Гальцев Даниил НИУ ВШЭ 10.04.2020

Классический режим обучения

 Из разложения на смещение и разброс ожидается U-образная зависимость функции потерь от сложности модели

Современный режим обучения

- На практике большие нейронные сети обучают до нулевой ошибки
- Полученные сети показывают хороший результат на тестовой выборке

- При увеличении сложности модели происходит двойной спуск функции потерь
- Классический режим заканчивается при интерполяции обучающей выборки
- После этого начинается "современный" режим обучения

• Этот эффект у различных моделей проявляется по-разному

Number of Random Fourier Features ($\times 10^3$) (N)

• Этот эффект у различных моделей проявляется по-разному

Effective Model Complexity

EMC — это максимальное количество объектов в выборке, при котором тренировочная процедура в среднем достигает практически нулевой тренировочной ошибки

$$\mathrm{EMC}_{\mathcal{D},\epsilon}(\mathcal{T}) := \max \{ n \mid \mathbb{E}_{S \sim \mathcal{D}^n} [\mathrm{Error}_S(\mathcal{T}(S))] \leq \epsilon \}$$

Generalized Double Descent Hypothesis

Гипотеза формулируется для нейронных сетей и заданной выборки размера n:

Under-paremeterized regime. If $\mathrm{EMC}_{\mathcal{D},\epsilon}(\mathcal{T})$ is sufficiently smaller than n, any perturbation of \mathcal{T} that increases its effective complexity will decrease the test error.

Over-parameterized regime. If $\mathrm{EMC}_{\mathcal{D},\epsilon}(\mathcal{T})$ is sufficiently larger than n, any perturbation of \mathcal{T} that increases its effective complexity will decrease the test error.

Critically parameterized regime. If $\mathrm{EMC}_{\mathcal{D},\epsilon}(\mathcal{T}) \approx n$, then a perturbation of \mathcal{T} that increases its effective complexity might decrease or increase the test error.

Model-wise Double Descent

- При увеличении размера модели увеличивается ЕМС
- При этом наблюдается Double Descent

Model-wise Double Descent

• Аугментация данных смещает порог интерполяции в сторону больших моделей

Model-wise Double Descent

• Double Descent от размера модели наблюдается и для трансформеров

Epoch-wise Double Descent

- При увеличении времени обучения увеличивается ЕМС
- В зависимости от размера модели может наблюдаться Double Descent

Sample-wise Double Descent

- При изменении размера выборки модель может перейти в другой режим обучения
- Из-за этого наблюдается Double Descent
- При этом при увеличении выборки уменьшается площадь под кривой и порог интерполяции смещается вправо

Sample-wise Double Descent

• В некоторых случаях объединение этих двух эффектов приводит к ухудшению качества модели

Sample-wise Double Descent

• Вне критической зоны увеличение выборки приводит к улучшению качества модели

Early Stopping

- В основном при оптимальной ранней остановке не наблюдается Double Descent
- Это объясняется тем, что ранняя остановка предотвращает достижение нулевой тренировочной ошибки
- Увеличение размера выборки не ухудшает качество модели

Выводы

- Есть два режима обучения: классический и интерполяционный
- Классический режим имеет U-образый вид, интерполяционный в целом убывающий
- Интерполяционный порог зависит от сложности модели, данных и процедуры обучения
- Если модель находится в диапозоне интерполяционного порога, то небольшие изменения модели и метода обучения могут привести к неожиданному поведению

Источники

- Reconciling modern machine-learning practice and the classical bias-variance
 trade-off
- <u>Deep Double Descent: Where Bigger Models and More Data Hurt</u>