TP-Sockets-DNS-Python

Nome: Márcio Ribeiro Júnior Matrícula: 223116349

Introdução

O objetivo da atividade foi desenvolver, em Python, uma ferramenta semelhante ao comando **dig**, amplamente utilizado para consultas DNS, com a finalidade de compreender os fundamentos do protocolo DNS e sua interação com servidores. A implementação envolveu a criação de sockets para comunicação direta com servidores DNS, permitindo consultas para registros IPv4 (A) e IPv6 (AAAA). Além de reforçar conceitos de redes e sistemas distribuídos, a atividade buscou aplicar práticas de programação para construir uma solução funcional e educativa, capaz de realizar consultas DNS personalizadas sem depender de bibliotecas externas ou métodos de alto nível.

Metodologias

As metodologias técnicas empregadas na construção da ferramenta foram focadas na implementação de baixo nível do protocolo DNS utilizando Python. Inicialmente, foi feita a criação e configuração de **sockets UDP**, com suporte para IPv4 e IPv6, a fim de estabelecer comunicação direta com servidores DNS públicos, como o do Google (8.8.8.8). A estrutura de pacotes DNS foi montada manualmente, seguindo o formato definido pelo protocolo, incluindo a codificação de cabeçalhos, identificadores, flags, número de questões e o corpo da consulta. Esses pacotes foram enviados aos servidores utilizando o método *sendto* dos sockets, enquanto as respostas foram capturadas com o método *recvfrom* para posterior interpretação. A decodificação e interpretação dos pacotes retornados incluiu a análise de cabeçalhos, registros de resposta e metadados. Esse processo, conduzido sem bibliotecas externas específicas para DNS, permitiu um entendimento aprofundado da estrutura binária dos pacotes DNS e dos fluxos de comunicação cliente-servidor no contexto de sistemas distribuídos.

Resultados

Figura 1: Aplicação resolvendo dns para ipv4 do www.google.com

Os resultados obtidos demonstraram o funcionamento eficaz da ferramenta na realização de consultas DNS para registros do tipo A (IPv4) e AAAA (IPv6). A aplicação foi capaz de enviar pacotes DNS construídos manualmente para servidores públicos, como o Google DNS (8.8.8.8 e 2001:4860:4860::8888), e receber respostas contendo informações precisas sobre os endereços IP associados aos domínios consultados, como www.google.com. Além disso, a ferramenta mostrou-se robusta na manipulação de pacotes binários e na interpretação das respostas,

exibindo dados relevantes, como tempo de resposta e metadados do servidor DNS. A implementação bem-sucedida confirmou o aprendizado prático sobre o protocolo DNS, comunicação via sockets e a manipulação direta de dados de baixo nível, cumprindo o objetivo proposto pela atividade.

Análise

O DNS (Domain Name System) é um protocolo essencial para a internet, responsável por traduzir nomes de domínio legíveis, como www.google.com, em endereços IP, necessários para a comunicação entre dispositivos. Ele opera em um modelo hierárquico e distribuído, onde servidores DNS resolvem consultas encaminhando-as a servidores de nível superior até obterem a resposta ou retornarem um erro. O protocolo utiliza principalmente o transporte UDP na porta 53, devido à sua eficiência para consultas rápidas.

O programa desenvolvido implementa o funcionamento do DNS ao criar pacotes DNS manualmente, incluindo cabeçalhos e consultas formatados no padrão binário especificado pela RFC 1035. Esses pacotes são enviados diretamente para servidores DNS, como o Google (8.8.8.8), utilizando sockets UDP, com suporte para IPv4 e IPv6. Após o envio, o programa recebe a resposta do servidor, decodifica os pacotes e interpreta os registros retornados, como endereços IP ou mensagens de erro. Essa abordagem permite simular o comportamento básico do comando **dig**, reforçando a compreensão do protocolo DNS e sua comunicação em redes.

Conclusão

A implementação de uma ferramenta para consultas DNS utilizando Python proporcionou um aprendizado significativo sobre os fundamentos do protocolo DNS, incluindo sua estrutura hierárquica, funcionamento com registros IPv4 (A) e IPv6 (AAAA) e a troca de dados via sockets UDP. A construção manual de pacotes DNS e a decodificação de respostas permitiram um entendimento prático da estrutura binária do protocolo e dos desafios envolvidos na comunicação de baixo nível em redes. Além disso, a atividade reforçou habilidades de programação relacionadas à manipulação de dados binários, uso de sockets e tratamento de exceções em redes. Como resultado, foi possível compreender não apenas os aspectos teóricos do DNS, mas também sua aplicação prática, preparando o terreno para o desenvolvimento de sistemas mais complexos que dependam de comunicação em redes distribuídas.

Referências:

- [1] A. S. Tanenbaum and D. J. Wetherall, Computer Networks. 2013.
- [2] L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach. Elsevier, 2011.