Nombres y direccionamiento

Nombres

- Identifican unívocamente a una entidad.
- Describen a la entidad.
- Abstraen al recurso de propiedades que lo atan al sistema.

Directionamiento (Addressing)

- Mapeo entre nombre y dirección.
- Dirección cambia, nombre NO.
- Dirección puede ser reutilizada.
- Ejemplos:
 - IP -> Ethernet Address. ARP (IPv4) y ND (IPv6).
 - Domain Name -> IP. DNS.
 - Service -> Instances. Service Discovery.

Mensajes

Formateo de paquetes

Binario

- Alta performance: tamaño eficiente, compresión innecesaria.
- Serialización: autogeneración, no siempre existe soporte.
- Interacción:
 - Acoplamiento.
 - Cliente específico p/ c/ app.
 - Decoder p/ interpretar.

Texto plano

- Baja performance: bajo throughput, compresión -> overhead.
- Serialización: básica, formatos human-readable.
- Interacción: cliente único, fácil de debuggear.

Longitud de paquetes

- Pueden ser:
 - Bloques fijos.
 - * Fácil de serializar.
 - * Subóptimo p/ datos de long. variable.
 - Bloques dinámicos. Agrega:
 - * Separador p/ delimitar comienzo y terminación.
 - * Longitud del tipo p/ delimitar campos.
 - * Overhead.
 - Esquema mixto (fijos sin delimitadores, variables con).
- \bullet Formato: Type-Length-Value.

Grupos

- Abstracción p/ colección de procesos.
- Dinámicos.
- Procesos pueden suscribir y cancelar suscripción a grupos.

- Primitivas.

Difusión de mensajes

- Uno a uno:
 - Unicast. Punto a punto.
 - Anycast. Uno sólo recibe el mensaje (ej. el más cercano).
- Uno a muchos:
 - Multicast. Los de un determinado grupo reciben el mensaje.
 - Broadcast. Todos.

Atomicidad

- Deben entregarse a todos o a ninguno.
- Necesidad de \mathbf{ACKs} .
- Necesidad de demorar delivery de paquetes recibidos.
- Reintentos frente a caídas/no recepción.