Álgebra I. Hoja de ejercicios 11: Grupos Universidad de El Salvador, ciclo impar 2019

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2019@googlegroups.com.

Ejercicio 1. Demuestre que $\mathbb{Q} \setminus \{-1\}$ es un grupo abeliano respecto a la operación x * y := xy + x + y.

Ejercicio 2. Sea k un cuerpo. Para dos parámetros fijos $a, b \in k$, definamos una función

$$\phi_{a,b} \colon k \to k, \quad x \mapsto ax + b.$$

Demuestre que

$$\mathrm{Aff}_1(\mathbb{R}) := \{ \phi_{a,b} \mid a \in k^{\times}, \ b \in k \}$$

es un grupo respecto a la composición habitual de aplicaciones. ¿Es abeliano?

Ejercicio 3. Sea P un rectángulo en \mathbb{R}^2 que no es un cuadrado.

- a) Describa todas las isometrías $f: \mathbb{R}^2 \to \mathbb{R}^2$ que cumplen f(P) = P.
- b) Demuestre que estas isometrías forman un subgrupo de $\text{Isom}(\mathbb{R}^2)$ y escriba la tabla de multiplicación en este subgrupo.

Ejercicio 4. Encuentre un par de isometrías $f, g: \mathbb{R}^2 \to \mathbb{R}^2$ tales que $f \circ g \neq g \circ f$.

Ejercicio 5. Para el grupo $G = S_3$ y Q_8 encuentre todos los subgrupos $H \subseteq G$ y las inclusiones entre ellos.

Ejercicio 6. Calcule la descomposición en ciclos disjuntos del producto de ciclos

$$(1\ 2)\ (2\ 5\ 3)\ (1\ 5\ 7\ 3\ 2\ 6\ 4)\ (4\ 7\ 6)\in S_7.$$

Ejercicio 7. Demuestre que si $n \ge 3$, entonces para toda permutación $\sigma \in S_n$, $\sigma \ne id$ existe otra permutación $\tau \in S_n$ tal que $\sigma \tau \ne \tau \sigma$.

Ejercicio 8. Consideremos las matrices de $n \times n$ que tienen 1 en las entradas diagonales, ceros debajo de la diagonal y elementos arbitrarios arriba de la diagonal.

$$\{(x_{ij}) \mid x_{ii} = 1 \text{ para todo } i, x_{ij} = 0 \text{ para } i > j\}.$$

Por ejemplo, para n = 3 son de la forma

$$\begin{pmatrix} 1 & x_{12} & x_{13} \\ 0 & 1 & x_{23} \\ 0 & 0 & 1 \end{pmatrix}$$

Demuestre que estas matrices forman un subgrupo de $GL_n(A)$.

Ejercicio 9. Consideremos el conjunto de matrices

$$O_n(k) = \{a \in GL_n(k) \mid a^t \ a = a \ a^t = 1\},\$$

donde a^t denota la matriz transpuesta.

- a) Demuestre que $O_n(k)$ es un subgrupo de $\mathrm{GL}_n(k)$. Este se llama el **grupo ortogonal** sobre k.
- b) Para n=2 y $k=\mathbb{R}$ demuestre que los elementos de $O_2(\mathbb{R})$ son de la forma

$$\begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \quad o \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix}.$$

Ejercicio 10. Supongamos que G es un grupo donde cada elemento $g \in G$ satisface $g^2 = 1$. Demuestre que G es abeliano.

Ejercicio 11. Sea G un grupo y $H, K \subseteq G$ dos subgrupos. Demuestre que $H \cup K$ es un grupo si y solamente si $H \subseteq K$ o $K \subseteq H$.