### AI505 Optimization

### First-Order Methods

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

### Outline

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

### **Descent Direction Methods**

How to select the descent direction?

- first-order methods that rely on gradient
- second-order methods that rely on Hessian information

### Advantages of first order methods:

- cheap iterations: good for small and large scale optimization embedded optimization
- helpful because easy to warm restart

#### Limitations of first order methods:

- not hard to find challenging instances for them.
- can converge slowly.

# Gradient Descent Conjugate Descent Accelerated Descents

## Outline

1. Gradient Descent

2. Conjugate Descent

Accelerated Descents

### Gradient Descent

The steepest descent direction at  $x_k$ , at kth iteration of a local descent iterative method, is the one opposite to the gradient (gradient descent):

$$\boldsymbol{d}_k = -\frac{\nabla f(\boldsymbol{x}_k)}{\|\nabla f(\boldsymbol{x}_k)\|}$$

Guaranteed to lead to improvement if:

- f is smooth
- step size is sufficiently small
- $x_k$  is not a stationary point (ie,  $\nabla f(x_k) = 0$ )

# Gradient Descent: Example

• Suppose we have

$$f(\mathbf{x}) = x_1 x_2^2$$

- The gradient is  $\nabla f = [x_2^2, 2x_1x_2]$
- $x_k = [1, 2]$

$$d_{k+1} = -\frac{\nabla f(\mathbf{x}_k)}{\|\nabla f(\mathbf{x}_k)\|} = \frac{[-4, -4]}{\sqrt{16 + 16}} = \left[-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right]$$

## **Implementation**

```
class DescentMethod:
    alpha: float

class GradientDescent(DescentMethod):
    def __init__(self, f, grad, x, alpha):
        self.alpha = alpha

    def step(self, f, grad, x):
        alpha, g = self.alpha, grad(x)
        return x - alpha * g
```

## Gradient Descent

<u>Theorem:</u> The next direction is orthogonal to the current direction.

### Proof:

$$\alpha_k^* = \underset{\alpha}{\operatorname{argmin}} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$$

$$\nabla f(\mathbf{x}_k + \alpha_k^* \mathbf{d}_k) = \nabla_{\mathbf{d}_k} f(\mathbf{x}_k) = 0$$

$$\nabla f(\mathbf{x}_k + \alpha_k^* \mathbf{d}_k)^T \mathbf{d}_k = 0$$

$$\mathbf{d}_{k+1} = -\frac{\nabla f(\mathbf{x}_k + \alpha_k^* \mathbf{d}_k)}{\|\nabla f(\mathbf{x}_k + \alpha_k^* \mathbf{d}_k)\|}$$

$$\mathbf{d}_{k+1} \cdot \mathbf{d}_k = -\frac{\nabla f(\mathbf{x}_k + \alpha_k^* \mathbf{d}_k)}{\|\nabla f(\mathbf{x}_k + \alpha_k^* \mathbf{d}_k)\|} \cdot \mathbf{d}_k = 0$$

because  $\alpha_{L}^{*}$  is minimum

because directional derivative:  $\nabla_{s} f(x) = \nabla f(x)^{T} s$ 

$$\mathbf{d}_{k+1}^{\mathsf{T}}\mathbf{d}_k=0 \implies \mathbf{d}_{k+1}\perp \mathbf{d}_k$$

## Gradient Descent: Example

#### 2D Rosenbrock function

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$

Narrow valleys not aligned with gradient can be a  $\mathbf{g}$  problem



## Outline

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

## **Conjugate Gradient**

[Hestenes and Stiefel, 1950s]

For A symmetric positive definite:

$$A\mathbf{x} = \mathbf{b} \iff \min_{\mathbf{x}} \min_{\mathbf{x}} f(\mathbf{x}) \stackrel{\text{def}}{=} \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{b}^T \mathbf{x}$$

$$\nabla f(\mathbf{x}) = A\mathbf{x} - \mathbf{b} \stackrel{\text{def}}{=} \mathbf{r}(\mathbf{x})$$

## Conjugate Direction

<u>Def.</u>: A set of nonzero vectors  $\{d_0, d_1, \dots, d_\ell\}$  is said to be **conjugate** with respect to the symmetric positive definite matrix A if

$$\mathbf{d}_i^T A \mathbf{d}_i = 0,$$
 for all  $i \neq j$ 

(the vectors are linearly independent. Generally, not orthogonal.)

<u>Theorem:</u> Given an arbitrary  $\mathbf{x}_0 \in \mathbb{R}^n$  and a set of conjugate vectors  $\{\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1}\}$  the sequence  $\{\mathbf{x}_k\}$  generated by

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

where  $\alpha_k$  is the analytical solution of  $\min_{k} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$  given by:

$$\alpha_k = -\frac{\mathbf{r}_k^T \mathbf{d}_k}{\mathbf{d}_k^T A \mathbf{d}_k}$$

(aka, conjugate direction algorithm) converges to the solution  $x^*$  of the linear system and minimization problem in at most n steps.

### Proof:

$$\min_{\alpha} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$$

We can compute the derivative with respect to  $\alpha$ :

$$\frac{\partial}{\partial \alpha} f(\mathbf{x} + \alpha \mathbf{d}) = \frac{\partial}{\partial \alpha} (\mathbf{x} + \alpha \mathbf{d})^T A (\mathbf{x} + \alpha \mathbf{d}) - \mathbf{b}^T (\mathbf{x} + \alpha \mathbf{d}) (+c)$$
$$= \mathbf{d}^T A (\mathbf{x} + \alpha \mathbf{d}) - \mathbf{d}^T \mathbf{b}$$
$$= \mathbf{d}^T (A \mathbf{x} - \mathbf{b}) + \alpha \mathbf{d}^T A \mathbf{d}$$

Setting  $\frac{\partial f(\mathbf{x} + \alpha \mathbf{d})}{\partial \alpha} = 0$  results in:

$$\alpha_k = -\frac{\mathbf{d}_k^T (A\mathbf{x}_k - \mathbf{b})}{\mathbf{d}_{\iota}^T A \mathbf{d}_k} = -\frac{\mathbf{d}_k^T \mathbf{r}(\mathbf{x}_k)}{\mathbf{d}_{\iota}^T A \mathbf{d}_k}$$
(1)

• Since the directions  $\{d_k\}$  are linearly independent, they must span the whole space  $\mathbb{R}^n$ . Hence, there is a set of scalars  $\sigma_k$  such that:

$$\mathbf{x}^* - \mathbf{x}_0 = \sigma_0 \mathbf{d}_0 + \sigma_1 \mathbf{d}_1 + \ldots + \sigma_{n-1} \mathbf{d}_{n-1}$$

• By premultiplying this expression by  $\mathbf{d}_k^T A$  and using the conjugacy property, we obtain:

$$\sigma_k = \frac{\mathbf{d}_k^T A(\mathbf{x}^* - \mathbf{x}_0)}{\mathbf{d}_c^T A \mathbf{d}_k} \tag{2}$$

• If  $x_k$  is generated by conjugate direction algorithm, then we have

$$\mathbf{x}_{k} = \mathbf{x}_{0} + \alpha_{0} \mathbf{d}_{0} + \alpha_{1} \mathbf{d}_{1} + \ldots + \alpha_{k} \mathbf{d}_{k-1}$$

• By premultiplying this expression by  $\mathbf{d}_k^T A$  and using the conjugacy property, we have that  $\mathbf{d}_k^T A(\mathbf{x}_k - \mathbf{x}_0) = 0$ 

$$\mathbf{d}_k^{\mathsf{T}} A(\mathbf{x}^* - \mathbf{x}_0) = \mathbf{d}_k^{\mathsf{T}} A(\mathbf{x}^* - \mathbf{x}_k + \mathbf{x}_k - \mathbf{x}_0) = \mathbf{d}_k^{\mathsf{T}} A(\mathbf{x}^* - \mathbf{x}_k) + \mathbf{d}_k^{\mathsf{T}} A(\mathbf{x}_k - \mathbf{x}_0) = \mathbf{d}_k^{\mathsf{T}} A(\mathbf{x}^* - \mathbf{x}_k) = \mathbf{d}_k^{\mathsf{T}} (\mathbf{b} - A\mathbf{x}_k) = -\mathbf{d}_k^{\mathsf{T}} \mathbf{r}_k.$$

• Using this result in (2) and comparing with (1) we conclude  $\alpha_k = \sigma_k$ .







If the matrix A is diagonal, the contours of the function  $f(\cdot)$  are ellipses whose axes are aligned with the coordinate directions

If *A* is not diagonal, its contours are elliptical, but they are usually not aligned with the coordinate directions.

Transform the problem to make A diagonal and minimize along the coordinate directions.

## Conjugate Gradient Method

• The conjugate gradient method is a conjugate direction method with the property: In generating its set of conjugate vectors, it can compute a new vector  $d_k$  by using only the previous vector  $d_{k-1}$ . Hence, little storage and computation requirements.

$$\boldsymbol{d}_k = -\boldsymbol{r}_k + \beta_k \boldsymbol{d}_{k-1}$$

where  $\beta_k$  is to be determined such that  $\mathbf{d}_{k-1}$  and  $\mathbf{d}_k$  must be conjugate with respect to A. By premultiplying by  $\mathbf{d}_{k-1}^T A$  and imposing that  $\mathbf{d}_{k-1}^T A \mathbf{d}_k = 0$  we find that

$$\beta_k = \frac{\mathbf{r}_k^T A \mathbf{d}_{k-1}}{\mathbf{d}_{k-1}^T A \mathbf{d}_{k-1}}$$

- Larger values of  $\beta$  indicate that the previous descent direction contributes more strongly.
- $d_0$  is commonly chosen to be the steepest descent direction at  $x_0$
- Advantage with respect to steepest descent: implicitly reuses previous information about the function and thus better convergence.

## Algorithm CG

#### Basic version:

```
Input: f, x_0
Output: x^*
Set \mathbf{r}_0 \leftarrow A\mathbf{x}_0 - b, \mathbf{d}_0 \leftarrow \mathbf{r}_0, k \leftarrow 0;
while r_{\nu} \neq 0 do
        \alpha_k \leftarrow -\frac{\mathbf{d}_k^T \mathbf{r}(\mathbf{x}_k)}{\mathbf{d}_k^T A \mathbf{d}_k};
        \mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k;
        r_{k+1} \leftarrow Ax_{k+1} - b
       \beta_{k+1} \leftarrow \frac{\mathbf{r}_{k+1}^T A \mathbf{d}_k}{\mathbf{d}_k^T A \mathbf{d}_k};
      d_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} d_k;

k \leftarrow k+1;
```

#### Computationally improved version:

```
Input: f, \mathbf{x}_0
Output: x^*
Set r_0 \leftarrow Ax_0 - b, d_0 \leftarrow r_0, k \leftarrow 0:
while r_k \neq 0 do
          \alpha_k \leftarrow -\frac{\mathbf{r}(\mathbf{x}_k)^T \mathbf{r}(\mathbf{x}_k)}{\mathbf{d}^T A \mathbf{d}_k};
         \mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k;

\mathbf{r}_{k+1} \leftarrow \mathbf{r}_k + \alpha_k A \mathbf{d}_k;
         \beta_{k+1} \leftarrow \frac{\mathbf{r}_{k+1}^{\mathsf{T}} \mathbf{r}_{k+1}}{\mathbf{r}_{k}^{\mathsf{T}} \mathbf{r}_{k}};
        d_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} d_k;

k \leftarrow k+1;
```

- we never need to know the vectors x, r, and d for more than the last two iterations.
- major computational tasks: the matrix–vector product  $A\mathbf{d}_k$ , inner products  $\mathbf{d}_k^T A\mathbf{d}_k$  and  $\mathbf{r}_{k+1}^T \mathbf{r}_{k+1}$ , and three vector sums

## NonLinear Conjugate Gradient Methods

- The conjugate gradient method can be applied to nonquadratic functions as well.
- Smooth, continuous functions behave like quadratic functions close to a local minimum
- but! we do not know the value of A that best approximates f around  $x_k$ . Instead, several choices for  $\beta_k$  tend to work well:
- Two changes:
  - $\alpha_k$  is computed by solving an approximate line search
  - the residual r, (it was simply the gradient of f), must be replaced by the gradient of the nonlinear objective f.

## NonLinear Conjugate Gradient Methods

#### Fletcher-Reeves Method:

```
Input: f, x_0
Output: x^*
Evaluate f_0 = f(\mathbf{x}_0), \nabla f_0 = \nabla f(\mathbf{x}_0):
Set \mathbf{d}_0 \leftarrow -\nabla f_0, k \leftarrow 0:
while \nabla f_k \neq 0 do
         Compute \alpha_k by line search and set
          \mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k:
        Evaluate \nabla f_{k+1}:
       \beta_{k+1}^{FR} \leftarrow \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k};
     egin{aligned} oldsymbol{d}_{k+1} \leftarrow - 
abla^{\kappa} f_{k+1} + eta^{FR}_{k+1} oldsymbol{d}_{k}; \\ k \leftarrow k+1; \end{aligned}
```

#### Polak-Ribière:

Input: 
$$f$$
,  $\mathbf{x}_0$   
Output:  $\mathbf{x}^*$   
Evaluate  $f_0 = f(\mathbf{x}_0)$ ,  $\nabla f_0 = \nabla f(\mathbf{x}_0)$ ;  
Set  $\mathbf{d}_0 \leftarrow -\nabla f_0$ ,  $k \leftarrow 0$ ;  
while  $\nabla f_k \neq 0$  do  
Compute  $\alpha_k$  by line search and set  $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k$ ;  
Evaluate  $\nabla f_{k+1}$ ;  
 $\beta_{k+1}^{PR} \leftarrow \frac{\nabla f_{k+1}^T(\nabla f_{k+1} - \nabla f_k)}{\nabla f_k^T \nabla f_k}$ ;  
 $\mathbf{d}_{k+1} \leftarrow -\nabla f_{k+1} + \beta_{k+1}^{FR} \mathbf{d}_k$ ;  
 $k \leftarrow k + 1$ ;

#### PR with:

$$\beta_{k+1}^+ = \max\{\beta_{k+1}^{PR}, 0\}$$

becomes PR<sup>+</sup> and guaranteed to converge (satisfies first Wolfe conditions).

The conjugate gradient method with the Polak-Ribière update. Gradient descent is shown in gray.



## Outline

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

### **Accelerated Descents**

- Addresses common convergence issues
- Some functions have regions with very small gradients (flat surface) where gradient descent gets stuck



### Momentum

#### Rosenbrock function with b = 100



Momentum overcomes these issues by replicating the effect of physical momentum

#### Momentum

#### Momentum update equations:

$$\mathbf{v}_{k+1} = \beta \mathbf{v}_k - \alpha \nabla f(\mathbf{x}_k)$$
  
 $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{v}_{k+1}$ 

```
import numpy as np
class Momentum(DescentMethod):
  alpha: float # learning rate
  beta: float # momentum decay
  v: np.array # momentum
  def __init__(self, alpha, beta, f, grad, x):
    self.alpha = alpha
    self.beta = beta
    self.v = np.zeros_like(x)
  def step(self, grad, x):
    self.v = self.beta * self.v - self.alpha * →
        \hookrightarrowgrad(x)
    return x + self.v
```

### **Nesterov Momentum**

Issue of momentum: steps do not slow down enough at the bottom of a valley, overshoot.

#### **Nesterov Momentum** update equations:

$$\mathbf{v}_{k+1} = \beta \mathbf{v}_k - \alpha \nabla f(\mathbf{x}_k + \beta \mathbf{v}_k)$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{v}_{k+1}$$



## **Adagrad**

Instead of using the same learning rate for all components of x,
 Adaptive Subgradient method (Adagrad) adapts the learning rate for each component of x.
 For each component of x, the update equation is

$$x_{i,k+1} = x_{i,k} - \frac{\alpha}{\epsilon + \sqrt{s_{i,k}}} \nabla f_i(\mathbf{x}_k)$$

where

$$s_{i,k} = \sum_{i=1}^k \left( \nabla f_i(\mathbf{x}_i) \right)^2$$

$$\epsilon \approx 1 \times 10^{-8}, \alpha = 0.01$$

• components of *s* are strictly nondecreasing, hence learning rate decreases over time

## **RMSProp**

 Extends Adagrad to avoid monotonically decreasing learning rate by maintaining a decaying average of squared gradients

$$\hat{s}_{k+1} = \gamma \hat{s}_k + (1 - \gamma) \left( \nabla f_(\mathbf{x}_k) \odot \nabla f(\mathbf{x}_k) \right), \qquad \gamma \in [0, 1], \qquad \odot \text{ element-wise product}$$

#### **Update Equation**

$$\begin{aligned} x_{i,k+1} &= x_{i,k} - \frac{\alpha}{\epsilon + \sqrt{\hat{s}_{i,k}}} \nabla f_i(\mathbf{x}_k) \\ &= x_{i,k} - \frac{\alpha}{\epsilon + RMS(\nabla f_i(\mathbf{x}_k))} \nabla f_i(\mathbf{x}_k) \end{aligned}$$

root mean square: For n values  $\{x_1, x_2, \dots, x_n\}$ 

$$x_{\text{RMS}} = \sqrt{\frac{1}{n} (x_1^2 + x_2^2 + \dots + x_n^2)}.$$

### AdaDelta

Also extends Adagrad to avoid monotonically decreasing learning rate Modifies RMSProp to eliminate learning rate parameter entirely

$$x_{i,k+1} = x_{i,k} - \frac{RMS(\Delta x_i)}{\epsilon + RMS(\nabla f_i(\mathbf{x}))} \nabla f_i(\mathbf{x}_k)$$

## Adam

- The adaptive moment estimation method (Adam), adapts the learning rate to each parameter.
- stores both an exponentially decaying gradient like momentum and an exponentially decaying squared gradient like RMSProp and Adadelta
- At each iteration, a sequence of values are computed

Biased decaying momentum 
$$\mathbf{v}_{k+1} = \beta \mathbf{v}_k - \alpha \nabla f(\mathbf{x}_k)$$
  
Biased decaying squared gradient  $\mathbf{s}_{k+1} = \gamma \mathbf{s}_k + (1-\gamma) \left(\nabla f(\mathbf{x}_k) \odot \nabla f(\mathbf{x}_k)\right)$   
Corrected decaying momentum  $\hat{\mathbf{v}}_{k+1} = \mathbf{v}_{k+1}/(1-\gamma_{\mathbf{v},k})$   
Corrected decaying squared gradient  $\hat{\mathbf{s}}_{k+1} = \mathbf{s}_{k+1}/(1-\gamma_{\mathbf{s},k})$   
Next iterate  $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \hat{\mathbf{v}}_{k+1}/(\epsilon + \sqrt{\hat{\mathbf{s}}_{k+1}})$ 

• Defaults:  $\alpha = 0.001$ ,  $\gamma_{V} = 0.9$ ,  $\gamma_{e} = 0.999$ ,  $\epsilon = 1 \times 10^{-8}$ 

## Hypergradient Descent

- Learning rate determines how sensitive the method is to the gradient signal.
- Many accelerated descent methods are highly sensitive to hyperparameters such as learning rate.
- Applying gradient descent to a hyperparameter of an underlying descent method is called hypergradient descent
- Requires computing the partial derivative of the objective function with respect to the hyperparameter

# Hypergradient Descent



## **Summary**

- Gradient descent follows the direction of steepest descent.
- The conjugate gradient method can automatically adjust to local valleys.
- Descent methods with momentum build up progress in favorable directions.
- A wide variety of accelerated descent methods use special techniques to speed up descent.
- Hypergradient descent applies gradient descent to the learning rate of an underlying descent method.