

School of Computer Science and Engineering B.Tech (Hons.) Midterm Evaluation Scheme Academic Year 2024-2025

SET2

Course: Digital Systems and Computer Architecture

Course Code: CS1101

Semester: I

Time: 2:30 PM to 4:00 PM

Duration: 90 minutes

Date: 04/12/2024

Max Marks: 25

Instructions:

a) Answer all questions

SI. No.	PART A	Marks	L1-L6	со
1.	When a material with the stable electronic configuration 2-8-18-5 is doped into silicon, it creates a type of semiconductor.	1	L2	CO1
2.	Evaluate whether the diode's state (ON or OFF) aligns with the intended circuit functionality based on its voltage and current requirements. Vcc=5v 4.7 kΩ Vin=1	1	L4	CO1
3.	Represent 0xAC in Gray code format	1	L2	CO1
4.	Convert the signed binary number 1010 to decimal value.	1	L2	CO2
5.	Which IC is designed for NAND gates a) 7408 b) 7402 c) 7400 d)7432	1	u	CO2

SI.No	PART B	Marks	L1-L6	со
	a. Evaluate the circuit's design for the input condition A = 0 and B = 0, considering whether the LED's state aligns with the intended logic operation. (2 Marks)	5	L4	CO1

b. Find the dual and complement of the expression given below. Also mention the number of terms, literals, gates and variables Y = [(AB'+C')D+E'].F (3 marks)		L2	CO2
 a. Analyse the below given circuit and find IB and IC if 8.5mA of current is produced at the Emitter junction. Assume that the transistor is made up of silicon. 7. 1.5 kΩ 1.5 k	5	14	CO1
b. Design a 4 bit odd Parity Generator . (3 marks)		L3	CO2
 a. Construct a NPN transistor and discuss the biasing and doping of the transistor. (2 marks b. Verify the following statement and prove it using truth table and logic g. diagram. 	5	L2 L3	CO1
"The complement of a sum of variables is equal to the product of the complements of the variables" (2 Marks c. Divide 37 by 4 using shift operations (1 mark		L2	CO1
a. Simplify the following expression using Boolean laws Y=[AB'(C+BD)+A'B']C (2 Mark	5 s)	L3	CO2
b. Evaluate and construct the truth table for the following SOP expression: Y = (A'B'C' + A'BC + ABC').		L2	CO2
Then, synthesize the logic diagram required to implement the expression. (2 Mark c. Construct an OR gate using NAND gates only and verify using Truth table. (1 Mar		L3	CO2

Course Outcomes

- 1. Understand the Fundamental Principles of Electronic Circuits to develop efficient logic systems
- 2. Apply the Concepts of Combinational and Sequential Circuit to handle data processing of systems.
- 3. Analyze the instruction cycle, execution cycle, data transfer processes, and overall functioning of the CPU within a computer system
- 4. Build Analog and Digital Logic Circuits using discrete components for real time problems

				Marks Dis	stribution				
L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4
1	11	8	5	0	0	11	14	0	0