# FUNDAMENTALS OF FACIAL DETECTION

ISU - TASK FIVE

### Syllabus

- Demo
- Breaking down the code
- How it works
- Artificial Intelligence / Machine Learning
- Detection vs recognition
- Real life applications
- Relating to Physics of the Future

### Demonstration

```
faceCascade = cv2.CascadeClassifier(cascPath)
video capture = cv2.VideoCapture(0)
    gray = cv2.cvtColor(frame, cv2.COLOR BGR2GRAY)
    faces = faceCascade.detectMultiScale(
    for (x, y, w, h) in faces:
video capture.release()
```

import cv2
import sys

# this program applies basic object detection using OpenCV
# requires Python, the OpenCV library, and an internal video capturing device
# openCV docs: https://docs.opency.org/3\_4/db/d28/tutorial cascade classifier html

# path to the pretrained model for frontal-faces
cascPath = "haarcascade\_frontalface\_alt.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
video capture = cv2.VideoCapture(0) # determines path to video capture device

```
# runs forever - as long as the program doesn't end
while True:
    # capture the source frame-by-frame
    ret, frame = video_capture.read()

# casts a filter onto the frame so the computer can actual
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
```

faces = faceCascade.detectMultiScale(

gray,

scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)

```
# draw a rectangle around the faces
for (x, y, w, h) in faces:
    cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# displays the final frame onto the video frame
cv2.imshow('Video', frame)
```

```
# exits the program if you press 'q'
if cv2.waitKey(1) & 0xFF == ord('q'):
    break
```

# release the final capture when everything is do video\_capture.release() cv2.destroyAllWindows()

### Demonstration

### How it works

- Splits the image up into parts
- Calculates brightness transitions
- Identifies patterns within the image
  - ex. eye regions are darker than nose and cheek regions
- Uses trained models with pattern recognition algorithms



### Artificial Intelligence and Machine Learning

#### Artificial Intelligence

 Creating machines that can mimic human thinking, decision making, and behaviour

#### Machine Learning

- Subset of AI
- Machines learn and make decisions based on large amounts of data rather than being explicitly programmed

### Detection vs Recognition

#### Detection

- Where is this object in this image?
  - O Input: clear image of the desired object + another image (possibly) containing the object of interest
  - Output: position/box of input object

#### Recognition

- Which object is depicted in this image?
  - O Input: image containing unknown objects
  - Output: position and labels/names of objects within the image

### Applications IRL

- Autonomous transportation
  - Detecting and identifying road signs, other vehicles, pedestrians, etc.
- Medical image processing
  - Help detect disease more accurately
- Surveillance and security
  - Facial recognition, object tracking, activity recognition

## Relating to Physics of the Future

- "One can mass-produce hardware and increase its power by piling on more and more chips, but you cannot mass-produce the brain."
- Facial detection program acts as a watered-down version of what goes on behind the scenes of big tech solutions
- Expanding on ideas addressed in chapters that focused on the future of computers and AI

## Link in description

To learn more about these new technologies, check out the VMCSC blog for student-written articles on topics such as:

- Autonomous Transportation
- Artificial Intelligence and Machine Learning
- VR/AR

Want to run the face detection program yourself? Check out my Github!