Data Mining

(Multiple Choice Questions for Quiz)

Prepared by: P V S Maruthi Rao |

Topics

Topic	Number of MCQs
Exploring Data	20
Classification	8

Exploring Data

Exploring Data	Question 1
What are the primary objectives of Data Mining	tasks?

A	Use some variables to predict unknown or future values of other variables Find human-interpretable patterns / associations that describe the data.	В	Provide distributed and parallel computing infrastructure for data processing.
С	Provide database queries on complex datasets.	D	All of the above

Answer	A
Remarks	

Exploring Data	Question 2
In the data preprocessing, regression technique the data.	e cannot be used for smoothing the noise in

А	True	В	False
С	-	D	-

Answer	В
Remarks	Regression technique can be used in smoothing the noise in the data.

Exploring Data	Question 3
The type of value of an attribute of a Data object	ct can be of

Α	Nominal only	В	Nominal, Binary only
О	Nominal, Binary, Ordinal only	D	Nominal, Binary, Ordinal, Numeric

Answer	D
Remarks	

A	Mastery-learning is a good choice as it shows 2σ improvement in the assessment scores with the same teacher-student ratio.	В	Tutoring is very effective but it is not scalable (1-1 teacher-student ratio).
С	A and B above	D	None of the above

Answer	С
Remarks	Students' understanding on Standard deviation is tested.

	Exploring Data	Question 5
Tł	he basic statistical measures for central tende	ency of data include mean, weighted mean,

The basic statistical measures for central tendency of data include mean, weighted mean, median, and mode.

Α	True	В	False
С		D	

Answer	A
Remarks	

Exploring Data	Question 6
Interquartile Range (IQR), distance between the tendency.	e first and third quartile, is a measure of central

А	True	В	False
С		D	

Answer	В
Remarks	IQR a simple measure of spread that gives the range covered by the middle half of the data. (This can also be a question - True / False)

Exploring Data	Question 7
IQR a simple measure of spread that gives the	range covered by the middle half of the data.

А	True	В	False
С		D	

Answer	A
Remarks	IQR a simple measure of spread that gives the range covered by the middle half of the data. IQR = Q3 - Q1

Exploring Data	Question 8
What are the following options below are true for data spread?	or Standard deviation (σ) , a measure of the

A	σ measures spread about the mean and should be used only when the mean is chosen as the measure of center.	В	σ = 0 only when there is no spread, that is, when all observations have the same value. Otherwise σ > 0.
С	A and B above	D	None of the above

Answer	С
Remarks	A and B are the properties of the standard deviation.

Exploring Data

Question 9

Data preprocessing improves the data quality and makes data mining algorithms efficient and effective. What are the data preprocessing tasks along with Data cleaning?

А	Data Integration	В	Data Reduction
С	Data Transformation	D	All of the above.

Answer	D
Remarks	

Exploring Data

Question 10

In general, the Dimensionality Reduction technique of Data Preprocessing is aimed at the

In general, the Dimensionality Reduction technique of Data Preprocessing is aimed at the following objectives to achieve.

Α	Eliminate irrelevant features and reduce noise.	В	Reduce time and space required in data mining.
С	Allow easier visualization	D	All of the above.

Answer	D
Remarks	

Exploring Data Question 11

Redundancy is another important issue that a Data scientist should deal with. An attribute (dimension / variable) may be redundant if it can be "derived" from another attribute or set of attributes.

Some redundancies can be detected by correlation analysis. What are the following statements are true?

Hint: Let A and B are two attribute vectors.

A	Computing correlation coefficient (also known as Pearson's product moment coefficient) on numeric data attributes (Attributes A and B are of numeric type.)	В	Correlation analysis on nominal, categorical data using χ^2 tests. (Attributes A and B are of nominal / discrete / categorical type.)
С	Variance - covariance analysis on numeric data. (Attributes A and B are of numeric type.)	D	All of the above.

Answer	D
Remarks	

Exploring DataQuestion 12The following observations were recorded while conducting an experiment.x = (-3, -2, -1, 0, 1, 2, 3)y = (9, 4, 1, 0, 1, 4, 9)Calculate the correlation between x and y.

Α	$y_i = x_i^2$	В	0
О	x and y are positively correlated	D	x and y are negatively correlated

Answer	В
Remarks	

Exploring Data	Question 13				
Consider the following Matrix A.					
$A = [a_{jk}], an n X n matrix$					
Ax =	$=\lambda x$				
$(A - \lambda I) x = 0$					
$D(\lambda) = \det(A - \lambda I) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n} \end{bmatrix}$	$\begin{bmatrix} -\lambda & a_{12} & \dots & a_{1n} \\ a_1 & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ a_1 & a_{n2} & \dots & a_{nn} - \lambda \end{bmatrix} = 0$				

A	x is known as the Eigenvector of the matrix A.	В	The roots of the characteristic polynomial of the matrix A are known as Eigenvalues of the matrix A
С	If \mathbf{x} is an eigenvector of a matrix A corresponding to an eigenvalue λ , so is $k\mathbf{x}$ with any $k \neq 0$	D	All of the above.

Which of the following statements are true?

Answer	D
Remarks	

Exploring Data Question 14

The following Principal Components are calculated from the Iris dataset.

Importance of components:

Comp.1 Comp.2 Comp.3 Standard deviation 2.0485788 0.49053911 0.27928554 0.153379074 Proportion of Variance 0.9246162 0.05301557 0.01718514 0.005183085 Cumulative Proportion 0.9246162 0.97763178 0.99481691 1.000000000

Which of the following statements are true?

А	Comp. 4 has highest loading.	В	Comp.3 has highest loading.
С	Comp. 2 has highest loading.	D	Comp.1 has highest loading.

Answer	D
Remarks	

Exploring Data Question 15

Minkowski distance is a generalization of the Euclidean distance as given below.

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and x_k and y_k are, respectively, the kth attributes (components) or data objects x and y.

For which value of the parameter 'r', the d(x,y), Minkowski distance is also known as Supremum or Chebyshev distance.

А	r = 1	В	r = 2
С	Limit r -> ∞	D	None of the above

Answer	С
Remarks	

Exploring Data	Question 16
p and q are two data objects with binary attribute	tes.
p = 1 0 0 0 0 0 0 0 0 0 and	
q = 0 0 0 0 0 0 1 0 0 1	

The Jaccard Coefficient of the above \boldsymbol{p} and \boldsymbol{q} is

Α	0.7	В	0
С	-1	D	None of the above

Answer	В
Remarks	
	$f_{01}=2$ the number of attributes where p was 0 and q was 1 $f_{10}=1$ the number of attributes where p was 1 and q was 0 $f_{00}=7$ the number of attributes where p was 0 and q was 0 $f_{11}=0$ the number of attributes where p was 1 and q was 1

Exploring Data Question 17 Mahalanobis distance is a similarity measure that does not take into account variance-covariance between attributes.

Α	True	В	False
С	-	D	-

Answer	В
Remarks	mahalanobis $(x, y) = (x - y)^T \Sigma^{-1} (x - y)$
	$oldsymbol{\Sigma}$ is the variance-covariance matrix

Exploring Data

Question 18

Let d(x, y) be the distance between two points x and y. Which of the properties of the distance d(x, y) hold good if the measure is a metric?

Hint: Consider Euclidean and Manhattan distance. z is also another point in the same space.

	$d(\mathbf{x}, \mathbf{y}) \ge 0$ for all \mathbf{x} and \mathbf{y} . $d(\mathbf{x}, \mathbf{y}) = 0$ if $\mathbf{x} = \mathbf{y}$.	В	$d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} .
С	$d(\mathbf{x},\mathbf{y}) \leq d(\mathbf{x},\mathbf{z}) + d(\mathbf{z},\mathbf{y})$	D	All of the above

Answer	D
Remarks	

What is the best available distance measure to compute the similarities if magnitude between two data objects (points with numeric attributes) is important.				
A Euclidean distance		В	Cosine Similarity	
С	Jaccar	d Coefficient	D	None of the above
Answer	•	A		
Remark	KS			
	l	Exploring Data		Question 20
In an experiment, a student recorded the observations. Surprisingly, each measurement was distinct. What is the mode (the central tendency) of the data the student recorded?				
			Ι	I
Α	A 0		В	No mode
C Multimodal		D	None of the above	
Answer	-	В		
Remarks				
Classification of Data work in progress				
Classification of Data				Question 1

Question 19

Let X and Y be a pair of random variables.
a) The joint probability $P(X = x, Y = y)$, refers to the probability that variable X will take o
the value x and variable Y take on the value y.
b) A conditional probability is the probability that a random variable will take on a

particular value given that the outcome of another random variable is known.

For example, P(Y = y | X = x) refers to the probability that the variable Y will take on the value y, given that the variable X is observed to have the value x.

Conditional probability is denoted by

 $P(X \mid Y) = P(X,Y) / P(Y)$ and

Exploring Data

 $P(Y \mid X) = P(X,Y) / P(X)$

The joint and conditional probabilities for X and Y are related in the following way: P(X, Y) = P(Y | X) * P(X) = P(X | Y) * P(Y)

A False	В	True
---------	---	------

С		D	
Answer	В		

Classification of Data Question 2

Let X and Y be a pair of random variables.

Remarks

- c) The joint probability P(X = x, Y = y), refers to the probability that variable X will take on the value x and variable Y take on the value y.
- d) A conditional probability is the probability that a random variable will take on a particular value given that the outcome of another random variable is known. For example, P(Y = y | X = x) refers to the probability that the variable Y will take on the value y, given that the variable X is observed to have the value x. Conditional probability is denoted by

$$P(X | Y) = P(X,Y) / P(Y)$$
 and $P(Y | X) = P(X,Y) / P(X)$

The joint and conditional probabilities for X and Y are related in the following way: P(X, Y) = P(Y | X) * P(X) = P(X | Y) * P(Y)

Rearranging the above equation, we obtain the Bayes' Theorem.

$$P(Y \mid X) = P(X \mid Y) * P(Y)$$

$$P(X)$$

P(X) can be calculated using Total Probability Theorem as below and is constant for all classes. Is it correct?

Let $X = \{X_1, X_2 ... X_k\}$, a set of mutually exclusive and exhaustive outcomes of the random variable X.

$$P(X) = \sum_{i=1}^{k} P(X, Y_i) = \sum_{i=1}^{k} P(X \mid Y_i) P(Y_i)$$

А	Correct	В	Incorrect
С		D	

Answer	A
Remarks	

Classification of Data Question 3

Let X and Y be a pair of random variables. Usually X denotes the attribute set and Y denotes the class variable.

- e) The joint probability P(X = x, Y = y), refers to the probability that variable X will take on the value x and variable Y take on the value y.
- f) A conditional probability is the probability that a random variable will take on a

particular value given that the outcome of another random variable is known.

For example, $P(Y = y \mid X = x)$ refers to the probability that the variable Y will take on the value y, given that the variable X is observed to have the value x.

Conditional probability is denoted by

$$P(X | Y) = P(X,Y) / P(Y)$$
 and $P(Y | X) = P(X,Y) / P(X)$

The joint and conditional probabilities for X and Y are related in the following way:

$$P(X, Y) = P(Y | X) * P(X) = P(X | Y) * P(Y)$$

Rearranging the above equation, we obtain the Bayes' Theorem.

$$P(Y | X) = P(X | Y) * P(Y)$$

 $P(X)$

Which is correct of the above Bayes' Theorem?

A	The conditional probability, P(Y X) is known as posterior probability .	В	The conditional probability, P(X Y) is known as class-conditional probability.
С	P (Y) is known as prior probability of Y	D	All of the above

Answer	D
Remarks	

Classification of Data Question 4

Let X and Y be a pair of random variables. Usually X denotes the attribute set and Y denotes the class variable.

- g) The joint probability P(X = x, Y = y), refers to the probability that variable X will take on the value x and variable Y take on the value y.
- h) A conditional probability is the probability that a random variable will take on a particular value given that the outcome of another random variable is known. For example, P(Y = y | X = x) refers to the probability that the variable Y will take on the value y, given that the variable X is observed to have the value x. Conditional probability is denoted by

$$P(X | Y) = P(X,Y) / P(Y)$$
 and $P(Y | X) = P(X,Y) / P(X)$

The joint and conditional probabilities for X and Y are related in the following way: $P(X, Y) = P(Y \mid X) * P(X) = P(X \mid Y) * P(Y)$

Rearranging the above equation, we obtain the Bayes' Theorem.

$$P(Y | X) = P(X | Y) * P (Y)$$

 $P(X)$

Is it true of a naïve Bayes classifier below?

A na $\ddot{}$ na $\ddot{}$ easing that the attributes are conditionally independent, given by the class label y.

$$P(X | Y = y) = \prod_{i=1}^{d} P(X_i | Y = y)$$

Where each attribute set $X = \{X_1, X_2 \dots X_d\}$ consists of d attributes.

Α	True	В	False
С		D	

Answer	A
Remarks	

Classification of Data

Question 5

An online computer store uses naïve Bayes classifier to estimate the probability of the registered store user buying a computer or not.

Let X is a set of attributes of the registered user.

X = {id, age, income, student, credit_rating}

Let Y is the class labels to assign

Y = buys_computer = {yes, no}

There exists a training dataset, D as below. (For brevity, the dataset D is omitted for this question).

id	age	income	student	credi_rating	buys_computer

A new user was registered and the tuple is as below.

id	age	income	student	credi_rating	buys_computer
99	youth	medium	yes	fair	?

The above tuple implies the following attribute values.

X = {age = youth, income = medium, student = yes, credit_rating = fair}

Y = buys_computer = { yes, no}

The naïve Bayes classifier has to estimate the probability (predict) of the new user buying a computer or not. i.e., assigning a class label to the tuple.

The following **posterior probabilities**, P(Y | X) were computed on the new user.

 $P(buys_computer = yes | X) = 0.028$

P(buys_computer = no $| X \rangle = 0.048$

Hint: A naïve Bayes classifier is to estimate the posterior probabilities $P(Y = y \mid X)$.

$$P(Y = y \mid X) = \frac{P(Y) \prod_{i=1}^{d} P(X_i \mid Y = y)}{P(X)}$$

А	The naïve Bayes classifier predicts the new user buys_computer = no	В	The naïve Bayes classifier predicts the new user buys_computer = yes
С	The naïve Bayes classifier is inconclusive.	D	None of the above.

Answer	A
Remarks	The posterior probability of buys_computer = no is higher.

Classification of Data

Question 6

An online computer store uses naïve Bayes classifier to estimate the probability of the registered store user buying a computer or not.

Let X is a set of attributes of the registered user.

X = {id, age, income, student, credit_rating}

Let Y is the class labels to assign

Y = buys_computer = {yes, no}

There exists a training dataset, D as below. (For brevity, the dataset D is omitted for this question).

id	age	income	student	credi_rating	buys_computer

A new user was registered and the tuple is as below.

id	age	income	student	credi_rating	buys_computer
99	youth	medium	yes	fair	?

The above tuple implies the following attribute values.

X = {age = youth, income = medium, student = yes, credit_rating = fair}

Y = buys_computer = { yes, no}

The naïve Bayes classifier has to estimate the probability (predict) of the new user buying a computer or not. i.e., assigning a class label to the tuple.

The following **posterior probabilities**, P(Y | X) were computed on the new user.

 $P(buys_computer = yes | X) = 0$

 $P(buys_computer = no | X) = 0$

Hint: A naïve Bayes classifier is to estimate the posterior probabilities $P(Y = y \mid X)$.

$$P(Y = y \mid X) = \frac{P(Y) \prod_{i=1}^{d} P(X_i \mid Y = y)}{P(X)}$$

А	The naïve Bayes classifier predicts the new user buys_computer = no	В	The naïve Bayes classifier predicts the new user buys_computer = yes
С	The naïve Bayes classifier is	D	None of the above.

l	
Linconclusive	
inconclusive.	

Answer	С
Remarks	This is a case for M-estimate of conditional probability Laplace correction or Laplace estimation

Classification of Data Question 7

Below is the generic algorithm to generate a decision tree. It results a decision tree with

nodes split on a certain criterion.

```
Node Generate_decision_tree (Dj, attribute_list) {
      Create a Node N
 2.
     if tuple in D are all of the same class, C, then
 3.
         return N as a leaf node labelled with the class C;
 4.
     if attribute list is empty then
         // majority voting
 5.
         return N as a leaf node labelled with the majority class in D;
 6.
     apply Attribute_selection_method (D, attribute list) to find the best
      splitting criterion;
 7.
      label node N with splitting criterion;
     if splitting attribute is discrete-valued and
         multiway splits allowed then // not restricted to binary trees
     // remove splitting attribute
 9.
      attribute list <- attribute list - splitting attribute;
10.
      for each outcome j of splitting criterion
     // partition the tuples and grow subtrees for each partition
      let Dj be the set of data tuples in D satisfying outcome j; // a
11.
     partition
12.
         if Dj is empty then
13.
            attach a leaf labeled with the majority class in D to node N;
14.
        else attach the node returned by Generate_decision_tree (Dj,
     attribute_list) to node N;
    endfor
15.
     return N;
}
```

What are popular attribute selection methods for the above decision tree generation algorithm?

А	Information Gain	В	Gain Ratio
С	Gini Index	D	All of the above.

Answer	D
Remarks	Decision Tree algorithm, and attribute selection methods.

|--|

IF-THEN rules can be extracted directly from the training data using a sequential covering algorithm. What are the popular sequential covering algorithms?

Α	AQ		В	CN2				
С	RIPPER		D	All of the above				
Answei		D						
Remark	KS							
	Clas	ssification of Data	Question 9					
Α			В					
С			D					
Answei	-							
Remarks								
	Cla	ssification of Data		Question 10				
А			В					
С		D						
Answer								
Remark	Remarks							