COM1002: Foundations of Computer Science

PROVE IT! - BY NANSCLARK

Proof Strategies

Paul Watton

WEEK	8	9	10	11
Mon		Lecture Hand in Ex 6	Lecture Hand out ex 7 (Assessed 5%)	Lecture Hand in Ex 7
Wed	Lecture	Revision Lecture	Lecture	Revision Lecture
Thurs	Tut (ex 6)	Revision Tutorial QUIZ 2 (25%) Diamond 101 4pm-5:30pm	Tut (ex 7)	Revision Tutorial QUIZ 3 (25%) Diamond 101 4pm-5:30pm

We are nearly there...

QUIZ 2

6 Questions:

Predicate Logic (x2),
Composition of Functions,
Proof in propositional logic,
Proof in predicate logic over sets
Simplication of a predicate statement

$$p\Rightarrow (p\vee q) \qquad \textit{Disjunction introduction} \\ ((p\Rightarrow q)\wedge (r\Rightarrow q)\wedge (p\vee r))\Rightarrow q \qquad \qquad \textit{Disjunction elimination} \\ (p\wedge q)\Rightarrow p \qquad \qquad \textit{Conjunction elimination} \\ (p\wedge q)\Rightarrow q \qquad \qquad \textit{Conjunction elimination} \\ (p)\wedge (q)\Rightarrow (p\wedge q) \qquad \textit{Conjunction introduction} \\ ((p\Rightarrow q)\wedge p)\Rightarrow q \qquad \qquad \textit{Modus Ponens} \\ ((p\Rightarrow q)\wedge \neg q)\Rightarrow \neg p \qquad \qquad \textit{Modus Tollens} \\ (\neg p\wedge (p\vee q))\Rightarrow q \qquad \qquad \textit{Disjunctive syllogism} \\ \end{cases}$$

Hypothetical syllogism

 $((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$

Simplification of a predicate

Negate each quantified statement, simplifying so that only the simple statements are negated. Show each step of your work.

(a)
$$\forall x (\sim P(x) \land \sim Q(x))$$

(b)
$$\exists x(Q(x) \rightarrow \sim P(x))$$

Negate
$$\forall x (\neg P(x) \land \neg Q(x))$$

$$\neg \forall x \Big(\neg P(x) \land \neg Q(x) \Big) \Leftrightarrow \exists x \neg \Big(\neg P(x) \land \neg Q(x) \Big)$$
$$\Leftrightarrow \exists x \Big(\neg \neg P(x) \lor \neg \neg Q(x) \Big)$$
$$\Leftrightarrow \exists x \Big(P(x) \lor Q(x) \Big)$$

Negate
$$\exists x (Q(x) \Rightarrow \neg P(x))$$

$$\neg \exists x (Q(x) \Rightarrow \neg P(x)) \Leftrightarrow \forall x \neg (Q(x) \Rightarrow \neg P(x))$$

$$\Leftrightarrow \forall x \neg (\neg Q(x) \lor \neg P(x))$$

$$\Leftrightarrow \forall x (\neg \neg Q(x) \land \neg \neg P(x))$$

$$\Leftrightarrow \forall x (Q(x) \land P(x))$$

Proof in Propositional Logic

Show that the hypotheses:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming, then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

lead to the conclusion:

We will be home by the sunset.

Main steps:

Translate the statements into proposional logic.

Write a formal proof, a sequence of steps that state hypotheses or apply inference rules to previous steps.

Show that the hypotheses:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming, then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

lead to the conclusion:

We will be home by the sunset.

Step	Reason	

Where:

- s: "it is sunny this afternoon"
- c: "it is colder than yesterday"
- w: "we will go swimming"
- t: "we will take a canoe trip.
- h: "we will be home by the sunset."

