

277

SEM0104 - Mecanismos

6. Síntese de mecanismos

Marcelo A. Trindade (trindade@sc.usp.br)

Prática 5 - Síntese de mecanismos

Sintetize um mecanismo de quatro barras que coloque o elo de acoplamento nas três posições P_1, P_2, P_3 e com a orientação, conforme mostrado na figura. Desconsidere a posição sugerida na figura para os pivôs fixos. Dica: Considere os ângulos

$$\beta_2 = 30^{\circ}$$
, $\beta_3 = 60^{\circ}$, $\gamma_2 = -10^{\circ}$, $\gamma_3 = 25^{\circ}$.

Em seguida, com auxílio de software de cálculo (p.ex. MATLAB, Octave,...), faça uma análise do movimento do mecanismo, desenhe a configuração do mecanismo nas três posições e trace a trajetória do ponto P.

- Cálculos usados para determinar as variáveis de interesse;
- Script (código) implementado para realizar os cálculos;
- Gráficos solicitados.

FIGURE P5-1

Data for Problems 5-8 to 5-11

SEM0104 - Mecanismos

6. Síntese de mecanismos

Marcelo A. Trindade (trindade@sc.usp.br)

276

6.6. Síntese analítica de mecanismos

- Geração de movimento de três ou mais posições
 - ullet No caso de haverem um maior número de posições que se deseja atingir com o ponto P, podemos escrever

$$\mathbf{W}_{k} + \mathbf{Z}_{k} - \mathbf{P}_{k1} - \mathbf{Z}_{1} - \mathbf{W}_{1} = 0, k = 2,..., n$$

$$\mathbf{U}_{k} + \mathbf{S}_{k} - \mathbf{P}_{k1} - \mathbf{S}_{1} - \mathbf{U}_{1} = 0$$

Ou na forma complexa:

$$we^{j\theta}(e^{j\beta_k} - 1) + ze^{j\phi}(e^{j\alpha_k} - 1) = p_{k1}e^{j\delta_k}$$
 $ue^{j\sigma}(e^{j\gamma_k} - 1) + se^{j\psi}(e^{j\alpha_k} - 1) = p_{k1}e^{j\delta_k}$
 $com k = 2,...,n$

• Pré-definindo os ângulos β_2 , β_3 , γ_2 , γ_3 , podemos montar o sistema de equações para determinar \mathbf{W}_1 , \mathbf{Z}_1 , \mathbf{U}_1 e \mathbf{S}_1 :

A=
$$\cos \beta_2 - 1;$$
 B= $\sin \beta_2;$ C= $\cos \alpha_2 - 1$ A= $\cos \gamma_2 - 1;$ D= $\sin \alpha_2;$ E= $p_{21} \cos \delta_2;$ F= $\cos \beta_3 - 1$ D= $\sin \alpha_2;$ G= $\sin \beta_3;$ H= $\cos \alpha_3 - 1;$ K= $\sin \alpha_3$ G= $\sin \gamma_3;$ L= $p_{31} \cos \delta_3;$ M= $p_{21} \sin \delta_2;$ N= $p_{31} \sin \delta_3$ L= $p_{31} \cos \delta_3;$

$$AW_{1_{x}} - BW_{1_{y}} + CZ_{1_{x}} - DZ_{1_{y}} = E$$

$$FW_{1_{x}} - GW_{1_{y}} + HZ_{1_{x}} - KZ_{1_{y}} = L$$

$$BW_{1_{x}} + AW_{1_{y}} + DZ_{1_{x}} + CZ_{1_{y}} = M$$

$$GW_{1_{x}} + FW_{1_{y}} + KZ_{1_{x}} + HZ_{1_{y}} = N$$

$$B = \sin \gamma_2;$$
 $C = \cos \alpha_2 - 1$
 $E = p_{21} \cos \delta_2;$ $F = \cos \gamma_3 - 1$
 $H = \cos \alpha_3 - 1;$ $K = \sin \alpha_3$
 $M = p_{21} \sin \delta_2;$ $N = p_{31} \sin \delta_3$

$$\begin{aligned} EES & = AU_{1_{x}} - BU_{1_{y}} + CS_{1_{x}} - DS_{1_{y}} = E \\ FU_{1_{x}} - GU_{1_{y}} + HS_{1_{x}} - KS_{1_{y}} = L \\ BU_{1_{x}} + AU_{1_{y}} + DS_{1_{x}} + CS_{1_{y}} = M \\ GU_{1_{x}} + FU_{1_{y}} + KS_{1_{x}} + HS_{1_{y}} = N \end{aligned}$$

Fonte: Norton, 2018.