Cours sur le traitement automatique des langues (IV)

Violaine Prince
Université de Montpellier
LIRMM-CNRS

Grammaire non restreinte

Toute règle de production de la forme :

$$\bullet \alpha \rightarrow \beta$$

 Équivalente à une machine de Türing

Algorithme de Markov (*)

- Règle élémentaire : $\alpha \rightarrow \beta$
- Application : Si w = $w_1 \alpha w_2$ et w_1 ne contient pas d'occurrence de α alors :

$$w => w'$$
 avec $w' = w_1 \beta w_2$

(*) Cours J. Chauché 2005

Algorithme

- Défini sur un vocabulaire fini V
- Ensemble fini et ordonné de règles
- Chaque règle a un type : ordinaire ou finale.
- Un algorithme définit une fonction sur un ensemble des mots définis sur un vocabulaire V' ⊆ V. Si E est l'ensemble de définition de l'algorithme alors :

$$\mathsf{E} \subseteq \mathsf{V}^{\prime *} \subseteq \mathsf{V}^*$$

Application de l'algorithme

- Application d'une seule règle à la fois.
- Choix strict de la règle à appliquer : la règle applicable la plus prioritaire.
- Application transitive des règles : une nouvelle règle s'appliquera sur le résultat de l'application d'une première règle.
- L'arrêt du processus : aucune règle applicable ou application d'une règle terminale.

Exemple: génération d'un mot miroir

- Soit V = { a,b,c }
- L'algorithme sera construit sur le vocabulaire V' = $\{a,b,c,\alpha,\beta\}$ ϵ (mot vide).
- Notion de règle terminale $x \rightarrow .w$
- Règles :

```
1. \alpha \alpha \rightarrow \beta 5. \beta \alpha \rightarrow \beta 9. \alpha ac \rightarrow c\alpha a 13. \alpha ca \rightarrow a\alpha c
2. \beta a \rightarrow a\beta 6. \beta \rightarrow \epsilon 10. \alpha ba \rightarrow a\alpha b 14. \alpha cb \rightarrow b\alpha c
3. \beta b \rightarrow b\beta 7. \alpha aa \rightarrow a\alpha a 11. \alpha bb \rightarrow b\alpha b 15. \alpha cc \rightarrow c\alpha c
4. \beta c \rightarrow c\beta 8. \alpha ab \rightarrow b\alpha a 12. \alpha bc \rightarrow c\alpha b 16. \epsilon \rightarrow \alpha
```

Application

```
aabc => \alphaaabc (16. \epsilon \rightarrow \alpha)
     \alphaaabc =>a\alphaabc (7. \alphaaa \rightarrow a\alphaa)
     a\alpha abc = > ab\alpha ac (8. \alpha ab \rightarrow b\alpha a)
     abαac => abcαa (9. αac → cαa)
■ abc\alphaa =>\alphaabc\alphaa (16. \epsilon \rightarrow \alpha)
     \alpha abc\alpha a = b\alpha ac\alpha a (8. \alpha ab \rightarrow b\alpha a)
     b\alpha ac\alpha a = bc\alpha a\alpha a (9. \alpha ac \rightarrow c\alpha a)
     bcαaαa =>αbcαaαa (16. \varepsilon \rightarrow \alpha)
     \alphabc\alphaa\alphaa =>c\alphab\alphaa\alphaa (12. \alphabc \rightarrow c\alphab )
     cαbαaαa => αcαbαaαa (16. ε \rightarrow α)
     \alphacαbαaαa =>ααcαbαaαa (16. \varepsilon \rightarrow \alpha)
```

 $\alpha\alpha$ cαbαaαa => β cαbαaαa (1. $\alpha \alpha \rightarrow \beta$)

- β cαbαaαa =>c β αbαaαa (4. β c → c β)
- cβαbαaαa => cβbαaαa (5. β $\alpha \rightarrow \beta$)
- cβbαaαa =>cbβαaαa (3. β b \rightarrow b β)
- cb $\beta\alpha$ a α a =>cb β a α a (5. $\beta\alpha \rightarrow \beta$)
- cbβaαa =>cbaβαa (2.β a \rightarrow aβ)
- cba $\beta\alpha$ a=>cba β a (5. $\beta\alpha \rightarrow \beta$)
- cbaβa =>cbaaβ(2.β a \rightarrow aβ)
- cbaa β =>cbaa (6. $\beta \rightarrow .ε$)

L'algorithme se termine grâce à la règle 6.

Propriétés

- On peut faire des calculs à l'aide d'un tel algorithme.
- Algorithmes fermés : Un algorithme est dit fermé s'il possède une règle de la forme
 - $W \leftarrow 3 \spadesuit$
- Il existe toujours un algorithme normé équivalent: On ajoute la règle en fin d'algorithme : ε → .ε
- Ce qui est intéressant : la composition d'algorithmes.

Composition

- U sur l'alphabet V et U' sur l'alphabet V'
- $\alpha,\beta \notin V \cup V'$
- Soit V" = $\{\sum_{\sigma} | \forall \sigma \in V'\}$
- Soit U" l'algorithme U où chaque point est remplacé par α
- Soit U" l'algorithme U' où chaque symbole σ est remplacé par ∑_σ et chaque point par β et chaque règle de la forme ε → w par α → αw' où w' correspond à w et chaque règle de la forme ε → w par α → α βw'

Composition

Exemple:

U:

1. $a \rightarrow .\epsilon$

2. $\varepsilon \rightarrow ab$

Alors:

U":

1. $a \rightarrow \alpha$

2. $\varepsilon \rightarrow ab$

U':

1. ab \rightarrow . ϵ

2. $\varepsilon \rightarrow ac$

3. $\varepsilon \rightarrow .ac$

U"":

1. $\sum_{a} \sum_{b} \rightarrow \beta$

2. $\alpha \rightarrow \alpha \sum_{a} \sum_{c}$

3. $\alpha \rightarrow \alpha \beta \sum_{a} \sum_{c}$

Composition

- L'algorithme suivant calcule U'(U(w)):
 - 1. $\sigma\alpha \rightarrow \alpha\sigma \forall \sigma \in V$
 - 2. $\alpha\sigma \rightarrow \alpha\Sigma_{\sigma} \forall \sigma \in V$
 - 3. $\Sigma_{\sigma}\sigma' \rightarrow \Sigma_{\sigma}\Sigma_{\sigma'} \ \forall \ \sigma,\sigma' \in V$
 - 4. $\Sigma_{\sigma}\beta \rightarrow \beta \Sigma_{\sigma} \forall \sigma \in V$
 - 5. $\beta \Sigma_{\sigma} \rightarrow \beta \sigma \ \forall \ \sigma \in V$
 - 6. $\sigma\Sigma_{\sigma'} \rightarrow \sigma\sigma' \ \forall \ \sigma, \sigma' \in V$
 - 7. $\sigma\beta \rightarrow .\epsilon$
 - U"

Approche de la récurrence : juxtaposition

- Soit U et U' deux algorithmes sur le même vocabulaire V
- Il existe un algorithme U" qui produit la juxtaposition des algorithmes U et U':

$$U''(w) = U(w)U'(w)$$

Même principe que pour la composition :

- W est doublé et le double transposé.
- U' fonctionne sur un alphabet transposé

Réccurence

- Si U et U' sont les deux fonctions définissant la récurrence :
- Les paramètres sont doublés jusqu'à ce que le paramètre de réccurence soit nul.
- On applique alors U sur la dernière valeur
- On applique ensuite U' sur les valeurs résultantes successives

Application à la génération de structure

- Soit le langage aⁿbⁿ et sa structure parenthèsée avec le symbole S.
- Construction valable que sur ce langage :

```
1. \alpha a \rightarrow S(a\alpha aabb => \alphaaabb => 2 \cdot \alpha b \rightarrow b \cdot \alpha S(a\alphaabb => S(aS(a\alphabb) => S(aS(ab)\alphab) => 2 \cdot \alpha a \rightarrow \alpha a
```

Remarques

- L'algorithme précédent donne la structure correcte sur le langage choisi.
- Il donne également une structure correcte sur le langage sur {a, b} formé des mots tel que tout préfixe a un nombre supérieur ou égal de a par rapport au nombre de b.
- Dans les applications en LN il ne s'agit pas d'écrire des algorithmes qui vérifient si la phrase est correcte mais pour une phrase correcte de donner la bonne structure.

Exemple d'un analyseur syntaxique théorique : SYGMART

- Analyse morphosyntaxique
- Moteur de réécriture sur des objets cibles : structures syntaxiques
- Extension des algorithmes de Markov
- Puissance de la machine de Turing

Eléments de base pour un analyseur

- Arborescences
 - Structures neutres.
 - ◆ Représentation :
 - chaîne de caractères sur le vocabulaire V = {(,)}
- Propriétés
 - transformation d'arborescence : transformation de chaîne
 - ◆ Elément structuré : ensemble d'arborescences.
 - ◆ Identification d 'arborescence : numéro (dimension)

Etiquettes

- Définies par une valeur
- ◆ Variables typées : arithmétique (entière), flottant, chaîne, à valeur définie exclusive et non exclusive, potentielle (valeur définie mais non explicitée), référence (pointeur sur une autre étiquette).
- Fonction d 'étiquetage :
 - application d'un noeud d'une arborescence à une étiquette associée.
 - étiquetage morphologique : catégories grammaticales, nombre, genre

- VARIABLES UTILISEES
- DEFINIT Analyse
 - ◆ DECLARE variables_lexicales
 - CHAINE : frm.
 - POT: unite-lexicale.
 - ◆ FIN variables_lexicales.
 - ◆ DECLARE variables_grammaticales
 - ◆ EXC : categorie (PH,GN,GV,ART,ADJ,NM,PONCT)
 - → NEX:nombre(sing,plur); genre(mas,fem).
 - ◆ FIN variables_grammaticales
- FIN analyse.

Exemples de règles « à la sygmart »

La racine d'un arbre d'un texte à analyser est à 0.

noeuds de niveau 1

Ce à quoi on veut arriver

« un court exemple montre les transformations.»

Transformations d'élements structurés

Schéma

- ◆ ensemble d'éléments structuré recherché dans l'élément traité. Chaque élément a globalement la même structure, les variations portent sur l'étiquetage, la présence (ou non) de certaines parties, l'ordre entre les éléments.
- schéma d'arborescence
 - soient deux arborescences A et B. A est une sous-arborescence de B s 'il existe une projection de A dans B.

A est une sous-arborescence de B. La décomposition correspond à un traitement d'un ensemble d'infixes (un infixe est un mot contenu dans un autre).

Contraintes sur la décomposition

- Dépendance : immédiate ou généralisée
 - dans la reconnaissance d'une sous-arborescence, chaque point différent de la racine, dépend directement d'un autre point.

Contrainte de continuité

S'il y a une contrainte de continuité entre X et Y, l'arborescence de gauche ne peut pas être une sous-arborescence de l'arborescence de droite.

Contrainte d'ordre

- Contrainte de présence
 - un noeud (et ses descendants) peut être déclaré optionnel
 - ◆ Le schéma A sera reconnu dans l'arborescence B si le noeud X peut être déclaré optionnel.

schéma A

schéma B

Schéma d 'élément structuré

 Il est avant tout défini par des conditions sur les étiquettes associées aux noeuds par la fonction d'étiquetage.

Conditions:

- expressions booléennes portant sur les valeurs des variables.
- deux types
 - conditions propres : l'expression booléenne ne peut faire référence qu'à une seule étiquette du schéma
 - conditions inter-sommets : elle peut faire référence à tout ou partie de l'ensemble des noeuds du schéma.

- Exemple de schéma
- **(**0(1(2)3(4)))

genre(2)&genre(4) != 0 Le nom et l'adjectif doivent être du même genre

Identification d'un schéma

◆ lorsqu'un schéma est reconnu dans une arborescence, il identifie un ensemble de noeuds. Cette identification sépare les différents éléments de l'arborescence en listes.

liste d'arborescence

◆ A <B,C> : ensemble des éléments qui se trouvent sous le point associé à A, à droite du point associé à B et à gauche du point associé à C. A est obligatoire, B et C sont facultatifs.

Réalisation des transformations

- Transformation d'arborescence
 - on remplace la sous-arborescence, reconnue par le schéma de reconnaissance, par l'arborescence de transformation.
- Transformation d'élément structuré.
 - Une transformation est définie par un quadruplet (A, B, f, O)
 - A est un schéma de reconnaissance
 - B est un schéma de transformation
 - f est une fonction de l'ensemble des listes de A dans l'ensemble des listes de B.
 - → O est une relation d'ordre partielle telle que :
 - x et y deux listes de A telles que f(x)=f(y), alors 0(x,y) est défini.

Exemple

- On définit la transformation suivante :
 - ◆ schéma de reconnaissance

◆ Schéma de transformation

Des applications permettant de définir f et O:

soit:

Cette transformation peut s 'appliquer sur la structure suivante :

Grammaire

- Algorithme de Markov étendu aux éléments structurés.
 - un ensemble ordonné de règles de transformation.
 - modes de fonctionnement :
 - itératif (mode des algorithmes de Markov)
 - exhaustif (lorsqu 'une règle est appliquée elle est éliminée de la grammaire)
 - unitaire (mode itératif borné par une valeur numérique)

regie de transformation

- Eléments de la règle (transformation)
 - ◆ forme de la structure à transformer :
 - noeud1 (noeud2)
 noeud 1
 noeud 2
 - noeud1, noeud 2

les noeuds doivent être contigus (contrainte de continuité)

- ◆ conditions sur la structure à transformer :/ condition noeud1;condition noeud2;...;condition noeud n
- ◆ schéma de transformation:
 - → insertion de noeud,
 - → transformation de hiérarchie.

Type d'action

- insertion :
 - noeud-père:noeud-père (propriétés noeud-fils)

modification de hiérarchie

- R1:0 (1),0:categorie = 0, 1: categorie = ADJ =>
 0:0: categorie = GA (insertion d 'un noeud sous 0)
- R2 : 0 (1), /0 :categorie = 0, 1: categorie = NM=>0:0: categorie = GN
- R3: 0 (1), 0 :categorie = 0, 1: categorie = V=> 0:0 : categorie = GV

Règles de transformation

R4:(0(1),*,2) /1:categorie =ART; 2: categorie GN

- **R5**:
 - ♦ (0,1)/0: categorie = GA, 1: categorie = GN => 1(0)

Application des règles

R6: (0,*,1)/0: categorie=GV; 1:categorie =GN => 0(1)

Introduction de règles de dépendance

- Si une phrase est de la forme GN GV alors le GN est groupe sujet.
- R7: 0(1,2) /0: (K=PH); 1:(CAT=GN); 2: (CAT=GV) => 0(1,2)/ 1:1& FSUJ(2).
- Si un groupe nominal non prépositionnel est après un verbe transitif alors il est complément d'objet de ce verbe et doit lui être attaché.

Introduction de règles de dépendance

- R8: 0(1,2(3),*,4)/ 0: (K!=PH), 1:(CAT=GN);
 2:(CAT=GV), 3:(CAT=V) & (TYP=TRANS),
 4: (CAT=GN)=> 0(1,2(3, 4))) / 0: K<-PH;
 4:4&FCOD(2)
- La règle R7 pourra être appliquée après la règle R8 (appel récursif à la grammaire).
- Il faut de préférence les mettre dans le bon ordre...

Conclusion sur les grammaires

- Les grammaires structurelles peuvent être efficaces.
- Les transformations doivent être préférentiellement localistes (ne pas mettre trop de conditions...) pour être plus performantes.
- L'ordre est important pour la complexité.
- Les transformations structurelles peuvent à la fois traiter des constituants comme des dépendances.
- On peut introduire des étiquettes sémantiques et aborder l'interface syntaxe-sémantique.