Assignment#5 CS201 Fall 2023

Ben Chen(12212231)

January 5, 2024

PROBLEM 1. Let S be the set of all strings of English letters. Determine whether the following relations are reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.

SOLUTION. a) irreflexive, symmetric

- b) reflexive, symmetric, transitive
- c) transitive, irreflexive, antisymmetric
- d) transitive, irreflexive, symmetric
- e) transitive, antisymmetric, reflexive

PROBLEM 2. Consider relations on a set A. Prove or disprove the following statements.

SOLUTION. a) True. For reflexive, we have

$$\forall x \in A, (x, x) \in R$$

and for symmetric, we have

$$\forall a, b \in A, (a, b) \Rightarrow (b, a)$$

so we have

$$\forall a, b \in A, (a, b) \in R, (b, a) \in R \Rightarrow (a, a) \in R, (b, b) \in R$$

always holds. So if R is reflexive and symmetric, then R is also transitive.

b) True. Consider that R_1 and R_2 are subsets of $R_1 \cup R_2$, so if R_1 and R_2 is reflexive, we have

$$\forall a \in A, \ ((a, a) \in R_1) \land ((a, a) \in R_2)$$

$$\Rightarrow \forall a \in A, (a, a) \in R_1 \cup R_2$$

which gives that $R_1 \cup R_2$ is also reflexive.

c) False. Counterexample: if we have $(a,b) \in R_1$ and $(b,a) \notin R_1$ and $(b,a) \notin R_2$ and $(a,b) \notin R_2$ then we have $(a,b) \in R_1 \cup R_2$ and $(b,a) \in R_1 \cup R_2$ which gives that $R_1 \cup R_2$ is symmetric.

Problem 3. Prove the statements about n-ary relations.

SOLUTION. a) The selection operator combined is the set

$$S_{C_1 \wedge C_2}(R) = \{ a \in R | C_1(a) \wedge C_2(a) \}$$

and we have if

$$x \in S_{C_1 \wedge C_2}(R)$$

then $x \in R$ satisfy $C_1 \wedge C_2$, which is $x \in R$ satisfy C_1 and C_2 , so we have

$$x \in S_{C_2}(R)$$
 and x satisfy C_1

which gives

$$S_{C_1}(S_{C_2}(R))$$

b) Both sides project into the $\{i_k\} = \{i_1, i_2, \cdots, i_m\}$ th elements in tuples of R and S. So for the left side, we have

$$a = (a_1, a_2, \cdots, a_n)$$

$$P_{\{i_k\}}(R \cup S) = \{(a_{i_1}, a_{i_2}, \cdots, a_{i_m}) | a \in R \cup S\}$$

and for the right side, we have

$$P_{\{i_k\}}(R) \cup P_{\{i_k\}}(S) = \{(a_{i_1}, a_{i_2}, \cdots, a_{i_m}) | a \in R\} \cup \{(a_{i_1}, a_{i_2}, \cdots, a_{i_m}) | a \in S\}$$

$$\Rightarrow \{(a_{i_1}, a_{i_2}, \cdots, a_{i_m}) | a \in R \cup S\}$$

PROBLEM 4. Suppose that a relation R on a set A is symmetric.

SOLUTION. a) We can use induction to prove this.

For k = 1, R^1 is symmetric since R is symmetric.

For k = n - 1, assume that R^{n-1} is symmetric, then we have

$$R^n = R^{n-1} \circ R = R \circ R^{n-1}$$

so for all $(x,y) \in \mathbb{R}^n$ we always have

$$(x,z) \in R \land (z,y) \in R^{n-1}$$

since R and R^{n-1} are symmetric, we have

$$(z,x) \in R \land (y,z) \in R^{n-1}$$

and the composition of them gives

$$(y,x) \in R \circ R^{n-1} = R^n$$

which means R^n is symmetric. So by induction, we have R^n is symmetric for all $n \in \mathbb{N}^+$.

b) The $R^* = \bigcup R^k$ and from previous proof we have R^n is symmetric for all $n \in \mathbb{N}^+$, so we need to prove that the union of symmetric relations is symmetric. Suppose that R_1 and R_2 are symmetric relations on A, then

$$((a,b) \in R_1 \to (b,a) \in R_1) \lor ((c,d) \in R_2 \to (d,c) \in R_2)$$
$$\Rightarrow (a,b), (c,d) \in R_1 \cup R_2 \to (b,a), (d,c) \in R_1 \cup R_2$$

which gives that $R_1 \cup R_2$ is symmetric. So we have R^* is symmetric since

$$R^* = (R^1 \vee R^2) \vee \dots \vee R^n$$

the union of symmetric relations is symmetric.

PROBLEM 5. Prove that the transitive closure of the symmetric closure of a relation must contain the symmetric closure of the transitive closure of the relation.

SOLUTION. Suppose that R is a relation on a set A, the symmetric closure is

$$S = R \cup \{(b, a) | (a, b) \in R\}$$

and the transitive closure of it is

$$T = S \cup \{(a, c) | (a, b), (b, c) \in S\}$$

and by symmetric closure, we have

$$(c,b),(b,a) \in S \Rightarrow (c,a) \in T$$

so the transitive closure of the symmetric closure of R is symmetric and hence it must contain the symmetric closure of the transitive closure of R.

PROBLEM 6. Use the Floyd-Warshall algorithm to find the transitive closures of the relation

$$R = \{(a, b), (a, c), (a, e), (b, a), (b, c), (c, a), (c, b), (d, a), (e, d)\}$$

on the set $A = \{a, b, c, d, e\}$.

SOLUTION. The initial matrix is

$$M = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

for k = 1, we have

$$M_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

for k = 2, we have

$$M_2 = egin{bmatrix} 1 & 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

for k = 3, we have

for k = 4, we have

so the transitive closure of R is

PROBLEM 7. Consider the relation $R = \{(x, y) | x - y \in \mathbb{Z}\}.$

SOLUTION. a) R is symmetric since for any $x, y \in \mathbb{R}$, we have

$$x - y \in \mathbb{Z} \Rightarrow y - x = -(x - y) \in \mathbb{Z}$$

R is reflexive since for any $x \in \mathbb{R}$, we have

$$x - x = 0 \in \mathbb{Z}$$

R is transitive since for any $x, y, z \in \mathbb{R}$, we have

$$x - y \in \mathbb{Z} \land y - z \in \mathbb{Z} \Rightarrow x - z = (x - y) + (y - z) \in \mathbb{Z}$$

so R is an equivalence relation.

b) The equivalence class of 1 is

$$[1] = \{x \in \mathbb{R} | 1 - x \in \mathbb{Z}\} = \mathbb{Z}$$

The equivalence class of 1/2 is

$$\left[\frac{1}{2}\right] = \{x \in \mathbb{R} | 1/2 - x \in \mathbb{Z}\} = \{1/2 + n | n \in \mathbb{Z}\}$$

The equivalence class of π is

$$[\pi] = \{x \in \mathbb{R} | \pi - x \in \mathbb{Z}\} = \{\pi + n | n \in \mathbb{Z}\}\$$

PROBLEM 8. For any functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$. We say f is dominated by g, denoted by $f \leq g$, if and only if $\forall x \in \mathbb{R}, f(x) \leq g(x)$ holds. Prove or disprove the following statements.

Solution. a) The relation is antisymmetric since if $f \leq g$ then we have

$$\forall x \in \mathbb{R}, f(x) \le g(x)$$

and the opposite is false since if $g \leq f$ then we have

$$\forall x \in \mathbb{R}, g(x) \leq f(x)$$

which is contradictory to the previous statement. So the relation is antisymmetric.

The relation is reflexive since for any $f: \mathbb{R} \to \mathbb{R}$, we have

$$\forall x \in \mathbb{R}, f(x) \le f(x)$$

which is $f \leq f$.

The relation is transitive since for any $f, g, h : \mathbb{R} \to \mathbb{R}$, we have

$$\forall x \in \mathbb{R}, f(x) \le g(x) \land g(x) \le h(x) \Rightarrow f(x) \le h(x)$$

which is $f \leq g \land g \leq h \Rightarrow f \leq h$. Thereby, the relation is a partial order.

b) The statement is false since functions in the poset are not comparable. For example, if we have

$$f(x) = x, \quad g(x) = x^2$$

then $f(x) \leq g(x)$ only holds for $x \leq 0$ or $x \geq 1$, so $f \leq g$ and $g \leq f$ are false.

PROBLEM 9. Answer the questions about the partial order represented by the Hasse diagram.

Solution. a) l and m

- **b)** a, b and c
- **c)** No.
- **d)** No.
- e) l, k and e
- **f**) k
- **g)** a, d and b
- **h**) *d*

PROBLEM 10. Topological sorting. Find all compatible total orderings for the poset $(\{2, 3, 4, 6, 12\}, |)$.

Solution. The Hasse diagram of the poset is

so the compatible total orderings are

$$2 \prec 3 \prec 4 \prec 6 \prec 12$$

$$3 \prec 2 \prec 4 \prec 6 \prec 12$$

$$2 \prec 4 \prec 3 \prec 6 \prec 12$$

$$3 \prec 4 \prec 2 \prec 6 \prec 12$$