Abstract algebra I Homework 5

B13902022 賴昱錡

1)

(a)

Suppose that for any two distinct elements $s, t \in S$, we have $O(s) \neq O(t)$ and $O(s) \cap O(t) \neq \emptyset$. There exists $g_1, g_2 \in G$ such that $g_1 s = g_2 t \Rightarrow t = g_2^{-1} g_1 s$, hence, for every $g \in G$, we have $gt = gg_2^{-1}g_1s \in O(s)$, i.e., there's always one corresponding element in O(s) for every element in O(t), similarity we have $gs = gg_1^{-1}g_2t \in O(t)$, so O(s) = O(t), which contradicts our assumption. Thus $O(s) \neq O(t)$ and $O(s) \cap O(t) \neq \emptyset$ is impossible, we either have O(s) = O(t) or $O(s) \cap O(t) = \emptyset$.

(b)

 $e \in G_s$ trivially, also for any $u, v \in G_s$, $(uv)s = us = s \Rightarrow (uv) \in G_s$, also $us = s, s = u^{-1}s \Rightarrow u^{-1} \in G_s$, thus G_s is closed under taking products and inverses, $G_s \leq G$.

Let the map be ϕ , if $g_1G_s = g_2G_s$ and $g_1, g_2 \in G$, then $g_2^{-1}g_1G_s = G_s \Rightarrow g_2^{-1}g_1 \in G_s$. Hence, $g_2^{-1}g_1s = s, g_1s = g_2s, \phi(g_1G_s) = \phi(g_2G_s)$, we know ϕ is well-defined.

To prove the injectivity of ϕ , if $g_1s=g_2s$ $(g_1,g_2\in G)$, then $g_1^{-1}g_2s=s\Rightarrow g^{-1}g_2\in G_s$, so $g^{-1}g_2G_s=G_s$, we have $g_1G_s=g_2G_s$.

For every $u \in O(s)$, it can be written as the form: u = gs for some $g \in G$, so $u = \phi(gG_s)$. ϕ is surjective. Since ϕ is both injective and surjective, ϕ is a well-defined bijection.

(c)

By the result in (b), we know $|G:G_s|=|G|/|G_s|=|O(s)|$, hence $|G_s||O(s)|=|G|$.

- 2)
- (a)
- (b)
- (c)
- 3)
- (a)
- (b)
- (c)
- (d)
- 4)