第二节 边缘分布

一、边缘分布函数

定义 1 设(X,Y)为二维随机变量,分别称 X 和 Y 的分布函数为(X,Y)关于 X 和关于 Y 的边缘分布函数,记为 $F_X(x)$

和 $F_{Y}(y)$.

定理 1 设二维随机变量(X,Y)的分布函数为F(x,y),

则有 $F_X(x) = F(x, +\infty) = \lim_{y \to +\infty} F(x, y), -\infty < x < +\infty;$

$$F_{Y}(y) = F(+\infty, y) = \lim_{x \to +\infty} F(x, y), -\infty < y < +\infty.$$

例 1 设二维随机变量(X,Y)的分布函数为

$$F(x,y) = \frac{1}{\pi^2} \left(\frac{\pi}{2} + \arctan x\right) \left(\frac{\pi}{2} + \arctan y\right), \quad -\infty < x, y < +\infty,$$

试求出 $F_X(x)$ 和 $F_Y(y)$,并问是否有 $F(x,y) = F_X(x)F_Y(y)$?

$$\mathbf{f}\mathbf{F}_{X}(x) = F(x, +\infty) = \frac{1}{\pi} (\frac{\pi}{2} + \arctan x), \quad -\infty < x < +\infty;$$

$$F_Y(y) = F(+\infty, y) = \frac{1}{\pi} (\frac{\pi}{2} + \arctan y)$$
, $-\infty < y < +\infty$.

并易得, $F(x,y) = F_X(x)F_Y(y)$, $-\infty < x, y < +\infty$.

二、二维离散型随机变量的边缘分布律

定义 2 设(X,Y)为二维离散型随机变量,分别称 X

和Y的分布律为(X,Y)关于X和关于Y的边缘分布律.

定理 2 设二维离散型随机变量(X,Y)的分布律为

$$P\{X = x_i, Y = y_j\} = p_{ij}, i = 1, 2, \dots, j = 1, 2, \dots, j$$

则(X,Y)关于X和关于Y的边缘分布律分别为

$$P\{X = x_i\} = \sum_{j} p_{ij} = p_{i\bullet}, \quad i = 1, 2, \dots;$$

$$P\{Y = y_j\} = \sum_{i} p_{ij} = p_{\bullet j}, \quad j = 1, 2, \dots.$$

(X,Y) 关于 X 和关于 Y 的边缘分布律分别为

$$X \sim \begin{pmatrix} x_1 & x_2 & \cdots & x_i & \cdots \\ p_{1\bullet} & p_{2\bullet} & \cdots & p_{i\bullet} & \cdots \end{pmatrix}, \quad Y \sim \begin{pmatrix} y_1 & y_2 & \cdots & y_j & \cdots \\ p_{\bullet 1} & p_{\bullet 2} & \cdots & p_{\bullet j} & \cdots \end{pmatrix}.$$

将 X 和 Y 的边缘分布律添加到 (X,Y) 分布律的列表得:

Y	y_1	y_2	• • •	\mathcal{Y}_{j}	• • •	p_{iullet}
X_1	p_{11}	p_{12}	• • •	p_{1j}	• • •	$p_{1\bullet}$
x_2	p_{21}	p_{22}	• • •	p_{2j}	• • •	p_{2ullet}
•	•	•		•	•	•
X_i		p_{i2}			• • •	p_{iullet}
•	•	•	•	•	•	•
$p_{ullet j}$	$p_{ullet 1}$	$p_{ullet 2}$	• • •	$p_{ullet j}$	• • •	1

X 的边缘分布 律可对表向 相对,进行,并不的可求。 和边缘中的,对于,并不可以。 进行纵向求和。 例 2 设同一品种的五个产品中,有二个次品,每次从中取一个检验,连续二次. 设 *X* 表示第一次取到的次品个数; *Y* 表示第二次取到的次品个数. 试分别就(1) 不放回; (2)有放回两种情况,求出(*X*,*Y*)关于 *X* 和关于 *Y* 的边缘分布律.

M (1)不放回; (2)有放回两种情况时, (X,Y) 关于 X 和关于Y 的边缘分布律如下

X	0	1	p_{iullet}
0	$\frac{3}{10}$	$\frac{3}{10}$	$\frac{3}{5}$
1	$\frac{3}{10}$	$\frac{1}{10}$	$\frac{2}{5}$
$p_{ullet j}$	$\frac{3}{5}$	$\frac{2}{5}$	1

X	О	1	p_{iullet}
0	$\frac{9}{25}$	$\frac{6}{25}$	$\frac{3}{5}$
1	$\frac{6}{25}$	$\frac{4}{25}$	$\frac{2}{5}$
$p_{ullet j}$	$\frac{3}{5}$	$\frac{2}{5}$	1

例 3 已知随机变量 X_1 和 X_2 的概率分布为

$$X_1 \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$
, $X_2 \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$,

且 $P{X_1X_2=0}=1$. 求 X_1 和 X_2 的联合分布.

解由
$$P{X_1X_2=0}=1$$
知, $P{X_1X_2\neq 0}=0$,所以
$$P{X_1=-1,X_2=1}=P{X_1=1,X_2=1}=0$$
,

根据
$$X_1$$
 的分布律得 $P\{X_1 = -1, X_2 = 0\} = P\{X_1 = 1, X_2 = 0\} = \frac{1}{4}$.

根据
$$X_2$$
 的分布律得 $P\{X_1 = 0, X_2 = 0\} = 0$, $P\{X_1 = 0, X_2 = 1\} = \frac{1}{4}$.

(续解) 综上, X_1 和 X_2 的联合分布律为

X_1 X_2	-1 0 1	$P\{X_2 = y_j\}$
0	$\frac{1}{4}$ 0 $\frac{1}{4}$	$\frac{1}{2}$
1	$0 \frac{1}{2} 0$	$\frac{1}{2}$
$P\left\{X_1 = x_i\right\}$	$\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$	1

三、二维连续型随机变量的边缘概率密度

定义3 设(X,Y)为二维连续型随机变量,分别称 X 和 Y 的密度函数为(X,Y)关于 X 和关于 Y 的边缘密度函数,记为 $f_{X}(x)$ 和 $f_{Y}(y)$.

定理 3 设二维连续型随机变量(X,Y)的密度函数为 f(x,y),则 X 和 Y 也均为连续型随机变量,且

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, -\infty < x < +\infty,$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx, -\infty < y < +\infty.$$

注 1: $f_X(x)$ 可通过在给定点 x 处, f(x,y) 的对 y 从 $-\infty$ 到 $+\infty$ (纵向)积分求得, $f_Y(y)$ 可通过在给定点 y 处, f(x,y) 的对 x 从 $-\infty$ 到 $+\infty$ (横向)积分求得.

注 2: 由于 f(x,y) 通常以分块函数的形式给出,因此经常需要对 x 或 y 进行分段讨论,以计算 $f_x(x)$ 或 $f_y(y)$.

例 4 设二维随机变量(X,Y)的密度函数为 $f(x,y) = \begin{cases} e^{-x}, 0 < y < x, \\ 0$ 其它.

试分别计算 $f_X(x)$ 和 $f_Y(y)$.

解 当 $x \le 0$ 时,对任意的 $y \in (-\infty, +\infty)$, f(x, y) = 0, 进而 $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = 0.$

当x > 0时,对任意的 $y \in (-\infty, 0] \cup [x, +\infty)$,f(x, y) = 0,故

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_0^x e^{-x} dy = xe^{-x}$$
.

见右图,所以

$$f_X(x) = \begin{cases} xe^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

(续解)
$$f(x,y) = \begin{cases} e^{-x}, 0 < y < x, \\ 0 \quad 其它. \end{cases}$$

当 $y \le 0$ 时,对任意的 $x \in (-\infty, +\infty)$, f(x, y) = 0, 得

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = 0.$$

当 y > 0时,对任意的 $x \in (-\infty, y]$, f(x, y) = 0, 得

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{y}^{+\infty} e^{-x} dx = e^{-y}, \quad y$$

见右图,所以

$$f_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

定理 4 设二维随机变量 $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$.

定理 4 表明二维正态分布的边缘分布为一维正态分 π ,且其边缘分布只分别依赖于 μ_1,σ_1 和 μ_2,σ_2 ,而不 依赖于参数 ρ (-1< ρ <1). 因此对于给定 $\mu_1, \mu_2, \sigma_1, \sigma_2$, 不同的 ρ 对应了不同的二维正态分 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, 但其却有相同的边缘分布 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$,所以 边缘密度函数不能惟一地确定联合密度函数.

练习:

1. 设二维随机变量(X,Y)的密度函数为

$$f(x,y) = \begin{cases} x^2 + \frac{1}{3}xy, 0 \le x \le 1, 0 \le y \le 2\\ 0, & \sharp \succeq. \end{cases}$$

试分别计算 $f_X(x)$ 和 $f_Y(y)$.

答案:

$$f_X(x) = \begin{cases} 2x^2 + \frac{2}{3}x, & 0 \le x \le 1, \\ 0, & \text{#$\dot{\Xi}$.} \end{cases} \qquad f_Y(y) = \begin{cases} \frac{1}{3} + \frac{y}{6}, & 0 \le y \le 2, \\ 0, & \text{#$\dot{\Xi}$.} \end{cases}$$