Definitions

Sentence

• Is grammatically correct

Statement

- Sentence
- Asserts something being true or false
 - o Either true or false

Proposition

• The meaning of a statement regardless of syntax or presentation of the sentence

Argument

- Propositions (Premises + Conclusion)
 - One claims to be supported by the rest accepted premises
 - o Premise (Accetped fact) -- prove--> Conclusion
- Hidden premise
 - Assumed premise

Explanation

- Propositions
 - One claims to be shed light on by the rest
 - Explanan --explain--> Explanandum (Accepted fact)

Deductive/Inductive arguments

Deductive arguments

- If all premises are true -> Impossible to be false
- Can *conclusively* support conclusions

Inductive arguments

- If all premises are true -> Improbable to be false
- Can **strongly** support conclusions

Possibilities

- Technological: Within current technological constraints
- Physical: Within physical constraints

- Logical: Within logical constraints
 - No logical contradictions
 - Within all possible worlds
- Technological ∈ Physical ∈ Logical

Proposition types

- Tautological: Necessarily true
 - o Proves itself
- Self-contradictory: Necessarily false
 - o Disproves itself
- Contingent: Neither
 - Requires external knowledge to be proven

Argument evaluation standards

Deductive standard

Validity (valid/invalid?)

- Truth-preserving?
 - Invalid: True premise + False conclusion -> Possible
 - **Conditionally valid** (!!!)
 - Valid: True premise + False conclusion -> Impossible
 - **Self-contradictory premise** (Impossible true premise)
 - Tautological conclusion (Impossible false conclusion)

Soundness (sound/unsound?)

• Valid argument + True premise

Inductive standard

Strength (strong/weak?)

- Probable conclusion?
- Not binary/all-or-nothing

Cogency (cogent/uncogent?)

• Strong argument + True premise

Categorical syllogism

Syntax

Quantifier - subject term - copula - predicate term

- o All A are B
- Types:
 - **A**: All *X* are *Y*
 - **E**: No *X* are *Y*
 - **I**: Some *X* are *Y*
 - **O**: Some *X* are not *Y*
 - Affirmative: A, I; Negative: E, O
 - o Universal: A, E; Particular:I, O
- Some = Not zero
- Terms = **NOUNS**
- "All x identical to x" | "所有與 x 等同的 x"

Venn diagrams

- /// = Emptiness
- **X** = Existence

Standardisation

Conversion

- Only truth-preserving for E, I
- 1. Switch subject and predicate term

Contraposition

- Only truth-preserving for A, O
- 1. Switch subject with predicate
- 2. Toggle "non-" to both terms

Obversion

- Always truth-preserving
- Negate the quality (No <-> All | Some <-> Some...not)
- 2. Toggle "non-" to both terms

Syllogism

- Two-premise argument
 - o Three terms total
 - Each term appears twice
 - None term appears twice in a single proposition
- Major term: Predicate term of conclusion
- Minor term: Subject term of conclusion
- Middle term: Not present in conclusion

Mood & Figure

Figure

1	2	3	4	
M P	P M	M P	P M	
S M	S M	M S	M S	
S P	S P	S P	S P	

Mood

Valid

1	2	3	4
AAA	AEE	AII	AEE
AII	A00	EIO	EIO
EAE	EAE	IAI	IAI
EIO	EIO	OAO	

Invalid (Conditionally valid)

1	2	3	4
AAI	AEO	AAI	AAI
EAO	EAO	EAO	AEO
			EAO

Venn diagram

• △; circles at vertices

Middle term \triangle Minor term Major term

Opposition

- Contradictory
 - Cannot be both true + Cannot be both false
 - **A** <-> **O**
 - **E** <-> **I**
- Contrary
 - Cannot be both true + Can be both false
 - **A** <-> **E**

Subcontrary

- Can be both true + Cannot be both false
- I <-> O

• Subaltern

- For b is a subaltern of a ($b \rightarrow a$),
 - True *a* -> True *b*
 - False *b* -> False *a*
- I -> A
- **O** -> **E**

Propositional Logic

- Simple proposition: Proposition
- Compound proposition: Proposition + Logic (not, if, unless, ...)

Logical Operators

Operator	Function	Translation	T/T	T/F	F/T	F/F
~	Negation	not, not the case,				
	Conjunction	and, also, but,	Т	F	F	F
V	Disjunction (Inclusive)	eitheror	Т	Т	Т	F
Э	Conditional	ifthen, only if	Т	F	Т	Т
=	Bi-conditional	if and only if	Т	F	F	Т

Conditional

- P⊃Q:
 - P: antecedent
 - o Q: consequent
- Sufficient Condition
 - A is sufficient for B to occur
 - ~A does not necessitate for ~B
 - A⊃B

• Necessary Condition

- A is necessary for B to occur
- A does not necessitate B
- o B⊃A
- Sufficient ⊃ Necessary

Bi-conditional

- Logically Equivalent
- $P\supset Q == (P\supset Q)\cdot (P\supset Q)$

Well-formed Formulas

- 1. Capital letters
- 2. ~α
- 3. $\alpha \cdot \beta$
- $4. \alpha \vee \beta$
- 5. $\alpha \supset \beta$
- 6. $\alpha \equiv \beta$
- 7. Nothing else

Truth table

- All False: Self-contradictory
- All True: Tautological
- True + False: Contingent
- Premise / Premise / ... // Conclusion

Indirect truth table

- · Check validity
 - Assume invalid (true premises + false conclusion)
 - Main operators only
 - o Backwards deduction
 - Additional assumptions if necessary
 - All cases contradiction -> Contradiction
 - Check contradictions
 - ≥ 1 contradiction:
 - Wrong assumption
 - ∴ Argument is *valid*
 - 0 contradiction:
 - ∴ Argument is *invalid*
- Check consistency
 - Assume both true
 - o ...

Proposition Relations

- Logical Equivalent
 - Always ≡
- Contradictory
 - Always ~
- Consistent
 - o ≥1 both true
- Inconsistent
 - o 0 both true

Natural Deduction

Rules of Inference

• No Implication + Replacement in one step

Implication

- e.g. (1,2 MT)
- $\alpha * \beta \neq \beta * \alpha$

Replacement

- :: equivalent
- ≤ 3 replacements in one step

Proofs

• Indent deduction steps

Conditional Proof

- Conclusion: $\alpha \supset \beta$
- Assume premise α (ACP)
- Do until β (show explicitly)
- Unindent $\alpha \supset \beta$ (Step numbers, CP)

Indirect Proof

- Assume ~conclusion ~α (AIP)
- Do until contradiction (*show explicitly*)
- Unindent ~~α (Step numbers, IP)

Fallacies

Formal Fallacy

- Typical errors
- Can be identified from argument structure
- Affirming the consequent
- Denying the antecedent
- ..

Informal Fallacy

• Can only be identified from argument content

Fallacies of Relevance

- Argument irrelevant to conclusion
- Appeal to force

- Appeal to people
- Argument against the person
- Straw man
 - Unreasonable exaggeration
- Red herring
 - Attention diversion

Fallacies of Presumption

- Begging the question
 - Circular argument
- Complex question
 - Merge multiple questions
- False dichotomy
 - Pretend there are only 2 options

Fallacies of Weak Induction

- Hasty generalisation
 - Unrepresentative sample
 - Small sample size
 - Non-random sampling
- Appeal to unqualified authority
 - Forged authority
- Weak analogy
 - Irrelevant similarities
 - **X:** p, q, s
 - **Y:** p, q
 - .: **Y:** s
- Appeal to ignorance
 - Not proven false = True
 - Not proven true = false
- False cause
- Slippery slope
 - Unlikely chain reaction