HW8 (CSCI-C241)

Lillie Donato

19 March 2024

1. Question One

- (a) R_1 is not a function, because R(1,2) and R(1,3) but $2 \neq 3$
- (b) R_2 is a total function each member of A is realated only to a single member of A
- (c) R_3 is a partial function, because each member of A is related to no more than one member of A, but not every member of A is related to another member.
- (d) P_2 is partial function because if $x, y, z \in \mathbb{R}$, $x \cdot y = 120$, and $x \cdot z = 120$, then y = z, but $\neg P_2(0, n)$ where $n \in \mathbb{R}$
- (e) P_3 is a total function because if $x, y, z \in \mathbb{R}^*$, $x \cdot y = 120$, and $x \cdot z = 120$, then y = z, and for every $n \in \mathbb{R}^*$, there is some $n_2 \in \mathbb{R}^*$ where $n * n_2 = 120$

2. Question Two

- (a) f_1 is not one-to-one, because $f_1(a) = f_1(d)$ but $a \neq d$
- (b) f_1 is not onto because there is no $x \in B$ where $f_1(x) = a$
- (c) f_2 is one-to-one because there is no $x, y \in B$ where $f_2(x) = f_2(y)$ and $x \neq y$
- (d) f_2 is onto because for every member of the codomain, there is some member of the domain that maps to said member of the codomain
- (e) s_1 is not one-to-one because $s_1(10) = s_1(-10)$ but $10 \neq -10$
- (f) s_2 is one-to-one because if a $x \in [0, \infty)$ and $x^2 10 = n$ where $n \in [0, \infty)$, there is no other member of the domain that can be squared and have ten added to equal n
- (g) s_2 is not onto, because there is no $x \in [0, \infty)$ where $s_2(x) = 1$
- (h) c_1 is one-to-one because there is no $x, y \in \mathbb{R}$ where $x \neq y$ and $c_1(x) = c_1(y)$
- (i) c_1 is onto because for every $y \in \mathbb{R}$ there will always be some $x \in \mathbb{R}$ where $y = x^3 10$
- (j) c_2 is not onto necause there is no $x \in \mathbb{Z}$ where $c_2(x) = 1$
- (k) d is a total function, because for any possible string (including the empty string), there exists a string that contains dashes in between each character
- (l) d is one-to-one, because for any two strings, if they have dashes inserted in between their characters, the resulting strings for each would never be the same
- (m) d is not onto, because there exists no $s \in \text{Str}$ where d(s) = wall
- (n) f is a partial function, because for any $s \in Str$, there is only one possible first character of that string, but there does not exist $s_2 \in Str$ such that $f("") = s_2$
- (o) f is not one-to-one, because f(car) = f(can) but $car \neq can$

3. Question Three

- (a) $\{(1,a),(2,a),(3,b)\}$
- (b) This is not possible, because in order for a relation to be a function, each member of the domain can't be related to more than a single member of the codomain.
- (c) $\{(a,2),(b,3),(c,1)\}$
- (d) f(x) = 2x
- (e) f(x) = 2x
- (f) $f(x) = |\frac{x}{10}|$
- (g) f(x) = x + 5

(h) f(s) = s is concatenated to itself

(i)
$$f(s) = \begin{cases} "" & \text{if } s = "" \\ s \text{ with the last character removed} & \text{otherwise} \end{cases}$$

- (j) f(s) = |s|
- (k) $|Str| \ge |\mathbb{N}|$
- (l) f(s) = the sum of the ascii values of each character of s multiplied by the total amount of all ascii values, raised to the position (starting at zero) of said character in s

Note: This is base-256 to base-10, similar to how we convert base-16 to base-10

(m) $|Str| = |\mathbb{N}|$

4. Question Four

- (a) k is not one-to-one, because $0, 6 \in \mathbb{R}$ and k(0) = k(6), but $0 \neq 6$
- (b) Claim: k_2 is one-to-one

Proof.

Choose
$$x_1, x_2 \in (3, \infty)$$
 and Assume $k_2(x_1) = k_2(x_2)$ (1)

Since
$$k_2(x_1) = k_2(x_2)$$
, we know $(x_1 - 3)^2 = (x_2 - 3)^2$ (2)

Suppose towards a contradiction $x_1 \neq x_2$ (3)

Since
$$(x_1 - 3)^2 = (x_2 - 3)^2$$
, we know $\pm (x_1 - 3) = \pm (x_2 - 3)$ (4)

Case 1:
$$(x_1 - 3) = (x_2 - 3)$$
 (5)

Since
$$(x_1 - 3) = (x_2 - 3)$$
, we know $x_1 = x_2$ (6)

In the case of
$$(x_1 - 3) = (x_2 - 3)$$
, we proved $x_1 = x_2$, (7)

which contradicts our assumption

Case 2:
$$(x_1 - 3) = -(x_2 - 3)$$
 (8)

Since
$$(x_1 - 3) = -(x_2 - 3)$$
, we know $x_1 - 3 = -x_2 + 3$ (9)

Since
$$x_1 - 3 = -x_2 + 3$$
, we know $x_1 - 6 = -x_2$ (10)

Since
$$x_1 - 6 = -x_2$$
 and $x_2 > 3$, we know $x_1 < 3$ (11)

In the case of $(x_1 - 3) = -(x_2 - 3)$, we proved an impossibility of $x_1 < 3$, which contradicts our domain

Case 3:
$$-(x_1 - 3) = (x_2 - 3)$$
 (13)

Since
$$-(x_1 - 3) = (x_2 - 3)$$
, we know $-x_1 + 3 = x_2 - 3$ (14)

Since
$$-x_1 + 3 = x_2 - 3$$
, we know $-x_1 = x_2 - 6$ (15)

Since
$$-x_1 = x_2 - 6$$
 and $x_1 > 3$, we know $x_2 < 3$ (16)

In the case of $-(x_1 - 3) = (x_2 - 3)$, we proved an impossibility of $x_2 < 3$, (17)

which contradicts our domain

Case 4:
$$-(x_1 - 3) = -(x_2 - 3)$$
 (18)

Since
$$-(x_1 - 3) = -(x_2 - 3)$$
, we know $-x_1 + 3 = -x_2 + 3$ (19)

Since
$$-x_1 + 3 = -x_2 + 3$$
, we know $-x_1 = -x_2$ (20)

Since
$$-x_1 = -x_2$$
, we know $x_1 = x_2$ (21)

In the case of
$$-(x_1 - 3) = -(x_2 - 3)$$
, we proved $x_1 = x_2$, (22)

which contradicts our assumption

In any case of
$$(x_1 - 3)^2 = (x_2 - 3)^2$$
, we proved an impossibility of $x_1 \neq x_2$ (23)

Under the assumption of
$$x_1 \neq x_2$$
, we proved an impossibility, so $x_1 = x_2$ (24)

Under the assumption of $k_2(x_1) = k_2(x_2)$, we proved $x_1 = x_2$, so k_2 is one-to-one (25)

5. Question Five

(a) h is not one-to-one, because "X-Y-Z", "X--Y--Z" \in Str and h("X-Y-Z") = h("X--Y--Z"), but "X-Y-Z" \neq "X--Y--Z"

(b) n is not onto, because $= 250$ but there does not exist a $s \in 30$ where $n(s) = 1$	
6. Question Six	
(a) a is not one-to-one, because "76", "67" \in Str and a ("76") $= a$ ("67"), but "76" \neq "67"	
(b) Claim: a is onto	
Proof.	
Choose $n \in \mathbb{N}$	(1)
Let s be an empty string	(2)
As long as $n > 9$, concatenate "9" to the end of s and decrease n by 9	(3)
n is concatenated to the end of s	(4)
For every $x \in \mathbb{N}$, there is some string containing digits that add up to x	(5)
7. Question Seven	
(a) Claim: $ A \neq B $	
Proof.	
Choose the sets A, B	(1)
Let F be a function from $A \to B$ and G be a function from $B \to A$	(2)