(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年1月6日(06.01.2005)

PCT

(10) 国際公開番号 WO 2005/001757 A1

(51) 国際特許分類7: G06N 3/08, G01D 21/00, E02F 9/24, G05B 23/02, 23/02, B60R 16/02

(21) 国際出願番号:

PCT/JP2004/009478

(22) 国際出願日:

2004年6月28日(28.06.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

2003年6月30日(30.06.2003) 特願2003-188218

(71) 出願人(米国を除く全ての指定国について): 国立大 学法人香川大学 (NATIONAL UNIVERSITY CORPO-RATION KAGAWA UNIVERSITY) [JP/JP]; ₹7608521

香川県高松市幸町1番1号 Kagawa (JP). 新キャタ ピラー三菱株式会社。(SHIN CATERPILLAR MIT-SUBISHI LTD:) [JP/JP]; 〒1580097 東京都世田谷区用 賀4丁目10番1号 Tokyo (JP).

(72) 発明者; および 🤨 👌

(75) 発明者/出願人 (米国についてのみ): パチコフ ガンチョ ルベノフ (VATCHKOV, Gantcho Lubenov) [BG/JP]; 〒 7610396 香川県高松市林町 2 2 1 7 - 2 0 国立大学 法人香川大学工学部内 Kagawa (JP). 小松 孝二 (KO-MATSU, Koji), [JP/JP]; 〒7610396 香川県高松市林町 2217-20国立大学法人香川大学工学部内 Kagawa (JP). 藤井 敏 (FUJII, Satoshi) [JP/JP]; 〒1580097 東京都世田谷区用賀4丁目10番1号 新キャタピ ラー三菱株式会社内 Tokyo (JP). 室田 功 (MUROTA, Isao) [JP/JP]; 〒1580097 東京都世田谷区用賀4丁目

(54) Title: INFORMATION PROCESSOR, STATE JUDGING UNIT AND DIAGNOSTIC UNIT, INFORMATION PROCESSING METHOD, STATE JUDGING METHOD AND DIAGNOSING METHOD

(54) 発明の名称: 情報処理装置、状態判定装置及び診断装置、並びに情報処理方法、状態判定方法及び診断方法

- 18...ENGINE ROTATIONAL SPEED SENSOR
- 16...FUEL CONSUMPTION SENSOR
- 1c...LEFT HYDRAULIC PUMP PRESSURE SENSOR Id...RIGHT HYDRAULIC PUMP PRESSURE SENSOR
- 2...SELF-ORGANIZATION MAP FORMING MEANS

- 4...JUDGING MEANS
- 6...DISPLAY
 A...INFORMATION PROCESSOR
- ..STATE JUDGING UNIT ..SEPARATE MODEL OF EACH
- OPERATION MODE
- D. DIAGNOSTIC UNIT

(57) Abstract: An information processor, a state judging unit and a diagnostic device, an information processing method, a state judging method and a diagnosing method in which each operation of an object, e.g. a machine having a plurality of operation modes, can be recognized exactly. During operation of an object having a plurality of operation modes, sensors (1a-1d) detect a plurality of sets of n parameter values variable depending on the operation for the operation modes. Detection data based on the sets of parameter values thus detected is used, as training data, by self-organization map forming means (2) for forming a self-organization map, and a self-organization map is formed as a separate model corresponding to each operation mode.

(57) 要約: 本発明は、情報処理装置、状態判定装置及び診断装置、並びに情報処理方法、状態判定方法及び診断方 法に関し、複数の動作モードで動作しうる機械等の対象体の各動作を正確に認識できるようにする。 本発明は、複数の動作モードで動作しうる対象体の動作時に、この動作に応じて変動する n 個のパラメータの値を センサ(1a~1d)により各動作モード毎にそれぞれ複数組検出し、この検出した複数組のパラメータ値に基づ く検出データを自己組織化マップ作成手段(2)

10番1号 新キャタピラー三菱株式会社内 Tokyo (JP).

- (74) 代理人: 真田有 (SANADA, Tamotsu); 〒1800004 東京 都武蔵野市吉祥寺本町 1 丁目 1 0 番 3 1 号 吉祥寺広 瀬ビル 5 階 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI、FR、GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SĨ, SK, TR), OAPĪ (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

وملهاي

والأخارة الموصد

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明 細 書

情報処理装置, 状態判定装置及び診断装置, 並びに

情報処理方法, 状態判定方法及び診断方法

技術分野

5

10

15

20

25

本発明は、複数の動作モードで動作しうる対象体の、情報処理装置, 状態 判定装置及び診断装置, 並びに情報処理方法, 状態判定方法及び診断方法に 関する。

背景技術

近年、地球資源が有限であることや、環境負荷が限界を超えつつあることから、持続可能な社会へ転換していくために、資源の循環や環境負荷の削減に視点を置いた機械類に関する新しいメンテナンスのあり方が強く求められている。

従来の機械類のメンテナンスでは、機械類に故障が発生してから修復する事後保全や、機械類の使用時間を基準にした画一的な予防保全が一般に行なわれている。事後保全では、修理に大幅な時間やコストがかかってしまい、また、予防保全では、画一的な処理のため、不必要な部品やオイルの廃棄が発生し顧客の費用負担が増大し、また、労働集約型からくる高コスト化という問題があったが、今後はこうした従来のメンテナンスから脱却して、予知保全への転換を図っていく必要がある。

予知保全とは、稼動時の負荷・環境情報、過去のメンテナンス歴データベース、故障物理の理解などから、推論により健全度を診断して劣化・余寿命を予測することで、機械の異常を早期に発見して安全な動作環境を提供する

ものである。

5

10

15

20

25

例えば特開2002-323013号公報(以下、特許文献1という)には、建設機械などの作業車両の異常診断装置に関し、作業機械(油圧ショベル)の車体に、油圧ポンプの吐出圧を検出する圧力センサと、エンジンの回転数を検出するエンジン回転数センサと、油圧回路内の油温を検出する油温センサと、これら各センサからの検出情報をネットワーク管制局へ無線送信を行なう通信装置とをそなえ、監視局(作業機械の管理者の事務所など)では、前記ネットワーク管制局からインターネットを介して作業機械の各検出情報を得て、これら各検出情報に基づいて作業機械の異常を診断する技術が開示されている。

また、特開平11-338848号公報(以下、特許文献2という)には、バッチプラントや連続系プラント等の固定機械設備の異常検出装置に関し、対象プラントが正常状態であるときの正常データを予め収集しておき、この正常データをもとに自己組織化マップ(Self-Organizing Map)を用いて正常データの特徴を抽出し、これをもとに各出力ユニット間の距離関係を表す特徴マップを形成し正常状態モデルとして記憶しておき、この正常状態モデルと未知の入力データ(入力ベクトル)とに基づいて前記対象プラントの異常を検出する技術が開示されている。ここで、上記の正常状態モデルとは、例えば図13に示すように多次元データを可視化2次元マップに変換したもので〔ここでは多次元データが符号 $R_1 \sim R_5$ の領域で示される5つのクラスタ(集合体)に分類(クラス分け)されている〕、この正常状態モデルと同等の特徴を有するとみなされる場合に入力データは正常データであると判断する。この特許文献2の技術によれば、多次元の入力データに関する総合的な異常検知をリアルタイムに実現することができる。

ところで、例えば上述したような油圧ショベル等の建設機械では、エンジンの回転数,油圧ポンプの吐出圧,油圧回路内の油温の他に、例えば、車体

の前進・後進或いは旋回を制御する作動圧,バケットを制御するバケットシリンダの作動圧,スティックを制御するスティックシリンダの作動圧,ブームを制御するブームシリンダの作動圧などの多次元のパラメータ (検出要素)が存在する。

5 また、建設機械は、一連の作業を行なう場合、種々の運転動作(即ち、運転モード)が組み合わされて作業が行なわれる。例えば、建設機械により、堆積した土砂をトラックのベッセル(荷台)上に積み込む作業の場合、おおまかに次の4つの運転モードに分離できる。すなわち、「バケットで土砂をすくい始めてからすくい終わるまでの動作(運転モード1)」、「土砂をすくった後、車体を旋回させて、土砂を保持したバケットをトラックのベッセルの上方まで運ぶ動作(運転モード2)」、「バケットを開いて土砂のベッセル上への移載を開始してから土砂の移載が完了するまでの動作(運転モード3)」、「バケットを堆積した土砂の位置まで戻して運転モード1に入るまでの動作(運転モード4)」の4つのモードである。

つまり、各パラメータ値は、このようなそれぞれの運転モードに応じて変化するものであるが、各パラメータ値を別個に分析しても正確な異常診断を行なえない場合が多い。例えば、1つ1つのパラメータ値が全て正常範囲内にあるとしても、よりマクロ的に見た場合、現在の運転動作が上記4つの運転モードのどれにも当てはまらないという場合も生じ得る。この場合、現在の運転動作は未知の運転モードである、或いは何かしら異常が発生しているものと認められる。

15

20

25

したがって、機械の診断を行なう場合には、現在の運転動作が、予め分類 された運転モードに当てはまるか否かを判定して、当てはまらない場合には 、上記の運転モードとは異なる運転モードである又は異常が発生していると 判定することで、より早期に異常を発見できるものと考えられる。このため 、診断対象となる機械について、起こりうる全ての運転モードを予め正確に

認識しておけば、多次元のパラメータ値から現在の運転動作はどの運転モードの動作なのかをリアルタイムに判定することができる。

このような視点から上述の従来の技術を検討すると、特許文献2の技術の自己組織化マップを用いれば、パラメータが多次元であっても機械の各運転モードを分類することが可能であると考えられる。

しかし、機械の運転モードが多数存在する場合には、1つの2次元自己組織化マップ内にこれら運転モード数と略同数のクラスタが形成されることになり、また、運転モード数がさらに増加した場合、各クラスタの面積が小さくなっていき隣接するクラスタとのオーバーラップが強くなるため境界が不明確になってしまう。さらに、このような2次元マップであれば視覚的にクラス分けができるが、クラス分けの判定は人間の判断にまかせなければならないため、正確な診断を行なえないおそれがある。さらに、新しい運転モードを追加する場合、自己組織化マップを初めから作り直す必要があり、機械の診断にかかる処理時間が大幅に増加してしまうおそれもある。

15 なお、ここでは建設機械を例にとって説明したが、上述したような診断装置は、建設機械等の機械類への適用だけに限定せずに、動作(或いは変動)を複数の動作モード(或いは変動モード)で分類できる多くの診断対象(対象体)にも適用することが考えられる。

本発明は、上述の課題に鑑み創案されたもので、複数の動作モードで動作 しうる機械等の対象体の各動作を正確に認識できるようにした、情報処理装 置、状態判定装置及び診断装置、並びに情報処理方法、状態判定方法及び診 断方法を提供することを目的とする。

発明の開示

5

10

20

25 本発明は、前記の課題を解決するために以下の手段をとった。 すなわち、本発明の情報処理装置は、複数の動作モードで動作しうる対象

体の動作時に該動作に応じて変動するn個のパラメータの値を各動作モード毎にそれぞれ複数組検出する検出手段と、該検出手段により検出された上記の複数組のパラメータ値に基づく検出データをトレーニングデータとして自己組織化マップを形成する自己組織化マップ形成手段とをそなえ、該自己組織化マップ形成手段では、上記の各動作モードに対応してそれぞれ個別の分離モデルとして該自己組織化マップを形成することを特徴としている。

5

10

15

20

なお、対象体とは、自らが動作しうる構造体のみならず、天候などの状態が変動しうるもの一般を示すもので、動作モードとは、変動モードも含むものとする。また、ここでいう自己組織化マップとは、可視化2次元マップを示すものではなく、トレーニングデータによりトレーニングされた所定次元空間内のニューロンの分布を示すものである。

これによれば、自己組織化マップ形成手段が、対象体の各動作モードに対応してそれぞれ個別の分離モデルとして自己組織化マップを形成するので、複数の動作モードで動作しうる対象体の各動作を正確に認識することができる。

また、該検出データは、該対象体の瞬間の状態を示す上記の検出されたn個のパラメータ値自体と、該対象体の瞬間の変化状態を示す上記の検出されたn個のパラメータ値の時間微分値(パラメータ値の変化率などの時間微分相当値も含む)とを含み、該n個のパラメータ値自体と該n個のパラメータ値の時間微分値とを合わせた2n次元データとして構成されていることが好ましい。

これによれば、各動作モードに対し特徴となりうるデータ軌跡の傾向をより正確に把握することができ、より精度の高い自己組織化マップを形成することができる。

25 さらに、該検出手段は、上記のn個のパラメータ値を複数組検出し、該自 己組織化マップ形成手段は、2n次元空間内に所定数のニューロンをランダ

ムに初期配置し、該2n次元空間内の各検出データ点〔この検出データ点は、検出手段の検出結果に基づいて得られた複数組(例えば設定数TD個)の検出データに対応している〕をトレーニングデータとして学習を実施し、該トレーニングデータ点とニューロンとの距離が最小のニューロンを勝者ニューロンとして該自己組織化マップの候補を形成し、上記の自己組織化マップ候補の形成を複数回実施して得られる複数の自己組織化マップ候補の中から該トレーニングデータ特性に最も近い特性のものを自己組織化マップとして選定することが好ましい。

5

10

15

これによれば、選定された自己組織化マップを、トレーニングデータ特性 に最も近い特性として扱うことができる。

また、該自己組織化マップ形成手段は、上記の各自己組織化マップ候補について、該トレーニングデータ点と上記の各勝者ニューロンとの距離の平均値と、該トレーニングデータ点と上記の各勝者ニューロンとの距離の標準偏差とを演算し、該平均値及び該標準偏差の何れについても最も小さい自己組織化マップ候補を自己組織化マップとして選定することが好ましい。なお、ここでいう勝者ニューロンとは、勝者ニューロン履歴のある(即ち、一度でも勝者ニューロンになったことのある)全てのニューロンのことをいう。

これによれば、最もよくトレーニングデータの特徴を表わした自己組織化マップを選定できる。

20 さらに、該自己組織化マップ形成手段は、該平均値及び該標準偏差の何れ についても最も小さい自己組織化マップ候補がない場合には、該平均値が最 も小さい自己組織化マップ候補を自己組織化マップとして選定することが好 ましい。

また、該自己組織化マップ形成手段では、上記の選定した該自己組織化マ 25 ップ中のニューロンのうち、一度も勝者ニューロンとならなかったニューロ ン("アイドリングニューロン"と称する)を消去することが好ましい。

これによれば、トレーニングデータ特性を、ニューロン数を大幅に減少させた自己組織化マップで表すことができる。これにより、自己組織化マップを記憶しておくための容量を少なくできるので、この自己組織化マップを用いた計算の処理時間を短縮できる。

本発明の状態判定装置は、上述した情報処理装置によって上記の各動作モードに対応してそれぞれ個別に形成された該自己組織化マップの各分離モデルを記憶した記憶部と、該検出手段とを備え、該対象体の状態を判定する状態判定装置であって、該検出手段によりリアルタイムに得られる検出データに対応した2n次元空間内の検出データ点と該自己組織化マップ内の勝者ニューロンとの相対距離に基づいて、該対象体の動作がいずれの動作モードに適合するかを判定する判定手段を備えていることを特徴としている。なお、ここでいう勝者ニューロンとは、リアルタイムで検出するデータ点(1個)に対し距離の最も短いニューロンをいう。

これによれば、対象体の動作モードの判定精度を高めることができる。

15 また、該判定手段では、該検出手段によりリアルタイムに得られた該検出データ点と該自己組織化マップ内の勝者ニューロンとの距離を、該情報処理装置による該自己組織化マップの形成過程において用いた該トレーニングデータと該自己組織化マップ内の各勝者ニューロンとの距離の平均値で除算することにより、該相対距離を算出することが好ましい。

20 さらに、該判定手段では、該相対距離が予め設定された所定値以下であるとき、該検出データ点は該自己組織化マップに適合すると判定し、該相対距離が所定値以上であるとき、該検出データ点は該自己組織化マップに適合しないと判定することが好ましい。なお、適合する自己組織化マップが複数ある場合は、該適合する自己組織化マップの全てを候補として選定したり、或いは、該相対距離が最小であるものをベストな自己組織化マップとして選定したりすることが好ましい。

また、上述した状態判定装置を備え、該対象体を診断する診断装置であって、該対象体は建設機械を含む機械類であり、該動作モードは該機械類の特定の動作であることが好ましい。なお、ここでいう診断とは、例えば機械類の動作モードが正常であるか否かの良否である。

これによれば、機械類の特定の動作モードを診断することができる。

5

10

15

20

25

本発明の情報処理方法は、複数の動作モードで動作しうる対象体の動作時に該動作に応じて変動するn個のパラメータの値を各動作モード毎にそれぞれ複数組検出するデータ作成用検出ステップと、該データ作成用検出ステップにより検出された上記の複数組のパラメータ値に基づく検出データをトレーニングデータとして自己組織化マップを形成する自己組織化マップ形成ステップとをそなえ、該自己組織化マップ形成ステップでは、上記の各動作モードに対応してそれぞれ個別の分離モデルとして該自己組織化マップを形成することを特徴としている。

なお、本方法においても、対象体とは、自らが動作しうる構造体のみならず、天候などの状態が変動しうるもの一般を示すもので、動作モードとは、変動モードも含むものとする。また、ここでいう自己組織化マップとは、可視化2次元マップを示すものではなく、トレーニングデータによりトレーニングされた所定次元空間内のニューロンの分布を示すものである。

これによれば、自己組織化マップ形成手段が、対象体の各動作モードに対応してそれぞれ個別の分離モデルとして自己組織化マップを形成するので、複数の動作モードで動作しうる対象体の各動作を正確に認識することができる。

また、該データ作成用検出ステップと該自己組織化マップ形成ステップとの間に、該データ作成用検出ステップにおいて検出されたn個のパラメータ値をそれぞれ処理して該n個のパラメータ値の時間微分値を演算する演算ステップが設けられ、該自己組織化マップ形成ステップでは、該検出データと

して、該対象体の瞬間の状態を示す上記の検出されたn個のパラメータ値自体と、該対象体の瞬間の変化状態を示す上記の演算されたn個のパラメータ値の時間微分値とを合わせた、2n次元データに基づいて該自己組織化マップを形成することが好ましい。

これによれば、各動作モードに対し特徴となりうるデータ軌跡の傾向をより正確に把握することができ、より精度の高い自己組織化マップを形成することができる。

5

10

15

25

さらに、該データ作成用検出ステップは、上記のn個のパラメータ値を複数組検出し、該自己組織化マップ形成ステップは、2n次元空間内に所定数のニューロンをランダムに初期配置する第1ステップと、該データ作成用検出ステップの検出結果に基づいて得られた該2n次元空間の各該検出データ点をトレーニングデータとして学習させ、該トレーニングデータ点とニューロンとの距離が最小のニューロンを勝者ニューロンとして該自己組織化マップの候補を形成する第2ステップとからなる自己組織化マップ候補形成ステップを複数回実施して、形成した複数の該自己組織化マップ候補の中から該トレーニングデータ特性に最も近い特性のものを自己組織化マップとして選定する自己組織化マップ選定ステップをそなえることが好ましい。

これによれば、選定された自己組織化マップを、トレーニングデータ特性 20 に最も近い特性として扱うことができる。

また、該自己組織化マップ形成ステップは、該自己組織化マップ選定ステップの後、選定した該自己組織化マップ中のニューロンのうち、一度も勝者ニューロンとならなかったニューロン(即ち、アイドリングニューロン)を消去するアイドリングニューロン消去ステップをそなえていることが好ましい。

これによれば、トレーニングデータ特性を、ニューロン数を大幅に減少さ

せた自己組織化マップで表すことができる。これにより、自己組織化マップを記憶しておくための容量を少なくできるので、この自己組織化マップを用いた計算の処理時間を短縮できる。

また、上記の複数の動作モード以外に該対象体の新たな動作モードについての該自己組織化マップを追加する場合には、該新たな動作モードによって該対象体を動作させながら、該データ作成用検出ステップにより上記のn個のパラメータの値を検出し、該自己組織化マップ形成ステップにより上記の検出された複数組のパラメータ値に基づく検出データをトレーニングデータとして該新たな動作モードに対する自己組織化マップを形成することが好ましい。

5

10

15

20

25

これによれば、新たな動作モードに対する自己組織化マップを追加することができる。

本発明の状態判定方法は、上述した情報処理方法によって各動作モードに対応してそれぞれ個別の分離モデルとして形成された該自己組織化マップを用いて該対象体の動作がいずれの動作モードに適合するかを判定する状態判定方法であって、該対象体の動作時に該動作に応じて変動する上記のn個のパラメータの値をそれぞれ検出する状態判定用検出ステップと、該状態判定用検出ステップの検出結果からリアルタイムに得られる検出データに対応した2n次元空間内の検出データ点と該自己組織化マップ内の各勝者ニューロンとの相対距離に基づいて、該対象体の動作がいずれの動作モードに適合するかを判定する判定ステップとを備えていることを特徴としている。

これによれば、対象体の動作モードの判定精度を高めることができる。

また、該状態判定用検出ステップと該判定ステップとの間に、該状態判定 用検出ステップによって検出されたn個のパラメータ値をそれぞれ処理して 該n個のパラメータ値の時間微分値を演算する演算ステップが設けられ、該 判定ステップでは、該検出データとして、該対象体の瞬間の状態を示す上記

の検出されたn個のパラメータ値自体と、該対象体の瞬間の変化状態を示す上記の演算されたn個のパラメータ値の時間微分値とを合わせた、2n次元データに基づいて該対象体の動作モードを判定することが好ましい。

これによれば、各動作モードに対し特徴となりうるデータ軌跡の傾向をより正確に把握することができ、より精度の高い自己組織化マップを形成することができる。

5

10

15

20

25

さらに、該判定ステップでは、該状態判定用検出ステップによりリアルタイムに得られた該検出データ点と該自己組織化マップ内の勝者ニューロンとの距離を、該情報処理装置による該自己組織化マップの形成過程において用いた該トレーニングデータ点と該自己組織化マップ内の各勝者ニューロンとの距離の平均値で除算することにより該相対距離を算出し、該相対距離が予め設定された所定値以下であるときには、該検出データ点は該自己組織化マップに適合すると判定し、該相対距離が所定値以上であるときには、該検出データ点は該自己組織化マップに適合しないと判定することが好ましい。なお、適合する自己組織化マップが複数ある場合は、該適合する自己組織化マップの全てを候補として選定したり、或いは、該相対距離が最小であるものをベストな自己組織化マップとして選定したりすることが好ましい。

これによれば、対象体の動作モードの判定精度を高めることができる。

本発明の診断方法は、上述した状態判定方法を備え、該対象体を診断する診断方法であって、該対象体は建設機械を含む機械類であり、該動作モードは該機械類の特定の動作であることを特徴としている。なお、ここでいう診断とは、例えば機械類の動作モードが正常であるか否かの良否である。

これによれば、機械類の特定の動作モードを診断することができる。

また、該判定ステップでは、適合する自己組織化マップがない場合、上記 の特定の動作が未知のモード或いは異常モードであると判定することが好ま しい。

これによれば、機械類の動作モードが未知のモード或いは異常モードであるか否かを診断することができる。

図面の簡単な説明

5

10

15

25

図1は本発明の一実施形態としての診断装置を示すプロック図である。

図2は本発明の一実施形態に係る油圧ショベルの運転モード1~4に対する各センサの出力値を示すグラフである。

図3は本発明の一実施形態に係る自己組織化マップ内のトレーニングデータ点(検出データ点)とニューロンとの間の最小距離を視覚的に示す図である。

図4 (a) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード1におけるエンジン回転数 P_1 及び左油圧ポンプ圧力 P_3 のトレーニングデータによって形成された自己組織化マップである。

図4 (b) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード1におけるエンジン回転数 P_1 及び右油圧ポンプ圧力 P_4 のトレーニングデータによって形成された自己組織化マップである。

図4 (c) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード1における左油圧ポンプ圧力 P_3 及び右油圧ポンプ圧力 P_4 のトレーニングデータによって形成された自己組織化マップである。

20 図4(d)は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード1におけるエンジン回転数 P_1 及び燃料消費量 P_2 のトレーニングデータによって形成された自己組織化マップである。

図 5 (a) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード 2 におけるエンジン回転数 P_1 及び左油圧ポンプ圧力 P_3 のトレーニングデータによって形成された自己組織化マップである。

図 5 (b) は本発明の一実施形態に係る自己組織化マップを説明するため

の図で、運転モード2におけるエンジン回転数 P_1 及び右油圧ポンプ圧力 P_4 のトレーニングデータによって形成された自己組織化マップである。

図5 (c) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード2における左油圧ポンプ圧力P₈及び右油圧ポンプ圧力P₄のトレーニングデータによって形成された自己組織化マップである。

5

10

15

20

図 5 (d) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード 2 におけるエンジン回転数 P_1 及び燃料消費量 P_2 のトレーニングデータによって形成された自己組織化マップである。

図 6 (a) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード 1 におけるエンジン回転数 P_1 及び左油圧ポンプ圧力 P_3 のトレーニングデータ (図中の小さい点印) と、完全な学習及びアイドリングニューロンの消去を行なった後のニューロン (図中の大きい点印) の配置を示す図である。

図 6 (b) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード1におけるエンジン回転数 P_1 及び右油圧ポンプ圧力 P_4 のトレーニングデータ(図中の小さい点印)と、完全な学習及びアイドリングニューロンの消去を行なった後のニューロン(図中の大きい点印)の配置を示す図である。

図6(c)は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード1における左油圧ポンプ圧力 P₈及び右油圧ポンプ圧力 P₄のトレーニングデータ(図中の小さい点印)と、完全な学習及びアイドリングニューロンの消去を行なった後のニューロン(図中の大きい点印)の配置を示す図である。

図6 (d) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード1におけるエンジン回転数 P₁ 及び燃料消費量 P₂ のトレーニングデータ (図中の小さい点印) と、完全な学習及びアイドリングニ

ューロンの消去を行なった後のニューロン (図中の大きい点印) の配置を示す図である。

図 7 (a) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード 2 におけるエンジン回転数 P_1 及び左油圧ポンプ圧力 P_3 のトレーニングデータ(図中の小さい点印)と、完全な学習及びアイドリングニューロンの消去を行なった後のニューロン(図中の大きい点印)の配置を示す図である。

5

10

15

20

図7(b)は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード2におけるエンジン回転数 P_1 及び右油圧ポンプ圧力 P_4 のトレーニングデータ(図中の小さい点印)と、完全な学習及びアイドリングニューロンの消去を行なった後のニューロン(図中の大きい点印)の配置を示す図である。

図7 (c) は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード2 における左油圧ポンプ圧力 P₃ 及び右油圧ポンプ圧力 P₄ のトレーニングデータ (図中の小さい点印) と、完全な学習及びアイドリングニューロンの消去を行なった後のニューロン (図中の大きい点印) の配置を示す図である。

図7(d)は本発明の一実施形態に係る自己組織化マップを説明するための図で、運転モード2におけるエンジン回転数 P_1 及び燃料消費量 P_2 のトレーニングデータ(図中の小さい点印)と、完全な学習及びアイドリングニューロンの消去を行なった後のニューロン(図中の大きい点印)の配置を示す図である。

図8は本発明の一実施形態に係る運転モード判定結果の一例を示す図である。

25 図9は本発明の変形例としての診断装置を示す図である。

図10は本発明の一実施形態に係るオフライン処理を示すフローチャート

である。

5

15

20

25

図11は本発明の一実施形態に係る自己組織化マップ形成ステップにおける処理を示すフローチャートである。

図12は本発明の一実施形態としてのリアルタイム処理を示すフローチャートである。

図13は従来の自己組織化マップ(可視化2次元マップ)を示す図である

発明を実施するための最良の形態

10 以下、本発明の実施の形態について、図を参照して説明する。

図1は、本発明の一実施形態としての診断装置を示すブロック図である。本診断装置は、例えば建設機械等の機械類に備えられ、機械類に異常があるか否かを診断するものである。以下では、一例として建設機械の油圧ショベルに適用した場合の診断装置について説明する。なお、本診断装置の適用対象はこれに限定されるものではなく、複数の動作モード(変動モード)で動作(変動)しうる種々の対象体全てに適用できる。

図1に示すように、本診断装置は、油圧ショベルに備えられた複数のセンサ (検出手段) 1 a ~ 1 d と、自己組織化マップ形成手段 2, 記憶部 3, 判定手段 4 に相当する各機能を有するECU (電子コントロールユニット) 5 と、表示装置 6 とを主に備えて構成されている。なお、ECU5は、入出力装置, 処理プログラムを内蔵した記憶装置 (RAM, ROM等), 中央処理装置 (CPU) 等を備えて構成される。

センサ1 a ~ 1 d は、油圧ショベルに関する各パラメータ(変動要素)に対応して備えられ、複数の動作モードで動作しうる油圧ショベルの動作時に、油圧ショベルの動作に応じて変動する各パラメータ値を各動作モード毎にそれぞれ複数組検出するようになっている。なお、このセンサ類は、対応す

るパラメータの値を直接検出するもののほか、ある検出データを演算等によって処理して、対応するパラメータの値を推定値として求めるものも含む。

また、ここでいう油圧ショベルに関するパラメータとは、例えばエンジン回転数,燃料消費量,油圧ポンプ圧力(1つ又は複数の油圧ポンプ圧力),油圧回路内の油温,車体の前進・後進或いは旋回を制御する作動圧,バケットを制御するバケットシリンダの作動圧,スティックを制御するスティックシリンダの作動圧,ブームを制御するブームシリンダの作動圧などの油圧ショベルの動作に応じて変動する各要素のことをいう。

5

10

15

20

25

本診断装置では、これらのパラメータのうち代表としてエンジン回転数,燃料消費量、油圧ポンプ圧力の値を検出するセンサ1 a ~ 1 d が備えられている。すなわち、エンジン回転数を検出するエンジン回転数センサ1 a と、燃料消費量を検出する燃料消費量センサ1 b と、油圧ショベルの左側及び右側の油圧ポンプ圧力をそれぞれ検出する左油圧ポンプ圧力センサ1 c ,右油圧ポンプ圧力センサ1 d との4つのセンサ1 a ~ 1 d を備えている。もちろん、上述したようなバケットシリンダ,スティックシリンダ,ブームシリンダ等の作動圧を検出するセンサを設けても良い。

自己組織化マップ形成手段 2 では、エンジン回転数センサ 1 a,燃料消費量センサ 1 b,左油圧ポンプ圧力センサ 1 c,右油圧ポンプ圧力センサ 1 d により検出された複数組のパラメータ値に基づく検出データをトレーニングデータ(Training Data)として、油圧ショベルの各動作モードに対応してそれぞれ個別の分離モデルとして自己組織化マップ(Self-Organizing Map、以下、SOMともいう)を形成するようになっており、この点が本診断装置の特徴の 1 つである。なお、図 1 に示すように、本発明の情報処理装置は、上述した各センサ 1 a \sim 1 d 2 d 3 d 3 d 4

ここで、油圧ショベルの各動作モードとは、ある一定の決まった動作 (特

定の動作)のことをいい、例えば、堆積した土砂をトラックのベッセル(荷台)上に積み込むという一連の作業は、おおまかに次の4つの運転モード(動作モード)に分離できる。すなわち、「バケットで土砂をすくい始めてからすくい終わるまでの動作(運転モード1)」、「土砂をすくった後、車体を旋回させて、土砂を保持したバケットをトラックのベッセル上方まで運ぶ動作(運転モード2)」、「バケットを開いて土砂のベッセル上への移載を開始してから土砂の移載が完了するまでの動作(運転モード3)」、「バケットを堆積した土砂の位置まで戻して運転モード1に入るまでの動作(運転モード4)」の4つのモードである。本実施形態では、一例として、油圧ショベルがこれら4つの運転モードで動作する場合について説明する。

5

10

25

また、自己組織化マップとは、一般には、多次元データを2次元空間で表して可視化した認識モデルのことをいうが、2次元空間に表さなくても、多次元データ自体を、予め用意されたクラスにクラス分け(分類)する際の1つの手段として用いることができる。

15 ここで、一般的なクラス分けについて説明する。計測によって取得したD組のデータ集団 $\{d_1, d_2, \cdots, d_i, \cdots, d_D\}$ の各データ点 d_i $(i=1, 2, \cdots, D)$ は、あるクラス C_j $(j=1, 2, \cdots, z)$ を特徴付ける n 個のパラメータ値(計測特性値)から成っている。すなわち、 $d_i = [P_1, P_2, \cdots, P_n]$ とする。クラス分けを行なうには、このあるデータ点 d_i の n 個のパラメータ値を読み取ることだけで、各データ点 d_i をある正しい クラスに当てはめることのできる技術(モデルとそれに対応したアルゴリズム)が必要となる。

このためには、まず、"答え(即ち、実際のクラス)"が分かっているトレーニングデータに基づいて初期知識を構築する必要がある。トレーニングデータは、自己組織化マップ(認識モデル)を学習する(即ち、徐々に自己組織化マップをアップデートする)ために使用され、この学習を繰り返す手法

は"教師あり学習"と呼ばれる。こうして得られた自己組織化マップをクラス分け問題を解く手段として用いる。

なお、自己組織化マップを構築するとき、正確なトレーニングデータを多量に用いれば用いるほど、より正確な自己組織化マップを構築することができるが、トレーニングデータの量がある程度に達したら、それ以上データ量を増やしても、自己組織化マップの精度向上は僅かになってしまうため、トレーニングデータの入力回数は所定の回数に設定するのが好ましい。また、ここでいう「クラス」は、本実施形態における「運転モード」に対応するものである。

10 さて、上述したように、本診断装置では、このような自己組織化マップを 、油圧ショベルの各動作モードに対応してそれぞれ個別の「分離モデル (Separation Model) 」として形成することが特徴の1つである。

5

15

20

25

つまり、各クラス C_j (C_1 , C_2 , …, C_z)のそれぞれに対して1つの自己組織化マップ SOM_j (SOM_1 , SOM_2 , …, SOM_z)を形成する。従って、本実施形態では、4つのクラス(運転モード)のそれぞれに対して1つの自己組織化マップを形成する。そして、分離モデルとしての各自己組織化マップをそれぞれ、ある1つの運転モードのみを明確に代表する多量のトレーニングデータを使って学習を実施する。このような学習により構築された各自己組織化マップはそれぞれ1つの運転モードを明確に認識できる"よく訓練されたエキスパート(Local and well trained Expert)"として機能する。このため、複数の動作モードで動作しうる対象体の各動作モードを正確に認識することができる。

なお、1つの自己組織化マップは1つの運転モードのみを学習するものであり、他の運転モードに対しては学習していないので、1つの自己組織化マップが他の運転モードの知識を同時に特徴づけるものではない。

また、自己組織化マップ形成手段2に入力される4つのセンサ1a~1d

からの検出データは、油圧ショベルの瞬間の状態を示す4個(n個)のパラメータ値 d(k)自体と、油圧ショベルの瞬間の変化状態を示す4個(n個)のパラメータ値の時間微分値(パラメータ値の変化率などの時間微分相当値も含む) Δ d (k) とを含み、これら4個のパラメータ値 d (k) 自体と4個のパラメータ値の時間微分値 Δ d (k) とを合わせた8次元(2 n次元)データとして構成されている。

5

10

15

20

25

このように、自己組織化マップ形成手段 2 では、現時刻のパラメータ値 d(k) だけでなく、現時刻のパラメータ値 d(k) と現時刻よりも前の時刻のパラメータ値 d(k-1) との差、即ち $\Delta d(k)=d(k)-d(k-1)$ 、をも含んだトレーニングデータに基づいて自己組織化マップを形成するようになっている。

現時刻のパラメータ値 d (k) のみでは油圧ショベルの全体の動的な稼動に対し十分な代表的情報を得ることができないが、上述のように Δ d (k) を考慮に入れることで、各運転モードに対し特徴となりうる検出データ軌跡の傾向をより正確に把握することができるので、より精度の高い自己組織化マップを形成することが可能となる。

この手法によれば、d(k)とΔd(k)というダブルサイズの自己組織 化マップを形成する必要があり長い学習時間を要することになるが、この計 算は自己組織化マップを学習する際に一度実行するだけでよいので、油圧ショベル作動中に運転モードを判定する際には何ら装置の負担にはならない。

また、自己組織化マップ形成手段 2 は、8 次元 (2 n 次元) 空間内に所定数のニューロンをランダムに初期配置し、上記のトレーニングデータを用いて学習させ、トレーニングデータ点とニューロンとの距離が最小のニューロンを勝者ニューロンとして各トレーニングデータ点に対する勝者ニューロンを決定して自己組織化マップの候補を形成し、上記の自己組織化マップ候補の形成を複数回(所定数)実施して得られる複数の自己組織化マップ候補の

中からトレーニングデータ特性に最も近い特性のものを自己組織化マップと して選定するようになっている。

つまり、自己組織化マップ形成手段2は、上記の各自己組織化マップ候補について、トレーニングデータ点と上記の各勝者ニューロンとの距離の平均値と、トレーニングデータ点と上記の各勝者ニューロンとの距離の標準偏差とを演算し、平均値及び標準偏差の何れについても最も小さい自己組織化マップ候補を自己組織化マップとして選定するようになっている。なお、ここでいう勝者ニューロンとは、勝者ニューロン履歴のある(即ち、一度でも勝者ニューロンになったことのある)全てのニューロンのことをいう。また、このとき、自己組織化マップ形成手段2は、上記の平均値及び標準偏差の何れについても最も小さい自己組織化マップ候補がない場合には、平均値が最も小さい自己組織化マップ候補を自己組織化マップとして選定するようになっている。

5

10

15

20

25

さらに、自己組織化マップ形成手段2では、上記の選定した自己組織化マップ中のニューロンのうち、一度も勝者ニューロンとならなかったニューロンを消去するようになっている。

なお、このような自己組織化マップの学習は、油圧ショベルで実際の作業を行なう前に、或いは実際の作業とは切り分けて(本実施形態では、これを油圧ショベルの「オフライン状態」という)予め行なっておくことが好ましい。したがって、例えば、油圧ショベルが製品として出荷される前に、出荷後行なわれるであろう一連の動作に沿って油圧ショベルを実験的に動作させ、自己組織化マップ形成手段2により各運転モード毎に自己組織化マップを形成し、記憶部3に記憶させておけばよい。

判定手段4は、実際に現場で油圧ショベルが使用されている時に、センサ 1 a ~ 1 d によりリアルタイムに得られる検出データに対応した8次元空間 内の検出データ点と、記憶部3に記憶されている自己組織化マップ内の勝者

ニューロン (Winning Neuron、これについては後述する) との距離を、自己組織化マップ形成手段 2 による自己組織化マップの形成過程において用いたトレーニングデータ点と自己組織化マップ内の各勝者ニューロンとの距離の平均値で除算することにより相対距離 RD (Relative Distance) を算出するようになっている。

5

10

15

また、判定手段 4 では、上記の相対距離 R D が予め設定された所定値($1+\alpha$)以下であるときには、検出データ点は自己組織化マップに適合すると判定し、相対距離 R D が所定値($1+\alpha$)以上であるとき、検出データ点は自己組織化マップに適合しないと判定するようになっている。なお、 α はトレーニングデータの信頼度であり、例えば 0. $2\sim0$. 3 の値を与えることが好ましい。

さらに、判定手段 4 は、適合する自己組織化マップがある場合、検出データ点は、この自己組織化マップに対応する運転モードに属していると判定するようになっている。例えば、適合する自己組織化マップが運転モード1のものである場合、上記の検出データ点は運転モード1に属していると判定する。また、適合する自己組織化マップが複数ある場合には、適合する自己組織化マップの全てを候補として選定したり(この場合、相対距離RDの小さい順に候補を順位づけても良い)、相対距離RDが最小であるものをベストな自己組織化マップとして選定したりしてもよい。

20 一方、適合する自己組織化マップがない場合、検出データ点はどの運転モードにも属していないと判定するようになっており、この場合、上記の検出データ点は"未知のモード"或いは"異常モード"に属していると判定する。また、"未知のモード"を新たな運転モードとし、自己組織化マップ形成手段2により新たな自己組織化マップを形成して記憶部3に追加記憶させるようにすることも可能である。

なお、図1に示すように、本発明の状態判定装置は、センサ1 a ~ 1 d,

自己組織化マップ形成手段 2, 記憶部 3, 判定手段 4 から構成される。

表示装置 6 は、判定手段 4 における判定結果を表示するようになっている。 つまり、判定手段 4 により、検出データ点が、ある 1 つの運転モードに当てはまると判定された場合には、この運転モードを表示する。また、検出データ点が、複数の運転モードに当てはまると判定された場合には、上述した相対距離 R D が小さい順に運転モードを文字表示するようにしても良い。 さらに、検出データ点が、各運転モードのいずれにも当てはまらないと判定された場合には、未知のモード(或いは新たな運転モード)又は異常モードである旨を表示する。

10 本発明の一実施形態としての診断装置は上述のごとく構成されており、その診断に係る処理は、オフラインのデータの流れを使うオフライン処理と、 リアルタイムのデータの流れを使うリアルタイム処理との2つの主要な処理 からなる。

(A) オフライン処理

5

25

15 この処理では、自己組織化マップ形成手段2により、油圧ショベルの各運転モードを明確に表わす分離モデルとしての自己組織化マップを各運転モード毎に1つずつ形成する。この処理手順には、本実施形態にかかる情報処理方法が用いられ、図10に示すように、データ作成用検出ステップ(ステップS100), 演算ステップ(ステップS110), 自己組織化マップ形成ステップ(ステップS120)からなる。

データ作成用検出ステップ (ステップ S 1 0 0) では、油圧ショベルの各 運転モードについてそれぞれ多量且つ信頼性の高い検出データを取得する。 つまり、本実施形態では、各運転モード毎に、4 つのセンサ 1 a ~ 1 d から 各パラメータ値をそれぞれ複数組検出する。ここで、現時刻 k でのパラメータ値を d (k) とする。

演算ステップ(ステップS110)では、データ作成用検出ステップにお

自己組織化マップ形成ステップ(ステップS120)では、データ作成用 検出ステップで取得した複数組のパラメータ値 d(k) と、演算ステップで 算出した複数組のパラメータ値の時間微分値 $\Delta d(k)$ とに基づく検出データ $\{d(k); \Delta d(k)\}$ をトレーニングデータとして、各運転モード毎 に分離モデルとしての自己組織化マップを形成する。

5

10

15

20

25

このオフライン処理は時間を要する処理ではあるが、この後のリアルタイム処理においてクラス分けに使う自己組織化マップの質を決める最も重要なステップである。

図2は、油圧ショベルを運転モード1~4からなる一連の運転動作を繰り返し行なったときのセンサ1 a~1 dのパラメータ値を示しており、横軸は共通の時間目盛になっている。また、グラフは上から順にエンジン回転数、燃料消費量、左油圧ポンプ圧力、右油圧ポンプ圧力、運転モードの時間変化を示している。この図2からもわかるように、同一運転モードでは同一のパラメータ値(波形)が得られるのが理想的であるが、実際には同一の運転モードであってもパラメータ値が異なる場合がある。したがって、このオフライン処理において大量且つ信頼性のあるトレーニングデータを用いて自己組織化マップを繰り返し学習させていくことにより、各運転モードの特徴をより明確に表わす自己組織化マップを形成することができるのである。

このようにして各運転モードに対してそれぞれ1つの代表的な自己組織化マップを得るのであるが、この学習コンセプトの中には次のような特徴がある。すなわち、各自己組織化マップは1つの運転モードのみに対して学習するので、一般に知られている自己組織化マップのソフトウエアを使って表現されるような2次元マップのグラフ上にニューロンの位相学的距離(近傍)

を示す必要がない。本実施形態に係る自己組織化マップにおいては、8次元空間にあるニューロンの分布 [ここでは"雲 (Cloud)"と称する]を得ることで十分である。

次に、自己組織化マップ形成ステップのより具体的な計算処理について説明する。

5

10

15

図11に示すように、まず、8次元空間内に所定数のニューロンをランダムに配置する(ステップS200。第1ステップ)。そして、8次元空間内の各検出データ点(このオフライン処理においては自己組織化マップを形成するためのトレーニングデータとして扱われる)に対して、それぞれ各ニューロンとの距離を求める(ステップS210)。その後、上記の距離が最小であるニューロンを勝者ニューロンと決定する。また、このとき、この勝者ニューロンだけでなく、勝者ニューロンの近傍のニューロンも同時に学習させる。

ここで、最小の距離(Minimum Distance)MDを、i番目の検出データ 点と2n次元空間内における各ニューロンとの間の距離の最小値と定義する。例えば、j番目のニューロンとの距離が最小である場合、この最小である j番目のニューロンを勝者ニューロンと呼ぶ。この最小距離MDは次式(1)で表される。

MD (i) =
$$\min_{1 \le j \le n} \{r (i, j)\}$$
 · · · (1)
ただし、i = 1, 2, · · · , TD

20 ここで、r(i, j)は、i番目の検出データ点とj番目のニューロンとの間の距離を示す。また、一般的な自己組織化マップのアルゴリズムにおいて知られているように、距離r(i, j)をユークリッド距離として計算する。なお、TDはトレーニングデータの数(組)を表わしている。

その後、複数組についてすべて学習を実施したか否かを判定し (ステップ 25 S 2 3 0)、まだ実施していない場合 (N O の場合) はステップ S 2 1 0 へ

移る。一方、すべて実施完了した場合(YESの場合)はステップS240へ移り、1つの自己組織化マップ候補を形成する。なお、この時点で得られた自己組織化マップは、必ずしも1つの運転モードを明確に表わすベストな自己組織化マップとはいえないため、1つの候補として扱う。また、ステップS210~ステップS240が第2ステップであり、自己組織化マップ候補形成ステップは上記の第1ステップと第2ステップとからなる。

5

10

15

25

さて、上記の計算処理により、ある1つの運転モードに対して1つの自己組織化マップ候補が形成されたわけであるが、本実施形態では、ある1つの運転モードの特徴を明確に表わすより精度の高いベストな自己組織化マップを得るために、1つの運転モードについて複数の自己組織化マップ候補を形成し、これら複数の自己組織化マップ候補の中からベストなものを選定するようにしている。したがって、ステップS250では、予め自己組織化マップを形成する前に決めておいた所定数の自己組織化マップ候補を形成したか否かを判定し、NOの場合はステップS200に移ってさらにもう1つ自己組織化マップ候補を形成し、YESの場合は、ステップS260へ移る。

ステップS260 (選定ステップ)では、各候補の中からトレーニングデータ特性に最も近い特性のものを自己組織化マップとして選定する。ここで、このステップS260においてどのようにベストな自己組織化マップを選定するのかをより詳しく説明する。

20 まず、2 n 次元空間内のニューロン分布を特徴づける重要なパラメータと して、平均最小距離(Average Minimum Distance) A V_{min} と、最小距離 MDの標準偏差(Standard Deviation) S T_{dev} とがある。

図 3 は、一例として、2 n 次元空間内における 1 0 個の検出データ点(オフライン処理ではトレーニングデータとして扱っているので、図 3 ではトレーニングデータ点として示している) $d_{1}\sim d_{10}$ と 7 個のニューロン $n_{1}\sim n_{1}$ 7 との間の最小距離MDを視覚的に示すものであるが、平均最小距離 A V_{min}

はこれら最小距離MDの平均値である。この平均最小距離 AV_{min} は次式(2)で表される。

$$AV_{min} = \frac{1}{TD} \sum_{i=1}^{TD} MD (i)$$
 ... (2)

5

10

15

20

また、標準偏差 ST_{dev} も、平均最小距離 AV_{min} の式と同様に、公知の式 [次式(3)]により求めることができる。

$$ST_{dev} = \sqrt{\frac{\sum_{i=1}^{TD} (MD(i) - AV_{min})}{TD}}$$
 ... (3)

ステップS260では、このようにして求めた平均最小距離 AV_{min} と標準偏差 ST_{dev} とに基づいて、複数の候補として算出された自己組織化マップのうちどの自己組織化マップがトレーニングデータ特性に最も近いかを判定する。このとき、平均最小距離 AV_{min} 及び標準偏差 ST_{dev} の何れについても最も小さい自己組織化マップ候補を、トレーニングデータ特性に最も近いベストな自己組織化マップとして選定する。

なお、平均最小距離 AV_{min} 及び標準偏差 ST_{dev} の何れについても最も小さい自己組織化マップ候補がない場合には、平均最小距離 AV_{min} が最も小さい自己組織化マップ候補を自己組織化マップとして選定する。

これにより、最もよく検出データ(トレーニングデータ)の特徴を表わした自己組織化マップを選定することができる。

また、ステップS270(アイドリングニューロン消去ステップ)において、上記の選定した自己組織化マップ中のニューロンのうち一度も勝者ニューロンにならなかったニューロン(ここでは"アイドリングニューロン(Idling Neuron)"と称する)を消去する。例えば図3には2つのアイドリングニューロンn3, n7が示されているが、ここではこれらアイドリングニューロンn3, n7が示されているが、ここではこれらアイドリングニューロンn3, n7を自己組織化マップの学習後に消去するのである。このよう

なアイドリングニューロンの概念を適用することで、トレーニングデータ特性を、ニューロン数を大幅に減少させた自己組織化マップで表すことができるので、自己組織化マップを記憶しておくための容量を少なくでき、この後この自己組織化マップを用いた計算の処理時間を短縮できる。

本実施形態で説明するように、1つの運転モードに対して1つの自己組織化マップ(分離モデル)を使うことのメリットは、この1つの運転モードを特徴づける膨大な検出データ点を、数を大幅に減少させたニューロンに近似することで記憶容量を少なくできることと、次のリアルタイム処理で行なわれるクラス分けを迅速に行なえることである。

5

20

25

10 図4(a),図4(b),図4(c)及び図4(d)は運転モード1に対する検出データ点のグラフであって、図4(a)はエンジン回転数P₁と左油圧ポンプ圧力P₃との関係、図4(b)はエンジン回転数P₁と右油圧ポンプ圧力P₄との関係、図4(c)は左油圧ポンプ圧力P₃と右油圧ポンプ圧力P₄との関係、図4(d)はエンジン回転数P₁と燃料消費量P₂との関係を示している。なお、図4(a),図4(b),図4(c)及び図4(d)の各自己組織化マップ(分離モデル)は8次元であるので、実際には8次元空間に勝者ニューロンが位置したマップとして形成される。

また、図5 (a),図5 (b),図5 (c)及び図5 (d)は運転モード 2 に対する検出データ点のグラフである。図5 (a),図5 (b),図5 (c)及び図5 (d) も、各自己組織化マップ (分離モデル)は8次元であるので、実際には8次元空間に勝者ニューロンが位置したマップとして形成される。

また、図 6 (a),図 6 (b),図 6 (c)及び図 6 (d)は、次のリアルタイム処理で使用されることになる運転モード 1 のベストな自己組織化マップを示すものである。なお、図 6 (a),図 6 (b),図 6 (c)及び図 6 (d)中の小さい点印は、運転モード 1 の検出データ点を、大きい点印は

、完全な学習及びアイドリングニューロンの消去を行なった後のニューロン を示している。

これと同様に、図7(a),図7(b),図7(c)及び図7(d)は、次のリアルタイム処理で使用されることになる運転モード2のベストな自己組織化マップを示すものである。なお、図7(a),図7(b),図7(c)及び図7(d)中の小さい点印は、運転モード2の検出データ点を、大きい点印は、完全な学習及びアイドリングニューロンの消去を行なった後のニューロンを示している。

これらの図6(a)(a),図6(b),図6(c)及び図6(d)及び図7(a)(a),図7(b),図7(c)及び図7(d)から、ニューロンが主にデータ密度の最も高い領域に配置されていることが容易に分かる。そして、これらのニューロンは、次のリアルタイム処理におけるクラス分けにおいて、全体の検出データ点の代表点として利用されることになる。

(B) リアルタイム処理

5

10

25

この処理は、実際に作業中の油圧ショベルから得られるリアルタイムの検出データに基づいて、油圧ショベルが現在どのような運転モードで運転しているのかを判定する処理である。つまり、ここで得られるリアルタイムの検出データが、上述したオフライン処理において形成された4つの自己組織化マップのうちどの自己組織化マップと最も類似しているかを計算し、最も類似性の高い自己組織化マップに対応する運転モードを判定する。この処理手順には、本実施形態にかかる状態判定方法及び診断方法が用いられる。

図12に示すように、まず、4個のパラメータ値、即ち検出データをそれぞれリアルタイムに検出する(ステップS300。状態判定用検出ステップ)。また、ステップS300において検出された各パラメータ値をそれぞれ処理して各パラメータ値の時間微分値 [パラメータ値の変化率(例えば検出周期時間など単位時間での変化量)などの時間微分相当値も含む] Δ d (k

次に、現在の検出データと各運転モードの自己組織化マップとの類似度合いSD (Similarity Degree)を求める。この類似度合いSDを計算する手法は種々あるが、本実施形態では、ユークリッド距離、即ち、現在の検出データ点と自己組織化マップ内の勝者ニューロンとの距離を使って求める。

5

10

15

また、このようにして得られた類似度合いSDを平均最小距離A V_{min} で除算し、現在の検出データ点と自己組織化マップの勝者ニューロンとの間の相対距離RD ($=SD/AV_{min}$)を求める。なお、ここでいう勝者ニューロンとは、リアルタイムで検出するデータ点(1 個)に対し距離の最も短いニューロンをいう。この相対距離RDの計算を、4つの自己組織化マップの全てに対してそれぞれ行なう(ステップS320)。

そして、上述のように算出された相対距離RDが、自己組織化マップに対し、所定値($1+\alpha$)以下、即ちRD $\le 1+\alpha$ (α は予め決められた閾値)であるか否かを判定し(ステップS330)、所定値以下であれば、この自己組織化マップに適合すると判定し候補として記憶しておく(ステップS340)。即ち、上記の検出データ点は、適合する自己組織マップに対応した運転モードに分類できることを意味している。

20 一方、相対距離RDが所定値以上であれば、この自己組織化マップには適合しないと判定する(ステップS350)。即ち、上記の検出データ点は、どの運転モードにも分類できないことを意味している。なお、ステップS320~ステップS340が判定ステップである。また、上記の所定値(1+α)を適宜設定しておくことで、検出データ点が自己組織化マップに適合するか否かの判定基準を状況に応じて決定することができる。

このような判定を4つの運転モードの自己組織化マップについて行ない、

適合する自己組織化マップが複数ある場合(即ち、適合する運転モードが複数ある場合)には、これら自己組織化マップに対応する運転モードを、表示装置6を介してオペレータに示す。なお、このとき、相対距離RDが小さい順番に、即ち類似度合いの高い順番に並べて表示すれば、オペレータにとって分かりやすい運転モード表示となる。

5

10

15

20

25

一方、適合する自己組織化マップが1つもない場合(即ち、適合する運転モードが1つもない場合)には、「(オフライン処理では学習しなかった)未知の運転モード」又は「異常モード」である旨を、表示装置6を介してオペレータに示す。このように、表示装置6に、作業中の油圧ショベルに異常があるか否かを表示することで、オペレータに対して一種の警告を行なうことができる。

ところで、本実施形態に係るリアルタイム処理の特徴の1つとして、その "適応性 (Adaptability)"が挙げられる。すなわち、油圧ショベルのオペレータが新しい運転モードを行なった場合、この新たな運転モードだけの検出データを取得して学習を実施し、新たな自己組織化マップSOM₂₊₁を作ることが可能である。そして、この新たな自己組織化マップSOM₂₊₁を既存の自己組織化マップに追加することができるのである。つまり、本実施形態ではオフライン処理で4つの運転モードに対応する4つの自己組織化マップを形成したが、この新たな自己組織化マップを追加すれば、合計で5つの自己組織化マップが形成され記憶されることになる。

このように、新たに自己組織化マップを追加したい場合、本実施形態では、クラス分けモデル全体を、上記の新たな分離モデルとしての自己組織化マップSOM_{z+1}を追加するだけで容易にアップデートすることが可能であるので、従来のように最初からクラス分けモデル全体(即ち、従来の可視化2次元マップ全体)を作り直す必要がない。これにより、新たな運転モードを随時追加していくことで、種々の運転動作についてより正確な診断が行なえ

るようになる。

5

15

20

25

図8は、本実施形態に係る診断装置による運転モード判定結果の一例を示している。図8中、実線が油圧ショベルの実際の運転モード、破線が自己組織化マップによりクラス分けされた運転モードである。なお、本実施形態においてオフライン処理で予め学習していた運転モードは運転モード「1」、運転モード「2」、運転モード「3」、運転モード「4」、予め学習していなかった運転モード(例えば油圧ショベルがアイドリングしているときのモード)は運転モード「0」で示している、また、運転モード「-1」は、"未知のモード"又は"異常モード"であることを示している。

10 この図8から、実際の運転モードとは異なる運転モードと判定される場合 があるが、ほぼ実際の運転モードのラインに沿った正しい運転モード判定が 行なわれていることがわかる。

以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して 実施することができる。

例えば、本実施形態では、検出データとしてd(k)及び $\Delta d(k)$ をそのまま使用したが、これらの値を直接使用するのではなく、1次フィルタ等の平滑化処理を施した上で使用するようにしても良い。

また、計算処理に多少時間がかかることにはなるが、自己組織化マップを 形成する際のニューロンの総数を増やして、自己組織化マップを形成するよ うにしてももちろん良い。これによれば、より精度の高い自己組織化マップ を形成することが可能である。

さらに、本実施形態では、複数の動作モードで動作しうる対象体として油 圧ショベルを例に説明したが、対象体はこれに限定されるものではなく、例 えばトラック・バス,船舶等の乗物類、及び、産業機械をはじめとした各種 機械類の動作の良否判定等に広く適用できるほか、動植物等の生命体の良否

判定等や、天候或いは地球等の天体の変化の推定などにも適用できる。

また、本実施形態では、診断装置を油圧ショベルに設けて油圧ショベル側で一括して診断を行なう構成について説明したが、図9に示すように、例えば油圧ショベル等の移動機械にパラメータを検出するセンサだけを設け、この移動機械を所有する事業所に、本実施形態で説明した自己組織化マップ形成手段2,記憶部3,判定手段4及び表示装置6とを備えたコンピュータ等を設置し、センサからの検出データを無線通信等により上記のコンピュータに送信して表示することで、移動機械が遠隔地にある場合でも事業所側で容易に診断を行なうことが可能となる。なお、図9では、移動機械と事業者との間に管理システムを介在した例を示している。従来より、特に建設機械、トラック・バス、船舶等のような移動機械を対象にした場合、地理的分散による非効率性もあってメンテナンスの高度化及び高効率化のニーズが高いが、本発明の診断装置を上述のように構成すれば、このようなニーズにも対応可能である。

15

10

5

産業上の利用可能性

以上説明したように、本発明は、複数の動作モードで動作しうる機械等の対象体に適用することで、上記対象体の各動作を正確に認識することができ、その有用性は極めて高いものと考えられる。

20

請 求 の 範 囲

1. 複数の動作モードで動作しうる対象体の動作時に該動作に応じて変動するn個のパラメータの値を各動作モード毎にそれぞれ複数組検出する検出手段と、

該検出手段により検出された上記の複数組のパラメータ値に基づく検出データをトレーニングデータとして自己組織化マップを形成する自己組織化マップ形成手段とをそなえ、

該自己組織化マップ形成手段では、上記の各動作モードに対応してそれぞ 10 れ個別の分離モデルとして該自己組織化マップを形成する ことを特徴とする、情報処理装置。

5

15

20

25

2. 該検出データは、該対象体の瞬間の状態を示す上記の検出されたn個のパラメータ値自体と、該対象体の瞬間の変化状態を示す上記の検出されたn個のパラメータ値の時間微分値とを含み、該n個のパラメータ値自体と該n個のパラメータ値の時間微分値とを合わせた2n次元データとして構成されている

ことを特徴とする、請求の範囲第1項に記載の情報処理装置。

3. 該検出手段は、上記のn個のパラメータ値を複数組検出し、

該自己組織化マップ形成手段は、2n次元空間内に所定数のニューロンをランダムに初期配置し、該2n次元空間内の各検出データ点をトレーニングデータとして学習を実施し、該トレーニングデータ点とニューロンとの距離が最小のニューロンを勝者ニューロンとして該自己組織化マップの候補を形成し、上記の自己組織化マップ候補の形成を複数回実施して得られる複数の自己組織化マップ候補の中から該トレーニングデータ特性に最も近い特性のものを自己組織化マップとして選定する

ことを特徴とする、請求の範囲第2項に記載の情報処理装置。

4. 該自己組織化マップ形成手段は、上記の各自己組織化マップ候補について、該トレーニングデータ点と上記の各勝者ニューロンとの距離の平均値と、該トレーニングデータ点と上記の各勝者ニューロンとの距離の標準偏差とを演算し、該平均値及び該標準偏差の何れについても最も小さい自己組織化マップ候補を自己組織化マップとして選定する

ことを特徴とする、請求の範囲第3項に記載の情報処理装置。

- 5. 該自己組織化マップ形成手段は、該平均値及び該標準偏差の何れについても最も小さい自己組織化マップ候補がない場合には、該平均値が最も小さい自己組織化マップ候補を自己組織化マップとして選定する
- 10 ことを特徴とする、請求の範囲第4項に記載の情報処理装置。

5

6. 該自己組織化マップ形成手段では、上記の選定した該自己組織化マップ 中のニューロンのうち、一度も勝者ニューロンとならなかったニューロンを 消去する

ことを特徴とする、請求の範囲第3項~第5項の何れか1項に記載の情報処 15 理装置。

- 7. 請求の範囲第1項~第6項のいずれか1項に記載の情報処理装置によって上記の各動作モードに対応してそれぞれ個別に形成された該自己組織化マップの各分離モデルを記憶した記憶部と、該検出手段とを備え、該対象体の状態を判定する状態判定装置であって、
- 20 該検出手段によりリアルタイムに得られる検出データに対応した2n次元空間内の検出データ点と該自己組織化マップ内の勝者ニューロンとの相対距離に基づいて、該対象体の動作がいずれの動作モードに適合するかを判定する判定手段を備えている

ことを特徴とする、状態判定装置。

25 8. 該判定手段では、該検出手段によりリアルタイムに得られた該検出データ点と該自己組織化マップ内の勝者ニューロンとの距離を、該情報処理装置

による該自己組織化マップの形成過程において用いた該トレーニングデータ と該自己組織化マップ内の各勝者ニューロンとの距離の平均値で除算するこ とにより、該相対距離を算出する

ことを特徴とする、請求の範囲第7項に記載の状態判定装置。

5 9. 該判定手段では、該相対距離が予め設定された所定値以下であるとき、 該検出データ点は該自己組織化マップに適合すると判定し、該相対距離が所 定値以上であるとき、該検出データ点は該自己組織化マップに適合しないと 判定する

ことを特徴とする、請求の範囲第7項又は第8項に記載の状態判定装置。

10 10. 請求の範囲第7項~第9項のいずれか1項に記載の状態判定装置を備 え、該対象体を診断する診断装置であって、

該対象体は建設機械を含む機械類であり、該動作モードは該機械類の特定 の動作である

ことを特徴とする、診断装置。

20

11. 複数の動作モードで動作しうる対象体の動作時に該動作に応じて変動 するn個のパラメータの値を各動作モード毎にそれぞれ複数組検出するデー タ作成用検出ステップと、

該データ作成用検出ステップにより検出された上記の複数組のパラメータ 値に基づく検出データをトレーニングデータとして自己組織化マップを形成 する自己組織化マップ形成ステップとをそなえ、

該自己組織化マップ形成ステップでは、上記の各動作モードに対応してそれぞれ個別の分離モデルとして該自己組織化マップを形成する ことを特徴とする、情報処理方法。

12. 該データ作成用検出ステップと該自己組織化マップ形成ステップとの 間に、該データ作成用検出ステップにおいて検出されたn個のパラメータ値 をそれぞれ処理して該n個のパラメータ値の時間微分値を演算する演算ステ

ップが設けられ、

5

25

該自己組織化マップ形成ステップでは、該検出データとして、該対象体の瞬間の状態を示す上記の検出されたn個のパラメータ値自体と、該対象体の瞬間の変化状態を示す上記の演算されたn個のパラメータ値の時間微分値とを合わせた、2n次元データに基づいて該自己組織化マップを形成することを特徴とする、請求の範囲第11項に記載の情報処理方法。

13. 該データ作成用検出ステップでは、上記のn個のパラメータ値を複数 組検出し、

該自己組織化マップ形成ステップは、

 2n次元空間内に所定数のニューロンをランダムに初期配置する第1ステップと、該データ作成用検出ステップの検出結果に基づいて得られた該2n 次元空間内の各該検出データ点をトレーニングデータとして学習させ、該トレーニングデータ点とニューロンとの距離が最小のニューロンを勝者ニューロンとして該自己組織化マップの候補を形成する第2ステップとからなる自己組織化マップ候補形成ステップをそなえるとともに、

該自己組織化マップ候補形成ステップを複数回実施して、形成した複数の 該自己組織化マップ候補の中から該トレーニングデータ特性に最も近い特性 のものを自己組織化マップとして選定する自己組織化マップ選定ステップを そなえる

20 ことを特徴とする、請求の範囲第11項又は第12項に記載の情報処理方法 。

14. 該自己組織化マップ形成ステップは、該自己組織化マップ選定ステップの後、選定した該自己組織化マップ中のニューロンのうち、一度も勝者ニューロンとならなかったニューロンを消去するアイドリングニューロン消去ステップをそなえている

ことを特徴とする、請求の範囲第13項に記載の情報処理方法。

15. 上記の複数の動作モード以外に該対象体の新たな動作モードについての該自己組織化マップを追加する場合には、該新たな動作モードによって該対象体を動作させながら、該データ作成用検出ステップにより上記のn個のパラメータの値を検出し、該自己組織化マップ形成ステップにより上記の検出された複数組のパラメータ値に基づく検出データをトレーニングデータとして該新たな動作モードに対する自己組織化マップを形成する

5

25

ことを特徴とする、請求の範囲第11項~第14項の何れか1項に記載の情報処理方法。

16. 請求の範囲第11項~第15項のいずれか1項に記載の情報処理方法 によって各動作モードに対応してそれぞれ個別の分離モデルとして形成され た該自己組織化マップを用いて該対象体の動作がいずれの動作モードに適合 するかを判定する状態判定方法であって、

該対象体の動作時に該動作に応じて変動する上記のn個のパラメータの値をそれぞれ検出する状態判定用検出ステップと、

15 該状態判定用検出ステップにおいてリアルタイムに得られる検出データに対応した2n次元空間内の検出データ点と該自己組織化マップ内の勝者ニューロンとの相対距離に基づいて、該対象体の動作がいずれの動作モードに適合するかを判定する判定ステップとを備えていることを特徴とする、状態判定方法。

20 17. 該状態判定用検出ステップと該判定ステップとの間に、該状態判定用 検出ステップにおいて検出されたn個のパラメータ値をそれぞれ処理して該 n個のパラメータ値の時間微分値を演算する演算ステップが設けられ、

該判定ステップでは、該検出データとして、該対象体の瞬間の状態を示す上記の検出されたn個のパラメータ値自体と、該対象体の瞬間の変化状態を示す上記の演算されたn個のパラメータ値の時間微分値とを合わせた、2n次元データに基づいて該対象体の動作モードを判定する

ことを特徴とする、請求の範囲第16項に記載の状態判定方法。

18. 該判定ステップでは、該状態判定用検出ステップによりリアルタイムに得られた該検出データ点と該自己組織化マップ内の勝者ニューロンとの距離を、該情報処理装置による該自己組織化マップの形成過程において用いた該トレーニングデータ点と該自己組織化マップ内の各勝者ニューロンとの距離の平均値で除算することにより該相対距離を算出し、該相対距離が予め設定された所定値以下であるときには、該検出データ点は該自己組織化マップに適合すると判定し、該相対距離が所定値以上であるときには、該検出データ点は該自己組織化マップに適合すると判定し、該相対距離が所定値以上であるときには、該検出データ点は該自己組織化マップに適合しないと判定する

- 10 ことを特徴とする、請求の範囲第17項に記載の状態判定方法。
 - 19. 請求の範囲第16項~第18項のいずれか1項に記載の状態判定方法を備え、該対象体を診断する診断方法であって、

該対象体は建設機械を含む機械類であり、該動作モードは該機械類の特定 の動作である

15 ことを特徴とする、診断方法。

5

20. 該判定ステップでは、適合する自己組織化マップがない場合、上記の特定の動作が未知のモード或いは異常モードであると判定することを特徴とする、請求の範囲第19項に記載の診断方法。

<u>図</u>

図 2

図3

図8

<u>図</u>

図10

図11

11/13

図12

図13

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/009478

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl7 G06N3/08, G01D21/00, E02F9/24, G05B23/02, B60R16/02 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl' G06N3/08, G01D21/00, E02F9/24, G05B23/02, B60R16/02 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 10-333912 A (Oki Electric Industry Co., Х 1,11 Y Ltd.), 2-3,6-10, 18 December, 1998 (18.12.98), 12-20 Full text; all drawings (Family: none) JP 2002-109536 A (Nightingale Technologies Y 2-3,6-10, Ltd.), 12-20 12 April, 2002 (12.04.02), Full text; all drawings & EP 001191459 A1 & WO 02/025574 A2 JP 2001-331839 A (Glory Ltd.), Y 6,14 30 November, 2001 (30.11.01), 4,5 Full text; all drawings (Family: none) Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority "A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the principle or theory underlying the invention to be of particular relevance earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "L" special reason (as specified) document of particular relevance; the claimed invention cannot be "O" document referring to an oral disclosure, use, exhibition or other means considered to involve an inventive step when the document is combined with one or more other such documents, such combination document published prior to the international filing date but later than "P" being obvious to a person skilled in the art the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 31 August, 2004 (31.08.04) 14 September, 2004 (14.09.04) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Facsimile No. Telephone No. Form PCT/ISA/210 (second cheet) (Tanuary 200A)

発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' G06N3/08,G01D21/00, E02F9/24, G05B23/02, B60R16 B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' G06N3/08,G01D21/00, E02F9/24, G05B23/02, B60R16 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2004年 日本国登録実用新案公報 1994-2004年 日本国実用新案登録公報 1996-2004年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示。 請求の範囲の番号 X JP 10-333912 A(沖電気工業株式会社) 1, 11 Y 1998.12.18,全文,全図 (ファミリー無し) 2-3, 6-10, 12-20 Y JP 2002-109536 A(ナイチンゲールテクノロジーズリミテッド) 2-3, 6-10,2002.04.12,全文,全図 12-20 & EP 001191459 A1 & WO 02/025574 A2 JP 2001-331839 A(グローリー工業株式会社) Y 6, 14 2001.11.30,全文,全図 (ファミリー無し) 4, 5 】 C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 31.08.2004 14. 9. 2004 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 3350 日本国特許庁 (ISA/JP) 後藤 和茂 郵便番号100-8915 東京都千代田区館が関三丁目4番3号 電話番号 03-3581-1101 内線 6917