ST117 Lab 7 Workbook

26 February, 2024

1. Linear Regression Model

Generate a sample from the linear regression model:

$$Y = 2X + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, 5)$$

#TODO: write your codes here

(a) Find the regression line to predict \hat{y} by x, i.e. find $\hat{a}_1,\,\hat{b}_1$ such that

$$Y = \hat{b}_1 X + \hat{a}_1$$

manually using the covraiance and correlation estimators. Then verify the values using the ${\tt lm}$ function in R.

#TODO: write your codes here

(b) Find the regression line to predict \hat{x} by y, i.e. find \hat{a}_2 , \hat{b}_2 such that

$$X = \hat{b}_2 Y + \hat{a}_2$$

manually using the covraiance and correlation estimators. Then verify the values using the ${\tt lm}$ function in R.

#TODO: write your codes here

(c) Plot the data along with the two regression lines. Which regression line appears to be better?

#TODO: write your codes here

(d) The Least Squared Estimation can also help us derive the estimates of \hat{a} and \hat{b} . We just need to find the value of a and b that minimizes the following expression:

$$\sum_{i=1}^{n} \left(y_i - (a + bx_i) \right)^2$$

Hint: Use the optim function.

#TODO: write your codes here

2. Mean Squared Error

Consider a random sample X_1, X_2, \dots, X_n from a normal distribution with mean μ and variance σ^2 . We have the following two estimators of the population variance obtained from the given sample information. From our previous lab, we derived the Maximum Likelihood Estimator(MLE) of the population variance as:

$$1.\ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$$

Additionally, we have the sample variance given by:

$$2.\ s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2,$$

where \overline{X} represents the sample mean.

(a) Simulate a sample of 10 data from $N(160, 10^2)$. Calculate the values of these two estimators and their Mean Squared Error(MSE).

#TODO: write your codes here

(b) Try sample sizes of 100, 1000 and 10000, and show the results in a table. Can you provide an interpretation?

#TODO: write your codes here