Namen: _____

Aufgabe	2.1	2.2	2.3	Z2.1	\sum
Punkte					

Höhere Analysis – Übungsblatt 2

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer

Denis Brazke

denis.brazke@uni-heidelberg.de

Aufgabe 2.1 (Lebesgue–Maß)

5 Punkte

Sei $\lambda \colon \mathscr{B}(\mathbb{R}) \longrightarrow [0, \infty]$ das Lebesgue-Maß.

- a) Sei $A \subset \mathbb{R}$ abzählbar. Zeigen Sie, dass $A \in \mathcal{B}(\mathbb{R})$ und dass $\lambda(A) = 0$.
- b) Zu $A \in \mathcal{B}(\mathbb{R})$ und $\alpha > 0$ definieren wir $\alpha A := \{\alpha x : x \in A\}$. Zeigen Sie, dass $\alpha A \in \mathcal{B}(\mathbb{R})$ und $\lambda(\alpha A) = \alpha \lambda(A)$.
- c) Zeigen Sie, dass für alle $\alpha > 0$ eine Menge $A \in \mathcal{B}(\mathbb{R})$ existiert, so dass A dicht ist in \mathbb{R} , und $\lambda(A) = \alpha$. Gibt es auch eine offene Menge $A \subset \mathbb{R}$ mit diesen Eigenschaften? Begründen Sie Ihre Antwort.

Aufgabe 2.2 (Hausdorff–Maß)

5 Punkte

Sei $s \geq 0$ und $\delta > 0$. Zu $A \subset \mathbb{R}$ definieren wir diam $(A) := \sup\{|x - y| : x, y \in A\}$ und speziell diam $(\emptyset) := 0$. Weiterhin definieren wir

$$\mathscr{H}^{s}_{\delta}(A) := \inf \left\{ \sum_{j \in \mathbb{N}} \operatorname{diam}(B_{j})^{s} : A \subset \bigcup_{j \in \mathbb{N}} B_{j}, \operatorname{diam}(B_{j}) \leq \delta \right\}$$
 für alle $A \subset \mathbb{R}$. (2.1)

Nun definieren wir das Hausdorff-Maß durch

$$\mathscr{H}^s(A) := \limsup_{\delta \to 0} \mathscr{H}^s_{\delta}(A)$$
 für alle $A \subset \mathbb{R}$. (2.2)

- a) Zeigen Sie, dass \mathcal{H}^s ein äußeres Maß ist.
- b) Zu $A \subset \mathbb{R}$ und $\alpha > 0$ definieren wir $\alpha A := \{\alpha x : x \in A\}$. Zeigen Sie, dass $\mathscr{H}^s(\alpha A) = \alpha^s \mathscr{H}^s(A)$.
- c) Zeigen Sie, dass $\mathcal{H}^s(A+y) = \mathcal{H}^s(A)$ für alle $A \subset \mathbb{R}, y \in \mathbb{R}$.
- d) Zeigen Sie, dass \mathcal{H}^0 das Zählmaß ist.
- e) Ist \mathcal{H}^1 ein Maß? Begründen Sie Ihre Antwort.

 $\mathit{Hinweis}$: In Definition 2.21 wurde der Normierungsfaktor $\alpha(s)$ in die Definition von \mathscr{H}^s_{δ} hinzugenommen. Dieser spielt für die zu zeigenden Eigenschaften in dieser Aufgabe keine Rolle und wurde deshalb hier weggelassen.

Aufgabe 2.3 (Caratheodory)

5 Punkte

Sei X eine Menge und $\nu \colon \mathscr{P}(X) \longrightarrow [0, \infty]$ definiert durch

$$\nu(A) := \begin{cases} 0 & \text{falls } A \text{ h\"ochstens abz\"{a}hlbar ist,} \\ 1 & \text{sonst} \end{cases}$$
 f¨ur alle $A \subset X$. (3.1)

- a) Zeigen Sie, dass ν ein äußeres Maß ist.
- b) Bestimmen Sie alle Mengen $A \subset X$, so dass

$$\nu(E) = \nu(E \cap A) + \nu(E \cap A^c) \qquad \text{für alle } E \subset X.$$
 (3.2)

Begründen Sie Ihre Antwort.

Abgabe bis spätestens 19.11.2020, 14:00 Uhr in Moodle.

Zusatzufgabe 2.1 3 Punkte

Sei $\#: \mathscr{P}(\mathbb{N}) \longrightarrow [0, \infty]$ das Zählmaß. Wir definieren die Funktion $\mu: \mathscr{P}(\mathbb{N}) \longrightarrow [0, \infty]$ durch

$$\mu(A) := \limsup_{n \to \infty} \frac{1}{n} \# (A \cap \{1, \dots, n\})$$
 für alle $A \subset \mathbb{N}$. (4.1)

Ist μ ein Maß? Ist μ ein äußeres Maß? Begründen Sie Ihre Antwort.