A Test Lab Techno Corp.

Changan Lab: No. 140 -1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C.

Tel: 886-3-271-0188 / Fax: 886-3-271-0190

SAR EVALUATION REPORT

Test Report No. : 1106FS12

Applicant : Binatone Electronics International Limited

EUT Type : 1.9GHz DECT 6.0 Baby Monitor

FCC ID : VLJ80-8230-01

Trade Name : MOTOROLA

Model Number : MBP11PU

Dates of Test : May 24~25, 2011

Date of Issued : Jun. 03, 2011

Test Environment : Ambient Temperature : 22 \pm 2 ° C

Relative Humidity: 40 - 70 %

Test Specification : Standard C95.1-1992

IEEE Std. 1528-2003

2.1093; FCC/OET Bulletin 65 Supplement C [July 2001]

Max. SAR : 0.000386 W/kg Muscle SAR

Test Lab Location : Chang-an Lab

- The test operations have to be performed with cautious behavior, the test results are as attached.
- 2. The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- 3. The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full. This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. The test results in the report only apply to the tested sample.

Approved By

(Sam Chuang)

Tested By

(Alex Wu)

Contents

1.	. Description of Equipment Under Test (EUT)						
2.	Introd	duction	4				
3.	SAR	Definition	4				
4.	SAR	Measurement Setup	5				
5.	Syste	em Components	7				
	5.1	DASY5 E-Field Probe System	7				
	5.2	Data Acquisition Electronic (DAE) System	10				
	5.3	Robot	10				
	5.4	Measurement Server	10				
	5.5	Device Holder for Transmitters	11				
	5.6	Phantom - SAM v4.0	11				
	5.7	Data Storage and Evaluation	12				
6.	Test I	Equipment List	15				
7.	Tissu	ue Simulating Liquids	16				
	7.1	Ingredients	17				
	7.2	Recipes	17				
	7.3	Liquid Confirmation	18				
8.	Meas	surement Process	20				
	8.1	Device and Test Conditions	20				
	8.2	General description of the test procedures	20				
	8.3	System Performance Check	21				
	8.4	Dosimetric Assessment Setup	23				
	8.5	Spatial Peak SAR Evaluation	25				
9.	Meas	surement Uncertainty	26				
10.	SAR	Test Results Summary	29				
	10.1	UPCS Muscle SAR	29				
	10.2	Std. C95.1-1992 RF Exposure Limit	30				
11.	Conc	clusion	31				
12.	Refer	rences	31				
Apı	pendix	A - System Performance Check	32				
Apı	pendix	B - SAR Measurement Data	34				
Apı	pendix	c C - Calibration	35				

1. <u>Description of Equipment Under Test (EUT)</u>

Applicant	:	Binatone Electronics International Limited
Applicant Address	:	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong
Manufacturer	:	Dongguan VTech Satellite Equipment Co. Ltd
Manufacturer Address	:	VTech Science Park, Xia Ling Bei Management Zone, Liaobu,
		Dongguan,Guangdong, China
EUT Type	:	1.9GHz DECT 6.0 Baby Monitor
FCC ID	:	VLJ80-8230-01
Trade Name	:	MOTOROLA
Model Number	:	MBP11PU
Battery Type	:	Ni-MH Battery (2.4V, 400mAh)
Test Device	:	Production Unit
Tx Frequency	:	1921.536 -1928.448 MHz (UPCS)
Max. RF Conducted Power	:	0.105 W (20.20dBm) UPCS
Max. SAR Measurement	:	0.000386 W/kg UPCS Muscle SAR
Antenna Type	:	Fixed Type
Antenna Gain	:	0dBi
Device Category	:	Portable
RF Exposure Environment	:	General Population / Uncontrolled
Application Type	:	Certification
Adapter Information	:	Model: VT0602
		Input : 100-120V, 50-60Hz, 150mA
		Output: 6.0VDC, 450mA

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in Standard C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2003.

2. Introduction

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user of **Binatone Electronics International Limited Trade Name: MOTOROLA Model(s): MBP11PU.** The test procedures, as described in American National Standards, Institute C95.1 - 1992

[1], FCC/OET Bulletin 65 Supplement C [July 2001] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

3. SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = RMS electric field strength (V/m)

* Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane $\{2\}$

4. SAR Measurement Setup

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than \pm 0.025mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length = 300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick) and remote control, and is used to drive the robot motors. The Measurement Server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE4 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The PC consists of the Intel Pentium 4 2.4GHz computer with Windows XP system and SAR Measurement Software DASY5, Post Processor SEMCAD, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection...etc. is connected to the Electro-optical converter (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the Measurement Server.

The DAE4 (or DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in $\{3\}$.

Figure 1. SAR Lab Test Measurement Setup

5. System Components

5.1 DASY5 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration(3) and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

5.1.1 E-Field Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

System

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.q., glycol)

Calibration In air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at frequencies of 1900MHz and 2000MHz

(accuracy ±8%)

Calibration for other liquids and frequencies upon

request

Frequency 10 MHz to > 6 GHz; Linearity: ±0.2 dB

(30 MHz to 3 GHz)

Directivity $\pm 0.2 \text{ dB}$ in brain tissue

(rotation around probe axis)

± 0.4 dB in brain tissue

(rotation normal probe axis)

Dynamic Range 5 μ W/g to > 100mW/g; Linearity: ±0.2dB

Surface Detection ± 0.2 mm repeatability in air and clear liquids

over diffuse reflecting surface(ET3DV6 only)

Dimensions Overall length: 330mm

Tip length: 16mm

Body diameter: 12mm
Tip diameter: 6.8mm

Distance from probe tip to dipole centers: 2.7mm

Application General dosimetry up to 3GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

Figure 2. E-field Probe

Figure 3. Probe setup on robot

5.1.2 E-Field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure described in (4) with accuracy better than \pm 10%. The spherical isotropy was evaluated with the procedure described in (5) and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1GHz, and in a wave guide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or SAR =
$$\frac{|E|^2 \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

5.2 Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Pentium 4

Clock Speed: 2.4GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY5 v5.0 (Build 125) & SEMCAD v13.4 (Build 125)

Connecting Lines: Optical downlink for data and status info

Optical uplink for commands and clock

5.3 Robot

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.025 mm

No. of Axis: 6

5.4 Measurement Server

Processor: PC/104 with a 166MHz low-power Pentium

I/O-board: Link to DAE4 (or DAE3)

16-bit A/D converter for surface detection system

Digital I/O interface Serial link to robot

Direct emergency stop output for robot

5.5 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the IEEE SCC34-SC2 and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

*Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [6]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Larger DUT cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.

Figure 4. Device Holder

5.6 Phantom - SAM v4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, EN 62209-1 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Figure 5. SAM Twin Phantom

Shell Thickness	2 ± 0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	810×1000×500 mm (H×L×W)

Table 1. Specification of SAM v4.0

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

5.7.2 Data Evaluation

The DASY5 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

Conversion factor ConvFiDiode compression point dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters : - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes :
$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$

H-field probes :
$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

with V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 $\mu \text{ V/(V/m)}^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

*Note: That the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

6. <u>Test Equipment List</u>

Manufacture	N 65 1	- 0- 11		Calibration	
r	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Field Probe	EX3DV4	3632	Jan. 19, 2011	Jan. 19, 2012
SPEAG	1900MHz System Validation Kit	D1900V2	5d111	Jul. 16, 2010	Jul. 16, 2011
SPEAG	Data Acquisition Electronics	DAE4	779	Jan. 31, 2011	Jan. 31, 2012
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	
SPEAG	Device Holder	N/A	N/A	N	CR
SPEAG	Phantom	SAM V4.0	1009	NO	CR
SPEAG	Robot	Staubli RX90L	F00/589B1/A/01	NCR	
SPEAG	Software	DASY5 V5.0 Build 125	N/A	NCR	
SPEAG	Software	SEMCAD V13.4 Build 125	N/A	NCR	
R&S	Wireless Communication Test Set	CMU200	109369	Aug. 10, 2010	Aug. 10, 2012
Agilent	Wireless Communication Test Set	E5515C	GB47020167	May 28, 2010	May 28, 2012
Agilent	ENA Series Network Analyzer	E5071B	MY42404655	Apr. 14, 2010	Apr. 04, 2012
Agilent	Dielectric Probe Kit	85070C	US99360094	NO	CR
Agilent	Wideband Power Sensor	N1921A	MY45241957	Jul. 19, 2010	Jul. 19, 2012
Agilent	Signal Generator	E8257D	MY44320425	NCR	
Agilent	Dual Directional Coupler	778D	50334	NCR	
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NO	CR
Mini-Circuits	Power Amplifier	ZVE-8G-SMA	D042005 671800514	NO	CR

Table 2. Test Equipment List

7. <u>Tissue Simulating Liquids</u>

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue. The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an E5071B Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	He	ad	Во	ody
(MHz)	ε _r	σ (S/m)	٤r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00
($\epsilon_{\rm r}$ = relative perr	nittivity, $\sigma = cc$	onductivity an	d ρ = 1000 kg	J/m³)

Table 3. Tissue dielectric parameters for head and body phantoms

7.1 Ingredients

The following ingredients are used:

- Water: deionized water (pure H_20), resistivity \geq 16 M Ω -as basis for the liquid
- Sugar: refied white sugar (typically 99.7 % sucrose, available as crystal sugar in food shops)
 to reduce relative permittivity
- Salt: pure NaCl -to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS #
 54290 -to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 -to prevent the spread of bacteria and molds
- DGBE: Diethylenglycol-monobuthyl ether (DGBE), Fluka Chemie GmbH, CAS # 112-34-5 -to reduce relative permittivity

7.2 Recipes

The following tables give the recipes for tissue simulating liquids to be used in different frequency bands

Note: The goal dielectric parameters (at 22 $^{\circ}$ C) must be achieved within a tolerance of ±5% for ϵ and ±5% for σ .

Liquid type	HSL 1	950-B		
Ingredient	Weight (g)	Weight (%)		
Water	554.12	55.41		
DGBE	445.08	44.51		
Salt	0.80	0.08		
Total amount	1,000.00	100.00		
Goal dielectric parameters				
Frequency [MHz]	1800-2000			
Relative Permittivity	40.0			
Conductivity [S/m]	1.4	40		

Liquid type	MSL 1	950-B		
Ingredient	Weight (g)	Weight (%)		
Water	697.94	69.79		
DGBE	300.03	30.00		
Salt	2.03	0.20		
Total amount	1,000.00	100.00		
Goal dielectric parameters				
Frequency [MHz]	1800-2000			
Relative Permittivity	53.3			
Conductivity [S/m]	1.5	52		

7.3 Liquid Confirmation

7.3.1 Parameters

Liquid Verify									
Ambient Temperature: 22 ± 2 °C; Relative Humidity: 40 -70%									
Liquid Type	Frequency	Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date	
	4050MU-	22.0	εr	40.0	38.4	-4.00%	± 5 %		
	1850MHz	22.0	σ	1.40	1.35	-3.57 %	± 5 %	Measured Date May 24, 2011 May 24, 2011	
1900MHz	1000011-	22.0	εr	40.0	38.2	-4.50 %	± 5 %		
Head	1900MHz	22.0	σ	1.40	1.37	-2.14%	± 5 %		
	4020MI I-	22.0	εr	40.0	38.1	-4.75%	± 5 %		
	1930MHz	22.0	σ	1.40	1.40	0.00 %	± 5 %		
	40500411-	00.0	εr	53.3	52.2	-2.06%	± 5 %		
	1850MHz	22.0	σ	1.52	1.45	-4.61%	± 5 %		
1900MHz	40000411-	00.0	εr	53.3	52.0	-2.44%	± 5 %		
Body	1900MHz	22.0	σ	1.52	1.50	-1.32%	± 5 %	May 24, 2011	
	4000001	00.0	εr	53.3	52.0	-2.44%	± 5 %		
	1930MHz	22.0	σ	1.52	1.53	0.66%	± 5 %		
	Table 4.	Measure	d Tissue diel	ectric pa	rameters for	head and bo	dy phanto	ms	

7.3.2 Liquid Depth

The liquid level was during measurement 15cm $\,\pm 0.5 \text{cm}.$

Figure 6. Head-Tissue-Simulating-Liquid

Figure 7. Body-Tissue-Simulating-Liquid

8. Measurement Process

8.1 Device and Test Conditions

The Test Device was provided by **Binatone Electronics International Limited** for this evaluation. The spatial peak SAR values were assessed for the middle channel defined by UPCS (Ch2 = 1924.992MHz) systems. The antenna(s), battery and accessories shall be those specified by the manufacturer. The battery shall be fully charged before each measurement and there shall be no external connections.

Usage		Operates with normal mode by client				
Distance between antenna axis at the joint and the liquid surface:		For Muscle, EUT back to phantom with non-removable belt clip.				
Simulating human E	Brain/Muscle	Muscle				
EUT Battery		Fully-charged with Ni-MH batteries.				
Conducted power	Ch	annel	Frequency MHz	Before SAR Test (dBm)	After SAR Test (dBm)	
	Middle Channel -	2	1924.992	20.20	20.18	

8.2 General description of the test procedures

The Parent unit was tested using a connection to the fix part to keep the device transmitting at maximum power during the SAR measurements .All tests were performed in that configuration, which generates the highest time based averaged output power single full slot with duty cycle 1:24.

8.3 System Performance Check

8.3.1 Symmetric Dipoles for System Validation

Construction

Symmetrical dipole with I/4 balun enables measurement of feed point impedance with NWA matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor Calibration Calibrated SAR value for specified position and input power at the flat phantom in brain simulating solutions.

Frequency 900, 1800, 1900 MHz

Return Loss > 20 dB at specified validation position

Power Capability > 100 W (f < 1 GHz); > 40 W (f > 1 GHz)

Options

Dipoles for other frequencies or solutions and other calibration conditions are available upon request

Dimensions

D1900V2: dipole length 62 mm; overall height 300 mm

Figure 8. Validation Kit

8.3.2 Validation

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 7%. The validation was performed at 1900MHz.

Validation kit		Mixture	SAR _{1g}	SAR _{10g}	I	Date of Ca	alibration	
		Type	[mW/g]	[mW/g]	Last	Cal.	Due Date	
D1900V2 – SN5d111		Head	39.9	21.0	Jul. 16	, 2010	Jul. 16, 2011	
		Body	41.9	22.5			Jul. 16, 2011	
Frequency (MHz)	Power	SAR _{1g}	SAR _{10g}	Drift (dB)		rence entage	Date	
(1411 12)		(mW/g)	(mW/g)	(ub)	1g	10g	Due Date Jul. 16, 2011 Jul. 16, 2011	
1900	250mW	9.79	5.11	0.013	-1.9 %	-2.7 %	May 24, 2011	
(Head)	Normalize to 1 Watt	39.16	20.44	0.013	-1.9 70	-2.1 70	Due Date Jul. 16, 2011 Jul. 16, 2011 Date May 24, 2011	
1900	250mW	10.9	5.69	-0.070	4.1 %	1.2 %	May 24, 2011	
(Body)	Normalize to 1 Watt	43.6	22.76	-0.070	4.1 /0	1.2 /0	way 24, 2011	

Detail results see Appendix A.

Z-axis Plot of System Performance Check

Head-Tissue-Simulating-Liquid 1900MHz

Body-Tissue-Simulating-Liquid 1900MHz

8.4 Dosimetric Assessment Setup

8.4.1 Body Test Position

Body - Worn Configuration

Body - Worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device.

Body - Worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 15 mm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances.

For this test:

The EUT is placed into the holster/belt clip and the holster is positioned against the surface of the
phantom in a normal operating position.
Since this EUT doesn't supply any body-worn accessory to the end user, a distance of 2 mm was
tested to confirm the necessary "minimum SAR separation distance".

(*Note: This distance includes the 2 mm phantom shell thickness.)

8.4.2 Measurement Procedures

The evaluation was performed with the following procedures:

Surface Check:

A surface checks job gathers data used with optical surface detection. It determines the distance from the phantom surface where the reflection from the optical detector has its peak. Any following measurement jobs using optical surface detection will then rely on this value. The surface check performs its search a specified number of times, so that the repeatability can be verified. The probe tip distance is 1.3mm to phantom inner surface during scans.

Reference:

The reference job measures the field at a specified reference position, at 4 mm from the selected section's grid reference point.

Area Scan:

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines can find the maximum locations even in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. Any following zoom scan within the same procedure will then perform fine scans around these maxima. The area covered the entire dimension of the EUT and the horizontal grid spacing was $15 \text{ mm} \times 15 \text{ mm}$.

Zoom Scan:

Zoom scans are used to assess the highest averaged SAR for cubic averaging volumes with 1 g and 10 g of simulated tissue. The zoom scan measures $7 \times 7 \times 9$ points in a 30 x 30 x 24 mm cube whose base faces are centered around the maxima returned from a preceding area scan within the same procedure.

Drift:

The drift job measures the field at the same location as the most recent reference job within the same procedure, with the same settings. The drift measurement gives the field difference in dB from the last reference measurement. Several drift measurements are possible for each reference measurement. This allows monitoring of the power drift of the device in the batch process. If the value changed by more than 5%, the evaluation was repeated.

8.5 Spatial Peak SAR Evaluation

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of ($30 \times 30 \times 24 \text{ mm}^3$) ($7 \times 7 \times 9 \text{ points}$). The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into three stages:

Interpolation and Extrapolation

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and SAR extrapolation routines. The interpolation, Maxima Search and extrapolation routines are all based on the modified Quadratic Shepard's method [7].

9. <u>Measurement Uncertainty</u>

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 20.10 \%$ [8].

According to Std. C95.3[9], the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

According to CENELEC [10] , typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

Uncertainty Component	Uncertainty Value	Probability Distribution	Divisor	<i>c_i</i> (1g)	<i>c_i</i> (10g)	Standard Uncertainty ±1% (1-g)	Standard Uncertainty ±1% (10-g)	v _i or V _{eff}
Measurement System								
Probe Calibration (k=1)	±5.5 %	Normal	1	1	1	±5.5 %	±5.5 %	8
Probe Isotropy	±7.6 %	Rectangular	$\sqrt{3}$	0.7	0.7	±3.1 %	±3.1 %	8
Boundary Effect	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	8
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	8
System Detection Limit	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.58 %	±0.58 %	8
Readout Electronics	±0.3 %	Normal	1	1	1	±0.3 %	±0.3 %	8
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	8
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	1	±1.5 %	±1.5 %	8
RF Ambient Conditions	±0 %	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	8
RF Ambient Reflections	±0 %	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	8
Probe Positioner Mechanical Tolerance	±0.4 %	Rectangular	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	8
Probe Positioning with respect to Phantom Shell	±2.9 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	8
Extrapolation, interpolation and integration Algorithms for Max. SAR	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	80
Test sample Related								
Test sample Positioning	±3.6 %	Normal	1	1	1	±3.6 %	±3.6 %	89
Device Holder Uncertainty	±3.5 %	Normal	1	1	1	±3.5 %	±3.5 %	5
Output Power Variation - SAR drift measurement	±5.0 %	Rectangular	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
Phantom and Tissue Paramet	ters		_					
Phantom Uncertainty (shape and thickness tolerances)	±4.0 %	Rectangular	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞
Liquid Conductivity - deviation from target values	±5.0 %	Rectangular	$\sqrt{3}$	0.64	0.43	±1.8 %	±1.2 %	∞
Liquid Conductivity - measurement uncertainty	±1.93 %	Normal	1	0.64	0.43	±1.24 %	0.83 %	69
Liquid Permittivity - deviation from target values	±5.0 %	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7 %	±1.4 %	∞
Liquid Permittivity - measurement uncertainty	±1.4 %	Normal	1	0.6	0.49	±0.84 %	±1.69 %	69
Combined standard unce	rtainty	RSS				±10.05 %	±9.98 %	313
Expanded uncertaint (95% CONFIDENCE LEV		k=2				±20.10 %	±19.96 %	

Table 5. System uncertainty: 300MHz -3000MHz

Uncertainty Component	Uncertainty Value	Probability Distribution	Divisor	c _i (1g)	c _i (10g)	Standard Uncertainty ±1% (1-g)	Standard Uncertainty ±1% (10-g)	v _i or V _{eff}
Measurement System								
Probe Calibration	±6.55 %	Normal	1	1	1	±6.55 %	±6.55 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0	0	±0 %	±0 %	∞
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6,%	±0.6 %	∞
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	∞
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Modulation Response	±0 %	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	∞
Readout Electronics	±0.3 %	Normal	1	1	1	±0.3 %	±0.3 %	∞
Response Time	±0 %	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	∞
Integration Time	±0 %	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	∞
RF Ambient Noise	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	8
RF Ambient Reflections	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Probe Positioner	±0.8 %	Rectangular	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	∞
Probe Positioning	±6.7 %	Rectangular	$\sqrt{3}$	1	1	±3.9 %	±3.9 %	8
Max. SAR Eval.	±2.0 %	Rectangular	$\sqrt{3}$	1	1	±1.2 %	±1.2 %	∞
Dipole Related	-							
Deviation of exp. dipole	±5.5 %	Rectangular	$\sqrt{3}$	1	1	±3.2 %	±3.2 %	8
Dipole Axis to Liquid Dist.	±2.0 %	Rectangular	$\sqrt{3}$	1	1	±1.2 %	±1.2 %	8
Input power & SAR drift	±3.4 %	Rectangular	$\sqrt{3}$	1	1	±2.0 %	±2.0 %	8
Phantom and Setup								
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	8
SAR correction	±1.9 %	Rectangular	$\sqrt{3}$	1	0.84	±1.1 %	±0.9 %	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.78	0.71	±2.0 %	±1.8 %	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.26	0.26	±0.7 %	±0.7 %	∞
Temp. uncConductivity	±1.7 %	Rectangular	$\sqrt{3}$	0.78	0.71	±0.8 %	±0.7 %	8
Temp. uncPermittivity ±0.3 %		Rectangular	$\sqrt{3}$	0.23	0.26	±0.0 %	±0.0 %	∞
Combined standard unce	RSS				±10.16 %	±10.1 %		
Expanded uncertain	ty	k=2				±20.3 %	±20.2 %	

Table 6. Uncertainty Budget for System Validation for the 0.3 -6 GHz range

10. SAR Test Results Summary

10.1 UPCS Muscle SAR

Measurement Results									
Band	Fred	quency	Battery	Phantom	Accessory	SAR _{1g} [mW/g]	Power Drift (dB)	Amb Temp	Remark
	CH	MHz	,	Position					
UPCS	2	1924.992	Ni-MH	Flat	N/A	0.0003860	-0.111	22.0	Surface Back to phantom
Std. C95.1-1992 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population					1.6 W/kg (mW/g) Averaged over 1 gram				

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

Muscle SAR Measurement _ CH2 _ Surface Back to phantom

10.2 Std. C95.1-1992 RF Exposure Limit

Human Exposure	Population Uncontrolled Exposure (W/kg) or (mW/g)	Occupational Controlled Exposure (W/kg) or (mW/g)		
Spatial Peak SAR* (head)	1.60	8.00		
Spatial Peak SAR** (Whole Body)	0.08	0.40		
Spatial Peak SAR*** (Partial-Body)	1.60	8.00		
Spatial Peak SAR**** (Hands / Feet / Ankle / Wrist)	4.00	20.00		

Table 7. Safety Limits for Partial Body Exposure

Notes:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments : are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / Controlled Environments: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

11. Conclusion

The SAR test values found for the portable mobile phone **Binatone Electronics International Limited Trade Name: MOTOROLA Model(s): MBP11PU** is below the maximum recommended level of 1.6 W/kg (mW/g).

12. References

- [1] Std. C95.1-1992, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Poković, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Poković, T. Schmid, and N. Kuster, "*E-field probe with improved isotropy in brain simulating liquids*", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, *Dosimetric evaluation of mobile communications equipment with known precision*, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), *Human Exposure to Electromagnetic Fields High-frequency*: 10KHz-300GHz, Jan. 1995.

Appendix A - System Performance Check

Test Laboratory: A Test Lab Techno Corp.

Date/Time: 5/24/2011 9:14:58 PM

System Performance Check at 1900MHz_20110524_Head

DUT: Dipole D1900V2_SN5d111; Type: D1900V2; Serial: D1900V2 - SN:5d111

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(8.02, 8.02, 8.02); Calibrated: 1/19/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 1/31/2011
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 125;SEMCAD X Version 13.4 Build 125

System Performance Check at 1900MHz/Area Scan (61x61x1):

Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.6 mW/g

System Performance Check at 1900MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.1 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 9.79 mW/g; SAR(10 g) = 5.11 mW/gMaximum value of SAR (measured) = 12.4 mW/g

Test Laboratory: A Test Lab Techno Corp.

Date/Time: 5/24/2011 9:48:49 AM

System Performance Check at 1900MHz_20110524_Body

DUT: Dipole D1900V2_SN5d111; Type: D1900V2; Serial: D1900V2 - SN:5d111

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 1/19/2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 1/31/2011
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 125;SEMCAD X Version 13.4 Build 125

System Performance Check at 1900MHz/Area Scan (61x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 14.1 mW/g

System Performance Check at 1900MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.7 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 19.9 W/kg

SAR(1 g) = 10.9 mW/g; SAR(10 g) = 5.69 mW/gMaximum value of SAR (measured) = 13.9 mW/g

0 dB = 13.9 mW/g

Appendix B -SAR Measurement Data

Test Laboratory: A Test Lab Techno Corp.

Date/Time: 5/25/2011 6:54:49 AM

Flat_DECT CH2_Surface Back to phantom_Muscle_belt clip_Ni-MH

DUT: MBP11PU; Type: 1.9GH DECT 6.0 Baby Monitor; FCC ID:VLJ80-8230-01

Communication System: DECT; Frequency: 1924.992 MHz; Duty Cycle: 1:24 Medium parameters used: f = 1924.992 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 1/19/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 1/31/2011
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1150 and higher
- Measurement SW: DASY5, V5.0 Build 125;SEMCAD X Version 13.4 Build 125

Flat/Area Scan (71x141x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.000878 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 0.229 V/m; Power Drift = -0.111 dB

Peak SAR (extrapolated) = 0.00384 W/kg

SAR(1 g) = 0.000386 mW/g; SAR(10 g) = 0.0000639 mW/gMaximum value of SAR (measured) = 0.00209 mW/g

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D1900V2 SN:5d111 Calibration No.D1900V2-5d111_Jul10
- Probe _ EX3DV4 SN:3632 Calibration No.EX3-3632_Jan11
- DAE _ DAE4 SN:779 Calibration No.DAE4-779_ Jan11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ATL (Auden)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d111 Jul10

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d111

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

July 16, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Direce Iliev	Laboratory Technician	Diller

Issued: July 19, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Katja Pokovic

Approved by:

Technical Manager

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servicio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	40.3 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature during test	(22.4 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.28 mW / g
SAR normalized	normalized to 1W	21.1 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(22.4 ± 0.2) °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Candition	
SAR measured	250 mW input power	10.6 mW / g
SAR normalized	normalized to 1W	42.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.66 mW / g
SAR normalized	normalized to 1W	22.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.5 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.7 Ω + 6.6 jΩ	
Return Loss	- 23.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.7 Ω + 6.5 jΩ	
Return Loss	- 22.5 dB	

General Antenna Parameters and Design

The state of the s	
Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 28, 2008	

DASY5 Validation Report for Head TSL

Date/Time: 16.07.2010 13:15:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d111

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.6 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.28 mW/g

Maximum value of SAR (measured) = 12.4 mW/g

0 dB = 12.4 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 13.07.2010 12:57:16

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d111

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ mho/m}$; $\varepsilon_c = 53.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04,2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.7 V/m; Power Drift = 0.00345 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.66 mW/g

Maximum value of SAR (measured) = 13.3 mW/g

0 dB = 13.3 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

ATL (Auden)

Client

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3632_Jan11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3632

Calibration procedure(s) QA CAL-01.v7, QA CAL-12.v6, QA CAL-23.v4 and QA CAL-25.v3

Calibration procedure for dosimetric E-field probes

Calibration date: January 19, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01135)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01138)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: \$5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8548C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	J-20
Approved by:	Katja Pokovic	Technical Manager	2011

Issued: January 20, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zoughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax.y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3632

Manufactured: November 1, 2007 Last calibrated: January 26, 2010 Recalibrated: January 19, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 SN:3632

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m)²) ^A	0.46	0.44	0.39	± 10.1%
DCP (mV) ^B	97.4	94.9	97.4	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000 CW	cw	0.00	Х	0.00	0.00	1.00	133.3	± 3.4 %
			Y	0.00	0.00	1.00	110.0	
			Z	0.00	0.00	1.00	125.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^h The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter, uncertainty not required.

EUncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 SN:3632

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
450	±50/±100	$43.5\pm5\%$	0.87 ± 5%	9.40	9.40	9.40	0.12	2.85 ± 13.3%
750	±50/±100	41.9 ± 5%	$0.89 \pm 5\%$	9.51	9.51	9.51	0.67	0.64 ± 11.0%
835	±50/±100	41.5 ± 5%	$0.90 \pm 5\%$	9.09	9.09	9.09	0.66	0.64 ± 11.0%
1810	±50/±100	40.0 ± 5%	$1.40 \pm 5\%$	8.16	8.16	8.16	0.51	0.74 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	$1.40 \pm 5\%$	8.02	8.02	8.02	0.58	0.68 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	$1.80 \pm 5\%$	7.28	7.28	7.28	0.33	0.91 ± 11.0%

¹² The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

DASY/EASY - Parameters of Probe: EX3DV4 SN:3632

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	±50/±100	$56.7 \pm 5\%$	$0.94 \pm 5\%$	10.05	10.05	10.05	0.05	1.80 ± 13.3%
750	±50/±100	$55.5 \pm 5\%$	$0.96 \pm 5\%$	9.33	9.33	9.33	0.78	0.63 ± 11.0%
835	±50/±100	$55.2 \pm 5\%$	$0.97 \pm 5\%$	9.28	9.28	9.28	0.73	0.66 ± 11.0%
1810	$\pm 50 / \pm 100$	53.3 ± 5%	$1.52 \pm 5\%$	7.57	7.57	7.57	0.83	0.60 ± 11.0%
1900	$\pm 50 / \pm 100$	$53.3 \pm 5\%$	1.52 ± 5%	7.39	7.39	7.39	0.67	0.65 ± 11.0%
2450	±50/±100	52.7 ± 5%	$1.95 \pm 5\%$	7.23	7.23	7.23	0.28	1.07 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Típ to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

client ATL (Auden)	AND SHOTHER	C	Certificate No: DAE4-1/9_Jan 11
CALIBRATION (CERTIFICATE		
Object	DAE4 - SD 000 D	04 BJ - SN; 779	
Calibration procedure(s)	QA CAL-06.v22 Calibration proces	dure for the data acquis	sition electronics (DAE)
Calibration date:	January 31, 2011		
The measurements and the unce	rtainties with confidence proceed in the closed laboratory	obability are given on the followi	e physical units of measurements (SI), ring pages and are part of the certificate, ure (22 ± 3) °C and humidity < 70%.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004		In house check: Jun-11
Calibrated by:	Name Andree Guntli	Function Technician	Signature
Approved by:	Fin Bomholt	R&D Director	i.V Rouno
			lowed beauty 24 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-779_Jan11

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: 1LSB = full range = -100...+300 mV full range = -1.....+3mV 6.1µV, Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.517 ± 0.1% (k=2)	403.748 ± 0.1% (k=2)	403.972 ± 0.1% (k=2)
Low Range	3.96927 ± 0.7% (k=2)	3.98585 ± 0.7% (k=2)	3.99915 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	155.5 ° ± 1 °

Certificate No: DAE4-779_Jan11 Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	200001.8	6.19	0.00
Channel X + Input	20003.75	4.25	0.02
Channel X - Input	-19996.56	3.04	-0.02
Channel Y + Input	200005.0	0.90	0.00
Channel Y + Input	20000.78	1.38	0.01
Channel Y - Input	-19996.43	2.97	-0.01
Channel Z + Input	200002.2	-1.15	-0.00
Channel Z + Input	19999.59	0.19	0.00
Channel Z - Input	-19995.05	4.35	-0.02

Low Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	2000.4	0.25	0.01
Channel X + Input	200.27	0.37	0.18
Channel X - Input	-199.08	1.12	-0.56
Channel Y + Input	2000.1	0.19	0.01
Channel Y + Input	199.01	-0.89	-0.45
Channel Y - Input	-199.30	0.50	-0.25
Channel Z + Input	1999.6	-0.40	-0.02
Channel Z + Input	199.22	-0.88	-0.44
Channel Z - Input	-200.27	-0.37	0.19

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.66	-5.39
	- 200	5.82	4.90
Channel Y	200	13.39	13.58
	- 200	-14.98	-15.16
Channel Z	200	2.20	2.53
	- 200	-4.84	-4.61

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	1.33	-0.57
Channel Y	200	1.97		3.29
Channel Z	200	1.19	-0.28	(#)

4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15613	15134
Channel Y	15831	16218
Channel Z	16150	17743

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.26	-1.03	0.79	0.42
Channel Y	0.52	-1.04	2.07	0.58
Channel Z	-2.22	-3.25	-0.85	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9