

Deep Learning의 이해

2016.3.30 Kmobile 딥러닝 1-day 워크샵

Eun-Sol Kim

Biointelligence Laboratory
Department of Computer Science and Engineering
Seoul National Univertisy

http://bi.snu.ac.kr

목차

- Deep learning 소개
- 인공신경망
 - Perceptron
 - Multilayer Perceptron
- Convolutional Neural Network
- Deep Boltzmann Machines

History of Neural Network Research

The New York Times

deep learning results

Unsupervised & Laver-wised pre-training

• Boostin	Rank	Name	Error rate	Description	ing (norm lems
	1	U. Toronto	0.15315	Deep Conv Net	P, HOG)
	2	U. Tokyo	0.26172	Hand-crafted	ectures
Y YIX	3	U. Oxford	0.26979	features and	ectores
	4	Xerox/INRIA	0.27058	learning models. Bottleneck.	
	1 manne		-		

Deep Networks Advance State of Afton Speech rie

Deep Learning leads to breakthrough in speech recognition at MSR.

Classification Problem

- 데이터 x가 주어졌을 때 해당되는 레이블 y를 찾는 문제
 - ex1) x: 사람의 얼굴 이미지, y: 사람의 이름
 - ex2) x: 혈당 수치, 혈압 수치, 심박수, y: 당뇨병 여부
 - ex3) x: 사람의 목소리, y: 목소리에 해당하는 문장
- x: D차원 벡터, y: 정수 (Discrete)
- 대표적인 패턴 인식 알고리즘
 - Support Vector Machine
 - Decision Tree
 - K-Nearest Neighbor
 - Multi-Layer Perceptron (Artificial Neural Network; 인공신경망)

Perceptron (1/3)

http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf

Perceptron (2/3)

Artificial Neural Networks

The Perceptron

Perceptron (3/3)

Parameter Learning in Perceptron

start:

The weight vector w is generated randomly **test**:

A vector $x \in P \cup N$ is selected randomly,

If $x \in P$ and $w \cdot x > 0$ goto <u>test</u>,

If $x \in P$ and $w \cdot x \le 0$ goto add,

If $x \in N$ and $w \cdot x < 0$ go to <u>test</u>,

If $x \in N$ and $w \cdot x \ge 0$ go to subtract.

add:

Set w = w+x, goto <u>test</u>

subtract:

Set w = w-x, goto <u>test</u>

Sigmoid Unit

Learning Algorithm of Sigmoid Unit

Loss Function $\mathcal{E} = (d - f)^{2}$ Unit
Output

Gradient Descent Update

$$\frac{\partial \varepsilon}{\partial \mathbf{W}} = -2(d - f) \frac{\partial f}{\partial s} \mathbf{X} = -2(d - f) f(1 - f) \mathbf{X}$$

$$f(s) = 1/(1 + e^{-s})$$

$$f'(s) = f(s)(1 - f(s))$$

$$\mathbf{W} \leftarrow \mathbf{W} + c(d - f) f(1 - f) \mathbf{X}$$

Need for Multiple Units and Multiple Layers

- Multiple boundaries are needed (e.g. XOR problem)
- → Multiple Units
- More complex regions are needed (e.g. Polygons)
- → Multiple Layers

Structure of Multilayer Perceptron

Structure of Multilayer Perceptron (MLP; Artificial Neural Network)

Learning Parameters of MLP

- Loss Function
 - We have the same Loss Function
 - But the # of parameters are now much more (Weight for each layer and each unit)
 - To use Gradient Descent, we need to calculate the gradient for all the parameters
- Recursive Computation of Gradients
 - Computation of loss-gradient of the top-layer weights is the same as before
 - Using the chain rule, we can compute the loss-gradient of lower-layer weights recursively (Back Propagation)

Back Propagation Learning Algorithm (1/3)

■ Gradients of <u>top-layer</u> weights and update rule

Store intermediate value delta for later use of chain rule

$$\delta^{(k)} = \frac{\partial \mathcal{E}}{\partial s_i^{(j)}} = (d - f) \frac{\partial f}{\partial s_i^{(j)}}$$
$$= (d - f) f (1 - f)$$

Back Propagation Learning Algorithm (2/3)

Gradients of lower-layer weights

Weighted sum

Gradient Descent Update rule for lower-layer weights

$$\mathbf{W}_{i}^{(j)} \leftarrow \mathbf{W}_{i}^{(j)} + c_{i}^{(j)} \delta_{i}^{(j)} \mathbf{X}^{(j-1)}$$

Back Propagation Learning Algorithm (3/3)

Applying chain rule, recursive relation between delta's

$$\delta_{i}^{(j)} = f_{i}^{(j)} (1 - f_{i}^{(j)}) \sum_{l=1}^{m_{j+1}} \delta_{i}^{(j+1)} w_{il}^{(j+1)}$$

Algorithm: Back Propagation

- 1. Randomly Initialize weight parameters
- 2. Calculate the activations of all units (with input data)
- 3. Calculate top-layer delta
- 4. Back-propagate delta from top to the bottom
- 5. Calculate actual gradient of all units using delta's
- 6. Update weights using Gradient Descent rule
- 7. Repeat 2~6 until converge

Applications

- Almost All Classification Problems
 - Face Recognition
 - Object Recognition
 - Voice Recognition
 - Spam mail Detection
 - Disease Detection
 - etc.

Limitations and Breakthrough

Limitations

- Back Propagation barely changes lower-layer parameters (Vanishing Gradient)
- Therefore, Deep Networks cannot be fully (effectively) trained with Back Propagation

Breakthrough

- Deep Belief Networks (Unsupervised Pre-training)
- Convolutional Neural Networks (Reducing Redundant Parameters)
- Rectified Linear Unit (Constant Gradient Propagation)

Some Issues (1/3)

Stochastic Gradient Descent

Some Issues (2/3)

- Learning Rate Adaptation
- Momentum
- Weight Decay

Some Issues (3/3)

State-of-the-art optimization techniques on NN

Convolutional Neural Networks

Motivation

Idea:

- Fully connected 네트워크 구조는 학습해야할 파라미터 수가 너무 많음
- 이미지 데이터, 음성 데이터 (spectrogram)과 같이 각 feature들 간의 위상적, 기하적 구조가 있는 경우 Local한 패턴을 학습하는 것이 효과적

Structure of Convolutional Neural Network (CNN)

- Convolution과 Pooling (Subsampling)을 반복하여 상위 Feature
 를 구성
- Convolution은 Local영역에서의 특정 Feature를 얻는 과정
- Pooling은 Dimension을 줄이면서도, Translation-invariant한 Feature를 얻는 과정

Convolution Layer

The Kernel Detects pattern:

Image

Convolved Feature

- The Resulting value Indicates:
 - How much the pattern matches at each region

Max-Pooling Layer

- The Pooling Layer summarizes the results of Convolution Layer
 - e.g.) 10x10 result is summarized into 1 cell

Convolved feature

Pooled feature

 The Result of Pooling Layer is Translation-invariant

Remarks

- Higher layer catches more specific, abstract patterns
- Lower layer catches more general patterns

Parameter Learning of CNN

- CNN is just another Neural Network with sparse connections
- Learning Algorithm:
 - Back Propagation on Convolution Layers and Fully-Connected Layers

input subsampling in the subsamp

Applications (Image Classification) (1/4)

Image Net Competition Ranking

(1000-class, 1 million images)

- 1. Clarifi (0.117): Deep Convolutional Neural Networks (Zeiler)
- 2. NUS: Deep Convolutional Neural Networks
- 3. ZF: Deep Convolutional Neural Networks
- 4. Andrew Howard: Deep Convolutional Neural Networks
- 5. OverFeat: Deep Convolutional Neural Networks
- 6. UvA-Euvision: Deep Convolutional Neural Networks
- 7. Adobe: Deep Convolutional Neural Networks
- 8. VGG: Deep Convolutional Neural Networks
- 9. CognitiveVision: Deep Convolutional Neural Networks
- 10. decaf: Deep Convolutional Neural Networks
- 11. IBM Multimedia Team: Deep Convolutional Neural Networks
- 12. Deep Punx (0.209): Deep Convolutional Neural Networks
- 13. MIL (0.244): Local image descriptors + FV + linear classifier (Hidaka et al.)
- 14. Minerva-MSRA: Deep Convolutional Neural Networks

ALL CNN!!

Applications (Image Classification) (2/4)

- 1989, CNN for hand digit recognition, Yann LeCun

LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and ultimately a classifier for handwritten digits. [Yann LeCun; LeNet]

Applications (Image Classification) (3/4)

■ Krizhevsky et al.: the winner of ImageNet 2012 Competition

Applications (Image Classification) (4/4)

- 2014 ILSVRC winner, ~6.6% Top 5 error

Example: VGG

19 layers 3x3 convolution pad 1 stride 1

http://image-net.org/challenges/LSVRC/2014/results

Application (Speech Recognition)

Deep Belief Networks

Motivation

• 아이디어:

- Greedy Layer-wise training
- Pre-training + Fine tuning
- Contrastive Divergence

Restricted Boltzmann Machine (RBM)

Energy-Based Model

$$P(\mathbf{x}, \mathbf{h}) = \frac{e^{-E(\mathbf{x}, \mathbf{h})}}{\sum_{\mathbf{x}, \mathbf{h}} e^{-E(\mathbf{x}, \mathbf{h})}}$$
 Joint (x, h) Probability

$$P(x) = \frac{\sum_{e} e^{-E(x,h)}}{\sum_{x,h} e^{-E(x,h)}}$$
 Marginal (x)
Probability,
or Likelihoo
d

$$P(x_j = 1 | \mathbf{h}) = \sigma(\mathbf{b}_j + \mathbf{W'}_{\bullet j} \cdot h)$$

$$P(h_i = 1 | \mathbf{x}) = \sigma(\mathbf{c}_i + \mathbf{W}_i \cdot x)$$
Conditional Probability

- Energy function
 - E(x, h)=b'x+c'h+h'Wx

Remark:

Conditional Independence

$$P(\mathbf{h} \mid \mathbf{x}) = \prod_{i} P(h_{i} \mid \mathbf{x})$$
$$P(\mathbf{x} \mid \mathbf{h}) = \prod_{j} P(x_{j} \mid \mathbf{h})$$

 Conditional Probability is the sa me as Neural Network

Unsupervised Learning of RBM

- Maximum Likelihood
 - Use Gradient Descent

$$L(X;\theta) = \frac{\sum_{h} e^{-E(x,h)}}{\sum_{x,h} e^{-E(x,h)}}$$

$$\langle v_i h_j \rangle^0$$

$$\langle v_i h_j \rangle^\infty$$

$$t = 0$$

$$t = 1$$

$$t = 2$$

$$t = infinity$$

$$\frac{\partial L(\mathbf{X}; \theta)}{\partial w_{ij}} = \int p(\mathbf{x}, \theta) \frac{\partial \log f(\mathbf{x}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^{(k)}; \theta)}{\partial \theta} d\mathbf{x} - \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \log f(\mathbf{x}^$$

Distribution of Model

Contrastive Divergence (CD) Learning of RBM parameters

- k-Contrastive Divergence Trick
 - From the previous slide, to get distribution of model, we need to calculate many Gibbs sampling steps
 - And this is per a single parameter update
 - Therefore, we take the sample after only k-steps where in practice, k=1 is sufficient

Take this as a sample of Model distribution

Effect of Unsupervised Training

Unsupervised Training makes RBM successfully catch the essential patterns

RBM trained on MNIST h and-written digit data:

Each cell shows the pattern e ach hidden node encodes

Deep Belief Network (DBN)

- Deep Belief Network (Deep Bayesian Network)
 - Bayesian Network that has similar structure to Neural Network
 - Generative model
 - Also, can be used as classifier (with additional classifier at top layer)
 - Resolves gradient vanishing by Pretraining
 - There are two modes (Classifier & Auto-Encoder), but we only consider Classifier here

Deep Belief Network

Learning Algorithm of DBN

- 1. Regard each layer as RBM
- 2. Layer-wise Pre-train each RBM in Unsupervised way
- 3. Attach the classifier and Fine-tune the whole Network in Supervised way

Viewing Learning as Wake-Sleep Algorithm

Training algorithms of DBNs and RBMs

Training data: training set size: n (in millions), training data dimension: d (= number of observable nodes, in hundreds or thousands).

RBM training as the basic module: maximum likelihood + stochastic gradient

ascent

Joint Wake-Sleep algorithm: Samplings+ Updates

Effect of Unsupervised Pre-Training in DBN (1/2)

Erhan et. al. AISTATS'2009

Effect of Unsupervised Pre-Training in DBN (2/2)

without pre-training

with pre-training

Internal Representation of DBN

Representation of Higher Layers

- Higher layers have more abstract representations
 - Interpolating between different images is not desirable in lower layers, but natural in higher layers

(a) Interpolating between an example and its 200-th nearest neighbor (see caption below).

(c) Sequences of points interpolated at different depths

Inference Algorithm of DBN

- As DBN is a generative model, we can also regenerate the data
 - From the top layer to the bottom, conduct Gibbs sampling to generate the data samples

Applications

- Nowadays, CNN outperforms DBN for Image or Speech data
- However, if there is no topological information,
 DBN is still a good choice

Also, if the generative model is needed, DBN is

used

Generate Face patches Tang, Srivastava, Salakhutdinov, NIPS 2014

Theano 실습

2016.3.30 Kmobile 딥러닝 1-day 워크샵

Eun-Sol Kim

Biointelligence Laboratory
Department of Computer Science and Engineering
Seoul National Univertisy

http://bi.snu.ac.kr

개요

- 심층 컨볼루션 신경망(Deep Convolutional Neural Network)
 소개
- 다양한 딥러닝 프레임워크 비교 설명
- Theano의 특징 및 문법
 - Symbolic Variable
 - Shared Variable
- Theano 실습
 - Logistic Regression
 - Image classification
 - MNIST
- Theano Demo
 - Image classification with ImageNet dataset

실습 준비

- Kitematic 실행
- nzer0/theano_kit 다운
- CLI 창 열기
- docker run —it —p 8888:8888 nzer0/theano_kit
- cd ~
- python setup_nbserver.py
- 비밀번호 설정
- ipython notebook --profile=nbserver
- Virtual box->setting->network->port forwarding->8888:8888

GPU 컴퓨팅의 필요성

- 다루는 문제의 복잡도가 증가할수록 모델이 커지고 보다 많은 연산이 요구됨
- 컨볼루션 연산, 통합 연산은 모두 행렬 연산
- CUDA를 사용하여 컨볼루션 신경망을 구현한 경우 CPU에 비해 약 10배 이상 속도 향상
 - AlexNet으로 ILSVRC 데이터 학습시 CUDA를 이용한 경우 약 4~5일 정도 소모됨

다양한 딥러닝 프레임워크

	기반 언어	CNN	CUDA	Symbolic 연산	기타 모델 지원
Decaf / Caffe a Berkeley Vision Project	C++, Protobuf	Ο	0		
torch	Lua	0	0		RNN 및 다양한 Optimizer 제공. 기타 기본 ML 라이브러리 제공
theano	Python	0	Ο	Ο	RBM, DBN, AE, LSTM 등 대부분의 딥러닝 모델. 일반적인 확장 가능
Keras	Python, Theano	Ο	Ο	Ο	RBM, DBN, AE, LSTM, GRU 등 최신 모델. 다양한 Activation과 Optimizer 제공
MatConvNet	MATLAB	0	0		

다양한 딥러닝 프레임워크

	Caffe	Torch	Theano	TensorFlow
Language	C++, Python	Lua	Python	Python
Pretrained	Yes ++	Yes ++	Yes (Lasagne)	Inception
Multi-GPU: Data parallel	Yes	Yes cunn. DataParallelTable	Yes	Yes
Multi-GPU: Model parallel	No	Yes fbcunn.ModelParallel	Experimental	Yes (best)
Readable source code	Yes (C++)	Yes (Lua)	No	No
Good at RNN	No	Mediocre	Yes	Yes (best)

Theano

■ 개요

- LISA Lab에서 만든 Python 기반의 오픈소스 Package (http://deeplearning.net/software/theano/)
- Symbolic 연산 철학

■ 장점

- Symbolic 연산 철학으로 간결하고 빠르게 모델 구현 가능
- Symbolic 미분이 가능하므로 Back-Propagation 등을 직접 구현할 필요가 없음
- 동일한 코드를 CPU와 GPU에서 모두 사용 가능
- Python 기반이므로, numpy, scipy, matplotlib, ipython 등 다양한 python 패키지와의 연동 용이

■ 단점

- 에러 메세지가 번잡한 편
- GPU연산의 경우 float만 지원

기본 Symbolic 연산

■ 예제: y = 2*x^2+5*x 함수의 구현

일반적인 Python	Theano
def compute(x): y=2*x^2+5*x return y compute(2)	$x = T.scalar()$ \leftarrow Symbolic 변수 정의 $y = 2*x^2+5*x$ \leftarrow Symbolic Expression compute = theano.function([x], y) \leftarrow 컴파일 compute(2)

Symbolic 미분 연산

■ 예제: y = 2*x^2+5*x 함수의 미분

일반적인 Python	Theano	
def diff(x): $x=4*x+5$	x = T.scalar() $y = 2*x^2+5*x$	
y=4*x+5 return y	$y = 2 \cdot x \cdot 2 + 3 \cdot x$ y_prime = T.grad(y, x) \leftarrow Symbolic	미분
diff(2)	<pre>diff = theano.function([x], y_prime) diff(2)</pre>	

식을 입력해야 함

사람이 직접 미분한 Symbolic 미분을 통해 자동으로 도함 수가 계산됨

복잡한 Back-Propagation 계산을 직접 구현할 필요가 없음

GPU 연산 관련 문법: shared

- 기능
 - VRAM과 RAM 사이의 데이터 전송
- shared_var =
 theano.shared(numpy_arr
 ay)
- numpy_array =
 shared_var.get_value()

GPU 연산 관련 문법: Givens

■ 기능: Symbolic 변수에 Shared 데이터를 대입

[예제] y = 2*x 일때, x에 10을 대입 계산하는 두 가지 구현 방법

- 방법1)
 - compute = theano.function([x], 2*x);
 - compute(10) ← 실행시

방법2)

RAM→VRAM→GPU연산

- x_value = theano.shared(10)
- compute = theano.function([], 2*x, givens=[(x,x_value)])
- compute() ← 실행시 VRAM→GPU연산

GPU 연산 관련 문법: updates

■ 기능: GPU연산 결과를 이용해 Shared 데이터를 수정

- x_val = theano.shared(0)
- increase =
 theano.function([], x_val,
 updates=(x_val, x_val+1))
- increase() ← 실행시 RAM을 거치지 않고, GPU내에서 계속 x_val을 1씩 증가시킴

$$y_{n,k} = \sigma \left(\sum_{m=1}^{M} s_m (\mathbf{w}_m^k)^{\top} \mathbf{x}_m^n + b_m^k \right)$$

$$s_m = \sigma \left((\mathbf{u}_m)^\top \mathbf{X} + a_m \right)$$

$$lnE = -\sum_{n=1}^{N} \sum_{k=1}^{K} \{t_{n,k} ln y_{n,k} + (1 - t_{n,k}) ln (1 - y_{n,k})\}$$

$$\mathbf{w}_{m}^{k} \leftarrow \mathbf{w}_{m}^{k} - \delta \cdot \frac{\partial lnE}{\partial \mathbf{w}_{m}^{k}}$$

$$\mathbf{u}_m \leftarrow \mathbf{u}_m - \delta \cdot \frac{\partial lnE}{\partial \mathbf{u}_m}$$

$$b_m^k \leftarrow b_m^k - \delta \cdot \frac{\partial lnE}{\partial b_m^k}$$

$$a_m \leftarrow a_m - \delta \cdot \frac{\partial lnE}{\partial a_m}$$

$$y_{n,k} = \sigma \left(\sum_{m=1}^{M} s_m (\mathbf{w}_m^k)^{\top} \mathbf{x}_m^n + b_m^k \right) = \left(-\frac{t_{n,k}}{y_{n,k}} + \frac{1 - t_{n,k}}{1 - y_{n,k}} \right) (y_{n,k} (1 - y_{n,k}) s_m \mathbf{x}_m^n)$$
(4)
$$= (-t_{n,k} (1 - y_{n,k}) + (1 - t_{n,k}) y_{n,k}) s_m \mathbf{x}_m^n$$
$$= (y_{n,k} - t_{n,k}) s_m \mathbf{x}_m^n$$

$$\frac{\partial lnE}{\partial \mathbf{u}_m} = \frac{\partial lnE}{\partial y_{n,k}} \frac{\partial y_{n,k}}{\partial s_m} \frac{\partial s_m}{\partial \mathbf{u}_m}
= (y_{n,k} - t_{n,k}) s_m (1 - s_m) \mathbf{X} \sum_{k=1}^K (\mathbf{w}_m^k)^\top \mathbf{x}_m^n$$
(5)

$$\frac{\partial lnE}{\partial b_m^k} = \frac{\partial lnE}{\partial y_{n,k}} \frac{\partial y_{n,k}}{\partial b_m^k}
= (y_{n,k} - t_{n,k})$$
(6)

$$\frac{\partial lnE}{\partial a_m} = \frac{\partial lnE}{\partial y_{n,k}} \frac{\partial y_{n,k}}{\partial s_m} \frac{\partial s_m}{\partial a_m}
= (y_{n,k} - t_{n,k}) s_m (1 - s_m) \sum_{k=1}^K (\mathbf{w}_m^k)^\top \mathbf{x}_m^n$$
(7)

```
switched = True
W_sw = theano.shared(0.001*np.asarray(rng.uniform(low--4*np.sgrt(6. / (n_switch + n_con_input)),
                                                  high=4*np.sart(6. / (n_switch + n_con_input)),
                                                  size=(n con input. n switch)), dtvpe=floatX).
                     name='W_sw', borrow=True)
b_sw = theano.shared(np.zeros(n_switch, dtype=floatX), name='b_sw', borrow=True)
₩ = theano.shared(0.001*np.asarray(rng.uniform(low=-4*np.sgrt(6, / (n_output + n_con_input)),
                                                  high=4*np.sart(6. / (n_output + n_con_input)),
                                                   size=(n_con_input, n_output)), dtype=floatX),
                     borrow=True)
b = theano.shared(np.zeros(n_output, dtype=floatX), name='b', borrow=True)
switch = I.nnet.sigmoid(I.dot(inp. \ sw)+b sw) # (n data x n grps)
sw_indicator = I.dot(switch, grp_indicator) # (n data x n con input)
sw_inp = inp * sw_indicator # (n data x n con input)
if switched:
    output = T.nnet.sigmoid(T.dot(sw_inp, W)+b)
    #output = T.nnet.sigmoid(T.dot(hid value, W) + b) # (n data x n output)
    params = [W_sw, b_sw, W, b]
e se:
    output = T.nnet.sigmoid(T.dot(inp, \( \Psi ) + b )
    #output = T.nnet.sigmoid(T.dot(hid value, W)+b) # (n data x n output)
    params = [W, b]
```

```
lbls = T.matrix('lbls')
cross_entropy = -T.sum(lbls*T.log(output) + (1-lbls)*T.log(1-output), axis=1)
cost = T.mean(cross_entropy)
gparams = T.grad(cost, params)
updates = []
for param, gparam in zip(params, gparams):
    updates.append((param, param - learning_rate * gparam))
```

실습