3

Assignment - 3

Assignment - 3 1. a. fasle b. false c. false d. True e. false f. fasle g. fasle 2. Using the matrices, we can compute the accuracy and cost for each model: Accuracy for Model M1: Accuracy = (True Positives + True Negatives) / Total Accuracy = (100 + 200) / (100 + 50 + 150 + 200)Accuracy = 300 / 500 = 0.6Cost for Model M1: Cost = (True Positives * Cost of False Negatives + False Positives * Cost of False Positives + True Negatives * Cost of True Negatives) / Total Cost = (100 * 50 + 50 * 1 + 200 * 0) / (100 + 50 + 150 + 200)Cost = 5050 / 500 = 10.1

Accuracy for Model M2:

```
Accuracy = (True Positives + True Negatives) / Total
```

Therefore, the accuracy of Model M1 is **0.6** and the cost of Model M1 is **10.1**.

Accuracy = (200 + 200) / (200 + 90 + 10 + 200)

Accuracy = 400 / 500 = 0.8

Cost for Model M2:

Cost = (True Positives * Cost of False Negatives + False Positives * Cost of False Positives + True Negatives * Cost of True Negatives) / Total

Assignment - 3

Cost = (200 * 50 + 90 * 1 + 200 * 0) / (200 + 90 + 10 + 200)

Cost = 10090/500 = 20.18

Therefore, the accuracy of Model M2 is **0.8** and the cost of Model M2 is **20.18**.

3.a. PERMUTATION 1, (h1)

		S1	S2	S3	S4
1	Α	1	0	1	0
2	E	0	1	0	1
3	В	1	0	0	1
4	G	1	0	1	0
5	F	1	0	1	0
6	С	0	1	0	1
7	D	0	1	0	1
		1	2	1	2

PERMUTATION 2, (h2)

		S1	S2	S3	S4
1	E	0	1	0	1
2	В	1	0	0	1
3	С	0	1	0	1
4	F	1	0	1	0
5	G	1	0	1	0
6	А	1	0	1	0
7	D	0	1	0	1
		2	1	4	1

PERMUTATION 3, (h3)

		S1	S2	S3	S4
1	D	0	1	0	1
2	В	1	0	0	1
3	F	1	0	1	0
4	G	1	0	1	0
5	Α	1	0	1	0
6	E	0	1	0	1
7	С	0	1	0	1
		2	1	3	1

The Signature matrix is as follows,

Assignment - 3 2

	S1	S2	S3	S4
h1	1	2	1	2
h2	2	1	4	1
h3	2	1	3	1

3.b.

(1). the original representation in ${\cal M}$

$$Sim(S1, S1) = Sim(S2, S2) = Sim(S3, S3) = Sim(S4, S4) = 1$$

$$Sim(S1, S2) = 0/7 = 0 = Sim(S2, S1)$$

$$Sim(S1, S3) = 3/4 = 0.75 = Sim(S3, S1)$$

$$Sim(S1, S4) = 1/7 = 0.14 = Sim(S4, S1)$$

$$Sim(S2, S3) = 0/6 = 0 = Sim(S3, S2)$$

$$Sim(S2, S4) = 3/4 = 0.75 = Sim(S4, S2)$$

$$Sim(S3, S4) = 0/7 = 0 = Sim(S4, S3)$$

	S1	S2	S3	S4
S1	1	0	0.75	0.14
S2	0	1	0	0.75
S3	0.75	0	1	0
S4	0.14	0.75	0	1

(2). Minhashing generated by the permutations in question (a)

Permutation 1:

$$Sim(S1, S1) = Sim(S2, S2) = Sim(S3, S3) = Sim(S4, S4) = 1$$

$$Sim(S1, S2) = 0/7 = 0 = Sim(S2, S1)$$

$$Sim(S1, S3) = 3/4 = 0.75 = Sim(S3, S1)$$

$$Sim(S1, S4) = 1/7 = 0.14 = Sim(S4, S1)$$

$$Sim(S2, S3) = 0/6 = 0 = Sim(S3, S2)$$

$$Sim(S2, S4) = 3/4 = 0.75 = Sim(S4, S2)$$

$$Sim(S3, S4) = 0/7 = 0 = Sim(S4, S3)$$

	S1	S2	S3	S4
S1	1	0	0.75	0.14
S2	0	1	0	0.75
S3	0.75	0	1	0
S4	0.14	0.75	0	1

Permutation 2:

$$Sim(S1, S1) = Sim(S2, S2) = Sim(S3, S3) = Sim(S4, S4) = 1$$

$$Sim(S1, S2) = 0/7 = 0 = Sim(S2, S1)$$

$$Sim(S1, S3) = 3/4 = 0.75 = Sim(S3, S1)$$

$$Sim(S1, S4) = 1/7 = 0.14 = Sim(S4, S1)$$

$$Sim(S2, S3) = 0/6 = 0 = Sim(S3, S2)$$

$$Sim(S2, S4) = 3/4 = 0.75 = Sim(S4, S2)$$

$$Sim(S3, S4) = 0/7 = 0 = Sim(S4, S3)$$

	S1	S2	S3	S4
S1	1	0	0.75	0.14
S2	0	1	0	0.75
S3	0.75	0	1	0
S4	0.14	0.75	0	1

Permutation 3:

$$Sim(S1, S1) = Sim(S2, S2) = Sim(S3, S3) = Sim(S4, S4) = 1$$

$$Sim(S1, S2) = 0/7 = 0 = Sim(S2, S1)$$

$$Sim(S1, S3) = 3/4 = 0.75 = Sim(S3, S1)$$

$$Sim(S1, S4) = 1/7 = 0.14 = Sim(S4, S1)$$

$$Sim(S2, S3) = 0/6 = 0 = Sim(S3, S2)$$

$$Sim(S2, S4) = 3/4 = 0.75 = Sim(S4, S2)$$

$$Sim(S3, S4) = 0/7 = 0 = Sim(S4, S3)$$

	S1	S2	S3	S4
S1	1	0	0.75	0.14
S2	0	1	0	0.75
S3	0.75	0	1	0
S4	0.14	0.75	0	1

3.c.

Х		S1	S2
0	Α	1	0
1	В	1	0
2	С	0	1
3	D	0	1
4	E	0	1
5	F	1	0
6	G	1	0

Using two hashing functions: $h(x) = (x + 1) \mod 7$ and $g(x) = (2x + 3) \mod 7$

For x = 0,

$$h(0) = (0 + 1) \mod 7 = 1 \mod 7 = 1$$

$$g(0) = (2*0 + 3) \mod 7 = 3 \mod 7 = 3$$

For
$$x = 1$$
,

$$h(1) = (1 + 1) \mod 7 = 2 \mod 7 = 2$$

$$g(1) = (2*1 + 3) \mod 7 = 5 \mod 7 = 5$$

For
$$x = 2$$
,

$$h(2) = (2 + 1) \mod 7 = 3 \mod 7 = 3$$

$$g(2) = (2*2 + 3) \mod 7 = 7 \mod 7 = 0$$

For
$$x = 3$$
,

$$h(3) = (3 + 1) \mod 7 = 4 \mod 7 = 4$$

$$g(3) = (2*3 + 3) \mod 7 = 9 \mod 7 = 2$$

For
$$x = 4$$
,

$$h(4) = (4 + 1) \mod 7 = 5 \mod 7 = 5$$

$$g(4) = (2*4 + 3) \mod 7 = 11 \mod 7 = 4$$

For x = 5,

$$h(5) = (5 + 1) \mod 7 = 6 \mod 7 = 6$$

$$g(5) = (2*5 + 3) \mod 7 = 13 \mod 7 = 5$$

For x = 6,

$$h(6) = (6 + 1) \mod 7 = 7 \mod 7 = 2$$

$$g(6) = (2*6 + 3) \mod 7 = 15 \mod 7 = 5$$

Signatures after hashing are,

h(x)	S1	S2
0	1	0
1	1	0
2	1	0
3	0	1
4	0	1
5	0	1
6	1	0

g(x)	S1	S2
0	0	1
1	1	0
2	0	1
3	1	0
4	0	1
5	1	0
6	1	0

Assignment - 3 6