Package 'CMFCAM'

November 29, 2022			
Title Copula, Multistate, Frailty for Causal Analysis Modle			
Version 1.0			
Description The packages for 'Unified semicompeting risks analysis of hepatitis natural history through mediation modeling'.			
License MIT			
Imports survival, Copula.surv, BSDA,mstate			
Depends R(>=3.6)			
Encoding UTF-8			
Roxygen list(markdown = TRUE)			
RoxygenNote 7.2.2			
R topics documented:			
CP_MLE cp_u CP_Ustat Frailty meta.gen ms M_state pLA Xu2010 Xu2010_rest			
CP_MLE Estimating the direct and indirect of the Copula model by MLE			
Description Estimating the direct and indirect of the Copula model by MLE Usage CP_MLE(data, P.time, int_theta, tol, step)			
or _rice(data, r. crime, rire_crieta, cor, scep)			

2 cp_u

Arguments

data.frame(X1, X2, D, Z)

P. time interpolation time can be vector or scalar

Examples

```
 \begin{array}{l} \text{data=meta.gen}(500, \text{theta}\_0=0.5, \text{theta}\_1=0.5, \text{L}1=0.5, \text{L}2=0.5, \text{L}3=1, \text{b}01=1, \text{b}02=0, \text{b}03=0, \text{cc=2, dd="uniform"})} \\ \text{P.time=seq}(0,1, \text{by=0.01}) \\ \text{ans=CP\_MLE}(\text{data}, \text{P.time}, \text{int\_theta}=c(0.5, 0.5), \text{tol=0.01}, \text{step=50}) \\ \text{plot}(\text{P.time}, \text{ans}\text{DE}, \text{type="l",ylim}=c(-0.5, 0.5)) \\ \text{points}(\text{P.time}, \text{ans}\text{DE}-\text{ans}\text{DE}_{\text{sd}}, \text{type="l",ylim}=c(-0.5, 0.5)) \\ \text{points}(\text{P.time}, \text{ans}\text{DE}-\text{ans}\text{DE}_{\text{sd}}, \text{type}="l",ylim}=c(-0.5, 0.5)) \\ \text{points}(\text{P.time}, \text{ans}\text{SIE}, \text{type}="l",ylim}=c(-0.5, 0.5), \text{col=2}) \\ \text{points}(\text{P.time}, \text{ans}\text{SIE}-\text{ans}\text{SIE}_{\text{sd}}, \text{type}="l",ylim}=c(-0.5, 0.5), \text{col=2}) \\ \text{points}(\text{P.time}, \text{ans}\text{SIE}-\text{ans}\text{SIE}_{\text{sd}}, \text{type}="l",ylim}=c(-0.5, 0.5), \text{col=2}) \\ \text{legend}(0, 0.45, c("\text{direct effect"}, "\text{indirect effect"}), \text{col=1:2,lty=1}) \\ \end{array}
```

cp_u

Estimating the direct and indirect of the Copula model by U-statistics

Description

Estimating the direct and indirect of the Copula model by U-statistics

Usage

```
cp_u(data, P.time)
```

Arguments

data data.frame(X1,X2,D,Z)interpolation time can be vector or scalar

int_theta initial value of theta for iteration, nonnegative values vector of length 2

tol maximum tolerance of change during the iteration

step maximum number of the iteration

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=cp\_u(data,P.time)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

CP_Ustat 3

CP_Ustat	Estimating the direct and indirect of the Copula model by U-statistics,
	calculate the variance by bootstrapping

Description

Estimating the direct and indirect of the Copula model by U-statistics, calculate the variance by bootstrapping

Usage

```
CP_Ustat(data, P.time)
```

Arguments

data data.frame(X1,X2,Z,D)

P. time interpolation time can be vector or scalar

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=CP\_Ustat(data,P.time)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

Frailty

Estimating the direct and indirect of the frailty model

Description

Estimating the direct and indirect of the frailty model

Usage

```
Frailty(data, P.time, int_theta, tol, step)
```

Arguments

data.frame(X1, X2, D, Z)

 $\verb|int_theta| initial value of theta for iteration, nonnegative values vector of length 2$

tol maximum tolerance of change during the iteration

step maximum number of the iteration interpolation time can be vector or scalar

4 meta.gen

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=Frailty(data,P.time,int\_theta=c(0.5,0.5),tol=0.01,step=50)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE+ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

meta.gen

generating the data with 1/2 bivariate exposure from the frailty model by three exponential distributions

Description

generating the data with 1/2 bivariate exposure from the frailty model by three exponential distributions

Usage

```
meta.gen(
    n,
    theta_0,
    theta_1,
    L1,
    L2,
    L3,
    b01,
    b02,
    b03,
    cc = 2,
    dd = "uniform"
)
```

Arguments

```
sample size (even)
n
theta_0
                   theta for Z=1
theta_1
                   theta for Z=2
                   lambda for genarate T1
L1
L2
                   lambda for generate T2 without given T1
L3
                   lambda for generate T2 given T1
                   effect from Z to T1
b01
                   effect from Z to T2
b02
b03
                   effect from T1 to T2
                   parameter for generating the censoring time, the regulator censoring rate
СС
```

ms 5

dd set "uniform" for U(0,cc); set weibull for weibull(shape=5,scale=cc)

output X1,X2,Z and D are observed mediated, terminal event times exposure and cen-

soring index (1/0 for failure and censored)

Examples

```
meta.gen(500,theta_0=1,theta_1=0.5,L1=1,L2=1,L3=1,b01=0.5,b02=0,b03=1,cc=2,dd="uniform")
```

ms

Estimating the direct and indirect of the Multistate model.

Description

Estimating the direct and indirect of the Multistate model.

Usage

```
ms(data, P.time)
```

Arguments

data data.frame(X1,X2,D,Z)

P. time interpolation time can be vector or scalar

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=ms(data,P.time)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

M state

Estimating the direct and indirect of the Multistate model. Obtaining the variance by bootstrapping

Description

Estimating the direct and indirect of the Multistate model. Obtaining the variance by bootstrapping

Usage

```
M_state(data, P.time)
```

Arguments

data data.frame(X1,X2,D,Z)

P. time interpolation time can be vector or scalar

6 Xu2010

Examples

```
 \begin{array}{l} {\rm data=meta.gen(500,theta\_0=0.5,theta\_1=0.5,L1=0.5,L2=0.5,L3=1,b01=1,b02=0,b03=0,cc=2,dd="uniform")} \\ {\rm P.time=seq(0,1,by=0.01)} \\ {\rm ans=M\_state(data,P.time)} \\ {\rm plot(P.time,ans\$DE,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$DE-ans\$DE\_sd,type="l",ylim=c(-0.5,0.5))} \\ {\rm points(P.time,ans\$IE,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm points(P.time,ans\$IE-ans\$IE\_sd,type="l",ylim=c(-0.5,0.5),col=2)} \\ {\rm legend(0,0.45,c("direct effect","indirect effect"),col=1:2,lty=1)} \\ \end{array}
```

pLA

predicting the value for one to one vector

Description

predicting the value for one to one vector

Usage

```
pLA(yy, tt, LL)
```

Arguments

yy any time you want to interpolate

tt time or x value with same length of LL, must >0

LL value as f(tt)

Examples

```
x=seq(0,0.5,by=0.01)
LL=pnorm(x,0,1)
pLA(c(0,0.1,0.25,0.01,3),x,LL)
```

Xu2010

Estimating the parameters of the frailty model

Description

Estimating the parameters of the frailty model

Usage

```
Xu2010(T1, T2, d2, int_theta, tol = tol, step)
```

Xu2010_rest 7

Arguments

T1	observed mediator event time (vector)
T2	observed terminal event time (vector)
d2	1 for terminal event occured 0 for censored (vector)

int_theta initial value (>0) for theta used for iteration

tol maximum tolerance of change during the iteration

step maximum number of the iteration

Examples

Xu2010_rest

Estimating the parameters of the frailty model

Description

Estimating the parameters of the frailty model

Usage

```
Xu2010_rest(T1, T2, d2, int_theta, tol = 0.01, step)
```

Arguments

T1	observed mediator event time (vector)
T2	observed terminal event time (vector)

d2 1 for terminal event occured 0 for censored (vector)

int_theta initial value (>0) for theta used for iteration

tol maximum tolerance of change during the iteration

step maximum number of the iteration

Examples

Index

* Copula	CP_Ustat, 3
CP_MLE, 1	Frailty, 3
* U-statistics	M_state, 5
CP_Ustat, 3	ms, 5
* Xu2010	* semicompeting
Xu2010, 6	CP_MLE, 1
Xu2010_rest,7	cp_u, 2
* causal	CP_Ustat, 3
CP_MLE, 1	Frailty, 3
cp_u, 2	M_state, 5
CP_Ustat, 3	ms, 5
Frailty, 3	OD 141 5 1
M_state, 5	CP_MLE, 1
ms, 5	cp_u, 2
* copula	CP_Ustat, 3
CP_Ustat, 3	Frailty, 3
* frailty	rrailty, 5
cp_u, 2	M_state, 5
Frailty, 3	meta.gen, 4
M_state, 5	ms, 5
ms, 5	-, -
* inference,	pLA, 6
CP_MLE, 1	
cp_u, 2	Xu2010, 6
CP_Ustat, 3	Xu2010_rest, 7
Frailty, 3	
M_state, 5	
ms, 5	
* meta.gen	
meta.gen, 4	
* model,	
CP_Ustat, 3	
* model	
CP_MLE, 1	
cp_u, 2	
Frailty, 3	
M_state, 5	
ms, 5	
* pLA	
pLA, 6	
* risks,	
CP_MLE, 1	
cp_u, 2	
op_u, 2	