MID TERM EXAMINATION

B.TECH PROGRAMMES (UNDER THE AEGIS OF USICT)

B.Tech 3rd_Semester, November, 2023

Paper Code: CIC-205

Time: 11/2 Hrs.

Subject: Discrete Mathematics

Max. Marks: 30

Note: Q. No. 1 is compulsory and attempt any two more questions from remaining.

Q. No.	Question	Max. Marks	CO(s)
Cial	What is extended pigeonhole principle? explain with suitable example.	2	COI
1(b) _	Write down the converse, contrapositive, inverse and negation of the following sentence: If it rains then the crop will grow?	2	CO1
1(c)	Represent the given statement using predicate and quantifier and negate it. For all the real number x if $x > 5$ then $x^2 > 25$.	2	CO1
	What is the necessary condition for the relation to become Poset? Explain with example.	2	CO2
160	What is Function? Write the condition of the Function to be injective?	2	CO2
2(a)	Consider these statements, of which the first three are premises and the fourth is a valid conclusion. "All humming birds are richly colored."	5	CO1
	"No large birds live on honey." "Birds that do not live on honey are dull in color." "Humming birds are small."		
, ,	Express the statements in the argument using quantifiers, assume that the domain consists of all birds.		pl I
2(b)	Find the CNF and PCNF of $(\sim p \rightarrow r) \land (q \leftrightarrow p)$.	5	CO1
(5(a))	Let A = {1,2,3,4,6,12} and R is a Relation on the Set A such that aRb. if a divides b, Find i) Relation R (ii) Digraph of R (ii) Find Adjacency matrix of R (iv) Indergree and outdegree of each node (iv) Find its Hasse diagram	5	CO2
3(b) _	Solve the recurrence Relation using Master Method: $T(n) = T(n/2) + 2^n$	(5)	CO2
A (a)	Consider the following five relations on the set $A = \{1, 2, 3, 4\}$: $R1 = \{1, 1\}, (1, 2), (2, 3), (1, 3), (4, 4)\}$ $R2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$ $R3 = \{(1, 3), (2, 1)\}$ $R4 = \emptyset$, the empty relation $R5 = A \times A$, the universal relation Determine which of the relations are Reflexive, Symmetric, Antisymmetric, Asymmetric, Transitive and Equivalence.	6	CO1
400	What is the Generating Function for the generating sequence 1, 9, 25, 49,?	4	CO2
(40)	what is the Generating Function for the generating sequences, 525, 7		1 002