Computabilità - 16 Maggio 2020

Soluzioni Formali

Esercizio 1

Problema: Siano A, B $\subseteq \mathbb{N}$ insiemi tali che A è finito e B $\neq \emptyset$, \mathbb{N} . Dimostrare che A \leq _m B.

Soluzione:

Poiché A è finito, A è ricorsivo. Per dimostrare ciò, sia $A = \{x_1, x_2, ..., x_k\}$ con $|A| < \infty$.

La funzione caratteristica di A è:

$$\chi_A(x) = sg(\prod_{i=1}^k |x - x_i|)$$

Questa funzione è calcolabile, quindi A è ricorsivo.

Per costruire la riduzione A ≤_m B, procediamo come segue:

- Poiché B $\neq \emptyset$, esiste $b_0 \in B$
- Poiché B ≠ N, esiste b₁ ∉ B

Definiamo la funzione di riduzione f: $\mathbb{N} \to \mathbb{N}$:

```
f(x) = {
    b<sub>0</sub> se x ∈ A
    b<sub>1</sub> se x ∉ A
}
```

Equivalentemente: $f(x) = b_0 \cdot \chi_A(x) + b_1 \cdot \chi_{\bar{A}}(x)$

Poiché A è ricorsivo, χ_A e $\chi_{\bar{A}}$ sono calcolabili, quindi f è una funzione totale calcolabile.

Verifica della riduzione:

- $x \in A \Longrightarrow f(x) = b_0 \in B \Longrightarrow f(x) \in B$
- $x \notin A \Longrightarrow f(x) = b_1 \notin B \Longrightarrow f(x) \notin B$

Quindi $\forall x \in \mathbb{N}: x \in A \iff f(x) \in B$, il che dimostra $A \leq_m B$.

Esercizio 2

Problema: Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : \phi_x(x+1) = x\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

L'insieme A rappresenta gli indici x tali che il programma x applicato all'input x+1 restituisce esattamente x.

Analisi della ricorsività:

A non è ricorsivo. Per dimostrarlo, utilizziamo una riduzione da K.

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(x,y) = \{
x 	 se x \in W_x \land y = x+1
\uparrow 	 altrimenti
```

La funzione g è calcolabile: $g(x,y) = x \cdot \mu z.(H(x,x,z) \land sg(|y-(x+1)|))$

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(x)}(y) = g(x,y)$.

Verifica della riduzione K ≤_m A:

- Se $x \in K$, allora $x \in W_x$, quindi $\phi_{s(x)}(x+1) = g(x,x+1) = x$, dunque $s(x) \in A$
- Se $x \notin K$, allora $x \notin W_x$, quindi $\phi_{s(x)}(x+1) = g(x,x+1) \uparrow \neq x$, dunque $s(x) \notin A$

Pertanto K ≤_m A, e poiché K non è ricorsivo.

Analisi dell'enumerabilità ricorsiva:

A non è ricorsivamente enumerabile. Per dimostrarlo, mostriamo che $\bar{K} \leq m$ A.

Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

```
h(x,y) = \{
x 	 se x \notin K \land y = x+1
\uparrow 	 altrimenti
```

Per il teorema smn, esiste t: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{t}(x)$ = h(x,y).

- Se $x \in \overline{K}$, allora $\phi_{t}(x) = x$, quindi $t(x) \in A$
- Se $x \in K$, allora $\phi_{t}(x)(x+1) \uparrow$, quindi $t(x) \notin A$

Dunque $\bar{K} \leq_m A$, e poiché \bar{K} non è r.e., A non è r.e.

Conclusione: A non è ricorsivo e A non è r.e., quindi Ā non è r.e. ■

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : W_x = E_x\{0\}\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

L'insieme B contiene gli indici x tali che il dominio di φ_x coincide con il codominio di φ_x privato dello zero.

Analisi della struttura:

B è un insieme saturo, poiché può essere espresso come B = $\{x \in \mathbb{N} : \phi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : dom(f) = cod(f)\{0\}\}$.

Ricorsività:

Per il teorema di Rice, poiché B è saturo e:

- B $\neq \emptyset$: la funzione f(x) = x+1 soddisfa dom(f) = \mathbb{N} = cod(f){0}, quindi un suo indice appartiene a B
- B $\neq \mathbb{N}$: la funzione identità id(x) = x ha cod(id) = $\mathbb{N} \neq \mathbb{N}\{0\}$, quindi nessun suo indice appartiene a B

Quindi B non è ricorsivo.

Enumerabilità ricorsiva di B:

B non è r.e. Utilizziamo il teorema di Rice-Shapiro.

Consideriamo la funzione identità id con dom(id) = cod(id) = N. Abbiamo id $\notin B$.

Consideriamo la funzione finita $\theta(x) = 1$ se x = 1, ↑ altrimenti.

Allora $\theta \subseteq id \ e \ dom(\theta) = \{1\} = cod(\theta)\{0\} = \{1\}$, quindi $\theta \in \mathcal{B}$.

Per Rice-Shapiro, esiste $f \notin \mathcal{B}$ tale che $\exists \theta \subseteq f$ finita con $\theta \in \mathcal{B}$, quindi B non è r.e.

Enumerabilità ricorsiva di B:

 \bar{B} non \hat{e} r.e. Consideriamo la funzione sempre indefinita H con $H \in \bar{B}$ (dom(H) = $\emptyset \neq cod(H)\{0\} = \emptyset$).

La funzione $\theta(1) = 1$ ha $\theta \nsubseteq H$, ma possiamo estendere H alla funzione $f(x) = x+1 \notin \overline{B}$.

Per Rice-Shapiro, B non è r.e.

Conclusione: B non è ricorsivo, B non è r.e., Ē non è r.e. ■