Kalman Filter Cheatsheet

Kalman Filters Maths

PREDICT IN KALMAN FILTER BOOKS

$$x' = Fx + u$$
$$P' = FPF^T + Q$$

UPDATE IN KALMAN FILTER BOOKS

$$y = z - Hx'$$

$$S = HP'H^{T} + R$$

$$K = P'H^{T}S^{-1}$$

$$x = x' + Ky$$

$$P = (I - KH)P'$$

How to set up your matrices in any linear Kalman Filter

Variables

Let's consider

- A **vector x** representing the state
- A vector z representing the measurement.

X will represent our state

- If we track a robot in 1 dimension, the state will be: $x = [x, x dot]^T$.
- If we track a robot in 2 dimensions, the state will be: [x, y, xdot, ydot]^T.
- -> dim_x will represent the dimension of x (2 in 1D, 4 in 2D, 6 in 3D, ...).

Z will represent the measurement

- If we measure a robot in 1 dimension, the vector will be z = [x].
- If we measure a robot in 2 dimensions, the vector will be $z = [x, y]^T$.
- -> dim_z will represent the dimension of z (1 in 1D, 2 in 2D, 3 in 3D, ...).

Dimensions of matrices

Predict

- X = [dim_x, 1] State
- P = [dim_x, dim_x] Uncertainty
- Q = [dim_x, dim_x] Process noise
- F = [dim_x, dim_x] Transition Matrix

Update

- H = [dim_z, dim_x] Measurement function
- R = [dim_z, dim_z] Measurement noise
- z = [dim_z, 1] Measurement vector
- K = [dim_x, dim_z] Kalman Gain
- $y = [dim_z, 1] Error$
- S = [dim_z, dim_z] System error
- SI = [dim_z, dim_z] Inverse of S
- I = [dim_x, dim_x] Identity Matrix