LAB 12

◆ Question 1

a) Following are the first 25 values of Van der Corput Sequence:

```
0.50000 0.25000 0.75000 0.12500 0.62500 0.37500 0.87500 0.06250 0.56250 0.31250 0.81250 0.18750 0.68750 0.43750 0.93750 0.03125 0.53125 0.28125 0.78125 0.15625 0.65625 0.40625 0.90625 0.09375 0.59375
```

b) The plot of overlapping pairs (X_i, X_{i+1}) for first 1000 values of Van der Corput Sequence are as following:

Observations:

The generator is not very efficient as the values are predictable because (X_i, X_{i+1}) plot is not uniformly distributed in the 2-D plane.

c) Sampled Distribution for first 100 values of Van der Corput sequence is as following:

Histogram

Histogram for Sampled Distributions for 100 values by numeric method

Cumulative Distribution

CDF for Sampled Distributions for 100 values by numeric method

d) Sampled Distribution for first 100000 values of Van der Corput sequence is as following:

Histogram

Histogram for Sampled Distributions for 100000 values by numeric method

Cumulative Distribution

CDF for Sampled Distributions for 100000 values by numeric method

e) 100 and 100000 values were generated using the following LGC:

$$X_{i+1} = (a * X_i + b) \mod m$$

 $U_i = X_i/m$
where X_0 (seed) = 1, $a = 1597$, $b = 51749$, $m = 244944$

Comparison between numerical generation and Linear congruence generation:

Histogram for Sampled Distributions for 100 values by LCG

Observations:

Values generated by numeric method are more uniform and the variance/error in numerically generated values are less than that of linear congruence generation.

◆ Question 2

Following plots were obtained for Halton sequence $X_i = (\phi_2(i), \phi_3(i))$ (as points in R2) for the 100 and 100000 values respectively:

2-D Plot for 100 values

2-D Plot for 100000 values

Observations:

The generated points are in the range [0,1] and the distribution is closer to uniform. Since we are generating in 2 dimension, error/variance of generated values will be less that of numeric method.