№1 Сформулируйте утверждение о связи размерностей ядра и образа линейного отображения.

Пусть $\varphi: V_1 \longrightarrow V_2$ и $dimV_1 = n$. Тогда $dim\ Ker\varphi + dim\ Im\varphi = n = dimV_1$.

№2 Дайте определения собственного вектора и собственного значения линейного оператора.

Число λ называется собственным числом линейного оператора $\varphi:V\longrightarrow V$, если существует вектор $v\neq 0$ такой, что $\varphi(v)=\lambda v$. При этом вектор v называется собственным вектором оператора φ .

№3 Дайте определения характеристического уравнения и характеристического многочлена квадратной матрицы.

Для произвольной квадратной матрицы A многочлен вида $\chi_A(\lambda) = det(A - \lambda E)$ называется характеристическим многочленом, а уравнение $\chi_A(\lambda) = 0$ называется характеристическим уравнением матрицы A.

№4 Сформулируйте утверждение о связи характеристического уравнения и спектра линейного оператора.

<u>Примечание</u> Здесь немного «отсебятины», потому что переписывал с грубой формулы. Следующие условия эквивалентны:

- 1. λ собственное значение линейного оператора A.
- 2. $|A \lambda E| = 0$ (т.е. $\chi_A(\lambda) = 0$ или λ является корнем характеристического многочлена A).

№5 Дайте определение собственного подпространства.

Собственным подпространством, отвечающим собственному значению λ_i оператора A называется множество:

$$V_{\lambda_i} = \{ x \in V \mid Ax = \lambda_i x \}$$

№6 Дайте определения алгебраической и геометрической кратности собственного значения. Какое неравенство их связывает?

Алгебраической кратностью собственного значения называют его кратность как корня характеристического уравнения.

<u>Пример</u> $\chi_A(\lambda) = (\lambda - 5)^3 (\lambda - 6)^2 (\lambda + 3)$: алгебраическая кратность собственного значения $\lambda = 5$ равна 3.

Геометрической кратностью собственного значения называют размерность собственного подпространства V_{λ_i} .

Геометрическая кратность собственного значения всегда положительна и не превосходит его алгебраической кратности.

№7 Каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям?

Пусть $\lambda_1, \ldots, \lambda_k$ - различные собственные значения линейного оператора A ($\forall i \neq j \ \lambda_i \neq \lambda_j$), а v_1, \ldots, v_k - соответствующие им собственные вектора. Тогда вектора $v_1, \ldots v_k$ линейно независимы.

№8 Сформулируйте критерий диагональности матрицы оператора.

Матрица линейного оператора A является диагональной в данном базисе \iff все вектора этого базиса являются собственными векторами данного линейного оператора.

№9 Сформулируйте критерий диагонализируемости матрицы оператора с использованием понятия геометрической кратности.

Матрица линейного оператора диагонализируема \iff для любого его собственного значения геометрическая кратность равна алгебраической кратности.

№10 Дайте определение жордановой клетки. Сформулируйте теорему о жордановой нормальной форме матрицы оператора.

Жорданова клетка размера $m \times m$ соответствующего собственного значения λ_i - матрица вида:

$$J_m(\lambda_i) = \underbrace{\begin{pmatrix} \lambda_i & 1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_i & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda_i \end{pmatrix}}_{m}$$

Жорданова нормальная форма матрицы линейного оператора - блочно-диагональная матрица с Жордановыми клетками на диагонали.

$$J = \begin{pmatrix} J_{m_1}(\lambda_1) & \cdots & \cdots & 0 \\ 0 & J_{m_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & J_{m_s}(\lambda_s) \end{pmatrix}$$

<u>Теорема</u> Любая матрица $A \in M_n(\mathbb{F})$ приводится заменой базиса к Жордановой нормальной форме над алгебраически замкнутым полем.

№11 Выпишите формулу для количества жордановых клеток заданного размера.

Пусть q_h - число жордановых клеток размера $h \times h$ с λ_i на диагонали. Пример:

$$\begin{pmatrix} -3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 1 \\ 0$$

<u>Утверждение</u> Для любого собственного значения λ_i $q_h = r_{h+1} - 2r_h + r_{h-1}$, где $r_h = Rg(A - \lambda E)^h, r_0 = RgE$

<u>№12</u> Сформулируйте теорему Гамильтона—Кэли.

 $\chi_A(A) = 0$, где χ_A - характеристический многочлен матрицы A.

<u>№13</u> Дайте определение корневого подпространства.

Корневым подпространством оператора A, соответствующим собственному значению λ_i называют множество: $K_{\lambda_i} = Ker(A - \lambda_i E)^{m_i}$, где m_i - алгебраическая кратность собственного значения.

№14 Дайте определение минимального многочлена линейного оператора.

Минимальным многочленом линейного оператора A называется многочлен $\mu_A(\lambda)$ такой, что:

- 1. $\mu_A(A) = 0$
- 2. $\mu_A \neq 0$
- 3. Степень многочлена μ_A минимальна и старший коэффициент равен 1.

<u>№15</u> Дайте определение инвариантного подпространства.

L называется инвариантным подпространством линейного оператора $A:V\longrightarrow V,$ если $\forall x\in L$ $Ax\in L$ (т.е. $A(L)\subset L$)

№16 Дайте определение евклидова пространства.

Евклидово пространство $\epsilon = (V, g)$ - линейное пространство над \mathbb{R} с определенным скалярным произведение g, где $g(x,y): V^2 \Longrightarrow \mathbb{R}$, удовлетворяющим следующим аксиомам:

- 1. $\forall x, y \in V \ g(x, y) = g(y, x)$
- 2. $\forall x, y, z \in V \ g(x + y, z) = g(x, z) + g(y, z)$
- 3. $g(\lambda x, y) = \lambda g(x, y)$
- 4. $g(x,x) \ge 0$, причем $g(x,x) = 0 \iff x = 0$

№17 Выпишите неравенства Коши-Буняковского и треугольника.

<u>Неравенство Коши-Коши-Буняковского</u> $\forall x,y \in \epsilon \ |(x,y)| \leq ||x|| \cdot ||y||$ Неравенство треугольника $\forall x,y \in \epsilon \ ||x+y|| \leq ||x|| + ||y||$

№18 Дайте определения ортогонального и ортонормированного базисов.

Система векторов $v_1, ..., v_k$ называется:

- Ортогональной, если $\forall i \neq j \ (v_i, v_j) = 0$
- Ортонормированной, если она ортогональна и $\forall i \ (v_i, v_i) = 1$

Если k=dimV=n, то v_1,\ldots,v_k будет ортогональным базисом.

Если рассмотреть $e_1 = \frac{v_1}{||v_1||}, \dots, e_n = \frac{v_n}{||v_n||}$, то получим ОНБ(ортонормированный базис).

<u>№19</u> Дайте определение матрицы Грама.

Пусть a_1, \ldots, a_n - базис в ϵ . Тогда $g(x,y) = X^T \Gamma Y$, где X,Y - столбцы координат векторов x и y в базисе a_1, \ldots, a_n .

$$\Gamma = \begin{pmatrix} (a_1, a_1) & \cdots & (a_1, a_n) \\ \vdots & \ddots & \vdots \\ (a_n, a_1) & \cdots & (a_n, a_n) \end{pmatrix}$$
 - матрица Грама.

№20 Выпишите формулу для преобразования матрицы Грама при переходе к новому базису.

Матрицы Грама двух базисов e и e' связаны следующим соотношением: $\Gamma' = U^T \Gamma U$, где U– матрица перехода от e к e'.

№21 Как меняется определитель матрицы Грама (грамиан) при применении процесса ортогонализации Грама-Шмидта?

Определитель матрицы Грама не меняется при применении процесса ортогонализации Грама-Шмидта.

№22 Сформулируйте критерий линейной зависимости с помощью матрицы Грама.

```
Пусть Gr(a_1,\ldots,a_k)=det\Gamma - грамиан.
Тогда (вектора a_1,\ldots,a_k линейно независимы) \iff Gr(a_1,\ldots,a_k)\neq 0
```

<u>№23</u> Дайте определение ортогонального дополнения.

Пусть $H \subseteq V$. Тогда множество $H^{\perp} = \{x \in V \mid (x,y) = 0 \forall y \in H\}$ называется ортогональным дополнением.

№24 Дайте определения ортогональной проекции вектора на подпространство и ортогональной составляющей.

```
\forall x \in \epsilon \ \ x = y + z \quad \ y \in H, z \in H^\perp y - ортогональная проекция x на H z - ортогональная составляющая x относительно H
```

№25 Выпишите формулу для ортогональной проекции вектора на подпространство, заданное как линейная оболочка данного линейно независимого набора векторов.

```
Пусть H=< a_1,\dots,a_k> и вектора a_1,\dots,a_k линейно независимые. Тогда пр_Hx=A(A^TA)^{-1}A^Tx, где A составлена из столбцов a_1,\dots a_k.
```

№26 Выпишите формулу для вычисления расстояния с помощью определителей матриц Грама.

Расстояние p(x,P) между плоскостью (линейным многообразием) $P=x_0+L$, где $L=< a_1,\dots,a_k>$ может быть найдено по формуле: $p^2(x,P)=\frac{\det\Gamma(a_1,\dots,a_k,x-x_0)}{\det\Gamma(a_1,\dots,a_k)}=\frac{Gr(a_1,\dots,a_k,x-x_0)}{Gr(a_1,\dots,a_k)}$

№27 Дайте определение сопряженного оператора в евклидовом пространстве.

Линейный оператор $A^*:\epsilon\longrightarrow\epsilon$ называется сопряженным к линейному оператору $A:\epsilon\longrightarrow\epsilon$, если $\forall x,y\in\epsilon\ (Ax,y)=(x,A^*y)$

№28 Дайте определение самосопряженного (симметрического) оператора.

Линейный оператор $A:\epsilon \longrightarrow \epsilon$ называется самосопржяенным(симметрическим), если если $\forall x,y \in \epsilon \ (Ax,y)=(x,A^y)$, т.е. $A^*=A$.

№29 Как найти матрицу сопряженного оператора в произвольном базисе?

У любого линейного оператора $A:\epsilon\longrightarrow\epsilon$ существует и единственен сопряженный оператор $A^*:\epsilon\longrightarrow\epsilon$, причем его матрицей будет матрица $(A^*)_b=\Gamma^-1(A)_b^T\Gamma$, где Γ - матрица грама базиса b.

№30 Каким свойством обладают собственные значения самосопряженного оператора?

- Все корни характеристического уравнения самосопряженного оператора являются действительными числами.
- Пусть λ собственное значение самосопряженного оператора A. Тогда алгебраическая кратность λ равна геометрической кратности.

№31 Что можно сказать про собственные векторы самосопряженного оператора, отвечающие разным собственным значениям?

Собственные вектора самосопряженного линейного оператора, отвечающие разным собственным значениям, ортогональны.

№32 Сформулируйте определение ортогональной матрицы.

Квадратную матрицу M называют ортогональной, если $M^TM=E.$

№33 Сформулируйте определение ортогонального оператора.

Линейный оператор $A:\epsilon \longrightarrow \epsilon$ называется ортогональным, если $\forall x,y \in \epsilon \ (Ax,Ay)=(x,y)$, т.е. A сохраняет скалярное произведение.

№34 Сформулируйте критерий ортогональности оператора, использующий его матрицу.

Матрица линейненого оператора в ОНБ ортогональна $\iff A$ - ортогональный оператор.

№35 Каков канонический вид ортогонального оператора? Сформулируйте теорему Эйлера.

Для любого ортогонального оператора существует ОНБ, в ктором его матрица имеет следующий блочно-диагональный вид:

$$\begin{pmatrix} A_{\varphi_1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & A_{\varphi_k} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$

$$\Gamma$$
де $A_{\varphi_j}=egin{pmatrix}\cos arphi_j & -\sin arphi_j \ \sin arphi_j & \cos arphi_j \end{pmatrix}$ Следствие: теорема Эйлера

Для любого ортогонального преобразования в R^3 существует ОНБ, в котором его матрица имеет вид:

$$\begin{pmatrix}
\cos \varphi_j & -\sin \varphi_j & 0 \\
\sin \varphi_j & \cos \varphi_j & 0 \\
0 & 0 & \pm 1
\end{pmatrix}$$

То есть любое ортогональное преобразование в R^3 является или поворотом на некоторый угол φ вокруг оси, либо композици такого поворота с отражением.

№36 Сформулируйте теорему о существовании для самосопряженного оператора базиса из собственных векторов.

Для любого самосопряженного оператора существует ОНБ, состоящий из собственных векторов A. Матрица A_e в этом базисе диагональна, а на диагонали стоят собственные значения, повторяющиеся столько, какова их алгебраическая кратность.

№37 Сформулируйте теорему о приведении квадратичной формы к диагональному виду при помощи ортогональной замены координат.

Любую кввадратичую форму можно привести к диагональному виду при помощи ортогональной замены координат.

<u>№38</u> Сформулируйте утверждение о QR-разложении.

Пусть A - квадратная матрица замера $n \times n$, при этом столбцы A_1, \ldots, A_n линейно независимы. Тогда A представима в виде $A = Q \cdot R$, где Q - ортогональная матрица, а R - верхнетреугольная матрица.

№39 Сформулируйте теорему о сингулярном разложении.

Для любой матрицы $A \in M_{mn}(\mathbb{R})$ существует сингулярное разложение:

$$A = V \mathbf{\Sigma} U^T$$

Где $U \in M_n(\mathbb{R})$ - ортогональная матрица,

 $V \in M_m(\mathbb{R})$ - ортогональная матрица,

 $\Sigma \in M_{mn}(\mathbb{R})$ и Σ является диагональной с числами $\varsigma_i \geq 0$ на диагонали(сингулярные числа). При этом $\sigma_1 \geq \sigma_2 \geq \dots \sigma_r > 0$

<u>№40</u> Сформулируйте утверждение о полярном разложении.

Любая матрица $A \in M_N(\mathbb{R})$ представима в виде $A = S \cdot U$, где S - симметрическая матрица с положительными собственными значениями, а U - ортогональная матрица.

<u>№41</u> Дайте определение сопряженного пространства.

Пространством, сопряженным к линейному пространству L называется множество линейных форм на нем с операциями сложения и умножения на число.

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) \ \forall \in V$$

$$(\lambda f)(x) = \lambda f(x) \ \forall \lambda \in F$$

Обозначение: $L^* = Hom(L, F)$

№42 Выпишите формулу для преобразования координат ковектора при переходе к другому базису.

TODO

<u>№43</u> Дайте определение взаимных базисов.

Базис $e=(e_1,\dots,e_n)$ в линейном пространстве L и базис $f=(f^1,\dots,f^n)$ в сопряженном пространстве L^* называют взаимными, если $f^i(e_j)=\begin{cases} 1, i=j\\ 0, i\neq j \end{cases}=\sigma^i_j$

№44 Дайте определение биортогонального базиса.

TODO

№45 Сформулируйте определение алгебры над полем. Приведите два примера.

Пусть A — векторное пространство над полем K, снабженное операцией $A \times A \to A$, называемой умножением. Тогда A является алгеброй над K, если для любых $x,y,z\in A,\ a,b\in K$ выполняются следующие свойства:

- $\bullet \ (x+y) \cdot z = x \cdot z + y \cdot z$
- $x \cdot (y+z) = x \cdot y + x \cdot z$
- $(ax) \cdot (by) = (ab)(x \cdot y)$

Примеры: комплексные числа и кватернионы.

№46 Сформулируйте определение тензора. Приведите два примера.

Пусть F - поле, V - векторное пространство над $F; V^*$ - сопряжженное к $V; p,q \in \mathbb{N} \cup \{0\}$ Тогда любое полилинейное отображение $f: \underbrace{V \times \ldots \times V}_p \times \underbrace{V \times \ldots \times V}_q \longrightarrow F$ называется тензором на V типа (p,q) и валентности p+q. Примеры

- римеры
 - Тензор типа (1,0) линейная функция на V, т.е. элементы V^* .
 - \bullet Тензор типа (2,0) билинейные формы на V.
 - Тензор типа (1,1) можно интерпретировать как линейный оператор.

№47 Дайте определение эллипса как геометрического места точек. Выпишите его каноническое уравнение. Что такое эксцентриситет эллипса? В каких пределах он может меняться?

Эллипсом называют геометрическое место точек, сумма растояний от которых до двух данных точек, называемых фокусами, постоянна.

Каноническое уравнение эллипса:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Число $\varepsilon=\frac{c}{a}=\frac{\sqrt{a^2-b^2}}{a}=\sqrt{1-\frac{b^2}{a^2}}$ называется эксцентриситетом эллипса.

Эксцентриситет всегда лежит в полуинтервале [0; 1) и служит мерой «сплюснутости» эллипса.

№48 Дайте определение гиперболы как геометрического места точек. Выпишите её каноническое уравнение. Что такое эксцентриситет гиперболы? В каких пределах он может меняться?

Гиперболой называют геометрическое место точек, модуль разности расстояний от которых до двух данных точек, называемых фокусами, постоянен.

Каноническое уравнение гиперболой:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Число $\varepsilon = \sqrt{1 + \frac{b^2}{a^2}}$ называется эксцентриситетом гиперболой.

При этом $\varepsilon > 1$ (при $\varepsilon \longrightarrow 1$ гипербола выражается в два луча) и характеризует угол между асимптотами.

№49 Дайте определение параболы как геометрического места точек. Выпишите её каноническое уравнение.

Параболой называется геометрическое место точек плоскости, равноудаленных от данной точки F, называемой фокусом параболой, и данной прямой, называемой ее директрисой.

Каноническое уравнение параболы:

$$y^2 = 2px$$

<u>№50</u> Дайте определение цилиндрической поверхности.

Рассмотрим кривую γ , лежащую в некоторой плоскости P, и прямую L, не лежащую в P. Цилиндрической поверхностью называют множество всех прямых, параллельных L и пересекающих γ .

№51 Дайте определение линейчатой поверхности. Приведите три примера.

Линейчатой называют поверхность, образованную движением прямой линии. Примеры:

- Цилиндр
- Гиперболический параболоид
- Линейчатый гиперболоид