Arquitetura de Computadores

Revisão:
Arquitetura de Computadores

Volnys Borges Bernal
volnys@lsi.usp.br
http://www.lsi.usp.br/~volnys

Laboratório de Sistemas Integráveis
http://www.lsi.usp.br/

Agenda

Aquitetura Geral

Memória
Interrupção
Modo de operação do processador
Espaço de Endereçamento
Processador e Barramentos

Sobre esta apresentação □ Esta apresentação ... → Não apresenta todos os detalhes sobre este tópico. → É um resumo para auxiliar a apresentação do tópico em sala de aula. □ Para estudo, deve ser utilizada uma das seguintes referências: → Capítulos 1 e 2 do livro: → ANDREW S. TANENBAUM; Sistemas Operacionais

Modernos. Prentice-Hall

Capítulos 1 e 2 do livro:

ANDREW S. TANENBAUM; Sistemas Operacionais.
Prentice-Hall.

© 1998-2010 - Volnys Bernal

Revisão

Arquitetura de Computadores

Arquitetura de Computadores

© 1998-2010 - Volnys Bernal Interrupção □ O que é? . Evento que ocorre no sistema * Enviada à UCP através de sinal de hardware . Gerada pelos diversos componentes do hardware (inclusive UCP) Fundamental para operação do sistema ❖ Em alguns casos a interrupção indica a ocorrência de uma condição de erro

Interrupção

□ Classificação quanto à origem da interrupção

- ❖ Externa
 - Gerado por componentes externos à UCP
- - Gerada pelo próprio processador

Interrupção

- □ Interrupção externa
 - * Gerado por componentes externos à UCP
 - Evento assíncrono
 - Pode ocorrer a qualquer momento
 - · Origem:
 - · Controladores de E/S
 - Temporizador,
 - Controlador de linha serial, controlador de linha paralela, controlador de disco,

© 1998-2010 - Volnys Bernal

© 1998-2010 - Volnys Bernal

- Barramento
- Bus Error
- Subsistema de memória
 - Erro de paridade
- · Subsistema de gerenciamento de memória virtual
 - · Acesso ilegal

© 1998-2010 - Volnys Bernal

© 1998-2010 - Volnys Bernal

Interrupção

- □ Interrupção interna
 - Gerada pelo próprio processador
 - - Pode ocorrer em momentos específicos da execução de uma instrução
 - * Tipos:
 - TRAP
 - Também denominada "interrupção de software"
 - Gerada por uma instrução que simula uma interrupção
 - Exemplo Intel x86: - Instrução "int 80" - gera a interrupção número 80
 - Exceção
 - · Indica a ocorrência de algum erro durante a execução

 - Exemplo:Divisão por zero
 - Instrução ilegal

Interrupção

- □ Exemplos:
 - * Interrupção de software (trap)
 - Chamada ao sistema "open" (abertura de arquivo)
 - Chamada ao sistema "date" (requisição de data/hora do sistema)
 - Exceção
 - Divisão por 0
 - Instrução ilegal
 - - Bus error: gerada pelo barramento indicando um erro
 - Interrupção do temporizador informando que já se passou 10 ms
 - Interrupção de linha serial devido ao recebimento de um byte
 - Interrupção de disco devido à finalização de uma operação de leitura de um setor

© 1998-2010 - Volnys Bernal

Interrupção

□ Classificação quanto a possibilidade de desabilitar

- Mascaráveis Podem ser desabilitadas
- Não mascaráveis Não podem ser desabilitadas

□ Rotina de Tratamento de interrupção

• A cada interrupção pode ser associado uma rotina de tratamento, que pode ser ativada a cada ocorrência desta interrupção

© 1998-2010 - Volnys Bernal

Modos de Operação do Processador

© 1998-2010 - Volnys Bernal

Modos de operação do processador

□ Objetivo

- * Possibilitar a garantia da segurança do ambiente computacional suportado pelo sistema operacional
- □ Processadores suportam ao menos dois modos de operação:
 - Modo usuário
 - Modo mais restritivo
 - Modo supervisor
 - Modo irrestrito

□ Presença

· Presente nos microprocessadores modernos

© 1998-2010 - Volnys Bernal

Modos de operação do processador

Modo usuário

- * Todos os processos são executados em modo usuário
- * Restrições:
 - Execução de determinadas instruções do processador:
 - · Exemplo: restrição na execução da instrução halt, reset
 - Acesso a determinados registradores
 - · Acessos à determinada posições de memória

□ Modo supervisor

- * O sistema operacional é executado em modo supervisor
- * Não são impostas restrições na execução em modo supervisor

© 1998-2010 - Volnys Bernal

Modo de operação do processador

□ Configuração do modo de operação

- * Geralmente é um bit (ou um conjunto de bits) do registrador de estado
- * O bit de configuração do modo de operação pode somente ser alterado em modo supervisor
- * O processador passa para o modo supervisor, automaticamente, quando a rotina de tratamento de interrupção é executada
- Sempre que uma interrupção é atendida pela UCP

* Portanto:

 O sistema operacional sempre é executado em modo supervisor!!!

© 1998-2010 - Volnys Bernal

Modo de operação do processador

- □ Observe que ...
- □ O sistema operacional é executado sempre decorrente de uma
 - Interface de chamadas ao sistema
 - Quando é ativada uma chamada ao sistema (interrupção de software)
 - Interface de hardware
 - Quando ocorre uma exceção
 - Quando chega uma interrupção externa (de outros componentes)
- □ Sempre que ocorre a ativação da rotina de tratamento de interrupção o modo de operação passa para "modo supervisor". Quando termina a rotina de tratamento de interrupção, o processador volta ao modo anterior.

Revisão

Arquitetura de Computadores

Modo de operação do processador Desta forma O sistema operacional sempre executa no modo supervisor. Os processo usuários sempre executam em modo usuário Um processos que opere em modo usuário não conseguem passar a operar em modo supervisor

Arquitetura de Computadores

Processador	Processador de	Barramento Registradores		Barramento	
		Dados	Endereço	Dados	Endereç
Zilog Z80	8 bits	8 bits	16 bits	8 bits	16 bits
Intel 8080	8 bits	8	16	8	16
Intel 8088	16 bits	8/16	16	8	20
Intel 8086	16 bits	8/16	16	16	20
Intel 286	32 bits	8/16/32	16/32	16	24
Intel 386 SX	32 bits	8/16/32	16/32	16	24
Intel 386 DX	32 bits	8/16/32	16/32	32	32
Intel Pentium	32 bits	8/16/32	16/32	64	32
Intel Pentium PRO	32 bits	8/16/32	16/32	64	34
Intel Itanium	64 bits				
IA 64 – Itanium 2	64 bits				
AMD Opteron	64 bits				
AMD64 Athlon 64	64 bits				

Espaço de endereçamento

Usualmente, um processador pode possuir dois espaços de endereçamento físicos:

Espaço de endereçamento de memória
Possibilita identificar células de memória

Espaço de endereçamento de E/S
Possibilita identificar registradores dos controladores de dispositivos
Para realizar acesso a um endereço de E/S é utilizado uma instrução especial

© 1998-2010 - Volnys Bernal

Referências Bibliográficas

- □ ANDREW S. TANENBAUM; Sistemas Operacionais Modernos. Prentice-Hall.
- □ ANDREW S. TANENBAUM; Sistemas Operacionais. Prentice-Hall.