```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot tree
dt= pd.read csv('/content/manufacturing defect dataset.csv')
d=DecisionTreeClassifier()
dt.head()
```

→	ProductionVolume	ProductionCost	SupplierQuality	DeliveryDelay	DefectRate	QualitySco
	202	13175.403783	86.648534	1	3.121492	63.46349
	535	19770.046093	86.310664	4	0.819531	83.6978 [,]
	960	19060.820997	82.132472	0	4.514504	90.3505
	370	5647.606037	87.335966	5	0.638524	67.62869
	206	7472.222236	81.989893	3	3.867784	82.72830

Next steps:

Generate code with dt

View recommended plots

dt.isnull().sum()

```
ProductionVolume
                         0
ProductionCost
                         0
SupplierQuality
                         0
DeliveryDelay
                         0
DefectRate
                         0
QualityScore
                         0
MaintenanceHours
                         0
DowntimePercentage
                         0
InventoryTurnover
                         0
StockoutRate
                         0
WorkerProductivity
                         0
SafetyIncidents
                         0
EnergyConsumption
                         0
EnergyEfficiency
                         0
AdditiveProcessTime
                         0
AdditiveMaterialCost
                         0
DefectStatus
                         0
dtype: int64
```

x=dt[['ProductionVolume','ProductionCost','SupplierQuality','DefectRate','QualityScore',]] y=dt['DefectStatus']

d.fit(x,y)

v DecisionTreeClassifier
DecisionTreeClassifier()

columns_to_drop = ['DeliveryDelay','MaintenanceHours','DowntimePercentage','InventoryTurnove
dt.drop(columns_to_drop,axis=1)

	ProductionVolume	ProductionCost	SupplierQuality	DefectRate	QualityScore	Defec
0	202	13175.403783	86.648534	3.121492	63.463494	
1	535	19770.046093	86.310664	0.819531	83.697818	
2	960	19060.820997	82.132472	4.514504	90.350550	
3	370	5647.606037	87.335966	0.638524	67.628690	
4	206	7472.222236	81.989893	3.867784	82.728334	
3235	762	11325.689263	89.252385	2.667570	87.141681	
3236	335	5598.837988	95.701437	0.751272	95.562997	
3237	835	11736.177712	96.431554	4.899756	77.973442	
3238	302	13664.196210	91.089782	4.057665	95.755591	
3239	355	13563.605806	83.595956	2.705502	94.630965	
3240 rd	ows × 6 columns					>

d.predict([[100,200,65,30.52,45.3]])

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not hav warnings.warn(
array([1])

```
11=int(input("enter prduction volume"))
12=float(input("production cost"))
13=float(input("supplier quality"))
14=float(input("defect rate"))
15=float(input("quality score"))
out=d.predict([[11,12,13,14,15]])
if out==True:
 print("positive")
else:
  print("negative")
→ enter prduction volume355
     production cost13258.368
     supplier quality53.65
     defect rate1.003
     quality score86.36
     positive
     /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have
       warnings.warn(
                                                                                            •
```

from sklearn.tree import export_graphviz
from IPython.display import Image

ALGORITHM: DECISION TREE

Decision Tree Classifier Building in Scikit-learn.

Importing Required Libraries.

Loading Data.

Checking for null values

Feature Selection.

Splitting Data.

Building Decision Tree Model.

Predicting.

Visualizing Decision Trees.

This dataset provides insights into factors influencing defect rates in a manufacturing environment. Each record represents various metrics crucial for predicting high or low defect occurrences in production processes.

ProductionVolume: Number of units produced per day. Data Type: Integer.

ProductionCost: Cost incurred for production per day.Data Type: Float.

SupplierQuality: Quality ratings of suppliers.Data Type: Float (%).

DefectRate: Defects per thousand units produced.Data Type: Float.

QualityScore: Overall quality assessment.Data Type: Float (%).

Target Variable:

DefectStatus: Predicted defect status. Data Type: Binary (0 for Low Defects, 1 for High Defects).