PTML 3: 8/04/2022

TABLE DES MATIÈRES

Gra	Gradient descent on a least-squares problem		2
1.1	Settir	ng	2
	1.1.1	Alternative formulation	2
	1.1.2	Positivity of H	3
	1.1.3	Smoothness of H	3
	1.1.4	Condition number	3
1.2	Grad	ient descent	3
	1.2.2	Convex function	5
1.3 Line search		search	6
	1.3.1	Exact line search	6
	1.3.2	Simulation	7
	1.3.3	Backtracking line search	8
2 Ridge regression			8
	0		8
	1.1 1.2 1.3 Rid 2.1	1.1 Settin 1.1.1 1.1.2 1.1.3 1.1.4 1.2 Grad 1.2.1 1.2.2 1.3 Line 1.3.1 1.3.2 1.3.3 Ridge reg 2.1 Settin	1.1 Setting 1.1.1 Alternative formulation 1.1.2 Positivity of H 1.1.3 Smoothness of H 1.1.4 Condition number 1.2 Gradient descent 1.2.1 Strongly convex function 1.2.2 Convex function 1.3.1 Exact line search 1.3.2 Simulation 1.3.3 Backtracking line search

1 GRADIENT DESCENT ON A LEAST-SQUARES PROBLEM

1.1 Setting

In this exercise we will study gradient descent (GD) for a least-squares problem.

- $\mathfrak{X} = \mathbb{R}^d$
- $-y = \mathbb{R}$
- Design matrix : X
- Outputs : $y \in \mathbb{R}^n$.

We want to minimize the function f representing the empirical risk:

$$f(\theta) = \frac{1}{2n} ||X\theta - y||^2 \tag{1}$$

We recall that the gradient and the Hessian write:

$$\begin{split} \nabla_{\theta} f &= \frac{1}{n} X^T (X\theta - y) \\ &= H\theta - \frac{1}{n} X^T y \end{split} \tag{2}$$

$$H = \frac{1}{n} X^{\mathsf{T}} X \tag{3}$$

We note the gradient update $\theta_{t+1} = \theta_t - \gamma \nabla_{\theta_t} f$

We note η^{\ast} the minimizers of f. If H is not invertible, they might be not unique and all verify

$$\nabla_{\mathbf{\eta}^*} \mathbf{f} = \mathbf{0} \tag{4}$$

This means that

$$H\eta * = \frac{1}{n}X^{T}y \tag{5}$$

If f is strongly convex, η^* is unique.

1.1.1 Alternative formulation

It is often convenient to note that the minimization of f is equivalent to the minimization of the quadratic function

$$g(\theta) = \frac{1}{2} \theta^{\mathsf{T}} \mathsf{H} \theta - b^{\mathsf{T}} \theta \tag{6}$$

with $b = \frac{1}{n}X^Ty$. Indeed,

$$f(\theta) = \frac{1}{2n} ||X\theta - y||^{2}$$

$$= \frac{1}{2n} \langle X\theta - y, X\theta - y \rangle$$

$$= \frac{1}{2n} \left(\langle X\theta, X\theta \rangle - 2 \langle X\theta, y \rangle + \langle y, y \rangle \right)$$

$$= \frac{1}{2n} \left(\theta^{T} X^{T} X\theta - 2 (X^{T} y)^{T} \theta + ||y||^{2} \right)$$

$$= \frac{1}{2n} \left(\theta^{T} X^{T} X\theta - 2 (X^{T} y)^{T} \theta + ||y||^{2} \right)$$

$$= \frac{1}{2} \theta^{T} H\theta - \frac{1}{n} (X^{T} y)^{T} \theta + \frac{1}{2n} ||y||^{2}$$

$$= g(\theta) + \frac{1}{2n} ||y||^{2}$$

Hence, the gradients of f and g are identical, and minimizing g is equivalent to minimizing f.

1.1.2 Positivity of H

As $H = \frac{1}{n}X^TX$, H is symmetric. We recall that it is also positive semi-definite (matrice positive), meaning that all its eigenvalues are non-negative. Indeed, let λ be such an eigenvalue, with associated eigenvector u_{λ} .

$$\langle Hu, u \rangle = \langle \lambda u, u \rangle = \lambda ||u||^2$$
 (8)

But we also have

$$\langle Hu, u \rangle = \langle X^T Xu, u \rangle$$

$$= \langle Xu, Xu, \rangle$$

$$= ||Xu||^2$$

$$\geqslant 0$$
(9)

Hence, all eigenvalues of H are non-negative. We note μ the smallest eigenvalue of H.

1.1.3 Smoothness of H

We have also seen that the convergence garantees of gradient descent depend on the **smoothness** of H. Let L be the largest eigenvalue of L. We can show that f is L-smooth.

To do so, we use the fact that $\forall x \in \mathbb{R}^d$,

$$||Hx|| \leqslant L||x|| \tag{10}$$

This can be proven by decomposing x in a basis of \mathbb{R}^d made of orthogonal eigenvectors of H. Then, for all θ and θ' ,

$$\begin{split} \|\nabla_{\theta} f - \nabla_{\theta'} f\| &= \|H(\theta - \theta')\| \\ &\leq \||H\| \times \|\theta - \theta'\| \end{split} \tag{11}$$

Which shows the L-smoothness of f.

1.1.4 Condition number

We note κ the condition number, $\kappa = \frac{L}{\mu}$. By convention, if $\mu = 0$, $L = +\infty$.

Gradient descent

As we have seen during the lectures, the convexity or strong convexity of the objective function f is determined by H.

- If H is positive-definite (matrice définie positive), meaning that $\mu > 0$, f is μ-strongly convex.
- Is H is simply positive semi-definite, for instance if $\mu=0$, then we only know that f is convex.

Strongly convex function

If $\mu > 0$, f is μ -convex and we have seen that we have **exponential convergence** for a good choice of γ . With $\gamma = \frac{1}{\Gamma}$, we obtain an exponential convergence

$$\|\theta_t - \eta^*\|_2^2 \leqslant \exp(-\frac{2t}{\kappa}) \|\theta_0 - \eta^*\|_2^2 \tag{12}$$

Here, t represents the number of iterations. The characteristic convergence time is κ . We can also state that

$$\log(\|\theta_t - \eta^*\|_2^2) \leqslant -\frac{2t}{\kappa} + \log(\|\theta_0 - \eta^*\|_2^2)$$
 (13)

Note that other choices of γ are possible, such as $\gamma = \frac{2}{u+L}$ [Bach, 2021,].

Exercice 1: Use the files TP_3_GD_strongly_convex.py and TP_3_utils.py in order to observe the exponential convergence for a strongly convex loss function. You can generate different data. You should observe results like Figure 1 and 2.

FIGURE 1 – GD, strongly convex loss function

FIGURE 2 – GD, strongly convex loss function, semi-logarithmic scale

1.2.2 Convex function

If $\mu = 0$, we have seen that with $\gamma \leqslant \frac{1}{\Gamma}$,

$$f(\theta_t) - f(\eta^*) \leqslant \frac{1}{4t\gamma} \|\theta_0 - \eta^*\|_2^2$$
 (14)

We can also state that

$$\log\left(f(\theta_t) - f(\eta^*)\right) \leqslant -\log(4t\gamma) + \log(\|\theta_0 - \eta^*\|_2^2) \tag{15}$$

We will study an example where X is not injective, hence H is not invertible. In such a setting, we can not use the OLS estimator in order to monitor convergence, as in the previous exercice. Instead, we will generate a random η^* and output vector $y \in \mathbb{R}^n$.

Exercice 2: Use the files TP_3 _GD_convex.py and TP_3_utils.py in order to observe the convergence for a convex loss function.

You can generate different data. You should observe results like Figure 3 and 4.

FIGURE 3 – GD, convex loss function, logarithmic scale.

FIGURE 4 – GD, convex loss function, semi-logarithmic scale

It seems that with this function, we observe

- a phase of convergence approximately in the form of $O(\frac{1}{t})$, since $\log_{10}(f(\theta) \theta)$ $f(\eta_*)$ decreases approximately as $-\log(t)$ (figure 3).
- a phase of exponential convergence, approximately when $log(t) \ge 4$ (the exponential convergence can be seen in figure 4, where $\log_{10}\left(f(\theta)-f(\eta_*)\right)$ is linear with t, with a negative slope.

Exercice 3: Why do we have these two regimes one after the other?

1.3 Line search

Considering an fixed iteration step θ_t , we note

$$\alpha(\gamma) = \theta_t - \gamma \nabla_{\theta_t} f \tag{16}$$

Exact line search 1.3.1

The **exact line seach** method attempts to find the optimal step γ^* , at each iteration. This means, given the position θ_t , the parameter γ that minimizes the function defined by

$$g(\gamma) = f(\theta_t - \gamma \nabla_{\theta_t} f)$$

$$= f(\alpha(\gamma))$$
(17)

We note that

$$\nabla_{\alpha(\gamma)} f = H\alpha(\gamma) - \frac{1}{n} X^{T} y$$

$$= H(\theta_{t} - \gamma \nabla_{\theta_{t}} f) - \frac{1}{n} X^{T} y$$

$$= \nabla_{\theta_{t}} f - \gamma H \nabla_{\theta_{t}} f$$
(18)

We can derivate g with respect to γ .

$$g'(\gamma) = \langle \nabla_{\alpha(\gamma)} f, -\alpha'(\gamma) \rangle$$

$$= -\langle \nabla_{\theta_{t}} f - \gamma H \nabla_{\theta_{t}} f, \nabla_{\theta_{t}} f \rangle$$

$$= -\langle \nabla_{\theta_{t}} f, \nabla_{\theta_{t}} f \rangle + \langle \gamma H \nabla_{\theta_{t}} f, \nabla_{\theta_{t}} f \rangle$$

$$= -\|\nabla_{\theta_{t}} f\|^{2} + \gamma \langle H \nabla_{\theta_{t}} f, \nabla_{\theta_{t}} f \rangle$$

$$= -\|\nabla_{\theta_{t}} f\|^{2} + \gamma \langle H \nabla_{\theta_{t}} f, \nabla_{\theta_{t}} f \rangle$$
(19)

In order to cancel the derivative, we must have that

$$\gamma^* = \frac{\|\nabla_{\theta_t} f\|^2}{\langle H\nabla_{\theta_t} f, \nabla_{\theta_t} f \rangle} \tag{20}$$

We note that this is correct if $\nabla_{\theta_t} f \neq 0$. If $\nabla_{\theta_t} f = 0$, this means that $\theta_t = \eta^*$, as f is convex.

This computation may then be done at each iteration.

An important remark is that if we note $\theta_{t+1}^* = \theta_t - \gamma^* \nabla_{\theta_t} f = \alpha(\gamma^*)$, then equation 19 shows that

$$\langle \nabla_{\theta_{t+1}^*} f, \nabla_{\theta_t} f \rangle = 0 \tag{21}$$

Two optimal directions of the gradient updates are **orthogonal**. Importantly, this is true in the general case, not only for least-squares.

1.3.2 Simulation

Exercice 4: Use **TP_3_GD_strongly_convex_line_search.py** in order to implement the exact line search method. You should obtain something like figures 5 and 6

FIGURE 5 – Line search vs constant step-size gradient descent

FIGURE 6 – Line search vs constant step-size gradient descent, semi logarithmic scale.

1.3.3 Backtracking line search

In many practical situations, it is not possible to compute explicitely the optimal step γ^* . Or it could be possible, but too expensive computationnally.

In such situations, it is possible to compute an approximation of γ^* , for instance using backtracking line search. This method attempts to find a good γ by trying several decreasing values until a sufficient decrease in f after the gradient update is obtained.

https://en.wikipedia.org/wiki/Backtracking_line_search

2 RIDGE REGRESSION

Setting

We recall that when doing Ridge regression, we minimize the regularized risk

$$f(\theta) = \frac{1}{2n} \|Y - X\theta\|_2^2 + \frac{\nu}{2} \|\theta\|_2^2$$
 (22)

As in 6, it is convenient to note that this risk minimization is equivalent to the minimization of a quadratic function

$$g(\theta) = \frac{1}{2}\theta^{\mathsf{T}}G\theta - b^{\mathsf{T}}\theta \tag{23}$$

with

$$G = H + \nu I_d \tag{24}$$

and

$$b = \frac{1}{n} X^{\mathsf{T}} y \tag{25}$$

Indeed using 7,

$$f(\theta) = \frac{1}{2n} ||X\theta - y||^2 + \frac{\nu}{2} ||\theta||_2^2$$

$$= \frac{1}{2} \theta^T H \theta - \frac{1}{n} (X^T y)^T \theta + \frac{\nu}{2} \langle \theta, \theta \rangle$$

$$= \frac{1}{2} \theta^T (H + \nu I_d) \theta - \frac{1}{n} (X^T y)^T \theta + \frac{1}{2n} ||y||^2$$
(26)

We note that G is a symmetric definite-positive matrix.

2.2 Simulations

We assume that d>n. This means that H is not invertible. Indeed, as $X\in\mathbb{R}^{n,d}$ is of rank at most n, its columns are not linearly independent, and is not injective. There exists $u_0\in\mathbb{R}^d$ such that $u_0\neq 0$ and $Xu_0=0$. Then, $Hu_0=X^TXu_0=0$ and the smallest eigenvalue of H is 0. Finally, the smallest eigenvalue of G is ν .

Exercice 5: Implement GD on a Ridge regression problem, using TP_3_GD_strongly_convex_ridge.py

Figure 7 – Gradient descent on ridge regression

RÉFÉRENCES

[Bach, 2021] Bach, F. (2021). Learning Theory from First Principles Draft. <u>Book</u> Draft, page 229.