Continuous (Unilateral) Laplace Transform Correspondence Table

$$\mathcal{L}{f(t)} = F(s) = \int_0^\infty f(t) e^{-st} dt, \quad s \in \mathbb{C}$$

Notes: Unless stated otherwise, time-domain signals are assumed causal and multiplied by the step function $\epsilon(t)$. "ROC" denotes the region of convergence (typical/standard conditions).

A. Common Transform Pairs

Time domain $f(t)$	Laplace $F(s)$	ROC (typ.)	Notes
$\delta(t) \\ \delta(t-a), \ a \ge 0$	$ \begin{array}{c} 1 \\ e^{-as} \end{array} $	all s all s	Dirac delta Time shift of impulse
$\epsilon(t)$	$\frac{1}{s}$.	$\Re\{s\} > 0$	Step function
$t^n \epsilon(t), \ n \in \mathbb{N}_0$	$\frac{n!}{s^{n+1}}$	$\Re\{s\} > 0$	$n=0,1,2,\ldots$
$e^{at} \epsilon(t)$	$\frac{1}{s-a}$	$\Re\{s\}>\Re\{a\}$	${\rm Real/complex}\ a$
$e^{at}t^n \epsilon(t)$	$\frac{n!}{(s-a)^{n+1}}$	$\Re\{s\}>\Re\{a\}$	Polynomial × exponential
$\sin(bt)\epsilon(t)$	$\frac{b}{s^2 + b^2}$	$\Re\{s\} > 0$	$b \in \mathbb{R}$
$\cos(bt) \epsilon(t)$	$\frac{s}{s^2 + b^2}$	$\Re\{s\} > 0$	$b \in \mathbb{R}$
$e^{at}\sin(bt)\epsilon(t)$	b	$\Re\{s\}>\Re\{a\}$	Damped sinusoid
$e^{at}\cos(bt)\epsilon(t)$	$\frac{(s-a)^2 + b^2}{s-a}$ $\frac{(s-a)^2 + b^2}{b}$	$\Re\{s\}>\Re\{a\}$	Damped cosine
$\sinh(bt) \epsilon(t)$	$\frac{b}{s^2 - b^2}$	$\Re\{s\} > b $	$b \in \mathbb{R}$
$\cosh(bt) \epsilon(t)$	$\frac{s}{s^2 - b^2}$	$\Re\{s\} > b $	$b \in \mathbb{R}$
$\frac{1}{k} \left(1 - e^{-kt} \right) \epsilon(t)$	$\overline{s(s+k)}$	$\Re\{s\} > -k, \ k > 0$	1st-order step response
$(\epsilon(t) - \epsilon(t-T))$	$\frac{1 - e^{-sT}}{s}$	$\Re\{s\} > 0$	Rectangular pulse, width $T > 0$
$(t-T)\epsilon(t-T)$	$\frac{e^{-sT}}{s^2}$ $\frac{1}{s}F(s)$	$\Re\{s\} > 0$	Delayed ramp
$\int_0^t f(\tau) d\tau$	$\frac{1}{s}F(s)$	depends on F	Time integral

Tip for students. Always check the ROC (e.g., $\Re\{s\} > 0$ for many causal signals) and remember that unilateral Laplace includes initial conditions in differentiation properties.

B. Useful Properties (Unilateral)

Operation in t	Effect in s	Conditions / Notes
Linearity: $\mathcal{L}\{af + bg\}$	aF + bG	$a,b \in \mathbb{C}$
Time shift (delay):	$e^{-as}F(s)$	$a \ge 0$
$f(t-a)\epsilon(t-a)$		
Frequency shift: $e^{at} f(t)$	F(s-a)	shifts the s -axis
Time scaling: $f(bt)$, $b > 0$	$\frac{1}{b}F\left(\frac{s}{b}\right)$	b > 0
Differentiation in t : $f'(t)$	$sF(s) - f(0^+)$	unilateral form (IC term)
Second derivative: $f''(t)$	$s^2F(s) - sf(0^+) - f'(0^+)$	include ICs
Integration in t : $\int_0^t f(\tau)d\tau$	$\frac{1}{s}F(s)$	as in Table A
Multiplication by t : $tf(t)$	$-\frac{d}{ds}F(s)$	frequency differentiation
Convolution: $(f * g)(t)$	F(s) G(s)	$(f * g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
Initial value theorem	$f(0^+) = \lim_{s \to \infty} sF(s)$	if limit exists
Final value theorem	$f(\infty) = \lim_{s \to 0} sF(s)$	system stable, poles of $sF(s)$ in $\Re\{s\} < 0$ except possibly at $s=0$