Задачи 2018 года

Задачи 4 класса

Задача 1. Где-то я это уже видел

А. Первое число в дате (оно соответствует дню в месяце) меняется от 1 до 31, а второе (соответствует месяцу) — от 1 до 12. С другой сторооны, как мы знаем, часы пронумерованы от 0 до 23, а минуты — от 0 до 59.

Таким образом, днём в месяце и одновременно часом могут быть числа от 1 до 23, а месяцем и одновременно минутой — от 1 до 12. Кроме того, в каждом месяце точно есть хотя бы 23 дня.

Поэтому ответ — $23 \cdot 12 = 276$.

- **В.** Давайте всегда использовать «развёрнутую» дату. Тогда любой месяц (от 1 до 12) может стоять на месте часа, а любой день (от 1 до 31) на месте минуты. Ответ все дни в году.
- **С.** Есть всего 12 букв русского алфавита, похожих на буквы английского алфавита (ГОСТ Р 50577-93):

Жирным мы отметили гласные — их всего 4; соответственно, согласных 8. Выбрать сочетание «гласная-согласная-согласная» можно $4\cdot 8\cdot 8$ способами, а «гласная-гласная-согласная» — $4\cdot 4\cdot 8$ способами. Вариантов для числа на номере всегда ровно 1000 — от 000 до 999.

Когда гласная одна, она может стоять на одном из трёх мест, поэтому ответ в таком случае будет равен

Когда гласных две, согласная может стоять на одном из трёх мест. Поэтому ответ —

 $3 \cdot 4 \cdot 4 \cdot 8 \cdot 1000$.

Задача 2. Напрасно называют север крайним

- **А.** Это задача—шутка: принималось большинство ответов, хотя, например понятно, что туристическая группа на 10-градусном морозе отморозит себе половину ног, а на 20-градусном все.
- **В.** Все долготы Земного шара оказываются очень близко друг к другу около полюсов. Так что, возможно, Мюнхгаузен просто обошёл по кругу (скажем, километровому) Северный или Южный полюс.
- **С.** Пусть четыре города B, C, D и E расположены очень близко друг к другу попарно на расстоянии в один километр. А пятый город A очень далеко, в 100 километрах. Пусть больше нет никаких городов. Тогда A должен быть соединён дорогой с какими-то из четырёх оставшихся городов, но ни один из тех городов не должен быть соединён с A.

Задача 3. Разрезания

А. Поделим каждую из сторон квадрата на семь равных отрезков и рассмотрим 28 треугольников, получающихся, если соединить центр квадрата с краями каждого из этих отрезков. Все эти треугольники имеют одинаковую площадь (так как у них одинаковы основание и высота) и равные длины сторон, лежащие на сторонах квадрата (по построению).

Чтобы получить 7 многоугольников, требуемых в условии, объединим по четыре соседних треугольника — смотреть рисунок:

- В. Смотреть рисунок выше.
- **С.** Аналогично тому, что было проделано в первом пункте данной задачи, мы умеем резать квадрат на три многоугольника равной площади с равной длиной сторон, лежащих на сторонах квадрата.

Разрежем каждый квадратный «слой» пирамиды на три таких многоугольника одинаковым образом (с точностью до подобия). Тогда в объединении всех слоёв получатся три многогранника одинакового объёма, несущие на себе одинаковое количество краски («выходящие» на стороны пирамиды одинаковой площадью своей границы).

Смотреть рисунок:

Задача 4. Летающий цирк

А. Все слова в этой задаче состоят из букв A, M, P, C, T. Постараемся поставить эти буквы в соответствие с действиями Лэмберта. Для этого составим таблицу: сколько каких букв находится в словах, адресованных Лэмберту.

	A	M	P	С	Т
MATPAC	2	1	1	1	1
CTAPT	1	0	1	1	2
MAPC	1	1	1	1	0

Услышав слово «**MATPAC**», Лэмберт среди прочего поёт два куплета из песни — значит, буква 'A' отвечает за куплеты. По аналогичным причинам (посмотрим, каких букв две в слове «**CTAPT**»), 'T' — это ноги в коробке. 'M' — это то, чего нет в слове «**CTAPT**», но есть в «**MATPAC**» — это надевание ведра.

Для 'P' и 'C' остаются снятие перчаток и "Караул!" — но нам неважно, что из действий какой букве соответствует, потому что 'P' и 'C' встречаются во всех рассматриваемых словах по одному разу.

Отсюда ответ: Лэмберт закричит "Караул!", споёт один куплет, наденет на голову ведро и снимет перчатки.

- **В.** Да, джентльмен сможет купить себе шляпу, так как цена, называемая продавцом, не возрастает (пока финансовые возможности джентльмена остаются ниже её), а количество финансов, имеющееся у джентльмена, на каждом шаге растёт ровно на 1.
 - Можно также явно проделать процедуру, описанную в задаче, и выяснить, через сколько именно шагов шляпа окажется у джентльмена (получится точно меньше десяти) но мы не будем делать этого здесь, оставив читателю в качестве упражнения.
- **С.** Пусть Тревор преувеличивает всё в a раз, а Джереми преуменьшает в b раз, а кот стоит s рублей. Тогда, из условия задачи,

$$s \cdot a = 9600$$

$$a \div b = 4$$

$$s \cdot a \div b = 2400$$

$$s \div b = 150$$

Сравнив первое и третье равенства, получаем, что b=4. Подставив найденное b в четвертое равенство, получим s=600.

Задача 5. Мощения

А. Из этой фигуры можно собрать горизонтальную полоску ширины 2, которой очевидно можно замостить плоскость (смотреть рисунок).

Сборник задач олимпиады «Математика НОН-СТОП»

- В. Из второй фигуры можно собрать горизонтальную полоску ширины 3, которой очевидно можно замостить плоскость. Из первой же фигуры соберём «лесенку» (смотреть рисунок выше): так как и верхний, и нижний её край имеет вид «на три клетки вправо-на клетку вверх», этой лесенкой можно замостить плоскость, прикладывая её к себе.
- С. Смотреть рисунок:

Задача 6. Ужасный гадкий аккуратный подсчёт

А. Квадратов $1\times 1-4\cdot 5=20$ штук. Квадратов размером $2\times 2-3\cdot 4=12$ штук. Квадратов 3×3 и $4\times 4-6$ и 2 соответственно. Таким образом, всего квадратов

$$20 + 12 + 6 + 2 = 40$$
.

Количество прямоугольников можно посчитать более «продвинутым» образом: заметим, что прямоугольников размером $a \times b$ (где a — высота, b — ширина, то есть, мы различаем прямоугольники 2×3 и 3×2) можно найти ровно $(4-a+1) \cdot (5-b+1)$ штук. Число a меняется от 0 до 4 — отсюда 4-a+1 меняется в тех же пределах. То же самое с 5-b+1 — оно меняется от 0 до 5.

Отсюда можно заключить, что сумма чисел вида $(4-a+1)\cdot (5-b+1)$ при всевозможных a и b будет равна сумме всех чисел вида $a\cdot b$. Как посчитать сумму всех чисел вида $a\cdot b$? Заметим, что при раскрытии скобок в произведении

$$(1+2+3+4+5) \cdot (1+2+3+4)$$

получится сумма из всех слагаемых, которые нам нужны. Отсюда прямоугольников можно найти $15 \cdot 10 = 150$ штук.

- **В.** Всего раскрасок n! в «первом» секторе может стоять n цветов, в следующем n-1, и так далее. Из одной раскраски вращением круга можно получить ровно n раскрасок (включая её саму) поэтому ответ равен $\frac{n!}{n} = (n-1)!$.
- **С.** В верхней полосе может стоять один из шести имеющихся цветов. Во второй полосе любой из шести цветов, кроме уже стоящего в первой. В нижней полосе любой из цветов, кроме уже стоящего во второй. Таким образом, ответ $6 \cdot 5 \cdot 5 = 150$.

Задачи 5 класса

Задача 1. Летающий цирк

Смотреть задачу 4 варианта 4 класса.

Задача 2. Рукопожатия

- А. Давайте «расклеим» восьмёрку, превратив её в обычный круглый хоровод тогда существо, стоящее в центре восьмёрки, «продублируется». Если оно было крабом, то получится хоровод из 19 крабов и 17 пауков; в противном случае 18 крабов и 18 пауков. Если в круговом хороводе крабов больше, чем пауков, то какие-то два краба неизбежно будут держаться за лапы, что запрещено.
 - Отсюда можно заключить, что в центре стоял паук. Придумать хоровод, соответствующий условию, с пауком в центре не представляет ни малейшего труда.
- **В.** Могло оказаться так, что ровно один человек в компании выиграл машину. Построим соответствующий пример. Возьмём «победителя» у него есть пять друзей. У каждого из них есть ещё по четыре друга (кроме выигравшего машину), пусть все эти друзья различны. $1+5+4\cdot 5$ у нас получилось 26 человек, от каждого из которых не более чем два рукопожатия до выигравшего машину человека.

Однако, для того чтобы довести пример до конца, нам надо установить дружеские связи между людьми, у которых их пока меньше 5— а именно, между теми, от кого до победителя лотереи два рукопожатия (их 20 человек). Каждому из них нужно «изобрести» ещё по 4 друга.

Поступим просто: поставим эти 20 человек по кругу в произвольном порядке и назначим друзьями каждого двух его правых соседей и двух его левых соседей. Задача решена.

С. Пусть внутренних рейсов в Авиаландии ровно M, а международных из неё — ровно N. Каждый внутренний рейс имеет в Авиаландии два «конца», а каждый международный — только один. Всего в города Авиаландии прибывает $5 \cdot 6 = 30$ рейсов. Получаем

$$2 \cdot M + N = 30.$$

Отсюда N должно быть чётным числом (так как $2 \cdot N$ — чётное).

Задача 3. Современная мебельная фабрика

- **А.** Закроем один из открытых ящиков, открыв тот, что через два ящика «налево» от него. Затем закроем его, открыв следующий, ещё через два ящика слева. На четвёртом шаге мы закроем два ящика, один из которых был противоположным исходному.
- **В.** При первом сценарии после действий Фёдора в ведре осталось $\frac{6}{10}$ красителя, разведённого там Сергеем, так как 4 литра раствора из 10 были вылиты.

При втором сценарии Фёдор сначала выливал обычный раствор, а затем — раствор с меньшей концентрацией красителя. То есть, количества красителя в ведре до выливания двух литров и после отличались в 0.8 раз. В итоге в ведре осталось $\frac{8}{10} \cdot \frac{8}{10} = 0.64$ от исходного красителя.

Ответ: больше красителя осталось во второй день.

С. Экспериментальный стул с использованием нанотехнологий (одна из инноваций заключается, например, в том, что у такого стула ровно 720 ножек) падает с лестницы (в качестве испытания, разумеется). Выяснилось, что при падении он потерял в три раза меньше ножек, чем у него бы осталось, потеряй он в три раза меньше ножек, чем у него осталось сейчас. Так сколько же ножек осталось у стула?

Пусть стул потерял t ножек. Составим уравнение:

Это линейное уравнение. Его решение — t=180. Это и есть ответ на данную задачу.

Задача 4. Игры

- А. Выигрышная стратегия есть у первого игрока: первым ходом он должен положить игровую фигуру в центр прямоугольника, разделив его на две равных непересекающихся фигуры а затем ему достаточно повторять ходы, сделанные вторым игроком в одной из фигур, симметрично в другой фигуре. Понятно, что если второй смог сделать ход, то первый тоже сможет.
- В. Выигрышная стратегия есть у второго игрока: пока он находится сзади, первый может делать только ходы по одному шагу вперёд. Второму надо следовать за ним и когда тот шагнёт в клетку №301 (второй будет стоять в 229-ой), перепрыгнуть через него и выиграть.
- С. Первому надо вырезать свою букву 'Г' по центру верхней стороны квадрата. То, что он выигрывает после этого, доказывается перебором возможных ходов второго игрока (смотреть рисунок): после каждого возможного хода первый игрок может походить так, что буква 'L' второго игрока не может быть вписана никуда.

Задача 5. Прогрессивное сложение

A. 95500 > 50095.

В. Если ни одно из трёх чисел P, Q, R не является префиксом другого, то всё просто: надо отсортировать числа лексикографически и сложить в порядке «от большего к меньшему». Если одно из чисел — префикс другого (например, P — префикс Q), то всё не так однозначно: надо сравнить их общую первую цифру и первую цирфу Q, следующую за вхождением P в Q. Если второе больше, то надо ставить Q перед P, иначе — P перед Q.

Если P — префикс Q, которое, в свю очередь, является префиксом R, или P и Q — различные префиксы R, действовать следует аналогично.

С. Нет, так не бывает:

$$P \oplus Q = P \cdot \underset{n>1}{10^n} + Q > P + Q.$$

Задача 6. Мощения

Смотреть задачу 5 варианта 4 класса.

Задачи 6 класса

Задача 1. Клиренсы

A.

$$740/2 - 175 = 195$$
 миллиметров.

В. Угол дома «поднимается» над линией, соединяющей основания ножек стула, на расстояние, равное высоте прямоугольного треугольника с гипотенузой 50 сантиметров. Эта величина максимальна, очевидно, когда треугольник равнобедренный — тогда она равна 25 см. Поэтому расстояние от сиденья до земли должно быть не меньше 25 см.

С. Треугольник, образованный центром планеты и центрами колёс автобуса, — равносторонний со стороной 10.5 см: одна из сторон равна колёсной базе, а две других — сумме радиуса планеты (10 метров) и радиуса колеса (0.5 метра).

Дорожный просвет автобуса — расстояние от его пола (который должен касаться верхней точки планеты) до прямой, соединяющей нижние точки колёс. В нашем случае — это разность R-(H-0.5), где H- высота равностороннего треугольника, а 0.5- радиус колеса.

$$H=10.5\cdotrac{\sqrt{3}}{2}$$
 $R-(H-0.5)=11-10.5rac{\sqrt{3}}{2}.$ (это примерно 1.9 метра)

Это и есть ответ на задачу.

Задача 2. Разрезания

Смотреть задачу 3 варианта 4 класса.

Задача 3. Игры

Смотреть задачу 4 варианта 5 класса.

Задача 4. Модельки

А. Свойства подобных фигур говорят нам, что объём фигур, подобных с коэффициентом k, различается в k^3 раз. Масса тела равна плотности вещества, умноженной на его объём — поэтому она также должна уменьшаться в k^3 раз при уменьшении тела в k раз.

В свою очередь, $1200 \, / \, 43^3 = 0.015$. Конечно, 15 граммов — слишком маленький вес для модельки, но это вполне объяснимо: сделана она всё-таки грубее, чем оригинальная машина, и металл в ней сравнительно более толстый.

В. Мы хотели бы отметить, что длина меридиана, 40 000 километров, это **вся окружность** Земли, а не её половина. То есть Парижский меридиан проходит через две долготы: 2.33° в. д. и 177.67° з. д.

Таким образом, самолёту нужно пролететь $40\,000$ км, затрачивая на километр 0.54 минуты. $40000 \cdot 0.54 \div 60 = 360$ (часов).

С. С одной стороны, если есть «классическая» плоская система из шестерёнок, то в ней передача вращения симметрична. С другой — можно с применением некоторой креативности придумать «несимметричную» систему. Например, такую, как на рисунке:

При вращении шестерёнки A она каждый оборот будет цепляться своим единственным зубом за шестерёнку B, и та будет вращаться. При вращении же шестерёнки B в текущем положении шестерёнок она не будет касаться A и передавать ей вращение.

Задача 5. Напрасно называют север крайним

Смотреть задачу 2 варианта 4 класса.

Задача 6. Где-то я это уже видел

Смотреть задачу 1 варианта 4 класса.

Задача 7. Ужасный гадкий аккуратный подсчёт

Смотреть задачу 6 варианта 4 класса.

Задача 8. Фургончик

- **А.** Мы знаем, что $(p_1+1)(p_2+1)=p_1p_2+15$. Если раскрыть скобки, получается $p_1+p_2=14$. Единственные простые числа, подходящие под это условие, -11 и 3. Это и есть ответ.
- **В.** Для того, чтобы выяснить, какие ноги ещё не были переставлены, нам нужно отыскать все нечётные числа между 2 и 40, не делящиеся на 3. Это 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37. Проверить, что мы выписали все нужные числа, несложно достаточно посмотреть на их остатки при делении на 6: числа должны иметь вид 6k-1 или 6k+1 (остальные остатки от деления на 6 либо чётные, либо 3). Получилось 12 чисел это ответ на задачу.
- С. Будем измерять расстояние, которое проехал Саша за день, не в километрах, а в метрах. Понятно, что расстояние между А и G равно сумме со знаками + или расстояний между городами, которые указаны в задаче. Осталось только заметить, что все расстояния в метрах (12000, 18000, 10500, 19500, ...) делятся на 3, а их предполагаемая сумма 41000 почему-то нет. Значит, в атласе дана неверная информация.

Задачи 7 класса

Задача 1. Современная мебельная фабрика

Смотреть задачу 3 варианта 5 класса.

Задача 2. Прогрессивное сложение

- **A.** 95500 > 50095.
- **В.** Если ни одно из трёх чисел P, Q, R не является префиксом другого, то всё просто: надо отсортировать числа лексикографически и сложить в порядке «от большего к меньшему». Если одно из чисел префикс другого (например, P префикс Q), то всё не так однозначно: надо сравнить их общую первую цифру и первую цирфу Q, следующую за вхождением P в Q. Если второе больше, то надо ставить Q перед P, иначе P перед Q.

Если P — префикс Q, которое, в свю очередь, является префиксом R, или P и Q — различные префиксы R, действовать следует аналогично.

С. Подойдут, например, числа a=5, b=9: $9\oplus c$ — это как минимум двузначное число, которое не может быть равно пяти.

Задача 3. На салфетке

А. Смотреть рисунок:

В. Обозначим количество узлов у треугольника Серпинского степени n через T(n).

У треугольника степени 1 — три узла, T(1)=3. Треугольник степени k+1 получается из трёх треугольников степени k поставновкой их друг на друга — при этом три пары узлов (посередине сторон нового треугольника) склеиваются в просто три узла. Таким образом,

$$T(k) = 3T(k-1) - 3 =$$

$$= 3(3T(k-2) - 3) - 3 = \dots =$$

$$= 3^{k-1} \cdot T(1) - 3^{k-1} - 3^{k-2} - \dots - 3 =$$

$$= 3^k - 3^{k-1} - 3^{k-2} - \dots - 3 =$$

$$= 3^k - \frac{3^k - 1}{3 - 1} = \frac{3^k + 1}{2}.$$

Посчитать количество отрезков в наклонном квадрате и того проще: они образуют 2n «лесенок», в каждой из которых по 2n отрезков. Поэтому ответом будет число $4n^2$.

С. Научиться рисовать треугольник Серпинского, не отрывая пера от бумаги, можно последовательно: сначала первую степень, потом вторую, потом третью...

Будем делать так: сначала будем, начиная с нижней стороны треугольника, рисовать все его «внутренности», а потом «замкнём» получающуюся картинку двумя верхними сторонами. При этом «внутренности» треугольника степени n+1- это трижды «внутренности» треугольника степени n.

Таким образом получится изображение треугольника степени 4:

а также любой другой степени, по аналогии.

Задача 4. Не модельная, а модальная!

А. Фраза $\Box \nabla X$ означает дословно следующее: для каждого дня, начиная с сегодняшнего, в какой-то момент после него случится событие X. То есть, из какого дня вперёд ни посмотри — там, в будущем,

Сборник задач олимпиады «Математика НОН-СТОП» обязательно хотя бы единожды случится событие *X*. На самом деле эта фраза эквивалентна следующей: «в бесконечное количество дней после сегодняшнего произойдёт событие *X*». Очевидно, что □▽ сегодня суббота — верно: после любого дня когдато в будущем обязательно наступит суббота.

В. Докажем, что из первой фразы следует вторая. Действительно: первая утверждает, что ▽□*X* верно для любого дня, начиная с сего-

дняшнего — в том числе и для сегодняшнего. Теперь докажем, что из второй фразы следует первая. Вторая фраза означает: начиная с какого-то дня в будущем (назовём его D) каждый день будет происходить событие X. Зная это, нам нужно доказать $\square \triangledown \square X$: для каждого дня d указать такой день после него, начиная с которого X выполняется каждый день.

Так вот если d раньше D, то D подойдёт в качестве искомого дня. Если же D раньше d, то после самого d событие X выполняется каждый день — возьмём d в качестве искомого дня.

С. Легко убедиться, что $\Box X$, ∇X , $\Box \nabla X$ и $\nabla \Box X$ — попарно неэквивалентные фразы. Пусть X_1 — «сегодня не 1 января 2000 года», X_2 — «сегодня у Пети Иванова последний звонок в школе», X_3 — «сегодня День рождения Пети Иванова», X_4 — «Пете Иванову уже исполнилось 18 лет»; достаточно проверить, что все X_i делают верными разные наборы утверждений.

Теперь докажем, что любая фраза с более длинной приставкой из □ и ▽ эквивалентна одной из приведённых ранее. Понятно, что □□ и ▽ ⊽ в любом месте приставки можно заменить на соответственно □ и ▽ без изменения смысла фразы. Значит, мы можем рассматривать только фразы, в приставке которых идёт не более одного квадратика / треугольничка подряд.

Согласно пункту В, $\Box \triangledown \Box$ можно заменить на $\triangledown \Box$ без изменения смысла фразы. Аналогично, $\triangledown \Box \triangledown$ можно заменить на $\Box \triangledown$. Поэтому любую приставку мы можем сократить до содержащей не более двух символов — а все такие мы уже перечислили.

Задача 5. Без пробуксовки

А. Машина ездит по окружности вокруг точки, где пересекаются линии, перпендикулярные переднему и заднему колёсам, проходящие через их центр. Эти линии вместе с отрезком между колёсами

машины образуют прямоугольный треугольник (см. рисунок), один из углов которого — 60 градусов, а один из катетов — 5 м.

Тогда $R=5\sqrt{3}$ (отношения сторон прямоугольного треугольника с углом 60° — известные величины).

В. Теперь нас интересует высота прямоугольного равнобедренного треугольника с основанием 1.8 м. Она равна 0.9 м. То есть погрузчик ездит вокруг точки, расположенной на 0.9 м левее, чем середина его левого борта.

С. Аналогично первому пункту данной задачи, найдём расстояние от не поворачивающегося колеса до точки, вокруг которой ездит автобус. Оно равно $\frac{9}{\sqrt{3}}=3\sqrt{3}$: опять же, мы, зная один из катетов прямоугольного треугольника с углом 60° , ищем другой.

Теперь заметим, что среднее и заднее колёса, а также точка, вокруг которой ездит автобус, образуют прямоугольный треугольник с ка-

тетами 3 и $3\sqrt{3}$ метра. Значит, его углы — 30 и 60 градусов. Отсюда заднее колесо нужно повернуть на 30 градусов.

Задача 6. Как провожают транспортёры...

- **А.** Если наблюдатель движется со скоростью $\frac{1}{3}v$ навстречу транспортёру, собственная скорость которого равна $\frac{1}{6}v$, их скорость сближения равна $\frac{1}{2}v$ то есть, для наблюдателя этот транспортёр выглядит всего лишь в два раза медленннее, чем исходный.
 - В такой ситуации взрослый питон проехал бы мимо наблюдателя за 28 секунд. Но питон–детёныш короче, и для его проезда понадобится $28 \cdot \frac{3}{4} = 21$ секунда.
- **В.** Чтобы не обманываться длинами кубиков (как это сделало большинство участников олимпиады), мы на время заменим их на передние их точки относительно движения транспортёра. Расстояние между этими точками будет равно 15 сантиметров.
 - При попадании на более быстрый транспортёр расстояние между этими точками увеличится вдвое и составит 30 см. Чтобы получить расстояние между кубиками, из этой величины надо вычесть 5 сантиметров получится 25 см.
 - Распространённая ошибка заключалась в том, что участники олимпиады умножали на 2 расстояние между концом первого кубика и началом второго. Это неправомерно, потому что две названные точки играют разную роль, и умножать расстояние между ними на 2 при решении задачи это как мерить половину прыгунов в длину по дальней точке касания, а половину по ближней.
- **С.** Очевидно, что оптимальное деление песка между транспортёрами происходит тогда, когда они заканчивают работу одновременно: иначе у опустевшего транспортёра остаётся ресурс, когда он простаивает, а второй транспортёр работает вместо двоих.
 - Поэтому песок нужно поделить в отношении 2:1, отдав в два раза больше в два раза болье быстрому транспортёру. Получится $400\,\mathrm{kr}$ первому и $800\,\mathrm{kr}$ второму.

Задача 7. Одновременное вычитание

А. Возьмём пять чисел: 0, 0, 0, 0, 6. Очевидно, для них мы не можем добиться того, чего просят в задаче, потому что по факту можем

уменьшать только одно число.

В. *Примечание автора*: эта задача на самом деле о том, что первая группа гомологий плоскости равна {0}. :)

Рассмотрим точку с весом, наибольшим по модулю. Не умаляя общности предположим, что её вес положителен. Так как сумма весов всех точек равна нулю, найдутся какие-то точки с отрицательным весом, суммарный вес которых «перевести» нашу по модулю. Соединим выбранную точку с найденными с помощью кривых так, чтобы (а) вес выбранной точки обратился после этого в ноль (б) модули весов найденных точек не увеличились.

Таким образом, (а) модули весов всех точек не увеличились (б) количество точек с нулевым весом увеличилось хотя бы на одну. На каждом шаге, при повторении процедуры, описанной в предыдущем абзаце, эти полуинварианты будут сохраняться — поэтому мы добьёмся ситуации, когда вес всех точек окажется нулевым (сумма весов всех точек сохраняется на каждом шаге).

С. Возьмём дорогу с наименьшим весом и пустим по ней машину, на номере которой написан вес этой дороги. Когда машина въедет в какой-то город, она сможет из него выехать: её номер равен наименьшему среди всех весов дорог, а сумма входящих в город равна сумме исходящих — поэтому из города выходит дорога весом не меньше, чем число на номере машины.

Так машина будет ездить по городам, пока не окажется в городе, в котором она уже побывала. Тогда возьмём все дороги, по которым машина ездила между двумя посещениями этого города, и вычтем из их веса число на номере машины — и заставим машину ездить по кругу через эти города. При этом сумма весов всех дорог строго уменьшится.

Опять возьмём дорогу, вес которой на этот раз наименьший среди всех, и повторим описанную процедуру. Пока наименьший среди всех вес дороги не равен нулю (то есть, пока есть дороги с положительным весом), будем повторять эту процедуру. Очевидно, в итоге оставшиеся веса всех дорог обратятся в ноль.

Задача 8. Сетки на плоскости

А. Заметим, что рёбра на пути можно менять местами без изменения начала, конца и длины пути. Заметим также, что по рёбрам каждо-

го из трёх направлений в сетке кратчайший путь ходит максимум в одну сторону, потому что иначе «подвинем» противоположно направленные проходы друг к другу и сократим их, укоротив путь.

Пусть путь использовал все три сорта рёбер в сетке. Тогда мы переставим его рёбра так, что сначала он будет идти в одну сторону по рёбрам первого сорта, затем по рёбрам второго, затем по рёбрам третьего.

Теперь возьмём треугольник и проставим на его сторонах те направления, в которых мы ходим по рёбрам соответствующей ориентации. Получилось три вектора — заметим теперь, что один из них равен сумме других!

Если кратчайший путь действительно использовал все три ориентации рёбер, то можно переставить рёбра в этом пути так, чтобы проход по двум подряд идущим рёбрам превратить в проход по одному. То есть, путь не был кратчайшим.

- В. Окуню достаточно перегрызть три узла около угла сетки.
- С. Сумма углов четырёхугольника равна 360°. Искомое замощение плоскости получится, если складывать четырёхугольники так, чтобы в одной вершине сходились четыре угла соседних четырёхугольников и чтобы два соседних четырёхугольника всегда соприкасались по соответственной стороне соответственными вершинами.

Задача 9. Ужасный гадкий аккуратный подсчёт

- **А.** Всего раскрасок n! в «первом» секторе может стоять n цветов, в следующем уже только n-1, и так далее. Из одной раскраски вращением круга можно получить ровно n раскрасок (включая её саму) поэтому ответ равен $\frac{n!}{n!}=(n-1)!$.
- **В.** В верхней полосе может стоять один из шести имеющихся цветов. Во второй полосе любой из шести цветов, кроме уже стоящего в первой. В нижней полосе любой из цветов, кроме уже стоящего во второй. Таким образом, ответ $6 \cdot 5 \cdot 5 = 150$.
- **С.** Эта задача чуть сложнее пункта А: нужно поделить 6! на число вращений куба. Сколько же их?

Возьмём «верхнюю» грань куба. При вращении она может оказаться на месте одной из шести граней (включая себя). Теперь посмот-

рим на одну из граней, соседних с ней. При вращении та может перейти в одну из четырёх граней, соседних с той, на месте которой оказалась верхняя. Заметим, что положение этих двух граней (для которого есть ровно 24 варианта) однозначно определяет положение всех остальных. Поэтому ответ на задачу — $\frac{6!}{24}=30$.

Задача 10. Средние арифметические

- **А.** Придумайте четыре набора по пять чисел каждый так, чтобы максимум средних арифметических этих наборов был больше, чем среднее арифметическое наибольших чисел этих наборов.
 - 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 10001, 10002, 10003, 10004, 10005. Максимум средних равен 10003, а среднее арифметическое максимумов 255.
- В. После разбиения детей на классы у нас будет четыре «самых низких» ребёнка, по одному на класс. Расставим их по росту. Одним из них точно будет тот, чей рост 101 сантиметр. Рост второго будет не больше 131, третьего не больше 161, четвёртого не больше 191, потому что между этими отметками вмещается ровно по тридцать детей, и если не все они будут в одном классе, то более высокий самый низкий ребёнок окажется среди них.

Таким образом, у нас есть оценка сверху на величину, которую мы пытаемся максимизировать — $\frac{1}{4}(101+131+161+191)$. Попробуем добиться того, чтобы среднее арифметическое четырёх ростов было именно таким. Для этого можно разбить детей на классы «подряд» — первые тридцать в первый класс, вторые тридцать — во второй, . . .

Так и сделаем.

С. Заметим, что какое разбиение детей на классы ни возьми, — сумма средних арифметических ростов детей в классах будет постоянна (и равна 362 см). Значит, минимум наибольший, когда все средние арифметические совпадают. Значит, нужно составлять классы, симметричные относительно 90,5. Например, в первый класс отправить первые десять детей и последние десять, а во второй — вторую и предпоследнюю десятки детей.

Задачи 8 класса

Задача 1. У магазина

А. Понятно, что Фёдор и Кирилл увеличивают все числа в одинаковое число раз. И "144", названное Фёдором, есть квадрат этого числа (так как он назвал то, во сколько раз увеличивает всё Кирилл, сам увеличив это число). Тогда оба продавца умножают всё на 12.

Соответственно, учебник стоит $43200 \div 144 = 300$ рублей — так как его цена прошла через уста, опять же, обоих продавцов.

В. Делимость на 99 значит делимость на 9 и на 11. Восстановить стёртую цифру можно почти однозначно, посчитав сумму оставшихся цифр и найдя остаток от деления её на 9. Проблема может возникнуть, если сумма оставшихся на номере цифр делится на 9 — тогда непонятно, 0 нам ставить на пустое место или 9.

Признак делимости на 11 говорит нам, что знакопеременная сумма цифр числа должна делиться на 11. Заметим, что при постановке цифр 9 и 0 на одно и то же место не может оказаться так, что оба результата будут делиться на 11. Поэтому получится однозначный ответ.

С. То, как происходит торг между продавцом и покупателем, на самом деле, повторяет работу алгоритма Евклида. Алгоритм Евклида всегда завершается — значит, и торг завершится.

При этом на каждом шаге торга хотя бы одна из названных цен уменьшается хотя бы на 1, поэтому в любой момент времени количество шагов торга оценивается сверху суммой цен, называемых покупателем и продавцом. Поэтому количество шагов всегда будет строго меньше суммы текущих чисел.

Пусть изначально названы цены a и b=a+t. Тогда на следующем шаге торга будут названы цены a и t. Тогда количество шагов торга строго меньше, чем

$$a+t + 1 \atop_{ ext{OMH IMAR}} = b+1 \leq 21.$$

Торг с 20 шагами легко придумать: пусть изначально были названы цены 1 и 20.

Задача 2. Ужасный гадкий аккуратный подсчёт

Смотреть задачу 9 варианта 7 класса.

Задача 3. Не модельная, а модальная!

Смотреть задачу 4 варианта 7 класса.

Задача 4. Катим круг

А. «Расправим» большую окружность — заметим, что дуга, составляющая её половину, равна по длине окружности круга, который мы катим. Это значит, что, проехав эту дугу, круг снова коснётся её отмеченной точкой.

В. Длина дуги круга между точкой его касания с окружностью и отмеченной точкой равна длине дуги окружности между точкой её касания с кругом и точкой P. Обозначим эту длину через x. Отложим дугу длиной x налево от точки P (смотреть рисунок). Отрезок, соединяющий точку касания круга с окружностью и конец новой дуги, будет горизонтальным.

При этом дуга длины x на круге получается из дуги длины x на окружности гомотетией с коэффициентом $\frac{1}{2}$ и центром в точке касания круга с окружностью: эти дуги отложены из одной точки на окружностях, радиусы которых отличаются в два раза.

Горизонтальный отрезок переходит при гомотетии в горизонтальный отрезок — поэтому концы дуги на квадрате также лежат на одной горизонтальной прямой.

С. В силу того же факта, что дуга на квадрате получается из дуги на окружности гомотетией с коэффициентом $\frac{1}{2}$, её конец будет находится ровно посередине между концами большой дуги — то есть ровно над точкой P, потому как большая дуга изначально строилась симметричной.

Задача 5. Средние арифметические

Смотреть задачу 10 варианта 7 класса.

Задача 6. Игры

Смотреть задачу 4 варианта 5 класса.

Задача 7. Об одной задаче классификации

А. Очевидно, что ширина этой полосы не может быть больше, чем расстояние между самыми близкими друг к другу точками кругов. Сделаем ширину полосы равной этому расстоянию.

Для этого соединим центры кругов отрезком и построим касательные к кругам в в точках пересечения отрезка с их границей. Они будут параллельны и образуют полосу максимально допустимой ширины (смотреть рисунок).

В.-С. Сработает похожий метод: надо найти ближайшие друг к другу точки квадратов и соединить их отрезком — искомая полоса получится, если провести к данному отрезку перпендикуляры в его концах.

С одной стороны, её ширина будет максимально допустимой, потому что она будет равна расстоянию между ближайшими точками квадратов, а большая ширина запрещена.

С другой стороны, ни одна точка из квадратов не попадёт внутрь этой полосы, потому что квадрат — выпуклый многоугольник. В силу этого он либо лежит по одну сторону от прямой, проходящей через точку его границы, либо лежит по обе стороны, и с каждой из сторон от прямой находится часть стороны, на которой лежала точка, через которую мы проводили прямую.

Но тогда на части этой стороны, лежащей внутри полосы, найдётся точка, которая ближе к другому концу отрезка, лежащем на другом краю полосы, что противоречит построению полосы.

Задача 8. Одновременное вычитание

Смотреть задачу 7 варианта 7 класса.

Задача 9. На салфетке

Смотреть задачу 3 варианта 7 класса.

Задача 10. Необходимости и достаточности

- **А.** Скорость мышки равна $10.35 = 350 \, \text{см/c}$, а скорость кошки $55.9 = 495 \, \text{см/c}$. Несомненно, кошка быстрее.
- **В.** Сколько вылетов нужно сделать винтовому самолёту? Каждого Йожина надо осыпать трижды получается 300 осыпаний. Каждый вылет даёт два осыпания поэтому нужно 150.

А реактивному? Аналогичным образом получаем $100 \cdot 8 \div 5 = 160$ вылетов. Таким образом, винтовой самолёт на 10 вылетов эффективнее.

С. Обозначим через x_k массу еды, которая была в наличии у велосипедистов $neped\ k$ -ым обедом. Мы знаем, что $x_{31}=0$, и ищем x_1 . Давайте выразим x_k через x_k+1 . В соответствии с условием задачи,

$$x_k = \underbrace{0.1 \cdot x_k + 2}_{\text{съедят за } k - \text{ым обедом}} + x_{k+1}.$$

Откуда

$$x_k = \frac{20}{9} + \frac{10}{9} x_{k+1};$$

$$x_1=rac{20}{9}+rac{10}{9}\cdotrac{20}{9}+\left(rac{10}{9}
ight)^2\cdot x_3=$$
 $=rac{20}{9}+rac{10}{9}\cdotrac{20}{9}+\ldots+\left(rac{10}{9}
ight)^{28}\cdotrac{20}{9}=$ $=rac{20}{9}\cdotrac{\left(rac{10}{9}
ight)^{29}-1}{rac{10}{9}-1}$ — это ответ на задачу.

Задача 11. Рукопожатия

Смотреть задачу 2 варианта 5 класса.

Задача 12. Прогрессивное сложение

Смотреть задачу 2 варианта 7 класса.

Задачи профильного варианта 7 класса

Задача 1. Римская десятичная система счисления

1.

$$\begin{split} &333_P=333_{\hbox{$\rlap/$}{\mbox{$\rlap/$}{$\rlap/$}}}\\ &2050_P=2000+0-50=1950_{\hbox{$\rlap/$}{\mbox{$\rlap/$}{$\rlap/$}}}\\ &10001_P=9999_{\hbox{$\rlap/$}{\mbox{$\rlap/$}{$\>/$}}}\\ &404004_P=400000-4000+4=396004_{\hbox{$\rlap/$}{\mbox{$\rlap/$}{$\>/$}}} \end{split}$$

2. Интересная особенность римской десятичной системы счисления заключается в том, что для умножения натурального числа на -1

перед ним достаточно приписать цифру 0: так как она меньше любой значащей цифры, нам придётся вычесть число, получаемое из младших разрядов, из $0 \cdot 10^m = 0$.

$$\begin{split} 91_{\begin{subarray}{l} 91_{\begin{subarray}{l} 150_{\begin{subarray}{l} 150_{\begin{subarra$$

3. Ответ очевиден: подходят все строки, цифры в которых расположены в порядке убывания.

Почему так? Если цифры в строке расположены не по убыванию, то при чтении её слева направо в какой-то момент нам придётся сделать вычитание при расшифровке римской записи против сложения при расшифровке десятичной. И результат получится строго меньше.

4. У каких чисел их римская запись может совпадать со стандартной? У тех, у которых старшая цифра не меньше младшей. Для остальных чисел нам придётся придумывать более хитрую процедуру преобразования.

Пусть дано число $xy_{\rm II}$, x < y. Давайте вычтем его из 100:

Получилось двузначное число, состоящее из цифр 10-x-1 и 10-y. Будет ли оно «правильным», то есть, окажется ли его первая цифра не меньше второй?

$$10 - x - 1 \ge 10 - y$$
$$-x - 1 \ge 10 - y$$
$$x + 1 \le y$$
$$x < y$$

То есть, первая цифра полученного числа **всегда** будет не меньше второй, и при переводе из римской записи в стандартную такое число будет давать себя же. Более того, его первая цифра — хотя бы 1, то есть, не меньше единицы. Отсюда

$$\begin{aligned} 1[10-x-1][10-y]_{\mathrm{P}} &= 100 - ([10-x-1][10-y]_{\mathrm{P}}) = \\ &= 100 - ([10-x-1][10-y]_{\mathrm{\Pi}}) = xy_{\mathrm{\Pi}}. \end{aligned}$$

Мы получили алгоритм, то есть процедуру (не включающую в себя перебор) построения по десятичному числу его римской записи:

- а) Сравнить первую цифру и вторую;
- b) Если первая оказалась не меньше, то оставить запись как есть; если первая оказалась меньше, то вычесть число из 100 запись вида 1 двузначная разность будет ответом.

Стоит отметить, что получаемая нами таким образом римская запись будет одной из многих, соответствующих данному числу.

- **5.** Для умножения числа на 10 к его записи нужно приписать ноль справа, а для умножения на -1 слева, это уже обсуждалось ранее.
- **6.** $91_P = 109_P = 91$.
- 7. $1999_P = 199_P = 19_P = 1_P$.
- **8.** Придумайте признаки делимости на 2, на 5, на 3 в десятичной римской системе счисления.

Признаки делимости на 2 и на 5 всё так же будут завязаны на последней цифре, потому как при «расшифровке» всех более старших разрядов они прибавляются и вычитаются, только будучи домножены на какую-то степень десятки, а 10 делится на 2 и на 5.

- **9.** Неравенство $\frac{Y_{\prod}}{k} < N \leq Y_{\prod}$, будучи, вообще говоря, **неверным** в десятичной системе счисления, оказывается верным в двоичной. Двоичная римская система счисления интересна ещё и тем, что там каждому числу соответствует не более чем конечное число римских записей (в отличие от десятичной системы, смотреть пункт 7).
- **10.** Докажем, что M=121- именно такое число.

- а) Если у него есть римская запись, то у него есть четырёхзначная римская запись. Причина этому в том, что любая запись большей значности обязана была бы начиначться с $19x..., x \neq 1$, так как иначе при её расшифровке получится число, больше 121. Но такую запись можно заменить на 1x... без изменения её расшифрованного значения.
- b) Четырёхзначная римская запись числа 121 должна начинаться на 18. Если первая чифра была бы 2, то при переводе получилось бы число не меньше 1000. Если вторая цифра была бы 7 (или меньше), то получилось бы число не меньше 200. А если бы вторая цифра была равна 9, то следующая за ней цифра не превосходила бы её и тоже «вычиталась» бы, поэтому результат не превосходил бы

$$1000 - 900 + 10 = 110$$
.

с) Последняя цифра римской записи числа 121 равна либо 1 (тогда она должна прибавляться), либо 9 (тогда она должна вычитаться). В первом случае $1000-800\pm x\cdot 10+1=121$; во втором случае $1000-800\pm x\cdot 10-9=121$.

В обоих случаях на роль *х* претендуют цифры 7, 8 и 9. Тут уже перебором просто показать, что ни одна из них не подойдёт.

Задача 2. Изображения на плоскости

Первый пункт задачи содержит простые технические утверждения, поэтому мы сразу начнём со второго.

- 2. Координаты *x* и *y* не могут одновременно быть по модулю меньше единицы, чтобы неравенство из условия было выполнено. Фигура, состоящая из точек, обе координаты которых по модулю меньше единицы, это квадрат со стороной 2 и центром в начале координат, не включающий свою границу. Значит, искомое множество точек дополнение этого квадрата (включая его границу).
- **3.** Видно, что принадлежность точки множеству на первом рисунке зависит только от её второй координаты. Будем подбирать неравенство в виде $P(y) \leq 0$, где P многочлен от одной переменной. Мы должны получить $P(y) \leq 0$, когда $-1 \leq y \leq 1$.

Принимая в рассмотрение первый пункт этой же задачи, можно понять, что (y+1)(y-1) — именно такой многочлен. Ответ:

a)
$$(y+1)(y-1) \le 0$$
.

Легко понять, что нижняя наклонная прямая, ограничивающая фигуру на втором рисунке, задаётся уравнением y-x+1=0; верхняя же прямая — уравнением y-x-1=0. Между этими прямыми находится множество точек, для которых выражения y-x+1 и y-x-1 имеют разный знак: первое уже «успело» стать положительным, а второе ещё нет. Такое множество задаётся неравенством:

6)
$$(y-x+1)(y-x-1) \le 0$$
.

4. Неравенство для крестика удобно искать в виде $P(x) \cdot Q(y) \leq 0$, где $P(x) \leq 0$ — неравенство, задающее вертикальную полосу, а $Q(y) \leq 0$ — горизонтальную полосу. Тогда в пересечении полос $P(x) \cdot Q(y)$ будет больше нуля, что исключит это пересечение из получаемой фигуры.

Как задавать полоску от -1 до 1, мы знаем, поэтому сразу получаем ответ:

a)
$$(x+1)(x-1) \cdot (y+1)(y-1) \le 0$$
.

Для решения второго подпункта вспомним, что такое круг: это множество точек, расстояние от которых до выбранной меньше радиуса. Иными словами,

$$(x-x_0)^2 + (y-y_0)^2 - R^2 \le 0.$$

В нашем случае $x_0=y_0=0, R=1$. Верхняя полуплоскость, в свою очередь, задаётся уравнением $x-y\leq 0$. Наша фигура тогда — множество точек, где ровно одно из двух выражений, указанных выше, не превосходит нуля. Ответ —

6)
$$(x-y)(x^2+y^2-1) \le 0$$
.

5. Мы уже знаем, каким неравенством задаются круги. Закрашенная фигура на рисунке — множество точек, где выполнено нечётное количество (1 или 3) неравенств, задающих круги. Значит, ответ:

$$\left((x-1)^2 + (y+1)^2 - 2.25 \right) \cdot \cdot \left((x+1)^2 + (y+1)^2 - 2.25 \right) \cdot \cdot \left(x^2 + (y-0.5)^2 - 2.25 \right) \le 0.$$

6. Окружность задаётся уравнением

$$(x - x_0)^2 + (y - y_0)^2 - R^2 = 0.$$

Фигура из трёх окружностей — это множество точек, для которых хотя бы одно из выражений, задающих окружность, обращается в ноль. Отсюда ответ:

a)

$$(x^{2} + y^{2} - 4) \cdot \cdot ((x+1)^{2} + y^{2} - 1) \cdot \cdot ((x-1)^{2} + y^{2} - 1) = 0.$$

Для фигуры из трёх лучей заметим, что два из них — горизонтальный и направленный вверх — образуют график функции y=0.5|x|+0.5x. Соответственно, горизонтальный и направленный вниз образуют график функции y=-0.5|x|-0.5x. Нам достаточно, чтобы для точки (x,y) было выполнено хотя бы одно из этих условий. Отсюда ответ —

6)
$$(0.5|x| + 0.5x - y)(-0.5|x| - 0.5x - y) = 0.$$

7. При решении этого задания мы уже много раз пересекали и объединяли фигуры, поэтому ответ понятен без пояснений:

a)
$$\max(|P_1(x,y)|, |P_2(x,y)|) = 0$$
;

6)
$$P_1(x, y) \cdot P_2(x, y) = 0$$
.

8. a)
$$\max (P_1(x, y), P_2(x, y)) < 0$$
;

6)
$$\min (P_1(x, y), P_2(x, y)) < 0$$
;

B)
$$P_1(x, y) \cdot P_2(x, y) < 0$$
.

Задача 3. Простеющие числа

Перечислим вообще все простеющие числа. Вот они:

- **2.** Нечётное простеющее число не может быть больше 4 так как тогда 4 взаимно просто с ним ($4=2\cdot 2$) и не является при этом простым числом.
- **3–4.** Вообще, простеющее число, не делящееся на простое p, не может быть больше p^2 , так как тогда составное p^2 будет взаимно просто с ним. Поэтому простеющие числа, не делящиеся на 3, все не превосходят 9, а не делящиеся на 5 не превосходят 25.
- **5–7.** Числа N и N-1 всегда взаимно просты, поэтому если N простеющее, N-1 обязано быть простым (и никак не может быть квадратом простого).
 - В шестом же пункте n будет взаимно просто с $p_1 \cdot p_2$ (так как оно взаимно просто с p_1 и p_2), которое также является составным числом.
 - 8. Докажем, что не бывает простеющих чисел, больших 210. Для этого докажем, что число N>210 больше квадрата наименьшего простого числа, на которое оно не делится. Тогда оно окажется взаимно просто с этим квадратом, который является составным числом.

Пронумеруем простые числа по возрастанию: $2=p_1,\,3=p_2,\,\ldots$ Пусть p_k — наименьшее простое, такое что N не делится на p_k . Тогда $N\geq p_1\cdot\ldots\cdot p_{k-1}$.

В силу постулата Бертрана $p_{k-1}\geq \frac{p_k}{2}$, а $p_{k-2}\geq \frac{p_{k-1}}{2}\geq \frac{p_k}{4}$. Отсюда $p_{k-2}\cdot p_{k-1}\geq p_{\nu}^2/8$.

Если мы хотим, чтобы число N было простеющим, то оно должно быть меньше, чем p_k^2 . То есть, $p_1 \cdot \ldots \cdot p_{k-3} \leq 8$. Отсюда уж точно $k-3\leq 2$, то есть, $k\leq 5$. В свою очередь, $N\leq 2\cdot 3\cdot 5\cdot 7=210$.

Что и требовалось доказать.

Задачи профильного варианта 8 класса

Задача 1. Простеющие числа

Смотреть задачу 3 варианта 7 класса.

Задача 2. Расстояние между множествами

- 1. Несложно убедиться в том, что $\max \min$ равен 1 вершина квадрата, ближайшая к данной, всегда находится на расстоянии 1 от неё. С другой стороны, $\min \max$ равен $\sqrt{2}$: дальняя вершина от данной находится «по диагонали», на рассоянии $\sqrt{2}$.
- **2.** То, что $\max_{x \in A} F(x) \le T$, равносильно тому, что для всякого $x_0 \in A$ выполнено $F(x_0) \le T$. В нашем случае нужно доказать, что

$$\min_{y \in B} \operatorname{dist}\left(x_0, y\right) \leq \min_{y \in B} \left(\max_{x \in A} \ \operatorname{dist}\left(x, y\right)\right).$$

Это неравенство очевидно, поскольку в левой части мы максимизируем расстояние до *какой-то* точки из множества A, а в правой части — до $\partial aльней$ точки множества A.

- **3.** Воспользуемся тем, что уже было нами получено в первом пункте: для квадрата со стороной 1 разность указанных величин была равна $\sqrt{2}-1$. Тогда для квадрата со стороной T, в силу свойств подобных фигур, эта разность будет равна $(\sqrt{2}-1)\cdot T$ это число, изменяя T, можно сделать больше наперёд заданного r.
- **4.** Например, подойдут следующие множества: B состоит из двух точек t_1, t_2 на расстоянии 5 друг от друга, а $A = \{t_1\}$.
- **5.** Рассмотрим точку $c \in C$. Так как C лежит в ρ_2 -окрестности B, найдётся точка из $b \in B$ такая, что $\mathrm{dist}\,(b,c) \leq \rho_2$. Далее, так как B лежит в ρ_1 -окрестности A, найдётся точка $a \in A$: $\mathrm{dist}\,(a,b) \leq \rho_1$.

В силу неравенства треугольника, ${\rm dist}\,(a,c) \leq \rho_1 + \rho_2$. Поэтому для (произвольной!) точки c нашёлся круг нужного радиуса с центром в точке из A, в котором она лежит. Что и требовалось.

6. Положим

$$F(x) := \min_{y \in A} \operatorname{dist}(x, y), \qquad x \in A.$$

Оказывается, F(x) всегда равно нулю: dist всегда не меньше нуля, а если взять y=x — получится как раз ноль, и минимум обратится в ноль. Теперь уж

$$\max_{x \in A} F(x) = \max_{x \in A} 0 = 0,$$

что и требовалось.

7. Фиксируем точку $x_0 \in A$. Мы знаем, что $\min_{y \in B} \operatorname{dist}(x_0, y) \leq R$ (так как максимум подобных величин по всем точкам из A не превосходит R. Тогда найдётся $y_0 \in A$ такая, что $\operatorname{dist}(x_0, y_0) \leq R$. Это значит, что x_0 лежит в R-круге с центром в точке y_0 — а, значит, в R- окрестности множества B.

Если же A целиком лежит в R-окрестности B, то для каждой точки из $x_0 \in A$ найдётся точка $y_0 \in B$ (центр круга, в который она попала), такая что $\operatorname{dist}(x_0,y_0) \leq R$. Отсюда $\min_{y \in B} \operatorname{dist}(x_0,y) \leq R$, и условие задачи выполнено.

8.

- **d=0 :** Если два множества совпадают, то DIST равен нулю: это доказано в пункте 6. Если множества не равны $-A \neq B$ то найдётся точка, скажем $a \in A$, которая не лежит в B. Для неё $\min_{y \in B} \operatorname{dist}(a,y) > 0$ значит, и DIST, получаемый взятием максимума из этой величины и каких-то других величин, будет строго больше нуля.
- (a,b)=(b,a): Симметричность введённого нами расстояния очевидна, потому что при замене в формуле для него A на B и B на A формула остаётся дословно такой же.
- **d(a,b) + ...:** Определим

$$D(A,B):=\max_{x\in A}\ \left(\min_{y\in B}\ \mathrm{dist}\,(x,y)
ight).$$
Тогда $\mathrm{DIST}\,(A,B)=\max\left\{D(A,B),D(B,A)
ight\}.$

Шаг первый: $D(A, C) \leq D(A, B) + D(B, C)$.

$$D(A,C) = \max_{x \in A} \left(\min_{z \in C} \operatorname{dist}(x,z) \right).$$

Нам нужно доказать, что этот максимум не превосходит выражения в правой части. Для этого надо доказать, что для любого элемента $a_0 \in A$, взятого произвольным образом, максимизируемая величина не превосходит правой части. Итак,

$$\min_{z \in C} \operatorname{dist}(a_0, z) \le$$
Пусть b_0 — точка из B , ближайшая к a_0 .

 $\le \min_{z \in C} \left(\operatorname{dist}(a_0, b_0) + \operatorname{dist}(b_0, z) \right) =$
 $= \min_{z \in C} \left(\min_{y \in B} \operatorname{dist}(a_0, y) + \operatorname{dist}(b_0, z) \right) =$
 $= \min_{y \in B} \operatorname{dist}(a_0, y) + \min_{z \in C} \operatorname{dist}(b_0, z) \le$
 $\le \max_{x \in A} \left(\min_{y \in B} \operatorname{dist}(x, y) \right) + \max_{y \in B} \left(\min_{z \in C} \operatorname{dist}(y, z) \right) =$
 $= D(A, B) + D(B, C)$.

Шаг второй: $D(C,A) \leq D(C,B) + D(B,A)$. Получается заменой в формулах выше A на C и наоборот. Таким образом,

$$\begin{split} & \text{DIST}\left(A,C\right) = \max \left\{D(A,C), \ D(C,A)\right\} \leq \\ & \leq \max \Big\{D(A,B) + D(B,C), \ D(C,B) + D(B,A)\Big\}. \end{split}$$

Предыдущее верно, потому что при переходе от первой строчки ко второй мы не уменьшили каждую из двух величин в скобках.

Наконец, $\max\{p+q, u+v\} \leq \max\{p, u\} + \max\{q, v\}$:

$$\begin{aligned} \max\{p+q, u+v\} &= \\ &= \frac{1}{2} \Big(p+q+u+v+|p+q-u-v| \Big) \leq \\ &\leq \frac{1}{2} \Big(p+u+|p-u|+q+v+|q-v| \Big) = \\ &= \max\{p, u\} + \max\{q, v\}. \end{aligned}$$

Сборник задач олимпиады «Математика НОН-СТОП»

Отсюда

$$\begin{split} &\operatorname{DIST}\left(A,C\right) \leq \\ &\leq \max \Big\{ D(A,B) + D(B,C), \ D(C,B) + D(B,A) \Big\} \leq \\ &\leq \max \Big\{ D(A,B), \ D(B,A) \Big\} + \max \Big\{ D(B,C), \ D(C,B) \Big\} = \\ &= \operatorname{DIST}\left(A,B\right) + \operatorname{DIST}\left(B,C\right). \end{split}$$

Что и требовалось доказать.

9. Если A и B — подмножества одного круга радиуса R, то расстояния между любыми двумя их точками вообще не превосходят 2R. Как операции \max и \min к ним ни применяй, всегда будет получаться величина, не превосходящая 2R.

Задача 3. Изображения на плоскости

Смотреть задачу 2 варианта 7 класса.