Bin packing, linear programming and rounding

Meta-tool: special cases

Large items

Special special case

Large items, few distinct sizes

Example

Bin capacity 12 sizes: {3,4} 10 items of size 3, 10 items of size 4.

Bin capacity 12 sizes: {3,4} 10 items of size 3, 10 items of size 4.

Large items, few distinct sizes C={configurations}

In configuration c size s occurs $a_{s,c}$ times

Integer program

Input: $S=\{size\}$ number of items of size s: n_s

Output: C={configurations} number of bins in configuration c: $\mathbf{x}_{\mathbf{c}}$

Constraints: $\sum_{\mathbf{c}} \mathbf{a_{s,c}} \mathbf{x_c} \geq \mathbf{n_s}$

Number of bins: $\sum_{c} x_{c}$

integer

If size > capacity/10 then: < 10 items per configuration

If < 10 sizes then:
< 10^10 configurations
Solve LP relaxation
10 constraints, 10^10 variables
Round up to nearest integer

#bins < OPT + 10^10

(Exhaustive search also ok)

For every $(\mathbf{x_c})_{\mathbf{c}\in\mathcal{C}}\in\{0,1,\cdots,n\}^{|\mathcal{C}|}$ Check whether, for every size s, enough slots for items of size s Output solution with min #bins

Runtime if size>capacity/10:

$$|S| \times n^{|S|^{10}}$$

Bin packing, linear programming and rounding

