionar	
								cambios.	
R-008	Disponibilidad y	Todo	el	Cambios en la	Posible.	Mayor.	Medio.	Realizar	Establecer
	capacidad del	proyecto.		disponibilidad				una	planes de
	equipo.			o salida de				evaluació	contingencia
				miembros				n	para redistribuir
				clave del				continua	tareas y
				equipo.				de las	responsabilidad
								capacidad	es en caso de
								es y	cambios en el
								disponibili	equipo.
								dad del	Mantener una
								equipo.	comunicación
								Planificar	abierta y
								la	transparente
								asignació	dentro del
								n de	equipo para
								recursos	abordar
								de	cualquier
								manera	problema de
								equilibrad	manera
								а у	proactiva.
								considera	
								r la	
								capacitaci	
								ón o	
								contrataci	
								ón de	
								personal	
								adicional	
								si es	
								necesario	
D 000	In our near lives ! = +	Toda	اء	Docibles	Drobable	Mayrar	Alto	Cotoble	Driorinas tasas
R-009	Incumplimiento	Todo	el	Posibles	Probable.	Mayor.	Alto.	Establece	Priorizar tareas
	del plazo de	proyecto.		retrasos en el				r un	críticas, asignar
				desarrollo,			<u> </u>	cronogra	recursos

	T	T	I					
	entrega del		validación o				ma	adicionales si es
	proyecto.		implementaci				realista y	posible y ajustar
			ón del modelo				flexible	el alcance del
			de IA.				que tenga	proyecto si es
							en cuenta	necesario para
							posibles	cumplir con los
							contratie	plazos
							mpos.	establecidos.
							Monitore	
							ar	
							regularm	
							ente el	
							progreso	
							del	
							proyecto	
							y tomar	
							medidas	
							correctiva	
							s de	
							manera	
							oportuna	
							si se	
							identifica	
							n riesgos	
							de	
							incumpli	
							miento de	
							plazos.	
R-010	Falla en el	Desarrollo y	Rendimiento	Probable.	Mayor.	Alto.	Realizar	Implementar
	cumplimiento	validación del	insatisfactorio				una	ajustes
	de los objetivos	modelo de IA.	del modelo, no				evaluació	iterativos en el
	de rendimiento		cumplimiento				n	modelo, realizar
	del modelo de		de las				exhaustiv	pruebas de
	IA.		expectativas o				a de los	validación
			incapacidad				requisitos	exhaustivas y
			para resolver				У	considerar la
			eficazmente el				expectati	colaboración
			problema				vas del	con expertos en
			especificado.				cliente	el dominio del
			·				antes del	problema para
							desarrollo	mejorar la
							del	eficacia del
							modelo.	modelo.
							Establece	
							r métricas	
							de	

							rendimie nto claras y realizar pruebas rigurosas durante el desarrollo para verificar el cumplimi ento de los	
							los objetivos.	
ld riesgo	Descripción	Fase afectada	Causa del riesgo	Probabilidad	Impacto	Nivel del riesgo	Estrategia de prevenció n	Estrategia de Mitigación

Desarrollo del proyecto.

1. Resumen del análisis del sistema.

En el presente proyecto, se han establecido un total de 8 requerimientos que describen las funcionalidades, características y restricciones que el sistema debe cumplir al finalizar el proyecto. Los requerimientos se dividen en 5 funcionales y 3 no funcionales. Para poder visualizar a relación entre los requerimientos y los conceptos dentro del proyecto, se proporciona en [] y [], un diagrama en los cuales se puede ver una progresión lineal en el proceso de generar el código G basándose en un archivo dwf; comenzando con contar una interfaz gráfica que sea predominante los colores blanco y negro como se indica en el requerimiento RNF001, para después determinar el tamaño que tendrá el lienzo para cumplir con el requerimiento RF002, luego se indica que el usuario tendrá que ingresar los parámetros de máquina para cumplir con el requerimiento RF001, después el usuario deberá agregar el archivo, donde el sistema deberá permitir el arrastre o mostrar una ventana emergente para la carga de los archivos, eliminado archivos ingresados anteriormente para evitar la sobreescritura de las piezas para cumplir con los requerimientos RF005 y RNF002, después de la carga del archivo se tiene que permitir navegar en el lienzo en todo momento para cumplir con el requerimiento RF002, A continuación se genera el código G para cumplir con

el requerimiento RF003 y para finalizar se tendrá la opción de poder visualizar una simulación del código G generado y descarga el mismo para cumplir con los requerimientos RF004 y RNF003.

Todos los requerimientos antes mencionados se resumen en Tabla 3 y Tabla 4, que incluyen nombre, nombre corto y descripción, para obtener más detalles de estos requerimientos, puede consultar el apéndice A. Especificación de requerimientos de software (SRS).

Tabla 3 Requerimientos funcionales

Nombre	Nombre corto	Descripción
Configuración de la	RF001	Permite al usuario
máquina.		configurar los parámetros de
		la máquina de corte,
		incluyendo velocidad de
		avance, amperaje, diámetro
		del plasma y dirección del
		corte, métricas inglesa y
		Métrica.
Navegación de lienzo	RF002	Permite al usuario moverse
		por el lienzo para visualizar
		diferentes partes de la pieza
		o diseño.
Generar código G	RF003	Permite al usuario generar el
		código G necesario para el
		corte basado en las
		configuraciones y diseño
		seleccionados.
Visualización de simulación	RF004	Permite al usuario verificar
del código G		la precisión y calidad del
		corte antes de la ejecución.
Navegador de archivos para	RF005	Proporciona una interfaz
carga o arrastre de archivos		para que el usuario cargue
		archivos de diseño, con la
		opción de arrastrar y soltar.
Nombre	Nombre corto	Descripción

Tabla 4 Requerimientos no funcionales

Nombre	Nombre corto	Descripción			
Predominante blanco y	RNF001	El diseño de la interfaz debe			
negro		seguir una estética			
		predominantemente en			
		blanco y negro.			
Evitar sobreescritura de en	RNF002	El sistema debe evitar la			
las demás piezas		sobreescritura accidental de			
		archivos o datos de piezas			
		existentes.			
Descarga de archivo de texto	RNF003	Facilita el uso del código G			
con el código G.		con otros sistemas o			
	software rela				
Nombre	Nombre corto	Descripción			

2. Diseño del sistema.

a. Arquitectura del sistema.

Figura 14 permite visualizar la estructura de los componentes del sistema a desarrollar, así como el comportamiento esperado.

El usuario podría interactuar con el sistema mediante una interfaz de usuario; en la cual tendrá que ingresar diferentes datos, los cuales son: los parámetros de la máquina, el archivo dwf que deseé convertir a código G y el tamaño del lienzo.

Figura 14 Arquitectura de sistema

Esto se pasará al modelo que será el encargado de procesar esta información; a continuación, el sistema desplegará automáticamente una ventana con la simulación del código generado y con la opción de descargarlo en un archivo tipo TXT; para finalizar el usuario lo podrá cargar en una memoria USB y cargarlo a la máquina de corte.

b. Matriz de trazabilidad.

Tabla 5 Matriz de trazabilidad

Objetivo	Requerimiento	Diseño	Componente	Caso de	Prueba
				uso	
01 - Obtener	RF003 -	ACT004	Código G	CU003	EP 001
código G a	Generar código				
partir del	G				
análisis de imágenes y/o	RF005 -	ACT005	ArchivoDiseño	CU005	EP004
archivos DFX	Navegador de				
o DWG	archivos para				
mediante un	carga o arrastre				
proceso de	de archivos				

inteligencia artificial.	RNF003 - Descarga de archivo de texto con el código G	ACT006	Código G	CU006	EP 002
02 - Obtener	RF001 -	ACT001	MaquinaCorte	CU001	EP008
parámetros de corte de una	Configuración de la máquina				
interfaz de	RF002 -	ACT003	Interfaz de	CU002	EP005
usuario.	Navegación de	1101000	usuario	00002	L1 003
	lienzo		distante		
03 -	RF005 -	ACT005	ArchivoDiseño	CU005	EP004
Establecer un	Navegador de				
método de	archivos para				
carga de	carga o arrastre				
archivos	de archivos				
DWF.					
04 -	RF004 -	ACT002	Código G	CU004	EP003
Establecer un	Visualización				
método	de simulación				EP007
basado en	del código G				
aprendizaje por refuerzo					
que sea capaz	RF003 -			CU003	EP001
de generar	Generar código				
código G	G				
preciso y					
funcional					
para cortar las					
piezas a partir					
de las					
características					
geométricas					
reconocidas.					
05 -	RNF003 -	ACT006	Código G	CU006	EP002
Establecer un					
método de					EDOCC
salida para					EP006
extraer el					
código G.					

Objetivo	Requerimiento	Diseño	Componente	Caso	de	Prueba
				uso		

c. Manejo de archivos.

El sistema "Software para generación de código CNC para corte de plasma en metales" contara con un manejo de archivos de forma local, por lo que estos archivos no se guardaran en ningún servicio en la nube; Se aceptaran únicamente archivos tipo dwf que son los archivos especificados por el usuario, este archivo será procesado de forma en que se pueda mostrar en el lienzo y en la simulación tomando en cuenta los parámetros ingresados por el usuario anteriormente.

d. Diagramas UML.

Se debe generar para el proyecto de trabajo terminal los diagramas en el Lenguaje Unificado de Modelado (UML), el cual describe los límites, la estructura y el comportamiento del sistema y los objetos que contiene, recordando que se debe hacer una descripción de cada diagrama construido.

Diagrama de clases.

Son la base principal de toda solución orientada a objetos. Las clases dentro de un sistema, atributos y operaciones, y la relación entre cada clase. Las clases se agrupan para crear diagramas de clases al crear diagramas de sistemas grandes. Figura 15 ilustra la estructura general del sistema, exhibiendo todas las clases y sus relaciones.

Figura 15 Diagrama de clases

Diagrama de Componentes.

Muestra la relación estructural de los elementos del sistema de software, muy frecuentemente empleados al trabajar con sistemas complejos con componentes múltiples. Los componentes se comunican por medio de interfaces.

Figura 16 Diagrama de componentes

Diagrama de caso de uso.

Un caso de uso de sistema representa una secuencia de acciones que un sistema lleva a cabo para dar lugar a un resultado de valor observable para un actor principal, es decir, quien interactúa con él, Figura 17 representa los casos de uso que se identificaron 6 casos de uso; donde el actor principal tiene interacción directa con cuatro de ellos; esto a través de un ordenador el usuario deberá de ingresar los parámetros de corte de la máquina. En la Tabla 6 se encuentra la especificación de este caso de uso, después el usuario podrá hacer la navegación sobre el lienzo. En la

Tabla 7 se encuentra las especificaciones de este caso de uso, así como también en la Tabla 10 se encuentra la especificación del caso de uso para la carga de archivo dwf, y para terminar los casos de uso con los que el usuario tendrá una mayor inferencia en la Tabla 8 se especifica el caso de uso para la generación de código G. Para concluir el caso de uso de generación de código G tiene inferencia sobre el caso de uso de descargar código G generado el cual se especifica en la Tabla 11 y el caso de uso visualizar y simulación del código G esta especificado en la

Tabla 9.

Figura 17 Diagrama de caso de uso

Tabla 6 CU001

	Caso de uso
Nombre	Configuración de parámetros de corte
Actor participante	Usuario
Objetivo	Permitir al usuario configurar los parámetros de
	corte de la máquina
Disparador	El usuario desea ajustar los parámetros de corte
	para una tarea específica.
Precondición	El sistema está en un estado disponible para la
	configuración de parámetros
Postcondición	Los parámetros de corte se configuran según las
	preferencias del usuario
Flujo básico	1. El usuario inicia el sistema.
	2. El usuario accede a la sección de
	configuración de parámetros de corte.
	3. El usuario ajusta los parámetros de
	corte, como la velocidad de avance,
	amperaje, diámetro del plasma y
	dirección del corte.
	4. El usuario confirma los cambios
	realizados.
Ele's demodes 1	F1
Flujo alternativo 1	El usuario cancela la configuración de
	parámetros en cualquier momento antes de confirmar los cambios
Suposiciones	
Suposiciones	Se asume que el usuario tiene los permisos necesarios para realizar cambios en la
	1
	configuración de parámetros de corte

Tabla 7 CU002

Caso de uso	
Nombre	Navegación de lienzo
Actor participante	Usuario
Objetivo	Permitir al usuario moverse por el lienzo para visualizar diferentes partes del diseño.
Disparador	El usuario necesita explorar diferentes áreas del diseño para realizar ajustes o verificar detalles.
Precondición	El diseño está cargado en el sistema y la interfaz de visualización está disponible.
Postcondición	El usuario navega por el lienzo y puede visualizar diferentes partes del diseño con éxito.
Flujo básico	 usuario inicia sesión en el sistema. El usuario accede a la opción de navegación en el lienzo.

	 El sistema muestra el diseño cargado en el lienzo. El usuario utiliza herramientas de navegación, como desplazamiento o zoom, para explorar diferentes áreas del diseño.
Flujo alternativo 1	
Suposiciones	Se asume que el diseño es lo suficientemente grande como para requerir navegación, y que la interfaz de visualización proporciona las herramientas necesarias para explorar el lienzo de manera efectiva.

Tabla 8 CU003

Caso	de uso
Nombre	Generación de código G
Actor participante	Usuario
Objetivo	Permitir al usuario generar el código G
	necesario para el corte basado en las
	configuraciones y diseño seleccionados.
Disparador	El usuario ha configurado los parámetros de
	corte y ha cargado el diseño, y ahora necesita
	generar el código G para la máquina de corte.
Precondición	El usuario ha iniciado sesión en el sistema y ha
	configurado los parámetros de corte. Además,
	el diseño está cargado en el sistema y es
	compatible con la generación de código G.
Postcondición	El usuario recibe el código G generado listo
	para ser utilizado en la máquina de corte.
Flujo básico	1. El usuario selecciona la opción para
	generar el código G.
	2. El sistema procesa las configuraciones
	de corte y el diseño cargado.
	3. El sistema genera el código G
	correspondiente.
	4. El usuario recibe el código G generado
	para su revisión y descarga.
Flujo alternativo 1	Si hay errores en las configuraciones o el diseño
	que impiden la generación del código G, el
	sistema notifica al usuario y proporciona
	instrucciones para corregirlos.
Suposiciones	Se asume que el usuario ha proporcionado
	configuraciones válidas para el corte y que el
	diseño cargado es compatible con la generación

de código G. Además, se espera que el sistema
genere el código G de manera precisa y sin
errores, siempre que las entradas del usuario
sean válidas.

Tabla 9 CU004

Caso de uso	
Nombre	Visualizar y simulación del código G
Actor participante	Usuario
Objetivo	Permitir al usuario visualizar y simular el
	diseño de corte en la máquina.
Disparador	El usuario necesita verificar la precisión y
	calidad del diseño antes de iniciar el corte.
Precondición	El diseño está cargado en el sistema y la
	máquina está lista para la simulación
Postcondición	El usuario visualiza y simula el diseño de corte
	con éxito.
Flujo básico	1. El usuario selecciona el diseño de
	corte deseado.
	2. El usuario accede a la opción de
	visualización y simulación.
	3. El sistema muestra una representación
	visual del diseño de corte.
	4. El usuario verifica la precisión y
	calidad del diseño simulado.
Flujo alternativo 1	El usuario cancela la visualización y
	simulación en cualquier momento
Suposiciones	Se asume que el diseño de corte está en un
	formato compatible y que el sistema tiene la
	capacidad de simular el proceso de corte de
	manera precisa

Tabla 10 CU005

Caso de uso	
Nombre	Cargar archivo DWF
Actor participante	Usuario
Objetivo	Permitir al usuario cargar un archivo en
	formato DWF al sistema.
Disparador	El usuario desea trabajar con un diseño en
	formato DWF en el sistema.
Precondición	El sistema está en un estado disponible para la
	carga de archivos.

Postcondición	El archivo DWF se carga correctamente en el
	sistema y está listo para su manipulación.
Flujo básico	El usuario inicia sesión en el sistema.
	2. El usuario accede a la opción de carga
	de archivos.
	3. El usuario selecciona el archivo DWF
	deseado desde su dispositivo.
	4. El sistema verifica y carga el archivo
	DWF.
Flujo alternativo 1	El usuario cancela la carga del archivo DWF en
	cualquier momento.
Suposiciones	Se asume que el usuario tiene acceso al archivo
	DWF que desea cargar y que el sistema tiene la
	capacidad de procesar archivos en este formato.

Tabla 11 CU006

Caso de uso	
Nombre	Descargar código G generado
Actor participante	Usuario
Objetivo	Permitir al usuario descargar el código G
	generado para el corte.
Disparador	El usuario necesita utilizar el código G
	generado en otro sistema o dispositivo.
Precondición	El sistema ha generado correctamente el código
	G para el diseño de corte.
Postcondición	El usuario descarga el código G correctamente
	en su dispositivo.
Flujo básico	1. El usuario inicia sesión en el sistema.
	2. El usuario accede a la opción de
	descarga de código G.
	3. El sistema genera el código G basado
	en el diseño de corte seleccionado.
	4. El usuario confirma la descarga del
	código G.
Flujo alternativo 1	El usuario cancela la descarga del código G en
	cualquier momento.
Suposiciones	Se asume que el código G generado es válido y
	funcional, y que el usuario tiene la capacidad de
	utilizar este código en otros sistemas o
	dispositivos.

Diagramas de actividad.

Se elaboraron un total de 6 diagramas de actividad que representan visualmente el comportamiento que tendrá el sistema, con el objetivo de mejorar la comprensibilidad con mayor claridad las condiciones y limitantes.

Diagrama de Carga de parámetros de corte

Figura 18 representa las acciones a realizar por el actor (usuario) para poder realizar la carga de los parámetros de una maquina; así también como la edición de una maquina existente.

Figura 18 ACT001

Diagrama de Carga de parámetros de corte

Después de que el sistema genere el código tomando en cuenta los parámetros dados por el usuario; el sistema desplegara una nueva ventana donde se muestre de una manera precisa una simulación del código generado como se muestra en la Figura 19.

Figura 19 ACT002

Diagrama de Navegación de lienzo

El sistema detectará cuando el usuario ya haya cargado el tamaño del lienzo y el archivo dwf y dará acceso al usuario a las herramientas de navegación tal como se muestra en la Figura 20.

Figura 20 ACT003

Diagrama de Generación de código G

El usuario después de haber añadido todos los parámetros de la maquina y el archivo de diseño deberá de seleccionar la opción para generación de código G, a continuación, el sistema procesará esta información y en el caso de que se encuentren errores regresará a la sección de los parámetros y el lienzo; de lo contrario generará el código G, como se muestra en la Figura 21.

Figura 21 ACT004

Diagrama de Carga de archivos

En la Figura 22 se muestra como el usuario cargara el archivo donde el sistema detectara si se ha cargado el archivo y si es del tipo de archivo requerido para el procesamiento que hace el modelo.

Figura 22 ACT005

Diagrama de Descarga de archivos

En la Figura 23 se muestra el proceso en el que el usuario podrá descargar el archivo TXT que contiene el código generado por el modelo, donde se puede cancelar la descarga de este archivo.

Figura 23 ACT006

e. Diseño de prototipos.

Para el "Software para generación de código CNC para corte de plasma en metales" se generaron prototipos con el objetivo de cumplir con los requerimientos planteados en el documento SRS, esto para que el usuario pueda interactuar con el modelo y mejore su experiencia así momento de interactuar con el sistema.

Figura 24 muestra el caso que se acaba de iniciar el sistema y no se ha ingresado ningún dato ni archivo.

Figura 24 Prototipo 1

Figura 25 muestra el caso que ya se han cargado el tamaño que tendrá el lienzo, así como también un archivo de tipo dwf.

Figura 25 Prototipo 2

Figura 26 muestra el mismo caso que el anterior prototipo, pero con otro archivo de diseño cargado.

Figura 26 Prototipo 3

Figura 27 y Figura 28 muestran cómo se comportará el sistema al momento de que se genere el código G y este se esté simulando, mostrando una opción para la descarga del archivo con código generado.

Figura 27 Protipo 4

Figura 28 Prototipo 5

Análisis de resultados.

El proyecto se enfoca en desarrollar un sistema mediante un modelo de inteligencia artificial para generar código G para máquinas de corte por plasma. Hasta el momento del desarrollo del proyecto, se han realizado diferentes actividades, entre las cuales están 6 diagramas de actividad, diagramas UML, en los que están incluidos un diagrama de caso de uso, uno de clases, uno de componentes y seis actividades. Estos diagramas son de suma importancia ya que se relacionan con los requerimientos que deben abordarse a lo largo del proyecto. Asimismo, se identifican 8 requerimientos, 5 funcionales y 3 no funcionales. Para obtener una descripción detallada de los requerimientos, ver apéndice A. Especificación de requerimientos de software (SRS). De igual forma, se realizó un plan de pruebas que contiene un total de tres pruebas de integración, una de sistema y cuatro unitarias, para consultar los detalles de las pruebas. consultar el apéndice C. Plan de pruebas. La relación entre los objetivos, requerimientos, diagramas y plan de pruebas demuestra el avance hacia la consecución del objetivo general del proyecto. Esta relación se puede encontrar atrás en el documento en la sección "Desarrollo del proyecto" > "Diseño del sistema" (Tabla 5), además se realizó un registro de los posibles riesgos que podrían surgir durante el desarrollo del proyecto, esto con el fin de contar con medidas preventivas o estrategias de mitigación en caso de que se suscite una de estas situaciones, ver apéndice B. Plan de riesgos.

En relación con la implementación de la metodología SCRUM, el equipo de desarrollo se ha sentido conforme con la utilización de esta metodología, debido a las ventajas que esta misma ha dado para la variabilidad de contenido por Sprint, lo que ayuda con el cumplimiento de las tareas. Un ejemplo claro de este punto es que al mismo tiempo que se están realizando la codificación de la interfaz gráfica, la creación de los bocetos y en la creación de los prototipos de alta fidelidad, se ha estado llevando a cabo una capacitación, sin dejar de lado la documentación necesaria para la entrega de TT 1, lo cual es una gran ventaja para el avance de las tareas y, por lo tanto, del proyecto.

Conclusiones y Recomendaciones.

El proyecto avanzó de manera significativa en la dirección de su objetivo general: obtener código G a partir del análisis de imágenes y/o archivos DFX o DWG mediante un proceso de inteligencia artificial. Con el análisis exhaustivo del sistema a desarrollar, la definición de requerimientos tanto funcionales como no funcionales, así como la creación de diagramas de diseño, prototipos de alta fidelidad, la codificación de estos y un plan de pruebas, por lo que se tiene ya una base sólida para el desarrollo del proyecto.

En cuanto a la implementación de la metodología, se adaptó de manera eficiente con el proyecto, permitiendo el avance de las tareas y de forma paralela la realización de la documentación necesaria para la materia de TT 1, incluso en un caso en específico, como lo es la creación del documento de diseño, ya se tenían los prototipos que se utilizaron, estos fueron creados en la tarea de creación de prototipos de alta fidelidad, los cuales ya incluso habían sido aprobados por el cliente. Considerando que en el proyecto no se han tenido desviaciones, ni se han detonado riesgos, se puede decir que el plan de trabajo el cual nos planteamos al iniciar con el proyecto se ha llevado a cabo de forma exitosa; sin embargo, no se descartan los posibles riesgos que puedan detonar, ya que la mayoría de ellos están basados en el modelo de IA que se generará durante el lapso de tiempo de TT 2, además de que el plan del proyecto se realizó aún sin saber las fechas de inicio y fin del próximo semestre, por lo que puede variar la cantidad de sprints que se realizarán durante la segunda etapa del proyecto.

¡Error! No se encuentra el origen de la referencia. contiene las tareas que se encuentran en el backlog del proyecto, donde podemos observar claramente tres tareas que ya se han comenzado y necesitan finalizar, además de 10 tareas que aún no han comenzado; estas son las tareas que se estarán realizando durante TT 2 durante un total de 8 sprints, que como se aclaró anteriormente, están sujetas a la duración del semestre próximo, las fechas aproximadas de estos sprints se muestran en la Figura 29.

Figura 29 Sprints TT 2

En resumen, el proyecto se encuentra en una posición sólida para cumplir con su objetivo general basándose en lo realizado en TT 1. A medida que se avance con la construcción del modelo de IA y la creación de la interfaz gráfica y su funcionalidad, así como de la realización de las pruebas, se espera que el sistema cumpla con los requerimientos establecidos y proporcione una solución eficiente y automatizada para la generación de código G para el corte en máquinas de corte por plasma.

Fuentes de consulta.

- [1] S. Sachdeva, «Impact of Agile Methodology on Software Development Process,» *International Journal of Computer Technology and Electronics Engineering*, vol. 2, nº 4, pp. 46-50, 2012.
- [2] G. R. Valle Iscano, «Generador de código g con python,» Tegucigalpa, 2022.
- [3] P. Prakash Pande y Y. A. Kharche Kharche, «Development Of Artificial Intelligence Algorithm For Automated Cnc Machining Process For Unmanned Production,» *Journal of Pharmaceutical Negative Results*, vol. 14, nº 3,
 - pp. 1392-1395, 2023.
- [4] O. J. Cifuentes Enciso, «Repositorio Institucional,» 14 Febrero 2019. [En línea]. Available: https://repository.udistrital.edu.co/handle/11349/8820. [Último acceso: 17 Noviembre 2023].
- [5] S. Sachdeva, «Scrum Methodology,» *International Journal Of Engineering And Computer Science*, vol. 5, nº6, pp. 16792-16799, 2016.
- [6] E. Morales y J. Gonzáles, «Aprendizaje por refuerzo,» INAOE, 2012.
- [7] Mordor Intelligence, «Mercado CNC Tamaño, participación y crecimiento,» [En línea]. Available: https://www.mordorintelligence.com/es/industry-reports/computer-numerical-controls-market#:~:text=El%20mercado%20de%20controles%20numéricos,período%20de%20pronóstico %-202021%20%2D%202026.. [Último acceso: 20 01 24].

- [8] A. Campos, Ayala y Á. Ayala, «Comparación de software shareware para generación de programas en código G,» MEMORIAS DEL XXIII CONGRESO INTERNACIONAL ANUAL DE LA SOMIM, pp. 142 - 149, 2017.
- [9] P. Escandell Montero, Aprendizaje por refuerzo en espacios continuos, España: Universitat de València, 2014.
- [10] L. Rouhiainen, INTELIGENCIA ARTIFICIAL 101 COSAS QUE DEBES SABER HOY SOBRE NUESTRO FUTURO, Madrid: alienta editorial, 2018.

Firmas.

Pedro Alejandro Nunez Perez

Autorización.

M. en C. Eleazar Pacheco Reyes

Director

M. en C. Erika Paloma Sánchez Femat Asesora

Apéndices

A. Especificación de requerimientos de software (SRS)

A.1. Introducción.

En el presente documento se especificarán y analizarán los requerimientos para el proyecto "SOFTWARE PARA GENERACIÓN DE CÓDIGO CNC PARA CORTE DE PLASMA

EN METALES". Este documento de especificación de requerimientos se ha estructurado en base a las directrises del estándar IEEE Std. 830-1998

A.1.1 Propósito.

El propósito de este documento es proporcionar una visión completa de los requerimientos del software a desarrollar para "SOFTWARE PARA GENERACIÓN DE CÓDIGO CNC PARA CORTE DE PLASMA EN METALES". Está dirigido al cliente, incluyendo el equipo de desarrollo, diseñadores, y personal de pruebas.

A.1.2 Alcance. El título del proyecto de software.

- Nombre del sistema: "SOFTWARE PARA GENERACIÓN DE CÓDIGO CNC PARA CORTE DE PLASMA EN METALES"
- El sistema permitirá la carga de archivos DFW, DWG y de imágenes, que con el procesamiento de una inteligencia artificial deberá generar código G, el cual podrá ser descargado en un archivo TXT.
- El sistema permitirá simplificar el proceso de generación de código G, esto con el fin de lograr una disminución de tiempo que toma este proceso.

A.1.3 Definiciones, acrónimos y abreviaturas.

CNC: El control numérico o control decimal numérico es un sistema de automatización de máquinas herramienta que son operadas mediante comandos programados en un medio de almacenamiento. (Control numérico, s.f.)

Código G: Normalmente es un código que indica a la máquina qué operación debe realizar. (G-code, s.f.)

DFX: DXF es un formato de archivo para dibujos de diseño asistido por computadora, creado fundamentalmente para posibilitar la interoperabilidad entre los archivos DWG, usados por el programa AutoCAD. (DXF, s.f.)

DWG: Es un formato de archivo informático de dibujo computarizado, utilizado principalmente por el programa AutoCAD. (DWG, s.f.)

A.1.4 Referencias.

Control numérico. (s.f.). Recuperado el 27 de 2 de 2024, de Wikipedia, la enciclopedia libre: http://es.wikipedia.org/wiki/Control_numérico

DWG. (s.f.). Recuperado el 27 de 2 de 2024, de Wikipedia, la enciclopedia libre: http://es.wikipedia.org/wiki/DWG

DXF. (s.f.). Recuperado el 27 de 2 de 2024, de Wikipedia, la enciclopedia libre: http://es.wikipedia.org/wiki/DXF

G-code. (s.f.). Recuperado el 27 de 2 de 2024, de Wikipedia, la enciclopedia libre: http://es.wikipedia.org/wiki/G-code

A.1.5 Vista general.

El presente documento abordará ciertos detalles de la plataforma a realizar, como lo son las perspectivas del usuario, las restricciones del proyecto, las funciones que tendrá, las características de los usuarios, las dependencias del producto y algunos requisitos específicos como interfaces, banco de datos, las especificaciones del software y la seguridad, etc.

A. Descripción General. A. Perspectiva del producto.

El sistema por desarrollar será un producto independiente de cualquiera que ya esté en existencia y, aunque existirán similitudes, se prende automatizar el proceso con ayuda de una inteligencia

artificial que ayudará a mejorar la interfaz de usuario en cuanto a características y funcionalidades que se incluirán dentro del proyecto.

Los usuarios actualmente pueden descargar programas que ayudan a que este proceso sea un poco más sencillo como los son los softwares de computadora CAD, CAM, etc. Estos son los softwares más usados actualmente por las funcionalidades que estas suelen tener.

En el caso de este sistema a desarrollar, se podrá tener acceso a una interfaz gráfica, la cual ayudará al entendimiento de los pasos a realizar por la máquina; que van desde poder visualizar las figuras en un lienzo, así como poder observar las partes del material que se desperdiciarán, además también una simulación de cómo va a funcionar el código generado. (IEEE Std. 830-1998)

Unidad de Aprendizaje: Trabajo Terminal I

Ilustración 1 Diagrama de bloque 1

Ilustración 2 Diagrama de bloque 2

Aquí también se debe describir cómo es que el software debe operar dentro de varias restricciones, las cuales pueden incluir:

- Interfaces de sistema
- Interfaces de usuario
- Interfaces de hardware
- Interfaces de software
- Interfaces de comunicaciones
- Memoria
- Funcionamiento
- Requisitos de adaptación del Site.

A.Funcionalidad del producto.

Características (funciones):

- 1. Tamaño del lienzo
 - a. Determinar el tamaño del lienzo
- 2. Parámetros de corte
 - a. Agregar o modificar los parámetros de corte
 - i. Velocidad de Avance
 - ii. Amperaje de la maquina
 - iii. Diámetro del plasma
 - iv. Orientación del corte
- 3. Archivo
 - a. Agregar o arrastrar archivo
- 4. Código G
 - a. Generar
 - b. Simular
 - c. Descargar

A.Restricciones generales.

Las restricciones generales para el desarrollo y operación del software de control de máquina de corte incluyen cumplir con regulaciones y políticas regulatorias relacionadas (IEEE Std. 830-1998)

Unidad de Aprendizaje: Trabajo Terminal I

con la seguridad industrial, garantizar la compatibilidad con el hardware disponible, permitir la integración con otras aplicaciones utilizadas en el entorno de producción, manejar eficientemente operaciones en paralelo, registrar actividades importantes para fines de auditoría

A.Presunciones y dependencias.

Este software requerirá de un sistema operativo especifico, ni contará con dependencias respecto de otros sistemas.

A. Especificación de requerimientos.

Tabla 1 Tabla de requerimientos

Tuora T Tuora ac regue	
Identificador de requerimiento: RF001	
Nombre corto:	Configuracion de la maquina.
Estatus:	• Aprobado
Descripción:	Permite al usuario configurar los parámetros de la máquina de corte, incluyendo velocidad de avance, amperaje, diámetro del plasma y dirección del corte, métricas inglesa y Métrica.
Necesidades que resuelve:	Permite al usuario ajustar la máquina según las necesidades específicas de corte.
Métrica de satisfacción:	Verificación de que los parámetros configurados se reflejan correctamente en el proceso de corte.

Tabla 2 Tabla de requerimientos 2

tuota 2 Tuota ae Tequestimientos 2	
Identificador de requerimiento: RF002	
Nombre corto:	Navegación de lienzo
Estatus:	• Aprobado
Descripción:	Permite al usuario moverse por el lienzo para visualizar diferentes partes de la pieza o diseño.
Necesidades que resuelve:	Facilita la exploración y visualización de diseños complejos.
Métrica de satisfacción:	Verificación de que el usuario puede navegar sin dificultad por el lienzo.

Tabla 3 Tabla de requerimientos 3

Identificador de requerimiento: RF003	
Nombre corto:	Generar código G
Estatus:	 Aprobado
Descripción:	Permite al usuario generar el código G necesario para el corte basado en las configuraciones y diseño seleccionados.
Necesidades que resuelve:	Automatiza el proceso de generación de código para el control de la máquina de corte por plasma.
Métrica de satisfacción:	Verificación de que el código G generado es válido y funcional para la máquina.

Tabla 4 Tabla de requerimientos 4

Identificador de requerimiento: RF004		
Nombre corto:	Visualización de simulación del código G	
Estatus:	 Aprobado 	
Descripción:	Muestra una simulación visual del proceso de corte basado en el código G generado.	
Necesidades que resuelve:	Permite al usuario verificar la precisión y calidad del corte antes de la ejecución.	
Métrica de satisfacción:	Verificación de que la simulación refleja con precisión el resultado real del corte.	

Tabla 5 Tabla de requerimientos 5

Identificador de requerimiento: RF005		
Nombre corto:	Navegador de archivos para carga o arrastre de archivos	
Estatus:	Aprobado	
Descripción:	Proporciona una interfaz para que el usuario cargue archivos de diseño, con la opción de arrastrar y soltar.	
Necesidades que resuelve:	Facilita la carga de archivos de diseño al sistema.	
Métrica de satisfacción:	Verificación de que los archivos se cargan correctamente y están disponibles para su manipulación.	

Tabla 6 Tabla de requerimientos 6

Identificador de requerimiento: RNF001		
Nombre corto:	Predominante blanco y negro	
Estatus:	Aprobado	
Descripción:	El diseño de la interfaz debe seguir una estética predominantemente en blanco y negro.	
Necesidades que resuelve:	Cumple con las preferencias de diseño del cliente y proporciona una interfaz limpia y legible.	
Métrica de satisfacción:	Evaluación visual de la interfaz para confirmar que sigue la paleta de colores especificada.	

Tabla 7 Tabla de requerimientos 7

rasia / rasia ac requer		
Identificador de requerimiento: RNF002		
Nombre corto:	Evitar sobreescritura de en las demás piezas	
Estatus:	Aprobado	
Descripción:	El sistema debe evitar la sobreescritura accidental de archivos o datos de piezas existentes.	
Necesidades que resuelve:	Protege la integridad de los diseños existentes y evita la pérdida de datos.	
Métrica de satisfacción:	Verificación de que el sistema muestra advertencias o solicita confirmación antes de realizar cambios que podrían resultar en sobreescritura.	

Tabla 8 Tabla de requerimientos 8

Identificador de requerimiento: RNF003		
Nombre corto:	Descarga de archivo de texto con el código G.	
Estatus:	• Aprobado	
Descripción:	Permite al usuario descargar el código G generado en formato de archivo de texto.	
Necesidades	Facilita el uso del código G con otros sistemas o software relacionados.	
que		
resuelve:		
Métrica de	Verificación de que el archivo descargado contiene el código G correcto y está en el	
satisfacción:	formato esperado.	

A.Requerimientos Funcionales.

1. Requerimiento funcional RF001:

- a. El sistema debe permitir al usuario configurar los parámetros de la máquina de corte. Debería:
 - Realizar comprobaciones de validez de las entradas proporcionadas por el usuario para garantizar la coherencia y precisión de los datos ingresados.

- Definir una secuencia exacta de operaciones para la configuración de los parámetros, asegurando un flujo de trabajo claro y consistente.
- iii. Responder adecuadamente a situaciones anormales, como el ingreso de valores fuera de rango, facilitando la comunicación de errores al usuario y proporcionando opciones de recuperación. iv. Efectuar los cambios en los parámetros de la máquina según las configuraciones realizadas por el usuario, asegurando que los ajustes se reflejen correctamente en el proceso de corte.
- v. Establecer relaciones entre las entradas de configuración y las salidas resultantes, definiendo la secuencia de entrada y salida de datos, así como las fórmulas para la conversión de entradas en salidas.

2. Requerimiento funcional RF002:

- a. El sistema debe permitir al usuario moverse por el lienzo para visualizar diferentes partes de la pieza o diseño. Debería:
 - Proporcionar controles de navegación intuitivos que permitan al usuario desplazarse suavemente por el lienzo.

Especificación de Requerimientos de software.

(IEEE Std. 830-1998)

Unidad de Aprendizaje: Trabajo Terminal I

- Facilitar la exploración de diseños complejos mediante métodos de zoom y panorámica. iii. Asegurar una experiencia de usuario fluida y sin interrupciones durante la navegación.
- iv. Proporcionar indicadores visuales claros para la posición actual en el lienzo, permitiendo al usuario orientarse fácilmente.
- v. Permitir al usuario realizar zoom específico en áreas de interés para una visualización detallada del diseño.

3. Requerimiento funcional RF004:

- a. El sistema debe mostrar una simulación visual del proceso de corte basado en el código G generado. Debería:
 - Representar de manera precisa y detallada el proceso de corte según las instrucciones del código G.

- Permitir al usuario verificar la precisión y calidad del corte antes de la ejecución real.
- iii. Proporcionar opciones para ajustar la velocidad de reproducción de la simulación, facilitando la revisión de detalles.
- iv. Incluir herramientas de visualización interactiva, como zoom y panorámica, para explorar diferentes áreas de la simulación.
- v. Ofrecer indicadores visuales claros para identificar posibles errores o problemas durante el proceso de corte simulado.

4. Requerimiento funcional RF005:

 a. El sistema deberá proporcionar un navegador de archivos que permita al usuario cargar archivos de diseño, con la opción de arrastrar y soltar.

Debería:

- Facilitar la carga de archivos de diseño al sistema, ya sea mediante la selección tradicional de archivos o arrastrando y soltando archivos en la interfaz.
- ii. Mostrar una vista previa de los archivos cargados, cuando sea posible,
 para que el usuario pueda confirmar la selección correcta.
- iii. Permitir al usuario ordenar y filtrar los archivos según diferentes criterios, como nombre, tipo o fecha de modificación.
- iv. Proporcionar retroalimentación visual clara durante el proceso de carga, indicando el estado de cada archivo (cargado correctamente, error de carga, etc.).
- v. Garantizar la seguridad y privacidad de los archivos cargados,
 implementando medidas para prevenir accesos no autorizados o pérdida de datos.

A.Requerimientos de desempeño.

5. Requerimiento funcional RF003:

a. El sistema debe permitir al usuario generar el código G necesario para el corte basado en las configuraciones y diseño seleccionados. Debería:

- Automatizar el proceso de generación de código, minimizando la intervención manual del usuario.
- Interpretar las configuraciones y diseño seleccionados para generar un código G válido y funcional para la máquina de corte. iii.

Proporcionar opciones para ajustar y personalizar el código generado según las necesidades específicas del usuario.

- iv. Validar el código G generado para garantizar su corrección y compatibilidad con la máquina de corte.
 Especificación de Requerimientos de software.
- v. Ofrecer una interfaz clara y comprensible para la visualización y edición del código G antes de su generación final.

A.Requerimientos de la base de datos lógica.

El sistema no tendrá requerimientos de base de datos lógica.

A.Restricciones de diseño.

a. Cumplimiento de estándares. No aplica debido a que se optó por un diseño libre.

A.Atributos

a. Confiabilidad.

Para poder cumplir el requerimiento de confiabilidad, el sistema mediante la simulación deberá de ser precisa y correcta; conforme a lo esperado por el usuario. (RF004)

b. Disponibilidad.

Para poder cumplir con la disponibilidad, el sistema permitirá que el usuario se mueva libremente por el lienzo para visualizar las diferentes partes de la pieza o diseño. (RF002)

c. Seguridad.

No aplica, debido a que no es necesario el uso de datos del usuario.

d. Mantenibilidad.

Para poder cumplir con la mantenibilidad se utilizará la escalabilidad y la facilidad de organizar el código del paradigma orientado a objetos.

e. Portabilidad.

Se busca que el sistema pueda correr de manera correcta en cualquier sistema operativo en el que este instalado; sin afectar su rendimiento ni la estructura del diseño.

A.3.6. Requisitos de Interfaces externas.

1) Parámetros de corte

- a) Nombre del dato (Ítem): Configuración de parámetros de corte.
- b) Descripción del propósito: Permitir al usuario ajustar los parámetros de corte según las necesidades específicas del proyecto.
- c) Fuente de la entrada o destino de la salida: Interfaz de usuario.
- d) Rango válido de exactitud, y/o tolerancia: Valores predeterminados y definidos por el usuario dentro de rangos específicos para cada parámetro.
- e) Unidad de medida: Velocidad de avance (metros por minuto), amperaje (amperios), diámetro del plasma (milímetros), dirección del corte (grados).
- f) Sincronización: La configuración de parámetros se sincroniza con la máquina de corte antes de iniciar el proceso.
- g) Relaciones con otras entradas o salidas: Los parámetros de corte afectan directamente con la precisión y calidad del corte.
- h) Formato y organización de las pantallas: Interfaz gráfica intuitiva con controles claros y organizados para cada parámetro.
- i) Formato de los datos: Números decimales o enteros, según el parámetro especifico.
- j) Formato de las instrucciones: Instrucciones claras y concisas en texto o en forma de tooltips para guiar al usuario en la configuración de los parámetros.
- k) Mensajes de finalización: Confirmación visual de que los parámetros de corte han sido configurados correctamente y están listos para su aplicación.

2) Tamaño del lienzo

- a) Nombre del dato (Ítem): Tamaño del lienzo
- b) Descripción del propósito: Permitir al usuario determinar el tamaño del lienzo donde se visualizará los diseños y piezas.

- c) Fuente de la entrada o destino de la salida: Interfaz de usuario.
- d) Rango válido de exactitud, y/o tolerancia: Dimensiones mínimas y máximas definidas por el sistema, según las capacidades de la máquina de corte.
- e) Unidad de medida: Milímetros, centímetros o pulgadas, según la preferencia del usuario
- f) Sincronización: Los cambios en el tamaño del lienzo se reflejarán instantáneamente en la interfaz de usuario.
- g) Relaciones con otras entradas o salidas: El tamaño del lienzo debe ser el mismo que el tamaño de la pieza sobre la que se realizara el corte.
- Formato y organización de las pantallas: Controles intuitivos para ajustar las dimensiones del lienzo, con indicadores visuales claros de las medidas seleccionadas.
- Formato de los datos: Números enteros o decimales que representan las dimensiones del lienzo en la unidad de medida especificada.
- j) Formato de las instrucciones: Instrucciones simples y directas para modificar el tamaño del lienzo, con mensajes informativos sobre los límites de tamaño y las restricciones aplicables.
- k) Mensajes de finalización: Confirmación visual de que el tamaño del lienzo ha sido actualizado correctamente y está listo para su uso.

3) Archivo

- a) Nombre del dato (Ítem): Carga de archivo
- Descripción del propósito: Permitir al usuario cargar las piezas antes diseñadas en un archivo dfw.
- c) Fuente de la entrada o destino de la salida: Interfaz de usuario.
- d) Rango válido de exactitud, y/o tolerancia: Tipos de archivos admitidos por el sistema y tamaño máximo permitido para la carga.
- e) Unidad de medida: No aplica.
- f) Sincronización: Los archivos cargados deben de aparecer inmediatamente en la interfaz para su manipulación.
- g) Relaciones con otras entradas o salidas: Los archivos cargados se relacionan directamente con la generación de código G y simulación de corte.
- h) Formato y organización de las pantallas: Interfaz clara y accesible que permita al usuario seleccionar y cargar archivos de diseño de manera intuitiva.
- i) Formato de los datos: Archivo de diseño compatible con el sistema "DWF".

- j) Formato de las instrucciones: Instrucciones simples para agregar archivos mediante un botón de carga o arrastrar y soltar.
- k) Mensajes de finalización: Confirmación visual de que el archivo ha sido cargado correctamente y está listo para su uso.

4) Código G

- a) Nombre del dato (Ítem): Código G
- b) Descripción del propósito: Permitir al usuario generar, simular y descargar el código G necesario para el control de la máquina de corte.
- c) Fuente de la entrada o destino de la salida: Interfaz de usuario.
- d) Rango válido de exactitud, y/o tolerancia: Código G valido y funcional para la máquina de corte.
- e) Unidad de medida: No aplica.
- f) Sincronización: Generación instantánea de código G en respuesta a las acciones del usuario.
- g) Relaciones con otras entradas o salidas: El código G generado se relaciona con la configuración de parámetros de corte y la simulación visual del proceso de corte.
- h) Formato y organización de las pantallas: Interfaz clara y organizada que permita al usuario generar, simular y descargar el código G de manera intuitiva.
- i) Formato de los datos: Archivo de texto con el código G en un formato estándar reconocido por la máquina de corte.
- j) Formato de las instrucciones: Instrucciones claras para generar, simular y descargar el código G, con botones o acciones específicas para cada función.
- k) Mensajes de finalización: Confirmación visual de que el código G ha sido generado, simulado o descargado correctamente, junto con cualquier mensaje de error en caso de falla.

A.3.7. Organización específica de los requerimientos.

a. Modo del sistema.

Un único modo en el que al ejecutar el programa se le cargan los parámetros de corte, el archivo, se permite la visualización de las piezas así como la simulación, y la descarga del código G

b. Clases de usuario.

No aplica, debido a que no hay niveles de autorización

c. Objetos.

1) Máquina de corte: Representa la entidad principal del sistema, encapsulando los parámetros

de corte, métodos para configurar la máquina y generar el código G.

2) Interfaz de usuario: Objeto responsable de la interacción con el usuario, proporcionando

métodos para cargar archivos, visualizar piezas y simular el proceso de corte.

3) Simulador: Objeto encargado de generar una representación visual del proceso de corte

basado en el código G generado, permitiendo al usuario verificar la precisión y calidad del

corte.

d. Característica.

Característica: Generación de código G:

Estimulo: El usuario solicita la generación del código G para un diseño específico y configuraciones

de corte.

Respuesta: El sistema procesa las entradas proporcionadas por el usuario, como los parámetros de

corte y el diseño del archivo, y genera el código G correspondiente. Este código G se presenta al

usuario para su visualización y posterior descarga.

Característica: Configuración de parámetros de corte.

Estimulo: El usuario accede a la función de configuración de parámetros de corte en la interfaz del

sistema.

Respuesta:

1) El sistema muestra una interfaz que permite al usuario ajustar los parámetros de corte, como la

velocidad de avance, el amperaje, el diámetro del plasma y la dirección del corte. 2) El usuario

ingresa los valores deseados para cada parámetro de corte.

3) El sistema realiza comprobaciones de validez de las entradas proporcionadas por el usuario

para garantizar la coherencia y precisión de los datos ingresados.

4) Una vez validados, el sistema efectúa los cambios en los parámetros de la máquina según las

configuraciones realizadas por el usuario.

5) Se verifica que los parámetros configurados se reflejen correctamente en el proceso de corte,

garantizando su funcionalidad y precisión.

61

Característica: Visualización y simulación de diseño

Estimulo: El usuario solicita visualizar y simular el diseño en la interfaz del sistema

Respuesta: El sistema proporciona una representación gráfica del diseño o pieza en el lienzo,

permitiendo al usuario examinar diferentes partes y detalles. Esta visualización es interactiva, lo que

permite al usuario realizar acciones como hacer zoom, rotar o mover la pieza para una mejor

perspectiva. Además, el sistema ofrece una simulación del proceso de corte basada en el diseño

mostrado, utilizando el código G generado. Durante la simulación, se muestra cómo la máquina de

corte se moverá y operará sobre la pieza, lo que permite al usuario verificar la precisión y calidad

del corte. Esta función es crucial para que el usuario pueda revisar el resultado de la simulación y

realizar ajustes en los parámetros de corte si es necesario, antes de proceder con la ejecución real.

Característica: Carga de archivo de diseño.

Estimulo: El usuario selecciona la opción para cargar un archivo de diseño en la interfaz del

sistema.

Respuesta: El sistema permite al usuario cargar archivos de diseño mediante una interfaz intuitiva.

Se pueden utilizar diferentes métodos, como seleccionar el archivo desde el sistema de archivos del

dispositivo o arrastrar y soltar el archivo en el área designada de la interfaz. Una vez cargado el

archivo, el sistema verifica la validez del formato y la integridad de los datos. Si el archivo cumple

con los requisitos, se carga correctamente y está disponible para su manipulación en el sistema. En

caso de que el archivo no sea válido, se muestra un mensaje de error adecuado al usuario, indicando

la naturaleza del problema. Esta característica es fundamental para permitir al usuario trabajar con

sus diseños existentes dentro del entorno del sistema de corte.

Característica: Descarga de Archivo con Código G Generado

Estimulo: El usuario solicita la descarga del código G generado para un diseño específico.

Respuesta: El sistema permite al usuario descargar el código G generado para el diseño seleccionado

en formato de archivo de texto. Al solicitar la descarga, el sistema genera el código G

correspondiente a partir de los parámetros de corte y otras configuraciones establecidas por el

usuario. Una vez generado, el sistema proporciona un enlace o botón de descarga en la interfaz de

usuario. Al hacer clic en este enlace o botón, se descarga el archivo de texto que contiene el código

1

G en el dispositivo del usuario. El archivo descargado está en el formato esperado y listo para su uso con otros sistemas o software relacionados. Esta característica facilita la transferencia del código G generado para su posterior utilización en el proceso de corte o en otras aplicaciones vinculadas al sistema de control de la máquina.

e. Estímulos (Eventos).

- 1. Carga de archivos: El usuario arrastra un archivo de diseño al área designada o selecciona un archivo desde el sistema de archivos para cargarlo en la aplicación.
- Configuración de parámetros de corte: El usuario ajusta los parámetros de corte, como la velocidad de avance, el amperaje, el diámetro del plasma y la orientación del corte, mediante la interfaz de usuario.
- 3. Generación del código G: El usuario solicita la generación del código G necesario para el corte, lo que puede ocurrir después de configurar los parámetros de corte y cargar el diseño.
- 4. Visualización y simulación del diseño: El usuario solicita la visualización y simulación del diseño cargado, lo que puede incluir la exploración de diferentes partes del diseño y la verificación de la precisión del corte antes de la ejecución. (IEEE Std. 830-1998)

Unidad de Aprendizaje: Trabajo Terminal I

5. Descarga de archivo con código G: El usuario solicita la descarga del archivo de texto que contiene el código G generado para el diseño seleccionado.

f. Respuesta.

1. Carga de archivos:

- a. El sistema verifica la validez del archivo cargado.
- b. Si el archivo es válido, se muestra en la interfaz de usuario para su manipulación.
- c. Si hay errores en el archivo, se muestra un mensaje de error indicando la naturaleza del problema.

2. Configuración de parámetros de corte:

 a. El sistema valida los parámetros ingresados por el usuario para garantizar que estén dentro de los rangos aceptables.

- b. Si los parámetros son válidos, se actualiza la configuración de la máquina de corte.
- c. En caso de valores fuera de rango, se muestra un mensaje de advertencia y se solicita al usuario que realice ajustes válidos.

3. Generación del código G:

- a. El sistema procesa los parámetros de corte y el diseño cargado para generar el código G correspondiente.
- b. Se muestra una confirmación de que el código G ha sido generado correctamente.
- c. Se proporciona botón para descargar el archivo de texto con el código G.

4. Visualización y simulación del diseño:

- a. El sistema presenta una representación visual del diseño cargado en el lienzo.
- b. Permite al usuario explorar diferentes partes del diseño y realizar zoom o panorámica según sea necesario.
- c. Se muestra una simulación del proceso de corte basado en los parámetros configurados y el diseño cargado.

5. Descarga de archivo con código G:

- a. El sistema genera el archivo de texto con el código G y lo proporciona al usuario para su descarga.
- b. Se muestra un mensaje de confirmación de que la descarga se ha completado con éxito.

g. Jerarquía funcional.

En el sistema de software que estamos desarrollando, la jerarquía funcional puede organizarse en torno a las principales funcionalidades que ofrece el sistema. A continuación, se presenta una jerarquía funcional básica:

Configuración y Gestión de Parámetros:

Esta función engloba todas las actividades relacionadas con la configuración de los parámetros de corte, incluyendo la validación de entradas, la actualización de la configuración de la máquina y la gestión de los valores de los parámetros.

Manipulación de Archivos:

Aquí se agrupan las operaciones relacionadas con la carga, manipulación y gestión de archivos de diseño. Esto incluye la carga de archivos mediante carga directa o arrastrar y soltar, así como la verificación de la validez de los archivos cargados.

Generación de Código G:

Esta función se encarga de procesar los parámetros de corte y el diseño cargado para generar el código G necesario para el control de la máquina de corte. Incluye la conversión de datos de diseño en instrucciones de código G y la validación del código generado.

Visualización y Simulación:

Aquí se agrupan las funcionalidades relacionadas con la visualización del diseño en el lienzo y la simulación del proceso de corte. Esto implica la presentación de una representación visual del diseño, la interacción con el lienzo para explorar diferentes partes del diseño, y la simulación del corte para verificar la precisión y calidad.

Descarga de Archivos:

Esta función se encarga de proporcionar al usuario la capacidad de descargar el código G generado en formato de archivo de texto. Incluye la generación del archivo de código G y la facilitación de su descarga por parte del usuario.

Esta jerarquía funcional permite una organización clara y estructurada de las principales funciones del sistema, facilitando su comprensión y desarrollo. Los diagramas de flujo de datos y los diccionarios de datos pueden utilizarse para mostrar las interrelaciones entre estas funciones y los datos involucrados en el sistema.

h. Cometarios adicionales.

No aplica.

B. Plan de riesgos

CONTROL DE VERSIONES					
Autor(es)	Fecha de modificación	Versión	Descripción del cambio	Revisó	Estado
PANP	20/03/2024	1.0	Creación del Documento y agregar riesgos		Aprobado.

Propósito

Definir un marco metodológico para la correcta evaluación de los riesgos que se pueden encontrar dentro de un proyecto, en el contexto de Trabajo Terminal I y II.

De la evaluación de los riesgos

Se deben llenar 4 tablas que nos ayudarán a medir la probabilidad y nivel de riesgo de sucesos que pueden ocurrir a lo largo del desarrollo del proyecto e incluso una vez terminado.

Dichas tablas contendrán los niveles de probabilidad, los niveles de impacto, el nivel de riesgo y una tabla en la cual se registrarán los posibles riesgos que amenacen el proyecto.

Niveles de probabilidad

Los niveles de probabilidad deberán expresar el nivel que se define para la ocurrencia de un suceso, para los proyectos de Trabajo Terminal de la UPIIZ, se sugiere utilizar la siguiente tabla:

Nivel	Probabilidad	Descripción
1	Raro	Solo ocurrirá en casos excepcionales
2	Improbable	Puede ocurrir en algún momento pero las condiciones del proyecto no dan pie a que suceda
3	Posible	Podría ocurrir en algún momento del proyecto
4	Probable	Es probable que ocurra en la mayoría de las circunstancias del proyecto
5	Casi Seguro	Se espera que ocurra para todas las posibles circunstancias

Niveles de impacto

El nivel de impacto, como su nombre lo indica nos permite identificar que tanto impactaría en el proyecto, la ocurrencia de algún suceso riesgoso para el proyecto, para los proyectos de Trabajo Terminal de la UPIIZ, se sugiere utilizar la siguiente tabla:

Nivel	Impacto	Descripción
1	Insignificante	Si el hecho se llega a presentar no afecta la realización del
		proyecto
2	Menor	Si el hecho se llega a presentar el impacto no es significativo para
		la realización del proyecto no, genera una desviación significativa
3	Moderado	Si el hecho se llega a presentar el impacto es aun controlable y no
		afecta de manera grave la realización del proyecto.
4	Mayor	Si el hecho se llega a presentar el impacto es mucho mayor e
		implica cambios significativos en la realización del proyecto.
5	Catastrófico	Si el hecho se llega a presentar el impacto es grave y compromete
		la realización del proyecto.

Nivel de riesgo

Una vez definidos los niveles de probabilidad, y los niveles de impacto debemos calcular el nivel del riesgo, para ello se debe realizar una multiplicación simple de los niveles anteriores, con ello evaluaremos los riesgos que detectemos dentro de nuestro proyecto, siempre hay que considerar que a menor probabilidad e impacto, menor será el nivel del riesgo, a mayor probabilidad e impacto, mayor será el nivel de riesgo.

Probabilidad	Impacto					
	Insignificante	Menor	Moderado	Mayor	Catastrófico	
	(1)	(2)	(3)	(4)	(5)	
Raro (1)	1	2	3	4	5	
Improbable (2)	2	4	6	8	10	
Posible (3)	3	6	9	12	15	
Probable (4)	4	8	12	16	20	
Casi Seguro (5)	5	10	15	20	25	

De esta manera obtendremos la siguiente matriz de nivel de riesgo

Nivel de riesgo	Probabilidad X Impacto
Muy Alto	>= 20
Alto	De 15 a 19
Medio	De 9 a 14
Bajo	De 6 a 8
Muy bajo	< = 5

Matriz de riesgos

Una vez definidos los niveles anteriores se debe proceder a la identificación, registro, y rastreo de los riesgos detectados, para tal efecto se debe de llenar la siguiente tabla que será utilizada para los proyectos de Trabajo Terminal de la UPIIZ.

Tabla 12 Plan de riesgos

Id riesgo	Descripción	Fase afectada	Causa del riesgo	Probabilidad	Impacto	Nivel del riesg o	Estrategia de prevenció n	Estrategia de Mitigación
01	Fallo en la maquina de corte por laser.	Implementaci on.	Fallo mecánico o eléctrico de la maquina de corte proporcionada por el cliente	Improbable.	Mayor.	Вајо.	cliente realice un mantenimi ento preventivo	Tener un plan de contingencia para utilizar una maquina de corte de respaldo o subcontratar servicios de corte externos en caso de fallo.
R-002	Cambios de alcance no planificados	Todas las fases.	Cambios repentinos en los requisitos del proyecto por parte del cliente.	Probable.	Moderado.	Medi o.	Establecer un proceso formal de gestión de cambios y obtener la aprobación del cliente antes de implement ar cambios de alcance.	Realizar evaluaciones periódicas del impacto de los cambios de alcance y ajustar los recursos y plazos según sea necesario.
R-003	Ausencia del director del proyecto o de la asesora del proyecto.	Todas las fases.	Enfermedad, emergencias personales o conflictos de programación.	Improbable.	Moderado.	Вајо.	Establecer metas desde una etapa temprana del proyecto para que sea mas	Mantener una comunicación abierta y actualizada con el equipo de proyecto para minimizar el impacto de las ausencias

							sencillo terminar el	
							proyecto.	
R-004	Problemas de comunicació n entre el equipo de desarrollo y el cliente.	Todas las fases.	Malentendido s o falta de claridad en la comunicación	Posible.	Moderado.	Medi o.	Establecer canales de comunicaci ón claros y regulares con el cliente, incluyendo reuniones periódicas y actualizaci ones por correo electrónico	Utilizar herramientas de gestión de proyectos colaborativas para documentar y hacer un seguimiento de los requisitos y solicitudes del cliente
R-005	Disponibilid ad de datos insuficiente para el entrenamie nto del modelo de IA.	Desarrollo del modelo de IA.	Falta de acceso a fuentes de datos relevantes o baja calidad de los datos disponibles.	Improbable.	Catastrofico	Medi o.	Realizar una exhaustiva investigaci ón y planificaci ón para identificar fuentes de datos adecuadas y establecer acuerdos de colaboraci ón si es necesario.	Implementar técnicas de limpieza de datos, aumentar la diversidad de fuentes de datos y buscar alternativas en caso de escasez de datos.
R-006	Complejidad técnica del desarrollo del modelo de IA.	Desarrollo del modelo de IA.	Desafíos técnicos como la selección de algoritmos adecuados y la gestión de la complejidad del modelo.	Probable.	Mayor.	Alto.	Asignar tiempo para la investigaci ón y experimen tación con diferentes enfoques técnicos antes de la implement ación.	Establecer hitos de progreso claros, realizar pruebas exhaustivas y contar con la asesoría de expertos en inteligencia artificial si es necesario.
R-007	Cambio de requisitos durante el desarrollo	Todo el proyecto.	Nuevas expectativas del cliente o cambios en la	Improbable.	Moderado.	Вајо.	Mantener una comunicaci ón	Evaluar cuidadosamente el impacto de los cambios, ajustar

R-008	del proyecto. Disponibilid ad y capacidad	Todo el proyecto.	disponibilidad	Posible.	Mayor.	Medi o.	constante con el cliente para entender sus necesidade s y expectativ as. Document ar clarament e los requisitos iniciales y establecer procedimi entos para gestionar cambios. Realizar una evaluación	los planes y presupuestos según sea necesario, y comunicar de manera proactiva cualquier cambio al equipo y al cliente. Establecer planes de contingencia para redistribuir
	capacidad del equipo.		miembros clave del equipo.				evaluación continua de las capacidade s y disponibili dad del equipo. Planificar la asignación de recursos de manera equilibrada y considerar la capacitación o contratación de personal adicional si es necesario.	para redistribuir tareas y responsabilidades en caso de cambios en el equipo. Mantener una comunicación abierta y transparente dentro del equipo para abordar cualquier problema de manera proactiva.
R-009	Incumplimie nto del plazo de entrega	Todo el proyecto.	Posibles retrasos en el desarrollo, validación o	Probable.	Mayor.	Alto.	Establecer un cronogram a realista y	Priorizar tareas críticas, asignar recursos adicionales si es

	1.1	<u> </u>		<u> </u>	<u> </u>	l	a	
	del		implementaci				flexible	posible y ajustar el
	proyecto.		ón del modelo				que tenga	alcance del
			de IA.				en cuenta	proyecto si es
							posibles	necesario para
							contratiem	cumplir con los
							pos.	plazos
							Monitorea	establecidos.
							r	
							regularme	
							nte el	
							progreso	
							del	
							proyecto y	
							tomar	
							medidas	
							correctivas	
							de manera	
							oportuna si	
							se	
							identifican	
							riesgos de	
							incumplimi	
							ento de	
D 042	r-II-	D	Daniel in t	Duele - L. L	D.4	A 1+	plazos.	luculous sur!
R-010	Falla en el	Desarrollo y		Probable.	Mayor.	Alto.	Realizar	Implementar
	cumplimient	validación del					una	ajustes iterativos
	o de los	modelo de IA.	del modelo, no				evaluación	en el modelo,
	objetivos de		cumplimiento				exhaustiva	realizar pruebas
	rendimiento		de las				de los	de validación
	del modelo		expectativas o				requisitos	exhaustivas y
	de IA.		incapacidad				У	considerar la
			para resolver				expectativ	colaboración con
			eficazmente el				as del	expertos en el
			problema				cliente	dominio del
			especificado.				antes del	problema para
							desarrollo	mejorar la eficacia
							del	del modelo.
							modelo.	
							Establecer	
							métricas	
							de	
							rendimient	
							o claras y	
							realizar	
							pruebas	
							rigurosas	
							durante el	
							desarrollo	
							para	
							verificar el	
							cumplimie	
							nto de los	
1		1		ĺ	1	I	objetivos.	

C. Plan de pruebas

A continuación, se presentan los tres tipos de pruebas que se han planificado con el objetivo de asegurar el funcionamiento optimo del producto final.

En cada tabla de este apéndice, se proporciona información detallada sobre cada prueba. En la esquina superior izquierda se encuentra el identificador, seguido por el nombre, el módulo. La segunda fila incluye la fecha de redacción, los requerimientos cubiertos y el autor. El objetivo se menciona en la tercera fila, y se centra en validar el funcionamiento adecuado de uno o mías modulo. A continuación, se describe el escenario que indica como se llevará a cabo. Finalmente, se presentan los casos, las entradas y los resultados esperados, los cuales describen la forma de ingresar los datos al escenario y las respuestas deseadas del sistema.

C.1. Pruebas unitarias

Las pruebas unitarias se enfocan en verificar el funcionamiento adecuado de unidades individuales de código, como funciones, métodos o componentes aislados.

Tabla 13 Prueba unitaria 1

EP 004	Nombre:	Prueba de carga de arch	Modulo: Carga archivo DWF				
FECHA	i i	Requerimiento: RF005		Autor: PANP			
25/05/2	l l						
Objetivo:	Objetivo: Verificar que se cargue el archivo seleccionado						
Escenario							
1. Inio	iar el sistema						
2. Ing	esar archivo DW	=					
Caso	Д	Archivo		Resultado Esperado			
1	[Tria	ngulo.dwf]	[Archivo cargado correctamente]				
2	[Tria	[Triangulo.png] [Error: Tipo de archivo no valid					

Tabla 14 Prueba unitaria 2

FD 006

EP 000	Nombre: Descarga de arch	G IVIOGUIO: Descarga de codigo				
FECHA	: Requerimiento: RNF0	03 Autor: PANP				
25/05/2	4					
Objetivo: Verificar que se descargue el código G generado						
Escenario	:					
1. Inio	ciar el sistema					
2. Ing	resar archivo DWF					
3. Cai	gar parámetros de corte					
4. Ge	4. Generar código G con el modelo					
5. Seleccionar la opción de descargar el código G						
Caso	Contenido	Resultado Esperado				
1	1 [Código G valido] [Archivo descargado correctame					

Nombre: Descarga de archivo TVT

Modulo: Descarga de código

2	[Vacío, código G no generado]	[Error: No se generó el código G]
	[vacio, codigo d no generado]	[[Lifor. No se genero el codigo d]

Tabla 15 Prueba unitaria 3

EP 007	Nombre: Prueba de simulación de código G	Modulo: Simulación de
	generado	código G generado
FECHA:	Requerimiento: RF004	Autor: PANP
25/05/24		

Objetivo: Verificar que se simule el código G generado

Escenario:

- 1. Iniciar el sistema
- 2. Ingresar archivo DWF
- 3. Cargar parámetros de corte
- 4. Generar código G con el modelo

Caso	Parámetros de simulación	Resultado Esperado
1	[Código G valido]	[Se muestra en ventana emergente la
		simulación de código G]
2	[Vacío, código G no generado]	[Error: No se generó el código G]

Tabla 16 Prueba unitaria 4

EP 008	Nombre: Configuración de parámetros de	Modulo: Configuración de
	corte	parámetros de corte
FECHA:	Requerimiento: RF001	Autor: PANP
25/05/24		

Objetivo: Verificar que se agreguen y editen parámetros de máquinas de corte

Escenario:

- 1. Iniciar el sistema
- 2. Cargar parámetros de corte

Caso	Velocidad	Amperaje	Dirección	Nombre	Maquina	Resultado
	de			maquina	seleccionada	esperado
	avance					
1	[6350 mm/min]	[300 Amperes]	[Dentro]	[Maquina 1]	[Nueva maquina]	[Se guardo Maquina 1]
2	[6350 mm/min]	[400 Amperes]	[Fuera]	[Maquina 1]	[Nueva maquina]	[Error: Maquina 1 ya existe]
3	[6350 mm/min]	[300 Amperes]	[Dentro]	[Maquina 1]	[Maquina 1]	[Se guardo Maquina 1]
4	[6350 mm/min]	[300 Amperes]	[Medio]	[Maquina 2]	[Nueva maquina]	[Se guardo Maquina 2]

C.2. Pruebas de integración

Las pruebas de integración se realizan para verificar el correcto funcionamiento y la interacción adecuada entre los diferentes componentes del sistema

Tabla 17 Prueba de integracion 1

EP 001	Nombre: Prueba de modelo generador de código G	Modulo: Generación de código G, Configuración de parámetros de corte y carga de archivos DWF
FECHA: 25/05/24	Requerimiento: RF001, RF003 y RF005	Autor: PANP

Objetivo: Verificar que el modelo generador de código G genere código G de manera correcta

Escenario:

- 1. Iniciar el sistema
- 2. Ingresar archivo DWF
- 3. Cargar parámetros de corte
- 4. Seleccionar opción para generar código G

Caso	Velocidad	Amperaje	Dirección	Archivo	Resultado
	de avance				esperado
1	[6350	[300			[Código
	mm/min]	Amperes]	[Dentro]	[Triangulo.dwf]	generado
	111111/1111111	Amperesj			con exito]
2					[Error: falta
		[300			por lo
	[]	Amperes]	[]	[Triangulo.dwf]	menos un
		Amperesj			parametro
					de corte]
3					[Error: El
	[6350	[300			tipo de
	mm/min]	Amperes]	[Dentro]	[Triangulo.png]	archivo no
		Amperes			es
					compatible]

Tabla 18 Prueba de integracion 2

EP 002	Nombre: Prueba de descarga de código G	Modulo: Generación de código G y descarga del código generado	
FECHA: Requerimiento: RF003 25/05/24		Autor: PANP	
Objetivo: Verificar que el sistema permita descargar el código G generado			

Objectivo. Verifical que el sistema permita descargar el codigo o generad

Escenario:

- 1. Iniciar el sistema
- 2. Ingresar archivo DWF
- 3. Ingresar parámetros de corte
- 4. Seleccionar la opción para generar código G
- 5. Seleccionar la opción de descargar código G

Caso	Código G generado	Resultado Esperado
1	[Codigo existente]	[Archivo descargado]
2	[Código no existente]	[Error: No se genero el código G]

Tabla 19 Prueba de integracion 3

EP 003	Nombre: Prueba de visualización de simulación de código G	Modulo: Generación de código G y Visualización y simulación del código G
FECHA: 25/05/24	Requerimiento: RNF001 y RF004	Autor: PANP

Objetivo: Verificar que el sistema muestre la simulación del código G generado

Escenario:

- 1. Iniciar el sistema
- 2. Ingresar archivo DWF
- 3. Ingresar parámetros de corte
- 4. Seleccionar la opción para generar código G
- 5. Seleccionar la opción para visualizar la simulación

Acción realizada

Caso	Código G generado	Resultado Esperado
1	[Codigo existente]	[ventana con la simulacion]
2	[Código no existente]	[Error: No se genero el código G]

C.3. Pruebas de sistema

Las pruebas de sistema se llevan a cabo para evaluar el sistema en su totalidad, asegurando que cumpla con todos los requisitos y funcione según lo esperado en su entorno final.

Tabla 20 Prueba de sistema

Caso

EP (003	Nombre: Prueba de navegación de lienzo	Modulo: Navegación de lienzo		
FECHA: Requerimiento: RF002		Requerimiento: RF002	Autor: PANP		
25/0	25/05/24				
Objetiv	/o: Verifi	car las funciones de navegación de lienzo			
Escena	Escenario:				
1.	. Iniciar el sistema				
2.	Ingresar archivo DWF				
3.	3. Ingresar tamaño de lienzo				

8

Resultado Esperado

1	[Presionar boton para hacer	[Se realiza un Zoom in sobre el
	zoom in]	lienzo]
2	[Presionar boton para zoom	[Se realiza un zoom out sobre el
	out]	lienzo]
3	[Desplazarse mediante los	[Se desplaza el lienzo en eje X o
	sliders vertical y horizontal]	Y]

D. Minutas

D.1. Minuta de levantamiento de requerimientos

DATOS GENERALES				
Lugar	Laboratorio de ligeros 1	Fecha	29 de Febrero del 2024	
Academia	Ciencias de la Computación			
Tipo	Reunión	Hora fin	13:30 hrs.	

LISTA DE ASISTENT ROLES DE LA JUNTA			
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazate
Dr. Miguel Fernando Delgado Pamanes	Cliente	MFDP	Janua B
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEL DÍA							
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige			
13:30 hrs.	20:00 mn	50:00 mn	Levantamiento de requerimientos	PANP			
14:00 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP			

ACCIONES						
Acciones	Doggogoble	Facha nacible	Estado			
Acciones	Responsable	Fecha posible	Listo	Fecha		

ACUERDOS	
Acuerdo	Involucrados
Se aprobaron los requerimientos tomados en base al levantamiento de requerimientos	Todos

Se presentaron los requerimientos que formaran parte del SRS, en busca de la aprobacion.

D.2. Revisión del documento SRS

DATOS GENERALES						
Lugar	Fecha	1 de Mayo del 2024				
Academia	Ciencias de la Computación					
Tipo	Reunión	Hora fin	14:30 hrs.			

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazate
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEL DÍA							
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige			
13:30 hrs.	20:00 mn	50:00 mn	Presentación de documento SRS	PANP			
14:20 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP			

ACCIONES				
Acciones	Dagagashla	Fachs masible	Estado	
Acciones	Responsable	Fecha posible	Listo	Fecha

ACUERDOS	
Acuerdo	Involucrados
Se aprobo el documento SRS	Todos

Se presento y aprobo el documento SRS.

D.3. Validación de documento SRS

DATOS GENERALES							
Lugar	Fecha	8 de Mayo del 2024					
Academia	Ciencias de la Computación						
Tipo	Reunión	Hora fin	14:30 hrs.				

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazaite
Dr. Miguel Fernando Delgado Pamanes	Cliente	MFDP	Janus !
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEL DÍA							
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige			
13:30 hrs.	20:00 mn	50:00 mn	Presentación de documento SRS	PANP			
14:20 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP			

ACCIONES						
0 saismas	Responsable	Fecha posible	Estado			
Acciones			Listo	Fecha		

ACUERDOS	
Acuerdo	Involucrados
Se aprobo el documento SRS	Todos

RESUMEN
Se presento y aprobo el documento SRS.
- Asuntos generales

D.4. Revisión del plan de trabajo

DATOS GENERAL	ES		
Lugar	Laboratorio de ligeros 1	Fecha	6 de Marzo del 2024
Academia	Ciencias de la Computación		
Tipo	Reunión	Hora fin	14:30 hrs.

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazate
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEI	L DÍA			
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige
13:30 hrs.	20:00 mn	50:00 mn	Presentación de documento de plan de trabajo	PANP
14:20 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP

ACCIONES				
Acciones	Dagwayaahla	Foobo posible	Estado	
Acciones	Responsable	onsable Fecha posible		Fecha

ACUERDOS	
Acuerdo	Involucrados
Se aprobo el documento plan de trabajo.	Todos

Se presento y aprobo el documento plan de trabajo

D.5. Validación del plan de trabajo

DATOS GENERALES						
Lugar	Laboratorio de Pesados 1	Fecha	7 de Marzo del 2024			
Academia	Ciencias de la Computación					
Tipo	Reunión	Hora fin	14:30 hrs.			

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazaite
Dr. Miguel Fernando Delgado Pamanes	Cliente	MFDP	Janus !
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEI	L DÍA			
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige
13:30 hrs.	20:00 mn	50:00 mn	Presentación de documento plan de trabajo	PANP
14:20 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP

ACCIONES				
Assistance	Deenenehle	Foobo posible	Estado	
Acciones	Responsable	Fecha posible	Listo	Fecha

ACUERDOS	
Acuerdo	Involucrados
Se aprobo el documento plan de trabajo.	Todos

Se presento y aprobo el documento plan de trabajo.

D.6. Revisión del plan de riesgo

DATOS GENERALES				
Lugar	Laboratorio de ligeros 1	Fecha	27 de Marzo del 2024	
Academia	Ciencias de la Computación			
Tipo	Reunión	Hora fin	14:30 hrs.	

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazate
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEL DÍA					
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige	
13:30 hrs.	20:00 mn	50:00 mn	Presentación de documento plan de riesgos	PANP	
14:20 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP	

ACCIONES				
Acciones	Responsable	Fecha posible	Estado	
Acciones			Listo	Fecha

ACUERDOS	
Acuerdo	Involucrados
Se aprobo el documento plan de riesgos.	Todos

Se presento y aprobo el documento plan de riesgos.

D.7. Validación del plan de riesgos

DATOS GENERALES				
Lugar	Laboratorio de Pesados 1	Fecha	28 de Marzo del 2024	
Academia	Ciencias de la Computación			
Tipo	Reunión	Hora fin	14:30 hrs.	

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Seazare
Dr. Miguel Fernando Delgado Pamanes	Cliente	MFDP	Janus B
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEL DÍA					
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige	
13:30 hrs.	20:00 mn	50:00 mn	Presentación de documento plan de riesgos	PANP	
14:20 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP	

ACCIONES				
Acciones	Bassasahla	Facha masible	Estado	
Acciones	Responsable	Fecha posible	Listo	Fecha

ACUERDOS	
Acuerdo	Involucrados
Se aprobo el documento plan de riesgos.	Todos

RESUMEN Se presento y aprobo el documento plan de riesgos.

D.8. Revisión del documento de diseño

DATOS GENERALES				
Lugar	Laboratorio de ligeros 1	Fecha	17 de Abril del 2024	
Academia	Ciencias de la Computación			
Tipo	Reunión	Hora fin	14:30 hrs.	

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazate
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEL DÍA						
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige		
13:30 hrs.	20:00 mn	50:00 mn	Presentación de documento diseño	PANP		
14:20 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP		

ACCIONES				
Acciones	Responsable	Fecha posible	Estado	
Acciones			Listo	Fecha

ACUERDOS	
Acuerdo	Involucrados
Se aprobo el documento de diseño.	Todos

Se presento y aprobo el documento de diseño.

D.9. Validación del documento de diseño

DATOS GENERALES						
Lugar	Laboratorio de Pesados 1	Fecha	18 de Marzo del 2024			
Academia	Ciencias de la Computación					
Tipo	Reunión	Hora fin	14:30 hrs.			

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazaite
Dr. Miguel Fernando Delgado Pamanes	Cliente	MFDP	Janus !
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEL DÍA						
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige		
13:30 hrs.	20:00 mn	50:00 mn	Presentación de documento de diseño	PANP		
14:20 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP		

ACCIONES				
Acciones	Damanakla	Focha pociblo	Estado	
Acciones	Responsable	Fecha posible	Listo	Fecha

ACUERDOS	
Acuerdo	Involucrados
Se aprobo el documento de diseño.	Todos

RESUMEN					
Se presento y aprobo eldocumento de diseño.					
- Asuntos generales					

D.10. Revisión del plan de pruebas

DATOS GENERALES					
Lugar	Laboratorio de ligeros 1	Fecha	29 de Abril del 2024		
Academia	Ciencias de la Computación				
Tipo	Reunión	Hora fin	14:50 hrs.		

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Seazair
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEL DÍA						
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige		
13:30 hrs.	20:00 mn	50:00 mn	Presentación del plan de pruebas	PANP		
14:20 hrs.	20:00 mn	20:00 mn	Realización de correcciones	PANP		
14:40 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP		

ACCIONES				
Acciones	Responsable	Faaba waaibla	Estado	
Acciones	Responsable	Fecha posible	Listo	Fecha

ACUERDOS	
Acuerdo	Involucrados
Se aprobo el plan de pruebas.	Todos

Se presento y aprobo el plan de pruebas a realizar en TT 2.

D.11. Revisión de la matriz de trazabilidad

DATOS GENERALES					
Lugar	Laboratorio de ligeros 1	Fecha	3 de Junio del 2024		
Academia	Ciencias de la Computación				
Tipo	Reunión	Hora fin	14:50 hrs.		

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazate
Pedro Alejandro Nunez Perez	Alumno	PANP	
M. en C. Erika Paloma Sanchez Femat	Asesora	EPSF	

ORDEN DEI	L DÍA			
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige
13:30 hrs.	20:00 mn	50:00 mn	Presentación del documento matriz de trazabilidad	PANP
14:40 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP

ACCIONES				
Assistance	Posponsable	Fosha posible	Estado	
Acciones	Acciones Responsable Fecha posible		Listo	Fecha

ACUERDOS	
Acuerdo	Involucrados
Se aprobo eldocumento matriz de trazabilidad.	Todos

Se presento y aprobo el documento matriz de trazabilidad.

D.11. Retroalimentación de reporte final

DATOS GENERALES					
Lugar	Laboratorio de pesados 1	Fecha	11 de Junio del 2024		
Academia	Ciencias de la Computación				
Tipo	Reunión	Hora fin	14:10 hrs.		

LISTA DE ASISTENTES Y F LA JUNTA	ROLES DE		
Nombre	Rol	Abreviación	Firma
M. en C. Eleazar Pacheco Reyes	Director	EPR	Sleazate
Pedro Alejandro Nunez Perez	Alumno	PANP	

ORDEN DEL DÍA					
Hora de inicio	Tiempo Planeado	Tiempo Real	Tema	Dirige	
11:30 hrs.	40:00 mn	60:00 mn	Presentación del reporte final de TT 1	PANP	
12:30 hrs.	90:00 mn	90:00 mn	Realización de las correcciones en base a la retroalimentación dada por el director del proyecto	EPR	
14:00 hrs.	10:00 mn	10:00 mn	Elaboración de la minuta	PANP	

ACCIONES					
Acciones	Responsable	Fecha posible	Estado		
Acciones	Responsable	reciia posibie	Listo	Fecha	
Se dio la retroalimentacion, en base a las necesidades del reporte final de TT 1	EPR	11/06/24	si	11/06/24	
Se realizaron las correcciones en el documento en base a la retroalimentacion.	PANP	13/06/24			

ACUERDOS	
Acuerdo	Involucrados

Se presento y se dio retroalimentacion del docummeto reporte final TT1.