Esercitazioni di laboratorio del corso di Elettronica 2 – Anno 2006

Oscillatore a sfasamento con amplificatore operazionale

SCOPO DELL'ESPERIENZA:

lo scopo dell'esperienza è la realizzazione di un oscillatore a sfasamento, con amplificatore operazionale μ A741, per generare un'onda sinusoidale.

Figura 1

LISTA DEI COMPONENTI

 $\begin{array}{l} R_1: 1 \ k\Omega \ (1\!\!/4 \ W) \\ R_2: 27 \ k\Omega \ (1\!\!/4 \ W) \\ R_3: 1 \ k\Omega \ (1\!\!/4 \ W) \\ R_4: 1 \ k\Omega \ (1\!\!/4 \ W) \\ R_5: 1 \ k\Omega \ (1\!\!/4 \ W) \\ POT: trimmer \ da \ 10 \ k\Omega \end{array}$

C₁: 22 nF (poliestere metallizzato) C₂: 22 nF (poliestere metallizzato) C₃: 22 nF (poliestere metallizzato)

 C_4 : 100 nF (ceramico) - **NOTA: montare SOLO se l'uscita presenta rumore eccessivo** C_5 : 100 nF (ceramico) - **NOTA: montare SOLO se l'uscita presenta rumore eccessivo**

U1 : amplificatore operazionale $\,\mu$ A741, package DIP8

 D_1 : diodo zener 4.7 V D_2 : diodo zener 4.7 V

SCHEMA ELETTRICO

Dalle equazioni alle maglie della rete di reazione, indicata dal tratteggio in figura 1, si ricava che la funzione di trasferimento della rete RC è:

$$\frac{V_f}{V_O} = \frac{1}{1 - 5\alpha^2 - j(6\alpha - \alpha^3)}$$

dove $\alpha = 1/\omega RC$. La differenza di fase tra V_o e V_f vale 180° se $\alpha^2 = 6$, quindi per la frequenza

$$f = \frac{1}{2\pi RC\sqrt{6}}$$

alla quale si ottiene $\frac{V_f}{V_O} = -\frac{1}{29}$.

La sezione di amplificazione dell'oscillatore, composta dall'operazionale in configurazione invertente, deve quindi avere un guadagno di 29 per rispettare la condizione di Barkhausen $|A\beta| = 1$. Per regolare il guadagno agiremo sul potenziometro.

Figura 2

ESERCITAZIONE

1. Regolazione del guadagno: montare inizialmente il circuito come in figura 2 (vedi montaggio suggerito in figura 5), con la rete di reazione RC aperta e la resistenza R5 in più. Impostare il generatore di segnale con una sinusoide di frequenza 3 kHz ed ampiezza di 200 mV picco-picco (nota: sul display 100 mV). Regolare il potenziometro fino ad ottenere $|V_O/V_G| \approx 30.5$. Questo valore è di un 5% maggiore del valore teorico di guadagno (che era 29) ed è necessario per garantire l'innesco ed il mantenimento dell'oscillazione. Quindi $|A\beta| > 1$: perché nella pratica questo è

necessario?

2. Sempre con ampiezza del segnale di ingresso di 200 mV picco-picco, prelevare con la sonda V_f e variare la frequenza (con passo dei 100 Hz, o meno) intorno ai 3 kHz fino a quando $|\beta A| = |V_f/V_G| = 1$. Annotare la frequenza

f₁ =

3. Spengere e disconnettere il generatore di segnale (non ci serve più) e chiudere la catena di retroazione *RC* (togliere la resistenza R5), come in figura 1 (vedi montaggio suggerito in figura 6), e verificare l'ampiezza e la frequenza di oscillazione sull'uscita del circuito

$f_2 =$	••	• •	 • •	 	•••
V	_				

4. Modificare il circuito, come in figura 3 (vedi montaggio suggerito in figura 7) inserendo la resistenza R5 ed i diodi zener sull'uscita. Verificare l'ampiezza e la frequenza di oscillazione in uscita (NOTA: l'uscita ora è tra la resistenza R5 e gli zener!!!)

Domanda: cosa cambia con questa configurazione? E come è determinato il valore picco-picco della tensione di uscita?

Domanda: quale funzione hanno i 2 condensatori da 100 nF posti tra le alimentazioni (+12 V e -12 V) e massa?

Figura 3

Codice colori dei resistori

Figura 4

Figura 5

Figura 6

Figura 7