CMPS251 - Assignment 1

Kinan Dak Al Bab, 201205052

September 12, 2014

Note: MATLAB R2010b (the version in the labs) was used to solve this assignment.

1 Basic Vector Manipulation

1.1 Question

- Generate three vectors of 21 values each with the following properties:
 - equally spaced between 2.0 and 5.0
 - randomly chosen in the range 0.0 and 1.0
 - randomly chosen in the range 2.0 and 5.0
- Generate a vector that contains the average of the last two vectors (i.e. every element is the average of the corresponding elements).
- Generate another vector that contains the element-by-element product of the rst two vectors.

average =

	2.7266 1.7355	2.4645 2.5415	2.4748	2.4528	2.1635	1.7276
C-1	1 +b	20				

Columns 11 through 20

Columns 1 through 10

1.1266	1.9007	1.5478	1.3884	2.6353	2.1132	1.6865
2.8832	1.4478	2.1379				

Column 21

1.9002

product =

Columns 1 through 10

1.6294	1.9475	0.2921	2.2378	1.6441	0.2682	0.8076
1.6680	3.0640	3.2324				

Columns 11 through 20

0.5516	3.5427	3.6372	1.9172	3.2811	0.6030	1.8557
4.1666	3.7234	4.6535				

Column 21

3.2787

1.4 Comment

- The average vector should have elements between 1 and 3, because v2 is between 0 and 1, and v3 is between 2 and 5.
- \bullet v1 is increasing and v2 is random between 0 and 1, therefore product should be increasing with some fluctuations

2 Basic Plotting in Matlab

2.1 Question

- Plot the function sin(x) in the region $-\pi \le x \le \pi$ using an appropriately chosen sampling interval. Do not forget to label the axes and write a title.
- Plot the function cos(x) in the region $-\pi \le x \le \pi$ on the same plot as the previous one. Do not forget to have a legend in the plot.
- Plot the function $1 \frac{x^2}{2}$ on the same plot as well.

```
% Basic Plotting in Matlab %
  x = -pi:pi/30:pi; % take a sample between 0 and pi each pi/30
   sin_x = sin(x); % apply sin to the generated values, result is a ...
6
   \cos x = \cos(x); % apply sin to the generated values, result is a ...
       vector
   f_x = 1 - ((x .^2) / 2);
9
10
   plot(x, \sin_x, x, \cos_x, x, f_x) % plot the three functions on ...
       the same plot
   axis([-pi, pi+0.05, -4, 1.25]) % change the range of the plot \dots
12
       axis for better visualization
13
   title('Q2: Basic Plotting in MatLab (interval is ...
14
       \frac{\pi}{30}, 'Interpreter', 'latex') % title
   xlabel('$-\pi \leq x \leq \pi$', 'Interpreter', 'latex') %x ...
       label and y label, string interpreted as latex
   ylabel('$f(x)$', 'Interpreter', 'latex')
16
17
   1 = legend('$f(x) = sin(x)$','$f(x) = cos(x)$', '$f(x) = 1 - ...
       \frac{1}{2} \frac{ X ^ 2}{2}$'); % add legends
  set(l, 'Interpreter', 'latex', 'Location', 'South'); % interpret ...
       legends as latex
```


2.4 Comment

- The Sine function and The Cosine function are limited between 1 and -1 with a shift of $\frac{\pi}{2}$.
- $f(x) = 1 \frac{x^2}{2}$ is the taylor polenomial of degree 2 that represents the Cosine function, It has the same value, same slope, and same curviture as the Cosine function at $x_0 = 0$.

3 Iteration in Matlab

3.1 Question

- Generate a vector of 100 numbers between -1 and 1. Write a loop to sum the values, and compare your results with the built-in function sum().
- Write another loop that adds only the positive values in the vector above.

3.2 Code

```
Iteration in Matlab %
   v = (rand(1, 100) - 0.5) * 2; % 100 values between -1 and 1
   my_sum = 0; % sum through a loop
5
   for i = 1:100
       my_sum = v(i) + my_sum;
   built_sum = sum(v); % built in function sum result
10
   positive_sum = 0;
11
   for i = v % matlab equivalent of for each
12
       if i \ge 0
14
           positive_sum = positive_sum + i;
15
   end
```

3.3 Output

3.4 Comment

- built in sum and my sum are equal therefore their difference is zero.
- since v is a vector of random numbers between -1 and 1, we can assume that around half the numbers are smaller than 0 (50 numbers), these numbers would be -0.5 on average, so in total the sum of negative number should be around 25, thats why positive_sum should be greater than my_sum by around 25, and indeed that is the case.

4 Drawing Circles and Ellipses

4.1 Question

• Draw a circle of radius 1 centered at (0,1). Hints: You need to generate points along the circle and then use the plot command; the circle may be parameterized as $x = rcos(\theta)$, $y = rsin(\theta)$ for $0 \le \theta \le 2$; use axis('equal') to get the same scaling on both the vertical and horizontal axes. • Draw an ellipse with semi-major and semi-minor axes of lengths a=2.0 and b=1.0 respectively.

The ellipse is oriented along the cartesian axes. Hint: The ellipse may be parameterized as $x = a \cos(\theta)$, $y = b\sin(\theta)$.

```
1 % Drawing Circles and Ellipses %
3 theta = 0:pi/20:2*pi; % take a sample between 0 and 2pi each pi/20
5 % Circle %
6 r = 1; % radius = 1
7 x = r * cos(theta); % parametrized equation for circle
s y = r * sin(theta); % parametrized equation for circle
y = y + 1; % shift by 1 to make it centered at (0, 1)
subplot(1,2,1); % divide figure into two plots on one row %
13 plot(x, y)
title('Circle of radius 1 centered at (0, 1)');
15
   axis('equal', [-1.1, 1.1, -0.1, 2.1]); % equal scaling on x and \dots
16
       y axes
17
18
19 % Ellipse %
a = 2.0;
21 b = 1.0;
x = a * cos(theta); % x = a cos(theta)
y = b * sin(theta); % y = b sin(theta)
25 subplot (1, 2, 2)
26 plot(x, y)
   title('Ellipse with a = 2.0 and b = 1.0');
axis('equal', [-2.1, 2.1, -1.1, 1.1]); % equal scaling on x and \dots
       y axes
```


4.4 Comment

As you can clearly see, it is a circle and an ellipse ...

5 Taylor Series Approximation

5.1 Question

Consider the function $f(x) = \frac{1}{1-x}$ in the interval $-0.5 \le x \le 0.5$

- Plot the function f(x) in this interval.
- On the same figure plot the linear Taylors expansion around x = 0.2.
- On the same figure, plot the quadratic Taylors expansion around x=0.2. Comment.

```
16
17 plot(x, y1, x, y2, x, y3);
18 title('$f(x) = \frac{1}{1-x}$ and its taylor expansions of order ...
2 and 3', 'Interpreter', 'Latex');
19 l = legend('$f(x) = \frac{1}{1-x}$', 'linear Taylor expansion', ...
'Quadratic taylor expansion');
20 set(l, 'Interpreter', 'Latex', 'Location', 'SouthEast')
```


5.4 Comment

The taylor expansion is an approximation of a function near a point, the order of the expansion represents how 'fine' we want the approximation to be, for order 2 (linear taylor expansion) the error in this approximation is huge, for order 3 (quadratic) it is a bit better, we get better accuracy by increasing the order (around order 41 I got the taylor function to overlap on top of the original function exactly through out the range of the plot).

6 Taylor Series Approximation

6.1 Question

Write a function mymax with the following header: function mx = mymax(v) that takes a vector as argument and returns the largest value in the vector. Test

the function on a few sample examples of your choice. Compare your results with the builtin function $\max()$.

6.2 Code

```
% Functions in Matlab %
   function mx = mymax(x)
        % if x is not a vector throw error,
        \mbox{\ensuremath{\mbox{\$}}} if x is a vector, return the maximum element of x.
   if ¬isvector(x)
6
        error('Input must be a vector')
   end
8
9 \text{ mx} = -inf;
10 for i = x
11
       if i > mx
12
            mx = i;
        end
14 end
15
   end
16
   \mbox{\ensuremath{\mbox{\$}}} Testing the function mymax written in file mymax.m \mbox{\ensuremath{\mbox{\$}}}
17
18
  diff = 0;
19
   for i = 1:10 % test against 10 random vectors
20
        n = floor(rand(1,1) * 40) + 10; % random number between 10 ...
             and 50 (inclusive)
22
23
        v = rand(1, n); % random vector of random size between 10 ...
             and 50
        my_max = mymax(v); % my max
24
        def_max = max(v); % built-in max
25
26
        if my_max \neq def_max
            diff = 1;
28
        end
29
  end
30
```

6.3 Output

diff =

0

6.4 Comment

As you can see, my_max and def_max return the same result, which is why diff is always zero.

7 Sine Computation Via Taylor series

7.1 Question

Write a matlab function mysin(x, k) that uses the rst non-zero k terms of the Taylor series of sin(x) to compute the sine of a number. Test your function on a couple of examples and compare with the built-in sin() function.

```
% Sine computation via Taylor series %
3 function result = mysin(x, k)
       % calculates sin(x) by the first non-zero k terms of its ...
            taylor series
   result = 0;
6
  n = 0:
7
s i = 0;
   while and(i < k, n < 3*k) % kth non zero term or 3*k terms in total sign = (-1) ^ n;
9
10
       fact = factorial(2*n + 1);
       pow = x ^ (2*n + 1);
12
13
        term = (sign/fact)*pow;
14
       if term \neq 0
15
16
            result = result + term;
            i = i + 1;
17
18
19
       n = n + 1;
20
21 end
22
23
24
   \ \mbox{\ensuremath{\mbox{\$}}} Testing the function mysin written in file mysin.m \mbox{\ensuremath{\mbox{\$}}}
25
   x = -2*pi:pi/16:2*pi; % take a sample between -2*pi and 2*pi ...
26
       each pi/16
27
   sin_x = sin(x);
28
30 mysin_x_2 = arrayfun(@mysin, x, repmat(2, 1, length(x)));
   mysin_x_3 = arrayfun(@mysin, x, repmat(3, 1, length(x)));
31
mysin_x_5 = arrayfun(@mysin, x, repmat(5, 1, length(x)));
\overline{33} mysin_x_7 = arrayfun(@mysin, x, repmat(7, 1, length(x)));
34
   plot(x, sin_x, x, mysin_x_2, x, mysin_x_3, x, mysin_x_5, x, ...
35
       mysin_x_7) % plot
   axis([-2*pi-0.1, 2*pi+0.1, -3.1, 1.1]) % change the range of the ...
        plot axis for better visualization
37
38
   title('Q7: Sine Computation in Matlab') % title
  xlabel('$-2\times\pi \leq x \leq 2\times\pi$', 'Interpreter', ...
39
        'latex') %x label and y label, string interpreted as latex
  ylabel('$f(x)$', 'Interpreter', 'latex')
40
41
  1 = legend('\$f(x) = sin(x)\$', '\$f(x) = mysin(x, 2)\$', '\$f(x) = ...
        mysin(x, 3);', '$f(x) = mysin(x, 5)$', '$f(x) = mysin(x, ...
        7) $'); % add legends
```

```
43 set(l, 'Interpreter', 'latex', 'Location', 'South'); % interpret ... legends as latex
```


7.4 Comment

As you can see, the higher the degree of the taylor polynomial, the better approximation we get.