Rudin: Sequences and Series of Functions

James Pagán

January 2024

Contents

1	Discussion of the Main Problem	2
	1.1 Exposition	2
	1.2 Motivating Examples	2
2	Uniform Convergence	3
	2.1 Definition	. 3
	2.2 Uniform Cauchy Criterion	4
	2.3 Uniform Convergence of Series	. 5
	2.4 The Metric Space $\mathcal{C}(X)$. 5
3	Uniform Convergence and Continuity	7
	3.1 The Theorem	. 7
4	The Stone-Weierstrauss Theorem	8
	4.1 Bernstein's Proof	. 8

1 Discussion of the Main Problem

1.1 Exposition

Suppose $\{f_n\}$ is a sequence of functions defined on a set E. If the sequence of numbers $\{f_n(x)\}$ converges for each $x \in E$, we may define a function

$$f(x) = \lim_{n \to \infty} f_n(x).$$

We say that $\{f_n\}$ converges to f **pointwise** on E. An important special case is series of functions: where if $\sum f_n(x)$ converges for eac $x \in E$, we may define

$$f = \sum_{n=1}^{\infty} f_n(x).$$

The critical question posed by this question is: which properties of functions are preserved under the limit operation? If each f_n is continuous or differentiable, is the same true of f? For continuity: recall that f is continuous at x if

$$\lim_{t \to x} f(t) = f(x);$$

then the continuity of f is equivalent to

$$\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t).$$

The following examples will illustrate how this question fails in a general context.

1.2 Motivating Examples

Example 1: For $m, n \in \mathbb{Z}_{>0}$, define

$$a_{m,n} = \frac{m}{m+n}.$$

This example fails to satisfy the continuity condition established above, as demonstrated by the following computation:

$$\lim_{n\to\infty}\lim_{m\to\infty}\left(\frac{m}{m+n}\right)\,=\,\lim_{n\to\infty}1\,=\,1\,\neq\,0\,=\,\lim_{m\to\infty}0\,=\,\lim_{m\to\infty}\lim_{n\to\infty}\left(\frac{m}{m+n}\right)$$

Example 2: For $x \in \mathbb{R}$ and $n \in \mathbb{Z}_{\geq 0}$, let

$$f_n(x) = \frac{x^2}{(1+x^2)^n}.$$

and consider the infinite series

$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \frac{x^2}{(x^2+1)^n}.$$

Since $f_n(0) = 0$ for all n, we have f(0) = 0. For nonzero n, this is a geometric series that converges to $x^2 + 1$. We deduce from pointwise convergence that

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ x^2 + 1 & \text{if } x \neq 0. \end{cases}$$

Then f is continuous everywhere except the origin.

Example 3: For $n \in \mathbb{Z}_{>0}$, consider the functions

$$f_n(x) = \lim_{m \to \infty} (\cos \pi n! x)^{2m}$$
 and $f(x) = \lim_{n \to \infty} f_n(x)$.

If x is rational, let $x = \frac{p}{q}$. Then m > q implies m!x is an integer, so $f_n(x) = 1$; hence f(x) = 1. If x is irrational, then n!x is never an integer. Thus $\cos \pi n!x < 1$, so (by nontrivial but irrelevant techniques) $f_n(0) = 0$ and f(x) = 0. We deduce that

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

We have obtained a limit function which is *nowhere continuous*. It thus fails to be Riemann integral — though the Lebesgue integral returns 0, as will be determined in Chapter 11.

2 Uniform Convergence

2.1 Definition

Let $\{f_n\}$ be a sequence of functions from E to a metric space X. We say the sequence **converges uniformly** to a function f if for all $\epsilon > 0$, there is an integer N such that

$$N \le n \implies d(f_n(x) - f(x)) < \epsilon$$

for all $x \in E$. It is natural that each uniformly convergent sequence is pointwise convergent.

2.2 Uniform Cauchy Criterion

Theorem 1. Suppose $\{f_n\}$ is a uniformly continuous sequence of functions from E to a metric space X. Then $\{f_n\}$ satisfies the uniform Cauchy criterion.

Proof. Let $\lim_{n\to\infty} f_n(x) = f(x)$ for each $x\in E$. For all $\epsilon>0$, there exists integers N_1 and N_2 such that

$$N_1 \le n \implies d(f_n(x), f(x)) < \frac{\epsilon}{2}$$

 $N_2 \le m \implies d(f_m(x), f(x)) < \frac{\epsilon}{2}$

for all $x \in E$. Let $N = \max\{N_1, N_2\}$; then $N \leq n, m$ implies that

$$d\big(f_n(x) - f_m(x)\big) \leq d\big(f_n(x), f(x)\big) + d\big(f_m(x), f(x)\big) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

for all $x \in E$. We conclude that $\{f_n\}$ satisfies the Cauchy criterion.

Theorem 2. Suppose $\{f_n\}$ is a sequence of functions from E to a complete metric space Y that satisfies the uniform Cauchy criterion. Then $\{f_n\}$ converges uniformly.

Proof. Since Y is complete, $\{f_n\}$ converges pointwise for each $x \in E$. We must demonstrate that this convergence is uniform.

Claim 1. Suppose that $\{a_n\}$ is a Cauchy sequence in a metric space Y with limit A: that for all $\epsilon > 0$, there exists an integer N such that

$$N < n, m \implies d(a_n, a_m) < \epsilon$$
.

Then $N \leq n$ implies that $d(a_n, A) < \epsilon$.

Proof. Suppose for contradiction that some $N \leq k$ that $d(a_k, A) \geq \epsilon$. Then $N \leq n$ implies

$$d(a_n, a_k) > d(a_k, A) - d(a_n, A) > d(a_k, A) > \epsilon$$

which yields the desired contradiction.

By definition, for all $\epsilon > 0$, there exists an integer N such that

$$N \leq n, m \implies d(f_n(x), f_m(x)) < \epsilon$$

for all $x \in E$. Then via our claim, the same choice of N demonstrates uniform continuity: namely, $N \le n$ implies $d(f_n(x), f(x)) < \epsilon$ for all $x \in E$.

Corollary 1. A sequence of functions $\{f_n\}$ from a set E to a Banach space Y converges uniformly if and only if it satisfies the uniform Cauchy criterion.

2.3 Uniform Convergence of Series

Theorem 3. Suppose $\{\mathbf{f}_n\}$ is a sequence of functions from E to a Banach space Y such that

$$\|\mathbf{f}_n(x)\| \le M_n$$

for all $x \in E$ and $n \in \mathbb{Z}_{>0}$. If $\sum M_n$ converges, then $\sum \mathbf{f}_n$ converges uniformly.

Proof. Suppose that $\sum M_n$ converges. Then it satisfies the Cauchy criterion: for each $\epsilon > 0$, there exists an integer N such that

$$N \le n, m \implies \sum_{i=n+1}^{m} M_i < \epsilon.$$

We deduce that

$$\left\| \sum_{i=n+1}^{m} \mathbf{f}_i(x) \right\| \le \sum_{i=n+1}^{m} M_i < \epsilon$$

for all $x \in E$ as well, so \mathbf{f}_n satisfies the uniform Cauchy criterion. Its uniform convergence is hence guaranteed by Theorem 2.

If E is \mathbb{C}^n , and Y is \mathbb{C}^m , then functions $\{\mathbf{f}_n\}$ are matricies.

2.4 The Metric Space C(X)

If X is a metric space, we denote by $\mathcal{C}(X)$ the set of continuous and bounded functions from X to a Banach space Y. If X is compact, then the boundedness condition is redundant. We associate with each $\mathbf{f} \in \mathcal{C}(X)$ its **supremum norm**

$$\|\mathbf{f}\|_X = \sup_{x \in X} \|\mathbf{f}(x)\|.$$

Since f is assumed to be bounded, $\|\mathbf{f}\|_X < \infty$. A similar definition exists if Y is substituted with any metric space; only a few properties about $\mathcal{C}(X)$ hold in such a setting.

Theorem 4. C(X) equipped with the supremum norm is a metric space.

Proof. We must perform three rather routine calculations:

- Positivity: It is natural that $\|\mathbf{f} \mathbf{g}\|_{X} \ge 0$, with equality if and only if $\mathbf{f} = \mathbf{g}$.
- Symmetry: For all $\mathbf{f}, \mathbf{g} \in \mathcal{C}(X)$, we have

$$\|\mathbf{f} - \mathbf{g}\|_X = \sup_{x \in X} \|\mathbf{f}(x) - \mathbf{f}(x)\| = \sup_{x \in X} \|\mathbf{g}(x) - \mathbf{f}(x)\| = \|\mathbf{g} - \mathbf{f}\|_X.$$

• Triangle Inequality: For all $f, g, h \in C(X)$, we have

$$\begin{split} \|\mathbf{f} - \mathbf{g}\|_X &= \|\mathbf{f} - \mathbf{h} + \mathbf{h} - \mathbf{g}\|_X \\ &= \sup_{x \in X} \|\mathbf{f}(x) - \mathbf{h}(x) + \mathbf{h}(x) - \mathbf{g}(x)\| \\ &\leq \sup_{x \in X} \left(\|\mathbf{f}(x) - \mathbf{h}(x)\| + \|\mathbf{h}(x) - \mathbf{g}(x)\| \right) \\ &\leq \sup_{x \in X} \|\mathbf{f}(x) - \mathbf{h}(x)\| + \sup_{x \in X} \|\mathbf{h}(x) - \mathbf{g}(x)\| \\ &= \|\mathbf{f} - \mathbf{h}\|_X + \|\mathbf{h} - \mathbf{g}\|_X. \end{split}$$

We conclude that $\mathcal{C}(X)$ is a metric space with respect to the supremum norm.

Theorem 5. A series of functions $\{\mathbf{f}_n\}$ from X to a Banach space Y uniformly converges to \mathbf{f} if and only if $\{\mathbf{f}_n\}$ converges to \mathbf{f} in $\mathcal{C}(X)$.

Proof. We have the following: for all $\epsilon > 0$,

$$\{\mathbf{f}_n\} \to \mathbf{f} \text{ is uniform } \iff \exists N \text{ such that } N \leq n \implies \|\mathbf{f}_n(x) - \mathbf{f}(x)\| < \epsilon$$
 for all $x \in X$ $\iff \exists N \text{ such that } N \leq n \implies \sup_{x \in X} \|\mathbf{f}_n(x) - \mathbf{f}(x)\| \leq \epsilon$ $\iff \exists N \text{ such that } N \leq n \implies \|\mathbf{f}_n - \mathbf{f}\|_X \leq \epsilon$ $\iff \{\mathbf{f}_n\} \text{ converges to } \mathbf{f} \text{ in } \mathcal{C}(X).$

A corollary is that $\{\mathbf{f}_n\}$ uniformly converges to \mathbf{f} if and only if $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}\|_X = 0$. \square

Theorem 6. C(X) under the supremum norm is complete — hence a Banach space.

Proof. Let $\{\mathbf{f}_n\}$ be a Cauchy sequence in $\mathcal{C}(X)$: for all $\epsilon > 0$, there exists an integer N such that

$$N \le n, m \implies \|\mathbf{f}_n - \mathbf{f}_m\|_X < \epsilon.$$

This implies that

$$N \le n, m \implies d(\mathbf{f}_n(x) - \mathbf{f}_m(x)) < \epsilon$$

for all $x \in X$. By Theorem 2, such a uniform Cauchy sequence in Y converges uniformly; by Theorem 5, $\{\mathbf{f}_n\}$ converges in $\mathcal{C}(X)$. The continuity of \mathbf{f} is ensured by Theorem 7, and \mathbf{f} is bounded since there is n such that

$$\|\mathbf{f}(x) - \mathbf{f}_n(x)\| < 1$$

for all $x \in X$, and \mathbf{f}_n is bounded. This completes the proof.

3 Uniform Convergence and Continuity

3.1 The Theorem

Theorem 7. Suppose $\{f_n\}$ is a sequence of functions from E to a metric space X that converges uniformly to f. If x is a limit point of E and

$$\lim_{t \to x} f_n(t) = F_n$$

for each n, then $\{F_n\}$ converges and $\lim_{t\to x} f(t) = \lim_{n\to\infty} F_n$.

Proof. Since $\{f_n\}$ is uniformly continuous, it satisfies the uniform Cauchy sequence. For all $\epsilon > 0$, there exist δ_2 , δ_3 , and an integer N such that each of the following is satisfied:

$$0 < d(x,t) < \delta_1 \implies d(f_i(t), F_i) < \frac{\epsilon}{3}$$
$$0 < d(x,t) < \delta_2 \implies d(f_j(t), F_j) < \frac{\epsilon}{3}.$$
$$N \le i, j \implies d(f_i(t), f_j(t)) < \frac{\epsilon}{3}.$$

Suppose we consider $0 < d(x,t) < \min\{\delta_1,\delta_2\}$. Then $N \le i,j$ implies

$$d(F_i, F_j) \le d(F_i, f_i(t)) + d(f_i(t), f_j(t)) + d(f_j(t), F_j)$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$- \epsilon$$

Let $\{F_n\}$ converge to F. For all $\epsilon > 0$, there exist δ_1 and δ_2 such that

$$t \in E, \quad N_1 \le n \implies d(f(t), f_n(t)) < \frac{\epsilon}{3}$$

 $0 < d(x, y) \le \delta \implies d(f_n(t), F_n) < \frac{\epsilon}{3}$
 $N_2 \le n \implies d(F_n, F) < \frac{\epsilon}{3}.$

Then $\max\{N_1, N_2\} \leq N$ and $0 < d(x, y) < \delta$ implies that

$$d(f(t), F) \le d(f(t), f_n(t)) + (f_n(t), F_n) + d(F_n, F)$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon.$$

We conclude that $\lim_{t\to x} f(t) = F$.

Corollary 2. Suppose that $\{f_n\}$ converges uniformly to f. Then f is continuous.

4 The Stone-Weierstrauss Theorem

4.1 Bernstein's Proof

Theorem 8 (Weierstrauss Approximation Theorem). Let $f : [a,b] \to \mathbb{C}$ be continuous. Then there exists a sequence of polynomials that uniformly converges to f.

Proof. For any nonnegative integer n, define

$$B_n(f)(x) \stackrel{\text{def}}{=} \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

Denote the component $\binom{n}{k}x^k(1-x)^{n-k}$ by $P_{n,k}(x)$. Then the $(P_{n,k})_{k=0}^n$ satisfy the following properties for all $x \in [0,1]$:

- 1. $P_{n,k}(x) \ge 0$ for all $x \in [0,1]$
- 2. $\sum_{k=0}^{n} P_{n,k}(x) = (x + (1-x))^n = 1$, hence $(P_{n,k})_{k=0}^n$ is a partition of unity.
- 3. $P_{n,k}$ attains its maximum on [0,1] at $\frac{k}{n}$; simply compute its derivative.
- 4. $(P_{n,k})_{k=0}^n$ is a basis of the vector space of polynomials of degree n or smaller.

For all $x \in [0,1]$ and $n \in \mathbb{Z}_{>0}$, we have using Property 2 that

$$f(x) - B_n(f)(x) = \sum_{k=0}^n f(x) P_{n,k}(x) - \sum_{k=0}^n f\left(\frac{k}{n}\right) P_{n,k}(x)$$
$$= \sum_{k=0}^n \left(f(x) - f\left(\frac{k}{n}\right)\right) P_{n,k}(x)$$

so that using the Triangle Inequality and Property 1 yields that

$$|f(x) - B_n(f)(x)| \le \sum_{k=0}^n \left| f(x) - f\left(\frac{k}{n}\right) \right| P_{n,k}(x). \tag{1}$$

Select $\delta > 0$ arbitrarily. We will bound $|f(x) - f(\frac{k}{n})|$ as follows:

- 1. When $\left|x \frac{k}{n}\right| \leq \delta$, we will invoke the bound $\left|f(x) f\left(\frac{k}{n}\right)\right| \leq \omega_f(\delta)$.
- 2. When $\left|x \frac{k}{n}\right| > \delta$, we will invoke the bound $\left|f(x) f\left(\frac{k}{n}\right)\right| \le 2\|f\|_{[0,1]}$.

We may use the modulus of continuity, since the Heine-Cantor Theorem guarantees that continuous functions are uniformly continuous on closed intervals.

Hence equation (1) reduces to

$$|f(x) - B_{n}(f)(x)| \leq \sum_{k: \left|x - \frac{k}{n}\right| \leq \delta} \omega_{f}(\delta) P_{n,k}(x) + \sum_{k: \left|x - \frac{k}{n}\right| > \delta} 2||f||_{[0,1]} P_{n,k}(x)$$

$$= \omega_{f}(\delta) \sum_{k: \left|x - \frac{k}{n}\right| \leq \delta} P_{n,k}(x) + 2||f||_{[0,1]} \sum_{k: \left|x - \frac{k}{n}\right| > \delta} P_{n,k}(x)$$

$$\leq \omega_{f}(\delta) + 2||f||_{[0,1]} \sum_{k: \left|x - \frac{k}{n}\right| > \delta} P_{n,k}(x)$$

Note that $\left(\frac{|x-k/n|}{\delta}\right)^2 \ge 1$ whenever $\left|k-\frac{k}{n}\right| > \delta$. Thus

$$|f(x) - B_n(f)(x)| \le \omega_f(\delta) + 2||f||_{[0,1]} \sum_{k:|x - \frac{k}{n}|} \left(\frac{|x - \frac{k}{n}|}{\delta}\right)^2 P_{n,k}(x)$$

$$\le \omega_f(\delta) + 2||f||_{[0,1]} \sum_{k=0}^n \left(\frac{|x - \frac{k}{n}|}{\delta}\right)^2 P_{n,k}(x)$$

$$\le \omega_f(\delta) + \frac{2||f||_{[0,1]}}{n^2 \delta^2} \sum_{k=0}^n (nx - k)^2 P_{n,k}(x).$$

Lemma 1.
$$\sum_{k=0}^{n} (nx-k)^2 P_{n,k}(x) = nx(1-x).$$

Proof. Güntürk gives a slick probibalistic proof; we will use algebra, as unenlightening as this may be. We have that

$$\sum_{k=0}^{n} (nx - k)^{2} P_{n,k}(x) = n^{2} x^{2} \sum_{k=0}^{n} P_{n,k}(x) - 2nx \sum_{k=0}^{n} k P_{n,k}(x) + \sum_{k=0}^{n} k^{2} P_{n,k}(x)$$
$$= n^{2} x^{2} - 2nx \sum_{k=0}^{n} k P_{n,k}(x) + \sum_{k=0}^{n} k^{2} P_{n,k}(x)$$

Our task is to simply these summations. We have

$$\sum_{k=0}^{n} k P_{n,k}(x) = \sum_{k=0}^{n} k \left(\frac{n!}{k!(n-k)!} \right) x^k (1-x)^{n-k}$$

$$= nx \sum_{k=1}^{n} {n-1 \choose k-1} x^{k-1} (1-x)^{(n-1)-(k-1)}$$

$$= nx \sum_{k=0}^{n-1} {n-1 \choose k} x^k (1-x)^{(n-1)-k}$$

$$= nx (x+(1-x))^{n-1}$$

$$= nx,$$

For the summation k^2 , we find it is easier to work with k(k-1) due to the factorial:

$$\sum_{k=0}^{n} k^{2} P_{n,k}(x) = \sum_{k=0}^{n} k P_{n,k}(x) + \sum_{k=0}^{n} k(k-1) P_{n,k}(x)$$

$$= nx + \sum_{k=0}^{n} k(k-1) P_{n,k}(x)$$

$$= nx + \sum_{k=0}^{n} k(k-1) \left(\frac{n!}{k!(n-k)!}\right) x^{k} (1-x)^{n-k}$$

$$= nx + n(n-1)x^{2} \sum_{k=2}^{n} \binom{n-2}{k-2} x^{k-2} (1-x)^{(n-2)-(k-2)}$$

$$= nx + n(n-1)x^{2} \sum_{k=0}^{n-2} \binom{n-2}{k} x^{k} (1-x)^{(n-2)-k}$$

$$= nx + n(n-1)x^{2} (x + (1-x))^{n-2}$$

$$= nx + n(n-1)x^{2}.$$

We are ready to return to our original series: we have that

$$\sum_{k=0}^{n} (nx - k)^{2} P_{n,k}(x) = n^{2} x^{2} - 2nx(nx) + (nx + n(n-1)x^{2})$$

$$= n^{2} x^{2} - 2n^{2} x^{2} + nx + n^{2} x^{2} - nx^{2}$$

$$= nx - nx^{2}$$

$$= nx(1 - x),$$

completing the proof of our lemma.

Returning to our original series, we have that

$$|f(x) - B_n(f)(x)| \le \omega_f(\delta) + \frac{2||f||_{[0,1]}}{n^2 \delta^2} (nx(1-x))$$

$$\le \omega_f(\delta) + \frac{2||f||_{[0,1]}}{n\delta^2} (x^2 - x)$$

$$\le \omega_f(\delta) + \frac{||f||_{[0,1]}}{2n\delta^2}$$

This holds for all $\delta > 0$. To proceed, we select δ_n such that $\delta_n \to 0$ and $\frac{1}{n\delta_n^2} \to 0$ as well. The choice we will use is $\delta_n = n^{-1/3}$. Then for all $x \in [0, 1]$, we have

$$|f(x) - B_n(f)(x)| \le \omega_f(n^{-1/3}) + \frac{||f||_{[0,1]}}{2}n^{-1/3}.$$

Both terms on the right-hand side converge to 0 as $n \to \infty$. We may therefore select N such that the right-hand side is less than ϵ . This completes the proof.

We invoked properties of the modulus of continuity in our proof. If desired, we encourage the reader to explore RealAnalysis/gunturk.tex for more.