Época Normal

b) detetar e corrigir 2 erros

Universidade de Aveiro Dep. de Eletrónica, Telecomunicações e Informática Exame de Introdução aos Sistemas Digitais

15-01-2014

Notas Importantes!

•	Duração: 2h30m. Durante a realização do teste não é permitida a permanência na sala
	de calculadoras, telemóveis ou outros dispositivos eletrónicos.

Responda na folha do teste. Escreva nome e Nº. mec. em todas as folhas.

Nº mec:	Nome						
1 [5 valores] P	ara cada questão pro	posta, existem quatro	questão	а	b	С	d
		s uma é correta. Deve	1.1				
			1.2				
		pondente da tabela ao	1.3				
		rrigir desenhando um	1.4				
		cada pergunta é de 0.5	1.5				
valores. Questões	1.6						
errada (ou de resp	1.7						
limite mínimo de	0 valores no cômputo g	geral desta parte.	1.8				
			1.9				
			1.10				
1.1 A representaçã	ão do número 157 ₈ em	base 10 é: c) 751					
a) 157							
b) 111	b) 111 d) nenhuma d						
1.2. A representac	ão do número 27 ₁₀ em	base 2 com 8 <i>bits</i> é:					
a) 00011011	40 40 Hamero 27 10 em	c) 00000111					
b) 11011000		d) nenhuma das	anteriores				
<i>b)</i> 11011000		a) nemiama das	antenores				
1.3. A representaç	ão do número 0.62738	em base 1 <u>6</u> é:					
a) 0.6273		c) 0.DCC					
b) 0.C4E6		d) nenhuma das	anteriores				
1.4. Considere os de representação f		10 e B=111. Verifica-se	a relação	A>B	se o	cód	ligo
a) complemento p	ara 2 com 3 bits	c) sinal e módul	o com 3 bi	ts			
b) complemento p	d) sem sinal cor						
		presentação em complemento para 2 com 8 <i>bits</i>). I c) A < B d) é impossível e	Pode-se afi	rmar	que:		s) e
	palavra 1111 (em códig	go AIKEN). A sua repres	entação no	cód	igo I	3CD	842
é:		2) 0011					
a) 1111		c) 0011					
b) 1001		d) impossível					
1.7. A palavra 101 a) 1100	1 em código binário na	ntural corresponde, em cód c) 1110	digo de Gra	ay, a:			
b) 1011	d) nenhuma das	anteriores					
-, -		a, nemana das					
	Hamming de distância	<u>-</u>					
a) detetar, mas não	o corrigir, 1 erro	c) detetar até 2 e	erros e corr	ıgir a	até 1	erro	

d) detetar 3 erros

1.9. No sistema de representação em complemento para 1 com 4 *bits*, a soma aritmética de 0100 e 1100 é:

a) 1000

c) 0001

b) 0000

d) nenhuma das opções anteriores

1.10. No sistema de representação em complemento para 2 com 4 *bits*, a soma aritmética de 0100 e 1100 é:

a) 1000

c) 0001

b) 0000

d) nenhuma das opções anteriores

2. [3 valores] Pretende-se implementar a função $k(a,b,c) = (a+c) \cdot (\overline{b}+c) \cdot (b+\overline{c})$ recorrendo apenas a multiplexers 2:1 (vide bloco mux21 representado na questão 3). Comece por construir a tabela de verdade e depois desenhe o circuito explicitando todas as ligações. Admita que dispõe dos complementos das variáveis de entrada e das constantes 0 e 1. Use o número mínimo possível de multiplexers. Não pode usar outros componentes.

Nº mec: ______ Nome_____

3. [2 valores] O circuito da figura seguinte contém um descodificador binário 3:8, um multiplexer 2:1 e uma porta OR de quatro entradas e deve implementar a função $f(a,b,c,d) = a \oplus b \oplus c \oplus d$. As entradas a,b,c e d já estão ligadas, bem como a saída f. Complete o circuito (na própria figura), adicionando as ligações que faltam. Em termos de componentes adicionais, só pode usar portas lógicas NOT. <u>Justifique</u> a sua solução.

4. [2 valores] Pretende-se projetar um circuito que processe o operando A, representado no sistema 'complemento para dois' com 3 bits (A2A1A0), e realize a operação seguinte: $R = \begin{cases} (A^2), se \ A \ge 0 \\ -(A^2), se \ A < 0 \end{cases}$

O resultado R(R3R2R1R0) também é representado no sistema 'complemento para dois' (com 4 bits). A saída adicional (OF) destina-se a assinalar *overflow*.

Construa apenas a tabela de verdade do bloco em causa; em caso de *overflow*, considere irrelevante o estado das saídas R3, R2, R1 e R0.

- 5. A tabela de verdade especifica as funções f(a,b,c,d) e g(a,b,c,d) .
- **5.1.** [l valor] Usando o método de Karnaugh, encontre a representação mínima da função f(a,b,c,d) na forma de soma de produtos, aproveitando o melhor possível as situações de irrelevância.

а	b	С	d	f	g
0	0	0	0	Х	1
0	0	0	1	Х	0
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	1	1	0
1	0	0	0	Х	0
1	0	0	1	0	0
1	0	1	0	1	1
1	0	1	1	Х	1
1	1	0	0	Х	0
1	1	0	1	Х	1
1	1	1	0	Х	0
1	1	1	1	1	1

5.2. [1 valor] Indique as expressões algébricas de todos os <u>implicantes primos essenciais</u> da função g(a,b,c,d).

Nº mec: _____ Nome__

6. Considere o circuito sequencial síncrono da figura, baseado em *flip-flops* do tipo D.

6.1. [2 valores] Analise-o, apresentando em detalhe <u>todos os passos</u> seguidos e desenhe o diagrama de estados/saídas.

6.2. [1 valor] Os flip-flops que compõem o circuito têm as caraterísticas temporais seguintes: t_{setup} =15 ns, t_{hold} =5 ns, t_{pHL} =25 ns, t_{pLH} =20 ns; o tempo de atraso de uma porta lógica elementar é t_{porta} = 10 ns. Nestas condições, determine a frequência máxima de funcionamento do circuito. <u>Justifique</u> a sua conta e não esqueça as unidades.

7. Observe o circuito seguinte, baseado num registo de 4 bits e um somador iterativo de 4 bits.

7.1. [1 valor] Determine a sequência de contagem que poderá ser observada nas saídas Q3Q2Q1Q0. <u>Justifique</u>.

7.2. [1 valor] Assumindo que o somador é do tipo ripple-carry, calcule o tempo de atraso máximo de cada etapa elementar de soma para que o circuito possa funcionar a 10 MHz. Admita que $t_{setup} = t_{hold} = 5$ ns e $t_{pHL} = t_{pLH} = 15$ ns.

8. [*1 valor*] Analise o diagrama temporal seguinte que ilustra o comportamento no tempo de uma máquina sequencial síncrona com uma entrada, *x*, e uma saída, *y*. O estado da máquina é representado pelo sinal *Q*. Indique, <u>justificando</u>, o tipo da máquina.

