Organizing Data; Histograms, Frequency Polygons, and Ogives

2-1 and 2-2

Jacob Ayers

MAT 110

Lesson #3

Objectives

- Organize data using categorical frequency distributions, ungrouped frequency distributions, and grouped frequency distributions
- Find class width, boundaries, and midpoints for grouped data
- Use histograms, frequency polygons, and ogives to visualize frequency distributions

Last week, you learned how researchers gather data.

Last week, you learned how researchers gather data.

Now, we'll turn our attention to organizing that data.

Last week, you learned how researchers gather data.

Now, we'll turn our attention to organizing that data.

Definition

A *frequency distribution* is the organization of raw data in table form, using classes and frequencies.

Last week, you learned how researchers gather data.

Now, we'll turn our attention to organizing that data.

Definition

A *frequency distribution* is the organization of raw data in table form, using classes and frequencies.

When creating a frequency distribution, we divide the data into categories (classes) and then determine how many data values fall into each category (frequencies).

When data can be placed into qualitative categories, we use categorical frequency distibutions.

When data can be placed into qualitative categories, we use categorical frequency distibutions.

Examples:

- blood type
- political party
- college major

When data can be placed into qualitative categories, we use categorical frequency distibutions.

Examples:

- blood type
- political party
- college major

To make the frequency distribution, tally how many data values are in each category and list it in table form. We can also determine relative frequencies, using percentages.

Twenty-five army inductees were given a blood test to determine their blood type. The data set is below. Construct a categorical frequency distribution for the data.

Twenty-five army inductees were given a blood test to determine their blood type. The data set is below. Construct a categorical frequency distribution for the data.

Α	В	В	AB	0
0	0	В	AB	В
В	В	0	Α	0
Α	0	0	0	AE
AB	Α	0	В	Α

Twenty-five army inductees were given a blood test to determine their blood type. The data set is below. Construct a categorical frequency distribution for the data.

Α	В	В	AB	0
0	0	В	AB	В
В	В	0	Α	0
Α	0	0	0	AE
AB	Α	0	В	Α

Blood Type	Frequency	Percent
Α	5	$5 \div 25 = 20\%$
В	7	$7 \div 25 = 28\%$
O	9	$9 \div 25 = 36\%$
AB	4	$4 \div 25 = 16\%$
TOTALS	25	100%

When dealing with numerical data that is all in a small range, an ungrouped frequency distribution can be used.

When dealing with numerical data that is all in a small range, an ungrouped frequency distribution can be used.

An ungrouped frequency distribution is just a categorical distribution where the categories are quantitative rather than qualitative.

When dealing with numerical data that is all in a small range, an ungrouped frequency distribution can be used.

An ungrouped frequency distribution is just a categorical distribution where the categories are quantitative rather than qualitative.

Example: The ages of 20 dogs in a pet shelter are shown. Construct an ungrouped frequency distribution for the data.

When dealing with numerical data that is all in a small range, an ungrouped frequency distribution can be used.

An ungrouped frequency distribution is just a categorical distribution where the categories are quantitative rather than qualitative.

Example: The ages of 20 dogs in a pet shelter are shown. Construct an ungrouped frequency distribution for the data.

5	8	7	6	3
5 9	4	4	5	3 8 7
7 3	4	7	5	
3	5	8	4	9

When dealing with numerical data that is all in a small range, an ungrouped frequency distribution can be used.

An ungrouped frequency distribution is just a categorical distribution where the categories are quantitative rather than qualitative.

Example: The ages of 20 dogs in a pet shelter are shown. Construct an ungrouped frequency distribution for the data.

```
5 8 7 6 3
9 4 4 5 8
7 4 7 5 7
3 5 8 4 9
```

Since there are only 7 unique ages, it makes sense to use an ungrouped distribution here.

Here is the ungrouped frequency distribution:

Age	Frequency
3	2
4	4
5	4
6	1
7	4
8	3
9	2

When data values are spread over a large range, it doesn't make sense to have individual classes for each value. We must group data into wider classes.

When data values are spread over a large range, it doesn't make sense to have individual classes for each value. We must group data into wider classes.

Below is an example of a grouped frequency distribution:

Class limits	Class boundaries	Tally	Frequency
58-64	57.5-64.5	/	1
65-71	64.5-71.5	THLL 1	6
72-78	71.5-78.5	THETHE	10
79-85	78.5-85.5	THU THU 1111	14
86-92	85.5-92.5	HHLYHU II	12
93-99	92.5-99.5	THL	5
100-106	99.5-106.5	//	_2
			Total 50

Here is the first row again:

Here is the first row again:

Class limits	Class boundaries	Frequency
58-64	57.5-64.5	1

Here is the first row again:

Class limits	Class boundaries	Frequency	
58-64	57.5-64.5	1	

Some things to note:

• 58 = lower class limit - smallest data value in the class

Here is the first row again:

Class limits	Class boundaries	Frequency
58-64	57.5-64.5	1

Some things to note:

- 58 = lower class limit smallest data value in the class
- ullet 64 = upper class limit largest data value in the class

Here is the first row again:

Class limits	Class boundaries	Frequency
58-64	57.5-64.5	1

Some things to note:

- 58 = lower class limit smallest data value in the class
- 64 = upper class limit largest data value in the class
- Class boundaries eliminate gaps in the distribution

Here is the first row again:

Class limits	Class boundaries	Frequency
58-64	57.5-64.5	1

Some things to note:

- 58 = lower class limit smallest data value in the class
- 64 = upper class limit largest data value in the class
- Class boundaries eliminate gaps in the distribution
- Class width = (Lower Limit) (Lower Limit) (in this case, 65 58 = 7)

Some rules to follow when constructing a grouped frequency distribution:

Use 5-20 classes

- Use 5-20 classes
- Preferably, use odd class width (ensures midpoints are same place value as data)

- Use 5-20 classes
- Preferably, use odd class width (ensures midpoints are same place value as data)
- Classes must be mutually exclusive (i.e. no overlap)

- Use 5-20 classes
- Preferably, use odd class width (ensures midpoints are same place value as data)
- Classes must be mutually exclusive (i.e. no overlap)
- Classes must be continuous (i.e. no gaps)

- Use 5-20 classes
- Preferably, use odd class width (ensures midpoints are same place value as data)
- Classes must be *mutually exclusive* (i.e. no overlap)
- Classes must be continuous (i.e. no gaps)
- Classes must be exhaustive (i.e. all data values must be in a class)

- Use 5-20 classes
- Preferably, use odd class width (ensures midpoints are same place value as data)
- Classes must be mutually exclusive (i.e. no overlap)
- Classes must be continuous (i.e. no gaps)
- Classes must be exhaustive (i.e. all data values must be in a class)
- Classes must be equal in width

Procedure Table

Constructing a Grouped Frequency Distribution

Step 1 Determine the classes.

Find the highest and lowest values.

Find the range.

Select the number of classes desired.

Find the width by dividing the range by the number of classes and rounding up.

Select a starting point (usually the lowest value or any convenient number less than the lowest value); add the width to get the lower limits.

Find the upper class limits.

Find the boundaries.

Step 2 Tally the data.

Step 3 Find the numerical frequencies from the tallies, and find the cumulative frequencies.

The number of stories in each of a sample of the world's 30 tallest buildings follows. Construct a grouped frequency distribution with 7 classes.

88	88	110	88	80	69	102	78	70	55
79	85	80	100	60	90	77	55	75	55
54	60	75	64	105	56	71	70	65	72

The number of stories in each of a sample of the world's 30 tallest buildings follows.

Construct a grouped frequency distribution with 7 classes.

88	88	110	88	80	69	102	78	70	55
79	85	80	100	60	90	77	55	75	55
54	60	75	64	105	56	71	70	65	72

Step 1: Determine the Classes

Highest Value: 110; Lowest Values: 54

The number of stories in each of a sample of the world's 30 tallest buildings follows.

Construct a grouped frequency distribution with 7 classes.

88	88	110	88	80	69	102	78	70	55
79	85	80	100	60	90	77	55	75	55
54	60	75	64	105	56	71	70	65	72

Step 1: Determine the Classes

Highest Value: 110; Lowest Values: 54

Range
$$= 110 - 54 = 56$$

The number of stories in each of a sample of the world's 30 tallest buildings follows.

Construct a grouped frequency distribution with 7 classes.

88	88	110	88	80	69	102	78	70	55
79	85	80	100	60	90	77	55	75	55
54	60	75	64	105	56	71	70	65	72

Step 1: Determine the Classes

Highest Value: 110; Lowest Values: 54

Range = 110 - 54 = 56

Class width $= 56 \div 7 = 8$; round up to next odd number: 9

The number of stories in each of a sample of the world's 30 tallest buildings follows.

Construct a grouped frequency distribution with 7 classes.

88	88	110	88	80	69	102	78	70	55
79	85	80	100	60	90	77	55	75	55
54	60	75	64	105	56	71	70	65	72

Step 1: Determine the Classes

Highest Value: 110; Lowest Values: 54

Range = 110 - 54 = 56

Class width $= 56 \div 7 = 8$; round up to next odd number: 9

Starting point: 54

88	88	110	88	80	69	102	78	70	55
79	85	80	100	60	90	77	55	75	55
54	60	75	64	105	56	71	70	65	72

Steps 2 and 3: Tally Data; Find Numerical Frequencies

Class Limits	Class Boundaries	Tally	Frequency
54-62			
63-71			
72-80			
81-89			
90-98			
99-107			
108-116			

88	88	110	88	80	69	102	78	70	55
79	85	80	100	60	90	77	55	75	55
54	60	75	64	105	56	71	70	65	72

Steps 2 and 3: Tally Data; Find Numerical Frequencies

Class Limits	Class Boundaries	Tally	Frequency
54-62	53.5-62.5		
63-71	62.5-71.5		
72-80	71.5-80.5		
81-89	80.5-89.5		
90-98	89.5-98.5		
99-107	98.5-107.5		
108-116	107.5-116.5		

88	88	110	88	80	69	102	78	70	55
79	85	80	100	60	90	77	55	75	55
54	60	75	64	105	56	71	70	65	72

Steps 2 and 3: Tally Data; Find Numerical Frequencies

Class Limits	Class Boundaries	Tally	Frequency
54-62	53.5-62.5		7
63-71	62.5-71.5		6
72-80	71.5-80.5		8
81-89	80.5-89.5		4
90-98	89.5-98.5		1
99-107	98.5-107.5		3
108-116	107.5-116.5		1

Once data has been organized, it is often helpful to display it visually.

Once data has been organized, it is often helpful to display it visually.

The three most common graphs in research are:

- Histograms
- Frequency Polygons
- Ogives

Once data has been organized, it is often helpful to display it visually.

The three most common graphs in research are:

- Histograms
- Frequency Polygons
- Ogives

We will go over each graph in turn.

Below is the procedure for constructing these three graphs.

Below is the procedure for constructing these three graphs.

Troccadic rabic
Constructing a Histogram, Frequency Polygon, and Ogive

Step 1 Draw and label the x and y axes.

Procedure Table

- Step 2 On the *x* axis, label the class boundaries of the frequency distribution for the histogram and ogive. Label the midpoints for the frequency polygon.
- Step 3 Plot the frequencies for each class, and draw the vertical bars for the histogram and the lines for the frequency polygon and ogive.

(*Note:* Remember that the lines for the frequency polygon begin and end on the x axis while the lines for the ogive begin on the x axis.)

Below is the procedure for constructing these three graphs.

Procedu	Procedure Table				
Constru	icting a Histogram, Frequency Polygon, and Ogive				
Step 1	Step 1 Draw and label the <i>x</i> and <i>y</i> axes.				
Step 2	On the <i>x</i> axis, label the class boundaries of the frequency distribution for the histogram and ogive. Label the midpoints for the frequency polygon.				
Step 3	Plot the frequencies for each class, and draw the vertical bars for the histogram and the lines for the frequency polygon and ogive.				
(<i>Note:</i> Remember that the lines for the frequency polygon begin and end on the x axis while the lines for the ogive begin on the x axis.)					

We will use Google Sheets to construct these graphs.

Histograms

Histogram: displays data using vertical bars

Histograms

Histogram: displays data using vertical bars

Construct a histogram for the following data:

Class boundaries	Frequency
99.5-104.5	2
104.5-109.5	8
109.5-114.5	18
114.5-119.5	13
119.5-124.5	7
124.5-129.5	1
129.5-134.5	1

Frequency Polygons

Frequency Polygon: displays data using lines that connect points plotted for frequencies at midpoints of classes

Frequency Polygons

Frequency Polygon: displays data using lines that connect points plotted for frequencies at midpoints of classes

Construct a frequency polygon for the following data:

Class boundaries	Midpoints	Frequency
99.5-104.5		2
104.5-109.5		8
109.5-114.5		18
114.5-119.5		13
119.5-124.5		7
124.5-129.5		1
129.5-134.5		1

Ogives

Ogive: line graph that represents cumulative frequencies for each class

Ogives

Ogive: line graph that represents cumulative frequencies for each class

Construct an ogive for the following data:

Class boundaries	Frequency
99.5-104.5	2
104.5-109.5	8
109.5-114.5	18
114.5-119.5	13
119.5-124.5	7
124.5-129.5	1
129.5-134.5	1

	Cumulative Frequency
Less than 99.5	0
Less than 104.5	2
Less than 109.5	10
Less than 114.5	28
Less than 119.5	41
Less than 124.5	48
Less than 129.5	49
Less than 134.5	50

The number of faculty listed for a sample of private colleges that offer only bachelor's degrees is listed below. Use these data to construct a frequency distribution with 7 classes, a histogram, a frequency polygon, and an ogive.

The number of faculty listed for a sample of private colleges that offer only bachelor's degrees is listed below. Use these data to construct a frequency distribution with 7 classes, a histogram, a frequency polygon, and an ogive.

165	221	218	206	138	135	224	204
70	210	207	154	155	82	120	116
176	162	225	214	93	389	77	135
221	161	128	310				

Step 1: Determine the Classes

Highest: 389; Lowest: 70

The number of faculty listed for a sample of private colleges that offer only bachelor's degrees is listed below. Use these data to construct a frequency distribution with 7 classes, a histogram, a frequency polygon, and an ogive.

165	221	218	206	138	135	224	204
70	210	207	154	155	82	120	116
176	162	225	214	93	389	77	135
221	161	128	310				

Step 1: Determine the Classes

Highest: 389; Lowest: 70 Range: 389 - 70 = 329

The number of faculty listed for a sample of private colleges that offer only bachelor's degrees is listed below. Use these data to construct a frequency distribution with 7 classes, a histogram, a frequency polygon, and an ogive.

165	221	218	206	138	135	224	204
70	210	207	154	155	82	120	116
176	162	225	214	93	389	77	135
221	161	128	310				

Step 1: Determine the Classes

Highest: 389; Lowest: 70 Range: 389 - 70 = 329

Class width $= 329 \div 7 = 47$

The number of faculty listed for a sample of private colleges that offer only bachelor's degrees is listed below. Use these data to construct a frequency distribution with 7 classes, a histogram, a frequency polygon, and an ogive.

165	221	218	206	138	135	224	204
70	210	207	154	155	82	120	116
176	162	225	214	93	389	77	135
221	161	128	310				

Step 1: Determine the Classes

Highest: 389; Lowest: 70 Range: 389 - 70 = 329

Class width = $329 \div 7 = 47$

Starting point: 70

165	221	218	206	138	135	224	204
70	210	207	154	155	82	120	116
176	162	225	214	93	389	77	135
221	161	128	310				

Steps 2 and 3: Tally Data; Find Numerical Frequencies

Class Limits	Class Boundaries	Class Midpoints	Tally	Frequency
70-116				
117-163				
164-210				
211-257				
258-304				
305-351				
352-398				

165	221	218	206	138	135	224	204
70	210	207	154	155	82	120	116
176	162	225	214	93	389	77	135
221	161	128	310				

Steps 2 and 3: Tally Data; Find Numerical Frequencies

Class Limits	Class Boundaries	Class Midpoints	Tally	Frequency
70-116	69.5-116.5			
117-163	116.5-163.5			
164-210	163.5-210.5			
211-257	210.5-257.5			
258-304	257.5-304.5			
305-351	304.5-351.5			
352-398	351.5-398.5			

165	221	218	206	138	135	224	204
70	210	207	154	155	82	120	116
176	162	225	214	93	389	77	135
221	161	128	310				

Steps 2 and 3: Tally Data; Find Numerical Frequencies

Class Limits	Class Boundaries	Class Midpoints	Tally	Frequency
70-116	69.5-116.5	93		
117-163	116.5-163.5	140		
164-210	163.5-210.5	187		
211-257	210.5-257.5	234		
258-304	257.5-304.5	281		
305-351	304.5-351.5	328		
352-398	351.5-398.5	375		

165	221	218	206	138	135	224	204
70	210	207	154	155	82	120	116
176	162	225	214	93	389	77	135
221	161	128	310				

Steps 2 and 3: Tally Data; Find Numerical Frequencies

Class Limits	Class Boundaries	Class Midpoints	Tally	Frequency
70-116	69.5-116.5	93		5
117-163	116.5-163.5	140		9
164-210	163.5-210.5	187		6
211-257	210.5-257.5	234		6
258-304	257.5-304.5	281		0
305-351	304.5-351.5	328		1
352-398	351.5-398.5	375		1

Next Steps

- Read 2-3
- Watch Video Lesson #4
- Complete Assignment 2

Thanks for watching!