

纠错编码——海明码

工作流程:

1.确定校验 码位数r

2.确定校验 码和数据的 位置

3.求出校验 码的值

4.检错并纠

海明距离

两个合法编码(码字)的对应比特取值不同的比特数称为这两个码字的海明距离(码距),一个有效编码集中,任意两个合法编码(码字)的海明距离的最小值称为该编码集的海明距离(码距)。

如果码距为3呢?

1.确定校验码位数r

数据/信息有m位,冗余码/校验码有r位

校验码一共有2′种取值

 $2^r \ge m+r+1$

海明不等式

要发送的数据: D=1100

数据的位数m=4, 满足不等式的最小r为3, 也就是D=1100的海明码应该有4+3=7位, 其中原数据4位,校验码3位。

2.确定校验码和数据的位置

D=1100

校验码放在序号为<mark>2n</mark>的位置,数据按序填上

序号	7	6	5	4	3	2	1
值	1	1	0	x ₄	0	x ₂	X ₁

3.求出校验码的值

原始数据D=1100

				1**		*1*	**1
二进制	111	110	101	100	011	010	001
序号	7	6	5	4	3	2	1
值	1	1	00	x ₄	0	x_2	X ₁

4号校验码负责4,5,6,7的校验

2号校验码负责2,3,6,7的校验

1号校验码负责1,3,5,7的校验

采用偶校验

$$x_4 = 0$$

$$x_2 = 0$$

$$x_1 = 1$$

完整海明码:

序号	7	6	5	4	3	2	1
值	1	1	0	0	0	0	1

4.检错并纠错

			/ E_ E \				
二进制	111	110	101	100	011	010	001
序号	7	6	5	4	3	2	1
值	1	1	0	0	0	0	1

若接收方收到的数据为1110001, 检错类似奇偶校验

4号校验码负责4, 5, 6, 7的校验 ______ 0, 1, 1, 1

2号校验码负责2, 3, 6, 7的校验 0, 0, 1, 1

1号校验码负责1, 3, 5, 7的校验 1, 0, 1, 1

找到不满足奇/偶校验的分 组取交集,并与符合校验 的分组取差集。

4.检错并纠错

二进制	111	110	101	100	011	010	001			
序号	7	6	5	4	3	2	1			
值	1	1	0	0	0	0	12			

若接收方收到的数据为1110001, 检错类似奇偶校验

4号校验码负责4, 5, 6, 7的校验 ______0, 1, 1, 1

2号校验码负责2, 3, 6, 7的校验 ______0, 0, 1, 1

1号校验码负责1, 3, 5, 7的校验 _____1, 0, 1, 1

纠错方法二:

X4 0, 1, 1, 1

X2 0, 0, 1, 1

X1 1, 0, 1, 1

X2 = 0

X1 = 1

X4 = 1

X4 X2 X1

第五位错了

脑图时刻 随机热噪声 差错由噪声引起 冲击噪声 差错控制 帧错 奇偶校验码 差错类型 检错编码 CRC循环冗余码 位错/比特错 差错控制 海明码 纠错编码

王道考研/CSKAOYAN.COM