


```
Arranjo 2 dimensões (Matriz)

C - declaração:

tipo nome_arranjo[nro_elem_1ª_dimo] [nro_elem_2ª_dim];

·Número de elementos da dimensão:
    inteiro ou representar um valor inteiro
    · tipo: int, float, double (entre outros).

Ex:

float notas[5][3]; // matriz de 15 elementos reais
    int x[10][25]; // matriz de 250 elementos inteiros
```

```
Arranjo 2 dimensões ( Matriz)

C - utilização:

nome_arranjo [indice1ªdim] [indice2ªdim]

int main () // refere todas as dimensões
{
float nota [5] [3];
    scanf( "%f", &nota [0] [2]); // 1º aluno, 3ª nota dele

    nota [1] [2] = 7.5;
    nota [2] [1] = nota [1] [1] + 2;
    if (nota [0] [1] > 6.0)
        printf ("Aprovado");
} ...

Slide 4

Profa. Cora H.F. Pinto Ribeiro

UFRGS Informática
```

```
Arranjo 3 dimensões

Declaração: turmas alunos notas

loat nt [2] [10] [5]:

1º dimensão

2º dimensão

referência

Utilização: nt [turma] [aluno] [nota]

- um índice para cada dimensão;
- respeitando a ORDEM da declaração.

Slide 5 Profa. Cora H.F. Pinto Ribeiro

UFRGS Informática
```

```
Ex: Suponha que uma rede de lojas seja composta de:

• 10 lojas

• 5 setores por loja

• 30 produtos por setor

• 12 meses
Definir um arranjo para armazenar as quantidades de itens de cada produto vendidas em cada mês, por setor e por loja.

int quant_vend [10] [5] [30] [12];

loja setor produto mês

...

/*listar quantidade vendida do produto 17

em janeiro, em todos os setores da loja 6 */
for (setor = 0; setor < 5; setor++)
    printf( "%4d", quant_vend [6-1] [setor] [17-1] [1-1] );

...

Slide 6 Profa. Cora H.F. Pinto Ribeiro

UFRGS Informática
```

Arranjo de reais e de strings EX: Fazer um programa que lê e armazena o nome e as 3 notas de cada um dos NALUNOS alunos de uma turma e calcula e informa a média de cada aluno. Dica: Criar uma matriz de notas com 4 colunas - 3 para as notas e a última para a média do aluno; Criar uma matriz para nomes; Usar o mesmo índice aluno nas duas matrizes.

```
Dados do aluno 1:
None: Ana Silva So
Nota 1: 9,3
Nota 2: 7,8
Nota 3: 18

Dados do aluno 2:
None: Carlos Alberto Souza
Nota 1: 5,3
Nota 2: 6
Nota 3: 7.8

Dados do aluno 3:
None: Carlos Alberto Souza
Nota 1: 3,2
Nota 2: 7,5
Nota 3: 7,5
Nota 3: 9.9

Dados do aluno 4:
None: Margela do Canto
Mone: Margela do Canto
Mone: Harela do Can
```

```
Dados do alune 1:
Note 1: 9.3
Nota 1: 9.3
Nota 2: 7.8
Nota 3: 18

Dados do alune 2:
Nota 3: 18

Dados do alune 2:
Nota 3: 5.3
Nota 2: 6.
Nota 3: 5.3
Nota 2: 7.5
Nota 3: 7.5
Nota 3: 7.5
Nota 3: 8.9

Dados do alune 3:
Nota 2: 7.5
Nota 3: 8.9

Dados do alune 4:
Nota 3: 8.9

Dados do alune 4:
Nota 3: 9.8

Dados do alune 4:
Nota 3: 9.8

Dados do alune 4:
Nota 3: 9.5

Dados do alune 6:
Nota 3: 9.5

Dados do alune 7.5
Nota 3: 9.5
```

```
Matrizes — operações mais comuns

Dada uma matriz inteira matriz (tlinha, tcoluna):
a) preenchê-la por leitura, imprimindo a seguir a matriz lida;
b) o maior elemento de cada coluna da matriz;
c) a média dos elementos de cada linha;
d) o produto de todos os elementos diferentes de zero;
e) o número de elementos negativos;
f) posição ocupada (linha-coluna) por um elemento cujo valor será lido pelo programa.

Considere as declarações:

int matriz[TLINHA][TCOLUNA]; // matriz e limites int linha, coluna; // índices int maior, somalinha, cont_neg; float media; long produto;

Slide 12

Profa. Cora H.F. Pinto Ribeiro

UFROS

Informática
```

```
c) a média dos elementos de cada linha:

for (linha = 0 ; linha < TLINHA ; linha++)
{
    // fixa linha e varia as colunas:
    somalinha = 0;
    for (coluna = 0; coluna < TCOLUNA; coluna++)
        somalinha = somalinha + matriz [linha] [coluna];
    media = (float) somalinha /TCOLUNA; *
    printf("\nMedia linha %d = %.2f", linha, media);
}

* usa cast para que media seja considerada float , já que somalinha e tcoluna são inteiros ( para que o resultado da divisão também seja float ).

Side 15

Profa, Cora H.F. Pinto Ribeiro

UFROS

Informática
```

```
d) produto de todos os elementos diferentes de zero:

produto = 1; // inicializa com 1 !!!!

// percorre toda a matriz, aqui linha à linha (tanto faz)

for (linha = 0; linha < TLINHA; linha++)

for (coluna = 0; coluna < TCOLUNA; coluna++)

if (matriz [linha] [coluna]) // == 0 é false

produto = produto * matriz[linha][coluna];

printf ("Produto = %d", produto );

Side 16 Profa. Cora H.F. Pinto Ribeiro
```

```
// percorrendo toda a matriz - for:
printf("\nInforme valor a ser pesquisado:");
scanf ("%d", &valor);
for (linha = 0; linha < TLINHA; linha++)
    for (coluna = 0; coluna < TCOLUNA; coluna++)
    if (matriz [linha] [coluna] == valor)
    // impressão das posições iniciando em 1:
    printf ("Valor na posicao [ %d , %d] ", linha +1, coluna +1);

Se encontra logo?
    Se não existe?

Slide 18

Profa. Cora H.F. Pinto Ribeiro

UFRGS

Informática
```

d) localiza posição ocupada (linha-coluna) por um valor lido:

```
d) localiza posição ocupada (linha-coluna) por um valor lido:
// parando ao encontrar ou informando que não existe:
printf("\nInforme valor a ser pesquisado:");
scanf ("%d", &valor);
linha = 0;
achou = 1:
do
    coluna= 0;
        if (m [linha] [coluna] == valor)
             achou =0:
             printf ("Valor na linha: %d e coluna: %d", linha + 1, coluna + 1);
      } while (coluna < TCOLUNA && achou==1);
  } while (linha <TLINHA && achou == 1); /*pára qdo acha ou qdo percorreu toda a matriz */
  printf ("Valor não existe na matriz.");
                                                              UFRGS Informática
                       Profa. Cora H.F. Pinto Ribeiro
```

```
Informe elemento[1,1]: 5
Informe elemento[1,2]: -3
Informe elemento[1,3]: 6
Informe elemento[1,3]: 6
Informe elemento[1,4]: 12
Informe elemento[2,1]: -32
Informe elemento[2,2]: 4
Informe elemento[2,3]: 9
Informe elemento[2,4]: 6
Informe elemento[3,1]: -1
Informe elemento[3,2]: 12
Informe elemento[3,2]: 15
Informe elemento[3,4]: 15
5 -3 0 12
32 44 9 0
-1 1 22 15
Maior da coluna 0 = 5
Maior da coluna 1 = 44
Maior da coluna 2 = 22
Maior da coluna 3 = 15
 Media linha 0 = 3.50
 Media linha 1 = 5.25
 Media linha 2 = 9.25
 Produto = -752716800
      ımero de negativos = 3
 Informe valor a ser pesquisado:0
  Valor na linha: 1 e coluna: 3
```

Exercíciopara a próxima aula: Um professor quer armazenar os dados referentes ao gabarito de provas aplicadas a seus alunos em uma matriz. O professor possui 2 turmas, sendo que para cada turma serão aplicadas 3 provas, de 5 questões de escolha simples (respostas a,b,c,d,e) cada uma. Para cada prova, são armazenados os resultados de cada questão correspondente ao gabarito desta prova. Pede-se: a) declarar um arranjo tridimensional para armazenar as respostas de todas as provas de cada turma, isto é, os gabaritos. b) preencher por leitura este arranjo; c) imprimir, para cada turma a matriz de respostas de cada prova (colocando na tela os cabecalhos explicativos dos conteúdos apresentados) d) imprimir a(s) resposta(s) mais comum(ns) para as provas da segunda turma (a,b,c,d ou e).

Saidas:

- GABARITOS formatados (qual turma, qual prova)

```
Resposta com maior incidência (a,b,c,d ou e)
Vetor contador de resposta! Como declarar?
                                     UFRGS Informáti
```

