AP Calculus AB AP Classroom: TOPIC1 – TOPIC2

November 17, 2024

Brayden Price All final solutions are \boxed{boxed} Only FRQs are included (for now).

List of Questions

Question	. 1 .																				page 2
Question	2.																				page 4
Question	3.																				page 5
Question	4.																				page 6

Question 1

Let f be a function defined by $f\left(x
ight)=\left\{egin{align*} 2x-x^2 & ext{for } x\leq 1, \\ x^2+kx+p & ext{for } x>1. \end{array}
ight.$

- (a) For what values of k and p will f be continuous and differentiable at x = 1?
- (b) For the values of k and p found in part (a), on what interval or intervals is fincreasing?
- (c) Using the values of k and p found in part (a), find all points of inflection of the graph of f. Support your conclusion.

Solution:

(a) Definition of continuity of f at x = 1:

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} f(x) = f(1) \tag{1}$$

$$\lim_{x \to 1^+} f(x) = 1^2 + 1k + p \tag{2}$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} f(x) = f(1)$$

$$\lim_{x \to 1^{+}} f(x) = 1^{2} + 1k + p$$
(2)
$$\lim_{x \to 1^{-}} = f(1) = 2(1) - (1)^{2} = 2 - 1 = 1$$
(3)

Therefore,
$$1 = 1 + k + p \implies \boxed{-k = p}$$
 (4)

Differentiate f with respect to x (needed for next step):

$$f'(x) = \begin{cases} \frac{d}{dx}(2x - x^2) & \text{for } x \le 1, \\ \frac{d}{dx}(x^2 + kx + p) & \text{for } x > 1. \end{cases}$$
 (5)

$$f'(x) = \begin{cases} 2 - 2x & \text{for } x \le 1, \\ 2x + k + 0 & \text{for } x > 1. \end{cases}$$
 (6)

Definition of differentiability of f at x = 1:

$$\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^-} f'(x) = f'(1) \tag{7}$$

$$\lim_{x \to 1^{-}} f'(x) = f'(1) = 2 - 2(1) = 0 \tag{8}$$

$$\lim_{x \to 1^+} f'(x) = 2(1) + k \tag{9}$$

Therefore,
$$2 + k = 0 \implies \boxed{-2 = k}$$
 (10)

Conclusion: Using Equations 10 and 4:

$$-2 = k - k = p \tag{11}$$

$$-(-2) = p \implies p = 2 \tag{12}$$

Therefore,
$$k = -2$$
 and $p = 2$ (13)

(b) f'(x) > 0 when f is increasing.

$$f'(x) = \begin{cases} 2 - 2x & \text{for } x \le 1, \\ 2x - 2 & \text{for } x > 1. \end{cases}$$

On $x \le 1$, set f'(x) = 0:

$$2-2x=0 \implies 2=2x \implies 1=x$$

Sign chart for 2-2x: (Only applies to f'(x) on x>1)

$$\frac{2-2x}{1}$$

On x > 1, set f'(x) = 0:

$$2x - 2 = 0 \implies 2x = 2 \implies x = 1$$

Sign chart for 2x-2: (Only applies to f'(x) on x>1)

$$2x-2$$
 $+$ 1

Combined sign chart for f'(x):

$$\frac{f'(x)}{1}$$

Conclusion:

Therefore, f(x) is increasing when $x \neq 1$ because f'(x) is positive on those regions. (At x = 1, f'(x) = 0.)

f is continuous at x = 1, so f(x) is increasing on $(-\infty, \infty)$.

(c) Inflection points are where f'' changes signs.

$$f''(x) = \begin{cases} \frac{d}{dx}(2-2x) = -2 & \text{for } x \le 1, \\ \frac{d}{dx}(2x-2) = 2 & \text{for } x > 1. \end{cases}$$

Sign chart of f''(x):

$$f(x)$$
 $+$ 1

Therefore, f'(x) has an inflection point at x = 1.

$$f(1) = 1$$
 Inflection Point: $(1, 1)$

Question 2

Consider the curve given by $x^2 - xy + 2y^2 = 7$.

- (a) Show that $\frac{dy}{dx} = \frac{y-2x}{4y-x}$
- (b) Determine the y-coordinate of each point on the curve at which the line tangent to the curve at that point is vertical. Justify your answer.
- (c) Find $\frac{d^2y}{dx^2}$ in terms of x, y, and $\frac{dy}{dx}$. The line tangent to the curve at the point (1,2) is horizontal. Determine whether the curve is concave up or concave down at the point (1,2).

Solution:

(a)

$$\frac{d}{dx}(x^2 - xy + 2y^2) = 7\tag{14}$$

$$2x - (xy' + y) + 4yy' = 0 (15)$$

$$2x - xyy' - y + 4yy' = 0 (16)$$

$$2x - y = y'(x - 4y) (17)$$

$$\frac{2x - y}{x - 4y} = y' = \frac{dy}{dx} = \frac{y - 2x}{4y - x} \tag{18}$$

(b) Vertical tangent lines have undefined slope.

Therefore, $\frac{dy}{dx}$ will be undefined \iff the tangent line at the point is vertical.

 $(\iff \text{means 'if and only if'})$

$$4y - x = 0$$
 makes $\frac{dy}{dx}$ undefined. (19)

$$4y = x \tag{20}$$

So,

$$7 = (4y)^2 - (4y)y + 2y^2 (21)$$

$$7 = 16y^2 - 4y^2 + 2y^2 \tag{22}$$

$$7 = 14y^2 \tag{23}$$

$$y^2 = \frac{1}{2} (24)$$

$$y = \boxed{\pm \frac{1}{\sqrt{2}}} \tag{25}$$

(c)

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{y-2x}{4y-x}\right) \tag{26}$$

$$= \frac{(d/dx (y - 2x)) (4y - x) - (d/dx (4y - x)) (y - 2x)}{(4y - x)^2}$$
 (27)

$$=\frac{(y'-2)(4y-x)-(4y'-1)(y-2x)}{(4y-x)^2}$$
 (28)

y' = 0 at (1, 2) since the tangent to the curve is vertical.

$$\frac{d^2y}{dx^2}\Big|_{(1,2)} = \frac{(-2)(4(2)-1)-(-1)(2-2(1))}{(4(2)-1)^2} = \frac{-2(7)-0}{7^2} = -\frac{2}{7} \quad (29)$$

Since $\frac{d^2y}{dx^2}$ is negative at (1,2), the curve is concave down at (1,2).

Question 3

Particle P moves along the y-axis so that its position at time t is given by $y(t) = 4t - \frac{2}{3}$ for all times t. A second particle, particle, moves along the-axis so that its position at time t is given by $x(t) = \frac{\sin(\pi t)}{2-t}$ for all times $t \neq 2$.

- (a) As time t approaches 2, what is the limit of the position of particle Q? Show the work that leads to your answer.
- (b) Show that the velocity of particle Q is given by $v_Q(t) = \frac{2\pi \cos(\pi t) \pi t \cos(\pi t) + \sin(\pi t)}{(2-t)^2}$ for all times.
- (c) Find the rate of change of the distance between particle P and particle Q at time $t = \frac{1}{2}$. Show the work that leads to your answer.

Solution:

(a)

$$\lim_{t \to 2} (\sin(\pi t)) = \sin(2\pi) = 0 \tag{30}$$

$$\lim_{t \to 2} (2 - t) = 0 \tag{31}$$

Since $\frac{\lim_{t\to 2}(\sin(\pi t))}{\lim_{t\to 2}(2-t)}$ approaches an indeterminate form (0/0), L'Hôpital's rule

can be applied.

$$\lim_{t \to 2} (d/dt (\sin(\pi t))) = \lim_{t \to 2} (\pi \cos(\pi t)) = \pi \cos(2\pi) = \pi$$

$$\lim_{t \to 2} (d/dt (2 - t)) = \lim_{t \to 2} (-1) = -1$$
(32)

$$\lim_{t \to 2} \left(\frac{d}{dt} \left(2 - t \right) \right) = \lim_{t \to 2} \left(-1 \right) = -1 \tag{33}$$

$$\therefore \lim_{t \to 2} (x(t)) = \frac{\pi}{-1} = \boxed{-\pi}$$
(34)

(b)

$$\frac{d}{dt}(x(t)) = v_Q(t) \tag{35}$$

$$\frac{d}{dt} \left(\frac{\sin(\pi t)}{2 - t} \right) = \frac{(d/dt(\sin(\pi t)))(2 - t) - (d/dt(2 - t))(\sin(\pi t))}{(2 - t)^2}$$
(36)

$$= \frac{\pi \cos(\pi t)(2-t) - (-1)(\sin(\pi t))}{(2-t)^2}$$
 (37)

$$= \frac{2\pi \cos(\pi t) - \pi t \cos(\pi t) + \sin(\pi t)}{(2-t)^2}$$
 (38)

(c) IDK yet... Work in Progress.

Question 4

Let f be the function given by $f(x) = 2xe^{2x}$.

Find the absolute minimum value of f. Justify that your answer is an absolute minimum.

Solution: All absolute minimums must also be relative minima.

At Relative minima of f, the derivative, f' changes from negative to positive. Find f'(x)

$$f'(x) = 2(1(e^{2x}) + x(2e^{2x}))$$
(39)

$$= 2e^{2x} + 2xe^{2x} (40)$$

$$=2e^{2x}(1+x) (41)$$

Set f'(x) = 0 and solve:

$$2e^{2x}(1+x)$$

$$2e^{2x} = 0 \mid (1+x) = 0 \tag{42}$$

$$\ln(e^2 x) = 0 \mid x = -1 \tag{43}$$

no solution
$$|$$
 (44)

Sign chart of f'(x):

$$\frac{f'(x)}{-1}$$

Find end behavior of f(x):

$$\lim_{x \to \infty} \left(2xe^{2x} \right) = \lim_{x \to \infty} \left(e^{2x} \right) = \infty \lim_{x \to -\infty} \left(2xe^{2x} \right) = \lim_{x \to -\infty} \left(e^{2x} \right) = 0 \quad (45)$$

Conclusion:

Since x = -1 is the only relative minima and is less than the $\lim_{x\to\pm\infty} (f(x))$, it is the absolute minimum of f(x).

$$f(-1) = 2(-1)e^{2(1)} = -2e^2$$

The absolute minimum of f(x) is $f(-1) = -2e^2$