ENSEMBLES IN MACHINE LEARNING

What is Ensemble Classification? • Use multiple learning

- Use multiple learning algorithms (classifiers)
- · Combine the decisions
- Can be more accurate than the individual classifiers
- Generate a group of baselearners
- · Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations (Modalities)
 - Training sets

Why should it work?

- Works well only if the individual classifiers disagree
 - Error rate < 0.5 and errors are independent
 - Error rate is highly correlated with the correlations of the errors made by the different learners

Bias vs. Variance

- We would like low bias error and low variance error
- Ensembles using multiple trained (high variance/low bias) models can average out the variance, leaving just the bias
 - Less worry about overfit (stopping criteria, etc.) with the base models

Combining Weak Learners

- Combining weak learners
 - Assume n independent models, each having accuracy of 70%.
 - If all n give the same class output then you can be confident it is correct with probability 1-(1-.7)ⁿ
 - Normally not completely independent, but unlikely that all n would give the same output
 - Accuracy better than the base accuracy of the models by using the majority output.
- If n1 models say class 1 and n2<n1 models say class 2, then

P(class1) = 1 - Binomial(n, n2, .7)

$$P(r) = \frac{n!}{r!(n-r)!} p^{r} (1-p)^{n-r}$$

Ensemble Creation Approaches

- · Get less correlated errors between models
 - Injecting randomness
 - · initial weights (eg, NN), different learning parameters, different splits (eg, DT) etc.
 - Different Training sets
 - · Bagging, Boosting, different features, etc.
 - Forcing differences
 - different objective functions
 - Different machine learning model

Ensemble Combining Approaches

- Unweighted Voting (e.g. Bagging)
- Weighted voting based on accuracy (e.g. Boosting), Expertise, etc.
- Stacking Learn the combination function

Combine Learners: Voting

- · Unweighted voting
- Linear combination (weighted vote)

$$y = \sum_{j=1}^{L} w_j d_j$$

$$w_j \ge 0 \text{ and } \sum_{j=1}^{L} w_j = 1$$

Bayesian

$$P(C_i|X) = \sum_{\text{all models } \mathcal{M}_i} P(C_i|X, \mathcal{M}_j) P(\mathcal{M}_j)$$

Fixed Combination Rules

Rule	Fusion function $f(\cdot)$
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j = 1$
Median	$y_i = \text{median}_i d_{ji}$
Minimum	$y_i = \min_j d_{ji}$
Maximum	$y_i = \max_j d_{ji}$
Product	$y_i = \prod_j d_{ji}$

	C_1	C_2	C_3
d_1	0.2	0.5	0.3
d_2	0.0	0.6	0.4
d_3	0.4	0.4	0.2
Sum	0.2	0.5	0.3
Median	0.2	0.5	0.4
Minimum	0.0	0.4	0.2
Maximum	0.4	0.6	0.4
Product	0.0	0.12	0.032

- All possible models in the model space used weighted by their probability of being the "Correct" model
- Optimal given the correct model space and priors

Bayes Optimal Classifier

- The Bayes Optimal Classifier is an ensemble of all the hypotheses in the hypothesis space.
- · On average, no other ensemble can outperform it.
- · The vote for each hypothesis
 - proportional to the likelihood that the training dataset would be sampled from a system if that hypothesis were true.
 - is multiplied by the prior probability of that hypothesis.

$$y = \operatorname{argmax}_{c_j \in C} \sum_{h_i \in H} P(c_j|h_i)P(T|h_i)P(h_i)$$

$$y = \operatorname{argmax}_{c_j \in C} \sum_{h_i \in H} P(c_j|h_i)P(T|h_i)P(h_i)$$

- · y is the predicted class,
- · C is the set of all possible classes,
- · H is the hypothesis space,
- T is the training data.

The Bayes Optimal Classifier represents a hypothesis that is not necessarily in H.

But it is the optimal hypothesis in the ensemble space.

Practicality of Bayes Optimal Classifier

- Cannot be practically implemented.
- Most hypothesis spaces are too large
- Many hypotheses output a class or a value, and not probability
- Estimating the prior probability for each hypothesizes is not always possible.

- All possible models in the model space used weighted by their probability of being the "Correct" model
- Optimal given the correct model space and priors

Challenge for developing Ensemble Models

- The main challenge is to obtain base models which are independent and make independent kinds of errors.
- Independence between two base classifiers can be assessed in this case by measuring the degree of overlap in training examples they misclassify (|A ∩B|/|A∪B|)

Bagging

- Bagging = "bootstrap aggregation"
 - Draw N items from X with replacement
- Desired learners with high variance (unstable)
 - Decision trees and ANNs are unstable
 - K-NN is stable
- Use bootstrapping to generate L training sets and train one base-learner with each (Breiman, 1996)
- Use voting

- · Sampling with replacement
- Build classifier on each bootstrap sample
- Each sample has probability (1 1/n)ⁿ of being selected

Boosting

- An iterative procedure. Adaptively change distribution of training data.
 - Initially, all N records are assigned equal weights
 - Weights change at the end of boosting round
- · On each iteration t:
 - Weight each training example by how incorrectly it was classified
 - Learn a hypothesis: h_t
 - A strength for this hypothesis: α_t
- · Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength
- "weak" learners
 - P(correct) > 50%, but not necessarily much better

Adaboost

- Boosting can turn a weak algorithm into a strong learner.
- Input: S={(x₁, y₁), ..., (x_m, y_m)}
- D_t(i): weight of i th training example
- · Weak learner A
- For t = 1, 2, ..., T
 - Construct D_t on {x₁, x₂ ...}
 - Run A on D_t producing h_t: X → {-1,1}

$$\epsilon_t$$
 =error of h_t over D_t

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$.

For t = 1, ..., T:

- Train weak learner using distribution D_t.
- Get weak classifier h_t: X → ℝ.
- − Choose $α_t ∈ ℝ$.

$$D_t + 1(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^{m} D_t(i) exp \left(-\alpha_t y_i h_t(x_i)\right)$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Given: $(x_1, y_1), ..., (x_m, y_m)$ where

$$x_i \in X, y_i \in Y = \{-1, +1\}$$

Initialize $D_1(i) = 1/m$.

For t = 1, ..., T:

- Train weak learner using distribution D_t.
- Get weak classifier h_t: X → ℝ.
- Choose α_t ∈ ℝ.
- Update:

$$D_t + 1(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^{m} D_t(i) exp \left(-\alpha_t y_i h_t(x_i)\right)$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Choose α_t to minimize training error

$$\alpha_t = \frac{1}{2} In \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

where

Where
$$Z_t$$
 is a normalization factor
$$Z_t = \sum_{i=1}^m D_t(i) exp\left(-\alpha_t y_i h_t(x_i)\right) \qquad \epsilon_t = \sum_{i=1}^m D_t(i) \delta(h_t(x_i) \neq y_i)$$

Strong weak classifiers

- If each classifiers is (at least slightly) better than random
 ∈_t < 0.5
- Ican be shown that AdaBoost will achieve zero training error (expotentially fast):

$$\frac{1}{m}\sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \prod_t Z_t \leq exp\left(-2\sum_{t=1}^T (1/2 - \epsilon_t)^2\right)$$

