Differential Equations Project: Phase 3

Arnav Patri and Shashank Chidige

Table 1 shows information regarding Alphabet Inc., which is listed on the New York Stock Exchange as GOOG, as the company used to be known as Google. The data is taken from Yahoo Finance [1], which provides financial news and data for public use. The domain of the independent variable, time (t) is taken from 9/27/2022 to 10/15/2022.

	Table 1
Stock Price (USD)	Time (Days from start date of 9/27/22)
141.501007	0
136.184006	1
134.520996	2
133.265503	3
136.462494	4
133.764999	5
136.177002	6
137.354004	7
139.185501	8
140.056	9
138.847504	10
136.712997	11
137.899994	12
141.412003	13
141.675003	14
142.960495	15
143.822006	16
142.414993	17
142.780502	18
138.625	19
138.772995	20
139.671997	21
146.427505	22
146.128998	23
148.270493	24
143.774002	25
145.863007	26
146.789993	27
148.682999	28

Table 2 shows the differential approach to deriving the differential equation model. As the stochastic part cannot be derived, only the derivation of the deterministic part is shown. Columns 1 and 2 are simply copied from Table 1. Equations 1 and 2 are used to derive the changes in stock price S_t and time t, put into columns 3 and 4 respectively. The derivative of S_t with respect to t can be approximated as $\Delta S_t/\Delta t$, as shown in column 5. The stock price S_t is then listed again, as the plot

is of $\Delta S_t/\Delta t$ vs S_t .

			Table 2			
Stock Price (USD)	Time (Days from start date of 9/27/22)		∆S* (USD)	Δt** (Days)	ΔS/Δt (USD/Days)	Stock Price (USD)
141.501007		0				141.50100
136.184006		1	-5.317001	1	-5.317001	136.18400
134.520996		2	-1.66301	1	-1.66301	134.52099
133.265503		3	-1.255493	1	-1.255493	133.26550
136.462494		4	3.196991	1	3.196991	136.46249
133.764999		5	-2.697495	1	-2.697495	133.76499
136.177002		6	2.412003	1	2.412003	136.17700
137.354004		7	1.177002	1	1.177002	137.35400
139.185501		8	1.831497	1	1.831497	139.18550
140.056		9	0.870499	1	0.870499	140.05
138.847504		10	-1.208496	1	-1.208496	138.84750
136.712997		11	-2.134507	1	-2.134507	136.71299
137.899994		12	1.186997	1	1.186997	137.89999
141.412003		13	3.512009	1	3.512009	141.41200
141.675003		14	0.263	1	0.263	141.67500
142.960495		15	1.285492	1	1.285492	142.96049
143.822006		16	0.861511	1	0.861511	143.82200
142.414993		17	-1.407013	1	-1.407013	142.41499
142.780502		18	0.365509	1	0.365509	142.78050
138.625		19	-4.155502	1	-4.155502	138.62
138.772995		20	0.147995	1	0.147995	138.77299
139.671997		21	0.899002	1	0.899002	139.67199
146.427505		22	6.755508	1	6.755508	146.42750
146.128998		23	-0.298507	1	-0.298507	146.12899
148.270493		24	2.141495	1	2.141495	148.27049
143.774002		25	-4.496491	1	-4.496491	143.77400
145.863007		26	2.089005	1	2.089005	145.86300
146.789993		27	0.926986	1	0.926986	146.78999
148.682999		28	1.893006	1	1.893006	148.68299

$$\Delta S_i = S_i - S_{i-1}$$
 (Equation 1*)
 $\Delta t_i = t_i - t_{i-1}$ (Equation 2**)

This is the graph of $\Delta S/\Delta t$ (in USD/day) vs S (in USD) with a linear regression performed.

It is clear that there is a linear relationships between the stock price and its derivative with respect to time. It can therefore be said that

$$\frac{\mathrm{d}S_t}{\mathrm{d}t} \propto S_t \implies \frac{\mathrm{d}S}{\mathrm{d}t} = \mu S_t$$

where μ is a constant. Using information from Stochastic Calculus: An Introduction with Applications [2], the Wiener process, which was previously discussed in Phase 2, can be appended, adding the random motion to the model:

 $\frac{\mathrm{d}S_t}{\mathrm{d}t} = \mu S_t + \sigma S_t \frac{\mathrm{d}W_t}{\mathrm{d}t}$

where S_t is stock price as a function of time t, μ is the (constant) drift, σ is the (constant) volatility, and W_t is a standard Wiener process. The dependent variable t is not present, making this an autonomous DE. The only information needed for the model are μ , σ , and the initial stock price S_0 .

 μ is the amount that $\mathbb{E}(S_t)$, the expected value of the stock price, changes per year, making it the coefficient of the linear regression of $\Delta S/\Delta t$ against S divided by 365, so $\mu \approx 0.00064$. σ is simply the standard deviation of the stock price in the sample, so

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (S_{t,i} - \bar{S}_t)^2}{n-1}} \approx 4.356$$

where n is the number of days sampled, $S_{t,1\cdots n}$ are the particular stock prices, and \bar{S}_t is the average stock price in the sample:

 $\bar{S}_t = \frac{\sum_{i=1}^n S_{t,i}}{n}$

The model then becomes

$$\frac{\mathrm{d}S_t}{\mathrm{d}t} = 0.00064S_t + 4.356S_t \frac{\mathrm{d}W_t}{\mathrm{d}t}$$

Bibliography

- [1] Yahoo Finance, Alphabet Inc. (GOOG) Stock Price, News, Quote & history Yahoo Finance, New York, NY, 2022.
- [2] Gregory F. Lawler, Stochastic Calculus: An Introduction with Applications, Chicago, IL, 2014.