Control over CAN and Flexray Embedded Control Systems

Sai Krishna Kalluri & Snorri Stefansson March 25, 2017

Contents

In	trod	uction	2
1	Par	$\mathbf{t} \; 1$	3
	1.1	Introduction	3
	1.2	Response Time analysis	3
		1.2.1 Response time analysis per processing unit	3
		1.2.2 Response time analysis for the CAN bus messages	3
	1.3	System model	3
	1.4	Design decision	3
	1.5	Results	3
	_		
2	Par	t 2	4
	2.1	Introduction	4
	2.2	Response Time analysis	4
		2.2.1 Response time analysis per processing unit	4
		2.2.2 Response time analysis for the CAN bus messages	5
	2.3	Optimisation for sensor-to-actuator delay	5
	2.4	System model	5
	2.5	Design decision	5
	2.6	Results	5
	2.7	Conclusions	5
3	Par		6
	3.1	Introduction	6
	3.2	Answer all the questions	6
		3.2.1 Theoretical analysis versus actual implementation	6
	3.3	Design decision	6
	3.4	Results	6
	3.5	Conclusions	6
	3.6	Results	6
	3.7	Conclusion	6

Introduction

Chapter 1

Part 1

1.1 Introduction

1.2 Response Time analysis

1.2.1 Response time analysis per processing unit

Table 1.1: By running the Matlab script ResponsetimeAnylsis_FPP.m with the different parameters given for PU1 and PU2 these response times are obtained for each of the tasks. These files are then delivered as PU1.m PU2.m

PU1	T_1	T_2	T_3	T_4 (T_s)
Matlab (ms)	0.1	2.1	4.1	7.2
PU2	T_5	T_6	T_7	T_8

1.2.2 Response time analysis for the CAN bus messages

Table 1.2: Response times for the CAN bus messages

CAN	m_2	m_1	m_3	m_8
Matlab (ms)	2	3	4	4

1.3 System model

1.4 Design decision

1.5 Results

Firstly: Response time analysis

Secondly: Control system input and output

Chapter 2

Part 2

2.1 Introduction

2.2 Response Time analysis

2.2.1 Response time analysis per processing unit

Table 2.1: By running the Matlab script Response timeAnylsis_FPP.m with the different parameters given for PU1 and PU2 these response times are obtained. These files are then delivered as PU1.m PU2.m

PU1	T_1	T_2	T_3	T_4 (T_s)
Matlab (ms)	0.1	2.1	4.1	7.2
Inchron (ms)	0.1	2.1	4.1	7.2
PU2	T_5	T_6	T_7	T_8
Matlab (ms)	6	3	9	5
Inchron (ms)	6	3	9	5

Figure 2.1:

Figure 2.2:

- 2.2.2 Response time analysis for the CAN bus messages
- 2.3 Optimisation for sensor-to-actuator delay
- 2.4 System model
- 2.5 Design decision
- 2.6 Results

Firstly: Response time analysis

Secondly: Plots from chronVIEW (before and after optimization)

Last: Control system input and output

2.7 Conclusions

Chapter 3

Part 3

- 3.1 Introduction
- 3.2 Answer all the questions
- 3.2.1 Theoretical analysis versus actual implementation
- 3.3 Design decision
- 3.4 Results

Firstly: Solution to the design problem. (Include the parameters you have chosen) Secondly: from chronVIEW for your design

- 3.5 Conclusions
- 3.6 Results
- 3.7 Conclusion