

### **Deep NLP 3: Transformers and Attention**

Identify offensive language using Transformers





## Quiz Time!



### How is the pace of this course?

- A) too slow
- B) just right
- C) too fast



### What is unsupervised learning?

- A) compressing sparse into dense vectors
- B) learning based on example input-output pairs
- C) a different name for transfer learning
- D) an algorithm that learns patterns from untagged data



# What does the Distributional Hypothesis say?

- A) Words can be encoded in a vector space
- B) Words are described by their context words
- C) Words can be drawn on maps
- D) Similarity between words can be calculated using the euclidean distance



# Why do we need dense vector representations for texts?

- A) to efficiently compute neural networks
- B) to encode the relationships between words
- C) to create word clouds
- D) to pretrain neural networks



### Transfer learning for NLP works by:

- A) training a model with an unsupervised task and retraining it with labeled data
- B) pretraining a model with a labeled data and retraining it with an unsupervised task



## Recap

#### **Bert**



- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Paper by Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
- Published in 2018
- improved the state-of-the-art in most important benchmarks



### **GLUE Benchmark**





GLUE Leaderboard: https://gluebenchmark.com/leaderboard

### How deep are these models?





### **Bert**



1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

#### Semi-supervised Learning Step



### **Distributional Hypothesis**



Words that occur in the same contexts tend to have similar meanings. Harris (1954)

A word is characterized by the company it keeps. Firth (1957)

### **Word Vectors - Klassifikation**





 $v_{ok} = [0.75, 0.15]$ 

 $v_{nice} = [0.85, 0.50]$ 

 $v_{poor} = [0.15, 0.18]$ 

 $v_{terrible} = [0.10, 0.91]$ 

#### **Task One: Mask Words**



16

Use the output of the masked word's position to predict the masked word



to improvisation in

Randomly mask 15% of tokens

Input

### **Task Two: Next Sentence Prediction**





#### **Bert**



1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

#### Semi-supervised Learning Step



2 - Supervised training on a specific task with a labeled dataset.





### How do Transformers work?

### Attention is all you need





Attention Is All You Need, Vaswani et al. https://arxiv.org/abs/1706.03762

### Attention is all you need





Attention Is All You Need, Vaswani et al. https://arxiv.org/abs/1706.03762

### How encoders work.







### **Transformer Encoder**



23



The Illustrated BERT, Jay Alammar: http://http://jalammar.github.io/illustrated-transformer/

### **Transformer Encoder**





The Illustrated BERT, Jay Alammar: http://http://jalammar.github.io/illustrated-transformer/



### What is self attention?

### Scaled dot product attention



Attention
$$(\underline{Q}, \underline{K}, \underline{V}) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
Query Key Value

Oliver Guhr 2d

### Scaled dot product attention



$$\operatorname{Attention}(\underline{Q},\underline{K},\underline{V}) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
Query Key Value

Take the current word or token, find the most similar key and return the corresponding value.



### What does Attention do?







#### What does Attention do?





The encoder self-attention distribution for the word "it" from the 5th to the 6th layer of a Transformer trained on English to French translation (one of eight attention heads).

Source: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



| Input     | Thinking       | Machines       |    |
|-----------|----------------|----------------|----|
| Embedding | X <sub>1</sub> | X <sub>2</sub> |    |
| Queries   | q <sub>1</sub> | q <sub>2</sub> | Ma |
| Keys      | k <sub>1</sub> | k <sub>2</sub> | Wĸ |
| Values    | V <sub>1</sub> | <b>V</b> 2     | W  |







| Input                        | Thinking                              | Machines                             |
|------------------------------|---------------------------------------|--------------------------------------|
| Embedding                    | X <sub>1</sub>                        | <b>x</b> <sub>2</sub>                |
| Queries                      | q <sub>1</sub>                        | <b>q</b> <sub>2</sub>                |
| Keys                         | k <sub>1</sub>                        | k <sub>2</sub>                       |
| Values                       | V <sub>1</sub>                        | V <sub>2</sub>                       |
| Score                        | q <sub>1</sub> • k <sub>1</sub> = 112 | q <sub>1</sub> • k <sub>2</sub> = 96 |
| Divide by 8 ( $\sqrt{d_k}$ ) | 14                                    | 12                                   |
| Softmax                      | 0.88                                  | 0.12                                 |



| Input                        | Thinking                              | Machines                             |
|------------------------------|---------------------------------------|--------------------------------------|
| Embedding                    | X1                                    | x <sub>2</sub>                       |
| Queries                      | q <sub>1</sub>                        | q <sub>2</sub>                       |
| Keys                         | k <sub>1</sub>                        | k <sub>2</sub>                       |
| Values                       | V <sub>1</sub>                        | V <sub>2</sub>                       |
| Score                        | q <sub>1</sub> • k <sub>1</sub> = 112 | q <sub>1</sub> • k <sub>2</sub> = 96 |
| Divide by 8 ( $\sqrt{d_k}$ ) | 14                                    | 12                                   |
| Softmax                      | 0.88                                  | 0.12                                 |
| Softmax<br>X<br>Value        | V <sub>1</sub>                        | V <sub>2</sub>                       |
| Sum                          | <b>z</b> <sub>1</sub>                 | <b>z</b> <sub>2</sub>                |

### **Matrix Calculation**















X



WK







X



W۷



V



=

### **Matrix Calculation**











Attention Is All You Need, Vaswani et al. https://arxiv.org/abs/1706.03762















=

=

=

X



WK







X



WV



V







#### ATTENTION HEAD #0 ATTENTION HEAD #1 Qo Q<sub>1</sub> $W_0^Q$ W<sub>1</sub>Q K<sub>0</sub> $K_1$ $W_0K$ $W_1^K$ V<sub>0</sub> WoV W<sub>1</sub>V



1) Concatenate all the attention heads



2) Multiply with a weight matrix W<sup>o</sup> that was trained jointly with the model

X

3) The result would be the  $\mathbb Z$  matrix that captures information from all the attention heads. We can send this forward to the FFNN







1) This is our input sentence\*

2) We embed each word\*

3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix W<sup>o</sup> to produce the output of the layer

Thinking Machines



\* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one







# **Positional Encoding**





# **Positional Encoding**





$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

# **Positional Encoding**



For embedding with a dimensionality of 4 the encodings look like this:



### **Add and Normalize**





Layer Normalization Lei Ba et al. https://arxiv.org/abs/1607.06450

### **Transformers vs LSTMs**



- Can we build something similar using LSTMs?
  - Yes, its called ELMo







Source Bert Paper: https://arxiv.org/pdf/1810.04805.pdf



# Future...

#### **Reformer: The Efficient Transformer**



- Improved efficiency of the attention algorithm
- context windows of 1 million words on a 16GB GPU (Transformer 512 Token)
- Main Contribution
  - locality-sensitive-hashing (LSH)
  - reversible residual layers
- Similar ideas:
  - Longformer, Linformer, [\w\*]former

- More Information
  - Paper by Kitaev, Kaiser and Levskya
  - Google Al Blog Post
  - Video Introduction
  - Background Info



#### RealFormer: Transformer Likes Residual Attention



- **Resnets idea** but for Transformers: Residual connections for attention values
- Improves overall results but not by much
- Paper by Ruining He, Anirudh Ravula, Bhargav Kanagal, Joshua Ainslie



Figure 1: Comparison of different Transformer layers: (a) The prevalent Post-LN layer used by (*e.g.*) BERT; (b) Pre-LN layer used by (*e.g.*) GPT-2 that creates a "direct" path to propagate token embeddings; (c) Our RealFormer layer that creates a "direct" path to propagate attention scores (by adding a simple skip edge on top of (a)).

## **Automatic Speech Recognition**



- wav2vec 2.0: A Framework for Self-SupervisedLearning of Speech Representations
- Key Ideas:
  - CNN and Transformer based end to end model for speech recognition
  - uses a novel pretraining schema to learn for unlabeled audio data
- outperforms the previous state of the art while using 100 times less labeled data
- can achieve good accuracy with very little data
- By Alexei Baevski, Henry Zhou, Abdelrahman Mohamed and Michael Auli



#### An Image is Worth 16x16 Words



- Imagenet and CIFAR with transformers
  - 88.55% on ImageNet,
  - o 90.72% on ImageNet-ReaL,
  - 94.55% on CIFAR-100
- Paper by <u>Dosovitskiy et al.</u>
- Other approaches to vision tasks
  - <u>Taming Transformers for</u>
     <u>High-Resolution Image</u>
     Synthesis





# Sources

#### **Transformer**



- Paper
  - Attention is all you need. Vaswani et al.
  - <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Devlin et al.</u>
  - Reformer: The Efficient Transformer Kitev et al.
- Good Read
  - Jay Alammars The Illustrated Transformer
  - Jay Alammars The Illustrated BERT
- Conference Talk:
  - Attention is all you need attentional neural network models by Łukasz Kaiser