Fiche d'exercices nº 5

Suites et séries de fonctions

Exercice 1.

Soit $\alpha > 0$ et pour $n \in \mathbb{N}$, $u_n = (-1)^n \left(1 - \cos \frac{1}{n^{\alpha}}\right)$.

Trouver pour quelles valeurs de α :

- la série $\sum u_n$ est absolument convergente;
- la série $\sum u_n$ est convergente, mais pas absolument convergente.

Exercice 2. *

- a) Démontrer que la série $\sum_{n} \frac{(-1)^{n}}{\sqrt{n}}$ converge.
- **b)** Démontrer que $\frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} \frac{1}{n} + \frac{(-1)^n}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$.
- c) Étudier la convergence de la série $\sum_{n} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$
- d) Qu'a-t-on voulu mettre en évidence dans cet exercice?

Exercice 3. *

Soit a une suite de réels positifs. Comparer les assertions

- (i) la série de terme général a_n converge
- (ii) la série de terme général $\sqrt{a_n a_{n+1}}$ converge.

Exercice 4. **

Donner un développement asymptotique à 2 termes de

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

Exercice 5. **

En utilisant des comparaisons séries-intégrales, montrer que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right)$$

où $\gamma \in]0,1[$ est appelée la constante d'Euler.

Exercice 6. **

Étudier la suite $(u_n)_n$ définie par $u_n = \prod_{k=1}^n \left(1 + \frac{(-1)^{k-1}}{\sqrt{k}}\right)$, puis la série de terme général u_n .

Exercice 7. **

Montrer qu'il existe $K \in \mathbb{R}$ tel qu'au voisinage de $+\infty$, on ait :

$$\sum_{k=1}^{n} k^{1/k} = n + \frac{\ln^2(n)}{2} + K + o(1).$$

Exercice 8. **

Soit $p \in \mathbb{N}^*$. On considère la série de terme général $u_n = \frac{(-1)^n}{np+1}$.

a) Montrer que la série $(\sum u_n)$ converge et que :

$$\sum_{n=0}^{\infty} u_n = \int_0^1 \frac{dt}{1 + t^p}.$$

b) Trouver un développement assymptotique d'ordre 1 (ie. en $o(\frac{1}{n})$) du reste d'ordre n:

$$R_n = \int_0^1 \frac{dt}{1+t^p} - \sum_{k=0}^n \frac{(-1)^k}{kp+1}.$$

c) Étudier la série de terme général R_n .

Exercice 9. **

On rappelle que $e = \sum_{n=1}^{\infty} \frac{1}{n!}$. Pour $n \in \mathbb{N}$, on pose $a_n = \sum_{k=0}^{n} \frac{1}{k!}$ et $b_n = a_n + \frac{1}{n n!}$.

- a) Montrer que les suites (a_n) et (b_n) sont adjacentes et en déduire que e est irrationnel.
- b) Montrer qu'au voisinage de $+\infty$, on a :

$$e n! = a_{n+1} n! + O\left(\frac{1}{n^2}\right).$$

c) En déduire la nature de la série de terme général $u_n = (\sin(\pi e n!))^p$, selon la valeur de $p \in \mathbb{N}^*$.

Exercice 10. *

Etudier, suivant les valeurs de $p \in \mathbb{N}$, la nature de la série de terme général :

$$u_n = \frac{1! + 2! + \dots + n!}{(n+p)!}.$$

Exercice 11.

Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, on définit sur \mathbb{R} la fonction $f_n : x \mapsto n^{\alpha} x e^{-nx}$. Étudier la convergence simple et uniforme de la suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$.

Exercice 12.

Étudier la convergence simple et la convergence uniforme de la suite de fonctions $(f_n)_n$ définies sur \mathbb{R}_+ par $f_0(x) = 0$ et pour tout $n \ge 1$:

$$\begin{cases} f_n(x) = \left(1 - \frac{x}{n}\right)^n & \text{si } 0 \le x \le n \\ f_n(x) = 0 & \text{si } x > n. \end{cases}$$

Exercice 13.

Étudier la convergence simple et uniforme de la série de fonctions $\sum u_n$ où $u_n : \mathbb{R} \to \mathbb{R}$ est définie par :

$$u_n(t) = (-1)^n \ln \left(1 + \frac{t^2}{n(1+t^2)} \right).$$

Exercice 14.

Si $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$, étudier la convergence uniforme de la suite de fonctions définies sur \mathbb{R} par

$$f_n(x) = \sqrt{f^2(x) + \frac{1}{n}}.$$

(On pourra introduire l'ensemble $E = \{x \in \mathbb{R} \mid |f(x)| \leq \varepsilon\}$.)

Exercice 15.

Montrer que la série de fonctions $\sum f_n$ avec

$$f_n: \mathbb{R}_+^* \to \mathbb{R}_+^*, \ x \mapsto \frac{x e^{-nx}}{\ln(n)}, \ n \geqslant 2$$

converge normalement sur tout segment de \mathbb{R}_{+}^{*} , mais pas normalement sur \mathbb{R}_{+} .

Exercice 16.

Soit la fonction $f: x \mapsto \sum_{n=1}^{+\infty} \frac{2x}{n^2 + x^2}$.

- a) Déterminer le domaine de définition de la fonction f.
- b) Montrer que f est continue.
- c) Donner les limites de f aux bornes de son domaine de définition.

Exercice 17.

On considère la série de fonction $\sum f_n$, avec $f_n(x) = \frac{\left(1 - e^{-x}\right)^n}{n^2}$. On note f sa fonction somme.

- a) Montrer que la fonction f est définie et continue sur $[-\ln(2), +\infty[$.
- b) Déterminer la limite de f(x) lorsque x tend vers l'infini.
- c) Montrer que f est dérivable sur $]-\ln(2),+\infty[$ et calculer f'(x).

Exercice 18.

Soit $(P_n)_n$ une suite de fonctions polynômes à coefficients réels convergeant uniformément sur \mathbb{R} vers une fonction f. Montrer que f est une fonction polynôme.

Exercice 19.

Soit la suite de fonctions polynomiales définies par $P_0(x) = 0$ et pour tout $n \in \mathbb{N}$:

$$2P_{n+1}(x) = x + 2P_n(x) - P_n^2(x).$$

- a) Montrer que (P_n) converge simplement vers la fonction racine $x \mapsto \sqrt{x}$ sur [0,1].
- **b)** Montrer que pour tout $x \in [0, 1]$ et pour tout $n \in \mathbb{N}$:

$$0 \leqslant \sqrt{x} - P_n(x) \leqslant \frac{2\sqrt{x}}{2 + n\sqrt{x}}.$$

En déduire qu'il y a convergence uniforme sur [0,1].

Exercice 20.

Soit une fonction $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ continue telle que f(0) = 0 et $\lim_{+\infty} f = 0$. Étudier la convergence simple, uniforme, et uniforme sur tout segment des suites de fonctions suivantes :

- $\mathbf{a)} \ f_n(x) = f(nx)$
- $\mathbf{b)} \ g_n(x) = f\left(\frac{x}{n}\right).$
- **c)** $h_n(x) = f_n(x) g_n(x)$.

Exercice 21.

Après en avoir justifié l'existence, calculer l'intégrale :

$$\int_0^1 \sum_{n=2}^{+\infty} \left(\frac{1}{n-x} - \frac{1}{n+x} \right) \mathrm{d}x$$

Exercice 22.

On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ f_n(x) = x \arctan(nx)$$

- a) Montrer que $(f_n)_n$ converge simplement vers une fonction f à déterminer.
- **b)** Montrer que pour tout $x \in \mathbb{R}^*$, $|f_n(x) f(x)| \le |x \arctan(\frac{1}{nx})|$, et en déduire que $(f_n)_n$ converge uniformément vers f.
- c) Que peut-en en conclure à propos d'un lien éventuel entre convergence uniformé et régularité de de la fonction limite?

Exercice 23.

Soit

$$f(x) = \sum_{n=1}^{+\infty} e^{-x\sqrt{n}}$$

- a) Quel est le domaine de définition de f? Etudier la continuité de f sur celui-ci.
- b) Montrer que f est strictement décroissante.
- c) Etudier la limite de f en $+\infty$.
- d) Déterminer un équivalent simple de f(x) quand $x \to 0^+$

Exercice 24.

Étudier la convergence simple et uniforme de la suite de fonctions $(f_n)_n$ définies par $f_n(x) = \frac{\sin(nx)}{n\sqrt{x}}$ sur \mathbb{R}_+^* .

Exercice 25.

Étudier les modes de convergence de la série de fonction $\sum f_n$, avec

$$f_n(x) = \frac{1}{1 + n^3 x^2}$$

Quelques solutions

Solution 3

Supposons (i). Pour tout $n \in \mathbb{N}$, on vérifie facilement que

$$\sqrt{a_n a_{n+1}} \leqslant \frac{1}{2} a_n + \frac{1}{2} a_{n+1}$$

Les séries positives $\sum a_n$ et $\sum a_{n+1}$ étant convergente, on en déduit (ii) par comparaison.

 $(ii) \Rightarrow (i)$ n'est pas vérifié en général. Un contre-exemple brutal : $a_n = 1 + (-1)^n$. Un contre-exemple plus subtil : $a_n = \frac{1}{n^2}$ si $n \ge 2$ pair et $a_n = \frac{1}{n}$ si n impair.

Solution 4

Notons $(R_n)_n$ la suite des restes de cette série de Riemann $\sum \frac{1}{n^2}$. Une comparaison série-intégrale permet d'écrire que pour tout $n \ge 1$:

$$0 \le \int_{n}^{+\infty} \frac{1}{t^2} dt - \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \le \frac{1}{n^2},$$

ce qui se réecrit :

$$0 \leqslant \frac{1}{n} - R_n \leqslant \frac{1}{n^2}$$

Posons, pour tout $n \in \mathbb{N}$, $u_n = \frac{1}{n} - R_n$, et étudions la série $\sum (u_n - u_{n+1})$. Pour tout $n \in \mathbb{N}$, on a :

$$u_n - u_{n+1} = \frac{1}{n} - \frac{1}{n+1} - \frac{1}{(n+1)^2} = \frac{(n+1)^2 - n(n+1) - n}{n(n+1)^2} = \frac{1}{n(n+1)^2} \sim \frac{1}{n^3}$$

Par sommation d'une relation de comparaison asymptotique, on peut en déduire que les restes des séries $\sum (u_n - u_{n+1})$ et $\sum \frac{1}{n^3}$ sont équivalents en $+\infty$, et donc :

$$u_{n+1} = \sum_{k=n+1}^{+\infty} (u_k - u_{k+1}) \sim \sum_{k=n+1}^{+\infty} \frac{1}{k^3}$$

On peut alors refaire une comparaison intégrale! Pour tout $n \ge 1$, on a :

$$0 \le \int_{n}^{+\infty} \frac{1}{t^3} dt - \sum_{k=n+1}^{+\infty} \frac{1}{k^3} \le \frac{1}{n^3},$$

et on en déduit :

$$u_{n+1} \sim \sum_{k=n+1}^{+\infty} \frac{1}{k^3} \sim \frac{1}{2n^2}$$

Comme $u_n \sim u_{n+1}$ (puisque $u_n - u_{n+1} = o\left(\frac{1}{n^2}\right)$), on obtient au final que :

$$R_n = \frac{1}{n} - \frac{1}{2n^2} + \mathcal{O}\left(\frac{1}{n^3}\right)$$

Remarque : cette démarche peut reprise autant de fois qu'on le souhaite pour obtenir un développement asymptotique à n'importe quel ordre. Voir aussi Centrale/Supelec MP 2011 épreuve 1 pour une méthode plus générale et plus rapide.

Solution 6

Pour tout $n \in \mathbb{N}^*$ posons $v_n = \ln\left(1 + \frac{(-1)^{n-1}}{\sqrt{n}}\right)$, de sorte que $(\ln(u_n))_n$ est la suite des sommes partielles de la série $\sum v_n$. Pour $n \in \mathbb{N}^*$ au voisinage de $+\infty$ on a :

$$v_n = \frac{(-1)^{n-1}}{\sqrt{n}} - \frac{1}{2n} + O\left(\frac{1}{n^{3/2}}\right)$$

$$\frac{(-1)^{n-1}}{\sqrt{n}} \text{ est le terme général d'une série alternée vérifiant le critère spécial de convergence, O}\left(\frac{1}{n^{3/2}}\right)$$

est le terme général d'une série absolument convergente, donc convergente, mais $-\frac{1}{2n}$ est le terme général d'une série divergente. On reconnait plus précisément dans ce dernier terme la série harmonique, et on sait que :

$$\sum_{k=1}^{n} \left(-\frac{1}{2k} \right) = -\frac{1}{2} \sum_{k=1}^{n} \frac{1}{n} \to -\infty$$

La série v_n est donc divergente, et :

$$\ln(u_n) = \sum_{k=1}^n v_k \to -\infty$$

On en déduit que la suite $(u_n)_n$ converge vers 0.

Pour l'étude de la série $\sum u_n$, on utilise le fait qu'au voisinage de $+\infty$, on a (développement asymptotique de la série harmonique) :

$$H_n = \sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1).$$

La série $\sum (v_n + \frac{1}{2})$ étant convergente, on a, en notant S sa somme :

$$\ln(u_n) = \sum_{k=1}^{n} v_k = S - \frac{1}{2}H_n + o(1) = -\frac{1}{2}\ln(n) + S + \gamma + o(1)$$

On peut donc écrire au voisinage de $+\infty$:

$$u_n = \frac{1}{\sqrt{n}} e^{S + \gamma + o(1)} \sim \frac{e^{S + \gamma}}{\sqrt{n}}$$

On en déduit la divergence de la série $\sum u_n$, par comparaison à une série de Riemann.

Solution 16

On introduit dans cet exercice la série de fonctions $\sum f_n$, avec $f_n: x \mapsto \frac{2x}{n^2 + x^2}$.

- a) f(0) = 0 est clairement défini (série nulle) et pour $x \neq 0$ fixé, on a $f_n(x) \sim \frac{2x}{n^2}$ pour $n \to \infty$, et $\sum f_n(x)$ est donc absolument convergente par comparaison avec une série de Riemann. La série de fonctions $\sum f_n$ converge donc absolument sur \mathbb{R} , et sa somme f est donc définie sur \mathbb{R} .
- b) On vérifie aisément que f_n admet un maximum sur \mathbb{R}_+ en x=n, et donc que (la fonction $|f_n|$ étant paire), on a $||f_n||_{\infty} = f_n(n) = \frac{1}{n}$. Il n'y a donc pas convergence normale sur \mathbb{R} , mais pour $a \ge 0$ fixé, il y a convergence normale sur [-a,a] ($|f_n(x)| \le |f_n(a)|$ pour tout $x \in [-a,a]$ si on a choisi n > a). La série de fonctions $\sum f_n$ converge donc uniformément sur tout segment de \mathbb{R} , et il en résulte que, les f_n étant continues, f est continue sur \mathbb{R} .

c) On n'a pas convergence normale sur \mathbb{R} , mais peut-être y a-t-il néanmoins convergence uniforme, ce qui permettrait d'appliquer le théorème de la double-limite? Il n'en n'est rien en fait, comme on peut le voir à partir de l'inégalité :

$$\sum_{k=n+1}^{2n} f_k(n) = \sum_{k=n+1}^{2n} \frac{2n}{k^2 + n^2} \geqslant \sum_{k=n+1}^{2n} \frac{2n}{(2n)^2 + n^2} = \sum_{k=n+1}^{2n} \frac{2}{5n} = \frac{2}{5}$$

Il en résulte en effet que si on note $(R_n)_n$ la suite des restes de la séries de fonctions $\sum f_n$, on a $R_n(n) \ge \frac{2}{5}$ et donc que $(R_n)_n$ ne peut pas converger uniformément vers 0 sur \mathbb{R} . On peut tout de même obtenir la limite de f en $+\infty$ en faisant apparaître quelque chose qui s'apparente à une somme (pas une série!) de Riemann. En effet, pour tout $x \in \mathbb{N}^*$, on a :

$$f(x) = \sum_{n=1}^{+\infty} \frac{2x}{x^2 + n^2} = \frac{2}{x} \sum_{n=1}^{+\infty} \frac{1}{1 + \left(\frac{n}{x}\right)^2}.$$

qu'on a bien envie de voir comme une somme de Riemann pour l'intégrale de $t \mapsto \frac{1}{1+t^2}$.

Fixons x > 0. Pour $n \in \mathbb{N}^*$, on a, par décroissance de $t \mapsto \frac{1}{1+t^2}$:

$$\int_{\frac{n}{x}}^{\frac{n+1}{x}} \frac{1}{1+t^2} dt \le \frac{1}{x} \cdot \frac{1}{1+(\frac{n}{x})^2} \le \int_{\frac{n-1}{x}}^{\frac{n}{x}} \frac{1}{1+t^2} dt$$

On en déduit par sommation sur n que :

$$2\int_{\frac{1}{x}}^{+\infty} \frac{1}{1+t^2} dt \le f(x) \le 2\int_{0}^{+\infty} \frac{1}{1+t^2} dt$$

Ce qui donne:

$$\pi - 2 \arctan\left(\frac{1}{x}\right) \leqslant f(x) \leqslant \pi$$

D'où $\lim_{x\to +\infty} f(x) = \pi$ par théorème d'encadrement.

Remarquons que cela justifie de nouveau a posteriori qu'il n'y a pas convergence uniforme sur \mathbb{R}_+ : si tel était le cas, la limite en $+\infty$ devrait être nulle.

Solution 18

On identifiera dans cet exercice un polynôme $P \in \mathbb{K}[X]$ à sa fonction polynomiale associée sur \mathbb{R} . La suite $(P_n)_n$ congergeant uniformément vers f, il existe un rang $n_0 \in \mathbb{N}$ tel que pour $n \ge n_0$, la fonction $P_n - f$ est bornée sur \mathbb{R} et $\|P_n - f\|_{\infty} \le 1$. Pour $n \ge n_0$ et tout $x \in \mathbb{R}$, on a donc (SMA):

$$|P_n(x) - P_{n_0}(x)| \le |P_n(x) - f(x)| + |P_{n_0}(x) - f(x)| \le 2$$

Pour $n \ge n_0$, la fonction $P_n - P_{n_0}$ est donc bornée sur \mathbb{R} , et puisque c'est un polynôme, il est donc nécessairement constant : il existe $c_n \mathbb{S}$, $n \mathbb{R}$ tel que $P_n = P_{n_0} + c_n$. La convergence uniforme implique la convergence simple donc $P_n(x) \to f(x)$ pour tout $x \in \mathbb{R}$. En particulier $c_n = P_n(0) - P_{n_0}(0) \to f(0) - P_{n_0}(0)$. En notant $c = f(0) - P_{n_0}(0)$, on a donc $c_n \to c$ et finalement $P_n(x) \to P_{n_0}(x) + c$ pour tout $x \in \mathbb{R}$, si bien que $f = P_{n_0} + c \in \mathbb{K}[X]$.

Remarque : une façon plus sophistiquée de conclure consiste à dire que $(P_n)_{n\geqslant n_0}$ est une suite de $\mathbb{K}_d[X]$, en notant d le degré de P_{n_0} , et que sa limite f est donc encore dans $\mathbb{K}_d[X]$, puisque ce sousespace vectoriel de $\mathcal{C}(\mathbb{R},\mathbb{R})$ est de dimension finie donc fermé.

Solution 24

Pour $x \in \mathbb{R}_+^*$, on a bien sûr $|f_n(x)| \leq \frac{1}{n\sqrt{x}} \to 0$, d'où la convergence simple vers la fonction nulle. Il est facile de montrer la convergence uniforme sur $[a, +\infty[$ pour tout $a \in \mathbb{R}_+^*$ par la majoration :

$$\forall x \geqslant a, \quad |f_n(x)| \leqslant \frac{1}{n\sqrt{a}}$$

Montrons qu'il y a en fait convergence uniforme sur $]0, +\infty[$. La fonction $f: x \mapsto \frac{\sin(x)}{\sqrt{x}}$ se prolonge par continuité en 0 puisqu'on a $f(x) \sim \sqrt{x}$ au voisinage de 0. Puisque par ailleurs $f(x) \to 0$ quand $x \to +\infty$, on peut en déduire que f est bornée (et atteint ses bornes) : il existe $M \ge 0$ tel que $\forall x > 0$, $|f(x)| \le M$. Pour $n \in \mathbb{N}$, on a alors

$$|f_n(x)| = \left| \frac{\sin(nx)}{\sqrt{n}\sqrt{nx}} \right| = \left| \frac{f(nx)}{\sqrt{n}} \right| \le \frac{M}{\sqrt{n}}$$

D'où $||f_n||_{\infty} \to 0$ et la convergence uniforme.

Remarque: On peut avoir envie de dériver f_n pour connaître ses variations et chercher à déterminer $||f_n||_{\infty}$. Cela revient en fait à étudier la fonction $f: x \mapsto \frac{\sin(x)}{\sqrt{x}}$. On montre que f' s'annule en tout $x \in \mathbb{R}_+^*$ vérifiant $\tan(x) = 2x$. Cela donne les maxima locaux de |f| (attention, ils ne correspondent pas à ceux de sin mais tombent "un peu avant"). Il est facile de voir que le maximum global est atteint en l'unique $x \in]0, \frac{\pi}{2}[$ tel que $\tan(x) = 2x$ mais tout cela n'apporte pas grand chose ...