Visualizations

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
main_df = pd.read_csv('main_df.csv')
main_df['Deaths_per_capita'] = main_df['Count']/main_df['Population']
main_df
```

	Year int64	County object	Geography_Type	Strata object	Strata_Name obje	С
170	2014	Alameda	Occurrence	Race-Ethnicity	Other/Unknown	S
171	2014	Alameda	Occurrence	Total Population	Total Population	S
172	2014	Alameda	Occurrence	Gender	Female	S
173	2014	Alameda	Occurrence	Gender	Male	S
174	2014	Alameda	Occurrence	Race-Ethnicity	American Indian/Alaska	S
175	2014	Alameda	Occurrence	Race-Ethnicity	Asian	S
176	2014	Alameda	Occurrence	Race-Ethnicity	Black	S
177	2014	Alameda	Occurrence	Race-Ethnicity	Hawaiian/Pacific Islander	S
178	2014	Alameda	Occurrence	Race-Ethnicity	Hispanic	S
179	2014	Alameda	Occurrence	Race-Ethnicity	Multi-Race	S

Focus: Heart Disease

```
# Death Per Capita in 2019
plt.figure(figsize=(15,10))
plt.xticks(rotation=90)
plt.title('Deaths Per Capita in 2019')
sns.barplot(data=main_df[(main_df['Strata']=='Total Population')&(main_df["Cause"]=="ALL")
```



```
#Heart Disease deaths per capita for each county
plt.figure(figsize=(15,10))
plt.xticks(rotation=90)
plt.title('Heart Disease deaths per capita in 2019')
sns.barplot(data=main_df[(main_df['Strata']=='Total Population')&(main_df["Cause"]=="CLD")
```


 $types_of_deaths = main_df[(main_df['Strata'] == 'Total\ Population') \& (main_df['Geography_Typetypes_of_deaths] \\$

	Cause_Desc object	Count float64	Deaths_per_capi	Population int64
	All causes (t 6.7% Diseases of 6.7% 13 others 86.7%	1717.0 - 270924.0	0.001647087892	39437610 - 3943
1	All causes (total)	270924.0	0.427518372761 2441	39437610
8	Diseases of heart	62646.0	0.096422276571 91307	39437610
12	Malignant neoplasms	59817.0	0.091831096847 98445	39437610
4	Cerebrovascular diseases	16859.0	0.021066539139 16076	39437610
2	Alzheimer's disease	16809.0	0.020277018881 113863	39437610
0	Accidents (unintentional	15387.0	0.032066035060 87776	39437610
6	Chronic lower respiratory	13104.0	0.022973084540 808802	39437610
7	Diabetes mellitus	9823.0	0.010958122042 520202	39437610
10	Influenza and pneumonia	5610.0	0.006410299627 920659	39437610
9	Essential hypertension and	5537.0	0.005925547996 1371265	39437610

Compare with possible cause of heart disease

cig_vs_htd = main_df[(main_df['Strata']=='Total Population')&(main_df["Cause"]=="SUI")&(main_vs_htd

	Year int64	County object	Geography_Type	Strata object	Strata_Name obje
	2019 - 2019	Alameda	Occurrence 100%	Total Popul 100%	Total Popul 100%
105731	2019	Alameda	Occurrence	Total Population	Total Population
105913	2019	Alpine	Occurrence	Total Population	Total Population
106095	2019	Amador	Occurrence	Total Population	Total Population
106277	2019	Butte	Occurrence	Total Population	Total Population
106459	2019	Calaveras	Occurrence	Total Population	Total Population
106641	2019	Colusa	Occurrence	Total Population	Total Population
106823	2019	Contra Costa	Occurrence	Total Population	Total Population
107005	2019	Del Norte	Occurrence	Total Population	Total Population
107187	2019	El Dorado	Occurrence	Total Population	Total Population
07369	2019	Fresno	Occurrence	Total Population	Total Population

len(cig_vs_htd), len(cig_vs_htd['County'].unique())

(58, 58)

Statistics

```
#how many people die on avg each year
death_years_count = {}
for i in range(2014,2020):
    year = main_df[(main_df['Strata']=='Total Population')&(main_df['Geography_Type']=='Oc
    pop = sum(main_df[(main_df['Strata']=='Total Population')&(main_df['Geography_Type']==
    death_years_count[i] = year[year['Cause_Desc']=="All causes (total)"]['Count'][1]
death_years_count
{2014: 246781.0,
2015: 260196.0,
2016: 263208.0,
2017: 269377.0,
2018: 270129.0,
2019: 270924.0}
deaths_count_2019 = sum(main_df[(main_df['Strata']=='Total Population')&(main_df['Geograph'])
```