Homework 4

Math 25a

Due October 4, 2017

Topics covered: bases, linear maps, kernel, image, rank-nullity Instructions:

- The homework is divided into one part for each CA. You will submit each part to the corresponding CA's mailbox on the second floor of the science center.
- If your submission to any one CA takes multiple pages, then staple them together. A stapler is available in the Cabot library in the science center.
- If you collaborate with other students, please mention this near the corresponding problems.
- Some problems from this assignment come from the 3rd edition of Axler's book. I've indicated this next to the problems. For example, Axler 1.B.4 means problem 4 from the exercises to Section B of Chapter 1. Sometimes the problem in Axler is slightly different, so make sure you do the problem as listed in the assignment.

1 For Ellen

Problem 1 (Axler 3.A.7). Suppose that V is 1-dimensional. Show that for every linear map $T:V\to V$ there exists $a\in F$ so that Tv=av for all $v\in V$.

Solution. \square Problem 2 (Axler 3.A.8). Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that f(av) = af(v) for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but f is not linear.

Solution. \square Problem 3 (Axler 3.A.11). Let V be a finite dimensional vector space with a subspace U. Show that for every linear map $T: U \to W$ there exists a linear map $S: V \to W$ so that S(u) = T(u)

Solution.

for $u \in U$. In this case we say that S is an extension of T.

Solution.

2 For Charlie

Problem 4 (Axler 3.B.9-10). Let $T: V \to W$ be a linear map.

(a) Show that if T is injective and v_1, \ldots, v_n are linearly independent in V, then Tv_1, \ldots, Tv_n are linearly independent in W.
(b) Show that if T is surjective and v_1, \ldots, v_n span V, then Tv_1, \ldots, Tv_n span W.
$\circ lution.$
Problem 5 (Axler 3.B.16). Suppose there exists a linear map on V whose kernel and image are oth finite dimensional. Show that V is finite dimensional. (Hint: You may <u>not</u> use the rank-nullity neorem.)
\Box
Problem 6 (Axler 3.B.12). Let V be finite dimensional and let $T: V \to W$ be a linear map. Show here exists a subspace $U \subset V$ so that $U \cap \ker T = \{0\}$ and $\operatorname{Im} T = \{Tu: u \in U\}$.

3 For Natalia

Problem 7 (Axler 3.B.20). Assume V is finite dimensional and $T: V \to W$ is linear. Show that T is injective if and only if there exists a linear map $S: W \to V$ so that ST is the identity map on V.

 \Box

Problem 8 (Axler 3.B.21). Assume V is finite dimensional and $T: V \to W$ is linear. Show that T is surjective if and only if there exists a linear map $S: W \to V$ so that TS is the identity map on W.

 \Box

Problem 9 (Axler 3.B.22-23). Assume U and V are finite dimensional and $U \xrightarrow{S} V \xrightarrow{T} W$ are linear maps. Show that

- (a) $\dim \ker TS \leq \dim \ker S + \dim \ker T$.
- (b) $\dim \operatorname{Im} TS \leq \min \{\dim \operatorname{Im} S, \dim \operatorname{Im} T\}.$

 \Box

4 For Michele

Problem 10. Let (v_1, v_2, v_3) be a basis for V over F, and let $T(v_1) = v_2$, $T(v_2) = v_1$, and $T(v_3) = v_1 + v_2$.

- (a) Show that there is a unique linear map $T: V \to V$ taking these values on the basis. Compute the matrix of T with respect to this basis.
- (b) Is T a linear isomorphism? Why or why not?

 \Box

Problem 11. Let Poly(F) be the vector space of all polynomials with coefficients in F, and let V = Fun(F, F) be the vector space of all functions $f : F \to F$. Define a map of sets $T : Poly(F) \to V$ by T(p)(a) = p(a) the function mapping $a \in F$ to $p(a) \in F$.

- (a) Show that T is a linear map.
- (b) For $F = \mathbb{R}$ show that T is injective but not surjective.
- (c) Give an example of a field F where T is surjective but not injective, and prove your claim.

 \Box

Problem 12. Let $F = \mathbb{Z}/p\mathbb{Z}$ for a prime number p. What is the probability that a linear map $T: F^2 \to F^2$ is a linear isomorphism when randomly choosing out of all such maps? (Note that a linear isomorphism sends a basis of F^2 to another basis of F^2 by Problem 4.) As p increases is one more or less likely to choose a linear isomorphism at random?

Solution. \Box