Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.11.05

Key words: Graphs, Ramsey Theorem

Recall:

- $-\alpha(G)$: Independent number = max # pairwise nonadjacent vertices of G
- $-\chi(G)$: Chromatic number = min \sharp colors s.t. ∃ a coloring of V(G) is a proper coloring
- $-n \leq \alpha(G)\chi(G)$

<u>Def</u>: path $v_1v_2\cdots v_s$, where $v_i\sim v_{i+1}$ and $v_i\neq v_j, \forall i\neq j\in [s]$. If $v_1=v_s$, call it a cycle. A graph G is **connected** if there is a path between any two vertices.

Theorem 1. |V(G)| = n. If for any $x \in V(G)$, $\deg(x) \ge \frac{n-1}{2}$, then G is connected.

proof: Take any different $x, y \in V(G)$. If $x \sim y$, then done. If $x \nsim y$, since $\deg(x), \deg(y) \geq \frac{n-1}{2}$, there are at least n-1 edges joining x, y to $V(G) \setminus \{x, y\}$. Since $|V(G) \setminus \{x, y\}| = n-2$, by P-P, $\exists z \in V(G) \setminus \{x, y\}, z \sim x, z \sim y$.

Remark:

(1) The condition above is best possible: e.g. n even, G is the union of two vertex disjoint complete graphs of $\frac{n}{2}$ vertices, each vertex has degree $\frac{n-2}{2}$, but G is disconnected.

(2) Define the **diameter** of G is the smallest number k, s.t. every two vertices are connected by a path with at most k edges. Then Theorem 1 says G has diameter at most two.

Fact(A party of six): Suppose a party has 6 participants. Participants may know each other or not. Then there must be 3 people such that any 2 know each other or any 2 don't know each other.

proof: Construct a graph with vertices [6], where $i \sim j$ iff i and j know each other. Then we need to show that there are 3 vertices in G which form a triangle or an independent set of size 3.

Consider vertex 1, by P-P, 1 is either adjacent to ≥ 3 vertices or nonadjacent to ≥ 3 vertices.

① Suppose 1 is adjacent to 2, 3, 4. If one of the pairs $\{2,3\}$, $\{2,4\}$, $\{3,4\}$ is adjacent, then we have a K_3 . If not, $\{2,3,4\}$ is an independent set of size 3.

(2) Suppose 1 is nonadjacent to 2, 3, 4. Similar arguments.

<u>Def</u>: $\forall s, t \geq 1$, let R(s,t) denote the smallest integer n, s.t. in any graph with n or more vertices, there exists either a clique(a complete subgraph) with s vertices K_s or an independent set with t vertices I_t .

Remark:

- ① $R(s,t) \leq L \iff$ any graph with L vertices has either a K_s or an I_t .
- ② $R(s,t) > M \iff \exists$ a graph with M vertices has neither K_s nor I_t .

Fact:

- ① R(s,t) = R(t,s).
- ② R(2,t) = R(t,2) = t.
- $\Re(3,3) = 6.$

Theorem 2. For $s \ge 2$, $t \ge 2$, $R(s,t) \le R(s,t-1) + R(s-1,t)$.

proof: Let G be a graph on n = R(s, t-1) + R(s-1, t) vertices. We need to prove any graph on n vertices has either a K_s or an I_t . Take an arbitrary vertex $x \in V(G)$. Let $S_x = \{y \in V(G) : x \sim y\}$ and $T_x = (V \setminus \{x\}) \setminus S_x$, then $|S_x| + |T_x| = n - 1 = R(s, t - 1) + R(s - 1, t) - 1$ 1. By P-P, we have either $|T_x| \ge R(s,t-1)$ or $|S_x| \ge R(s-1,t)$.

- (1) $|S_x| \geq R(s-1,t)$. Consider the induced subgraph G[S]: a graph on S, in which $v \sim w$ iff $v \sim w$ in G. Since $G[S_x]$ has at least R(s-1,t) vertices, G[S] has either a K_{s-1} or an I_t . Therefore $G[S_x \cup \{x\}]$ has either a K_s or an I_t .
- ② $|T_x| \geq R(s, t-1)$. Similar.

<u>Theorem</u> 3. $R(s,t) \leq \binom{s+t-2}{s-1} = \binom{s+t-2}{t-1}$.

proof: By induction on s + t. R(2,t) = t, R(s,2) = s, true. Assume the claim holds for R(k, l) with k + l < s + t. Then $R(s, t) \le R(s, t - 1) + R(s - 1, t) \le {s + t - 3 \choose s - 1} + {s + t - 3 \choose s - 2} = {s + t - 2 \choose s - 1}$.

Note: $2^{\frac{t}{2}} \le R(t,t) \le 2^{2t} \ (Erd\ddot{o}s1947)$

Theorem 4. If R(s,t-1), R(s-1,t) are even, then $R(s,t) \leq$ R(s, t-1) + R(s-1, t) - 1

proof: n = R(s, t-1) + R(s-1, t) - 1, odd. We need to show any \overline{G} on n vertices has a K_s or an I_t $\forall x \in V$, let $S_x = \{y \in V(G) : x \sim y\}$ and $T_x = (V \setminus \{x\}) \setminus S_x$.

- ① If $\exists x \text{ s.t. } |S_x| \geq R(s-1,t) \text{ or } |T_x| \geq R(s,t-1), \text{ done}$
- ② $\forall x, |S_x| \leq R(s-1,t)-1 \text{ and } |T_x| \leq R(s,t-1)-1. :: |S_x|+1$ $|T_x| = n-1 = R(s-1,t) + R(s,t-1) - 2, : |S_x| = R(s-1,t) - 1,$ odd. Contradiction to the Handshaking Lemma.

Ex: Compute R(3,4)

 $6 \times R(3,4) = (5) = (0)$. R(3,4) = (5) = (0). R(3,4) = (6) = (0). R(3,4) = (6) = (6). R(3,4) = (6).

2-coloring version of Ramsey's theorem. Define a r-edge-coloring of K_n to be a coloring of edges of K_n by r colors. Then R(s,t) denotes the smallest integer N s.t. any 2-edge-coloring of K_N has either a blue K_s or a red K_t .

Generalized Ramsey number $R_k(s_1, s_2, ..., s_k)$ is the smallest integer N such that any k-edge-coloring of K_N has a K_{s_i} in color i for some $i \in [k]$.

Ramsey Thm: $R_k(S_1, \dots, S_k) \leq +\infty$