8-to-1-line 74LS151 multiplexer

This multiplexer has:

- 8 inputs $I_7 I_6 I_5 I_4 I_3 I_2 I_1 I_0$,
- 3 selection lines $S_2 S_1 S_0 \ (8 = 2^3 \rightarrow n = 3)$,
- an enable input E (E = H or 1 disable & E = L or 0 is enable), and
- outputs Z and Z' (NOT Z)

SN54/74LS151 Logic Diagram

Truth Table as given by datash

Е	S_2	S_1	S_0	I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	Z'	Z
Н	X	X	X	X	X	X	X	X	X	X	X	Н	L
L	L	L	L	L	X	X	X	X	X	X	X	H	L
L	L	L	L	H	X	X	X	X	X	X	X	L	H
L	L	L	Н	X	L	X	X	X	X	X	X	H	L
L	L	L	Н	X	H	X	X	X	X	X	X	L	H
L	L	Н	L	X	X	L	X	X	X	X	X	H	L
L	L	Н	L	X	X	H	X	X	X	X	X	L	H
L	L	Н	Н	X	X	X	L	X	X	X	X	H	L
L	L	Н	Н	X	X	X	H	X	X	X	X	L	H
L	Н	L	L	X	X	X	X	L	X	X	X	H	L
L	Н	L	L	X	X	X	X	H	X	X	X	L	H
L	Н	L	Н	X	X	X	X	X	L	X	X	H	L
L	Н	L	Н	X	X	X	X	X	H	X	X	L	H
L	Н	Н	L	X	X	X	X	X	X	L	X	H	L
L	Н	Н	L	X	X	X	X	X	X	H	X	L	H
L	Н	Н	Н	X	X	X	X	X	X	X	L	H	L
L	Н	Н	Н	X	X	X	X	X	X	X	H	L	H

x = don't care, H = High = 5 V, L = Low = 0 V

Truth Table

${f E}$	S_2	S_1	S_0	Z ′	Z
1	X	X	X	1	0
0	0	0	0	I_0'	I_0
0	0	0	1	I_1'	I_1
0	0	1	0	I_2'	I_2
0	0	1	1	I_{3}'	I_3
0	1	0	0	I_4'	I_4
0	1	0	1	I ₅ '	I_5
0	1	1	0	I_6'	I_6
0	1	1	1	I_7'	I_7

Now let's use this multiplexer to implement the 4 variable Boolean function defined by the Truth Table:

• Here n = 4, n - 1 = 4 - 1 = 3. So, we need an 23=8 by 1 MUX with 3 selection inputs. So, the 74LS151 will work.

a	b	С	d	F	Minterms
0	0	0	0	0	m_0
0	0	0	1	0	$m_{ m 4}$
0	0	1	0	1	m_2
0	0	1	1	1	m_3
0	1	0	0	0	m_4
0	1	0	1	0	111 5
0	1	1	0	1	m ₆
0	1	1	1	1	m_7
1	0	0	0	0	111 8
1	0	0	1	0	₩ 9
1	0	1	0	1	m_{10}
1	0	1	1	0	m ₁₁
1	1	0	0	1	m_{12}
1	1	0	1	1	<i>m</i> ₁₃
1	1	1	0	0	m ₁₄
1	1	1	1	1	<i>m</i> ₁₅

- From the Truth Table, $F = \sum (2,3,6,7,10,12,13,15)$
- Set selection input $\underline{S_2 = a}$, $\underline{S_1 = b}$, and $\underline{S_2 = c}$.
- Next, divide up the Truth Table into pairs of lines. These pairs correspond to the input line 'addresses' set by the selection inputs. Use how the values of the output F align with binary variable d to choose from the options: 1) I_i = d,
 2) I_i = d', 3) I_i = 0, or 1) I_i = 1.

S_2	S_1	S_0	I_i		
а	b	С	d	F	
0	0	0	0	0	1 - 0
0	0	0	1	0	$I_0 = 0$
0	0	1	0	1	T _ 1
0	0	1	1	1	$I_1 = 1$
0	1	0	0	0	1 - 0
0	1	0	1	0	$I_2 = 0$
0	1	1	0	1	T _ 1
0	1	1	1	1	$I_3 = 1$
1	0	0	0	0	1 - 0
1	0	0	1	0	$I_4 = 0$
1	0	1	0	1	I _ 1/
1	0	1	1	0	$I_5 = d'$
1	1	0	0	1	T _ 1
1	1	0	1	1	$I_6 = 1$
1	1	1	0	0	I - d
1	1	1	1	1	$I_7 = d$

• Finally, connect up the multiplexer.

CONNECTION DIAGRAM DIP (TOP VIEW)

