

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Разработка алгоритма прогнозирования электрической энергии промышленным предприятием

Мосолова Ксения Дмитриевна ПМ19-3

Руководитель: доцент, к.т.н., доцент Алюнов Александр Николаевич

Цели и задачи ВКР

Задачи:

1 изучить особенности потребления электроэнергии промышленными предприятиями

проанализировать существующие методы прогнозирования и отобрать наиболее подходящие

э применить и сравнить отобранные методы на данных по потреблению электроэнергии

обобщить полученные результаты и на их основе выработать алгоритм прогнозирования

сделать выводы по достигнутым результатам с целью установить целесообразность внедрения алгоритма

Промышленные предприятия

планируемого объёма производства

плановых остановах и пусках производств

Потребление зависит от

плановых и внеплановых ремонтах

отрасли

погодных условиях

оборудования

Методы и модели прогнозирования

Линейная регрессия

Нейронные сети (многослойный перцептрон ✓, RNN)

Дерево решений, случайный лес ✓

Анализ исходных данных

ООО «Харовсклеспром» — лесопромышленное предприятие Вологодской области

Статистические модели

Наивный сезонный прогноз **MAPE** = 12,69%, **R2** = 0,81

SARIMA()(P=1)[24]

Многослойный перцептрон

- MAPE = 9,9%, R2 = 0,88 по умолчанию
- MAPE = 9,79%, R2 = 0,88 после поиска по сетке
- MAPE = 9,66%, R2 = 0,89 с учетом пика между 6 и 13 часами дня
- MAPE = 9,39%, R2 = 0,9 с шириной окна 24*4 наблюдений вместо 24*7
- ≈38 минут на подбор параметров, ≈1 минута на обучение, <1 минуты на прогноз

Случайный лес

- MAPE = 10,47% и R2 = 0,85 по умолчанию
- МАРЕ = 9,65%, R2 = 0,88 с учетом мин. и. макс. потребления за соответствующий день недели
- MAPE = 9,25%, R2 = 0,9 с шириной окна 24*5 наблюдений вместо 24*7
- MAPE = 9,08%, R2 = 0,9 с шириной окна 24*5 и учетом времени года и дня недели
- ≈34 минут на подбор параметров, ≈22 минуты на обучение, <1 минуты на прогноз

Дополнительное исследование: остатки

Наилучший результат до этого:

MAPE = 9.08%, R2 = 0.9

Случайный лес, окно 120, учет времени года и дня недели

	Model	MAPE	MSE	MAE	R2
0	Previous_residues	10.611883	16271.713614	95.917775	0.859835
1	Predict_residues	10.550038	16019.065652	93.998577	0.862012
2	Predict_residues(tuner)	9.234793	12083.629798	80.636094	0.895912
3	Predict_true	9.230689	12037.021438	80.510660	0.896313
4	+noise	9.228742	12023.820495	80.469216	0.896427
5	predict min-max 9.5	51067 129	920.249522 8	33.697382	0.888705

- 0 добавление к прогнозу ошибки за вчерашний день
- 1 прогноз остатков с помощью MLP, добавление предсказанных остатков к прогнозу потребления
- 2 модель 1 с оптимизацией МLР
- 3 линейная регрессия х прогноз исходной модели, у фактическое потребление
- 4 добавление к прогнозу шума
- 5 корректировка прогноза с помощью доп. модели, прогнозирующей минимум и максимум

Алгоритм прогнозирования

Анализ данных и выбор первоначальных параметров

Подбор модели:

- 1) Рассмотрение статистической модели (ARIMA или SARIMA)
- 2) Рассмотрение модели случайного леса

Построение дополнительной модели для повышения качества модели

Заключение

MAPE
$$12,69\% \rightarrow 9,08\%$$
 R2 $0,81 \rightarrow 0,9$

- □ Поиск по сетке для наилучшей модели с оптимизацией всех параметров случайного леса
- □ Прогнозирование минимальных и максимальных значений на следующий день для корректировки прогноза