papergrid

	Date: 7 7
	MASTIO_THROAT_Accignment 1
,	ROU NO: BE196002
	Name: Devansh sanghui
	1 1 + - 17 / + vail - 11 1 6 4 1
	Question one
	16
	from the discussion on classes, and the problem statement
	we know that Polay DE is given as:
	1 + d 3 (++=) = V In & Smar [Pman [Pman] }
	for & asi < N and +70. (cg, 1.1)
	7 2 11) - C - Francis (1) 90d + 50
	3 (a) 30 7/(ort 15) 0 W
	from the pexturbation displacement of the lead car, we know:
	2 (+) = 5 0 POX + 400 => (29.0 1.2)
	2-VB(+) -fox +>0. A 12 1211(1)
	cohere Bit) = S bis)ds.
	1 7 07 Longet 1 and 1 18 21 (1)
	Modifying sence the question alks to substitute b - t-I
	in interval (-t,0), [ko,(k+1)t] we can
• .	wife cons 1.1 and 1.2 at:
	tb 1
	V+ d 20(t) = VIDSR [e + 1962 (t) - 1962
	V+ d 20(t) = V10 & Pman [Pman 29 (t-0) - 30(b-0)
	I mo difying this ean.
`	N+ d 30(+) = V In 5 @ + = (+-E)
	dk 1 (1) + + + + + + + + + + + + + + + + + + +
_	

modifying the op! V+ d 39(b) = V () & & + sman [39-1(t-t) - 39(t-t)]} V+ d 3-(+) = V/0 E + V 10 & 1 + Sman (3-(+-1)-3-(+-1)) d 3=(t) = v ln & 2+ [man [3=1 (b-E) - 3=(E-E)] & "10e = 1 conditions: 2, (t-v) =0 for t<v. (egn 1.3) we also know g(+) from the company (eqn 1.2) at at 3 (4-E) = 50 + 5E = (eqn 1.4) from the ROD 1.1) 9+844+ , 1 for te(-7,0) une get 30(t) = 0 for all isis N now, ut's say we want to And 32 (+) for LE COJE) (1) les's that 2 th Fight ? i) considering the interval [0, =): t-T e [-T,0) 1 3/16 (14-10) Where 14-TEC-TOD = 0.4 uc get d 3 (b) = VIN { 2+ 3 max [3 (6-1)] }in + = [0,T) : t-T & [-0;0) → g(t-t) = 0 (1-t) suborifuting that we get: d 3 4) = U 10 & 1 + 1 man (0) 3 = 0 d 3,(+) =0 ; [3,(+) = R]

papergrid

Date: / /

Three 2(t) = continuous and 3(t) = 0=k for te [-t,0) te(0, t) (consider interval (= 2=): d 3 (+) = V 10 5 + + 5 max [3 (+-0) - 3 (+-0)] } €: + (+, at) =) +- T ∈ (0, T) 200+8, (t-t) = 0.40/01 24 (: d 3 (t) = V In { 1 + (man (3 (t-c)) } } dt dt a (t-c)) } dt a (t-c)) } dt dt a (t-c)) } dt a (using 3 the gration, we can calculate 3 (t) When te (t;de). we found 3 (b) with for $b \in (0, d\tau)$ using $3_2(t)$ for $b \in (0, \tau)$ Using this we can find subsequently find 3, (+) AD POTENUOLS (at, 3t), il... (KE, (K+1)t) DE WAT THE SALT for example: for 32 (+) "in Eat, 3t) we can use the sesult obtained from 32(+) 90 (T, 2T) for 32 (+-t). This way, by iterating we can find 3 (t) for all 6>0. Now, knowledge of 30 on to, (k+1)0) can be used to compute 33 on CO, Bokt) and so on.

papergrid bingreada Date: / / To for enomple to pend 33 (t) d(324)) = v10 \ 1+ 5man [3, (+-=)++ 3, (+-=)] we know that 33(t) for te [0,] = 0 and using this fact and smee we know (3:(t) & sarge to (0, (B+1)t) we can ralculate 3 (t) for to Cg (k+1)[) some can be done for 34(t) 3,(to) 3,(to). This can be depicted by a toble: Cit (itile) てのてり Fo, do) (o, J-) By res 32 (ET, (119t) 32 ON (0,0) 213 (OJE) 0 (it, (it))0) 3 ([0, 7)

papergrid

Date: / /

	The falls model was used
1	The model was created considering:
V	5)
	18mitation of the method
	In com incicating secursive complexity of integration
A	to be solved can
	1) The secressive integrations est get very complex
	1) The Secritisate integrations and iterations.
	as use continue this method for the
	ENTERBUE camputation will be seed to find the
	values of 3(t) when I approached N.
	The bull of a character
	2) Both Time complexity one will be huge if a program
	is wither as well. It will take both, a lot
	of time and also a lot of space, since we need
	to save each offerations fability.
-	ASSOCIATION TO THE CO
	References used:
	2) Notes by Prof sundas
	a) mathy method modeling - A case study appeals
	(TB recommended by Ruf Sundar).
	Ear 1