代数学方法

卷一:基础架构

更新日期: 2025年03月25日 aytony

目录

1.	集合论	. 3
2	范畴论其础	1

1. 集合论

2. 范畴论基础

练习 2.0.1: 设 $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ 是任意范畴中的态射。证明若 $A \xrightarrow{gf} C$ 和 $B \xrightarrow{hg} D$ 皆为同构,则 f,g,h 全是同构。

练习 2.0.2: 对范畴 C, C' 定义其并 C ★ C' 如下:

$$Ob(C \star C') := Ob(C) \sqcup Ob(C'),$$

$$\operatorname{Hom}_{\mathsf{C}\star\mathsf{C}\prime}(X,Y)\coloneqq \begin{cases} \operatorname{Hom}_{\mathsf{C}}(X,Y) & X,Y\in\operatorname{Ob}(\mathsf{C})\\ \operatorname{Hom}_{\mathsf{C}\prime}(X,Y) & X,Y\in\operatorname{Ob}(\mathsf{C}')\\ \text{\& \&} & X\in\operatorname{Ob}(\mathsf{C}),Y\in\operatorname{Ob}(\mathsf{C}')\\ \varnothing & X\in\operatorname{Ob}(\mathsf{C}'),Y\in\operatorname{Ob}(\mathsf{C}). \end{cases}$$

为 $C \star C'$ 中的态射合理地定义合成和单位元,并验证 $C \star C'$ 确实构成范畴;它包含 C 和 C' 作为全子范畴。对于有限序数范畴,证明 $n \star m$ 同构于 n + m。

练习 2.0.3: 选定 Grothendieck 宇宙,证明其中全体有限全序集及其间的保序映射构成一个范畴 Ord_f 。证明有限序数 $0,1,\cdots$ 构成此范畴的骨架。

练习 2.0.4: 设 C 为范畴,并对每个 $X,Y \in \mathrm{Ob}(\mathsf{C})$ 在 $\mathrm{Hom}_{\mathsf{C}}(X,Y)$ 上给定二元关系 \mathcal{R} 。构造相应的商范畴 C/\mathcal{R} 连同函子 $Q:\mathsf{C}\to\mathsf{C}/\mathcal{R}$ 使得

- 对任意 C 中态射 f, g 有 $f\mathcal{R}g \Rightarrow Q(f) = Q(g)$;
- 函子 Q 在对象集上是双射;
- 对任何函子 $S: C \to C'$ 满足 $f\mathcal{R}g \Rightarrow S(f) = S(g)$ 者,存在唯一的函子 $\overline{S}: C/\mathcal{R} \to C'$ 使得 $S = \overline{S}Q$ 。

说明 $Q: \mathsf{C} \to \mathsf{C}/\mathcal{R}$ 的唯一性。

练习 2.0.5: 设 $F: \mathsf{C}_1 \to \mathsf{C}_2$ 和 $G: \mathsf{C}_2 \to \mathsf{C}_3$ 为范畴等价(即:具有逆拟函子),证明 $GF: \mathsf{C}_1 \to \mathsf{C}_3$ 也是等价,其拟逆可以取为 F 和 G 的拟逆之合成。

练习 2.0.6: 详述例 2.6.8 中各个伴随对的余单位。

练习 2.0.7: 记 Ring 为以环为对象,环同态为态射的范畴,注意到这里的环皆含乘法幺元,同态按定义须保幺元。如果不假设环含幺,所得范畴记为 Rng(这可能是本书中唯一一次考虑这类环)。证明显然的函子 Ring \rightarrow Rng 具有左伴随。

练习 2.0.8: 设 (F,G,φ) 是伴随对,则

1. $\eta: \mathrm{id}_{C_1} \to GF$ 为同构当且仅当 F 是全忠实函子;

2. $\varepsilon: FG \to \mathrm{id}_{\mathsf{C}_2}$ 为同构当且仅当 G 是全忠实函子。

提示 基于对偶性 (以 C^{op} 代 C),仅需证 (1)。先证明对所有 C_1 中的态射 $f: X \to Y$ 都有 $\varphi(Ff) = \eta_Y f: X \to GFY$: 这是缘于 φ 的自然性导致图表

TEST TODO

交换。米田引理(定理 2.5.1)表明 $\eta_Y:Y\stackrel{\sim}{\to} GFY$ 当且仅当 $f\mapsto \eta_Y f$ 给出双射 $\operatorname{Hom}(X,Y)\stackrel{\sim}{\to} \operatorname{Hom}(X,GFY)$,其中 X 取遍 C_1 的对象;既然 φ 是同构,这又相当于 $f\mapsto Ff$ 是双射,亦即 F 是全忠实的。

练习 2.0.9: 假设 C 既是完备也是余完备的。对于小范畴 I,证明对角函子 $\Delta: C \to C^I$ (定义 2.7.1) 有左、右伴随函子,阐释它们与 C 中的 \lim_{\to} 与 \lim_{\leftarrow} 的关系,相应的单位和余单位作何解释?

练习 2.0.10: 设域 \Bbbk 为域,证明在 \Bbbk -向量空间范畴 $\mathsf{Vect}_f(\Bbbk)$ 里,每个对象都同构于一些有限维子空间间的 \lim_{\to} 。将此想法移植到交换群范畴 Ab (考虑有限生成交换群的 \lim_{\to})。

练习 2.0.11: 设 C 是 C' 的全子范畴,包含函子记为 $J: C \to C'$ 。说明对任意两个函子 $F, G: C_0 \rightrightarrows C$,与 J 的横合成诱导双射

$$\operatorname{Hom}_{\operatorname{Fct}\;(\mathsf{C}_0,\mathsf{C}\prime)}(JF,JG) = \operatorname{Hom}_{\operatorname{Fct}\;(\mathsf{C}_0,\mathsf{C})}(F,G).$$

练习 2.0.12: 在带基点的集合范畴 Set_{\bullet} 中描述积和余积,证明它是完备且余完备的。推广到 Top_{\bullet} 的情形。

练习 2.0.13: 考虑忘却函子 Set。 \rightarrow Set,找出 U 的左伴随,并证明 U 无右伴随。