Name:		
	Jeffrey Hui	
Netid:		
	jhui8	

CS 441 - HW1: Instance-based Methods

Complete the sections below. You do not need to fill out the checklist.

Total	Points Av	vailable	[]/145
1.	Retrieva	al, K-means, 1-NN on MNIST	
	a. F	Retrieval	[]/5
	b. k	K-means	[]/15
	c. 1	1-NN	[]/10
2.	Make it	fast	
	a. k	K-means plot	[]/15
	b. 1	1-NN error plots	[]/8
	c. 1	1-NN time plots	[]/7
	d. N	Most confused label	[]/5
3.	Tempera	ature Regression	
	a. F	RMSE Tables	[]/20
4.	Concept	tual questions	[]/15
5.	Stretch	Goals	
	a. E	Evaluate effect of K for MNIST	[]/15
	b. E	Evaluate effect of K for Temp Reg.	[]/15
	c. (Compare Kmeans more iterations vs. restarts	[]/15

1. Retrieval, K-means, 1-NN on MNIST

a. What index is returned for x_test[1]?

28882

b. Paste the display of clusters after the 1st and 10th iteration for K=30.

504792131435361728694097229328

c. Error rate for first 100 test samples, using first 10,000 training samples (x.x)

8.0

2. Make it fast

a. KMeans plot of RMSE vs iterations for K=10, 30, 100

b. Nearest neighbor error vs training size plot

c. Nearest neighbor time vs training size plot

d. What label is most commonly confused with '2'?

7

3. Temperature Regression

a. Table of RMSE for KNN with K=5 (x.xx)

	KNN (K=5)			
Original Features	3.25			
Normalized Features	2.93			

4. Test your understanding

Fill in the letter corresponding to the answer. If you're not sure, you can sometimes run small experiments to check.

1. Is K-means guaranteed to decrease RMSE between nearest cluster and samples at each iteration until convergence?

			b				
2.	a.	increase K, is K-means ex Guaranteed Expected but not guarant Not expected		uaranteed	to achieve I	ower RMSI	Ξ?
3.	be pre a. b.	N regression, for training ladicted for any query? Min(y) Mean(y) Can't be determined	abels y, wha	at is the lov	vest target v	alue that c	an possibly
4.	classif a. b.	you expect the "training e ication? Training error is t Higher Lower It's problem-dependent		-			N for
5.	regres a. b.	you expect the test error f sion? Higher Lower It's problem-dependent	or 1-NN to	be higher o	or lower than	n for 3-NN 1	for
5. Stretch Goals (optional)a. Select best K parameter for K-NN MNIST classification in K=1, 3, 5, 11, 25. (x.xx)							
		et Performance	K=1	K=3	K=5	K=11	K=25

a. Yesb. No

2.88	2.80	2.82		3.08	3.82
3					
	\neg				
2.95					
nperature re	gression ir	n K=1,	3, 5,	11, 25.	(x.xx)
K=1	K=3	K=5		K=11	K=25
Best Setting (K, feature type):					
Test RMSE (x.xx)					
c. Kmeans, MNIST: compare average and standard deviation RMSE based on number of iterations and number of restarts					
(4 digit precision)					
	RMSE			SE std	
	2.95 mperature re K=1	2.95 Inperature regression in K=1 K=3 Indicate the standard deviation I	2.95 Inperature regression in K=1, K=1 K=3 K=5 Indicate the standard deviation RMSE	2.95 Inperature regression in K=1, 3, 5, K=1 K=3 K=5 Indicate the second of the sec	2.95 Inperature regression in K=1, 3, 5, 11, 25. (K=1) K=1

K=30	RMSE avg	RMSE std
20 iterations, 1 restart	5.7912	0.0114
4 iterations, 5 restarts	5.8302	0.0115
50 iterations, 1 restart	5.7766	0.0029
10 iterations, 5 restarts	5.7894	0.0099

Acknowledgments / Attribution

List any outside sources for code or ideas or "None".

None.