

Curso de Data Science

Aula 02 - Probabilidade - Parte 2

O que você irá aprender nesta aula?

Revisão da aula anterior Regra de Bayes

Paradoxo de Monty Hall: trocaria de porta?

Paradoxo de Monty Hall: trocaria de porta?

Inicialmente:

Probabilidade de ganhar = P(G) =
$$\frac{n(carros)}{n(portas)}$$
 = $\frac{1}{3}$ = 0.3333 = 33.33 %

CABRA

CARRO

CABRA

Paradoxo de Monty Hall: trocaria de porta?

Inicialmente:

Outra solução: analisar todas as possibilidades!

- 1. Escolhe porta com carro
- Escolhe porta com cabra #1
- 3. Escolhe porta com cabra #2

$$P_{INICIAL}(G) = \frac{n(possibilidades de ganhar)}{n(total de possibilidades)} = \frac{1}{3} = 0.3333 = 33.33 \%$$

A porta aberta pelo apresentador SEMPRE é de uma cabra i.e. no final sobram uma cabra e um carro atras das portas. Analisar todas as possibilidades no caso de troca de porta!

- 1. Escolhe porta com carro e não troca
- 2. Escolhe porta com cabra #1 e não troca
- 3. Escolhe porta com cabra #2 e não troca
- 4. Escolhe porta com carro e troca para uma cabra
- 5. Escolhe porta com cabra #1 e troca para carro
- 6. Escolhe porta com cabra #2 e troca para carro

$$P_{TROCA}(G) = \frac{n(possibilidades de ganhar)}{n(total de possibilidades)} = \frac{2}{3} = 0.6666 = 66.66 \%$$

À partir da regra da multiplicação

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Exemplo:

Em uma fábrica, 1 entre 500 produtos são defeituosos (0.2 %) A fabrica compra um sensor que testa positivo caso o produto seja defeituoso, mas ele da o diagnostico correto 99 % das vezes. Se o sensor testa positivo (diagnostica uma peça como defeituosa), qual a real probabilidade de que ela seja, de fato, defeituosa?

Queremos P(A|B)

Resolução do exemplo:

	Descrição	valor
P(A)	Probabilidade do produto ser defeituoso	0.002
P(B)	Probabilidade do sensor testar positivo	?
P(A B)	Probabilidade do produto ser defeituoso SE o sensor testar positivo	?
P(B A)	Probabilidade do sensor testar positivo SE o produto for defeituoso	0.99

Resolução do exemplo:

Ponto importante!				
Verdadeiro positivo	Produto é defeituoso E é classificado como defeituoso (sensor positivo)			
Falso positivo	Produto não é defeituoso E é classificado como defeituoso (sensor positivo)			

Resolução do exemplo:

E o P(B)?? Duas possibilidades:

P(B) = probabilidade de testar positivo

P(B) = P(verdadeiro positivo) + P(falso positivo)

P(B) = P(PRODUTO É DEFEITUOSO E É CLASSIFICADO COMO DEFEITUOSO) + P(PRODUTO NÃO É DEFEITUOSO E É CLASSIFICADO COMO DEFEITUOSO)

 $P(B) = P(B \cap A) + P(B \cap \overline{A})$

Regra da multiplicação

$$P(B) = P(B|A)*P(A) + P(B|\overline{A})*P(\overline{A})$$

Resolução do exemplo:

$$P(B) = P(B|A)*P(A) + P(B|\overline{A})*P(|\overline{A})$$

E estes novos termos? Complemento!

$$P(\overline{A}) = 1 - P(A) = 1 - 0.002 = 0.998$$

 $P(B|\overline{A}) = 1 - P(B|A) = 1 - 0.99 = 0.01$

$$P(B) = 0.99*0.002+0.01*0.998 = 0.01196$$

Resolução do exemplo:

Voltando ao teorema de Bayes:

$$P(A|B) = P(B|A)*P(A)/P(B)$$

 $P(A|B) = 0.99*0.002/0.01196$
 $P(A|B) = 0.165 = 16.5\%$

	valor
P(A)	0.002
P(B)	0.01196
P(A B)	?
P(B A)	0.99

Afirmações equivalentes:

- Dado que o sensor testa positivo (acusa defeito), a probabilidade de que o produto seja, de fato, defeituoso, é de 16.5 %.
- Um sensor que teste positivo tem 16.5 % de chance de identificar corretamente um produto defeituoso.

Então, nesta aula vimos:

Revisão da aula anterior Regra de Bayes

Muito obrigado!