Requisitos de Software

Requisito

 condição necessária para a obtenção de certo objetivo ou para o preenchimento de certo fim.

Requisitos para um sistema de software

 descrição das funções e restrições que o produto a ser desenvolvido deve possuir.

Engenharia de Requisitos

 processo de descobrir, analisar, documentar e verificar essas funções e restrições.

Tipos de Requisitos

- 1. Do usuário: declarações, em língua natural e/ou diagramas, sobre as funções que o sistema deve fornecer e restrições sob as quais deve operar. São requisitos abstratos de alto nível.
- 2. Do sistema: funções e restrições do sistema, de uma forma mais detalhada. Normalmente classificados como funcionais e não funcionais.

Requisitos funcionais

- Diretamente ligados à funcionalidade do software, como o sistema deve reagir à entradas específicas, como deve se comportar em determinadas situações.
- ullet Em alguns casos podem declarar o que o sistema $n ilde{a}o$ deve fazer.
- Dependem do tipo de sistema a ser desenvolvido e dos usuários.

- Exemplo: Sistema de biblioteca de universidade → permite pedir livros e documentos a outras universidades.
- (a) buscar todo o conjunto inicial no banco de dados ou selecionar um subconjunto;
- (b) fornecer telas apropriadas para ler documentos no repositório de documentos;
- (c) alocar um único identificador a cada pedido.

Requisitos funcionais (cont.)

- (a) descritos em diferentes níveis de detalhes(telas apropriadas = diferentes formatos);
- (b) documento completo e consistente, mas na prática é quase impossível atingir essa meta.
- (c) à medida que os problemas são descobertos, o documento de especificação deve ser corrigido.

Requisitos não funcionais

- Não dizem respeito diretamente às funções específicas do sistema.
- Podem estar relacionados às propriedades do sistema como confiabilidade, tempo de resposta, restrições sobre o processo, padrões, etc.

• Exemplos:

- (a) dependendo do resultado do teste, somente o supervisor pode efetuar a entrada do resultado do teste de um paciente.
- (b) o sistema deve emitir um recibo para o cliente até oito segundos após a transação.
- (c) um sistema de aviação deve atender ao requisito de confiabilidade.
- (d) um sistema de tempo real deve atender ao requisito de desempenho; do contrário as funções de controle não operarão corretamente.
- (e) tipos de ferramentas CASE e descrição do processo a ser seguido.

Requisitos não funcionais (cont.)

- 1. Requisitos do produto: comportamento do produto desempenho, memória, confiabilidade (taxa aceitável de falha), portabilidade e facilidade de uso;
- Requisistos organizacionais: políticas e procedimentos nas organizações do cliente e do desenvolvedor padrões de processo, requisitos de implementação (linguagem ou método de projeto) e requisitos de entrega (do produto e documentos associados);
- 3. Requisitos externos: fatores externos ao sistema e ao processo de desenvolvimento interoperabilidade (com outros sistemas), requisitos legais, requisitos éticos.

Objetivo do sistema versus requisitos verificáveis

- Objetivo: O sistema deve ser fácil de utilizar por controladores experientes e deve ser organizado de modo que os erros dos usuários sejam minimizados;
- Requisito verificável: Controladores experientes devem ser capazes de utilizar todas as funções do sistema depois de duas horas de treinamento. O número médio de erros cometidos por usuários experientes não deve exceder a dois por dia.

Requisitos de domínio

- Tem origem no domínio de aplicação e refletem características desse domínio;
- Podem ser novos requisitos funcionais, podem restringir requisitos funcionais existentes, ou ainda estabeler como realizar cálculos específicos.

Exemplo para o sistema de biblioteca:

- Deve haver uma interface padrão com o usuário para todos os bancos de dados, que terá como base o padrão X.
- 2. Em razão das restrições referentes a direitos autorais, alguns documentos devem ser imediatamente excluídos após serem fornecidos.
- 3. Alguns documentos serão impressos localmente no servidor do sistema para serem encaminhados ao usuário ou direcionados para uma impressora de rede.

Requisitos do usuário

- Devem descrever os requisitos funcionais e não funcionais de modo compreensível pelos usuários sem conhecimento técnico detalhado.
- Devem especificar o comportamento externo do sistema, evitando características de projeto.
- Podem ser escritos em língua natural, formulários e diagramas intuitivos simples.

Problemas com uso de língua natural

- 1. Falta de clareza: ambigüidade e falta de precisão, dando origem a um documento de difícil leitura;
- 2. Confusão: os requisitos funcionais e não funcionais, os objetivos do sistema e as informações sobre o projeto podem não estar claramente definidos;
- 3. Fusão de requisitos: vários requisitos diferentes podem ser expressos juntos, como um único requisito.

Documento de Especificação de Requisitos

- Declaração oficial do que é exigido dos desenvolvedores do sistema.
- Inclui os requisitos do usuário para um sistema e uma especificação detalhada dos requisito do sistema.
- O documento tem um número diversificado de usuários:

Doc. de Requisitos de Software (cont.)

- (a) Clientes do sistema: especificam e verificam se os requisitos atendem as suas necessidades; também especificam mudanças;
- (b) Gerentes: usam o documento para planejar o processo de desenvolvimento;
- (c) Engenheiros de software: compreender que sistema deverá ser desenvolvido;
- (d) Engenheiros de teste: desenvolver testes de validação do sistema;
- (e) Engenheiros de manutenção: compreender o sistema e as relações entre suas partes.

Processos da Engenharia de Requisitos

- 1. Estudo de viabilidade
- 2. Levantamento e análise dos requisitos
- 3. Validação dos requisitos
- 4. Gerenciamento dos requisitos

Estudo de viabilidade

- O estudo de viabilidade permite que se decida se vale a pena desenvolver o sistema proposto.
- O sistema contribui para os objetivos da organização?
- Pode ser implementado com a tecnologia atual e dentro do orçamento?
- Pode ser integrado com outros sistemas em operação?

Estudo de viabilidade (cont.)

- O que aconteceria se o sistema n\u00e3o fosse implementado?
- Quais os problemas com os processos atuais?
- Como o sistema proposto irá ajudar?
- Pode haver troca de informações entre outros sistemas e o sistema proposto?

Levantamento e análise dos requisitos

- Desenvolvedores trabalham com o cliente e usuários finais para descobrir mais informações sobre o domínio da aplicação, serviços, desempenho, restrições de hardware, etc.
- Envolve diferentes tipos de pessoas.
- Stakeholder: qualquer pessoa com alguma influência, direta ou indireta, sobre os requisitos.
- Exemplo: usuários finais, todo pessoal afetado pelo sistema; desenvolvedores, mantenedores de sistemas relacionados, gerente de negócios, especialistas no domínio, etc.

Problemas com o levantamento

- 1. Os usuários muitas vezes não sabem o que querem, a não ser em termos muito gerais: podem achar difícil articular o que desejam do sistema, fazer pedidos não realistas.
- 2. Os usuários expressam os requisitos em seus próprios termos e com conhecimento implícito de sua área de atuação. Engenheiros de requisitos devem entender esses requisitos.

Problemas com o levantamento (cont.)

- 3. Diferentes usuários tem em mente diferentes requisitos e podem expressá-los de maneira distinta. Os engenheiros de requisitos devem descobrir todas as fontes possíveis e encontrar pontos comuns e conflitos.
- 4. O ambiente econômico e de negócios é dinâmico e se modifica durante o processo de análise → a importância dos requisitos pode mudar, novos requisitos podem surgir.

O processo de levantamento de requisitos

- 1. $Compreens\~ao\ do\ dom\'inio$: documentos, livros, sistemas, pessoas. Exemplo: sistema de biblioteca \rightarrow entender com funcionam as bibliotecas.
- 2. Coleta e análise de requisitos: descoberta, revelação e entendimento dos requisitos, através de interação entre clientes, usuário(s) e desenvolvedores envolvendo:
 - a descoberta, classificação e organização dos requisitos;
 - a determinação de suas prioridades;
 - resolução de inconsistências e conflitos; e
 - descoberta de omissões.

O processo de levantamento de requisitos (cont.)

- 3. Especificação dos requisitos: armazenamento dos requisitos em uma ou mais formas, incluindo língua natural, linguagem semiformal ou formal, representações simbólicas ou gráficas (casos de uso, por exemplo);
- 4. Validação dos requisitos: verificação dos requisitos, visando determinar se estão completos e condizentes com as necessidades e desejos do usuário.

Descrição de um sistema hospitalar

Gostaria que fosse construído um sistema PARA MONITORAR A TEMPERATURA E A PRESSÃO DE PACIENTES DA UTI, QUE DEVERÃO FICAR LIGADOS on-line à REDE DE COMPUTADORES DO HOSPITAL, QUE É FORMADA POR UM COMPUTADOR PRINCIPAL E VÁRIOS TERMINAIS QUE MONITORAM OS PACIENTES. SE A TEMPERATURA OU PRESSÃO DO PACIENTE LIDA PELO TERMINAL SE TORNAREM CRÍTICAS, O COMPUTADOR PRINCIPAL DEVERÁ MOSTRAR UMA TELA DE ALERTA COM UM HISTÓRICO DAS MEDIDAS REALIZADAS PARA O PACIENTE.

Descrição de um sistema hospitalar (cont.)

Um aviso sonoro deve ser ativado nesse CASO. A VERIFICAÇÃO DA PRESSÃO É FEITA COMPARANDO-SE A PRESSÃO DO PACIENTE COM UM VALOR PADRÃO DE PRESSÃO (MÁXIMO E MÍNIMO) A SER DIGITADO PELO RESPONSÁVEL E VERIFICANDO-SE SE A PRESSÃO MEDIDA ESTÁ DENTRO DOS PARÂMETROS CONSIDERADOS NORMAIS PARA O PACIENTE (VALORES PRÓXIMOS AO MÁXIMO E MÍNIMO SÃO PERMITIDOS). TEMOS VÁRIOS SISTEMAS on-line NO COMPUTADOR E TODOS DEVEM RODAR AO MESMO TEMPO.

Funções:

- monitorar temperatura e pressão; e
- apresentar uma tela de alerta com o histórico de medidas.

Restrições:

- o sistema deve ser *on-line*;
- deve rodar ao mesmo tempo que outros → controle de concorrência; e
- o aviso de temperatura e pressão críticas deve ser sonoro.

Ambigüidades no sistema hospitalar

Se a temperatura ou pressão do paciente lida pelo terminal se tornarem críticas, o computador principal deverá mostrar uma tela de alerta com um histórico das medidas realizadas para o paciente. Um aviso sonoro deve ser ativado nesse caso.

- Duas interpretações:
 - 1. o terminal ativará um aviso sonoro e/ou
 - 2. o computador principal ativará um aviso sonoro?
 - 3. Pode ser integrado com outros sistemas em operação?

Omissões do sistema hospitalar

A verificação da pressão é feita comparando-se a pressão do paciente com um valor padrão de pressão (máximo e mínimo) a ser digitado pelo responsável e verificando-se se a pressão medida está dentro dos parâmetros considerados normais para o paciente (valores próximos ao máximo e mínimo são permitidos).

- (a) valores possíveis para máximo e mínimo?
- (b) máximo < mínimo?
- (c) intervalo fora de um valor normal?
- (d) o que significa valores próximos?

- Mudanças nos requisitos acontecem na maioria dos sistemas complexos.
- embora muitas delas sejam devidas a mudanças das necessidades dos usuários, outras advêm da interpretação incorreta dos requisitos do produto a ser desenvolvido.
- REQUISITOS INCOMPLETOS, INCORRETOS OU MAL ENTENDIDOS SÃO AS CAUSAS MAIS FREQÜENTES DA BAIXA QUALIDADE, ULTRAPASSAGEM DOS CUSTOS PREVISTOS E ATRASO NA ENTREGA DO PRODUTO DE SOFTWARE.

Brainstorming

- Técnica básica para geração de idéias.
- Uma ou várias reuniões que permitem que as pessoas sugiram e explorem idéias sem que sejam criticadas ou julgadas.
- Existe um lider cujo papel é fazer com que a sessão comece, sem restringi-la.

- Especialmente útil no começo do processo de extração de requisitos pois:
 - ausência de crítica e julgamento ajuda a eliminar algumas das dificuldades inerentes ao processo.
 - evita a tendência a limitar o problema muito cedo.
 - fornece uma interação social mais confortável do que algumas técnicas de grupo mais estruturadas.
 - pode ser aprendida, com muito pouco investimento.
- Desvantagem: por ser um processo relativamente não estruturado, pode não produzir a mesma qualidade ou nível de detalhe de outros processos.

1. Geração de idéias

- Participantes fornecem idéias, sem discussão sobre o mérito delas.
- Útil na geração de várias visões do problema e na sua formulação de diferentes maneiras.
- Atividades dessa fase:
 - identificação dos participantes (normalmente usuários e desenvolvedores);
 - designação do líder;
 - agendamento da sessão com todos os participantes;
 e
 - preparação da sala.

Geração de idéias (cont.)

- Saída: depende das idéias geradas (pessoas com conhecimento e especialidades apropriados).
- Líder abre a sessão falando sobre o problema de um modo geral, e os participantes podem gerar novas idéias para expressar o problema.
- Continua enquanto novas idéias estiverem sendo geradas.

Geração de idéias (cont.)

- Quatro regras:
 - 1. é terminantemente proibido criticar as idéias;
 - 2. idéias não convencionais ou estranhas são encorajadas;
 - 3. o número de idéias geradas deve ser bem grande; e
 - 4. os participantes devem ser encorajados a combinar ou enriquecer as idéias de outros (idéias visíveis).

Geração de idéias (cont.)

- A fase de geração pode terminar de duas maneiras:
 - 1. se o líder acreditar que não estão sendo geradas idéias suficientes.
 - 2. se tiverem sido geradas e registradas idéias suficientes.

2. Consolidação das idéias

- Idéias são discutidas, revisadas, organizadas e avaliadas.
- Algumas idéias são refraseadas.
- Quando duas ou mais idéias são consideradas iguais, são combinadas e reescritas para capturar a sua essência.
- Os participantes podem concordar em que algumas das idéias são muito esquisitas e descartá-las.

Consolidação das idéias (cont.)

- Idéias remanescentes são discutidas e classificadas em ordem de prioridade.
- Frequentemente é necessário identificar:
 - requisitos absolutamente essenciais;
 - aqueles que são bons, mas não essenciais; e
 - aqueles que seriam apropriados para uma versão subsequente do software.
- O líder ou outra pessoa designada produz um registro das idéias remanescentes, juntamente com suas prioridades ou outros comentários relevantes.

Levantamento orientado a pontos de vista

- Há diferentes tipos de usuário final, com diferentes interesses.
- Exemplo: Sistema de caixa automático de um banco (ATM):
- 1. Clientes do banco: recebem serviços do sistema;
- 2. Representantes de outros bancos: acordos de reciprocidade que permitem utilizar ATMs uns dos outros;

- 3. *Gerentes de agências bancárias*: obtêm informações do sistema;
- 4. Equipes de atendimento de balcão: envolvidas nas operações diárias do sistema, reclamações de clientes etc;
- 5. Administradores de bancos de dados: responsáveis pela integração do sistema com o banco de dados do cliente do banco;

- 6. Gerentes de segurança bancária: que devem garantir que o sistema não apresente nenhuma falha de segurança;
- 7. Departamento de marketing: interessado em utilizar o sistema como instrumento de marketing do banco;
- 8. Engenheiros de manutenção de hardware e software: fazer a manutenção do hardware e do software.

Pontos de vista - Vantagens

- 1. Como os pontos de vista são externos ao sistema, são uma maneira natural de estruturar o processo de levantamento de requisitos.
- 2. É relativamente fácil decidir se alguma coisa é um ponto de vista válido. Os pontos de vista devem interagir com o sistema de alguma maneira.
- 3. Os pontos de vista e os serviços são um meio útil de estruturar os requisitos não funcionais. Cada serviço pode ter requisitos não funcionais associados. Os pontos de vista permitem que o mesmo serviço tenha diferentes requisitos não funcionais.

Definição de requisitos orientada a ponto de vista

- 1. Identificação dos pontos de vista: descobrir os pontos de vista que utilizam quais serviços específicos.
- 2. Estruturação dos pontos de vista: agrupar pontos de vista relacionados, segundo uma hierarquia. Serviços comuns localizados no nível mais alto e herdados por pontos de vista de nível inferior.

- 3. Documentação do ponto de vista: refinar a descrição dos pontos de vista e serviços identificados.
- 4. Mapeamento do sistema conforme pontos de vista (identificar objetos, utilizando informações de serviço encapsuladas nos pontos de vista).

- Usa formulários-padrão para pontos de vista e serviços.
- Exemplo: ATM sistema de software embutido, destinado a dirigir o hardware e se comunicar com a central de dados do banco.

- Aceita solicitações do cliente e fornece dinheiro, informações sobre conta, atualização de informações, etc.
- Clientes podem fazer retiradas, pagamentos, conferir saldos transferir dinheiro de uma conta para outra, pedir extrato, talão, etc.
- Máquinas de um banco podem permitir que clientes de outros bancos utilizem um subconjunto de seus recursos (retirada em dinheiro e consulta a saldo).

TEMPLATES

Template de ponto de vista

Referencia: Nome do ponto de vista

Atributos: Informações sobre o ponto

de vista

Eventos: Estimulos externos gerados pelo ponto de vista

Servicos: O que o sistema oferece

Subpontos de vista: Nomes dos pontos

de vista associados

Template de servico

Referencia: Nome do servico

Razao: razao pela qual o servico

e oferecido

Especificacao: lista de

especificao de servicos

Pontos de vista: que recebem

o servico

Requisitos nao funcionais:

restricoes ao servico

Provedores: objetos que

fornecem o servico

Informações de serviços para os pontos de vista

TITULAR DA CONTA NAO-TITULAR DA CONTA

Lista de Servicos

Retirar dinheiro Consultar saldo Pedir cheques Pedir extrato Transferir fundos Lista de Servicos

Retirar dinheiro Consultar saldo

Dados de ponto de vista e informações de controle

TITULAR DA CONTA

Entrada de controle	Entrada de dados
Iniciar transacao Cancelar transacao Encerrar transacao Selecionar servico	Detalhes do cartao PIN Quantia solicitada Mensagem

Ponto de vista cliente e retirada de dinheiro

Referencia: Cliente

Atributos: n. conta

PIN

inicio da transaca

Eventos: selecionar servico cancelar transacao encerrar transacao

Servicos: retirar dinheiro consultar saldo

Subpontos: titular

de vista nao titular

Referencia: retirar dinheiro

Razao: melhorar o servico

Especificacoes: pressionar botao de retirada; em seguida informar quantia solicitada; operação confirmada se houver saldo

Ponto de vista: cliente

Req. n. funcional: entregar o dinheiro um minuto apos confirmada quantia

Provedor: preenchido posteriormente

Cenários

- Mostram como as pessoas interagiriam com o sistema.
- Adicionam detalhes a uma descrição de requisitos.
- Descrições de exemplos de sessões de interação.
- Cada cenário: uma ou mais interações.
- Diferentes cenários: diferentes tipos de informação sobre o sistema, em diferentes níveis de detalhe.

Cenários (cont.)

- Um cenário deve incluir:
 - * uma descrição do estado do sistema no início do cenário.
 - * o fluxo normal de eventos no cenário.
 - * o que pode dar errado e como isso é tratado.
 - * outras atividades que podem ocorrer simultaneamente.
 - * o estado do sistema no fim do cenário.
- Podem ser descritos na forma de texto, diagramas, imagens de computador etc.

Cenário do evento: iniciar transação

- Quando o cartão é inserido, o número de identificação pessoal (PIN) é solicitado.
- O cliente insere o cartão e seu PIN.
- Se o cartão for válido, ele poderá ser processado pela máquina e o controle poderá passar para o próximo estágio.

Cenário do evento: três exceções

- 1. Tempo esgotado: o cliente pode não fornecer o PIN dentro do limite de tempo permitido e o cartão é devolvido.
- 2. Cartão inválido: o cartão não é reconhecido e é devolvido.
- 3. Cartão roubado: o cartão é reconhecido como roubado e retido pela máquina.

Cenário do evento: Imprimir cópia de artigo

- Cópias gratuitas para assinantes e pagas para não assinantes.
- Título e data de publicação conhecidos.
- Hipótese inicial: Usuário se conectou ao sistema e localizou a revista que contém artigo.
- Normal: Usuário seleciona artigo.
- Sistema solicita informações sobre assinatura, ou forma de pagamento (cartão de crédito ou depósito em conta).
- Usuário deve preencher formulário de direitos autorais e enviá-lo ao sistema de biblioteca.

- O formulário é verificado e, se aprovado, a versão pdf do artigo é baixada na área de trabalho do usuário, que é avisado.
- Usuário deve selecionar uma impressora e a cópia do artigo é impressa.
- Se o artigo estiver marcado como "apenas impressão", ele será apagado do sistema do usuário após o término da impressão.

- O que pode dar errado: O usuário pode não preencher o formulário de direitos autorais corretamente e o formulário deve ser apresentado ao usuário para correção.
- Se ainda estiver incorreto, a solicitação do usuário será rejeitada.
- O pagamento pode ser rejeitado; nesse caso, a solicitação também será rejeitada.

- O download pode falhar; nesse caso o sistema tenta novamente até conseguir, ou até que o usuário termine a sessão.
- Pode não ser possível imprimir. Se o artigo não estiver marcado "apenas para impressão", ele será mantido na área de trabalho; caso contrário, ele será apagado e o custo debitado da conta do usuário.

- Outras atividades: *Downloads* simultâneos de outros artigos.
- Estado do sistema após o término:
 Usuário conectado; o artigo baixado teria sido apagado,
 caso estivesse marcado como "apenas para impressão".

Entrevistas

- Série de encontros com os usuários que explicam:
 - o seu trabalho;
 - o ambiente no qual atuam;
 - as suas necessidades etc.
- Técnica estruturada, que pode ser aprendida e na qual os desenvolvedores podem ganhar proficiência.
- Requer o desenvolvimento de algumas habilidades sociais gerais:
 - habilidade de ouvir; e
 - conhecimento de uma variedade de táticas de entrevista.

Fases da Entrevista

- 1. Planejamento da entrevista;
- 2. Condução da entrevista; e
- 3. Finalização.

Planejamento da entrevista

- Ler material disponível
- Estabelecer objetivo da entrevista:
 - freqüência dos serviços do novo sistema
 - previsibilidade dos serviços
 - atualidade dos dados
- Decidir quem será entrevistado
 - incluir uma pessoa-chave de cada nível afetado
 - pedir ajuda na empresa para a escolha de pessoas

Planejamento da entrevista (cont.)

- Preparar os entrevistados
 - avisar a data e duração
 - comunicar o assunto
- Preparar lista de questões
 - direcionadas para o objetivo da entrevista
 - informações obtidas \rightarrow novas questões

Tipos de questões

abertas-dirigidas: → "Explique como esse relatório é produzido"

Vantagem \rightarrow descobre-se detalhes e vocabulário

Desvantagem \rightarrow perde-se a objetividade e gasta-se tempo

fechadas: "Quantos relatórios desse tipo são gerados por mes?"

Vantagem: facilidade na compilação dos resultados

Desvantagem: falta de detalhes e monotonia

sequência: dá continuidade a uma questão. "Por que? Dê um exemplo."

Estrutura da entrevista

• Pirâmide

começa com questões fechadas \rightarrow obtém respostas diretas

expande os tópicos com questões abertas dirigidas

Qual o n. de vezes que esse relatório é solicitado?

Útil quando o entrevistado parece relutante em falar do assunto

Qual o principal problema com esse relatório?

Sequência pode ser utilizada para expandir os tópicos

Você acredita que esse problema pode ser resolvido?

Perguntas fechadas desarmam o entrevistado

• Funil

começa obtendo detalhes \to questões abertas dirigidas dá continuidade obtendo respostas diretas \to questões fechadas

Qual é a sua expectativa com o desenvolvimento do novo sistema?

Quanto tempo você gasta fazendo esse/relatório?

Muitas quetões fechadas e seqüências tornam-se necessárias

Diamante → combina as duas estruturas anteriores

Qual é a sua expectativa com o desenvolvimento do novo sistema?

A entrevista fica menos cansativa pois varia o tipo de questão

Qual é o n. de vezes que esse relatório é solicitado?

Você acredita que esse problema pode ser resolvido?

Finalização da entrevista

- Quando todas as questões tiverem sido feitas e respondidas;
- Quando o tempo alocado tiver se esgotado; ou
- Quando o entrevistador sentir que o entrevistado está exausto.

Finalização da entrevista (cont.)

- Reservar cinco ou dez minutos para sumarizar e consolidar a informação recebida (principais tópicos explorados e aqueles que necessitam de informação adicional).
- Explicar as próximas ações a ser tomadas, incluindo a oportunidade para o entrevistado revisar e corrigir um resumo escrito da entrevista.
- Agradecer o entrevistado pelo tempo e esforço dedicados.

Atividades após a entrevista

- Enviar ao entrevistado um agradecimento por escrito.
- Produção de um resumo escrito → reconhecer ou reordenar os tópicos discutidos e consolidar a informação obtida:
 - descobrir ambigüidades; e
 - informação conflitante ou ausente.
- Informações estatísticas ou baseadas em fatos relatados de memória → confirmar com fontes confiáveis.
- ullet Revisar procedimentos utilizados para preparar e conduzir a entrevista o melhorar o processo.

Habilidades e estratégias para comunicação oral

- A primeira resposta para a pergunta pode n\u00e3o estar necessariamente completa e correta.
- Pode ser expressa numa linguagem desconhecida para o entrevistador (resumir, refrasear e mostrar as implicações do que o entrevistador está ouvindo).
- A sumarização é útil durante a entrevista toda e não só no final (confirma o entendimento, generalizações úteis e abstrações de alto nível).

Habilidades e estratégias (cont.)

- Questões específicas: não induzir respostas como "O relatório de vendas deveria ser produzido semanalmente?".
- Perguntas com respostas do tipo "sim" ou "não" permitem que o entrevistado responda sem que precise de muito tempo para pensar.
- Uma única pergunta sobre um determinado tópico pode não produzir uma resposta completa ou significativa.
- Explorar os tópicos com questões que os abordem em diferentes níveis de abstração.

Erros mais comuns

- **Erros de observação**: pessoas diferentes se concentram em diferentes aspectos e podem "ver" coisas diferentes.
- **Erros de memória**: o entrevistado pode estar confiando demais na lembrança de informações específicas, e a memória humana pode falhar.
- Erros de interpretação: o entrevistador e o entrevistado podem estar interpretando palavras comuns de maneira diferente, tais como "pequena quantidade de dados" ou "caracteres especiais".

Erros mais comuns (cont.)

- Erros de foco: o entrevistador pode estar pensando de maneira ampla, e o entrevistado pode estar pensando de maneira restrita (ou vice-versa), o que afeta o nível de abstração na discussão daquele tópico.
- Ambigüidades: há ambigüidades inerentes à maioria das formas de comunicação, especialmente a língua natural.

Erros mais comuns (cont.)

- Conflitos: entrevistador e entrevistado podem ter opiniões conflitantes sobre um determinado problema, e a tendência é registrar o ponto de vista do entrevistador.
- Fatos que simplesmente não são verdadeiros: o entrevistado pode dar informações que ele assume como fatos verdadeiros, mas que, na verdade, são só a sua opinião.

PIECES

- Desenvolvedores inexperientes dificilmente sabem como começar.
- Que perguntas fazer para extrair os requisitos.
- Seis categorias de problemas que podem ajudar o analista a estruturar o processo:
 - 1. desempenho (ou performance);
 - 2. informação e dados;
 - 3. economia;
 - 4. *controle*;
 - 5. eficiência; e
 - 6. serviços.

- Pode ser adaptada para incluir questões iniciais ou básicas que sejam especialmente relevantes para o tipo de software.
- Ajuda a lidar com dificuldades de articulação dos problemas e comunicação.
- Mais proveitosa na análise de produtos já existentes (manuais ou automatizados).
- Pode ser adaptada para domínios de aplicação específicos.
- Com a experiência: um conjunto de questões detalhadas pode ser elaborado (produtos novos e produtos a ser melhorados).

1. Desempenho

- Medido de duas maneiras:
 - 1. pelo número de tarefas completadas em uma unidade de tempo (throughput), tal como o número de pedidos processados no dia; e
 - 2. pelo tempo de resposta, ou seja, a quantidade de tempo necessária para executar uma única tarefa.
- Perguntas que ajudem a identificar as tarefas e o tempo de resposta para cada tipo de tarefa.
- Quando o produto já existe: descobrir se os usuários experientes já sabem onde existem problemas de desempenho.

2. Informação e dados

- Produtos de software fornecem dados ou informações úteis para a tomada de decisão.
- O software deve fornecer acesso:
 - ao tipo certo de informação (nem de mais nem de menos);
 - no tempo certo; e
 - em forma utilizável.
- Se os usuários tendem a não utilizar o produto → sintoma de que informações erradas estão sendo fornecidas.

 Se eles o utilizam, mas expressam frustração → o sistema apresenta muita informação, ou o faz de uma forma diferente daquela que o usuário necessita.

• Exemplo:

- (1) relatório diário que seria necessário somente mensalmente, ou mensal que seria necessário diariamente.
- (2) o relatório pode conter informação relevante, mas é preciso consultar um relatório de cem páginas várias vezes ao dia (acesso on-line).

3. Economia

- Custo de usar um produto de software é sempre importante.
- Dois fatores de custo inter-relacionados:
 - 1. nível de serviço: medida do desempenho do sistema (throughput, tempo de resposta, ou ambos).
 - 2. capacidade de lidar com alta demanda: em alguns sistemas varia consideravelmente de minuto a minuto, ou de hora em hora.
- Usuários gostariam de ter um nível de serviço ou desempenho relativamente estáveis.

- Pode-se embutir no produto a capacidade de lidar com a alta demanda necessária nas horas de pico:
 - Processadores adicionais, unidades de disco ou conexões de rede, projeto de estruturas de dados internas para armazenar informações de tamanho ou complexidade não previsíveis de tempos em tempos.
- Pode ser caro, e, portanto, essas questões devem ser discutidas com os usuários.
- Um completo entendimento da carga esperada e do nível de serviço necessário ao produto ajudará os desenvolvedores a tomar decisões.

4. Controle

- Sistemas são normalmente projetados para ter desempenho e saídas previsíveis.
- Quando o sistema se desvia do desempenho esperado → algum controle deve ser ativado para tomar ações corretivas.
- Em sistemas de tempo real → o controle é exercido diretamente pelo software.
- Segurança → controle importante para alguns produtos (acesso restrito a certos usuários ou a certas horas do dia).

- Tipo de acesso restrito (somente leitura ou leitura e escrita).
- Auditoria → habilidade de ver, monitorar ou reconstruir o comportamento do sistema, durante ou depois da execução do processo.
- Questões de controle são importantes para não construir:
 - um sistema que fornece pouco controle (processo pode fugir de controle); ou
 - Controle em excesso (impedir que o trabalho seja executado).

5. Eficiência

- Não é sempre que a energia e os recursos aplicados a uma tarefa produzem trabalho útil.
- Algumas vezes há uma perda.
- Eficiência → medida dessa perda (relação entre os recursos que resultam em trabalho útil e o total dos recursos gastos).
- Eficiência versus economia:
 - para melhorar a economia do processo, a quantidade de recursos deve ser reduzida;
 - para melhorar a eficiência, a perda no uso desses recursos deve ser reduzida.

- Algumas ineficiências podem ser caracterizadas como redundâncias desnecessárias:
 - Coletar o mesmo dado mais de uma vez, armazená-lo em espaços múltiplos ou computar um determinado valor mais de uma vez, uso de algoritmos e estruturas de dados pobres.
 - Interface pobre pode ocasionar perda de tempo do usuário.

6. Serviços

- Produtos de software fornecem serviços aos usuários.
- Pode ser útil pensar em termos de serviços durante o processo de extração de requisitos.
- Usuários respondem perguntas sobre que tipos de serviços eles precisam que o produto realize e como esses serviços devem ser fornecidos.
- O produto pode também prestar serviços a outros produtos de software → que interfaces serão necessárias entre esses dois produtos.

QUESTIONÁRIO

- Forma rápida de se obter dados de uma grande amostra de usuários
- Tipos de dados que podem ser coletados:
 - a utilização do sistema atual
 - problemas que os usuários enfrentam em seu trabalho
 - expectativas dos usuários em relação ao novo sistema

- É apropriado quando:
 - as pessoas envolvidas estão dispersas (exemplo: filiais)
 - o número de pessoas envolvidas é muito grande
 - deseja-se explorar várias opiniões
 - deseja-se conhecer melhor o sistema para organizar melhor as entrevistas

Questionário

- As questões devem ser claras → não é possível explicá-las
- As possíveis respostas devem ser antecipadas
- A aplicação e compilação dos resultados devem ser planejadas antecipadamente

Tipos de questões

- Questões abertas-dirigidas: 'Por que você acha que os manuais do usuário para o sistema de contabilidade não funcionam?"
 - antecipar o tipo de resposta (enumerá-las)
 - deve ser possível interpretar corretamente as respostas
 - utilizadas quando não é possível listar todas as alternativas

- Questões fechadas: "Os dados sobre vendas são normalmente entregues com atraso?"
 - utilizada quando é possível listar todas as alternativas
 - as respostas devem ser mutuamente exclusivas

Linguagem empregada nos questionários

- Usar a linguagem de quem vai responder o questionário sempre que possível, mantendo as perguntas simples, claras e curtas.
- Ser específico, mas não exageradamente.
- Fazer a pergunta certa para a pessoa certa.
- Ter certeza de que as questões estão tecnicamente corretas antes incluí-las no questionário.

Elaboração do Questionário

- Ordem em que as perguntas devem aparecer.
- Questões mais importantes devem vir primeiro.
- As questões de conteúdo semelhante e relacionado devem estar próximas.
- As associações prováveis devem ser antecipadas pelo elaborador do questionário.
- As questões que podem gerar controvérsias devem ser deixadas para depois.

Aplicação do Questionário

- Quem responderá o questionário? → depende dos objetivos.
 - 1. Todos respondem ao mesmo tempo no mesmo lugar.
 - 2. Entregues pessoalmente e depois recolhidos.
 - 3. Colocados a disposição e depois devolvidos.
 - 4. Enviados por correio eletrônico ou correio normal (prazo e instruções de retorno).
 - 5. Entregue pelo engenheiro de requisitos.

Uso de escalas no questionário

- → Atribuição de números ou outros símbolos
 - **Escala Nominal**: usada para classificar atributos ou características. Exemplo: Que tipo de programa você mais usa?
 - 1. processador de textos
 - 2. planilha eletrônica
 - 3. gerenciador de banco de dados
 - 4. programas gráficos

• **Ordinal**: classifica atributos ou características em uma determinada ordem.

Exemplo: A pessoa de suporte na empresa é:

- 1. muito útil
- 2. moderadamente útil
- 3. inútil

Intervalo

- o intervalo entre as alternativas de resposta é igual
- Exemplo: Dê uma nota de 1 a 5 para o atendimento do pessoal de manutenção (1 para ruim e 5 para excelente)

Proporção

- alternativas em termos de proporção ou %
- o intervalo entre as alternativas é igual
- existe o valor zero que representa a ausência do atributo.
- Exemplo: Qual o tempo aproximado que você trabalha no computador diariamente.
 - a) o% b) 25% c) 50% d) 75% e) 100%

Etnografia

- Sistemas de software não existem isoladamente.
- São utilizados em um contexto social e organizacional.
- Requisitos podem ser derivados ou limitados por esse contexto.
- Satisfazer esses requisitos pode ser fundamental para o sucesso do sistema.
- Muitos sistemas são entregues e não utilizados por não considerar a importância desses requisitos.

Etnografia (cont.)

- Técnica de observação para compreender os requisitos sociais e organizacionais.
- Um analista se insere no ambiente de trabalho em que o sistema será utilizado.
- O trabalho diário é observado e são anotadas as tarefas reais em que os participantes estão envolvidos.

- Ajuda a descobrir os processos reais, em vez dos processos formais, em que as pessoas estão envolvidas.
- Fatores sociais e organizacionais que não são óbvios, mas que podem afetar o trabalho, podem ficar claros para um observador imparcial.
- Estudos usando etnografia: trabalho em escritório; controle de tráfego aéreo; salas de controle de metrô; sistemas financeiros, etc.

Etnografia (cont.)

Dois tipos de requisitos:

- 1. Derivados da maneira como as pessoas realmente trabalham, e não pela definição de processos que dizem como elas deveriam trabalhar. Ex: Controladores de tráfego aéreo podem desligar sistema de alerta de colisão.
- 2. Derivados da cooperação e conscientização das atividades de outras pessoas. Ex. Controladores podem usar informação de outros controladores para prever quantas aeronaves entrarão no seu setor de controle.

Etnografia (cont.)

- Pode ser combinada com prototipação.
- Ajuda o desenvolvimento do protótipo, de forma a reduzir o número de ciclos de refinamento.
- Identificação de problemas e questões que podem ser discutidas com o etnógrafo.
- Pode revelar detalhes de processo omitidas por outras técnicas.
- Entretanto: não é um abordagem completa, devendo ser usada com outras técnicas.

Validação dos requisitos

- 1. Verificação de validade: identificar funções adicionais ou diferentes.
- 2. Verificação de consistência: não devem existir requisitos conflitantes, restrições contraditórias ou diferentes para uma mesma função.
- 3. Verificação de completude: todas as funções e restrições exigidas pelo usuário.

Validação dos requisitos (cont.)

- 4. Verificação de realismo: com conhecimento da tecnologia existente, verificar se os requisitos realmente podem ser implementados (orçamento e prazos).
- 5. Facilidade de verificação: requisitos escritos de modo a serem verificados; conjunto de testes para demonstrar que o sistema a ser entregue satisfaz cada requisito especificado.

Técnicas de validação

- 1. **Revisões**: requisitos analisados sistematicamente por um time de revisores.
- 2. **Prototipação**: um modelo executável do sistema é mostrado para os usuários, que podem experimentar e avaliar se o sistema atende suas reaisnecessidades.
- 3. **Geração de casos de teste**: requisitos devem ser testáveis.
- 4. **Análise automatizada de consistência**: se forem espressos de maneira formal, ferramentas CASE podem ser utilizadas.

- Quando os testes são criados como parte do processo de validação → podem revelar problemas.
- Se um teste é difícil ou impossível de ser projetado → requisitos de difícil implementação.

Revisões dos Requisitos

- Revisão informal: envolve os desenvolvedores e tantos stakeholders quantos possível para discutir os requisitos.
- Revisão formal: a equipe de desenvolvimento deve:
 - "conduzir" o cliente, mostrando implicações de cada requisito.
 - revisores verificam cada um em termos de consistência, e os requisitos como um todo, em termos de completude.

Revisões dos Requisitos (cont.)

- Facilidade de verificação: pode ser testado?
- Facilidade de compreensão: pelos usuários e/ou compradores.
- Facilidade de rastreamento: a origem do requisito é claramente definida? (pode ser preciso retornar à origem do requisito para avaliar o impacto de uma mudança)
- Adaptabilidade: o requisito é adaptável? (isto é, modificável sem provocar efeitos em larga escala em outros requisitos)

Revisões (cont.)

- Conflitos, contradições, erros e omissões devem ser detectados e descartados durante a revisão e formalmente registrados.
- Os usuários, compradores e desenvolvedores devem negociar a solução para esses problemas.

Gerenciamento de requisitos

- Requisitos estão sempre sendo modificados, especialmente para sistemas complexos.
- Como o problema não pode ser inteiramente definido, requisitos são necessariamente incompletos.
- Durante o processo de desenvolvimento, a compreensão dos desenvolvedores está em constante modificação, que também se reflete nos requisitos.

Gerenciamento de requisitos (cont.)

- Com sistemas existentes: difícil prever que efeitos o sistema "atualizado" terá sobre a organização.
- Com sistemas novos: depois que os usuários finais se familiarizam com o sistema, novos requisitos surgem porque:

Gerenciamento de requisitos (cont.)

- Comunidade de usuários diversificada, diferentes prioridades e requisitos, muitas vezes conflitantes ou contraditórios. Requisitos finais → conciliação entre eles.
- 2. Pessoas que pagam pelo sistema são diferentes das que usam. Restrições organizacionais e orçamentárias, conflitantes com os requisitos dos usuários.
- A empresa e o ambiente técnico do sistema se modificam → refletido no sistema (novo hardware, novas interfaces com outros sistemas, prioridades da empresa mudam, novas legislações).

Gerência de requisitos (cont.)

- É o processo de compreender e controlar as mudanças nos requisitos do sistema.
- É realizado em conjunto com outros processos da engenharia de requisitos.
- O planejamento se inicia junto com o levantamento inicial de requisitos.
- O gerenciamento deve começar assim que uma versão inicial do documento de requisitos estiver disponível.

Requisitos permanentes e voláteis

1. Requisitos permanentes: relativamente estáveis, derivam da atividade principal da organização e se relacionam diretamente com o domínio.

Exemplo: Em um hospital, sempre haverá requisitos relativos aos pacientes, médicos, enfermeiras e aos tratamentos.

2. Requisitos voláteis: requisitos que provavelmente vão se modificar durante o desenvolvimento ou depois que o sistema estiver em operação.

Exemplo: Requisitos resultantes de políticas governamentais sobre assistência médica.

Classificação dos requisitos voláteis

- 1. Requisitos mutáveis: que se modificam devido à mudanças no ambiente no qual a organização opera. Exemplo: Em sistemas hospitalares, o financiamento do tratamento de pacientes pode se modificar e, assim, exigir que diferentes informações sobre o tratamento sejam coletadas.
- 2. Requisitos emergentes: que surgem à medida que a compreensão do cliente e dos desenvolvedores cresce durante o desenvolvimento.

Classificação dos requisitos voláteis (cont.)

- 3. Requisitos consequentes: que resultam da introdução do sistema nas organização. Pode modificar os processos e criar novos meios de trabalho, que geram novos requisitos de sistema.
- 4. Requisitos de compatibilidade: que dependem de sistemas ou processos de negócio específicos dentro da organização. À medida que eles se modificam, os requisitos de compatibilidade nos sistema encomendado ou entregue também podem ter que evoluir.

Planejamento do gerenciamento de requisitos

- 1. *Identificação dos requisitos*: identificado de modo único, para referência cruzada entre ele e os outros requisitos e para que possa ser usado na avaliação de facilidade de rastreabilidade.
- 2. *Processo de gerenciamento de mudanças*: conjunto de atividades que avalia o impacto e o custo de mudanças.
- 3. *Políticas de rastreabilidade*: definem as relações entre os requisitos que devem ser registrados e como esses registros devem ser mantidos.

- 4. Apoio de ferramentas CASE: vão desde sistemas especializados de gerenciamento de requisitos à planilhas de cálculo e sistemas simples de bancos de dados. Apoio necessário para:
 - (a) armazenamento de requisitos;
 - (b) gerenciamento de mudanças;
 - (c) gerenciamento de facilidade de rastreabilidade.
- Para sistemas pequenos → processadores de textos, planilhas de cálculos e bancos de dados.

Informações de rastreabilidade

- (a) Informações de *rastreabilidade de origem*: vinculam requisitos aos stakeholders que propuseram esses requisitos e aos motivos desses requisitos (quando uma mudança é proposta, fácil descobrir os stakeholders e consultá-los).
- (b) Informações de *ratreabilidade de requisitos*: ligam requisitos dependentes dentro do documento de requisitos (avaliam quantos requisitos serão afetados pela mudança proposta e a extensão das mudanças de requisitos consequentes).

- (c) Informações de *rastreabilidade de projeto*: ligam os requisitos aos módulos de projeto em que esses requisitos são implementados (avaliam impacto das mudanças no projeto e implementação).
 - Matrizes de rastreabilidade → relacionam os requisitos aos stakeholders, aos outros requisitos ou aos módulos de projeto.

Informações de rastreabilidade (cont.)

- Cada requisito é introduzido em uma linha e uma coluna da matriz.
- As dependências entre diferentes requisitos são registradas na célula correspondente à intersecção de linha/coluna.
- Podem ser usadas quando um pequeno número de requisitos deve ser gerenciado.

Matriz de Rastreabilidade

ID de requisito	1.1	1.2	1.3	2.1	2.2	2.3	3.1	3.2
1.1		D	R					
1.2			D			R		D
1.3	R			R				
2.1			R		D			D
2.2								D
2.3		R		D				
3.1								R
3.2							R	

D= Requisito da linha depende do da coluna

R= Relacionamento mais fraco (ex: ambos definem requsitos para partes do mesmo sistema)

- Para sistemas de grande porte, com muitos requisitos, tornam-se difíceis de serem gerenciadas.
- Nesses casos, informações de rastreabilidade devem ser armazenadas em um banco de dados de requisitos, onde cada requisito é explicitamente ligado a requisitos relacionados.
- O impacto das mudanças é avaliado usando o banco de dados.
- Ferramentas CASE devem ser selecionadas durante a fase de planejamento do gerenciamento de requisitos para: armazenamento, gerenciamento das mudanças e gerenciamento de rastreabilidade.

Gerenciamento de mudanças nos requisitos

- 1. Análise do problema e especificação da mudança: começa com a identificação do problema com os requisitos ou com uma proposta específica de mudança. Análise do problema para verificar validade. Proposta mais específica de mudança pode ser feita.
- 2. Análise e custo da mudança: o efeito é avaliado, com informações sobre facilidade de rastreamento e conhecimento geral dos requisitos. Custo em termos de modificações no documento de requisitos e, quando apropriado, no projeto e implementação. Decisão sobre prosseguir com a alteração ou não.

- 3. Implementação de mudanças: documento de requisito e, quando apropriado, projeto e implementação.

 Documento deve acomodar mudanças sem muito esforço (minimizar referências externas e seções do documento modulares).
- Mudanças urgentes: tentação de fazer a mudança primeiro no sistema e depois no documento de requisitos.
- Conseqüência: especificação de requisitos e implementação não compatíveis.

Resumo

- Processo de engenharia de requisitos: estudo de viabilidade, elicitação, análise, especificação, validação e gerenciamento de requisitos.
- Elicitação e análise dos requisitos: processo iterativo, que pode ser representado como uma espiral de atividades - obtenção, classificação, organização, negociação e documentação de requisitos.
- Sistemas devem ser analisados sob diferentes pontos de vista (pessoas ou sistemas que interagem com o sistema tratado, stakeholders afetados pelo sistema ou pontos de vista do domínio).

- Fatores sociais e organizacionais influenciam os requisitos do sistema e podem determinar se o sistema será usado ou não.
- Validação de requisitos: verificar validade, consistência, completude, realismo e facilidade de verificação.
- Gerenciamento de requisitos: controle de mudanças nos negócios, na organização e nas técnicas.
- Gerenciamento: inclui planejamento (políticas e procedimentos) e gerenciamento de mudanças (avaliar impacto).

Exercícios

1. A Editora ABC trabalha com diversos autores que escrevem livros que ela publica. Alguns autores escrevem apenas um livro, enquanto outros escrevem muitos; além disso, alguns livros são escritos em conjunto por diversos autores. Mensalmente é enviado às livrarias um catálogo com o nome dos livros lançados e seus respectivos autores. Esse catálogo é organizado por assunto para facilitar a divulgação. Informações sobre a cota de cada livraria são modificadas a cada três meses, de acordo com a média de compra no trimestre.

Uma carta é enviada à livraria anunciando a nova cota em cada assunto e os descontos especiais que lhe serão concedidos para compras em quantidades maiores. Aos autores dos dez livros mais vendidos no ano, a Editora ABC oferece prêmios. A festa de premiação é anunciada com dez dias de antecedência, através de publicação em jornal dos dez livros mais vendidos, com seus respectivos autores.

- (a) Indique ambigüidades, omissões e jargões (se houver).
- (b) Elabore um questionário baseado nos problemas encontrados no item a.
- (c) Apresente uma lista de funções e restrições.

2. Sugira quem podem ser os stakeholders em um sistema de registro de estudantes de uma universidade. Explique por que é quase inevitável que os requisitos de diferentes stakeholders sejam conflitantes de alguma forma.