18 de setembro de 2013

F 429: Experimento III

Sumário

1	Intr	oduçao		2		
2	Instrumentos e Componentes					
	2.1	Medic	las	2		
		2.1.1	Resistências	2		
		2.1.2	Capacitância	2		
		2.1.3	Resistência em série do indutor (R_L)	2		
		2.1.4	Indutâncias			
		2.1.5	Tensões no transformador	3		
		2.1.6	Histerese	4		
L	ista	de F	iguras			
	1	1 Circuito transformador: Medidas de ganho de tensão e resposta em frequênci				
	2	Gráfico V_{saida} versus $V_{entrada}$				
	3					
L	ista	de Ta	abelas			
	1	Tabola	$da dados V \dots a V \dots$	1		

1 Introdução

Neste experimento estudamos os conceitos de um transformador. Este é um dispositivo de corrente alternada que opera baseado nos princípios eletromagnéticos da Lei de Faraday^I e da Lei de Lenz^{II}. Ele transmite energia ou potência elétrica de um circuito a outro. Apesar de poder ter diferentes configurações, neste experimento foi estudado apenas um transformador composto de duas bobinas (primária e secundária) e um núcleo férrico para acoplá-las.

2 Instrumentos e Componentes

Os instrumentos e componentes utilizados estão listados abaixo com seus respectivos valores nominais.

- Gerador de Funções Tektronix CFG 253.
- Osciloscópio digital Tektronix TDS1000.
- Resistências nominais de 150Ω , 4, 7Ω , $1k\Omega$, $5k\Omega$ e $100k\Omega$.
- Indutores de 50mH e 3mH.
- Capacitores de $0.22\mu F$ e $24\mu F$.
- Multímetro

2.1 Medidas

2.1.1 Resistências

Para cada resistor utilizado medimos, utilizando o multímetro, as respectivas resistencias.

- $R_{4,7} \approx 5.1\Omega \pm 0.15\Omega$
- $R_{150} \approx 149.3\Omega \pm 1.59\Omega$
- $R_{1k} \approx 1001\Omega \pm 10.11\Omega$
- $R_{5k} \approx 5.07k\Omega \pm 57.1\Omega$
- $R_{100k} \approx 98.3k\Omega \pm 983.1\Omega$

2.1.2 Capacitância

Esta foi medida previamente em experimentos anteriores $C_{022}=0.2236\mu F\pm0.0191\mu F$

2.1.3 Resistência em série do indutor (R_L)

O cálculo das resistências internas dos indutores de 50mH e 3mH são, $R_{L50}=46.5\Omega R_{L3}=3.3\Omega$, respectivamente. Para estas medidas, também, foi utilizado o multímetro.

^ILei que se entende a produção de corrente elétrica em um circuito colocado sob efeito de um campo magnético variável ou por um circuito em movimento em um campo magnético constante

^{II}O sentido da corrente é o oposto da variação do campo magnético que lhe deu origem

2.1.4 Indutâncias

Nas medidas de indutâncias utilizamos o método da figura de Lissajous. Montamos um circuito RLC em série com o capacitor de $0.22\mu F[2.1.2]$ e um resistor qualquer^{III}. Dado que^{IV},

I
$$L = \frac{1}{(2\pi f_0)^2 C}$$

II $\Delta L = L \cdot \sqrt{(\frac{2\Delta f_0}{f_0})^2 + (\frac{\Delta C}{C})^2} \approx L \frac{\Delta C}{C}$

Obtivemos, $f_{0_{50}} \approx 1.5554kHz$ e $f_{0_3} \approx 6.2411kHz$, então, $L_{50} \approx 46.82mH \pm 3.99mH$ para o indutor de valor nominal 50mH e $L_3 \approx 2.91mH \pm 0.25mH$ para o de 3mH.

2.1.5 Tensões no transformador

Montamos o circuito conforme o esquema abaixo, utilizamos $N_2 \approx 1600voltaseN_1 \approx 400voltas$. Para as medidas das tensões primeiramente utilizamos o resistor de R_{5k} [2.1.1]. Porém, não

Figura 1: Circuito transformador: Medidas de ganho de tensão e resposta em frequência

conseguimos atingir a tensão máxima de 20.0V, com isso trocamos o resistor pelo R_{1k} [2.1.1]. O problema, entretanto, não foi resolvido pois, o último resistor limitava a tensão máxima em $V_{entrada} \approx 9.0$ V, ou seja, o mesmo atuava como um divisor de tensão. Logo, retornamos as medidas utilizando o resistor de valor dado em sala de aula (R_{5k}) e variamos $V_{entrada}$ entre 1.0V e 11V. Plotamos a tabela acima no gráfico, visto em seguida, e calculamos utilizando o método dos mínimos quadrados $^{\rm V}$, como descrito abaixo:

1.
$$\overline{y} = b\overline{x} + a$$

2.
$$b = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{N} (x_i - \overline{x})^2}$$

 $^{^{\}rm III}$ Bons resultados são obtivos com $R<1k\Omega$

 $^{^{\}rm IV}{\rm http://www.ifi.unicamp.br/~gustavo/disciplinas/f429/sobre_erros_hugo_fragnito.pdf1}$

Vhttp://pt.wikipedia.org/wiki/Metodo_dos_minimos_quadrados

$V_{entrada}$ [Volt]	Escala [Volt/div]	V_{saida} [Volt]	Escala [Volt/div]
1.06	200mili	3.5	500mili
2.00	500mili	7.68	1
3.00	500mili	10.2	2
4.04	1	13.80	2
5.00	1	17.40	5
6.00	1	21.20	5
8.00	2	28.40	5
9.12	2	32.00	5
10.10	2	35.80	5
11.00	2	39.6	5

Tabela 1: Tabela de dados $V_{entrada}$ e V_{saida}

Obtivemos os seguintes valores:

1. Coeficiente ângular $b \approx 0.2793; b^{-1} \approx 3.5809$

2.
$$a \approx 0.0792$$

Portando, temos $A_V \approx 3.5809 \frac{V}{V} \pm 0.0792s$

Figura 2: Gráfico V_{saida} versus $V_{entrada}$

Para espiras invertidas, onde $N_2 < N_1$, obtivemos $V_{entrada} = 1.02V(200.0\frac{mV}{div})$ e $V_{saida} = 206.0mV(50,0\frac{mV}{div})$. Lemo um ganho $A_V \approx 0.2019$.

2.1.6 Histerese

Quando um material ferromagnético é exposto a um campo magnético e em seguida esse campo diminui de intensidade, o campo magnético ${\bf H}$ diminui mais rapidamente do que a densidade do fluxo magnético ${\bf B}$, sendo assim quando ${\bf H}$ chega a zero, observamos uma densidade de fluxo remanescente B_R . Uma força, denominada coercisa, deve ser aplicada para reduzir ${\bf B}$ a zero.

Esse fenômeno que causa o atraso entre **B** e **H** é denominada **histerese magnética** e abaixo observamos o **ciclo de histerese**^{VI}.

Figura 3: Histereses

 $^{^{}m VI}$ http://en.wikipedia.org/wiki/Hysteresis