1. 用 Gram-Schmidt 方法求由下列向量张成的子空间的标准正交基.

(1)
$$\mathbf{u}_1 = (0, 1, -1), \ \mathbf{u}_2 = (0, -1, -3), \ \mathbf{u}_3 = (-1, -1, 1);$$

(2)
$$\mathbf{u}_1 = (-1, -1, 0, 2), \ \mathbf{u}_2 = (-1, 0, 0, 1), \ \mathbf{u}_3 = (-1, 0, 1, 1), \ \mathbf{u}_4 = (2, 0, -1, -1);$$

(3)
$$\boldsymbol{u}_1=(0,0,2,3,1), \ \boldsymbol{u}_2=(0,1,0,-2,2), \ \boldsymbol{u}_3=(1,0,1,1,-2), \ \boldsymbol{u}_4=(0,0,-1,3,-2), \ \boldsymbol{u}_5=(-1,-1,-2,0,-1);$$

2. 在欧氏空间 \mathbf{R}^4 里写出两个单位向量, 使它同时与向量 $\alpha=(2,1,-4,0), \beta=(-1,-1,2,2),$ $\gamma=(3,2,5,4)$ 正交.

解设 $\xi = (x_1, x_2, x_3, x_4)$ 与 α, β, γ 正交, 则有方程组

$$\begin{cases} 2x_1 + x_2 - 4x_3 = 0, \\ -x_1 - x_2 + 2x_3 + 2x_4 = 0, \\ 3x_1 + 2x_2 + 5x_3 + 4x_4 = 0, \end{cases}$$

解得 $\xi = (-34, 14, -6, 11)$,单位化得

$$n = \frac{\xi}{|\xi|} = \frac{1}{57}(-34, 44, -6, 11)$$

3. 在欧氏空间 C[-1,1] 里, 对 $\{1, x, x^2, x^3\}$ 实施 Gram-Schmidt 正交化方法, 求出一个标准正交向量组.

解令 $\alpha_1 = 1, \alpha_2 = x, \alpha_3 = x^2, \alpha_4 = x^4$.

为得到规范化正交组, 先取 $\beta_1 = \alpha_1 = 1$. 有

$$\langle \beta_1, \beta_1 \rangle = \int_{-1}^1 1 \, \mathrm{d}x = 2.$$

因为

$$\langle \alpha_2, \beta_1 \rangle = \int_{-1}^1 x \, \mathrm{d}x = 0,$$

所以

$$\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_2 \rangle}{\langle \beta_1, \beta_1 \rangle} \cdot \beta_1 = x.$$

因为

$$\langle \beta_2, \beta_2 \rangle = \int_{-1}^1 x^2 \, \mathrm{d}x = \frac{2}{3},$$

所以 $\beta_3 = \alpha_3 - \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \cdot \beta_1 - \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} \cdot \beta_2 = x^2 - \frac{1}{3}.$ 又因为 $\langle \beta_3, \beta_3 \rangle = \int_1^1 \left(x^2 - \frac{1}{3} \right)^2 dx = \frac{8}{45},$

$$\langle \alpha_4, \beta_1 \rangle = \int_{-1}^1 x^3 \, dx = 0, \quad \langle \alpha_4, \beta_2 \rangle = \int_{-1}^1 x^3 \cdot x \, dx = \frac{2}{5},$$
$$\langle \alpha_4, \beta_3 \rangle = \int_{-1}^1 x^3 \left(x^2 - \frac{1}{3} \right) dx = 0,$$

所以
$$\beta_4 = \alpha_4 - \frac{\langle \alpha_4, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \cdot \beta_1 - \frac{\langle \alpha_4, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} \cdot \beta_2 - \frac{\langle \alpha_4, \beta_3 \rangle}{\langle \beta_3, \beta_3 \rangle} \cdot \beta_3$$
$$= x^3 - \frac{3}{5}x.$$

最后将 $\beta_i(i=1,2,3,4)$ 单位化得

$$\gamma_1 = \frac{\beta_1}{|\beta_1|} = \frac{\sqrt{2}}{2}, \quad \gamma_2 = \frac{\beta_2}{|\beta_2|} = \frac{\sqrt{6}}{2}x,$$

$$\gamma_3 = \frac{\beta_3}{|\beta_3|} = \frac{\sqrt{10}}{4} \left(3x^2 - 1\right), \quad \gamma_4 = \frac{\beta_4}{|\beta_4|} = \frac{\sqrt{14}}{4} \left(5x^3 - 3x\right).$$

$$\gamma_1, \gamma_2, \gamma_3, \gamma_4 \ \text{是一个规范正交组}.$$

4. 已知齐次线性方程组

$$\begin{cases} x_1 - x_3 + x_4 = 0 \\ x_2 - x_4 = 0 \end{cases}$$

- (1) 求该方程组的解空间的的一个标准正交基;
- (2) 求与该方程组的解空间中向量都正交的全部向量.
- 5. $\Diamond \gamma_1, \gamma_2, \dots, \gamma_n$ 是 n 维欧氏空间 V 的一个标准正交基, 又令

$$K = \left\{ \xi \in V \mid \xi = \sum_{i=1}^{n} x_i \gamma_i, \quad 0 \leqslant x_i \leqslant 1, i = 1, 2, \dots, n \right\},$$

K 叫做一个 n-方体. 如果每个 x_i 都等于 0 或 1, 则 ξ 就叫做 K 的一个顶点. K 的顶点间一切可能的距离是多少?

解设 $\xi = \sum_{i=1}^n x_i \gamma_i, \eta = \sum_{j=1}^n y_j \gamma_j$ 是 K 的任意两个顶点, 则它们之间的距离是

$$d(\xi, \eta) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

于是顶点 (1,1,…,1) 与下列诸顶点

$$(\underbrace{1, \dots, 1}_{i\uparrow}, 0, \dots, 0), \quad i = 0, 1, 2, \dots, n - 1, n$$

的距离分别是 $\sqrt{n}, \sqrt{n-1}, \cdots, \sqrt{2}, 1, 0$. 又因为 x_i, y_j 只取 0 或 1, 故 $(x_i - y_i)^2 = 0$ 或 1, 所以任意两顶点间的距离不外取上面那些值, 故 K 的顶点之间一切可能距离是 $\sqrt{n}, \cdots, \sqrt{2}, 1, 0$.

- 6. 设 n 是正整数. 证明 $\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\sin nx}{\sqrt{\pi}}$ 是 $C[-\pi, \pi]$ 中的标准正交向量组, 其中 $C[-\pi, \pi]$ 是 $[-\pi, \pi]$ 上由连续实值函数组成的向量空间, 其有内积 $(f, g) = \int_{-\pi}^{\pi} f(x)g(x)dx$.
 - 7. 设 a 为正实数, 证明下列 n 阶实对称阵为正定阵:

$$\mathbf{A} = \begin{pmatrix} a & \frac{a^2}{2} & \frac{a^3}{3} & \cdots & \frac{a^n}{n} \\ \frac{a^2}{2} & \frac{a^3}{3} & \frac{a^4}{4} & \cdots & \frac{a^{n+1}}{n+1} \\ \frac{a^3}{3} & \frac{a^4}{4} & \frac{a^5}{5} & \cdots & \frac{a^{n+2}}{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ \frac{a^n}{n} & \frac{a^{n+1}}{n+1} & \frac{a^{n+2}}{n+2} & \cdots & \frac{a^{2n-1}}{2n-1} \end{pmatrix}.$$

证明:设V = C[0,a]为[0,a]区间上的连续函数全体构成的欧氏空间,其内积定义为 $(f(x),g(x)) = \int_0^a f(x)g(x)dx$. 容易验证 $\{1,x,\cdots,x^{n-1}\}$ 是V中一组线性无关的向量,且A为其 Gram 矩阵. 由高代白皮书例9.5可知A为正定阵.

8. 设 n 维欧氏空间 V 中 n+1 个向量 $\boldsymbol{\alpha}_0, \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_n$ 两两之间的距离都是 d>0. 令 $\boldsymbol{\beta}_i = \boldsymbol{\alpha}_i - \boldsymbol{\alpha}_0 (1 \leq i \leq n)$, 证明:

(1) $(\boldsymbol{\beta}_i, \boldsymbol{\beta}_j) = \frac{d^2}{2} (1 \le i \ne j \le n); (2) \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_n$ 是 V 的一组基.

证明: (1) 显然 $\|\boldsymbol{\beta}_i\| = \|\boldsymbol{\alpha}_i - \boldsymbol{\alpha}_0\| = d(1 \le i \le n)$, 又对任意的 $i \ne j, d^2 = \|\boldsymbol{\alpha}_i - \boldsymbol{\alpha}_j\|^2 = \|\boldsymbol{\beta}_i - \boldsymbol{\beta}_j\|^2 = \|\boldsymbol{\beta}_i\|^2 + \|\boldsymbol{\beta}_j\|^2 - 2(\boldsymbol{\beta}_i, \boldsymbol{\beta}_j)$, 故 $(\boldsymbol{\beta}_i, \boldsymbol{\beta}_j) = d^2/2(1 \le i \ne j \le n)$. (2) 注意到 $\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_n$ 的 Gram 矩阵 $G = G(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_n)$ 的主对角元全为 d^2 , 其余元素全为 $d^2/2$, 用求和 法可计算出 $|\boldsymbol{G}| = (n+1)d^{2n}/2^n > 0$, 故由例 9.5 可知, $\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_n$ 线性无关,从而是 V 的一组基.

9. 证明向量组 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_m$ 张成的平行 2m 面体的体积等于其 Gram 矩阵的行列式的 算术平方根,即

$$V(\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_m) = |\boldsymbol{G}(\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_m)|^{\frac{1}{2}}.$$

证明:将 v_1, v_2, \dots, v_m 实施 Gram-Schmidt 正交化可得

$$(\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_m) = (\boldsymbol{u}_1, \boldsymbol{u}_2, \cdots, \boldsymbol{u}_m)\boldsymbol{B}$$

其中 B 是一个主对角全为 1 的上三角阵. 由 2m 面体的体积的计算可知, $V = \|\mathbf{u}_1\| \|\mathbf{u}_2\| \cdots \|\mathbf{u}_m\|$, 由小白书例 9.15 可知,

$$|G(v_1, v_2, \cdots, v_m)| = |G(u_1, u_2, \cdots, u_m)| = ||u_1||^2 ||u_2||^2 \cdots ||u_m||^2$$

因此,可得上述结论.

- 10. 设 $\alpha_1, \alpha_2, \cdots, \alpha_{n+1}$ 是 n 维欧氏空间 V 中两两夹角大于直角的 n+1 个向量, 证明:
- (1) $\alpha_1, \alpha_2, \cdots, \alpha_{n+1}$ 中任意 n 个向量必线性无关;
- (2) $\alpha_1, \alpha_2, \cdots, \alpha_{n+1}$ 中任一向量必为其余向量的负系数线性组合.

证明: (1) 用反证法证明. 假设存在 n 个向量 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n$ 线性相关, 其中 $\boldsymbol{\beta}_i$ 表示 从 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_{n+1}$ 中挑选的 n 个向量,剩余的一个向量记为 $\boldsymbol{\beta}_{n+1}$. 则存在不全为零的实数 $c_1, c_2, \cdots, c_{n+1}$,使得 $c_1\boldsymbol{\beta}_1 + c_2\boldsymbol{\beta}_2 + \cdots + c_n\boldsymbol{\beta}_n = \mathbf{0}$. 将此式按照系数正负整理为如下形式:

$$\sum_{c_i > 0} c_i \boldsymbol{\beta}_i = \sum_{c_i < 0} \left(-c_j \right) \boldsymbol{\beta}_j$$

由 $c_1, c_2, \cdots, c_{n+1}$ 不全为零不妨设存在某个 $c_i > 0$. 若上式两边都等于零,则有

$$0 = \left(\sum_{c_i > 0} c_i \boldsymbol{\beta}_i, \boldsymbol{\beta}_{n+1}\right) = \sum_{c_i > 0} c_i \left(\boldsymbol{\beta}_i, \boldsymbol{\beta}_{n+1}\right) < 0$$

矛盾. 因此若上述等式两边都非零, 从而也存在某个 $c_i < 0$, 于是

$$0 < \left(\sum_{c_i > 0} c_i \boldsymbol{\beta}_i, \sum_{c_i > 0} c_i \boldsymbol{\beta}_i\right) = \left(\sum_{c_i > 0} c_i \boldsymbol{\beta}_i, \sum_{c_j < 0} \left(-c_j\right) \boldsymbol{\beta}_j\right) = \sum_{c_i > 0} \sum_{c_j < 0} c_i \left(-c_j\right) \left(\boldsymbol{\beta}_i, \boldsymbol{\beta}_j\right) < 0,$$

矛盾. 结论得证.

(2) 任选向量 α_i , 由 (1) 知剩余向量线性无关,因此向量 α_i 可表示为 $\alpha_i = c_1\alpha_1 + \cdots + c_{i-1}\alpha_{i-1} + c_{i+1}\alpha_{i+1} + \cdots + c_{n+1}\alpha_{n+1} = \sum_{c_k>0} c_k\alpha_k + \sum_{c_j<0} c_j\alpha_j$. 可得等式

$$\sum_{c_k>0} c_k \boldsymbol{\alpha}_k = \boldsymbol{\alpha}_i + \sum_{c_j<0} (-c_j) \boldsymbol{\alpha}_j = \sum_{c_j<0} (-c_j) \boldsymbol{\alpha}_j$$

不妨设 $\exists k, c_k > 0$,

$$0 < \left(\sum_{c_k > 0} c_k \boldsymbol{\alpha}_k, \sum_{c_k > 0} c_k \boldsymbol{\alpha}_k\right) = \left(\sum_{c_k > 0} c_k \boldsymbol{\alpha}_k, \sum_{c_j < 0} \left(-c_j\right) \boldsymbol{\alpha}_j\right) = \sum_{c_k > 0} \sum_{c_j < 0} c_k \left(-c_j\right) \left(\boldsymbol{\alpha}_k, \boldsymbol{\alpha}_j\right) < 0,$$

矛盾. 结论得证.