732A96/TDDE15 Advanced Machine Learning Gaussian Process Regression and Classification

Jose M. Peña IDA, Linköping University, Sweden

Lectures 10: Gaussian Process Regression

Contents

- ▶ Linear Regression
- Bayesian Linear Regression
- Gaussian Process Regression
- Squared Exponential Covariance Function
- Gaussian Process Regression: Canadian Wages

Literature

- Main source
 - Rasmussen, C. E. and Williams, K. I. Gaussian Processes for Machine Learning. MIT Press, 2006. Chapters 2.1-2.5.
- Additional source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
 Chapters 6.4.1-6.4.2.

Gaussian Distribution

 Density function of the Gaussian (a.k.a normal) distribution for a D-dimensional random variable x:

$$\mathcal{N}(\boldsymbol{x}|\mu, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \mu)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \mu)\right\}$$

• Recall that $E[x] = \mu$ and $var(x) = \Sigma$.

Gaussian Distribution

• Example: $\mathcal{N}(x_1, x_2 | \mu, \Sigma)$ with $\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$.

Gaussian Distribution

Recall that if

$$p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})$$
$$p(y|x) = \mathcal{N}(y|Ax + B, L^{-1})$$

then

$$p(x,y) = \mathcal{N}(x,y|A\mu + B,R^{-1})$$

where

$$R^{-1} = \begin{pmatrix} \Lambda^{-1} & \Lambda^{-1}A^T \\ A\Lambda^{-1} & L^{-1} + A\Lambda^{-1}A^T \end{pmatrix}.$$

• Recall also that if $p(x) = \mathcal{N}(x|\mu, \Sigma)$ and $\Lambda = \Sigma^{-1}$ and

$$X = (X_{a}, X_{b})^{T} \qquad \mu = (\mu_{a}, \mu_{b})^{T}$$

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix} \qquad \Lambda = \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix}$$

then

Linear Regression

- ► Training data: $\mathcal{D} = \{(\boldsymbol{x}_i, y_i) | i = 1, ..., n\} = (X, \boldsymbol{y}).$
- Deterministic function: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$.
- Additive noisy observations: $y = f(x) + \epsilon$.
- Gaussian noise: $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$.
- Likelihood function: $p(\mathbf{y}|X, \mathbf{w}) = \mathcal{N}(X^T \mathbf{w}, \sigma_n^2 I) \propto \exp\left\{\frac{1}{2\sigma_n^2}||\mathbf{y} X^T \mathbf{w}||^2\right\}.$
- To obtain w^{ML},
 - take the derivative of the log lik function wrt w, and
 - set it to zero, and
 - solve to obtain $\mathbf{w}^{ML} = (XX^T)^{-1}X\mathbf{y}$.
- Minimizing the least squared error (i.e., $\frac{1}{2}\sum_{i=1}^{n}(y_i \boldsymbol{x}_i^T\boldsymbol{w})^2$) gives the same result. This justifies the use of LSE.

Bayesian Linear Regression

- ▶ Prior distribution: $\mathbf{w} \sim \mathcal{N}(0, \Sigma_p)$, e.g. ridge regression $\Sigma_p = \alpha^{-1}I$.
- Posterior distribution:

$$\log p(\boldsymbol{w}|X,\boldsymbol{y}) \propto \log p(\boldsymbol{y}|X,\boldsymbol{w}) + \log p(\boldsymbol{w}) \propto \frac{1}{2\sigma_p^2} ||\boldsymbol{y} - \boldsymbol{X}^T \boldsymbol{w}||^2 - \frac{1}{2} \boldsymbol{w}^T \boldsymbol{\Sigma}_p^{-1} \boldsymbol{w}.$$

- ► So, **w**^{MAP} can be seen as a penalized/regularized ML estimate.
- Specifically, $p(\boldsymbol{w}|X,\boldsymbol{y}) = \mathcal{N}(\bar{\boldsymbol{w}} = \frac{1}{\sigma_n^2}A^{-1}X\boldsymbol{y},A^{-1})$ where $A = \sigma_n^{-2}XX^T + \Sigma_p^{-1}$, and thus $\boldsymbol{w}^{MAP} = \bar{\boldsymbol{w}}$.
- A full Bayesian approach does not use w^{MAP} but the predictive distribution:

$$p(f_*|\mathbf{x}_*,X,\mathbf{y}) = \int p(f_*|\mathbf{x}_*,\mathbf{w})p(\mathbf{w}|X,\mathbf{y})d\mathbf{w} = \mathcal{N}(\frac{1}{\sigma_n^2}\mathbf{x}_*A^{-1}X\mathbf{y},\mathbf{x}_*^TA^{-1}\mathbf{x}_*).$$

The above carries over to the feature space $\phi(\mathbf{x})$. The kernel trick applies. See p. 12 of Rasmussen and Williams.

Bayesian Linear Regression

• A prior on \mathbf{w} is a prior on f.

Gaussian Processes Regression

- A GP defines a prior distribution over functions directly, instead of indirectly through weights as before. Therefore, a GP operates on the space of functions rather than on the space of weights. Operating in either space is equivalent. A GP defines a prior over functions by defining a prior over a finite number of input points.
- Formally, a GP is a collection of random variables, any finite number of which have a joint Gaussian distribution. Hence, a GP is defined as
 - $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ where
 - m(x) = E[f(x)] is the mean function (assumed to be zero hereinafter), and
 - $k(\mathbf{x}, \mathbf{x}') = E[(f(\mathbf{x}) m(\mathbf{x}))(f(\mathbf{x}') m(\mathbf{x}'))]$ is the covariance function, e.g. squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = cov(f(\mathbf{x}), f(\mathbf{x}')) = \sigma_f^2 \exp\left\{-\frac{||\mathbf{x} - \mathbf{x}'||^2}{2\ell^2}\right\}$$

i.e. highly correlated function values for close input points. Intuitively, σ_f^2 is the overall variance of the function, and ℓ is the distance we have to move in the input space for the function to vary significantly.

Correlation functions

Gaussian Processes Regression

- Formally, a GP is a collection of random variables, any finite number of which have a joint Gaussian distribution. Hence, a GP is defined as
 - $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ where
 - m(x) = E[f(x)] is the mean function (assumed to be zero hereinafter), and
 - $k(\mathbf{x}, \mathbf{x}') = E[(f(\mathbf{x}) m(\mathbf{x}))(f(\mathbf{x}') m(\mathbf{x}'))]$ is the covariance function, e.g. squared exponential:

$$k(\mathbf{x}, \mathbf{x}') = cov(f(\mathbf{x}), f(\mathbf{x}')) = \sigma_f^2 \exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\ell^2}\right\}$$

i.e. highly correlated function values for close input points. Intuitively, σ_f^2 is the overall variance of the function, and ℓ is the distance we have to move in the input space for the function to vary significantly.

- Note that the covariance between the function values is written as a function of the inputs points.
- Note also that each random variable or dimension in a GP is a function value at an input point. Hence, a GP specifies a probability distribution over functions at a finite number of input points.
- We can sample the function space by sampling the GP at any number of chosen input points X_* . To do so, we sample a multivariate Gaussian distribution with the corresponding covariance matrix, i.e. $f_*|X_* \sim \mathcal{N}(0, K(X_*, X_*))$.
- Demo of GaussianProcesses.R.

Squared Exponential Covariance: Smooth Function, Close Points

• If $\sigma_f = 1$, then k(x, x) = 1, $0 \le k(x, x') \le 1$, and $k(x, x') = \rho(f(x), f(x'))$.

Squared Exponential Covariance: Smooth Function, Distant Points

Squared Exponential Covariance: Jagged Function, Close Points

Squared Exponential Covariance: Jagged Function, Distant Points

Gaussian Process Sampling: Multivariate Draw

▶ To sample a GP at points $X_* = \{x_1, ..., x_n\}$, we sample a multivariate Gaussian distribution $\mathcal{N}(0, K(X_*, X_*))$.

Gaussian Process Sampling: Before the First Univariate Draw

▶ To sample a GP at points $X_* = \{x_1, ..., x_n\}$, we can alternatively sample univariate Gaussian distributions, since

$$p(f(x_1),\ldots,f(x_n)) = \prod_{i=1}^n p(f(x_i)|f(x_1),\ldots,f(x_{i-1})).$$

Gaussian Process Sampling: Before the Second Univariate Draw

Gaussian Process Sampling: Before the Third Univariate Draw

Gaussian Process Sampling: Before the Fourth Univariate Draw

Gaussian Processes Regression

- With no data, sample from $f_*|X_* \sim \mathcal{N}(0, K(X_*, X_*))$.
- ▶ With noise-free training data $\mathcal{D} = \{(\mathbf{x}_i, f_i) | i = 1, ..., n\} = (X, \mathbf{f}), \text{ build }$

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

and sample from $f_*|X_*, X, f \sim \mathcal{N}(K(X_*, X)K(X, X)^{-1}f, K(X_*, X_*) - K(X_*, X)K(X, X)^{-1}K(X, X_*)).$

• With noisy training data $\mathcal{D} = \{(\mathbf{x}_i, y_i) | i = 1, ..., n\} = (X, \mathbf{y}), \text{ build}^1$

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K(X, X) + \sigma_n^2 I & K(X, X_*) \\ K(X_*, X) & K(X_*, X_*) \end{bmatrix} \right)$$

and sample from $f_*|X_*, X, y \sim \mathcal{N}(K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1}y, K(X_*, X_*) - K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1}K(X, X_*)).$

- See p. 17 of Rasmussen and Williams for the correspondence between the weight and function space views: Every covariance function can be mapped into a set of features, and vice versa.
- Demo of KernLabDemo.R.

 $^{^{1}}cov(X+Y,Z+W) = cov(X,Z) + cov(X,W) + cov(Y,Z) + cov(Y,W)$ for independent random variables X,Y,Z and W.

Gaussian Process Regression: Canadian Wages ($\ell = 0.2, 0.5, 1, 2$)

Gaussian Process Regression: Canadian Wages ($\ell = 0.5$)

- ▶ Predictive interval for f_* : mean $(f_*) \pm 1.96 \text{ sqrt}(\text{var}(f_*))$.
- Predictive interval for \mathbf{y}_* : mean(\mathbf{f}_*) \pm 1.96 sqrt(var(\mathbf{f}_*) + σ_n^2).

Contents

- Linear Regression
- Bayesian Linear Regression
- Gaussian Processes Regression
- Squared Exponential Covariance Function
- Gaussian Process Regression: Canadian Wages

Thank you