НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет ПИиКТ

Информатика
Лабораторная работа № 6
«Работа с системой компьютерной вёрстки ТЕХ»
Обязательное задание - вариант 13
Необязательное задание - вариант 2

Выполнил студент: Двоеглазова Наталья Николаевна Группа №Р3123 Преподаватель: Болдырева Елена Александровна

г. Санкт-Петербург 2023

ПРАКТИКУМ АБИТУРИЕНТА

ПИСЬМЕННЫЙ ЭКЗАМЕН ПО МАТЕМАТИКЕ НА МЕХМАТЕ МГУ В 1970 ГОДУ

Н.Н. Колесников

В «Кванте» № 2 за 1970 год была напечатана статья Н. С. Бахвалова м Н. Н. Кузнецова о письменном экзамене по математике на мехмате МГУ в 1969 году. Хотелось бы, не повторяя сделанные там замечания о характере этого экзамена, подчеркнуть некоторые его особенности в 1970 году.

Задачи, предложенные поступавшим, еще раз подтверждают положение о том, что успешное их решение доступно любому абитуриенту, твердо усвоившему школьную программу, а не только выпускникам математических школ. Вы увидите, что эти задачи не содержат «подводных камней» или «ловушек», а требуют четкого понимания основных разделов программы по математике для поступающих в вузы и определенных навыков в технике математических выкладок и решении простейших уравнений, неравенств и геометрических задач.

Естественно, что такая «стандартность» задач предполагает повышение требований к оценке их решений, требований к умению доводить решение до конца, а неограничиваться наметками на решение. Удовлетворительная оценка (три) ставилась в 1970 году за доведенное до конца правильное решение любых двух или трех задач, хорошая (четыре) — любых четырех задач, отличная (пять) — пяти задач. На решение задания (набора из пяти задач — варианта) отводилось 4 астрономических часа.

Перейдем к разбору одного из вариантов письменного экзамена по математике, коротко останавливаясь на наиболее характерных ошибках, встретившихся в работах поступавших на механико-

математический факультет.

Вариант 1

1. Решить неравенство

$$-\log_{\frac{1}{2}}(1+\cos 3x) \le 2 + \log_2(\frac{1}{4} - \cos x)$$

2. Найти все действительные решения системы

$$\begin{cases} y^2 - |xy| + 2 = 0, \\ 8 - x^2 = (x + 2y)^2. \end{cases}$$

- 3. Три гонщика А, В и С, стартовав одновременно, движутся с постоянными скоростями в одном направлении по кольцевому шоссе. В момент старта гонщик В находится перед гонщиком А на расстоянии ¹/₃ длины шоссе, а гонщик С перед гонщиком В на таком же расстоянии. Гонщик А впервые догнал В в тот момент, когда В закончил свой первый круг, а еще через 10 минут А впервые догнал гонщика С. Гонщик В тратит на круг на 2,5 минуты меньше, чем С. Сколько времени тратит на круг гонщик А?
- 4. На диагонали АС выпуклого четырехугольника АВСD находится центр окружности радиуса г, касающейся сторон АВ, АD и ВС. На диагонали ВD находится центр окружности такого же радиуса г, касающейся сторон ВС, СD, AD. Найти площадь четырехугольника АВСD, зная, что указанные окружности касаются друг друга внешним образом.
- Шар радиуса г касается плоскости Р в точке А. Прямая l образует с плоскостью Р

Таблица 2

Уравнения прямых, на пересечении которых лежит вершина	Координаты вершины		Значения функции 4х + 3у в верши	
	х	у		
${ m x}=0,2{ m x}+{ m y}=10$	0	10	$4 \cdot 0 + 3 \cdot 10 = 30$	
2x + y = 10, x + y = 8	2	6	$4 \cdot 2 + 3 \cdot 6 = 26$	
x + y = 8, 3x + 7y = 42	3,5	4,5	$4 \cdot 3, 5 + 3 \cdot 4, 5 = 27, 5$	
3x + 7y = 42, x + 5y = 20	8,75	2,25	$4 \cdot 8,75 + 3 \cdot 2,25 = 41,75$	
x + 5y = 20, y = 0	20	0	$4 \cdot 20 + 3 \cdot 0 = 80$	

Таблица 3

		Тангенс
Уравнение прямой	Точки на осях координат, через которые	угла нак-
	проходит прямая	лона пря-
		мой
y = 0	(0,4), (16,0)	0
2x + 8y = 32	(0,4), (10,0)	$^{1}/_{4}$
x + 2y = 12	(0,6), (12,0)	$^{1}/_{2}$
x + 2y = 12		/ 2
3x + 4y = 36	(0,9), (12,0)	3/4
3x + y = 15	(0,15), (5,0)	3
x=0	(0 °/12) (°/2 0)	∞
3x + 12y = c	$(0, {}^c/_{12}), ({}^c/_3, 0)$	$^{1}/_{4}$

Множество допустимых точек изображено на рисунке 11, из которого видно, что прямая x+2y=12 лежит целиком вне этого множества. Таким образом, сторонами этого множества служат лучи осей координат и отрезки трех оставшихся прямых.

Так как тангенс угла наклона прямых 3x + 12y = c совпадает с тангенсом угла наклона одной из прямых, на которых лежат стороны множества допустимых точек (прямой 2x + 8y = 32), то опорная прямая совпадает с этой прямой. Решениями задачи служат все точки стороны, лежащей на этой прямой. Концами этой стороны служат вершины, лежащие в точках пересечения прямой 2x + 8y = 32 с соседними прямыми — y = 0 и 3x + 4y =36 (напомним, что прямую x + 2y= 12 мы исключили из рассмотрения). Итак, координаты (x_1, y_1)

$$\begin{cases} 2x_1 + 8y_1 = 32, \\ y_1 = 0. \end{cases}$$

table N_21

	Values				Total	
		A	В	С	D	Total
Range	min	4	8	15	16	43
	max	23	42	25	34	124
Another total		27	50	40	50	167

table N_{2}

n k	0	1	2	3	4
0	1	0	0	0	0
1	1	1	0	0	0
2	1	2	1	0	0
3	1	3	3	1	0
4	1	4	6	4	1
5	1	5	10	10	5