第九章 糖代谢

本章内容

糖的降解、吸收和转运

●糖的分解代谢

糖的无氧氧化糖的有氧氧化糖的合成代谢 格代谢的调节 糖代谢的应用

第一节糖类的降解、吸收和转运

一、多糖和寡糖的降解

- * a -淀粉酶
- * B -淀粉酶
- * Y -淀粉酶
- * 纤维素酶
- *糖原磷酸化酶
- * 糖原脱支酶

1、α -淀粉酶 (E.C. 3. 2. 1. 1)

- * 又称淀粉-1,4-糊精酶、α-糊精酶
- * 随机水解淀粉α (1-4) 糖苷键, 生成糊精
- * 存在于唾液、胰液、微生物中
- *该酶作用于粘稠的淀粉糊时,能使粘度迅速下降成稀溶液状态,工业上称此为"液化"。

2、β -淀粉酶 (E.C. 3. 2. 1. 2)

- * 又称淀粉-1,4-麦芽糖苷酶
- *从淀粉非还原端以二糖为单位水解α (1-4) 糖苷键并将α型转变为β型
- *产物为β-麦芽糖

3、 Y −淀粉酶 (E. C. 3. 2. 1. 3)

- *作用于α (1-4) 糖苷键和α (1-6) 糖苷键
- * 从非还原端逐个切下葡萄糖,产物为β-葡萄糖

4、纤维素酶

- *作用于β (1-4)糖苷键
- *产物为纤维二糖、葡萄糖

5、糖原磷酸化酶

- * 从非还原末端作用于糖原的α (1-4) 糖苷 键
- *产物为1-磷酸葡萄糖

6、糖原脱支酶

- *作用于糖原的α (1-6)糖苷键
- *产物为1-磷酸葡萄糖

二糖的降解

麦芽糖酶→2分子葡萄糖 蔗糖 煮糖酶→葡萄糖+果糖 乳糖酶→葡萄糖+半乳糖

*食物中糖类物质水解的终产物为单糖和少量寡糖

单糖的吸收、转运和贮存

- * 小肠粘膜细胞
- * 以单糖的形式被吸收

D-半乳糖 (110) >D-葡萄糖 (100) >D-果糖 (33) > D-甘露糖 (19) >L-木酮糖 (15) >L-阿拉伯糖 (9)

血糖在体内的代谢

* 高血糖: >160mg/100mL

* 低血糖: <70mg/100mL

- * 分解代谢
 - * 无氧氧化 (50kJ/mol)
 - * 有氧氧化 (2870kJ/mol)
- * 合成代谢
 - * 葡萄糖合成为糖原
 - * 非糖物质转化为糖 (糖异生)

第二节 糖类的分解代谢

无氧氧化 有氧氧化

一、糖的无氧氧化

糖的无氧分解又称为糖酵解(glycolysis): 无氧条件下,酶将葡萄糖分解成丙酮酸,并释放 ATP的过程。

1、糖酵解途径的反应历程

- *场所:细胞液
- *包括十步反应
 - *准备阶段:磷酸化,消耗能量
 - * 贮能阶段: 代谢物脱氢并产生ATP

1) 葡萄糖的磷酸化

- * 消耗一分子ATP
- *活化;保糖
- * 不可逆
- * 第一个限速步骤

己糖激酶

- * 专一性不强
- * Mg²⁺或者Mn²⁺
- * 糖酵解的第一个调节酶
- * 其逆反应由磷酸(酯)酶催化

以糖原为起始物

2) 异构化

* 可逆反应

3) 生成F-1,6-2P

- * 第二次磷酸化
- * 消耗一分子ATP
- $* Mg^{2+}$
- * 不可逆, 第二个限速步骤

磷酸果糖激酶

* 变构酶

- * 磷酸果糖激酶有两个ATP结合位点,一个处于活性中心内,ATP作为底物与之结合;另一个位于活性中心外,为变构效应物结合部位,此位点与ATP亲和力较低,只有高浓度ATP存在时它才与ATP结合,从而使酶变构失活。
- *抑制剂: ATP、柠檬酸、长链脂肪酸
- * AMP和ADP可与ATP竞争变构结合部位,抵 消ATP的抑制作用(激活)。

4) 裂解与异构化

- * 可逆反应
- * 磷酸二羟丙酮占96%

5) 第一次氧化

cuo

* 受碘乙酸抑制,与-SH发生反应

Glyceraldehyde 3-phosphate

Inorganic phosphate

3-P-甘油醛脱氢酶

1,3-Bisphosphoglycerate

3-P-甘油醛

图 8-2 甘油醛磷酸脱氢酶机理

1,3-2P-甘油酸

6) 第一次底物水平磷酸化

- * 可逆反应
- *产生一分子ATP

7) 磷酸变位

* 需要Mg²⁺

3-Phosphoglycerate

2-Phosphoglycerate

3-P-甘油酸

2-19-甘油滚

8) 脱水

- * 需要Mg²⁺或者Mn²⁺
- * 分子内能量重新分配, 生成高能键
- * 氟化物与镁和无机磷酸形成复合物,取代酶分子上镁离子的位置,从而使酶失活。

2-P-甘油酸

磷酸烯醇式丙酮酸(PEP)

9) 第二次底物水平磷酸化

- * 由Mg2+或者K+激活
- * 第三个限速步骤
- * 不可逆反应

10) 丙酮酸的生成

* 自发进行

丙酮酸的去路1:乳酸

- * 乳酸脱氢酶
- * NADH供氢
- * 剧烈运动后肌肉酸痛
- * 乳酸是酸性物质,若细胞或血液中过量堆积可导致酸中毒。

丙酮酸的去路2: 乙醇

- * 丙酮酸脱羧酶
- * 乙醇脱氢酶

2、糖酵解的能量变化

- * 一分子葡萄糖生成两分子乳酸或乙醇
- * 生成2mol ATP
- *如果从糖原开始,则生成3个ATP

表 8-1 Imol 葡萄糖酵解所产生的 ATP mol 数

	<u> </u>
反 应	ATIV mol 数的增调
葡萄糖→葡糖-6-磷酸	- 1
果糖-6-磷酸→果糖-1,6-55磷酸	- 1
甘油酸-1,3- ∴磷酸→甘油酸-3-磷酸	+ 1 × 2
烯醇丙酮酸磷酸→丙酮酸	+ 1 × 2
毎 mol 葡萄糖净增 ATP mol 数	+ 2

3、糖酵解涉及的反应类型

* 磷酸基团的转移

* 磷酸移位

* 异构化

酮糖≠⇒醛糖

* 脱水 (烯醇化酶)

* 醇醛断裂 (醛缩酶)

4、糖酵解的调节

- * 三个调节酶
 - * 己糖激酶
 - * 磷酸果糖激酶
 - * 丙酮酸激酶

填空题

*	在酵母	提取物和	葡萄糖混	合反应生成で	了醇的体
	系中加	7入碘乙酸	可抑制	酶的治	6性,造
	成	_的积累;	加入氟化	钠可抑制	酶的
	活性,	造成	_的积累。		
糖	酵解过	上程中有三	个不可逆	的酶催化反应	立,这三个
酶	分别是			0	

选择题

- 醛缩酶催化以下哪种反应 ()
- A、1,6-二磷酸果糖分解为两个三碳糖及其逆反应
- B、1,6-二磷酸葡萄糖分解为1-和6-磷酸葡萄糖及 其逆反应
- C、乙酰与草酰乙酸生成柠檬酸
- D、两分子3-磷酸甘油醛缩合生成葡萄糖

5、氢的跨膜运输

糖酵解:细胞液

呼吸链: 线粒体内膜

1) 异柠檬酸穿梭作用

2) 苹果酸穿梭作用

3) 磷酸甘油穿梭作用

6、其他己糖的分解代谢

* 半乳糖

7、糖酵解的意义和应用

- 1. 糖酵解是单糖分解代谢的基本途径,是 葡萄糖完全氧化分解成二氧化碳和水的必要准 备阶段
- 2. 糖酵解途径是某些组织或细胞(血红细胞)的主要获能方式。
- 3. 糖酵解途径能提供能量使机体或组织能有效地适应缺氧情况

填空题

* 丙酮酸被还原为乳酸时,反应中的NADH 来源于_____的氧化

多题